Neural Network Performance Analysis on IMDB Sentiment Classification

Introduction

Neural networks have become a powerful tool in text classification tasks. This report analyzes the impact of different model architectures and optimization techniques on **IMDB movie review sentiment classification**. The focus is on improving validation accuracy through hyperparameter tuning, architecture modifications, and regularization techniques.

Dataset and Preprocessing

The IMDB dataset, consisting of 25,000 positive and 25,000 negative movie reviews, was used. The text data was tokenized and converted into sequences using a vocabulary of the 10,000 most common words. Each sequence was padded to a fixed length of 500 words to maintain uniform input dimensions for the models.

Key Model Experiments and Observations

To improve model performance, various modifications were made, including changes to:

Model Configuration	Reason for Testing
1 Layer (64 Units)	Simpler model, checking for underfitting.
2 Layers (64 Units)	Balanced model structure, testing baseline
	performance.
3 Layers (64 Units)	Deeper model, testing if additional layers
	improve accuracy.
2 Layers (32 Units)	Fewer neurons, testing for reduced model
	capacity.
2 Layers (128 Units)	More neurons, checking if higher capacity
	improves performance.
2 Layers (64 Units, MSE Loss)	Testing MSE vs. binary_crossentropy for
	classification.
2 Layers (64 Units, Tanh)	Comparing Tanh with ReLU.
2 Layers (64 Units, Dropout 50%)	Preventing overfitting by randomly disabling
	neurons.
2 Layers (64 Units, L2 Regularization)	Adding weight decay to improve
	generalization.

• **Hidden layers**: 1, 2, or 3

• Number of neurons per layer: 32, 64, or 128

• Activation functions: ReLU and Tanh

- Loss functions: Binary Crossentropy and Mean Squared Error (MSE)
- **Regularization techniques**: L2 weight regularization and dropout

Each model was trained for 10 epochs with a batch size of 512, using the Adam optimizer.

Impact of Hidden Layers

We analyzed the effect of adding 1, 2, or 3 hidden layers on accuracy and loss:

[Figure 1] Training & Validation Metrics for 1 Hidden Layer (ReLU Activation)

[Figure 2] Training & Validation Metrics for 2 Hidden Layers (ReLU Activation)

[Figure 3] Training & Validation Metrics for 3 Hidden Layers (ReLU Activation)

Observations:

- 1-layer networks trained fast but had lower final accuracy.
- 2-layer networks achieved the best balance between accuracy and stability.
- 3-layer networks suffered from vanishing gradients and unstable performance, leading to poor accuracy.

Effect of Activation Functions and Loss Functions

Comparing different activation functions and loss functions:

[Figure 4] Training & Validation Metrics for 2 Hidden Layers (Tanh Activation)

[Figure 5] Validation Accuracy Over Epochs for Different Models

[Figure 6] Validation Loss Over Epochs for Different Models

Findings:

- ReLU showed stable learning behavior, while Tanh had slightly higher peak validation accuracy but was more prone to overfitting.
- Binary Crossentropy consistently outperformed MSE, achieving higher validation accuracy.
- MSE resulted in **poorer gradient updates** and slower learning.

Regularization and Dropout Effects

To prevent overfitting, L2 weight regularization and dropout were applied:

- Dropout **helped stabilize validation accuracy** by preventing the model from memorizing noise in training data.
- L2 regularization helped control weight magnitudes but required careful tuning.
- The **best-performing model used both dropout and L2 regularization**, improving generalization.

Final Model Selection

After evaluating all configurations, the best-performing model was:

- 2 hidden layers, 64 units, Tanh activation, Binary Crossentropy loss
- Achieved a validation accuracy of 86.99%

However, if stability is a concern, the ReLU-based 2-layer model (with 85.78% accuracy) is preferable.

Conclusion

This experiment demonstrated how hyperparameter tuning, architecture modifications, and regularization techniques impact model performance. The key takeaways are:

- 2 hidden layers performed best, providing a balance of accuracy and stability.
- Binary Crossentropy is the recommended loss function for binary classification.
- Regularization techniques (dropout and L2) significantly improve model generalization.