Classificador de cachorros e gatos

Projeto de Machine Learning

Matheus Andrade de Souza

Prof. André Gustavo Maletzke

Dataset

- Possui um total de 37461 imagens distintas de cachorros e gatos previamente separadas em três subconjuntos:
 - Treino: contém 20000 imagens no total, sendo 10000 de cachorros e 10000 de gatos.
 - Teste: contém 12461 imagens, sendo 6219 de cachorros e 6242 de gatos.
 - Validação: contém 5000 imagens, sendo 2500 cachorros e 2500 gatos.
- Todas as imagens estão em formato JPG.
- Imagens tem um tamanho médio de aproximadamente 25 KB.
- Imagens possuem um tamanho de resolução diferentes umas das outras.

Dificuldades

- Conjunto de dados possui elementos inconsistentes.
- Necessário realizar uma pré-seleção sobre os dados manualmente.

Fonte: Dataset de treino.

Pré-processamento

Imagens foram selecionadas e removidas manualmente.

Fonte: Dataset de treino.

Pré-processamento

- Ainda existem dados inconsistentes após a remoção manual devido ao grande volume de imagens.
- Conjuntos de treino, teste e validação agrupados em um único conjunto.
- Nova separação em subconjuntos de treino e teste com uma proporção de 20% de dados para o teste.
- Novo dataset possui 37240 imagens no total (37461 originalmente):
 - Treino: 29791 imagens no total, sendo 14913 cachorros e 14878 gatos.
 - Teste: 7449 imagens no total, sendo 3729 cachorros e 3720 gatos.
- Todas as imagens foram redimensionadas para 224x244 pixels durante o treino.

Distribuição total

Distribuição de Dogs e Cats

Figura 1: Distribuição de classes (Autoria própria)

CNN (Convolutional Neural Network)

- CNN significa Rede Neural Convolucional.
- Técnica Machine Learning inspirada no funcionamento do cérebro humano.
- Utiliza camadas convolucionais para extrair características em dados.
- No final utiliza-se uma rede neural com camadas totalmente conectadas para determinar a probabilidade das classes.

Convolution Neural Network (CNN)

Figura 2: Estrutura CNN (Basics of CNN in Deep Learning, 2023)

Treinamento

- Foram treinados quatro modelos diferentes:
 - Modelo A1: 50-layer Residual Network(resnet50) pré-treinada com 14 camadas congeladas.
 - Modelo A2: 50-layer Residual Network(resnet50) pré-treinada com 88 camadas congeladas.
 - Modelo A3: 50-layer Residual Network(resnet50) pré-treinada com 174 camadas congeladas.
 - Modelo B: MobileNetV3-Small pré-treinada.
- Todos os modelos foram treinados com um tamanho de lotes igual a 32.
- Todos os modelos foram treinados com 15 épocas.
- Algumas imagens serão aleatoriamente espelhadas horizontalmente.
- Redes pré-treinadas, ou seja, os pesos de suas camadas já estão ajustados com base no dataset utilizado durante o pré-treino.
- Técnica de treinamento "One Cycle Policy" (Política de Um Ciclo).
- Treinados com uma taxa de aprendizado de 0.00012.

Modelo A1 (resnet50)

- Possui um total de 176 camadas.
- As 14 primeiras camadas foram congeladas, ou seja, seus pesos não foram alterados durante o treinamento.
- Duração do treinamento de aproximadamente 60 minutos.

Estimando a taxa de aprendizado

Figura 3: Taxa de aprendizado (Autoria própria).

Foi utilizada a função lr.find() da biblioteca ktrain para estimar a taxa.

Taxa escolhida de 0.00012 para todos os modelos.

Modelo A1 (resnet50) Resultados

 Acurácia final de 0.9920795 ≅ 99.21%

Loss final de
0.029000513223961362
≅ 2.9%

Modelo A1 (resnet50) - Resultados

Analisando erros (Cachorros)

Dataset possui erros nos labels de seus dados.

Fonte: Autoria própria.

Analisando erros (Cachorros)

Analisando erros (Cachorros)

16

Analisando erros (Gatos)

Dataset possui mais erros nos labels de seus dados.

Fonte: Autoria própria.

Analisando erros (Gatos)

Detector de grades?

18

Fonte: Autoria própria.

Analisando erros (Gatos)

Detector de pessoas?

Fonte: Autoria própria.

250

300

Testes com dataset diferente.

• Dataset possui um total de 676 imagens, sendo 336 gatos e 340 cachorros.

Fonte: Dataset de teste.

Analisando erros do novo dataset (Cachorros)

Analisando erros do novo dataset (Gatos)

Resultados teste como dataset diferente.

Acurácia: 97.93%

Modelo A2 (resnet50)

- Possui um total de 176 camadas.
- As 88 primeiras camadas foram congeladas.
- Duração do treinamento de aproximadamente 34 minutos.

Modelo A2 (resnet50) Resultados

Acurácia final de

• Loss final de 0.02815775488966852 ≅ 2.81%

Modelo A2 (resnet50) - Resultados

Modelo A3 (resnet50)

- Possui um total de 176 camadas.
- As 174 primeiras camadas são congeladas por padrão, logo apenas as duas últimas camadas tem seus pesos alterados.
- Duração do treinamento de aproximadamente 22 minutos.

Modelo A3 (resnet50) Resultados

Loss final de
0.18231066803001056 ≅

18.23%

Modelo A3 (resnet50) - Resultados

Modelo B (mobilenetv3)

- Rede estruturada com o objetivo de ser mais leve durante o treinamento e predições para ser utilizada em dispositivos móveis ou embarcados.
- Possui um total de 231 camadas.
- As primeiras camadas 228 são congeladas por padrão, logo apenas as três últimas camadas tem seus pesos alterados.
- Duração do treinamento de aproximadamente 21 minutos.

Modelo B (mobilenetv3) Resultados

0.97140557 ≅ 97.14%

Acurácia final de

Loss final de
0.11548270444097462 ≅
11.54%

Modelo B (mobilenetv3) - Resultados

Conclusão

- Dataset de treino possui viés, incoerência na rotulação e dados inconsistentes.
- Modelos provavelmente super ajustados ao dataset(overfitting).

Modelo	Acurácia	Loss	Tempo de treino aproximado
A1	99.21%	2.9%	60 min
A2	99.34%	2.81%	34 min
A3	98.47%	18.23%	22 min
В	97.14%	11.54%	21 min

Tabela 1: Medição dos modelos (Autoria própria).

Tecnologias utilizadas

Referências

Dataset de treino. dogs vs cats. Disponível em: < https://www.kaggle.com/datasets/moazeldsokyx/dogs-vs-cats>.

Figura 2: Estrutura CNN. KALITA, D. Basics of CNN in Deep Learning. Disponível em:

https://www.analyticsvidhya.com/blog/2022/03/basics-of-cnn-in-deep-learning/>.

MAIYA, A. S. amaiya/ktrain. Disponível em: < https://github.com/amaiya/ktrain>.

Dataset de testes. Cats and Dogs image classification. Disponível em:

https://www.kaggle.com/datasets/samuelcortinhas/cats-and-dogs-image-classification/.