Project Name	A Novel Method For Handwritten Recognition System
Name	PRATHAP.M
Roll no	620619104026
Team ID	PNT2022TMID41466

Importing Package

from google.colab import drive
drive.mount('/content/drive')

import pandas as pd import seaborn as snsimport numpy as np from matplotlib import pyplot as ply %matplotlib inline

1.Loading dataset

df =pd.read_csv("/content/Churn_Modelling.csv")

df

	RowNumber	CustomerId	Surname	GeeditScore	Geography	Gender	Age	Tenur
0	1	0.275616	Hargrave	619	France	Female	42	
1	2	0.326454	Hill	608	Spain	Female	41	
2	3	0.214421	Onio	502	France	Female	42	
3	4	0.542636	Boni	699	France	Female	39	
4	5	0.688778	Mitchell	850	Spain	Female	43	
•••								
9995	9996	0.162119	Obijiaku	771	France	Male	39	
9996	9997	0.016765	Johnstone	516	France	Male	35	
9997	9998	0.075327	Liu	709	France	Female	36	
9998	9999	0.466637	Sabbatini	772	Germany	Male	42	
9999	10000	0.250483	Walker	792	France	Female	28	

 $10000 \text{ rows} \times 14 \text{ columns}$

Visualization

a) Univariate analysis

sns.displot (df.Gender)

<seaborn.axisgrid.FacetGrid at 0x7fa2127ec990>

b) Bi-Variate Analysis

df.plot.line()

<matplotlib.axes._subplots.AxesSubplot at 0x7fa21262e890>

c) Multi Variate Analysis

 $sns.lmplot("Tenure","NumOfProducts",df,hue="NumOfProducts",\ fit_reg=False);$

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning FutureWarning

4.0

Perform descriptive statistics on the dataset

df.describe()

	RewNumber	Eustomer 1d	CreditScore	Age	Tenure	Balanc
count	10000.00000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000
mean	5000.50000	0.500980	650.528800	36.533900	5.012800	76485.88928
std	2886.89568	0.287757	96.653299	6.473843	2.892174	62397.40520
min	1.00000	0.000000	350.000000	20.000000	0.000000	0.00000
25%	2500.75000	0.251320	584.000000	32.000000	3.000000	0.00000
50%	5000.50000	0.500170	652.000000	37.000000	5.000000	97198.54000
75%	7500.25000	0.750164	718.000000	40.000000	7.000000	127644.24000
max	10000.00000	1.000000	850.000000	50.000000	10.000000	250898.09000

Handle the missing values

data = pd.read_csv("/content/Churn_Modelling.csv")
pd.isnull(data["Gender"])

0 **False** False 1 2 False 3 False 4 **False** 9995 **False** 9996 **False** 9997 **False** 9998 False 9999 **False**

Name: Gender, Length: 10000, dtype: bool

Find the outliers and replace the outliers

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fa21390b290>

df['Age']=np.where(df['Age']>50,40,df['Age']) df['Age']

0	42
1	41
2	42
3	39
4	43
	••
9995	39
9995 9996	
	39
9996	39 35
9996 9997	39 35 36

Name: Age, Length: 10000, dtype: int64

sns.boxplot(df['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fa213879fd0>

df['Age']=np.where(df['Age']<20,35,df['Age'])
df['Age']</pre>

```
0
          42
          41
2
          42
3
          39
4
          43
9995
          39
9996
          35
9997
          36
9998
          42
9999
          28
```

Name: Age, Length: 10000, dtype: int64

Check for categorical Columns and perform encoding

pd.get_dummies(df,columns=["Gender","Age"],prefix=["Age","Gender"]).head()

	RowNumber	CustomerId	Surname	CrecilitScore	Geography	Temmre	Ballance	Num
0	1	0.275616	Hargrave	619	France	2	0.00	
1	2	0.326454	Hill	608	Spain	1	83807.86	
2	3	0.214421	Onio	502	France	8	159660.80	
3	4	0.542636	Boni	699	France	1	0.00	
4	5	0.688778	Mitchell	850	Spain	2	125510.82	

 $5 \text{ rows} \times 45 \text{ columns}$

Split the data into dependent and independent Variables

a) Split the data into independent Variables

```
X = df.iloc[:, :-1].values
print(X)
```

```
[[1 0.2756161271095934 'Hargrave' ... 1 1 101348.88]
[2 0.32645436399201344 'Hill' ... 0 1 112542.58]
[3 0.21442143454311946 'Onio' ... 1 0 113931.57]
...
[9998 0.07532731440183227 'Liu' ... 0 1 42085.58]
[9999 0.4666365320074064 'Sabbatini' ... 1 0 92888.52]
[10000 0.25048302125293276 'Walker' ... 1 0 38190.78]]
```

b) Split the data into dependent Variables

[1 0 1 ... 1 1 0]

Scale the independent Variables

import pandas as pd from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() df[["CustomerId"]]= scaler.fit_transform(df[["CustomerId"]]) print(df)

	RowNumb			Surname		e Geography	Gender	Age	\
0		1 0.2756		argrave	619		Female	42	
1		2 0.3264	54	Hill	608	8 Spain	Female	41	
2		3 0.2144	21	Onio	502	2 France	Female	42	
3		4 0.5426	36	Boni	699	9 France	Female	39	
4		5 0.6887	78 M	litchell	850) Spain	Female	43	
•••		-	•••	•••				•••	
9995	999	6 0.1621	19 OI	oijiaku	77	1 France	Male	39	
9996	999	7 0.0167	65 Jol	hnstone	510	6 France	Male	35	
9997	999	8 0.0753	27	Liu	709	9 France	Female	36	
9998	9999	9 0.4666	37 Sal	bbatini	772		Male	42	
9999	10000	0.2504	83	Walker	792		Female	28	
	Tenure	Balance	NumOfP	roducts	HasCrCard	IsActiveMem	ber \		
0	2	0.00		1	1		1		
1	1	83807.86		1	0		1		
2	8	159660.80		3	1		0		
3	1	0.00		2	0		0		
4	2	125510.82		1	1		1		
•••	•••	•••		•••	•••		•••		
9995	5	0.00		2	1		0		
9996	10	57369.61		1	1		1		
9997	7	0.00		1	0		1		
9998	3	75075.31		2	1		0		
9999	4	130142.79		1	1		0		
	Estimate	edSalary E	exited						
0	1	01348.88	1						
1	1	12542.58	0						
2	1	13931.57	1						
3		93826.63	0						
4		79084.10	0						
•••		•••	•••						
9995		96270.64	0						
9996		01699.77	0						
9997		42085.58	1						
9998		92888.52	1						
9999		38190.78	0						

[10000 rows x 14 columns]

Split the data into training and testing

```
 from \ sklearn.model\_selection \ import \ train\_test\_splittrain\_size=0.8 \\ X = \ df.drop(columns = ['Tenure']).copy()y \\ = \ df['Tenure'] \\ X\_train, X\_rem, y\_train, y\_rem = train\_test\_split(X,y, train\_size=0.8)test\_size=0.5 \\ X\_valid, X\_test, y\_valid, y\_test = train\_test\_split(X\_rem,y\_rem,test\_size=0.5)print(X\_train.shape), print(y\_train.shape) \\ print(X\_valid.shape), print(y\_valid.shape) \\ print(X\_test.shape), print(y\_test.shape) \\ \hline (8000, 13) \\ (8000,) \\ (1000, 13) \\ (1000,) \\ (1000, 13) \\ (1000,) \\ (None, None) \\ \hline
```