This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Patent Abstracts of Japan

Search Report

E4807-05

PUBLICATION NUMBER

08283856

PUBLICATION DATE

29-10-96

APPLICATION DATE

10-04-95

APPLICATION NUMBER

07084102

APPLICANT: NIPPON STEEL CORP;

INVENTOR:

KOYAMA KAZUO;

INT.CL.

C21D 8/12 C22C 9/00 C22C 38/00 C22C 38/16 C22F 1/08 H01F 1/047

TITLE

PRODUCTION OF SEMIHARD MAGNETIC MATERIAL OF FE-CU-CO ALLOY

ABSTRACT :

PURPOSE: To obtain an Fe-Cu-Co alloy for a semihard magnetic material having high residual magnetic flux density and high coercive force and excellent in squareness ratio

and-cold workability.

CONSTITUTION: A molten metal consisting of, by weight, 20-60% Cu, 1.00-20% Co, 0.1-7.0% Al and the balance Fe with inevitable impurities or further contg. 0.1-10% Mn and 1-10% Cr is cast into a metallic sheet of 0.1-8mm thickness at ≥100°C/sec solidification cooling rate. This metallic sheet is cold-rolled at 70-98% draft and aged in the

temp. range of 350-650°C to produce the objective semihard magnetic material.

COPYRIGHT: (C)1996,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-283856

(43)公開日 平成8年(1996)10月29日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ				技術表示箇所
C 2 1 D	8/12			C 2 1 D	8/12		Z	
C 2 2 C	9/00			C 2 2 C	9/00			
3	38/00	303			38/00		303H	
3	38/16				38/16			
C 2 2 F	1/08			C 2 2 F	1/08		D	
			審査請求	未請求 請求	ママック マックス マックス マップ マップ スタック スタック スタック スタック スタック スタック アイス	OL	(全 4 頁)	最終頁に続く
(21)出願番号		特願平7-84102		(71)出願。	人 000006	655		
					新日本	製鐵株	式会社	
(22)出願日		平成7年(1995)4	東京都千代田区大手町2丁目6番3号					
				(72)発明者	者 西村	哲		
					富津市	新富20	- 1 新日本	文製鐵株式会社技
					術開発	本部内		
				(72)発明	者 小 山	- :	夫	
					富津市	新富20	一 1 新日本	文製鐵株式会社技
					術開発	本部内		
				(74)代理。	人 弁理士	佐藤	一雄(夕	2名)
		•						
				1				

(54) 【発明の名称】 Fe-Cu-Co基合金半硬質磁性材料の製造方法

(57)【要約】

【目的】 残留磁束密度、保磁力が高く、かつ角型比および冷間加工性に優れた半硬質磁性材料用Fe-Cu-Co基合金を提供する。

【構成】 重量%で、 $Cu:20\sim60\%$ 、Co:1. $00\sim20\%$ 、 $Al:0.1\sim7.0\%$ を含有し、必要に応じて、さらに、 $Mn:0.1\sim10\%$ 、 $Cr:1\sim10\%$ を含有し、残部Fe および不可避的不純物からなる溶融金属を、100℃/秒以上の凝固冷却速度で $0.1\sim8$ mm板厚の金属薄板に鋳造して、該金属板を圧下率 $70\sim98\%$ で冷間圧延を行い、 $350\sim650$ ℃の温度範囲で時効処理を行うことを特徴とするFe-Cu-Co基合金半硬質磁性材料の製造方法。

1

【特許請求の範囲】

【請求項1】 重量%で、Cu:20~60%、Co: 1. 00~20%、A1:0.1~7.0%を含有し、 残部Feおよび不可避的不純物からなる溶融金属を、1 00℃/秒以上の凝固冷却速度で、板厚0.1~8mm の金属薄板に鋳造して、該金属板を圧下率70~98% で冷間圧延し、350~650℃の温度範囲で時効処理 を行うことを特徴とする、Fe-Cu-Co基合金半硬 質磁性材料の製造方法。

【請求項2】合金成分として、さらに、 $Mn:0.1\sim10$ 善する製造方法を見い出した。 10重量%を含有することを特徴とする請求項1に記載 のFe-Cu-Co基合金半硬質磁性材料の製造方法。

【請求項3】合金成分として、さらに、Cr:1~10 重量%を含有することを特徴とする請求項1または2に 記載のFe-Cu-Co基合金半硬質磁性材料の製造方 法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、リードスイッチ、リレ 材料としてのFe-Cu-Co合金に関する。

[0002]

【従来の技術】半硬質磁性材料の必要特性としては、高 い残留磁束密度(Br)を有し、適正な保磁力(Hc) を持ち、ヒステリシスループの角型比((Br/B s)、Bs:飽和磁束密度)に優れていることが重要で

【0003】従来から半硬質磁性材料の製造方法として 各種の材料が提案されており、例えば、下記の特許公報 が挙げられる。

- (1) 特開昭49-118611号公報; Cu10~ 70%、CrまたはMn、またはVをそれぞれ単独に、 あるいはCr、Mn、およびVのうちこれら2種以上の 元素を合計して0、3~10%、残部として(Fe+C o) との間における合金比率(%)をx:(100x) (ただし、x = Fe%) とするとき、 $90 \ge x \ge 7$ を満足する合金を、インゴット鋳造→熱間鍛造→冷間圧 延→時効処理の工程により製造する方法。
- (2) 日本金属学会誌、Vol. 38(1974)、 pp. 104~111:Fe0~77. 9%. Cu1 1. 22~22. 1%, Co0~78. 8%, Co0~ 9%合金を、インゴット鋳造→溶体化→熱間引き抜き→ 中間焼鈍→線引き加工→最終焼鈍→冷間加工の工程によ り製造する方法。

【0004】しかしながら、これら従来合金は、いずれ もインゴット鋳造法によるため、冷却速度が遅く、冷却 過程でFeとCoの規則格子を生成して、著しく冷間加 工性を劣化させる問題があった。

[0005]

【発明が解決しようとする課題】本発明は、残留磁束密 50 効果が小さく、10%を超えて添加しても効果が飽和す

度(Br)と保磁力の(Hc)が高く、角型比(Bs/ Br)に優れていると同時に、冷間加工性に優れたFe -Cu-Co基合金半硬質磁性材料の製造方法を提供す ることを目的としている。

2

[0.006]

【課題を解決するための手段】本発明者らは、これら課 題を解決するために鋭意検討した結果、種々の合金添加 の実験から、偏析低減に効果のある元素と、半硬質磁性 材料としての特性を劣化させることなく冷間加工性を改

【0007】本発明は、以上の知見に基づいてなされた ものであり、その要旨とするところは、下記の通りであ

- ① 重量%で、Cu:20~60%、Co:1.00~ 20%、A1:0.1~7.0%を含有し、残部Feお よび不可避的不純物からなる溶融金属を、100℃/秒 以上の凝固冷却速度で、板厚 0. 1~8 mmの金属薄板 に鋳造して、該金属板を圧下率70~98%で冷間圧延 し、350~650℃の温度範囲で時効処理を行うこと ー、ヒステリシスモーターなどに用いられる半硬質磁性 20 を特徴とする、Fe-Cu-Co基合金半硬質磁性材料 の製造方法。
 - ② 合金として、さらに、Mn:0.1~10重量%を 含有することを特徴とする前記①のFe-Cu-Co基 合金半硬質磁性材料の製造方法。
 - ③ 合金成分として、さらに、Cr:1~10重量%を 含有することを特徴とする前記①または②のFe-Cu -Co基合金半硬質磁性材料の製造方法。

【0008】以下に、本発明を詳細に説明する。まず、 本発明合金の化学組成の限定理由について述べる。Си 30 は、半硬質磁性材料としての要求特性に対しては、その 含有量を増加させて目的とするBrとHcのパランスを 得ることが好ましい。 Cu含有量は20%未満では、3 0 O e 以上のH c が得られ難いのでこれを下限とする。 また、上限を60%とするのはFe添加量との関係によ り規定される。従って、Cuを20~60%の範囲とす

【0009】Coは、1%以上20%以下の範囲とす る。1%未満ではBrの向上効果が小さく、20%を超 えて添加しても効果は飽和して合金コストが上昇するか 40 らである。A l は、0. 1%未満では、偏析低減への効 果が少なく、7.0%超では効果が飽和する上に、合金 コストが上昇するのでこの範囲に規定する。

【0010】Mnは、必要に応じて、Br、Hcなどの 改善のために、0.1~10%の範囲で添加する。この 時の添加範囲は、0.1%未満では効果が小さく、10 %を超えて添加しても効果が飽和する上にコストが上昇 するのでこの範囲に規定する。Crは、材料の使用され る腐食環境によっては、1~10%の範囲で添加して耐 食性を向上させる。この時の添加範囲は、1%未満では る上にコストが上昇するのでこの範囲に規定する。

【0011】次に、本発明の半硬質磁性合金薄板の加工 ・熱処理方法について説明する。本発明合金は、溶融金 属の急冷凝固的手段である双ロール式鋳造装置の湯だま り部に注入し、冷却ロールの回転によって溶融金属を急 速に冷却して、板厚0.5~8mmの金属板を鋳造す る。本鋳造法によれば、FeとCoの規則格子の生成防 止と、Fe相中のCuの過飽和度が向上するため、その 後の時効処理によりFe中に100nm以下の微細なC u 粒子が析出して、Hcのより向上する効果が得られ 10 る。また、FeとCoの規則格子の生成防止と、Fe相 中のCuの過飽和度の向上効果を得るための凝固冷却速 度としては100℃/秒以上でその効果が得られ、それ 以下では効果が小さい。

【0012】鋳造後、圧下率70~90%の冷間圧延を 行う。この狙いは、圧延方法に磁気異方性を持たせて、 半硬質磁性材料としての角型比を向上させるものであ る。70%未満の圧下率では角型比の向上効果は小さ* *く、98%超では効果が飽和する上に生産性を低下させ るのでこの範囲に規定する。

【0013】また、その後に時効処理を行うことで、さ らにHcと角型比を向上させる効果が得られる。その最 **満条件は、温度と時間により決定され、350℃未満の** 温度ではFe中のCuの析出が十分おこらず、650℃ 超えるとFe中のCuが100nm以上に成長して保磁 力が低下する。従って、時効処理時間は析出温度の関係 から、100~1000分が好ましい。

[0014]

【実施例】以下に、本発明を実施例によりさらに説明す る。表1に示す成分を含有する合金を溶解して、双ロー ル鋳造機で5.0mmの板厚の鋳片を製造した後に、全 厚下率98%で冷間圧延し、板厚0.10mmの冷間圧 延板を得た。さらに、500℃で360分の時効処理を 施した。

[0015]

【表1】

			合:	金 組	成 (重量	ł%)
9 N	材料	Fe	Cu	Co	Αl	その他
比較例	A	Bal	15. 3	12. 2	2. 5	-
本発明	В	"	25. 3	12. 5	2. 8	- .
本発明	С	"	30, 5	12, 5	2. 6	_
本発明	D	"	51. O	12. 2	2. 6	-
本発明	E	<i>"</i>	57. 5	12. 5 -	2. 8	_
比較例	F	"	E5. 3	12, 3	2, 7	
比較例	G	~	25. 3	0. 5	2. 5	_
比較例	H	~	25. 3	22. 2	2. 6	-
比較例	I	~	25. 3	12. 3	0. 05	-
比較例	J	"	25. 3	12.3	8. 5	-
比較例	K	.w	30. \$	0. 5	2. 5	-
比較例	L	"	30. 5	22. 2	2 5	-
比較例	M	"	30. 5	12. 3	0. 05	_
比较例	N	"	30. 5	12. 3	8. 2	_
比较例	0	"	51. 6	0, 5	2. 5	_
比較例	P	u	51. 0	22. 2	2.6	_
比較例	Q	. "	51. O	12. 3	0. 05	
比較例	R	"	51. 0	12. 3	8. 2	
本発明	S	"	30. 5	12, 2	0, 10	Ma; 2. 5
本発明	T	"	\$1.0	12. 5	0 . 10	Mn; 2. 8
本発明	υ	"	30. 5	12. 3	0.16	Cr; 6. 2
本発明	V		51. Q	12. 2	0. 10	Cr; 3. 2
本発明	W	-	30. 5	12. 3	0. 10	Ma; 2, 5 Cr; 5, 0
本発明	х	"	5 L 0	12. 3	0. 10	Ma; 1. 8 Cr; 3. 1
L		l			·	

【0016】得られた材料の特性評価結果を、表2に示 す。ここで、Br、Bs、Hcは、振動型磁気測定装置 によりヒステリシスループを測定して求めた。

【0017】冷間加工性の評価は、全圧下率98%まで の割れ発生状況により行った。圧延材の割れ発生状況 50 【0018】また、比較合金例として、, Fe-21%

で、◎:皆無、○:一部、△:全面とした。耐食性は、 塩水噴霧試験 (5%NaCl、35℃) を48時間行 い、錆の発生状況で評価した。すなわち、赤錆発生面積 率で10%未満を◎、20%未満を○とした。

Cu-16%Co-1%V合金の上記特性を同一の方法

* [0019]

で測定し、その結果を、表2に併記した。

【表2】

<i>(</i> 94)	材料	材料	Вr	Нс	B ₁₀₀	Br/B ₁₀₀	२ € 145	耐食性
6.1	番号		(G)	(0 e)	(G)	(%)	加工性	
比较例	1	A	17800	42	18500	0. 98	©	0
本発明	2	В	17000	45	17789	0. 96	0	0
本発明	3	С	16500	48	17200	0. 96	0	0
本発明	4	D	15300	53	15100	0, 95	©	0
本発明	5	E	15000	60	16100	0. 93	0	0
比較例	6	F	14500	6.8	16100	0. 90	0	0
比較例	7	G	17100	43	17800	0. 96	(©	0
比較例	8	H	17000	41	17700	0, 96	0	0
比較例	9	I	17000	45	17700	Q. 96	Δ	0
比較例	10	3	17190	45	17800	0, 96	©	0
比較例	11	K	16800	46	17700	8. 95	0	0
比较例	12	L	16800	51	17790	0, 95	0	0
比較例	13	M	16800	5 8	18000	0. 93	Δ	0
比較例	14	N	16700	50	18000	0. 93	0	0
-比較例-	1.5	0	15300	48	16500	ű, '93	©	0
比較例	16	P	15200	\$\$	16300	0. 93	©	0
比較例	17	Q	15200	\$3	16300	0. 93	. 🛆	0
比较例	18	R	15100	53	18200	0. 93	0	0
本発明	19	s	16700	50	17360	0. 96	0	0
本発明	20	T	15200	55	16300	0. 93	•	0
本発明	21	υ	16800	46	17500	0. 9 6	0	0
本発明	22	V	15200	18	16300	0. 93	9	0
本発明	23	W	15800	51	17500	0. 96	0	0
本発明	24	X	15300	55	16500	Q. 93	•	0
比較例								
Pe-21Co-16Co-1V		17500	38	18200	0. 96	Δ	©	

[0020]表2の特性評価結果より明かなように、C 30 食性向上に有効である。 uが20%以下ではHcが低く、60%超ではB100、 Br/B100 が低下する。また、Coが1%以下ではB rへの効果が小さく、Alが0.05%以下では冷間加 工性評定が悪く、7%を超えても冷間加工性改善効果は 飽和している。さらに、Mn、Crの添加は、Hcと耐

[0021]

【発明の効果】以上に説明したように、本発明方法によ れば、BrとHcが高く、角型比に優れていると同時 に、冷間加工性にも優れた半硬質磁性材料を工業的に安 価に得ることができる。

フロントページの続き

H01F 1/047

(51) Int. Cl. 6

識別記号

庁内整理番号

FΙ

H01F 1/04

技術表示箇所