Institute for Theoretical Physics

Heidelberg University

PD Dr. Falko Ziebert

Nonlinear dynamics

Summer term 2024

Assignment 3

Handout 06.05,2024 - Return 13.05,2024 - Discussion 16./17.05,2024

Exercise 1 [8 points]: A mechanical example for the saddle-node bifurcation

Consider the mathematical pendulum (with mass m, length l) including friction (coefficient 2λ). In addition, at the suspension point of the pendulum, a small motor is acting, creating a torque fl (with f a force).

1. Motivate that the system is described by the equation

$$\ddot{\theta} + 2\lambda\dot{\theta} + \frac{g}{l}\sin\theta - \frac{f}{ml} = 0.$$

Make the equation dimensionless by rescaling t, λ and f to get

(2 points)

$$\ddot{\theta} + 2\mu\dot{\theta} + \sin\theta - \nu = 0.$$

2. Choose the dimensionless external force ν as the control parameter and determine the stationary solutions (how many are there?) as a function of ν . Perform a linear stability analysis of the stationary solutions. Consider the case of high friction and give the leading order eigenvalues. Plot the bifurcation diagram. (4 points)

HINT: High friction simplifies the square root term for the eigenvalue pair.

3. Derive the evolution equation close to the bifurcation point by writing $\theta = \frac{\pi}{2} + \psi$. Find the normal form for the deviation ψ . (2 points) HINT: No need to make a formal expansion, just argue which terms should be small and can be neglected/expanded.

Exercise 2 [7 points]: Subcritical bifurcation and ubiquity of saddle-nodes

In the lecture we already discussed the subcritical pitchfork bifurcation given by

$$\dot{x} = \epsilon x + x^3 - x^5 \,. \tag{1}$$

- 1. Introduce a potential such that $\dot{x}=-\frac{dV}{dx}$. Use it to determine the stationary solutions analytically. Depending on the value of ϵ , there are three different cases. Sketch the potential for these cases and finally the bifurcation diagram. (4 points)
- 2. You will find that the branches bifurcating backwards from x=0 at $\epsilon=0$ turn forwards again at certain points (x^T,ϵ^T) . Show that the normal form in the neighborhood of such a "turning point" T is the one of a saddle-node bifurcation. (3 points) HINT: Expand Eq. (1) around this point to the first non-vanishing order in deviations from x and ϵ .