

Posts and Telecommunication Institute of Technology Faculty of Information Technology 1

Introduction to Artificial Intelligence

Probabilistic inference

Dao Thi Thuy Quynh

Outline

- Inference with uncertain evidence
- Principle of probabilistic inference
- Some concepts of probability

Inference with uncertain evidence (1/2)

Logic

- Allows knowledge representation and inference/reasoning
- Requires clear, complete, certain, non-contradictory knowledge

Real world

Ambiguity, uncertainty, lack of information, and contradictions

Inference with uncertain evidence (2/2)

- Factors affecting the clarity and certainty of knowledge and information
 - Information with randomness
 - Play cards, flip a coin
 - Theory is not clear
 - For example, the mechanism of disease is not known
 - Lack of factual information
 - Insufficient patient testing
 - Factors related to the problem are too big and too complicated
 - It is impossible to represent all elements
 - Errors when getting information from the environment
 - Measuring devices have errors

Approaches

Multivalued logic

Use more logical values (not only "true", "false")

Fuzzy logic

 An expression can take value "true" with a value in the range of [0,1]

Possibility theory

 Events or formulas are assigned a number representing the likelihood that event occurs

Probabilistic inference

 The inference result returns the probability that a certain event or formula is true

Outline

- Inference with uncertain evidence
- Principle of probabilistic inference
- Some concepts of probability

Principle of probabilistic inference (1/2)

- Instead of inferring about the "true" or "false" of a proposition (2 values), inferring about the "belief" that the proposition is true or false (infinite)
 - Assign a belief value to each proposition
 - Express the belief value as a probability value; using probability theory to work with this value
 - For proposition A
 - Assign a probability P(A): $0 \le P(A) \le 1$;
 - P(A) = 1 if A is true, P(A) = 0 if A is false
 - Example:
 - P(Cold = true) = 0.6
 - the patient has a cold with a probability of 60%, "Cold" is a random variable that can receive True or False

Principle of probabilistic inference (2/2)

- The nature of probability used in inference
 - Statistical nature: based on experiments and observations
 - It is not always possible to determine
 - Probability based on subjectivity: the degree of confidence/belief that the event is true or false by experts/users
 - Used in probabilities

Outline

- Inference with uncertain evidence
- Principle of probabilistic inference
- Some concepts of probability

Axioms of probability and some basic properties

Axioms of probability

- 1. $0 \le P(A = a) \le 1$ for all a in the value domain of A
- 2. P(True) = 1, P(False) = 0
- 3. $P(A \lor B) = P(A) + P(B) P(A \land B)$

Basic properties

- 1. $P(\neg A) = 1 P(A)$
- 2. $P(A) = P(A \wedge B) + P(A \wedge \neg B)$
- 3. $\Sigma_a P(A=a)=1$: sum for all a in the value domain of A

Joint probability (1/2)

- In the form $P(V_1 = v_1, V_2 = v_2, ..., V_n = v_n)$
- Full joint probability distribution: includes probabilities for all combinations of values of all random variables
- Example: given 3 Boolean variables: Chim, Non, Bay

Chim (C)	Non (N)	Bay (B)	P
T	T	T	0.0
T	T	F	0.2
T	F	T	0.04
T	F	F	0.01
F	T	T	0.01
F	T	F	0.01
F	F	T	0.23
F	F	F	0.5

Joint probability (2/2)

If all joint probabilities are given, we can compute the probabilities for all propositions related to the problem

Example:

```
P(Chim = T) = P(C) = 0.0 + 0.2 + 0.04 + 0.01 = 0.25
```

```
• P(Chim = T, Bay = F) = P(C, \neg B) = P(C, N, \neg B) + P(C, \neg N, \neg B) = 0.2 + 0.01 = 0.21
```


Conditional probability (1/2)

- Plays an important role in probabilistic inference
 - Inferring the probability of an outcome given a set of evidences
 - Example:
 - P(A|B) = 1 equivalent to $B \Rightarrow A$ in logic
 - P(A|B) = 0.9 equivalent to $B \Rightarrow A$ with a probability of 90%
 - Given evidences (observations) $E_1, ..., E_n$ compute $P(Q|E_1, ..., E_n)$
- Definition of conditional probability

$$P(A|B) = \frac{P(A \land B)}{P(B)} = \frac{P(A,B)}{P(B)}$$

- Example: Compute
 - $P(\neg Chim \mid Bay)$

Conditional probability (2/2)

Properties of conditional probability

- P(A,B) = P(A|B)P(B)
- Chain rule: P(A,B,C,D) = P(A|B,C,D) P(B|C,D) P(C|D) P(D)
- o Conditional chain rule: P(A,B|C) = P(A|B,C) P(B|C)
- Bayes' theorem $P(A|B) = \frac{P(A) P(B|A)}{P(B)}$
- Conditional Bayes' theorem: $P(A|B,C) = \frac{P(B|A,C)P(A|C)}{P(B|C)}$
- $P(A) = \sum_{b} \{P(A|B=b) | P(B=b)\}, \text{ sum for all values } b \text{ of } B$
- $P(\neg B|A) = 1 P(B|A)$

Combining multiple evidences

Example:

• Compute
$$P(\neg Chim \mid Bay, \neg Non) = \frac{P(\neg Chim, Bay, \neg Non)}{P(Bay, \neg Non)}$$

- The general case: given the joint probability table, we can compute
 - $P(V_1 = v_1, ..., V_k = v_k | V_{k+1} = v_{k+1}, ..., V_n = v_n)$
 - Sum of rows with $V_1 = v_1, \dots, V_n = v_n$ divided by sum of rows with $V_{k+1} = v_{k+1}, \dots, V_n = v_n$

Probabilistic independence

- An event A is said to be independent of another event B if P(A|B) = P(A)
 - Meaning: knowing that B occurred does not change the probability that A occurred
 - \circ Therefore P(A,B) = P(A)P(B)
- ▶ A is conditionally independent of B given C if
 - P(A|B,C) = P(A|C) or P(B|A,C) = P(B|C)
 - Meaning: B doesn't tell us anything about A if we already know C
 - Therefore P(A,B|C) = P(A|C)P(B|C)

Using Bayes' theorem

- Bayes' theorem plays an important role in inference
- ightharpoonup To compute P(A|B) we can compute P(B|A)which is easier
 - Example: the probability of getting the flu with a headache and the probability of having a headache with the flu

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

Example (1/3)

- A person has a positive result with disease B
- Testing equipment is not completely accurate
 - The equipment gives a positive result for 98% sick people
 - The equipment gives a positive result for 3% people who are not sick
- 0.8% of the population has this disease
- Question: Is this person sick?

Example (2/3)

- Notation: event that a person has disease is B, event that a person has a positive result is A
- According to the problem data we have:

$$P(B) = 0.008, P(\neg B) = 1 - 0.008 = 0.992$$

$$P(A|B) = 0.98, P(\neg A|B) = 1 - 0.98 = 0.02$$

$$P(A|\neg B) = 0.03, P(\neg A|\neg B) = 1 - 0.03 = 0.97$$

- We need to compare probabilities P(B|A) and $P(\neg B|A)$
- Using Bayes' theorem:

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)} = \frac{0.98*0.008}{P(A)} = \frac{0.00784}{P(A)}$$

$$P(\neg B|A) = \frac{P(A|\neg B)P(\neg B)}{P(A)} = \frac{0.03*0.992}{P(A)} = \frac{0.02976}{P(A)}$$

▶ $P(\neg B|A) > P(B|A)$, → Not sick

Example (3/3)

- To compare P(B|A) and $P(\neg B|A)$ we can not compute specifically 2 probability values, instead we compute: $\frac{P(B|A)}{P(\neg B|A)}$
 - $_{\circ}$ 2 expressions have the same denominator P(A)
 - The result of testing disease depends on the value $\frac{P(B|A)}{P(\neg B|A)}$ which is greater than or less than 1
- When we need to specifically compute this probability, we do:

$$P(B|A) + P(\neg B|A) = 1$$
 So $\frac{P(A|B)P(B)}{P(A)} + \frac{P(A|\neg B)P(\neg B)}{P(A)} = 1$
Then, $P(A) = P(A|B)P(B) + P(A|\neg B)P(\neg B) = 0.00784 + 0.02976 = 0.0376$
So, $P(\neg B|A) = 0.79$; $P(B|A) = 0.21$

Combining Bayes' theorem and probabilistic independence

- ▶ Compute P(A|B,C), where B and C are conditionally independent given A
 - Bayes' theorem $P(A|B,C) = \frac{P(B,C|A)*P(A)}{P(B,C)}$
 - Probabilistic independence P(B,C|A) = P(B|A) * P(C|A)
 - Therefore $P(A|B,C) = \frac{P(B|A)*P(C|A)*P(A)}{P(B,C)}$

Example:

- \circ Give 3 binary valuables: liver disease BG, jaundice VD, anemia TM
- \circ Assume that VD is independent with TM
- Know that $P(BG) = 10^{-7}$
- Someone has VD disease
- Know that $P(VD) = 2^{-10}$ and $P(VD|BG) = 2^{-3}$
- a) What is the probability that a tester has disease?
- b) Know that a person has TM disease and $P(TM) = 2^{-6}$, $P(TM|BG) = 2^{-1}$. Compute the probability that the tester has BG.