Session 2 Auctions and Electronic Markets

Zohaad Fazal

February 2020

Economics

Sale of 1 indivisible item, $N = \{1, ..., n\}$ agents, buyers, bidders, players. Each agent $i \in N$ has a valuation $v_i \in [0, 1]$ for ownership of the item.

Topics

- auction formats
 - 1st price sealed bid
 - 2nd price sealed bid
- ullet equilibrium concepts
 - DSE (Dominant Strategy Equilibrium)
 - ex-post/no-regret equilibrium
 - BNE (Bayesian Nash Equilibrium)

Efficiency/Pareto optimality

Aim: try to allocate to an agent $i \in N$ such that $v_i \geq v_j$ for all $j \in N$.

Problem: information asymmetry

Private values: agent i knows v_i , but not the valuations of the others. Auctioneer does not know any v_i 's.

Task: can we design

- a market
- a negotiation protocol
- a trading platform
- an auction

in such a way that in equilibrium the resulting allocation is efficient?

Answer: yes.

Auction

An auction consists of:

- 1. Legal moves (bids)
- 2. Allocation
- 3. Payments

Auction Design: Vickrey auction/2nd price, sealed bid auction

- 1. Bids: each agent submits a single bid $b_i \in [0,1]$ or $b_i(v_i)$ ex-ante (before v_i is known).
- 2. Allocate item to an agent $i \in N$ with $b_i \geq b_j$ for any $j \in N$, this is the winner.
- 3. Winner i pays $p_i = \max_j \{b_j | j \neq i\}$, for the others, $j \neq i$, $p_j = 0$.

Theorem (Vickrey)

Bidding truthfully, $b_i(v_i) = v_i$, is a dominant strategy in the Vickrey auction. (dominant strategy: no matter what the other people do, a dominant strategy is a best response to that). In the resulting DSE, the allocation is efficient.

2 remarks:

- Quasi-linear utility: $u_i = v_i p_i$.
- $b_i(v_i) = v_i$ is a dominant strategy; maximizes utility regardless of other bidders' bids.

Sketch of proof

 \rightsquigarrow signifies the best response for bidder *i*. $b_i(v_i) = v_i$ is always a best response, and is therefore a dominant strategy.

Wolf and Sheep

Ex-post/no-regret equilibrium

 $b_i(v_i)$ defines a bid strategy; $v_i \mapsto b_i(v_i)$. $b = (b_1, \dots, b_n)$ defines a bid profile.

Profile b is an ex-post equilibrium if for every realization (v_1, \ldots, v_n) of valuations the bid profile $(b_1(v_1), \ldots, b_n(v_n))$ is a Nash Equilibrium in the auction game.

Wolf: Bidder 1 is the wolf, $b_1(v_1) = 1$. The bid function looks like this:

Sheep: Bidder $j \neq i$, $b_i(v_i) = 0$.

Claim: Profile (b_1, \ldots, b_n) is an ex-post equilibrium.

Proof: Take any realization (v_1, \ldots, v_n) . Is the resulting bid profile $(b_1(v_1), \ldots, b_n(v_n)) = (1, 0, \ldots, 0)$ a Nash Equilibrium?

Wolf: Bidding against (0, ..., 0), possible utility levels: $u_1 = 0$ or $u_i = v_1 - p_1 = v_1$ **Sheep:** Bidding against $(1,0,\ldots,0)$, possible utility levels for $j \neq 1$: $u_j = 0$ or $u_j = v_j - 1 \leq 0$.

Auction Design: 1st price, sealed bid auction

- 1. Bids: each agent submits a bid $b_i \in [0, 1], b_i(v_i)$ ex-post.
- 2. Allocate item to an agent $i \in N$ (winner) with $b_i \geq b_j$ for any $j \in N$.
- 3. Winner i pays $p_i = b_i$.

Bayesian Nash Equilibrium

Intermezzo

Assumptions: valuations are i.i.d. draws from a uniform distribution on the unit interval [0,1]. The copula (contains the dependence structure between random variables):

$$\begin{array}{c} v_2 \\ \text{L} \quad \text{H} \\ v_1 \ \text{H} \ \left[\begin{array}{cc} \frac{3}{12} & \frac{1}{12} \\ \frac{6}{12} & \frac{2}{12} \end{array} \right] \end{array}$$

$$\mathbb{P}[v_1 = \mathbf{H}, v_2 = \mathbf{L}] = \frac{6}{12}$$

Are v_1 and v_2 independent? Multiply the marginals to find out:

$$\mathbb{P}[v_1 = H] \cdot \mathbb{P}[v_2 = L] = \left(\frac{6}{12} + \frac{2}{12}\right) \cdot \left(\frac{3}{12} + \frac{6}{12}\right)$$
$$= \frac{8}{12} \cdot \frac{9}{12}$$
$$= \frac{2}{3} \cdot \frac{3}{4} = \frac{6}{12}$$

So yes, they are independent.

Bayes' Rule

$$\mathbb{P}[v_1 = \mathbf{H} | v_2 = \mathbf{L}] = \frac{\mathbb{P}[v_2 = \mathbf{L} | v_1 = \mathbf{H}] \cdot \mathbb{P}[v_1 = \mathbf{H}]}{\mathbb{P}[v_2 = \mathbf{L}]}$$

Interim analysis

Claim: Profile $b = (b_1, \ldots, b_n)$ with $b_i(v_i) = \frac{n-1}{n} \cdot v_i$ is a BNE. **Proof:** Take bidder i, you know v_i (interim analysis), other bidders j bid $b_j(v_j) = \frac{n-1}{n} \cdot v_j$. Suppose you bid some bid b.

$$\mathbb{E}(u_i) = (v_i - b) \cdot \mathbb{P}[i \text{ wins}] = (v_i - b) \cdot \mathbb{P}\left[b > \frac{n - 1}{n}v_j \text{ for all } j \neq i\right]$$
$$= (v_i - b) \cdot \mathbb{P}\left[v_j < \frac{n}{n - 1}b \text{ for all } j \neq i\right]$$
$$= (v_i - b) \cdot \left(\frac{n}{n - 1}b\right)^{n - 1}$$

To maximize, take derivative with respect to b, the first order condition is:

$$\frac{\mathrm{d}}{\mathrm{d}b}\mathbb{E}(u_i) = -1 \cdot \left(\frac{n}{n-1}b\right)^{n-1} + (n-1)\left(\frac{n}{n-1}b\right)^{n-2} \cdot \frac{n}{n-1} \cdot (v_i - b) = 0$$

$$\iff (v_i - b) \cdot n = \frac{n}{n-1}b \quad \left[\text{divide both sides by } \left(\frac{n}{n-1}b\right)^{n-2}\right]$$

$$\iff v_i - b = \frac{1}{n-1}b$$

$$\iff \frac{n}{n-1}b = v_i$$

$$\iff b = \frac{n-1}{n}v_i$$

This is ex-post efficient. Even though no one is truthful, the item goes to the bidder with the highest valuation.

For $b_i = a \cdot v_i + c \implies a = \frac{n-1}{n}$ and c = 0. This is the *only* BNE.

Revenue calculation

Calculate the revenue for the 2nd price sealed bid auction with 2 players.

$$b_1(v_1) = v_1$$
$$b_2(v_2) = v_2$$

The payoff diagram to the auctioneer looks like:

$$\mathbb{E}(\text{revenue}) = 2 \cdot \int_0^1 \int_{v_2}^1 v_2 \, dv_1 \, dv_2$$

$$= 2 \cdot \int_0^1 (1 - v_2) v_2 \, dv_2$$

$$= 2 \left[\frac{1}{2} v_2^2 - \frac{1}{3} v_2^3 \right]_0^1 = 2 \left[\frac{1}{2} - \frac{1}{3} \right] = \frac{1}{3}$$