Indukcja matematyczna

Metodą indukcji matematycznej udowodnij:

1.
$$\forall n \in \mathbb{N}$$
 $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$

3.
$$\forall n \in \mathbb{N}$$
 $(1+2+3+\cdots+n)^2 = \frac{n^2(n+1)^2}{4}$

4.
$$\forall n \in \mathbb{N}$$
 $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n \cdot (n+1) = \frac{n(n+1)(n+2)}{3}$

5.
$$\forall n \in \mathbb{N}$$
 $2 \cdot 1^2 + 3 \cdot 2^2 + 4 \cdot 3^2 + \dots + n(n-1)^2 + (n+1)n^2 = \frac{n(n+1)(n+2)(3n+1)}{12}$

6.
$$\forall n \in \mathbb{N}, n \ge 5$$
 $2^n > n^2$

7.
$$\forall n \in \mathbb{N}$$
 $2|(n^2-n)$

8.
$$\forall n \in \mathbb{N}$$
 5| $(n^5 - n)$

9.
$$\forall n \in \mathbb{N}$$
 6| $(n^3 - n)$

$$10.\forall n \in \mathbb{N} \qquad 6|(13^n - 7)$$

11.
$$\forall n \in \mathbb{N}$$
 6|(8ⁿ – 2ⁿ)

12.
$$\forall n \in \mathbb{N}$$
 7| $(10^{3n+1} - 3(-1)^n)$

13.
$$\forall n \in \mathbb{N}$$
 9| $(10^n - 1)$

14.
$$\forall n \in \mathbb{N}$$
 10|(3⁴ⁿ⁺² + 1)

15.
$$\forall n \in \mathbb{N}$$
 10| $(2^{2n} - 6)$

16.
$$\forall n \in \mathbb{N}$$
 11| (10ⁿ - (-1)ⁿ)

17.
$$\forall n \in \mathbb{N}$$
 11| $(2^{6n+1} + 3^{2n+2})$

18.
$$\forall n \in \mathbb{N}$$
 11| $(5^{5n+1} + 4^{5n+2} + 3^{5n})$

19.
$$\forall n \in \mathbb{N}$$
 12| $(10^{n} - 4)$

20.
$$\forall n \in \mathbb{N}$$
 13| $(10^{3n+1} + 3(-1)^n)$

21.
$$\forall n \in \mathbb{N}$$
 14| $(10^{3n+2} - 2(-1)^n)$

22.
$$\forall n \in \mathbb{N}$$
 19| $(5 \cdot 2^{3n-2} + 3^{3n-1})$

23.
$$\forall n \in \mathbb{N}$$
 25| $(2^{n+2}3^n + 5n - 4)$

24.
$$\forall n \in \mathbb{N}$$
 30| $(n^5 - n)$

$$25. \forall n \in \mathbb{N}$$
 41| $(5 \cdot 7^{2(n+1)} + 2^{3n})$

$$26.\forall n \in \mathbb{N} \qquad 42|(n^7 - n)$$

 $27. \forall n \in \mathbb{N}$ 52| $(10^{3n+2} + 4(-1)^n)$

28. $\forall n \in \mathbb{N}$ 101| $(10^{2n} - (-1)^n)$

 $29. \forall n \in \mathbb{N}$ $169 | (3^{3n} - 26n - 1)$