الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

الدورة الاستثنائية: 2017

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: تسيير واقتصاد

اختبار في مادة: الرياضيات

المدة: 03 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

. $u_{n+1} = \frac{1}{2}u_n + 1$ ، n عدد طبیعي عدد $u_0 = -2$ عدد u_0 عدد الأوّل $u_0 = -2$ عدد الأوّل المتتالية المعرّفة بحدّها الأوّل $u_0 = -2$

- $u_n < 2$ ، n عدد طبیعي أنّ: من أجل كل عدد (1
- (u_n) عيّن اتجاه تغيّر المتتالية عيّن المتتالية عيّن المتتالية المتتالية عيّن المتتالية المتتالية (u_n)
- $v_n = 2u_n 4$ ، n عدد طبیعی (v_n) المعرّفة كما يلي عدد عن أجل كل عدد المتالية (v_n) المعرّفة كما يلي (v_n) عدد المتالية (v_n)
 - . v_0 فندسية يطلب تعيين أساسها q وحدّها الأوّل (v_n)

 - $S_n = u_0 + u_1 + \dots + u_n$ المجموع S_n حيث n المجموع (3

التمرين الثاني: (04 نقاط)

الشّجرة المقابلة تنمذج تجربة عشوائية حيث A و B حادثتان ، \overline{A} و \overline{A} حادثتاهما العكسيتان على الترتيب .

: انقل وأكمل الشّجرة المقابلة ثمّ احسب الاحتمالات الآتية (1 $P(A \cap \overline{B})$ و $P(A \cap B)$

 $P_{\overline{B}}(A)$ و $P_B(A)$ ، P(B) و (2 أي أي احسب الاحتمالات الآتية: $P_B(A)$ ، انقل وأكمل الشّجرة المقابلة .

الشعبة: تسيير واقتصاد /اختبار في مادة: الرياضيات/ بكالوريا استثنائية: 2017

التمرين الثالث: (04 نقاط)

الجدول الآتي يعطى نسبة الأمية في بلد ما، خلال الفترة الممتدة من1948 إلى2008.

السّنة	1948	1958	1968	1978	1988	1998	2008
x_i الرتبة	1	2	3	4	5	6	7
y_i نسبة الأمية	14	92	74,6	60	31	38,4	22

$$(10^{-2} \text{ [Hz]})$$

(1 أ) احسب إحداثيي النّقطة المتوسطة G .

- ب) مثّل سحابة النّقط $M_i(x_i; y_i)$ في معلم متعامد (على حامل محور الفواصل $m_i(x_i; y_i)$ مثّل سحابة النّقط $m_i(x_i; y_i)$. (10%) .
 - y = -4.53x + 65.54: هي الآنيا هي الانحدار بالمربعات الدّنيا (2
 - 3) باستعمال التّعديل الخطّي السّابق ، قدّر نسبة الأمية في سنة 2038 في هذا البلد.
 - 4) ابتداءً من أيّ سنة تكون نسبة الأمية في هذا البلد أقل من %5.

التمرين الرابع: (08 نقاط)

- . $g(x)=2x-1-e^{2x}$: یکن g الدالة المعرّفة علی $\mathbb R$ کما یلي (I
 - 1 ادرس اتجاه تغیّر الداله g
 - g(x) استنتج إشارة (2
- $f(x) = x^2 x \frac{1}{2}e^{2x}$: کما یلي \mathbb{R} کما الدّالة f المعرّفة علی (II)
- . $\|\vec{i}\| = 2cm$ ثيت ($O; \vec{i}, \vec{j}$) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتعامد (C_f)

$$\left(\lim_{x\to+\infty}\frac{e^{2x}}{x^2}=+\infty\right)$$
 . $\lim_{x\to+\infty}f(x)$ و $\lim_{x\to\infty}f(x)$ احسب (1

- ادرس اتجاه تغیّر الدالهٔ f ثم شکّل جدول تغیّراتها.
- $-0.25 < \alpha < -0.24$ بيّن أنّ المعادلة f(x) = 0 تقبل حلا وحيدا α حيث (1) أنّ المعادلة α
 - $(0;\frac{-1}{2})$ اثبت أنّ المنحنى (C_f) يقبل نقطة انعطاف A إحداثياها (C_f)
 - . A اكتب معادلة المماس (T) للمنحنى (C_f) في النّقطة
 - $\cdot(C_f)$ و (T) ارسم (4
- رميع المستقيمات (C_f) احسب بالسّنتمتر مربع المساحة (α) الحيز المستوي المحدّد بالمنحنى (α) والمستقيمات (α) التي معادلاتها α 0 و α 0 و α 0 و α 0 التي معادلاتها (α 0

.
$$A(\alpha) = \frac{1}{3} (4\alpha^3 - 12\alpha^2 + 6\alpha + 3)cm^2$$
 ب تحقّق أنّ (ب

انتهى الموضوع الأول

الشعبة: تسيير واقتصاد /اختبار في مادة: الرياضيات/ بكالوريا استثنائية: 2017

الموضوع الثانى

التمرين الأول: (04 نقاط)

يمثّل الجدول الآتي تطور إنتاج مصنع للإسمنت خلال الفترة الممتدة من 2010 إلى 2014.

السّنة	2010	2011	2012	2013	2014
x_i ترتیب السّنوات	1	2	3	4	5
y_i الإنتاج بالمليون طن	4,8	5	5,5	6,2	7

عيّن إحداثيي النّقطة المتوسطة G ثمّ مثّل سحابة النّقط $M_i(x_i;y_i)$ في معلم متعامد (1

(التراتيب محور التراتيب 1cm ، محور الفواصل محور التراتيب 1cm)

. $(x_i; y_i)$ معادلة y = ax + b لتكن ($x_i; y_i$)، مستقيم الانحدار بالمربعات الدّنيا للسّلسلة

a = 0.56 بيّن أنّ: a = 0.56 ثمّ احسب b .

3) من أهداف المصنع الوصول إلى إنتاج يفوق 8,45 مليون طن في سنة 2017 .

هل يمكن تحقيق هذا الهدف باستعمال التعديل الخطى السّابق ؟ مع التبرير.

4) ابتداءً من أيّ سنة يتعدى إنتاج المصنع 10,17 مليون طن في السّنة .

التمرين الثاني: (04 نقاط)

 $oldsymbol{v}_0=1$ نعتبر المتتالية الهندسية (v_n) ذات الأساس e^2 والحد الأول (ع أساس اللوغاربتم النيبيري e

- $S_n = v_0 + v_1 + \dots + v_n$ حيث S_n المجموع S_n المجموع (1
 - نعتبر المتتاليتين (u_n) و (w_n) المعرّفتين كما يلى:

. $u_n = w_n - v_n$ و $w_n = 2n + 4 + e^{2n}$ ، n عدد طبیعی

 u_0 بيّن أنّ : المتتالية (u_n) حسابية ، حدّد أساسها r و حدّها الأول

. $4+6+8+\cdots+(2n+4)=(n+1)(n+4)$ ، n عدد طبیعی (3) أثبت أنّ: من أجل كل عدد طبیعی

 $T_n = w_0 + w_1 + \dots + w_n$ ستنتج المجموع T_n بدلالة T_n جيث (4

التمرين الثالث: (04 نقاط)

في كل حالة من الحالات الآتية ، اقتُرحت ثلاث إجابات واحدة منها فقط صحيحة، عيّن الاقتراح الصّحيح مع التّبرير.

. و B حادثتان مستقلتان A

: فإنّ P(A) = 0.4 و $P(A \cap B) = 0.03$: فإنّ

P(B) = 0.37 (\Rightarrow P(B) = 0.075 (\Rightarrow P(B) = 0.43 (1

الشعبة: تسيير واقتصاد /اختبار في مادة: الرياضيات/ بكالوريا استثنائية: 2017

A و B حادثتان.

$$P(A) = \frac{3}{400}$$
 و $P(A \cap B) = \frac{3}{100}$ و $P(A \cap B) = \frac{3}{100}$ و $P(A) = \frac{3}{400}$ ($P(A) = \frac{3}{400}$) و $P(A) = \frac{3}{25}$ ($P(A) = \frac{3}{25}$

A (3 و B حادثتان .

$$P(A \cup B) = 0.55$$
 و $P(B) = 0.55$ و $P(A) = 0.4$ و $P(A \cap B) = 0.4$ و $P(A \cap B) = 0.9$ (أ) $P(A \cap B) = 0.9$ و $P(A \cap B) = 0.9$

4) الجدول التّالي يُعرّف قانون احتمال تجربة عشوائية.

X_i	-2	-1	α	3
$P(X=x_i)$	0,12	0,50	β	0,30

: هما α و β حتّی یکون الأمل الرّباضیاتی للمتغیر العشوائی X یساوی α هما α

$$\beta = 0.08$$
 و $\alpha = 2$ (α

التمرين الرابع: (08 نقاط)

- $g(x)=x^3-x^2-1$ نعتبر الدّالة g المعرّفة على $\mathbb R$ كما يلي: (I
 - $\lim_{x\to +\infty} g(x)$ و $\lim_{x\to +\infty} g(x)$ احسب (1
 - ادرس اتجاه تغیّر الدّالة g ثمّ شكّل جدول تغیراتها.
- a بيّن أنّ المعادلة g(x) = 0 تقبل حلا وحيدا α حيث a
 - x استنتج إشارة g(x) حسب قيم (4
- (مقدرة بملايين الدّنانير) مؤسسة صناعية تنتج يوميا كميّة q (مقدرة بالطّن) من منتوج بكلفة متوسطة (الدّنانير) مؤسسة صناعية تنتج يوميا كميّة q

$$.\,C_{\scriptscriptstyle M}(q) = \frac{1}{2}q^2 - q + 1 - \frac{1}{2}\ln\!\left(q^2 + 1\right)$$
 ب: $\left[0;10\right]$ بن رفة على بين معرّفة على بين المعرّفة على بين المعرّفة على بين المعرّفة على بين المعرّفة على المعرفة على المعرفة على المعرفة على المعرفة على المعرّفة على المعرفة على المعر

$$.C_{M}'(q) = \frac{g(q)}{q^{2}+1}$$
 ، $[0;10]$ من عدد حقیقي q من q عدد (1

- $(lpha \simeq 1,47$ عيّن اتجاه تغيّر الكلفة المتوسطة C_M ثمّ شكّل جدول تغيراتها.
 - 3) عين الكمّية التي تُتج يوميا بأقل كلفة متوسطة ثمّ حدّد هذه الكلفة المتوسطة .
 - 4) ما هي الكلفة الإجمالية C لإنتاج 2 طن يوميا (4)

انتهى الموضوع الثاني

العلامة		7 1.501 .15
مجزأة	مجزأة	عناصر الإجابة

		الموضوع الأول
		التمرين الأول: (04 نقاط)
	0.25 0.25	$n\!=\!0$ و $u_0\!=\!2$ فالخاصية صحيحة من أجل $u_0\!=\!-2$ ؛ $n\!=\!0$ أي لما $u_0\!=\!-2$
01.50		$u_{n+1} < 2$ نفرض $u_n < 2$ ومنه $\frac{1}{2}u_n + 1 < 2$ أي
	0.25	$u_n < 2 : n \in \mathbb{N}$ وعليه من أجل كل
	0.50	ب)المتتالية (u_n) متزايدة تماما لأن
		$u_{n+1} - u_n > 0$ ومنه $u_n - 2 < 0$ و $u_{n+1} - u_n = -\frac{1}{2}(u_n - 2)$
	0.25	. بما أن المتتالية (u_n) محدودة من الأعلى بالعدد 2 ومتزايدة تماما فهي متقاربة
	0.50	$v_{n+1}=rac{1}{2}v_n$ هندسية (v_n) هندسية (أ (2
	0.25	$q=rac{1}{2}$ اساسها
	0.25	$v_0=-8$ حدّها الأوّل $v_0=8$
02.00	0.50	
		$v_n=-8 imes\left(rac{1}{2} ight)^n:n$ عبارة v_n عبارة v_n عبارة و
	0.50	$u_n = -4 \left(\frac{1}{2}\right)^n + 2 : n$ استنتاج عبارة u_n بدلالة
00.50	0.50	$S_n = u_0 + u_1 + \dots + u_n = 8\left(\frac{1}{2}\right)^n + 2n - 6 : S_n$ large (3)
		التمرين الثاني: (04 نقاط)
		1) نقل واكمال الشجرة
		0,45
		0,55
01.50	0.50	0.65
		0,55 0,45 B
	0.50 0.50	$p A \cap B = p A \times p_A B = 0,1575$
	0.30	$p \ A \cap \overline{B} = p \ A \times p_A \ \overline{B} = 0.1925$

العلامة		
مجزأة	مجزأة	عناصر الإجابة

	0.50 0.50	$p B = P A \cap B + P A \cap B = 0,515$
	0.25	$p_B A = \frac{p A \cap B}{P B} = \frac{63}{206}$
	0.50	$P \ \overline{B} = p \ A \cap \overline{B} + p \ \overline{A} \cap \overline{B} = 1 - P \ B = 0,485$ لينا $p \ A \cap \overline{B} = 77$
02.50		$P_{\overline{B}} \ A = rac{p \ A \cap \overline{B}}{P \ \overline{B}} = rac{77}{194}$ ومنه یکون لدینا
	0.75	رب) انقل وأكمل الشّجرة المقابلة . 8
	•	التمرين الثالث: (04 نقاط)
00.00	01.00	اً أ) احسب إحداثيي النّقطة المتوسطة G .
02.00	01.00	$M_i(x_i;y_i)$ با مثّل سحابة النّقط (ب
01.00	01.00	y = -4,53x + 65,54: بيّن أنّ معادلة مستقيم الانحدار بالمربعات الدّنيا هي (2
0.50	0.50	3) باستعمال التّعديل الخطّي السّابق ، قدّر نسبة الأمية في سنة 2038 في هذا البلد.
0.50	0.50	4) ابتداءً من أيِّ سنة تكون نسبة الأمية في هذا البلد أقل من 5%.
		التمرين الرابع: (08 نقاط)
		ادرس اتجاه تغیّر الدالة g ادرس اتجاه تغیّر الداله g
	0.25 0.50	$g' x = 2 1 - e^{2x}$
01.75	0.25	اشارق x اشارق
		g متناقصة تماما على $[0;+\infty]$ ومتزايدة تماما على $[0;\infty-[$
	0.75	$\cdot g(x)$ استنتج إشارة (2
01.00	2x0.50	$\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ احسب (1 (II

الإجابة النموذجية لموضوع امتحان مادة: الرياضيات/الشعبة: تسيير واقتصاد/ بكالوريا استثنائية: 2017

العلامة		7.1-371 -17-0		
مجزأة	مجزأة	عناصر الإجابة		
01.25	0.50 0.50	$f'(x)=2x-1-e^{2x}=g$ x (2 $f'(x)=0$ $f'(x)=0$ جدول التغيّرات $f'(x)=0$		
01.25	0.25	$f(x) + \infty$ $-\infty$		
	0.50	-0,25 تبيين أنّ المعادلة $f(x)=0$ تقبل حلا وحيدا $lpha$ حيث أنّ المعادلة $(x)=0$		
01.50	0.50	$(0;rac{-1}{2})$ إثبات أنّ المنحنى (C_f) يقبل نقطة انعطاف A إحداثياها و (C_f) إثبات أنّ المنحنى		
	0.50	A جـ) كتابة معادلة المماس (T) للمنحنى (C_f) في النّقطة $y=-2x-rac{1}{2}: \ { m T}$		
	0.25	(T) رسم (4)		
00.75		2 0 2 4		

0.50	
01	

$$(C_f)$$
 رسم المنحنى (5 $A(lpha)$ أ) المساحة (6

.
$$A(\alpha) = \frac{1}{3} (4\alpha^3 - 12\alpha^2 + 6\alpha + 3)cm^2$$
: ب) التحقق أنّ

العلامة		71.50
مجزأة	مجزأة	عناصر الإجابة

		الموضوع الثاني
		التمرين الأول: (04 نقاط)
	01.00	G(3;5,7) إحداثيي النّقطة المتوسطة $G(3;5,7)$
01.50	0.50	تمثیل سحابة النّقط $M_i(x_i; \mathcal{y}_i)$ في معلم متعامد
	0.50	a = 0.56 (2)
01.00	0.50	b = 5.7 - 0.56(3) = 4.02
	0.25	3) الهدف محقق
0.75	0.50	مع التبرير : رتبة 2017 هي 8 ومنه 8.5 = 4.02 × + 4.02 × مع التبرير : رتبة 2017 هي 8 ومنه 3.5 = 9.56 × التبرير : رتبة 2017 هي 8 ومنه 3.5 = 9.56 × 8 + 4.02 × 9 = 9.56 × 8 + 4.02 × 9 = 9.56 × 8 + 4.02 × 9 = 9.56 × 8 + 4.02 × 9 = 9.56 × 9 =
0 ==	0.25	x > 10.98 ومنه $0.56x + 4.02 > 10.17$ (4
0.75	0.50	وبتالي $x\!=\!11$ إذن السنة هي 2020
	•	التمرين الثاني: (04 نقاط)
00.75	0.75	$S_n = \frac{e^{2(n+1)} - 1}{e^2 - 1} (1)$
	0.50	$u_n=2n+4$ ومنه $v_n=e^{2n}$ و $w_n=u_n+v_n$ لدينا -1
01.50	2×0.50	$u_0=4$ متتالية حسابية أساسها 2 وحدها الأول (u_n)
		$4+6+8+\cdots+(2n+4)=(n+1)(n+4)$ ، n عدد طبیعي (2) اثبات أنّ: من أجل كل عدد طبیعي (2)
00.75	0.75	يمكن اعتبار المجموع كمجموع n حدا متتابعا لمتتالية حسابية حدها الأول 4 واساسها 2
		او بالبرهان بالتراجع .
01.00	01.00	$T_n = (n+1)(n+4) + \frac{e^{2(n+1)} - 1}{e^2 - 1} $ (3)
		التمرين الثالث: (04 نقاط)
	0.25	p(B) = 0.075 (ب) الإجابة الصحيحة هي (1)
00.50	0.25	$p(B) = rac{p(A \cap B)}{p(A)} = rac{0.03}{0.4} = 0.075$ الإجابة الصحيحة هي (أ) الإجابة الصحيحة هي (2
01.00	0.25	$p(A) = \frac{3}{2} \text{(i)} $
	0.75	$p(A) = \frac{p(A \cap B)}{p_A(B)} = \frac{\frac{3}{100}}{\frac{1}{4}} = \frac{3}{25} = 0.12$ التعليل: $p(A \cap B) = 0.45$ (ب) الإجابة الصحيحة هي (ب) (3
	0.25	$p(A \cap B) = 0.45$ (ب) الإجابة الصحيحة هي (2)
01.00	0.75	التعليل:
		$p(A \cap B) = p(A) + p(B) + p(A \cup B) - 1 = 0.4 + 0.5 + 0.55 - 1 = 0.45$

لامة	العا	عناصر الإجابة
مجزأة	مجزأة	عناصر الإجابة

	0.50	$p(X\!\geq\!2)\!=\!0.38$ (ج) الإجابة الصحيحة هي (ج) (4
01.50	0.50	eta = 0.08 التعليل: eta = 0.12 + 0.50 + eta ومنه
	บเอบ	$E(x) = -2 \times 0.12 - 1 \times 0.50 + \alpha \times 0.08 + 3 \times 0.30 = 0.16 + 0.08\alpha$
	0.50	lpha=2 ومنه $0.16+0.08lpha=0.32$
التمرين الرابع: (08 نقاط)		
00.50	0.50	$\lim_{x \to +\infty} g(x) = +\infty$ و $\lim_{x \to -\infty} g(x) = -\infty$ عساب (1 (I
	0.50	$g'(x) = 3x^2 - 2x = x(3x - 2)$ (2
01.50	0.25	g'(x) اشارة
	0.25	$\left[0;rac{2}{3} ight]$ متزايدة تماما على المجالين $\left[-\infty;0 ight]$ و متناقصة تماما على g
		جدول التغيرات:
		$x - \infty$ o $\frac{2}{3} + \infty$
		g'(x) + 0 - 0 +
	0.50	
		$g(x)$ $-\infty$ $-\frac{31}{27}$
00.50	0.50	$g(x)=0$ تبيين أنّ المعادلة $g(x)=0$ تقبل حلا وحيدا α حيث α
00.50	0.50	(4استنتج إشارة $g(x)$ حسب قيم $g(x)$
		$g(\alpha)=0$ و $x\in]\alpha;+\infty[$ من أجل $g(x)\succ 0$ و $x\in]-\infty;\alpha[$ من اجل $g(x)\prec 0$
01.00	01.00	$C'_{M}(q) = \frac{q^{3} - q^{2} - 1}{q^{2} + 1} :]0; +\infty[$ من أجل كل q من أجل كل (1) (II
02.00	01.00	$q=lpha$ منه $g(q)$ منه $C^{'}_{\ M}(q)$ إشارة $Q^{'}_{\ M}(q)$ منه Q
		$-\infty;\; q[$ متناقصة تماما على $q;+\infty[$ و متزايدة تماما على C_{M}
	01.00	جدول التغيرات:
01.00	01.00	عدد الوحدات هو: $q = \alpha \times 100 = 147$ وحدة بكلفة (3
01.00	01.00	الكلفة الإجمالية C لإنتاج C طن هي C الكلفة الإجمالية الإحمالية C الكلفة الإحمالية C