Übungsblatt 4

Abgabetermin: 18.05.2017, 9:20 Uhr.

Auf dem gesamten Übungsblatt bezeichne K einen Körper mit $\operatorname{char}(K) \neq 2$.

Aufgabe 1 $(2+2+2 = 6 \ Punkte)$

- a) Sei γ eine Bilinearform auf einem Vektorraum V. Zeigen Sie: Es existiert eine symmetrische Bilinearform γ_s und eine antisymmetrische Bilinearform γ_a mit $\gamma(v, w) = \gamma_s(v, w) + \gamma_a(v, w)$ für alle $v, w \in V$.
- b) Untersuchen Sie die folgende Bilinearform (Beispiel 20.2.(b) der Vorlesung) auf die Eigenschaften "symmetrisch", "antisymmetrisch", "alternierend", "nichtausgeartet" und "perfekt": $K = \mathbb{R}, V = \mathcal{C}[0,1], \gamma(f,g) = \int_0^1 f(t)g(t)dt$.
- c) Sei γ eine perfekte Bilinearform auf eine Vektorraum V. Beweisen oder widerlegen Sie folgende Aussage: Für jeden Untervektorraum $W \subseteq V$ definiert die Einschränkung $\gamma | W \times W$ eine perfekte Bilinearform auf W.

Aufgabe 2 $(2+2 = 4 \ Punkte)$

Seien $n, m \in \mathbb{N}$ mit $m \leq n$. Wir definieren den Polynomring in n Variablen induktiv per $K[X_1, \ldots, X_n] = (K[X_1, \ldots, X_{n-1}])[X_n]$. Ein Polynom $f \in K[X_1, \ldots, X_n]$ heisst homogen von Grad m, wenn es eine Linearkombination von Monomen der Form $X_{i_1} \cdot \ldots \cdot X_{i_m}$ (für geeignete $i_1, \ldots, i_m \in \{1, \ldots, n\}$) ist.

- a) Zeigen Sie: Es existieren Bijektionen zwischen den folgenden Mengen:
 - { homogene Polynome von Grad 2 in $K[X_1, \ldots, X_n]$ };
 - { symmetrische Bilinearformen auf K^n };
 - { symmetrische Matrizen in $M(n \times n, K)$ }.
- b) Sei V ein K-Vektorraum mit $\dim_K V = n < \infty$. Man gebe eine Formel für $\dim_K(\operatorname{Quad}(V))$ in Abhängigkeit von n an.

Aufgabe 3 $(2+2+2=6 \ Punkte)$

Seien V, W endlich-dimensionale K-Vektorräume. $q_V \in \text{Quad}(V)$ und $q_W \in \text{Quad}(W)$ heißen äquivalent genau dann, wenn ein Vektorraum-Isomorphismus $f: V \to W$ existiert mit $q_W \circ f = q_V$.

- a) Zeigen Sie: q_V und q_W sind äquivalent genau dann, wenn die quadratischen Räume (V, γ_{q_V}) und (W, γ_{q_W}) isomorph sind.
- b) Sei dim(V) = n und sei $q \in \text{Quad}(V)$ mit $\text{Rang}(\gamma_q) = r$. Zeigen Sie: Dann existieren $\lambda_1, \ldots, \lambda_r \in K \setminus \{0\}$ so dass q äquivalent ist zu

$$q': K^n \to K, \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \sum_{i=1}^r \lambda_i x_i^2.$$

c) Sei $K = \mathbb{R}$, $\dim_K(V) = n$, $q \in \operatorname{Quad}(V)$. Zeigen Sie: Es existieren $r_+, r_- \in \mathbb{N}_0$ so dass q äquivalent ist zu

$$q': K^n \to K, \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto x_1^2 + \ldots + x_{r_+}^2 - x_{r_++1}^2 - \ldots - x_{r_++r_-}^2.$$

Die Zahlen r_+, r_- sind durch q eindeutig bestimmt.