Lecture 5: Value Function Approximation

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2020

The value function approximation structure for today closely follows much of David Silver's Lecture 6.

Refresh Your Knowledge 4

- The basic idea of TD methods are to make state-next state pairs fit the constraints of the Bellman equation on average (question by: Phil Thomas)
 - True
 - False
 - Not sure
- In tabular MDPs, if using a decision poicy that visits all states an infinite number of times, and in each state randomly selects an action, then (select all)
 - Q-learning will converge to the optimal Q-values
 - SARSA will converge to the optimal Q-values
 - Q-learning is learning off-policy
 - SARSA is learning off-policy
 - Not sure
- lacktriangled A TD error > 0 can occur even if the current V(s) is correct $\forall s$: [select all]
 - False
 - 2 True if the MDP has stochastic state transitions
 - True if the MDP has deterministic state transitions
 - **1** True if $\alpha > 0$
 - Not sure

Table of Contents

Introduction

2 VFA for Prediction

3 Control using Value Function Approximation

Class Structure

- Last time: Control (making decisions) without a model of how the world works
- This time: Value function approximation
- Next time: Deep reinforcement learning

Last time: Model-Free Control

- Last time: how to learn a good policy from experience
- So far, have been assuming we can represent the value function or state-action value function as a vector/ matrix
 - Tabular representation
- Many real world problems have enormous state and/or action spaces
- Tabular representation is insufficient

Today: Focus on Generalization

- Optimization
- Delayed consequences
- Exploration
- Generalization

Table of Contents

Introduction

2 VFA for Prediction

3 Control using Value Function Approximation

Value Function Approximation (VFA)

 Represent a (state-action/state) value function with a parameterized function instead of a table

Motivation for VFA

- Don't want to have to explicitly store or learn for every single state a
 - Dynamics or reward model
 - Value
 - State-action value
 - Policy
- Want more compact representation that generalizes across state or states and actions

Benefits of Generalization

- Reduce memory needed to store $(P,R)/V/Q/\pi$
- Reduce computation needed to compute $(P,R)/V/Q/\pi$
- Reduce experience needed to find a good $P, R/V/Q/\pi$

Value Function Approximation (VFA)

 Represent a (state-action/state) value function with a parameterized function instead of a table

• Which function approximator?

Function Approximators

- Many possible function approximators including
 - Linear combinations of features
 - Neural networks
 - Decision trees
 - Nearest neighbors
 - Fourier/ wavelet bases
- In this class we will focus on function approximators that are differentiable (Why?)
- Two very popular classes of differentiable function approximators
 - Linear feature representations (Today)
 - Neural networks (Next lecture)

Review: Gradient Descent

- Consider a function J(w) that is a differentiable function of a parameter vector w
- ullet Goal is to find parameter $oldsymbol{w}$ that minimizes J
- The gradient of J(w) is

Table of Contents

Introduction

2 VFA for Prediction

3 Control using Value Function Approximation

Value Function Approximation for Policy Evaluation with an Oracle

- First assume we could query any state s and an oracle would return the true value for $V^{\pi}(s)$
- The objective was to find the best approximate representation of V^{π} given a particular parameterized function

Stochastic Gradient Descent

- Goal: Find the parameter vector \mathbf{w} that minimizes the loss between a true value function $V^{\pi}(s)$ and its approximation $\hat{V}(s;\mathbf{w})$ as represented with a particular function class parameterized by \mathbf{w} .
- Generally use mean squared error and define the loss as

$$J(\mathbf{w}) = \mathbb{E}_{\pi}[(V^{\pi}(s) - \hat{V}(s; \mathbf{w}))^2]$$

• Can use gradient descent to find a local minimum

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$

• Stochastic gradient descent (SGD) uses a finite number of (often one) samples to compute an approximate gradient:

• Expected SGD is the same as the full gradient update

Model Free VFA Policy Evaluation

- \bullet Don't actually have access to an oracle to tell true $V^\pi(s)$ for any state s
- Now consider how to do model-free value function approximation for prediction / evaluation / policy evaluation without a model

Model Free VFA Prediction / Policy Evaluation

- Recall model-free policy evaluation (Lecture 3)
 - Following a fixed policy π (or had access to prior data)
 - Goal is to estimate V^{π} and/or Q^{π}
- Maintained a lookup table to store estimates V^{π} and/or Q^{π}
- Updated these estimates after each episode (Monte Carlo methods) or after each step (TD methods)
- Now: in value function approximation, change the estimate update step to include fitting the function approximator

Feature Vectors

• Use a feature vector to represent a state s

$$\mathbf{x}(s) = \begin{pmatrix} x_1(s) \\ x_2(s) \\ \dots \\ x_n(s) \end{pmatrix}$$

Linear Value Function Approximation for Prediction With An Oracle

 Represent a value function (or state-action value function) for a particular policy with a weighted linear combination of features

$$\hat{V}(s; \boldsymbol{w}) = \sum_{j=1}^{n} x_{j}(s) w_{j} = \boldsymbol{x}(s)^{T} \boldsymbol{w}$$

Objective function is

$$J(\mathbf{w}) = \mathbb{E}_{\pi}[(V^{\pi}(s) - \hat{V}(s; \mathbf{w}))^2]$$

• Recall weight update is

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$

- Update is:
- Update = step-size \times prediction error \times feature value

Monte Carlo Value Function Approximation

- Return G_t is an unbiased but noisy sample of the true expected return $V^{\pi}(s_t)$
- Therefore can reduce MC VFA to doing supervised learning on a set of (state, return) pairs: $\langle s_1, G_1 \rangle, \langle s_2, G_2 \rangle, \dots, \langle s_T, G_T \rangle$
 - Substitute G_t for the true $V^{\pi}(s_t)$ when fit function approximator
- Concretely when using linear VFA for policy evaluation

$$\Delta \mathbf{w} = \alpha (G_t - \hat{V}(s_t; \mathbf{w})) \nabla_{\mathbf{w}} \hat{V}(s_t; \mathbf{w})$$

$$= \alpha (G_t - \hat{V}(s_t; \mathbf{w})) \mathbf{x}(s_t)$$

$$= \alpha (G_t - \mathbf{x}(s_t)^T \mathbf{w}) \mathbf{x}(s_t)$$

• Note: G_t may be a very noisy estimate of true return

MC Linear Value Function Approximation for Policy Evaluation

```
1: Initialize \mathbf{w} = \mathbf{0}, k = 1
 2: loop
       Sample k-th episode (s_{k,1}, a_{k,1}, r_{k,1}, s_{k,2}, \dots, s_{k,L_k}) given \pi
 3:
       for t = 1, \ldots, L_k do
 4:
 5:
          if First visit to (s) in episode k then
              G_t(s) = \sum_{i=t}^{L_k} r_{k,i}
 6:
              Update weights:
 7:
          end if
 8.
       end for
 9.
    k = k + 1
10:
11: end loop
```

Baird (1995)-Like Example with MC Policy Evaluation¹

- MC update: $\Delta \mathbf{w} = \alpha (G_t \mathbf{x}(s_t)^T \mathbf{w}) \mathbf{x}(s_t)$
- Small prob s_7 goes to terminal state, $\mathbf{x}(s_7)^T = [0\ 0\ 0\ 0\ 0\ 1\ 2]$

Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation: Preliminaries

- For infinite horizon, the Markov Chain defined by a MDP with a particular policy will eventually converge to a probability distribution over states d(s)
- ullet d(s) is called the stationary distribution over states of π
- $\sum_{s} d(s) = 1$
- d(s) satisfies the following balance equation:

$$d(s') = \sum_{s} \sum_{a} \pi(a|s) p(s'|s, a) d(s)$$

Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation²

• Define the mean squared error of a linear value function approximation for a particular policy π relative to the true value as

$$MSVE(\mathbf{w}) = \sum_{s \in S} d(s)(V^{\pi}(s) - \hat{V}^{\pi}(s; \mathbf{w}))^{2}$$

- where
 - d(s): stationary distribution of π in the true decision process
 - $\hat{V}^{\pi}(s; \mathbf{w}) = \mathbf{x}(s)^T \mathbf{w}$, a linear value function approximation

Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation¹

ullet Define the mean squared error of a linear value function approximation for a particular policy π relative to the true value as

$$MSVE(\mathbf{w}) = \sum_{s \in S} d(s) (V^{\pi}(s) - \hat{V}^{\pi}(s; \mathbf{w}))^{2}$$

- where
 - d(s): stationary distribution of π in the true decision process
 - $\hat{V}^{\pi}(s; \mathbf{w}) = \mathbf{x}(s)^{T}\mathbf{w}$, a linear value function approximation
- Monte Carlo policy evaluation with VFA converges to the weights *w_{MC}* which has the minimum mean squared error possible:

$$MSVE(\mathbf{w}_{MC}) = \min_{\mathbf{w}} \sum_{s \in S} d(s) (V^{\pi}(s) - \hat{V}^{\pi}(s; \mathbf{w}))^{2}$$

¹Tsitsiklis and Van Roy. An Analysis of Temporal-Difference Learning with Function Approximation. 1997.https://web.stanford.edu/ bvr/pubs/td.pdf

Recall: Temporal Difference Learning w/ Lookup Table

- ullet Uses bootstrapping and sampling to approximate V^π
- Updates $V^{\pi}(s)$ after each transition (s, a, r, s'):

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(r + \gamma V^{\pi}(s') - V^{\pi}(s))$$

- Target is $r + \gamma V^{\pi}(s')$, a biased estimate of the true value $V^{\pi}(s)$
- Represent value for each state with a separate table entry

Temporal Difference (TD(0)) Learning with Value Function Approximation

- ullet Uses bootstrapping and sampling to approximate true V^π
- Updates estimate $V^{\pi}(s)$ after each transition (s, a, r, s'):

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(r + \gamma V^{\pi}(s') - V^{\pi}(s))$$

- Target is $r + \gamma V^{\pi}(s')$, a biased estimate of the true value $V^{\pi}(s)$
- In value function approximation, target is $r + \gamma \hat{V}^{\pi}(s'; \mathbf{w})$, a biased and approximated estimate of the true value $V^{\pi}(s)$
- 3 forms of approximation:

Temporal Difference (TD(0)) Learning with Value Function Approximation

- In value function approximation, target is $r + \gamma \hat{V}^{\pi}(s'; \mathbf{w})$, a biased and approximated estimate of the true value $V^{\pi}(s)$
- Can reduce doing TD(0) learning with value function approximation to supervised learning on a set of data pairs:
 - $\langle s_1, r_1 + \gamma \hat{V}^{\pi}(s_2; \boldsymbol{w}) \rangle, \langle s_2, r_2 + \gamma \hat{V}(s_3; \boldsymbol{w}) \rangle, \dots$
- Find weights to minimize mean squared error

$$J(\mathbf{w}) = \mathbb{E}_{\pi}[(r_j + \gamma \hat{V}^{\pi}(s_{j+1}, \mathbf{w}) - \hat{V}(s_j; \mathbf{w}))^2]$$

Temporal Difference (TD(0)) Learning with Value Function Approximation

- In value function approximation, target is $r + \gamma \hat{V}^{\pi}(s'; \mathbf{w})$, a biased and approximated estimate of the true value $V^{\pi}(s)$
- Supervised learning on a different set of data pairs: $\langle s_1, r_1 + \gamma \hat{V}^{\pi}(s_2; \mathbf{w}) \rangle, \langle s_2, r_2 + \gamma \hat{V}(s_3; \mathbf{w}) \rangle, \dots$
- In linear TD(0)

$$\Delta \mathbf{w} = \alpha(r + \gamma \hat{V}^{\pi}(s'; \mathbf{w}) - \hat{V}^{\pi}(s; \mathbf{w})) \nabla_{\mathbf{w}} \hat{V}^{\pi}(s; \mathbf{w})$$

$$= \alpha(r + \gamma \hat{V}^{\pi}(s'; \mathbf{w}) - \hat{V}^{\pi}(s; \mathbf{w})) \mathbf{x}(s)$$

$$= \alpha(r + \gamma \mathbf{x}(s')^{T} \mathbf{w} - \mathbf{x}(s)^{T} \mathbf{w}) \mathbf{x}(s)$$

TD(0) Linear Value Function Approximation for Policy Evaluation

- 1: Initialize $\mathbf{w} = \mathbf{0}, \ k = 1$
- 2: **loop**
- 3: Sample tuple (s_k, a_k, r_k, s_{k+1}) given π
- 4: Update weights:

$$\mathbf{w} = \mathbf{w} + \alpha (\mathbf{r} + \gamma \mathbf{x} (\mathbf{s}')^T \mathbf{w} - \mathbf{x} (\mathbf{s})^T \mathbf{w}) \mathbf{x} (\mathbf{s})$$

- 5: k = k + 1
- 6: end loop

Baird Example with TD(0) On Policy Evaluation ¹

• TD update: $\Delta \mathbf{w} = \alpha (r + \gamma \mathbf{x} (s')^T \mathbf{w} - \mathbf{x} (s)^T \mathbf{w}) \mathbf{x} (s)$

¹Figure from Sutton and Barto 2018

Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation

• Define the mean squared error of a linear value function approximation for a particular policy π relative to the true value as

$$MSVE(\mathbf{w}) = \sum_{s \in S} d(s) (V^{\pi}(s) - \hat{V}^{\pi}(s; \mathbf{w}))^{2}$$

- where
 - d(s): stationary distribution of π in the true decision process
 - $\hat{V}^{\pi}(s; \mathbf{w}) = \mathbf{x}(s)^T \mathbf{w}$, a linear value function approximation
- TD(0) policy evaluation with VFA converges to weights \mathbf{w}_{TD} which is within a constant factor of the minimum mean squared error possible:

$$MSVE(\mathbf{w}_{TD}) \leq \frac{1}{1-\gamma} \min_{\mathbf{w}} \sum_{s \in S} d(s) (V^{\pi}(s) - \hat{V}^{\pi}(s; \mathbf{w}))^2$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - かくで

Check Your Understanding: Poll

 Monte Carlo policy evaluation with VFA converges to the weights *w_{MC}* which has the minimum mean squared error possible:

$$MSVE(\mathbf{w}_{MC}) = \min_{\mathbf{w}} \sum_{s \in S} d(s) (V^{\pi}(s) - \hat{V}^{\pi}(s; \mathbf{w}))^{2}$$

• TD(0) policy evaluation with VFA converges to weights \mathbf{w}_{TD} which is within a constant factor of the minimum mean squared error possible:

$$MSVE(\mathbf{w}_{TD}) \leq \frac{1}{1-\gamma} \min_{\mathbf{w}} \sum_{s \in S} d(s) (V^{\pi}(s) - \hat{V}^{\pi}(s; \mathbf{w}))^2$$

- If the VFA is a tabular representation (one feature for each state), what is the MSVE for MC and TD? [select all]
- MSVE=0 for MC
- MSVE > 0 for MC
- MSVE = 0 for TD
- MSVE > 0 for TD
 - Not sure

Convergence Rates for Linear Value Function Approximation for Policy Evaluation

- Does TD or MC converge faster to a fixed point?
- Not (to my knowledge) definitively understood
- Practically TD learning often converges faster to its fixed value function approximation point

Table of Contents

Introduction

2 VFA for Prediction

3 Control using Value Function Approximation

Control using Value Function Approximation

- Use value function approximation to represent state-action values $\hat{Q}^{\pi}(s,a;\mathbf{w}) \approx Q^{\pi}$
- Interleave
 - Approximate policy evaluation using value function approximation
 - ullet Perform ϵ -greedy policy improvement
- Can be unstable. Generally involves intersection of the following:
 - Function approximation
 - Bootstrapping
 - Off-policy learning

Action-Value Function Approximation with an Oracle

- $\hat{Q}^{\pi}(s,a;oldsymbol{w})pprox Q^{\pi}$
- Minimize the mean-squared error between the true action-value function $Q^{\pi}(s, a)$ and the approximate action-value function:

$$J(\boldsymbol{w}) = \mathbb{E}_{\pi}[(Q^{\pi}(s,a) - \hat{Q}^{\pi}(s,a;\boldsymbol{w}))^2]$$

Use stochastic gradient descent to find a local minimum

$$-\frac{1}{2}\nabla_{\mathbf{W}}J(\mathbf{w}) = \mathbb{E}\left[\left(Q^{\pi}(s,a) - \hat{Q}^{\pi}(s,a;\mathbf{w})\right)\nabla_{\mathbf{w}}\hat{Q}^{\pi}(s,a;\mathbf{w})\right]$$
$$\Delta(\mathbf{w}) = -\frac{1}{2}\alpha\nabla_{\mathbf{w}}J(\mathbf{w})$$

• Stochastic gradient descent (SGD) samples the gradient

Linear State Action Value Function Approximation with an Oracle

• Use features to represent both the state and action

$$\mathbf{x}(s,a) = \begin{pmatrix} x_1(s,a) \\ x_2(s,a) \\ \dots \\ x_n(s,a) \end{pmatrix}$$

 Represent state-action value function with a weighted linear combination of features

$$\hat{Q}(s,a; \mathbf{w}) = \mathbf{x}(s,a)^T \mathbf{w} = \sum_{i=1}^n x_i(s,a) w_i$$

• Stochastic gradient descent update:

$$abla_{\boldsymbol{w}}J(\boldsymbol{w}) =
abla_{\boldsymbol{w}}\mathbb{E}_{\pi}[(Q^{\pi}(s,a) - \hat{Q}^{\pi}(s,a;\boldsymbol{w}))^2]$$

Incremental Model-Free Control Approaches

- Similar to policy evaluation, true state-action value function for a state is unknown and so substitute a target value
- In Monte Carlo methods, use a return G_t as a substitute target

$$\Delta \mathbf{w} = \alpha (G_t - \hat{Q}(s_t, a_t; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s_t, a_t; \mathbf{w})$$

• For SARSA instead use a TD target $r + \gamma \hat{Q}(s', a'; w)$ which leverages the current function approximation value

$$\Delta \mathbf{w} = \alpha(\mathbf{r} + \gamma \hat{\mathbf{Q}}(\mathbf{s}', \mathbf{a}'; \mathbf{w}) - \hat{\mathbf{Q}}(\mathbf{s}, \mathbf{a}; \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{Q}}(\mathbf{s}, \mathbf{a}; \mathbf{w})$$

Incremental Model-Free Control Approaches

- Similar to policy evaluation, true state-action value function for a state is unknown and so substitute a target value
- In Monte Carlo methods, use a return G_t as a substitute target

$$\Delta \mathbf{w} = \alpha (G_t - \hat{Q}(s_t, a_t; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s_t, a_t; \mathbf{w})$$

• For SARSA instead use a TD target $r + \gamma \hat{Q}(s', a'; \mathbf{w})$ which leverages the current function approximation value

$$\Delta \mathbf{w} = \alpha(\mathbf{r} + \gamma \hat{\mathbf{Q}}(\mathbf{s}', \mathbf{a}'; \mathbf{w}) - \hat{\mathbf{Q}}(\mathbf{s}, \mathbf{a}; \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{Q}}(\mathbf{s}, \mathbf{a}; \mathbf{w})$$

• For Q-learning instead use a TD target $r + \gamma \max_{a'} \hat{Q}(s', a'; w)$ which leverages the max of the current function approximation value

$$\Delta \mathbf{w} = \alpha(r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w}) - \hat{Q}(s, a; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s, a; \mathbf{w})$$

Convergence of TD Methods with VFA

- Informally, updates involve doing an (approximate) Bellman backup followed by best trying to fit underlying value function to a particular feature representation
- Bellman operators are contractions, but value function approximation fitting can be an expansion

Challenges of Off Policy Control: Baird Example ¹

- Behavior policy and target policy are not identical
- Value can diverge

Convergence of Control Methods with VFA

Algorithm	Tabular	Linear VFA	Nonlinear VFA
Monte-Carlo Control			
Sarsa			
Q-learning			

Hot Topic: Off Policy Function Approximation Convergence

- Extensive work in better TD-style algorithms with value function approximation, some with convergence guarantees: see Chp 11 SB
- Exciting recent work on batch RL that can converge with nonlinear VFA (Dai et al. ICML 2018): uses primal dual optimization
- An important issue is not just whether the algorithm converges, but what solution it converges too
- Critical choices: objective function and feature representation

Linear Value Function Approximation³

³Figure from Sutton and Barto 2018

What You Should Understand

- Be able to implement TD(0) and MC on policy evaluation with linear value function approximation
- Be able to define what TD(0) and MC on policy evaluation with linear VFA are converging to and when this solution has 0 error and non-zero error.
- Be able to implement Q-learning and SARSA and MC control algorithms
- List the 3 issues that can cause instability and describe the problems qualitatively: function approximation, bootstrapping and off policy learning

Class Structure

- Last time: Control (making decisions) without a model of how the world works
- This time: Value function approximation
- Next time: Deep reinforcement learning

Batch Monte Carlo Value Function Approximation

- ullet May have a set of episodes from a policy π
- Can analytically solve for the best linear approximation that minimizes mean squared error on this data set
- ullet Let $G(s_i)$ be an unbiased sample of the true expected return $V^\pi(s_i)$

$$\operatorname{arg\,min}_{\boldsymbol{w}} \sum_{i=1}^{N} (G(s_i) - \boldsymbol{x}(s_i)^T \boldsymbol{w})^2$$

Take the derivative and set to 0

$$\boldsymbol{w} = (X^T X)^{-1} X^T \boldsymbol{G}$$

- where G is a vector of all N returns, and X is a matrix of the features of each of the N states $x(s_i)$
- Note: not making any Markov assumptions

