

DEFICIENCIES OF LATTICE SUBGROUPS OF LIE GROUPS

JOHN LOTT

ABSTRACT. Let Γ be a lattice in a connected Lie group. We show that besides a few exceptional cases, the deficiency of Γ is nonpositive.

1. INTRODUCTION

If Γ is a finitely presented group, its deficiency $\text{def}(\Gamma)$ is the maximum, over all finite presentations of Γ , of the number of generators minus the number of relations. If G is a connected Lie group, a lattice in G is a discrete subgroup Γ such that G/Γ has finite volume. It is uniform if G/Γ is compact. Lubotzky proved the following result [8, Proposition 6.2]:

Theorem 1. *(Lubotzky) Let Γ be a lattice in a simple Lie group G .*

- (a) *If $\mathbb{R} - \text{rank}(G) \geq 2$ or $G = \text{Sp}(n, 1)$ or $G = F_4$, then $\text{def}(\Gamma) \leq 0$.*
- (b) *If $G = \text{SO}(n, 1)$ (for $n \geq 3$) or $G = \text{SU}(n, 1)$ (for $n \geq 2$), then $\text{def}(\Gamma) \leq 1$.*

We give an improvement of Lubotzky's result.

Theorem 2. *Let G be a connected Lie group. Let Γ be a lattice in G . If $\text{def}(\Gamma) > 0$ then*

1. Γ *has a finite normal subgroup F such that Γ/F is a lattice in $\text{PSL}_2(\mathbb{R})$, or*

2. $\text{def}(\Gamma) = 1$ *and either*

A. Γ *is isomorphic to a torsion-free nonuniform lattice in $\mathbb{R} \times \text{PSL}_2(\mathbb{R})$ or $\text{PSL}_2(\mathbb{C})$, or*

B. Γ *is \mathbb{Z} , \mathbb{Z}^2 or the fundamental group of a Klein bottle.*

The examples in case 2 do have deficiency one [5]. A free group on r generators, $r > 1$, has deficiency r and gives an example of case 1.

In some cases, we have sharper bounds on $\text{def}(\Gamma)$.

Theorem 3. 1. *If Γ is a lattice in $\text{SO}(4, 1)$ then*

$$\text{def}(\Gamma) \leq 1 - \frac{3}{4\pi^2} \text{vol}(H^4/\Gamma). \quad (1.1)$$

2. *If Γ is a lattice in $\text{SU}(2, 1)$ then*

$$\text{def}(\Gamma) \leq 1 - \frac{6}{\pi^2} \text{vol}(\mathbb{C}H^2/\Gamma). \quad (1.2)$$

(We normalize $\mathbb{C}H^2$ to have sectional curvatures between -4 and -1 .)

3. *If Γ is a lattice in $\text{PSL}_2(\mathbb{R}) \times \text{PSL}_2(\mathbb{R})$ then*

$$\text{def}(\Gamma) \leq 1 - \frac{1}{4\pi^2} \text{vol}((H^2 \times H^2)/\Gamma). \quad (1.3)$$

Date: October 7, 1997.

Research supported by NSF grant DMS-9704633.

2. PROOFS

To prove Theorems 2 and 3, we use methods of L^2 -homology. For a review of L^2 -homology, see [7]. Let G and Γ be as in the hypotheses of Theorem 2. Let $b_i^{(2)}(\Gamma) \in \mathbb{R}$ denote the i -th L^2 -Betti number of Γ . Let Rad be the radical of G , let L be a Levi subgroup of G and let K be the maximal compact connected normal subgroup of L . Put $G_1 = \text{Rad} \cdot K$ and $G_2 = G/G_1$, a connected semisimple Lie group whose Lie algebra has no compact factors. Let $\beta : G \rightarrow G_2$ be the projection map. Put $\Gamma_1 = \Gamma \cap G_1$ and $\Gamma_2 = \beta(\Gamma)$. Then there is an exact sequence

$$1 \longrightarrow \Gamma_1 \longrightarrow \Gamma \xrightarrow{\beta} \Gamma_2 \longrightarrow 1 \quad (2.1)$$

where Γ_1 is a lattice in G_1 and Γ_2 is a lattice in G_2 [1].

Lemma 1. *If $b_1^{(2)}(\Gamma) \neq 0$ then Γ has a finite normal subgroup F such that Γ/F is a lattice in $\text{PSL}_2(\mathbb{R})$.*

Proof. There are the following possibilities:

A. Γ_1 is infinite. Then Γ has an infinite normal amenable subgroup. By a result of Cheeger and Gromov, the L^2 -Betti numbers of Γ vanish [7, Theorem 10.12].

B. Γ_1 is finite and Γ_2 is finite. (That is, $\Gamma_2 = \{e\}$.) Then Γ is finite and $b_1^{(2)}(\Gamma) = 0$.

C. Γ_1 is finite and Γ_2 is infinite. By the Leray-Serre spectral sequence for L^2 -homology, $b_1^{(2)}(\Gamma) = b_1^{(2)}(\Gamma_2)/|\Gamma_1|$. Suppose that $b_1^{(2)}(\Gamma_2) \neq 0$. If G_2 had an infinite center then Γ_2 , being a lattice, would have to have an infinite center. This would imply by [7, Theorem 10.12] that $b_1^{(2)}(\Gamma_2)$ vanishes, so G_2 must have a finite center $Z(G_2)$. Put $G_3 = G_2/Z(G_2)$, let $\gamma : G_2 \rightarrow G_3$ be the projection and put $\Gamma_3 = \gamma(\Gamma_2)$, a lattice in G_3 . Then there is the exact sequence

$$1 \longrightarrow \Gamma_2 \cap Z(G_2) \longrightarrow \Gamma_2 \xrightarrow{\gamma} \Gamma_3 \longrightarrow 1 \quad (2.2)$$

and so $b_1^{(2)}(\Gamma_2) = b_1^{(2)}(\Gamma_3)/|\Gamma_2 \cap Z(G_2)|$. Let K_3 be a maximal compact subgroup of G_3 and let \mathcal{F} be a fundamental domain for the Γ_3 -action on G_3/K_3 . Let $\Pi(x, y)$ be the Schwartz kernel for the projection operator onto the L^2 -harmonic 1-forms on G_3/K_3 . By [4], $b_1^{(2)}(\Gamma_3) = \int_{\mathcal{F}} \text{tr}(\Pi(x, x)) d\text{vol}(x)$. Hence G_3/K_3 has nonzero L^2 -harmonic 1-forms. By the Künneth formula for L^2 -cohomology and [2, Section II.5], the only possibility is $G_3 = \text{PSL}_2(\mathbb{R})$. Then there is the exact sequence

$$1 \longrightarrow \Gamma \cap \text{Ker}(\gamma \circ \beta) \longrightarrow \Gamma \xrightarrow{\gamma \circ \beta} \Gamma_3 \longrightarrow 1 \quad (2.3)$$

with $\Gamma \cap \text{Ker}(\gamma \circ \beta)$ finite. \square

Let $\text{geom dim } \Gamma$ be the minimal dimension of a $K(\Gamma, 1)$ -complex [3, p. 185]. We will need the following result of Hillman [6, Theorem 2]. For completeness, we give the short proof.

Lemma 2. *(Hillman) If Γ is a finitely-presented group then $\text{def}(\Gamma) \leq 1 + b_1^{(2)}(\Gamma)$. Equality implies that there is a finite $K(\Gamma, 1)$ -complex X with $\dim(X) \leq 2$.*

Proof. If Γ is finite then $\text{def}(\Gamma) \leq 0$, so we may assume that Γ is infinite. Given a presentation of Γ with g generators and r relations, let X be the corresponding 2-complex. As X is two-dimensional, its second L^2 -homology group is the same as the space of square-integrable

real cellular 2-cycles on the universal cover \tilde{X} . This contains the ordinary integer cellular 2-cycles as a subgroup.

We have

$$\chi(X) = 1 - g + r = b_0^{(2)}(X) - b_1^{(2)}(X) + b_2^{(2)}(X) = -b_1^{(2)}(\Gamma) + b_2^{(2)}(X). \quad (2.4)$$

Hence

$$g - r = 1 + b_1^{(2)}(\Gamma) - b_2^{(2)}(X) \leq 1 + b_1^{(2)}(\Gamma). \quad (2.5)$$

If $g - r = 1 + b_1^{(2)}(\Gamma)$ then $b_2^{(2)}(X) = 0$. Hence $H_2(\tilde{X}; \mathbb{Z}) = 0$. From the Hurewicz theorem, \tilde{X} is contractible. \square

We now prove Theorem 2. Suppose that $\text{def}(\Gamma) > 0$. Then first of all, $|\Gamma| = \infty$. Suppose that Γ does not have a finite normal subgroup F such that G/F is a lattice in $\text{PSL}_2(\mathbb{R})$. By Lemma 1, $b_1^{(2)}(\Gamma) = 0$. Then Lemma 2 implies that $\text{def}(\Gamma) = 1$ and $\text{geom dim } \Gamma \leq 2$. In particular, Γ is torsion-free.

As Γ_1 is a lattice in $K \cdot \text{Rad}$, it is a uniform lattice [9, Chapter III]. Furthermore, as Γ_1 is a subgroup of Γ , $\text{geom dim } \Gamma_1 \leq 2$ and so Γ_1 must be $\{e\}$, \mathbb{Z} , \mathbb{Z}^2 or the fundamental group of a Klein bottle. We go through the possibilities :

A. $\Gamma_1 = \{e\}$. Then $\Gamma = \Gamma_2$ is a torsion-free lattice in the semisimple group G_2 . Using a result of Borel and Serre [3, p. 218], the fact that $\text{geom dim } \Gamma \leq 2$ implies that the Lie algebra of G_2 is $\widetilde{\text{sl}_2(\mathbb{R})}$, $\text{sl}_2(\mathbb{R}) \oplus \widetilde{\text{sl}_2(\mathbb{R})}$ or $\text{sl}_2(\mathbb{C})$. One possibility is $G_2 = \widetilde{\text{PSL}_2(\mathbb{R})}$. Using the embedding $\widetilde{\text{PSL}_2(\mathbb{R})} \cong \mathbb{Z} \times_{\mathbb{Z}} \widetilde{\text{PSL}_2(\mathbb{R})} \rightarrow \mathbb{R} \times_{\mathbb{Z}} \widetilde{\text{PSL}_2(\mathbb{R})}$, in this case we can say that Γ is isomorphic to a lattice in $\mathbb{R} \times_{\mathbb{Z}} \widetilde{\text{PSL}_2(\mathbb{R})}$. On the other hand, if G_2 is a finite covering of $\widetilde{\text{PSL}_2(\mathbb{R})}$ then $b_1^{(2)}(\Gamma) \neq 0$, contrary to assumption. If G_2 is an infinite covering of $\widetilde{\text{PSL}_2(\mathbb{R})} \times \widetilde{\text{PSL}_2(\mathbb{R})}$ then the Leray-Serre spectral sequence implies that Γ_2 has cohomological dimension greater than two, contrary to assumption. If G_2 is a finite covering of $\widetilde{\text{PSL}_2(\mathbb{R})} \times \widetilde{\text{PSL}_2(\mathbb{R})}$ then Lemma 3 below will show that $\text{def}(\Gamma) \leq 0$, contrary to assumption. If $G_2 = \text{SL}_2(\mathbb{C})$, let $p : \text{SL}_2(\mathbb{C}) \rightarrow \widetilde{\text{PSL}_2(\mathbb{R})}$ be the projection map. Then there is the exact sequence

$$1 \longrightarrow \Gamma \cap \text{Ker}(p) \longrightarrow \Gamma \xrightarrow{p} p(\Gamma) \longrightarrow 1. \quad (2.6)$$

As Γ is torsion-free, $\Gamma \cap \text{Ker}(p) = \{e\}$ and so Γ is isomorphic to $p(\Gamma)$, a lattice in $\widetilde{\text{PSL}_2(\mathbb{C})}$. Thus in any case, Γ is isomorphic to a torsion-free lattice in $\mathbb{R} \times_{\mathbb{Z}} \widetilde{\text{PSL}_2(\mathbb{R})}$ or $\widetilde{\text{PSL}_2(\mathbb{C})}$. If Γ is uniform then $\text{geom dim } \Gamma = 3$. Thus Γ must be nonuniform. The torsion-free nonuniform lattices in $\mathbb{R} \times_{\mathbb{Z}} \widetilde{\text{PSL}_2(\mathbb{R})}$ and $\mathbb{R} \times \widetilde{\text{PSL}_2(\mathbb{R})}$ are isomorphic, as they both correspond to the Seifert fiber spaces whose base is a hyperbolic orbifold with boundary [10]. We conclude that Γ is isomorphic to a torsion-free nonuniform lattice in $\mathbb{R} \times \widetilde{\text{PSL}_2(\mathbb{R})}$ or $\widetilde{\text{PSL}_2(\mathbb{C})}$.

B. $\Gamma_1 = \mathbb{Z}$. Let Γ'_2 be a finite-index torsion-free subgroup of Γ_2 which acts trivially on \mathbb{Z} and put $\Gamma' = \beta^{-1}(\Gamma'_2)$, a finite-index subgroup of Γ . Then there is the exact sequence

$$1 \longrightarrow \Gamma_1 \longrightarrow \Gamma' \xrightarrow{\beta} \Gamma'_2 \longrightarrow 1. \quad (2.7)$$

Let M be a Γ'_2 -module and let $\beta^* M$ be the corresponding Γ' -module. If $H^*(\Gamma'_2; M) \neq 0$, let k be the largest integer such that $H^k(\Gamma'_2; M) \neq 0$. Then by the Leray-Serre spectral sequence, $H^{k+1}(\Gamma'; \beta^* M) \neq 0$. As $\text{geom dim } \Gamma' \leq 2$, we must have $k \leq 1$. Thus the cohomological dimension of Γ'_2 is at most one and Γ'_2 must be trivial or a free group [3, p. 185]. If $\Gamma'_2 = \{e\}$

then $G_2 = \{e\}$ and $\Gamma = \mathbb{Z}$. If Γ'_2 is a free group then G_2 is a finite covering of $\mathrm{PSL}_2(\mathbb{R})$. Let $\sigma : G_2 \rightarrow \mathrm{PSL}_2(\mathbb{R})$ be the projection map and put $L = (\sigma \circ \beta)(\Gamma)$. Then there is the exact sequence

$$1 \longrightarrow \Gamma \cap \mathrm{Ker}(\sigma \circ \beta) \longrightarrow \Gamma \xrightarrow{\sigma \circ \beta} L \longrightarrow 1 \quad (2.8)$$

where L is a lattice in $\mathrm{PSL}_2(\mathbb{R})$ and $\Gamma \cap \mathrm{Ker}(\sigma \circ \beta)$ is virtually cyclic. As $\Gamma \cap \mathrm{Ker}(\sigma \circ \beta)$ is torsion-free, it must equal \mathbb{Z} . It follows that Γ is isomorphic to a lattice in $\mathbb{R} \times \mathrm{PSL}_2(\mathbb{R})$ or $\mathbb{R} \times_{\mathbb{Z}} \widetilde{\mathrm{PSL}_2(\mathbb{R})}$. If Γ is uniform then $\mathrm{geom \ dim} \Gamma = 3$. Thus Γ is nonuniform and is isomorphic to a lattice in $\mathbb{R} \times \mathrm{PSL}_2(\mathbb{R})$.

C. $\Gamma_1 = \mathbb{Z}^2$. Let Γ'_2 be a finite-index torsion-free subgroup of Γ_2 which acts on \mathbb{Z}^2 with determinant 1 and put $\Gamma' = \beta^{-1}(\Gamma'_2)$, a finite-index subgroup of Γ . Let M be a Γ'_2 -module and let β^*M be the corresponding Γ' -module. If $H^*(\Gamma'_2; M) \neq 0$, let k be the largest integer such that $H^k(\Gamma'_2; M) \neq 0$. Then by the Leray-Serre spectral sequence, $H^{k+2}(\Gamma'; \beta^*M) \neq 0$. As $\mathrm{geom \ dim} \Gamma' \leq 2$, we must have $k = 0$. Thus the cohomological dimension of Γ'_2 is zero, so $\Gamma'_2 = \{e\}$ and $G_2 = \{e\}$. Then $\Gamma = \mathbb{Z}^2$.

D. Γ_1 is the fundamental group of a Klein bottle. Let \mathbb{Z}^2 be the unique maximal abelian subgroup of Γ_1 . Any automorphism of Γ_1 acts as an automorphism of \mathbb{Z}^2 . Thus we get a homomorphism $\phi : \mathrm{Aut}(\Gamma_1) \rightarrow \mathrm{GL}_2(\mathbb{Z})$. Let $\rho : \Gamma \rightarrow \mathrm{Aut}(\Gamma_1)$ be given by $(\rho(\gamma))(\gamma_1) = \gamma\gamma_1\gamma^{-1}$. Put $\widetilde{\Gamma} = \mathrm{Ker}(\det \circ \phi \circ \rho)$, an index-2 subgroup of Γ , and put $\widetilde{\Gamma}_2 = \beta(\widetilde{\Gamma})$. Then there is an exact sequence

$$1 \longrightarrow \mathbb{Z}^2 \longrightarrow \widetilde{\Gamma} \xrightarrow{\beta} \widetilde{\Gamma}_2 \longrightarrow 1. \quad (2.9)$$

As in case C, it follows that $G_2 = \{e\}$ and $\Gamma = \Gamma_1$ is the fundamental group of a Klein bottle.

This proves Theorem 2. We now prove Theorem 3. Let X be as in the proof of Lemma 2. As the classifying map $X \rightarrow B\Gamma$ is 2-connected, $b_2^{(2)}(X) \geq b_2^{(2)}(\Gamma)$. Then from (2.5),

$$\mathrm{def}(\Gamma) \leq 1 + b_1^{(2)}(\Gamma) - b_2^{(2)}(\Gamma). \quad (2.10)$$

For the lattices in question, let G be the Lie group, let K now be a maximal compact subgroup of G and put $M = \Gamma \backslash G/K$, an orbifold. As G/K has no L^2 -harmonic 1-forms [2, Section II.5], it follows from [4] that $b_1^{(2)}(\Gamma) = b_3^{(2)}(\Gamma) = 0$. As $|\Gamma| = \infty$, we have $b_0^{(2)}(\Gamma) = b_4^{(2)}(\Gamma) = 0$. If $\chi(\Gamma)$ is the rational-valued group Euler characteristic of Γ [3, p. 249] then

$$\chi(\Gamma) = b_0^{(2)}(\Gamma) - b_1^{(2)}(\Gamma) + b_2^{(2)}(\Gamma) - b_3^{(2)}(\Gamma) + b_4^{(2)}(\Gamma) = b_2^{(2)}(\Gamma). \quad (2.11)$$

From (2.10) and (2.11), we obtain

$$\mathrm{def}(\Gamma) \leq 1 - \chi(\Gamma). \quad (2.12)$$

Furthermore, letting $e(M, g) \in \Omega^4(M)$ denote the Euler density, it follows from [4] that

$$\chi(\Gamma) = \int_M e(M, g). \quad (2.13)$$

Let G^d/K be the compact dual symmetric space to G/K . By the Hirzebruch proportionality principle,

$$\frac{\int_M e(M, g)}{\chi(G^d/K)} = \frac{\text{vol}(M)}{\text{vol}(G^d/K)}. \quad (2.14)$$

We have the table

G	G^d/K	$\chi(G^d/K)$	$\text{vol}(G^d/K)$
$\text{SO}(4, 1)$	S^4	2	$\frac{8\pi^2}{3}$
$\text{SU}(2, 1)$	$\mathbb{C}P^2$	3	$\frac{\pi^2}{2}$
$\text{PSL}_2(\mathbb{R}) \times \text{PSL}_2(\mathbb{R})$	$S^2 \times S^2$	4	$16\pi^2$.

This proves Theorem 3.

Lemma 3. *Let G be a connected Lie group with a surjective homomorphism $\rho : G \rightarrow \text{PSL}_2(\mathbb{R}) \times \text{PSL}_2(\mathbb{R})$ such that $\text{Ker}(\rho)$ is central in G and finite. If Γ is a lattice in G then $\text{def}(\Gamma) \leq 0$.*

Proof. Equation (2.12) is still valid for Γ . We have $\chi(\Gamma) = \chi(\rho(\Gamma))/|\Gamma \cap \text{Ker}(\rho)|$. Applying (2.13) to $\rho(\Gamma)$, the proof of Theorem 3 gives $\chi(\rho(\Gamma)) > 0$. Hence $\chi(\Gamma) > 0$ and $\text{def}(\Gamma) \leq 0$. \square

REFERENCES

- [1] L. Auslander, “On Radicals of Discrete Subgroups of Lie Groups”, Amer. J. Math. 85, p. 145-150 (1963)
- [2] A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups and Representations of Reductive Groups, Ann. of Math. Studies 94, Princeton University Press, Princeton, NJ (1980)
- [3] K. Brown, Cohomology of Groups, Springer, New York (1982)
- [4] J. Cheeger and M. Gromov, “Bounds on the von Neumann Dimension of L^2 -Cohomology and the Gauss-Bonnet Theorem for Open Manifolds”, J. Diff. Geom. 21, p. 1-34 (1985)
- [5] D. Epstein, “Finite Presentations of Groups and 3-Manifolds”, Quart. J. Math., Oxford, 12, p. 205-212 (1961)
- [6] J. Hillman, “On L^2 -Homology and Asphericity”, Israel Journal of Mathematics 99, p. 271-283 (1997)
- [7] W. Lück, “ L^2 -Invariants of Regular Coverings of Compact Manifolds and CW-Complexes (Survey)”, in Handbook of Geometric Topology, Elsevier, to appear, <http://wwwmath.uni-muenster.de/math/u/lueck/publ/lueck/015hand.html>
- [8] A. Lubotzky, “Group Presentation, p -adic Analytic Groups and Lattices in $\text{SL}_2(\mathbb{C})$ ”, Annals of Math. 118, p. 115-130 (1983)
- [9] M. Raghunathan, Discrete Subgroups of Lie Groups, Springer, New York (1972)
- [10] P. Scott, “The Geometry of 3-Manifolds”, Bull. London Math. Soc. 15, p. 401-487 (1983)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109-1109, USA
E-mail address: lott@math.lsa.umich.edu