Two-level Factorial Design of Experiments

Argon Chen
Industrial Engineering
National Taiwan University

.

Dealing with the Noises

- Almost impossible to eliminate the noises
- Four attempts:
 - 1. Design the experiment such that the noise is well controlled in the analysis
 - Randomize the experimental trials such that the noises are uniformly and randomly distributed across trials
 - 3. Replication in the experiments to include the noise effect in the analysis
 - 4. Confirmatory testing to verify the analysis results

Unwanted Noises in the Experimental Environment

- Factors of interest in the planned experiments could be subject to unwanted noises. How to minimize the effect of the unwanted noises?
 - Include the noise effect in the objective function, i.e., SN ratio

Example 1: In LPCVD, gases travel from one end of the reactor to the other end causing *concentration gradient* along the length of the reactor and differences in *flow pattern*. There are also variation in *temperature* along the length and cross the tube section, *wafer topography*, *pumping speed*, and *gas supply*.

- Randomize the unwanted noises in the experiments

Example 2: Nork Tool company claims that their new cutting tools, called Nork-V provide a Longer life than the cutgo-T tools for similar jobs. To check the claim, nine Nork tools and nine Cutgo-T tools will be used to machine 1048 steel bars. What are the unwanted noises?

.

Specific Randomization Schemes for Positive and Negative Autocorrelation Nuisances

- Positive correlation nuisance: learning curve
 - Randomizing adjacent runs within pairs (arrangement 1)
- Negative correlation (alternate/oscillation) nuisance:
 PM and AM
 - Running the pair both in AM or both in PM (arrangement 2)

	Arrange	ement 1	Arrange	angement 2		
Bar	Cutgo-T	Nork-V	Cutgo-T	Nork-V		
1	La	Rb	LA	RA		
2	Ld	Rc	RP	LP		
3	Rf	Le	RP	LP		
4	Lh	Rg	LA	RA		
5	Li	Ri	RA	LA		
6	Rk	LI	LP	RP		
7	Rm	Ln	RP	LP		
8	Rp	Lo	RA	LA		
9	Lr	Rg	LP	RP		

* L, left half; R, right half; A, A.M., P, P.M.; a to q are the time order of runs.

t

Foam Process Experimental **Design Flow Diagram** Phase 1 Phase 2 Polyol Polyol temperature Mold core Pump setting temperature stand Polyol Foam Mix head density Foam molding process Polvol Isocynate Shot time Cure time Orifice size Cycle time Substrate 6

Variable Levels for the Isocynate Calibration Experiment

		Low	High
Variable	Unit	Level	Level
Orifice size, O	mm	1.30	1.50
Pump setting, <i>p</i>		4.00	4.50
Isocynate temperature, \mathcal{T}	$^{\circ}\!\mathbb{C}$	22	30

7

Coded and Uncoded Test Conditions in Standard Order

Coded Test Conditions Actual Test Conditions Р Т 0 Test X_2 (mm) (°C) 1.30 4.0 22 2 4.0 -1 1.50 22 +1 1.30 4.5 22 1.50 4.5 22 +1 1.30 4.0 30 6 4.0 -1 1.50 30 +1

1.30

1.50

4.5

4.5

7

-1

+1

+1

8

30

Test Results for Isocynate Calibration Experiment

Test	X ₁	X_2	X_3	Test Order	Response, y (psi)
1	-1	-1	-1	6	1550
2	+1	-1	-1	8	1925
3	-1	+1	-1	1	2150
4	+1	+1	-1	2	2350
5	-1	-1	+1	5	1525
6	+1	-1	+1	3	1800
7	-1	+1	+1	4	2175
8	+1	+1	+1	7	2200

Other Interaction Effects

 $E_{13} = [(e \text{ ffect of orifice size at high level for temperature}) -$ (effect of orifice size at low level for temperature)]/2

$$= \frac{(2000 - 1850) - (2137.5 - 1850)}{2}$$
$$- \frac{150 - 287.5}{2}$$

$$=\frac{}{2}$$

= -68.75psi.

 $E_{23} = [(e \text{ ffect of temperature at high level for pump setting}) -$ (effect of temperature at low level for pump setting)]/2

$$= \frac{(2187.5 - 2250) - (1662.5 - 1737.5)}{2}$$

$$=\frac{-62.5-(-75.0)}{2}$$

= 6.25 psi.

,		ralized Iculation		· · · · · ·	
Test	X ₁	X_2	X_3	Test Order	Response, y (psi)
1	-1	-1	-1	6	1550
2	+1	-1	-1	8	1925
3	-1	+1	-1	1	2150
4	+1	+1	-1	2	2350
5	-1	-1	+1	5	1525
6	+1	-1	+1	3	1800
7	-1	+1	+1	4	2175
8	+1	+1	+1	7	2200
					22

Main Effect Calculation

$$x_1$$
 y
 -1 \times 1550
 $+1$ \times 1925
 -1 \times 2150
 $+1$ \times 2350
 -1 \times 1525
 $+1$ \times 1800
 -1 \times 2175
 $+1$ \times 2200
 $x_1 = 875$
 $x_2 = 218.75$

23

Two-Factor Interaction Calculation

$$x_1x_2$$
 y
 $(+1) \times (1550)$ +1550
 $(-1) \times (1925)$ -1925
 $(-1) \times (2150)$ -2150
 $(+1) \times (2350) = +2350$
 $(+1) \times (1525)$ +1525
 $(-1) \times (1800)$ -1800
 $(-1) \times (2175)$ -2175
 $(+1) \times (2200)$ +2200
 $C = -425$ $C = -425$

Calculation Matrix for 2³ Design

		Main Effects			Interactions				_
Test	I	x_I	x_2	x_3	x_1x_2	$x_1 x_3$	x_2x_3	$x_1 x_2 x_3$	y (psi)
1	+	-1	-1	-1	+1	+1	+1	-1	1550
2	+	+1	-1	-1	-1	-1	+1	+1	1925
3	+	-1	+1	-1	-1	+1	-1	+1	2150
4	+	+1	+1	-1	+1	-1	-1	-1	2350
5	+	-1	-1	+1	+1	-1	-1	+1	1525
6	+	+1	-1	+1	-1	+1	-1	-1	1800
7	+	-1	+1	+1	-1	-1	+1	-1	2175
8	+	+1	+1	+1	+1	+1	+1	+1	2200

25

Mathematical Empirical Model

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{12} x_1 x_2 + b_{13} x_1 x_3$$

$$+ b_{23} x_2 x_3 + b_{123} x_1 x_2 x_3 + \varepsilon$$

$$\hat{b}_0 = (\frac{1}{8}) (y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8)$$

Effects and Model Coefficients

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{12} x_1 x_2 + b_{13} x_1 x_3 + b_{23} x_2 x_3 + b_{123} x_1 x_2 x_3 + \varepsilon$$

$$\hat{b}_1 = \frac{E_1}{2} = \frac{218.75}{2} = 109.375$$

27

Interactions in Fitted Model

- First order model $y = b_0 + b_1x_1 + b_2x_2 + \varepsilon$

The effect of one predictor variable on y is independent of the effect of the other predictor variable on y.

dictor variable on y.

$$[b_0+b_2(3)]+b_1X_1 X_2 = 3$$

$$[b_0+b_2(2)]+b_1X_1 X_2 = 2$$

$$[b_0+b_2(1)]+b_1X_1 X_2 = 1$$

 \mathbf{X}_1

First order model with interaction

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_{12} x_1 x_2 + \varepsilon$$

The two variables interact to affect the value of y.

$$\frac{[b_0 + b_2(3)] + (b_1 + b_{12}(3))}{[b_0 + b_2(2)] + (b_1 + b_{12}(2))} X_2 = 3$$

$$\frac{[b_0 + b_2(2)] + (b_1 + b_{12}(2))}{[b_0 + b_2(1)] + (b_1 + b_{12}(1))} X_2 = 1$$

$$X_1$$

Other Model Parameters

$$\hat{b}_2 = \frac{E_2}{2} = \frac{518.75}{2} = 259.375$$

$$\hat{b}_3 = \frac{E_3}{2} = \frac{-68.75}{2} = -34.375$$

$$\hat{b}_{12} = \frac{E_{12}}{2} = \frac{-106.25}{2} = -53.125$$

$$\hat{b}_{13} = \frac{E_{13}}{2} = \frac{-68.75}{2} = -34.375$$

$$\hat{b}_{23} = \frac{E_{23}}{2} = \frac{6.25}{2} = 3.125$$

$$\hat{b}_{123} = \frac{E_{123}}{2} = \frac{-18.75}{2} = -9.375$$

29

Predicted Response Surface

- Assume E₃, E₁₃, E₂₃, and E₁₂₃ are not significant
- Final fitted model: $\hat{y} = 1959 + 109x_1 + 259x_2 53x_1x_2$

Linear Regression

31

Introduction

- A technique to examine the relationship among quantitative variables.
- The technique is used to predict the value of one variable (the dependent variable - y) based on the value of other variables (independent variables x₁, x₂,...x_k.)

The Simple Linear Regression Model

· The first order linear model

$$y = \beta_0 + \beta_1 x + \epsilon$$

y = dependent variable

x = independent variable

 β_0 = y-intercept

 β_1 = slope of the line

 \mathcal{E} = error variable

Estimating the Coefficients

- · The estimates are determined by
 - drawing a sample from the population of interest,
 - calculating sample statistics.
 - producing a straight line that cuts into the data.

Example: Relationship between Orifice Size and Pressure

Foam processing experiments

 8 runs of experiments are conducted and corresponding pressures are measured

- Find the regression line.

Ο	X1	Response
(mm)	Λ_1	, <i>y</i> (psi)
1.3	-1	1550
1.5	1	1925
1.3	-1	2150
1.5	1	2350
1.3	-1	1525
1.5	1	1800
1.3	-1	2175
1.5	1	2200

Dependent variable

Independent variable

Multiple Regression Model

 We allow for k independent variables and interactions to potentially be related to the dependent variable

Example: Relationship between Three Factors and Pressure

 Foam processing 			Indep	pendent	variable	ı	1	Dependent variable
experiments	X1	X2	X3	X1X2	X1X3	X2X3	X1X2X3	Response , y (psi)
 8 experimental 	-1 1	-1 -1	-1 -1	1 -1	1 -1	1 1	-1 1	1550 1925
runs	-1 1	1	-1 -1	-1 1	1 -1	-1 -1	1 -1	2150 2350
 Estimate the 	-1	-1	1	1	-1	-1	1	1525
regression	1 -1	-1 1	1	-1 -1	1 -1	-1 1	-1 -1	1800 2175
model	1	1	1	1	1	1	1	2200

39

Tools > Data analysis > Regression > [Shade the y range and the x range] > OK

1
1
65535
0
8

ANOVA					
	自由度	SS	MS	F	顯著值
迴歸	7	676171.9	96595.98	#NUM!	#NUM!
殘差	0	0	65535		
總和	7	676171.9			

	係數	標準誤	t 統計	P-值	下限 95%	上限 95%	下限 95.0%	上限 95.0%
截距	1959.375	0	65535	#NUM!	1959.375	1959.375	1959.375	1959.375
X1	109.375	0	65535	#NUM!	109.375	109.375	109.375	109.375
X2	259.375	0	65535	#NUM!	259.375	259.375	259.375	259.375
X3	-34.375	0	65535	#NUM!	-34.375	-34.375	-34.375	-34.375
X1X2	-53.125	0	65535	#NUM!	-53.125	-53.125	-53.125	-53.125
X1X3	-34.375	0	65535	#NUM!	-34.375	-34.375	-34.375	-34.375
X2X3	3.125	0	65535	#NUM!	3.125	3.125	3.125	3.125
X1X2X3	-9.375	0	65535	#NUM!	-9.375	-9.375	-9.375	-9.375

 $\hat{y} = 1959.375 + 109.375 x_1 + 259.375 x_2 - 34.375 x_3$ $-53.125 x_1x_2 - 34.375 x_1x_3 + 3.125 x_2x_3 - 9.375 x_1x_2x_3$

Experiments with Replicates

Argon Chen Industrial Engineering National Taiwan University

41

Glove Box Door Alignment Experiment

	Variable	Low(-)	High(+)
x ₁ :	RH cowl fore/aft movement	Nominal	-5 mm
x ₂ :	Center brace attachment sequence	Before	After
x ₃ :	Plenum gasket	No	Yes
X ₄ :	Evaporator case setup, fore/aft	Nominal	-5 mm

•		(.	00.		r in Pare	
						sm (mm)
Test	X ₁	X_2	<i>X</i> ₃	X ₄	Run 1	Run 2
1630	^1	^2	^3	^4	Уn	y _{i2}
1	- 2 <u>- </u>	-	_	_	-1.44 (7)	-0.08(28)
2	+	_	_		-1.79 (10)	-1.01(24)
3		+	-	-	0.39 (14)	0.17 (32)
4	+	+	-	-	-0.50 (2)	-0.24(21)
5	_	1000	+	-	-0.20 (9)	0.17 (27)
6	+	-	+		-0.79 (6)	-0.64(30)
7		+	+	_	1.22 (13)	0.28 (20)
8	+	+	+	-	0.21 (8)	0.28 (18)
9	_	_	_	+	-0.40 (1)	-0.65(31)
10	+	-	1-	+	-0.63(15)	-1.19(25)
11	-	+	_	+	0.47 (3)	0.44 (17)
12	+	+	-1	+	-0.01 (5)	-0.03(23)
13	-	_	+	+	1.29 (12)	0.64 (29)
14	+ 1	- F F	+	+	-1.17 (4)	0.14 (19)
15		+	+	+ =	0.48 (16)	1.06 (22)
16	+	+	+	+	0.40 (11)	0.34 (26)

	41\	<i>_</i>	410	λL												IUV	e E	
					L)(C	r	E	:X	p	er	im	1e	nt			
Test	I	1	2	3	4	12	13	14	23	24	34	123	124	134	234	1234	\overline{y}_i	di
1	+	_	_	_	_	+	+	+	+	+	+	_		_	_	+.	-0.76	-1.36
2	+	+	-	-		_	_	_	+	+	+	+	+	+	_	_	-1.40	-0.78
3	+	-	+	-	Š. —		+	+	-	_	+	+	+ =	_	+	48 T	0.28	0.22
4	+	+	+	_	_	+	_	_	_	_	+	_	_	+	+	+	-0.37	-0.26
5	+		-	+	_	+	_	+	_	+	-	+	-	+	+	_	-0.02	-0.37
6	+	+		+	_	_	+	_	-	+	_	_	+	_	+	+	-0.72	-0.15
7	+	-	+	+	$^{-}$	_	_	+	+	_	_	_	+	+	_	+	0.75	0.94
8	+	+	+	+	-	+	+	_	+	-	_	+	-	_	-	- ·	0.25	-0.07
9	+	_	_	_	+	+	+	_	+	_	-	_	+	+	+	_	-0.53	0.25
10	+	+	-		+	-	$i \rightarrow i$	+	+	-	-	+	-	-	+	+	-0.91	0.56
11	+	-	+	-	+	_	+	-	-	+	_	+	-	+	-	+	0.46	0.03
12	+	+	+	-	+	+	-	+	-	+	_	-	+	_	-	_	-0.02	0.02
13	+		-	+	+	+	-	-	-	-	+	+	+	-	-	+	0.97	0.65
14	+	+	_	+	+	_	+	+	_	_	+	_	-	+	_	_	-0.52	-1.31
15	+	-	+	+	+	-	-	_	+	+	+	-	-	-	+	_	0.77	-0.58
16	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	0.37	0.06

Estimating Variance of Noise (ε) within the Same Experiment Test by Replicates

$$s_1^2 = \frac{(y_{11} - \overline{y}_1)^2 + (y_{12} - \overline{y}_1)^2}{2 - 1}$$
$$= [-1.44 - (-0.76)]^2 + [-0.08 - (-0.76)]^2$$
$$= 0.9248$$

$Var(\varepsilon)$ Estimated from each Experiment Test

$$s_1^2 = 0.92480$$
 $s_9^2 = 0.03125$
 $s_2^2 = 0.30420$ $s_{10}^2 = 0.15680$
 $s_3^2 = 0.02420$ $s_{11}^2 = 0.00045$
 $s_4^2 = 0.03380$ $s_{12}^2 = 0.00020$
 $s_5^2 = 0.06845$ $s_{13}^2 = 0.21125$
 $s_6^2 = 0.01125$ $s_{14}^2 = 0.85805$
 $s_7^2 = 0.44180$ $s_{15}^2 = 0.16820$
 $s_8^2 = 0.00245$ $s_{16}^2 = 0.00180$

47

Pool the Replicate Noise to Estimate Overall Variance of Noise

 Pooled Sample Variance with different sample sizes of replicates (v₁, v₂,..., v_m)

$$\hat{Var}(\varepsilon) = \hat{\sigma}_{\varepsilon}^{2} = s_{p}^{2} = \frac{v_{1}s_{1}^{2} + v_{2}s_{2}^{2} + \dots + v_{m}s_{m}^{2}}{v_{1} + v_{2} + \dots + v_{m}} = \frac{\sum_{i=1}^{m} v_{i}s_{i}^{2}}{\sum_{i=1}^{m} v_{i}}$$

• When $v_1 = v_2 = ... = v_m$

$$\hat{\sigma}_{\varepsilon}^{2} = s_{p}^{2} = \frac{s_{1}^{2} + s_{2}^{2} + \dots + s_{m}^{2}}{m} = \frac{0.9248 + \dots + 0.0018}{16} = 0.20242$$

Estimating Effects with Replicates

$$E_{1} = \left(\frac{1}{8}\right) \left[\left(\overline{y}_{2} - \overline{y}_{1}\right) + \left(\overline{y}_{4} - \overline{y}_{3}\right) + \dots + \left(\overline{y}_{14} - \overline{y}_{13}\right) + \left(\overline{y}_{16} - \overline{y}_{15}\right) \right]$$

$$E_{1} = \frac{\frac{y_{2,1} + y_{2,2}}{2} - \frac{y_{1,1} + y_{1,2}}{2} + \dots + \frac{y_{16,1} + y_{16,2}}{2} - \frac{y_{15,1} + y_{15,2}}{2}}{8}$$

$$E_1 = \frac{y_{2,1} + y_{2,2} - y_{1,1} - y_{1,2} + \dots + y_{16,1} + y_{16,2} - y_{15,1} + y_{15,2}}{16}$$

49

Effect Error

• Assuming the observations y_{ij} are only subject to " ε " (with common variance σ^2_{ε}) and all effects of X_i are "null", i.e. $Y_i = \varepsilon_i$. Then, variance

$$Var(E) = Var\left[\frac{\left(\pm y_1 \pm y_2 \pm \dots \pm y_N\right)}{(m/2)n}\right] = \frac{4}{(mn)^2} \left(N\sigma_{\varepsilon}^2\right) = \frac{4\sigma_{\varepsilon}^2}{mn}$$

$$Var(E_{1}) = Var\left(\frac{y_{2,1} + y_{2,2} - y_{1,1} - y_{1,2} + \dots + y_{16,1} + y_{16,2} - y_{15,1} - y_{15,2}}{16}\right)$$

$$= \left(\frac{1}{16^{2}}\right) \left[Var(y_{2,1}) + Var(y_{2,2}) + \dots Var(y_{15,1}) + Var(y_{15,2})\right]$$

$$= \left(\frac{1}{256}\right) \left(\sigma_{\varepsilon}^{2} + \sigma_{\varepsilon}^{2} + \dots + \sigma_{\varepsilon}^{2} + \sigma_{\varepsilon}^{2}\right)$$

$$= \frac{32}{256}\sigma_{\varepsilon}^{2} = \frac{\sigma_{\varepsilon}^{2}}{8}$$

Estimating Effect Estimate Error

$$Var(E_{1}) = Var(E_{2}) = Var(E_{3}) = Var(E_{4}) = Var(E_{12}) = Var(E_{13})$$

$$= Var(E_{14}) = Var(E_{23}) = Var(E_{24}) = Var(E_{34}) = Var(E_{123})$$

$$= Var(E_{124}) = Var(E_{134}) = Var(E_{234}) = Var(E_{1234})$$

$$= \frac{\sigma_{\varepsilon}^{2}}{8}$$

 Estimating the effect estimate error through the pool sample variance:

$$\Rightarrow Var(E_i) = s_{effect}^2 = \frac{\hat{\sigma}_{\varepsilon}^2}{8} = \frac{s_p^2}{8}$$

51

Estimating Effect Errors for Glove Box Door Alignment Experiment

$$s_{effect}^2 = \frac{4s_p^2}{32} = \frac{s_p^2}{8} = \frac{0.20242}{8}$$

= 0.0253 \Rightarrow s.e. = s_{effect} = 0.159mm

Estimating the variance of response average b₀
 when there are no effect from factors X_i

$$\operatorname{Var}\left(\operatorname{average}\right) = \operatorname{Var}\left(\frac{y_{1,1} + y_{1,2} + \dots + y_{16,2}}{N}\right) = \frac{1}{N^2} \left(N\sigma_{\varepsilon}^2\right) = \frac{\sigma_{\varepsilon}^2}{N}$$

Effect Statistical Significance

Contrasting the size of the effect to the size of the estimate error – *t* statistic:

$$t = \frac{E_i - \mu_{effect}}{s_{effect}}$$
$$= \frac{E_i - 0.0}{0.159} \sim t_{v=16}$$

Degrees of freedom for t = 16?

$$v = \sum_{test} (\# \text{Replicates} - 1) = m(n - 1) = 16 \times (2 - 1) = 16$$

53

Confidence Intervals for Variable Effects of the Glove Box Door Alignment Study

	Effect	95% Confidence Interval	Effect	95% Confidence Interval
$E_i \pm t_{16,0.975} s_{\textit{effect}}$	Mean	-0.087 ± 0.169	E ₂₃	-0.191 ± 0.337
10,0071	E_1	-0.654 ± 0.337	E ₂₄	-0.154 ± 0.337
$E_i \pm (2.120)(0.159)$	E ₂	0.794 ± 0.337	E ₃₄	0.009 ± 0.337
, , , , ,	E_3	0.638 ± 0.337	E ₁₂₃	0.172 ± 0.337
$E_i \pm 0.337$	E_4	0.322 ± 0.337	E ₁₂₄	0.101 ± 0.337
_1 _ 0.00	E ₁₂	0.147 ± 0.337	E ₁₃₄	-0.138 ± 0.337
	E ₁₃	-0.117 ± 0.337	E ₂₃₄	-0.104 ± 0.337
	E ₁₄	-0.031 ± 0.337	E ₁₂₃₄	0.121 ± 0.337
	E ₁₄	-0.031 ± 0.337	E ₁₂₃₄	0.121 ± 0.337

95% Confidence Intervals for True Mean Effects of the Glove Box Door Alignment Study Based on Replicated Experiment Main Effects 95% Confidence Interval RH cowl fore/aft (E1) -0.654 ± 0.337 mm* Center brace (E2) 0.795 ± 0.337 mm* 0.638 ± 0.337 mm* Plenum gasket (E₃) Evaporator case (E₄) $0.322~\pm~0.337~\text{mm}$ Two-Variable Interactions 95% Confidence Interval RH cowl × center brace (E_{12}) RH cowl × plenum gasket (E_{13}) RH cowl × evaporator case (E_{14}) 0.147 ± 0.337 mm -0.117 ± 0.337 mm -0.031 ± 0.337 mm -0.191 ± 0.337 mm Center brace \times plenum gasket (E_{23}) Center brace \times evaporator case (E_{24}) Plenum gasket \times evaporator case (E_{34}) $0.009 \pm 0.337 \, \text{mm}$ Three-Variable Interaction 95% Confidence Interval 0.172 ± 0.337 mm 0.101 ± 0.337 mm Cowl × brace × plenum (E_{123}) Cowl × brace × evaporator (E_{124}) Cowl × plenum × evaporator (E_{134}) $-0.138 \pm 0.337 \text{ mm}$ $-0.104 \pm 0.337 \text{ mm}$ Brace \times plenum \times evaporator (E_{234})

Four-Variable Interaction

Cowl \times brace \times plenum \times evaporator (E_{1234})

* Confidence interval shows significant effect.

55

95% Confidence Interval

 $0.121 \pm 0.337 \text{ mm}$

Assuming No Effects (Null Hypothesis)

- E_i : E(E_i)=0 Var(E_i)= σ^2_{ϵ} /8
- $E_i \sim N(0, 0.159)$
- We can plot Q-Q plot for the estimated effects

57

Normal Q-Q Plot of the Sample Effect: Glove Box Door Parallelism Experiment

Use of Higher-Order Interaction Effects to Estimate Error

- Third- and higher-order interactions effects are often found insignificant (see the probability plot)
- If the higher-order effects are insignificant and are caused by errors, they can be used to estimate the errors

$$s_{effect}^2 = \sum_{\substack{higher-order \\ \text{interactions}}} \frac{\left(E_i - \mu_{E_i}\right)^2}{\text{no. of high - order interactions}}$$

$$\begin{split} s_{\textit{effect}}^2 &= \frac{\left[(0.172 - 0)^2 + (0.101 - 0)^2 + (-0.104 - 0)^2 + (-0.138 - 0)^2 + (0.121 - 0)^2 \right]}{5} \\ &= 0.0168572 \implies s_{\textit{effect}} = \text{s.e.} = 0.1298 \end{split}$$

$$t_{5,0.975} = 2.571$$
 \Rightarrow Effect estimate $\pm (2.571)(0.1298)$ $E_i \pm 0.334$

59

Empirical Modeling with Significant Effects

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 x_4 + b_{12} x_1 x_2 + b_{13} x_1 x_3$$

$$+ b_{14} x_1 x_4 + b_{23} x_2 x_3 + b_{24} x_2 x_4 + b_{34} x_3 x_4 + b_{123} x_1 x_2 x_3$$

$$+ b_{124} x_1 x_2 x_4 + b_{134} x_1 x_3 x_4 + b_{234} x_2 x_3 x_4$$

$$+ b_{1234} x_1 x_2 x_3 x_4 + \varepsilon$$

$$\hat{y} = \hat{b}_0 + \hat{b}_1 x_1 + \hat{b}_2 x_2 + \hat{b}_3 x_2 + \hat{b}_4 x_4 + \hat{b}_{12} x_1 x_2 + \hat{b}_{13} x_1 x_2$$

$$\dot{b} = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 x_4 + b_{12} x_1 x_2 + b_{13} x_1 x_3
+ \dot{b}_{14} x_1 x_4 + \dot{b}_{23} x_2 x_3 + \dot{b}_{24} x_2 x_4 + \dot{b}_{34} x_3 x_4 + \dot{b}_{123} x_1 x_2 x_3
+ \dot{b}_{124} x_1 x_2 x_4 + \dot{b}_{134} x_1 x_3 x_4 + \dot{b}_{234} x_2 x_3 x_4
+ \dot{b}_{1234} x_1 x_2 x_3 x_4$$

where
$$\hat{b}_i = \frac{E_i}{2}$$

		Ja	ata	a 1	Ю	r ı	_1	ne	•а	ır	Re	ar	es	SIO	n	
I	X1	X2	Х3								X1X2X3 X					Response, y
	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	1	-1.44
	1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1.79
	-1	1	-1	-1	-1	1	1	-1	-1	1	1	1	-1	1	-1	0.39
	1	1	-1	-1	1	-1	-1	-1	-1	1	-1	-1	1	1	1	-0.5
L	-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	1	-1	-0.2
L	1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	1	1	-0.79
L	-1	1	1	-1	-1	-1	1	1	-1	-1	-1	1	1	-1	1	1.22
Run 1	1	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	-1	-1	0.21
-	-1	-1	-1	1	1	1	-1	1	-1	-1	-1	1	1	1	-1	-0.4
L	1	-1	-1	1	-1	-1	1	1	-1	-1	1	-1	-1	1	1	-0.63
- 1	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	0.47
- 1	11	1	-1	1	1	-1 -1	1	-1 -1	1	-1	-1 1	1	-1 -1	-1 -1	-1	-0.01 1.29
⊢	- <u>l</u>	-1 -1	1	1	-1	-1 1	-1 1	-1	-1 -1	1	-1	-1	-1	-1	-1	-1.17
F	-1	- <u>l</u>	1	1	-1	-1	-1	-1	-1 1	1	-1	-1 -1	-1	-1 1	-1	0.48
F	-1	1	1	1	1	1	-1	1	1	1	-1	-1	1	1	-1	0.48
\rightarrow	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	1	-0.08
F	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1.01
F	-1	-1	-1	-1	-1	1	1	-1	-1	1	1	1	-1	1	-1	0.17
F	1	1	-1	-1	1	-1	-1	-1	-1	1	-1	-1	1	1	1	-0.24
F	-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	1	-1	0.17
	1	-1	i	-1	-1	1	-1	-1	1	-1	-1	1	-1	1	1	-0.64
_ F	-1	1	1	-1	-1	-1	1	1	-1	-1	-1	1	1	-1	1	0.28
[1	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	-1	-1	0.28
Run 2	-1	-1	-1	1	1	1	-1	1	-1	-1	-1	1	1	1	-1	-0.65
	1	-1	-1	1	-1	-1	1	1	-1	-1	1	-1	-1	1	1	-1.19
	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	0.44
	1	1	-1	1	1	-1	1	-1	1	-1	-1	1	-1	-1	-1	-0.03
L	-1	-1	1	1	1	-1	-1	-1	-1	1	1	1	-1	-1	1	0.64
L	1	-1	1	1	-1	1	1	-1	-1	1	-1	-1	1	-1	-1	0.14
L	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	1	-1	1.06
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.34

Model Predictions and Residuals of the Parallelism Prediction Model (Glove Box Door Study)

• Model residuals: $e_{ij} = (y_{ij} - \hat{y}_i)$

Test	<i>X</i> ₁	X_2	<i>X</i> ₃	X_4	Predicted Response, \hat{y}_i	Observed Response, <i>y</i> _{i1}	Run Order	Model Residual, e _{i1}	Observed Response, y ₁₂	Run Order	Model Residual, e _{i2}
1	_	-	-	-	-0.389	-1.440	(7)	-1.051	-0.080	(28)	0.309
2	+	_	_	***	-1.043	-1.790	(10)	-0.747	-1.010	(24)	0.033
3	-	+	-	-	0.405	0.390	(14)	-0.015	0.170	(32)	-0.235
4	+	+	-	-	-0.249	-0.500	(2)	-0.251	-0.240	(21)	0.009
5	-	-	+	-	0.249	-0.200	(9)	-0.449	0.170	(27)	-0.079
6	+	-	+	-	-0.405	-0.790	(6)	-0.385	-0.640	(30)	-0.235
7	-	+	+	-	1.043	1.220	(13)	0.177	0.280	(20)	-0.763
8	+	+	+	_	0.389	0.210	(8)	-0.179	0.280	(18)	-0.109
9	-	-	$-^{2}$	+	-0.389	-0.400	(1)	-0.011	-0.650	(31)	-0.261
10	+	-	_	+	-1.043	-0.630	(15)	0.413	-1.190	(25)	-0.147
11	_	+	-	+	0.405	0.470	(3)	0.065	0.440	(17)	0.035
12	+	+	_	+	-0.249	-0.010	(5)	0.239	-0.030	(23)	0.219
13	_	-	+	+	0.249	1.290	(12)	1.041	0.640	(29)	0.391
14	+	-	+	+	-0.405	-1.170	(4)	-0.765	0.140	(19)	0.545
15	-	+	+	+	1.043	0.480	(16)	-0.563	1.060	(22)	0.017
16	+	+	+	+	0.389	0.400	(11)	0.011	0.340	(26)	-0.049

Testing the Homogeneity of Variance: Bartlett's Test

$$\mathbf{H}_0: \sigma_1^2 = \sigma_2^2 = \cdots = \sigma_m^2 = \sigma_\varepsilon^2$$

 H_1 : at least one $\sigma_i^2 \neq \sigma_{i'}^2$ $i \neq j$

Test statistic:
$$\chi_{calc}^2 = \frac{M}{c} \sim \chi_{m-1}^2$$
 where $M = (N-m) \ln s_p^2 - \sum_{i=1}^m (n_i - 1) \ln s_i^2; s_p^2 = \frac{\sum_{i=1}^m (n_i - 1) s_i^2}{N-m}$

$$c = 1 + \frac{1}{3(m-1)} \left[\left(\sum_{i=1}^{m} \frac{1}{n_i - 1} \right) - \frac{1}{N-m} \right]$$

Reject
$$H_0$$
 if $\chi^2_{calc} \rangle \chi^2_{m-1,\alpha}$

75

Bartlett's Test for Glove Box Door Alignment Study

$$s_p^2 = \frac{(2-1)0.92480 + (2-1)0.30420 + \dots + 2(2-1)0.00180}{32-16} = 0.20243$$

$$M = (32 - 16)\ln(0.20243)$$

$$-[(2-1)\ln 0.92480 + (2-1)\ln 0.30420 + \dots + (2-1)\ln 0.00180]$$

= 28.1695

$$c = 1 + \frac{1}{3(16-1)} \left(\frac{1}{2-1} + \frac{1}{2-1} + \dots + \frac{1}{2-1} - \frac{1}{32-16} \right)$$

= 1.3542

$$\chi^2_{calc} = \frac{28.1695}{1.3542} = 20.8016 < \chi^2_{15,0.05} = 25.0$$

Using the Fitted Model to Improve Quality

- The ideal door parallelism is zero
- We can use the fitted model to try to achieve the zero parallelism
- For example: when the center brace is attached after $(x_2=+1)$ without Plenum gasket $(x_3=-1)$, we can find the value of RH cowl movement (x_1) to achieve the best parallelism:

$$\hat{y} = -0.327x_1 + 0.397 \times (+1) + 0.319 \times (-1) = 0$$

$$\Rightarrow x_1 = \frac{-0.078}{-0.327} = 0.239$$

77

Transforming the Variable Value to and from the Coded Variable Space

- 0.239 is the value for the coded variable x_1
- The real RH cowl movement value should be translated back from the coded value:

Best RH cowl movement =
$$\frac{0 + (-5)}{2} + 0.239 \left(\frac{-5 - 0}{2}\right) = -3.10$$
mm

when x_2 =+1 and x_3 =-1.

Contour Plots for the Fitted Model

• When x_2 =+1 (center brace is attached after) and redefine x_3 as the plenum gasket thickness from 0mm (x_3 =-1) to 2mm (x_3 =+1):

$$\hat{y} = 0.397 - 0.327x_1 + 0.319x_3$$

Contour Plot

79