TREES

Nature Lover's View Of A Tree

Computer Scientist's View

- Linear lists are useful for serially ordered data
 - $-(e_0, e_1, e_2, ..., e_{n-1})$
 - Days of week
 - Months in a year
 - -Students in this class
- Trees are useful for hierarchically ordered data
 - Employees of a corporation
 - President, vice presidents, managers, and so on

Hierarchical Data And Trees

- The element at the top of the hierarchy is the root
- Elements next in the hierarchy are the children of the root
- Elements next in the hierarchy are the grandchildren of the root, and so on.
- Elements that have no children are leaves

• A tree T is connected acyclic graph

Tree & Binary Tree

 No node in a binary tree may have a degree more than 2, whereas there is no limit on the degree of a node in a tree

- are different when viewed as ordered trees
- are the same when viewed as trees

Binary Tree Form and its Merits

The terms that we introduced for trees, such as degree, level, height, leaf, child etc. all apply to binary tree in the same way

- Left and right operands are easy to visualize
- Code optimization algorithms work with the binary tree form of an expression
- Simple recursive evaluation of expression

Minimum Number Of Nodes

- Minimum number of nodes in a binary tree whose height is h.
- At least one node at each of first h levels.

minimum number of nodes is h+1=O(h)

Maximum Number Of Nodes

All possible nodes at first h levels are present

Maximum number of internal nodes of a binary tree of height h

$$= 1 + 2 + 4 + 8 + \dots + 2^{h-1} = 2^h - 1$$

Number Of Nodes & Height

Height of a complete binary tree with n leaves is lg n.

Special kinds of Binary Trees

- Extended Binary Trees (2 Trees)
- Full Binary Tree
- Complete Binary Tree
- Skewed Tree

Extended Binary Trees (2 - Trees)

- A binary tree T is said to be a 2 tree, if each node has either
 0 or 2 children
- Tree corresponding to any Algebraic Expression which uses only binary operations

Extended Binary Trees

- We can always get an extended binary tree from a binary tree
- Start with any binary tree and add an external node wherever there is an empty subtree
- Result is an extended binary tree

An Extended Binary Tree

Full Binary Tree

• A full binary tree of a given height h has 2^h – 1 internal nodes

Height 3 full binary tree

Numbering Nodes In A Full Binary Tree

- Number the nodes 1 through 2^{h+1} 1
- Number by levels from top to bottom
- Within a level number from left to right

Node Number Properties

- Parent of node i is node i / 2, unless i = 1
- Node 1 is the root and has no parent

Node Number Properties

- Left child of node i is node 2i, unless 2i > n, where n is the number of nodes
- If 2i > n, node i has no left child

Node Number Properties

- Right child of node i is node 2i+1, unless 2i+1 > n, where n is the number of nodes
- If 2i+1 > n, node i has no right child

Complete Binary Tree with n Nodes

- Start with a full binary tree that has at least n nodes
- Number the nodes as described earlier
- The binary tree defined by the nodes numbered 1 through n
 is the unique n node complete binary tree
- In other words: Complete Binary Tree
 - If all its levels, except possibly the last, have the max no. of possible nodes, and
 - If all the nodes at the last level appear as far left as possible

Example

Complete binary tree with 10 nodes

The depth of a Complete Binary Tree with N nodes is given by $\lfloor \log_2 N \rfloor$ If N=1 000 000, then its depth is 21

Binary Tree Representation

- Array/Sequential Representation
- Linked Representation

Array Representation

 Number the nodes using the numbering scheme for a full binary tree. The node that is numbered i is stored in tree[i].

Right-Skewed Binary Tree

 An n node binary tree needs an array whose length is between n+1 and 2ⁿ.

Binary Trees- Linked Representation

Each node has 3 fields:

leftChild: contains the location of the left child data/info: contains the data at this node rightChild: contains the location of the right child We also need a pointer variable root or T

In actual practice, an entire record may be stored at the node

Binary Tree

```
struct node {
          int data;
          struct node *rchild;
          struct node *lchild;
     };
typedef struct node* ptrnode;
ptrnode root;
```

Linked Representation Example

Some Binary Tree Operations

- Determine the height.
- Determine the number of nodes.
- Make a clone.
- Determine if two binary trees are clones.
- Display the binary tree.
- Evaluate the arithmetic expression represented by a binary tree.
- Obtain the infix form of an expression.
- Obtain the prefix form of an expression.
- Obtain the postfix form of an expression.

Binary Tree Traversal

- Many binary tree operations are done by performing a traversal of the binary tree
- In a traversal, each element of the binary tree is visited exactly once
- During the visit of an element, all action (make a clone, display, evaluate the operator, etc.) with respect to this element is taken

Binary Tree Traversal Methods

- Preorder
- Inorder
- Postorder
- Level order

Traversing Binary Trees

- 3 standard ways of traversing:
- Preorder: Process root R

Traverse the left subtree of R in preorder Traverse the right subtree of R in preorder

• **Inorder**: Traverse the left subtree of R in inorder Process root R

Traverse the right subtree of R in inorder

Postorder: Traverse the left subtree of R in postorder
 Traverse the right subtree of R in postorder
 Process root R

Preorder Example (visit = print)

Preorder: Process root R

Traverse the left subtree of R in preorder
Traverse the right subtree of R in preorder

Preorder Example (visit = print)

abdgheicfj

Preorder: Process root R

Traverse the left subtree of R in preorder

Traverse the right subtree of R in preorder

Preorder of Expression Tree

$$/ * + a b - c d + e f$$

Gives prefix form of expression!

Preorder Traversal

```
Void preOrder(ptrnode root)
 if (root != NULL)
   visit(root);
   preOrder(root->lchild);
   preOrder(root->rchild);
```

Inorder Example (visit = print)

Inorder: Traverse the left subtree of R in inorder
Process root R
Traverse the right subtree of R in inorder

Inorder Example (visit = print)

gdhbeiafjc

Inorder: Traverse the left subtree of R in inorder

Process root R

Traverse the right subtree of R in inorder

Inorder of Expression Tree

$$a + b * c - d / e + f$$

Gives infix form of expression!

Inorder Traversal

```
void inOrder(ptrnode root)
 if (root != NULL)
   inOrder(root->lchild);
   visit(root);
   inOrder(root->rchild);
```

Inorder By Projection

Postorder Example (visit = print)

Postorder: Traverse the left subtree of R in postorder
Traverse the right subtree of R in postorder
Process root R

Postorder Example (visit = print)

ghdiebjfca

Postorder: Traverse the left subtree of R in postorder

Traverse the right subtree of R in postorder

Process root R

Postorder of Expression Tree

$$a b + c d - * e f + /$$

Gives postfix form of expression!

Postorder Traversal

```
void postOrder(ptrnode root)
 if (root != NULL)
   postOrder(root->lchild);
   postOrder(root->rchild);
   visit(root);
```

Level-order Example (Visit = print)

a b c d e f g h i j

Level Order

```
while (root != NULL)
  visit node pointed at by root and put its children on a
  FIFO queue;
  if FIFO queue is empty, set root = NULL;
  otherwise, delete a node from the FIFO queue and call it
 root;
```

Another example of Expression Tree Using BT

inorder traversal A/B * C * D + Einfix expression preorder traversal + * * / A B C D E prefix expression postorder traversal AB/C*D*E+postfix expression level order traversal + * E * D / C A B

Binary Tree Construction

- Suppose that the elements in a binary tree are distinct
- Can you construct the binary tree from which a given traversal sequence came?
- When a traversal sequence has more than one element, the binary tree is not uniquely defined
- Therefore, the tree from which the sequence was obtained cannot be reconstructed uniquely

Some Examples

inorder

= ab

postorder

= ab

level order

= ab

Binary Tree Construction

- Can you construct the binary tree, given two traversal sequences?
- Depends on which two sequences are given.

Preorder and Postorder

preorder = ab
postorder = ba
b

- Preorder and postorder do not uniquely define a binary tree
- Nor do preorder and level order (same example)
- Nor do postorder and level order (same example)

Inorder and Preorder

- inorder = gdhbeiafjc
- preorder = a b d g h e i c f j
- Scan the preorder left to right using the inorder to separate left and right subtrees
- a is the root of the tree; gdhbei are in the left subtree; fjc are in the right subtree

Inorder and Preorder

- preorder = bdgheicfj
- inorder = gdhbeiafjc
- b is the next root; gdh are in the left subtree; ei are in the right subtree

Inorder and Preorder

- preorder = dgheicfj
- inorder = g d h b e i a f j c
- d is the next root; g is in the left subtree; h is in the right subtree

Inorder and Postorder

- Scan postorder from right to left using inorder to separate left and right subtrees.
- inorder = g d h b e i a f j c
- postorder = g h d i e b j f c a
- Tree root is a; gdhbei are in left subtree; fjc are in right subtree.

Inorder and Level Order

- Scan level order from left to right using inorder to separate left and right subtrees.
- inorder = g d h b e i a f j c
- level order = a b c d e f g h i j
- Tree root is a; gdhbei are in left subtree; fjc are in right subtree.

References

Source: www.programming.im.ncnu.edu.tw/HorowitzC2e/