NAME:	Harshal Chawan
UID:	2021300019
SUBJECT	Design and Analysis of Algorithm
EXPERIMENT NO:	06
DATE OF PERFORMANCE	27/03/2023
DATE OF SUBMISSION	03/04/2023
AIM:	To find shortest path using Dijkstra's Algorithm.
PROBLEM STATEMENT 1:	shortest path using Dijkstra's Algorithm and prim's algorithm.
ALGORITHM and THEORY:	function Dijkstra($Graph$, $source$): 2 3 for each vertex v in $Graph$. $Vertices$: 4 dist[v] ← INFINITY 5 prev[v] ← UNDEFINED 6 add v to Q 7 dist[$source$] ← 0 8 9 while Q is not empty: 10 u ← vertex in Q with min dist[u] 11 remove u from Q 12 13 for each neighbor v of u still in Q : 14 alt ← dist[u] + Graph. Edges(u , v) 15 if alt < dist[v]: 16 dist[v] ← alt

```
prev[v] \leftarrow u
                      17
                      18
                            return dist[], prev[]
                      19
                     #include inits.h>
PROGRAM:
                      #include <stdbool.h>
                     #include <stdio.h>
                     int V;
                     int minDistance(int dist[], bool sptSet[])
                        int min = INT_MAX, min_index;
                        for (int v = 0; v < V; v++)
                           if (sptSet[v] == false && dist[v] <= min)
                             min = dist[v], min\_index = v;
                        return min_index;
                      void printSolution(int dist[])
                        printf("Vertex \t\t Distance from Source\n");
                        for (int i = 0; i < V; i++)
                           printf("%d \t\t\t\t %d\n", i, dist[i]);
                     void dijkstra(int graph[V][V], int src)
                        int dist[V];
                        bool sptSet[V];
                        for (int i = 0; i < V; i++)
                           dist[i] = INT_MAX, sptSet[i] = false;
                        dist[src] = 0;
```

```
for (int count = 0; count < V - 1; count++) {
     int u = minDistance(dist, sptSet);
     sptSet[u] = true;
     for (int v = 0; v < V; v++)
       if (!sptSet[v] && graph[u][v]
          && dist[u] != INT_MAX
          && dist[u] + graph[u][v] < dist[v])
          dist[v] = dist[u] + graph[u][v];
  printSolution(dist);
int main()
  printf("Enter the order:");
  scanf("%d",&V);
  int graph[V][V];
   for(int i=0;i< V;i++)
      printf("Elements of row number %d:",(i+1));
      for(int j=0;j<V;j++)
         scanf("%d",&graph[i][j]);
   dijkstra(graph, 0);
   return 0;
```

OUTPUT:

```
Enter the order:4
Enter the number of edges
Enter the start, end and weight of edge
1
10
Enter the start, end and weight of edge
2
Enter the start, end and weight of edge
2
Enter the start, end and weight of edge
Enter the start, end and weight of edge
3
Enter the start, end and weight of edge
2
3
Enter the source:0
Vertex
           Distance from Source
0
                                 0
3
```

CONCLUSION:	By performing the above experiment i have successfully found the shortest part of different vertices from a single source using Dijkstra's algorithm.