Quantitative Methods Human Sciences, 2020–21

Elias Nosrati

Lecture 2: 22 October 2020

► Recap on probability and counting: the birthday problem.

- ▶ Recap on probability and counting: the birthday problem.
- Introduction to conditional probability.

- ► Recap on probability and counting: the birthday problem.
- Introduction to conditional probability.
- Problem sheet 1 (tutorial).

ightharpoonup There are n people in a room.

- ▶ There are *n* people in a room.
- Assume each person's birthday is equally likely to be any of the 365 days of the year and assume people's birthdays are independent.

- ▶ There are *n* people in a room.
- Assume each person's birthday is equally likely to be any of the 365 days of the year and assume people's birthdays are independent.
- ▶ What is the probability that at least one pair of people in the group have the same birthday?

- ▶ There are *n* people in a room.
- Assume each person's birthday is equally likely to be any of the 365 days of the year and assume people's birthdays are independent.
- ▶ What is the probability that at least one pair of people in the group have the same birthday?
- ▶ Hint: Recall that $\mathbb{P}(A) = 1 \mathbb{P}(A^c)$.

▶ Total number of ways of assigning birthdays to *n* people (sampling from 365 days *with* replacement): 365ⁿ.

- ► Total number of ways of assigning birthdays to n people (sampling from 365 days with replacement): 365ⁿ.
- ► Complement: the number of ways to assign birthdays to *n* people such that no two people share the same birthday (sampling from 365 days *without* replacement):

$$365\times364\times\cdots\times(365-n+1)$$

for $n \leq 365$.

- ► Total number of ways of assigning birthdays to n people (sampling from 365 days with replacement): 365ⁿ.
- ► Complement: the number of ways to assign birthdays to *n* people such that no two people share the same birthday (sampling from 365 days *without* replacement):

$$365 \times 364 \times \cdots \times (365 - n + 1)$$

for $n \leq 365$.

▶ \mathbb{P} (no birthday match) = $\frac{365 \times 364 \times \cdots \times (365 - n + 1)}{365^n}$.

- ► Total number of ways of assigning birthdays to n people (sampling from 365 days with replacement): 365ⁿ.
- ▶ Complement: the number of ways to assign birthdays to *n* people such that no two people share the same birthday (sampling from 365 days *without* replacement):

$$365\times364\times\cdots\times\left(365-n+1\right)$$

for $n \leq 365$.

- ▶ $\mathbb{P}(\text{no birthday match}) = \frac{365 \times 364 \times \cdots \times (365 n + 1)}{365^n}$.
- ▶ $\mathbb{P}(\text{at least one birthday match}) = 1 \mathbb{P}(\text{no birthday match}).$

- ▶ Total number of ways of assigning birthdays to *n* people (sampling from 365 days *with* replacement): 365ⁿ.
- ▶ Complement: the number of ways to assign birthdays to *n* people such that no two people share the same birthday (sampling from 365 days *without* replacement):

$$365\times364\times\cdots\times\left(365-n+1\right)$$

for $n \leq 365$.

- ▶ \mathbb{P} (no birthday match) = $\frac{365 \times 364 \times \cdots \times (365 n + 1)}{365^n}$.
- ▶ $\mathbb{P}(\text{at least one birthday match}) = 1 \mathbb{P}(\text{no birthday match}).$
- ▶ In this room, $\mathbb{P}(\text{at least one birthday match}) \approx 4\%$.

The birthday problem in R

```
# Create a function
pmatch <- function(n) {
          1 - prod(365:(365 - n + 1)) / (365 ^ n)
}</pre>
```

The birthday problem in R

For loop

for (i in 1:70) {

probs[i] <- pmatch(i)</pre>

```
# Create a function
pmatch <- function(n) {
          1 - prod(365:(365 - n + 1)) / (365 ^ n)
}

# Placeholder
probs <- NULL</pre>
```

The birthday problem in R

```
# Placeholder
probs <- NULL

# For loop
for (i in 1:70) {
   probs[i] <- pmatch(i)
}</pre>
```

```
# Alternative method
probs <- sapply(1:70, pmatch)</pre>
```

The birthday problem in **R** (cont.)

```
save <- data.frame("n" = 1:70, "prob" = probs)</pre>
```

The birthday problem in R (cont.)

```
save <- data.frame("n" = 1:70, "prob" = probs)</pre>
```

```
head(save)

## n prob

## 1 1 0.000000000

## 2 2 0.002739726

## 3 3 0.008204166

## 4 4 0.016355912

## 5 5 0.027135574

## 6 6 0.040462484
```

The birthday problem in R (cont.)

```
ggplot(save, aes(n, prob)) +
  geom_point( # Modify points
    size = 2.
    colour = "darkred",
    alpha = 0.7) +
 labs( # Axis labels
   x = "Number of people in the room",
    y = "Probability of same birthday") +
  scale_x_continuous( # Modify X-axis
    breaks = seq(0, 70, 5)) +
  scale_y_continuous( # Modify Y-axis
    breaks = seq(0, 1, 0.1),
    label = scales::percent) +
  geom_hline( # When is P(match) > 0.5 or 0.9?
    vintercept = c(0.5, 0.9), linetype = "dashed") +
  theme_minimal() # Remove redundant lines
```


▶ Probability is a means of quantifying uncertainty about events.

- ▶ Probability is a means of quantifying uncertainty about events.
- Whenever new evidence is observed, we acquire information that may affect out uncertainties.

- Probability is a means of quantifying uncertainty about events.
- Whenever new evidence is observed, we acquire information that may affect out uncertainties.
- Conditional probability allows us to update our beliefs in light of new evidence.

- Probability is a means of quantifying uncertainty about events.
- Whenever new evidence is observed, we acquire information that may affect out uncertainties.
- Conditional probability allows us to update our beliefs in light of new evidence.
- "Conditioning is the soul of statistics" (Blitzstein and Hwang, 2019: 46).

Definition

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Definition

If A and B are events, with $\mathbb{P}(B) > 0$, then the conditional probability of A given B is

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

▶ A is the event whose uncertainty we want to update and B is the (new) evidence we observe.

Definition

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

- ▶ A is the event whose uncertainty we want to update and B is the (new) evidence we observe.
- ▶ $\mathbb{P}(A)$ is called the *prior* probability of A (*before* updating beliefs based on new evidence).

Definition

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

- ▶ A is the event whose uncertainty we want to update and B is the (new) evidence we observe.
- ▶ $\mathbb{P}(A)$ is called the *prior* probability of A (*before* updating beliefs based on new evidence).
- ▶ $\mathbb{P}(A \mid B)$ is called the *posterior* of A (after updating beliefs based on new evidence).

Definition

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

- ▶ A is the event whose uncertainty we want to update and B is the (new) evidence we observe.
- ▶ $\mathbb{P}(A)$ is called the *prior* probability of A (*before* updating beliefs based on new evidence).
- ▶ $\mathbb{P}(A \mid B)$ is called the *posterior* of A (after updating beliefs based on new evidence).
- ▶ Note that $\mathbb{P}(A \mid A) = 1$.

Visualising a conditional probability

Suppose we have a sample space S and two events A and B:

Visualising a conditional probability

Suppose we have a sample space S and two events A and B:

▶ Suppose that B occurred: get rid of all elements of B^c .

Visualising a conditional probability

Suppose we have a sample space S and two events A and B:

- ▶ Suppose that B occurred: get rid of all elements of B^c .
- ▶ The only probability measure remaining that we can assign to A is $\mathbb{P}(A \cap B)$.

Suppose we have a sample space S and two events A and B:

- ▶ Suppose that B occurred: get rid of all elements of B^c .
- ▶ The only probability measure remaining that we can assign to A is $\mathbb{P}(A \cap B)$.
- ▶ Renormalise: create a new probability space that assigns an updated probability measure to each possible event such that all the probabilities add up to 1.

Suppose we have a sample space S and two events A and B:

- ▶ Suppose that B occurred: get rid of all elements of B^c .
- ▶ The only probability measure remaining that we can assign to A is $\mathbb{P}(A \cap B)$.
- ▶ Renormalise: create a new probability space that assigns an updated probability measure to each possible event such that all the probabilities add up to 1.
- ▶ Divide by $\mathbb{P}(B)$, the total mass of the outcomes in B.

The updated probability measure assigned to the event A is the conditional probability

$$\mathbb{P}(A \mid B) = \mathbb{P}(A \cap B)/\mathbb{P}(B).$$

The updated probability measure assigned to the event A is the conditional probability

$$\mathbb{P}(A \mid B) = \mathbb{P}(A \cap B)/\mathbb{P}(B).$$

We have updated our probabilities in accordance with observed evidence.

The updated probability measure assigned to the event A is the conditional probability

$$\mathbb{P}(A \mid B) = \mathbb{P}(A \cap B)/\mathbb{P}(B).$$

- We have updated our probabilities in accordance with observed evidence.
- Outcomes that contradict the evidence are discarded.

The updated probability measure assigned to the event A is the conditional probability

$$\mathbb{P}(A \mid B) = \mathbb{P}(A \cap B)/\mathbb{P}(B).$$

- We have updated our probabilities in accordance with observed evidence.
- Outcomes that contradict the evidence are discarded.
- Relative measures of uncertainty are redistributed amongst remaining possible outcomes.

Frequentist interpretation of probability: relative frequency over a large number of repeated trials.

- Frequentist interpretation of probability: relative frequency over a large number of repeated trials.
- ▶ $\mathbb{P}(A \mid B)$ is the fraction of times A occurs, restricting attention to trials where B occurs.

Example

▶ We flip a coin several times, record the resulting strings of Heads and Tails, and repeat the experiment *n* times.

- Frequentist interpretation of probability: relative frequency over a large number of repeated trials.
- ▶ $\mathbb{P}(A \mid B)$ is the fraction of times A occurs, restricting attention to trials where B occurs.

Example

- ▶ We flip a coin several times, record the resulting strings of Heads and Tails, and repeat the experiment n times.
- ▶ B is the event that the first flip is Heads, A is the event that the second flip is Tails.

- Frequentist interpretation of probability: relative frequency over a large number of repeated trials.
- ▶ $\mathbb{P}(A \mid B)$ is the fraction of times A occurs, restricting attention to trials where B occurs.

Example

- ▶ We flip a coin several times, record the resulting strings of Heads and Tails, and repeat the experiment *n* times.
- ▶ B is the event that the first flip is Heads, A is the event that the second flip is Tails.
- ▶ We condition on B by isolating all the times where B occurs (n_B) and look at the fraction of times A also occurs (n_{AB}) .

- Frequentist interpretation of probability: relative frequency over a large number of repeated trials.
- ▶ $\mathbb{P}(A \mid B)$ is the fraction of times A occurs, restricting attention to trials where B occurs.

Example

- ▶ We flip a coin several times, record the resulting strings of Heads and Tails, and repeat the experiment *n* times.
- ▶ B is the event that the first flip is Heads, A is the event that the second flip is Tails.
- ▶ We condition on B by isolating all the times where B occurs (n_B) and look at the fraction of times A also occurs (n_{AB}) .
- ► Thus

$$\mathbb{P}(A \mid B) = n_{AB}/n_B = (n_{AB}/n)/(n_B/n) = \mathbb{P}(A \cap B)/\mathbb{P}(B).$$

Joint probability and conditional probability

Theorem

For any events A and B with positive probabilities,

$$\mathbb{P}(A \cap B) = \mathbb{P}(B)\mathbb{P}(A \mid B) = \mathbb{P}(A)\mathbb{P}(B \mid A).$$

Joint probability and conditional probability

Theorem

For any events A and B with positive probabilities,

$$\mathbb{P}(A \cap B) = \mathbb{P}(B)\mathbb{P}(A \mid B) = \mathbb{P}(A)\mathbb{P}(B \mid A).$$

This can be generalised to the intersection of n events:

$$\mathbb{P}(A_1 \cap \cdots \cap A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\mathbb{P}(A_3|A_1 \cap A_2) \cdots \mathbb{P}(A_n|A_1 \cap \cdots \cap A_n).$$

Bayes' Rule

Bayes' Rule

Theorem

For any events \boldsymbol{A} and \boldsymbol{B} with positive probabilities,

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\mathbb{P}(B)}.$$

Bayes' Rule

Theorem

For any events A and B with positive probabilities,

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\mathbb{P}(B)}.$$

This follows immediately from the previous Theorem (which in turn follows immediately from the definition of conditional probability).

Recall that, for any two events A and B, the Law of Total Probability states that

$$\mathbb{P}(A) = \mathbb{P}(A \cap B) + \mathbb{P}(A \cap B^{c}).$$

Viewed differently, the Law of Total Probability relates conditional probability to unconditional probability:

Viewed differently, the Law of Total Probability relates conditional probability to unconditional probability:

Theorem

Let A_1, \ldots, A_n be a partition of the sample space S (quiz: what is a partition again?),

Viewed differently, the Law of Total Probability relates conditional probability to unconditional probability:

Theorem

Let A_1, \ldots, A_n be a partition of the sample space S (quiz: what is a partition again?), with $\mathbb{P}(A_i) > 0$ for all i. Then, for any event B,

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(B \mid A_i) \mathbb{P}(A_i).$$

Viewed differently, the Law of Total Probability relates conditional probability to unconditional probability:

Theorem

Let A_1, \ldots, A_n be a partition of the sample space S (quiz: what is a partition again?), with $\mathbb{P}(A_i) > 0$ for all i. Then, for any event B,

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(B \mid A_i) \mathbb{P}(A_i).$$

► Consider a rare disease *D* that affects 1% of the population.

- ► Consider a rare disease *D* that affects 1% of the population.
- ▶ Suppose there is a test *T* that is 95% accurate such that

$$\mathbb{P}(T \mid D) = 0.95$$
 and $\mathbb{P}(T^c \mid D^c) = 0.95$.

- ► Consider a rare disease *D* that affects 1% of the population.
- ▶ Suppose there is a test *T* that is 95% accurate such that

$$\mathbb{P}(T \mid D) = 0.95$$
 and $\mathbb{P}(T^c \mid D^c) = 0.95$.

▶ A randomly selected person takes the test and tests positive. What is the probability that this person has the disease?

- ► Consider a rare disease *D* that affects 1% of the population.
- ▶ Suppose there is a test *T* that is 95% accurate such that

$$\mathbb{P}(T \mid D) = 0.95$$
 and $\mathbb{P}(T^c \mid D^c) = 0.95$.

► A randomly selected person takes the test and tests positive. What is the probability that this person has the disease?

$$\mathbb{P}(D\mid T) = \frac{\mathbb{P}(T\mid D)\mathbb{P}(D)}{\mathbb{P}(T)}$$

- ► Consider a rare disease *D* that affects 1% of the population.
- ▶ Suppose there is a test *T* that is 95% accurate such that

$$\mathbb{P}(T \mid D) = 0.95$$
 and $\mathbb{P}(T^c \mid D^c) = 0.95$.

► A randomly selected person takes the test and tests positive. What is the probability that this person has the disease?

$$\mathbb{P}(D \mid T) = \frac{\mathbb{P}(T \mid D)\mathbb{P}(D)}{\mathbb{P}(T)}$$
$$= \frac{\mathbb{P}(T \mid D)\mathbb{P}(D)}{\mathbb{P}(T \mid D)\mathbb{P}(D) + \mathbb{P}(T \mid D^c)\mathbb{P}(D^c)}$$

- ► Consider a rare disease *D* that affects 1% of the population.
- ▶ Suppose there is a test *T* that is 95% accurate such that

$$\mathbb{P}(T \mid D) = 0.95$$
 and $\mathbb{P}(T^c \mid D^c) = 0.95$.

► A randomly selected person takes the test and tests positive. What is the probability that this person has the disease?

$$\mathbb{P}(D \mid T) = \frac{\mathbb{P}(T \mid D)\mathbb{P}(D)}{\mathbb{P}(T)}$$

$$= \frac{\mathbb{P}(T \mid D)\mathbb{P}(D)}{\mathbb{P}(T \mid D)\mathbb{P}(D) + \mathbb{P}(T \mid D^c)\mathbb{P}(D^c)}$$

$$= \frac{0.95 \times 0.01}{(0.95 \times 0.01) + (0.05 \times 0.99)}$$

- ► Consider a rare disease *D* that affects 1% of the population.
- ▶ Suppose there is a test *T* that is 95% accurate such that

$$\mathbb{P}(T \mid D) = 0.95$$
 and $\mathbb{P}(T^c \mid D^c) = 0.95$.

► A randomly selected person takes the test and tests positive. What is the probability that this person has the disease?

$$\mathbb{P}(D \mid T) = \frac{\mathbb{P}(T \mid D)\mathbb{P}(D)}{\mathbb{P}(T)}$$

$$= \frac{\mathbb{P}(T \mid D)\mathbb{P}(D)}{\mathbb{P}(T \mid D)\mathbb{P}(D) + \mathbb{P}(T \mid D^c)\mathbb{P}(D^c)}$$

$$= \frac{0.95 \times 0.01}{(0.95 \times 0.01) + (0.05 \times 0.99)}$$

$$\approx 16\%.$$

 $\mathbb{P}(\cdot \mid E): S \to [0,1].$

$$\mathbb{P}(\cdot \mid E) : S \to [0,1].$$

By conditioning on some event E, we have

$$\mathbb{P}(\cdot \mid E) : S \to [0,1].$$

By conditioning on some event E, we have

▶ $\mathbb{P}(A \mid E) \ge 0$ for any event A.

$$\mathbb{P}(\cdot \mid E) : S \to [0,1].$$

By conditioning on some event E, we have

- ▶ $\mathbb{P}(A \mid E) \ge 0$ for any event A.
- $\mathbb{P}(\varnothing \mid E) = 0, \ \mathbb{P}(S \mid E) = 1.$

Conditional probabilities are probabilities

$$\mathbb{P}(\cdot \mid E) : S \to [0,1].$$

By conditioning on some event E, we have

- ▶ $\mathbb{P}(A \mid E) \ge 0$ for any event A.
- $\mathbb{P}(\varnothing \mid E) = 0, \ \mathbb{P}(S \mid E) = 1.$
- ▶ If $A_1, ..., A_n$ are disjoint, then $\mathbb{P}(\cup_i A_i \mid E) = \sum_i \mathbb{P}(A_i \mid E)$.

Conditional probabilities are probabilities

$$\mathbb{P}(\cdot \mid E) : S \to [0,1].$$

By conditioning on some event E, we have

- ▶ $\mathbb{P}(A \mid E) \ge 0$ for any event A.
- $\mathbb{P}(\varnothing \mid E) = 0, \ \mathbb{P}(S \mid E) = 1.$
- ▶ If $A_1, ..., A_n$ are disjoint, then $\mathbb{P}(\cup_i A_i \mid E) = \sum_i \mathbb{P}(A_i \mid E)$.

Conclusion:

Conditional probabilities are probabilities.

Conditional probabilities are probabilities

$$\mathbb{P}(\cdot \mid E) : S \to [0,1].$$

By conditioning on some event E, we have

- ▶ $\mathbb{P}(A \mid E) \ge 0$ for any event A.
- $\mathbb{P}(\varnothing \mid E) = 0, \ \mathbb{P}(S \mid E) = 1.$
- ▶ If $A_1, ..., A_n$ are disjoint, then $\mathbb{P}(\cup_i A_i \mid E) = \sum_i \mathbb{P}(A_i \mid E)$.

Conclusion:

- Conditional probabilities are probabilities.
- All probabilities are conditional probabilities.

Definition

Events A and B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

Definition

Events A and B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

▶ If $\mathbb{P}(A) > 0$ and $\mathbb{P}(B) > 0$, this is equivalent to

$$\mathbb{P}(A \mid B) = \mathbb{P}(A)$$
 and $\mathbb{P}(B \mid A) = \mathbb{P}(B)$.

Definition

Events A and B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

▶ If $\mathbb{P}(A) > 0$ and $\mathbb{P}(B) > 0$, this is equivalent to

$$\mathbb{P}(A \mid B) = \mathbb{P}(A)$$
 and $\mathbb{P}(B \mid A) = \mathbb{P}(B)$.

Independence is a symmetric relation: if A is independent of B, B is independent of A.

Definition

Events A and B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

▶ If $\mathbb{P}(A) > 0$ and $\mathbb{P}(B) > 0$, this is equivalent to

$$\mathbb{P}(A \mid B) = \mathbb{P}(A)$$
 and $\mathbb{P}(B \mid A) = \mathbb{P}(B)$.

- ► Independence is a symmetric relation: if A is independent of B, B is independent of A.
- ▶ Warning: independence \neq disjointness. In fact, disjoint events can only be independent if $\mathbb{P}(A) = 0$ or $\mathbb{P}(B) = 0$. (Why?)

Conditional independence

Definition

Events A and B are said to be *conditionally independent* given a third event E if

$$\mathbb{P}(A \cap B \mid E) = \mathbb{P}(A \mid E)\mathbb{P}(B \mid E).$$

Conditional independence

Definition

Events A and B are said to be *conditionally independent* given a third event E if

$$\mathbb{P}(A \cap B \mid E) = \mathbb{P}(A \mid E)\mathbb{P}(B \mid E).$$

Health warning: independence does *not* imply conditional independence and vice versa.

Conditional independence and complements

Suppose there are two types of teachers: those who give grades that reflect student effort (E), and those who randomly assign grades, regardless of student effort (E^c) .

Conditional independence and complements

- Suppose there are two types of teachers: those who give grades that reflect student effort (E), and those who randomly assign grades, regardless of student effort (E^c) .
- ▶ Let W be the event that you work hard and let G be the event that you receive a good grade.

Conditional independence and complements

- Suppose there are two types of teachers: those who give grades that reflect student effort (E), and those who randomly assign grades, regardless of student effort (E^c) .
- ▶ Let W be the event that you work hard and let G be the event that you receive a good grade.
- ▶ Then W and G are conditionally independent given E^c , but they are not conditionally independent given E.

▶ You have one fair coin and one biased coin which lands Heads with probability 3/4.

Conditional independence ≠ independence

- ▶ You have one fair coin and one biased coin which lands Heads with probability 3/4.
- ➤ You pick one of the coins at random, without knowing which one you've chosen, and flip it several times.

Conditional independence ≠ independence

- ➤ You have one fair coin and one biased coin which lands Heads with probability 3/4.
- ➤ You pick one of the coins at random, without knowing which one you've chosen, and flip it several times.
- Conditional on choosing either the fair or the biased coin, the coin flips are independent.

- ➤ You have one fair coin and one biased coin which lands Heads with probability 3/4.
- ➤ You pick one of the coins at random, without knowing which one you've chosen, and flip it several times.
- Conditional on choosing either the fair or the biased coin, the coin flips are independent.
- However, the coin flips are not unconditionally independent: without knowing which coin we've chosen, each flip gives us new data from which we can predict outcomes of future flips.

- ➤ You have one fair coin and one biased coin which lands Heads with probability 3/4.
- ➤ You pick one of the coins at random, without knowing which one you've chosen, and flip it several times.
- Conditional on choosing either the fair or the biased coin, the coin flips are independent.
- However, the coin flips are not unconditionally independent: without knowing which coin we've chosen, each flip gives us new data from which we can predict outcomes of future flips.
- ► (Think about the definition of independence.)

Suppose my friends Alice and Ben are the only two people who call me on my mobile phone.

- Suppose my friends Alice and Ben are the only two people who call me on my mobile phone.
- ► Each day, they decide independently whether to call me that day.

- Suppose my friends Alice and Ben are the only two people who call me on my mobile phone.
- Each day, they decide independently whether to call me that day.
- ▶ Let A be the event that Alice calls me tomorrow and let B be the event that Ben calls me tomorrow.

- Suppose my friends Alice and Ben are the only two people who call me on my mobile phone.
- Each day, they decide independently whether to call me that day.
- ▶ Let *A* be the event that Alice calls me tomorrow and let *B* be the event that Ben calls me tomorrow.
- ▶ Then A and B are unconditionally independent, with $\mathbb{P}(A) > 0$ and $\mathbb{P}(B) > 0$.

- Suppose my friends Alice and Ben are the only two people who call me on my mobile phone.
- Each day, they decide independently whether to call me that day.
- ▶ Let A be the event that Alice calls me tomorrow and let B be the event that Ben calls me tomorrow.
- ▶ Then A and B are unconditionally independent, with $\mathbb{P}(A) > 0$ and $\mathbb{P}(B) > 0$.
- ► However, given that I receive exactly one call tomorrow (C), A and B are no longer independent:

$$\mathbb{P}(A \mid C) > 0$$
, but $\mathbb{P}(A \mid C \cap B) = 0$.