

Serial No. 10/815,033
Page 2 of 15

IN THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

- 1 1. (original) A method comprising:
 - 2 modulating the output of an optical source to optically encode electronic data
 - 3 using phase shift keying (PSK) to generate an optical signal; and
 - 4 alternating the polarization of the phase shift keyed optical signal using a
 - 5 modulator such that successive optical bits have substantially orthogonal polarizations to
 - 6 generate an alternate polarization PSK (APol-PSK) signal.

- 1 2. (original) The method of claim 1 wherein the modulator is a phase
- 2 modulator driven by a sinusoidal RF voltage.

- 1 3. (original) The method of claim 1 wherein the modulator is a phase
- 2 modulator driven by a train of square pulses.

- 1 4. (original) The method of claim 1 wherein the optical signal is launched
- 2 into the modulator having a polarization oriented at a predetermined angle such that the
- 3 polarization of successive optical bits of the output signal are substantially orthogonal.

- 1 5. (original) The method of claim 1 wherein the modulator is a Mach-
- 2 Zehnder modulator including a polarization rotation device in at least one arm.

- 1 6. (original) The method of claim 5 wherein the polarization rotation device
- 2 is a half-wave plate.

Serial No. 10/815,033

Page 3 of 15

1 7. (original) The method of claim 5 wherein at least one arm of the
2 modulator is driven by a sinusoidal RF voltage.

1 8. (original) The method of claim 5 wherein at least one arm of the
2 modulator is driven by a train of square pulses running at half the bit rate.

1 9. (original) A method of APol-PSK transmission comprising:
2 using an electronic data signal to drive a Mach-Zehnder modulator having a
3 polarization rotation device in at least one arm to provide simultaneous polarization
4 alternation and optical data encoding by phase shift keying to generate an APol-PSK
5 signal.

1 10. (original) A method comprising:
2 precoding an electronic data signal;
3 modulating the output of an optical source using the precoded electronic data
4 signal and differential phase shift keying between two optical bits separated by an even
5 number of bit periods to generate an encoded optical signal; and
6 alternating the polarization of the encoded optical signal using a modulator such
7 that successive optical bits have substantially orthogonal polarizations to generate an
8 APol-DPSK signal.

1 11. (original) The method of claim 10 further comprising demodulating the
2 APol-DPSK signal using an even bit delay line interferometer.

1 12. (original) A method of APol-DPSK transmission comprising:
2 precoding an electronic data signal;
3 using the precoded electronic data signal to drive a Mach-Zehnder modulator
4 including a polarization rotation device in at least one arm to provide simultaneous
5 polarization alternation and optical data encoding by phase shift keying between two
6 optical bits separated by an even number of bit periods to generate an APol-DPSK signal.

Serial No. 10/815,033
Page 4 of 15

1 13. (original) The method of claim 12 wherein the polarization rotation device
2 is a half-wave plate.

1 14. (original) The method of claim 12 further comprising demodulating the
2 APol-DPSK signal using an even bit delay line interferometer.

1 15. (original) An optical transmitter for APol-PSK transmission comprising:
2 an optical source,
3 an optical phase-shift-keying data modulator optically coupled to the optical
4 source; and
5 a polarization alternator optically coupled to the data modulator to provide
6 polarization alternation of the output of the data modulator.

1 16. (original) The apparatus of claim 15 wherein the polarization alternator is
2 a phase modulator driven by a sinusoidal RF voltage.

1 17. (original) The apparatus of claim 15 wherein the polarization alternator is
2 a phase modulator driven by a train of square pulses running at half the bit rate.

1 18. (original) The apparatus of claim 15 wherein the polarization alternator is
2 a modified Mach-Zehnder modulator having a polarization rotation device in one arm.

1 19. (original) The apparatus of claim 18 wherein at least one arm of the
2 modulator is driven by a sinusoidal RF voltage.

1 20. (original) The apparatus of claim 18 wherein at least one arm of the
2 modulator is driven by a train of square pulses running at half the bit rate.

1 21. (original) The apparatus of claim 15 wherein the polarization alternator is
2 a Mach-Zehnder modulator having two complementary output ports, and wherein the

Serial No. 10/815,033

Page 5 of 15

3 apparatus further comprises a polarization beam combiner for combining outputs from
4 the two output ports of the Mach-Zehnder modulator.

1 22. (original) The apparatus of claim 21 wherein at least one arm of the
2 modulator is driven by a sinusoidal RF voltage.

1 23. (original) The apparatus of claim 21 wherein at least one arm of the
2 modulator is driven by a train of square pulses running at half the bit rate.

1 24. (currently amended) An optical transmitter for APol-DPSK transmission
2 comprising:

3 an optical source,
4 a precoder device for precoding an electronic data signal;
5 an optical phase-shift-keying data modulator optically coupled to the laser source
6 and driven by a precoded electronic data signal from the precoder device to produce an
7 optical DPSK signal wherein electronic data to be transmitted is optically encoded by the
8 data modulator as differential phase shift keying between two optical bits separated by an
9 even number of bit periods; and
10 a polarization alternator optically coupled to the data modulator to provide
11 polarization alternation of the output of the data modulator.

1 25. (original) An optical transmitter for APol-PSK transmission comprising:
2 an optical source;

3 a Mach-Zehnder (MZ) modulator device optically coupled to the laser source
4 having a polarization rotation device in one arm; and
5 drive circuitry coupled to the MZ modulator device to drive a MZ modulator to
6 simultaneously provide polarization alternation and optical data encoding of an optical
7 signal using phase shift keying.

1 26. (original) An optical transmitter for APol-DPSK transmission comprising:
2 an optical source;

Serial No. 10/815,033

Page 6 of 15

3 a precoder;
4 a Mach-Zehnder (MZ) modulator device optically coupled to the laser source
5 having a half-wave plate in one arm; and
6 drive circuitry coupled to the MZ modulator device to drive a MZ modulator
7 using a precoded data signal from the precoder to simultaneously provide polarization
8 alternation and optical data encoding of an optical signal using phase shift keying.

1 27. (original) An optical transmission system for transmitting APol-PSK
2 signals comprising:
3 an optical source,
4 an optical phase-shift-keying data modulator optically coupled to the optical
5 source; and
6 a polarization alternator optically coupled to the data modulator to provide
7 polarization alternation of the output of the data modulator.

1 28. (currently amended) An optical transmission system for APol-PSK
2 transmission comprising:
3 an optical source,
4 a modulator means having a polarization rotation device to provide simultaneous
5 polarization alternation and optical data encoding by phase shift keying to generate an
6 APol-PSK signal.

1 29. (currently amended) An optical transmission system for APol-DPSK
2 transmission comprising:
3 an optical source,
4 a precoder device for precoding an electronic data signal;
5 an optical phase-shift-keying data modulator optically coupled to the laser source
6 and driven by a precoded electronic data signal from the precoder device to produce an
7 optical DPSK signal wherein electronic data to be transmitted is optically encoded by the
8 data modulator as differential phase shift keying between two optical bits separated by an
9 even number of bit periods; and

Serial No. 10/815,033

Page 7 of 15

10 a polarization alternator optically coupled to the data modulator to provide
11 polarization alternation of the output of the data modulator.

1 30. (original) An apparatus for generating an APol-PSK optical signal
2 comprising:

3 means for encoding electronic data using phase shift keying (PSK) to generate an
4 optical signal; and

5 modulator means for alternating the polarization of the optical signal to generate
6 an alternate polarization PSK (APol-PSK) signal.