Curso de Tecnologia em Sistemas de Computação Gabarito da 1ª Avaliação a Distância de Física para Computação 2007 - II

Questão	Valor	Nota
1ª Questão	1,0	
2ª Questão	1,0	
3ª Questão	1,0	
4ª Questão	1,0	
5ª Questão	1,5	
6ª Questão	1,5	
7ª Questão	1,5	
8ª Questão	1,5	
TOTAL	10,0	

1a Questão

a) As figuras mostram uma ginasta olímpica que se sustenta em duas argolas presas por meio de duas cordas ideais a um suporte horizontal fixo; as cordas têm 2,0m de comprimento cada uma. Na posição ilustrada na figura 1 os fios são paralelos e verticais. Nesse caso, as tensões em ambos os fios valem T. Na posição ilustrada na figura 2, os fios estão inclinados, formando o mesmo ângulo š com a vertical. Nesse caso, as tensões em ambos os fios valem T' e a distância vertical de cada argola até o suporte horizontal é h=1,80m, conforme indica a figura 2. Calcule T e T', admitindo desprezível a massa do fio.

SOLUÇÃO:

Através da Segunda Lei de Newton temos que as forças resultantes de ambos os sistemas são nulas, assim:

Figura 1: Como as tensões em ambos os fios são iguais:

$$T + T - P = 0$$

$$T = \frac{P}{2} = \frac{mg}{2}$$

Figura 2: Nesse caso, trabalhamos com a componente vertical da tensão:

$$T_{v} + T_{v} - P = 0$$

Onde $T_y = \cos(\theta)T'$ e analisando o triangulo retângulo gerado na figura 2 temos:

 $\cos\theta = \frac{1.8}{2.0} = 0.9$. Assim nossa relação anterior toma a seguinte forma:

$$\cos(\theta)T' + \cos(\theta)T' - P = 0$$

$$T' = \frac{P}{2\cos(\theta)} = \frac{P}{2X0.9} = \frac{P}{1.8} = \frac{mg}{1.8}$$

b) Uma esfera de massa 4 X 10⁻² kg está suspensa por uma corda. Uma brisa horizontal constante empurra a esfera de maneira que ela faça um ângulo de 37º com a vertical de repouso da mesma. Determine a intensidade da força aplicada e a tensão na corda.

SOLUÇÃO:

a) Vamos supor que a brisa esteja soprando horizontalmente da direita para a esquerda.

Como a esfera não está acelerada a força resultante deve ser nula e através da segunda lei de Newton obtemos as seguintes relações:

- (i) Forças horizontais: $T \frac{F}{sen \theta} = 0$
- (ii) Forcas verticais: $T \cos \theta mg = 0$

Resolvendo esse sistema obtemos:

$$F = mg \tan \theta = (4X10^{-2}).(9,8).\tan(37^{\circ}) = 2,95X10^{-1}N$$

b) E a tensão:
$$T = \frac{mg}{\cos \theta} = \frac{(4X10^{-2}).(9,8)}{\cos 37^{\circ}} = \frac{(4X10^{-2}).(9,8)}{0.7986} = 4,908X10^{-1}N$$

2ª Questão

Determine a quantidade de movimento angular em relação à origem quando um carro de 1000kg que se move em trajetória circular com raio de 20m e uma velocidade de 15m/s. Neste caso, considere que o círculo está no plano xy, com centro na origem e que é observado de um ponto no trecho positivo do eixo z. Assim, o carro se desloca no sentido anti-horário.

SOLUÇÃO:

Os vetores r e p são perpendiculares e L = r X p será paralelo ao eixo z:

$$L = m*rXv$$
= $m*|r|*|v|sen(90°)\vec{k}$
= $1000kg*20m*15m/s\vec{k}$
= $3.0*10^5 kgm^2/s\vec{k}$

3a Questão

Certa mola de massa desprezível está suspensa do teto com um pequeno objeto preso à sua extremidade inferior. O objeto é mantido inicialmente em repouso, numa posição y_i tal que a mola não fique esticada. O objeto é então liberado e oscila para cima e para baixo, sendo sua posição mais baixa 10cm de y_i . (a) (0,25) Qual a freqüência da oscilação? (b) (0,25) Qual a velocidade do objeto quando está 8,0cm abaixo da posição inicial? (c) (0,25) Um objeto de massa 300g é ligado ao primeiro objeto; logo após, o sistema oscila com metade da freqüência original. Qual a massa do primeiro objeto? (d) (0,25) Com relação a y_i , onde é o novo ponto de equilíbrio (repouso) com ambos os objetos presos à mola?

SOLUÇÃO:

(a) Os dados do problema sugerem o uso do princípio da conservação da energia. Colocamos o referencial para a energia potencial gravitacional na posição mais baixa

$$mgy = \frac{ky^2}{2}$$

$$2g = w^2y$$

$$w = \sqrt{\frac{2g}{y}} = 14rad/s$$

(b) Ainda trabalhando com a conservação da energia, considerando o ponto de observação como a posição a 8,0cm abaixo de y_i:

$$mgy' = \frac{mv^2}{2} + \frac{ky'^2}{2}$$

$$2gy'-w^2y'^2=v^2$$

 $y=0.56m/s$

(c) Para determinar a massa do primeiro objeto ligado à mola, usamos a relação k=mw², tomando w'=w/2:

$$k = (m+m')w'^2$$

$$mw^2 = (m+m')\frac{w^2}{4}$$

$$m = 0.10kg$$

(d) Quando as oscilações acontecem com ambos os objetos presos à mola, a posição de equilíbrio do sistema passa a ser

$$(m+m')g = (m+m')w'^2y''$$

$$y'' = \frac{4g}{w^2} = 0,20m$$

4a Questão

Dois alto-falantes separados por uma determinada distância emitem ondas sonoras de mesma freqüência e amplitude e estão em fase. Seja r_1 =10m à distância a partir de um ponto de observação para o alto-falante 1 e r_2 =10,34m à distância do mesmo ponto para o alto-falante 2. Determine para quais freqüências do som emitido a amplitude do som percebida pelo observador será nula, sabendo que a velocidade do som é 340m/s.

SOLUÇÃO:

Como as ondas são de mesma amplitude (p_0) e freqüência (pela superposição de ondas), a amplitude da onda resultante é:

$$A = 2p_0 \cos(\frac{1}{2}\delta)$$

onde
$$\delta = 2\pi \frac{\Delta x}{\lambda}$$
.

Logo,

$$0 = 2p_0 \cos(\frac{1}{2}\delta) \Leftrightarrow \cos(\frac{1}{2}\delta) = 0$$

Mas sabemos que

$$\cos(\frac{1}{2}\delta) = 0 \Leftrightarrow \frac{1}{2}\delta = (2n+1)\frac{\pi}{2}$$

$$\delta = (2n+1)\pi$$

$$2\pi \frac{\Delta x}{\lambda} = (2n+1)\pi$$

$$\lambda = \frac{2\Delta x}{2n+1}$$

$$\lambda = \frac{2(10,34-10,00)m}{2n+1} = \frac{2*0,34m}{2n+1}$$

$$\lambda = \frac{0,68m}{2n+1}$$

E a freqüência é dada por:

$$f = \frac{v}{\lambda}$$

$$f = \frac{340m/s}{\frac{0.68m}{2n+1}} = (2n+1)*500$$

$$f = 500Hz, \quad 1500Hz, \quad 2500Hz, \quad 3500Hz,...$$

5a Questão

(a) Um gás à temperatura de 35°C e 2 atm de pressão ocupa 1L de volume. Qual a nova pressão, quando o gás é aquecido a 98,6°F e comprimido para 0,5L de volume? Quantos moles há no gás em questão?

SOLUÇÃO:

Temos a relação, $\frac{P_i V_i}{T_i} = \frac{P_f V_f}{T_f}$

Assim observamos que:

$$\frac{(2atm)(1L)}{(273+35)K} = \frac{P_f(0,5L)}{(273+\frac{98,6-32}{9})K}$$

O que nos dá:

$$P_f = 4,03atm$$

O número de moles pode ser obtido através da relação:

$$V = \frac{nRT}{P}$$

Para isso basta adotar R= 0,0821L atm / [mol.K], e assim obtemos:

$$0,5 = \frac{n(0,0821Latm/[mol.K])309K}{4,03atm}$$
$$n = 0,0795mol$$

(b) A massa molar do oxigênio gasoso é de cerca de 32g/mol e do hidrogênio gasoso é de cerca de 2g/mol. Determine a velocidade quadrática média de uma molécula de oxigênio quando a temperatura é 300K.

SOLUÇÃO:

Basta considerar R=8,31J/[mol.K] e M(O₂)=32X10⁻³ kg/mol
$$v_{m\'edia} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3(8,31J/[mol.K])(300K)}{32X10^{-3}kg/mol}} = 483m/s$$

6a Questão

Calcule a relação entre a força elétrica e a força gravitacional exercidas por um próton sobre um elétron em um átomo de hidrogênio no sentido clássico.

SOLUÇÃO:

Para obtenção da força elétrica utiliza-se a Lei de Coulomb:

$$\vec{F}_e = k \frac{q_1 q_2}{r^2} = k \frac{eXe}{r^2} = k \frac{e^2}{r^2}$$

A força gravitacional de Newton nos dá:

$$\overrightarrow{F}_g = G \frac{m_p m_e}{r^2}$$

Assim,

$$\frac{\overrightarrow{F}_{e}}{\overrightarrow{F}_{g}} = \frac{k \frac{e^{2}}{r^{2}}}{G \frac{m_{p} m_{e}}{r^{2}}} = \frac{ke^{2}}{G m_{p} m_{e}}$$

$$= \frac{\left(8,99 \times 10^{9} N m^{2} / C^{2}\right) \left(1,6 \times 10^{-19} C\right)^{2}}{(6,67 \times 10^{-11} N m^{2} / kg^{2})(1,67 \times 10^{-27} kg)(9,11 \times 10^{-31} kg)}$$

$$= 2,27 \times 10^{39}$$

7a Questão

A carga q₁=+25nC está na origem, a carga q₂ = -15nC está sobre o eixo x em x=2m e a carga q₀=+20nC está posicionada em um ponto com as coordenadas x=2m e y=2m, conforme mostrado na Figura. Determine o módulo, a direção e o sentido da força resultante \sum_{F} sobre q₀.

SOLUÇÃO:

A força resultante é obtida pela soma vetorial das forças individuais exercidas por cada carga sobre q_0 . Calculam-se cada força a partir da lei de Coulomb, representando-a em função de suas componentes retangulares.

A força resultante \sum_{F}^{\rightarrow} sobre q₀ é igual à soma das forças individuais:

$$\sum \vec{F} = \vec{F_{1,0}} + \vec{F_{2,0}}$$

$$\sum \vec{F_x} = \vec{F_{1,0x}} + \vec{F_{2,0x}}$$

$$\sum \vec{F_y} = \vec{F_{1,0y}} + \vec{F_{2,0y}}$$

A força $\overrightarrow{F_{1,0}}$ é direcionada ao longo da linha que une q_1 a q_0 . Utilize $r_{1,0}=2\sqrt{2}$ para a distância entre q_1 e q_0 para calcular seu módulo:

$$\vec{F}_{1,0} = \frac{k \mid q_1 q_0 \mid}{r_{1,0}^2}$$

$$= \frac{(8,99X10^9 N.m^2 / C^2)(25X10^{-9}C)(20X10^{-9}C)}{(2\sqrt{2}m)^2} = 5,62X10^{-7}N$$

Uma vez que $\overrightarrow{F_{1,0}}$ faz um ângulo de 45° com os eixos x e y, suas componentes nessas direções são iguais:

$$\vec{F}_{1,0x} = \vec{F}_{1,0y} = \vec{F}_{1,0} \cos(45^{\circ}) = \frac{5,62X10^{-7}N}{\sqrt{2}} = 3,97X10^{-7}N$$

A força $\overrightarrow{F_{2,0}}$ exercida por q2 sobre q0 é de atração e no sentido negativo do eixo y:

$$\vec{F}_{2,0} = \frac{kq_2q_0}{r_{2,0}^2} \hat{r}_{2,0}$$

$$= \frac{(8,99X10^9 N.m^2/C^2)(-15X10^{-9}C)(20X10^{-9}C)}{(2m)^2} \hat{j} = (6,74X10^{-7}N) \hat{j}$$

Calculando as componentes da força resultante:

$$\sum \vec{F_x} = \vec{F_{1,0x}} + \vec{F_{2,0x}} = (3.97X10^{-7}N) + 0 = 3.97X10^{-7}N$$

$$\sum \vec{F_y} = \vec{F_{1,0y}} + \vec{F_{2,0y}} = (3.97X10^{-7}N) + (-6.74X10^{-7}N) = -2.77X10^{-7}N$$

O módulo da força resultante é obtido a partir de suas componentes:

$$F = \sqrt{F_x^2 + F_y^2} = \sqrt{(3.97X10^{-7}N)^2 + (-2.77X10^{-7}N)^2} = 4.84X10^{-7}N$$

A força resultante é orientada para a direita e para baixo, e faz um ângulo com o eixo x, que pode ser calculado como:

$$tg\theta = \frac{F_y}{F_x} = \frac{-2,77}{3,97} = -0,698$$

$$\theta = -34.9^{\circ}$$

8a Questão

Você acaba de terminar a impressão de um longo texto para seu professor de Português e fica curioso sobre como a impressora a jato de tinta sabe onde exatamente a tinta deve ser jateada. Você pesquisa na Internet e encontra um esquema mostrando que as gotas de tinta são carregadas eletricamente e passam entre duas placas metálicas carregadas com cargas opostas, gerando um campo elétrico uniforme entre elas. Tendo estudado o comportamento dos campos elétricos no curso de Física, você é capaz de determinar a intensidade do campo utilizado nesse tipo de impressora. Você continua com sua pesquisa e encontra a informação de que as gotas de tinta passam a uma velocidade inicial de 40m/s pelo diâmetro de um orifício de 40um(micrometros), e que cada gota carregada com 2nC é desviada para cima de uma distância de 3cm enquanto percorre a região de 0,1dm de comprimento entre as placas. Determine a intensidade do campo elétrico. Admita que a massa específica da tinta seja a mesma da água, isto é, 1000kg/m³. (Despreze qualquer efeito da gravidade no movimento das gotas.)

SOLUÇÃO: Observamos que a força elétrica \vec{F} gerada pelo campo elétrico \vec{E} que é exercida sobre a gota quando passa entre as duas placas é constante, onde $\vec{F}=q\vec{E}$.

Queremos encontrar \vec{E} . Basta conhecermos a massa e a aceleração para determinar \vec{F} , pois $\vec{F} = m.\vec{a}$. A massa pode ser obtida utilizando a massa específica da tinta e o raio da gota, já a aceleração pode ser obtida através de algumas fórmulas oriundas da cinemática. Assim temos:

1 – O campo elétrico é dado por: $\vec{E} = \frac{\vec{F}}{q}$

2 – A força, orientada no sentido do positivo do eixo y (para cima), é igual a massa vezes a aceleração: $\vec{F}=\overset{\rightarrow}{m.a}$.

3 – O deslocamento vertical é obtido utilizando o fato de a aceleração ser constante e v_{0y} = 0: $\Delta y = v_{0y}t + \frac{1}{2}at^2 = \frac{1}{2}at^2$.

4 – O tempo é o gasto pela gota para percorrer uma distância Δx a uma velocidade v_0 = 40m/s:

$$\Delta x = v_{0x}t = v_0t$$

Assim,
$$t = \frac{\Delta x}{v_0}$$

5 - De 3 e 4 temos:

$$a = \frac{2\Delta y}{t^2} = \frac{2\Delta y}{\left(\frac{\Delta x}{v_0}\right)^2} = 2v_0^2 \frac{\Delta y}{\Delta x^2}$$

6 – A massa da gota é a massa da tinta multiplicada pelo volume:

$$m = \rho v = \rho \frac{4}{3} \pi r^3$$

7 – Aplicando os valores encontrados nas etapas 2 e 3 na fórmula do campo elétrico dada em 1, temos:

$$\vec{E} = \frac{\vec{F}}{q} = \frac{\left[\left(\rho \frac{4}{3} \pi r^3 \right) X \left(\frac{2v_0^2 \Delta y}{\Delta x^2} \right) \right]}{q} = \frac{8\pi}{3} X \frac{\rho r^3 v_0^2 \Delta y}{q \Delta x^2} = \frac{\pi}{3} X \frac{\rho r^3 v_0^2 \Delta y}{q \Delta x^2} = \frac{\pi}{3} X \frac{\rho r^3 v_0^2 \Delta y}{q \Delta x^2} = \frac{\pi}{3} X \frac{\rho r^3 v_0^2 \Delta y}{q \Delta x^2} = \frac{\pi}{3} X \frac{\rho r^3 v_0^2 \Delta y}{q \Delta x^2} = \frac{\pi}{3} X \frac{\rho r^3 v_0^2 \Delta y}{q \Delta x^2} = \frac{\pi}{3} X \frac{\rho r^3 v_0^2 \Delta y}{q \Delta x^2} = \frac{\pi}{3} X \frac{\rho r^3 v_0^2 \Delta y}{q \Delta x^2} = \frac{\pi}{3} X \frac{\rho r^3 v_0^2 \Delta y}{q \Delta x^2} = \frac{\pi}{3} X \frac{\rho r^3 v_0^2 \Delta y}{q \Delta x^2} = \frac{\pi}{3} X \frac{\rho r^3 v_0^2 \Delta y}{q \Delta x^2} = \frac{\pi}{3} X \frac{\rho r^3 v_0^2 \Delta y}{q \Delta x^2} = \frac{\pi}{3} X \frac{\rho r^3 v_0^2 \Delta y}{q \Delta x^2} = \frac{\pi}{3} X \frac{\rho r^3 v_0^2 \Delta y}{\rho \Delta x^2} = \frac{\pi}{3} X \frac{\rho r^3 v_0^2 \Delta y}{\rho \Delta x^2} = \frac{\pi}{3} X \frac{\rho r^3 v_0^2 \Delta y}{\rho \Delta x^2} = \frac{\pi}{3} X \frac{\rho r^3 v_0^2 \Delta y}{\rho \Delta x^2} = \frac{\pi}{3} X \frac{\rho r^3 v_0^2 \Delta y}{\rho \Delta x^2} = \frac{\pi}{3} X \frac{\rho r^3 v_0^2 \Delta y}{\rho \Delta x^2} = \frac{\pi}{3} X \frac{\rho r^3 v_0^2 \Delta y}{\rho \Delta x^2} = \frac{\pi}{3} X$$

$$= \frac{\frac{8\pi}{3} \text{ X } (1000 \text{kg/m}^3) \text{ X } (20 \text{X} 10^{-6})^3 \text{ X } (40 \text{ m/s})^2 (3 \text{X } 10^{-3} \text{m})}{(2 \text{X} 10^{-9} \text{C}) \text{X} (0,01 \text{m})^2} =$$

= 1610N/C