Generation of Applicative Attacks Scenarios Against Industrial Systems

Maxime Puys Marie-Laure Potet Abdelaziz Khaled

VERIMAG, University of Grenoble Alpes / Grenoble-INP, France Firstname.Name@univ-grenoble-alpes.fr

> Oct. 24, 2017 FPS 2017

This work was partially funded by the SACADE (ANR-16-ASTR-0023) project.

Industrial Systems 1/2

Hot topic

- Since Stuxnet (2009):
 - Complex attack ending up in increasing speed of Iranian centrifuges to damage them.
 - Also attacked the process monitoring to trick operators.
- Protection becoming a priority for government agencies.

Industrial Systems 2/2

- A SCADA controls a PLC which controls a motor.
- Variable MotorStatus on the PLC.

Industrial Communication Protocols

MODBUS (1979)

- No security at all.
- Some academic works to secure it (not used in practice):
 - Cryptographic asymmetric signatures [FCMT09]
 - ► Message Authentication Codes [HEK13]

OPC-UA (2006)

- Security layer: OPC-UA SecureConversation (similar to TLS).
- Three security modes:
 - None, Sign, SignAndEncrypt.

Prior Works on formal verification of security properties

- OPC-UA Handshake, SAFECOMP'16 [PPL16]
- OPC-UA and MODBUS Transport, SECRYPT'17 [DPP+17]

Case Study: Bottle-filling Factory

Process simulator: https://github.com/jseidl/virtuaplant

Variables:

- Conveyor belt
- Nozzle
- Position captor
- Level captor
- On/Off Switch

Properties:

- Nozzle only opens when a bottle is detected.
- Conveyor belt only starts when the bottle is full.
- Nozzle only opens when conveyor belt is stopped.

Contributions

- A²SPICS: Find applicative attacks on industrial systems:
 - Considering an attacker already in the system;
 - What possible actions on the industrial process.
 - ► E.g.: Nozzle opens with no bottles under it.

Implementation using the UPPAAL model-checker;

Proof-of-concept on a case study.

Table of Contents

- Introduction
- 2 The A²SPICS Approach
- 3 Automation of the Approach
- 4 Discussions

Table of Contents

- Introduction
- 2 The A²SPICS Approach
- Automation of the Approach
- 4 Discussions

The A²SPICS Approach

Phase 1 presented at AFADL 2016, Besançon.

Two examples of topologies

Network topology of the system:

- Communication channels between components;
- Position of attackers.

Attackers 1/2

Characterized by:

- Position in the topology:
 - On a channel (Man-In-The-Middle);
 - On a corrupted component (virus, malicious operator, etc).
- Capacities:
 - Possible actions on messages (intercept, modify, replay, etc);
 - Deduction system (deduce new information from knowledge, e.g.: encrypt/decrypt).
- Initial knowledge:
 - Other components;
 - Process behavior;
 - Cryptographic keys, etc.

Attackers 2/2

Four attackers:

- A_1 = close to Dolev-Yao;
- Other are subsets of A_1 .

Attacker	Modify	Forge	Replay	
A_1	✓	✓	✓	
A_2	✓	X	Х	
A ₃	X	✓	Х	
A ₄	X	X	✓	

Behaviors and Safety Properties

Current State	Next State	Guard	Actions
Idle	Moving	$processRun = true \land bottleInPlace = false$	motor := true
Idle	Pouring	$processRun = true \land bottleInPlace = true$	nozzle := true
Moving	Pouring	bottleInPlace = true	motor := false∧ nozzle := true
Pouring	Moving	levelHit = true	motor := true ∧ nozzle := false motor := false ∧
Moving	Idle	processRun = false	motor := false∧ nozzle := false
Pouring	Idle	processRun = false	motor := false∧ nozzle := false

(a) Automaton of the behavior of the process

(b) Transitions Details

Properties: CTL formula:

- Φ_1 : At all time and on each path, nozzle is never true if bottleInPlace is false). $A\Box \neg (nozzle = true \ and \ bottleInPlace = false)$
- Φ_2 : $A \square \neg (motor = true and levelHit = false)$
- Φ_3 : $A \square \neg (nozzle = true and motor = true)$

Table of Contents

- Introduction
- 2 The A²SPICS Approach
- 3 Automation of the Approach
- 4 Discussions

Analysis tools

Generic verification tools vs. Protocol verification tools

- Generic tools: model-checkers, smt-solvers, etc.
- Protocol verification tools: embed attacker logic.
- Trade-off: tool optimized for verification with attackers vs. granularity.

UPPAAL

- Model-checker created in 1995 at Aalborg and Uppsala Universities.
- Models specified as automata communicating over channels.
- Outputs an attack trace when falsified properties.

Results on the case study

All attackers on all properties (Intel i5-4590 CPU@3.30GHz, 16GB RAM):

- ✓ = attack found;
- X = no attack found;
- \mathcal{O} = inconclusive (here, out of memory).

Topologies	Properties $A_1 A_2 A_3$				A_4
	Φ_1	Φ ₁		✓	X
T_1	Φ2	√	\	√	Х
	Φ3	✓	\	√	Х
	Φ ₁	0	0	Х	Х
T_2	Φ2	√	\	✓	Х
	Φ3	✓	>	√	Х

Table of Contents

- Introduction
- 2 The A²SPICS Approach
- Automation of the Approach
- 4 Discussions

Timings

Topologies	Properties	A_1	A_2	A ₃	A_4
	Φ ₁	0.43 s	0.07 s	1.05 s	0.84 s
T_1	Φ ₂	0.52 s	0.10 s	0.69 s	0.35 s
	Φ3	0.47 s	0.04 s	0.37 s	0.42 s
	Φ ₁	Out of memory		601 s	31.55 s
T_2	Φ2	0.66 s	0.23 s	2.17 s	35.20 s
	Ф3	0.78 s	0.21 s	2.35 s	34.85 s

Observations on results on the POC:

- A₂ obtains same results as A₁ faster (not all capacities of Dolev-Yao are needed to find attacks in this case);
- A_3 globally needs more time but is able to conclude on Φ_1 (less state-space needed);
- A_4 is globally the slowest: as it does not find any attacks, UPPAAL explores all paths.

Conclusion

- A²SPICS: Find applicative attacks on industrial systems:
 - Considering an attacker already in the system;
 - What possible actions on the industrial process.
 - ► E.g.: Nozzle opens with no bottles under it.

Implementation using the UPPAAL model-checker;

Proof-of-concept on a case study.

Related Works

- Survey on assessment of security in industrial system ([CBB⁺15, PCB13, KPCBH15]).
- Comparison criteria from [KPCBH15, CBB+15]:

Ref.	Туре	Focus	Process model	Probabilistic	Automated
[BFM04]	Model	Α	No	No	No
[MBFB06]	Model	Α	No	Yes (E)	No
[PGR08]	Model	Α	No	Yes (E,H)	No
[TML10]	Model	Α	No	Yes (H)	Yes
[CAL ⁺ 11]	Formula	N/A	Yes	Yes (N/C)	Yes
[KBL15]	Model	Α	No	Yes (E)	Yes
[RT17]	Model	A,G	Yes	No	Yes
A ² SPICS	Model	A,G	Yes	No	Yes

- Rely on Cl-Atse (protocol verification tool)
 - lacktriangle Dolev-Yao intruder \Rightarrow less precise control on attacker capacities
- A²SPICS aims at modeling attackers resulting on risk analysis

Limitations

- Time and state of the process are discretized (e.g.: the bottle is either empty or full).
- Number of actions per attack is bounded (configurable, classical limitation of model-checking).
- Model only considers logical state of variables:
 - real state (i.e. if a bottle is physically present or not);
 - ▶ logical state (i.e. if the variable bottleInPlace is set to true);
 - properties are verified on logical state;
 - if a captor is written, a decorrelation is introduced.
 - \Rightarrow Can lead to missed attacks (e.g.: Φ_1).

Perspectives

• Study how to address model limitation (real state of process).

• Assess example from [RT17] for a better comparison.

- Tentative of automation with ProVerif and Tamarin.
 - Apply formalisms of [RT17].

Allow collusions between intruders.

Conclusion

Thanks for your attention!

Maxime Puys

Maxime.Puys@univ-grenoble-alpes.fr

Differences between Industrial and Business IT

- Really long-term installations, hard to patch, lot of legacy hosts.
- Security objectives are different from traditional systems:
 - Availability, integrity, authentication and non-repudiation.
- Messages are READ/WRITE commands to PLCs.
 - Sometimes SUBSCRIPTIONS, RPCs or grouped commands.
 - ▶ Industrial protocols: MODBUS, OPC-UA.
- Attack examples: change the value of a WRITE request to change a temperature, change a READ response to mislead operators.

Disambiguation

Security concepts

- Safety = Protection against identified/natural difficulties.
 - Historic industrial concern.
- Cybersecurity = Protection against malicious adversaries.
 - Often called Security.

Figure : Relations among security concepts

• Ludovic Pietre-Cambacedes' thesis: On the relationships between safety and security, Telecom ParisTech and EDF, 2010.

Safety and Security

Figure: How to link safety and security [PC10]

Purdue Model

Figure: Purdue model [Wil91]

Motivations on Studying OPC-UA Security

Official specifications: 978 pages.

Several terms redefined afterward:

For this reason, the OpenSecureChannel Service is not the same as the one specified in the Part 4. – Part 6, Release 1.02, Page 41.

Highly context dependent:

Some SecurityProtocols do not encrypt the entire Message with an asymmetric key. **Instead, they use the AsymmetricKeyWrapAlgorithm to encrypt a symmetric key** [...]. – Part 6, Release 1.02, Page 27.

The AsymmetricKeyWrapAlgorithm element of the SecurityPolicy structure defined in Table 22 is **not used by UASC implementations**. – Part 6, Release 1.02, Page 37.

Phase 1: Attacker Models

- Presented at AFADL 2016, Besançon.
- Risk analysis focused on attackers.
- Based on:
 - Topology of the system;
 - Attacker objectives;
 - Security features of protocols.
- Objectives are security vuln., e.g.:
 - Modify a message;
 - Circumvent authentication.
- Yields attacker models in terms of:
 - Position in the topology;
 - Capacities (actions and deduction).

Phase 2: Generation of Attack Scenarios

Clients and Servers

For a transport protocol:

- Encapsulate and decapsulate applicative message into packets.
- Reusable for a model to another.
- BehaviorClient generates applicative messages.
- SecurityLayer performs cryptographic operations.

References I

- Eric J Byres, Matthew Franz, and Darrin Miller, *The use of attack trees in assessing vulnerabilities in scada systems*, Proceedings of the international infrastructure survivability workshop, 2004.
- Alvaro A Cárdenas, Saurabh Amin, Zong-Syun Lin, Yu-Lun Huang, Chi-Yen Huang, and Shankar Sastry, *Attacks against process control systems: risk assessment, detection, and response*, Proceedings of the 6th ACM symposium on information, computer and communications security, ACM, 2011, pp. 355–366.
- Yulia Cherdantseva, Pete Burnap, Andrew Blyth, Peter Eden, Kevin Jones, Hugh Soulsby, and Kristan Stoddart, *A review of cyber security risk assessment methods for SCADA systems*, Computers & Security **56** (2015), 1 27.

References II

- Jannik Dreier, Maxime Puys, Marie-Laure Potet, Pascal Lafourcade, and Jean-Louis Roch, *Formally verifying flow integrity properties in industrial systems*, SECRYPT 2017 14th International Conference on Security and Cryptography (Madrid, Spain), July 2017, p. 12.
- IgorNai Fovino, Andrea Carcano, Marcelo Masera, and Alberto Trombetta, *Design and implementation of a secure MODBUS protocol*, Critical Infrastructure Protection III (Charles Palmer and Sujeet Shenoi, eds.), IFIP Advances in Information and Communication Technology, vol. 311, Springer Berlin Heidelberg, 2009, pp. 83–96 (English).
- G. Hayes and K. El-Khatib, Securing MODBUS transactions using hash-based message authentication codes and stream transmission control protocol, Communications and Information Technology (ICCIT), 2013 Third International Conference on, June 2013, pp. 179–184.

References III

- S Kriaa, M Bouissou, and Y Laarouchi, A model based approach for SCADA safety and security joint modelling: S-Cube, IET System Safety and Cyber Security, IET Digital Library, 2015.
- Siwar Kriaa, Ludovic Pietre-Cambacedes, Marc Bouissou, and Yoran Halgand, *A survey of approaches combining safety and security for industrial control systems*, Reliability Engineering & System Safety **139** (2015), 156–178.
- Miles A McQueen, Wayne F Boyer, Mark A Flynn, and George A Beitel, *Quantitative cyber risk reduction estimation methodology for a small scada control system*, System Sciences, 2006. HICSS'06. Proceedings of the 39th Annual Hawaii International Conference on, vol. 9, IEEE, 2006, pp. 226–226.
- Ludovic Piètre-Cambacédès, *The relationships between safety and security*, Theses, Télécom ParisTech, November 2010.

References IV

- Ludovic Piètre-Cambacédès and Marc Bouissou, *Cross-fertilization between safety and security engineering*, Reliability Engineering & System Safety **110** (2013), 110–126.
- Sandip C Patel, James H Graham, and Patricia AS Ralston, Quantitatively assessing the vulnerability of critical information systems: A new method for evaluating security enhancements, International Journal of Information Management 28 (2008), no. 6, 483–491.
- Maxime Puys, Marie-Laure Potet, and Pascal Lafourcade, Formal analysis of security properties on the OPC-UA SCADA protocol, Computer Safety, Reliability, and Security 35th International Conference, SAFECOMP 2016, Trondheim, Norway, September 21-23, 2016, Proceedings, 2016, pp. 67–75.

References V

- Marco Rocchetto and Nils Ole Tippenhauer, *Towards formal security analysis of industrial control systems*, Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, ACM, 2017, pp. 114–126.
- Chee-Wooi Ten, Govindarasu Manimaran, and Chen-Ching Liu, Cybersecurity for critical infrastructures: Attack and defense modeling, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 40 (2010), no. 4, 853–865.
- Theodore J Williams, A reference model for computer integrated manufacturing (cim): A description from the viewpoint of industrial automation: Prepared by cim reference model committee international purdue workshop on industrial computer systems, Instrument Society of America, 1991.