A first-order inference rule

The key advantage of lifted inference rules over propositionalization is that they make only those substitutions which are required to allow particular inferences to proceed.

$$(p_1 \land p_2 \land ... \land p_n \Rightarrow q), p_1', p_2', ..., p_n'$$

such that SUBST(θ , p_i)= SUBST(θ , p_i ') for all i
SUBST(θ , q)

- All variables assumed universally quantified
- Example:

```
\forall x \text{ King}(x) \land \text{Greedy}(x) \Rightarrow \text{Evil}(x)
```

$$(p_1 \land p_2 \land ... \land p_n \Rightarrow q), p_1', p_2', ..., p_n'$$

such that SUBST(θ , p_i)= SUBST(θ , p_i ') for all i
SUBST(θ , q)

- All variables assumed universally quantified
- Example:

```
\forall x \text{ King}(x) \land \text{Greedy}(x) \Rightarrow \text{Evil}(x)
King(John) Greedy(John)
```

Brother(Richard, John)

$$(p_1 \land p_2 \land ... \land p_n \Rightarrow q), p_1', p_2', ..., p_n'$$

such that SUBST(θ , p_i)= SUBST(θ , p_i ') for all i
SUBST(θ , q)

• Example:

```
\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)
King(John) Greedy(John) Brother(Richard, John)
p_1 is King(x), p_2 is Greedy(x), q is Evil(x)
```

$$(p_1 \land p_2 \land ... \land p_n \Rightarrow q), p_1', p_2', ..., p_n'$$

such that SUBST(θ , p_i)= SUBST(θ , p_i ') for all i
SUBST(θ , q)

• Example:

```
\label{eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous
```

It is the process used to find substitutions that make different logical expressions look identical. Unification is a key component of all first-order Inference algorithms.

UNIFY(α,β) = θ means that SUBST(θ,α) = SUBST(θ,β)			θ is our unifier value (if one exists).
			Ex: "Who does John know?"
p	q	θ	
Knows(<u>John</u> ,x)	Knows(John,Jane)		

р	q		θ
Knows(John,	<u>(</u>) K	nows(John,Jane)	{x/Jane}

			1

р	q	θ	
Knows(John,x)	Knows(John, Jane)	{x/Jane}	
Knows(John,x)	Knows(<u>v</u> ,Marv)		

р	q	θ	
Knows(John,x)	Knows(John, Jane)	{x/Jane}	
Knows(John,x)	Knows(<u>v</u> ,Mary)	{x/Mary, y/John}	

р	q	θ
Knows(John,x)	Knows(John,Jane)	{x/Jane}
Knows(John,x)	Knows(<u>v</u> ,Marv)	{x/Mary, y/John}
Knows(John,x)	Knows(<u>v,Mother(</u> y))	

р	q	θ
Knows(John,x)	Knows(John, Jane)	{x/Jane}
Knows(John,x)	Knows(v, Marv)	{x/Mary, y/John}
Knows(John,x)	Knows(y, Mother(y))	{y/John, x/Mother(John)}

р	q	θ
Knows(John,x)	Knows(John, Jane)	{x/Jane}
Knows(John,x)	Knows(y, Mary)	{x/Mary, y/John}
Knows(John,x)	Knows(y, Mother(y))	{y/John, x/Mother(John)}
Knows(John,x)	Knows(x.Mary)	

UNIFY(α,β) = θ means that SUBST(θ,α) = SUBST(θ,β)

р	q	θ
Knows(John,x)	Knows(John,Jane)	{x/Jane}
Knows(John,x)	Knows(y,Mary)	{x/Mary, y/John}
Knows(John,x)	Knows(y, Mother(y))	{y/John, x/Mother(John)}
Knows(John,x)	Knows(x,Mary)	fails, because both use the same variable $\{x_1/John, x_2/Mary\}$

Standardizing apart eliminates overlap of variables

- sometimes it is possible for more than one unifier returned: UNIFY (Knows (John, x), Knows(y, z)) =???
- This can return two possible unifications:

```
{y/ John, x/ z} which means Knows (John, z) OR {y/ John, x/ John, z/ John}.
```

For each unifiable pair of expressions there is a single most general unifier (MGU), In this case it is $\{y/John, x/z\}$.

```
function UNIFY(x, y, \theta) returns a substitution to make x and y identical
  inputs: x, a variable, constant, list, or compound
           y, a variable, constant, list, or compound
           \theta, the substitution built up so far (optional, defaults to empty)
  if \theta = failure then return failure
  else if x = y then return \theta
  else if Variable?(x) then return UNIFY-Var(x, y, 0)
  else if Variable?(y) then return Unify-Var(y, \mathbf{x}, \theta)
  else if COMPOUND?(x) and COMPOUND?(y) then
      return UNIFY(ARGS[x], ARGS[y], UNIFY(OP[x], OP[y], \theta))
  else if LIST?(x) and LIST?(y) then
      return UNIFY(REST[x], REST[y], UNIFY(FIRST[x], FIRST[y], \theta))
  else return failure
function UNIFY-VAR(var, x, 0) returns a substitution
  inputs: var, a variable
           x, any expression
          \theta, the substitution built up so far
  if \{var/val\} \in \emptyset then return UNIFY(val, x, \theta)
  else if \{x/val\} \in \theta then return \text{UNIFY}(var, val, \theta)
  else if OCCUR-CHECK? (var, x) then return failure
  else return add \{varlx\} to \theta
```