```
{Question 4.75}
```

P_3=5[bar]

x 3=0.20

P 4=5[bar]

T 4=20[C]

P 1=1[bar]

T_1=305[K]

AV air=50[m³/min]

P 2=0.95[bar]

T_2=295[K]

{Part A}

{Use first law equation to find mass flow rate of the refrigerant. We can neglect heat loss, work, kinetic energy, and potential energy}

0=mdot air*(h 1-h 2)+mdot ref*(h 3-h 4)

mdot_air=AV_air*P_1*convert(bar,kPa)/(R#/molarmass(Air))/T_1

h_1=enthalpy(Air, T=converttemp(K,C,T_1))

 h_2 =enthalpy(Air, T=converttemp(K,C,T_2))

h_3=enthalpy(*R134a*, *P*=P_3*convert(bar,kPa), *x*=x_3)

h_4=enthalpy(R134a, T=T_4, P=P_4*convert(bar,kPa))

{Solving the The first law equation we find mdot_ref}

{Mass Flow Rate of Refrigerant: mdot_ref = 3.752 kg/min}

{Part B}

{Find heat transfer using first law of only the refrigerant. We can neglect work, kinetic energy, and potential energy}

0=Qdot+mdot_ref*(h_3-h_4)

{Solving the The first law equation we find Qdot}

{Heat Transfer: Qdot = 573.8 kJ/min}

kJ=0

min=1

SOLUTION

Unit Settings: SI C kPa kJ mass deg

 $AV_{air} = 50 [m^3/min]$ $h_1 = 305.5 [kJ/kg]$ $h_2 = 295.4 [kJ/kg]$ $h_4 = 263.5 [kJ/kg]$ $h_3 = 110.5 [kJ/kg]$ kJ = 0 $mdot_{air} = 57.11 [kg/min]$ $mdot_{ref} = 3.752 [kg/min]$ min = 1 $P_1 = 1$ [bar] $P_2 = 0.95$ [bar] $P_3 = 5$ [bar] $P_4 = 5 [bar]$ Qdot = 573.8 [kJ/min] $T_1 = 305$ [K] $x_3 = 0.2$ $T_2 = 295$ [K] $T_4 = 20 [C]$

No unit problems were detected.

EES suggested units (shown in purple) for h 1 h 2 h 3 h 4 .