Sri Chaitanya IIT Academy., India.

© A.P © T.S © KARNATAKA © TAMILNADU © MAHARASTRA © DELHI © RANCHI A right Choice for the Real Aspirant

ICON Central Office - Madhapur - Hyderabad

SEC: Sr.S60_Elite, Target & LIIT-BTs

Time: **O9.00Am to 12.00Pm**JEE-MAIN

GTM-12/07

Max. Marks: 300

IMPORTANT INSTRUCTION:

- Immediately fill in the Admission number on this page of the Test Booklet with Blue/Black Ball Point Pen only.
- 2. The candidates should not write their Admission Number anywhere (except in the specified space) on the Test Booklet/ Answer Sheet.
- **3.** The test is of **3 hours** duration.
- **4.** The Test Booklet consists of **75 Questions.** The maximum marks are **300.**
- 5. There are **three** parts in the question paper 1,2,3 consisting of **Mathematics**, **Physics** and **Chemistry** having **25 Questions** in each subject and subject having **two sections**.
 - (I) Section –I contains 20 Multiple Choice Questions with only one correct option.

Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases.

- (II) Section-II contains 05 Numerical Value Type Questions.
- The Answer should be within **0 to 9999.** If the Answer is in **Decimal** then round off to the **Nearest Integer** value (Example i,e. If answer is above **10** and less than **10.5** round off is **10** and If answer is from **10.5** and less than **11** round off is **11**).

To cancel any attempted question bubble on the question number box.

For example: To cancel attempted Question 21. Bubble on 21 as shown below

Question Answered for Marking

Sec: Sr.S60_Elite, Target & LIIT-BTs

Question Cancelled for Marking

Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases.

- 6. Use **Blue / Black Point Pen only** for writing particulars / marking responses on the Answer Sheet. **Use of pencil is strictly prohibited.**
- 7. No candidate is allowed to carry any textual material, printed or written, bits of papers, mobile phone any electron device etc, except the Identity Card inside the examination hall.
- **8.** Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 9. On completion of the test, the candidate must hand over the Answer Sheet to the invigilator on duty in the Hall. However, the candidate are allowed to take away this Test Booklet with them.
- 10. Do not fold of make any stray marks on the Answer Sheet

Name of the Candidate (in Capital):				
Admission Number: Candidate's Signature	e: Invigilator's Signature:			
01-01-2025_	Sr.S60_Elite, Target & LIIT-BTs_Jee-Main-GTM-12/07_Test Syllabus			
MATHEMATICS	: TOTAL SYLLABUS			
PHYSICS	: TOTAL SYLLABUS			
CHEMISTRY	: TOTAL SYLLABUS			

For More Material Join: @JEEAdvanced 2025

MATHEMATICS Max Marks: 100

SECTION-I (SINGLE CORRECT ANSWER TYPE)

This section contains **20 Multiple Choice Questions**. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct.

Marking scheme: +4 for correct answer, 0 if not attempted and -1 in all other cases.

1. Let $P = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0 \end{bmatrix}$, where $\alpha \in R$. Suppose $Q = [q_{ij}]$ is a matric satisfying $PQ = kI_3$ for

some non-zero $k \in R$, If $q_{23} = -\frac{k}{8}$ and $|Q| = \frac{k^2}{2}$, then $\alpha^2 + k^2$ is equal to

- 1) 13
- **2)** 15
- **3)** 17
- **4)** 21
- 2. Statement I: If $\alpha = \cos\left(\frac{2\pi}{7}\right) + i\sin\left(\frac{2\pi}{7}\right)$, $p = \alpha + \alpha^2 + \alpha^4$, $q = \alpha^3 + \alpha^5 + \alpha^6$, then the equation

whose roots are p and q is $x^2 + x + 2$.

Statement – II: If α is a root of $Z^7 = 1$, then $1 + \alpha + \alpha^2 + ... + \alpha^6 = 0$

- 1) Statement 1 is true, Statement 2 is true
- 2) Statement 1 is false, Statement 2 is false
- 3) Statement 1 is true, Statement 2 is false
- 4) Statement 1 is false, Statement 2 is true
- 3. The letters of the word 'MANKIND' are written in all possible orders and arranged in serial order as in an English dictionary. Then the serial number of the word 'MANKIND' is
 - **1)** 1492
- **2)** 1493
- **3)** 1490
- **4)** 1491

Sec: Sr.S60_Elite, Target & LIIT-BTs

4. Match the following

Column 1			Column - 2	
A)	Number of triangle that can be made using the vertices of a	p)	75	
	polygon of 10 sides as their vertices and having exactly one			
	side common with the polygon is			
B)	Number of triangle that can be made using the vertices of a	q)	110	
	polygon of 10 sides as their vertices and having exactly 2			
	sides common with the polygon is			
C)	Number of quadrilaterals that can be made using the vertices	r)	60	
	of a polygon of 10 sides as their vertices and having exactly			
	2 sides common with the polygon is			
D)	Number of quadrilaterals that can be made using the vertices	s)	10	
	of a polygon of 10 sides as their vertices had having 3 sides			
	common with the polygon is			

1) A-r, B-s, C-p, D-q

2) A-s, B-r, C-p, D-s

3) A-r, B-s, C-p, D-s

- 4) None of these
- 5. Let there be three independent events E_1 , E_2 and E_3 . The probability that only E_1 occurs is α , only E_2 occurs is β and only E_3 occurs is γ . Let 'p' denote the probability of none of events occurs that satisfies the equation $(\alpha 2\beta) p = \alpha\beta$ and $(\beta 3\gamma) p = 2\beta\gamma$. All the given probabilities are assumed to lie in the interval (0,1).

Then $\frac{probability of occurance of E_1}{probability of occurance of E_3}$ is equal to

1)9

2) 3

3) 7

- **4)** 6
- 6. Let the circumcenter of a triangle with vertices A(a, 3), B(b, 5) and C(a, b), ab > 0 be P(1, 1). If the line AP intersects the line BC at the point $Q(k_1, k_2)$, then $k_1 + k_2$ is equal to
 - 1) 2

- 2) $\frac{4}{7}$
- 3) $\frac{2}{7}$
- **4)** 4
- 7. The number of real solutions of the equation $e^{4x} + 4e^{3x} 58e^{2x} + 4e^x + 1 = 0$ is
 - 1) 4

2) 6

3) 2

4) 8

Sec: Sr.S60_Elite, Target & LIIT-BTs

- A wire of length 20 m is to be cut into two pieces. A piece of length ℓ_1 is bent to make a square of area A_1 and the other piece of length $\,\ell_2$ is made into a circle of area A_2 . If $2A_1 + 3A_2$ is minimum then $(\pi \ell_1)$: ℓ_2 is equal to
 - **1)** 6:1
- **2)** 3:1
- **3)** 1:6
- **4)** 4 : 1

- Let $f(x) = 4x^3 11x^2 + 8x 5, x \in \mathbb{R}$. Then f: 9.
 - 1) has a local minima at $x = \frac{1}{2}$.
- 2) has a local minima at $x = \frac{3}{4}$
- 3) in increasing in $\left(\frac{1}{2}, \frac{3}{4}\right)$
- 4) is decreasing in $\left(\frac{1}{2}, \frac{4}{3}\right)$
- 10. Let for a triangle ABC,

$$\overline{AB} = -2\hat{i} + \hat{j} + 3\hat{k}$$

$$\overline{CB} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$$

$$\overline{CA} = 4\hat{i} + 3\hat{j} + \delta\hat{k}$$

If $\delta > 0$ and area of the triangle ABC is $5\sqrt{6}$, Then $\overline{CB}.\overline{CA}$ is equal to

- 1) 60
- **2)** 120
- **3)** 108
- If the shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{1} = \frac{y-4}{4} = \frac{z-5}{5}$ is $\frac{1}{\sqrt{3}}$, 11. then the sum of all possible values of λ is :
 - **1)** 16
- 2) 6

- **3)** 12
- **4)** 15
- **12.** If $15\sin^4\alpha + 10\cos^4\alpha = 6$, for $\alpha \in R$, then the value of $27\sec^6\alpha + 8\cos ec^6\alpha$ is equal to:
 - 1) 350
- **2)** 250
- **3)** 400
- 4) 500
- Let $S_1 = \left\{ x \in R \{1, 2\} : \frac{(x+2)(x^2+3x+5)}{-2+3x-x^2} \ge 0 \right\}$ and $S_2 = \left\{ x \in R : 3^{2x} 3^{x+1} 3^{x+2} + 27 \le 0 \right\}$. Then, **13.**

 $S_1 \cup S_2$ is equal to

- 1) $(-\infty, -2] \cup (1, 2)$ 2) $(-\infty, -2] \cup [1, 2]$ 3) $(-2, 1] \cup (2, \infty)$ 4) $(-\infty, 2]$

Sec: Sr.S60_Elite, Target & LIIT-BTs

1)
$$\tan x - \frac{x \sec x}{x \sin x + \cos x} + C$$

1)
$$\tan x - \frac{x \sec x}{x \sin x + \cos x} + C$$
 2) $\sec x + \frac{x \tan x}{x \sin x + \cos x} + C$

3)
$$\sec x - \frac{x \tan x}{x \sin x + \cos x} + C$$

3)
$$\sec x - \frac{x \tan x}{x \sin x + \cos x} + C$$
 4) $\tan x + \frac{x \sec x}{x \sin x + \cos x} + C$

15. The area of the region
$$S = \{(x,y): y^2 \le 8x, y \ge \sqrt{2}x, x \ge 1\}$$
 is

1)
$$\frac{13\sqrt{2}}{6}$$

2)
$$\frac{11\sqrt{2}}{6}$$

3)
$$\frac{5\sqrt{2}}{6}$$

1)
$$\frac{13\sqrt{2}}{6}$$
 2) $\frac{11\sqrt{2}}{6}$ 3) $\frac{5\sqrt{2}}{6}$ 4) $\frac{19\sqrt{2}}{6}$

Let y = y(x), y > 0 be a solution curve of the differential equation $(1 + x^2) dy = y(x - y) dx$. If **16.** y(0) = 1 and $y(2\sqrt{2}) = \beta$, then

1)
$$e^{3\beta^{-1}} = e(3+2\sqrt{2})$$

2)
$$e^{\beta^{-1}} = e^{-2} (5 + \sqrt{2})$$

3)
$$e^{\beta^{-1}} = e^{-2} \left(3 + 2\sqrt{2} \right)$$

4)
$$e^{3\beta^{-1}} = e(5+\sqrt{2})$$

The number of terms common to the two A.P,'s 3, 7, 11,..., 407 and 2, 9, 16,...,709 is _____. **17.**

1) 7

- **2)** 14
- **3)** 21
- **4)** 28

Consider the following frequency distribution: **18.**

Class:	0-6	6-12	12-18	18-24	24-30
Frequency:	a	ь	12	9	5

If mean = $\frac{309}{22}$ and median = 14, then the value $(a-b)^2$ is equal to____.

1) 2

Let $\bigcup_{i=1}^{50} X_i = \bigcup_{i=1}^{n} Y_i = T$, where each X_i contains 10 elements and each Y_i contains 5 elements. If **19.** each element of the set T is an element of exactly 20 of sets X_i 's and exactly 6 of sets Y_i 's then n is equal to

- **1)** 15
- **2)** 50
- **3)** 45
- **4)** 30

Sec: Sr.S60_Elite, Target & LIIT-BTs

SRI CHAITANYA IIT ACADEMY, INDIA

20. Let the function

$$f(x) = \begin{cases} \frac{\log_e(1+5x) - \log_e(1+\alpha x)}{10} & ; if \ x \neq 0\\ & ; if \ x = 0 \end{cases}$$

Be continuous at x = 0. Then absolute value of ' α ' is equal to

1)2

2) 3

3) 4

4) 5

SECTION-II (NUMERICAL VALUE TYPE)

This section contains 5 Numerical Value Type Questions. The Answer should be within 0 to 9999. If the Answer is in Decimal then round off to the Nearest Integer value (Example i,e. If answer is above 10 and less than 10.5 round off is 10 and If answer is from 10.5 and less than 11 round off is 11).

Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases.

21. Consider a matrix
$$A = \begin{bmatrix} \alpha & \beta & \lambda \\ \alpha^2 & \beta^2 & \lambda^2 \\ \beta + \lambda & \lambda + \alpha & \alpha + \beta \end{bmatrix}$$
 where α, β, λ are three distinct natural numbers.

If $\frac{\det\left(adj\left(adj\left(adj\left(adjA\right)\right)\right)\right)}{\left(\alpha-\beta\right)^{16}\left(\beta-\gamma\right)^{16}\left(\gamma-\alpha\right)^{16}} = 2^{32} \times 3^{16}$, then the number of such 3-triples (α,β,γ) is_____.

22. The probability distribution of X is:

X	0	1	2	3
P(X)	1-d	1+2d	$\frac{1-4d}{}$	1+3d
	4	4	4	4

For the minimum possible value of d, sixty times the mean of X is equal to ...

23. If the system of equations

$$x + y + z = 16$$

$$2x + 5y + \alpha z = \beta$$

$$x + 2y + 3z = 14$$

has infinitely many solutions, then $\alpha + \beta$ is equal to

- **24.** If the length of the latus rectum of the ellipse $x^2 + 4y^2 + 2x + 8y \lambda = 0$ is 4, and *l* is the length of its major axis, then $\lambda + l$ is equal to:
- 25. If the length of the perpendicular drawn from the point (a, 4, 2), a > 0 on the line $\frac{x+1}{2} = \frac{y-3}{3} = \frac{z-1}{-1} \text{ is } 2\sqrt{6} \text{ units and } Q(\alpha_1, \alpha_2, \alpha_3) \text{ is the image of the point P on this line, then } a + \sum_{i=1}^{3} \alpha_i \text{ is equal to}$

Sec: Sr.S60_Elite, Target & LIIT-BTs

PHYSICS Max Marks: 100

SECTION-I (SINGLE CORRECT ANSWER TYPE)

This section contains 20 Multiple Choice Questions. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct.

Marking scheme: +4 for correct answer, 0 if not attempted and -1 in all other cases.

- If force (F), Velocity (V) and time (T) are considered as fundamental physical quantity, then **26.** dimensional formula of density will be:

- 1) $FV^{-2}T^2$ 2) $FV^{-4}T^{-2}$ 3) FV^4T^{+2} 4) $F^2V^{-2}T^6$
- A projectile is fired with velocity v at angle of θ with horizontal. Find the radius of 27. curvature of path at highest point.

- 1) $\frac{v^2 \cos^2 \theta}{g}$ 2) $\frac{v^2}{g \cos \theta}$ 3) $\frac{v^2 \cos \theta}{g}$ 4) $\frac{v^2 \cos^2 \theta}{2g}$
- **Statement 1**: If an electric dipole of dipole moment 30×10^{-5} cm is enclosed by a closed 28. surface, the net flux coming out of the surface will be zero.

Statement 2: electric dipole consists of two equal and opposite charges.

- 1) Statement-1 is True, Statement-2 is True; Statement -2 is a correct explanation for Statement-1
- 2) Statement-1 is True, Statement-2 is True; Statement -2 is NOT a correct explanation for Statement-1.
- 3) Statement -1 is True, Statement-2 is False.
- 4) Statement -1 is False, Statement-2 is True.
- A particle of mass m moves towards a smooth vertical wall with a speed u (relative to the **29**. ground) and collides elastically with the wall; the wall moving towards the particle with a speed 2u (also relative to the ground). Assuming that the wall is extremely massive, the magnitude of impulse delivered to the particle equals
 - 1) 5 mu
- **2)** 6 mu
- **3)** 4 mu
- **4)** 2 mu

Sec: Sr.S60_Elite, Target & LIIT-BTs

30. The electric field of an electromagnetic wave in free space is represented by

 $\vec{E} = E_0 \cos(\omega t - kz)^{\hat{i}}$ The corresponding magnetic induction vector will be

$$\mathbf{1})\vec{B} = (E_0C)\cos(\omega t - kz)\hat{j}$$

$$\mathbf{2)}\vec{B} = \left(\frac{E_0}{C}\right)\cos(\omega t - kz)\hat{j}$$

$$\mathbf{3)} \ \overrightarrow{B} = E_0 \cos(\omega t + kz) \hat{j}$$

4)
$$\vec{B} = -\left(\frac{E_0}{C}\right)\cos(\omega t - kz)\hat{j}$$

31. Assertion: The time period of a pendulum of infinite length whose bob hangs near the surface of the earth will be infinite. and

Reason: The time period of a pendulum of length L near the surface of the earth is $2\pi \sqrt{\frac{L}{g}}$, if L is reasonably small.

- 1) Assertion is True, Reason is True, Reason is correct explanation for Assertion
- 2) Assertion is True, Reason is True, Reason is NOT a correct explanation for Assertion
- 3) Assertion is True, Reason is false
- 4) Assertion is False, Reason is True
- 32. A spherical drop of radius r and density n is falling in air with terminal velocity. The density of air is n_0 and its coefficient of viscosity μ . The power developed by gravity is

1)
$$\frac{\pi r^5 n}{\mu} (n - n_0) g^2$$
 2) $\frac{27}{8\mu} r^5 n (n - n_0) g^2$ 3) $\frac{8\pi r^5}{27\mu} n (n - n_0) g^2$ 4) $\frac{\pi r^5}{27\mu} n (n - n_0) g^2$

- 33. A particle moves according to the law $x = a \cos \frac{\pi t}{2}$. The distance covered by it in the time internal between t = 0 to t = 3 sec is
 - 1) 2a
- **2)** 3a
- **3)** 4a
- **4)** a
- **34.** A heavy but uniform rope of length L is suspended from a ceiling. A particle is dropped from the ceiling at the instant when the bottom end is given a transverse wave pulse. Where will the particle meet the pulse

Sec: Sr.S60_Elite, Target & LIIT-BTs

- 1) at a distance $\frac{2L}{3}$ from the bottom 2) at a distance $\frac{L}{3}$ from the bottom
- 3) at a distance $\frac{3L}{4}$ from the bottom 4) at a distance $\frac{L}{2}$ from the bottom
- Two very long current carrying wires A and B carrying current I_0 (along z- axis) are placed 35. at (-a, 0) and (a, 0) as shown. Find the value of magnetic field at (0, a)

- 1) $\frac{\mu_0 I_0}{\sqrt{2}\pi a}$ 2) $\frac{\mu_0 I_0}{2\pi a}$ 3) $\frac{\mu_0 I_0}{4\pi a}$ 4) $\frac{\mu_0 I_0}{2\sqrt{2}\pi a}$
- **36.** Curie temperature is the temperature above which:
 - 1) a ferromagnetic material becomes paramagnetic.
 - 2) a paramagnetic material becomes diamagnetic.
 - 3) a ferromagnetic material becomes diamagnetic.
 - 4) a paramagnetic material becomes ferromagnetic.
- Two large holes are cut in a metal sheet as shown. If this is heated, which distance will 37. decrease:

- 1) BC
- **2)** AB
- 3) AC
- 4) None of these

Sec: Sr.S60_Elite, Target & LIIT-BTs

38. STATEMENT-1: Each molecule of a gas moves with rms speed if the temperature of gas is constant. and

STATEMENT-2: The rms speed of molecules of a gas is equal to $\sqrt{\frac{3RT}{M}}$, where T and M are

the temperature and molecular mass of the gas. R is the ideal gas constant.

- 1) Statement-1 is True, Statement-2 is True; Statement -2 is a correct explanation for Statement-1.
- **2)** Statement-1 is True, Statement-2 is True; Statement -2 is NOT a correct explanation for Statement-1.
- 3) Statement -1 is True, Statement-2 is False.
- 4) Statement -1 is False, Statement-2 is True.
- **39.** In the circuit shown below, what will be the reading of the voltmeter and ammeter?

- 1) 800 V, 2A
- **2)** 300 V, 2A
- **3)** 220 V, 2.2A
- **4)** 0 V,1A
- **40.** An equilateral triangular loop having a resistance R and length of each side ' ℓ ' is placed in a magnetic field which is varying at $\frac{dB}{dt} = 1$ T/s. The induced current in the loop will be

- 1) $\frac{\sqrt{3}}{4} \frac{\ell^2}{R}$
- **2)** $\frac{4}{\sqrt{3}} \frac{\ell^2}{R}$
- 3) $\frac{\sqrt{3}}{4} \frac{R}{\ell^2}$
- $4) \; \frac{4}{\sqrt{3}} \frac{R}{\ell^2}$

Sec: Sr.S60_Elite, Target & LIIT-BTs

41. An electron in a hydrogen atom makes a transition $n_1 \rightarrow n_2$, where n_1 and n_2 are the principal quantum numbers of the two states. Assume Bohr model to be valid

Column-I			Column-II	
A)	The electron emits an energy of 2.55 eV	p)	$n_1 = 2, n_2 = 1$	
B)	time period of the electron in the initial state is eight times that in the final state	q)	$n_1 = 4, n_2 = 2$	
C)	Speed of electron become two times	r)	$n_1 = 5, n_2 = 3$	
D)	Radius of orbit of electron becomes 4.77A ⁰	s)	$n_1 = 6, n_2 = 3$	
		t)	$n_1 = 8, n_2 = 4$	

- 1) $A \rightarrow p$, $B \rightarrow p$,t, $C \rightarrow p$,q,t, $D \rightarrow r$
- **2)** $A \rightarrow p$, $B \rightarrow p$,t, $C \rightarrow p$,q,s,t, $D \rightarrow r$
- 3) $A \rightarrow q$, $B \rightarrow p$,q,s,t, $C \rightarrow p$,q,s,t, $D \rightarrow r$,s
- 4) $A \rightarrow r$, $B \rightarrow p$, $C \rightarrow p$, q, s, t, $D \rightarrow q$
- **42.** Radius of ${}_{32}^x$ Ge (germanium) nucleus is measured to be twice the radius of ${}_{4}^{9}$ Be nucleus.

Number of neutrons in Ge are

1) 38

1) 1

- **2)** 40
- **3)** 42
- **4)** 64
- 43. In the DC voltage regulator circuit shown, the Zener breakdown voltage $V_Z = 5 \ V$. If the unregulated input varies between 11 V to 15 V, maximum zener current (in mA) is

Sec: Sr.S60_Elite, Target & LIIT-BTs

- 44. Assertion: Rolling without slipping cannot possible in absence of friction.
 - Reason: During rolling without slipping, energy can remain conserved in absence of external applied force.
 - 1) Assertion is True, Reason is True, Reason is correct explanation for Assertion
 - 2) Assertion is True, Reason is True, Reason is NOT a correct explanation for Assertion
 - 3) Assertion is True, Reason is false
 - 4) Assertion is False, Reason is True
- 45. In Young's double slit experiment the two slits act as coherent sources of equal amplitude A and wavelength λ . In another experiment with the same set-up the two slits are source of equal amplitude A and wavelength λ , but are incoherent. The ratio of the intensity of light at the midpoint of the screen in the first case to that is second case is
 - **1)** 1

2) 2

3) 3

4) 4

SECTION-II (NUMERICAL VALUE TYPE)

This section contains 5 Numerical Value Type Questions. The Answer should be within 0 to 9999. If the Answer is in Decimal then round off to the Nearest Integer value (Example i,e. If answer is above 10 and less than 10.5 round off is 10 and If answer is from 10.5 and less than 11 round off is 11).

Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases

46. A pendulum of length $\ell = 1$ m having a bob of mass m = 1 kg is hanging from a rigid support. If the bob is projected horizontally with a velocity $v_0 = \sqrt{35} \, m/s$. The tension in the string is 6k Newton when angle made by the string is 60° from vertical as shown. Find the value of k.

Sec: Sr.S60_Elite, Target & LIIT-BTs

- 47. The electric field on axis of ring of charge 'Q' and radius 'R' is maximum at $\frac{R}{\sqrt{2N}}$. Find N.
- 48. In the given circuit the reading of ideal voltmeter is E/2. Find the internal resistance of the battery in Ω .

- **49.** For an equilateral prism, it is observed that when a ray strikes grazingly at one face it emerges grazingly at the other. Find the refractive index of the prism
- **50.** The moment of inertia of rod shown in the figure is $\frac{ML^2}{6N}$. Find N.

Sec: Sr.S60_Elite, Target & LIIT-BTs

CHEMISTRY Max Marks: 100

SECTION-I (SINGLE CORRECT ANSWER TYPE)

This section contains 20 Multiple Choice Questions. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct.

Marking scheme: +4 for correct answer, 0 if not attempted and -1 in all other cases.

- Amongst the following, the most stable complex is 51.
 - 1) $\left\lceil Fe(H_2O)_6 \right\rceil^{3+}$

 $2) \left\lceil Fe(NH_3)_6 \right\rceil^{3+}$

3) $\left[Fe(C_2O_4)_3 \right]^{3-}$

- **4)** $[FeCl_6]^{3-}$
- Which of the following have square planar geometry-**52.**
 - **A)** $[NiCl_4]^{-2}$
- **B)** $\left[Cu(NH_3)_4 \right]^{+2}$ **C)** $\left[Ni(CO)_4 \right]$ **D)** XeF_4

- 1) b,c and d
- **2)** a,b and c
- **3)** b and d
- Statement 1: The second ionization energy of 'O' is greater than that of 'N' 53.

Statement 2: The half filled p-orbitals cause greater stability.

- 1) Statement 1 and Statement 2 both are correct and Statement 2 is the correct explanation of Statement 1
- 2) Statement 1 and Statement 2 both are correct, but Statement 2 is not the correct explanation of Statement 1
- 3) Statement 1 is true, but Statement 2 is false
- 4) Statement 1 and Statement 2 both are false
- Consider the reactions. 54.

$$2S_2O_3^{2-}(aq) + I_{2(s)} \longrightarrow S_4O_6^{2-}(aq) + 2I^{-}(aq)$$

$$S_2O_3^{2-}(aq) + 2Br_2(l) + 5H_2O_{(l)} \longrightarrow 2SO_4^{2-}(aq) + 4Br_{aq}^{-} + 10H_{(aq)}^{+}$$

Why thiosulphate (reductant) react differently with iodine & Bromine?

- 1) Bromine is a stronger reducing agent than iodine
- 2) Thiosulphate undergoes reduction by bromine and oxidation by iodine
- 3) Bromine is a stronger oxidant than iodine
- 4) Bromine is weaker oxidizing agent than iodine

Sec: Sr.S60_Elite, Target & LIIT-BTs

01-01-25_ Sr.S60_Elite, Target & LIIT-BTs _Jee-Main_GTM-12/07_Q.P

55. The quantum number of four electrons (e1, e2, e3, e4) are given below:

m e1 3 0 0 +1/2e2 4 0 $+\frac{1}{2}$ 1 -1/2e3 3 2 2 3 $+\frac{1}{2}$ e4 -1

Decreasing energy of these electrons in multi-electron species:

1) e4 > e3 > e2 > e1

2) e2 > e3 > e4 > e1

3) e3 > e2 > e4 > e1

4) e1 = e2 = e3 = e4

56. The heat evolved in combustion of rhombic sulphur (S_R) and monoclinic sulphur (S_M) are respectively, 70960 and 71030 cal/mol. What will be heat of conversion of rhombic sulphur to monoclinic sulphur.

- 1) 70960 cal
- **2)** 71030 Cal
- **3)** -70
- **4)** +70

57. Out of CO_2 , SO_2 , NH_3 , I_3^- and I_3^+ number of non-linear species are:

1) 1

2) 3

- **3)** 2
- **4)** 4

58. Statement A: The Actinide contraction is more as compared to the lanthanide contraction.

Statement B: 5f electrons have much lower shielding effect as compared to 4f electrons because 5f-orbitals less diffused than 4f-orbitals.

Statement C: For f—block elements with increase in number of f—electrons, the radius decreases due to poor shielding of f-electrons.

Statement D: f-block elements belongs to 3rd group of long form of periodic table. The correct statements are:

- **1)** AB
- **2)** ABC
- **3)** ACD
- 4) A only

59. Assertion A: Among the two O-H bonds in H_2O molecule, the energy required to break the first O-H bond and the other O-H bond is the same.

Reason R: This is because the electronic environment around oxygen is the same even after breakage of one O-H bond.

- 1) A and R both are correct and R is the correct explanation of A
- 2) A and R both are correct, but R is not the correct explanation of A
- 3) A is true, but R is false
- 4) A and R both are false

Sec: Sr.S60_Elite, Target & LIIT-BTs

The value of K_c is 64 at 800 K for the reaction $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$ **60.**

The value of K_c for the following reaction is :

$$NH_3(g) \Longrightarrow \frac{1}{2}N_2(g) + \frac{3}{2}H_2(g)$$

1)8

- 2) $\frac{1}{9}$ 3) $\frac{1}{4}$
- 4) $\frac{1}{64}$
- Assertion A: An aqueous solution of ammonium acetate can act as a buffer. 61.

Reason R: Acetic acid is a weak acid and NH₄OH is a weak base.

- 1) Both A and R are true and R is the correct explanation of A
- 2) Both A and R are true but R is not the correct explanation of A
- 3) A is false but R is true
- 4) Both A and R are false
- Which of the following carbohydrate is monosaccharide? **62.**
 - 1) Glucose
- 2) Lactose
- 3) Cellulose
- 4) Maltose
- Choose the correct example for a non-ideal solution? **63.**
 - 1) Benzene + Toluene

- 2) Hexane + Heptane
- 3) Chlorobenzene + Bromobenzene
- **4)** Ethanol + Hexane
- $MnO_4^- + xe^- \rightarrow MnO_4^{2-}$ **64.**

+ye (Acidic medium) + ze (Neutral medium)

per mole of MnO_4^- ; x,y and z are respectively:

- 1) 1,2,3
- **2)** 1,5,3
- **3)** 1,3,5
- 4) 5,3,1

Sec: Sr.S60_Elite, Target & LIIT-BTs

- If X specific resistance of the electrolyte solution and Y is the molarity of the solution, then **65.** \wedge_m is given by:
 - 1) $\frac{1000X}{Y}$ 2) $1000\frac{X}{Y}$ 3) $\frac{1000}{XY}$
- **4)** $\frac{XY}{1000}$
- Two isomeric ketones, 3-pentanone and 2-pentanone can be distinguished by: **66.**
 - **1)** *I*₂ / *NaOH*

2) $NaSO_2H$

3) NaCN / HCl

- **4)** 2,4-DNP
- Which of the following compound will be most reactive for S_N1 and S_N2 reactions **67.**

68.

Compound (X) on reduction with LiAlH₄ gives compound (Y).

Which of the following is incorrect about compound (Y).

- 1) Compound (Y) can undergo carbylamine reaction.
- 2) Compound (Y) is 2°-amine.
- 3) Compound (Y) is more basic than NH_3 .
- 4) Compound (Y) on reaction with HNO₂ gives aliphatic Diazonium salts which liberate N₂ gas and form alcohol.

Sec: Sr.S60_Elite, Target & LIIT-BTs

69. Compare basic strength of below compounds?

- 1) A > B > C
- **2)** B > A > C
- 3) C > A > B
- **4)** C > B > A
- **70.** Which of the following sets of reaction will not give phenol?

SECTION-II (NUMERICAL VALUE TYPE)

This section contains 5 Numerical Value Type Questions. The Answer should be within 0 to 9999. If the Answer is in Decimal then round off to the Nearest Integer value (Example i,e. If answer is above 10 and less than 10.5 round off is 10 and If answer is from 10.5 and less than 11 round off is 11).

Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases

71. 29.2 % (w/w) HCl stock solution has density of 1.25 g/mL. The molecular weight of HCl is 36.5 g/mol. The volume (mL) of stock solution required to prepare a 100 mL solution of 0.4M HCl is

Sec: Sr.S60_Elite, Target & LIIT-BTs

The average oxidation number of Br in Br_3O_8 is 'x' and the average oxidation number of C 72.

in
$$C_3O_2$$
 is 'y' then $\frac{x}{y} = \underline{\hspace{1cm}}$

How many statements are true for the following pair of compounds? 73.

Cis Trans

- i) The dipole moment of trans isomer is zero
- ii) The boiling point of cis isomer is more than trans isomer
- iii) Cis isomer is more stable than the trans isomer
- iv) These are also called configurational diastereomers
- v) These are readily inetrconvertible under normal conditions
- vi) The melting point of trans isomer is more than the cis isomer
- vii) Trans isomer is more soluble than cis isomer in polar solvents
- **74.** How many isomers of C₄H₁₀O reacts with Na metal evolve H₂ gas? (excluding stereoisomers)
- How many of the following are optically inactive? *75.*
 - i) trans $-\left[Co(en)_2 Cl_2\right]^{2+}$ ii) cis $-\left[Co(en)_2 Br_2\right]^{+}$ iii) $\left[Co(NH_3)_3 Cl_3\right]$
- iv) trans $-\lceil Co(NH_3)_4 Cl_2 \rceil^+$ v) trans $-\lceil CoCl_2(C_2O_4)_2 \rceil^{3-}$

Sec: Sr.S60_Elite, Target & LIIT-BTs

Sri Chaitanya **Educational Institutions & Techno Schools**

PROUDLY ACHIEVED **222 RANKS IN TOP 1000**

SEIZES 4 RANKS IN TOP 10 IN ALL-INDIA RANKS

SECURED 25 RANKS IN TOP 100 ALL INDIA OPEN CATEGORY

Below 100

Below 500

Below 1000

100

Below 1000

TOTAL QUALIFIED RANKS FOR JEE ADVANCED-2024

SCAN THE QR CODE

www.srichaitanya.net | Ph: 040 660 60606