VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta informačních technologií

Modelování a simulace 2022/2023

Projekt

7. Šíření emisí v atmosféře

Dominik Pop (xpopdo00)

Adam Hos (xhosad00)

Brno, 5. prosince 2022

Obsah

Návod na použití	3
Úvod	4
Rozbor tématu a použitých technologií	4
Koncepce	4
Testování	6
Závěr	10
Zdroje	11

Návod na použití

I. Překlad

Program se přeloží pomocí Makefile, který spustí překladač g++.

II. Závislosti

Jsou využity knihovny OpenGL, utility toolkit GLUT pro OpenGL a standartní C++ knihovny.

III. Použití

Je možné spustit jednu z Makefile run konfigurací run1-run6 nebo přes spustitelný soubor s následujícími argumenty.

Obrázek 1: Pomocná funkce zobrazující parametry programu

Pro spuštění GUI je potřeba X11 grafické prostředí. Je součástí většiny Unix systémů. Pokud není (např. merlin.fit.vutbr.cz) lze se z jiného Unix zařízení připojit pomocí shh s argumentem – Y povolující X11 přesměrování (rychlost takového spuštění bude ale poměrně malá). Při zpuštění GUI je možné vytvořit novou nehodu kliknutím do mapy.

Úvod

Znečištění ovzduší je čím dál víc probíraným tématem, a to z mnoha různých důvodů, jako např. přírodní katastrofy, válka, uhlíková stopa, chemické havárie. Tento projekt tedy řeší implementaci celulárního automat[3] zabývajícího se simulací šíření škodlivých látek v atmosféře. V našem konkrétním případě se jedná o simulaci neplánovaného uvolnění škodlivé látky z bodového zdroje, jako je třeba továrna na chemické produkty, do ovzduší na území velikostně porovnatelného se statutárním městem Přerovem (58,45 km²). Automat simuluje šíření látky na základě různých parametrů, s tím že se jedná o časově krátkou simulaci (řády minut). Z této simulace lze pak získat různé statistiky, jako například celková plocha zasažená škodlivinou nebo koncentrace škodliviny v ovzduší. Smyslem je tedy demonstrovat rozsah a vážnost šíření škodliviny za různých podmínek. Tyto informace lze využít například k tvoření evakuačních plánů při nehodě míry.

I. Autoři a zdroje

Autoři projektu jsou studenti VUT FIT, 3-BIT, Adam Hos a Dominik Pop. Mezi hlavní zdroje projektu patří dvě vypracované akademické práce. První zdroj je diplomová práce zaměřená na rozptylové studie, jejíž autorem je Jan Dvořáček[1]. Tato práce sloužila k seznámení s tématem a základními pojmy. Druhým zdrojem je projekt studentů čínské akademie systémového inženýrství [2], zabývající se tvorbou celulárního automatu, který jako v našem případě simuluje šíření škodlivých látek při havárii, ale ve větším rozsahu, kdy simulují i dopad na populaci a nejlepší možnou únikovou cestu před toxickou látkou.

Rozbor tématu a použitých technologií

Škodliviny mohou vznikat na základě různých událostí. Takovou událostí může být přírodní katastrofa, jaderná katastrofa, únik látek z různých továren nebo například i výbuch a hoření dané továrny. Náš celulární automat se zaměřuje na poslední dvě zmíněné situace. Máme nějaké epicentrum, buňku, ve které se stala nějaká nehoda. Může se jednat o náhlý únik z komínu, nebo výbuch a hoření skladiště. Podle toho, jaká situace nastala se liší průběh simulace. Pokud by se jednalo o únik, pak sledujeme putování mraku látky napříč naší mapou a koukáme se na jeho postupný rozklad do okolí. V druhé situaci bychom sledovali vlečku proudící z epicentra. Obě situace sledujeme v rámci stovek sekund. Rychlost šíření je velice závislá na rychlosti a směru větru, který v naší simulaci je po celou dobu konstantní. Ojedinělým případem v našem řešení je zadání parametru "p", kdy se směr větru změní po určitém časovém intervalu. Dále šíření probíhá pomocí difuse.

I. Popis použitých postupů

Simulace je založena na celulárních automatech. Ty jsou pro dané téma vhodné, protože dokáží dobře odsimulovat šíření a pomocí vybarvování buněk je možné dobře znázornit koncentraci látky v daném místě.

II. Popis použitých technologií

K implementaci byl použit jazyk C++, ke grafickému zobrazení simulace knihovna Glut(https://www.opengl.org/resources/libraries/glut/glut_downloads.php).

Koncepce

Celulární automat pracuje s buňkami, které se navzájem ovlivňují na základě zvoleného okolí. Pro každou buňku se vypočítá její stav pomocí přechodové funkce (1), která využívá různých parametrů vhodných k danému tématu. Celková plocha buněk nám pak reprezentuje nějaké území z reálného prostředí a jedna buňka simuluje kus daného území a proces, který se v něm odehrává. Všechny tyto součásti, které využívá náš celulární automat jsou popsané níže.

I. Algoritmus nejbližších sousedů

Byl zvolen Moorův algoritmus nejbližších sousedů, který reprezentuje okolí zkoumané buňky jako 8mici sousedních buněk.

Obrázek 2: Moorovo sousedství

II. Stavy buňky

Stav buňky je vyjádřen pomocí koncentrace dané škodlivé látky v dané buňce. Jednotkou této hodnoty je tedy mg/m³. V počátečním stavu je koncentrace všech buněk nulová. Při havárii považujeme za epicentrum jednu buňku na pozici [i, j]. Tato buňka může svou počáteční koncentraci mít buď:

- 1. Konstantní jedná se tedy o generátor (výbuch emitující škodliviny do vzduchu konstantě)
- 2. Jednotkovou jedná se tedy o generátor pouze pro jednu iteraci (náhodné uvolnění škodliviny na základě pochybení)

III. Přechodová funkce

$$^{t+\Delta t}C_{i,j} = f(^{t}C_{i,j}, \Delta^{t}C_{neighbor}, ^{t}K_{direction}, ^{t}V_{direction}, ^{t}k, \Delta t)$$
 (1)

Přechodová funkce buňky závisí na mnoha parametrech:

- Koncentrace buňky v čase t ${}^tC_{ij}$ [mg/m³]
- Gradient koncentrace mezi centrální buňkou a okolím v čase t Δ $^tC_{soused}$ [mg/m³]
- Difusní koeficient K_{soused/roh} [m²/s]
- Rychlost větru v daném směru V_{směr} [m/s]
- Rozkladový koeficient s k [mg/s]
- Změna v čase konstantně 1 s

Přenosová funkce pro naše účely může být tedy vyjádřena takto:

$$\begin{array}{l} ^{t+\Delta t}C_{i,j} = \ ^{t}C_{i,j} + \alpha \ ^{t}K_{soused} \left[\left(\ ^{t}C_{i-1,j} - \ ^{t}C_{i,j} \right) + \left(\ ^{t}C_{i+1,j} - \ ^{t}C_{i,j} \right) + \left(\ ^{t}C_{i,j-1} - \ ^{t}C_{i,j} \right) + \left(\ ^{t}C_{i,j-1} - \ ^{t}C_{i,j} \right) \right] \\ \left(\ ^{t}C_{i,j-1} - \ ^{t}C_{i,j} \right) \left[\left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) + \left(\ ^{t}C_{i+1,j+1} - \ ^{t}C_{i,j} \right) + \left(\ ^{t}C_{i-1,j+1} - \ ^{t}C_{i,j} \right) \right] \\ \left(\ ^{t}C_{i+1,j-1} - \ ^{t}C_{i,j} \right) + \left(\ ^{t}C_{i-1,j+1} - \ ^{t}C_{i,j} \right) \right] \\ \left(\ ^{t}C_{i+1,j} - \ ^{t}C_{i,j} \right) + \ ^{t}V_{s} \cdot \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) + \ ^{t}V_{n} \cdot \left(\ ^{t}C_{i+1,j} - \ ^{t}C_{i,j} \right) \right] \\ \left(\ ^{t}C_{i+1,j} - \ ^{t}C_{i,j} \right) + \ ^{t}V_{se} \cdot \left(\ ^{t}C_{i-1,j+1} - \ ^{t}C_{i,j} \right) + \ ^{t}V_{nw} \cdot \left(\ ^{t}C_{i-1,j+1} - \ ^{t}C_{i,j} \right) + \ ^{t}V_{nw} \cdot \left(\ ^{t}C_{i-1,j+1} - \ ^{t}C_{i,j} \right) \right] \\ \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \right] \\ \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \right] \\ \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \right] \\ \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \right] \\ \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \right] \\ \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \right] \\ \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \right) \\ \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \right) \\ \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \right) \\ \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i,j} \right) \right) \\ \left(\ ^{t}C_{i-1,j-1} - \ ^{t}C_{i-1,j-1} - \ ^{t}C_{i-1,j-1} - \$$

Pro naši simulaci o rychlosti větru říkáme, že je konstantní po celou dobu simulace. Máme dva druhy difusních koeficientů. Koeficient pro přímé sousedy a koeficient pro sousedy rohové, který je menší, protože sousední buňky spolu sdílí více hrany a měli by si tedy předávat více látky při difuzi. Hodnotu pro rohové sousedy jsme dosadili pomocí testování, hodnotu sousedních na základě různých simulací používajících celulární automaty.

IV. Čas a prostor

Změna v čase je v projektu reprezentována pomocí jedné iterace cyklu. Kdy tato jedna iterace představuje 1 s v reálném čase.

Celkový prostor je reprezentován pomocí simulačního okna, kdy obsah tohoto okna odpovídá 64 km², tedy délka jedné strany okna odpovídá 8 km. Celkový počet buněk v daném okně je 40000, tedy v jednom řádku je 200 buněk. Buňka má obsah 1600 m², tudíž délka jedné strany buňky je 40 m.

Hodnoty reprezentující čas a prostor:

- Čas t [s]
- Délka hrany okna a [km]
- Počet buněk v řádku M
- Délka hrany buňky h = (a * 1000) / M [m]

Testování

Probíhali dva druhy testů. S vypnutým a zapnutým generátorem.

I. Vypnutý generátor

Pokud je generátor látek vypnutý, znamená to pro nás nějaký krátkodobý únik látky. V našem případě říkáme, že se v intervalu 1 sekundy uvolnila látka v koncentraci 300000 mg/m³. V rámci simulace byl tedy vypuštěn oblak, který se buď držel na jediném místě v případě bezvětří anebo se postupně rozpínal putoval po mapě na základě síly větru. Koncentrace klesá ať už kvůli difusi, která se snaží o rovnoměrné rozložení koncentrace mezi buňky, tak i díky rozkladovému koeficientu, který jsme nastavili na velice malou hodnotu na základě testování. Počet buněk zasažených látkou rostl s pohybujícím se mrakem. To jsme se rozhodli ukázat na 3 rychlostech větru: bezvětří, silný vítr z jihu, slabý vítr z jihu. Výsledky pro dané měření lze najít v grafu.

Obrázek 3: Simulace pro mrak při bezvětří

Obrázek 4: Simulace pro mrak pro silný vítr z jihu

Obrázek 5: Simulace pro mrak pro slabý vítr z jihu

Obrázek 6: Graf zobrazující počet zamořených buněk

Obrázek 7: Graf zobrazující koncentraci látky

II. Zapnutý generátor

Pokud je generátor látky zapnutý znamená to pro nás výbuch daného zařízení. Generátor tedy látku produkuje neustále po celou dobu simulace. V našem případě produkuje látku v koncentraci 300000 mg/m³ za 1 sekundu. V rámci simulace se to tedy projeví tak, že se z místa výbuchu šíří oblak emitované látky. Šíření je opět velmi závislé na síle vzduchu. V případě bezvětří se látka šíří pouze pomocí difuse. V opačném případě se k difusi přičítá.

Obrázek 8: Simulace vlečky při bezvětří

Obrázek 9: Simulace vlečky při silném větru z jihu

Obrázek 10: Simulace vlečky při slabém větru z jihu

Obrázek 11: Graf zobrazující počet zamořených buněk

Obrázek 12: Graf zobrazující koncentraci látky

Závěr

Studí provedenou na našem modelu šíření škodlivého plynu ve vzduchu jsme potvrdili očekávané výsledky ze studií [1] a [2]. Bylo zjištěno, jak se škodlivina šíří při různých závažnostech nehody a větrných podmínek. Výstupem modelu je jeho stav v daném čase od počátku simulaci. Z experimentů lze vyvodit, že po množství uvolněné látky je rychlost větru nejdůležitějším faktorem pro rozsah poznamenaných buněk. V případě většího množství uvolněné látky je riziko tělesné újmy místních obyvatel kvůli rychlému šíření plynu skoro jisté a měly by se vybudovat ochranné plány pro takovéto situace.

Zdroje

- [1] DVOŘÁČEK, Jan. *ROZPTYLOVÉ STUDIE PRO LOGISTICKÉ MODELY* [online]. Brno, 2018 [cit. 2022-12-03].
 - Dostupné z: https://www.vut.cz/www_base/zav_prace_soubor_verejne.php?file_id =174709. Diplomová práce. Vysoké učení technické. Vedoucí práce Ing. Martin Pavlas, Ph.D.
- [2] CAO, Huan, Tian LI, Shuxia LI a Tijun FAN. An integrated emergency response model for toxic gas release accidents based on cellular automata [online]. Shanghai, 2016 [cit. 2022-12-03]. Dostupné z: https://sci-hub.se/10.1007/s10479-016-2125-4. East China University of Science and Technology.
- [3] Peringer Petr a Hrubý Martin. Modelování a simulace, Text k přednáškám kursu Modelování a simulace na FIT VUT v Brně [online]. Brno [cit. 2022-12-03]. Dostupné z: https://moodle.vut.cz/pluginfile.php/496048/mod_resource/content/1/IMS.pdf.