Esercitazione N.5: Transistor JFET.

Gruppo xx Federico Belliardo, Francesco MAzzoncini, Giulia Franchi

November 7, 2016

[Aggiungere specificazioni su come si sono coniderati gli rrori nei fit]

1 Scopo e strumentazione

Studiare le caratteristiche e realizzare un amplificatore con il JFET a canale N 2N3819.

2 Studio funzionamento del JFET

Montaggio e ossevazioni qualitative. E' stato montato il circuito in figura 1, con $R_1 = 0.994 \pm 0.008$, $R_2 = 1.95 \pm 0.01$, $V_1 = 15.11 \pm 0.08$ e $V_2 = -15.01 \pm 0.08$. Le due sorgenti di tensione DC ono state ottenute dalle due boccole del generatore in dotazione. R_2 è la resistenza totale del potenziometro.

Variando la resistenza del potenziometro (partitore di tensione) cambia la tensione di gate (V_{GS}) , dunque il JFET entra in conduzione solamente quando si supera la tensione $V_{GS} > V_P$ (tensione di pinch-off, quando ciò succede si accende il led. Qualitatvamente stimiamo: $V_P = 3.0 \pm 0.1 \, V$.

Misura della corrente I_D in funzione di V_GS . Si sono prese misure della tensione V_{GS} e di V_{R1} utilizzando il multimetro digitale (abbiamo evitato l'uso dell'oscilloscopio perchè le nostre misure non fossero affette dall'errore sistematico del 3%), da V_{R1} si è ricavata poi $I_D = \frac{V_{R1}}{R_1}$. Nella tabella 1 e in figura 4 sono riporati i dati presi.

$V_D(V)$	$\sigma V_D(V)$	$V_{GS}(V)$	$\sigma V_{GS}(V)$
0.013	0.001	-3.27	0.02
0.078	0.001	-3.13	0.02
0.264	0.002	-2.94	0.02
0.462	0.003	-2.81	0.02
1.02	0.01	-2.51	0.02
1.69	0.01	-2.23	0.01
2.94	0.02	-1.81	0.01
4.34	0.02	-1.37	0.01
6.22	0.03	-0.872	0.004
8.01	0.04	-0.413	0.002
9.36	0.05	-0.037	0.001

Table 1: Dati di corrente I_D in funzione delle tensioni V_{GS}

La retta di carico è: $V_1 - R_1 I_D - V_\gamma - V_{DS} = 0$ quando scorre corrente I_D (cioè sono in zona ohmica o di saturazione), mentre $V_{DS} = V_1$ quando sono in zona di interdizione.

Il grafico 2 riporta un immagine delle curve caratteristiche del JFET nel caso in cui la tensione di pinch-off sia $V_P = -2.0V$, sul quale è riportata la retta di carico. Si vede che per i valori delle tensioni V_{DS} esplorati (calcolati dalla retta di carico e riportati nella tabella 1 siamo sempre in zona di saturazione.

E' stato eseguito un fit di una funzione parabolica $(I_D = K_P(V_{GS} - V_P)^2)$, considerando solamente i dati attorno alla tensione di *pinch-off*, cioè in una regione in cui ci aspettiamo valga il comportamento ideale.

Per il fit numerico si è utilizzata la funzione curvefit della libreria pylab con l'opzione absolute sigma = "true", poichè abbiamo considerando gli errori come statistici, in quanto abbiamo considerato soltanto l'errore

Figure 1: Schema di JFET in corrente continua.

Figure 2: Curve caratteristiche del JFET dal datasheet.

Figure 3: Corrente di drain misurata in funzione della tensione V_{GS} .

di misura sul tester. Riportiamo il grafico in figura ?? e di seguito parametri fittati con la relativa matrice di covarianza: $K_P = (1.4\dot{0}.8)\dot{1}0^{-3}\frac{A}{V^2}, \ V_P = -3.34\pm0.07\,V, \ \Sigma_{ij} = \begin{pmatrix} 7.12\dot{1}0^{-7} & 4.09\dot{1}0^{-5} \\ 4.09\dot{1}0^{-5} & 4.51\dot{1}0^{-3} \end{pmatrix}$. Il punto del grafico per cui $V_{GS} = 0.0V$ corrisponde alla corrente $I_{DSS} = 9.5\pm0.1\,mA$ (stimato), alterna-

Il punto del grafico per cui $V_{GS}=0.0V$ corrisponde alla corrente $I_{DSS}=9.5\pm0.1\,mA$ (stimato), alternativamente si possono utilizzare le informazioni del fit: $I_{DSS}=K_PV_P^2=15\pm10\,mA$. I due valori non sono campatibili, perchè il fit esguito non può essere estrapolato fino a tensioni prossime allo zero.

Il valore di V_P è molto variabile per costruzione, ma il valore misurato è compatibile con quello tipico indicato nel datasheet: $V_{P,datasheet} = -3 V$. Per I_{DSS} è riportato un valore tipico di $I_{DSS} = 10 \, mA$ compatibile con quello estratto dal grafico.

3 Montaggio amplificatore

Stima della tensione V_P e della corrente I_DSS Si è montato il circuito in 5, con i componenti: $R_1=\pm$, $R_2=\pm$ e $C_1=\pm$ e $V_1=\pm$. Si è regolato il potenziometro in modo che la corrente di quiescenza fosse la metà di I_{DSS} , il valore misurato è: $I_D=\pm$. La resistenza a cui si osserva ciò è: $R_{part}=\pm$ (è lasciata costante e sarà usata successivamente). Si è misurata la tensione V_{GS} . Dalla formula $V_{GS}=V_P\left(1-\sqrt{\frac{I_D}{I_{DSS}}}\right)$ (valida in zona di saturazione), ricaviamo il valore atteso per V_{GS} cioè: $V_{GS}=\pm$.

Da questi dati si può anche dare una stima della tranconduttanza: $g_m = \frac{i_D}{v_{GS}} = \frac{2I_{DSS}}{|V_P|} \sqrt{\frac{I_D}{I_{DSS}}} = \pm.$

4 Misure a frequenza fissa

Tutte le misure di questa sezione sono prese usando una frequenza fissa di $f_0 = \pm$. L'ingresso del circuito in entrambi i casi è al gate.

Circuito common source. Si sono prese le misure si tensione in uscita dal drain, insieme alle misure di tempo tra un picco del segnale di ingresso e un picco del segnale in uscita. I dati sono riportati nella tabella seguente ??. [inserire qui la tabella] Trascuarando la corrente che scorre nel gate abbiamo le due equuazioni per piccoli segnali: $i_D = g_m v_{gs} = \frac{v_S}{R_{part}}$ e $i_D = g_m v_{gs} = -\frac{v_D}{R_1}$, da queste si ottiene: $A_V = -\frac{v_D}{v_G} = -\frac{R_1 g_m}{1+R_{part} g_m} = \pm$. [Inserire valore numerico] Come si vede dalla tabella per gli intervalli di tensione per cui si sono prese le misure l'amplificazione rimane circa costante e il suo valore medio è: $A_V = \pm$.

Si è iniziato ad avere clipping superiore per $V_{clipping,sup} = \pm$. [spiegare perchè non c'è clipping inferiore]

Circuito source follower. Nella tabella ?? sono riportati i dati prendendo come uscita il source, si sono ripetute le stesse misure e analisi.

[inserire la tabella]

Figure 4: Fit parabolico intorno alla tensione di pinch off.

Figure 5: Schema di JFET in corrente continua.

Dalle stese equazioni della sezione precedente otteniamo la relazione: $A_V = \frac{R_{part}g_m}{1+R_{part}g_m}$, dalla quale si può stimare teoricamente il guadagno atteso come: $A_V = \pm$. La media delle misure da $A_V = \pm$. I due valori sono in accordo entro l'errore sperimentale.

Si osserva clipping inferiore alla tensione: $V_{clipping,inf} = \pm$. [Spiegare perchè non si ha clipping superiore] [vedere se mettere l'immagine del modello a piccoli segnali, soprattuto quale mettere...]

Nella formula per determinare il guadagno vediamo g_m sia a numeratore che a denominatore, duquue non possiamo propagare l'errore considerandoli come indipendenti (sovrastimeremmo troppo l'errore sull'amplificazione). L'errore è stato propagato considerando la semidispersione massima ($\Delta = A_V(< g_m > + \sigma g_m, R_1, R_{part}) - A_V(< g_m > - \sigma g_m, R_1, R_{part})$) sommata in quadratura con l'errore ottenuto propagando σR_1 e σR_{part} come errori statisticamente indipendenti. In realtà la propagazione statistica eseguita con le derivate parziali (di $A_V(g_m, R_1, R_{part})$) sommate in quadratura già li considera come errori non indipendenti, quindi è possibile utilizzare le librerie uncertainties

5 Misura impedenza di ingresso

Trascurando le impedenze tra i terminali del JFET possiamo stimare $R_{int} = \frac{1}{j\omega C} + R_3 \sim R_3 = \pm$. Per eseguire la misura si sono misurate le uscite con e senza resistenza R_S posta in serie al generatore di funzioni. La resistenza in ingresso attesa si ottiene dalla formula del partitore di tensione, $\frac{R_S}{R_IN} = \frac{V_1}{V_2} - 1$ (dove V_1 è la tensione misurata senza resistenza R_S). Si sono ripetute le misure per le frequenze $f_1 = 1kHz$ e $f_2 = 10kHz$. In tabella sono anche riportate le frequenze attese calcolate teoricamente alle due frequenze:

•	V_1	V_2	R_{IN}	$R_{IN,att}$
1kHz	•	•	•	•
10kHz	•	•	•	•

L'impedenza misurata sperimentalmente è minore di quella calcolata teoricamente a causa delle impendenze delle capacità tra i terminali del JFET, che sono poste in parallelo alla resistenzea R_3 .

6 Aumento del guadagno

In questa sezine si è mantenta costante la frequenza di lavoro e variando il potenziometro si sono effettuate diverse misure di tensione in uscita. [abbiamo dovuto verificare che l'ingresso fosse costante?]. Il valore massimo del guadagno è risultato essere quello per cui la resistenza R_S era minore (teoricamente nulla) $(R_{S,min})$. Il valore teorico del guadagno con questa resistenza è: $A_V = \pm$, che non è compatibile con il valore misurato.