Yonsei Data Science Lab Summer 2025 EDA Project

리뷰·인프라 기반 국내 관광객 유입 요인 분석

13기 강승우 이진우 | 14기 고서연 신지원

Contents

01주제소개 --- 02데이터개요

주제 선정 배경

프로젝트 목적

데이터 소개

데이터 전처리

03 데이터 분석

분석 과정

분석 결과 및 시각화

04 결론 및 제언

인사이트 및 마케팅 제안

향후 과제

01 年期 소개

주제 선정 배경

팬데믹 이후, 내국인 중심의 관광 수요 빠르게 <u>회복</u>

- 국내 여행은 2023년 기준 361.8백만 회로 전년 대비 9.2% 증가
- 국내 여행 비중이 꾸준히 증가하며 내국인이 중심이 된 관광 패턴 정착
- 연도별 방문자수 추세 또한 꾸준히 증가하는 추세

관광 산업은 국가 경제의 성장 동력

• 내/외국인의 전국 관광객 수 꾸준히 증가 추세

항목	2023년 실제치	2034년 전망치	
GDP 기여	84.71조 원	130.9조 원	
일자리 수	134만 명	180만 명	

- 2034년까지 한국 관광산업의 연간
 GDP 기여도는 130.9조 원, 전체
 GDP의 약 5%를 차지할 전망
- 고용 측면에서도 180만 명 이상을 지원하며 **전체 일자리의 6.8%**를 차지하게 될 것으로 예측됨

지속 가능한 관광 활성화를 위해, 방문객 유입을 결정짓는 다양한 요인을 통합적으로 분석하는 것이 중요

프로젝트 목적

관광객 수에 영향을 주는 요인을 분석해 국내 관광지 활성화 전략 수립 관광객 리뷰 및 관광 인프라 데이터를 활용한 통합 분석 수행

주요 분석

리뷰 데이터 기반 감정 분석

관광지별 긍·부정 감정 분포 및 변화 추이 분석

리뷰 데이터 기반 핵심 키워드 추출

관광객들이 중요하게 여기는 요소 파악

관광 인프라와 방문자 수 관계 분석

안내소, 숙박, 축제 등의 인프라 요소가 방문자 수에 미치는 영향 파악

02 HIOIH JHS

데이터소개

데이터셋 요약

- 1. 정량적 데이터: 관광객 수 (2020~2024), 관광안내소/숙박/축제 위치 정보
- 2.정성적 데이터: 네이버 지도에서 크롤링한 관광지 리뷰 (상위/하위 100곳)

데이터명	주요 컬럼	데이터 출처
기초지자체 방문자수	2020~2024년 연도별 방문자 수	한국관광공사
전국관광안내소표준데이터	관광안내소명, 위치, 위경도	공공데이터포털
전국관광지정보표준데이터	관광지명, 위치, 위경도	공공데이터포털
전국관광펜션업소표준데이터	숙박업소명, 주소, 좌표정보	공공데이터포털
전국문화축제표준데이터	축제명, 위치, 위경도	공공데이터포털
naver_map_reviews_top100	관광지명, 리뷰, 리뷰 수, 방문객 수	네이버 지도 크롤링
naver_map_reviews_bottom100	관광지명, 리뷰, 리뷰 수, 방문객 수	네이버 지도 크롤링
관광지별 방문자수 데이터	관광지명, 2020~2024년 방문자 수	한국관광공사
행정구역 경계 데이터	X	Geoservice Web

데이터수집방법

관광객 수 데이터

• 한국관광공사에서 지역별로 다운로드 받은 후 병합

인프라 데이터

• 공공데이터포털에서 다운로드

네이버 리뷰 데이터

- 관광지별 관광객 수 데이터에서 관광지만 추출 후 각 관광지의 리뷰를 최대 100개씩 네이버 지도 리뷰에서 크롤링
- 관광객 수 상위 100개 관광지와 하위 100개 관광지 대상

행정구역 경계 데이터

• Geoservice Web에서 다운로드

데이터 전처리 방법

관광지별 관광객 수 데이터

- 필요한 컬럼만 남긴 후, 결측치 존재 행 제거
- 주소 문자열에서 행정구역(구/군/시) 추출하여 각 관광지별 위치정보 통일

인프라 데이터

- 필요한 컬럼만 남긴 후, 결측치 존재 행 제거, 숙박업소 데이터의 경우 폐업 업소 제거
- 위경도 데이터를 좌표계 EPSG:5179로 통일하기 위해 좌표계 변환 적용
 - → GeoDataFrame 생성

네이버 리뷰 데이터

• 추후 임베딩 시 노이즈가 될 수 있는 특수기호 삭제

03 届0居县

데이터분석과정요약

1) 감정 분석

온라인 리뷰 텍스트 → 긍정/부정 감성 분석 평가

3) 관광 인프라 공간 커버리지 분석

상관 분석 다중 회귀 분석 (OLS Regression)

2) 키워드 분석

온라인 리뷰 텍스트 임베딩 → 코사인 유사도 기반 키워드 매핑

4) 데이터 시각화

지역 간 비교를 위해 4가지 변수 시각화 : 2024년 방문자 수, 관광지당 안내소 평균, 관광지당 숙박업소 평균, 지역 축제 개수

감성 분석 과정

1. 감성 분석 모델 초기화 (총 4개의 모델 사용)

WhitePeak/BERT-Korean, KoMiniLM, DistilBERT-SST2, nlptown Multilingual

2. 감성 분석

• 관광지 별 리뷰들을 모두 감성 분석 모델에 적용 후 Softmax 확률을 추출 $\rightarrow 1~0$ 사이의 연속 분포로 출력

3. 관광지 평균 감성 분석 결과 비교

• Top 100 관광지와 Bottom 100 관광지의 평균 감성 분석 점수 비교

감성 분석 사용 언어모델 비교

모델별 감성 분석 성능 및 특징

모델	분포 특징	핵심 특징	한글 리뷰 적합도	
한글 파인튜닝 모델 (WhitePeak-bert-based- model)	감성 점수가 0 또는 1에 극단 집중 → 중간값 거의 없음	단적인 긍정/부정으로 분류하는 경향이 있어 관광지별 극명 한 차이를 보여줌	****	
영어 파인튜닝 모델 (distilbert)	0.2~1.0 구간에 고르게 분포 → 부드러운 연속 스펙트럼	연속적인 점수 분포로 미세한 감성 차이까지 반영, 실제 긍정/부정 분포도 상위/하위 100에서 명확히 달라짐	***	
트위터 특화(cardiffnlp- twitter-robert-based)	대다수 리뷰가 0.05~0.2 낮은 점수에 몰림 → 거의 부정으로 예측	한글 리뷰에서 거의 모두를 부정으로 해석하는 경향이 뚜렷 해, 본 실험 목적에는 적합하지 않다.	****	
멀티랭귀지 BERT(nlptown)	0, 0.25, 0.5, 0.75, 1.0 의 5 단계 계단형 분포	멀티랭귀지 BERT(nlptown)는 5단계 등급(0~1)으로 점 수를 매겨, 극단적인 분포와 등급화된 분포 특징을 보임	***	

→ 공통적으로, 상위 관광지일수록 긍정 리뷰의 분포가 더 높게 나타나고, 하위 관광지는 부정에 치우치는 경향이 나타난다.

리뷰 감성 분석 (1/2)

사용한 모델 1) WhitePeak/bert-base-cased-Korean-sentiment(한국어 파인튜닝)

- 리뷰의 긍정·부정 분포를 계산하고 관광지별 평균 감정 점수 분석
- 리뷰의 감성 점수가 극단적으로 0(부정) 또는 1(긍정)에 몰려 있음
- 긍정/ 부정 확률을 명확히 (0 또는 1)로 판별, 관광객이 많은 상위 관광지가 대체로 긍정적인 평가가 많음(1.0 비율이 높음)

리뷰 예시	긍정 확률(0~1)	해석
작품 관람하기에 참 좋습니다	0.989	매우 긍정적
이 전시 최악입니다	0.002	매우 부정적

리뷰 감성 분석 (2/2)

사용한 모델 2) distilbert-base-uncased-finetuned-sst-2-english (영어 기반 감정분석 모델)

- 감성 점수를 연속적으로 잘 분포시킴
- 관광객 수가 많은 상위 100 관광지가 하위 100에 비해 리뷰가 더 긍정적임을 시각적으로 보여줌

키워드 임베딩 분석 과정

1. 임베딩 모델 초기화 (총 4개의 모델 사용)

• bge-m3-korean, KoSimCSE-roberta, KoSimCSE-bert, KR-SBERT-V40K-klueNLI-augSTS

2. 키워드 임베딩 생성

- 키워드 예시: '자연: 산, 바다, 호수 등 자연 경관', '음식: 맛집, 카페, 음식거리' 등
- 총 18개 키워드 선정 후 임베딩 정확도 향상을 위해 간단한 설명 추가 후 임베딩

3. 리뷰 임베딩 생성

• 모든 리뷰 텍스트를 임베딩하여 벡터로 변환

5. 코사인 유사도 계산 및 결과 출력

• 리뷰 벡터와 키워드 벡터의 유사도 비교 후 Place별로 평균 집계

5. 일정 임계값 이상의 상위 키워드 추출

• 임계값을 0.3-0.5까지 0.05간격으로 바꿔 가며 Place별 상위 키워드 추출

키워드 임베딩 사용 언어모델 비교

모델별 키워드 임베딩 성능 및 특징

모델	모델 특징	추천 Threshold 및 목적	한글 리뷰 적합도	
upskyy/bge-m3-korean	BGE 기반 대규모 한국어 임베딩 모델	@0.30(키워드 양 최대화)	***	
BM-K/KoSimCSE-roberta- multitask	RoBERTa 기반 한국어 KoSimCSE 다중 Task 임베딩 모델	@0.35-0.40(키워드 안정성/정확도 균형)	****	
BM-K/KoSimCSE-bert multitask	BERT 기반 한국어 KoSimCSE 다중 Task 임베딩 모델	@0.35-0.40(안정적 결과 확보)	****	
snunlp/SBERT-V40K- klueNLI-augSTS	한국어 NLI + STS로 강화된 SBERT	@0.35-0.40(균형잡힌 키워드 추출)	***	

인기키워드분석

최종 사용 모델 - Roberta-multitask @ 0.4

관광지명	대표 키워드
동궁과 월지	야경, 자연
고석정꽃밭	산책, 자연
국립중앙박물관	문화, 전통

관광 인프라 영향력 분석 (1/2)

상관 분석 결과 (로그 변환 데이터)

• Pairplot 및 상관관계 히트맵 분석 결과

- 결과 해석
- 안내소(log_guide)와 방문자수(log_visitors)의 상관계수가 0.54로 가장 높음
- 수 간에도 유의미한 상관 (0.30)이 있음
- 숙박(log_lodge)은 방문자 수 와 거의 상관 없음(0.02)

관광 인프라 영향력 분석 (2/2)

다중 회귀 분석 (OLS Regression)

Dep. Variable:		log_visitors		R-squared:		0.302	
Model:				Adj. R-squared:		0.290	
Method:	L	Least Squares Sun, 27 Jul 2025		F-statistic: Prob (F-statistic):		24.52 3.11e-13	
Date:	Sun,						
Time:		15:37:23		Log-Likelihood:		-187.13	
No. Observatio	ns:			AIC:		382.3	
Df Residuals:		170	BIC:			394.9	
Df Model:		3					
Covariance Typ	e:	nonrobust					
	coef	std err	 t	P> t	[0.025	0.975]	
const	 15.5771	0.175	89.125	0.000	15.232	 15.922	
log_guide	0.5016	0.071	7.094	0.000	0.362	0.641	
log_lodge	0.0522	0.061	0.862	0.390	-0.067	0.172	
log_festival	0.1171	0.064	1.842	0.067	-0.008	0.243	
======= Omnibus:		0.464	 Durbin-W	======== /atson:		1.626	
Prob(Omnibus):		0.793		Jarque-Bera (JB):		0.578	
Skew:		-0.112	Prob(JB):			0.749	
Kurtosis:		2.827	Cond. No	I¥		10.8	

결과 해석

- 관광 안내소 수는 관광객 수에 가장 큰 영향을 미치는 요소 (매우 유의미, p<0.001)
- 축제는 관광객 수에 긍정적 영향을 미치는 요소 (약한 유의성, p=0.067)
- 숙박업소의 양적 수는 관광객 수와 유의미한 상관성을 보이지 않음 → 질적 개선 필요

데이터 시각화 (1/3)

공간 데이터 시각화 (Choropleth Maps)

전국 기초지자체를 기준으로 다음 4가지 변수를 시각화, 지역 간 비교 가능

2024년 방문자 수

관광지당 안내소 평균

데이터 시각화 (1/3)

공간 데이터 시각화 (Choropleth Maps)

전국 기초지자체를 기준으로 다음 4가지 변수를 시각화, 지역 간 비교 가능

관광지당 숙박업소 평균

지역 축제 개수

데이터 시각화 (2/3)

방문자수 상위/ 하위 관광지 키워드 시각화(워드 클라우드)

상위 100곳 관광지 키워드

하위 100곳 관광지 키워드

-> 아이와 체험하는 곳으로 박물관/ 미술관보다 놀이기구와 아쿠아리움 등의 **액티브한 장소가 방문자수 상위 관광지에서 발견 됨**

데이터 시각화 (2/3)

방문자수 상위/ 하위 관광지 키워드 시각화(워드 클라우드)

상위 100곳 관광지 키워드

하위 100곳 관광지 키워드

→ 긍정 표현보다, '무섭다', '불친절하다', '비싸다', '시끄럽다' 등의 **부정 표현이 하위 관광지에서 발견 됨.**

데이터 시각화 (3/3)

방문자수 상위/ 하위 관광지의 평균 감성 점수 분포

관광지의 리뷰별 감성점수를 관광지별로 합산 후, 평균값의 분포

[1] 상위 100곳 관광지(파란색)

- 분포 중심이 0.8 부근에 뚜렷하게 몰려 있음
- 곡선이 좁고 뾰족함 → 대다수 관광지에서 평균 감성이 고르게 긍 정적임
- → 방문자 수가 많은 관광지는 전반적으로 꾸준히 긍정적인 경험을 제공하는 경향이 있음. 감성 편차가 적고, 기대가 안정적으로 충족됨.

[2] 하위 100곳 관광지(주황색)

- 분포가 넓고 평평, 더 퍼져 있음
- 특히 0.9 이상 영역에서 Top보다 밀도가 높음
- → 방문자 수가 적은 관광지 중 일부는 오히려 긍정적인 평가를 받고 있음, 하지만 전체적으로는 감성 점수가 이질적으로 분포함 (긍정/부 정/중립 모두 존재)

04 결론 및 제언

주요 인사이트 및 마케팅 제안 (1/2)

[1] 감성 분석 언어 모델 실험 결과

- 관광객 방문 수가 많은 상위 관광지일수록 긍정 리뷰의 분포가 더 높게 나타나고, 하위 관광지는 부정에 치우치는 경향이 뚜렷함
- 한글 감성분석 모델을 쓸수록 리뷰 감성의 상위/ 하위 관광지 차이가 극명하게 드러남
- 리뷰 키워드 중시/ 정량 평가 점수 위주, 연속 분포 등 산출하고 싶은 데이터 특징에 따라 모델을 다르게 사용할 수 있음

[2] 관광객 유입 요인

• **분석 결과, 긍정적인 리뷰와 안내소 접근성이 관광객 유입에 가장 큰 영향을 주는 요소임을 확인** 안내소의 추가 설치 및 운영시간 확대는 관광객 유치 및 증가에 유의미한 영향을 줄 것으로 판단됨

주요 인사이트 및 마케팅 제안 (2/2)

[3] 키워드로 보는 여행 트렌드

• '도시', '가족', '산책', 과 관련된 관광지의 리뷰수가 절대적으로 많고, '축제', '야경' 키워드는 상대적으로 낮은 빈도로 언급됨. 축제 혹은 야경 중심 관광지보다, 도시 근처의 가족과 산책 가능한 관광지가 국내 여행 주요 트렌드라는 점을 알 수 있음

• 관광지마다 명확한 키워드가 있으며, 관광지의 테마 마케팅에 응용 가능

Yonsei Data Science Lab

EDA Project

주요 인사이트 및 마케팅 제안 (2/2)

[4] 숨겨진 관광지

- 관광객이 많지 않은 관광지 중 리뷰 감성 분석 결과가 0.9 이상인 관광지 리스트
- 1. 거북이마을
- 2. 담양 커피농장
- 3. 박물관 휴르
- 4. 구포국수체험관
- 5. 한국등잔박물관

한계점

1. 사용자 특성 혹은 상황 고려 부족

- 리뷰 작성자의 연령대, 여행 목적, 계절적 요인(예: 여름에는 자연, 겨울에는 실내 위주 등) 같은 맥락을 고려하지 않음
- 특정 키워드가 일시적으로 많거나 적을 수 있음 (예: 해당 연도에 짧게 유행한 관광지 혹은 인기 있던 키워드가 반영될 수 있음
- 리뷰 이벤트를 진행한 경우 리뷰 데이터에 노이즈로 작용할 수도 있음

2. 단순화된 해석 가능성

- 리뷰 수가 많다고 해서 반드시 그 주제가 '더 인기' 있다는 해석은 과도한 일반화일 수 있음
- 예: '숙박'은 필수 요소라 별도로 언급하지 않는 사용자도 많을 수 있음 → 리뷰 언급이 적다고 해 서 관심이 낮다고 보긴 어려움

감사합니다