Matthias Puech^{1,2} Yann Régis-Gianas²

¹Dept. of Computer Science, University of Bologna ²University Paris 7, CNRS, and INRIA, PPS, team πr^2

May 2011

CEA LIST

A paradoxical situation

Observation

We have powerful tools to mechanize the metatheory of (proof) languages

A paradoxical situation

Observation

We have powerful tools to mechanize the metatheory of (proof) languages

... And yet,

Workflow of programming and formal mathematics is still largely inspired by legacy software development (emacs, make, svn, diffs...)

A paradoxical situation

Observation

We have powerful tools to mechanize the metatheory of (proof) languages

... And yet,

Workflow of programming and formal mathematics is still largely inspired by legacy software development (emacs, make, svn, diffs...)

Isn't it time to make these tools metatheory-aware?

Q: Do you spend more time writing code or editing code?

Today, we use:

- separate compilation
- dependency management
- version control on the scripts
- interactive toplevel with rollback (Coq)

In an ideal world...

- Edition should be possible anywhere
- The impact of changes visible "in real time"
- $\bullet\,$ No need for separate compilation, dependency management

In an ideal world...

- Edition should be possible anywhere
- The impact of changes visible "in real time"
- No need for separate compilation, dependency management

Types are good witnesses of this impact

In an ideal world...

- Edition should be possible anywhere
- The impact of changes visible "in real time"
- No need for separate compilation, dependency management

Types are good witnesses of this impact

Applications

- non-(linear|batch) user interaction
- typed version control systems
- type-directed programming
- tactic languages

In this talk, we focus on...

- ... building a procedure to type-check local changes
 - What data structure for storing type derivations?
 - What language for expressing changes?

Menu

The big picture

Incremental type-checking Why not memoization?

Our approach

Two-passes type-checking The data-oriented way

A metalanguage of repository

The LF logical framework Monadic LF Committing to MLF

Menu

The big picture

Incremental type-checking Why not memoization?

Our approach

Two-passes type-checking The data-oriented way

A metalanguage of repository

The LF logical framework Monadic LF Committing to MLF

version management	
script files	
parsing	
type-checking	

• AST representation

• AST representation

• AST representation

- AST representation
- Typing annotations

- AST representation
- Typing annotations

Yes, we're speaking about (any) typed language.

A type-checker

```
val check : env \rightarrow term \rightarrow types \rightarrow bool
```

- builds and checks the derivation (on the stack)
- conscientiously discards it

Yes, we're speaking about (any) typed language.

A type-checker

val check : env
$$\rightarrow$$
 term \rightarrow types \rightarrow bool

- builds and checks the derivation (on the stack)
- conscientiously discards it

$$\begin{array}{c} A \rightarrow B, B \rightarrow C, A \vdash B \rightarrow C \\ \hline A \rightarrow B, B \rightarrow C, A \vdash A \rightarrow B \\ \hline A \rightarrow B, B \rightarrow C, A \vdash A \rightarrow B \\ \hline A \rightarrow B, B \rightarrow C, A \vdash B \\ \hline A \rightarrow B, B \rightarrow C, A \vdash B \\ \hline A \rightarrow B, B \rightarrow C, A \vdash C \\ \hline A \rightarrow B, B \rightarrow C \rightarrow C \\ \hline A \rightarrow B \rightarrow C \rightarrow C \\ \hline A \rightarrow B \rightarrow C \rightarrow C \\ \hline A \rightarrow C \rightarrow C \\ \hline (A \rightarrow B) \rightarrow (B \rightarrow C) \rightarrow A \rightarrow C \\ \hline \end{array}$$

Yes, we're speaking about (any) typed language.

A type-checker

```
val check : env \rightarrow term \rightarrow types \rightarrow bool
```

- builds and checks the derivation (on the stack)
- conscientiously discards it

true

Goal Type-check a large derivation taking advantage of the knowledge from type-checking previous versions Idea Remember all derivations!

Goal Type-check a large derivation taking advantage of the knowledge from type-checking previous versions Idea Remember all derivations!

More precisely

Given a well-typed $\mathcal{R}: repository$ and a $\delta: delta$ and

 $\mathsf{apply}: repository \to delta \to derivation \ ,$

an incremental type-checker

 $\mathsf{tc}: repository \to delta \to bool$

decides if $\mathsf{apply}(\delta, \mathcal{R})$ is well-typed in $O(|\delta|)$. (and not $O(|\mathsf{apply}(\delta, \mathcal{R})|)$)

Goal Type-check a large derivation taking advantage of the knowledge from type-checking previous versions Idea Remember all derivations!

More precisely

Given a well-typed $\mathcal{R}: repository$ and a $\delta: delta$ and

 $\mathsf{apply}: repository \to delta \to derivation \ ,$

an incremental type-checker

 $\mathsf{tc}: repository \rightarrow delta \rightarrow repository\ option$

decides if $\mathsf{apply}(\delta, \mathcal{R})$ is well-typed in $O(|\delta|)$. (and not $O(|\mathsf{apply}(\delta, \mathcal{R})|)$)

Goal Type-check a large derivation taking advantage of the knowledge from type-checking previous versions Idea Remember all derivations!

from

\mathbf{to}

Memoization maybe?

```
\begin{array}{lll} \textbf{let rec} & \textbf{check env t a} = \\ & \textbf{match t with} \\ | & \dots & \rightarrow \dots \textbf{ false} \\ | & \dots & \rightarrow \dots \textbf{ true} \\ \\ \textbf{and infer env t} = \\ & \textbf{match t with} \\ | & \dots & \rightarrow \dots \textbf{ None} \\ | & \dots & \rightarrow \dots \textbf{ Some a} \\ \end{array}
```

Memoization maybe?

```
let table = ref ([] : environ \times term \times types) in
let rec check env t a =
  if List . mem (env,t,a) ! table then true else
    match t with
    | \dots \rightarrow \dots false
      \dots \rightarrow \dots table := (env,t,a)::! table; true
and infer env t =
  try List .assoc (env,t) !table with Not_found \rightarrow
    match t with
    | \dots \rightarrow \dots None
    \cdots \rightarrow \cdots table := (env,t,a )::! table; Some a
```

Syntactically

+ lightweight, efficient implementation

Syntactically

- + lightweight, efficient implementation
- + repository = table, delta = t

Syntactically

- + lightweight, efficient implementation
- + repository = table, delta = t
- syntactic comparison (no quotient on judgements)
 What if I want e.g. weakening or permutation to be taken into account?

Syntactically

- + lightweight, efficient implementation
- + repository = table, delta = t
- syntactic comparison (no quotient on judgements)
 What if I want e.g. weakening or permutation to be taken into account?

Semantically

- external to the type system (meta-cut) What does it mean logically?

$$\frac{J \in \Gamma}{\Gamma \vdash J \text{ wf} \Rightarrow \Gamma} \qquad \qquad \frac{\Gamma_1 \vdash J_1 \text{ wf} \Rightarrow \Gamma_2 \qquad \dots \qquad \Gamma_{n-1}[J_{n-1}] \vdash J_n \text{ wf} \Rightarrow \Gamma_n}{\Gamma_1 \vdash J \text{ wf} \Rightarrow \Gamma_n[J_n][J]}$$

Syntactically

- + lightweight, efficient implementation
- + repository = table, delta = t
- syntactic comparison (no quotient on judgements)
 What if I want e.g. weakening or permutation to be taken into account?

Semantically

- external to the type system (meta-cut) What does it mean logically?

$$\frac{J \in \Gamma}{\Gamma \vdash J \text{ wf } \Rightarrow \Gamma} \qquad \qquad \frac{\Gamma_1 \vdash J_1 \text{ wf } \Rightarrow \Gamma_2 \qquad \dots \qquad \Gamma_{n-1}[J_{n-1}] \vdash J_n \text{ wf } \Rightarrow \Gamma_n}{\Gamma_1 \vdash J \text{ wf } \Rightarrow \Gamma_n[J_n][J]}$$

- imperative (introduces a dissymmetry)

Syntactically

- + lightweight, efficient implementation
- + repository = table, delta = t
- syntactic comparison (no quotient on judgements)
 What if I want e.g. weakening or permutation to be taken into account?

Semantically

- external to the type system (meta-cut) What does it mean logically?

$$\frac{J \in \Gamma}{\Gamma \vdash J \text{ wf } \Rightarrow \Gamma} \qquad \qquad \frac{\Gamma_1 \vdash J_1 \text{ wf } \Rightarrow \Gamma_2 \qquad \dots \qquad \Gamma_{n-1}[J_{n-1}] \vdash J_n \text{ wf } \Rightarrow \Gamma_n}{\Gamma_1 \vdash J \text{ wf } \Rightarrow \Gamma_n[J_n][J]}$$

- imperative (introduces a dissymmetry)

Mixes two goals: derivation synthesis & object reuse

Menu

The big picture

Incremental type-checking Why not memoization?

Our approach

Two-passes type-checking The data-oriented way

A metalanguage of repository The LF logical framework Monadic LF Committing to MLF

Two-passes type-checking

ti = type inference = derivation delta synthesis

tc = type checking = derivation delta checking

 δ = program delta

 δ_{LF} = derivation delta

 \mathcal{R} = repository of derivations

Two-passes type-checking

ti = type inference = derivation delta synthesis

tc = type checking = derivation delta checking

 δ = program delta

 δ_{LF} = derivation delta

 \mathcal{R} = repository of derivations

Shift of trust: ti (complex, ad-hoc algorithm) $\rightarrow tc$ (simple, generic kernel)

The repository \mathcal{R} is a pair (Δ, x) :

$$\Delta: x \mapsto (\mathsf{Commit}\ (x \times y) \mid \mathsf{Tree}\ \vec{x} \mid \mathsf{Blob}\ string)$$

Operations

- commit δ
- extend the database with Tree/Blob objects
 - add a Commit object
 - update head
- checkout v
- follow v all the way to the Blobs
- diff v_1 v_2 follow simultaneously v_1 and v_2
 - if object names are equal, stop (content is equal)
 - otherwise continue

The repository \mathcal{R} is a pair (Δ, x) :

$$\Delta: x \mapsto (\mathsf{Commit}\ (x \times y) \mid \mathsf{Tree}\ \vec{x} \mid \mathsf{Blob}\ string)$$

Invariants

- Δ forms a DAG
- if $(x, \mathsf{Commit}\ (y, z)) \in \Delta$ then
 - ▶ $(y, \text{Tree } t) \in \Delta$
 - $(z, \mathsf{Commit}\ (t, v)) \in \Delta$
- if $(x, \mathsf{Tree}(\vec{y})) \in \Delta$ then for all y_i , either $(y_i, \mathsf{Tree}(\vec{z}))$ or $(y_i, \mathsf{Blob}(s)) \in \Delta$

The repository \mathcal{R} is a pair (Δ, x) :

$$\Delta: x \mapsto (\mathsf{Commit}\ (x \times y) \mid \mathsf{Tree}\ \vec{x} \mid \mathsf{Blob}\ string)$$

Invariants

- Δ forms a DAG
- if $(x, \mathsf{Commit}\ (y, z)) \in \Delta$ then
 - $(y, \mathsf{Tree}\ t) \in \Delta$
 - $\blacktriangleright \ (z, \mathsf{Commit} \ (t,v)) \in \Delta$
- if $(x, \mathsf{Tree}(\vec{y})) \in \Delta$ then for all y_i , either $(y_i, \mathsf{Tree}(\vec{z}))$ or $(y_i, \mathsf{Blob}(s)) \in \Delta$

Let's do the same with *proofs*


```
\begin{split} x &= \dots : A \land B \vdash C \\ y &= \dots : \vdash A \\ z &= \dots : \vdash B \\ t &= \lambda a : A \land B \cdot x : \vdash A \land B \rightarrow C \\ u &= (y,z) : \vdash A \land B \\ v &= t \ u : \vdash C \\ w &= \mathsf{Commit}(v,w1) : \mathsf{Version} \end{split}
```

```
\begin{array}{l} x = \ldots : A \wedge B \vdash C \\ y = \ldots : \vdash A \\ z = \ldots : \vdash B \\ t = \lambda a : A \wedge B \cdot x : \vdash A \wedge B \rightarrow C \\ u = (y,z) : \vdash A \wedge B \\ v = t \ u : \vdash C \\ w = \mathsf{Commit}(v,w1) : \mathsf{Version} \qquad , \quad \textcolor{red}{w} \end{array}
```

```
x = \dots : A \wedge B \vdash C
y = \dots : \vdash A
z = \dots : \vdash B
 t = \lambda a : A \wedge B \cdot x : \vdash A \wedge B \rightarrow C
u = (y, z) : \vdash A \land B
v = t \ u : \vdash C
w = \mathsf{Commit}(v, w1) : \mathsf{Version}
p = \dots : \vdash B
q = (y, p) : \vdash A \land B
r = t \ q : \vdash C
s = \mathsf{Commit}(r, w) : \mathsf{Version}
```

```
x = \dots : A \wedge B \vdash C
y = \dots : \vdash A
z = \dots : \vdash B
 t = \lambda a : A \wedge B \cdot x : \vdash A \wedge B \rightarrow C
u = (y, z) : \vdash A \land B
v = t \ u : \vdash C
w = \mathsf{Commit}(v, w1) : \mathsf{Version}
p = \dots : \vdash B
q = (y, p) : \vdash A \land B
r = t \ q : \vdash C
s = \mathsf{Commit}(r, w) : \mathsf{Version}
```

A data-oriented notion of delta

The first-order case

A delta is a term t with variables x, y, defined in the repository

A data-oriented notion of delta

The binder case

A delta is a term t with $variables\ x,y$ and $boxes\ [t]_{y.n}^{\{x/u\}}$ to jump over binders in the repository

A data-oriented notion of delta

The binder case

A delta is a term t with $variables\ x,y$ and $boxes\ [t]_{y.n}^{\{x/u\}}$ to jump over binders in the repository

Towards a metalanguage of proof repository

Repository language

- 1. name all proof steps
- 2. annote them by judgement

Delta language

- 1. address sub-proofs (variables)
- 2. instantiate lambdas (boxes)
- 3. check against \mathcal{R}

Towards a metalanguage of proof repository

Repository language

- 1. name all proof steps
- 2. annote them by judgement

Delta language

- 1. address sub-proofs (variables)
- 2. instantiate lambdas (boxes)
- 3. check against \mathcal{R}
- → Need extra-logical features!

Menu

The big picture

Incremental type-checking Why not memoization?

Our approach

Two-passes type-checking The data-oriented way

A metalanguage of repository

The LF logical framework Monadic LF Committing to MLF

A logical framework for incremental type-checking

LF [Harper et al. 1992] (a.k.a. $\lambda\Pi$) provides a **meta-logic** to represent and validate syntax, rules and proofs of an **object language**, by means of a typed λ -calculus.

dependent types to express object-judgements signature to encode the object language higher-order abstract syntax to easily manipulate hypothesis

A logical framework for incremental type-checking

LF [Harper et al. 1992] (a.k.a. $\lambda\Pi$) provides a **meta-logic** to represent and validate syntax, rules and proofs of an **object** language, by means of a typed λ -calculus.

dependent types to express object-judgements signature to encode the object language higher-order abstract syntax to easily manipulate hypothesis

Examples

$$\begin{array}{c} [x:A] \\ \vdots \\ t:B \\ \hline \lambda x \cdot t:A \to B \end{array} \qquad \begin{array}{c} \text{is-lam}: \quad \Pi A,B: \mathsf{ty} \cdot \Pi t: \mathsf{tm} \to \mathsf{tm} \cdot \\ (\Pi x: \mathsf{tm} \cdot \mathsf{is} \ x \ A \to \mathsf{is} \ (t \ x) \ B) \to \\ \mathsf{is} \ (\mathsf{lam} \ A \ (\lambda x \cdot t \ x))(\mathsf{arr} \ A \ B) \end{array}$$

$$\begin{array}{c} \bullet \\ \hline (x:\mathbb{N}] \\ \hline \lambda x \cdot x:\mathbb{N} \to \mathbb{N} \end{array} \qquad \begin{array}{c} \mathsf{is-lam} \ \mathsf{nat} \ \mathsf{nat} \ (\lambda x \cdot x) \ (\lambda yz \cdot z) \\ : \mathsf{is} \ (\mathsf{lam} \ \mathsf{nat} \ (\lambda x \cdot x)) \ (\mathsf{arr} \ \mathsf{nat} \ \mathsf{nat}) \end{array}$$

A logical framework for incremental type-checking Syntax

$$K ::= \Pi x : A \cdot K \mid *$$

$$A ::= \Pi x : A \cdot A \mid a(l)$$

$$t ::= \lambda x : A \cdot t \mid x(l) \mid c(l)$$

$$l ::= \cdot \mid t, l$$

$$\Sigma ::= \cdot \mid \Sigma[c : A] \mid \Sigma[a : K]$$

Judgements

- $\Gamma \vdash_{\Sigma} K$
- $\Gamma \vdash_{\Sigma} A : K$
- $\Gamma \vdash_{\Sigma} t : A$
- \bullet $\vdash \Sigma$

The delta language

Syntax

$$K ::= \Pi x : A \cdot K \mid *$$

$$A ::= \Pi x : A \cdot A \mid a(l)$$

$$t ::= \lambda x : A \cdot t \mid x(l) \mid c(l) \mid [t]_{x.n}^{\{x/t\}}$$

$$l ::= \cdot \mid t, l$$

$$\Sigma ::= \cdot \mid \Sigma[c : A] \mid \Sigma[a : K]$$

Judgements

- $\mathcal{R}, \Gamma \vdash_{\Sigma} K \Rightarrow \mathcal{R}$
- $\mathcal{R}, \Gamma \vdash_{\Sigma} A : K \Rightarrow \mathcal{R}$
- $\mathcal{R}, \Gamma \vdash_{\Sigma} t : A \Rightarrow \mathcal{R}$
- ⊢ ∑

Informally

- $\mathcal{R}, \Gamma \vdash_{\Sigma} x \Rightarrow \mathcal{R}$ means "I am what x stands for, in Γ or in \mathcal{R} (and produce \mathcal{R})".
- $\mathcal{R}, \Gamma \vdash_{\Sigma} [t]_{y.n}^{\{x/u\}} \Rightarrow \mathcal{R}'$ means "Variable y has the form $_{-}(v_1 \dots v_{n-1}(\lambda x \cdot \mathcal{R}'') \dots)$ in \mathcal{R} . Make all variables in \mathcal{R}'' in scope for t, taking u for x. t will produce \mathcal{R}' "

Remark

In LF, proof step = term application spine Example is-lam nat nat $(\lambda x \cdot x)$ $(\lambda yz \cdot z)$

Monadic Normal Form (MNF)

Program transformation, IR for FP compilers

Goal: sequentialize all computations by naming them (lets)

Examples

- $f(g(x)) \notin MNF$
- $\begin{array}{ccc} \bullet & \lambda x \cdot f(g(\lambda y \cdot y, x)) & \Longrightarrow \\ \text{ret } (\lambda x \cdot \text{let } a = g(\lambda y \cdot y, x) \text{ in } f(a)) \end{array}$

Positionality inefficiency

```
\begin{array}{l} \text{let } x = \dots \text{ in} \\ \text{let } y = \dots \text{ in} \\ \text{let } z = \dots \text{ in} \\ \vdots \\ \underline{v(\underline{l})} \end{array}
```

Positionality inefficiency

Positionality inefficiency

Non-positional monadic calculus

$$\begin{array}{ll} \underline{t} \; ::= \; \operatorname{ret} \; \underline{v} \; | \; \operatorname{let} \; x = \underline{v}(\underline{l}) \; \operatorname{in} \; \underline{t} \; | \; \underline{v}(\underline{l}) \\ \underline{l} \; ::= \; \cdot \; | \; \underline{v}, \underline{l} \\ \underline{v} \; ::= \; x \; | \; \lambda x \cdot \underline{t} \end{array}$$

Positionality inefficiency

Non-positional monadic calculus

$$\begin{array}{l} \underline{t} \; ::= \; \operatorname{ret} \; \underline{v} \; | \; \underline{\sigma} \vdash \underline{v}(\underline{l}) \\ \underline{l} \; ::= \; \cdot \; | \; \underline{v}, \underline{l} \\ \underline{v} \; ::= \; x \; | \; \lambda x \cdot \underline{t} \\ \underline{\sigma} \; ::= \; \cdot \; | \; \underline{\sigma}[x = \underline{v}(\underline{l})] \end{array}$$

Positionality inefficiency

Non-positional monadic calculus

```
\begin{array}{l} \underline{t} \; ::= \; \operatorname{ret} \; \underline{v} \; | \; \underline{\sigma} \vdash \underline{v}(\underline{l}) \\ \underline{l} \; ::= \; \cdot \; | \; \underline{v}, \underline{l} \\ \underline{v} \; ::= \; x \; | \; \lambda x \cdot \underline{t} \\ \underline{\sigma} \; : \; x \mapsto \underline{v}(\underline{l}) \end{array}
```

Monadic LF

```
\begin{split} K &::= & \Pi x : A \cdot K \mid * \\ A &::= & \Pi x : A \cdot A \mid \sigma \vdash a(l) \\ t &::= & \operatorname{ret} v \mid \sigma \vdash h(l) \\ h &::= & x \mid c \\ l &::= & \cdot \mid v, l \\ v &::= & c \mid x \mid \lambda x : A \cdot t \\ \sigma &: & x \mapsto h(l) \\ \Sigma &::= & \cdot \mid \Sigma[c : A] \mid \Sigma[a : K] \end{split}
```

Monadic LF

```
\begin{split} K &::= & \Pi x : A \cdot K \mid * \\ A &::= & \Pi x : A \cdot A \mid \sigma \vdash a(l) \\ t &::= & \mathsf{ret} \ v \mid \sigma \vdash h(l) \\ h &::= & x \mid c \\ l &::= & \cdot \mid v, l \\ v &::= & c \mid x \mid \lambda x : A \cdot t \\ \sigma &: & x \mapsto h(l) \\ \Sigma &::= & \cdot \mid \Sigma[c : A] \mid \Sigma[a : K] \end{split}
```

Monadic LF

```
K ::= \Pi x : A \cdot K \mid *
A ::= \Pi x : A \cdot A \mid \sigma \vdash a(l)
t ::= \sigma \vdash h(l)
h ::= x \mid c
l ::= \cdot \mid v, l
v ::= c \mid x \mid \lambda x : A \cdot t
\sigma : x \mapsto h(l)
\Sigma ::= \cdot \mid \Sigma[c : A] \mid \Sigma[a : K]
```

Type annotation

Remark

In LF, judgement annotation = type annotation

Type annotation

Remark

In LF, judgement annotation = type annotation

Example is-lam nat nat $(\lambda x \cdot x)$ $(\lambda yz \cdot z)$: is (lam nat $(\lambda x \cdot x)$) (arr nat nat)

$$K ::= \Pi x : A \cdot K \mid *$$

$$A ::= \Pi x : A \cdot A \mid \sigma \vdash a(l)$$

$$t ::= \sigma \vdash h(l) : a(l)$$

$$h ::= x \mid a$$

$$l ::= \cdot \mid v, l$$

$$v ::= c \mid x \mid \lambda x : A \cdot t$$

$$\sigma : x \mapsto h(l) : a(l)$$

$$\Sigma ::= \cdot \mid \Sigma[c : A] \mid \Sigma[a : K]$$

The repository language

Remark

In LF, judgement annotation = type annotation

Example is-lam nat nat $(\lambda x \cdot x)$ $(\lambda yz \cdot z)$: is (lam nat $(\lambda x \cdot x)$) (arr nat nat)

$$K ::= \Pi x : A \cdot K \mid *$$

$$A ::= \Pi x : A \cdot A \mid \sigma \vdash a(l)$$

$$\mathcal{R} ::= \sigma \vdash h(l) : a(l)$$

$$h ::= x \mid a$$

$$l ::= \cdot \mid v, l$$

$$v ::= c \mid x \mid \lambda x : A \cdot \mathcal{R}$$

$$\sigma : x \mapsto h(l) : a(l)$$

$$\Sigma ::= \cdot \mid \Sigma[c : A] \mid \Sigma[a : K]$$

Commit (WIP)

$$\mathcal{R}^-, \cdot^- \vdash_{\Sigma^-} t^- : A^+ \Rightarrow \mathcal{R}^+$$

What does it do?

- type-checks t wrt. \mathcal{R} (in O(t))
- puts t in non-pos. MNF
- annotate with type
- with the adapted rules for variable & box:

VAR
$$\frac{\Gamma(x) = A \quad \text{or} \quad \sigma(x) : A}{(\sigma \vdash -:-), \Gamma \vdash_{\Sigma} x : A \Rightarrow (\sigma \vdash x : A)}$$

$$\frac{\text{Box}}{\sigma(x).i = \lambda y : B \cdot (\rho \vdash H'')} \qquad (\sigma \vdash H), \Gamma \vdash u : B \Rightarrow (\theta \vdash H')}{(\rho \cup \theta[y = H'] \vdash H''), \Gamma \vdash t : A \Rightarrow \mathcal{R}}$$
$$\frac{(\sigma \vdash H), \Gamma \vdash [t]_{x,i}^{\{y/u\}} : A \Rightarrow \mathcal{R}}{(\sigma \vdash H), \Gamma \vdash [t]_{x,i}^{\{y/u\}} : A \Rightarrow \mathcal{R}}$$

Example

Signature

$$A \ B \ C \ D:*$$
 $a:(D \to B) \to C \to A$
 $b \ b':C \to B$
 $c:D \to C$
 $d:D$

<u>Terms</u>

$$t_{1} = a(\lambda x : D \cdot b(c(x)), c(d))$$

$$\mathcal{R}_{1} = [v = c(d) : C] \vdash a(\lambda x : D \cdot [w = c(x) : C] \vdash b(w) : B, v) : A$$

$$t_{2} = a(\lambda y : D \cdot [b'(w)]_{1}^{\{x/y\}})$$

$$\mathcal{R}_{2} = [v = c(d) : C] \vdash$$

$$a(\lambda y : D \cdot [x = y][w = c(x) : C] \vdash b'(w) : B, v) : A$$

Regaining version management

Just add to the signature Σ :

Version: *

Commit0: Version

Commit : Πt : tm · is $(t, unit) \rightarrow Version \rightarrow Version$

Commit t

if
$$\mathcal{R} = \sigma \vdash v : \mathsf{Version}$$
 and $\mathcal{R}, \cdot \vdash_{\Sigma} t : \mathsf{is}(p, \mathsf{unit}) \Rightarrow (\rho \vdash k)$

then

$$\rho[x = \mathsf{Commit}(p, k, v)] \vdash x : \mathsf{Version}$$

is the new repository

Further work

- implementation & metatheory of Commit
- from terms to derivations (ti)
- diff on terms
- \bullet mimick other operations from VCS (Merge)