NMMB538 - DÚ8 Jan Oupický

1

Najdeme reprezentanty (B_1, B_2, B_3) a pomocí nich následně nalezneme (C_1, C_2, C_3) .

$$(bXZ:-bYZ:X^2)$$
vynásobení Y a substituce do 2. členu za $Y^2Z=X^3+aX^2Z+bXZ^2$
$$(bXYZ:-b(X^3+aX^2Z+bXZ^2):X^2Y)$$
vydělení X

$$(B_1, B_2, B_3) = (bYZ : -b(X^2 + aXZ + bZ^2) : XY) = (bYZ : -bX(X + aZ) - b^2Z^2) : XY)$$

Vidíme, že $t_{(0,0)}(0:0:1) = (0:-b^2:0) = (0:1:0)$ což odpovídá tomu, na co jsme přišli v minulém úkolu, že $(0:0:1) \in \text{Ker}([2])$. Protože $t_{(0,0)}(0:0:1) = [2](0:0:1) = \infty$. Nyní budeme pracovat s (B_1, B_2, B_3) .

$$(bYZ: -bX(X + aZ) - b^{2}Z^{2}): XY)$$
vynásobení Y^{2}
$$(bY(Y^{2}Z): -bXY^{2}(X + aZ) - b^{2}Z(Y^{2}Z): XY^{3})$$
substituce za $Y^{2}Z = X(X^{2} + aXZ + bZ^{2})$
$$(bXY(X^{2} + aXZ + bZ^{2}): -bXY^{2}(X + aZ) - b^{2}XZ(X^{2} + aXZ + bZ^{2}): XY^{3})$$
vydělení X
$$(C_{1}: C_{2}: C_{3}) = (bY(X^{2} + aXZ + bZ^{2}): -bY^{2}(X + aZ) - b^{2}Z(X^{2} + aXZ + bZ^{2}): Y^{3})$$

Vidíme, že $t_{(0,0)}(0:1:0)=(0:0:1)$. Což odpovídá, jelikož ∞ je neutrální prvek grupy D(K) tedy $(0,0)\oplus\infty=(0,0)$.

2

3

Ztotožníme-li $D = \hat{D}, C = \hat{C}$. Nejprve ukážeme, že $\psi : D \to C$ je isogenie. Z úkolu 6 víme, že $\psi \in \operatorname{Mor}(D,C)$. Zároveň jsme úkazali, že $\psi((0:1:0)) = (0:1:0)$.

Bod $(0:1:0) \in D, C \implies \psi(\omega_D) = \omega_C. \ \psi$ je tedy isogenie $D \to C.$

Aplikujeme větu T.18., kde $\tau = \psi : D \to C$ a $\sigma = [2] : D \to D$. Z úkolu 4 víme, že C je hladké. D je také hladké dle předchozích úkolů.

Dále víme z úkolu 4, že ψ je separabilní, jelikož $\operatorname{Im}(\psi^*) = F$ z úkolu 4 a $F \cong K(C)$ dle definice ψ^* .

Ověříme ještě, že $\operatorname{Ker}(\psi) \subseteq \operatorname{Ker}([2])$. Z úkolu 5 víme, že $\operatorname{deg}(\psi) = 2$. ψ je separabilní isogenie, a proto $|\operatorname{Ker}(\psi)| = 2$. Už víme, že $(0:1:0) \in \operatorname{Ker}(\psi) \cap \operatorname{Ker}([2])$. V úkolu 6 jsme také nalezli další bod $(0:0:1) \in \operatorname{Ker}(\psi)$ a v minulém úkolu jsme spočetli, že také $(0:0:1) \in \operatorname{Ker}([2])$. Podmínka na jádra tedy platí.

Dle věty T.18 existuje právě jedna isogenie $\gamma: C \to D: \gamma \circ \psi = [2]$.

V minulém úkolu, jsme zjistili, že $[2]=(\frac{v^2}{4u^2},\frac{v(a^2-4b-u^2)}{8u^2})$, kde $u=\frac{y^2}{x^2},v=\frac{y(b^2-x)}{x^2}$. Zárověň zřejmě z definice $\psi(x,y)=(u,v)$. Stačí definovat $\gamma(x,y)=(\frac{y^2}{4x^2},\frac{y(a^2-4b-x^2)}{8x^2})$. Poté zřejmě platí $[2]=\gamma\circ\psi$.

Tento tvar jsme nalezli tak, že jsme se snažili vyjádřit reprezentanty [2] pomocí u, v.