4.7.1 Двойное лучепреломление

Цель работы: изучение зависимости показателя преломления необыкновенной волны от направления в двоякопреломляющем кристалле; определение главных показателей преломления в кристалле.

В работе используются: гелий-неоновый лазер, вращающийся столик с неподвижным лимбом, призма из исландского шпата, поляроид.

Теоретическая часть:

1. Величины $n_o = \sqrt{\varepsilon_{\perp}}, n_e = \sqrt{\varepsilon_{\parallel}}$ называют главными показателями преломления кристалла. Выразим показатель преломления необыкновенной волны $n = \varepsilon$ через главные показатели преломления n_o, n_e и угол между оптической осью и волновым вектором θ :

$$\frac{1}{n^2(\theta)} = \frac{\sin^2 \theta}{n_e^2} + \frac{\cos^2 \theta}{n_o^2}$$

Заметим, что при $\theta=\pi/2$ показатель преломления необыкновенной волны равен $n=n_e$, а при $\theta=0$ он равен $n=n_o$. Для обыкновенной волны показатель преломления равен n_o независимо от направления её распространения.

Если $n_o n_e \ll n_o, n_e$ (для исландского шпата $n_o = 1,655, n_e = 1,485$ для $\lambda = 0,63$ мкм), формулу можно упростить:

$$n(\theta) \approx n_e + (n_o - n_e) \cos^2 \theta$$

Двойное лучепреломление в призме из исландского шпата.

Рис. 1:

а) Исследуемая призма из исландского шпата. Штриховкой указано направление оптической оси кристалла. б) Ход лучей в поляризационной призме

Значение показателя преломления и угол, под которым преломи- лась волна в призме, можно найти, измерив угол падения на входную грань призмы φ_1 и угол φ_2 на выходе призмы (рис. 2). Запишем закон Снеллиуса для одной из волн применительно к первой и второй граням призмы:

$$\sin \varphi_1 = n \sin \beta_1$$

Рис. 2: Ход лучей в призме

$$\sin \varphi_2 = n \sin \beta_2 = n \sin (A - \beta_1)$$

При этом мы выразили угол падения на вторую грань призмы β_2 через угол преломления на первой грани призмы β_1 и угол при вершине призмы A. Как видно из рис. 2, эти углы связаны простым соотношением: $A = \beta_1 + \beta_2$.

Учитывая, что угол преломления β_1 связан с углом θ между осью кристалла и волновой нормалью N соотношением $\theta + \beta_1 = \pi/2$, находим n и θ :

$$n = \frac{1}{\sin A} \sqrt{\sin^2 \varphi_1 + \sin^2 \varphi_2 + 2\sin \varphi_1 \sin \varphi_2 \cos A}$$

$$\cos A = \frac{\sin \varphi_1}{n}$$

Для обыкновенной волны n не будет зависеть от угла θ , а для необыкновенной волны зависимость n от θ должна описываться первой формулой.

Показатель преломления призмы из изотропного материала удобно находить по углу наименьшего отклонения луча от первоначального направления. Угол отклонения луча призмой (ψ на рис. 2) минимален для симметричного хода лучей, т.е. когда $\varphi_1=\varphi_2$. Тогда показатель преломления можно рассчитать по формуле

$$n = \frac{\sin\frac{\psi_m + A}{2}}{\sin\frac{A}{2}}$$

где ψ_m — угол наименьшего отклонения.

Экспериментальная установка

Рис. 3: Схема экспериментальной установки

Источником излучения служит He—Ne-лазер ($\lambda = 0,63$ мкм). Угол падения φ_1 определяется по положению луча, отражённого от передней (входной) грани призмы (рис. 3). Из рис. 2 можно получить связь углов φ_1, φ_2 :

$$\varphi_2 = A + \psi - \varphi_1,$$

а угол ψ — отклонение преломлённого луча от первоначального направления — определяется по разности отсчётов на лимбе между точками, куда попадает луч в отсутствие призмы, и точкой, куда попадает преломлённый луч.

Ход работы:

- 1. Юстируем установку.
- 2. Определеяем угол $A: A = 38^{\circ}$
- 3. Определим разрешённое направление поляризатора. Глядя на яркое пятно от лампы на столе, найдем минимум интенсивности 80° (разрешенное направление \vec{E} вертикально).
- 4. Определим обычновенные и необыкновенные волны. Получим изображение лучей (как показано на рисунке 3 не 2 точки, соответствующие 2 лучам, а 4 2 более яркие, 2 менее яркие, в силу переотраженных лучей в призме).
- 5. Вращая столикс призмой, снимаем показания и обраатываем их на компьютере.

Номер точки	1	2	3	4	5	6	7
φ_1	10	20	30	40	50	60	70
ψ_0	33	28	27.5	28	29.5	33	38
ψ_e	23	21	21	22.5	25	28	33
φ_{2o}	61.2	46.2	35.7	26.2	17.7	11.2	6.2
φ_{2e}	51.2	39.2	29.2	20.7	13.2	6.2	1.2
θ_o	83.95	77.95	72.43	67.22	62.4	58.52	55.53
θ_e	83.31	76.79	70.66	65.16	60.29	55.82	52.58
$\cos^2 \theta_o$	0.01	0.04	0.09	0.15	0.21	0.27	0.32
$\cos^2 \theta_e$	0.01	0.05	0.11	0.18	0.25	0.32	0.37
n_o	1.647	1.638	1.656	1.66	1.653	1.659	1.66
n_e	1.491	1.496	1.509	1.53	1.546	1.541	1.546

6. Построим графики зависимости $n(\cos^2 \theta)$.

Вывод:

Изучили зависимости показателя преломления необыкновенной волны от направления в двоякопреломляющем кристалле; научились определять главные показатели преломления в кристалле.