

ĐẠI HỌC TÔN ĐỰC THẮNG Ton Duc Thang University (TDTU)

Digital Image Processing

PHAM VAN HUY (PhD.) – INFORMATION TECHNOLOGY FACULTY Email: phamvanhuy@tdtu.edu.vn

Image filtering

In Digital Image Processing

Image transformations **DAI HOCTÔN ĐỨC THẮNG Ton Duc Thang University (TDTU)

 As with any function, we can apply operators to an image

 We'll talk about a special kind of operator, convolution (linear filtering)

Question: Noise reduction Duc Thang University (TDTU)

 Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them!

What's the next best thing?

Source: S. Seitz

Image filtering

 Modify the pixels in an image based on some function of a local neighborhood of each pixel

10	5	3
4	5	1
1	1	7

Local image data

Modified image data

Image filtering

Filtering:

 Form a new image whose pixels are a combination original pixel values

Goals:

- -Extract useful information from the images
 - Features (edges, corners, blobs...)
- Modify or enhance image properties:
 - super-resolution; in-painting; de-noising

Fei-Fei Li Lecture 4- 10 6-Oct-16

Ouc Thang University (TDTU)

De-noising

Super-resolution

In-painting

3ertamio et al

Linear filtering

- One simple version: linear filtering (cross-correlation, convolution)
 - Replace each pixel by a linear combination of its neighbors
- The prescription for the linear combination is called the "kernel" (or "mask", "filter")

Convolution

 Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

This is called a **convolution** operation:

$$G = H * F$$

Convolution is commutative and associative

2D Convolution

$$g(x,y) = h(x,y) * f(x,y)$$

- f, g: input/output
- h: mask/filter/kernel
- 1. Flip the mask (horizontally and vertically) only once
- 2. Slide the mask onto the image.
- 3. Multiply the corresponding elements and then add them
- 4. Repeat this procedure until all values of the image has been calculated.

1 _{×1}	1,0	1,	0	0
0,×0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

Example

• http://www.songho.ca/dsp/convolution/convolution2d example.html

1	2	1
0 1	0 2	0 3
-1 4	<mark>-2</mark> 5	-1 6
7	8	9

1	2	3
4	5	6
7	8	9

m	-1	0	1	
-1	-1	-2	-1	
0	0	0	0	
1	1	2	1	
Kernel				

	1	2	1
1	0 2	0 3	0
4	-1 5	-2 6	-1
7	8	9	

1	2 1	1 2	3
0	0 4	<mark>0</mark> 5	6
-1	-2 7	-1 8	9

1 1	2 2	1 3
0 4	0 5	<mark>0</mark> 6
- 1 7	- <mark>2</mark> 8	-1 9

1	1 2	² 3	1
4	<mark>0</mark> 5	<mark>0</mark> 6	0
7	-1 8	<mark>-2</mark> 9	-1

Convolution

Cross-correlation

Let F be the image, H be the kernel (of size $2k+1 \times 2k+1$), and G be the output image

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called a **cross-correlation** operation:

$$G = H \otimes F$$

(Cross) correlation – example

(Cross) correlation – example

Fei-Fei Li Lecture 4- 50 6-Oct-16

Convolution vs. (Cross) Correlation

Fei-Fei Li Lecture 4- 51 6-Oct-16

Convolution vs. (Cross) Correlation

- A <u>convolution</u> is an integral that expresses the amount of overlap of one function as it is shifted over another function.
 - convolution is a filtering operation
- <u>Correlation</u> compares the *similarity* of *two* sets of data. Correlation computes a measure of similarity of two input signals as they are shifted by one another. The correlation result reaches a maximum at the time when the two signals match best.
 - correlation is a measure of relatedness of two signals

Fei-Fei Li Lecture 4- 52 6-Oct-16

Cross Correlation Application: Vision system for TV remote control

- uses template matching

Figure from "Computer Vision for Interactive Computer Graphics," W.Freeman et al, IEEE Computer Graphics and Applications, 1998 copyright 1998, IEEE

Fei-Fei Li Lecture 4- 53 6-Oct-16

Mean filtering

Source: D. Lowe

Source: D. Lowe

By 1 pixel

Source: D. Lowe

Sharpening

before after

Smoothing with box filter revisited

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

Gaussian filters

Gaussian filter

- Removes "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian

– Convolving two times with Gaussian kernel of width σ = convolving once with kernel of width

Sharpening

before after

Sharpening revisited

What does blurring take away?

Let's add it back:

Source: S. Lazebnik

Sharpen filter

Sharpen filter

Convolution in the real world

Camera shake

Source: Fergus, et al. "Removing Camera Shake from a Single Photograph", SIGGRAPH 2006

Bokeh: Blur in out-of-focus regions of an image.

Source: http://lullaby.homepage.dk/diy-camera/bokeh.html

Questions?