

Transformações Gráficas Bidimensionais (2D)

Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro

Introdução

Um sistema gráfico que permita ao utilizador definir objectos deve incluir a capacidade de simular o movimento e a manipulação de objectos segundo determinadas regras.

- Exemplo:
 - □ Deve ser capaz de **ampliar** o objecto de modo a tornar claro alguns detalhes ou;
 - □ Reduzi-lo de modo a permitir a sua completa visualização ou;
 - □ **Desloca-lo** de um ponto para outro. etc.
- Transformações Geométricas (TG) são a base de inúmeras aplicações gráficas.
 - ☐ Exemplos:
 - para representar *layouts* de circuitos electrónicos;
 - em programas de planeamento de cidades;
 - em sistemas de *software* sofisticados que permitem a construção de cenas realistas.

128

Introdução

- Neste capítulo abordaremos as:
 - ☐ Transformações <u>primárias</u>:
 - Translação
 - Rotação
 - Variação de Escala (*Scaling*)
 - ☐ Transformações <u>secundárias</u>:
 - Reflexão
 - Distorção (Shearing)
 - □ Combinação de Transformações

Introdução

- Consideremos um sistema coordenado num plano xOy
- Um objecto *Obj* no plano pode ser considerado como um conjunto de pontos.
- Cada ponto $P \in Obj$ pode ser definido como P(x, y)
- Então

$$\Box Obj = \bigcup P_i(x_i, y_i), P_i \in Obj$$

□ Se *Obj* é movido para uma nova posição ele pode ser considerado como um novo objecto *Obj* no qual todos os pontos *P* podem ser obtidos a partir dos pontos originais *P*, através da <u>aplicação de uma transformação geométrica</u>.

Transformações primárias: Translação

Translação: Um objecto é deslocado uma dada distância, segundo uma dada direcção, em relação à sua posição original.

- \square Assim, cada ponto P(x,y) pode ser movido por dx unidades em relação ao eixo x, e por dy unidades em relação ao eixo y
- \square Logo, o ponto P'(x',y'), pode ser escrito como:

$$x' = x + dx e y' = y + dy \qquad (1)$$

☐ E se definimos os vectores colunas:

$$P = \begin{pmatrix} x \\ y \end{pmatrix}, \quad P' = \begin{pmatrix} x' \\ y' \end{pmatrix}, \quad T = \begin{pmatrix} d_x \\ d_y \end{pmatrix}$$

□ Então (1) pode ser expressa como:

$$P' = P + T$$

- Transformações primárias: **Translação** (cont...)
 - □ **Exemplo:** Translação de um objecto por (3, -4)

□ **Atenção:**

- Podemos trasladar um objecto, fazendo-o a todos os seus pontos trasladar (o que não é muito eficiente!)
 - □ Para **transladar** uma linha podemos fazê-lo apenas para seus pontos limites e sobre estes pontos redesenhar a linha.
 - ☐ Isso também é válido para **variações de Escala** e **Rotações**

Transformações primárias: Rotação

Rotação: Mudança de posição de uma entidade geométrica num plano, por forma a que todos os seus pontos descrevam arcos de circunferência com a mesma amplitude e concêntricas

□ **Exemplo:** Rotação de um objecto por 45° (em relação a origem)

☐ Atenção:

- Os **ângulos positivos** são definidos quando a rotação é feita no sentido contrário aos do ponteiro do relógio (**CCW**).
- Os ângulos negativos quando a rotação é feita no sentido dos ponteiros do relógio (CW).

- Transformações primárias: Rotação (cont...)
 - \square A **rotação** de pontos através de um ângulo θ é definida por:

$$x' = x \cdot cos(\theta) - y \cdot sin(\theta)$$
$$y' = x \cdot sin(\theta) + y \cdot cos(\theta)$$

□ e matricialmente:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta \cos \theta \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} \quad ou \ P' = R \cdot P$$

□ *R* – matriz da rotação

- Transformações primárias: Rotação (cont...)
 - \square Lembremos que: $sin(-\theta) = -sin(\theta)$ e que $cos(-\theta) = cos(\theta)$
 - \square Observemos a seguinte figura que a rotação por θ transforma P(x,y) em P(x,y)
 - ☐ Assim temos que:

$$x = r \cdot cos(\phi), y = r \cdot sin(\phi)$$

$$x' = r \cdot cos(\theta + \phi) =$$

$$= r \cdot cos(\phi) \cdot cos(\theta) - r \cdot sin(\phi) \cdot sin(\theta)$$

$$y' = r \cdot sin(\theta + \phi) =$$

$$= r \cdot cos(\phi) \cdot sin(\theta) + r \cdot sin(\phi) \cdot cos(\theta)$$
(2)

□ Podemos obter a equação:

$$x' = x \cdot cos(\theta) - y \cdot sin(\theta)$$
$$y' = x \cdot sin(\theta) + y \cdot cos(\theta)$$

substituindo a equação (1) na equação (2)

189

Transformações Gráficas Bi-dimensionais

- Transformações primárias: Rotação (cont...)
 - ☐ É de notar que as fórmulas de transformação apresentadas em:

$$x' = x \cdot cos(\theta) - y \cdot sin(\theta)$$
$$y' = x \cdot sin(\theta) + y \cdot cos(\theta)$$

são independentes do raio r
 do arco da circunferência e do ângulo inicial ϕ

- □ Estes valores só foram introduzidos para podermos deduzir as fórmulas de transformação para rotação de um ponto em torno da origem do sistema de eixos coordenados.
- \square É fácil obter que no caso da rotação de um ponto em torno de um ponto pivot (x_p, y_p) e equação da rotação ficaria como:

$$x' = (x - x_p) \cdot cos(\theta) - (y - y_p) \cdot sin(\theta) + x_p$$
$$y' = (x - x_p) \cdot sin(\theta) + (y - y_p) \cdot cos(\theta) + y_p$$

87

Transformações Gráficas Bi-dimensionais

- Transformações primárias: Rotação (cont...)
 - **□** Exercício:

Aplique uma rotação de 45° ao triângulo A(0,0), B(1,1), C(5,2):

- (a) Em torno da origem
- (b) **Em torno de P(-1, -1)**

Atenção:

■ Transformações primárias: Variação de Escala

Variação de Escala: É o processo que permite a expansão ou a compressão das dimensões de um objecto.

- Geralmente são utilizadas constantes positivas de variação de escala s_x e s_y para descrever variações de comprimento em relação à direcção x e a direcção y, respectivamente.
- ☐ Uma constante de variação de escala:
 - > 1 indica uma expansão
 - <1 indica uma compressão
- ☐ A transformação de variação de escala é dada por:

$$x' = s_x \cdot x$$
, $y' = s_y \cdot y$

ou em forma matricial

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} \qquad ou \quad P' = S.P.$$

□ *S* – matriz da variação de escala

■ Transformações primárias: Variação de Escala (cont...)

Exemplo: Na figura a seguir a casa sofre uma escala de $\frac{1}{2}$ em x e de $\frac{1}{4}$

em y.

Observe que:

- □ a variação de escala é feita em relação a origem. Assim a "casa" fica menor e mais próxima da origem.
- \square as proporções da casa são alteradas, isto é, uma escala em que s_x é diferente de s_v
- □ Se são utilizadas escalas uniformes $(s_x = s_y)$ as proporções não são afectadas.

■ Transformações primárias: Variação de Escala (cont...)

□ Exercícios:

1. Determine a forma geral da matriz de variação de escala $M(S_x,S_y,P)$ em relação a um ponto fixo P(h,k).

Sugestão: utilizar a representação v = - hI - kJ

2. Amplie o tamanho do triângulo com os vértices A(0,0), B(1,1) e C(5,2) para o dobro, mantendo o ponto C(5,2) fixo.

Sugestão: utilizar os resultados do exercício anterior

■ Transformações secundárias: Reflexão

Reflexão: A transformação de reflexão, ou *espelhamento*, aplicada a um objecto, produz um objecto que é o *espelho* do original.

- No caso de uma reflexão **2D**, pode-se considerar a
 - ☐ Reflexão em relação a um ponto
 - □ Reflexão em relação a uma recta
- Em ambos casos a transformação pode ser obtida através de uma **rotação de 180º** em torno do ponto ou em torno da recta.
- Casos mais vulgares:
 - □ Reflexão em relação à origem: x' = -x; y' = -y
 - □ Reflexão segundo o eixo Ox: x' = x; y' = -y
 - □ Reflexão segundo o eixo Oy: x' = -x; y' = y
 - \square Reflexão segundo a recta x = y: x' = y; y' = x
 - □ Reflexão em relação a recta x = -y: x' = -y; y' = -x

■ Transformações secundárias: **Reflexão** (cont...)

Exemplo: Pode-se aplicar uma reflexão em torno do eixo x, (y = 0) utilizando a seguinte matriz de transformação:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} ou \quad P' = E \cdot P$$

Esta transformação mantém as coordenadas *x* do objecto inalteradas, mas inverte os valores das coordenadas *y*, alterando a *orientação espacial* do objecto.

Y	1 /\3	
	2' 73'	X

■ Transformações secundárias: **Reflexão** (cont...)

Exemplo: Podemos também definir uma reflexão em torno de um eixo perpendicular ao plano *xy* e passando (por exemplo) pela origem do sistema de coordenadas, invertendo nesse caso ambas as coordenadas *x* e *y*. A matriz de transformação é dada por:

 $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Esta operação é ilustrada na figura a seguir:

- Transformações secundárias: Reflexão (cont...)
 - □ Exercício:
 - 1. Determine a matriz de reflexão em relação à linha L, cujo declive é m e que intersecta o eixo Oy em (0,b).
 - Sugestão:
 - □ Utilizar os resultados do exemplo anterior e as seguintes expressões:

Se
$$tan(\theta) = m \ ent\tilde{a}o$$

$$sen(\theta) = \frac{m}{\sqrt{m^2 + 1}} e$$

$$cos(\theta) = \frac{1}{\sqrt{m^2 + 1}}$$

2. Determine a reflexão do losango cujos vértices são A(-1,0), B(0,-2), C(1,0), D(0,2) em relação à (a) linha horizontal y=2, (b) linha vertical x=2.

183

Transformações Gráficas Bi-dimensionais

■ **Generalizando....**

$$P' = M_1 \cdot P + M_2$$

onde

- □ P e P' (coordenadas de posição): vectores coluna
- $\square M_1$: matriz 2x2 com factores de multiplicação.
- $\square M_2$: matriz coluna de dois elementos com termos de translação.

□ <u>Observação:</u>

 \blacksquare para translações: M_1 é matriz identidade

■ Sistema de Coordenadas Homogéneas (SCH)

- □ Infelizmente, a translação em \Re^2 é formalizada de forma diferente das outras Rotação e Escala, etc. que são tratadas através de **multiplicações**.
 - para poder combinar convenientemente essas transformações, devemos tratar do mesmo modo todas as 3 transformações.
- □ Como podem ser calculadas as transformações geométricas pelo produto concatenado das suas respectivas matrizes?
- □ **R**/ Utilizando um **sistema de coordenadas homogéneas**
- Nas coordenadas homogéneas adiciona-se ao tuplo (x, y) uma terceira coordenada W passando a estar representado por um triplo (x, y, W)
- \square Por definição (x, y, W) e (x', y', W') representam o mesmo ponto em coordenadas homogéneas sse um é múltiplo do outro

- Sistema de Coordenadas Homogéneas (SCH)
 - \square É obvio que cada ponto (x, y) tem uma infinidade de representações em coordenadas homogéneas
 - □ Se W é não zero então (x, y, W) representam o mesmo ponto que (x/W, y/W, 1)
 - \square Homogeneizar um par de coordenadas é obter a sua representação na forma de (x, y, 1)

■ Transformações secundárias: **Distorção** (*Shearing*)

Distorção: É uma transformação que produz distorção de um objecto e em geral, é realizada quando se aplica uma deslocação aos valores das coordenadas *x* (*x-shearing*) ou das coordenadas *y* (*y-shearing*) do objecto.

Exemplo: Por exemplo: uma distorção na direcção x é produzida com a seguinte matriz de transformação:

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & sh_x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} ou \quad P' = D \cdot P$$

As coordenadas do objecto são transformadas da seguinte maneira:

$$x' = x + sh_x \cdot y;$$
$$y' = y$$

- Transformações secundárias: **Distorção** (cont...)
 - \square **Exemplo:** Se sh_x é 2, então um quadrado será transformado num paralelogramo.
 - \square Pode-se gerar distorções na direcção relativamente a outros eixos de referência. Por exemplo $y = y_{ref}$ com a matriz:

$$\begin{bmatrix} 1 & sh_x & -sh_x \cdot y_{ref} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

□ que produz as seguintes transformações sobre as coordenadas:

$$x' = x + sh_x \cdot (y - y_{ref}),$$

 $y' = y$

- Transformações secundárias: **Distorção** (cont...)
 - \square Analogamente, pode-se aplicar uma distorção na direcção y, relativa a uma linha $x = x_{ref}$, utilizando:

$$\begin{pmatrix}
1 & 0 & 0 \\
sh_{y} & 1 & -sh_{y} \cdot x_{ref} \\
0 & 0 & 1
\end{pmatrix}$$

□ que gera as seguintes transformações nas posições das coordenadas:

$$x' = x,$$

$$y' = y + sh_y \cdot (x - x_{ref})$$

■ Transformações de Sistemas de Coordenadas

□ Exercício:

1. Ilustre o efeito das transformações *x-shearing*, *y-shearing* e *xy-shearing* sobre o quadrado A(0,0), B(1,0), C(1,1) e D(0,1), quando $S_x = 2$ e $S_y = 3$

■ Transformações secundárias: Shearing (cont...)

□ Exemplo:

Um observador colocado no ponto (0,0) vê o ponto P(1,1). Se o ponto é trasladado uma unidade na direcção v = I, a sua nova posição é P'(2,1). Suponha que, em vez disto, o observador dá um passo atrás de uma unidade segundo o eixo Ox. Quais as coordenadas do ponto P relativamente ao observador?

Resolução: O problema pode ser considerado como uma transformação entre sistemas de coordenadas. Se trasladarmos a origem na direcção v = -I (para uma nova posição O'), então as coordenadas de P neste sistema podem ser determinadas pela transformação:

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

Isto tem a seguinte interpretação trivial: o deslocamento de uma unidade, numa dada direcção, pode ser alcançado quer movendo o objecto para frente relativamente ao observador quer deslocando o observador para trás em relação ao objecto.

■ Translação em SCH

- □ Num **SCH** no plano os pontos são representados por vectores de 3 elementos. Então as matrizes de transformações que multiplicam um ponto por outro também precisam ser de 3x3.
- ☐ A equação de **Translação**

$$P' = P + T(t_x, t_y)$$

para coordenadas homogéneas fica da seguinte forma:

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

☐ Então e equação da **Translação em SCH** pode ser expressa como:

 $P' = T(t_x, t_y) \cdot P$ onde $T(t_x, t_y)$ é a matriz de **Translação em SCH**

- Translação, Rotação e Variação de Escale em SCH
 - \square Translação: $P' = T(t_x, t_y) \cdot P$

□ Rotação: $P' = R(\theta) \cdot P$

□ Variação de escala: $P' = S(s_x, s_y) \cdot P$

- Composição de Transformações
 - □ Com as representações matriciais anteriores podemos:
 - compor um matriz que realize qualquer sequência de transformadas. Chamamos essa matriz de matriz composta de transformada
 - O propósito fundamental de compor-se transformações, é o **ganho de eficiência** que se obtém ao aplicar-se uma **transformação composta** a um ponto em vez de aplicar-lhe uma **série de transformações**, uma após a outra.
 - □ Exemplo: Duas translações sucessivas (t_{x1}, t_{y1}) e (t_{x2}, t_{y2}) : $P' = T(t_{x2}, t_{y2}) \cdot (T(t_{x1}, t_{y1}) \cdot P) = (T(t_{x2}, t_{y2}) \cdot T(t_{x1}, t_{y1})) \cdot P$

A matriz composta da transformação neste exemplo será:

v

Transformações Gráficas Bi-dimensionais

- Composição de Transformações
 - □ **Exemplo:** Duas varições de escalas sucessivas:

$$P' = S(s_{x1}, s_{y1}) \cdot P$$
 e $P'' = S(s_{x2}, s_{y2}) \cdot P'$ pode ser expressa como

$$P'' = S(s_{x2}, s_{y2}) \cdot (S(s_{x1}, s_{y1}) \cdot P) = (S(s_{x2}, s_{y2}) \cdot S(s_{x1}, s_{y1})) \cdot P$$

a matriz produto $S(s_{x2}, s_{y2}) \cdot S(s_{x1}, s_{y1})$ é:

- Composição de Transformações (cont...)
 - Exemplo: Transladar $P_1(x_1, y_1)$ p/ origem, rotacionar e transladar de volta p/ P_1

A transformação em sequência é:

$$T(x_{I}, y_{I}).R(\Theta).T(-x_{I}, -y_{I}) = \begin{bmatrix} 1 & 0 & x_{I} \\ 0 & 1 & y_{I} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\Theta) & -\sin(\Theta) & 0 \\ \sin(\Theta) & \cos(\Theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -x_{I} \\ 0 & 1 & -y_{I} \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos(\Theta) & -\sin(\Theta) & \chi_I.(l - \cos(\Theta)) + \chi_I.\sin(\Theta) \\ \sin(\Theta) & \cos(\Theta) & \chi_I(l - \cos(\Theta)) - \chi_I.\sin(\Theta) \\ 0 & 0 & l \end{bmatrix}$$

- Composição de Transformações (cont...)
 - \square O procedimento anterior pode ser utilizado de forma similar para efectuar a **variação de escala** de um objecto <u>em relação a um ponto arbitrário</u> $P_1(x_1, y_1)$
 - \square Neste caso primeiramente o ponto P_1 é transladado para a origem, então é feita a variação de escala desejada. A continuação o ponto P_1 é transladado de volta.
 - ☐ Dessa forma, a transformação em sequência é:

- Composição de Transformações (cont...)
 - **Exemplo:** Suponhamos que desejamos a seguinte sequencia de transformações: **variação de escala**, **rotação** e t**ranslação**, tomando o ponto $P_1(x_1,y_1)$ como o centro da rotação e da variação de escala (ver figura)

- ☐ A sequência de transformações fica da seguinte maneira:
 - 1. Transladar $P_1(x_1,y_1)$ para a origem;
 - 2. Efectuar a escala e a rotação desejadas;
 - 3. Efectuar a translação da origem para a nova posição $P_2(x_2,y_2)$, onde a casa deve ser posicionada.

$$T(x_2,y_2) \cdot R(\theta) \cdot S(s_x,s_y) \cdot T(-x_1,-y_1) \in a MCT$$

Se a Variação de Escala S for uniforme $(s_x = s_y)$ a ordem de S e R pode ser comutada sem alterar o resultado final da transformação composição.

- Composição de Transformações (cont...)
 - \square Se M_1 e M_2 representam duas transformações fundamentais (**translação**, **rotação** ou **variação de escala**). Então,

Em que casos
$$M_1 \cdot M_2 = M_2 \cdot M_1$$
?

□ Isto é,

Quando as matrizes da transformação podem ser comutadas ser alterar o resultado final da transformação composição?

- □ <u>É</u> conhecido que nem sempre a multiplicação de matrizes <u>é</u> comutativa.
- □ Entretanto é fácil mostrar que nos seguintes casos especiais esta comutatividade existe:

M₁ M₂

Translação Translação

V. De Escala

Rotação V. De Escala

Rotação Rotação

V. De Esacla (com

sx=sy)

 □ Nestes casos não precisamos estar atentos a ordem de construção da matriz de transformação.