## Homework 5

Due date: Nov. 25<sup>th</sup>, 2021

Turn in your homework in class

## Rules:

- Work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism.
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.
- If needed, round the number to the nearest hundredths, i.e., rounding it to 2 decimal places.

1. (a) For the following pairs of sinusoids, determine which one leads and by how much.

(a) 
$$v(t) = 10 \cos(4t - 60^\circ)$$
 and  $i(t) = 4 \sin(4t + 50^\circ)$ 

(b) 
$$v_1(t) = 4\cos(377t + 10^\circ)$$
 and  $v_2(t) = -20\cos 377t$ 

(c) 
$$x(t) = 13 \cos 2t + 5 \sin 2t$$
 and  $y(t) = 15 \cos(2t - 11.8^\circ)$ 

(b) Transform the following sinusoids into phasors:

(a) 
$$-20\cos(4t + 135^{\circ})$$

(b) 
$$8 \sin(20t + 30^{\circ})$$

(c) 
$$20 \cos(2t) + 15 \sin(2t)$$

- 2. For the circuit below:
  - 1) Calculate the equivalent impedance Zab;
  - 2) If  $V_{ab} = 20 \sin (5t + 105^{\circ})$ ,
    - i. Calculate current through the  $10~\Omega$  resistor, and indicate the reference direction in the circuit diagram;
    - ii. Calculate voltage over the j20  $\Omega$  inductor and indicate the reference direction in the circuit diagram.



- 3. For the circuit below, given  $\omega = 2 \text{ rad/s}$ 
  - 1) Use nodal analysis to find Ix(t), V(t)
  - 2) Use mesh analysis to find Ix(t), V(t)



## 4. For the circuit below:

R=10Ω, L1=10mH, L2=20mH, C=200nF,

$$V_1(t) = 10\sin(5t + 30^\circ), \quad V_2(t) = 4\cos(5t)$$

Use superposition theorem to solve the i(t) and V(t)



## 5. Find $i_o(t)$ by using superposition method.



- 6. For the circuit below. The circuit is working in sinusoidal, single frequency ( $\omega$ = 2 rad/s), and steady state.
  - 1) Find the Thevenin AND Norton equivalent circuit at the terminals a and b.
  - 2) Consider an inductor L=5H is connected to the terminal a and b. Find the current through L  $i_L(t)$  and indicate the reference direction in the circuit diagram.



7. For the circuit below. Suppose  $v_s$  is a sinusoidal voltage source with the angular frequency  $\omega$ . Suppose the Op-amp is working in the linear mode. Find the expression for  $v_o/v_s$ .

