

Detection of Rare Coins

Software Engineering Department

Braude College

Capstone Project Phase A – 61998

By Hassan Said Ahmad

Lev Leyfer

Supervisor: Zeev Frenkel

Introduction

- Brief overview of rare coin detection.
- Importance of AI in solving this problem.
- Research objectives.

Problem Statement

methods.

Challenges in rare coin identification.

Need for an automated system.

Proposed Solution

AI-based system overview

Model architecture

Key features

Methods Used in Our Application

Data Collection and Annotation:

- Collected 100 images of agorot coins.
- Annotated images to mark year stamps for training.

Preprocessing:

• Applied data augmentation (rotation, scaling, contrast adjustment).

Model Training:

- Used the YOLO object detection framework.
- Fine-tuned pre-trained YOLO weights with our dataset.

Evaluation and Testing:

- Measured model performance with precision, recall, and F1 score.
- Tested on unseen data for generalization.
- Conducted real-time testing via video feed.

Converting Hebrew Year to Gregorian Year

Hebrew Letters and Their Numerical Values:

The first nine letters represent the numbers 1 through 9:

$$\circ$$
 9 = 0, $t = 7$, $t = 7$, $t = 7$, $t = 7$, $t = 8$, $t = 8$, $t = 9$, $t = 8$, $t = 1$, $t = 8$, $t = 1$

The next nine letters represent the tens:

$$\circ$$
 90 = 3, ε = 0, ε ε = 0, ε

The remaining letters represent the hundreds:

$$\circ$$
 400 = 7, π = 200, π = 300, π = 100, π

Example: תשפ"ד

- $400 = \pi$
- 300 = v
- e = 08
- 4 = 7

Total: 400+300+80+4=784. The thousands (5) are implied, so the year is 5784.

And now to make it into a civil year, we omit the first digit, and then we add 1240, in our example is 784 + 1240 = 2024

Data Flow in the Coin Detection System

Input:

• User captures an image or starts a video stream via the GUI.

Pre-processing:

• Image or video is pre-processed for optimal detection.

Coin Detection:

• Detection model identifies coins and extracts Hebrew letters stamped on them.

Classification & Extraction:

- Coins are classified by rarity, mint year, and other metadata.
- Hebrew year is converted to civil year using the previously explained algorithm.

Output:

• Results are displayed in the console or GUI.

Coin Detection			-	D	×
Start/Stop Video		Start Video			
Take Picture		Take Picture			
Set Accuracy (0 to 1)	Accuracy	0.5			
Enter Years (comma separated)	2007,2009				
Inform	nation Out	out			
Rare Coin Detected 10 Agurot	dated 2007.				

Activity Diagram

Use case

• The following Use Case diagram shows both the user and his interaction system

GUI

- 1. A button to start video mode.
- 2. A button to capture a photo and a button to process the given photo.
- 3. There will be a text box with the information after processing the coin.
- 4. In addition to a text box that tells the algorithm which years are needed.
- 5. A slider which gives the option to tell the algorithm the allowed accuracy of detection.

An example of the image after our algorithm ran on it , it highlights the coins that it found and also highlights the years of the coins that are required by the user

Thank you for listening!