<u>Help</u>

sandipan_dey >

<u>Calendar</u> **Discussion** <u>Notes</u> <u>Course</u> <u>Progress</u> <u>Dates</u>

☆ Course / Unit 1: Functions of two variab... / Lecture 1: Level curves and partial derivati...

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

End My Exam

44:54:13

Explore

Partial derivatives: geometric meaning

Recall that an approximation for the slope of the tangent line near a point x_0 is the slope of the secant line between the points $(x_0,f(x_0))$ and $(x_0+\Delta x,f(x_0+\Delta x))$. This means that

$$\underbrace{f'\left(x_{0}\right)}_{\text{Slope of tangent line}} \approx \underbrace{\frac{f\left(x_{0} + \Delta x\right) - f\left(x_{0}\right)}{\left(x_{0} + \Delta x\right) - x_{0}}}_{\text{Slope of secant line}} = \underbrace{\frac{f\left(x_{0} + \Delta x\right) - f\left(x_{0}\right)}{\Delta x}}_{\text{(2.28)}}.$$

(To review this idea in general, you may want to look at the <u>Secant Approximation mathlet</u>.)

Solving for the term $f(x_0 + \Delta x)$ gives the linear approximation for the function f(x) near x_0 :

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x. \tag{2.29}$$

This means that the derivative measures how f(x) changes if we increase x by a small amount Δx .

The same idea can be applied to functions of more than one variable. Just as we saw in the single variable case, the partial derivative with respect to $oldsymbol{x}$ evaluated at a point $(oldsymbol{x_0}, oldsymbol{y_0})$ can be approximated by

$$f_x(x_0, y_0) \approx \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$
 (2.30)

Solving for the term $f(x_0 + \Delta x)$ gives

$$f(x_0 + \Delta x, y_0) \approx f(x_0, y_0) + f_x(x_0, y_0) \Delta x.$$
 (2.31)

We can apply the same argument for $oldsymbol{f_y}$ to obtain

$$f(x_0, y_0 + \Delta y) \approx f(x_0, y_0) + f_y(x_0, y_0) \Delta y.$$
 (2.32)

So the partial derivative with respect to $m{x}$ measures how $m{f}$ changes if we increase $m{x}$ by a small amount. Similarly, the partial derivative with respect to $m{y}$ measures how $m{f}$ changes if we increase $m{y}$ by a small amount.

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

<u>Careers</u>

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>