

Pontifícia Universidade Católica de Minas Gerais – Curso de Engenharia de Computação

Disciplina: Fundamentos Teóricos da Computação

Professor : Zenilton Kleber Gonçalves do Patrocínio Júnior

Exercícios Extra (3ª AVALIAÇÃO - 1º Sem/2016 - 25 pontos)

Nome:

LD8 i Е

Considere a seguinte MT $M = (\{1, 2, 3, 4\}, \{0, 1\}, \{0, 1, \langle, \square\}, \langle, \square\}, \langle, \square\}, \{1, 2, 3\}),$ em que δ contém apenas as transições que estão representadas no diagrama a seguir:

Para quais palavras essa **MT** entra em loop? a)

(03 pontos)

Descreva a linguagem que ela reconhece por meio de uma expressão regular. b)

(03 pontos) (03 pontos)

- Forneça o diagrama de estados de uma MT equivalente que nunca entre em loop.
- Seja $L = \{ a^n b^n \mid n \geq 0 \}.$
 - Forneça o diagrama de uma MT padrão para \overline{L} (o complemento de L).

(03 pontos)

Construa um GI que gere L. b)

(04 pontos)

- Considerando o alfabeto de entrada $\{a, b\}$ e a linguagem denotada pela expressão regular $a (a \cup b)^*$, forneça o diagrama de uma MT padrão que reconheça essa linguagem com:
 - a) O número mínimo de estados.

(03 pontos)

b) O número mínimo de transições.

(03 pontos)

Assinale cada uma das seguintes afirmações como verdadeira ou falsa.

(03 pontos)

- a) Toda linguagem recursivamente enumerável pode ser gerada por uma gramática irrestrita. 1/
- b) Se L_e for recursivamente enumerável e L_r for recursiva, então $L_e L_r$ é sempre recursivamente enumerável.
- c) Se L_r for recursiva e L_e for recursivamente enumerável, então $L_r L_e$ é sempre recursivamente enumerável.