N(2190) 7/2⁻

$$I(J^P) = \frac{1}{2}(\frac{7}{2}^-)$$
 Status: ***

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics **C38** 070001 (2014).

N(2190) POLE POSITION

REVI	DART

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2050 to 2100 (≈ 2075) OUR ESTI	MATE			
2150±25	SOKHOYAN	15A	DPWA	Multichannel
2079± 4±9	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
2070	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN
2042	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
2100 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
\bullet \bullet We do not use the following	data for averages	, fits,	limits, e	etc. • • •
2150±25	ANISOVICH	12A	DPWA	Multichannel
2062	SHRESTHA	12A	DPWA	Multichannel
2063 ± 32	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$
2107	VRANA	00	DPWA	Multichannel
-2×IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
400 to 520 (≈ 450) OUR ESTIMAT	ΓΕ			
325± 25	SOKHOYAN	15A	DPWA	Multichannel
$509 \pm 7 \pm 16$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
520	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
482	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
400 ± 160	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
ullet $ullet$ We do not use the following	data for averages	, fits,	limits, e	etc. • • •
330± 30	ANISOVICH	12A	DPWA	Multichannel
428	SHRESTHA	12A	DPWA	Multichannel
330 ± 101	BATINIC	10	DPWA	$\pi N \rightarrow N\pi, N\eta$
380	VRANA	00		Multichannel

N(2190) ELASTIC POLE RESIDUE

MODULUS |r|

• •				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
25 to 70 (≈ 50) OUR ESTIMATE				
30± 4	SOKHOYAN	15A	DPWA	Multichannel
$54\pm~1\pm3$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
72	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
45	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
25 ± 10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •
30± 5	ANISOVICH	12A	DPWA	Multichannel
34	BATINIC	10	DPWA	$\pi N o N \pi$, $ N \eta$
HTTP://PDG.LBL.GOV	Page 1		Creat	ed: 5/30/2017 17:20

PHASE θ

VALUE (°)	DOCUMENT ID		TECN	COMMENT
-30 to 30 (\approx 0) OUR ESTIMATE				
$28\!\pm\!10$	SOKHOYAN	15A	DPWA	Multichannel
$-18\pm \ 1\pm 3$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
-32	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
-30 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
\bullet \bullet We do not use the following	data for averages	s, fits,	limits, e	tc. • • •
30 ± 10	ANISOVICH	12A	DPWA	Multichannel
-19	BATINIC	10	DPWA	π N $ ightarrow$ N π , N η

N(2190) INELASTIC POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2.$

Normalized residue in $N\pi \rightarrow N(2190) \rightarrow \Lambda K$

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.03 ± 0.01	20 ± 15	ANISOVICH 12	A DPWA	Multichannel

Normalized residue in N $\pi \to N(2190) \to \Delta(1232)\pi$, D-wave

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.27 ± 0.04	-165 ± 20	SOKHOYAN 15	A DPWA	Multichannel

Normalized residue in $N\pi \to N(2190) \to N\sigma$

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.13±0.05	50 ± 15	SOKHOYAN 15A	DPWA	Multichannel

N(2190) BREIT-WIGNER MASS

VALUE (Me	V)	DOCUMENT ID		TECN	COMMENT
2100 to	2200 (≈ 2190) OUR ESTI	MATE			
2205 ± 1	18	SOKHOYAN	15A	DPWA	Multichannel
$2152.4\pm$	1.4	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
2200 ± 7	70	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
2140 ± 1	12	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We	e do not use the following d	ata for averages	, fits,	limits, e	tc. • • •
2180 ± 2	20	ANISOVICH	12A	DPWA	Multichannel
2150 ± 2	26	SHRESTHA	12A	DPWA	Multichannel
2125 ± 6	51	BATINIC	10	DPWA	$\pi N \rightarrow N\pi, N\eta$
2168 ± 1	18	VRANA	00	DPWA	Multichannel

N(2190) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
300 to 700 (≈ 500) OUR ESTIMAT	E			
355± 30	SOKHOYAN	15A	DPWA	Multichannel
484± 13	ARNDT	06	DPWA	π N $ ightarrow$ π N, η N
500 ± 150	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
390± 30	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
HTTP://PDG.LBL.GOV	Page 2		Creat	ed: 5/30/2017 17:20

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

335± 40	ANISOVICH	12A	DPWA Multichannel
500± 74	SHRESTHA	12A	DPWA Multichannel
381 ± 160	BATINIC	10	DPWA $\pi N \to N \pi$, $N \eta$
453 ± 101	VRANA	00	DPWA Multichannel

N(2190) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$N\pi$	10–20 %
Γ_2	$N\eta$	seen
Γ3	$N\omega$	
Γ_4	ΛK	0.2–0.8;%
Γ_5	$N\pi\pi$	22-80;%
Γ ₆	$\Delta(1232)\pi$	
Γ_7	${\it \Delta}(1232)\pi$, ${\it D}$ -wave	19–31 %
Γ ₈	$N \rho$	
Γ_9	$N\rho$, $S=3/2$, D -wave	seen
Γ_{10}	$N\sigma$	3–9 %
Γ_{11}	$m{ ho}\gamma$	0.014-0.077 %
Γ_{12}	$p\gamma$, helicity $=1/2$	0.013-0.062;%
Γ_{13}	$p\gamma$, helicity=3/2	0.001-0.014;%
Γ_{14}	$n\gamma$	<0.04 %
Γ_{15}	$n\gamma$, helicity $=1/2$	<0.01;%
Γ ₁₆	$n\gamma$, helicity=3/2	<0.03 %

N(2190) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
10 to 20 OUR ESTIMATE					
16 ± 2	SOKHOYAN	15A	DPWA	Multichannel	
23.8± 0.1	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN	
12 ± 6	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
14 ± 2	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
• • • We do not use the following d	lata for averages	s, fits,	limits, e	etc. • • •	
16 ± 2	ANISOVICH	12A	DPWA	Multichannel	
20 ± 1	SHRESTHA	12A	DPWA	Multichannel	
18 ± 12	BATINIC	10	DPWA	$\pi N \rightarrow N\pi, N\eta$	
20 ± 4	VRANA	00	DPWA	Multichannel	

Created: 5/30/2017 17:20

$\Gamma(N\eta)/\Gamma_{total}$							Γ_2/Γ
VALUE (%)		DOCUMENT ID		TECN	СОМ	MENT	
• • • We do not us	se the following	data for average	s, fits,	limits,	etc. •	• •	
2 ± 1		SHRESTHA	12A	DPW	A Mul	tichannel	
0.1 ± 0.3		BATINIC	10			\rightarrow N π , N η	
0 ±1		VRANA	00	DPW	A Mul	tichannel	
$\Gamma(N\omega)/\Gamma_{ ext{total}}$							Γ_3/Γ
VALUE (%)		DOCUMENT ID		TECN	СОМ	MENT	5,
14±6		DENISENKO	16	DPW	A Mul	tichannel	
• • • We do not us	se the following	data for average	s, fits,	limits,	etc. •	• •	
seen		WILLIAMS	09	IPWA	γ p	$ ightarrow$ $p\omega$	
$\Gamma(\Lambda K)/\Gamma_{\text{total}}$							Γ ₄ /Γ
VALUE (%)		DOCUMENT ID		TECN	СОМ	MENT	- 4/
0.5±0.3		ANISOVICH	12A			tichannel	
• • • We do not us	se the following	data for average	s, fits,	limits,	etc. •	• •	
<1		SHRESTHA	12A	DPW	A Mul	tichannel	
$\Gamma(\Delta(1232)\pi, D$	wave) /[Γ_7/Γ
VALUE (%)	vidvo)/ i total	DOCUMENT ID		TECN	COM	MENT	. //.
25±6		SOKHOYAN	15A			tichannel	
F(N a S-2/2 D) wave) /F						Г. /Г
$\Gamma(N\rho, S=3/2, D)$ VALUE (%)	-wave)/I total	DOCUMENT ID		TECN	COM	MENT	Γ ₉ /Γ
• • • We do not us	se the following		e fite				
29±28	se the ronowing	VRANA	00			tichannel	
$\Gamma(N\sigma)/\Gamma_{\text{total}}$							Γ ₁₀ /Γ
VALUE (%)		DOCUMENT ID		TECN		MENT	-
6±3		SOKHOYAN	15A	DPW	A Mul	tichannel	
N(2190) PHOTON [DECAY AMPL	ITUE	DES A	т тн	E POLE	
$N(2190) \rightarrow p\gamma$,					
$MODULUS (GeV^{-1/2})$	PHASE (°)	DOCUMEN	IT ID		TECN	COMMENT	
0.068 ± 0.005		SOKHOY	'AN	15A [PWA	Multichanne	el
$-0.083 ^{+0.007}_{-0.003}$	-11^{+6}_{-2}	ROENCH	IEN	14 [PWA		
$N(2190) \rightarrow p\gamma$, helicity-3/2	amplitude A ₃ ,	′ 2				
$\underline{MODULUS}$ ($GeV^{-1/2}$)		•		7	FCN	COMMENT	
	PHASE (°)	DUCUMEN	עו ו				
	$\frac{PHASE (°)}{22 \pm 10}$	SOKHOY	ΆΝ	15A [)PWA	Multichanne	<u> </u>
	22 ± 10	SOKHOY ROENCH	⁄AN	15A [PWA	Multichanne	el

Created: 5/30/2017 17:20

N(2190) BREIT-WIGNER PHOTON DECAY AMPLITUDES

$N(2190) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

$VALUE$ (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
-0.071 ± 0.006	SOKHOYAN	15A	DPWA	Multichannel
• • • We do not use the following of	lata for averages,	fits,	limits, e	tc. • • •
-0.065 ± 0.008	ANISOVICH	12A	DPWA	Multichannel

$N(2190) \rightarrow p\gamma$, helicity-3/2 amplitude A_{3/2}

$VALUE (GeV^{-1/2})$	DOCUMENT ID		TECN	COMMENT
0.027 ± 0.010	SOKHOYAN 1	15A	DPWA	Multichannel
• • • We do not use the following	data for averages,	fits,	limits, e	tc. • • •
0.035 ± 0.017	ANISOVICH 1	12A	DPWA	Multichannel

$N(2190) \rightarrow p\gamma$, ratio of helicity amplitudes $A_{3/2}/A_{1/2}$

VALUE	DOCUMENT ID	TECN	COMMENT	
• • • We do not use the follow	ving data for averages, fit	s, limits,	etc. • • •	
-0.17 ± 0.15	WILLIAMS 09	IPWA	$\gamma {m p} ightarrow {m p} \omega$	

$N(2190) \rightarrow n\gamma$, helicity-1/2 amplitude $A_{1/2}$

$VALUE (GeV^{-1/2})$	DOCUMENT ID		TECN	COMMENT
-0.015 ± 0.013	ANISOVICH	13 B	DPWA	Multichannel

$N(2190) \rightarrow n\gamma$, helicity-3/2 amplitude A_{3/2}

$VALUE$ (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
-0.034 ± 0.022	ANISOVICH	13 B	DPWA	Multichannel

N(2190) FOOTNOTES

N(2190) REFERENCES

For early references, see Physics Letters 111B 1 (1982).

DENISENKO SOKHOYAN PDG ROENCHEN Also SVARC	16 15A 14 14	PL B755 97 EPJ A51 95 CP C38 070001 EPJ A50 101 EPJ A51 63 (errat.) PR C89 045205	K. Olive <i>et al.</i> D. Roenchen <i>et al.</i> D. Roenchen <i>et al.</i> A. Svarc <i>et al.</i>	(CBELSA/TAPS Collab.) (PDG Collab.)
ANISOVICH ANISOVICH	13B 12A	EPJ A49 67 EPJ A48 15	A.V. Anisovich <i>et al.</i> A.V. Anisovich <i>et al.</i>	(PONN DNDI)
SHRESTHA	12A 12A	PR C86 055203	M. Shrestha, D.M. Manley	(BONN, PNPI) (KSU)
BATINIC	10	PR C82 038203	M. Batinic et al.	(ŻAGR)
WILLIAMS	09	PR C80 065209	M. Williams et al.	(JLab CLAS Collab.)
ARNDT	06	PR C74 045205	R.A. Arndt et al.	(GWU)
VRANA	00	PRPL 328 181	T.P. Vrana, S.A. Dytman, TS.H.	Lee (PITT, ANL)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMÙ, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP

Created: 5/30/2017 17:20

 $^{^{1}}$ Fit to the amplitudes of HOEHLER 79.