Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Кафедра информатики и прикладной математики

Формальные языки и грамматтики

Домашнее задание 1 "Классификация грамматик" Вариант 19

Старался: **Шкаруба Н.Е.** Проверил: **Лаздин А.В.**

Группа **Р3218**

 2016Γ

Требования:

Для каждой грамматики из списка, соответствующему варианту, выполнить действия, заданные в таблице заданий, определить тип грамматики по классификации Хомского, и постройте вывод не менее двух предложений (если это возможно).

Вариант	Задачи	
19	6,10,12,20,31	

Теория:

Тип 0 — неограниченные

К типу 0 по классификации Хомского относятся неограниченные грамматики — грамматики с фразовой структурой, то есть все без исключения формальные грамматики. Правила можно записать в виде: $\alpha \to \beta$,где α — любая непустая цепочка, содержащая хотя бы один нетерминальный символ, а β — любая цепочка символов из алфавита.

Тип 1 — контекстно-зависимые

Для грамматики $G(V_T,V_N,P,S), V=V_T\cup V_N$ все правила имеют вид $^{[2]}$:

•
$$\alpha A \beta \to \alpha \gamma \beta_{\text{rme}} \alpha, \beta \in V^*, \gamma \in V^+, A \in V_N$$

•
$$\alpha \to \beta_{\text{,rge}} \alpha, \beta \in V^+, 1 \le |\alpha| \le |\beta|$$

Для контекстно-зависимых грамматик доказано утверждение: по некоторому алгоритму за конечное число шагов можно установить, принадлежит цепочка терминальных символов данному языку или нет.

Тип 2 — контекстно-свободные

Для грамматики $G(V_T,V_N,P,S), V=V_T\cup V_N$ все правила имеют вид:

• $A \to \beta$, где $\beta \in V^+$ или $\beta \in V^*$, $A \in V_N$. То есть грамматика допускает появление в левой части правила только нетерминального символа.

КС-грамматики широко применяются для описания синтаксиса компьютерных языков (см. синтаксический анализ).

Тип 3 — регулярные

Самые простые из формальных грамматик. Они являются контекстно-свободными, но с ограниченными возможностями.

Все регулярные грамматики могут быть разделены на два эквивалентных класса, которые для грамматики вида III будут иметь правила следующего вида:

•
$$A \to B\gamma$$
 или $A \to \gamma$, где $\gamma \in V_T^*, A, B \in V_N$ (для леволинейных грамматик).

•
$$A o \gamma B$$
 ; или $A o \gamma$, где $\gamma \in V_T^*, A, B \in V_N$ (для праволинейных грамматик).

Выполнение:

No	Грамматики	A	Вывод
6	$S \rightarrow 1B$	Какой язык порождает	Регулярный, т.к. грамматика подходит под
	$B \rightarrow B0 \mid 1$	грамматика?	классификацию 3.

№	Грамматики	A	Вывод
10	$S \rightarrow P \perp$ $P \rightarrow 1P1 \mid 0P0 \mid T$ $T \rightarrow 021 \mid 120R$ $R1 \rightarrow 0R$ $R0 \rightarrow 1$ $R \perp \rightarrow 1 \perp$	Какой язык порождает грамматика	Неогранниченный, т.к. грамматика очень сложная и не подходит под классификации 3, 2, т.к. имеет нетерминалы в левых частях правил.

№	Грамматики	A	Вывод
12	$S \rightarrow abC \mid aB$	Какой язык порождает	Контекстно-зависимый, т.к. Правила имеют
	$B \rightarrow bc$	грамматика	нетерминалы в левых частях, но видно, что
	$bC \rightarrow bc$		граммтика конечная.

№	Грамматики	A	Вывод
20	$S \rightarrow ASB \mid BSA$	Какой язык порождает	Контекстно-свободный, т.к. Правила не подходят
	$A \rightarrow a$	грамматика	под классификацию 3, но подходят под 2.
	$B \rightarrow b \mid \varepsilon$		
	$SB \rightarrow \epsilon$		

	$N_{\underline{0}}$	Грамматики	A	Вывод
	31	S ABC	Какой язык порождает	Регулярный, т.к. правил подходят под
		$A aA \mid a$	грамматика	классификацию 3.
		Β Β <i>b</i> ε		
L		C Cc c		