# Monthly Meeting on October

Yuichiro Honda Morita lab. M1

2016/10/05

- 1 Previous work
- Progress
- 3 Next step

#### Last month

- searched an (polynomial) algorithm to partition two matroids into their common bases
- 2 found an algorithm to find all common bases in two matroids in  $O(n(n^2 + t)\lambda)$

- Previous work
- 2 Progress
- 3 Next step

#### References



Komei Fukuda, Makoto Namiki: "Finding all common bases in two matroids", Discrete Applied Mathmatics 56 (1995) 231-243

#### Main result

Given two matroids  $M_1=(E,\mathcal{B}_1)$ ,  $M_2=(E,\mathcal{B}_2)$ , and a common base  $B^1\in\mathcal{B}_1\cap\mathcal{B}_2$ , there is an algorithm finding all common bases of them in  $O(n(n^2+t)\lambda)$  where  $\lambda$  is number of the bases and t is the time to make one pivot operation.

- The algorithm use enumeration tree whose height is |E| = n
- In the beginning



#### bipartite graph G



#### Theorem 1

There exists a common base  $B^{k+1}$  in L if and only if there exists a directed cycle C in G which contains f and consists of elements in E less than or equal to f.

bipartite graph G when  $f = i_6...$ 



bipartite graph G when  $f = i_6...$ 







$$P = (R R R)$$
  
 $P_1 = R \text{ then } f = 1$   
 $B^1 = \{2, 3\}$ 



$$P = (LRR)$$
  
 $P_2 = R \text{ then } f = 2$   
 $B^1 = \{2, 3\}$ 



$$P = (LLR)$$
  
 $P_3 = R \text{ then } f = 3$   
 $B^1 = \{2, 3\}$ 



$$P = (R R L)$$
  
 $P_1 = R \text{ then } f = 1$   
 $B^2 = \{1, 2\}$ 



$$P = (LRL)$$

$$P_2 = R \text{ then } f = 2$$

$$B^2 = \{1, 2\}$$



$$P = (L L L)$$
  
  $f$  doesn't exist end

#### alogrithm "Enumerate"

input:  $M_1 := (E, \mathcal{B}_1), M_2 := (E, \mathcal{B}_2), B^1 \in \mathcal{B}_1 \cap \mathcal{B}_2$  output: all common bases of  $M_1$  and  $M_2$ 

- 1 k := 1, output  $B^k$ . P := (R, ..., R). (Here,  $P \in \{L, R\}^n$ )
- **2**  $f := min\{j \mid P_j = R\}$
- 3 If *f* doesn't exist, stop. Else, create *G* and find directed cycle *C* satisfying theorem 1 with breadth first search.
- 4 If C doesn't exist, goto step 2. Else, k := k+1, make pivot operation along C and obtain new  $B^k$ ,  $T_{M_1}(B^k)$ , and  $T_{M_2}(B^k)$ .  $P_f := L$ ,  $\forall j < k; \ P_j := R$ , goto step 2.

- Previous work
- Progress
- 3 Next step

#### next month

#### TODO:

- 1 learn about matroid intersection
- 2 learn how to partition a matoid into bases
- tackle two different partition matroids (can be partitioned into their common bases)
- generalized partition matroid of two different uniform matroids and any matroid