Computazione I

Paolo Bettelini

Contents

1	Floating points	1
2	Approssimazione di zeri di funzioni	2
3	Metodo di bisezione	2
4	Metodo di iterazione funzionale	2

1 Floating points

L'insieme dei floating point è

$$f(\beta,t,m,M) = \{0,\operatorname{NaN}, \pm \infty\} \cup \left\{ x = \operatorname{sign}(x) \cdot \beta^e \sum_{i=1}^t y_i \beta^{-i} \mid t, y_i, m, M \in \mathbb{N}, y_1 \neq 0, -m \leq e \leq M \right\}$$

Stimiamo ora l'errore relativo

$$\frac{|x - \tilde{x}|}{|x|}$$

dove $x \in \mathbb{R}$ e $\tilde{x} \in f(\beta, t, m, M)$ è la sua rappresentazione migliore in un calcolatore. Consideriamo x > 0. Chiaramente, se $\tilde{x} \in \mathbb{R}$, allora $|x - \tilde{x}| = 0$. Altrimenti, $x \in [a, b]$ dove $a, b \in f$ e sono consecutivi in f. Quindi

$$|x - \tilde{x}| \le \frac{b - a}{2}$$

Abbiamo allora

$$a = \beta^e \sum_{i=1}^t y_i \beta^{-i}$$

 \mathbf{e}

$$b = \beta^e \left(\sum_{i=1}^t y_i \beta^{-i} + \beta^{-t} \right) = a + \beta^{e-t}$$

Quindi la differenza è data da

$$|x - \tilde{x}| \le \frac{1}{2}\beta^{e-t}$$

Dobbiamo ora minorare l'elemento normalizzante

$$|x| = \beta^e \sum_{i=1}^{\infty} y_i \beta^{-i} \ge \beta^e \cdot y_1 \beta^{-1} \ge \beta^{e-1}$$

Abbiamo quindi

$$\frac{1}{|x|} \le \beta^{1-e}$$

Combinando i due risultati otteniamo

$$\frac{|x-\tilde{x}|}{|x|} \le \frac{1}{2}\beta^{e-t}\beta^{1-e} = \frac{1}{2}\beta^{1-t} \triangleq u$$

Allora u è la precisione macchina.

2 Approssimazione di zeri di funzioni

Sia $f \in C_{[a,b]}$ tale che $f(\alpha) = 0$. Vogliamo approssimare α numericamente.

3 Metodo di bisezione

Possiamo applicare ricorsivamente il teorema degli zeri, quindi bisezione. In questo caso la velocità è indipendente da f ma solo dipendente dalla grandezza dell'intervallo. Terminiamo l'algoritmo quando $|b-a|<\varepsilon$ che è la mia tolleranza. L'errore relativo è $|x-\alpha|<\varepsilon|\alpha|$. Per trovare il numero di operazioni abbiamo

$$|b_1 - a_1| = \frac{1}{2}|b_2 - a_1|, \dots, |b_i - a_i| = \frac{1}{2^i}|b_i - a_i|$$

Quindi servono

$$\left\lceil \log 2 \left(\frac{|b-a|}{\varepsilon} \right) \right\rceil$$

Il pro di questo metodo è quindi una convergenza globale ma come contro abbiamo una convergenza lenta se l'intervallo è grande.

4 Metodo di iterazione funzionale

Si definiscono metodi numerici per generare la successione $\{x_k\}$ tale che possibilmente

$$\lim_{k} x_k = \alpha$$

Si andranno a definire iterazioni funzionali della forma

$$x_{k+1} = g(x_k)$$

con un x_0 dato. Vogliamo convertire f(x) = 0 in un'equazione di punto fisso x = g(x), e poi si definisce l'iterazione. L'iterazione funzionale deve tuttavia convergere. Quindi, data g sufficientemente regolare tale che $\alpha = g(\alpha)$ e definito lo schema di iterazione $x_{k+1} = g(x_k)$ con x_0 dato, si vogliono definire condizioni necessarie e/o sufficienti per la convergenza

$$\lim_{k} x_k = \alpha$$

La condizione necessaria è

Lemma

Sia $g \in C([a,b])$ tale che $x_0 \in [a,b]$ e $x_{k+1} = g(x_k) \in [a,b]$ e

$$\lim_{k} x_k = c$$

allora $\alpha = g(\alpha)$.

Proof

$$\alpha = \lim_{k} x_k = \lim_{k} x_{k+1} = \lim_{k} g(x_k)$$

La condizione sufficiente è il teorema delle contrazioni, per la quale serve $f \in C^1$.

Teorema Teorema delle contrazioni semplificato

Sia $g \in C^1(I_\delta(\alpha))$ dove $g(\alpha) = \alpha$. Sia $x_0 \in I_\delta(\alpha)$ e

$$|g'(x)| < 1, \quad \forall x \in I_{\delta}(\alpha)$$

Allora per la $\{x_k\}$ tale che $x_{k+1} = g(x_k)$ vale

- 1. $x_k \in I_\delta(\alpha)$;
- 2.

$$\lim_{k} x_k = \alpha$$

3. α è l'unico punto fisso.

Proof Teorema delle contrazioni semplificato

- 1. Per induzione su k
 - il caso base k = 0 è banale per ipotesi;
 - assumendo che x_k dimostriamo che x_{k+1} sta nell'intorno.

$$x_{k+1} \in I_{\delta}(\alpha) \iff |x_{k+1} - \alpha| \le \delta$$

Per il teorema di Lagrange sul punto ξ_k

$$|x_{k+1} - \alpha| = |g(x_k) - g(\alpha)| = |g'(\xi_k)(x_k - \alpha)|$$

$$= \underbrace{|g'(\xi_k)|}_{\leq 1} \cdot \underbrace{|x_k - \alpha|}_{\leq \delta}$$

$$< \delta$$

con $|\xi_k - \alpha| < |x_k - \alpha|$. Quindi appartiene all'intervallo.

2. Sia

$$\lambda = \max_{x \in I_{\delta}(\alpha)} |g'(x)| < 1$$

Sia anche $e_k = |x_k - \alpha|$ l'errore. Siccome $e_{k+1} \le \lambda e_k$ abbiamo

$$\lim_{k} x_k = \alpha \iff \lim_{k} e_k = 0$$

e quindi

$$0 \le e_{k+1} \le \lambda e_k \le \lambda \lambda e_{k-1} \le \dots \le \lambda^{k+1} e_0$$

per il teorema dei due carabinieri tende a zero

$$\lim_{k} e_k = 0$$

3. Per assurdo sia $\beta \neq \alpha$ tale che $\beta = g(\beta)$. Abbiamo $|\alpha - \beta| > 0$. Quindi $|g(\beta) - g(\alpha)| > 0$. Per il teorema di Lagrange ciò è uguale a

$$\underbrace{|g'(\xi)|}_{\leq 1} \cdot |\beta - \alpha| < |\beta - \alpha|$$

che è assurdo

Possiamo rilassare l'ipotesi escludendo α dall'intervallo. Per avere una contrazione non è necessaria C^1 , basta che la funzione di Lipschitz con L < 1 (ulteriore rilassamento).

Se la convergenza è monotona (che non sappiamo), potrebbe considerare solo un intervallo sinistro o destro. Sia infatti -1 < g'(x) < 0. Disegnino costante di Dottie convergenza. Salto a destra e a sinistra,

quindi in questo caso non poso prendere l'intervallo solo destro o solo sinistro (convergenza alternata). Se invece non cambia segno g'(x) < -1 possiamo considerare solo una parte dell'intervallo in quanto la convergenza è monotona. Se invece g'(x) > 1 abbiamo una divergenza.

Vediamo ora come scegliere x_0 . Se 0 < g'(x) < 1, quindi convergenza monotona, possiamo scegliere $x_0 = a$ o $x_0 = b$ che sono gli estremi. Il problema sussiste quando -1 < g'(x) < 0 dove abbiamo una convergenza alternata nell'intervallo simmetrico $I_\delta(\alpha) \subseteq [a,b]$. Dobbiamo sapere qual'è il più vicino.