Energie für (m)eine Stadt

Planspiel zur Energiewende

Christoph Pels Leusden

Aufgabenstellung

So könnte "(m)eine Stadt" aussehen

Abbildungsnachweis: File:Nassau Luftbild 070.jpg, https://commons.wikimedia.org/w/index.php?title=File:Nassau Luftbild 070.jpg&oldid=167023111 (last visited August 13, 2019)

Inhalt

Forschdorf ist eine imaginäre Kleinstadt in der Mitte Deutschlands mit 10.000 Menschen und einer üblichen Infrastruktur. In diesem Planspiel konzipieren Sie in Teams das neue System zur Versorgung von Forschdorf mit Strom und Wärme. Sie wählen technische Optionen für die Energieversorgung aus (z.B. Wind, Solarenergie, Kraft-Wärme-Kopplung, Wärmepumpen, Speicher). Neben dem CO2-Ausstoß und den Kosten achten Sie darauf, dass die Menschen in Forschdorf nicht im Dunkeln sitzen oder frieren müssen. Mit Hilfe unserer Software simulieren und untersuchen wir den Betrieb Ihrer Energiesysteme im Verlauf eines Kalenderjahres. Wie gut gelingt Ihnen die Energiewende in Forschdorf?

Daten zu Forschdorf

- Lage: Niedersachsen
- 10.000 Einwohner
- 50% wohnen in Einfamilienhäusern, 50% in Mehrfamilienhäusern
- Gewerbegebiet mit 40 Klein-Unternehmen
- 1 Freibad, 1 Schule, 1 Krankenhaus, 2 Altenheime

Aufgabe

- 1. Wie viel kostet die Energieversorgung pro Jahr?
- 2. Wie viel CO₂ wird dabei emittiert?
- 3. Welcher Anteil am Bedarf kann vom System gedeckt werden?

Bedarf an elektrischer und thermischer Energie

Daten: Eigene Berechnungen basierend auf Strommarktdaten Deutschland für 2015 von Bundesnetzagentur - www.smard.de (Strom); Stadtwerke Flensburg GmbH, District heating network data for the city of Flensburg from 2014-2016 (Wärme)

Berliner Hochschule für Technik Studiere Zukunft

Energie für (m)eine Stadt Christoph Pels Leusden

Solare Einstrahlung

Daten: Strahlungsdaten aus eigener Berechnungen basierend auf DWD Climate Data Center (CDC)

Windgeschwindigkeit

Daten: Windgeschwindigkeit von DWD Climate Data Center (CDC);

Quartett der technischen **Optionen**

0 0,07 0,14 0,29 0,58 2 8,64 26

bedarfe Kapazität

Markieren Sie Ihre Auswahl

snachwels: By Bwag - Own work, CC BY-SA 4.0, mmons wikimedia.org/windex.ohp?quide774155

Stromspeicher

(E-Sp)

Kapzität [MWh] 0 13 26 52 104 364

0,07 0,14 0,29 0,58 2,0 8,6 26

Speicherkapazität Wärme

Windenergieanlage

Photovoltaik (PV) und Solarthermie (ST)

Berliner Hochschule für Technik Studiere Zukunft Energie für (m)eine Stadt Christoph Pels Leusden

Blockheizkraftwerk (BHKW), Heizkessel, Wärmepumpe

Blockheizkraftwerk (BHKW)

Heizkessel (HK)

Wärmepumpe (WP)

0,3 Mio € / Stück

Wärme

P_{th}= 3 MW

el. Energie 0,75 MW
Umweltwärme

4,5 Mio € / Stück
P_{th}= 3 MW

Entscheidung max. 10 Stück:

Entscheidung max. 10 Stück:

Entscheidung max. 10 Stück: ___

Abbildungsnachweis: ChNPP (https://commors.wikimedia.org/wiki/File:BHKW_Ba d_Steben_2010-1.JPG], _BHKW Bad Steben 2010-1", https://creativecommons.org/licenses/bysa/3.0/legalcode

Abbidungsrachweis: Dunnd74 at English Wikipedia (CC 6Y-6A 3.0 (http://orestivecommons.org/licenses/by-ea/3.0/) Abbidungsnachweis: https://www.needpix.com/photo/1187791/heatpump-air-heat-heating-idm-air-heat-pumprenewable-energy-free-pictures-free-photos-free-

Speicher für elektrische und thermische Energie

Stromspeicher (E-Sp)

Markieren Sie Ihre Auswahl

Abbildungsnachweis: Ra Boe / Wikipedia (https://commons.wikimedia.org/wiki/File:Sindelfing en_Haus_&_Energie_2019_by-RaBoe_126.jpg), "Sindelfingen Haus & Energie 2019 by-RaBoe 126", https://creativecommons.org/licenses/bysa/3.0/de/legalcode Wärmespeicher (W-Sp)

14 Mio €/ Tagesbedarf

 $\eta = 90\%$

Wärme, Einspeichern Q_{ein}: 1 MWh

Wärme, Ausspeichern Q_{aus}: 0,9 MWh

Entscheidung Speicherkapazität:

Tagesbedarfe 0 1/4 1/2 1 2 7 30 90 Kapazität [GWh] 0 0,07 0,14 0,29 0,58 2 8,64 26

Markieren Sie Ihre Auswahl

Abbildungsnachweis: By Bwag - Own work, CC BY-SA 4.0, https://commons.wikimedis.org/w/index.php?ourid=77415521

Annahmen und Kennzahlen

- Wie viel kostet die Energieversorgung von Forschdorf pro Jahr?
- Wie viel CO₂ wird emittiert?
- Welcher Anteil am Bedarf kann vom System gedeckt werden?

Wie ist der Ablauf des Planspiels

Aufgabenstellung Lösungsfindung Gruppenarbeit

Pause Computer rechnet

Ergebnisse Diskussion

Berechnungswerkzeug oemof

- oemof: open energy system modelling framework
- modularer Aufbau
- lineare Optimierung
- beliebige Zeitschritte (hier: 8760 h pro Jahr)
- verfügbar unter freier Lizenz

Ergebnisse

Ergebnisse

Disclaimer Förderung Lizenz **Kontakt**

Disclaimer

Alle in diesem Workshop verwendeten Namen sind erfunden oder wurden zufällig ausgewählt. Eventuelle Gemeinsamkeiten mit realen Orten oder Personen sind zufällig und sind von den Autoren nicht beabsichtigt. Dieser Workshop soll ein fiktives Szenario betrachten.

Förderung

Die Entwicklung und das Angebot dieses Planspiels wurde gefördert durch:

Lizenz

Sofern nicht gesondert vermerkt ist der Inhalt dieser Datei lizensiert als

Berliner Hochschule für Technik Energie für (m)eine Stadt – Planspiel zur Energiewende (Präsentation)

unter CC BY SA 4.0:

<u>Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0</u> <u>Internationale Lizenz</u>

Kontakt

Prof. Dr.-Ing. Christoph Pels Leusden Berliner Hochschule für Technik Fachbereich Maschinenbau, Veranstaltungstechnik, Verfahrenstechnik

christoph.pels-leusden@bht-berlin.de

https://projekt.bht-berlin.de/planspielenergie/

Vielen Dank für Ihr Interesse!

