It was so shocking to hear the demise of the "hero of LA lakers". I live at thousand oaks and hearing the incident, early sunday morning hit me hard. Life seems to be so unfair. I am not a fan of basket ball but this incident made me blow. I couldn't take it and thought how his fans would be at the very moment. I pray god to give strength to his family and fans. As a part of a tribute, I wanted to have a data walkthrough on his 20 years of basketball career. RIP the legend.

Extracting a data set from Kaggle to predict the shots of Kobe's 20 years of basketball career.

In [48]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import seaborn as sns
image = mpimg.imread("kobe.jpg")
plt.imshow(image)
plt.show()
kobe = pd.read_csv('kobe.csv')
```


In [49]:

kobe.head(5)

Out[49]:

	action_type	combined_shot_type	game_event_id	game_id	lat	loc_x	loc_y	lon	minutes_remaining	period	 shot_t
0	Jump Shot	Jump Shot	10	20000012	33.9723	167	72	118.1028	10	1	 2PT F
1	Jump Shot	Jump Shot	12	20000012	34.0443	-157	0	118.4268	10	1	 2PT F
2	Jump Shot	Jump Shot	35	20000012	33.9093	-101	135	118.3708	7	1	 2PT F
3	Jump Shot	Jump Shot	43	20000012	33.8693	138	175	- 118.1318	6	1	 2PT F
4	Driving Dunk Shot	Dunk	155	20000012	34.0443	0	0	- 118.2698	6	2	 2PT F

5 rows × 25 columns

We could see that the data set contains 25 columns and 30697 entries. The column name shot made flag has only 25697 entries

In [7]:

```
kobe.info()
```

and needs futher inspection for the missing values since this is our prime column of analysis

```
30697 non-null int64
game event id
                                 30697 non-null int64
game_id
lat
                                  30697 non-null float64
                                 30697 non-null int64
loc x
loc_y
                                30697 non-null int64
                               30697 non-null float64
minutes_remaining 30697 non-null int64
              30697 non-null into-
30697 non-null int64
30697 non-null objec
period
playoffs
                               30697 non-null object
season
seconds_remaining 30697 non-null int64 shot_distance 30697 non-null int64 shot_made_flag 25697 non-null float64 shot_type 30697 non-null object
shot_type
shot_zone_area
shot_type 30697 non-null object shot_zone_area 30697 non-null object shot_zone_basic 30697 non-null object shot_zone_range 30697 non-null object team_id 30697 non-null int64 team_name 30697 non-null object game_date 30697 non-null object
game_date
matchup
opponent
                                30697 non-null object
                                30697 non-null object
                                 30697 non-null int64
dtypes: float64(3), int64(11), object(11)
memory usage: 5.9+ MB
```

The short_made_flag is represented either as 1 or 0,1 indicating the shot was made and 0 indicating the miss of shot by Kobe.

We need to erradicate these NAN for futher analysis. We could not predict the NAN as either 1 or 0 and hence neglecting those would be a wise option.

In [8]:

kobe new =kobe.dropna(axis=0)

```
kobe new.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 25697 entries, 1 to 30696
Data columns (total 25 columns):
                    25697 non-null object
type 25697 non-null object
action type
combined shot type
                             25697 non-null int64
game_event_id
game id
                              25697 non-null int64
lat
                               25697 non-null float64
loc_x
                               25697 non-null int64
loc y
                                25697 non-null int64
minutes_remaining 25697 non-null floate
period 25697 non-null int64
playoffs 25697 non-null int64
season 25697 non-null object
                               25697 non-null float64
season 25697 non-null object seconds_remaining 25697 non-null int64 shot_distance 25697 non-null int64 shot_made_flag 25697 non-null float64 shot_type 25697 non-null object
shot_type 25697 non-null object shot_zone_area 25697 non-null object shot_zone_basic 25697 non-null object shot_zone_range 25697 non-null object team id 25697 non-null int64
                             25697 non-null int64
team id
team name
                              25697 non-null object
                             25697 non-null object
game date
matchup
                               25697 non-null object
opponent
                                25697 non-null object
                               25697 non-null int64
shot id
dtypes: float64(3), int64(11), object(11)
memory usage: 5.1+ MB
```

KOBE'S FREQUENT AND RARE SHOTS

```
In [37]:
```

```
colors = list('rgbcmyk')
plt.subplot(121)
kobe_new['action_type'].value_counts().head(10).plot.bar(color='green')
plt.xlabel('Type of shots')
plt.ylabel('Count of the type of shots')
plt.title('The top most 10 fav shots of Kobe')
plt.subplot(122)
kobe_new['action_type'].value_counts().tail(10).plot.bar(color='red')
plt.xlabel('Type of shots')
plt.ylabel('Count of the type of shots')
plt.title('Least 10 Rare shots of Kobe during his play')
plt.show()
```


KOBE'S FREQUENCY OF SHOT MADE AND MISSED

In [39]:

```
kobe_new['shot_made_flag'].value_counts().plot.bar()
plt.xlabel('Shots missed and shots made')
plt.ylabel('Count of the shots')
plt.title('Frequency of shots missed or made')
plt.show()
```


In [40]:

```
kobe_new['team_name'].unique()
```

Out[40]:

```
array(['Los Angeles Lakers'], dtype=object)
```

Kobe is the only player who had played for the same team (LA LAKERS)throughout his career

KOBE'S SHOTS BASES ON THE ZONE AREA

In [46]:

```
plt.figure(figsize=(12,6))
sns.countplot(x="shot_zone_area", hue="shot_made_flag", data=kobe_new)
```

Out[46]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d4488c22e8>

Most of his shots made was on the centre zone area

In [65]:

```
kobe_new_date = pd.to_datetime(kobe['game_date'])
kobe_new['year'] = kobe_new_date.dt.year
plt.figure(figsize=(20,10))
sns.countplot(x='year', hue='shot_made_flag', data=kobe_new)
plt.title('Shots of Kobe by year')
plt.xlabel('year')
plt.ylabel('shot')
plt.show()
```


"The most important thing in life is how your career moves and touches those around you,and how it carries forward to the next generation"-Kobe Bryant

T- [].		
In []:		
In []:		