Supplementary material for: Influence of land cover and climate on the occupancy of avian distributions along a tropical montane gradient

Vijay Ramesh, Pratik R Gupte, and Morgan Tingley

2020-07-25

Contents

2 1 Introduction

- This is supplementary material for a project in preparation that models occupancy for birds in the Nilgiri hills. The main
- project can be found here: https://github.com/pratikunterwegs/eBirdOccupancy.

5 1.1 Attribution

- 6 Please contact the following in case of interest in the project.
 - Vijay Ramesh (lead author)
- PhD student, Columbia University
 - Pratik Gupte (repo maintainer)
 - PhD student, University of Groningen
- Morgan Tingley (PI)

10

2 Distance to roads

13 2.1 Prepare libraries

```
# load libraries
library(reticulate)
library(sf)
library(dplyr)
library(scales)
library(readr)
library(purrr)

library(ggplot2)
library(ggspatial)
library(ggspatial)
library(scico)

# round any function
round_any <- function(x, accuracy = 20000) {round(x/accuracy)*accuracy}
# ci function
ci <- function(x) {qnorm(0.975)*sd(x, na.rm = TRUE)/sqrt(length(x))}</pre>
```

```
# set python path
   use_python("/usr/bin/python3")
14 Importing python libraries.
   # import classic python libs
   import itertools
   from operator import itemgetter
   import numpy as np
   import matplotlib.pyplot as plt
   import math
   # libs for dataframes
   import pandas as pd
   # import libs for geodata
   from shapely.ops import nearest_points
   import geopandas as gpd
   import rasterio
   # import ckdtree
   from scipy.spatial import cKDTree
   from shapely.geometry import Point, MultiPoint, LineString, MultiLineString
15 2.2 Prepare data for processing
   # read in roads shapefile
   roads = gpd.read_file("data/spatial/roads_studysite_2019/roads_studysite_2019.shp")
   roads.head()
   # read in checklist covariates for conversion to gpd
   # get unique coordinates, assign them to the df
   # convert df to geo-df
   chkCovars = pd.read_csv("data/eBirdChecklistVars.csv")
   unique_locs = chkCovars.drop_duplicates(subset=['longitude', 'latitude'])[['longitude', 'latitude']]
   unique_locs['coordId'] = np.arange(1, unique_locs.shape[0]+1)
   chkCovars = chkCovars.merge(unique_locs, on=['longitude', 'latitude'])
   unique locs = gpd.GeoDataFrame(
   unique_locs,
   geometry=gpd.points_from_xy(unique_locs.longitude, unique_locs.latitude))
   unique_locs.crs = {'init' :'epsg:4326'}
   # reproject spatials to 43n epsg 32643
   roads = roads.to_crs({'init': 'epsg:32643'})
   unique_locs = unique_locs.to_crs({'init': 'epsg:32643'})
   # function to simplify multilinestrings
   def simplify_roads(complex_roads):
       simpleRoads = []
       for i in range(len(complex_roads.geometry)):
           feature = complex_roads.geometry.iloc[i]
           if feature.geom_type == "LineString":
```

```
simpleRoads.append(feature)
           elif feature.geom_type == "MultiLineString":
               for road level2 in feature:
                   simpleRoads.append(road_level2)
       return simpleRoads
   # function to use ckdtrees for nearest point finding
   def ckdnearest(gdfA, gdfB):
       A = np.concatenate(
       [np.array(geom.coords) for geom in gdfA.geometry.to_list()])
       simplified_features = simplify_roads(gdfB)
       B = [np.array(geom.coords) for geom in simplified_features]
       B = np.concatenate(B)
       ckd_tree = cKDTree(B)
       dist, idx = ckd_tree.query(A, k=1)
       return dist
   # function to use ckdtrees for nearest point finding
   def ckdnearest_point(gdfA, gdfB):
       A = np.concatenate(
       [np.array(geom.coords) for geom in gdfA.geometry.to_list()])
       #simplified features = simplify roads(qdfB)
       B = np.concatenate(
       [np.array(geom.coords) for geom in gdfB.geometry.to_list()])
       #B = np.concatenate(B)
       ckd_tree = cKDTree(B)
       dist, idx = ckd_tree.query(A, k=[2])
       return dist
   # get distance to nearest road
   unique_locs['dist_road'] = ckdnearest(unique_locs, roads)
   # get distance to nearest other site
   unique locs['nnb'] = ckdnearest point(unique locs, unique locs)
   # write to file
   unique_locs = pd.DataFrame(unique_locs.drop(columns='geometry'))
   unique locs['dist road'] = unique locs['dist road']
   unique locs['nnb'] = unique locs['nnb']
   unique_locs.to_csv(path_or_buf="data/locs_dist_to_road.csv", index=False)
   # merge unique locs with chkCovars
   chkCovars = chkCovars.merge(unique_locs, on=['latitude', 'longitude', 'coordId'])
2.3 Species specific nearest sites
   # load data and send to python
   load("data_prelim_processing.rdata")
   py$data <- dataGrouped</pre>
   # split data by species
   datalist = [pd.DataFrame(y) for x, y in data.groupby('scientific_name', as_index=False)]
```

```
# function to get unique vals and convert to gpd
   def convData(somedata):
       somedata = somedata.drop_duplicates(subset=['longitude','latitude'])[['longitude', 'latitude', 'scientif
       unique locs = gpd.GeoDataFrame(somedata,
                                      geometry=gpd.points_from_xy(somedata.longitude,
                                      somedata.latitude))
       unique_locs.crs = {'init' :'epsg:4326'}
       unique_locs = unique_locs.to_crs({'init': 'epsg:32643'})
       dists = ckdnearest_point(unique_locs, unique_locs)
       unique_locs = pd.DataFrame(unique_locs.drop(columns='geometry'))
       unique_locs['nnb'] = dists
       return unique_locs
   # apply function to datalist
   datalist = list(map(convData, datalist))
17 2.4 Explicit spatial filter
   # extract data from python
   chkCovars <- py$chkCovars
   chkCovars <- st_as_sf(chkCovars, coords = c("longitude", "latitude")) %>%
     `st crs<-`(4326) %>%
     st_transform(32643)
   # read wg
   wg <- st_read("data/spatial/hillsShapefile/Nil_Ana_Pal.shp") %>%
     st_transform(32643)
   # spatial subset
   chkCovars <- chkCovars %>%
     mutate(id = 1:nrow(.)) %>%
     filter(id %in% unlist(st_contains(wg, chkCovars)))
18 2.5 Species specific filter
   # extract values from python
   sp_spec_data <- py$datalist</pre>
   sp_spec_data <- map(sp_spec_data, function(df){</pre>
     df <- as_tibble(df) %>%
       st_as_sf(coords = c("longitude", "latitude")) %>%
       `st_crs<-`(4326) %>%
       st_transform(32643) %>%
       mutate(id = 1:nrow(.)) %>%
       filter(id %in% unlist(st_contains(wg, .))) %>%
       st_drop_geometry()
   {})
   sp_spec_data <- bind_rows(sp_spec_data)</pre>
```

19 2.6 Plot histogram: distance to roads

```
# make histogram
   hist_roads <- ggplot(chkCovars)+
     geom_histogram(aes(dist_road / 1e3),
                    bins = 20, size=0.2, fill="steelblue")+
     labs(x = "distance to roads (km)", y = "# checklists")+
     scale_x_log10(label=label_number(accuracy = 0.1),
                   breaks = c(0.1, 1, 10)+
     scale_y_continuous(label=label_number(scale=0.001, accuracy = 1, suffix = "K"))+
     theme few()+
     theme(plot.background = element_rect(fill=NA, colour = 1),
           panel.background = element_blank(),
           panel.border = element_blank(), axis.line = element_blank())
20 2.7 Table: Distance to roads
   # write the mean and ci95 to file
   chkCovars %>%
     st_drop_geometry() %>%
     select(dist_road, nnb) %>%
     tidyr::pivot_longer(cols = c("dist_road", "nnb"),
                         names_to = "variable") %>%
     group_by(variable) %>%
     summarise_at(vars(value),
                  list(~mean(.), ~sd(.), ~min(.), ~max(.))) %>%
     write_csv("data/results/distance_roads_sites.csv")
   # read in and show
   library(magrittr)
   readr::read_csv("data/results/distance_roads_sites.csv") %>%
     knitr::kable()
    variable
              mean
                            min
                      sd
                                   max
    dist road
                390
                     859
                          0.279
                                   7637
                297
    nnb
                     553
                          0.137
                                  12850
```

22 2.8 Plot histogram: distance to nearest site

```
# get unique locations
locs <- py$unique_locs</pre>
# make histogram of nearest neighbours
hist_sites <-
  ggplot(locs)+
  geom_histogram(aes(nnb / 1e3),
                 bins = 100, size=0.2, fill="steelblue")+
  labs(x = "dist. nearest site (km)", y = "# sites")+
  # scale_x_log10(label=label_number(accuracy = 0.1),
                  breaks = c(0.1, 1, 10)) +
  coord_cartesian(xlim=c(0,10))+
  scale_y_continuous(label=label_number(scale=0.001, accuracy = 1, suffix = "K"))+
  theme_few()+
  theme(plot.background = element_rect(fill=NA, colour = 1),
```

```
panel.background = element_blank(),
panel.border = element_blank(), axis.line = element_blank())
```

23 2.9 Plot species specific histograms: distance to nearest site

```
# plot histograms by species
hist_sites_sp <-
 ggplot(sp_spec_data)+
  geom_histogram(aes(nnb / 1e3),
                 bins = 100, size=0.2, fill="steelblue")+
 labs(x = "dist. nearest site (km)", y = "# sites")+
  # scale_x_log10(label=label_number(accuracy = 0.1),
                 breaks = c(0.1, 1, 10)+
 facet_wrap(~scientific_name)+
  scale_x_log10()+
  \#coord\_cartesian(xlim=c(0,10))+
  scale_y_continuous(label=label_number(scale=0.001, accuracy = 1, suffix = "K"))+
 theme_few()+
  theme(plot.background = element_rect(fill=NA, colour = 1),
        panel.background = element_blank(),
        panel.border = element_blank(), axis.line = element_blank())
ggsave(hist_sites_sp, filename = "figs/fig_nnb_species.png")
```

24 2.10 Table: Species specific nearest site

25	scientific_name	mean	sd	ci	min	max
	Alcippe poioicephala	417	808	25.0	0.137	16461
	Carpodacus erythrinus	416	808	25.0	0.137	16461
	Centropus sinensis	417	808	25.0	0.137	16461
	Chalcophaps indica	417	808	25.0	0.137	16461
	Chloropsis aurifrons	417	809	25.0	0.137	16461
	Chrysocolaptes guttacristatus	417	808	25.0	0.137	16461
	Cinnyris asiaticus	417	808	25.0	0.137	16461
	Copsychus fulicatus	417	808	25.0	0.137	16461
	Copsychus saularis	417	808	25.0	0.137	16461
	Culicicapa ceylonensis	417	808	25.0	0.137	16461
	Cyornis tickelliae	417	808	25.0	0.137	16461
	Dicaeum erythrorhynchos	416	808	25.0	0.137	16461
	Eumyias albicaudatus	417	808	25.0	0.137	16461
	Hierococcyx varius	417	808	25.0	0.137	16461
	Hypsipetes ganeesa	417	808	25.0	0.137	16461
	Iole indica	418	810	25.1	0.137	16461
	Irena puella	417	808	25.0	0.137	16461
	Lanius schach	417	808	25.0	0.137	16461
	Leptocoma minima	417	808	25.0	0.137	16461
	Leptocoma zeylonica	417	808	25.0	0.137	16461
	Motacilla maderaspatensis	417	808	25.0	0.137	16461
	Myophonus horsfieldii	417	808	25.0	0.137	16461
	Orthotomus sutorius	417	808	25.0	0.137	16461
	Parus cinereus	417	808	25.0	0.137	16461
	Passer domesticus	417	808	25.0	0.137	16461
	Pellorneum ruficeps	417	808	25.0	0.137	16461
	Pericrocotus cinnamomeus	417	808	25.0	0.137	16461
	Pericrocotus flammeus	417	808	25.0	0.137	16461
	Picus xanthopygaeus	417	808	25.0	0.137	16461
	Pomatorhinus horsfieldii	417	808	25.0	0.137	16461
	Psilopogon viridis	417	808	25.0	0.137	16461
	Psittacula columboides	417	808	25.0	0.137	16461
	Psittacula cyanocephala	417	808	25.0	0.137	16461
	Pycnonotus cafer	417	808	25.0	0.137	16461
	Pycnonotus jocosus	417	808	25.0	0.137	16461
	Saxicola caprata	417	808	25.0	0.137	16461
	Sitta frontalis	417	808	25.0	0.137	16461
	Streptopelia chinensis	417	808	25.0	0.137	16461
	Turdoides striata	418	810	25.1	0.137	16461
	Turdus simillimus	417	808	25.0	0.137	16461
	Upupa epops	417	808	25.0	0.137	16461
	Zosterops palpebrosus	417	808	25.0	0.137	16461
		-				

 $_{\rm 26}$ $\,$ Histograms showing the species-specific distances to nearest neighbouring site.

knitr::include_graphics("figs/fig_nnb_species.png")

28 2.11 Plot map: points on roads

```
roads <- st_read("data/spatial/roads studysite 2019/roads studysite 2019.shp") %>%
  st_transform(32643)
points <- chkCovars %>%
  bind_cols(as_tibble(st_coordinates(.))) %>%
  st_drop_geometry() %>%
  mutate(X = round_any(X, 2500), Y = round_any(Y, 2500))
points <- count(points, X,Y)</pre>
# add land
library(rnaturalearth)
land <- ne_countries(scale = 50, type = "countries", continent = "asia",</pre>
                     country = "india",
                     returnclass = c("sf")) %>%
  st_transform(32643)
bbox <- st_bbox(wg)</pre>
# plot on maps
ggplot()+
  geom_sf(data = land, fill = "grey90", col = NA)+
  geom_sf(data = wg, fill= NA, col = 1)+
  annotation_custom(grob = hist_roads %>% ggplotGrob(),
                    xmin = bbox["xmax"] - (bbox["xmax"] - bbox["xmin"])/2.5,
                    xmax = bbox["xmax"],
                    ymin = bbox["ymax"] - (bbox["ymax"] - bbox["ymin"])/3,
                    ymax = bbox["ymax"])+
  geom_tile(data=points, aes(X,Y,fill=n), col = "grey90")+
  geom_sf(data=roads, size=0.2, col="steelblue")+
```

```
# scale colour manual(values = "steelblue", labels = "roads")+
  scale_fill_scico(trans = "log10", palette = "lajolla", values=c(0, 1))+
  annotation_north_arrow(location = "br", which_north = "true",
                         pad_x = unit(0.1, "in"), pad_y = unit(0.5, "in"),
                         style = north arrow fancy orienteering) +
  annotation_scale(location = "br", width hint = 0.4, text cex = 1) +
  theme_few()+
  theme(legend.position = c(0.9, 0.55),
        legend.background = element_blank(),
        legend.key = element_rect(fill="grey90"),
        axis.title = element_blank(),
        panel.background = element_rect(fill="lightblue"))+
  coord_sf(expand = FALSE, xlim = bbox[c("xmin", "xmax")], ylim = bbox[c("ymin", "ymax")])+
  labs(fill = "checklists", colour=NULL)
# save figure
ggsave(filename = "figs/fig_distRoads.png", device = png())
dev.off()
# transform points to utm
locs <- locs %>%
  st_as_sf(coords=c("longitude", "latitude")) %>%
  `st_crs<-`(4326) %>%
 st_transform(32643)
# add nnb to locations
ggplot()+
  geom sf(data = land, fill = "grey90", col = NA)+
  geom_sf(data = wg, fill= NA, col = 1)+
  annotation_custom(grob = hist_sites %>% ggplotGrob(),
                    xmin = bbox["xmax"] - (bbox["xmax"] - bbox["xmin"])/2.5,
                    xmax = bbox["xmax"],
                    ymin = bbox["ymax"] - (bbox["ymax"] - bbox["ymin"])/3,
                    ymax = bbox["ymax"])+
  geom_sf(data=roads, size=0.2, col="steelblue")+
  geom_sf(data=locs, aes(col=nnb/1000))+
  scale\_colour\_scico(palette = "oslo", values=c(0, 1), direction = -1, limits = c(0, 5),
                     na.value = "indianred")+
  annotation_north_arrow(location = "br", which_north = "true",
                         pad_x = unit(0.1, "in"), pad_y = unit(0.5, "in"),
                         style = north_arrow_fancy_orienteering) +
  annotation_scale(location = "br", width_hint = 0.4, text_cex = 1) +
  theme_few()+
  theme(legend.position = c(0.9, 0.55),
        legend.background = element_blank(),
        legend.key = element_rect(fill="grey90"),
        axis.title = element_blank(),
        panel.background = element_rect(fill="lightblue"))+
  coord_sf(expand = FALSE, xlim = bbox[c("xmin", "xmax")], ylim = bbox[c("ymin", "ymax")])+
```