TD 6 - Zéros, singularités et résidus

Calcul des résidus

Exercice 1 (exemples). Calculer les résidus des fonctions suivantes de z en 0:

1)
$$\frac{z^2+1}{z}$$
; 2) $\frac{z^2+3z-5}{z^3}$; 3) $\frac{z^3}{(z-1)(z^4+2)}$; 4) $\frac{3z+1}{z(z^5+5)}$; 5) $\frac{e^z}{z^4}$; 6) $\frac{e^z}{\sin(z)}$; 7) $\frac{\log(1+z)}{z^2}$.

Calculer les résidus des fonctions suivantes de z en 1 :

8)
$$\frac{1}{(z^2-1)(z+1)}$$
; 9) $\frac{z^3-1)(z+2)}{(z-1)^4}$; 10) $\frac{1}{z^n-1}$.

Dans chacun des exercices qui suit, on commencera par justifier que la fonction dont on souhaite calculer l'intégrale est intégrable sur l'intervalle considéré.

Exercice 2. Adapter le calcul de $\int_{-\infty}^{\infty} \frac{dt}{1+t^4}$ vu en cours pour :

1) Retrouver la valeur de $\int_{-\infty}^{\infty} \frac{dt}{1+t^2}$; 2) Montrer que $\int_{-\infty}^{\infty} \frac{dt}{1+t^6} = \frac{2\pi}{3}$.

Exercice 3. Le but de cet exercice est de montrer que si $n \ge 2$ est un entier, $\int_0^\infty \frac{dt}{1+t^n} = \frac{\pi/n}{\sin(\pi/n)}$.

- 1) Soit $\gamma = \gamma_1 + \gamma_2 + \gamma_3$ le contour formé du segment γ_1 de 0 à R, de l'arc de cercle γ_2 de centre 0 allant de R à $Re^{\frac{2i\pi}{n}}$, et du segment γ_2 de $Re^{\frac{2i\pi}{n}}$ à 0. Dessiner γ , et donner une paramétrisation explicite des γ_i .
- 2) Déterminer les pôles de f, puis calculer $\int_{\gamma} f$ avec le théorème des résidus, si R > 1 (on remarquera qu'un seul des pôles de f intervient dans le calcul, et que c'est un pôle simple).
- 3) Montrer que $\int_{\gamma_2} f$ tend vers 0 si R tend vers $+\infty$.
- 4) Exprimer $\int_{\gamma_3} f$ en fonction de $\int_{\gamma_1} f$.
- 5) Conclure.
- 6) Retrouver les résultats de l'exercice 2, ainsi que le calcul de $\int_{-\infty}^{\infty} \frac{dt}{1+t^4}$ vu en cours.

Exercice 4. Montrer que :

1)
$$\int_{-\infty}^{\infty} \frac{t^2}{1+t^4} dt = \frac{\pi}{\sqrt{2}}$$
; 2) $\int_{-\infty}^{\infty} \frac{t^2}{1+t^6} dt = \frac{\pi}{3}$; 3) $\int_{-\infty}^{\infty} \frac{dt}{1+t+t^2+t^3+t^4} = \frac{4\pi}{5} \sin\left(\frac{2\pi}{5}\right)$.

Pour le troisième, on pourra se remémorer le calcul de $(t-1)(1+t+t^2+t^3+t^4)$, et on pourra aussi finir le calcul en rappelant la valeur de $\sin\left(\frac{2\pi}{5}\right)$ trouvée au TD1.

Exercice 5. Soit $a \in [0,1[$. En appliquant le théorème des résidus dans le rectangle de sommets -R, R, $R+2i\pi$ et $-R+2i\pi$ (pour R>0), montrer que $\int_{-\infty}^{\infty} \frac{e^{ax}}{1+e^x} dx = \frac{\pi}{\sin(\pi a)}$. On montrera que l'intégrale sur les petits côtés du rectangle tend vers 0 si R tend vers $+\infty$, puis on écrira l'intégrale le long du côté du haut en fonction de celle le long du côté du bas.

Exercice 6. En appliquant le théorème des résidus dans le rectangle de sommets -R, R, $R+i\pi$ et $-R+i\pi$ (pour R>0), montrer que $\int_{-\infty}^{\infty} \frac{\cos(x)}{e^x+e^{-x}} dx = \frac{\pi}{e^{\pi/2}+e^{-\pi/2}}$. On remarquera que cette intégrale est la partie réelle de $\int_{-\infty}^{\infty} \frac{e^{ix}}{e^x+e^{-x}} dx$, qu'on calculera selon une procédure similaire à celle de l'exercice précédent.

Complément sur les singularités

Exercice 7 (singularités essentielles). Soit $a \in \mathbb{C}$, U un ouvert contenant a, et soit f une fonction holomorphe sur $U - \{a\}$. Si r > 0, on note $D^*(a,r) = D(a,r) - \{a\}$ le disque épointé de centre a et de rayon r. Le but de cet exercice est de montrer que f admet une singularité essentielle en a si et seulement si, pour tout r > 0 tel que $D(a,r) \subseteq U$, $f(D^*(a,r))$ est dense dans \mathbb{C} .

- 1) Supposons que la singularité soit effaçable. Montrer que $f(D^*(a,r))$ n'est pas dense dans \mathbb{C} , dès que r est assez petit.
- 2) Supposons que la singularité soit un pôle. Montrer que |f(z)| tend vers $+\infty$ si z tend vers a. En déduire que $f(D^*(a,r))$ n'est pas dense dans \mathbb{C} , dès que r est assez petit.
- 3) Réciproquement, supposons que $f(D^*(a,r))$ n'est pas dense dans \mathbb{C} , c'est-à-dire qu'il existe $\alpha \in \mathbb{C}$ et R > 0 tel que $f(D^*(a,r)) \cap D(\alpha,R) = \emptyset$.
- a) Montrer qu'alors $z\mapsto \frac{1}{f(z)-\alpha}$ se prolonge en une fonction holomorphe sur D(a,r), notée g.
- b) Utiliser le développement en série entière de g en a pour écrire $g(z)=(z-a)^mh(z)$, avec $m\geqslant 0$ un entier, et où h est holomorphe sur D(a,r) et ne s'annule pas en a.
- c) En déduire qu'il existe l holomorphe sur D(a,r) telle que $f(z) = \frac{l(z)}{(z-a)^m}$, et donc que a est un pôle de f.
- 4) Conclure.