2018级《高等数学》(下) 联考试卷

试卷 A

考核方式 闭卷

考试时间 120 分钟

题号	_	=	三	四	五	六	总分
分数							
评卷人							

得分 评卷人 密

一、单项选择题(本大题共5个小题,每小题3分, 总计 15 分)

- 1、在空间,方程 $y^2 + z^2 4x + 8 = 0$ 表示的图形为 ().

 - (A) 单叶双曲面; (B) 双叶双曲面;
 - (C) 锥面;
- (D) 旋转抛物面.

- 2、函数 $z = f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0, \end{cases}$ 在 (0,0) 处().
 - (A) 连续且偏导数存在; (B) 不连续且偏导数存在;
- - (C) 连续且偏导数不存在; (D) 不连续且偏导数不存在.

订

- 3、设Ω: $x^2 + y^2 + z^2 \le 1$,则积分∭Ω(sin $x + y^3 + z$)dv = ().
 - (A) 0;

- (B) 2π ;
- (C) 4π ;

- (D) 8π .
- 4、已知 Σ 是平面 x-y-z=2 被柱面 $x^2+y^2=2$ 截下的有限部分,则

$$\iint_{\Sigma} y dS = () .$$

- $(A) \ 0;$
- (B) 3π ;
- (C) 2π ; (D) 4π .

5、(重邮、交大的同学做)下列级数收敛的是(**□**

$$\frac{1}{2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \frac{1}{3} + \frac{1}{3} + \frac{1}{6} + \frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \cdots$$

(B)
$$\sum_{n=1}^{\infty} \frac{1}{4+n} = \frac{1}{5} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} + \cdots$$

=)-
$$\frac{1}{2}$$
+ $\frac{1}{2}$ - $\frac{1}{3}$ - $\frac{1}{3}$ + $\frac{1}{n}$ - $\frac{1}{n(n+1)}$ =;

$$\frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \frac{1}{3} + \frac{1}{6} + \frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \cdots; \quad (B) \quad \sum_{n=1}^{\infty} \frac{1}{4+n} = \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \cdots$$

$$\frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \frac{1}{3} + \frac{1}{6} + \frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \cdots; \quad (B) \quad \sum_{n=1}^{\infty} \frac{1}{4+n} = \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \cdots$$

$$\frac{1}{3} + \frac{1}{3} +$$

- 5、(理工的同学做)下列方程为一阶线性微分方程的是(
 - (A) $yy' = x^2 + 1$;
- (B) $y' x \cos y = 1$;
- (C) $ydx = (x + y^2)dy$; (D) xdx = (x + y)dy.

得分	评卷人

二、填空题(本大题共5个小题,每小题3分,总计15分)

- 6、过点(1,-2,4)且与平面2x-3v+z-4=0垂直的直线方程为
- 7、三元函数 $f(x,y,z) = 3x^2 + 2y^2 3z^2 + 2xy + 3x 12y 6z$ 在点 M(0,0,0) 处的梯度 为
- 8、曲面 $e^z z + xy = 3$ 在点(2,1,0) 处的切平面方程为______.
- 10、(**重邮的同学做**) 函数 $f(x) = \begin{cases} -1 & -\pi \le x < 0 \\ 1 & 0 \le x < \pi \end{cases}$ 展开成傅里叶级数,其系数

- 10、(**交大的同学做**) 函数 $\frac{1}{x}$ 关于 (x-3) 的幂级数为_____(0 < x < 6).
- 10、(理工的同学做)已知某二阶常系数齐次线性微分方程的两个特征根分别为 r_1 =1, r_2 =2,则该方程为______.

得 分	评卷人

三、解答题(本大题共2个小题,每小题10分,总计20分)

11、设二元函数
$$z = e^{xy} \sin x$$
, 求: (1) $dz \Big|_{\substack{x=\pi\\y=0}}$; (2) $\frac{\partial^2 z}{\partial x \partial y} \Big|_{\substack{x=\pi\\y=0}}$.

- 12、 (1) 设 $u = f(x^2 y^2, e^{xy})$, f 具有一阶连续偏导数,求 $\frac{\partial u}{\partial x}$;

得 分 评卷人

四、计算题(本大题共2个小题,每小题10分,总计20分)

13、计算二重积分 $\iint_D (x+1)^2 dxdy$, 其中积分区域 $D = \{(x,y) | x^2 + y^2 \le 1\}$.

14、计算曲面积分 $\iint_{\Sigma} (y^2-z)dydz + (z^2-x)dzdx + (x^2-y)dxdy$,其中 Σ 是锥面 $z=\sqrt{x^2+y^2} \ (0 \le z \le 1) \ \text{的外侧}.$

得 分 评卷人

五、综合题(本大题共2个小题,每小题10分,总计20分)

- 15、设曲线积分 $\int_L (2x\cos y y^2\sin x)dx + (2y\cos x x^2\sin y)dy$,其中 L 为 xoy 平面上一条有向光滑曲线.
 - (1) 证明:该曲线积分在整个xoy平面上与路径无关;
- (2) 计算 $I = \int_{(0,0)}^{(2,3)} (2x\cos y y^2\sin x) dx + (2y\cos x x^2\sin y) dy$.

16、求幂级数 $\sum_{n=1}^{\infty} \frac{1}{2n-1} x^{2n-1}$ 的和函数,并求 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)2^n}$ 的和.

得 分 评卷人

六、应用题(本大题总计10分)

17、建造一个体积为 $4m^3$ 的长方体无盖水池,如何选择水池的尺寸,方可使它的表面积最小.