

FINAL PROJECT - DTSA-5511

INTRODUCTION TO DEEP LEARNING

JINNAJATE ACHALAPONG

INTRODUCTION & PROBLEM DEFINITION

Introduction

- Toxic comments pose serious challenges to online communities.
- Manual moderation is time-consuming and not scalable.
- Deep learning offers automated, scalable solutions for text classification.

Problem Definition

- Objective: To build deep learning models that detect toxic comments in online discussions.
- Task Type: Multi-label text classification
- Target Classes: toxic, severe_toxic, obscene, threat, insult, identity_hate
- Dataset: Wikipedia talk page comments (Jigsaw/Kaggle)
- Approach: Use pre-trained word embeddings with various neural network architectures

DATASET DESCRIPTION

JIGSAW/CONVERSATION AI · FEATURED PREDICTION COMPETITION · 7 YEARS AGO

Toxic Comment Classification Challenge

Identify and classify toxic online comments

Dataset Overview

- Source: Jigsaw Toxic Comment Classification Challenge (Kaggle, 2018)
- **Domain**: User comments from Wikipedia talk pages
- Total records: 159,571 comments
- Task: Multi-label classification each comment may belong to multiple toxic categories

Dataset Characteristics

- Multi-label: One comment can have multiple toxic tags
- Unstructured text: Requires preprocessing for deep learning models
- Real-world noise: Includes slang, misspellings, and informal language

SUMMARY OF EXPLORATORY DATA ANALYSIS (EDA)

Class Distribution

- Strong class imbalance observed
- Most comments are **clean**
- Frequent toxic types: toxic, obscene, insult
- Rare types: threat, severe_toxic, identity_hate

Multi-Label Comments

- ~10% of comments have **one or more toxic tags**
- 31 comments have all six toxic categories
- Multi-label modeling is required

Label Correlation

- Strong correlation:
 - toxic and obscene (0.68)
 - toxic and insult (0.65)
- Weak correlation:
 - threat with other categories

WORDCLOUD ANALYSIS

Clean Comments WordCloud

- Focused on article editing:
- article, edit, wikipedia, thank, source, page
- Language is collaborative, neutral, and constructive
- Reflects typical Wikipedia community interaction

Interpretation & Caution

- Clear lexical contrast between clean and toxic comments
- Highlights need for robust preprocessing
- (e.g., lowercasing, profanity masking, embedding strategies)
- Offensive content is presented for analytical purposes only

Toxic Categories WordClouds

- Frequent appearance of profanities, slurs, threatening verbs
- fuck, die, kill, nigger, moron, faggot, ass appear prominently
- Tone is hostile, aggressive, or discriminatory

Severe Toxic Comments

hreat Comments

Incult Comments

TEXT PREPROCESSING WITH GLOVE

Objective

• Prepare text data for deep learning using pre-trained word embeddings (GloVe)

Key Preprocessing Steps

- Text Cleaning
 - Lowercasing, removing punctuation/special characters
- Tokenization & Padding
 - Convert words to integer sequences
 - Pad sequences to uniform length (e.g., 150 tokens)
- Load GloVe Vectors
 - 100-dimensional GloVe embeddings (glove.6B.100d.txt)
- Build Embedding Matrix
 - Map each word in our vocabulary to its GloVe vector
 - Words not found in GloVe are initialized as zero vectors
- Embedding Layer Initialization
 - Create a non-trainable embedding layer using the matrix

Why Use GloVe?

- Captures semantic relationships between words (e.g., king-queen, hate-love)
- Reduces the need for large labeled datasets
- Improves model generalization, especially for rare/complex terms

MODEL 1: ARTIFICIAL NEURAL NETWORK (ANN)

Model Architecture

- Input: Pre-trained GloVe embeddings (100D)
- Flatten: Converts embedding output into 1D vector
- **Dense** Layer: ReLU activation
- **Dropout**: To reduce overfitting
- Output Layer: 6 sigmoid units (multi-label classification)

Training Performance

- High training and validation accuracy (~97.5%)
- Some **overfitting** observed in validation loss
- Validation AUC ~0.96, stable performance across 30 epochs

Hyperparameter Tuning with KerasTuner

Hyperparameter	Description	Best Value Found
units	Number of neurons in the Dense hidden layer	128
dropout	Dropout rate after the hidden layer	0.2
learning_rate	Learning rate for the Adam optimizer	0.01

Classification Results (Per Class)

Macro F1 Score: 0.38Macro ROC AUC: 0.95

• Precision generally higher than recall

• Weak recall for rare classes (threat, severe_toxic)

1496/1496		2s 1	ms/step	
	ion Report	(per class	5):	
	precision	recall	f1-score	support
toxic	0.82	0.56	0.66	4582
severe_toxic	0.65	0.19	0.30	486
obscene	0.80	0.54	0.65	2556
threat	0.50	0.03	0.06	136
insult	0.78	0.46	0.58	2389
identity_hate	0.68	0.03	0.07	432
micro avg	0.80	0.49	0.61	10581
macro avg	0.70	0.30	0.38	10581
weighted avg	0.79	0.49	0.59	10581
samples avg	0.05	0.04	0.04	10581

ROC AUC Score (macro): 0.954
F1 Score (macro): 0.3847

MODEL 2: SIMPLE RECURRENT NEURAL NETWORK (RNN)

Model Architecture

• Input: Pre-trained GloVe embeddings (100D)

Recurrent Layer: SimpleRNNDropout: Applied after RNN

• Output: 6 sigmoid units for multi-label prediction

Training Performance

- Validation accuracy ~97.5%
- AUC shows gradual improvement, ends at ~0.96
- High variance in loss, suggests instability or sensitivity

Hyperparameter Tuning with KerasTuner

Hyperparameter	Description	Best Value Found
units	Number of neurons in the Dense hidden layer	64
dropout	Dropout rate after the hidden layer	0.5
learning_rate	Learning rate for the Adam optimizer	0.0005

Classification Results (Per Class)

Macro F1 Score: 0.34Macro ROC AUC: 0.946

• Fl score remains low for minority classes, e.g. threat, identity_hate

• toxic, obscene, and insult perform relatively well

1496/1496		6s 4	ms/step	
Classification	Report:		•	
	precision	recall	f1-score	support
toxic	0.72	0.61	0.66	4582
severe_toxic	0.41	0.06	0.11	486
obscene	0.75	0.58	0.66	2556
threat	0.00	0.00	0.00	136
insult	0.70	0.52	0.59	2389
identity_hate	0.19	0.01	0.02	432
micro avg	0.72	0.52	0.61	10581
macro avg	0.46	0.30	0.34	10581
weighted avg	0.68	0.52	0.58	10581
samples avg	0.05	0.05	0.05	10581

ROC AUC Score (macro): 0.9461 F1 Score (macro): 0.3391

MODEL 3: LONG SHORT-TERM MEMORY (LSTM)

Model Architecture

- Input: Pre-trained GloVe embeddings (100D)
- Recurrent Layer: LSTM (return_sequences=False)
- Dropout: Applied after LSTM for regularization
- Output: 6 sigmoid units for multi-label classification

Training Performance

- Validation Accuracy ~98.2%
- Train-Val Gap is small → stable generalization
- AUC ~0.98+ throughout, steady improvement in training

Hyperparameter Tuning with KerasTuner

Hyperparameter	Description	Best Value Found
units	Number of neurons in the Dense hidden layer	192
dropout	Dropout rate after the hidden layer	0.2
learning_rate	Learning rate for the Adam optimizer	0.001

Classification Results (Per Class)

Macro F1 Score: 0.5993
 Macro ROC AUC: 0.9810

• Significant improvement across minority classes:

All classes show balanced precision/recall

1496/1496 —	Dananti	7s 4	ms/step	
Classification	precision	recall	f1-score	support
toxic	0.83	0.75	0.79	4582
severe_toxic	0.53	0.32	0.40	486
obscene	0.84	0.75	0.79	2556
threat	0.52	0.40	0.46	136
insult	0.74	0.69	0.72	2389
identity_hate	0.62	0.34	0.44	432
micro avg	0.79	0.70	0.74	10581
macro avg	0.68	0.54	0.60	10581
weighted avg	0.79	0.70	0.74	10581
samples avg	0.07	0.06	0.06	10581

ROC AUC Score (macro): 0.9810 F1 Score (macro): 0.5993

MODEL 4: BIDIRECTIONAL LSTM (BI-LSTM)

Model Architecture

- Input: Pre-trained GloVe embeddings (100D)
- Recurrent Layer: Bidirectional LSTM
- Dropout: Applied after LSTM for regularization
- Output: 6 sigmoid units for multi-label classification

Training Performance

- Validation Accuracy ≈ 98.3%
- Strong stability with low loss variance
- AUC surpasses 0.98, with smooth upward trend

Hyperparameter Tuning with KerasTuner

Hyperparameter	Description	Best Value Found
units	Number of neurons in the Dense hidden layer	256
dropout	Dropout rate after the hidden layer	0.4
learning_rate	Learning rate for the Adam optimizer	0.001

Classification Results (Per Class)

Macro F1 Score: 0.5908
 Macro ROC AUC: 0.9826

• Consistently strong across all labels

• toxic, obscene, insult f1-scores ≥ 0.70

1406/1406		120	Omc/ston	
Classification	Popont:	138	9ms/step	
Classificación	precision	recall	f1-score	support
toxic	0.85	0.74	0.79	4582
severe_toxic	0.56	0.29	0.38	486
obscene	0.83	0.77	0.80	2556
threat	0.60	0.25	0.35	136
insult	0.75	0.70	0.73	2389
identity_hate	0.60	0.41	0.49	432
micro avg	0.80	0.70	0.75	10581
macro avg	0.70	0.53	0.59	10581
weighted avg	0.80	0.70	0.74	10581
samples avg	0.06	0.06	0.06	10581

ROC AUC Score (macro): 0.9826 F1 Score (macro): 0.5908

RESULTS & CONCLUSION

Model	Macro F1	ROC AUC (Macro)	Notes
ANN	0.3847	0.9541	Baseline, no sequence modeling
RNN	0.3391	0.9461	Weak sequential capture
LSTM	0.5993	0.9810	Strong overall, best recall
Bi-LSTM	0.5908	0.9826	Best AUC, bidirectional context

- **ANN** is insufficient for capturing toxic context
- Simple RNN slightly improves recall, but not enough
- LSTM delivers substantial performance gain due to memory capabilities
- Bi-LSTM achieves best overall performance, especially for hard-to-learn labels like threat and identity_hate

FUTURE WORK

Potential Improvements

- 1. Transformers (e.g., BERT) for deeper semantic modeling and state-of-the-art results
- 2. Data Augmentation to improve learning on low-support classes like threat
- 3. Attention Mechanism focus the model on toxic spans within comments
- 4. **Model Ensembling** combine ANN + Bi-LSTM + Transformer for robustness
- 5. Fine-tuning Embeddings let GloVe adjust during training (instead of freezing)
- 6. Explainability (XAI) use SHAP/LIME to interpret predictions

