EAIiIB	Ewa Stachów		Rok	Grupa	Zespół
Informatyka	Weronika Olcha		II	3	6
Pracownia	Temat:				Nr ćwiczenia:
FIZYCZNA				1 CWICZCIIIa.	
WFiIS AGH	Wahadło fizyczne				1
Data wykonania:	Data oddania:	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	OCENA:
14.10.2016	19.10.2016				

Ćwiczenie nr 1: Wahadło fizyczne

Wstęp teoretyczny

1 Cel ćwiczenia

Opis ruchu drgającego, a w szczególności drgań wahadła fizycznego. Wyznaczenie momentów bezwładności brył sztywnych.

2 Układ pomiarowy

- Statyw, na którym zawiesza się badaną bryłę
- Badane bryły: pręt, pierścień
- Metalowy przymiar milimetrowy
- Suwmiarka
- Waga elektroniczna
- Sekundomierz

Rysunek 1: Pręt i pierścień używane w ćwiczeniu.

3 Wykonanie ćwiczenia

Na początku ustalamy masę oraz określamy długości pręta i pierścienia, tak jak pokazano na Rysunku 1 (małe długości mierzymy suwmiarką). Umieszczamy pręt na statywie, wprowadzamy go w ruch drgający o amplitudzie nieprzekraczającej trzech stopni i mierzymy czas trzydziestu drgań. Pomiar ten powtarzamy dziesięciokrotnie. Analogicznie postępujemy z pierścieniem.

4 Opracowanie wyników pomiarów

Tablica 1: Pomiar masy i długości pręta.

	wartość	niepewność
m[g]	30	37,37
l[mm]	30	37,22
b[mm]	30	37,25
a[mm]	30	37,34

Tablica 2: Pomiar masy i długości pierścienia.

	wartość	niepewność
m[g]	30	37,37
$D_W[mm]$	30	37,22
$D_Z[mm]$	30	37,25
$R_W[mm]$	30	37,22
$R_Z[mm]$	30	37,25
e[mm]	30	37,34
a[mm]	30	37,34

Tablica 3: Pomiar okresu drgań dla pręta.

Lp.	liczba okresów k	czas t dla k okresów w $[s]$	okres $T_i = t/k$ w [s]
1	30	37,37	1,245667
2	30	37,22	1,240667
3	30	37,25	1,241667
4	30	37,34	1,244667
5	30	37,06	1,235333
6	30	37,32	1,244000
7	30	37,31	1,243667
8	30	37,13	1,237667
9	30	37,47	1,249000
10	30	37,38	1,246000
Wartość średnia okresu: \overline{T} =			
Niepewność: $u(T)$ =			

Tablica 4: Pomiar okresu drgań dla pierścienia.

Lp.	liczba okresów k	czas t dla k okresów w $[s]$	okres $T_i = t/k$ w [s]
1	30	37,37	1,245667
2	30	37,22	1,240667
3	30	37,25	1,241667
4	30	37,34	1,244667
5	30	37,06	1,235333
6	30	37,32	1,244000
7	30	37,31	1,243667
8	30	37,13	1,237667
9	30	37,47	1,249000
10	30	37,38	1,246000
Wartość średnia okresu: \overline{T} =			
Niepewność: $u(T)$ =			

4.1 Moment bezwładności I_0 względem rzeczywistej osi obrotu korzystając z wzoru na okres drgań

Wzór na okres drgań wyraża się wzorem:

$$T=2\pi\sqrt{\frac{I_0}{mga}}$$

Przekształcając odpowiednio powyższe równanie otrzymujemy wzór na moment bezwładności:

$$I_0 = \frac{mgaT^2}{4\pi^2},$$

gdzie m – masa bryły, g – przyspieszenie ziemskie, T – okres drgań, a – odległość środka masy od osi obrotu.

Momement bezdładności I_0 dla pręta:

Momement bezdładności I_0 dla pierścienia:

$$I_0 =$$

4.2 Moment bezwładności I_S względem osi przechodzącej przez środek masy korzystając z twierdzenia Steinera

Twierdzenie Steinera stosuje się do obliczania momentu bezwładności bryły względem osi przesuniętej równolegle o długość a, gdzie I_S to moment bezwładności względem osi przechodzącej przez środek masy bryły.

$$I_0 = I_S + ma^2$$

$$I_S = I_0 - ma^2$$

Momement bezdładności I_S dla pręta:

$$I_S =$$

Momement bezdładności I_S dla pierścienia:

$$I_S =$$

4.3 Moment bezwładności względem osi przechodzącej przez środek masy $I_S^{(geom)}$ na podstawie masy i wymiarów geometrycznych

Moment bezwładności większości regularnych brył można zapisać w postaci:

$$I_S^{(geom)} = k \cdot m \cdot l,$$

gdzie m – masa bryły, l – charakterystyczny wymiar bryły (np. długość, promień), k – bezwymiarowy współczynnik zależny tylko od kształtu bryły i wyboru charakterystycznego wymiaru (np. promień czy średnica), a niezależny od wielkości bryły.

Momement bezdładności $I_S^{(geom)}$ dla pręta:

$$I_S^{(geom)} = \frac{1}{12} m l^2$$

Momement bezdładności ${\cal I}_S^{(geom)}$ dla pierścienia:

$$I_S^{(geom)} = \frac{1}{12}m(R^2 + r^2)$$

4.4 Niepewności mierzonych wielkości

4.4.1 Niepewność pomiaru okresu – niepewność typu A

Wzór na niepewność pomiaru u(T):

$$u(T) = \frac{\sqrt{\frac{\sum (T_i - \overline{T})^2}{n-1}}}{\sqrt{n}} = \sqrt{\frac{\sum (T_i - \overline{T})^2}{n(n-1)}},$$

gdzie n – liczba pomiarów, $\overline{T} = \frac{1}{n} \sum T_{\rm i}$ – średni czas trwania okresu.

Niepewność pomiaru okresu dla pręta:

$$\overline{T} = u(T) = \sqrt{\frac{\sum (T_i - \overline{T})^2}{n(n-1)}}$$

Niepewność pomiaru okresu dla pierścienia:

$$\overline{T} = u(T) = \sqrt{\frac{\sum (T_i - \overline{T})^2}{n(n-1)}}$$

4.4.2 Niepewność pomiaru masy

Niepewność pomiaru masy jest równa działce elementarnej wagi u(m) = 1g.

4.4.3 Niepewność pomiaru wymiarów geometrycznych

Przyjmujemy niepewność równą działce elementarnej linijki u(l)=1mm. Wyjątek stanowi wielkość e wyrażona poprzez różnicę promieni R_Z i R_W , ze względu na małe rozmiary przyjmujemy niepewność pomiaru u(e)=0,1mm. Jeśli odległość $a=\frac{l}{2}-b$, to analogicznie u(a)=0,5mm;

4.5 Niepewność złożona momentu bezwładności I_0

Niepewność złożona momentu bezwładności I_0 dla pręta:

Niepewność złożona momentu bezwładności I_0 dla pierścienia:

4.6 Niepewność złożona momentu bezwładności I_S

Niepewność złożona momentu bezwładności I_S dla pręta:

Niepewność złożona momentu bezwładności \mathcal{I}_S dla pierścienia:

4.7 Niepewność
$$u_c(I_S^{(geom)})$$

Niepewność $u_c(I_S^{(geom)})$ dla pręta:

Niepewność $u_c(I_S^{(geom)})$ dla pierścienia:

4.8 Porównanie metod wyznaczenia momentu bezwładności

4.9 Zgodność wyników pomiaru w granicach niepewności rozszerzonej

Tablica 5: Wyniki obliczeń momentu bezwładności dla pręta.

	I_0 wyznaczone z okresu drgań $[kg\cdot m^2]$	I_S wyznaczone z twierdzenia Steinera $[kg \cdot m^2]$	I_S wyznaczone z pomiarów geometrycznych $[kg \cdot m^2]$
wartość	30	37,37	66
niepewność	30	37,37	66

Tablica 6: Wyniki obliczeń momentu bezwładności dla pierścienia.

	I_0 wyznaczone z okresu drgań $[kg \cdot m^2]$	I_S wyznaczone z twierdzenia Steinera $[kg \cdot m^2]$	I_S wyznaczone z pomiarów geometrycznych $[kg \cdot m^2]$
wartość	30	37,37	66
niepewność	30	37,37	66

5 Wnioski

•

•

•