CSDS503 / COMP552 – Advanced Machine Learning

Faizad Ullah

Evaluation of Classifiers

Evaluation of Classifiers

Loss Function:

• To optimize the model's parameters, measures the difference between predicted and expected outputs of the model.

Evaluation Metrics:

 A Performance / Evaluation metrics is used to evaluate the model after training or during training.

The Output of a Classifier

#	Height (inches)	Weight (kgs)	B.P. Sys	B.P. Dia	Heart	disease
			\vec{x}		y	$h(\vec{x})$
1	62	70	120	80	No	No
2	72	90	110	70	No	Yes
3	74	80	130	70	No	No
4	65	120	150	90	Yes	Yes
5	67	100	140	85	Yes	No
6	64	110	130	90	No	Yes
7	69	150	170	100	Yes	Yes
8	75	127	160	95	Yes	No
9	66	66	135	90	Yes	Yes

Negative True Positive Type-I Error False Negative True Positive True Type-II Error False Negative Type-I Error False Positive Positive True Negative Type-II Error Positive True

 $y: \rightarrow Gold labels / Ground truth$

 $h(x): \rightarrow$ Predicted labels

Performance Measures

Accuracy

$$Accuracy \frac{tp + tn}{tp + fp + tn + fn}$$

Correct predictions over all predictions

A Real Example 1

- You want to know the people's sentiments about yourself, Ali.
- You build a system that detects tweets about you.
 - The positive class is "tweets about you", the negative class is all "other tweets".
- Imagine that you looked at a million tweets.
- 100 of them are "tweets about you", 999,900, are "other tweets".
- You created a classifier that stupidly classified every tweet as "not about you"
- Make a confusion matrix: (tp, fp, fn, tn)
 - 0 true positives
 - 0 false positives
 - 100 false negatives
 - 999,900 true negatives
- Accuracy = 999,900/1,000,000 or 99.99%!

A Real Example 1

 Accuracy is not a good metric when the goal is to discover a rare event, or at least not completely balanced in frequency.

Class imbalance is a very common situation in the world!

		Gold I	abels		
		Gold Positive	Gold Negative	5	
Predicted	Predicted Positive	True Positives (tp)	False Positives (fp)	$\frac{tp}{tp + fp}$	"Precision" aka "Positive Predictive Value"
Labels	Predicted Negative	False Negatives (fn)	True Negatives (tn)	$\frac{tn}{fn+tn}$	"Negative Predictive Value"
		$\frac{tp}{tp+fn}$ "Recall" aka "Sensitivity" aka "True Positive Rate"	$\frac{tn}{fp+tn}$ "Specificity" aka "True Negative Rate"	₹	$tn \perp tn$
		$\frac{fn}{tp + fn}$ 1 - Sensitivity = "False Negative Rate" aka "False Rejection Rate"	\frac{fp}{fp + tn} 1 - Specificity = "False Positive Rate" aka "False Acceptance Rate"	Accura	$acy = \frac{tp + tn}{tp + fp + tn + fn}$

$$\frac{My\ Correct\ Answers}{All\ Questions} = \frac{tp + tn}{tp + tn + fp}$$

What fraction of time am I correct in my classification

• Precision

$$=\frac{tp}{tp+fp}$$

- How much should you trust me when I say that something tests positive
- What fraction of my positives are true positives

$$=\frac{tp}{tp+fn}$$

- How much of the reality has been covered by my positive output?
- What fraction of the true positives is captured by my positives?

Specificity

$$=\frac{tn}{tn+fp}$$

- How much of the reality has been covered by my negative output?
- What fraction of the true negatives is captured by my negatives?

A Real Example 2

• You are shown a set of 21 coins: 10 gold and 11 copper. Your task to accept all gold coins and reject all copper ones.

- You accept 7 coins as being gold (these are your positives)
 - 5 of these are actually gold (these are your true positives, tp)
 - 2 of these are copper (these are your false positives, fp)
 - You falsely rejected 5 gold ones (false negatives, fn)
 - You correctly rejected 9 copper ones (true negatives, tn)

A Real Example 2

	Actual Gold	Actual Copper
Predicted Gold	5	2
Predicted Copper	5	9

Accuracy = 14/21

Precision = 5/7

Recall = 5/10

Specificity = 9/11

Realistic Extremes

- You accept only one coin and that is gold
 - Your precision is very high (1/1) but recall is very low (1/10)

	Ac Gld	Ac Cop
Pr Gld	1	0
Pr Cop	9	11

- You return all 21 coins
 - Your recall is very high (10/10) but precision is very low (10/21)

	Ac Gld	Ac Cop
Pr Gld	10	11
Pr Cop	0	0

- Only one out of the 21 coins is gold. And you reject everything.
 - Your accuracy is very high (20/21 = 0.95) but precision/recall are 0.

	Ac Gld	Ac Cop
Pr Gld	0	0
Pr Cop	1	20

- So, what do we do now?
- A combined measure?

Issues with Precision and Recall

One possible way may be to combine both.

But, how to combine Precision and Recall?

Average?

Arithmetic Mean

$$AM = \frac{a_1 + a_2 + a_3 + \dots + a_n}{n}$$

For 2 values:
$$AM = \frac{a_1 + a_2}{2}$$

Geometric Mean

$$GM = \sqrt[n]{a_1 \cdot a_2 \cdot a_3 \dots a_n}$$

For 2 values:
$$GM = \sqrt[2]{a_1 a_2}$$

Harmonic Mean

$$HM = \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_n}}$$

For 2 values:
$$HM = \frac{2}{\frac{1}{a_1} + \frac{1}{a_2}} = \frac{2a_1a_2}{a_1 + a_2}$$

х0	x1	x2	х3	х4	x5	х6	х7	x8	AM	GM	HM
1	2	3	4	5	6	7	8	9	5.00	4.15	3.18
2	4	8	16	32	64	128	256	512	113.56	32.00	9.02
5	5	5	5	5	5	5	5	5	5.00	5.00	5.00
5	5	5	5	5	5	5	5	10	5.56	5.40	5.29
5	5	5	5	5	5	5	5	100	15.56	6.97	5.59
5	5	5	5	5	5	5	5	1000	115.56	9.01	5.62
5	5	5	5	5	5	5	5	10000	1115.56	11.63	5.62
5	5	5	5	5	5	5	5	100000	11115.56	15.03	5.62
5	5	5	5	5	5	5	100000	100000	22226.11	45.16	6.43
5	5	5	5	5	100000	100000	100000	100000	44447.22	407.89	9.00
5	100000	100000	100000	100000	100000	100000	100000	100000	88889.44	33274.21	44.98
100000	100000	100000	100000	100000	100000	100000	100000	100000	100000.0	100000.0	100000.0

F-1-MEASURE

- The harmonic mean of P and R:
 - Is high when both P and R are high.
 - Is low when even one of P and R is low.
- A combined measure that assesses the P/R tradeoff is the F-measure (weighted harmonic mean of precision and recall)

$$F = \frac{2}{\frac{1}{P} + \frac{1}{R}} = \frac{2PR}{P + R}$$

Precision	Recall	F-1
0	1	0
0.1	0.9	0.18
0.2	0.8	0.32
0.3	0.7	0.42
0.4	0.6	0.48
0.5	0.5	0.5
0.6	0.4	0.48
0.7	0.3	0.42
0.8	0.2	0.32
0.9	0.1	0.18
1	0	0
1	1	1
0.5	1	0.666667
1	0.5	0.666667
0.1	1	0.181818
1	0.1	0.181818

More than 2 Classes

More than two classes

- Lots of classification tasks in language processing have more than two classes:
 - Sentiment analysis (positive, negative, neutral),
 - Part-of-speech tagging (|POS tags|)
 - Emotion detection (|emotions|)

More than two classes

- Any-of or multi-label classification
 - An instance can belong to one or more than one class.

- One-of or multinomial classification
 - Classes are mutually exclusive: each instance in exactly one class

Evaluation

• one-of email categorization decision (urgent, normal, spam)

		g	old labels	ĭ		
		urgent	normal	spam		
	gent	8	10	1	precision _u =	8+10+1
system output no	rmal	5	60	50	precision _n =	$\frac{60}{5+60+50}$
sp	oam	3	30	200	precisions=	200 3+30+200
		recallu =	recalln=	recalls =		
		8	60	200		
		8+5+3	10+60+30	1+50+200		

Micro- vs. Macro-Averaging

- If we have more than one class, how do we combine multiple performance measures into one quantity?
 - 1. Macro-averaging: Compute performance for each class, then average.
 - 2. Micro-averaging: Collect decisions for all classes, compute contingency table, evaluate

		g	gold labels	•	
		urgent	normal	spam	
	urgent	8	10	1	$\mathbf{precision}_{\mathbf{u}} = \frac{8}{8+10+1}$
system output	normal	5	60	50	$\mathbf{precision}_{n} = \frac{60}{5+60+50}$
	spam	3	30	200	precision s= $\frac{200}{3+30+200}$
		recallu =	recalln=	recalls =	
		8	60	200	
		8+5+3	10+60+30	1+50+200	

Cl	ass 1:	Urgent	t Cla	ass 2:	Norma	l C	Class 3: Spam				
=	true true urgent not			true true normal not			true true spam not				
system urgent	8	11	system normal	60	55	system spam	200	33			
system not	8	340	system not	40	212	system not	51	83			
precision	precision = $\frac{8}{8+11}$ = .42 precision = $\frac{60}{60+55}$ = .52 precision = $\frac{200}{200+33}$ = .86										
	$\frac{\text{macroaverage}}{\text{precision}} = \frac{.42 + .52 + .86}{3} = .60$										

Pooled true true yes no system 268 99 yes system 99 no $\frac{\text{microaverage}}{\text{precision}} = \frac{268}{268+99} = .73$ Micro Averaging

Evaluation

- A micro-average is dominated by the more frequent class (in this case spam)
 - The counts are pooled
- The macro-average better reflects the statistics of the smaller classes
 - More appropriate when performance on all the classes is equally important.

References

- Jurafsky and Martin, SLP3,
- https://web.stanford.edu/~jurafsky/slp3/