Por ejemplo, este modelo puede describir una población de bacterias, donde, en un tiempo dado, un organismo se divide en dos organismos separados. Entonces r = 2. Sea p_0 la población inicial. Entonces $p_1 = rp_0$, $p_2 = rp_1 = r(rp_0) = r^2p_0$, $p_3 = rp_2 = r(r^2p_0) = r^3p_0$, y así sucesivamente, de manera que

$$p_n = r^n p_0 (8.2.1)$$

De este modelo se ve que la población aumenta sin cota si r > 1 y disminuye a cero si r < 1. Si r = 1, la población permanece en un valor constante p_0 .

Es evidente que este modelo es simplista. Una objeción obvia es que el número de crías producidos depende, en muchos casos, de las edades de los adultos. Por ejemplo, en una población humana las mujeres adultas de más de 50 años promedio sin duda producirán menos niños que las mujeres de 21 años promedio. Para manejar esta dificultad, se introduce un modelo que permita agrupar por edades y asignar tasas de fertilidad diferentes.

Se estudiará un modelo de crecimiento de la población para una especie de pájaros. En esta población se supone que el número de pájaros hembras es igual al número de machos. Sea $p_{i,n-1}$ la población juvenil (inmadura) de hembras en el año (n-1) y sea $p_{a,n-1}$ el número de hembras adultas en el mismo año. Algunos de los pájaros jóvenes morirán durante el año. Se supone que cierta proporción a de los pájaros jóvenes sobrevivirán para llegar a adultos en la primavera del año n. Cada hembra que sobrevive produce huevos en la primavera, los incuban y producen, en promedio, k pájaros hembras jóvenes en la siguiente primavera. Los adultos también mueren y la proporción de adultos que sobreviven de una primavera a la siguiente es β .

Esta tasa constante de supervivencia de los pájaros no es una suposición simplista. Parece que ocurre en la mayoría de las poblaciones de pájaros naturales que se han estudiado. Esto significa que la tasa de supervivencia de los adultos en muchas especies de pájaros es independiente de la edad. Quizá muy pocos pájaros en su hábitat natural sobreviven lo suficiente para exhibir los efectos de la edad. Más aún, en muchas especies la edad de la madre parece no influir en el número de

En la notación introducida $p_{i,n}$ y $p_{a,n}$ representan, respectivamente, la población de hembras jóvenes y adultas en el año n. Incorporando toda la información se llega al siguiente sistema de 2×2 :

$$p_{j,n} = kp_{a,n-1}$$

$$p_{a,n} = \alpha p_{j,n-1} + \beta p_{a,n-1}$$
(8.2.2)

o

$$\mathbf{p}_{n} = A\mathbf{p}_{n-1} \tag{8.2.3}$$

$$\mathbf{p}_n = A\mathbf{p}_{n-1}$$
donde $\mathbf{p}_n = \begin{pmatrix} p_{j,n} \\ p_{a,n} \end{pmatrix}$ y $A = \begin{pmatrix} 0 & k \\ \alpha & \beta \end{pmatrix}$. Es evidente de (8.2.3) que $\mathbf{p}_1 = A^n \mathbf{p}_0$, $\mathbf{p}_2 = A^n \mathbf{p}_1 = A(A\mathbf{p}_0) = A(A\mathbf{p}_0)$

 A^2 **p**₀,..., y así sucesivamente. Entonces,

$$\mathbf{p}_n = A^n \mathbf{p}_0 \tag{8.2.4}$$

donde \mathbf{p}_0 es el vector de las poblaciones iniciales de hembras jóvenes y adultas.

La ecuación (8.2.4) es parecida a la ecuación (8.2.1), pero ahora se puede distinguir entre las tasas de supervivencia de pájaros jóvenes y adultos.

EJEMPLO 8.2.1 Una ilustración del modelo aplicado durante 20 generaciones

Sea $A = \begin{pmatrix} 0 & 2 \\ 0.3 & 0.5 \end{pmatrix}$. Esto quiere decir que cada hembra adulta produce dos críos hembras, y como

se supone que el número de machos es igual al número de hembras, al menos cuatro huevos -y tal