DMA Domácí úkol č. 9a

Tento úkol vypracujte po přednášce a před cvičením, na druhé straně je řešení. Pokud vám něco není jasné, zeptejte se na cvičení nebo na konzultaci.

Pokud vam nece 1. Dokažte indukcí, že pro $n\in\mathbb{N}$ je $\sum_{k=1}^n 0=0$. Poznámka: Může pro vás být jednodušší to vidět jako $\underbrace{0+0+\cdots+0}_{n\text{ krát}}=0$.

2. Nechť $\mathcal R$ je relace na A. Dokažte: Je-li $\mathcal R^{-1}$ tranzitivní, tak je i $\mathcal R$ tranzitivní. Použijte novou strukturu důkazu.

Řešení:

1. Použije se definice sumy: (0)
$$\sum_{k=1}^{1} a_k = a_1$$
; (1) $\sum_{k=1}^{n+1} a_k = a_1 = \sum_{k=1}^{n} a_k + a_{n+1}$
Důkaz: (0) Jestliže $n = 1$, tak určitě $0 = 0$.

Obakaz. (0) Sestrize
$$n=1$$
, tak thette $0=0$. (1) $n\in\mathbb{N}$ libovolné, předpoklad:
$$\sum_{k=1}^n 0=0. \text{ Pak } \sum_{k=1}^{n+1} 0=\sum_{k=1}^n 0+0 \stackrel{\mathrm{IP}}{=\!=\!=} 0+0=0.$$
 Je také možné psát v indukčním kroku

$$\underbrace{0+0+\cdots+0}_{n+1 \text{ krát}} = \underbrace{0+0+\cdots+0}_{n \text{ krát}} + 0 \stackrel{\text{IP}}{=\!=\!=} 0 + 0 = 0.$$

2. Předpoklad: \mathcal{R}^{-1} tranzitivní.

Vezměme libovolné $\underline{a,b,c\in A}$ splňující $\underline{(a,b)\in \mathcal{R}}$ a $\underline{(b,c)\in \mathcal{R}}$. Dle definice \mathcal{R}^{-1} pak máme $\underline{(b,a)\in \mathcal{R}^{-1}}$ a $\underline{(c,b)\in \mathcal{R}^{-1}}$, díky tranzitivitě \mathcal{R}^{-1} je $\underline{(c,a)\in \mathcal{R}^{-1}}$ a proto $\underline{(a,c)\in \mathcal{R}}$. Ukázali jsme, že \mathcal{R} je tranzitivní.