Development of Flow Boiling and Condensation Experiment on the International Space Station-Normal and Low Gravity Flow Boiling Experiment Development and Test Results

Henry K. Nahra*, Nancy Hall*, Mojib Hasan*, James Wagner*, Rochelle May*, Jeffrey Mackey*, John Kolacz*, Robert Butcher*, Bruce Frankenfield*

Issam Mudawar**, Chris Konichi**, Hyounsoon Lee**

*NASA-GRC; ** Purdue University

29th American Society for Gravitational and Space Research November 3 – 8, 2013 Orlando, Florida, USA

AGENDA

- ISS Flight Experiment Objective
- Fluid System-ISS
- Test Modules
 - Flow Boiling Module
 - Condensation Module Flow Visualization
 - Condensation Module Heat Transfer
- Ground Testing
 - Breadboard Development
 - Pre-Heater Characterization
 - Proposed On-Orbit Degassing System Testing
- Flow Boiling Module Performance Assessment-Zero-G Testing
 - Fluid system
 - Diagnostics and Data Acquisition
 - FBM Heater control
- Sample of Testing Results
 - FBM Two Heaters
- Future Work

ISS Flight Experiment

FBCE Science Objectives

The proposed research aims to develop an integrated twophase flow boiling/condensation facility for the International Space Station (ISS) to serve as primary platform for obtaining two-phase flow and heat transfer data in microgravity.

Key objectives are:

- Obtain flow boiling database in long-duration microgravity environment
- Obtain flow condensation database in long-duration microgravity environment
- Develop experimentally validated, mechanistic model for microgravity flow boiling critical heat flux (CHF) and dimensionless criteria to predict minimum flow velocity required to ensure gravity-independent CHF
- 4. Develop experimentally validated, mechanistic model for microgravity annular condensation and dimensionless criteria to predict minimum flow velocity required to ensure gravity-independent annular condensation; also develop correlations for other condensation regimes in microgravity

Applications include:

- 1. Rankine Cycle Power Conversion System for Space
- Two Phase Flow Thermal Control Systems and Advanced Life Support Systems
- 3. Gravity Insensitive Vapor Compression Heat Pump for Future Space Vehicles and Planetary Bases
- 4. Cryogenic Liquid Storage and Transfer

Interfacial Lift-off Model: (a) schematic representation of wavy vapor layer. (b) Balance of vapor momentum and interfacial pressure difference at moment of wetting front separation.

- •Science Requirements Document for FBCE, March, 2013
- •Science Concept Review Presentation, December 2011

Preliminary Engineering Fluid System Design (ISS)

Test Modules

- Flow Boiling Module
 - Subcooled, saturated and 2phase Inlet condition at:
 - 2.5 < Mass Flow Rate < 40 g/s
 - Heat Flux < 60 W/cm²
- Condensation Module –Flow Visualization
 - Saturated vapor Inlet condition
 - 2 < Mass Flow Rate < 14 g/s
- Condensation Module –Heat Transfer
 - Saturated vapor Inlet condition
 - 2 < Mass Flow Rate < 14 g/s

Flow Boiling Module Design

- FBM/Heater Design
 - Flow Channel 2.5x5x100 mm
 - Both surfaces are heated with resistive heaters
 - Max heating of 300 W from both sides
 - Visualization with high speed camera 2000-4000 fps

CM-FV Design and Challenges

- Science requirements called for TCs on the inner surface of water tube and middle of tube
- Sectional tube design
- Three observation areas coincident with data collection areas
- Easy Access to inner tube

Counterflow of water loop (blue) and FC-72 (red, nPFH for flight) along with thermocouples (T) and pressure transducers (P) location

CM-HT Design and Challenges

- CM-HT Short Design
 - Easy access to inner tube
 - TCs are fixed firmly to outer surface of inner tube
 - Eng. Model CM-HT is a longer version of CM-HT Short

Counterflow of water loop (blue) and FC-72 (red, nPFH for flight) along with thermocouples (T) and pressure transducers (P) location

Ground Testing

- Breadboard Development
- Pre-heater Characterization
 - Operation
 - Control
- Testing of potential design for On-Orbit degassing

Ground Testing-Breadboard Development

Fluid System components Integrated with instrumentations for heater evaluation

Ground Testing-Pre-Heater Characterization

- Pre-heater studies of time constant to achieve steady state
- Steady state achieved within 6 minutes

Ground Testing of Proposed On-Orbit Degassing System

- Developed a fluid loop for degassing testing
- Use of membrane contactor
- Testing showed after 50 minutes, partial pressure of non-condensable gases is below 2 kPa

Zero-G Aircraft Testing/FBM Engineering Assessment

Aircraft Rack Features:

- Fluid System
- Diagnostics:
 - Lumenera and Sentech video cameras
- FBM Heater Power Input and Temperature Control
- Data acquisition

Fluid System

Zero-G Aircraft Rack

Flow Boiling Module

Data Acquisition- $\dot{m} = 2.5 \, g/s$

Testing Results-High Speed Visualization- $\dot{m}=2.5~g/s$

% of CHF achieved in each of the 5 low gravity paraboli performed at 2.5 g/s

Testing Results- $\dot{m} = 2.5 \ g/s$, 2 Heaters

Testing Results- $\dot{m} = 40 g/s$, 2 Heaters

Future Plans

- Ground and Low gravity testing of condensation modules
- Development of engineering model prior to or by PDR planned for January 2015

- Thank you
- Questions?