Espaces Mesurés

1. Tribus.

- Dans toute la suite, *E* est un ensemble non vide.
- $\mathcal{P}(E)$ désigne l'ensemble des parties de E
 - $A \subset E$ et $A \in \mathcal{P}(E)$
 - $x \in E$, $\{x\} \subset E$, $\{x\} \in \mathscr{P}(E)$
- \mathscr{A} un ensemble de parties de $E: \mathscr{A} \subset \mathscr{P}(E)$

1.1. Définitions.

Définition (Tribu). Soit $\mathscr A$ une classe de parties de E. On dit que $\mathscr A$ est une tribu sur E si

- 1. $\emptyset \in \mathcal{A}$;
- 2. \mathscr{A} est stable par passage au complémentaire : si $A \in \mathscr{A}$ alors $A^c = E \setminus A \in \mathscr{A}$;
- 3. \mathscr{A} est stable par union dénombrable : si $(A_n)_{n\geq 0}\subset \mathscr{A}$ alors $\bigcup_{n\in\mathbb{N}}A_n\in \mathscr{A}$.

Si \mathscr{A} est une tribu sur E, on dit que (E,\mathscr{A}) est un espace mesurable et les ensembles de \mathscr{A} sont appelés ensembles mesurables.

• Une tribu est stable par union finie, par intersection finie, par différence, par différence symétrique, par intersection dénombrable, etc.

$$\bigcap_{n\geq 0} A_n = \left(\bigcup_{n\geq 0} A_n^c\right)^c.$$

- Si \mathscr{A} est une tribu, alors $E \in \mathscr{A}$
- Attention, une tribu est stable par union **dénombrable** : c'est plus fort que la stabilité par union finie mais cela ne signifie pas que A est stable par union quelconque
 - L'ensemble

 $\mathcal{A} = \{A \subset E : A \text{ est au plus dénombrable ou } A^c \text{ est au plus dénombrable}\}$

est une tribu sur E mais n'est pas stable par union quelconque si E n'est pas dénombrable

• Attention,

$$\mathcal{A} = \{A \subset E : A \text{ est fini ou } A^c \text{ est fini}\}\$$

est stable par union finie mais pas par union dénombrable. Ce n'est pas une tribu.

Définition (Tribu engendrée). Soit $\mathscr{C} \subset \mathscr{P}(E)$ une classe de parties de E. On appelle *tribu* engendrée par \mathscr{C} , notée $\sigma(\mathscr{C})$, la plus petite tribu sur E (au sens de l'inclusion) contenant \mathscr{C} .

- La définition fait sens car une intersection quelconque de tribus sur *E* est une tribu sur *E*.
 - $\sigma(\mathscr{C})$ est l'intersection de toutes les tribus sur E contenant \mathscr{C} , l'intersection étant non vide puisque $\mathscr{P}(E)$ est une tribu qui contient \mathscr{C} .
- Si \mathscr{A} est une tribu sur E qui contient \mathscr{C} alors $\sigma(\mathscr{C}) \subset \mathscr{A}$.
- $\sigma(\{A\}) = \{\emptyset, E, A, A^c\}$
- Si \mathscr{A} est une tribu, $\sigma(\mathscr{A}) = \mathscr{A}$.

Proposition (Image réciproque d'une tribu). *Soient* $f : E \longrightarrow F$ *une application et* \mathscr{B} *une tribu* $sur\ F$. *Alors*,

$$f^{-1}(\mathcal{B}) = \{ f^{-1}(B) : B \in \mathcal{B} \}$$

est une tribu sur E.

• Rappelons que si $A \subset E$ et $B \subset F$,

$$f(A) = \{f(x) : x \in \mathcal{A}\}, \qquad f^{-1}(B) = \{x \in E : f(x) \in B\} \stackrel{not.}{=} \{f \in B\}$$

- $x \in f^{-1}(B)$ est équivalent à $f(x) \in B$.
- Cette proposition résulte du fait que

$$f^{-1}(B^c) = (f^{-1}(B))^c, \quad f^{-1}(\bigcup_{n\geq 0} B_n) = \bigcup_{n\geq 0} f^{-1}(B_n).$$

Exercice. Soient $f: E \longrightarrow F$ une application et $\mathscr A$ une tribu sur E. On note

$$f(\mathcal{A}) = \{f(A) ; A \in \mathcal{A}\}, \text{ et, } f_*(\mathcal{A}) = \{B \subset F ; f^{-1}(B) \in \mathcal{A}\}.$$

Montrer que $f_*(\mathscr{A})$ est une tribu sur F mais qu'en général $f(\mathscr{A})$ n'est pas une tribu sur E

Proposition. Soient $f: E \longrightarrow F$ une application et \mathcal{D} une classe de parties de F. Alors,

$$f^{-1}(\sigma(\mathcal{D})) = \sigma(f^{-1}(\mathcal{D})).$$

• L'image réciproque de la tribu engendrée par $\mathcal D$ est la tribu engendrée par l'image réciproque de $\mathcal D$.

Démonstration. • $f^{-1}(\sigma(\mathcal{D}))$ est une tribu qui contient $f^{-1}(\mathcal{D})$; par conséquent, elle contient $\sigma(f^{-1}(\mathcal{D}))$: $\sigma(f^{-1}(\mathcal{D})) \subset f^{-1}(\sigma(\mathcal{D}))$.

· On considère

$$f_*(\sigma(f^{-1}(\mathscr{D}))) = \{B \subset F : f^{-1}(B) \in \sigma(f^{-1}(\mathscr{D}))\}.$$

• C'est une tribu qui contient \mathcal{D} : elle contient $\sigma(\mathcal{D})$ i.e.

$$\forall B \in \sigma(\mathcal{D}), \quad f^{-1}(B) \in \sigma\left(f^{-1}(\mathcal{D})\right).$$

• D'où $f^{-1}(\sigma(\mathcal{D})) \subset \sigma(f^{-1}(\mathcal{D}))$.

______ 2017/2018 : fin du cours 1 _____

Définition (Tribu trace). Soient \mathscr{A} une tribu sur E et $B \subset E$. On appelle *tribu trace* (ou tribu induite) par \mathscr{A} sur B la tribu sur B

$$\mathcal{A}_B = \{A \cap B : A \in \mathcal{A}\}.$$

• Attention, si $B \notin \mathcal{A}$, alors \mathcal{A}_B n'est pas incluse dans \mathcal{A} .

Définition (Tribu produit). Soient (E, \mathcal{A}) et (F, \mathcal{B}) deux espaces mesurables. On appelle tribu produit la tribu sur $E \times F$ engendrée par les pavés mesurables, \mathcal{R}

$$\mathcal{R} = \{A \times B : A \in \mathcal{A}, B \in \mathcal{B}\}.$$

1.2. Tribu borélienne.

• Rappelons que pour la topologie usuelle de **R**, un ensemble O de **R** est ouvert si

$$\forall x \in O, \exists a, b \in O, x \in]a, b \subset O.$$

- On note \mathcal{O} l'ensemble des ouverts de \mathbf{R} .
- Tout ouvert O de **R** est une union dénombrable d'ouvert :

$$O = \bigcup_{(\rho,r)\in I}]\rho - r, \rho + r[, \qquad I = \left\{ (q,r) \in \mathbf{Q} \times \mathbf{Q}_+^*, \]q - r, q + r[\subset O \right\}$$

Définition. La tribu $\sigma(\mathcal{O})$ engendrée par \mathcal{O} est appelée la tribu borélienne de \mathbf{R} . On la note $\mathscr{B}(\mathbf{R})$. Ses éléments sont appelés les boréliens.

• On peut montrer qu'il existe des ensembles de **R** qui ne sont pas boréliens.

Proposition. Sur R, muni de sa topologie usuelle, la tribu borélienne est engendrée par

- 1. la classe des intervalles ouverts bornés,
- 2. la classe des segments
- 3. la classe des intervalles de la forme $]-\infty, a[$ avec $a \in \mathbb{R},$

4. la classe des intervalles de la forme $]-\infty,a]$ avec $a \in \mathbb{R}$,

Démonstration. Démontrons les points 1 et 3. Les autres sont laissés en exercice.

- Le point 1 est évident puisque tout ouvert est une union dénombrable d'intervalles ouverts
- Notons $\mathscr{C} = \{] \infty, a[, a \in \mathbb{R} \}$. Si $a < b, [a, b[=] \infty, b[\setminus] \infty, a[\in \sigma(\mathscr{C}) \text{ et }$

$$]a,b[=\bigcup_{n\geq 1}[a-1/n,b[\in\sigma(\mathscr{C}).$$

Par conséquent $\mathcal{B}(\mathbf{R}) \subset \sigma(\mathcal{O})$. L'autre inclusion est évidente.

• Nous aurons aussi à considérer la droite achevée $\overline{\mathbf{R}} = \mathbf{R} \cup \{+\infty\} \cup \{-\infty\}$.

- Rappelons que sa topologie est définie par la base d'ouverts formés des intervalles ouverts de la forme $]a,b[,]a,+\infty]$ et $[-\infty,b[$ avec $a,b\in\overline{\mathbf{R}}.$
- On démontre de façon analogue que la tribu borélienne de $\overline{\mathbf{R}}$ est engendrée par les classes $\{[-\infty, a[, a \in \mathbf{R}\} \text{ ou } \{[-\infty, a], a \in \mathbf{R}\} \text{ par exemple.}$

Proposition. La tribu borélienne de \mathbf{R}^d est égale à la tribu engendrée par la classe des ouverts de la forme

$$\prod_{i=1}^{d}]a_i, b_i[\quad avec \, \infty < a_i < b_i < +\infty.$$

- Rappelons que $\mathcal{O} \subset \mathcal{P}(E)$ est une topologie (l'ensemble des ouverts) sur E si
 - 1. \emptyset et *E* appartiennent à \emptyset ,
 - 2. \mathcal{O} est stable par intersection finie,
 - 3. \mathcal{O} est stable par réunion quelconque.
- La tribu borélienne sur E, $\mathcal{B}(E)$ est la tribu engendrée par la classe des ouverts \mathcal{O}

2. Fonctions mesurables.

2.1. Définitions, critères de mesurabilité.

- Rappel: $f: E \longrightarrow F$ est continue si, pour tout ouvert $V \subset F$, $f^{-1}(V)$ est un ouvert de E.
- La définition d'une fonction mesurable est analogue.

Définition (Fonction mesurable). Soient (E, \mathscr{A}) et (F, \mathscr{B}) deux espaces mesurables et f une application de E dans F. On dit que f est mesurable par rapport à \mathscr{A} et \mathscr{B} si $f^{-1}(\mathscr{B}) \subset \mathscr{A}$ c'est à dire

$$\forall B \in \mathcal{B}, \quad f^{-1}(B) \in \mathcal{A}.$$

- L'image réciproque de tout ensemble mesurable est un ensemble mesurable.
- Lorsqu'il n'y a pas d'ambiguïté, on ne précise pas les tribus de départ et d'arrivée

Exemple(s). La fonction $f(x) = \mathbf{1}_A(x)$ est mesurable si et seulement si $A \in \mathcal{A}$

Lemme. Soient (E, \mathcal{A}) et (F, \mathcal{B}) deux espaces mesurables et $f : E \longrightarrow F$ une application. On suppose que $\mathcal{B} = \sigma(D)$. Alors f est mesurable si et seulement si

$$\forall B \in \mathcal{D}, \quad f^{-1}(B) \in \mathcal{A}.$$

Démonstration. • La condition est nécessaire.

• Si la tribu \mathscr{A} contient $f^{-1}(\mathscr{D})$, alors

$$f^{-1}(\mathcal{B}) = f^{-1}(\sigma(\mathcal{D})) = \sigma(f^{-1}(\mathcal{D})) \subset \mathcal{A}.$$

Corollaire. Soient E et F deux espaces topologiques, $f: E \longrightarrow F$ une application continue. Alors f est mesurable par rapport aux tribus boréliennes $\mathcal{B}(E)$ et $\mathcal{B}(F)$.

• On dit plus simplement que *f* est borélienne.

Démonstration. L'image réciproque d'un ouvert de F est un ouvert de E. Il suffit d'appliquer le lemme avec $\mathcal{B}(F) = \sigma(\mathcal{O}_F)$. □

Corollaire. Soient (E, \mathcal{A}) un espace mesurable et $f: E \longrightarrow \overline{\mathbf{R}}$ une application. f est borélienne si et seulement si l'une des conditions suivantes est vérifiée :

- 1. pour tout réel t, $\{x \in E : f(x) \le t\} \in \mathcal{A}$;
- 2. pour tout réel t, $\{x \in E : f(x) < t\} \in \mathcal{A}$.
- Cela résulte du lemme et du fait que $\mathscr{B}(\overline{\mathbf{R}}) = \sigma(\{[-\infty, t], t \in \mathbf{R}\}).$

______ 2017/2018 : fin du cours 2 _____

2.2. Propriétés de stabilité.

Proposition (Stabilité par composition). Soient f mesurable de (E, \mathcal{A}) dans (F, \mathcal{B}) et g mesurable de (F, \mathcal{B}) dans (G, \mathcal{C}) . Alors $g \circ f$ est mesurable de (E, \mathcal{A}) dans (F, \mathcal{C}) .

• Si $C \in \mathcal{C}$, $(g \circ f)^{-1} = f^{-1}(g^{-1}(C))$; $g^{-1}(C) \in \mathcal{B}$ car g est mesurable et, comme f est mesurable $f^{-1}(g^{-1}(C)) \in \mathcal{A}$.

Proposition. Soient (F_1, \mathcal{B}_1) et (F_2, \mathcal{B}_2) deux espaces mesurables et p_1 et p_2 les projections de $F_1 \times F_2$ sur F_1 et F_2 respectivement. On munit $F_1 \times F_2$ de la tribu produit $\mathcal{B}_1 \otimes \mathcal{B}_2$.

- 1. Les projections p_1 et p_2 sont mesurables;
- 2. Soit (E, \mathcal{A}) un espace mesurable et f une application de E dans $F_1 \times F_2$. Alors f est mesurable si et seulement si les composées $p_1 \circ f : E \to F_1$ et $p_2 \circ f : E \to F_2$ sont mesurables.
- Généralisation immédiate au cas d'un produit de *n* termes

Démonstration. • Pour tout $B_1 \in \mathcal{B}_1$, $p_1^{-1}(B_1) = B_1 \times F_2 \in \mathcal{B}_1 \otimes \mathcal{B}_2$.

• Si f est mesurable alors $p_1 \circ f$ et $p_2 \circ f$ sont mesurables. Réciproquement, si $B = B_1 \times B_2$ avec $B_1 \in \mathcal{B}_1$ et $B_2 \in \mathcal{B}_2$

$$f^{-1}(B_1 \times B_2) = f^{-1}(B_1 \times F_2 \cap F_1 \times B_2) = (p_1 \circ f)^{-1}(B_1) \cap (p_2 \circ f)^{-1}(B_2) \in \mathcal{A}.$$

f est donc mesurable puisque $\mathcal{B}_1 \otimes \mathcal{B}_2$ est engendré par les pavés mesurables.

Corollaire. Une fonction à valeurs complexes est mesurable si et seulement si ses parties réelle et imaginaire le sont.

Si f et g sont des fonctions mesurables de (E, \mathcal{A}) dans \mathbb{C} , alors f + g, fg, |f|, etc. sont mesurables.

• Soit $(x_n)_{n\geq 0}$ une suite de $\overline{\mathbf{R}}$

$$\limsup x_n = \inf_{n \ge 0} \sup_{k \ge n} x_k, \qquad \liminf x_n = \sup_{n \ge 0} \inf_{k \ge n} x_k.$$

- $(x_n)_{n\geq 0}$ converge dans $\overline{\mathbf{R}}$ si et seulement si $\limsup x_n = \liminf x_n$.
- Soit $(f_n)_{n\geq 0}$ une suite de fonctions de E dans $\overline{\mathbf{R}}$. On note $\limsup f_n$ la fonction

$$\limsup f_n(x), x \in E.$$

Proposition. Soit $(f_n)_{n\geq 0}$ une suite de fonctions mesurables de (E,\mathscr{A}) dans $(\overline{\mathbf{R}},\mathscr{B}(\overline{\mathbf{R}}))$. Alors $\sup_{n\geq 0} f_n$, $\inf_{n\geq 0} f_n$, $\liminf_{n\geq 0} f_n$, $\limsup_{n\geq 0} f_n$ sont boréliennes.

Démonstration. Pour $t \in \mathbf{R}$, on a

$$\begin{aligned} \{x \in E : \sup_{n \ge 0} f_n(x) \le t\} &= \bigcap_{n \ge 0} \{x \in E : f_n(x) \le t\}, \\ \{x \in E : \inf_{n \ge 0} f_n(x) \ge t\} &= \bigcap_{n \ge 0} \{x \in E : f_n(x) \ge t\}. \end{aligned}$$

Corollaire. Soit $(f_n)_{n\geq 0}$ une suite de fonctions mesurables de (E, \mathcal{A}) dans $(\mathbf{C}, \mathcal{B}(\mathbf{C}))$. On suppose que $(f_n)_{n\geq 0}$ converge simplement vers f. Alors f est mesurable.

Exemple(s). Soit $f: \mathbf{R} \longrightarrow \mathbf{R}$ borélienne et dérivable. Alors f' est borélienne.

Proposition. Soient f et g deux fonctions mesurables de (E, \mathcal{A}) dans $\overline{\mathbf{R}}$. Alors les ensembles $\{x \in E : f(x) < g(x)\}$ et $\{x \in E : f(x) \le g(x)\}$ sont dans \mathcal{A} .

- Attention on ne peut pas écrire f g dans $\overline{\mathbf{R}}$
- On écrit

 $\begin{aligned} \{x \in E : f(x) < g(x)\} &= \bigcup_{q \in \mathbf{Q}} \{x \in E : f(x) < q < g(x)\} \\ &= \bigcup_{q \in \mathbf{Q}} \left(\{x \in E : f(x) < q\} \cap \{x \in E : q < g(x)\} \right). \end{aligned}$

П

2.3. Fonctions étagées et approximation.

- Soit (E, \mathcal{A}) un espace mesurable
- On note $\mathcal{M}(E, \mathcal{A})$, ou plus simplement \mathcal{M} , l'ensemble des fonctions $f : E \longrightarrow \overline{\mathbf{R}}$ mesurables par rapport à (E, \mathcal{A}) et $(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$.
 - \mathcal{M}_+ est l'ensemble des fonctions mesurables à valeurs dans $\overline{\mathbf{R}}_+$.

Définition (Fonction étagée). Une fonction mesurable sur (E, \mathcal{A}) à valeurs dans \mathbb{C} est étagée lorsqu'elle ne prend qu'un nombre fini de valeurs.

- On note \mathcal{E}_+ (resp. \mathcal{E}) l'ensemble des fonctions étagées à valeurs dans \mathbf{R}_+ (resp. \mathbf{C}).
- Une fonction étagée ne prend qu'un nombre fini de valeurs finies : f(E) est un ensemble fini de C et

$$f(x) = \sum_{y \in f(E)} y \mathbf{1}_{f^{-1}(\{y\})}(x) = \sum_{y \in f(E)} y \mathbf{1}_{\{y\}}(f(x)).$$

• Si f prend les n valeurs distinctes $\alpha_1, \ldots, \alpha_n$, on a

$$\forall x \in E, \quad f(x) = \sum_{i=1}^{n} \alpha_i \mathbf{1}_{A_i}(x), \quad \text{où} \quad A_i = \{x \in E : f(x) = \alpha_i\}.$$

Théorème. Soit $f: E \longrightarrow \overline{\mathbb{R}}_+$ une fonction mesurable. Alors, il existe une suite croissante $(f_n)_{n\geq 0}$ de fonctions étagées positives qui converge simplement vers f.

De plus, la convergence est uniforme sur toute partie sur laquelle f est bornée.

2017/2018 : fin du cours 3

Démonstration. • Pour $n \ge 0$, on pose

$$f_n(x) = 2^{-n} \left[2^n \min(f(x), n) \right] = \sum_{k=0}^{n2^n - 1} \frac{k}{2^n} \mathbf{1}_{A_{n,k}}(x) + n \mathbf{1}_{A_n}(x),$$

$$A_n = \{ x \in E : f(x) \ge n \}, \quad A_{n,k} = \left\{ x \in E : \frac{k}{2^n} \le f(x) < \frac{k+1}{2^n} \right\}, \ k = 0, \dots, n2^n - 1.$$

- f_n est une fonction étagée positive et $f_n \le f$.
- $(f_n)_{n\geq 0}$ converge simplement vers f
 - Si $f(x) = +\infty$, $f_n(x) = n \longrightarrow +\infty = f(x)$.
 - Si $0 \le f(x) < +\infty$, il existe n_0 tel que $f_n(x) = 2^{-n} [2^n f(x)]$ pour tout $n \ge n_0$ et

$$[2^n f(x)] \le 2^n f(x) < [2^n f(x)] + 1, \qquad f_n(x) \le f(x) < f_n(x) + 2^{-n}.$$

- La suite $(f_n(x))_{n\geq 0}$ est croissante pour tout $x\in E$.
 - Si $f(x) = +\infty$, $f_n(x) = n$ pour tout n.

• Soient $x \in E$ tel que $0 \le f(x) < +\infty$ et $n \in \mathbb{N}$. Si $f(x) \ge n$, $f_n(x) = n$

$$f_{n+1}(x) = 2^{-(n+1)} \left[2^{n+1} \min(f(x), n+1) \right] \ge 2^{-(n+1)} \left[2^{n+1} \min(n, n+1) \right] = n = f_n(x).$$

Si f(x) < n, il existe un unique $k \in \{0, ..., n2^n - 1\}$ tel que $2^{-n}k \le f(x) < 2^{-n}(k+1)$. On a alors $f_n(x) = 2^{-n}k$ et

$$f_{n+1}(x) = \frac{k}{2^n} = f_n(x), \quad \text{si} \quad \frac{k}{2^n} = \frac{2k}{2^{n+1}} \le f(x) < \frac{2k+1}{2^{n+1}},$$

$$f_{n+1}(x) = \frac{k}{2^n} + \frac{1}{2^{n+1}} > f_n(x), \quad \text{si} \quad \frac{2k+1}{2^{n+1}} \le f(x) < \frac{2k+2}{2^{n+1}} = \frac{k+1}{2^n}.$$

• Si f est bornée sur X, il existe n_0 tel que $f(x) \le n_0$; pour tout $x \in X$ et tout $n \ge n_0$

$$[2^n f(x)] \le 2^n f(x) < [2^n f(x)] + 1, \qquad 0 \le f(x) - f_n(x) < 2^{-n}.$$

• Il faut bien comprendre que cette méthode d'approximation porte sur les valeurs de f(x) pas celle de x

• On discrétise l'axe des ordonnées

Corollaire. Toute fonction mesurable à valeurs dans $\overline{\mathbf{R}}$ (ou \mathbf{C}) est limite simple d'une suite de fonctions étagées à valeurs dans \mathbf{R} (ou \mathbf{C})

• On applique le théorème à $f^+ = \max(f, 0)$ et à $f^- = \max(-f, 0)$ si f est à valeurs $\overline{\mathbf{R}}$. Si f est à valeurs dans \mathbf{C} , on applique le résultat aux parties réelle et imaginaire de f.

3. Mesures positives.

• Dans toute la suite, (E, \mathcal{A}) est un espace mesurable.

3.1. Définitions.

Définition. Une *mesure positive* sur (E,\mathscr{A}) est une application μ de \mathscr{A} dans $\overline{\mathbf{R}}_+$ vérifiant :

1. $\mu(\emptyset) = 0$;

2. Si $(A_n)_{n \in \mathbb{N}} \subset \mathcal{A}$ avec $A_n \cap A_m = \emptyset$ si $n \neq m$ alors

$$\mu\bigg(\bigcup_{n\in\mathbb{N}}A_n\bigg)=\sum_{n\geq 0}\mu(A_n).$$

Vocabulaire :

• Si $\mu(E) < +\infty$, μ est dite finie ou bornée;

- Si $\mu(E) = 1$, μ est une (mesure de) probabilité;
- S'il existe $(A_n)_{n\geq 0}\subset \mathscr{A}$ telle que $\cup A_n=E$ et $\mu(A_n)<+\infty$, μ est σ -finie;
- Si μ est une mesure positive sur (E, \mathcal{A}) , le triplet (E, \mathcal{A}, μ) s'appelle un espace mesuré.

Proposition. *Soit* (E, \mathcal{A}, μ) *un espace mesuré.*

1. Si $A_1, ..., A_n$ sont des éléments de \mathscr{A} deux à deux disjoints, alors

$$\mu(A_1 \cup ... \cup A_n) = \mu(A_1) + ... + \mu(A_n).$$

- 2. Soient A et B deux parties de A. Si $A \subset B$, alors $\mu(A) \leq \mu(B)$. De plus, si $\mu(A) < +\infty$, $\mu(B \setminus A) = \mu(B) \mu(A)$.
- 3. Si A et B sont dans \mathcal{A} , $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$.
- Attention, si $A \subset B$ sont deux éléments de \mathscr{A} , on peut toujours écrire $\mu(B) = \mu(A) + \mu(B \setminus A)$ mais $\mu(B) \mu(A)$ n'a de sens que si $\mu(A) < +\infty$.

Démonstration. • C'est la définition avec $A_0 = \emptyset$ et $A_i = \emptyset$ pour i > n.

• On a $B = A \cup (B \setminus A)$ avec A et $(B \setminus A)$ disjoints. D'où,

$$\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A)$$
 puisque $\mu(B \setminus A) \ge 0$.

Si
$$\mu(A) < +\infty$$
, $\mu(B \setminus A) = \mu(B) - \mu(A)$.

• Si $\mu(A \cap B) = +\infty$, alors la formule est vraie : les quatre termes valent $+\infty$. Si $\mu(A \cap B) < +\infty$, on considère la partition suivante de $A \cup B$

$$A \cup B = A \setminus (A \cap B) \bigcup B \setminus (A \cap B) \bigcup (A \cap B),$$

et d'après le point précédent

$$\begin{split} \mu(A \cup B) &= \mu(A \setminus (A \cap B)) + \mu(B \setminus (A \cap B)) + \mu(A \cap B) \\ &= \mu(A) - \mu(A \cap B) + \mu(B) - \mu(A \cap B) + \mu(A \cap B) \\ &= \mu(A) + \mu(B) - \mu(A \cap B). \end{split}$$

Exemple(s). 1. Masse de Dirac sur $(E, \mathcal{P}(E))$: $\delta_x(A) = \mathbf{1}_A(x)$.

2. Mesure de comptage sur $(E, \mathcal{P}(E))$: $\gamma(A) = |A|$ si A est fini, $\gamma(A) = +\infty$ sinon.

Définition. Un ensemble $N \subset E$ est négligeable pour μ si il existe $A \in \mathscr{A}$ tel que $N \subset A$ et $\mu(A) = 0$.

- Attention, un ensemble peut être négligeable et ne pas être vide. Par exemple, $[2, +\infty[$ est négligeable pour δ_0 .
- Attention, un ensemble peut être négligeable et ne pas appartenir à \mathcal{A} .

9

3.2. Propriétés des mesures positives.

Proposition. Soient (E, \mathcal{A}, μ) un espace mesuré et $(B_n)_{\mathbb{N}} \subset \mathcal{A}$. Alors,

- 1. $\mu(\bigcup_{n\geq 0} B_n) \leq \sum_{n\geq 0} \mu(B_n)$.
- 2. Si $B_n \subset B_{n+1}$ pour tout n,

$$\mu\left(\bigcup_{n\geq 0} B_n\right) = \lim_{n\to\infty} \mu(B_n) = \sup_{n\geq 0} \mu(B_n).$$

3. Si $B_{n+1} \subset B_n$ pour tout n et s'il existe $n_0 \in \mathbb{N}$ tel que $\mu(B_{n_0}) < +\infty$,

$$\mu\left(\bigcap_{n\geq 0}B_n\right)=\lim_{n\to\infty}\mu(B_n)=\inf_{n\geq 0}\mu(B_n).$$

- Attention, la propriété 3 est fausse sans l'hypothèse $\mu(B_{n_0}) < +\infty$. Par exemple, si γ est la mesure de comptage sur \mathbb{N} et si B_n est l'ensemble des entiers supérieurs à n, $\mu(B_n) = +\infty$ et $\cap B_n = \emptyset$.
- Le point 2 permet de donner une définition équivalente de mesure positive.

______ 2017/2018 : fin du cours 4 _____

Démonstration. • La proposition résulte de la construction suivante. On pose $A_0 = B_0$ et pour $n \ge 1$, $A_n = B_n \setminus \bigcup_{k < n} B_k$. Alors, les ensembles $(A_n)_{n \ge 0}$ sont deux à deux disjoints avec

$$A_n \subset B_n$$
, $\bigcup_{0 \le i \le n} A_i = \bigcup_{0 \le i \le n} B_i$, $\bigcup_{n \ge 0} A_n = \bigcup_{n \ge 0} B_n$, $n \ge 0$.

• Pour le point 1,

$$\mu\left(\bigcup_{n\geq 0}B_n\right)=\mu\left(\bigcup_{n\geq 0}A_n\right)=\sum_{n\geq 0}\mu(A_n)\leq \sum_{n\geq 0}\mu(B_n).$$

• Pour le point 2,

$$\mu\left(\bigcup_{n\geq 0} B_n\right) = \mu\left(\bigcup_{n\geq 0} A_n\right) = \sum_{k\geq 0} \mu(A_k) = \lim_{n\to\infty} \sum_{k=0}^n \mu(A_k) = \lim_{n\to\infty} \mu\left(\bigcup_{0\leq k\leq n} A_k\right)$$
$$= \lim_{n\to\infty} \mu\left(\bigcup_{0\leq k\leq n} B_k\right) = \lim_{n\to\infty} \mu(B_n)$$

- Pour le point 3, on considère, pour $n \ge n_0$, $A_n = B_{n_0} \setminus B_n$ et on applique le point 2.
- En fait, la 2^e propriété est caractéristique des mesures :

Proposition. Soient (E, \mathcal{A}) un espace mesurable et μ une application de \mathcal{A} dans $\overline{\mathbf{R}}_+$. Alors μ est une mesure positive si et seulement si

1. $\mu(\emptyset) = 0$;

- 2. Pour A et B dans \mathcal{A} disjoints, $\mu(A \cup B) = \mu(A) + \mu(B)$;
- 3. Pour $(B_n)_{n\geq 0} \subset \mathcal{A}$ croissante, $\mu(\bigcup_{n\geq 0} B_n) = \lim_{n\geq 0} \mu(B_n)$.

Démonstration. Nous avons déjà vu que la condition était nécessaire. Montrons qu'elle est suffisante. Soit $(A_n)_{n\geq 0}$ une suite de parties de $\mathscr A$ deux à deux disjointes. On obtient, posant $B_n=\cup_{0\leq k\leq n}A_k$, via les points 3 puis 2,

$$\mu\left(\bigcup A_k\right) = \mu\left(\bigcup B_k\right) = \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \sum_{k=1}^n \mu(A_k) = \sum_{n \ge 0} \mu(A_n).$$

Corollaire (Lemme de Borel-Cantelli). *Soit* $(A_n)_{n\geq 0} \subset \mathcal{A}$ *telle que* $\sum_{n\geq n_0} \mu(A_n) < +\infty$. *Alors* $\mu(\limsup A_n) = 0$ *i.e.* $\limsup A_n = \bigcap_{n\geq 0} \bigcup_{k\geq n} A_k$ *est un ensemble négligeable.*

Démonstration. On a, pour tout n,

$$\mu\left(\bigcap_{n\geq 0}\bigcup_{k\geq n}A_k\right)\leq \mu\left(\bigcup_{k\geq n}A_k\right)\leq \sum_{k>n}\mu(A_k)\;;$$

C'est le reste d'une série convergente.

- Dans $\overline{\mathbf{R}}_+$, on fait la convention $0 \times +\infty = 0$.
- On rappelle que si $(a_{k,n})_{k\geq 0, n\geq 0}\subset \overline{\mathbf{R}}_+$,

$$\sum_{k>0} \sum_{n\geq 0} a_{k,n} = \sum_{n\geq 0} \sum_{k>0} a_{k,n}.$$

Proposition. Soient $(\mu_k)_{k\geq 0}$ une suite de mesures positives sur (E, \mathscr{A}) et $(\alpha_k)_{k\geq 0} \subset \overline{\mathbf{R}}_+$. Pour $A \in \mathscr{A}$, on pose

$$\mu(A) = \sum_{k>0} \alpha_k \, \mu_k(A).$$

Alors μ est une mesure positives sur (E, \mathcal{A}) .

Démonstration. C'est un très bon exercice.

Proposition. Soient (E, \mathcal{A}, μ) un espace mesurable, (F, \mathcal{B}) un espace mesuré et $f : E \longrightarrow F$ une application mesurable. Pour tout $B \in \mathcal{B}$, on pose

$$f_*(\mu)(B) = \mu(f^{-1}(B)).$$

Alors $f_*(\mu)$ est une mesure positive sur (F, \mathcal{B}) appelée mesure image de μ par f.

- $f_*(\mu)$ est notée suivant les auteurs $f_\#(\mu)$, μ_f ou encore $\mu \circ f^{-1}$.
- En fait, on peut définir $f_*(\mu)$ sur la tribu

$$f_*(\mathscr{A}) = \{B \subset F : f^{-1}(B) \in \mathscr{A}\}.$$

Démonstration. Si $(B_n)_{n\geq 0}$ ⊂ \mathscr{B} sont 2 à 2 disjoints, il en va de même de $(f^{-1}(B_n))_{n\geq 0}$ ⊂ \mathscr{A} . Par suite,

$$f_*(\mu)\left(\bigcup B_n\right) = \mu\left(f^{-1}\left(\bigcup B_n\right)\right) = \mu\left(\bigcup f^{-1}(B_n)\right) = \sum \mu\left(f^{-1}(B_n)\right) = \sum f_*(\mu)(B_n).$$

П

3.3. Exemples de mesure positives.

3.3.1. Mesures discrètes.

- Sur $(E, \mathcal{P}(E))$, δ_x est une mesure de probabilité.
- Généralisation : *mesure de Bernoulli* sur $(\mathbf{R}, \mathcal{B}(\mathbf{R}))$: $\mu = (1 p)\delta_0 + p\delta_1$, avec $0 \le p \le 1$.

Définition (Mesures discrètes). Soient (E, \mathcal{A}, μ) un espace mesuré. La mesure μ est discrète si il existe un ensemble (au plus) dénombrable $P = \{x_n : n \in \mathbb{N}\} \subset E$ tel que :

$$\forall A \in \mathcal{A}, \quad \mu(A) = \mu(A \cap P).$$

• Si μ est discrète, notant $p_n = \mu(\{x_n\})$, on a, pour $A \in \mathcal{A}$,

$$\mu(A) = \mu(A \cap P) = \sum_{n \ge 0} \mu(A \cap \{x_n\}) = \sum_{n \ge 0} \mu(\{x_n\}) \mathbf{1}_A(x_n) = \sum_{n \ge 0} p_n \delta_{x_n}(A).$$

- Tout point x_n tel que $p_n > 0$ est appelé atome de μ .
- Lorsque μ est discrète, $N \in \mathcal{A}$ est μ -négligeable si et seulement si N ne contient aucun atome.

Exemple(s). • Si $\sum p_n < +\infty$, μ finie; si $\sum p_n = 1$, μ est une probabilité.

• Si $\lambda > 0$,

$$\mu = \sum_{n \ge 0} e^{-\lambda} \frac{\lambda^n}{n!} \, \delta_n$$

est une mesure de probabilité appelée loi de Poisson de paramètre λ .

• Si $\mu = \sum p_n \delta_{x_n}$ et f une application mesurable, alors $f_*(\mu)$ est discrète et

$$f_*(\mu) = \sum_{n>0} p_n \, \delta_{f(x_n)}.$$

3.3.2. Mesure de Lebesgue.

- La mesure de Lebesque généralise la notion de longueur en dimension un, de volume en dimension supérieure
- La construction est assez délicate; nous l'admettrons.

Théorème (Mesure de Lebesgue sur **R**). *Il existe une unique mesure positive,* λ , *sur* (**R**, \mathscr{B} (**R**)) *telle que, pour tous réels a et b avec a* < *b*,

$$\lambda(|a,b|) = b - a$$
.

Cette mesure est appelée mesure de Lebesgue sur R.

• On voit facilement que, pour tout réel x, $\lambda(\{x\}) = 0$. En effet, pour tout $n \ge 1$,

$$\{x\} \subset]x - 1/n, x], \text{ et } \lambda(\{x\}) \le \lambda(]x - 1/n, x]) = 1/n.$$

• Par conséquent, pour tous réels a et b avec a < b,

$$\lambda([a,b]) = \lambda([a,b]) = \lambda([a,b]) = \lambda([a,b]) = b - a.$$

• On peut remarquer que pour tous réels a, b, x avec $a \le b$

$$\lambda(x + [a, b]) = \lambda([a, b]).$$

- Cette propriété se généralise à tous les boréliens $B: \lambda(x+B) = \lambda(B)$.
- C'est en fait une propriété caractéristique de la mesure de Lebesgue.

Théorème. Soit μ une mesure positive sur $(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ vérifiant $\mu([0,1]) = 1$ et invariante par translation : pour tout $x \in \mathbf{R}$ et tout $B \in \mathcal{B}(\mathbf{R})$, $\mu(x+B) = \mu(B)$. Alors μ est la mesure de Lebesgue sur \mathbf{R} .

______ 2017/2018 : fin du cours 5 _____

Démonstration. • On montre d'abord que $\mu(\{0\}) = 0$. En effet, pour tout $n \ge 1$, par invariance par translation,

$$1 = \mu([0,1]) \ge \mu(\{k/n, 1 \le k \le n\}) = \sum_{k=1}^{n} \mu(\{k/n\}) = n\mu(\{0\}).$$

• On montre ensuite que $\mu(]0,1/n]) = 1/n$ pour tout $n \in \mathbb{N}^*$. On écrit

$$]0,1] = \bigcup_{1 \le k \le n} [(k-1)/n, k/n], \qquad \mu(]0,1]) = \sum_{k=1}^{n} \mu(](k-1)/n, k/n]),$$

et par invariance par translation

$$1 = \mu(]0,1]) = n\mu(]0,1/n]).$$

• Pour tous rationnels q < r, $\mu(]q,r]) = \mu(]0,r-q]) = r-q$. En effet, q-r=m/n avec m et n deux entiers strictement positifs et, comme $]0,m/n] = \bigcup_{1 \le k \le m} [(k-1)/n,k/n]$,

$$\mu(]0, m/n]) = \sum_{k=1}^{m} \mu(](k-1)/n, k/n]) = m\mu(]0, 1/n]) = m/n = q-r.$$

• Pour tous réels a < b, $\mu(]a,b]) = \mu(]0,b-a]) = b-a$. En effet, comme **Q** est dense dans **R**, on peut choisir deux suite de rationnels $(q_n)_{n\geq 0}$ et $(r_n)_{n\geq 0}$ qui convergent vers b-a telles que $q_n \leq b-a \leq r_n$. Par exemple, $q_n = 2^{-n} [2^n(b-a)]$ et $r_n = 2^{-n} ([2^n(b-a)] + 1)$. On a alors $[0,q_n] \subset [0,b-a] \subset [0,r_n]$ et, pour tout n,

$$q_n = \mu([0, q_n]) \le \mu([0, b - a]) \le \mu([0, r_n]) = r_n.$$

Il suffit de passer à la limite quand $n \to \infty$.

• L'unicité de la mesure de Lebesgue vient d'un résultat général

Théorème (Unicité de deux mesures). Soit μ et ν deux mesures sur (E, \mathcal{A}) . On suppose qu'il existe $\mathcal{C} \subset \mathcal{A}$, stable par intersection finie, telle que $\sigma(\mathcal{C}) = \mathcal{A}$ et

$$\forall C \in \mathscr{C}, \quad \mu(C) = \nu(C).$$

Alors $\mu = v \ sur (E, \mathcal{A}) \ c'est \ à \ dire$

$$\forall A \in \mathcal{A}, \qquad \mu(A) = \nu(A),$$

dans les deux cas suivants :

- 1. $\mu(E) = \nu(E) < +\infty$;
- 2. il existe $(C_n)_{n\geq 0}\subset \mathcal{C}$ telle que $\cup C_n=E$ et $\mu(C_n)=\nu(C_n)<+\infty$ pour tout n.
- Notons qu'on peut toujours supposer que $\emptyset \in \mathscr{C}$.
- Les classes \mathscr{C} les plus utilisées sont : $\{] \infty, t\} : t \in \mathbf{R}\}, \{]a, b] : -\infty < a < b < +\infty\}, \{]a, b[: -\infty < a < b < +\infty\}, \{[a, b] : -\infty < a \le b < +\infty\}, les compacts de <math>\mathbf{R}$, ceux de \mathbf{R}^d , sur \mathbf{R}^d $\{]a, b[\times]c, d[: a < b, c < d\}$, etc.
 - Deux mesures finies sur les compacts de \mathbf{R} qui coïncident sur les intervalles bornés sont égales sur $\mathscr{B}(\mathbf{R})$;
 - Deux mesures de probabilité sont égales si et seulement si

$$\forall t \in \mathbf{R}, \qquad F_{\mu}(t) := \mu(] - \infty, t]) = \nu(] - \infty, t]) =: F_{\nu}(t).$$

• La construction de la mesure de Lebesgue s'étend en dimension quelconque

Théorème. Il existe une unique mesure positive, λ_d , sur $(\mathbf{R}^d, \mathscr{B}(\mathbf{R}^d))$, telle que :

$$\lambda_d([a_1, b_1] \times ... \times [a_d, b_d]) = (b_1 - a_1) ... (b_d - a_d), \quad \forall a_i < b_i, i = 1, ..., d.$$

Cette mesure s'appelle la mesure de Lebesgue sur \mathbf{R}^d

• On montre facilement que

$$\lambda_d([a_1, b_1] \times ... \times [a_d, b_d]) = \lambda_d([a_1, b_1] \times ... \times [a_d, b_d]) = (b_1 - a_1) ... (b_d - a_d).$$

- λ_d est l'unique mesure positive invariante par translation telle que $\lambda_d([0,1]^d) = 1$.
- Plus généralement, λ_d est invariante par isométrie : si f est isométrie de \mathbf{R}^d et B un ensemble borélien, $\lambda_d(f(B)) = \lambda_d(B)$.

Exercice. Dans \mathbb{R}^2 , la mesure de Lebesgue des droites est nulle. D'après l'invariance par isométrie, il suffit de montrer que $\lambda_2(D) = 0$ où $D = \{(x,0) : x \in \mathbb{R}\}$. Montrons que, pour tout $k \in \mathbb{Z}$, $\lambda_2([k,k+1[\times\{0\})=0$. En effet, si $k \in \mathbb{Z}$, pour tout $\varepsilon > 0$,

$$[k, k+1] \times \{0\} \subset [k, k+1] \times [-\varepsilon, +\varepsilon[, \lambda_2([k, k+1] \times \{0\}) \le \lambda_2([k, k+1] \times [-\varepsilon, +\varepsilon[) = 2\varepsilon.$$

Par conséquent, comme $D = \bigcup_{k \in \mathbb{Z}} [k, k+1] \times \{0\},$

$$\lambda_2(D) = \sum_{k \in \mathbb{Z}} \lambda_2\left([k,k+1[\times\{0\}) = 0.\right.$$

3.3.3. Mesure de Lebesgue-Stieltjes.

• Il s'agit d'une généralisation de la mesure de Lebesgue sur R.

Définition. Soit μ une mesure positive sur $(\mathbf{R}, \mathcal{B}(\mathbf{R}))$. On dit que μ est une *mesure borélienne* si $\mu(K) < +\infty$ pour tout K compact de \mathbf{R} .

• μ est borélienne si et seulement si $\mu([-n, n])$ est fini pour tout n.

Proposition. Soit μ une mesure borélienne. La fonction G de R dans R définie par

$$G(x) = -\mu(]x, 0])$$
 si $x < 0$, $G(x) = \mu(]0, x])$ si $x \ge 0$,

est croissante et continue à droite. De plus, pour tous réels a < b,

$$\mu(a, b) = G(b) - G(a)$$
.

- G est croissante donc possède une limite à gauche en tout $y \in \mathbb{R}$, notée G(y-).
- On a $\mu([a,b]) = G(b) G(a-)$, $\mu([a,b]) = G(b-) G(a)$, $\mu([a,b]) = G(b-) G(a-)$.

Remarque(s). Lorsque μ est finie, on utilise plutôt sa fonction de répartition F_{μ} :

$$F_{\mu}(t) = \mu(]-\infty,t]), \quad t \in \mathbf{R}.$$

 F_{μ} est croissante, continue à droite, $\lim_{t\to-\infty} F_{\mu}(t) = 0$, $\lim_{t\to+\infty} F_{\mu}(t) = \mu(E)$ et, pour a < b, $\mu(]a,b]) = F_{\mu}(b) - F_{\mu}(a)$. En fait, $G(t) = F_{\mu}(t) - F_{\mu}(0)$.

Théorème (Mesure de Lebesgue-Stieltjes). *Soit G* : $\mathbf{R} \longrightarrow \mathbf{R}$ *une fonction croissante et continue* à droite. Il existe une unique mesure positive sur $(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ telle que :

$$\forall a < b, \quad \mu(|a,b|) = G(b) - G(a).$$

La mesure positive ainsi définie s'appelle la mesure de Lebesgue-Stieltjes associée à G.

- La mesure de Lebesgue sur **R** correspond à G(x) = x.
- Si *G* et *F* diffère d'une constante, elle définisse la même mesure de Lebesgue-Stieltjes.
- Toute mesure borélienne est entièrement caractérisée par la fonction

$$G(x) = -\mu(]x, 0])$$
 si $x < 0$, $G(x) = \mu(]0, x])$ si $x \ge 0$,

• Si μ est finie, elle est aussi caractérisée par $F_{\mu}(t) = \mu(] - \infty, t]$), $t \in \mathbb{R}$.

Exercice. Soit μ la mesure de Lebesgue-Stieltjes associée à F donnée par

$$F(x) = 0$$
 si $x < 0$, $F(x) = x$ si $0 \le x < 1$, $F(x) = 1$ si $x \ge 1$.

Déterminons $v = f_*(\mu)$ où $f(x) = \min(x, x_0)$ avec $0 < x_0 < 1$.

Remarquons que μ est une mesure de probabilité : en effet, $\mu(\mathbf{R}) = \lim_{n \to \infty} \mu([-n, n])$ et, pour tout $n \ge 1$,

$$\mu([-n, n]) = F(n) - F(-n) = 1 = \mu([0, 1]).$$

Il en va de même de v. Pour tout $t \in \mathbf{R}$,

$$F_{\nu}(t) := f_{*}(\mu)(] - \infty, t]) = \mu(f^{-1}(] - \infty, t]) = \mu(\{x \in \mathbf{R} : \max(x, x_{0}) \le t\}).$$

Si $t \ge x_0$, $\{x \in \mathbf{R} : \max(x, x_0) \le t\} = \mathbf{R}$ et $f_*(\mu)(] - \infty, t]) = 1$.

Si $t < x_0$, $\{x \in \mathbf{R} : \max(x, x_0) \le t\} =]-\infty, t]$ et

$$f_*(\mu)(]-\infty,t]) = \mu(]-\infty,t]) = \lim_{n\to\infty} \mu(]-n,t]) = F(t).$$

Par conséquent,

$$F_{\nu}(t) = 0$$
 si $t < 0$, $F_{\nu}(t) = t$ si $0 \le t < x_0$, $F_{\nu}(t) = 1$ si $t \ge x_0$,

et ν est le mesure de Lebesgue-Stieltjes associée $F_{\nu}.$

______ 2017/2018 : fin du cours 6 _____