快速傅立叶变换 (FFT)

$$Y_{i} = \sum_{k=0}^{n-1} X_{k} \omega_{n}^{ki}, 0 \leq i < n$$

$$\omega_{n} = e^{2\pi\sqrt{-1}/n}$$

$$Y_{i} = \sum_{k=0}^{n/2-1} X_{2k} \omega_{n}^{2ki} + \sum_{k=0}^{n/2-1} X_{2k+1} \omega_{n}^{(2k+1)i}$$

$$= \sum_{k=0}^{n/2-1} X_{2k} e^{2ki2\pi i/n} + \sum_{k=0}^{n/2-1} X_{2k+1} \omega_{n}^{i} e^{2ki2\pi i/n}$$

$$= \sum_{k=0}^{n/2-1} X_{2k} e^{2\pi iki/(n/2)} + \omega_{n}^{i} \sum_{k=0}^{n/2-1} X_{2k+1} e^{2\pi iki/(n/2)}$$

$$= \sum_{k=0}^{n/2-1} X_{2k} \omega_{n/2}^{ki} + \omega_{n}^{i} \sum_{k=0}^{n/2-1} X_{2k+1} \omega_{n/2}^{ki}$$

FFT 的算法(递归型)

```
procedure FFT(X, Y, n, omega)
```

```
if (n=1) then Y[0]=x[0] else FFT((X[0], X[2], ..., X[n-2]), (Q[0], Q[1], ..., Q[n/2]), n/2, omega^2) FFT((X[1], X[3], ..., X[n-1]), (T[0], T[1], ..., T[n/2]), n/2, omega^2) for k=0,n-1 do Y[k]=Q[k\%(n/2)]+omega^i T[k\%(n/2)]; end do end procedure
```


FFT 的算法(循环型)

```
procedure FFT(X,Y,n)
   r = log(n);
   for i=0 to n-1 do R[i]=X[i]; end do
    for m=0 to r-1 do
       for i=0 to n-1 do S|i|=R|i|; end do
       for i=0 to n-1 do
           // 假设 i 具有二进制形式 (b,b,···b, )
           \mathbf{j} := (b_0 \cdots b_{m-1} 0 b_{m+1} \cdots b_{r-1});
           k := (b_0 \cdots b_{m-1} 1 b_{m+1} \cdots b_{m-1});
           R[i] = S[j] + S[k] \text{ omega}(b_m b_{m-1} \cdots b_0 0 \cdots 0);
       end do
    end do
    for i=0 to n-1 do Y[i]=R[i]; end do
end procedure
```

Binary-Exchange Algorithm 在超立方体结构的并行机上

n个进程

$$p$$
个进程 $p=2^d < 2^r = n$)

Binary-Exchange Algorithm

网格点结构的并行机

						··· <u>·</u>	
0	1	2	3	4		6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25.	<u>2</u> 6	<u>2</u> 7	<u>9</u> &.	29	<u>.</u>	<u>3</u> 1
1 99 111	33	34	35	36	3 7	38	39
40	41	42	43	44	4 5	46	47
48	49	50	51	52	5 3	54	55
56	57	58	59	60	61	62	63

Binary-Exchange Algorithm

在网络带宽足够时,表现是最优的;

在带宽不足时,情况不太好,网络是瓶颈;

存在一个网络带宽阈值,在高于这个阈值时,算法表现优秀,在低于这个阈值时,表现直线下降。

转置算法 Transpose Algorithm

这个算法的特点在于对于网络的依赖要比 Binary Exchange Algorithm 要低,在网络带宽够大时,表现不如 Binary Exchange Algorithm, 但是在网络带宽较小时,表现比 Binary Exchange Algorithm 要好得多。

将总共 $n=\sqrt{n}\times\sqrt{n}$, $\sqrt{n}=2^{r/2}$ 个数据按列分布在 \sqrt{n} 个进程上,前面一半的步骤事实上是完成每个 进程上的 \sqrt{n} 个数据进行Fourier 变换,后面的 \sqrt{n} 个步骤是对同一个行上的 \sqrt{n} 个数据进行Fourier 变换,从而只是需要在中间进行一个转置操作使得两个操作能 连接起来。

v 0	1	2	3	/► 0	1	2	
√ 4	5	6	7	• 4	5	6	7
8	9	10	11	→ 8	9	10	11
1 2	13	14	15	12	13	14	15
				转置			
v 0	4	8	12	转置	4	8	12
▼ 0	4 5		12 13	转置 ▶ 1			
√ 0							

当进程个数p小于 \sqrt{n} 时,每个进程上分配 $\frac{\sqrt{n}}{p}$ 个列,从而每个进程上只是进行本进程上数据的的Fourier 变换,主要也是要进行一次转置。

Generalized Transpose Algorithm

数据按照 n^{1/3}× n^{1/3}× n^{1/3} 的方式分布

算法:

- 1. 沿 Z 方向做局部 Fourier 变换;
- 2. 沿 XZ 平面进行矩阵转置操作;
- 3. 沿 Z 方向做局部 Fourier 变换;
- 4. 沿 YZ 平面进行矩阵转置操作;
- 5. 沿 Z 方向做局部 Fourier 变换;

并行程度更高,但是对于网络的依赖性略大一些。