SLIM 🔂

ML4Seismic

Learned Sequential Bayesian Inference

$$\frac{1}{2} \sum_{m=1}^{M} \left(\|f_{m}(\mathbf{x}_{1}^{(m)}) \right)^{m} \right)$$

$$\hat{\phi} = \underset{\phi}{\operatorname{arg\,min}} \frac{1}{N} \sum_{m=1}^{M} \left(\|f_{\phi}(\mathbf{x}_{k}^{(m)}; \mathbf{y}_{k}^{(m)})\|_{2}^{2} - \log \left| \det \mathbf{J}_{f_{\phi}} \right| \right)$$

$$\binom{m}{1} \| \frac{2}{2} \|$$

$$(n)$$
) $\|_{2}^{2}$

Train conditional NF on samples
$$(\mathbf{x}_k, \mathbf{y}_k) \sim p(\mathbf{x}_k, \mathbf{y}_k)$$
 via $\hat{\phi} = \arg\min \frac{1}{N} \sum_{k=1}^{M} \left(\|f_{\phi}(\mathbf{x}_k^{(m)}; \mathbf{y}_k^{(m)})\|_2^2 - \log \left| \det \mathbf{J}_{f_{\phi}} \right| \right)$

$$\mathbf{y}_{k-1}^{\mathrm{o}}$$

given \mathbf{y}_{k-1}^{o} generate training samples $(\mathbf{x}_k, \mathbf{y}_k) \sim p(\mathbf{x}_k, \mathbf{y}_k)$

Create training ensemble by sampling

▶ prev. state
$$\mathbf{x}_{k-1} \sim p(\mathbf{x}_{k-1} | \mathbf{y}_{k-1}^{o})$$

▶ permeability $\mathbf{K} \sim p(\mathbf{K})$

Apply dynamics $\mathbf{x}_k = \mathcal{M}_{k-1}(\mathbf{x}_{k-1}, \mathbf{K})$

Simulate data $\mathbf{y}_k = \mathcal{H}_k(\mathbf{x}_k)$

$$\mathbf{y}_k = \mathscr{H}_k(\mathbf{x}_k)$$

 $\mathbf{x}_k = \mathcal{M}_{k-1}(\mathbf{x}_{k-1}, \mathbf{K})$

Learned Sequential Bayesian Inference

given \mathbf{y}_{k-1}^{o} generate training samples $(\mathbf{x}_k, \mathbf{y}_k) \sim p(\mathbf{x}_k, \mathbf{y}_k)$

Create training ensemble by sampling

- ► prev. state $\mathbf{x}_{k-1} \sim p(\mathbf{x}_{k-1} | \mathbf{y}_{k-1}^{o})$
- ightharpoonup permeability $\mathbf{K} \sim p(\mathbf{K})$

Apply dynamics $\mathbf{x}_k = \mathcal{M}_{k-1}(\mathbf{x}_{k-1}, \mathbf{K})$

Simulate data $\mathbf{y}_k = \mathcal{H}_k(\mathbf{x}_k)$

Train conditional NF on samples $(\mathbf{x}_k, \mathbf{y}_k) \sim p(\mathbf{x}_k, \mathbf{y}_k)$ via

$$\hat{\phi} = \underset{\phi}{\operatorname{arg\,min}} \frac{1}{N} \sum_{m=1}^{M} \left(\|f_{\phi}(\mathbf{x}_{k}^{(m)}; \mathbf{y}_{k}^{(m)})\|_{2}^{2} - \log \left| \det \mathbf{J}_{f_{\phi}} \right| \right)$$

Learned Sequential Bayesian Inference

SLIM (*)
ML4Seismic

sample from posterior $\mathbf{x}_k \sim p(\mathbf{x}_k | \mathbf{y}_k^{\text{o}})$

Sample from posterior $\mathbf{x}_k \sim p(\mathbf{x}_k | \mathbf{y}_k^{\text{o}})$ via $\mathbf{x}_k = f_{\hat{\phi}}^{-1}(\mathbf{z}; \mathbf{y}_k^{\text{o}})$

with $z \sim N(0, I)$.

HINT: Hierarchical Invertible Neural Transport for General and Sequential Bayesian inference, Detommaso, et. al., arXiv:1905.10687