PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-124901

(43) Date of publication of application: 06.05.1994

(51)Int.Cl.

H01L 21/205 C30B 25/02

C30B 25/10

(21)Application number : 04-271512

(71)Applicant: FURUKAWA ELECTRIC CO

LTD:THE

(22)Date of filing:

09.10.1992

(72)Inventor: KAMATA YOSHIYUKI

YANAGAWA HISAHARU

(54) PREPARATION OF COMPOUND SEMICONDUCTOR THIN FILM

(57)Abstract:

PURPOSE: To prepare a compound semiconductor thin

film whose composition changes in plane.

CONSTITUTION: In this method, when a compond semiconductor thin film 8 is formed on the surface of a semiconductor substrate 6 by the MOCVD method, a compound semiconductor thin film whose composition in plane (A1 to A2) changes is produced by changing the in-plane temperature of the semiconductor substrate 6.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than

Jacob 33 200

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The manufacture approach of the compound semiconductor thin film characterized by making the compound semiconductor thin film from which a presentation changes in a field by changing whenever [field internal temperature / of said semi-conductor substrate] form in case a compound semiconductor thin film is formed by metal-organic chemical vapor deposition on the front face of a semi-conductor substrate.

[Claim 2] The manufacture approach of the compound semiconductor thin film of claim 1 to which it is arranged on a heating element, lay said semi-conductor substrate in the spacer from which thickness is changing in a field in the state of adhesion, said heating element is made to generate heat, and whenever [field internal temperature / of said semi-conductor substrate] is changed.

[Claim 3] The manufacture approach of the compound semiconductor thin film of claim 1 to which the opening where spacing mutual in a field changes is formed between said semi-conductor substrates and said spacers or between said spacers and said heating elements, and whenever [field internal temperature / of said semi-conductor substrate] is changed in case said heating element is made to generate heat where a heating element, a spacer, and a semi-conductor substrate are piled up in this sequence.

[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Industrial Application] This invention relates to the manufacture approach of a compound semiconductor thin film that the presentation in the field in the formed thin film is changing in more detail, about the manufacture approach of the compound semiconductor thin film by metal-organic chemical vapor deposition (henceforth the MOCVD method). [0002]

[Description of the Prior Art] At the time of manufacture of a light receiving and emitting element, a semi-conductor optical waveguide device, various kinds of electron devices, etc., the laminating of the compound semiconductor thin film of two or more layers is carried out in general on a semi-conductor substrate. For example, in the case of a semi-conductor optical waveguide device, sequential membrane formation of the thin film of a compound semiconductor like InGaAsP is carried out as a lower cladding layer, a core layer, and an up cladding layer on a semi-conductor substrate like InP. and -- membrane formation of these compound semiconductor thin film -- MOCVD -- law is adopted widely. [0003] A semi-conductor substrate is held in a well-closed container, where that skin temperature is controlled to predetermined temperature, material gas is fed in a container, the reaction between raw materials is advanced, and the substrate front face is made to carry out epitaxial growth of the compound semiconductor thin film of the purpose presentation by desired thickness in this MOCVD method. By the way, in a semi-conductor optical waveguide device, the propagating mode of light may be transformed within waveguide. In this case, the measures of changing gradually the presentation of the compound semiconductor which constitutes a core layer in the propagation direction of light are taken. [0004] As an approach of making it changing within a film surface, the presentation of the compound semiconductor which forms membranes for example, the front face of a semi-conductor substrate --SiO2 Law is performed, growth prevention film like the film -- the shape of SUTORAIBU -- two or more -- forming -- MOCVD -- at this time By changing the width of face of this growth prevention film, there is a method of controlling the presentation of the compound semiconductor which grows up to be the field in which the growth prevention film is not formed (see Journal of Crystal Growth, 107 (1991), and 147-150).

[0005] And it is SiO2 on a substrate by using this approach. The device whose wavelength shift in waveguide is 50nm is proposed by forming the film so that it may change in the range that width of face of whose is 2-5 micrometers, and forming in a residual substrate front face the waveguide which uses InGaAs/InGaAsPMQW as a core (the collection of the 1991 Institute of Electronics, Information and Communication Engineers autumn convention drafts, C-131).

[0006] With the above-mentioned reference, such a phenomenon is SiO2. Since the diffusing capacity of the raw material atom in a membranous double width part and a membranous (growth prevention film) narrow-width part is different, the explanation based on the presentation of the compound semiconductor thin film which grows up to be a membrane formation part (part on substrates other than SiO2 film) changing that it is a thing is made.

[0007]

[Problem(s) to be Solved by the Invention] Theoretically, presentation change of the compound semiconductor thin film by the above-mentioned approach uses the difference phenomenon of the diffusing capacity between the raw material atoms in the neighborhood of the growth prevention film. Therefore, it is impossible to control the presentation of the compound semiconductor thin film which moreover continues and forms membranes to a large field in the field of a semi-conductor substrate by this approach as a matter of fact.

[0008] Moreover, since the width of face of the growth prevention film formed between the waveguides which these-approach must be designed from the beginning to narrow-width when it is going to change the presentation of the waveguide which approached mutually by the above-mentioned approach, it is impossible to change the width of face of the growth prevention film by the longitudinal direction as a matter of fact. This invention solves the above-mentioned problem at the time of changing the presentation of the compound semiconductor thin film which forms membranes by the MOCVD method, and aims at offer of the manufacture approach of the compound semiconductor thin film to which can be covered broadly and the presentation of the compound semiconductor thin film which the front face of a semi-conductor substrate is made to form can be changed on a substrate front face.

[Means for Solving the Problem] by the way -- if other conditions are the same -- MOCVD -- in law, the fact that the presentation of the compound semiconductor thin film which grows on a semi-conductor substrate is prescribed by the growth temperature at that time is known. this invention persons conducted the check experiment of the above-mentioned fact. namely, the thin film layer which consists of InGaAsP on an InP substrate first -- MOCVD -- when making it grow up by law, the growth temperature (Tg) of a thin film was changed by making other factors, such as feed, into status idem, and controlling substrate temperature. And the luminescence wavelength from waveguide was measured per [which was obtained] device, and the relation of the luminescence wavelength and growth temperature was plotted. <u>Drawing 1</u> shows the result.

[0010] If about 15 degrees C of growth temperature change so that clearly from drawing 1, 30-40nm of luminescence wavelength in the obtained device will be shifted. This shows indirectly that the presentation of the InGaAsP thin film which constitutes the core layer of a device is changing with growth temperature. MOCVD which heats a semi-conductor substrate by the induction-heating method on the other hand -- in law, the quartz spacer was infixed between the susceptor (induction heating element) and the semi-conductor substrate, and the experiment which manufactures the device which uses an InGaAsP thin film as a core was conducted. As a quartz spacer, using that whose thickness is 2.6mm and 3.0mm, when the susceptor, the quartz spacer, and the semi-conductor substrate of each other were stuck, and when it carried out adhesion installation of the 2.6mm quartz spacer again at a susceptor and a 0.4mm opening was placed between that quartz spacer and semi-conductor substrate, at this time, it experimented per. The luminescence wavelength was measured about the device which was obtained in each case. Between the infixation condition of a quartz spacer, and luminescence wavelength, the result as shown in Table 1 was obtained.

[Table 1]

ケース	石英スペーサ の厚み (mm)	発光波長 (μm)	基板への伝熱状態
ケース 1	2. 6	1. 2 5 9	最も良い (基板温度は高い)
ケース 2	3. 0	1. 2 8 0	中間
ケース3	2. 6 空隙0. 4	1. 3 4 2	最も悪い (基板温度は低い)

When the case 1 was compared with the case 2, the thickness of a quartz spacer becomes thick 0.4mm and the temperature of a semi-conductor substrate falls so that clearly, luminescence wavelength has shifted about 20nm. This amount of wavelength shifts is the result of the temperature of a semi-conductor substrate being equivalent to falling by about 10 degrees C with the increase of thickness of a quartz spacer, when the result of <u>drawing 1</u> is referred to.

[0012] Moreover, if a case 1 is compared with a case 3, and an opening is prepared between a quartz spacer and a semi-conductor substrate so that clearly, luminescence wavelength is shifted further and the shift amount has become about 70nm. Furthermore, this invention persons conducted the following experiments, in order to grasp the effect spacing of this opening affects luminescence wavelength, when an opening is formed between a quartz spacer and a semi-conductor substrate.

[0013] That is, first, as drawing 2 shows, on the front face of the quartz spacer 1 with a thickness of 3.0mm, the depth forms the spot facing section 2 whose width of face is 15mm by 0.4mm, and sticks and lays this quartz spacer in a susceptor 3. And thickness arranges end 4a of the InP substrate 4 which are 0.4mm and width of face of 15mm in the condition of having shifted about 1mm from end 2a of the above-mentioned spot facing section 2. Therefore, a substrate 4 is arranged in the state of an inclination in the spot facing section 2, and the opening 5 where spacing spreads linearly toward other end 4b of a substrate 4 is formed between the quartz spacer 1 and a substrate 4.

[0014] The susceptor 3 was made to generate heat by induction heating in this condition, and the thin film layer which consists of InGaAsP on a substrate 4 was formed. The luminescence wavelength in each location on the substrate from end 4a of a substrate 4 to other end 4b was measured about the obtained device. Consequently, relation like <u>drawing 3</u> was found out between the distance on the substrate from end 4a of a substrate, and luminescence wavelength.

[0015] In the waveguide on a substrate, luminescence wavelength shifts to the abbreviation straight-line target at the tidal-wave length side as spacing of an opening 5 becomes large so that clearly from drawing 3. This shows that the growth temperature on a substrate also changes to an abbreviation straight-line target, and the presentation of InGaAsP which grows also changes in response to the effect. By considering the three above-mentioned experimental results and controlling the temperature on the front face of a substrate appropriately in that field, this invention person gets an idea that the presentation of the compound semiconductor thin film formed corresponding to that temperature can be changed in the field of that thin film, and came to develop this invention approach based on this idea. [0016] namely, the manufacture approach of the compound semiconductor thin film of this invention -- the front face of a semi-conductor substrate -- MOCVD -- in case a compound semiconductor thin film is formed by law, it is characterized by making the compound semiconductor thin film from which a presentation changes in a field form by changing whenever [field internal temperature / of said semi-conductor substrate]. In this invention, an induction-heating method, a resistance heating method, etc. are adopted as a heating means of a semi-conductor substrate, for example.

[0017] Since substrate temperature will also change if the thickness of the quartz spacer infixed between a substrate and an induction heating element changes so that clearly [the above mentioned experiment] when heating a substrate by the induction-heating method, if a substrate is laid here for example, using the quartz spacer with which thickness differs, the growth temperature in a substrate front face is controllable to the temperature corresponding to the configuration of the inclined plane of a quartz spacer.

[0018] Moreover, if a substrate is laid in a quartz spacer as this spot facing section is closed, since it forms in the front face of a quartz spacer the spot facing section which has an inclined plane, and the opening equivalent to the spot facing section which has an inclined plane will be formed between a substrate and a quartz spacer, corresponding to spacing of that opening, the temperature on the front face of a substrate comes to change. When heating a substrate by the resistance heating method, the temperature distribution corresponding to the arrangement can be realized on a substrate front face by arranging the resistor to be used suitable for the perimeter of a substrate.

[0019] Moreover, a quartz spacer can be used as a smooth board, can form an inclined plane like the above-mentioned quartz spacer in the quartz spacer of a heating element, and the front face by the side of contact, and can also control whenever [field internal temperature / of a semi-conductor substrate] by preparing an opening between a heating element and a quartz spacer.

[Function] According to this invention approach, it is controlled by the front face of the semi-conductor substrate with which the compound semiconductor thin film grows so that growth temperature changes with locations within the field. The presentation of the compound semiconductor thin film which ** and grows although carried out is prescribed by the above-mentioned growth temperature, and the presentation within the field changes in the thin film after growth.

[Example]

Law was applied at dawn from one example, and mode transformation waveguide was manufactured by the following approaches. Here, the outline cross-section structure of the mode transformation waveguide made into the purpose is shown in <u>drawing 4</u>. That is, the laminating of the lower cladding layer 7 from which the mode transformation waveguide made into the manufacture purpose consists of InGaAsP on the given thickness Mino InP substrate 6, and luminescence wavelength is set to 1.27 micrometers by thickness by 5 micrometers, the core layer 8 whose thickness it similarly consists of InGaAsP and is 1 micrometer, and the up cladding layer 9 where it similarly consists of InGaAsP and luminescence wavelength becomes [thickness] 1.27 micrometers by 5 micrometers is carried out one by one.

[0022] And at this waveguide, they are a location A1 and a location A2. It aims at changing the luminescence wavelength in a core layer 8 in the field with a die length of 10mm divided. First, the lower cladding layer 7 is formed on the InP substrate 6 as usual. In addition, when a membrane formation ingredient is set to InGaAsP, the refractive index (n) of InGaAsP to luminescence wavelength (lambdag) which should be grown up is shown by the degree type.

[Equation 1]

$$n^{2} = 1 + \frac{Ed}{Eo} + \frac{Ed}{Eo^{3}} \cdot E^{2} + \frac{Ed}{Eo^{3}} (Eo^{2} - Eg^{2}) \cdot \ell n \left(\frac{2 Eo^{2} - Eg^{2} - E^{2}}{Eg^{2} \cdot E^{2}} \right)$$

[0024] (Ed=28.91-9.278y+5.2626y2, Eo=3.391-1.652y+0.863y2-0.123y3, E=hc/lambda, and Eg=1.24/lambdag and Eg=1.35-0.72y+0.12y2 are expressed among a formula.) h: since it aims at setting luminescence wavelength (lambdag) to 1.27 micrometers in the example showing the constant for realizing a Planck's constant, C:velocity of light, wavelength of lambda:incident light, and lattice matching of y:InP An InGaAsP thin film with a thickness of 5 micrometers is grown up on the InP substrate 6, and let this be the lower cladding layer 7 so that n computed based on an upper type may be

set to 3.375.

[0025] the quartz spacer 10 top which showed the InP substrate to <u>drawing 5</u> after membrane formation of the lower cladding layer 7 -- laying -- MOCVD -- law was presented. The whole thickness is 3.0mm and adhesion installation of the quartz spacer 10 is carried out at the carbon susceptor 11. And ramp of 15mm of level length who results in this flat spot facing section 10a 10b is formed in that front face from flat spot facing section 10a and a front face with a depth [of 0.35mm], and a width of face of 10mm.

[0026] That is, if a substrate 6 is laid in this quartz spacer 10, since opening spacing will change continuously between ramp 10b like the case of the explanation about <u>drawing 2</u>, when carrying out induction generation of heat of the carbon susceptor 11, the temperature on the front face of a substrate, i.e., the skin temperature of the lower cladding layer 7, changes to an abbreviation straight-line target. In this condition, on the lower cladding layer 7, the InGaAsP thin film with a thickness of 1.0 micrometers was grown up, and the core layer 8 was formed.

[0027] Subsequently, after performing etching processing to the core layer with phot lithography and forming the waveguide of a request pattern, the up cladding layer 9 was formed on the same membrane formation conditions as said lower cladding layer 7, and pad waveguide was manufactured. the place which measured the luminescence wavelength of the core layer in this pad waveguide -- location A1 of drawing 4 **** -- 1.29 micrometers and location A2 **** -- it was 1.33 micrometers. Moreover, the electric-field distribution map in this waveguide was shown in drawing 6.

[0028] According to the formula which described the shift of this luminescence wavelength above, from the above result, the refractive index of waveguide shows that it is changing to 3.385->3.405. namely, the formed waveguide -- setting -- location A1 from -- location A2 It is shown that applied and presentation change is realized. this -- location A1 from -- location A2 applying -- the temperature of the InP substrate 6, i.e., the skin temperature of the lower cladding layer 7, -- abbreviation -- it is the result of changing linearly bringing.

[0029] As example 2 <u>drawing 7</u> shows, the lower cladding layer 7 is formed like an example 1 on the field (001) of the InP substrate 6, and it is SiO2 on it further. The SiO2 after forming the film 12 as growth prevention film The film 12 was removed so that a part of the width of face might become narrow gradually at a longitudinal direction, and the slot 13 was formed.

[0030] The core layer which consists of InGaAsP by the same approach as an example 1 was formed on the lower cladding layer exposed from the slot 13 of this substrate. Since the field (111) of an InGaAsP crystal remains without growing up, in the double-width part of a slot 13, the thin core 14 grows thickly in a narrow-width part (drawing 8). SiO2 After carrying out etching removal of the film 12, this core 14 was embedded by the up cladding layer.

[0031] in the case of this waveguide, the difference (difference of a presentation) of a refractive index exists between the double width part of a core, and a narrow-width part like the case of an example 1, but the locked-in effect of light is the same in the overall-length direction of a core 14 by the difference in the configuration of a core 14 -- becoming -- consequently, light -- closing -- eye ** -- an outline -- it will be comparable and the spot size of light will change.

As example 3 <u>drawing 9</u> showed, the core layer of fixed thickness was formed like the example 1, etching processing of multiple times (drawing 4 times) was performed to the part (part of a location A1 to the location A2) where the presentation of the core layer 8 is changing, thickness of a core layer 8 was gradually made thin, and the up cladding layer was formed like the example 1 on it (<u>drawing 9</u>). [0032] the obtained waveguide -- the waveguide of an example 2 -- the same -- light -- closing -- eye ** -- an outline -- it will be comparable and the spot size of light will change.

example 4 drawing 10 shows other examples of the quartz spacer used by this invention approach -- it is a sectional view a part.

[0033] As for this quartz spacer 10, a semi-conductor substrate is laid for top-face 10c here in respect of smooth. And inferior-surface-of-tongue 10b is the spherical surface for example, whose **** radius is 300mm. If this quartz spacer 10 is laid in a susceptor 11, a dome-like opening will be formed between a susceptor 11 and the quartz spacer 10. For example, when a semi-conductor substrate is laid in the

quartz spacer 10 in this condition and induction generation of heat of the susceptor 11 is carried out, the skin temperature of a substrate shows the distribution corresponding to the configuration of a dome-like opening. Therefore, the presentation of the compound semiconductor thin film which grows up to be a substrate also changes corresponding to the temperature.

[0034] By the way, the presentation of the compound semiconductor which grows corresponding to the flow of the material gas at the time of the MOCVD method is distributed. For example, if the substrate and the susceptor have stuck in the case of a substrate with a radius of about 250mm, in the raw material and equipment, as for presentation distribution of the formed thin film, luminescence wavelength distribution will appear as about 0.03 micrometers. However, if the quartz spacer of an example 4 is used, the above-mentioned luminescence wavelength distribution is improvable to about 0.01 micrometers or less. That is, according to this invention approach, when the presentation within a field varies, what lessens effect of the dispersion can be performed.

[Effect of the Invention] controlling distribution by the above explanation whenever [field internal temperature / of a substrate] clearly according to this invention approach -- there -- MOCVD -- the presentation of the compound semiconductor grown up by law is changeable into arbitration. Therefore, in the various devices using the function of a compound semiconductor thin film, the presentation of the thin film which forms membranes can be changed regardless of the structure of a device, and a device function can be demonstrated effectively.

[Translation done.]

(19)日本国特許庁(JP)

(12) 公 開 特 許 公 報 (A) (11)特許出願公開番号

特開平6-124901

(43)公開日 平成6年(1994)5月6日

(51)Int.Cl.5

識別記号

庁内整理番号

技術表示箇所

H 0 1 L 21/205

C 3 0 B 25/02

Z 9040-4G

25/10

9040-4G

審査請求 未請求 請求項の数3(全 7 頁)

(21)出願番号

(22)出願日

· 特願平4-271512

平成 4年(1992)10月 9日

(71)出願人 000005290

FΙ

古河電気工業株式会社

東京都千代田区丸の内 2丁目 6番1号

(72)発明者 鎌田 良行

東京都千代田区丸の内2丁目6番1号 古

河電気工業株式会社内

(72)発明者 柳川 久治

東京都千代田区丸の内2丁目6番1号 古

河電気工業株式会社内

(74)代理人 弁理士 長門 侃二

(54)【発明の名称】 化合物半導体薄膜の製造方法

(57)【要約】

【目的】 面内で組成が変化している化合物半導体薄膜 の製造方法を提供する。

【構成】 この方法では、半導体基板6の表面にMOC VD法で化合物半導体薄膜8を成膜する際に、前記半導 体基板6の面内温度を変化させることにより、面内(A 1 からA2)で組成が変化する化合物半導体薄膜を成膜 させる。

【特許請求の範囲】

【請求項1】 半導体基板の表面に有機金属気相成長法で化合物半導体薄膜を成膜する際に、前記半導体基板の面内温度を変化させることにより、面内で組成が変化する化合物半導体薄膜を成膜させることを特徴とする化合物半導体薄膜の製造方法。

【請求項2】 発熱体の上に配置され、面内で厚みが変化しているスペーサに前記半導体基板を密着状態で載置し、前記発熱体を発熱させて前記半導体基板の面内温度を変化させる請求項1の化合物半導体薄膜の製造方法。 【請求項3】 発熱体とスペーサと半導体基板をこの順序で重ね合わせた状態で前記発熱体を発熱させる際に、前記半導体基板と前記スペーサとの間、または、前記スペーサと前記発熱体との間に、面内で相互の間隔が変化する空隙を形成して前記半導体基板の面内温度を変化させる請求項1の化合物半導体薄膜の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は有機金属気相成長法(以下、MOCVD法という)による化合物半導体薄膜の製 20 造方法に関し、更に詳しくは、成膜された薄膜における面内での組成が変化している化合物半導体薄膜の製造方法に関する。

[0002]

【従来の技術】受発光素子、半導体光導波路デバイス、各種の電子デバイスなどの製造時には、概ね、半導体基板の上に複数層の化合物半導体薄膜が積層される。例えば、半導体光導波路デバイスの場合、InPのような半導体基板の上に、InGaAsPのような化合物半導体の薄膜が、下部クラッド層、コア層、上部クラッド層と 30して順次成膜される。そして、これら化合物半導体薄膜の成膜には、MOCVD法が広く採用されている。

【0003】このMOCVD法では、密閉容器の中に半導体基板を保持し、その表面温度を所定温度に制御した状態で、容器内に原料ガスを送入して原料間の反応を進め、基板表面に目的組成の化合物半導体薄膜を所望の厚みでエピタキシャル成長させている。ところで、半導体光導波路デバイスにおいては、導波路内で、光の伝搬モードを変換させる場合がある。この場合、コア層を構成する化合物半導体の組成を光の伝搬方向で徐々に変化さ40せるという処置が取られている。

【0004】成膜する化合物半導体の組成を膜面内で変化させる方法としては、例えば、半導体基板の表面にSiO2膜のような成長防止膜をストライブ状に複数本形成してMOCVD法を行ない、このときに、この成長防止膜の幅を変化させることにより、成長防止膜が形成されていない領域に成長する化合物半導体の組成を制御するという方法がある(Journal of Crystal Growth, 107(1991), 147~150を参照)。

【0005】そして、この方法を利用することにより、

基板の上にSiO2 膜をその幅が $2\sim5\mu$ mの範囲で変化するように成膜し、残余の基板表面にInGaAs/InGaAsPMQWをコアとする導波路を形成することにより、導波路内の波長シフトが50nmであるデバイスが提案されている(1991年電子情報通信学会秋期大会予稿集、C-131)。

2

【0006】上記文献では、このような現象は、SiO ½ 膜(成長防止膜)の広幅部分と、狭幅部分とにおける原料原子の拡散量が相違しているため、成膜個所(SiOz膜以外の基板上の個所)に成長する化合物半導体薄膜の組成が変化することに基づくものであるとの説明がなされている。

[0007]

【発明が解決しようとする課題】上記した方法による化合物半導体薄膜の組成変化は、原理的には、成長防止膜の近辺における原料原子間の拡散量の相違現象を利用するものである。そのため、この方法では、半導体基板の面内で、しかも広い領域に亘って成膜する化合物半導体薄膜の組成を制御することは事実上、不可能である。

【0008】また、上記方法で互いに近接した導波路の組成を変化させようとした場合には、これら近接する導波路の間に形成する成長防止膜の幅は当初から狭幅に設計せざるを得ないので、その成長防止膜の幅を長手方向で変化させるということは事実上不可能である。本発明は、MOCVD法で成膜する化合物半導体薄膜の組成を変化させようとした場合における上記問題を解決し、半導体基板の表面に成膜させる化合物半導体薄膜の組成を、基板表面で広範囲に亘って変化させることができる化合物半導体薄膜の製造方法の提供を目的とする。

0 [0009]

【課題を解決するための手段】ところで、他の条件が同じであれば、MOCVD法においては、半導体基板上に成長する化合物半導体薄膜の組成は、そのときの成長温度によって規定されるという事実が知られている。本発明者らは、上記事実の確認実験を行なった。すなわち、まず、InP基板の上にInGaAsPから成る薄膜層をMOCVD法で成長させるときに、供給原料など他の因子を同一状態にして基板温度を制御することにより薄膜の成長温度(Tg)を変化させた。そして、得られたデバイスにつき導波路からの発光波長を測定し、その発光波長と成長温度との関係をプロットした。図1はその結果を示す。

【0010】図1から明らかなように、成長温度が約15℃変化すると、得られたデバイスにおける発光波長は30~40nmシフトしている。このことは、デバイスのコア層を構成しているInGaAsP薄膜の組成が、成長温度によって変化しているということを間接的に示すものである。一方、誘導加熱方式で半導体基板を加熱するMOCVD法において、サセプタ(誘導発熱体)と50半導体基板の間に石英スペーサを介装して、InGaA

3

s P薄膜をコアとするデバイスを製造する実験を行なっ た。このとき、石英スペーサとして、厚みが2.6㎜、3. Ommのものを用い、サセプタ、石英スペーサ、半導体基 板を互いに密着した場合と、また、2.6㎜の石英スペー サをサセプタに密着載置し、その石英スペーサと半導体 基板との間に0.4㎜の空隙を置いた場合につき実験を行*

*なった。それぞれの場合に得られたデバイスにつき、そ の発光波長を測定した。石英スペーサの介装状態と発光 波長との間では表1で示すような結果が得られた。

[0011]

【表1】

ケース	石英スペーサ の厚み (mm)	発光波長 (μm)	基板への伝熱状態
ケース1	2. 6	1. 2 5 9	最も良い (基板温度は高い)
ケース2	3. 0	1. 2 8 0	中間
ケース3	2. 6 空隙0. 4	1. 3 4 2	最も悪い (基板温度は低い)

ケース1とケース2を比較して明らかなように、石英ス 下した場合には、発光波長が約20nmシフトしてい る。この波長シフト量は、図1の結果を参照すると、石 英スペーサの厚み増により、半導体基板の温度が約10 ℃低下していることに相当する結果である。

【0012】また、ケース1とケース3を比較して明ら かなように、石英スペーサと半導体基板の間に空隙を設 けると、発光波長は更にシフトしてそのシフト量は約7 0 nmになっている。更に、本発明者らは、石英スペー サと半導体基板との間に空隙を形成した場合、この空隙 の間隔が発光波長に及ぼす影響を把握するために、次の 30 ような実験を行なった。

【0013】すなわち、まず、図2で示すように、厚み・ 3.0mmの石英スペーサ1の表面に、深さが0.4mmで幅が 15mmの座ぐり部2を形成し、この石英スペーサをサセ プタ3に密着して載置する。そして、厚みが0.4㎜,幅 15mmのInP基板4の一端4aを、上記座ぐり部2の 一端2aから約1㎜ずらした状態で配置する。したがっ て、基板4は、座ぐり部2内に傾斜状態で配置され、石 英スペーサ1と基板4の間には基板4の他端4bに向か って直線的に間隔が広まっていく空隙5が形成される。 【0014】この状態で誘導加熱によりサセプタ3を発 熱させ、基板4の上にInGaAsPから成る薄膜層を 形成した。得られたデバイスにつき、基板4の一端4a から他端4 bに至る基板上の各位置における発光波長を 測定した。その結果、基板の一端4 aからの基板上の距 離と発光波長との間では、図3のような関係が見出され た。

【0015】図3から明らかなように、空隙5の間隔が 広くなるにつれて、基板上の導波路では発光波長が略直 線的に高波長側にシフトしていく。このことは、基板上※50

※の成長温度も略直線的に変化し、その影響を受けて、成 ペーサの厚みが0.4㎜厚くなって半導体基板の温度が低 20 長する In GaAs Pの組成も変化していくことを示し ている。本発明者は、上記した3つの実験結果を考察 し、基板表面の温度をその面内で適切に制御することに より、その温度に対応して成膜された化合物半導体薄膜 の組成をその薄膜の面内で変化させることができるとの 着想を得、この着想に基づいて本発明方法を開発するに 至った。

> 【0016】すなわち、本発明の化合物半導体薄膜の製 造方法は、半導体基板の表面にMOCVD法で化合物半 導体薄膜を成膜する際に、前記半導体基板の面内温度を 変化させることにより、面内で組成が変化する化合物半 導体薄膜を成膜させることを特徴とする。本発明におい て、半導体基板の加熱手段としては、例えば誘導加熱方 式、抵抗加熱方式などが採用される。

【0017】誘導加熱方式で基板を加熱する場合、前記 した実験でも明らかなように、基板と誘導発熱体の間に 介装する石英スペーサの厚みが変化すると基板温度も変 化してくるので、例えば、厚みが異なる石英スペーサを 用い、ここに基板を載置すれば、基板表面における成長 温度を、石英スペーサの傾斜面の形状に対応する温度に 制御することができる。

【0018】また、石英スペーサの表面に傾斜面を有す る座ぐり部を形成し、この座ぐり部を閉鎖するようにじ て石英スペーサに基板を載置すると、基板と石英スペー サの間には傾斜面を有する座ぐり部に相当する空隙が形 成されるので、その空隙の間隔に対応して基板表面の温 度が変化するようになる。抵抗加熱方式で基板を加熱す る場合には、用いる抵抗体を基板周囲に適切に配置する ことにより、その配置に対応した温度分布を基板表面に 実現することができる。

【0019】また、石英スペーサは平滑な板体とし、発

5

熱体の石英スペーサと接触側の表面に上記石英スペーサ のような傾斜面を形成して、発熱体と石英スペーサとの 間に空隙を設けることにより半導体基板の面内温度を制 御することもできる。

[0020]

【作用】本発明方法によれば、化合物半導体薄膜が成長 していく半導体基板の表面では、その面内の場所によっ て成長温度が異なるように制御される。したがて、成長 する化合物半導体薄膜の組成は、上記した成長温度によ って規定され、成長後の薄膜では、その面内における組 10 成が変化する。

[0021]

【実施例】

実施例1

本発明方法を適用して、以下の方法でモード変換導波路 を製造した。ここで、目的とするモード変換導波路の概※

$$n^{2} = 1 + \frac{Ed}{Eo} + \frac{Ed}{Eo^{3}} \cdot E^{2} + \frac{Ed}{Eo^{3}} (Eo^{2} - Eg^{2}) \cdot \ell n \left(\frac{2 Eo^{2} - Eg^{2} - E^{2}}{Eg^{2} \cdot E^{2}} \right)$$

 $2626y^2$, Eo=3.391-1.652y+0.863 $y^2 - 0.123y^3$, E=hc/ λ , Eg=1.24/ λ g, Eg=1.35-0.72y+0.12y2を表し、ま た、h:プランク定数, C:光速, A:入射光の波長, y: In Pの格子整合を実現させるための定数を表す) 実施例では発光波長(Ag)を1.27μmにすることを 目的とするので、上式に基づいて算出される nが3.37 5となるように、InP基板6の上に厚み5μmのIn GaAsP薄膜を成長させ、これを下部クラッド層7と

【0025】下部クラッド層7の成膜後、InP基板を 図5に示した石英スペーサ10の上に載置してMOCV D法に供した。石英スペーサ10は、全体の厚みが3.0 mmで、カーボンサセプタ11に密着載置されている。そ して、その表面には、深さ0.35mm、幅10mmの平坦座 ぐり部10aと、表面からこの平坦座ぐり部10aに至っ る水平長15mmの傾斜部10bが形成されている。

【0026】すなわち、図2に関する説明の場合と同じ ように、この石英スペーサ10に基板6を載置すると、 傾斜部10bとの間で空隙間隔が連続的に変化するの で、カーボンサセプタ11を誘導発熱させたとき、基板 表面の温度、すなわち下部クラッド層7の表面温度は略 直線的に変化する。この状態で、下部クラッド層7の上 に厚み1.0μmのInGaAsP薄膜を成長させコア層 8を形成した。

【0027】ついで、コア層にホトリソグラフィーとエ ッチング処理を施し、所望パターンの導波路を形成した のち、前記下部クラッド層7と同じ成膜条件で上部クラ ッド層9を形成し、埋込み導波路を製造した。この埋込 み導波路におけるコア層の発光波長を測定したところ、※50 実施例3

*略断面構造を図4に示す。すなわち、製造目的とするモ ード変換導波路は、所定厚みのInP基板6の上にIn GaAsPから成り、厚みが5μmで発光波長が1.27 μmになる下部クラッド層7、同じくInGaAsPか ら成り、厚みが1μmのコア層8、同じくInGaAs Pから成り、厚みが 5μ mで発光波長が 1.27μ mにな る上部クラッド層9を順次積層したものである。

【0022】そしてこの導波路では、位置AI,位置A 2 で区切られた長さ10㎜の領域において、コア層8に おける発光波長を変化させることを目的としている。ま ず、従来と同じようにして、InP基板6の上に下部ク ラッド層7を成膜する。なお、成膜材料を In GaAs Ρにしたとき、発光波長 (λg) に対する成長させるべ きInGaAsPの屈折率(n)は、次式で示される。 [0023]

【0024】(式中、Ed=28.91-9.278y+5. 20※図4の位置A1では1.29μm、位置A2では1.33μ mであった。また、この導波路における電界分布図を図

> 6に示した。 【0028】以上の結果から、この発光波長のシフト は、上記した式によれば、導波路の屈折率が3.385→ 3.405に変化していることを示している。すなわち、 形成された導波路においては、位置AIから位置A2に かけて、組成変化が実現していることを示している。こ のことは、位置A1から位置A2にかけて、InP基板 6の温度、すなわち、下部クラッド層7の表面温度が略 30 直線的に変化していることがもたらした結果である。

【0029】実施例2

図7で示すように、InP基板6の(001)面の上に 実施例1と同様にして下部クラッド層7を形成し、更に その上にSiO2 膜12を成長防止膜として形成したの ち、そのSiO2膜12を長手方向にその一部の幅が漸 次狭くなるように除去して溝13を形成した。

【0030】この基板の溝13から露出する下部クラッ ド層の上に実施例1と同様の方法で InGaAsPから 成るコア層を形成した。 In GaAs P結晶の (11 1)面は成長せずに残留するので、溝13の広幅の個所 では厚く、また狭幅の個所では薄いコア14が成長する (図8)。SiO2 膜12をエッチング除去したのち、 このコア14を上部クラッド層で埋込んだ。

【0031】この導波路の場合、実施例1の場合と同様 に、コアの広幅部分と狭幅部分との間で屈折率の差(組 成の差)が存在しているが、コア14の形状の差異によ って光の閉じ込め効果はコア14の全長方向で同一とな り、その結果、光の閉じ込めが概略同程度で、光のスポ ットサイズが変化していることとなる。

7

図9で示したように、実施例1と同じようにして一定の 厚みのコア層を形成し、そのコア層8の組成が変化して いる個所(位置A) から位置A2 の部分)に複数回(図 では4回)のエッチング処理を施して、コア層8の厚み を段階的に薄くし、その上に実施例1と同じように上部 クラッド層を形成した(図9)。

【0032】得られた導波路は、実施例2の導波路と同 じように、光の閉じ込めが概略同程度で、光のスポット サイズが変化していることとなる。

実施例4

図10は、本発明方法で用いる石英スペーサの他の例を 示す一部断面図である。

【0033】この石英スペーサ10は、上面10cが平 滑面でここに半導体基板が載置される。そして、下面1 Obは、例えば面率半径が300mmの球面になってい る。この石英スペーサ10をサセプタ11に載置する と、サセプタ11と石英スペーサ10の間にはドーム状 の空隙が形成される。例えば、この状態で石英スペーサ 10に半導体基板を載置してサセプタ11を誘導発熱さ せると、基板の表面温度は、ドーム状空隙の形状に対応 20 した分布を示す。そのため、基板に成長する化合物半導 体薄膜の組成もその温度に対応して変化する。

【0034】ところで、MOCVD法時における原料ガ スの流れに対応して成長する化合物半導体の組成は分布 する。例えば、半径約250㎜の基板の場合、基板とサ セプタとが密着していると、成膜された薄膜の組成分布 は、その原料と装置においては、発光波長分布が約0.0 3μmとして表れてくる。しかしながら、実施例4の石 英スペーサを用いると、上記発光波長分布を約0.01μ m以下にまで改善することができる。すなわち、本発明 30 6 半導体基板 方法によれば、面内組成がばらついている場合には、そ のばらつきの影響を少なくするようなことができる。

【発明の効果】以上の説明で明らかなように、本発明方 法によれば、基板の面内温度分布を制御することによ り、そこにMOCVD法で成長させる化合物半導体の組 成を任意に変えることができる。したがって、化合物半 導体薄膜の機能を利用する各種デバイスにおいて、デバ イスの構造とは無関係に、成膜する薄膜の組成を変化さ せてデバイス機能を有効に発揮させることができる。

【図面の簡単な説明】

[0035]

【図1】化合物半導体薄膜の発光波長と成長温度との関

係を示すグラフである。

【図2】MOCVD法において、半導体基板と石英スペ ーサとの間に空隙を形成して成膜する例を示す断面図で ある。。

8

【図3】図2の方法で成膜した化合物半導体薄膜の発光 波長と空隙間隔との関係を示すグラフである。

【図4】伝搬モード変換導波路を示す概略断面図であ

【図5】石英スペーサに半導体基板を載置してMOCV D法を行なう例を示す断面図である。

【図6】図5の方法で得られた導波路の電界分布図であ る.

【図7】成長防止膜を用いて本発明方法を実施するとき の成長防止膜の例を示す斜視図である。

【図8】図7の方法で成長したコア形状例を示す斜視図 である。

【図9】 本発明の他の方法で製造した導波路を示す断面 図である。

【図10】本発明で用いる他の石英スペーサを示す断面 図である。

【符号の説明】

- 1 石英スペーサ
- 2 座ぐり部
- 2a 座ぐり部2の一端
- 3 サセプタ (誘導発熱体)
- 4 半導体基板
- 4 a 半導体基板4の一端
- 4b 半導体基板4の他端
- 5 空隙
- - 7 下部クラッド層
 - 8 コア層
 - 9 上部クラッド層
 - 10 石英スペーサ
 - 10a 平坦座ぐり部
 - 10b 傾斜部
 - 10 c 平滑な上面
 - 10d 曲面
 - 11 サセプタ (誘導発熱体)
- 12 SiO2 膜(成長防止膜)
 - 13 溝
- 14 成長したコア

1/14/2008, EAST Version: 2.1.0.14

