Subgraphs

Definition: Subgraph

Let G and H be graphs:

- To say that H is a *subgraph* of G, denoted by $H\subseteq G$, means that $V(H)\subseteq V(G)$ and $E(H)\subseteq E(G)$.
- To say that H is a *proper* subgraph of G, denoted by $H \subset G$, means that $H \subseteq G$ but $H \neq G$. Thus, $V(H) \subset V(G)$ or $E(H) \subset E(G)$.
- To say that H is a *spanning* subgraph of G means that V(H) = V(G) and $E(H) \subseteq E(G)$.

Example

H is a spanning subgraph of G, but not F because $b, e, f \in V(G)$; however, $b, e, f \notin V(F)$.

Definition: Induced

Let G be a graph and let $S \subseteq V(G), S \neq \emptyset$. The subgraph of G induced by S, denoted by G[S], is a graph H such that V(H) = S and for all $e \in E(G), e \in E(H)$ iff the endpoints of e are contained in S. Such a graph H is called an induced subgraph of G:

$$H \subseteq G$$
 and $H = G[V(H)]$

In the case of a simple graph, H is an induced subgraph of G means:

1.
$$V(H) = S$$

2.
$$E(H) = E(G) \cap \mathcal{P}_2(V(H))$$

In other words, $u, v \in V(H)$ and $uv \in E(G) \implies uv \in E(H)$.

In the above example, F is an induced subgraph of G; however, H is not because $b.e,d,f\in V(H)$ and $be,df\in E(G)$ but $be,df\notin E(H)$.

Definition: Edge-induced

Let G be a graph and let $X \subseteq E(G), X \neq \emptyset$. The subgraph of G edge-induced by X, denoted by G[X], is a graph H such that:

1.
$$V(H) = \{v \in V(G) \mid \exists e \in X, v \text{ is incident to } e\}$$

2.
$$E(H) = X$$

Such a graph H is called an edge-induced subgraph of G:

$$H \subseteq G$$
 and $H = G[E(H)]$

Note that in the above example, F is an edge-induced subgraph of G; however, H is not because $f \in V(H)$ but there is no edge in E(H) that is incident to f.

Notation

$$G-v \quad v \in V(G)$$
 The proper induced subgraph $G\left[V(G)-\{v\}\right]$

$$G-S$$
 $S\subset V(G)$ The proper induced subgraph $G\left[V(G)-S\right]$

$$G-e$$
 $e \in E(G)$ The proper spanning subgraph of G with edge e removed.

$$G-X\quad X\subseteq E(G)\quad \text{The proper spanning subgraph of }G\text{ with all edges in }X\text{ removed}.$$

$$G+e \qquad e \notin E(G) \qquad \text{The graph with vertices } V(G) \text{ and edges } E(G) \cup \{e\}, \text{ of which } G \text{ is a proper spanning subgraph.}$$