TD N° 4: Architecture des ordinateurs

Exercice 1

1. Donnez la taille du CO

Nombre de mot mémoire 64 mots - 2⁶-> if faut 6 bits pour codifier les adresses et puisque le CO contient des adresses mémoires donc la taille du CO-6 bits

2. Donnez la taille minimale du RI

Taille du RI-taille code opération+(taille adresse mémoire x3) Puisque la machine peut exécuter 13 opérations donc il faut 4 bits pour les codifier Et la taille d'une adresse mémoire -6bits donc la taille du RI -4+6x3=22 bits

Si la taille de cette RAM =192 octet.

3. Donnez la taille réelle du RI La taille du RI = la taille d'un mot mémoire-192octet/64=3 octets=24 bits

Exercice 2

Donnez la taille minimale du RI

Taille du Rl=taille code opération+(taille adresse mémoire x3)

Taille du code opération =4 bits

CO contient 00011—> taille @ mémoire=5bits; donc la taille du RI =4+5x3=19 bits

Donnez le nombre de mots mémoire au maximum: Nbr=25=32 mots Supposons que le registre RI peut prendre les cas suivants :

1011 1011 00010 10001 Impossible (code opération invalide)

1001 1111 00000 10101 Possible

1101 1011 00001 00011 Impossible (l@ du résultat est une @instruction voir CO)

Exercice 3

En se basant sur le $7^{\text{ème}}$ bit des deux opérandes A et B $(a_7 \text{ et } b_7)$, et du résultat S de l'opération (s_7) , tel que S = A + B, donner alors les valeurs des flags CF et OF.

r6	a7	b7	CF= r7 s7		OF
0	_0	0	0	0	0
0	0	1	О	1	О
0	1	0	0	1	0
0	1	1	1	0 ×	1
1	0	0	0	1,7	1
1	О	1	1	0	0
1	1	0	1	0	0
1	1	1	1	1	0

r ₇	r ₆ a ₇	r ₅ a ₆	r ₄ a ₅ b-	r ₃ a ₄ b ₄	r ₂ a ₃ b ₂	r ₁ a ₂ : b ₂	r _o a ₁ a ₀ b ₁ b	0
	s ₇	s ₆	S ₅	s ₄	s ₃	s ₂	s ₁ s	0

	1]_	ک	1	
r6	a7	b7	CF= r7	s7	OF
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	1
1	0	0	0	1	1
1	О	1	1	О	0
1	1	0	1	0	0
1	1	1	1	1	О

CF=?

$$\mathbf{CF} = \overline{\mathbf{s}_7} \cdot \mathbf{b}_7 + \overline{\mathbf{s}_7} \cdot \mathbf{a}_7 + \mathbf{a}_7 \mathbf{b}_7$$

