Computer Organization and Architecture (EET2211)

LAB II: Evaluate Different Arithmetic Operations on two 16 bit data

Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar

Branch	: Computer Science ar	nd Engineering	Section: 'D'		
S. No.	Name	Registration No.	Signature		
52	Saswat Mohanty	1941012407	Sasuat Mohanty		

Marks:		/10
	4	,

Remarks:

Teacher's Signature

I. OBJECTIVE:

- 1. Addition of two 16 bit numbers using direct addressing mode.
- 2. Subtraction of two 16 bit numbers using direct addressing mode.
- 3. Multiplication of two 16 bit numbers using direct addressing mode.
- 4. Division of two 16 bit numbers using direct addressing mode.

II. PRE-LAB

For Obj. 1:

a) Explain direct addressing mode briefly.

It is the addressing mode in which the effective address of the memory location is written directly in the instruction.

b) Examine & analyze the output obtained from addition of two 16 bit numbers.

```
mov ax,[1000h]
mov bx,[1002h]
add ax,bx
```

```
[1000h] = 1111h

[1002h] = 1234h

Output: 2345h
```

c) Write the assembly code.

```
org 100h
mov ax,0000h
mov ds,ax
mov ax,[5000h]
mov bx,[5002h]
add ax,bx
```

```
mov [5004h],ax
hlt
```

For Obj. 2:

a) Examine & analyze the output obtained from subtraction of two 16 bit numbers.

```
mov ax,[1000h]
mov bx,[1002h]
sub ax,bx

[1000h] = 2222h
[1002h] = 1111h
Output: 1111h
```

b) Write the assembly code.

```
org 100h
mov ax,0000h
mov ds,ax
mov ax,[3000h]
mov bx,[3002h]
sub ax,bx
mov [3004h],ax
hlt
```

For Obj. 3:

a) Examine & analyze the output obtained from multiplication of two 16 bit numbers.

```
mov ax,[1000h]
mov bx,[1002h]
```

```
[1000h] = 2222h

[1002h] = 1111h

Output: 2468642h
```

b) Write the assembly code.

```
org 100h
mov ax,0000h
mov ds,ax
mov ax,[3000h]
mov bx,[3002h]
mul bx
mov [3004h],ax
mov [3006h],dx
hlt
```

For Obj. 4:

a) Examine & analyze the output obtained from division of two 16 bit numbers.

```
mov ax,[1000h]
mov bx,[1002h]
div bx

[1000h] = 2222h
[1002h] = 1111h
Output: 2h
```

b) Write the assembly code.

org 100h

```
mov ax,0000h

mov ds,ax

mov ax,[3000h]

mov bx,[3002h]

div bx

mov [3004h],ax

mov [3006h],dx

hlt

ret
```

III. LAB:

Assembly Program:

For Obj. 1

```
; Saswat Mohanty
; 1941012407

; Addition of two 16 bit numbers using direct addressing mode

org 100h

mov ax,0000h
mov ds,ax
mov ax,[5000h] ;VALUE STORED AT 5000 = 1111
mov bx,[5002h] ;VALUE STORED AT 5002 = 2222
add ax,bx
mov [5004h],ax
hlt

ret
```

```
; Saswat Mohanty
; 1941012407

; Subtraction of two 16 bit numbers using direct addressing mode

org 100h

mov ax,0000h

mov ds,ax

mov ax,[3000h] ;VALUE STORED AT 3000 = 2222

mov bx,[3002h] ;VALUE STORED AT 3002 = 1111

sub ax,bx

mov [3004h],ax

hlt

ret
```

For Obj. 3

```
; Saswat Mohanty
; 1941012407

; Multiplication of two 16 bit numbers using direct addressing mode

org 100h

mov ax,0000h

mov ds,ax

mov ax,[3000h] ;VALUE STORED AT 3000 = 1111

mov bx,[3002h] ;VALUE STORED AT 3002 = 2222

mul bx

mov [3004h],ax

mov [3006h],dx

hlt

ret
```

For Obj. 4

```
; Saswat Mohanty
; 1941012407
; Division of two 16 bit numbers using direct addressing mode
```

```
org 100h

mov ax,0000h
mov ds,ax
mov ax,[3000h]
mov bx,[3002h]
div bx
mov [3004h],ax
mov [3006h],dx
hlt

ret
```

Observations (with screen shots):

For Obj. 2

For Obj. 3

For Obj. 4

Conclusion:

For Obj. 1:

It can be concluded that the sum of numbers when dry run and executed in system found to be same. Thus, the program to add two 16-bit numbers was executed.

For Obj. 2:

It can be concluded that the difference of numbers when dry run and executed in system found to be same. Thus, the program to subtract two 16-bit numbers was executed.

For Obj. 3:

It can be concluded that the product of numbers when dry run and executed in system found to be same. Thus, the program to multiply two 16-bit numbers was executed.

For Obj. 4:

It can be concluded that the division of numbers when dry run and executed in system found to be same. Thus, the program to divide two 16-bit numbers was executed.

IV. POST LAB:

1. State and explain the different logical instructions of 8086.

Opcode	Operand	Description
AND	D,S	Used for adding each bit in a byte/word with the corresponding bit in another byte/word.
OR	D,S	Used to multiply each bit in a byte/word with the corresponding bit in another byte/word.
NOT	D	Used to invert each bit of a byte or word.
XOR	D,S	Used to perform Exclusive-OR operation over each bit in a byte/word with the corresponding bit in another byte/word.
TEST	D,S	Used to add operands to update flags, without affecting operands.

SHR	D,C	Used to shift bits of a
		byte/word towards the right
		and put zero(S) in MSBs.
SHL/SAL	D,C	Used to shift bits of a
		byte/word towards left and
		put zero(S) in LSBs.
ROR	D,C	Used to rotate bits of
		byte/word towards the right,
		i.e. LSB to MSB and to Carry
		Flag [CF].
ROL	D,C	Used to rotate bits of
		byte/word towards the left,
		i.e. MSB to LSB and to Carry
		Flag [CF].
RCR	D,C	Used to rotate bits of
		byte/word towards the right,
		i.e. LSB to CF and CF to
		MSB.
RCL	D,C	Used to rotate bits of
		byte/word towards the left,
		i.e. MSB to CF and CF to
		LSB.

2.	Su	ıbtrac	t two	16	bit	numbers	20H	and	06H,	and	store	the	difference	٦.

-20

-06

=1A

3. Explain briefly any five arithmetic instructions.

- **ADD** Used to add the provided byte to byte/word to word.
- **SUB** Used to subtract the byte from byte/word from word.
- MUL Used to multiply unsigned byte by byte/word by word.
- DIV Used to divide the unsigned word by byte or unsigned double word by word.
- **INC** Used to increment the provided byte/word by 1.

4. Write the function of the following machine control instructions

- a) WAIT Event Wait.
- b) **HLT** Halt CPU.
- c) NOP No Operation.
- **d) ESC** Escape.