Лабораторная работа № 6 ДО

Частотные характеристики пассивных электрических цепей второго порядка

Подготовка к работе

1. Частотные характеристики RLC цепей.

1.1. Вывод выражения для комплексной передаточной функции *RLC* цепи – рис.6.1.

Рис. 6.1. – Схема фильтра второго порядка.

Параметры цепи:

 $R = 1080 \text{ Ом}, L = 30 \text{ м}\Gamma\text{H}, C = 6 \text{ H}\Phi,$

N – номер студента по журналу, М – номер группы.

Определение H(p)

$$\begin{split} H(p) &= U_{\text{BMX}}/U_{\text{BX}} = R \; / \; (R + pL + 1/pC) = &RpC/(LCp^2 + RpC + 1) = p(R/L)/(p^2 + p(R/L) + 1/(LC)) = p(w_0/Q)/(p^2 + p(w_0/Q) + w_0^2) \end{split}$$

p->jw

$$\begin{split} &H(jw) = jw(w_0/Q)/\sqrt{((w_0^2 - w^2)^2 + (ww_0/Q)^2)} = \\ &(w(w_0/Q) \, \Box \, 90)/(\sqrt{((w_0^2 - w^2)^2 + (ww0/Q)^2)} \, \Box \, arctg((ww_0/Q)/(w_0^2 - w^2))) \end{split}$$

$$\omega_0 = \sqrt{1/LC} = 74535.599$$
 рад/с $f_0 = 11.86271$ кГц

1.2. Расчет АЧХ и ФЧХ фильтра для двух значений R: найденного в п.1.1 (R_1) и имеющего значение в 10 раз больше найденного в п.1.1 ($R_2 = 10 R_1$).

Для упрощения процесса построения графиков целесообразно, введя обозначение $f_k = k f_o$, получить выражения относительно переменной k и рассчитать AЧX и ФЧX для значений k, приведенных в таблице: k = 0.3, 0.5, 0.8 и.т.д. Результаты расчета занести в таблицу этого пункта и построить графики АЧX и ФЧX в зависимости от соответствующих значений частоты f_k .

$$\begin{split} &H(w) = w(w_0/Q)/\sqrt{((w_0^2 - w^2)^2 + (ww_0/Q)^2)} = ||w = kw_0|| = k(w_0^2/Q)/\sqrt{((w_0^2 - kw_0^2)^2 + (k(w_0^2/Q))^2)} \\ &(k/Q)/\sqrt{((1 - k^2)^2 + (k/Q)^2)} \\ &\phi(w) = 90 - arctg((ww_0/Q)/(w_0^2 - w^2)), \ w < w_0 \\ &\phi(w) = -90 - arctg((ww_0/Q)/(w_0^2 - w^2)), \ w > w_0 \\ &||w = kw_0|| \\ &\phi(w) = 90 - arctg((k/Q)/(1 - k^2)), \ w < w_0 \\ &\phi(w) = -90 - arctg((k/Q)/(1 - k^2)), \ w > w_0 \end{split}$$

	f	$0.3f_0$	$0.5f_0$	$0.8 f_0$	f_0	$1.2f_0$	1.5f ₀	$1.8f_0$	$2.0 f_0$	$2.5f_0$	$3.0 f_0$
D 100.0	H(f)	0,1573	0,3066	0,7317	1	0,7965	0,5015	0,3619	0,3066	0,2242	0,1783
R ₁ = 1.08кОм	$\psi(f)$	80.951	72.148	42.969	0	-37.198	-59.899	-68.784	-72.148	-77.045	-79.732
_	H(f)	0.8469	0.9550	0.9957	1	0.9971	0.9854	0.9684	0.9550	0.9171	0.8755
<i>R</i> ₂ = 10.8кОм	ψ(<i>f</i>)	32.1247	17.2496	5.3217	0	-4.3404	-9.7872	-14.4453	- 17.2496	-23.4946	-28.8987

Определение резонансной линейной частоты и добротности контура.

Расчетные формулы: $\omega_0 = \sqrt{(1/LC)}$ $f_0 = w_0/2\pi$ $Q = w_0L/R$

$R_1 = 1.08$ кОм	$R_2 = 10.8 \text{ кОм}$
ω_0 =74535.599 рад/с f_0 =11.86271 к Γ ц Q =2.07	ω_0 =74535.599 рад/с f_0 =11.86271 к Γ ц Q =0.207

Построить на миллиметровой бумаге формата A4 AЧX и ФЧX схемы 6.1 (частотные характеристики при разных величинах R совместить на одном графике; частоту откладывать в Герцах, $\underline{\mathbf{фазу}} - \mathbf{в}$ градусах). Отметить на полученных характеристиках резонансную частоту фильтра.

Частоту откладывать по оси абсцисс в линейном масштабе.

1.3. Вывод выражения для комплексной передаточной функции схемы рис. 6.2. Расчет АЧХ схемы.

Рис. 6.2. Схемы фильтров второго порядка. Схема 6.2 а для нечетных номеров N, схема 6.2 б — для четных номеров N.

Параметры цепи:

$$R = 1080 \ O$$
м, $L = 30 \ м\Gamma$ н, $C = 6 \ н\Phi$,

N – номер студента по журналу, М – номер группы.

$$H(p) = pL/(pL + 1/(pC) + R) = p^2CL/(p^2CL + RpC + 1) = p^2/(p^2 + pRC/(CL) + 1/(CL)) = p^2/(p^2 + pRC)$$

$$p^2/p^2 + pw_0/Q + w_0^2$$
 $p->jw$

$$H(jw)=-w^2/(\sqrt{((w_0^2-w^2)^2+(ww_0/Q)^2)}=(w^2 \perp 180)/(\sqrt{((w_0^2-w^2)^2+(ww_0/Q)^2)}arctg((ww_0/Q)/(w_0^2-w^2)))$$

 $H(w)=w^2/\sqrt{((w_0^2-w^2)^2+(ww_0/Q)^2)}=||w=kw_0||=k^2/\sqrt{((1-k^2)^2+(k/Q)^2)}$

f	$0.3f_0$	$0.5f_0$	$0.8f_0$	f_0	$1.2f_0$	$1.5f_0$	$1.8f_0$	$2.0f_0$	$2.5f_0$	$3.0f_0$
H(f)	0.09767	0.3173	1.2117	2.07	1.9786	1.5573	1.3484	1.2691	1.1602	1.10698

Построить на миллиметровой бумаге формата A5 AЧX схемы, отметить резонансную частоту фильтра и частоту, соответствующую максимуму AЧX.

