

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERIA

SYLLABUS

PROYECTO CURRICULAR: INGENIERIA ELECTRONICA

NOMBRE DEL DOCENTE: ESPACIO ACADÉMICO (Asignatu	ıra): Ondas Electromagnéticas	
		CÓDIGO: 29
Obligatorio (X): Básico () Comp	olementario (X)	
Electivo (): Intrínsecas () Extrínsecas ()	
NUMERO DE ESTUDIANTES:		GRUPO:
NÚMERO DE CREDITOS: 3	•	
TIPO DE CURSO:	TEÓRICO (X) PRACTICO	TEO-PRAC:
Alternativas metodológicas:		
Clase Magistral (X), Seminario (X Proyectos tutoriados (), Otro:	(), Seminario – Taller (), Taller ((), Prácticas (),
DIA	HORAS	SALON
	2 horas 2 horas	
I. JUSTIFICAC	IÓN DEL ESPACIO ACADÉMIO	CO (¿El Por Qué?)
Uno de los terrenos de mayor ap	dicación del estudio de las ond	as electromagnéticas se halla en las
comunicaciones. Estas son en la ac	ctualidad el eje del desarrollo pro	oductivo y comercial a escala global.
Revistas especializadas en desarroll	o y economía, coinciden en afirm	nar que después del año 2000 el 80%
de los empleos serán en telecomuni	caciones. No obstante, existen des	sde luego otras aplicaciones importantes
como en la electromedicina, y la ec	cología. Como quiera que sea, un	a buena formación en estos tópicos es
obligatoria para el ingeniero electrón	ico y además le abre un amplio esp	ectro de posibilidades ocupacionales en
los diversos campos de la investigacio	ón, la tecnología, la producción y l	a comercialización.
Los programas de Campos Electro	magnéticos y Ondas Electromagi	néticas se han elaborado teniendo en
cuenta las exigentes necesidades	del ingeniero electrónico conte	mporáneo y además utilizando como
referencia otros programas de prestig	giosas universidades del mundo.	

II. PROGRAMACIÓN DEL CONTENIDO

OBJETIVO GENERAL

Estudiar, analizar e interpretar las ecuaciones de Maxwell, la propagación, la recepción y radiación electromagnética.

OBJETIVOS ESPECÍFICOS

Formular, analizar e interpretar las ecuaciones de Maxwell y las ecuaciones de onda electromagnética.

Estudiar, analizar e interpretar físicamente la propagación de ondas electromagnéticas en el vacío y en otros medios.

Desarrollar los modelos físicos de propagación de ondas electromagnéticas en guías de onda electromagnéticas.

Estudiar, analizar e interpretar los modelos físicos de radiación electromagnética.

Desarrollar, analizar e interpretar la física de los dipolos eléctrico y magnético radiando ondas electromagnéticas.

Discutir y analizar la física básica de la propagación y radiación electromagnética.

RESULTADOS DE APRENDIZAJE

Demostrar el conocimiento de las ecuaciones de Maxwell

Explicar las leyes básicas de las ondas eléctricas y magnéticas.

Explicar la propagación de la onda en medios con y sin pérdida.

Explicar el comportamiento de las ondas electromagnéticas en medios guiados.

Emplear las leyes del electromagnetismo en un software de simulación en la solución de problemas.

PROGRAMA SINTÉTICO

Ecuaciones de Maxwell y ondas electromagnéticas.

Propagación de ondas electromagnéticas.

Radiación electromagnética y sistemas radiantes.

Utilización de paquetes sobre Linux para graficar y resolver ecuaciones.

III. ESTRATEGIAS

El espacio académico se desarrollará semanalmente de la siguiente manera:

Exposición magistral de acuerdo con el desarrollo de los contenidos.

Tareas para desarrollar en casa.

Utilización de paquetes sobre Linux para graficar y resolver ecuaciones.

Uso de programas de computadora para resolver problemas electromagnéticos usuales.

Sesiones de herramientas computacionales.

Trabajo virtual autónomo.

Metodología Pedagógica y Didáctica:

Horas			Horas	Horas	Total Horas	Créditos
			profesor/semana	Estudiante/semana	Estudiante/semestre	
TD	TC	TA	(TD + TC)	(TD + TC + TA)	16 semanas	
4	2	4	6	10	160	2

Clases magistrales para proporcionar fundamentos teóricos

Trabajo Presencial Directo (TD): trabajo de aula con plenaria de todos los estudiantes.

Trabajo Mediado Cooperativo (TC): Trabajo de tutoría del docente a pequeños grupos individual a los estudiantes.

Trabajo Autónomo (TA): Trabajo con distintas instancias: en abajo del estudiante sin presencia del docente que se puede r s de trabajo o en forma individual, en casa o en biblioteca.

IV. RECURSOS

Aula y recursos de aula.

Video Beam.

Computadora portátil.

Recursos para el estudiante: Vídeos. Software para el trabajo virtual, artículos.

BIBLIOGRAFIA

TEXTOS GUÍAS

Lorrain P., Corson D., Campos y ondas electromagnéticos, selecciones científicas, Madrid, 1977.

Jodan E., Balmain K, Ondas electromagnéticas y sistemas radiantes, paraninfo, Barcelona 1978.

TEXTOS COMPLEMENTARIOS

Balanis C., Advanced engineering electromagnetics, John Wiley, N Y 1998.

Jackson, Electrodinámica clásica, editorial reverte, Barcelona, 1973.

Papas Charles H., Theory of electromagnet of wave propagation, Dover publications, New York 1988.

Salmeron M. J., radiación, propagación y antenas, Editorial trillas, México 1981.

Antennas and propagation, IEEE, U.S.A.

Fields electromagnetics, IEEE, U. S. A.

REVISTAS

DIRECCIONES DE INTERNET

V. ORGANIZACIÓN Y TIEMPOS					
Ecuaciones de Maxwell y ondas electromagnéticas. 3 semanas.	2. Propagación de ondas electromagnéticas.5 semanas	Radiación electromagnética y sistemas radiantes. semanas			
4. Resumen de herramienta computacionales simulación 3 semanas	5. Revisión de tareas virtuales y computacionales 1 semana				

	VI. EVALUA	CIÓN	
	TIPO DE EVALUACIÓN	FECHA	PORCENTAJE
PRIMERA NOTA	Evaluaciones escritas		40%
SEGUNDA NOTA	Evaluaciones escritas		30%
EXAMEN FINAL	Evaluación escrita		30%

ASPECTOS PARA EVALUAR DEL CURSO

Evaluación del desempeño docente Evaluación de los aprendizajes de los estudiantes en sus dimensiones: individual/grupo,teórica/práctica, oral/escrita.

Autoevaluación:

Coevaluación del curso: de forma oral entre estudiantes y docente.