Real and Complex Analysis Qualifying Exam – Fall 2014

Hakobyan & Poggi-Corradini

Instructions: Below you will find 10 problems. Do as many as you can. **Notations:** $\mathbb{R} = \text{set of all real numbers}$; $\mathbb{C} = \text{set of all complex numbers}$; $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ (the unit disk).

- **1.** Let f be analytic in \mathbb{D} and assume that f(0) = 0.
 - (a) Show that the function

$$g(z) = \begin{cases} \frac{f(z)}{z} & \text{if } z \in \mathbb{D} \setminus \{0\} \\ f'(0) & \text{if } z = 0 \end{cases}$$

is analytic in all of \mathbb{D} .

- (b) Assume further that $|f(z)| \le 1$ for all $z \in \mathbb{D}$. Use the function g in (a) to show that $|f(z)| \le |z|$ for all $z \in \mathbb{D}$.
- **2.** Suppose g(t) is a continuous complex-valued function on $[0, 2\pi]$ with $g(0) = g(2\pi)$. Use the geometric series to prove that

$$\int_0^{2\pi} g(t) \frac{e^{it} + z}{e^{it} - z} dt$$

can be expanded in a power series about $z_0 = 1/2$, i.e., in powers of (z - 1/2).

- **3.** Let Ω be the intersection of the disks $\{z: |z-3i|<5\}$ and $\{z: |z+3i|<5\}$. Find a conformal map f of Ω onto the unit disk $\mathbb D$ so that f(0)=0 and f'(0)>0. You can leave f as a composition of maps.
- **4.** Let f be entire and bounded on the strip $0 \le \operatorname{Re} z \le 1$, with the property that

$$f(z+1) = f(z)/2 \quad \forall z \in \mathbb{C}.$$

Prove that $f(z) = a2^{-z}$ for some $a \in \mathbb{C}$.

(Hint: You may want to use Liouville's theorem.)

- **5.** Assume that the polynomial $P(z) = z + a_2 z^2 + \cdots + a_n z^n$ is one-to-one in \mathbb{D} . A point $c \in \mathbb{C}$ such that P'(c) = 0 is called a critical point.
 - (a) Explain why P does not have any critical points in \mathbb{D} .
 - (b) Deduce from (a) that $|a_n| \leq 1/n$ by factoring P' into its n-1 roots.

6. Let (X, \mathcal{M}, μ) be a measure space. Suppose $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ are measurable functions. Prove that the sets

$${x : f(x) < g(x)}$$
 and ${x : f(x) = g(x)}$

are measurable.

- **7.** Below m denotes the Lebesgue measure on \mathbb{R} .
 - (i). Show that for every $\varepsilon > 0$ there is an open dense set U such that $m(U) < \varepsilon$.
 - (ii). Show that for every $\varepsilon > 0$ there is a compact, nowhere dense set $E \subset \mathbb{R}$ such that $m(E) > 1 \varepsilon$.
- **8.** Suppose (X, \mathcal{M}, μ) is a measure space, μ is a positive measure, $f_n \in L^p(X)$ for $n \in \mathbb{N}$ and $f \in L^p(X)$, where $1 \le p < \infty$. Prove the following implications:
 - (i). If $||f f_n||_p \to 0$ as $n \to \infty$ then $||f_n||_p \xrightarrow[n \to \infty]{} ||f||_p$.
 - (ii). If $f_n \to f$ a.e. and $||f_n||_p \to ||f||_p$ then $||f f_n||_p \to 0$.
- **9.** Is it true that every closed and bounded set in $L^2([0,1])$ is compact? Justify your answer.
- **10.** Suppose $0 < r < p < s < \infty$. Show that $L^r \cap L^s \subset L^p$. Here L^p , p > 0, denotes the space of p integrable functions on the real line $\mathbb R$ equipped with the Lebesgue measure

(Hint: Write $p = \lambda r + (1 - \lambda)s$, for some $\lambda > 0$.)