#### Занятие 2

Тема: Динамика прямолинейного движения.

Цель: Основной закон динамики, масса, классификация сил, импульс.

# Краткая теория

## • Основной закон динамики.

Основным в динамике, то есть при описании движения тел под действием приложенных к ним сил, является **II закон Ньютона**, записываемый в виде

 $\vec{a} = \frac{\vec{F}}{m}$ , где  $\vec{a}$  - ускорение, которое приобретает тело массой m под действием силы  $\vec{F}$ , являющейся равнодействующей всех приложенных к телу сил. Векторное равенство содержит в себе три уравненияпроекции на оси системы координат:  $a_x = \frac{F_x}{m}$ ,  $a_y = \frac{F_y}{m}$ ,  $a_z = \frac{F_z}{m}$ .

II закон Ньютона можно сформулировать иначе:  $m\frac{d^2\vec{r}}{dt^2} = \vec{F}$ , т.к. ускорение есть результат дифференцирования по времени вектора скорости  $\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$ .

Если ввести **импульс** тела  $\vec{p} = m\vec{v}$ , то возможна еще одна форма записи:  $\frac{d\vec{p}}{dt} = \vec{F}$ , откуда возникает связь изменения импульса тела и времени действия силы:  $d\vec{p} = \vec{F} dt$ . Выражение, стоящее справа носит название **импульса силы**.

• Наиболее распространены и чаще других встречаются следующие силы.

Сила **тяжести.** Эта сила направлена вертикально вниз, ее модуль: F = mg, где

 $g=9,8\,\,{\rm m/c^2}$  — ускорение свободного падения. Согласно закону всемирного тяготения на любое тело массы m вблизи поверхности Земли действует гравитационная сила  $F_{cp}=G\frac{m\cdot M_3}{R^2}$ , откуда

 $g=G\frac{M_3}{R^2}$  , где G - гравитационная постоянная,  $M_3$  - масса Земли, R - радиус Земли.

Сила **трения** скольжения:  $F = \mu N$ , где  $\mu$  - коэффициент трения, N - сила нормального давления, прижимающая друг к другу трущиеся поверхности тел. Сила трения, всегда направлена противоположно вектору скорости тела, на которое она действует.

Сила **упругости**:  $F = -k\Delta x$ , где k — коэффициент упругости,  $\Delta x$  — величина упругой деформации тела. Минус в правой части выражения означает, что сила упругости направлена противоположно деформации. Для полноты изложения следует упомянуть **силу кулоновского взаимодействия** электрических зарядов, речь о которой пойдет во второй части пособия.

## Примеры решения задач

- 2-1. Сила трения лодки массой m о воду прямо пропорциональна квадрату ее скорости (коэффициент пропорциональности k). Лодка двигалась со скоростью  $v_0$ . Найти время, в течение которого скорость лодки уменьшится в два раза.
- Для описания движения лодки используем II закон Ньютона, учтя, что  $F_{mp} = -kv^2$  . Получим  $ma = -kv^2$  или  $m\frac{dv}{dt} = -kv^2$  . Перепишем это уравнение, поместив все величины, зависящие от скорости, в одну часть, от времени в другую:  $\frac{dv}{v^2} = -\frac{k}{m}dt$  . После интегрирования левой и правой частей  $\int \frac{dv}{v^2} = -\frac{k}{m}\int dt$  получим  $-\frac{1}{v} = -\frac{k}{m}t + C$  , где C- постоянная интегрирования. Она может быть вычислена из условия, что в момент времени t=0 скорость лодки составляла  $v_0$  . После подстановки находим  $C=-\frac{1}{v_0}$  , откуда  $-\frac{1}{v}=-\frac{k}{m}t-\frac{1}{v_0}$  .

Для определения времени, за которое скорость лодки уменьшается в два раза, подставляем в полученное уравнение  $v = \frac{v_0}{2}$ , откуда  $t = \frac{m}{kv_0}$ .

Otbet: 
$$t = \frac{m}{kv_0}$$
.

2-2. Сила, действующая на материальную точку массой m, вначале возрастает до максимального значения  $F_{\theta}$ , а затем убывает до нуля. Изменение силы с течением времени происходит по линейному

закону. Полное время движения составляет  $t_0$ . Какую скорость



приобретет тело к концу действия силы? Трением пренебречь.

Применим II закон Ньютона  $m\frac{dv}{dt} = F(t)$  и перепишем его в

виде 
$$dv = \frac{1}{m}F(t)dt$$
 . Такая

форма записи свидетельствует о

том, что изменение скорости тела есть следствие приложенного импульса силы. Для определения скорости в момент времени  $t_0$  необходимо проинтегрировать левую и правую части уравнения от момента времени 0 до  $t_0$ , учитывая при этом, что скорость меняется от

0 до v:  $v \Big|_0^v = \frac{1}{m} \int_0^{t_0} F(t) dt$ . Левая часть даст v, а интеграл от силы по

времени имеет геометрический смысл площади под графиком функции F(t) на промежутке от 0 до  $t_0$ . График искомой зависимости имеет вид треугольника, площадь которого равна половине произведения основания  $(t_0)$  на высоту  $(F_0)$ , то есть  $\frac{1}{2}F_0t_0$ .

Отсюда имеем ответ  $v = \frac{F_0 t_0}{2m}$ .

2-3. На горизонтальном столе лежит брусок массой  $m_1$ , который может



по столу. К нему скользить привязана перекинутая через блок, массой которого можно пренебречь, невесомая нерастяжимая нить, на другом конце которой закреплен груз массой  $m_2$ . С каким ускорением будут двигаться тела? Рассмотреть два случая: 1) трение о стол отсутствует, 2) трение о стол присутствует (коэффициент

трения бруска о стол равен  $\mu$ ).

• Рассмотрим обе ситуации по отдельности.

1). Трения первого тела о стол нет (на рисунке  $F_{mp}=0$ ). Составим уравнение второго закона Ньютона для каждого тела. Ввиду нерастяжимости нити ускорения обоих грузов a будут одинаковы по модулю, но вектора ускорений направлены по-разному: горизонтально вправо для первого тела и вертикально вниз для второго.

Первое тело. По горизонтали действует только сила натяжения нити T :  $m_1 a = T$  .

По вертикали сила тяжести уравновешена реакцией опоры:  $m_1 g - N = 0$ .

Второе тело. По вертикали действуют сила тяжести и сила натяжения:  $m_2g-T'=m_2a$ .

Необходимо учесть также, что по причине невесомости нити и блока T = T. Полученные уравнения полностью описывают движение тел, осталось решить получившуюся систему уравнений относительно ускорения. Складывая первое и третье уравнения, получим  $(m_1 + m_2)a$ 

$$= m_2 g$$
. В результате  $a = \frac{m_2 g}{m_1 + m_2}$ .

2). Есть трение первого бруска о стол. На первое тело дополнительно действует горизонтальная сила  $F_{mp} = \mu m_1 g$ . Второй закон Ньютона дает для каждого из тел:  $m_1 a = T - \mu m_1 g$ ,  $m_2 g - T' = m_2 a$ .

Решение получившейся системы:  $a = \frac{m_2 - \mu \, m_1}{m_1 + m_2} g$ .



Otbet: 1) 
$$a = \frac{m_2 g}{m_1 + m_2}$$
 , 2)  $a = \frac{m_2 - \mu m_1}{m_1 + m_2} g$  .

- 2-4. Через блок перекинута невесомая нерастяжимая нить, на концах которой подвешены грузы массами  $m_1$  и  $m_2$ . Блок начинают поднимать вертикально вверх с ускорением  $a_0$  относительно земли. Полагая, что нить скользит по блоку без трения, найти ускорения грузов относительно земли.
- Учтем, что при движении нити по

блоку без трения блок не вращается, следовательно, сила натяжения нити T слева и справа от блока одинакова. (В реальной ситуации можно

считать массу блока очень малой.) Запишем второй закон Ньютона для обоих грузов в проекции на вертикальную ось:

$$m_1 a_1 = T - m_1 g$$
,  $m_2 a_2 = T - m_2 g$ .

Третье недостающее уравнение можно получить, если использовать кинематическую связь между ускорениями грузов и блока. Действительно, нить нерастяжима и не провисает. Если первый груз поднимется относительно блока на расстояние  $y_1$ , то на такое же расстояние  $y_2 = -y_1$  относительно блока опустится второй груз, а вместе с блоком они поднимутся на расстояние  $y_0$ . Относительно поверхности земли первый груз сместится на расстояние  $y_1 + y_0$ , второй — на расстояние  $y_2 + y_0 = -y_1 + y_0$ . Ускорение первого груза относительно

земли 
$$a_1 = \frac{d^2(y_1 + y_0)}{dt^2} = a_1' + a_0,$$
 второго

 $a_2=\frac{d^2(y_2+y_0)}{dt^2}=a_2'+a_0=-a_1'+a_0$  , где  $a_1'$  и  $a_2'$  - ускорения грузов относительно блока. Исключив их из уравнений, получаем искомую связь:  $a_1+a_2=2a_0$ . Исключаем из динамических уравнений силу натяжения нити T:  $m_2a_2-m_1a_1=(m_1-m_2)g$  и используем полученную кинематическую связь:

$$2m_2a_0 - (m_1 + m_2)a_1 = (m_2 - m_1)g$$
.  
Other:  $a_1 = \frac{2m_2a_0 + (m_2 - m_1)g}{(m_1 + m_2)}$ ,  $a_2 = \frac{2m_1a_0 + (m_1 - m_2)g}{(m_1 + m_2)}$ .

- 2-5. На горизонтальном столе расположен куб, который необходимо сдвинуть с места. Под каким углом к горизонту надо приложить силу F, чтобы она была минимальной? Коэффициент трения куба о стол  $\mu$ .
- Используем II закон Ньютона в проекциях на горизонтальную и вертикальную оси системы координат. Горизонтальная составляющая силы  $F\cos\alpha$  за вычетом силы трения  $F_{mp} = \mu N$  (N сила нормального давления) дает ускорение, которое при минимальной силе составляет нуль, свидетельствующий о том, что тело все таки сдвинулось. Вертикальная составляющая силы  $F\sin\alpha$  уменьшает силу тяжести mg, действующую на кубик, до силы нормального давления N. Запишем обе проекции:

 $F\cos lpha - F_{mp} = ma = 0$  и  $mg - F\sin lpha = N$  . Совместное решение уравнений дает:  $F = \frac{\mu mg}{\cos lpha + \mu \sin lpha}$  . Сила минимальна тогда, когда

знаменатель, как функция угла  $\alpha$ , максимален. Экстремум функции (в нашем случае максимум) расположен там, где ее производная равна

нулю: 
$$\frac{d}{d\alpha}(\cos\alpha + \mu\sin\alpha) = 0$$
. После дифференцирования  $-\sin\alpha + \mu\cos\alpha = 0$ . Следовательно,  $\mu = tg\alpha$ , откуда  $\alpha = arctg\mu$ . Ответ:  $\alpha = arctg\mu$ .

- 2-6. На горизонтальном столе лежит брусок массой m. В момент времени t=0 к нему под углом  $\alpha$  к горизонту прикладывают силу F, зависящую от времени по закону F=kt, где k постоянная. Определить скорость бруска в момент отрыва, а также путь, который он пройдет к этому моменту.
- Уравнение движения по горизонтали:  $F\cos\alpha=ma$  . Отрыв от стола свидетельствует о том, что между бруском и столом нет взаимодействия, и сила нормального давления бруска на стол составляет нуль. Тогда условие отрыва отвечает равенству двух сил вертикальной проекции действующей силы и силы тяжести:  $F\sin\alpha=mg$  .

Решая оба уравнения, находим ускорение:  $a = \frac{kt \cos \alpha}{m}$ .

Момент  $t_0$  отрыва от стола:  $t_0 = \frac{mg}{k \sin \alpha}$ . С учетом формул кинематики можно записать выражения для скорости и пройденного расстояния как функции времени (подстановка в эти функции момента отрыва  $t_0$  даст скорость в момент отрыва и пройденное до отрыва расстояние):

$$v = \int_{0}^{t_{0}} a dt = \frac{k \cos \alpha}{m} \int_{0}^{t_{0}} t dt = \frac{kt^{2} \cos \alpha}{2m} \Big|_{0}^{t_{0}} = \frac{mg^{2} \cos \alpha}{2k \sin^{2} \alpha} ,$$

$$s = \int_{0}^{t_{0}} v dt = \int_{0}^{t_{0}} \frac{kt^{2} \cos \alpha}{2m} dt = \frac{k \cos \alpha}{2m} \int_{0}^{t_{0}} t^{2} dt = \frac{k \cos \alpha}{m} \frac{t^{3}}{6} \Big|_{0}^{t_{0}} = \frac{m^{2}g^{3} \cos \alpha}{6k^{2} \sin^{3} \alpha} .$$

Otbet: 
$$v = \frac{mg^2 \cos \alpha}{2k \sin^2 \alpha}$$
,  $s = \frac{m^2 g^3 \cos \alpha}{6k^2 \sin^3 \alpha}$ .

2-7. Тело массой m начинает двигаться из начала координат вдоль оси x в момент времени t=0. На тело действует направленная вдоль оси

сила  $F_x = F_0 \sin \omega t$ , где  $F_0$  и  $\omega$  - постоянные. Найти скорость и положение тела в зависимости от времени.

• Согласно II закону Ньютона проекция ускорение тела на ось x:  $\frac{dv_x}{dt} = a_x = \frac{F_0 \sin \omega t}{m}$ . Проекция скорости тела может быть найдена путем интегрирования:  $v_x = \int a dt = \frac{F_0}{m} \int \sin \omega t dt = -\frac{F_0 \cos \omega t}{\omega m} + v_0$ , где  $v_0$  - постоянная интегрирования, определяемая из начального условия  $v_x(t=0)=0$ , которое приводит к уравнению  $-\frac{F_0 \cdot 1}{\omega m} + v_0 = 0$ . Следовательно,  $v_0 = \frac{F_0}{\omega m}$ , а скорость  $v_x = \frac{F_0}{\omega m}(1-\cos \omega t)$ . Анализируя полученное выражение, можно сделать вывод о том, что скорость тела является периодически осциллирующей функцией времени. С

периодом  $T = \frac{2\pi}{\omega}$  (это период  $\cos \omega t$ ) скорость изменяется от 0 до  $\frac{2F_0}{\omega m}$ .

Учтем этот факт при анализе окончательного результата.

Поскольку  $v_x = \frac{dx}{dt}$ , координату также можно найти интегрированием:

$$x = \int v dt = \frac{F_0}{\omega m} \int (1 - \cos \omega t) dt = \frac{F_0}{\omega m} t - \frac{F_0}{\omega^2 m} \sin \omega t + x_0$$
 , где  $x_0$  - новая

постоянная интегрирования. Подстановка начального условия, а именно задание положения тела в нулевой момент времени в начале

координат, дает  $x_0 = 0$ . Координата  $x = \frac{F_0}{\omega^2 m}(\omega t - \sin \omega t)$  представляет

собой растущую положительную осциллирующую функцию. В этом случае тело не имеет точек поворота назад, а значит, все время движется в одном направлении, поэтому положительная координата тела в некоторый момент времени дает также и путь, пройденный телом к этому моменту времени. Этот вывод станет понятен, если вспомнить, что проекция скорости тела в любой момент времени неотрицательна.

При больших временах t полученное выражение превращается в  $x = \frac{F_0}{com} t$  .

Otber: 
$$x = \frac{F_0}{\omega^2 m} (\omega t - \sin \omega t)$$
.

#### Задачи для самостоятельного решения

2-8. По наклонной плоскости из точки B в точку C, отстоящую от точки A на расстояние a, без начальной скорости соскальзывает тело. При какой высоте h (или угле  $\alpha$  при вершине C) время соскальзывания минимально? Трением пренебречь.



Other: h = a,  $\alpha = 45^{\circ}$ .

- 2-9. Тело массой m начинает двигаться из начала координат в момент времени t=0 под действием силы  $F=F_0\cos\omega t$ , где  $F_0$  и  $\omega$  -постоянные. Найти путь, пройденный телом до первой остановки. Ответ:  $s=2\pi F_0/m\omega^2$ .
- 2-10. Из спортивного арбалета вертикально вверх выпущена стрела массой m со скоростью  $v_0$ . Сила трения стрелы о воздух прямо пропорциональна скорости (коэффициент пропорциональности k). Найти время подъема стрелы до верхней точки траектории.

Otber: 
$$t = \frac{m}{k} \ln(\frac{kv_0}{mg} + 1)$$
.

2-11. Тело массой m начинает двигаться из начала координат в момент времени t=0 со скоростью  $v_0$  под действием силы F=kv, где k- постоянная, v - скорость тела. Найти скорость тела и пройденный им путь в зависимости от времени.

Otbet: 
$$v = v_0 \exp(\frac{kt}{m})$$
,  $s = \frac{mv_0}{k} \left( \exp(\frac{kt}{m}) - 1 \right)$ .

2-12. Шарик массой m, летящий со скоростью v, ударился о стену. Определить импульс p, полученный стеной, если вектор скорости шарика направлен под углом  $\alpha$  к поверхности стены. Рассмотреть два случая: 1) шарик абсолютно упругий (бильярдный), 2) шарик абсолютно неупругий (пластилиновый).

Ответ: 1)  $2mv\sin\alpha$ ; 2)  $mv\sin\alpha$ .

2-13. Брусок массой  $m_2$  может без трения скользить по горизонтальной поверхности. На нем лежит брусок массой  $m_1$ . Коэффициент трения между брусками  $\mu$ . Определить максимальное значение силы, приложенной в нижнему бруску, при котором начнется соскальзывание верхнего бруска.

Ответ:  $F = \mu g(m_1 + m_2)$ .

2-14. Молот для вбивания свай массой m падает с высоты h. Определить среднюю силу удара, если длительность удара равна  $\tau$ .

Otbet: 
$$\langle F \rangle = \frac{m}{\tau} \sqrt{2gh}$$
.

#### Контрольные задачи

- 2-15. Однородный канат лежит на столе так, что часть его свешивается со стола. Он начинает соскальзывать со стола тогда, когда длина свешивающейся части составляет 1/4 его длины. Чему равен коэффициент трения каната о стол?
- 2-16. Из корзины воздушного шара без начальной скорости опустили вниз стальной шарик массой m. Сила трения шарика о воздух прямо пропорциональна его скорости (коэффициент пропорциональности k). Найти через какое время ускорение шарика окажется в три раза меньше ускорения свободного падения.
- 2-17. Пуля, пробив доску, изменила свою скорость от  $v_0$  до  $v_1$ . Считая силу сопротивления движению прямо пропорциональной квадрату скорости, найти среднюю скорость пули в доске.
- 2-18. По наклонной плоскости длиной l, образующей угол  $\alpha$  с горизонтом, за время  $\tau$  соскальзывает тело. Определить коэффициент трения тела о плоскость.
- 2-19. На гладком столе лежит брусок массой M. К бруску привязаны два шнура, перекинутые через неподвижные невесомые блоки, прикрепленные к противоположным краям стола. На концах шнуров закреплены гири массами  $m_1$  и  $m_2$ . Найти ускорение, с которым движется брусок, и силы натяжения шнуров.
- 2-20. Брусок лежит на наклонной плоскости (ее угол с горизонтом  $\alpha$ ), на вершине которой установлен невесомый блок. К бруску прикреплена нить, перекинутая через блок, на противоположном конце нити висит груз. Отношение масс груза и бруска  $m_1/m_2 = \eta$ . Определить величину и направление вектора ускорения бруска, если  $\eta > \sin \alpha$ .