Veri İletimi

Veri İletimi

 "Toto, artık Kansas'da olmadığımız yönünde bir hissim var." Judy Garland (The Wizard of Oz)

İletim Terminolojisi

- Veri iletimi, verici ve alıcı arasında bir iletim ortamı üzerinden gerçekleşir.
- Yönlendirilmiş (guided) ortam
 - Bükümlü kablo (twisted pair), coaxial kablo (coaxial cable), fiber optik (optical fiber)
- Yönlendirilmemiş (unguided) / kablosuz (wireless) ortam
 - Hava, su, vakum

İletim Terminolojisi

- Doğrudan bağlantı (direct link)
 - Ara bağlantı cihazı bulunmamaktadır
- Uçtan uca (point-to-point)
 - Doğrudan bağlantı
 - Sadece 2 cihaz aynı bağlantıyı kullanmaktadır
- Çoklu uç (multi-point)
 - 2 den fazla cihaz aynı bağlantıyı kullanır.

İletim Terminolojisi

- Tek Yönlü (simplex)
 - Tek yönlü iletim
 - Televizyon gibi
- Yarı Çift Yönlü (half duplex)
 - Her iki yönde iletim mevcut ancak bir anda tek yön mümkün
 - Walkie-Talkie gibi
- Çift Yönlü (full duplex)
 - Aynı anda çift yönlü iletim
 - Telefon gibi

Frekans, Spektrum ve Band Genişliği

- time domain (zaman bölgesi) kavramları
 - Analog Sinyal
 - Zamanla değişen bir yapı gösterir.
 - Dijital Sinyal
 - Sabit bir değerden başka bir sabit değere değişim gösterir.
 - Periyodik Sinyal
 - Zamanla tekrarlayan bir görünüm sergiler.
 - Periyodik Olmayan Sinyal
 - Zamanla tekrarlayan bir görünüm sergilemez.

Analog ve Dijital Sinyal

Veri İletimi

Periyodik Sinyaller

Sinüs Dalgası

- Genlik (A)
 - Sinyalin maksimum gücünü gösterir
 - volt
- Frekans (f)
 - Sinyalin değişim sıklığı
 - Hertz (Hz) ve saniyedeki tekrar miktarı
- Periyot (T)
 - T = 1/f
- Faz (phase) (φ)
 - Zaman içerisindeki izafi pozisyon

Değişik Sinüs Dalgaları $s(t) = A \sin(2\pi ft + \Phi)$

Veri İletimi

Ders 4

Dalgaboyu (λ)

- Bir periyodun kapladığı mesafe
- Arka arkaya gelen iki periyotdaki ilgili fazlar arasında tanımlanır
- Sinyal hızı v ise $\lambda = vT$
- Eşdeğeri $\lambda f = v$
- *V=C*
 - $c = 3*10^8 \, \text{ms}^{-1} \, (\text{uzayda ışık hızı})$

Örnek - Dalgaboyu

- Türkiye'de evlerdeki şebeke gerilmi
 V_{rms}=220 V ve frekans=50Hz
- $V(t) = V_{pik} Sin(2\pi ft)$
- $V_{rms} = V_{pik} / \sqrt{2} = 0.707 \text{ Vpik}$
- $V(t) = 311*Sin(2\pi*50*t)$
- T= 1/50=0,02s
- \circ v=0,9*c=0,9*3*108
- $\lambda = v^*T = 0.9^*3^*10^8 *0.02=5.4^*10^6$ m = 5.400 km

Frekans Bölgesi Kavramları

- Sinyaller pek çok frekansın birleşiminden oluşmaktadır.
- Birleşim sinüs dalgalarından oluşmaktadır.
- Fourier analizi herhangi bir sinyalin sinüs dalgalarından oluştuğunu göstermektedir.

Frekans Toplamı (T=1/f)

- C f ve 3f'nin toplamıdır.
- f = Ana frekans (fundemantal frekans)
- 3f = Harmonik frekans
- Periyotlar?

Frekans Bölgesi Gösterimi

- Frekans bölgesi fonksiyonu Fig 3.4c
- Tek bir kare dalganın frekans bölgesi fonksiyonu

Spektrum ve Bant genişliği

- Spektrum
 - Sinyalde yer alan frekans çeşitliliği
- Mutlak bant genişliği
 - Spektrum genişliği
- Etkin bant genişliği
 - Çoğunlukla bant genişliği olarak adlandırılır
 - Enerjinin yer aldığı dar frekans bantı
- Doğru Akım (DC) Bileşen
 - Sıfır frekans içeren kısım

Veri Hızı ve Bant Genişliği

- Herhangi bir iletim sistemi, belli bir frekans bandına sahiptir.
- Bu taşınan veri hızını sınırlar.
- Kare dalga sınırsız parça ve dolayısıyla sınırsız bant genişliğine sahiptir.
- Çoğunlukla enerjinin büyük kısmı ilk birkaç parçasında yer alır.
- Sınırlı bant genişliği sinyal bozulmasını artırır.
- Veri hızı ile bant genişliği arasında doğrudan bir ilişki vardır.

Analog ve Dijital Veri İletimi

- Veri
 - İletilen bilgi
- Sinyal ve Sinyal iletimi
 - Verinin elektriksel olarak ifade edilerek bir ortam içerisinde fiziksel olarak iletilmesi
- İletim
 - İletim ve sinyal işlem ile veri haberleşmesinin sağlanması

Akustik Spektrum (Analog)

'

Ses Sinyalleri

- Frekans aralığı 20Hz-20kHz (Konuşma 100Hz-7kHz)
- Kolaylıkla elektromanyetik sinyallere dönüştürülebilir.
- Değişik ses kuvveti değişik voltaja dönüşür.
- Ses kanallarında frekans aralığı 300-3400Hz
 arasında sınırlanır

Video Sinyalleri

- USA 483 satır/kare, kare/saniye
 - 525 satır, dikey taramada 42 kayıp
- 525 satır x 30 tarama = 15750 satır / saniye
 - 63.5μs / satır
 - 11μs tekrar tarama, 52.5 μs / video satırı
- Satır siyah ve bayaz olarak değişirse maksimum frekans
 - Yatay çözünürlük 52.5 μs lik dalga için 450 satır (225 periyot)
 - Maksimum frekans: 4.2MHz

Veri İletimi

Dijital Veri

- Bilgisayar tarafından üretilir
- İki adet DC parçası vardır.
- Bant genişliği veri hızına bağlıdır

User input at a PC is converted into a stream of binary digits (1s and 0s). In this graph of a typical digital signal, binary one is represented by Đ5 volts and binary zero is represented by +5 volts. The signal for each bit has a duration of 0.02 msec, giving a data rate of 50,000 bits per second (50 kbps).

Analog Sinyal

Analog Signals: Represent data with continuously varying electromagnetic wave

Dijital Sinyal

Digital Signals: Represent data with sequence of voltage pulses Analog Signal Digital Signal Codec Digital Signal Digital Data Digital Transceiver

Dijital Sinyallerin Avantaj ve Dezavantajlari

- Ucuz
- Gürültüye daha az duyarlı
- Daha fazla zayıflama ihtimali
- Pekçok alanda tercih edilmektedir.

Dijital İletim Kullanım Sebepleri

- Dijital teknolojisindeki gelişmelerle büyüklük ve maliyetlerdeki azalma
- Repeater (tekrarlayıcılarla) veri bütünlüğünü bozmadan uzun mesafeli iletim imkanı
- Dijital iletimde zaman bölümleme ile kapasitenin arttırılması
- Güvenlik ve özel verilerinin oluşturulabilmesi
- Veri, ses ve görüntünün ekonomik olarak birleştirilebilmesi

İletim Bozuc<u>uları</u>

- Gönderilen sinyalle alınan sinyal farklı olabilir
 - analog sinyallerde sinyal kalitesinde bozulma
 - Dijital sinyallerde bit hataları
- En etkili bozucular
 - Sinyal zayıflamasından kaynaklanan bozulma
 - Gecikme bozulması
 - Gürültü

Sinyal Zayıflaması

- Mesafeyle beraber sinyal gücündeki azalma
- İletim ortamına bağlıdır
- Alınan sinyal gücü:
 - Algılanacak kadar güçlü olmalıdır
 - Hatasız alınması için gürültüden belirgin bir şekilde yüksek olmalı
- Amplifiers/repeaters (güçlendirici/tekrarlayıcı) bunu sağlamak için kullanılır
- Frekans artışı ile de ilişkilidir.
- Önlemek için frekans bantları boyunca zayıflama eşitlenir.
 - Yük bobinleri ve güçlendiriciler kullanılması gibi

Gecikme Bozulması

- Sadece yönlendirilmiş ortamlar için geçerlidir
- Dağıtım hızı frekansa bağlı olarak değişiklik gösterir
- Bu sebeple sinyalin farklı frekans parçaları farklı zamanlarda hedefe ulaşır
- Bu ise alıcıda faz farkı oluşturur
- Dijital verilerde daha kritikdir
- Dijital sinyallerde diğer bitlerle karışmasına sebep olur.

Gürültü

- Verici ile alıcı arasında iletilen sinyale eklenmiş olan ilave sinyaldir
- Dört kategoriye ayrılabilir
- Sıcaklıkla ilgili (Termal)
 - Sıcaklıktan dolayı elektronların etkilenmesi sonucu oluşur
 - Elektronik cihazlar ve iletim ortamında mevcuttur
 - Haberleşme sistemindeki bant genişliği boyunca düzgün bir dağılım gösterir
 - Bu sebeple "beyaz gürültü" (white noise) olarak adlandırılır
- Intermodulation
 - Aynı ortamı kullanan sinyallerin birbirlerini etkilemesi
 - Sinyal frekanslarının farkı ya da çarpımı şeklinde oluşur
 - Alıcı ve vericilerin lineer olmayan yapısından kaynaklanır.

Gürültü

- Etkileşim (crosstalk)
 - İletim ortamındaki sinyalin yakındaki başka bir sinyalden etkilenmesi
 - Sıcaklık gürültüsü seviyesinde veya daha az seviyede oluşur
- Impulse
 - Düzenli olmayan pals veya anlık sinyal değişimi
 - Harici elektromanyetik etkiler gibi
 - Kısa sürelidir
 - Yüksek genliktedir
 - Analog sinyallerde çok az etki gösterir
 - Dijital sinyallerdeki bozulmanın en büyük sebebidir
 - 0.01 saniyelik enerji dalgalanması 56 kbps hzındaki bir dijital veride 560 bitin bozulmasına sebep olabilir.

Kanal Kapasitesi

- Mümkün olan maksimum kanaldaki iletim hızı
- Etkileyen faktörler
 - Veri hızı bps (bit/saniye)
 - Bant genişliği Saniyedeki tekrar veya Hz
 - Gürültü İletişim hattındaki
 - Hata oranı bozulmuş bitler
- Fiziksel özelliklerden dolayı oluşan sınırlandırmalar
- Bütün bu bilgiler dikkate alınarak kapasitenin en etkin bir şekilde kullanımı istenilir.

Nyquist Bant Genişliği

- Gürültünün olmadığı bir haberleşme kanalı kabul edelim
- Sinyal iletim hızı 2B ise maksimumu B olan frekanslardan oluşan bir sinyal bu sinyal hızında taşıma yapmak için yeterlidir.
 - Diğer bir ifadeyle B bant genişliği için, en yüksek sinyal hızı 2B dir.
- Binary sinyaller için, 2B bps veri hızı B Hz bant genişliğine ihtiyaç duyar
- Çok seviyeli sinyal gönderme ile bu oran M sinyal seviyesine çıkarılabilir.
 - M: Ayrık sinyal sayısı, voltaj seviyesi
- Çok seviyeli iletişimde Nyquist Formulü;
 - \circ C = 2B log₂M
- Sinyaller arttırılarak veri iletim hızı arttırılabilir. Ancak;
 - Alıcının işlem karmaşıklığı artacaktır.
 - Gürültü ve diğer bozucu etkiler M'yi sınırlandıracaktır.

Veri İletimi

Shannon Kapasite Formülü

- Veri iletim hızı ve gürültüyü beraber değerlendirir
 - Veri iletimi hızlandıkça transfer edilen bitlerin süresi kısalır.
 Bu durumda gürültüden etkilenme oranı artar.
 - Belli bir gürültü seviyesi için yüksek iletim hızı demek daha fazla hata demektir.
- Shannon, geliştirdiği formülle sinyali gürültü ile ilişkilendirdi (dB olarak)
 - SNR_{db}=10 log₁₀ (sinyal/gürültü)
- Kapasite ise;
 - \circ C=B log₂(1+SNR)
 - Ulaşılabilecek maksimum kapasite
 - Pratikte daha düşük değerlere ulaşılır çünkü formülde sadece beyaz gürültü dikkate alınmaktadır

Veri İletimi

Özet

- Veri iletim kavramları incelendi
- Frekans, spekturum ve bandgenişliği tanıtıldı
- Analog ve dijital sinyaller işlendi
- İletimi bozucu faktörlerden bahsedildi