Un titrage direct est une technique de dosage destructive mettant en jeu une réaction chimique.

La réaction support du titrage doit être :

- totale
- rapide
- unique

Le titrage vise à déterminer la concentration du réactif titré grâce à :

- la connaissance précise de la concentration du réactif titrant,
- la détermination précise du **volume à l'équivalence** V_F .

À l'équivalence, les réactifs sont introduits dans les proportions stœchiométriques. Les deux réactifs sont alors totalement consommés. C'est également le moment où a lieu le changement de réactif limitant.

Si un des réactifs a une couleur caractéristique, on peut réaliser un titrage colorimétrique où l'équivalence est repérée par le changement de couleur de la solution (au moment du changement de réactif limitant).

Protocole du titrage :

- Prélever un volume précis de la solution à titrer que l'on place dans un erlenmeyer ou un bécher : c'est la prise d'essai. Éventuellement, la solution peut avoir été diluée si elle est trop concentrée par rapport à la solution titrante. Le prélèvement de la solution à titrer doit donc se faire nécessairement avec le matériel le plus précis (une pipette jaugée le plus souvent que l'on rince avec la solution à prélever).
- Placer la solution titrante dans une burette graduée en respectant les précautions habituelles d'utilisation d'une burette graduée.
- Introduire un barreau aimanté (turbulent) dans la prise d'essai. On place la prise d'essai sous la burette graduée.
- Mettre en fonctionnement l'agitateur magnétique.
- Commencer à verser la solution titrante dans le bécher contenant la solution titrée.
- Dans l'idéal (lorsqu'on a le temps et le matériel), réaliser une première détermination grossière du volume équivalent puis remplir à nouveau la burette au zéro et opérer le plus précisément possible autour de l'équivalence.

Remarque : Le fait d'ajouter de l'eau dans la prise d'essai ne modifie en rien la quantité de matière de l'espèce à titrer présent dans la prise d'essai.

Situation

Afin de contrôler la composition d'une ampoule de complément alimentaire contenant des ions Fe²⁺ (aq), on va titrer la solution qu'elle contient par les ions MnO₄⁻ (aq) d'une solution de permanganate de potassium (K+ (aq) + MnO₄ - (aq)) de concentration en quantité de matière $C_B = 5.0 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$.

Couples en présence : $MnO_4^-(aq) / Mn^{2+}(aq)$ et $Fe^{3+}(aq) / Fe^{2+}(aq)$

🔔 La solution de fer (II) est acidifiée et donc corrosive 😡 📢

Mission:

Déterminer le plus précisément possible la concentration d'un complément alimentaire en ions fer (II) grâce à un titrage direct d'un volume $V_0=20,0\,\mathrm{mL}$ de ce complément.

Doit apparaître dans votre compte-rendu:

- l'équation de la réaction d'oxydoréduction support du titrage (en détaillant les deux demi-équations)
- la raison de l'utilisation d'une solution d'ion fer (II) acidifiée
- l'identification claire du réactif titré et du réactif titrant
- le schéma légendé du montage
- le volume équivalent V_E obtenu
- la relation justifiée entre n_0 et n_E (en notant n_0 la quantité initiale de l'espèce à titrer et n_E la quantité de l'espèce titrante versée à l'équivalence)

Vous préciserez quel est le réactif limitant dans le bécher

- avant l'équivalence ?
- à l'équivalence ?
- après l'équivalence ?
- Et surtout la détermination de la concentration en quantité de matière C_0 en ions fer (II) du complément alimentaire.