CS345: Assignment 8

- Q1. (a) Suppose we have n identical processors. Then show that the dot-product of two vectors, (a_1, \ldots, a_n) and (b_1, \ldots, b_n) , can be computed in $O(\log n)$ time. Hint: All $p_i = a_i b_i$ can be computed in O(1) time. Then show that $\sum_i p_i$ can be computed in $O(\log n)$ time using the processors.
- (b) Show that the product of two $n \times n$ matrices can be computed in $O(\log n)$ using n^3 identical processors.
- (c) Show that inverse of two lower triangular matrices can be computed in $O(\log^2 n)$ time using n^3 identical processors.
 - Q2. Prove or disprove.
 - (a) A system of linear equations can have no solution,
 - (b) A system of linear equations can have exactly one solution.
 - (c) A system of linear equations can have exactly two solutions.
- (d) A system of linear equations can have countably infinite solutions but not uncountable infinite solutions.
- Q3. A square matrix with integral entries is called *unimodular* if its determinant is 1 or -1. Show that its inverse exists and it is also a unimodular matrix.
- Q4. Let S be a subspace of \mathbb{R}^n . Let S^{\perp} denote its perpendicular subspace. Let B_1 and B_2 be some bases of the two subspaces respectively. Then show that $B_1 \cup B_2$ is a basis of the whole space.
 - Q5. Following matrix is called Vandermonde matrix.

$$A = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ a_1 & a_1^2 & a_1^3 & \dots & a_1^n \\ a_2 & a_2^2 & a_2^3 & \dots & a_2^n \\ \dots & \dots & \dots & \dots & \dots \\ a_n & a_n^2 & a_n^3 & \dots & a_n^n \end{bmatrix}$$

Let $det(A) = f_n(x_1, x_2, ..., x_n)|_{x_1 = a_1, ..., x_n = a_n}$.

Using the fact that $det(A) = det(A^T)$, deduce a recurrence relation for f_n .

- Q6. Let M be a full rank matrix of size $m \times n$ where $m \leq n$.
- (a) Show that $\{M \cdot x | x \in \mathbb{R}^n\}$ is a vector space. What is the dimension of this space?
- (b) Show that $\{x \in mathbbR^n | M \cdot x = 0\}$ is a vector space. What is its dimension?
- Q7. Consider any 4×5 matrix A and perform divide and conquer based LUP decomposition showing each step.