Лабораторная работа № 4

Вычислительный эксперимент

«Исследование колебательного контура с источником тока»

Работу выполнили: Стецук Максим

Сафин Рамаз

Оглавление:

- Отчёт Стецук Максима: стр. 3-7;
- Отчёт Сафина Рамаза: стр. 8-11;
- Ссылка на скринкаст: стр. 12.

Отчет по Лабораторной работе №4 Стецук Максима

Цель работы:

Организовать и провести вычислительный эксперимент для исследования колебательного контура с источником тока.

Используемое оборудование:

ΠΚ, Microsoft Office.

Математическая модель:

$$q(t) = C \epsilon (1 - \cos(\omega_0 t))$$
 (1)

где

q – заряд конденсатора;

С – ёмкость конденсатора;

 ε – ЭДС;

 ω_0 – частота колебаний;

t – время;

$$I(t) = -Q_0 \omega_0 \sin(\omega_0 t + \alpha) \tag{2}$$

где

I – ток в контуре;

Q₀ – неподвижный точечный заряд;

 ω_0 – частота колебаний;

α – начальное отклонение;

t – время;

$$U(t) = q / C = C \epsilon (1 - \cos(\omega_0 t)) / C = \epsilon (1 - \cos(\omega_0 t))$$
(3)

где

U – напряжение;

q – заряд конденсатора;

 ε – ЭДС;

 ω_0 – частота колебаний;

t – время.

Задача: Построить график зависимости заряда конденсатора q от времени t (q = q(t)).

Для построения графика использовалась формула, которая представлена в математической модели под номером (1).

Исходные данные:

С	3	ω
0,15	15	20

График:

Мы построили график зависимости заряда конденсатора от времени с помощью программы Microsoft Excel. Выяснили, что заряд совершает гармонические колебания, которые вследствие исходных данных, происходят в диапазоне от 0 до 4.5.

Задача: Построить график зависимости тока I от времени t (I = I(t)).

Для построения графика использовалась формула, которая представлена в математической модели под номером (2).

Исходные данные:

Q0	ω	φ
0,5	20	0,5

График:

Мы построили график зависимости тока от времени с помощью программы Microsoft Excel. Выяснили, что значение тока изменяется с течением времени в диапазоне от -0.5 до 0.5, вследствие взятых исходных данных. Из построенного графика видно, что значение тока изменяется со временем и совершает гармонические колебания.

Задача: Построить график зависимости напряжения U от времени t (U = U(t)).

Для построения графика использовалась формула, которая представлена в математической модели под номером (3).

Исходные данные:

3	ω
15	20

График:

Мы построили график зависимости напряжения от времени с помощью программы Microsoft Excel. Выяснили, что с течением времени напряжение изменяется в диапазоне от 0 до 30, вследствие взятых исходных данных. Из построенного графика можно сделать вывод, что напряжение совершает гармонические колебания с течением времени.

Вывод:

С помощью редактора таблиц мы построили графики зависимостей, таких как заряда конденсатора от времени, тока от времени и напряжения от времени. Из построенных графиков мы выяснили, что данные значения совершают гармонические колебания с течением времени. Но в следствии использованных формул, которые представлены в математической модели, в

одном случае диапазон изменения лежит и в положительной полуплоскости, и в отрицательной полуплоскости. А в двух случаях только в положительной полуплоскости.

Отчет по Лабораторной работе №4 Сафина Рамаза

Цель работы:

Организовать и провести вычислительный эксперимент для исследования колебательного контура с источником тока.

Используемое оборудование:

ΠΚ, Microsoft Office.

Математическая модель:

$$q(t) = C \epsilon (1 - \cos(\omega_0 t))$$
 (1)

где

q – заряд конденсатора;

С – ёмкость конденсатора;

 ε – ЭДС;

 ω_0 – частота колебаний;

t – время;

$$I(t) = -Q_0 \omega_0 \sin(\omega_0 t + \alpha) \tag{2}$$

где

I – ток в контуре;

Q₀ – неподвижный точечный заряд;

 ω_0 – частота колебаний;

α – начальное отклонение;

t – время;

$$U(t) = q / C = C \epsilon (1 - \cos(\omega_0 t)) / C = \epsilon (1 - \cos(\omega_0 t))$$
(3)

где

U – напряжение;

q – заряд конденсатора;

 ε – ЭДС;

 ω_0 – частота колебаний;

t – время.

Задача: Построить график зависимости заряда конденсатора q от времени t (q = q(t)).

Для построения графика использовалась формула, которая представлена в математической модели под номером (1).

Исходные данные:

С	ε	ω
0,15	15	20

График:

Мы построили график зависимости заряда конденсатора от времени и выяснили, что диапазон гармонических колебаний от 0 до 4.5.

Задача: Построить график зависимости тока I от времени t (I = I(t)).

Для построения графика использовалась формула, которая представлена в математической модели под номером (2).

Исходные данные:

Q0	ω	φ
0,5	20	0,5

График:

Мы построили график зависимости тока от времени и выяснили, что значение тока изменяется диапазоне от -0.5 до 0.5.

Задача: Построить график зависимости напряжения U от времени t (U = U(t)).

Для построения графика использовалась формула, которая представлена в математической модели под номером (3).

Исходные данные:

3	ω
15	20

График:

Мы построили график зависимости напряжения от времени и выяснили, что с течением времени напряжение изменяется в диапазоне от 0 до 30.

Вывод:

С помощью редактора таблиц мы построили графики зависимостей, таких как заряда конденсатора от времени, тока от времени и напряжения от времени. Из построенных графиков мы выяснили, что данные значения совершают гармонические колебания с течением времени.

Ссылка	на	скринкаст:

 $\underline{https://drive.google.com/file/d/1LVDLpD626vYixcd8cWi642xnjEsnBBn5}$