COMP9318: HIDDEN MARKOV MODEL

Wei Wang, University of New South Wales

Outline

- Markov Model
- Hidden Markov Model
 - Definition and basic problems
 - Decoding
 - □ Proj1

Applications

- On-line handwriting recognition
- Speech recognition
- Gesture recognition
- Language modeling
- Motion video analysis and tracking
- □ Protein sequence/gene sequence alignment
- Stock price prediction
- ...

What's HMM?

- Hidden Markov Model
 - Hidden
 - Markov

Markov Model

- □ The model (and some notations):
 - States: Q: $\{q_0, q_1, ..., q_{N-1}\}$
 - State sequence: $X = \{x_i\}$; each x_i takes a value in Q
 - \square State transition probabilities: $A_{u \rightarrow v}$
 - \square Initial state distribution: π
- \square Markov assumption (order = 1)
 - $\square \Pr[x_{i+1} | x_0, x_1, ..., x_i] = \Pr[x_{i+1} | x_i]$
 - Limited memory

Example

- CSE 0.6 0.2 0.2 0.6 □ Google's PageRank: CS9 States: webpages 0.3
 - State sequence: sequence of webpages one visited
 - State transition probabilities:
 - $\blacksquare A_{u \rightarrow v} = \#$ -outlinks-from-page-u-to-v / #-out-links-at-page-u

0.3

0.6

- (actually a bit more complex)
- \square Initial state distribution: $\pi = \text{uniform on all pages}$
- Markov assumption (order = 1)
 - $\square \Pr[x_{i+1} | x_0, x_1, ..., x_i] = \Pr[x_{i+1} | x_i]$
 - Randomly click an out link on page i

Sequence Probability

- □ What's the probability of the state sequence being $Q = q_0 q_1 \dots q_T$?
- Chain rule + Markov assumption
 - □ $Pr[Q | model = \lambda] = Pr[q_0 | \lambda]$ * $Pr[q_1 | q_0, \lambda]$ * $Pr[q_2 | q_0, q_1, \lambda] * \dots$ * $Pr[q_T | q_0, q_1, \dots, q_{T-1}, \lambda]$
 - = $Pr[q_0 | \lambda] * (Pr[q_1 | q_0, \lambda] * Pr[q_2 | q_1, \lambda] * ... * Pr[q_T | q_{T-1}, \lambda])$

State Transition Probability

0.2

State

0.6

0.3

Example

HMM

0.6

Observations: R R G B

States =?

- □ Hidden:
 - States are hidden
 - However, each state emits a symbol according to a distribution $B(u \rightarrow \alpha)$
- Additional notations
 - Symbols: 0, 1, 2, ..., M-1
 - \square Observed symbol sequence: O_0 , O_1 , ..., O_{T-1}

Symbol Emission
Probability
(Green = 1/6;
Red = 1/6; Blue
= 4/6)

0.6

The Generative Process

- Loop
 - Pick the next state the transit to
 - Transit to the chosen state, and generate an output symbol
- All according to the pmf of the distributions

3 Problems

□ P1: Model Evaluation Problem

- $lue{}$ What's the probability of seeing this observation sequence, given the HMM model λ ?
- □ Compute $Pr[O_0, O_1, ..., O_{T-1} | \lambda]$

Forward algorithm

□ P2: Decoding Problem

Viterbi algorithm

proj1

- What is the most likely state sequence (Q) corresponding to this observation sequence, given the HMM model λ ?
- □ Argmax_Q $Pr[Q=q_0,q_1,...,q_{T-1}|O_0,O_1,...,O_{T-1},\lambda]$
- P3: Learning the model

Baum-Welch algorithm

What is the most likely parameters that generates this observation sequence?

Application: Typed word recognition

- Assume all chars are separated
- Character recognizer outputs probability of the image being particular character, P(image | char).
- There are infinite number of observations though

Casting into the Evaluation Problem

- Assume the lexicon is given
- Construct separate HMM models for each lexicon word
- Pick the model whose generation probability is the maximum

The Other Approach

- Construct a single HMM models for all lexicon words
- Pick the best state sequence (= char sequence)
 whose generation probability is the maximum
- This is actually the decoding problem

Decoding Problem (P2)

- Naïve algorithm:
 - Enumerate all possible state sequence and evaluate their probability of generating the observations (next slide)
 - Pick the one whose resulting probability is the highest
 - \square Problem: time complexity = $O(N^T * T)$
- Viterbi: Dynamic programming-based method
 - Attempt: if we "magically" know best state sequence for RRG, can we know what's the best state sequence for RRGB?
 - No. (Give an counter example)
 - Remedy: best state sequence for RRGB must come from the best state sequence ending at some state for the last observation. We don't know which, but we can compute all.

Joint Probability

15

All conditioned on λ

- - $\begin{array}{c} \blacksquare \text{ (II) } \Pr[q_0, q_1, ..., q_{T-1} | \lambda] = \Pr[q_0 | \lambda] * \\ \Pr[q_1 | q_0, \lambda] * ... * \Pr[q_{T-1} | q_{T-2}, \lambda] \end{array}$
- \square Example ($\pi[q_i] = 1/3$)

States: 1 1 2 3

Observations: R R G B

- \square (I) = (3/6) (3/6) (3/6) (4/6)
- \square (II) = (1/3) (0.6) (0.2) (0.6)

Viterbi Algorithm

- □ Define $\delta[O_t \rightarrow q_i]$ as the best probability of any state sequence such that the symbol at timestamp t, denoted as O_t , corresponds to state q_i
- Recursive formula:

$$\delta[O_{t} \rightarrow q_{i}] = \max_{u \in [0, N-1]} ($$

$$\delta[O_{t-1} \rightarrow q_{u}] * A[q_{u} \rightarrow q_{i}] * B[q_{i} \rightarrow O_{t}])$$

Boundary condition:

$$\delta[O_0 \rightarrow Q_i] = \pi[Q_i] * B[Q_i \rightarrow O_0]$$

Viterbi Algorithm

- Define $\delta[O_t \rightarrow q_i]$ as the best probability of any state sequence such that the symbol O_t corresponds to state q_i
- Recursive formula:

$$\delta[O_{t} \rightarrow q_{i}] = \max_{u \in [0, N-1]} (\delta[O_{t-1} \rightarrow q_{u}] * A[q_{u} \rightarrow q_{i}] * B[q_{i} \rightarrow O_{t}])$$

Boundary condition:

$$\delta[O_0 \rightarrow Q_i] = \pi[Q_i] * B[Q_i \rightarrow O_0]$$

□ Easy to find the computing order in DP is from O_0 to O_{T-1} , within which we loop over all the states.

Example of Viterbi Algorithm

State\Symbol	R	R	G	В
State = 1	(1/3)*(3/6)=1/6	1/20	śś	
State = 2	(1/3)*(1/6)=1/18	ś		
State = 3	(1/3)*(1/6)=1/18	śśś		

0.6

e.g., for the cell (State = 1, 2nd R), it considers:

- 1. Prev state is 1: prob = (1/6)*0.6*(3/6)
- 2. Prev state is 2: prob = (1/18)*0.1*(3/6)
- 3. Prev state is 3: prob = (1/18)*0.3*(3/6)

Max of the three options is the first one with prob value of (1/20), hence the value in the cell (and $\delta[O_1 \rightarrow q_0]$

Also "remembers" which prev state is the max.

Example of Viterbi Algorithm

State\Symbol	R	R	G	В
State = 1	(1/3)*(3/6)=1/6	1/20	1/100	1/1000
State = 2	(1/3)*(1/6)=1/18	1/180	1/200	1/1500
State = 3	(1/3)*(1/6)=1/18	1/180 (all)	1/600	1/500

Tracing back, we know the best state sequence in terms of the generative probability of the observed symbol sequence is RRGB

Time complexity: $O(T*N^2)$

Space complexity: O(T*N), as we need to trace

back

All computation of probabilities should be performed in the log space to avoid underflow. E.g., log(p1*p2) = log(p1) + log(p2)

A Brief Introduction to Proj1

- Input:
 - An HMM model
 - A test file; each line is an address to be parsed
- Output:
 - Top-k parsed results (i.e., state sequences) and their corresponding log-probability score
- Notes
 - Special states: BEGIN and END
 - Add-1 smoothing
 - Tokenization of the address line

Address Parsing Example

- States: {BEGIN, ST#, STNM, STTYP, CITY, STATE, PSTCD}
- Symbols: ASCII strings
- Observed symbol sequence:
 - begin 221 Anzac Parade Kingsford NSW 2032 end

```
begin ST# STNM STTYP CITY STATE PSTCD end
```

- What's the most likely state sequence?
- Enables us to perform advanced tasks, such as deduplication and advanced queries
 - begin 10 Kingsford St, Fairy Meadow, NSW 2519 end

Smoothing

- Emission probabilities
 - \blacksquare Let Sybmols = {a, b, c, d, ..., z}
 - □ Without smoothing, $Pr[S \rightarrow x] = \#(S,x) / \#(S)$
 - Hence if #(S, x) = 0, the probability is 0.
 - With add-1 smoothing, $Pr[S \rightarrow x] = [\#(S,x)+1] / [\#(S)+|Symbols|+1]$
 - Denominator needs +1 for Out-of-vocabulary (OOV) sybmol
- State transition probabilities
 - With add-1 smoothing, $Pr[S_1 \rightarrow S_2] = [\#(S_1,S_2)+1] / [\#(S_1)+|States|]$
- Special procedure to handle the BEGIN/END states (and its impact)

References

- Section 5 in "A Revealing Introduction to Hidden Markov Models" by Mark Stamp.
- Sung-jung Cho, "Introduction to Hidden Markov Model and Its Application"
- Ankur Jain, "Hidden Markov Models"