第5章 同步时序电路设计

数字系统的设计

电路的功能比较简单时

● 分析过程(同步电路)

同步时序电路的设计

针对比较简单的同步电路,设计方法是:文字功能描述→状态表或状态图→逻辑方程→逻辑图

- 原始状态表的建立
- 用触发器实现同步时序电路
- 用MSI时序模块同步时序电路

同步时序电路的建模

例1 试设计一个串行加法器,实现两个二进制数 $A=a_{n-1}a_{n-2}...a_0$ 及 $B=b_{n-1}b_{n-2}...b_0$ 相加,输入时低位在前,高位在后。电路的输出为 $Z=z_{n-1}z_{n-2}...z_0$,串行地表示当前相加的结果。

串行加法器的建模过程

PS Al	8 00	01	11	10	
S_0	$S_0 / 0$	$S_0 / 1$	$S_1 / 0$	$S_0 / 1$	
S_1	$S_0 / 0$ $S_0 / 1$	$S_1 / 0$	$S_1 / 1$	$S_1 / 0$	NS/z

例2 设计一个"111"序列 检测器,序列可以重叠。

序列 检测器 CP 1234567 x 0011110 こ 0000110

题意分析:

电路所要记忆的状态:

设 S₁: 未收到1 (即收到的是0) 的状态;

 S_2 : 收到一个1的状态;

S3: 连续收到两个1的状态;

S₄: 连续收到三个1的状态。

米里型

由于S3与

可省略掉S4

思考: 莫尔型?

设电路所要记忆的状态:

S₁/0: 收到0,

输出为0;

S₂/0: 收到一个1,

输出为0;

 $S_3/0$: 连续收到两个

1, 输出为0;

S₄/1: 连续收到三个 1, 输出为1。

X PS	0	1	Z	
S_1	S_1	S_2	0	
S_2	S_1	S_3	0	
$egin{array}{c} \mathbf{S}_2 \ \mathbf{S}_3 \end{array}$	S_1	S ₃ S ₄	0	
S_4	S_1	S_4	1	NS
,				CITI

思考: 若本题, 序列 不可重叠, 试求其原 始状态图(表)。

原始状态图

原始状态表

例3设计一个8421BCD误码检测器。8421BCD码低位在前、高位在后串行地加到该检测器的输入端。若收到一个错误的代码,则在最高位到来时输出为1,否则输出为0。每检测完一个代码电路便复位,并开始接收下一个代码。

8421BCD码 误码检测器的状态表

8421BCD码误码检测器模型(状态图)

$\setminus x$		
PS	0	1
S_0	$S_1/0$	$S_2/0$
S_1	$S_3/0$	$S_4/0$
S_2	$S_5/0$	$S_6/0$
S_3	$S_7/0$	$S_8/0$
S_4	$S_9/0$	$S_{10}/0$
S_5	$S_{11}/0$	$S_{12}/0$
S_6	$S_{13}/0$	$S_{14}/0$
S_7	$S_0/0$	$S_0/0$
S_8	$S_0/0$	$S_0/1$
S_9	$S_0/0$	$S_0/1$
S_{10}	$S_0 / 0$	$S_0/1$
S_{11}	$S_0 / 0$	$S_0/0$
S_{12}	$S_0/0$	$S_0/1$
S_{13}	$S_0 / 0$	$S_0/1$
S_{14}	$S_0 / 0$	$S_0/1$

NS/z

例4 设计一个铁路和公路交叉路口的交通控制器。

在 P_1 和 P_2 点设置了两个压敏元件。这两点相距较远,因此一列火车不会同时压在两个压敏元件上。A、B是两个栅门。当火车由东向西或由西向东通过 P_1 —— P_2 段,且当火车的任何部分位于 P_1 —— P_2 之间时,栅门A、B应同时关闭,否则栅门同时打开。压敏元件的功能是,当它感受到火车的压力时,产生逻辑电平1,否则产生逻辑电平0。设位于 P_1 、 P_2 两点的压敏元件所输出的信号分别为 x_1 和 x_2 。

控制电路的输入就是压敏元件所发出的信号 x_1 、 x_2 。它的输出信号z用来控制栅门A、B,当z=1时,栅门关闭;当z=0时,栅门打开。

交通控制器示意图

火车自西向东行驶原始状态示意图

(b)

交通控制器莫尔型状态图

交通控制器状态表

交通控制器状态图

x_1x PS	00	01	11	10
S_1	$S_1/0$	$S_5/1$	×/×	$S_2/1$
S_2	$S_3/1$	×/×	×/×	$S_2/1$
S_3	$S_3/1$	$S_4/1$	×/×	×/×
S_4	$S_1/0$	$S_4/1$	×/×	×/×
S_5	$S_6/1$	$S_{5}/1$	×/×	×/×
S_6	$S_6/1$	×/×	×/×	S ₇ /1
S_7	$S_1/0$	\times/\times	×/×	S ₇ /1

NS/z

交通控制器莫尔型状态表

交通控制器莫尔型状态图

x_1x PS	² 00	01	10	<i>z</i>
S_1	S_1	S_5	S_2	0
S_2	S_3	×	S_2	1
S_3	S_3	S_4	×	1
S_4	S_1	S_4	×	1
S_5	S_6	S_5	×	1
S_6	S_6	×	S_7	1
S_7	S_1	×	S_7	1
NS				

例5 试设计一个加1/加2同步计数器。当控制信号x为0时, 计数器作十进制加1计数;当控制信号x为1时,做加2计数, 但x不会在计数器状态为奇数时由0变1。

加1/加2计数器的状态表

加1/加2计数器的状态图

x PS	0	1	
S_0	S_1	S_2	
S_1	S_2	×	
S_2	S_3	S_4	
S_3	S_4	×	
S_4	S_5	S_6	
S_5	S_6	×	
S_6	S_7	S_8	
S_7	S_8	×	
S_8	S_{9}	S_0	
S_9	S_0	×	NS

例6下图所示的是一机器人在迷宫中运行示意图,试为该机器人设计一个控制电路,使其能自动从迷宫中走出。机器人的运行规则是:没有遇障碍物时一直直线行走;当接触到障碍物时,自动转向。设第一次碰到障碍物时,向右转动直至障碍物消失;第二次碰到障碍物时则向左转动直至障碍物消失;再下次则又向右转,余此类推。在该机器人的前端有一个传感器,当这个传感器碰到障碍物时,输入一个x=1的信号,否则x=0。机器人有两根控制线: z₁=1时向左转,z₂=1时向右转。

题意分析:

输入信号: 当机器人的鼻子接触到障碍物时x=1,否则x=0

输出信号(即机器人产生的控制信号): $Z_1=1$,机器人向左转动

 $Z_2=1$,机器人向右转动

应记忆的状态:

So: 无障碍物,上次转动是左转的

S₁: 有障碍物,右转

S₂: 无障碍物,上次转动是右转的

S₃: 有障碍物,左转

状态图

状态表

例7 设计一个自动售饮料机的逻辑电路。它的投币串口每次只能投入五角或一元的硬币。投入一元五角硬币后,机器自动给出一杯饮料;投入两元(两枚一元)硬币后,在给出饮料的同时找回一枚五角的硬币。

题意分析:

- (1) 输入变量: 投币信号 A、B 投入一元硬币 A=1 未投入一元硬币 A=0 投入五角硬币 B=1 未投入五角硬币 B=0
- (2) 输出变量: 给出饮料 Y, 找回五角硬币 Z 给出饮料 Y=1
 不给出饮料 Y=0
 找回一枚五角硬币 Z=1
 不找回一枚五角硬币 Z=0

题意分析(续):

(3) 当A=1或B=1 在电路转入新状态的同时也随之消失,否则被误认为又一次投币信号。

(4) 需要记忆的状态:

设未投币前电路的初始状态为 S_0 ;

投入五角硬币以后为 S_1 ;

投入一元硬币(包括投入一枚一元硬币和投入两枚五角硬币的情况)以后为 S_2 ;

再投入一枚五角硬币后电路返回S0,同时输出为Y=1,

Z=0;

如果投入的是一枚一元硬币,则电路也应返回 S_0 ,同时输出为Y=1,Z=1。

因此电路的状态数 M=3

状态表

状态图

AF	3				
PS	00	01	11	10	
S_0	$S_0/00$	$S_1/00$	\times/\times	$S_2/00$	
S_1	$S_1/00$	$S_2/00$	\times/\times	$S_0/10$	
S_2	$S_2/00$	$S_0/10$	\times/\times	$S_0/11$	NS/YZ
'					110/12