Warming-up Module 2: Smallest Triangle Problem

Younghoon Kim

(nongaussian@hanyang.ac.kr)

Purpose

- Encourage your teamwork
 - Know the strong points of your team's members
 - E.g.,
 - "A writes Java code very well!"
 - "B is very good at math and algorithm!"
- Understand why processing big data is so hard

What is Big Data?

Big Data relates to rapidly growing, <u>Structured and Unstructured datasets</u> with sizes beyond the ability of <u>conventional database tools</u> to store, manage, and analyze them. In addition to its size and complexity, it refers to its ability to help in <u>"Evidence-Based" Decision-making</u>, having a high impact on business operations

Source: CRISIL GR&A analysis

How to Deal with Big Data?

- Sample & analysis with small data
- Find more efficient algorithms
- Distribute a task & compute it in parallel

Finding the Closest Pair

- Given
 - A set of d-dimensional points
 - D = $\{p_1, p_2, ..., p_n\}$
 - p_i: a d-dimensional point <p_{i1}, ..., p_{id}>
- Find
 - A pair of points from D whose Euclidean distance is the smallest

Finding the Closest Pair

A Naïve Algorithm

- mind ← ∞
- minpair ← (-1, -1)
- For i = 0 to n-2
 - For j = i+1 to n-1
 - d \leftarrow Compute $d(p_i, p_i)$
 - if mind > d
 - → mind ← d
 - → minpair ← (i, j)
- return mind, minpair

Time complexity $= O(n^2)$

- We cannot find the exact answer using sampling!
- Sampling is not a good solution

Too Slow!

- Time complexity $\geq O(n^2)$
- How to improve the performance
 - 1. Parallelization
 - 2. Develop a more efficient algorithm

median


```
divide-and-conquer (xP, yP)
                    where xP is P(1) .. P(N) sorted by x coordinate, and
                            yP is P(1) .. P(N) sorted by y coordinate (ascending order)
if N \leq 3 then
 return <closest, closestPair> of xP using brute-force algorithm
else
 xL \leftarrow points of xP from 1 to \lceil N/2 \rceil
 xR \leftarrow points of xP from \lceil N/2 \rceil + 1 to N
 xm \leftarrow xP(\lceil N/2 \rceil)_x // x value of the median
 yL \leftarrow \{ p \in yP : p_x \le xm \} // \text{ list of points sorted by y coordinate}
 vR \leftarrow \{ p \in vP : p_v > xm \}
 (dL, pairL) ← divide-and-conquer(xL, yL)
 (dR, pairR) ← divide-and-conquer(xR, yR)
 (dmin, pairMin) ← (dR, pairR)
 if dL < dR then
    (dmin, pairMin) ← (dL, pairL)
 endif
 yS \leftarrow \{ p \in yP : |xm - p_x| < dmin \} // list of points sorted by y coordinate
 nS ← number of points in yS
 (closest, closestPair) ← (dmin, pairMin)
 for i from 1 to nS - 1
    k \leftarrow i + 1
    while k \le nS and yS(k)_v - yS(i)_v < dmin
       if |yS(k) - yS(i)| < closest then
          (closest, closestPair) \leftarrow (|yS(k) - yS(i)|, {yS(k), yS(i)})
       endif
       k \leftarrow k + 1
    endwhile
 endfor
 return <closest, closestPair>
endif
```


Execution Time

Smallest Triangle Problem

Given

- n points A[1..n] in the 2-D plane,
 - where i-th point has two attributes A[i].x and A[i].y representing x-coordinate and y-coordinate

Goal

- Find 3 points A[i], A[j], A[k] (i, j, k are distinct)
 - such that d(A[i], A[j]) + d(A[j], A[k]) + d(A[k], A[i]) is minimized
 - $d(A[i],A[j]) = \sqrt{(A[i].x A[j].x)^2 + (A[i].y A[j].y)^2}$

Input and Output

Input

- A file starts with a positive integer n indicating the number of points
- The following n lines contain point ID A[i].id, two real numbers A[i].x and A[i].y with a delimiter ','

Output

- Output 3 lines in total
- Each line show a point ID in the smallest triangle
- Print on the screen (e.g., use 'System.out.println()')

A Naïve Algorithm

- min ← ∞
- mintrip ← (-1, -1)
- For i = 0 to n-3
 - For j = i+1 to n-2
 - For k = j+1 to n-1
 - $d_1 \leftarrow Compute d(p_i, p_j)$
 - $d_2 \leftarrow Compute d(p_i, p_k)$
 - $d_3 \leftarrow Compute d(p_k, p_i)$
 - perim \leftarrow d₁ + d₂ + d₃
 - if min > perim
 - » min ← perim
 - » mintrip \leftarrow (i, j, k)
- return min, mintrip

Time complexity $= O(n^3)$

Data set

Data sets

- Github
- Files:
 - Varying size: 100.dat ~ 1000000.dat
 - Dimensionality = 2
- File format:
 - The first line contains an integer indicating the number of points
 - Each line has a point with delimiter = ','
 - The first column is its point ID
 - E.g., 17,0.187096,0.822353
- Command line input arguments
 - \$ java SmallestTriangle <filename>
- Output → standard out (= print on the screen)
 - A point ID in the smallest triangle in each line
 - E.g.,
 - 17
 - 18
 - 20

Example

Input:

```
- 4
0,0.0,0.0
1,2.0,2.0
2,2.0,1.0
3,1.0,1.0
```

Output:

```
-1
2
3
```


PBL Class

PBL Class

