Notas Técnicas sobre Projeto de Circuitos Eletrônicos

v. 0.0.1

12 de agosto de 2022

Em um primeiro momento, estas notas técnicas visam reunir alguns conceitos e orientações de ordem prática a serem considerados durante o projeto de circuitos eletrônicos.

Material disponibilizado segundo a licença CC-BY-SA 4.0.

Sumário

1	Res	sistores SMD	3
	1.1	Tamanhos e Potências	4
	1.2	Padrão de Ilha de Solda	5
	1.3	Resistores MELF	6
	1.4	Referências	6
2	Cap	pacitores	7
	2.1	Capacitores de Desacoplamento/ $Bypass$	7
		2.1.1 Valores Típicos	7
		2.1.2 Referências	8
	2.2	Faixas de Valores Comerciais de Capacitores	8
3	LEI	$D\mathbf{s}$	9
	3.1	LEDs Convencionais	9
4	Pro	otoboard	10
5	Pla	ca de Circuito Impresso	11

Resistores SMD

1.1 Tamanhos e Potências

Code		Length (I)		Width (w)		Height (h)		Power
Imperial	Metric	inch	mm	inch	mm	inch	mm	Watt
0201	0603	0.024	0.6	0.012	0.3	0.01	0.25	1/20 (0.05)
0402	1005	0.04	1.0	0.02	0.5	0.014	0.35	1/16 (0.062)
0603	1608	0.06	1.55	0.03	0.85	0.018	0.45	1/10 (0.10)
0805	2012	0.08	2.0	0.05	1.2	0.018	0.45	1/8 (0.125)
1206	3216	0.12	3.2	0.06	1.6	0.022	0.55	1/4 (0.25)
1210	3225	0.12	3.2	0.10	2.5	0.022	0.55	1/2 (0.50)
1812	3246	0.12	3.2	0.18	4.6	0.022	0.55	1
2010	5025	0.20	5.0	0.10	2.5	0.024	0.6	3/4 (0.75)
2512	6332	0.25	6.3	0.12	3.2	0.024	0.6	1

1.2 Padrão de Ilha de Solda

Code		Pad length (a)		Pad width (b)		Gap (c)	
Imperial	Metric	inch	mm	inch	mm	inch	mm
0201	0603	0.012	0.3	0.012	0.3	0.012	0.3
0402	1005	0.024	0.6	0.020	0.5	0.020	0.5
0603	1608	0.035	0.9	0.024	0.6	0.035	0.9
0805	2012	0.051	1.3	0.028	0.7	0.047	1.2
1206	3216	0.063	1.6	0.035	0.9	0.079	2.0
1812	3246	0.19	4.8	0.035	0.9	0.079	2.0
2010	5025	0.11	2.8	0.059	0.9	0.15	3.8
2512	6332	0.14	3.5	0.063	1.6	0.15	3.8

1.3 Resistores MELF

Name	Abbr.	Code	Length	Diameter	Power
			mm	mm	Watt
MicroMELF	MMU	0102	2.2	1.1	0.2 - 0.3
MiniMELF	MMA	0204	3.6	1.4	0.25 - 0.4
MELF	MMB	0207	5.8	2.2	0.4 - 1.0

1.4 Referências

https://eepower.com/resistor-guide/resistor-standards-and-codes/resistor-sizes-and-packages

Capacitores

2.1 Capacitores de Desacoplamento/Bypass

Em geral, os CIs devem possuir um capacitor de desacoplamento/bypass bem próximo aos seus terminais de alimentação. Este capacitor tem dois propósitos:

- Eliminar ruídos provenientes da fonte de alimentação.
- Fornecer corrente para o CI durante seus chaveamentos, evitando assim a injeção de ruídos nas linhas de alimentação, o que poderia provocar mau funcionamento próprio ou de outros componentes (em especial, de outros CIs).

Tal capacitor atua de maneira a evitar interferências por altas frequências.

Em adição, é também conveniente adicionar um capacitor na entrada de alimentação de cada PCI para melhor estabilidade das linhas de alimentação, evitando interferências por baixas frequências.

2.1.1 Valores Típicos

Nota: os datasheets podem apresentar outros valores; portanto, é recomendado consultá-los.

Próximo aos CIs: 100 nF (10 nF a 100 nF), cerâmico

Na entrada de alimentação: $1\,\mu F$ a $100\,\mu F$, eletrolítico ou de tântalo

2.1.2 Referências

https://en.wikipedia.org/wiki/Decoupling_capacitor
https://components101.com/articles/decoupling-capacitor-vsbypass-capacitors-working-and-applications

2.2 Faixas de Valores Comerciais de Capacitores

Tipo	Capacitância	Tensão	Custo relativo	
Cerâmico	${\rm de}\ 2.2{\rm pF}\ {\rm a}\ 100{\rm nF}$	50 V	baixo	
Poliéster	de 1,0 nF a 680 nF	de~63V~a~2000V	médio/alto	
Eletrolítico	de $0.22\mu\mathrm{F}$ a $4700\mu\mathrm{F}$	de 6,3 V a 400 V	baixo/médio	
Tântalo	de 0,1 μF a 100 μF	$\mathrm{de}\; 16\mathrm{V}\;\mathrm{a}\; 35\mathrm{V}$	alto	
Trimmer	de 3,0 pF a 120 pF	200 V	alto	

O custo depende do material, da capacitância e da tensão.

LEDs

3.1 LEDs Convencionais

Para os LEDs convencionais, um bom brilho pode ser obtido com uma corrente entre $10\,\mathrm{mA}$ e $20\,\mathrm{mA}$. O valor inferior pode ser mais interessante sob o ponto de vista de economia de energia.

A queda de tensão varia um pouco de acordo com a cor, mas o valor de $1.8\,\mathrm{V}$ pode ser adotado em geral.

Chapter 4

Protoboard

Para melhorar a estabilidade do funcionamento dos circuitos em proto-board, logo na entrada da alimentação pode-se colocar dois capacitores em paralelo, sendo um eletrolítico de $10\,\mu F$ e outro cerâmico de $10\,n F$. Se necessário, esta configuração também pode ser replicada para as outras linhas de distribuição de alimentação.

Placa de Circuito Impresso