

เลขที่นั่งส	อบ

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคเรียนที่ 2 ปีการศึกษา 2558

วิชา ENE 341 ระบบควบคุมเชิงเส้น	ม ภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม ปีที่ 3 (ปกติ)
(Linear Control	ร _{รุง} า ้_{เค.ร.} รอบ วันพุธที่ 24 กุมภาพันธ์ พ.ศ. 2559 เวลา 09:00 -12:00น.

คำเตือน

- 1. ข้อสอบวิชานี้มี 4 ข้อ 7 หน้า (รวมใบปะหน้า) คะแนนรวม 100 คะแนน **ให้ทำทุกข้อ**
- 2. แสดงวิธีทำลงในข้อสอบเท่านั้น และแสดงวิธีทำทุกข้อโดยใช้เลขนัยสำคัญ 2 ตำแหน่ง
- 3. ไม่อนุญาตให้นำเอกสาร หรือหนังสือประกอบการเรียนเข้าห้องสอบ
- 4. สามารถนำเครื่องคำนวณเข้าห้องสอบได้ตามระเบียบของมหาวิทยาลัย
- 5. ขอให้นักศึกษาทุกคนโชคดีในการสอบ

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

ข้อสอบข้อที่	1	2	3	4	คะแนนรวม
คะแนนเต็ม	25	25	25	25	100
คะแนนที่ได้					

ชื่อ-สกุล	
รหัสประจำตัว	เลขที่นั่งสอบ

รศ.ดร.วุฒิชัย อัศวินชัยโชติ ผู้ออกข้อสอบ (โทร 9056)

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

(รศ.ตร.ราชวดี ศิลาพันธ์)

หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

ชื่อ-สกุล	
รหัสประจำตัว#	เลขที่นั่งสอบ#

(25 points) Problem 1: จงหา Transfer Function $\frac{Y_2(s)}{R_1(s)}$ ของ รูปต่อไปนี้

ชื่อ-สกุล	٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠
รหัสประจำตัว#	เลขที่นั่งสอบ#

(25 points) Problem 2. พิจารณารูปภาพด้านล่าง

จงหาค่าความไวของสมการถ่ายโอนของระบบควบคุมแบบปิด M(s) เทียบกับค่า K ที่ $\omega=5$ rad/sec. $\left(S_{\kappa}^{M}(j\omega)\Big|_{\omega=5}\right)$

ชื่อ-สกุล	
	เลขที่นั่งสอบ#

(25 points) Problem 3. พิจารณารูปตามภาพด้านล่าง

จงหาค่า K_1 และ K_2 ที่ทำให้ระบบมีค่า peak overshoot เท่ากับ 10% และ setting time เท่ากับ 0.05 วินาที

ชื่อ-สกุล	
รหัสประจำตัว#	เลขที่นั่งสอบ#

(25 points) Problem 4. พิจารณารูปภาพด้านล่าง

$$G_c(s)G(s) = \frac{2}{s + 0.2K}$$
 and $H(s) = \frac{2}{2s + \tau}$

(15 คะแนน) ก. ถ้าให้ $\tau=2.43$ จงหาค่า K ที่ทำให้ค่า steady state error เนื่องจาก unit step input, R(s)=1/s, มีค่าเท่ากับศูนย์

ชื่อ-สกุล	
รหัสประจำตัว#	เลขที่นั่งสอบ#

(10 คะแนน) ข. จงหาค่า % overshoot และ settling time ของระบบนี้เมื่อให้ค่า K เท่ากับค่าที่หาได้ในข้อ ก.

"I'm going to need toch support."

Good Luck!!!