Proyecto Final: Sistema de riego automatizado con ESP8266 MOD conectado a IoT

Fernando Jiménez, B74020 Kristel Herrera Rodríguez, C13769

Contenidos

Introducción

Objetivo General

Objetivos Específicos

Importancia del Proyecto

Aplicación Práctica

Conexiones y Montaje

Funcionamiento

Retos con el Hardware

Resultados

Conclusiones y Recomendaciones

Introducción

• El proyecto se centra en diseñar e implementar un sistema de riego automatizado para plantas de interior, utilizando un microcontrolador ESP8266MOD y tecnologías de IoT con la plataforma de Blynk

Objetivo General

• Diseñar e implementar una maceta automatizada para el cuidado de plantas de interior que utilice sensores de humedad en la tierra y tecnología de riego automatizado mediante el uso de un microcontrolador ESP8266MOD.

Objetivos Específicos

- Proporcionar un entorno óptimo para el crecimiento de las plantas simplificando el cuidado para los usuarios.
- Diseñar un Sistema de Riego Automatizado que ajuste la cantidad de agua suministrada a la planta seg ún los niveles medidos de humedad en la tierra.
- Integrar Tecnología de Control mediante el ESP8266 para que gestione la toma de decisiones.
- Optimizar el sistema para garantizar un uso eficiente del agua evitando el desperdicio y adaptándose a las necesidades reales de la planta.
- Implementar Internet de las cosas (IoT) para habilitar la comunicación entre la maceta y el usuario permitiendo el envío de notificaciones sobre el estado de la planta y avisos de riego a través de dispositivos conectados.

- La automatización del riego contribuye a la conservación del agua y al bienestar de plantas
- Según estudio de OnePoll [3], 7 de cada 10 millennials poseen plantas de interiores
 en sus casas.
- El 67 % de los entrevistados señala que el cuido de éstas plantas es un trabajo de alto desafío.
- El cuido de plantas de hogar requiere de una elevada atención para obtener los beneficios que estas traen a una casa

Importancia del proyecto

- Beneficios de las plantas de interiores:
 - Mejora de la Calidad del Aire
 - Bienestar Mental
 - Decoración y estética
- Se desea automatizar el riego de estas plantas permitiendo a los usuarios disfrutar de sus beneficios, sin ser agobiados por el cuido y la responsabilidad que implican.

Aplicación Práctica

- El sistema puede ser utilizado en:
 - Hogares
 - Oficinas y espacios de trabajo
 - Instituciones Educativos
 - Centros Médicos
- El proyecto puede ser escalable y sus bases podrían adaptarse y modificarse para utilizarse en otras disciplinas como la agricultura

Montaje y conexiones

Conexión a Tierra Común	Cable negativo de la batería soldado al de la mini bomba de agua.
Fuente de Energía	Cable positivo de la batería conectado al terminal común del módulo de relé.
Control de la bomba	Cable positivo de la bomba al terminal normalmente abierto del relé.

Montaje y conexiones

Alimentación del Relé

3V y tierra desde el NodeMCU al módulo de relé.

Señal Digital

Pin D3 del NodeMCU al pin de señal del relé para activar la bomba.

Funcionamiento y Seguridad del Relé en el Sistema de Riego

- Interruptor Digital: El relé es controlado por el NodeMCU para activar la bomba de agua.
- Seguridad Mejorada: Protege el NodeMCU de altas corrientes, asegurando la integridad del circuito.
- Activación Eficiente: El relé cierra el circuito entre COM y NO al recibir una señal digital, permitiendo el flujo de corriente a la bomba.

Interfaz de Usuario en Blynk para Riego Automatizado

Dashboard en Blynk muestra niveles de humedad, estado de la bomba y nivel del agua. Actualización cada 5 segundos para precisión en tiempo real

Alertas Inteligentes vía WhatsApp

Notificaciones automáticas por WhatsApp en condiciones críticas. Implementación con PyWhatKit para un monitoreo efectivo.

Retos en la Integración de Hardware

Enfrentamos desafíos al integrar el sensor ultrasónico HC-SR04 y el módulo LCD. Problemas técnicos con la compatibilidad del sensor y la ausencia del módulo I2C para la pantalla LCD limitaron su uso en nuestro proyecto.

Interfaz de Usuario en Blynk para Riego Automatizado

Blynk facilita el ajuste de parámetros y el monitoreo del sistema.

Adaptación y Soluciones Creativas

Optamos por enfocarnos en el sensor de humedad del suelo y la plataforma Blynk para la gestión del sistema. Una solución basada en software superó las limitaciones de hardware, asegurando eficiencia y funcionalidad.

Resultados

Eficiencia en el uso del agua demostrada por el sistema automatizado.

Mejora en la salud de las plantas debido a un riego más preciso y consistente.

Éxito en la implementación de control remoto y monitoreo a través de Blynk.

Reducción de tiempo y esfuerzo requeridos para el cuidado de las plantas.

Conclusiones

- El desarrollo del sistema de riego automatizado ha demostrado ser exitoso, alcanzando todos los objetivos propuestos.
- La integración del NodeMCU ESP8266 con la plataforma Blynk ha proporcionado un control remoto eficiente y una monitorización en tiempo real del estado del suelo y del tanque de agua.

Conclusiones

- El sistema ha optimizado el uso del agua y ha minimizado la necesidad de intervención humana, lo cual es un paso adelante en la implementación de tecnologías IoT en la agricultura sostenible.
- El enfoque de utilizar cálculos basados en el flujo de la bomba para estimar el nivel del agua ha demostrado ser una solución efectiva frente a la ausencia de un sensor de nivel de agua dedicado.

Recomendaciones

Para mejorar aún más el sistema de riego automatizado y ampliar su aplicabilidad, se recomienda:

- Incorporar sensores de nivel de agua y sensores meteorológicos para adaptar el riego a las condiciones cambiantes del entorno y a las necesidades específicas de las plantas.
- Evaluar el uso de energías renovables, como la energía solar, para alimentar el sistema, lo que aumentaría la sostenibilidad y reduciría los costos operativos.
- Considerar el desarrollo de una aplicación móvil dedicada que ofrezca funcionalidades más avanzadas y personalizables para el usuario final.


```
[1] "Esp8266 todo lo que necesitas saber del módulo wifi para arduino," Programarfacil.com,
accedido el: 22/11/2023. [Online]. Available: https://programarfacil.com/podcast/
esp8266-wifi-coste-arduino/
[2] "Cómo utilizar un sensor de humedad de suelo con arduino," AutomatizacionParaTodos.
com, 2020, accedido el:22/11/2023. [Online]. Available:
https://www.automatizacionparatodos.com/sensor-de-humedad-de-suelo-con-arduino/
[3] O. Baker, "7 principios básicos en automatizaci´on," RIM, 2020, accedido el: 22/11/2023.
[Online]. Available: https://rim.com.mx/portal/noticias-detalle/4820/%20%20%207%
20principios%20basicos%20en%20automatizacion/automotriz
[4] "Pol'iticas para conseguir que la automatizaci'on agr'icola contribuya a sistemas
agroalimentarios sostenibles y resilientes," FAO, 2022, accedido el:
22/11/2023. [Online]. Available: https://www.fao.org/3/cb9479es/online/sofa-2022/
agrifood-systems-transformation-automation.html
[5] IBM. (2023) Internet de las cosas (iot). Accedido el: 22/11/2023. [Online]. Available:
https://www.ibm.com/es-es/topics/internet-of-things
[6] "Mini bomba de agua sumergible dc 3-6v," https://www.microjpm.com/products/
mini-bomba-de-agua-sumergible-dc-3-6v/, 2023, accedido: 2023-03-17.
Universidad de
[6] Swns Research. (2020, 4 de noviembre). Seven in 10 Millennials Consider Themselves "Plant Parents."
```

\textit{Medium}.

https://swns-research.medium.com/seven-in-10-millennials-consider-themselves-plant-parents-11ef0b34773c

Recuperado

de