توزیعهای نمونهگیری

فردوس گرجی

جامعهی آماری

در هر مطالعهی آماری با مجموعهای از افراد یا اشیاء که در یک یا چند صفت با یکدیگر مشترک هستند، سروکار داریم و هدف از مطالعه کسب اطلاعات دربارهی آنها است. این مجموعه را جامعهی آماری یا به اختصار جامعه می گویند.

متغیر تصادفی X نمایان گر یک جامعه است؛ به طوری که این متغیر تصادفی دارای توزیع احتمال $f_X(x)$

در مطالعه یک جامعه، میخواهیم ویژگیهای جامعه، رفتار، توزیع آماری و پارامترهای (میانگین، واریانس و ...) آن را بدانیم که همگی ثابت هستند ولی ما لزوما آنها را نمیدانیم.

مثال: میخواهیم توزیع آماری جرم ذرات معلق ناخالصی در یک محلول تولید شده در پالایشگاه را بدانیم. جرم این ذرات توزیعی مانند f(x) دارد که ثابت است ولی ما لزوما آن را نمیدانیم و میخواهیم تحقیق کنیم.

مثال: میخواهیم از میان افرادی که در یک کشور قهوه مصرف میکنند، نسبت کسانی که نوع خاصی از قهوه را ترجیح میدهند، به دست آوریم.

مثال: میخواهیم میانگین برد نوعی از موشک و واریانس آن را بدانیم (که از پارامترهای توزیع جامعه است). هر موشک بردی دارد که میانگین همه آنها یک عدد ثابت است که در واقع پارامتر میانگین در جامعه برد موشک ها است.

میانگین بر موشکها درصد افرادی که نوع خاصی از قهوه را مصرف می کنند

میانگین قد جوانان ایرانی در سال ۹۹

دامنه تغییرات حقوق کارمندان بخش خصوصی

نسبت یک نوع ماده شیمیایی در یک محلول تولیدشده

توزیع آماری جرم ذرات معلق ناخالصی در یک محلول (توزیع آماری مجهول است)

Y/AY かくぐ 喜 ◆喜 ▶ ◆ 喜 ▶ ◆ 回 ▶

پس یک جامعه آماری داریم با توزیع احتمال $f_X(x, heta)$ که heta پارامترهای مربوط به آن، مثل میانگین، واریانس، دامنه، میانه، ... بوده و مقادیر ثابتی هستند؛ ما به دنبال یافتن و یا تخمین آن ها هستیم تا بتوانیم در حوزه کاربردی خود تصمیم گیری و برنامهریزی و تحلیل انجام دهیم. دو راه داریم: ۱- همه دادهها و اعضای جامعه را بررسی کنیم.

- گاهی غیر ممکن (محاسبه توزیع طول عمر یک قطعه، محاسبه میانگین برد موشکها)
- هزینهبر (اندازهگیری قد همه جوانان، نیروی کار، آموزش نیرو و فرهنگسازی لازم دارد؛ تست کردن همه محلولهای شیمیایی زمان زیادی میبرد.)
 - گاهی ممکن و حتی لازم (سرشماریهای دورهای، برخی از انواع کنترل کیفی محصولات که در آن همه قطعات توليدشده بررسي ميشوند.)
- ۲- بخشی از اعضای جامعه $f_X(x)$ را به عنوان نمونه بررسی کنیم و نتیجه را به کل جامعه تعمیم دهیم.
 - یعنی X_1,X_7,\ldots,X_n را از جامعه f(x) را انتخاب کرده و مقادیر آنها یعنی \bullet
 - را مشاهده می کنیم. سپس پارامتر مورد نظر در جامعه را به کمک این مشاهدات x_1, x_2, \dots, x_n محاسبه می کنیم و مقدار به دست آمده را به کل جامعه نسبت می دهیم.

مثال: قد عدهای از جوانان را اندازه گیری کرده و میانگین و واریانس آن را محاسبه می کنیم و مقادیر به دست آمده را به میانگین و واریانس قد همه جوانان نسبت می دهیم.

نمونه تصادفي

نمونه گیری یکی از موضوعات بسیار مهم در تحلیل دادهها و تصمیم گیریها در حوزههای مهندسی، مدیریت، جامعه شناسی، پزشکی و صنعت است.

هدف ما از انتخاب نمونهی تصادفی دستیابی به اطلاعاتی دربارهی پارامترهای مجهول جامعهی آماری است.

مثال: برای تصمیم گیری درباره نحوه آموزش ریاضی به دانش آموزان نیاز به مجموعهای از اطلاعات راجع به آنها داریم تا طبق آن برنامهریزی کنیم. معمولا نمی توانیم همه دانش آموزان را بررسی کنیم، بنابراین بخشی از آنها را به عنوان نمونه بررسی کنیم.

مثال: میخواهیم از میان افرادی که در یک کشور قهوه مصرف میکنند، نسبت کسانی که نوع خاصی از قهوه را ترجیح میدهند، به دست آوریم. غیرممکن است که هر آمریکایی که قهوه مینوشد را برای محاسبهی پارامتر p مورد پرسش قرار دهیم. به جای آن نمونهی تصادفی بزرگی انتخاب کرده و \hat{p} نسبت مصرف کنندگان قهوهی مورد نظر در این نمونه محاسبه می شود. حال برای استنباط دربارهی p از مقدار \hat{p} استفاده میکنیم.

مثال: چند لامپ به عنوان نمونه انتخاب می کنیم. طول عمر آنها را حساب کرده و توزیع احتمال آنها (\hat{f}) را پیدا می کنیم. مثلا آیا نرمال است؟ آیا نمایی است؟ سپس نتیجه به دست آمده را به توزیع آماری کل لامپهای تولیدشده (f) نسبت می دهیم.

نمونه تصادفي

کدام بخش از دادهها را به عنوان نمونه در نظر بگیریم؟ - آن بخش که راحتتر است وبیشتر در دسترس میباشد؟! آن بخش که مطابق سلیقه شخصی ماست؟!

• مقدار واقعی پارامتر را به دست نمیدهد، به برآوردهای کمتر یا بیشتر از مقدار واقعی منجر میشود که اصطلاحا میگوییم اریب است.

• به تعداد مناسب (n) متغیر تصادفی از جامعه f(x) را که از هم مستقل هستند انتخاب می کنیم. این متغیر ها X_1 X_n هستند که هر کدام دارای توزیع f(x) میباشند. X_1 درواقع X_1 این متغیر ها

این معیر ها n_i ... n_i هستند به هر ندام دارای نوریع n_i می بستند، n_i درواقع امین کارمند اندازه گیری یا n_i امین مقدار نمونه ای (مثلا طول عمر n_i امین لامپ انتخاب شده، یا حقوق n_i امین کارمند انتخاب شده) را نشان می دهد که مقدار عددی n_i را اختیار می کند. توزیع توام آنها چیست؟

 $\sqrt{}$ آن بخش که کاملا تصادفی و بدون پیشفرض و دخالت شخصی انتخاب میشود $\sqrt{}$

تعاریف

جامعه: جامعه مشاهداتی است که با آنها سر و کار داریم.

نمونه: نمونه یک زیرمجموعه از جامعه است. نمونه تصادفی: فرض کنید X_1, X_7, \dots, X_N متغیرهای :

نمونه تصادفی: فرض کنید X_1,X_7,\dots,X_n متغیرهای تصادفی مستقل با توزیع احتمال یکسان $f_X(x)$ باشند. (این تابع به پارامتر مجهوا θ بستگی دارد.) در این صورت X_1,X_7,\dots,X_n را نمونه تصادفی از اندازه n از جامعه $f_X(x)$ گوییم که توزیع احتمال توام آن به صورت زیر است:

$$f(x_1, x_7, \dots, x_n) = f(x_1) f(x_7) \dots f(x_n)$$

آمارهها

برای تخمین زدن پارامتر مورد نظر جامعه، آن پارامتر را در نمونه محاسبه می کنیم. هر ویژگی یک جامعه را پارامتر و ویژگی متناظر آن در نمونه را آماره گویند. یک آماره تابعی از نمونه تصادفی است که به پارامتر مجهول بستگی ندارد.

مثلًا برای تخمین میانگین طول عمر همه لامپها، μ ، میانگین طول عمر لامپها را در نمونه اندازه گیری مثلًا برای این کار مقادیر طول عمرها را جمع زده و بر تعداد نمونه تقسیم می کنیم. $\frac{X_1+\ldots+X_n}{n}$ یا دامنه حقوق کارمندان نمونه ای را حساب می کنیم. برای این کار بیشترین حقوق را منهای کمتریت حقوق می کنیم. $\max\{X_i\} - \min\{X_i\}$

اینها در واقع توابعی از نمونه تصادفی هستند که پارامتر مجهول در آنها وجود ندارد. به این توابع آماره (Statistic) گویند.

تعريف

آماره: به هر تابعی مانند $U=g(X_1,X_7,\dots,X_n)$ از متغیرهای تصادفی حاصل از یک نمونه تصادفی یک آماره گویند.

نکته: مقدار به دست آماده برای یک آمار در نمونه تصادفی، از نمونهای به نمونه دیگر ممکن است تغییر کند، ولی پارامتر مربوط به جامعه مقدارش ثابت است.

نکته: آماره تابعی از نمونه تصادفی بوده و خود نیز یک متغیر تصادفی است. توزیع احتمال آماره را توزیع نمونه ای گویند.

آماره های گرایش به مرکز

میانگین نمونه: اگر X_1,\dots,X_n یک نمونه تصادفی از اندازه n باشد، آنگاه میانگین نمونهای به صورت زیر تعریف میشود:

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

میانه نمونه: اگر X_1,\dots,X_n نمونه تصادفی از اندازه n باشد که به ترتیب بزرگی به صورت مرتب شدهاند، آنگاه میانه نمونه با آماره زیر تعریف میشود: $X_{(1)}, X_{(7)}, \dots, X_{(n)}$ آمارههای مرتب یا ترتیبی

مد نمونه: اگر X_1,\dots,X_n نمونه تصادفی از اندازه n باشد (که ممکن است لزوما متفاوت از هم نباشند،) مد نمونه، M، مقداری از نمونه تصادفی است که بیش از همه واقع میM، مقداری از نمونه فراوانی را دارد. مد ممكن است وجود نداشته باشد و يا در صورت وجود، مي تواند منحصر به فرد نباشد.

برای میانه ابتدا دادهها را مرتب می کنیم:

1, 1, 1, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8

میانه نمونه در نمونه تصادفی ۱۵ تایی برابر با داده وسطی، یعنی داده هشتم است که می شود: ۲ مد نمونه داده ای است که بیشترین تکرار را داشته باشد که در این نمونه مقدار مد برابر با ۲ است.

ٔ نکت

تغییرات میانگین از نمونهای به نمونه دیگر نسبتا کم است. در حالی که میانه از نمونهای به نمونه دیگر بیشتر تغییر می کند. میانگین تحت تاثیر اعداد خیلی بزرگ یا خیلی کوچک قرار می گیر در حالی که میانه کمتر تحت تاثیر این اعداد قرار دارد. مد در نمونه های کوچک در صورت وجود هم عملا معنی ندارد، در عوض اولا نیاز به محاسبه ندارد، ثانیا هم برای دادههای کیفی و هم دادههای کمی قابل استفاده است.

دامنه نمونه: دامنه نمونه تصادفی X_1,\dots,X_n برابر با آماره زیر است:

$$\max_{1 \le i \le n} X_i - \min_{1 \le i \le n} X_i = X_{(n)} - X_{(1)}$$

واریانس نمونه: اگر X_1,\dots,X_n یک نمونه تصادفی از اندازه n باشد، واریانس نمونه عبارت است از آماره

$$S^{\mathsf{T}} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^{\mathsf{T}}}{n-1}$$

انحراف معیار نمونه: اگر X_1,\dots,X_n نمونهای تصادفی از اندازه n باشد، انحراف معیار نمونه عبارت $S=\sqrt{S^{^{\gamma}}}$

فضيه

اگر S^{r} واریانس یک نمونه تصادفی از اندازه n باشد، می توان نوشت:

$$S^{\Upsilon} = \frac{n \sum_{i=1}^{n} X_i^{\Upsilon} - (\sum_{i=1}^{n} X_i)^{\Upsilon}}{n(n-1)}$$

در اندازهگیری حجم دو نمونه تصادفی از آب پرتغالهای تولید شده در دو شرکت الف و ب، اعداد زیر به دست آمدهاند. دامنه و واریانس و انحراف معیار دو نمونه را محاسبه کرده و دو شرکت را با یکدیگر مقایسه کنید.

1/11	1/•٣	1/94	1/••	٠/٩٧	نمونه الف
1/14	./91	• / A A	1/.1	11.9	

$$1/1$$
 $\mathbf{f} - \cdot / \mathbf{A} \mathbf{A} = \cdot / \mathbf{f} \mathbf{f}$

و دامنه نمونه ب برابر است با:

دامنه نمونه الف کمتر است که نشان میدهد پراکندگی دادهها در آن کمتر است. یعنی اگر از شرکت ب

خرید کنیم، اطمینان بیشتری داریم که حجم آب پرتغال به میانگین اعلام شده نزدیک تر باشد.

واریانس و انحراف معیار شرکت الف به ترتیب ۰/۰۰۳۵ و ۰/۰۰ است و واریانس و انحراف معیار شرکت ب

به ترتیب ۰/۰۰۹۲ و ۰/۱ است که نتیجه گیری قبلی را تایید می کند.

محاسبه دامنه نمونه بسیار راحت است ولی این معیار در نمونه های بزرگ کارایی ندارد و فقط کمترین داده و بیشترین داده بررسی میشوند و دادههای میانی دیده نمیشوند.

تعريف

توزیع نمونهای: آماره تابعی از نمونه تصادفی بوده و خود نیز یک متغیر تصادفی است. توزیع احتمال آماره را توزیع نمونهای گویند.

نمادها

- میانگین جامعه : μ ۰
- میانگین نمونه: $ar{X}$
- واریانس جامعه : σ^{r} و
- واریانس نمونه: S^{Υ}

حجم نمونه $n \circ \bullet$

توزیع نمونهای میانگین نمونه

اگر
$$X_i \sim N(\mu_i, \sigma_i^{ extsf{Y}}), i = 1, \dots, n$$
 و اگر $X_i \sim N(\mu_i, \sigma_i^{ extsf{Y}}), i = 1, \dots, N$ و قرار دهیم

$$Y = a_1 X_1 + a_1 X_1 + \dots + a_n X_n = \sum_{i=1}^n a_i X_i$$

$$Y = \sum_{i=1}^{n} a_i X_i \sim N\left(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^{\mathsf{Y}} \sigma_i^{\mathsf{Y}}\right)$$

X توزیع نمونهای میانگین نمونه

n فرض کنید از جامعهای با میانگین μ و واریانس σ^{r} نمونه تصادفی X_1,X_7,\ldots,X_n به اندازه انتخاب کرده باشیم. به علت مستقل و هم توزیع بودن X_1,X_7,\ldots,X_n داریم:

$$E(X_1) = E(X_7) = \dots = E(X_n) = \mu$$

 $Var(X_1) = Var(X_7) = \dots = Var(X_n) = \sigma^{\Upsilon}$

مىخواھىم توزىع نمونەاى $X_i = rac{1}{n} \sum X_i$ ميانگين نمونە را بە دست آورىم:

$$E(\bar{X}) = E\left(\frac{X_1 + \dots + X_n}{n}\right) = \frac{1}{n}E(X_1 + \dots + X_n) = \frac{1}{n} \times n\mu = \mu$$

$$Var(\bar{X}) = Var\left(\frac{X_1 + \dots + X_n}{n}\right) = \frac{1}{n^{\tau}}Var(X_1 + \dots + X_n)$$

$$= \frac{1}{n^{\tau}} \times n\sigma^{\tau} = \frac{\sigma^{\tau}}{n}$$

$ar{X}$ توزیع نمونه ای میانگین نمونه

حال میخواهیم بررسی کنیم که متغیر تصادفی X از چه تابع چگالی تبعیت می کند. دو حالت را در نظر می گیریم (۱- جامعه با توزیع نرمال):

۱- اگر جامعه دارای توزیع نرمال با میانگین μ و واریانس $\sigma^{
m Y}$ باشد: چون \overline{X} ترکیب خطی از متغیرهای تصادفی نرمال مستقل است، طبق قضیه ۲ داریم:

$$\bar{X} \sim N\left(\mu, \frac{\sigma^{\mathsf{T}}}{n}\right) \Longrightarrow Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(\cdot, \mathsf{T})$$

نكته

با افزایش حجم نمونه واریانس $ar{X}$ کاهش مییابد.

$ar{X}$ توزیع نمونه $ar{X}$ میانگین نمونه

۲- اگر جامعه دارای توزیع نرمال نباشد:

اگر چه توزیع $ar{X}$ به توزیع جامعه نمونه گیری شده وابسته است، ولی طبق قضیهی حد مرکزی با افزایش n توزیع نمونهای $ar{X}$ به توزیع نرمال نزدیک می شود.

قضیه حد مرکزی (۳)

اگر \bar{X} میانگین نمونهای تصادفی با اندازه n انتخاب شده از جامعهای با میانگین μ و واریانس $\sigma^{\rm T}$ باشد، آنگاه شکل حدی توزیع

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

وقتی $\infty o n$ ، توزیع نرمال استاندارد $n(z;\cdot,1)$ است.

بنابراین طبق قضیه حد مرکزی وقتی اندازه نمونه n افزایش یابد، توزیع میانگین نمونه $ar{X}$ یک نمونه تصادفی که از هر جامعهای گرفته شده باشد، توزیع نرمال با میانگین μ و واریانس $rac{\sigma^{\rm Y}}{n}$ است.

نكته

تقریب نرمال برای توزیع نمونهای $ar{X}$ معمولاً زمانی که ۳۰ $n \geq \infty$ باشد یک تقریب مناسب است.

رویی لاستیکها، میانگین طول عمر کمتر از ۲۵ ماه باشد، چهقدر است؟ جامعه نرمال است، پس داریم:

$$ar{X} \sim N\left(\mu = extsf{TF} \; , \; rac{\sigma^{ extsf{T}}}{n} = rac{ extsf{T}^{ extsf{T}}}{ extsf{T}}
ight)$$

$$P(ar{X} < \mathtt{Y} \Delta) = P\left(rac{ar{X} - \mu}{rac{\sigma}{\sqrt{p}}} < rac{\mathtt{Y} \Delta - \mathtt{Y} \mathtt{Y}}{rac{\mathtt{Y}}{\Delta}}
ight) = P(Z < \mathtt{Y}/\Delta) = \cdot/$$
9987

آسانسور گنجایش ۵۰ نفر را دارد. اگر وزن تمام کسانی که از این آسانسور استفاده می کنند دارای میانگین ۹۵ کیلوگرم و انحراف معیار ۱۲ کیلوگرم باشد، احتمال اینکه وزن یک گروه تصادفی ۵۰ نفری از

حد ظرفیت آسانسور تجاوز کند چهقدر است؟ چون حجم نمونه بیشتر از ۳۰ است، پس طبق قضیهی حد مرکزی داریم:

$$ar{X} \sim N\left(\mu = 9\Delta \ , \ rac{\sigma^{
m f}}{n} = rac{1{
m T}^{
m f}}{\Delta \cdot}
ight)$$

$$P\left(\sum_{i=1}^{\Delta^{\star}}X_{i}>\Delta\cdots\right)=P(\bar{X}>\cdots)=P\left(\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}>\frac{\cdots-\mathrm{Pd}}{\frac{\mathrm{NT}}{\sqrt{\Delta^{\star}}}}\right)$$

$$P(Z> 1/9\Delta) = 1 - P(Z< 1/9\Delta) = 1 - 1/99\lambda = 1/19$$

راهحل:

عرض یک شکاف که بر یک قطعه از آلیاژ آلومینیوم که با ریخته گری تولید می شود، توزیع نرمال با میانگین 0/9 و انحراف معیار 0/9 است. حدود مشخصات طراحی عبارتند از 0/9 اینچ. هر ساعت نمونه هایی 0/9 تایی از آلیاژ ریخته گری گرفته شده و میانگین آن محاسبه می شود. حدود را طوری تعیین کنید که درصد میانگین های نمونه که خارج از حدود قرار می گیرند، معادل 0/9۷ درصد باشد.

$$ar{X} \sim N\left(\mu = \cdot/\mathbf{q} \ , \ \frac{\sigma^{\mathsf{r}}}{n} = \frac{(\cdot/\cdot\mathbf{r})^{\mathsf{r}}}{\Delta}\right)$$

$$P(\cdot/\mathbf{9}-a<\bar{X}<\cdot/\mathbf{9}+a)=\mathbf{1}-\cdot/\cdot\cdot\mathbf{7}\mathbf{7}=\cdot/\mathbf{99}\mathbf{7}\mathbf{7}$$

$$\cdot/\text{99VT} = P\left(\frac{-a}{\frac{\cdot/\cdot \mathsf{T}}{\sqrt{\vartriangle}}} < \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} < \frac{a}{\frac{\cdot/\cdot \mathsf{T}}{\sqrt{\vartriangle}}}\right) = P(-\mathsf{NN}/\mathtt{A}a < Z < \mathsf{NN}/\mathtt{A}a)$$

$$= \mathsf{T}P(Z < \mathsf{NN/M}a) - \mathsf{N}$$

$$\Rightarrow P(Z<\text{nin/m}a)=\cdot/\text{99ms} \quad \Rightarrow \quad \text{nin/m}a=\text{5/99} \quad \Rightarrow \quad a=\cdot/\cdot\text{5y}$$

توزيع نمونهاي واريانس نمونه

در این صورت تابع توزیع Y عبارتست از:

درجه آزادی است. $u = \nu_1 + \cdots + \nu_n$

$$X=Z^{\mathsf{Y}}$$
 باشد و قرار دهیم $Z\sim N(\cdot,1)$ فرض کنید Z متغیری تصادفی با توزیع نرمال استاندارد

 $f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{1}{\mathsf{r}\sqrt{y}} f_Z(\sqrt{y}) + \frac{1}{\mathsf{r}\sqrt{y}} f_Z(-\sqrt{y}) = \frac{1}{\sqrt{y}} f_Z(\sqrt{y})$

 $F_Y(y) = P(Y \le y) = P(Z^{\prime} \le y) = P(-\sqrt{y} \le Z \le \sqrt{y})$

 $= F_Z(\sqrt{y}) - F_Z(-\sqrt{y})$

$$=rac{1}{\sqrt{y}}rac{1}{\sqrt{7\pi}}e^{-rac{1}{7}(\sqrt{y})^{\mathsf{r}}}=rac{1}{\mathsf{r}^{rac{1}{7}}\Gamma(rac{1}{7})}y^{rac{1}{7}-1}e^{-rac{1}{7}y} \qquad \qquad y>\cdot$$
ىنابرايىن $Y=Z^{\mathsf{r}}\sim\chi^{\mathsf{r}}_{(1)}$ ىن

اگر X_1,\dots,X_n متغیرهای تصادفی مستقل با توزیع خی-۲ (χ^{r}) به ترتیب با $u_1\dots,
u_n$ درجه

نتیجه: اگر Z_1, Z_7, \dots, Z_n یک نمونه تصادفی n تایی از جامعه نرمال استاندارد باشند آنگاه

آزادی باشند، آنگاه متغیر تصادفی $X=X_1+\cdots+X_n$ دارای توزیع خی-۲ با

است. $Z_1^{\mathsf{r}}+Z_2^{\mathsf{r}}+\ldots+Z_n^{\mathsf{r}}$ دارای توزیع خی-دو با n درجه آزادی، $Z_1^{\mathsf{r}}+Z_2^{\mathsf{r}}+\ldots+Z_n^{\mathsf{r}}$

S^{r} توزیع نمونهای واریانس نمونه

$$S^{\Upsilon} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^{\Upsilon}$$

این معیار را زمانی به کار میبریم که میانگین جامعه یعنی μ شناخته شده نباشد.

یک معیار پراکندگی مناسب واریانس نمونه است:

$$E(S^{\mathsf{r}}) = \sigma^{\mathsf{r}}$$
 دلیل انتخاب آن عبارت است از

$$\begin{split} E(S^{\mathsf{T}}) &= E\left[\frac{1}{n-1}\sum(X_i - \bar{X})^{\mathsf{T}}\right] = \frac{1}{n-1}E\left[\sum(X_i - \bar{X})^{\mathsf{T}}\right] \\ &= \frac{1}{n-1}E\left[\sum_i\left[(X_i - \mu) - (\bar{X} - \mu)\right]^{\mathsf{T}}\right] \\ &= \frac{1}{n-1}E\left[\sum_i\left[(X_i - \mu)^{\mathsf{T}} + (\bar{X} - \mu)^{\mathsf{T}} - \mathsf{T}(X_i - \mu)(\bar{X} - \mu)\right]\right] \\ &= \frac{1}{n-1}E\left[\sum_i\left(X_i - \mu\right)^{\mathsf{T}} + n(\bar{X} - \mu)^{\mathsf{T}} - \mathsf{T}(\bar{X} - \mu)\sum_i(X_i - \mu)\right] \\ &= \frac{1}{n-1}E\left[\sum_i(X_i - \mu)^{\mathsf{T}} + n(\bar{X} - \mu)^{\mathsf{T}} - \mathsf{T}(\bar{X} - \mu)\sum_i(X_i - \mu)\right] \\ &= \frac{1}{n-1}\left[\sum_i\left(X_i - \mu\right)^{\mathsf{T}} - nE(\bar{X} - \mu)^{\mathsf{T}}\right] \\ &= \frac{1}{n-1}\left[\sum_i\left(X_i - \mu\right)^{\mathsf{T}} - nVar(\bar{X})\right] \\ &= \frac{1}{n-1}\left[n\sigma^{\mathsf{T}} - n\times\frac{\sigma^{\mathsf{T}}}{n}\right] = \sigma^{\mathsf{T}} \end{split}$$

S^{τ} توزیع نمونه واریانس نمونه

اگر X_1,X_7,\dots,X_n یک نمونه تصادفی از جامعه نرمال با میانگین μ و واریانس σ^{T} باشند، آنگاه

$$\frac{(n-1)S^{\mathsf{r}}}{\sigma^{\mathsf{r}}} \sim \chi_{(n-1)}^{\mathsf{r}}$$

$$\frac{\sum_{i}(X_{i}-\mu)^{\mathsf{r}}}{\sigma^{\mathsf{r}}} = \sum_{i} \left(\frac{X_{i}-\mu}{\sigma}\right)^{\mathsf{r}} = \sum_{i} Z_{i}^{\mathsf{r}} \sim \chi_{(n)}^{\mathsf{r}}$$

$$\frac{\sum_{i}(X_{i}-\mu)^{\mathsf{r}}}{\sigma^{\mathsf{r}}} = \frac{\sum_{i} \left[(X_{i}-\bar{X})+(\bar{X}-\mu)\right]^{\mathsf{r}}}{\sigma^{\mathsf{r}}}$$

$$= \frac{\sum_{i}(X_{i}-\bar{X})^{\mathsf{r}}}{\sigma^{\mathsf{r}}} + \frac{n(\bar{X}-\mu)^{\mathsf{r}}}{\sigma^{\mathsf{r}}}$$

$$= \frac{(n-1)S^{\mathsf{r}}}{\sigma^{\mathsf{r}}} + \underbrace{\frac{n(\bar{X}-\mu)^{\mathsf{r}}}{\sigma^{\mathsf{r}}}}_{Z^{\mathsf{r}} \sim \chi_{(n)}^{\mathsf{r}}}$$

Table A.5 Critical Values of the Chi-Squared Distribution

79/AT 990

					α					
\boldsymbol{v}	0.995	0.99	0.98	0.975	0.95	0.90	0.80	0.75	0.70	0.50
1	0.0^4393	0.0^3157	0.0^3628	0.0^3982	0.00393	0.0158	0.0642	0.102	0.148	0.455
2	0.0100	0.0201	0.0404	0.0506	0.103	0.211	0.446	0.575	0.713	1.386
3	0.0717	0.115	0.185	0.216	0.352	0.584	1.005	1.213	1.424	2.366
4	0.207	0.297	0.429	0.484	0.711	1.064	1.649	1.923	2.195	3.357
5	0.412	0.554	0.752	0.831	1.145	1.610	2.343	2.675	3.000	4.351
6	0.676	0.872	1.134	1.237	1.635	2.204	3.070	3.455	3.828	5.348
7	0.989	1.239	1.564	1.690	2.167	2.833	3.822	4.255	4.671	6.346
8	1.344	1.647	2.032	2.180	2.733	3.490	4.594	5.071	5.527	7.344
9	1.735	2.088	2.532	2.700	3.325	4.168	5.380	5.899	6.393	8.343
10	2.156	2.558	3.059	3.247	3.940	4.865	6.179	6.737	7.267	9.342
11	2.603	3.053	3.609	3.816	4.575	5.578	6.989	7.584	8.148	10.341
12	3.074	3.571	4.178	4.404	5.226	6.304	7.807	8.438	9.034	11.340
13	3.565	4.107	4.765	5.009	5.892	7.041	8.634	9.299	9.926	12.340
14	4.075	4.660	5.368	5.629	6.571	7.790	9.467	10.165	10.821	13.339
15	4.601	5.229	5.985	6.262	7.261	8.547	10.307	11.037	11.721	14.339
16	5.142	5.812	6.614	6.908	7.962	9.312	11.152	11.912	12.624	15.338
17	5.697	6.408	7.255	7.564	8.672	10.085	12.002	12.792	13.531	16.338
18	6.265	7.015	7.906	8.231	9.390	10.865	12.857	13.675	14.440	17.338
19	6.844	7.633	8.567	8.907	10.117	11.651	13.716	14.562	15.352	18.338
20	7.434	8.260	9.237	9.591	10.851	12.443	14.578	15.452	16.266	19.337
21	8.034	8.897	9.915	10.283	11.591	13.240	15.445	16.344	17.182	20.337
22	8.643	9.542	10.600	10.982	12.338	14.041	16.314	17.240	18.101	21.337
23	9.260	10.196	11.293	11.689	13.091	14.848	17.187	18.137	19.021	22.337
24	9.886	10.856	11.992	12.401	13.848	15.659	18.062	19.037	19.943	23.337
25	10.520	11.524	12.697	13.120	14.611	16.473	18.940	19.939	20.867	24.337

Table A.5 (continued) Critical Values of the Chi-Squared Distribution

	α									
\boldsymbol{v}	0.30	0.25	0.20	0.10	0.05	0.025	0.02	0.01	0.005	0.001
1	1.074	1.323	1.642	2.706	3.841	5.024	5.412	6.635	7.879	10.827
2	2.408	2.773	3.219	4.605	5.991	7.378	7.824	9.210	10.597	13.815
3	3.665	4.108	4.642	6.251	7.815	9.348	9.837	11.345	12.838	16.266
4	4.878	5.385	5.989	7.779	9.488	11.143	11.668	13.277	14.860	18.466
5	6.064	6.626	7.289	9.236	11.070	12.832	13.388	15.086	16.750	20.515
6	7.231	7.841	8.558	10.645	12.592	14.449	15.033	16.812	18.548	22.457
7	8.383	9.037	9.803	12.017	14.067	16.013	16.622	18.475	20.278	24.321
8	9.524	10.219	11.030	13.362	15.507	17.535	18.168	20.090	21.955	26.124
9	10.656	11.389	12.242	14.684	16.919	19.023	19.679	21.666	23.589	27.877
10	11.781	12.549	13.442	15.987	18.307	20.483	21.161	23.209	25.188	29.588
11	12.899	13.701	14.631	17.275	19.675	21.920	22.618	24.725	26.757	31.264
12	14.011	14.845	15.812	18.549	21.026	23.337	24.054	26.217	28.300	32.909
13	15.119	15.984	16.985	19.812	22.362	24.736	25.471	27.688	29.819	34.527
14	16.222	17.117	18.151	21.064	23.685	26.119	26.873	29.141	31.319	36.124
15	17.322	18.245	19.311	22.307	24.996	27.488	28.259	30.578	32.801	37.698
16	18.418	19.369	20.465	23.542	26.296	28.845	29.633	32.000	34.267	39.252
17	19.511	20.489	21.615	24.769	27.587	30.191	30.995	33.409	35.718	40.791
18	20.601	21.605	22.760	25.989	28.869	31.526	32.346	34.805	37.156	42.312
19	21.689	22.718	23.900	27.204	30.144	32.852	33.687	36.191	38.582	43.819
20	22.775	23.828	25.038	28.412	31.410	34.170	35.020	37.566	39.997	45.314
21	23.858	24.935	26.171	29.615	32.671	35.479	36.343	38.932	41.401	46.796
22	24.939	26.039	27.301	30.813	33.924	36.781	37.659	40.289	42.796	48.268
23	26.018	27.141	28.429	32.007	35.172	38.076	38.968	41.638	44.181	49.728
24	27.096	28.241	29.553	33.196	36.415	39.364	40.270	42.980	45.558	51.179
25	28.172	29.339	30.675	34.382	37.652	40.646	41.566	44.314	46.928	52.619

یک جامعهی نرمال واریانس ۶ دارد. اگر نمونهی تصادفی ۲۵ تایی از این جامعه انتخاب شود، احتمال این که واریانس نمونه بین ۳/۴۵ و ۳/۲۵ باشد، چهقدر است؟

راەحل:

$$\begin{split} P(\mathbf{r}/\mathbf{f} \mathbf{d} < S^{\mathbf{r}} < \mathbf{1} \cdot / \mathbf{V} \mathbf{d}) &= P\left(\frac{\mathbf{r} \mathbf{f} \times \mathbf{r}/\mathbf{f} \mathbf{d}}{\mathbf{g}} < \frac{(n-\mathbf{1})S^{\mathbf{r}}}{\sigma^{\mathbf{r}}} < \frac{\mathbf{r} \mathbf{f} \times \mathbf{1} \cdot / \mathbf{V} \mathbf{d}}{\mathbf{g}}\right) \\ &= P\left(\mathbf{1} \mathbf{r}/\mathbf{A} < \chi^{\mathbf{r}}_{(\mathbf{r} \mathbf{f})} < \mathbf{f} \mathbf{r}\right) \\ &= P\left(\chi^{\mathbf{r}}_{(\mathbf{r} \mathbf{f})} < \mathbf{f} \mathbf{r}\right) - P\left(\chi^{\mathbf{r}}_{(\mathbf{r} \mathbf{f})} \leq \mathbf{1} \mathbf{r}/\mathbf{A}\right) \\ &= \cdot / \mathbf{9} \mathbf{9} - \cdot / \cdot \mathbf{d} = \cdot / \mathbf{9} \mathbf{f} \end{split}$$

شود، احتمال این که انحراف استاندارد این ۱۰ لامپ بیش از ۵۰ ساعت نباشد، چهقدر است؟

راەحل:

$$\begin{split} P(S \leq \Delta \cdot) &= P(S^{\mathsf{T}} \leq \mathsf{T} \Delta \cdot \cdot) \\ &= P\left(\frac{(n-\mathsf{T})S^{\mathsf{T}}}{\sigma^{\mathsf{T}}} \leq \frac{\mathsf{T} \times \mathsf{T} \Delta \cdot \cdot}{\mathsf{T} \mathcal{F} \cdot \cdot}\right) \\ &= P\left(\chi^{\mathsf{T}}_{(\mathsf{T})} \leq \mathsf{F}/\mathsf{T} \Delta\right) \\ &\simeq \cdot/\mathsf{T} \end{split}$$

 $rac{X-\mu}{S/\sqrt{n}}$ توزیع نمونهای

توزیع tاستیودنت

اگر X_1, X_2, \dots, X_n یک نمونه تصادفی از جامعه نرمال با میانگین μ و واریانس σ^{r} باشند، آنگاه دارای توزیع نرمال استاندارد است. $Z=rac{ar{X}-\mu}{\sigma/\sqrt{n}}$

حال اگر σ^{r} مجهول باشد، به جای آن میتوان از واریانس نمونه S^{r} استفاده کرد.

 $T=rac{ar{X}-\mu}{S/\sqrt{n}}$ اکنون اگر در Z به جای σ مقدار S را قرار دهیم، آنگاه

تعریف توزیع t–استیودنت: اگر یک توزیع $Y \sim \chi^{\rm r}_{(n)}$ و $Y \in Z$ و و $Y \in X$ از یکدیگر مستقل باشند، آنگاه متغیر تصادفی است. $T \sim t_{(n)}$ درجه آزادی $T \sim t_{(n)}$ درجه آزادی $T \sim T_{(n)}$

اگر \bar{X} و r به ترتیب میانگین و واریانس یک نمونهی تصادفی به اندازه n از یک جامعه نرمال با میانگین \bar{X} و واریانس σ^{τ} باشند، آنگاه

$$T = \frac{X - \mu}{S/\sqrt{n}} \sim t_{(n-1)}$$

اثبات:

$$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(\cdot, 1) \qquad \perp \qquad Y = \frac{(n-1)S^{\mathsf{r}}}{\sigma^{\mathsf{r}}} \sim \chi_{(n-1)}^{\mathsf{r}}$$

$$T = \frac{Z}{\sqrt{\frac{Y}{n-1}}} \sim t_{(n-1)}$$

$$T = \frac{\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{(n-1)S^{\mathsf{r}}}{\sigma^{\mathsf{r}}(n-1)}}} = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{(n-1)}$$

 ${\bf Table~A.4~Critical~Values~of~the~\it t-Distribution}$

				α			
\boldsymbol{v}	0.40	0.30	0.20	0.15	0.10	0.05	0.025
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306
9	0.261	0.543	0.883	1.100	1.383	1.833	2.262
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228
11	0.260	0.540	0.876	1.088	1.363	1.796	2.201
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179
13	0.259	0.538	0.870	1.079	1.350	1.771	2.160
14	0.258	0.537	0.868	1.076	1.345	1.761	2.145
15	0.258	0.536	0.866	1.074	1.341	1.753	2.131
16	0.258	0.535	0.865	1.071	1.337	1.746	2.120
17	0.257	0.534	0.863	1.069	1.333	1.740	2.110
18	0.257	0.534	0.862	1.067	1.330	1.734	2.101
19	0.257	0.533	0.861	1.066	1.328	1.729	2.093
20	0.257	0.533	0.860	1.064	1.325	1.725	2.086
21	0.257	0.532	0.859	1.063	1.323	1.721	2.080
22	0.256	0.532	0.858	1.061	1.321	1.717	2.074
23	0.256	0.532	0.858	1.060	1.319	1.714	2.069
24	0.256	0.531	0.857	1.059	1.318	1.711	2.064
25	0.256	0.531	0.856	1.058	1.316	1.708	2.060

نكته

برای ۳۰ $\geq n$ توزیع t تقریباً با توزیع نرمال استاندارد برابر میشود.

به همین علت در جدول t مقادیر درجهی آزادی بزرگتر از ∞ با ∞ نشان داده شده است و مقادیر این ردیف از جدول با جدول توزیع نرمال استاندارد یکی است.

مثال ۱۱

راهحل:

نمرههای یک کلاس از دانشجویان دارای توزیع نرمال با میانگین ۱۵ است. اگر از این کلاس یک نمونهی تصادفی ۲۰ تایی انتخاب کنیم و مشاهده کنیم که انحراف استاندارد نمرههای آنها ۴/۲۸ است، احتمال

این که میانگین نمرههای این افراد از ۱۷ بیشتر باشد، چهقدر است؟

$$\begin{split} P\left(\bar{X} > \mathsf{YY}\right) &= P\left(\frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} > \frac{\mathsf{YY} - \mathsf{Y\Delta}}{\frac{\mathsf{Y}/\mathsf{YL}}{\sqrt{\mathsf{YL}}}}\right) = P\left(T_{(\mathsf{YA})} > \mathsf{Y/YA}\right) \\ &= \mathsf{Y} - P\left(T_{(\mathsf{YA})} \le \mathsf{Y/YA}\right) = \mathsf{Y} - \cdot / \mathsf{AYA} = \cdot / \cdot \mathsf{YA} \end{split}$$

TP/AT かくへ 喜 (書)(書)(母)(ロ)

توزيع نمونهاي اختلاف ميانگينها

$\mu_1 - \mu_2$ توزیع نمونهای اختلاف میانگینها

فرض كنيد دو جامعه داشته باشيم.

جامعه ی اول دارای میانگین μ_1 و واریانس σ_1^7 باشد.

جامعه ی دوم دارای میانگین μ_{Y} و واریانس $\sigma_{\mathsf{Y}}^{\mathsf{Y}}$ باشد.

یک نمونهی تصادفی n تایی X_1,\dots,X_1 از جامعهی اول انتخاب کرده و میانگین این نمونه را با X و واریانس آن را با S_{λ}^{γ} نمایش می دهیم.

یک نمونهی تصادفی m تایی Y_m,\dots,Y_1 از جامعهی دوم انتخاب کرده و میانگین این نمونه را با Y و واریانس آن را با $S_{\mathsf{Y}}^{\mathsf{Y}}$ نشان می ${\mathsf L}$

فرض کنید نمونه گیری از دو جامعه مستقل از یکدیگر باشد.

میخواهیم توزیع نمونهای $ar{X}-ar{Y}$ را پیدا کنیم.

$\mu_{ m I}-\mu_{ m I}$ توزیع نمونهای اختلاف میانگینها

حالت اول: واریانس دو جامعه $\sigma_{ extsf{ iny t}}^{ extsf{ iny t}}$ معلوم باشد

الف $ar{Y} \sim N(\mu_{
m T}, rac{\sigma_{
m T}^{
m T}}{m})$ الف $ar{X} \sim N(\mu_{
m T}, rac{\sigma_{
m T}^{
m T}}{n})$ بوده و از مستقل هستند، پس

$$\bar{X} - \bar{Y} \sim N\left(\mu_{\rm I} - \mu_{\rm T}, \frac{\sigma_{\rm I}^{\rm T}}{n} + \frac{\sigma_{\rm T}^{\rm T}}{m}\right) \Longrightarrow Z = \frac{\left(\bar{X} - \bar{Y}\right) - \left(\mu_{\rm I} - \mu_{\rm T}\right)}{\sqrt{\frac{\sigma_{\rm I}^{\rm T}}{n} + \frac{\sigma_{\rm T}^{\rm T}}{m}}} \sim N(\boldsymbol{\cdot}, \mathbf{I})$$

 \mathbf{v} - اگر دو جامعه نرمال نباشند، طبق قضیهی حد مرکزی برای حجم نمونهی $n \geq n$ و $n \geq m$ و تقریب نرمال استفاده می شود (شبیه حالت الف).

دو کارخانهی تولید کابل A و B وجود دارند. کابلهایی که کارخانهی A تولید می کند، به طور متوسط تحمل B بوند نیروی کششی و انحراف معیار B بوند را دارند. کابلهایی که کارخانهی B تولید می کند، به طور متوسط تحمل B بوند نیرو با انحراف معیار B بوند را دارند. اگر B کابل نوع B آزمایش شوند، احتمال این که متوسط تحمل نیروی کششی B حداقل B بوند بیش از نیروی کششی B باشد، چهقدر است؟ B باشد، چهقدر است

$$\begin{split} \bar{X}_A - \bar{X}_B &\sim N \left(\mathbf{f} \cdots - \mathbf{f} \Delta \cdots, \frac{\mathbf{f} \cdots^{\mathbf{f}}}{\mathbf{f} \cdots} + \frac{\mathbf{f} \cdots^{\mathbf{f}}}{\Delta \cdot} \right) \\ \Rightarrow & \bar{X}_A - \bar{X}_B \sim N \left(-\Delta \cdots, \mathbf{f} \mathbf{f} \cdots \right) \end{split}$$

$$\begin{split} P\left(\bar{X}_{B} \geq \bar{X}_{A} + \mathbf{9} \cdot \cdot \cdot\right) &= P\left(\bar{X}_{A} - \bar{X}_{B} \leq -\mathbf{9} \cdot \cdot \cdot\right) \\ &= P\left(\frac{\left(\bar{X}_{A} - \bar{X}_{B}\right) - \left(\mu_{\text{I}} - \mu_{\text{T}}\right)}{\sqrt{\frac{\sigma_{\text{I}}^{\text{T}}}{n} + \frac{\sigma_{\text{T}}^{\text{T}}}{m}}} \leq \frac{-\mathbf{9} \cdot \cdot \cdot + \Delta \cdot \cdot}{\sqrt{\text{IV} \cdot \cdot}}\right) \\ &= P\left(Z \leq -\text{T}/\text{FT}\right) = \cdot/ \cdot \cdot \text{Y}\Delta \end{split}$$

راهحل:

$$\begin{split} \bar{X} - \bar{Y} \sim N \left(\text{ITD} - \text{IV}, \ \frac{\text{ID}^{\text{T}}}{\text{TD}} + \frac{\text{ID}^{\text{T}}}{\text{TD}} \right) & \Rightarrow \quad \bar{X} - \bar{Y} \sim N \left(\text{TD}, \ \text{ID} \right) \\ P \left(|\bar{X} - \bar{Y}| < \text{IT} \right) = P \left(-\text{IT} < \bar{X} - \bar{Y} < \text{IT} \right) \\ & = P \left(\frac{-\text{IT} - \text{TD}}{\sqrt{\text{ID}}} < \frac{\left(\bar{X} - \bar{Y} \right) - \left(\mu_{\text{I}} - \mu_{\text{T}} \right)}{\sqrt{\frac{\sigma_{\text{I}}^{\text{T}}}{n} + \frac{\sigma_{\text{T}}^{\text{T}}}{m}}} < \frac{\text{IT} - \text{TD}}{\sqrt{\text{ID}}} \right) \\ & = P \left(-\text{IM}/\text{VT} < Z < -\text{TM}/\text{S} \right) = \cdot / \cdot \cdot \text{IM} - \cdot \cdot = \cdot / \cdot \cdot \text{IM} \end{split}$$

داریم:

n فرض کنید $ar{X}$ و $ar{Y}$ میانگینهای دو نمونهی مستقل به اندازهی n از جامعهای نرمال با واریانس $\sigma^{ t t}$ باشد. مقدار را چنان تعیین کنید تا احتمال این که میانگین این دو نمونه بیشتر از σ اختلاف داشته باشند، تقریباً برابر $\sigma^{ t t}$ باشد.

$$\begin{split} \bar{X} - \bar{Y} &\sim N \left(\mu - \mu \;,\; \frac{\sigma^{\mathsf{Y}}}{n} + \frac{\sigma^{\mathsf{Y}}}{n} \right) \quad \Rightarrow \quad \bar{X} - \bar{Y} \sim N \left(\cdot \;,\; \frac{\mathsf{Y} \sigma^{\mathsf{Y}}}{n} \right) \\ \cdot / \cdot \mathsf{V} &= P \left(|\bar{X} - \bar{Y}| > \sigma \right) = \mathsf{V} - P \left(-\sigma \leq \bar{X} - \bar{Y} \leq \sigma \right) \end{split}$$

$$= \mathbf{1} - P\left(\frac{-\sigma - \cdot}{\sigma\sqrt{\frac{\mathbf{r}}{n}}} < \frac{\left(\bar{X} - \bar{Y}\right) - (\mu - \mu)}{\sqrt{\frac{\sigma^{\mathbf{r}}}{n} + \frac{\sigma^{\mathbf{r}}}{n}}} < \frac{\sigma - \cdot}{\sigma\sqrt{\frac{\mathbf{r}}{n}}}\right)$$

$$= \mathbf{1} - P\left(-\sqrt{\frac{n}{\mathbf{r}}} \le Z \le \sqrt{\frac{n}{\mathbf{r}}}\right) = \mathbf{r} - \mathbf{r}P\left(Z \le \sqrt{\frac{n}{\mathbf{r}}}\right)$$

$$\Rightarrow$$
 $P\left(Z \leq \sqrt{rac{n}{\mathsf{r}}}
ight) = \cdot/$ 990 \Rightarrow $\sqrt{rac{n}{\mathsf{r}}} = \mathsf{r}/$ 040 \Rightarrow $n = \mathsf{rr}/\mathsf{r}$ 9 $\simeq \mathsf{rr}$

$\mu_{ m I}-\mu_{ m I}$ توزیع نمونهای اختلاف میانگینها

حالت دوم: واریانس دو جامعه $\sigma_{ au}^{ au}$ و $\sigma_{ au}^{ au}$ نامعلوم اما مساوی باشد

 σ^{r} در این حالت واریانس دو جامعه یعنی σ^{r}_{r} و σ^{r}_{r} در رابطه $\sigma^{r}_{r}=\sigma^{r}_{r}=\sigma^{r}$ صدق می کنند که و واریانس مشترک دو جامعه و مقداری نامعلوم است.

در جامعهی اول میتوان از S_1^{γ} و در جامعهی دوم میتوان از S_1^{γ} به عنوان یک براورد برای σ^{γ} استفاده کرد.

اماً بهتر است که از اطلاعات دو نمونه برای براورد $\sigma^{ au}$ استفاده کنیم. بدین منظور از میانگین وزنی $S_{ au}^{ au}$ و $S_{ au}^{ au}$ استفاده می کنیم:

$$S_p^{\rm T} = \frac{(n-{\rm I})S_{\rm I}^{\rm T} + (m-{\rm I})S_{\rm T}^{\rm T}}{n+m-{\rm T}}$$

اگر دو جامعه نرمال باشند، آنگاه

$$Y = \frac{(n+m-{\bf f})S_p^{\bf f}}{\sigma^{\bf f}} = \frac{(n-{\bf f})S_{\bf f}^{\bf f}}{\sigma^{\bf f}} + \frac{(m-{\bf f})S_{\bf f}^{\bf f}}{\sigma^{\bf f}} \sim \chi_{(n+m-{\bf f})}^{\bf f}$$

$$T = \frac{Z}{\sqrt{\frac{Y}{n+m-r}}} \sim t_{(n+m-r)}$$

$$T = \frac{\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_1)}{\sqrt{\frac{\sigma^{\mathsf{Y}}}{n} + \frac{\sigma^{\mathsf{Y}}}{m}}}}{\sqrt{\frac{\frac{(n+m-\mathsf{Y})S_p^{\mathsf{Y}}}{n+m-\mathsf{Y}}}}} = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_1)}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}}$$

$$\Rightarrow T = \frac{\left(\bar{X} - \bar{Y}\right) - (\mu_{1} - \mu_{7})}{S_{p}\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{(n+m-7)}$$

میانگین نمرهی هوش دانشجویان سال اول و دوم یک دانشگاه به ترتیب ۹۱ و ۸۵ است. در یک نمونه گیری از ۹ دانشجوی سال دوم، انحراف استاندارد نمرهی هوش به ترتیب ۳ و ۴ به دست آمده است. با فرض نرمال بودن دو جامعه و برابری واریانسهای آنها، احتمال این که میانگین هوشی دانشجویان سال اول در نمونه باشد، چهقدر است؟ نمونه حداقل ۱۰/۷۵ نمره بیشتر از میانگین هوشی دانشجویان سال دوم در نمونه باشد، چهقدر است؟ داریم:

$$\begin{split} S_p^{\mathsf{T}} &= \frac{(n-\mathsf{I})S_\mathsf{I}^{\mathsf{T}} + (m-\mathsf{I})S_\mathsf{T}^{\mathsf{T}}}{n+m-\mathsf{T}} = \frac{(\mathsf{A}\times\mathsf{9}) + (\mathsf{9}\times\mathsf{19})}{\mathsf{9}+\mathsf{I}\cdot-\mathsf{T}} = \mathsf{IT/V} \\ P\left(\bar{X}_\mathsf{I} \geq \bar{X}_\mathsf{T} + \mathsf{I}\cdot/\mathsf{V}\Delta\right) &= P\left(\bar{X}_\mathsf{I} - \bar{X}_\mathsf{T} \geq \mathsf{I}\cdot/\mathsf{V}\Delta\right) \\ &= P\left(\frac{\left(\bar{X}_\mathsf{I} - \bar{X}_\mathsf{T}\right) - (\mu_\mathsf{I} - \mu_\mathsf{T})}{S_p\sqrt{\frac{\mathsf{I}}{n} + \frac{\mathsf{I}}{m}}} \geq \frac{\mathsf{I}\cdot/\mathsf{V}\Delta - \mathsf{9}}{\sqrt{\mathsf{IT/V}}\sqrt{\frac{\mathsf{I}}{\mathsf{9}} + \frac{\mathsf{I}}{\mathsf{I}\cdot}}}\right) \\ &= P\left(T_{(\mathsf{IV})} \geq \mathsf{T/9}\right) = \mathsf{I} - P\left(T_{(\mathsf{IV})} < \mathsf{T/9}\right) \\ &= \mathsf{I} - \cdot/\mathsf{9}\Delta = \cdot/\cdot\cdot\Delta \end{split}$$

توزیع نمونهای نسبت واریانسهای دو نمونه

fa/am かくで 夏 《夏》《夏》《日》

توزیع نمونهای نسبت واریانسهای دو نمونه

فرض کنید دو جامعه داشته باشیم.

جامعه ی اول دارای میانگین μ_1 و واریانس σ_1^{Υ} باشد. جامعه ی دوم دارای میانگین μ_2 و واریانس σ_3^{Υ} باشد.

یک نمونه ی تصادفی n تایی از جامعه ی اول انتخاب کرده و واریانس آن را با S_{γ}^{γ} نمایش می دهیم. یک نمونه ی تصادفی m تایی از جامعه ی دوم انتخاب کرده و واریانس آن را با S_{γ}^{γ} نشان می دهیم. فرض کنید نمونه گیری از دو جامعه مستقل از یکدیگر باشد.

میخواهیم توزیع نمونهای نسبت واریانسهای دو نمونه یعنی $\frac{S_1^{\gamma}}{S_{\gamma}^{\gamma}}$ را به دست آوریم.

تعریف توزیع فیشر F: اگر $V\sim \chi_{(n)}^{\rm r}$ و متغیرهای تصادفی U و V از یکدیگر تعریف توزیع متغیر تصادفی $V\sim \chi_{(n)}^{\rm r}$ را توزیع $V\sim V_{(n)}$ مستقل باشند، آنگاه توزیع متغیر تصادفی $V\sim V_{(n)}$ را توزیع

اگر $S_{
m t}^{
m Y}$ و T به ترتیب واریانسهای نمونههای تصادفی مستقل به اندازهی n و m از جامعههای نرمال با واریانسهای $T_{
m t}$ و $T_{
m t}$ باشند، آنگاه

$$F = \frac{\frac{S_1^{\prime}}{\sigma_1^{\prime}}}{\frac{S_1^{\prime}}{\sigma_1^{\prime}}} = \frac{S_1^{\prime}}{S_1^{\prime}} \times \frac{\sigma_1^{\prime}}{\sigma_1^{\prime}} \sim F_{(n-1, m-1)}$$

اثبات:

$$\begin{split} U &= \frac{(n-1)S_{1}^{\mathsf{r}}}{\sigma_{1}^{\mathsf{r}}} \sim \chi_{(n-1)}^{\mathsf{r}} \qquad \bot \qquad V = \frac{(m-1)S_{1}^{\mathsf{r}}}{\sigma_{1}^{\mathsf{r}}} \sim \chi_{(m-1)}^{\mathsf{r}} \\ F &= \frac{\frac{U}{n-1}}{\frac{V}{m-1}} \sim F_{(n-1), m-1)} \\ F &= \frac{\frac{(n-1)S_{1}^{\mathsf{r}}}{\sigma_{1}^{\mathsf{r}}(n-1)}}{\frac{(m-1)S_{1}^{\mathsf{r}}}{\sigma_{1}^{\mathsf{r}}(m-1)}} = \frac{\frac{S_{1}^{\mathsf{r}}}{\sigma_{1}^{\mathsf{r}}}}{\frac{S_{1}^{\mathsf{r}}}{\sigma_{1}^{\mathsf{r}}}} = \frac{S_{1}^{\mathsf{r}}}{S_{1}^{\mathsf{r}}} \times \frac{\sigma_{1}^{\mathsf{r}}}{\sigma_{1}^{\mathsf{r}}} \sim F_{(n-1), m-1)} \end{split}$$

Table A.6 Critical Values of the F-Distribution

		$f_{0.05}(v_1,v_2)$										
v_2	1	2	3	4	$\frac{v_1}{5}$	6	7	8	9			
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54			
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38			
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81			
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00			
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77			
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10			
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68			
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39			
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18			
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02			
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90			
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80			
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71			
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65			
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59			
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54			
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49			
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46			
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42			

Table A.6 (continued) Critical Values of the F-Distribution

		$f_{0.01}(v_1,v_2)$										
	v_1											
v_2	1	2	3	4	5	6	7	8	9			
1	4052.18	4999.50	5403.35	5624.58	5763.65	5858.99	5928.36	5981.07	6022.47			
2	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39			
3	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35			
4	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66			
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16			
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98			
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72			
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91			
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35			
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94			
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63			
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39			
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19			
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03			
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89			
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78			
17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68			
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60			
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52			
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46			
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40			

$$P\left(S_{\mathbf{1}}^{\mathbf{r}} > \mathbf{r} S_{\mathbf{r}}^{\mathbf{r}}\right) = P\left(\frac{S_{\mathbf{1}}^{\mathbf{r}}}{S_{\mathbf{r}}^{\mathbf{r}}} > \mathbf{r}\right) = P\left(\frac{S_{\mathbf{1}}^{\mathbf{r}}}{S_{\mathbf{r}}^{\mathbf{r}}} \times \frac{\sigma_{\mathbf{r}}^{\mathbf{r}}}{\sigma_{\mathbf{1}}^{\mathbf{r}}} > \mathbf{r} \times \frac{\mathbf{r} \cdot \mathbf{r}}{\mathbf{r} \cdot \mathbf{r}}\right)$$

$$P\left(S_{1} > 1S_{1}\right) \equiv P\left(\overline{S_{1}^{r}} > 1\right) \equiv P\left(\overline{S_{1}^{r}} \times \overline{\sigma_{1}^{r}} > 1 \times \overline{\sigma_{1}^{r}}\right)$$

$$= P\left(F_{(Y,\eta)} > r\right) = 1 - P\left(F_{(Y,\eta)} \le r\right)$$

$$= 1 - \frac{1}{2} \cdot \frac{1}{2} \cdot$$

واریانس جامعهی دوم ۳ برابر واریانس جامعهی اول است و به ترتیب نمونههایی به اندازه Λ و ۱۲ و اینانس جامعهی دوم ۳ برابر واریانس جامعه اول است و به ترتیب نمونههایی به اندازه Λ و ۱۲ انتخاب شده باشد، مطلوبست محاسبهی $P(S_1 < \sqrt{1/97}S_7)$

راەحل:

$$\begin{split} P\left(S_{1} < \sqrt{1/\text{PT}}S_{\text{T}}\right) &= P\left(S_{1}^{\text{T}} < 1/\text{PT}S_{\text{T}}^{\text{T}}\right) \\ &= P\left(\frac{S_{1}^{\text{T}}}{S_{\text{T}}^{\text{T}}} < 1/\text{PT}\right) \\ &= P\left(\frac{S_{1}^{\text{T}}}{S_{\text{T}}^{\text{T}}} \times \frac{\sigma_{1}^{\text{T}}}{\sigma_{1}^{\text{T}}} < 1/\text{PT} \times \frac{\text{T}\sigma_{1}^{\text{T}}}{\sigma_{1}^{\text{T}}}\right) \\ &= P\left(F_{(\text{Y},11)} < \text{F}/\text{AA}\right) \\ &= 1 - P\left(F_{(\text{Y},11)} \ge \text{F}/\text{AA}\right) = \cdot/\text{AA} \end{split}$$

مقدار n چقدر باشد تا احتمال این که واریانس نمونه اول حداکثر سه برابر واریانس نمونه دوم باشد، تقریبا 0 باشد؛

راهحل: S^{r}

$$\begin{split} \cdot/\text{99} &= P\left(S_1^{\mathsf{Y}} < \mathsf{T} S_{\mathsf{Y}}^{\mathsf{Y}}\right) = P\left(\frac{S_1^{\mathsf{Y}}}{S_{\mathsf{Y}}^{\mathsf{Y}}} < \mathsf{T}\right) \\ &= P\left(\frac{S_1^{\mathsf{Y}}}{S_{\mathsf{Y}}^{\mathsf{Y}}} \times \frac{\sigma_{\mathsf{Y}}^{\mathsf{Y}}}{\sigma_{\mathsf{Y}}^{\mathsf{Y}}} < \mathsf{T} \times \frac{\sigma^{\mathsf{Y}}}{\sigma^{\mathsf{Y}}}\right) \\ &= P\left(F_{(n-1,n-1)} < \mathsf{T}\right) \\ &= 1 - P\left(F_{(n-1,n-1)} \ge \mathsf{T}\right) \end{split}$$

$$\rightarrow P\left(F_{(n-1,n-1)} \geq r\right) = \cdot/\cdot 1 \rightarrow n-1 = r\cdot \rightarrow n=r1.$$

	$f_{0.01}(v_1,v_2)$									
	v_1									
v_2	10	12	15	20	24	30	40	60	120	∞
1	6055.85	6106.32	6157.28	6208.73	6234.63	6260.65	6286.78	6313.03	6339.39	6365.86
2	99.40	99.42	99.43	99.45	99.46	99.47	99.47	99.48	99.49	99.50
3	27.23	27.05	26.87	26.69	26.60	26.50	26.41	26.32	26.22	26.13
4	14.55	14.37	14.20	14.02	13.93	13.84	13.75	13.65	13.56	13.46
5	10.05	9.89	9.72	9.55	9.47	9.38	9.29	9.20	9.11	9.02
6	7.87	7.72	7.56	7.40	7.31	7.23	7.14	7.06	6.97	6.88
7	6.62	6.47	6.31	6.16	6.07	5.99	5.91	5.82	5.74	5.65
8	5.81	5.67	5.52	5.36	5.28	5.20	5.12	5.03	4.95	4.86
9	5.26	5.11	4.96	4.81	4.73	4.65	4.57	4.48	4.40	4.31
10	4.85	4.71	4.56	4.41	4.33	4.25	4.17	4.08	4.00	3.91
11	4.54	4.40	4.25	4.10	4.02	3.94	3.86	3.78	3.69	3.60
12	4.30	4.16	4.01	3.86	3.78	3.70	3.62	3.54	3.45	3.36
13	4.10	3.96	3.82	3.66	3.59	3.51	3.43	3.34	3.25	3.17
14	3.94	3.80	3.66	3.51	3.43	3.35	3.27	3.18	3.09	3.00
15	3.80	3.67	3.52	3.37	3.29	3.21	3.13	3.05	2.96	2.87
16	3.69	3.55	3.41	3.26	3.18	3.10	3.02	2.93	2.84	2.75
17	3.59	3.46	3.31	3.16	3.08	3.00	2.92	2.83	2.75	2.65
18	3.51	3.37	3.23	3.08	3.00	2.92	2.84	2.75	2.66	2.57
19	3.43	3.30	3.15	3.00	2.92	2.84	2.76	2.67	2.58	2.49
20	3.37	3.23	3.09	2.94	2.86	2.78	2.69	2.61	2.52	2.42
21	3.31	3.17	3.03	2.88	2.80	2.72	2.64	2.55	2.46	2.36
22	3.26	3.12	2.98	2.83	2.75	2.67	2.58	2.50	2.40	2.31
23	3.21	3.07	2.93	2.78	2.70	2.62	2.54	2.45	2.35	2.26
24	3.17	3.03	2.89	2.74	2.66	2.58	2.49	2.40	2.31	2.21
25	3.13	2.99	2.85	2.70	2.62	2.54	2.45	2.36	2.27	2.17
26	3.09	2.96	2.81	2.66	2.58	2.50	2.42	2.33	2.23	2.13
27	3.06	2.93	2.78	2.63	2.55	2.47	2.38	2.29	2.20	2.10
28	3.03	2.90	2.75	2.60	2.52	2.44	2.35	2.26	2.17	2.06
29	3.00	2.87	2.73	2.57	2.49	2.41	2.33	2.23	2.14	2.03
_30	2.98	2.84	2.70	2.55	2.47	2.39	2.30	2.21	2.11	2.01

07/0T 200