Suport de curs: Introduction to Algorithms - Cormen

Nota finală: $\frac{2}{3}$ examen + $\frac{1}{3}$ laborator E-mail: alexandru.popa @ fmi.unibuc.ro alexpopa.neocities.org

Notații asimptotice: 0, 0, 0, 1, 1, w

Când projection algoritmi aven în vedere:
- corectitudirea

- eficienter - sportiu de memorie timp de rulore

Timpul de rulore = numarul de aperatii

"o" mic Theta omega mic

Notații asimptetice: 0, 0, θ, Ω, ω

"o" more

"o" more

I. O ("0" mort)

O(g) = (informal) multimea funcțiilor core cresc mai încet sau la fel de încet ca g

 $\underline{E}_{\underline{x}}$: Un algoritm de complexitate $O(n^2)$ = funcția correspunzateare nr-ului de pași executați de algoritm crește mai încet ca n^2

Sefinitie:

Spurem cā \Rightarrow functie $f \in O(g)$ dacā $\exists n_0, c > 0$ a.î. $\forall n \ge n_0$ arem $f(n) \le c \cdot g(n)$

$$E_{\underline{x}}: \circ 2n \in O(n^2)$$

$$f(n) = 2n$$

$$g(n) = n^2$$

$$\forall n \geq 2 \quad 2n \leq 1 \cdot n^2$$

- 200 $n^2 \in O(n^2)$ Adenoted $n_0 = 1$ $\forall m \ge 1$ $200 n^2 \le C \cdot m^2$ C = 200
- $n^2 \notin O(n)$ Bresupunem prin reducere la absurd că $n^2 \in O(n) = 3$ => $\exists n_0, c > 0$ a.î. $n^2 < c.n \quad \forall n \ge n_0$ n < c contradictie pentiru că c este constantă
 - $2^{m+1} \in O(2^m)$? C=2 $m_0 = 1$ AA
 - 2^{2m} ∈ O(2^m)? NU

 Temă (Ex la Seminar

II. $\Omega(g) = (informal)$ multimes functibles core crex mai repede sou la fel de repede ca g

Ex:
$$n^2 \in \Omega$$
 ($n \log n$)
$$\frac{n}{2} \in \Omega$$
 (n)
$$2^n \in \Omega$$
 ($\log n$)

<u>befinitie</u>: $f \in \Omega(g)$ dans $\exists n_0, c > 0$ a.î. $\forall n \ge n_0$ aven $f(n) \ge c \cdot g(n)$

III. Θ $f \in \Theta(g) = (informal)$ f creste la fel de repede ca g

Definitie $f \in \Theta(g)$ dacă $\exists c_1, c_2, n_0 > 0$ a.î. $\forall n > n_0$ arem $c_1 g(n) \leq f(n) \leq c_2 \cdot g(n)$

Ex: $200 \text{ m}^2 \notin \Theta(m)$ $200 \text{ m}^2 \in \Theta(m^2)$ $\frac{m^2}{10} \in \Theta(m^2)$ $m \notin \Theta(m \log m)$

Teorema: $f \in \Theta(g) \iff f \in O(g)$ si $f \in \Omega(g)$ (seminor (expecition) II. $f \in o(g) = (informal)$ foreste strict mai încet decât g

Ex: $n \in o(nlegn)$ $n^2 \in o(n^3)$ $n \notin o(n)$ $n \notin o(loon)$ $\frac{n}{2} \notin O(n)$

Definitie $f \in o(g)$ dacă $\forall c > 0 \exists n_0 > 0 a.i. \forall n \ge n_0$ avem $f(n) < c \cdot g(n)$

I. $f \in w(g) = (informal)$ f creste strict mai repede decât gEx: $n^3 \in w(n^2)$

Ex: • n e o(n2)

2" (w(n)

Fie c>0 fissat Vrem so gasem un n. a.î. \forall $n\geq n_0$ sa arem $n< c.n^2$ no depinde de c. De exemplu , putem alege $n_0=\frac{1}{c}$

 $\forall n > \frac{1}{c}$ $n < c \cdot n^2$

• n! ∈ o(nn) = escercitiu

· log n! ∈ \(\theta\) (n log n) - eccercitiu