## Operating Systems (CS3000)

Lecture – 1 (Course Overview)



Dr. Jaishree Mayank

**Assistant Professor** 

Department of Computer Sc. and Engg.

#### Course Evaluation Components

- Mid Sem: 25 (1<sup>st</sup> week October 2024)
- End Sem: 55 (4th week November)
- Assignments: 20

#### Course Administration (3000)

- Prior knowledge: C, Data Structures, Computer Organization and Design
- Lecture slides will be available on moodle after lecture.
- Some reading material will be provided before/after the lecture.
- Discussion Time: Anytime except when we have class or laboratory (prior email is preferable).
- Lab: Once a week (Good Learning Experience).
- Easiest way to get a good grade in CS3000 is to pay attention in the class.
- 85% attendance is mandatory.
- Total = 42 Lectures, 14 Tutorials

| CS3000 |   |   |         |  |
|--------|---|---|---------|--|
| L      | Т | Р | Credits |  |
| 3      | 1 | 0 | 4       |  |

#### **Time Table**

Monday -11:00 AM - 11:50 AM

Tues - 8:00 AM - 8:50 AM

Wed - 12:00 PM - 12:50 PM

Thurs - 09:00 AM - 09:50 AM

#### Books & Reference Materials

- 1. Operating System Concepts, 8th Edition by Silberschatz et.al.
- 2. Operating Systems: Internals and Design Principles, 8th Edition by William Stallings
- 3. Online Resources



## Why Operating Systems Required?



#### Goal of OS



#### **Usages of Operating System**

- OS Provide Abstraction
- Easy to program
  - No more small details are required
- Reusable functionality
  - Different programs can use the OS functionality
- Portable
  - OS interface are consistent. The program does not change when the hardware changes

- OS as a Resource Manager
- OS must manages CPU, memory, secondary memory(hard disk), network, etc.
- Resource Management
  - Allows multiple programs to share resources
  - Protect programs from each other
  - Improved the utilization of resources

#### Why this Course?

- Most Essential Part of a Computer System
- A program that acts as an intermediary
  - between a user of a computer and the computer hardware
- A program that is a resource manager
  - Memory, CPU, I/O
- Acts like Government
  - No useful function by itself
  - Sets up environment for other applications to achieve their tasks
- Time/Deadline Based
- Event Driven
- Challenges in the OS design
- Tradeoffs in OS design

## Operating System Market Share



Source:StatCounter

## Types of OS (Types of Applications)

- Desktops
- Servers
- Embedded OS
- Mobile OS
- RTOS
- Secure Environment

- Mac OS, Windows, Ubuntu
- Windows Server, Redhat
- Contiki OS
- Android, iOS
- RTLinux
- SeLinux

#### Course Contents

- Structure of Operating System
- Functionalities & Services of an Operating System
  - Process Concept System Calls & Management
  - Process Synchronization
  - Process Scheduling
  - Deadlock
  - Memory Management
  - I/O Management

Every Job or Task has -

- CPU Time
- IO Time

- Batch OS
  - Transistors
  - Starts another job only after the present job is completed entirely
  - both CPU and IO Parts to be completed
- Poor CPU Utilization
- Low Throughput (Efficiency Aspect)

No of Jobs or Tasks completed per unit time

- Stored Program Architecture
- Multiple Programs or Jobs are allowed to be in Main Memory



- Multi Programming OS
  - Overlapped execution of CPU and IO Operations Tasks
  - When CPU is idle, switch to other Job
  - Better CPU Utilization when J1 is busy on IO; J2's CPU part is allowed
    - Betters Throughput



- Multi Tasking OS
  - Based on the concept of Time Sharing (= 2sec)
  - Time Sliced Execution of Tasks
  - Illusion of Simultaneous Execution of Tasks

| J1 - 4        | Sec |
|---------------|-----|
| J2 - 3        | Sec |
| J3 <b>–</b> 7 | Sec |



- Multi Processing OS
  - More than 1 Processor
  - Modern day Multicore Systems
  - True Simultaneous or Parallel Processing
  - High Throughput
  - High Reliability Fault Tolerant Systems
  - Economical from a user and application management view



## Functionalities or Services of OS

**Process Management** 

Process Creation, execution, termination

**Process Scheduling** 

Interprocess Communication

Thread-Scheduling

Synchronization of processes

Handling Deadlocks

#### **Memory Management**

- Keeping track of used and free space
- Deciding which processes and data to move into and out of memory
- Allocating and deallocating memory space

Operating Storage Management

File Mamagement

Creation, deletion of files and

directories

Manipulation of files and

directories

Mapping files onto secondary

storage

Mass-Storage Management

Free Space Management

Storage Allocation

**Disk Scheduling** 

Protection and Security

**System** 

Ensuring control access of resources

# Thank You Any Questions?