目次

1		目的・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2		実験手順・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2	.1	特徴抽出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2	.2	特徴評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
3		結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
3	.1	特徴抽出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
3	.2	特徴評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
4		考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
4	.1	特徴抽出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
4	.2	特徴評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1.5

1 目的

画像認識に必要な特徴抽出部を作成し、特徴評価を行うことで識別に必要な特徴の組み合わせを決める.

2 実験手順

2.1 特徴抽出

- 1. 各画像に対して白黒反転と正規化を行った.
- 2. 画素の縦方向・横方向の広がり方を捉えるために、重心、分散、ゆがみ、扁平度を縦横方向それぞれ求めて、8次元の特徴量抽出を行った.
- 3. 特徴量の各次元のスケールを合わせるために標準化を行った.
- 4. 正解数字と上記の 8 次元の特徴をカンマ区切りで並べた 100 行 9 列の csv ファイルを出力 した.

2.2 特徴評価

- 1. クラス内分散とクラス間分散, およびそれらの比を求める Google Colaboratory のコードを実装し, 識別に有効であると思われる 2 次元特徴の組み合わせを 3 つ求めた.
- 2. 上記で求めた組み合わせについて、2次元散布図に出力する Google Colaboratory のコードを 実装し、識別に最も有効だと考えられる特徴の組み合わせを求めた.

3 結果

3.1 特徴抽出

特徴抽出の実装をソースコード1に示す

```
from os import fchdir
from google.colab import drive
drive.mount('/content/drive')

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from enum import Enum
import statistics
import csv
```

```
# PGM形式の画像を読み込む関数
   def read_pgm(filename):
       with open(filename, 'rb') as f:
14
          # PGMファイルのヘッダーを読み込む
15
          header = f.readline().decode().strip()
16
          if header != 'P5':
17
              raise ValueError(f"Unsupported file format: {header}")
18
19
          # 画像サイズの読み込み
20
          size = f.readline().decode().strip()
^{21}
22
          width, height = map(int, size.split())
24
          # 最大値の読み込み
25
          maxval = int(f.readline().decode().strip())
26
          # 画像データの読み込み
27
          im_data = f.read() # バイナリデータを一度に読み込む
28
29
          # 画像配列に変換(リストを使う)
30
          im_array = []
31
          for i in range(height):
32
              row = []
33
              for j in range(width):
34
                  pixel_value = im_data[i * width + j]
                  row.append(pixel_value)
              im_array.append(row)
37
38
          return im_array, width, height
39
40
   # 画素を反転する関数の定義
41
   def rev_image(filename):
42
       # 画像を読み込む
43
       im_array, width, height = read_pgm(filename)
44
45
       # 反転処理(255から各画素値を引く)
46
       result = []
       for row in im_array:
          inverted_row = [255 - pixel for pixel in row]
49
          result.append(inverted_row)
50
51
       return result, width, height
52
53
   # 画像を表示する関数
54
   def show_image(im_array, width, height):
55
       plt.imshow(im_array, cmap='gray', aspect='auto')
56
      plt.axis('off') # 軸を非表示にする
57
       plt.show()
60
                                    ここから自作
61
62
63
   FVALUE_SIZE = 8 # 特徴ベクトルのサイズ
64
   TARGET_NUMBER_SIZE = 10 # 対象とする数字の種類数(0~9)
65
```

```
NUMBERS_LABEL_SIZE = 10 # それぞれの数字画像に対するラベル(候補)の数
    # 特徴ベクトルの要素の添え字
68
    # 重心
69
   MUX = O
70
    MUY = 1
71
    # 分散
   VX = 2
   VY = 3
   # ゆがみ
   SX = 4
   SY = 5
   # 扁平度
   FX = 6
   FY = 7
80
    # 画素濃度正規化処理を行う関数
82
    def normalize_image(im_rev, width, height):
83
       # 分母の算出
84
        denominator = 0
85
       for y in range(height):
86
         for x in range(width):
           denominator += im_rev[y][x]
        # 正規化処理
        result = []
       for y in range(height):
93
         for x in range(width):
94
           normalized = im_rev[y][x]/denominator
95
           row.append(normalized)
96
         result.append(row)
97
98
99
        return result, width, height
    # 重心を求める関数
    def get_center(im_norm, width, height):
       ux = uy = 0
103
       for y in range(height):
104
         for x in range(width):
105
           ux += (x + 1) * im_norm[y][x]
106
           uy += (y + 1) * im_norm[y][x]
107
108
       return ux, uy
109
110
    # 分散を求める関数
111
    def get_variance(im_norm, width, height, ux, uy):
112
       vx = vy = 0
        for y in range(height):
114
         for x in range(width):
115
            vx += im_norm[y][x] * (x + 1 - ux) ** 2
116
           vy += im_norm[y][x] * (y + 1 - uy) ** 2
117
118
119
       return vx, vy
```

```
120
    # ゆがみを求める関数
    def get_skewness(im_norm, width, height, ux, uy, vx, vy):
122
        sx = sy = 0
123
        for y in range(height):
124
          for x in range(width):
125
            sx += im_norm[y][x] * (x + 1 - ux) ** 3
126
            sy += im_norm[y][x] * (y + 1 - uy) ** 3
127
        sx /= pow(vx, 1.5)
128
129
        sy \neq pow(vy, 1.5)
130
        return sx, sy
131
132
    # 扁平度を求める関数
133
    def get_flatness(im_norm, width, height, ux, uy, vx, vy):
        fx = fy = 0
134
        for y in range(height):
135
          for x in range(width):
136
            fx += im_norm[y][x] * (x + 1 - ux) ** 4
137
            fy += im_norm[y][x] * (y + 1 - uy) ** 4
138
139
        fx /= pow(vx, 2)
140
        fy \neq pow(vy, 2)
141
        return fx, fy
    # 特徴抽出を行う関数
145
    def extract_features_without_normalization(filename):
        # 画像を反転
146
        im, width, height = rev_image(filename)
147
        # 画像の正規化
148
        im, width, height = normalize_image(im, width, height)
149
150
        # 特徴量の算出
151
        fvalue = [0] * FVALUE_SIZE
152
153
        fvalue[MUX], fvalue[MUY] = get_center(im, width, height)
        fvalue[VX], fvalue[VY] = get_variance(im, width, height, fvalue[MUX], fvalue[MUY])
        fvalue[SX], fvalue[SY] = get_skewness(im, width, height, fvalue[MUX], fvalue[MUY],
            fvalue[VX], fvalue[VY])
        fvalue[FX], fvalue[FY] = get_flatness(im, width, height, fvalue[MUX], fvalue[MUY],
156
            fvalue[VX], fvalue[VY])
157
        return fvalue
158
159
    # 特徴量の標準化をする関数
160
    # fvalues_t: ある次元についての全画像の特徴量をまとめたベクトル
161
    def standardize_feature_value(fvalues_t):
162
        for fvalue_t in fvalues_t:
163
          # 平均値の算出
164
          ave = statistics.mean(fvalue_t)
165
          print('ave = %f' % ave)
          # 標準偏差の算出
167
          sd = statistics.pstdev(fvalue_t)
168
          print('sd = %f' % sd)
169
          #標準化
170
          for i in range(len(fvalue_t)):
171
```

```
fvalue_t[i] = (fvalue_t[i] - ave) / sd
        return fvalues_t.T.tolist()
174
175
    #全画像の特徴量を計算し、CSVファイルとして出力する関数
176
    def make_features_csv(dataset_path):
177
       fvalues = []
178
        # CSVファイルの作成
179
        with open('/content/drive/MyDrive/pattern/week01/feature.csv', 'w') as f:
180
181
         writer = csv.writer(f)
182
          # 各画像から特徴量を算出して2次元配列にまとめる
184
         for i in range(TARGET_NUMBER_SIZE):
185
           for j in range(NUMBERS_LABEL_SIZE):
             filename = f'{dataset_path}number{i}_{j}.pgm'
186
187
             row = extract_features_without_normalization(filename)
188
             fvalues.append(row)
189
190
          # 特徴量の標準化
191
          fvalues_t = np.array(fvalues).T
192
          fvalues = standardize_feature_value(fvalues_t)
          # ラベルの追加
         for i in range(TARGET_NUMBER_SIZE):
           for j in range(NUMBERS_LABEL_SIZE):
             fvalues[i * TARGET_NUMBER_SIZE + j] = [i] + fvalues[i * TARGET_NUMBER_SIZE + j]
198
199
          # CSVへの書き込み
200
          writer.writerows(fvalues)
201
202
203
                                       実行部分
204
205
    dataset_path = '/content/drive/MyDrive/pattern/sample_data/number/'
    make_features_csv(dataset_path)
```

ソースコード 1: 特徴抽出の実装

また、CSV の出力結果を表1に示す.

表 1: 特徴量をまとめた CSV ファイル

0	-0.7505019636430198	1.6188340268031158	1.7195994199875546	-0.20294393081950754	0.564766303576569	-0.7395120211897082	-0.6966344793270051	-0.4103744830005732
0	-1.6858765577628123 -0.5991783413667354	1.6765347175175025 0.24199446512870923	1.7667123102537383 1.619255613667175	-0.20288770510755738 -0.557535809445395	0.6438224332723195 0.5674972061973432	-0.7505844059340022 0.2937959251580505	-0.6849688719804399 -0.7311369964924413	-0.4004040011881824 0.019070298375090527
0	-1.4783996303652014	0.238095713508989	1.620668466979348	-0.44185008941780723	0.5796615334306591	0.4560611406914342	-0.7094259791897896	-0.012562040030783102
0	-0.547417308148819 -1.4225462752635991	0.18049153944985816 0.2525412501756195	1.6529559779934184 1.7561796245708452	-0.26160676249904125 -0.3035449180770797	0.5025642834279817 0.5845235214707181	-0.7356992361360449 -0.7801548944092326	-0.6684977597246927 -0.6443913655212371	-0.16240037745468014 -0.3180086977333264
0	-0.3055376846544883	-0.7471983482725616	1.6347499226168196	-0.7167465281441867	0.3372565006863208	0.5226149241057306	-0.7224605916449677	0.18311612678312153
0	-1.1374776196629608 0.32957041777683865	-0.5602300463662574 -1.0596832021463698	1.7100068441161496 1.723984778565471	-0.4834042989175053 -0.27256696481840414	0.29485621071785484 0.5645378584673366	0.5796368946665174 -0.68742346067483	-0.5115069687808594 -0.700453716684531	0.29291474449897376 -0.35764928735397167
0	-0.49674294970133953	-0.9951264913720118	1.710127029351941	-0.14125097642342002	0.5670059285188777	-0.7822842393436301	-0.6550793318285427	-0.406865990488131
1	-1.1502944111727695 -0.4119977724061121	1.9234784615981662 1.945370434555909	-1.89756712803103 -1.9782605566173856	1.2845886875821695 1.3638753647153539	-1.0946552381457193 -0.6772305901097941	-0.8613129426982848 -0.7289710443691599	0.6831412280080215 0.7797882241806021	-1.3629550178846375 -1.3619595253769399
1	-0.9974503200874595	0.3726032046977007	-1.9932904998872114	0.9184354801222621	-1.2174112702125024	0.6814714295596438	1.2277597648161631	-0.9255594390113008
1	-0.3783519630111141	0.5410696776159609 0.4076270969540033	-2.06621516405939	1.2124205941318025 1.308082047563426	-0.9688338687838614	0.4558805911738451	0.6672687201719257	-1.1795818490926688
1	-0.8398976517574681 -0.15197440905607076	0.4919847263578375	-1.9381117602059268 -1.993108285429878	1.308082047563426	-1.0482335296596454 -0.763886673560609	-0.7603679664811493 -0.730099699878351	0.7416902161444016 1.471040099522346	-1.3712541451407423 -1.343031294807703
1	-1.052008274340966	-0.5559678043691952 -0.32943469437858586	-2.0882299964577262 -2.0416483383983373	0.8679827250095452	-1.3592933473132667 -2.626505044696921	0.7316772159768109 0.4118598187017524	0.7304931940674996 4.5174237061730365	-0.9464980981973647 -1.1797464491373513
1	-0.32497857483292575 -0.045359958357559196	-0.7589838372400106	-2.0416483383983373 -1.852710424229122	1.0649026789146483 1.4053931415934149	-2.626505044696921 -0.8598150621017918	-0.7988574766028008	0.7132958216579969	-1.3713848490785634
1	0.6918701609192895	-0.6985984420079137	-1.9291063079998405	1.4997309990401726	-0.8245855347724482	-1.0260787955753505	1.8723911121116616	-1.108168260723057
2	0.2815750880673933 -0.3150219610108596	1.4864964284908084 1.6617828707625644	0.2850634489807806 0.3303010400973673	1.7443928869186907 1.7921611144419949	-0.015039947965738952 -0.08535802506694906	0.005113332245970757 -0.017986997553344763	-0.4119897926537303 -0.3950123800894682	-1.4812519020539003 -1.468743584102489
2	0.8843805836376064	-0.10804644108959344	0.2995722543503759	1.0125356908083727	-0.49008752230276076	1.7088915266444342	-0.41590846457757985	-0.4908322639389306
2	0.22613333450365813 0.7107114178533728	0.280964911288965 0.06028929784232804	0.2683020973062472 0.26994999444782947	1.3226232166118406 1.6809521485024992	-0.3995372701268181 -0.11248081125720324	1.0923345289354989 -0.01654932567850504	-0.4313554857565739 -0.4158474212243854	-1.0176463671945997 -1.4543362292306279
2	-0.15351217624875754	0.23385038088959337	0.29926015403240835	1.6947694803622675	0.0009677591272742021	-0.11001948210023349	-0.4141609520438707	-1.4802630126846665
2	0.9145006857321641 0.3456545674086915	-1.015932271126223 -0.8132386191838791	0.2854162784172602 0.308612624293259	1.025979060881825 1.0309120682504267	-0.49517909629966034 -0.4361113813742956	2.1637652254228965 1.6247635955056183	-0.45824218413569034 -0.42895476194505966	0.8517680511931696 -0.5914765210110531
2	1.2818796444623342	-1.1479481121255817	0.2796469595731348	1.7466164979788041	-0.017356680666722347	-0.07610108355643715	-0.4243972274865082	-1.4906421401132828
3	0.6791010432703759 0.4324087772043067	-1.0177914219883109 1.6162155361203323	0.33350247564408886 -0.24698612773404097	1.7930547497593032 0.9722562106386333	0.25017899334599936 -1.3995894421623583	-0.007835878406110535 -0.6058295989338163	0.0028608653461752484 -0.1118950471226377	-1.4518645395387986 -1.074577392081721
3	2.2520121082679223	1.6881477182522464	-0.15482369023495818	1.0429849559672255	-1.2853604407338712	-0.499957084108876	-0.1118930471220377 -0.12041864281398215	-1.038886355919687
3	0.6384522350839018 2.4294638355697433	0.11731066850202038 0.37975634871058955	-0.4288221754026614 -0.4344525245269182	0.45930940276575744 0.6138917908141878	-1.466091219845665 -1.4111187413633923	0.7482648351413351 0.5122595118124926	-0.049707261802942215 -0.06673543646537364	-0.4660367891712773 -0.5969061709918896
3	2.4294638355697433 0.6280712346376192	0.37975634871058955 0.10087997912165002	-0.4344525245269182 -0.22703537047695466	0.6138917908141878 0.8809237031155397	-1.4111187413633923 -1.3474459722698697	-0.5633327884831543	-0.06673543646537364 -0.13252107426520435	-0.5969061709918896 -1.0244360601112958
3	2.3256719012480995	0.25193787128177125	-0.19765565741856678	0.919066359930807	-1.306688496577964	-0.41837544955249023	-0.13562245255057062	-1.018053047538716
3	0.6692118293642877 2.2889219829666363	-0.839220317287287 -0.6062542592791854	-0.347913805761593 -0.5047964431580446	0.45623149327595336 0.4377208120344912	-2.0440231379163887 -1.4409590431024388	1.267167232531805 0.7732873912887444	0.7006216356228862 -0.08440051250374143	0.973032935625555 -0.4376707632711242
3	1.446783353644286	-1.0958185598366779	-0.28366144453424547	1.0010763286438578	-1.3872388859410745	-0.5816326011632458	-0.12464621299677496	-0.9135460098981791
3	3.1999739519345436 -0.08996876009586084	-0.9628919025187859 1.5156617847809382	-0.0868546068662222 -0.6843301309241576	1.0188693668272775 -1.7025132311950875	-1.2589179877996126 -1.1863237593522473	-0.5148419902016088 -1.3933275285254592	-0.12211854111849461 0.15990551046390877	-1.0612249311854123 1.1020843275373475
4	0.5549348634054816	1.6901491943032878	-0.7019032327579995	-1.671855902696148	-1.2273652973934135	-1.4588935806564922	0.18615595998536205	1.3640343977053837
4	-0.03350537524022351 0.5335159603996708	0.21729677370651004 0.4554336787371825	-0.8568904970078747 -0.757133100896808	-2.033288996715898 -1.9987970274975442	-1.2577778975161844 -0.8333662846265714	-0.869400256392182 -0.7806079325968148	0.22276661176619905 0.5425738860086755	1.579582292755197 1.5369582135756854
4	0.21288013099913677	0.050041127639290715	-0.7761733157389811	-1.763612995569397	-1.1244603680233272	-1.3490799746453537	0.21999679935092886	1.087744705034366
4	0.677119780759799 -0.022098238928653854	0.23431363082853282 -0.6840790638684932	-0.7353682450115624 -0.976732877369972	-1.7295584674198792 -2.1073697921508083	-1.0427076699911895 -1.2762679037486209	-1.331860578250284 -0.7277353737643335	0.21077505849447342 0.12840212322071587	1.0433870664175287 1.2783257343365415
4	0.4187525230965226	-0.5282631827660336	-0.8979116598826082	-2.050844926339701	-1.1993734523809911	-0.49403023930044954	0.29338759823536326	1.2982873816714031
4	1.0323719380173049 1.4624557683230377	-1.133720071483921 -0.9906138967171265	-0.7934787986832729 -0.7426327364009196	-1.6911790913698617 -1.7017656714661102	-1.1714054518334829 -1.1521089129765074	-1.4252441612122781 -1.3864653956445798	0.15828925889568976 0.14153083470093203	1.051838465183481 1.0761910396167258
5	-1.1458540675067985	1.511112758535061	0.2849035994210112	0.6636262059674971	0.9018751148340941	-0.8497637218093493	-0.5187300777812218	-0.45654597641716915
5	0.11505644873003557 -1.2356054260388054	1.7900799789923372 0.15331530010990585	0.1964166221466978 -0.04306074012893348	0.6699508466593965 0.10341018064667722	0.9862471381338136 1.2553891722995214	-0.9078410129126707 0.17557272866943305	-0.49072116830899787 -0.4655062802175852	-0.19066364755731297 0.1538648712620504
5	0.14883297458265382	0.39476205343814774	0.3897135078798446	0.15871591823054665	-0.5101902199765361	0.13776294185335988	2.052991523815105	0.055432956490240375
5	-0.948721214056287 0.12288585796173733	0.09828889125830197 0.2504077732773677	0.2845420541204779 0.2471896126063867	0.5281539505631333 0.5811838426262875	0.954776174813829 1.0538934183457653	-0.8322909820876497 -0.6979657468856478	-0.5238541409790956 -0.5062405371882471	-0.38448502739307566 -0.41053931836682683
5	-1.1927789534302309	-0.7273740639197056	0.06878585327753672	0.06089801109039842	1.1874883344914207	0.21607067498195573	-0.5330134331652924	0.08858016424662787
5	0.03113974813098458 -0.12173221756445515	-0.5856248242855696 -1.100634837994781	0.057810057845543876 0.2925966483804718	0.023509881840044135 0.6626611203158304	1.126648012086324 0.9463896654778619	0.3226795436503074 -0.9559183256966027	-0.5387634285845406 -0.5028497792112671	0.15535206991810302 -0.41498781300939086
5	1.2211805618909914	-0.927799800112852	0.11434140856231549	0.6789020473482109	1.0264624165210403	-0.7589976187784101	-0.5074267378632933	-0.3870256671400641
6	-1.7928969660054768 -0.3239232125582289	1.7476346159115212 1.935299185898393	0.4058005619098969 0.39592686818603634	-0.5789812040952772 -0.611996694049259	0.7271493337080762 0.6962045669964	-1.1516837625790697 -1.1306363016740417	-0.5329070874297799 -0.5453287603740696	0.5244357803627048
6	-1.5553841659551668	0.4067332209513329	0.1755769514797933	-0.9491138263639589	0.661601986613641	-0.18251979382990047	-0.5478942925979682	0.9714305788485464
6	-0.21143620824621512 -1.6136219075224134	0.6596963050167146 0.2691208787729008	0.3208128084945173 0.4359315824249425	-0.9955873494258015 -0.6588543830397865	0.8025977534559208 0.7528336046274684	-0.3029132687345836 -1.1085391662265072	-0.3784967569964706 -0.5542126370337189	1.002193980827798 0.4913503170092743
6	-0.40113680382375483	0.5022231284106857	0.4214785583675088	-0.6702605603214506	0.7796681669468988	-1.1041817218531034	-0.554520098153377	0.49983376097849075
6	-1.683592076870002 -0.4457875708297378	-0.5548734627356846 -0.3297597016842247	0.10972479785579377 0.2458006328355942	-1.0008949725904428 -1.0769031175491879	0.7747325028221945 0.7057981321770266	-0.015002900347127857 -0.06816751332298104	-0.531015760201802 -0.5535959565671046	1.0050346403630026 1.0438803688828477
6	-0.7184343625075855	-0.9194560859016928	0.3830432847578705	-0.5501075000384257	0.7147040702334604	-1.0689403714780212	-0.5547740864499925	0.43424217215575306
6 7	0.6987294021981362 -0.8935175737100766	-0.7891778220006406 0.41323406458540335	0.42558707952982344 -0.977265979482646	-0.5573483919978821 0.584214633420661	0.7858147643052159 0.5729133739977754	-0.9721505129744046 1.3554594692565578	-0.4783433258475188 0.34989714204831907	0.48175756068595615 -0.4035231386558744
7	-0.09438306061474465	0.5067194524079796	-0.9578166666589226	0.4898031429364303	0.4186677938035579	1.5814076105425183	0.3371295462121943	-0.20070060970353107
7	-0.43232681844226906 0.20819973775986325	-1.0709241299952224 -0.7104412157020116	-0.8923196810934674 -0.9871273398996971	-0.2655896576251234 -0.07882103456210283	-0.004124848540627453 -0.6346007635538771	2.7660041772864123 2.430467954535985	0.19879631782988866 1.469199008086529	1.0544316382278054 0.9988556390644544
7	-0.5216151728608147	-0.7104412157020116 -0.8972085561304999	-0.9871273398996971 -0.688466793584815	-0.07882103456210283 0.5338126562472598	4.3154051739206105	1.2009896184217268	1.469199008086529 6.443260649755727	-0.37701360221729474
7	0.009068828499826388 -0.09107825303991968	-0.7505710157073063 -1.944310619720719	-1.0587799681938277 -0.9337021962902002	0.5748219574518014 -0.48079793784278246	0.7052330734417755 0.03826093705628474	1.2288560969624387 2.85135224115267	0.3263545829685227 0.19898649181859085	-0.4438680576397753 1.274696060434248
7	-0.09107825303991968 0.3566469994356704	-1.579081392528893	-0.9337021962902002 -1.0067314829266891	-0.48079793784278246 -0.22951295139118263	0.03820093703628474	2.85135224115267 2.2836394824040074	0.2660690093835922	0.5960352415169743
7	0.2785455852273237 0.9963812134062597	-2.2840959751290764 -2.1068309915611936	-1.0919906729360205 -1.1229039228899251	0.5514514984156789 0.5731435596754463	0.5096849873006177 1.180368049896408	1.4762814850670625 1.4553123140671165	0.30516553363363574 1.4064084617151584	-0.32896368107925966 -0.266848830086008
8	-1.8499216462591515	-2.1068309915611936 1.558927076035382	-1.1229039228899251 0.7128829499297484	-0.24026259003544495	0.5950054358022249	-0.5896608113725799	-0.5622957844330302	-0.27377062636529237
8	0.5885622158916985 -1.7169590641019767	1.8276703064912339 0.26985700007422964	0.693400729667256 0.49938342749057574	-0.2889765833289639 -0.6003668167183656	0.6005907337856888 0.6892039930548387	-0.5899924760243772 0.27126769241270293	-0.5583166410913445 -0.5750238010468831	-0.29949036870131246 0.07432594635637894
8	0.5956041914307484	0.26985700007422964 0.5510501783777668	0.5464749119331737	-0.5850382008991518	0.45408929860459274	0.27126769241270293	-0.5750238010468831 -0.2401485597626585	0.07432594635637894
8	-1.6792876148649494 0.6586744819324127	0.18463120997872207 0.4024593955624164	0.7669716528665389 0.6612642089823941	-0.32186578332892274 -0.2718281215178707	0.6822385395249442 0.6627454657142003	-0.6978108755614705 -0.722476361919405	-0.5589508688701588 -0.5699994390686948	-0.31692674852970854 -0.29473027679200714
8	-1.5914234386090869	-0.5707926087445433	0.6612642089823941 0.47531554157969597	-0.2718281215178707 -0.654559823309262	0.6627454657142003 0.5924882221484513	-0.722476361919405 0.3790438713339161	-0.5699994390686948 -0.5796407529573431	-0.29473027679200714 0.17029132533147923
8	0.7079655067005772	-0.4376118121863158	0.507970259423671	-0.6654164755797091	0.5314018401963387	0.38443620804644624	-0.5815310060942634 0.5661272100472586	0.16890337544792466
8	-0.8337937855932361 1.5324179829135964	-1.053507216984442 -0.8731596501818796	0.684609862689906 0.5529978758185914	-0.22045658651533667 -0.1538831806996769	0.6068164938900702 0.5964508066567646	-0.7453029156278262 -0.6736468365915298	-0.5661373109472586 -0.5905162122415345	-0.29540144916089045 -0.3171706103336712
9	-0.22009592257040683	1.3909946501971604	0.8274968453559435	-0.6274017757446504	0.09980935508216103	0.13969468452354541	-0.5460527108003301	0.4839252208175018
9	0.02097684811635468 -0.20378993915907734	1.504222781519514 0.191996046017553	0.7431710829094142 0.8499381258158807	-0.5682266170204483 -0.9954369426194585	0.20462407678605693 0.23476737171897386	0.10998688433092928 0.6603280493776419	-0.5163284563753466 -0.601849154193577	0.47037695099954885 1.050793795846176
9	-0.03977558623021998	0.31087955259556954	1.5186920876745025	-0.5256202953866782	1.970136897530987	2.2492043931362384	1.0360698570634628	5.165799761610379
9	-0.09058818039038774 0.23443220713286358	-0.036127155277332595 0.12361618049191161	0.890803469004875 0.8160470746056254	-0.6746051410147633 -0.6048142453048898	0.030773310298203533 0.2989503322821651	0.08234330781145688 0.16760701537867623	-0.480151794135157 -0.3614444572666467	0.5669422485718381 0.7816090424059752
9	-0.043449238590020055	-0.7133028868875233	0.9766483336373253	-1.0889908687998435	0.7812090755554968	0.6470110929715014	0.11613800634841849	1.2210891630298757
9	0.014796338589468003	-0.7364397637068609	0.9203775809048677	-1.225404662990472	0.30384269681301673 0.11329459139470695	1.0066875849283998 0.21153551041478	-0.5955384093070071 -0.5537016303404534	1.3734094660591214 0.4706074608346417
9	0.7935859119829584	-1.306524421711193	0.8101350051936358	-0.5845943788781657	0.11323433133410033			

3.2 特徴評価

特徴評価の実装を,ソースコードに示す.なお,定性評価の部分では,グラフにプロットしたい組み合わせを都度コードに書くようにしている.(132, 133 行目)

```
from google.colab import drive
   drive.mount('/content/drive')
   import csv
   import matplotlib.pyplot as plt
   import numpy as np
   import pprint
   # クラス数
   NUM_CLASS = 10
10
   # クラスごとのデータ数
11
   NUM_CLASS_DATA = 10
12
13
   # 重心
  MUX = 1
   MUY = 2
   # 分散
   VX = 3
   VY = 4
   # ゆがみ
20
21
   SY = 6
   # 扁平度
   FX = 7
   FY = 8
   COL_MUX = [MUX, 'center point(horizontal)']
   COL_MUY = [MUY, 'center point(vertical)']
   COL_VX = [VX, 'variance(horizontal)']
   COL_VY = [VY, 'variance(vertical)']
   COL_SX = [SX, 'skewness(horizontal)']
   COL_SY = [SY, 'skewness(vertical)']
   COL_FX = [FX, 'flatness(horizontal)']
33
   COL_FY = [FY, 'flatness(vertical)']
34
35
   COL_ARR = [COL_MUX, COL_MUY, COL_VX, COL_VY, COL_SX, COL_SY, COL_FX, COL_FY]
36
37
   # CSV形式のファイルを行列に読み込み
38
   def read_csv(filename):
39
       with open(filename) as f:
40
           reader = csv.reader(f)
41
           data = list(reader)
42
       # 数値に変換
43
       data = [[float(value) for value in row] for row in data]
44
       return data
45
46
   # データを読み込む
47
48 data = read_csv('/content/drive/MyDrive/pattern/week01/feature.csv')
```

```
49
   # グラフにプロットする列を2つ選択する
   f1 = COL_SX
51
   f2 = COL_FY
52
53
54
                                     定量評価
55
56
57
58
   for ii in range(8):
59
     for jj in range(ii + 1, 8):
       # 現在の選択値を表示
61
       f1 = COL_ARR[ii]
       f2 = COL_ARR[jj]
62
       print('f1 = ' + f1[1] + ', f2 = ' + f2[1])
63
64
       # クラス内分散を求める関数
65
       def get_variance_in_class(data):
66
         res = 0
67
         n = len(data) # 全データ数
         col1 = f1[0] # 指定の列1つ目
69
         col2 = f2[0] # 指定の列2つ目
70
71
72
         for i in range(NUM_CLASS):
           # クラスωiの平均ベクトルを算出
73
           mi = np.zeros(2)
74
           for j in range(NUM_CLASS_DATA):
75
             mi[0] += data[i * NUM_CLASS_DATA + j][col1]
76
             mi[1] += data[i * NUM_CLASS_DATA + j][col2]
77
           mi = mi / NUM_CLASS_DATA
78
79
           # クラス内分散を算出
80
           for j in range(NUM_CLASS_DATA):
81
             x = np.array([data[i * NUM_CLASS_DATA + j][col1], data[i * NUM_CLASS_DATA + j][
82
                 col2]])
             arr_diff = x - mi
             res += np.inner(arr_diff, arr_diff)
85
         res /= n
86
         return res
87
88
       # test
89
       vw = get_variance_in_class(data)
90
       print("vw = %f" % vw)
91
92
       # クラス間分散比を求める関数
93
       def get_variance_between_class(data):
         res = 0
         n = len(data) # 全データ数
96
         col1 = f1[0] # 指定の列1つ目
97
         col2 = f2[0] # 指定の列2つ目
98
99
         # 全データの平均ベクトルを算出
100
         m = np.zeros(2)
101
```

```
for row in data:
            m[0] += row[col1]
            m[1] += row[col2]
104
          m = m / (NUM_CLASS * NUM_CLASS_DATA)
105
106
          for i in range(NUM_CLASS):
107
            # クラスωiの平均ベクトルを算出
108
            mi = np.zeros(2)
109
            for j in range(NUM_CLASS_DATA):
110
              mi[0] += data[i * NUM_CLASS_DATA + j][col1]
111
              mi[1] += data[i * NUM_CLASS_DATA + j][col2]
112
            mi = mi / NUM_CLASS_DATA
114
115
            arr_diff = mi - m
            res += NUM_CLASS_DATA * np.inner(arr_diff, arr_diff)
116
117
          res /= n
118
          return res
119
120
121
        vb = get_variance_between_class(data)
122
        print("vb = %f" % vb)
        # 統合した評価値
        print("vb / vw = %f\n" % (vb / vw))
128
                                         定性評価
129
130
131
    f1 = COL_VY
132
    f2 = COL_SX
133
134
    # 列ごとの最小値と最大値を計算
135
    xmin = min(row[f1[0]] for row in data)
    xmax = max(row[f1[0]] for row in data)
    ymin = min(row[f2[0]] for row in data)
    ymax = max(row[f2[0]] for row in data)
139
    # グラフの表示
141
    colorlist = ['red', 'green', 'blue', 'yellow', 'pink', 'orange', 'purple', 'black', 'cyan',
142
         'magenta']
    labellist = ['zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine'
143
144
145
    plt.figure()
146
147
    for i in range(NUM_CLASS):
        start = i * NUM_CLASS
148
        stop = start + NUM_CLASS
149
        x_values = [row[f1[0]] for row in data[start:stop]]
150
        y_values = [row[f2[0]] for row in data[start:stop]]
151
        plt.scatter(x_values, y_values, color=colorlist[i], label=labellist[i])
152
153
```

```
# グラフの範囲を設定
   plt.xlim(xmin, xmax)
   plt.ylim(ymin, ymax)
156
157
   # グラフのラベルと凡例を追加
158
   plt.xlabel(f1[1])
159
   plt.ylabel(f2[1])
160
   plt.legend()
161
162
   # グラフを表示
163
   plt.show()
```

ソースコード 2: 特徴評価の実装

また、このコードの実行結果を以下に示す.

```
f1 = center point(horizontal), f2 = center point(vertical)
2
     vw = 1.376352
     vb = 0.623648
     vb / vw = 0.453116
5
     f1 = center point(horizontal), f2 = variance(horizontal)
6
     vw = 0.524004
     vb = 1.475996
     vb / vw = 2.816763
10
     f1 = center point(horizontal), f2 = variance(vertical)
11
     vw = 0.575189
12
13
     vb = 1.424811
14
     vb / vw = 2.477117
15
     f1 = center point(horizontal), f2 = skewness(horizontal)
16
     vw = 0.770430
17
     vb = 1.229570
18
     vb / vw = 1.595954
19
20
     f1 = center point(horizontal), f2 = skewness(vertical)
21
     vw = 0.877899
22
     vb = 1.122101
23
24
     vb / vw = 1.278166
     f1 = center point(horizontal), f2 = flatness(horizontal)
     vw = 1.066844
27
     vb = 0.933156
28
     vb / vw = 0.874689
29
30
     f1 = center point(horizontal), f2 = flatness(vertical)
31
     vw = 0.857663
32
     vb = 1.142337
33
     vb / vw = 1.331919
34
35
     f1 = center point(vertical), f2 = variance(horizontal)
36
37
     vw = 0.878095
     vb = 1.121905
```

```
39
     vb / vw = 1.277658
     f1 = center point(vertical), f2 = variance(vertical)
41
     vw = 0.929280
42
     vb = 1.070720
43
     vb / vw = 1.152204
44
45
     f1 = center point(vertical), f2 = skewness(horizontal)
46
     vw = 1.124521
47
     vb = 0.875479
48
     vb / vw = 0.778536
49
51
     f1 = center point(vertical), f2 = skewness(vertical)
52
     vw = 1.231990
     vb = 0.768010
53
     vb / vw = 0.623390
54
55
     f1 = center point(vertical), f2 = flatness(horizontal)
56
     vw = 1.420935
57
     vb = 0.579065
     vb / vw = 0.407524
59
     f1 = center point(vertical), f2 = flatness(vertical)
61
     vw = 1.211754
     vb = 0.788246
     vb / vw = 0.650500
     f1 = variance(horizontal), f2 = variance(vertical)
66
     vw = 0.076932
67
     vb = 1.923068
68
     vb / vw = 24.996992
69
70
     f1 = variance(horizontal), f2 = skewness(horizontal)
71
72
     vw = 0.272173
73
     vb = 1.727827
     vb / vw = 6.348278
     f1 = variance(horizontal), f2 = skewness(vertical)
76
     vw = 0.379642
77
     vb = 1.620358
78
     vb / vw = 4.268121
79
80
     f1 = variance(horizontal), f2 = flatness(horizontal)
81
     vw = 0.568587
82
     vb = 1.431413
83
     vb / vw = 2.517493
84
     f1 = variance(horizontal), f2 = flatness(vertical)
     vw = 0.359406
     vb = 1.640594
     vb / vw = 4.564742
89
90
     f1 = variance(vertical), f2 = skewness(horizontal)
91
     vw = 0.323357
92
```

```
vb = 1.676643
93
      vb / vw = 5.185105
95
      f1 = variance(vertical), f2 = skewness(vertical)
96
      vw = 0.430827
97
      vb = 1.569173
98
      vb / vw = 3.642236
99
100
      f1 = variance(vertical), f2 = flatness(horizontal)
101
102
      vw = 0.619772
103
      vb = 1.380228
      vb / vw = 2.226995
105
106
      f1 = variance(vertical), f2 = flatness(vertical)
      vw = 0.410591
107
      vb = 1.589409
108
      vb / vw = 3.871033
109
110
      f1 = skewness(horizontal), f2 = skewness(vertical)
111
      vw = 0.626068
112
      vb = 1.373932
113
      vb / vw = 2.194544
114
115
      f1 = skewness(horizontal), f2 = flatness(horizontal)
      vw = 0.815012
      vb = 1.184988
      vb / vw = 1.453951
120
      f1 = skewness(horizontal), f2 = flatness(vertical)
121
      vw = 0.605831
122
      vb = 1.394169
123
      vb / vw = 2.301250
124
125
      f1 = skewness(vertical), f2 = flatness(horizontal)
126
127
      vw = 0.922482
      vb = 1.077518
      vb / vw = 1.168065
130
      f1 = skewness(vertical), f2 = flatness(vertical)
131
      vw = 0.713301
132
      vb = 1.286699
133
      vb / vw = 1.803867
134
135
      f1 = flatness(horizontal), f2 = flatness(vertical)
136
      vw = 0.902245
137
      vb = 1.097755
138
      vb / vw = 1.216692
```

ターミナル表示 3: 特徴評価の出力

定量評価の結果から、上位3つの組み合わせの候補として横方向の分散と縦方向の分散、横方向の分散と横方向のゆがみ、縦方向の分散と横方向のゆがみが挙げられる。以下にそれらのプロットを図1~3に示す。

図 1: 横方向の分散と縦方向の分散

図 2: 横方向の分散と横方向のゆがみ

図 3: 縦方向の分散と横方向のゆがみ

4 考察

4.1 特徴抽出

表 1 から分かるように,値の範囲がほぼ- $2\sim2$ に収まっており,平均が 0,分散が 1 となっているので,正規化と標準化が正しく行われていることが分かる.

4.2 特徴評価

特徴量の 2 次元組み合わせに関しては、結果のように求まったが、それらと図 2 \sim 3 を比較すると、評価値の大きいもの程まとまった分布をしていることが分かる.

参考文献

[1] 崔恩瀞. プロジェクト実習Ⅱ パターン認識 実験テキスト. 京都工芸繊維大学, 2024年