28 січня 2019 р.

Задача 1. Для кожного з наступних відношень на множині натуральних чисел опишіть впорядковані пари, що належать відношенням:

- 1. $R = \{(x, y)|x + y = 9\};$
- 2. $R = \{(x,y)|x+y < 7\};$
- 3. $R = \{(x,y)|y = x^2\};$
- 4. $R = \{(x, y) | 4x = y^2\}.$

Розв'язок.

1. Спершу задамо це відношення через цикл:

$$R = \left\{ (n, 9 - n), n = \overline{1..8} \right\}.$$

Також випишемо всі пари які входять до цього відношення:

$$R = \{(1,8), (2,7), (3,6), (4,5), (5,4), (6,3), (7,2), (8,1)\}.$$

2. Спершу задамо це відношення через цикли:

$$R = \{(n, k - n), n = \overline{1..k - 1}, k = \overline{2..6}\}.$$

Також випишемо всі пари які входять до цього відношення:

$$R = \{(1,5), (1,4), (1,3), (1,2), (1,1), (2,4), (2,3), (2,2), (2,1), (3,3), (3,2), (3,1), (4,2), (4,1), (5,1)\}.$$

3. Спершу задамо це відношення словами: R - відношення пар нату- ральних чисел вигляду

Також випишемо пари які входять до цього відношення:

$$R = \{(1,1), (2,4), (3,9), (4,16), \ldots\}.$$

4. Спершу задамо це відношення словами: R – відношення пар натуральних чисел вигляду

(квадрат половини другого числа, парне число).

Також випишемо пари які входять до цього відношення:

$$R = \{(1,2), (4,4), (9,6), (16,8), \ldots\}.$$

Задача 2. Яке відношення задається матрицею A? Побудуйте для нього граф.

1.
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix};$$
2. $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix};$
4. $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix};$

Розв'язок. Для зручності у цій задачі позначимо $\Omega = \{x,y,z\}$. Тоді

1. Спершу випишемо всі пари які входять до цього відношення:

$$R = \{(x, z), (y, y), (z, y), (z, z)\}.$$

Тепер наведемо його граф:

2. Спершу випишемо всі пари які входять до цього відношення:

$$R = \{(x, x), (x, z), (y, y), (z, y), (z, z)\}.$$

Тепер наведемо його граф:

3. Спершу випишемо всі пари які входять до цього відношення:

$$R = \{(x, z), (y, y), (y, z), (z, y), (z, z)\}.$$

Тепер наведемо його граф:

4. Спершу випишемо всі пари які входять до цього відношення:

$$R = \{(x, x), (x, z), (y, y), (z, x), (z, y), (z, z)\}.$$

Тепер наведемо його граф:

Задача 3. Визначте, які з наступних відношень на множині людей рефлексивні, симетричні або транзитивні:

- 1. "мати тих же самих батьків";
- 2. "бути братом";
- 3. "буту старше" або "бути молодше";
- 4. "бути знайомим";
- 5. "бути не вище";

Розв'язок.

- 1. Рефлексивне, симетричне, транзитивне, тобто відношення еквівалентності.
- 2. Взагалі кажучи це відношення є композицією відношень ¹ "бути чоловіком (особою чоловічої статі)" та "мати спільних батьків", на основі чого і проводиться подальший його аналіз.

Або не рефлексивне (бо жінка не ϵ своїм братом) або навіть антирефлексивне (якщо ми вважаємо що і чоловік не ϵ своїм братом).

Не симетричне (дочка X не є братом сина X але син X є братом дочки X), але і не антисиметрчине (бо існує X такий що у X існують два сини Y, Z, тоді Y брат Z і Z брат Y).

Транзитивне, бо якщо X брат Y і Y брат Z, то у них всіх спільні батьки, і при цьому X чоловік (адже він брат Y).

- 3. Антирефлексивне, антисисетричне і транзитивне, тобто відношення строгого порядку.
- 4. Рефлексивне (бо людина знає 2 саму себе).

 $^{^{1}}$ Тут відношення "бути чоловіком" – унарне і застосовується до першого аргументу.

 $^{^2}$ Хоча якщо пригадати філософів Древньої Греції які стверджували що сенс життя у тому, щоб "пізнати себе", то можна засумніватися у тому що всі люди себе знають.

Симетричне³, бо якщо людина X знає людину Y то вони знайомі, а отже Y знає X.

Взагалі кажучи не транзитивне, бо я знаю декана, декан знає ректора, але ректора я не знаю.

5. Рефлексивне, антисиметричне і транзитивне, тобто відношення нестрогого (часткового) порядку.

 $^{^3}$ Здебільшого саме так вважають у задачах математичних олімпіад, хоча і не завжди.

Задача 4. Маємо множину $A = \{1, 2, 3, 4\}$ і її розбиття на класи еквівалентності $\{\{1, 2\}, \{3, 4\}\}$. Задайте відношення еквівалентності R.

Розв'язок. Спершу випишемо всі пари які входять до цього відношення:

$$R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)\}.$$

Тепер наведемо його граф:

Для повноти опису наведемо також його матрицю:

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

11 лютого 2019 р.

Задача (класна). Побудувати функцію вибору, яка породжена бінарним відношенням

$$R = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Розв'язок. Скористаємося визначенням:

$$\forall X \subseteq \Omega: \quad C^R(X) = \{x \in X : \forall y \in X : y\bar{R}x\}.$$

При знаходженні $C^R(X)$ будемо дивитися на відповідну під-матрицю R і шукати ті x_i у стовпцях яких усі нулі, тобто не існує елементу що більший за них:

X			$\{x_3\}$	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^R(X)$	$\{x_1\}$	Ø	$\{x_3\}$	$\{x_1\}$	$\{x_3\}$	Ø	Ø

Задача 1. Побудувати функцію вибору, яка породжена бінарним відношенням

$$R = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

Розв'язок. Скористаємося визначенням:

$$\forall X \subseteq \Omega: \quad C^R(X) = \{x \in X: \forall y \in X: y\bar{R}x\}.$$

При знаходженні $C^R(X)$ будемо дивитися на відповідну під-матрицю R і шукати ті x_i у стовпцях яких усі нулі, тобто не існує елементу що більший за них:

X	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_1,x_2\}$	$\{x_1,x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^R(X)$	Ø	$\{x_2\}$	$\{x_3\}$	$\{x_2\}$	$\{x_3\}$	$\{x_3\}$	$\{x_3\}$

Задача (класна). Побудувати бінарне відношення, яке породжує задану функцію вибору, якщо таке існує:

X					$\{x_1, x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^R(X)$	(x_1)	Ø	$\{x_3\}$	$\{x_1\}$	$\{x_3\}$	Ø	$\{x_2\}$

Розв'язок. Існування бінарного відношення що породжує задану функцію вибору рівносильне нормальності відповідної функції вибору, яка, очевидно, не виконується.

Зокрема, $x_2 \in C(\{x_1, x_2, x_3\})$, але $x_2 \notin C(\{x_2\})$, суперечить нормальності.

Задача 2. Побудувати бінарне відношення, яке породжує задану функцію вибору, якщо таке існує:

	X	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_1, x_2\}$	$\{x_1,x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
ĺ	$C^{R}(X)$	Ø	Ø	$\{x_3\}$	$\{x_2\}$	$\{x_3\}$	$\{x_3\}$	$\{x_3\}$

Розв'язок. Існування бінарного відношення що породжує задану функцію вибору рівносильне нормальності відповідної функції вибору, яка, очевидно, не виконується.

Зокрема, $x_2 \in C(\{x_1, x_2\})$, але $x_2 \notin C(\{x_2\})$, суперечить нормальності.

Задача 3. Побудувати ЛФФВ для заданої функції вибору:

X	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^R(X)$	Ø	$\{x_2\}$	$\{x_3\}$	$\{x_2\}$	Ø	$\{x_3\}$	$\{x_3\}$

Розв'язок. Побудуємо $\beta(X)$ і $\beta(C(X))$ для всіх $X \subseteq \Omega$:

X	C(X)	$\beta(X)$	$\beta(C(X))$
$\{x_1\}$	Ø	(1,0,0)	(0,0,0)
$\{x_2\}$	$\{x_2\}$	(0,1,0)	(0,1,0)
$\{x_3\}$	$\{x_3\}$	(0,0,1)	(0,0,1)
$\{x_1, x_2\}$	$\{x_2\}$	(1, 1, 0)	(0,1,0)
$\{x_1, x_3\}$	Ø	(1, 0, 1)	(0,0,0)
$\{x_2, x_3\}$	$\{x_3\}$	(0, 1, 1)	(0,0,1)
$\{x_1, x_2, x_3\}$	$\{x_3\}$	(1, 1, 1)	(0,0,1)

Побудуємо f_i , де i=1,2,3. Для цього виписуємо всі можливі значення $\vec{\beta}(X)$ де $\beta_i(X)=1$ і беремо $f_i(\vec{\beta})=\beta_i(C(X))$:

β_1	β_2	β_3	f_1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

β_1	β_2	β_3	f_2
0	1	0	1
0	1	1	0
1	1	0	1
1	1	1	0

β_1	β_2	β_3	f_3
0	0	1	1
0	1	1	1
1	0	1	0
1	1	1	1

Записуємо ДДНФ (а також стислу форму) для f_i :

$$\begin{split} f_1(\beta_2,\beta_3) &\equiv 0 \\ f_2(\beta_1,\beta_3) &= \bar{\beta}_1 \cdot \bar{\beta}_3 \vee \beta_1 \cdot \bar{\beta}_3 = \bar{\beta}_3 \\ f_3(\beta_1,\beta_2) &= \bar{\beta}_1 \cdot \bar{\beta}_2 \vee \bar{\beta}_1 \cdot \beta_2 \vee \beta_1 \cdot \beta_2 = \beta_1 \to \beta_2 \end{split}$$

Задача 4. Побудувати функцію вибору за заданою ЛФФВ:

$$f_1(\beta_2, \beta_3) = \bar{\beta}_2 \vee \beta_3, \quad f_2(\beta_1, \beta_3) = \beta_1 \cdot \bar{\beta}_3, \quad f_3(\beta_1, \beta_2) \equiv 1.$$

Розв'язок. Перш за все відновимо табличку істинності для f_i . Для цього виписуємо всі можливі значення $\vec{\beta}(X)$ де $\beta_i(X)=1$ і дописуємо туди значення $f_i(\vec{\beta})$:

β_1	β_2	β_3	f_1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

β_1	β_2	β_3	f_2
0	1	0	0
0	1	1	0
1	1	0	1
1	1	1	0

β_1	β_2	β_3	f_3
0	0	1	1
0	1	1	1
1	0	1	1
1	1	1	1

Відновлюємо відомі значення $\beta(C(X))$ за значеннями f_i :

X	C(X)	$\beta(X)$	$\beta(C(X))$
$\{x_1\}$	$\{x_1, ?\}$	(1,0,0)	(1,?,?)
$\{x_2\}$	{?}	(0, 1, 0)	(?, 0, ?)
$\{x_3\}$	$\{x_3, ?\}$	(0,0,1)	(?,?,1)
$\{x_1, x_2\}$	$\{x_2, ?\}$	(1, 1, 0)	(0, 1, ?)
$\{x_1, x_3\}$	$\{x_1, x_3, ?\}$	(1,0,1)	(1, ?, 1)
$\{x_2, x_3\}$	$\{x_3, ?\}$	(0, 1, 1)	(?, 0, 1)
$\{x_1, x_2, x_3\}$	$\{x_1, x_3, ?\}$	(1, 1, 1)	(1, 0, 1)

Зрозуміло, що решта (позначені зараз як?) значень $\beta(C(X))$ – нулі, адже відповідні елементи x_i просто не належать відповідним підмножинам X_j , тому маємо наступну функцію вибору:

	X	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_1, x_2\}$	$\{x_1,x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
C	$C^R(X)$	$\{x_1\}$	Ø	$\{x_3\}$	$\{x_2\}$	$\{x_1, x_3\}$	$\{x_3\}$	$\{x_1, x_3\}$

25 лютого 2019 р.

Задача 1. Розв'язати задачу двох-критеріальної оптимізації

$$f_1 = 4x_1 + x_2 \to \max, \quad f_2 = x_1 + 4x_2 \to \max$$

з допустимою областю що визначається нерівностями

$$x_1^2 + 2x_2^2 \le 1$$
, $x_{1,2} \ge 0$

методом ідеальної точки з s=1.

Розв'язок. Перш за все зобразимо допустиму область:

Далі знаходимо $a_i = \max_x f_i(x), i = 1, 2$. Для цього спершу знаходимо $\tilde{x}_i = \arg\max f_i$.

З графічних міркувань, \tilde{x}_1 — точка дотику опорної прямої що перпендикулярна вектору f_1 (див. мал. вище) до допустимої області, тобто точка $\tilde{x}_1 = \left(\frac{8}{\sqrt{65}}, \frac{1}{\sqrt{2\cdot65}}\right)$, а відповідне значення

$$a_1 = f_1(\tilde{x}_1) = 4 \cdot \frac{8}{\sqrt{65}} + \frac{1}{\sqrt{2 \cdot 65}} = \frac{1 + 32\sqrt{2}}{\sqrt{2 \cdot 65}}.$$

Аналогічно знаходимо $\tilde{x}_2 = \left(\frac{1}{\sqrt{5}}, \frac{\sqrt{2}}{\sqrt{5}}\right)$, а відповідне значення

$$a_2 = f_2(\tilde{x}_2) = \frac{1}{\sqrt{5}} + 4 \cdot \frac{\sqrt{2}}{\sqrt{5}} = \frac{1 + 4\sqrt{2}}{\sqrt{5}}.$$

Далі записуємо

$$\rho_1(f(x), a) = \left(\frac{1 + 32\sqrt{2}}{\sqrt{2 \cdot 65}} - 4x_1 - x_2\right) + \left(\frac{1 + 4\sqrt{2}}{\sqrt{5}} - x_1 - 4x_2\right) \to \min.$$

Ця задача еквівалентна задачі $x_1 + x_2 \to \max$ за умови $x_1^2 + 2x_2^2 = 1$.

Записуємо функцію Лагранжа цієї задачі

$$L(x_1, x_2, \lambda) = x_1 + x_2 + \lambda(x_1^2 + 2x_2^2 - 1) \to \max.$$

Знаходимо необхідні умови екстремуму

$$\begin{cases} \frac{\partial L}{\partial x_1} = 1 + 2\lambda x_1 = 0, \\ \frac{\partial L}{\partial x_2} = 1 + 4\lambda x_2 = 0, \\ \frac{\partial L}{\partial \lambda} = x_1^2 + 2x_2^2 - 1 = 0. \end{cases}$$

3 цієї системи маємо $x_1 = -\frac{1}{2\lambda}$, а $x_2 = -\frac{1}{4\lambda}$, тобто $x_1 = 2x_2$.

Враховуючи $x_1^2 + 2x_2^2 = 1$, остаточно знаходимо $x^* = \left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$.

У свою чергу $f(x^*) = \left(\frac{6}{\sqrt{6}}, \frac{9}{\sqrt{6}}\right)$.

Задача 2. Розв'язати задачу двох-критеріальної оптимізації

$$f_1 = 2x_1 + x_2 \to \max, \quad f_2 = x_1 + 3x_2 \to \max$$

з допустимою областю що визначається нерівностями

$$x_1 + x_2 \le 4$$
, $x_1 + 2x_2 \le 6$, $x_{1,2} \ge 0$

методом ідеальної точки з s=2.

Розв'язок. Перш за все зобразимо допустиму область:

Далі знаходимо $a_i = \max_x f_i(x), i = 1, 2$. Для цього спершу знаходимо $\tilde{x}_i = \arg\max f_i$.

З графічних міркувань, \tilde{x}_1 — точка дотику опорної прямої що перпендикулярна вектору f_1 (див. мал. вище) до допустимої області, тобто точка $\tilde{x}_1=(4,0),$ а відповідне значення

$$a_1 = f_1(\tilde{x}_1) = 2 \cdot 4 + 0 = 8.$$

Аналогічно знаходимо $\tilde{x}_2 = (0,3)$, а відповідне значення

$$a_2 = f_2(\tilde{x}_2) = 0 + 3 \cdot 3 = 9.$$

Далі записуємо

$$\rho_2(f(x), a) = (8 - 2x_1 - x_2)^2 + (9 - x_1 - 3x_2)^2 \to \min.$$

Записуємо функцію Лагранжа цієї задачі

$$L(x_1, x_2, \lambda_1, \lambda_2) = (8 - 2x_1 - x_2)^2 + (9 - x_1 - 3x_2)^2 + \lambda_1 \cdot (4 - x_1 - x_2) + \lambda_2 \cdot (6 - x_1 - 2x_2) \to \min.$$

Знаходимо необхідні умови екстремуму

ходимо необхідні умови екстремуму
$$\begin{cases} \frac{\partial L}{\partial x_1} = -4 \cdot (8 - 2x_1 - x_2) - 2 \cdot (9 - x_1 - 3x_2) - \lambda_1 - \lambda_2 = 0, \\ \frac{\partial L}{\partial x_2} = -2 \cdot (8 - 2x_1 - x_2) - 6 \cdot (9 - x_1 - 3x_2) - \lambda_1 - 2\lambda_2 = 0, \\ \frac{\partial L}{\partial \lambda_1} = 4 - x_1 - x_2 = 0, \\ \frac{\partial L}{\partial \lambda_2} = 6 - x_1 - 2x_2 = 0. \end{cases}$$

3 цієї системи маємо $x^* = (2, 2)$.

У свою чергу $f(x^*) = (6, 8)$.

Задача 3. Розв'язати задачу двох-критеріальної оптимізації

$$f_1 = x_1 \to \max, \quad f_2 = x_2 \to \max$$

з допустимою областю що визначається нерівностями

$$2x_1 + x_2 \le 10$$
, $x_1 + 3x_2 \le 12$, $x_1 + x_2 \le 6$, $x_{1,2} \ge 0$

методом ідеальної точки з $s=\infty$.

Розв'язок. Перш за все зобразимо допустиму область:

Далі знаходимо $a_i = \max_x f_i(x), i = 1, 2$. Для цього спершу знаходимо $\tilde{x}_i = \arg\max f_i$.

З графічних міркувань, \tilde{x}_1 — точка дотику опорної прямої що перпендикулярна вектору f_1 (див. мал. вище) до допустимої області, тобто точка $\tilde{x}_1 = (5,0)$, а відповідне значення

$$a_1 = f_1(\tilde{x}_1) = 5.$$

Аналогічно знаходимо $\tilde{x}_2 = (0,4)$, а відповідне значення

$$a_2 = f_2(\tilde{x}_2) = 4.$$

Далі записуємо

$$\rho_2(f(x), a) = \max\{5 - x_1, 4 - x_2\} \to \min.$$

З логічних (які, щоправда, не справджуються для деяких неопуклих задача) міркувань, цей мінімум досягається на межі допустимої області де $5-x_1=4-x_2$.

Враховуючи нерівності що обмежують допустиму область маємо $x^* = (2.5, 3.5)$.

У свою чергу $f(x^*) = (2.5, 3.5)$.