Power Simulations, etc.

Natalia Garbiras Diaz and Tara Slough

May 8, 2016

Simple Power Analysis: Which parameters can you vary?

As we saw earlier today, we can make power calculations for varying some of the parameters of the experiment:

- N
- ▶ Noise (σ)
- Effect size (τ)

Recall:

Power =
$$\Phi\left(\frac{| au|\sqrt{N}}{2\sigma} - \Phi^{-1}(1 - \frac{lpha}{2})\right)$$

An example of power calculations for different sample size

```
possible.ns \leftarrow seq(from = 100, to = 2000, by = 50)
powers <- rep(NA, length(possible.ns))</pre>
for (j in 1:length(possible.ns)) {
    N <- possible.ns[j]</pre>
    significant.experiments <- rep(NA, 500)
    for (i in 1:500) {
         YO \leftarrow rnorm(n = N, mean = 60, sd = 20)
         tau <- 5
         Y1 <- Y0 + tau
         Z.sim \leftarrow rbinom(n = N, size = 1, prob = 0.5)
         Y.sim \leftarrow Y1 * Z.sim + Y0 * (1 - Z.sim)
         fit.sim \leftarrow lm(Y.sim \sim Z.sim)
         p.value <- summary(fit.sim)$coefficients[2, 4]
         significant.experiments[i] <- (p.value <= 0.05)
    }
    powers[j] <- mean(significant.experiments)</pre>
```

Let's see how this looks:

Power Calculation Different Sample Size ($\tau = 5$, SD = 20)

We can also vary other parameters:

1. Let's see what happens with different effect sizes:

Power Calculation Different Effect Size (N=100, SD=20)

We can also vary other parameters:

2. Let's see what happens with different noise:

Power Calculation Different Noise Size (N=200, τ = 5)

Power Analysis for clustered randomized experiments

Factorial Design

Consider the following factorial design:

	$T_2 = 0$	$T_2 = 1$
$T_1 = 0$ $T_1 = 1$	$\mathbb{E}[Y Z00] = 2$ $\mathbb{E}[Y Z10] = 2.7$	$\mathbb{E}[Y Z01] = 2.5$ $\mathbb{E}[Y Z11] = 3.7$

- ▶ These are standardized effect sizes \Rightarrow unit is standard deviations of Y|Z00
- ▶ **HUGE** effect sizes in the table above!
- Different estimands here:
 - ► Marginal effects (many)
 - Conditional marginal effect

Factorial Estimands:

	$T_2 = 0$	$T_2 = 1$
$\overline{T_1}=0$	$\mathbb{E}[Y Z00] = 2$	$\mathbb{E}[Y Z01] = 2.5$
$T_1 = 1$	$\mathbb{E}[Y Z10] = 2.7$	$\mathbb{E}[Y Z11] = 3.7$

1. Marginal Effect of $T_1|T_2=0$:

$$\mathbb{E}[Y|Z10] - \mathbb{E}[Y|Z00] = 2.7 - 2 = 0.7$$

2. Marginal Effect of $T_1 | T_2 = 1$:

$$\mathbb{E}[Y|Z11] - \mathbb{E}[Y|Z01] = 3.7 - 2.5 = 1.2$$

3. Marginal Effect of $T_2|T_1=0$:

$$\mathbb{E}[Y|Z01] - \mathbb{E}[Y|Z00] = 2.5 - 2 = 0.5$$

4. Marginal Effect of $T_2 | T_1 = 1$:

$$\mathbb{E}[Y|Z11] - \mathbb{E}[Y|Z10] = 3.7 - 2.7 = 1$$

Estimands, Continued

	$T_2 = 0$	$T_2 = 1$
$\overline{T_1=0}$	$\mathbb{E}[Y Z00] = 2$	$\mathbb{E}[Y Z01] = 2.5$
$T_1 = 1$	$\mathbb{E}[Y Z10]=2.7$	$\mathbb{E}[Y Z11] = 3.7$

5. Average Marginal Effect of T_1 :

$$\frac{1}{2}(\mathbb{E}[Y|Z10] - \mathbb{E}[Y|Z00] + \mathbb{E}[Y|Z11] - \mathbb{E}[Y|Z01]) = .5(.7 + 1.2) = .95$$

6. Average Marginal Effect of T_2 :

$$\frac{1}{2}(\mathbb{E}[Y|Z01] - \mathbb{E}[Y|Z00] + \mathbb{E}[Y|Z11] - \mathbb{E}[Y|Z10]) = .5(.5+1) = .75$$

7. Conditional Marginal Effect of $T_1|T_2$ (equivalent to CME of $T_2|T_1$):

$$(\mathbb{E}[Y|Z11] - \mathbb{E}[Y|Z10]) - (\mathbb{E}[Y|Z01] - \mathbb{E}[Y|Z00]) = 1 - .5 = .5$$

 $(\mathbb{E}[Y|Z11] - \mathbb{E}[Y|Z01]) - (\mathbb{E}[Y|Z10] - \mathbb{E}[Y|Z00]) = 1.2 - .7 = .5$

Power Calculation

- Calculated in DeclareDesign—we'll learn more tomorrow
- Standard estimator for this 2 × 2 factorial design is OLS:

$$y_i = \beta_0 + \beta_1 T_{1i} + \beta_2 T_{2i} + \beta_3 T_{1i} T_{2i} + \epsilon_i$$

- In this case:
 - β_1 estimates Marginal Effect of $T_1 | T_2 = 0$
 - β_2 estimates Marginal Effect of $T_2 | T_1 = 0$
 - β_3 estimates Conditional Marginal Effect of $T_1|T_2$
- Other effects can be estimated by adding combinations of coefficients
- \triangleright Assume N=200 and with 50 units in each treatment condition

Power Estimates

Improving Power on CME is Costly

Conclusions: Factorial

- Effect sizes here are HUGE
- Generally well-powered for marginal effects though we may not want this estimand
- Conditional marginal effects the benefit of factorial
 - Generally very underpowered
 - Consider the costs and benefits of factorial
 - ▶ Three arm with T_1 and T_2 may be a preferable design
- Simulation ex-ante can help us understand the properties of research designs!