Chapter 3

正则表达式和正则语言

3.1 正则表达式

自动机通过识别来定义语言,正则表达式通过规则产生语言 (或表示语言); 正则表达式所表示的语言与正则语言等价.

3.1.1 语言的运算

如果 L 和 M 是两个语言:

- (1) $L \cup M$ 为两个语言的并
- (2) LM 为两个语言的连接
- (3) L* 为语言的 (克林) 闭包

示例

若
$$L = \{0, 11\}, M = \{\varepsilon, 001\},$$
那么

- $(1) \ L\cup M=\{0,11,\varepsilon,001\}$
- $(2) \ LM = \{0,0001,11,11001\}, \, ML = \{0,11,0010,00111\}$
- (3) $L^0 = \{\varepsilon\}, L^1 = L = \{0, 11\}, L^2 = \{00, 011, 110, 1111\}, L^3 = \{000, 0011, 0110, 01111, 1100, 11011, 11110, 111111\}, \cdots L^* = \bigcup_{i=0}^{\infty} L^i$

示例

四则运算表达式的定义

- (1) 任何的数都是四则运算表达式;
- (2) 如果 a 和 b 是四则运算表达式, 那么 a+b, a-b, $a\times b$, $a\div b$ 和 (a) 都是四则运算表达式.

3.1.2 正则表达式的递归定义

设 Σ 为字母表, 则 Σ 上的正则表达式 (Regular Expression), 递归定义为:

- (1) ∅ 是一个正则表达式, 表示空语言;
- (2) ε 是一个正则表达式, 表示语言 $\{\varepsilon\}$;
- (3) Σ 中的任意字符 a, 都是一个正则表达式, 分别表示语言 $\{a\}$;
- (4) 如果正则表达式 r 和 s 分别表示语言 R 和 S, 则 r+s, rs, r^* 和 (r) 也是正则表达式, 分别表示语言 $R \cup S$, RS, R^* 和 R.

此外 $r^+ = rr^*$ 也称为正闭包, 显然 $r^* = r^+ + \varepsilon$. 而且 $r^* = r^+$ 当且仅当 $\varepsilon \in \mathbf{L}(r)$.

示例

给出正则表达式 (a+b)*(a+bb) 定义的语言.

因为

- (1) $a \to \{a\}, b \to \{b\};$
- (2) $a + b \rightarrow \{a\} \cup \{b\} = \{a, b\}, bb \rightarrow \{b\}\{b\} = \{bb\};$
- (3) $a + bb \rightarrow \{a\} \cup \{bb\} = \{a, bb\}$
- $(4) (a+b)^* = \{a,b\}^*$
- (5) $(a+b)^*(a+bb) \to \{a,b\}^*\{a,bb\} = \{a,bb,aa,abb,ba,bbb,\ldots\}$

所以 $L((a+b)^*(a+bb)) = \{w \mid w \text{ in } a \text{ in } b \text{ in } d$, 仅以 a 或 bb 结尾.}

示例

给出正则表达式 $(aa)^*(bb)^*b$ 定义的语言.

$$\mathbf{L}((aa)^*(bb)^*b) = (\{a\}\{a\})^*(\{b\}\{b\})^*\{b\} = \{aa\}^*\{bb\}^*\{b\} = \{a^{2n}b^{2m+1} \mid n \ge 0, m \ge 0\}$$

示例

Design regular expression for $L = \{w \mid w \in \{0,1\}^* \text{ and } w \text{ contains } 01.\}$

$$(0+1)*01(0+1)*$$

示例

Design regular expression for

 $L = \{w \mid w \text{ consists of 0's and 1's, and the third symbol from the right end is 1.} \}$

$$(0+1)*1(0+1)(0+1)$$

示例

Design regular expression for $L = \{w \mid w \in 0, 1^* \text{ and } w \text{ has no pair of consecutive 0's.} \}$

$$1*(011*)*(0+\varepsilon)$$
 或 $(1+01)*(0+\varepsilon)$

示例

00 表示语言 $\{00\}$. $(0+1)^*$ 表示任意 0 和 1 构成的串. $(0+1)^*00(0+1)^*$ 表示至少有两个连续的 0 的串. $(0+\varepsilon)(1+10)^*$ 表示没有两个连续 0 的串.

3.1.3 运算符的优先级

正则表达式的三种运算: "加"(+), "连接"(·一般省略)和"星"(*).

正则表达式中运算符的优先级: 括号的优先级最高, 但括号本身并不是运算

- (1) 首先, "星"优先级最高: r*
- (2) 其次, "连接": rs, r·s
- (3) 最后,"加"优先级最低: r+s

示例

$$01^* + 1 = (0(1^*)) + 1$$

3.2 有穷自动机和正则表达式

3.2.1 正则语言的表示

DFA, NFA, ε -NFA 和正则表达式在表示语言的能力上是等价的.

3.2.2 DFA \Rightarrow RE, 递归构造 $R_{ij}^{(k)}$

定理 1. 如果 $L = \mathbf{L}(A)$ 是某个 DFA A 的语言,则有一个正则表达式 R,且 $L = \mathbf{L}(R)$.

设 DFA A 的状态共有 n 个,若为每个结点编号,DFA A 的状态可表示为 $\{1,2,\ldots,n\}$. 设 $R_{ij}^{(k)}=\{x\mid \hat{\delta}(q_i,x)=q_j\}$. 也就是说, $R_{ij}^{(k)}$ 所有那样的字符串的集合 (也就是正则表达式),即它能够 使有穷自动机从状态 q_i 到达状态 q_j ,而不通过编号高于 k 的任何状态. 正则表达式 $R_{ij}^{(k)}$ 表示,在 结点 i 到 j 的全部路径中,路径所经过的结点不超过 k 的全部路径. 但不包括起点 i 和终点 j,即 起点和终点可以和 k 无关.

如果 1 是开始结点, 则该 DFA 的正则表达式就是 $\cup_{j\in F} R_{1j}^{(n)}$.

递推关系为:

$$R_{ij}^{(k)} = R_{ij}^{(k-1)} \cup R_{ik}^{(k-1)} (R_{kk}^{(k-1)})^* R_{kj}^{(k-1)}$$

$$R_{ij}^{(0)} = \begin{cases} \{a | \delta(q_i, a) = q_j\} & i \neq j \\ \{a | \delta(q_i, a) = q_j\} \cup \{\varepsilon\} & i = j \end{cases}$$

示例

例 1. 把下图所示 DFA 转换为正则表达式. 这个 DFA 接受至少含有一个 0 的串.

首先
$$R_{ij}^{(0)}$$
:

| 应用公式 $R_{ij}^{(0)}$
 $R_{11}^{(0)}$ $\varepsilon + 1$
 $R_{12}^{(0)}$ 0

 $R_{21}^{(0)}$ \emptyset
 $R_{22}^{(0)}$ $\varepsilon + 0 + 1$

简化规则:
$$(\varepsilon + R)^* = R^*$$

$$R + RS^* = RS^*$$

$$\emptyset R = R\emptyset = \emptyset \ (零元)$$

$$\emptyset + R = R + \emptyset = R \ (单位元)$$

计算 $R_{ij}^{(1)}$:

	ij	
	应用公式 $R_{ij}^{(k)}$	化简
$R_{11}^{(1)}$	$\varepsilon + 1 + (\varepsilon + 1)(\varepsilon + 1)^*(\varepsilon + 1)$	1*
$R_{12}^{(1)}$	$0 + (\varepsilon + 1)(\varepsilon + 1)^*0$	1*0
$R_{21}^{(1)}$	$\emptyset + \emptyset(\varepsilon + 1)^*(\varepsilon + 1)$	Ø
$R_{22}^{(1)}$	$\varepsilon + 0 + 1 + \emptyset(\varepsilon + 1)^*0$	$\varepsilon + 0 + 1$

计算 $R_{ij}^{(2)}$:

	应用公式 $R_{ij}^{(k)}$	化简
$R_{11}^{(2)}$	$1^* + 1^*0(\varepsilon + 0 + 1)^*\emptyset$	1*
$R_{12}^{(2)}$	$1*0 + 1*0(\varepsilon + 0 + 1)*(\varepsilon + 0 + 1)$	1*0(0+1)*
$R_{21}^{(2)}$	$\emptyset + (\varepsilon + 0 + 1)(\varepsilon + 0 + 1)^*\emptyset$	Ø
$R_{22}^{(2)}$	$\varepsilon + 0 + 1 + (\varepsilon + 0 + 1)(\varepsilon + 0 + 1)^*(\varepsilon + 0 + 1)$	$(0+1)^*$

由于 1 是开始状态, 2 是唯一的接受状态, 结点个数是 2, 所以 DFA 的正则表达式只需要 $R_{12}^{(2)}=1*0(0+1)*$.

示例

例 2. 把下图所示 DFA 转换为正则表达式.

得:

	k = 0	k = 1	k=2
$R_{11}^{(k)}$	ε	ε	(00)*
$R_{12}^{(k)}$	0	0	$0(00)^*$
$R_{13}^{(k)}$	1	1	0*1
$R_{21}^{(k)}$	0	0	$0(00)^*$
$R_{22}^{(k)}$	ε	$\varepsilon + 00$	$(00)^*$
$R_{23}^{(k)}$	1	1 + 01	0*1
$R_{31}^{(k)}$	Ø	Ø	(0+1)(00)*0
$R_{32}^{(k)}$	0 + 1	0 + 1	$(0+1)(00)^*$
$R_{33}^{(k)}$	ε	ε	$\varepsilon + (0+1)0^*1$

状态 2 和 3 是接受状态, 所以仅计算:

$$\begin{array}{lll} R_{12}^{(3)} & = & R_{12}^{(2)} + R_{13}^{(2)}(R_{33}^{(2)})^* R_{32}^{(2)} \\ & = & 0^* 1 (\varepsilon + (0+1)0^* 1)^* (0+1)(00)^* + 0(00)^* \\ & = & 0^* 1 ((0+1)0^* 1)^* (0+1)(00)^* + 0(00)^* \end{array}$$

$$R_{13}^{(3)} & = & R_{13}^{(2)} + R_{13}^{(2)}(R_{33}^{(2)})^* R_{33}^{(2)} \\ & = & 0^* 1 (\varepsilon + (0+1)0^* 1)^* (\varepsilon + (0+1)0^* 1) + 0^* 1 \\ & = & 0^* 1 ((0+1)0^* 1)^* \end{array}$$

则 DFA 的正则表达式为:

$$R_{12}^{(3)} + R_{13}^{(3)} = 0*1((0+1)0*1)*(\varepsilon + (0+1)(00)*) + 0(00)*.$$

3.2.3 DFA⇒RE, 状态消除

从有穷自动机中删除状态, 并使用新的路径替换被删除的路径, 在新路径上构造新的正则表达式, 产生一个等价的自动机. 那么, 删除一个状态, 可能有的最简单的情况如下三种:

更一般的情况, 如下图, 要为被删除的状态 S 的每个"入"和"出"路径的组合, 补一条等价的新路径, 并用新的正则表达式表示:

示例

状态转移图如下, 通过状态消除构造正则表达式.

增加新的开始 (s) 和结束状态 (f) 及空转移:

消除状态 q_1 , 需要增加 $q_0 \rightarrow q_2$ 和 $q_2 \rightarrow q_2$ 两条路径:

消除状态 q_0 , 需要增加 $s \rightarrow q_2$ 和 $q_2 \rightarrow q_2$ 两条路径:

消除状态 q_2 , 需要增加 $s \to f$ 一条路径:

3.2.4 RE \Rightarrow DFA, 构造 ε -NFA

定理 2. 每个有正则表达式定义的语言都可以由有穷自动机识别.

命题: 如果 R 是正则表达式,则存在一个 ε -NFA E, 使 $\mathbf{L}(E) = \mathbf{L}(R)$, 且 E 满足 (1) 仅有一个接收状态; (2) 没有进入开始状态的边; (3) 没有离开接受状态的边.

则通过归纳法, 可以证明. 其中归纳基础为

归纳递推为:

若 r 和 s 为正则表达式, 则它们对应的 ε -NFA 分别为 R 和 S

则正则表达式 r + s, rs 和 r^* , 则可以分别由 R 和 S 构造如下:

示例

正则表达式 (0+1)*1(0+1) 构造为 ε-NFA.

3.3 正则表达式的代数定律

在保持表达的语言不变的前提下, 对表达式进行化简的代数规则.

3.3.1 结合律 (Associativity) 和交换律 (Commutativity)

- L + M = M + L 并的交换律
- (L+M) + N = L + (M+N) 并的结合律
- (LM)N = L(MN) 连接的结合律
- 连接不满足交换律 $LM \neq ML$

3.3.2 单位元 (Identities) 与零元 (Annihilators)

- $\emptyset + L = L + \emptyset = L$ 并运算的单位元 \emptyset
- $\varepsilon L = L\varepsilon = L$ 连接运算的单位元 ε
- $\emptyset L = L\emptyset = \emptyset$ 连接运算的零元

3.3.3 分配率 (Distributive Laws)

- L(M+N) = LM + LN 连接对并满足左分配律
- (M+N)L = ML + NL 连接对并满足右分配律

示例

$$0 + 01^* = 0\varepsilon + 01^* = 0(\varepsilon + 1^*) = 01^*$$

3.3.4 幂等律 (The Idempotent Law)

• L+L=L 并的幂等律

3.3.5 有关闭包的定律

- $(L^*)^* = L^*$ 对某语言的闭包再取闭包,并不改变语言
- $\emptyset^* = \varepsilon$
- $\varepsilon^* = \varepsilon$ 空串的连接仍然是空串
- $L^* = L^+ + \varepsilon$
- $L? = \varepsilon + L$

3.3.6 发现正则表达式的定律

- $(L+M)^* = (L^*M^*)^*$
- $L^*L^* = L^*$
- $(\varepsilon + L)^* = L^*$