23 秋- 泛函期末 (回忆版)

何家兴

hejiaxing202411@163.com

December 7, 2024

Exercise 1.

设 $\{e_n\}_{n=1}^{\infty}$, $\{f_n\}_{n=1}^{\infty}$ 是 Hilbert 空间 \mathcal{X} 中的两个正交规范集,满足条件

$$\sum_{n=1}^{\infty} \|e_n - f_n\| < 1$$

求证: $\{e_n\}$ 和 $\{f_n\}$ 其中一组完备能推出另一组完备。

Exercise 2.

设 \mathcal{X} 是 B^* 空间。求证: \mathcal{X} 是 B 空间当且仅当 $\forall \{x_n\}_{n=1}^{\infty} \subset \mathcal{X}, \sum_{n=1}^{\infty} \|x_n\| < \infty \Leftrightarrow \sum_{n=1}^{\infty} x_n$ 收敛

Exercise 3.

设 M 是 (\mathbb{R}^n, ρ) 中的有界闭集, $T: M \to M$ 满足 $\rho(Tx, Ty) < \rho(x, y)$, $\forall x \neq y \in M$,求证 T 在 M 中存在唯一不动点。

Exercise 4.

设 \mathcal{X}, \mathcal{Y} 是 B 空间, $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ 是满射, 求证: 若 $y_n \to y \in \mathcal{Y}$, 则 $\exists C > 0$ 与 $x_n \to x_0 \in \mathcal{X}$, 使得 $Ax_n = y_n$,且 $||x_n|| \leq C||y_n||$

Exercise 5.

设 \mathcal{X} 是 B^* 空间, $E \subset \mathcal{X}$ 是非空的均衡闭凸集, $\forall x_0 \in \mathcal{X} \setminus E$,求证: $\exists f \in \mathcal{X}^*$ 以及 $\alpha > 0$,使得

$$|f(x)| < \alpha < |f(x_0)| \quad \forall \ x \in E$$

Exercise 6.

在 12 中定义算子

$$T:(x_1,x_2,\cdots,x_n,\cdots)\mapsto(x_1,\frac{x_2}{2},\cdots,\frac{x_n}{n},\cdots)$$

求证: $T \in \mathcal{L}(l^2)$, 并求 T^*

Exercise 7.

设 \mathcal{X} 是自反的 B 空间,M 是 \mathcal{X} 中的有界闭凸集, \forall $f \in \mathcal{X}^*$,求证: f 在 M 上达到最大值和最小值。

Exercise 8.

设 \mathcal{X} 是 \mathcal{B} 空间, $T: \mathcal{X} \to \mathcal{X}^*$ 是线性算子, 满足

$$\langle Tx, y \rangle = \langle Ty, x \rangle, \quad \forall \ x, y \in \mathcal{X}$$

证明 T 是有界算子。

Exercise 9.

设 X 是 Hilbert 空间

1. 设 $\{x_n\} \subset \mathcal{X}$ 满足 $\forall x \in \mathcal{X}$,有 $(x, x_n) \to 0$, $n \to \infty$,证明

$$\sup_{n\in\mathbb{N}}\{\|x_n\|\}<\infty$$

2. 设 $\{x_n\} \subset \mathcal{X}$ 弱收敛到 $x \in \mathcal{X}$, 证明存在 $\{x_n\}$ 的子列 $\{x_{n_k}\}$, 使得

$$\left\| \frac{\sum_{i=1}^{k} x_{n_i}}{k} - x \right\| \to 0, \quad k \to \infty$$