EE2026 Tutorial 4

Prof. Massimo Alioto

National University of Singapore (NUS) ECE Department **Green IC** group

Tutorial 4 - Questions (Part 1)

Boolean algebra and minimization

- 1. A switching circuit has four inputs as shown. A and B represent the first and second bits of a binary number N_1 . C and D represent the first and second bits of a binary number N_2 . The output is to be 1 only if the product $N_1 \times N_2$ is less than or equal to 2.
 - (a) Write the truth table for the system.
 - (b) Write the canonical SOP and POS expressions for F.
 - (c) Draw a Karnaugh-map (K-map) for the function F.
 - (d) From the K-map, derive a simplified SOP expression for F. (Hint: Use groups of only size 4.)

Tutorial 4 - Questions (Part 1)

Boolean algebra and minimization

- 1. A switching circuit has four inputs as shown. A and B represent the first and second bits of a binary number N_1 . C and D represent the first and second bits of a binary number N_2 . The output is to be 1 only if the product $N_1 \times N_2$ is less than or equal to 2.
 - (a) Write the truth table for the system.
 - (b) Write the canonical SOP and POS expressions for F.
 - (c) Draw a Karnaugh-map (K-map) for the function F.
 - (d) From the K-map, derive a simplified SOP expression for F. (Hint: Use groups of only size 4.)

A	В	C	D	F
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

which pairs of numbers have a product greater than 2?

A	В	C	D	F	
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		,
0	1	1	1		1 X 3
1	0	0	0		_
1	0	0	1		,
1	0	1	0		2 X 2
1	0	1	1		2 X 3
1	1	0	0		J
1	1	0	1		3 X 1
1	1	1	0		3 X 2
1	1	1	1		3 X 3
					J - 11 U

A	В	C	D	F
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	0
1	0	0	0	
1	0	0	1	
1	0	1	0	0
1	0	1	1	0
1	1	0	0	
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Question #1a: Answer

A	В	C	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Tutorial 4 - Questions (Part 1)

Boolean algebra and minimization

- 1. A switching circuit has four inputs as shown. A and B represent the first and second bits of a binary number N_1 . C and D represent the first and second bits of a binary number N_2 . The output is to be 1 only if the product $N_1 \times N_2$ is less than or equal to 2.
 - (a) Write the truth table for the system.
 - (b) Write the canonical SOP and POS expressions for F.
 - (c) Draw a Karnaugh-map (K-map) for the function F.
 - (d) From the K-map, derive a simplified SOP expression for F. (Hint: Use groups of only size 4.)

Question #1b: SOP

A	В	C	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Sum Of Products:

OR minterms associated with F=1

Question #1b: SOP

A	В	C	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

$$\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}$$

$$\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot D$$

$$\bar{A} \cdot \bar{B} \cdot C \cdot \bar{D}$$

$$\bar{A} \cdot \bar{B} \cdot C \cdot D$$

$$\bar{A} \cdot B \cdot \bar{C} \cdot \bar{D}$$

$$\bar{A} \cdot B \cdot \bar{C} \cdot D$$

$$\bar{A} \cdot B \cdot C \cdot \bar{D}$$

$$A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$$

$$A \cdot \bar{B} \cdot \bar{C} \cdot D$$

$$A \cdot B \cdot \bar{C} \cdot \bar{D}$$

Question #1b: SOP Answer

A	В	C	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

$$\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}
\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot D
\bar{A} \cdot \bar{B} \cdot C \cdot \bar{D}
\bar{A} \cdot \bar{B} \cdot C \cdot D
\bar{A} \cdot B \cdot \bar{C} \cdot \bar{D}
\bar{A} \cdot B \cdot \bar{C} \cdot \bar{D}
\bar{A} \cdot B \cdot \bar{C} \cdot \bar{D}$$

$$A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$$
$$A \cdot \overline{B} \cdot \overline{C} \cdot D$$

$$A \cdot B \cdot \bar{C} \cdot \bar{D}$$

$$F = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D + + \overline{A} \cdot \overline{B} \cdot C \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot C \cdot D + + \overline{A} \cdot B \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot B \cdot \overline{C} \cdot D + + \overline{A} \cdot B \cdot C \cdot \overline{D} + A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + + A \cdot \overline{B} \cdot \overline{C} \cdot D + A \cdot B \cdot \overline{C} \cdot \overline{D}$$

Question #1b: POS

A	В	C	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Product of Sums:

AND maxterms associated with F=0

Question #1b: POS

A	В	C	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

$$A + \overline{B} + \overline{C} + \overline{D}$$

$$\bar{A} + B + \bar{C} + D$$

$$\bar{A}+B+\bar{C}+\bar{D}$$

$$\bar{A} + \bar{B} + C + \bar{D}$$

$$\bar{A} + \bar{B} + \bar{C} + D$$

$$\bar{A} + \bar{B} + \bar{C} + \bar{D}$$

Question #1b: POS Answer

A	В	C	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

$$A + \overline{B} + \overline{C} + \overline{D}$$

$$ar{A} + B + ar{C} + D$$

 $ar{A} + B + ar{C} + ar{D}$

$$\bar{A} + \bar{B} + C + \bar{D}$$

 $\bar{A} + \bar{B} + \bar{C} + D$
 $\bar{A} + \bar{B} + \bar{C} + \bar{D}$

$$F = (A + \overline{B} + \overline{C} + \overline{D}) \cdot \cdot (\overline{A} + B + \overline{C} + D) \cdot \cdot \cdot (\overline{A} + B + \overline{C} + \overline{D}) \cdot \cdot \cdot (\overline{A} + \overline{B} + C + \overline{D}) \cdot \cdot \cdot (\overline{A} + \overline{B} + \overline{C} + D) \cdot \cdot \cdot (\overline{A} + \overline{B} + \overline{C} + \overline{D})$$

Tutorial 4 - Questions (Part 1)

Boolean algebra and minimization

- 1. A switching circuit has four inputs as shown. A and B represent the first and second bits of a binary number N_1 . C and D represent the first and second bits of a binary number N_2 . The output is to be 1 only if the product $N_1 \times N_2$ is less than or equal to 2.
 - (a) Write the truth table for the system.
 - (b) Write the canonical SOP and POS expressions for F.
 - (c) Draw a Karnaugh-map (K-map) for the function F.
 - (d) From the K-map, derive a simplified SOP expression for *F.* (*Hint: Use groups of only size 4.*)

Question #1c: SOP Answer

 $\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}$

 $\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot D$

A	В	C	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

$$\bar{A} \cdot \bar{B} \cdot C \cdot \bar{D}$$

$$\bar{A} \cdot \bar{B} \cdot C \cdot D$$

$$\bar{A} \cdot B \cdot \bar{C} \cdot \bar{D}$$

$$\bar{A} \cdot B \cdot \bar{C} \cdot D$$

$$\bar{A} \cdot B \cdot C \cdot \bar{D}$$

$$A \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}$$

$$A \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}$$

$$A \cdot B \cdot \bar{C} \cdot \bar{D}$$

CD AI	300	01	11	10
00	1	1	1	1
01	1	1	0	1
11	1	0	0	0
10	1	1	0	0

Tutorial 4 - Questions (Part 1)

Boolean algebra and minimization

- 1. A switching circuit has four inputs as shown. A and B represent the first and second bits of a binary number N_1 . C and D represent the first and second bits of a binary number N_2 . The output is to be 1 only if the product $N_1 \times N_2$ is less than or equal to 2.
 - (a) Write the truth table for the system.
 - (b) Write the canonical SOP and POS expressions for F.
 - (c) Draw a Karnaugh-map (K-map) for the function F.
 - (d) From the K-map, derive a simplified SOP expression for F. (Hint: Use groups of only size 4.)

Question #1d: Minimization SOP

A	В	C	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

$$ar{A} \cdot ar{B} \cdot ar{C} \cdot ar{D}$$
 $ar{A} \cdot ar{B} \cdot ar{C} \cdot D$
 $ar{A} \cdot ar{B} \cdot C \cdot ar{D}$
 $ar{A} \cdot ar{B} \cdot C \cdot D$
 $ar{A} \cdot B \cdot ar{C} \cdot D$
 $ar{A} \cdot B \cdot ar{C} \cdot D$
 $ar{A} \cdot B \cdot ar{C} \cdot D$
 $ar{A} \cdot B \cdot C \cdot D$
 $ar{A} \cdot B \cdot C \cdot D$

$$A \cdot B \cdot \bar{C} \cdot \bar{D}$$

Question #1d: Answer

A	В	C	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

$$ar{A} \cdot ar{B} \cdot ar{C} \cdot ar{D}$$
 $ar{A} \cdot ar{B} \cdot ar{C} \cdot D$
 $ar{A} \cdot ar{B} \cdot C \cdot D$
 $ar{A} \cdot ar{B} \cdot C \cdot D$
 $ar{A} \cdot B \cdot ar{C} \cdot D$
 $ar{A} \cdot B \cdot ar{C} \cdot D$
 $ar{A} \cdot B \cdot ar{C} \cdot D$
 $ar{A} \cdot B \cdot C \cdot D$
 $ar{A} \cdot B \cdot C \cdot D$

$$A \cdot B \cdot \bar{C} \cdot \bar{D}$$

$$F = \overline{A} \cdot \overline{C} + \overline{B} \cdot \overline{C} + + \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{D} + \overline{A} \cdot \overline{B}$$

- 2. A bank vault has three locks with a different key for each lock. Each key is owned by a different person. To open the door, at least two people must insert their keys into the assigned locks. The signal lines *A*, *B* and *C* are 1 if there is a key inserted into lock 1, 2 or 3, respectively. Write an equation for the variable *Z* which is 1 if and only if the door should open.
 - (a) Write the truth table for the system.
 - (b) Write the canonical SOP and POS expressions for Z.
 - (c) Draw a Karnaugh-map (K-map) for the function Z.
 - (d) From the K-map, derive a simplified SOP expression for Z.

- 2. A bank vault has three locks with a different key for each lock. Each key is owned by a different person. To open the door, at least two people must insert their keys into the assigned locks. The signal lines *A*, *B* and *C* are 1 if there is a key inserted into lock 1, 2 or 3, respectively. Write an equation for the variable *Z* which is 1 if and only if the door should open.
 - (a) Write the truth table for the system.
 - (b) Write the canonical SOP and POS expressions for Z.
 - (c) Draw a Karnaugh-map (K-map) for the function Z.
 - (d) From the K-map, derive a simplified SOP expression for Z.

A	В	C	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

find inputs with two or more 1's

Question #2a: Answer

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Question #2b

- 2. A bank vault has three locks with a different key for each lock. Each key is owned by a different person. To open the door, at least two people must insert their keys into the assigned locks. The signal lines *A*, *B* and *C* are 1 if there is a key inserted into lock 1, 2 or 3, respectively. Write an equation for the variable *Z* which is 1 if and only if the door should open.
 - (a) Write the truth table for the system.
 - (b) Write the canonical SOP and POS expressions for Z.
 - (c) Draw a Karnaugh-map (K-map) for the function Z.
 - (d) From the K-map, derive a simplified SOP expression for Z.

Question #2b: SOP Answer

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$\bar{A} \cdot B \cdot C$$

$$A \cdot \bar{B} \cdot C$$
$$A \cdot B \cdot \bar{C}$$

$$A \cdot B \cdot \bar{C}$$

$$A \cdot B \cdot C$$

$$F=\bar{A}\cdot$$

$$F = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

Question #2b: POS Answer

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$A + B + C$$

$$A + B + \bar{C}$$

$$A + \bar{B} + C$$

$$\bar{A} + B + C$$

$$F = (A + B + C) \cdot (A + B + \overline{C}) \cdot (A + \overline{B} + C) \cdot (\overline{A} + B + C)$$

Question #2c-d

- 2. A bank vault has three locks with a different key for each lock. Each key is owned by a different person. To open the door, at least two people must insert their keys into the assigned locks. The signal lines *A*, *B* and *C* are 1 if there is a key inserted into lock 1, 2 or 3, respectively. Write an equation for the variable *Z* which is 1 if and only if the door should open.
 - (a) Write the truth table for the system.
 - (b) Write the canonical SOP and POS expressions for Z.
 - (c) Draw a Karnaugh-map (K-map) for the function Z.
 - (d) From the K-map, derive a simplified SOP expression for Z.

Question #2c-d: Answer

A	В	C	F	
0	0	0	0	
0	0	1	0	
0	1	0	0	_
0	1	1	1	$\bar{A} \cdot B \cdot C$
1	0	0	0	
1	0	1	1	$A \cdot \bar{B} \cdot C$
1	1	0	1	$A \cdot B \cdot \bar{C}$
1	1	1	1	$A \cdot B \cdot C$

$$F = A \cdot C + A \cdot B + B \cdot C$$

- 3. Use K-maps to obtain an MSOP and an MPOS for each of the following functions:
 - (a) $Z = \overline{A}\overline{B}\overline{C}D + \overline{A}B\overline{C}D + AB\overline{C}D + A\overline{B}\overline{C}D + A\overline{B}\overline{C}D$ with don't care for ABCD = 1010
 - (b) $Z = (\overline{A} + B + \overline{C})(A + B + \overline{C})$ with don't cares for ABC = 111 and 110
 - (c) $f(x_1, \dots, x_4) = \sum_{i=1}^{n} m(0,4,5,6,7) + D(1,12,13,14,15)$, where $m(\cdot)$ is the set of minterms for which f = 1 and $D(\cdot)$ is the set of don't cares. For example, m(2) is the minterm corresponding to $x_1x_2x_3x_4 = 0010$ (this alternate shorthand notation is often used to express SOPs).

- 3. Use K-maps to obtain an MSOP and an MPOS for each of the following functions:
 - (a) $Z = \overline{A}\overline{B}\overline{C}D + \overline{A}B\overline{C}D + AB\overline{C}D + A\overline{B}\overline{C}D + A\overline{B}\overline{C}\overline{D}$ with don't care for ABCD = 1010
 - (b) $Z = (\overline{A} + B + \overline{C})(A + B + \overline{C})$ with don't cares for ABC = 111 and 110
 - (c) $f(x_1, \dots, x_4) = \sum m(0,4,5,6,7) + D(1,12,13,14,15)$, where m() is the set of minterms for which f = 1 and D() is the set of don't cares. For example, m(2) is the minterm corresponding to $x_1x_2x_3x_4 = 0010$ (this alternate shorthand notation is often used to express SOPs).

Question #3a: SOP

Question #3a: SOP Answer

$$F = A \cdot \overline{B} \cdot \overline{C} + \overline{C} \cdot D$$

Question #3a: POS

Question #3a: POS Answer

$$F = (\overline{B} + D) \cdot (A + D) \cdot \overline{C}$$

Question #3b

- 3. Use K-maps to obtain an MSOP and an MPOS for each of the following functions:
 - (a) $Z = \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + A\overline{B}\overline{C}D + A\overline{B}\overline{C}D + A\overline{B}\overline{C}D$ with don't care for ABCD
 - (b) $Z = (\overline{A} + B + \overline{C})(A + B + \overline{C})$ with don't cares for ABC = 111 and 110
 - $\sum m(0,4,5,6,7) + D(1,12,13,14,15)$, where m() is the set of minterms for which f = 1 and D() is the set of don't cares. For example, m(2)is the minterm corresponding to $x_1x_2x_3x_4 = 0010$ (this alternate shorthand notation is often used to express SOPs).

Question #3b: POS Answer

 $Z = (\overline{A} + B + \overline{C})(A + B + \overline{C})$ with don't cares for ABC = 111 and 110

$$F = B + \overline{C}$$

Question #3b: SOP Answer

 $Z = (\overline{A} + B + \overline{C})(A + B + \overline{C})$ with don't cares for ABC = 111 and 110

$$F = B + \overline{C}$$

- 3. Use K-maps to obtain an MSOP and an MPOS for each of the following functions:
 - (a) $Z = \overline{A}\overline{B}\overline{C}D + \overline{A}B\overline{C}D + AB\overline{C}D + A\overline{B}\overline{C}D + A\overline{B}\overline{C}D$ with don't care for ABCD = 1010
 - (b) $Z = (\overline{A} + B + \overline{C})(A + B + \overline{C})$ with don't cares for ABC = 111 and 110
 - (c) $f(x_1, \dots, x_4) = \sum m(0,4,5,6,7) + D(1,12,13,14,15)$, where m() is the set of minterms for which f = 1 and D() is the set of don't cares. For example, m(2) is the minterm corresponding to $x_1x_2x_3x_4 = 0010$ (this alternate shorthand notation is often used to express SOPs).

x_1x_2 x_3x_4	2 00	01	11	10
00	1	1	-	
01	-	1	-	
11		1	-	
10		1	-	

Question #3c: SOP Answer

$$F = \overline{x_1} \cdot \overline{x_3} + x_2$$

Question #3c: POS

x_1x_2 x_3x_4	2 00	01	11	10
x_3x_4			-	0
01	-		-	0
11	0		-	0
10	0		-	0

Question #3c: POS Answer

$$F = \overline{x_1} \cdot (x_2 + \overline{x_3})$$

A combinational circuit has four inputs A, B, C and D and an output Z. The output is asserted whenever three or more of the inputs are asserted, otherwise the output is de-asserted. Find an MSOP expression for Z. Design combinational circuits using only 74'04 inverters, 74'00 2-input NAND gates and 74'10 3-input NAND gates. Assume that A, B and Z are active high signals, while C and D are active low signals. Use alternate gate representations for clarity of circuit diagrams.

A	В	C	D	Z
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	1
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	1
1	1	0	0	
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

A	В	C	D	Z
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

$$Z = A \cdot B \cdot D + A \cdot C \cdot D$$

+ $A \cdot B \cdot C + B \cdot C \cdot D$

$$Z = A \cdot B \cdot D + A \cdot C \cdot D + A \cdot B \cdot C + B \cdot C \cdot D$$

$$Z = A \cdot B \cdot D + A \cdot C \cdot D + A \cdot B \cdot C + B \cdot C \cdot D$$

$$Z = A \cdot B \cdot D + A \cdot C \cdot D + A \cdot B \cdot C + B \cdot C \cdot D$$

$$Z = A \cdot B \cdot D + A \cdot C \cdot D + A \cdot B \cdot C + B \cdot C \cdot D$$

$$Z = A \cdot B \cdot D + A \cdot C \cdot D + A \cdot B \cdot C + B \cdot C \cdot D$$

$$Z = A \cdot B \cdot D + A \cdot C \cdot D + A \cdot B \cdot C + B \cdot C \cdot D$$

Question #4: Answer

$$Z = A \cdot B \cdot D + A \cdot C \cdot D + A \cdot B \cdot C + B \cdot C \cdot D$$

