Algebraic geometry 2 Exercise sheet 5

Solutions by: Esteban Castillo Vargas and David Čadež

21. Mai 2024

Exercise 1.

1. Flatness is local on the target, so we can check it on affine cover of \mathbb{P}^1_A . Lets first look at $D(z) \to D(z)$. We have a map of rings $A[y] \to A[x,y]/(y^2-g(x))$ mapping $y \mapsto y$. We have to check the target is a flat A[y]-module. We can let B := A[y], then $B \to B[x]/(b-g(x))$ (where $b = y^2 \in B$). Writing it this way makes it clear that the target is isomorphic to B^d as a B-module.

And now observe $D(y) \to D(y)$. We similarly get a ring map $A[z] \to A[x,z]/(z^{d-2}-z^dg(x/z))$ with $z\mapsto z$. Again, setting B:=A[z] makes it clear that $B\to B[x]/(f)$ (f some polynomial in B[x] of degree d) makes the target a finite free B-module.

So $X \to \mathbb{P}^1_A$ is flat.

Morphism $\mathbb{P}^1_A \to \operatorname{Spec}(A)$ is flat, because maps $A \to A[t]$ are flat.

Composition of flat morphisms is flat, so $X \to \mathbb{P}^1_A \to S = \operatorname{Spec}(A)$ is flat.

- 2. On discord somebody wrote an example that they think is a counterexample to this statement. And to me it seems like its valid.
- 3. In the first case the discriminant is a^2-4b and in the second it is $-4a^3-27b^2$.

Exercise 3. Because curves X and Y are smooth, local rings $\mathcal{O}_{X,x}$ and $\mathcal{O}_{Y,y}$ are geometrically regular. In our case k is algebraically closed, so they are already regular without any base change necessary. And regular 1-dimensional local rings (and integral) are DVRs, so we can pick t_x and t_y to be their respective uniformizers.

Then, using commutative algebra facts, we get that $\widehat{\mathcal{O}_{X,x}}=k[[t_x]]$ and $\widehat{\mathcal{O}_{Y,y}}=k[[t_y]].$

By our assumptions we have $f_y^*(t_x) = st_y^e$ for some $s \in \mathcal{O}_{Y,y}^{\times}$. By previous exercise we know s admits an e-th root. Then we can go back to the start and pick t_y to be $\sqrt{e}yt_y$, which is still a uniformizer as $\sqrt{e}y \in \mathcal{O}_{Y,y}^{\times}$. So we can assume $f_y^*(t_x) = t_y^e$. Map f_y^* induces a map between diagrams $\{\mathcal{O}_{X,x}/m_{X,x}^i\}_i \to \{\mathcal{O}_{Y,y}/m_{Y,y}^i\}_i$, which in turn gives a map between limits of these diagrams, i.e. the completions. This induces map between completions is clearly given by the same rule $t_x \mapsto t_y^e$.