1分

1. 参考下圖RP manipulator定義好的參數,根據Craig的定義,哪個為正確的DH表?

DH表

i	$lpha_{i-1}$	a_{i-1}	d_i	$ heta_i$
1	0	0	0	$ heta_1$
2	0	0	d_2	90

DH表

i	$lpha_{i-1}$	a_{i-1}	d_i	$ heta_i$
1	0	0	0	$ heta_1$
2	90	0	d_2	0

DH表

i	α_{i-1}	a_{i-1}	d_i	$ heta_i$
1	0	0	0	$ heta_1$
2	-90	0	d_2	0

DH表

i	α_{i-1}	a_{i-1}	d_i	$ heta_i$
1	0	0	0	$ heta_1$
2	0	0	d_2	-90

2. 求出transformation matrix 0_2T ,並以 $heta_1$, d_2 表示。

$${}_{2}^{0}T = \begin{bmatrix} cos(\theta_{1}) & 0 & -sin(\theta_{1}) & -d_{2}sin(\theta_{1}) \\ sin(\theta_{1}) & 0 & cos(\theta_{1}) & d_{2}cos(\theta_{1}) \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{0}T = \begin{bmatrix} cos(\theta_{1}) & 0 & sin(\theta_{1}) & d_{2}sin(\theta_{1}) \\ -sin(\theta_{1}) & 0 & cos(\theta_{1}) & d_{2}cos(\theta_{1}) \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{0}T = \begin{bmatrix} 0 & -1 & 0 & d_{2}sin(\theta_{1}) \\ cos(\theta_{1}) & 0 & -sin(\theta_{1}) & d_{2}cos(\theta_{1}) \\ sin(\theta_{1}) & 0 & cos(\theta_{1}) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

1分

$${}_{2}^{0}T = \begin{bmatrix} 0 & -1 & 0 & -d_{2}sin(\theta_{1}) \\ cos(\theta_{1}) & 0 & -sin(\theta_{1}) & d_{2}cos(\theta_{1}) \\ sin(\theta_{1}) & 0 & cos(\theta_{1}) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3. 假設Primstic Joint的末端 $^WP=(69.28,40)$,求出 θ_1 。(答案需四捨五入至整數,並以度為單位)

1分

30

4. 承接課程裡以六軸機械手臂夾取杯子的例子,下圖為機械手臂夾取杯子到 杯架上的姿態。運用圖中提供的**尺寸資訊、機械手臂的DH表**、以及**已知**

1分

$$^{D}P_{c\ org} = \begin{bmatrix} -500 \\ 452 \\ 410 \end{bmatrix}$$
,作答第4 - 8題。機械手臂六軸的限制如下:

$$\theta_1 = [-90, 90], \theta_2 = [-180, 180], \theta_3 = [-180, 180]$$

$$\theta_4 = [-90, 90], \theta_5 = [-90, 90], \theta_6 = [-90, 90]$$

DH表

i	α_{i-1}	a_{i-1}	d_i	θ_i
1	0°	0	0	$ heta_1$
2	-90°	$a_1 = -30$	0	$ heta_2$
3	0°	$a_2 = 340$	0	θ_3
4	-90°	$a_3 = -40$	$d_4 = 338$	$ heta_4$
5	90°	0	0	$ heta_5$
6	-90°	0	0	θ_6

請以//區隔,依序填寫A-F的答案(A//B//C//D//E//F),答案需四捨五入三個有效數字。

無答案

5. 以Piper Solution或其他方法,求出第三軸 $heta_3$ 的雙解。

1分

兩個答案不分先後,以//作區隔,注意每軸的角度需符合第4題提供的限制。答案需四捨五入至整數,以角度為單位。

-158//-35

ò .	以Piper Solution或其他方法,求出第二軸 $ heta_2$ 的雙解。	1分
	兩個答案不分先後,以//作區隔,注意每軸的角度需符合第4題提供的限制。答案需四捨五入至整數,以角度為單位。	
	12//-50	
·.	以Piper Solution或其他方法,求出第一軸 $ heta_1$ 的解。	15
	注意每軸的角度需符合第4題提供的限制。答案需四捨五入至整數,以角 度為單位。	
	64	
3.	運用ZYZ Euler Angles或其他方法, 以//作區隔,依序寫出第四、五、六軸 的解 $(\theta_4, \theta_5, \theta_6)$ 。	1分
	注意每軸的角度需符合第4題提供的限制。答案需四捨五入至整數,以角度為單位。	
	27//-82//-65	