

# Polynomials and Regularisation

## Today's Lesson

#### **Learning Objectives**

- Describe the phases of the CRISP-DM data science process
- Use the CRISP-DM framework to analyze and plan out data science projects

#### **Activities**

- Reflecting on Your Data Science Experience
- Data Science Process Overview
- Revisiting Your Data Science Experience
- Reviewing Your Projects
- Exit Ticket

## **Linear Regression Recap**

**Task:** Take turns with a neighbor, answering the questions below:

- What is Linear Regression?
- How does it work?
- How do we know if the results are good or bad?
- What requirements should your data meet?

#### 5 minutes

We will then come back to the large group and I'll pick some of you to share your answers with the rest of the class.



## Polynomial Regression

- Problems Linear Regression can't solve on its own
- Polynomial transformation of predictors
- Interactions
- Feature explosion

#### **Polynomial Regression**

- Some problems just can't be solved with a straight line
- We need models as complex as our problems in order to generate good predictions
- Example: If y = x² we need to have x² as a feature
- PolynomialFeatures generates



#### **Feature Interactions**

- PolynomialFeatures generates the n-way interactions for all your predictions
- Example: If you want the interaction of 3 variables together (AxBxC) you will need a degree 3 polynomial transformation (A+B+C)<sup>3</sup>

| Classifying Polynomials by Degree |        |                                    |
|-----------------------------------|--------|------------------------------------|
| Name                              | Degree | Example                            |
| Constant                          | 0      | -9                                 |
| Linear                            | 1      | x – 4                              |
| Quadratic                         | 2      | $x^2 + 3x - 1$                     |
| Cubic                             | 3      | $x^3 + 2x^2 + x + 1$               |
| Quartic                           | 4      | $2x^4 + x^3 + 3x^2 + 4x - 1$       |
| Quintic                           | 5      | $7x^5 + x^4 - x^3 + 3x^2 + 2x - 1$ |

SQUARE OF SUM
$$(\mathbf{C} + \mathbf{b})^2 = \mathbf{C}^2 + 2 \mathbf{c} \mathbf{b} + \mathbf{b}^2$$

CUBE OF SUM
$$(\mathbf{a} + \mathbf{b})^3 = \mathbf{a}^3 + 3\mathbf{a}^2\mathbf{b} + 3\mathbf{a}\mathbf{b}^2 + \mathbf{b}^3$$

#### **Feature Explosion**

This can get out of hand very quickly

Example: Just 10 Features with a 3rd degree polynomial would lead

to 1000 features

When the number of features is too high:

Coefficients become unstable

Chance of multicollinearity increases massively

- Chance of overfitting explodes
- Dimensionality becomes a course

## **Polynomial Regression Recap**

**Task:** Take turns with a neighbor, answering the questions below:

- When is polynomial regression useful?
- When could it be dangerous?
- How do you think you could contain the risks?

#### 5 minutes

We will then come back to the large group and I'll pick some of you to share your answers with the rest of the class.



## Regularisation

- MSE
- Complexity penalty
- Scaling
- Ridge Regression
- LASSO Regression
- Elastic net
- Bias / Variance tradeoff



#### Mean Squared Error (MSE)

$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

- \*n is the number of data points
- $*Y_i$  represents observed values
- $*\hat{Y}_i$  represents predicted values



#### **Complexity Penalty**

 Regularisation in Regression means not only trying to minimise MSE but also the size of the coefficients

$$\sum_{i=1}^{M} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{M} \left( y_i - \sum_{j=0}^{p} w_j \times x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} w_j^2$$

Cost function for ridge regression

- Because the size of the coefficients matter feature scaling is required.
- Although you will be scaling all datasets, you will use the patterns from your training dataset only

•

#### Ridge Regression - L2 Reg

- Penalty based on the squared coefficients.
- This will lead to reducing largest coefficients first

$$\sum_{i=1}^{M} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{M} \left( y_i - \sum_{j=0}^{p} w_j \times x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} w_j^2$$

Cost function for ridge regression

 It will bring irrelevant features' coefficients close to zero but not exactly zero

#### **LASSO** Regression - L1 Reg

- Penalty based on the absolute value of the coefficients.
- This will lead to reducing most irrelevant coefficients first

$$\sum_{i=1}^{M} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{M} \left( y_i - \sum_{j=0}^{p} w_j \times x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} |w_j|$$

Cost function for Lasso regression

- It will bring irrelevant features' coefficients exactly to zero. Hence, we can use LASSO as feature selection tool.
- Because of all of the above we call this type of regression LASSO:
   Least Absolute Shrinkage and Selection Operator

#### Elastic net - L2 and L1 Reg

 Combines L2 and L1 penalties in a proportion that you can regulate with a hyperparameter in sklearn

$$(||y - X\beta||^2 + \lambda_2 ||\beta||^2 + \lambda_1 ||\beta||_1).$$

 Will bring some coefficients to zero but could also just reduce them if that leads to a better model

#### **Information Criteria**

- Measure information loss
- Balances the goodness of fit and the complexity of a model

- Akaike Information Criterion  ${
  m AIC}\,=\,2k-2\ln(\hat{L})$
- Bayesian Information Criterion  $\operatorname{BIC} = \ln(n)k 2\ln(\widehat{L}).$

Lower is better

#### **Solving fitting issues**

- Polynomial transformations will improving performance on the training dataset
- Convenient when previously underfitting
- Regularisation will decrease performance in the training dataset
- Convenient when previously overfitting (as it would likely improve performance on the test dataset)



## **Regularisation Recap**

**Task:** Take turns with a neighbor, answering the questions below:

- When is regularisation useful?
- What assumptions need to be met by your data before you apply it?
- What negative consequences could it have if done wrong?
- How would you choose between different types of regularisation?

#### 5 minutes

We will then come back to the large group and I'll pick some of you to share your answers with the rest of the class.



#### **Delivering Value**

Your job is not to create high performance models

They pay you to solve problems

## **Summary + Exit Ticket**

