"To study the performance of refrigeration system as per the given system component and identify the energy saving opportunity in a system by optimizing the performance cycle."



## Submitted by

Prabin Adhikari Engineering Intern

Rajan Kandel Engineering Intern

#### Submitted to

Department of maintenance and Engineering

Dairy Development Corporation (DDC)

#### The component specification in a system:

1) Compressor

Name Plate specification:

Refrigerant: NH<sub>3</sub> (R717) Swept Volume: 550 m<sup>3</sup> / hr

Speed: 970 RPM

Working Pressure: 18 Bar

Measured quantities:

Suction Pressure: 1.4 Bar Discharge Pressure: 9 Bar

#### **Important definition:**

i) Compressor capacity = Suction volume

(Volume of air sucked by the compressor during its suction stroke)

Swept Volume

 $Vp = (pi D^4/4)*L$ 

D = Diameter of Cylinder

L = Length of piston stroke

- 2) Condenser
- 3) Evaporators
- 4) Expansion valve

Temperature before expansion valve in chiller = 24.5 c

Temperature before Expansion valve in EXV1 and EXV2 = (4-6) c

#### Calculation of the cooling load on heat Exchanger at water chiller in present conditions:

| refilled water Temperature        | 16       | °C                  |
|-----------------------------------|----------|---------------------|
| outgoing temp                     | 1.7      | °C                  |
| Mean Temperature                  | 8.85     | °C                  |
| density at given mean temperature | 999.74   | Kg/ m3              |
|                                   |          | m3 /Min (As per the |
|                                   | _        | given spec in inlet |
| In flow volume rate               | 1        | motor)              |
| Specific Heat capacity            | 4.18     | kJ/Kg/K             |
| heat exchanging rate              | 59758.46 | KJ /Min             |
| mass of refrigerant               |          |                     |
| flow in chiller section           | 51.96388 | Kg/Min              |
| Total cooling load                | 284.56   | TOR                 |

# Calculation of additional heat exchange required in heat exchanger in cooler to meet the demand criteria:

Required Additional Heat exchange rate ( i.e decreasing water temperature from 1.7 - 0.5)<sup>0</sup> C Change in temperature = 1.2

Additional Heat Exchange rate required for water = 5.016 KJ / Kg of water

Total heat exchange required in a minute = 5014.696 KJ/ min

Additional cooling capacity to be increased in heat exchanger in chiller =23.879 TOR

Total heat that needs to be rejected in condenser = 5014.96 KJ

From pressure enthalpy chart required heat rejection at condenser = 96.49 KJ / Kg

From pressure enthalpy chart; required additional temperature drop in condenser =  $21.4^{\circ}$  C

#### Calculation of the load on evaporator in refrigeration room:

| Milk ingoing temp                                            | 6.8     | °С                 |
|--------------------------------------------------------------|---------|--------------------|
| outgoing temp                                                | 4       | °C                 |
| Temp difference                                              | 2.8     | °C                 |
| Specific Heat capacity of milk                               | 3.93    | KJ/Kg/K            |
| Density of milk                                              | 1028    | Kg/ m <sup>3</sup> |
| Volume of Milk to be cooled                                  | 83      | M <sup>3</sup>     |
| Time for Cooling                                             | 11.5    | Hr                 |
| heat exchanging rate                                         | 1360.73 | KJ /Min            |
| Cooling load in refrigeration room                           | 6.479   | TOR                |
|                                                              |         |                    |
| Required enthalpy change in refrigerant                      | 1200    | KJ / Kg            |
| Mass of refrigerant flow in evaporator of refrigeration room | 1.135   | Kg /Min            |

#### **Condenser performance Analysis:**

Heat exchanging capacity of condenser at present = 61119.05 KJ / Min

Required additional heat exchange required at condenser = 5014.96 KJ / Min

Total mass of refrigerant flowing in condenser = (51.96 + 1.135) Kg / Min

= 53.095 Kg / Min

Total additional heat rejection at condenser = 5014/53.095

= 94.434 KJ / Min / Kg of refrigerant

### Calculation of enthalpy of refrigerant entering in the compressor:

Enthalpy = (51.96\*1500 + 1.135\*1450)/(51.96+1.135) = 1498 KJ/Kg

#### **Calculation of COP:**

In present status:

Work Done by Compressor = (1850-1498) KJ /Kg \* 53.095 Kg/Min = 18689.44 KJ /Min

= 88.997 TOR

Total Refrigeration effect being produced in the system = 291.039 TOR

COP = 3.27

After improving performance in Condenser

Work done by compressor = 88.997 TOR

Total refrigeration effect being produced in system =314.918 TOR

COP = 3.53

#### Result

The condenser should be running optimally to make the additional heat rejection rate of 94.434 KJ/ min/ Kg of refrigerant i.e additional 23.879 TOR be created in system.

The COP of the system will improve from 3.27 to 3.53