MATH2033 Mathematical Analysis Suggested Solution of Problem Set 6

Problem 1

Prove the following limits using the definition of limits (ε - δ definition)

(a)
$$\lim_{x \to 1} \frac{x}{x+1} = \frac{1}{2}$$

(a)
$$\lim_{x \to 1} \frac{x}{x+1} = \frac{1}{2}$$
.
(b) $\lim_{x \to c} x^3 = c^3$, where $c \in \mathbb{R}$.

(c)
$$\lim_{x\to 0} x \sin \frac{1}{x} = 0$$
 and $\lim_{x\to \frac{\pi}{2}} x \cos x = 0$.

(a) For any $\varepsilon > 0$, we take $\delta = \min(1, 2\varepsilon)$. Then for any $0 < |x - 1| < \delta$, we have

$$\left| \frac{x}{x+1} - \frac{1}{2} \right| = \left| \frac{x-1}{2(x+1)} \right|^{\frac{|x-1|<1}{0 < x < 2}} \stackrel{|x-1|<1}{\leq} \frac{1}{2(1)} |x-1| \stackrel{|x-1|<2\varepsilon}{\leq} \varepsilon$$

So $\lim_{x\to 1} \frac{x}{x+1} = \frac{1}{2}$ by definition

(b) Recall the triangle inequality $|a+b| \le |a| + |b|$. By taking a = x - y and b = y, we have

$$|x| \le |x - y| + |y| \Rightarrow |x - y| \ge |x| - |y|.$$

For any $\varepsilon > 0$, we take $\delta = \min\left(1, \frac{\varepsilon}{3|c|^2 + 3|c| + 1}\right)$ Then for any $0 < |x - c| < \delta$, we

$$|x^{3} - c^{3}| = |x - c||x^{2} + cx + c^{2}|$$

$$\leq |x - c|(|x|^{2} + |c||x| + |c|^{2}) \leq^{(*)} |x - c|((|c| + 1)^{2} + |c|(|c| + 1))$$

$$+ |c|^{2} \leq |x - c|(3|c|^{2} + 3|c| + 1) < \varepsilon$$

(*Note: The inequality follows from the fact that $|x| - |c| \le |x - c| \le 1 \Rightarrow |x| \le$ |c| + 1).

Therefore, we conclude that $\lim_{x \to c} x^3 = c^3$.

(c) Prove of $\lim_{x\to 0} x \sin \frac{1}{x} = 0$

For any $\varepsilon > 0$, we take $\delta = \varepsilon$. Then for any $|x - 0| < \varepsilon$, we have

$$\left|x\sin\frac{1}{x} - 0\right| \le |x| < \varepsilon.$$

So $\lim_{x\to 0} x \sin \frac{1}{x} = 0$ by definition.

Prove of $\lim_{x \to \frac{\pi}{2}} x \cos x = 0$

For any $\varepsilon > 0$, we take $\delta = (*) \min(\frac{\pi}{4}, \frac{\pi}{2} - \cos^{-1}\frac{4\varepsilon}{3\pi}, \cos^{-1}\left(-\frac{4\varepsilon}{3\pi}\right) - \frac{\pi}{2})$. (*Note: We take $\cos^{-1} x \in [0, \pi]$ for $x \in [-1, 1]$.

Then for any
$$0 < \left| x - \frac{\pi}{2} \right| < \delta$$
, we have

$$-\frac{4\varepsilon}{3\pi} = \cos\left(\cos^{-1}\left(-\frac{4\varepsilon}{3\pi}\right)\right) < \cos\left(\frac{\pi}{2} + \delta\right) < \cos x < \cos\left(\frac{\pi}{2} - \delta\right)$$
$$< \cos\left(\cos^{-1}\frac{4\varepsilon}{3\pi}\right) = \frac{4\varepsilon}{3\pi}$$

$$\Rightarrow |\cos x| < \frac{4\varepsilon}{3\pi}$$

Hence, we deduce that

$$\begin{aligned} |x - \frac{\pi}{2}| < \frac{\pi}{4} \\ \Rightarrow \frac{\pi}{4} < x < \frac{3\pi}{4} \\ |x \cos x - 0| & \stackrel{\sim}{\leq} \frac{3\pi}{4} |\cos x| < \frac{3\pi}{4} \left(\frac{4\varepsilon}{3\pi}\right) = \varepsilon. \end{aligned}$$

So we conclude that $\lim_{\pi} x \cos x = 0$.

Problem 2

Prove the following limits using the definition of limits

(a)
$$\lim_{x\to\infty}\cos\frac{1}{x}=1$$
 (3) Hint: Recall that $\frac{1}{x}\to 0$ when $x\to\infty$, so $\frac{1}{x}<\frac{\pi}{2}$ when x is large).

(b)
$$\lim_{x \to -\infty} e^x = 0$$

(c)
$$\lim_{x\to\infty} e^x = \infty$$

(Solution

(a) For any $\varepsilon > 0$, we take $K = \max\left(\frac{2}{\pi}, \frac{1}{\cos^{-1}(1-\varepsilon)}\right)$. Then for any x > K, we have

$$\cos\frac{1}{x} > \cos\left(\frac{1}{\frac{1}{\cos^{-1}(1-\varepsilon)}}\right) = 1 - \varepsilon.$$

(*Note that $0 < \frac{1}{x} < \frac{\pi}{2}$ for x > K and y is decreasing over $y \in \left[0, \frac{\pi}{2}\right]$.)

Together with the fact that $\cos \frac{1}{r} \le 1 < 1 + \varepsilon$, we have

$$1 - \varepsilon < \cos \frac{1}{x} < 1 + \varepsilon \Rightarrow -\varepsilon < \cos \frac{1}{x} - 1 < \varepsilon \Rightarrow \left| \cos \frac{1}{x} - 1 \right| < \varepsilon.$$

So we get $\lim_{x \to \infty} \cos \frac{1}{x} = 1$. **(b)** For any $\varepsilon > 0$, we pick $K = \ln \varepsilon$. Then for any x < K, we have

$$|e^x - 0| = e^x < e^{\ln \varepsilon} = \varepsilon.$$

So $\lim_{x\to -\infty} e^x = 0$ by definition.

(c) For any M>0, we take $K=\ln M$. Then for any x>K, we have

$$e^x > e^{\ln M} = M.$$

So $\lim_{x\to -\infty} e^x = \infty$ by definition.

Problem 3

We let [x] denotes the greatest integer less than or equal to x.

- (a) We let c be an integer. Determine if the limits $\lim [x]$ exists.
 - (\odot Hint: Try an example when c=3)
- **(b)** We let d be a non-integer. Determine if the limits $\lim_{x \to a} [x]$ exists

⊗Solution

(a) We note that

$$\lim_{x\to c^-}[x] = \lim_{x\to c^-}(c-1) = c-1 \quad and \quad \lim_{x\to c^+}[x] = \lim_{x\to c^+}c = c$$
 Since
$$\lim_{x\to c^-}[x] \neq \lim_{x\to c^+}[x]$$
, so
$$\lim_{x\to c}[x]$$
 does not exists when c is integer.

(b) If d is not integer, then

$$\lim_{x \to d^{-}} [x] = [d] \quad and \quad \lim_{x \to d^{+}} [x] \stackrel{[d] < d < x < [d] + 1}{=} [d] = [d].$$

Problem 4

We let $f: \mathbb{R} \to \mathbb{R}$ be a function which $\lim_{x \to 0} f(x) = L \in \mathbb{R}$. Let a > 0 be a positive number and define $g: \mathbb{R} \to \mathbb{R}$ as g(x) = f(ax)

- (a) Show that $\lim_{x\to 0} g(x) = L$ using the definition of limits.
- (b) Redo (a) using the sequential limits theorem.

છ)Solution

- (a) For any $\varepsilon > 0$,
 - Since $\lim_{x\to 0}f(x)=L$, then there exists $\delta_1>0$ such that

$$|f(x) - L| < \varepsilon$$
 for $0 < |x - 0| < \delta_1$.

 $|f(x)-L|<\varepsilon\quad for\ \ 0<|x-0|<\delta_1.$ - We take $\delta=\frac{\delta_1}{a}>0$, then for any $0<|x-0|<\delta\Rightarrow 0<|ax|<\delta_1$, we have $|g(x) - L| = |f(ax) - L| < \varepsilon$

Thus, $\lim_{x\to 0} g(x) = L$ by definition.

- **(b)** For any convergent sequence $\{x_n\}$ with $\lim_{n\to\infty}x_n=0$. Since $\lim_{x\to 0}f(x)=L$, then $\lim_{n\to\infty}f(y_n)=L$ for any sequence $\{y_n\}$ with $\lim_{n\to\infty}y_n=0$.
 - As $\lim_{n \to \infty} ax_n = 0$, we take $y_n = ax_n$ and deduce that

$$\lim_{n\to\infty} g(x_n) = \lim_{n\to\infty} f(ax_n) = \lim_{n\to\infty} f(y_n) = L.$$

Problem 5

(a) We let $f: \mathbb{R} \to \mathbb{R}$ be a function which $\lim_{x \to x_0} f(x) = L$. Show that there exists $\delta > 0$ and

M > 0 such that |f(x)| < M for all $|x - x_0| < \delta$.

((3) Hint: You can consider the definition of limits)

- **(b)** We let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be two functions which $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$. Using the definition of limits (ε - δ definition), prove that $\lim_{x \to a} f(x)g(x) = LM$.
 - (a) Hint: Write f(x)g(x) LM = f(x)g(x) f(x)M + f(x)M LM. Also, the result in (a) is also useful.)

⊗Solution

Using triangle inequality, we deduce that for any $x, y \in \mathbb{R}$

$$|x| \le |(x - y) + y| \le |x - y| + |y| \Rightarrow |x| - |y| \le |x - y|.$$

(a) Since $\lim_{x\to x_0}f(x)=L$, then for $\varepsilon=1$, there exists $\delta>0$ such that

$$\underbrace{|f(x) - L|}_{\geq |f(x)| - |L|} < \varepsilon = 1 \Rightarrow |f(x)| \leq \underbrace{|L| + 1}_{=M}.$$

(b) As $\lim_{x\to a} f(x) = L$, one can deduce from (a) that there exists $C_1 > 0$, $\delta_1 > 0$ such that

$$|f(x)| \le C_1$$
 for $0 < |x - a| < \delta_1$

Using the definition of limits, we deduce that for any $\varepsilon>0$, there exists $\delta_2>0$ and $\delta_3>0$ such that

$$|f(x) - L| \le \frac{\varepsilon}{2|M|}$$
 for $0 < |x - a| < \delta_2$

$$|g(x) - M| \le \frac{\varepsilon}{2C_1}$$
 for $0 < |x - a| < \delta_3$

We pick $\delta = \min(\delta_1, \delta_2, \delta_3)$, then for any $0 < |x - a| < \delta$, we have

$$| f(x)g(x) - LM | = | f(x)g(x) - f(x)M + f(x)M - LM |$$

$$\leq | f(x)| |(g(x) - M)| + |M| |f(x) - L| \leq C_1 \left(\frac{\varepsilon}{2C_1}\right) + |M| \left(\frac{\varepsilon}{2|M|}\right)$$

$$= \varepsilon$$

(*Provided that $M \neq 0$. When M = 0, $|f(x)g(x) - LM| \leq |f(x)||(g(x) - M)| \leq C_1\left(\frac{\varepsilon}{2C_1}\right) = \frac{\varepsilon}{2} < \varepsilon$.)

Thus, $\lim_{x \to a} f(x)g(x) = LM$ by definition.

Problem 6

We let $f: \mathbb{R} \to \mathbb{R}$ be a function given by

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 0 & \text{if otherwise.} \end{cases}$$

- (a) Show that $\lim_{x\to 0} f(x)$ exists.
- **(b)** Show that $\lim_{x\to c} f(x)$ does not exist for any $c\neq 0$.
- **⊗**Solution
 - (a) We shall argue that $\lim_{x\to 0}f(x)=0$ by definition of limit. For any $\varepsilon>0$, we take $\delta=\varepsilon$. Then for any $0<|x-0|<\delta<\varepsilon$, we have

$$|f(x) - 0| = |f(x)| = \begin{cases} |x| & \text{if } x \in \mathbb{Q} \\ 0 & \text{if otherwise} \end{cases} \le |x| < \varepsilon.$$

Thus we conclude that $\lim_{x\to 0} f(x) = 0$.

(b) From the result established in Example 2 of Lecture Note 6, there exists a sequence of rational number $\{q_n\}$ and a sequence of irrational number $\{r_n\}$ which both sequences converge to c.

Then we deduce that

$$\lim_{n\to\infty} f(q_n) = \lim_{n\to\infty} q_n = c \neq 0 \quad and \quad \lim_{n\to\infty} f(r_n) = \lim_{n\to\infty} r_n = 0$$

 $\lim_{n\to\infty} f(q_n) = \lim_{n\to\infty} q_n = c \neq 0 \quad and \quad \lim_{n\to\infty} f(r_n) = \lim_{n\to\infty} r_n = 0$ Since $\lim_{n\to\infty} f(q_n) \neq \lim_{n\to\infty} f(r_n)$, it follows from sequential limit theorem that $\lim f(x)$ does not exist.

Continuity

Problem 7

We consider a function $f:(0,\infty)\to\mathbb{R}$ defined by $f(x)=\frac{[x]}{x}$, where [x] denotes the greatest integer less than or equal to x.

- (a) Determine if f(x) is continuous at x = 1.
- **(b)** Determine if f(x) is continuous at x = 2.5.
- ⊗Solution
 - (a) We observe that $f(1) = \frac{1}{1} = 1$. On the other hand, we deduce that

$$\lim_{x \to 1^{+}} \frac{[x]}{x} = \lim_{x \to 1^{+}} \frac{1}{x} = 1 \quad and \quad \lim_{x \to 1^{-}} \frac{[x]}{x} = \lim_{x \to 1^{-}} \frac{0}{x} = \lim_{x \to 1^{-}} 0 = 0$$
Since $\lim_{x \to 1^{+}} \frac{[x]}{x} \neq \lim_{x \to 1^{-}} \frac{[x]}{x}$, so $\lim_{x \to 1} \frac{[x]}{x}$ does not exist. Thus, f is not continuous at $x = 1$.

(b) We observe that $f(2) = \frac{2}{2.5} = \frac{4}{5}$. On the other hand, we deduce that

$$\lim_{\substack{x \to 2.5^+ \\ x}} \frac{[x]}{x} = \lim_{\substack{x \to 2.5^+ \\ x}} \frac{2}{x} = \frac{4}{5} \quad and \quad \lim_{\substack{x \to 2.5^- \\ x}} \frac{[x]}{x} = \lim_{\substack{x \to 2.5^- \\ x}} \frac{2}{x} = \frac{4}{5}$$

 $\lim_{\substack{x \to 2.5^+ \\ x \to 2.5}} \frac{[x]}{x} = \lim_{\substack{x \to 2.5^+ \\ x \to 2.5}} \frac{2}{x} = \frac{4}{5} \quad and \quad \lim_{\substack{x \to 2.5^- \\ x \to 2.5}} \frac{[x]}{x} = \lim_{\substack{x \to 2.5^- \\ x \to 2.5}} \frac{2}{x} = \frac{4}{5}$ Then $\lim_{\substack{x \to 2.5 \\ x \to 2.5}} \frac{[x]}{x}$ exist. Since $\lim_{\substack{x \to 2.5 \\ x \to 2.5}} \frac{[x]}{x} = \frac{4}{5} = f(2)$, we conclude that f is not continuous

Problem 8

- (a) We let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be two continuous functions on \mathbb{R} , show that the function $h(x) = \min(f(x), g(x))$ is continuous on \mathbb{R} .
- **(b)** We let $f_1, f_2, ..., f_n : \mathbb{R} \to \mathbb{R}$ be n continuous functions on \mathbb{R} . Using the result of (a), show that $p(x) = \min(f_1(x), f_2(x), ..., f_n(x))$ is continuous on \mathbb{R} .
 - ((②) Hint: You can try mathematical induction)
- ⊗ Solution
 - (a) One can verify that (left as exercise)

$$\min(f(x), g(x)) = \frac{1}{2}(f(x) + g(x)) - \frac{|f(x) - g(x)|}{2}.$$

Since f(x), g(x) and |x| are continuous, then

- f(x) + g(x) and f(x) g(x) are continuous
- |f(x) g(x)| is continuous (i.e. composition).
- $\min(f(x), g(x)) = \frac{1}{2}(f(x) + g(x)) \frac{|f(x) g(x)|}{2}$ is continuous.
- (b) We shall prove it by induction.
 - For n = 1, $\min(f_1(x)) = f_1(x)$ is continuous.
 - Assume that the statement is true for n = k, then for n = k + 1, $\min(f_1(x), f_2(x), \dots, f_{k+1}(x)) = \min(\min(f_1(x), f_2(x), \dots, f_k(x)), f_{k+1}(x))$ Since both $\min(f_1(x), f_2(x), ..., f_k(x))$ and $f_{k+1}(x)$ are continuous by assumption, so $\min(f_1(x), f_2(x), ..., f_{k+1}(x))$ is also continuous by the result of (a). So the statement is also true for n = k + 1.
 - By induction, $\min(f_1(x), f_2(x), ..., f_n(x))$ is continuous for all $n \in \mathbb{N}$ and the proof is completed.

Problem 8

We consider a function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x - x^3 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if otherwise} \end{cases}$$

- (a) Show that the function is continuous at x=0 and $x=\pm 1$.
- (b) Show that the function is not continuous at point $x = x_0$ where $x_0 \neq 0, -1, 1$.

છ)Solution

(a) We first examine the continuity at x=0. To do so, we shall argue that $\lim_{x\to 0} f(x)=0$ using sequential limits theorem.

We consider any convergent sequence
$$\{x_n\}$$
 with $\lim_{n\to\infty}x_n=0$. One can see that $0\leq |f(x_n)|=\begin{cases} |x_n-x_n^3| & if \ x\in\mathbb{Q}\\ 0 & if \ otherwise \end{cases} \leq |x_n-x_n^3|$

By taking limits on both sides, we get

$$0 \le \lim_{n \to \infty} |f(x_n)| \le \lim_{n \to \infty} |x_n - x_n^3| \stackrel{\lim_{n \to \infty} x_n = 0}{=} 0$$

 $0 \le \lim_{n \to \infty} |f(x_n)| \le \lim_{n \to \infty} |x_n - x_n^3| \quad \stackrel{\lim}{=} \quad 0.$ It follows from sandwich theorem that $\lim_{n \to \infty} |f(x_n)| = 0$. Hence, we deduce that $\lim_{n \to \infty} |f(x_n)| = 0$.

 $\lim_{n\to\infty} f(x_n) = 0$ (see note) and $\lim_{x\to 0} f(x) = 0$ by sequential limits theorem.

Since $\lim_{x\to 0} f(x) = f(0) = 0$, so f(x) is continuous at x = 0.

Using similar methods, one can deduce that f(x) is also continuous at $x = \pm 1$ (as $\lim_{x \to 1} f(x) = f(1) = 0 \text{ and } \lim_{x \to -1} f(x) = f(-1) = 0)$

- (b) Note that $x x^3 = 0 \Leftrightarrow x(1-x)(1+x) = 0 \Leftrightarrow x = 0, 1 \text{ or } -1$. Thus for any $x_0 \neq 0, -1, 1$, we have $x_0 - x_0^3 \neq 0$.
- We let $\{r_n\}$ be a sequence of rational number which $\lim_{n\to\infty} r_n = x_0$ (see Example 2 in Lecture Note 6). Then we have $\lim_{n\to\infty} f(r_n) = \lim_{n\to\infty} (r_n r_n^3) = x_0 x_0^3 \neq 0$.

We let $\{s_n\}$ be a sequence of irrational number which $\lim_{n \to \infty} s_n = x_0$ (see Example 2 in Lecture Note 6). Then we have $\lim_{n\to\infty}f(s_n)=\lim_{n\to\infty}0=0.$

Since $\lim_{n\to\infty} f(r_n) \neq \lim_{n\to\infty} f(s_n)$, it follows from sequential limit theorem that $\lim_{x\to x_0} f(x)$ does not exist and f(x) is not continuous at $x = x_0$.

Problem 9

Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ which f is discontinuous at any point on \mathbb{R} but |f| is continuous on \mathbb{R} .

⊗ Solution

We consider a function f defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ -1 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

We first argue that f(x) is discontinuous at any $x_0 \in \mathbb{R}$.

- We let $\{r_n\}$ be a sequence of rational number which $\lim_{n \to \infty} r_n = x_0$ (see Example 2 in Lecture Note 6). Then we have $\lim_{n\to\infty} f(r_n) = \lim_{n\to\infty} 1 = 1$.
- We let $\{s_n\}$ be a sequence of irrational number which $\lim_{n \to \infty} s_n = x_0$ (see Example 2

in Lecture Note 6). Then we have $\lim_{n\to\infty} f(s_n) = \lim_{n\to\infty} -1 = -1$. Since $\lim_{n\to\infty} f(r_n) \neq \lim_{n\to\infty} f(s_n)$, it follows from sequential limit theorem that $\lim_{x\to x_0} f(x)$ does not exist and f(x) is not continuous at $x = x_0$.

On the other hand, we have |f(x)| = 1 for all $x \in \mathbb{R}$ which is continuous at any $x = x_0$ (since $\lim_{x \to x_0} |f(x)| = \lim_{x \to x_0} 1 = 1 = |f(x_0)|$).

Problem 10

We let $f, g: \mathbb{R} \to \mathbb{R}$ be two continuous functions on \mathbb{R} such that f(r) = g(r) for all $r \in \mathbb{Q}$. Show that f(x) = g(x) for all $x \in \mathbb{R}$.

⊗ Solution

Assignment 3 problem. Solution will be posted later.

Problem 11

- (a) Show that the equation $x = \cos x$ has a solution in the interval $\left[0, \frac{\pi}{2}\right]$.
- **(b)** Show that the equation $x^4 + 7x^3 9 = 0$ has at least two real solutions.
- ⊗ Solution
 - (a) We let $g(x) = x \cos x$. Note that
 - g(x) is continuous on $\left[0, \frac{\pi}{2}\right]$;
 - $-g(0) = 0 \cos 0 = -1 < 0$ and
 - $g(1) = \frac{\pi}{2} \cos\frac{\pi}{2} = \frac{\pi}{2} > 0.$

It follows from intermediate value theorem that there is $x_0 \in \left(0, \frac{\pi}{2}\right)$ such that $g(x_0) = 0 \Leftrightarrow x_0 = \cos x_0$.

- **(b)** We let $f(x) = x^4 + 7x^3 9$
 - We consider the interval [0,1]. Since f(0) = -9 < 0 and f(2) = 63 > 0. It follows from intermediate value theorem that there exists $c_1 \in (0,1)$ such that $f(c_1) = 0$.
 - We consider the interval [-10,0]Since f(0)=-9<0 and f(-10)=2991>0. It follows from intermediate value theorem that there exists $c_2\in(-10,0)$ such that $f(c_2)=0$.

Therefore, we conclude that there are at least two real roots.

Problem 12

We let L>0 be a positive number and let $f:[a,b]\to\mathbb{R}$ be a continuous function. Suppose that for any $n\in\mathbb{N}$, there exists $x_n\in[a,b]$ such that

$$|f(x_n) - L| < \frac{1}{2^n}.$$

Show that there exists $x^* \in [a, b]$ such that $f(x^*) = L$.

⊗Solution

Note that the sequence $\{x_n\}$ is bounded (since $a \le x_n \le b$), it follows from Bolzano-Weierstrass theorem that there exists a convergent subsequence $\{x_{n_k}\}$ with $\lim_{k \to \infty} x_{n_k} = x^*$, where $x^* \in [a,b]$.

On the other hand, we note that

$$|f(x_{n_k})-L|<\frac{1}{2^{n_k}}$$
 for $k\in\mathbb{N}$.

By taking $k \to \infty$ (or $n_k \to \infty$), we have

$$0 \le \lim_{k \to \infty} \left| f(x_{n_k}) - L \right| \le \lim_{k \to \infty} \frac{1}{2^{n_k}} = 0.$$

It follows from sandwich theorem that $\lim_{k\to\infty} |f(x_{n_k}) - L| = 0$

Since f(x) and |x| are continuous, then g(x) = |f(x) - L| is also continuous at $x = x^*$. It follows that

$$\lim_{k \to \infty} \underbrace{\left| f\left(x_{n_k}\right) - L \right|}_{g\left(x_{n_k}\right)} = \lim_{x \to x^*} g(x) = g(x^*) = |f(x^*) - L| = 0 \Rightarrow f(x^*) = L.$$

Problem 13

We let $f:[a,b] \to \mathbb{R}$ be a continuous function on [a,b]. Suppose that there exists $c \in (a,b)$ such that f(c) > f(x) for all $x \in [a,b]$, show that f(x) is not injective.

(©Hint: Draw a figure and get some idea)

We pick $y_0 \in (\max(f(a), f(b)), f(c))$.

- Since $f(a) \leq \max(f(a), f(b)) < y_0$ and $f(c) > y_0$, it follows from intermediate value theorem (since f is continuous) that there exists $c_1 \in (a, c)$ such that $f(c_1) = y_0$.
- Since $f(b) \le \max(f(a), f(b)) < y_0$ and $f(c) > y_0$, it follows from intermediate value theorem (since f is continuous) that there exists $c_2 \in (c, b)$ such that $f(c_2) = y_0$.
- Since (a, c) and (c, b) are disjoint, so $c_1 \neq c_2$. Since $f(c_1) = f(c_2) = y_0$, thus f is not injective.