EIC fast Monte Carlo Overview

August 26th, 2019

Richard Trotta

EIC fast Monte Carlo

• C++ based fast MC which outputs root files and text file for GEMC input

Cpp Script(TDISMC_EIC.cpp)-requires as input: range of Q2 and x and uses a header file for beam energy, beam polarization, structure function parameterization, physical constants, etc. Calls 4 quantities...

- 1. CTEQ6 PDF table
- 2. $f2\pi$ with various parameterization (the header file defines the structure function)
- 3. F2N, nucleon structure function (the header file defines the structure function)
- 4. Beam smearing function

Event generation

Random number generation uses TRandom3 (run3.SetSeed(#))

- Defining electron and proton/deuterium beam...
 - kbeamMC=kbeam*ran3.Gaus(1,eD/k), where eD/k=7.1e-4 is the fractional energy spread normalized emittance value
 - o kbeamMCx=kbeamMC*ran3.Gaus(0,θex), where θex is smearing
 - PbeamMC=Pbeam*ran3.Gaus(0, iDp/p), where iDp/p=3e-4
 - PbeamMCx=PbeamMC*ran3.Gaus(0, Θix)

Breaking Down Important Scripts

Currently have different scripts for different physics processes

- TDISMC_EIC.cpp: pion structure function with ep scattering
- TDISMC_EICn.cpp: pion structure function with eD scattering
- TDISMC_EICK.cpp: kaon structure function with ep scattering

All gather physics from here

- cteq/ : cteqpdf.h and data based call files (c++ wrapper)
- cteq-tbls/ : nucleon PDFs table
- tim_hobbs/: various regularization form for pion FF

Collider vs. fixed target

Careful with kinematic definitions

- Original code was written for fixed target found and fixed several instances with restrictions that apply to fixed target, but not to collider
- Examples:
 - Measurable proton range (for fixed target given by TPC imposes limits on k, z)
 - Removed fixed target restrictions on x for structure function calculations

Kinematic Variables

$$Q^{2} = Q_{max}^{2}uu + Q_{min}^{2}(1 - uu) \qquad x_{Bj} = (x_{min})^{1-uu}(x_{max})^{uu}$$

$$uu = ran3.Uniform() \qquad x_{\pi} = \frac{x_{TDIS}}{1-(p2)_{z}}$$

$$(p2)_{z} = gRandom -> Uniform(1)$$

$$y_{\pi} = \frac{(pScatPion)_{rest}(qVirt)_{rest}}{(pScatPion)_{rest}(kIncident)_{rest}} \qquad x_{D} = x_{Bj}(\frac{M_{proton}}{M_{ion}})$$

$$t_{\pi} = E_{\pi}^2 - |pScatPion.v3|^2 \qquad y_D = \frac{Q^2}{x_D(2p \cdot k)}$$

Generation of GEMC Input files

```
input LUND="TDIS lund ek.txt"
output EVIO="TDIS lund ek.evio"
gCARD="~/ResearchNP/gemc/detectors/gcard/det1 hybrid full.gcard"
echo "Running input $input LUND for geometry $gCARD"
eval "gemc -INPUT GEN FILE=\"LUND,$input LUND\" -OUTPUT=\"evio, $output EVIO\" -USE GUI=0 $gCARD"
echo "Converting Soutput EVIO to root file"
                                                                                     3.424325e-01
                                                                                                8.101021e+01
                                                                                                           1.998974e+03
                                                                                                                      1.0
eval "evio2root -INPUTF=$input EVIO"
                                                                              e+00
                                                                                                                      -1.124053e-01
                                                                              :0e+00
                                                                                     0.000000e+00
                                                                                                                       -4.978166e+00
                                                                                     0.000000e+00
                                                                                                                      8.083976e+00
                                                                                     0.000000e+00
                                                                                                                       -6.112175e+00
                                                                                                      2212
                                                                                     0.000000e+00
                                                                                                           9.247694e+00
                                                                                                                      1.997787e+03
                                                                                    0.000000e+00
                                                                                                                       -1.059573e-02
                                                                                    0.000000e+00
                                                                                                                       -5.012030e+00
                                                                                                      2212
                                                                                    0.000000e+00
                                                                                                                      2.671578e+00
                                                                                    0.000000e+00
                                                                                                0.000000e+00
                                                                                                                       -2.665217e+01
```

Validation: Reduced cross section compared with HERA

- HERA data from ZEUS collab. Eur. Phys. J. C 21 (2001)
- Proton beam = 100 GeV/c
- Electron beam = 5 GeV/c
- $x_{Bi} = (0.01-1.0)$ $Q^2 = (10-100)$

$$\tilde{\sigma}^{e^+p} = \left[\frac{2\pi\alpha^2}{xQ^4}Y_+\right]^{-1} \frac{d^2\sigma_{\text{Born}}^{e^+p}}{dx \, dQ^2}$$

Validation: $F2\pi$ with GRV fit/DESY-HERA-H1 data [Q²= 10(7/11) GeV]

- $F2\pi = (0.461)*F2P$
 - (ZEUS Parameterization)
- DESY-HERA-H1 data and GRV fit (for three points) were eyeballed from plots
 - J. Lan et. al., arXiv preprint
 (2019) arXiv:1907.01509
- HERA F2pi data appear to be consistent with the MC projections though the x-dependence seems stronger at higher x

F2 π with GRV fit/DESY-HERA-H1 data [Q²= 30(30/24) GeV]

F2 π with GRV fit/DESY-HERA-H1 data [Q²= 50(60/55) GeV]

F2 π with GRV fit/DESY-HERA-H1 data [Q²= 70(60/82) GeV]

Projected $F2\pi$ uncertainties – Rik's analytical estimates vs. MC

- The calculated values for $f2\pi$, xpi, and the stat uncertainty are very similar especially at low x.
- The high x comparison falls off as my calculated stat uncertainties stay below 1%

Richard	Q2=10 GeV2	no cuts							
F2pi	nan	0.114	0.089	0.063	0.034	0.015	0.009	0.002	0.011
xpi	nan	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95
stat uncern %	nan	0.45%	0.51%	0.54%	0.64%	0.69%	0.67%	0.71%	0.82%
Rik	Q2=9 GeV2	no cuts							
F2pi	0.152	0.140	0.110	0.088	0.060	0.039	0.020	0.008	nan
xpi	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	nan
stat uncern %	0.42%	0.45%	0.50%	0.55%	0.28%	0.80%	1.90%	3.00%	nan

Q² vs x_{Bj} Phase Space

