

CI 3 – CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES SYSTÈMES

CHAPITRE 8 – ÉTUDE GRAPHIQUE DES MOUVEMENTS PLANS

Résoudre : à partir des modèles retenus :

- choisir une méthode de résolution analytique, graphique, numérique;
- mettre en œuvre une méthode de résolution.

Rés - C1.1: Loi entrée sortie géométrique et cinématique - Fermeture géométrique.

Mod2 – C4.1: Représentation par schéma bloc.

Prothèse active transtibiale

D'après concours CCP - PSI - 2012.

Les ingénieurs du MIT ont mis au point une prothèse active permettant aux personnes amputées en dessous du genou d'avoir une marche s'approchant d'une marche d'une personne valide.

Objectifs

Compétences

Dans le but de dimensionner le vérin à utiliser sur la prothèse, on cherche à dimensionner sa course utile. Par ailleurs, la connaissance du modèle mécanique de transmission est nécessaire afin de renseigner un modèle multiphysique.

On donne un extrait du cahier des charges. *Diagramme de cas des utilisations*

Diagramme d'exigences

La structure interne du système est donnée par les figures ci-contre. Le paramétrage géométrique est donné ci-dessous.

Représentation volumique

Le repère $\mathcal{R}_0(O, \overrightarrow{x}, \overrightarrow{y_0}, \overrightarrow{z_0})$ est lié au tibia noté 0 fixe dans toutes nos études. Ce repère est supposé galiléen (hypothèse justifiée dans le sujet).

Le repère $\mathcal{R}_1(O,\overrightarrow{x},\overrightarrow{y_1},\overrightarrow{z_1})$ est lié au pied artificiel noté 1, supposé indéformable. On note $\theta(t)=(\overrightarrow{y_0},\overrightarrow{y_1})=(\overrightarrow{z_0},\overrightarrow{z_1})$ l'angle de rotation du pied par rapport au tibia. D'autre part, le vecteur unitaire $\overrightarrow{n_1}$ définit la direction des ressorts avec $\delta=(\overrightarrow{y_1},\overrightarrow{n_1})$ considéré comme constant tout au long du cycle de marche.

Le repère $\Re_2(O, \overrightarrow{x}, \overrightarrow{y_2}, \overrightarrow{z_2})$ est lié au basculeur noté 2. On note $\alpha(t) = (\overrightarrow{y_0}, \overrightarrow{y_2}) = (\overrightarrow{z_0}, \overrightarrow{z_2})$ l'angle de rotation du basculeur par rapport au tibia.

Le repère $\mathcal{R}_3(A, \overrightarrow{x}, \overrightarrow{y_3}, \overrightarrow{z_3})$ est lié au vérin électrique 3. On note $\beta(t) = (\overrightarrow{y_0}, \overrightarrow{y_3}) = (\overrightarrow{z_0}, \overrightarrow{z_3})$ l'angle de rotation du vérin électrique par rapport au tibia. Le vérin électrique comporte une tige notée 3_1 et un corps noté 3_2 .

On pose : $\overrightarrow{OA} = a\overrightarrow{z_0}$, $\overrightarrow{BA} = \lambda(t)\overrightarrow{y_3}$, $\overrightarrow{BO} = b\overrightarrow{y_2}$ et $\overrightarrow{SO} = b\overrightarrow{z_2}$ avec $b = 0,039 \ m$ et $a = 0,117 \ m$.

En l'absence d'action sur la prothèse, une position repos est identifiée par les paramètres θ_R , α_R , et δ_R . Cette position est notamment obtenue lorsque le tibia est vertical et que le pied est en appui horizontalement sur le sol. Les valeurs numériques sont alors : $\theta_R = 0$, $\alpha_R = 9$ et $\delta_R = \delta = -17$.

Diagramme de blocs internes

Modélisation cinématique pour $\theta = 0$

Question 1

Après avoir identifié les différents paramètres variables du système, préciser quelle est l'entrée et quelle est la sortie.

Question 2

Paramétrer le système et réaliser les figures planes correspondant aux différents changements de repères.

Question 3

Déterminer la loi entrée-sortie entre $\alpha(t)$ et $\lambda(t)$. La loi entrée sortie correspondant au mouvement de la cheville est donnée par la courbe ci-contre.

Question 4

Commenter l'allure de la courbe et donner son équation. Comment les bornes de variation ont-elles été choisies? En linéarisant le comportement du système, déterminer l'équation de le droite.

Question 5

Donner le schéma bloc du système depuis la sortie du moteur jusqu'à la rotation α de la prothèse. L'exigence 3 estelle vérifiée?