Games, Choice and Optimisation Assignment 1

BM Corser

November 27, 2017

1. (a) Let the variable x_1 represent the number 2-storey executive homes, x_2 represent the number of 3-storey blocks, x_3 represent the number of 1-storey bungalows and x_4 represent the number of 2-storey social housing. The constraints of the linear programme representing the development problem can be written, for

time in weeks
$$3x_1 + 2x_2 + x_3 + x_4 \le 140$$
,
units of land $4x_1 + 3x_2 + x_3 + \frac{3}{2}x_4 \le 600$,
storey limit $\frac{1}{4}(2x_1 + 3x_2 + x_3 + 2x_4) \le \frac{9}{5}$,
 $8x_1 + 12x_2 + x_3 + 4x_4 \le \frac{36}{5}$,
social housing $\frac{1}{4}(x_1 + x_2 + x_3 + x_4) \le x_4$,
 $x_1 + x_2 + x_3 - 3x_4 \le 0$.

Since the objective in the development problem is to maximise profit, the objective function is, where coefficients represent units of 1000 pounds, $70x_1 + 30x_2 + 25x_3 + 5x_4$.

In standard form, then, our linear programme is written

maximise
$$70x_1 + 30x_2 + 25x_3 + 5x_4,$$
 subject to
$$3x_1 + 2x_2 + x_3 + x_4 \le 140,$$

$$4x_1 + 3x_2 + x_3 + \frac{3}{2}x_4 \le 600,$$

$$8x_1 + 12x_2 + x_3 + 4x_4 \le \frac{36}{5},$$

$$x_1 + x_2 + x_3 - 3x_4 \le 0,$$

$$x_1, x_2, x_3, x_4 \ge 0.$$

(b)

maximise
$$-2x_1 + (\bar{x} - \hat{x}) + 3x_3$$
 subject to
$$x_1 + 2(\bar{x} - \hat{x}) + 3x_3 \le 25$$
$$-2x_1 + 3(\bar{x} - \hat{x}) + x_3 \le 17$$
$$x_1, x_2, x_3, \bar{x}, \hat{x} \ge 0.$$

(c) i. One slack variable is introduced per constraint, so in this case, we introduce $x_4, x_5, x_6 \ge 0$.

Because x_1 , x_2 and x_3 appear in the objective function, x_1 , x_2 and x_3 will be made nonbasic.

Since x_3 has the greatest coefficient in z and as such will contribute most to the maximisation of that function, x_3 will be our pivot variable.

$$x_4 = 136 - x_1 + 6x_2 - 4x_3$$
$$x_5 = 44 - 2x_1 - 3x_2 - 8x_3$$
$$x_6 = 56 - 4x_1 + 2x_2 - 4x_3$$

Since $x_1 = x_2 = x_3 = 0$, $x_4 = 136$, $x_5 = 44$ and $x_6 = 56$.

We increase the pivot variable x_3 and write it in terms of our basic variables x_4 , x_5 , x_6 and using the fact that $x_1 = x_2 = 0$ have

$$x_4 = 136 - 4x_3 \ge 0$$
 and $x_3 \le 34$,

and

$$x_5 = 44 + 8x_3 \ge 0$$
 and $x_3 \ge -\frac{11}{2}$,

also

$$x_6 = 56 - 4x_3 \ge 0$$
 and $x_3 \le 14$.

Here the most restrictive value for nonbasic x_3 comes from the equation for basic x_6 , so we set $x_3 = 14$ and $x_6 = 0$, making x_4 basic and x_6 nonbasic.

ii. Now we use the equation for now-nonbasic x_6 to write basic x_3 in terms of nonbasic variables

$$x_6 = 56 - 4x_1 + 2x_2 - 4x_3$$

$$x_3 = \frac{1}{4} (56 - 4x_1 + 2x_2 - x_6)$$

$$= 14 - x_1 + \frac{1}{2}x_2 - \frac{1}{4}x_6$$

and substitute this into our equations for basic x_4 and x_5 and for z

$$x_4 = 136 - x_1 + 6x_2 - (56 - 4x_1 + 2x_2 - x_6)$$

$$= 80 - 5x_1 + 4x_2 + x_6,$$

$$x_5 = 44 - 2x_1 - 3x_2 - 2(56 - 4x_1 + 2x_2 - x_6)$$

$$= -68 + 6x_1 - 5x_2 + 2x_6,$$

$$z = 3x_1 - 7x_2 + 10(14 - x_1 + \frac{1}{2}x_2 - \frac{1}{4}x_6)$$

$$= 140 - 7x_1 - 13x_2 - \frac{5}{2}x_6$$

At this stage the basic feasible solution is $x_1 = x_2 = 0$ and $x_3 = 14$ with value 140.

2. (a) We introduct two slack variables, one for each constraint

$$x_4 = 21 - 2x_1 - 3x_2 + 3x_3,$$

$$x_5 = 72 - 4x_1 - 9x_2 + 4x_3.$$

Setting $x_2 = x_3 = 0$ as our nonbasic variables and choosing x_1 as our pivot variable, we write

$$x_4 = 21 - 2x_1 \ge 0$$
 and $x_1 \le \frac{21}{2}$
 $x_5 = 72 - 4x_1 \ge 0$ and $x_1 \le 18$.

Since the inequality arising from x_4 is most restrictive, we set $x_1 = \frac{21}{2}$ and $x_4 = 0$ and write

$$x_1 = \frac{21}{2} - \frac{3}{2}x_2 + \frac{3}{2}x_3 - \frac{1}{2}x_4$$

and

$$x_5 = 30 - 3x_2 - 2x_3 + 2x_4$$

and

$$z = 5\left(\frac{21}{2} - \frac{3}{2}x_2 + \frac{3}{2}x_3 - \frac{1}{2}x_4\right) + 4x_2 - 7x_3$$
$$= \frac{105}{2} - \frac{15}{2}x_2 + \frac{15}{2}x_3 - \frac{5}{2}x_4 + 4x_2 - 7x_3$$
$$= \frac{105}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}x_4$$

Since the only variable with a positive coefficient is x_3 , we choose it as our pivot variable and write it in terms of our basic variables x_1 and x_5

$$x_1 = \frac{21}{2} + \frac{3}{2}x_3 \ge 0$$
 and $x_3 \ge -7$
 $x_5 = 30 - 2x_3 \ge 0$ and $x_3 \le 15$.

Of these inequalities, the one arising from x_5 is most restrictive, so we set $x_3=15$ and $x_5=0$ and write

$$x_5 = 30 - 3x_2 - 2x_3 + 2x_4,$$

$$x_3 = \frac{1}{2}(30 - 3x_2 + 2x_4 - x_5)$$

$$= 15 - \frac{3}{2}x_2 + x_4 - \frac{1}{2}x_5$$

and

$$x_{1} = \frac{21}{2} - \frac{3}{2}x_{2} + \frac{3}{2}\left(15 - \frac{3}{2}x_{2} + x_{4} - \frac{1}{2}x_{5}\right) - \frac{1}{2}x_{4}$$

$$= \frac{21}{2} - \frac{3}{2}x_{2} + \left(\frac{45}{2} - \frac{9}{4}x_{2} + \frac{3}{2}x_{4} - \frac{3}{4}x_{5}\right) - \frac{1}{2}x_{4}$$

$$= 33 - \frac{15}{4}x_{2} + x_{4} - \frac{3}{4}x_{5}$$

now

$$z = \frac{105}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}x_4$$

$$= \frac{105}{2} - \frac{7}{2}x_2 + \frac{1}{2}\left(15 - \frac{3}{2}x_2 + x_4 - \frac{1}{2}x_5\right) - \frac{5}{2}x_4$$

$$= \frac{120}{2} - \frac{12}{4}x_2 - 2x_4 - \frac{1}{2}x_5$$

and all coefficients in the objective function of the linear programme are negative and the basic feasible solution $x_1 = 33$, $x_3 = 15$ with value 60 is an optimal solution of the linear programme.

(b) Because x_3 has a coefficient of zero in the objective function, there are alternative solutions of \mathcal{L} , for example

(c) i.

maximise
$$-x_0$$
 subject to
$$-x_0 + 5x_1 - 4x_2 - 6x_3 - 2x_4 \le -68,$$

$$-x_0 + 3x_1 + x_2 - 2x_3 - 4x_4 \le -32,$$

$$x_0, x_1, x_2, x_3, x_4 \ge 0.$$

ii. The auxilliary linear programme for \mathcal{L} is

x_0		x_2					
-1	5	-4 1	-6	-2	1	0	-68
-1	3	1	-2	-4	0	1	-32
1	0	0	0	0	0	0	0

Pivot on row 2 and column 1, eros $r_1 \rightarrow r_1 - r_2$, $r_3 \rightarrow r_3 + r_1$, $r_2 \rightarrow -r_2$ give tableau

Pivot on row 2 and column 4, eros $r_3 \to r_3 + r_2$, $r_1 \to r_1 + \frac{1}{2}r_2$, $r_2 \to \frac{1}{4}r_2$ give tableau

tion here has value zero tells us that the linear programme $\mathcal L$ is feasible.