3+Kmeans

2019年3月9日

1 Kmeans 聚类

1.1 一、概念

Kmeans 是经典的无监督学习算法,不需要因变量 Y 来对数据进行学习,并根据学习结果将需要分类的数据分入之前分好的类中。

Kmeans 主要有以下几步:

- 1. 随即选取 K 个样本点作为中心点
- 2. 计算所有样本点到各个中心点的距离
- 3. 将样本点就近分入属于最近的中心那一类中,得到 K 类
- 4. 计算各类的中心

不断重复迭代上述几步,直到中心点不再变动,模型就训练完成了。

1.2 二、实施细节

1.2.1 1. 距离的选取

距离公式的选取有多种,最常见的就是 L1 和 L2。

L1 距离又称曼哈顿距离,两点 $A(x_1,y_1)$, $B(x_2,y_2)$ 的 L1 距离为:

$$L1(A, B) = |x_1 - x_2| + |y_1 - y_2|$$

L2 距离又称欧式距离,两点 $A(x_1,y_1)$, $B(x_2,y_2)$ 的 L2 距离为:

$$L2(A,B) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

L1 和 L2 距离有更泛化的定义,即为闵科夫斯基(Minkowski)距离,对于 $A(x_1,x_2,...x_n)$, $B(y_1,y_2,...,y_n)$

$$Minkowski(A, B; p) = (\sum_{i=1}^{n} |x_i - y_i|^p)^{\frac{1}{p}}$$

也有其他的距离公式可以选取,根据实际情况选用不同的距离公式即可。

1.2.2 2. 新样本中心的计算

将样本点就近分类之后需要计算新的样本点进行迭代,新样本点的计算大多是对该类的样本点取均值得到

1.2.3 3. 损失函数

损失函数定义为各个样本点到其所属类的中心点的距离和,此处的距离和先前定义的距离保持一致,设有 k 类, x_{ii} 表示从属于第 i 类的第 j 个点,第 i 类有 n_i 个样本点,各类中心点为 μ_i :

$$loss = \sum_{i=1}^{l} \sum_{j=1}^{n_i} distance(x_{ij}, \mu_i)$$

损失函数理论上会随着设定的中心点(类的数量)增加而不断降低,当只有一个类时损失最高,当 所有样本点都是一个类时损失为0。然而相同类数并不能保证收敛之后有相同的损失和中心点,所以在 极端情况下,类数较多时的损失仍有可能比类数较少是的损失大。

1.2.4 4.K 的选取

K的选取有多种方法,最经典直观的是肘部原则: 当类数不断增加时,损失整体而言随之减少。因此可以重复计算类数为 2, 3, 4,时的损失,取其平均然后作图, 当前期 K 的增加会导致损失急剧地减小,函数图像会十分陡峭; 当 K 达到一定数目之后,损失减小变得平缓,形成一个类似于肘部的形状,肘部的"关节"对应的 K 值即是合适的 K 值

1.3 三、应用

整个 Kmeans 算法在数学上并不复杂,但是实施起来有一定的繁琐程度,适合将算法分解成各个函数,以 pandas 的索引作为类的标识。

```
In [60]: import numpy as np
    import pandas as pd

iris = pd.read_csv('Iris.data', header=None, names = ['sepal.l','sepal.w','petal.l','petal.iris.index = iris['class']
    iris = iris.drop('class', axis=1)
    iris.head(5)
```

Out[60]:		sepal.l	sepal.w	petal.l	petal.w
	class				
	Iris-setosa	5.1	3.5	1.4	0.2
	Iris-setosa	4.9	3.0	1.4	0.2
	Iris-setosa	4.7	3.2	1.3	0.2
	Iris-setosa	4.6	3.1	1.5	0.2
	Tris-setosa	5.0	3.6	1 4	0.2

```
In [53]: def distance(a, b, p=2, dim=0):
             diff = np.abs(a-b)
             diff = np.power(diff, p)
             diff = np.power(np.sum(diff, axis=dim), 1/p)
             return diff
         a = np.array([0, 0, 0, 0])
         b = np.array([1, 1, 1, 1])
         print(distance(a, b))
         distance(a, iris, dim=1)
2.0
Out[53]: 1
               6.345077
         1
               5.916925
         1
               5.836095
         1
               5.749783
         1
               6.321392
         1
               6.886218
         1
               5.896609
         1
               6.232977
         1
               5.456189
         1
               5.989992
               6.718631
         1
         1
               6.099180
         1
               5.831809
               5.358171
         1
               7.149825
         1
               7.366139
         1
               6.798529
         1
               6.349016
               7.064701
         1
               6.541407
               6.606815
         1
         1
               6.489222
         1
               5.929587
         1
               6.327717
         1
               6.184658
         1
               6.049793
```

1	6.267376
1	6.448256
1	6.371813
1	5.910161
2	9.779059
0	8.198171
2	10.771258
0	8.615683
2	9.627045
2	10.065784
0	8.518216
0	8.570881
2	9.196195
2	9.850888
2	10.169562
2	11.036757
2	9.219544
0	8.705745
2	8.791473
2	10.525683
2	9.400532
2	9.168424
0	8.442748
2	9.528379
2	9.571834
2	9.408507
0	8.399405
2	9.827512
2	9.722140
2	9.285473
0	8.634234
2	9.071384
2	9.189668
0	8.547514

Length: 150, dtype: float64

是否收敛可以通过损失减少是否小于的阈值,或中心点是否移动判断。

一般而言二者均可,通过判断中心点是否移动更稳健(也更麻烦)。下面写出如何判断中心点是否 移动的函数,但稍后不会用在训练的函数中。

因为计算机的特性,导致通过计算得来的两个浮点数几乎不可能相等,譬如一个不可逆矩阵的行列式可能不等于零(但实际上就是 0),为解决这种问题通常是设置一定的阈值,低于这个阈值就视为两个值相同,通常的阈值是 1e-16,但为了简便,下面的函数的阈值设置为 0.0001,以判断前后的中心点是否不同。

```
In [4]: def judge(a, b):
            diff = np.abs(a - b)
            diff = np.sum(diff)
            return diff < 0.0001
        a = np.array([0, 0])
        b = np.array([1, 1])
        print('a : '+str(a)+' b : '+str(b))
        print('Is a and b the same point? : '+str(judge(a, b)))
        a = np.random.randn(2)
        b = a.astype('float32')
        print('a : '+str(a)+' b : '+str(b))
        print('Is a and b the same point numerically? : '+str(a is b))
        print('Is a and b the same point by distance? : '+str(judge(a, b)))
a : [0 0] b : [1 1]
Is a and b the same point? : False
a : [0.23559094 0.59014251] b : [0.23559093 0.5901425 ]
Is a and b the same point numerically? : False
Is a and b the same point by distance? : True
In [57]: def distance_overall(data, center):
             k = center.shape[0]
             dis = pd.DataFrame()
             for i in range(k):
                 dis[str(i)] = distance(center.iloc[i], data, dim=1)
             dis = np.array(dis)
             index = np.argmin(dis, axis=1)
             dis = np.min(dis, axis=1)
             loss = np.sum(dis)
             return index, loss
         np.random.seed(2099)
```

```
index = np.random.permutation(150)[0:3]
       center = iris.iloc[index[0:3]]
       distance_overall(iris, center)
2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1,
              1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1,
              1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
               1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1,
              0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0], dtype=int64),
        153.58512483193363)
In [62]: def kmeans(data, k=3):
           decay = 1
           loss_pre = 0
           loss_aft = float('inf')
           initial_index = np.random.permutation(data.shape[0])
           center = data.iloc[initial_index[0:k]]
           while decay > 0.01:
               tmp = np.array([0, 0, 0, 0])
               loss_pre = loss_aft
              data.index, loss_aft = distance_overall(data, center)
              for i in range(k):
                  cluster = np.array(data.loc[i])
                  tmp = np.vstack([tmp, np.mean(cluster, axis = 0)])
               center = pd.DataFrame(tmp)
               center.columns = ['sepal.1', 'sepal.w', 'petal.1', 'petal.w']
               center = center.drop(0, axis=0)
               decay = loss pre-loss aft
           return center, data, loss_aft
       kmeans(iris)
Out[62]: (
            sepal.l
                   sepal.w petal.l petal.w
        1 6.850000 3.073684 5.742105 2.071053
```

2	5.006000	3.428000	1.462000	0.246000
3	5.901613	2.748387	4.393548	1.433871,
	sepal.l	sepal.w	petal.l p	etal.w
1	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
1	4.7	3.2	1.3	0.2
1	4.6	3.1	1.5	0.2
1	5.0	3.6	1.4	0.2
1	5.4	3.9	1.7	0.4
1	4.6	3.4	1.4	0.3
1	5.0	3.4	1.5	0.2
1	4.4	2.9	1.4	0.2
1	4.9	3.1	1.5	0.1
1	5.4	3.7	1.5	0.2
1	4.8	3.4	1.6	0.2
1	4.8	3.0	1.4	0.1
1	4.3	3.0	1.1	0.1
1	5.8	4.0	1.2	0.2
1	5.7	4.4	1.5	0.4
1	5.4	3.9	1.3	0.4
1	5.1	3.5	1.4	0.3
1	5.7	3.8	1.7	0.3
1	5.1	3.8	1.5	0.3
1	5.4	3.4	1.7	0.2
1	5.1	3.7	1.5	0.4
1	4.6	3.6	1.0	0.2
1	5.1	3.3	1.7	0.5
1	4.8	3.4	1.9	0.2
1	5.0	3.0	1.6	0.2
1	5.0	3.4	1.6	0.4
1	5.2	3.5	1.5	0.2
1	5.2	3.4	1.4	0.2
1	4.7	3.2	1.6	0.2
0	6.9	3.2	5.7	2.3
2	5.6	2.8	4.9	2.0
0	7.7	2.8	6.7	2.0
2	6.3	2.7	4.9	1.8
0	6.7	3.3	5.7	2.1

0	7.2	3.2	6.0	1.8
2	6.2	2.8	4.8	1.8
2	6.1	3.0	4.9	1.8
0	6.4	2.8	5.6	2.1
0	7.2	3.0	5.8	1.6
0	7.4	2.8	6.1	1.9
0	7.9	3.8	6.4	2.0
0	6.4	2.8	5.6	2.2
2	6.3	2.8	5.1	1.5
0	6.1	2.6	5.6	1.4
0	7.7	3.0	6.1	2.3
0	6.3	3.4	5.6	2.4
0	6.4	3.1	5.5	1.8
2	6.0	3.0	4.8	1.8
0	6.9	3.1	5.4	2.1
0	6.7	3.1	5.6	2.4
0	6.9	3.1	5.1	2.3
2	5.8	2.7	5.1	1.9
0	6.8	3.2	5.9	2.3
0	6.7	3.3	5.7	2.5
0	6.7	3.0	5.2	2.3
2	6.3	2.5	5.0	1.9
0	6.5	3.0	5.2	2.0
0	6.2	3.4	5.4	2.3
2	5.9	3.0	5.1	1.8

[150 rows x 4 columns], 97.20457357401651)

In []: