Webwork et SageCell: outils WEB 2.0 pour l'apprentissage de la programmation scientifique

BUFFAT Marc

April 2, 2014

Contents

	0.1	Remerciement	2		
1	IPyt!	hon Notebook	2		
		Video locale	3		
2	Plan	de l'exposé	4		
3	Cont	texte	4		
	3.1	Programmation scientifique	4		
	3.2	Démarche scientifique	4		
	3.3	Enseignement des mathématiques et de la programmation	4		
	3.4	Constat	4		
	3.5	Besoin	5		
	3.6	Outils Web 2.0	5		
4	WebWork 5				
	4.1	système de devoirs en ligne	5		
	4.2	Intérêts de WebWork	5		
	4.3	rendre les devoirs à la maison plus efficaces	5		
	4.4	interface WEB	5		
	4.5	Webwork	6		
	4.6	Problème version PDF	6		
	4.7	Entrée des réponses	6		
	4.8	validation des réponses	6		
5	Sage		6		
	5.1	SageCell=Interface Web à Sage	6		
	5.2	cellule Sage dans une page html d'un navigateur	6		
	5.3	execution code Sage	6		
	5.4	SageCell: inclusion de code Python	6		
	5.5	SageCell: inclusion de code Python	6		
6	INP	ROS	6		
	6.1	Projet collaboratif	6		
	6.2	SageCell dans INPROS	7		

3	Mer	ci de votre attention !!	7
	7.1	clusion Webwork/Sage en L3/M1 méca.	
		Webwork + SageCell dans INPROS	

```
In [1]: %matplotlib inline
%autosave 0
from talktools import *
```

Autosave disabled

WEBWORK et SAGECELL

des outils web 2.0 pour l'apprentissage de la "programmation scientifique"

CANUM 2014

Marc BUFFAT @ univ-lyon1.fr Dpt Mécanique, Université Claude Bernard Lyon 1

0.1 Remerciement

- projet WebWork: Delphine Doppler, Claude Inserra, Pierre Valiorgue, Ivana Vinkovic
- Projet Mooc INPROS: Violaine Louvet, Michel Kern, Anne Cadiou, Loic Gouarin, Laurence Viry
- WebWork: http://webwork.maa.org: Pr. Michael Gage, department of mathematics, university of Rochester
- SageCell: http://www.sagemath.org/eval.html **Jason Grout**, department of Mathematics and Computer Science, Drake University, Des Moines

1 IPython Notebook

```
In [2]:
In [2]:
In [2]:
In [2]:
In [3]:
In [4]:
I
```



```
display(HTML('<center><h2>Video externe (YouTube)</h2></center>'))
display(HTML('Simulation pétaflopique sur PRACE'))
display(HTML('transition by-pass (Buffat et al 2013) <br/>from IPython.display import YouTubeVideo
YouTubeVideo('R119-vuv1GU', width=800, height=500)
<IPython.core.display.HTML at 0x4238bd0>
<IPython.core.display.HTML at 0x4238c10>
<IPython.core.display.HTML at 0x433c410>
<IPython.lib.display.YouTubeVideo at 0x433c410>
Out [4]:
```

1.1 Video locale

website (url, name="Notebook nbviewer", width=800, height=400)

2 Plan de l'exposé

- 1. Contexte
- 2. Objectif pédagogique
- 3. WebWork
- 4. SageCell
- 5. FLOT (Mooc) INPROS
- 6. Conclusion

3 Contexte

- La modélisation et la simulation numérique sont devenues des outils essentiels de la recherche et de l'innovation
- L'université ne prépare pas suffisamment nos étudiants à l'utilisation de ces nouveaux outils
- La **formation** à la **"programmation scientifique"** et au **"calcul intensif"** (HPC) est un enjeu majeur dans les années à venir (rapport CSCI par O. Pironneau, 2013)
- En particulier importance de la formation initiale en 1er cycle d'université

3.1 Programmation scientifique

"démarche scientifique pour passer d'un problème physique à sa résolution sur un ordinateur"

3.2 Démarche scientifique

- analyse du problème physique
- modèle mathématique
- méthode de discrétisation
- algorithme de résolution du problème discret
- programmation et validation
- simulations et analyse des résultats

3.3 Enseignement des mathématiques et de la programmation

Mathematics (and Science) is not a spectator sport

3.4 Constat

Enseignement classique en présentiel (Licence)

- étudiants de formation très disparate avec un manque de méthode de travail
- peu de maîtrise de l'outil mathématique
- peu de maîtrise de la programmation

• logiciels utilisés en TP peu adaptés (Maple, Matlab, Comsol,)

3.5 Besoin

** apprentissage par la pratique ** - ⇒ exercices pour les étudiants - ⇒ résolution de problème pour acquérir méthode et formalisme - en dehors des heures encadrés

3.6 Outils Web 2.0

- Webwork
- SageCell
- IPython notebook

4 WebWork

4.1 système de devoirs en ligne

- développé à l'université de Rochester
- très utilisé dans les enseignements de Maths
- énorme bibliothèque d'exercices: ≈ 20000 algèbre, probabilité, calculus, equa. diff., algèbre linéaire, analyse complexe,..
- système ouvert (libre) et interfaçable (LMS Moodle, SageCell)

4.2 Intérêts de WebWork

4.3 rendre les devoirs à la maison plus efficaces

- réponse immédiate pour les étudiants
- version individualisée des devoirs
- notation automatique

4.4 interface WEB

http://inpros.univ-lyon1.fr/webwork2

- 4.5 Webwork
- 4.6 Problème version PDF
- 4.7 Entrée des réponses
- 4.8 validation des réponses

5 Sage

5.1 SageCell=Interface Web à Sage

- SAGE: collection de logiciels libres: Python, Numpy, Mathplotlib, Sympy, Maxima, R, Gap
- cellule de calcul Sage dans une page HTML
- · serveur de calcul SAGE
- aucune installation locale
- système ouvert interfaçable (LMS Moodle, WebWork)

Sage server http://sagecellmeca.univ-lyon1.fr:8080/

- 5.2 cellule Sage dans une page html d'un navigateur
- 5.3 execution code Sage
- 5.4 SageCell: inclusion de code Python
- 5.5 SageCell: inclusion de code Python

6 INPROS

INtroduction à la PROgrammation Scientifique

Prototype de FLOT http://inpros.univ-lyon1.fr

6.1 Projet collaboratif

- objectif: apprentissage d'une méthodologie en programmation scientifique
- cours d'initiation (public très large)
- cours interactif avec mise en pratique
- accessible à partir d'un simple navigateur
- utilise Webwork, Sagecell, Ipython

```
In [7]: url='http://inpros.univ-lyon1.fr'
website(url, "MOOC INPROS", width=800, height=500)
<IPython.core.display.HTML at 0x432e0d0>
Out [7]:
```

6.2 SageCell dans INPROS

6.3 Webwork + SageCell dans INPROS

6.4 Code de l'exercise

7 Conclusion

7.1 Webwork/Sage en L3/M1 méca.

- étudiants travaillent à leur rythme
- plusieurs tentatives (80 à 100% réussite)
- mise en place L1 portail PCSI
- projet FLOT INPROS

7.2 Difficultés

- temps de mise en oeuvre
- valorisation pour les enseignants

8 Merci de votre attention !!

```
Des questions?
```

