Tutorium 13 (das letzte)

Florian Weber

16. Juli 2014

generische Optimierungsansätze

Übersicht

- (Ganzzahlige) Lineare Programmierung
- Greedy-Algorithmen
 - Dijkstra, Jarník-Prim, Kruskal, (Selection-Sort), . . .
- Dynamische Programmierung
- Systematische Suche
 - Alle (sinnvollen) Möglichkeiten durchprobieren
- Lokale Suche
 - brauchbare Lösung suchen und dann zunehmend verbessern
- Evolutionäre Algorithmen
 - . "Lokale Suche auf Steroiden"

Dynamische Programmierung

- Idee: Optimale Lösung besteht aus optimalen Lösungen für Teilprobleme
- Was sind die Teilprobleme?
- Wie setzt sich die optimale Lösung zusammen?

Dynamische Programmierung

- Idee: Optimale Lösung besteht aus optimalen Lösungen für Teilprobleme
- Was sind die Teilprobleme?
- Wie setzt sich die optimale Lösung zusammen?
- Kurzfassung: Schwer!

Beispiel: Knappsack

Siehe Folien und Aufzeichnung der Vorlesung

- Editierdistanz zwischen zwei Zeichenketten s₁, s₂: Wie viele Zeichen müssen bei s₁ gelöscht, ersetzt, oder ergänzt werden um s₂ zu erhalten?
- Erstelle Matrix D der benötigten Änderungen um von jeder beliebigen Teilsequenz zu jeder anderen zu kommen:

$$D_{0,0} = 0, D_{i,0} = i, D_{0,j} = j$$

$$D_{i,j} = \min egin{cases} D_{i-1,j-1} & +0 ext{ falls } u_i = v_j \ D_{i-1,j-1} & +1 ext{ (Ersetzung)} \ D_{i,j-1} & +1 ext{ (Einfügung)} \ D_{i-1,j} & +1 ext{ (Löschung)} \end{bmatrix}$$

\	ϵ	Т	0	r
ϵ	0	1	2	3
Т	1	0	1	2
i	2	1	1	2
е	3	2	2	2
r	4			

\	ϵ	Т	0	r
ϵ	0	1	2	3
Т	1	0	1	2
i	2	1	1	2
е	3	2	2	2
r	4	3	3	2

Beispiel: Unabhängige Mengen (Klausur SS10)

- Gegeben ein ungerichteter, "linearer" Graph G = (V, E) mit "Knotengewichten"
- Finde eine Menge von Knoten $U \subset V$, so dass
 - $\nexists u_1, u_2 \in U$, so dass $(u, v) \in E$
 - es keine derartige Menge mit höherer "Knotengewichtssumme" gibt
- |U| = n, $U_i := \{u_1, u_2, ..., u_i\}$

Beispiel: Unabhängige Mengen (Klausur SS10)

- Gegeben ein ungerichteter, "linearer" Graph G = (V, E) mit "Knotengewichten"
- Finde eine Menge von Knoten $U \subset V$, so dass
 - $\nexists u_1, u_2 \in U$, so dass $(u, v) \in E$
 - es keine derartige Menge mit höherer "Knotengewichtssumme" gibt
- |U| = n, $U_i := \{u_1, u_2, ..., u_i\}$
- Lösung für $U_0 = \emptyset$
- Lösung für $U_1 = \{u_1\}$
- Lösung für $U_i = \max(U_{i-1}, U_{i-2} \cup \{u_i\})$

Zusammenfassung

- Ekliges Thema
- Klausurrelevant
- Sollte man als Informatiker mal gehört haben
- Vorlesungsfolien oder Buch durcharbeiten!
 (Bei Unverständlichkeit (wahrscheinlich): Vorlesung auf Youtube anschauen)

Wiederholung

