Esperimentazioni II corso A A.A. 2020/21

Modulo 1 – Prof.ssa Michela Chiosso, Prof.ssa Stefania Beolè

Università degli Studi di Torino

MISURA DELLA FOCALE DI UNA LENTE

Valentina Barletta – <u>valentina.barletta@edu.unito.it</u> – Beatrice Caccherano – <u>beatrice.caccherano@edu.unito.it</u> – Federico Collè – <u>federico.colle@edu.unito.it</u> – AII_03

Abstract

Un diottro sferico è un sistema ottico costituito da due mezzi omogenei con indice di rifrazione differente, separati da una superficie sferica che prende il nome di lente. Le lenti possono essere convergenti oppure divergenti. In questo studio si intende determinare la distanza focale di una lente convergente biconvessa in approssimazione di Gauss, con oggetto e immagine posti nello stesso mezzo. Da questa stima è possibile verificare che tale lente è sottile, cioè che il suo spessore è più piccolo rispetto ai raggi di curvatura delle superfici sferiche. Inoltre si determina l'ingrandimento lineare trasversale. Successivamente si costruisce un sistema di lenti, utilizzando la medesima lente convergente e una lente incognita, al fine di verificare che quest'ultima è una lente negativa. I risultati ottenuti dall'analisi sono soddisfacenti, nonostante la presenza di diverse fonti d'errore.

1. Obiettivi della misura

1.1 Prima parte

- Misura della distanza focale di una lente sottile convergente biconvessa;
- Determinazione dell'ingrandimento.

1.2 Seconda parte

• Misura del fuoco di una lente divergente.

2. Apparato sperimentale

Banco ottico munito di scala con sensibilità 1 mm. Sul banco ottico sono montati un proiettore che funge da sorgente luminosa, una diapositiva di altezza $Y = (12 \pm 1)$ mm, una lente sottile convergente biconvessa e uno schermo sul quale viene proiettata l'immagine dell'oggetto.

Durante la presa dati è stata utilizzata anche una squadretta di sensibilità 1 mm.

Nella seconda parte dell'esperienza si utilizza lo stesso apparato sperimentale, aggiungendo al sistema descritto una lente divergente, costruendo così un sistema di lenti.

3. Presa Dati

3.1 Prima parte

Si comincia col determinare la distanza oggetto-lente p, valutando la posizione della lente convergente e della diapositiva rispetto all'origine della scala graduata del banco ottico, tenendo conto anche dello spessore della diapositiva utilizzata.

 $p = posizione\ lente - posizione\ diapositiva - (spessore\ diapositiva/2)$

$$p = (261 \pm 2) \text{ mm}$$

Per determinare la distanza focale della lente convergente si procede eseguendo 40 misure della distanza lente-immagine q, ponendo ogni volta lo schermo nella posizione in cui l'immagine sembra più nitida. Si ripete la procedura ruotando la lente di 180°. Le misure sono riportate in appendice A1. Per determinare l'ingrandimento della lente, si posiziona lo schermo alla distanza q medio q_m e, utilizzando una squadretta, si misura la dimensione dell'immagine $Y'=(17\pm1)$ mm.

3.2 Seconda parte

Posizionata la lente divergente nell'apparato sperimentale e costruito così un sistema di lenti, se ne determina la distanza focale senza variare p, misurando come in precedenza i valori di q attraverso 40 misure. Si veda appendice A1.

Si osservi che non si ripete la procedura ruotando il sistema di lenti di 180°. In questo caso, infatti, non si può applicare l'approssimazione di lente sottile, in quanto lo spessore delle due non è trascurabile.

4. Analisi Dati

Tutti i risultati ricavati dall'analisi dati riportata di seguito sono sotto approssimazione di Gauss, ipotizzando, dunque, che oggetto e immagine siano allineati sull'asse ottico e che l'angolo di incidenza dei raggi sul sistema sia prossimo a zero.

4.1 Prima parte

• Stima della distanza focale

Dai dati ottenuti sperimentalmente si ricava il valor medio della distanza lente-immagine q_{ml} :

$$q_{m1} = (358 \pm 2) \text{ mm}$$

L'errore associato a q_{ml} è la deviazione standard stimata dalle 40 misure riportate in appendice.

Si vuole verificare che q_{ml} sia effettivamente la miglior stima della distanza lente-immagine. Perciò, per l'elaborazione dei dati si suddividono le misure in 10 classi con passo di 1 mm, sapendo che la dispersione massima dei valori è 10 mm. Se ne ricava l'istogramma di fig.4a e si verifica mediante un test del χ^2 che l'andamento dei dati segue una distribuzione di Gauss. Ottenendo dal fit un $\chi^2 = 5,13$ con 37 gradi di libertà e considerando un livello di significatività $\alpha = 5\%$, il $\chi^2 < \chi^2_{\text{critico}}$ e ciò denota una buona performance generale del fit. I parametri di fit ricavati sono i seguenti:

Fig. 4a: Istogramma generato dal primo set di dati, dividendo le misure in 10 classi di ampiezza 1 mm.

$$p_0 = (8 \pm 2)$$
 $p_1 = (358, 2 \pm 0, 4) \text{ mm}$

$$p_2 = (2,1 \pm 0,3) \text{ mm}.$$

dove p_0 è la costante di normalizzazione della curva, p_1 è il valor medio e p_2 è la deviazione standard. Si valuta la compatibilità attesa tra p_1 e q_{m1} mediante un test di Gauss. I due valori sono tra loro consistenti con un livello di significatività del 5%.

Per determinare la distanza focale f_1 di una lente convergente si utilizza l'espressione:

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{q} \to f = \frac{p \cdot q_m}{p + q_m} \tag{1}$$

Pertanto, f_l con relativo errore ottenuto mediante propagazione è: $f_l = (151 \pm 1)$ mm.

Procedendo si ricava q_{m2} dal set di dati ottenuto ruotando la lente di 180°:

$$q_{m2} = (358 \pm 2) \text{ mm}$$

Analogamente, si intende provare che q_{m2} sia la miglior stima della distanza lente-immagine. Pertanto, si suddividono i dati di Tab.3.1b, riportata in appendice A1, in 12 classi di ampiezza di 1 mm, sapendo che la dispersione massima è di 12 mm. Si ottiene così l'istogramma di fig.4b.

Applicando un test del χ^2 si verifica che le misure acquisite seguono l'andamento di una gaussiana. Difatti $\chi^2 = 7,98$ e poiché $\chi^2 < \chi^2_{\text{critico}}$ con livello di significatività $\alpha = 5\%$ e con numero di gradi di libertà pari a 37, la regressione ipotizzata descrive efficacemente i dati sperimentali.

I parametri di fit ricavati sono i seguenti:

$$p_0 = (6 \pm 1)$$
 $p_1 = (358, 1 \pm 0.4)$ mm $p_2 = (2.4 \pm 0.3)$ mm.

Fig.4b: Istogramma generato dal secondo set di dati, dividendo le misure in 12 classi di ampiezza 1 mm.

dove p_0 è la costante di normalizzazione della curva, p_1 è il valor medio e p_2 è la deviazione standard.

Dal confronto tra p_1 e q_{m2} mediante un test di Gauss, si osserva che i due valori sono consistenti tra loro con livello di significatività del 5%.

Si determina la distanza focale f_2 dalla (1): $f_2 = (151 \pm 1)$ mm.

Si noti che sia i valori q_{m1} e q_{m2} sia f_1 e f_2 sono consistenti.

Pertanto, essendo l'indice di rifrazione lo stesso e avendo i fuochi stessa distanza dalla lente, si può affermare che la lente in esame è *sottile*.

• Ingrandimento

Dall'espressione $G = \frac{Y'}{Y}$ e dai valori Y e Y' acquisiti in precedenza, si determina l'ingrandimento:

$$G_1 = (1,4 \pm 0,2)$$

È possibile stimare il valore dell'ingrandimento anche mediante la formula $G = \frac{q_m}{p}$, ottenendo così:

$$G_2 = (1,37 \pm 0,02)$$

Applicando, quindi, un test di Gauss si verifica che i valori G_1 e G_2 sono tra loro consistenti con livello di significatività del 5%.

4.2 Seconda parte

Dopo aver inserito nell'apparato sperimentale la lente divergente, mantenendo la stessa posizione dell'oggetto p, si determina il valor medio q_m della distanza lente-immagine q con relativo errore dal set di dati, riportati in Tab.3.2 in appendice A1: $q_m = (1164 \pm 17)$ mm.

Per verificare che q_m sia la miglior stima della distanza lenteimmagine, i dati vengono suddivisi in 10 classi con passo di 8 mm, sapendo che la dispersione massima è di 74 mm. La fig.4cmostra l'istogramma ottenuto.

Si effettua una regressione con curva gaussiana da cui si ottiene $\chi^2 = 9,41$ con 37 gradi di libertà. Considerando un livello di confidenza $\alpha = 5\%$, il $\chi^2 < \chi^2$ critico. Se ne deduce che la relazione funzionale descrive adeguatamente i dati sperimentali.

I parametri di fit ricavati sono i seguenti:

$$p_0 = (7 \pm 1)$$
 $p_1 = (1164 \pm 3) \text{ mm}$ $p_2 = (19 \pm 3) \text{ mm}$.

dove p_0 è la costante di normalizzazione della curva, p_1 è il valor medio e p_2 è la deviazione standard. Confrontando il parametro p_1 e q_m mediante un test di Gauss, si osserva che i due valori sono consistenti tra loro con $\alpha = 5\%$.

Fig.4c: Istogramma del sistema di lenti generato dal terzo set di dati, dividendo le misure in 10 classi di ampiezza 8 mm.

Successivamente si stima la distanza focale del sistema di lenti dalla (1), ottenendo così:

$$f = (213 \pm 2)$$
 mm.

Dalla formula:

$$\frac{1}{f} = \frac{1}{f_c} + \frac{1}{f_d}$$

dove f è la focale del sistema di lenti, f_c è quella della lente convergente trovata in precedenza e, infine, f_d è la distanza focale della lente divergente incognita, si ricava il valore f_d con relativo errore ottenuto mediante propagazione: $f_d = (-516 \pm 6) \text{ mm}$

5. Conclusione

Nella prima parte dell'analisi si è misurata, sotto approssimazione di Gauss, la distanza focale della lente convergente biconvessa, verificando che quest'ultima sia sottile attraverso la compatibilità trovata tra f_1 e f_2 .

Una delle sorgenti di errore è il calcolo della distanza oggetto-lente p, ricavato come differenza di tre misure: posizione lente, posizione diapositiva e spessore della diapositiva. Un'altra possibile fonte di errore è il non perfetto allineamento dell'oggetto sull'asse ottico che potrebbe non rendere più valida l'approssimazione di Gauss. Le misure possono essere anche affette da errore di parallasse, dovuto al cattivo allineamento dell'occhio umano con l'apparato sperimentale. Tuttavia, come mostrato nell'analisi, la curva della distribuzione di Gauss descrive opportunamente i dati sperimentali. Infatti a conferma di ciò, i valori dei coefficienti di curtosi e asimmetria, riportati in appendice A2, si possono trascurare. Perciò si conclude che tali fonti di errore non hanno influenzato in maniera significativa le misure acquisite.

Successivamente si è riscontrato che i valori d'ingrandimento G_1 e G_2 sono tra loro consistenti, nonostante la presenza di possibili aberrazioni dovuti ai limiti dell'apparato sperimentale.

Nella seconda parte, invece, si è stimato prima il valore della distanza focale del sistema di lenti, costituito da una lente convergente e da una incognita, ricavando poi la focale f_d dall'espressione (2). Tale valore risulta negativo a conferma del fatto che la lente incognita utilizzata è divergente. Anche in questo caso le misure sperimentali seguono bene l'andamento di una gaussiana, come mostrato dai coefficienti di curtosi e asimmetria in appendice A2, non significativi.

6. Appendici

A1. Tabelle presa dati

tab 3.1a Distanza le	ente-immagine q
----------------------	-----------------

tab 3.1a Distanza lente-immagine q			
n.	(q ± 1) mm	n.	(q ± 1) mm
1.	353	21.	358
2.	355	22.	358
3.	355	23.	358
4.	355	24.	358
5.	355	25.	358
6.	355	26.	358
7.	356	27.	358
8.	356	28.	359
9.	356	29.	359
10.	356	30.	359
11.	357	31.	359
12.	357	32.	359
13.	357	33.	360
14.	357	34.	360
15.	357	35.	360
16.	357	36.	361
17.	357	37.	361
18.	357	38.	361
19.	357	39.	362
20.	358	40.	363

tab 3.1b Distanza lente-immagine q

tub	tab 3.16 Distanza iente-immagine q			
n.	(q ± 1) mm	n.	(q ± 1) mm	
1.	353	21.	358	
2.	354	22.	358	
3.	355	23.	358	
4.	355	24.	358	
5.	355	25.	358	
6.	355	26.	358	
7.	355	27.	358	
8.	355	28.	359	
9.	355	29.	359	
10.	356	30.	359	
11.	356	31.	359	
12.	356	32.	360	
13.	357	33.	360	
14.	357	34.	361	
15.	357	35.	361	
16.	357	36.	361	
17.	357	37.	362	
18.	357	38.	363	
19.	358	39.	364	
20.	358	40.	365	

tab 3.2 Distanza lente-immagine q

n.	(q ± 1) mm	n.	(q ± 1) mm
1.	1136	21.	1162
2.	1137	22.	1163
3.	1141	23.	1167
4.	1142	24.	1167
5.	1142	25.	1167
6.	1142	26.	1167
7.	1144	27.	1170
8.	1146	28.	1170
9.	1149	29.	1174
10.	1150	30.	1175
11.	1150	31.	1182
12.	1152	32.	1185
13.	1155	33.	1187
14.	1156	34.	1188
15.	1157	35.	1189
16.	1158	36.	1190
17.	1158	37.	1191
18.	1160	38.	1196
19.	1160	39.	1197
20.	1162	40.	1210

A2. Coefficienti di curtosi e di asimmetria

Istogramma fig.4a

1.Coefficiente di asimmetria		 Coefficiente di curtosi 	
g ₁	(0,3 ± 0,4)	g ₂	(-0,2 ± 0,8)

Istogramma fig.4b

2.Coefficiente di asimmetria		Coefficiente di curtosi	
g ₁	(0,7 ± 0,4)	g ₂	(0,2 ± 0,8)

Istogramma fig.4c

Coefficiente di asimmetria		Coefficiente di curtosi	
g ₁	(0,5 ± 0,4)	g ₂	(-0,6 ± 0,8)