INTEGRAL COHOMOLOGY OF $K^2(A)$

SIMON KAPFER

ABSTRACT. What we know already

Definition 0.1. Let A be a complex projective torus of dimesion 2 and $A^{[n]}$ the corresponding Hilbert scheme of points. Denote $\Sigma:A^{[n]}\to A$ the summation morphism. Then the generalized Kummer $K^{n-1}A$ is defined as the fiber over 0:

$$\begin{array}{ccc} K^{n-1}A & \stackrel{\theta}{\longrightarrow} & A^{[n]} \\ \downarrow & & \downarrow_{\Sigma} \\ \{0\} & \longrightarrow & A \end{array}$$

By [?], $\theta^*: H^2(A^{[n]}) \to H^2(K^{n-1}A)$ is surjective. We have injections $j: H^2(A) \to H^2(A^{[n]})$ and $i = \theta^*j$. The cohomology $H^*(A^{[n]})$ is described in terms of vertex operators in [?] and [?].

We describe now the image of θ^* in the case n=3:

• We know $j(a) = \frac{1}{2}\mathfrak{p}_{-1}(a)\mathfrak{p}_{-1}(1)^2|0\rangle$, because the two are must be linearly dependent and

$$\int_{A^{[3]}} j(a)^6 = 15q(a)^3, \quad \left(\frac{1}{2}\mathfrak{p}_{-1}(a)\mathfrak{p}_{-1}(1)^2|0\rangle\right)^3 = 15q(a)^3\mathfrak{p}_{-1}(x)^3|0\rangle.$$

• By [?, p. 8], we have for $\alpha = j(a) = \frac{1}{2}\mathfrak{p}_{-1}(a)\mathfrak{p}_{-1}(1)^2|0\rangle$:

$$\int_{A^{[3]}} \alpha^6 = \frac{5}{3} q(a) \int_{K^2} \theta^* \alpha^4$$

On the other hand,

$$\alpha^4 = 3q(a)^2 \mathfrak{p}_{-1}(x)^2 \mathfrak{p}_{-1}(0)|0\rangle + 3q(a)\mathfrak{p}_{-1}(x)\mathfrak{p}_{-1}(a)^2|0\rangle,$$

so if the image of both summands under $\int \theta^*$ is positive, then

$$\int \theta^* \mathfrak{p}_{-1}(x)^2 \mathfrak{p}_{-1}(0) |0\rangle = \int \theta^* \frac{1}{2} \mathfrak{p}_{-1}(x) \mathfrak{p}_{-1}(a)^2 |0\rangle = 1.$$

Proposition 0.2. Let $(\alpha_i)_{i=1...4}$ be an oriented basis of $H^1(A,\mathbb{Z})$. Then the class of $K^2(A)$ in $H^4(A^{[3]})$ is given by

$$\prod_{i=1}^{4} \left(\frac{1}{2} \mathfrak{p}_{-1}(1)^2 \mathfrak{p}_{-1}(\alpha_i) |0\rangle \right).$$

Date: August 28, 2015.

Proof. We know that for all i and all $\beta \in H^7(A^{[3]})$, we have $\int_{K^2(A)} \theta^*(\alpha_i \cdot \beta) = \int_{A^{[3]}} \alpha_i \cdot \beta \cdot [K^2(A)] = 0$ and for a basis (γ_i) of $H^2(A^{[3]})$,

$$\int_{A^{[3]}} \gamma_i \cdot \gamma_j \cdot \gamma_k \cdot \gamma_l \cdot [K^2(A)] = 3 \left(\langle \gamma_i, \gamma_j \rangle \langle \gamma_k, \gamma_l \rangle + \langle \gamma_i, \gamma_k \rangle \langle \gamma_j, \gamma_l \rangle + \langle \gamma_i, \gamma_l \rangle \langle \gamma_j, \gamma_k \rangle \right)$$

These equations admit a unique solution.

Let $\{a_i\}_{i=1...6}$ be a hyperbolic basis of $H^2(A, \mathbb{Z})$.

Proposition 0.3. The classes $\theta^*(\mathfrak{p}_{-2}(a_i)\mathfrak{p}_{-1}(1)|0\rangle)$ and $\theta^*(\mathfrak{p}_{-2}(1)\mathfrak{p}_{-1}(a_i)|0\rangle)$ are linearly dependent.

Proposition 0.4. $\theta^*(\mathfrak{p}_{-3}(x)|0\rangle) = 0$

Corollary 0.5.
$$\theta^*(\mathfrak{p}_{-2}(a_i)\mathfrak{p}_{-1}(1)|0\rangle) = \frac{1}{4}\theta^*(\mathfrak{p}_{-2}(1)\mathfrak{p}_{-1}(a_i)|0\rangle)$$

Proof. Let a_j be complementary, *i.e.* $a_i a_j = 1$. Let $\operatorname{ch}_1(a_j) = -\frac{1}{2} \mathfrak{p}_{-2}(a_j) \mathfrak{p}_{-1}(1) |0\rangle$ be the chern character in the vertex algebra description of $H^*(A^{[3]})$. Then:

$$\theta^* \left(-\frac{1}{2} \operatorname{ch}_1(a_j) \cdot \mathfrak{p}_{-2}(a_i) \mathfrak{p}_{-1}(1) |0\rangle \right) = \theta^* \left(\mathfrak{p}_{-3}(1) |0\rangle + \frac{1}{2} \mathfrak{p}_{-1}(x)^2 \mathfrak{p}_{-1}(1) |0\rangle \right)$$

But on the other hand, $\delta \cdot j(a) = \frac{1}{2}\mathfrak{p}_{-2}(1)\mathfrak{p}_{-1}(a_i)|0\rangle + \mathfrak{p}_{-2}(a_i)\mathfrak{p}_{-1}(1)|0\rangle$, and

$$\theta^* \left(\operatorname{ch}_1(a_j) \cdot \delta \cdot j(a) \right) = \theta^* \left(-3\mathfrak{p}_{-3}(1) |0\rangle - 3\mathfrak{p}_{-1}(x)^2 \mathfrak{p}_{-1}(1) |0\rangle \right).$$

Corollary 0.6. $\theta^*(\delta \cdot j(a_i)) = \theta^*(\frac{3}{4}\mathfrak{p}_{-2}(1)\mathfrak{p}_{-1}(a_i)|0\rangle)$ is divisible by 3.

Proposition 0.7. The classes $\theta^* \left(j(a_i)^2 - \frac{1}{3} j(a_i) \cdot \delta \right)$ are divisible by 2.

Proof. By [?], the classes $\frac{1}{2}\mathfrak{p}_{-1}(a_i)^2\mathfrak{p}_{-1}(1)|0\rangle - \frac{1}{2}\mathfrak{p}_{-2}(a_i)\mathfrak{p}_{-1}(1)|0\rangle$ are integral in $H^4(A^{[n]})$. But $j(a_i)^2 = \mathfrak{p}_{-1}(a_i)^2\mathfrak{p}_{-1}(1)|0\rangle$ and $\theta^*\left(\frac{1}{3}j(a_i)\cdot\delta\right) = \theta^*\left(\mathfrak{p}_{-2}(a_i)\mathfrak{p}_{-1}(1)|0\rangle\right)$.

Proposition 0.8. The class δ^2 is divisible by 2.

Proof. By [?, Prop. 4.1], $\operatorname{Sym}^2 H^2 \oplus \left(\operatorname{Sym}^2 H^2\right)^{\perp} = H^4$. We want to show that $\delta^2 \cdot \operatorname{Sym}^2 H^2 = 2\mathbb{Z}$. We know a \mathbb{Q} -basis of $\operatorname{Sym}^2 H^2$ with at most one class divisible by 2, given by $j(a_i)j(a_j)$, δ^2 and the above proposition. By computation, $\int \delta^4$ is divisible by 4 and $\int \delta^2 j(a_i)j(a_j)$ and $\int \delta^3 j(a_i)$ are all divisible by 2. So $\delta^2 \cdot H^4 = 2\mathbb{Z}$ and therefore δ^2 is divisible by 2, since H^4 is unimodular.

Proposition 0.9. The class θ^* $\left(\delta^2 - j(a_1) \cdot j(a_2) - j(a_3) \cdot j(a_4) - j(a_5) \cdot j(a_6)\right)$ is divisible by 3.

Proof. It is equal to
$$\theta^* \left(\mathfrak{p}_{-3}(1)|0\rangle + \frac{3}{2}\mathfrak{p}_{-1}(x)\mathfrak{p}_{-1}(1)^2|0\rangle \right).$$

SIMON KAPFER, LABORATOIRE DE MATHÉMATIQUES ET APPLICATIONS, UMR CNRS 6086, UNIVERSITÉ DE POITIERS, TÉLÉPORT 2, BOULEVARD MARIE ET PIERRE CURIE, F-86962 FUTUROSCOPE CHASSENEUIL

 $E ext{-}mail\ address: simon.kapfer@math.univ-poitiers.fr}$