See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/227019015

Quantification of measurement uncertainty in the sequential determination of Pb-210 and Po-210 by liquid scintillation counting and alphaparticle spectrometry

ARTICLE in ACCREDITATION AND QUALITY ASSURANCE · JANUARY 2008

Impact Factor: 0.97 · DOI: 10.1007/s00769-008-0437-z

CITATIONS	READS
11	70

3 AUTHORS, INCLUDING:

Chang-Kyu Kim

International Atomic Energy Agency (IAEA)

89 PUBLICATIONS 1,467 CITATIONS

SEE PROFILE

Ales Fajgelj

International Atomic Energy Agency (IAEA)

91 PUBLICATIONS 823 CITATIONS

SEE PROFILE

GENERAL PAPER

Quantification of measurement uncertainty in the sequential determination of ²¹⁰Pb and ²¹⁰Po by liquid scintillation counting and alpha-particle spectrometry

Chang-Kyu Kim · Paul Martin · Aleš Fajgelj

Received: 27 March 2008/Accepted: 7 July 2008/Published online: 15 August 2008 © Springer-Verlag 2008

Abstract Methodologies for the quantification of measurement uncertainties associated with the determination of ²¹⁰Pb- and ²¹⁰Po-specific activities by liquid scintillation counting (LSC) and alpha-particle spectrometry are presented, and are demonstrated using the soil reference material IAEA-326. Major contributors to the combined uncertainty associated with the measurement result of ²¹⁰Pb were the uncertainties of net count rates in the ²¹⁰Pb energy region of the sample spectrum and in the ²¹⁰Bi energy region of the blank spectrum. The predominant sources of uncertainty in the measurement of ²¹⁰Po were the uncertainties of net count rates in the regions of interest of ²⁰⁹Po and ²¹⁰Po. The relative standard uncertainty of ²¹⁰Po exponentially increases with the time interval between the sampling date and the separation date of Po, and this effect is strongly dependent on the ²¹⁰Po/²¹⁰Pb activity ratio. When the specific activity of ²¹⁰Pb is much higher than that of ²¹⁰Po in the sample, the relative standard uncertainty of the ²¹⁰Po determination increases significantly within a short time interval between the sampling date (or reference date) and the separation date of Po in samples.

Keywords $^{210}\text{Pb} \cdot ^{210}\text{Po} \cdot \text{Measurement uncertainty} \cdot \text{Liquid scintillation counting} \cdot \text{Alpha-particle spectrometry}$

Introduction

Polonium-210 and ²¹⁰Pb are naturally occurring radionuclides with half-lives of 138.38 days and 22.3 years,

C.-K. Kim () · P. Martin · A. Fajgelj International Atomic Energy Agency, Agency's Laboratories, Seibersdorf and Headquarters, Wagramer Strasse 5, 1400 Vienna, Austria

e-mail: c.k.kim@iaea.org

respectively. Both radionuclides are ubiquitously distributed in the rocks and soils of the earth's crust, and in the atmosphere and natural waters as a result of the decay of ²²²Rn. Technologically enhanced sources of ²¹⁰Po and ²¹⁰Pb include effluents and tailings from the mining industry, particularly in uraniferous areas, the disposal of radium-rich products such as phosphogypsum, and dust from blast furnaces. Because of this widespread distribution, both radionuclides also enter food chains through direct uptake, ingestion, or inhalation. ²¹⁰Pb and ²¹⁰Po have often been determined in a wide variety of samples in order to study environmental processes [1, 2] and their impact on human health through radiation exposure [3].

The results of several recent proficiency tests organized by the International Atomic Energy Agency (IAEA) have demonstrated that a number of laboratories are still experiencing difficulty in obtaining reliable results for ²¹⁰Pb and/or ²¹⁰Po determination in environmental matrices [4, 5]. This is, in part, due to the limited number of methods available for their determination (the most commonly used being gamma-ray spectrometry or beta counting for ²¹⁰Pb and alpha-particle spectrometry for ²¹⁰Po [6]), and technical difficulties with some of these methods (for example, the low energy of the ²¹⁰Pb peak in the gamma-ray spectrum). In addition, there is a general lack of suitable, recently characterized reference materials for use in quality control.

To assure the comparability and usefulness of measurement data, the determination results of ²¹⁰Pb- and ²¹⁰Po-specific activity are normally corrected for ingrowth and decay to the sampling date (or reference date), particularly in cases where the time interval between the sampling and measurement dates is long [7]. In performing the decay correction of the data, changes in measurement uncertainty associated with the corrections should also be

taken into account. Before some international guides on uncertainty evaluation were published [8–10], the uncertainty in radioactivity measurement was often expressed by the standard deviation of repeated measurements or was given by the square root of the number of counts, which, however, reflects only the counting statistics. Recently, García-Orellana and García-Leon [11] reported that the relative uncertainty of ²¹⁰Pb exponentially increased with the time interval between ²¹⁰Po measurements when the activity of ²¹⁰Pb was determined by measuring the ingrowth of ²¹⁰Po from ²¹⁰Pb after radiochemical separation. However, a combined uncertainty evaluation considering all possible sources of uncertainty was not discussed.

Vreček et al. [12] described in detail the evaluation of the measurement uncertainty in the determination of ²¹⁰Pb and ²¹⁰Po using a gas proportional counter and alpha-particle spectrometry. However, the authors did not elaborate on uncertainty sources that may eventually appear in decay correction to the sampling date, in spite of the fact that the uncertainty of ²¹⁰Po could increase with the time interval between the measurement date and the sampling date due to its relatively short half-life (138.38 days).

When carrying out determinations of ²¹⁰Pb and ²¹⁰Po, the analyst also needs to consider the possible effects of disequilibrium in the sample. As the decay chain from ²²⁶Ra to ²¹⁰Po involves several elements, it is quite common for different sample types to exhibit differences of orders of magnitude in their degrees of disequilibrium. For example, rainwater samples commonly have ²¹⁰Po/²¹⁰Pb activity ratios of approximately 0.1 [1, 13], while animal tissue samples may have ratios of 10 or even larger [14, 15]. This can affect considerably the allowable delay period between sampling and analysis, and the effect on the uncertainty of the ingrowth and decay corrections.

The purpose of this work was to identify and quantify all uncertainty sources which can appear in the measurement of ²¹⁰Pb and ²¹⁰Po by liquid scintillation counting (LSC) and alpha-particle spectrometry, including correction to the sampling date. In this paper, it is also presented how the combined uncertainty in the calculation of ²¹⁰Po activity on the sampling date depends on the ratio of ²¹⁰Po/²¹⁰Pb-specific activities on the sampling date (or the reference date in the particular case of the analysis of a reference material).

Materials and methods

Description of the method

Often, low levels of ²¹⁰Pb are determined from the measurement of ²¹⁰Po using alpha-particle spectrometry after

In the method described here, ²¹⁰Pb is directly measured by LSC without waiting for ²¹⁰Pb to reach equilibrium with ²¹⁰Bi, saving analysis time. Polonium-210 is measured by alpha spectrometry. It is expected that this method can be used for the rapid measurement of ²¹⁰Pb and ²¹⁰Po in environmental samples.

Calibration procedure for the determination of ²¹⁰Pb using LSC

Preparation of calibration sources

As shown in Fig. 1, a known activity of ²¹⁰Pb standard solution (NIST, SRM4337, USA), which is in secular equilibrium with the progeny ²¹⁰Bi and ²¹⁰Po, and the mass of stable Pb carrier (30 mg) were taken in 10 mL of 2 mol L⁻¹ HCl solution and then loaded onto a Srresin column (3 g of Sr-resin, 100-150 μm, inner Ø: 10 mm, Eichrom, Tec.). The column was washed with 80 mL of 2 mol L⁻¹ HCl and the washing solution was combined with the effluent to obtain a pure ²¹⁰Bi fraction (Fig. 11). The column was rinsed with 20 mL of 2 mol L⁻¹ HCl. This last portion of 20 mL 2 mol L⁻¹ HCl was discarded to avoid overlapping between the ²¹⁰Bi and ²¹⁰Po portions (Fig. 1²⁰), and the column was washed with 25 mL of 6 mol L⁻¹ HNO₃ (Fig. 13). The polonium was eluted with 60 mL of 6 mol L⁻¹ HNO₃ (Fig. 14). The lead was eluted with 60 mL of 6 mol L⁻¹ HCl (Fig. 15). The Bi, Po, and Pb fractions (Fig. 10, 4), ⑤) were, respectively, evaporated to dryness. Each portion of 210Bi and 210Po was dissolved in 1 mL of 6 mol L⁻¹ HNO₃, and then, respectively, transferred into 20 mL polyethylene vials coated with PTFE and mixed with 14 mL of Insta-Gel Plus liquid scintillation cocktail (PerkinElmer, USA). The Pb fraction was evaporated three times with 2 mL of 65% HNO₃. The residue was dissolved in 20 mL of 1 mol L⁻¹ HNO₃. After adding 0.4 g of oxalic acid while warming, the pH of solution was adjusted to 3-5 with NH₄OH to form a Pb-oxalate precipitation. The precipitate was filtered on a preweighed filter paper (Ø 24 mm), washed three times with 1 mL water and 2 mL of ethanol, and then dried in an oven at 40–50°C. After cooling, the precipitate was weighed to determine the chemical recovery of lead. The

Fig. 1 Schematic diagram for the sequential separation of 210 Bi, 210 Po, and 210 Pb for the preparation of calibration sources: ① Bi fraction, ② and ③ washing step, ④ Po fraction and ⑤ Pb fraction

lead oxalate precipitate was quantitatively transferred into a liquid scintillation vial together with the filter, and 1 mL of 6 mol L⁻¹ HNO₃ was added into the vial to dissolve the precipitate. The solution was then mixed with 14 mL of Insta-Gel Plus liquid scintillation cocktail (PerkinElmer, USA). The three vials (for ²¹⁰Pb, ²¹⁰Bi, and ²¹⁰Po) were counted using LSC (Quantulus 1220, PerkinElmer) to set up windows for ²¹⁰Pb and ²¹⁰Bi, until the counting statistic uncertainty was less than 1%.

Setting windows for ²¹⁰Pb and ²¹⁰Bi

The specific activity of ²¹⁰Pb was determined by LSC with the double energetic window method [17]. This method permits the direct determination of ²¹⁰Pb without waiting for the ingrowth of ²¹⁰Po from ²¹⁰Pb.

As shown in Fig. 2a, the lower limit for the ²¹⁰Pb energy region (window A) was set at channel 115 to avoid the counts caused by chemiluminescence in the cocktail, while the upper limit was set at channel 320, where the ²¹⁰Pb peak ends. The lower limit for the ²¹⁰Bi energy region (window B) was set at channel 320, and the upper limit was set at channel 410 to avoid interference from the ²¹⁰Po peak.

Separation of ²¹⁰Po and ²¹⁰Pb from soil IAEA-326 using Sr-resin

A test portion of 1.0 g (as dry weight) of soil reference material IAEA-326 was weighed into the PTFE vessel of a microwave oven. After adding Pb carrier (30 mg) and 209 Po tracer, 3 mL of 65% HNO₃ and 2 mL of 40% HF were added to the sample. The test portion was digested at 150°C for 15 min and then at 190°C for 25 min in a microwave oven (MLS-Ethos Plus, MLS GmbH, Germany), taking into consideration the volatility of polonium. The test solution was then transferred to plastic centrifuge tubes and centrifuged for 10 min. The supernatants were transferred to PTFE beakers. The residues were transferred back into the microwave containers with 3 mL of 65% HNO₃, and 2 mL of 40% HF was added. The residue was digested in a microwave oven using the same program as mentioned above. The test solutions were combined with the supernatants and 0.1 g H₃BO₃ was added and then evaporated with three portions of 5 mL of 65% HNO₃ to remove the HF. The residue was dissolved in 30 mL of 2 mol L⁻¹ HCl and then loaded onto a Sr-resin column (3 g of Sr-resin (100-150 μ m), inner \emptyset : 10 mm), which was preconditioned in advance with 100 mL of 2 mol L⁻¹ HCl. The columns were rinsed with 100 mL of 2 mol L^{-1} HCl and 25 mL of 6 mol L⁻¹ HNO₃ to remove interfering elements. Polonium was eluted with 60 mL of 6 mol L⁻¹ HNO_3 and then lead was eluted with 60 mL of 6 mol L^{-1} HCl [17]. Polonium fractions were carefully evaporated to dryness. The residues were taken up with 10 mL of 0.5 mol L⁻¹ HCl and the pH of the solution was adjusted to 2 using 6 mol L⁻¹ NaOH. Polonium was auto-deposited onto a silver disc at 90°C for 90 min with stirring of the solution. ²¹⁰Po was measured by alpha-particle spectrometry (EG&G Ortec, Oak Ridge, USA). A ²¹⁰Pb source was prepared as lead oxalate in the same way as for the calibration source preparation and then measured using LSC for 600 min (200 min \times 3 cycles).

Terms and definitions, symbols, and abbreviations

In the following, u(X) indicates the uncertainty in quantity X:

Fig. 2 Typical beta spectra of ²¹⁰Pb, ²¹⁰Bi, and ²¹⁰Po calibration sources: **a** ²¹⁰Pb, ²¹⁰Bi, and ²¹⁰Po spectra; **b** pure ²¹⁰Bi spectrum

	,				
$m_{\rm f}$ and $u(m_{\rm f})$	Mass of the filter used for ²¹⁰ Pb	$t_{2\text{-Pb}}$	Time interval between the		
	source preparation of the sample (g)		separation of ²¹⁰ Pb and the		
$m_{\rm of, cal}$ and $u(m_{\rm of, cal})$	Total mass of Pb-oxalate plus filter		beginning of the measurement		
	used in the calibration source		(days)		
	preparation (g)	$t_{3\text{-Pb}}$	Counting time of ²¹⁰ Pb in the		
$m_{\rm of}$ and $u(m_{\rm of})$	Total mass of the Pb-oxalate		sample (days)		
	precipitate plus filter in ²¹⁰ Pb	$t_{ m p}$	Time interval between the		
	source preparation of the sample		reference date of ²⁰⁹ Po tracer and		
	(g)		the separation date (days)		
$m_{\rm P}$ and $u(m_{\rm P})$	Mass of ²⁰⁹ Po tracer added (g)	t_0	Counting time of the blank (s)		
$m_{\mathrm{T, Pb}}$ and $u(m_{\mathrm{T, Pb}})$	Mass of ²¹⁰ Pb standard solution	$t_{1\text{-Po}}$	Time interval between the		
	added (g)		sampling date and the separation		
$R_{\rm cal}$ and $u(R_{\rm cal})$	Chemical recovery of Pb in the		date (days)		
	calibration source preparation	$t_{2\text{-Po}}$	Time interval between the		
R and $u(R)$	Chemical recovery of Pb in the		separation of ²¹⁰ Po and the		
	sample		beginning of the measurement		
$r_{\rm nA,\ cal\text{-}Bi},\ r_{\rm nB,\ cal\text{-}Bi}$	Net count rates in windows A and		(days)		
and $u(r_{nA, cal-Bi})$,	B of the ²¹⁰ Bi calibration source	$t_{3\text{-Po}}$	Counting time of ²¹⁰ Po in the		
$u(r_{\rm nB, cal-Bi})$	spectrum (counts s ⁻¹)		sample (days)		
$r_{\rm gA, \ cal\text{-}Bi}, \ r_{\rm gB, \ cal\text{-}Bi}$	Gross count rates in windows A	$\lambda_{\rm b}$ and $u(\lambda_{\rm b})$	Decay constant of 210 Pb (day $^{-1}$)		
and $u(r_{\rm gA, cal-Bi})$,	and B of the ²¹⁰ Bi calibration	$\lambda_{\rm P}$ and $u(\lambda_{\rm P})$	Decay constant of 210 Po (day ⁻¹)		
$u(r_{\rm gB, \ cal-Bi})$	source spectrum (counts s ⁻¹)	$\lambda_{\rm T}$ and $u(\lambda_{\rm T})$	Decay constant of ²⁰⁹ Po tracer		
$r_{\rm nA}$, $r_{\rm nB}$ and $u(r_{\rm nA})$,	Net count rates in windows A and B		(day^{-1})		
$u(r_{\rm nB})$	of the ²¹⁰ Pb spectrum of the	Z and $u(Z)$	Net count rate corrected for the		
	calibration source or sample		tailing by ingrowth ²¹⁰ Bi in		
1 ()	(counts s^{-1})		window A of the ²¹⁰ Pb spectrum		
r_{0A} , r_{0B} and $u(r_{0A})$,	Count rates in windows A and B of		of the calibration source or sample		
$u(r_{0B})$	the blank spectrum (counts s^{-1})		(counts s ⁻¹)		
$r_{\rm gA}$, $r_{\rm gB}$ and $u(r_{\rm gA})$,	Gross count rates in windows A				
$u(r_{\rm gB})$	and B of the ²¹⁰ Pb spectrum	Coloulation of the	specific activity of ²¹⁰ Pb		
1 ()	(counts s ⁻¹)	Calculation of the	specific activity of PD		
$r_{\rm g}$, $r_{\rm gt}$ and $u(r_{\rm g})$,	Gross count rates in the regions	Tailing factor $(f_{A/B})$ and counting efficiency of ^{210}Pb in LSC			
$u(r_{\rm gt})$	of interest (ROIs) of ²¹⁰ Po and				
	209 Po in the sample spectrum	III LOC			
	(counts s ⁻¹)	The 210Ph anarou ra	gion (window A) is interfered with by		
11) 111 (11)			²¹⁰ Pb energy region (window A) is interfered with by nts from ingrown ²¹⁰ Bi. The interference was com-		
$u(r_{\rm nt})$	and 209 Po in the sample spectrum				
	(counts s^{-1})	pensated for by using the ratio of counts in window A to			

Count rates in the ROIs of ^{210}Po

and ²⁰⁹Po in the blank spectrum

reference date of ²¹⁰Pb standard

solution and the separation date of

sampling date and the separation

between

between

the

the

interval

interval

date of Pb (days)

(counts s^{-1})

Time

Pb (days)

Time

 r_0 , r_{0t} and $u(r_0)$,

 $u(r_{0t})$

 $t_{\rm b}$

 t_{1-Pb}

The ²¹⁰Pb energy region (window A) is interfered with by counts from ingrown ²¹⁰Bi. The interference was compensated for by using the ratio of counts in window A to those in window B in a pure ²¹⁰Bi spectrum (the so called "tailing factor": $f_{A/B}$), as shown in Fig. 2b). The tailing factor is independent of the activity level of ²¹⁰Bi in the sample, but is dependent on the quenching level of the sample. As shown in Fig. 3, the quenching levels of the calibrant, the sample, and the reagent blank were kept constant to within $\pm 2\%$ of the relative standard deviation. The tailing factor can be calculated by the following:

$$f_{\rm A/B} = \frac{r_{\rm nA, cal-Bi}}{r_{\rm nB, cal-Bi}} \tag{1}$$

Fig. 3 Quenching levels of the calibrant, sample, and reagent blank

$$r_{\text{nA, cal-Bi}} = r_{\text{gA, cal-Bi}} - r_{0A}$$

 $r_{\text{nB, cal-Bi}} = r_{\text{gB, cal-Bi}} - r_{0B}$ (2)

The uncertainty of $f_{A/B}$ is calculated according to:

$$u(f_{A/B}) = f_{A/B} \cdot \sqrt{\left(\frac{u(r_{nA, cal-Bi})}{r_{nA, cal-Bi}}\right)^2 + \left(\frac{u(r_{nB, cal-Bi})}{r_{nB, cal-Bi}}\right)^2}$$
(3)

$$u(r_{\text{nA, cal-Bi}}) = \sqrt{u(r_{\text{gA, cal-Bi}})^2 + u(r_{\text{0A}})^2}$$
 (4)

$$u(r_{nB, cal-Bi}) = \sqrt{u(r_{gB, cal-Bi})^2 + u(r_{0B})^2}$$
 (5)

The counting efficiency for ²¹⁰Pb and its associated uncertainty can be calculated by Eqs. 6 and 9:

$$\varepsilon = \frac{Z}{R_{\text{cal}} \cdot a_{\text{Pb. std}} \cdot m_{\text{T. Pb}} \cdot \exp\left(-\lambda_{\text{b}} \cdot t_{\text{b}}\right)}$$
 (6)

$$Z = r_{\rm nA} - r_{\rm nB} \cdot f_{\rm A/B} \tag{7}$$

$$r_{\rm nA} = r_{\rm gA} - r_{\rm 0A}$$

 $r_{\rm nB} = r_{\rm gB} - r_{\rm 0B}$ (8)

$$u(\varepsilon) = \left\{ \left(\frac{\varepsilon}{Z} \right)^{2} \cdot u(Z)^{2} + (\varepsilon \cdot t_{b})^{2} \cdot u(\lambda_{b})^{2} + \left(-\frac{\varepsilon}{a_{Pb, std}} \right)^{2} \cdot u(a_{Pb, std})^{2} + \left(-\frac{\varepsilon}{R_{cal}} \right)^{2} \cdot u(R_{cal})^{2} + \left(-\frac{\varepsilon}{m_{T, Pb}} \right)^{2} \cdot u(m_{T, Pb})^{2} \right\}^{0.5}$$

$$(9)$$

$$u(Z) = \sqrt{u(r_{\text{nA}})^2 + (-f_{\text{A/B}})^2 \cdot u(r_{\text{nB}})^2 + (-r_{\text{nB}})^2 \cdot u(f_{\text{A/B}})^2}$$
(10)

$$u(r_{\rm nA}) = \sqrt{u(r_{\rm gA})^2 + u(r_{\rm 0A})^2}$$
 (11)

$$u(r_{\rm nB}) = \sqrt{u(r_{\rm gB})^2 + u(r_{\rm 0B})^2}$$
 (12)

Chemical recoveries of Pb in the calibration source and sample

The chemical recovery of lead in the calibration source preparation process was determined gravimetrically using Eq. 13:

$$R_{\text{cal}} = \frac{f_{\text{g}} \cdot \left(m_{\text{of, cal}} - m_{\text{f, cal}}\right)}{C_{\text{Pb-c}} \cdot m_{\text{c}}} \tag{13}$$

$$u(R_{cal}) = \left\{ \left(\frac{R_{cal}}{f_{g}} \right)^{2} \cdot u(f_{g})^{2} + \left(\frac{R_{cal}}{(m_{of,cal} - m_{f,cal})} \right)^{2} \cdot u(m_{of,cal})^{2} + \left(-\frac{R_{cal}}{(m_{of,cal} - m_{f,cal})} \right)^{2} \cdot u(m_{f,cal})^{2} + \left(-\frac{R_{cal} \cdot m}{(C_{Pb-c} \cdot m_{c})} \right)^{2} \cdot u(C_{Pb-c})^{2} + \left(-\frac{R_{cal} \cdot C_{Pb-c}}{(C_{Pb-c} \cdot m_{c})} \right)^{2} \cdot u(m_{c})^{2} \right\}^{0.5}$$

$$(14)$$

In case that the amount of Pb in the sample is not negligible compared with that in the Pb carrier, the sample Pb should be considered in the calculation of the chemical recovery of Pb. The chemical recovery of Pb and its uncertainty in the sample can be calculated by Eqs. 15 and 16, respectively.

In the case of IAEA-326, the amount in the material is 0.016 mg g^{-1} [18], which is much less than the amount of Pb carrier used (30 mg); therefore, it is negligible in the calculation of the chemical recovery of Pb in the sample. In this case, the chemical recovery and its uncertainty in the sample can be calculated by Eqs. 13 and 14:

$$R = \frac{f_{\rm g} \cdot (m_{\rm of} - m_{\rm f})}{C_{\rm Pb-c} \cdot m_{\rm c} + C_{\rm Pb-s} \cdot m_{\rm d}}$$
(15)

$$u(R) = \left\{ \left(\frac{R}{f_{g}} \right)^{2} \cdot u(f_{g})^{2} + \left(\frac{R}{(m_{of} - m_{f})} \right)^{2} \cdot u(m_{of})^{2} + \left(-\frac{R}{(m_{of} - m_{f})} \right)^{2} \cdot u(m_{f})^{2} + \left(-\frac{R \cdot m_{c}}{(C_{Pb-c} \cdot m_{c} + C_{Pb-s} \cdot m_{d})} \right)^{2} \cdot u(C_{Pb-c})^{2} + \left(-\frac{R \cdot C_{Pb-c}}{(C_{Pb-c} \cdot m_{c} + C_{Pb-s} \cdot m_{d})} \right)^{2} \cdot u(m_{c})^{2} + \left(-\frac{R \cdot m_{d}}{(C_{Pb-c} \cdot m_{c} + C_{Pb-s} \cdot m_{d})} \right)^{2} \cdot u(C_{Pb-s})^{2} + \left(-\frac{R \cdot C_{Pb-s}}{(C_{Pb-c} \cdot m_{c} + C_{Pb-s} \cdot m_{d})} \right)^{2} \cdot u(m_{d})^{2} \right\}^{0.5}$$

$$(16)$$

Mass ratio of the atomic mass of Pb to the molar mass of Pb-oxalate

The mass ratio (f_g) of the atomic mass of Pb to the molar mass of Pb-oxalate and its associated uncertainty are calculated using the equations below:

$$f_{\rm g} = \frac{M_{\rm Pb}}{M_{\rm Pb-oxalate}} \tag{17}$$

$$u(f_{\rm g}) = f_{\rm g} \cdot \sqrt{\left(\frac{u(M_{\rm Pb})}{M_{\rm Pb}}\right)^2 + \left(\frac{u(M_{\rm Pb-oxalate})}{M_{\rm Pb-oxalate}}\right)^2}$$
(18)

The uncertainty of the molar mass of lead oxalate $u(M_{\text{Pb-oxalate}})$ can be derived by combining the standard uncertainties in the atomic masses of its constituents, as shown in Table 1.

Calculation of specific activities of ²¹⁰Pb and ²¹⁰Po on separation date

The specific activity of ²¹⁰Pb and its associated uncertainty on the separation date can be calculated from the LSC measurement, using the following equations:

$$a_{\text{Pb}, 1} = \frac{Z \cdot f_{2-\text{Pb}} \cdot f_{3-\text{Pb}}}{m_d \cdot \varepsilon \cdot R} \tag{19}$$

$$f_{2-Pb} = \exp\left(\lambda_b t_{2-Pb}\right) \tag{20}$$

$$f_{3-Pb} = \frac{\lambda_b t_{3-Pb}}{1 - \exp(-\lambda_b t_{3-Pb})}$$
 (21)

The combined uncertainty is the estimated standard deviation equal to the positive square root of the total variance obtained by combining all variance and covariance components using the law of propagation of the uncertainty [5, 6]. The combined uncertainty of the ²¹⁰Pb activity is calculated from Eq. 22:

$$u_{c}(a_{Pb,1}) = \left\{ \left(\frac{a_{Pb,1}}{Z} \right)^{2} (r_{nA})^{2} + \left(-f_{A/B} \cdot \frac{a_{Pb,1}}{Z} \right)^{2} (r_{nB})^{2} + \left(-r_{nB} \cdot \frac{a_{Pb,1}}{Z} \right)^{2} \cdot u(f_{A/B})^{2} + \left(-\frac{a_{Pb,1}}{m_{d}} \right)^{2} (m_{d})^{2} + \left(-\frac{a_{Pb,1}}{\varepsilon} \right)^{2} (\varepsilon)^{2} + \left(-\frac{a_{Pb,1}}{R} \right)^{2} \cdot u(R)^{2} + \left(\frac{a_{Pb,1}}{f_{2-Pb}} \right)^{2} \cdot u(f_{2-Pb})^{2} + \left(\frac{a_{Pb,1}}{f_{3-Pb}} \right)^{2} \cdot u(f_{3-Pb})^{2} \right\}^{0.5}$$

$$(22)$$

$$u(f_{2-Pb}) = f_{2-Pb} \cdot t_{2-Pb} \cdot u(\lambda_b)$$
(23)

$$u(f_{3-Pb})$$

$$= f_{3-Pb} \cdot \left\{ 1 - \lambda_b \cdot t_{3-Pb} \cdot \frac{\exp(-\lambda_b \cdot t_{3-Pb})}{1 - \exp(-\lambda_b \cdot t_{3-Pb})} \right\} \cdot \frac{u(\lambda_b)}{\lambda_b}$$
(24)

However, if the time interval $(t_{2\text{-Pb}})$ between the separation of ^{210}Pb and the beginning of the measurement and the counting time of the sample $(t_{3\text{-Pb}})$ are much smaller than the half-life of ^{210}Pb (22.2 years), then $f_{2\text{-Pb}}$, $f_{3\text{-Pb}}$, $u(f_{2\text{-Pb}})$, and $u(f_{3\text{-Pb}})$ are negligible.

The specific activity of 210 Po on the separation date is calculated by alpha-particle spectrometry, using the ratio of the net count rate of 210 Po to that of 209 Po tracer, and then decay-corrected to the sampling date. As shown in Fig. 4, two decay correction factors ($f_{2\text{-Po}}$ and $f_{3\text{-Po}}$) were considered for the calculation of the specific activity of 210 Po on

Table 1 Standard uncertainties of atomic weights and the gravimetric factor f_g [19]

Element	weight	Quoted uncertainty (g mol ⁻¹)				Uncertainty of mass ratio of the atomic mass of Pb to the molar mass of Pb-oxalate
Pb	207.2152	0.00015	$\sqrt{3}$	0.000087	0.7019	0.000002
C	12.0107	0.0008		0.00046		
O	15.9994	0.0003		0.00017		

the separation date. The specific activity of 210 Po ($a_{Po, 1}$, Bq kg $^{-1}$) expressed as dry weight on the separation date, can be calculated by the following formulae:

$$a_{\text{Po, 1}} = \frac{A_{\text{T}} \cdot r_{\text{n}}}{m_{\text{d}} \cdot r_{\text{nt}}} \cdot m_{\text{P}} \cdot f_{\text{p}} \cdot f_{\text{2-Po}} \cdot f_{\text{3-Po}}$$

$$(25)$$

$$r_{\rm n} = r_{\rm g} - r_0 \tag{26}$$

$$r_{\rm nt} = r_{\rm gt} - r_{\rm 0t} \tag{27}$$

The decay correction factors may be calculated as follows:

$$f_{\rm p} = \exp\left(-\lambda_{\rm T} t_{\rm p}\right) \tag{28}$$

$$f_{2-P_0} = \exp\left(\lambda_P t_{2-P_0}\right) \tag{29}$$

$$f_{3-P_0} = \frac{\lambda_P t_{3-P_0}}{1 - \exp(\lambda_P t_{3-P_0})}$$
 (30)

The uncertainties associated to the components mentioned above can be calculated as follows:

$$u(r_{\rm n}) = \sqrt{\frac{r_{\rm g}}{t_{\rm 3-Po}} + \frac{r_{\rm 0}}{t_{\rm 0}}}$$
(31)

$$u(r_{\rm nt}) = \sqrt{\frac{r_{\rm gt}}{t_{\rm 3-Po}} + \frac{r_{\rm 0t}}{t_{\rm 0}}}$$
(32)

$$u(a_{Po,1}) = \left\{ \left(\frac{a_{Po,1}}{A_{T}} \right)^{2} \cdot u(A_{T})^{2} + \left(\frac{a_{Po,1}}{r_{n}} \right)^{2} (r_{n})^{2} + \left(-\frac{a_{Po,1}}{r_{nt}} \right)^{2} \cdot u(r_{nt})^{2} + \left(-\frac{a_{Po,1}}{m_{d}} \right)^{2} \cdot u(m_{d})^{2} + \left(\frac{a_{Po,1}}{m_{P}} \right)^{2} \cdot u(m_{P})^{2} + \left(\frac{a_{Po,1}}{f_{2-Po}} \right)^{2} \cdot u(f_{2-Po})^{2} + \left(\frac{a_{Po,1}}{f_{p}} \right)^{2} \cdot u(f_{p})^{2} + \left(\frac{a_{Po,1}}{f_{3-Po}} \right)^{2} \cdot u(f_{3-Po}) \right\}^{0.5}$$

$$(33)$$

$$u(f_{\mathbf{p}}) = f_{\mathbf{p}} \cdot t_{\mathbf{p}} \cdot u(\lambda_{\mathbf{T}}) \tag{34}$$

$$u(f_{2-Po}) = f_{2-Po} \cdot t_{2-Po} \cdot u(\lambda_P)$$
 (35)

 $u(f_{3-P_0})$

$$= f_{3-\text{Po}} \cdot \left\{ 1 - \lambda_{\text{P}} \cdot t_{3-\text{Po}} \cdot \frac{\exp\left(-\lambda_{\text{P}} \cdot t_{3-\text{Po}}\right)}{1 - \exp\left(-\lambda_{\text{P}} \cdot t_{3-\text{Po}}\right)} \right\} \cdot \frac{u(\lambda_{\text{P}})}{\lambda_{\text{P}}}$$
(36)

Fig. 4 Time intervals between the sampling date, separation date, and measurement date

²¹⁰Pb and ²¹⁰Po in reference soil IAEA-326 on separation date

Relatively few matrix reference materials are available which have been characterized for ²¹⁰Pb. For the purposes of testing and illustrating the above procedure, it has been applied to the case of the determination of ²¹⁰Pb- and ²¹⁰Po-specific activities in reference soil IAEA-326.

The specific activities of ²¹⁰Pb and ²¹⁰Po corrected to the separation date and its combined uncertainties are summarized in Tables 2 (for ²¹⁰Pb) and 3 (for ²¹⁰Po). The separation date for these determinations was 22nd October 2007. These data indicate that ²¹⁰Pb and ²¹⁰Po were in equilibrium on the separation date, as expected.

The recommended values reported for IAEA-326 for 226 Ra and 210 Pb were 32.6 Bq kg $^{-1}$ (95% confidence interval 31.0–34.2) and 53.3 Bq kg $^{-1}$ (48.8–57.8) for the reference date of 31st December 1994, respectively [18]. However, the present-day values will be different from the recommended values due to decay of the original ²¹⁰Pb and ²¹⁰Po and ingrowth from ²²⁶Ra during the time interval between the reference date and the separation date (Fig. 5). Unfortunately, it is not possible to reliably decay-correct the present-day ²¹⁰Pb- and ²¹⁰Po-specific activities in IAEA-326 soil to the reference date due to the long time interval between these dates-12.8 years. As this time interval is about 30 times the half-life of ²¹⁰Po, it can be expected that 210Po is now in secular equilibrium with ²¹⁰Pb in the material. In addition, it is difficult to estimate the degree of support for ²¹⁰Pb from its progenitors in the sample, since there is no guarantee that the ²²²Rn from ²²⁶Ra decay in IAEA-326 was quantitatively retained in the soil or in the sample bottle over such a long time interval. Therefore, the results given here are corrected only to the separation date.

The major sources of uncertainty in the measurement result for ^{210}Pb on the separation date were the uncertainties of net count rates in window A (region of ^{210}Pb) of the sample spectrum and in window B (region of ^{210}Bi) of the blank spectrum. The percentage contributions to $(u_c)^2$ of these were 33.2 and 44.3%, respectively. The percentage contributions of the count rates in window A of the blank spectrum and in window B of the sample were both 11%. As predominant uncertainty sources, the percentage contributions to $(u_c)^2$ of count rates in the ROIs of ^{209}Po and ^{210}Po were 44.7% and 49.7%, respectively (Table 3).

Estimation of the relative standard uncertainty of ²¹⁰Po on the sampling date

As mentioned above, it is not possible to reliably decay-correct the specific activities of ²¹⁰Pb and ²¹⁰Po in IAEA-

Table 2 Quantifying uncertainties in the measurement of ²¹⁰Pb in IAEA-326 by LSC

Symbol	Value of variable	Uncertainty	Conversion factor to standard uncertainty	Standard uncertainty (u)	Percentage contribution to $(u_c)^2$
$r_{\rm gA}$ (counts s ⁻¹)	6.6×10^{-2}	1.9×10^{-3}	1.0	1.9×10^{-3}	33.16
r_{0A} (counts s ⁻¹)	3.9×10^{-2}	1.1×10^{-3}	1.0	1.1×10^{-3}	11.10
$r_{\rm gB}$ (counts s ⁻¹)	2.1×10^{-2}	1.0×10^{-3}	1.0	1.0×10^{-3}	11.09
r_{0B} (counts s ⁻¹)	2.0×10^{-2}	2.0×10^{-3}	1.0	2.0×10^{-3}	44.28
Z (counts s ⁻¹)	2.6×10^{-2}	3.0×10^{-3}	1.0	3.0×10^{-3}	0.00
$f_{\mathrm{A/B}}$	1.017	0.0145	1.0	0.0145	0.005
$m_{\rm d}$ (kg)	1.1×10^{-3}	1.0×10^{-7}	$\sqrt{3}$	5.8×10^{-8}	0.00
ε	0.814	0.006	1.0	0.006	0.32
R	0.779	0.002	1.0	0.002	0.04
$a_{{ m Pb},\ 1}\ ({ m Bq}\ { m kg}^{-1})$	38.7	5.0*			

^{*}Combined uncertainty

Table 3 Quantifying uncertainties in the measurement of ²¹⁰Po in IAEA-326 by alpha-particle spectrometry

Symbol	Value of variable	Uncertainty	Conversion factor to standard uncertainty	Standard uncertainty (u)	Percent contribution to $(u_c)^2$
$r_{\rm gt}$ (counts s ⁻¹)	1.0×10^{-2}	2.0×10^{-4}	1.0	2.0×10^{-4}	44.7
r_{0t} (counts s ⁻¹)	1.6×10^{-5}	9.0×10^{-6}	1.0	9.0×10^{-6}	0.07
$r_{\rm g}$ (counts s ⁻¹)	1.2×10^{-2}	2.0×10^{-4}	1.0	2.0×10^{-4}	49.7
r_0 (counts s ⁻¹)	9.3×10^{-4}	1.0×10^{-4}	1.0	1.0×10^{-4}	3.98
$A_{\rm T}$ (Bq g ⁻¹)	0.446	2.0×10^{-3}	1.0	2.0×10^{-3}	1.53
$m_{\rm p}$ (g)	9.7×10^{-2}	1.0×10^{-4}	$\sqrt{3}$	5.8×10^{-5}	0.06
$m_{\rm d}$ (kg)	1.0×10^{-3}	1.0×10^{-7}	$\sqrt{3}$	5.8×10^{-8}	0.00
$\lambda_{\rm T} ({\rm day}^{-1})$	6.8×10^{-3}	1.5×10^{-5}	1.0	1.5×10^{-5}	0.00
$\lambda_{\rm P} ({\rm day}^{-1})$	5.0×10^{-3}	7.2×10^{-8}	1.0	7.2×10^{-8}	0.00
$f_{ m P}$	0.9166	0.0002	1.0	0.0002	0.00
$f_{2\text{-Po}}$	1.010	1.5×10^{-7}	1.0	1.5×10^{-7}	0.00
$f_{3\text{-Po}}$	1.005	1.0×10^{-7}	1.0	1.0×10^{-7}	0.00
$a_{\text{Po}, 1} (\text{Bq kg}^{-1})$	39.7	1.3*			

^{*}Combined uncertainty

Fig. 5 The uranium decay series

326 determined at the present time to the reference date due to the long time period between the reference and separation dates. This case illustrates that, in order to determine the specific activities in an environmental sample on the sampling date, it is necessary to carry out the analysis within a limited time period after sampling. In this section, we discuss the calculation of results back to the sampling date. The uncertainty of ²¹⁰Po calculated to the sampling date can be more significantly affected by the time interval between the separation date and the sampling date in comparison with that of ²¹⁰Pb, due to the short halflife of ²¹⁰Po (138.38 days). Therefore, we discuss here how the relative standard uncertainty of ²¹⁰Po on the sampling date or reference date varies with the time interval between the sampling date and the separation date of Po under some assumptions.

As an example, it was assumed that the specific activity of ^{210}Pb in the sample on the sampling date was determined to be 50 mBq kg $^{-1}$, with a 13% relative standard uncertainty ($u_{c}(a_{\text{Pb},~0})/a_{\text{Pb},~0}$), while the relative standard uncertainty ($u_{c}(a_{\text{Pb},~1})/a_{\text{Po},~1}$) of $^{210}\text{Po-specific}$ activity on the separation date was 3%. In this assumption, only the activity contribution of ^{210}Pb was considered for the calculation of ingrowth of ^{210}Pb was considered for the calculation of ingrowth of ^{210}Pb between sampling and separation, because, in most cases, the major contributor to ingrowth over the delay period between sampling and separation is ^{210}Pb . ^{210}Bi was assumed to be in secular equilibrium with ^{210}Pb in the sample.

On the basis of these assumptions, the specific activity of ²¹⁰Po and its uncertainty can be decay-corrected to the sampling date by use of the following equation:

$$a_{Po,0} = \left\{ a_{Po,1} - \frac{\lambda_{P}}{\lambda_{P} - \lambda_{b}} a_{Pb,0} \exp(\lambda_{b} t_{1-Po}) \cdot \left[\exp(-\lambda_{b} t_{1-Po}) - \exp(-\lambda_{p} t_{1-Po}) \right] \right\} \exp(\lambda_{p} t_{1-Po})$$
(37)

Differentiating Eq. 37, each partial derivative can be calculated as follows:

$$\frac{\partial a_{\text{Po, 0}}}{\partial a_{\text{Po, 1}}} = I \tag{38}$$

$$\frac{\partial a_{\text{Po, 0}}}{\partial a_{\text{Pb, 0}}} = -\lambda_{\text{p}} y \tag{39}$$

$$\frac{\partial a_{\text{Po, 0}}}{\partial \lambda_{\text{b}}} = J\left(t_{1-\text{Po}}e^{\lambda_{\text{b}}t_{1-\text{Po}}} - y\right) \tag{40}$$

$$\frac{\partial a_{\text{Po, 0}}}{\partial \lambda_{\text{p}}} = a_{\text{Po, 1}} t_{1-\text{Po}} I - J \left(t_{1-\text{Po}} I - \frac{\lambda_{\text{b}}}{\lambda_{\text{p}}} y \right) \tag{41}$$

$$I = e^{\lambda_b t_{1-Po}}$$

$$J = a_{Pb, 0} \frac{\lambda_p}{\lambda_p - \lambda_b}$$

$$y = \frac{1}{\lambda_p - \lambda_b} (I - e^{\lambda_p t_{1-Po}})$$

Therefore, the combined uncertainty of 210 Po concentration (Bq kg⁻¹) on the sampling date, $u_c(a_{Po, 0})$ can be calculated by the following formula:

$$u_{c}(a_{Po,0}) = \left\{ (I)^{2} \cdot u(a_{Po,1})^{2} + (\lambda_{p}y)^{2} \cdot u_{c}(a_{Pb,0})^{2} + J^{2}(t_{1-Po}e^{\lambda_{b}t_{1-Po}} - y)^{2} \cdot u(\lambda_{b})^{2} + \left[a_{Po,1} \cdot t_{1-Po} \cdot I - J\left(t_{1-Po}I - \frac{\lambda_{b}}{\lambda_{p}}y\right) \right]^{2} \cdot u(\lambda_{p})^{2} \right\}^{0.5}$$

$$(42)$$

Figure 6 shows how the relative standard uncertainty for ²¹⁰Po on the sampling date changes depending on the time interval between the sampling date and the Po separation date for the example case detailed above. The relative standard uncertainty increases exponentially with the delay time interval. If the ²¹⁰Po/²¹⁰Pb activity ratio is 1, then the relative standard uncertainty for ²¹⁰Po corrected to the sampling date reaches 10% for a sampling-separation delay period of 100 days. However, in the case that the ratio is 0.1 (a typical ratio in rain water [1, 13]), a 10% relative standard uncertainty for ²¹⁰Po is reached after only 13 days (Fig. 4), while in the case that the ratio is 10 (a typical ratio in molluscs and the soft tissue of bivalves [14, 15]), the relevant time period is 400 days from the sampling date (Fig. 6).

As mentioned above, in these calculations, ²¹⁰Bi was assumed to be in secular equilibrium with ²¹⁰Pb in the sample. This is not always the case however. For example, in rainwater, the ²¹⁰Bi/²¹⁰Pb activity ratio is normally less than 1. In most cases, this assumption causes only small errors. However, it should be kept in mind that, for some sample types where extreme disequilibrium may occur (for example, process waters from the mining industry), additional correction factors may be required. In any case, the introduction of both quantifiable and unquantifiable errors may be reduced by the minimization of the time delay between sample collection and analysis. In other words, it is good practice to keep the delay period as short as practicable.

Fig. 6 The variation of the relative standard uncertainty $(u_c(a_{Po, 0})/a_{Po, 0})$ of ^{210}Po on the sampling date with the time interval between the separation date and the sampling date for several $^{210}\text{Po}/^{210}\text{Pb}$ activity ratios

Conclusions

In this work, the quantification of measurement uncertainties in the determination of ²¹⁰Pb- and ²¹⁰Po-specific activities, including the correction of ²¹⁰Pb- and ²¹⁰Po-specific activities to the sampling (or reference) date under some assumptions, was elaborated. The variation of the relative standard uncertainty of ²¹⁰Po-specific activity on the sampling date with the time interval between the sampling date and the separation date was evaluated.

The methods described in this paper were applied to an example analysis of reference soil IAEA-326. The major sources of uncertainty in the measurement result of ²¹⁰Pb on the separation date were the uncertainties of the net count rates in window A of the sample spectrum and in window B of the blank spectrum. The predominant sources of uncertainty in the measurement of ²¹⁰Po were also the uncertainties of the net count rates in the ROIs of ²⁰⁹Po and ²¹⁰Po.

The relative standard uncertainty of the ²¹⁰Po determination can be significantly affected not only by the time interval between the reference date and the separation time of Po but also by the ²¹⁰Po/²¹⁰Pb activity ratio, i.e., the ratio of their respective specific activities. In general, the time delay between sample collection and ²¹⁰Po determination should be kept as short as practicable in order to avoid errors due to ingrowth and decay, particularly for sample types for which the ²¹⁰Po/²¹⁰Pb activity ratio may be low.

Acknowledgments This work was financially supported under the IAEA subprogram "Supporting Quality in the Analysis of Terrestrial

Environmental Samples." The authors would like to thank Ms. Renate Schorn for her technical support in the laboratory.

References

- Tokieda T, Narita H, Harada K, Tsunogai S (1994) Sequential and rapid determination of Po-210, Bi-210 and Pb-210 in natural waters. Talanta 41:2079–2085. doi:10.1016/0039-9140(94) 00182-0
- Craig H, Krishnaswami S, Somayajulu BLK (1973) ²¹⁰Pb-²²⁶Ra: radioactive disequilibrium in the deep sea. Earth Planet Sci Lett 17:295–305. doi:10.1016/0012-821X(73)90194-5
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2000) Sources and effects of ionizing radiation. 2000 Report to the General Assembly, with scientific annexes. United Nations, New York
- Shakhashiro A, Gondin Da Foseca Azeredo AM, Sansone U, Kim C-K, Kis-Benedek G, Trinkl A, Benesch T, Schorn R (2006) Report on the IAEA-CU-2006-02 proficiency test on the determination of ¹³⁷Cs and ²¹⁰Pb in spiked soil. IAEA/AL/166
- IAEA (2008) Report on the IAEA-CU-2007-09 world-wide open proficiency test for the determination of ²¹⁰Po in water. IAEA/ AL/183 (in press)
- Matthews KM, Kim C-K, Martin P (2007) Determination of ²¹⁰Po in environmental materials: a review of analytical methodology. Appl Radiat Isot 65:267–279. doi:10.1016/j.apradiso. 2006.09.005
- Fleer AP, Bacon MP (1984) Determination of ²¹⁰Pb and ²¹⁰Po in seawater and marine particulate matter. Nucl Instrum Methods Phys Res A 223:243–249. doi:10.1016/0167-5087(84)90655-0
- BIPM IEC, IFCC, ISO, IUPAC, IUPAP, OIML (1995) Guide to the expression of uncertainty in measurement. International Organization for Standardization, Geneva
- Ellison SLR, Rosslein M, Williams A (2000) Quantifying uncertainty in analytical measurement, EURACHEM/CITAC
- IAEA-TECDOC-1401 (2004) Quantifying uncertainty in nuclear analytical measurements. International Atomic Energy Agency, Vienna, Austria
- García-Orellana I, García-Leon M (2002) An easy method to determine ²¹⁰Po and ²¹⁰Pb by alpha spectrometry in marine environmental samples. Appl Radiat Isot 56:633–636. doi: 10.1016/S0969-8043(01)00261-5
- Vreček P, Benedik L (2003) Evaluation of measurement uncertainty in the determination of ²¹⁰Pb and ²¹⁰Po using beta counting and alpha spectrometry. Accredit Qual Assur 8:134–137. doi: 10.1007/s00769-002-0577-5
- Parfenov YD (1974) Polonium-210 in the environment and in the human organism. At Energy Rev 12:75–143
- Stepnowski P, Skwarzec B (2000) A comparison of ²¹⁰Po accumulation in molluscs from the southern Baltic, the coast of Spitsbergen and Sasek Wielki Lake in Poland. J Environ Radioact 49:201–208. doi:10.1016/S0265-931X(99)00094-6
- 15. Guogang J, Belli M, Sansone U, Rosamilia S, Blasi M (2003) ²¹⁰Pb and ²¹⁰Po concentrations in the Venice lagoon ecosystem (Italy) and the potential radiological impact to the local public and environment. J Radioanal Nucl Chem 256:513–528. doi: 10.1023/A:1024512118760
- Smith-Briggs JL, Bradley EJ, Potter MD (1986) The ratio of lead-210 to polonium-210 in U.K. diet. Sci Total Environ 54:127–133. doi:10.1016/0048-9697(86)90260-3
- 17. Vajda N, LaRosa J, Zeisler R, Danesi P, Kis-Benedek Gy (1997) A novel technique for the simultaneous determination of ²¹⁰Pb and ²¹⁰Po using a crown ether. J Environ Radioact 37:355–372. doi:10.1016/S0265-931X(95)00059-J

- Bojanowski R, Radecki Z, Campbell MJ, Burns KI, Trinkl A (2001) Report on the intercomparison run for the determination of radionuclides in soils IAEA-326 and IAEA-327. IAEA/AL/ 100
- de Laeter JR, Böhlke JK, De Bièvre P, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP (2003) Atomic weights of the elements. Review 2000 (IUPAC technical report). Pure Appl Chem 75:683–800. doi:10.1351/pac200375060683

