

••FILE••ID••MTHTAN

H 1

MM MM TTTTTTTTTT HH HH TTTTTTTTTT AAAAAAA NN NN
MM MM TTTTTTTTTT HH HH TTTTTTTTTT AAAAAAA NN NN
MMMM MM MM TT HH HH TT AA AA NN NN
MMMM MM MM TT HH HH TT AA AA NN NN
MM MM MM TT HH HH TT AA AA NNNN NN
MM MM MM TT HH HH TT AA AA NNNN NN
MM MM MM TT HHHHHHHHHHH TT AA AA NN NN
MM MM MM TT HHHHHHHHHHH TT AA AA NN NN
MM MM TT HH HH TT AAAAAAAA NN NNNN
MM MM TT HH HH TT AAAAAAAA NN NNNN
MM MM TT HH HH TT AA AA NN NN
MM MM TT HH HH TT AA AA NN NN
MM MM TT HH HH TT AA AA NN NN
MM MM TT HH HH TT AA AA NN NN
LL IIIII SSSSSSS
LL IIIII SSSSSSS
LL II SS
LL II SS
LL II SS
LL II SSSSS
LL II SSSSS
LL II SS
LL II SS
LL II SS
LLLLLLLLLL IIIII SSSSSSS
LLLLLLLLLL IIIII SSSSSSS

(2)	59	HISTORY : Detailed Current Edit History
(3)	99	DECLARATIONS ; Declarative Part of Module
(4)	139	MTH\$TAN - Standard Single Precision Floating TAN
(5)	182	MTH\$TAN_R5 - JSB entry point
(6)	233	MTH\$TAN_R4 - JSB entry point
(7)	289	MTH\$TAND - Standard Single Precision Floating TAN
(8)	332	MTH\$TAND_R5 - JSB entry point
(9)	397	MTH\$TAND_R4 - JSB entry point

MT
SyCC
F
MT
SF
UN
XPS
--
SA
_MPh
--
In
Co
Pa
Sy
Pa
Sy
Ps
Cr
AsTh
84
Th
56
9

```
0000 1 .TITLE MTHSTAN          ; Floating Point Tangent routine
0000 2 ; (TAN, TAND)
0000 3 .IDENT /1-020/        ; File: MTHTAN.MAR EDIT:RNH1020
0000 4 .
0000 5 ****
0000 6 *
0000 7 * COPYRIGHT (c) 1978, 1980, 1982, 1984 BY
0000 8 * DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.
0000 9 * ALL RIGHTS RESERVED.
0000 10 *
0000 11 * THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
0000 12 * ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
0000 13 * INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
0000 14 * COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
0000 15 * OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
0000 16 * TRANSFERRED.
0000 17 *
0000 18 * THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
0000 19 * AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
0000 20 * CORPORATION.
0000 21 *
0000 22 * DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
0000 23 * SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.
0000 24 *
0000 25 *
0000 26 ****
0000 27 *
0000 28 : FACILITY: MATH LIBRARY
0000 29 ++
0000 30 : ABSTRACT:
0000 31 :
0000 32 :
0000 33 : MTH$TAN is a function which returns the floating point tangent
0000 34 : of its single precision floating point radian argument. The call is
0000 35 : standard call-by-reference. It does a JSB to MTH$TAN_R5.
0000 36 :
0000 37 : MTH$TAND is a function which returns the floating point tangent
0000 38 : of its single precision floating point degree argument. The call is
0000 39 : standard call-by-reference. It does a JSB to MTH$TAND_R5.
0000 40 :
0000 41 : MTH$TAN_R5, and MTH$TAND_R5 are JSB entry points that JSB to MTH$SINCOS_R5
0000 42 : and MTH$SINCOSD_R5 respectively. MTH$TAN_R4, and MTH$TAND_R4 cannot use
0000 43 : the above two routines because they are R4 routines, so they JSB to
0000 44 : MTH$SIN_R4, MTH$COS_R4, and MTH$SIND_R4, -MTH$COSD_R4 routines.
0000 45 :
0000 46 :--
0000 47 :
0000 48 : VERSION: 1
0000 49 :
0000 50 : HISTORY:
0000 51 : AUTHOR:
0000 52 : Peter Yuo, 29-Jun-77: Version 01
0000 53 :
0000 54 : MODIFIED BY:
0000 55 :
0000 56 :
0000 57 :
```

Ma
--
_S
88
Th
MA

0000 59 .SBTTL HISTORY ; Detailed Current Edit History
0000 60
0000 61
0000 62 : ALGORITHMIC DIFFERENCES FROM FP-11/C ROUTINE: none
0000 63 :
0000 64 : The result is reserved operand when COS(X) = 0, instead
0000 65 : of largest or smallest representable floating number.
0000 66 :
0000 67 : Edit History
0000 68 :
0000 69 : 01-2 Error handling mechanism changed. Instead of having
0000 70 : MTH\$FLG_JACKET at the entrance, MTH\$ERROR_CONT is stored on the
0000 71 : top of the stack frame so when error happened in MTH\$SIN or MTH\$COS
0000 72 : the message will be hided away, but will get signalled in MTHSTAN.
0000 73 : 01-3 The call to MTH\$ERROR_CONT is changed to MTH\$SIGNAL_CON
0000 74 : 0-4 MTH\$ERROR changed to MTH\$SIGNAL.
0000 75 : MTHS... changed to MTH...
0000 76 : Changed error handling mechanism. Put error result in R0 before
0000 77 : calling MTH\$SIGNAL in order to allow user modify error result.
0000 78 : 1-005 - Put version number in standard format (three digits of edit
0000 79 : number) and update copyright notice. JBS 16-NOV-78
0000 80 : 1-006 - Change MTH_FLOORVEMAT to MTH\$K_FLOORVEMAT. JBS 07-DEC-78
0000 81 : 1-007 - Remove \$SRMDEF macro - not needed. JBS 16-DEC-78
0000 82 : 1-008 - Add "" to the PSECT directive. JBS 22-DEC-78
0000 83 : 1-009 - Fix error handling and detection. SBL 02-Feb-79
0000 84 : 1-010 - Declare externals. SBL 17-May-1979
0000 85 : 1-011 - Add JSB entry point. JBS 16-AUG-1979
0000 86 : 1-012 - Make external references longword, and remove MTH\$SIGNAL_CON
0000 87 : when doing our own signal. JBS 16-AUG-1979
0000 88 : 1-013 - Correct a typo in edit 011. JBS 17-AUG-1979
0000 89 : 1-014 - Have CALL entry JSB to JSB entry. Use correct signalling
0000 90 : technique for JSB entry. SBL 31-Oct-1979
0000 91 : 1-015 - Reduce argument limit to 2**30 to match SIN/COS. SBL 2-Nov-1979
0000 92 : 1-016 - Added degree entry points. RNH 8-MAR-1981
0000 93 : 1-017 - Undo edit 1-015. SIN/COS can now accept this argument limit. RNH 26-AUG-81
0000 94 : 1-018 - Add MTHSTAN_R5, and MTH\$TAND_R5. Rearrange the routine for simplicity.
0000 95 : RNH 27-AUG-81.
0000 96 : 1-019 - Change external references from W^ to G^. RNH 06-Oct-81
0000 97 : 1-020 - Missed a W^. RNH 08-Oct-81

0000 99 .SBttl DECLARATIONS ; Declarative Part of Module
0000 100
0000 101 :
0000 102 : INCLUDE FILES:
0000 103 :
0000 104 :
0000 105 :
0000 106 : EXTERNAL SYMBOLS:
0000 107 :
0000 108 .DSABL GBL
0000 109 .EXTRN MTH\$SINCOS R5
0000 110 .EXTRN MTH\$SINCOSD_R5
0000 111 .EXTRN MTH\$SIN R4
0000 112 .EXTRN MTH\$COS-R4
0000 113 .EXTRN MTH\$K FLOORVEMAT
0000 114 .EXTRN MTH\$SIGNAL
0000 115 .EXTRN MTH\$K FLOUNDMAT
0000 116 .EXTRN MTH\$SJACKET_TST
0000 117 .EXTRN MTH\$SIND_R4
0000 118 .EXTRN MTH\$COSD_R4
0000 119
0000 120 :
2EE10365 0000 121 : EQUATED SYMBOLS:
0000 122 F_SMALLEST_DEG = ^X2EE10365
0000 123 :
0000 124 : MACROS:
0000 125 \$SFDEF ; Define SF (Stack Frame) symbols
0000 126 :
0000 127 :
0000 128 : PSECT DECLARATIONS:
0000 129
00000000 130 .PSECT _MTH\$CODE PIC,SHR,LONG,EXE,NOWRT
0000 131 ; program section for math routines
0000 132 :
0000 133 : OWN STORAGE: none
0000 134 :
0000 135 : CONSTANTS:
0000 136 :
00000004 0000 137 X = 4 ;Position of argument from AP.

0000 139 .SBTTL MTH\$TAN - Standard Single Precision Floating TAN
0000 140
0000 141
0000 142 :++
0000 143 : FUNCTIONAL DESCRIPTION:
0000 144
0000 145 : TAN - single precision floating point function
0000 146
0000 147 : For algorithm, see MTH\$TAN_RS.
0000 148
0000 149 : CALLING SEQUENCE:
0000 150
0000 151 : TAN.wf.v = MTH\$TAN(X.rf.r)
0000 152
0000 153 : INPUT PARAMETERS:
0000 154
0000 155 : X.rf.r Address of value of angle in radians.
0000 156
0000 157 : IMPLICIT INPUTS: none
0000 158
0000 159 : OUTPUT PARAMETERS:
0000 160
0000 161 : VALUE: floating tangent of the argument
0000 162
0000 163 : IMPLICIT OUTPUTS: none
0000 164
0000 165 : COMPLETION CODES: none
0000 166
0000 167 : SIDE EFFECTS:
0000 168
0000 169 : NONE
0000 170
0000 171 :---
0000 172
0000 173
403C 0000 174 .ENTRY MTH\$TAN, ^M<IV, R2, R3, R4, R5>
0002 175 : standard call-by-reference entry
0002 176 : disable DV (and FU), enable IV
0002 177 MTH\$FLAG_JACKET
0002
6D 00000000'GF 9E 0002 MOVAB G^MTH\$JACKET_HND, (FP)
0009 : set handler address to jacket
0009 : handler
0009
50 04 BC 50 0009 178 MOVF ax(AP), R0 : R0 = argument
01 10 000D 179 BSBB MTH\$TAN_RS : Get the tangent
04 000F 180 RET : Return with result in R0

0010 182 .SBTTL MTH\$TAN_R5 - JSB entry point
0010 183
0010 184 :++
0010 185 : FUNCTIONAL DESCRIPTION
0010 186
0010 187 : TAN - single precision floating point function
0010 188
0010 189 : Algorithmic steps:
0010 190
0010 191 : 1. Compute SIN and COS in one JSB. Neither computation should fail.
0010 192 : 2. If COS is zero, error MTH\$_FLOORVEMAT and return with reserved operand.
0010 193 : 3. Return SIN / COS.
0010 194
0010 195 : CALLING SEQUENCE:
0010 196
0010 197 : MOVF argument, R0
0010 198 : JSB MTH\$TAN_R5
0010 199
0010 200 : INPUT PARAMETERS:
0010 201
0010 202 : R0 contains x
0010 203
0010 204 : OUTPUT PARAMETERS:
0010 205
0010 206 : NONE
0010 207
0010 208 : IMPLICIT OUTPUTS:
0010 209
0010 210 : NONE
0010 211
0010 212 : RESULT VALUE:
0010 213
0010 214 : The tangent of x
0010 215
0010 216 : SIDE EFFECTS:
0010 217
0010 218 : NONE
0010 219
0010 220 :--
0010 221 MTH\$TAN_R5::
00000000'EF 16 0010 222 JSB MTH\$SINCOS_R5 : Compute SIN(x) and COS(x)
51 53 0016 223 TSTF R1 : Is COS(x) EQL 0 ?
04 13 0018 224 BEQL 20\$: If so, error
50 51 46 001A 225 DIVF2 R1, R0 : Compute SIN(x) / COS(x)
05 001D 226 RSB : Return to caller
001E 227
001E 228 : Branch to common error code
001E 229
001E 230 20\$: :
00C4 31 001E 231 BRW COSZER

0021 233 .SBTTL MTHSTAN_R4 - JSB entry point
 0021 234
 0021 235 :++
 0021 236 : FUNCTIONAL DESCRIPTION
 0021 237 : TAN - single precision floating point function
 0021 239 :
 0021 240 : Algorithmic steps:
 0021 241 :
 0021 242 : 1. Compute SIN, and then COS. Neither computation should fail.
 0021 243 : 2. If COS is zero, error MTH\$_FLOORVEMAT and return with reserved operand.
 0021 244 : 3. Return SIN / COS.
 0021 245 :
 0021 246 : CALLING SEQUENCE:
 0021 247 :
 0021 248 : MOVF argument, R0
 0021 249 : JSB MTHSTAN_R4
 0021 250 :
 0021 251 : INPUT PARAMETERS:
 0021 252 :
 0021 253 : R0 contains x
 0021 254 :
 0021 255 : OUTPUT PARAMETERS:
 0021 256 :
 0021 257 : NONE
 0021 258 :
 0021 259 : IMPLICIT OUTPUTS:
 0021 260 :
 0021 261 : NONE
 0021 262 :
 0021 263 : RESULT VALUE:
 0021 264 :
 0021 265 : The tangent of x
 0021 266 :
 0021 267 : SIDE EFFECTS:
 0021 268 :
 0021 269 : NONE
 0021 270 :
 0021 271 :--
 0021 272 MTHSTAN_R4:: :
 00000000'EF 50 DD 0021 273 PUSHL R0 : entry point
 7E 50 16 0023 274 JSB MTH\$COS R4 : Save argument
 11 50 0029 275 MOVF R0 -(SP) : Compute COS(x)
 50 04 AE DD 002E 276 BEQL 20\$: : Put on stack and test for zero
 00000000'EF 16 0032 277 MOVL 4(SP), R0 : If so, error
 50 8E 46 0038 278 JSB MTH\$SIN R4 : Get argument back
 5E 04 C0 003B 279 DIVF2 (SP)+, R0 : Compute SIN(x)
 05 003E 280 ADDL2 #4, SP : Compute SIN(x) / COS(x)
 003F 281 RSB : Remove argument from stack
 003F 282 :+ : Return to caller
 003F 283 : Restore stack, and go to common error code.
 003F 284 :
 003F 285 20\$: : Discard COS and argument
 5E 08 C0 003F 286 ADDL2 #8, SP : Go to common error code
 00A0 31 0042 287 BRW COSZER

0045 289 .SBTTL MTH\$TAND - Standard Single Precision Floating TAN
0045 290
0045 291
0045 292 :++
0045 293 : FUNCTIONAL DESCRIPTION:
0045 294 :
0045 295 : TAND - Single precision floating point function
0045 296 :
0045 297 : For algorithm, see MTH\$TAND_RS.
0045 298 :
0045 299 : CALLING SEQUENCE:
0045 300 :
0045 301 : TAND.wf.v = MTH\$TAND(X.rf.r)
0045 302 :
0045 303 : INPUT PARAMETERS:
0045 304 :
0045 305 : X.rf.r ;Address of value of angle in degrees.
0045 306 :
0045 307 : IMPLICIT INPUTS: none
0045 308 :
0045 309 : OUTPUT PARAMETERS:
0045 310 :
0045 311 : VALUE: floating tangent of the argument
0045 312 :
0045 313 : IMPLICIT OUTPUTS: none
0045 314 :
0045 315 : COMPLETION CODES: none
0045 316 :
0045 317 : SIDE EFFECTS:
0045 318 :
0045 319 : NONE
0045 320 :
0045 321 :---
0045 322 :
0045 323 :
403C 0045 324 .ENTRY MTH\$TAND, ^M<IV, R2, R3, R4, R5>
0047 325 ; standard call-by-reference entry
0047 326 ; disable DV (and FU), enable IV
0047 327 MTH\$FLAG_JACKET
0047
6D 000C0000'GF 9E 0047 MOVAB G^MTH\$JACKET_HND, (FP)
004E ; set handler address to jacket
004E ;
004E
50 04 BC 50 004E 328 MOVF @X(AP), R0 : R0 = argument
01 10 0052 329 BSBB MTH\$TAND_RS : Get the tangent
04 0054 330 RET : Return with result in R0

0055 332 .SBTTL MTH\$TAND_R5 - JSB entry point
 0055 333
 0055 334 :++
 0055 335 : FUNCTIONAL DESCRIPTION
 0055 336 : TAND - Single precision floating point function
 0055 337 : Algorithmic steps:
 0055 340
 0055 341 1. Check for argument too small for SIND. If so, return zero, and
 0055 342 signal floating point underflow if enabled.
 0055 343 2. Compute SIND and COSD in one JSB. Neither computation should fail.
 0055 344 3. If COSD is zero, error MTH\$_FLOORVEMAT and return with reserved operand.
 0055 345 4. Return SIND / COSD.
 0055 346
 0055 347 : CALLING SEQUENCE:
 0055 348
 0055 349 MOVF argument, R0
 0055 350 JSB MTH\$TAND_R5
 0055 351
 0055 352 : INPUT PARAMETERS:
 0055 353
 0055 354 R0 contains x
 0055 355
 0055 356 : OUTPUT PARAMETERS:
 0055 357
 0055 358 NONE
 0055 359
 0055 360 : IMPLICIT OUTPUTS:
 0055 361
 0055 362 NONE
 0055 363
 0055 364 : RESULT VALUE:
 0055 365
 0055 366 The tangent of x
 0055 367
 0055 368 : SIDE EFFECTS:
 0055 369
 0055 370
 0055 371
 0055 372 Signal MTH\$_FLOORVEMAT if |x| < 180/pi*2**-128
 0055 373 :--
 0055 374
 0055 375
 0055 376 MTH\$TAND_R5:
 51 50 00008000 8F CB 0055 377 BICL3 #^X8000, R0, R1 : R1 = |x|
 51 0380 8F B1 0050 378 CMPW #^X380, R1 : Compare with 2**-121
 0E 18 0062 379 BGEQ 30\$: No underflow possible
 51 2EE10365 8F 51 0064 380 CMPF #F SMALLEST_DEG, R1 : Better test. Compare
 05 19 0068 381 BLSS 30\$: |x| with 180/pi*2**-128
 50 D5 006D 382 TSTL R0 : Check for zero
 50 12 006F 383 BNEQ UNFL : ARG too small and not 0
 05 0071 384 RSB : Return R0 = 0
 0072 385 :+
 0072 386 : We now know that MTH\$SINCOSD_R5 routine will not fail, and that the
 0072 387 : divide following them will not fail.
 0072 388 :-

MTH\$TAN
1-020

: Floating Point Tangent routine
MTH\$TAND_R5 - JSB entry point

E 2

16-SEP-1984 01:51:57 VAX/VMS Macro v04-00
6-SEP-1984 11:27:19 [MTHRTL.SRC]MTH\$TAN.MAR;1

Page 9
(8)

MTI
1-

00000000'Ef	16	0072	389	30\$:	JSB	MTH\$\$SINCOSD_R5	: Compute SIND(X) and COSD(X)
51	53	0078	390		TSTF	R1	: Is COSD(X) EQL 0 ?
69	13	007A	391		BEQL	COSZEP	: If so, error
50	51	46	007C	392	DIVF2	R1, R0	: Compute SIND(x) / COSD(x)
		05	007F	393	RSB		: Return to caller
			0080	394			
				395			

0080 397 .SBTTL MTHSTAND_R4 - JSB entry point
 0080 398
 0080 399 :++
 0080 400 : FUNCTIONAL DESCRIPTION
 0080 401
 0080 402 : TAND - Single precision floating point function
 0080 403
 0080 404 : Algorithmic steps:
 0080 405
 0080 406 1. Check for argument too small for SIND. If so, return zero, and
 0080 407 signal floating point underflow if enabled.
 0080 408 2. Compute SIND, and then COSD. Neither computation should fail.
 0080 409 3. If COSD is zero, error MTHS_FLOOVEMAT and return with reserved operand.
 0080 410 4. Return SIND / COSD.
 0080 411
 0080 412 : CALLING SEQUENCE:
 0080 413
 0080 414 MOVF argument, R0
 0080 415 JSB MTHSTAND_R4
 0080 416
 0080 417 : INPUT PARAMETERS:
 0080 418
 0080 419 R0 contains x
 0080 420
 0080 421 : OUTPUT PARAMETERS:
 0080 422
 0080 423 NONE
 0080 424
 0080 425 : IMPLICIT OUTPUTS:
 0080 426
 0080 427 NONE
 0080 428
 0080 429 : RESULT VALUE:
 0080 430
 0080 431 The tangent of x
 0080 432
 0080 433 : SIDE EFFECTS:
 0080 434
 0080 435
 0080 436
 0080 437 Signal MTHS_FLOUNDMAT if |x| < 180/pi*2**-128
 0080 438 :--
 0080 439
 0080 440
 0080 441 MTHSTAND_R4:: ; entry point
 51 50 00008000 8F CB 0080 442 BICL3 #^X8000, R0, R1 ; R1 = |x|
 51 0380 8F B1 0088 443 CMPW #^X380, R1 ; Compare with 2**-121
 51 2EE10365 8F 0E 18 008D 444 BGEQ 30\$; No underflow possible
 05 19 0096 445 CMPF #F SMALLEST_DEG, R1 ; Better test. Compare
 50 D5 0098 446 BLSS 30\$; |x| with 180/pi*2**-128
 25 12 009A 447 TSTL R0 ; Check for zero
 05 009C 448 BNEQ UNFL ; ARG too small and not 0
 009D 449 RSB ; Return R0 = 0
 009D 450 :+
 009D 451 : We now know that the SIND and COSD routines will not fail, and that the
 009D 452 : divide following them will not fail.
 009D 453 :-

GE
LE
LF
LF
LO
MT
MT
MT
MT
MT
MT
MT
OU
SF
SF
VA

PS
--
-M

Ph
--
In
Co
Pa
Sy
Pa
Sy
Ps
Cr
As

Th
33
Th
27
1

Ma
--
-S

0
Th

MTHSTAN
1-020

; Floating Point Tangent routine
MTHSTAND_R4 - JSB entry point

G 2

16-SEP-1984 01:51:57 VAX/VMS Macro V04-00
6-SEP-1984 11:27:19 [MTHRTL.SRC]MTHTAN.MAR;1

Page 11
(9)

MT
VA

50	DD	009D	454	30\$:	PUSHL	R0	: Save argument
00000000.EF	16	009F	455		JSB	MTH\$COSD R4	: Compute COSD(x)
7E	50	00A5	456		MOVF	R0 -(SP)	: Put on stack and test for zero
11	13	00A8	457		BEQL	20\$: If so, error
50	04	AE	00AA	458	MOVL	4(SP), R0	: Get argument back
00000000.EF	16	00AE	459		JSB	MTH\$SIND R4	: Compute SIND(x)
50	8E	46	00B4	460	DIVF2	(SP)+, R0	: Compute SIND(x) / COSD(x)
5E	04	C0	00B7	461	ADDL2	#4, SP	: Remove argument from stack
		05	00BA	462	RSB		: Return to caller
			00BB	463	:		
			00BB	464	:	Restore stack, and go to common error code.	
			00BB	465	:		
			00BB	466	20\$:		
SE	08	C0	00BB	467	ADDL2	#8, SP	: Discard COSD and argument
0024	31	00BE	468		BRW	COSZER	: Go to common error code

```

      00C1 470 :
      00C1 471 : COMMON ERROR PATHS
      00C1 472 :
      00C1 473 :
      00C1 474 :
      00C1 475 :
      00C1 476 : Come here if underflow; signal error if FU is set. Always return 0.0
      00C1 477 :
      00C1 478 UNFL:
      00000000'GF 52 DC 00C1 479 MOVPSL R2
      00000000'GF 00 FB 00C3 480 CALLS #0, G^MTH$JACKET_TST
      52 04 50 F9 00CA 481 BLBC R0, 10$
      52 04 AD 3C 00CD 482 MOVZWL SF$W_SAVE_PSW(FP), R2
      50 D4 00D1 483 10$: CLRL R0
      0D 52 06 F1 00D3 484 BBC #6, R2, 20$
      7E 00'8F 6E DD 00D7 485 PUSHL (SP)
      7E 00'8F 9A 00D9 486 MOVZBL #MTH$K_FLOUNDMAT, -(SP)
      00DD 487
      00DD 488
      00DD 489
      00DD 490 CALLS #2, G^MTH$$SIGNAL
      00000000'GF 02 FB 00DD 491 20$: RSB
      00E4 492
      00E5 493 :
      00E5 494 : Come here if COS(X) or COSD(X) is zero. This means that TAN(X) is infinite.
      00E5 495 :
      00E5 496 COSZER:
      00E5 497 PUSHL (SP)
      00000000'GF 01 6E DD 00E5 498 MOVZBL #MTH$K_FLOOVEMAT, -(SP)
      00000000'GF 02 FB 00E7 499 ASHL #15, #T, R0
      00000000'GF 02 05 00EB 500 CALLS #2, G^MTH$$SIGNAL
      00F6 501 RSB
      00F7 502
      00F7 503 .END

```

; R2 = user's or jacket routine's PSL
; R0 = TRUE if JSB from jacket routine
; branch if user did JSB
; get user PSL saved by CALL
; R0 = result. LIB\$SIGNAL will save in
; CHF\$LIB\$MCH_R0/R1 so any handler can fixup
; has user enabled floating underflow?
; yes, return PC from special routine
; trap code for hardware floating underflow
; convert to MTH\$FLOUNDMAT (32-bit VAX-11
; exception code)
; signal (condition, PC)
; return

; User "call" PC
; Condition value
; R0 = reserved operand
; Signal the error
; Return to caller.

MTHSTAN Symbol table

Floating Point Tangent routine

16-SEP-1984 01:51:57 VAX/VMS Macro V04-00
6-SEP-1984 11:27:19 [MTHRTL.SRC]MTHtan.MAR;1

Page 13
(10)

四
四

COSZER	J00000E5	R	02
F SMALLEST DEG :	2EE10365		
MTHSSJACKET_HND	*****	X	02
MTHSSJACKET-TST	*****	X	00
MTHSSSIGNAL	*****	X	00
MTHSCOSD R4	*****	X	00
MTHSCOS R4	*****	X	00
MTHSK_FCOOVEMAT	*****	X	00
MTHSK_FLOUNDMAT	*****	X	00
MTHSSINCOSD R5	*****	X	00
MTHSSINCOS RS	*****	X	00
MTHSSIND R4	*****	X	00
MTHSSIN_R4	*****	X	00
MTHSTAN-	00000000	RG	02
MTHSTAND	00000045	RG	02
MTHSTAND_R4	00000080	RG	02
MTHSTAND_RS	00000055	RG	02
MTHSTAN_R4	00000021	RG	02
MTHSTAN_RS	00000010	RG	02
SFSW_SAVE_PSW	= 00000004		
UNFL	000000C1	R	02
X	= 00000004		

+-----+
! Pse ' synopsis !
+-----+

PSECT name

Allocation	PSELECT No.	Attributes
00000000 (0.)	00 (0.)	NOPIC USR
00000000 (0.)	01 (1.)	NOPIC USR
000000F7 (247.)	02 (2.)	PIC USR

! Performance indicators !

Phase

Page faults	CPU Time	Elapsed Time
29	00:00:00.06	00:00:00.72
112	00:00:00.71	00:00:03.39
126	00:00:01.60	00:00:05.85
0	00:00:00.04	00:00:00.06
94	00:00:01.15	00:00:05.70
3	00:00:00.03	00:00:00.03
3	00:00:00.02	00:00:00.02
0	00:00:00.00	00:00:00.00
369	00:00:03.63	00:00:15.79

The working set limit was 900 pages.

8464 bytes (17 pages) of virtual memory were used to buffer the intermediate code.

There were 10 pages of symbol table space allocated to hold 50 non-local and 7 local symbols.

563 source lines were read in Pass 1, producing 16 object records in Pass 2.

9 pages of virtual memory were used to define 8 macros.

MTH\$TAN
VAX-11 Macro Run Statistics

; Floating Point Tangent routine

J 2

16-SEP-1984 01:51:57 VAX/VMS Macro V04-00
6-SEP-1984 11:27:19 [MTHRTL.SRC]MTHTAN.MAR;1

Page 14
(10)

MT
1-

+-----+
! Macro library statistics !
+-----+

Macro library name

_S255\$DUA28:[SYSLIB]STARLET.MLB;2

Macros defined

4

88 GETS were required to define 4 macros.

There were no errors, warnings or information messages.

MACRO/ENABLE=SUPPRESSION/DISABLE=(GLOBAL,TRACEBACK)/LIS=LIS\$:MTHTAN/OBJ=OBJ\$:MTHTAN MSRC\$:\$MTHJACKET/UPDATE=(ENHS:\$MTHJACKET)+MSRC\$:\$MTHJACKET

0264 AH-BT13A-SE
VAX/VMS V4.0

DIGITAL EQUIPMENT CORPORATION
CONFIDENTIAL AND PROPRIETARY

