N92-12020 p.25

SPACECRAFT HEALTH AUTOMATED REASONING PROTOTYPE

Presented by David J. Atkinson

Jet Propulsion Laboratory California Institute of Technology Pasadena, CA

OUTLINE

BACKGROUND

SHARP DESCRIPTION

APPLICATIONS

FUTURE DIRECTIONS

BENEFITS, LESSONS LEARNED, CONCLUSIONS

BACKGROUND

PLANETARY SPACECRAFT MISSION OPS

KNOWLEDGE SYSTEMS

SHARP DEVELOPMENT TASK

VOYAGER TELECOM LINK ANALYSIS

PLANETARY SPACECRAFT MISSION OPS

- AGGRESSIVE PLANETARY EXPLORATION IN 1990's
- MAGELLAN, GALILEO, ULYSSES, MARS OBSERVER, VOYAGER, CRAF, CASSINI
- POSSIBLE LUNAR AND MARS SPACECRAFT
- ALL WILL BE FLYING AT THE SAME TIME
- **VOYAGER ALONE REQUIRED ABOUT 40 REAL-TIME OPERATORS AT ALL TIMES**
- LARGE GROWTH IN MISSION OPERATIONS WORKFORCE, **FORESEEN OPERATIONS COMPLEXITY...** COSTS
- PROGRAM TO UPGRADE OPERATIONS INFORMATION SYSTEMS UNDERTAKEN: SPACE FLIGHT OPERATIONS CENTER, ONE MULTI-MISSION SPACE FLIGHT OPS TEAM
- GOALS: SUBSTANTIAL AUTOMATION, REDUCE WORKFORCE AND COST TO OPERATE, IMPROVE SAFETY, RELIABILITY, AND PRODUCTIVITY

SHARP TASK BACKGROUND

 "PROOF OF CAPABILITY" DEMONSTRATION TO EVALUATE **BENEFITS OF AUTOMATION**

PRODUCTIVITY OF MISSION OPERATIONS REAL-TIME ANALYSIS

SAFETY OF SPACECRAFT

RELIABILITY OF GROUND DATA SYSTEMS

METHODOLOGY: ITERATIVE PROTOTYPING AND SPIRAL MODEL SOFTWARE DEVELOPMENT

FIRST APPLICATION: VOYAGER TELECOMMUNICATIONS

SHARP PROGRESS

TELECOMMUNICATIONS OPERATIONS

- TELECOMMUNICATIONS LINK ANALYSIS:
- MONITORING THE HEALTH AND STATUS OF THE TELECOMMUNICATIONS LINK BETWEEN THE SPACECRAFT, DEEP SPACE NETWORK, AND GROUND DATA SYSTEM COMPUTERS AT JPL
- MAJOR FUNCTIONS:
- **NUMERICAL ESTIMATION OF SYSTEM PEFORMANCE**
- MONITORING OF REAL-TIME ACTIVITY AND DETECTION OF FAILURES
- DIAGNOSIS, ISOLATION, AND RECOVERY FROM FAILURES

TELECOMMUNICATIONS OPERATIONS

- · CHARACTERISTICS:
- MANUAL CALCULATIONS TO UPDATE & REVISE NUMERICAL PREDICTS
- FREQUENTLY CHANGING HARDCOPY SEQUENCE OF EVENTS INFORMATION
- MANUAL, LABORIOUS DETERMINATION OF ALARM LIMITS
- VERY LIMITED COMPUTER DISPLAYS OF STATUS INFORMATION
- ALL ALARM SITUATIONS ARE REFERRED TO EXPERT
- TELECOM IS SUBJECT TO NUMEROUS ALARMS DAILY

SHARP DESCRIPTION

FUNCTIONAL CAPABILITIES

- MONITORING
- **DIAGNOSIS AND RECOVERY**
- **DISPLAY AND USER INTERFACE**
- OTHER

• TECHNOLOGY

- ROLE OF ARTIFICIAL INTELLIGENCE
- **EXAMPLE: ANOMALY DETECTION AND DIAGNOSIS**

APPLICATIONS PERFORMANCE

FUNCTIONAL CAPABILITIES

FUNCTION OF THE SYSTEM: PROVIDE COMPUTER WORKSTATION SUPPORT FOR REAL-TIME SPACECRAFT SUBSYSTEM ANALYSTS

CAPABILITIES INCLUDE:

REAL-TIME ANOMALY DETECTION, ANALYSIS AND DIAGNOSIS

DISPLAY MANAGEMENT, DATA VISUALIZATION AND SYSTEM STATUS

ACQUISITION AND CENTRALIZATION OF ENGINEERING DATA FOR ANALYSIS INTEGRATION OF AI-BASED MONITORING AND DIAGNOSIS FUNCTIONS WITH CONVENTIONAL NUMERICAL ANALYSIS SOFTWARE

MONITORING

CHANNELIZED DATA ON SERIAL OR NETWORK CONNECTIONS

REAL-TIME PERFORMANCE WITH UP TO 10,000 CHANNELS **EACH UPDATING 1/SEC**

AUTOMATED, CONTEXT SENSITIVE, ALARM LIMIT SELECTION

DYNAMIC, DERIVED CHANNEL MONITORING

EVENT SIGNATURE AND TREND MONITORING

DIAGNOSIS AND RECOVERY

- **EXPLICIT CAPTURE OF EXPERT DIAGNOSTIC AND** RECOVERY RULES AND PROCEDURES
- DOMAIN INDEPENDENT DIAGNOSTIC SHELL WITH DOMAIN-SPECIFIC DIAGNOSTIC KNOWLEDGE
- "ANYTIME" DIAGNOSIS -- REAL-TIME ANALYSIS USING BEST, TIME-SYNCHRONIZED DATA AVAILABLE
- DYNAMICALLY GENERATED HEALTH AND DIAGNOSTIC SUMMARIES OF SPACECRAFT SUBSYSTEMS
- RANKING OF UNCERTAIN HYPOTHESES FOR OPERATOR

DISPLAY AND USER INTERFACE

- SYSTEM STATUS DISPLAYS FROM MULTIPLE DATA SOURCES
- REAL-TIME STATUS
- PERFORMANCE OVER TIME
- GRAPHICAL VISUALIZATION AND DATA PLOTTING
- MIXED-INITIATIVE -- SYSTEM AND USER BOTH CONTROL THE DISPLAY
- DISPLAY MANAGEMENT USING CONTEXT SENSITIVE MODELING OF FORMAT, CONTENT, SOURCE, AND RATIONALE
- DYNAMICALLY GENERATED USER HELP AND INPUT ERROR TOLERANCE

OTHER CAPABILITIES

REAL TIME DATA CACHE AND ON-LINE HISTORICAL DATABASE

EDITABLE ALARM PARAMETER AND EVENT DATABASES

INTEGRATED WITH CONVENTIONAL ANALYSIS ROUTINES **MONITORING AND DIAGNOSTIC CAPABILITIES EASILY** (E.G., FAST FOURIER TRANSFORM)

INTEGRATED WITH SPACE FLIGHT OPERATIONS CENTER (SFOC) DATA SERVICES

ROLE OF AI

ARTIFICIAL INTELLIGENCE USED THROUGHOUT SHARP

EXAMPLES:

ARCHITECTURE: MULTI-PROCESS BLACKBOARD WITH OPPORTUNISTIC, DATA-DRIVEN CONTROL STRUCTURE

DATA HANDLING: HEURISTIC ADAPTIVE PARSING, TEMPORAL REASONING DECLARATIVE DATA REPRESENTATIONS MONITORING: STATE MODELLING, DISCRIMINATION NETWORKS,

TRUTH MAINTENANCE

DIAGNOSIS: HIERARCHICAL COMMUNICATING EXPERTS, REASONING IN MULTIPLE CONTEXTS

DISPLAYS, RULE-BASED DIAGNOSIS AND RECOVERY FROM INPUT USER INTERFACE: RULE-BASED EXPERT SYSTEM TO MANAGE

ANOMALY DETECTION & DIAGNOSIS

- HIERARCHICAL SYSTEM BASED ON CLASSIFICATION PROCESS
- ALARM EXECUTIVE DETERMINES EXISTENCE OF ANOMALY BY COMPARING EXPECTED AND ACTUAL SPACECRAFT STATES
- **USE OF COMPILED DISCRIMINATION NETWORK TECHNIQUES**
- SOME FAILURES ARE UNIQUELY DETERMINED AT THIS STAGE

FAULT CLASSIFICATION SUBSYSTEM

- MAKES INITIAL CHARACTERIZATION OF THE PROBLEM
- IDENTIFIES RELEVANT SOURCES OF DATA FOR USE IN DIAGNOSIS
- APPROX. 60 RULES FOR VOYAGER TELECOM APPLICATION
- POSTS INITIAL HYPOTHESES, DATA VALUES, SPACECRAFT STATE, OTHER INFO TO DIAGNOSTIC DATABASE

ANOMALY DETECTION & DIAGNOSIS

SPECIALIZED "MINI-EXPERTS" FOR FAULT CLASSES

- TRIGGERED BY FAULT HYPOTHESES TO REACH DETAILED DIAGNOSIS AND RECOVERY RECOMMENDATIONS
- PURSUE INDIVIDUAL CLASSES OF FAULTS (E.G., CONFIGURATION ERRORS) USING SPECIALIZED KNOWLEDGE IN THE FORM OF PROCEDURAL NETWORKS
- OPERATE INDEPENDENTLY IN INDIVIDUAL CONTEXT TREES

BLACKBOARD USED TO COMMUNICATE AND SHARE RESULTS

HYPOTHESIS COMBINATION SUBSYSTEM

OPERATOR, LOGS DATA, AND SIGNALS MODIFICATIONS TO OPERATOR'S GROUPS RELATED CONCLUSIONS AND RECOMMENDATIONS TO

APPLICATIONS PERFORMANCE

ANOMALY DETECTION AND DIAGNOSIS

- ABLE TO ANALYZE 39 CLASSES OF TELECOM PROBLEMS
- **60 UNIQUE PROBLEM SOLVING DIAGNOSES**
- 20 ADDITIONAL DETECTABLE PROBLEMS
- **ABOUT 15 PROBLEMS ARE NOT COVERED**
- TOTAL FAULT COVERAGE IS ABOUT 80% AND IMPROVING AS KNOWLEDGE **BASES ARE EXTENDED**

CONSCAN (ANTENNA POINTING) ERRORS DETECTED AND TRACKED BY SHARP UNTIL RESOLVED BY DSS OPERATORS

(NON-CRITICAL) ANOMALIES DIAGNOSED BY SHARP

- **OPERATORS MANUALLY VERIFY THE DIAGNOSES**
- RCV AGC, S-BAND TWT BASE TEMP OCCURRED DURING VOYAGER

VOYAGER ENCOUNTER SURPRISING EVENT

- RESOLVED VOYAGER SCIENCE DATA ERROR COMPLAINT PRIOR TO THE ENCOUNTER, AVOIDING A POTENTIAL CRITICAL SITUATION
- SCIENCE PERSONNEL SAID CORRECTION COUNT WAS TOO HIGH
- SHARP DETECTED AND REPORTED A POSSIBLE EXCESSIVE NOISE PROBLEM
- TELECOM PERSONNEL USED SHARP SCATTER PLOT OF BIT ERROR RATE VERSUS SYMBOL SIGNAL TO NOISE RATIO
- CONFIRMED AN ANOMALOUS CONDITION WHICH WAS CORRUPTING THE SCIENCE DATA AT HIGH SSNR'S WHERE NO ERRORS ARE EXPECTED
- **DEFINED MAGNITUDE OF PROBLEM**
- PROVIDED ABILITY TO SHOW NO CORRELATION OF ERRORS WITH DSN
- FURTHER INVESTIGATION TRACED PROBLEM TO A FAILED WIDE-BAND INTERFACE UNIT IN VGR DACS
- SHARP USED TO CONFIRM PROBLEM RESOLUTION AFTER THE FAILED UNIT WAS REPLACED

DSN EXTENSIBLE GROUND ANALYSIS SYSTEM

BACKGROUND

PLANNED FOR THE DSN'S NETWORK OPERATIONS CONTROL CENTER, WHICH MONITORS QUALITY OF NETWORK DATA AND STATUS OF ALL DSN SYSTEMS

DSN EXTENSIBLE GROUND ANALYSIS SYSTEM (DEGAS)

SHARP-BASED ENHANCEMENT TO THE NOCC OPERATOR WORKSTATION

KEY CHARACTERISTICS

- VISUALIZATION OF CENTRAL NETWORK STATUS
- RAPID ANOMALY DETECTION, DIAGNOSIS, AND RECOVERY.
- EXTENSIBLE WITH EXTERNALLY DEVELOPED ANALYSIS MODULES.

BENEFITS EXPECTED BY DSN

- REDUCTION OF LARGE AMOUNTS OF DATA FOR PRESENTATION TO NOCT
- **ENABLE TIME-CRITICAL RESPONSE TO ANOMALIES**
- ASSIST IN OFF-LINE DIAGNOSIS, CALIBRATION, AND SYSTEM READINESS

DSN LINK MONITOR AND CONTROL OPERATOR ASSISTANT

BACKGROUND

- LMC OPERATORS AT DSN STATIONS CONFIGURE, CALIBRATE, AND CONTROL THE STATIONS ANTENNAS AND SUBSYSTEMS TO TRACK SPACECRAFT.
- "PRE-CAL" OPERATIONS TAKE 45 MINUTES TO 4 HOURS TO COMPLETE

LMC OPERATOR ASSISTANT

- GOAL OF 30% REDUCTION IN TIME SPENT DURING PRE-CAL OPERATIONS
- AUTOMATIC "DUAL CONTROL MODE", WHERE SINGLE OPERATOR CONFIGURES AND SYNCHRONIZES MULTIPLE ANTENNAS AND SUBSYSTEMS
- AUTOMATIC PRE-CAL DIRECTIVE PLANNING AND PARAMETER SELECTION TO SHOW FEASIBILITY OF AUTOMATED CONTROL OF DSN STATION WITH OPERATOR ACKNOWLEDGEMENT.
- => BUT NO REAL DIRECTIVES FROM PROTOTYPE TO ACTUAL DSN SUBSYSTEMS
- LAB DEMO IN 1991 FOLLOWED BY INSTALLATION AT GOLDSTONE DSS-13 **FACILITY IN 1992**

CONCLUSIONS

BENEFITS PROJECTED BY TELECOMMUNICATIONS USERS

LESSONS LEARNED

CONCLUSION

BENEFITS PROJECTED BY TELECOM USERS

WORKFORCE SAVINGS

ULTIMATE REDUCTION IN REAL TIME LINK ANALYSIS STAFF BY A FACTOR OF FIVE. SIMILAR SAVINGS MAY BE POSSIBLE IN

OTHER AREAS.

ANALYZE PROBLEMS IN SECONDS THAT TAKE HUMANS HOURS, E.G., ANTENNA REAL-TIME SYSTEM CAN DETECT AND

POINTING ERRORS

SYSTEM WIDE STATUS MONITORING HELPS COMMANDING ERRORS, AND REDUCES CONFIGURATION, REDUCES **ASSURE CORRECT SYSTEM LOSS OF DATA**

PRODUCTIVITY

REQUIRED ANALYSES MORE EFFICIENTLY PERSONNEL CAN MONITOR A GREATER NUMBER OF SYSTEMS AND PERFORM REDUCED NUMBER OF OPERATIONS

· SAFETY

RELIABILITY

LESSONS LEARNED

- ENTHUSIASTIC PARTICIPATION OF END-USERS AND EXPERTS IS
- **ENSURES ACCESS TO DOMAIN KNOWLEDGE AND FUTURE OPERABILITY.**
- PROVING "VALUE-ADDED" BY AUTOMATION IS DIFFICULT FOR TECHNOLOGISTS.
- PRACTICAL AUTOMATION USING AI REQUIRES EVOLUTION AND INTEGRATION WITH EXISTING SYSTEMS.
- CONSTRAINTS OF EXISTING SYSTEMS LIMIT THE SCOPE OF THE AI APPLICATION.
- AI CANNOT BE APPLIED INDEPENDENTLY FROM OTHER TECHNOLOGIES (E.G., NETWORKING, GRAPHICS)
- GOOD SYSTEM ENGINEERING IS WHAT MAKES A KNOWLEDGE SYSTEM.
- MAKE PRAGMATIC SELECTION OF MATURE AI TECHNIQUES
- SUFFICIENT TOOLS ARE AVAILABLE BUT SKILLED DEVELOPERS ARE REQUIRED

CONCLUSIONS

DELIVER USEFUL FUNCTIONS IN A REAL-TIME SPACE FLIGHT OPERATIONS ENVIRONMENT ARTIFICIAL INTELLIGENCE HAS A PROVEN CAPABILITY TO

SHARP HAS PRECIPITATED MAJOR CHANGE IN ACCEPTANCE OF **AUTOMATION AT JPL -- AI IS HERE TO STAY**

POTENTIAL PAYOFF FROM AUTOMATION USING AI IS SUBSTANTIAL

· SHARP, AND OTHER ARTIFICIAL INTELLIGENCE TECHNOLOGY IS BEING TRANSFERRED INTO SYSTEMS IN DEVELOPMENT

MISSION OPERATIONS AUTOMATION

SCIENCE DATA SYSTEMS

INFRASTRUCTURE APPLICATIONS

INITATIONALLY BOOM

ж.