UAV Battery Efficiency Estimator

Aerospace Math Appendix (Unicode Safe)

Author: Tareq Omrani • GPT-UAV Planner

0) Symbols & Notation

ρ	Air density (kg·m ⁻³)
ρο	Sea-level density (1.225 kg·m ⁻³)
V	True airspeed (m·s ⁻¹)
q	Dynamic pressure = $\frac{1}{2}\rho V^2$ (Pa)
S	Wing planform area (m²)
b	Wingspan (m)
AR	Aspect ratio = b^2/S (—)
W	Weight (N) = m g
Cr	Lift coefficient (—)
C□	Drag coefficient (—)
C^{D_0}	Parasite drag coefficient (—)
е	Oswald efficiency factor (—)
η_{p}	Propulsive efficiency (—)
Р	Shaft/electrical power (W)
BSFC	Brake-specific fuel consumption (g·kWh ⁻¹)
ΔΤ	Skin/air temperature rise (°C)

1) Standard Atmosphere (ISA Troposphere ≤ 11 km)

Sea-level reference: ρ_0 =1.225 kg·m⁻³, P_0 =101325 Pa, T_0 =288.15 K, lapse L=0.0065 K·m⁻¹, R=287.05 J·kg⁻¹·K⁻¹, g=9.80665 m·s⁻².

```
T(h) = max(1, T_0 - Lh)
P(h) = P_0 \cdot (1 - Lh/T_0)^{(g/(R \cdot L))}
\rho(h) = P(h)/(R \cdot T(h))
\sigma = \rho/\rho_0
```

2) Rotorcraft Induced-Power Scaling

Ideal induced power $\propto 1/\sqrt{\rho}$. Model factor: $f_{\rho} = 1/\text{max}(0.3, \sqrt{\sigma})$.

 $P_hover_scaled = P_hover_nominal \times f_p$

3) Fixed-Wing Aerodynamics & Power Required

Lift: $C^L = W/(qS)$. Aspect ratio AR = b^2/S . Parabolic drag polar: $C^D = C^{D_0} + kC^{L^2}$ with $k = 1/(\pi e AR)$.

 $D = q S C^{D}$

 $P_req = (D \cdot V)/max(0.3, \eta_p)$

Safeguards: $C^{D_0} \ge 0.05$; e ≤ 0.70; 0.55 ≤ $\eta_p \le 0.65$.

4) Battery Fixed-Wing Power Model (App Implementation)

 $P_{tot} = hotel + (1+f_{install}) \cdot P_{req}$, hotel ≈ 15 W, $f_{install} \approx 0.15$; mission penalties and gust penalties applied multiplicatively.

5) Multirotor Power Model (App Implementation)

Baseline draw P_0 from profile, scaled by mass and density plus parasitic $\propto V^2$.

 $P \approx P_0 \cdot (m/m_base) \cdot f_\rho + 0.018 \cdot (V_km/h)^2$

Then gust/mission penalties applied.

6) Thermal Model (Convective + Radiative)

Waste heat $Q_w \approx \text{total electrical (battery)}$ or shaft+hotel (ICE).

 $h \approx (10.45 - V + 10\sqrt{V}) \cdot (\rho/\rho_0)$

 $k \text{ rad} = 4\epsilon\sigma T_a^3$

 $K = (h + k rad) \cdot A$

 $\Delta T = Q w / max(1,K)$

 $\Delta T \leftarrow \Delta T \cdot (1 - 0.35 \cdot CC)$

7) Gust Penalty

Fractional penalty $\phi_g \le 0.35$.

$$\begin{split} \phi_g &= clamp[0,0.35]\{1.5\cdot(g_ms/V)^2\cdot(WL_ref/WL)^{-}0.7\,+\,0.03\cdot(W_ms/8)\}\\ g\ ms &\approx 0.6\cdot g,\ WL\ ref=70\ N\cdot m^{-2} \end{split}$$

8) Climb/Descent Energy

Battery: E_climb = (m g h)/3600 Wh; Descent recovery ~20%. ICE: convert mgh to kWh, multiply by BSFC, divide by fuel density.

9) Endurance & Reserve Policy

Battery: $E_use = 0.85 \cdot E_pack$. $t_raw = 60 \cdot E_use/P_tot$; $t_dispatch = 0.70 \cdot t_raw$. ICE: usable fuel=0.90 \cdot tank-climb+assist savings.

10) Wind-Vector Range

Given V_air, W: distance_best = $(V_air+W)\cdot t_h$; distance_upwind = $max(0,(V_air-W)\cdot t_h)$. If $W \ge V$ air, upwind=0.

11) Hybrid Assist

Fraction f of total power from battery for τ minutes. Fuel saved \approx LPH(P_tot·f)·(τ /60). Thermal: $\Delta T \leftarrow \Delta T \cdot (1 - 0.3f)$.

12) Detectability Scores

Al visual: altitude, speed, gusts, clouds, stealth. IR: ΔT norm, altitude attenuation, cloud attenuation, ICE bias, stealth.

13) Uncertainty & Safeguards

Endurance $\pm 10\%$. Clamps: σ floor; η_P range; e bound; C^{D_0} floor; $\Delta T \geq 0.2^{\circ}C$.

14) Constants

App default constants:

RHO0	1.225 kg·m ⁻³
P0	101325 Pa
TOK	288.15 K
LAPSE	0.0065 K·m ^{−1}
R_AIR	287.05 J·kg ⁻¹ ·K ⁻¹
G0	9.80665 m·s ⁻²
SIGMA	5.670374419×10 ⁻⁸ W·m ⁻² ·K ⁻⁴
USABLE_BATT_FRAC	0.85
USABLE_FUEL_FRAC	0.90
DISPATCH_RESERVE	0.30
HOTEL_W_DEFAULT	15 W
INSTALL_FRAC_DEF	0.15

15) Code Cross-Reference

air_density(), density_ratio(), rotorcraft_density_scale(), drag_polar_cd(), aero_power_required_W(), realistic_fixedwing_power(), gust_penalty_fraction(), convective_radiative_deltaT(), climb_energy_wh(), climb_fuel_liters(), heading_range_km(), bsfc_fuel_burn_lph(), compute_ai_ir_scores(), render_detectability_alert().

16) Assumptions & Limitations

• Valid for small/medium UAV regime. • No compressibility corrections (V \ll transonic). • Detectability heuristic only. • Hybrid assist neglects internal resistance and thermal lags. • Terrain/stealth penalties applied multiplicatively.