TEACHING SOFTWARE ENGINEERING FOR AI-ENABLED SYSTEMS

Eunsuk Kang and Christian Kaestner

https://github.com/ckaestne/seai

SOFTWARE ENGINEERING FOR AI-ENABLED SYSTEMS

SOFTWARE ENGINEERING FOR AI-ENABLED SYSTEMS!= CODING ML FRAMEWORKS

SOFTWARE ENGINEERING FOR AI-ENABLED SYSTEMS!= ML4SE

```
import numpy as np

start = -1
stop = 1

import numpy as np

start = -1
stop = 1

flinspace
function
flinspace(start, stop)
function
flinspace(stop, start)
function
flinspace(start, stop, sto... function
flinspace(start, stop, sto... function)
```

SOFTWARE ENGINEERING FOR AI-ENABLED (AI-ML-BASED, ML-INFUSED) SYSTEMS

(SE 4 ML-enabled systems)

SOFTWARE ENGINEERING

Software engineering is the branch of computer science that creates practical, cost-effective solutions to computing and information processing problems, preferentially by applying scientific knowledge, developing software systems in the service of mankind.

Engineering judgements under limited information and resources

A focus on design, tradeoffs, and the messiness of the real world

Many qualities of concern: cost, correctness, performance, scalability, security, maintainability, ...

"it depends..."

Mary Shaw. ed. Software Engineering for the 21st Century: A basis for rethinking the curriculum. 2005.

MOST AI/ML COURSES

Focus narrowly on modeling techniques or building models

Using notebooks, static datasets, evaluating accuracy

Little attention to software engineering aspects of building complete systems

(see Antonio's talk)

EXAMPLE SOFTWARE ENGINEERING CONCERNS

- How to build robust AI pipelines and facilitate regular model updates?
- How to deploy and update models in production?
- How to evaluate data and model quality in production?
- How to deal with mistakes that the model makes and manage associated risk?
- How to trade off between various qualities, including learning cost, inference time, updatability, and interpretability?
- How to design a system that scales to large amounts of data?
- How to version models and data?
- How to manage interdisciplinary teams with data scientists, software engineers, and operators?

WHAT'S DIFFERENT?

- Missing specifications
- Environment is important (feedback loops, data drift)
- Nonlocal and nonmonotonic effects
- Testing in production
- Data management, versioning, and provenance

REALLY DIFFERENT?

- Missing specifications -- implicit, vague specs very common; safe systems from unreliable components
- Environment is important -- the world vs the machine
- Nonlocal and nonmonotonic effects -- feature interactions, system testing
- Testing in production -- continuous deployment, A/B testing
- Data management, versioning, and provenance -- stream processing, event sourcing, data modeling

While developers of simple traditional systems may get away with poor practices, most developers of AI-enabled systems will not.

ASSIGNMENTS

Break the habit of modeling in notebooks on static datasets

Design for realistic "production" setting: deployment, experimentation in production, data drift and feedback loops

Movie recommendation scenario, simulating 160k users watching movies in real time

ASIDE: DEVOPS

READINGS

All lecture material (except simulator):

https://github.com/ckaestne/seai

Annotated bibliography:

https://github.com/ckaestne/seaibib

ICSE SEET'20 paper

SUGGESTED TOPICS

- Identifying the right requirements for fairness, robustness, privacy, security, usefulness, ...
- Supporting exploratory programming
- Modularity, nonmodularity, and feature interactions
- Versioning of data and models; provenance
- Designing telemetry
- Testing and experimenting in production
- Architectural reasoning and deployment
- Ensuring safety: Designing fallback strategies, railguards, ...
- Designing interactions with users (forcefulness of experience)
- Monitoring, data drift, feedback loops, data quality
- Quality assurance of ML pipeline

