Chapter 5: Differentiation

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 5.1. Let f be defined for all real x, and suppose that

$$|f(x) - f(y)| \le (x - y)^2$$

for all real x and y. Prove that f is a constant.

Proof.

(1) Write

$$\left| \frac{f(x) - f(y)}{x - y} \right| \le |x - y|$$

if $x \neq y$.

(2) Given any $y \in \mathbb{R}$,

$$\left| \frac{f(x) - f(y)}{x - y} \right| \to 0 \text{ as } x \to y,$$

or |f'(y)| = 0.

(3) Or using ε - δ argument. Fix $y \in \mathbb{R}$. Given any $\varepsilon > 0$, there exists $\delta = \varepsilon > 0$ such that

$$\left| \frac{f(x) - f(y)}{x - y} - 0 \right| \le |x - y| < \delta = \varepsilon$$

whenever $|x - y| < \delta$. That is, |f'(y)| = 0.

(4) So f'(y) = 0 for any $y \in \mathbb{R}$. By Theorem 5.11 (b), f is a constant.

Exercise 5.2. Suppose f'(x) > 0 in (a,b). Prove that f is strictly increasing in (a,b), and let g be its inverse function. Prove that g is differentiable, and that

$$g'(f(x)) = \frac{1}{f'(x)}$$
 $(a < x < b).$

Proof. Let E = (a, b).

(1) Theorem 5.10 implies that for any $a there exists <math display="inline">\xi \in (p,q)$ such that

$$f(p) - f(q) = (p - q)f'(\xi).$$

Since $\xi \in (p,q) \subseteq E$, by assumption $f'(\xi) > 0$. Hence $f(p) - f(q) = (p-q)f'(\xi) < 0$ (here p-q < 0), or

if p < q. Therefore, f is strictly increasing in (a, b).

- (2) Show that f is one-to-one in E if f is strictly increasing in E. If f(p) = f(q), then it cannot be p > q or p < q ((1)). So that p = q, or f is injective.
- (3) Show that g is well-defined. Theorem 5.2 and Theorem 4.17.
- (4) Show that $g'(f(x)) = \frac{1}{f'(x)}$. Given $y \in f(E)$, say y = f(x) for some $x \in E$. Given any $s \in f(E)$ with $s \neq y$. Here s = f(t) for some $t \in E$ and $t \neq x$.

$$\lim_{s \to y} \frac{g(s) - g(y)}{s - y} = \lim_{f(t) \to f(x)} \frac{g(f(t)) - g(f(x))}{f(t) - f(x)}$$

$$= \lim_{t \to x} \frac{t - x}{f(t) - f(x)}$$

$$= \lim_{t \to x} \frac{1}{\frac{f(t) - f(x)}{t - x}}$$

$$= \frac{1}{f'(x)}. \qquad (f' > 0)$$

Here $s \to y$ if and only if $t \to x$ since both f and g are continuous and one-to-one. Hence g is differentiable and $g'(f(x)) = \frac{1}{f'(x)}$.

Exercise 5.3. Suppose g is a real function on \mathbb{R}^1 , with bounded derivative (say $|g'| \leq M$). Fix $\varepsilon > 0$, and define $f(x) = x + \varepsilon g(x)$. Prove that f is one-to-one if ε is small enough. (A set of admissible values of ε can be determined which depends only on M.)

Proof.

(1) Note that $f'(x) = 1 + \varepsilon g'(x)$ (Theorem 5.3). Since $|g'| \le M$,

$$1 - \varepsilon M < f'(x) < 1 + \varepsilon M$$
.

(2) Pick

$$\varepsilon = \frac{1}{M+1} > 0.$$

Thus,

$$f'(x) \ge \frac{1}{M+1} > 0.$$

By Exercise 5.2, f(x) is strictly increasing in \mathbb{R} or one-to-one in \mathbb{R} .

Exercise 5.4. If

$$C_0 + \frac{C_1}{2} + \dots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0,$$

where C_0, \ldots, C_n are real constants, prove that the equation

$$C_0 + C_1 x + \dots + C_{n-1} x^{n-1} + C_n x^n = 0$$

has at least one real root between 0 and 1.

Proof. Let

$$g(x) = C_0 x + \frac{C_1}{2} x^2 + \dots + \frac{C_{n-1}}{n} x^n + \frac{C_n}{n+1} x^{n+1} \in \mathbb{R}[x].$$

Then g(0) = g(1) = 0, and $g'(x) = C_0 + C_1 x + \cdots + C_{n-1} x^{n-1} + C_n x^n$. By the mean value theorem (Theorem 5.10), there exists a point $\xi \in (0,1)$ at which

$$g(1) - g(0) = g'(\xi)(1 - 0),$$

or $g'(\xi)=0$. That is, there exists a real root $x=\xi$ between 0 and 1 at which $C_0+C_1x+\cdots+C_{n-1}x^{n-1}+C_nx^n=0$. \square

Exercise 5.5. Suppose f is defined and differentiable for every x > 0, and $f'(x) \to 0$ as $x \to +\infty$. Put g(x) = f(x+1) - f(x). Prove that $g(x) \to 0$ as $x \to +\infty$.

Proof. Given any x > 0. Since f is differentiable for every x > 0, f is differentiable on [x, x+1]. By Theorem 5.2 and Theorem 5.10 (the mean value theorem), there is a point $\xi \in (x, x+1)$ at which

$$f(x+1) - f(x) = [(x+1) - x]f'(\xi)$$

or

$$g(x) = f'(\xi).$$

As $x \to +\infty$, $\xi \to +\infty$. Hence

$$\lim_{x \to +\infty} g(x) = \lim_{\xi \to +\infty} f'(\xi) = 0.$$

Exercise 5.6. Suppose

- (a) f is continuous for $x \ge 0$,
- (b) f'(x) exists for x > 0,
- (c) f(0) = 0,
- (d) f' is monotonically increasing.

Put

$$g(x) = \frac{f(x)}{r} \qquad (x > 0)$$

and prove that g is monotonically increasing.

Proof.

(1) It suffices to show that $g'(x) \ge 0$ for x > 0 (Theorem 5.11(a)), that is, to show that

$$g'(x) = \frac{xf'(x) - f(x)}{x^2} \ge 0$$
 $(x > 0),$

or

$$xf'(x) - f(x) \ge 0 \qquad (x > 0)$$

since $x^2 > 0$ for all nonzero x.

(2) Given x>0. By (a)(b), we apply the mean value theorem (Theorem 5.10) on f to get

$$f(x) - f(0) = (x - 0)f'(\xi)$$

for some $\xi \in (0, x)$. By (c),

$$f(x) = xf'(\xi).$$

By (d),

$$f(x) = xf'(\xi) \le xf'(x).$$

Hence $xf'(x) - f(x) \ge 0$, or g is monotonically increasing.

Note. g is increasing strictly if f is increasing strictly.

Exercise 5.7. Suppose f'(x), g'(x) exist, $g'(x) \neq 0$, and f(x) = g(x) = 0. Prove that

$$\lim_{t \to x} \frac{f(t)}{g(t)} = \frac{f'(x)}{g'(x)}.$$

(This holds also for complex functions.)

Proof.

$$\frac{f'(t)}{g'(t)} = \frac{\lim_{t \to x} \frac{f(t) - f(x)}{t - x}}{\lim_{t \to x} \frac{g(t) - g(x)}{t - x}}$$

$$= \lim_{t \to x} \frac{\frac{f(t) - f(x)}{t - x}}{\frac{f(t) - f(x)}{t - x}}$$
(Both limits exist and $g' \neq 0$)
$$= \lim_{t \to x} \frac{f(t)}{g(t)}.$$
($f(x) = g(x) = 0$)

This proof is also true for complex functions. \Box

Exercise 5.8. Suppose f'(x) is continuous on [a,b] and $\varepsilon > 0$. Prove that there exists $\delta > 0$ such that

 $\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| < \varepsilon$

whenever $0 < |t - x| < \delta$, $a \le x \le b$, $a \le t \le b$. (This could be expressed by saying f is uniformly differentiable on [a,b] if f' is continuous on [a,b].) Does this hold for vector-valued functions too?

Proof.

(1) Since f'(x) is continuous on a compact set [a, b], f'(x) is uniformly continuous on [a, b]. So given any $\varepsilon > 0$ there exists $\delta > 0$ such that

$$|f'(t) - f'(x)| < \varepsilon$$

whenever $0 < |t - x| < \delta$, $a \le x \le b$, $a \le t \le b$.

(2) For such t < x in (1), by the mean value theorem (Theorem 5.10), there exists a point $\xi \in (t, x)$ at which

$$f'(\xi) = \frac{f(t) - f(x)}{t - x}.$$

Note that ξ is also satisfying $0<|t-\xi|<|t-x|<\delta$ and $a\leq \xi\leq b$. Hence by (1) we also have

$$|f'(\xi) - f'(x)| < \varepsilon,$$

or

$$\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| < \varepsilon.$$

(3) Suppose $\mathbf{f}'(x)$ is continuous on [a,b] and $\varepsilon > 0$. Prove that there exists $\delta > 0$ such that

$$\left| \frac{\mathbf{f}(t) - \mathbf{f}(x)}{t - x} - \mathbf{f}'(x) \right| < \varepsilon$$

whenever $0 < |t - x| < \delta$, $a \le x \le b$, $a \le t \le b$.

(a) Write

$$\mathbf{f}(x) = (f_1(x), \dots, f_k(x)) \in \mathbb{R}^k.$$

By Remarks 5.16, $\mathbf{f}(x)$ is differentiable at a point x if and only if each f_1, \ldots, f_k is differentiable at x. So that

$$\mathbf{f}'(x) = (f_1'(x), \dots, f_k'(x)) \in \mathbb{R}^k.$$

By Theorem 4.10, $\mathbf{f}'(x)$ is continuous if and only if each f_1, \ldots, f_k is continuous.

(b) Similar to (1)(2), Since $f_i'(x)$ is continuous on a compact set [a,b] where $1 \leq i \leq k$, $f_i'(x)$ is uniformly continuous on [a,b]. So given any $\varepsilon > 0$ there exists $\delta_i > 0$ such that

$$|f_i'(t) - f_i'(x)| < \frac{\varepsilon}{\sqrt{k}}$$

whenever $0<|t-x|<\delta_i,\ a\le x\le b,\ a\le t\le b.$ Take $\delta=\min_{1\le i\le k}\delta_i>0.$

(c) For such t < x in (1), by the mean value theorem (Theorem 5.10), there exists a point $\xi_i \in (t, x)$ at which

$$f_i'(\xi_i) = \frac{f_i(t) - f_i(x)}{t - r}.$$

Note that ξ_i is also satisfying $0<|t-\xi_i|<|t-x|<\delta$ and $a\leq \xi_i\leq b$. Hence by (1) we also have

$$|f_i'(\xi_i) - f_i'(x)| < \frac{\varepsilon}{\sqrt{k}},$$

or

$$\left| \frac{f_i(t) - f_i(x)}{t - x} - f_i'(x) \right| < \frac{\varepsilon}{\sqrt{k}}.$$

(d) Hence

$$\left|\frac{\mathbf{f}(t) - \mathbf{f}(x)}{t - x} - \mathbf{f}'(x)\right| = \left(\sum_{i=1}^{k} \left|\frac{f_i(t) - f_i(x)}{t - x} - f_i'(x)\right|^2\right)^{\frac{1}{2}} < \varepsilon.$$

Exercise 5.9. Let f be a continuous real function on \mathbb{R}^1 , of which it is known that f'(x) exists for all $x \neq 0$ and that $f'(x) \to 3$ as $x \to 0$. Dose it follow that f'(0) exists?

Proof.

(1) Show that f'(0) = 3. It is equivalent to show that

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 3.$$

Write F(x) = f(x) - f(0) and G(x) = x - 0 on \mathbb{R}^1 . So that

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{F(x)}{G(x)} = 0.$$

(2) Note that

$$\lim_{x \to 0} \frac{F'(x)}{G'(x)} = \lim_{x \to 0} \frac{f'(x)}{1} = 3.$$

(3) Since f is continuous on \mathbb{R}^1 , F is continuous on \mathbb{R}^1 . Hence

$$\lim_{x \to 0} F(x) = F(\lim_{x \to 0} x) = F(0) = 0.$$

Also, G is continuous on \mathbb{R}^1 implies that

$$\lim_{x \to 0} G(x) = G(\lim_{x \to 0} x) = G(0) = 0.$$

(4) Apply L'Hospital's rule (Theorem 5.13) to (2)(3), we have

$$\lim_{x \to 0} \frac{F(x)}{G(x)} = 3,$$

or
$$f'(0) = 3$$
.

Exercise 5.10. Suppose f and g are complex differentiable functions on (0,1), $f(x) \to 0$, $g(x) \to 0$, $f'(x) \to A$, $g'(x) \to B$ as $x \to 0$, where A and B are complex numbers, $B \neq 0$. Prove that

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{A}{B}.$$

Compare with Example 5.18. (Hint:

$$\frac{f(x)}{g(x)} = \left(\frac{f(x)}{x} - A\right) \frac{x}{g(x)} + A \frac{x}{g(x)}.$$

Apply Theorem 5.13 to the real and imaginary parts of $\frac{f(x)}{x}$ and $\frac{g(x)}{x}$.)

 $Proof\ (Hint).$

(1) Write

$$f(x) = f_1(x) + if_2(x)$$

for $x \in (0,1)$, where both f_1 and f_2 are real functions. By Remarks 5.16, it is clear that

$$f'(x) = f_1'(x) + if_2'(x).$$

(2) Write

$$A = A_1 + iA_2$$

where both A_1 and A_2 are real numbers. Then as $x \to 0$, we have

- (a) $f(x) \to 0$ if and only if $f_1(x) \to 0$ and $f_2(x) \to 0$.
- (b) $f'(x) \to A$ if and only if $f'_1(x) \to A_1$ and $f'_2(x) \to A_2$.

Hence by L'Hospital's rule (Theorem 5.13),

$$\lim_{x \to 0} \frac{f_i(x)}{x} = \lim_{x \to 0} \frac{f_i'(x)}{1} = A_i$$

(i = 1, 2) or

$$\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{f_1(x) + if_2(x)}{x}$$

$$= \lim_{x \to 0} \frac{f_1(x)}{x} + i \lim_{x \to 0} \frac{f_2(x)}{x}$$

$$= A_1 + iA_2$$

$$= A.$$

Similarly,

$$\lim_{x \to 0} \frac{g(x)}{x} = B.$$

Note that $B \neq 0$, and thus

$$\lim_{x \to 0} \frac{x}{g(x)} = \frac{1}{B}.$$

(3) Hence

$$\begin{split} \lim_{x \to 0} \frac{f(x)}{g(x)} &= \lim_{x \to 0} \left[\left(\frac{f(x)}{x} - A \right) \frac{x}{g(x)} + A \frac{x}{g(x)} \right] \\ &= \lim_{x \to 0} \left(\frac{f(x)}{x} - A \right) \cdot \lim_{x \to 0} \frac{x}{g(x)} + \lim_{x \to 0} A \frac{x}{g(x)} \\ &= 0 \cdot \frac{1}{B} + \frac{A}{B} \\ &= \frac{A}{B}. \end{split}$$

(4) Compare with Example 5.18. Define f(x) = x and $g(x) = x + x^2 \exp\left(\frac{i}{x^2}\right)$ as in Example 5.18. Note that $f(x) \to 0$, $g(x) \to 0$, $f'(x) \to 1$ and $g'(x) \to \infty$ as $x \to 0$. By Example 5.18

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = 1 \neq 0 = \frac{1}{\infty} = \lim_{x \to 0} \frac{A}{B}.$$

Exercise 5.11. Suppose f is defined in a neighborhood of x, and suppose f''(x) exists. Show that

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x).$$

Show by an example that the limit may exist even if f''(x) dose not. (Hint: Use Theorem 5.13.)

Proof (Theorem 5.13).

(1) Write F(h) = f(x+h) + f(x-h) - 2f(x) and $G(h) = h^2$. It is equivalent to show that

$$\lim_{h \to 0} \frac{F(h)}{G(h)} = f''(x).$$

We might apply Theorem 5.13 (L'Hospital rule) to get it.

(2) Show that $\lim_{h\to 0} F(h) = 0$ and $\lim_{h\to 0} G(h) = 0$. It is clear that $\lim_{h\to 0} G(h) = \lim_{h\to 0} h^2 = 0$ since $x\mapsto x^2$ is continuous on \mathbb{R}^1 . Besides, since f is continuous at x (by applying Theorem 5.2 twice),

$$\lim_{h \to 0} F(h) = f(x) + f(x) - 2f(x) = 0.$$

(3) Show that

$$\lim_{h \to 0} \frac{F'(h)}{G'(h)} = \lim_{h \to 0} \frac{f'(x+h) - f'(x-h)}{2h}$$

is well-defined. Since f''(x) exists in a neighborhood B(x;r) of x (where r > 0), f'(x) exists and is continuous in B(x;r) (Theorem 5.2). As $0 < |h| < \frac{r}{2}$,

$$x + h \in B\left(x + h; \frac{r}{2}\right) \subseteq B(x; r)$$

and

$$x - h \in B\left(x - h; \frac{r}{2}\right) \subseteq B(x; r).$$

So f'(x+h) and f'(x-h) exist in B(x;r) as $0<|h|<\frac{r}{2}$. Hence

$$\lim_{h \to 0} \frac{F'(h)}{G'(h)} = \lim_{h \to 0} \frac{f'(x+h) - f'(x-h)}{2h}$$

is well-defined (Theorem 5.3 and Theorem 5.5 (the chain rule)).

(4) Show that

$$\lim_{h \to 0} \frac{f'(x+h) - f'(x-h)}{2h} = f''(x).$$

Since f''(x) exists, by definition

$$\lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} = f''(x)$$

and

$$\lim_{h \to 0} \frac{f'(x-h) - f'(x)}{-h} = f''(x).$$

Sum up two expressions to get

$$2f''(x) = \lim_{h \to 0} \frac{f'(x-h) - f'(x-h)}{h}.$$

- (5) By (2)(3)(4) and Theorem 5.13 (L'Hospital rule), the result is established.
- (6) Given f(x) = x|x| on \mathbb{R}^1 . Show that

$$\lim_{h \to 0} \frac{f(h) + f(-h) - 2f(0)}{h^2} = 0$$

but f''(x) does not exist at x = 0. Clearly,

$$\lim_{h \to 0} \frac{f(h) + f(-h) - 2f(0)}{h^2} = \lim_{h \to 0} \frac{h|h| + (-h)| - h| - 2 \cdot 0}{h^2}$$

$$= \lim_{h \to 0} \frac{h|h| - h|h| - 0}{h^2}$$

$$= \lim_{h \to 0} 0$$

$$= 0$$

But f''(x) does not exist by Exercise 5.12.

Exercise 5.12. If $f(x) = |x|^3$, compute f'(x), f''(x) for all real x, and show that $f^{(3)}(0)$ does not exist.

Proof.

(1) Write

$$f(x) = \begin{cases} x^3 & (x \ge 0), \\ -x^3 & (x \le 0). \end{cases}$$

(2) Show that f'(x) = 3x|x|. It is trivial that

$$f'(x) = \begin{cases} 3x^2 & (x > 0), \\ -3x^2 & (x < 0). \end{cases}$$

Note that

$$\lim_{x \to 0} f'(x) = 0.$$

Apply the same argument in Exercise 5.9, we have

$$f'(0) = 0.$$

Hence f' exists and f'(x) = 3x|x| for any $x \in \mathbb{R}$.

(3) Show that f''(x) = 6|x|. Similar to (2).

$$f''(x) = \begin{cases} 6x & (x > 0), \\ -6x & (x < 0). \end{cases}$$

Note that

$$\lim_{x \to 0} f''(x) = 0.$$

Apply the same argument in Exercise 5.9, we have

$$f''(0) = 0.$$

Hence f'' exists and f''(x) = 6|x| for any $x \in \mathbb{R}$.

(4) Show that $f^{(3)}(0)$ does not exist.

$$f'''(x) = \begin{cases} 6 & (x > 0), \\ -6 & (x < 0). \end{cases}$$

There are some proofs for showing that $f^{(3)}(0)$ does not exist.

(a) Since

$$\lim_{t \to 0+} \frac{f''(t) - f''(0)}{t - 0} = \lim_{t \to 0+} \frac{6t}{t} = 6$$

and

$$\lim_{t\to 0-}\frac{f''(t)-f''(0)}{t-0}=\lim_{t\to 0-}\frac{-6t}{t}=-6,$$

 $f^{(3)}(0)$ does not exist.

(b) (Reductio ad absurdum) If f were differentiable on \mathbb{R}^1 , then

$$\lim_{t \to 0+} f'''(t) = 6$$

and

$$\lim_{t \to 0-} f'''(t) = -6,$$

or f''' has a simple discontinuity at x=0, contrary to Corollary to Theorem 5.12.

Note. Given k > 0. We can construct one real function f on \mathbb{R}^1 , say

$$f(x) = \begin{cases} |x|^k & (k \text{ is odd}), \\ x|x|^{k-1} & (k > 0 \text{ is even}), \end{cases}$$

such that all $f^{(0)}(0) = \cdots = f^{(k-1)}(0) = 0$ exist but $f^{(k)}(0)$ does not exist.

Exercise 5.13. Suppose a and c are real numbers, c > 0, and f is defined on [-1,1] by

$$f(x) = \begin{cases} x^a \sin(x^{-c}) & (if \ x \neq 0), \\ 0 & (if \ x = 0). \end{cases}$$

Prove the following statements:

- (a) f is continuous if and only if a > 0.
- (b) f'(0) exists if and only if a > 1.
- (c) f' is bounded if and only if $a \ge 1 + c$.
- (d) f' is continuous if and only if a > 1 + c.
- (e) f''(0) exists if and only if a > 2 + c.
- (f) f'' is bounded if and only if a > 2 + 2c.
- (g) f'' is continuous if and only if a > 2 + 2c.

Note that f is not well-defined as a real function if x < 0. Hence we modify the definition of f for the case x < 0:

$$f(x) = \begin{cases} |x|^a \sin(|x|^{-c}) & \text{(if } x \neq 0), \\ 0 & \text{(if } x = 0). \end{cases}$$

Proof of (a).

(1) Since $|x|^a \sin{(|x|^{-c})}$ is continuous on $\mathbb{R}^1 - \{0\}$, f is continuous if and only if

$$\lim_{x \to 0} |x|^a \sin(|x|^{-c}) = 0.$$

(2) Given a > 0. Show that

$$\lim_{x \to 0} |x|^a \sin(|x|^{-c}) = 0.$$

Since $|x|^a \to 0$ as $x \to 0$ and $|\sin(|x|^{-c})|$ is bounded by 1, the limit $\lim |x|^a \sin(|x|^{-c})$ exists and is equal to 0.

(3) Given a = 0. Show that

$$\lim_{x \to 0} |x|^a \sin(|x|^{-c}) = \lim_{x \to 0} \sin(|x|^{-c})$$

does not exist although $|x|^a \sin(|x|^{-c}) = \sin(|x|^{-c})$ is bounded on $[-1, 1] - \{0\}$.

(a) Take $x_n = \left(\frac{\pi}{2} + 2n\pi\right)^{-\frac{1}{c}} \neq 0$ for $n = 1, 2, 3, \ldots$ The sequence $\{x_n\}$ converges to 0, and

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \sin(|x_n|^{-c}) = \lim_{n \to \infty} 1 = 1.$$

(b) Similarly, take $y_n=(2n\pi)^{-\frac{1}{c}}\neq 0$ for $n=1,2,3,\ldots$ The sequence $\{y_n\}$ converges to 0, and

$$\lim_{n \to \infty} f(y_n) = 0.$$

- (c) By (a)(b), $\lim_{x\to 0} |x|^a \sin(|x|^{-c})$ does not exist (Theorem 4.2).
- (d) Clearly, $|\sin(|x|^{-c})| \le 1$ as $\sin(|x|^{-c})$ is well-defined.
- (4) Given a < 0. Show that

$$\lim_{x\to 0} |x|^a \sin\left(|x|^{-c}\right)$$

does not exist. Similar to (3), we take the same $\{x_n\}$ and $\{y_n\}$ as (3) to get the similar result:

$$\lim_{n \to \infty} f(x_n) = \infty,$$
$$\lim_{n \to \infty} f(y_n) = 0.$$

 $n \to \infty$

(5) By (2)(3)(4), f is continuous if and only if a > 0.

By Theorem 4.2, $\lim_{x\to 0} |x|^a \sin(|x|^{-c})$ does not exist.

Proof of (b).

(1) By definition,

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \operatorname{sgn}(x) |x|^{a - 1} \sin(|x|^{-c}).$$

Here sgn(x) is the sign function defined by

$$\operatorname{sgn}(x) = \begin{cases} 1 & (x > 0), \\ 0 & (x = 0), \\ -1 & (x < 0). \end{cases}$$

(2) Similar to (2)(3)(4) in the proof of (a), f'(0) = 0 exists if and only if a-1>0.

Proof of (c).

- (1) Write $E = [-1, 1] \{0\}$. f' is bounded if and only if f'(0) exists and f' is bounded on E.
- (2) Given any $x \in E$,

$$f'(x) = \operatorname{sgn}(x) \left(a|x|^{a-1} \sin(|x|^{-c}) + |x|^a \cos(|x|^{-c})(-c)|x|^{-c-1} \right)$$

= $\operatorname{sgn}(x)|x|^{a-c-1} \left(a|x|^c \sin(|x|^{-c}) - c \cos(|x|^{-c}) \right).$

- (3) Given $a-c-1 \ge 0$. Show that f' is bounded on E. Since $\operatorname{sgn}(x)$ is bounded by 1 on E, $|x|^{a-c-1}$ is bounded by 1 on E and $a|x|^c \sin(|x|^{-c}) c\cos(|x|^{-c})$ is bounded by |a| + |c| on E, f' is bounded on E.
- (4) Given a-c-1<0. Show that f' is unbounded on E. Take $x_n=(2n\pi)^{-\frac{1}{c}}\neq 0$ for $n=1,2,3,\ldots$ The sequence $\{x_n\}$ converges to 0, and

$$\lim_{n \to \infty} f'(x_n) = \lim_{n \to \infty} -c(2n\pi)^{-\frac{a-c-1}{c}} = -\infty.$$

(5) By (b), f'(0) exists if and only if a > 1. By (3)(4), f' is bounded on E if and only if $a - c - 1 \ge 0$. Since c > 0, f' is bounded on [-1, 1] if and only if $a - c - 1 \ge 0$.

Proof of (d). Similar to the proof of (a).

(1) Write $E = [-1, 1] - \{0\}$. By (b)(c),

$$f'(x) = \begin{cases} 0 & \text{if } x = 0, \\ \operatorname{sgn}(x)|x|^{a-c-1} \left(a|x|^c \sin(|x|^{-c}) - c\cos(|x|^{-c}) \right) & \text{if } x \in E. \end{cases}$$

Clearly, f' is continuous on E. Hence, f' is continuous if and only if $\lim_{x\to 0} f'(x) = f'(0) = 0$.

(2) Given a-c-1>0. Show that $\lim_{x\to 0} f'(x)=0$. Since $|x|^{a-c-1}\to 0$ as $x\to 0$, $\operatorname{sgn}(x)$ is bounded by 1 on E, and $a|x|^c \sin(|x|^{-c})-c\cos(|x|^{-c})$ is bounded by |a|+|c| on E,

$$\operatorname{sgn}(x)|x|^{a-c-1} \left(a|x|^c \sin(|x|^{-c}) - c\cos(|x|^{-c}) \right) \to 0$$

as $x \to 0$. The result is established.

- (3) Given a-c-1=0. Show that $\lim_{x\to 0} f'(x)$ does not exist.
 - (a) Take $x_n = \left(\frac{\pi}{2} + 2n\pi\right)^{-\frac{1}{c}} \neq 0$ for $n = 1, 2, 3, \ldots$ The sequence $\{x_n\}$ converges to 0, and

$$\lim_{n \to \infty} f'(x_n) = \lim_{n \to \infty} \operatorname{sgn}(x_n) \left(a|x_n|^c \sin(|x_n|^{-c}) - c \cos(|x_n|^{-c}) \right)$$
$$= \lim_{n \to \infty} \frac{a}{\frac{\pi}{2} + 2n\pi}$$
$$= 0.$$

(b) Similarly, take $y_n=(2n\pi)^{-\frac{1}{c}}\neq 0$ for $n=1,2,3,\ldots$ The sequence $\{y_n\}$ converges to 0, and

$$\lim_{n \to \infty} f'(y_n) = \lim_{n \to \infty} \operatorname{sgn}(y_n) \left(a|y_n|^c \sin(|y_n|^{-c}) - c\cos(|y_n|^{-c}) \right)$$
$$= \lim_{n \to \infty} -c$$
$$= -c \neq 0$$

- (c) By (a)(b), $\lim_{x\to 0} f'(x)$ does not exist (Theorem 4.2).
- (4) Given a-c-1 < 0. Show that $\lim_{x\to 0} f'(x)$ does not exist. It is the same as (4) in the proof of (c).
- (5) By (2)(3)(4), f' is continuous if and only if $\lim_{x\to 0} f'(x) = 0$ if and only if a-c-1>0.

Proof of (e). Similar to the proof of (b).

(1) Write $E = [-1, 1] - \{0\}$. By the proof of (d),

$$f'(x) = \begin{cases} 0 & \text{if } x = 0, \\ \operatorname{sgn}(x)|x|^{a-c-1} \left(a|x|^c \sin(|x|^{-c}) - c\cos(|x|^{-c}) \right) & \text{if } x \in E. \end{cases}$$

By definition

$$f''(0) = \lim_{x \to 0} \frac{f'(x) - f'(0)}{x - 0}$$

= $\lim_{x \to 0} |x|^{a - c - 2} (a|x|^c \sin(|x|^{-c}) - c\cos(|x|^{-c})).$

(Here $sgn(x)^2 = 1$ if $x \neq 0$.)

(2) Similar to (2)(3)(4) in the proof of (d), f''(0) = 0 exists if and only if (a-c-1)-1 = a-c-2 > 0.

Proof of (f). Similar to the proof of (c).

- (1) Write $E = [-1, 1] \{0\}$. f'' is bounded if and only if f''(0) exists and f'' is bounded on E.
- (2) Given any $x \in E$,

$$f''(x) = |x|^{a-2c-2} \cdot \left[(a(a-1)|x|^{2c} - c^2) \sin(|x|^{-c}) - c(2a-c-1)|x|^c \cos(|x|^{-c}) \right].$$

(3) Given $a-2c-2 \ge 0$. Show that f'' is bounded on E. Since $|x|^{a-2c-2}$ is bounded by 1 on E and

$$\left| (a(a-1)|x|^{2c} - c^2) \sin(|x|^{-c}) - c(2a-c-1)|x|^c \cos(|x|^{-c}) \right|$$

$$\leq |a(a-1)| + |c^2| + |c(2a-c-1)|$$

is bounded on E, f'' is bounded on E.

(4) Given a-2c-2<0. Show that f'' is unbounded on E. Take $x_n=\left(\frac{\pi}{2}+2n\pi\right)^{-\frac{1}{c}}\neq 0$ for $n=1,2,3,\ldots$ The sequence $\{x_n\}$ converges to 0, and

$$\lim_{n \to \infty} f''(x_n)$$

$$= \lim_{n \to \infty} \underbrace{\left(a(a-1)\left(\frac{\pi}{2} + 2n\pi\right)^{-2} - c^2\right)}_{\rightarrow -c^2 \neq 0} \underbrace{\left(\frac{\pi}{2} + 2n\pi\right)^{-\frac{a-2c-2}{c}}}_{\rightarrow \infty}$$

(5) By (e), f''(0) exists if and only if a-c-2>0. By (3)(4), f'' is bounded on E if and only if $a-2c-2\geq 0$. Since c>0, f'' is bounded on [-1,1] if and only if $a-2c-2\geq 0$.

Proof of (g). Similar to the proof of (a) or (d).

(1) Write $E = [-1, 1] - \{0\}$. By (e)(f),

$$f''(x) = \begin{cases} 0 & \text{if } x = 0, \\ |x|^{a-2c-2} \left[(a(a-1)|x|^{2c} - c^2) \sin(|x|^{-c}) - c(2a-c-1)|x|^c \cos(|x|^{-c}) \right]. & \text{if } x \in E. \end{cases}$$

Clearly, f'' is continuous on E. Hence, f'' is continuous if and only if $\lim_{x\to 0} f''(x) = f''(0) = 0$.

(2) Given a-2c-2>0. Show that $\lim_{x\to 0}f''(x)=0$. Since $|x|^{a-2c-2}\to 0$ as $x\to 0$ and

$$(a(a-1)|x|^{2c}-c^2)\sin(|x|^{-c})-c(2a-c-1)|x|^c\cos(|x|^{-c})$$

is bounded by $|a(a-1)| + |c^2| + |c(2a-c-1)|$ on E,

$$|x|^{a-2c-2} \cdot \left[(a(a-1)|x|^{2c} - c^2) \sin(|x|^{-c}) - c(2a-c-1)|x|^c \cos(|x|^{-c}) \right] \to 0$$

as $x \to 0$. The result is established.

- (3) Given a-2c-2=0. Show that $\lim_{x\to 0} f''(x)$ does not exist.
 - (a) Take $x_n = \left(\frac{\pi}{2} + 2n\pi\right)^{-\frac{1}{c}} \neq 0$ for $n = 1, 2, 3, \ldots$ The sequence $\{x_n\}$ converges to 0, and

$$\lim_{n \to \infty} f''(x_n)$$

$$= \lim_{n \to \infty} (a(a-1)|x_n|^{2c} - c^2) \sin(|x_n|^{-c}) - c(2a-c-1)|x_n|^c \cos(|x_n|^{-c})$$

$$= \lim_{n \to \infty} \frac{a(a-1)}{\left(\frac{\pi}{2} + 2n\pi\right)^2} - c^2$$

$$= -c^2$$

(b) Similarly, take $y_n=\left(\frac{3\pi}{2}+2n\pi\right)^{-\frac{1}{c}}\neq 0$ for $n=1,2,3,\ldots$ The sequence $\{y_n\}$ converges to 0, and

$$\lim_{n \to \infty} f''(y_n)$$

$$= \lim_{n \to \infty} (a(a-1)|y_n|^{2c} - c^2) \sin(|y_n|^{-c}) - c(2a-c-1)|y_n|^c \cos(|y_n|^{-c})$$

$$= \lim_{n \to \infty} -\frac{a(a-1)}{\left(\frac{3\pi}{2} + 2n\pi\right)^2} + c^2$$

$$= c^2.$$

- (c) By (a)(b), $\lim_{x\to 0} f''(x)$ does not exist (Theorem 4.2).
- (4) Given a 2c 2 < 0. Show that $\lim_{x\to 0} f''(x)$ does not exist. It is the same as (4) in the proof of (f).
- (5) By (2)(3)(4), f'' is continuous if and only if $\lim_{x\to 0} f''(x) = 0$ if and only if a 2c 2 > 0.

Exercise 5.14. Let f be a differentiable real function defined in (a,b). Prove that f is convex if and only if f' is monotonically increasing. Assume next f''(x) exists for every $x \in (a,b)$, and prove that f is convex if and only if $f''(x) \geq 0$ for all $x \in (a,b)$.

Proof.

- (1) Show that f' is monotonically increasing if f is convex.
 - (a) Since f is convex, by definition (Exercise 4.23)

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

whenever a < x < b, a < y < b, $0 < \lambda < 1$.

(b) As $x \neq y$, we have

$$f(y) - f(x) \ge \frac{f(x + \lambda(y - x)) - f(x)}{\lambda}$$
$$= \frac{f(x + \lambda(y - x)) - f(x)}{\lambda(y - x)} \cdot (y - x)$$

and let $\lambda \to 0$ to get

$$f(y) - f(x) \ge f'(x)(y - x)$$

(since f'(x) exists). Similarly, we have

$$f(x) - f(y) \ge f'(y)(x - y).$$

(c) Given any y > x, we have

$$f'(y)(y-x) > f(y) - f(x) > f'(x)(y-x).$$

Hence $f'(y) \ge f'(x)$ whenever y > x, or f' is monotonically increasing.

- (2) Show that f is convex if f' is monotonically increasing. Given any y > x and any $0 < \lambda < 1$.
 - (a) By Theorem 5.10 (the mean value theorem), there is a point $x < \xi < y$ such that

$$f(y) - f(x) = f'(\xi)(y - x).$$

Since f' is monotonically increasing,

$$f'(y)(y-x) \ge f(y) - f(x) \ge f'(x)(y-x).$$

(b) Write $z = \lambda x + (1 - \lambda)y$. Hence

$$f(y) - f(z) \ge f'(z)(y - z),$$

$$f(z) - f(x) < f'(z)(z - x),$$

or

$$f(y) \ge f(z) + f'(z)(y - z),$$

$$f(x) \ge f(z) + f'(z)(x - z),$$

or

$$\lambda f(x) + (1 - \lambda)f(y) \ge \lambda [f(z) + f'(z)(x - z)]$$

$$+ (1 - \lambda)[f(z) + f'(z)(y - z)]$$

$$= f(z)$$

$$= f(\lambda x + (1 - \lambda)y).$$

Hence f is convex.

(3) Show that $f''(x) \ge 0$ if f is convex and f'' exists. By (1), f' is monotonically increasing since f is convex. Given any $x \ne y$, we have

$$\frac{f'(y) - f'(x)}{y - x} \ge 0.$$

Let $y \to x$, we have $f''(x) \ge 0$ if f'' exists.

(4) Show that f is convex if f'' exists and $f''(x) \ge 0$. By Theorem 5.11(a), f' is monotonically increasing. By (2), f is convex.

Exercise 5.15 (Landau-Kolmogorov inequality on the half-line). Suppose $a \in \mathbb{R}^1$, f is a twice-differentiable real function on (a, ∞) , and M_0 , M_1 , M_2 are the least upper bounds of |f(x)|, |f'(x)|, |f''(x)|, respectively, on (a, ∞) . Prove that

$$M_1^2 \le 4M_0M_2$$
.

(Hint: If h > 0, Taylor's theorem shows that

$$f'(x) = \frac{1}{2h}[f(x+2h) - f(x)] - hf''(\xi)$$

for some $\xi \in (x, x + 2h)$. Hence

$$|f'(x)| \le hM_2 + \frac{M_0}{h}$$
.)

To show that $M_1^2 = 4M_0M_2$ can actually happen, take a = -1, define

$$f(x) = \begin{cases} 2x^2 - 1 & (-1 < x < 0), \\ \frac{x^2 - 1}{x^2 + 1} & (0 \le x < \infty), \end{cases}$$

and show that $M_0=1,\ M_1=4,\ M_2=4.$ Does $M_1^2\leq 4M_0M_2$ hold for vector-valued functions too?

Note.

(1) Write

$$M_1 \le 2M_0^{\frac{1}{2}} M_2^{\frac{1}{2}}.$$

2 is called the Landau-Kolmogorov constant, which is the best possible by the above example.

(2) In general, suppose $a \in \mathbb{R}^1$, f is a nth differentiable real function on (a, ∞) , and M_0 , M_k , M_n are the least upper bounds of |f(x)|, $|f^{(k)}(x)|$, $|f^{(n)}(x)|$, respectively, on (a, ∞) where $1 \le k < n$. Then

$$M_k \le C(n,k) M_0^{1-\frac{k}{n}} M_n^{\frac{k}{n}}.$$

Proof.

(1) Consider some trivial cases.

- (a) If $M_0 = 0$, then f(x) = 0 on $(a, +\infty)$. So that f'(x) = f''(x) = 0 on $(a, +\infty)$, or $M_1 = M_2 = 0$. The inequality holds.
- (b) If $M_2 = 0$, then f''(x) = 0 on $(a, +\infty)$. So that $f'(x) = \alpha$ for some constant $\alpha \in \mathbb{R}^1$ (Theorem 5.11(b)), and $f(x) = \alpha x + \beta$ for some constant $\beta \in \mathbb{R}^1$ (by applying Theorem 5.11(b) to $x \mapsto f(x) \alpha x$). Hence $M_1 = |\alpha|$ and

$$M_0 = \begin{cases} +\infty & (\alpha \neq 0), \\ |\beta| & (\alpha = 0). \end{cases}$$

In any case, the inequality holds.

- (c) If $M_0 = +\infty$ and $M_2 \neq 0$, there is nothing to do.
- (d) If $M_2 = +\infty$ and $M_0 \neq 0$, there is nothing to do.
- (2) By (1), we suppose that $0 < M_0 < +\infty$ and $0 < M_2 < +\infty$. Given $x \in (a, +\infty)$ and h > 0. By Taylor's theorem (Theorem 5.15):

$$f(x+2h) = f(x) + 2hf'(x) + 2h^2f''(\xi)$$

for some $\xi \in (x, x + 2h) \subseteq (a, +\infty)$. Thus

$$2h|f'(x)| \le |f(x+2h)| + |f(x)| + 2h^2|f''(\xi)|$$

$$\le 2M_0 + 2h^2M_2,$$

$$|f'(x)| \le \frac{M_0}{h} + hM_2$$

holds for all h > 0. In particular, take

$$h = \sqrt{\frac{M_0}{M_2}}$$

to get

$$|f'(x)| \le 2\sqrt{M_0 M_2}$$
.

Thus $2\sqrt{M_0M_2}$ is an upper bound of |f'(x)| for all $x \in (a, +\infty)$. Hence

$$M_1 \leq 2\sqrt{M_0 M_2}$$

or

$$M_1^2 \le 4M_0M_2$$
.

(3) Define

$$f(x) = \begin{cases} 2x^2 - 1 & (-1 < x < 0), \\ \frac{x^2 - 1}{x^2 + 1} & (0 \le x < \infty). \end{cases}$$

Show that $M_0 = 1$, $M_1 = 4$, $M_2 = 4$. Similar to Exercise 5.12,

$$f'(x) = \begin{cases} 4x & (-1 < x \le 0), \\ \frac{4x}{(x^2+1)^2} & (0 \le x < \infty). \end{cases}$$

(Here $\lim_{x\to 0+} f'(x) = 0$ and $\lim_{x\to 0-} f'(x) = 0$. So f'(0) = 0 by Exercise 5.9.) Also,

$$f''(x) = \begin{cases} 4 & (-1 < x \le 0), \\ \frac{-12x^2 + 4}{(x^2 + 1)^3} & (0 \le x < \infty). \end{cases}$$

(Here $\lim_{x\to 0+} f''(x) = 4$ and $\lim_{x\to 0-} f''(x) = 4$. So f''(0) = 4 by Exercise 5.9.) Hence, $M_0 = 1$, $M_1 = 4$, $M_2 = 4$.

(4) Given

$$\mathbf{f}(x) = (f_1(x), \dots, f_k(x))$$

be a twice-differentiable vector-valued function from (a, ∞) to \mathbb{R}^k . and M_0 , M_1 , M_2 are the least upper bounds of $|\mathbf{f}(x)|$, $|\mathbf{f}'(x)|$, $|\mathbf{f}''(x)|$, respectively, on (a, ∞) . Show that

$$M_1^2 \le 4M_0M_2$$
.

Similar to (1), we suppose that $0 < M_0 < +\infty$ and $0 < M_2 < +\infty$. Given any $\mathbf{v} = (v_1, \dots, v_k) \in \mathbb{R}^k$, $\mathbf{v} \cdot \mathbf{f}$ is a twice-differentiable real function on (a, ∞) . Similar to (2), Given $x \in (a, +\infty)$ and h > 0. By Taylor's theorem (Theorem 5.15):

$$(\mathbf{v} \cdot \mathbf{f})(x+2h) = (\mathbf{v} \cdot \mathbf{f})(x) + 2h(\mathbf{v} \cdot \mathbf{f})'(x) + 2h^2(\mathbf{v} \cdot \mathbf{f})''(\xi)$$

for some $\xi \in (x, x+2h) \subseteq (a, +\infty)$. Thus by the Schwarz inequality (Theorem 1.37(d))

$$2h|(\mathbf{v}\cdot\mathbf{f})'(x)| \leq |(\mathbf{v}\cdot\mathbf{f})(x+2h)| + |(\mathbf{v}\cdot\mathbf{f})(x)| + 2h^{2}|(\mathbf{v}\cdot\mathbf{f})''(\xi)|$$

$$\leq |\mathbf{v}||\mathbf{f}(x+2h)| + |\mathbf{v}||\mathbf{f}(x)| + 2h^{2}|\mathbf{v}||\mathbf{f}''(\xi)|$$

$$\leq (2M_{0} + 2h^{2}M_{2})|\mathbf{v}|,$$

$$|(\mathbf{v}\cdot\mathbf{f})'(x)| \leq \left(\frac{M_{0}}{h} + hM_{2}\right)|\mathbf{v}|$$

holds for any \mathbf{v} and h > 0. In particular, we take

$$\mathbf{v} = \mathbf{f}'(y)$$

and

$$h = \sqrt{\frac{M_0}{M_2}}$$

to get

$$|\mathbf{f}'(x) \cdot \mathbf{f}'(y)| \le 2\sqrt{M_0 M_2} |\mathbf{f}'(y)| \le 2M_1 \sqrt{M_0 M_2}.$$

Note that x and y are arbitrary (in $(a, +\infty)$). In particular, we take x=y to get

$$|\mathbf{f}'(x)|^2 \le 2M_1 \sqrt{M_0 M_2}.$$

Thus $2M_1\sqrt{M_0M_2}$ is an upper bound of $|\mathbf{f}'(x)|^2$ for all $x \in (a, +\infty)$. Hence

$$M_1^2 \le 2M_1\sqrt{M_0M_2}$$

or

$$M_1^2 \le 4M_0M_2.$$

Supplement (Landau-Kolmogorov inequality on the real line). Suppose f is a twice-differentiable real function on $(-\infty, +\infty)$, and M_0 , M_1 , M_2 are the least upper bounds of |f(x)|, |f'(x)|, |f''(x)|, respectively, on $(-\infty, +\infty)$. Prove that

$$M_1^2 \le 2M_0M_2.$$

Proof.

- (1) Similar to (1) in Landau-Kolmogorov inequality on the half-line, we suppose that $0 < M_0 < +\infty$ and $0 < M_2 < +\infty$.
- (2) Similar to (2) in Landau-Kolmogorov inequality on the half-line. Given $x \in \mathbb{R}^1$ and h > 0. By Taylor's theorem (Theorem 5.15):

$$f(x+2h) = f(x) + 2hf'(x) + 2h^2f''(\xi_1)$$
 (I)

$$f(x-2h) = f(x) - 2hf'(x) + 2h^2f''(\xi_2)$$
 (II)

for some $\xi_1 \in (x, x+2h)$ and $\xi_2 \in (x, x-2h)$. So (I) subtracts (II):

$$f(x+2h) - f(x-2h) = 4hf'(x) + 2h^2f''(\xi_1) - 2h^2f''(\xi_2).$$

Thus

$$4h|f'(x)| \le |f(x+2h)| + |f(x-2h)| + 2h^2|f''(\xi_1)| + 2h^2|f''(\xi_2)|$$

$$\le 2M_0 + 4h^2M_2,$$

$$|f'(x)| \le \frac{M_0}{2h} + hM_2$$

holds for all h > 0. In particular, take

$$h = \sqrt{\frac{M_0}{2M_2}}$$

to get

$$|f'(x)| \le \sqrt{2M_0 M_2}.$$

Thus $\sqrt{2M_0M_2}$ is an upper bound of |f'(x)| for all $x \in \mathbb{R}^1$. Hence

$$M_1 \le \sqrt{2M_0M_2}$$

or

$$M_1^2 \le 2M_0M_2$$
.

Note.

(1) Write

$$M_1 \leq \sqrt{2} M_0^{\frac{1}{2}} M_2^{\frac{1}{2}}.$$

 $\sqrt{2}$ is called the Landau-Kolmogorov constant, which is the best possible.

(2) In general, suppose f is a nth differentiable real function on \mathbb{R}^1 , and M_0 , M_k , M_n are the least upper bounds of |f(x)|, $|f^{(k)}(x)|$, $|f^{(n)}(x)|$, respectively, on \mathbb{R}^1 where $1 \leq k < n$. Then

$$M_k \le C(n,k) M_0^{1-\frac{k}{n}} M_n^{\frac{k}{n}}.$$

Exercise 5.16. Suppose f is twice-differentiable on $(0,\infty)$, f'' is bounded on $(0,\infty)$, and $f(x) \to 0$ as $x \to \infty$. Prove that $f'(x) \to 0$ as $x \to \infty$. (Hint: Let $a \to \infty$ in Exercise 5.15.)

Proof.

- (1) Write $|f''| \leq M$ for some real M since f'' is bounded on $(0, \infty)$.
- (2) Given any a > 0. As in Exercise 5.15, define M_0, M_1, M_2 are the least upper bounds of |f(x)|, |f'(x)|, |f''(x)| on (a, ∞) . Note that $M_2 \leq M$ for any a > 0 (by (1)). So that

$$M_1^2 \le 4M_0M_2 \le 4MM_0$$

for any a > 0.

(3) By assumption, $M_0 \to 0$ as $a \to \infty$. (So given any $\varepsilon > 0$, there exists a real A such that

$$0 \le M_0 < \frac{\varepsilon}{4M+1}$$

whenever $a \geq A$. Hence

$$M_1^2 \le 4MM_0 \le 4M \cdot \frac{\varepsilon}{4M+1} < \varepsilon.$$

whenever $a \geq A$.) Therefore $M_1^2 \to 0$ as $a \to \infty$, or $f'(x) \to 0$ as $x \to \infty$.

Exercise 5.17. Suppose f is a real, three times differentiable function on [-1,1], such that

$$f(-1) = 0,$$
 $f(0) = 0,$ $f(1) = 1,$ $f'(0) = 0.$

Prove that $f^{(3)}(x) \geq 3$ for some $x \in (-1,1)$. Note that equality holds for $\frac{1}{2}(x^3+x^2)$. (Hint: Use Theorem 5.15, with $\alpha=0$ and $\beta=\pm 1$, to show that there exist $s\in (0,1)$ and $t\in (-1,0)$ such that

$$f^{(3)}(s) + f^{(3)}(t) = 6.$$

We can drop the assumption that f(0) = 0 actually.

Proof (Hint).

(1) Use Taylor's theorem (Theorem 5.15), with $\alpha = 0$ and $\beta = \pm 1$,

$$f(1) = f(0) + f'(0) + \frac{f''(0)}{2} + \frac{f'''(s)}{6}$$
 (I)

$$f(-1) = f(0) - f'(0) + \frac{f''(0)}{2} - \frac{f'''(t)}{6}$$
 (II)

for some $s \in (0, 1)$ and $t \in (-1, 0)$.

(2) (I) subtracts (II) implies that

$$f(1) - f(-1) = 2f'(0) + \frac{f'''(s)}{6} + \frac{f'''(t)}{6}.$$

By assumption, f(-1) = 0, f(1) = 1 and f'(0) = 0. Hence

$$f^{(3)}(s) + f^{(3)}(t) = 6$$

for some $s \in (0,1)$ and $t \in (-1,0)$. So either $f^{(3)}(s) \ge 3$ or $f^{(3)}(t) \ge 3$ for some $s, t \in (-1,1)$.

Exercise 5.18. Suppose f is a real function on [a,b], n is a positive integer, and $f^{(n-1)}$ exists for every $t \in [a,b]$. Let α , β , and P be as in Taylor's theorem (Theorem 5.15). Define

$$Q(t) = \frac{f(t) - f(\beta)}{t - \beta}$$

for $t \in [a, b]$, $t \neq \beta$, differentiate

$$f(t) - f(\beta) = (t - \beta)Q(t)$$

n-1 times at $t=\alpha$, and derive the following version of Taylor's theorem:

$$f(\beta) = P(\beta) + \frac{Q^{(n-1)}(\alpha)}{(n-1)!} (\beta - \alpha)^n.$$

Proof. \square

Exercise 5.19. Suppose f is defined in (-1,1) and f'(0) exists. Suppose $-1 < \alpha_n < \beta_n < 1, \ \alpha_n \to 0, \ and \ \beta_n \to 0 \ as \ n \to \infty$. Define the difference quotients

$$D_n = \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n}$$

Prove the following statements:

- (a) If $\alpha_n < 0 < \beta_n$, then $\lim D_n = f'(0)$.
- (b) If $0 < \alpha_n < \beta_n$ and $\left\{ \frac{\beta_n}{\beta_n \alpha_n} \right\}$ is bounded, then $\lim D_n = f'(0)$.
- (c) If f' is continuous in (-1,1), then $\lim D_n = f'(0)$.

Give an example in which f is differentiable in (-1,1) (but f' is not continuous at 0) and in which α_n , β_n tend to 0 in such a way that $\lim D_n$ exists but is different from f'(0).

Exercise 5.20. Formulate and prove an inequality which follows form Taylor's theorem and which remains valid for vector-valued function.

Proof.

(a) Suppose \mathbf{f} is a function of [a,b] into \mathbb{R}^m , n is a positive integer, $\mathbf{f}^{(n-1)}$ is continuous on [a,b], $\mathbf{f}^{(n)}(t)$ exists for every $t \in (a,b)$. Let α , β be distinct points of [a,b], and define

$$\mathbf{P}(t) = \sum_{k=0}^{n-1} \frac{\mathbf{f}^{(k)}(\alpha)}{k!} (t - \alpha)^k.$$

Then there exists a point x between α and β such that

$$|\mathbf{f}(\beta) - \mathbf{P}(\beta)| \le (\beta - \alpha)^n \left| \frac{\mathbf{f}^{(n)}(x)}{n!} \right|.$$

For n = 1, this is just Theorem 5.19.

(b) Similar to the proof of Theorem 5.19. Put

$$\mathbf{z} = \mathbf{f}(\beta) - \mathbf{P}(\beta).$$

Might assume that $\mathbf{z} \neq 0$. (Otherwise there is nothing to prove.) Define

$$\varphi(t) = \mathbf{z} \cdot \mathbf{f}(t) \qquad (\alpha \le t \le \beta).$$

Then $\varphi(t)$ is a function of [a, b] into \mathbb{R}^1 , and

$$\varphi^{(k)}(t) = \mathbf{z} \cdot \mathbf{f}^{(k)}(t)$$

where $0 \le k \le n$. Also, $\varphi^{(n-1)}$ is continuous on $[\alpha, \beta]$, and $\varphi^{(n)}(t)$ exists for every $t \in (\alpha, \beta)$.

(c) By Taylor's theorem (Theorem 5.15), there exists $x \in (\alpha, \beta)$ such that

$$\varphi(\beta) = Q(\beta) + \frac{\varphi^{(n)}(x)}{n!} (\beta - \alpha)^n$$

where

$$Q(t) = \sum_{k=0}^{n-1} \frac{\varphi^{(k)}(\alpha)}{k!} (t - \alpha)^k.$$

By (b), we have $Q(t) = \mathbf{z} \cdot \mathbf{P}(t)$ and thus

$$\mathbf{z} \cdot (\mathbf{f}(\beta) - \mathbf{P}(\beta)) = \mathbf{z} \cdot \frac{\mathbf{f}^{(n)}(x)}{n!} (\beta - \alpha)^n.$$

Note that $\mathbf{z} = \mathbf{f}(\beta) - \mathbf{P}(\beta)$ and Schwarz inequality (Theorem 1.37(d)). Hence

$$|\mathbf{f}(\beta) - \mathbf{P}(\beta)|^2 = \left| (\mathbf{f}(\beta) - \mathbf{P}(\beta)) \cdot \frac{\mathbf{f}^{(n)}(x)}{n!} (\beta - \alpha)^n \right|$$

$$\leq |\mathbf{f}(\beta) - \mathbf{P}(\beta)| \left| \frac{\mathbf{f}^{(n)}(x)}{n!} \right| (\beta - \alpha)^n$$

or

$$|\mathbf{f}(\beta) - \mathbf{P}(\beta)| \le \left| \frac{\mathbf{f}^{(n)}(x)}{n!} \right| (\beta - \alpha)^n.$$

Exercise 5.21. Let E be a closed subset of \mathbb{R}^1 . We saw in Exercise 4.22, that there is a real continuous function f on \mathbb{R}^1 whose zero set is E. Is it possible, for each closed set E, to find such an f which is differentiable on \mathbb{R}^1 , or one which is n times differentiable, or even one which has derivatives of all orders on \mathbb{R}^1 ?

Exercise 5.22. Suppose f is a real function on $(-\infty, +\infty)$. Call x a **fixed point** of f if f(x) = x.

- (a) If f is differentiable and $f'(t) \neq 1$ for every real t, prove that f has at most one fixed point.
- (b) Show that the function f defined by

$$f(t) = t + (1 + e^t)^{-1}$$

has no fixed point, although 0 < f'(t) < 1 for all real t.

(c) However, if there is a constant A < 1 such that $|f'(t)| \le A$ for all real t, prove that a fixed point x of f exists, and that $x = \lim x_n$, where x_1 is an arbitrary real number and

$$x_{n+1} = f(x_n)$$

for $n = 1, 2, 3, \dots$

(d) Show that the process describe in (c) can be visualized by the zig-zag path

$$(x_1, x_2) \to (x_2, x_2) \to (x_2, x_3) \to (x_3, x_3) \to (x_3, x_4) \to \dots$$

Exercise 5.23. The function f defined by

$$f(x) = \frac{x^3 + 1}{3}$$

has three fixed points, say α , β , γ , where

$$2<\alpha<1, \qquad 0<\beta<1, \qquad 1<\gamma<2.$$

For arbitrarily chosen x_1 , define $\{x_n\}$ by setting $x_{n+1} = f(x_n)$.

- (a) If $x_1 < \alpha$, prove that $x_n \to -\infty$ as $n \to \infty$.
- (b) If $\alpha < x_1 < \gamma$, prove that $x_n \to \beta$ as $n \to \infty$.
- (c) If $\gamma < x_1$, prove that $x_n \to +\infty$ as $n \to \infty$.

Thus β can be located by this method, but α and γ cannot.

Exercise 5.24. The process described in part (c) of Exercise 5.22 can of course also be applied to functions that map $(0,\infty)$ to $(0,\infty)$. Fix some $\alpha > 1$, and put

$$f(x) = \frac{1}{2} \left(x + \frac{\alpha}{x} \right), \qquad g(x) = \frac{\alpha + x}{1 + x}.$$

Both f and g have $\sqrt{\alpha}$ as their fixed point in $(0,\infty)$. Try to explain, on the basis of properties of f and g, why the convergence in Exercise 3.16, is so much more rapid than it is in Exercise 3.17. (Compare f' and g', draw the zig-zags suggested in Exercise 5.22.)

Exercise 5.25. Suppose f is twice differentiable on [a,b], f(a) < 0, f(b) > 0, $f'(x) \ge \delta > 0$, and $0 \le f''(x) \le M$ for all $x \in [a,b]$. Let ξ be the unique point in (a,b) at which $f(\xi) = 0$. Complete the details in the following outline of **Newton's method** for computing ξ .

(a) Choose $x_1 \in (\xi, b)$, and define $\{x_n\}$ by

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Interpret this geometrically, in terms of a tangent to the graph of f.

(b) Prove that $x_{n+1} < x_n$ and that

$$\lim_{n \to \infty} x_n = \xi.$$

(c) Use Taylor's theorem to show that

$$x_{n+1} - \xi = \frac{f''(t_n)}{2f'(x_n)}(x_n - \xi)^2$$

for some $t_n \in (\xi, x_n)$.

(d) (Quadratic convergence) If $A = \frac{M}{2\delta}$, deduce that

$$0 \le x_{n+1} - \xi \le \frac{1}{A} [A(x_1 - \xi)]^{2^n}.$$

(Compare with Exercise 3.16 and 3.18.)

(e) Show that Newton's method amounts to finding a fixed point of the function g defined by

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

How does g'(x) behave for x near ξ ?

(f) Put $f(x) = x^{\frac{1}{3}}$ on $(-\infty, +\infty)$ and try Newton's method. What happens?

Proof of (a) (Wikipedia). The equation of the tangent line to the curve y = f(x) at $x = x_n$ is

$$y = f'(x_n)(x - x_n) + f(x_n).$$

The x-intercept of this line (the value of x which makes y = 0) is taken as the next approximation, x_{n+1} , to the root, so that the equation of the tangent line is satisfied when $(x, y) = (x_{n+1}, 0)$:

$$0 = f'(x_n)(x - x_n) + f(x_n).$$

Solving for x_{n+1} gives

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Proof of (b).

- (1) Show that $x_n \geq \xi$ for all n. Induction on n.
 - (a) n = 1 is clearly true: $x_1 > \xi$ by assumption.
 - (b) Assume the induction hypothesis that for the single case n = k holds. By the mean value theorem (Theorem 5.10), there is a point $\xi_k \in (\xi, x_k)$

$$f(x_k) - f(\xi) = f'(\xi_k)(x_k - \xi),$$

or

$$f(x_k) = f'(\xi_k)(x_k - \xi)$$

(since $f(\xi) = 0$). Since $f'' \ge 0$, f' is monotonically increasing (Theorem 5.11(a)). Hence $f'(\xi_k) \le f'(x_k)$ and thus

$$f(x_k) = f'(\xi_k)(x_k - \xi) \le f'(x_k)(x_k - \xi).$$

Since $f'(x_k) > 0$ by assumption,

$$\xi \le x_k - \frac{f(x_k)}{f'(x_k)} = x_{k+1}.$$

- (c) Since both the base case in (a) and the inductive step in (b) have been proved as true, by mathematical induction $x_n \geq \xi$ for all n.
- (2) Show that $x_{n+1} < x_n$ for all n.
 - (a) Since f' > 0, $f'(x_n) > 0$ for all n.
 - (b) Since f' > 0, f is strictly increasing (Theorem 5.10). Hence $f(x_n) > f(\xi) = 0$ for all n (by (1)).

(c) By (a)(b),
$$\frac{f(x_n)}{f'(x_n)} > 0$$
 or

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} < x_n.$$

(3) By Theorem 3.14, $\{x_n\}$ converges to some real number $\zeta \geq \xi$. Note that f and f' are continuous by the existence of f'' (Theorem 5.2), we have

$$\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} x_n - \frac{f(\lim_{n \to \infty} x_n)}{f'(\lim_{n \to \infty} x_n)}$$

provided $f' \neq 0$ (Theorem 4.9 and Theorem 4.4). Hence

$$\zeta = \zeta - \frac{f(\zeta)}{f'(\zeta)}$$

or $f(\zeta) = 0$. By the uniqueness of ξ , $\zeta = \xi$ or $\lim x_n = \xi$ as desired.

Proof of (c). By Taylor's theorem (Theorem 5.15),

$$f(\xi) = f(x_n) + f'(x_n)(\xi - x_n) + \frac{f''(t_n)}{2}(\xi - x_n)^2$$

for some $t_n \in (\xi, x_n)$. Note that $f(\xi) = 0$, $f'(x_n) \neq 0$ and $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, we have the desired result. \square

Proof of (d). Clearly, $0 \le x_{n+1} - \xi$ for all n (by (b)). Besides, by (c)

$$x_{n+1} - \xi = \frac{f''(t_n)}{2f'(x_n)}(x_n - \xi)^2$$

Note that $f'' \leq M$ and $f' \geq \delta > 0$ by assumption, and thus

$$x_{n+1} - \xi \le \frac{M}{2\delta} (x_n - \xi)^2 = A(x_n - \xi)^2.$$

By induction,

$$x_{n+1} - \xi \le \frac{1}{A} (A(x_1 - \xi))^{2^n}.$$

Note. Compare with Exercise 3.16 and Exercise 3.18. Might assume that p > 1.

(1) Fix a positive number α . Let $f(x) = x^p - \alpha$ on E = (a, b) where $a = \frac{1}{2}\alpha^{\frac{1}{p}}$ and

$$b = \begin{cases} 2\alpha^{\frac{1}{p}} & (p=2), \\ \left(\frac{2(p-1)}{p}\right)^{\frac{1}{p-2}} \alpha^{\frac{1}{p}} & (p>2). \end{cases}$$

E = (a, b) is well-defined since a < b. Besides, $\xi = \alpha^{\frac{1}{p}} \in E = (a, b)$.

(2) By construction,

$$f(a) < 0 \text{ and } f(b) > 0.$$

By $f'(x) = px^{p-1}$ and $f''(x) = p(p-1)x^{p-2}$,

$$f'(x) \ge pa^{p-1} > 0,$$

 $0 < f''(x) < p(p-1)b^{p-2}.$

on E. Write

$$\delta = pa^{p-1} = \frac{p}{2^{p-1}} \alpha^{\frac{p-1}{p}},$$

$$M = p(p-1)b^{p-2} = 2(p-1)^2 \alpha^{\frac{p-2}{p}}.$$

(3) Hence the Newton's method works for $f(x) = x^p - \alpha$. That is, as we define $\{x_n\}$ by

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = \frac{p-1}{p}x_n + \frac{\alpha}{p}x_n^{-p+1},$$

we have $\lim x_n = \xi = \alpha^{\frac{1}{p}}$. And

$$0 \le x_{n+1} - \xi \le \frac{1}{A} (A(x_1 - \xi))^{2^n}.$$

Here

$$A = \frac{M}{2\delta} = \frac{2^{p-1}(p-1)^2}{p\alpha^{\frac{1}{p}}}.$$

(4) Note that

$$\beta = \frac{p\alpha^{\frac{1}{p}}}{(p-1)^2} \neq \frac{p\alpha^{\frac{1}{p}}}{2^{p-1}(p-1)^2} = \frac{1}{A}.$$

where β is defined in the proof of Exercise 3.18. Note that $f'(x_n) \geq f'(\xi)$ (since f' is monotonically increasing and all $x_n \geq \xi$), and thus A can be chosen by a better estimation:

$$A = \frac{M}{2f'(\xi)} = \frac{(p-1)^2}{p\alpha^{\frac{1}{p}}} = \frac{1}{\beta}.$$

Now it is exactly the same as Exercise 3.16 and Exercise 3.18.

Proof of (e).

- (1) Define $g(x) = x \frac{f(x)}{f'(x)}$ on [a, b]. $g(\xi) = \xi$ if and only if $f(\xi) = 0$.
- (2) By the construction of g, g is differentiable and

$$g'(x) = 1 - \frac{f'(x)^2 - f(x)f''(x)}{f'(x)^2} = \frac{f(x)f''(x)}{f'(x)^2}.$$

(3) Hence

$$|g'(x)| \le \left| \frac{f(x)f''(x)}{f'(x)^2} \right| = \frac{|f(x)||f''(x)|}{|f'(x)|^2} \le \frac{M}{\delta^2} |f(x)|.$$

As $x \to \xi$, $|f(x)| \to 0$. Therefore, $|g'(x)| \to 0$ or $g'(x) \to 0$ as $x \to \xi$.

Proof of (f).

- (1) It is clearly that f(x) = 0 if and only if x = 0. Write $\xi = 0$.
- (2) Note that

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = -2x_n,$$

or

$$x_n = (-2)^{n-1} x_1$$

for any $x_1 \in (\xi, \infty)$ where $n = 1, 2, 3, \ldots$ Hence, the sequence $\{x_n\}$ does not converge for any choice of $x_1 \in (\xi, \infty)$. In this case we cannot find ξ satisfying $f(\xi) = 0$ by Newton's method.

(3) In fact,

$$f'(x) = \frac{1}{3}x^{-\frac{2}{3}} \to 0 \text{ as } x \to \pm \infty.$$

Hence such $\delta > 0$ satisfying $f'(x) \ge \delta > 0$ does not exist.

Exercise 5.26. Suppose f is differentiable on [a,b], f(a) = 0, and there is a real number A such that $|f'(x)| \le A|f(x)|$ on [a,b]. Prove that f(x) = 0 for all $x \in [a,b]$. (Hint: Fix $x_0 \in [a,b]$, let

$$M_0 = \sup |f(x)|, \qquad M_1 = \sup |f'(x)|$$

for $a \le x \le x_0$. For any such x,

$$|f(x)| \le M_1(x_0 - a) \le A(x_0 - a)M_0.$$

Hence $M_0 = 0$ if $A(x_0 - a) < 1$. That is, f = 0 on $[a, x_0]$. Proceed.)

Proof (Hint).

(1) If A = 0, then f'(x) = 0 or f(x) is constant on [a, b] (Theorem 5.11(b)). Since f(a) = 0, f(x) = 0 on [a, b].

(2) Suppose that A > 0. Fix $x_0 \in [a, b]$, let

$$M_0 = \sup |f(x)|, \qquad M_1 = \sup |f'(x)|$$

for $a \le x \le x_0$. Since $|f'(x)| \le A|f(x)|$ on [a, b],

$$|f'(x)| \le A|f(x)| \le AM_0.$$

Since AM_0 is an upper bound for |f'(x)|,

$$M_1 \leq AM_0$$
.

(3) Given any $x \in [a, x_0]$. Since f is differentiable on $[a, x_0] \subseteq [a, b]$, by the mean value theorem (Theorem 5.10), there is $\xi \in (a, x)$ such that

$$f(x) - f(a) = f'(\xi)(x - a).$$

Note that f(a) = 0 by assumption. So that

$$|f(x)| = |f'(\xi)|(x-a)$$

$$\leq M_1(x-a) \qquad \text{(Definition of } M_1\text{)}$$

$$\leq AM_0(x-a) \qquad \text{((2))}$$

$$\leq AM_0(x_0-a). \qquad (x \in [a,x_0])$$

Since $AM_0(x_0 - a)$ is an upper bound for |f(x)|,

$$M_0 \le AM_0(x_0 - a).$$

Take

$$x_0 = \min\left\{\frac{1}{2A} + a, b\right\}$$

so that $M_0 \le AM_0(x_0 - a) \le \frac{M_0}{2}$. $M_0 = 0$ or f(x) = 0 on $[a, x_0]$.

(4) Take a partition

$$P = \{a = x_{-1}, x_0, \dots, x_n = b\}$$

of [a,b] such that each subinterval $[x_{i-1},x_i]$ satisfying $\Delta x_i = x_i - x_{i-1} < \frac{1}{2A}$. By (3), f(x) = 0 on $[x_{-1},x_0]$. Apply the same argument in (3), f(x) = 0 on $[x_0,x_1]$. Continue this process, f(x) = 0 on each subinterval and thus on the whole interval [a,b].

Note. It holds for vector-valued functions too:

Suppose **f** is a vector-valued differentiable function on [a,b], f(a) = 0, and there is a real number A such that $|\mathbf{f}'(x)| \leq A|\mathbf{f}(x)|$ on [a,b]. Prove that $\mathbf{f}(x) = 0$ for all $x \in [a,b]$.

The proof is similar except using Theorem 5.19 ($|\mathbf{f}(b) - \mathbf{f}(a)| \le (b-a)|\mathbf{f}'(x)|$) in addition.

Exercise 5.27. Let ϕ be a real function defined on a rectangle R in the plane, given by $a \le x \le b$, $\alpha \le y \le \beta$. A **solution** of the initial-value problem

$$y' = \phi(x, y), \quad y(a) = c \quad (\alpha \le c \le \beta)$$

is, by definition, a differentiable function f on [a,b] such that $f(a)=c,\ \alpha\leq f(x)\leq \beta,\ and$

$$f'(x) = \phi(x, f(x))$$
 $(a \le x \le b)$

Prove that such a problem has at most one solution if there is a constant A such that

$$|\phi(x, y_2) - \phi(x, y_1)| \le A|y_2 - y_1|$$

whenever $(x, y_1) \in R$ and $(x, y_2) \in R$. (Hint: Apply Exercise 26 to the difference of two solutions.) Note that this uniqueness theorem does not hold for the initial-value problem

$$y' = y^{\frac{1}{2}}, \quad y(0) = 0,$$

which has two solutions: f(x) = 0 and $f(x) = \frac{x^2}{4}$. Find all other solutions.

Proof (Hint).

(1) Suppose f_1 and f_2 are two solutions of that problem. Define $f = f_1 - f_2$. f is differentiable on [a, b], $f(a) = f_1(a) - f_2(a) = c - c = 0$. And

$$|f'(x)| = |f'_1(x) - f'_2(x)|$$

$$= |\phi(x, f_1(x)) - \phi(x, f_2(x))|$$

$$\leq A|f_1(x) - f_2(x)|$$

on [a, b]. By Exercise 5.26, f(x) = 0 on [a, b], or $f_1(x) = f_2(x)$ on [a, b].

(2) The initial-value problem

$$y' = y^{\frac{1}{2}}, \quad y(0) = 0,$$

which has two solutions: f(x) = 0 and $f(x) = \frac{x^2}{4}$. Find all other solutions.

Note. It does not exist a real A such that $|\phi(x,y_2) - \phi(x,y_1)| \le A|y_2 - y_1|$ in this initial-value problem.

(a) Clearly, f(x) = 0 and $f(x) = \frac{x^2}{4}$ are two solutions for the initial-value problem.

(b) Suppose $f(x) \neq 0$ on $[0, \infty)$. Since $f'(x) = f(x)^{\frac{1}{2}}$, $f(x) \geq 0$. Since f(x) is continuous (Theorem 5.2), the set

$$E = \{x \in [0, \infty) : f(x) > 0\}$$

is open in \mathbb{R}^1 (Theorem 4.8). By Exercise 2.29 we write E as the union of an at most countable collection of disjoint segments, say

$$E = \bigcup_{(a_i, b_i) \subseteq [0, \infty)} (a_i, b_i)$$

where all (a_i, b_i) segments are disjoint. Note that E is nonempty.

(c) For any segment (a_i, b_i) , define $g(x) = f(x)^{\frac{1}{2}}$ on (a_i, b_i) . (Clearly, $g(a_i) = f(a_i) = 0$ by the definition of E.) Thus

$$g'(x) = \frac{1}{2}f(x)^{-\frac{1}{2}}f'(x) = \frac{1}{2}.$$

Hence

$$g(x) = \frac{1}{2}x + c$$

for some constant $c \in \mathbb{R}^1$. So

$$f(x) = g(x)^2 = \left(\frac{1}{2}x + c\right)^2.$$

 $f(a_i) = 0$ implies that $c = -\frac{a_i}{2}$. Hence

$$f(x) = \frac{1}{4}(x - a_i)^2$$

on (a_i, b_i) .

(d) By (c), if $b_i < 0$ is defined as a real number, then $f(b_i) = 0$ by definition of E. Note that

$$\lim_{x \to b_i -} f(x) = \frac{1}{4} (b_i - a_i)^2 > 0,$$

which is absurd. Hence $b_i = \infty$ and thus E is of the form

$$E = (a, \infty) \qquad (a \ge 0).$$

Therefore,

$$f(x) = \begin{cases} 0 & (0 \le x \le a), \\ \frac{1}{4}(x-a)^2 & (x > a \ge 0). \end{cases}$$

Exercise 5.28. Formulate and prove an analogous uniqueness theorem for systems of differential equations of the form

$$y'_{j} = \phi_{j}(x, y_{1}, \dots, y_{k}), \quad y_{j}(a) = c_{j} \quad (j = 1, \dots, k)$$

Note that this can be rewritten in the form

$$\mathbf{y}' = \boldsymbol{\phi}(x, \mathbf{y}), \quad \mathbf{y}(a) = \mathbf{c}$$

where $\mathbf{y} = (y_1, \dots, y_k)$ ranges over a k-cell, $\boldsymbol{\phi}$ is the mapping of a (k+1)-cell into the Euclidean k-space whose components are the function ϕ_1, \dots, ϕ_k , and \mathbf{c} is the vector (c_1, \dots, c_k) . Use Exercise 5.26, for vector-valued functions.

Proof.

(1) A solution of the initial-value problem

$$\mathbf{y}' = \boldsymbol{\phi}(x, \mathbf{y}), \quad \mathbf{y}(a) = \mathbf{c}$$

is, by definition, a differentiable function ${\bf f}$ on [a,b] such that ${\bf f}(a)={\bf c},$ and

$$\mathbf{f}'(x) = \phi(x, \mathbf{f}(x)) \qquad (a \le x \le b).$$

Then this problem has at most one solution if there is a constant A such that

$$|\phi(x, \mathbf{y}_2) - \phi(x, \mathbf{y}_1)| \le A|\mathbf{y}_2 - \mathbf{y}_1|$$

whenever $(x, y_1) \in R$ and $(x, y_2) \in R$ where R is a (k+1)-cell defined by

$$R = [a, b] \times [\alpha_1, \beta_1] \times \cdots \times [\alpha_k, \beta_k].$$

(2) Similar to Exercise 5.27, Suppose \mathbf{f}_1 and \mathbf{f}_2 are two solutions of that problem. Define $\mathbf{f} = \mathbf{f}_1 - \mathbf{f}_2$. \mathbf{f} is differentiable on [a,b], $\mathbf{f}(a) = \mathbf{f}_1(a) - \mathbf{f}_2(a) = \mathbf{c} - \mathbf{c} = 0$. And

$$|\mathbf{f}'(x)| = |\mathbf{f}'_1(x) - \mathbf{f}'_2(x)|$$

= $|\boldsymbol{\phi}(x, \mathbf{f}_1(x)) - \boldsymbol{\phi}(x, \mathbf{f}_2(x))|$
 $\leq A|\mathbf{f}_1(x) - \mathbf{f}_2(x)|$

on [a, b]. By Note in Exercise 5.26, $\mathbf{f}(x) = 0$ on [a, b], or $\mathbf{f}_1(x) = \mathbf{f}_2(x)$ on [a, b].

Exercise 5.29. Specialize Exercise 5.28 by considering the system

$$y'_{j} = y_{j+1}$$
 $(j = 1, ..., k-1),$
 $y'_{k} = f(x) - \sum_{i=1}^{k} g_{j}(x)y_{j}$

where f, g_1, \ldots, g_k are continuous real functions on [a, b], and derive a uniqueness theorem for solutions of the equation

$$y^{(k)} + g_k(x)y^{(k-1)} + \dots + g_2(x)y' + g_1(x)y = f(x),$$

 $subject\ to\ initial\ conditions$

$$y(a) = c_1,$$
 $y'(a) = c_1,$ $\dots,$ $y^{(k-1)}(a) = c_k.$

Proof.

(1) Write

$$\mathbf{y} = (y_1, \dots, y_k)$$

$$= (y, y', y'', \dots, y^{(k-1)}),$$

$$\phi(x, \mathbf{y}) = \left(y_2, y_3, \dots, y_{k-1}, f(x) - \sum_{j=1}^k g_j(x)y_j\right)$$

$$= \left(y', y'', \dots, y^{(k-1)}, f(x) - \sum_{j=1}^k g_j(x)y^{(j-1)}\right),$$

$$\mathbf{c} = (c_1, \dots, c_k).$$

So that

$$\mathbf{y}' = \boldsymbol{\phi}(x, \mathbf{y}), \quad \mathbf{y}(a) = \mathbf{c}$$

where \mathbf{y} ranges over a k-cell R.

(2) To show that the problem has at most one solution, by Exercise 5.28 it suffices to show that there is a constant A such that

$$|\phi(x, \mathbf{y}) - \phi(x, \mathbf{z})| < A|\mathbf{y} - \mathbf{z}|$$

whenever $(x, \mathbf{y}) \in R$ and $(x, \mathbf{z}) \in R$.

(3) Since all g_j $(1 \le j \le k)$ are real continuous functions on a compact set [a,b], all g_j are bounded (Theorem 4.15), say $|g_j| \le M$ on [a,b] for some $M_j \in \mathbb{R}^1$ $(1 \le j \le k)$.

(4) Write
$$\mathbf{y} = (y_1, \dots, y_k)$$
 and $\mathbf{z} = (z_1, \dots, z_k)$. So $|\phi(x, \mathbf{y}) - \phi(x, \mathbf{z})|^2$

$$\begin{aligned} &|\phi(x,\mathbf{y}) - \phi(x,\mathbf{z})|^2 \\ &= \left| \left(y_2 - z_2, y_3 - z_3, \dots, y_{k-1} - z_{k-1}, -\sum_{j=1}^k g_j(x)(y_j - z_j) \right) \right|^2 \\ &= \sum_{j=2}^{k-1} (y_j - z_j)^2 + \left(-\sum_{j=1}^k g_j(x)(y_j - z_j) \right)^2 \\ &\leq \sum_{j=2}^{k-1} (y_j - z_j)^2 + \sum_{j=1}^k g_j(x)^2 \sum_{j=1}^k (y_j - z_j)^2 \\ &\leq \sum_{j=2}^{k-1} (y_j - z_j)^2 + \sum_{j=1}^k M_j^2 \sum_{j=1}^k (y_j - z_j)^2 \\ &\leq \sum_{j=1}^k (y_j - z_j)^2 + \sum_{j=1}^k M_j^2 \sum_{j=1}^k (y_j - z_j)^2 \\ &\leq \left(1 + \sum_{j=1}^k M_j^2 \right) |\mathbf{y} - \mathbf{z}|^2. \end{aligned}$$

$$(31)$$

Hence $|\phi(x, \mathbf{y}) - \phi(x, \mathbf{z})| \le A|\mathbf{y} - \mathbf{z}|$ for some $A = \left(1 + \sum_{j=1}^{k} M_j^2\right)^{\frac{1}{2}}$.