

Credit Card Fraud Detection Using ML Techniques & Comparing

Diren Boran Sezen 21946553

İlkim İclal Aydoğan 21992814

Hasan Çağrı Sarıkaya 2200356852

BBM-480 Design Project Supervisor: Dilmurod Vahabdjanov

Introduction

The Problem: Credit card fraud is a pervasive and costly problem, causing billions of dollars in losses annually. Traditional rule-based systems struggle to keep pace with the evolving tactics of fraudsters.

Our Goal: To develop more accurate and adaptable fraud detection models using machine learning and anomaly detection techniques.

Our Approach: We leverage diverse datasets, feature engineering, and geographic enrichment to enhance model performance and capture complex fraud

Datasets

Real-World Transactions: Source: Kaggle Size: 284 807 transactions Features: 30 numerical features (PCA transformed Challenge: Highly imbalanced (few fraudulent transactions Simulated Transactions (IBM TabFormer): Size: 24 386 900 transactions

Evaluation Metrics:

- · 5-fold cross-validation
- · Metrics: Precision, Recall, F1-score, AUC-ROC

Neural Network

Artificial Neural Network (ANN):

- · Three fully connected layers
- Tanh activation functions.
- · Trained using Adam optimizer and cross-entropy loss

Models

Supervised Learning Algorithms

- · Logistic Regression: Linear model for binary classification, suitable for predicting whether a transaction is fraudulent or not.
- · k-Nearest Neighbors (KNN): A nonparametric method that classifies transactions based on their similarity to neighboring data points in the feature
- · Support Vector Machine (SVM): Model that finds the optimal hyperplane to separate fraudulent and legitimate transactions.
- · Random Forest (RF): An ensemble learning method that combines multiple decision trees to improve prediction accuracy and robustness
- Decision Tree (DT): A tree-like model that makes decisions based on a series of hierarchical rules learned from the data.

Results

F-Score comparison (Tabformer)

F-Score comparison

ANOMALY DETECTION

- One-Class SVM: Learns a profile of normal transactions and identifies outliers that deviate significantly from this profile.
- · Isolation Forest: Isolates anomalies by randomly partitioning the feature space and identifying points that are easier to isolate.

One Class Support Vector Machine

Classifica	tion	Report: precision	recall	f1-score	support
	0	1.00	0.99	0.99	85307
	1	0.07	0.64	0.13	136
accur	acy			0.99	85443
macro	avg	0.54	0.81	0.56	85443
weighted	avg	1.00	0.99	0.99	85443

With Customized Threshold

With	n Customi:	zed Thr	eshold			Isolat	ion For	est	
Classification	Report: precision	recall	f1-score	support	Classification	Report: precision	recall	f1-score	support
0	1.00 0.04	0.97	0.99	85307 136	0	1.00 0.22	1.00 0.51	1.00 0.31	85307 136
accuracy macro avg weighted avg	0.82 1.00	0.87	0.97 0.53 0.98	85443 85443 85443	accuracy macro avg weighted avg	0.61	0.75	1.00 0.65 1.00	85443 85443 85443

Precision Comparison

	precision	recall	f1-score	support
0	1.88	0.03	0.96	3653647
1	0.01	0.50	0.82	4388
accuracy			0.93	3658835
macro avg	0.58	0.72	0.49	3658835
eighted avg	1.00	0.93	0.96	3658835

Classification Report for tabformer data