

Preliminary Technical Information

PolarP[™] Power MOSFET

IXTH48P20P IXTT48P20P

P-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum F	Ratings
V _{DSS}	$T_J = 25^{\circ}C$ to $150^{\circ}C$	- 200	V
V _{DGR}	$T_J = 25^{\circ}C$ to 150°C, $R_{GS} = 1M\Omega$	- 200	V
V _{GSS}	Continuous	±20	V
V _{GSM}	Transient	±30	V
I _{D25}	T _c = 25°C	- 48	A
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, pulse width limited by $T_{\rm JM}$	-144	Α
I _{AR}	T _c = 25°C	- 48	A
E _{AS}	$T_{c} = 25^{\circ}C$	2.5	J
dV/dt	$I_{_{\mathrm{S}}} \le I_{_{\mathrm{DM}}}, V_{_{\mathrm{DD}}} \le V_{_{\mathrm{DSS}}}, T_{_{\mathrm{J}}} \le 150^{\circ}\mathrm{C}$	10	V/ns
P _D	T _c = 25°C	462	W
T _J		- 55 +150	°C
T _{JM}		150	°C
T _{stg}		- 55 +150	°C
T _L	1.6mm (0.062 in.) from case for 10s	300	°C
T _{SOLD}	Plastic body for 10s	260	°C
M _d	Mounting torque (TO-247, TO-3P)	1.13 / 10	Nm/lb.in.
F _c	Mounting force (PLUS220)	1165 / 2.514.6	N/lb.
Weight	TO-247 TO-268	6 5	g g

Symbol (T _J = 25°C,	Test Conditions unless otherwise specified)		Chara Min.	cterist Typ.		
BV _{DSS}	$V_{GS} = 0V, I_{D} = -250 \mu\text{A}$		- 200			V
V _{GS(th)}	$V_{DS} = V_{GS}$, $I_{D} = -250\mu A$		- 2.5		- 4.5	V
I _{gss}	$V_{GS} = \pm 20V, V_{DS} = 0V$				±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0V$	T _J = 125°C			- 25 - 200	•
R _{DS(on)}	$V_{GS} = -10V, I_{D} = 0.5 \cdot I_{D25}, No$	te 1			85	mΩ

 $V_{DSS} = -200V$ $I_{D25} = -48A$ $R_{DS(on)} \le 85m\Omega$

TO-268 (IXTT)

G = Gate S = Source D = Drain TAB = Drain

Features:

- International standard packages
- Avalanche Rated
- Rugged PolarP™ process
- Low package inductance
 - easy to drive and to protect

Applications:

- High side switching
- Push-pull amplifiers
- DC Choppers
- Current regulators
- Automatic test equipment

Advantages:

- Low gate charge results in simple drive requirement
- High power density
- Fast switching
- Easy to parallel

2 - Drain

•		CI Min.	Characteristic Values		
g _{fs}	, o, a	$V_{DS} = -10V, I_{D} = 0.5 \cdot I_{D25}, \text{ Note 1}$	19	32	S
C _{iss}	٦	DS 101, ID 010 ID25, ITO10		5400	pF
C _{oss}	}	$V_{GS} = 0V, V_{DS} = -25V, f = 1MHz$		1040	pF
C _{rss}	J	63		170	pF
t _{d(on)})	Resistive Switching Times		30	ns
t,		-		46	ns
$\mathbf{t}_{d(off)}$		$V_{GS} = -10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		67	ns
t _f	J	$R_{_{G}} = 3\Omega \text{ (External)}$		27	ns
$\mathbf{Q}_{g(on)}$)			103	nC
Q_{gs}	}	$V_{GS} = -10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		23	nC
\mathbf{Q}_{gd}	J			40	nC
R _{thJC}					0.27 °C/W
$\mathbf{R}_{\mathrm{thCS}}$				0.21	°C/W

Source-Drain Diode

SymbolTest ConditionsCha $(T_J = 25^{\circ}C, \text{ unless otherwise specified})$ Min.			racteristic Values Typ. Max.		
I _s	$V_{GS} = 0V$			- 48	Α
SM	Repetitive, pulse width limited by $\rm T_{\rm JM}$			- 192	Α
V _{SD}	$I_F = -24A, V_{GS} = 0V, \text{ Note 1}$			- 3.3	V
$\left\{egin{array}{ll} \mathbf{t}_{rr} & & \\ \mathbf{Q}_{RM} & & \\ \mathbf{I}_{RM} & & \end{array} ight\}$	$I_F = -24A$, $-di/dt = -100A/\mu s$ $V_R = -100V$, $V_{GS} = 0V$		60 1.2 2.2		ns µC A

Note 1: Pulse test, $t \le 300\mu s$; duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-247 (IXTH) Outline Q

Terminals: 1 - Gate

Dim.	Milli	meter	Inc	hes
	Min.	Max.	Min.	Max.
Α	4.7	5.3	.185	.209
A_1	2.2	2.54	.087	.102
A ₂	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b,	1.65	2.13	.065	.084
b,	2.87	3.12	.113	.123
С	.4	.8	.016	.031
D	20.80	21.46	.819	.845
Ε	15.75	16.26	.610	.640
е	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ØP	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216

INCHES		MILLIMETERS		
MIN	MAX	MIN	MAX	
.193	.201	4.90	5.10	
.106	.114	2.70	2.90	
.001	.010	0.02	0.25	
.045	.057	1.15	1.45	
.075	.083	1.90	2.10	
.016	.026	0.40	0.65	
.057	.063	1.45	1.60	
.543	.551	13.80	14.00	
.488	.500	12.40	12.70	
.624	.632	15.85	16.05	
.524	.535	13.30	13.60	
.215 BSC		5.45 BSC		
.736	.752	18.70	19.10	
.094	.106	2.40	2.70	
.047	.055	1.20	1.40	
.039	.045	1.00	1.15	
.010 BSC		0.25 BSC		
.150	.161	3.80	4.10	
	MIN .193 .106 .001 .045 .075 .016 .057 .543 .488 .624 .215 .736 .094 .047 .039 .010	MIN MAX .193 .201 .106 .114 .001 .010 .045 .057 .075 .083 .016 .026 .057 .063 .543 .551 .488 .500 .624 .632 .524 .535 .215 BSC .736 .752 .094 .106 .047 .055 .039 .045 .010 BSC	MIN MAX MIN .193 .201 4.90 .106 .114 2.70 .001 .010 0.02 .045 .057 1.15 .075 .083 1.90 .016 .026 0.40 .057 .063 1.45 .543 .551 13.80 .488 .500 12.40 .624 .632 15.85 .524 .535 13.30 .215 BSC 5.45 .736 .752 18.70 .094 .106 2.40 .047 .055 1.20 .039 .045 1.00 .010 BSC 0.25	

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 1. Output Characteristics @ 25°C

Fig. 2. Extended Output Characteristics @ 25°C

Fig. 3. Output Characteristics @ 125°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = -24A$ vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = -24A$ vs.

Fig. 6. Maximum Drain Current vs.

Case Temperature

Fig. 8. Transconductance 60 55 50 45 25°C 40 gfs-Siemens 35 125°C 30 25 20 15 10 5 0 0 -10 -20 -90 I_D - Amperes

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Maximum Transient Thermal Impedance