```
1 import torch
 2 import torch.nn as nn
 3 import torch.nn.functional as F
 1 # Create a Model Class that inherits nn.Module
 2 class Model(nn.Module):
    # Input layer (4 features of the flower)
         --> Hidden Layer1 H1 (number of neurone)
 4
 5
        --> Hidden Layer H2 (n)
 6
       --> output (which 3 classes of iris flower)
 7
 8
    def __init__(self, in_features=4, h1=8, h2=9, out_features=3):
 9
10
      super().__init__() # Instantiate nn.Module (parent class)
11
12
      self.fc1 = nn.Linear(in_features, h1)
13
       self.fc2 = nn.Linear(h1, h2)
       self.out = nn.Linear(h2, out_features)
14
15
16
17
    def forward(self, x):
18
      x = F.relu(self.fc1(x))
19
      x = F.relu(self.fc2(x))
20
      x = self.out(x)
21
22
      return x
23
24
1 # Pick a manual seed for randomization
 2 torch.manual_seed(41)
 3 # Create an instance of the model Model
 4 model = Model()
 1 import pandas as pd
 2 import matplotlib.pyplot as plt
 3 %matplotlib inline
 1 url = "https://gist.githubusercontent.com/netj/" \
    "8836201/raw/6f9306ad21398ea43cba4f7d537619d0e07d5ae3/iris.csv"
 3 my_df = pd.read_csv(url)
 1 my_df
```

	sepal.length	sepal.width	petal.length	petal.width	variety	\blacksquare
0	5.1	3.5	1.4	0.2	Setosa	ılı
1	4.9	3.0	1.4	0.2	Setosa	
2	4.7	3.2	1.3	0.2	Setosa	

1 of 7

3	4.6	3.1	1.5	0.2	Setosa
4	5.0	3.6	1.4	0.2	Setosa
	•••				
145	6.7	3.0	5.2	2.3	Virginica
146	6.3	2.5	5.0	1.9	Virginica
147	6.5	3.0	5.2	2.0	Virginica
148	6.2	3.4	5.4	2.3	Virginica
149	5.9	3.0	5.1	1.8	Virginica

150 rows × 5 columns

1 my_df.head()

	sepal.length	sepal.width	petal.length	petal.width	variety	
0	5.1	3.5	1.4	0.2	Setosa	ılı
1	4.9	3.0	1.4	0.2	Setosa	
2	4.7	3.2	1.3	0.2	Setosa	
3	4.6	3.1	1.5	0.2	Setosa	
4	5.0	3.6	1.4	0.2	Setosa	

1 my_df.tail()

	sepal.length	sepal.width	petal.length	petal.width	variety	
145	6.7	3.0	5.2	2.3	Virginica	ılı
146	6.3	2.5	5.0	1.9	Virginica	
147	6.5	3.0	5.2	2.0	Virginica	
148	6.2	3.4	5.4	2.3	Virginica	
149	5.9	3.0	5.1	1.8	Virginica	

```
1 # Change last column from string to numbers (use as integers afterwards)
```

² my_df["variety"] = my_df.variety.replace('Setosa', 0.0)

³ my_df["variety"] = my_df.variety.replace('Versicolor', 1.0)

⁴ my_df["variety"] = my_df.variety.replace('Virginica', 2.0)

⁵ my_df

^{6 #} my_df['variety'] = my_df['variety'].replace('Setosa', 0.0)

^{7 #} my_df['variety'] = my_df['variety'].replace('Versicolor', 1.0)

^{8 #} my_df['variety'] = my_df['variety'].replace('Virginica', 2.0)

^{9 #} my_df

¹⁰

	sepal.length	sepal.width	petal.length	petal.width	variety	##
0	5.1	3.5	1.4	0.2	0.0	th
1	4.9	3.0	1.4	0.2	0.0	
2	4.7	3.2	1.3	0.2	0.0	
3	4.6	3.1	1.5	0.2	0.0	
4	5.0	3.6	1.4	0.2	0.0	
145	6.7	3.0	5.2	2.3	2.0	
146	6.3	2.5	5.0	1.9	2.0	
147	6.5	3.0	5.2	2.0	2.0	
148	6.2	3.4	5.4	2.3	2.0	
149	5.9	3.0	5.1	1.8	2.0	

150 rows × 5 columns

```
1 # Train Test Split: Set X, y
2 X = my_df.drop('variety', axis=1)
3 y = my_df['variety']
4
```

1 # Convert to numpy arrays

2 X = X.values

3 y = y.values

1 X

```
array([[5.1, 3.5, 1.4, 0.2],
       [4.9, 3., 1.4, 0.2],
       [4.7, 3.2, 1.3, 0.2],
       [4.6, 3.1, 1.5, 0.2],
       [5., 3.6, 1.4, 0.2],
       [5.4, 3.9, 1.7, 0.4],
       [4.6, 3.4, 1.4, 0.3],
       [5., 3.4, 1.5, 0.2],
       [4.4, 2.9, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [5.4, 3.7, 1.5, 0.2],
       [4.8, 3.4, 1.6, 0.2],
       [4.8, 3., 1.4, 0.1],
       [4.3, 3., 1.1, 0.1],
       [5.8, 4., 1.2, 0.2],
       [5.7, 4.4, 1.5, 0.4],
       [5.4, 3.9, 1.3, 0.4],
       [5.1, 3.5, 1.4, 0.3],
       [5.7, 3.8, 1.7, 0.3],
       [5.1, 3.8, 1.5, 0.3],
       [5.4, 3.4, 1.7, 0.2],
       [5.1, 3.7, 1.5, 0.4],
```

3 of 7

1

```
[4.6, 3.6, 1., 0.2],
            [5.1, 3.3, 1.7, 0.5],
            [4.8, 3.4, 1.9, 0.2],
            [5., 3., 1.6, 0.2],
            [5., 3.4, 1.6, 0.4],
            [5.2, 3.5, 1.5, 0.2],
            [5.2, 3.4, 1.4, 0.2],
            [4.7, 3.2, 1.6, 0.2],
            [4.8, 3.1, 1.6, 0.2],
            [5.4, 3.4, 1.5, 0.4],
            [5.2, 4.1, 1.5, 0.1],
            [5.5, 4.2, 1.4, 0.2],
            [4.9, 3.1, 1.5, 0.2],
            [5., 3.2, 1.2, 0.2],
            [5.5, 3.5, 1.3, 0.2],
            [4.9, 3.6, 1.4, 0.1],
            [4.4, 3., 1.3, 0.2],
            [5.1, 3.4, 1.5, 0.2],
            [5., 3.5, 1.3, 0.3],
            [4.5, 2.3, 1.3, 0.3],
            [4.4, 3.2, 1.3, 0.2],
            [5., 3.5, 1.6, 0.6],
            [5.1, 3.8, 1.9, 0.4],
            [4.8, 3., 1.4, 0.3],
            [5.1, 3.8, 1.6, 0.2],
            [4.6, 3.2, 1.4, 0.2],
            [5.3, 3.7, 1.5, 0.2],
            [5., 3.3, 1.4, 0.2],
            [7., 3.2, 4.7, 1.4],
            [6.4, 3.2, 4.5, 1.5],
            [6.9, 3.1, 4.9, 1.5],
            [5.5, 2.3, 4., 1.3],
            [6.5, 2.8, 4.6, 1.5],
            [5.7, 2.8, 4.5, 1.3],
            [6.3, 3.3, 4.7, 1.6],
            [4.9, 2.4, 3.3, 1.],
1 from sklearn.model_selection import train_test_split
1 # Train Test Split
2 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=41)
1 # Convert X features to float tensors
2 X_train = torch.FloatTensor(X_train)
3 X_test = torch.FloatTensor(X_test)
1 # Convert y labels to tensors long
2 y_train = torch.LongTensor(y_train)
3 y_test = torch.LongTensor(y_test)
    # Set the criterion of model to mesure the error, how far off the predictions are from the data
   criterion = nn.CrossEntropyLoss()
    # Choose Adam Optimizer, lr = learning rate (if error does not go down after
       a bunch of iterations (epochs), lower the learning rete)
```

10/16/2023, 3:49 PM 4 of 7

optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

```
1 model.parameters
     <bound method Module.parameters of Model(</pre>
        (fc1): Linear(in_features=4, out_features=8, bias=True)
       (fc2): Linear(in_features=8, out_features=9, bias=True)
       (out): Linear(in_features=9, out_features=3, bias=True)
     )>
 1 # Train our model!
 2 # Epochs? (one run all the training data in our network)
 3 epochs = 100 # How many times
4 losses = []
5 for i in range(epochs):
   # Go forward and get a prediction
 7
    y_pred = model.forward(X_train) # Get predicted results
 8
 9
    # Mesure the loss/error, will be high at first
10
    loss = criterion(y_pred, y_train) # Predicted values vs. the y_train values
11
    # Keep track of the losses
12
13
    losses.append(loss.detach().numpy())
14
15
    # Print every 10 epochs
    if i % 10 == 0:
16
17
      print(f'Epoch: {i} and loss: {loss}')
18
19
    # Do some back propagration: take the error rate of forward propagation
    # and feed it back through the netword to fine tune the weights
20
21
    optimizer.zero_grad()
    loss.backward()
22
23
    optimizer.step()
24
25
26
27
     Epoch: 0 and loss: 0.05193043872714043
     Epoch: 10 and loss: 0.04446204751729965
     Epoch: 20 and loss: 0.03935651853680611
     Epoch: 30 and loss: 0.03563718870282173
     Epoch: 40 and loss: 0.032763414084911346
     Epoch: 50 and loss: 0.030291257426142693
     Epoch: 60 and loss: 0.02742672711610794
     Epoch: 70 and loss: 0.02430540882050991
     Epoch: 80 and loss: 0.021412163972854614
     Epoch: 90 and loss: 0.019128229469060898
 1 # Graph it out!
 2 plt.plot(range(epochs), losses)
 3 plt.ylabel('loss/error')
 4 plt.xlabel('Epoch')
     Text(0.5, 0, 'Epoch')
```

5 of 7 10/16/2023, 3:49 PM


```
1 # Evaluate Model on Test Data Set (validate model on test set)
2 with torch.no_grad(): # Basically turn off propagration
    y_val = model.forward(X_test) \# X_test are features from the test set. y_val will be predictions
    loss = criterion(y_val, y_test) # Find the loss or error
 1 loss
     tensor(0.1784)
 1
    correct = 0
 2
 3
    with torch.no_grad():
 4
      for i, data in enumerate(X_test):
 5
        y_val = model.forward(data)
 6
 7
        if y_test[i] == 0:
          x = 'Setosa'
 8
 9
        elif y_test[i] == 1:
10
          x = 'Versicolor'
11
        else:
          x = 'Virginica'
12
13
        # Will print what type of flower class the network thinks it is
14
        15
16
17
        # Correct or not
        if y_val.argmax().item() == y_test[i]:
18
19
          correct += 1
20
21
     print(f'We get {correct} correct!')
22
     1.) tensor([-7.1455,
                            3.8413, 8.9871])
                                                          2:Virginica
                                                                          2
                                                                          2
     2.) tensor([-9.9048,
                            1.6718, 16.1223])
                                                          2:Virginica
                                                                          2
     3.) tensor([-10.9332,
                              2.8676, 16.4577])
                                                          2:Virginica
```

6 of 7 10/16/2023, 3:49 PM

4.) tensor([-3.9721, 7.8497, -1.0292])	1:Versicolor	1
5.) tensor([-9.0422, 3.4844, 12.5741])	2:Virginica	2
6.) tensor([-2.1100, 8.5816, -5.1552])	1:Versicolor	1
7.) tensor([-6.9497, 4.8942, 7.4118])	2:Virginica	2
8.) tensor([-3.8674, 8.0269, -1.4135])	1:Versicolor	1
9.) tensor([-7.9727, 4.1934, 9.9512])	2:Virginica	2
10.) tensor([-10.5891, 1.7318, 17.2016])	2:Virginica	2
11.) tensor([-6.5618, 5.0615, 6.5757])	2:Virginica	2
12.) tensor([11.6368, 1.5849, -20.5907])	0:Setosa	0
13.) tensor([10.6881, 1.4099, -18.7038])	0:Setosa	0
14.) tensor([-0.4877, 6.8020, -5.8184])	1:Versicolor	1
15.) tensor([9.4158, 2.5891, -17.9623])	0:Setosa	0
16.) tensor([-6.0888, 5.6836, 5.0628])	2:Virginica	1
17.) tensor([10.4663, 1.7461, -18.7670])	0:Setosa	0
18.) tensor([-6.9453, 4.2227, 8.2130])	1:Versicolor	2
19.) tensor([12.4135,	0:Setosa	0
20.) tensor([9.0034, 2.1077, -16.6591])	0:Setosa	0
21.) tensor([-1.1123, 7.4944, -5.5712])	1:Versicolor	1
22.) tensor([-10.0344, 2.6442, 15.2228])	2:Virginica	2
23.) tensor([9.5920, 2.4860, -18.1442])	0:Setosa	0
24.) tensor([11.3869, 1.3970, -19.9024])	0:Setosa	0
25.) tensor([-1.0643, 7.7232, -5.9343])	1:Versicolor	1
26.) tensor([-2.0369, 8.2982, -4.9376])	1:Versicolor	1
27.) tensor([-4.3994, 7.8715, -0.3420])	1:Versicolor	1
28.) tensor([-1.5124, 7.9307, -5.4029])	1:Versicolor	1
29.) tensor([11.6238,	0:Setosa	0
30.) tensor([-4.4544, 7.2546, 0.4784])	1:Versicolor	1
We get 28 correct!		
-		

7 of 7