
MONTE CARLO EXPERIMENT # 2	2.000

***************	********
COMPUTING A MPE OF THE DYNAMIC GAME	
******************	*********
Values of the structural parameters	
Fixed cost firm 1 =	-1.900
Fixed cost firm 2 =	
Fixed cost firm 3 =	
Fixed cost firm 4 = Fixed cost firm 5 =	-1.600 -1.500
Parameter of market size (theta rs) =	
Parameter of competition effect (theta_rn) =	
Entry cost (theta_ec) =	
	0.9500
Std. Dev. epsilons =	1.000
BEST RESPONSE MAPPING ITERATIONS	
Best response mapping iteration = Convergence criterion = 1000.	1.000
Best response mapping iteration = Convergence criterion = 0.9559	2.000
Best response mapping iteration = Convergence criterion = 0.3053	3.000
Best response mapping iteration = Convergence criterion = 0.1105	4.000
Best response mapping iteration = Convergence criterion = 0.04602	5.000
Best response mapping iteration = Convergence criterion = 0.01991	6.000
Best response mapping iteration = Convergence criterion = 0.008868	7.000
Best response mapping iteration = Convergence criterion = 0.004034	8.000
Best response mapping iteration = Page 1	9.000

Convergence criterion	= 0.001814	
Best response mapping Convergence criterion		10.00
Best response mapping Convergence criterion		11.00
Best response mapping Convergence criterion		12.00
Best response mapping Convergence criterion		13.00
Best response mapping Convergence criterion		14.00
Best response mapping Convergence criterion		15.00
Best response mapping Convergence criterion		16.00

CONVERGENCE	ACHIEVED AFTER	17.00 BES	T RESPONSE ITERATIONS	
EQUILIBRIUM	PROBABILITIES			
0.1107	0.1240	0.1391	0.1562	
0.1754 0.1014	0.1136	0.1274	0.1430	
0.3728 0.1021 0.1619	0.1144	0.1283	0.3404	
0.1619 0.09473 0.3507	0.1061	0.1191	0.3177	
0.1028	0.1152	0.3103	0.1451	
0.1631 0.09531 0.3527	0.1068	0.2890	0.1345	
0.3527 0.09594 0.1522	0.1075	0.2908	0.3215	
0.1322 0.08977 0.3341	0.1006	0.2734	0.3024	
0.3341 0.1035 0.1641	0.2825	0.1301	0.1461	
0.1641 0.09584 0.3545	0.2626	0.1205	0.1353	
0.3545 0.09648 0.1530	0.2643	0.1213	0.3232	
0.1530 0.09021 0.3356	0.2481	0.1134	0.3038	
0.3356	0.2659	0.2941	0.1370	

Page 2

0 1540			
0.1540 0.09071 0.3373	0.2493	0.2760	0.1280
0.3373 0.09125 0.1448	0.2508	0.2776	0.3070
0.1448 0.08591 0.3212	0.2369	0.2624	0.2905
0.3212 0.2568 0.1651	0.1167	0.1309	0.1470
0.2384	0.1079	0.1211	0.1360
0.2399	0.1087	0.1219	0.3247
0.2249	0.1015	0.1139	0.3051
0.2414	0.1094	0.2956	0.1378
0.2261 0.3387	0.1021	0.2772	0.1286
0.2274	0.1027	0.2788	0.3084
0.2146	0.09667	0.2634	0.2916
0.2427	0.2687	0.1234	0.1386
0.2272	0.2516	0.1151	0.1293
0.2285	0.2531	0.1158	0.3099
0.2155	0.2389	0.1090	0.2928
0.2298	0.2545	0.2817	0.1308
0.2166	0.2400	0.2658	0.1230
0.2177	0.2413	0.2672	0.2957
0.2065	0.2289	0.2537	0.2810
0.2200	0.2452	0.2728	0.3030
0.2031	0.2264	0.2523	0.2805
0.2037	0.2272	0.2531	0.5517
0.1896 0.5618	0.2116	0.2359	0.5235
0.2045	0.2281	0.5146	0.2825
0.1903	0.2124	0.4869	0.2636
0.1909	0.2131	0.4882	0.5263

Page 3

0.1789 0.5395	0.1998	0.4641	0.5015
0.2054 0.3147	0.4782	0.2551	0.2837
0.1911 0.5649	0.4511	0.2377	0.2646
0.1917	0.4524	0.2385	0.5279
0.2949	0.4290	0.2237	0.5029
0.5409	0.4538	0.4911	0.2664
0.2959 0.1802	0.4303	0.4667	0.2501
0.5423 0.1808	0.4314	0.4680	0.5055
0.2790 0.1703	0.4108	0.4465	0.4834
0.5210 0.4426	0.2300	0.2562	0.2849
0.3161 0.4166	0.2141	0.2386	0.2657
0.5665 0.4177 0.2960	0.2148	0.2394	0.5295
0.3953	0.2012	0.2245	0.5043
0.5424 0.4191 0.2971	0.2156	0.4927	0.2675
0.2971 0.3965 0.5438	0.2019	0.4681	0.2510
0.3976 0.2800	0.2026	0.4693	0.5070
0.2800 0.3779 0.5224	0.1909	0.4477	0.4847
0.4205 0.2982	0.4567	0.2412	0.2685
0.3977	0.4329	0.2261	0.2519
0.5453 0.3988 0.2810	0.4341	0.2268	0.5084
0.2810 0.3790 0.5237	0.4132	0.2138	0.4860
0.4001 0.2820	0.4354	0.4721	0.2536
0.2820 0.3801 0.5250	0.4144	0.4502	0.2392
0.3812 0.2671	0.4155	0.4514	0.4885
0.2671 0.3636 0.5057	0.3970	0.4320	0.4684
0.3939 0.5381	0.4291	0.4651	0.5016
0.3768	0.4111	0.4465	0.4825
		Page 4	

Page 4

0 7655			
0.7655 0.3764	0.4107	0.4461	0.7384
0.5182 0.3603	0.3938	0.4284	0.7224
0.7501 0.3761	0.4104	0.7093	0.4818
0.5179	0.3936	0.6925	0.4637
0.7500 0.3598	0.3933	0.6922	0.7220
0.4992	0.3775	0.6759	0.7064
0.7350 0.3761	0.6783	0.4458	0.4818
0.5179	0.6608	0.4283	0.4638
0.7500 0.3599	0.6605	0.4280	0.7220
0.4992	0.6437	0.4115	0.7065
0.7351 0.3597	0.6604	0.6921	0.4633
0.4991 0.3448	0.6436	0.6759	0.4463
0.7351 0.3446	0.6434	0.6757	0.7063
0.4815 0.3307	0.6272	0.6600	0.6912
0.7206 0.6457	0.4105	0.4459	0.4819
0.5181 0.6278	0.3938	0.4285	0.4640
0.7503 0.6275	0.3935	0.4282	0.7223
0.4994 0.6103	0.3778	0.4118	0.7068
0.7354 0.6274	0.3934	0.6923	0.4635
0.4993 0.6102	0.3777	0.6762	0.4466
0.7353 0.6100	0.3775	0.6760	0.7065
0.4817 0.5935	0.3628	0.6603	0.6915
0.7209 0.6274	0.6607	0.4281	0.4635
0.4993	0.6440	0.4118	0.4467
0.7354 0.6101	0.6438	0.4115	0.7066
0.4818	0.6277	0.3962	0.6917
0.7210			

Page 5

0.6100	0.6437	0.6760	0.4464
0.4818 0.5937	0.6277	0.6605	0.4305
0.7210 0.5935	0.6275	0.6603	0.6916
0.4653 0.5778	0.6121	0.6453	0.6771
0.7071 0.6155	0.6467	0.6764	0.7043
0.7304 0.6060	0.6375	0.6674	0.6957
0.8817 0.6053	0.6368	0.6668	0.8676
0.7216 0.5958	0.6275	0.6577	0.8627
0.8768	0.6361	0.8520	0.6945
0.7210 0.5951	0.6268	0.8465	0.6858
0.8765	0.6261	0.8462	0.8620
0.7121 0.5848	0.6167	0.8406	0.8569
0.8715 0.6039	0.8346	0.6655	0.6939
0.7205 0.5944	0.8287	0.6564	0.6852
0.8762 0.5937	0.8282	0.6558	0.8616
0.7116 0.5842	0.8222	0.6467	0.8565
0.8712 0.5930	0.8278	0.8454	0.6839
0.7110 0.5835	0.8218	0.8399	0.6751
0.8709 0.5828	0.8214	0.8395	0.8558
0.7020 0.5732	0.8152	0.8338	0.8506
0.8658 0.8153	0.6348	0.6649	0.6933
0.7199	0.6255	0.6559	0.6846
0.8759 0.8084	0.6249	0.6552	0.8613
0.7110 0.8019	0.6155	0.6461	0.8562
0.8709	0.6242	0.8451	0.6834
0.7105 0.8015	0.6148	0.8395	0.6746
0.8706 0.8010	0.6142	0.8391	0.8555
		Page 6	

Page 6

0 7015			
0.7015 0.7943	0.6048	0.8335	0.8503
0.8655 0.8075	0.8270	0.6540	0.6828
0.7099	0.8210	0.6449	0.6740
0.8703	0.8206	0.6443	0.8552
0.7009	0.8144	0.6351	0.8500
0.8652 0.8001	0.8202	0.8384	0.6728
0.7004 0.7935	0.8140	0.8327	0.6640
0.8649 0.7930	0.8136	0.8323	0.8493
0.6913 0.7862	0.8073	0.8265	0.8440
0.8597 0.8061	0.8242	0.8406	0.8557
0.8693 0.8032	0.8214	0.8381	0.8533
0.9477 0.8029	0.8212	0.8379	0.9417
0.8669 0.7999	0.8184	0.8353	0.9407
0.9467 0.8026	0.8209	0.9350	0.8529
0.8667 0.7996	0.8181	0.9338	0.8505
0.9466 0.7993	0.8178	0.9337	0.9405
0.8643 0.7962	0.8150	0.9325	0.9394
0.9455 0.8023	0.9275	0.8373	0.8526
0.8665 0.7993	0.9262	0.8347	0.8502
0.9465 0.7990	0.9260	0.8345	0.9403
0.8641 0.7959	0.9247	0.8319	0.9393
0.9454	0.9259	0.9335	0.8497
0.8638 0.7956	0.9246	0.9323	0.8473
0.9453 0.7953	0.9244	0.9321	0.9390
0.8614 0.7922	0.9231	0.9309	0.9379
0.7922 0.9442 0.9190	0.8203	0.8370	0.8523
0.8662	0.0203	0.03/0	0.0523

Page 7

0.9175 0.9464	0.8175	0.8344	0.8499
0.9174 0.8638	0.8172	0.8342	0.9402
0.9159	0.8143	0.8315	0.9391
0.9453 0.9173	0.8169	0.9333	0.8494
0.8636 0.9158	0.8140	0.9321	0.8470
0.9452 0.9156	0.8138	0.9320	0.9389
0.8611 0.9141	0.8109	0.9308	0.9378
0.9441	0.9256	0.8336	0.8492
0.8633 0.9156	0.9243	0.8310	0.8467
0.9451 0.9155	0.9241	0.8307	0.9388
0.8609 0.9140	0.9228	0.8280	0.9377
0.9440 0.9153	0.9240	0.9317	0.8462
0.8606 0.9138	0.9226	0.9305	0.8437
0.9439 0.9137	0.9225	0.9304	0.9374
0.8581 0.9121 0.9427	0.9211	0.9291	0.9363

DESCRIPTIVE STATISTICS FROM THE EQUILIBRIUM BASED ON 5.000e+004 OBSERVATIONS

TABLE 2 OF THE PAPER AGUIRREGABIRIA AND MIRA (2007)

(1)	Average number of active firms	=	2.777
(2)	Std. Dev. number of firms	=	1.657
(3)	Regression N[t] on N[t-1]	=	0.7058
(4)	Average number of entrants	=	0.6965
(5)	Average number of exits	=	0.6901
(6)	Excess turnover (in # of firms)	=	0.4589

	(7) Co:	rrelation	entries	and exits	=	-0.1792	
	(8) From 0.4985 0.5285 0.5547 0.5810 0.6140	_	of being	active	=		
	MONTE CAR	LO EXPERI	MENT #	2	.000	*****************	
	(b.1) (b.2) (c.1) (c.2) (d.1) (d.2) (e) Replication (a) (b.1) (b.2) (c.1) (c.2)	Simulati Estimati NPL algo Estimati NPL algo Estimati NPL algo NPL algo = Simulati Estimati NPL algo Estimati NPL algo Estimati NPL algo Estimati NPL algo Estimati	on of inicithm usion of inicithm usion of inicithm usions of x'on of inicithm usion of inicithm usi	s and a's tial CCPs ng freque tial CCPs ng Logit tial CCPs ng U(0,1) ng true v s and a's tial CCPs ng freque tial CCPs ng Logit tial CCPs ng U(0,1)	(Non-Param ncy estimat (Semi-Para estimates a (Completel random dra alues as in (Non-Param ncy estimat (Semi-Para estimates a (Completel	ws as initial itial CCPs etric) es as initial metric: Logit) s initial CCPs y Random) ws as initial	CCPs CCPs
• • •	Replicat. (a) (b.1) (b.2) (c.1) (c.2) (d.1) (d.2) (e) Replication (a) (b.1) (b.2) (c.1) (c.2) (d.1) (d.2)	Estimati NPL algo Estimati NPL algo Estimati NPL algo NPL algo = Simulati Estimati NPL algo Estimati NPL algo Estimati	ons of x' on of ini orithm usi on of ini orithm usi on of ini orithm usi fithm usi fithm usi fon of ini orithm usi on of ini	s and a's tial CCPs ng freque tial CCPs ng Logit tial CCPs ng U(0,1) ng true v s and a's tial CCPs ng freque tial CCPs ng Logit tial CCPs	(Non-Param ncy estimat (Semi-Para estimates a (Completel random dra alues as in (Non-Param ncy estimat (Semi-Para estimates a (Completel random dra	es as initial metric: Logit) s initial CCPs y Random) ws as initial itial CCPs etric) es as initial metric: Logit) s initial CCPs	CCPs CCPs
				Page	e 9		

(e) NPL algorithm using true values as initial CCPs

Number of Re-drawings due to Multicollinearity =

0.000000

MONTE CARLO EXPERIMENT #

EMPIRICAL MEANS AND STANDARD ERRORS

TABLE 4 OF THE PAPER AGUIRREGABIRIA AND MIRA (2007) *************************

I					
 		theta_fc_1	theta_rs	theta_rn	theta_ec
TRUE VAL		-1.90000			
MEAN		-1.90983			
MEDIAN	2step-True	-1.90068	1.00499	0.978919	0.997343
S.E.	2step-True	0.200518	0.197351	0.612248	0.118440
MEAN	2step-Freq	-0.929469	0.347031	0.0827955	0.882369
MEDIAN	2step-Freq	-0.928855	0.342648	0.0717566	0.881864
S.E.	2step-Freq	0.211438	0.119117	0.346647	0.125183
MEAN	NPL-Freq	-1.91257	1.02873	1.07314	0.989967
MEDIAN	NPL-Freq	-1.91806	1.00477	0.969682	0.986047
S.E.	NPL-Freq	0.219513	0.231678	0.707496	0.120477
MEAN 2	step-Logit	-1.94129	0.985925	0.925402	0.991670
MEDIAN 2	!step-Logit	-1.93819	0.970190 Page 10	0.862873	0.991351

SQ-MSE 2-step-TRUE	0.200759	0.197519 Page 11	0.612417	
	theta_fc_1	theta_rs	theta_rn	theta_ec
TABLE 5 OF THE PAPE		, , ,	*******	****
RATIOS OVER THE SQU		THE 2-STEP PML US	ING THE TRUE CCPs	
MONTE CARLO EXPERIM SQUARE-ROOT MEAN SQ	IENT # 2.	00000		
*****	*****	*****	*****	****
S.E. NPL-Random	0.220102	0.231344	0.707712	0.120948
MEDIAN NPL-Random	-1.91871	1.00477	0.969682	0.985854
MEAN NPL-Random	-1.91207	1.02882	1.07370	0.989757
S.E. 2step-Random		0.205166	0.613184	0.122387
MEDIAN 2step-Rando	-1.93819	0.970190	0.862873	0.991351
MEAN 2step-Random	-1.94129	0.985925	0.925402	0.991670
S.E. NPL-Logit	0.219941	0.232467	0.710061	0.121039
MEDIAN NPL-Logit	-1.91827	1.00477	0.969682	0.985834
MEAN NPL-Logit	-1.91247	1.02928	1.07462	0.989543
S.E. 2step-Logit	0.212160	0.205166	0.613184	0.122387

0.118441				
RATIO: 2step-Freq	4.94770		1.60107	1.45033
RATIO: NPL-Freq	1.09521	1.18192	1.16141	
RATIO: 2step-Logit	1.07662		1.00863	
RATIO: NPL-Logit	1.09731	1.18623	1.16582	1.02574
RATIO: 2step-Rando		0.830350		
RATIO: NPL-Random	1.09799	1.18030	1.16185	1.02482
1				