Digital Watermarking and Steganography

by Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, Ton Kalker

Chapter 5. Watermarking with Side Information

Lecturer: Jin HUANG

2015

Blind Embedding Message coding w_m FIGURE 5.1 Watermarking with blind embedders.

Informed Embedding

- Watermarking with informed embedding.
- The simplest case: E_FIXED_LC.
- Embedding as an optimization problem.
 - Fidelity
 - Robustness

Informed in Block Strategy

How to use the cover work?

Informed in Block Strategy

How to use the cover work?

- Distribute Δ to blocks with different strenath.
- Locally amplified or attenuated the added watermark pattern to improve fidelity.
- Relative error for fidelity.

5.1 Informed Embedding

Fidelity Constraints

In the framework of $c_w = c_o + w_a$

$$\mathbf{o} \ \mathbf{c}_{\mathbf{w}} = \mathbf{w}_{\mathbf{m}} \Longrightarrow \mathbf{w}_{\mathbf{m}} = \mathbf{w}_{\mathbf{a}-}\mathbf{c}_{\mathbf{o}}.$$

Looks stupid?

- Directly in media space: does not resemble the original Work at all.
- But in marking space: occasionally feasible.

$$\mathcal{T}(\mathbf{c_o} + \mathbf{w_a}) = \mathbf{v_w} \approx \mathbf{v_a}$$

• Usually: v_w is between v_a and v_o .

The Optimization Problem

- Maintain perceptual distortion (fidelity), but maximize robustness.
- Maintain robustness, but minimize perceptual distortion (for fidelity).
 - E_FIXED_LC
- Or even both
 - If no possible, relax the constraints.

Measurement of Robustness

Via detection value:

•
$$z_{lc} = \tau_{lc} + \beta$$
: E_FIXED_LC

Unfortunately, it does not work for other detection statistics.

• z_{nc} : larger z_{nc} does not mean better robustness.

E_FIXED_LC under z_{nc} Embedding region Detection region Projected vectors before embedding Projected vectors after embedding Projected vectors after embedding

E_FIXED_CC for z_{cc}

Has zero mean: $NC \Rightarrow CC$.

Fix the normalized correlation at some desired value: τ_{ne} .

- Find the closest point on the cone related to $\tau_{\rm pos}$
- The point is on the plane $w_r v_o$.

$$\begin{split} \mathbf{X} &= \frac{\mathbf{w_r}}{\|\mathbf{w_r}\|} \\ \mathbf{Y} &= \frac{\mathbf{v_o} - \mathbf{X}(\mathbf{v_o} \cdot \mathbf{X})}{\|\mathbf{v_o} - \mathbf{X}(\mathbf{v_o} \cdot \mathbf{X})\|} \end{split}$$

Some Simple Geometry

Position of v_0

$$x_{\mathbf{v_o}} = \mathbf{v_o} \cdot X, \quad y_{\mathbf{v_o}} = \mathbf{v_o} \cdot Y.$$

Upper border of the detection region (desired embedding region)

$$x(t) = t\cos(\tau_{nc}), \quad y(t) = t\sin(\tau_{nc}), \quad t > 0.$$

An Optimization

The distance from v_0 to a point on the border:

$$\begin{aligned} d^{2}(t) &= (x(t) - x_{\mathbf{v_o}})^{2} + (y(t) - y_{\mathbf{v_o}}) \\ &= (t\cos(\tau_{nc}) - x_{\mathbf{v_o}})^{2} + (t\sin(\tau_{nc}) - y_{\mathbf{v_o}}) \\ &= t^{2} - 2(\cos(\tau_{nc})x_{\mathbf{v_o}} + \sin(\tau_{nc})y_{\mathbf{v_o}}) t \\ &+ (x_{\mathbf{v_o}}^{2} + y_{\mathbf{v_o}}^{2}). \end{aligned}$$

So, the closest point $\mathbf{v}_{\mathbf{w}}$ is (x(t), y(t)) with t

$$\min_{t} d(t) \Longrightarrow t = \cos(\tau_{nc}) x_{\mathbf{v_o}} + \sin(\tau_{nc}) y_{\mathbf{v_o}}.$$

Experiments

In E_BLK_FIXED_CC/D_BLK_CC

 Adding white Gaussian noise, with a standard deviation of 10.

Performance

$$\tau_{nc} = 0.55, \beta = 0.25, 85\%$$
 correct.

Performance

$$\tau_{nc} = 0.55, \beta = 0.4, 66\%$$
 correct.

Projected vectors before embedding (v₀) Projected vectors after embedding (v₀)

Robustness Measurement

Amount of white Gaussian noise that can be added to the embedded vector, $\mathbf{v}_{\mathbf{w}},$ before it is expected to fall outside the detection region.

Add Noise

$$z_{nc}(\mathbf{v_w} + \mathbf{n}) = \frac{(\mathbf{v_w} + \mathbf{n}) \cdot \mathbf{w_r}}{\|\mathbf{v_w} + \mathbf{n}\| \|\mathbf{w_r}\|} \\ \approx \frac{\mathbf{v_w} \cdot \mathbf{w_r}}{\sqrt{\mathbf{v_w} \cdot \mathbf{v_w} + \mathbf{n} \cdot \mathbf{n}} \|\mathbf{w_r}\|}$$

The noise causes $z_{nc} < \tau_{nc}$:

$$\|\mathbf{n}\|^2 \le \left(\frac{\mathbf{v_w} \cdot \mathbf{w_r}}{\tau_{nc} \|\mathbf{w_r}\|}\right)^2 - \|\mathbf{v_w}\|^2$$

Presentation: 8.1

Evaluating Perceptual Impact of Watermarks. In addition:

- In color image: CIE
- http://en.wikipedia.org/wiki/Color_ difference