Mathématique - Devoir Maison n°14

Exercice 1

Soit $n \in \mathbb{N}^*$. On considère l'équation d'inconnue $x \in \mathbb{R}_+$: (E) $e^x + x - n = 0$.

- 1. Montrer que l'équation (E) admet une solution unique dans \mathbb{R}_+ . On note u_n cette solution.
- 2. Montrer que $\lim_{n\to\infty} u_n = +\infty$.
- 3. Montrer qu'au voisinage de $+\infty$, $u_n \sim \ln(n)$.
- 4. On pose $v_n = u_n \ln(n)$. Déterminer un équivalent simple de v_n .
- 5. Montrer qu'il existe $(a, b) \in \mathbb{R}^2$ tel qu'au voisinage de $+\infty$:

$$u_n = a \ln(n) + b \frac{\ln(n)}{n} + o \left(\frac{\ln(n)}{n}\right)$$

Exercice 2

Soit $p \in \mathbb{N}^*$. On dit qu'un endomorphisme f d'un \mathbb{R} -espace vectoriel E est **cyclique d'ordre** p s'il existe un élément \vec{a} de E vérifiant les trois conditions :

- $f^p(\vec{a}) = \vec{a}$. On rappelle que $f^p = f \circ f \circ \cdots \circ f$ (p fois) et que $f^0 = Id_E$
- la famille $(\vec{a}, f(\vec{a}), \dots, f^{p-1}(\vec{a}))$ est génératrice de E.
- la famille $(\vec{a}, f(\vec{a}), \dots, f^{p-1}(\vec{a}))$ est constituée d'éléments deux à deux distincts.

La famille $(\vec{a}, f(\vec{a}), \dots, f^{p-1}(\vec{a}))$ est appelée alors cycle de E.

- 1. *Premier exemple*: Dans $E = \mathbb{R}^2$ on pose $f:(x,y) \longmapsto (-y,x)$. On admet que f est un endomorphisme de E. En considérant $\vec{a} = (1,0)$, observer que f est cyclique d'ordre p, l'entier p étant à préciser.
- 2. *Deuxième exemple* : On considère l'endomorphisme f de $E = \mathbb{R}^3$ défini par : $\forall (x,y,z) \in \mathbb{R}^3$, f(x,y,z) = (-3x+6y+5z,-2x+3y+2z,x-y). On admet que f est linéaire.
 - (a) On pose $\vec{a} = (0, -1, 1)$. Montrer que la famille $\mathscr{B}' = (\vec{a}, f(\vec{a}), f^2(\vec{a}))$ est une base de E. Observer que f est cyclique d'ordre p, en précisant la valeur de p.
 - (b) On note $\mathscr{C}(f)$ l'ensemble des endomorphismes de \mathbb{R}^3 qui commutent avec f. Autrement dit : $\mathscr{C}(f) = \{g \in \mathscr{L}(\mathbb{R}^3) \mid f \circ g = g \circ f \}$.
 - i. Prouver que $\mathscr{C}(f)$ est un sous-espace vectoriel de $\mathscr{L}(\mathbb{R}^3)$
 - ii. Vérifier que Id_E , f et f^2 sont des éléments de $\mathscr{C}(f)$. En déduire que $Vect(Id_E, f, f^2) \subset \mathscr{C}(f)$
 - iii. Soit $g \in \mathcal{C}(f)$. On note (α, β, γ) les coordonnées de $g(\vec{a})$ dans la base \mathcal{B}' . Exprimer $g(f(\vec{a}))$ et $g(f^2(\vec{a}))$ en fonction de (α, β, γ) et des vecteurs $f^i(\vec{a})$ (pour i = 0, 1, 2, 3, 4)
 - iv. En déduire que $g = \alpha I d_E + \beta f + \gamma f^2$. Que vient-on de démontrer?
- 3. Étude du cas général : Dans cette question E est un \mathbb{R} espace vectoriel de dimension $n \in \mathbb{N}^*$. On considère f un endomorphisme de E cyclique d'ordre p. Soit $(\vec{a}, f(\vec{a}), \dots, f^{p-1}(\vec{a}))$ un cycle de E.
 - (a) Montrer que $p \ge n$.
 - (b) Observer que $\forall k \in \mathbb{N}$, $f^p(f^k(\vec{a})) = f^k(\vec{a})$. En déduire que $f^p = Id_F$.
 - (c) L'endomorphisme f est-il bijectif?
- 4. On note m le plus grand des entiers naturels i tels que la famille $(\vec{a}, f(\vec{a}), \dots, f^{i-1}(\vec{a}))$ soit libre.
 - (a) Montrer que $f^m(\vec{a})$ est combinaison linéaire des m vecteurs $\vec{a}, f(\vec{a}), \dots, f^{m-1}(\vec{a})$.
 - (b) Montrer par récurrence, que pour tout entier naturel $k \ge m$, le vecteur $f^k(\vec{a})$ est combinaison linéaire des m vecteurs $\vec{a}, f(\vec{a}), \dots, f^{m-1}(\vec{a})$.
 - (c) En déduire que m=n et que la famille $(\vec{a}, f(\vec{a}), \dots, f^{m-1}(\vec{a}))$ est une base de E.
 - (d) On pose $\mathscr{C}(f) = \{g \in \mathscr{L}(E) \mid f \circ g = g \circ f \}$. Montrer que $\mathscr{C}(f) = \text{Vect}(Id_E, f, f^2, \dots, f^{n-1})$.