Due: October 9, 2017 Assignment 3

Elements of Probability

Solve only 5 out of the following 6 problems.

(3.1) Consider a discrete random variable X with the probability mass function given by

$$p_X(x) = \begin{cases} kx & \text{if } x = 1, 2, 3, 4\\ 0 & \text{otherwise} \end{cases}$$

- (a) Compute the value of k.
- (b) Compute $\mathbb{E}[X]$ and Var[X].
- (3.2) A continuous random variables has the density function given by

$$f_X(x) = \begin{cases} k(1 - x^3) & \text{if } -1 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

- (a) Determine the value of k.
- (b) Compute $\mathbb{P}[X > 0]$.
- (3.3) Suppose X is a random variable with the uniform distribution over the interval [1,2] and $Y=X^4$.
 - (a) Compute $\mathbb{P}[Y \leq t]$ as a function of t. You need to distinguish three different cases.
 - (b) Find the probability density function of Y and use it to compute $\mathbb{E}[Y]$.
- (3.4) Let X be a random variable with the density function

$$f(x) = \lambda \frac{e^{-\lambda|x|}}{2}$$

where $\lambda > 0$.

- (a) Verify that f is indeed a probability density function.
- (b) Find $\mathbb{P}[-1 < X < 2]$.
- (3.5) Suppose X is a random variable with the uniform distribution over [1, 2].
 - (a) What is the probability density function of X?
 - (b) Find the probability density function of $Y = e^X$.
 - (c) Compute $\mathbb{E}[Y]$.

Hint: One of the integrals that show up can be dealt with using integration by parts.

(3.6) Alice and Bob have utility functions given by is given by

$$u_A(x) = x$$
, $u_B(x) = \log x$,

where the log in in base 2. They are faced with a lottery with n positive outcomes x_1, \ldots, x_n , where each can be realized with probability p = 1/n.

(a) Compute the expected utility of Alice and Bob. In other words, find $\mathbb{E}[u_A(X)]$ and $\mathbb{E}[u_B(x)]$. The answer must depend on x_1, \ldots, x_n .

- (b) Let $x_1 = 1$, $x_2 = 2$, $x_3 = 4$. What is the smallest amount of C_a (respectively, C_b) such that
- Alice (respectively, Bob) prefers a sure amount of C_a (respectively, C_b) to the lottery? (c) (Bonus) Show that independent of the values of x_1, \ldots, x_n , Bob is always more risk averse than Alice.