Study Notes: Quantum Computing in Slow Pace 量子計算慢慢來

2021 (CC BY-NC-SA 4.0) Elton Huang Draft Version 尚未校稿・僅供参考

Contents

1	•	antum Gates	2
	1.1	Hadamard	2
	1.2	CNOT	3
		1.2.1 學習單	3
		1.2.2 Solution	5
	1.3	Bell States	7
	1.4	Teleportation	8
	1.5	SWAP	9
2	Qisl	kit Applications	10
	2.1	Quadratic Problems	10
	2.2	Monte Carlo Method	10
	2.3	Molecular Dynamics	10

Chapter 1

Quantum Gates

1.1 Hadamard

$$|0\rangle + |1\rangle + |2\rangle + |3\rangle$$
 — $f(x) = 2x^2 - 5x + 6$ — $|6\rangle + |3\rangle + |4\rangle + |9\rangle$

参考:鍾豪著,零與一之間的威力/量子電腦的原理,科學月刊 2021 (5 月號) 617 期,第 26 頁

注意:不能只單純理解為 qubit 進入 |0> 和 |1> 機率各半的狀態

$$|0\rangle$$
 H H $|0\rangle$

$$|1\rangle$$
 H H $|1\rangle$

還是要知道在 Bloch's Sphere 或是利用(複數)矩陣運算上的定義。

参考 Quantum Computing as a High School Module (Perry et al., 2020, Page 50 top)

1.2 CNOT

1.2.1 學習單

先完成 (A), (B), (C), (D): (還沒學過矩陣乘法的同學可以參考連結)

如果
$$q_0 = |0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 而 $q_1 = |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$,
$$(A) \ q_1 q_0 = |10\rangle = |?\rangle \otimes |?\rangle = \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} = \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, 參考連結$$

也就是 a_{00} =?, a_{01} =?, a_{10} =?, a_{11} =?. 若讓 q_1 以 CNOT 控制 q_0 ,

$$CNOT|\mathbf{10}\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a_{00} \\ a_{01} \\ a_{10} \\ a_{11} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} = \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, 也就是 |??\rangle (如下)$$

同樣地,

$$(B) |00\rangle = |?\rangle \otimes |?\rangle = \begin{pmatrix} ? \times \begin{pmatrix} ? \\ ? \\ ? \\ ? \end{pmatrix} = \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}$$

$$CNOT|00\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} = \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}$$

$$(C) |01\rangle = |?\rangle \otimes |?\rangle = \begin{pmatrix} ? \times \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} = \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}$$

$$CNOT|01\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} = \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}$$

$$(D) |11\rangle = |?\rangle \otimes |?\rangle = \begin{pmatrix} ? \times \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} = \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}$$

$$CNOT|11\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} ? \\ ? \\ ? \\ ? \end{pmatrix} = \begin{pmatrix} ? \\ ? \\ ? \\ ? \end{pmatrix} = |??\rangle$$

但是請注意: $a_{00}, a_{01}, a_{10}, a_{11}$ 可能是滿足 $a_{00}^2 + a_{01}^2 + a_{10}^2 + a_{11}^2 = 1$ 的任何實數組合各 qubit 可能處於不同的疊加態。例如,若

$$q_{0} = |\alpha\rangle = \frac{\sqrt{3}}{2}|0\rangle + ?|1\rangle = \frac{\sqrt{3}}{2}\begin{pmatrix}1\\0\end{pmatrix} + ?\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}\frac{\sqrt{3}}{2}\\?\end{pmatrix},$$

$$q_{1} = |\beta\rangle = \frac{3}{5}|0\rangle + ?|1\rangle = \frac{3}{5}\begin{pmatrix}1\\0\end{pmatrix} + ?\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}?\\?\\?\end{pmatrix},$$

$$q_{1}q_{0} = |\beta\alpha\rangle = |\beta\rangle \otimes |\alpha\rangle = \begin{pmatrix}?\\?\\?\\?\\?\\?\end{pmatrix} = \begin{pmatrix}?\\?\\?\\?\\?\\?\end{pmatrix}, (注意這四個數的平方和為1)$$

$$CNOT |\beta\alpha\rangle = \begin{pmatrix}1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 0 & 1\\0 & 0 & 1 & 0\end{pmatrix}\begin{pmatrix}?\\?\\?\\?\\?\\?\end{pmatrix} = ?|00\rangle + ?|01\rangle + ?|10\rangle + ?|11\rangle$$

1.2.2 Solution

If
$$q_0 = |0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $q_1 = |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$,
$$q_1 q_0 = |10\rangle = |1\rangle \otimes |0\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

 $a_{00} = 0, a_{01} = 0, a_{10} = 1, a_{11} = 0$. Let q_1 control q_0 with CNOT,

$$CNOT|\mathbf{10}\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a_{00} \\ a_{01} \\ a_{10} \\ a_{11} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \ i.e. \ |\mathbf{11}\rangle \ \text{by below}$$

likewise,
$$|00\rangle = |0\rangle \otimes |0\rangle = \begin{pmatrix} 1 \times \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$CNOT|00\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$|01\rangle = |0\rangle \otimes |1\rangle = \begin{pmatrix} 1 \times \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \times \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$CNOT|01\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$|11\rangle = |1\rangle \otimes |1\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 \times \begin{pmatrix} 0 \\ 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$CNOT|11\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 & 1 \end{pmatrix} = |10\rangle$$

But please note: $a_{00}, a_{01}, a_{10}, a_{11}$ may be any combination of real numbers that satisfies $a_{00}^2 + a_{01}^2 + a_{10}^2 + a_{11}^2 = 1$. (Each qubit may be in different variance of superposition of states.) For example, if

$$\begin{split} q_0 &= |\alpha\rangle = \frac{\sqrt{3}}{2} \, |0\rangle + \frac{1}{2} \, |1\rangle = \frac{\sqrt{3}}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{pmatrix}, \\ q_1 &= |\beta\rangle = \frac{3}{5} \, |0\rangle + \frac{4}{5} \, |1\rangle = \frac{3}{5} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{4}{5} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{3}{5} \\ \frac{4}{5} \end{pmatrix}, \\ q_1 &= |\beta\alpha\rangle = |\beta\alpha\rangle = |\beta\rangle \otimes |\alpha\rangle = \begin{pmatrix} \frac{3}{5} \times \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} + \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{3\sqrt{3}}{10} \\ \frac{4\sqrt{3}}{10} \\ \frac{4\sqrt{3}}{10} \\ \frac{4}{10} \end{pmatrix}, \text{ (note that the squares of all elements sum up to 1)} \\ CNOT \, |\beta\alpha\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{3\sqrt{3}}{10} \\ \frac{3}{10} \\ \frac{4\sqrt{3}}{10} \\ \frac{4\sqrt{3}}{10} \\ \frac{4\sqrt{3}}{10} \end{pmatrix} = \begin{pmatrix} \frac{3\sqrt{3}}{10} \\ \frac{3}{10} \\ \frac{4\sqrt{3}}{10} \\ \frac{4\sqrt{3}}{10} \end{pmatrix} = \frac{3\sqrt{3}}{10} \, |00\rangle + \frac{3}{10} \, |01\rangle + \frac{4}{10} \, |10\rangle + \frac{4\sqrt{3}}{10} \, |11\rangle \end{split}$$

The 2 qubits are entangled now, so we can't decompose them into 2 separated qubits for distinct wave probabilities for each quibt as

$$\begin{pmatrix} \frac{3\sqrt{3}}{10} \\ \frac{3}{10} \\ \frac{4}{10} \\ \frac{4\sqrt{3}}{10} \end{pmatrix} = |\delta\gamma\rangle, \text{ If } |\gamma\rangle = c_0 |0\rangle + c_1 |1\rangle, \text{ and } |\delta\rangle = d_0 |0\rangle + d_1 |1\rangle,$$

$$|\delta\gamma\rangle = |\delta\rangle \otimes |\gamma\rangle = \begin{pmatrix} d_0 \times \begin{pmatrix} c_0 \\ c_1 \\ d_1 \times \end{pmatrix} = \begin{pmatrix} d_0c_0 \\ d_0c_1 \\ d_1c_0 \end{pmatrix} = \begin{pmatrix} \frac{3\sqrt{3}}{10} \\ \frac{3}{10} \\ \frac{4}{10} \\ \frac{4}{10} \end{pmatrix}$$

Xref: Quantum Computing as a High School Module (Perry et al., 2020, Page 58 §7.4 second example).

1.3 Bell States

Let
$$|x\rangle = x_0 |0\rangle + x_1 |1\rangle = \begin{pmatrix} x_0 \\ x_1 \end{pmatrix}, |y\rangle = y_0 |0\rangle + y_1 |1\rangle = \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}$$

$$H|x\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} x_0 + x_1 \\ x_0 - x_1 \end{pmatrix}$$

$$|\psi_1\rangle = (H |x\rangle) \otimes |y\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} (x_0 + x_1)y_0 \\ (x_0 + x_1)y_1 \\ (x_0 - x_1)y_0 \\ (x_0 - x_1)y_1 \end{pmatrix}$$

$$|\psi_{xy}\rangle = CNOT |\psi_1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} (x_0 + x_1)y_0 \\ (x_0 + x_1)y_1 \\ (x_0 - x_1)y_0 \\ (x_0 - x_1)y_1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} (x_0 + x_1)y_0 \\ (x_0 + x_1)y_1 \\ (x_0 - x_1)y_1 \\ (x_0 - x_1)y_0 \end{pmatrix}$$

/½, zz.)	$ y\rangle = 0\rangle$ $y_0 = 1, y_1 = 0$	$ y\rangle = 1\rangle$ $y_0 = 0, y_1 = 1$
$ x\rangle = 0\rangle$ $x_0 = 1$ $x_1 = 0$	$ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} + \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}) = \frac{ 00\rangle + 11\rangle}{\sqrt{2}} $	$\frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} + \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} = \frac{ 01\rangle + 10\rangle}{\sqrt{2}}$
$ x\rangle = 1\rangle$ $x_0 = 0$ $x_1 = 1$	$ \begin{vmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\0\\-1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} - \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}) = \frac{ 00\rangle - 11\rangle}{\sqrt{2}} $	$\begin{bmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\-1\\0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} - \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}) = \frac{ 01\rangle - 10\rangle}{\sqrt{2}}$

Xref: Quantum Computation and Quantum Information (Nielson and Chuang 2010, Page 26)

1.4 Teleportation

 $|\psi_1\rangle =$

$$|\psi_{0}\rangle |\psi_{1}\rangle |\psi_{2}\rangle$$

$$|\psi_{0}\rangle = |\psi\rangle \otimes |\beta_{00}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} \alpha \\ \beta \\ 0 \\ 0 \\ 1 \\ \beta \times \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} (\alpha(|000\rangle + |011\rangle) + \beta(|100\rangle + |111\rangle)), (exercise: verify)$$

1.5 SWAP

$$\begin{split} & \text{Let } |\alpha\rangle = a_0 \, |0\rangle + a_1 \, |1\rangle = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}, \, |\beta\rangle = b_0 \, |0\rangle + b_1 \, |1\rangle = \begin{pmatrix} b_0 \\ b_1 \end{pmatrix} \\ & \text{SWAP} |\alpha\beta\rangle = |\beta\alpha\rangle \end{split}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_0 b_0 \\ a_0 b_1 \\ a_1 b_0 \\ a_1 b_1 \end{pmatrix} = \begin{pmatrix} a_0 b_0 \\ a_1 b_0 \\ a_0 b_1 \\ a_1 b_1 \end{pmatrix} = \begin{pmatrix} b_0 a_0 \\ b_0 a_1 \\ b_1 a_0 \\ b_1 a_1 \end{pmatrix}$$

Chapter 2

Qiskit Applications

- 2.1 Quadratic Problems
- 2.2 Monte Carlo Method
- 2.3 Molecular Dynamics