

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Aeronáutica e Aeroespacial

LABORÁTORIO DE PRJ-22 PROJETO CONCEITUAL DE AERONAVE Laboratório 04

Aluna:

Tatiana Pasold

Data do laboratório: 20/04/2025

1 Contexto

O presente relatório analisa os dados aerodinâmicos de uma aeronave padrão utilizando o Método de Classe 1.5. Os parâmetros geométricos dessa aeronave podem ser consultados na Seção 4.

Vale ressaltar que o enflechamento da asa poderá sofrer alterações dependendo da análise realizada.

Além disso, as condições de voo a serem consideradas estão na Tabela 1.

Tabela 1: Condições de Análise Aerodinâmica

Parâmetro	Valor
Altitude	11.000 m
Motores inoperantes $(n_{engines_{failed}})$	0
Deflexão de $flaps$ $(flap_{def})$	0.0 rad
Deflexão de $slats$ $(slat_{def})$	0.0 rad
Trem de pouso baixado (lg_{down})	0 (retraído)
Altura em relação ao solo (h_{ground})	$0 \mathrm{m}$

2 Área molhada

Considerando um enflechamento de 20° , as áreas molhadas dos componentes da aeronave estão ilustrados na Figura 1.

Figura 1: Contribuição de cada componente para a área molhada total.

Percebe-se que a fuselagem é o componente que mais contribui para a área molhada total - resultado de ser um corpo com baixa razão de esbeltez e valores altos de comprimento e diâmetro. Assim, como o arrasto parasita é proporcional à área molhada, isso indica que esse componente estrutural é o maior contribuinte do arrasto parasita total da aeronave.

A asa é o segundo componente que mais contribui com a área molhada total devido à sua grande área em planta. E os demais componentes possuem uma contribuição similar (de 5% a 7% cada um).

3 Polar de Arrasto

Para definir a polar de arrasto de uma aeronave, é necessário determinar os coeficientes de arrasto parasita, eficiência aerodinâmica e sustentação máxima (C_{D_0} , K e $C_{L_{max}}$, respectivameente).

3.1 Coeficiente de arrasto parasita

A Figura 2 mostra como o arrasto parasita varia de acordo com o número de Mach de voo e enflechamento da asa.

Figura 2: Variação do arrasto parasita com o número de Mach para diferentes ângulos de enflechamento.

Alguns comportamentos podem ser observados:

- Até Mach 0.75, as curvas se sobrepoem;
- A partir de Mach 0.75, as curvas, para os diferentes enflechamentos, se distanciam, de modo que quanto menor o enflechamento, maior o coeficiente de arrasto parasita;
- Quanto maior o número de Mach, maior a influência do enflechamento no coeficiente de arrasto parasita.

3.2 Coeficiente de sustentação máximo

O coeficiente de sustentação máximo para cada ângulo de enflechamento considerado (20°, 25°, 30°, 35° e 40°) está apresentado na Tabela 2 e também pode ser visualizado

através da Figura 3.

Figura 3: Efeito do ângulo de enflechamento no coeficiente de sustentação máximo.

Tabela 2: Coeficiente de sustentação máximo de acordo com o ângulo de enflechamento.

Ângulo de enflechamento	20°	25º	$30^{\underline{o}}$	35 <u>°</u>	40°
CL_{max}	2.5109	2.4302	2.3311	2.2141	2.0804

Observa-se que quanto maior o enflechamento, menor o coeficiente de sustentação máximo. Então, para números de Mach a partir de 0.75, ocorre um *trade off* entre coeficiente de arrasto parasita e coeficiente de sustentação máximo.

Ao analisar o desempenho aerodinâmico para o Mach de cruzeiro de 0.8, com base nas Figuras 2 e 3, verifica-se que o ângulo de enflechamento de 20° apresenta a melhor relação entre sustentação e arrasto para esta condição de voo. Para esse Mach, observa-se que as curvas de arrasto parasita para diferentes ângulos de enflechamento permanecem relativamente próximas, com uma diferença de apenas 1.4% no coeficiente de arrasto entre os enflechamentos de 20° e 40°. Contudo, quando se considera o coeficiente de sustentação máxima, verifica-se uma redução significativa de 16% ao aumentar o enflechamento de 20°

para 40°. Isso demonstra que, para o regime de cruzeiro em Mach 0.8, o aumento do ângulo de enflechamento traz benefícios mínimos na redução do arrasto, enquanto causa prejuízos substanciais na capacidade de sustentação da aeronave. Portanto, o enflechamento de 20° configura-se como a escolha mais adequada.

3.3 Coeficientes de acordo com a condição de voo

Retornando à aeronave padrão com enflechamento de asa de 20° e com as condições de voo da Tabela 3, pode-se calcular as polares de arrasto conforme Figura 4. Os parâmetros das polares de arrasto estão apresentados na Tabela 4.

Tabela 3: Configurações da Aeronave para Diferentes Fases de Voo

Parâmetro	Cruzeiro	Decolagem	Pouso
Número de Mach	0.75	0.2	0.2
Altitude (m)	11,000	0	0
Motores inoperantes	0	0	0
Deflexão de <i>flaps</i> (rad)	0.0	$0.349 (20^{\circ})$	$0.698~(40^{\circ})$
Deflexão de slats (rad)	0.0	0.0	0.0
Trem de pouso	Retraído (0)	Baixado (1)	Baixado (1)
Altura do solo (m)	0	10.67	10.67
Configuração	Limpa	Flaps médios	Flaps máximos

Figura 4: Polares de Arrasto para Diferentes Configurações de Voo, considerando $C_{L_{min}} = -0.5$.

Tabela 4: Parâmetros das polares de arrasto de acordo com a condição de voo.

Condição de voo	Cruzeiro	Decolagem	Pouso
CD_0	0.0182	0.0699	0.0921
K	0.0476	0.0412	0.0412
CL_{max}	1.9542	2.5109	3.0767

Com relação a eficiência induzida (K), a condição de cruzeiro é a que apresenta o maior valor, de acordo com o alongamento da asa e fator de Oswald. Nas condições de pouso e decolagem, o efeito solo faz com que o valor de K diminua cerca de 13%.

O coeficiente de arrasto parasita mínimo também ocorre para a condição de cruzeiro. Isso é esperado visto que a aeronave, nessa condição, está numa configuração limpa e com trem de pouso recolhido. Na condição de decolagem, C_{D0} aumenta devido ao trem de pouso baixado e aos flaps médios. Ainda, para o pouso, tem-se o maior valor de arrasto parasita devido aos flaps máximos, além do trem de pouso baixado.

O coeficiente de sustentação máximo varia conforme a deflexão dos flaps. Quanto

maior a deflexão, maior seu valor devido a maior área de asa efetiva.

4 Eficiência aerodinâmica

A eficiência aerodinâmica para as diferentes condições de voo se encontra na Tabela 5.

Tabela 5: Eficiência aerodinâmica máxima de acordo com a condição de voo.

Condição de voo	Cruzeiro	Decolagem	Pouso
$(L/D)_{max}$	16.97	9.32	8.11

A eficiência aerodinâmica é maior na condição de cruzeiro, conforme o esperado, visto que a aeronave se encontra numa configuração limpa, sem arrasto de flaps e de trem de pouso (menor C_{D0}).

Na condição de decolagem , a eficiência aerodinâmica cai em relação à condição de cruzeiro devido a deflexão dos *flaps* e trem de pouso baixado.

Por fim, a eficiência aerodinâmica no pouso é a menor dentre todas as condições de voo. Nessa condição, os flaps estão mais defletidos do que na condição de decolagem, o que, apesar de aumentar o C_{Lmax} , também aumenta o coeficiente de arrasto parasita, causando uma queda na eficiência aerodinâmica.

Apêndice

Tabela 6: Parâmetros Geométricos da Asa

Parâmetro	Valor
Área (S_w)	93.5 m^2
Alongamento (AR_w)	8.43
Afilamento (λ_w)	0.235
Enflechamento (Λ_w)	17.45°
Diedro (Γ_w)	5°
Corda na raiz $(c_{r,w})$	13.5 m
Posição vertical $(z_{r,w})$	$0.0 \mathrm{m}$
Espessura relativa na raiz $((t/c)_{r,w})$	12.3%
Espessura relativa na ponta $((t/c)_{t,w})$	9.6%

Tabela 7: Parâmetros Geométricos da Empenagem Horizontal

Parâmetro	Valor
Coeficiente de volume (C_{ht})	0.94
Alongamento (AR_h)	4.64
Afilamento (λ_h)	0.39
Enflechamento (Λ_h)	26°
Diedro (Γ_h)	2°
Braço aerodinâmico (L_c)	$4.83~\mathrm{m}$
Posição vertical $(z_{r,h})$	$0.0 \mathrm{m}$
Espessura relativa na raiz $((t/c)_{r,h})$	10%
Espessura relativa na ponta $((t/c)_{t,h})$	10%

Tabela 8: Parâmetros Geométricos da Empenagem Vertical

Parâmetro	Valor
Coeficiente de volume (C_{vt})	0.088
Alongamento (AR_v)	1.27
Afilamento (λ_v)	0.74
Enflechamento (Λ_v)	41°
Braço aerodinâmico (L_b)	$0.55 \mathrm{\ m}$
Posição vertical $(z_{r,v})$	$0.0 \mathrm{m}$
Espessura relativa na raiz $((t/c)_{r,v})$	10%
Espessura relativa na ponta $((t/c)_{t,v})$	10%

Tabela 9: Parâmetros da Fuselagem e Naceles

Parâmetro	Valor
Comprimento da fuselagem (L_f)	32.8 m
Diâmetro da fuselagem (D_f)	$3.3 \mathrm{m}$
Comprimento da nacele (L_n)	$4.3 \mathrm{m}$
Diâmetro da nacele (D_n)	$1.5 \mathrm{m}$
Posição longitudinal da nacele (x_n)	$23.2 \mathrm{m}$
Número de motores (n_{eng})	2

Tabela 10: Parâmetros do Trem de Pouso e Outros

Parâmetro	Valor
Posição do trem dianteiro (x_{nlg})	3.6 m
Posição do trem principal (x_{mlg})	$17.8~\mathrm{m}$
Posição lateral do trem principal (y_{mlg})	$2.47~\mathrm{m}$
Altura do trem (z_{lg})	$-2.0 \mathrm{m}$
Fator de excrescência (k_{exc})	0.03
C_{Lmax} do aerofólio	2.3

Referências Bibliográficas

- [1] SILVA, R. G. A. Aerodinâmica (Parte 1): Notas de Aula. São José dos Campos: Instituto Tecnológico de Aeronáutica, 2025. 28 p. (PRJ-22 Projeto Conceitual de Aeronave).
- [2] SILVA, R. G. A. Aerodinâmica (Parte 2): Notas de Aula. São José dos Campos: Instituto Tecnológico de Aeronáutica, 2025. 47 p. (PRJ-22 Projeto Conceitual de Aeronave).
- [3] INSTITUTO TECNOLÓGICO DE AERONÁUTICA (ITA). Roteiro: Laboratório 4 Aerodinâmica (PRJ-22 Projeto Conceitual de Aeronave). São José dos Campos: Divisão de Engenharia Aeronáutica, 2025. 8 p.