Productivity and Efficiency Analysis

4) Unified approach: StoNED

b) StoNED estimation

Timo Kuosmanen

Aalto University School of Business

https://people.aalto.fi/timo.kuosmanen

Taxonomy of methods

based on Kuosmanen & Johnson (2010), Operations Research

		Parametric	Nonparametric	
			Local averaging	Axiomatic
		OLS	Kernel regression	Convex regression
		Gauss (1795),	Nadaraya (1964),	Hildreth (1954),
Average curve		Legendre (1805)	Watson (1964)	Hanson and Pledger
				(1976)
	Deterministic	Parametric programming	Nonparametric	DEA
	(Sign constr.)	Aigner and Chu (1968)	programming	Farrell (1957),
			Post et al. (2002)	Charnes et al. (1978)
	Deterministic	Corrected OLS	Corrected kernel	Corrected CNLS
	(2-stage)	Winsten (1957)	Kneip and Simar (1996)	Kuosmanen and
Frontier		Greene (1980)		Johnson (2010)
	Stochastic	SFA	Semi-nonparametric SFA	StoNED
		Aigner et al. (1977)	Fan, Li and Weersink	Kuosmanen and
		Meeusen and van den	(1996)	Kortelainen (2012)
		Broeck (1977)		

Unified frontier model

$$y_i = f(\mathbf{x}_i) - u_i + v_i, \quad i = 1, ..., n$$

where

 y_i is output of firm i

f is frontier production function

 \mathbf{x}_i is input vector of firm i

 u_i is asymmetric inefficiency term of firm i

 v_i is random noise term of firm i

Kuosmanen, Johnson & Saastamoinen (2014) Stochastic nonparametric approach to efficiency analysis: A Unified Framework, in J. Zhu (Ed) *Handbook on DEA Vol. 2*, Springer.

Conditional mean

$$y_i = f(\mathbf{x}_i) - u_i + v_i$$

$$E(y_i | \mathbf{x}_i) = f(\mathbf{x}_i) - E(u_i)$$

$$= f(\mathbf{x}_i) - \mu$$

$$= g(\mathbf{x}_i)$$

- If the frontier production function *f* is monotonic increasing and concave (+CRS), then so is the average-practice production function *g*.
- Function *g* can be consistently estimated by convex regression.

Stepwise StoNED estimation

- 1) Estimate the average-practice production function *g* by convex nonparametric least squares (CNLS).
- 2) Estimate the expected inefficiency E(u) based on the CNLS residuals, assuming u is half-normally or exponentially distributed.
- 3) Estimate the frontier production function as

$$\hat{f}^{StoNED}(\mathbf{x}) = \hat{g}_{\min}^{CNLS}(\mathbf{x}) + \hat{\mu}$$

4) Apply JLMS formula to estimate firm-specific efficiency.

StoNED estimation: Illustration

What if there is heteroscedasticity?

In step 1, we estimate the conditional mean

$$g(\mathbf{x}_i) = E(y_i | \mathbf{x}_i) = f(\mathbf{x}_i) - E(u_i | \mathbf{x}_i).$$

Note: severe heteroscedasticity can violate concavity.

In step 2, we apply some SFA parametrization that allows for heteroscedasticity of u with respect to \mathbf{x} .

In step 3, we estimate the frontier as

$$\hat{f}^{StoNED}(\mathbf{x}_i) = \hat{g}^{CNLS}(\mathbf{x}_i) + E(u_i \mid \mathbf{x}_i, \hat{\mu}_i, \hat{\sigma}_{u,i}).$$

Sequential estimation approach

Frontier, efficiency scores, targets, benchmarking, RTS, etc.

Unified frontier approach

Modelling phase

- Specify inputs x, outputs y, contextual variables z
- Shape constraints: monotonicity, convexity, RTS
- Parametric assumptions

Estimation phase

- 1) Convex regression => conditional mean
- 2) SFA analysis on residuals => expected inefficiency

Efficiency analysis phase

- 3) DEA analysis on fitted (x^*, y^*)
- Alternative efficiency metrics
- Benchmarking
- Performance targets
- RTS, scale elasticity

StoNED as a process innovation

Adapted from the COOPER framework by Emrouznejad & De Witte (2010) EJOR

Next lesson

4c) Convex regression

