

Konnektivität im Gehirn

Lutz Althüser, Tobias Frohoff-Hülsmann, Victor Kärcher, Lukas Splitthoff, Timo Wiedemann

Unterstützt durch: Christian Himpe

Überblick

DCM für ein fMRI-Modell - Rückblick

Elektroenzephalographie (EEG)-Modell

Literatur

```
import numpy as np
                                                                              import matplotlib.pyplot as plt
                                                                             from programs import RK4 as RK4
                                                                             from programs import Euler as RK1
                                                                             from programs import hemodynamicModel as HM
                                                                             from programs import bilinearModel as BM
                                                                            # Parameter Beispiel 1
                                                                            T = 100.
                                                                            t0 = 0.
                                                                                                        # Endzeit
                                                                            dt = 0.1
                                                                           t = np.arange(t0,T+dt,dt)
                                                                                                        # Anfangszeit
                                                                                                        # Zeitachrittlaenge
                                                                          A = np.array([[-1.,0.,0.],
                                                                                                       # Zeitarray
                                                                                        [0.3,-1,0.2],
Nichtlineare Erweiterung des fMRI-Modells \frac{z_{eros(\{3,3\})}}{a_{ray}(\{0,1\},0,0,1]}
                                                                                        [0.6,0.,-1.]]) # Kopplung
                                                                                                      # Induzierte Kopplung
                                                                         B = np.array([B1, B2])
                                                                                        [0.1, 0, 0 ]])
                                                                                                     # Zusammenfassen der ind. Kopplung in ei
                                                                       c = np.array([[1, 0],
                                                                                      10, 011)
                                                                                                    # äußerer Einfluss auf Hirnaktivität
                                                                       # Mußerer Stimulus
                                                                       u = np.zeros((len(B), len(t)))
                                                                      u[0,101:-99:200] = 10.
                                                                                                   # Stimulus u1
                                                                      u[1,451:550] = 2.
                                                                      u[1,251:350] = 5.
                                                                      u[1, 691:910] = 2.
                                                                                                   # Stimulus u2
                                                                                                   # Stimulus u2
                                                                     # Anfangsbedingunden
                                                                                                  # Stimulus u2
                                                                     x 0 = np.ones(15)
                                                                     \times 0[0:6] = 0.
                                                                    # Zusammenfassen der Parameter für das "hemodynamicModel"
```


Dynamic Causal Modelling für fMRI

- ▶ 7iel·
 - Modellierung von Interaktionen in einem neuronalen Netzwerk
- ► Ansatz

Modellierung neuronaler Zustandsentwicklung mithilfe einer Taylorreihen-Näherung

- → Netzwerk-Modell
- Vergleichbarkeit mit Experiment: Hämodynamisches Modell:

BOLD-Kontrast ≈ Sauerstoffgehalt der roten Blutkörperchen

→ Observablen-Modell

Interaktion zwischen verschiedenen Hirnregionen

Bilineares Netzwerk-Modell

- ► A: feste Verknüpfung der Hirnregionen
- ▶ B: Einfluss des Inputs auf Konnektivität
- ► C: Einfluss des Inputs auf neuronale Aktivität der Hirnregionen

$$\dot{z}(t) = f(z(t), u(t))$$

$$\approx f(0, 0) + \frac{\partial f}{\partial z}z + \frac{\partial f}{\partial u}u + \frac{\partial^2 f}{\partial z \partial u}zu$$

$$\dot{z}(t) = A \cdot z + \sum_{i} u_{i} B^{j} \cdot z + C \cdot u$$

$$A = \begin{pmatrix} a_{11} & 0 & a_{13} \\ 0 & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \quad B^{(1)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & b_{32}^{(1)} & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} c_1 \\ 0 \\ 0 \end{pmatrix}$$

→ Neuronale Aktivität ↔ Konnektivität

Nichtlineare Erweiterung

Mathematische Beschreibung

- ► A: feste Verknüpfung der Hirnregionen
- ▶ B: Einfluss des Inputs auf Konnektivität
- ► C: Einfluss des Inputs auf neuronale Aktivität der Hirnregionen
- D: Einfluss der Regionen auf Konnenktivität

$$\dot{z}(t) = f(z(t), u(t))
\approx f(0, 0) + \frac{\partial f}{\partial z}z + \frac{\partial f}{\partial u}u + \frac{\partial^2 f}{\partial z \partial u}zu + \frac{\partial^2 f}{\partial z^2}\frac{z^2}{2}$$

$$\dot{z}(t) = A \cdot z + \sum_{j} u_{j} B^{j} \cdot z + C \cdot u + \frac{1}{2} \sum_{i} z_{i} D^{i} \cdot z$$

$$A = \begin{pmatrix} a_{11} & 0 & a_{13} \\ 0 & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \quad B^{(1)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} c_1 \\ 0 \\ 0 \end{pmatrix} \qquad \qquad D^{(1)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & d_{32}^{(1)} & 0 \end{pmatrix}$$

Idee: Autoregulation einer Region

Frage: Selbiges Resultat ohne nichtlineare Erweiterung möglich?

<u>Problem</u>: Einfluss auf weitere Region

EEG-Modell

EEG = Elektroenzephalographie

Konzeptioneller Vergleich von fMRI- zu EEG-Modell

fMRI-Modell	EEG-Modell
Biologische Beschreibung	
Verknüpfung einzelner Neuronen	Verknüpfung von Gehirnbereichen
	und Subregionen untereinander
Zielgrößen	
Gehirnaktivität = abstrakte Größe	direktes Modell für
ightarrow biologisches Modell nötig	Potentiale und Impulsraten
Mathematische Beschreibung	
Taylorentwicklung	Eingangs- und
	Ausgangsoperatoren

Das EEG-Modell

Mathematische Realisierung - Neuroneneingang

Physikalische Größen sind Membranpotentiale und Impulsraten

Präsynaptische Impulsrate \rightarrow Postsynaptisches Membranpotential

$$u_{ein}(t)$$

$$u_{ein}(t) \rightarrow v(t) = h(t) * u_{ein}(t)$$

Mathematische Realisierung - Neuronenausgang

Synaptisches Membranpotential
$$ightarrow$$
 Impulsrate $v(t)
ightarrow u_{aus}(t) = S(v(t))$

Zusammenfassung

DCM für fMRI:

- ► Netzwerkmodell ≠ Observablenmodell
- ► linearer Term: Gehirn mit statischer Konnektivität
- bilinearer + nichtlinearer Term:
 Gehirn mit dynamischer Konnektivität
- Auflösung der Gehirnaktivität auf langer Zeitskala

Zusammenfassung

DCM für fMRI:

- ► Netzwerkmodell ≠ Observablenmodell
- ► linearer Term: Gehirn mit statischer Konnektivität
- bilinearer + nichtlinearer Term:
 Gehirn mit dynamischer Konnektivität
- Auflösung der Gehirnaktivität auf langer Zeitskala

DCM für EEG:

- ▶ Netzwerkmodell = Observablenmodell
- ► Gehirn mit Substrukturen: intrinsische Dynamik
- ► Auflösung der Gehirnaktivität auf kurzer Zeitskala ⇒ Spektralanalyse

Vielen Dank für eure Aufmerksamkeit

Literatur

- Dynamic causal modelling
 K.J. Friston, L. Harrison and W. Penny / NeuroImage 4 (2003)
 web.mit.edu/swg/ImagingPubs/connectivity/Dcm_Friston.pdf
- ► Synaptischer Spalt
 In: Gedankenschatz: Bewusstsein- und Persönlichkeitsentfaltung
 http://gedankenschatz.de/quantenphysik-im-kopf/ (Abgerufen: 6. Juli 2016,
 12:28 UTC)
- ► Sternneuronen

```
http://gdpsychtech.blogspot.de/2014/06/medium-spiny-neurons-msn.html (Abgerufen: 6. Juli 2016, 12:28 UTC)
```


Literatur

► Pyramidenzellen

http://www.ruf.rice.edu/~lngbrain/Sidhya/ (Abgerufen: 6. Juli 2016, 12:28 UTC)

 Aktionspotential und Neurotransmission
 In: Institut for complex Systems, Forschungszentrum Jülich http:

//www.fz-juelich.de/ics/ics-4/DE/Forschungsthemen/02Biogene

(Abgerufen: 6. Juli 2016, 12:28 UTC)

► EEG and ERP Laboratory Experiment Demonstration
http://jerlab.psych.sc.edu/infantdevelopmentlab/pwreegdemobaby/
pwrbabydemo1.htm (Abgerufen: 6. Juli 2016, 12:28 UTC)