The RBioc Book

Sean Davis

University of ColoradoAnschutz School of Medicine

1.	Who	o is this book for?	1
	1.1.	Why this book?	1
	1.2.	Adult learners	1
I.	Int	roduction	4
2.	Intr	oducing R and RStudio	5
	Que	stions	5
		ning Objectives	5
	2.1.	Introduction	5
	2.2.	What is R?	5
	2.3.	Why use R?	6
	2.4.	Why not use R?	7
	2.5.	R License and the Open Source Ideal	7
	2.6.	RStudio	8
		2.6.1. Getting started with RStudio	8
		2.6.2. The RStudio Interface	8
3.	R m	echanics 1	11
	3.1.	Learning objectives	11
	3.2.		11
	3.3.		11
	3.4.	_	12
			13
		-	13
	3.5.		15
	3.6.		16
	3.7.	Further practice	17
	3.8.	Exercises	17
4.	The	Very Basics 1	19
	4.1.	The R User Interface	19
			22

	4.2.	Objects	23
	4.3.	Functions	30
		4.3.1. Sample with Replacement	34
	4.4.	Writing Your Own Functions	37
		4.4.1. The Function Constructor	38
	4.5.	Arguments	40
	4.6.	Scripts	42
	4.7.	Summary	44
II.	Ov	rerview of R Data Structures	46
	Chap	oter overview	48
5.	Vect	ors	49
	5.1.	What is a Vector?	49
	5.2.	Creating Vectors	49
	5.3.	Accessing Vector Elements	51
	5.4.	Vector Operations	52
	5.5.	Named Vectors	54
	5.6.	Vector Recycling and Recycling Rule	55
	5.7.	Active Learning Exercises	56
	5.8.	Creating vectors	57
	5.9.	Vector Operations	58
	5.10.	Logical Vectors	60
		5.10.1. Logical Operators	60
	5.11.	Indexing Vectors	61
	5.12.	Character Vectors, A.K.A. Strings	63
		Missing Values, AKA "NA"	64
		Exercises	65
6.			67
	6.1.	Creating a matrix	67
	6.2.	Accessing elements of a matrix	70
	6.3.	Changing values in a matrix	72
	6.4.	Calculations on matrix rows and columns	74
	6.5.	Exercises	76
		6.5.1. Data preparation	76
		6.5.2. Questions	76
7.		a Frames	79
	7 1	Learning goals	79

	7.2.	Learning objectives	79
	7.3.	Dataset	80
	7.4.	Reading in data	81
	7.5.	Inspecting data.frames	81
	7.6.	Accessing variables (columns) and subsetting	85
		7.6.1. Some data exploration	86
		7.6.2. More advanced indexing and subsetting	87
	7.7.	Aggregating data	91
	7.8.	Creating a data.frame from scratch	92
	7.9.	Saving a data.frame	93
8.	Fact	ors	94
	8.1.	Factors	94
Ш	. Exi	ploratory data analysis	97
	_	,	
9.		e Study: Behavioral Risk Factor Surveillance	
	Syste		99
	9.1.	A Case Study on the Behavioral Risk Factor Surveil-	
		lance System	99
	9.2.	Loading the Dataset	100
	9.3.	Inspecting the Data	100
	9.4.	Summary Statistics	101
	9.5.	Data Visualization	102
	9.6.	Analyzing Relationships Between Variables	103
	9.7.	Exercises	104
	9.8.	Conclusion	107
	9.9.	Learn about the data	107
		Clean data	107
		Weight in 1990 vs. 2010 Females	108
	9.12.	Weight and height in 2010 Males	109
I۷	. sta	tististics	114
10	The	t-statistic and t-distribution	115
10		Background	115
		The Z-score and probability	115
	10.2.	10.2.1. Small diversion: two-sided pnorm function	117
	10.2	The t-distribution	117
	10.5.		
		10.3.1. p-values based on Z vs t	121

		10.3.2. Experiment	122
	10.4.	Summary of t-distribution vs normal distribution .	126
	10.5.	t.test	127
		10.5.1. One-sample	127
		10.5.2. two-sample	128
		10.5.3. from a data.frame	128
		10.5.4. Equivalence to linear model	129
11.	K-m	eans clustering	130
	11.1.	History of the k-means algorithm	130
	11.2.	The k-means algorithm	131
	11.3.	Pros and cons of k-means clustering	131
	11.4.	An example of k-means clustering	133
		11.4.1. The data and experimental background	133
	11.5.	Getting data	134
	11.6.	Preprocessing	135
	11.7.	Clustering	137
		Summary	138
V.	Bio	oconductor	139
12.	Intro	oduction to SummarizedExperiment	140
	12.1.	Anatomy of a SummarizedExperiment	140
		12.1.1. Assays	141
		12.1.2. 'Row' (regions-of-interest) data	143
		12.1.3. 'Column' (sample) data	
		12.1.3. Column (sample) data	144
		12.1.4. Experiment-wide metadata	144 145
	12.2.		
	12.2.	12.1.4. Experiment-wide metadata	145
	12.2.	12.1.4. Experiment-wide metadata	145 146
	12.2.	12.1.4. Experiment-wide metadata	145 146 146
		12.1.4. Experiment-wide metadata	145 146 146 147
Re		12.1.4. Experiment-wide metadata	145 146 146 147 149
	12.3.	12.1.4. Experiment-wide metadata	145 146 146 147 149
Αŗ	12.3. feren	12.1.4. Experiment-wide metadata	145 146 146 147 149 149
Αŗ	12.3. feren openo App	12.1.4. Experiment-wide metadata	145 146 146 147 149 149 152

B. Ac	lditioı	nal res	sources
-------	---------	---------	---------

154

List of Figures

1.1.	Why do adults choose to learn something?	2
1.2.	How to stay stuck in data science (or anything). The	
	"Read-Do" loop tends to deliver the best results. Too	
	much reading between doing can be somewhat ef-	
	fective. Reading and simply copy-paste is probably	
	the least effective. When working through material,	
	experiment. Try to break things. Incorporate your	
	own experience or applications whenever possible.	3
2.1.	Google trends showing the popularity of R over time	
	based on Google searches	6
2.2.	The RStudio interface. In this layout, the source	
	pane is in the upper left, the console is in the lower	
	left, the environment panel is in the top right and	
	the viewer/help/files panel is in the bottom right.	9
4.1.	Your computer does your bidding when you type	
	R commands at the prompt in the bottom line of	
	the console pane. Don't forget to hit the Enter key.	
	When you first open RStudio, the console appears in	
	the pane on your left, but you can change this with	
	File > Tools > Global Options in the menu bar	20
4.2.	Assignment creates an object in the environment pane.	26
4.3.	"When R performs element-wise execution, it	
	matches up vectors and then manipulates each pair	
	of elements independently."	28
4.4.	"R will repeat a short vector to do element-wise op-	
	erations with two vectors of uneven lengths."	29
4.5.	"When you link functions together, R will resolve	
	them from the innermost operation to the outer-	
	most. Here R first looks up die, then calculates the	
	mean of one through six then rounds the mean"	31

List of Figures

4.6.	"Every function in R has the same parts, and you can use function to create these parts. Assign the	
4.7.	result to a name, so you can call the function later." "When you open an R Script (File > New File > R Script in the menu bar), RStudio creates a fourth pane (or puts a new tab in the existing pane) above	43
4.8.	the console where you can write and edit your code." A pictorial representation of R's most common data structures are vectors, matrices, arrays, lists, and dataframes. Figure from Hands-on Programming	43
	with R	47
6.1.	A matrix is a collection of column vectors	67
10.1.	t-distributions for various degrees of freedom. Note that the tails are fatter for smaller degrees of free- dom, which is a result of estimating the standard	
	deviation from the data	120
11.1.	K-means clustering takes a dataset and divides it into k clusters	130
11.2.	Histogram of standard deviations for all genes in the deRisi dataset.	136
11.3.	Gene expression profiles for the four clusters identified by k-means clustering. Each line represents a gene in the cluster, and each column represents a time point in the experiment. Each cluster shows a distinct trend where the genes in the cluster are	
	potentially co-regulated	137
12.1.	Summarized Experiment. There are three main components, the colData(), the rowData() and the assays(). The accessors for the various parts of a complete SummarizedExperiment object match	
	the names.	142

List of Tables

5.1.	Atomic	(simplest)) data types in R.	 57

1. Who is this book for?

- · People who want to learn data science
- · People who want to teach data science
- · People who want to learn how to teach data science
- People who want to learn how to learn data science

1.1. Why this book?

This book is a collection of resources for learning data science. It is meant to be largely self-directed, but for those looking to teach data science, it can also be used as a guide for structuring a course. Material is a bit variable in terms of difficulty, prerequisites, and format which is a reflection of the organic creation of the material.

Students are encouraged to work with others to learn the material. Instructors are encouraged to use the material to create a course that is tailored to the needs of their students and to spend lots of time in 1:1 and small groups to support students in their learning. See below for additional thoughts on adult learning and how it relates to this material.

1.2. Adult learners

Adult Learning Theory, also known as Andragogy, is the concept and practice of designing, developing, and delivering instructional experiences for adult learners. It is based on the belief that adults learn differently than children, and thus, require distinct approaches to engage, motivate, and retain information Center (2016). The term was first introduced by Malcolm Knowles, an American educator who is known for his work in adult education.

1. Who is this book for?

One of the fundamental principles of Adult Learning Theory is that adults are self-directed learners. This means that we prefer to take control of our own learning process and set personal goals for themselves. We are motivated by our desire to solve problems or gain knowledge to improve our lives (see Figure 1.1). As a result, educational content for adults should be relevant and applicable to real-life situations. Furthermore, adult learners should be given opportunities to actively engage in the learning process by making choices, setting goals, and evaluating their progress.

Figure 1.1.: Why do adults choose to learn something?

Another key aspect of Adult Learning Theory is the role of experience. We bring a wealth of experience to the learning process, which serves as a resource for new learning. We often have well-established beliefs, values, and mental models that can influence our willingness to accept new ideas and concepts. Therefore, it is essential to acknowledge and respect our shared and unique past experiences and create an environment where we all feel comfortable sharing our perspectives.

To effectively learn as a group of adult learners, it is crucial to establish a collaborative learning environment that promotes open communication and fosters trust among participants. We all appreciate and strive for a respectful and supportive atmosphere where we can express our opinions without fear of judgment. Instructors should help facilitate discussions, encourage peer-to-peer interactions, and incorporate group activities and collaboration to capitalize on the collective knowledge of participants.

Additionally, adult learners often have multiple responsibilities outside of the learning environment, such as work and family commitments. As a result, we require flexible learning opportunities that accommodate busy schedules. Offering a variety of instructional formats, such as online modules, self-paced learning, or evening

1. Who is this book for?

classes, can help ensure that adult learners have access to education despite any time constraints.

Adult learners benefit from a learner-centered approach that focuses on the individual needs, preferences, and interests of each participant can greatly enhance the overall learning experience. In addition, we tend to be more intrinsically motivated to learn when we have a sense of autonomy and can practice and experiment (see Figure 1.2) with new concepts in a safe environment.

Understanding Adult Learning Theory and its principles can significantly enhance the effectiveness of teaching and learning as adults. By respecting our autonomy, acknowledging our experiences, creating a supportive learning environment, offering flexible learning opportunities, and utilizing diverse teaching methods, we can better cater to the unique needs and preferences of adult learners.

In practice, that means that we will will not be prescriptive in our approach to teaching data science. We will not tell you what to do, but rather we will provide you with a variety of options and you can choose what works best for you. We will also provide you with a variety of resources and you can choose where to focus your time. Given that we cannot possibly cover everything, we will provide you with a framework for learning and you can fill in the gaps as you see fit. A key component of our success as adult learners is to gain the confidence to ask questions and problem-solve on our own.

Figure 1.2.: How to stay stuck in data science (or anything). The "Read-Do" loop tends to deliver the best results. Too much reading between doing can be somewhat effective. Reading and simply copy-paste is probably the least effective. When working through material, experiment. Try to break things. Incorporate your own experience or applications whenever possible.

Part I. Introduction

2. Introducing R and RStudio

Questions

- · What is R?
- Why use R?
- Why not use R?
- Why use RStudio and how does it differ from R?

Learning Objectives

- Know advantages of analyzing data in R
- Know advantages of using RStudio
- Be able to start RStudio on your computer
- Identify the panels of the RStudio interface
- Be able to customize the RStudio layout

2.1. Introduction

In this chapter, we will discuss the basics of R and RStudio, two essential tools in genomics data analysis. We will cover the advantages of using R and RStudio, how to set up RStudio, and the different panels of the RStudio interface.

2.2. What is R?

[R](https://en.wikipedia.org/wiki/R_(programming_language) is a programming language and software environment designed for statistical computing and graphics. It is widely used by statisticians, data scientists, and researchers for data analysis and visualization.

R is an open-source language, which means it is free to use, modify, and distribute. Over the years, R has become particularly popular in the fields of genomics and bioinformatics, owing to its extensive libraries and powerful data manipulation capabilities.

The R language is a dialect of the S language, which was developed in the 1970s at Bell Laboratories. The first version of R was written by Robert Gentleman and Ross Ihaka and released in 1995 (see this slide deck for Ross Ihaka's take on R's history). Since then, R has been continuously developed by the R Core Team, a group of statisticians and computer scientists. The R Core Team releases a new version of R every year.

Figure 2.1.: Google trends showing the popularity of R over time based on Google searches

2.3. Why use **R**?

There are several reasons why R is a popular choice for data analysis, particularly in genomics and bioinformatics. These include:

- 1. **Open-source**: R is free to use and has a large community of developers who contribute to its growth and development. What is "open-source"?
- 2. **Extensive libraries**: There are thousands of R packages available for a wide range of tasks, including specialized packages for genomics and bioinformatics. These libraries have been extensively tested and are available for free.
- 3. **Data manipulation**: R has powerful data manipulation capabilities, making it easy (or at least possible) to clean, process, and analyze large datasets.
- 4. **Graphics and visualization**: R has excellent tools for creating high-quality graphics and visualizations that can be customized to meet the specific needs of your analysis. In most cases, graphics produced by R are publication-quality.
- 5. **Reproducible research**: R enables you to create reproducible research by recording your analysis in a script, which

can be easily shared and executed by others. In addition, R does not have a meaningful graphical user interface (GUI), which renders analysis in R much more reproducible than tools that rely on GUI interactions.

- 6. **Cross-platform**: R runs on Windows, Mac, and Linux (as well as more obscure systems).
- 7. **Interoperability with other languages**: R can interfact with FORTRAN, C, and many other languages.
- 8. **Scalability**: R is useful for small and large projects.

I can develop code for analysis on my Mac laptop. I can then install the *same* code on our 20k core cluster and run it in parallel on 100 samples, monitor the process, and then update a database (for example) with R when complete.

2.4. Why not use R?

- R cannot do everything.
- R is not always the "best" tool for the job.
- R will not hold your hand. Often, it will slap your hand instead.
- The documentation can be opaque (but there is documentation).
- R can drive you crazy (on a good day) or age you prematurely (on a bad one).
- Finding the right package to do the job you want to do can be challenging; worse, some contributed packages are unreliable.]{}
- R does not have a meaningfully useful graphical user interface (GUI).

2.5. R License and the Open Source Ideal

R is free (yes, totally free!) and distributed under GNU license. In particular, this license allows one to:

- Download the source code
- Modify the source code to your heart's content

 Distribute the modified source code and even charge money for it, but you must distribute the modified source code under the original GNU license]{}

This license means that R will always be available, will always be open source, and can grow organically without constraint.

2.6. RStudio

RStudio is an integrated development environment (IDE) for R. It provides a graphical user interface (GUI) for R, making it easier to write and execute R code. RStudio also provides several other useful features, including a built-in console, syntax-highlighting editor, and tools for plotting, history, debugging, workspace management, and workspace viewing. RStudio is available in both free and commercial editions; the commercial edition provides some additional features, including support for multiple sessions and enhanced debugging

2.6.1. Getting started with RStudio

To get started with RStudio, you first need to install both R and RStudio on your computer. Follow these steps:

- 1. Download and install R from the official R website.
- 2. Download and install RStudio from the official RStudio website.
- 3. Launch RStudio. You should see the RStudio interface with four panels.

2.6.2. The RStudio Interface

RStudio's interface consists of four panels (see Figure 2.2):

• **Console** This panel displays the R console, where you can enter and execute R commands directly. The console also shows the output of your code, error messages, and other information.

- Source This panel is where you write and edit your R scripts.
 You can create new scripts, open existing ones, and run your code from this panel.
- **Environment** This panel displays your current workspace, including all variables, data objects, and functions that you have created or loaded in your R session.
- Plots, Packages, Help, and Viewer These panels display
 plots, installed packages, help files, and web content,
 respectively.

Figure 2.2.: The RStudio interface. In this layout, the **source** pane is in the upper left, the **console** is in the lower left, the **environment** panel is in the top right and the **viewer/help/files** panel is in the bottom right.

i Do I need to use RStudio?

No. You can use R without RStudio. However, RStudio makes it easier to write and execute R code, and it provides several useful features that are not available in the basic R console. Note that the only part of RStudio that is actually interacting with R directly is the console. The other panels are simply providing a GUI that enhances the user experience.

Customizing the RStudio Interface

You can customize the layout of RStudio to suit your preferences. To do so, go to **Tools** > **Global Options** > **Appear**-

ance. Here, you can change the theme, font size, and panel layout.

In summary, R and RStudio are powerful tools for genomics data analysis. By understanding the advantages of using R and RStudio and familiarizing yourself with the RStudio interface, you can efficiently analyze and visualize your data. In the following chapters, we will delve deeper into the functionality of R, Bioconductor, and various statistical methods to help you gain a comprehensive understanding of genomics data analysis.

3.1. Learning objectives

- Be able to start R and RStudio
- · Learn to interact with the R console
- Know the difference between expressions and assignment
- Recognize valid and invalid R names
- Know how to access the R help system
- Know how to assign values to variables, find what is in R memory, and remove values from R memory

3.2. Starting R

How to start R depends a bit on the operating system (Mac, Windows, Linux) and interface. In this course, we will largely be using an Integrated Development Environment (IDE) called *RStudio*, but there is nothing to prohibit using R at the command line or in some other interface (and there are a few).

3.3. RStudio: A Quick Tour

The RStudio interface has multiple panes. All of these panes are simply for convenience except the "Console" panel, typically in the lower left corner (by default). The console pane contains the running R interface. If you choose to run R outside RStudio, the interaction will be *identical* to working in the console pane. This is useful to keep in mind as some environments, such as a computer cluster, encourage using R without RStudio.

- Panes
- · Options

- Help
- · Environment, History, and Files

3.4. Interacting with R

The only meaningful way of interacting with R is by typing into the R console. At the most basic level, anything that we type at the command line will fall into one of two categories:

1. Assignments

```
\begin{array}{rcl}
x & = & 1 \\
y & < - & 2
\end{array}
```

2. Expressions

```
1 + pi + sin(42)
[1] 3.225071
```

The assignment type is obvious because either the The <- or = are used. Note that when we type expressions, R will return a result. In this case, the result of R evaluating 1 + pi + $\sin(42)$ is 3.2250711.

The standard R prompt is a ">" sign. When present, R is waiting for the next expression or assignment. If a line is not a complete R command, R will continue the next line with a "+". For example, typing the fillowing with a "Return" after the second "+" will result in R giving back a "+" on the next line, a prompt to keep typing.

```
1 + pi + sin(3.7)
```

```
[1] 3.611757
```

R can be used as a glorified calculator by using R expressions. Mathematical operations include:

- Addition: +
- Subtraction: -

• Multiplication: *

• Division: /

• Exponentiation: ^

• Modulo: %%

The ^ operator raises the number to its left to the power of the number to its right: for example 3^2 is 9. The modulo returns the remainder of the division of the number to the left by the number on its right, for example 5 modulo 3 or 5 %% 3 is 2.

3.4.1. Expressions

```
5 + 2
28 %% 3
3^2
5 + 4 * 4 + 4 ^ 4 / 10
```

Note that R follows order-of-operations and groupings based on parentheses.

```
5 + 4 / 9
(5 + 4) / 9
```

3.4.2. Assignment

While using R as a calculator is interesting, to do useful and interesting things, we need to assign *values* to *objects*. To create objects, we need to give it a name followed by the assignment operator <- (or, entirely equivalently, =) and the value we want to give it:

```
weight_kg <- 55
```

<- is the assignment operator. Assigns values on the right to objects on the left, it is like an arrow that points from the value to the object. Using an = is equivalent (in nearly all cases). Learn to use <- as it is good programming practice.

Objects can be given any name such as x, current_temperature, or subject_id (see below). You want your object names to be explicit and not too long. They cannot start with a number (2x is not valid but x2 is). R is case sensitive (e.g., weight_kg is different from Weight_kg). There are some names that cannot be used because they represent the names of fundamental functions in R (e.g., if, else, for, see here for a complete list). In general, even if it's allowed, it's best to not use other function names, which we'll get into shortly (e.g., c, T, mean, data, df, weights). When in doubt, check the help to see if the name is already in use. It's also best to avoid dots (.) within a variable name as in my.dataset. It is also recommended to use nouns for variable names, and verbs for function names.

When assigning a value to an object, R does not print anything. You can force to print the value by typing the name:

```
weight_kg
```

[1] 55

Now that R has weight_kg in memory, which R refers to as the "global environment", we can do arithmetic with it. For instance, we may want to convert this weight in pounds (weight in pounds is 2.2 times the weight in kg).

```
2.2 * weight_kg
```

[1] 121

We can also change a variable's value by assigning it a new one:

```
weight_kg <- 57.5
2.2 * weight_kg</pre>
```

[1] 126.5

This means that assigning a value to one variable does not change the values of other variables. For example, let's store the animal's weight in pounds in a variable.

```
weight_lb <- 2.2 * weight_kg</pre>
```

and then change weight_kg to 100.

```
weight_kg <- 100</pre>
```

What do you think is the current content of the object weight_lb, 126.5 or 220?

You can see what objects (variables) are stored by viewing the Environment tab in Rstudio. You can also use the ls() function. You can remove objects (variables) with the rm() function. You can do this one at a time or remove several objects at once. You can also use the little broom button in your environment pane to remove everything from your environment.

```
ls()
rm(weight_lb, weight_kg)
ls()
```

What happens when you type the following, now?

weight_lb # oops! you should get an error because weight_lb no longer exists!

3.5. Rules for Names in R

R allows users to assign names to objects such as variables, functions, and even dimensions of data. However, these names must follow a few rules.

- Names may contain any combination of letters, numbers, underscore, and "."
- Names may not start with numbers, underscore.
- R names are case-sensitive.

Examples of valid R names include:

```
pi
x
camelCaps
my_stuff
MY_Stuff
this.is.the.name.of.the.man
ABC123
abc1234asdf
.hi
```

3.6. Resources for Getting Help

There is extensive built-in help and documentation within R. A separate page contains a collection of additional resources.

If the name of the function or object on which help is sought is known, the following approaches with the name of the function or object will be helpful. For a concrete example, examine the help for the print method.

```
help(print)
help('print')
?print
```

If the name of the function or object on which help is sought is *not* known, the following from within R will be helpful.

```
help.search('microarray')
RSiteSearch('microarray')
apropos('histogram')
```

There are also tons of online resources that Google will include in searches if online searching feels more appropriate.

I strongly recommend using help("newfunction"") for all functions that are new or unfamiliar to you.

3.7. Further practice

If you are entirely new to R, you may want to complete an R tutorial to gain further experience with the basics of programming and R syntax.

One R-based system, swirl, teaches you R programming and data science interactively, at your own pace and in the R console. Once you have R installed, you can install swirl and run it the following way:

```
install.packages("swirl")
library(swirl)
swirl()
```

Alternatively you can take the try R interactive class from Code School.

There are also many open and free resources and reference guides for R. Two examples are:

- Quick-R: a quick online reference for data input, basic statistics and plots
- R reference card PDF by Tom Short
- Rstudio cheatsheets

3.8. Exercises

• Without using R, what are the values of the following?

```
mass <- 50  # mass?

age <- 30  # age?

mass <- mass * 2  # mass?

age <- age - 10  # age?

mass_index <- mass/age  # massIndex?
```

- Use the R help() function to find information about the "hist" function. Follow up with running the example using example("hist").
- Which of these is a valid R name for a variable?

```
x2
2x
.abc
abc.123
.123
_my_value
my_value
my_value
```

In this chapter, we're going to get an introduction to the R language, so we can dive right into programming. We're going to create a pair of virtual dice that can generate random numbers. No need to worry if you're new to programming. We'll return to many of the concepts here in more detail later.

To simulate a pair of dice, we need to break down each die into its essential features. A die can only show one of six numbers: 1, 2, 3, 4, 5, and 6. We can capture the die's essential characteristics by saving these numbers as a group of values in the computer. Let's save these numbers first and then figure out a way to "roll" our virtual die.

4.1. The R User Interface

The RStudio interface is simple. You type R code into the bottom line of the RStudio console pane and then click Enter to run it. The code you type is called a *command*, because it will command your computer to do something for you. The line you type it into is called the *command line*.

When you type a command at the prompt and hit Enter, your computer executes the command and shows you the results. Then RStudio displays a fresh prompt for your next command. For example, if you type 1 + 1 and hit Enter, RStudio will display:

```
> 1 + 1 [1] 2
```

You'll notice that a [1] appears next to your result. R is just letting you know that this line begins with the first value in your result. Some commands return more than one value, and their results may

Figure 4.1.: Your computer does your bidding when you type R commands at the prompt in the bottom line of the console pane. Don't forget to hit the Enter key. When you first open RStudio, the console appears in the pane on your left, but you can change this with **File > Tools > Global Options** in the menu bar.

fill up multiple lines. For example, the command 100:130 returns 31 values; it creates a sequence of integers from 100 to 130. Notice that new bracketed numbers appear at the start of the second and third lines of output. These numbers just mean that the second line begins with the 14th value in the result, and the third line begins with the 25th value. You can mostly ignore the numbers that appear in brackets:

- > 100:130
- [1] 100 101 102 103 104 105 106 107 108 109 110 111 112
- [14] 113 114 115 116 117 118 119 120 121 122 123 124 125
- [25] 126 127 128 129 130

The colon operator (:) returns every integer between two integers. It is an easy way to create a sequence of numbers.

i When do we compile?

In some languages, like C, Java, and FORTRAN, you have to compile your human-readable code into machine-readable code (often 1s and 0s) before you can run it. If you've programmed in such a language before, you may wonder whether

you have to compile your R code before you can use it. The answer is no. R is a dynamic programming language, which means R automatically interprets your code as you run it.

If you type an incomplete command and press Enter, R will display a + prompt, which means R is waiting for you to type the rest of your command. Either finish the command or hit Escape to start over:

```
> 5 -
+
+ 1
[1] 4
```

If you type a command that R doesn't recognize, R will return an error message. If you ever see an error message, don't panic. R is just telling you that your computer couldn't understand or do what you asked it to do. You can then try a different command at the next prompt:

```
> 3 % 5
Error: unexpected input in "3 % 5"
>
```

? Tip

Whenever you get an error message in R, consider googling the error message. You'll often find that someone else has had the same problem and has posted a solution online. Simply cutting-and-pasting the error message into a search engine will often work

Once you get the hang of the command line, you can easily do anything in R that you would do with a calculator. For example, you could do some basic arithmetic:

```
2 * 3
```

[1] 6

4 - 1

[1] 3

```
# this obeys order-of-operations
6 / (4 - 1)
```

[1] 2

R treats the hashtag character, #, in a special way; R will not run anything that follows a hashtag on a line. This makes hashtags very useful for adding comments and annotations to your code. Humans will be able to read the comments, but your computer will pass over them. The hashtag is known as the *commenting symbol* in R.

Cancelling commands

Some R commands may take a long time to run. You can cancel a command once it has begun by pressing ctrl + c or by clicking the "stop sign" if it is available in Rstudio. Note that it may also take R a long time to cancel the command.

4.1.1. An exercise

That's the basic interface for executing R code in RStudio. Think you have it? If so, try doing these simple tasks. If you execute everything correctly, you should end up with the same number that you started with:

- 1. Choose any number and add 2 to it.
- 2. Multiply the result by 3.
- 3. Subtract 6 from the answer.
- 4. Divide what you get by 3.

```
10 + 2

[1] 12

12 * 3

[1] 36

36 - 6

[1] 30

30 / 3
```

4.2. Objects

Now that you know how to use R, let's use it to make a virtual die. The : operator from a couple of pages ago gives you a nice way to create a group of numbers from one to six. The : operator returns its results as a **vector** (we are going to work with vectors in more detail), a one-dimensional set of numbers:

```
1:6
## 1 2 3 4 5 6
```

That's all there is to how a virtual die looks! But you are not done yet. Running 1:6 generated a vector of numbers for you to see, but it didn't save that vector anywhere for later use. If we want to use those numbers again, we'll have to ask your computer to save them somewhere. You can do that by creating an R *object*.

R lets you save data by storing it inside an R object. What is an object? Just a name that you can use to call up stored data. For example, you can save data into an object like *a* or *b*. Wherever R encounters the object, it will replace it with the data saved inside, like so:

a <- 1 a

[1] 1

a + 2

[1] 3

i What just happened?

- 1. To create an R object, choose a name and then use the less-than symbol, <, followed by a minus sign, -, to save data into it. This combination looks like an arrow, <-- R will make an object, give it your name, and store in it whatever follows the arrow. So a <- 1 stores 1 in an object named a.
- 2. When you ask R what's in a, R tells you on the next line.
- 3. You can use your object in new R commands, too. Since a previously stored the value of 1, you're now adding 1 to 2.

Assignment vs expressions

Everything that you type into the R console can be assigned to one of two categories:

- Assignments
- Expressions

An expression is a command that tells R to do something. For example, 1+2 is an expression that tells R to add 1 and 2. When you type an expression into the R console, R will evaluate the expression and return the result. For example, if you type 1+2 into the R console, R will return 3. Expressions can have "side effects" but they don't explicitly result in anything being added to R memory.

5 + 2

```
[1] 7

28 %% 3

[1] 1

3^2

[1] 9

5 + 4 * 4 + 4 ^ 4 / 10

[1] 46.6

While using R as a calculator is interesting, to do useful and interesting things, we need to assign values to objects. To create objects, we need to give it a name followed by the assignment operator <- (or, entirely equivalently, =) and the value we want to give it:

weight_kg <- 55
```

So, for another example, the following code would create an object named die that contains the numbers one through six. To see what is stored in an object, just type the object's name by itself:

```
die <- 1:6
die
```

[1] 1 2 3 4 5 6

When you create an object, the object will appear in the environment pane of RStudio, as shown in Figure 4.2. This pane will show you all of the objects you've created since opening RStudio.

You can name an object in R almost anything you want, but there are a few rules. First, a name cannot start with a number. Second, a name cannot use some special symbols, like $^{\land}$, $^{!}$, $^{\$}$, $^{@}$, $^{+}$, $^{-}$, $^{/}$, or * :

Figure 4.2.: Assignment creates an object in the environment pane.

Good names	Names that cause errors
a	1trial
b	\$
FOO	^mean
my_var	2nd
.day	!bad

Finally, R will overwrite any previous information stored in an object without asking you for permission. So, it is a good idea to *not* use names that are already taken:

```
my_number <- 1
my_number

[1] 1
26
my_number <- 999
my_number</pre>
```

[1] 999

You can see which object names you have already used with the function le

1s()

Your environment will contain different names than mine, because you have probably created different objects.

You can also see which names you have used by examining RStudio's environment pane.

We now have a virtual die that is stored in the computer's memory and which has a name that we can use to refer to it. You can access it whenever you like by typing the word *die*.

So what can you do with this die? Quite a lot. R will replace an object with its contents whenever the object's name appears in a command. So, for example, you can do all sorts of math with the die. Math isn't so helpful for rolling dice, but manipulating sets of numbers will be your stock and trade as a data scientist. So let's take a look at how to do that:

die - 1

[1] 0 1 2 3 4 5

die / 2

[1] 0.5 1.0 1.5 2.0 2.5 3.0

die * die

[1] 1 4 9 16 25 36

R uses *element-wise execution* when working with a *vector* like die. When you manipulate a set of numbers, R will apply the same operation to each element in the set. So for example, when you run *die* - 1, R subtracts one from each element of die.

When you use two or more vectors in an operation, R will line up the vectors and perform a sequence of individual operations. For example, when you run *die* * *die*, R lines up the two die vectors and then multiplies the first element of vector 1 by the first element

of vector 2. R then multiplies the second element of vector 1 by the second element of vector 2, and so on, until every element has been multiplied. The result will be a new vector the same length as the first two {Figure 4.3}.

Figure 4.3.: "When R performs element-wise execution, it matches up vectors and then manipulates each pair of elements independently."

If you give R two vectors of unequal lengths, R will repeat the shorter vector until it is as long as the longer vector, and then do the math, as shown in Figure 4.4. This isn't a permanent change—the shorter vector will be its original size after R does the math. If the length of the short vector does not divide evenly into the length of the long vector, R will return a warning message. This behavior is known as *vector recycling*, and it helps R do element-wise operations:

1:2

1:4

die

[1] 1 2 3 4 5 6

[1] 1 2

[1] 1 2 3 4

```
die + 1:2
```

[1] 2 4 4 6 6 8

```
die + 1:4
```

Warning in die + 1:4: longer object length is not a multiple of shorter object length

[1] 2 4 6 8 6 8

Figure 4.4.: "R will repeat a short vector to do element-wise operations with two vectors of uneven lengths."

Element-wise operations are a very useful feature in R because they manipulate groups of values in an orderly way. When you start working with data sets, element-wise operations will ensure that values from one observation or case are only paired with values from the same observation or case. Element-wise operations also make it easier to write your own programs and functions in R.

Element-wise operations are not matrix operations

It is important to know that operations with vectors are not the same that you might expect if you are expecting R to perform "matrix" operations. R can do inner multiplication with the %*% operator and outer multiplication with the %o% operator:

```
# Inner product (1*1 + 2*2 + 3*3 + 4*4 + 5*5 + 6*6)
die %*% die
# Outer product
die %0% die
```

Now that you can do math with your die object, let's look at how you could "roll" it. Rolling your die will require something more sophisticated than basic arithmetic; you'll need to randomly select one of the die's values. And for that, you will need a *function*.

4.3. Functions

R has many functions and puts them all at our disposal. We can use functions to do simple and sophisticated tasks. For example, we can round a number with the round function, or calculate its factorial with the factorial function. Using a function is pretty simple. Just write the name of the function and then the data you want the function to operate on in parentheses:

```
round(3.1415)

[1] 3

factorial(3)
```

The data that you pass into the function is called the function's *argument*. The argument can be raw data, an R object, or even the results of another R function. In this last case, R will work from the innermost function to the outermost Figure 4.5.

```
mean(1:6)
```

[1] 3.5

[1] 6

```
mean(die)
[1] 3.5
round(mean(die))
```

[1] 4

```
round(mean(die))
round(mean(1:6))
round(3.5)
4
```

Figure 4.5.: "When you link functions together, R will resolve them from the innermost operation to the outermost. Here R first looks up die, then calculates the mean of one through six, then rounds the mean."

Returning to our die, we can use the sample function to randomly select one of the die's values; in other words, the sample function can simulate rolling the die.

The sample function takes *two* arguments: a vector named x and a number named size. sample will return size elements from the vector:

```
sample(x = 1:4, size = 2)
```

[1] 3 4

To roll your die and get a number back, set x to die and sample one element from it. You'll get a new (maybe different) number each time you roll it:

```
sample(x = die, size = 1)
```

[1] 1

```
sample(x = die, size = 1)

[1] 3

sample(x = die, size = 1)
```

Many R functions take multiple arguments that help them do their job. You can give a function as many arguments as you like as long as you separate each argument with a comma.

You may have noticed that I set die and 1 equal to the names of the arguments in sample, x and size. Every argument in every R function has a name. You can specify which data should be assigned to which argument by setting a name equal to data, as in the preceding code. This becomes important as you begin to pass multiple arguments to the same function; names help you avoid passing the wrong data to the wrong argument. However, using names is optional. You will notice that R users do not often use the name of the first argument in a function. So you might see the previous code written as:

```
sample(die, size = 1)
```

[1] 3

[1] 2

Often, the name of the first argument is not very descriptive, and it is usually obvious what the first piece of data refers to anyways.

But how do you know which argument names to use? If you try to use a name that a function does not expect, you will likely get an error:

```
round(3.1415, corners = 2)
## Error in round(3.1415, corners = 2) : unused argument(s) (corners = 2)
```

If you're not sure which names to use with a function, you can look up the function's arguments with args. To do this, place the name of the function in the parentheses behind args. For example, you can see that the round function takes two arguments, one named x and one named digits:

```
args(round)
function (x, digits = 0)
NULL
```

Did you notice that args shows that the digits argument of round is already set to 0? Frequently, an R function will take optional arguments like digits. These arguments are considered optional because they come with a default value. You can pass a new value to an optional argument if you want, and R will use the default value if you do not. For example, round will round your number to 0 digits past the decimal point by default. To override the default, supply your own value for digits:

```
round(3.1415)

[1] 3

round(3.1415, digits = 2)

[1] 3.14

# pi happens to be a built-in value in R
pi

[1] 3.141593

round(pi)
```

[1] 3

You should write out the names of each argument after the first one or two when you call a function with multiple arguments. Why? First, this will help you and others understand your code. It is usually obvious which argument your first input refers to (and sometimes the second input as well). However, you'd need a large memory to remember the third and fourth arguments of every R function. Second, and more importantly, writing out argument names prevents errors.

If you do not write out the names of your arguments, R will match your values to the arguments in your function by order. For example, in the following code, the first value, die, will be matched to the first argument of sample, which is named x. The next value, 1, will be matched to the next argument, size:

```
sample(die, 1)
```

[1] 5

As you provide more arguments, it becomes more likely that your order and R's order may not align. As a result, values may get passed to the wrong argument. Argument names prevent this. R will always match a value to its argument name, no matter where it appears in the order of arguments:

```
sample(size = 1, x = die)
```

[1] 6

4.3.1. Sample with Replacement

If you set size = 2, you can *almost* simulate a pair of dice. Before we run that code, think for a minute why that might be the case. sample will return two numbers, one for each die:

```
sample(die, size = 2)
```

[1] 3 2

I said this "almost" works because this method does something funny. If you use it many times, you'll notice that the second die never has the same value as the first die, which means you'll never roll something like a pair of threes or snake eyes. What is going on?

By default, sample builds a sample without replacement. To see what this means, imagine that sample places all of the values of die in a jar or urn. Then imagine that sample reaches into the jar and pulls out values one by one to build its sample. Once a value has been drawn from the jar, sample sets it aside. The value doesn't go back into the jar, so it cannot be drawn again. So if sample selects a six on its first draw, it will not be able to select a six on the second draw; six is no longer in the jar to be selected. Although sample creates its sample electronically, it follows this seemingly physical behavior.

One side effect of this behavior is that each draw depends on the draws that come before it. In the real world, however, when you roll a pair of dice, each die is independent of the other. If the first die comes up six, it does not prevent the second die from coming up six. In fact, it doesn't influence the second die in any way whatsoever. You can recreate this behavior in sample by adding the argument replace = TRUE:

```
sample(die, size = 2, replace = TRUE)
```

[1] 2 2

The argument replace = TRUE causes sample to sample with replacement. Our jar example provides a good way to understand the difference between sampling with replacement and without. When sample uses replacement, it draws a value from the jar and records the value. Then it puts the value back into the jar. In other words, sample replaces each value after each draw. As a result, sample may select the same value on the second draw. Each value has a chance of being selected each time. It is as if every draw were the first draw.

Sampling with replacement is an easy way to create *independent* random samples. Each value in your sample will be a sample of size one that is independent of the other values. This is the correct way to simulate a pair of dice:

```
sample(die, size = 2, replace = TRUE)
```

[1] 4 3

Congratulate yourself; you've just run your first simulation in R! You now have a method for simulating the result of rolling a pair of dice. If you want to add up the dice, you can feed your result straight into the sum function:

```
dice <- sample(die, size = 2, replace = TRUE)
dice</pre>
```

[1] 2 3

```
sum(dice)
```

[1] 5

What would happen if you call dice multiple times? Would R generate a new pair of dice values each time? Let's give it a try:

dice

[1] 2 3

dice

[1] 2 3

dice

[1] 2 3

The name dice refers to a *vector* of two numbers. Calling more than once does not change the favlue. Each time you call dice, R will show you the result of that one time you called sample and saved the output to dice. R won't rerun sample(die, 2, replace = TRUE) to create a new roll of the dice. Once you save a set of results to an R object, those results do not change.

However, it *would* be convenient to have an object that can re-roll the dice whenever you call it. You can make such an object by writing your own R function.

4.4. Writing Your Own Functions

To recap, you already have working R code that simulates rolling a pair of dice:

```
die <- 1:6
dice <- sample(die, size = 2, replace = TRUE)
sum(dice)</pre>
```

[1] 5

You can retype this code into the console anytime you want to reroll your dice. However, this is an awkward way to work with the code. It would be easier to use your code if you wrapped it into its own function, which is exactly what we'll do now. We're going to write a function named roll that you can use to roll your virtual dice. When you're finished, the function will work like this: each time you call roll(), R will return the sum of rolling two dice:

```
roll()
## 8

roll()
## 3

roll()
## 7
```

Functions may seem mysterious or fancy, but they are *just another type of R object*. Instead of containing data, they contain code. This code is stored in a special format that makes it easy to reuse the code in new situations. You can write your own functions by recreating this format.

4.4.1. The Function Constructor

Every function in R has three basic parts: a name, a body of code, and a set of arguments. To make your own function, you need to replicate these parts and store them in an R object, which you can do with the function function. To do this, call function() and follow it with a pair of braces, {}:

```
my_function <- function() {}</pre>
```

This function, as written, doesn't do anything (yet). However, it is a valid function. You can call it by typing its name followed by an open and closed parenthesis:

```
my_function()
```

NULL

function will build a function out of whatever R code you place between the braces. For example, you can turn your dice code into a function by calling:

```
roll <- function() {
  die <- 1:6
  dice <- sample(die, size = 2, replace = TRUE)
  sum(dice)
}</pre>
```

i Indentation and readability

Notice each line of code between the braces is indented. This makes the code easier to read but has no impact on how the

code runs. R ignores spaces and line breaks and executes one complete expression at a time. Note that in other languages like python, spacing is extremely important and part of the language.

Just hit the Enter key between each line after the first brace, {. R will wait for you to type the last brace, }, before it responds.

Don't forget to save the output of function to an R object. This object will become your new function. To use it, write the object's name followed by an open and closed parenthesis:

```
roll()
```

[1] 8

You can think of the parentheses as the "trigger" that causes R to run the function. If you type in a function's name *without* the parentheses, R will show you the code that is stored inside the function. If you type in the name *with* the parentheses, R will run that code:

```
roll
```

```
function() {
  die <- 1:6
  dice <- sample(die, size = 2, replace = TRUE)
  sum(dice)
}</pre>
```

```
roll()
```

[1] 9

The code that you place inside your function is known as the *body* of the function. When you run a function in R, R will execute all of the code in the body and then return the result of the last line of code. If the last line of code doesn't return a value, neither will your function, so you want to ensure that your final line of code returns

a value. One way to check this is to think about what would happen if you ran the body of code line by line in the command line. Would R display a result after the last line, or would it not?

Here's some code that would display a result:

```
dice
1 + 1
sqrt(2)
```

And here's some code that would not:

```
dice <- sample(die, size = 2, replace = TRUE)
two <- 1 + 1
a <- sqrt(2)</pre>
```

Again, this is just showing the distinction between expressions and assignments.

4.5. Arguments

What if we removed one line of code from our function and changed the name die to bones (just a name-don't think of it as important), like this?

```
roll2 <- function() {
  dice <- sample(bones, size = 2, replace = TRUE)
  sum(dice)
}</pre>
```

Now I'll get an error when I run the function. The function **needs** the object bones to do its job, but there is no object named bones to be found (you can check by typing 1s() which will show you the names in the environment, or memory).

```
roll2()
## Error in sample(bones, size = 2, replace = TRUE) :
## object 'bones' not found
```

You can supply bones when you call roll2 if you make bones an argument of the function. To do this, put the name bones in the parentheses that follow function when you define roll2:

```
roll2 <- function(bones) {
  dice <- sample(bones, size = 2, replace = TRUE)
  sum(dice)
}</pre>
```

Now roll2 will work as long as you supply bones when you call the function. You can take advantage of this to roll different types of dice each time you call roll2.

Remember, we're rolling pairs of dice:

```
roll2(bones = 1:4)

[1] 6

roll2(bones = 1:6)

[1] 7

roll2(1:20)
```

[1] 20

Notice that roll2 will still give an error if you do not supply a value for the bones argument when you call roll2:

```
roll2()
## Error in sample(bones, size = 2, replace = TRUE) :
## argument "bones" is missing, with no default
```

You can prevent this error by giving the bones argument a default value. To do this, set bones equal to a value when you define roll2:

```
roll2 <- function(bones = 1:6) {
  dice <- sample(bones, size = 2, replace = TRUE)
  sum(dice)
}</pre>
```

Now you can supply a new value for bones if you like, and roll2 will use the default if you do not:

```
roll2()
```

[1] 5

You can give your functions as many arguments as you like. Just list their names, separated by commas, in the parentheses that follow function. When the function is run, R will replace each argument name in the function body with the value that the user supplies for the argument. If the user does not supply a value, R will replace the argument name with the argument's default value (if you defined one).

To summarize, function helps you construct your own R functions. You create a body of code for your function to run by writing code between the braces that follow function. You create arguments for your function to use by supplying their names in the parentheses that follow function. Finally, you give your function a name by saving its output to an R object, as shown in Figure 4.6.

Once you've created your function, R will treat it like every other function in R. Think about how useful this is. Have you ever tried to create a new Excel option and add it to Microsoft's menu bar? Or a new slide animation and add it to Powerpoint's options? When you work with a programming language, you can do these types of things. As you learn to program in R, you will be able to create new, customized, reproducible tools for yourself whenever you like.

4.6. Scripts

Scripts are code that are saved for later reuse or editing. An R script is just a plain text file that you save R code in. You can open an

Figure 4.6.: "Every function in R has the same parts, and you can use function to create these parts. Assign the result to a name, so you can call the function later."

R script in RStudio by going to **File > New File > R script** in the menu bar. RStudio will then open a fresh script above your console pane, as shown in Figure 4.7.

I strongly encourage you to write and edit all of your R code in a script before you run it in the console. Why? This habit creates a reproducible record of your work. When you're finished for the day, you can save your script and then use it to rerun your entire analysis the next day. Scripts are also very handy for editing and proofreading your code, and they make a nice copy of your work to share with others. To save a script, click the scripts pane, and then go to **File > Save As** in the menu bar.

Figure 4.7.: "When you open an R Script (File > New File > R Script in the menu bar), RStudio creates a fourth pane (or puts a new tab in the existing pane) above the console where you can write and edit your code."

RStudio comes with many built-in features that make it easy to work with scripts. First, you can automatically execute a line of code in a script by clicking the Run button at the top of the editor panel.

R will run whichever line of code your cursor is on. If you have a whole section highlighted, R will run the highlighted code. Alternatively, you can run the entire script by clicking the Source but-

ton. Don't like clicking buttons? You can use Control + Return as a shortcut for the Run button. On Macs, that would be Command + Return.

If you're not convinced about scripts, you soon will be. It becomes a pain to write multi-line code in the console's single-line command line. Let's avoid that headache and open your first script now before we move to the next chapter.

? Tip

Extract function

RStudio comes with a tool that can help you build functions. To use it, highlight the lines of code in your R script that you want to turn into a function. Then click Code > Extract Function in the menu bar. RStudio will ask you for a function name to use and then wrap your code in a function call. It will scan the code for undefined variables and use these as arguments.

You may want to double-check RStudio's work. It assumes that your code is correct, so if it does something surprising, you may have a problem in your code.

4.7. Summary

You've covered a lot of ground already. You now have a virtual die stored in your computer's memory, as well as your own R function that rolls a pair of dice. You've also begun speaking the R language.

As you've seen, R is a language that you can use to talk to your computer. You write commands in R and run them at the command line for your computer to read. Your computer will sometimes talk back-for example, when you commit an error-but it usually just does what you ask and then displays the result.

The two most important components of the R language are objects, which store data, and functions, which manipulate data. R also uses a host of operators like +, -, *, /, and <- to do basic tasks. As a data scientist, you will use R objects to store data in your computer's

memory, and you will use functions to automate tasks and do complicated calculations. We will examine objects in more depth later in [Project 2: Playing Cards] and dig further into functions in [Project 3: Slot Machine]. The vocabulary you have developed here will make each of those projects easier to understand. However, we're not done with your dice yet.

In Packages and Help Pages, you'll run some simulations on your dice and build your first graphs in R. You'll also look at two of the most useful components of the R language: R *packages*, which are collections of functions writted by R's talented community of developers, and R documentation, which is a collection of help pages built into R that explains every function and data set in the language.

Part II.

Overview of R Data Structures

Welcome to the section on R data structures! As you begin your journey in learning R, it is essential to understand the fundamental building blocks of this powerful programming language. R offers a variety of data structures to store and manipulate data, each with its unique properties and capabilities. In this section, we will cover the core data structures in R, including:

- Vectors
- Matrices
- Lists
- · Data.frames

By the end of this section, you will have a solid understanding of these data structures, and you will be able to choose and utilize the appropriate data structure for your specific data manipulation and analysis tasks.

In each chapter, we will delve into the properties and usage of each data structure, starting with their definitions and moving on to their practical applications. We will provide examples, exercises, and active learning approaches to help you better understand and apply these concepts in your work.

Figure 4.8.: A pictorial representation of R's most common data structures are vectors, matrices, arrays, lists, and dataframes. Figure from Hands-on Programming with R.

Chapter overview

- Vectors: In this chapter, we will introduce you to the simplest data structure in R, the vector. We will cover how to create, access, and manipulate vectors, as well as discuss their unique properties and limitations.
- Matrices Next, we will explore matrices, which are twodimensional data structures that extend vectors. You will learn how to create, access, and manipulate matrices, and understand their usefulness in mathematical operations and data organization.
- Lists The third chapter will focus on lists, a versatile data structure that can store elements of different types and sizes. We will discuss how to create, access, and modify lists, and demonstrate their flexibility in handling complex data structures.
- Data.frames Finally, we will examine data.frames, a widelyused data structure for organizing and manipulating tabular data. You will learn how to create, access, and manipulate data.frames, and understand their advantages over other data structures for data analysis tasks.
- Arrays While we will not focus directly on the array data type, which are multidimensional data structures that extend matrices, they are very similar to matrices, but with a third dimension.

As you progress through these chapters, we encourage you to practice the examples and exercises provided, engage in discussion, and collaborate with your peers to deepen your understanding of R data structures. This solid foundation will serve as the basis for more advanced data manipulation, analysis, and visualization techniques in R.

5.1. What is a Vector?

A vector is the simplest and most basic data structure in R. It is a onedimensional, ordered collection of elements, where all the elements are of the same data type. Vectors can store various types of data, such as numeric, character, or logical values.

In this chapter, we will provide a comprehensive overview of vectors, including how to create, access, and manipulate them. We will also discuss some unique properties and rules associated with vectors, and explore their applications in data analysis tasks.

5.2. Creating Vectors

In this section, we will cover different ways of creating vectors. The most common method for creating vectors is by using the c() function, which stands for "concatenate." The c() function combines its arguments into a single vector.

Here's an example of creating a numeric vector:

```
numeric_vector <- c(3, 5, 7, 9)
print(numeric_vector)</pre>
```

[1] 3 5 7 9

Similarly, you can create a character vector and a logical vector:

```
character_vector <- c("apple", "banana", "cherry")
print(character_vector)</pre>
```

```
[1] "apple" "banana" "cherry"
```

A logical vector is a one-dimensional array of logical values in R. Logical values are either TRUE or FALSE, which represent the outcomes of logical expressions or conditions. Logical vectors are used for a variety of purposes, such as filtering data, controlling the flow of a program, or performing element-wise comparisons between vectors.

In R, you can create a logical vector using the c() function by specifying logical values as its arguments:

```
logical_vector <- c(TRUE, FALSE, TRUE, FALSE)</pre>
```

Note

The values TRUE and FALSE are reserved words in R, which means that they cannot be used as variable names. If you try to assign a value to TRUE or FALSE, R will throw an error. Also, notice that there are no quotation marks around TRUE and FALSE. The value "TRUE" with quotes is a character vector of length 1.

Logical vectors can also be generated by applying logical or comparison operators on other vectors or values:

```
numeric_vector <- c(1, 2, 3, 4, 5)
logical_vector <- numeric_vector > 3
```

In this example, logical_vector will contain the logical outcomes of the comparison numeric_vector > 3, resulting in a logical vector with the values (FALSE, FALSE, FALSE, TRUE, TRUE).

```
print(logical_vector)
```

```
[1] FALSE FALSE FALSE TRUE TRUE
```

You can also generate sequences using the seq() function or the : operator:

```
sequence1 <- seq(from = 1, to = 10, by = 2)
print(sequence1)

[1] 1 3 5 7 9</pre>
```

```
sequence2 <- 1:5
print(sequence2)</pre>
```

```
[1] 1 2 3 4 5
```

The rep() function allows you to create a vector by repeating elements:

```
repeated_vector <- rep(1:3, times = 2)
print(repeated_vector)</pre>
```

[1] 1 2 3 1 2 3

5.3. Accessing Vector Elements

You can access and extract elements from vectors using indexing. In R, indexing starts at 1. To access a single element, use square brackets [] and provide the index of the desired element:

```
numeric_vector <- c(3, 5, 7, 9)
third_element <- numeric_vector[3]
print(third_element)</pre>
```

[1] 7

To access multiple elements, provide a vector of indices:

```
elements <- numeric_vector[c(1, 3)]
print(elements)</pre>
```

[1] 3 7

You can also modify and update vector elements using indexing:

```
numeric_vector[2] <- 10
print(numeric_vector)

[1] 3 10 7 9

\begin{tikzpicture}
\foreach \x in {0,1,2,3,4,5,6,7,8,9}
\draw (1,0) rectangle (\x,1);
\end{tikzpicture}</pre>
```

5.4. Vector Operations

You can perform various vector operations, such as arithmetic, logical, and comparison operations. The operations are performed element-wise, which means that the operation is applied to each corresponding pair of elements in the input vectors.

Here are some examples of arithmetic operations:

```
vector1 <- c(1, 2, 3)
vector2 <- c(4, 5, 6)

sum_vectors <- vector1 + vector2
print(sum_vectors)</pre>
```

[1] 5 7 9

```
product_vectors <- vector1 * vector2
print(product_vectors)</pre>
```

[1] 4 10 18

Logical and comparison operations also work element-wise:

```
vector1 <- c(1, 2, 3)
vector2 <- c(3, 2, 1)
equal_elements <- vector1 == vector2
print(equal_elements)</pre>
```

[1] FALSE TRUE FALSE

```
greater_elements <- vector1 > vector2
print(greater_elements)
```

[1] FALSE FALSE TRUE

Operations on a single vector are typically done element-byelement. For example, we can add 2 to a vector, 2 is added to each element of the vector and a new vector of the same length is returned.

```
x = 1:10
x + 2
```

```
[1] 3 4 5 6 7 8 9 10 11 12
```

If the operation involves two vectors, the following rules apply. If the vectors are the same length: R simply applies the operation to each pair of elements.

```
[1] 2 4 6 8 10 12 14 16 18 20
```

If the vectors are different lengths, but one length a multiple of the other, R reuses the shorter vector as needed.

```
x = 1:10

y = c(1,2)

x * y
```

```
[1] 1 4 3 8 5 12 7 16 9 20
```

If the vectors are different lengths, but one length *not* a multiple of the other, R reuses the shorter vector as needed *and* delivers a warning.

```
x = 1:10

y = c(2,3,4)

x * y
```

Warning in x * y: longer object length is not a multiple of shorter object length

```
[1] 2 6 12 8 15 24 14 24 36 20
```

Typical operations include multiplication ("*"), addition, subtraction, division, exponentiation ("^"), but many operations in R operate on vectors and are then called "vectorized".

5.5. Named Vectors

Named vectors are vectors with labels or names assigned to their elements. These names can be used to access and manipulate the elements in a more meaningful way.

To create a named vector, use the names() function:

```
fruit_prices <- c(0.5, 0.75, 1.25)
names(fruit_prices) <- c("apple", "banana", "cherry")
print(fruit_prices)</pre>
```

```
apple banana cherry 0.50 0.75 1.25
```

You can also access and modify elements using their names:

```
banana_price <- fruit_prices["banana"]
print(banana_price)

banana
    0.75

fruit_prices["apple"] <- 0.6
print(fruit_prices)

apple banana cherry
    0.60    0.75    1.25</pre>
```

5.6. Vector Recycling and Recycling Rule

Vector recycling is a unique feature of R that allows for elementwise operations on vectors of different lengths. When performing operations on vectors of unequal length, R will recycle the shorter vector by repeating its elements until it matches the length of the longer vector.

Here's an example of vector recycling:

```
vector1 <- c(1, 2, 3)
vector2 <- c(4, 5)

sum_vectors <- vector1 + vector2</pre>
```

Warning in vector1 + vector2: longer object length is not a multiple of shorter object length

```
print(sum_vectors)
```

[1] 5 7 7

In this example, vector 2 is shorter than vector 1, so its elements are recycled to match the length of vector 1. The result is equivalent to adding vector 1 to c(4, 5, 4).

Be aware of the recycling rule when working with vectors of different lengths, as it may lead to unexpected results if you're not careful.

5.7. Active Learning Exercises

Now that we have covered the basics of vectors, let's put your knowledge into practice with some active learning exercises.

In R, even a single value is a vector with length=1.

```
z = 1
z
```

[1] 1

length(z)

[1] 1

In the code above, we "assigned" the value 1 to the variable named z. Typing z by itself is an "expression" that returns a result which is, in this case, the value that we just assigned. The length method takes an R object and returns the R length. There are numerous ways of asking R about what an object represents, and length is one of them.

Vectors can contain numbers, strings (character data), or logical values (TRUE and FALSE) or other "atomic" data types (tabsimpletypes?). Vectors cannot contain a mix of types! We will introduce another data structure, the R list for situations when we need to store a mix of base R data types.

Stores
floating point numbers
integers
complex numbers
categorical data
strings
TRUE or FALSE
missing
empty
function type

Table 5.1.: Atomic (simplest) data types in R.

5.8. Creating vectors

[1] TRUE FALSE TRUE TRUE

Character vectors (also sometimes called "string" vectors) are entered with each value surrounded by single or double quotes; either is acceptable, but they must match. They are always displayed by R with double quotes. Here are some examples of creating vectors:

```
# examples of vectors
c('hello','world')

[1] "hello" "world"

c(1,3,4,5,1,2)

[1] 1 3 4 5 1 2

c(1.12341e7,78234.126)

[1] 11234100.00  78234.13

c(TRUE, FALSE, TRUE, TRUE)
```

```
# note how in the next case the TRUE is converted to "TRUE"
# with quotes around it.
c(TRUE, 'hello')
```

```
[1] "TRUE" "hello"
```

We can also create vectors as "regular sequences" of numbers. For example:

```
# create a vector of integers from 1 to 10 x = 1:10 # and backwards x = 10:1
```

The seq function can create more flexible regular sequences.

```
# create a vector of numbers from 1 to 4 skipping by 0.3 y = seq(1,4,0.3)
```

And creating a new vector by concatenating existing vectors is possible, as well.

```
\mbox{\ensuremath{\mbox{\#}}} create a sequence by concatenating two other sequences z = \ensuremath{\mbox{c}}(y,x) z
```

```
[1] 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0 10.0 9.0 8.0 7.0 [16] 6.0 5.0 4.0 3.0 2.0 1.0
```

5.9. Vector Operations

Operations on a single vector are typically done element-byelement. For example, we can add 2 to a vector, 2 is added to each element of the vector and a new vector of the same length is returned.

```
x = 1:10

x + 2
```

```
[1] 3 4 5 6 7 8 9 10 11 12
```

If the operation involves two vectors, the following rules apply. If the vectors are the same length: R simply applies the operation to each pair of elements.

```
X + X
```

```
[1] 2 4 6 8 10 12 14 16 18 20
```

If the vectors are different lengths, but one length a multiple of the other, R reuses the shorter vector as needed.

```
x = 1:10

y = c(1,2)

x * y
```

```
[1] 1 4 3 8 5 12 7 16 9 20
```

If the vectors are different lengths, but one length *not* a multiple of the other, R reuses the shorter vector as needed *and* delivers a warning.

```
x = 1:10

y = c(2,3,4)

x * y
```

Warning in x * y: longer object length is not a multiple of shorter object length

```
[1] 2 6 12 8 15 24 14 24 36 20
```

Typical operations include multiplication ("*"), addition, subtraction, division, exponentiation ("^"), but many operations in R operate on vectors and are then called "vectorized".

5.10. Logical Vectors

Logical vectors are vectors composed on only the values TRUE and FALSE. Note the all-upper-case and no quotation marks.

```
a = c(TRUE, FALSE, TRUE)

# we can also create a logical vector from a numeric vector
# 0 = false, everything else is 1
b = c(1,0,217)
d = as.logical(b)
d
```

[1] TRUE FALSE TRUE

```
# test if a and d are the same at every element
all.equal(a,d)
```

[1] TRUE

```
# We can also convert from logical to numeric
as.numeric(a)
```

[1] 1 0 1

5.10.1. Logical Operators

Some operators like <, >, ==, >=, <=, != can be used to create logical vectors.

```
# create a numeric vector x = 1:10 # testing whether x > 5 creates a logical vector x > 5
```

[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

```
x \ll 5
```

[1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

```
x != 5
```

[1] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE

```
x == 5
```

[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

We can also assign the results to a variable:

```
y = (x == 5)
y
```

[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

5.11. Indexing Vectors

In R, an index is used to refer to a specific element or set of elements in an vector (or other data structure). [R uses [and] to perform indexing, although other approaches to getting subsets of larger data structures are common in R.

```
x = seq(0,1,0.1) # create a new vector from the 4th element of x x[4]
```

[1] 0.3

We can even use other vectors to perform the "indexing".

```
x[c(3,5,6)]
[1] 0.2 0.4 0.5
y = 3:6
x[y]
[1] 0.2 0.3 0.4 0.5
Combining the concept of indexing with the concept of logical vec-
tors results in a very power combination.
# use help('rnorm') to figure out what is happening next
myvec = rnorm(10)
# create logical vector that is TRUE where myvec is >0.25
gt1 = (myvec > 0.25)
sum(gt1)
[1] 6
# and use our logical vector to create a vector of myvec values that are >0.25
myvec[gt1]
 [1] \ 0.5912198 \ 1.6688328 \ 0.8054312 \ 1.1016043 \ 1.6594198 \ 0.5902489 
# or <=0.25 using the logical "not" operator, "!"
myvec[!gt1]
[1] -0.077542669 -0.991719274 -0.009135827 0.068190291
# shorter, one line approach
myvec[myvec > 0.25]
[1] 0.5912198 1.6688328 0.8054312 1.1016043 1.6594198 0.5902489
```

5.12. Character Vectors, A.K.A. Strings

R uses the paste function to concatenate strings.

```
paste("abc", "def")
[1] "abc def"
paste("abc","def",sep="THISSEP")
[1] "abcTHISSEPdef"
paste0("abc", "def")
[1] "abcdef"
## [1] "abcdef"
paste(c("X","Y"),1:10)
[1] "X 1" "Y 2" "X 3" "Y 4" "X 5" "Y 6" "X 7" "Y 8" "X 9" "Y 10"
paste(c("X","Y"),1:10,sep="_")
[1] "X_1" "Y_2" "X_3" "Y_4" "X_5" "Y_6" "X_7" "Y_8" "X_9" "Y_10"
We can count the number of characters in a string.
nchar('abc')
[1] 3
nchar(c('abc','d',123456))
[1] 3 1 6
```

Pulling out parts of strings is also sometimes useful.

5. Vectors

```
substr('This is a good sentence.',start=10,stop=15)
```

```
[1] " good "
```

Another common operation is to replace something in a string with something (a find-and-replace).

```
sub('This','That','This is a good sentence.')
```

[1] "That is a good sentence."

When we want to find all strings that match some other string, we can use grep, or "grab regular expression".

```
grep('bcd',c('abcdef','abcd','bcde','cdef','defg'))
```

[1] 1 2 3

```
grep('bcd',c('abcdef','abcd','bcde','cdef','defg'),value=TRUE)
```

```
[1] "abcdef" "abcd" "bcde"
```

Read about the grep1 function (?grep1). Use that function to return a logical vector (TRUE/FALSE) for each entry above with an a in it.

5.13. Missing Values, AKA "NA"

R has a special value, "NA", that represents a "missing" value, or *Not Available*, in a vector or other data structure. Here, we just create a vector to experiment.

```
x = 1:5
x
```

[1] 1 2 3 4 5

5. Vectors

length(x)

[1] 5

is.na(x)

[1] FALSE FALSE FALSE FALSE

```
x[2] = NA
x
```

[1] 1 NA 3 4 5

The length of x is unchanged, but there is one value that is marked as "missing" by virtue of being NA.

length(x)

[1] 5

is.na(x)

[1] FALSE TRUE FALSE FALSE

We can remove NA values by using indexing. In the following, is.na(x) returns a logical vector the length of x. The ! is the logical *NOT* operator and converts TRUE to FALSE and vice-versa.

```
x[!is.na(x)]
```

[1] 1 3 4 5

5.14. Exercises

1. Create a numeric vector called temperatures containing the following values: 72, 75, 78, 81, 76, 73.

5. Vectors

```
temperatures <- c(72, 75, 78, 81, 76, 73, 93)
```

2. Create a character vector called days containing the following values: "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday".

```
days <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday")
```

3. Calculate the average temperature for the week and store it in a variable called average_temperature.

```
average_temperature <- mean(temperatures)</pre>
```

4. Create a named vector called weekly_temperatures, where the names are the days of the week and the values are the temperatures from the temperatures vector.

```
weekly_temperatures <- temperatures
names(weekly_temperatures) <- days</pre>
```

5. Create a numeric vector called ages containing the following values: 25, 30, 35, 40, 45, 50, 55, 60.

```
ages <- c(25, 30, 35, 40, 45, 50, 55, 60)
```

6. Create a logical vector called is_adult by checking if the elements in the ages vector are greater than or equal to 18.

```
is_adult <- ages >= 18
```

7. Calculate the sum and product of the ages vector.

```
sum_ages <- sum(ages)
product_ages <- prod(ages)</pre>
```

8. Extract the ages greater than or equal to 40 from the ages vector and store them in a variable called older_ages.

```
older_ages <- ages[ages >= 40]
```

A *matrix* is a rectangular collection of the same data type (see Figure 6.1). It can be viewed as a collection of column vectors all of the same length and the same type (i.e. numeric, character or logical) OR a collection of row vectors, again all of the same type and length. A *data.frame* is *also* a rectangular array. All of the columns must be the same length, but they **may be** of *different* types. The rows and columns of a matrix or data frame can be given names. However these are implemented differently in R; many operations will work for one but not both, often a source of confusion.

Figure 6.1.: A matrix is a collection of column vectors.

6.1. Creating a matrix

There are many ways to create a matrix in R. One of the simplest is to use the matrix() function. In the code below, we'll create a matrix from a vector from 1:16.

```
mat1 <- matrix(1:16, nrow=4)
mat1</pre>
```

```
[,1] [,2] [,3] [,4]
```

```
[1,]
         1
                         13
[2,]
         2
               6
                   10
                         14
[3,]
              7
         3
                   11
                         15
[4,]
         4
                   12
                         16
```

The same is possible, but specifying that the matrix be "filled" by row.

```
mat1 <- matrix(1:16,nrow=4,byrow = TRUE)
mat1</pre>
```

```
[,1] [,2] [,3] [,4]
[1,]
               2
                    3
[2,]
                    7
                          8
         5
               6
[3,]
         9
             10
                         12
                   11
[4,]
        13
             14
                   15
                         16
```

Notice the subtle difference in the order that the numbers go into the matrix.

We can also build a matrix from parts by "binding" vectors together:

```
x <- 1:10
y <- rnorm(10)
```

Each of the vectors above is of length 10 and both are "numeric", so we can make them into a matrix. Using rbind binds rows (r) into a matrix.

```
mat <- rbind(x,y)
mat</pre>
```

```
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
x 1.000000 2.00000000 3.000000 4.0000000 5.000000 6.000000 7.0000000
y 1.067529 0.07571403 -0.364383 -0.4984749 -1.154545 -1.259663 -0.4787461
        [,8] [,9] [,10]
x 8.000000 9.00000000 10.000000
y 1.226782 -0.03506617 -1.085638
```

The alternative to rbind is cbind that binds columns (c) together.

```
mat <- cbind(x,y)
mat</pre>
```

```
x y
[1,] 1 1.06752879
[2,] 2 0.07571403
[3,] 3 -0.36438304
[4,] 4 -0.49847495
[5,] 5 -1.15454461
[6,] 6 -1.25966295
[7,] 7 -0.47874610
[8,] 8 1.22678244
[9,] 9 -0.03506617
[10,] 10 -1.08563803
```

Inspecting the names associated with rows and columns is often useful, particularly if the names have human meaning.

```
rownames(mat)
```

NULL

```
colnames(mat)
```

```
[1] "x" "y"
```

We can also change the names of the matrix by assigning *valid* names to the columns or rows.

```
colnames(mat) = c('apples','oranges')
colnames(mat)
```

```
[1] "apples" "oranges"
```

mat

apples	oranges
1	1.06752879
2	0.07571403
3	-0.36438304
4	-0.49847495
5	-1.15454461
6	-1.25966295
7	-0.47874610
8	1.22678244
9	-0.03506617
10	-1.08563803
	1 2 3 4 5 6 7 8

Matrices have dimensions.

```
dim(mat)
[1] 10 2
nrow(mat)
[1] 10
ncol(mat)
```

[1] 2

6.2. Accessing elements of a matrix

Indexing for matrices works as for vectors except that we now need to include both the row and column (in that order). We can access elements of a matrix using the square bracket [indexing method. Elements can be accessed as var[r, c]. Here, r and c are vectors describing the elements of the matrix to select.

Important

The indices in R start with one, meaning that the first element of a vector or the first row/column of a matrix is indexed as one.

This is different from some other programming languages, such as Python, which use zero-based indexing, meaning that the first element of a vector or the first row/column of a matrix is indexed as zero.

It is important to be aware of this difference when working with data in R, especially if you are coming from a programming background that uses zero-based indexing. Using the wrong index can lead to unexpected results or errors in your code.

```
# The 2nd element of the 1st row of mat
mat[1,2]

oranges
1.067529

# The first ROW of mat
mat[1,]

apples oranges
1.000000 1.067529

# The first COLUMN of mat
mat[,1]

[1] 1 2 3 4 5 6 7 8 9 10

# and all elements of mat that are > 4; note no comma
mat[mat>4]

[1] 5 6 7 8 9 10
```

```
## [1] 5 6 7 8 9 10
```


Caution

Note that in the last case, there is no ",", so R treats the matrix as a long vector (length=20). This is convenient, sometimes, but it can also be a source of error, as some code may "work" but be doing something unexpected.

We can also use indexing to exclude a row or column by prefixing the selection with a - sign.

```
# remove first column
[1] \ \ 1.06752879 \ \ 0.07571403 \ \ -0.36438304 \ \ -0.49847495 \ \ -1.15454461 \ \ -1.25966295
 [7] -0.47874610 1.22678244 -0.03506617 -1.08563803
mat[-c(1:5),] # remove first five rows
```

```
apples
                oranges
[1,]
          6 -1.25966295
[2,]
          7 -0.47874610
[3,]
          8 1.22678244
          9 -0.03506617
[4,]
[5,]
         10 -1.08563803
```

6.3. Changing values in a matrix

We can create a matrix filled with random values drawn from a normal distribution for our work below.

```
m = matrix(rnorm(20), nrow=10)
summary(m)
```

```
V1
                        V2
Min. :-1.00782
                  Min. :-1.3058
                  1st Qu.:-0.3886
1st Qu.:-0.05989
```

```
Median: 0.38975 Median: 0.3012
Mean: 0.24393 Mean: 0.2810
3rd Qu:: 0.55160 3rd Qu:: 0.9771
Max.: 1.03408 Max.: 1.7060
```

Multiplication and division works similarly to vectors. When multiplying by a vector, for example, the values of the vector are reused. In the simplest case, let's multiply the matrix by a constant (vector of length 1).

```
# multiply all values in the matrix by 20 m2 = m*20 summary(m2)
```

```
V1
                       V2
       :-20.156
                        :-26.115
Min.
                 Min.
1st Qu.: -1.198
                 1st Qu.: -7.772
Median : 7.795
                 Median : 6.024
Mean
     : 4.879
                 Mean
                       : 5.620
3rd Qu.: 11.032
                 3rd Qu.: 19.543
Max.
     : 20.682
                 Max.
                        : 34.120
```

By combining subsetting with assignment, we can make changes to just part of a matrix.

```
# and add 100 to the first column of m
m2[,1] = m2[,1] + 100
# summarize m
summary(m2)
```

```
V1
                       V2
Min.
       : 79.84
                 Min.
                        :-26.115
                 1st Qu.: -7.772
1st Qu.: 98.80
Median :107.80
                 Median : 6.024
Mean
       :104.88
                 Mean
                         : 5.620
                 3rd Qu.: 19.543
3rd Qu.:111.03
Max.
       :120.68
                 Max.
                         : 34.120
```

A somewhat common transformation for a matrix is to transpose which changes rows to columns. One might need to do this if an assay output from a lab machine puts samples in rows and genes in columns, for example, while in Bioconductor/R, we often want the samples in columns and the genes in rows.

```
t(m2)
       [,1]
                [,2]
                        [,3]
                                 [,4]
                                          [,5]
                                                  [,6]
                                                          [,7]
[1,]\ 110.858518\ 106.50114\ 109.08903\ 95.822400\ 102.673212\ 97.51182\ 111.08978
[2,] 5.611247 -26.11541 32.06543 6.599318 -3.634014 34.12030 -13.59299
          [,8]
                    [,9]
                             [,10]
[1,] 120.68152 79.84366 114.71482
[2,] 23.85726 -9.15092
                           6.43664
```

6.4. Calculations on matrix rows and columns

Again, we just need a matrix to play with. We'll use rnorm again, but with a slight twist.

```
m3 = matrix(rnorm(100,5,2),ncol=10) # what does the 5 mean here? And the 2?
```

Since these data are from a normal distribution, we can look at a row (or column) to see what the mean and standard deviation are.

```
mean(m3[,1])

[1] 6.341979

sd(m3[,1])

[1] 2.207763

# or a row
mean(m3[1,])

[1] 5.966922
```

```
sd(m3[1,])
[1] 2.680003
There are some useful convenience functions for computing means
and sums of data in all of the columns and rows of matrices.
colMeans(m3)
  \hbox{\tt [1]} \ 6.341979 \ 5.144662 \ 3.912735 \ 5.022973 \ 5.050446 \ 4.885206 \ 5.162700 \ 5.007736 
 [9] 5.104758 4.230469
rowMeans(m3)
  \begin{smallmatrix} 1 \end{smallmatrix} \rbrack 5.966922 \ 4.423758 \ 5.317974 \ 4.156230 \ 4.986355 \ 5.383235 \ 5.615903 \ 4.186546 
 [9] 5.278553 4.548189
rowSums(m3)
  [1] \ 59.66922 \ 44.23758 \ 53.17974 \ 41.56230 \ 49.86355 \ 53.83235 \ 56.15903 \ 41.86546 
 [9] 52.78553 45.48189
colSums(m3)
 [1] \ 63.41979 \ 51.44662 \ 39.12735 \ 50.22973 \ 50.50446 \ 48.85206 \ 51.62700 \ 50.07736
 [9] 51.04758 42.30469
We can look at the distribution of column means:
# save as a variable
cmeans = colMeans(m3)
summary(cmeans)
```

4.986

Mean 3rd Qu.

5.135

Max.

6.342

Median

5.037

Min. 1st Qu.

3.913 4.916

Note that this is centered pretty closely around the selected mean of 5 above.

How about the standard deviation? There is not a co1Sd function, but it turns out that we can easily apply functions that take vectors as input, like sd and "apply" them across either the rows (the first dimension) or columns (the second) dimension.

```
csds = apply(m3, 2, sd)
summary(csds)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.382 1.926 1.959 2.085 2.333 2.762
```

Again, take a look at the distribution which is centered quite close to the selected standard deviation when we created our matrix.

6.5. Exercises

6.5.1. Data preparation

For this set of exercises, we are going to rely on a dataset that comes with R. It gives the number of sunspots per month from 1749-1983. The dataset comes as a ts or time series data type which I convert to a matrix using the following code.

Just run the code as is and focus on the rest of the exercises.

```
data(sunspots)
sunspot_mat <- matrix(as.vector(sunspots),ncol=12,byrow = TRUE)
colnames(sunspot_mat) <- as.character(1:12)
rownames(sunspot_mat) <- as.character(1749:1983)</pre>
```

6.5.2. Questions

 After the conversion above, what does sunspot_mat look like? Use functions to find the number of rows, the number of columns, the class, and some basic summary statistics.

```
ncol(sunspot_mat)
nrow(sunspot_mat)
dim(sunspot_mat)
summary(sunspot_mat)
head(sunspot_mat)
tail(sunspot_mat)
```

- Practice subsetting the matrix a bit by selecting:
 - The first 10 years (rows)
 - The month of July (7th column)
 - The value for July, 1979 using the rowname to do the selection.

```
sunspot_mat[1:10,]
sunspot_mat[,7]
sunspot_mat['1979',7]
```

1. These next few exercises take advantage of the fact that calling a univariate statistical function (one that expects a vector) works for matrices by just making a vector of all the values in the matrix. What is the highest (max) number of sunspots recorded in these data?

```
max(sunspot_mat)
```

2. And the minimum?

```
min(sunspot_mat)
```

3. And the overall mean and median?

```
mean(sunspot_mat)
median(sunspot_mat)
```

4. Use the hist() function to look at the distribution of all the monthly sunspot data.

```
hist(sunspot_mat)
```

5. Read about the breaks argument to hist() to try to increase the number of breaks in the histogram to increase the resolution slightly. Adjust your hist() and breaks to your liking.

```
hist(sunspot_mat, breaks=40)
```

6. Now, let's move on to summarizing the data a bit to learn about the pattern of sunspots varies by month or by year. Examine the dataset again. What do the columns represent? And the rows?

```
# just a quick glimpse of the data will give us a sense
head(sunspot_mat)
```

7. We'd like to look at the distribution of sunspots by month. How can we do that?

```
# the mean of the columns is the mean number of sunspots per month.
colMeans(sunspot_mat)

# Another way to write the same thing:
apply(sunspot_mat, 2, mean)
```

8. Assign the month summary above to a variable and summarize it to get a sense of the spread over months.

```
monthmeans = colMeans(sunspot_mat)
summary(monthmeans)
```

9. Play the same game for years to get the per-year mean?

```
ymeans = rowMeans(sunspot_mat)
summary(ymeans)
```

10. Make a plot of the yearly means. Do you see a pattern?

```
plot(ymeans)
# or make it clearer
plot(ymeans, type='1')
```

While R has many different data types, the one that is central to much of the power and popularity of R is the data.frame. A data.frame looks a bit like an R matrix in that it has two dimensions, rows and columns. However, data.frames are usually viewed as a set of columns representing variables and the rows representing the values of those variables. Importantly, a data.frame may contain different data types in each of its columns; matrices **must** contain only one data type. This distinction is important to remember, as there are *specific* approaches to working with R data.frames that may be different than those for working with matrices.

7.1. Learning goals

- Understand how data.frames are different from matrices.
- Know a few functions for examing the contents of a data.frame.
- · List approaches for subsetting data.frames.
- Be able to load and save tabular data from and to disk.
- Show how to create a data.frames from scratch.

7.2. Learning objectives

- Load the yeast growth dataset into R using read.csv.
- · Examine the contents of the dataset.
- Use subsetting to find genes that may be involved with nutrient metabolism and transport.
- Summarize data measurements by categories.

7.3. Dataset

The data used here are borrowed directly from the fantastic Bioconnector tutorials and are a cleaned up version of the data from Brauer et al. Coordination of Growth Rate, Cell Cycle, Stress Response, and Metabolic Activity in Yeast (2008) Mol Biol Cell 19:352-367. These data are from a gene expression microarray, and in this paper the authors examine the relationship between growth rate and gene expression in yeast cultures limited by one of six different nutrients (glucose, leucine, ammonium, sulfate, phosphate, uracil). If you give yeast a rich media loaded with nutrients except restrict the supply of a single nutrient, you can control the growth rate to any rate you choose. By starving yeast of specific nutrients you can find genes that:

- Raise or lower their expression in response to growth rate. Growth-rate dependent expression patterns can tell us a lot about cell cycle control, and how the cell responds to stress. The authors found that expression of >25% of all yeast genes is linearly correlated with growth rate, independent of the limiting nutrient. They also found that the subset of negatively growth-correlated genes is enriched for peroxisomal functions, and positively correlated genes mainly encode ribosomal functions.
- Respond differently when different nutrients are being limited. If you see particular genes that respond very differently when a nutrient is sharply restricted, these genes might be involved in the transport or metabolism of that specific nutrient.

The dataset can be downloaded directly from:

• brauer2007 tidy.csv

We are going to read this dataset into R and then use it as a playground for learning about data.frames.

7.4. Reading in data

R has many capabilities for reading in data. Many of the functions have names that help us to understand what data format is to be expected. In this case, the filename that we want to read ends in .csv, meaning comma-separated-values. The read.csv() function reads in .csv files. As usual, it is worth reading help('read.csv') to get a better sense of the possible bells-and-whistles.

The read.csv() function can read directly from a URL, so we do not need to download the file directly. This dataset is relatively large (about 16MB), so this may take a bit depending on your network connection speed.

```
options(width=60)

url = paste0(
    'https://raw.githubusercontent.com',
    '/bioconnector/workshops/master/data/brauer2007_tidy.csv'
)
ydat <- read.csv(url)</pre>
```

Our variable, ydat, now "contains" the downloaded and read data. We can check to see what data type read.csv gave us:

```
class(ydat)
[1] "data.frame"
```

7.5. Inspecting data.frames

Our ydat variable is a data.frame. As I mentioned, the dataset is fairly large, so we will not be able to look at it all at once on the screen. However, R gives us many tools to inspect a data.frame.

- · Overviews of content
 - head() to show first few rows
 - tail() to show last few rows

- Size
 - dim() for dimensions (rows, columns)
 - nrow()
 - ncol()
 - object.size() for power users interested in the memory used to store an object
- Data and attribute summaries
 - colnames() to get the names of the columns
 - rownames() to get the "names" of the rows-may not be present
 - summary() to get per-column summaries of the data in the data.frame.

head(ydat)

```
symbol systematic_name nutrient rate expression
   SFB2
                 YNL049C Glucose 0.05
                                            -0.24
1
2
    <NA>
                 YNL095C Glucose 0.05
                                             0.28
3
   QRI7
                 YDL104C Glucose 0.05
                                            -0.02
4
   CFT2
                 YLR115W Glucose 0.05
                                            -0.33
   SS02
                                             0.05
5
                 YMR183C Glucose 0.05
6
   PSP2
                 YML017W Glucose 0.05
                                            -0.69
1
         ER to Golgi transport
2
    biological process unknown
3 proteolysis and peptidolysis
4
       mRNA polyadenylylation*
5
               vesicle fusion*
6
    biological process unknown
    molecular function unknown
    molecular function unknown
3 metalloendopeptidase activity
4
                    RNA binding
5
               t-SNARE activity
    molecular function unknown
```

tail(ydat)

```
symbol systematic_name nutrient rate expression
         DOA1
                                         0.3
                                                   0.14
198425
                      YKL213C
                                 Uracil
                                                   0.28
         KRE1
                      YNL322C
                                 Uracil
                                        0.3
198426
                                                   0.27
198427
         MTL1
                      YGR023W
                                 Uracil 0.3
198428
         KRE9
                      YJL174W
                                 Uracil 0.3
                                                   0.43
198429
         UTH1
                                 Uracil 0.3
                                                   0.19
                      YKR042W
198430
         <NA>
                      YOL111C
                                 Uracil 0.3
                                                   0.04
                                                bp
198425
          ubiquitin-dependent protein catabolism*
198426
            cell wall organization and biogenesis
198427
            cell wall organization and biogenesis
           cell wall organization and biogenesis*
198428
198429 mitochondrion organization and biogenesis*
198430
                       biological process unknown
                molecular function unknown
198425
198426 structural constituent of cell wall
                molecular function unknown
198427
                molecular function unknown
198428
198429
                molecular function unknown
198430
                molecular function unknown
```

dim(ydat)

[1] 198430 7

nrow(ydat)

[1] 198430

ncol(ydat)

[1] 7

colnames(ydat)

[7] "mf"

summary(ydat)

symbol	systematic_name	nutrient
Length:198430	Length:198430	Length:198430
Class :character	Class :character	Class :character
Mode :character	Mode :character	Mode :character

rate	expression	bp
Min. :0.0500	Min. :-6.500000	Length:198430
1st Qu.:0.1000	1st Qu.:-0.290000	Class :character
Median :0.2000	Median : 0.000000	Mode :character
Mean :0.1752	Mean : 0.003367	
3rd Qu.:0.2500	3rd Qu.: 0.290000	
Max. :0.3000	Max. : 6.640000	
mf		
Length: 198430		

Length:198430 Class :character Mode :character

In RStudio, there is an additional function, View() (note the capital "V") that opens the first 1000 rows (default) in the RStudio window, akin to a spreadsheet view.

View(ydat)

7.6. Accessing variables (columns) and subsetting

In R, data.frames can be subset similarly to other two-dimensional data structures. The [in R is used to denote subsetting of any kind. When working with two-dimensional data, we need two values inside the [] to specify the details. The specification is [rows, columns]. For example, to get the first three rows of ydat, use:

```
ydat[1:3, ]
```

```
symbol systematic_name nutrient rate expression
                                             -0.24
1
   SFB2
                 YNL049C Glucose 0.05
2
    <NA>
                 YNL095C Glucose 0.05
                                              0.28
3
    QRI7
                 YDL104C Glucose 0.05
                                             -0.02
                            bp
1
         ER to Golgi transport
    biological process unknown
3 proteolysis and peptidolysis
     molecular function unknown
1
     molecular function unknown
3 metalloendopeptidase activity
```

Note how the second number, the columns, is blank. R takes that to mean "all the columns". Similarly, we can combine rows and columns specification arbitrarily.

```
ydat[1:3, 1:3]
```

```
symbol systematic_name nutrient
1 SFB2 YNL049C Glucose
2 <NA> YNL095C Glucose
3 QRI7 YDL104C Glucose
```

Because selecting a single variable, or column, is such a common operation, there are two shortcuts for doing so *with data.frames*. The first, the \$ operator works like so:

Look at the column names, just to refresh memory
colnames(ydat)

```
[1] "symbol" "systematic_name" "nutrient"
[4] "rate" "expression" "bp"
[7] "mf"
```

Note that I am using "head" here to limit the output head(ydat\$symbol)

```
[1] "SFB2" NA "ORI7" "CFT2" "SSO2" "PSP2"
```

```
# What is the actual length of "symbol"?
length(ydat$symbol)
```

[1] 198430

The second is related to the fact that, in R, data.frames are also lists. We subset a list by using [[]] notation. To get the second column of ydat, we can use:

```
head(ydat[[2]])
```

- [1] "YNL049C" "YNL095C" "YDL104C" "YLR115W" "YMR183C"
- [6] "YML017W"

Alternatively, we can use the column name:

```
head(ydat[["systematic_name"]])
```

- [1] "YNL049C" "YNL095C" "YDL104C" "YLR115W" "YMR183C"
- [6] "YML017W"

7.6.1. Some data exploration

There are a couple of columns that include numeric values. Which columns are numeric?

class(ydat\$symbol)

[1] "character"

class(ydat\$rate)

[1] "numeric"

class(ydat\$expression)

[1] "numeric"

Make histograms of: - the expression values - the rate values

What does the table() function do? Could you use that to look a the rate column given that that column appears to have repeated values?

What rate corresponds to the most nutrient-starved condition?

7.6.2. More advanced indexing and subsetting

We can use, for example, logical values (TRUE/FALSE) to subset data.frames.

```
head(ydat[ydat$symbol == 'LEU1', ])
```

```
symbol systematic_name nutrient rate expression
       <NA>
NA
                        <NA>
                                 <NA>
                                        NA
                                                   NA <NA>
NA.1
       <NA>
                        <NA>
                                 <NA>
                                        NA
                                                   NA <NA>
NA.2
       <NA>
                        <NA>
                                 <NA>
                                        NA
                                                   NA <NA>
NA.3
       <NA>
                        <NA>
                                 <NA>
                                        NA
                                                   NA <NA>
NA.4
       <NA>
                        <NA>
                                 <NA>
                                        NA
                                                   NA <NA>
NA.5
       <NA>
                                 <NA>
                                        NA
                                                   NA <NA>
                        <NA>
       mf
     <NA>
NA
NA.1 < NA >
```

```
NA.2 <NA>
NA.3 <NA>
NA.4 <NA>
NA.5 <NA>
tail(ydat[ydat$symbol == 'LEU1', ])
```

```
symbol systematic_name nutrient rate expression
NA.47244
           <NA>
                           <NA>
                                     <NA>
                                           NA
NA.47245
           <NA>
                           <NA>
                                     <NA>
                                           NA
                                                       NA
NA.47246
           <NA>
                                    <NA>
                                                       NA
                           <NA>
                                           NA
NA.47247
           <NA>
                           <NA>
                                    <NA>
                                           NA
                                                       NA
NA.47248
           <NA>
                           <NA>
                                    <NA>
                                           NA
                                                      NA
NA.47249
           <NA>
                           <NA>
                                    <NA>
                                           NA
                                                       NA
           bp
                mf
NA.47244 <NA> <NA>
NA.47245 <NA> <NA>
NA.47246 <NA> <NA>
NA.47247 <NA> <NA>
NA.47248 <NA> <NA>
```

What is the problem with this approach? It appears that there are a bunch of NA values. Taking a quick look at the symbol column, we see what the problem.

```
summary(ydat$symbol)
```

Length Class Mode 198430 character character

NA.47249 <NA> <NA>

Using the is.na() function, we can make filter further to get down to values of interest.

7043	LEU1	YGI	.009C	Glucos	e 0.10)	-0.7	77
12555	LEU1	YGI	.009C	Glucos	e 0.15	5	-0.6	57
18071	LEU1	YGI	.009C	Glucos	e 0.20)	-0.5	59
23603	LEU1	YGI	1009C	Glucos	e 0.25	5	-0.2	20
29136	LEU1	YGI	.009C	Glucos	e 0.30)	0.0)3
			bp					
1526	leucine b	iosynthes	sis					
7043	leucine b	iosynthes	sis					
12555	leucine b	iosynthes	sis					
18071	leucine b	iosynthes	sis					
23603	leucine b	iosynthes	sis					
29136	leucine b	iosynthes	sis					
						mf		
1526	3-isoprop	ylmalate	dehydı	catase a	activi	ity		
7043	3-isoprop	ylmalate	dehydı	catase a	activi	ity		
12555	3-isoprop	ylmalate	dehydı	catase a	activi	ity		
18071	3-isoprop	ylmalate	dehydı	catase a	activi	ity		
23603	3-isoprop	ylmalate	dehydı	catase a	activi	ity		
29136	3-isoprop	ylmalate	dehydı	catase a	activi	ity		

Sometimes, looking at the data themselves is not that important. Using dim() is one possibility to look at the number of rows and columns after subsetting.

```
dim(ydat[ydat$expression > 3, ])
```

[1] 714 7

Find the high expressed genes when leucine-starved. For this task we can also use subset which allows us to treat column names as R variables (no \$ needed).

```
subset(ydat, nutrient == 'Leucine' & rate == 0.05 & expression > 3)
       symbol systematic_name nutrient rate expression
133768
         QDR2
                      YIL121W Leucine 0.05
                                                  4.61
                      YGL009C Leucine 0.05
133772
         LEU1
                                                  3.84
                      YDR046C Leucine 0.05
                                                  4.29
133858
         BAP3
                      YPL033C Leucine 0.05
135186
                                                  3.43
         <NA>
```

135187	<na></na>	YLR267W	Leucine	0.05	3.23
135288	HXT3	YDR345C	Leucine	0.05	5.16
135963	TPO2	YGR138C	Leucine	0.05	3.75
135965	YRO2	YBR054W	Leucine	0.05	4.40
136102	GPG1	YGL121C	Leucine	0.05	3.08
136109	HSP42	YDR171W	Leucine	0.05	3.07
136119	HXT5	YHR096C	Leucine	0.05	4.90
136151	<na></na>	YJL144W	Leucine	0.05	3.06
136152	MOH1	YBL049W	Leucine	0.05	3.43
136153	<na></na>	YBL048W	Leucine	0.05	3.95
136189	HSP26	YBR072W	Leucine	0.05	4.86
136231	NCA3	YJL116C	Leucine	0.05	4.03
136233	<na></na>	YBR116C	Leucine	0.05	3.28
136486	<na></na>	YGR043C	Leucine	0.05	3.07
137443	ADH2	YMR303C	Leucine	0.05	4.15
137448	ICL1	YER065C	Leucine	0.05	3.54
137451	SFC1	YJR095W	Leucine	0.05	3.72
137569	MLS1	YNL117W	Leucine	0.05	3.76
				bp	
133768		m	ultidrug	transport	
133772		1e	ucine bio	synthesis	
133858		am	ino acid	transport	
135186				meiosis*	
135187		biologic	al proces	ss unknown	
135288			hexose	transport	
135963		-	=	transport	
135965		biologic	al proces	ss unknown	
136102		S	ignal tra	nsduction	
136109		r	esponse t	o stress*	
136119				transport	
136151		-		essication	
136152		biologic	al proces	ss unknown	
136153				<na></na>	
136189			_	o stress*	
	mitochondrion	organizat	ion and b	_	
136233			_	<na></na>	
136486		biologic	=	ss unknown	
137443				nentation*	
137448				late cycle	
137451		f		ransport*	
137569			glyoxyl	late cycle	

	mf
133768	multidrug efflux pump activity
133772	3-isopropylmalate dehydratase activity
133858	amino acid transporter activity
135186	molecular function unknown
135187	molecular function unknown
135288	glucose transporter activity*
135963	spermine transporter activity
135965	molecular function unknown
136102	signal transducer activity
136109	unfolded protein binding
136119	glucose transporter activity*
136151	molecular function unknown
136152	molecular function unknown
136153	<na></na>
136189	unfolded protein binding
136231	molecular function unknown
136233	<na></na>
136486	transaldolase activity
137443	alcohol dehydrogenase activity
137448	isocitrate lyase activity
137451	$succinate: fumarate \ antiporter \ activity$
137569	malate synthase activity

7.7. Aggregating data

Aggregating data, or summarizing by category, is a common way to look for trends or differences in measurements between categories. Use aggregate to find the mean expression by gene symbol.

head(aggregate(ydat\$expression, by=list(ydat\$symbol), mean))

```
Group.1 x
1 AAC1 0.52888889
2 AAC3 -0.21628571
3 AAD10 0.43833333
4 AAD14 -0.07166667
5 AAD16 0.24194444
6 AAD4 -0.79166667
```

7.8. Creating a data.frame from scratch

Sometimes it is useful to combine related data into one object. For example, let's simulate some data.

```
smoker = factor(rep(c("smoker", "non-smoker"), each=50))
smoker_numeric = as.numeric(smoker)
x = rnorm(100)
risk = x + 2*smoker_numeric
```

We have two varibles, risk and smoker that are related. We can make a data.frame out of them:

```
smoker_risk = data.frame(smoker = smoker, risk = risk)
head(smoker_risk)

smoker    risk
1 smoker 3.056532
2 smoker 3.558159
3 smoker 4.158129
4 smoker 2.981418
5 smoker 4.052849
6 smoker 3.976635
```

R also has plotting shortcuts that work with data.frames to simplify plotting

```
plot( risk ~ smoker, data=smoker_risk)
```


7.9. Saving a data.frame

Once we have a data.frame of interest, we may want to save it. The most portable way to save a data.frame is to use one of the write functions. In this case, let's save the data as a .csv file.

```
write.csv(smoker_risk, "smoker_risk.csv")
```

8. Factors

8.1. Factors

A factor is a special type of vector, normally used to hold a categorical variable–such as smoker/nonsmoker, state of residency, zipcode–in many statistical functions. Such vectors have class "factor". Factors are primarily used in Analysis of Variance (ANOVA) or other situations when "categories" are needed. When a factor is used as a predictor variable, the corresponding indicator variables are created (more later).

Note of caution that factors in R often *appear* to be character vectors when printed, but you will notice that they do not have double quotes around them. They are stored in R as numbers with a key name, so sometimes you will note that the factor *behaves* like a numeric vector.

```
# create the character vector
citizen<-c("uk","us","no","au","uk","us","us","no","au")
# convert to factor
citizenf<-factor(citizen)
citizen</pre>
```

```
[1] "uk" "us" "no" "au" "uk" "us" "us" "no" "au"
```

citizenf

[1] uk us no au uk us us no au Levels: au no uk us

8. Factors

```
# convert factor back to character vector
as.character(citizenf)

[1] "uk" "us" "no" "au" "uk" "us" "us" "no" "au"

# convert to numeric vector
as.numeric(citizenf)
```

[1] 3 4 2 1 3 4 4 2 1

R stores many data structures as vectors with "attributes" and "class" (just so you have seen this).

```
attributes(citizenf)

$levels
[1] "au" "no" "uk" "us"

$class
[1] "factor"

class(citizenf)
```

[1] "factor"

```
# note that after unclassing, we can see the
# underlying numeric structure again
unclass(citizenf)
```

```
[1] 3 4 2 1 3 4 4 2 1
attr(,"levels")
[1] "au" "no" "uk" "us"
```

Tabulating factors is a useful way to get a sense of the "sample" set available.

8. Factors

table(citizenf)

citizenf au no uk us 2 2 2 3

Part III.

Exploratory data analysis

Imagine you're on an adventure, about to embark on a journey into the unknown. You've just been handed a treasure map, with the promise of valuable insights waiting to be discovered. This map is your data set, and the journey is exploratory data analysis (EDA).

As you begin your exploration, you start by getting a feel for the terrain. You take a broad, bird's-eye view of the data, examining its structure and dimensions. Are you dealing with a vast landscape or a small, confined area? Are there any missing pieces in the map that you'll need to account for? Understanding the overall context of your data set is crucial before venturing further.

With a sense of the landscape, you now zoom in to identify key landmarks in the data. You might look for unusual patterns, trends, or relationships between variables. As you spot these landmarks, you start asking questions: What's causing that spike in values? Are these two factors related, or is it just a coincidence? By asking these questions, you're actively engaging with the data and forming hypotheses that could guide future analysis or experiments.

As you continue your journey, you realize that the map alone isn't enough to fully understand the terrain. You need more tools to bring the data to life. You start visualizing the data using charts, plots, and graphs. These visualizations act as your binoculars, allowing you to see patterns and relationships more clearly. Through them, you can uncover the hidden treasures buried within the data.

EDA isn't a linear path from start to finish. As you explore, you'll find yourself circling back to previous points, refining your questions, and digging deeper. The process is iterative, with each new discovery informing the next. And as you go, you'll gain a deeper understanding of the data's underlying structure and potential.

Finally, after your thorough exploration, you'll have a solid foundation to build upon. You'll be better equipped to make informed decisions, test hypotheses, and draw meaningful conclusions. The insights you've gained through EDA will serve as a compass, guiding you towards the true value hidden within your data. And with that, you've successfully completed your journey through exploratory data analysis.

9. Case Study: Behavioral Risk Factor Surveillance System

9.1. A Case Study on the Behavioral Risk Factor Surveillance System

The Behavioral Risk Factor Surveillance System (BRFSS) is a large-scale health survey conducted annually by the Centers for Disease Control and Prevention (CDC) in the United States. The BRFSS collects information on various health-related behaviors, chronic health conditions, and the use of preventive services among the adult population (18 years and older) through telephone interviews. The main goal of the BRFSS is to identify and monitor the prevalence of risk factors associated with chronic diseases, inform public health policies, and evaluate the effectiveness of health promotion and disease prevention programs. The data collected through BRFSS is crucial for understanding the health status and needs of the population, and it serves as a valuable resource for researchers, policy makers, and healthcare professionals in making informed decisions and designing targeted interventions.

In this chapter, we will walk through an exploratory data analysis (EDA) of the Behavioral Risk Factor Surveillance System dataset using R. EDA is an important step in the data analysis process, as it helps you to understand your data, identify trends, and detect any anomalies before performing more advanced analyses. We will use various R functions and packages to explore the dataset, with a focus on active learning and hands-on experience.

9.2. Loading the Dataset

First, let's load the dataset into R. We will use the read.csv() function from the base R package to read the data and store it in a data frame called brfss. Make sure the CSV file is in your working directory, or provide the full path to the file.

First, we need to get the data. Either download the data from THIS LINK or have R do it directly from the command-line (preferred):

9.3. Inspecting the Data

Once the data is loaded, let's take a look at the first few rows of the dataset using the head() function:

```
Age Weight Sex Height Year

1 31 48.98798 Female 157.48 1990

2 57 81.64663 Female 157.48 1990

3 43 80.28585 Male 177.80 1990

4 72 70.30682 Male 170.18 1990

5 31 49.89516 Female 154.94 1990

6 58 54.43108 Female 154.94 1990
```

This will display the first six rows of the dataset, allowing you to get a feel for the data structure and variable types.

Next, let's check the dimensions of the dataset using the dim() function:

```
dim(brfss)
[1] 20000 5
```

This will return the number of rows and columns in the dataset, which is important to know for subsequent analyses.

9.4. Summary Statistics

Now that we have a basic understanding of the data structure, let's calculate some summary statistics. The summary() function in R provides a quick overview of the main statistics for each variable in the dataset:

```
summary(brfss)
```

```
Age
                Weight
                               Sex
                                               Height
Min. :18.00 Min. :34.93 Length:20000
                                                  :105.0
1st Qu.:36.00 1st Qu.: 61.69
                             Class:character
                                               1st Ou.:162.6
Median:51.00 Median:72.57 Mode:character
                                              Median:168.0
Mean :50.99 Mean : 75.42
                                         Mean :169.2
3rd Qu.:65.00
             3rd Qu.: 86.18
                                          3rd Qu.:177.8
Max.
      :99.00
                   :278.96
                                               :218.0
             Max.
                                         Max.
NA's
     :139
              NA's
                   :649
                                           NA's :184
     Year
Min.
       :1990
1st Qu.:1990
Median :2000
Mean
       :2000
3rd Qu.:2010
Max.
       :2010
```

This will display the minimum, first quartile, median, mean, third quartile, and maximum for each numeric variable, and the frequency counts for each factor level for categorical variables.

9.5. Data Visualization

Visualizing the data can help you identify patterns and trends in the dataset. Let's start by creating a histogram of the Age variable using the hist() function.

This will create a histogram showing the frequency distribution of ages in the dataset. You can customize the appearance of the histogram by adjusting the parameters within the hist() function.

```
hist(brfss$Age, main = "Age Distribution",
     xlab = "Age", col = "lightblue")
```


• What are the options for a histogram?

The hist() function has many options. For example, you can change the number of bins, the color of the bars, the title, and the x-axis label. You can also add a vertical line at the mean or median, or add a normal curve to the histogram. For more information, type ?hist in the R console.

More generally, it is important to understand the options available for each function you use. You can do this by reading the documentation for the function, which can be accessed by typing ?function_name or help("function_name") in the R console.

Next, let's create a boxplot to compare the distribution of Weight between males and females. We will use the boxplot() function for this. This will create a boxplot comparing the weight distribution between males and females. You can customize the appearance of the boxplot by adjusting the parameters within the boxplot() function.

Weight Distribution by Sex

9.6. Analyzing Relationships Between Variables

To further explore the data, let's investigate the relationship between age and weight using a scatterplot. We will use the plot() function for this:

This will create a scatterplot of age and weight, allowing you to visually assess the relationship between these two variables.

Scatterplot of Age and Weight

To quantify the strength of the relationship between age and weight, we can calculate the correlation coefficient using the cor() function:

This will return the correlation coefficient between age and weight, which can help you determine whether there is a linear relationship between these variables.

```
cor(brfss$Age, brfss$Weight)
```

[1] NA

Why does cor() give a value of NA? What can we do about it? A quick glance at help("cor") will give you the answer.

```
cor(brfss$Age, brfss$Weight, use = "complete.obs")
```

[1] 0.02699989

9.7. Exercises

1. What is the mean weight in this dataset? How about the median? What is the difference between the two? What does this tell you about the distribution of weights in the dataset?

```
mean(brfss$Weight, na.rm = TRUE)

[1] 75.42455
median(brfss$Weight, na.rm = TRUE)

[1] 72.57478
mean(brfss$Weight, na.rm=TRUE) - median(brfss$Weight, na.rm = TRUE)

[1] 2.849774
```

2. Given the findings about the mean and median in the previous exercise, use the hist() function to create a histogram of the weight distribution in this dataset. How would you describe the shape of this distribution?

```
hist(brfss$Weight, xlab="Weight (kg)", breaks = 30)
```

Histogram of brfss\$Weight

3. Use plot() to examine the relationship between height and weight in this dataset.

```
plot(brfss$Height, brfss$Weight)
```


4. What is the correlation between height and weight? What does this tell you about the relationship between these two variables?

[1] 0.5140928

5. Create a histogram of the height distribution in this dataset. How would you describe the shape of this distribution?

Histogram of brfss\$Height

9.8. Conclusion

In this chapter, we have demonstrated how to perform an exploratory data analysis on the Behavioral Risk Factor Surveillance System dataset using R. We covered data loading, inspection, summary statistics, visualization, and the analysis of relationships between variables. By actively engaging with the R code and data, you have gained valuable experience in using R for EDA and are well-equipped to tackle more complex analyses in your future work.

Remember that EDA is just the beginning of the data analysis process, and further statistical modeling and hypothesis testing will likely be necessary to draw meaningful conclusions from your data. However, EDA is a crucial step in understanding your data and informing your subsequent analyses.

9.9. Learn about the data

Using the data exploration techniques you have seen to explore the brfss dataset.

- summary()
- dim()
- colnames()
- head()
- tail()
- class()
- View()

You may want to investigate individual columns visually using plotting like hist(). For categorical data, consider using something like table().

9.10. Clean data

R read Year as an integer value, but it's really a factor

```
brfss$Year <- factor(brfss$Year)</pre>
```

9.11. Weight in 1990 vs. 2010 Females

• Create a subset of the data

```
brfssFemale <- brfss[brfss$Sex == "Female",]
summary(brfssFemale)</pre>
```

```
Age
              Weight
                             Sex
                                            Height
Min. :18.00 Min. : 36.29 Length:12039
                                        Min. :105.0
1st Qu.:37.00 1st Qu.: 57.61 Class:character 1st Qu.:157.5
Median:52.00 Median:65.77 Mode:character Median:163.0
Mean :51.92 Mean : 69.05
                                     Mean :163.3
3rd Qu.:67.00 3rd Qu.: 77.11
                                      3rd Qu.:168.0
                                     Max. :200.7
Max. :99.00 Max. :272.16
NA's :103
            NA's :560
                                      NA's :140
  Year
1990:5718
2010:6321
```

• Visualize

```
plot(Weight ~ Year, brfssFemale)
```


Statistical test

```
t.test(Weight ~ Year, brfssFemale)
```

Welch Two Sample t-test

```
data: Weight by Year t = -27.133, df = 11079, p-value < 2.2e-16
```

alternative hypothesis: true difference in means between group 1990 and group 2010 is not equal to 0 95 percent confidence interval:

```
-8.723607 -7.548102
sample estimates:
mean in group 1990 mean in group 2010
64.81838 72.95424
```

9.12. Weight and height in 2010 Males

• Create a subset of the data

```
brfss2010Male <- subset(brfss, Year == 2010 & Sex == "Male")
summary(brfss2010Male)</pre>
```

Age	Weight	Sex	Height	Year	
Min. :18.	00 Min. : 3	36.29 Length	:3679 Min.	:135	1990: 0
1st Qu.:45	.00 1st Qu.:	77.11 Class	:character 1s	st Qu.:17	3 2010:3679
Median:57	.00 Median:	86.18 Mode	:character Me	dian:178	8
Mean :56	.25 Mean :	88.85	Mean	:178	
3rd Qu.:68	.00 3rd Qu.:	99.79	3rd Qu	.:183	
Max. :99	.00 Max. :2	278.96	Max.	:218	
NA's :30	NA's :4	19	NA's	:31	

• Visualize the relationship

hist(brfss2010Male\$Weight)

Histogram of brfss2010Male\$Weight

hist(brfss2010Male\$Height)

Histogram of brfss2010Male\$Height

plot(Weight ~ Height, brfss2010Male)

• Fit a linear model (regression)

```
fit <- lm(Weight ~ Height, brfss2010Male)
fit</pre>
```

Call:

```
lm(formula = Weight ~ Height, data = brfss2010Male)
```

Coefficients:

(Intercept) Height -86.8747 0.9873

Summarize as ANOVA table

```
anova(fit)
```

Analysis of Variance Table

```
Response: Weight
```

Df Sum Sq Mean Sq F value Pr(>F)

Height 1 197664 197664 693.8 < 2.2e-16 ***

Residuals 3617 1030484 285
--
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• Plot points, superpose fitted regression line; where am I?

```
plot(Weight ~ Height, brfss2010Male)
abline(fit, col="blue", lwd=2)
# Substitute your own weight and height...
points(73 * 2.54, 178 / 2.2, col="red", cex=4, pch=20)
```


- 9. Case Study: Behavioral Risk Factor Surveillance System
- Class and available 'methods'

```
class(fit) # 'noun'
methods(class=class(fit)) # 'verb'
```

• Diagnostics

```
plot(fit)
# Note that the "plot" above does not have a ".lm"
# However, R will use "plot.lm". Why?
?plot.lm
```

Part IV. statistics

10. The t-statistic and t-distribution

10.1. Background

The t-test is a statistical hypothesis test that is commonly used when the data are normally distributed (follow a normal distribution) if the value of the population standard deviation were known. When the population standard deviation is not known and is replaced by an estimate based no the data, the test statistic follows a Student's t distribution.

T-tests are handy hypothesis tests in statistics when you want to compare means. You can compare a sample mean to a hypothesized or target value using a one-sample t-test. You can compare the means of two groups with a two-sample t-test. If you have two groups with paired observations (e.g., before and after measurements), use the paired t-test.

A t-test looks at the t-statistic, the t-distribution values, and the degrees of freedom to determine the statistical significance. To conduct a test with three or more means, we would use an analysis of variance.

The distribution that the t-statistic follows was described in a famous paper (Student 1908) by "Student", a pseudonym for William Sealy Gosset.

10.2. The Z-score and probability

Before talking about the t-distribution and t-scores, lets review the Z-score, its relation to the normal distribution, and probability.

The Z-score is defined as:

$$Z = \frac{x - \mu}{\sigma} \tag{10.1}$$

where μ is a the population mean from which x is drawn and σ is the population standard deviation (taken as known, not estimated from the data).

The probability of observing a Z score of z or greater can be calculated by $pnorm(z, \mu, \sigma)$.

For example, let's assume that our "population" is known and it truly has a mean 0 and standard deviation 1. If we have observations drawn from that population, we can assign a probability of seeing that observation by random chance *under the assumption that the null hypothesis is TRUE*.

```
zscore = seq(-5,5,1)
```

For each value of zscore, let's calculate the p-value and put the results in a data.frame.

```
df = data.frame(
    zscore = zscore,
    pval = pnorm(zscore, 0, 1)
)
df
```

```
zscore
                   pval
1
       -5 2.866516e-07
2
       -4 3.167124e-05
3
       -3 1.349898e-03
4
       -2 2.275013e-02
5
       -1 1.586553e-01
        0 5.000000e-01
6
7
        1 8.413447e-01
8
        2 9.772499e-01
9
        3 9.986501e-01
10
        4 9.999683e-01
11
        5 9.999997e-01
```

10. The t-statistic and t-distribution

Why is the p-value of something 5 population standard deviations away from the mean (zscore=5) nearly 1 in this calculation? What is the default for pnorm with respect to being one-sided or two-sided?

Let's plot the values of probability vs z-score:

```
plot(df$zscore, df$pval, type='b')
```


This plot is the *empirical* cumulative density function (cdf) for our data. How can we use it? If we know the z-score, we can look up the probability of observing that value. Since we have constructed our experiment to follow the standard normal distribution, this cdf also represents the cdf of the standard normal distribution.

10.2.1. Small diversion: two-sided pnorm function

The pnorm function returns the "one-sided" probability of having a value at least as extreme as the observed x and uses the "lower" tail by default. Let's create a function that computes two-sided p-values.

- 1. Take the absolute value of x
- 2. Compute pnorm with lower.tail=FALSE so we get lower p-values with larger values of x.

3. Since we want to include both tails, we need to multiply the area (probability) returned by pnorm by 2.

```
twosidedpnorm = function(x,mu=0,sd=1) {
    2*pnorm(x,mu,sd,lower.tail=FALSE)
}
```

And we can test this to see how likely it is to be 2 or 3 standard deviations from the mean:

```
twosidedpnorm(2)
```

[1] 0.04550026

```
twosidedpnorm(3)
```

[1] 0.002699796

10.3. The t-distribution

We spent time above working with z-scores and probability. An important aspect of working with the normal distribution is that we MUST assume that we know the standard deviation. Remember that the Z-score is defined as:

$$Z = \frac{x - \mu}{\sigma}$$

The formula for the *population* standard deviation is:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (xi - \mu)^2}$$
 (10.2)

In general, the population standard deviation is taken as "known" as we did above.

If we do not but only have a *sample* from the population, instead of using the Z-score, we use the t-score defined as:

$$t = \frac{x - \bar{x}}{s} \tag{10.3}$$

This looks quite similar to the formula for Z-score, but here we have to *estimate* the standard deviation, *s* from the data. The formula for *s* is:

$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$
 (10.4)

Since we are estimating the standard deviation from the data, this leads to extra variability that shows up as "fatter tails" for smaller sample sizes than for larger sample sizes. We can see this by comparing the *t-distribution* for various numbers of degrees of freedom (sample sizes).

We can look at the effect of sample size on the distributions graphically by looking at the densities for 3, 5, 10, 20 degrees of freedom and the normal distribution:

```
library(dplyr)
library(ggplot2)
t_values = seq(-6,6,0.01)
df = data.frame(
    value = t_values,
    t_3 = dt(t_values,3),
    t_6 = dt(t_values,6),
    t_10 = dt(t_values,10),
    t_20 = dt(t_values,20),
    Normal= dnorm(t_values)
) |>
    tidyr::gather("Distribution", "density", -value)
ggplot(df, aes(x=value, y=density, color=Distribution)) +
    geom line()
```

10. The t-statistic and t-distribution

Figure 10.1.: t-distributions for various degrees of freedom. Note that the tails are fatter for smaller degrees of freedom, which is a result of estimating the standard deviation from the data.

The dt and dnorm functions give the density of the distributions for each point.

```
df2 = df |>
    group_by(Distribution) |>
    arrange(value) |>
    mutate(cdf=cumsum(density))
ggplot(df2, aes(x=value, y=cdf, color=Distribution)) +
    geom_line()
```


10.3.1. p-values based on Z vs t

When we have a "sample" of data and want to compute the statistical significance of the difference of the mean from the population mean, we calculate the standard deviation of the sample means (standard error).

$$z = \frac{x - \mu}{\sigma / \sqrt{n}}$$

Let's look at the relationship between the p-values of Z (from the normal distribution) vs t for a **sample** of data.

```
set.seed(5432)
samp = rnorm(5)
z = sqrt(length(samp)) * mean(samp) #simplifying assumption (sigma=1, mu=0)
```

And the p-value if we assume we know the standard deviation:

```
pnorm(z)

[1] 0.8035432

ts = sqrt(length(samp)) * mean(samp) / sd(samp)
pnorm(ts)

[1] 0.8215048

pt(ts,5)
[1] 0.800373
```

10.3.2. Experiment

When sampling from a normal distribution, we often calculate p-values to test hypotheses or determine the statistical significance of our results. The p-value represents the probability of obtaining a test statistic as extreme or more extreme than the one observed, under the null hypothesis.

In a typical scenario, we assume that the population mean and standard deviation are known. However, in many real-life situations, we don't know the true population standard deviation, and we have to estimate it using the sample standard deviation (Equation 10.4). This estimation introduces some uncertainty into our calculations, which affects the p-values. When we include an estimate of the standard deviation, we switch from using the standard normal (z) distribution to the t-distribution for calculating p-values.

What would happen if we used the normal distribution to calculate p-values when we use the sample standard deviation? Let's find out!

- 1. Simulate a bunch of samples of size n from the standard normal distribution
- 2. Calculate the p-value distribution for those samples based on the normal.
- 3. Calculate the p-value distribution for those samples based on the normal, but with the *estimated* standard deviation.
- 4. Calculate the p-value distribution for those samples based on the t-distribution.

Create a function that draws a sample of size n from the standard normal distribution.

```
zf = function(n) {
    samp = rnorm(n)
    z = sqrt(length(samp)) * mean(samp) / 1 #simplifying assumption (sigma=1, mu=0)
    z
}
```

And give it a try:

```
zf(5)
```

[1] 0.7406094

Perform 10000 replicates of our sampling and z-scoring. We are using the assumption that we know the population standard deviation; in this case, we do know since we are sampling from the standard normal distribution.

```
z10k = replicate(10000,zf(5))
hist(pnorm(z10k))
```

Histogram of pnorm(z10k)

And do the same, but now creating a t-score function. We are using the assumption that we *don't* know the population standard deviation; in this case, we must estimate it from the data. Note the difference in the calculation of the t-score (ts) as compared to the z-score (z).

```
tf = function(n) {
    samp = rnorm(n)
    # now, using the sample standard deviation since we
    # "don't know" the population standard deviation
    ts = sqrt(length(samp)) * mean(samp) / sd(samp)
```

```
ts }
```

If we use those t-scores and calculate the p-values based on the normal distribution, the histogram of those p-values looks like:

```
t10k = replicate(10000,tf(5))
hist(pnorm(t10k))
```

Histogram of pnorm(t10k)

Since we are using the normal distribution to calculate the p-values, we are, in effect, assuming that we know the population standard deviation. This assumption is incorrect, and we can see that the p-values are not uniformly distributed between 0 and 1.

If we use those t-scores and calculate the p-values based on the tdistribution, the histogram of those p-values looks like:

```
hist(pt(t10k,5))
```

Histogram of pt(t10k, 5)

Now, the p-values are uniformly distributed between 0 and 1, as expected.

What is a qqplot and how do we use it? A qqplot is a plot of the quantiles of two distributions against each other. If the two distributions are identical, the points will fall on a straight line. If the two distributions are different, the points will deviate from the straight line. We can use a qqplot to compare the t-distribution to the normal distribution. If the t-distribution is identical to the normal distribution, the points will fall on a straight line. If the t-distribution is different from the normal distribution, the points will deviate from the straight line. In this case, we can see that the t-distribution is different from the normal distribution, as the points deviate from the straight line. What would happen if we increased the sample size? The t-distribution would approach the normal distribution, and the points would fall closer and closer to the straight line.

```
qqplot(z10k,t10k)
abline(0,1)
```


10.4. Summary of t-distribution vs normal distribution

The t-distribution is a family of probability distributions that depends on a parameter called degrees of freedom, which is related to the sample size. The t-distribution approaches the standard normal distribution as the sample size increases but has heavier tails for smaller sample sizes. This means that the t-distribution is more conservative in calculating p-values for small samples, making it harder to reject the null hypothesis. Including an estimate of the standard deviation changes the way we calculate p-values by switching from the standard normal distribution to the t-distribution, which accounts for the uncertainty introduced by estimating the population standard deviation from the sample. This adjustment is particularly important for small sample sizes, as it provides a more accurate assessment of the statistical significance of our results.

10.5. t.test

10.5.1. One-sample

```
x = rnorm(20, 1)
# small sample
t.test(x[1:5])
    One Sample t-test
data: x[1:5]
t = 0.97599, df = 4, p-value = 0.3843
alternative hypothesis: true mean is not equal to \mathbf{0}
95 percent confidence interval:
 -1.029600 2.145843
sample estimates:
mean of x
0.5581214
Increase sample size:
t.test(x[1:20])
    One Sample t-test
data: x[1:20]
t = 3.8245, df = 19, p-value = 0.001144
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.3541055 1.2101894
sample estimates:
mean of x
0.7821474
```

10.5.2. two-sample

```
x = rnorm(10,0.5)
y = rnorm(10,-0.5)
t.test(x,y)

Welch Two Sample t-test

data: x and y
t = 3.4296, df = 17.926, p-value = 0.003003
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    0.5811367 2.4204048
sample estimates:
    mean of x mean of y
    0.7039205 -0.7968502
```

10.5.3. from a data.frame

```
df = data.frame(value=c(x,y),group=as.factor(rep(c('g1','g2'),each=10)))
t.test(value ~ group, data=df)

Welch Two Sample t-test

data: value by group
t = 3.4296, df = 17.926, p-value = 0.003003
alternative hypothesis: true difference in means between group g1 and group g2 is not equal to 0
95 percent confidence interval:
0.5811367 2.4204048
sample estimates:
mean in group g1 mean in group g2
0.7039205 -0.7968502
```

10.5.4. Equivalence to linear model

```
t.test(value ~ group, data=df, var.equal=TRUE)
   Two Sample t-test
data: value by group
t = 3.4296, df = 18, p-value = 0.002989
alternative hypothesis: true difference in means between group g1 and group g2 is not equal to 0
95 percent confidence interval:
0.5814078 2.4201337
sample estimates:
mean in group g1 mean in group g2
       0.7039205
                      -0.7968502
This is equivalent to:
res = lm(value ~ group, data=df)
summary(res)
Call:
lm(formula = value ~ group, data = df)
Residuals:
    Min
             1Q Median
                             3Q
-1.9723 -0.5600 0.2511 0.5252 1.3889
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
              0.7039
                         0.3094
                                  2.275 0.03538 *
groupg2
             -1.5008
                         0.4376 -3.430 0.00299 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9785 on 18 degrees of freedom
Multiple R-squared: 0.3952, Adjusted R-squared: 0.3616
F-statistic: 11.76 on 1 and 18 DF, p-value: 0.002989
```

11.1. History of the k-means algorithm

The k-means clustering algorithm was first proposed by Stuart Lloyd in 1957 as a technique for pulse-code modulation. However, it was not published until 1982. In 1965, Edward W. Forgy published an essentially identical method, which became widely known as the k-means algorithm. Since then, k-means clustering has become one of the most popular unsupervised learning techniques in data analysis and machine learning.

K-means clustering is a method for finding patterns or groups in a dataset. It is an unsupervised learning technique, meaning that it doesn't rely on previously labeled data for training. Instead, it identifies structures or patterns directly from the data based on the similarity between data points (see Figure 11.1).

Figure 11.1.: K-means clustering takes a dataset and divides it into k clusters.

In simple terms, k-means clustering aims to divide a dataset into k distinct groups or clusters, where each data point belongs to the cluster with the nearest mean (average). The goal is to minimize the

variability within each cluster while maximizing the differences between clusters. This helps to reveal hidden patterns or relationships in the data that might not be apparent otherwise.

11.2. The k-means algorithm

The k-means algorithm follows these general steps:

- 1. Choose the number of clusters k.
- 2. Initialize the cluster centroids randomly by selecting k data points from the dataset.
- 3. Assign each data point to the nearest centroid.
- 4. Update the centroids by computing the mean of all the data points assigned to each centroid.
- 5. Repeat steps 3 and 4 until the centroids no longer change or a certain stopping criterion is met (e.g., a maximum number of iterations).

The algorithm converges when the centroids stabilize or no longer change significantly. The final clusters represent the underlying patterns or structures in the data. Advantages and disadvantages of k-means clustering

11.3. Pros and cons of k-means clustering

Compared to other clustering algorithms, k-means has several advantages:

- Simplicity and ease of implementation The k-means algorithm is relatively straightforward and can be easily implemented, even for large datasets.
- Scalability The algorithm can be adapted for large datasets using various optimization techniques or parallel processing.
- Speed K-means is generally faster than other clustering algorithms, especially when the number of clusters k is small.

 Interpretability The results of k-means clustering are easy to understand, as the algorithm assigns each data point to a specific cluster based on its similarity to the cluster's centroid.

However, k-means clustering has several disadvantages as well:

- Choice of k Selecting the appropriate number of clusters can be challenging and often requires domain knowledge or experimentation. A poor choice of k may yield poor results.
- Sensitivity to initial conditions The algorithm's results can vary depending on the initial placement of centroids. To overcome this issue, the algorithm can be run multiple times with different initializations and the best solution can be chosen based on a criterion (e.g., minimizing within-cluster variation).
- Assumes spherical clusters K-means assumes that clusters are spherical and evenly sized, which may not always be the case in real-world datasets. This can lead to poor performance if the underlying clusters have different shapes or densities.
- **Sensitivity to outliers** The algorithm is sensitive to outliers, which can heavily influence the position of centroids and the final clustering result. Preprocessing the data to remove or mitigate the impact of outliers can help improve the performance of k-means clustering.

Despite limitations, k-means clustering remains a popular and widely used method for exploring and analyzing data, particularly in biological data analysis, where identifying patterns and relationships can provide valuable insights into complex systems and processes.

11.4. An example of k-means clustering

11.4.1. The data and experimental background

The data we are going to use are from DeRisi, Iyer, and Brown (1997). From their abstract:

DNA microarrays containing virtually every gene of Saccharomyces cerevisiae were used to carry out a comprehensive investigation of the temporal program of gene expression accompanying the metabolic shift from fermentation to respiration. The expression profiles observed for genes with known metabolic functions pointed to features of the metabolic reprogramming that occur during the diauxic shift, and the expression patterns of many previously uncharacterized genes provided clues to their possible functions.

These data are available from NCBI GEO as GSE28.

In the case of the baker's or brewer's yeast Saccharomyces cerevisiae growing on glucose with plenty of aeration, the diauxic growth pattern is commonly observed in batch culture. During the first growth phase, when there is plenty of glucose and oxygen available, the yeast cells prefer glucose fermentation to aerobic respiration even though aerobic respiration is the more efficient pathway to grow on glucose. This experiment profiles gene expression for 6400 genes over a time course during which the cells are undergoing a diauxic shift.

The data in deRisi et al. have no replicates and are time course data. Sometimes, seeing how groups of genes behave can give biological insight into the experimental system or the function of individual genes. We can use clustering to group genes that have a similar expression pattern over time and then potentially look at the genes that do so.

Our goal, then, is to use kmeans clustering to divide highly variable (informative) genes into groups and then to visualize those groups.

11.5. Getting data

library(SummarizedExperiment)

data_row_count

These data were deposited at NCBI GEO back in 2002. GEOquery can pull them out easily.

```
library(GEOquery)
gse = getGEO("GSE28")[[1]]
class(gse)

[1] "ExpressionSet"
attr(,"package")
[1] "Biobase"
```

GEOquery is a little dated and was written before the Summarized-Experiment existed. However, Bioconductor makes a conversion from the old ExpressionSet that GEOquery uses to the Summarized-Experiment that we see so commonly used now.

```
gse = as(gse, "SummarizedExperiment")
gse

class: SummarizedExperiment
dim: 6400 7
metadata(3): experimentData annotation protocolData
assays(1): exprs
rownames(6400): 1 2 ... 6399 6400
rowData names(20): ID ORF ... FAILED IS_CONTAMINATED
colnames(7): GSM887 GSM888 ... GSM892 GSM893
colData names(33): title geo_accession ... supplementary_file
```

Taking a quick look at the colData(), it might be that we want to reorder the columns a bit.

```
colData(gse)$title
```

```
[1] "diauxic shift timecourse: 15.5 hr" "diauxic shift timecourse: 0 hr"
[3] "diauxic shift timecourse: 18.5 hr" "diauxic shift timecourse: 9.5 hr"
[5] "diauxic shift timecourse: 11.5 hr" "diauxic shift timecourse: 13.5 hr"
[7] "diauxic shift timecourse: 20.5 hr"
```

So, we can reorder by hand to get the time course correct:

```
gse = gse[, c(2,4,5,6,1,3,7)]
```

11.6. Preprocessing

In gene expression data analysis, the primary objective is often to identify genes that exhibit significant differences in expression levels across various conditions, such as diseased vs. healthy samples or different time points in a time-course experiment. However, gene expression datasets are typically large, noisy, and contain numerous genes that do not exhibit substantial changes in expression levels. Analyzing all genes in the dataset can be computationally intensive and may introduce noise or false positives in the results.

One common approach to reduce the complexity of the dataset and focus on the most informative genes is to subset the genes based on their standard deviation in expression levels across the samples. The standard deviation is a measure of dispersion or variability in the data, and genes with high standard deviations have more variation in their expression levels across the samples.

By selecting genes with high standard deviations, we focus on genes that show relatively large changes in expression levels across different conditions. These genes are more likely to be biologically relevant and involved in the underlying processes or pathways of interest. In contrast, genes with low standard deviations exhibit little or no change in expression levels and are less likely to be informative for the analysis. It turns out that applying filtering based on criteria such as standard deviation can also increase power and reduce false positives in the analysis (Bourgon, Gentleman, and Huber 2010).

To subset the genes for analysis based on their standard deviation, the following steps can be followed: Calculate the standard deviation of each gene's expression levels across all samples. Set a threshold for the standard deviation, which can be determined based on

11. K-means clustering

domain knowledge, data distribution, or a specific percentile of the standard deviation values (e.g., selecting the top 10% or 25% of genes with the highest standard deviations). Retain only the genes with a standard deviation above the chosen threshold for further analysis.

By subsetting the genes based on their standard deviation, we can reduce the complexity of the dataset, speed up the subsequent analysis, and increase the likelihood of detecting biologically meaningful patterns and relationships in the gene expression data. The threshold for the standard deviation cutoff is rather arbitrary, so it may be beneficial to try a few to check for sensitivity of findings.

```
sds = apply(assays(gse)[[1]], 1, sd)
hist(sds)
```

Histogram of sds

Figure 11.2.: Histogram of standard deviations for all genes in the deRisi dataset.

Examining the plot, we can see that the most highly variable genes have an sd > 0.8 or so (arbitrary). We can, for convenience, create a new SummarizedExperiment that contains only our most highly variable genes.

```
idx = sds>0.8 & !is.na(sds)
gse_sub = gse[idx,]
```

11.7. Clustering

Now, gse_sub contains a subset of our data.

The kmeans function takes a matrix and the number of clusters as arguments.

```
k = 4
km = kmeans(assays(gse_sub)[[1]], 4)
```

The km kmeans result contains a vector, km\$cluster, which gives the cluster associated with each gene. We can plot the genes for each cluster to see how these different genes behave.

Figure 11.3.: Gene expression profiles for the four clusters identified by k-means clustering. Each line represents a gene in the cluster, and each column represents a time point in the experiment. Each cluster shows a distinct trend where the genes in the cluster are potentially coregulated.

Try this with different size k. Perhaps go back to choose more genes (using a smaller cutoff for sd).

11. K-means clustering

11.8. Summary

In this lesson, we have learned how to use k-means clustering to identify groups of genes that behave similarly over time. We have also learned how to subset our data to focus on the most informative genes.

Part V. Bioconductor

The SummarizedExperiment class is used to store rectangular matrices of experimental results, which are commonly produced by sequencing and microarray experiments. Each object stores observations of one or more samples, along with additional meta-data describing both the observations (features) and samples (phenotypes).

A key aspect of the SummarizedExperiment class is the coordination of the meta-data and assays when subsetting. For example, if you want to exclude a given sample you can do for both the meta-data and assay in one operation, which ensures the meta-data and observed data will remain in sync. Improperly accounting for meta and observational data has resulted in a number of incorrect results and retractions so this is a very desirable property.

SummarizedExperiment is in many ways similar to the historical ExpressionSet, the main distinction being that SummarizedExperiment is more flexible in it's row information, allowing both GRanges based as well as those described by arbitrary DataFrames. This makes it ideally suited to a variety of experiments, particularly sequencing based experiments such as RNA-Seq and ChIp-Seq.

```
BiocManager::install('airway')
BiocManager::install('SummarizedExperiment')
```

12.1. Anatomy of a SummarizedExperiment

The *SummarizedExperiment* package contains two classes: SummarizedExperiment and RangedSummarizedExperiment.

SummarizedExperiment is a matrix-like container where rows represent features of interest (e.g. genes, transcripts, exons, etc.) and columns represent samples. The objects contain one or more assays, each represented by a matrix-like object of numeric or other mode. The rows of a SummarizedExperiment object represent features of interest. Information about these features is stored in a DataFrame object, accessible using the function rowData(). Each row of the DataFrame provides information on the feature in the corresponding row of the SummarizedExperiment object. Columns of the DataFrame represent different attributes of the features of interest, e.g., gene or transcript IDs, etc.

RangedSummarizedExperiment is the "child" of the SummarizedExperiment class which means that all the methods on SummarizedExperiment also work on a RangedSummarizedExperiment.

The fundamental difference between the two classes is that the rows of a RangedSummarizedExperiment object represent genomic ranges of interest instead of a DataFrame of features. The RangedSummarizedExperiment ranges are described by a GRanges or a GRangesList object, accessible using the rowRanges() function.

Figure 12.1 displays the class geometry and highlights the vertical (column) and horizontal (row) relationships.

12.1.1. Assays

The airway package contains an example dataset from an RNA-Seq experiment of read counts per gene for airway smooth muscles. These data are stored in a RangedSummarizedExperiment object which contains 8 different experimental and assays 64,102 gene transcripts.

Loading required package: airway

```
library(SummarizedExperiment)
data(airway, package="airway")
se <- airway
se</pre>
```


Figure 12.1.: Summarized Experiment. There are three main components, the colData(), the rowData() and the assays(). The accessors for the various parts of a complete SummarizedExperiment object match the names.

 ${\tt class:} \ {\tt RangedSummarizedExperiment}$

dim: 63677 8
metadata(1): ''
assays(1): counts

rownames(63677): ENSG00000000003 ENSG00000000005 ... ENSG00000273492

ENSG00000273493

rowData names(10): gene_id gene_name ... seq_coord_system symbol colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521 colData names(9): SampleName cell ... Sample BioSample

To retrieve the experiment data from a SummarizedExperiment object one can use the assays() accessor. An object can have multiple assay datasets each of which can be accessed using the \$ operator. The airway dataset contains only one assay (counts). Here each row represents a gene transcript and each column one of the samples.

assays(se)\$counts

SRR103 9R0 810)3 9R0 P910	3 9RR 210	3 9RR 10	3 9RR 10	3 9R1 71()3 9R2 01
ENSG000000000000003448	873	408	1138	1047	770	572
ENSG000000000000000000000000000000000000	0	0	0	0	0	0
ENSG000000000000000000000000000000000000	621	365	587	799	417	508
ENSG00000000457211	263	164	245	331	233	229
ENSG000000000460 55	40	35	78	63	76	60
ENSG00000000938 0	2	0	1	0	0	0
ENSG0000000000973679	6177	4252	6721	11027	5176	7995
ENSG00001040001036062	1733	881	1424	1439	1359	1109
ENSG0000000001084380	595	493	820	714	696	704
ENSG0000000001167236	464	175	658	584	360	269

12.1.2. 'Row' (regions-of-interest) data

The rowRanges() accessor is used to view the range information for a RangedSummarizedExperiment. (Note if this were the parent SummarizedExperiment class we'd use rowData()). The data are stored in a GRangesList object, where each list element corresponds to one gene transcript and the ranges in each GRanges correspond to the exons in the transcript.

rowRanges(se)

```
GRangesList object of length 63677: $ENSG00000000003
```

GRanges object with 17 ranges and 2 metadata columns:

	_							
5	seqname	s rang	ges	stran	1	exon_id	exon_n	ame
	<rle></rle>	<irange< td=""><td>es></td><td><rle></rle></td><td>. </td><td><integer></integer></td><td><charac< td=""><td>ter></td></charac<></td></irange<>	es>	<rle></rle>	.	<integer></integer>	<charac< td=""><td>ter></td></charac<>	ter>
[1]	X	99883667-998	849	83	-	667145	ENSE000014	59322
[2]	X	99885756-998	858	63	-	667146	ENSE000008	68868
[3]	X	99887482-998	875	65	-	667147	ENSE000004	01072
[4]	X	99887538-998	875	65	-	667148	ENSE000018	49132
[5]	X	99888402-998	885	36	-	667149	ENSE000035	54016
[13]	X	99890555-998	907	43	-	667156	ENSE000035	512331
[14]	X	99891188-998	916	86	-	667158	ENSE000018	386883
[15]	X	99891605-998	918	303	-	667159	ENSE000018	355382
[16]	X	99891790-998	921	.01	-	667160	ENSE000018	363395

```
[17] X 99894942-99894988 - | 667161 ENSE00001828996 ------ seqinfo: 722 sequences (1 circular) from an unspecified genome ....
```

12.1.3. 'Column' (sample) data

Sample meta-data describing the samples can be accessed using colData(), and is a DataFrame that can store any number of descriptive columns for each sample row.

```
colData(se)
```

```
DataFrame with 8 rows and 9 columns
       SampleName
                     cel1
                             dex
                                  albut
                                             Run avgLength
        <factor> <factor> <factor> <factor>
                                             <factor> <integer>
SRR1039508 GSM1275862 N61311
                               untrt
                                       untrt SRR1039508
                                                            126
SRR1039509 GSM1275863 N61311
                               trt
                                      untrt SRR1039509
                                                           126
SRR1039512 GSM1275866 N052611
                                untrt untrt SRR1039512
                                                            126
SRR1039513 GSM1275867 N052611
                                trt
                                       untrt SRR1039513
                                                            87
SRR1039516 GSM1275870 N080611
                                untrt
                                       untrt SRR1039516
                                                            120
SRR1039517 GSM1275871 N080611
                                       untrt SRR1039517
                                trt
                                                            126
SRR1039520 GSM1275874 N061011
                                       untrt SRR1039520
                                                            101
                                untrt
SRR1039521 GSM1275875 N061011
                                trt
                                       untrt SRR1039521
                                                            98
                                   BioSample
           Experiment
                         Sample
             <factor>
                       <factor>
                                    <factor>
SRR1039508 SRX384345 SRS508568 SAMN02422669
            SRX384346 SRS508567 SAMN02422675
SRR1039509
SRR1039512 SRX384349 SRS508571 SAMN02422678
SRR1039513 SRX384350 SRS508572 SAMN02422670
SRR1039516 SRX384353 SRS508575 SAMN02422682
SRR1039517 SRX384354 SRS508576 SAMN02422673
SRR1039520 SRX384357 SRS508579 SAMN02422683
```

This sample metadata can be accessed using the \$ accessor which makes it easy to subset the entire object by a given phenotype.

SRR1039521 SRX384358 SRS508580 SAMN02422677

```
# subset for only those samples treated with dexamethasone
se[, se$dex == "trt"]

class: RangedSummarizedExperiment
dim: 63677 4
metadata(1): ''
assays(1): counts
rownames(63677): ENSG00000000000 ENSG0000000000 ... ENSG00000273492
    ENSG00000273493
rowData names(10): gene_id gene_name ... seq_coord_system symbol
colnames(4): SRR1039509 SRR1039513 SRR1039517 SRR1039521
colData names(9): SampleName cell ... Sample BioSample
```

12.1.4. Experiment-wide metadata

Meta-data describing the experimental methods and publication references can be accessed using metadata().

```
metadata(se)

[[1]]
Experiment data
   Experimenter name: Himes BE
   Laboratory: NA
   Contact information:
   Title: RNA-Seq transcriptome profiling identifies CRISPLD2 as a glucocorticoid responsive gene that mo   URL: http://www.ncbi.nlm.nih.gov/pubmed/24926665
   PMIDs: 24926665
```

Abstract: A 226 word abstract is available. Use 'abstract' method.

Note that metadata() is just a simple list, so it is appropriate for *any* experiment wide metadata the user wishes to save, such as storing model formulas.

```
metadata(se)$formula <- counts ~ dex + albut
metadata(se)</pre>
```

```
[[1]]
Experiment data
    Experimenter name: Himes BE
    Laboratory: NA
    Contact information:
    Title: RNA-Seq transcriptome profiling identifies CRISPLD2 as a glucocorticoid responsive gene that mc    URL: http://www.ncbi.nlm.nih.gov/pubmed/24926665
    PMIDs: 24926665

Abstract: A 226 word abstract is available. Use 'abstract' method.

$formula
counts ~ dex + albut
```

12.2. Common operations on

SummarizedExperiment

12.2.1. Subsetting

• [Performs two dimensional subsetting, just like subsetting a matrix or data frame.

subset the first five transcripts and first three samples

```
se[1:5, 1:3]

class: RangedSummarizedExperiment
dim: 5 3
metadata(2): '' formula
assays(1): counts
rownames(5): ENSG000000000003 ENSG00000000005 ENSG000000000419
    ENSG00000000457 ENSG000000000460
rowData names(10): gene_id gene_name ... seq_coord_system symbol
colnames(3): SRR1039508 SRR1039509 SRR1039512
colData names(9): SampleName cell ... Sample BioSample
```

• \$ operates on colData() columns, for easy sample extraction.

```
se[, se$cell == "N61311"]
class: RangedSummarizedExperiment
dim: 63677 2
metadata(2): '' formula
assays(1): counts
rownames(63677): ENSG00000000003 ENSG00000000005 ... ENSG00000273492
  ENSG00000273493
rowData names(10): gene_id gene_name ... seq_coord_system symbol
colnames(2): SRR1039508 SRR1039509
colData names(9): SampleName cell ... Sample BioSample
12.2.2. Getters and setters
   • rowRanges() / (rowData()), colData(), metadata()
counts <- matrix(1:15, 5, 3, dimnames=list(LETTERS[1:5], LETTERS[1:3]))</pre>
dates <- SummarizedExperiment(assays=list(counts=counts),</pre>
                                rowData=DataFrame(month=month.name[1:5], day=1:5))
# Subset all January assays
dates[rowData(dates)$month == "January", ]
class: SummarizedExperiment
dim: 1 3
metadata(0):
assays(1): counts
rownames(1): A
rowData names(2): month day
colnames(3): A B C
colData names(0):
   • assay() versus assays() There are two accessor functions
     for extracting the assay data from a SummarizedExperiment
     object. assays() operates on the entire list of assay data as
     a whole, while assay() operates on only one assay at a time.
     assay(x, i) is simply a convenience function which is equiv-
     alent to assays(x)[[i]].
```

assays(se)

List of length 1
names(1): counts

assays(se)[[1]][1:5, 1:5]

SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516

ENSG00000000003	679	448	873	408	1138
ENSG00000000005	0	0	0	0	0
ENSG00000000419	467	515	621	365	587
ENSG00000000457	260	211	263	164	245
ENSG00000000460	60	55	40	35	78

assay defaults to the first assay if no i is given assay(se)[1:5, 1:5]

SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516

679	448	873	408	1138	
0	0	0	0	0	
467	515	621	365	587	
260	211	263	164	245	
60	55	40	35	78	
	0 467 260	0 0 467 515 260 211	0 0 0 467 515 621 260 211 263	0 0 0 0 467 515 621 365 260 211 263 164	0 0 0 0 0 467 515 621 365 587 260 211 263 164 245

assay(se, 1)[1:5, 1:5]

SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516

ENSG00000000003	679	448	873	408	1138
ENSG00000000005	0	0	0	0	0
ENSG00000000419	467	515	621	365	587
ENSG00000000457	260	211	263	164	245
ENSG00000000460	60	55	40	35	78

12.2.3. Range-based operations

• subsetByOverlaps() SummarizedExperiment objects support all of the findOverlaps() methods and associated functions. This includes subsetByOverlaps(), which makes it easy to subset a SummarizedExperiment object by an interval.

In the next code block, we define a region of interest (or many regions of interest) and then subset our SummarizedExperiment by overlaps with this region.

```
# Subset for only rows which are in the interval 100,000 to 110,000 of
# chromosome 1
roi <- GRanges(seqnames="1", ranges=100000:1100000)</pre>
sub_se = subsetByOverlaps(se, roi)
sub_se
class: RangedSummarizedExperiment
dim: 74 8
metadata(2): '' formula
assays(1): counts
rownames(74): ENSG00000131591 ENSG00000177757 ... ENSG00000272512
 ENSG00000273443
rowData names(10): gene_id gene_name ... seq_coord_system symbol
colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
colData names(9): SampleName cell ... Sample BioSample
dim(sub_se)
[1] 74 8
```

12.3. Constructing a SummarizedExperiment

Often, SummarizedExperiment or RangedSummarizedExperiment objects are returned by functions written by other packages. However it is possible to create them by hand with a call to the SummarizedExperiment() constructor. The code below is simply

to illustrate the mechanics of creating an object from scratch. In practice, you will probably have the pieces of the object from other sources such as Excel files or csv files.

Constructing a RangedSummarizedExperiment with a GRanges as the *rowRanges* argument:

```
nrows <- 200
ncols <- 6
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)</pre>
rowRanges <- GRanges(rep(c("chr1", "chr2"), c(50, 150)),</pre>
                      IRanges(floor(runif(200, 1e5, 1e6)), width=100),
                      strand=sample(c("+", "-"), 200, TRUE),
                      feature_id=sprintf("ID%03d", 1:200))
colData <- DataFrame(Treatment=rep(c("ChIP", "Input"), 3),</pre>
                      row.names=LETTERS[1:6])
SummarizedExperiment(assays=list(counts=counts),
                      rowRanges=rowRanges, colData=colData)
class: RangedSummarizedExperiment
dim: 200 6
metadata(0):
assays(1): counts
rownames: NULL
rowData names(1): feature_id
colnames(6): A B ... E F
colData names(1): Treatment
```

A SummarizedExperiment can be constructed with or without supplying a DataFrame for the *rowData* argument:

```
SummarizedExperiment(assays=list(counts=counts), colData=colData)

class: SummarizedExperiment
dim: 200 6
metadata(0):
assays(1): counts
rownames: NULL
rowData names(0):
```

colnames(6): A B ... E F
colData names(1): Treatment

References

- Bourgon, Richard, Robert Gentleman, and Wolfgang Huber. 2010. "Independent Filtering Increases Detection Power for High-Throughput Experiments." *Proceedings of the National Academy of Sciences* 107 (21): 9546–51. https://doi.org/10.1073/pnas.0914005107.
- Center, Pew Research. 2016. "Lifelong Learning and Technology." *Pew Research Center: Internet, Science & Tech.* https://www.pewresearch.org/internet/2016/03/22/lifelong-learning-and-technology/.
- DeRisi, J. L., V. R. Iyer, and P. O. Brown. 1997. "Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale." *Science (New York, N.Y.)* 278 (5338): 680–86. https://doi.org/10.1126/science.278.5338.680.
- Student. 1908. "The Probable Error of a Mean." *Biometrika* 6 (1): 1–25. https://doi.org/10.2307/2331554.

A. Appendix

A.1. Data Sets

- BRFSS subset
- ALL clinical data
- ALL expression data

A.2. Swirl

The following is from the swirl website.

The swirl R package makes it fun and easy to learn R programming and data science. If you are new to R, have no fear.

To get started, we need to install a new package into R.

```
install.packages('swirl')
```

Once installed, we want to load it into the R workspace so we can use it.

```
library('swirl')
```

Finally, to get going, start swirl and follow the instructions.

```
swirl()
```

B. Additional resources

• Base R Cheat Sheet

Index

RStudio, 5