Contrôle continu 3 : rattrapage du lundi 13 avril 2015

Durée : 20 minutes. La calculatrice Université de Bordeaux est autorisée. Aucun document n'est autorisé.

Exercice 1 (3 points).

- 1. Énoncer le théorème de Heine.
- 2. Soit $f:[a;b] \to \mathbb{R}$. Énoncer le théorème des accroissements finis.

Exercice 2 (5 points). Soit f définie sur $]-1;+\infty[$ par $f(x)=\sqrt{1+x}$.

- 1. Soit x > 0. Montrer que $\frac{1}{2\sqrt{1+x}} \le \frac{\sqrt{1+x}-1}{x} \le \frac{1}{2}$.
- 2. Qu'en déduit-on pour la dérivabilité de f en 0?

Exercice 3 (2 points). Soit f définie et dérivable sur]0;1] par $f(x)=x\cos\left(\frac{1}{x}\right)$. Étudiez la continuité et la dérivabilité de f en 0.

Correction du rattrapage du CC 3.

Exercice 1. 1) Une fonction continue sur un segment [a; b] avec a < b est uniformément continue sur [a; b].

2) Soit f une fonction continue sur [a;b], dérivable sur [a;b]. Alors il existe $c \in]a;b[$ tel que f(b)-f(a)=(b-a)f'(c).

Exercice 2.

1) Soit x > 0, f est dérivable sur $]-1;+\infty[$ donc continue sur [0;x], dérivable sur]0;x[; on déduit du théorème des accroissements finis qu'il existe $c \in]0;x[$ tel que f(x)-f(0)=xf'(c).

Comme
$$\forall x > -1, f'(x) = \frac{1}{2\sqrt{1+x}}$$
, on a donc $\sqrt{1+x} - 1 = x \frac{1}{2\sqrt{1+c}}$. On a

$$0 < c < x \Rightarrow 1 \leq 1 + c \leq 1 + x \Rightarrow 2 \leq 2\sqrt{1+c} \leq 2\sqrt{1+x} \quad \text{ car la fonction racine carr\'e est croissante}$$

$$\Rightarrow \frac{1}{2} \geq \frac{1}{2\sqrt{1+c}} \geq \frac{1}{2\sqrt{1+x}},$$

d'où, pour
$$x > 0$$
,
$$\boxed{\frac{x}{2\sqrt{1+x}} \le \sqrt{1+x} - 1 \le \frac{x}{2}}.$$

2) Par définition, f est dérivable en 0 si son taux d'accroissement $\frac{f(x)-f(0)}{x-0}=\frac{\sqrt{1+x}-1}{\frac{x}{x}}$ admet une limite finie lorsque x tend vers 0. Comme $\lim_{x\to 0}\frac{1}{2\sqrt{1+x}}=\frac{1}{2}$, alors, par encadrement, $\lim_{x\to 0}\frac{\sqrt{1+x}-1}{x}=\frac{1}{2}$. On en déduit que f est dérivable en 0 et que $f'(0)=\frac{1}{2}$.

Exercice 3.

Continuité en 0: soit x > 0, $|f(x)| = |x \cos(\frac{1}{x})| \le |x|$ donc $\lim_{x \to 0} f(x) = 0$, i.e., \underline{f} est continue en 0.

Dérivabilité en 0: soit x > 0, $\frac{f(x) - f(0)}{x - 0} = \cos\left(\frac{1}{x}\right)$. Or $\cos\left(\frac{1}{x}\right)$ n'a pas de limite lorsque x tend vers 0. Donc f n'est pas dérivable en 0.