

FULL - LENGTH 16S OXFORD NANOPORE TECHNOLOGIES

Hoang Kim

Introduction

Figure. Summarises the workflow followed in 16S rRNA metabarcoding oral microbiome studies https://onlinelibrary.wiley.com/doi/full/10.1111/omi.12434

Why implement nanopore sequencing for 16S analysis?

Full-length 16S rRNA sequencing improves taxonomic resolution of microbial communities

Key features	Sanger	Short-read	Oxford Nanopore
Read length	~500 bp	~150 – 300 bp	~1,500 bp
Resolves polymicrobial samples	\otimes	⊘	②
High taxonomic resolution ¹	\otimes	⊗	\odot
Rapid library preparation	\otimes	⊗	\odot
Real-time sequencing	⊗	⊗	\odot

^{1.} Zhang, et al. "The newest Oxford Nanopore R10. 4.1 full-length 16S rRNA sequencing enables the accurate resolution of species-level microbial community profiling." Applied and Environ Microbio 89.10 (2023): e00605-23.

Advanage S

Sample Data

Archives of Microbiology (2024) 206:248 https://doi.org/10.1007/s00203-024-03985-7

ORIGINAL PAPER

A comparison between full-length 16S rRNA Oxford nanopore sequencing and Illumina V3-V4 16S rRNA sequencing in head and neck cancer tissues

Kenny Yeo^{1,2} · James Connell^{1,2} · George Bouras^{1,2} · Eric Smith^{1,3} · William Murphy^{1,2} · John-Charles Hodge^{1,4} · Suren Krishnan^{1,4} · Peter-John Wormald⁵ · Rowan Valentine² · Alkis James Psaltis^{1,2} · Sarah Vreugde^{1,2} · Kevin Aaron Fenix^{1,2}

Received: 13 March 2024 / Accepted: 28 April 2024 / Published online: 7 May 2024 © The Author(s) 2024

Abstract

Describing the microbial community within the tumour has been a key aspect in understanding the pathophysiology of the tumour microenvironment. In head and neck cancer (HNC), most studies on tissue samples have only performed 165 rRNA short-read sequencing (SRS) on V3-V5 region. SRS is mostly limited to genus level identification. In this study, we compared full-length 165 rRNA long-read sequencing (FL-ONT) from Oxford Nanopore Technology (ONT) to V3-V4 Illumina SRS (V3V4-Illumina) in 26 HNC tumour tissues. Further validation was also performed using culture-based methods in 16 bacterial isolates obtained from 4 patients using MALDI-TOF MS. We observed similar alpha diversity indexes between FL-ONT and V3V4-Illumina. However, beta-diversity was significantly different between techniques (PERMANOVA - R²=0.131, p<0.0001). At higher taxonomic levels (Phylum to Family), all metrics were more similar among sequencing techniques, while lower taxonomy displayed more discrepancies. At higher taxonomic levels, correlation in relative abundance from FL-ONT and V3V4-Illumina were higher, while this correlation decreased at lower levels. Finally, FL-ONT was able to identify more isolates at the species level that were identified using MALDI-TOF MS (75% vs. 18.8%). FL-ONT was able to identify lower taxonomic levels at a better resolution as compared to V3V4-Illumina 16S rRNA sequencing.

Keywords Microbiome · 16S ribosomal RNA · Long read sequencing · Head and neck cancer

Fig. Paired alpha diversity analysis of FL-ONT and V3V4-Illumina at the genus level

Fig. Paired beta diversity analysis of paired FL-ONT and V3V4-Illumina 16S rRNA sequencing on tissue samples at the genus level.

Correlation between FL-ONT and V3V4-Illumina

Fig. Correlation in bacterial relative abundance (%) at every taxonomic level between FL-ONT and V3V4-Illumina 16S rRNA sequencing.

Results: At higher taxonomic levels (phylum, class, order, family), the correlation in abundance ratios is high (R > 0.7). However, the correlation significantly decreases at the species level (R = 0.187).

The two sequencing methods, FL-ONT and V3V4-Illumina, detected bacterial genera with different abundances, with some genera showing significant differences (>10%) in richness between the two techniques.

Fig. Comparison of abundance between FL-ONT and V3V4-Illumina 16S rRNA sequencing at the Genus level.

Fig. Comparison of abundance between FL-ONT and V3V4-Illumina 16S rRNA sequencing at the species level. After agglomerating to species level, a total of 167 species were identified.

Summary

	FL-ONT (Oxford Nanopore Technologies)	V3V4 Illumina (Short Read Sequencing)
Application	 There is a need to identify bacteria at the species level, especially when dealing with many similar or hard-to-differentiate species. Researching diverse and complex microbial communities. High accuracy is required for bacterial species identification. Analyzing samples with low or rare abundance. 	 Research requires high accuracy but does not need species-level identification. Rapid and cost-effective analysis of a large number of samples is needed. Studying microbial communities at higher taxonomic levels (phylum, class, order).
Advantages	Whole Genome SequencingHigh Detection Capability	Lower CostHigh Accuracy at Higher LevelsLarge Data Output
Disadvantages	Higher Cost Uneven Read Quality	 Limitations in Classification Inability to Detect Unique Species

3

EPI2ME: pipeline wf-16S

pipeline wf-16S

Read Summary

Sample Summary

Lineages

Sunburst

Taxonomy

Top Species Abundance for Samples 1, 2, 3, and 4

Species Richness Curves

Tools

Name	Version	Link
fastcat	0.18.6	https://github.com/epi2me-la bs/fastcat
minimap2	2.28-r1209	https://github.com/lh3/minima p2
Kraken2	2.1.2	https://github.com/DerrickWo od/kraken2/archive/refs/tags/ v2.1.2.tar.gz
Bracken	2.9	https://github.com/jenniferlu7 17/Bracken/archive/refs/tags/ v2.9.tar.gz
Taxonkit	0.17.0	https://github.com/shenwei35 6/taxonkit/releases/tag/v0.17. 0

