

الامتحان الوطني الموحد للبكالوريا الدورة العادية 2010

الموضوع

7	المعامل:	NS22	الرياضيات	المـــادة:
3	مدة الإنجاز:	هيات بمسلكيها	شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولو.	الشعب(ة) أو المسلك :

معلومات عامة

- يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؟
 - مدة إنجاز موضوع الامتحان : 3 ساعات ؛
- عدد الصفحات : 3 صفحات (الصفحة الأولى تتضمن معلومات والصفحتان المتقيتان تتضمنان تمارين الامتحان)؟
 - يمكن للمترشح إنجاز تمارين الامتحان في الترتيب الذي يناسبه ؛
 - ينبغى تفادي استعمال اللون الأهمر عند تحرير الأجوبة ؛
 - بالرغم من تكوار بعض الرموز في أكثر من تمرين فكل رمز مرتبط بالتمرين المستعمل فيه ولا علاقة له بالتمارين السابقة أو اللاحقة .

معلومات خاصة

يتكون الموضوع من شحسة تمارين مستقلة فيما بينها و تتوزع حسب المجالات كما يلي :

النقطة الممنوحة	المجال	التمرين
3 نقط	الهندسة الفضائية	التمرين الأول
3 نقط	الأعداد العقدية	التمرين الثابي
3 نقط	حساب الاحتمالات	التمرين الثالث
3 نقط	المتتاليات العددية	التمرين الرابع
8 نقط	دراسة دالة وحساب التكامل	التمرين الخامس

بالنسبة للتمرين الرابع (السؤال الثالث) ، In يرمز لدالة اللوغاريتم النبيري .

الموضوع

التمرين الأولى (3 ن)

B(3,0,0) و A(-1,0,3) النقط ($O,\vec{i},\vec{j},\vec{k}$) و منظم مباشر معامد معامد منظم مباشر وي الفضاء المنسوب إلى معامد عباس المعامد المعامد عباس المعامد ع $x^2 + y^2 + z^2 - 6x - 2y - 15 = 0$: التي معادلتها (S) والفلكة (S) والفلكة (C(7,1,-3)

. (ABC) بين أن $\overrightarrow{AB} \wedge \overrightarrow{AC} = 3\overrightarrow{i} + 4\overrightarrow{k}$ واستنتج أن $\overrightarrow{AB} = 0$ هي معادلة ديكارتية للمستوى (1

5 بين أن مركز الفلكة (S) هي النقطة $\Omega(3,1,0)$ وأن شعاعها هو (S)

(ABC) المستقيم المار من النقطة Ω والعمودي على المستوى (Δ

$$(\Delta)$$
 هو تمثیل بار امتر ي للمستقیم $\begin{cases} x=3+3t \\ y=1 \end{cases}$ $(t\in I\!\!R)$: أ

F(0,1,-4) و E(6,1,4) في النقطتين E(6,1,4) و E(0,1,-4) و

التمرين الثانس (3 ن)

. $z^2 - 6z + 10 = 0$: المعادلة (C المعادلة (الأعداد العقدية)

2) نعتبر في المستوى المنسوب إلى معلم متعامد ممنظم مباشر $O,\overline{e_1},\overline{e_2}$ ، النقط A و B و C التي الحاقها على

. c = 7 - 3i و b = 3 + i و a = 3 - i التوالي هي:

. $\frac{\pi}{2}$ ليكن z لحق نقطة M من المستوى z لحق النقطة M صورة M بالدوران R الذي مركزه A وزاويته z. z' = iz + 2 - 4i : بين أن

c'=5+3i هو R بالدوران C هو C'=5+3i هو C'=5+3i

BC = 2BC' ثم استنتج أن المثلث BCC' قائم الزاوية في B و أن $\frac{c'-b}{c-b} = \frac{1}{2}i$: بين أن BC = 2BC'

التمرين الثالث (3 ن)

يحتوي صندوق على خمس كرات بيضاء وثلاث كرات حمراء وكرتين سوداوين (لا يمكن التمييز بين الكرات باللمس). نسحب عشوائيا وفي أن واحد أربع كرات من الصندوق .

نعتبر الحدثين التاليين :

" الحصول على كرة حمراء واحدة فقط " و B : " الحصول على كرة بيضاء على الأقل A

$$P(B) = \frac{41}{42}$$
 و $P(A) = \frac{1}{2}$

2) نعتبر المتغير العشوائي X الذي يربط كل سحبة بعدد الكرات الحمراء المسحوبة . أ - تحقق من أن القيم التي يأخذها المتغير العشوائي X هي 0 و 1 و 2 و 3 .

.
$$P(X=0) = \frac{1}{6}$$
 و $P(X=2) = \frac{3}{10}$ ب - بین آن

◄ - حدد قائم ن احتمال المنف العثم العثم الـ

	NI I
تحان الوطني الموحد للبكالوريا -الدورة العادية 2010 – الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها	1
التمريين للرابع (3 ن)	
. p نعتبر المتتالية العددية u_n المعرفة بما يلي : $u_n=2$ و $u_n=2$ و $u_n=1$ لكل u_n من u_n	1
$u_{n+1} = \frac{u_n}{2u_n}$. $u_n = \frac{u_n}{2u_n}$. $u_n = \frac{u_n}{2u_n}$. $u_n = 1 > 0$: (1) بين بالترجع أن $u_n = 1 > 0$ لكل $u_n = 1 > 0$	0.75
. IV نعتبر المتتالية العددية (v_n) المعرفة بما يلي : $u_n = \frac{u_n-1}{2u_n-1}$: (2)	
. IN متتالیة هندسیة أساسها $\frac{1}{2}$ واستنتج أن $v_n = \frac{1}{3} \left(\frac{1}{2}\right)^n$ لکل $v_n = \frac{1}{3} \left(\frac{1}{2}\right)^n$ د المن $v_n = \frac{1}{3} \left(\frac{1}{2}\right)^n$	1
. $\lim_{n\to+\infty}u_n=1$ ثم اصتنتج آن $u_n=\frac{v_n-1}{2v_n-1}$ ب - بین آن $u_n=\frac{v_n-1}{2v_n-1}$	0.75
. IN من $w_n = \ln(u_n)$: احسب $w_n = \ln(u_n)$ المنتالية العددية المعرفة بما يلي $w_n = \ln(u_n)$ لكل المنتالية العددية المعرفة المعرفة المعرفة بما يلي	0.5
التمريين الخامس (8 ن)	
$g(x) = 1 + 4xe^{2x}$ بما بلي: R بما بلي: R بما بلي: R بما بلي: R	
. $g(x) = 4(2x+1)e^{2x}$: بين أن $g'(x) = 4(2x+1)e^{2x}$ كل من	0.5
$-\infty, -\frac{1}{2}$ بين أن الدالة g تزايدية على المجال -1 $+\infty$ وتناقصية على المجال g تزايدية على المجال .	0.5
$g\left(-\frac{1}{2}\right)>0$ ثم تحقق من أن $g\left(-\frac{1}{2}\right)=1-\frac{2}{e}$ ن ان $g\left(-\frac{1}{2}\right)=1$	0.5
R ب - استنتج آن $g(x) > 0$ لكل $g(x) > 0$.	0.25
. $f(x) = (2x-1)e^{2x} + x + 1$: بما يلي IR بما يلي و IR بما يلي (II	
. $\ \vec{i}\ = \ \vec{j}\ = 2cm$ (O, \vec{i}, \vec{j}) وليكن (C) المنحنى الممثل للدالة f في معلم متعامد ممنظم (C) المنحنى	
. ($\lim ue'' = 0$: نذکر آن $\lim_{x \to +\infty} f(x) = -\infty$) انسب (1	1
R بين أن $g(x)=g(x)$ لكل x من R ثم استنتج أن الدالمة f تزايدية قطعا على $f'(x)=g(x)$.	0.75
. احسب $\frac{f(x)}{x}$ واستنتج أن (C) يقبل فرعا شلجميا في اتجاه محور الأراتيب $\lim_{x\to +\infty} \frac{f(x)}{x}$	0.75
$-\infty$ با جوار (C) واستنتج أن المستقيم (Δ) الذي معادلته $y=x+1$ مقارب للمنحنى (C) بجوار	0.5
 حدد زوج إحداثيتي نقطة تقاطع المستقيم (△) والمنحني (Ć) ثم بين أن المنحني (Ć) يوجد تحت المستقيم 	0.5
$-\infty, \frac{1}{2}, +\infty$ و فوق المستقيم (Δ) على المجال $-\infty, \frac{1}{2}$.	
. O في النقطة $y=x$ أ - بين أن $y=x$ هي معادلة للمستقيم (T) مماس المنحنى (C) في النقطة	0.25
. (تحدید ارتوب نقطة الاعطاف افصولها $-\frac{1}{2}$ (تحدید ارتوب نقطة الاعطاف غیر مطلوب) $-$	0.25
\cdot ($O, ec{i}, ec{j}$) في المعلم (C) في المعلم (T) و (Δ) في المعلم (T) أنشئ المستقيمين (Δ) و (Δ)	0.75
. $\int_{0}^{\frac{1}{2}} (2x-1)e^{2x} dx = 1 - \frac{e}{2}$: باستعمال مكاملة بالأجزاء بين أن : 6	1
C و المستقيم C المماس للمنحنى C المنحنى C المستقيم C المماس للمنحنى C	0.5
. $(6-2e)$ و المستقيمين اللذين معادلتاهما $x=1$ و $x=1$ هي $x=0$.	