Analisi 3

Appunti di Analisi 3 del corso di Giovanni Alberti e Maria Stella Gelli

Arianna Carelli e Antonio De Lucreziis

I Semestre 2021/2021

Indice

1	Teo	Teoria della misura 2		
	1.1	Misure astratte	2	
	1.2	Esempi di misure	3	
	1.3	Funzioni misurabili	4	
		1.3.1 Funzioni semplici	4	
	1.4	Integrale	4	
	1.5	Teoremi di convergenza	6	
2	Spa	zi L^p e convoluzione	8	
3	Spazi di Hilbert		9	
4	Serie di Fourier			
5	Applicazioni della serie di Fourier		11	
6	Tras	sformata di Fourier	12	
7	Fun	zioni armoniche	13	
8	Inte	egrazione di superfici	14	

Teoria della misura

MISURE ASTRATTE

Siano

X un insieme qualunque.

 \mathcal{A} una σ -algebra di sottoinsiemi di X, ovvero una famiglia di sottoinsiemi di X che rispetta le seguenti proprietà:

- $-\emptyset, X \in \mathcal{A}.$
- $-\mathcal{A}$ è chiusa per complementare, unione e intersezione numerabile.

 μ una misura su X, ossia una funzione $\mu: A \to [0, +\infty]$ σ -addittiva, cioè tale che data una famiglia numerabile $\{E_k\} \subset A$ disgiunta e posto $E := \bigcup E_n$, allora

$$\mu(E) = \sum_{n} \mu(E_n).$$

Seguono le proprietà.

- (i) $\mu(\emptyset) = 0$.
- (ii) Monotonia. Dati $E, E' \in \mathcal{A} \in E \subset E'$, allora $\mu(E) \leq \mu(E')$.
- (iii) Data una successione crescente di insiemi, $E_n \uparrow E$, allora $\mu(E) = \lim_{n \to \infty} \mu(E_n) = \sup_n \mu(E_n)$.
- (iv) Se $E_n \uparrow E$ e $\mu(E_{\bar{n}}) < +\infty$ per qualche \bar{n} , allora $\mu(E) = \lim_{n \to +\infty} \mu(E_n) = \inf_n \mu(E_n)$.
- (v) Subadditività. Se $\bigcup E_n \supset E$, allora $\mu(E) \leq \sum_n \mu(E_n)$.

Dove una successione crescente di insiemi $E_n \uparrow E$ è tale che $E_1 \subset E_2 \subset \dots E_n \subset \dots$ e $\bigcup E_n = E$. Notiamo infine che dato $X' \in \mathcal{A}$ si possono restringere \mathcal{A} e μ a X'.

Terminologia.

Sia P(X) un'affermazione che dipende da $x \in X$. Si dice che P(X) vale μ -quasi ogni $x \in X$ se l'insieme $\{x \colon P(x) \text{ non vale}\}$ è (contenuto in) un insieme di misura μ nulla.

 μ si dice completa se $F \subset E, E \in \mathcal{A}$ e $\mu(E) = 0$, allora $F \in \mathcal{A}$ (e di conseguenza $\mu(F) = 0$).

 μ si dice finita se $\mu(X) < +\infty$.

D'ora in poi consideriamo solo misure complete.

Esempi di misure

Misura che conta i punti. Siano

X qualunque.

$$\mathcal{A} := \mathcal{P}(X).$$

$$\mu(E) := \#E \in \mathbb{N} \cup \{+\infty\}.$$

 $Delta di Dirac in x_0$. Siano

X qualunque

$$\mathcal{A} := \mathcal{P}(X)$$
.

$$x_0 \in X$$
 fissato, allora $\mu(E) := \delta_{x_0}(E) = \mathbb{1}_E(x_0)$.

2. Misura di Lebesgue Siano

$$X = \mathbb{R}^n$$
.

 \mathcal{M}^n la σ -algebra dei misurabili secondo Lebesgue.

 \mathcal{L}^n la misura di Lebesgue.

Di seguito definiamo la misura di Lebesgue \mathcal{L}^n .

Dato R parallelepipedo in \mathbb{R}^n , cioè $R = \prod_{k=1}^n I_k$ con I_k intervalli in \mathbb{R} . Si pone

$$\operatorname{vol}_n(R) \coloneqq \prod_{k=1}^n \operatorname{lungh}(I_k)$$

per ogni $E \subset \mathbb{R}^n$. Si pone

$$\mathcal{L}^n(E) := \inf \left\{ \sum_i \operatorname{vol}_n(R_i) \mid \{R_i\} \text{ tale che } \cup_i R_i \supset E \right\}.$$

Osservazione 1. Si hanno le seguenti.

- $-\mathcal{L}^n(R) = \operatorname{vol}_n(R).$
- \mathcal{L}^n è così definita se $\mathcal{P}(\mathbb{R}^n)$ ma non è σ -addittiva.
- $-\mathcal{L}^n$ è σ -addittiva su \mathcal{M}^n (è per questo che bisogna introdurre \mathcal{M}^n).

Il terzo punto giustifica l'introduzione dei misurabili secondo Lebesque. Dunque definiamo \mathcal{M}^n .

Dato $E \subset \mathbb{R}^n$, si dice che E è misurabile (secondo Lebesgue) se per ogni $\varepsilon > 0$ esiste un aperto A e un chiuso C tale che

- $-C \subset E \subset A$,
- $\mathcal{L}^n(A \setminus C) \le \varepsilon.$

Osservazione 2. Si hanno le seguenti.

- Per ogni ${\cal E}$ misurabile vale

$$\mathcal{L}^n = \inf \{ \mathcal{L}^n : A \text{ aperto}, A \supset E \} = \sup \{ \mathcal{L}^n : K \text{ compatto}, K \subset E \}.$$

– Notiamo che se $F \subset E$ con $E \subset \mathcal{M}^n$ e $\mathcal{L}^n(E) = 0$, allora $F \in \mathcal{M}^n$. Ovvero la misura di Lebesgue è completa!

Notazione. $|E| := \mathcal{L}^n(E)$.

Definizione 1.1. Dati X, \mathcal{A}, μ e $f: X \to \mathbb{R}$ (o in Y spazio topologico), diciamo che f è misurabile (\mathcal{A} -misurabile), se

$$f^{-1}(A) \in \mathcal{A}$$
 per ogni A aperto.

Osservazione 3. Si hanno le seguenti.

- Dato $E \subset X$, vale $E \in \mathcal{A}$ se solo se $\mathbb{1}_E$ è misurabile.
- La classe delle funzioni misurabili è chiusa rispetto a moolte operazioni:
 - * somma, prodotto (se hanno senso nello spazio immagine della funzione).
 - * Composizione con funzioni continue. In particolare, se $f: X \to Y$ continua e $g: Y \to Y'$ continua, allora $g \circ f$ è misurabile.
 - * Convergenza puntuale: data una successione di f_n misurabili e $f_n \to f$ puntualmente, allora f è misurabile.
 - * \limsup (nel caso $Y = \mathbb{R}$).

1.3.1 Funzioni semplici

Indico con S la classe delle funzioni $f: X \to \mathbb{R}$ semplici, cioè della forma $f = \sum_{i=1}^{n} \alpha_{i} \mathbb{1}_{E_{i}}$ con $\{E_{i}\}_{1 \leq i \leq n}$ misurabili e $\alpha_{i} \in \mathbb{R}$.

Nota. Se necessario posso supporre gli E_i disgiunti.

INTEGRALE

La definizione di $\int_X f \ \mathrm{d}\mu$ è data per passi:

1. $f \in \mathcal{S}, f \geq 0$, cioè $f = \sum_{i} \alpha_{i} \mathbb{1}_{E_{i}}, \alpha_{i} \geq 0$, si pone

$$\int_X f \, \mathrm{d}\mu \coloneqq \sum_i \alpha_i \, \mu(E_i),$$

convenendo che $+\infty \cdot 0 = 0$.

2. $f: X \to [0, +\infty]$ misurabile si pone

$$\int_X f \, d\mu \coloneqq \sup_{\substack{g \in \mathcal{S} \\ 0 \le g \le f}} \int_X g \, d\mu.$$

3. $f: X \to \overline{\mathbb{R}}$ misurabile si dice *integrabile* se

$$\int\limits_X f^+ \, \mathrm{d}\mu < +\infty \quad \text{oppure} \quad \int\limits_X f^- \, \mathrm{d}\mu < +\infty.$$

Per tali f si pone

$$\int_X f \, d\mu := \int_X f^+ \, d\mu - \int_X f^- \, d\mu.$$

4. $f: X \to \mathbb{R}^n$ si dice sommabile (o di classe \mathcal{L}^1) se $\int_X |f| d\mu < +\infty$. In tal caso, se $\int_X f_i^{\pm} d\mu < +\infty$ per ogni f_i componente di f, allora $\int_X f d\mu$ esiste ed è finito.

4

Per tali f si pone

$$\int_{Y} f \, d\mu := \left(\int_{X} f_{1} \, d\mu, \dots, \int_{X} f_{n} \, d\mu \right).$$

Notazione. Scriveremo spesso $\int_E f(x) dx$ invece di $\int_E f d\mathcal{L}^n$.

Osservazione 4. Si hanno le seguenti.

- L'integrale è lineare (sulle funzioni sommabili).
- Le definizioni in 1 E 2 Danno lo stesso risultato per f semplice ≥ 0 .
- La definizione in 2 Ha senso per ogni $f\colon X\to [0,+\infty]$ anche non misurabile. Ma in generale vale solo che

$$\int\limits_X f_1 + f_2 \, \mathrm{d}\mu \ge \int_X f_1 \, \mathrm{d}\mu + \int_X f_2 \, \mathrm{d}\mu.$$

– Dato $E \in \mathcal{A}$, f misurabile su E, notiamo che vale l'uguaglianza

$$\int_E f \, \mathrm{d}\mu \coloneqq \int_X f \cdot \mathbb{1}_E \, \mathrm{d}\mu.$$

- Si può definire $\int_X f \, d\mu$ anche per $f \colon X \to Y$ con Y spazio vettoriale normato finito dimensionale e f sommabile. (è necessario avere uno spazio vettoriale, perchè mi serve la linearità e la moltiplicazione per scalare).
- Se $f_1 = f_2 \mu$ -q.o. allora $\int_X f_1 d\mu = \int_X f_2 d\mu$.
- Si definisce $\int_X f \ \mathrm{d}\mu$ anche se f è misurabile e definita su $X \setminus N$ con $\mu(N) = 0$.
- se $f:[a,b] \to \mathbb{R}$ è integrabile secondo Rienmann allora è misurabile secondo Lebesgue e le due nozioni di integrale coincidono. *Nota*. Lo stesso vale per integrali impropri di funzioni positive. Ma nel caso più generale non vale: se $f:(0,+\infty) \to \mathbb{R}$ è data da $f(x) := \frac{\sin x}{x}$, allora l'integrale di f definito su $(0,+\infty)$ esiste come integrale improprio ma non secondo Lebesgue $\left(\int_0^{+\infty} f^+ dx = \int_0^{+\infty} f^- dx = +\infty\right)$.
- $-\int_X f \, \mathrm{d}\delta_{x_0} = f(x_0).$
- se $X=\mathbb{N}$ e μ è la misura che conta i punti l'integrale è

$$\int_X f \, \mathrm{d}\mu = \sum_{n=0}^\infty f(n)$$

per le f positive o tali che $\sum f^+(n) < +\infty$ oppure $\sum f^+(n) < -\infty$.

Nota. $\sum_{1}^{\infty} \frac{(-1)^n}{n}$ esiste come serie ma non come integrale. Da questo si osserva che serie e integrale non coincidono.

– Dato X qualunque, μ misura che conta i punti e $f: X \to [0, +\infty]$ posso definire la somma di tutti i valori di f

$$\sum_{x \in X} f(x) \coloneqq \int_X f \, d\mu.$$

5

Prendo X, \mathcal{A}, μ come al solito.

Teorema 1.1 (Convergenza Monotona (Beppo Levi)). Date $f_n: X \to [0, +\infty]$ misurabili, tali che $f_n \uparrow f$ ovunque in X, allora

$$\lim_{n \to +\infty} \int_X f_n \, d\mu = \int_X f \, d\mu,$$

dove

$$\lim_{n \to +\infty} \int_X f_n \, d\mu = \sup_n \int f_n \, d\mu.$$

Teorema 1.2 (Lemma di Fatou). Date $f_n: X \to [0, +\infty]$ misurabili, allora

$$\liminf_{n \to +\infty} \int_{X} f \, d\mu \ge \int_{X} \left(\liminf_{n \to +\infty} f_n \right) \, d\mu.$$

Teorema 1.3. Date $f_n: X \to \mathbb{R}$ (o anche \mathbb{R}^n) tali che

convergenza puntuale. $f_n(x) \to f(x)$ per ogni $x \in X$.

dominazione. Esiste $g: X \to [0, +\infty]$ sommabile tale che $|f_n(x)| \le g(x)$ per ogni $x \in X$ e per ogni $n \in \mathbb{N}$.

Allora

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu.$$

Nota. la seconda proprietà è essenziale. sostituirla con $\int_X |f_n| d\mu \le C < +\infty$ non basta! Altro esempio di misura. Data $\rho \colon \mathbb{R}^n \to [0, +\infty]$ misurabile, la misura con densità ρ è data da

$$\mu(E) = \int_{E} \rho \, dx$$
 per ogni E misurabile.

Osservazione 5. Si hanno le seguenti.

 \mathbb{R}^n e \mathcal{L}^n possono essere sostituiti da X e $\widetilde{\mu}$.

il fatto che μ è una misura segue da Beppo Levi, in particolare serve per mostrare la subadditività.

Teorema 1.4 (Cambio di variabile). Siano Ω, Ω' aperti di \mathbb{R}^n , $\phi \colon \Omega \to \Omega'$ un diffeomorfismo di classe C^1 e $f \colon \Omega' \to [0, +\infty]$ misurabile. Allora

$$\int_{\Omega'} f(x') \, dx' = \int_{\Omega} f(\phi(x)) \left| \det(\nabla \phi(x)) \right| \, dx.$$

La stessa formula vale per f a valori in $\overline{\mathbb{R}}$ integrabile e per f a valori in \mathbb{R}^n sommabile.

Osservazione 6. Si hanno le seguenti.

– Se n = 1, $|\det(\nabla \phi(x))| = |\phi'(x)|$ e non $\phi'(x)$ come nella formula vista ad analisi 1 (l'informazione del segno viene data dall'inversione degli estremi).

– Indebolire le ipotesi su ϕ è delicato. Basta ϕ di classe C^1 e $\#\phi^{-1}(x')=1$ per quasi ogni $x' \in \Omega'$ (supponendo ϕ iniettiva la proprietà precedente segue immediatamente). Se ϕ non è "quasi" iniettiva bisogna correggere la formula per tenere conto della molteplicità.

Di seguito riportiamo il teorema di Fubini-Tonelli per la misura di Lebesgue.

Teorema 1.5 (Fubini-Tonelli). Sia $R^{n_1} \times \mathbb{R}^{n_2} \simeq \mathbb{R}^n$ con $n = n_1 + n_2$, $E := E_1 \times E_2$ dove E_1, E_2 sono misurabili e f è una funzione misurabile definita su E. Se f ha valori in $[0, +\infty]$ allora

$$\int_X f \, d\mu = \int_{E_2} \left(\int_{E_1} f(x_1, x_2) \, dx_1 \right) \, dx_2 = \int_{E_1} \left(\int_{E_2} f(x_1, x_2) \, dx_2 \right) \, dx_1.$$

Vale lo stesso per f a valori in \mathbb{R} o in \mathbb{R}^n sommabile.

Osservazione 7. Si hanno le seguenti.

– Se X_1, X_2 sono spazi con misure μ_1, μ_2 (con opportune ipotesi) vale:

$$\int_{E_2} \left(\int_{E_1} f(x_1, x_2) \, d\mu_1(x_1) \right) d\mu_2(x_2) = \int_{E_1} \left(\int_{E_2} f(x_1, x_2) \, d\mu_2(x_2) \right) d\mu_1(x_1).$$

se
$$f \ge 0$$
 oppure $\int_{X_1} \left(\int_{x_2} |f| d\mu_2(x_2) \right) d\mu_1(x_1) < +\infty.$

– Se $X_1 \subset \mathbb{R}$ (oppure $X_1 \subset \mathbb{R}^n$), $\mu_1 = \mathcal{L}^n$ e $X_2 = \mathbb{N}$, μ_2 è la misura che conta i punti, allora la formula sopra diventa

$$\sum_{n=0}^{\infty} \left(\int_{X_1} f_n(x) \, dx \right) = \int_{X_1} \left(\sum_{n=0}^{\infty} f_n(x) \right) \, dx.$$

Se
$$f_i \ge 0$$
 oppure $\sum_i \left(\int_{Y_i} |f_i(x)| dx \right) < +\infty$.

– se $X_1 = X_2 = \mathbb{N}$ e $\mu_1 = \mu_2$ è la misura che conta i punti la formula sopra diventa

$$\sum_{j=0}^{\infty} \left(\sum_{i=0}^{\infty} a_{i,j} \right) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{\infty} a_{i,j} \right)$$

se $a_{i,j} \geq 0$ oppure $\sum_{i} \sum_{j} |a_{i,j}| < +\infty$.

Spazi L^p e convoluzione

Spazi di Hilbert

Serie di Fourier

Applicazioni della serie di Fourier

Trasformata di Fourier

Funzioni armoniche

Integrazione di superfici

prova test prova