Reliability Analysis

Implementation of a novel combinatorial algorithm in conditional and redundancy systems using advanced computational techniques

Jesus Olivera, Data Analytics & Visualization Student at Yeshiva University / Data Engineer at IBM

In collaboration with A.O. Olivera, Mechanical & Electrical Engineering Student at University of Puerto Rico – Mayaguez Campus

Introduction

Problem Statement

National Laboratories

Adrian Olivera Olivera

Education:

- **Double BS** (*In Progress*): Mechanical and Electrical Engineering
- Cybersecurity Certification (2019):

Novel Closed Form Solutions for Hard Reliability Problems!

- Based on a novel combinatorial math method.
 - ✓ "the right rotation method"

Experience:

Sandia National Laboratory (2018, 2019, 2021), Army Research Laboratory, NASA, Lilly Del Caribe, Pratt & Whitney

Objective

Previous Research & Current Knowledge

- 1. Overview of the conditional algorithm developed by A.O. Olivera
- 2. Algorithm optimization and enhancement of computational resources to solved the use case, by Jesus Olivera.

Importance & Broader Impact

Optimization Techniques

Challenges & Resolutions

Data Alignment

```
bnueva = bnueva.append(pd.DataFrame(a), ignore_index=True).replace(0, np.nan).dropna(how='all', axis=0)
```

Profiling and Parallelism

```
bnueva_A = bnueva.iloc[0:173040,:].copy().reset_index(drop=True)
```



```
bnueva_A1 = bnueva.iloc[0:1000,:].copy().reset_index(drop=True)
```

```
bnueva1 = bnueva.iloc[0:5424301,:].copy().reset_index(drop=True)
bnueva2 = bnueva.iloc[5424301:10848602,:].copy().reset_index(drop=True)
```

Algorithm Data Flow Diagram

Optimization Techniques

High Peak Performance

Minimum Resources Requirements (peak)

vCPU: 9

MEM(GiB): 5.1

NetworkOut (Bytes): 110,444,655

NetworkIn (Bytes): 5,706,704

Future Steps

- Leverage functions and input parametrization
- Explore automation by building ETL integration
- Design a deployment space
- Built deployment space
- Expose deployment space
- Explore big data processing libraries like PySpark, Vaex, Dask, Rapids, Koalas, etc.

Thanks!

Jesus Olivera
olivera@mail.yu.edu
646-575-6544