On page 6, lines 27-30, please substitute the following clean replacement paragraph:

--Figures 2C and 2D are schematic cross sectional views of the interconnect contact of Figure 2B electrically engaging a bumped contact on a component;--

On page 15, line 26, to page 16, line 4, please substitute the following clean replacement paragraph:

--Next, as shown in Figure 5B, for etching the blades 28A, a mask 56A, such as a hard mask, or a resist mask, is formed on the metal layer 54A. The blades 28A can be etched using a suitable wet etchant and a wet etch process. Alternately, a dry etch process such as plasma etching, ion milling or reactive ion etching can be employed. As another alternative, the blades 28A can be formed by depositing a rough metal layer using an electrolytic plating process. Such a process is described in U.S. Patent No. 5,487,999, which is incorporated herein by reference. A representative height of the blades 28A can be from 5000Å to 50μm or more. Following formation of the blades 28A, the mask 56A is stripped.--

On page 18, line 33, to page 19, line 3, please substitute the following clean replacement paragraph:

--Referring to Figures 7A-7I, steps in a method for fabricating the interconnect 10 (Figure 1) with the second embodiment contact 14B are illustrated. Initially the substrate 12B, insulating layer 24B and metal layer 54B are formed substantially as previously described for Figure 5A.--

On page 19, lines 15-31, please substitute the following clean replacement paragraphs:

--Next, as shown in Figure 7D, an opening 64B is formed through the connecting segment 40B and through the substrate 12B. One method for forming the opening 64B is with a laser machining process. A suitable laser machining apparatus for

My

forming the opening 64B is manufactured by General Scanning of Sommerville, MA and is designated a Model No. 670-W. Another suitable laser machining apparatus is manufactured by Synova S.A., Lausanne, Switzerland.

Brigh

A representative diameter of the opening 64B can be from 10µm to 2 mils or greater. A representative fluence of a laser beam for forming the opening 64B with the substrate 12B comprising silicon and having a thickness of about 28 mils, is from 2 to 10 watts/per opening at a pulse duration of 20-25 ns and at a repetition rate of up to several thousand per second. The wavelength of the laser beam can be a standard infrared or green wavelength (e.g., 1064 nm-532 nm), or any wavelength that will interact with and heat silicon.—

On page 20, line 32, to page 21, line 14, please substitute the following clean replacement paragraphs:

--At the same time the conductive material 66A is deposited in the opening 64B, the contact pad 38B can be formed on the substrate 12B. A suitable mask (not shown) can be used during deposition of the conductive material 66A to form the contact pad 38B with a desired thickness and peripheral shape. Alternately, the contact pad 38B can comprise a different material than the conductive material 66A formed using a separate deposition or metallization process. For example, the contact pad 38B can comprise a wire bondable or solderable metal such as copper or aluminum, while the conductive material 66A can comprise a material such as nickel.

Next, as shown in Figure 7F, the recess 20B can be etched in the substrate 12B, substantially as previously described for recess 20A (Figure 5F). As shown in Figure 7I, the connecting segment 40B encircles the recess 20B and the leads 22B cantilever over the recess 20B.--

On page 24, lines 21-34, please substitute the following clean replacement paragraph:

34

-- The interconnect 10A also include terminal contacts 84 attached to the contact pads 38D. The terminal contacts 84 comprise metal balls soldered, or otherwise bonded, to the Alternately other types of terminal contact pads 38D. contacts such as pins, flat pads, or shaped wires can be The terminal contacts 84 are adapted to employed. electrically engage mating electrical connectors (not shown) on a test apparatus 96 (Figure 9A), such as a burn-in board. The test apparatus 96 includes, or is in electrical communication with test circuitry 98, adapted to apply test signals to the integrated circuits contained on the components 18A, and to analyze the resultant signals. test carrier 80, test apparatus 96, and test circuitry 98 form a test system 100 (Figure 9A).--

On page 13, line 27, to page 14, line 2, please substitute the following clean replacement paragraph:

bl

--As shown in Figure 3D, the leads 22B also include an outer layer 46B, which comprises a material selected to provide a non-bonding surface for the bumped contacts 16. For example, for bumped contacts 16 formed of solder, the outer layer 46B can comprise a metal that is not solder wettable. Suitable metals include Ti, TiSi₂ and Al. Rather than metal, the outer layer 46B can comprise a conductive polymer selected to provide a non-bonding surface. Suitable conductive polymers include carbon films and metal filled silicone.--