- 1 空間における 2 直線 l , m のベクトル方程式をそれぞれ l : $\overrightarrow{p}=\overrightarrow{a}+s\overrightarrow{u}$, m : $\overrightarrow{p}=\overrightarrow{b}+t\overrightarrow{v}$ とする.ただし s , t は媒介変数とし,また $|\overrightarrow{u}|=1$ としておく.m 上の点 P から l に下ろした垂線 PQ (Q は垂線の足) を k : 1-k の比に分ける点を R とする.そうして P が m 上を動いたときの点 R の集合を l_k と名づける.このとき
- (1) l_k のベクトル方程式を求めよ.
- (2) とくに $\overrightarrow{a}=(0,\,1,\,0)$, $\overrightarrow{b}=(0,\,0,\,0)$, $\overrightarrow{u}=(1,\,0,\,0)$, $\overrightarrow{v}=(1,\,1,\,1)$ ととったとき , 原点から l_k までの最短距離を求めよ .