# TRỰC QUAN VÀ PHÂN TÍCH TÌNH HÌNH DỊCH BỆNH COVID-19 TẠI VIỆT NAM



## Thành viên nhóm

1753075 - Huỳnh Đoàn Minh Ngọc

1753086 - Tống Lê Thiên Phúc

1753134 - Nguyễn Ngọc Đăng Khanh

# NỘI DUNG TRÌNH BÀY

**Dataset** 

**Dashboard** 

Machine learning

# 1. DATASET

**Crawl and preprocessing** 



Xem thêm

| Bệnh nhân | Tuổi | Thông tin dịch tễ | Địa điểm  | Tình trạng    | Quốc tịch |   |
|-----------|------|-------------------|-----------|---------------|-----------|---|
| BN1068    | 36   | Thông tin dịch tễ | Khánh Hòa | Đang điều trị | Việt Nam  | _ |
| BN1067    | 36   | Thông tin dịch tễ | Khánh Hòa | Đang điều trị | Việt Nam  |   |
| BN1066    | 38   | Thông tin dịch tễ | Hà Nội    | Đang điều trị | Việt Nam  |   |
| BN1065    | 41   | Thông tin dịch tễ | Hà Nội    | Đang điều trị | Việt Nam  |   |
| BN1064    | 37   | Thông tin dịch tễ | Hà Nội    | Đang điều trị | Việt Nam  |   |

https://ncov. moh.gov.vn/

|      | Bệnh nhân | Tuổi | Địa điểm    | Tình trạng    | Quốc tịch  |
|------|-----------|------|-------------|---------------|------------|
| 0    | BN1066    | 38   | Hà Nội      | Đang điều trị | Việt Nam   |
| 1    | BN1065    | 41   | Hà Nội      | Đang điều trị | Việt Nam   |
| 2    | BN1064    | 37   | Hà Nội      | Đang điều trị | Việt Nam   |
| 3    | BN1063    | 26   | Phú Yên     | Đang điều trị | Việt Nam   |
| 4    | BN1062    | 24   | Phú Yên     | Đang điều trị | Việt Nam   |
|      |           |      |             |               |            |
| 1061 | BN5       | 23   | Vĩnh Phúc   | Khỏi          | Việt Nam   |
| 1062 | BN4       | 29   | Vĩnh Phúc   | Khỏi          | Việt Nam   |
| 1063 | BN3       | 25   | Thanh Hóa   | Khỏi          | Việt Nam   |
| 1064 | BN2       | 28   | Hồ Chí Minh | Khỏi          | Trung Quốc |
| 1065 | BN1       | 66   | Hồ Chí Minh | Khỏi          | Trung Quốc |

|      | ID     | Age | Province    | Status        | Nationality |
|------|--------|-----|-------------|---------------|-------------|
| 0    | BN1066 | 38  | Hà Nội      | Đang điều trị | Việt Nam    |
| 1    | BN1065 | 41  | Hà Nội      | Đang điều trị | Việt Nam    |
| 2    | BN1064 | 37  | Hà Nội      | Đang điều trị | Việt Nam    |
| 3    | BN1063 | 26  | Phú Yên     | Đang điều trị | Việt Nam    |
| 4    | BN1062 | 24  | Phú Yên     | Đang điều trị | Việt Nam    |
|      |        |     |             |               |             |
| 1061 | BN5    | 23  | Vĩnh Phúc   | Khỏi          | Việt Nam    |
| 1062 | BN4    | 29  | Vĩnh Phúc   | Khỏi          | Việt Nam    |
| 1063 | BN3    | 25  | Thanh Hóa   | Khỏi          | Việt Nam    |
| 1064 | BN2    | 28  | Hồ Chí Minh | Khỏi          | Trung Quốc  |
| 1065 | BN1    | 66  | Hồ Chí Minh | Khỏi          | Trung Quốc  |

1066 rows × 5 columns



https://www.wo rldometers.info /coronavirus/

|          | Total<br>Cases | New<br>Cases | Total<br>Deaths | New<br>Deaths | Total<br>Recovered | New<br>Recovered | Active<br>Cases | Serious,<br>Critical | Tot<br>Cases/1M<br>pop | Deaths/1M<br>pop | Total<br>Tests | Tests/1M<br>pop | 1 Case<br>every<br>X ppl | 1 Death<br>every X<br>ppl | Test<br>every<br>X ppl | Cas |
|----------|----------------|--------------|-----------------|---------------|--------------------|------------------|-----------------|----------------------|------------------------|------------------|----------------|-----------------|--------------------------|---------------------------|------------------------|-----|
| Date     |                |              |                 |               |                    |                  |                 |                      |                        |                  |                |                 |                          |                           |                        |     |
| Date2008 | 1007           | 13.0         | 25.0            | 0.0           | 542.0              | 9.0              | 440.0           | 0.0                  | 10.0                   | 3.0              | 817208.0       | 8385.0          | 96784                    | 3898453.0                 | 119.0                  |     |
| Date0809 | 841            | 29.0         | 11.0            | 1.0           | 395.0              | 0.0              | 435.0           | 0.0                  | 9.0                    | 1.0              | 482456.0       | 4952.0          | 115850                   | 8857296.0                 | 202.0                  |     |
| Date0810 | 841            | 0.0          | 13.0            | 2.0           | 399.0              | 4.0              | 429.0           | 0.0                  | 9.0                    | 0.0              | 482456.0       | 4952.0          | 115853                   | 7494819.0                 | 202.0                  |     |
| Date0811 | 866            | 19.0         | 16.0            | 1.0           | 399.0              | 0.0              | 451.0           | 0.0                  | 9.0                    | 2.0              | 482456.0       | 4951.0          | 112517                   | 6089988.0                 | 202.0                  |     |
| Date0812 | 883            | 17.0         | 17.0            | 1.0           | 409.0              | 10.0             | 457.0           | 0.0                  | 9.0                    | 2.0              | 621823.0       | 6382.0          | 110351                   | 5731754.0                 | 157.0                  |     |
|          |                |              |                 |               |                    |                  |                 |                      |                        |                  |                |                 |                          |                           |                        |     |
| Date0913 | 1063           | 3.0          | 35.0            | 0.0           | 918.0              | 8.0              | 110.0           | 0.0                  | 11.0                   | 4.0              | 1009145.0      | 10348.0         | 91737                    | 2786180.0                 | 97.0                   |     |
| Date0914 | 1063           | 3.0          | 35.0            | 0.0           | 918.0              | 8.0              | 110.0           | 0.0                  | 11.0                   | 4.0              | 1009145.0      | 10348.0         | 91739                    | 2786249.0                 | 97.0                   |     |
| Date0915 | 1063           | 0.0          | 35.0            | 0.0           | 931.0              | 5.0              | 97.0            | 0.0                  | 11.0                   | 4.0              | 1009145.0      | 10348.0         | 91744                    | 2786385.0                 | 97.0                   |     |
| Date0916 | 1063           | 0.0          | 35.0            | 0.0           | 936.0              | 5.0              | 92.0            | 0.0                  | 11.0                   | 4.0              | 1009145.0      | 10348.0         | 91744                    | 2786385.0                 | 97.0                   |     |
| Date0917 | 1066           | 3.0          | 35.0            | 0.0           | 940.0              | 4.0              | 91.0            | 0.0                  | 11.0                   | 4.0              | 1009145.0      | 10347.0         | 91488                    | 2786453.0                 | 97.0                   |     |
|          |                |              |                 |               |                    |                  |                 |                      |                        |                  |                |                 |                          |                           |                        |     |

# 2. DASHBOARD

Visualization and analysis



#### Packaged bubbles of status of patients in Vietnam







Status

Đang điều trị

#### Percentage of status of Covid patient in Vietnam



#### Bar chart about status of covid patients in Vietnam



## Dashboard of Status







Dashboard of Age

#### Number of nationality of covid patients in Vietnam



**Nationality** 







#### New cases and new recovered per day



#### Dashboard of New Cases







#### Total Cases per day with trend line



# 3. MACHINE LEARNING

Linear regression and hypothesis tesing

#### Train & test dataset

```
In [4]: X = []
y = []
d = 7

for i in range(0, 30, 1):
    x_tmp = []
    for j in range(0, d, 1):
        x_tmp.append(data[i + j])
    y.append(data[i + d])
    X.append(x_tmp)
```

```
[[841, 841, 866, 883, 911, 930, 951], [841, 866, 883, 911, 930, 951, 962], [866, 883, 911, 930, 951, 962, 962], [883, 911, 930, 951, 962, 962, 983], X____trailing [911, 930, 951, 962, 962, 983, 994, 1007, 1009, 1014], [951, 962, 962, 983, 994, 1007, 1009, 1014], [951, 962, 962, 983, 994, 1007, 1009, 1014], [962, 983, 994, 1007, 1009, 1014, 1016, 1022], [994, 1007, 1009, 1014, 1016, 1022, 1029], [1007, 1009, 1014, 1016, 1022, 1029, 1034], [1009, 1014, 1016, 1022, 1029, 1034, 1036], [1014, 1016, 1022, 1029, 1034, 1036, 1038], [1016, 1022, 1029, 1034, 1036, 1038, 1040], [1022, 1029, 1034, 1036, 1038, 1040], [1022, 1029, 1034, 1036, 1038, 1040], [1036, 1038, 1040, 1044, 1044], [1036, 1038, 1040, 1044, 1044], [1036, 1038, 1040, 1044, 1044], [1036, 1038, 1040, 1044, 1044], [1036, 1038, 1040, 1044, 1044, 1044], [1036, 1038, 1040, 1044, 1044, 1044], [1046, 1046, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 104
```

```
In [5]: X_test = []
X_test.append(np.array(data[-d:]))
X_test.append([1060, 1063, 1063, 1063, 1063, 1066, 1068])
print(X_test)

y_test = [1068, 1068]

[962, 962, 983, 994, 1007, 1009, 1014, 1016, 1022, 1029, 1034,
1836, 1838, 1848, 1848, 1844, 1844, 1846, 1846, 1849, 1849, 1849
```

```
[962, 962, 983, 994, 1007, 1009, 1014, 1016, 1022, 1029, 1034, 1036, 1038, 1040, 1040, 1044, 1044, 1046, 1046, 1049, 1049, 1049, 1054, 1059, 1059, 1060, 1063, 1063]
```

#### y\_train

```
[array([1059, 1060, 1063, 1063, 1063, 1063, 1066], dtype=int64), [1060, 1063, 1063, 1063, 1063, 1066, 1068]]
```

x\_test

y\_test [1068, 1068]

# Scikit-learn

from sklearn.linear\_model import LinearRegression as LR



#### sklearn

```
In [7]:
         #sklearn
         model1 = LR().fit(X, y)
In [8]: print("Formula of model")
         print(printFormula(model1.coef_, model1.intercept_))
         Formula of model
         217.78 + 0.02*Day 7 + -0.2*Day 6 + 0.36*Day 5 + 0.11*Day 4 + -0.15*Day 3 + 0.06*Day 2 + 0.6*Day 1
In [9]: y pred1 = predictions(model1, X)
         mse1 = MSE(y_pred1, y)
         mse1
Out[9]: 7.6
In [10]: predictions1 = predictions(model1, X test)
         predictions1
Out[10]: array([1066., 1068.])
```

# Statsmodels

import statsmodels.api as sm from statsmodels.tsa.arima\_model import ARIMA

#### **OLS** statsmodels

```
In [11]: #statsmodels.api
         model2 = sm.OLS(y, X).fit()
In [12]: print("Formula of model")
         print(printFormula(model2.params, 0))
         Formula of model
         0 + -0.09*Day 7 + -0.36*Day 6 + 0.43*Day 5 + 0.09*Day 4 + -0.12*Day 3 + 0.17*Day 2 + 0.87*Day 1
In [13]: y pred2 = predictions(model2, X)
         mse2 = MSE(y pred2, y)
         mse2
Out[13]: 10.66666666666666
In [14]: predictions2 = predictions(model2, X test)
         predictions2
Out[14]: array([1068., 1069.])
```

### **OLS** statsmodels

In [15]: model2.summary()

Out[15]:

**OLS Regression Results** 

| Dep. Variable:    | у                | R-squared (uncentered):      | 1.000             |
|-------------------|------------------|------------------------------|-------------------|
| Model:            | OLS              | Adj. R-squared (uncentered): | 1.000             |
| Method:           | Least Squares    | F-statistic:                 | 3.456e+05         |
| Date:             | Sat, 19 Sep 2020 | Prob (F-statistic):          | 3.39e <b>-</b> 56 |
| Time:             | 22:54:22         | Log-Likelihood:              | <b>-</b> 77.315   |
| No. Observations: | 30               | AIC:                         | 168.6             |
| Df Residuals:     | 23               | BIC:                         | 178.4             |
| Df Model:         | 7                |                              |                   |
| Covariance Type:  | nonrobust        |                              |                   |
|                   |                  |                              |                   |

|   |     | coef      | std err | t               | P> t    | [0.025         | 0.975]   |
|---|-----|-----------|---------|-----------------|---------|----------------|----------|
|   | х1  | -0.0857   | 0.112   | <b>-</b> 0.768  | 0.450   | -0.317         | 0.145    |
|   | х2  | -0.3595   | 0.185   | <b>-</b> 1.942  | 0.065   | <b>-</b> 0.742 | 0.023    |
|   | хЗ  | 0.4302    | 0.216   | 1.995           | 0.058   | -0.016         | 0.876    |
|   | х4  | 0.0929    | 0.231   | 0.402           | 0.691   | -0.385         | 0.571    |
|   | х5  | -0.1191   | 0.235   | <b>-</b> 0.507  | 0.617   | <b>-</b> 0.605 | 0.367    |
|   | х6  | 0.1702    | 0.235   | 0.724           | 0.476   | -0.316         | 0.656    |
|   | х7  | 0.8718    | 0.165   | 5.298           | 0.000   | 0.531          | 1.212    |
|   |     | Omnibus   | 3.44    | 1 Du            | rbin-Wa | tson:          | 2.545    |
| P | rob | (Omnibus) | 0.17    | 9 <b>Jarq</b> ı | ue-Bera | (JB):          | 1.993    |
|   |     | Skew      | -0.42   | 7               | Prob    | (JB):          | 0.369    |
|   |     | Kurtosis  | 3.93    | 0               | Cond    | d. No.         | 1.25e+03 |

```
In [5]: df = pd.Series(data["Total Cases"].values, index = data["Date"])
        df.head()
Out[5]:
        Date
        2020-08-09
                      841
        2020-08-10
                      841
        2020-08-11
                      866
        2020-08-12
                    883
        2020-08-13
                      911
        dtype: int64
In [6]: model = ARIMA(df, order=(5,1,0))
        model_fit = model.fit(disp=0)
        print(model_fit.summary())
```

| ARIMA Model Results                               |                                                  |                                               |                                                      |                                                    |                                     |                                                          |  |  |
|---------------------------------------------------|--------------------------------------------------|-----------------------------------------------|------------------------------------------------------|----------------------------------------------------|-------------------------------------|----------------------------------------------------------|--|--|
| Dep. Variable: Model: Method: Date: Time: Sample: |                                                  | ARIMA(5, 1,<br>css-r<br>n, 21 Sep 20<br>23:00 | 0) Log<br>nle S.D.<br>320 AIC<br>:19 BIC<br>320 HQIC | of innovations                                     |                                     | 39<br>-122.340<br>5.474<br>258.681<br>270.326<br>262.859 |  |  |
| =========                                         | coef                                             | std err                                       | z                                                    | P>   z                                             | [0.025                              | 0.975]                                                   |  |  |
| ar.L1.D.y<br>ar.L2.D.y                            | 0.2755<br>0.5115<br>-0.2764<br>0.0799            | 0.178<br>0.183<br>0.201<br>0.199              | 1.549<br>2.796<br>-1.378<br>0.401                    | 0.123<br>0.121<br>0.005<br>0.168<br>0.688<br>0.205 | -0.073<br>0.153<br>-0.670<br>-0.311 | 0.624<br>0.870<br>0.117<br>0.470                         |  |  |
|                                                   | Real                                             | Ima                                           | aginary                                              | Modulus                                            |                                     | Frequency                                                |  |  |
| AR.3                                              | 1.0741<br>0.6519<br>0.6519<br>-1.3522<br>-1.3522 | -:<br>+:<br>-(                                | 0.0000j<br>L.2108j<br>L.2108j<br>D.4269j             | 1.0741<br>1.3751<br>1.3751<br>1.4180               |                                     | -0.0000<br>-0.1714<br>0.1714<br>-0.4513<br>0.4513        |  |  |



```
In [8]: predicts = list()
       his = list(df.values)
        nextDays = ["2020/9/18", "2020/9/19", "2020/9/20", "2020/9/21", "2020/9/22"]
        actuals = [1068, 1068, 1068, 1068, np.NaN]
        for t in range(len(nextDays)):
           model = ARIMA(his, order=(5,1,0))
           model_fit = model.fit(disp=0)
           output = round(model fit.forecast()[0][0], 0)
           predicts.append(output)
           his.append(actuals[t])
        for i in range(len(nextDays)):
           print("Date " + str(nextDays[i]) + "\t Predict: " + str(predicts[i])
                 + "\t Actual: " + str(actuals[i]))
        Date 2020/9/18 Predict: 1069.0
                                             Actual: 1068
        Date 2020/9/19 Predict: 1071.0
                                             Actual: 1068
        Date 2020/9/20 Predict: 1069.0
                                             Actual: 1068
        Date 2020/9/21 Predict: 1069.0
                                             Actual: 1068
        Date 2020/9/22 Predict: 1070.0 Actual: nan
```



# Thanks!

## Any questions?

1753075 - Huynh Doan Minh Ngoc

1753086 - Tong Le Thien Phuc

1753134 - Nguyen Ngoc Dang Khanh