Projekt 5/2024.

Provedite MC studiju za ispitivanje utjecaja distribucije podataka na vjerojatnosti pokrivanja (engl. coverage probabilities) 95% i 90% t intervala pouzdanosti za sredinu populacije.

Navedeni eksperiment provedite za sve moguće kombinacije vrijednosti faktora:

n (veličina uzorka) = 10, 15, 20, 50, 100

skewness (koeficijent asimetrije) $y_1 = \text{od} - 2$ do 2 sa korakom 2,

kurtosis (koeficijent spljoštenosti) γ_2 = -3, 0, 6, 11.

Vrijednosti sredine i standardne devijacije neka budu μ =0 i σ =5.

Za svaku moguću kombinaciju faktora n, y_1 i y_2 izvedite 500 replikacija tako da se za svaku replikaciju generira n slučajnih brojeva sa sredinom μ =0 i standardnom devijacijom σ =5.

Za svaki generirani uzorak izračunajte 95% i 90% interval pouzdanosti za sredinu (sa procedurom MEANS ili UNIVARIATE)

Za svaku kombinaciju n, γ_1 i γ_2 i za 95% i za 90% intervale pouzdanosti procijenite vjerojatnost pokrivanja tj. izračunajte proporciju uzoraka (od 500 uzoraka/replikacija) za koje se populacijska sredina μ =0 nalazi unutar 95% i 90% intervala pouzdanosti (LCL < μ <UCL, gdje su LCL i UCL donja i gornja granica 95% odnosno 90% intervala pouzdanosti).

Kreirajte odgovarajuće tablice i grafikone. Usporedite procijenjene (stvarne) vjerojatnosti pokrivanja sa nominalnim vjerojatnostima (0.95 i 0.90) za pojedine n, γ_1 i γ_2 .

Smije li se koristiti 95% (i 90%) interval pouzdanosti za n=10, kada je y_1 = 2, y_2 = 11?

NAPOMENA o mogućim kombinacijama vrijednosti koeficijenata asimetrije γ_1 i spljoštenosti γ_2 :

Koeficijenti asimetrije y_1 i spljoštenosti y_2 moraju zadovoljavati slijedeće uvijete:

$$\gamma_1^2 - 2 \leq \gamma_2^2$$