ISPITIVANJE TOKA I GRAFIK FUNKCIJE

-POSTUPAK-

1. OBLAST DEFINISANOSTI FUNKCIJE:

Ako je data racionalna funkcija $\frac{P(x)}{Q(x)}$ onda je $Q(x) \neq 0$

Ako je data $\ln \otimes$, onda je $\otimes > 0$

Ako je data $\sqrt{\Theta}$, onda je $\Theta \ge 0$

Ako je data $\sqrt[3]{@}$, onda je svuda definisana

Funkcija e^x je svuda definisana.

2. NULE FUNKCIJE:

To su mesta gde grafik seče x-osu i dobijaju se rešavanjem jednačine y = 0. (Kod racionalne funkcije $\frac{P(x)}{O(x)}$ samo P(x)=0)

Neki profesori vole da se u okviru ove tačke nadje **i presek sa y- osom.** U datu funkciju stavimo da je x = 0 (naravno ako je 0 u oblasti definisanosti) pa izračunamo vrednost za y.

3. ZNAK FUNKCIJE:

Rešavamo nejednačine y>0 i y<0, dobijamo gde je grafik iznad x-ose (y>0) i ispod x-ose(y<0). Koristimo tablicu....najčešće...

Pazite, pre nego formirate tablicu, razmislite da li ima izraza za koje smo sigurni da li su pozitivni, jer oni ne idu u tablicu.

Takvi izrazi su najčešće oblika $x^2 + a$ ili kvadratna jednačina $ax^2 + bx + c$ kod koje je diskriminanta $D = b^2 - 4ac < 0$ i koeficijent uz $a = b^2$ je a > 0

4. PARNOST I NEPARNOST:

Ako je f(-x)=f(x) funkcija je **parna** a grafik simetričan u odnosu na y-osu, a ako je f(-x)=-f(x) funkcija je **neparna** a grafik simetričan u odnosu na koordinatni početak. **Mi konkretno krenemo od f(-x) pa gde vidimo x stavimo - x, to malo sredimo i pogledamo da li smo dobili f(x) ili -f(x) pa zaključimo da li je funkcija parna ili neparna. U najvećem broju slučaja funkcije nisu ni parne ni neparne.**

5. EKSTREMNE VREDNOSTI (MAXIMUM I MINIMUM) I MONOTONOST

Tražimo y'. Kad y'=0, dobijamo (ako ima) x₁, x₂, ... i te vrednosti zamenimo u početnu funkciju da nadjemo y₁,y₂,... Dobijene tačke su ekstremi. Ako je y'>0 funkcija raste a ako je y'<0 funkcija opada. Za rašćenje i opadanje . pošto rešavamo nejednačine možemo koristiti tablicu.

6. PREVOJNE TAČKE I KONVEKSNOST I KONKAVNOST:

Tražimo y``. Kad y``=0 , dobijamo (ako ima) x₁, x₂, ... i te vrednosti zamenimo u početnu funkciju da nadjemo y₁,y₂,... Dobijene tačke su tačke prevoja (to su mesta gde funkcija prelazi iz konveksnosti u konkavnost ili obrnuto). Ako je y``>0 funkcija je konveksna (smeje se) , a ako je y``<0 funkcija je konkavna (tužna je). I ovde možemo koristiti tablicu ako su izrazi komplikovani!

7. ASIMPTOTE FUNKCIJE (PONAŠANJE FUNKCIJE NA KRAJEVIMA OBLASTI DEFINISANOSTI)

- vertikalna

Potencijalna vertikalna asimptota se nalazi u prekidima iz oblasti definisanosti. Ako je recimo tačka $x = \Theta$ prekid, moramo ispitati kako se funkcija "ponaša" u nekoj okolini te tačke, pa tražimo dva limesa:

 $\lim_{x\to\Theta+\varepsilon,kad\varepsilon\to0} f(x)$ i $\lim_{x\to\Theta-\varepsilon,kad\varepsilon\to0} f(x)$ Ako su rešenja ova dva limesa $+\infty$ ili $-\infty$ onda je prava $x=\Theta$ vertikalna asimptota, a ako dobijemo neki broj za rešenje, onda funkcija teži tom broju (po ipsilonu)

Pazite: Za svaki prekid mora da se traže oba limesa, osim možda ako funkcija nije negde definisana.

- horizontalna

Ovde tražimo dva limesa: $\lim_{x \to +\infty} f(x)$ i $\lim_{x \to -\infty} f(x)$.

Ako kao rešenje dobijemo neki broj , recimo #, onda je y = # horizontalna asimptota, a ako dobijemo $+\infty$ ili $-\infty$ onda kažemo da nema horizontalna asimptota.

- kosa

Kosa asimptota je prava y = kx + n

$$k = \lim_{x \to \infty} \frac{f(x)}{x}$$
 i $n = \lim_{x \to \infty} [f(x) - kx]$

Naravno, potrebno je raditi ove limese i za $+\infty$ i za $-\infty$, naročito kod složenijih funkcija, jer se može desiti da nema ove asimptote sa obe strane...

AKO IMA HORIZONTALNA ASIMPTOTA, KOSA NEMA!

8. PERIODIČNOST FUNKCIJE

Ovu tačku ispitujemo samo za trigonometrijske i slične funkcije koje imaju peridu ponavljanja(

I NA KRAJU SKLOPITE GRAFIK NA OSNOVU ISPITIVANJA KOJE STE IZVRŠILI U PRETHODNIM TAČKAMA!