Projeto e Análise de Algoritmos

Prof. Dr. Ednaldo B. Pizzolato

COMPLEXIDADE

Complexidade

Exemplo

- Sejam 5 algoritmos A₁ a A₅ para resolver um mesmo problema, de complexidades diferentes. (Supomos que uma operação leva 1 ms para ser efetuada.)
- T_k(n) é a complexidade ou seja o número de operações que o algoritmo efetua para n entradas

n	$T_1(n)=n$	A 2 T2(n)=nlog n	Α ₃ Τ ₃ (n)=n ²	A ₄ T ₄ (n)=n ³	A ₅ T ₅ (n)=2 ⁿ
16	0.016s	0.064s	0.256 <i>s</i>	4s	1m4s
32	0.032 <i>s</i>	0.16s	1s	33 <i>s</i>	46 Dias
512	(0.512s)	9s	4m22s	1 Dia 13h	10 ¹³⁷ Séculos

tempo necessário para o algoritmo em função de n entradas

Operações primitivas

- Atribuição de valores a variáveis
- Chamadas de métodos
- Operações aritméticas
- Comparação de dois números
- Acesso a elemento de um array
- Seguir uma referência de objeto (acesso a objeto)
- Retorno de um método

arrayMax(A, n):

Entrada: array A com n ≥ 1 elementos inteiros

Saida: o maior elemento em A

```
tmpMax ← A[0]

for i←1 to n-1 do

if tmpMax < A[i]

tmpMax ← A[i]

return tmpMax
```

código	custo	vezes
tmpMax <- A[0]	c1	1
for i ← 1 to n-1 do	c2	n
if tmpMax < A[i] then	c 3	n-1
tmpMax ← A[i]	c4	n-1
return tmpMax	c5	1

$$T_*(n) = c1*1+ c2*n + c3*(n-1) + c5*1$$
 (melhor caso)
 $T_*(n) = c1+ n*c2 + n*c3 - c3 + c5$
se considerarmos os custos iguais, teremos:

$$T_*(n) = c + n*c + n*c - c + c = 2n*c + c (= 2n + 1 para c=1)$$

código	custo	vezes
tmpMax <- A[0]	c1	1
for i ← 1 to n-1 do	c2	n
if tmpMax < A[i] then	c 3	n-1
tmpMax ← A[i]	c4	n-1
return tmpMax	c5	1

$$T^*(n) = c1*1+ c2*n + c3*(n-1) + c4*(n-1) + c5*1$$
(pior caso)
 $T^*(n) = c1+ n*c2 + n*c3 - c3 + n*c4 - c4 + c5$
se considerarmos os custos iguais, teremos:
 $T^*(n) = c+ n*c + n*c - c + n*c - c + c = 3n*c$ (= **3n** para c=1)

$$T_*(n) \le t(I) \le T^*(n)$$

Observações sobre consumo de tempo:

- estimar consumo do algoritmo, independente do computador
- despreze constantes multiplicativas: 10 n é o mesmo que n
- consumo de tempo é diferente para cada instância do problema
- agrupe instâncias por "tamanho"
- o conceito de tamanho de uma instância
- muitas instâncias têm o mesmo tamanho
- consumo de tempo no pior caso
- consumo de tempo no melhor caso

Rearranjar um vetor em ordem crescente

A[1 . . n] é crescente se A[1] ≤ · · · ≤ A[n]


```
ORDENA-POR-INSERÇÃO (A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 i \leftarrow j - 1

4 enquanto i \ge 1 e A[i] > chave faça

5 A[i+1] \leftarrow A[i]

6 i \leftarrow i - 1

7 A[i+1] \leftarrow chave
```


O algoritmo faz o que prometeu?

- Invariante: no início de cada iteração, A[1 . . j−1] é crescente
- Se vale na última iteração, o algoritmo está correto!

```
ORDENA-POR-INSERÇÃO (A, n)

1  para j \leftarrow 2 até (*) faça

2  chave \leftarrow A[j]

3  i \leftarrow j = 1

4  enquanto i \geq 1 e A[i] > chave faça

5  A[i+1] \leftarrow A[i]

6  i \leftarrow i = 1

7  A[i+1] \leftarrow chave
```

- vale na primeira iteração
- se vale em uma iteração, vale na seguinte

Quanto tempo consome?

Suponha 1 unidade de tempo por linha

```
ORDENA-POR-INSERÇÃO (A, n)
                                       Linha
                                                 total de unidades de tempo
  para j ← 2 até n faça
    chave ← A[i]
                                              = n - 1
                                       3
   i ← j − 1
                                              = n - 1
    enquanto i ≥ 1 e A[i] > chave faça
                                              \leq 2+3+\cdots+n = (n-1)(n+2)/2
5
                                              \leq 1+2+\cdots+(n-1) = n(n-1)/2
      A[i+1] \leftarrow A[i]
   i ← i − 1
                                              \leq 1+2+\cdots+(n-1) = n(n-1)/2
                                       6
   A[i+1] ← chave
                                              = n - 1
```

total ≤ 3/2n² + 7/2n - 4 unidades de tempo

Encontrar a soma dos elementos positivos de um vetor A[1..n]

Uma instância do problema: Encontrar a soma dos elementos positivos do vetor (20; -30; 15; -10; 30; -20; -30; 30)

SOMAPOSITIVOS (A; n) 1 s = 0 2 para i = 1 até n faça 3 se A[i] > 0 4 então s = s + A[i] 5 devolva s

O algoritmo está correto?

- testes só podem mostrar que o algoritmo está errado (????)
- análise pode provar que o algoritmo está correto.

O algoritmo está correto!

- Invariante: no começo de cada iteração
- s é a soma dos positivos de A[1 .. i-1]
 No fim, s é a soma dos positivos de A[1 .. n].

Algoritmo recursivo

```
SOMAPOS (A;n)

1 se n = 0

2 então devolva 0

3 senão s = SOMAPOS (A; n - 1)

4 se A[n] > 0

5 então devolva s + A[n]

6 senão devolva s
```

```
T(n): consumo de tempo no pior caso
```

□ recorrência: T(n) = T(n - 1) + const

→ T(n) = ?

Observações sobre algoritmos recursivos

- Problemas com estrutura recursiva:
 - cada instância do problema contém uma instância menor do mesmo problema
- Algoritmo recursivo:
 - se a instância em questão é pequena resolva-a diretamente
 - Senão: reduza-a a uma instância menor do mesmo problema encontre solução S da instância menor use S para construir solução da instância original

Análise: Crescimento de Funções

- O tempo de execução geralmente dependente de um único parâmetro N
 - ordem de um polinômio
 - tamanho de um arquivo a ser processado, ordenado, etc
 - ou medida abstrata do tamanho do problema a considerar (usualmente relacionado com o número de dados a processar)
- Quando há mais de um parâmetro
 - procura-se exprimir todos os parâmetros em função de um só
 - faz-se uma análise em separado para cada parâmetro

Análise: Crescimento de Funções

- Os Algoritmos têm tempo de execução proporcional a
 - 1 muitas instruções são executadas uma só vez ou poucas vezes (se isto for verdade para todo o programa diz-se que o seu tempo de execução é constante)
 - Log N tempo de execução é logarítmico (cresce ligeiramente à medida que N cresce) (quando N duplica log N aumenta, mas muito pouco; apenas duplica quando N aumenta para N²)
 - N tempo de execução é linear (típico quando algum processamento é feito para cada dado de entrada) (situação ótima quando é necessário processar N dados de entrada) (ou produzir N dados na saída)

Análise: Crescimento de Funções

- N log N típico quando se reduz um problema em subproblemas, se resolve estes separadamente e se combinam as soluções (se N é 1 milhão N log N é perto de 20 milhões)
- N² tempo de execução quadrático (típico quando é preciso processar todos os pares de dados de entrada) (prático apenas em pequenos problemas, ex: produto matriz - vetor)
- N³ tempo de execução cúbico (para N = 100, N³ = 1 milhão, ex: produto de matrizes)
- 2^N tempo de execução exponencial (provavelmente de pouca aplicação prática; típico em soluções de força bruta) (para N = 20, 2^N = 1 milhão; N duplica, tempo passa a ser o quadrado)

RESOLUÇÃO DE ALGORITMOS

- Passos para a resolução de um problema
 - Análise
 - Projeto de uma solução
 - Execução da solução
 - Verificação

- Entendimento do problema
- Recursos computacionais
- Escolha entre solução exata ou aproximada
- Uso de técnica de projeto de algoritmo
- O projeto de algoritmos e a estrutura de dados
- Métodos para especificar um algoritmo
- Provando que o algoritmo está correto
- Analisando um algoritmo
- Codificando

- O que significa entender o problema?
 - Quais são os objetos do problema?
 - Quais as operações envolvidas/aplicadas aos objetos?

- O que contempla a questão sobre os recursos computacionais?
 - Como os objetos serão representados?
 - Como as operações serão implementadas?

- Como provar que um algoritmos está correto?
 - Saídas corretas para cada entrada legítica de dados (levando-se em conta que a resposta tem que ser produzida em um tempo finito)
 - Baseada em fórmulas matemáticas corretas
 - Por indução

TIPOS DE PROBLEMAS

Tipos importantes de problemas

- Ordenação
- Busca
- Processamento de cadeias de caracteres
- Problemas de grafos
- Problemas combinatoriais
- Problemas geométricos
- Problemas numéricos

Ordenação

- Classificação
 - De estudantes
 - Resultados de busca na internet
 - Dicionários
 - Listas telefônicas

Buscas

Encontrar uma determinada informação em uma lista;

 Encontrar uma configuração favorável para um determinado problema.

Processamento de cadeias de caracteres

- Achar uma determinada palavra em uma frase (string matching).
- Pode ser usado em palavras binárias (0 ou 1) ou "genéticas" (A,C,G,T).

Grafos

- Transporte;
- Comunicações;
- Redes sociais e econômicas;
- Escalonamento de projetos; e
- Jogos

Grafos

- Algoritmos associados a grafos incluem:
 - Percorrer um grafo;
 - Caminho mais curto;
 - Ordenação topológica.
 - Traveling salesman problem
 - Graph-coloring problem

Combinatoriais

- Permutações
- Combinações
- Subsets

- **123**
- **132**
- 213
- 231
- 321
- 312

Combinatoriais

- Permutações
- Combinações
- Subsets

	Ana	Cintia	Luisa	Carla
João	X			
André			Х	
Miguel		Х		
Mauro				Х

Geométricos

 Problemas relacionados com geometria como pontos, linhas e polígonos.

- Closest-pair problem
- Convex-hull problem

Numéricos

- Objetos matemáticos de natureza contínua:
 - Equações
 - Sistemas de equações
 - Integrais definidas
 - Funções
 - Números reais

THE END