Identifying genetic markers in Skin cancer cells

TEAM 7

TRIPTI SINGH

EMRE KARAKUS

Motivation

Drug treatment researches have indicated a relationship between certain genetic markers and melanoma cancerous & non-cancerous cells. Such genetic markers can be used in improving drug therapies to treat skin cancer (melanoma).

We intend to explore such associations using data mining methods.

Hypotheses

There are some genetic markers that can assist in classifying Benign and Malignant cells

Data Source

Data is provided by Benjamin Soibam, PhD

Data

4645 Observation

23689 attributes

		_		_	_					-
1	Cell	Cy72_CD4	CY58_1_CI	Cy71_CD4	Cy81_FNA	Cy80_II_CI	Cy81_Bulk	Cy72_CD4	Cy74_CD4	Cy71_CD4
2	tumor	72	58	71	81	80	81	72	74	71
3	malignant(1=no,2=yes,0=unresolved)	1	1	2	2	2	2	1	1	2
4	non-malignant cell type (1=T,2=B,3=Macro.4=Endo.,5=CAF;6=NK)	2	1	0	0	0	0	1	1	0
5	C9orf152	0	0	0	0	0	0	0	0	0
6	RPS11	9.2172	8.3745	9.313	7.8876	8.3291	7.8336	8.3737	8.1338	8.4373
7	ELMO2	0	0	2.1263	0	0	0.774	0	0	0
8	CREB3L1	0	0	0	0	0	0	0	0	0
9	PNMA1	0	0	0	0	0	0	0	0	0
10	MMP2	0	0	0.73812	0	0	0	0	0	0
11	TMEM216	0	0	0	0	3.7949	0	0	0	0
12	TRAF3IP2-AS1	2.8514	2.0983	0.6173	0.96495	1.4735	3.158	1.308	1.3802	0
13	LRRC37A5P	0	0	0	0	0	0	0	0	0
14	LOC653712	0	0	0	0	0	0	0	0	0
15	C10orf90	0	0	0	3.4069	1.4468	2.7876	0	0	1.7398
16	ZHX3	0	0.52907	0	0.51197	0	1.4952	1.1097	0	1.2821
17	ERCC5	0	0	0	0	2.2866	2.3741	0	0	0
18	GPR98	0	0	0	0	0	0.0229	0	0	0

Data Preparation

removed columns with '0' values:

22848 attributes

1	Cell	Cy72_CD4	CY58_1_CI	Cy71_CD4	Cy81_FNA	Cy80_II_CI	Cy81_Bulk	Cy72_CD4	Cy74_CD4	Cy71_CD4
2	tumor	72	58	71	81	80	81	72	74	71
3	malignant(1=no,2=yes,0=unresolved)	1	1	2	2	2	2	1	1	2
4	non-malignant cell type (1=T,2=B,3=Macro.4=Endo.,5=CAF;6=NK)	2	1	0	0	0	0	1	1	0
5	C9orf152	0	0	0	0	0	0	0	0	0
6	RPS11	9.2172	8.3745	9.313	7.8876	8.3291	7.8336	8.3737	8.1338	8.4373
7	ELMO2	0	0	2.1263	0	0	0.774	0	0	0
8	CREB3L1	0	0	0	0	0	0	0	0	0
9	PNMA1	0	0	0	0	0	0	0	0	0
10	MMP2	0	0	0.73812	0	0	0	0	0	0
-11	TMEM216	0	0	0	0	3.7949	0	0	0	0
12	TRAF3IP2-AS1	2.8514	2.0983	0.6173	0.96495	1.4735	3.158	1.308	1.3802	0
13	LRRC37A5P	0	0	0	0	0	0	0	0	0
14	LOC653712	0	0	0	0	0	0	0	0	0
15	C10orf90	0	0	0	3.4069	1.4468	2.7876	0	0	1.7398
16	ZHX3	0	0.52907	0	0.51197	0	1.4952	1.1097	0	1.2821
17	ERCC5	0	0	0	0	2.2866	2.3741	0	0	0
18	GPR98	0	0	0	0	0	0.0229	0	0	0

Curse of Dimensionality

removed columns with near zero variance

5628 attributes

1	Cell	Cy72_CD4	CY58_1_CI	Cy71_CD4	Cy81_FNA	Cy80_II_CI	Cy81_Bulk	Cy72_CD4	Cy74_CD4	Cy71_CD4
2	tumor	72	58	71	81	80	81	72	74	71
3	malignant(1=no,2=yes,0=unresolved)	1	1	2	2	2	2	1	1	2
4	non-malignant cell type (1=T,2=B,3=Macro.4=Endo.,5=CAF;6=NK)	2	1	0	0	0	0	1	1	0
5	C9orf152	0	0	0	0	0	0	0	0	0
6	RPS11	9.2172	8.3745	9.313	7.8876	8.3291	7.8336	8.3737	8.1338	8.4373
7	ELMO2	0	0	2.1263	0	0	0.774	0	0	0
8	CREB3L1	0	0	0	0	0	0	0	0	0
9	PNMA1	0	0	0	0	0	0	0	0	0
10	MMP2	0	0	0.73812	0	0	0	0	0	0
11	TMEM216	0	0	0	0	3.7949	0	0	0	0
12	TRAF3IP2-AS1	2.8514	2.0983	0.6173	0.96495	1.4735	3.158	1.308	1.3802	0
13	LRRC37A5P	0	0	0	0	0	0	0	0	0
14	LOC653712	0	0	0	0	0	0	0	0	0
15	C10orf90	0	0	0	3.4069	1.4468	2.7876	0	0	1.7398
16	ZHX3	0	0.52907	0	0.51197	0	1.4952	1.1097	0	1.2821
17	ERCC5	0	0	0	0	2.2866	2.3741	0	0	0
18	GPR98	0	0	0	0	0	0.0229	0	0	0

removed correlated variables

5564 attributes

1	Cell	Cy72_CD4	CY58_1_CI	Cy71_CD4	Cy81_FNA	Cy80_II_C	Cy81_Bulk	Cy72_CD4	Cy74_CD4	Cy71_CD4
2	tumor	72	58	71	81	80	81	72	74	71
3	malignant(1=no,2=yes,0=unresolved)	1	1	2	2	2	2	1	1	2
4	non-malignant cell type (1=T,2=B,3=Macro.4=Endo.,5=CAF;6=NK)	2	1	0	0	0	0	1	1	0
5	C9orf152	0	0	0	0	0	0	0	0	0
6	RPS11	9.2172	8.3745	9.313	7.8876	8.3291	7.8336	8.3737	8.1338	8.4373
7	ELMO2	0	0	2.1263	0	0	0.774	0	0	0
8	CREB3L1	0	0	0	0	0	0	0	0	0
9	PNMA1	0	0	0	0	0	0	0	0	0
10	MMP2	0	0	0.73812	0	0	0	0	0	0
11	TMEM216	0	0	0	0	3.7949	0	0	0	0
12	TRAF3IP2-AS1	2.8514	2.0983	0.6173	0.96495	1.4735	3.158	1.308	1.3802	0
13	LRRC37A5P	0	0	0	0	0	0	0	0	0
14	LOC653712	0	0	0	0	0	0	0	0	0
15	C10orf90	0	0	0	3.4069	1.4468	2.7876	0	0	1.7398
16	ZHX3	0	0.52907	0	0.51197	0	1.4952	1.1097	0	1.2821
17	ERCC5	0	0	0	0	2.2866	2.3741	0	0	0
18	GPR98	0	0	0	0	0	0.0229	0	0	0

Keeping only Benign & Malignant observations

5564 attributes

1	Cell	Cy72_CD4	CY58_1_CI	Cy71_CD4	Cy81_FNA	Cy80_II_C	Cy81_Bulk	Cy72_CD4	Cy74_CD4	Cy71_CD4
2	tumor	72	58	71	81	80	81	72	74	71
3	malignant(1=no,2=yes,0=unresolved)	1	1	2	2	2	2	1	1	2
4	non-malignant cell type (1=T,2=B,3=Macro.4=Endo.,5=CAF;6=NK)	2	1	0	0	0	0	1	1	0
5	C9orf152	0	0	0	0	0	0	0	0	0
6	RPS11	9.2172	8.3745	9.313	7.8876	8.3291	7.8336	8.3737	8.1338	8.4373
7	ELMO2	0	0	2.1263	0	0	0.774	0	0	0
8	CREB3L1	0	0	0	0	0	0	0	0	0
9	PNMA1	0	0	0	0	0	0	0	0	0
10	MMP2	0	0	0.73812	0	0	0	0	0	0
11	TMEM216	0	0	0	0	3.7949	0	0	0	0
12	TRAF3IP2-AS1	2.8514	2.0983	0.6173	0.96495	1.4735	3.158	1.308	1.3802	0
13	LRRC37A5P	0	0	0	0	0	0	0	0	0
14	LOC653712	0	0	0	0	0	0	0	0	0
15	C10orf90	0	0	0	3.4069	1.4468	2.7876	0	0	1.7398
16	ZHX3	0	0.52907	0	0.51197	0	1.4952	1.1097	0	1.2821
17	ERCC5	0	0	0	0	2.2866	2.3741	0	0	0
18	GPR98	0	0	0	0	0	0.0229	0	0	0

Reduced Data used for all further data mining

5564 attributes

1	Cell	Cy72_CD4	CY58_1_CI	Cy71_CD4	Cy81_FNA	Cy80_II_CI	Cy81_Bulk	Cy72_CD4	Cy74_CD4.	Cy71_CD4
2	tumor	72	58	71	81	80	81	72	74	71
3	malignant(1=no,2=yes,0=unresolved)	1	1	2	2	2	2	1	1	2
4	non-malignant cell type (1=T,2=B,3=Macro.4=Endo.,5=CAF;6=NK)	2	1	0	0	0	0	1	1	0
5	C9orf152	0	0	0	0	0	0	0	0	0
6	RPS11	9.2172	8.3745	9.313	7.8876	8.3291	7.8336	8.3737	8.1338	8.4373
7	ELMO2	0	0	2.1263	0	0	0.774	0	0	0
8	CREB3L1	0	0	0	0	0	0	0	0	0
9	PNMA1	0	0	0	0	0	0	0	0	0
10	MMP2	0	0	0.73812	0	0	0	0	0	0
11	TMEM216	0	0	0	0	3.7949	0	0	0	0
12	TRAF3IP2-AS1	2.8514	2.0983	0.6173	0.96495	1.4735	3.158	1.308	1.3802	0
13	LRRC37A5P	0	0	0	0	0	0	0	0	0
14	LOC653712	0	0	0	0	0	0	0	0	0
15	C10orf90	0	0	0	3.4069	1.4468	2.7876	0	0	1.7398
16	ZHX3	0	0.52907	0	0.51197	0	1.4952	1.1097	0	1.2821
17	ERCC5	0	0	0	0	2.2866	2.3741	0	0	0
18	GPR98	0	0	0	0	0	0.0229	0	0	0

Curse of Dimensionality

Still not able to use most of the algorithms to develop classification models

PCA • Didn't work ANOVA • Data Set 2

• Data Set 1

PCA

first 5 PCAs explaining only 15% variance

cumsum_pca[1:5]

[1] 8.687328

[2] 11.255989

[3] 12.909616

[4] 14.039679

[5] 14.716901

ANOVA

sep <- Vb/ Vw

```
> var_MaxSep
    "ZZZ3"
                  "ZYX"
                               "ZYG11B"
                                            "ZXDC"
                                                         "ZSWIM7"
                                                                      "ZSWIM1"
                  "ZNRF3.AS1" "ZNRD1"
     "ZRANB2"
                                            "ZNHIT3"
                                                         "ZNHIT1"
                                                                      "ZNFX1"
Γ13]
     "ZNF92"
                  "ZNF91"
                               "ZNF850"
                                            "ZNF83"
                                                         "ZNF814"
                                                                      "ZNF805"
     "ZNF800"
                  "ZNF793"
                               "ZNF791"
                                                         "ZNF766"
                                                                      "ZNF76"
                                            "ZNF770"
    "ZNF738"
                  "ZNF721"
                               "ZNF714"
                                            "ZNF706"
                                                         "ZNF692"
                                                                      "ZNF672"
                  "ZNF664"
                               "ZNF655"
[31] "ZNF669"
```

a dataframe of 4513 X 33 -> data_set2 created to develop classification models

Gene Heatmap on Reduced Data


```
> rpart2_train
CART

4513 samples
    33 predictor
    2 classes: 'Benign', 'Malignant'

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 4062, 4062, 4062, 4062, 4061, ...
Resampling results across tuning parameters:
```

CP Accuracy Kappa 0.010 0.8701552 0.6612847 0.014 0.8630657 0.6395051 0.018 0.8601808 0.6332123 0.021 0.8601808 0.6332123 0.039 0.8528657 0.6223091 0.102 0.8335943 0.5467710 0.718 0.7214717 0.0000000

Accuracy was used to select the optimal model using the one SE rule. The final value used for the model was cp = 0.01.


```
ANOVA
```

knn

```
> knn_train
k-Nearest Neighbors
4513 samples
  33 predictor
   2 classes: 'Benign', 'Malignant'
No pre-processing
```

Summary of sample sizes: 4061, 4062, 4062, 4061, 4062, 4061, ...

Resampling: Cross-Validated (10 fold, repeated 10 times)

Resampling results across tuning parameters:

k Accuracy Kappa

0.8704442 0.6719509

0.8768047 0.6904313

0.8795751 0.6966258

0.8798626 0.6973234

0.8795322 0.6966849

Accuracy was used to select the optimal model using the one SE rule. The final value used for the model was k = 11.

naive

ANOVA

```
> naive_train
Naive Bayes
```

4513 samples 33 predictor

2 classes: 'Benign', 'Malignant'

No pre-processing

Resampling: Cross-validated (10 fold, repeated 10 times)

Summary of sample sizes: 4061, 4061, 4062, 4061, 4062, 4062, ...

Resampling results:

Accuracy Kappa 0.8990478 0.7448179

Tuning parameter 'fL' was held constant at a value of 1 Tuning parameter 'usekernel' was held constant at a value of TRUE Tuning parameter 'adjust' was held constant at a value of 1

ANOVA
CLUSTERS

rpart

```
names(Var_rpart)
   "PTPRC"
                                          "CNN3"
                "ARHGDIB"
                             "CALD1"
                                                                    "CTTN"
                                                       "LAPTM5"
                "ASAH1"
                             "TCF4"
                                          "AP152"
                                                       "ATP1A1"
   "ERBB3"
                                                                    "FDFT1"
                "CD63"
                                          "GIMAP7"
                                                       "ITM2A"
   "DUSP4"
                             "TMEM98"
                                                                    "ATP1B1"
   "CD37"
                "LCP1"
                             "TNFRSF1B"
                                          "CD52"
                                                       "CXCR4"
                                                                    "GAPDH"
                                                                    "CAPN3"
   "RHOH"
                "GDF15"
                             "PHLDA1"
                                          "NT5DC3"
                                                       "SPP1"
   "CD59"
                "FKBP10"
                             "LINC00673"
```

a dataframe of 4513 x 33 -> data_set1 created to develop classification models


```
> rpart_train
CART

3385 samples
33 predictor
2 classes: 'Benign', 'Malignant'

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 3047, 3046, 3047, 3046, 3047, 3047, ...
```

cp Accuracy Kappa 0.010 0.9695694 0.9241018 0.014 0.9636601 0.9088142 0.018 0.9648426 0.9115008 0.021 0.9639577 0.9095323 0.039 0.9521425 0.8812046 0.102 0.9518467 0.8804896 0.718 0.7559839 0.1509727

Resampling results across tuning parameters:

Accuracy was used to select the optimal model using the one SE rule. The final value used for the model was cp = 0.01.

rpart rpart

```
Benign
                        0.28
                        100%
                yes -PTPRC >= 1.3-no
                                       Malignant
       Benian
        0.02
                                         0.80
        67%
                                         33%
    TMEM98 < 1.9
                                     ATP1A1 < 2.1 -
              Malignant
                                               Malignant
                0.62
                                                  0.92
                 1%
                                                  28%
            ATP1A1 < 4.2
                                              TCF4 >= 2.5-
                                                       Malignant
                                                          0.96
                                                          27%
                                                    ARHGDIB >= 5.9
                   Malignant
                                         Benign
                                                             Malignant
          Benign
                               Benign
                                                   Benign
Benign
0.01
           0.12
                     1.00
                               0.15
                                          0.12
                                                    0.07
                                                               0.97
65%
                                                     0%
           0%
                      1%
                                5%
                                           1%
                                                               26%
```

1) root 3385 943 Benign (0.721418021 0.278581979)
2) PTPRC>=1.325 2253 41 Benign (0.981802042 0.018197958)
4) TMEM98< 1.92 2216 18 Benign (0.991877256 0.008122744) *
5) TMEM98>=1.92 37 14 Malignant (0.378378378 0.621621622)
10) ATP1A1< 4.19 16 2 Benign (0.875000000 0.125000000) *
11) ATP1A1>=4.19 21 0 Malignant (0.000000000 1.000000000) *
3) PTPRC< 1.325 1132 230 Malignant (0.203180212 0.796819788)
6) ATP1A1>=2.14 176 26 Benign (0.852272727 0.147727273) *
7) ATP1A1>=2.14 956 80 Malignant (0.083682008 0.916317992)
14) TCF4>=2.535 48 6 Benign (0.875000000 0.125000000) *
15) TCF4< 2.535 908 38 Malignant (0.041850220 0.958149780)
30) ARHGDIB>=5.895 14 1 Benign (0.928571429 0.071428571) *

n = 3385

node), split, n, loss, yval, (yprob)
 * denotes terminal node

97% Accuracy with 92 % kappa

31) ARHGDIB< 5.895 894 25 Malignant (0.027964206 0.972035794) *

N Chi-square contribution N / Row Total N / Col Total N / Table Total

Total Observations in Table: 1128

	predict_rpa	art	
Test_set1\$factor_redData	Benign	Malignant	Row Total
Benign	803	11	814
(5-A)	71.839	196.488	ĺ
	0.986	0.014	0.722
	0.972	0.036	ĺ
	0.712	0.010	
Malignant	23	291	314
SECURE THE PROPERTY OF	186.233	509.367	2100900
	0.073	0.927	0.278
	0.028	0.964	Î
	0.020	0.258	ļ
Column Total	826	302	1128
	0.732	0.268	

25

rpart rpart

Confusion matrix on predicting Class of Blind Holdout

97% Accuracy


```
> knn_train
k-Nearest Neighbors

3385 samples
    33 predictor
    2 classes: 'Benign', 'Malignant'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 10 times)
```

Summary of sample sizes: 3046, 3047, 3045, 3047, 3047, 3047, ...

k Accuracy Kappa 3 0.9915521 0.9790008 5 0.9906956 0.9768775 7 0.9899864 0.9751339 9 0.9901637 0.9755640

0.9896023 0.9741869

Resampling results across tuning parameters:

Accuracy was used to select the optimal model using the one SE rule. The final value used for the model was k=3.

27

rpart

Total Observations in Table: 1128

N / Row Total N / Col Total N / Table Total

cell contents

Chi-square contribution

> CrossTable(Test_set1\$factor_redData,predict_knn)

	1	predict_knr	1
Row Total	Malignant	Benign	Test_set1\$factor_redData
814	4	810	Benign
	215.056	81.138	I
0.722	0.005	0.995	Ì
	0.013	0.989	ĺ
	0.004	0.718	1
314	305	9	Malignant
	557.501	210.339	the state of the s
0.278	0.971	0.029	Ĩ.
	0.987	0.011	i i
	0.270	0.008	Į.
1128	309	819	Column Total
	0.274	0.726	2014

Confusion matrix on predicting Class of Blind Holdout

99% Accuracy


```
> naive_train
Naive Bayes

3385 samples
    33 predictor
    2 classes: 'Benign', 'Malignant'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 10 times)
Summary of sample sizes: 3046, 3047, 3047, 3046, 3045, 3047, ...
Resampling results:
```

Accuracy Kappa 0.9835167 0.9594681

Tuning parameter 'fL' was held constant at a value of 1
Tuning parameter
'usekernel' was held constant at a value of TRUE
Tuning parameter 'adjust' was
held constant at a value of 1

Cell Contents

N
Chi-square contribution
N / Row Total
N / Col Total
N / Table Total

Total Observations in Table: 1128

	predict_na	ive	
Test_set1\$factor_redData	Benign	Malignant	Row Total
Benign	798	16	814
	82.412	203.622	
	0.980	0.020	0.722
	0.994	0.049	ĺ
	0.707	0.014	ļ
Malignant	5	309	314
V-12.10.00 - 2.00.00 - 2.00.00 - 2.00.00 - 2.00.00 - 2.00.00 - 2.00.00 - 2.00.00 - 2.00.00 - 2.00.00 - 2.00.00	213.642	527.860	1
	0.016	0.984	0.278
	0.006	0.951	İ
	0.004	0.274	ļ
Column Total	803	325	1128
	0.712	0.288	1

rpart **naive**

Confusion matrix on predicting Class of Blind Holdout

Only 5 Malignant are misclassified as Benign*

98% Accuracy

30

rpart CLUSTERS

> bagged_rpart\$results
 parameter Accuracy Kappa AccuracySD KappaSD
1 none 0.9853702 0.9635066 0.005051538 0.01269591
> predict_bagged <- predict(bagged_rpart,Test_set1)
> CrossTable(Test_set1\$factor_redData,predict_bagged)

cell Contents

				N
Chi-squar	e (COI	ntrib	oution
	N	1	Row	Total
	N	1	Col	Total
N	1	T	able	Total

Total Observations in Table: 1128

	predict_ba	gged	
Test_set1\$factor_redData	Benign	Malignant	Row Total
Benign	814 86.745	0 225.871	814
	1.000 0.999 0.722	0.000 0.000 0.000	0.722
Malignant	1 224.875	313 585.537	 314
	0.003 0.001 0.001	0.997 1.000 0.277	0.278
Column Total	815 0.723	313 0.277	1128

Confusion matrix on predicting Class of Blind Holdout:

- Only 1 Malignant is misclassified as Benign*
- '0' Benign is misclassified as Malignant

> rf_rpart\$results
 mtry Accuracy Kappa AccuracySD KappaSD
1 3 0.9918009 0.9795504 0.005228953 0.01308589
2 6 0.9915797 0.9789938 0.004650786 0.01166644
> predict_rf <- predict(rf_rpart,Test_set1)
> CrossTable(Test_set1\$factor_redData,predict_rf)

Cell Contents

					N
Chi-squa	re		10	ntril	oution
100		N	1	Row	Total
		N	1	col	Total
	N	1	Ta	able	Total

Total Observations in Table: 1128

Test_set1\$factor_redData	predict_rf Benign	Malignant	Row Total
Benign	814	0	814
	87.408 1.000	226.592	0.722
	1.000	0.000	
Malignant	0 226.592	314	314
	0.000	1.000	0.278
	0.000	0.278	
Column Total	814 0.722	314 0.278	1128

Confusion matrix on predicting Class of Blind Holdout:

- '0' Malignant is misclassified as Benign*
- '0' Benign is misclassified as Malignant

PCA ANOVA

• Didn't work

 Data Set 2 – low kappa

• Data set 1 – Exceeded our expectations

Eyeballing, some of the genes are related to immune response triggered in early response to a pathogen.

1 Category	Term	Count	%	PValue	Genes	List Total	Pop Hits	Pop Total	Fold Enrichment	Bonferroni	Benjamini	FDR
2 SP_PIR_KEYWORDS	sodium/potassium transport	1 8	2 6.2	0.0128	2 ATP1B1, ATP1A1	32		19235	150.2734375	0.810783421	0.211669272	13.93686213
3 GOTERM_MF_FAT	GO:0005391~sodium:potassium-exchanging ATPase activity	1 8	6.2	0.0168	2 ATP1B1, ATP1A1	23	10	12983	112.8956522	0.895274319	0.895274319	17.99367858
4 GOTERM_CC_FAT	GO:0005890~sodium:potassium-exchanging ATPase complex	1	6.2	0.0180	1 ATP1B1, ATP1A1	30		12782	106.5166667	0.89111769	0.308976388	18.88269812
5 GOTERM_MF_FAT	GO:0005523~tropomyosin binding		2 6.2	0.0218	2 CNN3, CALD1	23	1.	12983	86.84280936	0.946798763	0.623896614	22.73397508
6 GOTERM_BP_FAT	GO:0002920~regulation of humoral immune response	- 2	2 6.2	0.0219	6 PTPRC, CD37	26	1.	13528	86.71794872	0.999998328	0.669926058	27.95561016
7 SP_PIR_KEYWORDS	blocked carboxyl end	- 2	6.2	0.0286	3 CD59, CD52	32	1	19235	66.78819444	0.976409635	0.340533498	28.66536109
8 COG_ONTOLOGY	Cytoskeleton	1	6.2	0.0315	5 CNN3, LCP1	3	3:	1 1950	41.93548387	0.062104927	0.062104927	6.981634769
9 GOTERM_MF_FAT	GO:0017022~myosin binding		2 6.2	0.0366	5 CXCR4, CALD1	23	2	12983	51.31620553	0.993031832	0.711078634	35.37860124
10 GOTERM_BP_FAT	GO:0051017~actin filament bundle formation	1	2 6.2	0.0381	3 CALD1, LCP1	26	2	1 13528	49.55311355	1	0.766672115	43.67292147
11 INTERPRO	IPR018503:Tetraspanin, conserved site	1	6.2	0.0443	2 CD37, CD63	30	2	16659	42.71538462	0.986522855	0.883908895	39.24476767
12 GOTERM_BP_FAT	GO:0002637~regulation of immunoglobulin production	1	6.2	0.04	7 PTPRC, CD37	26	2	13528	40.02366864	1	0.763478818	50.87449701
13 GOTERM_BP_FAT	GO:0042098~T cell proliferation		6.2	0.0487	6 PTPRC, CXCR4	26	2	7 13528	38.54131054	1	0.759714456	52.20061329
14 SP_PIR_KEYWORDS	phosphatidylinositol linkage		2 6.2	0.0488	1 CD59, CD52	32	3	1 19235	38.78024194	0.998427689	0.475610663	44.11886017
15 GOTERM_BP_FAT	GO:0031032~actomyosin structure organization	1	6.2	0.0505	2 CNN3, CAPN3	26	2	3 13528	37.16483516	1	0.740812467	53.49102615
16 INTERPRO	IPR000301:Tetraspanin, subgroup	1	6.2	0.0509	7 CD37, CD63	30	3	16659	37.02	0.993056411	0.809222125	43.73234446
17 PIR_SUPERFAMILY	PIRSF002419:CD9 antigen		6.2	0.0522	7 CD37, CD63	23	1	7396	35.7294686	0.800216677	0.800216677	36.70126362
18 INTERPRO	IPR018499:Tetraspanin		2 6.2	0.0559	3 CD37, CD63	30	3.	16659	33.65454545	0.995777904	0.597973496	46.87977507
19 GOTERM_CC_FAT	GO:0005765~lysosomal membrane	1	6.2	0.0595	4 LAPTM5, CD63	30	2	7 12782	31.56049383	0.999441132	0.437926648	50.67927244
20 GOTERM_BP_FAT	GO:0002700~regulation of production of molecular mediator of immune response		6.2	0.0731	4 PTPRC, CD37	26	4	13528	25.38086304	1	0.791702446	67.42051988
21 GOTERM_BP_FAT	GO:0046651~lymphocyte proliferation		6.2	0.0748	6 PTPRC, CXCR4	26	4.	13528	24.77655678	1	0.788502065	68.30095094
22 GOTERM_BP_FAT	GO:0007162~negative regulation of cell adhesion		2 6.2	0.0765	7 ERBB3, ARHGDIB	26	4	3 13528	24.20035778	1	0.764487001	69.15765186
23 GOTERM_BP_FAT	GO:0032943~mononuclear cell proliferation	1	6.2	0.0782	8 PTPRC, CXCR4	26	4	13528	23.65034965	1	0.752196464	69.99126054
24 GOTERM_BP_FAT	GO:0002699~positive regulation of immune effector process	1	6.2	0.0782	8 PTPRC, CD37	26	4	13528	23.65034965	1	0.752196464	69.99126054
25 GOTERM_BP_FAT	G0:0070661~leukocyte proliferation		6.2	0.0782	8 PTPRC, CXCR4	26	4	13528	23.65034965	1	0.752196464	69.99126054
26 GOTERM_CC_FAT	GO:0043197~dendritic spine		6.2	0.0828	1 CNN3, CALD1	30	3	12782	22.4245614	0.999973688	0.462228528	63.03583772
27 GOTERM_MF_FAT	GO:0015662~ATPase activity, coupled to transmembrane movement of ions, phosphorylative mechanism		2 6.2		3 ATP1B1, ATP1A1	23	5	12983	21.30106645	0.999993724	0.819362852	65.11554623
28 GOTERM_BP_FAT	GO:0032102~negative regulation of response to external stimulus		6.2	0.0884	9 TNFRSF1B, SPP1	26	5 5	13528	20.81230769	1	0.776870095	74.54160001
29 GOTERM_CC_FAT	GO:0005884~actin filament	1 8	2 6.2	0.0890	<mark>6</mark> CALD1, LCP1	30	4:	1 12782	20.78373984	0.999988571	0.468571055	65.83327329
30 SP_PIR_KEYWORDS	EF hand		2 6.2	0.0923	8 CAPN3, LCP1	32	6	19235	20.03645833	0.999996286	0.617795704	67.60588844
31 SP_PIR_KEYWORDS	actin binding		9.37	0.0018	9 CNN3, CALD1, LCP1	32	4	19235	45.08203125	0.216272572	0.114716188	2.172968065
32 GOTERM_BP_FAT	GO:0048585~negative regulation of response to stimulus		9.37	0.0145	3 PTPRC, TNFRSF1B, SPP1	26	10	13528	15.60923077	0.999844221	0.714193125	19.43581476
33 UP_SEQ_FEATURE	calcium-binding region:2		9.37	0.0148	9 FKBP10, CAPN3, LCP1	32	11	19113	15.58125	0.889839159	0.668095133	16.35299631
34 GOTERM_BP_FAT	GO:0007204~elevation of cytosolic calcium ion concentration	- 1	9.37	0.017	4 PTPRC, CXCR4, CD52	26	110	13528	14.19020979	0.999972861	0.650570152	22.83253068

Oncoprint

144 (50%) of 287 patients had an alteration in at least one of this 33 gene set.

Publishing a paper

It would be great if subject matter experts can look at our findings so we are planning to publish a conference paper.

Future Work

Expanding the technique to other cancer types

Q & A

