

MARDS UNIVERSITY OF THE YEAR

Taxonomy of Attention

Dr. Fani Deligianni,

fani.deligianni@glasgow.ac.uk

Lecturer (Assistant Professor)

Lead of the Computing Technologies for Healthcare Theme

https://www.gla.ac.uk/schools/computing/staff/

WORLD CHANGING GLASGOW

laxonomy of Attention

Niu et al. A review on the attention mechanism of deep learning, Neurocomputing, 2021

Hard vs Soft Attention

- Soft Attention
- Attention score is used as weights in the weighted average context vector calculation
- This is a differentiable function
- The system is optimized by standard backpropagation

$$c = \sum_{j} \alpha_{j} h_{j}$$

Hard vs Soft Attention

- Soft Attention
- Attention score is used as weights in the weighted average context vector calculation
- This is a differentiable function
- The system is optimized by standard backpropagation

Hard vs Soft Attention

- Soft Attention
- Attention score is used as weights in the weighted average context vector calculation
- This is a differentiable function
- The system is optimized by standard backpropagation
- Hard Attention
- $\tilde{a} \sim Multinoulli (\{\alpha_i\})$ The context vector is computed from stochastically sampled keys
 - It is not differentiable
- backpropagation (ie. reinforcement learning) Optimization cannot be performed with

Global vs Local Attention

Global attention

Global attention is like soft attention

Global vs Local Attention

Global attention is like soft attention

Global attention

$$e_{ij} = a(h_j^e, h_i^d) = \tanh(W * h_j^e + U * h_{i-1}^d)$$

$$\alpha_{ij} = (softmax(e_i)_j) = \frac{\exp(e_{ij})}{\sum \exp(e_{ik})}$$

$$c_i = \sum_j \alpha_{ij} h_j^e$$

Global vs Local Attention

Global attention is like soft attention

 $c_i =$

Local attention is at the middle-ground between soft and hard attention

Forms of Input Features

- Item-wise if the input is a sequence of items
- Each item is encoded separately
- Combined with soft-attention estimates a weight for each item and subsequently it combines linearly
- Location-wise are suited for visual tasks
- Accepts an entire feature map
- Generates a transformed version through the attention module

Input Representation

- Distinctive
- Keys and queries belong to two independent sequences
- Self-Attention
- Estimated based on the keys, without the need of queries
- Co-Attention
- Jointly reason about multi-modal data, ie. Images and text in Q&A sessions
- Hierarchical
- Attention estimated from different abstraction levels

Input Representation – Self Attention

- Self-Attention
- Estimated based on the keys, without the need of queries
- It applies within a single layer without connecting two components
- Several successful applications, ie. Transformers
- It models dependencies between different parts of the input well

Input Representation: Co-Attention

Lu et al. Hierarchical Question-Image Co-Attention for Visual Question Answering, NIPS, 2016

Input Representation: Hierarchical Attention

Antoine J.-P. Tixier, Notes on Deep Learning for NLP, 2018

Output Representation

- Single Output
- Single feature representation in each time step
- Energy scores are presented as one vector at each time-step
- Multi-Head Output Attention
- Linearly projects the input sequence to multiple channels
- Multi-Dimensional Output Attention
- Calculates multiple attention distributions for the same data

Summary

- Attention mechanisms have been categorized in several different types
- Soft or hard weights
- Input features (item-wise or location-wise)
- Input representation (self-attention, co-attention, hierarchical attention)
- Output representation (single head, multi-head)

References

- Niu et al. A review on the attention mechanism of deep learning, Neurocomputing,
- Foster, Generative Deep Learning Teaching Machines to Paint, Write, Compose and Play, O'Reilly, 2019
- Lu et al. Hierarchical Question-Image Co-Attention for Visual Question Answering, NIPS, 2016
- Antoine J.-P. Tixier, Notes on Deep Learning for NLP, 2018