# IT CookBook, C로 배우는 쉬운 자료구조, 개정 3판 Self Test 해답

# 1장. Self Test



*p.30* ① -39의 존 형식 : 1111 0000 1111 0011 1101 1001 (F0 F3 D9)

② -39의 팩 형식 : 0000 0000 0000 0011 1001 1101 (00 03 9D)



*p.32* ① 부호와 절대값 형식: 10000000 00000000 00100111

② 1의 보수 형식: 11111111 11111111 11011000③ 2의 보수 형식: 11111111 11111111 11011001



**p.54** 시간복잡도 O(n<sup>2</sup>+n) = O(n<sup>2</sup>)



p.100



#### p.131

C 프로그램에서 다음과 같이 배열 a를 선언하였다. 배열 a가 할당된 시작주소를 10000이라고 가정했을 때, a[2][8]의 주소를 구하여라. 그리고 a[2][8]은 몇 번째 원소

#### 인가?

int a[4][10];

#### ☞ C 프로그램이므로 행우선 순서를 적용한다.

- ① a[2][8]의 주소: 10000 + (2\*10 + 8)\*4byte = 10000 + 28\*4byte = 10112
- ② a[2][8]은 <mark>29번째</mark> 원소이다.



### p.134

C 프로그램에서 다음과 같이 배열 b를 선언하였다. 배열 b가 할당된 시작주소를 10000이라고 가정했을 때, b[1][2][8]의 주소를 구하여라. 그리고 b[1][2][8]은 몇 번째

### 원소인가?

int b[3][4][10];

### ☞ C 프로그램이므로 면우선 순서를 적용한다.

- ① b[1][2][8]의 주소: 10000 + (1\*4\*10 + 2\*10 + 8)\*4byte = 10000 + 68\*4byte = 10272
- ② b[1][2][8]은 69번째 원소이다.



### p.138

다음 다항식을 ①1차원 배열 과 ②2차원 배열 에 저장하는 경우를 설명하시오.

$$A(x) = 12x^{101} + 8x^{99} - 5x^{98} + 72x^2$$

|   | 0  | 1 | 2 | 3  | 4 | 5 | <br>98 | 99 | 100 | 101 |
|---|----|---|---|----|---|---|--------|----|-----|-----|
| я | 12 | 0 | 8 | -5 | 0 | 0 | <br>0  | 72 | 0   | 0   |

## ① 1차원 배열

|   | 0   | 1  |
|---|-----|----|
| 0 | 101 | 12 |
| 1 | 99  | 8  |
| 2 | 98  | -5 |
| 3 | 2   | 72 |

#### ② 2차원 배열



p.193. 원형 연결 리스트 CL에서 pre=CL인 경우에 [알고리즘 4-8]을 적용하여 노드를 삭제하는 과정을 설명하여라.



#### ③ returnNode(old);

Self Test

**p.206**. 이중 연결 리스트 DL에서 pre=DL.**rlink**인 경우에 [알고리즘 4-9]를 적용하여 노드를 삽입하는 과정을 설명하여라.







p.237.

입력 순서가 A,B,C,D로 정해진 자료를 가지고 스택에 push연산과 pop연산을 수행하면서 pop 연산 결과로 반환되는 자료를 출력한다. 출력 가능한 결과를 만들어 보시오.

- - 예) push(A), push(B), push(C), push(D), pop(), pop(), pop(), pop()
  - 예) push(A), pop(), push(B), pop(), push(C), pop(), push(D),  $pop() \Rightarrow ABCD$



p.257.

다음 중위 표기식을 [알고리즘 5-4]에 따라서 후위 표기식으로 변환하여라. (9-(4/2+1))\*(5\*2-2)

☞ (9-((4/2)+1))\*((5\*2)-2) : 우선순위에 따른 괄호 추가 후위표기식 : 9 4 2 / 1 + - 5 2 \* 2 - \*



p.259.

다음 후위 표기식을 [알고리즘 5-5]에 따라서 연산하여라.





p.280.

공백 순차 큐에서 다음 연산의 수행 결과 상태를 설명하여라. enQueue(Q1, A), enQueue(Q1, B), enQueue(Q1, C), deQueue(Q1), enQueue(Q1, D), deQueue(Q1), deQueue(Q1), enQueue(Q1, E)

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|
|   |   |   | D | E |   |   |   |   |   |

rear =4 front=2



## p.324

다음의 일반 트리를 [그림7-6]에 따라 이진 트리로 변환하고, 이진 트리의 높이와단말 노드를 구하시오.



단말노드: F,G,J,L,M 높이:5



### p.345

[예제 7-3]의 44행~54행에서 중위 순회를 하기 위해 후속자 스레드만 갖는 스레드 이진 트리를 구성하였다. ①전위 순회를 하기 위한 스레드 이진 트리, ②후위 순회를 하기 위한 스레드 이진 트리가 되도록 44행~47행과 52행~55행을 각각 수정하시오.

### ☞ ①전위 순회 : -\*AB/CD



44행~47행 : [예제 7-3]과 같음.

52행  $n4 \rightarrow right = n5;$ 

53행  $n5 \rightarrow right = n3;$ 

54행  $n6 \rightarrow right = n7;$ 

#### ☞ ②후위 순회 : AB\*CD/-



44행 treeNode\* n7 = makeRootNode('D', NULL, NULL, 1);

45행~47행 : [예제 7-3]과 같음.

52행 n4 -> right = **n5**;

53행 n5 -> right = n2;

54행 n6 -> right = **n7**;

55행 n7 -> right = **n3**;



### p.355

- ①공백 이진 탐색 트리에 5, 3, 1, 7, 4, 9, 8, 2 를 삽입하는 과정을 설명하여라.
- ②3을 삭제하고 이진 탐색 트리를 재구성하는 과정을 설명하여라.

**1** 



**2** 



이진탐색트리에서 3을 탐색하여 삭제하고, 3의 왼쪽서브트리에서 최대값 2를 후계자로 선택하여 삭제한 3의 자리를 물려준다.

Self Test

## p.372

다음 노드를 순서대로 AVL 트리에 삽입하는 과정을 설명하시오.

노드: 789215364

i 🍜





<u>4</u> 삽입



Self Test

## p.381

[알고리즘 7-11]에 따라서 공백 히프에 {69, 10, 30, 2, 16, 8, 31, 22}를 삽입하는 과정을 설명하시오.

(F <u>31</u> 삽입 <u>10</u> <u>30</u> <u>2</u> <u>16</u>삽입 8 <u>69</u> (69 69 30 □ (30) (30) (10) **16** (16) (16) 2 2 (10) **(2**) (10) 8 (10) 16 **(2**) (8)



# Self Test

### p.383

381쪽 Self Test에서 완성한 히프를 [알고리즘 7-12]에 따라 삭제 연산을 여덟 번 수행하는 과정을 설명하시오.

# ☞ (p.539 히프 정렬 참고)

1)삭제 : 69



# 2) 삭제 : 31



# 3) 삭제 : 30



# 4) 삭제 : 22



5) 삭제 : 16



6) 삭제 : 10



7) 삭제 : 8



8) 삭제 : 2 (삭제 후 공백히프)



*p.418* 인접행렬



|     | Α | В | С | D | Е | F | G |
|-----|---|---|---|---|---|---|---|
|     | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| Α 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| B 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| C 2 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| D 3 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| E 4 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
| F 5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| G 6 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |



*p.424* 인접리스트







p.466

크루스칼 알고리즘 Ⅱ

☞ 정점 : 6개, 간선 : 9개. ☞ <mark>최소비용신장트리 : 간선 5개</mark> (시작정점 a는 의미 없음)



| 가중치 | 간선      |
|-----|---------|
| 1   | (b, f)  |
| 2   | (a , b) |
| 2   | (d, e)  |
| 3   | (b, e)  |
| 4   | (a, d)  |
| 4   | (b, c)  |
| 4   | (b, d)  |
| 5   | (c, f)  |
| 5   | (e, f)  |



### p.469

프림 알고리즘

☞ 정점 : 6개, 간선 : 9개. ☞ 최소비용신장트리 : 간선 5개



정점 a에서 시작  $\rightarrow$  정점 b와 (a, b) 삽입  $\rightarrow$  정점 f와 (b, f) 삽입  $\rightarrow$  정점 e와 (b, e) 삽입  $\rightarrow$  정점 d와 (d, e) 삽입  $\rightarrow$  정점 c와 (b, c) 삽입



#### p.474

다익스트라 알고리즘

☞ 1) 가중치인접행렬에서 시작정점 a에 대한 행을 뽑아서 distance를 만들고 시작.

가중치 인접행렬



|   | а | b | С | d | е | f  |
|---|---|---|---|---|---|----|
| a | 0 | 2 | œ | 4 | œ | œ  |
| b | 2 | 0 | 4 | 4 | 3 | 1  |
| С | 8 | 4 | 0 | 8 | œ | 5  |
| d | 4 | 4 | œ | 0 | 2 | 80 |
| е | 8 | 3 | œ | 2 | 0 | 5  |
| f | 8 | 1 | 5 | œ | 5 | 0  |
|   |   |   |   |   |   |    |

 $S = \{a\}$ 

|          | а | b | С  | d | е | f |
|----------|---|---|----|---|---|---|
| distance | 0 | 2 | 00 | 4 | œ | ∞ |

2) 최소 경로값의 **정점 b 선택**. 현재 b의 경로값을 최소값으로 확정하고, b를 거쳐서 가는 경로에 대해 최소 경로 수정여부 확인하여 c, e, f 수정.



$$S = \{a, b\}$$

$$a \quad b \quad c \quad d \quad e \quad f$$

$$distance \boxed{ 0 \quad 2 \quad 6 \quad 4 \quad 5 \quad \boxed{3} }$$

3) 최소 경로값의 **정점 f 선택**. 현재 f의 경로값을 최소값으로 확정하고, f를 거쳐서 가는 경로에 대해 최소 경로 수정여부 확인. 수정 사항 없음.





4) 최소 경로값의 **정점 d 선택**. 현재 d의 경로값을 최소값으로 확정하고, d를 거쳐서 가는 경로에 대해 최소 경로 수정여부 확인. 수정 사항 없음.





5) 최소 경로값의 **정점 e 선택**. 현재 e의 경로값을 최소값으로 확정하고, e를 거쳐서 가는 경로에 대해 최소 경로 수정여부 확인. 수정 사항 없음.





6) 최소 경로값의 **정점 c 선택**. 현재 c의 경로값을 최소값으로 확정하고, c를 거쳐서 가는 경로에 대해 최소 경로 수정여부 확인. 수정 사항 없음.







#### p.480

플로이드 알고리즘

☞ 1) 초기 상태 A-1: 인접 행렬 weight를 배열에 복사하여 초기화한다.

(무방향 그래프의 인접행렬은 대각선을 기준으로 대칭이 되므로 우삼각형만 처리하고 변경사항을 좌삼각형에 반영한다.)

| A-1 | а | b | С | d | е | f |
|-----|---|---|---|---|---|---|
| а   | 0 | 2 | œ | 4 | œ | œ |
| b   | 2 | 0 | 4 | 4 | 3 | 1 |
| С   | 8 | 4 | 0 | 8 | œ | 5 |
| d   | 4 | 4 | œ | 0 | 2 | œ |
| е   | 8 | 3 | œ | 2 | 0 | 5 |
| f   | 8 | 1 | 5 | ∞ | 5 | 0 |

2)  $A^{0}$  : 두 정점 사이의 최단 경로에서 정점 a를 거쳐서 가는 경로를 고려하여 최단 경로를 수정한다.  $\longrightarrow$  변경사항 없음.  $A^{0} = A^{-1}$ 

3) A1: A0에서 정점 b를 추가로 거쳐서 가는 경로를 고려하여 최단 경로를 수정한다.

| A <sup>1</sup> | а | b | С | d | е | f |
|----------------|---|---|---|---|---|---|
| а              | 0 | 2 | 6 | 4 | 5 | 3 |
| b              | 2 | 0 | 4 | 4 | 3 | 1 |
| С              | 6 | 4 | 0 | 8 | 7 | 5 |
| d              | 4 | 4 | 8 | 0 | 2 | 5 |
| е              | 5 | 3 | 7 | 2 | 0 | 4 |
| f              | 3 | 1 | 5 | 5 | 4 | 0 |

- 4) A<sup>2</sup> : 두 정점 사이의 최단 경로에서 정점 c를 거쳐서 가는 경로를 고려하여 최단 경로를 수정한다. ☞ 변경사항 없음. A<sup>2</sup> = A<sup>1</sup>
- 5) A<sup>3</sup> : 두 정점 사이의 최단 경로에서 정점 d를 거쳐서 가는 경로를 고려하여 최단 경로를 수정한다. ☞ 변경사항 없음. A<sup>3</sup> = A<sup>2</sup>
- 6) A<sup>4</sup> : 두 정점 사이의 최단 경로에서 정점 e를 거쳐서 가는 경로를 고려하여 최단 경로를 수정한다. ☞ 변경사항 없음. A<sup>4</sup> = A<sup>3</sup>
- 7) A<sup>5</sup> : 두 정점 사이의 최단 경로에서 정점 f를 거쳐서 가는 경로를 고려하여 최단 경로를 수정한다. ☞ 변경사항 없음. A<sup>5</sup> = A<sup>4</sup>



#### p.516

피봇의 위치를 정렬할 원소의 마지막 원소로 정하기.

☞ [예제 9-3]의 11행 수정

pivot = end;

Self Test

#### p.5144

AVL트리를 트리 정렬에 이용할 수 있는가?

☞ AVL트리도 정렬에 사용할 수 있다. 정렬할 원소들을 AVL 트리로 구성 한후에 중위 순회를 수행하면 오름차순 정렬된 결과를 구할 수 있다.

하지만, AVL트리는 이진탐색트리 연산에 균형을 유지하기 위한 <u>회전 연산이 추가로 필요</u>하기 때문에 이진탐색트리 보다 재구성 연산이 복잡해진다. (AVL트리는 정렬에도 이용 가능하지만, 탐색에 최적화된 트리이다.)



p.584

슬롯이 두 개인 경우의 선행 개방 주소법 키값은 {45, 9, 10, 96, 25}

| 슬롯0         | 슬롯1          |
|-------------|--------------|
| <b>145</b>  | 310          |
| <b>4</b> 96 | <u>\$</u> 25 |
|             |              |
|             |              |
| 29          |              |
|             | ①45<br>④96   |

h(45) = 45 mod 5 = 0 ☞ 버킷0의 슬롯0에 저장

h(9) = 9 mod 5 = 4 ☞ 버킷4의 슬롯0에 저장

h(10) = 10 mod 5 = 0 ☞ 버킷0의 슬롯1에 저장

h(96) = 96 mod 5 = 1 ☞ 버킷1의 슬롯0에 저장 h(25) = 25 mod 5 = 0 ☞ 버킷0에 빈 슬롯이 없으므로, 그 다음 슬롯을

순차적으로 검색한다. 버킷1의 슬롯1이 비어있으므로 저장한다.