Advanced Competitive Programming

國立成功大學ACM-ICPC程式競賽培訓隊 nckuacm@imslab.org

Department of Computer Science and Information Engineering
National Cheng Kung University
Tainan, Taiwan

質數

質數

- 質數判斷
- 質因數分解
- 質數篩檢 (生成)

•若數 n>1 能被 1 與 n 以外的數整除,則 n 為合數

- 若數 n>1 能被 1 與 n 以外的數整除,則 n 為合數
- 假設 n 是**合數**,則 n=x·y 其中 1<x<y, 顯然 x 的大小不超過 √n;

- 若數 n>1 能被 1 與 n 以外的數整除,則 n 為合數
- 假設 n 是**合數**,則 n=x·y 其中 1<x<y, 顯然 x 的大小不超過 √n;
- 所以若有 x∈[2,√n] 滿足 x|n,則 n 不是質數。

- 若數 n>1 能被 1 與 n 以外的數整除,則 n 為合數
- 假設 n 是**合數**,則 n=x·y 其中 1<x<y, 顯然 x 的大小不超過 √n;
- 所以若有 x∈[2,√n] 滿足 x|n,則 n 不是質數。

```
for (int i = 2; i <= sqrt(n); i++)
  if (n%i == 0) return false;
return true;</pre>
```

Number Theory

- 質數判斷
- 質因數分解
- 質數篩檢 (生成)

• 唯一分解定理:任何合數能分解成一些質數的積

- 唯一分解定理:任何合數能分解成一些質數的積
- 合數 $n=p_1^{t1}$ · p_2^{t2} ····· p_k^{tk} 為多個質數的乘積不失一般性的有 $p_1 < p_2 < \cdots < p_k < \sqrt{n}$

- 唯一分解定理:任何合數能分解成一些質數的積
- 合數 $n=p_1^{t1}$ · p_2^{t2} ····· p_k^{tk} 為多個質數的乘積不失一般性的有 $p_1 < p_2 < \cdots < p_k < \sqrt{n}$
- 所以在範圍 [2,√n] 從小至大找數試除即可。

```
for (int p = 2; p <= sqrt(n); p++) {
  int t = 0;
  while (n%p == 0) n /= p, t++;
  if (t) factors.push_back({p, t});
}
if (n != 1) factors.push_back({n, 1});</pre>
```

Number Theory

- 質數判斷
- 質因數分解
- 質數篩檢 (生成)

•從2開始,刪掉2的倍數

• 從 2 開始, 刪掉 2 的倍數 找下一個未被刪掉的數, 找到 3, 刪掉 3 的倍數

從2開始,刪掉2的倍數 找下一個未被刪掉的數,找到3,刪掉3的倍數 找下一個未被刪掉的數,找到5,刪掉5的倍數

從2開始,刪掉2的倍數 找下一個未被刪掉的數,找到3,刪掉3的倍數 找下一個未被刪掉的數,找到5,刪掉5的倍數

• 最後就能刪掉所有合數,找到所有質數。

	2	3	4	5	6	7	8	9	10	Prime numb
11	12	13	14	15	16	17	18	19	20	
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	
71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95	96	97	98	99	100	
101	102	103	104	105	106	107	108	109	110	
111	112	113	114	115	116	117	118	119	120	

bers

```
vector<bool> is_p(maxn, true);
is_p[1] = false;
for (int n = 2; n < sqrt(maxn); n++) {
  if (!is_p[n]) continue;
  for (int m = n; m < maxn; m+=n)
    is_p[m] = false;
```

• 欲刪掉質數 n 的倍數之時 早已刪掉其 2 倍到 n-1 倍了

• 所以可以直接從 n 倍開始。

```
vector<bool> is_p(maxn, true);
is_p[1] = false;
for (int n = 2; n < sqrt(maxn); n++) {
  if (!is_p[n]) continue;
  for (int m = n*n; m < maxn; m+=n)
    is_p[m] = false;
```

Linear Sieve Algorithm

• 一邊製作質數表,一邊刪掉每個數的質數倍

• 如此每個合數就只會讀取一次

Linear Sieve Algorithm

```
vector<bool> is_p(maxn, true);
is_p[1] = false;
for (int n = 2; n < maxn; n++) {
  if (is_p[n]) prime.push_back(n);</pre>
   for (int p: prime) {
  if (p*n >= maxn) break; //超出篩檢範圍
      is_p[p*n] = false;
if (n%p == 0) break;
```

對於大數字的運算,普通的做法不夠快,

因此接下來將介紹快速的乘法及羃運算

- Gauss's complex multiplication algorithm
- Karatsuba algorithm
- Fast exponentiation

對於 a + bi, c + di

對於 a + bi, c + di

相乘得 (ac - bd) + (bc + ad)i

對於 a + bi, c + di

相乘得 (ac - bd) + (bc + ad)i

一般需要計算 ac, bd, bc, ad 共四次乘法 才能計算出兩數相乘

$$(ac - bd) + (bc + ad)i$$

對於
$$(ac-bd) = ac + bc-bc-bd$$

$$(ac - bd) + (bc + ad)i$$

對於
$$(ac-bd) = ac + bc - bc - bd$$

令

$$k_1 = ac + bc = c(a+b)$$

$$k_2 = bc + bd = b(c+d)$$

$$(ac - bd) + (bc + ad)i$$

對於
$$(bc + ad) = ac + bc + ad - ac$$

$$(ac - bd) + (bc + ad)i$$

對於 (bc + ad) =
$$\underline{ac + bc} + \underline{ad - ac}$$

令

$$k_1 = ac + bc = c(a+b)$$

$$k_3 = ad - ac = a(d-c)$$

$$(ac - bd) + (bc + ad)i$$

$$= (k_1-k_2) + (k_1+k_3)i$$

$$k_1 = ac + bc = c(a+b)$$

$$k_2 = bc + bd = b(c+d)$$

$$k_3 = ad - ac = a(d-c)$$

$$(ac - bd) + (bc + ad)i$$

$$= (k_1-k_2) + (k_1+k_3)i$$

總共只需要三次乘法

似乎變快了一點

- Gauss's complex multiplication algorithm
- Karatsuba algorithm
- Fast exponentiation

對於剛剛的複數乘法

似乎對於整數 x, y 相乘有些啟示

對於剛剛的複數乘法

似乎對於整數 x, y 相乘有些啟示

也就是令

$$x = am + b$$

$$y = cm + d$$

$$x = am + b$$

 $y = cm + d$

$$xy = acm^2 + (ad + bc)m + bd$$

$$xy = acm^2 + (ad + bc)m + bd$$

其中
(ad + bc) = ad + ac + bc + bd - bd - ac
= (a + b)(c + d) - bd - ac

$$xy = acm^2 + (ad + bc)m + bd$$
 $(ad + bc) = ad + ac + bc + bd - bd - ac$
 $= (a + b)(c + d) - bd - ac$
 $z_1 = ac$
 $z_2 = bd$
 $z_3 = (a + b)(c + d)$

$$xy = acm^2 + (ad + bc)m + bd$$

也就是說

$$xy = z_1 m^2 + (z_3 - z_1 - z_2) m + z_2$$

$$z_1 = ac$$

$$z_2 = bd$$

$$z_3 = (a + b)(c + d)$$

$$xy = acm^2 + (ad + bc)m + bd$$

也就是說

$$xy = z_1 m^2 + (z_3 - z_1 - z_2) m + z_2$$

$$z_1 = ac$$

$$z_2 = bd$$

$$z_3 = (a + b)(c + d)$$

$$xy = z_1 m^2 + (z_3 - z_1 - z_2) m + z_2$$

假設數字長度為n

總共只需要三次乘法 相較於直式乘法複雜度 O(n²) 這個算法有複雜度 3·O(n²)

到底在幹三小?

對於上述演算法, 凡是遇到乘法運算,都使用同樣的演算法

感恩分治讚嘆分治

對於上述演算法,

凡是遇到乘法運算,都使用同樣的演算法

並且對於數字的分割,總是分成均等的兩半

例如 6789 分成 67 和 89 6789 = 67.100 + 89

```
int k(int x, int y) {
  if(x < 10 | | y < 10) return x*y;</pre>
  int len = min(log10(x), log10(y));
  int m = pow(10, len/2 + 1);
  auto [a, b] = div(x, m); // since c++17
  auto [c, d] = div(y, m);
  int z1 = k(a, c), z2 = k(b, d), z3 = k(a+b, c+d);
  return z1*m*m + (z3-z1-z2)*m + z2;
```

時間成本 T(n)

$$T(n) = 3 \cdot T(n/2) + c_n$$

$$T(1) = 1 + c_1$$

複雜度為 O(3^{lgn}) = O(n^{lg3})

Calculation

- Gauss's complex multiplication algorithm
- Karatsuba algorithm
- Fast exponentiation

Exponentiating by Squaring

快速冪以及矩陣快速冪

如何計算 3987654321 % 1000007

•O(n): 反正就把 3 一直乘

• O(lg n): 快速冪

快速冪

• 觀察 3ⁿ × 3ⁿ = 3²ⁿ

• 可以分解3⁹⁸⁷⁶⁵⁴³²¹ = 3¹ × 3¹⁶ × 3³² × 3¹²⁸ ×

987654321

= 111010110111100110100010110001₍₂₎// 抱歉很亂

= 1 + 16 + 32 + 128 + ...

快速冪

- 只要 n 是 2 的幂次 3ⁿ 就能很快求出來
- $\cdot 3^n = 3^{n/2} \times 3^{n/2}$

快速冪

```
int x = 1, a = 3;
while (n) {
  if (n&1) x *= a; // 二進位尾數是 1
  x \% = 1000007;
  a *= a;
  a %= 1000007;
  n \rightarrow = 1;
} // x 就是答案
```

矩陣快速幕

- 矩陣也有類似性質
- 假設現在有個方陣 $A \cdot A^n \times A^n = A^{2n}$
- 對於費氏數列:

$$egin{bmatrix} 1 & 1 \ 1 & 0 \end{bmatrix}^n \cdot egin{bmatrix} 1 \ 0 \end{bmatrix} = egin{bmatrix} f_{n+1} \ f_n \end{bmatrix}$$

練習 Zero Judge b525

• b525: 先別管這個了,你聽過turtlebee嗎?

Questions?

Floating-Point Precision

浮點數誤差以及競程處理技巧

形成原因: IEEE 754 的浮點數的儲存

- 用 0 跟 1 表示浮點數
- •表示方式:1.1101010₍₂₎ × 2⁴(10)
- •優點:在精度內可以表達好,通常精度夠用
- 缺點:超出精度就無法表示
- 直接 WA

舉例

- $0.69_{\text{(double)}} \times 10 \neq 6.9_{\text{(double)}}$
- 結果可能是 6.89999.....
- •在 print 的時候不容易出錯,但在比較大小或判斷相等 時常會出問題

解決方法

- 假設今天有個閾值是 6.9,6.899999 這樣的表示會有問題
- •解決方案一:四捨五入
- •解決方案二:自己用 int 做運算
- •解決方案三:乘上 1.000...001(數量根據精度調整) -> 較推薦

解決方法(比較大小)

```
if (0.69 * 10 * 1.000...1 >= 6.9) {
    do something
}
這裡比較 0.69*10 是否大於等於 6.9
所以直接將左邊乘大一些,給他一點誤差空間
```

解決方法(比較相等)

```
if (abs((0.69*10) - 6.9) <= 6.9*1e-14) {
    do something
}
這裡比較 0.69*10 是否等於 6.9
1e-14 是一個很小的數,需大於資料型態的精度
代表 0.69*10 跟 6.9 的差值是否小於自身的某個比例
```

AC Get

