THE 18.821 MATHEMATICS PROJECT LAB REPORT [PROOFS]

JONATHAN ALLEN, JOHN WANG

1. Introduction

sdafkjsadflkj

2. NOTATION

2.1. Vectors.

- a: Scalar quantity.
- **a:** Vector in n-dimensional space. $\|\mathbf{a}\| = a$.
- **â:** Unit vector in n-dimensional space. $\hat{\mathbf{a}} = \mathbf{a}/a$ and $\|\hat{\mathbf{a}}\| = 1$.
- 2.2. **Angles.** Since many of the theorems in this paper involve polar coordinates, we define two different types of angle measurements: the standard counterclockwise measurement, and a directional measurement.

FIGURE 1. Standard angle notation (no arrow). Angle measured counterclockwise from \overline{AB} to \overline{CB} .

Date: September 28, 2013.

FIGURE 2. Directional angle notation (arrow). Angle is measured using smallest angle from \overline{AB} to \overline{CB} . Angle is always less than 180°.

3. Particles and Paths

Definition 3.1. A n-dimensional path $\gamma(t): \mathbb{R} \to \mathbb{R}^n$ is a function which maps a time $t \in \mathbb{R}$, $0 \ge t \ge T_{f,\gamma}$, to a position $\mathbf{X} \in \mathbb{R}^n$.

Definition 3.2. A n-dimensional particle, p, is an object with zero volume that travels along a n-dimensional path. The particle may have conditions on its position, velocity, and acceleration in \mathbb{R}^n .

Definition 3.3. A valid path γ for a particle p is a path such that all conditions on the particle are satisfied at every point along the path.

Definition 3.4. A path between two points, $\mathbf{X_1}$ and $\mathbf{X_2}$ is a path, $\gamma(t)$ where $\gamma(0) = \mathbf{X_1}, \gamma(T_{f,\gamma}) = \mathbf{X_2}$.

Definition 3.5. For a given particle, p, a fastest path, $\hat{\gamma}(t)$, between two points, $\mathbf{X_1}$ and $\mathbf{X_2}$, is a valid path such that $T_f(\hat{\gamma}) \leq T_f(\gamma)$ for all valid paths, $\gamma(t)$, between $\mathbf{X_1}$ and $\mathbf{X_2}$.

Definition 3.6. The centripetal acceleration, $\mathbf{a_c}$, of a particle, p, is the component of the acceleration of p perpendicular to its direction of motion, $\hat{\mathbf{v}}$. The sign of a_c is difined as the sign of the projection of $\hat{\mathbf{a_c}}$ onto $\hat{\mathbf{r}}$.

4. Traveling Between Points

Theorem 4.1. Given points, $X_1, X_2 \in \mathbb{R}^2$ and a particle p initially at X_1 with infinite centripetal acceleration bounded tangential acceleration, $|a_t| \leq \bar{a}$, then the fastest path $\hat{\gamma}(t)$ which p can trace from X_1 to X_2 is the line segment from X_1 to X_2 .

Proof. Let's transform the problem. We can reset our coordinate axes so that (x_1, y_1) is set to the origin and (x_2, y_2) is on the x-axis. In this new coordinate system, we have transformed the following:

$$(1) \qquad (x_1, y_1) \rightarrow (0, 0)$$

(2)
$$(x_2, y_2) \rightarrow (x_2', 0)$$

For convenience of notation, we will now refer to x_2' as x_2 .

Now let us examine the particle's motion in the x direction. Let $a_t(t)$ be the tangential acceleration at time t in the x direction. Then we can obtain the speed of the particle s(t) at time t in the x direction like so:

$$(3) s(t) = \int_0^t a_t(t_1)dt_1$$

To find the distance d(t) travelled up to time t in the x direction, we can use the relation:

$$d(t) = \int_0^t s(t_2)dt_2$$

(5)
$$= \int_0^t \int_0^t a_t(t_1) dt_1 dt_2$$

Recall that the acceleration of the particle p is bounded by \bar{a} . This means that $a_t(t) \leq \bar{a}$ for all t. Therefore, we see:

$$(6) d(t) \leq \int_0^t \int_0^t \bar{a} dt_1 dt_2$$

$$= \frac{\bar{a}t^2}{2}$$

Thus, in order to travel a distance of $d(T_f) = x_2$, it needs to be the case that $T_f \geq \sqrt{\frac{2x_2}{\bar{a}}}$. Moreover, equality holds if and only if $a_t(t) = \bar{a}$ for all $t \in [0, T_f(\gamma)]$.

If the particle travels for time $t < \sqrt{\frac{2x_2}{\bar{a}}}$, then it is impossible for the particle to reach $(x_2,0)$ when starting at (0,0). This is because p cannot reach $(x_2,0)$ in the x direction when $t < \sqrt{\frac{2x_2}{\bar{a}}}$ and any acceleration in the y direction would not enable this either.

This means that the fastest path is completed in time $T_f(\hat{\gamma}) = \sqrt{\frac{2x_2}{\bar{a}}}$. Let us examine the path taken by the particle p on this fastest path. Recall that $a_t(t) = \bar{a}$ for all t along the fastest path. This means that there was no centripetal acceleration $|a_c| = 0$. In other words, the particle never turned on its way to reaching the destination point. The

only way this could have happened is if it travelled along the x axis in a straight line.

Now, we have seen that the fastest path in the transformed coordinates travels exactly on the x axis so that y=0 anywhere along the fastest path. Notice, however, that the x axis in the transformed coordinates is given exactly by the following line:

(8)
$$y = \frac{y_2 - y_1}{x_2 - x_1} x + y_1$$

Thus, we see that the fastest path in the original coordinates follows the above equation, which is what we wanted to show. \Box

Corollary 4.2. The fastest path between two points $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$ is unique.

FIGURE 3. Particle parameters in polar coordinates. B is center of coordinate system, and p is the particle..

Lemma 4.3. For a particle, p,

$$\frac{dr(t)}{dt} = -s(t) \cos(\phi(t) + \theta(t))$$
$$\frac{d\phi(t)}{dt} = -s(t) \sin(\phi(t) + \theta(t))$$

Lemma 4.4. For a particle, p,

$$\frac{d\theta(t)}{dt} = -\frac{a_c(t)}{s(t)}$$

Lemma 4.5. For a particle, p, with bounded centripetal and tangential acceleration, than the functions $\phi(t)$ and $\theta(t)$ are continuous. Furthermore, for two times t_1 and t_2 , s.t. $t_1 \leq t_2$, $\phi(t_1) + \theta(t_1) > a$ and

Proof. The proof follows directly from the fact that the derivatives of $\phi(t)$ and $\theta(t)$ exist: 4.4).

Lemma 4.6. For a particle, p, with nonzero speed, and no centripetal acceleration for $t \geq t_0$, then

$$\begin{cases} \phi(t) \to \theta(t_0) & \text{as } t \to \infty \\ \phi(t) = 0 & \text{for } t \ge t_0 \end{cases} \qquad if \ \theta(t_0) > 0$$

5. Turning Around Cones

5.1. Quadrilateral. Before we attempt to tackle the problem of finding the optimal path around a cone at constant velocity, we may want to find some intuition for the problem with a simple, but related problem. In particular, if a particle is traveling around a cone, we would like to know what circle it traces as it goes around the cone.

Figure 4. Quadrilateral path. $A \to B \to C \to D$.

To make a simple model of this problem, we will use a quadrilateral to model a path around a cone. We will construct a quadrilateral with particular constaints that models the constraints of a path around a cone, and we will try to find the parameters that minimize the perimeter around the quadrilateral. Let us call the sides of the quadrilateral s_1, s_2, s_3 and s_4 . Imagine that s_1 and s_2 are on opposite sides of the quadrilateral with fixed lengths l_1 and l_2 respectively. Now we will constrain the problem to be related to the problem of a particle traveling

around a cone: imagine s_1 and s_2 are connected by a bar s_b of length d. The bar will be perpendicular to s_1 . The angle that s_b forms with s_2 will be called θ . We will try to find the optimal θ that minimizes the perimeter around the quadrilateral.

5.2. **Symmetric Quadrilateral.** Let us begin by solving the simplest version of this problem. Let us imagine that s_b is connected to the midpoints of s_1 and s_2 . We know that the perimeter will be given by $l_1 + l_2 + l_3 + l_4$ where l_3 and l_4 are the lengths of the sides of s_3 and s_4 , respectively. We are given l_1 and l_2 , but we will need to compute l_3 and l_4 as functions of l_1, l_2, d , and θ .

We can find l_3 by using the fact that it forms a right triangle. We know that $l_3^2 = m^2 + n^2$. Finding l_4 is similar. Therefore, we just need to find m and n. This can be done by using the fact that $m = \frac{l_1}{2} - \frac{l_2}{2} \sin \theta$. This is just the upper half of s_1 minus the projection of s_2 onto s_1 . We can find n similarly: $n = d - \frac{l_2}{2} \cos \theta$. This is just the bar s_b minus the projection of s_2 onto the bar. Thus by substituting, we have:

(9)
$$l_3 = \sqrt{\left(\frac{l_1}{2} - \frac{l_2}{2}\sin\theta\right)^2 + \left(d - \frac{l_2}{2}\cos\theta\right)^2}$$

We can do a similar analysis on l_4 , only remembering that n for l_4 gets extended by the projection onto s_4 instead of shrunken. We therefore have:

(10)
$$l_4 = \sqrt{\left(\frac{l_1}{2} - \frac{l_2}{2}\sin\theta\right)^2 + \left(d + \frac{l_2}{2}\cos\theta\right)^2}$$

Now, to minimize the perimeter with respect to θ , we want to minimize $l_1 + l_2 + l_3 + l_4$. Since we know that l_1 and l_2 are fixed, we really want to minimize $l_3 + l_4$ with respect to θ . The other thing to note is that we're minimizing positive distances. We will invoke the following lemma so that we can simplify our expression for min $l_3 + l_4$:

Lemma 5.1. If f(t), g(t) > 0 and k(t) > 0 is a strictly monotonically increasing function for all t, then $\arg\min_t k(f(t)) + k(g(t)) = \arg\min_t f(t) + g(t)$.

Proof. Let t_1, t_2 be such that $f(t_1) + g(t_1) < f(t_2) + g(t_2)$. In this proof, we will show that $k(f(t_1)) + k(g(t_1)) < \sqrt{f(t_2)} + \sqrt{g(t_2)}$. Since k(t) is a strictly monotonically increasing function when t > 0, we know that k(x) < k(y) if and only if x < y (assuming we can confine x, y to be non-negative).

Because this is the case, we see that k(f(x)) < k(f(y)) if and only if f(x) < f(y) (the same goes for g). Thus, we see that if we have found

the minimum t_m to $\arg\min_t k(f(t)) + k(g(t))$, then it is the case that $k(f(t_m)) + k(g(t_m)) < k(f(t)) + k(g(t))$ for all $t \neq t_m$ (again where t > 0). Following our train of logic, we see that $f(t_m) + g(t_m) < f(t) + g(t)$ for all $t \neq t_m$, which means that t_m is a minimum of f(t) + g(t). Thus by finding a minimum t_m to k(f(t)) + k(g(t)), we also found a minimum to f(t) + g(t).

Since we've proven this lemma, we can invoke it upon $\min l_3 + l_4$. Since $l_3 = \sqrt{z_3}$ and $l_4 = \sqrt{z_4}$, we can use $k(t) = \sqrt{t}$ and we can write $\min l_3 + l_4 = \min z_3 + z_4$ by using our lemma. Thus, we now want to solve the problem:

(11)
$$\underset{\theta}{\operatorname{arg\,min}} \quad 2 \quad \left(\frac{l_1}{2} - \frac{l_2}{2}\sin\theta\right)^2$$

$$+ \left(d - \frac{l_2}{2}\cos\theta\right)^2 + \left(d + \frac{l_2}{2}\cos\theta\right)^2$$

Now, we can expand out our expression and use the fact that $\sin^2 \theta + \cos^2 \theta = 1$ to obtain a much simpler (but equivalent) minimization problem:

(13)
$$\arg\min_{\theta} \frac{l_1^2}{2} + \frac{l_2^2}{2} + 2d^2 - l_1 l_2 \sin \theta$$

We note that l_1, l_2 , and d are all constants which are given to us in the problem. Therefore, the minimization problem really boils down to

(14)
$$\underset{\theta}{\operatorname{arg\,min}} -l_1 l_2 \sin \theta = \underset{\theta}{\operatorname{arg\,max}} \sin \theta$$

Thus, we see that $\theta = \frac{\pi}{2}$ minimizes the perimeter of the quadrilateral in the symmetric case.

Theorem 5.2. Given a cone setup consisting of 3 cones at locations X_A , X_B , and X_C .

FIGURE 5. A.

$$(15) dB = \sqrt{x_B + y_B}$$

 $Applying \ the \ triangle \ inequality...$

$$(16) d_c = \alpha_c - \tan^{-1} \left(\frac{y_B}{x_B}\right)$$

(17)

FIGURE 6. A.

$$(18) l_1 = \sqrt{d_c - r}$$

$$(19) x_c = x_B - r \cos \alpha_c$$

$$(20) y_c = y_B - r \sin \alpha_c$$

(21)
$$d_c = \alpha_c - \tan^{-1} \left(\frac{y_c}{x_c} \right)$$

(22)

Proof. Appendix

5.3. Coordinate Systems.

$5.3.1. \ Time \ Derivatives.$

$$\dot{a} = \frac{da}{dt}$$
$$\ddot{a} = \frac{d^2a}{dt^2}$$

5.3.2. Radius of Curvature. The radius of curvature, R, of a curve at a point is a measure of the radius of the circular arc which best approximates the curve at that point.

(23)
$$R = \left| \frac{\left(\dot{x}^2 + \dot{y}^2 \right)^{3/2}}{\dot{x}\ddot{y} - \dot{y}\ddot{x}} \right|$$

$$= \left| \frac{s^2}{a_t} \right|$$

5.4. Scalar Calculus in Polar Coordinates.

$$(24) s = \frac{dl}{dt}$$

$$(25) a_t = \frac{ds}{dt}$$

(26)

5.5. Vector Calculus in Polar Coordinates.

$$(27) x = r\hat{r}$$

(28)
$$\vec{\boldsymbol{v}} = \dot{r}\hat{\boldsymbol{r}} + r\dot{\phi}\hat{\boldsymbol{\phi}}$$

(29)
$$\vec{a} = \left(\ddot{r} - r\dot{\phi}^2\right)\hat{r} + \frac{1}{r}\frac{d}{dt}\left(r^2\dot{\phi}\right)\hat{\phi}$$

5.6. Relations.

$$(30) l = \int_{t=0}^{T} ||\vec{\boldsymbol{v}}|| dt$$

$$(31) s = \|\vec{\boldsymbol{v}}\|$$

(32)
$$a_t = \|\vec{a}\| \cdot \hat{v} = \|\vec{a}\| \cdot \frac{\vec{v}}{\|\vec{v}\|}$$

(33)
$$a_c = \|\vec{a}\| \times \hat{v} = \|\vec{a}\| \times \frac{\vec{v}}{\|\vec{v}\|}$$

References

[1] http://en.wikipedia.org/wiki/Polar_coordinate_system