Programando con Lambda-Cálculo

Mauro Jaskelioff

15/09/2017

Programando en λ -cálculo

- Vimos que el λ -cálculo es un cálculo con una sintaxis y semántica simple pero rica.
- Dijimos que con él se podrían representar todas las funciones computables.
- ¿Cómo programar con λ -cálculo?

Representaciones de tipos de datos

- Para programar, representamos los términos de los tipos de datos básicos (como naturales, booleanos, etc) con λ-expresiones.
 - ► Establecemos expresiones que representan los valores del tipo
 - Los constructores del tipo.
 - Establecemos expresiones que operan sobre el tipo.
 - Los eliminadores del tipo.
- ▶ Nos quedamos satisfechos cuando los valores y operadores del tipo cumplen con una especificación dada.
 - ▶ Como el λ -cálculo no tiene tipos, expresiones como $(not \ \underline{2})$ son válidas, pero no nos interesa como se comporten.
 - Escribiremos "definiciones" como $True \equiv (\lambda x \ y. \ x)$, pero esto es simplemente una abreviación expresada en nuestra metalenguaje.

Booleanos

- Queremos representar los valores True y False, y la operación ifthenelse
- Nuestra especificación es

ifthenelse True
$$P$$
 $Q =_{\beta} P$
ifthenelse False P $Q =_{\beta} Q$

▶ Por lo tanto

ifthenelse True
$$=_{\beta} \lambda p \ q. p$$

ifthenelse False $=_{\beta} \lambda p \ q. q$

Una solución:

```
\begin{array}{ll} True & \equiv \lambda p \ q. \ p \\ False & \equiv \lambda p \ q. \ q \\ if then else & \equiv \lambda x. \ x \end{array}
```

Mas operaciones sobre Booleanos

▶ Usando *True*, *False* e *ifthenelse*, definimos otras funciones (escribimos *ifthenelse* P Q R como **if** P **then** Q **else** R)

$$not \equiv \lambda x. \mathbf{if} \ x \mathbf{then} \ False \mathbf{else} \ True$$

$$\equiv \lambda x. \ if the nelse \ x \ False \qquad True$$

$$\equiv \lambda x. \ (\lambda x. \ x) \qquad x \ (\lambda p \ q. \ q) \ (\lambda p \ q. \ p)$$

$$\rightarrow_{\beta} \lambda x. \ x \ (\lambda p \ q. \ q) \ (\lambda p \ q. \ p)$$

not
$$True \equiv (\lambda x. x (\lambda p \ q. q) (\lambda p \ q. p)) (\lambda p \ q. p)$$

 $\rightarrow_{\beta} (\lambda p \ q. p) (\lambda p \ q. q) (\lambda p \ q. p)$
 $\rightarrow_{\beta} (\lambda p \ q. q)$
 $\equiv False$
not $False \rightarrow_{\beta} \dots$ (Ejercicio!)

Otras funciones:

$$and \equiv \lambda x \ y.$$
 if x then y else $False$ $or \equiv \lambda x \ y.$ if x then $True$ else y

Pares

- lackbox Queremos representar pair y las operaciones fst y snd
- Nuestra especificación es

$$fst (pair P Q) =_{\beta} P$$

 $snd (pair P Q) =_{\beta} Q$

Una solución:

$$pair \equiv \lambda x \ y. \ \lambda b. \ \mathbf{if} \ b \ \mathbf{then} \ x \ \mathbf{else} \ y$$
 $fst \equiv \lambda p. \ p \ True$
 $snd \equiv \lambda p. \ p \ False$

▶ Verifiquemos que $fst\ (pair\ x\ y) =_{\beta} x$:

```
fst (pair x y) \equiv (\lambda p. p True) (pair x y)
=_{\beta} (pair x y) True \equiv (\lambda b. \mathbf{if} b \mathbf{then} x \mathbf{else} y) True
=_{\beta} \mathbf{if} True \mathbf{then} x \mathbf{else} y
=_{\beta} x
```

Receta para representaciones

- 1. Identificar constructores.
 - ► Como construir elementos.
- Identificar eliminadores.
 - Como observar elementos.
- 3. Escribir **ecuaciones** con el comportamiento de los eliminadores sobre los constructores.
- 4. Definir λ -términos que satisfagan las ecuaciones.

Ejercicio

Dar una representación para el tipo *Either* de Haskell:

data
$$Either\ a\ b = Left\ a\ |\ Right\ b$$

con el eliminador

```
either :: Either a \ b \rightarrow (a \rightarrow c) \rightarrow (b \rightarrow c) \rightarrow c
either (Left a) f \ g = f \ a
either (Right b) f \ g = g \ b
```

Representando Naturales

- Para representar números naturales podemos usar la técnica de Church.
- Los naturales son un tipo recursivo muy simple. En Haskell:

$$data Nat = Zero \mid Succ Nat$$

Una forma estándar de eliminar tipos recursivos es el fold. En Haskell el fold para naturales es:

Por lo tanto, para representar los naturales necesitamos definir:

Zero :: Nat
Succ :: Nat
$$\rightarrow$$
 Nat
foldn :: Nat \rightarrow (a \rightarrow a) \rightarrow a \rightarrow a

Especificación de naturales

Dado que

tomamos como especificación de los naturales

▶ Una solución se alcanza fijando $foldn = \lambda x. x$. Entonces:

Zero
$$=_{\beta} \lambda s \ z. \ z$$

Succ $n =_{\beta} \lambda s \ z. \ s \ (n \ s \ z)$

A partir de las ecuaciones las definiciones son inmediatas:

$$Zero \equiv \lambda s \ z. \ z$$
 $Succ \equiv \lambda n. \ \lambda s \ z. \ s \ (n \ s \ z)$

Ejemplos

```
Zero \equiv \lambda s \ z . z
Succ \equiv \lambda n. \lambda s \ z. \ s \ (n \ s \ z)
uno \equiv Succ Zero
        \equiv (\lambda n. \lambda s \ z. s \ (n \ s \ z)) \ Zero
        =_{\beta} \lambda s \ z.s \ (Zero \ s \ z)
        \equiv \lambda s z. s ((\lambda s z. z) s z)
        =_{\beta} \lambda s \ z.s \ z
dos \equiv Succ\ uno
        \equiv (\lambda n. \lambda s z. s (n s z)) uno
        =_{\beta} \lambda s \ z.s \ (uno \ s \ z)
        =_{\beta} \lambda s \ z. \ s \ ((\lambda s \ z. \ s \ z) \ s \ z)
        =_{\beta} \lambda s \ z.s \ (s \ z)
tres =_{\beta} \lambda s \ z.s \ (s \ (s \ z))
```

Notación (metalenguaje)

- Queremos representar n aplicaciones de un término.
- En nuestro metalenguaje anotaremos

$$F^{0} \quad M \equiv M$$

$$F^{n+1} \quad M \equiv F^{n} \quad (FM)$$

Ejemplo:

$$(\lambda x \ y. \ x)^3 \ z \equiv (\lambda x \ y. \ x)^2 \ ((\lambda x \ y. \ x) \ z)$$

$$\equiv (\lambda x \ y. \ x)^1 \ ((\lambda x \ y. \ x) \ ((\lambda x \ y. \ x) \ z))$$

$$\equiv (\lambda x \ y. \ x)^0 \ ((\lambda x \ y. \ x) \ ((\lambda x \ y. \ x) \ z))$$

$$\equiv (\lambda x \ y. \ x) \ ((\lambda x \ y. \ x) \ z)$$

Notar que la notación sólo tiene sentido como parte del metalenguaje.

Numerales de Church

Definición

Para cada $n \in \mathbb{N}$, el numeral de Church para n es un término \underline{n} definido como

$$\underline{n} \equiv \lambda f \ x. \, f^n \ x$$

- ▶ Notar que $\underline{0} \equiv False$. No importa, ya que no usamos tipos.
 - La especificación sólo dice que hacer en caso que los argumentos tengan la forma correcta.

Funciones sobre numerales de Church

- ¿Cómo definir la suma?
- una especificación de suma es la siguiente

$$suma \ \underline{n} \ \underline{0} =_{\beta} \underline{n}$$

$$suma \ \underline{n} \ (Succ \ m) =_{\beta} Succ \ (suma \ \underline{n} \ \underline{m})$$

O equivalentemente:

$$suma \ \underline{n} \ \underline{m} =_{\beta} foldn \ \underline{m} \ Succ \ \underline{n}$$

O sea que podemos definir

$$suma \equiv \lambda n \ m. \ m \ Succ \ n$$

La suma de \underline{n} y \underline{m} es aplicar la función sucesor m veces a \underline{n} .

Ejercicios

Ejercicio

Definir la multiplicación de naturales, para ello:

- 1. Dar una especificación recursiva de la multiplicación.
- 2. Reescribir la especificación usando foldn.
- 3. Dar el término lambda correspondiente a la multiplicación.

Ejercicio

Definir una función isZero, tal que

$$isZero \ \underline{0} =_{\beta} True$$

 $isZero \ n+1 =_{\beta} False$

Escribir la función isZero usando foldn, y luego dar el λ -término.

Representando Listas

- Generalizamos los numerales de Church a listas.
- Las listas están dadas por el siguiente tipo de datos recursivo:

data
$$List \ a = Nil \mid Cons \ a \ (List \ a)$$

Una forma estándar de consumir listas es con foldr. En Haskell:

$$\begin{array}{ll} foldr :: List \ a \rightarrow (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow b \\ foldr \ Nil & c \ n = n \\ foldr \ (Cons \ x \ xs) \ c \ n = c \ x \ (foldr \ xs \ c \ n) \end{array}$$

Por lo tanto, para representar listas necesitamos definir:

```
Nil :: List a

Cons :: a \to List \ a \to List \ a

foldr :: List a \to (a \to b \to b) \to b \to b
```

Especificación de listas

Dado que

foldr Nil
$$c n = n$$

foldr (Cons x xs) $c n = c x$ (foldr xs $c n$)

tomamos como especificación de listas

foldr Nil
$$=_{\beta} \lambda c \ n. \ n$$

foldr $(Cons \ x \ xs) =_{\beta} \lambda c \ n. \ c \ x \ (foldr \ xs \ c \ n)$

▶ Una solución se alcanza fijando $foldr = \lambda x. x$. Entonces:

Nil
$$=_{\beta} \lambda c \ n. \ n$$

Cons $x \ xs =_{\beta} \lambda c \ n. \ c \ x \ (xs \ c \ n)$

▶ Por lo tanto definimos

$$Nil \equiv \lambda c \ n. \ n$$

$$Cons \equiv \lambda x \ xs. \ \lambda c \ n. \ c \ x \ (xs \ c \ n)$$

Ejemplos

```
Nil \equiv \lambda c n. n
Cons \equiv \lambda x \ xs. \ \lambda c \ n. \ c \ x \ (xs \ c \ n)
[3]
          \equiv Cons \ 3 \ Nil
              =_{\beta} \lambda c \ n. \ c \ 3 \ (Nil \ c \ n)
              \equiv \lambda c \ n. \ c \ 3 \ ((\lambda c \ n. \ n) \ c \ n)
              =_{\beta} \lambda c \ n. \ c \ 3 \ n
[2,3] \equiv Cons \ 2 \ (Cons \ 3 \ Nil)
              =_{\beta} \lambda c \ n. \ c \ 2 \ ((Cons \ 3 \ Nil) \ c \ n)
              =_{\beta} \lambda c \ n. \ c \ 2 \ ((\lambda c \ n. \ c \ 3 \ n) \ c \ n)
              =_{\beta} \lambda c \ n. \ c \ 2 \ (c \ 3 \ n)
[1,2,3] \equiv Cons \ 1 \ (Cons \ 2 \ (Cons \ 3 \ Nil))
              \equiv \lambda c \ n. \ c \ 1 \ ((Cons \ 2 \ (Cons \ 3 \ Nil)) \ c \ n)
              =_{\beta} \lambda c \ n. \ c \ 1 \ ((\lambda c \ n. \ c \ 2 \ (c \ 3 \ n)) \ c \ n)
              =_{\beta} \lambda c \ n. \ c \ 1 \ (c \ 2 \ (c \ 3 \ n))
```

Más ejemplos

▶ La función *length*, recursivamente

```
\begin{array}{ll} \textit{length} & :: \textit{List } a \rightarrow \textit{Nat} \\ \textit{length Nil} & = \textit{Zero} \\ \textit{length } (\textit{Cons } x \textit{ xs}) = \textit{Succ (length } xs) \end{array}
```

▶ Reescribimos como *foldr*:

$$length \ xs = foldr \ xs \ (\lambda x \ n. \ Succ \ n) \ Zero$$

En λ-cálculo:

$$length \equiv \lambda xs. xs (\lambda x \ n. Succ \ n) Zero$$

Receta para representar tipos recursivos

Para representar un tipo de datos recursivo:

- 1. Identificar constructores
- 2. Escribir el **fold** correspondiente.
- 3. Tomar como **especificación** las ecuaciones del fold.
- 4. Definir el fold como la función identidad y **derivar** a partir de las ecuaciones los λ -términos correspondientes a los constructores.

Limitaciones de la representación con fold

- La representación de tipos recursivos con fold trae algunas complicaciones.
- ▶ Algunas funciones muy comunes son difíciles de representar:
 - predecesor de los naturales
 - cola de una lista.
- ▶ Para poder definirlas es necesario utilizar tuplamiento
 - El resultado de la función es una tupla.
 - ► El resultado deseado está en una de las componentes.
- ▶ Por ejemplo, la función pred' es un foldn.

```
pred' \ Zero = (0,0)

pred' \ (Succ \ n) = (snd \ (pred' \ n), Succ \ (snd \ (pred' \ n))

pred \ n = fst \ (pred' \ n)
```

```
pred' = \lambda n. foldn \ n \ (\lambda pn. (snd \ pn, Succ \ (snd \ pn))) \ (0,0)
```

Recursión general

Funciones recursivas

- ¿Cómo definir una función recursiva?
- ▶ Por ejemplo, queremos definir la función fact

$$fact \equiv \lambda n. if (isZero n) then \underline{1} else prod n (fact (pred n))$$

(suponemos ya definidas prod (producto) y pred (predecesor))

- ¡Pero esto no es una definición válida! (¿Por qué?)
- Abstraemos la llamada recursiva problemática

$$B \equiv \lambda f \ n. \ \text{if} \ (isZero \ n) \ \text{then} \ \underline{1} \ \text{else} \ prod \ n \ (f \ (pred \ n))$$

La "definición" de más arriba se pude expresar como una ecuación:

$$fact =_{\beta} B \ fact$$

▶ Definir *fact* es resolver esta ecuación en la incógnita *fact*.

Operador de punto fijo

- ▶ Para resolver en X una ecuación $X =_{\beta} B X$ se utilizan operadores de punto fijo.
- Un operador de punto fijo, es un término F tal que

$$\mathbf{F} B =_{\beta} B (\mathbf{F} B)$$

Dado un operador de punto fijo F podemos definir fact:

$$\begin{aligned}
fact &\equiv \mathbf{F} B \\
&=_{\beta} B (\mathbf{F} B) \\
&\equiv B fact
\end{aligned}$$

► Es decir que *fact* es:

$$fact \equiv \mathbf{F} (\lambda f \ n. \mathbf{if} \ (isZero \ n) \mathbf{then} \ \underline{1} \mathbf{else} \ prod \ n \ (f \ (pred \ n)))$$

El operador de puntos fijo ${f Y}$

 Considere el siguiente combinador: (un combinador es un término cerrado)

$$\mathbf{Y} \equiv \lambda x. (\lambda y. x (y y)) (\lambda y. x (y y))$$

Teorema

El combinador Y es un operador de punto fijo. Es decir, todo término X tiene un punto fijo dado por (Y X):

$$\mathbf{Y} \ X =_{\beta} X \ (\mathbf{Y} \ X)$$

Nota: Y no es el único operador de punto fijo.

Resumen

- ▶ Representación de booleanos y pares.
- Representación de naturales.
- Representación de listas.
- Funciones recursivas y puntos fijos.

¡El λ -cálculo es un lenguaje de programación!

Referencias

- ► Lambda-Calculus and Combinators. J. R. Hindley and J. P. Seldin. Cambridge University Press (2008).
- ► Theories of Programming Languages. J. Reynolds (1998).
- ► Types and Programming Languages. B.C. Pierce (2002).