MA453 Topologia Geral - Exercícios P2

Adair Neto

29 de maio de 2023

Funções Contínuas

Exercício 4.1

Questão: Seja $f: M \longrightarrow \mathbb{R}$. Diremos que

- f é semicontínua inferiormente se $f^{-1}(a, +\infty)$ é aberto em M para cada $a \in \mathbb{R}$.
- f é **semicontínua superiormente** se $f^{-1}(-\infty,b)$ é aberto em M para cada $b \in \mathbb{R}$.

Prove que f é contínua se e só se f é semicontínua inferiormente e semicontínua superiormente.

Resolução:

- 1. (\Rightarrow) Suponha que f é contínua.
 - Como $(a, +\infty)$ e $(-\infty, b)$ são abertos, então $f^{-1}(a, +\infty)$ e $f^{-1}(-\infty, b)$ são abertos.
- 2. (\Leftarrow) Suponha que f é semicontínua inferiormente e semicontínua superiormente.
 - Seja (c,d) um aberto de \mathbb{R} .
 - Escreva

$$(c,d) = (-\infty,d) \cap (c,+\infty)$$

- Por hipótese, $f^{-1}(c, +\infty)$ e $f^{-1}(-\infty, d)$ são abertos.
- Assim

$$f^{-1}(c,d) = f^{-1}[(-\infty,d) \cap (c,+\infty)] = f^{-1}(-\infty,d) \cap f^{-1}(c,+\infty)$$

• Logo, $f^{-1}(c,d)$ é aberto e, portanto, f é contínua.

Exercício 4.2a

Questão: Sejam (M, τ) e (N, τ') espaços topológicos. Mostre que se \mathscr{B} é uma base para τ' , então $f: M \longrightarrow N$ é contínua se e só se $f^{-1}(V)$ é aberto em M para cada $V \in \mathscr{B}$.

Resolução:

- 1. (\Rightarrow) Suponha que f é contínua.
 - Tome $V \in \mathcal{B}$.
 - Como V é aberto de N e f é contínua, $f^{-1}(V)$ é aberto em M.
- 2. (⇐) Suponha que $f^{-1}(V)$ é aberto em M para cada $V \in \mathcal{B}$.
 - Dado $U \in \tau'$, existe $\mathscr{C} \subset \mathscr{B}$ tal que

$$U = \bigcup_{C \in \mathscr{C}} C$$

• Como

$$f^{-1}(\mathbf{U}) = f^{-1}\left(\bigcup_{\mathbf{C} \in \mathscr{C}} \mathbf{C}\right) = \bigcup_{\mathbf{C} \in \mathscr{C}} f^{-1}(\mathbf{C})$$

- Temos que $f^{-1}(U) \in \tau$, porque é união de abertos.
- Logo, f é contínua.

Exercício 4.2b

Questão: Prove que uma função $f: \mathbb{M} \longrightarrow \mathbb{N}$ é contínua se e só se $f(\overline{\mathbb{A}}) \subset \overline{f(\mathbb{A})}$.

- 1. (\Rightarrow) Suponha $f: M \longrightarrow N$ contínua.
 - Lembre que

$$A \subset f^{-1}(f(A))$$
 e $f(f^{-1}(B)) \subset B$

· Usando isso,

$$A \subset f^{-1}(f(A)) \subset f^{-1}(\overline{f(A)})$$

- Como f é contínua, $f^{-1}(\overline{f(A)})$ é fechado.
- Portanto.

$$\overline{A} \subset f^{-1}(\overline{f(A)})$$

· Logo,

$$f(\overline{\mathsf{A}}) \subset f(f^{-1}(\overline{f(\mathsf{A})})) \subset \overline{f(\mathsf{A})}$$

- 2. (\Leftarrow) Suponha $f(\overline{A}) \subset \overline{f(A)}$.
 - Tome C ∈ N fechado.
 - · Temos que

$$f(f^{-1}(C)) \subset C \implies f(\overline{f^{-1}(C)}) \subset \overline{f(f^{-1}(C))} \subset C$$

· Assim,

$$\overline{f^{-1}(C)} \subset f^{-1}(C)$$

• O que implica que $f^{-1}(C)$ é fechado.

Exercício 4.2e

Questão: Se $A \subset M$ e $\chi_A : M \longrightarrow \mathbb{R}$ é dada por

$$\chi_{\mathbf{A}}(x) = \begin{cases} 1, & x \in \mathbf{A} \\ 0, & x \notin \mathbf{A} \end{cases}$$

Então χ_A é: 1. Semicontínua inferiormente se, e somente se, A é aberto. 2. Semicontínua superiormente se, e somente se, A é fechado. 3. contínua se, e somente se, A é aberto e fechado.

Resolução:

1. • Note que

$$\chi_{\mathbf{A}}^{-1}(a, +\infty) = \begin{cases} \mathbf{M}, & a < 0 \\ \mathbf{A}, & 0 \le a < 1 \\ \emptyset, & a \ge 1 \end{cases}$$

- (⇒) Temos que χ_A⁻¹(a, +∞) é aberto para todo a ∈ ℝ. Portanto, A = χ_A⁻¹(0, +∞) é aberto.
 (⇐) Por contrapositiva: suponha que existe a ∈ ℝ tal que χ_A⁻¹(a, +∞) não é aberto. Neste caso, A não é aberto.
- Note que

$$\chi_{\mathbf{A}}^{-1}(-\infty, a) = \begin{cases} \mathbf{M}, & a \le 0 \\ \mathbf{A}, & 0 < a \le 1 \\ \emptyset, & a > 1 \end{cases}$$

- Basta ver que $\chi_{\rm A}^{-1}(-\infty,a)$ é fechado sse. $\chi_{\rm A}^{-1}(a,+\infty)$ é aberto e aplicar o item anterior.
- 3. Segue do exercício 4.1 e dos pontos anteriores.

Exercício 4.3

Questão: Se $f: X \longrightarrow Y$ é uma função contínua tal que $f(x) = y_0$ para todo x em um denso $D \subset X$ e Y é Hausdorff, então $f(x) = y_0$ para todo $x \in X$.

- Suponha que existe $y \in X$ tal que $f(y) \neq y_0$.
- Como f é contínua, para todo $V \in \mathcal{B}_{f(y)}$, existe $U \in \mathcal{B}_{y}$ tal que $f(U) \subset V$.
- Como D é denso em X, temos que $D \cap U \neq \emptyset$.
- Assim, dado $x \in D \cap U$, temos que $f(x) = y_0$, o que contradiz o fato que $f(U) \subset V$, para todo $V \in \mathcal{B}_{f(y)}$.

Exercício 4.4

Questão: Seja $f: X \longrightarrow Y$ uma função contínua. Se x é o ponto limite de um conjunto $A \subset X$, então f(x) é ponto limite de f(A)?

Resolução:

• A afirmação é falsa. Considere

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x) = 2, \ \forall \ x \in \mathbb{R}$$

- Se A = [0, 1], temos A' = [0, 1].
- Note que 1 é ponto de acumulação de A.
- Mas f(1) = 2 não é ponto de acumulação de $f[0, 1] = \{2\}$.
- De fato, se V é uma vizinhança de 2 em f(A), então

$$(f(A) \cap V) \setminus \{2\} = \emptyset$$

Exercício 4.5

Questão: Sejam (X, τ) e (X, τ') espaços topológicos distintos e I : $(X, \tau') \longrightarrow (X, \tau)$ a função identidade. Mostre que

- 1. I é contínua sse. τ' é mais fina que τ .
- 2. I é homeomorfismo sse. $\tau' = \tau$.

Resolução:

- 1. I é contínua sse. τ' é mais fina que τ .
 - 1. (⇒) Suponha que I é contínua.
 - Dado $V \in \tau$, temos que $I^{-1}(V) \in \tau'$ porque I é contínua.
 - Como I é a identidade, $I^{-1}(V) = V$, i.e., se $V \in \tau$, então $V \in \tau'$.
 - Ou seja, τ' é mais fina que τ .
 - 2. (\Leftarrow) Suponha que τ' é mais fina que τ .
 - Por hipótese, se $V \in \tau$, então $V \in \tau'$.
 - Assim, $I^{-1}(V) = V$ (porque I é identidade) e, portanto, I é contínua.
- 2. I é homeomorfismo sse. $\tau' = \tau$.
 - 1. (⇒) Suponha que I é homeomorfismo.
 - Pelo item anterior, $\tau \subset \tau'$.
 - Por outro lado, I^{-1} também é contínua e identidade. Portanto, $\tau' \subset \tau$.
 - 2. (\Leftarrow) Suponha que $\tau' = \tau$.
 - Como $\tau \subset \tau'$, pelo item anterior temos que I é contínua.
 - Analogamente, $\tau' \subset \tau$ e I⁻¹ é contínua.
 - Como I é bijetora por definição, temos que I é homeomorfismo.

Exercício 4.8

Questão: Assuma que a < b. Mostre que o conjunto $(a,b) \subset \mathbb{R}$ é homeomorfo a A = (0,1), $B = (-\infty,0)$, $C = (0,+\infty)$ e \mathbb{R} . Conclua que todos os intervalos abertos são homeomorfos entre si. Mostre também que $[a,b] \subset \mathbb{R}$ é homeomorfo a [0,1].

Resolução:

- 1. A = (0, 1).
 - Considere $f:(0,1) \longrightarrow (a,b)$ dada por $f(x)=t_a \circ m_{(b-a)}(x)$, em que $t_a(x)=x+a$ (translação) e $m_{b-a}(x)=(b-a)x$ (homotetia), i.e.,

$$f(x) = (b-a)x + a$$

- Note que f(0) = a e f(1) = b.
- *f* é contínua, porque é composição de contínuas.
- E sua inversa é dada por

$$f^{-1}(x) = (t_a \circ m_{(b-a)})^{-1}(x) = m_{1/(b-a)} \circ t_{(-a)}(x) = \frac{x-a}{b-a}$$

2. $B = (-\infty, 0)$.

• Considere $f: (-\infty, 0) \longrightarrow (0, 1)$ dada por $f(x) = e^x$, cuja inversa é $\ln(x)$.

3. $C = (0, +\infty)$

• Tome $f(x) = e^{-x}$.

4. ℝ.

• Tome $f: \mathbb{R} \longrightarrow (0,1)$ dada por

$$f(x) = \frac{x}{\sqrt{1 + x^2}}$$

Cuja inversa é dada por

$$f^{-1}(x) = \frac{x}{\sqrt{1 - x^2}}$$

5. Caso [a,b] e [0,1].

• Basta tomar intervalos fechados no primeiro caso.

6. Todo intervalo aberto.

• Observe que, para $(-\infty, a)$, tomamos $f(x) = e^{x-a}$.

Exercício 4.9

Questão: Encontre uma função $f: \mathbb{R} \longrightarrow \mathbb{R}$ que seja contínua em um único ponto.

Resolução:

• Considere

$$f(x) = \begin{cases} x, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

• E note que f(x) só é contínua em zero.

Exercício 4.11

Questão: Sejam $f,g:X \longrightarrow \mathbb{R}$ funções contínuas. Mostre que as funções $(f \lor g), (f \land g):X \longrightarrow \mathbb{R}$ definidas por

$$(f \lor g)(x) = \max\{f(x), g(x)\}\$$

$$(f \wedge g)(x) = \min\{f(x), g(x)\}\$$

são funções contínuas.

Resolução:

Basta notar que

$$(f \lor g)(x) = \frac{f(x) + g(x) + |f(x) - g(x)|}{2}$$

e

$$(f \wedge g)(x) = \frac{f(x) + g(x) - |f(x) - g(x)|}{2}$$

Exercício 4.12

Questão: Seja $A \subset X$ e $f: A \longrightarrow Y$ uma função contínua. Se Y é Hausdorff e f pode ser estendida a uma função contínua $g: \overline{A} \longrightarrow Y$, então g está univocamente determinada por f.

Resolução:

• Suponha que existem $g, h : \overline{A} \longrightarrow Y$ extensões contínuas de f.

• E assuma que existe $x \in \overline{A}$ tal que $g(x) \neq h(x)$.

• Como Y é Hausdorff, existem U e V abertos tais que $g(x) \subset U$ e $h(x) \subset V$ com $U \cap V = \emptyset$.

Como g e h são contínuas, g⁻¹(U) e h⁻¹(V) são abertos.
Considere o aberto W = g⁻¹(U) ∩ h⁻¹(V).

• Como $x \in W$, temos que W é não vazio e $W \cap \overline{A} \neq \emptyset$ (pois toda vizinhança aberta de x intersecta A).

• Portanto, existe $x_0 \in W \cap \overline{A}$ e temos que $f(x_0) = g(x_0) = h(x_0)$, o que contradiz $U \cap V = \emptyset$.

• Logo, $g \equiv h$.

Exercício 4.14 (Willard Thm. 13.13)

Questão: Sejam (X, τ) e (Y, τ') dois espaços topológicos, com Y de Hausdorff. E sejam $f, g: X \longrightarrow Y$ contínuas. Mostre que

$$A = \{x \in X : f(x) = g(x)\}$$

é fechado.

Resolução:

- Mostremos que A^c é aberto.
- Seja $x \in A^c$. Como Y é Hausdorff, existem U, V abertos em Y disjuntos tais que $f(x) \subset U$ e $g(x) \subset V$.
- Como f e g são contínuas, $f^{-1}(U)$ e $g^{-1}(V)$ são abertos.
- Note que *x* pertence ao aberto $W = f^{-1}(U) \cap g^{-1}(V)$.
- Tomando $y \in W$, temos que

$$f(y) \in f(U), g(y) \in g(U) \implies f(y) \neq g(y)$$

• Como W é uma vizinhança aberta de *x* contida em A^c, temos que A^c é aberto.

Exercício 4.18a

Questão: Sejam (X, τ) e (Y, τ') dois espaços topológicos e $f: X \longrightarrow Y$. Mostre que se Y é Hausdorff e f é contínua, então o gráfico de f é fechado em $X \times Y$.

Resolução:

• Defina o gráfico de *f* :

$$G(f) = \{(x, f(x)) : x \in X\}$$

- Tome $(x,y) \in G(f)^c$, i.e., $y \neq f(x)$.
- Como Y é Hausdorff, existem U, V \subset Y abertos tais que $f(x) \subset$ U, $y \subset$ V e U \cap V = \emptyset .
- Como f é contínua, $f^{-1}(U)$ e $f^{-1}(V)$ são abertos.
- Seja W uma vizinhança aberta de x tal que $f(W) \subset U$.
- Mostrar que $(W \times V) \cap G = \emptyset$.
 - Tome (z, f(z)) ∈ G.
 - Caso $z \notin W$, então $(z, f(z)) \notin W \times V$.
 - Caso $z \in W$, então $f(z) \in U$ e, portanto, $f(z) \notin V$. Assim, $(z, f(z)) \notin W \times V$.
 - Em ambos os casos, $(z, f(z)) \notin W \times V$. Ou seja, $(W \times V) \cap G = \emptyset$.
- Logo, todo ponto de G^c tem uma vizinhança aberta disjunta de G, i.e., G^c é aberto.

Exercício 4.18b

Questão: Sejam (X, τ) e (Y, τ') dois espaços topológicos e $f: X \longrightarrow Y$. Mostre que se Y é compacto e o gráfico de f é fechado em $X \times Y$, então f é contínua.

Resolução:

• Defina o gráfico de *f* :

$$G(f) = \{(x, f(x)) : x \in X\}$$

- Seja F um fechado de Y e π : X × Y → X projeção na primeira coordenada. Como Y é compacto, π é fechada e contínua (Lema 1).
- Assim,

$$\pi[G(f)\cap(X\times F)]=f^{-1}(F)$$

- Como $G(f) \cap (X \times F)$ é fechado, temos que $f^{-1}(F)$ é fechado.
- Logo, f é contínua.

Exercício 4.20 (Willard Thm. 18.5)

Questão: Mostre que a imagem contínua e aberta de um espaço localmente compacto é localmente compacto.

Resolução:

• Seja $f: X \longrightarrow Y$ contínua e aberta com X localmente compacto.

- Considere $y \in f(X)$ e V uma vizinhança de y.
- Escolha $x \in f^{-1}(y)$.
- Como f é contínua e X localmente compacto, existe uma vizinhança compacta K de x tal que $f(K) \subset V$.
- Como $x \in K^{\circ}$, temos que $y \in f(K^{\circ}) \subset f(K)$.
- Como f é aberta, $f(K^{\circ})$ é aberta.
- Logo, f(K) é uma vizinhança compacta de y contida em V.

Exercício 4.21

Questão: Sejam (X, τ) um espaço localmente compacto e (Y, τ') um espaço de Hausdorff. E seja $f: X \longrightarrow Y$ sobrejetora, contínua e aberta. Mostre que se $L \subset Y$ é compacto, existe $K \subset X$ compacto tal que f(K) = L.

Resolução:

- Como L é compacto num Hausdorff, L é fechado.
- Pela continuidade de f, temos que $f^{-1}(L)$ é fechado.
- Com isso, $f^{-1}(L) \cap M$ é compacto, para qualquer $M \subset X$ compacto.
- Como X é localmente compacto, para cada $x \in X$ existe um aberto U_x e um compacto C_x tal que $x \in U_x \subset C_x$.
- Cubra $f^{-1}(L)$ com as vizinhanças C_x .
- Dessa forma, $\{f(C_x^\circ): x \in f^{-1}(L)\}$ é uma cobertura aberta de L.
- Construir um compacto $M \subset X$ tal que $L \subset f(M)$.
- Tomar $K = f^{-1}(L) \cap M$.

Exercício 4.22b (Willard Thm. 16.2)

Questão: Mostre que a imagem contínua e aberta de um espaço topológico que satisfaz o segundo axioma de enumerabilidade também satisfaz o mesmo axioma.

Resolução:

- Seja $f: X \longrightarrow Y$ contínua e aberta e suponha que X satisfaz o segundo axioma de enumerabilidade.
- Verificar que, se \mathscr{B} é base de X, então $f(\mathscr{B}) = \{f(B) : B \in \mathscr{B}\}\$ é base de Y.
- Seja V aberto de Y e $p \in V$.
- Então $f^{-1}(V)$ é aberto em X.
- Escolha $q \in f^{-1}(p) \subset f^{-1}(V)$.
- Então, para algum aberto básico B, temos $q \in B \subset f^{-1}(V)$.
- Portanto, $p \in f(B) \subset V$ e, como f é aberta, os conjuntos f(B) formam uma base para Y.

Exercício 4.22c (Willard Thm. 16.6)

Questão: Mostre que a imagem contínua de um espaço Lindelof é Lindelof.

Resolução:

- Suponha que $f: X \longrightarrow Y$ é contínua e sobrejetora e X é Lindelof.
- Tome $\{U_i\}_{i\in I}$ uma cobertura aberta de Y.
- Então $\{f^{-1}(U_i)\}_{i\in I}$ é uma cobertura aberta de X, donde extraímos uma subcobertura enumerável $\{f^{-1}(U_n)\}_{n\in\mathbb{N}}$.
- Assim, $\{U_n\}_{n\in\mathbb{N}}$ é uma subcobertura enumerável de $\{U_i\}_{i\in\mathbb{I}}$.

Exercício 4.22d

Questão: Mostre que a imagem contínua de um espaço separável é separável.

- Note que um mapa contínuo f de X em Y leva um subconjunto denso de X em um subconjunto denso de Y.
- Seja D denso enumerável em X.
- Como f é contínua,

$$f(D) \subset f(X) = f(\overline{D}) \subset \overline{f(D)}$$

- Seja $y \in f(\overline{D})$. Então y = f(x) para algum $x \in \overline{D}$.
- Seja $V \subset Y$ um aberto contendo y.

- Pela continuidade de f, temos que $f^{-1}(V) \subset X$ é aberto e $x \in f^{-1}(V)$.
- Como D é denso, $f^{-1}(V) \cap D \neq \emptyset$.
- Logo, $V \cap f(D) \neq \emptyset$.

Exercício 4.24

Questão: Mostre que a imagem contínua de conexo é conexa.

Resolução:

- 1. Suponha que a imagem seja desconexa.
 - Sejam $f: X \longrightarrow Y$ contínua, X conexo e W = f(X).
 - Isto é, existem U, V abertos não vazios tais que $W = U \cup V$ e $U \cap V = \emptyset$.
- 2. Deduza que o domínio é desconexo.

 - Assim, podemos escrever X = f⁻¹(U) ∪ f⁻¹(V).
 Note que f⁻¹(U) e f^{-1(V)} são não vazios e disjuntos.

Exercício 4.27

Questão: Seja $f: X \longrightarrow Y$ contínua. Mostre que a imagem de cada componente conexa de X está contida numa componente conexa de Y.

Resolução:

- Seja C_x a componente conexa de $x \in X$.
- Como f é contínua, $f(C_x)$ é conexo.
- Denote por $y = f(x) \in f(C_x)$.
- Como $f(C_x)$ é conexo e $y \in f(C_x)$, temos que $f(C_x) \subset C_y$, pois C_y é a maior componente conexa contendo y.

Exercício 4.28

Questão: Suponha que X e Y são homeomorfos. Mostre que cada componente conexa de X é homeomorfa a uma componente conexa de Y.

Resolução:

- Sejam C_x a componente conexa de $x \in X$ e $f: X \longrightarrow Y$ homeomorfismo.
- Como f é contínua, pelo exercício anterior, $f(C_x)$ é conexo e $f(C_x) \subset C_y$, em que y = f(x).
- Como f^{-1} é contínua, $f^{-1}(C_v)$ é conexo e $f^{-1}(C_v) \subset C_x$.
- Assim, como *f* é bijetora,

$$f^{-1}(f(C_x)) = C_x \subset f^{-1}(C_y) \subset C_x \implies C_x = f^{-1}(C_y)$$

· Analogamente,

$$f(f^{-1}(C_y)) = C_y \subset f(C_x) \subset C_y \implies C_y = f(C_x)$$

• Logo, C_x e C_y são homeomorfos.

Exercício 4.30

Questão: Seja M um espaço de Hausdorff e assuma que existe uma compactificação (N, φ) de M tal que $N \setminus \varphi(M)$ contém um único ponto. Mostre que M é localmente compacto, mas não é compacto.

- 1. Definição de compactificação.
 - Como (N, φ) é compactificação, N é Hausdorff e compacto e $\varphi: M \longrightarrow N$ é homeomorfo a um subconjunto
- 2. Usar que N é Hausdorff e compacto para concluir que M é localmente compacto.
 - Seja $x \in M \subset N$.
 - Como N é Hausdorff, existem U, V abertos tais que $x \in U$, $p \in V$ e $U \cap V = \emptyset$, em que $\{p\} = N \setminus \varphi(M)$.
 - Assim, V^c é fechado em N e, portanto, compacto.
 - Como $U \subset V^c$, temos que V^c é vizinhança compacta de x em M.
 - Logo, M é localmente compacto.

- 3. Mostrar que M não é compacto.
 - Suponha que M seja compacto.
 - Então $\varphi(M)$ é compacto.
 - Como N é Hausdorff, temos que $\varphi(M)$ é fechado.
 - · Mas, por hipótese,

$$\varphi(M) = \overline{\varphi(M)} = N \implies N \setminus \varphi(M) = \emptyset$$

• Logo, M não pode ser compacto.

Exercício 4.32

Questão: Considere a esfera S^n de \mathbb{R}^{n+1} . Se N = (0, ..., 0, 1), mostre que a projeção estereográfica

$$\varphi: S^n \setminus \{N\} \longrightarrow \mathbb{R}^n$$

$$(x_1, \dots, x_{n+1}) \longmapsto \frac{1}{1 - x_{n+1}} (x_1, \dots, x_n)$$

define um homeomorfismo.

Com isso, mostre que a compactificação de Alexandroff de \mathbb{R}^n é homeomorfa a S^n .

Resolução:

- 1. Encontrar inversa.
 - Considere $\psi : \mathbb{R}^n \longrightarrow S^n \setminus \{N\}$ dada por

$$\psi(x_1,\ldots,x_n) = \frac{2}{1+||x||^2}(x_1,\ldots,x_n,||x||^2-1)$$

- Note que ψ é contínua.
- Além disso, $\varphi \circ \psi = \mathrm{id}_{\mathbb{R}^n}$ e $\psi \circ \varphi = \mathrm{id}_{S^n \setminus \{N\}}$.
- Logo, φ define um homeomorfismo.
- 2. A compactificação de Alexandroff de \mathbb{R}^n é homeomorfa a \mathbb{S}^n .
 - Note que S^n é Hausdorff e compacto, ψ mergulha em um subconjunto denso de S^n e $0 \notin \mathbb{R}^n$.
 - Logo, como (S^n, ψ) é uma compatificação de Alexandroff de \mathbb{R}^n , segue que ela é homeomorfa a S^n .

Exercício 4.34

Questão: Seja M um espaço de Tychonoff e (N, φ) a compactificação de M.

- 1. Mostre que se $\varphi(M)$ é aberto em N, então M é localmente compacto.
- 2. Se U é vizinhança compacta de $x \in M$, então $\varphi(U)$ é uma vizinhança de $\varphi(x) \in N$.
- 3. $\varphi(M)$ é aberto em N se, e somente se, M é localmente compacto.

- 0. Fato.
 - Um subconjunto denso de um espaço Hausdorff compacto é localmente compacto sse. ele é aberto.
- 1. Se $\varphi(M)$ é aberto em N, então M é localmente compacto.
 - Como N é Hausdorff e compacto, N é localmente compacto.
 - Dado que $\varphi(M)$ é aberto e denso em N, temos que $\varphi(M)$ é localmente compacto.
 - Portanto, como M é homeomorfo a φ (M), temos que M é localmente compacto.
- 2. $\varphi(U)$ é uma vizinhança de $\varphi(x) \in N$.
 - Como U é compacto e φ é contínua, temos que φ (U) é compacto.
 - Como $x \in U$, temos que $\varphi(x) \in \varphi(U)$.
 - Logo, $\varphi(U)$ é vizinhança compacta de $\varphi(x)$.
- 3. Se M é localmente compacto, então $\varphi(M)$ é aberto em N.
 - Seja $y \in \varphi(M)$.
 - Como φ é mergulho, existe um único $x \in M$ tal que $y = \varphi(x)$.
 - Como M é localmente compacto, existe V vizinhança compacta de x.
 - Como φ é contínua, então φ (V) é vizinhança compacta de γ .
 - Com isso, temos que $\varphi(M)$ é um subconjunto localmente compacto e denso de um espaço Hausdorff compacto.
 - Logo, $\varphi(M)$ é aberto.

Lema 1

Questão: Seja $\pi: X \times Y \longrightarrow X$ a projeção na primeira coordenada, com Y compacto. Então π é fechado.

Resolução:

- Sejam $C \in X \times Y$ fechado e $x_0 \notin \pi(C)$.
- Para qualquer $y \in Y$, temos $(x_0, y) \notin C$.
- Tomemos $U_v \times V_v$ aberto de $X \times Y$ contendo (x_0, y) tal que $(U_v \times V_v) \cap C = \emptyset$.
- Como Y é compacto e (V_y) cobre Y, existem finitos y_1, \dots, y_n tais que $Y = V_{y_1} \cup \dots \cup V_{y_n}$.
- Defina

$$U = \bigcap_{i=1}^{n} U_{y_i}$$

• E note que

$$(U \times Y) \cap C = (U_{y_1} \cap \cdots \cap U_{y_n}) \times (V_{y_1} \cup \cdots \cup V_{y_n}) \cap C = \emptyset$$

• Logo,

$$x_0 \in U \subset X \setminus \pi(C) \implies X \setminus \pi(C)$$
 é aberto

• E π (C) é fechado.

Homotopia

Exercício 5.2

Questão: Mostrar que a imagem contínua de um conjunto conexo por caminhos é conexo por caminhos.

Resolução:

- Seja $f: X \longrightarrow Y$ contínua e X conexo por caminhos.
- Assim, para todo $x_1, x_2 \in X$, existe $\gamma : [0, 1] \longrightarrow X$ caminho de x_1 para x_2 .
- Portanto,

$$\gamma' = f \circ \gamma : [0, 1] \longrightarrow f(X) \subset Y$$

é um caminho de $y_1 = f(x_1)$ a $y_2 = f(x_2)$. Note que γ' é contínua e $\gamma'(0) = f(\gamma(0)) = f(x_1)$ e $\gamma'(1) = f(\gamma(1)) = f(x_2)$.

Exercício 5.4

Questão: Mostrar que S^n é conexo por caminhos para todo $n \in \mathbb{N}$.

Resolução:

• Considere $f: \mathbb{R}^{n+1} \setminus \{0\} \longrightarrow S^n$ dada por

$$f(x) = \frac{x}{\|x\|}$$

• Como f é contínua e $\mathbb{R}^{n+1} \setminus \{0\}$ é conexo por caminhos, temos que S^n é conexo por caminhos (e, portanto, conexo).

Exercício 5.7

Questão: Mostrar que todo subconjunto conexo e aberto de \mathbb{R}^n é conexo por caminhos.

Resolução:

- · Note que se as componentes conexas por caminhos são abertas, então o espaço é localmente conexo por caminhos.
- Seja S ⊂ Rⁿ conexo e aberto. Como S é conexo e localmente conexo por caminhos, segue que S é conexo por caminhos.

Exercício 5.8 (Seno do Topólogo)

Questão: Prove que o conjunto

$$S = \{(x, \sin(1/x)) : 0 < x \le 1\} \cup \{(0, y) : -1 \le y \le 1\}$$

conexo e não é conexo por caminhos.

- 1. Mostrar que S é conexo.
 - Defina $S_1 = \{(x, \sin(1/x)) : 0 < x \le 1\}$ e $S_2 = \{(0,y) : -1 \le y \le 1\}$. Note que S_1 e S_2 são conexos, porque são a imagem de uma função contínua definida num intervalo conexo.
 - Como $\overline{S_1} = S_2$, temos que $\overline{S_1} \cap S_2 \neq \emptyset$. Portanto, $S = S_1 \cup S_2$ é conexo.
- 2. Mostrar que S não é conexo por caminhos.
 - Suponha que exista um caminho $f(t) = (f_1(t), f_2(t))$ com ponto inicial $(0,0) \in S_2$ e ponto final em S_1 tal que $f_1(0) = 0, f_1(t) > 0$ e $f_2(t) = \sin(1/f_1(t))$ para t > 0.
 - Vamos mostrar que existe uma sequência $t_n \to 0$ tal que $f_2(t_n) = (-1)^n$, contradizendo a hipótese de que f é contínua.
 - Dado $n \in \mathbb{N}$, escolhemos $0 < y_0 < f_1(1/n)$ tal que $\sin(1/y_0) = (-1)^n$. Pelo Teorema do Valor Intermediário, sabemos que existe $0 < x_0 < 1/n$ tal que $f_1(x_0) = y_0$. Escolha $t_n = x_0$.
 - Dessa forma, temos que $f_2(t_n) = (-1)^n$, que é descontínua. Logo, f não é contínua e temos que S não é conexo por caminhos.

Exercício 5.12

Questão: Mostrar que se M e N são contráteis, então M × N é contrátil.

Resolução:

- 1. Definição de contrátil.
 - Lembre que X é contrátil se existe mapa constante c tal que $H: \mathrm{id}_X \simeq c$, i.e., a identidade é homotopicamente nula.
- 2. Usar que M e N são contráteis.
 - Como M é contrátil, existe $c_{\rm M}$ tal que existe homotopia $H_{\rm M}$: ${\rm id}_{\rm M} \simeq c_{\rm M}$. Analogamente, existe $H_{\rm N}$: ${\rm id}_{\rm N} \simeq c_{\rm N}$.
- 3. Definir projeções e homotopia.
 - Defina

$$\pi_{\mathbf{M}}: (\mathbf{M} \times \mathbf{N}) \times \mathbf{I} \longrightarrow \mathbf{M}, \quad \pi_{\mathbf{M}}((x,y),t) = (x,t)$$

• E, semelhantemente,

$$\pi_{N}: (M \times N) \times I \longrightarrow N, \quad \pi_{N}((x, y), t) = (y, t)$$

• Tomemos H : $(M \times N) \times I \longrightarrow M \times N$ como H = $(H_M \circ \pi_M, H_N \circ \pi_N)$. Assim,

$$H((x,y),0) = (H_M(x,0), H_N(y,0)) = (x,y) = id_{M\times N}H((x,y),1) = (H_M(x,1), H_N(y,1)) = (c_M,c_N) = c$$

• Note que H_M, H_N, π_M, π_N são contínuas. Portanto, $H_M \circ \pi_M$ e $H_N \circ \pi_N$ são contínuas e, assim, H é contínua.

Exercício 5.14

Questão: Mostrar que o espaço de Sierpinski é contrátil.

Resolução:

• Seja H: $M \times [0,1] \longrightarrow M$ dada por

$$H(z,0) = z$$
, $\forall z \in M$ e $H(z,t) = x$, $\forall z \in M$, $t \in (0,1]$

• Note que $H(z,0) = id_M$ e H(z,1) = x é constante e H é contínua porque $H^{-1}(\{x\}) = \{(x,0)\} \cup (M \times (0,1])$ é aberto. Logo, o espaço de Sierpinski é contrátil.

Exercício 5.15

Questão: Mostrar que todo espaço contrátil é conexo por caminhos.

- 1. Aplicar definição.
 - Seja X contrátil. Então existe homotopia $H: X \times [0,1] \longrightarrow X$ tal que $H: id_X \simeq c$, em que c é mapa constante em X.
- 2. Criar caminhos de x_1 a c e de x_2 a c.
 - Definimos um caminho de x_1 a c tomando $\varphi(t) = H(x_1,t)$. Note que $\varphi(0) = H(x_1,0) = x_1$ e $\varphi(1) = H(x_1,1) = c$.
 - E um caminho de x_2 a c tomando $\psi(t) = H(x_2, t)$.

- 3. Inverter ψ e tomar concatenação para obter caminho de x_1 a x_2 .
 - Defina $\gamma = \varphi * \psi^{-1}$ por

$$\gamma = \begin{cases} \varphi(2t), & t \in [0, 1/2] \\ \psi^{-1}(2t-1), & t \in [1/2, 1] \end{cases}$$

• Logo, X é conexo por caminhos.

Exercício 5.16

Questão: Mostre que, se X é contrátil e Y é conexo por caminhos, então quaisquer dois mapas contínuos $f,g:X\longrightarrow Y$ são homotópicos.

Resolução:

- 1. Aplicar definição.
 - Seja X contrátil. Então existe homotopia H(x, 0) = x e H(x, 1) = c para todo $x \in X$.
- 2. Todo mapa X Y é homotópico a algum mapa constante.
 - Basta notar que $f \circ H : X \times I \longrightarrow Y$ é homotopia entre $f \in f(c)$.
- 3. Quaisquer dois mapas constantes são homotópicos.
 - Sejam $f_1 \equiv y_1$ e $f_2 \equiv y_2$ mapas constantes de X para Y.
 - E seja $\gamma:[0,1]\longrightarrow Y$ caminho de y_1 a y_2 . Então $F(x,t)=\gamma(t)$ é homotopia entre f_1 e f_2 .
- 4. Usar que homotopia é relação de equivalência.
 - Portanto, todo mapa X → Y é homotópico a algum mapa constante e quaisquer dois mapas constantes são homotópicos.
 - Como homotopia é relação de equivalência, quaisquer dois mapas X Y contínuos são homotópicos.

Exercício 5.18

Questão: Mostrar que S^n é um retrato de deformação de $\mathbb{R}^{n+1} \setminus \{0\}$.

Resolução:

- 1. Aplicar Definição.
 - Queremos mostrar que existe $r : \mathbb{R}^{n+1} \setminus \{0\} \longrightarrow S^n$ contínuo tal que $r \circ i = \mathrm{id}_{S^n}$ e $H : i \circ r \simeq \mathrm{id}_{\mathbb{R}^{n+1} \setminus \{0\}}$, em que $i : S^n \hookrightarrow \mathbb{R}^{n+1} \setminus \{0\}$ é inclusão.
- 2. Construir retração.
 - Considere $r(x) = \frac{x}{\|x\|}$. Note que, se $x \in S^n$, então r(i(x)) = x. Portanto, $r \circ i = \mathrm{id}_{S^n}$.
- 3. Construir homotopia.
 - Defina

$$H: \mathbb{R}^{n+1} \setminus \{0\} \times I \longrightarrow \mathbb{R}^{n+1} \setminus \{0\}$$
$$(x,t) \longmapsto tx + (1-t)\frac{x}{\|x\|}$$

• Note que H é contínuo e satisfaz

$$H(x,0) = \frac{x}{\|x\|} = i \circ r(x), \quad H(x,1) = tx = id_{\mathbb{R}^{n+1} \setminus \{0\}}$$

• Logo, S^n é um retrato de deformação de $\mathbb{R}^{n+1} \setminus \{0\}$.

Exercício 5.19

Questão: Mostrar que o retrato de um espaço contrátil é contrátil.

- 1. Aplicar definições.
 - Seja A um retrato de X, i.e., existe $r: X \longrightarrow A$ contínuo tal que $r \circ i = \mathrm{id}_A$, em $i: A \hookrightarrow X$ é inclusão.
 - E suponha X contrátil. Ou seja, existe homotopia $H: id_X \simeq c$.
- 2. Construir homotopia.
 - Considere r ∘ H | A × I : A × I → A. Note que é contínuo porque é composição de contínuos.
 - Além disso, $r \circ H|_{A \times I}(x, 0) = r(x) = x$ porque $x \in A$. E também $r \circ H|_{A \times I}(x, 1) = r(c)$.
 - Logo, id_A é homotópico ao mapa constante r(c).

Exercício 5.21

Questão: Mostre que os espaços

$$M = \{0\} \cup \{1/n : n \in \mathbb{N}\}\$$

com a topologia induzida de $\mathbb R$ e $\mathbb N$ com a topologia discreta não têm a mesma homotopia.

Resolução:

- 1. Supor que são homotopicamente equivalentes.
 - Seja $X=(M,\tau_{\mathbb{R}})$ e $Y=(M,\tau_{\mathbb{N}})$ o espaço com a topologia induzida de \mathbb{R} e \mathbb{N} com a topologia discreta respectivamente.
 - Suponhamos, por contradição, que X e Y são homotopicamente equivalentes, i.e., existem

$$f: X \longrightarrow Y$$
 e $g: Y \longrightarrow X$

contínuas tais que $H: f \circ g \simeq id_Y e F: g \circ f \simeq id_X$.

- 2. Usar compacidade de X para mostrar que f(X) é finito.
 - Como X é compacto (qualquer aberto em torno do zero contém M com exceção de finitos pontos) e *f* é contínua, temos que *f* (X) é compacto.
 - Mas, como Y é discreto e todo subespaço compacto de discreto é finito, temos que f(X) é finito.
- 3. Mostrar que Y é finito.
 - Observe que H(y, 0) = f(g(y)) e H(y, 1) = y.
 - Como Y é discreto, H deve ser constante em subespaços conexos. Assim, como $\{y\} \times I$ é conexo, temos que f(g(y)) = y para todo $y \in Y$.
 - Mas f(X) é finito e $Im(id_Y) = Y$. Portanto, Y é finito.
- 4. Derivar contradição usando número de componentes conexas por caminhos.
 - Note que X tem um número infinito de componentes conexas por caminhos, porque todo conjunto unitário é uma componente conexa por caminhos.
 - Por outro lado, um espaço discreto finito possui um número finito de componentes conexas por caminhos.
 - Mas equivalência homotópica preserva o número de componentes conexas por caminhos, o que contradiz nossa hipótese.