Cálculo Diferencial e Integral 2 DPAA-2.086

Thiago VedoVatto thiago.vedovatto@ifg.edu.br thiagovedovatto.site

Instituto Federal de Educação, Ciência e Tecnologia de Goiás Campus de Goiânia

7 de dezembro de 2021

Informações Importantes!!!

Antes de prosseguir com essa disciplina é fundamental tomar conhecimento de todos os avisos contidos no link: Plano de Curso e Outras Informações que está no início da sala do curso no Moodle. Nesse link encontram-se informações sobre:

Ementa

Plano de Curso

Metodologia de Avaliação

Prazos para entrega das atividades

Bibliografia Básica

Horário das aulas síncronas

Controle de frequência

Horário de Atendimento

Sequências

Sequência

É uma lista de números escrita em uma ordem definida.

$$a_1, a_2, \ldots, a_n$$

Uma sequencia $\{a_n\}$ ou $\{a_n\}_{n=1}^{\infty}$

Liste os cinco primeiros termos da sequência:

$$a_n = \frac{2^n}{2n+1}$$

b
$$a_1 = 1$$
, $a_{n+1} = 5a_n + 3$

$$\mathbf{c}$$
 $f_1=1$, $f_2=1$ e $f_{n+1}=f_{n-1}+f_n$ para $n\geq 3$ Esta é a famosa sequência de Fibonacci

Liste os oito primeiros termos das sequências:

3
$$a_1 = 2$$
, $a_2 = 1$, $a_{n+1} = \frac{a_n - a_{n-1}}{n}$
b $a_1 = 1$, $a_n = \frac{(-1)^n a_{n-1}}{n!}$

b
$$a_1 = 1$$
, $a_n = \frac{(-1)^n a_{n-1}}{n!}$

em forma de frações irredutíveis.

Limite de uma Seguência

Uma sequência $\{a_n\}$ tem limite L e escrevemos

$$\lim_{n\to\infty}a_n=L\quad \text{ou}\quad a_n\to L \text{ quando } n\to\infty$$

se para cada $\epsilon>0$ existir um inteiro correspondente N tal que

se
$$n>N$$
 então $|a_n-L|<\epsilon$

Valor Limite de uma Seguência

 $\text{Se}\lim_{x\to\infty}f(x)=L\text{ e }f(n)=a_n\text{ quando }n\text{ \'e um inteiro, ent\~ao}\lim_{n\to\infty}a_n=L.$

Sequência Divergente

 $\lim_{x\to\infty}a_n=\infty \text{ significa que para cada número positivo }\overline{M} \text{ existe um inteiro }N \text{ tal que se }n>N \text{ então }a_n>M.$

Propriedades dos limites das sequências

Se $\{a_n\}$ e $\{b_n\}$ forem sequencias convergentes e c for uma constante, então:

$$\begin{split} \lim_{n \to \infty} (a_n \pm b_n) &= \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n \\ \lim_{n \to \infty} c a_n &= c \lim_{n \to \infty} a_n \\ \lim_{n \to \infty} c &= c \\ \lim_{n \to \infty} (a_n b_n) &= \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n \\ \lim_{n \to \infty} \frac{a_n}{b_n} &= \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} \\ \lim_{n \to \infty} a_n^p &= \left[\lim_{n \to \infty} a_n\right]^p \text{ se } p > 0 \text{ e } a_n > 0 \end{split}$$

Determine se as sequências convergem ou divergem. Se convergirem, encontre o limites.

a
$$a_n = \frac{1}{n^2}$$

b
$$b_n = \frac{1}{2n}$$

$$c_n = \frac{(n+1)^2}{n}$$

a
$$a_n = \frac{1}{n^2}$$
b $b_n = \frac{1}{2n}$
c $c_n = \frac{(n+1)^2}{n}$
d $d_n = \frac{1}{n^2} + \frac{1}{2n}$

$$e_n = \left(\frac{1}{n^2} + \frac{1}{2n}\right)^2$$

$$f_n = \frac{1}{n^2} \left(\frac{1}{n^2} + \frac{1}{2n} \right)^2$$

$$g_n = n^2$$

$$g_n = n^2$$

Determine se a sequência $\left\{n\sin\left(\frac{\pi}{n}\right)\right\}$ converge ou diverge. Se ela convergir, encontre o limite.

Determine se as sequências convergem ou divergem. Se ela convergir, encontre o limite:

$$a_n = \frac{3 + 5n^2}{n + n^2}$$

$$\left\{\frac{4^n}{1 + 9^n}\right\}$$

$$a_n = \cos n^2$$

$$a_n = \cos n^2$$

Teorema do Confronto dos Limites para sequências

Se $a_n \leq b_n \leq c_n$ para $n \geq n_0$ e $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$ então $\lim_{n \to \infty} b_n = L$.

Use o Teorema do Confronto dos Limites para sequências para provar o seguinte resultado:

Se
$$\lim_{n\to\infty} |a_n| = 0$$
, então $\lim_{n\to\infty} a_n = 0$.

A Sequência r^n

Sequência r^n

A sequência $\{r^n\}$ é convergente se $-1 < r \le 1$ e divergente para os demais valores de r.

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{se } -1 < r < 1 \\ 1 & \text{se } r = 1. \end{cases}$$

Determine se as sequências cujos termos gerais são dados à seguir convergem ou divergem.

$$a_n = \left(\frac{2}{3}\right)^n$$

b
$$a_n = \frac{5^n}{3^{n-1}}$$

Determine se as sequências cujos termos gerais são dados à seguir convergem ou divergem.

$$a_n = 2^n 5^{-n}$$

a
$$a_n = 2^n 5^{-n}$$

b $a_n = \frac{(-1)^n 2^n}{3^n}$

Sequências Monótonas, Limitadas e Convergentes

Seguências Crescentes e Decrescentes

Uma sequência $\{a_n\}$ é crescente se $a_n < a_{n+1}$ para todo $n \ge 1$, isso é, $a_1 < a_2 < a_3 < \cdots$. É chamada decrescente se $a_n > a_{n+1}$, para todo $n \ge 1$. Uma sequência é monótona se for crescente ou decrescente.

Determine se as sequências dadas são crescentes, decrescentes ou não-monótonas.

- $\left\{ \frac{(-1)^{n+1}}{n} \right.$

Determine se a sequência $\left\{\frac{1-2n^2}{n^2}\right\}$ é crescente, decrescente ou não-monótonas.

Exercício

Semana 2 - Exercício 2

Determine se a sequência $\left\{\cos\left(\frac{n\pi}{3}\right)\right\}$ é crescente, decrescente ou não-monótonas.

Exercício

Semana 2 - Exercício 3

Determine se a sequência $\left\{\frac{n^n}{n!}\right\}$ é crescente, decrescente ou não-monótonas.

Sequência Limitada

Uma sequência $\{a_n\}$ é limitada superiormente se existir um número M tal que:

$$a_n \leq M$$
 para todo $n \geq 1$

Ela é limitada inferiormente se existir um número m tal que

$$m \le a_n$$
 para todo $n \ge 1$

Se ela for limitada superiormente e inferiormente, então $\{a_n\}$ é uma sequência limitada.

Teoremas da Convergência de Sequências Monótonas

- 1 Toda sequência monótona limitada é convergente.
- 2 Toda sequência monótona convergente é limitada.

Mostre que a sequência $\left\{\frac{2^n}{n!}\right\}$ é convergente.

Mostre que a sequência $\left\{\frac{5^n}{1+5^{2n}}\right\}$ é monótona e limitada. A sequência é convergente? Porque?

Séries

Série

Uma série (infinita) é a soma dos termos de uma sequência (infinita) $\{a_n\}_{n=1}^{\infty}$

$$\sum_{i=1}^{\infty} a_i = a_1 + a_2 + a_3 + \ldots + a_n + \ldots$$

Soma parcial

A n-ésima soma parcial s_n é a soma dos n primeiros termos de uma sequência.

$$s_{1} = a_{1}$$

$$s_{2} = a_{1} + a_{2}$$

$$s_{3} = a_{1} + a_{2} + a_{3}$$

$$s_{4} = a_{1} + a_{2} + a_{3} + a_{4}$$

$$\vdots$$

$$s_{n} = \sum_{i=1}^{n} a_{i}$$

$$\vdots$$

Naturalmente, as somas parciais formam uma sequência $\{s_n\}_{n=1}^\infty$

$$s_1, s_2, s_3, \dots, s_n, \dots \tag{1}$$

Séries Convergentes e Divergentes

Dizemos que uma série é convergente com soma s quando essa sequência (1) convergir

$$\lim_{n \to \infty} s_n = s$$

com s finito. A série será chamada divergente quando a sequência (1) divergir

$$\lim_{n \to \infty} s_n = \infty.$$

Note que:

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{i=1}^n a_i = \sum_{i=1}^\infty a_i$$

Dada a série infinita $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ determine:

- $footnote{a}$ Os quatro primeiros elementos da sequência das somas parciais $\{s_n\}$.
- **b** A fórmula para s_n em termos de n.

Mostre que a série

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$$

é convergente e determine para onde converge.

Exercício

Semana 4 - Exercício 3

Determine se a série $\sum_{n=1}^{\infty} \frac{2}{n^2 - 1}$ é convergente ou divergente expressando s_n como uma soma telescópica. Se for convergente, calcule sua soma.

Verifique se as séries cujo termo geral da soma parcial é dado à seguir são convergentes. Encontre os três primeiros termos da sequência que deu origem à cada série

$$s_n = \frac{n}{2n+1}$$

$$s_n = \frac{n^2}{n+1}$$

A Série Geométrica

Série Geométrica

A série geométrica é definida pela seguinte somatória:

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + ar^3 + \dots + ar^{n-1} + \dots \quad a \neq 0$$

onde r é a razão comum e a é o primeiro termo.

Nessa série cada termo é igual ao anterior multiplicado pela razão comum r.

Quando r<0 teremos a chamada série geométrica alternada que será estuda com mais detalhes nas próximas aulas.

Convergência da Série Geométrica

A série geométrica é convergente se |r|<1 e sua soma é

$$\sum_{n=0}^{\infty} ar^{n-1} = \frac{a}{1-r} \quad |r| < 1,$$

e divergente se $|r| \geq 1$,

r=1 As somas parciais podem ser expressas como:

$$s_n = na$$

É fácil mostrar que nesse caso a série é divergente.

 $r \neq 1$ As somas parciais podem ser expressas como:

$$s_n = \frac{a(1-r^n)}{1-r}.$$

Encontre a soma da série geométrica se for convergente.

- $10-2+0.4-0.08+\cdots$
- $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^n}$

Encontre a soma da série geométrica $\sum_{n=1}^{\infty} \frac{3^{n+1}}{5^n}$ se for convergente.

Um paciente toma 150~mg de fármaco, ao mesmo tempo, todos os dias. Imediatamente antes de cada comprimido que é tomado, 5% da droga permanece no corpo do paciente

- $footnote{0}$ Qual a quantidade do fármaco depois do terceiro comprimido? E após o n-ésimo comprimido?
- 6 Qual a quantidade de droga que permanece no corpo à longo prazo?

Escreva o número $1,53\overline{42}=1,53424242...$ como uma razão de inteiros (fração).

Exercício Semana 3 - Exercício 4

Escreva o número $5,125\overline{48}$ como uma razão de inteiros (fração). (Use os resultados conhecidos sobre a Série Geométrica).

A Série Harmônica

Série Harmônica

A série harmônica é definida por:

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

Divergência da Série Harmônica

A série harmônica é divergente.

Para mostrar que a série harmônica é divergente vamos recorrer as somas parciais $s_2, s_4, s_8, s_{16}, s_{32}, \dots$

$$s_2 = 1 + \frac{1}{2}$$

$$s_4 = \left(1 + \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right)$$
$$> \left(1 + \frac{1}{2}\right) + \left(\frac{1}{4} + \frac{1}{4}\right)$$
$$> 1 + \frac{2}{2}$$

$$s_8 = \left(1 + \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right)$$
$$> \left(1 + \frac{1}{2}\right) + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right)$$
$$> 1 + \frac{3}{2}$$

$$s_{16} = \left(1 + \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \dots + \frac{1}{8}\right) + \left(\frac{1}{9} + \dots + \frac{1}{16}\right)$$

$$> \left(1 + \frac{1}{2}\right) + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \dots + \frac{1}{8}\right) + \left(\frac{1}{16} + \dots + \frac{1}{16}\right)$$

$$> 1 + \frac{4}{9}$$

Analogamente, chegamos que $s_{32}>1+\frac{5}{2}.$ Note que dessa forma $s_{2^n}>1+\frac{n}{2}$ o que implica que:

$$\lim_{n \to \infty} s_{2^n} = \infty$$

Portanto, $\{s_n\}$ é uma série divergente.

O Teste da Divergência

Condição de Convergência

Se a série $\sum_{n=1}^{\infty} a_n$ for convergente, então $\lim_{n\to\infty} a_n = 0$.

A contra-positiva desse resultado nos dá base para definir o teste da divergência.

Teste da Divergência

Se $\lim_{n\to\infty}a_n$ não existir ou se $\lim_{n\to\infty}a_n\neq 0$, então a série $\sum_{i=1}^na_i$ é divergente.

Mostre que a série $\sum_{n=1}^{\infty} \frac{5n^3}{n^3 + 2n^2 + n}$ diverge.

Exercício

Mostre que a série $\sum_{n=1}^{\infty} \frac{n^2}{n^2 + n}$ diverge.

Exercício

Mostre que a série $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n$ diverge.

Lembre-se $\lim_{x \to \pm \infty} \left(1 + \frac{a}{x}\right)^x = e^a$

Mostre que a série $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n$ diverge.

Recíproca do Teste da Divergência (FALSO!!!)

Se a série $\sum_{n\to\infty} a_n$ é divergente, então $\lim_{n\to\infty} a_n$ não existe ou $\lim_{n\to\infty} a_n \neq 0$. (FALSO!!!)

Exercício

Semana 4 - Exercício 2

Mostre que a Recíproca do Teste da Divergência é falsa. (Dica: Basta apresentar um contra-exemplo.)

Propriedades operacionais das séries convergentes

Propriedades operacionais das séries convergentes

Sejam $\sum_{n=1}^{\infty}a_n$ e $\sum_{n=1}^{\infty}b_n$ séries convergentes e c é uma constante, então as seguintes séries são convergentes

$$\sum_{n=1}^{\infty} ca_n$$

$$\sum_{n=1}^{\infty} (a_n \pm b_n)$$

e, além disso,

$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$

$$\sum_{n=1}^{\infty} (a_n \pm b_n) = \sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n$$

Determine se a série $\sum_{n=1}^{\infty} \left[\left(\frac{\pi}{3} \right)^{n-1} + \frac{2}{3n} \right]$ é convergente ou divergente. Se for convergente, calcule sua soma.

O Teste da Integral

O Teste da Integral

Suponha que f seja uma função contínua, positiva e decrescente em $[1,\infty)$ e seja $a_n=f(n)$. Então a série $\sum_{n=1}^\infty a_n$ é convergente se, e somente se, a integral imprópria $\int_1^\infty f(x)dx$ for convergente. Em outras palavras:

Se
$$\int_1^\infty f(x)dx$$
 for convergente, então $\sum_{n=1}^\infty a_n$ é convergente.

Se
$$\int_1^\infty f(x)dx$$
 for divergente, então $\sum_{n=1}^\infty a_n$ é divergente.

Determine se a série $\sum_{1}^{\infty} \frac{1}{n^2 + 4}$ é convergente ou divergente.

A função associada ao termo geral dessa série é $f(x) = \frac{1}{x^2 + 4}$.

Note que essa função é contínua (toda função racional é contínua no seu domínio) e positiva nos reais.

Além disso
$$f'(x) = -\frac{2x}{(x^2+4)^2}$$
.

Veja que f'(x) < 0 para todo x > 0, ou seja, a função f é decrescente em $(0, \infty)$.

Portanto essa função é contínua, positiva e decrescente em $[1, \infty)$.

Desta forma:

$$\begin{split} \int_{1}^{\infty} \frac{1}{x^2 + 4} dx &= \lim_{n \to \infty} \int_{1}^{n} \frac{1}{x^2 + 4} dx \\ &= \lim_{n \to \infty} \int_{\arctan(^{1/2})}^{\arctan(^{n/2})} \frac{1}{2} \left(\frac{\sec^2 \theta}{\tan^2 \theta + 1} \right) d\theta \\ &= \frac{1}{2} \lim_{n \to \infty} \int_{\arctan(^{n/2})}^{\arctan(^{n/2})} d\theta \\ &= \frac{1}{2} \lim_{n \to \infty} \left[\theta \right]_{\arctan(^{n/2})}^{\arctan(^{n/2})} \\ &= \frac{1}{2} \lim_{n \to \infty} \left[\arctan\left(\frac{n}{2} \right) - \arctan\left(\frac{1}{2} \right) \right] \\ &= \frac{1}{2} \left[\frac{\pi}{2} - \arctan\left(\frac{1}{2} \right) \right] \end{split}$$

Note que a integral indefinida é convergente, logo pelo teste da integral a série dada no enunciado converge.

Substituindo $x = 2 \tan \theta$

Lembre-se que $\tan^2 \theta + 1 = \sec^2 \theta$

Determine se a série $\sum_{n=0}^{\infty} \frac{5}{4n-3}$ é convergente ou divergente.

A função associada ao termo geral dessa série é $f(x) = \frac{5}{4x-3}$.

Note que essa função é contínua (toda função racional é contínua no seu domínio) para $x \neq \frac{3}{4}$ e positiva para todo $x > \frac{3}{4}$.

É fácil ver que f é decrescente (o denominador é crescente e o numerador é constante), portanto essa função é contínua, positiva e decrescente em $[1,\infty)$.

$$\int_{1}^{\infty} \frac{5}{4x - 3} dx = 5 \cdot \lim_{n \to \infty} \int_{1}^{n} \frac{1}{4x - 3} dx$$

$$= 5 \cdot \lim_{n \to \infty} \left[\frac{1}{4} \ln|4x - 3| \right]_{1}^{n}$$

$$= \frac{5}{4} \cdot \lim_{n \to \infty} \ln|4n - 3|$$

$$= \frac{5}{4} \cdot \infty = \infty$$

Note que a integral indefinida é divergente, logo pelo teste da integral a série dada no enunciado divergente.

Determine se a série $\frac{1}{3} + \frac{1}{7} + \frac{1}{11} + \frac{1}{15} + \frac{1}{19} + \cdots$ é convergente ou divergente. Exiba o seu termo geral.

Exercício

Semana 5 - Exercício 2

Determine se a série $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ é convergente ou divergente.

A Série-p

Série-p (Série hiper-harmônica)

Para um dado $p \in \mathbb{R}$, a série-p, ou série hiper-harmônica, é definida por:

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

Convergência da série-*p*

A série-p é convergente se p > 1 e divergente se $p \le 1$.

Há três casos à considerar, p < 0, p = 0 e p > 0:

$$p < 0$$
 Nesse caso

$$\lim_{n \to \infty} \frac{1}{n^p} = \infty$$

Logo pelo teste da divergência a série é divergente.

$$p=0$$
 Assin

$$\lim_{n \to \infty} \frac{1}{n^p} = 1$$

Novamente a série é divergente pelo teste da divergência.

p>0 Considere a função associada à essa série:

$$f(x) = \frac{1}{x^p}$$

Se trata de uma função racional, portanto é contínua em todo o seu domínio $(D_f = \mathbb{R}^*)$.

A função é sempre positiva e decrescente no intervalo $[1,\infty]$.

Portanto, podemos aplicar o Teste da Integral.

Para tanto é necessário determinar a integral imprópria do tipo 1:

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{n \to \infty} \int_{1}^{n} \frac{1}{x^{p}} dx$$

Aqui temos três sub-casos à considerar:

$$\begin{array}{c}
\left(p=1\right) \lim_{n \to \infty} \int_{1}^{n} \frac{1}{x} dx = \lim_{n \to \infty} (\ln n - \ln 1) = \infty \\
0 1\right) \lim_{n \to \infty} \int_{1}^{n} \frac{1}{x^{p}} dx = \dots = \lim_{n \to \infty} \left[\frac{n^{-p+1}}{1-p} - \frac{1}{1-p}\right] = \frac{1}{p-1} > 0
\end{array}$$

Desse modo o Teste da Integral garante que a série é convergente se p>1 e divergente se $0< p\leq 1$.

Considerando-se os dois casos iniciais podemos concluir que a série-p é convergente se p>1 e divergente se p<1.

Determine se a série $\sum_{n=0.85}^{\infty} \frac{2}{n^{0.85}}$ é convergente ou divergente.

Exercício

Determine se a série $\sum_{n=1}^{\infty} \frac{\sqrt{n}+4}{n^2}$ é convergente ou divergente.

Determine se a série $\sum_{n=1}^{\infty} \frac{5n+\sqrt{n}}{n^2}$ é convergente ou divergente.

Exercício

Semana 5 - Exercício 4

Determine se a série $\frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \frac{2}{81} + \cdots$ é convergente ou divergente. Apresente o seu termo geral.

Testes da Comparação Termo à Termo

Teste da comparação termo à termo

Suponha que $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ sejam séries com termos positivos.

Se $\sum_{n=1}^{\infty} b_n$ for convergente e $a_n \leq b_n$ para todo n, então $\sum_{n=1}^{\infty} a_n$ também será convergente.

Se
$$\sum_{n=1}^{\infty} b_n$$
 for divergente e $a_n \ge b_n$ para todo n , então $\sum_{n=1}^{\infty} a_n$ também será divergente.

Determine se a série $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{\sqrt{n^3 + 4n + 3}}$ é convergente ou divergente.

A série dada é uma série com termos positivos. Observe que para todo $n \ge 1$.

$$\frac{\sqrt[3]{n}}{\sqrt{n^3 + 4n + 3}} \le \frac{\sqrt[3]{n}}{\sqrt{n^3}} = \frac{n^{1/3}}{n^{3/2}} = \frac{1}{n^{7/6}}$$

Dessa forma podemos aplicar o teste da comparação usando a série $\sum_{n=1}^{\infty} \frac{1}{n^{7/6}}$.

Note que se trata de uma série-p com p=7/6>1, portanto é uma série convergente.

Como $\frac{\sqrt[3]{n}}{\sqrt{n^3+4n+3}} \leq \frac{1}{n^{7/6}}$ para todo $n \geq 1$, então a série $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{\sqrt{n^3+4n+3}}$ é convergente pelo Teste da Comparação termo à termo.

Determine se a série $\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n-1}}$ é convergente ou divergente.

A série dada é uma série com termos positivos. O termo geral da sequência que define a série não é definido quando n=1, portanto:

$$\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n-1}} = \sum_{n=2}^{\infty} \frac{n^2}{\sqrt{n-1}}$$

Observe que para todo $n \geq 2$.

$$\frac{n^2}{\sqrt{n-1}} > \frac{1}{\sqrt{n-1}} > \frac{1}{n-1} > \frac{1}{n}$$

Dessa forma podemos aplicar o teste da comparação usando a série $\sum_{i=1}^{\infty} \frac{1}{n}$.

Note que se trata da série harmônica, portanto é uma série divergente.

 $\mathsf{Como} \ \frac{n^2}{\sqrt{n-1}} \geq \frac{1}{n} \ \mathsf{para} \ \mathsf{todo} \ n \geq 2, \ \mathsf{ent\tilde{ao}} \ \mathsf{a} \ \mathsf{s\acute{e}rie} \ \sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n-1}} \ \mathsf{\acute{e}} \ \mathsf{divergente} \ \mathsf{pelo} \ \mathsf{Teste} \ \mathsf{da}$

Comparação termo à termo.

Determine se a série $\sum_{n=0}^{\infty} \frac{4}{3^n+1}$ é convergente ou divergente.

A série dada é uma série com termos positivos. Observe que para todo $n \ge 1$.

$$\frac{4}{3^n+1} < \frac{4}{3^n} = \frac{4}{3} \left(\frac{1}{3}\right)^{n-1}$$

Dessa forma podemos aplicar o teste da comparação usando a série geométrica

$$\sum_{n=1}^{\infty} \frac{4}{3} \left(\frac{1}{3} \right)^{n-1}.$$

com termo inicial a=4/3 e razão comum r=1/3.

Note que r < 1, então essa série geométrica será convergente.

$$\mathsf{Como}\ \frac{4}{3^n+1} \leq \frac{4}{3} \left(\frac{1}{3}\right)^{n-1} \ \mathsf{para}\ \mathsf{todo}\ n \geq 1,\ \mathsf{ent\~ao}\ \mathsf{a}\ \mathsf{s\'erie}\ \sum_{n=1}^{\infty} \frac{4}{3^n+1}\ \mathsf{\'e}\ \mathsf{convergente}\ \mathsf{pelo}$$

Testes da Comparação de Limites

Teste da comparação de limites

Suponha que $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ sejam séries com termos positivos.

- ① Se $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ onde c é um número finito e c>0, então ambas as séries convergem ou ambas as séries divergem.
- 2 Se $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$ e se $\sum_{n=1}^{\infty} b_n$ converge, então $\sum_{n=1}^{\infty} a_n$ converge.
- 3 Se $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ e se $\sum_{n=1}^{\infty} b_n$ diverge, então $\sum_{n=1}^{\infty} a_n$ diverge.

Determine se a série $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ é convergente ou divergente.

A série dada é uma série com termos positivos cujo termo geral é $a_n = \frac{\ln n}{n}$. Vamos aplicar o

Teste da Comparação com limite usando a série harmônica $\sum_{n=1}^{\infty} \frac{1}{n}$. Seu termo geral é $b_n = \frac{1}{n}$.

Note que:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{\ln n}{n}}{\frac{1}{n}} = \lim_{n \to \infty} \ln n = \infty$$

Como o limite é infinito, então pelo Teste da Comparação com limite a série $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ é divergente.

Determine se a série $\sum_{i=1}^{\infty} \frac{1}{n^2+2n}$ é convergente ou divergente.

A série dada é uma série com termos positivos cujo termo geral é $a_n = \frac{1}{n^2 + 2n}$.

Vamos aplicar o Teste da Comparação com limite usando a série- $p \sum_{r=1}^{\infty} \frac{1}{n^2} \operatorname{com} p = 2.$

Seu termo geral é $b_n=rac{1}{n^2}.$

Note que:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{n^2 + 2n}}{\frac{1}{n^2}}$$

$$= \lim_{n \to \infty} \frac{n^2}{n^2 + 2n}$$

$$= \lim_{n \to \infty} \frac{\frac{n^2/n^2}{(n^2 + 2n)/n^2}}{(n^2 + 2n)/n^2}$$

$$= \lim_{n \to \infty} \frac{1}{1 + 2/n} = 1$$

Como o limite e uma constante positiva, então pelo Teste da Comparação com limite a série $\sum^{\infty} \frac{1}{n^2+2n} \text{ \'e convergente.}$

Determine se a série $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ é convergente ou divergente.

A série dada é uma série com termos positivos cujo termo geral é $a_n = \frac{1}{\sqrt{n}}$.

Vamos aplicar o Teste da Comparação com limite usando a série harmônica $\sum_{n=1}^{\infty} \frac{1}{n}$.

Seu termo geral é $b_n=\frac{1}{n}.$ Note que:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1/\sqrt{n}}{1/n}$$

$$= \lim_{n \to \infty} \frac{n}{\sqrt{n}}$$

$$= \lim_{n \to \infty} \sqrt{n} = \infty$$

Como o limite é infinito, então pelo Teste da Comparação com limite a série $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ é divergente.

Determine se a série $\sum_{n=1}^{\infty} \frac{2}{(n^3+5)^{1/5}}$ é convergente ou divergente.

A série dada é uma série com termos positivos cujo termo geral é $a_n=\frac{2}{(n^3+5)^{1/5}}$.

Vamos aplicar o Teste da Comparação com limite usando a série- $p\sum_{n=1}^{\infty}\frac{1}{n^{3/5}}$ com p=3/5.

Seu termo geral é $b_n = \frac{1}{n^{3/5}}$.

Note que:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\overline{(n^3 + 5)^{1/5}}}{\frac{1}{n^{3/5}}}$$

$$= \lim_{n \to \infty} \frac{n^{3/5}}{(n^3 + 5)^{1/5}}$$

$$= \lim_{n \to \infty} \left(\frac{n^3}{n^3 + 5}\right)^{1/5}$$

$$= \left(\lim_{n \to \infty} \frac{n^3}{n^3 + 5}\right)^{1/5}$$

$$= \left(\lim_{n \to \infty} \frac{n^3/n^3}{(n^3 + 5)/n^3}\right)^{1/5}$$

$$= \left(\lim_{n \to \infty} \frac{1}{1 + 5/n^3}\right)^{1/5} = 1$$

Como o limite e uma constante positiva, então pelo Teste da Comparação com limite a série $\frac{\infty}{2}$

Determine se a série convergente ou divergente usando os testes da comparação:

$$\sum_{n=1}^{\infty} \frac{9^n}{3+10^n}$$

$$\sum_{k=0}^{\infty} \frac{k \operatorname{sen}^2 k}{1 + k^3}$$

$$3 \sum_{n=1}^{\infty} \frac{1 + \cos r}{\exp n}$$

Séries Alternadas

Série Alternada

É aquela cujos termos são alternadamente positivos e negativos. O n-ésimo termo de uma série alternada tem uma das formas:

$$a_n = (-1)^{n-1}b_n$$

$$a_n = (-1)^n b_n$$

onde b_n é um número positivo. Note que $b_n = |a_n|$.

Série Harmônica Alternada

A série harmônica alternada é definida por:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

Teste da Série Alternada

Se a série alternada

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + \cdots \quad b_n > 0$$

satisfaz as seguintes condições

- $\mathbf{0}$ $b_{n+1} \leq b_n$ para todo n
- $\lim_{n\to\infty}b_n=0$

então a série é convergente.

Convergência da Série Harmônica Alternada

A série harmônica alternada é convergente.

Note que $b_n = \frac{1}{n}$. Desse modo

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{n} = 0$$

e além disso

$$b_{n+1} = \frac{1}{n+1} < \frac{1}{n} = b_n$$

para todo n. Portanto as duas condições do Teste da Série Alternada foram satisfeitas, logo a série harmônica alternada é convergente.

Determine se a série alternada $\sum_{n=1}^{\infty} (-1)^n \frac{n+2}{n(n+1)}$ é convergente ou divergente.

Note que

$$b_n = \frac{n+2}{n(n+1)}.$$

Desse modo

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{n+2}{n(n+1)} = 0$$

e além disso

$$\frac{n+1}{b_n} = \frac{\frac{n+3}{(n+1)(n+2)}}{\frac{n+2}{n(n+1)}}$$

$$= \frac{(n+3)n(n+1)}{(n+1)(n+2)^2}$$

$$= \frac{n(n+3)}{(n+2)^2}$$

$$= \frac{n^2 + 3n}{n^2 + 4n + 4} < 1$$

para todo n, ou seja $b_{n+1} < b_n$ para todo n. Portanto as duas condições do Teste da Série Alternada foram satisfeitas, logo a série alternada do enunciado é convergente.

Determine se a série alternada $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+4}$ é convergente ou divergente.

Note que

$$b_n = \frac{n^2}{n^3 + 4}.$$

Desse modo

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{n^2}{n^3 + 4} = 0$$

Portanto, a primeira condição do Teste da Série Alternada está satisfeita.

Agora veja que

$$b_1 = \frac{1}{5} = 0.2$$

 $b_2 = \frac{1}{3} = 0.333$
 $b_3 = \frac{9}{31} \approx 0.29032258...$
 $b_4 = \frac{4}{17} \approx 0.235294117...$

Dessa forma fica claro se a série não é totalmente decrescente, mas é possível que ela passe a ter comportamento decrescente a partir de um certo n_0 . Para verificarmos se existe um n_0 que satisfaça essa condição vamos considerar a função associada à b_n .

$$f(x) = \frac{x^2}{x^3 + 4}$$

É fácil mostrar que

$$f'(x) = \frac{x(8-x^3)}{(x^3+4)^2}$$

A função f(x) é decrescente sempre que f'(x) < 0. Note que f'(x) será negativa sempre que

$$8 - x^3 < 0$$
$$x^3 > 8$$
$$x > 2$$

Logo a série dada é decrescente para todo n > 2, portanto a série

$$\sum_{n=3}^{\infty} (-1)^{n+1} \frac{n^2}{n^3 + 4}$$

satisfaz as duas condições do Teste da Série Alternada e sua convergência é garantida. Somando-se $b_1=1/5$ e $b_2=1/3$ à essa série continuaremos a ter uma série convergente, logo a série

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3 + 4}$$

também é convergente.

Determine se a série alternada $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{5n-3}{2n+1}$ é convergente ou divergente.

Note que $b_n = \frac{5n-3}{2n+1}$. E claramente:

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{5n-3}{2n+1} = \frac{5}{2} \neq 0$$

Note que a segunda condição do Teste da Série Alternada não foi satisfeita, mas AINDA NÃO PODEMOS AFIRMAR que a série seja divergente. Para tanto note que:

$$\lim_{n \to \infty} (-1)^{n-1} \frac{5n-3}{2n+1} = A$$

Portanto, pelo Teste da Divergência o limite não existe.

Determine se a série alternada $\sum_{n=1}^{\infty} (-1)^{n+1} e^{-n} \sqrt{n}$ é convergente ou divergente.

Note que $b_n = \frac{\sqrt{n}}{e^n}$.

Precisamos mostrar que $\lim_{n\to\infty} b_n = 0$.

Para tanto note que:

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{\sqrt{n}}{e^n}$$

Aplicando o Teorema de L'Hopital obtemos que:

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{2\sqrt{n}e^n} = 0$$

Portanto a segunda condição do Teorema da Série Alternada está satisfeita.

É fácil verificar que:
$$b_{n+1} = \frac{\sqrt{n+1}}{e^{n+1}}$$
.

Precisamos mostrar que $b_{n+1} \leq b_n \ \forall n \in \mathbb{Z}_+$, para tanto observe que:

$$b_{n+1} \le b_n \iff \ln b_{n+1} \le \ln b_n$$

$$\iff \ln \left(\frac{\sqrt{n+1}}{e^{n+1}}\right) \le \ln \left(\frac{\sqrt{n}}{e^n}\right)$$

$$\iff \ln \sqrt{n+1} - \ln e^{n+1} \le \ln \sqrt{n} - \ln e^n$$

$$\iff \frac{1}{2} \ln(n+1) - n - 1 \le \frac{1}{2} \ln(n) - n$$

$$\iff \frac{1}{2} [\ln(n+1) - \ln(n)] \le 1$$

$$\iff \ln \left(\frac{n+1}{n}\right) \le 2$$

Da última equivalência obtém-se que:

$$\frac{n+1}{n} \le e^2 \qquad \forall n \in \mathbb{Z}_+$$

Note que para qualquer valor de $n\in\mathbb{Z}_+$ a expressão acima é sempre verdadeira, portanto, a primeira condição do Teorema da Série Alternada está satisfeita. Logo a série é convergente por esse resultado.

Teste as séries quando à convergência ou divergência.

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{5n-3}{2n+1}$$

1
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{5n-3}{2n+1}$$
2 $\sum_{n=1}^{\infty} (-1)^{n+1} e^{-n} \sqrt{n}$

3
$$\sum_{n=1}^{\infty} (-1)^n \sin\left(\frac{\pi}{n}\right)$$
4
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3^n}{n^2}$$

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3^n}{n^2}$$

Teste da Convergência Absoluta

Série Absolutamente Convergente

Uma série $\sum a_n$ é dita absolutamente convergente se a série de valores absolutos $\sum |a_n|$ for convergente.

Série Condicionalmente Convergente

Uma série é dita condicionalmente convergente se for convergente mas não for absolutamente convergente.

A série harmônica alternada é um exemplo de série condicionalmente convergente.

Teste da Convergência Absoluta

Se uma série $\sum a_n$ for absolutamente convergente, então ela é convergente.

Série-p (Hiper-harmônica) Alternada

Para um dado $p \in \mathbb{R}$, a série-p, ou série hiper-harmônica, alternada é definida por:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p}$$

Convergência da Série-p Alternada

A série-p alternada é absolutamente convergente se $p \geq 1$, condicionalmente convergente se $0 e divergente se <math>p \leq 0$.

Exercício

Prove o resultado anterior.

Determine se a série $\sum_{n=0}^{\infty} \frac{\cos(\pi n/3)}{n^2}$ é convergente ou divergente.

Note que

$$\sum_{n=1}^{\infty} \frac{\cos(\pi^{n/3})}{n^{2}} = \frac{1/2}{1^{2}} - \frac{1/2}{2^{2}} - \frac{1}{3^{2}} - \frac{1/2}{4^{2}} + \frac{1/2}{5^{2}} + \frac{1}{6^{2}} + \frac{1/2}{7^{2}} - \dots + \frac{\cos(\pi^{n/3})}{n^{2}} + \dots$$

$$= \frac{1}{2} - \frac{1}{8} - \frac{1}{0} - \frac{1}{2^{2}} + \frac{1}{5^{0}} + \frac{1}{2^{6}} + \frac{1}{0^{8}} - \dots$$

Veja que os termos da séries podem ter sinais positivos e negativos, mas cuidado! Não se trata de uma série alternada como definimos na aula anterior.

Vamos mostrar que essa série é absolutamente convergente. Para isso considere a série de termos positivos associada à série dada.

$$\sum_{n=1}^{\infty} \left| \frac{\cos(\pi n/3)}{n^2} \right| = \sum_{n=1}^{\infty} \frac{|\cos(\pi n/3)|}{n^2}$$

Para tanto veja que:

$$\frac{|\cos(\pi n/3)| \leq 1 \quad \text{para todo } n}{|\cos(\pi n/3)|} \leq \frac{1}{n^2} \quad \text{para todo } n \in \mathbb{Z}_+$$

Note que a série $\sum_{n=0}^{\infty} \frac{1}{n^2}$ é uma série-p com p=2, portanto se trata de uma série convergente,

consequentemente o Teste da Comparação nos garante que a série $\sum_{n=1}^{\infty} \frac{|\cos(\pi n/3)|}{n^2}$ é convergente.

Dessa forma a série $\sum_{n=1}^{\infty} \frac{\cos(\pi^n/3)}{n^2}$ é absolutamente convergente e pelo Teste da Convergência Absoluta ela é convergente.

Teste da Razão

Teste da Razão

Se
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$$
, então a série $\sum_{i=1}^n a_n$ é absolutamente convergente (e, portanto, convergente).

$$\text{Se}\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L>1\text{ ou }\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\infty\text{, então a série }\sum_{i=1}^na_n\text{ é divergente.}$$

Se
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$
 o Teste da Razão é inconclusivo.

Determine se a série $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{n}{2^n}$ é convergente ou divergente.

Note que:

$$a_n = (-1)^{n+1} \frac{n}{2^n}$$

$$a_{n+1} = (-1)^{n+2} \frac{n+1}{2^{n+1}}$$

Dessa forma:

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{n+1}{2^{n+1}} \cdot \frac{2^n}{n}$$
$$= \frac{n+1}{2n}$$

Agora note que:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{2} = \frac{1}{2} < 1$$

Portanto, pelo Teste da Razão a série dada é absolutamente convergente e pelo Teste da Convergência Absoluta ela é convergente.

Na aula anterior mostramos que a série alternada $\sum_{n=1}^{\infty} (-1)^n \frac{n+2}{n(n+1)}$ é convergente.

Essa série é absoluta ou condicionalmente convergente?

Na última aula mostramos que:

$$\frac{b_{n+1}}{b_n} = \left| \frac{a_{n+1}}{a_n} \right| = \frac{n^2 + 3n}{n^2 + 4n + 4}$$

Note agora que:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n^2 + 3n}{n^2 + 4n + 4} = \lim_{n \to \infty} \frac{1 + \frac{3}{n}}{1 + \frac{4}{n} + \frac{4}{n^2}} = 1$$

Nessas condições o Teste da Razão é inconclusivo! Dessa forma precisamos recorrer à outros testes para responder à essa questão. Observe que:

$$|a_n| = \frac{n+2}{n(n+1)} = \frac{n+2}{n+1} \cdot \frac{1}{n} > \frac{1}{n}$$

Dessa forma é possível aplicar o Teste da Comparação com a série harmônica. Como a série harmônica é divergente então a série

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} \frac{n+2}{n(n+1)}$$

Também será e, consequentemente, a série $\sum_{n=0}^{\infty} (-1)^n \frac{n+2}{n(n+1)}$ é condicionalmente convergente.

Teste da Raiz

Teste da Raiz

Se $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, então a série $\sum_{i=1}^n a_n$ é absolutamente convergente (e, portanto, convergente).

Se
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$$
 ou $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$, então a série $\sum_{i=1}^n a_i$ é divergente.

Se
$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$$
 o Teste da Raiz é inconclusivo.

Determine se a série alternada $\sum_{n=1}^{\infty} (-1)^n \frac{3^{2n+1}}{n^{2n}}$ é convergente ou divergente.

Note que:

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\frac{3^{2n+1}}{n^{2n}}} = \lim_{n \to \infty} \frac{3^{2+1/n}}{n^2} = 0 < 1$$

Portando a série dada é absolutamente convergente pelo Teste da Raiz. E o Teste da Convergência Absoluta nos garante que ela será convergente.

Teste as seguintes séries com relação à convergência e divergência.

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^3}{2^n}$$

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n!}{n^n}$$

3
$$\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$$

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n} \right)^{n^2}$$

Rearranjo de termos em séries

Rearranjo de termos em séries absolutamente convergentes

Se uma série for absolutamente convergente com soma s, então qualquer rearranjo de seus termos tem a mesma soma s.

Rearranjo de termos em séries condicionalmente convergentes

Se uma série for condicionalmente convergente, então para todo $r \in \mathbb{R}$ existe um rearranjo dos termos dessa série para o qual a sua somatória será r.

Seja a série harmônica alternada (condicionalmente convergente):

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2$$
 (2)

Multiplique a série por 1/2:

$$\frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} - \frac{1}{12} + \dots = \frac{\ln 2}{2}$$
 (3)

Acrescente zeros entre os termos dessa série:

$$0 + \frac{1}{2} + 0 - \frac{1}{4} + 0 + \frac{1}{6} + 0 - \frac{1}{8} + 0 + \frac{1}{10} + 0 - \frac{1}{12} + 0 + \dots = \frac{\ln 2}{2}$$
 (4)

Somando os termos correspondentes das séries (2) e (4):

$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \dots = \frac{3\ln 2}{2}$$
 (5)

Perceba que as séries (2) e (5) são iguais.

Exercício

Apresente uma ordenação para os termos da série harmônica alternada de modo que a sua somatória seja igual a 1.

Série de Potências

Série de Potências

Uma série de potências é uma série da forma

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

onde x é uma variável e c_n são constantes chamadas coeficientes da série.

Série de Potências em $\phi(x)$

Uma série de potências é uma série da forma

$$\sum_{n=0}^{\infty} c_n [\phi(x)]^n = c_0 + c_1 [\phi(x)] + c_2 [\phi(x)]^2 + c_3 [\phi(x)]^3 + \cdots$$

onde ϕ é uma função de x e c_n são constantes chamadas coeficientes da série.

Série de Potências Centrada em a

A série da forma

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + \cdots$$

é chamada de série de potências centrada em a, onde x é uma variável e c_n são constantes chamadas coeficientes da série.

Convergência de uma Série de Potências

Para uma dada série de potências $\sum_{n=0}^{\infty} c_n (x-a)^n$, existem apenas três possibilidades:

- **1** A série converge apenas quando x = a;
- **8** Existe um R > 0 tal que a série converge se |x a| < R e diverge se |x a| > R.

Determinação do Raio de Convergência

Para uma dada série de potências $\sum_{n=0}^{\infty} c_n (x-a)^n$ tal que $L = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|$ exista ou seja infinito. Então o Raio de Convergência R será.

- $2 R = 0 \text{ se } L = \infty;$
- **3** R = 1/L caso contrário.

Ache os valores de x para os quais a série de potências é convergente $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. Qual o raio de convergência?

Se x=0 a série é claramente convergente, pois teríamos uma somatória de termos nulos. Para analisar a convergência dessa série quando $x\neq 0$ vamos aplicar o Teste da Razão. Para tanto note que:

$$a_n = \frac{x^n}{n!}, \qquad a_{n+1} = \frac{x^{n+1}}{(n+1)!}$$

Para usarmos o Teste da Razão precisamos analisar o seguinte limite:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^n}{n!}} \right| = |x| \lim_{n \to \infty} \frac{1}{n+1} = 0$$

Nesse caso a série é convergente para todo valor de x, pois 0 < 1 e o raio de convergência é infinito.

Ache os valores de x para os quais a série de potências é convergente $\sum_{n=0}^{\infty} n! x^n$. Qual o raio de convergência?

Se x=0 a série é claramente convergente, pois teríamos uma somatória de termos nulos. Para analisar a convergência dessa série quando $x\neq 0$ vamos aplicar o Teste da Razão. Para tanto note que:

$$a_n = n!x^n$$
, $a_{n+1} = (n+1)!x^{n+1}$

Para usarmos o Teste da Razão precisamos analisar o seguinte limite:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)!x^{n+1}}{n!x^n} \right| = |x| \lim_{n \to \infty} (n+1) = \infty$$

Nesse caso a série é divergente para todo $x \neq 0$ e o raio de convergência é zero.

Ache os valores de x para os quais a série de potências é convergente $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n x^n}{n3^n}$.

Qual o raio de convergência?

Reescrevendo a série obtemos:

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n x^n}{n \cdot 3^n} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \left(\frac{2x}{3}\right)^n$$

Se x=0 a série é claramente convergente, pois teríamos uma somatória de termos nulos. Para analisar a convergência dessa série quando $x\neq 0$ vamos aplicar o Teste da Razão. Para tanto note que:

$$a_n = \frac{(-1)^{n+1}}{n} \left(\frac{2x}{3}\right)^n$$
 $a_{n+1} = \frac{(-1)^{n+2}}{n+1} \left(\frac{2x}{3}\right)^{n+1}$

Para usarmos o Teste da Razão precisamos analisar o seguinte limite:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(-1)^{n+2}}{n+1} \left(\frac{2x}{3}\right)^{n+1}}{\frac{(-1)^{n+1}}{n} \left(\frac{2x}{3}\right)^n} \right|$$

$$= \frac{2|x|}{3} \lim_{n \to \infty} \frac{n}{n+1}$$

$$= \frac{2|x|}{3}$$

Pelo Teste da Razão temos que se a série é convergente se:

$$\frac{2|x|}{3} < 1 \iff -\frac{3}{2} < x < \frac{3}{2}$$

e divergente se

$$\frac{2|x|}{3} > 1 \iff x > \frac{3}{2} \text{ ou } x < -\frac{3}{2}$$

Caso x = 3/2 a série dada é equivalente à

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \left(\frac{2x}{3}\right)^n = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

Que é uma série convergente (série harmônica alternada).

Caso x=-3/2 a série dada é equivalente à

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \left(\frac{2x}{3}\right)^n = \sum_{n=1}^{\infty} \frac{1}{n}$$

Que é uma série divergente (série harmônica). Portanto a série dada é convergente para todo $x \in (-3/2, 3/2]$ e o raio de convergência é 3/2.

Ache os valores de x para os quais a série de potências é convergente: $\sum_{n=0}^{\infty} \frac{(x+2)^n}{2^n \ln n}$.

Qual o raio de convergência?

Se x=-2 a série é claramente convergente, pois teríamos uma somatória de termos nulos. Para analisar a convergência dessa série quando $x \neq -2$ vamos aplicar o Teste da Razão. Para tanto note que:

$$a_n = \frac{(x+2)^n}{2^n \ln n}$$
 $a_{n+1} = \frac{(x+2)^{n+1}}{2^{n+1} \ln(n+1)}$

Para usarmos o Teste da Razão precisamos analisar o seguinte limite:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(x+2)^{n+1}}{2^{n+1} \ln(n+1)}}{\frac{(x+2)^n}{2^n \ln n}} \right|$$
$$= \frac{|x+2|}{2} \lim_{n \to \infty} \frac{\ln n}{\ln(n+1)}$$
$$= \frac{|x+2|}{2}$$

Pelo Teste da Razão temos que se a série é convergente se:

$$\frac{|x+2|}{2} < 1 \iff -4 < x < 0$$

e divergente se

$$\frac{|x+2|}{2} > 1 \iff x > 0 \text{ ou } x < -4$$

Caso x=0 a série dada é equivalente à

$$\sum_{n=2}^{\infty} \frac{(x+2)^n}{2^n \ln n} = \sum_{n=2}^{\infty} \frac{1}{\ln n}$$

Que é uma série divergente pelo Teste da Comparação com a série harmônica $\sum_{n=2}^{\infty} \frac{1}{n}$.

Caso x=-4 a série dada é equivalente à

$$\sum_{n=2}^{\infty} \frac{(x+2)^n}{2^n \ln n} = \sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{\ln n}$$

Que é uma série convergente pelo Teste da Série Alternada. Portanto a série dada é convergente para todo $x\in[-4,0)$ e o raio de convergência é 2.

Determine o intervalo de convergência da série de potências:

$$\sum_{n=1}^{\infty} \frac{x^n}{2+n!}$$

Determine o intervalo de convergência da série de potências:

$$\sum_{n=0}^{\infty} \frac{x^n}{(n+1)5^n}$$

Determine os intervalos e raios de convergência das séries de potências dadas:

$$\sum_{n=0}^{\infty} \frac{x^n}{n^2+1}$$

$$3 \sum_{n=1}^{\infty} \frac{n^2}{5^n} (x-1)^n$$

$$\sum_{n=1}^{\infty} (-1)^{n+1} x^n \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n}$$

Representando funções usando séries

Expresse $f(x)=\frac{1}{1+x^3}$ como a soma de uma série de potências e encontre seu intervalo de convergência.

Se na série geométrica fizermos a=1 e $r=-x^3$ podemos construir a seguinte série:

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \iff \sum_{n=0}^{\infty} (-x^3)^n = \frac{1}{1-(-x^3)} \iff \sum_{n=0}^{\infty} (-1)^n x^{3n} = \frac{1}{1+x^3}$$

Sabemos que a série geométrica é convergente quando:

$$|-x^3| < 1 \iff -1 < x^3 < 1 \iff -1 < x < 1 \iff x \in (-1,1)$$

Expresse $f(x)=-rac{3}{x+1}$ como a soma de uma série de potências e encontre seu intervalo de convergência.

Se na série geométrica fizermos a=-3 e r=-x podemos construir a seguinte série:

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \iff \sum_{n=0}^{\infty} -3(-x)^n = \frac{-3}{1-(-x)} \iff \sum_{n=0}^{\infty} -3(-1)^n x^n = \frac{-3}{1+x}$$
$$\iff \sum_{n=0}^{\infty} (-1)^{n+1} 3x^n = \frac{-3}{1+x}$$

Sabemos que a série geométrica é convergente quando:

$$|-x| < 1 \iff -1 < x < 1 \iff x \in (-1,1)$$

Expresse $f(x)=\frac{1}{3x+7}$ como a soma de uma série de potências e encontre seu intervalo de convergência.

$$\frac{1}{3x+7} = \frac{1}{7\left(\frac{3x}{7}+1\right)} = \frac{\frac{1}{7}}{1+\frac{3x}{7}}$$

Se na série geométrica fizermos a=1/7 e r=-3x/7 podemos construir a seguinte série:

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \iff \sum_{n=0}^{\infty} \frac{1}{7} \left(\frac{-3x}{7} \right)^n = \frac{\frac{1}{7}}{1 - \left(-\frac{3x}{7} \right)} \iff \sum_{n=0}^{\infty} \frac{(-1)^n}{7} \left(\frac{3x}{7} \right)^n = \frac{1}{3x+7}$$

Sabemos que a série geométrica é convergente quando:

$$\left| \frac{-3x}{7} \right| < 1 \iff -1 < \frac{3x}{7} < 1 \iff -\frac{7}{3} < x < \frac{7}{3} \iff x \in (-\frac{7}{3}, \frac{7}{3})$$

Expresse $f(x)=\frac{1}{3x}$ como a soma de uma série de potências e encontre seu intervalo de convergência.

$$\frac{1}{3x} = \frac{1}{1 - (-3x + 1)}$$

Se na série geométrica fizermos a=1 e r=-3x+1 podemos construir a seguinte série:

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \iff \sum_{n=0}^{\infty} (-3x+1)^n = \frac{1}{3x} \iff \sum_{n=0}^{\infty} (-1)^n (3x-1)^n = \frac{1}{3x}$$

Sabemos que a série geométrica é convergente quando:

$$|3x - 1| < 1 \iff -1 < 3x - 1 < 1 \iff 0 < x < \frac{2}{3} \iff x \in (0, \frac{2}{3})$$

Expresse $f(x)=\frac{7}{3x(3x+7)}$ como a soma de uma série de potências e encontre seu intervalo de convergência.

Note que:

$$\frac{7}{3x(3x+7)} = \frac{1}{3x} - \frac{1}{3x+7}$$

Nos exercícios anteriores vimos que:

$$\sum_{n=0}^{\infty} (-1)^n (3x-1)^n = \frac{1}{3x} \qquad \text{e} \qquad \sum_{n=0}^{\infty} \frac{(-1)^n}{7} \left(\frac{3x}{7}\right)^n = \frac{1}{3x+7}$$

Como as séries acima convergem, respectivamente, nos intervalos (0, 2/3) e (-7/3, 7/3):

$$\sum_{n=0}^{\infty} (-1)^n \left[(3x-1)^n - \frac{1}{7} \left(\frac{3x}{7} \right)^n \right]$$

a série será convergente sempre que $x \in (0, 2/3) \cap (-7/3, 7/3) = (0, 2/3)$.

Expresse as funções como a soma de uma série de potências e encontre seu intervalo de convergência.

$$f(x) = \frac{3}{2 - x^5}$$

2
$$f(x) = \frac{x^3}{2 + x^3}$$

3
$$f(x) = \frac{1-x}{1+x}$$

$$f(x) = \frac{1 - 2x + x^2}{x}$$

Derivação e Integração de Séries de Potências

Derivação e Integração Termo à Termo

Se a série de potências $\sum_{i=1}^n (x-a)^n$ tiver um raio de convergência R>0, então a função f definida por

$$f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \dots = \sum_{n=0}^{\infty} c_n(x-a)^n$$

é diferenciável (e portanto contínua) no intervalo (a-R,a+R) e

$$\int f(x)dx = C + c_0(x-a) + c_1 \frac{(x-a)^2}{2} + c_2 \frac{(x-a)^3}{3} + \dots = C + \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}$$
$$\frac{d}{dx}f(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \dots = \sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$$

O raio de convergência da série resultante é ${\cal R}.$

Série geométrica de potências

Se |x| < 1, então:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n.$$

Demonstração.

Note que a série dada é uma série geométrica com a=1 e r=x. Portando é convergente quando |x|<1.

$$\sum_{k=1}^{\infty} ar^{k-1} = \sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$$

Obtenha uma série de potências que represente a função $f(x) = \frac{1}{(1-x)^2}$.

Note que pela série geométrica de potências se |x| < 1, então:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n.$$

Derivando termo a termo obtemos:

$$\frac{1}{(1-x)^2} = 0 + 1 + 2x + 3x^2 + 4x^3 + \dots = \sum_{n=1}^{\infty} nx^{n-1}.$$

Portanto, se |x| < 1:

$$\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1}.$$

Obtenha uma série de potências que represente a função $f(x) = \frac{1}{(1-x)^3}$.

Acabamos de mostrar que:

$$\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 + \dots = \sum_{n=1}^{\infty} nx^{n-1}.$$

Derivando termo a termo obtemos:

$$\frac{2}{(1-x)^3} = 1 + 2 + 6x + 12x^2 + 20x^3 + \dots = \sum_{n=2}^{\infty} n(n-1)x^{n-2}.$$

Portanto, se |x| < 1:

$$\frac{1}{(1-x)^3} = \sum_{n=0}^{\infty} \frac{n(n-1)}{2} x^{n-2}.$$

Obtenha uma representação em séries de potências para $\ln(1+x)$.

Lembre-se que:

$$\ln(1+x) = \int \frac{1}{1+x} dx.$$

Note que pela série geométrica de potências se |x| < 1, então:

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots = \sum_{n=0}^{\infty} (-1)^n x^n.$$

Integrando termo a termo obtemos:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}.$$

Obtenha uma representação em séries de potências para $\tan^{-1} x$.

Lembre-se que:

$$\tan^{-1} x = \int \frac{1}{1+x^2} \ dx.$$

Note que pela série geométrica de potências se |x| < 1, então:

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \dots = \sum_{n=0}^{\infty} (-1)^n x^{2n}.$$

Integrando termo a termo obtemos:

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}.$$

Expresse as funções como a soma de uma série de potências e encontre seu intervalo de convergência.

- 2 $f(x) = \ln(2^{-x})$ 2 $f(x) = \frac{1}{(2-x)^2}$ 3 $f(x) = \tan^{-1} 2x$

Função de Bessel de Ordem 0

A função de Bessel de Ordem 0 é definida pela seguinte série:

$$J_0(x) = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(n!)^2} \left(\frac{x}{2}\right)^{2n}.$$

Convergência da Função de Bessel de Ordem 0

A função de Bessel de Ordem 0 é convergente para todo número real.

Para mostrar a convergência de $J_0(x)$ basta aplicar o teste da razão.

Exercício

Determine o intervalo de convergência da Função de Bessel de Ordem 0. É possível derivar e integrar essa função? Se sim encontre séries de potências para a derivada e a integral da função de Bessel.

Função de Bessel de Ordem 1

A função de Bessel de ordem 1 é definida pela seguinte série:

$$J_1(x) = \sum_{n=0}^{\infty} (-1)^n \frac{1}{n!(n+1)!} \left(\frac{x}{2}\right)^{2n+1}.$$

Exercício

Semana 11 - Exercício 4

Determine o intervalo de convergência da Função de Bessel de Ordem 1. É possível derivar e integrar essa função? Se sim encontre séries de potências para a derivada e a integral da função de Bessel.

Séries de Taylor e Maclaurin

Se f tiver uma representação em série de potências centrada em a com raio de convergência R, ou seja |x-a| < R:

$$f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + c_4(x-a)^4 + c_5(x-a)^5 + \cdots$$

Dessa forma podemos construir a seguinte tabulação para as derivadas sucessivas de f:

Expansão em séries de potências centradas em $\it a$	x = a
$f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$	$f(a) = c_0$
$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$	$f'(a) = c_1$
$f''(x) = 2c_2 + 6c_3(x-a) + 12c_4(x-a)^2 + 20c_5(x-a)^3 + \cdots$	$f''(a) = 2c_2$
$f'''(x) = 6c_3 + 24c_4(x-a) + 60c_5(x-a)^2 + 120c_6(x-a)^3 + \cdots$	$f'''(a) = 6c_3$
:	:
$f^{(n)}(x) = n!c_n + \cdots$	$f^{(n)}(a) = n!c_n$

Isolando o *n*-ésimo coeficiente obtemos:

$$c_n = \frac{f^{(n)}(a)}{n!}$$

Existência de representação em séries de potências

Se f tiver uma representação em série de potências em a, isto é, se

$$f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n \quad |x - a| < R$$

então seus coeficientes são dados pela fórmula

$$c_n = \frac{f^{(n)}(a)}{n!}$$

Série de Taylor centrada em a

Se f tiver uma expansão em série de potências em torno de a, então ela será da forma:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

= $f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \dots$

Série de Maclaurin

Se f tiver uma expansão em série de potências em torno de 0, então ela será da forma:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

= $f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n + \dots$

Polinômio de Taylor

$$T_k = \sum_{n=0}^k \frac{f^{(n)}(a)}{n!} (x-a)^n$$

Convergência da Série de Taylor

Se $f(x) = T_n(x) + R_n(x)$, onde T_n é o polinômio de Taylor de n-ésimo grau de f em a e

$$\lim_{n \to \infty} R_n(x) = 0$$

para |x-a| < R, então f é igual à soma da sua série de Taylor no intervalo |x-a| < R.

Nem sempre é fácil avaliar o limite acima, por isso é comum recorrer à Desigualdade de Taylor que veremos à seguir.

Desigualdade de Taylor

Se $|f^{(n+1)}(x)| \leq M$ para $|x-a| \leq d$, então o resto $R_n(x)$ da série de Taylor satisfaz a desigualdade

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$

para $|x - a| \le d$.

$$\lim_{n\to\infty}\frac{x^n}{n!}=0\quad \text{para todo }x\text{ real}$$

Exercício

Encontre a série de Maclaurin para $f(x) = e^x$. Mostre a série converge para todos os valores de x e que sua soma é igual à e^x .

Passo 1: Encontre uma série de potencias que supostamente represente a função desejada.

Note que $f^{(n)}(x) = e^x$ para todo par $(n, x) \in \mathbb{Z} \times \mathbb{R}$, portanto $f^{(n)}(0) = 1$ para todo n. Dessa forma se existir uma série de potencias de Maclaurin para f então ela será da forma:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Passo 2: Determinar o raio de convergência da série de potencias obtida.

Vamos usar o Teste da Razão:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{|x|}{n+1} = 0 < 1$$

Logo a série dada possui raio de convergência infinito $(R = \infty)$.

Passo 3: Mostre que a série obtida de fato representa a função desejada.

Vamos usar a Desigualdade de Taylor: Para tanto note que $f^{(n+1)}(x) = e^x$ para todo n. Considere um número positivo d tal que $|x| \le d$ e note que:

$$f^{(n+1)}(x) = e^x \le e^d$$

Então, pela Desigualdade de Taylor, o resto $R_n(x)$ da série de Maclaurin satisfaz a desigualdade:

$$|R_n(x)| \le \frac{e^d}{(n+1)!} |x|^{n+1}$$
 para $|x| < d$

Note agora que:

$$\lim_{n \to \infty} \frac{e^d}{(n+1)!} |x|^{n+1} = e^d \lim_{n \to \infty} \frac{|x|^{n+1}}{(n+1)!} = 0$$

Finalmente, pelo teorema do confronto dos limites:

$$\lim_{n \to \infty} |R_n(x)| = 0 \implies \lim_{n \to \infty} R_n(x) = 0$$

Portanto, a série converge para e^x em todos os valores de x.

Exercício

Encontre a série de Taylor centrada em 2 para $f(x) = e^x$. Mostre a série converge para todos os valores de x e que sua soma é igual à e^x .

Passo 1: Encontre uma série de potências que supostamente represente a função desejada.

Note que $f^{(n)}(x) = e^x$ para todo par $(n,x) \in \mathbb{Z} \times \mathbb{R}$, portanto $f^{(n)}(a) = e^a$ para todo n. Dessa forma se existir uma série de potências de Taylor para f então ela será da forma:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = e^a \sum_{n=0}^{\infty} \frac{(x-a)^n}{n!}$$

Passo 2: Determinar o raio de convergência da série de potências obtida.

Vamos usar o Teste da Razão:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{|x-a|}{n+1} = 0 < 1$$

Logo a série dada possui raio de convergência infinito ($R = \infty$).

Passo 3: Mostre que a série obtida de fato representa a função desejada.

Vamos usar a Desigualdade de Taylor: Para tanto note que $f^{(n+1)}(x) = e^x$ para todo n. Considere um número positivo d tal que $|x-a| \le d$ e note que:

$$f^{(n+1)}(x) = e^x \le e^d$$

Então, pela Desigualdade de Taylor, o resto $R_n(x)$ da série de Maclaurin satisfaz a desigualdade:

$$|R_n(x)| \le \frac{e^d}{(n+1)!} |x-a|^{n+1}$$
 para $|x-a| < d$

Note agora que:

$$\lim_{n \to \infty} \frac{e^d}{(n+1)!} |x-a|^{n+1} = e^d \lim_{n \to \infty} \frac{|x-a|^{n+1}}{(n+1)!} = 0$$

Finalmente, pelo teorema do confronto dos limites:

$$\lim_{n \to \infty} |R_n(x)| = 0 \implies \lim_{n \to \infty} R_n(x) = 0$$

Portanto, a série converge para e^x em todos os valores de x.

Exercício

Encontre a série de Maclaurin para $f(x) = \operatorname{sen} x$. Mostre a série converge para todos os valores de x e que sua soma é igual à $\operatorname{sen} x$.

Passo 1: Encontre uma série de potencias que supostamente represente a função desejada.

Note que:

$$\begin{array}{c|cccc}
f(x) & = \sin x & f(0) & = 0 \\
f'(x) & = \cos x & f'(0) & = 1 \\
f''(x) & = -\cos x & f'''(0) & = 0 \\
f^{(4)}(x) & = -\cos x & f^{(4)}(0) & = 0 \\
\vdots & \vdots & \vdots & \vdots
\end{array}$$

$$f(x) = \operatorname{sen} x f'(x) = \cos x f''(x) = - \operatorname{sen} x f'''(x) = - \cos x f'''(x) = - \cos x f^{(4)}(x) = \operatorname{sen} x \vdots$$

$$f^{(4)}(0) = 0 f^{(4)}(0) = 0 \vdots$$

$$f^{(4)}(0) = 0 \vdots$$

Dessa forma se existir uma série de potências de Maclaurin para f, então ela será da forma:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \dots + \frac{f^{(n)}(0)}{n!} x^n + \dots$$

$$= 0 + x + 0 - \frac{x^3}{3!} + 0 + \frac{x^5}{5!} + 0 - \frac{x^7}{7!} + 0 + \frac{x^9}{9!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$

$$= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Passo 2: Determinar o raio de convergência da série de potencias obtida.

Vamos usar o Teste da Razão:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{x^{2n+3}}{(2n+3)!}}{\frac{x^{2n+1}}{(2n+1)!}} \right| = \lim_{n \to \infty} \frac{|x^2|}{(2n+3)(2n+2)} = 0 < 1$$

Logo a série dada possui raio de convergência infinito $(R = \infty)$.

Passo 3: Mostre que a série obtida de fato representa a função desejada.

Vamos usar a Desigualdade de Taylor: Note que $f^{(n+1)}(x) \leq 1$ para todo n e para todo número positivo d tal que $|x| \leq d$ e além disso:

$$f^{(n+1)}(x) = e^x \le 1$$

Então, pela Desigualdade de Taylor, o resto $R_n(x)$ da série de Maclaurin satisfaz a desigualdade:

$$|R_n(x)| \le \frac{|x|^{n+1}}{(n+1)!}$$
 para $|x| < d$

Note agora que:

$$\lim_{n \to \infty} \frac{|x|^{n+1}}{(n+1)!} = 0$$

Finalmente, pelo teorema do confronto dos limites:

$$\lim_{n \to \infty} |R_n(x)| = 0 \implies \lim_{n \to \infty} R_n(x) = 0$$

Portanto, a série converge para sen x.

Exercício

Encontre a série de Maclaurin para $f(x)=(1+x)^k$, onde k é um número real qualquer.

Passo 1: Encontre uma série de potencias que supostamente represente a função desejada.

Note que:

```
f(x) = (1+x)^{k}
f'(x) = k(1+x)^{k-1}
f''(x) = k(k-1)(1+x)^{k-2}
f'''(x) = k(k-1)(k-2)(1+x)^{k-3}
\vdots
f^{(n)}(x) = k(k-1) \cdots (k-n+1)(1+x)^{k-n}
f''(0) = k
f''(0) = k(k-1)
f'''(0) = k(k-1)
\vdots
f^{(n)}(0) = k(k-1) \cdots (k-n+1)
```


$$\begin{array}{c|cccc}
f(x) = (1+x)^k \\
f'(x) = k(1+x)^{k-1} \\
f''(x) = k(k-1)(1+x)^{k-2} \\
f'''(x) = k(k-1)(k-2)(1+x)^{k-3} \\
\vdots \\
f^{(n)}(x) = k(k-1) \cdots (k-n+1)(1+x)^{k-n}
\end{array}$$

$$\begin{array}{c|ccccc}
f(0) = 1 \\
f'(0) = k \\
f''(0) = k(k-1) \\
f'''(0) = k(k-1) \\
\vdots \\
f^{(n)}(0) = k(k-1) \cdots (k-n+1)(1+x)^{k-n}
\end{array}$$

Note que
$$f^{(n)}(x) = \frac{k!}{(k-n)!}(1+x)^{k-n}$$
 para todo par de inteiros n e k , portanto

$$f^{(n)}(0) = \frac{k!}{(k-n)!}$$
 para todo $n \in k$.

Dessa forma se existir uma série de potencias de Maclaurin para f então ela será da forma:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{k!}{(k-n)!} \frac{x^n}{n!} = \sum_{n=0}^{\infty} {k \choose n} x^n$$

Passo 2: Determinar o raio de convergência da série de potencias obtida.

Vamos usar o Teste da Razão:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{|k-n|}{n+1} |x| = \lim_{n \to \infty} \frac{\left| 1 - \frac{k}{n} \right|}{1 + \frac{1}{n}} |x| = |x| < 1$$

Logo a série dada converge no intervalo (-1,1) e diverge fora desse intervalo.

A convergência em -1 e 1 dependerá dos valores de k.

A série converge em 1 se $-1 < k \le 0$ e em ambas as extremidades se $k \ge 0$.

Passo 3: Mostre que a série obtida de fato representa a função desejada.

Não é simples mostrar diretamente que $\lim_{n\to\infty}R_n(x)=0$ nesse caso. O livro Stewart (2013, ex.85 sec.: 11.10) dá uma dica de como proceder.

Série Binomial

Se k for um número real qualquer e |x| < 1, então:

$$(1+x)^k = \sum_{n=0}^{\infty} {k \choose n} x^n = 1 + kx + \frac{k(k-1)}{2!} x^2 + \frac{k(k-1)(k-2)}{3!} x^3 + \cdots$$

$$\binom{k}{n} = \frac{k!}{n!(k-n)!}$$

Ache uma representação em série de Maclaurin para a função dada e determine o raio de convergência.

- 1 $f(x) = \operatorname{senh} x$ 2 $f(x) = \frac{3}{\sqrt{2-x}}$

$$senh x = \frac{e^x - e^{-x}}{2}$$

ExercícioE

ncontre uma uma série de potências de \boldsymbol{x} para

$$f(x) = \frac{1}{\sqrt{1+x}}$$

e use essa série para obter uma série de potências de \boldsymbol{x} para

$$g(x) = \frac{1}{\sqrt{1 - x^2}}$$

e por fim encontre uma série para $\sin^{-1} x$.

Ache uma representação em série de Taylor centrada em a para $f(x) = \sin x$ e determine o raio de convergência.

- $(3) f(x) = \sin x$
- $f(x) = \ln x$

Exercício

Use a série binomial para encontrar a série de MacLaurin para a função dada e determine seu raio de convergência:

$$f(x) = (3-x)^{-2}$$

b
$$f(x) = \frac{x}{\sqrt{1-x}}$$

c $f(x) = \frac{x}{\sqrt[3]{1+x^2}}$

$$f(x) = \frac{x}{\sqrt[3]{1+x^2}}$$

Exercício

Calcule com precisão de até três casas decimais de precisão, o valor da integral definida (use alguma técnica baseada em séries de potência):

a
$$\int_0^{1/3} \sqrt{1 + x^3} dx$$
b
$$\int_0^1 \frac{dx}{\sqrt[3]{1 + x^2}}$$

b
$$\int_0^1 \frac{dx}{\sqrt[3]{1+x^2}}$$

Referências

Algumas referências clássicas para um bom curso de cálculo: Stewart (2016), Leithold (1994), Gonçalves & Flemming (2007), Guidorizzi (2008), Larson & Edwards (2018), Adams & Essex (2018), Hass et al. (2018).

Adams, R. A. & C. Essex (2018). Calculus: A Complete Course. Pearson.

Gonçalves, M. B. & D. M. Flemming (2007). Cálculo B: Funções de várias variáveis, integrais múltiplas (2 ed.). Pearson.

Guidorizzi, H. L. (2008). Um curso de cálculo (5 ed.), Volume 4. LTC.

Hass, J., C. Heil, G. B. Thomas, & M. D. Weir (2018). Thomas' Calculus (14 ed.). Pearson.

Larson, R. & B. Edwards (2018). Calculus with CalcChat and CalcView. Cengage Learning.

Leithold, L. (1994). O Cálculo com Geometria Analítica (3 ed.), Volume 2. Harbra.

Stewart, J. (2013). Cálculo (7 ed.), Volume 2. Cengage.

Stewart, J. (2016). Calculus (8 ed ed.). Cengage Learning.

