

CropAl: Al Crop Disease Recognition System

Our focus

Agriculture

Problem statement

- 1. How can we create a sustainable farming solution?
- 2. How can we empower rural farmers to utilize data mining to improve their farm's efficiency while at the same time lowering their farm operating cost?

Introduction

Crops make up the vast majority of agricultural production Farmers depend on healthy crop yield Crop diseases result in the loss of crop yield and income

Importance of crop disease recognition

Enable curative measures

Prevent spread of disease

Reduce crop loss

Prevent recurring outbreaks in the future

Existing problems

Unavailability of human expertise

e.g. plant pathologist in rural farm

Outbreak and spreading of disease from slow crop disease detection

Solution

Plant expert knowledge

Machine

Crop disease recognition assistant

How it will solve

Enable timely control response

Assist smallholder farmers without research infrastructure or support

Introduce a collaborative platform

Target Users

Farmers

Researchers / experts

Technical challenges

- Existing plant disease data is not region invariant
- Data required for deep learning task is large

Data needs to be diverse in terms of capturing condition, disease stages and image quality

Methodology

Images of crop diseases

Prototype / Proof of concept

Automated tomato plant disease recognition system

Trained model results

Accuracy	Model	
	1 (Mobile Net v2)	2 (Inception Resnet v2)
Training (Top 1)	88.13 %	96.88 %
Validation (Leaf Scan - Top 1)	97.94 %	99.75 %
Validation (Non-leaf Scan - Top 1)	64.44 %	78.89 %
Validation (Leaf Scan - Top 3)	99.92 %	100.00 %
Validation (Non-leaf Scan - Top 3)	93.33 %	91.11 %

Prototype UI

Android app

Windows PC

Notable outcomes

- A reliable and continuously learning AI for crop disease
- Reduce the cost of data collection by crowdsourcing the community
- Early detection of crop disease to ensure quality yield at the same time maintain production quantity
- Detection and control of disease outbreak by related agricultural authority within the community

Conclusion

Sustain for research purposes & future generations

Increase quality yield

Reduce crop loss

Adopt timely response

Practical