DESCRIPTION OF THE WOBBLING MOTION THROUGH A BOSON METHOD

Robert Poenaru

DFT, IFIN-HH Doctoral School of Physics, UB

November 23, 2022

Outline

Introduction

2 Triaxial Shapes

Nuclear Deformation

Nuclear Radius

The **shape** of the nucleus is most generally described in terms of the *nuclear radius*:

$$R(\theta, \varphi; t) = R_0 \left(1 + \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu}(t) Y_{\lambda}^{\mu}(\theta, \varphi) \right)$$
 (1)

- The $\alpha_{\lambda\mu}$ are collective coordinates \Longrightarrow vibrations of the nucleus.
- Y^{μ}_{λ} are the spherical harmonics.

Nuclear shapes

Most nuclei are spherical or axially symmetric in the ground state.

Figure 1: Spherical: $\beta_2=0$; Prolate: $\beta_2>0$; Oblate: $\beta_2<0$

Quadrupole deformations

- Most relevant vibrational degrees of freedom in nuclei.
- Play a crucial role in the rotational spectra of nuclei.

Quadrupole radius

For pure quadrupole deformations:

$$R(\theta,\varphi) = R_0 \left(1 + \sum_{\mu} \alpha_{2\mu} Y_2^{\mu}(\theta,\varphi) \right) , \qquad (2)$$

Using A. Bohr's description, the coordinates $\alpha_{2\mu}$ can be reduced to only two deformation parameters: β_2 (eccentricity) and γ (triaxiality).

Nuclear triaxiality

- Besides the axially symmetric shapes (i.e., spherical, prolate, and oblate), nuclei can be triaxial

 lack of symmetry along any of the principal axes.
- ullet The asymmetry is given by the non-zero value of γ .

Triaxial ellpsoid

Figure 2: Left: side-viewRight: top view