Nlp in 2020

Tomasz Stanisławek^{1,2} (Thomas Wolf and Sebastian Ruder)

¹Applica.ai

²Faculty of Mathematics and Information Science, Warsaw University of Technology

Mi2 DataLab seminar, 26.10.2020

Presentation plan

- ► Big models
- Efficiency
- ► Multilingual models
- ► Multimodal models
- ► Datasets and evaluation
- ► Honorable mentions
- ► Industry

Language Models are Few-Shot Learners, https://arxiv.org/pdf/2005.14165.pdf

Total Compute Used During Training

"About 1 500 000 results" for "gpt-3" query (Google, 25.10.2020)

GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding, https://arxiv.org/abs/2006.16668

Model can efficiently be trained on 2048 TPU v3 in 4 days

https://twitter.com/fchollet/status/1122330598968705025

000

Training ever bigger convnets and LSTMs on ever bigger datasets gets us closer to Strong AI -- in the same sense that building taller towers gets us closer to the moon.

4:44 AM · Apr 28, 2019 · Twitter for Android

602 Retweets 42 Quote Tweets 2.3K Likes

Efficient Transformers

Efficient Transformers: A Survey, https://arxiv.org/pdf/2009.06732.pdf

Efficiency-flavored "X-former" models

Efficient Transformers

17

Model size and Computational efficiency

Reducing the size of a pretrained model

Three main **techniques** currently investigated:

$$L = -\sum_{i} t_i * log(s_i)$$

- Distillation
 - DistilBert: 95% of Bert performances in a model 40% smaller and 60% faster
- Pruning Movement Pruning: Adaptive Sparsity by Fine-Tuning

Quantization

From FP32 to INT8

$$Q(x, \text{scale}, \text{zero_point}) = \text{round}\left(\frac{x}{\text{scale}} + \text{zero_point}\right) \quad \begin{array}{c} |\text{Prec}| \text{Fi score}| \text{Notel Size}| \text{I} \\ |\text{First}| \text{ 0.6983} & |\text{131 NO}| \text{ 0.6983} \\ |\text{131 NO}| \text{ 0.6983} & |\text{131 NO}| \text{ 0.9983} \\ \end{array}$$

https://www.youtube.com/watch?v=8Hg2UtQg6G4

The State and Fate of Linguistic Diversity and Inclusion in the NLP World, https://arxiv.org/pdf/2004.09095.pdf

The size and colour of a circle represent the number of languages and speakers respectively in each category. Colours (on the VIBGYOR spectrum) Violet–Indigo–Blue–Green–Yellow–Orange–Red) represent the total speaker population size from low (violet) to high (red).

The State and Fate of Linguistic Diversity and Inclusion in the NLP World, https://arxiv.org/pdf/2004.09095.pdf

5 Example Languages	#Langs	#Speakers	% of Total Langs
Dahalo, Warlpiri, Popoloca, Wallisian, Bora	2191	1.2B	88.38%
Cherokee, Fijian, Greenlandic, Bhojpuri, Navajo	222	30M	5.49%
Zulu, Konkani, Lao, Maltese, Irish	19	5.7M	0.36%
Indonesian, Ukranian, Cebuano, Afrikaans, Hebrew	28	1.8B	4.42%
Russian, Hungarian, Vietnamese, Dutch, Korean	18	2.2B	1.07%
English, Spanish, German, Japanese, French	7	2.5B	0.28%
	Dahalo, Warlpiri, Popoloca, Wallisian, Bora Cherokee, Fijian, Greenlandic, Bhojpuri, Navajo Zulu, Konkani, Lao, Maltese, Irish Indonesian, Ukranian, Cebuano, Afrikaans, Hebrew Russian, Hungarian, Vietnamese, Dutch, Korean	Dahalo, Warlpiri, Popoloca, Wallisian, Bora 2191 Cherokee, Fijian, Greenlandic, Bhojpuri, Navajo 222 Zulu, Konkani, Lao, Maltese, Irish 19 Indonesian, Ukranian, Cebuano, Afrikaans, Hebrew 28 Russian, Hungarian, Vietnamese, Dutch, Korean 18	Dahalo, Warlpiri, Popoloca, Wallisian, Bora 2191 1.2B Cherokee, Fijian, Greenlandic, Bhojpuri, Navajo 222 30M Zulu, Konkani, Lao, Maltese, Irish 19 5.7M Indonesian, Ukranian, Cebuano, Afrikaans, Hebrew 28 1.8B Russian, Hungarian, Vietnamese, Dutch, Korean 18 2.2B

Table 1: Number of languages, number of speakers, and percentage of total languages for each language class.

More info: https://ruder.io/nlp-beyond-english/

Unsupervised Cross-lingual Representation Learning at Scale, https://arxiv.org/pdf/1911.02116.pdf

Figure 1: Amount of data in GiB (log-scale) for the 88 languages that appear in both the Wiki-100 corpus used for mBERT and XLM-100, and the CC-100 used for XLM-R. CC-100 increases the amount of data by several orders of magnitude, in particular for low-resource languages.

Model	train	#M	en	nl	es	de	Avg
Lample et al. (2016)	each	N	90.74	81.74	85.75	78.76	84.25
Akbik et al. (2018)	each	N	93.18	90.44	-	88.27	-
mBERT†	each	N	91.97	90.94	87.38	82.82	88.28
IIIDEKI '	en	1	91.97	77.57	74.96	69.56	78.52
	each	N	91.95	91.21	88.46	83.65	88.82
XLM-R _{Base}	en	1	91.95	77.83	76.24	69.70	78.93
	all	1	91.84	88.13	87.02	82.76	87.44
	each	N	92.74	93.25	89.04	85.53	90.14
XLM-R	en	1	92.74	81.00	76.44	72.27	80.61
	all	1	93.03	90.41	87.83	85.46	89.18

Table 2: Results on named entity recognition on CoNLL-2002 and CoNLL-2003 (F1 score). Results with † are from Wu and Dredze (2019). Note that mBERT and XLM-R do not use a linear-chain CRF, as opposed to Akbik et al. (2018) and Lample and Conneau (2019).

mT5: A massively multilingual pre-trained text-to-text transformer, https://arxiv.org/pdf/2010.11934.pdf

Model	Pair	sentence	Question answering			
1100401	XNLI	PAWS-X	XQuAD	MLQA	TyDi QA-GoldP	
Metrics	Acc.	Acc.	F1 / EM	F1 / EM	F1 / EM	
Cross-lingual zero-shot tra	ınsfer (m	odels are tra	ined on English	data only)		
mBERT	65.4	81.9	64.5 / 49.4	61.4 / 44.2	59.7 / 43.9	
XLM	69.1	80.9	59.8 / 44.3	48.5 / 32.6	43.6 / 29.1	
InfoXLM	81.4	-	-/-	73.6 / 55.2	- / -	
Phang et al. (2020)	80.4	87.7	77.2 / 61.3	72.3 / 53.5	76.0 / 59.5	
XLM-R	79.2	86.4	76.6 / 60.8	71.6 / 53.2	65.1 / 45.0	
mT5-Small	67.5	82.4	58.1 / 42.5	54.6 / 37.1	34.9 / 23.9	
mT5-Base	75.4	87.4	67.0 / 49.0	64.6 / 45.0	58.1 / 42.8	
mT5-Large	81.1	89.6	77.8 / 61.5	71.2 / 51.7	57.8 / 41.1	
mT5-XL	82.9	90.2	79.5 / 63.6	73.5 / 54.5	77.3 / 61.5	
mT5-XXL (75% trained)	84.8	89.2	81.9 / 65.7	75.5 / 56.9	80.8 / 66.3	
Translate-train (models as	re trained	on English	data plus transl	ations in all targ	get languages)	
XLM-R	82.6	90.4	80.2 / 65.9	72.8 / 54.3	66.5 / 47.7	
Filter + Self-Teaching	83.9	91.4	82.4 / 68.0	76.2 / 57.7	68.3 / 50.9	
mT5-Small	64.7	87.8	64.3 / 49.5	60.2 / 41.1	48.2 / 34.0	
mT5-Base	75.9	90.2	75.3 / 59.7	68.6 / 49.1	64.0 / 47.7	
mT5-Large	81.8	91.3	81.2 / 65.9	73.3 / 54.2	71.1 / 54.9	
mT5-XL	84.8	91.3	82.7 / 68.1	74.6 / 55.2	79.9 / 65.3	
mT5-XXL (75% trained)	87.2	92.0	85.0 / 70.8	76.3 / 56.8	82.0 / 67.9	

Table 2: Results on XTREME sentence-pair classification and question answering tasks. Apart from mT5 (ours), all metrics are from Fang et al. (2020). Note, InfoXLM benefits from parallel training data, while Phang et al. (2020) leverages additional labeled data from related tasks. For the "translate-train" setting, we include English training data, so as to be comparable with Fang et al. (2020). This differs from XTREME "translate-train" setup of Hu et al. (2020). Full results for all languages in all tasks are provided in tables 6 to 10 (appendix).

Multimodal models

Unicoder-VL: A Universal Encoder for Vision and Language by Cross-modalPre-training, https://arxiv.org/pdf/1908.06066.pdf

 $Figure \ 1: Illustration \ of \ Unicoder-VL \ in \ the \ context \ of \ an \ object \ and \ text \ masked \ token \ prediction, \ or \ cloze, \ task. \ Unicoder-VL \ contains \ multiple \ Transformer \ encoders \ which \ are \ used \ to \ learn \ viusal \ and \ linguistic \ representation \ jointly.$

Multimodal models

LAMBERT: Layout-Aware (Language) Modeling using BERTfor information extraction, https://arxiv.org/pdf/2002.08087.pdf

		Date of incorporation	4 April 2006
Date of incorporation	4 April 2006	Company registration number	5769138
Company registration number	5769138	Charity registration number	1117506
Charity registration number	1117506	(b) Attention for a token in the i	first row
Registered office	30 Finsbury Circus London EC2M 7DT	Date of incorporation	4 April 2006
Board of Directors	C N Billingham	Company registration number	5769138
Board of Directors	A J Cowan	Charity registration number	1117506
	D McCarthy	(c) Attention for a token in the se	cond row
Company secretary	P M Rogers		
Bankers	Barclays Bank plc.	Date of incorporation	4 April 2006
	8/9 Hanover Square London	Company registration number	5769138
	W1A 4ZW	Charity registration number	1117506
(a) Original documen	t	(d) Attention for a token in the t	hird row

Datasets and evaluation

UnifiedQA: Crossing Format Boundaries With a Single QA System, https://arxiv.org/abs/2005.00700

Extractive [SQuAD]

Question: At what speed did the turbine operate?
Context: (Nikola_Tesla) On his 50th birthday in 1906, Tesla demonstrated his 200 horsepower (150 kilowatts) 16,000 rpm bladeless turbine. ...
Gold answer: 16,000 rpm

Abstractive [NarrativeQA]

Question: What does a drink from narcissus's spring cause the drinker to do? Context: Mercury has awakened Echo, who weeps for Narcissus, and states that a drink from Narcissus's spring causes the drinkers to "Grow dotingly enamored of themselves." ... Gold answer: fall in love with themselves

Multiple-Choice [ARC-challenge]

Question: What does photosynthesis produce that helps plants grow? Candidate Answers: (A) water (B) oxygen (C) protein (D) sugar Gold answer: sugar

Yes/No [BoolQ]

Question: Was America the first country to have a president?
Context: (President) The first usage of the word president to denote the highest official in a government was during the Commonwealth of England ...
Gold answer: no

Figure 1: Four formats (color-coded throughout the paper) commonly used for posing questions and answering them: Extractive (EX), Abstractive (AB), Multiple-Choice (MC), and Yes/No (YN). Sample dataset names are shown in square brackets. We study generalization and transfer across these formats.

Datasets and evaluation

BERTs of a feather do not generalize together: Large variability ingeneralization across models with similar test set performance, https://arxiv.org/pdf/1911.02969.pdf

Figure 3: Out-of-distribution generalization: Performance on the HANS evaluation set, broken down into six categories of examples based on which syntactic heuristic each example targets and whether the correct label is *entailment* or *non-entailment*. The non-entailed lexical overlap cases (lower left plot) display a large degree of variability across instances.

Datasets and evaluation

https://dynabench.org

Honorable mentions

Don't Stop Pretraining: Adapt Language Models to Domains and Tasks, https://arxiv.org/abs/2004.10964

			Additional Pretraining Phases		
Domain	Task	ROBERTA	DAPT	TAPT	DAPT + TAPT
BIOMED	СнемРкот	81.9 _{1.0}	84.20.2	82.6 _{0.4}	84.4 _{0.4}
BIOMED	†RCT	$87.2_{0.1}$	$87.6_{0.1}$	$87.7_{0.1}$	$87.8_{0.1}$
CS	ACL-ARC	63.0 _{5.8}	75.4 _{2.5}	67.4 _{1.8}	75.6 _{3.8}
CS	SCIERC	$77.3_{1.9}$	$80.8_{1.5}$	$79.3_{1.5}$	81.3 _{1.8}
News	HyperPartisan	86.6 _{0.9}	88.2 _{5.9}	90.4 _{5.2}	90.0 _{6.6}
NEWS	†AGNEWS	$93.9_{0.2}$	$93.9_{0.2}$	$94.5_{0.1}$	94.6 _{0.1}
Deviewe	†HELPFULNESS	65.1 _{3.4}	66.51.4	68.51.9	68.7 _{1.8}
REVIEWS	†IMDB	$95.0_{0.2}$	$95.4_{0.1}$	$95.5_{0.1}$	$95.6_{0.1}$

Table 5: Results on different phases of adaptive pretraining compared to the baseline ROBERTA (col. 1). Our approaches are DAPT (col. 2, §3), TAPT (col. 3, §4), and a combination of both (col. 4). Reported results follow the same format as Table 3. State-of-the-art results we can compare to: CHEMPROT (84.6), RCT (92.9), ACL-ARC (71.0), SCIERC (81.8), HYPERPARTISAN (94.8), AGNEWS (95.5), IMDB (96.2); references in §A.2.

Honorable mentions

- ► A Primer in BERTology: What we know about how BERT works, https://arxiv.org/pdf/2002.12327.pdf
- Explaining Deep Neural Networks, https://arxiv.org/pdf/2010.01496v1.pdf
- Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer, https://arxiv.org/abs/1910.10683
- Meta-Learning in Neural Networks: A Survey, https://arxiv.org/abs/2004.05439
- Current Limitations of Language Models: What You Need is Retrieval, https://arxiv.org/abs/2009.06857v1

Industry

https://github.com/huggingface

Pinned repositories

☐ transformers

Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

● Python 🏠 35.6k 😲 8.6k

☐ tokenizers

■ Rust ☆ 3.9k ♀ 273

□ datasets

East, efficient, open-access datasets and evaluation metrics for Natural Language Processing and more in PyTorch, TensorFlow, NumPy and Pandas

● Python ☆ 4.4k 💡 343

awesome-papers

Papers & presentation materials from Hugging Face's internal science day

☆ 1.6k ¥ 77

swift-coreml-transformers

Swift Core ML 3 Implementations of GPT-2, DistilGPT-2, BERT, and DistilBERT for Question answering. Other Transformers coming soon!

Swift ☆ 963 ♀ 109

☐ knockknock

■ Knock Knock: Get notified when your training ends with only two additional lines of code

■ Python ☆ 1.8k ♀ 158

Industry

 $https://gpt3examples.com/\\https://medium.com/towards-artificial-intelligence/crazy-gpt-3-use-cases-232c22142044$

🍞 Airtable			Grid view		
	Filter ↓† Sort	•••			
Words -> Website					
AUTHOR	DATE	LINK	DESCRIPTION		
Jordan Singer	7/25/2020	https://twitter.com/jsn	A GPT-3 × Figma plugin that ta		
Al for writing and p	odcasts				
AUTHOR	DATE	LINK	DESCRIPTION		
Tinkered Thinking	7/25/2020	http://tinkeredthinking	Here are 3 podcast episodes t		
Text -> DevOps					
AUTHOR	DATE	LINK	DESCRIPTION		
Suhail CS	7/25/2020	https://twitter.com/Ch	When GPT-3 Meets DevOps Wi		
Text -> Keras (ML c	ode generation)				
AUTHOR	DATE	LINK	DESCRIPTION		
Matt Shumer	7/25/2020	https://twitter.com/ma	Al INCEPTION! I just used GPT		
Entity Extractor					
AUTHOR	DATE	LINK	DESCRIPTION		
Yigit Ihlamur	7/25/2020	https://twitter.com/yih	The use-cases are endless. I c		
Style rewriting & Te	xt completion				
AUTHOR	DATE	LINK	DESCRIPTION		
Corlos F. Doroz	7/25/2020	https://twitter.com/let	Tout completion and the com		

Industry

COLING 2020 Industry Track Call for Papers

- ► Challenges of doing applied research at scale
- ► Noisy and/or unpredictable data (real world v. contrived)
- ► Negative results related to industry applications
- Analysis, modeling, and dataset construction under the constraint of respecting data privacy
- Algorithmic ethics and responsibility
- Evaluation methodologies, particularly for monitoring performance after deployment
- ► Trade-offs between resources (environmental and production) and performance; data size and modeling improvements
- Towards replicability in deep learning: experimental procedures necessary to develop successful models

