signifient que la correction est disponible.

Exercice S1/ $\star\star$ La suite de Syracuse est définie par :

Soit $U_0 \in \mathbb{N}^*$, pour tout $n \in \mathbb{N}$,

$$U_{n+1} = \underbrace{ \begin{array}{c} \frac{U_n}{2} & si \ n \ pair \\ \\ 3U_n + 1 \ si \ n \ impair \end{array} }$$

pour plus d'information sur cette suite: http://www.les-

suites.fr/suite-de-syracuse.htm

a. Créez une fonction nommée **Syracuse** qui a pour paramètres *le premier terme de la suite, noté U0,* et un *entier naturel n*. Cette fonction doit renvoyer <u>la valeur de Un</u>. (pour U0=15 on a U7=160)

La conjecture de Syracuse dit que la suite de Syracuse atteint 1. On appelle temps de vol le plus petit indice n tel que Un=1.

b. Créez une fonction nommée **tempvol** qui a pour paramètre *le premier terme de la suite, noté U0*, et qui renvoie <u>le temps de vol</u>. (tempvol(15)=17) Le temps de vol en altitude est le plus grand indice n tel que Un+1 est inférieur ou égal à U0.

c. Créez une fonction nommée **altivol** qui a pour paramètre *le premier terme de la suite, noté U0,* et qui renvoie <u>le temps de vol en altitude</u>. (altivol(15)=10) L'altitude maximale est la valeur maximale de la suite.

d. Créez une fonction nommée **altimax** qui a qui a pour paramètre *le premier terme de la suite, noté U0*, et qui renvoie <u>l'altitude maximale</u>. (altimax(15)=160) La correction arrivera un autre jour...

Exercice *S2/ * La suite de Fibonacci est définie par :

 $On pose U_0 = 0 et U_1 = 1$

 $pour \ tout \ n \ entire naturel, non \ nul \ : \ : U_{n+1} = U_n + U_{n-1}$

L'exercice consiste à créer une fonction non récursive (i.e.

itérative) **Fibo** qui a pour paramètre *un entier naturel n non nul* et qui renvoie <u>Un</u>. Correction

Voici quelques valeurs pour vérifier votre fonction :

U0	U1	U2	U3	U4	U5	U6	U7	U8	U9	U10
0	1	1	2	3	5	8	13	21	34	55

- Une solution fonctionnant sous Python 2.7 et Python 3.4:

la suite, i.e. tant que l'indice i est strictement inférieur à n :

L13. On incrémente i (pour l'instant U est le terme d'indice i-1, et UU est le terme d'indice i-2)

L14. Et on garde en mémoire le dernier terme calculé car il faudra s'en servir pour redéfinir U qui prendra la valeur de UU. Pour cela on définit une variable intermédiaire nommée Save.

L15. On calcule le terme Ui avec la formule donnée dans la définition de la suite. UU prend la valeur de Ui.

L16. Il faut donc que U prenne la valeur de Ui-1, i.e. de Save.

Fin Boucle While: Une fois sorti de la boucle, UU est le terme d'indice n.

L17. Donc on renvoie UU.

Exercice *\$\frac{1}{2}\$\$S3/ \(\structure \) Reprenez la définition de la suite de \(\bar{Fibonacci} \) donnée dans l'exercice précédent. L'exercice consiste à créer une fonction récursive \(\bar{Fibo} \) R qui a pour paramètre un entier naturel n et qui renvoie \(\bar{Un} \).

Correction

- L1. On va définir la fonction FiboR de paramètre n.
- L2. Si n est nul,
 - L3. Alors il s'agit du calcul de U0, or U0=0. On renvoie donc 0.
- L4. Si n est égal à 1,
 - L5. Alors il s'agit du calcul de U1, or U1=1. On renvoie donc 1.
- L6. Sinon
- **L7**. On retourne le calcul de Un, c'est-à-dire Un-1 + Un-2. Or Un= FiboR(n), donc on renvoie FiboR(n-1) + Fibo(n-2).

Exercice S4/ ** Reprenez la définition de la suite de Fibonacci donnée dans l'exercice précédent. L'exercice consiste à créer une fonction récursive terminale FiboRT qui a pour paramètres un entier naturel n non nul, et les conditions initiales U0 et U1, et qui renvoie Un.

Exercice *S5/ ** Le nombre d'or est la limite de la suite notée Vn et définie à partir de la suite Un de Fibonacci. Voici comment on les définit :

pour tout n > 2, $U_n = U_{n-1} + U_{n-2}$

$$et\ pour\ tout\ n>1,\quad V_n=\frac{U_n}{U_{n-1}}$$

On prend V1=0, U1=1 et U2=2.

L'exercice consiste à créer une

fonction **nbr_or** qui a pour paramètre un nombre

e strictement inférieur à 1, et qui renvoie une <u>approximation de la valeur du nombre d'or avec</u> une précision e.

Correction

<u>PS</u>: Si vous voulez faire un peu de maths, vous pouvez prouver que la limite de Vn est le nombre d'or (cf DÉMONSTRATION lien entre nombre d'or et suite de Fibonacci).

DÉFINITION: Nombre d'or : [Afficher]
DÉMONSTRATION Lien entre nombre d'or et suite de Fibonacci : [Afficher]

On prend V1=0, U1=1 et U0=0.

L'exercice consiste à créer une fonction **nbr_or** qui a pour paramètre *un nombre e strictement inférieur à 1*, et qui renvoie une <u>approximation de la valeur du nombre d'or avec une précision e</u>.

-une solution fonctionnant sous Python 2.7.5 et Python 3.4

- **L1.** On définit la fonction **nbr_or** ayant pour paramètre e.
- L2. à L5. On initialise U (U1=1 et U2=2) et V (V1=0 et V2=U2/U1 par définition).

Boucle While : L6. Tant que la différence entre les deux termes consécutifs de V est, en valeur absolue, strictement supérieure à e,

L7. On calcule les nouveaux U1 et U2 : pour cela, on place la valeur de U2 en U1 et on place l'ancienne valeur de "U2 + la valeur de U1" dans U2.

L8. On calcule les nouveaux V1 et V2 : pour cela, on place la valeur de V2 dans V1, et la valeur de U2/U1 dans V2.

Fin Boucle While: L9. Quand on est là c'est qu'on ne vérifie plus la condition |V2-V1| > e.

On a donc un écart inférieur ou égal à e entre les deux termes consécutifs de V. On renvoie donc V1, qui est l'approximation du nombre d'or.

Exercice *S6/ * On définit la suite Un de la façon suivante :

Soit
$$U_0 = 0.25$$
,
Pour tout $n \in \mathbb{N}$ $U_{n+1} = \frac{1}{U_n}$

- 1) L'exercice consiste à créer une fonction U qui a Pour tout $n \in \mathbb{N}$ $U_{n+1} = \frac{1}{U_n}$ pour paramètre un entier naturel n non nul et qui renvoie la liste des itérations de Un : [U0, U1,...,Un,Un+1
- 2) A partir de cette fonction, afficher un graphique représentant les 12 premiers termes de la suite Un en fonction de leur indice. Correction

Exercice ^{*}S7/ ★★ On définit la suite Un de la façon suivante :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}$$

$$U_n(x) = x^n + 1$$

Tracer Un(x) pour les différents entiers naturels n Tracer Un(x) pour les différents entiers naturels n $U_n(x) = x^n + 1$ appartenant à l'intervalle [1, 5], et pour tout x appartenant à l'intervalle [0, 10].

Correction

Voici une solution en accord avec l'aide proposée dans la page Exercices S:


```
1 import numpy as np
                                              Code copiable : [Afficher]
 2 import matplotlib.pyplot as plt L1 - L2. On importe numpy et
                                              matplotlib pour nous aider à créer la
 4
                                              liste des abscisses et pour tracer les
                                              courbes demandées.
 6 def U(n.X):
 7
         L = []
                                              L6. On définit la fonction calculant la
 8
         taille = len(X)
                                              liste des images de X par Un.
 9
         for i in range(taille):
                                                   L7. On initialise L, la future liste
10
              L.append(X[i]**n + 1)
                                              des images de X par Un, à une liste
         return(L)
11
                                              vide.
12
                                                   L8. On récupère la taille de X dans
13 X = np.linspace(0,10,20)
                                              la variable taille à l'aide de la
14
                                              fonction len.
15 fig = plt.figure()
                                                   Boucle for: L9. On parcourt la
16 for n in range(1,6):
                                              liste des X grâce aux indices des
         plt.plot(X,U(n,X))
                                              éléments de X ( i allant de 0 à taille -1).
18
         plt.pause(0.5)
                                                                  L10. On calcule
```

l'image du i- $i\`eme$ élément de X par la fonction qui à x associe "x puissance n plus 1".

On ajoute ce résultat à la fin de la liste L.

Fin Boucle for : Arrivé ici, on a rempli L de taille éléments.

L11. On renvoie cette liste.

- **L13.** On crée une liste de 20 réels compris entre 0 et 10 grâce à la fonction linspace de numpy : linspace(start, stop, nombre d'éléments)
- L15. On crée une figure sur laquelle on tracera toute les courbes désirées.

Boucle for: L16. Pour tous les entiers naturels n appartenant à l'intervalle [1,5],

L17- L18. On trace U(n,X) en fonction de X. Puis on fait une pause de 0.5 seconde à l'aide de la fonction pause de plt pour pouvoir observer le tracer s'effectuer. Fin Boucle for : Arrivé ici, toutes les courbes demandées ont été tracées.