Scheduling

Giovanni De Micheli Integrated Systems Centre EPF Lausanne

Module 1

- Objectives:
 - **▲** The scheduling problem
 - **▼** Case analysis
 - Scheduling without constraints
 - **▲** Scheduling with timing constraints

Scheduling

- Circuit model:
 - Sequencing graph
 - **▲** Cycle-time is given
 - **▲** Operation delays expressed in cycles
- Scheduling:
 - **▲** Determine the start times for the operations
 - ▲ Satisfying all the sequencing (timing and resource) constraint
- Goal:
 - **▲** Determine *area/latency* trade-off

Taxonomy

- Unconstrained scheduling
- Scheduling with timing constraints:
 - Latency
 - **▲** Detailed timing constraints
- Scheduling with resource constraints
- Related problems:
 - Chaining
 - Synchronization
 - **▲** Pipeline scheduling

Simplest method

- All operations have bounded delays
- All delays are in cycles:
 - **▲**Cycle-time is given
- No constraints no bounds on area
- Goal:
 - **▲**Minimize latency

Minimum-latency unconstrained scheduling problem

- ◆Given a set of ops *V* with integer delays *D* and a partial order on the operations *E*:
- ♦ Find an integer labeling of the operations $φ : V → Z^+$ such that:

```
t_i = \phi(v_i),

t_i \ge t_j + d_j \quad \forall i, j \text{ s.t. } (v_j, v_i) \in E

and t_n is minimum
```

ASAP scheduling algorithm

```
ASAP (G_s(V,E)) {
          Schedule v_0 by setting t_0 = 1;
          repeat {
                     Select a vertex v<sub>i</sub> whose predecessors are all scheduled;
                     Schedule v_i by setting t_i = v_i v_j, v_j = v_j v_j t_j + d_j;
           until (v<sub>n</sub> is scheduled);
          return (t);
```


ALAP scheduling algorithm

```
ALAP (G_s(V,E), \overline{\lambda}) {
           Schedule v_n by setting t_n = \lambda + 1;
            repeat {
                        Select a vertex v<sub>i</sub> whose successors are all scheduled;
                       Schedule v_i by setting t_i = \min_{j:(v_i,v_j) \in P} t_j - d_i;
            until (v<sub>0</sub> is scheduled);
            return (t);
```


Remarks

- ALAP solves a latency-constrained problem
- Latency bound can be set to latency computed by ASAP algorithm
- Mobility:
 - **▲** Defined for each operation
 - **▲** Difference between ALAP and ASAP schedule
- Slack on the start time

- Operations with zero mobility:
 - ▲ { V₁, V₂, V₃, V₄, V₅ }
 - ▲ Critical path
- Operations with mobility one:
 - \triangle { V_6 , V_7 }
- Operations with mobility two:
 - ▲ { V₈, V₉, V₁₀, V₁₁ }

Scheduling under detailed timing constraints

- Motivation:
 - **▲**Interface design
 - **▲** Control over operation start time
- Constraints:
 - **▲**Upper/lower bounds on start-time difference of any operation pair
- Feasibility of a solution

Constraint graph model

- Start from sequencing graph
 - **▲** Model delays as weights on edges
- Add forward edges for *minimum* constraints:
 - **△** Edge (v_i , v_j) with weight $I_{ij} \rightarrow t_j \ge t_i + I_{ij}$
- Add backward edges for maximum constraints:
 - ▲ That is, for constraint from v_i to v_j add backward edge (v_i, v_i) with weight: $-u_{ij}$
 - **▼** because $t_j \le t_i + u_{ij} \rightarrow t_i \ge t_j u_{ij}$

Vertex	Start time
V ₀	1
V ₁	1
V ₂	3
V ₃	1
V ₄	5
V _n	6

Methods for scheduling under detailed timing constraints

- Assumption:
 - ▲ All delays are fixed and known
- Set of linear inequalities
- Longest path problem
- Algorithms:
 - **▲** Bellman-Ford, Liao-Wong
- Extensions:
 - Unbounded delays, relative scheduling

Module 2

- Objectives:
 - **▲** Scheduling with resource constraints
 - **Exact formulation:**
 - **▼ ILP**
 - **▼** Hu's algorithm
 - **▲** Heuristic methods
 - **▼** List scheduling
 - **▼** Force-directed scheduling

Scheduling under resource constraints

- Classical scheduling problem:
 - **▲** Fix area bound minimize latency
- The amount of available resources affects the achievable latency
- Dual problem:
 - ▲ Fix latency bound minimize resources
- Assumption:
 - **▲** All delays bounded and known

Minimum latency resource-constrained scheduling problem

 Given a set of ops V with integer delays D a partial order on the operations E,

and upper bounds { a_k ; $k = 1, 2, ..., n_{res}$ } on resource usage:

• Find an integer labeling of the operation $\phi: V \to z^+$ such that :

```
t_i = \boldsymbol{\varphi}(v_i),

t_i \ge t_j + d_j i,j \ s_{\forall} t. \ (v_j, v_i) \in E,

|\{v_i | T(v_i) = k \text{ and } t_i \le l < t_j + d_j\}| \le a_k for all types k = 1,2,...,n_{res}

and steps l
```

and t_n is minimum

(c) Giovanni De Micheli

29

Scheduling under resource constraints

- Intractable problem
- Algorithms:
 - **▲**Exact:
 - **▼ Integer linear program**
 - **▼** Hu (restrictive assumptions)
 - **▲** Approximate :
 - **▼** List scheduling
 - **▼** Force-directed scheduling

ILP formulation

Binary decision variables:

$$X = \{ x_{ii}, i = 1,2,..., n; l = 1,2,..., \overline{\lambda} + 1 \}$$

 x_{ij} is TRUE only when operation v_i starts in step I of the schedule (i.e. $I = t_i$)

\(\) is an upper bound on latency

• Start time of operation v_i : $\sum_i I \cdot x_{ij}$

ILP formulation constraints

Operations start only once

$$\sum x_{ii} = 1$$
 $i = 1, 2, ..., n$

Sequencing relations must be satisfied

$$t_i \ge t_j + d_j$$
 $\rightarrow t_i - t_j - d_j \ge 0$ for all $(v_j, v_i) \in E$
 $\sum l \cdot x_{ii} - \sum l \cdot x_{ji} - d_j \ge 0$ for all $(v_j, v_i) \in E$

Resource bounds must be satisfied
 Simple case (unit delay)

$$\sum |x_{il}| \le a_k \quad k = 1,2,...n_{res}; \quad \text{for all } I$$

 $i:T(v_i)=k$

ILP Formulation

min ||t|| such that

$$\sum_{j} x_{ij} = 1$$
 $i = 1, 2, ..., n$

$$\sum_{i} I \cdot x_{ii} - \sum_{j} I \cdot x_{ji} - d_{j} \geq 0$$
 $i, j = 1, 2, ..., n, (v_{j}, v_{i}) \in E$

$$\sum_{i:T(v_i)=k} \sum_{m=l-d_i+1} x_{im} \le a_k \quad k=1, 2, ..., n_{res}; l=0, 1, ..., t_n$$

Resource constraints:

▲ 2 ALUs; 2 Multipliers

 \triangle a₁ = 2; a₂ = 2

Single-cycle operation

 \triangle d_i = 1 for all i

Operations start only once

$$x_{11} = 1$$

 $x_{61} + x_{62} = 1$

Sequencing relations must be satisfied

$$x_{61} + 2x_{62} - 2x_{72} - 3x_{73} + 1 \le 0$$

$$2x_{92} + 3x_{93} + 4x_{94} - 5x_{N5} + 1 \le 0$$

...

...

Resource bounds must be satisfied

$$X_{11} + X_{21} + X_{61} + X_{81} \le 2$$

$$X_{32} + X_{62} + X_{72} + X_{81} \le 2$$
...

Dual ILP formulation

- Minimize resource usage under latency constraint
- Additional constraint:
 - **▲** Latency bound must be satisfied

$$\triangle \Sigma_l / X_{nl} \leq \lambda + 1$$

- Resource usage is unknown in the constraints
- Resource usage is the objective to minimize

- Multiplier area = 5
- **◆** ALU area = 1.
- Objective function: 5a₁ + a₂

ILP Solution

- Use standard ILP packages
- Transform into LP problem
- Advantages:
 - **▲** Exact method
 - **▲**Others constraints can be incorporated
- Disadvantages:
 - **▲** Works well up to few thousand variables

Hu's algorithm

- Assumptions:
 - **▲** Graph is a forest
 - **▲** All operations have unit delay
 - **▲** All operations have the same type
- Algorithm:
 - **▲** Greedy strategy
 - **▲**Exact solution

- **Assumptions:**
 - **▲** One resource type only
 - ▲ All operations have unit delay
- Labels:
 - **▲** Distance to sink

Algorithm Hu's schedule with ā resources

- Label operations with distance to sink
- Set step / = 1
- Repeat until all ops are scheduled:
 - **△** Select $s \leq \bar{a}$ resources with
 - **▼** All predecessors scheduled
 - **▼** Maximal labels
 - ▲ Schedule the s operations at step /
 - ▲ Increment step I = I + 1

Step 2: Op 3,7,8

Step 3: Op 4,9,10

Step 4: Op 5,11

Exactness of Hu's algorithm

Definitions:

- \triangle Label of vertex \mathbf{v}_i is called $\mathbf{\alpha}_i$
- \triangle Maximal label is called α
- \triangle Number of vertices with label b is called p(b)
- **▲**Latency is called **λ**
- \triangle A lower bound on the number of resources to complete a schedule with latency λ is called \bar{a}

 $\alpha = 4$

$$p(4) = 2$$

$$p(3) = 2$$

Exactness of Hu's algorithm

Theorem1:

Given a dag with operations of the same type

- $\stackrel{\blacktriangle}{a}$ is a lower bound on the number of resources to complete a schedule with latency $\stackrel{\gimel}{\lambda}$
- ▲ y is a positive integer
- Theorem2:
 - \blacktriangle Hu's algorithm applied to a tree with $\bar{\mathbf{a}}$ unit-cycle resources achieves latency λ
- Corollary:
 - \triangle Since \bar{a} is a lower bound on the number of resources for achieving λ , then λ is minimum

List scheduling algorithms

- Heuristic method for:
 - Min latency subject to resource bound
 - ▲ Min resource subject to latency bound
- Greedy strategy (like Hu's)
- General graphs (unlike Hu's)
- Priority list heuristics
 - **▲** Longest path to sink
 - **▲** Longest path to timing constraint

List scheduling algorithm for minimum latency

```
LIST_L( G(V, E), a) {
    I = 1;
    repeat {
    for each resource type k = 1, 2, ..., n_{res} {
       Determine ready operations U_{l,k};
       Determine unfinished operations T_{l,k};
       Select S_k \subseteq U_{l,k} vertices, s.t. |S_k| + |T_{l,k}| \le a_k;
       Schedule the S_k operations at step I;
    I = I + 1:
    until (v_n is scheduled);
    return (t);
```


Resource bounds:

3 multipliers with delay 2

1 ALU with delay 1

List scheduling algorithm for minimum resource usage

```
LIST_R(G(V, E), \lambda) {
    a = 1;
    Compute the latest possible start times t^{\perp} by ALAP (G(V, E), \lambda);
    if (t_0 < 0)
       return (Ø);
    I = 1;
    repeat {
               for each resource type k = 1, 2, ..., n_{res} {
                 Determine ready operations U_{l,k};
                 Compute the slacks \{s_i = t_i - I \text{ for all } v_i \in U_{lk}\};
                 Schedule the candidate operations with zero slack and update a;
                 Schedule the candidate operations not needing additional resources;
              I = I + 1;
    until (v_n is scheduled);
    return (t, a);
```

Step 1

Assumptions

Unit-delay resources

Maximum latency = 4

Start with:

 $a_1 = 1$ multiplier

 $a_2 = 1 \text{ ALUs}$

Force-directed scheduling

- Heuristic scheduling methods [Paulin]:
 - ▲ Min *latency* subject to *resource bound*
 - **▼** *Variation* of list scheduling : FDLS
 - ▲ Min resource subject to latency bound
 - **▼** Schedule one operation at a time
- Rationale:
 - **▲** Reward *uniform distribution* of operations across schedule steps

Force-directed scheduling definitions

- Operation interval:
 - \triangle Mobility plus one (μ_i +1)
 - **△** Computed by ASAP and ALAP scheduling [ts, tl]
- Operation probability p_i (I):
 - **▲**Probability of executing in a given step
 - 1/ (μ_i + 1) inside interval; 0 elsewhere
- Operation-type distribution $q_k(l)$:
 - **▲** Sum of the operation probabilities for each type

Distribution graphs for multiplier and ALU

Force

- Used as priority function
- Force is related to concurrency:
 - **▲** Sort operations for least force
- Mechanical analogy:
 - **▲** Force = constant x displacement
 - **▼** Constant = operation-type distribution
 - **▼** Displacement = change in probability

Forces related to the assignment of an operation to a control step

Self-force:

- **▲** Sum of forces to feasible schedule steps
- \triangle Self-force for operation v_i in step I

$$\sum_{m \text{ in interval}} q_k(m) (\delta_{lm} - p_i(m))$$

- Predecessor/successor-force:
 - ▲ Related to the predecessors/successors
 - ▼ Fixing an operation timeframe restricts timeframe of predecessors/successors
 - **▼** Ex: Delaying an operation implies delaying its successors

Example Schedule operation v₆

Operation v₆ can be scheduled in step 1 or step 2

Example: operation v_6

◆ Op v₆ can be scheduled in the first two steps

$$p(1) = 0.5; p(2) = 0.5; p(3) = 0; p(4) = 0$$

- Distribution: q (1) = 2.8; q (2) = 2.3
- Assign v₆ to step 1:
 - ▲ variation in probability 1 0.5 = 0.5 for step 1
 - \triangle variation in probability 0 0.5 = -0.5 for step 2
- **◆** Self-force: 2.8 ⋅ 0.5 2.3 ⋅ 0.5 = + 0.25
- No successor force

Example: operation v_6

- ◆ Assign v₆ to step 2:
 - \triangle variation in probability 0 0.5 = -0.5 for step 1
 - \triangle variation in probability 1 0.5 = 0.5 for step 2
- Self-force: $-2.8 \cdot 0.5 + 2.3 \cdot 0.5 = -0.25$
- Successor-force:
 - **△** Operation *v*₇ assigned to step 3
 - \triangle Succ. force is 2.3 (0-0.5) + 0.8 (1 0.5) = -.75
- Total force = -1

Example: operation v_6

- **◆** Total force in step 1 = +0.25
- ◆ Total force in step 2 = -1
- Conclusion:
 - **▲**Least force is for step 2
 - \triangle Assigning v_6 to step 2 reduces concurrency

Force-directed scheduling algorithm for minimum resources

```
repeat {
    Compute/update the time-frames;
    Compute the operation and type probabilities;
    Compute the self-forces, p/s-forces and total forces;
    Schedule the op. with least force;
} until (all operations are scheduled)
return (t);
}
```

Scheduling and chaining

- Consider propagation delays of resources not in terms of cycles
- Use scheduling to chain multiple operations in the same control step
- Useful technique to explore effect of cycle-time on area/latency trade-off
- Algorithms:
 - ▲ ILP, ALAP/ASAP, list scheduling

◆ Cycle-time: 60

Summary

- Scheduling determines area/latency trade-off
- Intractable problem in general:
 - **▲** Heuristic algorithms
 - ▲ ILP formulation (small-case problems)
- Several heuristic formulations
 - ▲ List scheduling is the fastest and most used
 - **▲** Force-directed scheduling tends to yield good results
- Several extensisons
 - Chaining