EE 562 Image Processing

Assoc. Prof. Dr. Cem Ünsalan

Contents

- Introduction
- Digital image fundamentals
- Intensity transformations and spatial filtering
- **■** Filtering in the frequency domain
- Image restoration and reconstruction
- Color image processing
- Image compression
- Morphological image processing
- Image segmentation

Tell me and I forget.

Show me and I remember.

Let me do and I understand.

Frequency Domain Operations

Fourier Transform, Review

Base signals

Their weighted sum

Fourier Transform, Review

Rectangular pulse

Fourier transform

Magnitude of the Fourier transform

Fourier Transform, Review

Sampling of signals

Fourier transform

FIGURE 4.10 Illustration of aliasing. The under-sampled function (black dots) looks like a sine wave having a frequency much lower than the frequency of the continuous signal. The period of the sine wave is 2 s, so the zero crossings of the horizontal axis occur every second. ΔT is the separation between samples.

Unit impulse in 2D

Impulse train in 2D

Fourier Transform

Name	Expression(s)
1) Discrete Fourier transform (DFT) of $f(x, y)$	$F(u, v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j2\pi(ux/M + vy/N)}$
2) Inverse discrete Fourier transform (IDFT) of $F(u, v)$	$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)}$
3) Polar representation	$F(u,v) = F(u,v) e^{j\phi(u,v)}$
4) Spectrum	$ F(u,v) = [R^2(u,v) + I^2(u,v)]^{1/2}$
	R = Real(F); I = Imag(F)
5) Phase angle	$\phi(u, v) = \tan^{-1} \left[\frac{I(u, v)}{R(u, v)} \right]$
6) Power spectrum	$P(u,v) = F(u,v) ^2$
7) Average value	$\overline{f}(x,y) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) = \frac{1}{MN} F(0,0)$

(Continued)

Name	Expression(s)
8) Periodicity (k_1 and k_2 are integers)	$F(u, v) = F(u + k_1 M, v) = F(u, v + k_2 N)$ = $F(u + k_1 M, v + k_2 N)$
	$f(x, y) = f(x + k_1 M, y) = f(x, y + k_2 N)$ = $f(x + k_1 M, y + k_2 N)$
9) Convolution	$f(x,y) \star h(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n)h(x-m,y-n)$
10) Correlation	$f(x,y) \not\approx h(x,y) = \sum_{m=0}^{m-1} \sum_{n=0}^{\infty} f^*(m,n)h(x+m,y+n)$
11) Separability	The 2-D DFT can be computed by computing 1-D DFT transforms along the rows (columns) of the image, followed by 1-D transforms along the columns (rows) of the result. See Section 4.11.1.
12) Obtaining the inverse Fourier transform using a forward transform algorithm.	$MNf^*(x, y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F^*(u, v) e^{-j2\pi(ux/M + vy/N)}$ This equation indicates that inputting $F^*(u, v)$ into an algorithm that computes the forward transform (right side of above equation) yields $MNf^*(x, y)$. Taking the complex conjugate and dividing by MN gives the desired inverse. See Section 4.11.2.

2D rectangle

Fourier transform

Fourier transform of a sampled signal

FIGURE 4.16 Aliasing in images. In (a) and (b), the lengths of the sides of the squares are 16 and 6 pixels, respectively, and aliasing is visually negligible. In (c) and (d), the sides of the squares are 0.9174 and 0.4798 pixels, respectively, and the results show significant aliasing. Note that (d) masquerades as a "normal" image.

Aliasing

Original image

Downsampling

Downsampling with filtering

Moire Patterns

Superimposing one pattern on another, (multiplying them)

Moire Patterns

Moire pattern example

	Spatial Domain [†]		Frequency Domain [†]
1)	f(x, y) real	\Leftrightarrow	$F^*(u,v) = F(-u,-v)$
2)	f(x, y) imaginary	\Leftrightarrow	$F^*(-u, -v) = -F(u, v)$
3)	f(x, y) real	\Leftrightarrow	R(u, v) even; $I(u, v)$ odd
4)	f(x, y) imaginary	\Leftrightarrow	R(u, v) odd; $I(u, v)$ even
5)	f(-x, -y) real	\Leftrightarrow	$F^*(u, v)$ complex
6)	f(-x, -y) complex	\Leftrightarrow	F(-u, -v) complex
7)	$f^*(x, y)$ complex	\Leftrightarrow	$F^*(-u-v)$ complex
8)	f(x, y) real and even	\Leftrightarrow	F(u, v) real and even
9)	f(x, y) real and odd	\Leftrightarrow	F(u, v) imaginary and odd
10)	f(x, y) imaginary and even	\Leftrightarrow	F(u, v) imaginary and even
11)	f(x, y) imaginary and odd	\Leftrightarrow	F(u, v) real and odd
12)	f(x, y) complex and even	\Leftrightarrow	F(u, v) complex and even
13)	f(x, y) complex and odd	\Leftrightarrow	F(u, v) complex and odd

TABLE 4.1 Some symmetry properties of the 2-D DFT and its inverse. R(u, v) and I(u, v) are the real and imaginary parts of F(u, v), respectively. The term complex indicates that a function has nonzero real and imaginary parts.

[†]Recall that x, y, u, and v are discrete (integer) variables, with x and u in the range [0, M-1], and y, and v in the range [0, N-1]. To say that a complex function is even means that its real and imaginary parts are even, and similarly for an odd complex function.

Fourier Transform, Rotation

Fourier transform, the effect of rotation

Fourier Transform, Reconstruction

Woman, Fourier transform, reconstruction using only phase, Reconstruction using only magnitude, phase of woman magnitude of rectange, Phase of rectange magnitude of woman

Fourier Transform, Filtering

Filters in the frequency domain and their reponses

Filters in te Frequency Domain

Gaussian low pass and high pass filters

TABLE 4.4 Lowpass filters. D_0 is the cutoff frequency and n is the order of the Butterworth filter.

Ideal	Butterworth	Gaussian
$H(u,v) = \begin{cases} 1 & \text{if } D(u,v) \leq D_0 \\ 0 & \text{if } D(u,v) > D_0 \end{cases}$	$H(u, v) = \frac{1}{1 + [D(u, v)/D_0]^{2n}}$	$H(u, v) = e^{-D^2(u, v)/2D_0^2}$

Ideal filter

Ideal filter response

Butterworth filter

Butterworth filter response

Gaussian filter

Gaussian filter response

Gaussian Lowpass Filtering Example

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

은 곱

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Gaussian Lowpass Filtering Example

Highpass Filters

TABLE 4.5 Highpass filters. D_0 is the cutoff frequency and n is the order of the Butterworth filter.

Ideal		Butterworth	Gaussian
$H(u,v) = \begin{cases} 1 & \text{if } D \\ 0 & \text{if } D \end{cases}$	$(u,v) \leq D_0$ $(u,v) > D_0$	$H(u, v) = \frac{1}{1 + [D_0/D(u, v)]^{2n}}$	$H(u, v) = 1 - e^{-D^2(u, v)/2D_0^2}$

Highpass Filters

Ideal filter

Butterworth filter

Gaussian filter

Highpass Filters

Ideal filter response

Butterworth filter response

Gaussian filter response

a b c d

FIGURE 4.59 (a) A chest X-ray image. (b) Result of highpass filtering with a Gaussian filter. (c) Result of high-frequency-emphasis filtering using the same filter. (d) Result of performing histogram equalization on (c). (Original image courtesy of Dr. Thomas R. Gest, Division of Anatomical Sciences, University of Michigan Medical School.)

Bandreject Filtering

TABLE 4.6

Bandreject filters. W is the width of the band, D is the distance D(u, v) from the center of the filter, D_0 is the cutoff frequency, and n is the order of the Butterworth filter. We show D instead of D(u, v) to simplify the notation in the table.

	Ideal	Butterworth	Gaussian
H(u, v)	$(v) = \begin{cases} 0 & \text{if } D_0 - \frac{W}{2} \le D \le D_0 + \frac{W}{2} \\ 1 & \text{otherwise} \end{cases}$	$H(u, v) = \frac{1}{1 + \left[\frac{DW}{D^2 - D_0^2}\right]^{2n}}$	$H(u, v) = 1 - e^{-\left[\frac{D^2 - D_0^2}{DW}\right]^2}$

Gaussian bandreject filter

Bandreject Filtering Examples

Derivative Filters

Sample image

Fourier transform

Filter

Its response

Homomorphic Filtering

Grayscale image example