Часть 6: Архитектуры сверточных сетей

Романов Михаил, Игорь Слинько

Задача

- ImageNet 1000
- База данных, 15 миллиона реальных изображений 1000 классов

LeNet

AlexNet

Зачем каскад сверток

$$6(x) = \frac{1}{1+e^{-x}}$$
 $6' = 6(1-6)$

$$G(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
 $G' = (1-6)(1+6)$

$$G(x) = \frac{1}{1+e^{-x}} \qquad G' = G(1-G)$$

$$G(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \qquad G' = (1-G)(1+G)$$

$$ReLu(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x > 0 \end{cases}$$

$$G(x) = \frac{1}{1+e^{-x}}$$

$$G(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

$$G(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

$$G(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x > 0 \end{cases}$$

$$\text{ReLu}(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x > 0 \end{cases}$$

$$\text{ELu}(x) = \begin{cases} e^{x} - 1 & \text{if } x < 0 \\ x & \text{if } x > 0 \end{cases}$$

$$6(x) = \frac{1}{1+e^{-x}}$$
 $6' = 6(1-6)$

$$6(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
 $6' = (1-6)(1+6)$

$$ReLu(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x > 0 \end{cases}$$

$$L-ReLu(x) = \begin{cases} dx & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$$

$$ELu(x) = \begin{cases} e^{x} - 1 & \text{if } x \leq 0 \\ x & \text{if } x > 0 \end{cases}$$

$$6(x) = \frac{1}{1+e^{-x}}$$
 $6' = 6(1-6)$

$$G(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
 $G' = (1-6)(1+6)$

$$ReLu(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x > 0 \end{cases}$$

$$L-ReLu(x) = \begin{cases} dx & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$$

$$ELU(x) = \begin{cases} e^{x} - 1 & \text{if } x \leq 0 \\ x & \text{if } x > 0 \end{cases}$$

$$SeLU - \begin{cases} xe^{-x} - d & \text{if } x \leq 0 \\ x & \text{if } x > 0 \end{cases}$$

VGG

	ConvNet Configuration					
	Α	A-LRN	В	С	D	Е
	11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
	layers	layers	layers	layers	layers	layers
G	input (224 × 224 RGB image)					
	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
		LRN	conv3-64	conv3-64	conv3-64	conv3-64
	maxpool					
	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
			conv3-128	conv3-128	conv3-128	conv3-128
	maxpool					
	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
				conv1-256	conv3-256	conv3-256
				<u> </u>		conv3-256
	maxpool					
	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
				conv1-512	conv3-512	conv3-512
				maal		conv3-512
	maxpool conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512					20m/2 512
	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
	COHV3-312	CONV3-312	COHV3-312	conv 1-512	conv3-512	conv3-512
				COHV1-312	COHV3-312	conv3-512
	maxpool Conv3-312					
	FC-4096					
	FC-4096					
	FC-1000					
	soft-max					
	SOIT-IIIAX					

Inception Block

GoogLeNet

Residual Block

$$y = f(x) + x$$

$$y' = f'(x) + 1$$

$$\frac{\partial \mathcal{L}}{\partial x} = \frac{1}{2} \left(\frac{x}{2} \right) + \frac{1$$

Градиент не затухает

Residual Block

$$y = f(x) + x$$

$$y' = f'(x) + 1$$

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial x}$$

Градиент не затухает

Residual Block

$$y = f(x) + x$$

$$y' = f'(x) + 1$$

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial x} = \frac{\partial L}{\partial y} \left[f'(x) + 1 \right]$$

Градиент не затухает

ResNet

Итоги

- LeNet
- AlexNet и ReLU
- VGG
- Inception
- ResNet