Wheeled Mobile Robots

Assignment 3

1.	For a given input vector, τ , calculating the resulting motion of the robot, that is, $\eta, \dot{\eta}, \ddot{\eta}$ is known as
	Forward kinematics
	○ Forward differential kinematics
	○ Forward dynamics
	○ Inverse kinematics
	○ Inverse differential kinematics
	○ Inverse dynamics
	Correct answer is Forward dynamics
2.	For a given desired trajectory, $\eta, \dot{\eta}, \ddot{\eta}$, find the required input vector, τ is known as
	○ Forward kinematics
	○ Forward differential kinematics
	○ Forward dynamics
	○ Inverse kinematics
	○ Inverse differential kinematics
	○ Inverse dynamics
	Correct answer is Inverse dynamics
3.	Lagrangian (L) is equal to
	○ Kinetic energy + Potential energy
	○ Kinetic energy - Potential energy
	\bigcirc Kinetic energy \times Potential energy
	○ Kinetic energy / Potential energy
	O Potential energy- Kinetic energy
	O Potential energy / Kinetic energy
	Correct answer is Kinetic energy - Potential energy
4.	If the equation of motion of a mobile robot is written in the following form $\mathbf{D}\dot{\zeta} + \mathbf{n}(\zeta) = \tau$, then the nature of matric \mathbf{D} will be
	$\bigcirc \mathbf{D}^T = \mathbf{D} < 0$
	$\bigcirc \mathbf{D}^T = \mathbf{D} > 0$
	$\bigcirc \mathbf{D}^T \neq \mathbf{D}, \mathbf{D} < 0$
	$\bigcirc \mathbf{D}^T \neq \mathbf{D}, \mathbf{D} > 0$
	$\bigcirc \mathbf{D}^{-1} = \mathbf{D}, \mathbf{D} < 0$
	$\bigcirc \mathbf{D}^{-1} = \mathbf{D}, \mathbf{D} > 0$
	Correct answer is $\mathbf{D}^T = \mathbf{D} > 0$
5.	Assuming that, τ_{η} is the vector of applied forces and moments w.r.t to inertial frame, τ is the vector of applied forces and moments w.r.t to body frame. Further, $\mathbf{J}(\eta)$ is the Jacobian matrix which maps derivatives of generalized coordinates to the input velocity commands. Then the relation between τ_{η} and τ can be written as
	$\bigcirc \ oldsymbol{ au} = \mathbf{J}\left(oldsymbol{\eta} ight)oldsymbol{ au}_{\eta}$

$$\bigcirc \ \boldsymbol{\tau} + \boldsymbol{\tau}_{\eta} = 0$$

$$\bigcirc \ \boldsymbol{\tau} = \mathbf{J}^{T}\left(\boldsymbol{\eta}\right)\boldsymbol{\tau}_{\eta}$$

$$\bigcirc \ \boldsymbol{\tau} - \boldsymbol{\tau}_{\eta} = \mathbf{J}^{T} \left(\boldsymbol{\eta} \right)$$

$$\bigcirc \ oldsymbol{ au} + oldsymbol{ au}_{\eta} = \mathbf{J}^{T}\left(oldsymbol{\eta}
ight)$$

$$\bigcirc \boldsymbol{\tau} - \boldsymbol{\tau}_{\eta} = 0$$

Correct answer is $\boldsymbol{\tau} = \mathbf{J}^T \left(\boldsymbol{\eta} \right) \boldsymbol{\tau}_{\eta}$

6. In a given differential wheel drive mobile robot, if the first (left) wheel generating a traction force of 1 N and the second (right) wheel also generating a traction force of 2 N. Then, what will be the forward and lateral direction forces?

$$\bigcirc$$
 3 N, 0 N

$$\bigcirc$$
 1 N, 2 N

$$\bigcirc$$
 0 N, 3 N

Correct answer is 3 N, 0 N

7. In a given differential wheel drive mobile robot, if the first (left) wheel generating a traction force of 1 N and the second (right) wheel also generating a traction force of 2 N. Then, what will be the vehicle motion?

o move forward

o move forward and rotate counter-clock wise direction

nove forward and rotate clock wise direction

move upward (left direction)

o move downward (right direction)

Correct answer is move forward and rotate counter-clock wise direction

8. For a given mecanum wheel drive, the wheel configuration matrix in dynamic level can be written as follows:

$$\begin{bmatrix} F_x \\ F_y \\ M_z \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ l-d & l-d & -(l-d) & -(l-d) \end{bmatrix} \begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \end{bmatrix}, \text{ if the vehicle needs to move in the lateral}$$

direction towards right, then what would be the individual wheel forces?

$$\bigcap F_1 = F, F_2 = F, F_3 = F, F_4 = F$$

$$\bigcap F_1 = F, F_2 = F, F_3 = -F, F_4 = -F$$

$$\bigcap F_1 = -F, F_2 = F, F_3 = -F, F_4 = F$$

$$\bigcap F_1 = F, F_2 = -F, F_3 = F, F_4 = -F$$

$$\bigcap F_1 = -F, F_2 = -F, F_3 = F, F_4 = F$$

$$\bigcap F_1 = -F, F_2 = -F, F_3 = -F, F_4 = -F$$

Correct answer is $F_1 = -F, F_2 = F, F_3 = -F, F_4 = F$.

9. For a given mecanum wheel drive, the wheel configuration matrix in dynamic level can be written as follows:

$$\begin{bmatrix} F_x \\ F_y \\ M_z \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ l-d & l-d & -(l-d) & -(l-d) \end{bmatrix} \begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \end{bmatrix}, \text{ if the vehicle needs to move in the lateral}$$

direction towards left, then what would be the individual wheel forces?

$$\bigcap F_1 = F, F_2 = F, F_3 = F, F_4 = F$$

$$\bigcap F_1 = F, F_2 = F, F_3 = -F, F_4 = -F$$

$$\bigcap F_1 = -F, F_2 = F, F_3 = -F, F_4 = F$$

$$\bigcap F_1 = F, F_2 = -F, F_3 = F, F_4 = -F$$

$$\bigcap F_1 = -F, F_2 = -F, F_3 = F, F_4 = F$$

$$\bigcap F_1 = -F, F_2 = -F, F_3 = -F, F_4 = -F$$

Correct answer is $F_1 = F, F_2 = -F, F_3 = F, F_4 = -F$.

10. For a given mecanum wheel drive, the wheel configuration matrix in dynamic level can be written as follows:

$$\begin{bmatrix} F_x \\ F_y \\ M_z \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ l-d & l-d & -(l-d) & -(l-d) \end{bmatrix} \begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \end{bmatrix}, \text{ if the vehicle needs to rotate in the clockwise}$$

direction its own position, then what would be the individual wheel forces?

$$\bigcap F_1 = F, F_2 = F, F_3 = F, F_4 = F$$

$$\bigcap F_1 = F, F_2 = F, F_3 = -F, F_4 = -F$$

$$\bigcap F_1 = -F, F_2 = F, F_3 = -F, F_4 = F$$

$$\bigcap F_1 = F, F_2 = -F, F_3 = F, F_4 = -F$$

$$\bigcap F_1 = -F, F_2 = -F, F_3 = F, F_4 = F$$

$$\bigcap F_1 = -F, F_2 = -F, F_3 = -F, F_4 = -F$$

Correct answer is $F_1 = -F, F_2 = -F, F_3 = F, F_4 = F$.

11. If the given matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 0.2 & 0.2 & -0.2 & 0.2 \end{bmatrix}$, what will be the Moore Penrose pseudo inverse

matrix of A?

$$\bigcirc \mathbf{A}^{+} = \begin{bmatrix} 0.25 & 0.25 & 1.25 \\ 0.25 & -0.25 & 1.25 \\ 0.25 & 0.25 & -1.25 \\ 0.25 & -0.25 & -1.25 \end{bmatrix}$$

$$\bigcirc \mathbf{A}^{+} = \begin{bmatrix} 0.25 & 0.25 & 1.25 \\ 0.25 & 0.25 & 1.25 \\ 0.25 & 0.25 & 1.25 \\ 0.25 & 0.25 & -1.25 \\ 0.25 & 0.25 & -1.25 \end{bmatrix}$$

$$\bigcirc \mathbf{A}^{+} = \begin{bmatrix} 0.25 & 0.25 & 1.25 \\ 0.25 & 0.25 & 1.25 \\ 0.25 & 0.25 & -1.25 \\ 0.25 & 0.25 & -1.25 \end{bmatrix}$$

$$\bigcirc \mathbf{A}^{+} = \begin{bmatrix} 0.25 & -0.25 & 1.25 \\ 0.25 & 0.25 & 1.25 \\ 0.25 & -0.25 & -1.25 \\ 0.25 & 0.25 & -1.25 \end{bmatrix}$$

$$\bigcirc \mathbf{A}^{+} = \begin{bmatrix} 1 & 1 & 0.2 \\ 1 & -1 & 0.2 \\ 1 & 1 & -0.2 \\ 1 & -1 & -0.2 \end{bmatrix}$$

$$\bigcirc \mathbf{A}^{+} = \begin{bmatrix} 1 & 1 & 0.2 \\ 1 & 1 & 0.2 \\ 1 & 1 & -0.2 \\ 1 & 1 & -0.2 \end{bmatrix}$$

$$\bigcirc \mathbf{A}^{+} = \begin{bmatrix} 1 & -1 & 0.2 \\ 1 & 1 & 0.2 \\ 1 & -1 & -0.2 \\ 1 & 1 & -0.2 \end{bmatrix}$$

Correct answer is
$$\mathbf{A}^+ = \begin{bmatrix} 0.25 & 0.25 & 1.25 \\ 0.25 & -0.25 & 1.25 \\ 0.25 & 0.25 & -1.25 \\ 0.25 & -0.25 & -1.25 \end{bmatrix}$$

12. The inertia matrix of a mobile robot with respect to body frame is given as:

$$\mathbf{D} = \begin{bmatrix} 10 & 0 & 0.5 \\ 0 & 10 & 0.1 \\ 0.5 & 0.1 & 1 \end{bmatrix},$$

if the vehicle orientation is 60 deg with respect to inertia frame (x axis), what will be the inertia matrix with respect to inertial frame?

$$\bigcirc \mathbf{D}_{\eta} = \begin{bmatrix} 10 & 0 & 0.5 \\ 0 & 10 & 0.1 \\ 0.5 & 0.1 & 1 \end{bmatrix}$$

$$\bigcirc \mathbf{D}_{\eta} = \begin{bmatrix} 10 & 0 & 0.1634 \\ 0 & 10 & 0.483 \\ 0.1634 & 0.483 & 1 \end{bmatrix}$$

$$\bigcirc \mathbf{D}_{\eta} = \begin{bmatrix} 10 & 0 & -0.1634 \\ 0 & 10 & -0.483 \\ 0.1634 & 0.483 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & 0.1 & 1 \end{bmatrix}$$

$$\bigcirc \mathbf{D}_{\eta} = \begin{bmatrix} 10 & 0 & 0.1634 \\ 0 & 10 & 0.483 \\ 0.1634 & 0.483 & 1 \end{bmatrix}$$

$$\bigcirc \mathbf{D}_{\eta} = \begin{bmatrix} 10 & 0 & -0.1634 \\ 0 & 10 & -0.483 \\ 0.1634 & 0.483 & 1 \end{bmatrix}$$

$$\bigcirc \mathbf{D}_{\eta} = \begin{bmatrix} 10 & 0 & -0.1634 \\ 0 & 10 & -0.483 \\ -0.1634 & -0.483 & 1 \end{bmatrix}$$

$$\bigcirc \mathbf{D}_{\eta} = \begin{bmatrix} 0 & 0 & -0.1634 \\ 0 & 0 & -0.483 \\ 0.1634 & 0.483 & 0 \end{bmatrix}$$

$$\bigcirc \mathbf{D}_{\eta} = \begin{bmatrix} 10 & 0 & -0.1634 \\ 0 & 0 & -0.483 \\ 0.1634 & 0.483 & 1 \end{bmatrix}$$

$$\bigcirc \mathbf{D}_{\eta} = \begin{bmatrix} 10 & 0 & -0.1634 \\ 0 & 10 & 0.483 \\ 0.1634 & -0.483 & 1 \end{bmatrix}$$

$$\bigcirc \mathbf{D}_{\eta} = \begin{bmatrix} 0 & 0 & -0.1634 \\ 0 & 0 & -0.483 \\ 0.1634 & 0.483 & 0 \end{bmatrix}$$

$$\bigcirc \mathbf{D}_{\eta} = \begin{bmatrix} 10 & 0 & -0.1634 \\ 0 & 10 & 0.483 \\ 0.1634 & -0.483 & 1 \end{bmatrix}$$

Correct answer is
$$\mathbf{D}_{\eta} = \begin{bmatrix} 10 & 0 & 0.1634 \\ 0 & 10 & 0.483 \\ 0.1634 & 0.483 & 1 \end{bmatrix}$$