Alunos: Gustavo Passos e Victor Moro

Resultados Tempo de Execução

Este estudo compara a eficiência dos algoritmos de ordenação Bubble Sort, Insertion Sort e Quick Sort em diferentes situações. Foram realizados testes com conjuntos de dados variados (aleatórios e ordenados) e os resultados mostram o tempo que cada algoritmo leva para ordenar os dados. O objetivo é entender qual algoritmo é melhor em cada caso, ajudando na escolha do mais adequado para diferentes aplicações.

Qual algoritmo de ordenação (Bubble Sort, Insertion Sort ou Quick Sort) é o mais eficiente para ordenar diferentes tipos de dados, iremos mostrar nos gráficos abaixo

Tempos de Execução Comparativos

Alunos: Gustavo Passos e Victor Moro

Tempos de Execução Comparativos (Crescente)

Alunos: Gustavo Passos e Victor Moro

Tempos de Execução Comparativos (Decrescente)

Alunos: Gustavo	Passos e	Victor	Moro
------------------------	----------	---------------	------

Desempenho geral:
Insertion Sort: Bom para listas pequenas, especialmente quase ordenadas. Pior desempenho em listas grandes, principalmente as decrescentes.
Bubble Sort: Aceitável para listas pequenas, mas muito lento para listas grandes. Se beneficia de listas já ordenadas, terminando mais rápido.
Quick Sort: Geralmente o mais rápido, especialmente em listas aleatórias. Pode ter variação de desempenho em listas já ordenadas, dependendo da escolha do pivô.
Conclusões:
Tamanho da lista: O desempenho dos algoritmos é fortemente influenciado pelo tamanho da lista. Para listas pequenas, a diferença entre eles é menor. Para listas grandes, o Quick Sort se destaca.
Ordem dos dados: Listas já ordenadas ou quase ordenadas beneficiam o Insertion Sort e o Bubble Sort. O Quick Sort é menos afetado pela ordem dos dados, mas pode ter variações em casos específicos.
Quick Sort: É a melhor opção para a maioria dos casos, especialmente para grandes conjuntos de dados aleatórios.
Em resumo:

Alunos: Gustavo Passos e Victor Moro

O Quick Sort se mostrou o algoritmo mais eficiente na maioria dos cenários, especialmente para grandes conjuntos de dados. No entanto, para listas pequenas e quase ordenadas, o Insertion Sort pode ser uma boa alternativa. O Bubble Sort, por sua vez, é o menos eficiente em geral e não é recomendado para grandes conjuntos de dados.