PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

A01H 5/00, 5/10, A23D 7/00, A23K 1/14, C07H 21/04, C07K 4/10, C12N 15/04, 15/63, 15/82

(11) International Publication Number:

WO 99/02030

(43) International Publication Date:

21 January 1999 (21.01.99)

(21) International Application Number:

PCT/US98/14528

 $\mathbf{A1}$

(22) International Filing Date:

10 July 1998 (10.07.98)

(30) Priority Data:

60/052.249

11 July 1997 (11.07.97)

US

(71) Applicant (for all designated States except US): WASHING-TON STATE UNIVERSITY RESEARCH FOUNDATION [US/US]; N.E. 1615 Eastgate Boulevard, Pullman, WA 99164-1802 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): BOHLMANN, Joerg [DE/DE]; Sophienstrasse 21, D-0745 Jena (DE). STEELE, Christopher, L. [US/US]; 617 Campbell Street, Ardmore, OK. 973401 (US). CROTEAU, Rodney, B. [US/US]; N.E. 1835 Valley Road, Pullman, WA 99163 (US).
- (74) Agent: SHELTON, Dennis, K.; Christensen O'Connor Johnson & Kindness PLLC, Suite 2800, 1420 Fifth Avenue, Seattle, WA 98101 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: MONOTERPENE SYNTHASES FROM GRAND FIR (ABIES GRANDIS)

(57) Abstract

cDNAs encoding myrcene synthase, (-)-limonene synthase and (-)-pinene synthase from Grand fir (Abies grandis) haven been isolated and sequenced, and the corresponding amino acid sequences have been determined. Accordingly, isolated DNA sequences (SEQ ID NO:1; SEQ ID NO:3 and SEQ ID NO:5) are provided which code for the expression of myrcene synthase (SEQ ID NO:2), (-)-pinene synthase (SEQ ID NO:4) and (-)-limonene synthase (SEQ ID NO:6), respectively, from Grand fir (Abies grandis). In other aspects, replicable recombinant cloning vehicles are provided which code for myrcene synthase, (-)-limonene synthase and (-)-pinene synthase, or for a base sequence sufficiently complementary to at least a portion of myrcene synthase, (-)-limonene synthase or (-)-pinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding myrcene synthase, (-)-limonene synthase or (-)-pinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant myrcene synthase, (-)-limonene synthase or (-)-pinene synthase may be used to obtain expression or enhanced expression of myrcene synthase, (-)-limonene synthase or (-)-pinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of myrcene synthase, (-)-limonene synthase and (-)-pinene synthase, or the production of their products.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
	AM	Armenia	FI	Finland	LŦ	Lithuania	SK	Slovakia
	AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
	AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
	AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
	BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
	BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
	BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
	BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
	BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
	BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
	BR	Brazil	IL	Israel	MR	Mauritania	$\mathbf{U}\mathbf{G}$	Ug a nda
	BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
	CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
	CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
	CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
	CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
	CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
	CM	Cameroon		Republic of Korea	PL	Poland		
	CN	China	KR	Republic of Korea	PT	Portugal		
l	CU	Cuba	KZ	Kazakstan	RO	Romania		
١	CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
	DE	Germany	LI	Liechtenstein	SD	Sudan		
1	DK	Denmark	LK	Sri Lanka	SE	Sweden		
	EE	Estonia	LR	Liberia	SG	Singapore		
1								
1								

MONOTERPENE SYNTHASES FROM GRAND FIR (Abies grandis)

Field of the Invention

The present invention relates to nucleic acid sequences which code for monoterpene synthases from gymnosperm plant species, in particular from Grand fir (Abies grandis), including limonene synthase, myrcene synthase, and pinene synthase, to vectors containing the sequences, to host cells containing the sequences, to plant seeds expressing the sequences and to methods of producing recombinant monoterpene synthases and their mutants.

Background of the Invention

10

15

20

Chemical defense of conifer trees against bark beetles and their associated fungal pathogens relies primarily upon constitutive and inducible oleoresin biosynthesis (Johnson, M.A., and Croteau, R. (1987) in *Ecology and Metabolism of Plant Lipids* (Fuller, G., and Nes, W.D., eds.) pp. 76-91, American Chemical Society Symposium Series 325, Washington, DC; Gijzen, M., Lewinsohn, E., Savage, T.J., and Croteau, R.B. (1993) in *Bioactive Volatile Compounds from Plants* (Teranishi, R., Buttery, R.G., and Sugisawa, H., eds.) pp. 8-22, American Chemical Society Symposium Series 525, Washington, DC). This defensive secretion is a complex mixture of monoterpene and sesquiterpene olefins (turpentine) and diterpene resin acids (rosin) that is synthesized constitutively in the epithelial cells of specialized structures, such as resin ducts and blisters or, in the case of induced oleoresin formation, in undifferentiated cells surrounding wound sites (Lewinsohn, E., Gijzen, M., Savage, T.J., and Croteau, R. (1991) *Plant Physiol.* 96:38-43). The volatile fraction of conifer oleoresin, which is toxic to both bark beetles and their fungal

5

10

15

20

25

30

35

associates (Raffa, K.F., Berryman, A.A., Simasko, J., Teal, W., and Wong, B.L. (1985) Environ. Entomol. 14:552-556), may consist of up to 30 different monoterpenes (Lewinsohn, E., Savage, T.J., Gijzen, M., and Croteau, R. (1993) Phytochem. Anal. 4:220-225), including acyclic types (e.g., myrcene), monocyclic types (e.g., limonene) and bicyclic types (e.g., pinenes) (FIGURE 1). Although the oleoresin is toxic, many bark beetle species nevertheless employ turpentine volatiles in host selection and can convert various monoterpene components into aggregation or sex pheromones to promote coordinated mass attack of the host (Gijzen, M., Lewinsohn, E., Savage, T.J., and Croteau, R.B. (1993) in Bioactive Volatile Compounds from Plants (Teranishi, R., Buttery, R.G., and Sugisawa, H., eds.) pp. 8-22, American Chemical Society Symposium Series 525, Washington, DC; Byers, J.A. (1995) in Chemical Ecology of Insects 2 (Cardé, R.T., and Bell, W.J., eds.) pp. 154-213, Chapman and Hall, New York). In Grand fir (Abies grandis), increased formation of oleoresin monoterpenes, sesquiterpenes and diterpenes is induced by bark beetle attack (Lewinsohn, E., Gijzen, M., Savage, T.J., and Croteau, R. (1991) Plant Physiol. 96:38-43; Raffa, K.F., and Berryman, A.A. (1982) Can. Entomol. 114:797-810; Lewinsohn, E., Gijzen, M., and Croteau, R. (1991) Plant Physiol. 96:44-49), and this inducible defense response is mimicked by mechanically wounding sapling stems (Lewinsohn, E., Gijzen, M., Savage, T.J., and Croteau, R. (1991) Plant Physiol. 96:38-43; Lewinsohn, E., Gijzen, M., and Croteau, R. (1991) Plant Physiol. 96:44-49; Funk, C., Lewinsohn, E., Stofer Vogel, B., Steele C., and Croteau, R. (1994) Plant Physiol. 106:999-1005). Therefore, Grand fir has been developed as a model system to study the biochemical and molecular genetic regulation of constitutive and inducible terpene biosynthesis in conifers (Steele, C., Lewinsohn, E., and Croteau, R. (1995) Proc. Natl. Acad. Sci. USA 92:4164-4168).

Most monoterpenes are derived from geranyl diphosphate, the ubiquitous C₁₀ intermediate of the isoprenoid pathway, by synthases which catalyze the divalent metal ion-dependent ionization (to 1, FIGURE 1) and isomerization of this substrate to enzyme-bound linalyl diphosphate which, following rotation about C2-C3, undergoes a second ionization (to 2, FIGURE 1) followed by cyclization to the α-terpinyl cation, the first cyclic intermediate en route to both monocyclic and bicyclic products (Croteau, R., and Cane, D.E. (1985) *Methods Enzymol.* 110:383-405; Croteau, R. (1987) *Chem. Rev.* 87:929-954) (FIGURE 1). Acyclic monoterpenes, such as myrcene, may arise by deprotonation of carbocations 1 or 2, whereas the isomerization step to linalyl diphosphate is required in the case of cyclic

types, such as limonene and pinenes, which cannot be derived from geranyl diphosphate directly because of the geometric impediment of the trans-double bond at C2-C3 (Croteau, R., and Cane, D.E. (1985) Methods Enzymol. 110:383-405; Croteau, R. (1987) Chem. Rev. 87:929-954). Many monoterpene synthases catalyze 5 the formation of multiple products, including acyclic, monocyclic and bicyclic types, by variations on this basic mechanism (Gambliel, H., and Croteau, R. (1984) J. Biol. Chem. 259:740-748; Croteau, R., Satterwhite, D.M., Cane, D.E., and Chang, C.C. (1988) J. Biol. Chem. 263:10063-10071; Croteau, R., and Satterwhite, D.M. (1989) J. Biol. Chem. 264:15309-15315). For example, (-)-limonene synthase, the principal monoterpene synthase of spearmint (Mentha spicata) and peppermint (M. x piperita), produces small amounts of myrcene, (-)- α -pinene and (-)- β -pinene in addition to the monocyclic product (Rajaonarivony, J.I.M., Gershenzon, J., and Croteau, R. (1992) Arch. Biochem. Biophys. 296:49-57; Colby, S.M., Alonso, W.R., Katahira, E.J., McGarvey, D.J., and Croteau, R. (1993) J. Biol Chem. 268:23016-23024. Conversely, six different inducible monoterpene synthase activities have been demonstrated in extracts of wounded Grand fir stem (Gijzen, M., Lewinsohn, E., and Croteau, R. (1991) Arch. Biochem. Biophys. 289:267-273) indicating that formation of acyclic, monocyclic and bicyclic monoterpenes in this species involves several genes encoding distinct catalysts. The inducible (-)-pinene synthase has been purified (Lewinsohn, E., Gijzen, M., and Croteau, R. (1992) Arch. Biochem. Biophys. 293:167-173), and isotopically sensitive branching experiments employed to demonstrate that this enzyme synthesizes both (-)-α- and (-)-β-pinene (Wagschal, K., Savage, T.J., and Croteau, R. (1991) Tetrahedron 47:5933-5944).

10

15

20

25

30

35

Deciphering the molecular genetic control of oleoresinosis and examining structure-function relationships among the monoterpene synthases of Grand fir requires isolation of the cDNA species encoding these key enzymes. Although a protein-based cloning strategy was recently employed to acquire a cDNA for the major wound-inducible diterpene synthase from Grand fir, abietadiene synthase (Funk, C., Lewinsohn, E., Stofer Vogel, B., Steele C., and Croteau, R. (1994) Plant Physiol. 106:999-1005; LaFever, R.E., Stofer Vogel, B., and Croteau, R. (1994) Arch. Biochem. Biophys. 313:139-149; Stofer Vogel, B., Wildung, M.R., Vogel, G., and Croteau, R. (1996) J. Biol. Chem. 271:23262-23268), all attempts at the reverse genetic approach to cloning of Grand fir monoterpene synthases have failed (Steele, C., Lewinsohn, E., and Croteau, R. (1995) Proc. Natl. Acad. Sci. USA 92:4164-4168). As an alternative, a similarity-based PCR strategy was developed (Steele, C.,

Lewinsohn, E., and Croteau, R. (1995) *Proc. Natl. Acad. Sci. USA* **92**:4164-4168) that employed sequence information from terpene synthases of angiosperm origin, namely a monoterpene synthase, (-)-4*S*-limonene synthase, from spearmint (*Mentha spicata*, Lamiaceae) (Colby, S.M., Alonso, W.R., Katahira, E.J., McGarvey, D.J., and Croteau, R. (1993) *J. Biol. Chem.* **268**:23016-23024), a sesquiterpene synthase, 5-*epi*-aristolochene synthase, from tobacco (*Nicotiana tabacum*, Solanaceae) (Facchini, P.J., and Chappell, J. (1992) *Proc. Natl. Acad. Sci. USA* **89**:11088-11092), and a diterpene synthase, casbene synthase, from castor bean (*Ricinus communis*, Euphorbiaceae) (Mau, C.J.D., and West, C.A. (1994) *Proc. Natl. Acad. Sci. USA* **91**:8497-8501).

5

10

15

20

25

30

35

Monoterpenes have significant potential for cancer prevention and treatment. Monoterpenes such as limonene, perillyl alcohol, carvone, geraniol and farnesol not only reduce tumor incidence and slow tumor proliferation, but have also been reported to cause regression of established solid tumors by initiating apoptosis (Mills J.J., Chari R.S., Boyer I.J., Gould M.N., Jirtle R.L., Cancer Res., 55:979-983, 1995). Terpenes have activity against cancers such as mammary, colon, and prostate. Clinical trials are being pursued (Seachrist L, J. NIH Res. 8:43) in patients with various types of advanced cancers to validate the health benefits of dietary terpenes for humans. However, terpenes are present in Western diets at levels that are probably inadequate for any significant preventive health benefits. Daily supplementation of the diet with a terpene concentrate (10-20 g/day) would appear to be the most rational strategy for dietary therapy of diagnosed cases of cancer. This invention envisages the production of such nutritionally beneficial terpenes in vegetable oils consumed daily via the engineering of relevant genes from Grand fir into oil seed crop plants such as oil seed brassica (canola), soybean and corn.

Brief Description of the Drawings

The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:

FIGURE 1 is a schematic representation depicting the mechanism for the conversion of geranyl diphosphate to myrcene, (-)-limonene, β -phellandrene, (-)- α -pinene and (-)- β -pinene by monoterpene synthases from Grand fir. Formation of the monocyclic and bicyclic products requires preliminary isomerization of geranyl diphosphate to linallyl diphosphate. The acyclic product could be formed

from either geranyl diphosphate or linally diphosphate via carbocations 1 or 2. *OPP* denotes the diphosphate moiety.

FIGURE 2 is a sequence comparison of plant terpene synthases. A three-letter designation (*Tps*) for the gene family is proposed with sub-groups (*Tpsa* through *Tpsf*) defined by a minimum of 40 % amino acid identity between members. The numbers in parenthesis are the references to the published sequences.

FIGURE 3 depicts a GLC-MS analysis of the products of the recombinant protein encoded by AG2.2 (SEQ ID NO:1), the sequence of the protein encoded by clone AG2.2 being set forth in SEQ ID NO:2. The GLC profile of the total pentane-soluble products generated from geranyl diphosphate when incubated with a cell-free extract of $E.\ coli\ XL1$ -Blue/pGAG2.2 is illustrated (a), as are the mass fragmentation patterns for the monoterpene product with $R_I=12.22\ \text{min}\ (b)$ and for authentic myrcene (c).

10

15

20

25

30

35

FIGURE 4 depicts a GLC-MS analysis of the products of the recombinant protein encoded by AG3.18 (SEQ ID NO:3), the sequence of the protein encoded by clone AG3.18 (SEQ ID NO:3) being set forth in SEQ ID NO:4. The GLC profile of the total pentane-soluble products generated from geranyl diphosphate when incubated with a cell-free extract of $E.\ coli\ XL1$ -Blue/pGAG3.18 is illustrated (a), as are the mass fragmentation patterns (selected ion mode) for the monoterpene products with $R_I = 11.34\ \text{min}\ (b)$, and $R_I = 13.37\ \text{min}\ (d)$, and for authentic α -pinene (c) and authentic β -pinene (e).

FIGURE 5 depicts a GLC-MS analysis of the products of the recombinant protein encoded by AG10 (SEQ ID NO:5), the sequence of the protein encoded by clone AG10 (SEQ ID NO:5) being set forth in SEQ ID NO:6. The GLC profile of the total pentane-soluble products generated from geranyl diphosphate when incubated with a cell-free extract of E. coli BL21(DE3)/pSBAG10 is illustrated (a), as are the mass fragmentation patterns for the principal monoterpene product with R_I = 13.93 min (b) and for authentic limonene (c).

Summary of the Invention

In accordance with the foregoing, cDNAs encoding myrcene synthase, (-)-limonene synthase and (-)-pinene synthase from Grand fir (Abies grandis) have been isolated and sequenced, and the corresponding amino acid sequences have been deduced. Accordingly, the present invention relates to isolated DNA sequences which code for the expression of myrcene synthase, such as the sequence designated SEQ ID NO:1 which encodes myrcene synthase from Grand fir (Abies grandis), for

the expression of (-)-pinene synthase, such as the sequence designated SEQ ID NO:3, which encodes the (-)-pinene synthase from Grand fir (Abies grandis) and for the expression of (-)-limonene synthase, such as the sequence designated SEQ ID NO:5, which encodes (-)-limonene synthase from Grand fir (Abies grandis). In other aspects, the present invention is directed to replicable recombinant cloning vehicles comprising a nucleic acid sequence, e.g., a DNA sequence which codes for a myrcene synthase, (-)-limonene synthase or (-)-pinene synthase, or for a base sequence sufficiently complementary to at least a portion of DNA or RNA encoding myrcene synthase, (-)-limonene synthase or (-)-pinene synthase to enable hybridization therewith (e.g., antisense RNA or fragments of DNA complementary to a portion of DNA or RNA molecules encoding myrcene synthase, (-)-limonene synthase or (-)-pinene synthase which are useful as polymerase chain reaction primers or as probes for any of the foregoing synthases or related genes). In yet other aspects of the invention, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence of the invention. Thus, the present invention provides for the recombinant expression of myrcene synthase, (-)-limonene synthase and (-)-pinene synthase, and the inventive concepts may be used to facilitate the production, isolation and purification of significant quantities of recombinant myrcene synthase, (-)-limonene synthase and (-)-pinene synthase (or of their primary enzyme products) for subsequent use, to obtain expression or enhanced expression of myrcene synthase, (-)-limonene synthase and (-)-pinene synthase in plants, microorganisms or animals, or may be otherwise employed in an environment where the regulation or expression of myrcene synthase, (-)-limonene synthase and (-)-pinene synthase is desired for the production of these synthases, or their enzyme products, or derivatives thereof. In another aspect, the present invention relates to manipulation of monoterpene production to enhance resistance to insects and/or accumulate nutritionally beneficial monoterpenes in oil seeds.

10

15

20

25

30

Detailed Description of the Preferred Embodiment

As used herein, the terms "amino acid" and "amino acids" refer to all naturally occurring L- α -amino acids or their residues. The amino acids are identified by either the single-letter or three-letter designations:

	Asp	D	aspartic acid	Ile	I	isoleucine
	Thr	T	threonine	Leu	L	leucine
35	Ser	S	serine	Tyr	Y	tyrosine

5

10

15

20

25

30

35

Glu	E	glutamic acid	Phe	F	phenylalanine
Pro	P	proline	His	H	histidine
Gly	G	glycine	Lys	K	lysine
Ala	Α	alanine	Arg	R	arginine
Cys	C	cysteine	Trp	W	tryptophan
Val	V	valine	Gln	Q	glutamine
Met	M	methionine	Asn	Ν	asparagine

As used herein, the term "nucleotide" means a monomeric unit of DNA or RNA containing a sugar moiety (pentose), a phosphate and a nitrogenous heterocyclic base. The base is linked to the sugar moiety via the glycosidic carbon (1' carbon of pentose) and that combination of base and sugar is called a nucleoside. The base characterizes the nucleotide with the four bases of DNA being adenine ("A"), guanine ("G"), cytosine ("C") and thymine ("T"). Inosine ("I") is a synthetic base that can be used to substitute for any of the four, naturally-occurring bases (A, C, G or T). The four RNA bases are A,G,C and uracil ("U"). The nucleotide sequences described herein comprise a linear array of nucleotides connected by phosphodiester bonds between the 3' and 5' carbons of adjacent pentoses.

The term "percent identity" means the percentage of amino acids or nucleotides that occupy the same relative position when two amino acid sequences, or two nucleic acid sequences are aligned side by side.

The term "percent similarity" is a statistical measure of the degree of relatedness of two compared protein sequences. The percent similarity is calculated by a computer program that assigns a numerical value to each compared pair of amino acids based on chemical similarity (e.g., whether the compared amino acids are acidic, basic, hydrophobic, aromatic, etc.) and/or evolutionary distance as measured by the minimum number of base pair changes that would be required to convert a codon encoding one member of a pair of compared amino acids to a codon encoding the other member of the pair. Calculations are made after a best fit alignment of the two sequences have been made empirically by iterative comparison of all possible alignments. (Henikoff, S. and Henikoff, J.G., *Proc. Nat'l. Acad. Sci. USA* 89:10915-10919, 1992).

"Oligonucleotide" refers to short length single or double stranded sequences of deoxyribonucleotides linked via phosphodiester bonds. The oligonucleotides are chemically synthesized by known methods and purified, for example, on polyacrylamide gels.

The term "myrcene synthase" is used herein to mean an enzyme capable of generating multiple monoterpenes from geranyl diphosphate. The principal and characteristic monoterpene synthesized by myrcene synthase is myrcene, which constitutes at least about 60% of the monoterpene mixture synthesized by myrcene synthase from geranyl diphosphate.

The term "(-)-limonene synthase" is used herein to mean an enzyme capable of generating multiple monoterpenes from geranyl diphosphate. The principal and characteristic monoterpene synthesized by (-)-limonene synthase is (-)-limonene, which constitutes at least about 60% of the monoterpene mixture synthesized by (-)-limonene synthase from geranyl diphosphate.

1()

15

20

25

30

35

The term "(-)-pinene synthase" is used herein to mean an enzyme capable of generating multiple monoterpenes from geranyl diphosphate. The principal and characteristic monoterpene synthesized by (-)-pinene synthase is (-)-pinene, which comprises at least about 60% of the monoterpene mixture synthesized by (-)-pinene synthase from geranyl diphosphate.

The abbreviation "SSPE" refers to a buffer used in nucleic acid hybridization solutions. The 20X (twenty times concentrate) stock SSPE buffer solution is prepared as follows: dissolve 175.3 grams of NaCl, 27.6 grams of NaH₂PO₄H₂O and 7.4 grams of EDTA in 800 millilitres of H₂O. Adjust the pH to pH 7.4 with NaOH. Adjust the volume to one liter with H₂O.

The terms "alteration", "amino acid sequence alteration", "variant" and "amino acid sequence variant" refer to monoterpene synthase molecules with some differences in their amino acid sequences as compared to the corresponding, native, i.e., naturally-occurring, monoterpene synthases. Ordinarily, the variants will possess at least about 70% homology with the corresponding native monoterpene synthases, and preferably, they will be at least about 80% homologous with the corresponding, native monoterpene synthases. The amino acid sequence variants of the monoterpene synthases falling within this invention possess substitutions, deletions, and/or insertions at certain positions. Sequence variants of monoterpene synthases may be used to attain desired enhanced or reduced enzymatic activity, modified regiochemistry or stereochemistry, or altered substrate utilization or product distribution.

Substitutional monoterpene synthase variants are those that have at least one amino acid residue in the native monoterpene synthase sequence removed and a different amino acid inserted in its place at the same position. The substitutions may

8

be single, where only one amino acid in the molecule has been substituted, or they may be multiple, where two or more amino acids have been substituted in the same molecule. Substantial changes in the activity of the monoterpene synthase molecules of the present invention may be obtained by substituting an amino acid with a side chain that is significantly different in charge and/or structure from that of the native amino acid. This type of substitution would be expected to affect the structure of the polypeptide backbone and/or the charge or hydrophobicity of the molecule in the area of the substitution.

Moderate changes in the activity of the monoterpene synthase molecules of the present invention would be expected by substituting an amino acid with a side chain that is similar in charge and/or structure to that of the native molecule. This type of substitution, referred to as a conservative substitution, would not be expected to substantially alter either the structure of the polypeptide backbone or the charge or hydrophobicity of the molecule in the area of the substitution.

15

10

Insertional monoterpene synthase variants are those with one or more amino acids inserted immediately adjacent to an amino acid at a particular position in the native monoterpene synthase molecule. Immediately adjacent to an amino acid means connected to either the α -carboxy or α -amino functional group of the amino acid. The insertion may be one or more amino acids. Ordinarily, the insertion will consist of one or two conservative amino acids. Amino acids similar in charge and/or structure to the amino acids adjacent to the site of insertion are defined as conservative. Alternatively, this invention includes insertion of an amino acid with a charge and/or structure that is substantially different from the amino acids adjacent to the site of insertion.

25

20

Deletional variants are those where one or more amino acids in the native monoterpene synthase molecules have been removed. Ordinarily, deletional variants will have one or two amino acids deleted in a particular region of the monoterpene synthase molecule.

30

35

The terms "biological activity", "biologically active", "activity" and "active" refer to the ability of the monoterpene synthases of the present invention to convert geranyl diphosphate to a group of monoterpenes, of which myrcene is the principal and characteristic monoterpene synthesized by myrcene synthase, (-)-limonene is the principal and characteristic monoterpene synthesized by (-)-limonene synthase and (-)-pinene is the principal and characteristic monoterpene synthesized by (-)-pinene synthase. The monoterpenes produced by the monoterpene synthases of the present

0

Example 3. Amino acid sequence variants of the terpene synthases of the present invention may have desirable altered biological activity including, for example, altered reaction kinetics, substrate utilization product distribution or other characteristics such as regiochemistry and stereochemistry.

The terms "DNA sequence encoding", "DNA encoding" and "nucleic acid encoding" refer to the order or sequence of deoxyribonucleotides along a strand of deoxyribonucleic acid. The order of these deoxyribonucleotides determines the order of amino acids along the translated polypeptide chain. The DNA sequence thus codes for the amino acid sequence.

10

15

20

25

30

The terms "replicable expression vector" and "expression vector" refer to a piece of DNA, usually double-stranded, which may have inserted into it a piece of toreign DNA. Foreign DNA is defined as heterologous DNA, which is DNA not naturally found in the host. The vector is used to transport the foreign or heterologous DNA into a suitable host cell. Once in the host cell, the vector can replicate independently of or coincidental with the host chromosomal DNA, and several copies of the vector and its inserted (foreign) DNA may be generated. In addition, the vector contains the necessary elements that permit translating the foreign DNA into a polypeptide. Many molecules of the polypeptide encoded by the foreign DNA can thus be rapidly synthesized.

The terms "transformed host cell," "transformed" and "transformation" refer to the introduction of DNA into a cell. The cell is termed a "host cell", and it may be a prokaryotic or a eukaryotic cell. Typical prokaryotic host cells include various strains of *E. coli*. Typical eukaryotic host cells are plant cells, such as maize cells, yeast cells, insect cells or animal cells. The introduced DNA is usually in the form of a vector containing an inserted piece of DNA. The introduced DNA sequence may be from the same species as the host cell or from a different species from the host cell, or it may be a hybrid DNA sequence, containing some foreign DNA and some DNA derived from the host species.

The following abbreviations are used herein: bp(s), base pair(s); DEAE, O-diethylaminoethyl; DTT, dithiothreitol; EDTA, ethylenediaminetetraacetic acid; GC, gas chromatography; IPTG, isopropyl-β-D-thiogalactopyranoside; LB, Luria-Bertani; Mopso, 3-(N-morpholino)-2-hydroxypropane-sulfonic acid; MS, mass spectrum/ spectrometry; nt(s), nucleotide(s); ORF, open reading frame; PCR,

polymerase chain reaction; PVDF, polyvinylidenedifluoride; SDS, sodium dodecyl sulfate; Tris, tris(hydroxymethyl) aminomethane; UV, ultraviolet.

5

10

15

20

35

In accordance with the present invention, cDNAs encoding myrcene synthase (SEQ ID NO:1), (-)-pinene synthase (SEQ ID NO:3) and (-)-limonene synthase (SEQ ID NO:5) from Grand fir (Abies grandis) were isolated and sequenced in the following manner. Based on comparison of sequences of limonene synthase from spearmint (Colby, S.M., Alonso, W.R., Katahira, E.J., McGarvey, D.J., and Croteau, R. (1993) J. Biol. Chem. 268:23016-23024), 5-epi-aristolochene synthase from tobacco (Facchini, P.J., and Chappell, J. (1992) Proc. Natl. Acad. Sci. USA 89:11088-11092), and casbene synthase from castor bean (Mau, C.J.D., and West, C.A. (1994) Proc. Natl. Acad. Sci. USA 91:8497-8501), four conserved regions were identified for which a set of consensus, degenerate primers were synthesized: Primer A (SEQ ID NO:7), Primer B (SEQ ID NO:8), Primer C (SEQ ID NO:9) and Primer D (SEQ ID NO:10). Primers A (SEQ ID NO:7), B (SEQ ID NO:8), and D (SEQ ID NO:10) were sense primers, while Primer C (SEQ ID NO:9), was an antisense primer. Each of the sense primers, A (SEQ ID NO:7), B (SEQ ID NO:8) and D (SEQ ID NO:10), was used for PCR in combination with antisense primer C (SEQ ID NO:9) by employing a broad range of amplification conditions. Analysis of the PCR reaction products by agarose gel electrophoresis revealed that only the combination of primers C (SEQ ID NO:9) and D (SEQ ID NO:10) generated a specific PCR product of approximately 110 bps.

The 110 bps PCR product was gel purified, ligated into a plasmid, and transformed into E. coli XL1-Blue cells. Plasmid DNA was prepared from 41 individual transformants and the inserts were sequenced. Four different insert 25 sequences were identified, and were designated as probes 1 (SEQ ID NO:11), 2 (SEQ ID NO:12), 4 (SEQ ID NO:13) and 5 (SEQ ID NO:14). Probes 1 (SEQ ID NO:11), 2 (SEQ ID NO:12), 4 (SEQ ID NO:13) and 5 (SEQ ID NO:14) were used to screen a cDNA library made from mRNA extracted from wounded Grand fir stems, and the longest clone that hybridized to each of these probes was isolated and sequenced. 30 Thus, clone AG1.28 (SEQ ID NO:15) is the longest cDNA clone that hybridized to probe 1 (SEQ ID NO:11), clone AG2.2 (SEQ ID NO:1) is the longest cDNA clone that hybridized to probe 2 (SEQ ID NO:12), clone AG4.30 (SEQ ID NO:17) is the longest cDNA clone that hybridized to probe 4 (SEQ ID NO: 13), and clone AG5.9 (SEQ ID NO:19) is the longest cDNA clone that hybridized to probe 5 (SEQ ID NO:14).

Truncated clone AG1.28 (SEQ ID NO:15) resembled most closely in size and sequence (72% similarity, 49% identity) a diterpene cyclase, abietadiene synthase, from Grand fir. Clones AG4.30 (SEQ ID NO:17) and AG5.9 (SEQ ID NO:19) encode sesquiterpene synthases. Sequence and functional analysis of clone AG2.2 (SEQ ID NO:1) revealed that it encoded the monoterpene synthase, myrcene synthase.

Alignment of the four new terpene synthase cDNA sequences AG1.28 (SEQ ID NO:15), AG2.2 (SEQ ID NO:1), AG4.30 (SEQ ID NO:17) and AG5.9 (SEQ ID NO:19) with that for abietadiene synthase (Stofer Vogel, B., Wildung, M.R., Vogel, G., and Croteau, R. (1996) *J. Biol. Chem.* 271:23262-23268) allowed the identification of several, conserved sequence motifs. Two new sense PCR primers, primer E (SEQ ID NO:21) and primer F (SEQ ID NO:22) were designed based on the sequence of the conserved protein sequence motifs. A new antisense PCR primer, primer G (SEQ ID NO:23), was designed based on limited sequence information available from pinene synthase. The combination of primer E (SEQ ID NO:21) and primer G (SEQ ID NO:23) amplified a cDNA product of 1022 bps, which was designated as probe 3 (SEQ ID NO:24).

1()

15

20

25

3()

35

Probe 3 (SEQ ID NO:24) was used to screen a cDNA library made from mRNA extracted from wounded Grand fir stems. Hybridization of 10⁵ Grand fir λ ZAP II cDNA clones with probe 3 (SEQ ID NO:24) yielded two types of signals comprised of about 400 strongly positive clones and an equal number of weak positives, indicating that the probe recognized more than one type of cDNA. Thirty-four of the former clones and eighteen of the latter were purified, the inserts were selected by size (2.0-2.5 kb), and the *in vivo* excised clones were partially sequenced from both ends. Those clones which afforded weak hybridization signals were shown to contain inserts that were either identical to myrcene synthase clone *AG2.2* (SEQ ID NO:1) or exhibited no significant sequence similarity to terpene synthases.

Clones which gave strong hybridization signals segregated into distinct sequence groups represented by clone AG3.18 (SEQ ID NO:3) and clone AG10 (SEQ ID NO:5). Both AG3.18 (SEQ ID NO:3) and AG10 (SEQ ID NO:5) were subcloned into plasmid expression vectors and expressed in $E.\ coli$. When extracts of the induced cells were tested for terpene synthase activity with all of the potential prenyl diphosphate substrates, only geranyl diphosphate was utilized. Extracts from $E.\ coli$ containing the AG10 (SEQ ID NO:5) expression construct converted geranyl diphosphate to the -4S enantiomer of limonene as the major product, indicating that

AG10 (SEQ ID NO:5) encodes (-)-limonene synthase. Similar analysis of the monoterpene products generated from geranyl diphosphate by cell-free extracts of $E.\ coli$ containing the AG3.18 (SEQ ID NO:3) insert ligated into an expression vector revealed the presence of a 42:58% mixture of α -pinene and β -pinene, the same product ratio previously described for the purified, native (-)-pinene synthase from Grand fir. These data indicate that AG3.18 (SEQ ID NO:3) encodes (-)-pinene synthase.

The isolation of cDNAs encoding (-)-limonene synthase, (-)-pinene synthase and myrcene synthase permits the development of efficient expression systems for these functional enzymes; provides useful tools for examining the developmental regulation of monoterpene biosynthesis; permits investigation of the reaction mechanism(s) of these unusual, multiproduct enzymes, and permits the isolation of other (-)-limonene synthase, (-)-pinene synthase and myrcene synthases. The isolation of the (-)-limonene synthase, (-)-pinene synthase and myrcene synthase cDNAs also permits the transformation of a wide range of organisms in order to introduce monoterpene biosynthesis *de novo*, or to modify endogenous monoterpene biosynthesis.

Although the (-)-limonene synthase, (-)-pinene synthase and myrcene synthase proteins set forth in SEQ ID NO:6, SEQ ID NO:4 and SEQ ID NO:2, respectively, direct the enzymes to plastids, substitution of the presumptive targeting sequence of each of these enzymes (SEQ ID NO:2, amino acids 1 to 61; SEQ ID NO:4, amino acids 1 to 61; SEQ ID NO:6, amino acids 1 to 66) with other transport sequences well known in the art (see, e.g., von Heijne et al., *Eur. J. Biochem.* 180:535-545, 1989; Stryer, *Biochemistry*, W.H. Freeman and Company, New York, NY, p. 769 [1988]) may be employed to direct the (-)-limonene synthase, (-)-pinene synthase and myrcene synthase to other cellular or extracellular locations.

In addition to the native (-)-limonene synthase, (-)-pinene synthase and myrcene synthase amino acid sequences of SEQ ID NO:6, SEQ ID NO:4 and SEQ ID NO:2, respectively, sequence variants produced by deletions, substitutions, mutations and/or insertions are intended to be within the scope of the invention except insofar as limited by the prior art. The (-)-limonene synthase, (-)-pinene synthase and myrcene synthase amino acid sequence variants of this invention may be constructed by mutating the DNA sequences that encode the wild-type synthases, such as by using techniques commonly referred to as site-directed mutagenesis. Nucleic acid molecules encoding the monoterpene synthases of the present invention

can be mutated by a variety of PCR techniques well known to one of ordinary skill in the art. See, e.g., "PCR Strategies", M.A. Innis, D.H. Gelfand and J.J. Sninsky, eds., 1995, Academic Press, San Diego, CA (Chapter 14); "PCR Protocols: A Guide to Methods and Applications", M.A. Innis, D.H. Gelfand, J.J. Sninsky and T.J. White, eds., Academic Press, NY (1990).

5

10

15

20

25

30

35

By way of non-limiting example, the two primer system utilized in the Transformer Site-Directed Mutagenesis kit from Clontech, may be employed for introducing site-directed mutants into the monoterpene synthase genes of the present invention. Following denaturation of the target plasmid in this system, two primers are simultaneously annealed to the plasmid; one of these primers contains the desired site-directed mutation, the other contains a mutation at another point in the plasmid resulting in elimination of a restriction site. Second strand synthesis is then carried out, tightly linking these two mutations, and the resulting plasmids are transformed into a mutS strain of E. coli. Plasmid DNA is isolated from the transformed bacteria, restricted with the relevant restriction enzyme (thereby linearizing the unmutated plasmids), and then retransformed into E. coli. This system allows for generation of mutations directly in an expression plasmid, without the necessity of subcloning or generation of single-stranded phagemids. The tight linkage of the two mutations and the subsequent linearization of unmutated plasmids results in high mutation efficiency and allows minimal screening. Following synthesis of the initial restriction site primer, this method requires the use of only one new primer type per mutation site. Rather than prepare each positional mutant separately, a set of "designed degenerate" oligonucleotide primers can be synthesized in order to introduce all of the desired mutations at a given site simultaneously. Transformants can be screened by sequencing the plasmid DNA through the mutagenized region to identify and sort mutant clones. Each mutant DNA can then be restricted and analyzed by electrophoresis on Mutation Detection Enhancement gel (J.T. Baker) to confirm that no other alterations in the sequence have occurred (by band shift comparison to the unmutagenized control).

The verified mutant duplexes in the pET (or other) overexpression vector can be employed to transform *E. coli* such as strain *E. coli* BL21(DE3)pLysS, for high level production of the mutant protein, and purification by standard protocols. The method of FAB-MS mapping can be employed to rapidly check the fidelity of mutant expression. This technique provides for sequencing segments throughout the whole protein and provides the necessary confidence in the sequence assignment. In a

mapping experiment of this type, protein is digested with a protease (the choice will depend on the specific region to be modified since this segment is of prime interest and the remaining map should be identical to the map of unmutagenized protein). The set of cleavage fragments is fractionated by microbore HPLC (reversed phase or ion exchange, again depending on the specific region to be modified) to provide several peptides in each fraction, and the molecular weights of the peptides are determined by FAB-MS. The masses are then compared to the molecular weights of peptides expected from the digestion of the predicted sequence, and the correctness of the sequence quickly ascertained. Since this mutagenesis approach to protein modification is directed, sequencing of the altered peptide should not be necessary if the MS agrees with prediction. If necessary to verify a changed residue, CAD-tandem MS/MS can be employed to sequence the peptides of the mixture in question, or the target peptide purified for subtractive Edman degradation or carboxypeptidase Y digestion depending on the location of the modification.

In the design of a particular site directed mutagenesis, it is generally desirable to first make a non-conservative substitution (e.g., Ala for Cys, His or Glu) and determine if activity is greatly impaired as a consequence. The properties of the mutagenized protein are then examined with particular attention to the kinetic parameters of K_m and k_{cat} as sensitive indicators of altered function, from which changes in binding and/or catalysis $per\ se$ may be deduced by comparison to the native enzyme. If the residue is by this means demonstrated to be important by activity impairment, or knockout, then conservative substitutions can be made, such as Asp for Glu to alter side chain length, Ser for Cys, or Arg for His. For hydrophobic segments, it is largely size that is usefully altered, although aromatics can also be substituted for alkyl side chains. Changes in the normal product distribution can indicate which step(s) of the reaction sequence have been altered by the mutation. Modification of the hydrophobic pocket can be employed to change binding conformations for substrates and result in altered regiochemistry and/or stereochemistry.

Other site directed mutagenesis techniques may also be employed with the nucleotide sequences of the invention. For example, restriction endonuclease digestion of DNA followed by ligation may be used to generate deletion variants of (-)-limonene synthase, (-)-pinene synthase and myrcene synthase, as described in section 15.3 of Sambrook et al. (*Molecular Cloning: A Laboratory Manual*, 2nd Ed., Cold Spring Harbor Laboratory Press, New York, NY [1989]). A similar strategy

may be used to construct insertion variants, as described in section 15.3 of Sambrook et al., *supra*.

Oligonucleotide-directed mutagenesis may also be employed for preparing substitution variants of this invention. It may also be used to conveniently prepare the deletion and insertion variants of this invention. This technique is well known in the art as described by Adelman et al. (*DNA* 2:183 [1983]); Sambrook et al., *supra*; "Current Protocols in Molecular Biology", 1991, Wiley (NY), F.T. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.D. Seidman, J.A. Smith and K. Struhl, eds.

10

15

20

25

30

35

Generally, oligonucleotides of at least 25 nucleotides in length are used to insert, delete or substitute two or more nucleotides in the (-)-limonene synthase, (-)-pinene synthase and myrcene synthase molecule. An optimal oligonucleotide will have 12 to 15 perfectly matched nucleotides on either side of the nucleotides coding for the mutation. To mutagenize wild-type (-)-limonene synthase, (-)-pinene synthase and myrcene synthase, the oligonucleotide is annealed to the single-stranded DNA template molecule under suitable hybridization conditions. A DNA polymerizing enzyme, usually the Klenow fragment of *E. coli* DNA polymerase I, is then added. This enzyme uses the oligonucleotide as a primer to complete the synthesis of the mutation-bearing strand of DNA. Thus, a heteroduplex molecule is formed such that one strand of DNA encodes the wild-type synthase inserted in the vector, and the second strand of DNA encodes the mutated form of the synthase inserted into the same vector. This heteroduplex molecule is then transformed into a suitable host cell.

Mutants with more than one amino acid substituted may be generated in one of several ways. If the amino acids are located close together in the polypeptide chain, they may be mutated simultaneously using one oligonucleotide that codes for all of the desired amino acid substitutions. If however, the amino acids are located some distance from each other (separated by more than ten amino acids, for example) it is more difficult to generate a single oligonucleotide that encodes all of the desired changes. Instead, one of two alternative methods may be employed. In the first method, a separate oligonucleotide is generated for each amino acid to be substituted. The oligonucleotides are then annealed to the single-stranded template DNA simultaneously, and the second strand of DNA that is synthesized from the template will encode all of the desired amino acid substitutions. An alternative method involves two or more rounds of mutagenesis to produce the desired mutant. The first round is as described for the single mutants: wild-type (-)-limonene synthase,

(-)-pinene synthase and myrcene synthase DNA is used for the template, an oligonucleotide encoding the first desired amino acid substitution(s) is annealed to this template, and the heteroduplex DNA molecule is then generated. The second round of mutagenesis utilizes the mutated DNA produced in the first round of mutagenesis as the template. Thus, this template already contains one or more mutations. The oligonucleotide encoding the additional desired amino acid substitution(s) is then annealed to this template, and the resulting strand of DNA now encodes mutations from both the first and second rounds of mutagenesis. This resultant DNA can be used as a template in a third round of mutagenesis, and so on.

5

10

15

20

25

30

35

A gene encoding (-)-limonene synthase, (-)-pinene synthase and myrcene synthase may be incorporated into any organism (intact plant, animal, microbe, etc.), or cell culture derived therefrom, that produces geranyl diphosphate. A (-)-limonene synthase, (-)-pinene synthase and myrcene synthase gene may be introduced into any organism for a variety of purposes including, but not limited to: production of (-)-limonene synthase, (-)-pinene synthase and myrcene synthase, or their products; production or modification of flavor and aroma properties; improvement of defense capability, and the alteration of other ecological interactions mediated by myrcene, (-)-limonene, (-)-pinene, or their derivatives.

Eukaryotic expression systems may be utilized for the production of (-)-limonene synthase, (-)-pinene synthase and myrcene synthase since they are capable of carrying out any required posttranslational modifications and of directing the enzymes to the proper membrane location. A representative eukaryotic expression system for this purpose uses the recombinant baculovirus, Autographa californica nuclear polyhedrosis virus (AcNPV; M.D. Summers and G.E. Smith, A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures [1986]; Luckow et al., Bio-technology 6:47-55 [1987]) for expression of the terpenoid synthases of the invention. Infection of insect cells (such as cells of the species Spodoptera frugiperda) with the recombinant baculoviruses allows for the production of large amounts of the monoterpenoid synthase proteins. In addition, the baculovirus system has other important advantages for the production of recombinant (-)-limonene synthase, (-)-pinene synthase and myrcene synthase. For example, baculoviruses do not infect humans and can therefore be safely handled in large quantities. In the baculovirus system, a DNA construct is prepared including a DNA segment encoding (-)-limonene synthase, (-)-pinene synthase and myrcene synthase and a vector. The vector may comprise the polyhedron gene promoter region of a

baculovirus, the baculovirus flanking sequences necessary for proper cross-over during recombination (the flanking sequences comprise about 200-300 base pairs adjacent to the promoter sequence) and a bacterial origin of replication which permits the construct to replicate in bacteria. The vector is constructed so that (i) the DNA segment is placed adjacent (or operably linked or "downstream" or "under the control of") to the polyhedron gene promoter and (ii) the promoter/monoterpene synthase combination is flanked on both sides by 200-300 base pairs of baculovirus DNA (the flanking sequences).

5

10

15

20

25

30

35

To produce the monoterpene synthase DNA construct, a cDNA clone encoding the full length (-)-limonene synthase, (-)-pinene synthase and myrcene synthase is obtained using methods such as those described herein. The DNA construct is contacted in a host cell with baculovirus DNA of an appropriate baculovirus (that is, of the same species of baculovirus as the promoter encoded in the construct) under conditions such that recombination is effected. The resulting recombinant baculoviruses encode the full (-)-limonene synthase, (-)-pinene synthase and myrcene synthase. For example, an insect host cell can be cotransfected or transfected separately with the DNA construct and a functional baculovirus. Resulting recombinant baculoviruses can then be isolated and used to infect cells to effect production of the monoterpene synthase. Host insect cells include, for example, Spodoptera frugiperda cells, that are capable of producing a baculovirusexpressed monoterpene synthase. Insect host cells infected with a recombinant baculovirus of the present invention are then cultured under conditions allowing expression of the baculovirus-encoded (-)-limonene synthase, (-)-pinene synthase and myrcene synthase. (-)-limonene synthase, (-)-pinene synthase and myrcene synthase thus produced are then extracted from the cells using methods known in the art.

Other eukaryotic microbes such as yeasts may also be used to practice this invention. The baker's yeast Saccharomyces cerevisiae, is a commonly used yeast, although several other strains are available. The plasmid YRp7 (Stinchcomb et al., Nature 282:39 [1979]; Kingsman et al., Gene 7:141 [1979]; Tschemper et al., Gene 10:157 [1980]) is commonly used as an expression vector in Saccharomyces. This plasmid contains the trp1 gene that provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, such as strains ATCC No. 44,076 and PEP4-1 (Jones, Genetics 85:12 [1977]). The presence of the trp1 lesion as a characteristic of the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan. Yeast host cells

are generally transformed using the polyethylene glycol method, as described by Hinnen (*Proc. Natl. Acad. Sci. USA* 75:1929 [1978]). Additional yeast transformation protocols are set forth in Gietz et al., *N.A.R.* 20(17) 1425(1992); Reeves et al., *FEMS* 99(2-3):193-197, (1992).

5

10

15

20

25

30

35

Suitable promoting sequences in yeast vectors include the promoters for 3-phosphoglycerate kinase (Hitzeman et al., J. Biol. Chem. 255:2073 [1980]) or other glycolytic enzymes (Hess et al., J. Adv. Enzyme Reg. 7:149 [1968]; Holland et al., Biochemistry 17:4900 [1978]), such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. In the construction of suitable expression plasmids, the termination sequences associated with these genes are also ligated into the expression vector 3' of the sequence desired to be expressed to provide polyadenylation of the mRNA and termination. Other promoters that have the additional advantage of transcription controlled by growth conditions are the promoter region for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, and the aforementioned glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Any plasmid vector containing yeast-compatible promoter, origin of replication and termination sequences is suitable.

Cell cultures derived from multicellular organisms, such as plants, may be used as hosts to practice this invention. Transgenic plants can be obtained, for example, by transferring plasmids that encode (-)-limonene synthase, (-)-pinene synthase and myrcene synthase and a selectable marker gene, e.g., the kan gene encoding resistance to kanamycin, into *Agrobacterium tumifaciens* containing a helper Ti plasmid as described in Hoeckema et al., *Nature* 303:179-181 [1983] and culturing the *Agrobacterium* cells with leaf slices of the plant to be transformed as described by An et al., *Plant Physiology* 81:301-305 [1986]. Transformation of cultured plant host cells is normally accomplished through *Agrobacterium tumifaciens*, as described above. Cultures of mammalian host cells and other host cells that do not have rigid cell membrane barriers are usually transformed using the calcium phosphate method as originally described by Graham and Van der Eb (*Virology* 52:546 [1978]) and modified as described in sections 16.32-16.37 of Sambrook et al., *supra*. However, other methods for introducing DNA into cells

such as Polybrene (Kawai and Nishizawa, Mol. Cell. Biol. 4:1172 [1984]), protoplast fusion (Schaffner, Proc. Natl. Acad. Sci. USA 77:2163 [1980]), electroporation (Neumann et al., EMBO J. 1:841 [1982]), and direct microinjection into nuclei (Capecchi, Cell 22:479 [1980]) may also be used. Additionally, animal transformation strategies are reviewed in Monastersky G.M. and Robl, J.M., Strategies in Transgenic Animal Science, ASM Press, Washington, D.C., 1995. Transformed plant calli may be selected through the selectable marker by growing the cells on a medium containing, e.g., kanamycin, and appropriate amounts of phytohormone such as naphthalene acetic acid and benzyladenine for callus and shoot induction. The plant cells may then be regenerated and the resulting plants transferred to soil using techniques well known to those skilled in the art.

5

10

15

In addition, a gene regulating (-)-limonene synthase, (-)-pinene synthase and myrcene synthase production can be incorporated into the plant along with a necessary promoter which is inducible. In the practice of this embodiment of the invention, a promoter that only responds to a specific external or internal stimulus is fused to the target cDNA. Thus, the gene will not be transcribed except in response to the specific stimulus. As long as the gene is not being transcribed, its gene product is not produced.

An illustrative example of a responsive promoter system that can be used in the practice of this invention is the glutathione-S-transferase (GST) system in maize. 20 GSTs are a family of enzymes that can detoxify a number of hydrophobic electrophilic compounds that often are used as pre-emergent herbicides (Weigand et al., Plant Molecular Biology 7:235-243 [1986]). Studies have shown that the GSTs are directly involved in causing this enhanced herbicide tolerance. This action is primarily mediated through a specific 1.1 kb mRNA transcription 25 product. In short, maize has a naturally occurring quiescent gene already present that can respond to external stimuli and that can be induced to produce a gene product. This gene has previously been identified and cloned. Thus, in one embodiment of this invention, the promoter is removed from the GST responsive gene and attached to a (-)-limonene synthase, (-)-pinene synthase and myrcene synthase gene that 30 previously has had its native promoter removed. This engineered gene is the combination of a promoter that responds to an external chemical stimulus and a gene responsible for successful production of (-)-limonene synthase, (-)-pinene synthase and myrcene synthase.

In addition to the methods described above, several methods are known in the art for transferring cloned DNA into a wide variety of plant species, including gymnosperms, angiosperms, monocots and dicots (see, e.g., Glick and Thompson, eds., *Methods in Plant Molecular Biology*, CRC Press, Boca Raton, Florida [1993]). Representative examples include electroporation-facilitated DNA uptake by protoplasts (Rhodes et al., *Science* 240(4849):204-207 [1988]); treatment of protoplasts with polyethylene glycol (Lyznik et al., *Plant Molecular Biology* 13:151-161 [1989]); and bombardment of cells with DNA laden microprojectiles (Klein et al., *Plant Physiol.* 91:440-444 [1989] and Boynton et al., *Science* 240(4858):1534-1538 [1988]). Additionally, plant transformation strategies and techniques are reviewed in Birch, R.G., *Ann Rev Plant Phys Plant Mol Biol* 48:297 (1997); Forester et al., *Exp. Agric.* 33:15-33 (1997). Minor variations make these technologies applicable to a broad range of plant species.

10

15

20

25

30

35

Each of these techniques has advantages and disadvantages. In each of the techniques, DNA from a plasmid is genetically engineered such that it contains not only the gene of interest, but also selectable and screenable marker genes. A selectable marker gene is used to select only those cells that have integrated copies of the plasmid (the construction is such that the gene of interest and the selectable and screenable genes are transferred as a unit). The screenable gene provides another check for the successful culturing of only those cells carrying the genes of interest. A commonly used selectable marker gene is neomycin phosphotransferase II (NPT II). This gene conveys resistance to kanamycin, a compound that can be added directly to the growth media on which the cells grow. Plant cells are normally susceptible to kanamycin and, as a result, die. The presence of the NPT II gene overcomes the effects of the kanamycin and each cell with this gene remains viable. Another selectable marker gene which can be employed in the practice of this invention is the gene which confers resistance to the herbicide glufosinate (Basta). A screenable gene commonly used is the β -glucuronidase gene (GUS). The presence of this gene is characterized using a histochemical reaction in which a sample of putatively transformed cells is treated with a GUS assay solution. After an appropriate incubation, the cells containing the GUS gene turn blue.

The plasmid containing one or more of these genes is introduced into either plant protoplasts or callus cells by any of the previously mentioned techniques. If the marker gene is a selectable gene, only those cells that have incorporated the DNA package survive under selection with the appropriate phytotoxic agent. Once the

appropriate cells are identified and propagated, plants are regenerated. Progeny from the transformed plants must be tested to insure that the DNA package has been successfully integrated into the plant genome.

5

10

15

20

25

30

35

Mammalian host cells may also be used in the practice of the invention. Examples of suitable mammalian cell lines include monkey kidney CVI line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line 293S (Graham et al., J. Gen. Virol. 36:59 [1977]); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells (Urlab and Chasin, Proc. Natl. Acad. Sci USA 77:4216 [1980]); mouse sertoli cells (TM4, Mather, Biol. Reprod. 23:243 [1980]); monkey kidney cells (CVI-76, ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor cells (MMT 060562, ATCC CCL 51); rat hepatoma cells (HTC, MI.54, Baumann et al., J. Cell Biol. 85:1 [1980]); and TRI cells (Mather et al., Annals N.Y. Acad. Sci. 383:44 [1982]). Expression vectors for these cells ordinarily include (if necessary) DNA sequences for an origin of replication, a promoter located in front of the gene to be expressed, a ribosome binding site, an RNA splice site, a polyadenylation site, and a transcription terminator site.

Promoters used in mammalian expression vectors are often of viral origin. These viral promoters are commonly derived from polyoma virus, Adenovirus 2, and most frequently Simian Virus 40 (SV40). The SV40 virus contains two promoters that are termed the early and late promoters. These promoters are particularly useful because they are both easily obtained from the virus as one DNA fragment that also contains the viral origin of replication (Fiers et al., *Nature* 273:113 [1978]). Smaller or larger SV40 DNA fragments may also be used, provided they contain the approximately 250-bp sequence extending from the HindIII site toward the BglI site located in the viral origin of replication.

Alternatively, promoters that are naturally associated with the foreign gene (homologous promoters) may be used provided that they are compatible with the host cell line selected for transformation.

An origin of replication may be obtained from an exogenous source, such as SV40 or other virus (e.g., Polyoma, Adeno, VSV, BPV) and inserted into the cloning vector. Alternatively, the origin of replication may be provided by the host cell

chromosomal replication mechanism. If the vector containing the foreign gene is integrated into the host cell chromosome, the latter is often sufficient.

5

10

15

20

25

30

35

The use of a secondary DNA coding sequence can enhance production levels of (-)-limonene synthase, (-)-pinene synthase and myrcene synthase in transformed cell lines. The secondary coding sequence typically comprises the enzyme dihydrofolate reductase (DHFR). The wild-type form of DHFR is normally inhibited by the chemical methotrexate (MTX). The level of DHFR expression in a cell will vary depending on the amount of MTX added to the cultured host cells. An additional feature of DHFR that makes it particularly useful as a secondary sequence is that it can be used as a selection marker to identify transformed cells. Two forms of DHFR are available for use as secondary sequences, wild-type DHFR and MTXresistant DHFR. The type of DHFR used in a particular host cell depends on whether the host cell is DHFR deficient (such that it either produces very low levels of DHFR endogenously, or it does not produce functional DHFR at all). DHFR-deficient cell lines such as the CHO cell line described by Urlaub and Chasin, supra, are transformed with wild-type DHFR coding sequences. After transformation, these DHFR-deficient cell lines express functional DHFR and are capable of growing in a culture medium lacking the nutrients hypoxanthine, glycine and thymidine. Nontransformed cells will not survive in this medium.

The MTX-resistant form of DHFR can be used as a means of selecting for transformed host cells in those host cells that endogenously produce normal amounts of functional DHFR that is MTX sensitive. The CHO-Kl cell line (ATCC No. CL 61) possesses these characteristics, and is thus a useful cell line for this purpose. The addition of MTX to the cell culture medium will permit only those cells transformed with the DNA encoding the MTX-resistant DHFR to grow. The nontransformed cells will be unable to survive in this medium.

Prokaryotes may also be used as host cells for the initial cloning steps of this invention. They are particularly useful for rapid production of large amounts of DNA, for production of single-stranded DNA templates used for site-directed mutagenesis, for screening many mutants simultaneously, and for DNA sequencing of the mutants generated. Suitable prokaryotic host cells include *E. coli* K12 strain 94 (ATCC No. 31,446), *E. coli* strain W3110 (ATCC No. 27,325) *E. coli* X1776 (ATCC No. 31,537), and *E. coli* B; however many other strains of *E. coli*, such as HB101, JM101, NM522, NM538, NM539, and many other species and genera of prokaryotes including bacilli such as *Bacillus subtilis*, other

enterobacteriaceae such as Salmonella typhimurium or Serratia marcesans, and various Pseudomonas species may all be used as hosts. Prokaryotic host cells or other host cells with rigid cell walls are preferably transformed using the calcium chloride method as described in section 1.82 of Sambrook et al., supra. Alternatively, electroporation may be used for transformation of these cells. Prokaryote transformation techniques are set forth in Dower, W.J., in Genetic Engineering, Principles and Methods, 12:275-296, Plenum Publishing Corp., 1990; Hanahan et al., Meth. Enxymol., 204:63 (1991).

10

15

20

25

30

35

As a representative example, cDNA sequences encoding (-)-limonene synthase, (-)-pinene synthase or myrcene synthase may be transferred to the (His)₆•Tag pET vector commercially available (from Novagen) for overexpression in E coli as heterologous host. This pET expression plasmid has several advantages in high level heterologous expression systems. The desired cDNA insert is ligated in frame to plasmid vector sequences encoding six histidines followed by a highly specific protease recognition site (thrombin) that are joined to the amino terminus codon of the target protein. The histidine "block" of the expressed fusion protein promotes very tight binding to immobilized metal ions and permits rapid purification of the recombinant protein by immobilized metal ion affinity chromatography. The histidine leader sequence is then cleaved at the specific proteolysis site by treatment of the purified protein with thrombin, and the (-)-limonene synthase, (-)-pinene synthase and myrcene synthase again purified by immobilized metal ion affinity chromatography, this time using a shallower imidazole gradient to elute the recombinant synthases while leaving the histidine block still adsorbed. overexpression-purification system has high capacity, excellent resolving power and is fast, and the chance of a contaminating E. coli protein exhibiting similar binding behavior (before and after thrombin proteolysis) is extremely small.

As will be apparent to those skilled in the art, any plasmid vectors containing replicon and control sequences that are derived from species compatible with the host cell may also be used in the practice of the invention. The vector usually has a replication site, marker genes that provide phenotypic selection in transformed cells, one or more promoters, and a polylinker region containing several restriction sites for insertion of foreign DNA. Plasmids typically used for transformation of *E. coli* include pBR322, pUC18, pUC19, pUC118, pUC119, and Bluescript M13, all of which are described in sections 1.12-1.20 of Sambrook et al., *supra*. However, many other suitable vectors are available as well. These vectors contain genes coding for

ampicillin and/or tetracycline resistance which enables cells transformed with these vectors to grow in the presence of these antibiotics.

The promoters most commonly used in prokaryotic vectors include the β-lactamase (penicillinase) and lactose promoter systems (Chang et al. *Nature* 375:615 [1978]; Itakura et al., *Science* 198:1056 [1977]; Goeddel et al., *Nature* 281:544 [1979]) and a tryptophan (trp) promoter system (Goeddel et al., *Nucl. Acids Res.* 8:4057 [1980]; EPO Appl. Publ. No. 36,776), and the alkaline phosphatase systems. While these are the most commonly used, other microbial promoters have been utilized, and details concerning their nucleotide sequences have been published, enabling a skilled worker to ligate them functionally into plasmid vectors (see Siebenlist et al., *Cell* 20:269 [1980]).

5

10

15

20

25

30

35

Many eukaryotic proteins normally secreted from the cell contain an endogenous secretion signal sequence as part of the amino acid sequence. Thus, proteins normally found in the cytoplasm can be targeted for secretion by linking a signal sequence to the protein. This is readily accomplished by ligating DNA encoding a signal sequence to the 5' end of the DNA encoding the protein and then expressing this fusion protein in an appropriate host cell. The DNA encoding the signal sequence may be obtained as a restriction fragment from any gene encoding a protein with a signal sequence. Thus, prokaryotic, yeast, and eukaryotic signal sequences may be used herein, depending on the type of host cell utilized to practice the invention. The DNA and amino acid sequence encoding the signal sequence portion of several eukaryotic genes including, for example, human growth hormone, proinsulin, and proalbumin are known (see Stryer, Biochemistry W.H. Freeman and Company, New York, NY, p. 769 [1988]), and can be used as signal sequences in appropriate eukaryotic host cells. Yeast signal sequences, as for example acid phosphatase (Arima et al., Nuc. Acids Res. 11:1657 [1983]), α-factor, alkaline phosphatase and invertase may be used to direct secretion from yeast host cells. Prokaryotic signal sequences from genes encoding, for example, LamB or OmpF (Wong et al., Gene 68:193 [1988]), MalE, PhoA, or beta-lactamase, as well as other genes, may be used to target proteins from prokaryotic cells into the culture medium.

Trafficking sequences from plants, animals and microbes can be employed in the practice of the invention to direct the monoterpene synthase proteins of the present invention to the cytoplasm, endoplasmic reticulum, mitochondria or other cellular components, or to target the protein for export to the medium. These considerations apply to the overexpression of (-)-limonene synthase, (-)-pinene

25

synthase and myrcene synthase, and to direction of expression within cells or intact organisms to permit gene product function in any desired location.

The construction of suitable vectors containing DNA encoding replication sequences, regulatory sequences, phenotypic selection genes and the monoterpene synthase DNA of interest are prepared using standard recombinant DNA procedures. Isolated plasmids and DNA fragments are cleaved, tailored, and ligated together in a specific order to generate the desired vectors, as is well known in the art (see, for example, Maniatis, *supra*, and Sambrook et al., *supra*).

5

10

15

20

25

30

As discussed above, (-)-limonene synthase, (-)-pinene synthase and myrcene synthase variants are preferably produced by means of mutation(s) that are generated using the method of site-specific mutagenesis. This method requires the synthesis and use of specific oligonucleotides that encode both the sequence of the desired mutation and a sufficient number of adjacent nucleotides to allow the oligonucleotide to stably hybridize to the DNA template.

The foregoing may be more fully understood in connection with the following representative examples, in which "Plasmids" are designated by a lower case p followed by an alphanumeric designation. The starting plasmids used in this invention are either commercially available, publicly available on an unrestricted basis, or can be constructed from such available plasmids using published procedures. In addition, other equivalent plasmids are known in the art and will be apparent to the ordinary artisan.

"Digestion", "cutting" or "cleaving" of DNA refers to catalytic cleavage of the DNA with an enzyme that acts only at particular locations in the DNA. These enzymes are called restriction endonucleases, and the site along the DNA sequence where each enzyme cleaves is called a restriction site. The restriction enzymes used in this invention are commercially available and are used according to the instructions supplied by the manufacturers. (See also sections 1.60-1.61 and sections 3.38-3.39 of Sambrook et al., *supra.*)

"Recovery" or "isolation" of a given fragment of DNA from a restriction digest means separation of the resulting DNA fragment on a polyacrylamide or an agarose gel by electrophoresis, identification of the fragment of interest by comparison of its mobility versus that of marker DNA fragments of known molecular weight, removal of the gel section containing the desired fragment, and separation of the gel from DNA. This procedure is known generally. For example, see Lawn et al.

(Nucleic Acids Res. 9:6103-6114 [1982]), and Goeddel et al. (Nucleic Acids Res., supra).

The following examples merely illustrate the best mode now contemplated for practicing the invention, but should not be construed to limit the invention. All literature citations herein are expressly incorporated by reference.

5

EXAMPLE 1

PCR-Based Generation of Probes for Cloning Monoterpene Synthases From Grand fir (Abies grandis)

Substrates, Reagents and cDNA Library – [1-³H]Geranyl diphosphate (250 Ci/mol) (Croteau, R., Alonso, W.R., Koepp, A.E., and Johnson, M.A. (1994) Arch. Biochem. Biophys. 309:184-192), [1-³H]farnesyl diphosphate (125 Ci/mol) (Dehal, S.S., and Croteau, R. (1988) Arch. Biochem. Biophys. 261:346-356) and [1-³H]geranylgeranyl diphosphate (120 Ci/mol) (LaFever, R.E., Stofer Vogel, B., and Croteau, R. (1994) Arch. Biochem. Biophys. 313:139-149) were prepared as described previously. Terpenoid standards were from our own collection. All other biochemicals and reagents were purchased from Sigma Chemical Co. or Aldrich Chemical Co., unless otherwise noted. Construction of the λZAP II cDNA library, using mRNA isolated from wounded Grand fir sapling stems, was described previously (Stofer Vogel, B., Wildung, M.R., Vogel, G., and Croteau, R. (1996)
J. Biol. Chem. 271:23262-23268).

PCR-Based Probe Generation - Based on comparison of sequences of limonene synthase from spearmint (Colby, S.M., Alonso, W.R., Katahira, E.J., McGarvey, D.J., and Croteau, R. (1993)J. Biol. Chem. 268:23016-23024), 5-epi-aristolochene synthase from tobacco (Facchini, P.J., and Chappell, 25 J. (1992) Proc. Natl. Acad. Sci. USA 89:11088-11092), and casbene synthase from castor bean (Mau, C.J.D., and West, C.A. (1994) Proc. Natl. Acad. Sci. USA 91:8497-8501), four conserved regions were identified for which a set of consensus degenerate primers were synthesized: Primer A (SEQ ID NO:7); Primer B (SEQ ID NO:8); Primer C (SEQ ID NO:9); Primer D (SEQ ID NO:10). Primers A 3() (SEQ ID NO:7), B (SEQ ID NO:8) and C (SEQ ID NO:9) have been described previously (Steele, C., Lewinsohn, E. and Croteau, R., Proc. Nat'l. Acad. Sci. USA, 92: 4164-4168 (1995)); primer D (SEQ ID NO:10) was designed based on the conserved amino acid sequence motif $DD(T/I)(I/Y/F)D(A/V)Y(A/G)(SEQ\ ID$ NO:25) of the above noted terpene synthases (Colby, S.M., Alonso, W.R., Katahira, 35 E.J., McGarvey, D.J., and Croteau, R. (1993) J. Biol. Chem. 268:23016-23024;

Facchini, P.J., and Chappell, J. (1992) *Proc. Natl. Acad. Sci. USA* **89**:11088-11092; Mau, C.J.D., and West, C.A. (1994) *Proc. Natl. Acad. Sci. USA* **91**:8497-8501).

5

10

15

20

25

30

35

Each of the sense primers, A (SEQ ID NO:7), B (SEQ ID NO:8) and D (SEQ ID NO:10), was used for PCR in combination with antisense primer C (SEQ ID NO:9) by employing a broad range of amplification conditions. PCR was performed in a total volume of 50 µl containing 20 mM Tris/HCl (tris(hydroxymethyl) aminomethane/HCl, pH 8.4), 50 mM KCl, 5 mM MgCl₂, 200 µM of each dNTP, 1-5 μM of each primer, 2.5 units of Taq polymerase (BRL) and 5 μl of purified Grand fir stem cDNA library phage as template (1.5 x 10⁹ pfu/ml). Analysis of the PCR reaction products by agarose gel electrophoresis (Sambrock, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY) revealed that only the combination of primers C and D generated a specific PCR product of approximately 110 bps (base pairs). This PCR product was gel purified, ligated into pT7Blue (Novagen), and transformed into E. coli XL1-Blue cells. Plasmid DNA was prepared from 41 individual transformants and the inserts were sequenced (DyeDeoxy Terminator Cycle Sequencing, Applied Biosystems). Four different insert sequences were identified, and were designated as probes 1 (SEQ ID NO:11), 2 (SEQ ID NO:12), 4 (SEQ ID NO:13) and 5 (SEQ ID NO:14).

Subsequent isolation of four new cDNA species (*AG1.28* (SEQ ID NO:15); *AG2.2* (SEQ ID NO:1); *AG4.30* (SEQ ID NO:17) and *AG5.9* (SEQ ID NO:19)), encoding terpene synthases from Grand fir corresponding to probes 1 (SEQ ID NO:11), 2 (SEQ ID NO:12), 4 (SEQ ID NO:13) and 5 (SEQ ID NO:14), respectively, allowed the identification of three additional conserved sequence elements which were used to design a set of three new PCR primers: Primer E (5'-GGI GA(A/G) A(A/C)(A/G) (A/G)TI ATG GA(A/G) GA(A/G) GC-3')(SEQ ID NO:21); Primer F (5'-GA(A/G) (C/T)TI CA(G/A) (C/T)TI (A/C/T)(C/G/T)I (A/C)GI TGG TGG-3')(SEQ ID NO:22) and Primer G (5'-CCA (A/G)TT IA(A/G) ICC (C/T)TT IAC (A/G)TC-3')(SEQ ID NO:23).

Degenerate primer E (SEQ ID NO:21) was designed to conserved element GE(K/T)(V/I)M(E/D)EA (SEQ ID NO:26) and degenerate primer F (SEQ ID NO:22) was designed to conserved element Q(F/Y/D)(I/L)(T/L/R)RWW (SEQ ID NO:27) by comparing the sequences of five cloned terpene synthases from Grand fir: a monoterpene synthase corresponding to probe 2 (SEQ ID NO: 12), two sesquiterpene synthases corresponding to probe 4 (SEQ ID NO:13) and probe 5 (SEQ ID NO:14),

respectively, a previously described diterpene synthase (Stofer Vogel, B., Wildung, M.R., Vogel, G., and Croteau, R. (1996) J. Biol. Chem. 271:23262-23268), and a truncated terpene synthase corresponding to probe 1 (SEQ ID NO:11). Degenerate primer G (SEQ ID NO:23) was designed according to the amino acid sequence DVIKG(F/L)NW (SEQ ID NO:28) obtained from a peptide generated by trypsin digestion of purified (-)-pinene synthase from Grand fir. Primers E (SEQ ID NO:21) and F (SEQ ID NO:22) were independently used for PCR amplification in combination with primer G (SEQ ID NO:23), with Grand fir stem cDNA library as template. The combination of primers E (SEQ ID NO:21) and G (SEQ ID NO:23) yielded a specific PCR product of approximately 1020 bps. This PCR product was ligated into pT7Blue and transformed into E. coli XL1-Blue. Plasmid DNA was prepared from 20 individual transformants and inserts were sequenced from both ends. The sequence of this 1022 bp insert was identical for all 20 plasmids and was designated as probe 3 (SEQ ID NO:24).

15

25

30

35

10

5

EXAMPLE 2

Screening a Wounded Grand fir Stem cDNA Library

For library screening, 100 ng of each probe was amplified by PCR, gel purified, randomly labeled with $[\alpha^{-32}P]dATP$ (Feinberg, A.P., and Vogelstein, B. (1984) Anal. Biochem. 137:266-267), and used individually to screen replica filters of 10⁵ plaques of the wound-induced Grand fir stem cDNA library plated on E. coli 20 LE392. Hybridization with probes 1 (SEQ ID NO:11), 2 (SEQ ID NO:12), 4 (SEQ ID NO:13) and 5 (SEQ ID NO:14) was performed for 14 h at 65 °C in 3 x SSPE and 0.1% SDS. Filters were washed three times for 10 min at 55 °C in 3 x SSPE with 0.1% SDS and exposed for 12 h to Kodak XAR film at -70 °C. All of the λZAPII clones yielding positive signals were purified through a second round of hybridization (probe 1 (SEQ ID NO:11) gave 25 positives, probe 2 (SEQ ID NO:12) gave 16 positives, probe 4 (SEQ ID NO:13) gave 49 positives and probe 5 (SEQ ID NO:14) gave 12 positives).

Hybridization with probe 3 (SEQ ID NO:24) was performed as before, but the filters were washed three times for 10 min at 65 °C in 3 x SSPE and 0.1% SDS before exposure. Approximately 400 λZAPII clones yielded strong positive signals, and 34 of these were purified through a second round of hybridization at 65°C. Approximately 400 additional clones yielded weak positive signals with probe 3 (SEQ ID NO:24), and 18 of these were purified through a second round of hybridization for 20 h at 45 °C. Purified λZAP II clones isolated using all five

PCT/US98/14528 WO 99/02030

probes were in vivo excised as Bluescript II SK(-) phagemids and transformed into E. coli XLOLR according to the manufacturer's instructions (Stratagene). The size of each cDNA insert was determined by PCR using T3 (SEQ ID NO:29) and T7 (SEQ ID NO:30) promoter primers and selected inserts (>1.5 kb) were partially sequenced from both ends.

EXAMPLE 3

5

10

15

30

35

Grand fir Monoterpene Synthase cDNA Expression in E. coli and Enzyme **Assays**

Except for cDNA clones AG3.18 (SEQ ID NO:3) and AG3.48 (SEQ ID NO:31), all of the partially sequenced inserts were either truncated at the 5'-end, or were out of frame, or bore premature stop codons upstream of the presumptive methionine start codon. For the purpose of functional expression, a 2023 bp insert fragment, extending from nucleotides 75 to 2097 of the sequence set forth in SEQ ID NO:1, and a 1911 bp insert fragment, extending from nucleotide 1 to nucleotide 1910 of the sequence set forth in SEQ ID NO:3, were subcloned in frame into pGEX A 2016 bp fragment extending from nucleotide 73 to vectors (Pharmacia). nucleotide 2088 of the sequence set forth in SEQ ID NO:5 was subcloned in frame into the pSBETa vector (Schenk, P.M., Baumann, S., Mattes, R., and Steinbiss, H.-H. (1995) Biotechniques 19, 196-200). To introduce suitable restriction sites for subcloning, fragments were amplified by PCR using primer combinations 2.2-BamHI 20 (5'-CAA AGG GAT CCA GAA TGG CTC TGG-3')(SEQ ID NO:33) and 2.2-NotI (5'-AGT AAG CGG CCG CTT TTT AAT CAT ACC CAC-3')(SEQ ID NO:34) with pAG2.2 insert (SEQ ID NO:1) as template, 3.18-EcoRI (5'-CTG CAG GAA TTC GGC ACG AGC-3')(SEQ ID NO:35) and 3.18-Smal (5'-CAT AGC CCC GGG CAT AGA TTT GAG CTG-3')(SEQ ID NO:36) with pAG3.18 insert (SEQ ID NO:3) as 25 template, and 10-NdeI (5-GGC AGG AAC ATA TGG CTC TCC TTT CTA TCG-3')(SEQ ID NO:37) and 10-BamHI (5'-TCT AGA ACT AGT GGATCC CCC GGG CTG CAG-3')(SEQ ID NO:38) with pAG10 insert (SEQ ID NO:5) as template.

PCR reactions were performed in volumes of 50 µl containing 20 mM Tris/HCl (pH 8.8), 10 mM KCl, 10 mM (NH₄)₂SO₄, 2 mM MgSO₄, 0.1% Triton X-100, 5 μg bovine serum albumin (BSA), 200 μM of each dNTP, 0.1 μM of each primer, 2.5 units of recombinant Pfu polymerase (Stratagene) and 100 ng plasmid DNA with the following program: denaturation at 94 °C, 1 min; annealing at 60 °C, 1 min; extension at 72 °C, 3.5 min; 35 cycles with final extension at 72 °C, 5 min. The PCR products were purified by agarose gel electrophoresis and used as

template for a secondary PCR amplification with the identical conditions in total volumes of 250 µl each. Products from this secondary amplification were digested with the above indicated restriction enzymes, purified by ultrafiltration and then ligated, respectively, into *BamHI/NotI*-digested pGEX-4T-2 to yield plasmid pGAG2.2, into *EcoRI/SmaI*-digested pGEX-4T-3 to yield plasmid pGAG3.18, and into *NdeI/BamHI*-digested pSBETa to yield plasmid pSBAG10; these plasmids were then transformed into *E. coli* XL1-Blue or *E. coli* BL21(DE3).

5

10

15

20

25

30

35

expression, bacterial strains E. coli XLOLR/pAG3.18, E. coli For XLOLR/pAG3.48, E. coli XL1-Blue/pGAG2.2, E. coli XL1-Blue/pGAG3.18, and E. coli BL21(DE3)/pSBAG10 were grown to $A_{600} = 0.5$ at 37 °C in 5 ml of LB medium (Sambrock, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY) supplemented with 100 μg ampicillin/ml or 30 μg kanamycin/ml as determined by the vector. Cultures were then induced by addition of 1 isopropyl-1-thio-β-D-galactopyranoside and grown for another 12 h at 20 °C. Cells were harvested by centrifugation (2000 x g, 10 min) and resuspended in either 1 ml monoterpene synthase assay buffer [50 mM Tris/HCl (pH 7.5), 500 mM KCl, 1 mM MnCl₂, 5 mM dithiothreitol, 0.05% (w/v) NaHSO₃ and 10% (v/v) glycerol], 1 ml sesquiterpene synthase assay buffer [10 mM dibasic potassium phosphate, 1.8 mM monobasic potassium phosphate (pH 7.3), 140 mM NaCl, 10 mM MgCl₂, 5 mM dithiothreitol, 0.05% (w/v) NaHSO3 and 10% (v/v) glycerol], or 1 ml diterpene synthase assay buffer [30 mM Hepes (N-2-hydroxyethylpiperazine-N'-2ethanesulfonic acid, pH 7.2), 7.5 mM MgCl₂, 5 mM dithiothreitol, 10 μM MnCl₂, 0.05% (w/v) NaHSO₃ and 10% (v/v) glycerol].

Cells were disrupted by sonication (Braun-Sonic 2000 with microprobe at maximum power for 15 seconds at 0-4°C), the homogenates were cleared by centrifugation (18,000 x g, 10 min), and 1 ml of the resulting supernatant was assayed for monoterpene synthase activity with 2.5 μM of [1-³H]geranyl diphosphate, for sesquiterpene synthase activity with 3.5 μM [1-³H]farnesyl diphosphate, or for diterpene synthase activity with 5 μM [1-³H]geranylgeranyl diphosphate following standard protocols (Croteau, R., and Cane, D.E. (1985) Methods Enzymol. 110:383-405; LaFever, R.E., Stofer Vogel, B., and Croteau, R. (1994) Arch. Biochem. Biophys. 313:139-149; Dehal, S.S., and Croteau, R. (1988) Arch. Biochem. Biophys. 261:346-356). In the case of the monoterpene synthase and sesquiterpene synthase assays, the incubation mixture was overlaid with 1 ml pentane

to trap volatile products. In all cases, after incubation at 31°C for 2 h, the reaction mixture was extracted with pentane (3 x 1 ml) and the combined extract was passed through a 1.5 ml column of anhydrous $MgSO_4$ and silica gel (Mallinckrodt 60 Å) to provide the terpene hydrocarbon fraction free of oxygenated metabolites. The columns were subsequently eluted with 3 x 1 ml of ether to collect any oxygenated products, and an aliquot of each fraction was taken for liquid scintillation counting to determine conversion rate.

5

10

15

20

35

Product Identification – To obtain sufficient product for analysis by radio-GLC (gas liquid chromatography), chiral capillary GLC and GLC-MS (mass spectrum/spectrometry), preparative-scale enzyme incubations were carried out. Thus, the enzyme was prepared from 50 ml of cultured bacterial cells by extraction with 3 ml of assay buffer as above, and the extracts were incubated with excess substrate overnight at 31°C. The hydrocarbon fraction was isolated by elution through MgSO₄-silica gel as before, and the pentane eluate was concentrated for evaluation by capillary radio-GLC as described (Croteau, R., and Satterwhite, D.M. (1990) J. Chromatogr. 500:349-354), by chiral column capillary GLC (Lewinsohn, E., Savage, T.J., Gijzen, M., and Croteau, R. (1993) Phytochem. Anal. 4:220-225), and by combined GLC-MS [Hewlett-Packard 6890 GC-MSD with cool (40°C) oncolumn injection, detection via electron impact ionization (70 eV), He carrier at 0.7 psi., column: 0.25 mm i.d. x 30 m fused silica with 0.25 μm film of 5MS (Hewlett-Packard) programmed from 35°C (5 min hold) to 230°C at 5°C/min].

EXAMPLE 4

Sequence Analysis

Inserts of all recombinant bluescript plasmids and pGEX plasmids were completely sequenced on both strands via primer walking and nested deletions (Sambrock, J., Fritsch, E.F., and Maniatis, T. (1989) *Molecular Cloning: A Laboratory Manual*, 2d Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY) using the DyeDeoxy Terminator Cycle Sequencing method (Applied Biosystems). Sequence analysis was done using the Wisconsin Package Version 9.0, Genetics Computer Group (GCG), Madison, WI.

EXAMPLE 5

RNA Extraction and Northern Blotting

Grand fir sapling stem tissue was harvested prior to wounding or two days after wounding by a standard procedure (Gijzen, M., Lewinsohn, E., and Croteau, R. (1991) Arch. Biochem. Biophys. 289:267-273). Total RNA was isolated (Lewinsohn,

E., Steele, C.L., and Croteau, R. (1994) Plant Mol. Biol. Rep. 12:20-25) and 20 μg of RNA per gel lane was separated under denaturing conditions (Sambrock, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY) and transferred to nitrocellulose membranes (Schleicher and Schuell) according to the manufacturer's protocol. To prepare hybridization probes, cDNA fragments of 1.4-1.5 kb were amplified by PCR from AG2.2 (SEQ ID NO:1) with primer JB29 (5'-CTA CCA TTC CAA TAT CTG-3')(SEQ ID NO:39) and primer 2-8 (5'-GTT GGA TCT TAG AAG TTC CC-3')(SEQ ID NO:40), from AG3.18 (SEQ ID NO:3) with primer 3-9 (5'-TTT CCA TTC CAA CCT CTG GG-3')(SEQ ID NO:41) and primer 3-11 (5'-CGT AAT GGA AAG CTC TGG CG-3')(SEQ ID NO:42), and from AG10 (SEQ ID NO:5) with primer 7-1 (5'-CCT TAC ACG CCT TTG GAT GG-3')(SEQ ID NO:43) and primer 7-3 (5'-TCT GTT GAT CCA GGA TGG TC-3')(SEQ ID NO:44). The probes were randomly labeled with $[\alpha^{-32}P]dATP$ (Feinberg, A.P., and Vogelstein, B. (1984) Anal Biochem. 137:266-267). Blots were hybridized for 24 h at 55°C in 3 x SSPE and 0.1% SDS, washed at 55°C in 1 x SSPE and 0.1%, SDS and subjected to autoradiography as described above at -80°C for 24 h.

5

10

15

20

EXAMPLE 6

Cloning and Characterization of Clones AG1.28 (SEQ ID NO:15), AG2.2 (SEQ ID NO:1), AG4.30 (SEQ ID NO:17) and AG 5.9 (SEQ ID NO:19)

Similarity-Based Cloning of Grand fir Terpene Synthases - Grand fir has been developed as a model system for the study of induced oleoresin production in conifers in response to wounding and insect attack (Johnson, M.A., and Croteau, R. (1987) in Ecology and Metabolism of Plant Lipids (Fuller, G., and Nes, W.D., eds) 25 pp. 76-91, American Chemical Society Symposium Series 325, Washington, DC; Gijzen, M., Lewinsohn, E., Savage, T.J., and Croteau, R.B. (1993) in Bioactive Volatile Compounds from Plants (Teranishi, R., Buttery, R.G., and Sugisawa, H., eds) pp. 8-22, American Chemical Society Symposium Series 525, Washington, DC; Raffa, K. F., and Berryman, A.A. (1982) Can. Entomol. 114:797-810; Steele, C., 30 Lewinsohn, E., and Croteau, R. (1995) Proc. Natl. Acad. Sci. USA 92:4164-4168; Lewinsohn, E., Gijzen, M., and Croteau, R. (1992) in Regulation of Isopentenoid Metabolism (Nes, W.D., Parish, E.J., and Trzaskos, J.M., eds) pp. 8-17, American Chemical Society Symposium Series 497, Washington, DC). chemistry and biosynthesis of the oleoresin monoterpenes, sesquiterpenes and 35 diterpenes have been well defined (Lewinsohn, E., Savage, T.J., Gijzen, M., and

Croteau, R. (1993) Phytochem. Anal. 4:220-225; Lewinsohn, E., Gijzen, M., and Croteau, R. (1991) Plant Physiol. 96:44-49; Funk, C., Lewinsohn, E., Stofer Vogel, B., Steele C., and Croteau, R. (1994) Plant Physiol. 106:999-1005; Gijzen, M., Lewinsohn, E., and Croteau, R. (1991) Arch. Biochem. Biophys. 289:267-273; Lewinsohn, E., Gijzen, M., and Croteau, R. (1992) Arch. Biochem. Biophys. 293:167-173; LaFever, R.E., Stofer Vogel, B., and Croteau, R. (1994) Arch. Biochem. Biophys. 313:139-149; Funk, C., and Croteau, R. (1994) Arch. Biochem. Biophys. 308:258-266); however, structural analysis of the responsible terpene synthases as well as studies on the regulation of oleoresinosis require the isolation of 10 cDNA species encoding the terpene synthases. Protein purification from conifers, as the basis for cDNA isolation, has been of limited success (Stofer Vogel, B., Wildung, M.R., Vogel, G., and Croteau, R. (1996) J. Biol. Chem. 271:23262-23268) and thus far has not permitted cloning of any of the monoterpene synthases from these species (Steele, C., Lewinsohn, E., and Croteau, R. (1995) Proc. Natl. Acad. Sci. USA 92:4164-4168). 15

As a possible alternative to protein-based cloning of terpene synthases, a homology-based PCR strategy was proposed (Steele, C., Lewinsohn, E., and Croteau, R. (1995) Proc. Natl. Acad. Sci. USA 92:4164-4168) that was founded upon the three terpene synthases of plant origin then available, a monoterpene synthase, 20 (-)-4S-limonene synthase, from spearmint (Mentha spicata, Lamiaceae) (Colby, S.M., Alonso, W.R., Katahira, E.J., McGarvey, D.J., and Croteau, R. (1993) J. Biol. Chem. 268:23016-23024), a sesquiterpene synthase, 5-epi-aristolochene synthase, from tobacco (Nicotiana tabacum, Solanaceae) (Facchini, P.J., and Chappell, J. (1992) Proc. Natl. Acad. Sci. USA 89:11088-11092), and a diterpene synthase, casbene synthase, from castor bean (Ricinus communis, Euphorbiaceae) (Mau, 25 C.J.D., and West, C.A. (1994) Proc. Natl. Acad. Sci. USA 91:8497-8501). Despite the taxonomic distances between these three angiosperm species and the differences in substrate utilized, reaction mechanism and product type of the three enzymes, a comparison of the deduced amino acid sequences identified several conserved regions that appeared to be useful for the design of degenerate PCR primers (see 30 Example 1). Using cDNA from a wound-induced Grand fir stem library as template, PCR primers C (SEQ ID NO:9) and D (SEQ ID NO:10) amplified products corresponding to four distinct sequence groups, all of which showed significant similarity to sequences of cloned terpene synthases of plant origin. different inserts were designated as probes 1 (SEQ ID NO:11), 2 (SEQ ID NO:12), 4 35

(SEQ ID NO:13) and 5 (SEQ ID NO:14), and were employed for isolation of the corresponding cDNA clones by plaque hybridization.

5

1()

15

20

25

30

Screening of 10⁵ cDNA phage plaques from the wounded Grand fir stem library, with each of the four probes, yielded a four-fold difference in the number of positives, most likely reflecting different levels of expression of the corresponding genes. Size selected inserts (>1.5 kb) of purified and in vivo excised clones were partially sequenced from both ends, and were shown to segregate into four distinct groups corresponding to the four hybridization probes. Since all cDNAs corresponding to probes 1 (SEQ ID NO:11), 4 (SEQ ID NO:13) and 5 (SEQ ID NO:14) were truncated at their 5'-ends, only inserts of the largest representatives of each group, clone AG1.28 (SEQ ID NO:15), clone AG2.2 (SEQ ID NO:1) (apparently full length), clone $\Delta G4.30$ (SEQ ID NO:17) and clone $\Delta G5.9$ (SEQ ID NO:19), were completely sequenced. Clone AG1.28 (SEQ ID NO:15)(2424 bps) includes an open reading frame (ORF) of 2350 nucleotides (nts) encoding 782 amino acids (SEQ ID NO:16); clone AG2.2 (SEQ ID NO:1)(2196 bps), includes an ORF of 1881 nts encoding 627 amino acids (SEQ ID NO:2); clone AG4.30 (SEQ ID NO:17)(1967 bps) includes an ORF of 1731 nts encoding 577 amino acids (SEQ ID NO:18) and clone AG5.9 (SEQ ID NO:19)(1416 bps) includes an ORF of 1194 nucleotides encoding 398 amino acids (SEQ ID NO:20).

cDNA clones AG1.28 (SEQ ID NO:15), AG2.2 (SEQ ID NO:1), AG4.30 (SEQ ID NO:17) and AG5.9 (SEQ ID NO:19) were compared pairwise with each other and with other cloned plant terpene synthases. Truncated clone AG1.28 (SEQ ID NO:15) resembled most closely in size and sequence (72% similarity, 49% identity) a diterpene cyclase, abietadiene synthase, from Grand fir (Stofer Vogel, B., Wildung, M.R., Vogel, G., and Croteau, R. (1996) J. Biol. Chem. 271:23262-23268). Clones AG4.30 (SEQ ID NO:17) and AG5.9 (SEQ ID NO:19) share approximately 80% similarity (60% identity) at the amino acid level, and are almost equally distant from both clone AG1.28 (SEQ ID NO:15) and full-length clone AG2.2 (SEQ ID NO:1)(range of 65-70% similarity and 45-47% identity); the amino acid sequence similarity between AG1.28 (SEQ ID NO:15) and AG2.2 (SEQ ID NO:1) is 65% (41% identity). Considering the high level of homology between AG4.30 (SEQ ID NO:17) and AG5.9 (SEQ ID NO:15), AG2.2 (SEQ ID NO:1), AG4.30 (SEQ ID NO:17) and AG5.9 (SEQ ID NO:15), AG2.2 (SEQ ID NO:1), AG4.30 (SEQ ID NO:17) and AG5.9 (SEQ ID NO:15), represent the three major subfamilies

PCT/US98/14528 WO 99/02030

of Grand fir terpene synthase genes encoding monoterpene synthases, sesquiterpene synthases and diterpene synthases.

Identification of cDNA Clone AG2.2 (SEQ ID NO:1) as Myrcene Synthase - The pAG2.2 insert (SEQ ID NO:1) appeared to be a full-length clone encoding a protein of molecular weight 72,478 with a calculated pl at 6.5. The size of the translated protein encoded by AG2.2 (SEQ ID NO:1) (627 residues)(SEQ ID NO:2) is in the range of the monoterpene synthase preproteins for limonene synthase from spearmint (Colby, S.M., Alonso, W.R., Katahira, E.J., McGarvey, D.J., and Croteau, R. (1993) J. Biol. Chem. 268:23016-23024) and Perilla frutescens (Yuba, A., Yazaki, K., Tabata, M., Honda, G., and Croteau, R. (1996) Arch. Biochem. Biophys. 332:280-10 287), but is about 240 amino acids shorter than the two gymnosperm diterpene synthase preproteins for abietadiene synthase (Stofer Vogel, B., Wildung, M.R., Vogel, G., and Croteau, R. (1996) J. Biol. Chem. 271:23262-23268) and taxadiene synthase (Wildung, M.R., and Croteau, R. (1996) J. Biol. Chem. 271:9201-9204). Monoterpene and diterpene biosynthesis are compartmentalized in plastids whereas 15 sesquiterpene biosynthesis is cytosolic (reviewed in Kleinig, H. (1989) Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:39-53; Gershenzon, J., and Croteau, R. (1993) in Lipid Metabolism in Plants (Moore, T.S. Jr., ed) pp. 339-388, CRC Press, Boca Raton, FL; McGarvey, D.J., and Croteau, R. (1995) Plant Cell 7, 1015-1026); thus, monoterpene and diterpene synthases are encoded as preproteins bearing an amino-20 terminal transit peptide for import of these nuclear gene products into plastids where they are proteolytically processed to the mature forms (Keegstra, K., Olsen, J.J., and Theg, S.M. (1989) Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:471-501; von Heijne, G., Stepphuhn, J., and Herrmann (1989) Eur. J. Biochem. 180:535-545). Both the size of the deduced protein and the presence of an N-terminal domain (of 60 25 to 70 amino acids) with features characteristic of a targeting sequence [rich in serine residues (16-18%) and low in acidic residues (four Asp or Glu) (Keegstra, K., Olsen, J.J., and Theg, S.M. (1989) Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:471-501; von Heijne, G., Stepphuhn, J., and Herrmann (1989) Eur. J. Biochem. 180:535-545)] suggest that AG2.2 (SEQ ID NO:1) encodes a monoterpene synthase rather than a 30 sesquiterpene synthase or a diterpene synthase.

Since pAG2.2 contained the terpene synthase insert in reversed orientation, the ORF was subcloned in frame with glutathione S-transferase, for ultimate ease of purification (Bohlmann, J., DeLuca, V., Eilert, U., and Martin, W. (1995) Plant J. 7:491-501; Bohlmann, J., Lins, T., Martin, W., and Eilert, U. (1996) Plant Physiol.

35

111:507-514), into pGEX-4T-2, yielding plasmid pGAG2.2. The recombinant fusion protein was expressed in E. coli strain XL1-Blue/pGAG2.2, then extracted and assayed for monoterpene synthase, sesquiterpene synthase and diterpene synthase activity using tritium labeled geranyl diphosphate, farnesyl diphosphate and geranylgeranyl diphosphate as the respective substrate. Enzymatic production of a terpene olefin was observed only with geranyl diphosphate as substrate, and the only product was shown to be myrcene by radio-GLC and GLC-MS comparison to an authentic standard (FIGURE 3). Bacteria transformed with pGEX vector containing the AG2.2 insert (SEQ ID NO:1) in antisense orientation did not afford detectable myrcene synthase activity when induced, and the protein isolated and assayed as above. A myrcene synthase cDNA has not been obtained previously from any source, although myrcene is a minor co-product (2%) of the native and recombinant limonene synthase from spearmint (Rajaonarivony, J.I.M., Gershenzon, J., and Croteau, R. (1992) Arch. Biochem. Biophys. 296:49-57; Colby, S.M., Alonso, W.R., Katahira, E.J., McGarvey, D.J., and Croteau, R. (1993) J. Biol. Chem. 268:23016-23024) and of several enzymes from sage (Croteau, R., and Satterwhite, D.M. (1989) J. Biol. Chem. 264:15309-15315). cDNA cloning and functional expression of myrcene synthase, which is one of several wound-inducible monoterpene synthase activities of Grand fir (Gijzen, M., Lewinsohn, E., and Croteau, R. (1991) Arch. Biochem. Biophys. 289:267-273), demonstrates that this acyclic monoterpene is formed by a distinct enzyme and is not a co-product of another synthase.

10

15

20

25

30

35

EXAMPLE 7

Cloning and Characterization of Clones AG3.18 (SEQ ID NO:3) Encoding (-)-Pinene Synthase and cDNA Clone AG10 (SEQ ID NO:5) Encoding

(-)-Limonene Synthase

Identification of cDNA Clone AG3.18 (SEQ ID NO:3) as (-)-Pinene Synthase and cDNA Clone AG10 (SEQ ID NO:5) as (-)-Limonene Synthase – Alignment of the four new terpene synthase cDNA sequences (AG1.28 (SEQ ID NO:15), AG2.2 (SEQ ID NO:1), AG4.30 (SEQ ID NO:17) and AG.5.9 (SEQ ID NO:19)), and that for abietadiene synthase (Stofer Vogel, B., Wildung, M.R., Vogel, G., and Croteau, R. (1996) J. Biol. Chem. 271:23262-23268), allowed the identification of several conserved sequence motifs among this enzyme family from Grand fir, which provided the foundation for an extended similarity-based cloning approach. Two new sense primers E (SEQ ID NO:21) and F (SEQ ID NO:22) were designed according to conserved sequence elements, whereas a degenerate antisense

primer G (SEQ ID NO:23) was designed based upon very limited amino acid sequence information from pinene synthase (see Example 1). Only the combination of primers E (SEQ ID NO:21) and G (SEQ ID NO:23) amplified a specific product of 533 bps, which was designated as probe 3 (SEQ ID NO:24).

5

10

15

20

25

30

35

Hybridization of 10⁵ Grand fir λZAP II cDNA clones with probe 3 (SEQ ID NO:24) yielded two types of signals comprised of about 400 strongly positive clones and an equal number of weak positives, indicating that the probe recognized more than one type of cDNA. Thirty-four of the former clones and 18 of the latter were purified, the inserts were selected by size (2.0-2.5 kb), and the in vivo excised clones were partially sequenced from both ends. Those clones which afforded weak hybridization signals were shown to contain inserts that were either identical to myrcene synthase clone AG2.2 (SEQ ID NO:1) or exhibited no significant sequence similarity to terpene synthases. Clone AG3.48 (SEQ ID NO:31) contained the myrcene synthase ORF in the correct orientation and in frame for expression from the Bluescript plasmid vector. This cDNA was functionally expressed in E. coli and the resulting enzyme was shown to accept only geranyl diphosphate as the prenyl diphosphate substrate and to produce myrcene as the exclusive reaction product. This finding with AG3.48 (SEQ ID NO:31) confirms that expression of AG2.2 (SEQ ID NO:1) as the glutathione S-transferase fusion protein from pGAG2.2 does not influence substrate utilization or product outcome of the myrcene synthase.

Clones which gave strong hybridization signals segregated into distinct sequence groups represented by clone AG3.18 (SEQ ID NO:3)(2018 bp insert with ORF of 1884 nt; encoded protein of 628 residues at 71,505 Da and pI of 5.5) and AG10 (SEQ ID NO:5)(2089 bp insert with ORF of 1911 nt; encoded protein of 637 residues at 73,477 Da and pI of 6.4). AG3.18 (SEQ ID NO:3) and AG10 (SEQ ID NO:5) form a subfamily together with the myrcene synthase clone AG2.2 (SEQ ID NO:1) that is characterized by a minimum of 79% pairwise similarity (64% identity) at the amino acid level. Like myrcene synthase, both AG3.18 (SEQ ID NO:3) and AG10 (SEQ ID NO:5) encode N-terminal sequences of 60 to 70 amino acids which are rich in serine (19-22% and 11-15%, respectively) and low in acidic residues (4 and 2, respectively) characteristic of plastid transit peptides (Keegstra, K., Olsen, J.J., and Theg, S.M. (1989) Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:471-501; von Heijne, G., Stepphuhn, J., and Herrmann (1989) Eur. J. Biochem. 180:535-545).

Plasmid pAG3.18 (SEQ ID NO:3) contained the presumptive terpene synthase ORF in frame for direct expression from the bluescript plasmid, whereas the

AG10 (SEQ ID NO:5) ORF was in reversed orientation. Both AG3.18 (SEQ ID NO:3) and AG10 (SEQ ID NO:5) were subcloned into expression vectors yielding plasmids pGAG3.18 and pSBAG10. Recombinant proteins were expressed in bacterial strain E. coli XLOLR/pAG3.18, E. coli XL1-Blue/pGAG3.18 and E. coli BL21(DE3)/pSBAG10. When extracts of the induced cells were tested for terpene 5 synthase activity with all of the potential prenyl diphosphate substrates, only geranyl diphosphate was utilized. Extracts from E. coli BL21(DE3)/pSBAG10 converted geranyl diphosphate to limonene as the major product with lesser amounts of α -pinene, β -pinene and β -phellandrene, as determined by radio-GLC and combined GLC-MS (FIGURE 5). Chiral phase capillary GLC on β -cyclodextrin revealed the 10 limonene product to be the (-)-4S-enantiomer and the pinene products to be the related (-)-(1S:5S)-enantiomers. Although optically pure standards were not available for the analysis, stereochemical considerations suggest that the minor product β -phellandrene is also the mechanistically related (-)-(4S)-antipode 15 (Gambliel, H., and Croteau, R. (1984) J. Biol. Chem. 259:740-748; Croteau, R., Satterwhite, D.M., Cane, D.E., and Chang, C.C. (1988) J. Biol. Chem. 263:10063-10071; Wagschal, K., Savage, T.J., and Croteau, R. (1991) Tetrahedron 47:5933-5944; Croteau, R., Satterwhite, D.M., Wheeler, C.J., and Felton, N.M. (1989) J. Biol. Chem. 264:2075-2080; LaFever, R.E., and Croteau, R. (1993) Arch. Biochem. 20 Biophys. 301:361-366). Similar analysis of the monoterpene products generated from geranyl diphosphate by cell-free extracts of E. coli XLOLR/pAG3.18 and E. coli XL1-Blue/pGAG3.18 demonstrated the presence of a 42:58% mixture of α -pinene and β -pinene (FIGURE 4), the same product ratio previously described for the purified, native (-)-pinene synthase from Grand fir (Lewinsohn, E., Gijzen, M., 25 and Croteau, R. (1992) Arch. Biochem. Biophys. 293:167-173). capillary GLC confirmed the products of the recombinant pinene synthase to be the (-)-(1S:5S)-enantiomers, as expected. No other monoterpene co-products were detected with the recombinant (-)-pinene synthase, as observed previously for the native enzyme (Lewinsohn, E., Gijzen, M., and Croteau, R. (1992) Arch. Biochem. 30 Biophys. 293:167-173).

Evidence for the formation of both α- and β-pinene by a single enzyme has been previously provided through co-purification studies, and differential inhibition and inactivation studies, as well as by isotopically sensitive branching experiments (Gambliel, H., and Croteau, R. (1984) *J. Biol. Chem.* **259**:740-748; Wagschal, K.C., Pyun, H.-J., Coates, R.M., and Croteau, R. (1994) *Arch. Biochem. Biophys.* **308**:477-

35

487; Wagschal, K., Savage, T.J., and Croteau, R. (1991) *Tetrahedron* 47:5933-5944; Croteau, R., Wheeler, C.J., Cane, D.E., Ebert, R., and Ha, H.-J. (1987) *Biochemistry* 26:5383-5389). The cDNA cloning of pinene synthase provides the ultimate proof that a single enzyme forms both products. The calculated molecular weight of the (-)-pinene synthase deduced from *AG3.18* (SEQ ID NO:3) is approximately 64,000 (excluding the putative transit peptide), which agrees well with the molecular weight of 63,000 established for the native enzyme from Grand fir by gel permeation chromatography and SDS-PAGE (Lewinsohn, E., Gijzen, M., and Croteau, R. (1992) *Arch. Biochem. Biophys.* 293:167-173).

5

10

15

20

25

30

35

A limonene synthase cDNA has thus far been cloned only from two very closely related angiosperm species (Colby, S.M., Alonso, W.R., Katahira, E.J., McGarvey, D.J., and Croteau, R. (1993) J. Biol. Chem. 268:23016-23024; Yuba, A., Yazaki, K., Tabata, M., Honda, G., and Croteau, R. (1996) Arch. Biochem. Biophys. 332:280-287), and the isolation of a pinene synthase cDNA has not been reported before. Pinene synthase has previously received considerable attention as a major defense-related monoterpene synthase in conifers (Gijzen, M., Lewinsohn, E., and Croteau, R. (1991) Arch. Biochem. Biophys. 289:267-273; Lewinsohn, E., Gijzen, M., and Croteau, R. (1992) Arch. Biochem. Biophys. 293:167-173). In the Grand fir cDNA library, which was synthesized from mRNA obtained from woundinduced sapling stems, clones corresponding to pinene synthase are at least ten times more abundant than clones for myrcene synthase. This finding reflects the relative proportions of the induced levels of activities of these enzymes in Grand fir saplings; pinene synthase and limonene synthase are the major monoterpene synthase activities whereas the induced level of myrcene synthase activity is relatively low (Gijzen, M., Lewinsohn, E., and Croteau, R. (1991) Arch. Biochem. Biophys. 289:267-273). The cDNAs for inducible monoterpene synthases provide probes for genetic and molecular analysis of oleoresin-based defense in conifers. Northern blots (FIGURE 6) of total RNA extracted from non-wounded sapling stems and from stems two days after wounding (when enzyme activity first appears) were probed with cDNA fragments for AG2.2 (SEQ ID NO:1), AG3.18 (SEQ ID NO:3) and AG10 (SEQ ID NO:5), and thus demonstrated that increased mRNA accumulation for monoterpene synthases is responsible for this induced, defensive response in Grand The availability of cloned, defense-related monoterpene synthases presents fir. several possible avenues for transgenic manipulation of oleoresin composition to improve tree resistance to bark beetles and other pests. For example, altering the

monoterpene content of oleoresin may chemically disguise the host and decrease insect aggregation by changing the levels of pheromone precursors or predator attractants, or lower infestation by increasing toxicity toward beetles and their pathogenic fungal associates (Johnson, M.A., and Croteau, R. (1987) in *Ecology and Metabolism of Plant Lipids* (Fuller, G., and Nes, W.D., eds) pp. 76-91, American Chemical Society Symposium Series 325, Washington, DC; Gijzen, M., Lewinsohn, E., Savage, T.J., and Croteau, R.B. (1993) in *Bioactive Volatile Compounds from Plants* (Teranishi, R., Buttery, R.G., and Sugisawa, H., eds) pp. 8-22, American Chemical Society Symposium Series 525, Washington, DC; Byers, J.A. (1995) in *Chemical Ecology of Insects 2* (Cardé, R.T., and Bell, W.J., eds) pp. 154-213, Chapman and Hall, New York).

5

1()

15

20

25

30

35

EXAMPLE 8

Properties of the Recombinant Monoterpene Synthases Encoded by cDNA Clones AG2.2 (SEQ ID NO:1), AG3.18 (SEQ ID NO:3) and AG10 (SEQ ID NO:5)

All three recombinant enzymes require Mn²⁺ for activity, and Mg²⁺ is essentially ineffective as the divalent metal ion cofactor. This finding confirms earlier results obtained with the native monoterpene synthases of Grand fir and lodgepole pine (Pinus contorta) (Lewinsohn, E., Gijzen, M., and Croteau, R. (1992) Arch. Biochem. Biophys. 293:167-173; Savage, T.J., Hatch, M.W., and Croteau, R. (1994) J. Biol. Chem. 269:4012-4020). All terpene synthases and prenyltransferases are thought to employ a divalent metal ion, usually Mg²⁺ or Mn²⁺, in the ionization steps of the reaction sequence to neutralize the negative charge of the diphosphate leaving group (Croteau, R. (1987) Chem. Rev. 87:929-954; Cane, D.E. (1992) Ciba Found. Symp. Ser. 171:163-167; Poulter, C.D., and Rilling, H.C. (1981) in Biosynthesis of Isoprenoid Compounds (Porter, J.W., and Spurgeon, S.L., eds) Vol. 1, pp. 161-224, Wiley & Sons, New York), and all relevant sequences thus far obtained bear a conserved aspartate rich element (DDXXD)(SEQ ID NO:45) considered to be involved in divalent metal ion binding (Stofer Vogel, B., Wildung, M.R., Vogel, G., and Croteau, R. (1996) J. Biol. Chem. 271:23262-23268; Ashby, M.N., and Edwards, P.A. (1990) J. Biol. Chem. 265:13157-13164; Chen, A., Kroon, P.A., and Poulter, D.C. (1994) Protein Sci. 3:600-607; Tarshis, L.C., Yan, M., Poulter, C.D., and Sacchettini, J.C. (1994) Biochemistry 33:10871-10877; Cane, D.E., Sohng, J.K., Lamberson, C.R., Rudnicki, S.M., Wu, Z., Lloyd, M.D., Oliver, J.S., and Hubbard, B.R. (1994) Biochemistry 33:5846-5857; Proctor, R.H., and

5

10

15

20

25

30

35

Hohn, T.M. (1993) J. Biol. Chem. 268:4543-4548). In addition to this strict, general dependence on a divalent metal ion, the monoterpene synthases of conifers are unique in their further requirement for a monovalent cation (K⁺), a feature that distinguishes the gymnosperm monoterpene synthases from their counterparts from angiosperm species and implies a fundamental structural and/or mechanistic difference between these two families of catalysts (Savage, T.J., Hatch, M.W., and Croteau, R. (1994) J. Biol. Chem. 269:4012-4020). All three recombinant monoterpene synthases depend upon K+, with maximum activity achieved at approximately 500 mM KCl. A requirement for K⁺ has been reported for a number of different types of enzymes, including those that catalyze phosphoryl cleavage or transfer reactions (Suelter, C.H. (1970) Science 168:789-794) such as Hsc70 ATPase (Wilbanks, S.M., and McKay, D.B. (1995) J. Biol. Chem. 270:2251-2257). The crystal structure of bovine Hsc70 ATPase indicates that both Mg^{2+} and K^{+} interact directly with phosphate groups of the substrate and implicates three active site aspartate residues in Mg²⁺ and K⁺ binding (Wilbanks, S.M., and McKay, D.B. (1995) J. Biol. Chem. 270:2251-2257), reminiscent of the proposed role of the conserved DDXXD (SEQ ID NO:45) motif of the terpene synthases and prenyltransferases in divalent cation binding, a function also supported by recent site directed mutagenesis (Marrero, P.F., Poulter, C.D., and Edwards, P.A. (1992) J. Biol. Chem. 267:21873-21878; Joly, A., and Edwards, P.A. (1993) J. Biol. Chem. 268: 26983-26989; Song, L., and Poulter, C.D. (1994) Proc. Natl. Acad. Sci. U.S.A. 91:3044-3048; Koyama, T., Tajima, M., Sano, H., Doi, T., Koike-Takeshita, A., Obata, S., Nishino, T., and Ogura, K. (1996) Biochemistry 35:9533-9538) and by X-ray structural analysis (Tarshis, L.C., Yan, M., Poulter, C.D., and Sacchettini, J.C. Biochemistry 33:10871-10877) of farnesyl diphosphate synthase.

cDNA cloning and functional expression of the myrcene, limonene and pinene synthases from Grand fir represent the first example of the isolation of multiple synthase genes from the same species, and provide tools for evaluation of structure-function relationships in the construction of acyclic, monocyclic and bicyclic monoterpene products and for detailed comparison to catalysts from phylogenetically distant plants that carry out ostensibly identical reactions (Gambliel, H., and Croteau, R. (1984) *J. Biol. Chem.* **259**:740-748; Rajaonarivony, J.I.M., Gershenzon, J., and Croteau, R. (1992) *Arch. Biochem. Biophys.* **296**:49-57; Colby, S.M., Alonso, W.R., Katahira, E.J., McGarvey, D.J., and Croteau, R. (1993) *J. Biol. Chem.* **268**:23016-23024; Adam, K.-P., Crock, J., and Croteau, R. (1996) *Arch.*

Biochem. Biophys. 332:352-356). The recent acquisition of cDNA isolates encoding sesquiterpene synthases and diterpene synthases (Stofer Vogel, B., Wildung, M.R., Vogel, G., and Croteau, R. (1996) J. Biol. Chem. 271:23262-23268) from Grand fir should, together with the monoterpene synthases, also permit addressing the structural basis of chain-length specificity for prenyl diphosphate substrates in this family of related enzymes.

5

EXAMPLE 9

Sequence Comparison of Cloned Monoterpene Synthases

Previous studies based on substrate protection from inactivation with 10 selective amino acid modifying reagents have implicated functionally important cysteine, histidine and arginine residues in a range of different monoterpene synthases (Rajaonarivony, J.I.M., Gershenzon, J., and Croteau, R. (1992) Arch. Biochem. Biophys. 296:49-57; Lewinsohn, E., Gijzen, M., and Croteau, R. (1992) Arch. Biochem. Biophys. 293:167-173; Savage, T.J., Hatch, M.W., and Croteau, R. 15 (1994) J. Biol. Chem. 269:4012-4020; Rajaonarivony, J.I.M., Gershenzon, J., Miyazaki, J., and Croteau, R. (1992) Arch. Biochem. Biophys. 299:77-82; Savage, T.J., Ichii, H., Hume, S.D., Little, D.B., and Croteau, R. (1994) Arch. Biochem. Biophys. 320:257-265). Sequence alignment of 21 terpene synthases of plant origin (Colby, S.M., Alonso, W.R., Katahira, E.J., McGarvey, D.J., and Croteau, R. (1993) 20 J. Biol. Chem. 268:23016-23024; Stofer Vogel, B., Wildung, M.R., Vogel, G., and Croteau, R. (1996) J. Biol. Chem. 271:23262-23268; Facchini, P.J., and Chappell, J. (1992) Proc. Natl. Acad. Sci. USA 89:11088-11092; Mau, C.J.D., and West, C.A. (1994) Proc. Natl. Acad. Sci. USA 91:8497-8501; Yuba, A., Yazaki, K., Tabata, M., Honda, G., and Croteau, R. (1996) Arch. Biochem. Biophys. 332:280-287; Wildung, M.R., and Croteau, R. (1996) J. Biol. Chem. 271:9201-9204; Yamaguchi, S., Saito, 25 T., Abe, H., Yamane, H., Murofushi, N., and Kamiya, Y. (1996) Plant J. 10:203-213; Dudareva, N., Cseke, L., Blanc, V.M., and Pichersky, E. (1996) Plant Cell 8:1137-1148; Chen, X.-Y., Chen, Y., Heinstein, P., and Davisson, V.J. (1995) Arch. Biochem. Biophys. 324:255-266; Chen, X.-Y., Wang, M., Chen, Y., Davisson, J., and 30 Heinstein, P. (1996) J. Nat. Prod. 59:944-951; Back, K., and Chappell, J. (1995) J. Biol. Chem. 270:7375-7381) reveals two absolutely conserved arginine residues, corresponding to Arg 184 and Arg 365 of pinene synthase (SEQ ID NO:4), one highly conserved cysteine residue (pinene synthase Cys⁵⁴³)(SEQ ID NO:4), and one highly conserved histidine residue (pinene synthase His 186)(SEQ ID NO:4). The DDXXD (SEQ ID NO:45) sequence motif (pinene synthase Asp³⁷⁹, Asp³⁸⁰ and Asp³⁸³) (SEQ 35

ID NO:4) is absolutely conserved in all relevant plant terpene synthases, as are several other amino acid residues corresponding to Phe¹⁹⁸, Leu²⁴⁸, Glu³²², Trp³²⁹, Trp⁴⁶⁰ and Pro⁴⁶⁷ of pinene synthase (SEQ ID NO:4).

5

10

15

20

25

30

35

Amino acid sequences of the plant terpene synthases were compared with each other and with the deduced sequences of several sesquiterpene synthases cloned from microorganisms (Proctor, R.H., and Hohn, T.M. (1993) J. Biol. Chem. 268:4543-4548; Back, K., and Chappell, J. (1995) J. Biol. Chem. 270:7375-7381; Hohn, T.M., and Desjardins, A.E. (1992) Mol. Plant-Microbe Interactions 5:249-256). As with all other plant terpene synthases, no significant conservation in primary sequence exists between the monoterpene synthases from Grand fir and the terpene synthases of microbial origin, except for the DDXXD (SEQ 1D NO:45) sequence motif previously identified as a common element of all terpene synthases, and prenyltransferases which employ a related electrophilic reaction mechanism (Croteau, R., Wheeler, C.J., Cane, D.E., Ebert, R., and Ha, H.-J. (1987) Biochemistry 26:5383-5389; Chen, A., Kroon, P.A., and Poulter, D.C. (1994) Protein Sci. 3:600-607; McCaskill, D., and Croteau, R. (1997) Adv. Biochem. Engineering Biotech. 55:108-146). The evidence is presently insufficient to determine whether extant plant and microbial terpene synthases represent divergent evolution from a common ancestor, which may also have given rise to the prenyltransferases, or whether these similar catalysts evolved convergently.

EXAMPLE 10

Alteration of Monoterpene Levels and Composition in Plant Seeds

In accordance with the present invention, methods for increasing production of monoterpene compounds in a plant, particularly in plant seeds, are provided. The methods involve transforming a plant cell with a nucleic acid sequence encoding at least one gymnosperm monoterpene synthase, such as those encoded by the nucleic acid sequences set forth in SEQ ID NO:1, SEQ ID NO:3 and SEQ ID NO:5. This has the effect of altering monoterpene biosynthesis, thereby increasing the production of monoterpenes, as well as providing novel seed oils having desirable monoterpene compositions. In this manner, the transformed seed provides a factory for the production of modified oils. The modified oil itself may be used and/or the compounds in the oils can be isolated. Thus, the present invention allows for the production of particular monoterpenes of interest as well as speciality oils.

The nucleic acid encoding the monoterpene synthases of the present invention can be used in expression cassettes for expression in the transformed plant tissues.

To alter the monoterpene levels in a plant of interest, the plant is transformed with at least one expression cassette comprising a transcriptional initiation region linked to a nucleic acid sequence encoding a monoterpene synthase. Such an expression cassette is provided with a plurality of restriction sites for insertion of the nucleic acid sequence encoding a monoterpene synthase so that it is under the transcriptional regulation of the regulatory regions.

The transcriptional initiation sequence may be native or analogous to the host or foreign or heterologous to the host. In this regard, the term "foreign" means that the transcriptional initiation sequence is not found in the wild-type host into which the transcriptional initiation region is introduced.

10

15

20

25

30

35

Of particular interest are those transcriptional initiation regions associated with storage proteins, such as napin, cruciferin, β -conglycinin, phaseolin, globulin or the like, and proteins involved in fatty acid biosynthesis, such as acyl carrier protein (ACP). See, U.S. Patent No. 5,420,034, herein incorporated by reference.

The transcriptional cassette will preferably include, in the 5' to 3' direction of transcription, a transcriptional and translational initiation region, a gymnosperm monoterpene synthase DNA sequence of interest, and a transcriptional and translational termination region functional in plants. The termination region may be from the same organism as the transcriptional initiation region, may be from the same organism as the monoterpene synthase DNA, or may be derived from another source. Convenient termination regions are available from the Ti-plasmid of A tumefaciens, such as the octopine synthase and nopaline synthase termination regions. Other termination sequences are set forth in Guerineau et al., (1991), Mol. Gen. Genet., 262:141-144; Proudfoot, (1991), Cell, 64:671-674; Sanfacon et al., (1991). Genes Dev., 5:141-149; Mogen et al., (1990), Plant Cell, 2:1261-1272; Munroe et al., (1990), Gene, 91:151-15 8; Ballas et al., (1989), Nucleic Acids Res., 17:7891-7903; Joshi et al., (1987), Nucleic Acid Res., 15:9627-9639).

In the presently preferred form of the invention, a nucleic acid sequence encoding a gymnosperm monoterpene synthase protein will be targeted to plastids, such as chloroplasts, for expression. Thus, the nucleic acid sequence, or sequences, encoding a gymnosperm monoterpene synthase protein, or proteins, may be inserted into the plastid for expression with appropriate plastid constructs and regulatory elements. Alternatively, nuclear transformation may be used in which case the expression cassette will contain a nucleic acid sequence encoding a transit peptide to direct the monoterpene biosynthesis enzyme of interest to the plastid. Such transit

45

peptides are known in the art. See, for example, Von Heijne et al. (1991) Plant Mol. Biol. Rep. 9:104-126; Clark et al. (1989) J. Biol. Chem. 264:17544-17550; della-Cioppa et al. (1987) Plant Physiol. 84:965-968; Romer et al. (1993) Biochem. Biophys. Res. Commun. 196:1414-1421; and, Shah et al. (1986) Science 233:478-481. Nucleic acid sequences encoding gymnosperm monoterpene synthases of the present invention may utilize native or heterologous transit peptides.

The construct may also include any other necessary regulators such as plant translational consensus sequences (Joshi, C.P., (1987), *Nucleic Acids Research*, 15:6643-6653), introns (Luehrsen and Walbot, (1991), *Mol. Gen. Genet.*, 225:81-93) and the like, operably linked to a nucleotide sequence encoding a monoterpene synthase of the present invention.

10

15

20

25

30

It may be beneficial to include 5' leader sequences in the expression cassette which can act to enhance translation. Translation leaders are known in the art and include: picornavirus leaders, for example, EMCV leader (Encephalomyocarditis 5' noncoding region) (Elroy-Stein, O., Fuerst, T.R., and Moss, B. (1989) *PNAS USA* **86**:6126-6130); potyvirus leaders, for example, TEV leader (Tobacco Etch Virus) (Allison et al. (1986); MDMV leader (Maize Dwarf Mosaic Virus); *Virology*, **154**:9-20), and human immunoglobulin heavy-chain binding protein (BiP), (Macejak, D.G., and Sarnow, P. (1991), *Nature*, **353**:90-94; untranslated leader from the coat protein mRNA of alfalfa mosaic virus (AMV RNA 4), (Jobling, S.A., and Gehrke, L. (1987), *Nature*, **325**:622-625; tobacco mosaic virus leader (TMV), (Gallie, D.R. et al. (1989), *Molecular Biology of RNA*, pages 237-256; and maize chlorotic mottle virus leader (MCMV) (Lommel, S.A. et al. (1991), *Virology*, **81**:382-385. See also, Della-Cioppa et al., (1987), *Plant Physiology*, **84**:965-968.

Depending upon where the monoterpene synthase sequence of interest is to be expressed, it may be desirable to synthesize the sequence with plant preferred codons, or alternatively with chloroplast preferred codons. The plant preferred codons may be determined from the codons of highest frequency in the proteins expressed in the largest amount in the particular plant species of interest. See, EPA 0359472; EPA 0385962; WO 91/16432; Perlak et al. (1991) Proc. Natl. Acad. Sci. USA 88:3324-3328; and Murray et al. (1989) Nucleic Acids Research 17:477-498. In this manner, the nucleotide sequences can be optimized for expression in any plant. It is recognized that all or any part of the nucleic acid sequence encoding a gymnosperm monoterpene synthase protein may be optimized or synthetic. That is,

synthetic or partially optimized sequences may also be used. For the construction of chloroplast preferred genes, see U.S. Patent No. 5,545,817.

In preparing the transcription cassette, the various DNA fragments may be manipulated, so as to provide for the DNA sequences in the proper orientation and in the proper reading frame. Towards this end, adapters or linkers may be employed to join the DNA fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites, or the like. For this purpose, *in vitro* mutagenesis, primer repair, restriction, annealing, resection, ligation, or the like may be employed, where insertions, deletions or substitutions, such as transitions and transversions, may be involved.

5

10

15

20

25

30

35

The recombinant DNA molecules of the invention can be introduced into the plant cell in a number of art-recognized ways. Those skilled in the art will appreciate that the choice of method might depend on the type of plant, i.e., monocot or dicot, targeted for transformation. Suitable methods of transforming plant cells include microinjection (Crossway et al. (1986) BioTechniques 4:320-334), electroporation (Riggs et al. (1986) Proc. Natl. Acad. Sci. USA 83:5602-5606), Agrobacterium mediated transformation (Hinchee et al. (1988) Biotechnology 6:915-921) and ballistic particle acceleration (see, for example, Sanford et al., U.S. Patent No. 4,945,050; and McCabe et al. (1988) Biotechnology 6:923-926). Also see, Weissinger et al. (1988) Annual Rev. Genet. 22:421-477; Sanford et al. (1987) Particulate Science and Technology 5:27-37 (onion); Christou et al. (1988) Plant Physiol. 87:671-674 (soybean); McCabe et al. (1988) Bio/Technology 6:923-926 (soybean); Datta et al. (1990) Biotechnology 8:736-740 (rice); Klein et al (1988) Proc. Natl. Acad Sci. USA, 85:4305-4309 (maize); Klein et al. (1988) Biotechnology 6:559-563 (maize); Klein et al. (1988) Plant Physiol. 91:440-444 (maize); Fronun et al. (1990) Biotechnology 8:833-839; and Gordon-Kamm et al. (1990) Plant Cell 2:603-618 (maize).

Alternatively, a plant plastid can be transformed directly. Stable transformation of chloroplasts has been reported in higher plants, see, for example, SVAB et al. (1990) *Proc. Nat'l. Acad. Sci. USA* 87:85268530; SVAB & Maliga (1993) *Proc. Natl. Acad. Sci. USA* 90:913-917; Staub & Maliga (1993) *Embo J.* 12:601-606. The method relies on particle gun delivery of DNA containing a selectable marker and targeting of the DNA to the plastid genome through homologous recombination. In such methods, plastid gene expression can be accomplished by use of a plastid gene promoter or by trans-activation of a silent

plastid-borne transgene positioned for expression from a selective promoter sequence such as that recognized by T7 RNA polymerase. The silent plastid gene is activated by expression of the specific RNA polymerase from a nuclear expression construct and targeting of the polymerase to the plastid by use of a transit peptide. Tissue-specific expression may be obtained in such a method by use of a nuclear-encoded and plastid-directed specific RNA polymerase expressed from a suitable plant tissue specific promoter. Such a system has been reported in McBride et al. (1994) *Proc. Natl. Acad Sci. USA* 91:7301-7305.

5

10

15

20

25

3()

The cells which have been transformed may be grown into plants by a variety of art-recognized means. See, for example, McConnick et al., *Plant Cell Reports* (1986), 5:81-84. These plants may then be grown, and either selfed or crossed with a different plant strain, and the resulting homozygotes or hybrids having the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that the subject phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure the desired phenotype or other property has been achieved.

As a host cell, any plant variety may be employed. Of particular interest, are plant species which provide seeds of commercial value. For the most part, plants will be chosen where the seed is produced in high amounts, a seed-specific product of interest is involved, or the seed or a seed part is edible. Seeds of interest in the practice of the present invention include, but are not limited to, the oil seeds, such as oilseed Brassica seeds, cotton seeds, soybean, safflower, sunflower, coconut, palm, and the like; grain seeds such as wheat, barley, oats, amaranth, flax, rye, triticale, rice and corn; other edible seeds or seeds with edible parts including pumpkin, squash, sesame, poppy, grape, mung beans, peanut, peas, beans, radish, alfalfa, cocoa, and coffee; and tree nuts such as walnuts, almonds, pecans, and chick-peas.

EXAMPLE 11

A Strategy For Cloning Gymnosperm Monoterpene Synthases

The present invention includes gymnosperm monoterpene synthase proteins, and nucleic acid molecules that encode gymnosperm monoterpene synthase proteins. The amino acid sequence of each of the gymnosperm monoterpene synthase proteins of the present invention each includes at least one of the amino acid sequence elements disclosed in Table 1.

Table 1	T	ន	b	le	1
---------	---	---	---	----	---

		T	
Amino Acids	Sequence	Orientation	Comments

1. 70-77	HSN(L.I.V)WDDD	Fonly	HS makes a poor reverse
	(SEQ ID NO: 46)		primer
2. 148-153	ALDYVY	F and R	
	(SEQ ID NO: 47)		
3. 306-312	ELAKLEF	F and R	
	(SEQ ID NO: 48)		
4. 328-333	RWWKES	F and R	F primer uses 1 st nt of Ser
	(SEQ ID NO: 49)		codon; R uses 1 st two nts
			of Arg codon (rare only)
5. 377-383	(V, I, L) L D D M Y D	F and R	
	(SEQ ID NO: 50)		
6. 377-383	(V, I, L) L D D L Y D	F and R	Degeneracy of M/L at 381
	(SEQ ID NO: 51)		too high for single primer
7. 377-383	(V, I, L) L D D I Y D	F and R	
	(SEQ ID NO: 52)		
8. 543-549	C Y M K D (N, H) P	R	F primer can also be
	(SEQ ID NO: 53)		constructed with this
			peptide but is too close to
<u> </u>			the 3' end to be useful

The numbers set forth in Table 1 for the first and last amino acid residue of each of the peptide sequences is the number of the corresponding amino acid residue in the amino acid sequence of the (-)-pinene synthase (SEQ ID NO:4) isolated from Abies grandis. Where a sequence of amino acid residues appears in brackets, e.g., (L,I,V) in Table 1, the first amino acid residue within the brackets is the residue that appears in the (-)-pinene synthase amino acid sequence set forth in SEQ ID NO:4. The subsequent amino acid residues within the brackets represent other amino acid residues that commonly occur at the corresponding position in the amino acid sequence of other Abies grandis enzymes involved in terpene synthesis.

5

10

15

In Table 1, the letter "F" refers to the forward PCR reaction, *i.e.*, the PCR reaction which synthesizes the sense nucleic acid strand that encodes a gymnosperm monoterpene synthase. The letter "R" refers to the reverse PCR reaction, *i.e.*, the PCR reaction that synthesizes the antisense nucleic acid molecule that is complementary to the sense nucleic acid strand synthesized in the forward PCR reaction.

In order to clone nucleic acid molecules encoding gymnosperm monoterpene synthases of the present invention, one or more oligonucleotide molecules corresponding to at least a portion of one of the amino acid sequences set forth in Table 1 can be used as a probe or probes with which to screen a genomic or cDNA library derived from one or more gymnosperm species. In this context, the term "corresponding," or "correspond" or "corresponds," means that the oligonucleotide base sequence either a) encodes all or part of at least one of the amino acid sequences set forth in Table 1, or b) is complementary to a base sequence that encodes all or part of at least one of the amino acid sequences set forth in Table 1. The oligonucleotide probe(s) may contain a synthetic base, such as inosine, which can be substituted for one or more of the four, naturally-occurring bases, *i.e.*, adenine ("A"), guanine ("G"), cytosine ("C") and thymine ("T"). Thus, for example, the following oligonucleotide sequences "correspond" to the tripeptide sequence M M M: 5'ATGATGATG3' (sense orientation) (SEQ ID NO:54); 3'TACTACTAC5' (antisense orientation) (SEQ ID NO:55) and 3'IACIACIAC5' (SEQ ID NO:56).

10

15

20

25

30

One or more oligonucleotide sequence(s), corresponding to at least a portion of at least one of the amino acid sequences set forth in Table 1, can be used to screen a nucleic acid library in order to identify monoterpene synthase clones of the present invention, according to methods well known to one of ordinary skill in the art. *See*, *e.g.*, *Sambrook et al.*, *supra*. The stringency of the hybridization and wash conditions during library screening in accordance with the present invention, utilizing one or more oligonucleotide sequence(s) corresponding to at least a portion of at least one of the amino acid sequences set forth in Table 1, is at least: for the hybridization step, 6X SSPE, 40-45°C, for 36 hours; for the wash step, 3X SSPE, 45°C, 3 X 15 minute washes. The presently preferred hybridization and wash conditions during library screening, utilizing one or more oligonucleotide sequence(s) corresponding to at least a portion of at least one of the amino acid sequences set forth in Table 1, in accordance with the present invention are: for the hybridization step, 6X SSPE, 40-45°C, for 36 hours; for the wash step, 0.1X SSPE, 65°C-70°C, 3 X 15 minute washes.

Examples of oligonucleotide sequences, corresponding to at least one of the amino acid sequences set forth in Table 1, that hybridize, under the foregoing hybridization and wash conditions, to the sense strands of the nucleic acid sequences of the present invention that encode gymnosperm monoterpene synthase proteins are set forth in Table 2.

Table 2

Nucleic Acid Sequence	Corresponds to:
GTG TCG TTG GAG ACC CTG CTG CTG	SEQ ID No. 46
(SEQ ID NO:57)	
CGG GAG CTG ATG CAG ATG (SEQ ID	SEQ ID No. 47
NO:58)	
CTC GAG CGG TTC GAG CTC AAG	SEQ ID No. 48
(SEQ ID NO:59)	
GCC ACC ACC TTC CTC TCG (SEQ ID	SEQ ID No. 49
NO:60)	
GAG GAG CTG CTG TAC ATG CTG	SEQ ID No. 50
(SEQ ID NO:61)	
GAG GAG CTG CTG GAG ATG CTG	SEQ ID No. 51
(SEQ ID NO:62)	

Similarly, each of the gymnosperm monoterpene synthase clones set forth in SEQ ID NO:1, SEQ ID NO:3 and SEQ ID NO:5, or a portion thereof, may be used as a probe to screen a nucleic acid library in order to isolate monoterpene synthase clones of the present invention, according to methods well known to one of ordinary skill in the art. *See, e.g., Sambrook et al, supra*. The stringency of the hybridization and wash conditions during library screening in accordance with the present invention is at least: for the hybridization step, 6X SSPE buffer at 45°C to 50°C for 36 hours; for the wash step, 3X SSPE buffer at 50°C (three, fifteen minute washes). In accordance with the present invention, the presently preferred hybridization and wash conditions during library screening utilizing any of the gymnosperm monoterpene synthase clones set forth in SEQ ID NO:1, SEQ ID NO:3 and SEQ ID NO:5, or a portion thereof, as probe are: for the hybridization step, 6X SSPE, 40-45°C, for 36 hours; for the wash step, 0.1X SSPE, 70°C-75°C, 3 X 15 minute washes.

5

15

20

Additionally, at least two oligonucleotide sequence(s), each corresponding to at least a portion of at least one of the amino acid sequences set forth in Table 1, can be used in a PCR reaction to generate a portion of a monoterpene synthase clone of the present invention, which can be used as a probe to isolate a full-length clone of a monoterpene synthase clone of the present invention. Thus, oligonucleotides that are useful as probes in the forward PCR reaction correspond to at least a portion of at least one of the amino acid sequences disclosed in Table 1 as having the "F" orientation. Conversely, oligonucleotides that are useful as probes in the reverse

PCR reaction correspond to at least a portion of at least one of the amino acid sequences disclosed in Table 1 as having the "R" orientation. PCR reactions can be carried out according to art-recognized PCR reaction conditions, such as the PCR reaction conditions set forth in Example 1 herein and as set forth in "PCR Strategies", M.A. Innis, D.H. Gelfand and J.J. Sninsky, eds., 1995. Academic Press, San Diego, CA (Chapter 14); "PCR Protocols: A Guide to Methods and Applications". M.A. Innis, D.H. Gelfand, J.J. Sninsky and T.J. White, eds., Academic Press, NY (1990). The presently preferred PCR reaction conditions are:

dNTPs	200 μM each
$MgCl_2$	5-7 mM
F and R primers	100 nM - 1μM each
Taq polymerase	1-2 units/reaction
cDNA template	10-100 ng/reaction
Buffers, PCR grade water, and	d Chill-out wax or mineral oil

10

5

The presently preferred thermocycler conditions are:

Denaturation	$94^{\circ} \times 2 \min$	1 cycle
Denaturation	$94^{0} \times 45 \text{ s}$	35 cycles
Annealing	$42^0 - 55^0 \times 45 \text{ s} - 1 \text{ min}$	Ħ
Polymerization	$72^{0} \times 1-2 \min$	#1
Adenylation	$72^{0} \times 10 \text{ min}$	l cycle

While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

- 1. An isolated nucleotide sequence encoding a gymnosperm monoterpene synthase, said isolated nucleotide sequence being capable of hybridizing under stringent conditions to at least one oligonucleotide having a base sequence that corresponds to at least one peptide sequence selected from the group consisting of SEQ ID NO:46, SEQ ID NO:47. SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52 and SEQ ID NO:53.
- 2. An isolated nucleotide sequence of Claim 1 encoding a gymnosperm myrcene synthase.
- 3. An isolated nucleotide sequence of Claim 1 encoding a gymnosperm limonene synthase.
- 4. An isolated nucleotide sequence of Claim 1 encoding a gymnosperm pinene synthase.
- 5. An isolated nucleotide sequence of Claim 1 encoding a Grand fir (Abies grandis) monoterpene synthase.
- 6. An isolated nucleotide sequence of Claim 1 encoding a Grand fir (Abies grandis) myrcene synthase.
- 7. An isolated nucleotide sequence of Claim 1 encoding a Grand fir (Abies grandis) limonene synthase.
- 8. An isolated nucleotide sequence of Claim 1 encoding a Grand fir (Abies grandis) pinene synthase.
- 9. An isolated nucleotide sequence of Claim 1 having the sequence of SEQ ID NO:1.
- 10. An isolated nucleotide sequence of Claim 1 having the sequence of SEQ ID NO:3.

11. An isolated nucleotide sequence of Claim 1 having the sequence of SEQ ID NO:5

- 12. An isolated nucleotide sequence of Claim 1 which encodes the amino acid sequence of SEQ ID NO:2.
- 13. An isolated nucleotide sequence of Claim 1 which encodes the amino acid sequence of SEQ ID NO:4
- 14. An isolated nucleotide sequence of Claim 1 which encodes the amino acid sequence of SEQ ID NO:6.
- 15. An isolated nucleotide sequence encoding a gymnosperm monoterpene synthase protein, said isolated nucleotide sequence having a complementary nucleotide sequence that is capable of hybridizing to the nucleotide sequence of any one of SEQ ID NO:1, SEQ ID NO:3 and SEQ ID NO:5.
- 16. An isolated nucleic acid molecule encoding a gymnosperm monoterpene synthase, said nucleic acid molecule being capable of hybridizing to at least two oligonucleotides, each of said oligonucleotides having a base sequence that corresponds to at least one peptide sequence selected from the group consisting of SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52 and SEQ ID NO:53.
- 17. An isolated nucleic acid molecule encoding a Grand fir (Abies grandis) monoterpene synthase, said nucleic acid molecule being capable of hybridizing to at least two oligonucleotides, each of said oligonucleotides having a base sequence that corresponds to at least one peptide sequence selected from the group consisting of SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52 and SEQ ID NO:53.
- 18. An isolated gymnosperm monoterpene synthase protein, said gymnosperm monoterpene synthase protein including at least one amino acid sequence element selected from the group consisting of SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52 and SEQ ID NO:53.

19. An isolated gymnosperm myrcene synthase protein, said gymnosperm myrcene synthase protein including at least one amino acid sequence element selected from the group consisting of SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52 and SEQ ID NO:53.

- 20. An isolated gymnosperm pinene synthase protein, said gymnosperm pinene synthase protein including at least one amino acid sequence element selected from the group consisting of SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52 and SEQ ID NO:53.
- 21. An isolated gymnosperm limonene synthase protein, said gymnosperm limonene synthase protein including at least one amino acid sequence element selected from the group consisting of SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52 and SEQ ID NO:53.
- 22. An isolated Grand fir (*Abies grandis*) monoterpene synthase protein, said Grand fir (*Abies grandis*) monoterpene synthase protein including at least one amino acid sequence element selected from the group consisting of SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52 and SEQ ID NO:53.
- 23. An isolated Grand fir (*Abies grandis*) monoterpene synthase protein of Claim 22, said monoterpene synthase protein having the sequence of SEQ ID NO:2.
- 24. An isolated Grand fir (*Abies grandis*) monoterpene synthase protein of Claim 22, said monoterpene synthase protein having the sequence of SEQ ID NO:4.
- 25. An isolated Grand fir (*Abies grandis*) monoterpene synthase protein of Claim 22, said monoterpene synthase protein having the sequence of SEQ ID NO:6.
- 26. A replicable expression vector comprising a nucleotide sequence encoding a gymnosperm monoterpene synthase, said nucleotide sequence encoding a gymnosperm monoterpene synthase being capable of hybridizing at high stringency to at least one oligonucleotide having a base sequence that corresponds to at least one peptide sequence selected from the group consisting of SEQ ID NO:46, SEQ ID

PCT/US98/14528 WO 99/02030

NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52 and SEQ ID NO:53.

- 27. A replicable expression vector of Claim 26 wherein said nucleotide sequence encoding a gymnosperm monoterpene synthase encodes a Grand fir (Abies grandis) monoterpene synthase.
 - 28. A host cell comprising a vector of any one of claims 26 and 27.
- 29. A replicable expression vector comprising a nucleotide sequence encoding a gymnosperm monoterpene synthase, said nucleotide sequence having a complementary nucleotide sequence that is capable of hybridizing to the nucleotide sequence of any one of SEQ ID NO:1. SEQ ID NO:3 and SEQ ID NO:5.
 - 30. A host cell comprising a vector of Claim 29.
- 31. A method of enhancing the production of a gymnosperm monoterpene synthase in a suitable host cell comprising introducing into the host cell an expression vector of Claim 26 under conditions enabling expression of the gymnosperm monoterpene synthase in the host cell.
- 32. A method for enhancing monoterpene levels in a host cell, said method comprising transforming said host cell with a nucleic acid construct comprising at least one nucleic acid sequence defining a transcriptional initiation region from a gene expressed in the host cell and at least one nucleic acid sequence encoding a gymnosperm monoterpene synthase, said nucleic acid sequence encoding a gymnosperm monoterpene synthase being capable of hybridizing at high stringency to at least one oligonucleotide having a base sequence that corresponds to at least one peptide sequence selected from the group consisting of SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52 and SEQ ID NO:53.
 - 33. The method of Claim 32 wherein said nucleic acid sequence encoding a gymnosperm monoterpene synthase encodes a Grand fir (Abies grandis) monoterpene synthase.
 - 34. A method for altering monoterpene levels in a seed from a host plant, said method comprising transforming said host plant with a nucleic acid construct

comprising at least one nucleic acid sequence defining a transcriptional initiation region from a gene expressed in a plant seed and at least one nucleic acid sequence encoding a gymnosperm monoterpene synthase, said nucleic acid sequence encoding a gymnosperm monoterpene synthase being capable of hybridizing at high stringency to at least one oligonucleotide having a base sequence that corresponds to at least one peptide sequence selected from the group consisting of SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52 and SEQ ID NO:53.

- 35. The method of Claim 34 wherein the transcriptional initiation region is from a gene preferentially expressed in a plant seed.
- 36. The method of Claim 34 wherein said nucleic acid sequence encoding a gymnosperm monoterpene synthase encodes a Grand fir (Abies grandis) monoterpene synthase.
- 37. The method of Claim 34 wherein said gymnosperm monoterpene synthase is not native to said host plant.
 - 38. A transgenic plant produced according to the method of Claim 34.
- 39. A method for increasing the monoterpene biosynthetic flux in seed from a host plant, said method comprising transforming said host plant with a construct comprising as operably linked components, a transcriptional initiation region from a gene preferentially expressed in a plant seed, a plastid transit peptide, a DNA sequence encoding a gymnosperm monoterpene synthase protein, and a transcriptional termination region, said DNA sequence encoding a gymnosperm monoterpene synthase protein being capable of hybridizing at high stringency to at least one oligonucleotide having a base sequence that corresponds to at least one peptide sequence selected from the group consisting of SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52 and SEQ ID NO:53.
- 40. The method of Claim 39, wherein said DNA sequence encoding a gymnosperm monoterpene synthase protein encodes an enzyme selected from the group consisting of limonene synthase, myrcene synthase and pinene synthase.

41. A method for producing a monoterpene compound in a seed, said method comprising the steps of obtaining a transformed plant which produces said seed, said plant having and expressing in its genome:

a nucleic acid sequence encoding a gymnosperm monoterpene synthase protein which is operably linked to a plastid transit peptide and a transcriptional initiation region from a gene preferentially expressed in a plant seed, wherein said nucleic acid sequence encoding a gymnosperm monoterpene synthase protein is capable of hybridizing at high stringency to at least one oligonucleotide having a base sequence that corresponds to at least one peptide sequence selected from the group consisting of SEQ ID NO:46. SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52 and SEQ ID NO:53.

- 42. A seed transformed with a nucleic acid sequence encoding a gymnosperm monoterpene synthase protein, said nucleic acid sequence encoding a gymnosperm monoterpene synthase protein being capable of hybridizing at high stringency to at least one oligonucleotide having a base sequence that corresponds to at least one peptide sequence selected from the group consisting of SEQ ID NO:SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52 and SEQ ID NO:53, said transformed seed having altered monoterpene levels.
- 43. The transformed seed of claim 42, wherein said seed produces increased levels of at least one monoterpene compound, said monoterpene compound selected from the group consisting of (-)-4S-limonene, (-)- α -pinene, myrcene, 4S- β -phellandrene.
- 44. The transformed seed of claim 43, wherein said seed produces increased levels of (-)4S-limonene.
- 45. Seed produced by the method of any one of claims 34, 35, 36, 37, 39, 40 and 41.
- 46. Plants produced by the method of any one of claims 34, 35, 36, 37, 39, 40 and 41.

47. Oil extracted from seeds produced by the method of any one of claims 34, 35, 36, 37, 39, 40 and 41.

- 48. Meal extracted from seed produced by the method of any one of claims 34, 35, 36, 37, 39, 40 and 41.
- 49. The method of any one of claims 34, 35, 36, 37, 39, 40 and 41, wherein said seed is from a plant selected from the group consisting of oilseed Brassica, cotton, soybean, safflower, sunflower, coconut, palm, wheat, barley, rice, corn, oats, amaranth, pumpkin, squash, sesame, poppy, grape, mung beans, peanut, peas, beans, radish, alfalfa, cocoa, coffee, and tree nuts.
- 50. The method of Claim 49, wherein said seed is from an oilseed crop plant selected from the group consisting of oilseed brassica, cotton, soybean, safflower, sunflower, palm, coconut, and corn.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

3/7

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

6/7

SUBSTITUTE SHEET (RULE 26)

SEQUENCE LISTING

<pre><110> Croteau, Rodney B</pre>											
<120> Monoterpene Synthases from Grand Fir (Abies grandis)											
<130> WSUR112537											
<140> <141>											
<150> 60/052,249 <151> 1997-07-11											
<160> 62											
<170> PatentIn Ver. 2.0											
<210> 1 <211> 2196 <212> DNA <213> Abies grandis											
<220> <221> CDS <222> (69)(1952) <223> Clone AG2.2 encoding myrcene synthase											
<400> 1 tgccggcacg aggttatctt gagcttcctc catataggcc aacacatatc atatcaaagg 60)										
gagcaaga atg gct ctg gtt tct atc tca ccg ttg gct tcg aaa tct tgc 11 Met Ala Leu Val Ser Ile Ser Pro Leu Ala Ser Lys Ser Cys 1 5 10	10										
ctg cgc aag tcg ttg atc agt tca att cat gaa cat aag cct ccc tat 15 Leu Arg Lys Ser Leu Ile Ser Ser Ile His Glu His Lys Pro Pro Tyr 15 20 25 30	58										
aga aca atc cca aat ctt gga atg cgt agg cga ggg aaa tct gtc acg 20 Arg Thr Ile Pro Asn Leu Gly Met Arg Arg Arg Gly Lys Ser Val Thr 35 40 45	06										
cct tcc atg agc atc agt ttg gcc acc gct gca cct gat gat ggt gta 25 Pro Ser Met Ser Ile Ser Leu Ala Thr Ala Ala Pro Asp Asp Gly Val 50 55 60	54										
Caa aga cgc ata ggt gac tac cat tcc aat atc tgg gac gat gat ttc 30 Gln Arg Arg Ile Gly Asp Tyr His Ser Asn Ile Trp Asp Asp Asp Phe 65 70 75	02										
65 To Try Asp Tyr His Ser Asn Ile Trp Asp Asp Phe 65 70 75	50 50										

ctg Leu	gat Asp	gat Asp	gga Gly	aga Arg 115	tta Leu	atg Met	agt Ser	tcc Ser	ttt Phe 120	aat Asn	gat Asp	ctc Leu	atg Met	caa Gln 125	cgc Arg	446
ctt Leu	tgg Trp	ata Ile	gtc Val 130	gat Asp	agc Ser	gtt Val	gaa Glu	cgt Arg 135	ttg Leu	ggg Gly	ata Ile	gct Ala	aga Arg 140	cat His	ttc Phe	494
aag Lys	aac Asn	gag Glu 145	ata Ile	aca Thr	tca Ser	gct Ala	ctg Leu 150	gat Asp	tat Tyr	gtt Val	ttc Phe	cgt Arg 155	tac Tyr	tgg Trp	gag Glu	542
Olu	160	GIY	TIE	GIĀ	Cys	ggg Gly 165	Arg	Asp	Ser	Ile	Val 170	Thr	Asp	Leu	Asn	590
175	1111	AIa	Leu	GIY	180	cga Arg	Thr	Leu	Arg	Leu 185	His	Gly	Tyr	Thr	Val 190	638
SCI	110	GIU	vai	195	гÀг	gct Ala	Phe	Gln	Asp 200	Gln	Asn	Gly	Gln	Phe 205	Val	686
0,75	501	110	210	GIN	Thr	gag Glu	GTA	G1u 215	Ile	Arg	Ser	Val	Leu 220	Asn	Leu	734
1 7 1	ALG	225	ser	Leu	11e	gcc Ala	230	Pro	Gly	Glu	Lys	Val 235	Met	Glu	Glu	782
7114	240	116	rne	ser	Inr	aga Arg 245	Tyr	Leu	Lys	Glu	Ala 250	Leu	Gln	Lys	Ile	830
Pro 255	gtc Val	tcc Ser	gct Ala	ctt Leu	tca Ser 260	caa Gln	gag Glu	ata Ile	aag Lys	ttt Phe 265	gtt Val	atg Met	gaa Glu	tat Tyr	ggc Gly 270	878
tgg Trp	cac His	aca Thr	aat Asn	ttg Leu 275	cca Pro	aga Arg	ttg Leu	gaa Glu	gca Ala 280	aga Arg	aat Asn	tac Tyr	ata Ile	gac Asp 285	aca Thr	926
ctt Leu	gag Glu	aaa Lys	gac Asp 290	acc Thr	agt Ser	gca Ala	tgg Trp	ctc Leu 295	aat Asn	aaa Lys	aat Asn	gct Ala	300 Gly ggg	aag Lys	aag Lys	974
ctt Leu	tta Leu	gaa Glu 305	ctt Leu	gca Ala	aaa Lys	ttg Leu	gag Glu 310	ttc Phe	aat Asn	ata Ile	ttt Phe	aac Asn 315	tcc Ser	tta Leu	caa Gln	1022
caa Gln	aag Lys 320	gaa Glu	tta Leu	caa Gln	tat Tyr	ctt Leu 325	ttg Leu	aga Arg	tgg Trp	tgg Trp	aaa Lys 330	gag Glu	tcg Ser	gat Asp	ttg Leu	1070
pro 335	aaa Lys	ttg Leu	aca Thr	ttt Phe	gct Ala 340	cgg Arg	cat His	cgt Arg	cat His	gtg Val 345	gaa Glu	ttc Phe	tac Tyr	act Thr	ttg Leu 350	1118

		Cys	116	355	116	Asp	Pro	Lys	His 360	Ser	Ala	Phe	Arg	Leu 365	_	1166
		Lys	370	cys	cat His	Leu	Val	375	Val	Leu	Asp	Asp	11e 380	Tyr	Asp	1214
act Thr	ttt Phe	gga Gly 385	TAIL	att Ile	gac Asp	gag Glu	ctt Leu 390	gaa Glu	ctc Leu	ttc Phe	aca Thr	tct Ser 395	gca Ala	att Ile	aag Lys	1262
9	400	71511	261	ser	gag Glu	405	GIu	HIS	Leu	Pro	Glu 410	Tyr	Met	Lys	Cys	1310
415	- 12	1100	Val	Val	ttt Phe 420	GIU	Thr	Val	Asn	Glu 425	Leu	Thr	Arg	Glu	Ala 430	1358
	2,5	1111	GIN	435	aga Arg	Asn	Thr	Leu	Asn 440	Tyr	Val	Arg	Lys	Ala 445	Trp	1406
		-12	450	Asp	tca Ser	lyr	мет	455	Glu	Ala	Lys	Trp	11e 460	Ser	Asn	1454
1	- 1 -	465	110	met	ttt Phe	GIU	470	Tyr	His	Glu	Asn	Gly 475	Lys	Val	Ser	1502
_	480	. 7 .	Arg	Vai	gca Ala	485	Leu	GIn	Pro	Ile	Leu 490	Thr	Leu	Asn	Ala	1550
495	~~u	110	Д	TYL	atc Ile 500	reu	rys	GIY	He	Asp 505	Phe	Pro	Ser	Arg	Phe 510	1598
		Deq	7114	515	tcc Ser	rne	Leu	Arg	520	Arg	Gly	Asp	Thr	Arg 525	Cys	1646
- 1 -	2,0	7 LL U	530	ALG	gat Asp	Arg	GIY	535	GIu	Ala	Ser	Cys	11e 540	Ser	Cys	1694
7 ~		545	лър	ASII	cct Pro	GIĀ	550	Thr	Glu	Glu	Asp	Ala 555	Leu	Asn	His	1742
	560	1124	riec	val	aat Asn	565	11e	lle	Lys	Glu	Leu 570	Asn	Trp	Glu	Leu	1790
cta Leu 575	aga Arg	tcc Ser	aac Asn	gac Asp	aat Asn 580	att Ile	cca Pro	atg Met	ctg Leu	gcc Ala 585	aag Lys	aaa Lys	cat His	gct Ala	ttt Phe 590	1838

gac ata aca aga gct ctc cac cat ctc tac ata tat cga gat ggc ttt Asp Ile Thr Arg Ala Leu His His Leu Tyr Ile Tyr Arg Asp Gly Phe 595 600 605	1886
agt gtt gcc aac aag gaa aca aaa aaa ttg gtt atg gaa aca ctc ctt Ser Val Ala Asn Lys Glu Thr Lys Lys Leu Val Met Glu Thr Leu Leu 610 620	1934
gaa tot atg ott tit taa otataacoat atooataata ataagotoat Glu Ser Met Leu Phe 625	1982
aatgctaaat tattggcctt atgacatagt ttatgtatgt acttgtgtga attcaatcat 2	2042
atcgtgtggg tatgattaaa aagctagagc ttactaggtt agtaacatgg tgataaaagt 2	2102
tataaaatgt gagttataga gatacccatg ttgaataatg aattacaaaa agagaaattt 2	2162
atgtagaata agattggaag cttttcaatt gttt	2196
<210> 2 <211> 627 <212> PRT <213> Abies grandis	
<pre><400> 2 Met Ala Leu Val Ser Ile Ser Pro Leu Ala Ser Lys Ser Cys Leu Arg 1</pre>	
Lys Ser Leu Ile Ser Ser Ile His Glu His Lys Pro Pro Tyr Arg Thr 20 25 30	
Ile Pro Asn Leu Gly Met Arg Arg Arg Gly Lys Ser Val Thr Pro Ser	
Met Ser Ile Ser Leu Ala Thr Ala Ala Pro Asp Asp Gly Val Gln Arg 50 55 60	
Arg Ile Gly Asp Tyr His Ser Asn Ile Trp Asp Asp Asp Phe Ile Gln 65 70 75 80	
Ser Leu Ser Thr Pro Tyr Gly Glu Pro Ser Tyr Gln Glu Arg Ala Glu 85 90 95	
Arg Leu Ile Val Glu Val Lys Lys Ile Phe Asn Ser Met Tyr Leu Asp 100 105 110	
Asp Gly Arg Leu Met Ser Ser Phe Asn Asp Leu Met Gln Arg Leu Trp 115 120 125	
Ile Val Asp Ser Val Glu Arg Leu Gly Ile Ala Arg His Phe Lys Asn 130 135 140	
Glu Ile Thr Ser Ala Leu Asp Tyr Val Phe Arg Tyr Trp Glu Glu Asn 145 150 155 160	
Gly Ile Gly Cys Gly Arg Asp Ser Ile Val Thr Asp Leu Asn Ser Thr 165 170 175	

Ala Leu Gly Phe Arg Thr Leu Arg Leu His Gly Tyr Thr Val Ser Pro Glu Val Leu Lys Ala Phe Gln Asp Gln Asn Gly Gln Phe Val Cys Ser Pro Gly Gln Thr Glu Gly Glu Ile Arg Ser Val Leu Asn Leu Tyr Arg Ala Ser Leu Ile Ala Phe Pro Gly Glu Lys Val Met Glu Glu Ala Glu Ile Phe Ser Thr Arg Tyr Leu Lys Glu Ala Leu Gln Lys Ile Pro Val Ser Ala Leu Ser Gln Glu Ile Lys Phe Val Met Glu Tyr Gly Trp His Thr Asn Leu Pro Arg Leu Glu Ala Arg Asn Tyr Ile Asp Thr Leu Glu Lys Asp Thr Ser Ala Trp Leu Asn Lys Asn Ala Gly Lys Lys Leu Leu Glu Leu Ala Lys Leu Glu Phe Asn Ile Phe Asn Ser Leu Gln Gln Lys Glu Leu Gln Tyr Leu Leu Arg Trp Trp Lys Glu Ser Asp Leu Pro Lys Leu Thr Phe Ala Arg His Arg His Val Glu Phe Tyr Thr Leu Ala Ser Cys Ile Ala Ile Asp Pro Lys His Ser Ala Phe Arg Leu Gly Phe Ala Lys Met Cys His Leu Val Thr Val Leu Asp Asp Ile Tyr Asp Thr Phe Gly Thr Ile Asp Glu Leu Glu Leu Phe Thr Ser Ala Ile Lys Arg Trp Asn Ser Ser Glu Ile Glu His Leu Pro Glu Tyr Met Lys Cys Val Tyr Met Val Val Phe Glu Thr Val Asn Glu Leu Thr Arg Glu Ala Glu Lys Thr Gln Gly Arg Asn Thr Leu Asn Tyr Val Arg Lys Ala Trp Glu Ala Tyr Phe Asp Ser Tyr Met Glu Glu Ala Lys Trp Ile Ser Asn Gly Tyr Leu Pro Met Phe Glu Glu Tyr His Glu Asn Gly Lys Val Ser Ser Ala Tyr Arg Val Ala Thr Leu Gln Pro Ile Leu Thr Leu Asn Ala Trp Leu

Pro Asp Tyr Ile Leu Lys Gly Ile Asp Phe Pro Ser Arg Phe Asn Asp 510 505 500 Leu Ala Ser Ser Phe Leu Arg Leu Arg Gly Asp Thr Arg Cys Tyr Lys 525 520 515 Ala Asp Arg Asp Arg Gly Glu Glu Ala Ser Cys Ile Ser Cys Tyr Met 540 535 530 Lys Asp Asn Pro Gly Ser Thr Glu Glu Asp Ala Leu Asn His Ile Asn 550 555 545 Ala Met Val Asn Asp Ile Ile Lys Glu Leu Asn Trp Glu Leu Leu Arg 575 570 565 Ser Asn Asp Asn Ile Pro Met Leu Ala Lys Lys His Ala Phe Asp Ile 590 585 580 Thr Arg Ala Leu His His Leu Tyr Ile Tyr Arg Asp Gly Phe Ser Val 600 595 Ala Asn Lys Glu Thr Lys Lys Leu Val Met Glu Thr Leu Leu Glu Ser 620 615 610 Met Leu Phe 625 <210> 3 <211> 2018 <212> DNA <213> Abies grandis <220> <221> CDS <222> (6)..(1892) <223> Clone AG3.18 encoding pinene synthase <400> 3 cagca atg gct cta gtt tct acc gca ccg ttg gct tcc aaa tca tgc ctg 50 Met Ala Leu Val Ser Thr Ala Pro Leu Ala Ser Lys Ser Cys Leu 10 1 cac aaa tog ttg atc agt tot acc cat gag ott aag got otc tot aga 98 His Lys Ser Leu Ile Ser Ser Thr His Glu Leu Lys Ala Leu Ser Arg 25 20 aca att cca gct cta gga atg agt agg cga ggg aaa tct atc act cct 146 Thr Ile Pro Ala Leu Gly Met Ser Arg Arg Gly Lys Ser Ile Thr Pro 45 35 tee ate age atg age tet ace ace gtt gta ace gat gat ggt gta ega 194 Ser Ile Ser Met Ser Ser Thr Thr Val Val Thr Asp Asp Gly Val Arg 60 55 50 aga cgc atg ggc gat ttc cat tcc aac ctc tgg gac gat gat gtc ata 242 Arg Arg Met Gly Asp Phe His Ser Asn Leu Trp Asp Asp Asp Val Ile 75 70 65

cag Gln 80	tct Ser	tta Leu	cca Pro	acg Thr	gct Ala 85	tat Tyr	gag Glu	gaa Glu	aaa Lys	tcg Ser 90	tac Tyr	ctg Leu	gag Glu	egt Arg	gct Ala 95	290
gag Glu	aaa Lys	ctg Leu	atc Ile	999 100	gaa Glu	gta Val	aag Lys	aac Asn	atg Met 105	ttc Phe	aat Asn	tcg Ser	atg Met	tca Ser 110	tta Leu	338
gaa Glu	gat Asp	gga Gly	gag Glu 115	tta Leu	atg Met	agt Ser	ccg Pro	ctc Leu 120	aat Asn	gat Asp	ctc Leu	att Ile	caa Gln 125	cgc Arg	ctt Leu	386
tgg Trp	att Ile	gtc Val 130	gac Asp	agc Ser	ctt Leu	gaa Glu	cgt Arg 135	ttg Leu	ggg Gly	atc Ile	cat His	aga Arg 140	cat His	ttc Phe	aaa Lys	434
gat Asp	gag Glu 145	ata Ile	aaa Lys	tcg Ser	gcg Ala	ctt Leu 150	gat Asp	tat Tyr	gtt Val	tac Tyr	agt Ser 155	tat Tyr	tgg Trp	ggc Gly	gaa Glu	482
aat Asn 160	ggc Gly	atc Ile	gga Gly	tgc Cys	ggg Gly 165	agg Arg	gag Glu	agt Ser	gtt Val	gtt Val 170	act Thr	gat Asp	ctg Leu	aac Asn	tca Ser 175	530
act Thr	gcg Ala	ttg Leu	ggg Gly	ctt Leu 180	cga Arg	acc Thr	cta Leu	cga Arg	cta Leu 185	cac His	gga Gly	tac Tyr	ccg Pro	gtg Val 190	tct Ser	578
tca Ser	gat Asp	gtt Val	ttc Phe 195	aaa Lys	gct Ala	ttc Phe	aaa Lys	ggc Gly 200	caa Gln	aat Asn	Gly ggg	cag Gln	ttt Phe 205	tcc Ser	tgc Cys	626
tct Ser	gaa Glu	aat Asn 210	att Ile	cag Gln	aca Thr	gat Asp	gaa Glu 215	gag Glu	atc Ile	aga Arg	ggc Gly	gtt Val 220	ctg Leu	aat Asn	tta Leu	674
ttc Phe	cgg Arg 225	gcc Ala	tcc Ser	ctc Leu	att Ile	gcc Ala 230	ttt Phe	cca Pro	ggg Gly	gag Glu	aaa Lys 235	att Ile	atg Met	gat Asp	gag Glu	722
gct Ala 240	gaa Glu	atc Ile	ttc Phe	tct Ser	acc Thr 245	aaa Lys	tat Tyr	tta Leu	aaa Lys	gaa Glu 250	gcc Ala	ctg Leu	caa Gln	aag Lys	att Ile 255	7 70
ccg Pro	gtc Val	tcc Ser	agt Ser	ctt Leu 260	tcg Ser	cga Arg	gag Glu	atc Ile	ggg Gly 265	gac Asp	gtt Val	ttg Leu	gaa Glu	tat Tyr 270	ggt Gly	818
tgg Trp	cac His	aca Thr	tat Tyr 275	ttg Leu	ccg Pro	cga Arg	ttg Leu	gaa Glu 280	gca Ala	agg Arg	aat Asn	tac Tyr	atc Ile 285	caa Gln	gtc Val	866
ttt Phe	gga Gly	cag Gln 290	gac Asp	act Thr	gag Glu	aac Asn	acg Thr 295	aag Lys	tca Ser	tat Tyr	gtg Val	aag Lys 300	agc Ser	aaa Lys	aaa Lys	914
ctt Leu	tta Leu 305	gaa Glu	ctc Leu	gca Ala	aaa Lys	ttg Leu 310	gag Glu	ttc Phe	aac Asn	atc Ile	ttt Phe 315	caa Gln	tcc Ser	tta Leu	caa Gln	962

aag Lys 320	agg Arg	gag Glu	tta Leu	gaa Glu	agt Ser 325	ctg Leu	gtc Val	aga Arg	tgg Trp	tgg Trp 330	aaa Lys	gaa Glu	tcg Ser	ggt Gly	ttt Phe 335	1010
	Gru	Met	Int	340	Cys	Arg	His	Arg	His 345	gtg Val	Glu	Tyr	Tyr	Thr 350	Leu	1058
gct Ala	tcc Ser	tgc Cys	att Ile 355	gcg Ala	ttc Phe	g a g Glu	cct Pro	caa Gln 360	cat His	tct Ser	gga Gly	ttc Phe	aga Arg 365	ctc Leu	ggc Gly	1106
1116	AT d	370	Inr	Cys	HIS	Leu	375	Thr	Val	ctt Leu	Asp	Asp 380	Met	Tyr	Asp	1154
1111	385	GIY	1111	val	Asp	390	Leu	Glu	Leu	ttc Phe	Thr 395	Ala	Thr	Met	Lys	1202
400	115	Asp	PIO	ser	405	He	Asp	Cys	Leu	cca Pro 410	Glu	Tyr	Met	Lys	Gly 415	1250
	. 4.	116	ATA	420	Tyr	Asp	Thr	Val	Asn 425	gaa Glu	Met	Ala	Arg	Glu 430	Ala	1298
gag Glu	gag Glu	gct Ala	caa Gln 435	ggc Gly	cga Arg	gat Asp	acg Thr	ctc Leu 440	aca Thr	tat Tyr	gct Ala	cgg Arg	gaa Glu 445	gct Ala	tgg Trp	1346
gag Glu	gct Ala	tat Tyr 450	att Ile	gat Asp	tcg Ser	tat Tyr	atg Met 455	caa Gln	gaa Glu	gca Ala	agg Arg	tgg Trp 460	atc Ile	gcc Ala	act Thr	1394
ggt Gly	tac Tyr 465	ctg Leu	ccc Pro	tcc Ser	ttt Phe	gat Asp 470	gag Glu	tac Tyr	tac Tyr	gag Glu	aat Asn 475	ggg Gly	aaa Lys	gtt Val	agc Ser	1442
tgt Cys 480	ggt Gly	cat His	cgc Arg	ata Ile	tcc Ser 485	gca Ala	ttg Leu	caa Gln	ccc Pro	att Ile 490	ctg Leu	aca Thr	atg Met	gac Asp	atc Ile 495	1490
Pro	ttt Phe	cct Pro	gat Asp	cat His 500	atc Ile	ctc Leu	aag Lys	gaa Glu	gtt Val 505	gac Asp	ttc Phe	cca Pro	tca Ser	aag Lys 510	ctt Leu	1538
aac Asn	gac Asp	ttg Leu	gca Ala 515	tgt Cys	gcc Ala	atc Ile	ctt Leu	cga Arg 520	tta Leu	cga Arg	ggt Gly	gat Asp	acg Thr 525	cgg Arg	tgc Cys	1586
tac Tyr	aag Lys	gcg Ala 530	gac Asp	agg Arg	gct Ala	cgt Arg	gga Gly 535	gaa Glu	gaa Glu	gct Ala	tcc Ser	tct Ser 540	ata Ile	tca Ser	tgt Cys	1634
tat Tyr	atg Met 545	aaa Lys	gac Asp	aat Asn	cct Pro	gga Gly 550	gta Val	tca Ser	gag Glu	gaa Glu	gat Asp 555	gct Ala	ctc Leu	gat Asp	cat His	1682

atc aac gcc at Ile Asn Ala Me 560	565	Asp Val	ile Lys	Gly Leu 570	Asn Tr	p Glu	Leu 575	1730
ctc aaa cca ga Leu Lys Pro As	580	val Pro	11e Ser 585	Ala Lys	Lys Hi	s Ala 590	Phe	1778
gac atc gcc ag Asp Ile Ala Ar 59	g Ala Phe	cat tac His Tyr	ggc tac Gly Tyr 600	aaa tac Lys Tyr	cga ga Arg As	p Gly	tac Tyr	1826
agc gtt gcc aa Ser Val Ala As 610	c gtt gaa n Val Glu	acg aag Thr Lys 615	agt ttg Ser Leu	gtc acg Val Thr	aga ac Arg Th	c ctc r Leu	ctt Leu	1874
gaa tot gtg oo Glu Ser Val Pr 625	t ttg tag o Leu	caacagct	ca aatc	tatgee e	tatgcta	tg		1922
tcgggttaaa ata	tatgtgg aa	aggtagccg	g ttggato	gtag agga	ataagtt	tgtt	ataatt	1982
taataaagtt gta	atttaaa aa	aaaaaaaa	aaaaaa					2018
<210> 4 <211> 628 <212> PRT <213> Abies gr	andis							
<400> 4								
Met Ala Leu Va l	5		10			15		
Lys Ser Leu Il 2	e Ser Ser O	Thr His	Glu Leu 25	Lys Ala		r Arg 0	Thr	
Ile Pro Ala Le 35	u Gly Met	Ser Arg 40	Arg Gly	Lys Ser	Ile Th	r Pro	Ser	
Ile Ser Met Se 50	r Ser Thr	Thr Val	Val Thr	Asp Asp 60	Gly Va	l Arg	Arg	
Arg Met Gly As 65	Phe His	Ser Asn	Leu Trp	Asp Asp 75	Asp Va	l Ile	Gln 80	
Ser Leu Pro Th	r Ala Tyr 85	Glu Glu	Lys Ser 90	Tyr Leu	Glu Ar	g Ala 95	Glu	
Lys Leu Ile Gl 10	y Glu Val	Lys Asn	Met Phe 105	Asn Ser	Met Se		Glu	
Asp Gly Glu Le 115	Met Ser	Pro Leu 120	Asn Asp	Leu Ile	Gln Ar 125	g Leu	Trp	
Ile Val Asp Se 130	r Leu Glu	Arg Leu 135	Gly Ile	His Arg 140	His Ph	e Lys	Asp	
Glu Ile Lys Se 145	r Ala Leu 150	Asp Tyr	Val Tyr	Ser Tyr 155	Trp Gl	y Glu	Asn 160	

Gly	Ile	Gly	Cys	Gly 165	Arg	Glu	Ser	Val	Val 170	Thr	Asp	Leu	Asn	Ser 175	Thr
Ala	Leu	Gly	Leu 180	Arg	Thr	Leu	Arg	Leu 185	His	Gly	Tyr	Pro	Val 190	Ser	Ser
Asp	Val	Phe 195	Lys	Ala	Phe	Lys	Gly 200	Gln	Asn	Gly	Gln	Phe 205	Ser	Cys	Ser
Glu	Asn 210	Ile	Gln	Thr	Asp	Glu 215	Glu	Ile	Arg	Gly	Val 220	Leu	Asn	Leu	Phe
223					230					235					Ala 240
			Ser	245					250					255	
			Leu 260					265					270		-
		215					280					285			Phe
	290					295					300				Leu
303			Ala		310					315					320
Arg	Glu	Leu	Glu	Ser 325	Leu	Val	Arg	Trp	Trp 330	Lys	Glu	Ser	Gly	Phe 335	Pro
Glu	Met	Thr	Phe 340	Cys	Arg	His	Arg	His 345	Val	Glu	Tyr	Tyr	Thr 350	Leu	Ala
Ser	Cys	11e 355	Ala	Phe	Glu	Pro	Gln 360	His	Ser	Gly	Phe	Arg 365	Leu	Gly	Phe
Ala	Lys 370	Thr	Cys	His	Leu	Ile 375	Thr	Val	Leu	Asp	Asp 380	Met	Tyr	Asp	Thr
Phe 385	Gly	Thr	Val	Asp	Glu 390	Leu	Glu	Leu	Phe	Thr 395	Ala	Thr	Met	Lys	Arg 400
Trp	Asp	Pro	Ser	Ser 405	Ile	Asp	Cys	Leu	Pro 410	Glu	Tyr	Met	Lys	Gly 415	Val
Туr	Ile	Ala	Val 420	Tyr	Asp	Thr	Val	Asn 425	Glu	Met	Ala	Arg	Glu 430	Ala	Glu
Glu	Ala	Gln 435	Gly	Arg	Asp	Thr	Leu 440	Thr	Tyr	Ala	Arg	Glu 445	Ala	Trp	Glu
Ala		~ 2	3	_	m	Mat	Gln	Clu	ת ל ת	7 ~~		T1 -	• •		
	Tyr 450	шe	Asp	Ser	ıyı	455	GIII	GIU	Ald	Arg	460	11e	Ala	Thr	GLY

Gly His Arg Ile Ser Ala Leu Gln Pro Ile Leu Thr Met Asp Ile Pro 485 Phe Pro Asp His Ile Leu Lys Glu Val Asp Phe Pro Ser Lys Leu Asn 500 505 510 Asp Leu Ala Cys Ala Ile Leu Arg Leu Arg Gly Asp Thr Arg Cys Tyr 515 520 525 Lys Ala Asp Arg Ala Arg Gly Glu Glu Ala Ser Ser Ile Ser Cys Tyr 530 535 Met Lys Asp Asn Pro Gly Val Ser Glu Glu Asp Ala Leu Asp His Ile 545 550 555 560 Asn Ala Met Ile Ser Asp Val Ile Lys Gly Leu Asn Trp Glu Leu Leu 565 570 575 Lys Pro Asp Ile Asn Val Pro Ile Ser Ala Lys Lys His Ala Phe Asp 580 585 Ile Ala Arg Ala Phe His Tyr Gly Tyr Lys Tyr Arg Asp Gly Tyr Ser 595 600 605 Val Ala Asn Val Glu Thr Lys Ser Leu Val Thr Arg Thr Leu Leu Glu 610 615 620 Ser Val Pro Leu 625 <210> 5 <211> 2089 <212> DNA <213> Abies grandis <220> <221> CDS <222> (73)..(1986) <223> Clone AG10 encoding limonene synthase <400> 5 tgccgtttaa tcggtttaaa gaagctacca tagttcggtt taaagaagct accatagttt 60 aggcaggaat cc atg gct ctc ctt tct atc gta tct ttg cag gtt ccc aaa 111 Met Ala Leu Leu Ser Ile Val Ser Leu Gln Val Pro Lys 10 tcc tgc ggg ctg aaa tcg ttg atc agt tcc agc aat gtg cag aag gct 159 Ser Cys Gly Leu Lys Ser Leu Ile Ser Ser Ser Asn Val Gln Lys Ala 15 20 25 ctc tgt atc tct aca gca gtc cca aca ctc aga atg cgt agg cga cag 207 Leu Cys Ile Ser Thr Ala Val Pro Thr Leu Arg Met Arg Arg Gln 30 35 40 45 aaa gct ctg gtc atc aac atg aaa ttg acc act gta tcc cat cgt gat 255 Lys Ala Leu Val Ile Asn Met Lys Leu Thr Thr Val Ser His Arg Asp 50 55

gat Asp	aat Asn	ggt Gly	ggt Gly 65	ggt Gly	gta Val	ctg Leu	caa Gln	aga Arg 70	cgc Arg	ata Ile	gcc Ala	gat Asp	cat His 75	cat His	ccc Pro	303
aac Asn	ctg Leu	tgg Trp 80	gaa Glu	gat Asp	gat Asp	ttc Phe	ata Ile 85	caa Gln	tca Ser	ttg Leu	tcc Ser	tca Ser 90	cct Pro	tat Tyr	ggg	351
gga Gly	tct Ser 95	tcg Ser	tac Tyr	agt Ser	gaa Glu	cgt Arg 100	gct Ala	gag Glu	aca Thr	gtc Val	gtt Val 105	gag Glu	gaa Glu	gta Val	aaa Lys	399
gag Glu 110	atg Met	ttc Phe	aat Asn	tca Ser	ata Ile 115	cca Pro	aat Asn	aat Asn	aga Arg	gaa Glu 120	tta Leu	ttt Phe	ggt Gly	tcc Ser	caa Gln 125	447
aat Asn	gat Asp	ctc Leu	ctt Leu	aca Thr 130	cgc Arg	ctt Leu	tgg Trp	atg Met	gtg Val 135	gat Asp	agc Ser	att Ile	gaa Glu	cgt Arg 140	ctg J Leu	495
G] À	ata Ile	gat Asp	aga Arg 145	His	ttc Phe	caa Gln	aat Asn	gag Glu 150	Ile	aga Arg	gta Val	gcc Ala	ctc Leu 155	Asp	tat Tyr	543
gtt Val	tac Tyr	agt Ser 160	Tyr	tgg Trp	aag Lys	gaa Glu	aag Lys 165	Glu	ggc	att Ile	gly ggg	tgt Cys 170	GJ?	aga Ar	a gat g Asp	591
tct Ser	act Thr	Phe	cct Pro	gat Asp	ctc Leu	aac Asn 180	Ser	act Thr	gcc Ala	ttg Lev	g gcg 1 Ala 185	. Leu	cga Arg	a ac g Th	t ctt r Lei	639
cga Arc 190	j Lei	g cad 1 His	gga Gly	a tac y Tyr	aat Asn 195	Val	tct Sei	t tca c Sei	gat Asp	gto Val 200	l Le	g gaa u Glu	a tao	c tt r Ph	c aaa e Ly: 20!	5
gat Asj	c gaa p Glu	a aac u Ly:	g gg s Gl	g cat y His 210	s Phe	gco Ala	tgo a Cy:	c cct s Pro	z gca o Ala 21!	a Il	c cta e Le	a aco u Thi	c ga r Gl	g gg u Gl 22	a cad y Gl:	g 735 n
at Il	c ac e Th	t ag r Ar	a ag g Se 22	r Va	t cta l Le	a aat 1 Asi	t tt.	a ta u Ty 23	r Ar	g gc	t tc a Se	c cto	g gt u Va 23	1 AJ	c tt .a Ph	t 783 e
cc Pr	c gg o Gl	g ga y Gl 24	u Ly	a gt s Va	t ate	g gaa	a ga u Gl 24	u Al	t ga a Gl	a at u Il	c tt e Ph	c tc e Se 25	r Al	a to a Se	et ta er Ty	t 831
tt Le	g aa u Ly 25	s Ly	a gt 's Va	c tt	a ca u Gl	a aa n Ly 26	s Il	t cc e Pr	g gt o Va	c to l Se	c aa r As 26	n Le	t to u Se	a go	ga ga ly Gl	g 879 .u
at I1 27	e G1	a ta .u Ty	it gt 7r Va	t tt	g ga u Gl 27	u Ty	t gg r Gl	ıt tg .y Tı	g ca p Hi	c ac s Th	ir As	it tt sn Le	ig co eu Pi	eg a co A	ga tt rg Le 28	ig 927 eu 35
ga Gl	ia go Lu Al	ca aç La Ai	ga aa cg As	at ta sn Ty 29	r Il	c ga e Gl	ig gt .u Vā	c ta	ic ga /r Gl 29	lu G	ag ag Ln Se	gc gg er Gl	go ta Ly T	yr G	aa aq lu Se 00	gc 975 er

tta Leu	aac Asn	gag Glu	atg Met 305	cca Pro	tat Tyr	atg Met	aac Asn	atg Met 310	Lys	aag Lys	ctt Leu	tta Leu	caa Gln 315	Leu	gca Ala	1023
aaa Lys	ttg Leu	gag Glu 320	rne	aat Asn	atc Ile	ttt Phe	cac His 325	tct Ser	ttg Leu	caa Gln	cta Leu	aga Arg 330	gag Glu	tta Leu	caa Gln	1071
tct Ser	atc Ile 335	tcc Ser	aga Arg	tgg Trp	tgg Trp	aaa Lys 340	gaa Glu	tca Ser	ggt Gly	tcg Ser	tct Ser 345	caa Gln	ctg Leu	act Thr	ttt Phe	1119
aca Thr 350	cgg Arg	cat His	cgt Arg	cac His	gtg Val 355	gaa Glu	tac Tyr	tac Tyr	act Thr	atg Met 360	gca Ala	tct Ser	tgc Cys	att Ile	tct Ser 365	1167
	Deu	110	цуз	370	tca Ser	Ala	Phe	Arg	Met 375	Glu	Phe	Val	Lys	Val 380	Cys	1215
	200	vai	385	vai	ctc Leu	Asp	Asp	390	Tyr	Asp	Thr	Phe	Gly 395	Thr	Met	1263
aac Asn	gaa Glu	ctc Leu 400	caa Gln	ctt Leu	ttt Phe	acg Thr	gat Asp 405	gca Ala	att Ile	aag Lys	aga Arg	tgg Trp 410	gat Asp	ttg Leu	tca Ser	1311
acg Thr	aca Thr 415	agg Arg	tgg Trp	ctt Leu	cca Pro	gaa Glu 420	tat Tyr	atg Met	aaa Lys	gga Gly	gtg Val 425	tac Tyr	atg Met	gac Asp	ttg Leu	1359
tat Tyr 430	caa Gln	tgc C ys	att Ile	aat Asn	gaa Glu 435	atg Met	gtg Val	gaa Glu	gag Glu	gct Ala 440	gag Glu	aag Lys	act Thr	caa Gln	ggc Gly 445	1407
cga Arg	gat Asp	atg Met	ctc Leu	aac Asn 450	tat Tyr	att Ile	caa Gln	aat Asn	gct Ala 455	tgg Trp	gaa Glu	gcc Ala	cta Leu	ttt Phe 460	gat Asp	1455
acc Thr	ttt Phe	atg Met	caa Gln 465	gaa Glu	gca Ala	aag Lys	tgg Trp	atc Ile 470	tcc Ser	agc Ser	agt Ser	tat Tyr	ctc Leu 475	cca Pro	acg Thr	1503
ttt Phe	gag Glu	gag Glu 480	tac Tyr	ttg Leu	aag Lys	aat Asn	gca Ala 485	aaa Lys	gtt Val	agt Ser	tct Ser	ggt Gly 4 90	tct Ser	c gc Arg	ata Ile	1551
gcc Ala	aca Thr 495	tta Leu	caa Gln	ccc Pro	att Ile	ctc Leu 500	act Thr	ttg Leu	gat Asp	gta Val	cca Pro 505	ctt Leu	cct Pro	gat Asp	tac Tyr	1599
ata Ile 510	ctg Leu	caa Gln	gaa Glu	att Ile	gat Asp 515	tat Tyr	cca Pro	tcc Ser	aga Arg	ttc Phe 520	aat Asn	gag Glu	tta Leu	gct Ala	tcg Ser 525	1647
tcc Ser	atc Ile	ctt Leu	cga Arg	cta Leu 530	cga Arg	ggt Gly	gac Asp	acg Thr	cgc Arg 535	tgc Cys	tac Tyr	aag Lys	gcg Ala	gat Asp 540	agg Arg	1695

Ala Arg Gly Glu Glu Ala Ser Ala Ile Ser Cys Tyr Met Lys Asp His 545 550 555	1743
cct gga tca ata gag gaa gat gct ctc aat cat atc aac gcc atg atc Pro Gly Ser Ile Glu Glu Asp Ala Leu Asn His Ile Asn Ala Met Ile 560 565 570	
agt gat gca atc aga gaa tta aat tgg gag ctt ctc aga ccg gat ago Ser Asp Ala Ile Arg Glu Leu Asn Trp Glu Leu Leu Arg Pro Asp Ser 575 580 585	
aaa agt ccc atc tct tcc aag aaa cat gct ttt gac atc acc aga gc Lys Ser Pro Ile Ser Ser Lys Lys His Ala Phe Asp Ile Thr Arg Ala 590 595 600	a
ttc cat cat gtc tac aaa tat cga gat ggt tac act gtt tcc aac aa Phe His His Val Tyr Lys Tyr Arg Asp Gly Tyr Thr Val Ser Asn As 610 615 620	
gaa aca aag aat ttg gtg atg aaa acc gtt ctt gaa cct ctc gct tt Glu Thr Lys Asn Leu Val Met Lys Thr Val Leu Glu Pro Leu Ala Le 625 630 635	
taa aaacatatag aatgcattaa aatgtgggaa gtctataatc tagactattc	2036
tctatctttc ataatgtaga tctggatgtg tattgaactc taaaaaaaa aaa	2089
<210> 6	
<211> 637 <212> PRT <213> Abies grandis	
<212> PRT	Lу
<212> PRT <213> Abies grandis <400> 6 Met Ala Leu Leu Ser Ile Val Ser Leu Gln Val Pro Lys Ser Cys G	
<pre><212> PRT <213> Abies grandis <400> 6 Met Ala Leu Leu Ser Ile Val Ser Leu Gln Val Pro Lys Ser Cys Gl</pre>	le
<pre><212> PRT <213> Abies grandis <400> 6 Met Ala Leu Leu Ser Ile Val Ser Leu Gln Val Pro Lys Ser Cys Gl</pre>	le eu
<pre><212> PRT <213> Abies grandis <400> 6 Met Ala Leu Leu Ser Ile Val Ser Leu Gln Val Pro Lys Ser Cys G. 1</pre>	le eu ly
<pre><212> PRT <213> Abies grandis <400> 6 Met Ala Leu Leu Ser Ile Val Ser Leu Gln Val Pro Lys Ser Cys G. 1</pre>	le eu ly rp 80
<pre><212> PRT <213> Abies grandis <400> 6 Met Ala Leu Leu Ser Ile Val Ser Leu Gln Val Pro Lys Ser Cys Gl 1</pre>	le eu ly rp 80 er

Leu	Thr 130	Arg	Leu	Trp	Met	Val 135	Asp	Ser	Ile	Glu	Arg 140	Leu	Gly	Ile	Asp
Arg 145	His	Phe	Gln	Asn	Glu 150	Ile	Arg	Val	Ala	Leu 155	Asp	Туг	Val	Tyr	Ser 160
Tyr	Trp	Lys	Glu	Lys 165	Glu	Gly	Ile	Gly	Cys 170	Gly	Arg	Asp	Ser	Thr 175	Phe
Pro	Asp	Leu	Asn 180	Ser	Thr	Ala	Leu	Ala 185	Leu	Arg	Thr	Leu	Arg 190	Leu	His
Gly	Tyr	Asn 195	Val	Ser	Ser	Asp	Val 200	Leu	Glu	Туř	Phe	Lys 205	Asp	Glu	Lys
Gly	His 210	Phe	Ala	Cys	Pro	Ala 215	Ile	Leu	Thr	Glu	Gly 220	Gln	Ile	Thr	Arg
Ser 225	Val	Leu	Asn	Leu	Tyr 230	Arg	Ala	Ser	Leu	Val 235	Ala	Phe	Pro	Gly	Glu 240
	Val			245					250					255	
Val	Leu	Gln	Lys 260	Ile	Pro	Val	Ser	Asn 265	Leu	Ser	Gly	Glu	Ile 270	Glu	Tyr
Val	Leu	Glu 275	Tyr	Gly	Trp	His	Thr 280	Asn	Leu	Pro	Arg	Leu 285	Glu	Ala	Arg
Asn	Tyr 290	Ile	Glu	Val	Tyr	Glu 295	Gln	Ser	Gly	туr	Glu 300	Ser	Leu	Asn	Glu
Met 305	Pro	Tyr	Met	Asn	Met 310	Lys	Lys	Leu	Leu	Gln 315	Leu	Ala	Lys	Leu	Glu 320
Phe	Asn	Ile	Phe	His 325	Ser	Leu	Gln	Leu	Arg 330	Glu	Leu	Gln	Ser	Ile 335	Ser
Arg	Trp	Trp	Lys 340	Glu	Ser	Gly	Ser	Ser 345	Gln	Leu	Thr	Phe	Thr 350	Arg	His
Arg	His	Val 355	Glu	Tyr	Tyr	Thr	Met 360	Ala	Ser	Cys	Ile	Ser 365	Met	Leu	Pro
Lys	His 370	Ser	Ala	Phe	Arg	M et 375	Glu	Phe	Val	Lys	Val 380	Cys	His	Leu	Val
Thr 385	Val	Leu	Asp	qzA	Ile 390	Tyr	Asp	Thr	Phe	Gly 395	Thr	Met	Asn	Glu	Leu 400
Gln	Leu	Phe	Thr	Asp 405	Ala	Ile	Lys	Arg	Trp 410	Asp	Leu	Ser	Thr	Thr 415	Arg
Trp	Leu	Pro	Glu 4 20	Tyr	Met	Lys	Gly	Val 425	Tyr	Met	Asp	Leu	Tyr 430	Gln	Cys
Ile	Asn	Glu 435	Met	Val	Glu	Glu	Ala 440	Glu	Lys	Thr	Gln	Gly 445	Arg	Asp	Met

```
Leu Asn Tyr Ile Gln Asn Ala Trp Glu Ala Leu Phe Asp Thr Phe Met
    450
                         455
                                             460
Gln Glu Ala Lys Trp Ile Ser Ser Ser Tyr Leu Pro Thr Phe Glu Glu
465
                    470
                                         475
                                                              480
Tyr Leu Lys Asn Ala Lys Val Ser Ser Gly Ser Arg Ile Ala Thr Leu
                 485
                                     490
Gln Pro Ile Leu Thr Leu Asp Val Pro Leu Pro Asp Tyr Ile Leu Gln
            500
                                 505
                                                     510
Glu Ile Asp Tyr Pro Ser Arg Phe Asn Glu Leu Ala Ser Ser Ile Leu
        515
                             520
                                                 525
Arg Leu Arg Gly Asp Thr Arg Cys Tyr Lys Ala Asp Arg Ala Arg Gly
    530
                         535
                                             540
Glu Glu Ala Ser Ala Ile Ser Cys Tyr Met Lys Asp His Pro Gly Ser
545
                    550
                                         555
                                                              560
Ile Glu Glu Asp Ala Leu Asn His Ile Asn Ala Met Ile Ser Asp Ala
                565
                                     570
                                                          575
Ile Arg Glu Leu Asn Trp Glu Leu Leu Arg Pro Asp Ser Lys Ser Pro
            580
                                 585
                                                     590
Ile Ser Ser Lys Lys His Ala Phe Asp Ile Thr Arg Ala Phe His His
        595
                             600
                                                 605
Val Tyr Lys Tyr Arg Asp Gly Tyr Thr Val Ser Asn Asn Glu Thr Lys
    610
                         615
                                             620
Asn Leu Val Met Lys Thr Val Leu Glu Pro Leu Ala Leu
625
                    630
                                         635
<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Degenerate
      oligonucleotide PCR primer A wherein the letter
      "n" indicates an inosine residue
<220>
<221> misc feature
<222> (1)..(25)
<223> Degenerate oligonucleotide Primer A wherein n
      represents inosine
<400> 7
```

arraygarra nggnrartay aarga

<210> 8 <211> 20

25

<212> <213>	DNA Artificial Sequence	
<220> <223>	Description of Artificial Sequence: degenerate oligonucleotide PCR primer B wherein the letter "n" represents an inosine residue	
<222>	misc_feature (1)(20) oligonucleotide PCR primer B wherein the letter n represents an inosine residue	
<400>	8	
atgytr	ncary thtaygarge	20
<210><211><211><212><213>	24	
<220> <223>	Description of Artificial Sequence: degenerate oligonucleotide PCR primer C wherein the letter "n" represents an inosine residue	
<222>	misc_feature (1)(24) PCR primer C wherein the letter n represents inosine	
<400>	9	
ctnkyr	rang gnctratrta ckty	24
<210><211><211><212><213>	23	
<220> <223>	Description of Artificial Sequence: degenerate oligonucleotide PCR primer D wherein the letter "n" represents an inosine residue	
<222>	misc_feature (1)(23) PCR primer D wherein the letter n represents inosine	
<400>		
gaygay	nnnt wygaygcnya ygg	23
<210> <211>		

```
<212> DNA
<213> Artificial Sequence
<400> 11
gatgatgggt ttgatgcgca cggaacccta gatgaattga agctattcac tgaggctgtg 60
agaagatggg acctctcctt tacagacaac ttccccgatt acatgaaa
                                                                   108
<210> 12
<211> 104
<212> DNA
<213> Abies grandis
<400> 12
gacgacgggt atgatgcgca tggaacgatt gacgagcttg aactcttcac atctgcaatt 60
aagagatgga attcatcaga gatagacagc ttccccgact atat
                                                                   104
<210> 13
<211> 105
<212> DNA
<213> Abies grandis
<400> 13
gatgatgggt atgatgcgta cggaacgttg gaagaaatca aaatcatgac agagggagtg 60
agacgatggg atctttcgtt gaccgcttnc cccgactata tgaaa
                                                                   105
<210> 14
<211> 117
<212> DNA
<213> Abies grandis
<400> 14
gacgatgggt atgatgcgca tggaaccttg gaccaactca aaatctttac agagggagtg 60
agacgatggg atgtttegtt ggtagaceae ttneecegae tacatgeaat etagace
                                                                   117
<210> 15
<211> 2424
<212> DNA
<213> Abies grandis
<220>
<221> CDS
<222> (2)..(2350)
<223> Clone AG1.28
<400> 15
g ggt tat gat ctt gtg cat tct ctt aaa tca cct tat att gat tct agt 49
  Gly Tyr Asp Leu Val His Ser Leu Lys Ser Pro Tyr Ile Asp Ser Ser
    1
tac aga gaa cgc gcg gag gtc ctt gtt agc gag att aaa gtg atg ctt
                                                                   97
Tyr Arg Glu Arg Ala Glu Val Leu Val Ser Glu Ile Lys Val Met Leu
             20
                                 25
```

aat Asn	cca Pro	gct Ala 35	att Ile	aca Thr	gga Gly	gat Asp	gga Gly 40	gaa Glu	tca Ser	atg Met	att Ile	act Thr 45	cca Pro	tct Ser	gct Ala	145
tat Tyr	gac Asp 50	aca Thr	gca Ala	tgg Trp	gta Val	gcg Ala 55	agg Arg	gtg Val	ccc Pro	gcc Ala	att Ile 60	gat A sp	ggc Gly	tct Ser	gct Ala	193
cgc Arg 65	ccg Pro	caa Gln	ttt Phe	ccc Pro	caa Gln 70	aca Thr	gtt Val	gac Asp	tgg Trp	att Ile 75	ttg Leu	aaa Lys	aac Asn	cag Gln	tta Leu 80	241
aaa Lys	gat Asp	ggt Gly	tca Ser	tgg Trp 85	gga Gly	att Ile	cag Gln	tcc Ser	cac His 90	ttt Phe	ctg Leu	ctg Leu	tcc Ser	gac Asp 95	cgt Arg	289
ctt Leu	ctt Leu	gcc Ala	act Thr 100	ctt Leu	tct Ser	tgt Cys	gtt Val	ctt Leu 105	gtg Val	ctc Leu	ctt Leu	aaa Lys	tgg Trp 110	a ac Asn	gtt Val	337
GJ À aaa	gat Asp	ctg Leu 115	caa Gln	gta Val	gag Glu	cag Gln	gga Gly 120	att Ile	gaa Glu	ttc Phe	ata Ile	aag Lys 125	agc Ser	aat Asn	ctg Leu	385
gaa Glu	cta Leu 130	gta Val	aag Lys	gat Asp	gaa Glu	acc Thr 135	gat Asp	caa Gln	gat Asp	agc Ser	ttg Leu 140	gta Val	aca Thr	gac Asp	ttt Phe	433
gag Glu 145	atc Ile	ata Ile	ttt Phe	cct Pro	tct Ser 150	ctg Leu	tta Leu	aga Arg	gaa Glu	gct Ala 155	caa Gln	tct Ser	ctg Leu	cgc Arg	ctc Leu 160	481
gga Gly	ctt Leu	ccc Pro	tac Tyr	gac Asp 165	ctg Leu	cct Pro	tat Tyr	ata Ile	cat His 170	ctg Leu	ttg Leu	cag Gln	act Thr	aaa Lys 175	cgg Arg	529
cag Gln	gaa Glu	aga Arg	tta Leu 180	gca Ala	aaa Lys	ctt Leu	tca Ser	agg Arg 185	gag Glu	gaa Glu	att Ile	tat Tyr	gcg Ala 190	gtt Val	ccg Pro	577
tcg Ser	cca Pro	ttg Leu 195	ttg Leu	tat Tyr	tct Ser	tta Leu	gag Glu 200	gga Gly	ata Ile	caa Gln	gat Asp	ata Ile 205	gtt Val	gaa Glu	tgg Trp	625
gaa Glu	cga Arg 210	ata Ile	atg Met	gaa Glu	gtt Val	caa Gln 215	agt Ser	cag Gln	gat Asp	Gly	tct Ser 220	ttc Phe	tta Leu	agc Ser	tca Ser	673
cct Pro 225	gct Ala	tct Ser	act Thr	gcc Ala	tgc Cys 230	gtt Val	ttc Phe	atg Met	cac His	aca Thr 235	gga Gly	gac Asp	gcg Ala	aaa Lys	tgc Cys 2 4 0	721
ctt Leu	gaa Glu	ttc Phe	ttg Leu	aac Asn 245	agt Ser	gtg Val	atg Met	atc Ile	aag Lys 250	ttt Phe	gga Gly	aat Asn	ttt Phe	gtt Val 255	ccc Pro	769
tgc Cys	ctg Leu	tat Tyr	cct Pro 260	gtg Val	gat Asp	ctg Leu	ctg Leu	gaa Glu 265	cgc A rg	ctg Leu	ttg Leu	atc Ile	gta Val 270	gat Asp	aat Asn	817

att Ile	gta Val	cgc Arg 275	ctt Leu	gga Gly	atc Ile	tat Tyr	aga Arg 280	cac His	ttt Phe	gaa Glu	aag Lys	gaa Glu 285	atc Ile	aag Lys	gaa Glu	865
gct Ala	ctt Leu 290	gat Asp	tat Tyr	gtt Val	tac Tyr	agg Arg 295	cat His	tgg Trp	aac Asn	gaa Glu	aga Arg 300	gga Gly	att Ile	Gly ggg	tgg Trp	913
ggc Gly 305	aga Arg	cta Leu	aat Asn	ccc Pro	ata Ile 310	gca Ala	gat Asp	ctt Leu	gag Glu	acc Thr 315	act Thr	gct Ala	ttg Leu	gga Gly	ttt Phe 320	961
cga Arg	ttg Leu	ctt Leu	cgg Arg	ctg Leu 325	cat His	agg Arg	tac Tyr	aat Asn	gta Val 330	tct Ser	cca Pro	gcc Ala	att Ile	ttt Phe 335	gac Asp	1009
aac Asn	ttc Phe	aa a Lys	gat Asp 340	gcc Ala	aat Asn	gly	aaa Lys	ttc Phe 345	att Ile	tgc Cys	tcg Ser	acc Thr	ggt Gly 350	caa Gln	ttc Phe	1057
aac Asn	aaa Lys	gat Asp 355	gta Val	gca Ala	agc Ser	atg Met	ctg Leu 360	aat Asn	ctt Leu	tat Tyr	aga Arg	gct Ala 365	tcc Ser	cag Gln	ctc Leu	1105
gca Ala	ttt Phe 370	ccc Pro	gga Gly	gaa Glu	aac Asn	att Ile 375	ctt Leu	gat Asp	gaa Glu	gct Ala	aaa Lys 380	agc Ser	ttc Phe	gct Ala	act Thr	1153
aaa Lys 385	tat Tyr	ttg Leu	aga Arg	gaa Glu	gct Ala 390	ctt Leu	gag Glu	aaa Lys	agt Ser	gag Glu 395	act Thr	tcc Ser	agt Ser	gca Ala	tgg Trp 400	1201
aac Asn	aa c Asn	aaa Lys	caa Gln	aac Asn 405	ctg Leu	agc Ser	caa Gln	gag Glu	atc Ile 410	aaa Lys	tac Tyr	gcg Ala	ctg Leu	aag Lys 415	act Thr	1249
tct Ser	tgg Trp	cat His	gcc Ala 420	agt Ser	gtt Val	ccg Pro	aga Arg	gtg Val 425	gaa Glu	gca Ala	aag Lys	aga Arg	tac Tyr 430	tgt Cys	caa Gln	1297
gtg Val	tat Tyr	cgc Arg 435	cca Pro	gat Asp	tat Tyr	gca Ala	cgc Arg 440	ata Ile	gca Ala	aaa Lys	tgc Cys	gtt Val 445	tac Tyr	aag Lys	cta Leu	1345
ccc Pro	tac Tyr 4 50	Val	aac Asn	aat Asn	gaa Glu	aag Lys 455	ttt Phe	tta Leu	gag Glu	ctg Leu	gga Gly 460	aaa Lys	tta Leu	gat Asp	ttc Phe	1393
aac Asn 465	att Ile	atc Ile	cag Gln	tcc Ser	atc Ile 470	cac His	caa Gln	gaa Glu	gaa Glu	atg Met 475	aag Lys	aat Asn	gtt Val	acc Thr	agc Ser 480	1441
tgg Trp	ttt Phe	aga Arg	gat As p	tcg Ser 485	GJA aaa	ttg Leu	cca Pro	cta Leu	ttc Phe 490	acc Thr	ttc Phe	gct Ala	cgg Arg	gag Glu 495	agg Arg	1489
ccg Pro	ctg Leu	gaa Glu	ttc Phe 500	Tyr	ttc	tta Leu	gta Val	gcg Ala 505	Ala	Gly	acc Thr	tat Tyr	gaa Glu 510	Pro	cag Gln	1537

tat Tyr	gcc Ala	aaa Lys 515	tgc Cys	agg Arg	ttc Phe	ctc Leu	ttt Phe 520	aca Thr	aaa Lys	gtg Val	gca Ala	tgc Cys 525	ttg Leu	cag Gln	act Thr	1585
gtt Val	ctg Leu 530	gac Asp	gat Asp	atg Met	tat Tyr	gac Asp 535	act Thr	tat Tyr	gga Gly	acc Thr	cta Leu 540	gat Asp	gaa Glu	ttg Leu	aag Lys	1633
cta Leu 545	ttc Phe	act Thr	gag Glu	gct Ala	gtg Val 550	aga Arg	aga Arg	tgg Trp	gac Asp	ctc Leu 555	tcc Ser	ttt Phe	aca Thr	gaa Glu	aac Asn 560	1681
Dea	110	АЗР	TYL	565	тÀ2	Leu	Cys	Tyr	Gln 570	Ile	Tyr	Tyr	gac Asp	Ile 575	Val	1729
	o ₁ u	vul	580	TIP	GIU	Ата	Glu	Lys 585	GLu	Gln	Gly	Arg	gaa Glu 590	Leu	Val	1777
agc Ser	ttt Phe	ttc Phe 595	aga Arg	aag Lys	gga Gly	tgg Trp	gag Glu 600	gat Asp	tat Tyr	ctt Leu	ctg Leu	ggt Gly 605	tat Tyr	tat Tyr	gaa Glu	1825
Olu	610	GIU	rrp	Leu	Ala	A1a 615	Glu	Tyr	Val	Pro	Thr 620	Leu	gac Asp	Glu	Tyr	1873
ata Ile 625	aag Lys	aat Asn	gga Gly	atc Ile	aca Thr 630	tct Ser	atc Ile	ggc Gly	caa Gln	cgt Arg 635	ata Ile	ctt Leu	ctg Leu	ttg Leu	agt Ser 640	1921
gga Gly	gtg Val	ttg Leu	ata Ile	atg Met 645	gat Asp	GJA aaa	caa Gln	ctc Leu	ctt Leu 650	tcg Ser	caa Gln	gag Glu	gca Ala	tta Leu 655	gag Glu	1969
aaa Lys	gta Val	gat Asp	tat Tyr 660	cca Pro	gga Gly	aga Arg	cgt Arg	gtt Val 665	ctc Leu	aca Thr	gag Glu	ctg Leu	aat Asn 670	agc Ser	ctc Leu	2017
att Ile	tcc Ser	cgc Arg 675	ctg Leu	gcg Ala	gat Asp	gac Asp	acg Thr 680	aag Lys	aca Thr	tat Tyr	aaa Lys	gct Ala 685	gag Glu	aag Lys	gct Ala	2065
cgt Arg	gga Gly 690	gaa Glu	ttg Leu	gcg Ala	tcc Ser	agc Ser 695	att Ile	gaa Glu	tgt Cys	tac Tyr	atg Met 700	aaa Lys	gac Asp	cat His	cct Pro	2113
gaa Glu 705	tgt Cys	aca Thr	gag Glu	gaa Glu	gag Glu 710	gct Ala	ctc Leu	gat Asp	cac His	atc Ile 715	tat Tyr	agc Ser	att Ile	ctg Leu	gag Glu 720	2161
ccg Pro	gcg Ala	gtg Val	aag Lys	gaa Glu 725	ctg Leu	aca Thr	aga Arg	gag Glu	ttt Phe 730	ctg Leu	aag Lys	ccc Pro	gac As p	gac Asp 735	gtc Val	2209
cca Pro	ttc Phe	gcc Ala	tgc Cys 740	aag Lys	aag Lys	atg Met	ctt Leu	ttc Phe 745	gag Glu	gag Glu	aca Thr	aga Arg	gtg Val 750	acg Thr	atg Met	2257

gtg Val	ata Ile	ttc Phe 755	aag Lys	gat Asp	gga Gly	gat Asp	gga Gly 760	ttc Phe	ggt Gly	gtt Val	tcc Ser	aaa Lys 765	tta Leu	gaa Glu	gtc Val	2305
aaa Lys	gat Asp 770	cat His	atc Ile	aaa Lys	gag Glu	tgt Cys 775	ctc Leu	att Ile	gaa Glu	ccg Pro	ctg Leu 780	cca Pro	ctg Leu	taa		2350
tcaa	aaata	agt t	gcaa	ataat	ca at	tgaa	aataa	a tgt	caa	ctat	gtt	caca	aaa a	aaaa	aaaaa	2410
aaaa	aaaaa	aaa a	aaaa													2424
<211 <212	0> 16 l> 78 2> PF 3> Ab	32 RT	gran	ndis												
)> 16															
Gly 1	Tyr	Asp	Leu	Val 5	His	Ser	Leu	Lys	Ser 10	Pro	Tyr	Ile	Asp	Ser 15	Ser	
Tyr	Arg	Glu	Arg 20	Ala	Glu	Val	Leu	Val 25	Ser	Glu	Ile	Lys	Val 30	Met	Leu	
Asn	Pro	Ala 35	Ile	Thr	Gly	Asp	Gly 40	Glu	Ser	Met	Ile	Thr 45	Pro	Ser	Ala	
Tyr	Asp 50	Thr	Ala	Trp	Val	Ala 55	Arg	Val	Pro	Ala	Ile 60	Asp	Gly	Ser	Ala	
Arg 65	Pro	Gln	Phe	Pro	Gln 70	Thr	Val	Asp	Trp	Ile 75	Leu	Lys	Asn	Gln	Leu 80	
Lys	Asp	Gly	Ser	Trp 85	Gly	Ile	Gln	Ser	His 90	Phe	Leu	Leu	Ser	Asp 95	Arg	
Leu	Leu	Ala	Thr 100	Leu	Ser	Cys	Val	Leu 105	Val	Leu	Leu	Lys	Trp	Asn	Val	
Gly	Asp	Leu 115	Gln	Val	Glu	Gln	Gly 120	Ile	Glu	Phe	Ile	Lys 125	Ser	Asn	Leu	
Glu	Leu 130	Val	Lys	Asp	Glu	Thr 135	Asp	Gln	Asp	Ser	Leu 140	Val	Thr	Asp	Phe	
Glu 145	Ile	Ile	Phe	Pro	Ser 150	Leu	Leu	Arg	Glu	Ala 155	Gln	Ser	Leu	Arg	Leu 160	
Gly	Leu	Pro	Tyr	Asp 165	Leu	Pro	Tyr	Ile	His 170	Leu	Leu	Gln	Thr	Lys 175	Arg	
Gln	Glu	Arg	Leu 180	Ala	Lys	Leu	Ser	Arg 185	Glu	Glu	Ile	Tyr	Ala 190	Val	Pro	
Ser	Pro	Leu 195	Leu	Tyr	Ser	Leu	Glu 200	Gly	Ile	Gln	Asp	Ile 205	Val	Glu	Trp	
Glu	Arg	Ile	Met	Glu	Val	Gln	Ser	Gln	Asp	Glv	Ser	Phe	Leu	Ser	Ser	

Pro Ala Ser Thr Ala Cys Val Phe Met His Thr Gly Asp Ala Lys Cys Leu Glu Phe Leu Asn Ser Val Met Ile Lys Phe Gly Asn Phe Val Pro Cys Leu Tyr Pro Val Asp Leu Leu Glu Arg Leu Leu Ile Val Asp Asn Ile Val Arg Leu Gly Ile Tyr Arg His Phe Glu Lys Glu Ile Lys Glu Ala Leu Asp Tyr Val Tyr Arg His Trp Asn Glu Arg Gly Ile Gly Trp 5 Gly Arg Leu Asn Pro Ile Ala Asp Leu Glu Thr Thr Ala Leu Gly Phe Arg Leu Leu Arg Leu His Arg Tyr Asn Val Ser Pro Ala Ile Phe Asp Asn Phe Lys Asp Ala Asn Gly Lys Phe Ile Cys Ser Thr Gly Gln Phe Asn Lys Asp Val Ala Ser Met Leu Asn Leu Tyr Arg Ala Ser Gln Leu Ala Phe Pro Gly Glu Asn Ile Leu Asp Glu Ala Lys Ser Phe Ala Thr Lys Tyr Leu Arg Glu Ala Leu Glu Lys Ser Glu Thr Ser Ser Ala Trp Asn Asn Lys Gln Asn Leu Ser Gln Glu Ile Lys Tyr Ala Leu Lys Thr Ser Trp His Ala Ser Val Pro Arg Val Glu Ala Lys Arg Tyr Cys Gln 20 0 Val Tyr Arg Pro Asp Tyr Ala Arg Ile Ala Lys Cys Val Tyr Lys Leu Pro Tyr Val Asn Asn Glu Lys Phe Leu Glu Leu Gly Lys Leu Asp Phe Asn Ile Ile Gln Ser Ile His Gln Glu Glu Met Lys Asn Val Thr Ser Trp Phe Arg Asp Ser Gly Leu Pro Leu Phe Thr Phe Ala Arg Glu Arg Pro Leu Glu Phe Tyr Phe Leu Val Ala Ala Gly Thr Tyr Glu Pro Gln Tyr Ala Lys Cys Arg Phe Leu Phe Thr Lys Val Ala Cys Leu Gln Thr Val Leu Asp Asp Met Tyr Asp Thr Tyr Gly Thr Leu Asp Glu Leu Lys

PCT/US98/14528 WO 99/02030

Leu Phe Thr Glu Ala Val Arg Arg Trp Asp Leu Ser Phe Thr Glu Asn

Leu Pro Asp Tyr Met Lys Leu Cys Tyr Gln Ile Tyr Tyr Asp Ile Val

His Glu Val Ala Trp Glu Ala Glu Lys Glu Gln Gly Arg Glu Leu Val

Ser Phe Phe Arg Lys Gly Trp Glu Asp Tyr Leu Leu Gly Tyr Tyr Glu

Glu Ala Glu Trp Leu Ala Ala Glu Tyr Val Pro Thr Leu Asp Glu Tyr

Ile Lys Asn Gly Ile Thr Ser Ile Gly Gln Arg Ile Leu Leu Ser

Gly Val Leu Ile Met Asp Gly Gln Leu Leu Ser Gln Glu Ala Leu Glu

Lys Val Asp Tyr Pro Gly Arg Arg Val Leu Thr Glu Leu Asn Ser Leu

Ile Ser Arg Leu Ala Asp Asp Thr Lys Thr Tyr Lys Ala Glu Lys Ala

Arg Gly Glu Leu Ala Ser Ser Ile Glu Cys Tyr Met Lys Asp His Pro

Glu Cys Thr Glu Glu Glu Ala Leu Asp His Ile Tyr Ser Ile Leu Glu

Pro Ala Val Lys Glu Leu Thr Arg Glu Phe Leu Lys Pro Asp Asp Val

Pro Phe Ala Cys Lys Lys Met Leu Phe Glu Glu Thr Arg Val Thr Met

Val Ile Phe Lys Asp Gly Asp Gly Phe Gly Val Ser Lys Leu Glu Val

Lys Asp His Ile Lys Glu Cys Leu Ile Glu Pro Leu Pro Leu

<210> 17

<211> 1967

<212> DNA

<213> Abies grandis

<220>

<221> CDS

<222> (3)..(1736)

<223> Clone AG4.30

<400> 17

tt tot gaa tot too atc oot oga ogo aca ggg aat cat cac gga aat

Ser Glu Ser Ser Ile Pro Arg Arg Thr Gly Asn His His Gly Asn gtg tgg gac gat gac ctc ata cac tct ctc aac tcg ccc tat ggg gca Val Trp Asp Asp Leu Ile His Ser Leu Asn Ser Pro Tyr Gly Ala cct gca tat tat gag ctc ctt caa aag ctt att gag gag atc aag cat Pro Ala Tyr Tyr Glu Leu Leu Gln Lys Leu Ile Glu Glu Ile Lys His tta ctt ttg act gaa atg gaa atg gat gat ggc gat cat gat tta atc Leu Leu Leu Thr Glu Met Glu Met Asp Asp Gly Asp His Asp Leu Ile aaa cgt ctt cag atc gtt gac act ttg gaa tgc ctg gga atc gat aga Lys Arg Leu Gln Ile Val Asp Thr Leu Glu Cys Leu Gly Ile Asp Arg cat ttt gaa cac gaa ata caa aca gct gct tta gat tac gtt tac aga His Phe Glu His Glu Ile Gln Thr Ala Ala Leu Asp Tyr Val Tyr Arg tgg tgg aac gaa aaa ggt atc ggg gag gga tca aga gat tcc ttc agc Trp Trp Asn Glu Lys Gly Ile Gly Glu Gly Ser Arg Asp Ser Phe Ser aaa gat ctc aac gct aca gct tta gga ttt cgc gct ctc cga ctg cat Lys Asp Leu Asn Ala Thr Ala Leu Gly Phe Arg Ala Leu Arg Leu His cga tat aac gta tcg tca ggt gtg ttg aag aat ttc aag gat gaa aac Arg Tyr Asn Val Ser Ser Gly Val Leu Lys Asn Phe Lys Asp Glu Asn ggg aag ttc ttc tgc aac ttt act ggt gaa gaa gga aga gga gat aaa Gly Lys Phe Phe Cys Asn Phe Thr Gly Glu Glu Gly Arg Gly Asp Lys caa gtg aga agc atg ttg tcg tta ctt cga gct tca gag att tcg ttt Gln Val Arg Ser Met Leu Ser Leu Leu Arg Ala Ser Glu Ile Ser Phe ccc gga gaa aaa gtg atg gaa gag gcc aag gca ttc aca aga gaa tat Pro Gly Glu Lys Val Met Glu Glu Ala Lys Ala Phe Thr Arg Glu Tyr cta aac caa gtt tta gct gga cac ggg gat gtg act gac gtg gat caa Leu Asn Gln Val Leu Ala Gly His Gly Asp Val Thr Asp Val Asp Gln age ctt ttg gag aga ggt gaa gta cgc att gga gtt tcc atg gct tgc Ser Leu Leu Glu Arg Gly Glu Val Arg Ile Gly Val Ser Met Ala Cys agt gtg ccg aga tgg gag gca agg agc ttt ctc gaa ata tat gga cac Ser Val Pro Arg Trp Glu Ala Arg Ser Phe Leu Glu Ile Tyr Gly His aac cat tcg tgg ctc aag tcg aat atc aac caa aaa atg ttg aag tta

Asn 240	His	Ser	Trp	Leu	Lys 245	Ser	Asn	Ile	Asn	Gln 250	Lys	Met	Leu	Lys	Leu 255	
gcc Ala	aaa Lys	ttg Leu	gac Asp	ttc Phe 260	aat Asn	att Ile	ctg Leu	caa Gln	tgc Cys 265	aaa Lys	cat His	cac His	aag Lys	gag Glu 270	ata Ile	815
cag Gln	ttt Phe	att Ile	aca Thr 275	agg Arg	tgg Trp	tgg Trp	aga Arg	gac Asp 280	tcg Ser	ggt Gly	ata Ile	tcg Ser	cag Gln 285	ctg Leu	aat Asn	863
THE	TYL	290	гуѕ	Arg	HIS	Val	G1u 295	Tyr	Tyr	tct Ser	Trp	Val 300	Val	Met	Cys	911
110	305	GIU	FIO	GIU	rne	310	Glu	Ser	Arg	att Ile	Ala 315	Phe	Ala	Lys	Thr	959
320	110	Beu	Суз	1111	325	ren	Asp	Asp	Leu	tat Tyr 330	Asp	Thr	His	Ala	Thr 335	1007
200		GI u	116	340	116	Met	Thr	Glu	G1y 345	gtg Val	Arg	Arg	Trp	Asp 350	Leu	1055
	Ded	1111	355	Asp	Leu	Pro	Asp	Tyr 360	Ile	aaa Lys	Ile	Ala	Phe 365	Gln	Phe	1103
1110	rne	370	inr	val	Asn	GIu	12 April 12	Ile	Val	gaa Glu	Ile	Val 380	Lys	Arg	Gln	1151
G] À aaa	cgg Arg 385	gat Asp	atg Met	aca Thr	acc Thr	ata Ile 390	gtt Val	aaa Lys	gat Asp	tgc Cys	tgg Trp 395	aag Lys	cga Arg	tac Tyr	att Ile	1199
gag Glu 400	tct Ser	tat Tyr	ctg Leu	caa Gln	gaa Glu 405	gcg Ala	gaa Glu	tgg Trp	ata Ile	gca Ala 410	act Thr	gga Gly	cat His	att Ile	ccc Pro 415	1247
****	THE	ASII	GIU	420	TTE	Lys	Asn	GIÀ	Met 425	gct Ala	Ser	Ser	Gly	Met 430	Cys	1295
att Ile	gta Val	A211	ttg Leu 435	Asn	cca Pro	ctt Leu	ctc Leu	ttg Leu 440	ttg Leu	ggt Gly	aaa Lys	ctt Leu	ctc Leu 445	ccc Pro	gac Asp	1343
aac Asn	att Ile	ctg Leu 450	gag Glu	caa Gln	ata Ile	cat His	tct Ser 455	cca Pro	tcc Ser	aag Lys	atc Ile	ctg Leu 460	gac Asp	ctc Leu	tta Leu	1391
gaa Glu	ttg Leu 465	acg Thr	ggc Gly	aga Arg	atc Ile	gcc Ala 470	gat Asp	gac Asp	tta Leu	aaa Lys	gat Asp 475	ttc Phe	gag Glu	gac Asp	gag Glu	1439
aag	gaa	cgc	ggg	gag	atg	gct	tca	tct	tta	cag	tgt	tat	atg	aaa	gaa	1487

Asn Pro Glu Ser Thr Val Glu Asn Ala Leu Asn His Ile Lys Gly Ile 500 ctt aat cgt tcc ctt gag gaa ttt aat tgg gag ttt atg aag cag gat Leu Asn Arg Ser Leu Glu Glu Phe Asn Trp Glu Phe Met Lys Gln Asp 515 525
515 520 Fine Ash Trp Glu Phe Met Lys Gln Asp
agt gtc cca atg tgt tgc aag aaa ttc act ttc aat ata ggt cga gga 1631 Ser Val Pro Met Cys Cys Lys Lys Phe Thr Phe Asn Ile Gly Arg Gly 530 535 540
ctt caa ttc atc tac aaa tac aga gac ggc tta tac att tct gac aag 1679 Leu Gln Phe Ile Tyr Lys Tyr Arg Asp Gly Leu Tyr Ile Ser Asp Lys 545 550 555
gaa gta aag gac cag ata ttc aaa att cta gtc cac caa gtt cca atg 1727 Glu Val Lys Asp Gln Ile Phe Lys Ile Leu Val His Gln Val Pro Met 560 575
gag gaa tag tgatggtctt ggttgtagtt gtctattatg gtatattgca 1776 Glu Glu
ttgacattta tgcttaaagg tgtttcttaa acgtttaggg cggaccgtta aataagttgg 1836
caataattaa tatttagaga ctttgtggaa gtgtttaggg cataaaattg cctatggcct 1896
atggcaagct acaaattgaa attgttgtgt ttataatatt tttattttat ttaaaaaaaa
aaaaaaaaa a
<210> 18 <211> 577 <212> PRT <213> Abies grandis
<pre><400> 18 Ser Glu Ser Ser Ile Pro Arg Arg Thr Gly Asn His His Gly Asn Val 1 5 10 15</pre>
Trp Asp Asp Leu Ile His Ser Leu Asn Ser Pro Tyr Gly Ala Pro
Ala Tyr Tyr Glu Leu Leu Gln Lys Leu Ile Glu Glu Ile Lys His Leu 35 40 45
Leu Leu Thr Glu Met Glu Met Asp Asp Gly Asp His Asp Leu Ile Lys 50 55 60
Arg Leu Gln Ile Val Asp Thr Leu Glu Cys Leu Gly Ile Asp Arg His 65 70 75 80
Phe Glu His Glu Ile Gln Thr Ala Ala Leu Asp Tyr Val Tyr Arg Trp 85 90 95

Trp Asn Glu Lys Gly Ile Gly Glu Gly Ser Arg Asp Ser Phe Ser Lys

Asp Leu Asn Ala Thr Ala Leu Gly Phe Arg Ala Leu Arg Leu His Arg Tyr Asn Val Ser Ser Gly Val Leu Lys Asn Phe Lys Asp Glu Asn Gly Lys Phe Phe Cys Asn Phe Thr Gly Glu Glu Gly Arg Gly Asp Lys Gln Val Arg Ser Met Leu Ser Leu Leu Arg Ala Ser Glu Ile Ser Phe Pro Gly Glu Lys Val Met Glu Glu Ala Lys Ala Phe Thr Arg Glu Tyr Leu Asn Gln Val Leu Ala Gly His Gly Asp Val Thr Asp Val Asp Gln Ser Leu Leu Glu Arg Gly Glu Val Arg Ile Gly Val Ser Met Ala Cys Ser Val Pro Arg Trp Glu Ala Arg Ser Phe Leu Glu Ile Tyr Gly His Asn His Ser Trp Leu Lys Ser Asn Ile Asn Gln Lys Met Leu Lys Leu Ala Lys Leu Asp Phe Asn Ile Leu Gln Cys Lys His His Lys Glu Ile Gln Phe Ile Thr Arg Trp Trp Arg Asp Ser Gly Ile Ser Gln Leu Asn Phe Tyr Arg Lys Arg His Val Glu Tyr Tyr Ser Trp Val Val Met Cys Ile Phe Glu Pro Glu Phe Ser Glu Ser Arg Ile Ala Phe Ala Lys Thr Ala Ile Leu Cys Thr Val Leu Asp Asp Leu Tyr Asp Thr His Ala Thr Leu His Glu Ile Lys Ile Met Thr Glu Gly Val Arg Arg Trp Asp Leu Ser Leu Thr Asp Asp Leu Pro Asp Tyr Ile Lys Ile Ala Phe Gln Phe Phe Phe Asn Thr Val Asn Glu Leu Ile Val Glu Ile Val Lys Arg Gln Gly Arg Asp Met Thr Ile Val Lys Asp Cys Trp Lys Arg Tyr Ile Glu Ser Tyr Leu Gln Glu Ala Glu Trp Ile Ala Thr Gly His Ile Pro Thr Phe Asn Glu Tyr Ile Lys Asn Gly Met Ala Ser Ser Gly Met Cys Ile

			420					425					430			
Val	Asn	Leu 435	Asn	Pro	Leu	Leu	Leu 440	Leu	Gly	Lys	Leu	Leu 445	Pro	Asp	Asn	
Ile	Leu 450	Glu	Gln	Ile	His	Ser 455	Pro	Ser	Lys	Ile	Leu 460	Asp	Leu	Leu	Glu	
Leu 465	Thr	Gly	Arg	Ile	Ala 470	Asp	Asp	Leu	Lys	Asp 475	Phe	Glu	Asp	Glu	Lys 480	
Glu	Arg	Gly	Glu	Met 485	Ala	Ser	Ser	Leu	Gln 490	Cys	Tyr	Met	Lys	Glu 495	Asn	
Pro	Glu	Ser	Thr 500	Val	Glu	Asn	Ala	Leu 505	Asn	His	Ile	Lys	Gly 510	Ile	Leu	
As n	Arg	Ser 515	Leu	Glu	Glu	Phe	Asn 520	Trp	Glu	Phe	Met	Lys 525	Gln	Asp	Ser	
Val	Pro 530	Met	Cys	Cys	Lys	Lys 535	Phe	Thr	Phe	Asn	Ile 540	Gly	Arg	Gly	Leu	
Gln 545	Phe	Ile	Туг	Lys	Tyr 550	Arg	Asp	Gly	Leu	Tyr 555	Ile	Ser	Asp	Lys	Glu 560	
Val	Lys	As p	Gln	Ile 565	Phe	Lys	Ile	Leu	Val 570	His	Gln	Val	Pro	Met 575	Glu	
Glu																
<211 <212)> 19 l> 14 !> DN B> Ab	16 IA	gran	ndis												
<222)> !> CI !> (3 !> C1	3)														
<400)> 19)														
aa a	aa g Lys V l	rtg a Val N	atg o Met (gaa g Slu G	gag g Slu A 5	jcg a Na I	ag g Lys A	jca t Mla E	tc a he 1	ca a hr T	ica a Thr A	at t Asn T	at d Yr I	cta a Leu I	aag Lys 15	47
aaa Lys	gtt Val	tta Leu	gca Ala	gga Gly 20	cgg Arg	gag Glu	gct Ala	acc Thr	cac His 25	gtc Val	gat Asp	gaa Glu	agc Ser	ctt Leu 30	ttg Leu	95
gga Gly	gag Glu	gtg Val	aag Lys 35	tac Tyr	gca Ala	ttg Leu	gag Glu	ttt Phe 40	cca Pro	tgg Trp	cat His	tgc Cys	agt Ser 45	gtg Val	cag Gln	143
aga Arg	tgg Trp	gag Glu 50	gca Ala	agg Arg	agc Ser	ttt Phe	atc Ile 55	gaa Glu	ata Ile	ttt Phe	gga Gly	caa Gln 60	att Ile	gat Asp	tca Ser	191
gag	ctt	aag	tcg	aat	ttg	agc	aaa	aaa	atg	tta	gag	ttg	gcg	aaa	ttg	239

Glu	Leu 65	Lys	Ser	Asn	Leu	Ser 70	Lys	Lys	Met	Leu	Glu 75	Leu	Ala	Lys	Leu	
gac Asp 80	ttc Phe	aat Asn	att Ile	ctg Leu	caa Gln 85	tgc Cys	aca Thr	cat His	cag Gln	aaa Lys 90	gaa Glu	ctg Leu	cag Gln	att Ile	atc Ile 95	287
	,,,,	111	rne	100	gac Asp	ser	Ser	Ile	Ala 105	Ser	Leu	Asn	Phe	Tyr 110	Arg	335
2.72	0,0	171	115	GIU	ttt Phe	Tyr	Phe	120	Met	Ala	Ala	Ala	Ile 125	Ser	Glu	383
	O.L.	130	ser	GIÀ	agc Ser	Arg	Val 135	Ala	Phe	Thr	Lys	11e 140	Ala	Ile	Leu	431
7700	145	Mec	Leu	Asp	gac Asp	150	Tyr	Asp	Thr	His	Gly 155	Thr	Leu	Asp	Gln	479
160	2,72	110	THE	1111	gag Glu 165	GTÅ	Val	Arg	Arg	Trp 170	Asp	Val	Ser	Leu	Val 175	527
gag Glu	ggc Gly	ctc Leu	cca Pro	gac Asp 180	ttc Phe	atg Met	aaa Lys	att Ile	gca Ala 185	ttc Phe	g a g Glu	ttc Phe	tgg Trp	tta Leu 190	aag Lys	575
aca Thr	tct Ser	aat Asn	gaa Glu 195	ttg Leu	att Ile	gct Ala	gaa Glu	gct Ala 200	gtt Val	aaa Lys	gcg Ala	caa Gln	ggg Gly 205	caa Gln	gat Asp	623
atg Met	gcg Ala	gcc Ala 210	tac Tyr	ata Ile	aga Arg	aaa Lys	aat Asn 215	gca Ala	tgg Trp	gag Glu	cga Arg	tac Tyr 220	ctt Leu	gaa Glu	gct Ala	671
tat Tyr	ctg Leu 225	caa Gln	gat Asp	gcg Ala	gaa Glu	tgg Trp 230	ata Ile	gcc Ala	act Thr	gga Gly	cat His 235	gtc Val	ccc Pro	acc Thr	ttt Phe	719
gat Asp 240	gag Glu	tac Tyr	ttg Leu	aat Asn	aat Asn 245	ggc Gly	aca Thr	cca Pro	aac Asn	act Thr 250	ej aaa	atg Met	tgt Cys	gta Val	ttg Leu 255	767
aat Asn	ttg Leu	att Ile	ccg Pro	ctt Leu 260	ctg Leu	tta Leu	atg Met	ggt Gly	gaa Glu 265	cat His	tta Leu	cca Pro	atc Ile	gac Asp 270	att Ile	815
ctg Leu	gag Glu	caa Gln	ata Ile 275	ttc Phe	ttg Leu	ccc Pro	tcc Ser	agg Arg 280	ttc Phe	cac His	cat His	ctc Leu	att Ile 285	gaa Glu	ttg Leu	863
gct Ala	tcc Ser	agg Arg 290	ctc Leu	gtc Val	gat Asp	gac Asp	gcg Ala 295	a ga Arg	gat As p	ttc Phe	cag Gln	gcg Ala 300	gag Glu	aag Lys	gat Asp	911
cat	ggg	gat	tta	tcg	tgt	att	gag	tgt	tat	tta	aaa	gat	cat	cct	gag	959

305	Leu Ser	Cys Ile 310	Glu	Cys Ty	Leu	Lys 315	Asp	His	Pro	Glu	
tct aca gta Ser Thr Val 320	gaa gat Glu Asp	gct tta Ala Leu 325	aat Asn	cat gti His Val	aat Asn 330	ggc Gly	ctc Leu	ctt Leu	ggc Gly	aat Asn 335	1007
tgc ctt ctg Cys Leu Leu	gaa atg Glu Met 340	Asn Trp	aag Lys	ttc tta Phe Lev 345	l Lys	aag Lys	cag Gln	gac Asp	agt Ser 350	gtg Val	1055
cca ctc tcg Pro Leu Ser	tgt aag Cys Lys 355	aag tac Lys Tyr	Ser	ttc cat Phe His 360	gta Val	ttg Leu	gca Ala	cga Arg 365	agc Ser	atc Ile	1103
caa ttc atg Gln Phe Met 370	Tyr Asn	caa ggc Gln Gly	gat Asp 375	ggc tto Gly Phe	tcc Ser	att Ile	tcg Ser 380	aac Asn	aaa Lys	gtg Val	1151
atc aag gat Ile Lys Asp 385	caa gtg Gln Val	cag aaa Gln Lys 390	Val	ctt att Leu Ile	gtc Val	ccc Pro 395	gtg Val	cct Pro	att Ile	tga	1199
tagtagatac	tagatagt	ag attag	tagct	attagt	attt	attt	cata	itc ā	aatat	ttact	1259
aatgctgatg	atggttaa	ag tccat	tcaga	ccaato	tttg	gttt	atto	gga d	ttaa	ataaa	1319
tgaattaatt	agtttgtt	tt aaaat	tgtac	tattta	ctgt	tgga	aata	at g	gtttt	catta	1379
ttgaaataac	tagcacaa	ct atttt	agtgt	ggttga	t						1416
<pre>ttgaaataac <210> 20 <211> 398 <212> PRT <213> Abies</pre>		ct atttt	agtgt	ggttga	t						1416
<210> 20 <211> 398 <212> PRT	grandis				Thr	Asn	Tyr	Leu	Lys 15	Lys	1416
<210> 20 <211> 398 <212> PRT <213> Abies <400> 20 Lys Val Met	grandis Glu Glu 5	Ala Lys	Ala	Phe Thr 10	Thr				15		1416
<210> 20 <211> 398 <212> PRT <213> Abies <400> 20 Lys Val Met	grandis Glu Glu 5 Gly Arg 20	Ala Lys Glu Ala	Ala :	Phe Thr 10 His Val 25	Thr	Glu	Ser	Leu 30	15 Leu	Gly	1416
<210> 20 <211> 398 <212> PRT <213> Abies <400> 20 Lys Val Met 1 Val Leu Ala Glu Val Lys	grandis Glu Glu 5 Gly Arg 20 Tyr Ala Arg Ser	Ala Lys Glu Ala Leu Glu	Ala Thr Phe 40 Glu	Phe Thr 10 His Val 25 Pro Trp	Thr Asp	Glu Cys	Ser Ser 45	Leu 30 Val	l5 Leu Gln	Gly Arg	1416
<210> 20 <211> 398 <212> PRT <213> Abies <400> 20 Lys Val Met 1 Val Leu Ala Glu Val Lys 35 Trp Glu Ala	grandis Glu Glu 5 Gly Arg 20 Tyr Ala Arg Ser	Ala Lys Glu Ala Leu Glu Phe Ile 55	Ala Thr Phe 40 Glu	Phe Thr 10 His Val 25 Pro Trp	Thr Asp His	Glu Cys Gln 60	Ser Ser 45	Leu 30 Val Asp	l5 Leu Gln Ser	Gly Arg Glu	1416
<210> 20 <211> 398 <212> PRT <213> Abies <400> 20 Lys Val Met 1 Val Leu Ala Glu Val Lys 35 Trp Glu Ala 50 Leu Lys Ser	grandis Glu Glu 5 Gly Arg 20 Tyr Ala Arg Ser Asn Leu	Ala Lys Glu Ala Leu Glu Phe Ile 55 Ser Lys 70	Ala Thr Phe 40 Glu	Phe Thr 10 His Val 25 Pro Trp Ile Phe	Thr Asp His Gly Glu 75	Glu Cys Gln 60 Leu	Ser 45 Ile	Leu 30 Val Asp Lys	l5 Leu Gln Ser Leu	Gly Arg Glu Asp 80	1416

Cys Tyr Val Glu Phe Tyr Phe Trp Met Ala Ala Ala Ile Ser Glu Pro

Glu Phe Ser Gly Ser Arg Val Ala Phe Thr Lys Ile Ala Ile Leu Met Thr Met Leu Asp Asp Leu Tyr Asp Thr His Gly Thr Leu Asp Gln Leu Lys Ile Phe Thr Glu Gly Val Arg Arg Trp Asp Val Ser Leu Val Glu Gly Leu Pro Asp Phe Met Lys Ile Ala Phe Glu Phe Trp Leu Lys Thr Ser Asn Glu Leu Ile Ala Glu Ala Val Lys Ala Gln Gly Gln Asp Met Ala Ala Tyr Ile Arg Lys Asn Ala Trp Glu Arg Tyr Leu Glu Ala Tyr Leu Gln Asp Ala Glu Trp Ile Ala Thr Gly His Val Pro Thr Phe Asp Glu Tyr Leu Asn Asn Gly Thr Pro Asn Thr Gly Met Cys Val Leu Asn Leu Ile Pro Leu Leu Met Gly Glu His Leu Pro Ile Asp Ile Leu Glu Gln Ile Phe Leu Pro Ser Arg Phe His His Leu Ile Glu Leu Ala 5 Ser Arg Leu Val Asp Asp Ala Arg Asp Phe Gln Ala Glu Lys Asp His Gly Asp Leu Ser Cys Ile Glu Cys Tyr Leu Lys Asp His Pro Glu Ser Thr Val Glu Asp Ala Leu Asn His Val Asn Gly Leu Leu Gly Asn Cys Leu Leu Glu Met Asn Trp Lys Phe Leu Lys Lys Gln Asp Ser Val Pro Leu Ser Cys Lys Lys Tyr Ser Phe His Val Leu Ala Arg Ser Ile Gln Phe Met Tyr Asn Gln Gly Asp Gly Phe Ser Ile Ser Asn Lys Val Ile Lys Asp Gln Val Gln Lys Val Leu Ile Val Pro Val Pro Ile

<210> 21

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223>	Description of Artificial Sequence: oligonucleotide PCR primer E wherein the letter "n" represents an inosine residue	
<222>	misc_feature (1)(23) PCR primer E wherein the letter n represents inosine	
<400> ggnga:	21 camrr tnatggarga rgc	23
<210><211><211><212><213>	24	
<220> <223>	Description of Artificial Sequence: degenerate oligonucleotide primer F wherein the letter "n" represents an inosine residue	
<222>	misc_feature (1)(24) PCR primer F wherein the letter n represents inosine	
<400>	22	
	ncary thhbomgntg gtgg	24
<pre>garytr <210> <211> <212></pre>	cary thhbhmghtg gtgg 23 21	24
<pre></pre>	cary tnhbnmgntg gtgg 23 21 DNA	24
<pre></pre>	23 21 DNA Artificial Sequence Description of Artificial Sequence: degenerate oligonucleotide PCR primer G wherein the letter	24
<pre></pre>	23 21 DNA Artificial Sequence Description of Artificial Sequence: degenerate oligonucleotide PCR primer G wherein the letter "n" represents an inosine residue misc_feature (1)(21) PCR primer G wherein the letter n represents inosine	24
<pre></pre>	23 21 DNA Artificial Sequence Description of Artificial Sequence: degenerate oligonucleotide PCR primer G wherein the letter "n" represents an inosine residue misc feature (1)(21) PCR primer G wherein the letter n represents inosine 23 charn ccyttnacrt c	

```
ggggaaaaaa tgatggagga agctgaaatc ttctctacca aatatttaaa agaagccctg 60
caaaagattc cggtctccag tctttcgcga gagatcgggg acgttttgga atatggttgg 120
cacacatatt tgccgcgatt ggaagcaagg aattacatcc aagtctttgg acaggacact 180
gagaacacga agtcatatgt gaagagcaaa aaacttttag aactcgcaaa attggagttc 240
aacatctttc aatccttact cgcatatccg cattgcaacc cattctgaca atggacatcc 300
cctttcctga tcatatcctc aaggaagttg acttcccatc aaagcttaac gacttggcat 360
gtgccatcct tcgattacga ggtgatacgc ggtgctacaa ggcggacagg gctcgtggag 420
aagaagette etetatatea tgttatatga aagacaatee tggagtatea gaggaagatg 480
ctctcgatca tatcaacgcc atgatcagtg acgaagtcaa aggcttcaat tgg
                                                                  533
<210> 25
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: conserved
      amino acid motif on which the sequence of Primer D
      was based, wherein Xaa at position number 3 represents Thr or Ile, Xaa at
position number 4 represents Ile or Tyr or Phe, Xaa at position number 6
represents Ala or Val and Xaa at position number 8 represents Ala or Gly
<220>
<221> SITE
<222> (1)..(8)
<223> conserved amino acid motif on which sequence of
      primer D was based
<400> 25
Asp Asp Xaa Xaa Asp Xaa Tyr Xaa
<210> 26
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: conserved
      amino acid motif on which the sequence of Primer E
      was based wherein Xaa at position 3 represents Lys or Thr, Xaa at position
4 represents Val or Ile, Xaa at position 6 represents Glu or Asp
<220>
<221> SITE
<222> (1)..(8)
<223> conserved amino acid sequence on which the
      sequence of primer E was based
```

<400> 26

```
Gly Glu Xaa Xaa Met Xaa Glu Ala
  1
<210> 27
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: conserved
      amino acid sequence on which the sequence of
      primer F was based wherein Xaa at position 2 represents Phe or Tyr or Asp
Xaa at position 3 represents Ile or Leu, Xaa at position 4 represents Thr or Leu
 or Arg
<220>
<221> SITE
<222> (1)..(7)
<223> conserved amino acid sequence on which the
      sequence of primer F was based
<400> 27
Gln Xaa Xaa Xaa Arg Trp Trp
 1
                  5
<210> 28
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: conserved
      amino acid motif on which the sequence of primer G
      was based wherein Xaa at position 6 represents Phe or Leu
<220>
<221> SITE
<222> (1)..(8)
<223> conserved amino acid sequence on which the
      sequence of primer G was based
<400> 28
Asp Val Ile Lys Gly Xaa Asn Trp
<210> 29
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: T3 primer
      oligonucleotide sequence
<400> 29
aattaacct cactaaaggg
```

```
<210> 30
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: T7
      oligonucleotide primer sequence
<400> 30
gtaatacgac tcactatagg gc
                                                                   22
<210> 31
<211> 2205
<212> DNA
<213> Abies grandis
<220>
<221> CDS
<222> (57)..(1943)
<223> Clone AG3.48
<400> 31
gttatcttga gcttcctcca tataggccaa cacatatcat atcaaaggga gcaaga atg 59
                                                               Met
                                                                 1
gct ctg gtt tct atc tca ccg ttg gct tcg aaa tct tgc ctg cgc aag
                                                                   107
Ala Leu Val Ser Ile Ser Pro Leu Ala Ser Lys Ser Cys Leu Arg Lys
                                 10
                                                      15
tog ttg atc agt toa att cat gaa cat aag oot ooc tat aga aca atc
                                                                   155
Ser Leu Ile Ser Ser Ile His Glu His Lys Pro Pro Tyr Arg Thr Ile
         20
                             25
                                                  30
cca aat ctt gga atg cgt agg cga ggg aaa tct gtc acg cct tcc atg
Pro Asn Leu Gly Met Arg Arg Gly Lys Ser Val Thr Pro Ser Met
     35
age ate agt ttg gee ace get gea eet gat gat ggt gta caa aga ege
                                                                   251
Ser Ile Ser Leu Ala Thr Ala Ala Pro Asp Asp Gly Val Gln Arg Arg
 50
                     55
ata ggt gac tac cat tcc aat atc tgg gac gat gat ttc ata cag tct
                                                                   299
Ile Gly Asp Tyr His Ser Asn Ile Trp Asp Asp Phe Ile Gln Ser
                 70
cta tca acg cat tat ggg gaa ccc tct tac cag gaa cgt gct gag aga
                                                                   347
Leu Ser Thr His Tyr Gly Glu Pro Ser Tyr Gln Glu Arg Ala Glu Arg
             85
tta att gtg gag gta aag aag ata ttc aat tca atg tac ctg gat gat
                                                                   395
Leu Ile Val Glu Val Lys Lys Ile Phe Asn Ser Met Tyr Leu Asp Asp
        100
gga aga tta atg agt tcc ttt aat gat ctc atg caa cgc ctt tgg ata
                                                                   443
Gly Arg Leu Met Ser Ser Phe Asn Asp Leu Met Gln Arg Leu Trp Ile
    115
                        120
                                            125
```

gtc Val 130	gat As p	agc Ser	gtt Val	gaa Glu	cgt Arg 135	ttg Leu	ggg Gly	ata Ile	gct Ala	aga Arg 140	cat His	ttc Phe	aag Lys	aac Asn	gag Glu 145	491
ata Ile	aca Thr	tca Ser	gct Ala	ctg Leu 150	gat Asp	tat Tyr	gtt Val	ttc Phe	cgt Arg 155	tac Tyr	tgg Trp	gag Glu	gaa Glu	aac Asn 160	ggc Gly	539
att Ile	gga Gly	tgt Cys	ggg Gly 165	aga Arg	gac Asp	agt Ser	att Ile	gtt Val 170	act Thr	gat Asp	ctc Leu	aac Asn	tca Ser 175	act Thr	gcg Ala	587
ttg Leu	ej aaa	ttt Phe 180	cga Arg	act Thr	ctt Leu	cga Arg	tta Leu 185	cac His	ggg Gly	tac Tyr	act Thr	gta Val 190	tct Ser	cca Pro	gag Glu	635
gtt Val	tta Leu 195	aaa Lys	gct Ala	ttt Phe	caa Gln	gat Asp 200	caa Gln	aat Asn	gga Gly	cag Gln	ttt Phe 205	gta Val	tgc Cys	tcc Ser	ccc Pro	683
ggt Gly 210	cag Gln	aca Thr	gag Glu	ggt Gly	gag Glu 215	atc Ile	aga Arg	agc Ser	gtt Val	ctt Leu 220	aac Asn	tta Leu	tat Tyr	cgg Arg	gct Ala 225	731
tcc Ser	ctc Leu	att Ile	gcc Ala	ttc Phe 230	cct Pro	ggt Gly	gag Glu	aaa Lys	gtt Val 235	atg Met	gaa Glu	gaa Glu	gct Ala	gaa Glu 2 4 0	atc Ile	779
ttc Phe	tcc Ser	aca Thr	aga Arg 245	tat Tyr	ttg Leu	aaa Lys	gaa Glu	gct Ala 250	cta Leu	caa Gln	aag Lys	att Ile	cca Pro 255	gtc Val	tcc Ser	827
gct Ala	ctt Leu	tca Ser 260	caa Gln	gag Glu	ata Ile	aag Lys	ttt Phe 265	gtt Val	atg Met	gaa Glu	tat Tyr	ggc Gly 270	tgg Trp	cac His	aca Thr	875
aat Asn	ttg Leu 275	cca Pro	aga Arg	ttg Leu	gaa Glu	gca Ala 280	aga Arg	aat Asn	tac Tyr	ata Ile	gac As p 285	aca Thr	ctt Leu	gag Glu	aaa Lys	923
gac Asp 290	acc Thr	agt Ser	gca Ala	tgg Trp	ctc Leu 295	aat Asn	aaa Lys	aat Asn	gct Ala	300 Gly 300	aag Lys	aag Lys	ctt Leu	tta Leu	gaa Glu 305	971
ctt Leu	gca Ala	aaa Lys	ttg Leu	gag Glu 310	ttc Phe	aat Asn	ata Ile	ttt Phe	aac Asn 315	tcc Ser	tta Leu	caa Gln	caa Gln	aag Lys 320	gaa Glu	1019
tta Leu	caa Gln	tat Tyr	ctt Leu 325	ttg Leu	aga Arg	tgg Trp	tgg Trp	aaa Lys 330	gag Glu	tcg Ser	gat Asp	ttg Leu	cct Pro 335	aaa Lys	ttg Leu	1067
aca Thr	ttt Phe	gct Ala 340	cgg Arg	cat His	cgt Arg	cat His	gtg Val 345	gaa Glu	ttc Phe	tac Tyr	act Thr	ttg Leu 350	gcc Ala	tct Ser	tgt Cys	1115
att Ile	gcc Ala 355	att Ile	gac Asp	cca Pro	aaa Lys	cat His 360	tct Ser	gca Ala	ttc Phe	aga Arg	cta Leu 365	ggc Gly	ttc Phe	gcc Ala	aaa Lys	1163

atg Met (tgt Cys	cat His	ctt Leu	gtc Val	aca Thr 375	gtt Val	ttg Leu	gac Asp	gat Asp	att Ile 380	tac Tyr	gac Asp	act Thr	ttt Phe	gga Gly 385	1211
acg (att Ile	gac Asp	gag Glu	ctt Leu 390	gaa Glu	ctc Leu	ttc Phe	aca Thr	tct Ser 395	gca Ala	att Ile	aag Lys	aga Arg	tgg Trp 400	aat Asn	1259
tca Ser	tca Ser	gag Glu	ata Ile 405	gaa Glu	cac His	ctt Leu	cca Pro	gaa Glu 41 0	tat Tyr	atg Met	aaa Lys	tgt Cys	gtg Val 415	tac Tyr	atg Met	1307
gtc (Val	Val	420	GIU	inr	val	Asn	425	Leu	Thr	Arg	Glu	Ala 430	Glu	Lys	Thr	1355
	435	Arg	ASII	Inr	Leu	Asn 44 0	Tyr	Val	Arg	Lys	Ala 445	Trp	Glu	Ala	Tyr	1403
ttt (Phe 1 450	лэр	Del	TYL	Met	455	GIU	Ala	Lys	Trp	11e 460	Ser	Asn	Gly	Tyr	Leu 465	1451
cca a	1111	rne	GIU	470	Tyr	Hls	Glu	Asn	Gly 475	Lys	Val	Ser	Ser	Ala 480	Tyr	1499
Cgc (vai	Ата	485	Leu	Gln	Pro	Ile	Leu 490	Thr	Leu	Asn	Ala	Trp 495	Leu	Pro	1547
gat (ıyı	500	Leu	Lys	GIĀ	Ile	505	Phe	Pro	Ser	Arg	Phe 510	Asn	Asp	Leu	1595
gca : Ala :	tcg Ser 515	tcc Ser	ttc Phe	ctt Leu	cgg Arg	cta Leu 520	cga Arg	ggt Gly	gac Asp	aca Thr	cgc Arg 525	tgc Cys	tac Tyr	aag Lys	gcc Ala	1643
gat a Asp 2 530	agg Arg	gat Asp	cgt Arg	ggt Gly	gaa Glu 535	gaa Glu	gct Ala	tcg Ser	tgt Cys	ata Ile 540	tca Ser	tgt Cys	tat Tyr	atg Met	aaa Lys 545	1691
gac (Asp	aat Asn	cct Pro	gga Gly	tca Ser 550	acc Thr	gaa Glu	gaa Glu	gat Asp	gcc Ala 555	ctc Leu	aat Asn	cat His	atc Ile	aat Asn 560	gcc Ala	1 7 39
atg (Met	gtc Val	aat Asn	gac Asp 565	ata Ile	atc Ile	aaa Lys	gaa Glu	tta Leu 570	aat Asn	tgg Trp	gaa Glu	ctt Leu	cta Leu 575	aga Arg	tcc Ser	1787
aac (Asn)	gac Asp	aat Asn 580	att Ile	cca Pro	atg Met	ctg Leu	gcc Ala 585	aag Lys	aaa Lys	cat His	gct Ala	ttt Phe 590	gac Asp	ata Ile	aca Thr	1835
aga (gct Ala 595	ctc Leu	cac His	cat His	ctc Leu	tac Tyr 600	ata Ile	tat Tyr	cga Arg	gat Asp	ggc Gly 605	ttt Phe	agt Ser	gtt Val	gcc Ala	1883

1983

2205

aac aag gaa aca aaa aaa ttg gtt atg gaa aca ctc ctt gaa tct atg Asn Lys Glu Thr Lys Lys Leu Val Met Glu Thr Leu Leu Glu Ser Met 610 615 620 625 ctt ttt taa cta taaccatatc cataataata agctcataat gctaaattat Leu Phe tggccttatg acatagttta tgtatgtact tgtgtgaatt caatcatatc gtgtgggtat 2043 gattaaaaag ctagagctta ctaggttagt aacatggtga taaaagttat aaaatgtgag 2103 ttatagagat acccatgttg aataatgaat tacaaaaaga gaaatttatg tagaataaga 2163 ttggaagctt ttcaattgtt ttaaaaaaaa aaaaaaaaa aa <210> 32 <211> 627 <212> PRT <213> Abies grandis <400> 32 Met Ala Leu Val Ser Ile Ser Pro Leu Ala Ser Lys Ser Cys Leu Arg 1 5 10 15 Lys Ser Leu Ile Ser Ser Ile His Glu His Lys Pro Pro Tyr Arg Thr 20 25 30 Ile Pro Asn Leu Gly Met Arg Arg Gly Lys Ser Val Thr Pro Ser 35 40 45 Met Ser Ile Ser Leu Ala Thr Ala Ala Pro Asp Asp Gly Val Gln Arg 50 55 60 Arg Ile Gly Asp Tyr His Ser Asn Ile Trp Asp Asp Asp Phe Ile Gln 65 70 75 80 Ser Leu Ser Thr His Tyr Gly Glu Pro Ser Tyr Gln Glu Arg Ala Glu 85 90 95 Arg Leu Ile Val Glu Val Lys Lys Ile Phe Asn Ser Met Tyr Leu Asp 100 105 Asp Gly Arg Leu Met Ser Ser Phe Asn Asp Leu Met Gln Arg Leu Trp 115 120 125 Ile Val Asp Ser Val Glu Arg Leu Gly Ile Ala Arg His Phe Lys Asn 130 135 140 Glu Ile Thr Ser Ala Leu Asp Tyr Val Phe Arg Tyr Trp Glu Glu Asn 145 150 Gly Ile Gly Cys Gly Arg Asp Ser Ile Val Thr Asp Leu Asn Ser Thr 170 175 Ala Leu Gly Phe Arg Thr Leu Arg Leu His Gly Tyr Thr Val Ser Pro 180 185 190 Glu Val Leu Lys Ala Phe Gln Asp Gln Asn Gly Gln Phe Val Cys Ser

Pro Gly Gln Thr Glu Gly Glu Ile Arg Ser Val Leu Asn Leu Tyr Arg Ala Ser Leu Ile Ala Phe Pro Gly Glu Lys Val Met Glu Glu Ala Glu Ile Phe Ser Thr Arg Tyr Leu Lys Glu Ala Leu Gln Lys Ile Pro Val Ser Ala Leu Ser Gln Glu Ile Lys Phe Val Met Glu Tyr Gly Trp His Thr Asn Leu Pro Arg Leu Glu Ala Arg Asn Tyr Ile Asp Thr Leu Glu Lys Asp Thr Ser Ala Trp Leu Asn Lys Asn Ala Gly Lys Lys Leu Leu Glu Leu Ala Lys Leu Glu Phe Asn Ile Phe Asn Ser Leu Gln Gln Lys Glu Leu Gln Tyr Leu Leu Arg Trp Trp Lys Glu Ser Asp Leu Pro Lys Leu Thr Phe Ala Arg His Arg His Val Glu Phe Tyr Thr Leu Ala Ser Cys Ile Ala Ile Asp Pro Lys His Ser Ala Phe Arg Leu Gly Phe Ala Lys Met Cys His Leu Val Thr Val Leu Asp Asp Ile Tyr Asp Thr Phe Gly Thr Ile Asp Glu Leu Glu Leu Phe Thr Ser Ala Ile Lys Arg Trp Asn Ser Ser Glu Ile Glu His Leu Pro Glu Tyr Met Lys Cys Val Tyr Met Val Val Phe Glu Thr Val Asn Glu Leu Thr Arg Glu Ala Glu Lys Thr Gln Gly Arg Asn Thr Leu Asn Tyr Val Arg Lys Ala Trp Glu Ala Tyr Phe Asp Ser Tyr Met Glu Glu Ala Lys Trp Ile Ser Asn Gly Tyr Leu Pro Thr Phe Glu Glu Tyr His Glu Asn Gly Lys Val Ser Ser Ala Tyr Arg Val Ala Thr Leu Gln Pro Ile Leu Thr Leu Asn Ala Trp Leu Pro Asp Tyr Ile Leu Lys Gly Ile Asp Phe Pro Ser Arg Phe Asn Asp Leu Ala Ser Ser Phe Leu Arg Leu Arg Gly Asp Thr Arg Cys Tyr Lys

		515					520					525				
Ala	Asp 530	Arg	Asp	Arg	Gly	Glu 535	Glu	Ala	Ser	Cys	Ile 5 4 0	Ser	Cys	Tyr	Met	
Lys 545	Asp	Asn	Pro	Gly	Ser 550	Thr	Gľu	Glu	Asp	Ala 555	Leu	Asn	His	Ile	Asn 560	
Ala	Met	Val	Asn	Asp 565	Ile	Ile	Lys	Glu	Leu 570	Asn	Trp	Glu	Leu	Leu 575	Arg	
Ser	Asn	Asp	Asn 580	Ile	Pro	Met	Leu	Ala 585	Lys	Lys	His	Ala	Phe 590	Asp	Ile	
Thr	Arg	Ala 595	Leu	His	His	Leu	Tyr 600	Ile	Tyr	Arg	Asp	Gly 605	Phe	Ser	Val	
Ala	As n 610	Lys	Glu	Thr	Lys	Lys 615	Leu	Val	Met	Glu	Thr 620	Leu	Leu	Glu	Ser	
Met 625	Leu	Phe														
<211 <212 <213 <220 <223)> > De	iA tifi scri	.ptic	Seq on of	Art	i f ic	ial 2.2	Sequ Bam	ience ìHI	e: PC	:R					
caaa	ggga	itc c	agaa	tggc	t ct	gg										24
<211 <212 <213) Al	cial	. Seq	luenc	:e										
<220 <223	> De	scri igon	ptic	n of	Art le pr	ific	ial 2.2	Sequ Not	ence : I	e: PC	R					
	> 34 agcg		gctt	ttta	a to	a t ac	ccac	:								30
<211 <212		IA	cial	. Seq	uenc	e										
	> De	scri igon	ptic	n of	Art e pr	ific	ial : 3.1	Sequ 8 Ec	ence oRI	: PC	!R					
<400	> 35	•														

crycaggaat teggeacgag c	21
<210> 36 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: PCR oligonucleotide primer 3.18 SmaI	
<400> 36 catageceg ggeatagatt tgagetg	27
<210> 37 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: PCR oligonucleotide primer 10 NdeI	
<400> 37 ggcaggaaca tatggctctc ctttctatcg	30
<210> 38 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: PCR oligonucleotide primer 10 BamHI	
<400> 38 tctagaacta gtggatcccc cgggctgcag	30
<210> 39 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: PCR oligonucleotide primer JB29	
<400> 39 ctaccattcc aatatctg	18
<210> 40 <211> 20 <212> DNA <213> Artificial Sequence	

<220> <223> Des	scription of Artificial Sequence: igonucleotide primer 2-8	PCR	
<400> 40 gttggatct	t agaagttccc		20
<210> 41 <211> 20 <212> DNA <213> Art			
<220> <223> Des	scription of Artificial Sequence:	PCR	
<400> 41 tttccattc	cc aacctctggg		20
<210> 42 <211> 20 <212> DNA <213> Art	A cificial Sequence		
<220> <223> Des	cription of Artificial Sequence: gonucleotide primer 3-11	PCR	
<400> 42 cgtaatgga	a agctctggcg		20
<210> 43 <211> 20 <212> DNA <213> Art	ificial Sequence		
<220> <223> Des	scription of Artificial Sequence: gonucleotide primer 7-1	PCR	
<400> 43 ccttacacg	gc ctttggatgg		20
<210> 44 <211> 20 <212> DNA <213> Art	ificial Sequence		
<220> <223> Des	cription of Artificial Sequence: gonucleotide sequence 7-3	PCR	
<400> 44 tctgttgat	c caggatggtc		20

```
<210> 45
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: conserved
      amino acid motif common to all prenyl transferases wherein Xaa at position
 3 and 4 represents any amino acid
<400> 45
Asp Asp Xaa Xaa Asp
<210> 46
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: amino acid
      motif from which oligonucleotide primers can be
      synthesized that hybridize to the monoterpene
      synthases of the present invention, wherein Xaa at position 4 represents
 Leu or Ile or Val
<400> 46
His Ser Asn Xaa Trp Asp Asp Asp
<210> 47
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: amino acid
      motif from which degenerate oligonucleotides can
      be constructed that hybridize to the monoterpene
      synthases of the present invention
<400> 47
Ala Leu Asp Tyr Val Tyr
<210> 48
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: amino acid
      motif from which degenerate oligonucleotide
      sequences can be constructed that hybridize to the
      monoterpene synthases of the present invention
<400> 48
```

```
Glu Leu Ala Lys Leu Glu Phe
  1
<210> 49
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: amino acid
      motif from which degenerate oligonucleotide
      sequences can be constructed that hybridize to
      monoterpene synthase clones of the present
      invention
<400> 49
Arg Trp Trp Lys Glu Ser
  1
                  5
<210> 50
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: amino acid
      motif from which oligonucleotide sequeences can be
      constructed that hybridize to monoterpene synthase
      clones of the present invention, wherein Xaa at position 1 represents Val
 or Ile or Leu
<400> 50
Xaa Leu Asp Asp Met Tyr Asp
  1
<210> 51
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: amino acid
      motif from which oligonucleotide sequences can be
      constructed that hybridize to monoterpene synthase
      clones of the present invention wherein Xaa at position 1 reperesents Val
 or Ile or Leu
<400> 51
Xaa Leu Asp Asp Leu Tyr Asp
  1
<210> 52
<211> 7
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: amino acid
      motif from which oligonucleotide sequences can be
      constructed that hybridize to the monoterpene
      synthase clones of the present invention, wherein Xaa at position 1
 represents Val or Ile or Leu
<400> 52
Xaa Leu Asp Asp Ile Tyr Asp
<210> 53
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: amino acid
      motif from which oligonucleotide sequences can be
      constructed that hybridize to the monoterpene
      synthase clones of the present invention, wherein Xaa at position 6
 represents Asn or His
<400> 53
Cys Tyr Met Lys Asp Xaa Pro
  1
<210> 54
<211> 9
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: exemplary
      oligonucleotide that corresponds to peptide
      sequence MetMetMet
<400> 54
atgatgatg
                                                                   9
<210> 55
<211> 9
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: exemplary
      oligonucleotide sequence that corresponds to
      peptide sequence MetMetMet
<400> 55
tactactac
                                                                   9
<210> 56
<211> 9
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: exemplary
      oligonucleotide that corresponds to peptide
      sequence MetMetMet, n is inosine
<400> 56
nacnacnac
                                                                     9
<210> 57
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      oligonucleotide corresponding to amino acid
      sequence set forth in SEQ ID NO:46
<220>
<221> misc feature
\langle 222 \rangle (1) ... (24)
<223> Oligonucleotide that corresponds to the conserved
      amino acid sequence set forth in SEQ ID NO:46
<400> 57
gtgtcgttgg agaccetgct gctg
                                                                     24
<210> 58
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      oligonucleotide sequence corresponding to amino
      acid sequence set forth in SEQ ID NO:47
<220>
<221> misc feature
<222> (1) ... (18)
<223> Oligonucleotide corresponding to amino acid
      sequence set forth in SEQ ID NO:47
<400> 58
cgggagctga tgcagatg
                                                                     18
<210> 59
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      oligonucleotide that corresponds to amino acid
      sequence set forth in SEQ ID NO:48
```

<220>		
	misc_feature	
	(1)(21) Oligonucleotide that corresponds to conserved	
\ZZ 3/	amino acid sequence set forth in SEQ ID NO:48	
<400>	59	
ctcgag	geggt tegageteaa g	21
<210>	60	
<211>	18	
<212>		
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence:	
	oligonucleotide that corresponds to amino acid	
	sequence set forth in SEQ ID NO:49	
<220>		
	misc feature	
	(1)(18)	
<223>	Oligonucleotide that corresponds to conserved	
	amino acid sequence set forth in SEQ ID NO:49	
<400>	60	
	cacct tcctctcg	18
-210 >	61	
<210> <211>		
<212>		
<213>	Artificial Sequence	
1000		
<220>	Description of Artificial Sequence:	
\ZZ3/	oligonucleotide sequence corresponding to amino	
	acid sequence set forth in SEQ ID NO:50	
<220>		
	<pre>> misc_feature</pre>	·
	> (1)(21) > Oligonucleotide sequence corresponding to amino	
1220	acid sequence set forth in SEQ ID NO:50	
<400		0.1
gagga	agctgc tgtacatgct g	21
<210	> 62	
<211		
	> DNA	
<213	> Artificial Sequence	
<220	>	
	> Description of Artificial Sequence:	
	oligonucleotide corresponding to amino acid	
	sequence set forth in SEQ ID NO:51	

International application No. PCT/US98/14528

	}				
A. CLASSIFICATION OF SUBJECT MATTER					
US CL :426/601, 622; 435/320.1, 419; 530/370; 536/23.6; According to International Patent Classification (IPC) or to be					
B. FIELDS SEARCHED					
Minimum documentation searched (classification system follow	wed by classification symbols)				
U.S.: 426/601, 622; 435/320.1, 419; 530/370; 536/23.6;					
	800/281, 298				
Documentation searched other than minimum documentation to	the extent that such documents are included	in the fields searched			
Electronic data base consulted during the international search	(name of data base and, where practicable,	search terms used)			
Please See Extra Sheet.					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category* Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.			
Y WO 95/11913 A1 (WASHING)	TON STATE UNIVERSITY	1 2 5 7 10 12			
RESEARCH FOUNDATION) 04 M		1,3,5,7,10,13, 15-22,24,26-46,			
and pages 32-41.	ay 1999, see page 3, lines 19939	49,50			
and pages 32 41.		49,50			
Y WILDUNG et al. A cDNA Clon	e for Taxadiene Synthase, the	1,3,5,7,10, 13,			
Diterpene Cyclase That Catalyzes					
Biosynthesis. The Journal of Biolog	-	49,50			
Vol. 271, No. 16, pages 9201-9204,	-	49,50			
, , , , , , , , , , , , , , , , , , ,	see especially pages 7201-7202.				
X Further documents are listed in the continuation of Box	C. See patent family annex.				
Special categories of cited documents:	"T" later document published after the inte	mational filing date or promb			
"A" document defining the general state of the art which is not considered	date and not in conflict with the send	ication but cited to understand			
to be of particular relevance	"X" document of particular relevance; the				
"B" earlier document published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is	considered novel or cannot be consider	ed to involve an inventive step			
cited to establish the publication date of another citation or othe special reason (as specified)	"Y" document of particular relevance; the	claimed invention cannot be			
O document referring to an oral disclosure, use, exhibition or other	considered to involve an inventive	step when the document is			
m eans	being obvious to a person skilled in the	e art			
P document published prior to the international filing date but later than the priority date claimed	*&* document member of the same patent	family			
Date of the actual completion of the international search	Date of mailing of the international sear	rch report			
26 OCTOBER 1998	1 0 NOV 1998				
	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks	Authorized officer	X			
Box PCT	THANDA WAIL				
Washington, D.C. 20231 Facsimile No. (703) 305-3230	1 the terms of				
	Telephone No. // (703) 308-0196	i			

International application No.
PCT/US98/14528

Citation of document with indication where appropriate of the relevant passages	Relevant to claim No
was a second was manual, where appropriate, or the felevant passages	Relevant to claim Ne
COLBY et al. 4S-Limonene Synthase from the Oil Glands of Spearmint (Mentha spicata). The Journal of Biological Chemistry. 05 November 1993. Vol. 268, No. 31, pages 23016-23024, see especially pages 23017-23018.	1,3,5,7,10, 13, 15-22,24,26-46, 49,50
YUBA et al. cDNA Cloning, Characterization, and Functional Expression of 4S(-)-Limonene Synthase from Perilla frutescens. Archives of Biochemistry and Biophysics. 15 August 1996. Vol. 332, No. 21, pages 280287, see especially pages 281-282.	1,3,5,7,10,13, 15-22,24,26-46, 49,50
BOHLMANN et al. Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-alpha-bisabolene synthase from grand fir (Abies grandis). PNAS USA. June 1998. Vol 95, No. 12, pages 6756-6761, see entire document.	1-46,49,50
BOHLMANN et al. Monoterpene Synthases from Grand Fir (Abies grandis): cDNA Isolation, Characterization, and Functional Expression of Myrcene Synthase, (-)-(4S)-Limonene Synthase, and (-)-(1S,5S)-Pinene Synthase. The Journal of Biological Chemistry. 29 August 1997, Vol. 272, No. 35, pages 21784-21792, see entire document.	1-50
US 4,948,811 A (SPINNER et al.) 14 August 1990) see column 2, lines 20-54 and column 3, lines 57-50.	47, 48
	Spearmint (Mentha spicata). The Journal of Biological Chemistry. 05 November 1993. Vol. 268, No. 31, pages 23016-23024, see especially pages 23017-23018. YUBA et al. cDNA Cloning, Characterization, and Functional Expression of 4S(-)-Limonene Synthase from Perilla frutescens. Archives of Biochemistry and Biophysics. 15 August 1996. Vol. 332, No. 21, pages 280287, see especially pages 281-282. BOHLMANN et al. Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-alpha-bisabolene synthase from grand fir (Abies grandis). PNAS USA. June 1998. Vol 95, No. 12, pages 6756-6761, see entire document. BOHLMANN et al. Monoterpene Synthases from Grand Fir (Abies grandis): cDNA Isolation, Characterization, and Functional Expression of Myrcene Synthase, (-)-(4S)-Limonene Synthase, and (-)-(1S,5S)-Pinene Synthase. The Journal of Biological Chemistry. 29 August 1997, Vol. 272, No. 35, pages 21784-21792, see entire document. US 4,948,811 A (SPINNER et al.) 14 August 1990) see column 2,

International application No. PCT/US98/14528

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):

A01H 5/00, 5/10; A23D 7/00; A23K 1/14; C07H 21/04; C07K 4/10; C12N 15/04, 15/63, 15/82

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, AGRICOLA, BIOSIS, EMBASE, WPIDS, MPSEARCH (for SEQ ID NO:1-6 and 46-53)

search terms: monoterpene synthase#, myrcene synthase#, pinene synthase#, gymnosperm?, grand fir, Abies grandis, A. grandis, oil, meal#

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claims 1, 2, 5, 6, 9, 12, 15-17, 26-46, 49, and 50, drawn to nucleotide sequences encoding myrcene synthase from Grand fir (Abies grandis), vectors comprising the nucleotide sequence, plants transformed with the vectors, seeds made by the transformed plants, and to a method of using the nucleotide sequence, the first product, the first method of making the product, and the first method of using the first product.

Group II, claims 1, 3, 5, 7, 10, 13, 15-17, 26-46, 49, and 50, drawn to nucleotide sequences encoding limonene synthase from Grand fir (Abies grandis), vectors comprising the nucleotide sequence, plants transformed with the vectors, and seeds made by the transformed plants, the second product.

Group III, claims 1, 4, 5, 8, 11, 14, 15-17, 26-46, 49, and 50, drawn to nucleotide sequences encoding pinene synthase from Grand fir (Abies grandis), vectors comprising the nucleotide sequence, plants transformed with the vectors, and seeds made by the transformed plants, the third product.

Group IV, claims 18-22 and 23, drawn to an isolated myrcene synthase protein from Grand fir (Abies grandis), the fourth product.

Group V, claims 18-22 and 24, drawn to an isolated limonene synthase protein from Grand fir (Abies grandis), the fifth product.

Group VI, claims 18-22 and 25, drawn to an isolated myrcene synthase protein from Grand fir (Abies grandis), the sixth product.

Group VII, claims 15-17, 26-46, 49, and 50, drawn to a method of using nucleotide sequences encoding limonene synthase from Grand fir (Abies grandis), the second method of using the second product.

Group VIII, claims 15-17, 26-46, 49, and 50, drawn to a method of using nucleotide sequences encoding pinene synthase from Grand fir (Abies grandis), the third method of using the third product.

Group IX, claims 47 and 48, drawn to oil and meal extracted from the seeds of Groups I-III, the seventh product.

The inventions listed as Groups I-IX do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: the products of Groups I-VI and IX are distinct. The methods of Groups VII and VIII do not utilize the product of Group I. PCT Rule 13 does not provide for multiple methods of using within a single application (37 CFR 1.475(d)).

International application No. PCT/US98/14528

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please See Extra Sheet.
1. X As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
X No protest accompanied the payment of additional search fees.

