```
et[n_{,k_{|}} := et[n, k] = Sum[et[j, k-1] et[n/j, 1], {j, Divisors[n]}];
et[n_{-}, 1] := (-1)^{(n+1)}; et[n_{-}, 0] := 0; et[1, 0] := 1
et2[n_{,k_{]}} := et2[n,k] = Sum[(-1)^jBinomial[k,j] et[n,k-j],{j,0,k}]
ET2[n_{,k_{]}} := ET2[n,k] = Sum[et2[j,k], {j, 2, n}]
lin[n_] := Sum[(-1)^(k+1)/ket2[n,k], \{k, 1, Log[2, n]\}]
\mathtt{Lin}[\mathtt{n}_{\_}] := \mathtt{Lin}[\mathtt{n}] = \mathtt{Sum}[\,(-1) \,\,{}^{\wedge}\,(\mathtt{k}+1) \,\,/\,\mathtt{k}\,\mathtt{ET2}[\mathtt{n},\,\mathtt{k}]\,,\,\{\mathtt{k},\,\mathtt{1},\,\mathtt{Log}[\mathtt{2},\,\mathtt{n}]\,\}]
LAdd[n_] := Sum[2^k/k, \{k, 1, Log[2, n]\}]
0
1
        0
               0
                       0
                               0
2
        - 1
               0
                       0
                               0
                                        - 1
3
                               0
                                        1
        1
               0
                       0
4
        - 1
               1
                       0
                                0
5
        1
               0
                       0
                                0
                                        1
6
        - 1
               - 2
                       0
                               0
                                        0
7
                       0
                               0
                                        1
        1
               0
8
        - 1
               2
                       -1
                               0
9
       1
               1
                       0
                               0
                                        2
10
               - 2
                                0
        - 1
                       0
                                        0
11
               0
                       0
                                0
                                        1
12
               0
                               0
                                        0
        - 1
                       3
13
               0
                               0
                                        1
        1
                       0
14
        - 1
               - 2
                       0
                               0
                                        0
15
        1
               2
                       0
                               0
                                        0
16
        - 1
               3
                               1
                       - 3
17
        1
               0
                       0
                                0
                                        1
18
        - 1
               - 4
                       - 3
                               0
                                        0
19
               0
                                0
        1
                       0
                                        1
               0
                                        0
20
        - 1
                       3
                                0
21
        1
               2
                               0
                                        0
                       0
22
               - 2
                               0
        - 1
                       0
                                        0
23
        1
               0
                       0
                                0
                                        1
24
               2
                                - 4
                                        0
        - 1
                       3
25
               1
                       0
                               0
        1
                                        2
26
        - 1
               - 2
                       0
                                0
                                        0
                                        1
27
        1
               2
                       1
                               0
                                        3
28
        - 1
               0
                       3
                               0
                                        0
29
        1
               0
                       0
                                0
                                        1
30
        - 1
               – б
                       - б
                                0
                                        0
31
               0
                               0
                                        1
                       0
        1
                                        _ 31
32
                                4
        - 1
               4
                       – б
33
               2
                                0
                                        0
        1
                       0
34
        - 1
               - 2
                       0
                                0
                                        0
35
        1
               2
                       0
                                0
                                        0
36
        - 1
               - 1
                       6
                                6
                                        0
37
        1
               0
                       0
                               0
                                        1
                               0
                                        0
38
        - 1
               - 2
                       0
39
        1
               2
                       0
                               0
                                        0
40
        - 1
               2
                       3
                               - 4
                                        0
41
        1
               0
                       0
                                0
                                        1
42
        - 1
               – б
                       – б
                               0
                                        0
43
        1
               0
                       0
                                0
                                        1
```

44	- 1	0	3	0	0
45	1	4	3	0	0
46	- 1	- 2	0	0	0
47	1	0	0	0	1
48	- 1	4	0	- 8	0
49	1	1	0	0	$\frac{1}{2}$
50	- 1	- 4	- 3	0	0
51	1	2	0	0	0
52	- 1	0	3	0	0
53	1	0	0	0	1
54	- 1	- 6	– 9	- 4	0
55	1	2	0	0	0
56	- 1	2	3	- 4	0
57	1	2	0	0	0
58	- 1	- 2	0	0	0
59	1	0	0	0	1
60	- 1	- 2	9	12	0
61	1	0	0	0	1
62	- 1	- 2	0	0	0
63	1	4	3	0	0
64	- 1	5	-10	10	$-\frac{2}{1}$
65	1	2	0	0	0
66	- 1	- 6	- 6	0	0
67	1	0	0	0	1
68	- 1	0	3	0	0
69	1	2	0	0	0
70	- 1	- 6	- 6	0	0
71	1	0	0	0	1
72	- 1	2	9	- 4	0
73	1	0	0	0	1
74	- 1	- 2	0	0	0
75	1	4	3	0	0
76	- 1	0	3	0	0
77	1	2	0	0	0
78	- 1	- б	- б	0	0
79	1	0	0	0	1
80	- 1	4	0	- 8	0
81	1	3	3	1	$\frac{1}{4}$
82	- 1	- 2	0	0	0
83	1	0	0	0	1
84	- 1	- 2	9	12	0
85	1	2	0	0	0
86	- 1	- 2	0	0	0
87	1	2	0	0	0
88	- 1	2	3	- 4	0
89	1	0	0	0	1
90	- 1	-10	-21	-12	0
91	1	2	0	0	0
92	- 1	0	3	0	0
93	1	2	0	0	0
94	- 1	- 2	0	0	0
95	1	2	0	0	0
96	- 1	6	- 6	- 8	0
97	1	0	0	0	1
98	- 1	- 4	- 3	0	0

- 1

- 8

50	- 1	- 4	- 3	0	0
51	1	2	0	0	0
52	- 1	0	3	0	0
53	1	0	0	0	1
54	- 1	- 6	- 9	- 4	0
55	1	2	0	0	0
56	- 1	2	3	- 4	0
57	1	2	0	0	0
58	- -1	- - 2	0	0	0
59	1	0	0	0	1
	-1	- 2			
60			9	12	0
61	1	0	0	0	1
62	-1	- 2	0	0	0
63	1	4	3	0	0
64	- 1	5	-10	10	_ 21
	1	2	0		- 2
65				0	0
66	- 1	- б	– б	0	0
67	1	0	0	0	1
68	- 1	0	3	0	0
69	1	2	0	0	0
70	- 1	- 6	- 6	0	0
71	1	0	0	0	1
72	- 1	2	9	- 4	0
73	1	0	0	0	1
74	-1	- 2	0	0	0
75	1	4	3	0	0
76	- 1	0	3	0	0
77	1	2	0	0	0
78	- 1	- 6	- б	0	0
79	1	0	0	0	1
80	- 1	4	0	- 8	0
81	1	3	3	1	$\frac{1}{4}$
82	- 1	- 2	0	0	0
83	1	0	0	0	1
84	- 1	- 2	9	12	0
85	1	2	0	0	0
86	- 1	- 2	0	0	0
87	1	2	0	0	0
88	- 1	2	3	- 4	0
89	1	0	0	0	1
90	-1	-10	- 21	-12	0
91	1	2	0	0	0
92	- 1	0	3	0	0
93	1	2	0	0	0
94	- 1	- 2	0	0	0
95	1	2	0	0	0
96	- 1	6	- 6	- 8	0
97	1	0	0	0	1
98	- 1	- 4	- 3	0	0
99	1	4	3	0	0
100	-1	-1	6	6	0
T00	- T	- T	U	U	U

1 0 0 0 0 0 0 0 2 -1 3 0 0 0 0 0

4	-1	1	0	0	$-\frac{3}{2}$
5	0	1	0	0	$-\frac{1}{2}$
6	-1	-1	0	0	$-\frac{1}{2}$
7	0	-1	0	0	$\frac{1}{2}$
8	-1	1	-1	0	$-\frac{11}{6}$
9	0	2	-1	0	$-\frac{4}{3}$
10	- 1	0	-1	0	$-\frac{4}{3}$
11	0	0	-1	0	$-\frac{1}{3}$
12	- 1	0	2	0	$-\frac{1}{3}$
13	0	0	2	0	$\frac{2}{3}$
14	-1	- 2	2	0	$\frac{2}{3}$
15	0	0	2	0	<u>2</u> 3
16	-1	3	-1	1	$-\frac{37}{12}$
17	0	3	-1	1	$-\frac{25}{12}$
18	-1	-1	- 4	1	$-\frac{25}{12}$
19	0	-1	- 4	1	$-\frac{13}{12}$
20	-1	-1	-1	1	$-\frac{13}{12}$
21	0	1	-1	1	$-\frac{13}{12}$
22	-1	-1	-1	1	$-\frac{13}{12}$
23	0	- 1	-1	1	$-\frac{1}{12}$
24	- 1	1	2	- 3	$-\frac{1}{12}$
25	0	2	2	- 3	<u>5</u> 12
26	-1	0	2	- 3	<u>5</u> 12
27	0	2	3	- 3	$\frac{3}{4}$
28	- 1	2	6	- 3	$\frac{3}{4}$
29	0	2	6	- 3	$\frac{7}{4}$
30	-1	- 4	0	- 3	$\frac{7}{4}$
31	0	- 4	0	- 3	$\frac{11}{4}$
32	-1	0	- 6	1	$-\frac{69}{20}$
33	0	2	- 6	1	$-\frac{69}{20}$
34	-1	0	- 6	1	$-\frac{69}{20}$
35	0	2	- б	1	$-\frac{69}{20}$
36	- 1	1	0	7	$-\frac{69}{20}$
37	0	1	0	7	$-\frac{49}{20}$
38	- 1	- 1	0	7	$-\frac{49}{20}$
39	0	1	0	7	$-\frac{49}{20}$
40	-1	3	3	3	$-\frac{49}{20}$
41	0	3	3	3	$-\frac{29}{20}$
42	-1	- 3	- 3	3	$-\frac{29}{20}$

43	0	- 3	- 3	3	$-\frac{9}{20}$
44	-1	- 3	0	3	$-\frac{9}{20}$
45	0	1	3	3	$-\frac{9}{20}$
46	-1	- 1	3	3	$-\frac{9}{20}$
47	0	- 1	3	3	11 20
48	-1	3	3	- 5	11 20
49	0	4	3	- 5	21 20
50	-1	0	0	- 5	21 20
51	0	2	0	- 5	21 20
52	-1	2	3	- 5	21 20
53	0	2	3	- 5	41 20
54	-1	- 4	- б	- 9	41 20
55	0	- 2	- 6	- 9	41 20
56	-1	0	- 3	-13	41 20
57	0	2	- 3	-13	41 20
58	-1	0	- 3	-13	41 20
59	0	0	- 3	-13	61 20
60	-1	- 2	6	-1	61 20
61	0	- 2	6	- 1	81 20
62	-1	- 4	6	-1	81 20
63	0	0	9	-1	81 20
64	-1	5	-1	9	$-\frac{129}{20}$
65	0	7	-1	9	$-\frac{129}{20}$
66	-1	1	- 7	9	$-\frac{129}{20}$
67	0	1	- 7	9	$-\frac{109}{20}$
68	-1	1	- 4	9	$-\frac{109}{20}$
69	0	3	- 4	9	$-\frac{109}{20}$
70	-1	- 3	-10	9	$-\frac{109}{20}$
71	0	- 3	-10	9	$-\frac{89}{20}$
72	-1	- 1	-1	5	$-\frac{89}{20}$
73	0	-1	-1	5	$-\frac{69}{20}$
74	-1	- 3	-1	5	$-\frac{69}{20}$
75	0	1	2	5	$-\frac{69}{20}$
76	-1	1	5	5	$-\frac{69}{20}$
77	0	3	5	5	$-\frac{69}{20}$
78	-1	- 3	-1	5	$-\frac{69}{20}$
79	0	- 3	-1	5	$-\frac{49}{20}$
80	-1	1	-1	- 3	$-\frac{49}{20}$
81	0	4	2	- 2	$-\frac{11}{5}$

DiscretePlot[Lin[n], $\{n, 2, 64 * 32\}$]

 $FG[n_{,k_{,j}} := Sum[((-1)^{(j+1)})/k - FG[Floor[n/j], k+1], \{j, 2, n\}]$ FG[100, 1]

13 — 10

Lin[100]

4 -5

${\tt DiscretePlot[FF[n,1],\{n,2,100\}]}$

Lin[100, 1]

 ${\tt Table[\ \{2^n,\ lin[2^n]\ ,\ -(2^n-1)\ /n\},\ \{n,\ 1,\ 14\}]\ //\ TableForm}$

Table[$\{n, ET2[n, 1], ET2[n, 2], ET2[n, 3], ET2[n, 4], ET2[n, 5], ET2[n, 6], ET2[n, 7], ET2[n, 8], ET2[n, 9], ET2[n, 10], ET2[n, 11], Lin[n]\}, <math>\{n, 100, 10000, 100\}$] // TableForm

100	-1	3	- 4	- 8	9	- 5	0	0	0	0	0
200	-1	-1	- 3	6	24	-14	6	0	0	0	0
300	-1	0	5	3	- 5	35	- 22	1	0	0	0
400	-1	5	-12	- 5	5	- 49	20	- 7	0	0	0
500	-1	-1	- 3	- 57	35	-1	20	- 7	0	0	0
600	-1	- 3	5	17	15	40	-64	29	-1	0	0
700	-1	1	41	60	70	- 26	-106	21	-1	0	0
800	-1	3	– 9	66	55	- 40	83	- 27	8	0	0
900	- 1	5	12	56	55	- 4	118	-91	8	0	0

4900	-1	15	137	521	1105	1110	350	49	- 496	231	- £
5000	-1	- 3	-105	-179	465	216	-119	321	-568	231	- £
5100	-1	-14	54	- 67	-180	-120	1001	1161	-568	231	- 5
5200	-1	13	18	-125	- 375	471	1113	245	-199	361	- 4
5300	-1	- 5	6	19	300	1575	1442	- 99	-199	361	- 4
5400	-1	- 2	-42	- 1	- 340	- 735	0	- 259	-550	451	- 4
5500	-1	9	24	133	495	99	- 84	- 371	-550	451	- 4
5600	-1	1	48	281	810	195	- 252	-491	-550	451	- 4
5700	-1	-16	- 90	-159	-505	-714	154	- 371	- 487	441	- 4
5800	-1	3	15	73	310	- 495	-777	69	125	81	- 4
5900	-1	- 5	- 28	-107	-400	-1915	-1848	-315	50	81	- 4
6000	-1	14	110	163	415	- 751	-1071	21	50	81	- 4
6100	-1	7	35	-171	330	41	- 385	-435	-454	81	- 4
6200	-1	5	53	241	-520	-109	-91	-1155	221	- 269	54
6300	-1	-12	26	413	710	1631	441	-1387	185	- 269	54
6400	-1	3	- 22	145	620	1595	252	-1435	266	- 224	54
6500	-1	-15	- 4	53	- 80	869	1155	245	896	- 224	54
6600	-1	- 6	74	220	- 385	- 754	154	462	824	- 224	54
6700	-1	4	41	236	- 335	- 550	189	134	887	- 234	54
6800	-1	3	-127	- 574	-815	-184	-497	- 378	1391	- 234	54
6900	-1	- 2	225	502	470	644	- 49	-210	1391	- 234	54
7000	-1	0	33	-210	-430	-520	-406	638	1292	-624	21
7100	-1	- 3	12	36	555	395	427	1274	1220	-624	21
7200	-1	1	-66	-64	-40	629	840	- 6	707	-704	23
7300	-1	12	- 36	-194	- 425	- 31	623	154	635	-704	23
7400	-1	21	21	- 452	-680	443	1043	154	635	-704	23
7500	-1	- 1	– 9	- 224	75	1379	1106	-118	896	-704	23
7600	-1	10	153	238	115	-811	-1918	-1246	896	-704	23
7700	-1	2	- 6	502	620	-1525	-1148	-902	23	-174	12
7800	-1	- 1	39	184	- 296	-1882	-644	-986	-607	- 426	12
7900	-1	- 3	-12	72	-81	-1576	-707	-1106	-607	-426	12
8000	-1	0	- 34	-64	- 596	-1966	28	- 370	-514	-426	12
8100	-1	3	80	610	1914	599	532	490	98	- 786	12
8200	-1	-17	-172	-194	- 36	1271	-196	946	- 397	- 566	54
8300	-1	- 4	- 4	- 332	-1091	-91	-504	1282	- 397	- 566	54
8400	-1	0	35	- 216	-781	665	966	2170	-469	- 566	54
8500	-1	1	35	184	-231	- 316	252	2290	-820	- 476	54
8600	-1	1	65	376	19	-784	- 252	2338	-820	- 476	54
8700	-1	- 20	-64	- 374	-176	680	- 588	378	-568	364	54

8800	-1	12	20	- 382	-216	1694	154	- 70	-469	354	54
8900	-1	3	104	380	1659	3200	728	146	-541	354	54
9000	-1	7	- 43	- 208	324	800	-763	-182	-892	444	54
9100	-1	12	92	30	-116	- 4	133	1546	-262	444	54
9200	-1	- 2	74	54	1144	2000	581	1266	- 262	444	54
9300	-1	3	21	624	674	- 266	595	770	- 775	1219	- 3
9400	-1	-17	105	896	529	-236	1848	1602	- 775	1219	- 3
9500	-1	-16	- 90	- 204	-1191	-1454	1036	1330	-514	1219	- 3
9600	-1	18	-102	- 568	-1081	-1154	399	1266	-406	859	- 3
9700	-1	-1	45	-116	-381	-605	532	1266	-406	859	- 3
9800	-1	3	- 3	- 412	-1481	- 2885	-2912	-1190	- 595	849	- 3
9900	-1	-16	- 27	444	1399	- 56	-1827	-974	-667	849	- 3
10000	-1	5	- б	411	1139	-794	-1253	-168	-1018	939	- 3

 $LAdd[n_] := Sum[2^k/k, \{k, 1, Log[2, n]\}]$

N[Lin[1000] + LAdd[1000]]

 $\texttt{N[Sum[MangoldtLambda[n]/Log[n], \{n, 2, 1000\}]]}$

176.696

Expand[$(2^k - 1)/k + 1/k$]

Expand[Sum[$2^k/k$, $\{k, 1, Log[2, n]\}$]]

$$-i \pi - 2 n \operatorname{LerchPhi}\left[2, 1, 1 + \frac{\operatorname{Log}[n]}{\operatorname{Log}[2]}\right]$$

${\tt DiscretePlot[\,Lin[n]\,,\,\{n,\,10\,,\,10\,000\,,\,10\}]}$

${\tt DiscretePlot[Lin[n]+LAdd[n],\{n,2,100\}]}$

DiscretePlot[MLin[n], {n, 2, 100}]

DiscretePlot[Lin[n], {n, 5685, 5700}]

N[Lin[5693]]

0.739646

N[(5693 - 4096) / 4096]

0.389893

Lin[24]

$$-\frac{1}{12}$$

Lin[46]

 $\label{eq:discretePlot} \texttt{DiscretePlot[Lin[n], \{n, Floor[(2^6) * 1.37], Floor[(2^6) * 1.52]\}]}$

Lin[96]

 $\label{eq:discretePlot} \texttt{DiscretePlot[Lin[n], \{n, Floor[(2^7) *1.37], Floor[(2^7) *1.42]\}]}$

1 105

 ${\tt DiscretePlot[Lin[n], \{n, Floor[(2^8)*1.37], Floor[(2^8)*1.41]\}]}$

Lin[358]

 $-\frac{143}{168}$

DiscretePlot[Lin[n], {n, Floor[(2^9) *1.37], Floor[(2^9) *1.41]}]

-0.378968

 $\label{eq:discretePlot} DiscretePlot[Lin[n], \{n, Floor[(2^10) *1.37], Floor[(2^10) *1.41]\}]$

N[Lin[1438]]

-0.678968

 ${\tt DiscretePlot[Lin[n], \{n, Floor[(2^11)*1.37], Floor[(2^11)*1.39]\}]}$

N[Lin[2836]]

-0.0436869

 $\label{eq:discretePlot} DiscretePlot[Lin[n], \{n, Floor[(2^12) *1.385], Floor[(2^12) *1.39]\}]$

N[Lin[5692]]

-0.260354

DiscretePlot[Lin[n], {n, Floor[(2^13) *1.39], Floor[(2^13) *1.396]}]

N[Lin[11398]]

-0.878943

 $\label{eq:discretePlot} DiscretePlot[Lin[n], \{n, Floor[(2^14) * 1.387], Floor[(2^14) * 1.39]\}]$

N[Lin[22740]]

-0.0321179

DiscretePlot[Lin[n], {n, Floor[$(2^15) * 1.385$], Floor[$(2^15) * 1.4$]}]

\$Aborted

 $\mathtt{dif} := \{24,\ 46,\ 96,\ 180,\ 358,\ 718,\ 1438,\ 2836,\ 5692,\ 11\,398,\ 22\,740\}$ N[Table[{j, dif[[j]], dif[[j]]/(2^(j+3.5)), dif[[j+1]]/dif[[j]]}, {j, 1, Length[dif] - 1}] // TableForm]

1.	24.	1.06066	1.91667
2.	46.	1.01647	2.08696
3.	96.	1.06066	1.875
4.	180.	0.994369	1.98889
5.	358.	0.988845	2.00559
6.	718.	0.991607	2.00279
7.	1438.	0.992988	1.97218
8.	2836.	0.979177	2.00705
9.	5692.	0.98263	2.00246
10.	11398.	0.983838	1.99509

```
aba = Floor[2^{(19 + (1/2))} *.983
N[LAdd[ aba]]
N[LogIntegral[aba]]
N[PP[aba]]
728850.
58713.6
58785.
58784.9
PP[n_] := N[Sum[1/kPrimePi[n^(1/k)], \{k, 1, n\}]]
PP[10000]
1247.1
N[Table[2^{(j+1/2), \{j, 2, 18\}]}]
{5.65685, 11.3137, 22.6274, 45.2548, 90.5097, 181.019, 362.039, 724.077,
 1448.15, 2896.31, 5792.62, 11585.2, 23170.5, 46341., 92681.9, 185364., 370728.}
LI1[n_] := Sum[2^k/k, \{k, 1, Log[2, n]\}]
LI1[n]
-i\left(\pi-2 i \text{ n LerchPhi}\left[2, 1, 1 + \frac{\text{Log}[n]}{\text{Log}[2]}\right]\right)
LI2[n_] := Integrate[2^k/k, \{k, 1, Log[2, n]\}]
LI2[n]
ConditionalExpression[
 Integrate [2^k/k, \{k, 1, Log[2, n]\}]
ConditionalExpression[
 \texttt{Log}[\texttt{Log}[2]] - \texttt{Log}[\texttt{Log}[n]] - \texttt{Log}[\texttt{Integral}[2] + \texttt{Log}[\texttt{Integral}[n], \, \texttt{Im}[\texttt{Log}[n]] \, \neq \, 0 \, \, | \, \, | \, \, \texttt{Re}[\texttt{Log}[n]] \, \geq \, 0)
Integrate[3^k/k, {k, 1, Log[3, n]}]
ConditionalExpression[
 \texttt{Log}[\texttt{Log}[3]] - \texttt{Log}[\texttt{Log}[n]] - \texttt{Log}[\texttt{Integral}[3] + \texttt{Log}[\texttt{Integral}[n], \, \texttt{Im}[\texttt{Log}[n]] \, \neq \, 0 \, \, | \, \, | \, \, \texttt{Re}[\texttt{Log}[n]] \, \geq \, 0]
Power::infy : Infinite expression - encountered. \gg
```

```
Integrate[\ 2^k/k,\ \{k,\ 1,\ Log[\ 2,\ n]\ \}]
ConditionalExpression[
    \texttt{Log}[\texttt{Log}[2]] - \texttt{Log}[\texttt{Log}[n]] - \texttt{LogIntegral}[2] + \texttt{LogIntegral}[n] \text{, } \texttt{Im}[\texttt{Log}[n]] \neq 0 \text{ } || \text{ } \texttt{Re}[\texttt{Log}[n]] \geq 0 \text{ } || \texttt{Log}[n]| + \texttt{LogIntegral}[n] \text{ } || \texttt{Log}[n]| + \texttt{LogIntegral}[n]| + \texttt{LogIntegral}[n]|
 {\tt tt[n\_] := Log[Log[2]] - Log[Log[n]] - LogIntegral[2] + LogIntegral[n]}
N[tt[10000]]
1242.51
N[LogIntegral[10000]]
1246.14
N[LI1[10000]]
1394.98
LogIntegral[100]
LAdd[n_{, v_{, l}} := Sum[v^k/k, \{k, 1, Log[v, n]\}]
```

$\label{eq:definition} DiscretePlot[\ \{ LAdd[n] \,, \ LogIntegral[n] \,, \ PP[n] \} \,, \ \{n, \, 2 \,, \, 800 \}]$

Integrate[3^k/k, {k, 1, Log[3, n]}]

ConditionalExpression[$\texttt{Log}[\texttt{Log}[3]] - \texttt{Log}[\texttt{Log}[n]] - \texttt{LogIntegral}[3] + \texttt{LogIntegral}[n] \text{, } \texttt{Im}[\texttt{Log}[n]] \neq 0 \text{ } || \text{ } \texttt{Re}[\texttt{Log}[n]] \geq 0 \text{ } || \texttt{Re}[\texttt{Log}[n]] \neq 0 \text{ } || \texttt{Re}[\texttt{Log}$

410

87.0833 87.0835

```
Integrate[8^k/k, {k, 1, Log[8, n]}]
ConditionalExpression[
Log[Log[8]] - Log[Log[n]] - LogIntegral[8] + LogIntegral[n], Im[Log[n]] \neq 0 \mid | Re[Log[n]] \geq 0
Integrate[ (1.5)^k/k, \{k, 1, Log[(1.5), n]\}]
\texttt{ConditionalExpression[(-1.02779+0.i)-1.Gamma[0,-1.Log[n]]-1.Log[-1.Log[n]],}
 \text{Im}\left[\text{Log}\left[n\right]\right] \,\neq\, 0 \,\mid\, \mid \, \text{Re}\left[\text{Log}\left[n\right]\right] \,\geq\, 0 \,\right]
LAdd[n_{,k_{]}} := Sum[k^{j}, {j, 1, Log[k, n]}]
Table [ \{n, LAdd[n, 1.00001] - LAdd[2, 1.00001] + LogIntegral[2], N[LogIntegral[n]] \}, \} 
  {n, 10, 2000, 10}] // TableForm
10
        6.16558
                   6.1656
20
        9.90527
                   9.9053
30
       13.0226
                   13.0226
40
       15.8395 15.8395
50
       18.4687 18.4687
60
       20.9654 20.9654
70
        23.3618
                 23.3618
        25.6785
                   25.6786
80
90
       27.9299
                 27.9299
100
       30.1262 30.1261
       32.2751 32.2751
110
       34.3828 34.3828
120
       36.454
                   36.4541
130
       38.4928
                   38.4928
140
                  40.5023
150
       40.5024
160
       42.485
                  42.4852
170
       44.4438 44.4438
180
       46.3801 46.38
190
        48.2958
                   48.2957
200
       50.1922
                   50.1922
       52.0709
                 52.0709
210
220
       53.9329 53.9329
     55.7792 55.7793
230
       57.6109
                 57.6109
240
250
       59.4286
                   59.4287
       61.2332
260
                   61.2334
270
       63.0254 63.0256
280
     64.8059 64.806
       66.575
                  66.5752
290
300
       68.3338 68.3336
310
       70.082
                   70.0818
       71.8199
320
                   71.8202
       73.5493
                   73.5491
330
340
       75.2691 75.2691
350
       76.9805
                  76.9804
360
       78.6835
                   78.6834
370
       80.3785
                   80.3783
380
       82.0658
                   82.0656
       83.7452 83.7453
390
400
       85.4179 85.4179
```

420	88.7423	88.7423
	90.3946	90.3947
430		
440	92.0407	92.0407
450	93.6803	93.6805
	95.3143	95.3145
460		
470	96.9427	96.9426
480	98.5649	98.5651
490	100.182	100.182
500	101.794	101.794
510	103.401	103.4
520	105.002	105.002
530	106.598	106.599
540	108.191	108.19
550	109.777	109.777
560	111.36	111.36
570	112.938	112.938
580	114.511	114.512
590	116.081	116.081
600	117.647	117.647
610	119.208	119.208
620	120.765	120.765
630	122.319	122.318
640	123.868	123.868
650	125.414	125.414
660	126.956	126.956
670	128.495	128.494
680	130.029	130.029
690	131.561	131.561
700	133.089	133.089
710		
	134.613	134.614
720	136.135	136.135
730	137.653	137.654
740	139.169	139.169
750	140.681	140.681
760		
	142.19	142.19
770	143.696	143.696
780	145.199	145.199
790	146.699	146.699
800	148.197	148.197
810	149.691	149.691
820	151.183	151.183
830	152.672	152.672
840	154.159	154.159
	155.643	
850		155.642
860	157.124	157.124
870	158.602	158.602
880	160.078	160.079
890	161.552	161.552
900	163.023	163.024
910	164.492	164.492
920	165.959	165.959
930	167.423	167.423
940		
	168.885	168.885
950	170.344	170.345
960	171.802	171.802
970	173.258	173.257

980	174.71	174.71
990	174.71	174.71
1000	177.609	177.61
1010	179.057	179.056
1020	180.501	180.501
1030	181.943	181.943
1040	183.384	183.384
1050	184.823	184.822
1060	186.258	186.259
1070	187.693	187.693
1080	189.127	189.126
1090	190.556	190.557
1100	191.986	191.986
1110	193.413	193.413
1120	194.837	194.838
1130	196.261	196.261
1140	197.682	197.683
1150	199.103	199.103
1160	200.521	200.521
1170	201.937	201.937
1180	203.352	203.352
1190	204.765	204.765
1200	206.176	206.176
1210	207.586	207.585
1220	207.300	207.303
1230	210.4	210.4
1240	211.805	211.804
1250	213.208	213.208
1260	214.61	214.609
1270	216.009	216.009
1280	217.408	217.408
1290	218.805	218.805
1300	220.2	220.2
1310	221.593	221.594
1320	222.987	222.986
1330	224.378	224.377
1340	225.768	225.767
1350	227.155	227.155
1360	228.541	228.542
1370	229.927	229.927
1380	231.311	231.311
1390	232.693	232.693
1400	234.075	234.074
1410	235.455	235.454
1420	236.832	236.832
1430	238.209	238.209
1440	239.585	239.585
1450	240.96	240.96
1460	242.332	242.333
1470	243.705	243.704
1470		
	245.075	245.075
1490	246.444	246.444
1500	247.812	247.812
1510	249.18	249.179
1520	250.545	250.545
1530	251.908	251.909

```
1540
          253.272
                        253.272
1550
         254.633
                       254.634
          255.994
                       255.995
1560
1570
          257.353
                       257.354
1580
          258.712
                       258.712
1590
          260.069
                       260.07
1600
          261.425
                       261.426
          262.78
                       262.78
1610
1620
          264.133
                       264.134
          265.487
                       265.487
1630
          266.837
                       266.838
1640
1650
          268.188
                       268.189
1660
          269.537
                        269.538
1670
          270.886
                       270.886
1680
          272.233
                       272.233
1690
          273.58
                       273.579
1700
          274.925
                       274.924
1710
          276.267
                       276.268
          277.61
                       277.61
1720
         278.952
1730
                       278.952
1740
          280.292
                       280.293
          281.632
                       281.633
1750
                       282.971
          282.971
1760
1770
          284.31
                        284.309
          285.645
1780
                       285.646
1790
          286.98
                       286.981
1800
          288.315
                     288.316
1810
          289.648
                       289.649
                       290.982
1820
          290.981
1830
          292.313
                       292.314
         293.644
1840
                       293.644
1850
         294.973
                       294.974
1860
         296.302
                       296.303
1870
         297.632
                       297.631
1880
          298.958
                       298.958
1890
          300.282
                       300.284
1900
          301.608
                       301.609
1910
          302.932
                       302.933
1920
          304.255
                     304.256
1930
          305.579
                     305.578
1940
          306.901
                       306.9
1950
          308.221
                       308.22
1960
          309.539
                       309.54
1970
          310.858
                       310.858
1980
         312.178
                       312.176
1990
          313.492
                       313.493
                       314.809
2000
          314.81
\texttt{Limit}[\;\texttt{Sum}[\;v^k\,/\,k,\;\{k,\,1,\,\texttt{Log}[\,v,\,n\,]\,\}\,]\;,\;\{v\rightarrow1\}\,]
\left\{ \text{Limit} \left[ -\text{n} \; v \; \text{LerchPhi} \left[ v \; , \; 1 \; , \; 1 \; + \; \frac{\text{Log} \left[ n \right]}{\text{Log} \left[ v \right]} \; \right] \; - \; \text{Log} \left[ 1 \; - \; v \right] \; , \; \; v \; \rightarrow \; 1 \right] \right\}
```

 $Sum[v^k/k, \{k, 1, Log[v, n]\}]$

```
LAdd[n_{, v_{, l}} := Sum[v^k/k, \{k, 1, Log[v, n]\}]
LAdd[80, 1.000001] - LAdd[2, 1.000001] + N[LogIntegral[2]]
25.6786 - 2.49006 \times 10^{-10} i
N[LogIntegral[80]]
25.6786
LAdd[2, 1.00000001]
19.4658 + 1.01851 \times 10^{-8} i
N[LogIntegral[2]]
1.04516
LAdd[2,1-.000001]
```

 $LAdd2[n_{, v_{, l}} := Sum[(-1)^{(k+1)}v^{k}, \{k, l, Log[v, n]\}]$ DiscretePlot[{ LAdd2[n, 1.00001]}, {n, 2, 400}]

N[Log[2]] 0.693147

 $LAdd[n_{,k_{]}} := Sum[k^{j}, {j, 1, Log[k, n]}]$ $L2[n_] := Sum[LAdd[n, Prime[k]], \{k, 1, 200\}]$ DiscretePlot[L2[n], {n, 2, 100}]

 $PX[n_{k}] := PX[n, k] = Sum[j(1/k - PX[Floor[n/j], k+1]), {j, 2, n}]$

PX[100, 1]

69 389 60

L2[100]

69 389 60

 ${\tt DiscretePlot[\ PX[n,1],\{n,2,100\}]}$

 $Integrate[\ k^j/j, \{j, 1, Log[k, n] \}]$

 ${\tt ConditionalExpression[-LogIntegral[k] + LogIntegral[n], Log[n] < Log[k] < 0]}$

Integrate[k^j/j, {j, 1, n}]

ConditionalExpression [ExpIntegralEi[nLog[k]]-LogIntegral[k], Re[Log[k]] < 0 && n > 1]

```
Integrate::idiv: Integral of \frac{k^j}{i} does not converge on \left\{0, \frac{\mathsf{Log}[n]}{\mathsf{Log}[k]}\right\}. \gg
LAddX[n_{,k_{]}} := Integrate[k^{j}, {j, 1, Log[k, n]}]
L2X[n_] := Sum[LAddX[n, Prime[k]], {k, 1, 200}]
DiscretePlot[L2X[n], {n, 2, 100}]
$Aborted
LAddX[n_{k}] := Sum[k^j/j, {j, 1, Log[k, n]}]
L2X[n_] := Sum[LAddX[n, Prime[k]], \{k, 1, 200\}]
DiscretePlot[L2X[n], {n, 2, 100}]
1000
800
600
400
200
                                                          100
Integrate[2^j/j, {j, 1, Log[2, 100]}]
-ExpIntegralEi[Log[2]] + ExpIntegralEi[Log[100]]
N[-ExpIntegralEi[Log[2]] + ExpIntegralEi[Log[100]]]
29.081
N[LogIntegral[100] - LogIntegral[2]]
29.081
Soldner := 1.4513692348
lt[n_{-}, k_{-}] := Sum[k^{j}/j, \{j, Log[k, Soldner], Log[k, n]\}]
{\tt Table[\,\{\,n,\,\,lt[n,\,1.00001]\,,\,\,N[LogIntegral[n]]\,\},\,\{n,\,120,\,123\}]\,\,//\,\,TableForm}
120
       34.3828
                    34.3828
     34.5915
                    34.5915
121
122
       34.7998
                    34.7998
123
       35.0077
                    35.0078
```

```
Integrate[k^j/j, {j, 1, Log[k, n]}]
\label{eq:conditional} \texttt{ConditionalExpression} [-\texttt{LogIntegral}[k] + \texttt{LogIntegral}[n] \text{, } \texttt{Log}[n] < \texttt{Log}[k] < 0]
-LogIntegral[1.45136923488] +LogIntegral[n]
9.07639 \times 10^{-12} + LogIntegral[n]
```

```
Integrate[Soldner^j/j, {j, 1, Log[Soldner, 100]}]
30.1261 - 1.15463 \times 10^{-14} i
N[LogIntegral[100]]
30.1261
Integrate[Soldner^j/j, {j, Log[Soldner, 50], Log[Soldner, 100]}]
11.6574 - 5.77316 \times 10^{-15} i
N[LogIntegral[100] - LogIntegral[50]]
11.6574
lt2[n_{,b_{,k_{,j}}} := Sum[k^{j}, {j, Log[k, b], Log[k, n]}]
TableForm
     33.3377
120
               33.3376
121 33.5464 33.5463
122 33.7547 33.7547
    33.9626
              33.9627
123
N[LogIntegral[30]]
13.0226
N[ExpIntegralEi[Log[30]]]
13.0226
Expand[Log[a, E^x]]
  x
Log[a]
  X
Log[a]
Soldner := 1.4513692348
lt3[n_{k}] := Sum[k^{j}, {j, Log[k, Soldner], n/Log[k]}]
Table[{n, lt3[n, 1.00001], N[ExpIntegralEi[n]]}, {n, 4, 6, .3}] // TableForm
4.
     19.631
               19.6309
    24.2274
              24.2274
4.3
4.6
     30.0141
                30.0141
    37.3325
              37.3325
4.9
5.2
    46.6248 46.6249
5.5
    58.4654
                58.4655
5.8
    73.6005
                73.6008
ff[x_] := Log[e<sup>x</sup>]
ff[3]
3
Integrate[Soldner^j/j, {j, 1, 12 / Log[Soldner]}]
14\,959.5 - 1.99307 \times 10^{-11} i
N[ExpIntegralEi[12]]
14959.5
```

```
Integrate[ \ a^j/j, \{j, 1, Log[a, n]\}]
 ConditionalExpression[-LogIntegral[a] + LogIntegral[n], Log[n] < Log[a] < 0]</pre>
 N[Integrate[E^j/j, {j, 1, Log[E, 100]}]]
 28.231
N[LogIntegral[100] - LogIntegral[E]]
 28.231
N[Integrate[E^j/j, {j, 1, Log[1000]}]]
N[LogIntegral[1000] - LogIntegral[E]]
 175.715
 175.715
 Integrate[E^j/j, {j, 1, n}]
 ConditionalExpression[
           \texttt{CoshIntegral[n]} - \texttt{ExpIntegralEi[1]} - \texttt{Log[n]} + \texttt{SinhIntegral[n]} \text{ , } \texttt{Im[n]} \neq 0 \text{ } | \text{ } | \texttt{Re[n]} \text{ } \geq 0 \text{ } | \text{ } | \text{ } | \texttt{Re[n]} \text{ } \geq 0 \text{ } | \text{
```


LAdd2a[100, 1.0000001]

 9.9×10^8

 ${\tt DiscretePlot[\ \{\ LAdd2a[n,\ 1+.000001]\ *.000001\},\ \{n,\ 2,\ 1000\}]}$

 $LAdd2a[n_{v}] := Sum[v^{(-k)}/k, \{k, 1, Log[v, n]\}]$ DiscretePlot[{ LAdd2a[n, 1+.00001]}, {n, 2, 100}]

