第1关:基本测试

根据 S-AES 算法编写和调试程序,提供 GUI 解密支持用户交互。输入可以是 16bit 的数据和 16bit 的密钥,输出是 16bit 的密文。

1.1 截图展示:

说明: 在输入框内写入 16bit 数据,选择"二进制"单选按钮后输入任意 16bit 密钥,选中"加密"或"解密"单选框后,点击"立即执行"便得到相应结果。

图 1 两对加密交互图示

1.2 数据表格:

表 1: S-AES 明密文对

明文	密钥	密文
1111111111111111	000000011111111	1010000000100010
0000000000000000	1111111111111111	0000100011000001
000000011111111	000000011111111	0111010110011010
1111111100000000	1111111100000000	0100011110100001

第2关:交叉测试

考虑到是"算法标准",所有人在编写程序的时候需要使用相同算法流程和转换单元 (替换盒、列混淆矩阵等),以保证算法和程序在异构的系统或平台上都可以正常运行。 设有 A 和 B 两组位同学(选择相同的密钥 K);则 A、B 组同学编写的程序对明文 P 进行加密得到相同的密文 C;或者 B 组同学接收到 A 组程序加密的密文 C.使用 B 组程序进

行解密可得到与 A 相同的 P。

图 2 交叉测试

第3关:扩展功能

考虑到向实用性扩展,加密算法的数据输入可以是 ASII 编码字符串(分组为 2 Bytes),对应地输出也可以是 ACII 字符串(很可能是乱码)。

说明:在输入框内写入 ASII 编码字符串,选择"ASII 字符串"单选按钮后输入任意 10bit 密钥,选中"加密"或"解密"单选框后,点击"立即执行"便得到相应结果。

3.1 截图展示:

输入: ABCD	输入: 腘挪□표
○ 二进制 ⑥ ASCII字符串	○ 二进制 ⑥ ASCII字符串
密钥: 111111111111111	密钥: 111111111111111
● 加密○ 解密	○加密 ●解密
结果: 錮挪□匥	结果: ABCD
开始执行	开始执行

图 3 两对解密交互图示

3.2 数据表格:

表 2: S-AES 明密文对(ASCII)

明文	密钥	密文
重庆大学	1111111111111111	y <u>本</u> 回
我是美女	1111111111111111	噿了緽狥
cqur	1111111111111111	줻鰞吹氚
cqur	000000000000000	8 н摩좔袐

第4关:多重加密

4.1 双重加密将 S-AES 算法通过双重加密进行扩展,分组长度仍然是 16 bits, 但密钥长度为 32 bits。

4.1.1 截图表示

说明: 我们将双重加密分为两种模式: ① (K1 加密+K2 解密) ② (K1 加密+K1 加密)

	S-AES加解密工具
输入: 1010101010101010	输入: 10011011111001100
● 二进制 ○ ASCII字符串	● 二进制 ○ ASCII字符串
密钥: 111111111111111	密钥: 111111111111111
● 加密○ 解密双重K1	○ 加密 • 解密 双重K1 ▼
结果: 1001101111001100	结果: 1010101010101010
开始执行	开始执行

图 4 两对解密交互图示

4.1.2 数据表格

表 3: 双重 K1 模式 (K1 加密两次)

	-	
明文	密钥(16 位)	密文
111111111111111	1111111111111111	0111101010110101
0000000011111111	1111111111111111	1000011100111001
1111111100000000	1111111111111111	1010001100011010
1111111100000000	000000000000000	0001000101100011
	111111111111111 0000000011111111 1111111	111111111111111111111111111111111111

表 4: 双重 K1+K2 模式 (K1 加密+K2 解密)

明文	密钥(32 位)	密文
0000000011111111	000000001111111110000000111111111	000000011111111
0000000011111111	00000000000000011111111111111111	1001010011101110
1111111100000000	111111111111111100000000000000000000000	1000111101100011
1111111100000000	00000000000000011111111111111111	1011010111001101

4.2 中间相遇攻击假设你找到了使用相同密钥的明、密文对(一个或多个),请尝试使用中间相遇攻击的方法找到正确的密钥 Key(K1+K2)。

4.2.1 截图表示

说明:点击下拉框,选择已知明密文对的数量和密钥模式。

(考虑到中间相遇攻击算法破解密钥 K1, K2 时, 当 K1=K2 则算法时间复杂度相对较小,毫秒级内可破解,反之则需要分钟级时长。故有"双重 K1"模式和"双重 K1+K2"模式。)

·图 5 中间相遇攻击交互图示

结论: 当只有一对明密文时,通过中间相遇攻击算法可以得到多对密钥。当输入多对明密文时,可以逐渐确定唯一的密钥。

- 4.3 三重加密将 S-AES 算法通过三重加密进行扩展,下面两种模式选择一种完成:
- (1)按照 32 bits 密钥 Key(K1+K2)的模式进行三重加密解密,
- (2)使用 48bits(K1+K2+K3)的模式进行三重加解密。
- 4.3.1 截图表示

图 6 两种模式下加解密交互图

4.3.2 数据表格

表 5: 32 bits 密钥 Kev(K1 加密+K2 解密+K1 加密)的模式

		•
明文	密钥	密文
0000000011111111	000000000000000111111111111111111111111	0000001101101011
1111111100000000	000000000000000111111111111111111111111	0111001100110111
1111111111111111	000000000000000111111111111111111111111	0111010100100010
000000000000000000000000000000000000000	000000000000000111111111111111111111111	0111101111111010

表 6: 48 bits 密钥 Key(K1 加密+K2 解密+K3 加密)的模式

明文	密钥	密文
11111111111111111	11111111111111111111111111111111111111	0101001101000011
11111111111111111	000000000000000000000000000000000000000	0010100100110000
1111111100000000	000000000000000000000000000000000000000	1101000101000011
1111111100000000	11111111111111111111111111111111111111	0001011000000000

第5关:工作模式

基于 S-AES 算法,使用密码分组链(CBC)模式对较长的明文消息进行加密。注意初

始向量(16 bits) 的生成, 并需要加解密双方共享。在 CBC 模式下进行加密, 并尝试对密文分组进行替换或修改, 然后进行解密, 请对比篡改密文前后的解密结果。

5.1 CBC 模式下进行加解密

5.1.1 截图表示

说明:初始 Ⅳ 使用随机数生成,下列三组数据 Ⅳ 不同

图 9 64 位加解密交互图

5.1.2 数据表格

表7 以密钥 OxFFFF, IV Ox819F 为例:

明文	密文
1010101010101010 1010101010101010	10110000101110111 110100001000111
1010101010101010 1010101010101010	1011000010111011 1110100001000111
10101010	1000111100010111
1010101010101010 1010101010101010	1011000010111011 1110100001000111
10101010	1000111100010111 111101110

5.2 修改密文比对结果

5.2.1 截图表示 (以 48 位为例)

图 10 初始明密文(修改前)

图 11 修改密文进行解密

5.2.1 数据表格

表 8 CBC 模式下的加解密结果

W C COC MAN ENTRY		
明文	密文	
0011101111100101111001111	00000000000000011111111	
111100001000010011010101	1111111100000000000000000	
011100000101011000110000	11111111000000011111111	
111100001000010011010101	1111111100000000000000000	
000001000111010011001111	0000000111111111111111	
000011111000010011010101	1111111100000000000000000	
000001000111010001000100	00000001111111100000000	
010001000111101111010101	1111111100000000000000000	