

Chapter 17

After-tax Economic Analysis

Lecture slides to accompany

Engineering Economy

8th edition

Leland Blank
Anthony Tarquin

LEARNING OBJECTIVES

- 1. Terminology and rates; marginal tax tables
- 2. Determining cash flows before taxes(CFBT) and after taxes (CFAT)
- 3. Effects of depreciation on taxes
- 4. Depreciation recapture and capital gains
- 5. Performing an after-tax analysis
- 6. Performing after-tax replacement studies
- 7. Economic value-added analysis
- 8. Tax structures outside the United States
- 9. Understanding value-added tax (VAT)

Tax Terms and Relations - Corporations

- Gross Income *GI* or operating revenue *R* -- Total income for the tax year realized from all revenue producing sources
- Operating expenses *OE* -- All annual operating costs (AOC) and maintenance & operating (M&O) costs incurred in transacting business; these are tax deductible; **depreciation not included** here
- Income Taxes and tax rate *T* -- Taxes due annually are based on taxable income *TI* and tax rates, which are commonly **graduated** (or **progressive**) by TI level.

Taxes = tax rate
$$\times$$
 taxable income
= $T \times (GI - OE - D)$

Net operating profit after taxes **NOPAT** – Money remaining as a result of capital invested during the year; amount left after taxes are paid.

NOPAT = taxable income – taxes =
$$TI - T \times (TI)$$

= $TI \times (1 - T)$

Income Tax Terms and Relations (Corporations)

Income taxes are real cash flow payments to governments levied against income and profits. The (noncash) allowance of asset depreciation is used in income tax computations.

Two fundamental relations: NOI and TI

Net operating income = gross revenue – operating expenses

NOI = GI - OE

(only actual cash involved)

NOI is also called **EBIT(DA)** (earnings before interest, taxes and depreciation)

Taxable income = gross revenue - operating expenses - depreciation

 $TI = GI - OE - D \iff$ (involves noncash item)

Note: All terms and relations are calculated for each year t, but the subscript is often omitted for simplicity

Profit and Loss Statements									
Gross Income (GI)	3,000,000								
Operating Expense (OE)	2,000,000								
Net Operating Income (NOI)	1,000,000								
Depreciation	150,000								
Taxable Income (TI)	850,000								
Tax	200,000								
Net Operating Profit After Tax (NOPAT)	650,000								

Average and Effective Tax Rates

Marginal tax rates change as TI increases. Calculate an average tax rate using:

Average tax rate =
$$\frac{\text{total taxes paid}}{\text{taxable income}} = \frac{\text{taxes}}{\text{TI}}$$

To approximate a single-figure tax rate that combines local (e.g., state) and federal rates calculate the effective tax rate T_e

$$T_e$$
 = local rates + (1- local rates) × federal rate

Taxes =
$$T_e \times TI$$

TABLE 17-1

U.S. Corporate Income Tax Rate Schedule

If Taxable Income (\$) Is:

	But Not		Of the
Over	Over	Tax Is	Amount Over
0	50,000	15%	0
50,000	75,000	7,500 + 25%	50,000
75,000	100,000	13,750 + 34%	75,000
100,000	335,000	22,250 + 39%	100,000
335,000	10,000,000	113,900 + 34%	335,000
10,000,000	15,000,000	3,400,000 + 35%	10,000,000
15,000,000	18,333,333	5,150,000 + 38%	15,000,000
18,333,333	_	35%	0

REI (Recreational Equipment Incorporated) sells outdoor equipment and sporting goods through retail outlets, the Internet, and catalogs. Assume that for 1 year REI has the following financial result**Solution**

T(a) Calculate TI by Equation [17.2] and use Table 17–1 rates for federal taxes due.

O Kentucky state TI = GI - OE - D = 19.9 million - 8.6 million - 1.8 million = \$9.5 million

- (a) D Kentucky state taxes = 0.06(TI) = 0.06(9,500,000) = \$570,000
- (b) Fi Federal TI = GI OE D state taxes = 9,500,000 570,000
- (c) D = \$8,930,000ta Federal taxes = 113,900 + 0.34(8,930,000 - 335,000) = \$3,036,200
- ta Federal taxes = 113,900 + 0.34(8,930,000 335,000) = \$3,036,200(d) E Total federal and state taxes = 3,036,200 + 570,000 = \$3,606,200

^{tC}(b) From Equation [17.5], the average tax rate paid is approximately 32% of TI.

Average federal tax rate = 3,036,200/9,500,000 = 0.3196

[17.8]

(c) By Equation [17.6], T_e is slightly over 36% per year for combined state and federal taxes.

$$T_e = 0.06 + (1 - 0.06)(0.3196) = 0.3604$$
 (36.04%)

(d) Use the effective tax rate and TI = \$9.5 million from part (a) in Equation [17.7] to approximate total taxes.

Taxes =
$$0.3604(9,500,000) = $3,423,800$$

Compared to Equation [17.8], this approximation is \$182,400 low, a 5.06% underestimate.

Cash Flow After Taxes (CFAT)

- NCF is cash inflows cash outflows. Now, consider taxes and deductions, such as depreciation
- Cash Flow Before Taxes (CFBT)

$$= GI - OE - P + S$$

Cash Flow After Taxes (CFAT)

$$CFAT = CFBT - taxes$$

$$= GI - OE - P + S - (GI - OE - D)(T_e)$$

A **negative TI** value is considered as **tax savings** for the project

The **negative** tax will **offset** taxes for the same year in other income-producing areas of the corporation

OR Carry-forward and carry-back rules

See Example 17.2

TAB	LE 17-2	Suggeste	ed Column I	Headings for Ca	lculation of C	FAT		
Year	Gross Income GI	Operating Expenses OE	Investment and Salvage P and S	CFBT	Depreciation <i>D</i>	Taxable Income TI	Taxes	CFAT
	(1)	(2)	(3)	(4) = (1) - (2) + (3)	(5)	(6) = (1) - (2) - (5)	$(7) = T_e(6)$	(8) = (4) - (7)

Wilson Security has received a contract to provide additional security for corporate and government personnel along the international border between two countries in South America. Wilson plans to purchase listening and detection equipment for use in the 6-year contract. The equipment is expected to cost \$550,000 and have a resale value of \$150,000 after 6 years. Based on the incentive clause in the contract, Wilson estimates that the equipment will increase contract revenue by \$200,000 per year and require an additional M&O expense of \$90,000 per year. MACRS depreciation allows recovery in 5 years, and the effective corporate tax rate is 35% per year. Tabulate and plot the CFBT and CFAT series.

Depreciation Recapture (DR) and Capital Gain (CG)

DR, also called **ordinary gain**, in year t occurs when an asset is **sold for more than** its BV_t

_ . . _ . . _ . . _ . . _ . . _ . . _ . . _ . . _ . . _ . . _ . . _ . . _ . . _ . . _ . . _ . . .

CG occurs when an asset is sold for more than its unadjusted basis B (or first cost P)

$$CG = selling price - basis = SP - B$$

.....

CL occurs when an asset is sold for <u>less than</u> its current BV_t

Effects of DR, CG and CL on TI and Taxes

Update of TI relation: TI = GI - OE - D + DR + net CG - net CL

After-Tax Evaluation

- ✓ Use CFAT values to calculate PW, AW, FW, ROR, B/C or other measure of worth using after-tax MARR
- ✓ Same guidelines as before-tax; e.g., using PW at after-tax MARR:

One project: PW ≥ 0, project is viable

Two or more alternatives: select one ME alternative with best (numerically largest) PW value

- ✓ For costs-only CFAT values, use + sign for OE, D, and other savings and use same guidelines
- ✓ Remember: equal-service requirement for PW-based analysis
- ✓ ROR analysis is same as before taxes, except use CFAT values:

One project: if i* ≥ after-tax MARR, project is viable

Two alternatives: select ME alternative with ∆i* ≥ after-tax MARR for incremental CFAT series

Approximating After-Tax ROR Value

To adjust a before-tax ROR without details of after-tax analysis, an approximating relation is:

After-tax ROR
$$\approx$$
 before-tax ROR \times (1 – T_e)

Example:
$$P = \$-50,000$$
 $GI - OE = \$20,000/year$

$$GI - OE = $20,000/year$$

$$n = 5$$
 years

$$n = 5 \text{ years}$$
 $D = $10,000/\text{year}$ $T_p = 0.40$

$$T_{\rm e} = 0.40$$

Estimate after-tax ROR from before-tax ROR analysis

Solution: Set up **before-tax PW** relation and solve for i*

$$0 = -50,000 + 20,000(P/A,i*%,5)$$

$$i* = 28.65%$$

After-tax ROR
$$\approx$$
 28.65% \times (1 – 0.40) = 17.19%

(Note: Actual after-tax analysis results in i* = 18.03%)

Example: After-Tax Analysis

Asset: B = \$90,000 S = 0 n = 5 years

Per year: R = \$65,000 OE = \$18,500 D = \$18,000

Effective tax rate: $T_e = 0.184$

Find ROR (a) before-taxes, (b) after-taxes actual and (c) approximation

	G1	l6 ▼	f _x						
	Α	В	С	D	Е	F	G	Н	I .
1		Revenue,	Operating	Basis, B and		Depreciation,	Taxable	Taxes	
2	Year	R	Expenses, OE	Salvage, S	CFBT	D	Income, TI	at T _e = 0.184	CFAT
3	0			90,000	-90,000				-90,000
4	1	65,000	18,500		46,500	18,000	28,500	5,244	41,256
5	2	65,000	18,500		46,500	18,000	28,500	5,244	41,256
6	3	65,000	18,500		46,500	18,000	28,500	5,244	41,256
7	4	65,000	18,500		46,500	18,000	28,500	5,244	41,256
8	5	65,000	18,500	0	46,500	18,000	28,500	5,244	41,256
9									
10			(a) Befor	e-tax ROR:	43%		(b) Afte	er-tax ROR:	36%
11					7				7

Solution: (a) Using IRR function, i* = 43% (b) Using IRR function, i* = 36%

(c) By approximation: after-tax ROR = $43\% \times (1 - 0.1840) = 35\%$

Biotech, a medical imaging and modeling company, must purchase a bone cell analysis system for use by a team of bioengineers and mechanical engineers studying bone density in athletes. This particular part of a 3-year contract with the NBA will provide additional gross income of \$100,000 per year. The effective tax rate is 35%. Estimates for two alternatives are summarized below.

ı	TABL	E 17–4	Comparison o	f Total Taxes	Analyzer 1 s for Two Altern	Analyza atives, Exar		
	Year	Gross Income GI, \$	Operating Expenses OE, \$	Basis <i>B,</i> \$	MACRS Depreciation <i>D</i> , \$	Book Value BV, \$	Taxable Income TI, \$	Taxes at 0.35TI,\$
Answe				Ar	nalyzer 1			
(<i>a</i>) The	0			150,000		150,000		
tota	1	100,000	30,000		30,000	120,000	40,000	14,000
(<i>b</i>) Ass	2	100,000	30,000		48,000	72,000	22,000	7,700
the	3	100,000	30,000		28,800	43,200	41,200	14,420
prio								36,120
				Ar	ıalyzer 2			
	0			225,000		225,000		
	1	100,000	10,000		45,000	180,000	45,000	15,750
	2	100,000	10,000		72,000	108,000	18,000	6,300
	3	100,000	10,000		43,200	64,800	46,800	16,380
								38,430

Biotech, a medical imaging and modeling company, must purchase a bone cell analysis system for use by a team of bioengineers and mechanical engineers studying bone density in athletes. This particular part of a 3-year contract with the NBA will provide additional gross income of \$100,000 per year. The effective tax rate is 35%. Estimates for two alternatives are summarized below.

Figure 17-4

Impact of depreciation recapture on total taxes, Example 17.5.

In Example 17.5 an after-tax analysis of two bone cell analyzers was initiated due to a new 3-year NBA contract. The criterion used to select analyzer 1 was the total taxes for the 3 years. The complete solution is in Table 17–4 (hand) and Figure 17–4 (spreadsheet).

Continue the spreadsheet analysis by performing an after-tax ROR evaluation, assuming the analyzers are sold after 3 years for the amounts estimated in Example 17.5: \$130,000 for analyzer 1 and \$225,000 for analyzer 2. The after-tax MARR is 10% per year.

1	A	В	С	D	E	F	G	Н	11	J	K
1	Year	GI	OE	B and S	D	BV	TI	Taxes	CFAT		
2					Analy	zer 1					
3	0			-150,000		150,000			-150,000		
4	1	100,000	-30,000		30,000	120,000	40,000	14,000	56,000		
5	2	100,000	-30,000		48,000	72,000	22,000	7,700	62,300		
6	3	100,000	-30,000	130,000	28,800	43,200	128,000	44,800	155,200		
7	i*			***					30.2%	Overal	1 i*
8	PW at 10%								\$69,001		
9	2									Incremental	
10					Analy	zer 2				CFAT	
11	0			-225,000		225,000			-225,000	-75,000	
12	1	100,000	-10,000		45,000	180,000	45,000	15,750	74,250	18,250	
13	2	100,000	-10,000		72,000	108,000	18,000	6,300	83,700	21,400	
14	3	100,000	-10,000	225,000	43,200	64,800	207,000	72,450	4 242,550	87,350	
15	i*								27.9%		
16	PW at 10%		_	B14+C14-	-E14+(D	14-F14)			\$93,905		
17	Incr i*									23.6%	
18							_				
19						This term		CFAT cal	culation	Increm	ental i*
20						calculates	= B	314+C14	+D14-H14	$\frac{1}{4} - \frac{1}{2} = IRR(1)$	J11:J14
21					DR	= \$160,2				11010	
22						,				2/	

Figure 17-7

Incremental ROR analysis of CFAT with depreciation recapture, Example 17.9.

After-Tax Replacement Analysis

- Consider depreciation recapture (DR) or capital gain (CG), if challenger is selected over defender
- Can include capital loss, if trade occurs at very low ('sacrifice') trade-in for defender
- An after-tax analysis can reverse the selection compared to before-tax analysis, but more likely it will provide information about differences in PW, AW or ROR value when taxes are included
- Apply same procedure as before-tax replacement evaluation once CFAT series is estimated

Midcontinent Power Authority purchased emission control equipment 3 years ago for \$600,000. Management has discovered that it is technologically and legally outdated now. New equipment has been identified. If a market value of \$400,000 is offered as the trade-in for the current equipment, perform a replacement study using (a) a before-tax MARR of 10% per year and

(b) a 7% per year after-tax MARR. Assume an effective tax rate of 34%. As a simplifying assumption, use classical straight line depreciation with S=0 for both alternatives.

	Defender	Challenger
Market value, \$	400,000	
First cost, \$		-1,000,000
Annual cost, \$/year	-100,000	-15,000
Recovery period, years	8 (originally)	5

Defender	Challenger
400,000	
	-1,000,000
-100,000	-15,000
8 (originally)	5
-	400,000 -100,000

Purchased 3 years ago Before-tax MARR = 10% After-tax MARR = 7% $T_e = 34\%$ SL depreciation; S = 0

	5	•		
()	
	L	•		
l				
())	
	1			

			Before Taxes		After Taxes					
Defender Age	Year	Expenses OE, \$	<i>P</i> and <i>S</i> , \$	CFBT, \$	Depre- ciation D,\$	Taxable Income TI, \$	Taxes* at 0.34TI,\$	CFAT, \$		
				Defender						
3	0		-400,000	-400,000				-400,000		
4	1	-100,000		-100,000	75,000	-175,000	-59,500	-40,500		
5	2	-100,000		-100,000	75,000	-175,000	-59,500	-40,500		
6	3	-100,000		-100,000	75,000	-175,000	-59,500	-40,500		
7	4	-100,000		-100,000	75,000	-175,000	-59,500	-40,500		
8	5	-100,000	0	-100,000	75,000	-175,000	-59,500	-40,500		
AW at 10%				-205,520	AW at 7%			-138,056		
				Challenger						
	0		-1,000,000	-1,000,000		+25,000 [†]	8,500	-1,008,500		
	1	-15,000		-15,000	200,000	-215,000	-73,100	+58,100		
	2	-15,000		-15,000	200,000	-215,000	-73,100	+58,100		
	3	-15,000		-15,000	200,000	-215,000	-73,100	+58,100		
	4	-15,000		-15,000	200,000	-215,000	-73,100	+58,100		
	5	-15,000	0	-15,000	200,000	-215,000 [‡]	-73,100	+58,100		
AW at 10%				-278,800	AW at 7%	^		-187,863		
* 3.4:	- 11 4	a tay savings f								

Minus sign indicates a tax savings for the year.

Depreciation recapture on defender trade-in.

Assumes challenger's salvage actually realized is S = 0; no tax.

Defender Age	Year	OE	P or S		CFBT	Depre.C.	TI	Tax	CFAT	
Defender										
3	0									
4	1	- 100,000		-	100,000	75,000	- 175,000	- 59,500	- 40,500	
5	2	- 100,000		-	100,000	75,000	- 175,000	- 59,500	- 40,500	
6	3	- 100,000		-	100,000	75,000	- 175,000	- 59,500	- 40,500	
7	4	- 100,000		-	100,000	75,000	- 175,000	- 59,500	- 40,500	
8	5	- 100,000		-	100,000	75,000	- 175,000	- 59,500	- 40,500	
AW at 10%				-	100,000				- 40,500	AW at 7%
Challenger										
	0		- 600,000	-	600,000		25,000	8,500	- 608,500	
	1	- 15,000		-	15,000	200,000	- 215,000	- 73,100	58,100	
	2	- 15,000		-	15,000	200,000	- 215,000	- 73,100	58,100	
	3	- 15,000		-	15,000	200,000	- 215,000	- 73,100	58,100	
	4	- 15,000		-	15,000	200,000	- 215,000	- 73,100	58,100	
	5	- 15,000		-	15,000	200,000	- 215,000	- 73,100	58,100	
AW at 10%				-	173,278				- 102,421	AW at 7%

Economic Value Added (EVA)™ Analysis

- **Definition:** The **economic worth added** by a product or service from the perspective of the consumer, owner or investor
- In other words, it is the contribution of a capital investment to the net worth of a corporation after taxes

Example: The average consumer is willing to pay significantly more for potatoes processed and served at a fast-food restaurant as fries (chips) than as raw potatoes in the skin from a supermarket.

- Value-added analysis is performed in a different way than CFAT analysis, however...
- ❖ Selection of the better economic alternative is the same for EVA and CFAT analysis, because it is always correct that ...

AW of EVA estimates = AW of CFAT estimates

EVA Analysis: Procedure

DIFFERENCE BETWEEN CFAT AND EVA APPROACHES

- CFAT estimates (describes) how actual cash will flow
- EVA estimates extra worth that an alternative adds
- EVA is a measure of worth that mingles actual cash flows and noncash flows

PROCEDURE FOR EVA ANALYSIS

Each year t determine the following for each alternative:

```
EVA<sub>t</sub> = NOPAT<sub>t</sub> - cost of invested capital
= NOPAT<sub>t</sub> - (after-tax MARR)(BV<sub>t-1</sub>)
= TI<sub>t</sub> × (1-T_e) - i × (BV_{t-1})
```

Selection: Choose alternative with better AW of EVA series

Remember: Since AW of EVA series will always = AW of CFAT series, the same alternative is selected by either method

Concept

Assume A Co. purchase \$1M machine that has 5 years of life with SL(or DB) depreciation.

- Actual Cash Flows

- Accounting Depreciation Cost (SL)

Accounting Depreciation Cost (DB)

Concept

Assume A Co. purchase \$1M machine that has 5 years of life with SL depreciation. Assuming NOPAT is \$0.1M, compare Accounting analyses and Actual cash flows with i=10%.

How to Make Them Equal?

Biotechnics Engineering has developed two mutually exclusive plans for investing in new capital equipment with the expectation of increased revenue from its medical diagnostic services to cancer patients. The estimates are summarized below. (a) Use classical straight line depreciation, an after-tax MARR of 12%, and an effective tax rate of 40% to perform two annual worth after-tax analyses: EVA and CFAT. (b) Explain the fundamental difference between

	A	В	С	D	E	F	G	Н	1	J	K
1						PLAN A					
2								E	VA analysis		CFAT analysis
3			Investment P	SL	Book value	Taxable			Cost of		
4	Year	GI - OE	(Basis B)	Depreciation	BV	income, TI	Taxes	NOPAT	inv. capital	EVA	CFAT
5	0		-500,000		500,000						-500,000
6	1	170,000		125,000	375,000	45,000	18,000	27,000	-60,000	-33,000	152,000
7	2	170,000		125,000	250,000	45,000	18,000	27,000	-45,000	-18,000	152,000
8	3	170,000		125,000	125,000	45,000	18,000	27,000	-30,000	-3,000	152,000
9	4	170,000		125,000	0	45,000	18,000	27,000	-15,000	12,000	152,000
10	AW values			7.5					-	-\$12,617	-\$12,617
1						PLAN B					
12								E	VA analysis		CFAT analysis
13			Investment P	SL	Book value	Taxable			Cost of		
14	Year	GI - OE	(Basis B)	Depreciation	BV	income, TI	Taxes	NOPAT	inv. capital	EVA	CFAT
15	0		-1,200,000	1.0	1,200,000						-1,200,000
16	1	600,000		300,000	900,000	300,000	120,000	180,000	-144,000	36,000	480,000
17	2	500,000		300,000	600,000	200,000	80,000	120,000	-108,000	12,000	420,000
18	3	400,000		300,000	300,000	100,000	40,000	60,000	-72,000	-12,000	360,000
19	4	300,000		300,000	0	0	0	0	-36,000	-36,000	300,000
20	AW values									\$3,388	\$3,388
21											
22	Functions for Plan B, year 3			`= -\$C\$15/4	`= E17-D18	`= B18-D18	`= F18*0.4	`= F18-G18	`=-0.12*E17	`= H18+I18	`= B18+C18-G18

Figure 17–9
Comparison of two plans using EVA and CFAT analyses, Example 17.12.

International Tax Structures

- Tax related questions for internationally located projects concentrate on items such as:
 - Depreciation methods approved by host country
 - Capital investment allowances
 - Business expense deductibility
 - Corporate tax rates
 - ➤ Indirect tax rates Value-Added Tax / Goods and Service Tax (VAT/GST)
- Rules and laws vary considerably from country to country

Summary of International Corporate Tax Rates

Tax Rate Levied on TI, %		For These Countries
≥ 40		United States, Japan
35 to < 40		Pakistan, Sri Lanka
32 to < 35		France, India, South Africa
28 to < 32		Australia, United Kingdom, Canada, ? New Zealand, Spain, Germany, Mexico
24 to < 28		China, Indonesia, South Korea, Israel
20 to < 24	?	Russia, Turkey, Saudi Arabia
< 20		Singapore, Hong Kong, Taiwan, Chile, Ireland, Iceland, Hungary

Source: KPMG Corporate and Indirect Tax Rate Survey, 2010

Value-Added Tax (VAT)

VAT is an **indirect tax placed on goods and services**, not on people and corporations like an income tax. The VAT is charged sequentially throughout the process of manufacturing a good or providing a service. The VAT is also called **Goods and Service Tax (GST)**.

VAT CHARACTERISTICS

- A percent, e.g., 10%, of current value, of **unfinished** goods or service (G/S) is charged to the purchaser and sent to taxing entity by manufacturer or provider
- VAT charged to buyer at purchase time whether buyer is an end user or intermediate business
- As next transfer occurs, VAT previously paid on unfinished G/S is subtracted from VAT currently due

SALES TAX CHARACTERISTICS

- Charged only once at final product sale to the end user or consumer
- Selling merchant sends tax to taxing entity
- Businesses do <u>not</u> pay sales tax on raw materials or unfinished goods or service
- Businesses <u>do pay</u> sales tax on items for which they are the end user

Example: How a 10% VAT Could Work

- 1. Mining company sells \$100,000 of iron ore to Steel company and charges Steel company 10% VAT, or \$10,000. Mining company sends \$10,000 to US Treasury.
- 2. Steel company sells steel for \$300,000 to Refrigerator company and charges Refrigerator company 10% VAT, or \$30,000. Steel company sends \$30,000 10,000 = \$20,000 to US Treasury.
- **3.** Refrigerator company sells refrigerators to Retail company for \$700,000 and charges Retailer 10% VAT, or \$70,000. Refrigerator company sends \$70,000 30,000 = \$40,000 to US Treasury.
- 4. Finally, Retailer sells refrigerators to end users/consumers for \$950,000 and collects 10% VAT, or \$95,000, from consumers.

 Retailer sends \$95,000 70,000 = \$25,000 to US Treasury.
- Conclusion: US Treasury received \$25,000 + 40,000 + 20,000 + 10,000 = \$95,000, which is 10% of final sales price of \$950,000

Summary of Important Points

- For a corporation's taxable income (TI), operating expenses and asset depreciation are **deductible items**
- Income tax rates for corporations and individuals are graduated by increasing TI levels
- CFAT indirectly includes (noncash) depreciation through the TI computation
- Depreciation recapture (DR) occurs when an asset is sold for more than the book value; DR is taxed as regular income in all after-tax evaluations
- After-tax analysis uses CFAT values and the same guidelines for alternative selection as before-tax analysis
- EVA estimates extra worth that an alternative adds to net worth after taxes; it mingles actual cash flows and noncash flows
- A VAT system collects taxes progressively on unfinished goods and services; different than a sales tax system where only end users pay

HOMEWORK

- 1. Please solve every Examples in your textbook. You do not have to submit your works.
- 2. Please upload following "PROBLEMS" solution file on "Assignment" menu in e-Class.
 - 17.28
 - 2 17.42
 - 3 17.52
 - 4 17.56(00)
 - 5 <u>17.59(XX)</u>
 - 6 17.66
 - 7 17.67