4.2 The Composition Operation

4.2.1 Finding $f \circ g$, given f and g

Question 1

Solve the following:

a.
$$f(x) = 2x - 1$$
 and $g(x) = 3x$, what is $(f \circ g)(x)$?
 $f(g(x)) = f(3x) = 2(3x) - 1 = 6x - 1$

b.
$$f(x) = 2x - 1$$
 and $g(x) = 3x$, what is $(g \circ f)(x)$?
 $g(f(x)) = g(2x - 1) = 3(2x - 1) = 6x - 3$

c.
$$f(x) = x^2$$
 and $g(x) = x + 1$, what is $(f \circ g)(x)$?
 $f(g(x)) = f(x + 1) = (x + 1)^2 = x^2 + 2x + 1$

d.
$$f(x) = x^2$$
 and $g(x) = x + 1$, what is $(g \circ f)(x)$? $g(f(x)) = g(x^2) = x^2 + 1$

4.2.2 Finding g based on f and $f \circ g$

Question 2

Solve the following:

a.
$$f(x) = 2x - 1$$
 and $(f \circ g)(x) = 6x - 1$, what is $g(x)$?
 $2a - 1 = 6x - 1$ $2a = 6x$ $a = 3x$
 $g(x) = 3x$

b.
$$f(x) = x^2$$
 and $(f \circ g)(x) = x^2 + 2x + 1$, what is $g(x)$? $a^2 = x^2 + 2x + 1$ $a^2 = (x+1)^2$ $a = x+1$ $g(x) = x+1$

c.
$$f(x) = 3x - 2$$
 and $(f \circ g)(x) = 12x + 7$, what is $g(x)$?
 $3a - 2 = 12x + 7$ $3a = 12x + 7 + 2$ $3a = 12x + 9$ $a = 4x + 3$
 $g(x) = 4x + 3$

4.2.3 Finding f based on g and $f \circ g$

Question 3

Solve the following:

```
a. g(x) = 3x and (f \circ g)(x) = 6x - 1. What is f(x)? a = 3x. Solve for x: x = \frac{1}{3}(a). f(g(x)) = 6x - 1, plug in x: f(a) = 6(\frac{1}{3}a) - 1 Simplify: f(a) = 2a - 1. So f(x) = 2x - 1.
```

b.
$$g(x) = x + 1$$
 and $(f \circ g)(x) = x^2 + 2x + 1$. What is $f(x)$? $a = x + 1$ $x = a - 1$ $f(g(x)) = f(a)$; $f(a) = (a - 1)^2 + 2(a - 1) + 1$ $f(a) = a^2 - 2a + 1 + 2a - 2 + 1$ $f(a) = a^2$ So $f(x) = x^2$.

c.
$$g(x) = 2x - 1$$
 and $(f \circ g)(x) = 6x - 1$. What is $f(x)$?
$$a = 2x - 1 \qquad x = \frac{a+1}{2}$$

$$f(g(x)) = f(a); \qquad f(a) = 6(\frac{a+1}{2}) - 1$$

$$f(a) = 3(a+1) - 1 \qquad f(a) = 3a + 3 - 1 \qquad f(a) = 3a + 2$$
So $f(x) = 3x + 2$.

4.2.4 More arrow diagrams

Question 4

Finish the following diagrams:

a.

$$g: B \to C$$

$$(f \circ g) : A \to C$$

$$f:A\to B$$

$$g: B \to C$$

$$(f \circ g) : A \to C$$