Two mark in DS game

Steven Clontz

May 20, 2018

Let
$$[f, F, \epsilon] = \{g \in C_p(X) : |g(x) - f(x)| < \epsilon \text{ for all } x \in F\}.$$

Game 1. Let G be the following game. During round n, player I chooses $\beta_n < \omega_1$, and player II chooses $F_n \in [\omega_1]^{<\aleph_0}$. II wins if whenever $\gamma < \beta_n$ for co-finitely many $n < \omega$, $\gamma \in F_n$ for infinitely many $n < \omega$.

For
$$f \in \omega^{\alpha}$$
, let $f^{\leftarrow}[n] = \{\beta < \alpha : f(\beta) < n\}$.

Proposition 2. II $\uparrow_{2-mark} G$.

Proof. Let $\{f_{\alpha} \in \omega^{\alpha} : \alpha < \omega_1\}$ be a collection of pairwise almost-compatible finite-to-one functions. Define a 2-mark σ for II by

$$\sigma(\langle \alpha \rangle, 0) = \emptyset$$

and

$$\sigma(\langle \alpha, \beta \rangle, n+1) \ = f_{\beta}^{\leftarrow}[n] \cup \{ \gamma < \alpha \cap \beta : f_{\alpha}(\gamma) \neq f_{\beta}(\gamma) \}.$$

Let ν be an attack by I against σ , and let $\gamma < \nu(n)$ for $N \leq n < \omega$. If $f_{\nu(n)}(\gamma) \neq f_{\nu(n+1)}(\gamma)$ for infinitely-many $N \leq n < \omega$, then $\gamma \in \sigma(\langle \nu(n), \nu(n+1) \rangle, n+1)$ for infinitely-many $N \leq n < \omega$. Otherwise $f_{\nu(n)}(\gamma) = f_{\nu(n+1)}(\gamma) = M$ for cofinitely-many $N \leq n < \omega$, so $\gamma \in \sigma(\langle \nu(n), \nu(n+1) \rangle, n+1)$ for cofinitely-many $N \leq n < \omega$. Therefore σ is a winning 2-mark.

Theorem 3. I
$$\uparrow_{2\text{-mark}} DS(C_p(\omega_1+1))$$

Proof. Let σ be a winning 2-mark for II in G.

Given a point $f \in C_p(\omega_1 + 1)$, let $\alpha_f < \omega_1$ satisfy $f(\beta) = f(\gamma)$ for all $\alpha_f \le \beta \le \gamma \le \omega_1$. Let $\tau(\emptyset, 0) = [\mathbf{0}, \{\omega_1\}, 4], \tau(\langle f \rangle, 1) = [\mathbf{0}; \sigma(\langle \alpha_f \rangle, 0) \cup \{\omega_1\}; 2]$, and

$$\tau(\langle f, g \rangle, n+2) = [\mathbf{0}; \sigma(\langle \alpha_f, \alpha_g \rangle, n+1) \cup \{\omega_1\}; 2^{-n}].$$

Let ν be a legal attack by II against σ . For $\beta \leq \omega_1$, if $\beta < \alpha_{\nu(n)}$ for co-finitely many $n < \omega$, then $\beta \in \sigma(\langle \alpha_{\nu(n)}, \alpha_{\nu(n+1)} \rangle)$ for infinitely-many $n < \omega$, and thus $0 \in \operatorname{cl}\{\nu(n)(\beta) : n < \omega\}$. Otherwise $\beta \geq \alpha_{\nu(n)}$ for infinitely many $n < \omega$, and thus $0 \in \operatorname{cl}\{\nu(n)(\beta) : n < \omega\}$ as well. Thus $\mathbf{0} \in \operatorname{cl}\{\nu(n) : n < \omega\}$.

1 combining game results

Theorem 4. The following are equivalent for $T_{3.5}$ spaces X.

a) X is
$$R^+$$
, that is, $\Pi \uparrow G_1(\mathcal{O}_X, \mathcal{O}_X)$.

- b) I $\uparrow PO(X)$.
- c) I $\uparrow FO(X)$.
- d) I $\uparrow Gru_{O,P}^{\rightarrow}(C_p(X),\mathbf{0}).$
- e) I $\uparrow CL(C_p(X), \mathbf{0}).$
- f) I $\uparrow CD(C_p(X))$.
- q) X is ΩR^+ , that is, $\Pi \uparrow G_1(\Omega_X, \Omega_X)$.
- h) $C_p(X)$ is $sCFT^+$, that is, $\coprod \uparrow G_1(\Omega_{C_p(X),\mathbf{0}},\Omega_{C_p(X),\mathbf{0}})$.
- i) $C_p(X)$ is $sCDFT^+$, that is, $\Pi \uparrow G_1(\mathcal{D}_{C_p(X)}, \Omega_{C_p(X), \mathbf{0}})$.

Proof. (a) \Leftrightarrow (b) is a well-known result of Galvin.

(b) \Leftrightarrow (c) is 4.3 of [Telgarksy 1975].

The equivalence of (b), (d), (e), and (f) are given as 3.8 of [Tkachuk 2017].

The equivalence of (g), (h), and (i) are due to Clontz.

(i) \Leftrightarrow (e) follows from 3.18a of [Tkachuk 2017].

Let $\Omega PO(X)$ be the point-open game where I wins if they force II to create an ω cover. Likewise for $\Omega FO(X)$. In 3.9 of [Tkachuk 2017] it's shown that II $\uparrow \Omega FO(X)$ implies I $\uparrow CD(C_p(X))$; it's taken for granted (but unproven) that II $\uparrow \Omega FO(X)$ if and only if II $\uparrow \Omega PO(X)$ (this holds for FO(X), PO(X) due to Telgarsky).

Theorem 5. The following are equivalent for a $T_{3.5}$ space X.

- a) I $\uparrow \Omega PO(X)$.
- b) I $\uparrow \Omega FO(X)$.
- c) X is R^+ .

Suppose that for all $F \in [X]^{<\omega}$, there existed $U_F \in T(X)$ containing F such that for all $\mathcal{U} \in \Omega_X$, $U_F \neq \sigma(\langle \mathcal{U}_{s \uparrow 1}, \dots, \mathcal{U}_s, \mathcal{U} \rangle)$. Let $\mathcal{U} = \{U_F : F \in [X]^{<\omega}\} \in \Omega_X$. Then $\sigma(\langle \mathcal{U}_{s \uparrow 1}, \dots, \mathcal{U}_s, \mathcal{U} \rangle)$ must equal some U_F , demonstrating a contradiction.

So there exists $\tau(s) \in [X]^{<\omega}$ such that for all $U \in T(X)$ containing $\tau(s)$, there exists $\mathcal{U}_{s \cap \langle U \rangle} \in \Omega_X$ such that $U = \sigma(\langle \mathcal{U}_{s \mid 1}, \dots, \mathcal{U}_s, \mathcal{U}_{s \cap \langle U \rangle} \rangle)$. (To complete the induction, $\mathcal{U}_{s \cap \langle U \rangle}$ may be chosen arbitrarily for all other $U \in T(X)$.)

So τ is a strategy for I in $\Omega FO(X)$. Let ν legally attack τ , so $\tau(\nu \upharpoonright n) \subseteq \nu(n)$ for all $n < \omega$. It follows that $\nu(n) = \sigma(\langle \mathcal{U}_{\nu \upharpoonright 1}, \dots, \mathcal{U}_{\nu \upharpoonright n}, \mathcal{U}_{\nu \upharpoonright n+1} \rangle)$. Since $\langle \mathcal{U}_{\nu \upharpoonright 1}, \mathcal{U}_{n \upharpoonright 2}, \dots \rangle$ is a legal attack against σ , it follows that $\{\sigma(\langle \mathcal{U}_{\nu \upharpoonright 1}, \dots, \mathcal{U}_{\nu \upharpoonright n+1} \rangle) : n < \omega\} = \{\nu(n) : n < \omega\}$ is an ω cover. Therefore τ is a winning strategy, verifying (b).

TODO: (b) implies (a). \Box