ЛАБОРАТОРНАЯ РАБОТА №2 ИССЛЕДОВАНИЕ УСИЛИТЕЛЬНЫХ ЭЛЕМЕНТОВ

Цель работы

Исследование биполярных и полевых транзисторов.

Учебные задания и методические указания к их выполнению

Биполярный транзистор

Рисунок 5

Назначение элементов схемы

- делитель напряжения $R_1 R_5$, ключи $J_1 J_5$ и резистор R_6 задают пять значений тока базы (I_5);
- мультиметр XMM1 измеряет ток базы (I_Б);
- мультиметр XMM2 измеряет напряжение база эмиттер (U_{E9});
- мультиметр ХММЗ измеряет ток коллектора биполярного транзистора;
- напряжение коллектор-эмиттер ($U_{K\! \ni}$) устанавливается источником V_2 и фиксируется мультиметром XMM4.

Задание 1 Построение семейства выходных ВАХ

Задать напряжение источника V_1 $E=5+\sqrt{(N)}$ (в вольтах), где N — номер по списку.

В нечетных вариантах использовать транзистор с n-p-n структурой имеющий маркировку 2N2712.

В четных вариантах использовать транзистор с n-p-n структурой имеющий маркировку 2N1711.

Снять и построить семейство выходных ВАХ биполярного транзистора в схеме ОЭ при ступенчатом изменении входного тока базы ($I_{\rm B}$). Ступенчатое изменение осуществляется путем замыкания одного ключа, последовательно от первого до пятого.

$$I_k = f(U_{\kappa_9}) npu I_E = const$$

Таблица 7

U _{кэ} , В	0.3	1	3	5	7	10
I _{к1} (при I _{Б1}), мА						
I _{к2} (при I _{Б2}), мА						
I _{к3} (при I _{Б3}), мА						
I _{к4} (при I _{Б4}), мА						
I _{к5} (при I _{Б5}), мА						

Мультиметры XMM1 и XMM3 необходимо включить в режим измерения постоянного тока, а мультиметры XMM2 и XMM4 в режим измерения постоянного напряжения.

Установить значение источника V_2 равное 5 В.

Включая поочередно ключи J_1-J_5 зафиксировать значения токов базы ($I_{\rm b1}-I_{\rm b5}$).

Выставить напряжение U_{K9} = 0.3 В и последовательно изменяя ток базы от $I_{\text{Б1}}-I_{\text{Б5}}$ перенести значения токов коллектора I_{K1} - I_{K5} в таблицу 7.

Повторить измерение для других значений $U_{\text{K}\mathfrak{I}}$ (см. таблицу 7).

Задание 2 Расчет коэффициента усиления и выходного сопротивления

$$\beta = \frac{\Delta I_{\kappa}}{\Delta I_{E}} npu U_{\kappa 9} = 5B$$
 и $r_{\text{вых}} = \frac{\Delta U_{K9}}{\Delta I_{K}} npu I_{6} = I_{63}$

Для вычисления $r_{\text{вых}}$ необходимо взять ближайшие показания $U_{\text{K} \ni}$ 3B или 7B.

Рисунок 6 Семейство выходных ВАХ биполярного транзистора

Задание З Построение входной ВАХ

Снять и построить входную BAX биполярного транзистора при U_{K9} = 5B.

$$I_{\text{Б}} = f(U_{\text{БЭ}})$$
 при $U_{\text{KЭ}} = 5 \text{ B}$.

Таблица 8

$I_{\rm B}$	I_{51}	I ₆₂	I _{Б3}	I ₆₄	I ₆₅
І _Б , мкА					
U _{БЭ} , В					

Задание 4 Расчет входного сопротивления

По таблице 8 рассчитать входное дифференциальное сопротивление ($r_{\mbox{\tiny BX}}$) по формуле:

$$r_{\rm ex} = \frac{\Delta U_{\rm E3}}{\Delta I_{\rm E}} npu I_{\rm E} = I_{\rm E3}$$

Рисунок 7: ВАХ биполярного транзистора

Для вычисления $r_{\scriptscriptstyle BX}$ необходимо взять ближайшие показания $I_{\scriptscriptstyle E4}$ или $I_{\scriptscriptstyle E2}$.

Полевой транзистор с р-п затвором

Назначение элементов схемы

- мультиметр XMM6 измеряет ток стока (I_C);
- мультиметры XMM5 и XMM7 показывают напряжение $U_{\text{3и}}$ и U_{Cu} ;
- потенциометр R_9 задает напряжение на затворе относительно истока;
- источник постоянного напряжения V_4 задает напряжение U_{CM} .

Задание 5 Построение стоко-затворной характеристики

Задать напряжение источника V_3 $E=9+\sqrt{({\it N})}~$ (в вольтах), где N — номер по списку.

В нечетных вариантах использовать транзистор имеющий маркировку 2N5558.

В четных вариантах использовать транзистор имеющий маркировку 2N5397.

Снять и построить стоко-затворную характеристику полевого транзистора.

$$I_C = f(U_{3U})$$
 при $U_{CU} = 5$ В.

Таблица 9

U _{зи} , В	0				U _{OTC} =
I _C , mA	I _{C.HAC} =				$I_{\rm C} = 0$

Рисунок 9: Стоко-затворная характеристика полевого транзистора

Мультиметр XMM6 включить в режим измерения постоянного тока, а мультиметры XMM5 и XMM7 в режим постоянного напряжения.

При помощи потенциометра R_9 устаноить напряжение $U_{3\text{M}}=0$ (максимально близким к нулю) и зафиксировать значение $I_{\text{C.HAC}}$.

При помощи потенциометра R_9 добиться показания I_C близкое к нулю и зафиксировать значение напряжения отсечки (U_{OTC}).

Разбить напряжение $U_{3\text{и}}$ от $U_{\text{ОТС}}$ до $U_{3\text{и}}=0$ на 5-6 точек и заполнить таблицу 9.

Задание 6 Расчет крутизны

Рассчитать крутизну в крайних точках таблицы ($S_{\text{мин}}$ при минимальном токе стока и $S_{\text{макс}}$ при максимальном).

$$S = \frac{\Delta I_C}{\Delta U_{3U}} \left(\frac{MA}{B} \right)$$

Задание 7 Построение стоковой ВАХ

$$U_{3 \text{И}} = 0 \text{ И} \quad U_{3 \text{И}} = \frac{U_{omc}}{2}$$
 ,

 $I_C = f(U_{CM})$ при $U_{3M} = const.$

Рисунок 10: Стоковая ВАХ

Таблица 10

$\mathbf{U}_{ ext{CM}}$, \mathbf{B}	1	2	3	4	6	8	10
$I_{C.U3H}=0$, MA							
$I_{\text{C.U3И}} = \mathbf{U}_{\text{OTC}}/2$, мА							

Содержание отчёта

- 1. Наименование и цель работы.
- 2. Электрические расчётные схемы и схемы цепи, собранные в Multisim.
- 3. Расчётные формулы.
- 4. Графики ВАХ, стоко-затворной характеристики.
- 5. Таблицы с расчётными и экспериментальными данными.
- 6. Выводы по работе.