Теоретический материал

- 1. " \in " значок принадлежности, например, $a \in A$, т.е. элемент (a) принадлежит множеству A; " \notin " не принадлежит
- 2. "Ø" пустое множество, т.е. множество, не содержащее никаких элементов
- 3. \mathbb{N} множество натуральных чисел; \mathbb{Z} множество целых чисел; \mathbb{R} множество действительных чисел; \mathbb{Q} множество рациональных чисел
- 4. запись исключения элемента из множества $A \setminus a$, например, множество A = [-1;1] отрезок, $B = [-1,0) \cup (0;1]$, тогда нуль исключается из $B \Rightarrow A \setminus 0 = B$
- 5. " \to " значок следствия или " \Rightarrow "
- 6. " \Leftrightarrow " значок эквивалентности, например, $y = x^2 \Leftrightarrow y = \pm x$
- 7. " \forall " означает для всех, для любого, например $\forall a \in A \Rightarrow a : 2$ (для любого элемента множества A следует, что (a) кратно двум)
- 8. " : " означает логический переход(такой, что...), например, $\forall a \in A: a>0 \Rightarrow a \vdots 2$ (для любого элемента множества A такого, что a>0, следует, что (а) кратно двум)
- 9. ":" этот значок означает кратность числа чему-то (т.е. что что-то делится на что-то)
- 10. " \cup " значок объединения, например, $[-1;1]=[-1;0]\cup[0;1],$ т.е. состоит из двух отрезков
- 11. " \cap " значок пересечения, т.е., например, $[-2;2] \cap [0;3] = [0;2]$ или, например, $[-2;2] \cap [-1;1] = [-1;1]$ (иначе говоря, " \cap " выделение общих элементов).
- 12. " \subset " значок включения или, иначе говоря, что что-то лежит внутри другого, например, множество A лежит внутри $B \Leftrightarrow A \subset B$, т.е. b содержит A.
- 13. " \exists " значок существования, например, $\exists a:(25 \ : a)$, т.е. есть такое число (существует), на которое делится число 25, т.е. a=1,5,25.
- 14. "∃!" значок означает следующую фразу (существует хотя бы один...) или (существует единственный...)
- 15. " \mapsto " значок отображения, например, $f: \mathbb{R} \mapsto \mathbb{R}$, функция (f) отображает множество действительных чисел в множество действительных чисел.

Отношения между множествами

Два множества A и B могут вступать друг с другом в различные отношения

- А включено в В, если каждый элемент множества А принадлежит множеству В, т.е. $A \subseteq B \Leftrightarrow \forall a \in A: a \in B$
- А включает B, если B включено в A, $A \supseteq B \Leftrightarrow B \subseteq A$

- А равно В, если А и В включены друг в друга: $A = B \Leftrightarrow (A \subseteq B) \cap (B \subseteq A)$
- А строго включено в B, если A включено в B, но не равно ему: $A \subset B \Leftrightarrow (A \subseteq B) \cap (A \neq B)$
- А и В не пересекаются, если у них нет общих элементов $\Leftrightarrow \forall a \in A : a \notin B$

Бинарные операции

- пересечение $A \cap B = \{x : x \in A \text{ и } x \in B\}$
- объединение $A \cup B = \{x : x \in A \text{ или } x \in B\}$
- разность $A \setminus B = A \cap \overline{B} = \{x : x \in A \text{ и } x \notin B\}$

Рассмотрим примеры использования логических символов

<u>Задача №1</u> Пусть A = {квадратный трехчлен $y = ax^2 + bx + c$ принимает положительные значения при всех х}, B = { $\mathscr{D} < 0$ }, где $\mathscr{D} = b^2 - 4ac$, C = { $\mathscr{D} < 0$, a > 0} = { $\mathscr{D} < 0$ } \cap {a > 0} Доказать, что $A \Rightarrow B, A \Leftrightarrow C$.

Доказательство. 1. Предположим, что из A не следует B. Тогда $\mathscr{D}=b^2-4ac\geqslant 0$, в этом сл-е квадратный трехчлен $y=ax^2+bx+c$ имеет действительные корни x_1 и x_2 ($x_1=x_2$ при $\mathscr{D}=0$) и поэтому обращается в нуль при $x=x_1$ и $x=x_2$, что противоречит A. Итак, предположение о том, что из A не следует B, является неверным, поэтому из A следует B, т.е. $A\Rightarrow B$

2. Докажем, что $A \Rightarrow C$, воспользуемся равенством

$$y = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\mathscr{D}}{4a^2} \right] \tag{1}$$

т.к. $A\Rightarrow \mathscr{D}<0$, то выражение в квадратных скобках в формуле (1) положительно, и поэтому из условия y>0 следуется, что a>0. Итак, $A\Rightarrow C$ Обратно: если имеет место C, т.е. $\mathscr{D}<0$ и a>0, то из (1) следует, что y>0 при всех (х). Таким образом, квадратный трехчлен $y=ax^2+bx+c$ принимает положительные значения при всех действительных значениях (х) тогда и только тогда, когда a>0 и $\mathscr{D}=b^2-4ac<0$

Задача №2 Пусть задано числовое множество X и число M. Записать с помощью кванторов отрицание утверждений:

а) $A = \{$ все элементы x числового множества удовлетворяют условию $x < M\}$

б) $B = \{$ существует число M > 0, такое, что все элементы x из множества X удовлетворяют условию $|x| \geqslant M \}$

Решение: а) Пусть A не имеет места, т.е. не все элементы x множества X удовлетворяют условию x < M. Это означает, что найдется (существует) такой элемент $x \in X$, для которого неравенство x < M не выполняется, т.е. имеет место противоположное

2

неравенство $x \geqslant M$. (Если A - высказывание, то \overline{A} - отрицание этого высказывания). Запишем A и \overline{A} с помощью кванторов

$$A = \{ \forall x \in X \to x < M \}$$

$$\overline{A} = \{\exists x \in X : x \geqslant M\}$$

б) Пусть B не имеет места, т.е. не существует числа M>0, такого, чтобы для любого $x \in X$ имело место неравенство $|x| \geqslant M$. Это означает, что для любого M > 0 неравенство $|x| \geqslant M$ не может выполнятся для каждого $x \in X$. Иначе говоря, существует такой элемент $x = x_M \in X$ (зависящий от M), для которого неравенство не выполняется, т.е. справедливо неравенство $|x_M| < M$. С помощью кванторов утверждения B и \overline{B} можно записать так:

$$\frac{B}{B} = \{ \exists M > 0 : \forall x \in X \to |x| \geqslant M \}$$

$$\overline{B} = \{ \forall M > 0 \ \exists x_M \in X : |x| < M \}$$

Задача №3 Рассмотрим неопределенные высказывания, заданные на множестве всех четырехугольников Q:

 $A(Q) \equiv \{$ четырехугольник Q - ромб $\}$;

 $B(Q) \equiv \{$ диагонали четырехугольника Q взаимно перпендикулярны $\}$.

Доказать, что $\forall Q \ A(Q) \Rightarrow B(Q)$, а обратное утверждение $\forall Q \ B(Q) \Rightarrow A(Q)$ неверно. *Решение:* Т.к. в любом ромбе диагонали взаимно перпендикулярны, то $A(Q) \Rightarrow B(Q)$ для любого ромба Q. Обратная теорема неверна: существует четырехугольник с взаимно перпендикулярными диагоналями, не являющийся ромбом.

Задача №4 Даны два предиката $P(x): x^2 + x + 1 > 0$ и $Q(x): x^2 - 4x + 3 = 0$, определенные на множестве \mathbb{R} . Установить, какие из высказываний истинны, а какие ложны: a) $\forall x \ P(x)$ б) $\exists x \ P(x)$ в) $\forall x \ Q(x)$ г) $\exists x \ Q(x)$. (Замечание: Предикат это то, что утверждается о субъекте. Субъектом высказывания называется то, о чем делается утверждение).

Решение: Т.к. $x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4} > 0$ при всех x, то будут истинными высказывания $\forall x \ P(x)$ и $\exists x \ P(x)$. Т.к. $x^2 - 4x + 3 = 0$ имеет только два действительных корня $x_1 = 3$ и $x_2 = 1$, то предикат Q(x) принимает значение 1 только при x = 3 и x = 1 и 0 в остальных случаях. Но тогда высказывание $\forall x \ Q(x)$ ложно, а высказывание $\exists x \ Q(x)$ истинно.

Упражнения

- 1. Доказать, что равенства: a) $A \cup B = B$ б) $A \cap B = A$ верны тогда и только тогда, когда $A \subset B$.
- 2. Доказать, что равенства $A \setminus (B \setminus C) = (A \setminus B) \cup C$ верно тогда и только тогда когда, когда $A\supset C$.
- 3. Доказать равенство:
 - a) $A \setminus (A \setminus B) = A \cap B$ B) $(A \setminus B) \setminus C = A \setminus (B \cup C)$ 6) $(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$ P) $(A \setminus B) \cap C = (A \cap C) \setminus (B \cap C)$
- 4. Доказать, что для любых высказываний A и B справедливы равенства $\overline{A\cap B}=$ $\overline{A} \cup \overline{B}$ и $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- 5. Выяснить, какие из утверждений A и B следует из другого, используя символы «⇒»; «⇔»

- а) $A \equiv \{$ каждое из чисел a, b делится на $7\}, B \equiv \{$ сумма a+b делится на $7\}$
- б) $A \equiv \{$ последняя цифра числа a четная $\}, B \equiv \{$ число a делится на $4\}$
- в) Доказать, что квадратичная функция $y=ax^2+bx+c$ принимает отрицательные значения при всех $x\in\mathbb{R}$ тогда и только тогда, когда $\mathscr{D}=b^2-4ac<0$ и a<0.
- 6. Пусть $f(x)=ax^2+bx+c\ (a\neq 0)$ квадратный трехчлен. $\mathscr{D}=b^2-4ac,\ x_1$ и x_2 корни квадратного трехчлена, $x_1\leqslant x_2\ (\mathscr{D}\geqslant 0),\ x_0=-\frac{b}{2a}$ абсцисса вершины параболы $y=ax^2+bx+c,\ M$ и K заданные числа. Доказать, что:
 - a) $\{x_1 < M, x_2 < M\} \Leftrightarrow \{\mathcal{D} \ge 0, x_0 < M, af(M) > 0\}$
 - 6) $\{x_1 > M, \ x_2 < M\} \Leftrightarrow \{\mathscr{D} \geqslant 0, \ x_0 > M, \ af(M) > 0\}$
 - B) $\{x_1 < M < x_2\} \Leftrightarrow \{af(M) < 0\}$
 - г) $\{K < x_1 < M, K < x_2 < M\} \Leftrightarrow \{\mathscr{D} \geqslant 0, K < x_0 < M, f(K)f(M) > 0\}$
 - д) $\{x_1 < K < M < x_2\} \Leftrightarrow \{af(K) < 0, af(M) < 0\}$