Grammaire, grammaire régulière Intelligence Artificielle et Systèmes Formels Master 1 I2L

SÉBASTIEN VEREL verel@lisic.univ-littoral.fr http://www-lisic.univ-littoral.fr/~verel

Université du Littoral Côte d'Opale Laboratoire LISIC Equipe CAMOME

Objectifs de la séance 05

- Connaître la définition d'une grammaire
- Savoir dessiner l'arbre de dérivation d'un mot selon une grammaire
- Connaitre la définition d'une grammaire régulière
- Savoir concevoir un automate fini reconnaissant le langage d'une grammaire régulière
- Savoir définir une grammaire engendrant le même langage qu'un automate fini déterministe
- Connaitre la classification de Chomsky des langages

Grammaire régulière

- Introduction
- ② Grammaire
- Grammaire régulière
- 4 Forme normale

Là où nous en sommes

Introduction

- Les mots d'un langage rationnel sont reconnus par des automates finis et réciproquement.
- Les automates sont des machines abstraites capables de réaliser des calculs sur des mots.
- Les notions de langage et de calcul sur machine sont très proches:
 - Pour tout langage rationnel, il existe un automate reconnaissant ce langage
 - Tout automate reconnait un langage rationnel

Vers où l'on va

Introduction

- Il est possible de définir d'autres propriétés et d'autres types de machines abstraites qui permettent de définir d'autres classes de langages.
- L'expressivité du langage et la capacité de calcul de la machine sont alors différentes.
- Les questions que l'on se pose sont alors les mêmes :
 - mode de lecture.
 - description formelle/algébrique langage,
 - équivalence avec d'autres classes de langages,
 - capacité de la machine reconnaissant le langage.

Par exemple, on peut remplacer expression régulière par grammaire ou automate par machine de Turing...

Exemple littéraire

Première phrase de "La position du tireur couché", J.-P. Manchette.

Intuition : la réécriture

Réécriture (source CNRTL)

Règle permettant de retranscrire, suivant un principe de transformation, une suite de symboles en une autre.

Intuition : la réécriture

Réécriture (source CNRTL)

Règle permettant de retranscrire, suivant un principe de transformation, une suite de symboles en une autre.

Moyen expressif puissant

Au lieu de définir un langage par les mots vérifiant une expression algébrique, on utilise un ensemble de fonctions de l'ensemble des mots dans lui-même, et plus généralement des couples de mots.

Grammaire régulière

Comment peut-on réécrire?

Intuition

Introduction

000000

- Objet initial : S
- Règles de réécriture, de production :

"alpha se réécrit en beta"

$$\alpha \to \beta$$

- Relation de dérivation : ⊢
 - si $\alpha \to \beta$ alors $\alpha \vdash \beta$
 - si $\alpha \to \beta$ et si en remplaçant α par β dans γ on obtient δ alors $\gamma \vdash \delta$
- Langage engendré : $\{\varphi : S \vdash^* \varphi\}$

Exemple graphique

Introduction

000000

Alphabet de symboles : $\{F, -, +\}$ Règles de réécriture (ou de production) : $F \rightarrow F-F+F+FF-F-F+F$ (P1)

Cette règle peut s'interpréter graphiquement. Sur un quadrillage,

- F signifie "avancer" d'une unité,
- - "tourner" à droite de 90 degrés,
- + "tourner" à gauche de 90 degrés.

Questions

Graphiquement,

- Dériver F en appliquant 1 fois (P1)
- Dériver F-F-F en appliquant plusieurs (P1)

Réécriture avec une production

Soit Σ un alphabet.

Production

Une **production** est un couple (α, β) de $\Sigma^+ \times \Sigma^*$, noté :

$$\alpha \to \beta$$

 α est appelé prédécesseur et β successeur.

Règle de réécriture

La règle de réécriture $\vdash_{\alpha \to \beta}$ est une relation binaire définie par : Pour tous les mots v et w sur Σ .

$$v \vdash_{lpha
ightarrow eta} w$$
 ssi il existe 2 mots v_1 et v_2 sur Σ

tels que $v = v_1 \alpha v_2$ et $w = v_1 \beta v_2$.

Grammaire

Définition

Une grammaire est un quadruplet (N, Σ, P, S) où :

- N est un ensemble fini de symboles non terminaux
- ullet Est un ensemble de symboles **terminaux**
- P est un ensemble fini de productions

$$\{\varphi \to \psi : \varphi \in (\mathsf{N} \cup \Sigma)^+ \text{ et } \psi \in (\mathsf{N} \cup \Sigma)^*\}$$

• $S \in N^+$ est l'axiome (mot initial)

Propriétés

- Vocabulaire : $V = N \cup \Sigma$
- $N \cap \Sigma = \emptyset$

Notation pratique

Notation d'un ensemble de productions

Plusieurs productions avec la même partie gauche peuvent s'écrire en une seule avec le symbole "ou" | :

$$\left\{ \begin{array}{l} \alpha \to \beta_1 \\ \alpha \to \beta_2 \end{array} \right.$$

peut se noter

$$\alpha \rightarrow \beta_1 \mid \beta_2$$

Dérivation

Dérivation

 (w_0, w_1, \ldots, w_n) est une dérivation de v en w selon la grammaire $G = (N, \Sigma, P, S)$ ssi $w_0 = v$ et $w_n = w$ et pour tout $i \in \{0, n-1\}$ il existe une production $(\alpha, \beta) \in P$ telle que $w_i \vdash_{\alpha \to \beta} w_{i+1}$.

Remarque: les productions s'appliquent successivement.

Relation \vdash^*

 $v \vdash^* w$ s'il existe une dérivation entre les mots v et w.

Remarque : La relation \vdash^* est une relation binaire transitive.

Calcul, langage engendré

Langage engendré

Le langage engendré par la grammaire $G = (N, \Sigma, P, S)$ est :

$$L(G) = \{ \varphi \in \Sigma^* : S \vdash^* \varphi \}$$

Exemple (1)

Soit la grammaire $G_1 = (N, T, P, A)$ avec :

- $N = \{A, B, C\}$
- $T = \{a, b\}$ $P = \{ A \rightarrow aB, \}$

$$A \rightarrow aB$$
, $B \rightarrow bC$,

 $C \rightarrow aC$

 $C \rightarrow bC$

 $C \rightarrow \epsilon$

Quel est le langage engendré par G_1 ?

Grammaire régulière

Exemple (2)

```
Soit la grammaire G_2 = (N, T, P, A) avec :
  • N = \{A, B, O, T\}
  • T = \{o, t, p\}
      P = \{ A \rightarrow tA, 
             A \rightarrow oA
                A \rightarrow pA
                A \rightarrow tT
                T \rightarrow oO,
                O \rightarrow pB,
```

Quel est le langage engendré par G_2 ?

 $B \rightarrow tB$ $B \rightarrow oB$, $B \rightarrow pB$

Exemple (3)

Soit la grammaire $G_3 = (N, T, P, A)$ avec :

- $N = \{A\}$
- $T = \{0, 1\}$
- $P = \{ A \rightarrow 0A1, \\ A \rightarrow \epsilon \}$

Quel est le langage engendré par G_3 ?

Exemple (3)

Soit la grammaire $G_3 = (N, T, P, A)$ avec :

- $N = \{A\}$
- $T = \{0, 1\}$
- $P = \{ A \rightarrow 0A1, A \rightarrow \epsilon \}$

Quel est le langage engendré par G_3 ?

Attention tous les langages ne sont pas des langages rationnels! Et loin de là, pensez au cardinal de ces ensembles...

Arbre de dérivation

Important: Soit G = (N, T, P, A) grammaire dont les productions n'ont qu'un seul symbole non-terminal comme prédécesseur.

Grammaire régulière

Arbre de dérivation

Représentation graphique de la dérivation d'un mot depuis l'axiome.

Arbre de dérivation du mot w engendré par G

Arbre tel que :

- Racine étiquetée par le symbole initial S
- Feuilles étiquetées par les éléments de $T \cup \{\epsilon\}$
- Noeuds internes étiquetés par les éléments de N

$$F_1$$
 F_2 \cdots F_n

si une production $B \to F_1 F_2 \dots F_n$

 w est formé par la concaténation des feuilles obtenues par un parcours en profondeur de l'arbre

Arbre de dérivation de w = abaa engendré par la grammaire G_1

Arbre de dérivation de w = abaa engendré par la grammaire G_1

Arbre de dérivation de w = 000111 engendré par la grammaire G_3

Arbre de dérivation de w = 000111 engendré par la grammaire G_3

Définition

Grammaire régulière à droite

Une grammaire G = (N, T, P, A) est régulière à droite si toutes les productions sont de la forme :

$$\mathsf{B} \to \mathsf{aC}$$
 ou $\mathsf{B} \to \mathsf{a}$ ou $\mathsf{B} \to \epsilon$

avec $B \in N$, $C \in N$ et $a \in T$.

Définition

Grammaire régulière à droite

Une grammaire G = (N, T, P, A) est régulière à droite si toutes les productions sont de la forme :

Grammaire régulière •000000

$$\mathsf{B} \to \mathsf{aC}$$
 ou $\mathsf{B} \to \mathsf{a}$ ou $\mathsf{B} \to \epsilon$

avec $B \in N$. $C \in N$ et $a \in T$.

Grammaire régulière à gauche

Une grammaire G = (N, T, P, A) est régulière à gauche si toutes les productions sont de la forme :

$$\mathsf{B} \to \mathsf{Ca}$$
 ou $\mathsf{B} \to \mathsf{a}$ ou $\mathsf{B} \to \epsilon$

avec $B \in N$. $C \in N$ et $a \in T$.

Question

Parmi les grammaires G_1 , G_2 et G_3 , lesquels sont des grammaires régulières?

Théorème

Un langage L est rationnel si et seulement si il existe une grammaire régulière qui engendre les mots de L.

Grammaire régulière

0000000

cf. exercice 1 Fiche 05

Construction d'une grammaire régulière à partir d'un AFD

Grammaire régulière

0000000

Construction d'une grammaire régulière à partir d'un AFD

Exemple

• $T = \{a, b, c\}$

$$P = \{ A \rightarrow aA, A \rightarrow cA, A \rightarrow bB, A \rightarrow cA, A \rightarrow bB, A \rightarrow cA, A \rightarrow bB, A \rightarrow cA, A \rightarrow cA$$

 $B \rightarrow aB$, $B \rightarrow cB$, $B \rightarrow bC$, $C \rightarrow aC$, $C \rightarrow cC$, $C \rightarrow bA$,

$$A \rightarrow \epsilon$$

• $N = \{A, B, C\}$

Construction d'une grammaire régulière à partir d'un AFD

Soit un automate $\mathcal{A} = (\Sigma, Q, T, q_0, F)$ La grammaire G = (N, T, P, A) telle que :

- \bullet N=Q
- $T = \Sigma$
- $A = q_0$
- dont les productions P sont : $q_i \rightarrow aq_i$ lorsque l'automate a pour transition $T(q_i, a) = q_i$ et $q_i \rightarrow \epsilon$ pour tout $q_i \in F$

engendre le même langage que l'automate A.

Remarque: il y a des renommages implicites dans la construction

Construction d'un AFD à partir d'une grammaire régulière

```
• N = \{A, B, C\}
```

•
$$T = \{a, b\}$$

$$P = \{ A \rightarrow aB,$$

$$B \rightarrow bC$$

$$\begin{array}{ccc}
C & \to & bC \\
C & \to & \epsilon
\end{array}$$

$$C \rightarrow \epsilon$$

Construction d'un AFD à partir d'une grammaire régulière

Grammaire régulière

0000000

```
• N = \{A, B, C\}
• T = \{a, b\}
    P = \{ A \rightarrow aB, \}
             B \rightarrow bC
```

Construction d'un AFD à partir d'une grammaire régulière

000000

Soit la grammaire régulière à droite G = (N, T, P, A). L'automate $\mathcal{A} = (\Sigma, Q, T, q_0, F)$ telle que :

- $Q = N \cup \{X\}$
- \bullet $\Sigma = T$
- \circ $q_0 = A$
- dont les transitions sont :

$$T(q_i, a) = q_j$$
 pour les productions $q_i \rightarrow aq_j$

$$T(q_i, a) = X$$
 pour les productions $q_i \rightarrow a$

• $F = \{X\} \cup \{B : \text{production } B \to \epsilon\}$

reconnait le même langage que la grammaire G.

Remarque: il y a des renommages implicites dans la construction

Langages algébriques ou non-contextuels

Grammaire algébrique

Une grammaire $G = (N, \Sigma, P, S)$ est **non-contextuelle** (context-free in english), ou algébrique, si les productions sont de la forme:

$$B \to w \text{ avec } B \in N \text{ et } w \in (N \cup \Sigma)^*$$

Langage algébrique

Un langage L est algébrique s'il existe une grammaire algébrique G telle que L(G) = L.

Remarque : Tout langage rationnel est algébrique, mais la réciproque est fausse.

Exemple : les langages de programmation classiques

Hierarchie de Chomsky

Classification de Chomsky

Туре	Langages	Grammaires
3	Rationnels	régulières à droite
	ou	$A ightarrow a$, $A ightarrow aB$, $A ightarrow \epsilon$
	réguliers	$A, B \in N \ a \in T$
		(régulières à gauche)
2	algébriques	algébriques, non-contextuelles
	ou	$A \rightarrow \alpha$
	non-contextuels	$A \in N \ \alpha \in (N \cup T)^*$
1		contextuelles, monotones
	contextuels	$lpha ightarrow eta$ ou $A ightarrow \epsilon$
		$\alpha, \beta \in (N \cup T)^*$, A axiome
		$ \alpha \le \beta $
0	récursivement	contextuelles avec effacement
	énumérables	$\alpha o \beta$
		$\alpha \in (N \cup T)^+ \beta \in (N \cup T)^*$
		aucune contrainte

Formes normales

- Pour comparer les grammaires, on peut les écrire sous forme normalisée
- Il existe plusieurs formes normales (Chomsky, Greibach, etc.)
- Il existe des algorithmes pour transformer les grammaires en forme normale

Forme normale de Chomsky

Une grammaire $G = (N, \Sigma, P, S)$ est sous forme normale de Chomsky si toutes les productions sont de la forme :

- \bullet $A \rightarrow a$
- $A \rightarrow BC$
- \circ $S \rightarrow \epsilon$

avec $A, B, C \in N$ et $a \in \Sigma$ (et si on a $S \to \epsilon$, S ne figure dans aucun membre droit d'une autre production)

Conclusion

Langages rationnels ou réguliers

- Langages clos par : union, produit, étoile,
- Ensemble dénombrable de langage,
- Caractérisés par les expressions régulières
- Reconnus par les automates finis (déterministe ou non)
- Engendrés par les grammaires régulières (à droite ou gauche)