TESTOWANIE HIPOTEZ.

1. Oszacowanio modele objaśniające płacę godzinową:

	(1)	(2)	(3)
	$\log(hwage)$	$\log(hwage)$	$\log(hwage)$
female	-0.263	-0.260	-0.263
	(0.00524)	(0.00515)	(0.00514)
education	0.108	0.0342	0.108
	(0.000946)	(0.00505)	(0.00104)
age	0.00954	0.0667	0.00954
	(0.000226)	(0.00145)	(0.000243)
$education^2$		0.00262	
		(0.000182)	
age^2		-0.000669	
		(0.0000168)	
cons	1.150	0.520	1.150
	(0.0161)	(0.0460)	(0.0177)
\overline{N}	50742	50742	50742
R^2	0.256	0.281	0.256

W nawiasach podano błędy standardowe oszacowań

- (i) Przetestuj istotność parametrów w modelu (1). Załóż poziom istotności równy 0.05. Ile stopni swobody ma rozkład statystyki testowej? Podaj także przedziały ufności.
- (ii) Przetestuj łączną istotność modelu (1). Ile stopni swobody ma rozkład statystyki testowej?
- (iii) W modelu (2) dodano dwie zmienne podniesione do kwadratu. Czy te dodane zmienne są łącznie istotne statystycznie? Zapisz hipotezę w formie macierzowej.
- (iv) W modelu (3) oszacowano takie samo równanie jak w modelu (1), ale zastosowano odporne błędy standardowe. Czy konkluzje z podpunktu (i) uległy zmianie?