

PALM INTRANET

09/713, 7 Day: Wednesday Date: 3/19/2003

Time: 10:57:09

updated

Inventor Name Search

Enter the **first few letters** of the Inventor's Last Name. Additionally, enter the **first few letters** of the Inventor's First name.

Last Name	First Name	
Batard	Yannick	Search
To go back use Back button on your bro	wser toolbar.	7
Back to PALM ASSIGNMENT OAS	IS Home page	{

Day: Wednesday Date: 3/19/2003 Time: 10:57:09

Inventor Name Search

Enter the **first few letters** of the Inventor's Last Name. Additionally, enter the **first few letters** of the Inventor's First name.

Last Name	First Name	
Durst	Francis Search	

To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

PALM INTRANET

Day: Wednesday Date: 3/19/2003 Time: 10:57:09

Inventor Name Search

Enter the **first few letters** of the Inventor's Last Name. Additionally, enter the **first few letters** of the Inventor's First name.

Last Name	First Name
Schalk	Michel Search

To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

PALM INTRANET

Day: Wednesday Date: 3/19/2003 Time: 10:57:09

Inventor Name Search

Enter the **first few letters** of the Inventor's Last Name. Additionally, enter the **first few letters** of the Inventor's First name.

Last Name	First Name	
Werck-Reichhart	Daniele	Search

To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

Page 1 of 2

		•		Oi	steatchie -	ujua
PubMed N	lucleotide F	Protein Genome	Structure	PMC	Taxonomy	OMIM Bc
Search PubMed	for co	odon optimization AN	D yeast		Go Clear:	
	Limit	ts Preview/In	dex Hist	ory	Clipboard	Details
About Entrez	P					
	Display,	Summary 🔄	Show: 20 🔽	Sort	Send∗to T	ext 📳
Text Version		Items 1-10 of 10				One page.
	☐ 1:Sincla	r.G. Choy FY.			Relate	ed Articles, Links
Entrez PubMed		nymous codon usag				
Overview Help FAQ	— <u>51400</u>	cerebrosidase in the		ic yeast, P	ichia pastoris.	
Tutorial		n Expr Purif. 2002 Oct; : 12356476 [PubMed -				
New/Noteworthy E-Utilities		12000 110 [1 0011100	p			
E Gundes	2:Outch	kourov NS, Stiekema W	√J, Jongsma MA.		Relate	ed Articles, Links
PubMed Services		nization of the expr		tatin in Pi	chia pastoris.	
Journals Database MeSH Browser	1.0tc.	n Expr Purif. 2002 Feb; : 11812218 [PubMed -		LINE		
Single Citation Match	er	11012210 [1 ubivieu -	macked for WIED	Direj		
Batch Citation Matche Clinical Queries	er ☐ 3:Baev [D, Li X, Edgerton M.			Relate	ed Articles, Links
LinkOut	II 1	tically engineered h	•	_		
Cubby	— Canu	ida albicans: develo	opment of a nev	w system f	or studying his	tatin
Related Resources		dacidal activity. biology. 2001 Dec;147((Dt 10)-2202 24			
Order Documents	MICIO	: 11739764 [PubMed -		LINE		
NLM Gateway TOXNET		-		-		
Consumer Health	☐ 4: Hump	hreys DP, Sehdev M, C Jover DJ, Reeks DG, S	tanhans PF	esh R, Smith	BJ, King Relate	ed Articles, Links
Clinical Alerts ClinicalTrials.gov	TI: ah	·level periplasmic e		scherichia	coli using a eu	karvotic
PubMed Central		l peptide: important				
Drivery Deliev	seque			_		_
Privacy Policy		1 Expr Purif. 2000 Nov		I INICI		
	PMID	: 11049749 [PubMed -	indexed for MED	LINE		
	Werck	Y, Hehn A, Nedelkina -Reichhart D.				ed Articles, Links
		asing expression of	P450 and P450	0-reductas	e proteins from	monocots in
		ologous systems.		0		
		3iochem Biophys. 2000 : 10864454 [PubMed -				
	111110	. 1000 175 1 [1 doi:10d	macrou ioi iiibb	ZZ,		
		lani R, Ottonello S.				ed Articles, Links
	11=1	tion at the wobble p		ons read by	y the same tRN	IA in
		naromyces cerevisia iol Evol. 1999 Dec;16(
		: 10605116 [PubMed -		LINE]		
				-	المامة المامة	nd Articles Links
	□ 7:Xia X	<u>.</u>			Kelate	ed Articles, Links
	Г	ontimized is the tra	nelational mac	hinery in I	Escherichia col	i Salmonella

typhimurium and Saccharomyces cerevisiae? Genetics. 1998 May;149(1):37-44. PMID: 9584084 [PubMed - indexed for MEDLINE] • Entrez-PubMed Page 2 of 2

3:Kim CH, Oh Y, Lee TH.	Related Articles, Links
Codon optimization for high-level expression of human er in mammalian cells. Gene. 1997 Oct 15;199(1-2):293-301. PMID: 9358069 [PubMed - indexed for MEDLINE]	rythropoietin (EPO)
9: Kiynetski EY, Drutsa VL, Kovaleva IE, Luzikov VN.	Related Articles, Links
High-yield-expression of functionally active human liver of cells? Pharmacogenetics: 1995 Apr. 5(2):103-9: PMID: 7663527 [PubMed - indexed for MEDLINE]	YP2D6 in yeast
10:KomayeGuruspy	Related Articles, Links
Evaluation of foreign gene codon optimization in yeast: 6 mouse IG kappa chain. Biotechnology (N Y): 1991 Dec; 9(12): 1386-9. > PMID: 1367771 [PubMed - indexed for MEDLINE]	expression of a
Display Summary Show: 20 Sort Send	to Text
Items 1-10 of 10	

Write to the Help Desk NCBI | NLM | NIH Department of Health & Human Services Freedom of Information Act | Disclaimer

Search PubMed Limits Preview/Index History Clipboard Details About Entrez Display Summary Show: 20 Sont Send to Text Concept Medical Summary Show: 20 Sont Send to Text Concept Medical Summary Show: 20 Sont Send to Text Concept Medical Summary Show: 20 Sont Send to Text Concept Medical Summary Show: 20 Sont Send to Text Concept Medical Summary Show: 20 Sont Send to Text Concept Medical Summary Show: 20 Sont Send to Text Concept Medical Summary Show: 20 Sont Send to Text Concept Medical Summary Show: 20 Sont Send to Text Concept Medical Send Articles, Links Medical Summary Show: 20 Sont Send to Text Concept Medical Send Articles, Links Medical Send Articles, Links Medical Send Send Send Send Send Send Send Send	PubMed Nucle	otide	Protein	Genome	Structure	PMC	Taxonomy	OMIM Bc
Text Version Text Version Entrez PubMed Overview Help I FAQ Tutorial New/Motheworthy E-Utilities PubMed Services Journals Database MeSH Browser Single Citation Matcher Clinical Queries LinkOut Cubby Toxinal New Motheworthy E-Utilities Related Resources Order Documents NLM Gateway TOXNET Consumer Health Clinical flets Clinical fl	Search PubMed	S	for codon op	timization AND) cerevisiae		Go Clear	
Text Version Entrez PubMed Overview Help I FAQ Tutorial New/Moteworthy E-Utilities PubMed Services Journals Database MeSH Browser Single Citation Matcher Clinical Queries LinkOUT Cubby Related Resources Order Documents NLM Gateway TOXNET Consumer Health Clinical Alerts Clinical Alerts (Clinical Finals gov PubMed Central Privacy Policy Privacy Policy Display Summary Show: 20 Sort Sort One page. Many Astavious Nama Z., Thompson J., Related Articles, Links One page. The Society of Sort Sort Sort Sort Sort Sort Sort Sort			Limits	Preview/Ind	ex Hist	ory	Clipboard	Details
Text Version Entrez PubMed Overview Help FAQ Tutorial New/Moteworthy E-Utilities PubMed Services Journals Database MeSH Browser Single Citation Matcher Clinical Queries LinkOut Cubby Related Resources Order Documents NLIM Gateway TOXNET Consumer Health Clinical Aletts Clinical Province Expr Purif. 1998 Jun; 13(1):iv. PMID: 9642101 [PubMed - as supplied by publisher] NLIM Gateway TOXNET Consumer Health Clinical Privacy Policy Privacy Policy Items 1-6 of 6 1. Weo, JH, Liu, YY, Mathias A, Stavrou S, Wang Z, Thompson J, Related Articles, Links Protein Expr Purif. 2002 Jul; 25(2):270-82. PMID: 12135560 [PubMed - in process] Protein Expr Purif. 2002 Jul; 25(2):270-82. PMID: 12135560 [PubMed - in process] 2. Percudani R, Ottonello S. Related Articles, Links Selection at the wobble position of codons read by the same tRNA in Saccharomyces cerevisiae. Mol Biol Evol. 1999 Dec; 16(12):1752-62. PMID: 10605116 [PubMed - indexed for MEDLINE] 3. [No authors listed] Related Articles, Links Protein Expr Purif. 1998 Jun; 13(1):iv. PMID: 9642101 [PubMed - as supplied by publisher] 4. Xia X. Related Articles, Links Protein Expr Purif. 1998 May; 149(1):37-44. PMID: 9584084 [PubMed - indexed for MEDLINE] 5. Kronctski-Exp. Drutes View Expression of Tunctionally active human-liver C-YP2D6 in yeast cells. Pharmacogenics: 1995 Apr; 5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] 16. Kontha-I, Emris-P). Related Articles, Links Provaled Articles, Links Provaled Articles, Links Provaled Articles, Links Pharmacogenics: 1995 Apr; 5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE]	About Entrez	0.002563	and the second					
1: Woo_JH_Liu_YY, Mathias A, Stavrou S, Wang Z, Thompson J, Related Articles, Links Neville DM Jr.	**************************************	Dis	<u> </u>		Show: 20	Sort	Send to To	
Entrez PubMed Overview Help FAQ Tutorial New/Moteworthy E-Utilities PubMed Services Journals Database MeSH Browser Single Citation Matcher Clinical Queries LinkOUT Cubby Related Resources Order Documents NLM Gateway TOXNET Consumer Health Clinical Trials gov PubMed Central Privacy Policy Privacy Policy New High FAQ Tutorial New/Moteworthy E-Utilities 2: Percudani R, Ottonello S. Related Articles, Links Related Articles, Links Selection at the wobble position of codons read by the same tRNA in Secharomyces cerevisiae. Mol Biol Evol. 1999 Dec; [6] (1): 1752-62. PMID: 10605116 [PubMed - indexed for MEDLINE] Related Articles, Links Papers to Appear in Forthcoming Issues. Protein Expr Purif. 1998 Jun; [30] (1): iv. PMID: 9642101 [PubMed - as supplied by publisher] NLM Cateway TOXNET Consumer Health Clinical Alerts Clinical Trials gov PubMed Central Privacy Policy Fivacy Policy 15: Krynetski EM-Drutsa-Vie-Kovaleva-Ite: Luzikor-Vin High yield expression of functionally active-human-liver-C-YP2D6-in-yeast cells. Pharmacogenetics—1995 Apr; [5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] Set Norma L. Curris-PJ. Related Articles, Links Evaluation of Totelign gene codon optimization-in yeast-expression-of-a mouse-IG-kappa-chain. Biotechnology (NYPY) 1999 Dec; [9(12):17386-9]	Text Version				Stavrou S. Wang	7 Thompso	m I Dalata	
Conversion Help FAQ Tutorial NewNoteworthy E-Utilities PubMed Services Journals Database MeSH Browser Single Citation Matcher Clinical Queries LinkOut Cubby Related Resources Order Documents NLM Gateway TOXNET Consumer Health Clinical Helts Clinical Trials gov PubMed Central Privacy Policy Citation Matcher Privacy Policy Genetics: 1998 May; 149(1):37-44. PMID: 9584084 [PubMed - indexed for MEDLINE] Selection at the wobble position of codons read by the same tRNA in Saccharomyces cerevisiae. Mol Biol Evol. 1999 Dec; 16(12):1752-62. PMID: 10605116 [PubMed - indexed for MEDLINE] Related Articles, Links Papers to Appear in Forthcoming Issues. Protein Expr Purif. 1998 Jun; 13(1):iv. PMID: 9642101 [PubMed - as supplied by publisher] 14:Xia X. Related Articles, Links Clinical Trials gov PubMed Central Privacy Policy Related Articles, Links How optimized is the translational machinery in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiae? Genetics. 1998 May; 149(1):37-44. PMID: 9584084 [PubMed - indexed for MEDLINE] 5:Krynetski Expr Purits Frival Capture 6:Hother Land Articles, Links Frivacy Policy Related Articles, Links F	Entrez PuhMed	1 ئــا	Neville DM Jr.		naviou o, wung	, z., mompse	m 3, Relate	d Afficies, Links
Tutorial New/Noteworthy E-Utilities Protein Expr Purif. 2002 Jul; 25(2):270-82. PMID: 12135560 [PubMed - in process] PubMed Services Journals Database MeSH Browser Single Citation Matcher Batch Citation Matcher Clinical Queries LinkCut Cubby Related Resources Order Documents NLM Gateway TOXNET Consumer Health Clinical Alerts Clinical Alerts Clinical Alerts Clinical Alerts Privacy Policy Privacy Policy Privacy Policy Protein Expr Purif. 2002 Jul; 25(2):270-82. PMID: 12135560 [PubMed - in process] Protein Expr Purif. 2002 Jul; 25(2):270-82. Related Articles, Links in Saccharomyces cerevisiae. Related by the same tRNA in Saccharomyces cerevisiae. Mol Biol Evol. 1999 Dec; 16(12):1752-62. PMID: 10605116 [PubMed - indexed for MEDLINE] Related Resources Order Documents NLM Gateway TOXNET Consumer Health Clinical Alerts Clinical Trials gov PubMed Central How optimized is the translational machinery in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiae? Genetics. 1998 May;149(1):37-44. PMID: 9584084 [PubMed - indexed for MEDLINE] 15. Krynetski Exp. Deutsa Vier Kovaleva 12: Tuzikov VN Related Articles, Links High Yield expression of functionally active-human-liver C-Y-P2D6-in-yeast cells. Pharmacogenetics. 1995 Apr.;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] 16. Korma 1: Cormis PJ. Related Articles, Links Pharmacogenetics. 1995 Apr.;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] 17. Related Articles, Links Pharmacogenetics. 1995 Apr.;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] 18. Related Articles, Links Pharmacogenetics. 1995 Apr.;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE]						ess a bivale	ent anti-human	anti-T cell
PMID: 12135560 [PubMed - in process] PubMed Services Journals Database MeSH Browser Single Citation Matcher Batch Citation Matcher Clinical Queries LinkOut Cubby Related Resources Order Documents NLM Gateway TOXNET Consumer Health Clinical Alerts Clinical Alerts Clinical Alerts Clinical Central Privacy Policy Privacy Policy PMID: 12135560 [PubMed - in process] 2: Percudani R, Ottonello S. Related Articles, Links Selection at the wobble position of codons read by the same tRNA in Saccharomyces cerevisiae. Mol Biol Evol. 1999 Dec; 16(12):1752-62. PMID: 10605116 [PubMed - indexed for MEDLINE] Related Resources Order Documents NLM Gateway TOXNET Consumer Health Clinical Alerts Clinical Trials gov PubMed Central Privacy Policy Privacy Policy Privacy Policy Privacy Policy PMID: 9584084 [PubMed - indexed for MEDLINE] Skrynetski-Ev-Drutsa-Vie-Kovaleva-te-Euzikov-VN Related Articles, Links Pharmacogenetics: 1995 Apr.;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] Felated Articles, Links Pharmacogenetics: 1995 Apr.;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] Felated Articles, Links Pharmacogenetics: 1995 Apr.;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] Felated Articles, Links Pharmacogenetics: 1995 Apr.;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] Felated Articles, Links Pharmacogenetics: 1995 Apr.;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] Felated Articles, Links Pharmacogenetics: 1995 Apr.;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] Felated Articles, Links Pharmacogenetics: 1995 Apr.;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] Felated Articles, Links Pharmacogenetics: 1995 Apr.;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] Felated Articles, Links Pharmacogenetics: 1995 Apr.;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] Felated Articles, Links Pharmacogenetics: 1995 Apr.;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] Felated Articles, Links Pharmacogenetics: 1995 Apr.;5(2):103-9. P	_ ' ' : .	4						
E-Utilities PubMed Services Journals Database MeSH Browser Single Citation Matcher Batch Citation Matcher Clinical Queries LinkOut Cubby Related Resources Order Documents NLM Gateway TOXNET Consumer Health Clinical Alerts Clinical Trials gov PubMed Central Privacy Policy Privacy Policy 2: Percudani R, Ottonello S. Related Articles, Links Selection at the wobble position of codons read by the same tRNA in Saccharomyces cerevisiae. Mol Biol Evol. 1999 Dec; 16(12):1752-62. PMID: 10605116 [PubMed - indexed for MEDLINE] Related Articles, Links Papers to Appear in Forthcoming Issues. Protein Expr Purif. 1998 Jun; 13(1):iv. PMID: 9642101 [PubMed - as supplied by publisher] 4: Xia X. Related Articles, Links How optimized is the translational machinery in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiae? Genetics. 1998 May; 149(1):37-44. PMID: 9584084 [PubMed - indexed for MEDLINE] 5: Krynetski-Exp Drutsa-Mer-Kovaleva-Mer-Lovaleva-Mer								
PubMed Services Journals Database MeSH Browser Single Citation Matcher Batch Citation Matcher Clinical Queries LinkOut Cubby Related Resources Order Documents NLM Gateway TOXNET Consumer Health Clinical Alerts Clinical Alerts Clinical Trials gov PubMed Central Privacy Policy Privacy Policy Selection at the wobble position of codons read by the same tRNA in Saccharomyces cerevisiae. Mol Biol Evol. 1999 Dec; 16(12):1752-62. PMID: 10605116 [PubMed - indexed for MEDLINE] Related Articles, Links Papers to Appear in Forthcoming Issues. Protein Expr Purif. 1998 Jun; 13(1):iv. PMID: 9642101 [PubMed - as supplied by publisher] National Submit Protein Expr Purif. 1998 Jun; 13(1):iv. PMID: 9642101 [PubMed - as supplied by publisher] How optimized is the translational machinery in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiae? Genetics. 1998 May; 149(1):37-44. PMID: 9584084 [PubMed - indexed for MEDLINE] Struntsti-Expression of functionally active human-liver CYP2D6-in-yeast cells. Pharmacogenetics. 1995 Apr; 5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] Related Articles, Links			FIVIID. 121333	ioo [rubivieu - ii	i process]			
Journals Database MeSH Browser Single Citation Matcher Clinical Queries LinkOut Cubby Related Resources Order Documents NLM Gateway TOXNET Consumer Health Clinical Alerts Clinical Alerts Clinical Trials gov PubMed Central Privacy Policy Selection at the wobble position of codons read by the same tRNA in Saccharomyces cerevisiae. Saccharomyces cerevisiae. Saccharomyces cerevisiae. Mol Biol Evol. 1999 Dec; 16(12):1752-62. PMID: 10605116 [PubMed - indexed for MEDLINE] Related Articles, Links Papers to Appear in Forthcoming Issues. Protein Expr Purif. 1998 Jun; 13(1):iv. PMID: 9642101 [PubMed - as supplied by publisher] 4: Xia. X. Related Articles, Links Clinical Alerts Clinical Alerts Clinical Trials gov PubMed Central Privacy Policy Frivacy Policy Total Trials Gateway Frivacy Policy Frivacy Policy Total Trials Gateway Frivacy Policy Frivacy Policy Related Articles, Links Frivacy Policy Total Trials Gateway Frivacy Policy Friv	DubMad Carriage	□ 2	Percudani R, C	Ottonello S.			Relate	d Articles, Links
Saccharomyces cerevisiae. Mol Biol Evol. 1999 Dec;16(12):1752-62. PMID: 10605116 [PubMed - indexed for MEDLINE] Related Articles, Links Related Resources Order Documents NLM Gateway TOXNET Consumer Health Clinical Alerts Clinical Alerts Clinical Arials gov PubMed Central Privacy Policy 13: No authors listed Related Articles, Links			Selection at	the wobble po	osition of cod	ons read by	the same tRN	A in
Batch Citation Matcher Clinical Queries LinkOut Cubby Related Resources Order Documents NLM Gateway TOXNET Consumer Health Clinical Alerts Clinical Trials gov PubMed Central Privacy Policy Privacy Policy Privacy Policy Privacy Policy Privacy Policy Physical Capter State Sta								
Clinical Queries LinkOut Cubby Related Resources Order Documents NLM Gateway TOXNET Consumer Health Clinical Alerts Clinical Alerts Clinical Trials gov PubMed Central Privacy Policy A: Xia X. Related Articles, Links How optimized is the translational machinery in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiae? Genetics. 1998 May; 149(1):37-44. PMID: 9584084 [PubMed - indexed for MEDLINE] 75: Krynetski-EN: Drutsa Vie-Kovaleva PE-Luzikov VN: Related Articles, Links High yield expression of functionally active human-liver-C-Y-P2D6sin-yeast cells. Pharmacogenetics: 1995 Apr; 5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] 76: Kotma L. Carris-PJ. Related Articles, Links Related Articles, Links Featuration of Toreign gene codon optimization in yeast-expressions of a mouse-li-G-kappa-chain. Biotechnology (N-Y-): 1991-Dec; 9(12):1386-9.						A INICI		
Related Resources Order Documents NLM Gateway TOXNET Consumer Health Clinical Alerts Clinical Trials gov PubMed Central Privacy Policy April 1998 May; 149(1):37-44. PMID: 9584084 [PubMed - indexed for MEDLINE] Privacy Policy Related Articles, Links How optimized is the translational machinery in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiae? Genetics. 1998 May;149(1):37-44. PMID: 9584084 [PubMed - indexed for MEDLINE] Tostic Machiner of Salmonella typhimurium and Saccharomyces cerevisiae? Related Articles, Links High yield expression of functionally active human-liver CYP2D6 in yeast cells. Pharmacogenetics: 1995 Apr;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] Related Articles, Links Evaluation of foreign gene codon optimization in yeast: expression of a mouse of exappa-chain. Biotechnology (NYY): 1991-Dec;9(12):1386-9.			PMID: 100031	io [Publvied - ii	idexed for MED	LINEJ		
Papers to Appear in Forthcoming Issues. Protein Expr Purif. 1998 Jun; 13(1):iv. PMID: 9642101 [PubMed - as supplied by publisher] NLM Gateway TOXNET Consumer Health Clinical Alerts Clinical Trials gov PubMed Central Privacy Policy A: Xia X. Related Articles, Links How optimized is the translational machinery in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiae? Genetics. 1998 May;149(1):37-44. PMID: 9584084 [PubMed - indexed for MEDLINE] Fivacy Policy 5: Krynetski-Ex-Drutsa-Vie-Kovaleva-Vie-Luzikov-VN: Related Articles, Links High yield expression of functionally active human-liver-C-YP2D6-in-yeast cells. Pharmacogenetics: 1993 Apr;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] For Kotula-L, Curtis-PJ. Related Articles, Links Evaluation of foreign gene codon optimization-in-yeast: expression=of-a mouse-1G-kappa-chain. Biotechnology (N-Y): 1991-Dec;9(12):1386-9.		□ 3	:[No authors lis	ted]			Relate	d Articles, Links
Related Resources Order Documents NLM Gateway TOXNET Consumer Health Clinical Alerts Clinical Trials gov PubMed Central Privacy Policy Privacy Policy Privacy Policy Privacy Policy Privacy Policy Protein Expr Purif. 1998 Jun;13(1):iv. PMID: 9642101 [PubMed - as supplied by publisher] A:Xia X. Related Articles, Links Clinical Trials gov PubMed Central How optimized is the translational machinery in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiae? Genetics. 1998 May;149(1):37-44. PMID: 9584084 [PubMed - indexed for MEDLINE] Privacy Policy S:Krynetski-EM-Drutsa-Vie-Kovaleva-IE-Luzikov-VN: Pharmacogenetics: 1995 Apr;5(2):103-9. Pharmacogenetics: 1995 Apr;5(2):103-9. Pharmacogenetics: 1995 Apr;5(2):103-9. Pharmacogenetics: 1995 Apr;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] Related Articles, Links Evaluation of foreign gene codon optimization in yeast-expressions of a mouse-IG-kappa-chain. Biotechnology (N-Y) 1991 Dec. 9(12):1386-9.	Cubby		Papers to Ar	pear in Forth	coming Issue	S.		
NLM Gateway TOXNET Consumer Health Clinical Alerts Clinical Alerts Clinical Trials gov PubMed Central Privacy Policy A: Xia X. How optimized is the translational machinery in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiae? Genetics. 1998 May;149(1):37-44. PMID: 9584084 [PubMed - indexed for MEDLINE] Privacy Policy A: Xia X. Related Articles, Links Uphimurium and Saccharomyces cerevisiae? Genetics. 1998 May;149(1):37-44. PMID: 9584084 [PubMed - indexed for MEDLINE] Related Articles, Links High yield expression of functionally active human-liver C-YP2D6-in-yeast cells. Pharmacogenetics. 1995 Apr;5(2):103-9.	Related Resources		Protein Expr P	urif. 1998 Jun;13	3(1):iv.			
TOXNET Consumer Health Clinical Alerts Clinical Trials gov PubMed Central Privacy Policy 1 4: Xia X. How optimized is the translational machinery in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiae? Genetics. 1998 May; 149(1):37-44. PMID: 9584084 [PubMed - indexed for MEDLINE] 1 5: Krynetski-EM-Drutsa-VI-Kovaleva*IE-Luzikov*VN: Related Articles, Links High yield expression of functionally active-human-liver-CYP2D6-in-yeast cells. Pharmacogenetics. 1995 Apr; 5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] 1 6: Kotula L. Curtis*PJ. Related Articles, Links Evaluation of foreign gene codon optimization-in yeast-expression of a mouse IG-kappa-chain. Biotechnology (N-Y): 1991 Dec; 9(42):1386-9.			PMID: 964210	1 [PubMed - as	supplied by pub	lisher]		
Consumer Health Clinical Alerts Clinical Trials gov PubMed Central Privacy Policy How optimized is the translational machinery in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiae? Genetics. 1998 May; 149(1):37-44. PMID: 9584084 [PubMed - indexed for MEDLINE] Fival Pharmacogenetics. 1995 Apr; 5(2):103-9. Pharmacogenetics. 1995 Apr; 5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] G:Kotma L. Curris-PJ. Related Articles, Links Evaluation of foreign gene codon optimization in yeast: expression of a mouse IG-kappa chain. Biotechnology (N=Y): 1991 Dec; 9(12):1386-9.			·Yia Y				Relate	d Articles Links
ClinicalTrials gov PubMed Central typhimurium and Saccharomyces cerevisiae? Genetics. 1998 May;149(1):37-44. PMID: 9584084 [PubMed - indexed for MEDLINE] Privacy Policy 5: Krynetski-EM-Drutsa-VIKovaleva-IE-Euzikov-VN Related Articles, Links High yield expression of functionally active-human-liver-CYP2D6:in-yeast cells. Pharmacogenetics. 1995 Apr;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] 6: Kotnla-L. Curris-PJ. Related Articles, Links Evaluation of foreign gene codon-optimization-in-yeast-expression-of-a mouse-IG-kappa-chain. Biotechnology (N-Y): 1991 Dec;9(12):1586-9.		14		and in the tran	alational mas	hinomy in E		
PubMed Central Genetics. 1998 May;149(1):37-44. PMID: 9584084 [PubMed - indexed for MEDLINE] Privacy Policy 5: Krynetski-E-Y. Drutsa-VI., Krovaleva-IE, Euzikov-VN. Related Articles, Links High yield expression of functionally active human-liver-C-YP2D6-in-yeast cells. Pharmacogenetics. 1995 Apr;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] 6: Kotma-L., Curris-PJ. Related Articles, Links Evaluation of foreign gene codon-optimization-in-yeast. expression-of a mouse-IG-kappa-chain. Biotechnology (N-Y). 1991-Dec;9(12):1386-9.			•			•	schericina con	, Samionena
PMID: 9584084 [PubMed - indexed for MEDLINE] 5: Krynetski-EM-Drutsa-VIKovaleva-IE-Euzikov-VN Related Articles, Links High yield expression of functionally active human-liver-CYP2D6-in-yeast cells Pharmacogenetics: 1995 Apr;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] 6: Kotula L. Curtis-PJ. Related Articles, Links Evaluation of foreign gene codon optimization-in-yeast-expression=of-a mouse-IG-kappa-chain. Biotechnology (N=Y): 1991 Dec;9(12): 1386-9.						islae:		
S: Krynetski-EM-Drutsa-VI-, Kovaleva-IE-Euzikov-VN Related Articles, Links High yield expression of functionally active human-liver-C-YP2D6-in-yeast cells. Pharmacogenetics. 1995 Apr;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] C: Kotula L. Curris-PJ. Related Articles, Links						JINE]		
High yield expression of functionally active human-liver-CYP2D6:in-yeast cells. Pharmacogenetics: 1995 Apr;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] Related Articles, Links Evaluation of foreign gene codon optimization-in-yeast: expression of a mouse IG-kappa-chain. Biotechnology (NY): 1991 Dec;9(12):1386-9.	Privacy Policy			D 111 11	1		5.1.	
cells. Pharmacogenetics. 1995 Apr;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] Related Articles, Links Evaluation of foreign gene codon optimization in yeast: expression of a mouse I G-kappa-chain. Biotechnology (NY): 1991 Dec;9(12):1386-9.		5						•
Pharmacogenetics: 1995 Apr;5(2):103-9. PMID: 7663527 [PubMed - indexed for MEDLINE] 6:Kotula L. Curtis PJ. Related Articles, Links Evaluation of foreign gene codon optimization in yeast: expression of a mouse IG-kappa-chain. Biotechnology (NY): 1991 Dec;9(12):1386-9.				xpression of i	unctionary a	cuve-numa	III-II-VCE-C-I-F-ZD	ormsyeast
PMID: 7663527 [PubMed - indexed for MEDLINE] 6. Kottria L. Curris PJ. Related Articles, Links Evaluation of foreign gene codon optimization in yeast: expression of a mouse IG kappa-chain. Biotechnology (NY): 1991 Dec; 9(12): 1386-9.				fics 1995 Apr 5	(2):103-9.			
Evaluation of foreign gene codon optimization in yeast expression of a mouse I G-kappa-chain. Biotechnology (N-Y) 1991 Dec; 9(12) 1386-9						JINE]		
Evaluation of foreign gene codon optimization in yeast expression of a mouse I G-kappa-chain. Biotechnology (N-Y) 1991 Dec; 9(12) 1386-9		- 6-6	alestala la Carr	ल-D1			Pelate	d Articles Links
mouse I G-kappa-chain. Biotechnology (N=Y)=1991 Dec; 9(12):1386-9		<u> </u>			e-codon-ontin	nization-in		
Biotechnology (N=Y) 1991 Dec; 9(12) 1386-9.				~ ~	e codon optini	iiiZatioii iii	yeast. expressi	OHEOT d
					c;9(42):4386-9			
PMID: 1367771 [PubMed - indexed for MEDLINE]								
Display Summary Show: 20 Sort Send to Text		Die	splay Summa	arv 📮	show 20 🗊	Sort IS	Send to	ext 🖫
Items 1-6 of 6 One page.		S 2.			onow. J=v 🔛	1		

Write to the Help Desk
NCBI | NLM | NIH
Department of Health & Human Services
Freedom of Information Act | Disclaimer

PubMed No	ucleotide	Protein	Genome	Structure	PMC	Taxonomy	OMIM	Вс
Search PubMed	E	for codon p	reference AND o	erevisiae		Go Clear		
		Limits	Preview/Inde	ex F	History	Clipboard	Det	tails
About Entrez	7			<u> </u>				
· ·	(Di	splay Summ	ary 🔚 s	show: 20	Sort	Send to	Text	E
Text Version		Item	ns 1-20 of 27			Page 1	of 2 N	lext
Entrez PubMed	□ 1	De Farias ST,	Bonato MC.			Rel	ated Articles,	Links
Overview			odons and amir			erthermophile	S.	
Help FAQ Tutorial	4		2002 Jul 19;3(8) 639 [PubMed - in					
New/Noteworthy		114110. 12100	osy (i doivied in	dexed for ivi	icocii (c _j			
E-Utilities	\Box 2	Zhang CT, W	ang J, Zhang R.			Rel	ated Articles,	Links
PubMed Services			clid distance di	scriminan	t method to	find protein co	oding genes	in
Journals Database	4	the yeast ge	nome. n. 2002 Feb;26(3)	.105 206				
MeSH Browser Single Citation Matche	er		909 [PubMed - in		IEDLINE]			
Batch Citation Matche	r		-		,			
Clinical Queries LinkOut			i H, Washio T, To				ated Articles,	Links
Cubby			usage of some ct 3;276(1-2):107		dons in bac	teria.		
Related Resources			477 [PubMed - in		IEDLINE]			
Order Documents								
NLM Gateway TOXNET	1_4		del Olmo M, Pero		darrmatuaar		ated Articles,	
Consumer Health			nalysis of yeas ation signals.	t genomic	downstream	n sequences re	veais putat	ive
Clinical Alerts ClinicalTrials.gov			Res. 2000 Feb 1:	5;28(4):1000)-10.			
PubMed Central		PMID: 10648	794 [PubMed - in	dexed for M	IEDLINE]			
Privacy Policy		Percudani R,	Ottonello S.			Rel	ated Articles,	Links
		Selection at	the wobble po	sition of c	odons read	by the same th	≀NA in	
			ces cerevisiae					
			l. 1999 Dec;16(12 116 [PubMed - in		IEDLINE)			
		1 1011111111111111111111111111111111111	i io [i doivied - iii	dexed for ivi	icocincj			
	$\Box \epsilon$	Kriventseya E	V. Gelfand MS.			Rel	ated Articles,	Links
			nalysis of the ϵ	exon-intro	n structure o	of higher and l	ower eukar	yote
	4	genes. I Biomol Stru	ct Dyn. 1999 Oct	·17(2)·281 ₋ 8				
			578 [PubMed - in					
		.Wolfsberg TC	i, Gabrielian AE,	Campbell M	IJ. Cho RJ. Sr	ouge JL. RA	ated Articles,	Links
	1	Landsman D.						LIIIKO
			egulatory sequ			cycle-depend	ent	
			n in Saccharon 1999 Aug;9(8):77		visiae.			
			512 [PubMed - in		IEDLINE]			
	Г	2. Nakamura V	Tahata S			Dal	ated Articles	linke
	J1 C	Nakamura Y,	ravata S.				ated Articles,	LIIIVO

Codon-anticodon assignment and detection of codon usage trends in seven

	microbial genomes. Microb Comp Genomics. 1997;2(4):299-312. PMID: 9689228 [PubMed - indexed for MEDLINE]	
	Williams BA, Sillaots S, Tsang A, Storms R. Isolation by genetic complementation of two differentially for beta-isopropylmalate dehydrogenase from Aspergillus Curr Genet. 1996 Sep;30(4):305-11. PMID: 8781173 [PubMed - indexed for MEDLINE]	
	Couka RJ, Punt PI, Hessing JG, wan den Hondel CA. Amalyssis of heterologous protein production in defined of Aspergillus awamori strains. Appl Bnwiron Microbiol. 1996 Jun;62(6):1951-7. PMID: 8787393 [PubMed - indexed for MEDLINE]	Related Articles, Links ecombinant
	:Yun DF, Laz TM, Clements JM, Sherman F. mRNA sequences influencing translation and the selective codons in the yeast Saccharomyces cerevisiae. Mol Microbiol. 1996 Mar;19(6):1225-39. PMID: 8730865 [PubMed - indexed for MEDLINE]	Related Articles, Links
□ 12 □	Christopher LJ, Fletcher LD, Dykstra CC. Cloning and identification of Arp1, an actin-related prote Pneumocystis carinii. J Eukaryot Microbiol. 1995 Mar-Apr;42(2):142-9. PMID: 7757056 [PubMed - indexed for MEDLINE]	Related Articles, Links ein from
□ 13 □	Looman AC, Kuivenhoven JA. Influence of the three nucleotides upstream of the initiative expression of the Escherichia coli lacZ gene in Saccharo Nucleic Acids Res. 1993 Sep 11;21(18):4268-71. PMID: 8414981 [PubMed - indexed for MEDLINE]	
	Nara F. Watanabe I. Serizawa N. Cloning and sequencing of the 3-phosphoglycerate kinas Penicillium citrinum and its application to heterologous Curr Genet. 1993 Feb;28(2):134-40. PMID: 8431954 [PubMed - indexed for MEDLINE]	Related Articles, Links set (RGK) generation
	Hampsey M. A tester system for detecting each of the six base-pair su Saccharomyces cerevisiae by selecting for an essential cytochrome c. Genetics. 1991 May;128(1):59-67. PMID: 1648005 [PubMed - indexed for MEDLINE]	
□ 16	Looman AC, Laude M, Stahl U. Influence of the codon following the initiation codon on the lacz gene in Saccharomyces cerevisiae. Yeast 1991 Feb:7(2):157-65. PMID: 1905858 [PubMed - indexed for MEDLINE]	Related Articles, Links The expression of
	:Wright F.	Related Articles, Links

· Entrez-PubMed

	The 'effective number of codons' used in a gene. Gene. 1990 Mar 1;87(1):23-9. PMID: 2110097 [PubMed - indexed for MEDLINE]	
□ 18	:Hanai R, Wada A.	Related Articles, Links
	Doublet preference and gene evolution. J Mol Evol. 1990 Feb;30(2):109-15. PMID: 2107327 [PubMed - indexed for MEDLINE]	
□ 19	Bermingham-McDonogh O, Gralla EB, Valentine JS. The copper, zinc-superoxide dismutase gene of Sacchard cloning, sequencing, and biological activity. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4789-93. PMID: 3290902 [PubMed - indexed for MEDLINE]	Related Articles, Links omyces cerevisiae:
□ 20	Baim SB, Sherman F.	Related Articles, Links
	mRNA structures influencing translation in the yeast Saccerevisiae. Mol Cell Biol. 1988 Apr;8(4):1591-601. PMID: 2837649 [PubMed - indexed for MEDLINE]	ccharomyces
Disp	lay Summary Show: 20 Sort Send	to Text
	Items 1-20 of 27	1 of 2 Next

Write to the Help Desk
NCBI | NLM | NIH
Department of Health & Human Services
Freedom of Information Act | Disclaimer

PubMed Nucl	leotide	Protein	Genome	Structu	re PMC	Taxonomy	OMIM	Вс
Search PubMed	∑ f	or codon pre	eference AND y	/east		Go Cle	ar	
		Limits	Preview/Inde	ex	History	Clipboar	 t)etails
About Entrez								
	Displ	lay Summa	iry 🖸 s	Show: 20	▼ Sort	Send t	o Text	
Text Version		Items	1-20 of 27			Page, 1	of 2	Next
Entrez PubMed Overview Help FAQ Tutorial New/Noteworthy E-Utilities		he yeast gen Comput Chem.	id distance di	:195-206.		to find protein	Related Article coding gen	
PubMed Services Journals Database MeSH Browser Single Citation Matcher Batch Citation Matcher Clinical Queries	[p	Overexpress hytase in Pi Sheng Wu Gon	, Yang L, Liao L sion of artifici chia pastoris] g Cheng Xue Ba 95 [PubMed - in	ial synth ao. 2001 N	etic gene of May;17(3):254	Aspergillus r	Related Article	
LinkOut Cubby	□ 3:y	an Helden J, d	lel Olmo M, Pero	ez-Ortin J	E.	ı	Related Article	s, Links
Related Resources Order Documents NLM Gateway TOXNET	F P	oolyadenylat Nucleic Acids	•	5;28(4):10	000-10.	am sequences	reveals put	ative
Consumer Health Clinical Alerts ClinicalTrials.gov PubMed Central Privacy Policy		Saccharomy Mol Biol Evol.		:. 2):1752-62	2.	nd by the same	Related Article tRNA in	s, Links
	□ 5:k	(riventseva EV	/, Gelfand MS.			1	Related Article	s, Links
		Statistical an genes. Biomol Struc		;17(2):281	-8.	e of higher and	d lower euk	aryote
		Landsman D. Candidate re ranscription Genome Res. 1	Gabrielian AE. gulatory sequ in Saccharon 999 Aug;9(8):77 12 [PubMed - in	ience ele nyces ce 75-92.	ments for corevisiae.	Spouge JL, left of the second	Related Article	s, Links
		Long non-sto 70 genes and Biol Chem. 199		mes on to 1 (PrP) g 1521-30.	the antisense enes are con	e strand of heanserved between		

□8:	von Ahsen U, Green R, Schroeder R, Noller HF.	Related Articles, Links
	Identification of 2'-hydroxyl groups required for interaction anticodon stem-loop region with the ribosome. RNA. 1997 Jan;3(1):49-56. PMID: 8990398 [PubMed - indexed for MEDLINE]	n of a tRNA
□0.	Williams BA, Sillaots S, Tsang A, Storms R.	Related Articles, Links
	Isolation by genetic complementation of two differentially for beta-isopropylmalate dehydrogenase from Aspergillus Curr Genet. 1996 Sep;30(4):305-11. PMID: 8781173 [PubMed - indexed for MEDLINE]	expressed genes
	exum DF, Laz TM, Clements JM, Sherman F. mRNA sequences influencing translation and the selectio codons in the yeast Saccharomyces cerevisiae. Mol Microbiol. 1996 Mar;19(6):1225-39. PMID: 8730865 [PubMed - indexed for MEDLINE]	Related Articles, Links n of AUG initiator
	<u>:Tao Y, Chen KY.</u> PCR-based cloning of the full-length Neurospora eukaryo 5A cDNA: polyhistidine-tagging and overexpression for plinding. Biochem J. 1994 Sep 1;302 (Pt 2):517-25. PMID: 8093005 [PubMed - indexed for MEDLINE]	
□ 12 □	Looman AC, Kuivenhoven JA. Influence of the three nucleotides upstream of the initiation expression of the Escherichia coli lacZ gene in Saccharon Nucleic Acids Res. 1993 Sep 11;21(18):4268-71. PMID: 8414981 [PubMed - indexed for MEDLINE]	Related Articles, Links in-codon on nyces cerevisiae.
□ 13 <u> </u>	Nara F, Watanabe I, Serizawa N. Gloning and sequencing of the 3-phosphoglycerate kinase Penicillium citrinum and its application to heterologous g Curr General 993 Feb; 23(2) 134-40? PMID: 843 1954 [PubMed - indexed for MEDLINE]	
□ 14 □	Hampsey M. A tester system for detecting each of the six base-pair sub Saccharomyces cerevisiae by selecting for an essential cy cytochrome c. Genetics. 1991 May;128(1):59-67. PMID: 1648005 [PubMed - indexed for MEDLINE]	
	Looman AC Laude M. Stahl U. Influence of the codon following the initiation codon on the lacz gene in Saccharomyces cerevisiae. Weast 1994 Feb; 7(2):157-65. PMID: 1905858 [PubMed - indexed for MEDLINE]	Related Articles, Links hesexpression of
□ 16	Chary P, Hallewell RA, Natyig DO.	Related Articles, Links
	Structure, exon pattern, and chromosome mapping of the copper-zinc superoxide dismutase (sod-1) from Neurospo	•

□ 17 □	Hanai R, Wada A. Doublet preference and gene evolution. J Mol Evol. 1990 Feb;30(2):109-15. PMID: 2107327 [PubMed - indexed for MEDLINE]	Related Articles, Links
□ 18 ■	Bermingham-McDonogh O, Gralla EB, Valentine JS. The copper, zinc-superoxide dismutase gene of cloning, sequencing, and biological activity. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4789-93. PMID: 3290902 [PubMed - indexed for MEDLINE]	Related Articles, Links of Saccharomyces cerevisiae:
□ 19 □	Baim SB, Sherman F. mRNA structures influencing translation in the cerevisiae. Mol Cell Biol. 1988 Apr;8(4):1591-601. PMID: 2837649 [PubMed - indexed for MEDLINE]	Related Articles, Links e yeast Saccharomyces
□ 20	pHoekemarA; Kastelein RA; Vasser M; de Boer HA.	Related Articles, Links
	Codon replacement in the PGK1-gene of Sacce experimental approach to study the role of bia expression. Mol Cell Biol. 1987 Aug;7(8):2914-24. PMID: 2823108 [PubMed - indexed for MEDLINE]	
Disp	Slay Summary Show: 20 Sort	Send to Text
	Items 1-20 of 27	Page 1 of 2 Next

PMID: 2146266 [PubMed - indexed for MEDLINE]

Write to the Help Desk
NCBI | NLM | NIH
Department of Health & Human Services
Freedom of Information Act | Disclaimer

PubMed Nucle	eotide	Protein	Genome	Structur	e PMC	Taxonomy	OMIM Bc
Search PubMed	5	for codon bia	as AND yeast			Go Clear	
		⊡ Limits	Preview/Ind	dex	History	Clipboard	 Details
About Entrez							
	***************************************	d: Title/Abst					
Text Version	Di:	splay Summa	ary 🔽	Show: 20	Sort	Send to	Text
		Item	s 1-20 of 64			Page 1	of 4 Next
Entrez PubMed Overview		:Rother KI, Cla	ıy OK, Bourquir	ı JP, Silke J	, Schaffner W	/. Rel	lated Articles, Links
Help FAQ		Long non-st	op reading fra	ames on t	he antisense	e strand of heat	shock protein
Tutorial New/Noteworthy		70 genes and	d prion protei	n (PrP) ge	enes are con	nserved between	species.
E-Utilities			97 Dec;378(12) 51 [PubMed - in		(EDLINE)		
BuhMad Sandaga		110110. 710133	i i doivica - iii	dexed for iv	iebenvej		
PubMed Services Journals Database	□ 2	Kim CH, Oh Y	, Lee TH.			Rei	lated Articles, Links
MeSH Browser				igh-level	expression	of human erythi	ropoietin (EPO)
Single Citation Matcher Batch Citation Matcher	<u></u>	in mammali		02 201			
Clinical Queries LinkOut			ct 15;199(1-2):2 59 [PubMed - in		(EDLINE)		
Cubby			_		_		
	□ 3	Garrels JI, Mc				ter GI, Rel lesquita-Fuentes	lated Articles, Links
Related Resources Order Documents		R, Payne WE.	ourrender D, v	.o.po,	agipon <u>p</u> o, m	osquita i dentes	
NLM Gateway				•		e: identification	and
TOXNET Consumer Health	<u>. </u>		tion of abund				
Clinical Alerts			s. 1997 Aug;18(19 [PubMed - in				
ClinicalTrials.gov PubMed Central			(,		
	□ 4	: Williams BA,		_			lated Articles, Links
Privacy Policy						differentially exp	
	ـــــــ		oropyimaiate 996 Sep;30(4):30	, ,	enase from	Aspergillus nig	er.
			73 [PubMed - in		(EDLINE		
			1.1.C. D	D		D -1	taka di Aldialaa - tiintaa
		:Maillet I, Lagr					lated Articles, Links
			110auon of ye 1996 Apr 26;271			dimensional gels).
			93 [PubMed - in				
		Tormier M. Ke	alogaronoulos A			Ral	lated Articles, Links
		Termier M, Ka			and hiologi	cally constraine	
			NA sequence		_	-	a open reading
		Yeast. 1996 M	ar 30;12(4):369	-84.	-		
		PMID: 870160)9 [PubMed - in	dexed for N	1EDLINE]		
	\Box 7	Dolz R, Mosse	MO, Slonimsk	i PP, Bairoc	h A, Linder I	P. Rel	lated Articles, Links
		LISTA, LIS	TA-HOP and	LISTA-F	HON: a con	nprehensive com	pilation of
	لـــــــــــــــــــــــــــــــــــــ	protein enco	ding sequenc			homology datab	-
		yeast Saccha	aromyces. Res 1996 Jan I	.04(1) 50 0			
		INDICIBLE A CIDS	Kes 1996 Jan I	- 741 [1:50-7			

PMID: 8594599 [PubMed - indexed for MEDLINE] 8: Thornewell SJ, Peery RB, Skatrud PL. Related Articles, Links Cloning and characterization of the gene encoding translation elongation factor 1 alpha from Aureobasidium pullulans. Gene. 1995 Aug 30;162(1):105-10. PMID: 7557396 [PubMed - indexed for MEDLINE] 9: Bonetti B. Fu L. Moon J. Bedwell DM. Related Articles, Links The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol. 1995 Aug 18;251(3):334-45. PMID: 7650736 [PubMed - indexed for MEDLINE] 10: Boucherie H, Dujardin G, Kermorgant M, Monribot C, Slonimski P, Related Articles, Links Two-dimensional protein map of Saccharomyces cerevisiae: construction of a gene-protein index. Yeast. 1995 Jun 15;11(7):601-13. PMID: 7483834 [PubMed - indexed for MEDLINE] 11. Konkel LM, Enomoto S, Chamberlain EM, McCune-Zierath P. Related Articles, Links Iyadurai SJ, Berman J. A class of single-stranded telomeric DNA-binding proteins required for Rap1p localization in yeast nuclei. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5558-62. PMID: 7777547 [PubMed - indexed for MEDLINE] 12: Dolz R, Mosse MO, Slonimski PP, Bairoch A, Linder P. Related Articles, Links LISTA, LISTA-HOP and LISTA-HON: a comprehensive compilation of protein encoding sequences and its associated homology databases from the yeast Saccharomyces. Nucleic Acids Res. 1994 Sep;22(17):3459-61. PMID: 7937046 [PubMed - indexed for MEDLINE] 13: Hermann-Le Denmat S, Sipiczki M, Thuriaux P. Related Articles, Links Suppression of yeast RNA polymerase III mutations by the URP2 gene encoding a protein homologous to the mammalian ribosomal protein S20. J Mol Biol. 1994 Jul 1;240(1):1-7. PMID: 8021936 [PubMed - indexed for MEDLINE] 14: Luani D, Lodi T, Ferrero I. Related Articles, Links Genes coding for mitochondrial proteins are more strongly biased in Kluyveromyces lactis than in Saccharomyces cerevisiae. Curr Genet. 1994 Jul;26(1):91-3. PMID: 7954903 [PubMed - indexed for MEDLINE] 15: Freire-Picos MA, Gonzalez-Siso MI, Rodriguez-Belmonte E, Related Articles, Links Rodriguez-Torres AM, Ramil E, Cerdan ME. Codon usage in Kluyveromyces lactis and in yeast cytochrome c-encoding Gene. 1994 Feb 11;139(1):43-9. PMID: 8112587 [PubMed - indexed for MEDLINE] Related Articles, Links 1 16: Ozier-Kalogeropoulos O, Adeline MT, Yang WL, Carman GM,

	Lacroute F. Use of synthetic lethal mutants to clone and characterize synthetase gene in Saccharomyces cerevisiae. Mol Gen Genet. 1994 Feb;242(4):431-9. PMID: 8121398 [PubMed - indexed for MEDLINE]	a novel CTP
□ 17 <u> </u>	Lalo D, Mariotte S, Thuriaux P. Two distinct yeast proteins are related to the mammalian polypeptide L7. Yeast. 1993 Oct;9(10):1085-91. PMID: 8256515 [PubMed - indexed for MEDLINE]	Related Articles, Links ribosomal
□ 18 <u> </u>	Carulli JP, Krane DE, Hartl DL, Ochman H. Compositional heterogeneity and patterns of molecular ex Drosophila genome. Genetics. 1993 Jul;134(3):837-45. PMID: 8349114 [PubMed - indexed for MEDLINE]	Related Articles, Links volution in the
□ 19 <u> </u>	Linder P., Dolz R, Mosse MO, Lazowska J, Slonimski PP. LISTA, a comprehensive compilation of nucleotide seque proteins from the yeast Saccharomyces. Nucleic Acids Res. 1993 Jul 1;21(13):3001-2. PMID: 8332521 [PubMed - indexed for MEDLINE]	Related Articles, Links ences encoding
□ 20	Toh-e A, Yasunaga S, Nisogi H, Tanaka K, Oguchi T, Matsui Y.	Related Articles, Links
	Three yeast genes, PIR1, PIR2 and PIR3, containing interrepeats, are related to each other, and PIR1 and PIR2 are tolerance to heat shock. Yeast. 1993 May;9(5):481-94. PMID: 8322511 [PubMed - indexed for MEDLINE]	nal tandem
Disp	lay Summary Show: 20 Sort Send	to Text
	Items 1-20 of 64 Rage 1	of 4 Next

Write to the Help Desk
NCBI | NLM | NIH
Department of Health & Human Services
Freedom of Information Act | Disclaimer

PubMed	Nucleotide	Protein	Genome	Structure	PMC	Taxonomy	OMIM Bc
Search PubMed	E	for codon bia	as AND cerevis	iae		Go Clear	
		☑ Limits	Preview/Inde	ex Hi	story	Clipboard	Details
About Entrez	7						
_		eld: Title/Abst					
Text Version		isplay Summa	ary 💆 s	Show: 20	Sort	Send to	Γext □
		Item	s 1-20 of 52			Page 1	of 3 Next
Entrez PubMed Overview		1:Nakamura Y.	Γabata S.			Relat	ed Articles, Links
Help FAQ	Æ	Codon-antic	odon assignm	ent and dete	ection of co	odon usage tren	ds in seven
Tutorial New/Noteworthy	4_	☐ microbial ge					
E-Utilities			Genomics. 1997; 28 [PubMed - ind				
PubMed Services		1 11112. 900922	o i uoivicu - iiiu	CACC TOT TAILE	, chitcj		
Journals Database		2: Thornewell SJ					ed Articles, Links
MeSH Browser Single Citation Mate	her					EF1 which enco	
Batch Citation Match	· ·	- translation e	longation fact Biol. 1997 Oct;22		Cryptocoo	ccus neoforman	S.
Clinical Queries LinkOut			55 [PubMed - ind		LINE]		
Cubby		- Cample II Ma	Lavablia CC Wa	ID 12 . 1	D 1 44		
Polated Passures		3: Garrels JI, Mc Kobayashi R, S	Schwender B, Vo				ed Articles, Links
Related Resource Order Documents	25	R, Payne WE.					
NLM Gateway TOXNET	F				erevisiae: i	dentification an	ıd
Consumer Health	4	- characteriza	tion of abunda s. 1997 Aug;18(8				
Clinical Alerts ClinicalTrials.gov			9 [PubMed - ind		LINE]		
PubMed Central	_	4 Almat: 11 Cat	60 CW			Data	and Angelian Belia
Privacy Policy		4:Akashi H, Sch		reguency di	ctributions	of "silent" DN	ed Articles, Links
Fillacy Folicy			sm in Drosoph		Suroutions	of shell Div	A
		Genetics, 1997	' May;146(1):295	5-307.			
		PMID: 913601	9 [PubMed - ind	exed for MED	LINE]		
		5:De Vendittis E	, Bocchini V.			Relate	ed Articles, Links
				the sulfothe	ermophilic	archaea Sulfolo	bus and
	1	Pyrococcus.			1		
			t 17;176(1-2):27 7 [PubMed - ind		N INET		
		PIVIID. 091022	. / [Publyled - IIId	exed for MED	LINE		
		6: Williams BA,	Sillaots S, Tsang	A, Storms R.		Relate	ed Articles, Links
		-				ferentially expre	_
	ч_		propylmalate d 96 Sep;30(4):305		ise from As	spergillus niger.	
			'3 [PubMed - ind		LINE]		
		7: Maillet I, Lagn	iel G, Perrot M, I	Boucherie H,	Labarre J.	Relate	ed Articles, Links
		-i					,
	4		fication of yea 996 Apr 26;271(nensional gels.	
			3 [PubMed - inde				

Entrez-PubMed Page 2 of 3

	Genes coding for mitochondrial proteins are r Kluyveromyces lactis than in Saccharomyces Curr Genet. 1994 Jul;26(1):91-3. PMID: 7954903 [PubMed - indexed for MEDLINE]		ly biase	d in	
□ 17 ■	Freire-Picos MA, Gonzalez-Siso MI, Rodriguez-Belmo Rodriguez-Torres AM, Ramil E, Cerdan ME. Codon usage in Kluyveromyces lactis and in genes. Gene. 1994 Feb 11;139(1):43-9. PMID: 8112587 [PubMed - indexed for MEDLINE]			Articles, -encodi	
□ 18 <u> </u>	Ozier-Kalogeropoulos O, Adeline MT, Yang WL, Card Lacroute F. Use of synthetic lethal mutants to clone and c synthetase gene in Saccharomyces cerevisiae. Mol Gen Genet. 1994 Feb;242(4):431-9. PMID: 8121398 [PubMed - indexed for MEDLINE]	haracterize		Articles,	Links
□ 19 <u></u>	Lloyd AT, Sharp PM. Synonymous codon usage in Kluyveromyces Yeast. 1993 Nov;9(11):1219-28. PMID: 8109171 [PubMed - indexed for MEDLINE]	lactis.	Related	Articles,	Links
□ 20 ■	Lalo D, Mariotte S, Thuriaux P. Two distinct yeast proteins are related to the r polypeptide L7. Yeast. 1993 Oct;9(10):1085-91. PMID: 8256515 [PubMed - indexed for MEDLINE]	nammalian		Articles, nal	Links
Disp	lay Summary Show: 20 F Sort	Send	to Te	×t	-
	Items 1-20 of 52	Page 1		of 3 N	ext

Write to the Help Desk

NCB! | NLM | NIH

Department of Health & Human Services
Freedom of Information Act | Disclaimer

WEST Search History

DATE: Wednesday, March 19, 2003

Set Name side by side	Query	Hit Count	Set Name result set
DB = USI	PT,PGPB,JPAB,EPAB,DWPI,TDBD; PLUR=YES; OP=ADJ		
L10	L9 same recombinant	8	L10
L9	L3 same expression	29	L9
L8	L2 same expression	625	L8
L7	L6 same expression	13	L7
L6	L3 same DNA	20	L6
L5	L3 same DNA	20	L5
L4	L3same DNA	0	L4
L3	L2 same cerevisiae	40	L3
L2	L1 same yeast	763	L2
L1	codon near10 (bias or preference or usage or optimiz\$)	6583	L1

END OF SEARCH HISTORY

3/19/03 11:12 AM

Codon Selecti n in Y ast*

(Received for publication, July 14, 1981)

Jeffrey L. Bennetzent and Benjamin D. Hall

From the Department of Genetics, SK-50, Department of Biochemistry, SJ-70, University of Washington, Seattle, Washington 98195

Extreme codon bias is seen for the Saccharomyces cerevisiae genes for the fermentative alcohol dehydrogenase isozyme i (ADH-I) and glyceraldehyde-3-phosphate dehydrogenase. Over 96% of the 1004 amino acid residues analyzed by DNA sequencing are coded for by a select 25 of the 61 possible coding triplets. These preferred codons tend to be highly homologous to the anticodons of the major yeast isoacceptor tRNA speci s. Codons which necessitate side by side GC base pairs between the codons and the tRNA anticodons are always avoided whenever possible. Codons containing 100% G, C, A, U, GC, or AU are also avoided. This provides for approximately equivalent codon-anticodon binding energies for all preferred triplets. All sequenced yeast genes show a distinct preference for these same 25 codons. The degree of preference varies from greater than 90% for glyceraldehyde-3-phosphate dehydrogenase and ADH-I to less than 20% for iso-2 cytochrome c. The degree of bias for these 25 preferred triplets in each gene is correlated with the level of its mRNA in the cytoplasm. Genes which are strongly expressed are more biased than genes with a lower level of expression.

A similar phenomenon is observed in the codon preferences of highly expressed genes in *Escherichia coli*. High levels of gene expression are well correlated with high levels of codon bias toward 22 of the 61 coding triplets. As in yeast, these preferred codons are highly complementary to the major cellular isoacceptor tRNA species. In at least four cases (Ala, Arg, Leu, and Val), these preferred *E. coli* codons are incompatible with the preferred yeast codons.

Recent advances in nucleic acid analysis in general and in DNA cloning and sequencing in particular have made available a great deal of data on the primary structure of several viral, prokaryotic, and eukaryotic genes. The DNA or RNA from several mRNA-coding genes has been sequenced (compiled by Grantham and co-workers (1, 2)). The results obtain d agree well with the triplet codon: amino acid assignments which had been determined by indirect means (see (1966) Cold Spring Harbor Symp. Quant. Biol. 31.).

Most, if not all, mRNA-coding genes show a bias, sometimes subtle, but always statistically significant, in the choice of which of several degenerate triplets are used to code for a particular amino acid. Different genes exhibit different patterns of nonrandom codon usage, but different genes in the

same genome frequently have related codon preference rules (2). A major difficulty in assessing which factor(s) is involved in selection by an organism of specific codon biases is the complex pattern of nonrandom codon utilization generally observed. Analyses by others suggest that no single, overriding selection process is responsible for the preferences in codon usage detected. This is not surp ising since a variety of constraints beyond coding for a specific peptide may act on an mRNA sequence. The codon biases observed in a mature mRNA primary sequence may be a function of selective preferences acting on mRNA processing and transport, mRNA translation efficiency, and/or mRNA secondary structure and stability. In addition, specific triplet preferences may be a reflection of selective processes basically independent of mRNA structure and function, acting instead on the DNA sequence which the mRNA mirrors. These factors might include susceptibility of the DNA to mutagenic damage and cues for DNA replication, chromatin assembly, or even RNA polymerase promotion and termination (3, 4). To date, most of the models proposed for the basis of nonrandom codon usage have primarily involved various aspects of mRNA structure and translational efficiency (1, 2, 5-11).

Recent sequencing of the yeast genes coding for the very abundant proteins glyceraldehyde-3-phosphate dehydrogenase (12, 13) and alcohol dehydrogenase isozyme I (14) has disclosed three cases of codon selection far more strict than any yet seen. We have analyzed these sequences and compared them to the codon usage observed for several other sequenced genes from Saccharomyces cerevisiae. These data suggest that in bakers' yeast a common selective mechanism acts to heavily bias codon representation in the genes for ADH-I¹ and glyceraldehyde-3-phosphate dehydrogenase.

RESULTS AND DISCUSSION

Codon Usage in Six Yeast Genes—The published DNA sequence data for several yeast genes make it possible in each case to accurately determine both the amino acid sequence of the corresponding protein and the codon triples used to code for each of its amino acids. Collation and summation of the codons used for each of seven yeast proteins yields the codon utilization summary in Table I. For two of these proteins, glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase I, the usage of the 61 possible codon triplets is highly biased. For the two glyceraldehyde-3-phosphate dehydrogenase genes, only 29 codons are used and for ADH-I, only 33. In contrast with these two genes, those which code for yeast iso-1 and iso-2 cytochrome c employ 41 and 43 different codons, respectively.

The great similarities between the yeast glyceraldehyde-3phosphate dehydrogenase and ADH-I genes both in the degree and direction of their codon preferences suggest that this

¹ The abbreviation used is: ADH-I, alcohol dehydrogenase isozyme I.

^{*} The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

[‡] Present address, Department of Biological Sciences, Stanford University, Stanford, California 94305.

usage pattern has functi nal significance and is not merely a statistical anomaly. Each ne of the 28 cod ns not used in the ADH-I gene is also n t used in either f the two genes coding for glyceraldehyde-3-phosphate dehydrogenase (Table I). It is evident, from the data in Table I and from more detailed comparisons made below, that cod n usage f r the yeast H2B1, H2B2, CYC1, and CYC7 genes is biased in this same direction, but to a lesser degree.

Most of the codon preferences manifested by the glyceraldehyde-3-phosphate dehydrogenase and ADH-I genes can be summarized by the following empirical rules.

1. For serine (UCN) and for four of the six amino acids

which have 3- or 4-fold coding degeneracy (XY_A^C) , the codons

XYC and XYU are used with roughly equal probability, whereas the codons XYA and XYG are never used. Serine, isoleucine, valine, threonine, and alanine follow this rule; proline and glycine do not.

2. For 2-fold degenerate codons with a pyrimidine in the wobble position, XYC is used and XYU is not used. This holds absolutely for phenylalanine, tyrosine, histidine, and asparagine, while aspartic acid has a 2-fold preference for C over U. This rule does not hold for cysteine as is discussed below.

3. For leucine (UUR), arginine (AGR), and for 2-fold degenerate codons with a purine in the third position, one of the alternative codons is used almost to the complete exclusion of the other. (UUG for Leu, AAG for Lys, CAA for Gln, GAA for Glu, and AGA for Arg).

4. For the two 4-fold degenerate amino acids (Gly, Pro) which do not obey the first rule, the predominant codon choices (CCA for Pro and GGU for Gly) are those which prevent the codon from being either 100% GC, 100% purine, or 100% pyrimidine.

Codon Usage versus Isoaccepting tRNA Abundance—A f rmal explanation for these empirical rules of codon preference can be found in the relative abundances of different isoaccepting yeast tRNAs and in their anticodon sequences. For each of the 16 amino acids whose tRNAs have been sequenced, the major isoaccepting species present in yeas: is, in fact, that with an anticodon allowing it to translate the most frequently used codon (or XYC codon pair) for that amino acid (Table II). Of the amino acids, including methio-

nin and tryptophan, for which a singl codon is used extensively r pred minantly in glyceraldehyde-3-phosphate dehydrogenase and ADH-I, nine have a maj r tRNA whose anticod n is xactly complementary to that anticodon triplet. xcepti ns are glycine and cysteine. Thus, it would Th tw appear that wh n the major tRNA f r an amino acid has as its wobble base either U, C, or G, there is selection for those codons in mRNA that can form a standard Watson-Crick base pair at the third position and against the alternative codon which would require wobble pairing. A different restriction in the use of wobble pairing (23) is seen for those major yeast tRNAs which have an inosine residue at anticodon position one (Table II, lines 1-4). Each of these corresponds to an amino acid coded both in glyceraldehyde-3-phosphate dehydrogenase and in ADH-I exclusively by pyrimidine-ended codons and never by the related purine-ended codons. This absolute correlation suggests that I-C and I-U base pairs are favored in codon-anticodon interaction and that I-A base pairs, although theoretically possible (23), may not actually occur. Consistent with this conclusion is the observation that none of the 11 yeast serine tRNA genes (24) which code for $tRNA_{2+1}^{Ser}$ (anticodon = IGA) have been found to be mutable to efficient ochre (UAA) suppressors (25). Further evidence for the absence of I-A base pairing is the existence in yeast of a separate UCA-decoding minor serine isoacceptor (26). UCG codons apparently are translated by yet another minor serine tRNA (26). In keeping with the paucity of these latter two tRNAs, UCA and UCG are not used to code for serine in yeast glyceraldehyde-3-phosphate dehydrogenace and ADH-I.

Codon-Anticodon Interactions—The two exceptions to the rule of strict complementarity between codon and anticodon of the major tRNA are cysteine (UGU)-anticodon GCA and glycine (GGU)-anticodon GCC. The choice of U rather than C in each of these cases may be explained by a strong avoidance of side by side GC base pairs in yeast codon-anticodon interactions (see below). With U having been chosen for codon position three, a G-U or I-U pair is made inevitable because A residues are never found in yeast tRNAs at the wobble base position. Adenosine residues specified for this position by the gene sequence are deaminated during tRNA maturation to form inosine residues. Therefore, the presence of U for position three in Cys and Gly codons precludes perfect complementarity because A at the corresponding anticodon position is nattainable.

Given the correlation noted between codons frequently used

TABLE 1

Codon usage for eight yeast genes

The table lists the number of times each triplet appears in the plus strand of the DNA sequence coding for each of the following yeast proteins: 49, glyceraldehyde-3-phosphate dehydrogenase clone pgap491 (12, 13); 63, glyceraldehyde-3-phosphate dehydrogenase clone pgap63 (13); AD, alcohol dehydrogenase I (14); B1, histone H2B, gene H2B1 (15); B2, histone H2B, gene H2B2 (15); C1, iso-1-cytochrome c (16); C2, iso-2-cytochrome c (17).

20-2-03	49	63	AD			Cı	C2		49	63	AD	Bı	B 2	Cı	C2		49	63	AD	Bı	B2	C1	C2		49	63	AD	Bı	B 2	CI	C2
บบบ	0	0	0	1	1	2	3	UCU	13	11	14	11	9	2	2	UAU	0	0	0	1	3	2		UGU	2	2	8	0	0	ı –	2
UUC	10	11	8	1	li	2	1	UCC	12	14	7 '	6	9	0	1	UAC	10	10	13	4	2	3	2	UGC	0	0	0	0	0	1	C
UUA	0	0	2	1	1	1	2	UCA	0	0	0	0	1	1	2					1		1					ا ـ ا			١.	١.
UUG	21	20	19	5	5	5	3	UCG	0	0	0	0	0	1	0					١.		I _	_	UGG	3	3	5	ŭ	0	1	1,
CUU	0	0	0	0	0	1	0	CCU	0	1	2	1	1	1		CAU	0	0	1	1	1	2	3	CGU	0	Ü	V	0	Ž	ľ	ľ
CUC	0	0	0	0	0	0	0	CCC	0	0	1	0	0	0		CAC	8	8	10	1	1	2	Q	CGC	0	Ü	0	Ü	Ď	0	ľ
CUA	0	1	3	0	0	1	0	CCA	12	10	10	4	4	3		CAA	5	6	9	4	3	2		CGA	0	6	v	Ü	v	I v	١×
CUG	C	0	0	0	0	0	0	CCG	0	0	0	0	0	0	•	CAG	0	0	0	0	1	0	_	CGG	0	Ŭ	Ų	ואַ	ŭ	١Ž	١v
AUU	9	7	9	3	4	2	3	ACU	12	10	5	9	6	3	1	AAU	0	0	0	0	0	2		AGU	0	U	U	ļ	ŭ	ľ	Z
AUC	11	12	12	5	4	2	1	ACC	12	13	9	2	3	3	1	AAC	12	14	11	3	3	5	•	AGC	0		V		9	Į,	10
AUA	0	0	0	0	0	0	1	ACA	0	0	0	1	2	2	3	AAA	1	2	4	7	8	6		AGA	11	111	8	0	0	3	Z
AUG	6	7	7	1	1	3	3	ACG	₂ 0	0	0	0	0	0	4	AAG	25	24	20	13	11	10		AGG	0	U	0	9	;	0	
GUU	22	23	19	4	5	1	1	GCU	 *26	23	19	12	10	3		GAU	8	7	2	2	2	1		GGU	25	24	41	4	4	0	l?
GUC	15	12	17	1	2	0	1	GCC	6	10	16	4	7	4	_	GAC	17	13	14	1	1	3		GGC	0	0	3	Ů	ľ	2	1,
GUA	0	0	0	0	0	0	1	GCA	0	0	0	1	0	0		GAA	14	15	20	8	7	5	_	GGA	0	0	ļ	ľ	١٢	١Ž	13
GUG	0	0	0	0	0	2	0	GCG	0	0	0	1	0	0	1	GAG	0	0	0	0	1	2	3	GGG	0	0	_0	0	Ľ	2	10

TABLE II

Preferred codons in the ADH-I and glyceraldehyde-3-phosphate dehydrogenase (G3PDH) genes in relationship to anticodon sequences in the major yeast isoaccepting tRNAs

All nucleic acid sequences listed are written 5'-NNN-3'. The underlined nucleotides are those which base pair between anticodon position one and codon position three. Transfer RNA anticodon sequences are derived from the compilation of Gauss et al. (18). Determination of which of two or more isoaccepting tRNA species is the major one in yeast was done using the BD cellulose column chromatographic profiles of Gillam et al. (19) and the Sepharose 4B chromatographic experiments of Culbertson et al. (20). The major arginine isoacceptor, tRNAfir, was purified and sequenced by Kunzel and co-workers (21, 22). For tRNA^{Pro}, tRNA^{Tro}, tRNA^{Cro}, and tRNA^{Tro} only one isoaccepting species is known. Gm is 2'O-methylguanosine; Y is pseudouridine, Cm is 2'O-methylcytidine, and U* is believed to be a uridine derivative (18). The codon usage figures are the sum of the listed values for the two glyceraldehyde-3-phosphate dehydrogenase genes (12, 13) and ADH-I gene (14) given in Table I.

Amino acid	Major isoacceptor and its anticodon sequence	Preferred triplet(s) and the extent of their use in G3PDH + ADH-I	Use of all other triplets for that amino acid
Ala	tRNA ^{rla} IGC	GCU (68), GCC (32)	. 0
Ser	∙RNA ^{še} ′ <i>I</i> GA	UC <i>U</i> (38), UCC (33)	0
Thr	tRNA Thr 16 IGU	AC <i>U</i> (77), ACC (34)	0
Val	tRNA IAC	GU <i>U</i> (64), GUC (44)	0
Ilea	None sequenced	AU <i>U</i> (25), AUC (35)	0
Asp	tRNA∱™ GUC	GAC (44)	17
Phe	tRNAPh GmAA	UUC (29)	0
Туг	tRNATyr GUA	UAC (33)	0
Cys	tRNA ^{Cy} GCA	UG <i>U</i> (12)	0
Asn	None sequenced	AAC (37)	0
His	None sequenced	CAC (26)	1
Arg	tRNA ^A '' U*CU	AGA (30)	0
Glu	tRNASh UUC	GAA (49)	0
Leu	tRNA CAA	UUG (60)	6
Lys	tRNA¦** CUU	AAG (69)	7
Gly	tRNA ^{GU} GCC	GG <i>U</i> (90)	3
Gln	None sequenced	CAA (20)	0
Pro	None sequenced	CCA (32)	4
Met	tRNAMS CAU	AUG (20)	
Trp	tRNA ^{Trp} C _m CA	UGG (11)	

^a The most abundant isoleucine tRNA species in the yeast *Torulopsis utilis* has the anticodon 5'-IAU-3' (18).

and tRNAs present most abundantly, there remains the question of why natural selection has favored these particular codons and tRNAs rather than others. Why, for example, are CGN arginine codons not used at all in either glyceraldehyde-3-phosphate dehydrogenase or ADH-I? This is but one manifestation of a general tendency not to use codons containing GC, CG, CC, or GG if this can be in any way avoided. The codons UCG, CCG, ACG, GCA, GCG, CGU, CGC, CGA, CGG, AGG, GGG, AGC, GGC, and CCC are totally absent from the mRNAs for ADH-I and glyceraldehyde-3-phosphate dehydrogenase. For each of these triplets, perfectly complementary codon-anticodon binding would entail side by side GC base pairs. This situation is always avoided, whenever possible, in the ADH-I and glyceraldehyde-3-phosphate dehydrogenase genes. Since only CCN triplets can code for proline, side by side GC base pairs are unavoidable. However, all yeast genes which have be n sequenced contain primarily CCA (or CCU) proline cod ns (Table I) and avoid CCC and CCG triplets greater than 99% of the time. Although UCC serine, ACC threonine, and GCC alanine cod ns occur frequently in the ADH-I and glyceraldehyde-3-phosphate dehydrogenase genes, the presence of inosine as the wobble nucleotide in the tRNAs that recognize these codons (Table II) avoids the formation of side by side GC base pairs in the cod n-anticod n interaction. A possible functi nal basis for the avoidance of side by side GC base pairs is contained in the analysis f c don-anticod n binding strength made by Grosjean et al. (27). These authors noted a tend ncy for different codon-anticodon pairs to have relatively similar binding constants. Higher binding constants than average would obtain if two GC base pairs were involved. Hence, the bias against GC, CG, CC, and GG-containing codons in yeast equalizes tripletanticodon interactions by such codon choices as AGA (Arg) rather than CGN and GGU (Gly) rather than GGG or GGC. In other words, these and other similar codon choices which discriminate against side by side GC base pairs can have the effect of smoothing out the differences in codon-anticodon binding strength for different amino acids. Further examples of this "binding energy homeostasis" are evidenced by the predominant codon choices for leucine (UUG), tyrosin (UAC), lysine (AAG), and others which are made in such a way as to preclude codon-anticodon binding between sequences which are 100% A + U.

The results presented here suggest that the codons in the glyceraldehyde-3-phosphate dehydrogenase and ADH-I genes have evolved to produce optimal and uniform codon-anticodon binding energies with the most abundant isoacceptor tRNAs in the cell. Various other authors have discussed an expected relationship between tRNA availability (1, 7, 8, 11, 28, 29) and codon-anticodon interactions (6, 9) to explain nonrandom codon usage. Both phenomena seem to be involved for the glyceraldehyde-3-phosphate dehydrogenase and ADH-I genes. Independently of one another, these highly expressed genes have evolved coding sequences which optimize interaction with the most abundant tRNA molecules. Other types of selective pressures on codon usage must be less significant for these two yeast genes.

The results on yeast codon selection and the correlation with tRNA abundance and codon-anticodon binding efficiency presented here allow prediction of the anticodon sequences of various, as yet unsequenced, S. cerevisiae, tRNAs. F r instance, the major tRNA^{Be} isoacceptor should have a 5'-IAU-3' anticodon, the major tRNA^{Pro} species should have a UGG (or *UGG) anticodon, and the most abundant tRNA^{Gln} sh uld have a UUG anticodon.

Codon Bias and mRNA Abundances-The data for the codon selection in ADH-I and glyceraldehyde-3-phosphate dehydrogenase point quite directly to a preferred set of 25 out of the 61 possible triplets. For 15 amino acids only one triplet is preferred, while for Thr, Ala, Ile, Val, and Ser either of two codons, one having a U and the other a C in the wobble position, is allowed. If we term these 25 codons the "preferred triplets," it is possible to measure the distance between any given mRNA sequence and the "preferred" mRNA sequence that could code for that particular protein. Table III presents such an analysis of codon bias for six sequenced mRNA-coding S. cerevisiae genes. The Codon Bias Index is a measure of the fraction of codon choices which is biased to 22 preferred triplets. A value of one indicates that for all of the triplets in the mRNA, only codons of the preferred variety are used. A value of zero indicates totally random choice. A Codon Bias Index significantly less than zero for a given gene indicates greater than random usage f the nonpreferred triplets. In calculating the Codon Bias Index for yeast proteins, we have excluded cod ns f r methionine, tryptophan, and aspartic acid (the latter xhibits a degree f cod n bias less than the 85% cutoff e-bitrarily chosen to define a "preferred" triplet).

The bserved values of the C don Bias Index are very nearly 1.0 f r both glyc raldehyde-3-phosphate dehydrogen-

TABLE III

The Codon Bias Index and approximate cellular mRNA levels for eight yeast genes

The Codon Bias Index is a fraction whose numerator is the total number of times that the preferred codons are used in the protein minus the number of such usages expected if the code were read randomly. The denominator is the total number of amino acid residues in the protein (excluding methionine, tryptophan, and aspartic acid residues) minus the random expectation for usage of the preferred codons. The latter quantity, which appears both in the numerator and denominator, is a sum of 17 products, each one being the number of residues in the protein of a given amino acid multiplied by the fraction of all codons for that amino acid in the genetic code dictionary which are "preferred" (1/6 for Leu and Arg; 2/3 for Ile; and 1/2 for Phe, etc.). The preferred codons were chosen as those that were used greater than 85% of the time in the ADH-I and glyceraldehyde-3phosphate dehydrogenase (G3PDH) genes. By this criterion, only aspartic acid was disqualified as not having significant codon bias (GAC/GAU = 44/17). Data for Met and Trp are also not included as these amino acids have no degenerate codons. The ideal codons chosen were UUC, UUG, AUU, AUC, GUU, GUC, UCU, UCC, CCA, ACU, ACC, GCU, GCC, UAC, CAC, CAA, AAC, AAG, GAA, UGU, AGA, and GGU. The approximate cellular mRNA concentrations were determined by wheat germ translation for glyceraldehyde-3phosphate dehydrogenase, ADH-I and enolase,2 and iso-1 cytochrome c (30). The level of histone 2B mRNA was determined by L. Hereford. The value for the iso-2 cytochrome c level was approximated by dividing the iso-1 cytochrome c mRNA level by 17. It is known that the ratio of iso-1 to iso-2 cytochrome c protein is about 17 to 1 (31). The codon biases of the two yeast enclase genes (peno 8 and peno 46) were calculated from the data of Holland et al. (32).

Gene	Codon Bias Index	Approximate % o total cellula mRNA				
pgap 63 (G3PDH)	0,99	1.5-6				
pgap 491 (G3PDH)	0.98					
peno 8	0.96	1-3				
peno 46	0.93					
ADH-I	0.92	0.7-2				
Histone 2B						
(H2B1)	0.75	0.4				
(H2B2)	0.68	0.4				
Iso-1 cytochrome c	0.50	0.05				
iso-2 cytochrome c	0.15	0.003				

ase genes and 0.92 for ADH-I, in keeping with the definitions of preferred triplets as those most used in these genes. For the two histone 2B genes, the values are significantly lower, and for the iso-1-cytochrome c gene, the cedon bias is only 0.5. For iso-2-cytochrome c, the choice is nearly random as regards preferred versus nonpreferred triplets. In all cases where the intracellular level of mRNA or protein is known, this correlates well with the degree of codon bias (Table III). The most abundant protein (glyceraldehyde-3-phosphate dehydrogenase) is most biased, the least abundant protein is least biased, and the proteins of intermediate abundance fall into place as well.

Physiological Basis for Biased Codon Usage—Our analysis of codon usage for yeast nuclear genes has led to two major conclusions. First, the codon which is most frequently used to specify a given amino acid is, in nearly every case, exactly complementary to the anticodon sequence of the most abundant isoaccepting tRNA for that amino acid. Consequently, there is a limited set of codon triplets, 25 in all, which can be defined as "preferred cod ns." Second, for all yeast proteins, the preferred set is the same one. H wever, there is considerable variation in the extent to which any given protein uses nly preferred c dons r instead draws indiscriminately from the entire set of 61 sense codons. There is a remarkably strong

³ L. Hereford, personal communication.

correlation (Table III) between th extent of codon usage bias toward these 25 preferred codons and the level of a particular protein (and its mRNA) in yeast cells. Because a similar situation exists in *Escherichia coli* cells (see below), there would appear to be some general physiological reason why abundant proteins have biased codon usage and rare proteins do not.

The explanation which comes to mind most immediately involves the translation rate of mRNA for abundant proteins. Because these proteins are required at high intracellular levels (which we assume simply because they are abundant), it could be presumed that there is selective pressure to translate their mRNAs rapidly and repetitively. Because the concentration of charged cognate tRNA governs the step time required to add an amino acid opposite each codon, rapid translation is favored by the use of triplets for abundant tRNAs. Consequently, "synonymous" mutations from triplets for high abundance tRNAs to triplets for low abundance isoacceptors might be deleterious if they were to occur in genes for proteins required in high abundance. The continuing selection for a high output of that particular procein will act to retain a set of preferred codons within the gene. Conversely, for those proteins, such as iso-2-cytochrome c, which are not required in large amounts, speed of translation has little selective value. Consequently, synonymous mutations to triplets decoded by low abundance tRNAs would not be strongly selected against in the genes for these proteins and their pattern of codon usage would be more nearly random, as is the case.

Certain questions are raised by the hypothesis that evolutionary selection for a high rate of translation of highly expressed yeast genes is responsible for their bias toward codons which match the most abundant tRNA isoacceptors. Why couldn't the same high output of protein be achieved in other ways, by DNA changes which increase the rate of transcription, enhance the stability of mRNA, or augment the number of gene copies (13)? Optimization of each of these genetic parameters might equally well have served to provide a high

output of gene product.

Another hypothesis to explain codon usage bias for highly expressed genes postulates a more pervasive deleterious effect, should codons corresponding to rare tRNA isoacceptors be used in mRNAs of high abundance. Consider what the effects would be if serine codon UCG, corresponding to a rare isoaccepting tRNA^{Ser} (26), were used extensively in coding for an abundant yeast protein such as glyceraldehyde-3-phosphate dehydrogenase. Because of the low abundance of tRNAsc the intracellular pool of aminoacylated tRNASC must be small relative to that for other tRNAs. When the hypothetical yeast strain grows on glucose medium. synthesizing large amounts of glyceraldehyde-3-phosphate dehydrogenase mRNA, translation of this RNA would draw heavily upon the pool of Ser tRNAuco, discharging a large fraction of the molecules. Consequently, all yeast ribosomes at that moment translating mRNAs containing UCG cod ns could suffer a block in translation with consequent risk of early termination and/or translational error (33). Thus, the presence of UCG codons in highly expressed genes such as that for glyceraldehyde-3-phosphate dehydrogenase will have deleterious effects upon many intracellular targets. On an evolutionary time scal, these multiple effects could be eliminated by single base pair changes (UCG → UCC) at third position site within the glyceraldehyde-3-phosphate dehydrogenase gene. On the other hand, the occasional usage of tRNASer by hundreds f genes making proteins of medium or low abundance (such as iso-1-cytochrome c) brings about little discharging of this rare isoaccepting tRNA. Consequently, there is no strong selective pressure against UCG

² J. Bennetzen, C. Denis, and E. T. Young, unpublished results.

codons in mRNAs coding f r this class of proteins. The example just given can be generalized as an explanati n for biased cod n usage for all amino acids having multipl isoaccepting tRNAs. The bias bserved f r phenylalanine (UUC), tyrosine (UAC), and cysteine (UGU) cod n usage has some other basis since only one tRNA species is present for each f these amino acids.

If the selective mechanisms we have proposed are partly or wholly responsible for the differences in codon usage between abundant and rare yeast proteins, this implies that effectively different genetic codes are operative for the two classes of proteins. A set of 20 tRNAs, efficiently recognizing 25 codons, translates nearly all of the coding sequences of the abundant yeast proteins. In addition to these major tRNAs, approximately 20 minor isoaccepting tRNAs are required for translation of minor yeast proteins. These yeast tRNAs are specialized for that function.

In proposing two different (and not mutually exclusive) physiological explanations for the observed pattern of yeast codon bias, we have assumed that a deviation from that pattern would result in lowered fitness for the yeast cell. This assumption can be tested and the nature of any deleterious effect identified by altering a highly expressed yeast gene in vitro, creating an inappropriate codon, and then reintroducing the mutated gene into yeast cells and testing them for physilogical changes resulting from the mutation.

Comparison of Yeast Codon Usage to That in E. coli— The DNA sequences of the highly expressed E. coli genes ompA (34), lpp (35), tufA (36), and tufB (37) each exhibit a codon usage which is highly biased toward the same set of preferred codons, for five amino acids a completely different codon than that which codes for highly expressed yeast proteins (Table IV). The existence of codon bias for these proteins and for the less highly expressed ribosomal protein genes of E. coli has been noted previously (34, 35, 11, 38), as has a correlation between these codon usage patterns and the abundance distribution of 35 isoaccepting tRNAs in E. coli (11, 35, 38).

The set of preferred codons inferred from the codon usage

TABLE IV

Codon usage summed for the highly expressed E. coli genes ompA
(34), lpp (35), tufA (36), and tufB (37)

Preferred co- don(s) in yeast	Amino acid	Preferred codon(s) in <i>E. coli</i> and use	Use of all other tri- plets for that amino acid
GCU, GCC	Ala	GCC not used; no clear preference	
UCU, UCC	Ser	UCU, UCC 27	7
ACU, ACC	Thr	ACU, ACC 53	4
GUU, GUC	Val	GUU, GUA 62	8
AUU, AUC	Ile	AUC 43	4
GAC	Asp	GAC 43	11
UUC	Phe	UUC 20	3
UAC	Tyr	UAC 25	3
UGU	Cys	No clear preference	-
AAC	Asn	AAC 31	1
CAC	His	CAC 12	4
GAA	Glu	GAA 40	10
GGU	Gly	GGU, GGC 80	6
CAA	Gln	CAG 28	2
AAG	Lya	AAA 17	6
CCA	Pro	CCG 34	5
UUG	Leu	CUG 56	2
AGA	Arg	CGU 33	2 7

TABLE V

The Codon Bias Index and cellular protein levels for six E. coli Renes

The amounts of ompA protein and lipoprotein were obtained from Dr. Masayori Inouye, S. U. N. Y., Stonybrook,⁴ and the amounts of elongation factor TU and RNA polymerase β subunit from Dr. Patrick Dennis, University of British Columbia.⁵ The amounts of single copy ribosomal proteins were calculated from the data given by Kjeldgaard and Gausing (41), using their values for glucose and casamino acid *E. coli* cultures to calculate the number of ribosomes per cell. L7/L12 was similarly calculated, but is present in four copies per ribosome. The amount of Lac repressor per *E. coli* cell is from Müller-Hill *et al.* (42).

E. coli protein	Codon bias index	Amount of the protein molecules per cell	Refer- ence to codon usage
Major lipoprotein Elongation factor TU	0.84	750,000	(35)
tufA tufB	0.84 0.81	$[200,000-1\times10^6]$	(36) (37)
ompA protein	0.78	200,000	(34)
Ribosomal proteins L7/L12	0.84	140,000-300,000	(11)
Other ribosomal proteins (present one each per ri- bosome)	0.61	35,000-75,000	(38)
RNA polymerase β subunit	0.53	7,000-15,000	(39)
Lac repressor	0.18	10	(40)

data for the major E. coli outer membrane proteins ompA and lipoprotein and elongation factor TU (Table IV) can be used to calculate a codon bias index for other E. coli proteins (Table V), exactly as done above in Table III for yeast proteins. The results exhibit a striking correlation between the degree of codon bias and the cellular level of each E. coli protein, just as observed in yeast. These results indicate that the selective forces which cause greater codon bias for highly expressed genes have their effect both in yeast and in E. coli, although the maximum bias observed is lower in the bacterium.

Effects of tRNA Isoacceptor Distribution upon the Efficiency of Gene Expression—In differentiated cells of higher organisms, changes in tRNA profiles have been observed to occur in a tissue-specific manner (29, 43, 44). To the extent that the resulting isoacceptor distribution matches the codon usage bias of abundant cell-specific mRNAs, the output of major proteins may be maximized and expression of minor RNAs maintained by mechanisms such as those discussed earlier.

The cloning of such a developmentally regulated higher organism gene and attempts to achieve its expression at a high level either in E. coli (45) or in yeast (46) are accompanied in effect by a dedifferentiation of the tRNA population to that which is characteristic of the host cell. It follows from the correlations which we and others (35, 36) have shown between abundant tRNAs and heavily used codons and from the differences in codon usage between E. coli and yeast (Table IV) that certain cloned genes may be more readily expressed in E. coli and others in yeast. For five amino acids (bottom of Table IV), the difference in biased codon usage between yeast and E. coli is very large indeed. For example, the codon AGA is used to code for 100% of the arginine residues in the most abundant yeast proteins (Table II), while in the three abundant E. coli proteins, CGU comprises 83% and CGC 17% of the arginine codon usage. Higher eukaryote mRNAs differ greatly from one an ther in arginin codon usage, with AG $^{\Lambda}_{G}$ being preferred for valbumin, β gl bin, immunoglobulin (2), and interferon (47) mRNAs but CGN

M. Inouye, personal communication.
 P. Dennis, personal communication.

codons preferentially used in histone mRNAs and mRNAs coding for several mammalian polypeptide horm nes (2). These consid rati as suggest that highly efficient translati a f cloned mammalian genes in microbial cells may require careful comparison of the codon usage of the gene in relationship to the codon pref rences of each availabl host cell system. Certain genes may best be expressed in yeast, others in E. coli.

Acknowledgments-We wish to thank Jeremy Thorner and Alan Templeton for their advice concerning this manuscript and Jon Gallant and Masayasu Nomura for very helpful discussions.

REFERENCES

- 1. Grantham, R. (1978) FEBS Lett. 95, 1-11
- 2. Grantham, R., Gautier, C., Gouy, M., Mercier, R., and Pave, A. (1980) Nucleic Acids Res. 8, r49-r62
- Sakonju, S., Bogenhagen, D. F., and Brown, D. D. (1980) Cell 19, 13 - 25
- 4. Bogenhagen, D. F., Sakonju, S., and Brown, D. D. (1980) Cell 19, 27-35
- 5. Fitch, W. M. (1974) J. Mol. Evol. 3, 279-291
- 6. Fitch, W. M. (1976) Science 194, 1173-1174
- 7. Kafatos, F. C., Efstratiadis, A., Forget, B. G., and Weissman, S. M. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 5618-5722
- 8. Berger, E. M. (1978) J. Mol. Evol. 10, 319-323
- Grosjean, H., Sankoff, D., MinJou, W., Fiers, W., and Cedergren, R. J. (1978) J. Mol. Evol. 12, 113-119
- 10. Hasegawa, M., Yasunaga, T., and Miyata, T. (1979) Nucleic Acids Res. 7, 2073-2079
- 11. Post, L. E., Strychaw, G. D., Nomura, M., Lewis, H., and Dennis, P. P. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 1697-1701
- 12. Holland, J. P., and Holland, M. J. (1979) J. Biol. Chem. 254, 9839-9845
- 13. Holland, J. P., and Holland, M. J. (1980) J. Biol. Chem. 255, 2596-2605
- 14. Bennetzen, J. L., and Hall, B. D. (1982) J. Biol. Chem. 257, in press
- 15. Wallis, J. W., Hereford, L., and Grunstein. M. (1980) Cell 22, 799-RNS
- 16. Smith, M., Leung, D. W., Gillam, S., Astell, C R., Montgomery, D. L., and Hall, B. D. (1979) Cell 16, 753-761
- 17. Montgomery, D. L., Leung, D. W., Smith, M., Shalit, P., Vaye, G., and Hall, B. D. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, .:
- 18. Gauss, D. H., Gruter, F., and Sprinzl, M. (1979) Nucleic Acids Res. 6, r1-r16
- 19. Gillam, I., Millward, S., Blew, D., von Tigerstron, M., Wimmer, E., and Tener, G. M. (1967) Biochemistry 6, 3043-3056
- 20. Culbertson, M. R., Charnas, L., Johnson, M. T., and Fink, G. R. (1977) Genetics 86, 745-764
- 21. Kunzel, B., and Dirheimer, G. (1968) Nature 219, 720-721

- 22. Kunzel, B., Weissenbach, J., and Dirheimer, G. (1974) Biochimie **56,** 1069-1087
- 23. Crick, F. H. C. (1966) J. Mol. Biol. 19, 548-555
- 24. Olson, M. V., Page, G. S., Sentenac, A., Loughney, K., Kurjan, J., Benditt, J., and Hall, B. D. (1980) in Transfer RNA: Biological Aspects (Abelson, J., Schimmel, P., and Söll, D., eds) Part B, pp. 267-279, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- 25. Ono, B.-I., Stewart, J. W., and Sherman, F. (1979) J. Mol. Biol. 128, 81-100
- 26. Olson, M. V., Page, G. L., Sentenac, A., Piper, P. W., Worthington, M., Weiss, R. B., and Hall, B. D. (1981) Nature 291, 464-469
- 27. Grosjean, H. J., DeHenau, S., and Crothers, D. M. (1978) Proc. Natl. Acad. Sci. U. S. A. 75, 610-614
- 28. Ames, B. N., and Hartman, P. E. (1963) Cold Spring Harbor Symp. Quant. Biol. 28, 349-356 29. Garel, J. P. (1974) J. Theor. Biol. 43, 211-225
- 30. Zitomer, R. S., and Hall, B. D. (1976) J. Biol. Chem. 251, 6320-6326
- 31. Sherman, F., and Stewart, J. W. (1971) Annu. Rev. Genet. 5, 257-
- 32. Holland, M. J., Holland, J. P., Thill, G. P., and Jackson, K. A. (1981) J. Biol. Chem. 256, 1385-1395
- 33. Gallant, J., and Foley, D. (1980) in Ribosomes: Structure, Function and Genetics (Chambliss, G., Craven, G. R., Davis, J., Davis, K., Kahan, L., and Nomura, M., eds) pp. 615-638, University Park Press, Baltimore, Maryland
- 34. Movva, N. R., Nakamura, K., and Inouye, M. (1980) J. Mol. Biol. 43, 317-328
- 35. Nakamura, K., Pirtle, R. M., Pirtle, I. L., Takeishi, K., and Inouye, M. (1980) J. Biol. Chem. 255, 210-216
- Yokota, T., Sugisaki, H., Takanami, M., and Kaziro, Y. (1980) Gene 12, 25-31
- 37. An, G., and Friesen, J. D. (1980) Gene 12, 33-39
- 38. Post, L. E., and Nomura, M. (1980) J. Biol. Chem. 255, 4660-4666
 - 39. Delcuve, G., Downing, W., Lewis, H., and Dennis, P. P. (1980) Gene 11, 367-373
 - 40. Farabaugh, P. (1978) Nature 274, 765-769
- 41. Kjeldgaard, N. O., and Gausing, K. (1974) in Ribosomes (Nomura, M., Tissieres, A., and Lengyel, P., eds) pp. 369-392, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- 42. Müller-Hill, B., Beyreuther, K., and Gilbert, W. (1971) Methods Enzymol. 120, 483-487
- 43. Hatfield, D., Matthews, C. R., and Rice, M. (1979) Biochim. Biophys. Acta 564, 414-423
- 44 Tit, M., and Kabat, D. (1972) J. Biol. Chem. 247, 6659-6664
- 45. Goeddel, D. V., Heyneker, H. L., Hozumi, T., Arentzen, R., Itakura, K., Yansura, D. G., Ross, M. J., Miozzari, G., Crea, R., and Seeburg, P. H. (1979) Nature 281, 544-548
- 46. Henikoff, S., Tatchell, K., Hall, B. D., and Nasmyth, K. A. (1981) Nature **289**, 33–37
- 47. Goeddel, D. V., Leung, D. V., Dull, T. J., Gross, M., Lawn, R. M., McCandliss, R., Seeburg, P. H., Ullrich, A., Yelverton, E., and Gray, P. W. (1981) Nature 290, 20-26

Page 1 of 2

Filo Copy 09/713,794 updated

O'Bryen, Barbara

From:

Lambertson, David

Sent:

Friday, November 08, 2002 8:22

To:

O'Bryen, Barbara

Cc:

Lambertson, David

Subject: Search Request

Search Request

Examiner's Name:

David Lambertson

Examiner #:

79514

Art Unit:

1636

Room #:

12D06

Mailbox room#:

11E12

Phone:

(703) 308-8365

Results Format:

paper

Serial #:09/713,794

Please Search:

Nucleic Acid databases for:

SEQ ID No: 15 (551 amino acids)

Point of Contact:
Barb O'Bryen
Technical Information Specialist
STIC CM1 6A05 308-4291

BB3-07

Including:

- 1. Default Search.
- 2. Interference Search.

Also,

Please Search:

Nucleic acid databases for:

SEQ ID NOS: 1 (2261 nucleotides) and 10 (2181 nucleotides)

Including:

- 1. Default Search.
- 2. Interference Search.

Please let me know if this search requires approval due to the length of the amino acid sequence.

Thanks, Dave.