## Master Économiste d'Entreprise





RECHERCHE, RÉALISATION, RESTITUTION

# Application des modèles SFA à l'étude des prix

Corentin DUCLOUX et Aybuké BICAT

10 décembre 2023

# | Table des matières

| Remerciements                                       |
|-----------------------------------------------------|
| Introduction                                        |
| Un prix                                             |
| Introduction  Un prix                               |
| Revue de la littérature                             |
| Une nouvelle approche de la théorie du consommateur |
| Pricing Hédonique                                   |
| Aspects théoriques                                  |
| Application                                         |
| Fonction de production                              |
| Le modèle SFA                                       |
| Définitions                                         |
| Références                                          |





## Remerciements

Nous tenions à remercier chaleureusement Monsieur *Alain BOUSQUET* pour son accompagnement tout au long de ce projet **3R**, qui a toujours été ouvert à l'exploration de nouveaux sujets, à l'expérimentation, et nous a encouragé à creuser diverses pistes de réflexion. Ce sujet a été et sera pour nous l'occasion de mettre en pratique l'ensemble des connaissances acquises dans notre cursus universitaire (microéconomie, économétrie, statistiques, analyse de la concurrence, pricing, développement logiciel sous **Q** et python **\enline\***) sur une problématique éminemment appliquée.

\* \* \*



<sup>(1)</sup> Quarto : Système de publication technique et scientifique *open-source* ⇒ https://quarto.org/.

<sup>(2)</sup> Retrouvez la présentation sur https://corentinducloux.fr.

## | Introduction

### Un prix

En tant que consommateur, nous nous retrouvons souvent face à une question infiniment plus complexe qu'elle n'en a l'air. En des termes simples, elle se traduit par : Pourquoi ce prix ? Pour quelle raison ce stylo, cette nouvelle télévision, ou ce smartphone coûte tant ? Est-ce une là une simple question de coût de production

Comment modéliser l'utilité ? par le service rendu ? par les caractéristiques ?

#### Partie 2 de l'intro

• un petit test

du latex 
$$\frac{2}{x} = 5$$

Un test comme ça qui est très long et qui fait 2,3 lignes assez longues on va tester le débordement tetsjeelfnezfejfhezozhhhfezuoueeeeeeee

2 + 2

[1] 4

## Revue de la littérature

### Une nouvelle approche de la théorie du consommateur

En microéconomie, dans la théorie du consommateur *classique*, le choix du meilleur ensemble de consommation dépend des préférences d'un individu. Les préférences de cet individu sont classiquement représentées par la fonction d'utilité :

$$U(x) = U(x_1, x_2, \dots, x_n) \tag{1}$$

Avec  $x_1, x_2, \dots, x_n$  un vecteur de n biens. L'Équation 1 exprime donc la relation entre la quantité de biens consommés et le niveau d'utilité que ces biens procurent à un agent. Dès lors, dans ce cadre, la consommation de biens procure directement de l'utilité à l'agent. En pratique pourtant, il est difficile de concevoir comment l'achat d'un bien comme une lampe ou un stylo peut nous apporter de l'utilité en tant que consommateur.

Pour répondre à cette difficulté, Lancaster (1966), propose un nouveau cadre conceptuel théorique décrit par les hypothèses suivantes.



#### Hypothèses

- 1. Le bien en lui même ne procure pas d'utilité au consommateur  $\Rightarrow$  il possède des **caractéristiques** qui procurent de l'utilité.
- 2. Un bien est un ensemble (bundle) de caractéristiques il possède le plus souvent de nombreuses caractéristiques.
- 3. Une combinaison de biens peut posséder des caractéristiques différentes comparé à des biens consommés séparément.

*Illustrons ces points avec quelques exemples :* 

- Un ordinateur n'est pas acheté pour le simple plaisir de posséder un ordinateur. Il est acheté car il permet de naviguer sur Internet, écrire des cours, programmer, regarder une série, etc. C'est donc pour les services qu'il nous rend, ce qui est modélisé ici par les caractéristiques possédées du bien.
- Les biens possèdent généralement un grand nombre de caractéristiques. Prenons l'exemple d'une gourde : la couleur, la forme, les dimensions et la capacité isothermique sont autant de caractéristiques qui peuvent influer sur la décision d'achat.
- En consommant du lait et du café séparemment, les caractéristiques retirées du lait sont de la vitamine D et du calcium, tandis que pour le café les caractéristiques retirées sont de la caféine, une boisson chaude, un "boost" le matin. En revanche, consommer un café latte permettra d'obtenir une boisson plus douce, moins cafféiné, un goût différent. En bref, les caractéristiques retirées du mélange sont différentes.

Dans le modèle de Lancaster il existe une relation **linéaire** entre les prix des biens et leurs caractéristiques. Le prix total p d'un bien peut donc être considéré comme la somme des prix individuels associé à chaque caractéristique. Cela découle du fait que les attributs des biens étudiés peuvent être considérés comme des composantes distinctes et séparables.





### Pricing Hédonique

#### Aspects théoriques

Rosen (1974) étend ce qui a été apporté par le cadre théorique de Lancaster (1966). La principale différence est qu'il s'intéresse à **l'équilibre de marché de biens différenciés**, (là où Lancaster s'intéresse uniquement à la demande) avec :

- un continuum de biens du côté de l'offre,
- un continuum de consommateurs hétérogènes du côté de la demande.

Dans ce modèle, la relation entre les prix des biens et leurs attributs peut-être **non-linéaire** et permet aussi de capter des effets d'interaction entre plusieurs variables. Au coût d'une modélisation plus complexe que dans le modèle de Lancaster (1966), les résultats gagnent en robustesse.

L'objet de la contribution de Rosen est d'étudier un bien différencié z décrit par le vecteur de ses n caractéristiques mesurables tel que :

$$z = (z_1, z_2, \dots, z_n) \tag{2}$$

Afin de comprendre pourquoi il est important d'étudier des biens différenciés dans ce cadre, regardons en détail le graphique suivant.



**Figure 1** – Plan  $(z_1, z_2)$  de différents biens avec 2 caractéristiques.

En général, nous sommes habitués à représenter les préférences des consommateurs en termes de quantités de biens  $x_1, x_2$ . Ici, on assite à un changement de paradigme : on va représenter les préférences des consommateurs en termes de caractéristiques de biens, c'est à dire dans l'espace  $z_1, z_2$  (on choisit de prendre seulement 2 caractéristiques et 6 biens pour simplifier).

On peut en déduire que les consommateurs achetant le *bien 5* valorisent plus les caractéristiques  $z_1$  que  $z_2$ , et inversement pour le *bien 4*.





En fait, la différenciation horizontale et verticale des produits implique qu'une vaste gamme de paniers est disponible dans cet espace de consommation!

- **Différenciation Horizontale** ⇒ A prix donné, il n'y a pas unanimité dans le choix des consommateurs entre 2 biens (jaune et rouge) : ce sont des différences de goûts.
- **Différenciation Verticale** ⇒ A prix donné, il y a unanimité dans le choix des consommateurs entre 2 voitures biens : l'un est meilleur que l'autre.

Il faut aussi noter que dans le modèle de Rosen, le consommateur n'achète qu'une seule unité de bien qui est une combinaison d'attributs  $z_1, z_2, \dots, z_n$ . Historiquement, cela s'explique car Rosen s'intéresse principalement aux biens durables (logements, voitures, smartphones...). Il est en effet beaucoup plus simple d'obtenir des caractéristiques observables sur ces biens durables : que ce soit le nombre de pièces pour un logement, la superficie, ou bien la puissance et la longueur d'une voiture.

De toutes ces informations, on peut formuler 2 questions.

- Pour le **producteur**, quelle combinaison de caractéristiques lui permet de maximiser son profit?
- Pour le consommateur, quelle combinaison de caractéristiques lui rapporte le plus d'utilité sous contrainte budgétaire?

On aboutit à une relation fonctionnelle entre les caractéristiques des biens et leur prix, appelée fonction de prix hédonique p(z).

$$p(z) = p(z_1, z_2, \dots, z_n)$$
(3)

Un prix est donc défini en chaque point du plan et guide les choix de localisation des consommateurs et des producteurs concernant les ensembles de caractéristiques achetés et vendus.



#### Limites

Il n'en reste pas moins qu'il subsiste un problème indéniable : ce qu'on aimerait réellement mesurer c'est le service rendu par un produit et non pas les caractéristiques de ce produit. Mais ce premier est complètement inobservable. Un défi sera donc d'interpréter correctement les résultats des régressions.

### Application

Harrison Jr et Rubinfeld (1978):

Objectif : Examiner comment les données du marché immobilier peuvent être utilisées pour évaluer la Willingness To Pay des consommateurs pour une meilleure qualité de l'air.

- Le modèle suppose que les ménages prennent en compte le niveau de pollution de l'air, la quantité et la qualité du logement et d'autres caractéristiques de quartier pour faire leur choix.
- La fonction de la valeur hédonique du logement p(h) traduit les attributs du logement en prix, et suppose que les consommateurs perçoivent avec précision ces attributs et que le marché est en équilibre à court terme.





#### Définition des variables

- *W* = WTP *marginale* pour une meilleure qualité de l'air;
- NOX = Concentration des oxydes d'azote<sup>(3)</sup>
- *INC* = Revenu du ménage en centaine de dollars

Trois niveaux de revenu par an découpés en variable catégorielles :

- **LOW** si  $INC \le \$8500 \Rightarrow Y_0$  (Catégorie de référence)
- **MEDIUM** si  $INC \le $11500 \Rightarrow Y_1$
- HIGH si  $INC \le $15000 \Rightarrow Y_2$

$$\log(W) = \beta_0 + \beta_1 \log(NOX) + \beta_2 \log(INC) + \beta_3 [Y_1 \cdot \log(NOX)] + \beta_4 [Y_2 \cdot \log(NOX)]$$
 (4)

Coefficients estimés pour la régression  $\log - \log$  (significatifs au seuil p < 0.01):

$$\log(W) = \underbrace{2.2}_{\beta_0} + \underbrace{0.97}_{\beta_1} \log(NOX) + \underbrace{0.8}_{\beta_2} \log(INC) - \underbrace{0.03}_{\beta_3} [Y_1 \cdot \log(NOX)] - \underbrace{0.07}_{\beta_4} [Y_2 \cdot \log(NOX)]$$

**Résultats** : La WTP marginale pour une meilleure qualité de l'air augmente avec le niveau de pollution de l'air et avec le niveau de revenu des ménages.

Pour finir, l'approche hédonique a été utilisée empiriquement dans de très nombreux domaines comme l'automobile, l'immobilier, etc.

#### DONNER DES EXEMPLES D'applications ici

Dans la littérature, une spécification *semi-log* est généralement préférée afin d'améliorer l'ajustement du modèle et de faciliter l'interprétation des coefficients – voir Bello et Moruf (2010).

<sup>(3)</sup> Variable de pollution, NOX est un proxy pour la qualité de l'air.





## Fonction de production

Avant de passer à l'explication de la seconde partie théorique, c'est à dire les modèles SFA, attardons-nous sur la définition d'une fonction de production, fondement important de la SFA.

### Rappel

- Un processus de production représente la transformation d'inputs en outputs.
- Dès lors, une fonction de production f(.) donne la quantité maximum d'output  $y_i$  pouvant être produite à partir de vecteurs d'inputs.

$$y_i = f(x_i; \beta) \tag{5}$$

- Avec  $x_i$  le vecteur d'inputs.
- Avec  $\beta$  le vecteur de paramètres inconnus à estimer.

 $f(x_i; \beta)$  est en fait la frontière de production. Pour l'instant cette frontière ne prend pas en compte l'efficacité technique  $TE_i$  et elle n'est pas *stochastique* car elle n'inclut pas de terme aléatoire.

\* \* \*

Farrell (1957) est le premier auteur à définir cette Frontière de Production.

"When one talks about the efficiency of a firm one usually means its success in producing as large as possible an output from a given set of inputs."

Cette définition permet donc d'aboutir à la formulation évoquée à l'Équation 5.

#### Le modèle SFA

Aigner, Lovell, et Schmidt (1977):

**Objectif**: Formulation et estimation de fonctions de frontière de production stochastique.

Avant les travaux de Aigner, Lovell, et Schmidt (1977), les économètres utilisaient principalement des fonctions de production moyennes dans la littérature, c'est à dire que la formulation théorique énoncée par Farrell (1957) différait de l'utilisation empirique.

• On repart de la fonction de production (Équation 5), mais en lui ajoutant un terme multiplicatif  $TE_i$ .

$$y_i = f(x_i; \beta) \cdot TE_i$$

 $TE_i$  représente l'efficacité technique, définie comme le ratio d'output observé sur l'output maximum réalisable, soit  $TE_i = \frac{y_i}{y_i^*}$ .





• Si  $TE_i = 1$  alors la firme i produit l'output maximum réalisable, alors que si  $TE_i < 1$ , il existe un écart entre l'output maximum et l'output effectivement observé.

Un composant **stochastique** exp  $\{v_i\}$  est en outre ajouté pour représenter les chocs aléatoires affectant la production. La fonction de production devient alors :

$$y_i = f(x_i; \beta) \cdot TE_i \cdot \exp\{v_i\}$$

On peut ré-écrire l'efficacité technique sous la forme  $TE_i = \exp\{-u_i\}$ . Dès lors :

$$y_i = f(x_i; \beta) \cdot \exp\{-u_i\} \cdot \exp\{v_i\}$$
(6)

\* \* \*



La SFA est une méthode paramétrique qui requiert une forme fonctionnelle précise. Les termes d'erreur  $\epsilon_i$  ont ainsi une distribution particulière composée :

- $v_i$  est une erreur aléatoire  $\Rightarrow$  variation inexpliquée par les variables indépendantes du modèle, avec  $v_i \sim \mathcal{N}(0, \sigma_v^2)$ .
- $u_i$  est un composant unilatéral qui peut être choisi parmi plusieurs distributions et  $u_i \ge 0$ , puisqu'il est nécessaire d'avoir  $TE_i \le 1$ .

# | Définitions

WTP Willingness To PaySFA Stochastic Frontier AnalysisTE Technical Efficiency





## | Références

- Aigner, Dennis, C. A.Knox Lovell, et Peter Schmidt. 1977. « Formulation and estimation of stochastic frontier production function models ». *Journal of Econometrics* 6 (1): 21-37. https://doi.org/10.1016/0304-4076(77)90052-5.
- Bello, Ajide K, et Alabi Moruf. 2010. « Does the functional form matter in the estimation of hedonic price model for housing market ». *The Social Sciences* 5 (6): 559-64.
- Farrell, Michael James. 1957. « The measurement of productive efficiency ». *Journal of the Royal Statistical Society Series A: Statistics in Society* 120 (3): 253-81. https://doi.org/10.2307/2343100.
- Harrison Jr, David, et Daniel L Rubinfeld. 1978. « Hedonic housing prices and the demand for clean air ». *Journal of environmental economics and management* 5 (1): 81-102. https://doi.org/10.1016/0095-0696(78)90006-2.
- Lancaster, Kelvin J. 1966. « A New Approach to Consumer Theory ». *Journal of Political Economy* 74 (2): 132-57. https://doi.org/10.1086/259131.
- Rosen, Sherwin. 1974. « Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition ». *Journal of Political Economy* 82 (1): 34-55. http://www.jstor.org/stable/1830899.



