TABLE V.3 Parameters at $Q_0^2 = 1.69 \,\text{GeV}^2$ for the CTEQ6M parton distribution functions, defined by Eq. (V.3).

parton	A_0	A_1	A_2	A_3	A_4	A_5
$d_v(x, Q_0^2)$	1.4473	0.6160	4.9670	-0.8408	0.4031	3.0000
$u_v(x,Q_0^2)$	1.7199	0.5526	2.9009	-2.3502	1.6123	1.5917
$g(x, Q_0^2)$	30.4571	0.5100	2.3823	4.3945	2.3550	-3.0000
$(\bar{u} + \bar{d})(x, Q_0^2)$	0.0616	-0.2990	7.7170	-0.5283	4.7539	0.6137
$s(x, Q_0^2) = \bar{s}(x, Q_0^2)$	0.0123	-0.2990	7.7170	-0.5283	4.7539	0.6137

The functional form of the CTEQ6 parametrization of the distribution functions is given by:

$$xf(x,Q_0^2) = A_0 x^{A_1} (1-x)^{A_2} e^{A_3 x} (1+e^{A_4} x)^{A_5}.$$
 (V.3)

The parameters at the starting scale are given in Table V.3 for the CTEQ6M parametrization, a NLO fit to the data.

C. GRV/GJR distribution functions

The Gluck-Reya-Vogt (GRV) parton distribution functions were developed in a series of publications throughout the 1990s (Glück et al., 1992a, 1993, 1995b, 1998). They are dynamical distributions, which are generated radiatively from valence-like inputs at a low resolution scale. The latest of this series makes use of the 1994-95 HERA data for $Q^2 \geq 2 \text{ GeV}^2$ as well as the SLAC, BCDMS, NMC and E665 data with $Q^2 \geq 4 \text{ GeV}^2$ and the simply extracted ratios F_2^n/F_2^p from the NMC, BCDMS and E665 experiments. This analysis takes into account the Drell-Yan data and the u_v/d_v ratios extracted from the CERN CDHSW and WA21 neutrino data.

The GRV parton distribution functions are parametrized as

$$xf(x, Q_0^2) = A_0 x^{\alpha} (1 - x)^{\beta} (1 + \delta \sqrt{x + \eta x}).$$
 (V.4)

In Table V.4 we report the parameters at the starting scale for the GRV98 LO parametrization, a leading order fit to the data; and the parameters at the starting scale for the GRV98 NLO parametrization, a next-to-leading-order fit to the data in the \overline{MS} scheme.