Introduction to Statistics

Why statistics in data analysis?

- To understand dataset better
- To perform better data manipulation

Some statistical concepts for data analysis

- Types of Data
- Population and Sample
- Descriptive Statistics
- Correlation and Regression

Types of Data

Qualitative Data

- Cannot be measured
- Categorical Data
- Eg: sex, marital status

Quantitative Data

- Can be measured
- Numerical Data
- Eg: temperature, Age

Nominal Data

Nominal data divides variables into labeled categories.

Binary Data

Variable is categorized into two; success & failure, 1 & 0, yes & no

Continuous Data

Data can take any measured value in a specified range.

Ordinal Data

Data can be ranked in some order

Discrete Data

It has distinct value data.
They are countable.

Population

- All elements of a group
- Eg: All teachers in Kerala

Sample

- Subset of population
- True representation of population
- Eg: 1000 teachers in kerala.

Measures of Central Tendency

Mean

Average of the data

Ratio of sum of all observation to number of observation in the dataset.

Arithmetic Mean

Mean(X)=
$$\sum_{i=1}^{n} \frac{x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Arithmetic Mean=
$$\frac{3+2+6+5}{4}$$
=4

Median

- Middle most vale when arranged in ascending or descending order
- When distribution has even number- median is average of two middle values
- When distribution has odd number- median is the middle most value

1, 3, 3, **6**, 7, 8, 9
$$Median = \underline{6}$$

1, 2, 3, **4**, **5**, 6, 8, 9
Median =
$$(4 + 5) \div 2$$

= 4.5

Mode

• Most frequently occurring value

Measures of dispersion

Range

Quartiles

Variance

Standard Deviation

Range

Difference between largest and smallest value in the dataset.

Quartile

Values that divide the dataset into four equal parts

Standard Deviation

measure of how far the data deviates from the mean of dataset

Variance

Average squared deviation from the mean.

Formula

Data	Sample Mean x	Deviation $(x - \overline{x})$	Deviation ^2 $(x - \overline{x})^2$
1	6.3	-5.3	28.09
3	6.3	-3.3	10.89
8	6.3	1.7	2.89
3	6.3	-3.3	10.89
7	6.3	0.7	0.49
11	6.3	4.7	22.09
8	6.3	1.7	2.89
3	6.3	-3.3	10.89
9	6.3	2.7	7.29
10	6.3	3.7	13.69

110.1 =
$$\sum (x - \bar{x})^2$$

"n-1" = 9 (for denominator of sample st. deviation and variance)

Standard Deviation Calculation

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}} = \sqrt{\frac{110.1}{9}} = 3.5$$

Variance Calculation (equals standard deviation squared)

$$s^2 = \frac{\sum (x - \overline{x})^2}{n - 1} = 12.2\overline{3}$$

Quartile Deviation and Interquartile Range

Interquartile range = Q,-Q,

REGRESSION

describes how an independent variable is numerically related to the dependent variable

CORRELATION
measures co-relationship
or association of two
variables

Ð	Correlation	Regression
	Correlation is a	Regression describes
	statistical measure that	how to numerically
	determines the	relate an independent
	association between	variable to the
	two variables.	dependent variable.
	To represent a linear	To fit the best line and
	relationship between	to estimate one variable
	two variables.	based on another.
	No Difference.	Both variables are
		different.
	To find a numerical	To estimate values of
	value expressing the	random variables based
	relationship between	on the values of fixed
	the variables.	variables.

MSE

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$

MSE = mean squared error

n = number of data points

 Y_i = observed values

 \hat{Y}_i = predicted values

