Proximal Incremental Newton Method

Anton Rodomanov

Higher School of Economics

26 February 2016

Seminar on Bayesian Methods in Machine Learning, Moscow, Russia

Problem formulation

We consider the following strongly convex optimization problem:

$$\min_{\mathbf{x}\in\mathbf{R}^d}\left[\phi(\mathbf{x}):=\frac{1}{n}\sum_{i=1}^n f_i(\mathbf{x})+h(\mathbf{x})\right],$$

where

- f_i: differentiable convex functions;
- h: convex and simple (possibly non-differentiable).

Example (regularized empirical risk minimization)

We want to fit a parametric model to the data.

- x: parameters of the model;
- $f_i(x)$: error of the model on the *i*th training sample;
- h(x): regularizer, e.g. $h(x) = \lambda ||x||_1$.

Problem formulation

We consider the following strongly convex optimization problem:

$$\min_{\mathbf{x} \in \mathbf{R}^d} \left[\phi(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x}) + h(\mathbf{x}) \right],$$

where

- f_i: differentiable convex functions;
- h: convex and simple (possibly non-differentiable).

Example (constrained empirical risk minimization)

Let $Q \subseteq \mathbb{R}^d$ be a convex set and h be the indicator function of Q:

$$h(x) = \begin{cases} 0, & x \in Q, \\ +\infty, & x \notin Q. \end{cases}$$

Then the unconstrained minimization of ϕ is equivalent to

$$\min_{x \in Q} \quad \frac{1}{n} \sum_{i=1}^{n} f_i(x).$$

Motivation

- n is very large ⇒ interested in methods whose iteration cost is independent of n.
- These methods are called incremental methods [Bertsekas, 2011]:
 - Purely stochastic: $x_{k+1} = \operatorname{prox}_h(x_k \alpha_k B_k \nabla f_{i_k}(x_k))$.
 - SGD [Robbins-Monro, 1951], oLBFGS [Schraudolph et al., 2007], AdaGrad
 [Duchi et al., 2011], SQN [Byrd et al., 2014], Adam [Kingma, 2014] etc.
 - Convergence rate: sublinear, usually O(1/k).
 - Purely incremental.
 - IAG [Blatt et al., 2007], SAG [Schmidt et al., 2013], SVRG [Johnson & Zhang, 2013], FINITO [Defazio et al., 2014b], SAGA [Defazio et al., 2014a], MISO [Mairal, 2015] etc.
 - Reducing variance: use an estimate $g_k \approx \nabla f(x_k)$ whose variance tends to zero as $x_k \to x^*$.
 - Convergence rate: linear, $O(c^k)$.
- **Goal**: an incremental method with a superlinear convergence rate.

Convergence rates

- Consider some iterative optimization method for solving $\min_x \phi(x)$.
- It generates the sequence $\{x_k\}$ such that $\phi(x_k) \to \phi(x^*)$ as $k \to \infty$.
- Define the sequence of residuals $\{r_k\}$ such that $r_k \ge 0$ and $r_k \to 0$, e.g. $r_k := ||x_k x^*||$ or $r_k := \phi(x_k) \phi(x^*)$.
- Convergence rates:
 - Linear: $r_{k+1} \le cr_k$, where 0 < c < 1.
 - **Sublinear**: $r_{k+1} \leq c_k r_k$, where $c_k \uparrow 1$.
 - **Superlinear**: $r_{k+1} \le c_k r_k$, where $c_k \downarrow 0$.

Newton method

Consider the following problem:

$$\min_{x} f(x),$$

where f is twice continuously differentiable and strongly convex.

- Let x_k be the current iterate and $H_k := \nabla^2 f(x_k) \succ 0$.
- Consider the second-order Taylor approximation of f around x_k :

$$m_k(x) := f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle.$$

• Find the minimum of the model: $\bar{x}_k := \operatorname{argmin}_x m_k(x)$,

$$\bar{x}_k = x_k - H_k^{-1} \nabla f(x_k).$$

• Newton step: $x_{k+1} := x_k + \alpha_k(\bar{x}_k - x_k)$,

$$x_{k+1} = x_k - \alpha_k H_k^{-1} \nabla f(x_k),$$

where $\alpha_k > 0$ is the step length:

- $\alpha_k \equiv 1$: pure Newton method;
- $\alpha_k \not\equiv 1$: damped Newton method.

Convergence of Newton method

Theorem (local convergence rate)

Suppose

- f is strongly convex with constant $\mu_f > 0$;
- $\nabla^2 f$ is Lipschitz-continuous with constant $M_f > 0$.
- the initial point x_0 is close enough to x^* :

$$||x_0-x^*||\leq \frac{\mu_f}{2M_f}.$$

Then the sequence $\{x_k\}_{k\geq 0}$, generated by the **pure Newton** method $(\alpha_k \equiv 1)$, converges to x^* at a superlinear (quadratic) rate:

$$||x_{k+1}-x^*|| \leq \frac{M_f}{\mu_f} ||x_k-x^*||^2.$$

Convergence of Newton method

Theorem (global convergence rate)

Suppose

- f is strongly convex with constant $\mu_f > 0$;
- ∇f is Lipschitz-continuous with constant $L_f > 0$.

Then, for any initial point x_0 , the damped Newton method with $\alpha_k = \mu_f/L_f$ generates a sequence $\{x_k\}$ such that $\{f(x_k)\}$ converges to $f(x^*)$ at a linear rate:

$$f(x_{k+1}) - f(x^*) \le \left(1 - \frac{\mu_f^2}{L_f^2}\right) [f(x_k) - f(x^*)].$$

Incremental Newton Method

Consider the sum-of-functions problem:

$$\min_{x} \left[f(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right],$$

where each f_i is twice continuously differentiable and strongly convex.

• Build the second-order Taylor model of each f_i:

$$m_k^i(x) := f_i(v_k^i) + \langle \nabla f_i(v_k^i), x - v_k^i \rangle + \frac{1}{2} \langle \nabla^2 f_i(v_k^i)(x - v_k^i), x - v_k^i \rangle.$$

- Model of the full function $f: m_k(x) := (1/n) \sum_{i=1}^n m_k^i(x)$.
- Iteration k:
 - Make a step: $x_{k+1} := x_k + \alpha_k(\bar{x}_k x_k)$, where $\bar{x}_k := \operatorname{argmin}_x m_k(x)$.
 - Update the model: choose $i_k \in \{1, \dots, n\}$ and change only one component of the model:

$$v_{k+1}^i := egin{cases} x_{k+1}, & i = i_k, \ v_k^i, & ext{otherwise}. \end{cases}$$

Efficient update of the model

Note that m_k is a quadratic function

$$m_k(x) = \frac{1}{2}\langle H_k x, x \rangle + \langle g_k - u_k, x \rangle + \text{const},$$

where

$$H_k := \frac{1}{n} \sum_{i=1}^n \nabla^2 f_i(v_k^i), \quad g_k := \frac{1}{n} \sum_{i=1}^n \nabla f_i(v_k^i), \quad u_k := \frac{1}{n} \sum_{i=1}^n \nabla^2 f_i(v_k^i) v_k^i.$$

• Since we update only one component at every iteration,

$$H_{k+1} = H_k + \frac{1}{n} [\nabla^2 f_i(v_{k+1}^i) - \nabla^2 f_i(v_k^i)],$$

$$g_{k+1} = g_k + \frac{1}{n} [\nabla f_i(v_{k+1}^i) - \nabla f_i(v_k^i)],$$

$$u_{k+1} = u_k + \frac{1}{n} [\nabla^2 f_i(v_{k+1}^i) v_{k+1}^i - \nabla^2 f_i(v_k^i) v_k^i].$$

- If we store v_k^i in memory, the cost of the update is independent of n.
- Cost of finding $\bar{x}_k := H_k^{-1}(u_k g_k)$ is also independent of n.

The algorithm

- 1: **Input**: $x_0, \ldots, x_{n-1} \in \mathbb{R}^d$: initial points; $\alpha > 0$: step length.
- 2: Initialize model:

$$\begin{array}{l} H \leftarrow (1/n) \sum_{i=1}^{n} \nabla^{2} f_{i}(x_{i-1}) \\ g \leftarrow (1/n) \sum_{i=1}^{n} \nabla f_{i}(x_{i-1}) \\ u \leftarrow (1/n) \sum_{i=1}^{n} \nabla^{2} f_{i}(x_{i-1}) x_{i-1} \\ v_{i} \leftarrow x_{i-1}, \ i = 1, \dots, n \end{array}$$

- 3: **for** $k \ge n 1$ **do**
- 4: Minimize model: $\bar{x} \leftarrow H^{-1}(u g)$
- 5: Make a step: $x_{k+1} \leftarrow x_k + \alpha(\bar{x} x_k)$
- 6: Update model:

$$i \leftarrow (k+1) \mod n + 1 H \leftarrow H + (1/n)[\nabla^2 f_i(x_{k+1}) - \nabla^2 f_i(v_i)] g \leftarrow g + (1/n)[\nabla f_i(x_{k+1}) - \nabla f_i(v_i)] u \leftarrow u + (1/n)[\nabla^2 f_i(x_{k+1})x_{k+1} - \nabla^2 f_i(v_i)v_i] v_i \leftarrow x_{k+1}$$

7: end for

Convergence of incremental Newton method

Theorem (Local convergence rate)

Suppose all the initial points x_0, \ldots, x_{n-1} are close enough to x^* :

$$||x_i - x^*|| \le \frac{\mu_f}{2M_f}, \quad i = 1, \dots, n.$$

Then the sequence $\{x_k\}$ generated by the **pure incremental Newton method** $(\alpha_k \equiv 1)$, converges to x^* at a superlinear rate:

$$||x_k - x^*|| \le z_k, \qquad k \ge 0,$$

$$z_{k+1} \le c_k z_k, \qquad k \ge n,$$

where

$$c_k := \left(1 - \frac{3}{4n}\right)^{2^{\lceil k/n \rceil - 1}}$$

More precisely, the converge rate is *n-step quadratic*:

$$z_{k+n} \leq \frac{M_f}{\mu_f} z_k^2, \qquad k \geq 0.$$

Convergence of incremental Newton method

Theorem (Global convergence rate)

Denote the condition number of f as $\kappa_f := L_f/\mu_f$. Then, for any initial points x_0, \ldots, x_{n-1} , the damped incremental Newton method with $\alpha_k = \kappa_f^{-3} (1 + 19\kappa_f(n-1))^{-1}$ generates a sequence $\{x_k\}$ such that $\{f(x_k)\}$ converges to $f(x^*)$ at a linear rate:

$$f(x_k) - f(x^*) \le c^k [f(x_0) - f(x^*)],$$

where

$$c := (1 - \kappa_f^{-4} (1 + 19\kappa_f (n - 1))^{-1})^{\frac{1}{1 + 2(n - 1)}}$$

Efficient model minimization for linear models

The minimum of the model m_k is given by

$$\bar{x}_k = H_k^{-1}(u_k - g_k).$$

- Consider linear models: $f_i(x) := \phi_i(\langle a_i, x \rangle)$ for some $a_i \in \mathbf{R}^d$.
- Denote $\nu_k^i := \langle a_i, \nu_k^i \rangle$. Then the model update can be written as

$$H_{k+1} = H_k + \frac{1}{n} [\phi_i''(\nu_{k+1}^i) - \phi_i''(\nu_k^i)] a_i a_i^{\top}$$

$$g_{k+1} = g_k + \frac{1}{n} [\phi_i'(\nu_{k+1}^i) - \phi_i'(\nu_k^i)] a_i,$$

$$u_{k+1} = u_k + \frac{1}{n} [\phi_i''(\nu_{k+1}^i) \nu_{k+1}^i - \phi_i''(\nu_k^i) \nu_k^i] a_i.$$

- Memory requirement reduces from $O(nd + d^2)$ to $O(n + d^2)$.
- Rank-1 update \Rightarrow apply Sherman-Morrison formula to $B_k := H_k^{-1}$:

$$B_{k+1} = B_k - \frac{\delta_k B_k a_i a_i^\top B_k}{n + \delta_k \langle B_k a_i, a_i \rangle}, \qquad \delta_k := \phi_i''(\nu_{k+1}^i) - \phi_i''(\nu_k^i).$$

• Iteration cost reduces from $O(d^3)$ to $O(d^2)$.

Proximal gradient method

Consider the minimization of a **composite function**:

$$\min_{x \in \mathbf{R}^d} \ \phi(x) := f(x) + h(x),$$

where

- f is differentiable and convex;
- h is convex and simple (possibly non-differentiable).
- Proximal gradient method:

$$x_{k+1} = \operatorname{prox}_{\alpha_k h}(x_k - \alpha_k \nabla f(x_k)),$$

where $\alpha_k > 0$ is the step length and prox is the **proximal operator**:

$$\operatorname{prox}_{\alpha h}(x) := \underset{y}{\operatorname{argmin}} \left[\alpha h(y) + \frac{1}{2} \left\| y - x \right\|^{2} \right].$$

This is equivalent to minimizing a separable quadratic model:

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \left[f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2\alpha_k} \|x - x_k\|^2 \right]$$

• Assumption "h is simple" means we can efficiently compute $\mathrm{prox}_{\alpha h}(\cdot)$.

Convergence of proximal gradient method

All the convergence results of the standard gradient method are retained as if there were no h(x). For example:

Theorem

Assume

- f is strongly convex with constant $\mu_f > 0$;
- ∇f is Lipschitz-continuous with constant $L_f > 0$.

Then, for any initial x_0 , the proximal gradient method converges to x^* at a linear rate:

$$||x_{k+1} - x^*|| \le \left(\frac{\kappa_f - 1}{\kappa_f + 1}\right) ||x_k - x^*||.$$

Evaluating proximal mapping: examples

• (ℓ_1 -norm regularization) $h(x) := ||x||_1$:

$$[\operatorname{prox}_{\alpha h}(x)]_i = \begin{cases} x_i - \alpha, & x_i > \alpha, \\ 0, & |x_i| \leq \alpha, \\ x_i + \alpha, & x_i < -\alpha. \end{cases}$$

• (Indicator of a convex set) $h(x) := I_Q(x)$:

$$h(x) = \underset{y \in Q}{\operatorname{argmin}} \frac{1}{2} \|y - x\|^2,$$

i.e. proximal operator generalizes the projection operator.

• (Elastic net regularization) $h(x) := ||x||_1 + (\gamma/2) ||x||_2^2$:

$$\operatorname{prox}_{\alpha h}(x) = \left(\frac{1}{1 + \alpha \gamma}\right) \operatorname{prox}_{\alpha \|\cdot\|_1}(x).$$

Proximal Newton method

Minimization of a composite function:

$$\min_{x \in \mathbf{R}^d} \ \phi(x) := f(x) + h(x).$$

- Let x_k be the current iterate and $H_k := \nabla^2 f(x_k) \succ 0$.
- Build a model of ϕ around x_k :

$$m_k(x) := f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle H_k(x - x_k), x - x_k \rangle + h(x).$$

• Find the minimum of the model: $\bar{x}_k := \operatorname{argmin} m_k(x)$,

$$\bar{x}_k = \operatorname{prox}_h^{H_k}(x_k - H_k^{-1} \nabla f(x_k)),$$

where prox is the **scaled proximal operator**:

$$\operatorname{prox}_{h}^{H}(x) := \underset{y}{\operatorname{argmin}} \left[h(y) + \frac{1}{2} \|y - x\|_{H}^{2} \right].$$

• Proximal Newton step:

$$x_{k+1} := x_k + \alpha_k(\bar{x}_k - x_k).$$

Evaluating the scaled proximal mapping

Scaled proximal mapping:

$$\operatorname{prox}_{h}^{H}(x) := \underset{y}{\operatorname{argmin}} \left[h(y) + \frac{1}{2} \|y - x\|_{H}^{2} \right].$$

- Cannot be computed analytically even if h is separable (e.g. ℓ_1 -norm) \Rightarrow need to use an auxiliary optimization method for this subproblem.
- We need to minimize a composite function

$$\Phi(y) := h(y) + F(y).$$

• Define **composite gradient mapping** of a function *f*:

$$g_{\alpha}^f(y) := \frac{1}{\alpha}(y - \operatorname{prox}_{\alpha h}(y - \alpha \nabla f(y))),$$

where $\alpha > 0$ is some step length. If $h \equiv 0$, then $g_{\alpha}^{f}(y) = \nabla f(y)$.

• **Termination criterion** for the inner method: stop at y if

$$\left\|g_{\alpha}^{F}(y)\right\| \leq \min\{1, \Delta_{k}^{\gamma}\}\Delta_{k}, \qquad \Delta_{k} := \left\|g_{1}^{f}(x_{k})\right\|$$

Possible inner method: Fast Gradient Method [Nesterov, 2013].

Convergence of proximal Newton method

Due to the special termination criterion for the inner method:

- We do not spend much effort on solving the subproblem accurately at early iterations of Newton method ⇒ iteration complexity decreases.
- We do not loose anything in convergence rates:
 - pure Newton ⇒ superlinear convergence;
 - damped Newton \Rightarrow linear convergence.

Incremental proximal Newton method

$$\min_{x} \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x) \right].$$

• Incorporate *h* into the model:

$$m_k^i(x) := f_i(v_k^i) + \langle \nabla f_i(v_k^i), x - v_k^i \rangle + \frac{1}{2} \langle \nabla^2 f_i(v_k^i)(x - v_k^i), x - v_k^i \rangle,$$

$$m_k(x) := \frac{1}{n} \sum_{i=1}^n m_k^i(x) + h(x).$$

- Everything is the same. Now \bar{x}_k becomes $\bar{x}_k = \text{prox}_h^{H_k}[H_k^{-1}(u_k g_k)]$.
- \bullet Termination criterion for the inner method: stop at y if

$$\|g_{\alpha}^{F}(y)\| \leq \min\{1, \Delta_{k}^{\gamma}\}\Delta_{k},$$

where Δ_k is the incremental composite gradient mapping:

$$\Delta_k := \|ar{v}_k - \operatorname{prox}_h(ar{v}_k - g_k)\|, \qquad ar{v}_k = \frac{1}{n} \sum_{i=1}^n v_k^i.$$

Convergence of incremental proximal Newton method

Inexact solution of the subproblem does not kill superlinear convergence:

Theorem

Suppose all the initial points $x_0, ..., x_{n-1}$ are close enough to x^* :

$$||x_i - x^*|| \le \min \left\{ \frac{\mu_f}{2M_f}, \left(\frac{\mu_f^3}{128(2 + L_f)^{5+2\gamma}} \right)^{1/(2\gamma)} \right\}.$$

Then the sequence $\{x_k\}$, generated by the pure incremental proximal Newton method $(\alpha_k \equiv 1)$, converges to x^* at a superlinear rate:

$$||x_k - x^*|| \le z_k, \qquad k \ge 0$$

$$z_{k+1} \le c_k z_k, \qquad k \ge n,$$

where

$$c_k := \left(1 - \frac{7}{16n}\right)^{(1+\gamma)^{\lceil k/n \rceil/2}}$$

Analogously, there is a theorem about global linear convergence.

19 / 21

Experimental results: ℓ_2 -regularized logistic regression

• a9a ($n = 32\,000$, d = 123)

• covtype (n = 500000, d = 54)

Experimental results: ℓ_2 -regularized logistic regression

• mnist8m (n = 8000000, d = 784)

• dna18m (n = 18000000, d = 800)

Experimental results: ℓ_1 -regularized logistic regression

• a9a ($n = 32\,000, d = 123$)

• covtype (n = 500000, d = 54)

