Characterizing the Age of Information with Prioritized Streams

Chia-Hao Chang, Amudheesan Nakkeeran, Eunsun Kim

2 May 2019

Outline

- Age of Information (AoI)
- System Model and Scenarios
- Related Work and Objective
- Stochastic Hybrid Systems (SHS) Introduction
- SHS for AoI
- Results and Discussion

Age of Information(AoI)

It matters mainly in the distributed machine type networks

- Performance metric of a system (freshness of data)
- e.g.Environmental monitoring system, Sensor Networks, Vehicular networks
- Priority
- e.g. Critical Safety Data vs. Non-safety Data

Age of Information(AoI)

Definition of Aol

 Instantaneous Aol of a stream at time t

$$\Delta(t) = t - t_i$$

- t_i: time-stamp of the most recently delivered packet
- Total Average Aol

$$\begin{split} \bar{\Delta} &= \sum_{k=1}^{N} \bar{\Delta}_k = \\ &\sum_{k=1}^{N} \lim_{\tau \to \infty} \frac{1}{\tau} \int_{0}^{\tau} \Delta_k(t) dt \end{split}$$

- each with an instantaneous Aol $\Delta_k(t)$, $1 \le k \le N$.

System Models and Scenarios

Preemption with No Waiting Room(Packet Discard)

- N information streams share a common service facility
- Each stream from each source has a different priority

2 May 2019

5 / 17

System Models and Scenarios

Preemption with Individual Waiting Room(Store and Resume)

Preemption occurs here

- · The highest priority goes to the server
- The highest priority preempts a packet while in service

Individual Queue/Buffer

- Any new arrival replaces the existing data of the stream in its own buffer or in service
- Any packet preempted in service is stored in its own buffer

Related Work¹

- Aol Analysis of N information streams
- with the same arrival rate
- with individual waiting rooms
- compared to a system with no waiting room

¹ Ali Maatouk, Mohamad Assad, Anthony Ephremides, "Age of Information With Prioritized Streams: When to Buffer Preempted Packets?", Jan 2019, arxiv preprint available online.

Objective

To minimize total average AoI in individual waiting room scenario

- In the related work,
- having individual waiting rooms is clearly not beneficial for all streams(i.e. stream 3, lower priority)
- due to the fact that higher priority streams keeps preempting lower priority streams
- In this project, we consider having heterogeneous arrival rates,
- specifically lower arrival rate for higher priority streams
- higher arrival rates for lower priority streams
- We explore if this would be beneficial to all streams in terms of average AoI when there are individual waiting rooms

In class: processes with discrete states

Chang, Nakkeeran, Kim

² J.P.Hespanha," Modeling and Analysis of Stochastic Hybrid Systems," IEEE Proc.-Control Theory Appl., vol.153, no.5., pp.520-535, Sep.2006

- In class: processes with discrete states
- SHS: hybrid states a state is partitioned into
 - a discrete component $q(t) \in \mathcal{Q} = \{0, 1, 2, \dots, m\}$
 - a continuous component $\mathbf{x}(t) = [x_0(t) \dots x_n(t)] \in \mathbb{R}^{n+1}$

Chang, Nakkeeran, Kim

Aol with Prioritized streams

2 May 2019

9 / 17

² J.P.Hespanha," Modeling and Analysis of Stochastic Hybrid Systems," IEEE Proc.-Control Theory Appl., vol.153, no.5., pp.520-535, Sep.2006

- In class: processes with discrete states
- SHS: hybrid states a state is partitioned into
 - a discrete component $q(t) \in \mathcal{Q} = \{0, 1, 2, \dots, m\}$
 - a continuous component $\mathbf{x}(t) = [x_0(t) \dots x_n(t)] \in \mathbb{R}^{n+1}$
- The discrete component can be modelled as a CTMC

Chang, Nakkeeran, Kim

² J.P.Hespanha," Modeling and Analysis of Stochastic Hybrid Systems," IEEE Proc.-Control Theory Appl., vol.153, no.5., pp.520-535, Sep.2006

- In class: processes with discrete states
- SHS: hybrid states a state is partitioned into
 - a discrete component $q(t) \in \mathcal{Q} = \{0, 1, 2, \dots, m\}$
 - a continuous component $\mathbf{x}(t) = [x_0(t) \dots x_n(t)] \in \mathbb{R}^{n+1}$
- The discrete component can be modelled as a CTMC
- While in discrete state $q \in \mathcal{Q}$, $\mathbf{x}(t)$ evolves according to

$$\dot{\mathbf{x}} = f(q, \mathbf{x}, t)$$

for mapping $f: \mathcal{Q} \times \mathbb{R}^{n+1} \times [0, \infty) \to \mathbb{R}^{n+1}$

Chang, Nakkeeran, Kim

- In class: processes with discrete states
- SHS: hybrid states a state is partitioned into
 - a discrete component $q(t) \in \mathcal{Q} = \{0, 1, 2, \dots, m\}$
 - a continuous component $\mathbf{x}(t) = [x_0(t) \dots x_n(t)] \in \mathbb{R}^{n+1}$
- The discrete component can be modelled as a CTMC
- While in discrete state $q \in \mathcal{Q}$, $\mathbf{x}(t)$ evolves according to

$$\dot{\mathbf{x}} = f(q, \mathbf{x}, t) + g(q, \mathbf{x}, t)\dot{\mathbf{z}}$$

for mapping $f: \mathcal{Q} \times \mathbb{R}^{n+1} \times [0,\infty) \to \mathbb{R}^{n+1}$ and $g: \mathcal{Q} \times \mathbb{R}^{n+1} \times [0,\infty) \to \mathbb{R}^{(n+1)\times k}$ and k-vector $\mathbf{z}(t)$ of independent Brownian motion processes

² J.P.Hespanha," Modeling and Analysis of Stochastic Hybrid Systems," IEEE Proc.-Control Theory Appl., vol.153, no.5., pp.520-535, Sep.2006

• Depending on the behaviour of q(t), define a set of transitions for the SHS: $\mathcal{L} = \{1, 2, \dots, \ell\}$

Chang, Nakkeeran, Kim

- Depending on the behaviour of q(t), define a set of transitions for the SHS: $\mathcal{L} = \{1, 2, \dots, \ell\}$
- ullet When a discrete transition q o q' happens, the continuous state can have a discontinuous jump ${f x} o {f x}'$

Chang, Nakkeeran, Kim Aol w

² J.P.Hespanha," Modeling and Analysis of Stochastic Hybrid Systems," IEEE Proc.-Control Theory Appl., vol.153, no.5., pp.520-535, Sep.2006

- Depending on the behaviour of q(t), define a set of transitions for the SHS: $\mathcal{L} = \{1, 2, \dots, \ell\}$
- When a discrete transition $q \to q'$ happens, the continuous state can have a discontinuous jump $\mathbf{x} \to \mathbf{x}'$ \mathbf{x} is piecewise-continuous

Chang, Nakkeeran, Kim

- Depending on the behaviour of q(t), define a set of transitions for the SHS: $\mathcal{L} = \{1, 2, \dots, \ell\}$
- When a discrete transition $q \to q'$ happens, the continuous state can have a discontinuous jump $\mathbf{x} \to \mathbf{x}' \mathbf{x}$ is piecewise-continuous
- ullet For each $\ell \in \mathcal{L}$, define a discrete reset map ϕ_{ℓ} such that the transition

$$(q', \mathbf{x}') = \phi_{\ell}(q, \mathbf{x}, t)$$

happens with intensity

$$\lambda^{(\ell)}(q, \mathbf{x}, t)$$

Introduction to Stochastic Hybrid Systems (SHS)

Introduction to Stochastic Hybrid Systems (SHS)

 For AoI, we consider a restricted class of SHS called the piecewise-linear SHS

SHS and AoI

SHS is a good candidate for Aol

- "Random" nature of the system (e.g., random packet arrival, random service requirement...)
- ② AoI is **continuous** and grows **linearly** with respect to t.
 - In particular, choose $\mathbf{x}(t)$ as AoI.

SHS and Aol

SHS is a good candidate for Aol

- "Random" nature of the system (e.g., random packet arrival, random service requirement...)
- Aol is continuous and grows linearly with respect to t.
 - In particular, choose $\mathbf{x}(t)$ as AoI.

Definition (Piecewise Linear SHS)

An SHS is said to be **peicewise linear** if $\mathbf{f}(q, \mathbf{x}, t)$ is a constant (vector) and the reset maps are linear, i.e., $\phi_{\ell}(q, \mathbf{x}, t) = (q'_{\ell}, \mathbf{x}\mathbf{A})$

SHS and AoI

SHS is a good candidate for Aol

- "Random" nature of the system (e.g., random packet arrival, random service requirement...)
- ② Aol is **continuous** and grows **linearly** with respect to t.
 - In particular, choose x(t) as AoI.

Definition (Piecewise Linear SHS)

An SHS is said to be **peicewise linear** if $\mathbf{f}(q, \mathbf{x}, t)$ is a constant (vector) and the reset maps are linear, i.e., $\phi_{\ell}(q, \mathbf{x}, t) = (q'_{\ell}, \mathbf{x}\mathbf{A})$

Assumption

The piecewise linear SHS is ergodic.

Distribution & Correlation

Define
$$\pmb{\pi} = \{\pi_q \colon q \in \mathcal{Q}\}$$
 and $\{\pmb{\mathsf{v}}_q \colon q \in \mathcal{Q}\}$ as

$$egin{aligned} \pi_q(t) &= \mathbb{P}(q(t) = q) = \mathbb{E}[\mathbf{1}\{q(t) = q\}] \ \mathbf{v}_q(t) &= \mathbb{E}[\mathbf{x}(t)\mathbf{1}\{q(t) = q\}] \end{aligned}$$

Distribution & Correlation

Define $\pi = \{\pi_q : q \in \mathcal{Q}\}$ and $\{\mathbf{v}_q : q \in \mathcal{Q}\}$ as

$$egin{aligned} \pi_q(t) &= \mathbb{P}(q(t) = q) = \mathbb{E}[\mathbf{1}\{q(t) = q\}] \ \mathbf{v}_q(t) &= \mathbb{E}[\mathbf{x}(t)\mathbf{1}\{q(t) = q\}] \end{aligned}$$

Clearly,

$$\mathbb{E}[\mathbf{x}(t)] = \mathbb{E}[\sum_{q \in \mathcal{Q}} \mathbf{x}(t) \mathbf{1}\{q(t) = q\}] = \sum_{q \in \mathcal{Q}} \mathbf{v}_q(t)$$

So.

$$\text{Average AoI} = \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbf{x}(\tau) d\tau \underbrace{=}_{\text{Ergodicity}} \lim_{t \to \infty} \mathbb{E}[\mathbf{x}(t)] = \lim_{t \to \infty} \sum_{q \in \mathcal{Q}} \mathbf{v}_q(t)$$

4 D > 4 D > 4 E > 4 E > E 9 Q P

The problem now reduces to

The limiting behavior of $\mathbf{v}_q(t)$

What is $\lim_{t\to\infty} \mathbf{v}_q(t)$?

See

R. D. Yates and S. K. Kaul: The age of information: Real-time status updating by multiple sources, CoRR, vol.abs/1608.08622, 2016.[Online]. Available: http://arxiv.org/abs/1608.08622

for further details.

Results and Discussion

Total arrival rate

Results and Discussion

References

- Ali Maatouk, Mohamad Assad, Anthony Ephremides, "Age of Information With Prioritized Streams: When to Buffer Preempted Packets?", Jan 2019, arxiv preprint available online
- J.P.Hespanha," Modeling and Analysis of Stochastic Hybrid Systems," IEEE Proc.-Control Theory Appl., vol.153, no.5., pp.520-535, Sep.2006
- R. D. Yates and S. K. Kaul, "The age of information: Real-time status updating by multiple sources", CoRR, vol.abs/1608.08622, 2016.[Online]. Available: http://arxiv.org/abs/1608.08622