Some computational results for generalized pressure Schur complement eigenvalues of the surface Stokes problem

Alexander Zhiliakov*

February 10, 2019

1 Bilinear forms and matrices

We set $n_{\mathbf{A}}$ to be the number of velocity d.o.f. and $n_{\mathbf{S}}$ to be the number of pressure d.o.f. Vector stiffness, divergence, pressure mass, normal stabilization, and full stabilization matrices resulting from Trace FEM discretization of the surface Stokes problem [1] are defined via

$$\langle \mathbf{A}\,\bar{\mathbf{u}},\bar{\mathbf{v}}\rangle = \int_{\Gamma} \left(E_s(\mathbf{u}) : E_s(\mathbf{v}) + \mathbf{u} \cdot \mathbf{v} + \tau \,u_N \,v_N \right) \mathrm{d}s + \rho_u \int_{\Omega_h^{\Gamma}} ([\nabla \mathbf{u}]\,\hat{\mathbf{n}}) \cdot ([\nabla \mathbf{v}]\,\hat{\mathbf{n}}) \,\mathrm{d}\mathbf{x}, \quad \mathbf{A} \in \mathbb{R}^{n_{\mathbf{A}} \times n_{\mathbf{A}}}, \quad (1)$$

$$\langle \mathbf{B}\,\bar{\mathbf{u}},\bar{\mathbf{q}}\rangle = -\int_{\Gamma} q\,\operatorname{div}_{\Gamma}\mathbf{u}\,\mathrm{d}s, \quad \mathbf{B}\in\mathbb{R}^{n_{\mathbf{S}}\times n_{\mathbf{A}}},$$
 (2)

$$\langle \mathbf{M}_0 \, \bar{\mathbf{p}}, \bar{\mathbf{q}} \rangle = \int_{\Gamma} p \, q \, \mathrm{d}s, \quad \mathbf{M}_0 \in \mathbb{R}^{n_{\mathbf{S}} \times n_{\mathbf{S}}},$$
 (3)

$$\langle \mathbf{C}_n \, \bar{\mathbf{p}}, \bar{\mathbf{q}} \rangle = \rho_p \int_{\Omega_h^{\Gamma}} \frac{\partial p}{\partial \hat{\mathbf{n}}} \frac{\partial q}{\partial \hat{\mathbf{n}}} \, \mathrm{d}\mathbf{x}, \quad \mathbf{C}_n \in \mathbb{R}^{n_S \times n_S}, \tag{4}$$

$$\langle \mathbf{C}_{\text{full}} \, \bar{\mathbf{p}}, \bar{\mathbf{q}} \rangle = \rho_p \int_{\Omega_h^{\Gamma}} \nabla p \cdot \nabla q \, \mathrm{d}\mathbf{x}, \quad \mathbf{C}_{\text{full}} \in \mathbb{R}^{n_{\mathbf{S}} \times n_{\mathbf{S}}},$$
 (5)

respectively. Here $\bar{\mathbf{u}}$ denotes a vector of d.o.f. corresponding to a FE interpolant \mathbf{u} (analogously for $\bar{\mathbf{p}}$ and p). Mesh-dependent parameters are set as

$$\tau = h^{-2}, \quad \rho_u = \rho_p = h, \tag{6}$$

and h is the mesh size of Ω_h^{Γ} . Γ is chosen either as the unit sphere or torus, $\Gamma = \Gamma_{\rm sph}$ or $\Gamma = \Gamma_{\rm tor}$ (see Figure 1).

We also define matrices

$$\mathbf{M}_n \coloneqq \mathbf{M}_0 + \mathbf{C}_n,\tag{7}$$

$$\mathbf{M}_{\text{full}} \coloneqq \mathbf{M}_0 + \mathbf{C}_{\text{full}}.\tag{8}$$

We are interested in (generalized) extreme eigenvalues of the pressure Schur complement matrices

$$\mathbf{S}_0 \coloneqq \mathbf{B} \, \mathbf{A}^{-1} \, \mathbf{B}^T, \tag{9}$$

$$\mathbf{S}_n \coloneqq \mathbf{S}_0 + \mathbf{C}_n,\tag{10}$$

$$\mathbf{S}_{\text{full}} \coloneqq \mathbf{S}_0 + \mathbf{C}_{\text{full}},\tag{11}$$

^{*}Department of Mathematics, University of Houston, Houston, Texas 77204 (alex@math.uh.edu).

i.e. in solving

$$\mathbf{S}_{\star} \mathbf{x} = \lambda \, \mathbf{M}_{\star} \mathbf{x},\tag{12}$$

where " \star " stands for "0", "n" or "full." We denote by $0 = \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_{n_S} = O(1)$ the spectrum of (12).

2 Solution description

(TBA)

 $n_{\mathbf{A}}$ is the number of velocity d.o.f, $n_{\mathbf{S}}$ is the number of pressure d.o.f., $0 = \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_{n_{\mathbf{S}}}$ is the (approximate) spectrum of \mathbf{S} , and r_i are the residual norm, i.e.

$$r_i \coloneqq \|\mathbf{S}\,\mathbf{x} - \lambda_i\,\mathbf{M}\,\mathbf{x}\|_2$$

Note: $h = 2.6 \times 10^{-2}$ for $\mathbf{P}_2 - P_1$ (the last mesh level) was computed w/ $\epsilon = 10^{-5}$, and everything else w/ $\epsilon = 10^{-4}$. Apparently $\epsilon = 10^{-4}$ did not work for the finest mesh level: λ_2 turned out to be negative for full and normal stabs.

Figure 1: First three mesh levels for $\Gamma_{\rm sph}$ (top) and $\Gamma_{\rm tor}$ (bottom)

Table 1: $\mathbf{P}_1 - P_1$ for Γ_{sph}

h	$n_{\mathbf{A}}$	$n_{\mathbf{S}}$	\mathbf{S}_0		\mathbf{S}_n		$\mathbf{S}_{\mathrm{full}}$	
			λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$
8.33×10^{-1}	153	51	1.32×10^{-2}	1.42	7.48×10^{-1}	1.13	9.58×10^{-1}	1.06
4.17×10^{-1}	570	190	5.12×10^{-3}	1.04	5.77×10^{-1}	1.	8.54×10^{-1}	1.
2.08×10^{-1}	1992	664	4.4×10^{-3}	7.93×10^{-1}	3.87×10^{-1}	1.	6.71×10^{-1}	1.
1.04×10^{-1}	8292	2764	2.01×10^{-3}	7.75×10^{-1}	2.19×10^{-1}	1.	5.82×10^{-1}	1.
5.21×10^{-2}	32736	10912	6.04×10^{-5}	9.81×10^{-1}	1.17×10^{-1}	1.	5.37×10^{-1}	1.
2.6×10^{-2}	131592	43864	3.53×10^{-5}	8.67×10^{-1}	5.72×10^{-2}	1.	5.16×10^{-1}	1.
1.3×10^{-2}	525864	175288	2.16×10^{-6}	7.34×10^{-1}	2.84×10^{-2}	1.	5.04×10^{-1}	1.
h	$n_{\mathbf{A}}$	$n_{\mathbf{S}}$	\mathbf{S}_0		\mathbf{S}_n		$\mathbf{S}_{\mathrm{full}}$	
70			r_2	$r_{n_{\mathbf{S}}}$	r_2	$r_{n_{\mathbf{S}}}$	r_2	$r_{n_{\mathbf{S}}}$
8.33×10^{-1}	153	51	$2. \times 10^{-17}$	$8. \times 10^{-10}$	$1. \times 10^{-7}$	$4. \times 10^{-8}$	$3. \times 10^{-7}$	$1. \times 10^{-7}$
4.17×10^{-1}	570	190	$3. \times 10^{-18}$	$3. \times 10^{-10}$	$6. \times 10^{-7}$	$1. \times 10^{-3}$	$1. \times 10^{-7}$	$8. \times 10^{-4}$
2.08×10^{-1}	1992	664	$2. \times 10^{-17}$	$6. \times 10^{-9}$	$6. \times 10^{-8}$	$9. \times 10^{-4}$	$2. \times 10^{-10}$	$8. \times 10^{-3}$
1.04×10^{-1}	8292	2764	$6. \times 10^{-16}$	$9. \times 10^{-10}$	$2. \times 10^{-8}$	$2. \times 10^{-3}$	$2. \times 10^{-8}$	$3. \times 10^{-3}$
5.21×10^{-2}	32736	10912	$8. \times 10^{-19}$	$1. \times 10^{-11}$	$1. \times 10^{-5}$	$7. \times 10^{-4}$	$1. \times 10^{-3}$	$7. \times 10^{-4}$
2.6×10^{-2}	131592	43864	$5. \times 10^{-18}$	$2. \times 10^{-12}$	$8. \times 10^{-9}$	$7. \times 10^{-4}$	$3. \times 10^{-8}$	$9. \times 10^{-4}$
1.3×10^{-2}	525864	175288	$5. \times 10^{-22}$	$8. \times 10^{-14}$	$8. \times 10^{-12}$	$2. \times 10^{-4}$	$3. \times 10^{-5}$	$4. \times 10^{-4}$

Table 2: $\mathbf{P}_2 - P_1$ for Γ_{sph}

h	$n_{\mathbf{A}}$	$n_{\mathbf{S}}$	\mathbf{S}_0		\mathbf{S}_n		$\mathbf{S}_{\mathrm{full}}$	
			λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$
8.33×10^{-1}	789	51	3.22×10^{-1}	1.73	8.27×10^{-1}	1.17	9.68×10^{-1}	1.07
4.17×10^{-1}	3240	190	9.17×10^{-2}	1.08	6.45×10^{-1}	1.	8.56×10^{-1}	1.
2.08×10^{-1}	11718	664	1.78×10^{-1}	8.31×10^{-1}	5.49×10^{-1}	1.	6.75×10^{-1}	1.
1.04×10^{-1}	48762	2764	1.04×10^{-1}	8.13×10^{-1}	5.14×10^{-1}	1.	5.82×10^{-1}	1.
5.21×10^{-2}	193014	10912	2.99×10^{-3}	9.89×10^{-1}	5.02×10^{-1}	1.	5.34×10^{-1}	1.
2.6×10^{-2}	775998	43864	1.17×10^{-3}	7.9×10^{-1}	4.96×10^{-1}	1.	5.17×10^{-1}	1.
h	$n_{\mathbf{A}}$	$n_{\mathbf{S}}$	\mathbf{S}_0		\mathbf{S}_n		$\mathbf{S}_{\mathrm{full}}$	
70			r_2	$r_{n_{\mathbf{S}}}$	r_2	$r_{n_{\mathbf{S}}}$	r_2	$r_{n_{\mathbf{S}}}$
8.33×10^{-1}	789	51	$4. \times 10^{-9}$	$4. \times 10^{-10}$	$2. \times 10^{-8}$	$2. \times 10^{-7}$	$2. \times 10^{-7}$	$3. \times 10^{-7}$
4.17×10^{-1}	3240	190	$6. \times 10^{-12}$	$4. \times 10^{-9}$	$7. \times 10^{-10}$	$4. \times 10^{-2}$	$3. \times 10^{-10}$	$4. \times 10^{-2}$
2.08×10^{-1}	11718	664	$1. \times 10^{-10}$	$3. \times 10^{-9}$	$2. \times 10^{-6}$	$7. \times 10^{-3}$	$2. \times 10^{-9}$	$1. \times 10^{-2}$
1.04×10^{-1}	48762	2764	$1. \times 10^{-11}$	$9. \times 10^{-10}$	$2. \times 10^{-5}$	$2. \times 10^{-3}$	$2. \times 10^{-7}$	$2. \times 10^{-3}$
5.21×10^{-2}	193014	10912	$2. \times 10^{-16}$	$3. \times 10^{-12}$	$7. \times 10^{-5}$	$1. \times 10^{-3}$	$5. \times 10^{-7}$	$2. \times 10^{-3}$
2.6×10^{-2}	775998	43864	$7. \times 10^{-18}$	$5. \times 10^{-12}$	$4. \times 10^{-8}$	$3. \times 10^{-4}$	$2. \times 10^{-8}$	$6. \times 10^{-4}$

Table 3: $\mathbf{P}_1 - P_1$ for Γ_{tor}

h	$n_{\mathbf{A}}$	$n_{\mathbf{S}}$	\mathbf{S}_0		\mathbf{S}_n		$\mathbf{S}_{\mathrm{full}}$	
			λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$
2.08×10^{-1}	972	324	5.04×10^{-2}	4.93	2.84×10^{-1}	1.35	3.64×10^{-1}	1.19
1.04×10^{-1}	4740	1580	2.99×10^{-3}	3.83	1.58×10^{-1}	1.02	3.35×10^{-1}	1.01
h	$n_{\mathbf{A}}$	$n_{\mathbf{A}}$ $n_{\mathbf{S}}$	\mathbf{S}_0		\mathbf{S}_n		$\mathbf{S}_{\mathrm{full}}$	
			r_2	$r_{n_{\mathbf{S}}}$	r_2	$r_{n_{\mathbf{S}}}$	r_2	$r_{n_{\mathbf{S}}}$
2.08×10^{-1}	972	324	$3. \times 10^{-10}$	$3. \times 10^{-17}$	$9. \times 10^{-13}$	$5. \times 10^{-8}$	$1. \times 10^{-13}$	$3. \times 10^{-7}$
1.04×10^{-1}	4740	1580	$1. \times 10^{-15}$	$2. \times 10^{-18}$	$5. \times 10^{-11}$	$5. \times 10^{-8}$	$4. \times 10^{-10}$	$8. \times 10^{-8}$

Table 4: $\mathbf{P}_2 - P_1$ for Γ_{tor}

h	$n_{\mathbf{A}}$	$n_{\mathbf{S}}$	\mathbf{S}_0		\mathbf{S}_n		$\mathbf{S}_{\mathrm{full}}$	
			λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$
2.08×10^{-1}	5184	324	9.92×10^{-2}	3.89	1.33×10^{-1}	1.37	1.75×10^{-1}	1.19
1.04×10^{-1}	27906	1580	1.46×10^{-2}	4.35	2.84×10^{-1}	1.04	2.99×10^{-1}	1.02
h	$n_{\mathbf{A}}$	$n_{\mathbf{A}}$ $n_{\mathbf{S}}$	\mathbf{S}_0		\mathbf{S}_n		$\mathbf{S}_{ ext{full}}$	
			r_2	$r_{n_{\mathbf{S}}}$	r_2	$r_{n_{\mathbf{S}}}$	r_2	$r_{n_{\mathbf{S}}}$
2.08×10^{-1}	5184	324	$1. \times 10^{-16}$	$7. \times 10^{-13}$	$5. \times 10^{-16}$	$1. \times 10^{-8}$	$7. \times 10^{-16}$	$4. \times 10^{-8}$
1.04×10^{-1}	27906	1580	$2. \times 10^{-19}$	$4. \times 10^{-18}$	$1. \times 10^{-14}$	$7. \times 10^{-8}$	$1. \times 10^{-15}$	$2. \times 10^{-7}$

References

[1] M. Olshanskii, A. Quaini, A. Reusken, and V. Yushutin. A finite element method for the surface stokes problem. SIAM Journal on Scientific Computing, 40(4):A2492–A2518, 2018.