Welcome! Credit Card Fraud detection

By: Nick Oseland - Data Scientist Machine Learning

Problem

Viewing the Data

- 284,807 Transactions over a 2 day period

Numerical Data

- 30 features

Class = Fraudulent(1) or Valid(0)

492 frauds

Viewing the Data cont.

- 2 labeled features
- "Time"
- "Amount"
- 28 unlabeled features
- Highly unbalanced

The Goal?

Create a model that can accurately predict fraud moving forward.

Modeling Decision Tree

Confusion Matrix and ROC Curve

		Predicted Class	
L		No	Yes
Observed Class	No	TN	FP
	Yes	FN	TP

TN True Negative
FP False Positive
FN False Negative
TP True Positive

Model Performance

Accuracy = (TN+TP)/(TN+FP+FN+TP)

Precision = TP/(FP+TP)

Sensitivity = TP/(TP+FN)

Specificity = TN/(TN+FP)

Valid transactions = 100%(rounded)

Got 93,786 correct out of 93,838

Fraudulent transactions = 70%

Got 119 correct out of 149

Modeling Random Forest

- Much more versatile
- Longer computational time

Precision score for Valid transactions still 100% (rounded) but only missed 7 out of 93,838(missed 52 with Decision Tree)

Precision score of 95% for fraudulent transactions(+25%), getting 121 correctly identified fraudulent points out of 149

Conclusion

Decision trees worked well

Random Forest worked better

Future work:

- Gather more data
- Experiment with different classification algorithms.
- Discuss best metrics for model success

