Fibonacci Modified

A series is defined in the following manner:

Given the n^{th} and $(n+1)^{th}$ terms, the $(n+2)^{th}$ can be computed by the following relation

$$T_{n+2} = (T_{n+1})^2 + T_n$$

So, if the first two terms of the series are 0 and 1:

the third term = $1^2 + 0 = 1$

fourth term = $1^2 + 1 = 2$

fifth term = $2^2 + 1 = 5$

... And so on.

Given three integers \mathbf{A} , \mathbf{B} and \mathbf{N} , such that the first two terms of the series (1st and 2nd terms) are \mathbf{A} and \mathbf{B} respectively, compute the Nth term of the series.

Input Format

You are given three space separated integers **A**, **B** and **N** on one line.

Input Constraints

0 <= A,B <= 2

3 <= N <= 20

Output Format

One integer.

This integer is the **N**th term of the given series when the first two terms are **A** and **B** respectively.

Note

• Some output may even exceed the range of 64 bit integer.

Sample Input

0 1 5

Sample Output

5

Explanation

The first two terms of the series are 0 and 1. The fifth term is 5. How we arrive at the fifth term, is explained step by step in the introductory sections.