```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')

In [4]:
breast_cancer = pd.read_csv("breast_cancer.csv")
In [5]:
```

Out[5]:

breast_cancer.head()

	Patient_ID	Age	Gender	Protein1	Protein2	Protein3	Protein4	Tumour_Stage	Histology
0	TCGA-D8- A1XD	36	FEMALE	0.080353	0.42638	0.54715	0.273680	III	Infiltrating Ductal Carcinoma
1	TCGA- EW-A1OX	43	FEMALE	-0.420320	0.57807	0.61447	-0.031505	II	Mucinous Carcinoma
2	TCGA-A8- A079	69	FEMALE	0.213980	1.31140	-0.32747	-0.234260	III	Infiltrating Ductal Carcinoma
3	TCGA-D8- A1XR	56	FEMALE	0.345090	-0.21147	-0.19304	0.124270	II	Infiltrating Ductal Carcinoma
4	TCGA-BH- A0BF	56	FEMALE	0.221550	1.90680	0.52045	-0.311990	II	Infiltrating Ductal Carcinoma
4									•

In [6]: ▶

```
breast_cancer.tail()
```

Out[6]:

	Patient_ID	Age	Gender	Protein1	Protein2	Protein3	Protein4	Tumour_Stage	Histolog
329	TCGA-AN- A04A	36	FEMALE	0.23180	0.61804	-0.55779	-0.517350	III	Infiltratine Ducta Carcinoma
330	TCGA-A8- A085	44	MALE	0.73272	1.11170	-0.26952	-0.354920	II	Infiltratine Lobula Carcinoma
331	TCGA-A1- A0SG	61	FEMALE	-0.71947	2.54850	-0.15024	0.339680	II	Infiltrating Ducta Carcinoma
332	TCGA-A2- A0EU	79	FEMALE	0.47940	2.05590	-0.53136	-0.188480	1	Infiltrating Ducta Carcinoma
333	TCGA-B6- A40B	76	FEMALE	-0.24427	0.92556	-0.41823	-0.067848	1	Infiltratine Ducta Carcinoma
4									•

```
In [7]:
```

breast_cancer.shape

Out[7]:

(334, 16)

In [8]:

breast_cancer.columns

Out[8]:

In [9]:

```
breast_cancer.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 334 entries, 0 to 333 Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	Patient_ID	334 non-null	object
1	Age	334 non-null	int64
2	Gender	334 non-null	object
3	Protein1	334 non-null	float64
4	Protein2	334 non-null	float64
5	Protein3	334 non-null	float64
6	Protein4	334 non-null	float64
7	Tumour_Stage	334 non-null	object
8	Histology	334 non-null	object
9	ER status	334 non-null	object
10	PR status	334 non-null	object
11	HER2 status	334 non-null	object
12	Surgery_type	334 non-null	object
13	Date_of_Surgery	334 non-null	object
14	Date_of_Last_Visit	317 non-null	object
15	Patient_Status	321 non-null	object
dtyp	es: float64(4), int6	4(1), object(11)	

memory usage: 41.9+ KB

In [10]: H

```
breast_cancer.describe()
```

Out[10]:

	Age	Protein1	Protein2	Protein3	Protein4
count	334.000000	334.000000	334.000000	334.000000	334.000000
mean	58.886228	-0.029991	0.946896	-0.090204	0.009819
std	12.961212	0.563588	0.911637	0.585175	0.629055
min	29.000000	-2.340900	-0.978730	-1.627400	-2.025500
25%	49.000000	-0.358888	0.362173	-0.513748	-0.377090
50%	58.000000	0.006129	0.992805	-0.173180	0.041768
75%	68.000000	0.343598	1.627900	0.278353	0.425630
max	90.000000	1.593600	3.402200	2.193400	1.629900

```
H
In [11]:
breast_cancer.isnull().sum()
Out[11]:
Patient_ID
                        0
Age
                        0
Gender
                        0
Protein1
                        0
Protein2
                        0
Protein3
                        0
Protein4
                        0
Tumour_Stage
                        0
Histology
                        0
ER status
                        0
PR status
                        0
HER2 status
                        0
Surgery_type
                        0
                        0
Date_of_Surgery
Date_of_Last_Visit
                       17
Patient_Status
                       13
dtype: int64
                                                                                            H
In [12]:
breast_cancer.dropna(inplace = True)
In [13]:
                                                                                            H
breast_cancer.isnull().sum()
Out[13]:
Patient_ID
                       0
                       0
Age
Gender
                       0
Protein1
                       0
                       0
Protein2
Protein3
                       0
Protein4
                       0
Tumour_Stage
                       0
Histology
                       0
                       0
ER status
PR status
                       0
                       0
HER2 status
                       0
Surgery_type
Date_of_Surgery
                       0
Date_of_Last_Visit
                       0
Patient_Status
dtype: int64
```

```
H
In [14]:
breast_cancer.nunique()
Out[14]:
Patient_ID
                       317
                        57
Age
Gender
                         2
Protein1
                       316
Protein2
                       317
Protein3
                       317
Protein4
                       316
Tumour_Stage
                         3
Histology
                         3
ER status
                         1
                         1
PR status
HER2 status
                         2
                         4
Surgery_type
Date_of_Surgery
                       178
Date_of_Last_Visit
                       285
Patient_Status
                         2
dtype: int64
In [15]:
                                                                                          H
breast_cancer.Gender.unique()
Out[15]:
array(['FEMALE', 'MALE'], dtype=object)
In [17]:
                                                                                          H
breast_cancer.Gender.value_counts()
Out[17]:
```

FEMALE 313 MALE 4

Name: Gender, dtype: int64

In [18]:

```
plt.figure(figsize=(15,6))
sns.countplot('Gender', data = breast_cancer)
plt.xticks(rotation = 0)
plt.show()
```


In [21]:

In [26]:


```
In [27]: ▶
```

breast_cancer.Histology.unique()

Out[27]:

In [28]: ▶

breast_cancer.Histology.value_counts()

Out[28]:

Infiltrating Ductal Carcinoma 224
Infiltrating Lobular Carcinoma 81
Mucinous Carcinoma 12

Name: Histology, dtype: int64

In [29]:

```
plt.figure(figsize=(15,6))
sns.countplot('Histology', data = breast_cancer)
plt.xticks(rotation = 0)
plt.show()
```


In [32]: ▶


```
In [33]:
                                                                                             H
breast_cancer.Tumour_Stage.unique()
Out[33]:
array(['III', 'II', 'I'], dtype=object)
In [34]:
                                                                                             H
breast_cancer.Tumour_Stage.value_counts()
Out[34]:
       180
II
III
        77
        60
Ι
Name: Tumour_Stage, dtype: int64
                                                                                             H
In [35]:
plt.figure(figsize=(15,6))
sns.countplot('Tumour_Stage', data = breast_cancer)
plt.xticks(rotation = 0)
plt.show()
  175
  150
  125
100
100
  75
  50
  25
                                       Tumour_Stage
                                                                                             H
In [36]:
breast_cancer_type_by_stage = (breast_cancer.groupby(['Histology', 'Tumour_Stage'],
                                                         as_index = False).agg(Total = ('Age
                                                                                           'cοι
)
```

In [37]: ▶

```
breast_cancer_type_by_stage
```

Out[37]:

	Histology	Tumour_Stage	Total
0	Infiltrating Ductal Carcinoma	1	47
1	Infiltrating Ductal Carcinoma	II	120
2	Infiltrating Ductal Carcinoma	III	57
3	Infiltrating Lobular Carcinoma	1	10
4	Infiltrating Lobular Carcinoma	II	51
5	Infiltrating Lobular Carcinoma	III	20
6	Mucinous Carcinoma	1	3
7	Mucinous Carcinoma	II	9

In [38]: ▶


```
In [44]:
```

```
breast_cancer['Age'] = pd.cut(breast_cancer['Age'], bins=5)
```

In [46]: ▶

```
breast_cancer['Age'].head()
```

Out[46]:

```
0 (28.939, 41.2]
1 (41.2, 53.4]
2 (65.6, 77.8]
3 (53.4, 65.6]
4 (53.4, 65.6]
Name: Age, dtype: category
Categories (5, interval[float64, right]): [(28.939, 41.2] < (41.2, 53.4] < (53.4, 65.6] < (65.6, 77.8] < (77.8, 90.0]]</pre>
```

```
In [48]: ▶
```

```
plt.figure(figsize=(15,6))
sns.countplot(x = 'Age', hue = 'Tumour_Stage', data = breast_cancer)
plt.xticks(rotation = 0)
plt.show()
```


In [49]: ▶

```
plt.figure(figsize=(15,6))
sns.countplot(x = 'Age', hue = 'Histology', data = breast_cancer)
plt.xticks(rotation = 0)
plt.show()
```



```
In [50]:
protein_types = breast_cancer[['Protein1', 'Protein2', 'Protein3', 'Protein4']]
```

localhost:8888/notebooks/Breast Cancer Analysis - EDA and Prediction.ipynb

In [51]:

```
for i in protein_types.columns:
    sns.boxplot(x=protein_types[i], orient = 'h', palette = 'Set2')
    plt.show()
```


In [52]: ▶

In [53]:

breast_cancer_type_protein.head()

Out[53]:

	Histology	Protein1	Protein2	Protein3	Protein4
0	Infiltrating Ductal Carcinoma	0.080353	0.42638	0.54715	0.273680
1	Mucinous Carcinoma	-0.420320	0.57807	0.61447	-0.031505
2	Infiltrating Ductal Carcinoma	0.213980	1.31140	-0.32747	-0.234260
3	Infiltrating Ductal Carcinoma	0.345090	-0.21147	-0.19304	0.124270
4	Infiltrating Ductal Carcinoma	0.221550	1.90680	0.52045	-0.311990

In [58]: ▶

```
plt.figure(figsize=(15,6))
sns.barplot(x = 'Histology', y = 'Protein1', data = breast_cancer_type_protein)
plt.xticks(rotation = 0)
plt.show()
```


In [59]: ▶

```
plt.figure(figsize=(15,6))
sns.barplot(x = 'Histology', y = 'Protein2', data = breast_cancer_type_protein)
plt.xticks(rotation = 0)
plt.show()
```


In [60]:

```
plt.figure(figsize=(15,6))
sns.barplot(x = 'Histology', y = 'Protein3', data = breast_cancer_type_protein)
plt.xticks(rotation = 0)
plt.show()
```


In [63]: ▶

```
plt.figure(figsize=(15,6))
sns.boxplot(x = 'Histology', y = 'Protein1', data = breast_cancer_type_protein)
plt.xticks(rotation = 0)
plt.show()
```


In [64]:

```
plt.figure(figsize=(15,6))
sns.boxplot(x = 'Histology', y = 'Protein2', data = breast_cancer_type_protein)
plt.xticks(rotation = 0)
plt.show()
```



```
In [65]: ▶
```

```
plt.figure(figsize=(15,6))
sns.boxplot(x = 'Histology', y = 'Protein3', data = breast_cancer_type_protein)
plt.xticks(rotation = 0)
plt.show()
```



```
In [66]: ▶
```

In [67]:

```
breast_cancer_stage_protein.head()
```

Out[67]:

	Tumour_Stage	Protein1	Protein2	Protein3	Protein4
0	III	0.080353	0.42638	0.54715	0.273680
1	II	-0.420320	0.57807	0.61447	-0.031505
2	III	0.213980	1.31140	-0.32747	-0.234260
3	II	0.345090	-0.21147	-0.19304	0.124270
4	II	0.221550	1.90680	0.52045	-0.311990

In [69]: ▶

```
plt.figure(figsize=(15,6))
sns.barplot(x = 'Tumour_Stage', y = 'Protein1', data = breast_cancer_stage_protein)
plt.xticks(rotation = 0)
plt.show()
```


In [70]:

```
plt.figure(figsize=(15,6))
sns.barplot(x = 'Tumour_Stage', y = 'Protein2', data = breast_cancer_stage_protein)
plt.xticks(rotation = 0)
plt.show()
```


In [71]: ▶

```
plt.figure(figsize=(15,6))
sns.barplot(x = 'Tumour_Stage', y = 'Protein3', data = breast_cancer_stage_protein)
plt.xticks(rotation = 0)
plt.show()
```


In [72]:

```
plt.figure(figsize=(15,6))
sns.boxplot(x = 'Tumour_Stage', y = 'Protein1', data = breast_cancer_stage_protein)
plt.xticks(rotation = 0)
plt.show()
```



```
In [73]: ▶
```

```
plt.figure(figsize=(15,6))
sns.boxplot(x = 'Tumour_Stage', y = 'Protein2', data = breast_cancer_stage_protein)
plt.xticks(rotation = 0)
plt.show()
```


In [74]: ▶

```
plt.figure(figsize=(15,6))
sns.boxplot(x = 'Tumour_Stage', y = 'Protein3', data = breast_cancer_stage_protein)
plt.xticks(rotation = 0)
plt.show()
```



```
In [75]: ▶
```

In [76]: ▶

breast_cancer_age_protein.head()

Out[76]:

	Age	Protein1	Protein2	Protein3	Protein4
0	(28.939, 41.2]	0.080353	0.42638	0.54715	0.273680
1	(41.2, 53.4]	-0.420320	0.57807	0.61447	-0.031505
2	(65.6, 77.8]	0.213980	1.31140	-0.32747	-0.234260
3	(53.4, 65.6]	0.345090	-0.21147	-0.19304	0.124270
4	(53.4, 65.6]	0.221550	1.90680	0.52045	-0.311990

In [81]: ▶

```
plt.figure(figsize=(15,6))
sns.barplot(x = 'Age', y = 'Protein1', data = breast_cancer_age_protein)
plt.xticks(rotation = 0)
plt.show()
```


In [78]: ▶

```
plt.figure(figsize=(15,6))
sns.barplot(x = 'Age', y = 'Protein2', data = breast_cancer_age_protein)
plt.xticks(rotation = 0)
plt.show()
```



```
In [79]: ▶
```

```
plt.figure(figsize=(15,6))
sns.barplot(x = 'Age', y = 'Protein3', data = breast_cancer_age_protein)
plt.xticks(rotation = 0)
plt.show()
```



```
In [83]: ▶
```

n_markers = breast_cancer[['Histology', 'ER status', 'PR status', 'HER2 status']]

In [84]: ▶

n_markers.head()

Out[84]:

	Histology	ER status	PR status	HER2 status
0	Infiltrating Ductal Carcinoma	Positive	Positive	Negative
1	Mucinous Carcinoma	Positive	Positive	Negative
2	Infiltrating Ductal Carcinoma	Positive	Positive	Negative
3	Infiltrating Ductal Carcinoma	Positive	Positive	Negative
4	Infiltrating Ductal Carcinoma	Positive	Positive	Negative

```
In [85]: ▶
```

n_markers['ER status'].unique()

Out[85]:

array(['Positive'], dtype=object)

```
In [86]:
                                                                                               M
n_markers['ER status'].value_counts()
Out[86]:
Positive
             317
Name: ER status, dtype: int64
In [87]:
                                                                                               H
n_markers['PR status'].value_counts()
Out[87]:
Positive
             317
Name: PR status, dtype: int64
In [88]:
                                                                                               H
n_markers['HER2 status'].value_counts()
Out[88]:
Negative
             288
Positive
              29
Name: HER2 status, dtype: int64
In [89]:
                                                                                               H
plt.figure(figsize=(15,6))
sns.countplot(x = 'ER status', hue = 'Patient_Status', data = breast_cancer)
plt.xticks(rotation = 0)
plt.show()
                                                                          Patient Status
                                                                           Alive
                                                                           ___ Dead
  100
  50
                                         Positive
ER status
```

In [90]: ▶

```
plt.figure(figsize=(15,6))
sns.countplot(x = 'PR status', hue = 'Patient_Status', data = breast_cancer)
plt.xticks(rotation = 0)
plt.show()
```


In [91]: ▶

```
plt.figure(figsize=(15,6))
sns.countplot(x = 'HER2 status', hue = 'Patient_Status', data = breast_cancer)
plt.xticks(rotation = 0)
plt.show()
```



```
In [92]: ▶
```

```
plt.figure(figsize=(15,6))
sns.countplot(x = 'Age', hue = 'Patient_Status', data = breast_cancer)
plt.xticks(rotation = 0)
plt.show()
```



```
In [93]: ▶
```

```
plt.figure(figsize=(15,6))
sns.countplot(x = 'Tumour_Stage', hue = 'Patient_Status', data = breast_cancer)
plt.xticks(rotation = 0)
plt.show()
```



```
In [94]: ▶
```

```
from sklearn import preprocessing
label_encoder = preprocessing.LabelEncoder()
```

```
M
In [95]:
breast_cancer['Tumour_Stage'] = label_encoder.fit_transform(breast_cancer['Tumour_Stage']
In [96]:
                                                                                        M
breast_cancer['Histology']= label_encoder.fit_transform(breast_cancer['Histology'])
In [97]:
                                                                                        M
breast_cancer['ER status']= label_encoder.fit_transform(breast_cancer['ER status'])
In [98]:
                                                                                        H
breast_cancer['PR status']= label_encoder.fit_transform(breast_cancer['PR status'])
In [99]:
                                                                                         H
breast_cancer['HER2 status']= label_encoder.fit_transform(breast_cancer['HER2 status'])
                                                                                        M
In [100]:
breast_cancer['Surgery_type'] = label_encoder.fit_transform(breast_cancer['Surgery_type']
In [101]:
                                                                                         H
breast_cancer['Patient_Status']= label_encoder.fit_transform(breast_cancer['Patient_Status']=
In [129]:
                                                                                         H
x = breast_cancer.drop(['Patient_ID', 'Age', 'Gender',
                         'Date_of_Surgery', 'Date_of_Last_Visit', 'Patient_Status'], axis
y = breast cancer.Patient Status
In [130]:
                                                                                        M
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
In [131]:
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)
In [132]:
                                                                                         M
model = LogisticRegression()
model.fit(X_train, y_train)
Out[132]:
LogisticRegression()
In [133]:
                                                                                        M
y_pred = model.predict(X_test)
```

In [134]: ▶

```
print("Training Accuracy :", model.score(X_train, y_train))
print("Testing Accuracy :", model.score(X_test, y_test))
```

Training Accuracy: 0.8054298642533937 Testing Accuracy: 0.8020833333333334