2011-2012秋季线性代数期末试题

考试课程 线性代数 A卷 2013年1月4日

姓名: _	学号:	班级:
注:填	[空题请直接在答题纸上写答案, 解答题请	写清步骤。
1. (30分	分) 填空题(每小题3分):	
	设 A 是一个 $m \times n$ 阶矩阵, B 是一个 $n \times s$ 阶的 r , 则 $\dim N(AB) = $	矩阵, $r(A) = n$, $r(B) =$
<u>(2)</u>	设 A 和 B 是可逆矩阵,则分块矩阵 $C = \begin{pmatrix} 0 \\ B \end{pmatrix}$	$\begin{pmatrix} A \\ 0 \end{pmatrix}$ 的逆矩阵是
<u>(3</u>)	设 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
	_设 a_1, a_2, a_3 是 \mathbf{R}^4 中相互正交的单位向量, $a_2 a_2^T + a_3 a_3^T$)的全部特征值是 (写明重	矩阵 $P = I_4 - (a_1 a_1^T +$
(<mark>5</mark>)	设 A, B 是两个 n 阶矩阵,且 $AB = 0, Ax =$ 解,则 $r(A) + r(B)$ n(填写<,>或=).	,
<u>(6)</u>	关于一元函数 $y = y(t)$, 二阶微分方程 $\frac{d^2}{dt}$ 解(complete solution)是	$\frac{dy}{dt} + 4\frac{dy}{dt} + 3y = 0$ 的通
<u>(7</u>)	设4阶矩阵 A 与 B 相似, I 是4阶单位阵, A 的 $B^{-1}+I =$	的特征值是1,1,2,2,则
<u>(8</u>)	补齐2阶矩阵 $A = \begin{pmatrix} 2 & 6 \end{pmatrix}$ 的第二行元素	,使 A 有特征向量 $x_1 =$
	$(3,1)$ $\pi x_2 = (2,1).$	
(9)	设 $S = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$,与 S 交换的 3 阶矩阵	全体形成的向量空间维
	数是	
(10)	设 $A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{pmatrix}$, P_1 是 A 的第一列形成的]1维空间上的投影矩阵,
	P_2 是 A 的列空间上的投影矩阵,则 $P_2P_1 = $.

2. (10分) 设
$$a,b,c,d$$
为不全为0的实数,矩阵 $A = \begin{pmatrix} a^2 & ab & ac & ad \\ ba & b^2 & bc & bd \\ ca & cb & c^2 & cd \\ da & db & dc & d^2 \end{pmatrix}$,

求A的特征值和相应特征子空间。

- 3. (12分) 设A是一个 $m \times n$ 阶矩阵, 假设A**x** = **b**有解,解集为S.
 - (1) 证明: S中的解向量在A的行空间 $C(A^T)$ 上的投影均相等(记作 \mathbf{x}_{row});
 - (2) 证明: \mathbf{x}_{row} 是 $A\mathbf{x} = \mathbf{b}$ 的长度最小的解;

(3) 假设
$$A = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 2 & -1 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 12 \\ -6 \end{pmatrix}$, 求 \mathbf{x}_{row} .

$$4. \ (12\%)A = \left(\begin{array}{cccc} 1 & 3 & 0 & 5 \\ 2 & 6 & 1 & 16 \\ 5 & 15 & 0 & 25 \end{array}\right) = \left(\begin{array}{cccc} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 5 & 0 & 1 \end{array}\right) \left(\begin{array}{cccc} 1 & 3 & 0 & 5 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

求A的四个基本子空间的基.

- 5. (10分) 给定两个数列 $\{a_n\}$, $\{b_n\}$, 满足 $a_1 = 1$, $b_1 = -1$, $a_n = a_{n-1} + 2b_{n-1}$, $b_n = -a_{n-1} + 4b_{n-1}$.
 - (1) 定义 $u_k = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$, 求矩阵A使得 $u_{k+1} = Au_k$.
 - (2) 求A的特征值和 a_n 和 b_n 的通项公式.
- 6. (12分) 给定 \mathbb{R}^2 上3个点 (x_i, y_i) , i = 1, 2, 3.
 - (1) 设最小二乘意义下拟合这三个点的最佳曲线是y=C+Dx, 证明这条直线过平均值点 $(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3})$;
 - (2) $\Rightarrow e_i = y_i (C + Dx_i)$, i=1,2,3. if i=1,2,3.
 - (3) 假设三个点是(-2,1),(0,2),(2,4),验证以上结论.

7. (14分) 设
$$A = \begin{pmatrix} 1 & t_1 \\ 1 & t_2 \\ 1 & t_3 \\ 1 & t_4 \end{pmatrix}$$
, 其中 $t_1, t_2, t_3, t_4 \in \mathbb{R}$.

- (1) 假设A的秩为2, 求A的列空间(column space)C(A)的一组标准正交基(写出计算公式即可);
- (2) 求A的QR分解A = QR;
- (3) 具体写出R不可逆的条件;
- (4) 假设A的秩为 $2, b \in \mathbb{R}^4$,证明b在C(A)上投影是 QQ^Tb .