rayons: 12,16 et 20

recherche des cercles de rayon 16 (+ augmentation du contraste)

(inversée)

recherche des cercles de rayon 20 (+ augmentation du contraste)

cercle de rayon 20

ellipse 20 / 40

ellipse 40 / 60

recherche d'un cercle de rayon 20

recherche d'un cercle de rayon 20

sélection des cercles de rayon 18, 20 ou 22, reconnus par x% de points du périmètre

contours

HOUGH GÉNÉRALISÉE 1- MODÉLISATION

O : centre de gravité

MT : tangente au contour en M

G: normale à MT (direction du gradient)

d = MO

α :angle sous lequel est vu le centre de gravité

β: angle de la normale au contour avec l'horizontale

Modèle = liste de triplets $\{\beta, \alpha, d\}$

HOUGH GÉNÉRALISÉE 1- MODÉLISATION

Remarque:

Plusieurs points du contour-modèle ont le même angle β , avec des valeurs différentes pour α_i et d_i .

Pour représenter le modèle, on regroupera les triplets $\{\beta, \alpha, d\}$ ayant la même valeur β .

β_1	(α_{11},d_{11}) (α_{12},d_{12}) (α_{1j},d_{1j})
β_2	$(\alpha_{21}, d_{21}) (\alpha_{22}, d_{22}) \dots (\alpha_{1k}, d_{1k})$
β_n	$(\alpha_{n1},d_{n1}) (\alpha_{n2},d_{n2}) \dots (\alpha_{nr},d_{nr})$

HOUGH GÉNÉRALISÉE 2- RECONNAISSANCE

Forme à reconnaître

L'espace des paramètres est celui des coordonnées du centre de gravité O

Pour chaque point P, on calcule 1 'angle b que fait la normale au contour en P avec 1 'horizontale (on estime la direction du contour à 1 'aide des 2 points adjacents à P sur le contour).

On parcourt la forme modèle et on cherche les triplets $\{b, \alpha, d\}$. Ce sont les points de contours du modèle qui ont une normale parallèle à celle de P. On peut donc dire que la portion de contour centrée sur P vote pour un centre de gravité dont les coordonnées sont données par α et d: x0 = x + d. $\cos(\alpha)$

$$y0 = y + d. \sin(\alpha)$$

Si beaucoup de points de la forme votent pour ce même point, la forme sera reconnue.

HOUGH GÉNÉRALISÉE 2- RECONNAISSANCE

Forme à reconnaître

L'angle b au point M de la forme correspond à l'angle β du modèle. Donc si M appartient à une forme correspondant au modèle, il vote pour des centres de gravité qui seraient en O_1 ou O_2 ou O_3 .

HOUGH GÉNÉRALISÉE: Algorithme

A- Modélisation

1. On regroupe les triplets du modèle ayant la même valeur β et on les range dans un tableau T dont les lignes sont indicées par les différentes valeurs de β .

B- Reconnaissance

- 2. On initialise un tableau A $[x_{min}...x_{man}; y_{min}...y_{man}]$
- 3. Pour chaque point P(x,y) du contour,
 - on calcule l'angle b, ce qui fournit une entrée (b=β) dans la table T
 - pour chaque couple de la ligne β de T,
 - calculer $x_0 = x + d. \cos(\alpha)$ $y_0 = y + d. \sin(\alpha)$
 - incrémenter A[x_0 , y_0]
- 4. Déterminer le couple (x,y) qui maximise A[x, y]

Exercice: recherche d'ellipses

Soit l'équation d'une ellipse de centre (x_c,y_c) et d'axes 2a et 2b :

$$\frac{\left(x - x_c\right)}{a^2} + \frac{\left(y - y_c\right)}{b^2} = 1$$

Ecrire un programme permettant de détecter la présence d'ellipse de taille donnée (cad dont a et b sont connus), et de localiser leur centre.