Table of Times

	10	100	300	1000
5n	50	500	1500	5000
$n \log n$	33	665	2469	9966
n^2	100	10,000	90,000	10 ⁶
n^3	1000	10^{6}	27×10^{6}	-10^{9}
2^n	1024	10^{31}	10^{91}	10^{302}
n!	3.6×10^6	10^{161}	10^{623}	8
n^n	10^{10}	-10^{201}	10^{744}	00

Practical Complexity

Estimate

- Number of microseconds since Big Bang has 24 digits.
- Number of protons in the universe has 126 digits.

Practical Complexity

Practical Complexity

Practical Complexity

Practical Complexity

Analysis

- Simplifications
 - Ignore actual and abstract statement costs
 - Order of growth is the interesting measure:
 - · Highest-order term is what counts
 - Remember, we are doing asymptotic analysis
 - As the input size grows larger it is the high order term that dominates

Asymptotic Analysis

- Asymptotic = leading term
- 10nlogn + 2n²-40n has leading term n²
- · Gives simplified but realistic bound
- Smarter coding often improves the constant factors, better algorithms improves the exponent of the leading term.
- E.g. an 25nlogn algorithm scales far better than an 3n² algorithm.

Big Theta Notation

- Tight bounds
- $f(n) = \Theta(g(n))$ means that f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.
- We say g(n) is an asymptotically tight bound for f(n).

Big-Oh Notation

- Used for upper bounds. Think at most.
- f(n) = O(g(n)) if ∃
 constants c, n_o such
 that 0 ≤ f(n) ≤ c x g(n),
 ∀ n ≥ n_o
- cg(n) dominates f(n) to right of n_o
- We say g(n) is an asymptotic upper bound for f(n).

Relations Between Θ , Ω , O

- For any two functions g(n) and f(n), $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.
- I.e., $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$

Big-Oh Notation

- Example. 3/2 n² + 7/2 n 4 is O(n²).
 Choose c = 2, n₀ = 6. c = 3, n₀ = 1 also work.
- Big Oh is an upper bound estimate, so its okay to say "running time is O(nlogn).
- But it is not okay to say "running time is at least O(nlogn)". Instead, we use Ω notation.

Asymptotic Notations

- f(n) = Θ(g(n)) means f(n) and g(n) grow at the same rate.
- f(n) = O(g(n)) but f(n) ≠ Ω(g(n)), then f(n) is slower growing than g(n).
- f(n) = Ω (g(n)) but f(n) ≠ O(g(n)), then f(n) is faster growing than g(n).

Big Omega Notation

- Used for lower bounds. Think "at least".
- $f(n) = \Omega(g(n))$ if \exists constants c, n_o such that $0 \le c \times g(n) \le f(n)$, $\forall n \ge n_o$
- cg(n) is dominated by f(n) to the right of n_o.
- We say g(n) is an asymptotic lower bound for f(n)

Asymptotic Notations

- Mathematically, use lim _{n®¥}f(n)/g(n)
- If $\lim_{n \to \infty} f(n)/g(n) = 0$, f(n) = O(g(n))
- If $\lim_{n \in \mathbb{F}_{4}} f(n)/g(n) = \infty$, $f(n) = \Omega(g(n))$
- If $\lim_{n \in \mathbb{F}} f(n)/g(n) = c$, $f(n) = \Theta(g(n))$

Other Asymptotic Notations

- A function f(n) is o(g(n)) if \exists positive constants c and n_0 such that $f(n) < c g(n) \ \forall \ n \ge n_0$
- A function f(n) is ω(g(n)) if ∃ positive constants c and n₀ such that
 c g(n) < f(n) ∀ n ≥ n₀
- Intuitively,- o() is like <
 - o() is like $< \omega()$ is like $> \Theta()$ is like =
 - O() is like $\leq \Omega()$ is like \geq