

Yale University Department of Mathematics

Homotopy BV algebras,
Courant algebroids and
String Field Theory

Anton M. Zeitlin

AMS Sectional Meeting
Richmond, VA
November 6-7, 2010

- Introduction/Motivations
- Vertex/Courant algebroids with Calabi-Yau structure and associated homotopy BV algebras of Lian-Zuckerman
- Application: Einstein equations from the tensor product $BV \otimes \overline{BV}$
- A_{∞} -algebras. $A_{(3)}$ -algebra of Courant algebraid
- Yang-Mills equations from $A_{(3)}$ -algebra and their relation to Courant algebroid
- Open questions

Motivations from PHYSICS

String Theory in background fields (perturbed 2D CFT)

$$\beta$$
-function: $\beta(\phi_{\{v\}}, h) = \sum_{i \in \mathbb{N}} h^i \beta_i(\phi_{\{v\}})$

Condition of conformal invariance:

$$\beta(\phi_{\{v\}}, h) = 0$$

$$\beta_1(\phi_{\{v\}}) = 0 \iff$$
Classical Field Equations (Yang-Mills, Einstein)

String Field Theory suggests an algebraic meaning of β -function

$$\beta(\phi_{\{v\}}, h) = 0 \iff Q\Phi + \mu_2(\Phi, \Phi) + \mu_3(\Phi, \Phi, \Phi) + \dots = 0,$$

$$\Phi = \Phi(\phi_{\{v\}}, h).$$

 μ_i generate A_{∞} - or L_{∞} - algebras: homotopy generalizations of DGA and DGLA.

Motivations from MATHEMATICS

• Relations between vertex algebras and homotopy algebras.

vertex algebroids
$$\longleftrightarrow$$
 vertex algebras $(V = \bigoplus_{n \geqslant 0} V_n)$

 $\begin{array}{ll} vertex \ algebroids \longrightarrow homotopy \ BV \\ with \ CY \ structure & algebras \end{array}$

vertex algebras ? homotopy BV algebras

• Geometry:

Vertex algebroids — Courant algebroids

- 1) Homotopy algebras in generalized complex geometry
- 2) Relations between classical field equations and Courant algebroids

Vertex algebroids

<u>Def.</u> (*P. Bressler*) Vertex *A*-algebroid when *A* is a commutative *k*-algebra is an *A*-module with pairing: $A \otimes V \to V, f \otimes v \mapsto f * v$, such that 1 * v = v

- i) Leibniz k-algebra: $[,]:V\otimes_kV\to V$
- ii) a k-linear map of Leibniz algebras: $\pi: V \to \text{Der} A(\textbf{the anchor})$
- iii) a symmetric k-bilinear pairing $<,>: V \otimes_k V \to A$
- iv) a k-linear map $\partial : A \to V$ s.t. $\pi \circ \partial = 0$ wich satisfy

$$f * (g * v) - (fg) * v = \pi(v)(f) * \partial(g) + \pi(v)(g) * \partial f$$

$$[v_1, f * v_2] = \pi(v_1)(f) * v_2 + f * [v_1, v_2]$$

$$[v_1, v_2] + [v_2, v_1] = \partial(\langle v_1, v_2 \rangle)$$

$$\pi(f * v) = f\pi(v)$$

$$\langle f * v_1, v_2 \rangle = f \langle v_1, v_2 \rangle - \pi(v_1) (\pi(v_2)(f))$$

$$\pi(v)(\langle v_1, v_2 \rangle) = \langle [v, v_1], v_2 \rangle + \langle v_1, [v, v_2] \rangle$$

$$\partial(fg) = f * \partial(g) + g * \partial(f)$$

$$[v, \partial(f)] = \partial(\pi(v)(f))$$

$$\langle v, \partial(f) \rangle = \pi(v)(f)$$

We will le also interested in \mathcal{O}_X -vertex algebroid when A is replaced by \mathcal{O}_X and V is replaced by a sheaf of k-vector spaces.

Vertex algebroid — Vertex algebra

$$\begin{split} f_{(-1)}g &= fg, \quad f_{(-1)}v = f * v, \\ v_{(-1)}f &= f * v - \partial \pi(v)(f), \\ v_{(0)}f &= -f_{(0)}v = \pi(v)(f), \\ v_{(0)}w &= [v,w], \quad v_{(1)}w = < v,w> \end{split}$$

This gives a "truncated" vertex algebras. Then one can construct a vertex algebras

Vert
$$= \bigoplus_{n \geqslant 0} V_n$$
, s.t. $V_0 = A$, $V_1 = V$

The inverse statement is also true: for a given vertex algebra, s.t. $V_0 = A$, $V_1 = V$, one can construct a vertex algebroid.

V. Gorbunov, F. Malikov, V. Schechtman, Invent. Math. 155 (2004), 605-680

Calabi-Yau structure

<u>Def.</u> Operator $\widehat{\text{div}}: V \to A$ is called a Calabi-Yau structure on V if $\widehat{\text{div}} \circ \partial = 0$

$$\widehat{\operatorname{div}}(f * v) = f \widehat{\operatorname{div}} v + \langle \partial f, v \rangle
\widehat{\operatorname{div}}[v_1, v_2] = \pi(v_1)(\widehat{\operatorname{div}} v_2) - \pi(v_2)(\widehat{\operatorname{div}} v_1)$$

In the case of \mathcal{O}_X -vertex algebroids, on a manifold X with a volume form Φ , one can construct $\widehat{\text{div}} \equiv \text{div}_{\Phi} \circ \pi$, where div_{Φ} is a divergence operator for a vector field w.r.t. the volume form Φ .

Example: Let Vert be VOA, then L_1 gives a Calabi-Yau structure.

Courant algebroids

<u>Def.</u> (Z.-J.Liu, A. Weinstein, P. Xu; P. Bressler) Courant A-algebroid is an A-module Q equipped with

i) a structure of Leibniz k-algebra

$$[,]:Q\otimes_kQ\to Q$$

ii) anchor map $\pi: Q \to \mathrm{Der} A$

iii) pairing $<,>: Q \otimes_A Q \to A$

iv) derivation $\partial: A \to Q$

They satisfy:

$$\pi \circ \partial = 0$$

$$[q_1, fq_2] = f[q_1, q_2] + \pi(q_1)(f)q_2$$

$$< [q, q_1], q_2 > + < q_1, [q, q_2] > = \pi(q) < q_1, q_2 >$$

$$[q, \partial(f)] = \partial(\pi(q)(f))$$

$$< q, \partial(f) > = \pi(q)(f)$$

$$[q_1, q_2] + [q_2, q_1] = \partial(< q_1, q_2 >)$$

Classical limit

Suppose V = Q[h], such that Q = V/hV is commutative, i.e. * is commutative on Q, Leibniz bracket, pairing, anchor, and $\widehat{\text{div}}$ take values in hV and $\partial Q \subset Q$. Then one can define the Courant A-algebroid structure on Q as follows:

$$\pi_{Q}(\cdot) = \lim_{h \to 0} \frac{1}{h} \pi_{V}(\cdot), \quad [\cdot, \cdot]_{Q} = \lim_{h \to 0} \frac{1}{h} [\cdot, \cdot]_{V},$$
$$\langle \cdot, \cdot \rangle_{Q} = \lim_{h \to 0} \frac{1}{h} \langle \cdot, \cdot \rangle_{V}, \quad \widehat{\operatorname{div}}_{Q} = \lim_{h \to 0} \frac{1}{h} \widehat{\operatorname{div}}_{V}$$

Later we will interpret this classical limit on the level of the homotopy BV algebras.

Example. Vertex algebra, generated by the quantum fields $p_i(z)$ and $X^i(z)$ (i = 1, ..., D) of conformal weights 1 and 0 correspondingly, and their OPE:

$$p_i(z)X^k(w) \sim \frac{h\delta_i^k}{z-w}$$

Then, V_0 is given by the states are generated by F(X(z)), while V_1 is spanned by $\sum_i : v^i(X)p_i : (z)$ (vector fields), $\sum_k w_k(X)\partial X^k(z)$ (1-forms). In fact, we have a VOA, where $L(z) = -\frac{1}{h}\sum_i : p_i\partial X^i : (z) + \partial^2\phi(X)(z)$. The Calabi-Yau structure is given by the action of L_1 -operator.

Lian-Zuckerman operations

Let Vert = $\bigoplus_{n\geqslant 0} V_n$ be a VOA with Virasoro element $L^V(z)$.

Consider the corresponding semi-infinite complex $C = \text{Vert} \otimes \Lambda$, where Λ is a VOA generated by $b(z)c(w) \sim \frac{1}{z-w}$

Theorem (I. Frenkel, H. Garland, G. Zuckerman)
The operator \mathcal{D} , such that

$$\mathcal{D} = \oint (c(z)L(z) + : c(z)\partial c(z)b(z) :) dz$$

is nilpotent on $Vert \otimes \Lambda$ iff the central charge of the Virasoro algebra L_n^V is equal to 26.

Proposition The operator \mathcal{D} is nilpotent on the space $C_{L_0} = \ker L_0$, where $L_0 = L_0^V + L_0^{\Lambda}$ for all values of central charge.

 C_{L_0} is spanned by:

$$u(z), \quad c(z)A(z), \quad \partial c(z)a(z), \quad c(z)\partial c(z)\tilde{A}(z),$$

 $c(z)\partial^2 c(z)\tilde{a}(z), \quad c(z)\partial c(z)\partial^2 c(z)\tilde{u}(z),$

where $u, \tilde{u}, a, \tilde{a} \in V_0$; $A, \tilde{A} \in V_1$

Lian and Zuckerman introduced operations:

$$\mu(a_1, a_2) = \text{Res}\frac{a_1(z)a_2}{z}, \quad \{a_1, a_2\} = \text{Res}_z(b_{-1}a_1)(z)a_2$$

B.H. Lian, G.J. Zuckerman Commun.Math.Phys.154 (1993) 613

These operations satisfy the relations of the homotopy BV algebra when central charge of $\{L_n^V\}$ is equal to 26.

Theorem (B.H. Lian-G.J. Zuckerman)

i) The operation μ is homotopy commutative and homotopy associative:

$$\mathcal{D}\mu(a_1, a_2) = \mu(\mathcal{D}a_1, a_2) + (-1)^{|a_1|}\mu(a_1, \mathcal{D}a_2),$$

$$\mu(a_1, a_2) - (-1)^{|a_1||a_2|} \mu(a_2, a_1) =$$

$$= \mathcal{D}m(a_1, a_2) + m(\mathcal{D}a_1, a_2) + (-1)^{|a_1|} m(a_1, \mathcal{D}a_2),$$

$$\mathcal{D}n(a_1, a_2, a_3) + n(\mathcal{D}a_1, a_2, a_3) + (-1)^{|a_1|}n(a_1, \mathcal{D}a_2, a_3) + (-1)^{|a_1|+|a_2|}n(a_1, a_2, \mathcal{D}a_3) =$$

$$= \mu(\mu(a_1, a_2), a_3) - \mu(a_1, \mu(a_2, a_3))$$

ii) The operations μ and $\{\cdot,\cdot\}$ are related in the following way:

$${a_1, a_2} = b_0 \mu(a_1, a_2) - \mu(b_0 a_1, a_2) - (-1)^{|a_1|} \mu(a_1, b_0 a_2).$$

iii) The operations μ and $\{\cdot,\cdot\}$ satisfy the relations:

$$\begin{aligned}
\{a_1, a_2\} + (-1)^{(|a_1|-1)(|a_2|-1)} \{a_2, a_1\} &= \\
(-1)^{|a_1|-1} (\mathcal{D}m'(a_1, a_2) - m'(\mathcal{D}a_1, a_2) - \\
(-1)^{|a_2|} m'(a_1, \mathcal{D}a_2)),
\end{aligned}$$

$$\{a_1, \mu(a_2, a_3)\} = \\ \mu(\{a_1, a_2\}, a_3) + (-1)^{(|a_1|-1)||a_2|} \mu(a_2, \{a_1, a_3\}),$$

$$\{\mu(a_1, a_2), a_3\} - \mu(a_1, \{a_2, a_3\}) - (-1)^{(|a_3|-1)|a_2|} \mu(\{a_1, a_3\}, a_2) = (-1)^{|a_1|+|a_2|-1} (\mathcal{D}n'(a_1, a_2, a_3) - n'(\mathcal{D}a_1, a_2, a_3) - (-1)^{|a_1|} n'(a_1, \mathcal{D}a_2, a_3) - (-1)^{|a_1|+|a_2|} n'(a_1, a_2, \mathcal{D}a_3),$$

$$\{\{a_1, a_2\}, a_3\} - \{a_1, \{a_2, a_3\}\} + (-1)^{(|a_1|-1)(|a_2|-1)} \{a_2, \{a_1, a_3\}\} = 0.$$

Proposition There is a structure of the homotopy \overline{BV} algebra on C_{L_0} , such that the differential acts follows:

Theorem Let V be a vertex algebroid with a Calabi-Yau structure, then there exists a structure of a homotopy BV algebra on the complex \mathcal{F}_V :

Corollary The homotopy Lie algebra on the $\overline{\mathcal{F}_{V}^{1}}$ subspace coincides with the homotopy Lie algebra of Roytenberg-Weinstein in the case of Courant algebroid.

In the following we will call this homotopy algebra LZ(V) or LZ(Vert).

Let V = Q[h], and all the conditions of the classical limit are satisfied (see above). Then Q has a structure of a Courant algebroid.

Question:

Is it possible to describe classical limit

$$LZ(V) \to LZ(Q)$$

in terms of LZ operations?

One can find a subcomplex $(\mathcal{F}_{h,Q}, \mathcal{D}_V)$ in $(\mathcal{F}_V, \mathcal{D}_V)$, which is isomorphic to $(\mathcal{F}_Q, \mathcal{D}_Q)$ on the level of k-vector spaces, such that on $(\mathcal{F}_{h,Q}, \mathcal{D}_V)$ we have:

$$\mathcal{D}_{Q} = \lim_{h \to 0} \mathcal{D}_{V}, \quad \mu_{Q}(\cdot, \cdot) = \lim_{h \to 0} \mu_{V}(\cdot, \cdot),$$
$$\{\cdot, \cdot\}_{Q} = \lim_{h \to 0} \frac{1}{h} \{\cdot, \cdot\}_{V}$$

A.M.Z.

Quasiclassical Lian-Zuckerman Homotopy Algebras, Courant Algebroid and Gauge Theory, Comm.Math.Phys., in press (arXiv:0910.3652)

Equations of Field Theory and LZ algebra

From now on we assume that all Courant algebroids we consider are Courant \mathcal{O}_X -algebroids.

Closed strings $\longrightarrow \text{Vert} \otimes \overline{\text{Vert}}$

Claim 1

"Einstein equations"

(β_1 -function for closed strings) are equivalent to generalized Maurer-Cartan equations for the homotopy Lie algebra of

$$LZ(Q_{\mathrm{Vert}}) \otimes LZ(\overline{Q_{\mathrm{Vert}}})$$

Open strings \longrightarrow (Vert) $\otimes \mathfrak{U}(\mathfrak{g})$

Claim 2

"Yang-Mills equations"

(β_1 -function for open strings) are equivalent to generalized Maurer-Cartan equations for the homotopy associative algebra of

$$LZ(Q_{\mathrm{Vert}}) \otimes \mathfrak{U}(\mathfrak{g})$$

Split Courant algebroids and Einstein equations

Let Q be a Courant algebroid with Calabi-Yau structure and $Q = T \oplus \Omega$, such that T is a Lie algebroid w.r.t. [,], $\operatorname{Im} \partial \in \Omega$.

We refer to such Courant algebroid as split.

Proposition The homotopy BV algebra LZ(Q) has a BV subalgebra on the subcomplex:

Let T be the sheaf of the holomorphic sections of the tangent bundle. Let us denote the corresponding BV algebra BV^h . Let BV^a denote its antiholomorphic analogue.

Let
$$BV^E \equiv BV^h \otimes BV^a$$
.

Consider the Maurer-Cartan equation:

$$\mathcal{D}\Phi + \{\Phi, \Phi\} = 0,$$

where Φ is an element of BV^E of degree 2

$$\Phi \in T \otimes \bar{T} \oplus T \oplus \bar{T} \oplus \mathcal{O}_X \oplus \bar{\mathcal{O}}_X$$

The resulting equations (system of linear and bilinear equations) turn out to be

Einstein Equations with dilaton and a *B*-field:

$$R_{\mu\nu} = -\frac{1}{4} H_{\mu\lambda\rho} H_{\nu}^{\lambda\rho} + 2\nabla_{\mu}\nabla_{\nu}\Phi,$$

$$\nabla_{\mu} H^{\mu\nu\rho} - 2(\nabla_{\lambda}\Phi)H^{\lambda\nu\rho} = 0,$$

$$4(\nabla_{\mu}\Phi)^{2} - 4(\nabla_{\mu}\nabla^{\mu}\Phi) + R + \frac{1}{12} H_{\mu\nu\rho}H^{\mu\nu\rho} = 0,$$

where $\{G_{\mu\nu}\}=\{g_{i\bar{j}}\}$ (hermitian), $\{B_{\mu\nu}\}=\{-g_{i\bar{j}}\}$ (associated 2-form) and H=dB. Tensor $\{g^{i\bar{j}}\}$ comes from $T\otimes \bar{T}$.

These equations are very interesting on their own. In particular they imply that the corresponding manifold X is "almost" Calabi-Yau:

 $\tilde{\Phi} = \log(\sqrt{g}e^{-\Phi})$ satisfies the equation $\partial_i \partial_{\bar{k}} \tilde{\Phi} = 0$, i.e.

volume form defined by $\tilde{\Phi}$ is pluriharmonic.

A.M.Z.

Perturbed Beta-Gamma Systems and Complex Geometry, Nucl. Phys. B 794 (2008) 381-401.

A_{∞} -algebras

Consider the chain complex (V, \mathcal{D}) . Consider multilinear operations $\mu_i : V^{\otimes^i} \to V$ of degree 2-i such that $\mu_1 = \mathcal{D}$.

<u>Def.</u> The space V is an A_{∞} -algebra if the operations μ_n satisfy the bilinear identity

$$\sum_{i=1}^{n-1} (-1)^i M_i \circ M_{n-i+1} = 0$$

on V^{\otimes^n} , where M_s acts on V^m for any $m \geqslant s$ as follows:

$$M_s = \sum_{\ell=0}^{n-s} (-1)^{\ell(s+1)} \mathbf{1}^{\otimes^{\ell}} \otimes \mu_s \otimes \mathbf{1}^{\otimes^{m-s-\ell}}$$

Relations between $\mathcal{D}, \mu_2, \mu_3$:

$$\mathcal{D}^{2} = 0,$$

$$\mathcal{D}\mu_{2}(a_{1}, a_{2}) = \mu_{2}(\mathcal{D}a_{1}, a_{2}) + (-1)^{|a_{2}|}\mu_{2}(a_{1}, \mathcal{D}a_{2}),$$

$$\mathcal{D}\mu_{3}(a_{1}, a_{2}, a_{3}) + \mu_{3}(\mathcal{D}a_{1}, a_{2}, a_{3}) +$$

$$(-1)^{|a_{2}|}\mu_{1}(a_{1}, \mathcal{D}a_{2}, a_{3}) + (-1)^{|a_{2}|}\mu_{3}(a_{1}, a_{2}, \mathcal{D}a_{3}) =$$

$$\mu_{2}(\mu_{2}(a_{1}, a_{2}), a_{3}) - \mu_{2}(a_{1}, \mu_{2}(a_{2}, a_{3})).$$

For $\mu_n = 0, n \geqslant 3$ it is just a DGA.

 A_{∞} is called $A_{(k)}$ algebra if $\mu_n = 0, n > k$.

Generalized Maurer-Cartan equation

Consider $X \in V$ of degree 1.

Then the equation

$$\mathcal{D}X + \sum_{n\geqslant 2} \mu_n(X,\ldots,X) = 0$$

is called Generalized Maurer-Cartan equation.

Symmetries:

$$X \to X + \varepsilon \left(\mathcal{D}\alpha + \sum_{n \geqslant 2, k} (-1)^{n-k} \mu_n(X, \dots, \alpha, \dots, X) \right),$$

 α is an element of degree 0.

Yang-Mills equations from $A_{(3)}$ -algebra of LZ(Q)

$$\sum_{i,j} \eta^{ij} \left[\nabla_i, \left[\nabla_j, \nabla_k \right] \right] = 0, \quad \nabla_i = \partial_i + A_i$$

Two objects: $\{A_i\}, \{\eta^{ij}\}$

 A_i comes from Maurer-Cartan element Where η^{ij} comes from?

Flat background deformation of $A_{(3)}$:

$$\mathcal{D} \to \mathcal{D}^{\eta} = \mathcal{D} + \sum_{i,j} \eta^{ij} \mu(s_i \{s_j, \cdot\})$$

where $\{s_i, s_j\} = 0$, such that $s_i \in \mathcal{F}^1$ and $\mathcal{D}s_i = 0$

Theorem i) Operations \mathcal{D} , μ , n generate $A_{(3)}$ -algebra on \mathcal{F}_Q .

ii) There exists a deformation $A^{\eta}_{(3)}(Q)$ of $A_{(3)}(Q)$, associated with \mathcal{D}^{η} , such that $\mu^{\eta} = \mu + \nu^{\eta}$, $n^{\eta} = n$.

A.M.Z.

Quasiclassical Lian-Zuckerman Homotopy Algebras, Courant Algebroid and Gauge Theory, Comm.Math.Phys., in press (arXiv:0910.3652)

The corresponding GMC equation

$$\mathcal{D}^{\eta}\Phi + \mu^{\eta}(\Phi, \Phi) + n^{\eta}(\Phi, \Phi, \Phi) = 0$$

where $\Phi \in \mathcal{F}^1 \otimes \mathfrak{g}$ will be called generalized Yang-Mills equation associated to Courant algebroid Q and Lie algebra \mathfrak{g} .

Symmetries:

$$\Phi \to \Phi + \varepsilon (\mathcal{D}^{\eta} \alpha + \mu^{\eta} (\Phi, \alpha) - \mu^{\eta} (\alpha, \Phi))$$

where $\alpha \in \mathcal{F}^0 \otimes \mathfrak{g}$

Special case: $V = T\mathbb{R}^n \oplus T^*\mathbb{R}^n$

$$\sum_{i,j} \eta^{ij} \left[\nabla_i, \left[\nabla_j, \nabla_k \right] \right] = \sum_{i,j} \eta^{ij} \left[\left[\nabla_k, \phi_i \right], \phi_j \right]$$
$$\sum_{i,j} \eta^{ij} \left[\nabla_i, \left[\nabla_j, \phi_k \right] \right] = \sum_{i,j} \eta^{ij} \left[\phi_i, \left[\phi_j, \phi_k \right] \right]$$

Symmetries:

$$A_i \to \varepsilon(\partial_i u + [A_i, u]), \quad \phi_i \to \phi_i + \varepsilon[\phi_i, u]$$

where ϕ_i are matter fields.

$A_{(3)}$ algebra of pure YM theory

 \mathcal{D} :

$$0 \to \Omega^0(\mathbb{R}^D) \xrightarrow{\mathrm{d}} \Omega^1(\mathbb{R}^D) \xrightarrow{\mathrm{d}*\mathrm{d}} \Omega^{D-1}(\mathbb{R}^D) \xrightarrow{\mathrm{d}} \Omega^D(\mathbb{R}^D) \to 0$$

$\mu_2(f_1,f_2)$:	f_1	v	A	V	a
	w	vw	$\mathbf{A}w$	$\mathbf{V}w$	aw
	В	$v\mathbf{B}$	(\mathbf{A},\mathbf{B})	$\mathbf{B} \wedge \mathbf{V}$	0
	\mathbf{W}	$v\mathbf{W}$	$\mathbf{A} \wedge \mathbf{W}$	0	0
	b	vb	0	0	0

$$f_1$$
 takes values in $\{v, \mathbf{A}, \mathbf{V}, a\}$
 f_2 takes values in $\{w, \mathbf{B}, \mathbf{W}, b\}$
 $u, v \in \Omega^0(\mathbb{R}^D), \quad \mathbf{A}, \mathbf{B} \in \Omega^1(\mathbb{R}^D),$
 $\mathbf{V}, \mathbf{W} \in \Omega^{D-1}(\mathbb{R}^D), \quad a, b \in \Omega^D(\mathbb{R}^D)$

Trilinear operation μ_3 is defined to be nonzero only when all arguments belong to \mathcal{F}^1 . For A, B, C $\in \mathcal{F}^1$ we have

$$\mu_3(\mathbf{A}, \mathbf{B}, \mathbf{C}) = \mathbf{A} \wedge *(\mathbf{B} \wedge \mathbf{C}) - (-1)^{D-2} (*(\mathbf{A} \wedge \mathbf{B})) \wedge \mathbf{C}$$

A.M.Z.

Conformal Field Theory and Algebraic Structure of Gauge Theory, JHEP03(2010)056, arXiv:0812.1840

Open questions

What is the precise relation?

• Canonical string theory is not a vertex algebra:

Closed:
$$X^{\mu}(z,\bar{z})X^{\nu}(w,\bar{w}) \sim \eta^{\mu\nu} \log|z-w|^2$$

(two series of oscillators)

Open:
$$X^{\mu}(t)X^{\nu}(s) \sim \eta^{\mu\nu} \log |t-s|^2; \quad t, s \in \mathbb{R}$$

(one series of oscillators)

<u>Claim</u> One can generalize the Lian-Zuckerman operations in such a way that closed strings will generate homotopy Lie algebra, while open strings will generate homotopy associative algebra.