$$\frac{1}{2} \frac{\sqrt{(2+2)(2-2+1)}}{2} \frac{|2,1\rangle}{|2,1\rangle} = \underbrace{\frac{1}{1}}_{1} \frac{|1,+1\rangle}{|1,+1\rangle} + \frac{1}{1} \frac{|1,+1\rangle}{|1,+1\rangle} = \underbrace{\frac{1}{1}}_{1} \frac{|1,+1\rangle}{|1,+1\rangle} + \underbrace{\frac{1}{1}}_{1} \frac{|1,+1\rangle}{|1,+1\rangle} = \underbrace{\frac{1}{1}}_{1} \frac{|1,+1\rangle}{|1,+1\rangle} + \underbrace{\frac{1}{1}}_{1} \frac{|1,+1\rangle}{|1,+1\rangle} = \underbrace{\frac{1}{1}}_{1} \frac{|1,+1\rangle}{|1,+1\rangle} + \underbrace{\frac{1}{1}}_{1} \frac{|1,+1\rangle}{|1,+1\rangle} = \underbrace{\frac{1}}_{1} \frac{|1,+1\rangle}{|1,+1\rangle} = \underbrace{\frac{1}{1}}_{1} \frac{|1,+1\rangle}{|1,+1\rangle} = \underbrace{\frac{1}{1}}_$$

$$\Rightarrow |2,1\rangle = \frac{1}{2} \left\{ |+-++\rangle + |-+++\rangle + |+++-\rangle + |++-+\rangle \right\} = \frac{\sqrt{2}}{2} \left(|1,-\rangle \otimes |1,+1\rangle + |1,+1\rangle \otimes |1,-\rangle \right)$$

$$\frac{1}{\sqrt{6}} \frac{1}{\sqrt{6}} \frac{1}{\sqrt{6}} \left\{ \frac{1}{\sqrt{6}} \frac{1}{\sqrt{6}} \left\{ \frac{1}{\sqrt{6}} \frac{1}{\sqrt{6}} + \frac{$$

$$\# : |1, -\rangle \otimes |1, -\rangle = \frac{1}{\sqrt{2}} (|+-\rangle + |-+\rangle) \frac{1}{\sqrt{2}} (|+-\rangle + |-+\rangle) = \frac{1}{2} (|+-+\rangle + |-+\rangle + |+-+\rangle$$

$$|2, 0\rangle = \frac{1}{16} \left\{ |-++\rangle + |+-+\rangle + (-++) + |+-+\rangle + |+-+\rangle + |+-+\rangle \right\}$$

$$= \frac{1}{16} \left\{ ||-+\rangle| + ||-+\rangle| + ||-+\rangle| + ||-++\rangle| + ||-+\rangle| + ||--\rangle| + ||--$$

for ooo we have:

$$|s_{1}, s_{2}| = |s_{1}, s_{2}| + |s_{1}| + |s_{1}| + |s_{2}| +$$

 $+C_{2}(|1\rangle+1\rangle\otimes|1\rangle,0\rangle)=0$ $\Rightarrow \frac{1}{\sqrt{2}}(C_{1}+C_{2})=0 \Rightarrow C_{1}=C_{1}(\mathbb{I})$ $C_{1}=\pm\frac{1}{\sqrt{2}} \text{ and } C_{2}=\mp\frac{1}{\sqrt{2}}$ $\vdots \in \mathbb{I}_{2}\mathbb{I}$

-1++-+}} الله المراه دارس کست (۱۰۱۱ دارس) Jz_11,+1> = (J_\@ 1 + 1 \@ J_{1-34}) \frac{1}{12} \{ 11,0>@ 11,+1> - 11,+1> @ 1100>} => to 27 |1,0>= = = [\$\frac{1}{2} |1,0| = \frac{1}{2} \frac{11}{2} |1,0| = \frac{1}{2} \frac{11}{2} |1,0| = \frac{1}{2} \frac{11}{2} \frac{11}{2} |1,0| = \frac{11}{2} \frac{ $\Rightarrow |1,0\rangle = \frac{1}{\sqrt{2}} \left\{ |1,-1\rangle \otimes |1,+1\rangle - |1,+1\rangle \otimes |1,-1\rangle \right\} = \frac{1}{\sqrt{2}} \left\{ |--++\rangle - |++--\rangle \right\}$ にかいいっと Jr_11,0>=(J_⊗1+1⊗J-3+) / [11,-1>⊗11,+1>-11,+1>⊗11,-1>] > t /2 11,-1> = 1/2 (-t /2 11,0) @ 11,-1> + 11,-1> @ t /2 11,0> g $\Rightarrow |1,-1\rangle = \frac{1}{\sqrt{2}} \left\{ |1,-1\rangle \otimes |1,0\rangle - |1,0\rangle \otimes |1,-1\rangle \right\} = \frac{1}{2} \left\{ |--+-\rangle + |---+\rangle \right\}$ -1+--->9 مال براد الاستان کے دورہ ا درهائے ۔ الاستان کے دورہ ا درهائے ۔ 10,00 = (10,000) = (10,000) (10,000) = (10,000) = Cy (11,+1>811,-1>)+C2(11,->8(11,0))+C3(11,-1>8/1,+1>) <0,0,0,0>=10,12+10212+10312=1 (I) <1,0,0,0,0>= 1/2 {<1,-110 <1,+11 - <1,+110 <1,-113/000> = 1/2(C3 - C1)=0(X) $\langle 2, 0 | 0, 0 \rangle = \frac{1}{\sqrt{6}} \left\{ \langle 1, 0 - 1 | 0 | \langle 1, 0 + 1 | 0 | \langle 1, 0 | + \langle 1, + 1 | 0 | \langle 1, - 1 | 0 | 0, 0 \rangle = \frac{1}{\sqrt{6}} \left(C_3 + 2C_2 + C_1 \right) = 0 \right\}$

(3) ال رابطة ١٠٠٠ (ري $C_1 = C_3$ با جانگذاری دردابطهی تله دارس با جارگذاری ای وابطه در رابطه ی I دارسے: 10,12+1-0,12+10,12=310,12=1 & $C_3 = \pm \frac{1}{\sqrt{3}}$ $\Rightarrow c_1 = \pm \frac{1}{\sqrt{3}} & c_2 = \mp \frac{1}{\sqrt{3}}$ مل کرفراب رایسے کے درور مرافرامر 1000>= 1/3 { (1,+1) @ (1,-1) - (1,0) @ (1,0) + (1,-1) @ (1,71)} = 1 3 { 1++--> - 1 (1+-+-> + 1+--+> + 1-+-> + 1-+-> } عابرای زون حاسیستوی بود کست حا از در نوتیستن حاسیستوی استناده کریم که یک نوتیسی رادرم که (2) توسِّ دارس ونوتيت ن دم رائيز اينجا بازگر کست: $H = \underbrace{\frac{1}{1}}_{i=1} S_{2(i)} \cdot S_{2(i+1)} + \underbrace{\frac{1}{1}}_{i=1} \left(S_{i}^{t} S_{i+1}^{t} + S_{i}^{t} S_{(i+1)}^{t} \right)$ H=(Sz Sz+SzSz+SzSz+SzSz) $+\frac{1}{2}\left\{ (s_{1}^{2}s_{2}^{+}+s_{2}^{+}s_{1})+(s_{2}s_{3}^{+}+s_{2}^{+}s_{3})+(s_{3}s_{4}^{+}+s_{3}^{+}s_{4})+(s_{4}s_{1}^{+}+s_{1}^{+}s_{4}^{+})\right\}$ مالی درنوتید فن از دارسیاتوی را دارسیج مدروج کتنے ماسلتوی داردی کست ها اشي دميم تاسيم، آن رابياسيع : مه روی کست های ۱۵۲ هاصلتونی دادر می درم خود انبری دهست.

$$H(1) = H\left(\frac{1}{12}(1-++)-(+--)\right)$$

HII,0> Torms:

$$H(1)-1 > = H(\frac{1}{\sqrt{2}}(1--+-)+(---+)-1+--->))$$

H111,-1> terms:

$$S_{1}^{Z}S_{2}^{Z}\circ(\frac{1}{4})1--+>+(\frac{1}{4})1--+>-(-\frac{1}{4})1+-->-(-\frac{1}{4})1-+-->$$

$$S_{2}^{Z}S_{3}^{Z}\circ(\frac{1}{4})1--+>+(\frac{1}{4})1--+>-(\frac{1}{4})1+-->-(-\frac{1}{4})1-+-->$$

$$S_{3}^{Z}S_{4}^{Z}\circ(\frac{1}{4})1--+>+(-\frac{1}{4})1---+>-(\frac{1}{4})1+--->-(\frac{1}{4})1-+-->$$

$$S_{4}^{Z}S_{1}^{Z}\circ(\frac{1}{4})1--+>+(-\frac{1}{4})1---+>-(-\frac{1}{4})1+--->-(\frac{1}{4})1-+-->$$

$$\frac{1}{2}(S_{1}^{\dagger}S_{2}^{Z}+S_{1}S_{2}^{Z})=\frac{1}{2}\{-1-4-->-14--->\}$$

$$\frac{1}{2}(S_{2}^{\dagger}S_{3}^{Z}+S_{1}S_{3}^{Z})=\frac{1}{2}\{-1-4-->-14--->\}$$

$$H ||_{1,\circ}\rangle = H (|_{1,\circ}\rangle \otimes |_{1,\circ}\rangle) = \frac{1}{2} (|_{0} - \frac{3}{4} - \frac{3}{4}|_{1}) |_{1,\circ}\rangle$$

$$+ (|_{\frac{1}{2}}|_{(\frac{1}{2})}|_{1} + (|_{\frac{1}{2}}|_{(\frac{1}{2})}|_{1} + (-|_{\frac{1}{2}}|_{(-\frac{1}{2})}|_{1}) |_{1,\circ}\rangle$$

$$+ \frac{1}{4} \{ |_{1} + - - - |_{1} - + + \rangle^{2} \}$$

$$+ \frac{1}{2} (2 - \frac{3}{4} - \frac{3}{4}) |_{1,\circ}\rangle$$

$$+ (|_{\frac{1}{2}}|_{2}) (|_{\frac{1}{2}}|_{1} + (-|_{\frac{1}{2}}|_{1}) (-|_{\frac{1}{2}}|_{1} + (|_{\frac{1}{2}}|_{2}) |_{1,\circ}\rangle$$

$$+ \frac{1}{4} \{ |_{1} - + + \rangle - |_{1} + |_{1} - + \rangle \}$$

$$= -\frac{3}{8} (|_{1} + - + - \rangle) - |_{1} +$$

$$H_{||1,-1|} = H(||\cdot,\cdot||) = \frac{1}{2} \left(\circ - \frac{3}{4} - \frac{3}{4} \right) ||1,-1|$$

$$+ \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) + \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) ||1,-1|$$

$$- \frac{1}{242} ||--+|$$

$$+ \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) + \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) ||1,-1|$$

$$+ \frac{1}{242} ||--+|$$

$$+ \frac{1}{2} \left(2 - \frac{3}{4} - \frac{3}{4} \right) ||1,-1|$$

$$= \frac{-3}{442} \left(1 + -- > -1 - + -> \right)$$

$$+ \frac{1}{442} \left(1 + -- > -1 - + -> \right)$$

$$+ \frac{1}{442} \left(1 + -- > -1 - + -> \right)$$

$$+ \frac{1}{442} \left(1 + -- > -1 - + -> \right)$$

$$+ \frac{1}{442} \left(1 + -- > -1 - + -> \right)$$

$$H | 1, 1 \rangle = H | 1, -1 \rangle = -\frac{1}{8} | + --- \rangle + \frac{1}{8} | -+-- \rangle + \frac{1}{8} | --+- \rangle$$

$$H | 1, 1 \rangle = H (1 \cdot, 1 \cdot) \otimes | 1, 1 \rangle) = \frac{1}{2} (0 - \frac{3}{4} - \frac{3}{4}) | 1, 1 \rangle$$

$$+ (\frac{1}{2}) (\frac{1}{2}) + (\frac{1}{2}) (\frac{1}{2})) | 1, 1 \rangle$$

$$+ \frac{1}{2} (2 - \frac{3}{4} - \frac{3}{4}) | 1, 1 \rangle$$

$$+ (\frac{1}{2}) (\frac{1}{2}) (\frac{1}{2}) (\frac{1}{2}) | 1, 1 \rangle$$

$$+ \frac{1}{2} (\frac{1}{2}) (\frac{1}{2}) (\frac{1}{2}) | 1, 1 \rangle$$

$$+ \frac{1}{4} (\frac{1}{2}) (\frac{1}{2}) (\frac{1}{2}) | 1, 1 \rangle$$

$$+ \frac{1}{4} (\frac{1}{2}) (\frac{1}{2}) (\frac{1}{2}) | 1, 1 \rangle$$

$$+ \frac{1}{4} (\frac{1}{2}) (\frac{1}{2}) (\frac{1}{2}) | 1, 1 \rangle$$

$$+ \frac{1}{4} (\frac{1}{2}) (\frac{1}{2}) (\frac{1}{2}) | 1, 1 \rangle$$

$$+ \frac{1}{4} (\frac{1}{2}) (\frac{1}{2}) (\frac{1}{2}) | 1, 1 \rangle$$

$$+ \frac{1}{4} (\frac{1}{2}) (\frac{1}{2}) (\frac{1}{2}) | 1, 1 \rangle$$

$$+ \frac{1}{4} (\frac{1}{2}) (\frac{1}{2}) (\frac{1}{2}) | 1, 1 \rangle$$

$$+ \frac{1}{4} (\frac{1}{2}) (\frac{1}{2}) (\frac{1}{2}) | 1, 1 \rangle$$

$$+ \frac{1}{4} (\frac{1}{2}) (\frac{1}{2}) (\frac{1}{2}) | 1, 1 \rangle$$

$$+ \frac{1}{4} (\frac{1}{2}) (\frac{1}{2}) (\frac{1}{2}) | 1, 1 \rangle$$

$$H_{11,+} = H_{11,+} = H_{11,+} = I_{11,+} = I_{11,+}$$

$$\begin{aligned} H_{1,2}(t) &= H_{1,2}(t) \otimes (t,s) \\ &+ \frac{1}{2} \left(\frac{1}{2} - \frac{3}{4} - \frac{3}{4} \right) |_{1,2}(t) \\ &+ \frac{1}{2} \left(\frac{1}{4} |_{1,2}(t) + \frac{1}{4} |_{1,2}(t) |_{1,2}(t) \right) \\ &+ \frac{1}{2} \left(\frac{1}{2} - \frac{3}{4} - \frac{3}{4} \right) |_{1,2}(t) \\ &+ \frac{1}{2} \left(s - \frac{3}{4} - \frac{3}{4} \right) |_{1,2}(t) \\ &+ \frac{1}{2} \left(s - \frac{3}{4} - \frac{3}{4} \right) |_{1,2}(t) \\ &+ \frac{1}{2} \left(s - \frac{3}{4} - \frac{3}{4} \right) |_{1,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} \right) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} \right) |_{1,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} \right) |_{1,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} \right) |_{1,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} \right) |_{1,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} \right) |_{1,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} \right) |_{2,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} \right) |_{2,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} \right) |_{2,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} \right) |_{2,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} \right) |_{2,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} \right) |_{2,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} \right) |_{2,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} \right) |_{2,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} \right) |_{2,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} \right) |_{2,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} \right) |_{2,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} \right) |_{2,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} \right) |_{2,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} \right) |_{2,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} \right) |_{2,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} \right) |_{2,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} \right) |_{2,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} \right) |_{2,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} \right) |_{2,2}(t) \\ &+ \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} + \frac{$$

$$\Rightarrow \left[\frac{21/2,2}{2} = \frac{1}{2,2}\right]$$

$$|2,1\rangle = \frac{1}{2} \left\{ |+-++\rangle + |-+++\rangle + |+++-\rangle + |++-+\rangle \right\} = \frac{\sqrt{2}}{2} \left\{ |1, \rangle |1, 1\rangle + |1, 1\rangle |1, \rangle \right\}$$

$$|+|2,1\rangle \text{ Terms:}$$

$$\begin{vmatrix} 2_{x_{1}} \rangle - \frac{1}{2} & \{ |-++\rangle + |+++\rangle + |+++\rangle + |+++\rangle + |+++\rangle$$

$$7H(2_{x_{1}}) \sqrt{2} \left(\frac{1}{2} \right) |-++\rangle + \left(\frac{1}{2} \right) |+++\rangle + \left(\frac{1}{2} \right) |+++$$

 $H : V \to H \left(\frac{1}{\sqrt{3}} \left(1 + + - - > - \frac{1}{2} \left(1 + - + - > + 1 + - - + > + \left(- + + - > \right) + 1 - - + + > \right) \right)$

Hloso) terms:

=> H1000= = = {1+-+->+ [1+--+>+ [++-->+ [++-->]+1-+->]

$$1: |2,2\rangle = |1,+|\rangle \otimes |1,+|\rangle = |++++\rangle \otimes H|2,2\rangle = |++++\rangle = |2,2\rangle$$

$$\frac{2:|2,1\rangle = \frac{1}{2}\{|+-++\rangle + |-+++\rangle + |++-+\rangle^{2}}{2!|2,1\rangle = \frac{1}{2}\{|+-++\rangle + |-+++\rangle + |++-+\rangle^{2}} & \text{ H}(2,1) = |2,1\rangle$$

$$3: |2,0\rangle = \frac{1}{2}\{|+-++\rangle + |-+++\rangle + |++-+\rangle^{2} & \text{ H}(2,1) = |2,1\rangle$$

3:
$$|2,0\rangle = \frac{1}{\sqrt{6}} \left\{ |--++\rangle + |+-+-\rangle + |-+-+\rangle + |+--+\rangle + |+----\rangle \right\}$$
4: 12

$$4:|2_{2}-1\rangle = \frac{1}{2}\{1+--->+1-+-->+1--+->\}$$
 & $H(2,-1) = |2,-1>$

10: 11,-1> =
$$\frac{1}{\sqrt{2}}$$
 \(\lambda 1 - \tau - \rangle -1 - - - \rangle \rangle \) \(\lambda \) \

11:
$$11, -1 > = \frac{1}{\sqrt{8}} \{ 1 + --- > 1 - + --> \}$$
 & $11 > -1 > = \frac{1}{\sqrt{8}} \{ -1 + --- > +1 - + --> -1 - +-> \}$

14: 11, 0> =
$$\frac{1}{2}$$
 \\ (\sort) \frac{1}{2}\\ (14-4->-1-4+->+1+--+>-1-4-+>\frac{1}{2}\\ \lambda \\ \lambda

$$15:|0,0\rangle = \frac{1}{\sqrt{3}} \left\{ |++--\rangle - \frac{1}{2} \left(|+-+-\rangle + |+--+\rangle + |-+-+\rangle + |-++-\rangle \right) + |--++\rangle \right\}$$

```
الم الما المحت من عند ما ترى قطرى با يك مصفول ويرة مصفول ويرداني:
          Stot=2, Sz=2:
            <2,2/42 | H(2,+2)=1 , <2,1/1 H(2,+2)=0 , <2,0/ H(2,2)=0 , <2,-1/ H(2,2)=.
         \langle 2, -2|H|2, 2 \rangle = 0, \langle 1, +1|H|2, 2 \rangle = 0, \langle 1,
      1x1 O 5 [1] for 5 tot=2 & 52=+2
          Stat=2, 52=1:
        <2,2|H|2,1>=0, <2,1|H|2,1>=1, <2,0|H|2,1>=0, <2,-1|H|2,1>=0
       (2,-2|H|2,1)=0, (1,+1|H|2,1)=0, (51,+1|H|2,1)=0, (1,+1|H|2,1)=0
    (رمنته
        1x1 Jose [1] for Stat=24 52=11
        Stot=2, Sz=0:
      <2,2|H|2,0>=0 ) <2,1|H|2,0>=0 , <2,0|H|2,0>= ( , <2,0|H|2,0>=0
      <2,-21H|2,0>=0 > ⟨1,+1|H|2,0>=0 > ⟨1,+1|H|2,0>=0 , ⟨1,+1|H|2,0>=0
TS (1, 0 1H12,0)=0 , <1, 1 H | 2,0)=0 , <1,0 | H | 2,0 >= 0 , <1,0 | H | 2,0 >= 0

  \[
  \left\{ \frac{1}{1}, -1|H|2, 0 \right\{ \frac{1}{2}, 0 \right\{ \frac{1}2}, 0 \right\{ \frac{1}2}, 0 \right\{ \frac{1}2}, 0 \right\{ \frac{1}2}, 0 \right\{ \frac{1
 1x1 ( 50 : [1] for 5tot= 2 & 5z=.
```

```
5 tot=2,5z=-1:
 <2,21H|2,-1>=0 , <2,11H|2,-1>=0 , <2,0|H|2,-1>=0 , <2,-1|H|2,-1>=1
 <2,-2|H|2,-1>=0, <1,+1|H|2,-1>=0
TT |H|2,-1>=0
TS | ST +1|H|2,-1>=0

⟨ 1, - | H | 2, - 1⟩ = 0 , ⟨ 1, 0 | H | 2, - 1⟩ = 0 , ⟨ 1, 0 | H | 2, - 1⟩ = 0 , ⟨ 1, - 1 | H | 2, - 1⟩ = 0

TT

5 [1] for Stot= 2 & 5 2=-1
 Stot = 2, Sz = -2:
<2,21 H12,-2>= 0, <2,11 H12,-2>=0, <2,1 H12,-2>=0, <2,-11 H12,-2>=0
(2,-2|H|2,-2)=1, <1,+1|H|2,-2>=0, <1,+1|H|2,-2>=0, <1,+1|H|2,-2>=0
5 [1] for Stot 2 & Sz = -2
 Stot = 1, Sz=+1:
 (2,2) H(1,1)=0 , (2,1) H(1),1)=0 , (2,-1) H(1),1)=0 , (2,-1) H(1),1)=0
(2,2| H11), = , (2,1| H11), = , (2,0| H11), = , (2,-11H1), = 0
 (2,-2|H|b)=0) (1,1|H|b)=0) (1,1|H|b)=-,5) (1,1|H|b+1)=-,5
(1,0|H|1),1)=0 )<1,0|H|1),1>=0 , <1,0|H|1),1>=0 , <1,0|H|1),+1>=0
TS TS TS TS
```

، حرنتیم ملک ماترسی 2×2 خواهی داشت	1000277	13/2
Contract of the second of the	13	-1,5

for stot= . & Sz=.

12,2)	12,1>	12,0	123-17	012,-2	۲> ر <u>ا</u> ړ خ	الهوا) (ا	> 11211>	1120	(سیرا)	(1/2)	11,-1	3 h ('-2')	ر (۱۰-۱۷	احتراهٔ ۱۳۰۷ (۱۳۰۰	, 16 x 1 (0,°) -	60	بالترسيد	,	 <ر نخا
,	1	•	a	0	۰	0	•	•	0	•	۰	٥	•		0				
0	٥	1	0	۰	0	o	۰	•	o	0	•	v	o	0	0				
0	u	o	١	•	•	٥	0	•	۰	v	٥	o	0	o	0				
0	G	0	٥	1	٥	٥	a	a	0	•	u	۰	0	•	0				,
6	U	o	a	o		o	۰	۰	o	•	ø	•	•	Ü	0				
0	0	٥	۰	o	a	-,5	- ,,5	•	a	0	0	9	۰	۰	۰				
٥	a	o	a	0	٥	-,5	-,,5	0	o	•	u	o	۰	0	•				
0	0	D	0	0	0	a	0	۰	P	•	۰	v	9	•	o				
0	9	0	0	۰	à	0	o	0	-45	-,,5	۰	۰	0	0	٥				
o	0	a	٥	•	0	4	0	0	-95	-95	,	ė	ø	a	0				
0	0	ø	٥	ь	•	a	o	0	a	0	٥	0	٥	٠	•				
۰	۰	•	٥	0	o	0	o	٥	o	•	a	-95	-,,5	•	•				
	q	o	0	6	•	0	0	σ	٥	٥	٥	-95	- 45	۰	۰				
	a	٥	۵	٥	0	0	0	۰	0	o	0	0	٥	-015	13				
٥	•	a	0	,	q	0	,	۰	٥	a	•	۰	0	131	-45				

علی به مفاسب ی ویژه مقادیری دیروازی: * برای 5 ماترس اولی که ایمل هسته ویژه مقدار برابر ۱ است ویناز به معاسبه دزارد. * برای ۵ ماترس ۵ بری ویژه مقداری معادیر مایک هستهٔ سس برای مل ویژه مقداری یاب.

$$\frac{\det(U-\lambda I)=0}{0} = \frac{1}{2} = \frac{1}$$