pd.DataFrame(train_images[0])

	0	1	2	3	4	5	6	7	8	9	 18	19	20	21	22	23	24	25	26	27
0	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	 175	26	166	255	247	127	0	0	0	0
6	0	0	0	0	0	0	0	0	30	36	 225	172	253	242	195	64	0	0	0	0
7	0	0	0	0	0	0	0	49	238	253	 93	82	82	56	39	0	0	0	0	0
8	0	0	0	0	0	0	0	18	219	253	 0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	80	156	 0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	14	 0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	 25	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	 150	27	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	 253	187	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	 253	249	64	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	 253	207	2	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	 250	182	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	0	 78	0	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0	23	66	 0	0	0	0	0	0	0	0	0	0
22	0	0	0	0	0	0	18	171	219	253	 0	0	0	0	0	0	0	0	0	0
23		0		0	55	172	226	253	253	253	 0	0	0	0	0	0	0	0	0	0
24	0	0	0	0	136	253	253	253	212	135	 0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
26	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
27					0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0

28 rows × 28 columns

train_images=train_images/255
test_images=test_images/255

```
model=models.Sequential()
model.add(layers.Flatten(input_shape=(28,28,1)))
model.add(layers.Dense(32,activation='relu'))
model.add(layers.Dense(16,activation='relu'))
model.add(layers.Dense(10,activation='softmax'))
model.compile(optimizer='adam', loss='sparse categorical crossentropy', metrics=['accuracy'])
model.summarv()
  Model: "sequential"
   Layer (type)
                    Output Shape
                                    Param #
   flatten (Flatten)
                    (None, 784)
   dense (Dense)
                                    25120
                    (None, 32)
   dense 1 (Dense)
                    (None, 16)
                                    528
   dense_2 (Dense)
                    (None, 10)
                                    170
   _____
   Total params: 25818 (100.85 KB)
   Trainable params: 25818 (100.85 KB)
   Non-trainable params: 0 (0.00 Byte)
h = model.fit(train images,train labels, epochs=10, validation data = (test images,test labels))
   Epoch 1/10
   Epoch 2/10
   1875/1875 [
              Epoch 3/10
   Epoch 4/10
   1875/1875 [============] - 7s 4ms/step - loss: 0.1245 - accuracy: 0.9632 - val loss: 0.1365 - val accuracy: 0.9617
   Epoch 5/10
   Epoch 6/10
   Epoch 7/10
   1875/1875 [=
              Epoch 8/10
   1875/1875 [===========] - 6s 3ms/step - loss: 0.0809 - accuracy: 0.9758 - val_loss: 0.1137 - val_accuracy: 0.9689
   Epoch 9/10
   1875/1875 [=
             Epoch 10/10
   score = model.evaluate(test_images,test_labels)
print("test loss :", score[0])
print("test accuracy :", score[1])
   test loss: 0.11276522278785706
   test accuracy : 0.9700999855995178
model_name="file.h5"
model.save(model_name,save_format='h5')
   /usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py:3000: UserWarning: You are saving your model as an HDF5 file vi
    saving_api.save_model(
loaded model = tf.keras.models.load model(model name)
predictions_one_hot = loaded_model.predict([test_images])
   313/313 [========== ] - 1s 2ms/step
print("predications one hot :", predictions_one_hot.shape)
   predications one hot : (10000, 10)
predictions=np.argmax(predictions_one_hot, axis=1)
pd.DataFrame(predictions)
```

10000 rows × 1 columns

print(predictions[3])

0

plt.imshow(test_images[3].reshape((28,28)),cmap=plt.cm.binary)
plt.show()

