$\begin{array}{c} {\rm Assignment\text{-}02} \\ {\rm On} \\ {\rm Lifetime~Data~Analysis} \\ {\rm AST~405} \end{array}$

Submitted By: Shafayet Khan Shafee FH-033-011 4th Year Submitted To:
Dr. Mahbub Latif
Professor
ISRT

January 21, 2022

Contents

Question 01 Question 02 Question 03 Question 04
Question 03
·
Ouestion 04
- V
Question 05
Question 06
Question $07 \ldots \ldots \ldots \ldots$
Question 08
R-code

Answers to Questions

Question 01

Table 1: Descriptive Statistics

	level	Overall
n		3154
age (mean (SD))		46.35 (5.56)
bmi (mean (SD))		24.48 (2.55)
arcus (%)	0	2219 (70.4)
	1	934 (29.6)
	NA	1 (0.0)
behpat (%)	A1	275 (8.7)
	A2	1290 (40.9)
	В3	1236 (39.2)
	B4	353 (11.2)
chd69 (%)	No	2900 (91.9)
	Yes	254 (8.1)

Table 2: Correlation Test (age, bmi) and T-test (arcus) with chol

term	estimate	statistic	p.value
age	0.081	4.550	<.001
bmi	0.060	3.385	<.001
arcus	-12.672	-7.604	<.001

Table 3: One Way Analysis of Variance for chol on behpat

term	df	sumsq	meansq	statistic	p.value
behpat	3	30741.67	10247.223	5.475	<.001
Residuals	3135	5867632.50	1871.653	NA	NA

Question 03

Table 4: 2x2 table with Chi-square test result

	CHD		
behpat	No	Yes	
A1	246	29	
A2	1158	132	
В3	1164	72	
B4	332	21	

Pearson's Chi	i-squared test
statistic	p.value
20.978	<.001

Table 5: Estimate of Model Parameters

term	estimate	std.error	statistic	p.value
(Intercept)	196.971	6.483	30.381	<.001
age	0.632	0.139	4.550	<.001

$$\widehat{\text{chol}} = 196.97 + 0.63(\text{age})$$
 (1)

Question 05

Table 6: Estimate of Model Parameters

term	estimate	std.error	statistic	p.value
(Intercept)	228.352	1.097	208.102	<.001
${\bf dibpatType~B}$	-4.147	1.546	-2.682	0.007

$$\widehat{\text{chol}} = 228.35 - 4.15(\text{dibpat}_{\text{Type B}}) \tag{2}$$

Table 7: Estimate of Model Parameters

term	estimate	std.error	statistic	p.value
(Intercept)	235.073	2.618	89.778	<.001
behpatA2	-8.150	2.883	-2.827	0.005
behpatB3	-10.226	2.894	-3.533	<.001
behpatB4	-13.122	3.491	-3.759	<.001

$$\widehat{\text{chol}} = 235.07 - 8.15(\text{behpat}_{A2}) - 10.23(\text{behpat}_{B3}) - 13.12(\text{behpat}_{B4})$$
 (3)

Question 07

Table 8: Estimate of Model Parameters

term	estimate	std.error	statistic	p.value
(Intercept)	207.388	7.132	29.080	<.001
age	0.582	0.140	4.172	<.001
behpatA2	-7.699	2.878	-2.675	0.008
behpatB3	-9.268	2.896	-3.200	0.001
behpatB4	-11.841	3.496	-3.387	<.001

$$\widehat{\text{chol}} = 207.39 + 0.58(\text{age}) - 7.7(\text{behpat}_{\text{A2}}) - 9.27(\text{behpat}_{\text{B3}}) - 11.84(\text{behpat}_{\text{B4}})$$
(4)

Table 9: Estimate of Model Parameters

term	estimate	std.error	statistic	p.value
(Intercept)	222.252	1.171	189.755	<.001
age40	0.632	0.139	4.550	<.001

$$\widehat{\text{chol}} = 222.25 + 0.63(\text{age}40)$$
 (5)

Table 10: Estimate of Model Parameters

term	estimate	std.error	statistic	p.value
(Intercept)	223.702	1.597	140.043	<.001
${\rm dibpatType}~{\rm B}$	-3.644	2.175	-1.675	0.094
smokeYes	8.728	2.189	3.988	<.001
dibpatType B:smokeYes	0.265	3.085	0.086	0.932

$$\widehat{\mathrm{chol}} = 223.7 - 3.64 (\mathrm{dibpat_{Type~B}}) + 8.73 (\mathrm{smoke_{Yes}}) + 0.27 (\mathrm{dibpat_{Type~B}} \times \mathrm{smoke_{Yes}})$$

$$(6)$$

R-code

```
knitr::opts chunk$set(echo = FALSE,
                    message = FALSE,
                    warning = FALSE
                    )
## ----- package setup -----
library(dplyr)
library(purrr)
library(knitr)
library(broom)
library(tableone)
library(kableExtra)
library(equatiomatic)
## ----- data setup -----
load(here::here("data", "wcgs.Rdata"))
sid <- 011
set.seed(sid)
mydat <- sample_n(wcgs, size = n(), replace = TRUE)</pre>
## ----- utility functions -----
kab_tab <- function(tab, ...) {</pre>
 knitr::kable(
   tab,
   format = "latex", booktabs = TRUE,
   digits = 3, ...
```

```
)
}
p_format <- function(pval) {</pre>
  ifelse(pval < .001, " <.001 ", as.character(round(pval, 3)))</pre>
}
mod_tab <- function(mod, ...) {</pre>
  mod %>% tidy() %>%
    mutate(p.value = p_format(p.value)) %>%
    kab_tab(
      align = "lrrrr",
      caption = "Estimate of Model Parameters", ...
    ) %>%
    kable styling(latex options = "HOLD position")
}
reg_eq <- function(mod, ...) {</pre>
  extract_eq(mod, use_coefs = TRUE, intercept = "beta", wrap = TRUE, ...)
}
## ----- Code for Question-01 -----
tab <- CreateTableOne(</pre>
    data = mydat,
    vars = c("age", "bmi", "arcus", "behpat", "chd69"),
    factorVars = "arcus",
    includeNA = TRUE,
    addOverall = TRUE
  )
```

```
tab_p <- print(tab, showAllLevels = TRUE, printToggle = FALSE)</pre>
kab tab(tab p, caption = "Descriptive Statistics") %>%
  kable styling(latex options = "HOLD position")
## ----- Code for Question-02 -----
arcus <- t.test(chol ~ arcus, data = mydat) %>%
  tidy() %>%
  mutate(term = "arcus") %>%
  select(term, estimate, statistic, p.value)
mydat %>%
  select(age, bmi) %>%
  map(\sim cor.test(x = .x, y = mydat\$chol)) \%>\%
  map_dfr(broom::tidy, .id = "term") %>%
  select(term:p.value) %>%
  bind rows(arcus) %>%
  mutate(p.value = p_format(p.value)) %>%
  kab tab(
    align = "lrrr",
    caption = "Correlation Test (age, bmi) and T-test (arcus) with chol"
  ) %>%
  kable_styling(latex_options = "HOLD_position")
anova(lm(chol ~ behpat, data = mydat)) %>%
  tidy() %>%
  mutate(p.value = p_format(p.value)) %>%
  kab_tab(
    align = "lrrrrr",
    caption = "One Way Analysis of Variance for chol on behpat"
```

```
) %>%
  kable styling(latex options = "HOLD position")
## ----- Code for Question-03 -----
tab_chi <- mydat %>% janitor::tabyl(behpat, chd69)
tab_chi %>%
  kab_tab(
    align = "lrr",
    caption = "2x2 table with Chi-square test result"
    ) %>%
  add_header_above(header = c(" " = 1, "CHD" = 2)) %>%
  kable styling(position = "center", latex options = "HOLD position")
tab_chi %>% janitor::chisq.test() %>%
  tidy() %>%
  select(statistic, p.value) %>%
  mutate(p.value = p_format(p.value)) %>%
  kab_tab(align = "lrr") %>%
  add_header_above(header = c("Pearson's Chi-squared test" = 2)) %>%
  kable_styling(position = "center", latex_options = "HOLD_position")
## ----- Code for Question-04 -----
m1 <- lm(chol ~ age, data = mydat)</pre>
m1 %>% mod tab()
reg_eq(m1)
```

```
## ----- Code for Question-05 -----
m2 <- lm(chol ~ dibpat, data = mydat)</pre>
m2 %>% mod_tab()
reg_eq(m2)
## ----- Code for Question-05 -----
m3 <- lm(chol ~ behpat, data = mydat)
m3 %>% mod_tab()
reg_eq(m3)
## ----- Code for Question-08 -----
m4 <- lm(chol ~ age + behpat, data = mydat)
m4 %>% mod_tab()
reg_eq(m4)
## ----- Code for Question-08 -----
mydat %>%
 mutate(age40 = age - 40) \%>\%
 lm(chol \sim age40, data = .) \rightarrow m5
m5 %>% mod_tab()
reg eq(m5)
## ----- Code for Question-08 -----
```

```
m6 <- lm(chol ~ dibpat * smoke, data = mydat)
m6 %>% mod_tab()
reg_eq(m6)
```