

Marco Congedo

Centre National de la Recherche Scientifique Université Grenoble Alpes Grenoble INP

How Riemannian Geometry transformed BCI?

Bernhard Riemann 1826-1866

Elwin Bruno Christoffel 1829-1900

Gregorio Ricci Cubastro 1853-1925

Tullio Levi-Civita 1873-1941

Albert Eninstein 1879-1955

Riemannian Geometry in BCI: a Short History

Only six research groups

2000

Ramoser et al.

UTG

Introduction of the Fukunaga-Koontz transform

$$\lambda_i b_i = \left(C_1^{-1} C_2\right) b_i$$

2010

Barachant et al.

UGA

Introduction of Riemannian Geometry

Minimum Distance to Mean (MDM) Classifier

Barachant et al. UGA

Riemannian MDM and TS classification (seminal paper)

2013

Barachant et al.

UGA

First Transfer Learning attempts

2014

Barachant & Congedo

UGA

First working demonstrator of *calibration-less* BCI « Brain Invaders »

F. Yger and S. Chevallier

Indipendent groups in the BCI field start contributing and confirming efficacy

2014

Barachant. UGA Riemannian Geometry wins an international competition (over 301 participants)

2015

Korczowski et al. UGA First working demonstrator of a multi-user BCI

2015

Barachant

Riemannian Geometry wins two more international Competition (over 311 & 452 participants)

2016

Barachant

Riemannian Geometry wins two more international Competition (over 688 & 7 participants)

Congedo et al. Yger et al. First comprehensive reviews on Riemannian Geometry for BCI.

2018

Zanini et al. UGA **Unsupervised Transfer Learning**

2019

Rodrigues et al. UGA

Riemannian Procrustes Analysis (RPA): Semi-supervised Transfer Learning

Riemannian Procrustes Analysis (RPA)

Original Data

Recentering

 $C_k \leftarrow G^{-1/2} C_k G^{-1/2}$

Streching

 $C_k \leftarrow C_k^p$

Rotation

 $C_k \leftarrow UC_kU^T$

unsupervised

Embedding with diffusion maps of EEG data from two subjects

Cho2017 (MI, 40 ss, 23 elec., 2 classes).

 $\psi_1 \psi_2$ are the Visualization: eigenvalues Spectral of the Embedding Laplacian

2021Rodrigues et al.
UGA

RPA for heterogeneous domains

$$T(C_{RPA}) = UP \begin{pmatrix} \left(G^{-\frac{1}{2}}C_kG^{-\frac{1}{2}}\right)^p & 0\\ 0 & I \end{pmatrix} P^T U^T$$

Code for Riemannian geometry

https://sites.google.com/site/marcocongedo/science/code-resources

P300-BCI Data

https://sites.google.com/site/marcocongedo/science/EEG-data

Databases

273 Subjects

1446 Sessions

BCI in Virtual Reality and on a PC

Description: Visual P300 BCI experiment on PC and virtual reality (passive head-mounted display) (2018)

Subjects: 21

Sessions: 2 # Electrodes: 16 wet Silver/Silver Chloride electrodes

EEGMachine: g.tec g.USBamp

Sampling Rate: 512 sps Database ID: VR FEG 2018-GIPSA

Brain Invaders Multi-User Cooperation vs. Competition

Description: Multi-User Brain Invaders: Cooperation versus Competition condition (2015)

Subjects: 44

Sessions: 2

Electrodes: 32 wet Silver/Silver Chloride electrodes

EEGMachine: g.tec g.USBamp Sampling Rate: 512 sps

Database ID: bi2015b

Brain Invaders Multi-User flash duration

Description: Brain Invaders calibration-less P300-based BCI with modulation of flash duration (2015)

Subjects: 50

Sessions: 3

Electrodes: 32 wet Silver/Silver Chloride electrodes EEGMachine: g.tec g.USBamp

Sampling Rate: 512 sps

Database ID: bi2015a

Brain Invaders Solo vs. Multi-User Collaboration

Description: Multi-User Brain Invaders in Solo versus Collaboration condition (2014)

Subjects: 38

Sessions: 3

Electrodes: 32 wet Silver/Silver Chloride electrodes

EEGMachine: g.tec g.USBamp Sampling Rate: 512 sps Database ID: bi2014b

Brain Invaders dry electrodes

Description: Brain Invaders calibration-less P300-based BCI with dry electrodes (2014)

Subjects: 71

Sessions: up to three per participant

Electrodes: 16 metal dry electrodes EEGMachine: g.tec g.USBamp

Sampling Rate: 512 sps

Database ID: bi2014a

Brain Invaders Adaptive vs. Non-Adaptive

Description: First Brain Invaders dataset of a BCI working without calibration (2013)

Subjects: 24

Sessions: 8 for subjects 1-7, one for the remaining.

Electrodes: 16 wet Silver/Silver Chloride electrodes

EEGMachine: g.tec g.USBamp Sampling Rate: 512 sps

Database ID: BI.EEG.2013-GIPSA

Building Brain Invaders

Description: First Brain Invaders BCI dataset (2012)

Subjects: 25

Sessions: 2

Electrodes: 16 wet Silver/Silver Chloride electrodes

EEG Machine: TMSI Porti

Sampling Rate: 128 sps

Database ID: BLEEG.2012-GIPSA

Collaborators @GIPSA-lab

Prof. C. Jutten

Ingeneer: A. Andreev

Post-Doc: A. Barachant, P. Zanini

PhD Students: L. Korczowski, F. Bouchard, P.L.C. Rodrigues, A. Bleuzé

