МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Алгоритмы и структуры данных»

Тема: Бинарные деревья

Студент гр. 9303	Ахримов А.М
Преподаватель	Филатов А.Ю

Санкт-Петербург 2020

Цель работы.

Изучить структуру данных бинарные деревья. Познакомиться с раличными вариантами обхода бинарных деревьев.

Задание.

- 3в) Для заданного бинарного дерева b типа BT с произвольным типом элементов:
 - напечатать элементы из всех листьев дерева b;
- подсчитать число узлов на заданном уровне n дерева b (корень считать узлом 1-го уровня).

Основные теоретические положения.

 \mathcal{L} ерево — конечное множество T, состоящее из одного или более узлов, таких, что

- а) имеется один специально обозначенный узел, называемый *корнем* данного дерева;
- б) остальные узлы (исключая корень) содержатся в m>0 попарно не пересекающихся множествах $T_1, T_2, ..., T_m$, каждое из которых, в свою очередь, является деревом. Деревья $T_1, T_2, ..., T_m$ называются noddepeвьями данного дерева.

При программировании и разработке вычислительных алгоритмов удобно использовать именно такое *рекурсивное* определение, поскольку рекурсивность является естественной характеристикой этой структуры данных.

Каждый узел дерева является корнем некоторого поддерева. В том случае, когда множество поддеревьев такого корня пусто, этот узел называется концевым узлом, или листом. Уровень узла определяется рекурсивно следующим образом: 1) корень имеет уровень 1; 2) другие узлы имеют уровень, на единицу больший их уровня в содержащем их поддереве этого корня. Используя для уровня узла a дерева T обозначение уровень (a,T), можно записать это определение в виде

уровень
$$(a,T)=\left\{egin{array}{ll} 1\,,& \mbox{если $a-$корень дерева T} \\ \mbox{уровень } (a,T_i)+1,& \mbox{если $a-$не корень дерева T} \end{array}\right.$$

где T_i – поддерево корня дерева T, такое, что $a \in T_i$.

Выполнение работы.

Данная структура бинарного дерева основана на массиве.

Рассмотрим класс binTree. У него есть массив узлов Node, размер массива sizeArray и индекс корня root. Node состоит из поля с данными data и индексами на правое и левое поддерево – RSub и LSub. Методы класса binTree, подразумевающие обход дерева, реализованы рекурсивно.

В методе writeLists осуществляется прямой обход дерева и, если у узла нет поддеревьев (т.е. узел является листом), то его данные выводятся в терминал.

В numberNodes также реализован прямой обход дерева, но до заданного уровня. После просмотра всех узлов с соотвествующим уровнем, метод вывед сумму всез узлов на конкретном уровне.

Входные данные представлены в виде скобочной записи. Дерево можно посмотреть в скобочном виде (метод write) и в виде уступчатого списка (метод view).

Тестирование.

Результаты тестирования представлены в табл. 1.

Таблица 1 – Результаты тестирования

Tweeting at 1 to just with 1 to 111 p obwitting		
№ п/п	Входные данные	Выходные данные
1.	$(A(B(C)(D^{\wedge}(E)))(F(G)))$	Leafs data:
	Level = 3	level = 3 leaf data = C
		level = 4 leaf data = E
		level = 3 leaf data = G
		Level = $1 \text{ data} = A \text{ sum} = 0$

		Level = 2 data = B sum = 0
		Level = $3 \text{ data} = C \text{ sum} = 0$
		Level = $3 \text{ data} = D \text{ sum} = 1$
		Level = $2 \text{ data} = F \text{ sum} = 2$
		Level = $3 \text{ data} = G \text{ sum} = 2$
		Number of nodes at level $3 = 3$
2.	$(a(b(d^{h}))(e))(c(f(i)(j))(g^{k}(l))))$	Leafs data:
	level = 4	level = 4 leaf data = h
		level = 3 leaf data = e
		level = 4 leaf data = i
		level = 4 leaf data = j
		level = 5 leaf data = 1
		Level = $1 \text{ data} = a \text{ sum} = 0$
		Level = $2 \text{ data} = b \text{ sum} = 0$
		Level = $3 \text{ data} = d \text{ sum} = 0$
		Level = $4 \text{ data} = h \text{ sum} = 0$
		Level = $3 \text{ data} = e \text{ sum} = 1$
		Level = $2 \text{ data} = c \text{ sum} = 1$
		Level = $3 \text{ data} = f \text{ sum} = 1$
		Level = $4 \text{ data} = i \text{ sum} = 1$
		Level = $4 \text{ data} = j \text{ sum} = 2$
		Level = $3 \text{ data} = g \text{ sum} = 3$
		Level = $4 \text{ data} = k \text{ sum} = 3$
		Number of nodes at level 4 = 4

Выводы.

В ходе выполнения данной работы была изучены бинарные деревья. Был разработан класс binTree, основанный на массиве. Были реализованы рекурсивные обходы бинарного дерева для поставленных задач.