Newton's Method for Optimization

Caleb Maddry

What is optimization?

Minimization of a function given a set of inputs

Applications of numerical optimization

- Science/Engineering
 - Molecular modeling
 - Control systems
- Finance
 - Portfolio optimization
 - Econometric models
- Policy
 - Resource allocation
 - Risk models

Applications of optimization are everywhere

Gilli et al. (2019)

Edwards et al. (2020)

Line-search methods

Iterative method:

$$x_{k+1} = x_k + \alpha_k d_k$$

- 1. Step direction, d_k
 - Determines which direction to take the step

• Determines **how large** the step should be

The descent direction and Steepest Descent

Descent direction:
$$\nabla f(x_k) \cdot d_k < 0$$

Steepest descent is a basic optimization method

• Uses the gradient as the descent direction:

$$d_k = -\nabla f(x_k)$$

Converges linearly

Step length is chosen with a backtracking line search

Backtracking line search to find α

Find an inexact solution to:

$$\min_{\alpha > 0} f\left(x_k + \alpha p_k\right)$$

Sufficient decrease condition

Curvature condition

Steepest Descent

Reframing optimization as a root finding problem

Goal: find the minimum of a function

• Use the fact the **gradient is zero** at the minimum

Can use tools developed for root finding

- Newton's method
 - Enables quadratic convergence
 - Can use quasi-Newton methods
 - Broyden-Fletcher-Goldfarb-Shanno (BFGS)
 - Lazy-Newton

Newton's method for optimization

Want to find a method: $x_{k+1} = x_k + \alpha_k d_k$

1. Generate an approximation of the function at a step

$$m_k(p) = f(x_k) + \nabla f(x_k)^T p + \frac{1}{2} p^T \nabla^2 f(x_k + \alpha p) p$$

2. Solve the minimization problem to obtain the direction p_k

$$p_k = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

3. Newton's method:

$$x_{k+1} = x_k - \alpha_k(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

Newton's method for optimization

Iteration:

$$x_{k+1} = x_k - \alpha_k(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

Requirements for convergence:

- 1. The Hessian matrix must be SPD to satisfy the descent property
 - Initial guess must be in a region where the Hessian is SPD

Rosenbrock Function

Newton's method results in quadratic convergence

- Gradient descent converged in 32,291 iterations
- Newton descent converges in 16 iteration

Gradient Descent:

Newton descent:

Quasi-Newton methods

Motivation:

- Computing the Hessian matrix can be expensive
- Solving $-(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$ can also be expensive
- More important for higher dimensional functions

Can use quasi-Newton methods to **improve** algorithm

- Lazy-Newton/Shaminski
 - Converge linearly
- Broyden-Fletcher-Goldfarb-Shanno (BFGS)
 - Most robust/popular method
- DFP Algorithm
- Symmetric rank-1 update (SR1)

BFGS as an alternative to Newton's method

BFGS

- Secant equation: $H_{k+1}y_k = s_k$
- Impose a condition to ensure the inverse Hessian approximation is SPD
- Solve minimization problem to find the "closest" iteration

$$y_k^T s_k > 0$$

$$\min_{H} \|H - H_k\|$$

Benefits:

Cost per iteration is less than Newton's method
More important for higher dimensional function

Quasi-Newton results

Lazy Newton computes the Hessian once BFGS using the identity matrix as the initial choice of the approximate Hessian

Lazy Newton:

BFGS:

Additional quasi-Newton methods

DFP Algorithm

Like BFGS but derived by solving the secant equation with the Hessian itself

Symmetric rank-1 update (SR1):

$$B_{k+1} = B_k + \frac{(y_k - B_k s_k)(y_k - B_k s_k)^T}{(y_k - B_k s_k)^T s_k}$$

Symmetric rank-1 update (SR1): $B_{k+1} = B_k + \frac{(y_k - B_k s_k)(y_k - B_k s_k)^T}{(y_k - B_k s_k)^T s_k}$

Denominator goes to zero

- There is no symmetric rank-one update that satisfies the secant equation
- Behaves like Lazy Newton

Trust region methods

- 1. Choose a maximum step length $\,\Delta_k$
 - Region we "trust" our approximation
 - Based on how close the approximation is to the real function

Nocedal

- 2. Minimize the **model function** within this region
 - Typically, an **inexact minimization** is performed
 - An exact approximation is overkill and too expensive for most applications

$$m_k(p) = f(x_k) + \nabla f(x_k)^T p + \frac{1}{2} p^T \nabla^2 f(x_k + \alpha p) p$$

Constraint

$$||p|| \le \Delta_k$$

$$m_k(p) = f(x_k) + \nabla f(x_k)^T p + \frac{1}{2} p^T \nabla^2 f(x_k + \alpha p) p$$

Ensure our step is within the trust region:

$$||p|| \le \Delta_k$$

$$\rho_k = \frac{f(x_k) - f(x_k + p_k)}{m_k(0) - m_k(p_k)}$$

Nocedal

- 2. Approximately solve the minimization problem and update the iterate!
 - Achieved with a method like the Dogleg Method

Trust region methods

- TR converged in **64 iterations**
- Newton descent converges in **54 iteration**

Trust region methods maintain quadratic convergence

Trust region

Newton Descent

Questions?