Seja uma aplicação linear $L: \mathbb{R}^n \to \mathbb{R}$. Seja S o conjunto de todos os elementos s de \mathbb{R}^n tais que $L(s) \geq 0$. Mostrar que S é convexo.

Basta mostrar que $L(tA+(1-t)B)\geq 0$, com A e B pertencentes a S, e t real com $0\leq t\leq 1$.

$$L(A) \geq 0 \ \land \ L(B) \geq 0 \ \Rightarrow \ tL(A) \geq 0 \ \land \ (1-t)L(B) \geq 0 \ \Rightarrow$$

$$\Rightarrow \ tL(A)+(1-t)L(B)\geq 0 \ \Rightarrow \ L(tA+(1-t)B)\geq 0.$$

 $Quod\ Erat\ Demonstrandum.$

Documento compilado em Wednesday $12^{\rm th}$ March, 2025, 23:17, tempo no servidor.

 $Sugest\~oes,\ comunicar\ erros:\ "a.vandre.g@gmail.com".$

Licença de uso:

Atribuição-NãoComercial-Compartilha Igual (CC BY-NC-SA).