Ce quiz comporte 3 questions équipondérées; répondez directement sur la feuille.

Nom: CORRIGÉ

1. Existe-t-il des valeurs de $c, d \in \mathbf{R}$ pour lesquelles les fonctions suivantes sont continues?

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & (x,y) \neq (0,0) \\ c & (x,y) = (0,0) \end{cases} \qquad g(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ d & (x,y) = (0,0) \end{cases}$$

Pour étudier les limites de f et g au voisinage de l'origine, passons en coordonnées polaires :

• $\lim_{\substack{r \to 0 \\ r \neq 0}} f(r\cos\theta, r\sin\theta) = \lim_{\substack{r \to 0 \\ r \neq 0}} r\cos\theta\sin\theta = 0$ indépendemment de θ puisque $|\sin\theta\cos\theta| \leqslant 1$.

On peut donc rendre f continue en prenant c = 0.

• $\lim_{\substack{r \to 0 \\ r \neq 0}} g(r\cos\theta, r\sin\theta) = \lim_{\substack{r \to 0 \\ r \neq 0}} \cos\theta\sin\theta = \cos\theta\sin\theta$ dépend de l'angle d'approche.

Aucune valeur de d ne permet de rendre g continue (la limite n'existe pas).

2. Calculer $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ en tout point du plan pour $f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} & (x,y), \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$

[attention de bien accorder à l'origine l'attention particulière qu'elle mérite]

En $(x, y) \neq (0, 0)$, on dérive simplement le quotient de fonctions dérivables dont le dénominateur ne s'annule pas pour obtenir

$$\frac{\partial f}{\partial x} = \frac{x^4 + 3x^2y^2 + 2xy^3}{(x^2 + y^2)^2}, \qquad \frac{\partial f}{\partial y} = \frac{-y^4 - 3x^2y^2 - 2x^3y}{(x^2 + y^2)^2} \qquad (x, y) \neq (0, 0).$$

À l'origine, on doit considérer les fonctions partielles :

$$f|_{x=0}(y) = -y$$
 même si $y = 0$ \Longrightarrow $\frac{\partial f}{\partial y}(0,0) = \frac{\mathrm{d}}{\mathrm{d}y}(-y) = -1$,

$$f|_{y=0}(x)=x$$
 même si $x=0$ \Longrightarrow $\frac{\partial f}{\partial x}(0,0)=\frac{\mathrm{d}}{\mathrm{d}x}(x)=+1.$

3. Associez à chacune des fonctions de deux variables suivantes son graphe ainsi que ses courbes de niveau.

f(x,y)	graphe	courbes
x^2-y^2	9	Е
$\frac{15x^2y^2}{(x^2+y^2)e^{x^2+y^2}}$	7	С
$\sin x + \sin y$	5	Н

f(x,y)	graphe	courbes
$e^{-x^2} + e^{-y^2}$	3	A
$\cos\sqrt{x^2 + y^2}$	6	G
$\sin xy$	1	В

f(x,y)	graphe	courbes
$y^4 - 8y^2 - 4x^2$	8	D
$e^{x^2/10}\operatorname{Arctan} y$	2	I
3y - 2x	4	F

C)

B)

D)

