3D Body Metric Renzo Caballero

March 21, 2021

Motivation

Let $A, B \subset \mathbb{R}^3$ two sets describing 3D bodies.

We want a mathematical way to describe when both bodies are equal. As an example, let $A=B_{([0,0,0],1)}$ and $B=B_{([1,1,1],1)}$ the unitary balls with centers in $(0,0,0)\in\mathbb{R}^3$ and $(1,1,1)\in\mathbb{R}^3$, respectively.

Can we say A = B? Since $(0,0,0) \in A$ but $(0,0,0) \notin B$, we have that $A \neq B$. Can we say A = B almost everywhere? We know the answer is NO.

However, both A and B are unitary balls in \mathbb{R}^3 , so there exists an isometry $I: \mathbb{R}^3 \to \mathbb{R}^3$ such that I(A) = B. Then, we can say they are equal under some isometry.

Definitions

Let $A, B \subset \mathbb{R}^3$ two sets describing 3D bodies.

Definition

An equivalent class of A contains all the sets $X \subset \mathbb{R}^3$ for with exists $I : \mathbb{R}^3 \to \mathbb{R}^3$ isometry such that I(X) = A almost everywhere w.r.t. the Lebesgue measure.

Then, we have that $A \sim B$ if and only if $\exists I : \mathbb{R}^3 \to \mathbb{R}^3$ s.t. A = I(B) a.e. We use \mathscr{A} to denote the equivalent class of A.

Let $\mathscr A$ and $\mathscr B$ two non-necessarily equal equivalent classes as described before, and let $A\in\mathscr A$ and $B\in\mathscr B$ some elements from that classes. The next inequalities are trivial:

- ▶ $A \cup B \supseteq A$ and $A \cup B \supseteq B$. We reach qualities if and only if A = B.
- ▶ $A \cap B \subseteq A$ and $A \cap B \subseteq B$. We reach qualities if and only if A = B.

Definitions

 $A \cup B \supseteq A \cap B \implies \mu(A \cup B) \ge \mu(A \cap B) \implies \mu(A \cup B) - \mu(A \cap B) \ge 0$, and we reach the equality if and only if A = B almost everywhere. Then we can define our metric:

Definition

Let $\mathscr A$ and $\mathscr B$ two equivalent classes over isometries, and let A and B arbitrary elements from that classes, we define the metric $d(\mathscr A,\mathscr B)$ as

$$d(\mathscr{A},\mathscr{B}) = \min_{A \in \mathscr{A}, B \in \mathscr{B}} \left[\mu(A \cup B) - \mu(A \cap B) \right]. \tag{1}$$

Notice that, $d(\mathscr{A},\mathscr{B})=0$ if and only if, $\mathscr{A}=\mathscr{B}$ (which implies that, for each pair A and B, there exists an isometry $I:\mathbb{R}^3\to\mathbb{R}^3$ s.t. I(A)=B almost everywhere).