Roth's theorem in random subsets of \mathbb{Z}_N

In this exercise sheet, we outline the proof of Roth's theorem for random sets.

We will assume N is a large odd integer throughout. Suppose $f: \mathbb{Z}_N \to \mathbb{C}$. Then we define the normalized Fourier transform $\hat{f}: \mathbb{Z}_N \to \mathbb{C}$ by the formula

$$\widehat{f}(\xi) := \frac{1}{N} \sum_{x \in \mathbb{Z}_N} f(x) e(-x\xi/N).$$

We define the ℓ_p norm of the Fourier transform \widehat{f} to be

$$\|\widehat{f}\|_p := \left(\sum_{\xi \in \mathbb{Z}_N} |\widehat{f}(\xi)|^p\right)^{1/p},$$

for $1 \le p < \infty$ and

$$\|\widehat{f}\|_{\infty} := \max_{\xi \in \mathbb{Z}_N} |\widehat{f}(\xi)|.$$

1. Roth's theorem in \mathbb{Z}_N

Prove the following version of Roth's theorem, due to Varnavides:

Theorem 1. Let $\delta > 0$ and $N \geq 1$ prime. If $f : \mathbb{Z}_N \to [0,1]$ such that

$$\frac{1}{N} \sum_{x \in \mathbb{Z}_N} f(x) \ge \delta,$$

then there exists a constant $c(\delta) > 0$ such that

$$\sum_{x,d \in \mathbb{Z}_N} f(x)f(x+d)f(x+2d) \ge c(\delta)N^2.$$

Hint: If f is the characteristic function of a set this result follows from Varnavides. In general we can reduce to this case by considering the set $A := \{x \in \mathbb{Z}_N : f(x) \geq \delta/2\}$.

2. Restriction estimate for random subsets of \mathbb{Z}_N

Lemma 2 (Lemma 10.22, Tao-Vu). Suppose $f : \mathbb{Z}_N \to \mathbb{C}$ satisfies $|f(x)| \leq \nu(x)$ for all $x \in \mathbb{Z}_N$ where $\nu : \mathbb{Z}_N \to [0, \infty)$ obeys the pseudorandom condition

$$|\widehat{\nu}(\xi)| < \eta \text{ for every } \xi \neq 0.$$

and

$$|\widehat{\nu}(0) - 1| \le \eta,$$

for some $0 < \eta \le 1$. Then

$$\left|\left\{\xi \in \mathbb{Z}_N : |\widehat{f}(\xi)| \ge \alpha\right\}\right| \le \frac{4}{\alpha^2}$$

provided $\alpha \geq 2\eta^{1/2}$.

Exercise: Use Plancherel to verify that the conclusion above holds (easily) for all $\alpha > 0$ in the case where $\nu(x) = 1$ for all $x \in \mathbb{Z}_N$.

Lemma 3. Let $0 < \eta \le 1$. Suppose $f : \mathbb{Z}_N \to [0, \infty)$ satisfies

$$\|\widehat{f}\|_2 \le C\eta^{-\varepsilon/4}$$

for some $\varepsilon > 0$. Assume $f \leq \nu$ where $\nu : \mathbb{Z}_N \to [0, \infty)$ obeys the pseudorandom condition

$$|\widehat{\nu}(\xi)| \le \eta \text{ for every } \xi \ne 0,$$

and

$$|\widehat{\nu}(0) - 1| \le \eta.$$

Then there exists a constant M so that

$$\|\widehat{f}\|_{2+\varepsilon} \leq M.$$

3. Structure and randomness: A decomposition $f = f_1 + f_2$

Prove the following decomposition lemma:

Lemma 4. Assume that $f: \mathbb{Z}_N \to [0, \infty)$ satisfies

$$\|\widehat{f}\|_q \le M \tag{1}$$

for some 2 < q < 3 and $f \le \nu$, where $\nu : \mathbb{Z}_N \to [0, \infty)$ obeys the pseudorandom condition

$$|\widehat{\nu}(\xi)| \le \eta \text{ for every } \xi \ne 0,$$
 (2)

and

$$|\widehat{\nu}(0) - 1| \le \eta,$$

for some $0 < \eta \le 1$. Let

$$f_1(x) = \frac{1}{|B|^2} \sum_{y_1, y_2 \in B} f(x + y_1 - y_2),$$

where

$$B := B(\Gamma, \varepsilon) = \{ x \in \mathbb{Z}_N : |e(-x\xi/N) - 1| \le \varepsilon \text{ for all } \xi \in \Gamma \}$$

and

$$\Gamma = \left\{ \xi : |\widehat{f}(\xi)| \ge \varepsilon \right\}$$

for some $\varepsilon > 0$ to be fixed later. Let $f_2(x) = f(x) - f_1(x)$. Then

(i)
$$0 \le f_1 \le \widehat{\nu}(0) + \frac{\eta N}{|B|}$$

(ii)
$$\frac{1}{N} \sum_{x \in \mathbb{Z}_N} f_1(x) = \frac{1}{N} \sum_{x \in \mathbb{Z}_N} f(x)$$

(iii)
$$|\widehat{f}_i(\xi)| \leq |\widehat{f}(\xi)|$$
 for all $\xi \in \mathbb{Z}_N$ and $i = 1, 2$.

$$(vi) \|\widehat{f}_2(\xi)\|_{\infty} \le 3(1+\eta)\varepsilon$$

4. Roth's theorem for random sets

Using Parts 1, 2 and 3, prove the following version of Roth's theorem for random sets:

Theorem 5. Let $\delta > 0$, $0 < \theta \le 1/100$ and $W \subseteq \mathbb{Z}_N$ with $|W| = N^{1-\theta}$ that satisfies the condition $|\widehat{W}(\xi)| \le N^{-1/3}$ for all $\xi \ne 0$. If $A \subseteq W$ with $|A| \ge \delta |W|$ and N is sufficiently large, then A must contain a nontrivial three term arithmetic progression.

Sketch of the proof of Theorem 5: Define $f(x) = N^{\theta}A(x)$ and $\nu(x) = N^{\theta}W(x)$.

- (a) Let B and Γ be as in Part 3 above.
 - i. Use estimate (1) to show that $|\Gamma| \leq (M/\varepsilon)^q$.
 - ii. Use the pigeonhole principle to prove that $|B| \geq C\varepsilon^{|\Gamma|}$.
- (b) i. Verify that $||f||_2 \leq N^{\theta}$.
 - ii. Deduce from Lemma 3 that the restriction estimate (1) holds for q = 5/2, say.