

Dostępna pamięć: 128MB

Prostokąt NWD

Bajtazar narysował prostokąt o wymiarach 4×5 taki, że w *i*-tym wierszu i *j*-tej kolumnie stoi NWD(i, j). Wyglądał on następująco:

	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1

Następnie zsumował wszystkie liczby, które w nim występują i otrzymał 28 (do sumy nie wliczał numerów kolumn i wierszy). Teraz zastanawia się, jaką sumę otrzymałby, gdyby narysował prostokąt o wymiarach $n \times m$. Osobą, która mu pomoże, jesteś właśnie Ty!

Wejście

W pierwszym i jedynym wierszu wejścia znajdują się dwie liczby całkowite $1\leqslant n\leqslant 10^6,\ 1\leqslant m\leqslant 10^6$ oznaczające odpowiednio liczbę wierszy i kolumn prostokąta Bajtazara.

Wyjście

Twój program powinien wypisać na wyjście dokładnie jeden wiersz zawierający pojedynczą liczbę – szukaną przez Bajtazara sumę $(\sum_{i=1}^n \sum_{j=1}^m \text{NWD}(i,j))$.

Wejście	Wyjście		
4 5	28		

Ocenianie

Podzadanie	Ograniczenia	Punkty
1	$n, m \leqslant 1000$	30
2	$n \leqslant 1000$	20
3	$n \leqslant 10^5$	20
4	brak dodatkowych ograniczeń	30