UNIVERSITE LIBANAISE FACULTE DE GENIE

Concours d'entrée 2003-2004

Chimie Durée : 1 heure

I. Synthèse de l'éthanoate d'éthyle

La synthèse de l'éthanoate d'éthyle est une réaction d'estérification. Cette estérification est réversible lorsqu'elle a lieu entre un acide carboxylique et un alcool.

Données:

- Réactifs chimiques disponibles : acide éthanoïque pur, solution aqueuse d'acide éthanoïque, éthanol, déshydratant P_4O_{10} : chlorure de thionyle : $SOCL_2$
- Le rendement de la synthèse de l'ester est de 67% à partir des mélanges initiaux équimolaires en acide carboxylique et en alcool primaire.

N.B. Utiliser les formules semi-développées des composés organiques en écrivant les équations des réactions.

1) Synthèse de l'éthanoate d'éthyle

On réalise, à 60°C, la synthèse de l'éthanoate d'éthyle en partant d'un mélange équimolaire d'acide éthanoïque pur et d'éthanol. Une fois l'équilibre est atteint, on détermine par dosage la quantité d'acide restant.

- a- Ecrire l'équation de la réaction de synthèse de l'éthanoate d'éthyle.
- b- Justifier l'utilisation, dans cette synthèse, de l'acide éthanoïque pur au lieu d'une solution aqueuse d'acide éthanoïque.

2) Rendement de la réaction de synthèse de l'éthanoate d'éthyle

On laisse réagir 0,5 mole d'éthanol et 2 moles d'acide éthanoïque pur. Le nombre de moles de l'acide éthanoïque, à l'équilibre, dans le mélange réactionnel est 1,535 mol.

- a- Déterminer le rendement de cette réaction. Comparer ce rendement à celui de la réaction ou le mélange initial d'acide éthanoïque et d'éthanol est équimolaire. Interpréter la différence entre les deux rendements.
- b- Proposer un moyen permettant de rendre le rendement de la synthèse de l'éthanoate d'éthyle total :
 - i- En utilisant les mêmes réactifs
 - ii- En remplaçant l'un des réactifs. Ecrire les équations des réactions correspondantes.

II-Réaction de dimérisation du but-1,3-diène

Le but-1,3-diene, C_4H_6 se dimérise en phase gazeuse selon la réaction lente représentée par l'équation suivante :

$$2C_4H_{6(g)} \to C_8H_{12(g)}$$

Dans un réacteur, maintenu a une température constante, $T = 550 \, \text{K}$, on suit la variation de la pression totale, P, du mélange réactionnel. Les résultats sont consignés dans le tableau cidessous.

t (min)	0	3	12	24	42	68
P (mm) Hg	632	618	584	546	509	474
$[C_8H_{12}](mol.L^{-1})$						

Données: Constante des gaz parfaits:

 $R = 0.08 \text{ L. atm. } K^{-1}. \text{ mol}^{-1}$: 1 atm = 760 mm Hg

1) Etude du mélange réactionnel

- a- Expliquer l'abaissement de la pression totale, P, au cours de l'évolution de la réaction.
- b- Etablir la relation entre la pression initiale, P_0 , la pression totale, P, a un instant t, et la pression x de C_8H_{12} au même instant t.
- c- Vérifier si la dimérisation de C_4H_6 est total à l'instant t = 68 min.

2) Etude cinétique de la réaction de dimérisation de C₄H₆

a- Montrer la relation suivante :

 $[C_8H_{12}]_t = 3 \times 10^{-5} (P_0 - P) mol. L^{-1} : ou [C_8H_{12}]_t$ est la concentration molaire du produit C_8H_{12} a un instant t, P et P_0 sont exprimés en mm Hg.

- b- Calculer la concentration de C_8H_{12} aux différents instants indiqués dans le tableau cihaut.
- c- Tracer la courbe $[C_8H_{12}] = f(t)$. Prendre les échelles suivantes.

Abscisses : 1 cm = 5 min

Ordonnées : 1 cm = $5 \times 10^{-4} \text{ mol. L}^{-1}$

d- Déterminer le temps de demi-réaction.

UNIVERSITE LIBANAISE FACULTE DE GENIE

Concours d'entrée 2003 - 2004

Solution de Chimie

Durée : 1 heure

I. Synthèse de l'éthanoate d'éthyle

1) a- L'équation de la réaction entre l'acide éthanoïque et l'éthanol :

$$CH_3 - C - OH - C_2H_5OH \rightleftharpoons CH_3 - C - O - C_2H_5 - H_2O$$

$$\parallel$$
O

- b- Pourquoi utilise-t-on l'acide éthanoïque pur au lieu de sa solution aqueuse ? L'eau contenue dans la solution aqueuse d'acide éthanoïque favorise l'hydrolyse, or notre but c'est la synthèse de l'éthanoate d'éthyle, pour cette raison on préfère utiliser l'acide éthanoïque pur.
- 2) a- Rendement ? Comparaison avec celui du mélange équimolaire :
 - Rendement:

	alcool	acide	ester	eau
Etat initial	0,5 mol	2 mol	0	0
A l'équilibre	0.5 - x	2-x	X	х

Or 2-
$$x = 1,535$$
 d'où $x = 2 - 1,535 = 0,465$ mol.
Rendement = $\frac{0,465}{0.5} = 0,93$ soit 93%

• Comparison : Mélange réactionnel équimolaire : rendement 67%

Si la réaction est totale :
$$R_{ethanol} = \frac{0.5}{1} = 0.5$$
 et $R_{acide} = \frac{2}{1} = 2$

L'éthanol est le réactif limitant.

L'acide est en excès : l'excès d'acide favorise

L'estérification : pour cette raison le rendement de la réaction augmente.

- b- Moyen pour avoir un rendement 100%
- Mêmes réactifs : On ajoute un déshydratant puissant comme l'anhydride phosphorique P_2O_5 (son état dimère P_4O_{10}) : le déshydratant fait fixer l'eau formée.
- Remplacer un réactif par un autre : On remplace l'éthanol par le SOCl₂

$$CH_3 - C - OH + \overrightarrow{SOCl_2} \longrightarrow CH_3 - C - Cl + HCl + SO_2$$

On fait réagir le chlorure d'ethanoyle avec l'éthanol

$$CH_3 - C - Cl + C_2H_5OH \longrightarrow CH_3 - C - O - C_2H_5 + HC_6$$

$$\parallel$$
O

UNIVERSITE LIBANAISE FACULTE DE GENIE

II- Réaction de dimerisation du but -1,3-diène :

1) Etude du mélange réactionnel.

a- Expliquer l'abaissement de la pression totale P.

 $2C_4H_6(g) \longrightarrow C_8H_{12}(g)$

A une mole de C₈H₁₂ qui apparait correspondant 2 moles de C₄H₆ qui disparaissent. Le nombre de moles de C₄H₆ diminue au cours de la dimerisation.

La pression est proportionnelle au nombre de moles : si *n* décroît alors *P* décroît.

b- Relation entre P_0 , P et x:

	C_4H_6	C ₈ H ₁₂	Total
Etat initial	n_0	0	n_0
Etat final	n_0 - 2n	n	<i>n</i> ₀ - <i>n</i>

D'après le tableau, on peut écrire :

 $P_0V = n_0RT$ et xV = nRT

 $PV = (n_0 - n)RT = n_0RT - nRT = P_0V - xV$

On simplifie par *V*, alors $P = P_0 - x$

c- Vérifier si la réaction est totale à t = 68 min:

D'après l'équation de réaction, la pression est alors :

$$\frac{P_0}{2} = \frac{632}{2} = 316 \, mm \, Hg$$

A t = 68 min, on a P = 474 mm Hg > 316 mm Hg, donc la réaction n'est pas totale.

2) a- Montrer la relation $[C_8H_{12}]_t = 3 \times 10^{-5} (P0 - P) \text{ mol. } L^{-1}$

$$x V = nRT$$
 et $n = \frac{xV}{RT}$

$$[C_8H_{12}] = \frac{n}{V} = \frac{xV}{RVT} = \frac{x}{RT} \quad or \quad x = P_0 - P \quad \text{question (1-b)}$$

$$[C_8H_{12}] = \frac{P_0 - P}{RT} = \frac{P_0 - P}{(0.08 \times 760) \times 550} = 3 \times 10^{-5} (P_0 - P)$$

b-[C₈H₁₂]=
$$3\times10^{-5}(P_0-P)$$

Pour $t = 0 \text{ min} : [C_8H_{12}]=0$

Pour
$$t = 3 \text{ min} : [C_8H_{12}] = 3 \times 10^{-5} (632 - 618) = 42.10^{-5} \text{mol.}L^{-1}$$

UNIVERSITE LIBANAISE FACULTE DE GENIE

On continue de la même façon pour calculer les $[C_8H_{12}]$ aux instants 12 min, 24 min, 42 min et 68 min.

Les valeurs ainsi calculées sont dressées dans le tableau suivant :

t (min)	0	3	12	24	42	68
P (mm) Hg	632	618	584	546	509	474
$[C_8H_{12}](mol.L^{-1})10^{-5}$	0	42	144	258	369	474

c- Le graphe demandé est représenté ci-dessous :

d- Déterminer le temps de demi-réaction :

Lorsque la réaction devient totale, le nombre de moles sera divisé par 2 et la pression totale devient $x = \frac{P_0}{2}$

$$[C_8H_{12}]=3\times10^{-5}(P_0-P)$$

$$[C_8H_{12}] = 3 \times 10^{-5} \left(632 - \frac{632}{2}\right) = 948.10^{-5} mol.L^{-1}$$

A la demi-réaction on doit avoir la moitié de ce nombre c.-à-d. :

 $[C_8H_{12}]=474.10^{-5} mol.L^{-1}$ ce qui correspond d'après le tableau précèdent à l'instant t=68 min (voir tableau ci-haut)