Równania różniczkowe opisujące model epidemii – Szwajcaria

Możliwe stany komórki:

 Healthy 	Н
• Sick	Sick
 Infected 	Inf
Inf_and_sick	Inf_{sick}
Sick_no_symptoms	$Sick_n$
Sick_and_in_quarantine	$Sick_q$
In_hospital	In_h
 Recovered 	Re
• Dead	D

Stany narażone na zarażenie się (**S** – susceptible).

Stany zarażone (I – infected).

W tym stany zarażone, ale niezarażające.

Stany odporne na zarażanie i niezarażające (**R** – resistant).

Współczynnik α występujący w modelu SIR reprezentuje szansę w jednostce czasu na przejście osobnika z grupy **S** do grupy **I**. Z racji tego, że w modelu występuje po kilka stanów należących do tych podgrup, α będzie wektorem współczynników.

Healthy:

$$H'(t) = -\alpha \cdot Inf(t) \cdot H(t)$$

Sick

Zakładamy, że wszystkie osoby będące w stanie Sick są po prostu w stanie Healthy, ale są bardziej narażone na zarażenie. Stanowią jakąś założoną z góry część populacji, np. 10%.

$$Sick(t) = sick_{pop} \cdot H(t)$$

Infected

Przed przejściem do innego stanu z grupy I, każda jednostka jest w tym stanie.

$$Inf'(t) = \alpha \cdot H(t) \cdot Inf(t) - \gamma \cdot Inf(t)$$

Gdzie γ jest prawdopodobieństwem przejścia ze stanu Infected do innego z grupy I.

Inf_and_sick

$$Inf'_{sick}(t) = Inf(t) \cdot sym_{chance} - (\beta_1 + \delta_1 + hosp_{chance} + sick_to_quar_{chance}) \cdot Inf_{sick}$$

Przebieg choroby z objawami. sym_{chance} to jest procent takich przypadków.

Sick_no_symptoms

$$Sick'_{n}(t) = (1 - sym_{chance}) \cdot Inf(t) - (\beta_{3} + \delta_{3}) \cdot Sick_{n}$$

Sick_and_in_quarantine

Jednostki chore, które zostały przeniesione do kwarantanny celem ograniczenia zarażania (w modelu idealistycznie ograniczone jest do 0).

$$Sick_q'(t) = sick_{to_{quar_{chance}}} \cdot Inf_{sick}(t) - (\beta_2 + \delta_2) \cdot Sick_q(t)$$

Gdzie $sick_to_quar_{chance}$ jest prawdopodobieństwem przejścia jednostki ze stanu Inf_{sick} do tejże w jednostce czasu.

• In_hospital

$$In'_h(t) = Inf_{sick}(t) \cdot hosp_{chance} - (\beta_4 + \delta_4) \cdot In_h$$

 $hosp_{chance}$ jest prawd. przejścia jednostki ze stanu Inf_{sick} do In_h

Recovered

$$Re'(t) = \begin{bmatrix} eta_1 & eta_2 & eta_3 & eta_4 \end{bmatrix} \cdot \begin{bmatrix} Inf_{sick} \\ Sick_q \\ Sick_n \\ In_h \end{bmatrix}$$

 $\beta_1, \beta_2, \beta_3, \beta_4$ są współczynnikami przejścia w jednostce czasu osobników z kolejnych stanów grupy I (poza Infected) do stanu Re.

Dead

$$D'(t) = \begin{bmatrix} \delta_1 & \delta_2 & \delta_3 & \delta_4 \end{bmatrix} \cdot \begin{bmatrix} Inf_{sick} \\ Sick_q \\ Sick_n \\ In_h \end{bmatrix}$$

 δ_1 , δ_2 , δ_3 , δ_4 są współczynnikami przejścia w jednostce czasu osobników z kolejnych stanów grupy I (poza Infected) do stanu D.

Warunki początkowe są następujące:

 $Healthy_0$ – odpowiada rozmiarowi populacji (w przypadku Szwajcarii 3mln), $Infected_0$ – odpowiada liczbie zainfekowanych osób na start (w modelu jest to 1),

Pozostałe stany w chwili t=0 mają wartość 0. Prawdopodobieństwa oraz współczynniki są ustalane na początku lub są obliczane w zależności od zmiennych stanu (służą do parametryzowania modelu).