Applied Artificial Intelligence in Embedded Systems

Keep It Stupid Simple

Jan Jacobs

- Current problems
- Vision
- Self Organising Map
- Applications
 - Social network

- Diagnostics / testing
- Robot arm control

- Subsumption architecture
- Conclusions

Current problems(1)

Current problems(2)

Other trends in ES

parsimony (energy, weight, size, ...)

- fault tolerance / robustness
- multiple (concurrent) goals
- deterministic real-time response
- easier design and test
- reduction of prior knowledge, and
- in particular that of world model

- Current problems
- Vision
- Self Organising Map
- Applications
 - Social network

- Diagnostics / testing
- Robot arm control

- Subsumption architecture
- Conclusions

Vision(1)

Current believe:

Embedded Systems (ES) hosts 100% of all intelligence

Conclusion:

Intelligent behaviour is not exclusively domain of Computer Science (CS)

Vision(2)

Lego Mindstorms:

"...intelligence is not a "box" residing inside the brain, but is <u>distributed throughout the</u> <u>organism</u> and requires the interaction with the environment as an essential <u>component</u>"

Vision(3)

- Current problems
- Vision
- Self Organising Map (SOM)
- Applications
 - Social network

- Diagnostics / testing
- Robot arm control

- Subsumption architecture
- Conclusions

Self Organising Map (SOM) background(1)

biological plausibility of topological ordering (Teuvo Kohonen, HUT Finland)

SOM background(2)

SOM background(3)

Conclusions

- Self organisation; no prior model
- Dimension compression
- Mapping preserves structure
- Visualisation with topological ordering

- Current problems
- Vision
- Self Organising Map
- Applications
 - Social network

- Diagnostics / testing
- Robot arm control

- Subsumption architecture
- Conclusions

Social network mapping(1)

Search a person without programming

Social network mapping(2)

Questions:

- •How are expertises distributed?
- •Who is the expert in this field?
- •Who has similar experience?

Steps:

2. use

- Current problems
- Vision
- Self Organising Map
- Applications
 - Social network
 - Diagnostics / testing
 - Robot arm control
- Subsumption architectu é
- Conclusions

Anomaly Detection(1)

Detect deviating patterns without programming

Anomaly Detection(2)

- Current problems
- Vision
- Self Organising Map
- Applications
 - Social network
 - Diagnostics / testing
 - Robot arm control

- Subsumption architecture
- Conclusions

Cognitive Actuation(1)

Inverse Kinematics

Assignment: control the 7 sliders such that the gripper moves smoothly to the target.

3

2

Cognitive Actuation(2)

Actuate without modelling

Baby babbling

- Randomly select actuation angles
- •Train SOM (highD → 2D)
- •Use reversely (2D → highD)
- Solve inverse kinematics problem

Cognitive Actuation(3)

Actuate without modelling

Steps:

- 1. Train
- 2. Inspect
- 3. Use

Cognitive Actuation(4)

Human arm joint

6D state space

- 1. shoulder, 40 cm, 0..135°
- 2. elbow, 40 cm, 0.. 90°
- 3. wrist, 10 cm, -45..+45°
- 4. proximal phalanx, 5 cm, 0..90°
- 5. middle phalanx, 3 cm, 0..90°
- 6. distal phalanx, carrying the nail, 2 cm, 0..90°

Cognitive Actuation(5)

Graceful degradation without modelling

- •The arm is "ill"
 - wear (motor brushes)
 - slip (joints)
 - extreme: arm bended, finger missing
- •But arm is still able to smoothly avoid "painful" areas

Cognitive Actuation(6)

...and now a shoulder with rheumatism!

- 1. shoulder, 40 cm, 0..135→ 90°
- 2. elbow, 40 cm, 0.. 90°
- 3. wrist, 10 cm, -45..+45°
- 4. proximal phalanx, 5 cm, 0..90°
- 5. middle phalanx, 3 cm, 0..90°
- 6. distal phalanx, carrying the nail, 2 cm, 0..90°

- Current problems
- Vision
- Self Organising Map
- Applications
 - Social network
 - Diagnostics / testing
 - Robot arm control
- Subsumption architecture
- Conclusions

Subsumption architecture(1)

levels of competence Behavioural layers

Subsumption architecture(2)

value steered sensory-motor

- Current problems
- Vision
- Self Organising Map
- Applications
 - Social network
 - Diagnostics / testing
 - Robot arm control
- Subsumption architecture
- Conclusions

Conclusions

- "Intelligence" should be distributed through whole machine (not exclusively by Embedded Systems)
- The subsumption architecture provides a framework that may result in less complex ES
 - when? many uncertainties, many dimensions
 - why? less complex, safety for self / others
 - where? hard real-time actions (reflexes, no logic)
- Promising component: Self Organising Map
- SOM acts as a (self-learned) universal 2D format

Keep IT Stupid Simple

Questions...

- Current problems
- Vision
- Self Organising Map
- Applications
 - Social network
 - Document space

- Diagnostics / testing
- Robot arm control

- Subsumption architecture
- Conclusions

Document mapping(1)

data mining

visualisation

Document mapping(2)

Specification Data mining system

- #articles: 100-1000 (typical 500)
- data mining: few minutes
- SOM training: responsive (few seconds)
- interactive visualisation

Document mapping(3)

Compressed list of High dimensional space important words

Document map

Future challenges (1)

exciting new theory: embodied intelligence

Embedded Engine Control

new interdisciplinary methodology? \$--, T--?

Document Analysis and Recognition, learning versus programming (complexity), Q++?, robustness?

Future challenges (2)

Document Management Systems

document archiving revisited: use "user" as "environment" in more pro-active DMS (human in loop, office lab)

Embodied ontology extraction

morphological analyses of neurostructures in global maps, grounding text based ontologies

SOM training algorithm & example

```
for all epochs do
              decrease \alpha; decrease \sigma;
              for each sample do
                            compute high dimensional distance(sample, all neurons);
                                                                                                                          (1)
                                                                                                                          (2)
                            determine winning neuron;
                            compute low dimensional distance(winning_neuron, all_neurons);
                                                                                                                          (3)
                            compute neighbourhood (low dimensional distance,\sigma);
                                                                                                                          (4)
                            correct all neurons = all neurons + \alpha . neighbourhood . (sample – all neurons);
                                                                                                                          (5)
              end
 end
                             next sample
   sample==198
123
         84
     46
              19
                                                      3
                                                           2
                                                                     2
                                                                                                            123
                                                                                                                           63.75
                           75
                                152
                                    114
                                         179
                                                                                 0
                                                                                     0.25
                                                                                          0.5
                                                                                               0.25
0
     19
         200
              96
                                                                                                           49.5
                                                                                                                 108.5
                           198
                               179
                                         102
                                                                                0.25
                                                                                     0.5
                                                                                           1
                                                                                               0.5
                                                                                                                            147
250
         190
              55
                                                                     2
                                                                                                            250
                                                                                                                66.75
                                                                                                                           90.75
                           52
                                175
                                         143
                                                                                 0
                                                                                     0.25
                                                                                          0.5
                                                                                               0.25
                                                                                                                       194
```

97

85

original neuron values

143

138

(2) winner selection

decrease α decrease σ next epoch

113

(1) high dimensional distance

55

3

2

(3) two dimensional distance

3

0

0.25

(4) neighbourhood = Λ_{ii}

113.2

(5) updated neuron values

143

60

97

Vision(3)

- •Hard RT responsiveness deteriorated by soft RT behaviour
- Difficult to test

- Lower: hard RT
- •Higher: focus on the
- longer term
- Easy testing

Early warning system (printer)

What

Optimise uptime by "sensing" a printer problem before the machine fails the customer.

How

- •Add cheap sensors and interprete the vibration signals continuously.
- make a fingerprint of an individual engine's frame vibration
- monitor for deviations in this fingerprint
- inform OBS to schedule preventive maintenance to optimise uptime

Smart spectrogram analysis

Image processing with less programming

- Image processing by throwing dices
- Simulated Annealing

Introduction

Greyvalue original scan

[0..255]

Scanned Business Graphics

Problems quantisers

- quality (difficult to compress)
- computation time

Question

Can massively // computing improve on quality(compression) and performance?

Specification Quantisation module

- sizes bitmap: 5,000x7,000
- improved quantisation takes 1 minute (Pentium)

Goals (w.r.t. massively parallel implementation):

- improve business graphics quality
- faster (few seconds)

Analysis & Design

Complexity $O(L^{w.H})$

Based on 2 steps:

- 1) perceptual optimisation crit.
- 2) iterate until convergence (by e.g. Simulated Annealing)

Markov Random Field

How to control loss of information?

- fidelity $Fid_g(s) = (\gamma_s \mu_{g_s})^2$
- regularity $Reg_g(s) = \sum_{r \in \mathcal{N}_s} \delta(g_s, g_r)$

γ_s	grey-value of pixel s
μ_g	mean of class g
g_s	quantisation state
\mathcal{N}_s	neighbourhood of s
β	weight factor

Simulated Annealing

```
x \leftarrow \text{Random state}
for T \leftarrow T_0, T_0 \cdot C, \dots, T_0 \cdot C^{A-1} do
   \hat{x} \leftarrow \text{Slightly changed state } x
   \Delta E \leftarrow E(\hat{x}) - E(x)
   if \exp\left\{-\frac{\Delta E}{T}\right\} \ge 1 then {Deterministic acceptance}
   else if \exp\left\{-\frac{\Delta E}{T}\right\} \ge \text{Rand}[0,1) then {Probabilistic acceptance}
      x \leftarrow \hat{x}
                                                               Energy
   end if
end for
                                                                                                                               energy
                                                                                                                            landscape
                                                                                  local
                                                                                                                        global
                                                                               minimum
                                                                                                                      minimum
```

bio neural networks

Facts:

- > 10¹¹ neurons
- 10³ synapses/neuron
- msec performance/ neuron

Source: "Tutorial de Redes Neuronales", la universidad Politecnica de Madrid