Let the random variable X be the heights of men with mean $\mu = 5.57932$ and standard deviation of $\sigma = .24960$. Suppose that there are 10000 heights in the population:

5.233732	5.589581	5.389242	5.633077	5.936384	5.766120	5.755057	5.522661	5.629273	5.881788
5.659584	5.224050	5.478727	5.828847	5.819704	5.809522	5.542258	5.274233	5.362794	5.319379
5.304091	5.691046	5.528762	5.998908	5.547169	5.530029	5.593728	5.409459	5.398074	5.364524
÷	÷	÷	÷	÷	<u>:</u>	÷	÷	:	÷
5.570619	5.172144	5.624292	5.576875	5.481421	5.667891	5.799692	5.631164	5.358155	5.460696

The summary statistics for this population is:

Min. 1st Qu. Median Mean 3rd Qu. Max. Std Dev 4.692 5.410 5.580 5.579 5.751 6.467 0.24960

The histogram for this data set is:

Histogram of heights: mean= 5.57932, sd=0.24960

Let us take a sample of size n = 10 from the population of heights:

x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}
5.318737	5.920416	5.554704	5.415792	5.277280	5.496126	5.626964	5.366746	5.235289	5.207904

We can take the average of these values:

Now let us repeat this process 1,000,000 times:

x_1	x_2	x_3	x_4		x_{10}	\overline{x}
5.318737	5.920416	5.554704	5.415792		5.207904	5.441996
6.035656	5.547326	5.307189	6.095374		6.004688	5.663764
5.632127	5.372547	5.694491	5.523235		5.557954	5.549524
÷	:	÷	÷	÷	i :	:
5.714549	5.700857	5.288253	5.363723		5.776595	5.587488

Since these means, \overline{x} , are random they can be considered as the values of a random variable. Let us call this random variable \overline{X} and in this case it has the values:

$$5.441996, 5.663764, 5.549524, \ldots, 5.587488$$

If we do this same process for each sample size

$$n = 1, 10, 25, 50, 75, 100, 500, 1000, 2500, 5000, 10000$$

and draw their histogram we get the figures on the next page. The sample mean $(\mu_{\overline{X}})$ and the sample standard deviation $(\sigma_{\overline{X}})$ for each sample size is

Sample size	$\mu_{\overline{X}}$	$\sigma_{\overline{X}}$
1	5.579931	0.249499947
10	5.579237	0.078466556
25	5.579184	0.050039821
50	5.579710	0.035372314
75	5.578922	0.028724527
100	5.579497	0.024999452
500	5.579379	0.010747983
1000	5.579292	0.007540395
2500	5.579346	0.004303151
5000	5.579302	0.002511437
7500	5.579323	0.001438324
10000	5.579316	0.000000000

Note that the sample means $\mu_{\overline{X}}$ hover around the population mean of $\mu=5.57932$ for every sample size. But as the sample size increases the sample standard deviations $\sigma_{\overline{X}}$ approach 0. When the sample size becomes the population size of n=10000 the sample mean is the same as the population mean and the sample standard deviation equals 0. We interpret these facts as saying that when we take a random sample its mean should be fairly close to the population mean and as the sample size increases the approximation gets better. Also note that the distribution for each sample size is also normally distributed.

Histogram of xbars(heights): sample size = 1, sample mean= 5.57993, sample sd=0.24950

Histogram of xbars(heights): sample size = 10, sample mean= 5.57924, sample sd=0.07847

Histogram of xbars(heights): sample size = 25, sample mean= 5.57918, sample sd=0.05004

Histogram of xbars(heights): sample size = 50, sample mean= 5.57971, sample sd=0.03537

Histogram of xbars(heights): sample size = 75, sample mean= 5.57892, sample sd=0.02872

Histogram of xbars(heights): sample size = 100, sample mean= 5.57950, sample sd=0.02500

Histogram of xbars(heights): sample size = 500, sample mean= 5.57938, sample sd=0.01075

Histogram of xbars(heights): sample size = 1000, sample mean= 5.57929, sample sd=0.00754

Histogram of xbars(heights): sample size = 2500, sample mean= 5.57935, sample sd=0.00430

Histogram of xbars(heights): sample size = 5000, sample mean= 5.57930, sample sd=0.00251

Histogram of xbars(heights): sample size = 7500, sample mean= 5.57932, sample sd=0.00144

Histogram of xbars(heights): sample size = 10000, sample mean= 5.57932, sample sd=0.00000

Let us repeat this experiment, but this time we will begin with a distribution that is not normal but skewed right with mean $\mu = 0.99014$ and standard deviation $\sigma = 0.69495$:

Histogram of skewed: mean= 0.99014, sd=0.69495

and with the following summary stats:

Finding samples of sizes

$$n = 1, 10, 25, 50, 75, 100, 500, 1000, 2500, 5000, 10000$$

and graphing their histograms we get:

The first thing to notice is that even though our original distribution was not normal but skewed right the sampling distributions start to look more normal as the sample size increases. Next looking at the sample means $\mu_{\overline{X}} = 0.9901385$ and sample standard deviations $\sigma_{\overline{X}} = 0.69495$:

Sample size	$\mu_{\overline{X}}$	$\sigma_{\overline{X}}$
1	0.9840327	0.683760893
10	0.9925392	0.220744517
25	0.9915268	0.138985857
50	0.9913373	0.099026387
75	0.9907530	0.080001154
100	0.9893763	0.068806402
500	0.9906488	0.030432479
1000	0.9903801	0.021065101
2500	0.9901397	0.012081798
5000	0.9902687	0.006932911
7500	0.9901378	0.004033101
10000	0.9901385	0.000000000

we notice that the sample means hover around the population mean of $\mu=0.9901385$. And because the sample standard deviations are going to 0 as the sample size increases we know that the sample means become better approximations to the population mean. When the sample size becomes the population size the sample mean is exactly the population mean $\mu=\mu_{\overline{X}}$ and the sample standard deviation is $\sigma_{\overline{X}}=0$.

Histogram of xbars(skewed): sample size = 1, sample mean= 0.98403, sample sd=0.68376

Histogram of xbars(skewed): sample size = 10, sample mean= 0.99254, sample sd=0.22074

Histogram of xbars(skewed): sample size = 25, sample mean= 0.99153, sample sd=0.13899

Histogram of xbars(skewed): sample size = 50, sample mean= 0.99134, sample sd=0.09903

Histogram of xbars(skewed): sample size = 75, sample mean= 0.99075, sample sd=0.08000

Histogram of xbars(skewed): sample size = 100, sample mean= 0.98938, sample sd=0.06881

Histogram of xbars(skewed): sample size = 500, sample mean= 0.99065, sample sd=0.03043

Histogram of xbars(skewed): sample size = 1000, sample mean= 0.99038, sample sd=0.02107

Histogram of xbars(skewed): sample size = 2500, sample mean= 0.99014, sample sd=0.01208

Histogram of xbars(skewed): sample size = 5000, sample mean= 0.99027, sample sd=0.00693

Histogram of xbars(skewed): sample size = 7500, sample mean= 0.99014, sample sd=0.00403

Histogram of xbars(skewed): sample size = 10000, sample mean= 0.99014, sample sd=0.00000

