Feuille de route

Benjamin Dosse

2024-02-10 sam.

Aperçu de la structure du document final.

Contents

1	Cha	apitre 1 : processus en dimension 1	1
	1.1	Mouvement Brownien fractionnaire	1
	1.2	Mouvement Brownien multifractionnaire	3
2	Chapitre 2 : passage en dimension quelconque		4
	2.1	Généralisations	4
	2.2	Cas du mBf	4
	2.3	Cas du mBm	5
3	Chapitre 3 : régularités & développement en ondelettes		5
	3.1	Régularité Hölderienne & dimension fractale	5
	3.2	Développement en ondelettes	6
4	Cha	apitre X : Cas particulier : mBm avec exposant de Hurst	
	aléatoire		6

1 Chapitre 1 : processus en dimension 1

On définit le mouvement Brownien fractionnaire (« mBf ») et le mouvement Brownien multifractionnaire (« mBm »).

1.1 Mouvement Brownien fractionnaire

1.1.1 Définition

• Via l'opérateur de covariance

- Rappeler le théorème de Kolmogorov (+ cas gaussien)
- Autres définitions plus loin

1.1.2 Propriétés

Bien que ces propriétés ne soient pas *stricto censu* nécessaires pour étudier la régularité des trajectoires du mBf, elles sont intéressantes pour étudier une autre forme de *régularité* (e.g. prévisibilité, prédictibilité).

- Cas où le mBf est un mB
- Auto-similaire ; incréments stationnaires ; inversion du temps
- N'est pas une semi-martingale
 - Pas vu en cours : vu (Gall2013)¹, une semi-martingale peut définir une intégrale stochastique. Comme le rappel (Nourdin2012)²,

This explains why integrating with respect to it is an interesting and non-trivial problem.

- Ivan Nourdin, à propos du mBf.
- N'est pas un processus de Markov

1.1.3 Autres écritures

- Intégrale stochastique
 - Il faut mentionner que la construction sur la droite est similaire à la construction sur la demi-droite positive.
- Dans le domaine « fréquence » (i.e. « transformée de Fourier »)
 - Je suis perdu : (Ayache2019)³ propose une construction, mais je ne comprends pas tout à fait son raisonnement. Ailleurs : trop évasif. Je ne vois pas l'éléphant au milieu de la pièce...

 $^{^{1}}$ Jean-François LE GALL, Brownian Motion, Martingales, and Stochastic Calculus, Graduate Texts in Mathematics, Berlin : Springer-Verlag. 2013, p. XIII, 273, ISBN : 978-3-319-31089-3.

²Ivan NOURDIN, Selected Aspects of Fractional Brownian Motion, Bocconi and Springer Series, Milan: Springer. 2012, p. IX, 122, ISBN: 978-88-470-2823-4.

³Antoine AYACHE, Multifractional Stochastic Fields: wavelets strategies in multifractional frameworks, World Scientific. 2019, p. 236, ISBN: 978-98-145-2567-1.

1.1.4 Régularité

À chaque fois, il est utile de préciser « de quel côté » se situe l'exposant de Hurst par rapport à 1/2.

- Donner la régularité de Hölder locale
- Donner la régularité de Hölder globale
- Donner la dimension de Hausdorff
 - Voir $(Morters2010)^4$, chap. 4.

1.2 Mouvement Brownien multifractionnaire

1.2.1 Définitions

- On *pourrait* suivre la construction de (Peltier1995)⁵, mais je trouve que les démonstrations ne sont pas très jolies.
- Dans (Benassi 1998) 6 , on part de l'expression dans le domaine « fréquence ».
- Dans (Ayache2019)³, l'exposé est le suivant : un générateur (dans le domaine « fréquence ») est introduit, on étudie quelques unes de ses propriétés, puis on particularise au mBm. De même, la décomposition en ondelettes se fera avec un générateur.

1.2.2 « Régularité »

C'est ici que la structure expose le plus vivement ses faiblesses si on suit $(Ayache2019)^3$: les propriétés liées à la régularités sont démontrées dans le cas des champs multifractionnaires... On peut citer les résultats, et les démontrer dans le chapitre suivant ?

 $^{^4\}mathrm{Peter}$ MÖRTERS, PERES Yuval, *Brownian Motion*, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge : Cambridge University Press. 2010, p. XII, 403, ISBN : 978-05-117-5048-9.

⁵Romain François PELTIER et LEVY VEHEL Jacques, Multifractional Brownian motion: definition and preliminary results, Rapport de recherche INRIA n°2645, 1995.

⁶Albert BENASSI, ROUX Daniel, JAFFARD Stéphane, Elliptic gaussian random processes. *In*: Rev. Mat. Iberoam. 13 (1997), no. 1, pp. 19–90

2 Chapitre 2 : passage en dimension quelconque

2.1 Généralisations

On présente deux généralisations possibles : le champ et le drap.

- Le *champ* est plus régulier (au sens de l'isotropie : la direction d'une limite n'influe pas la valeur de la limite) que le *drap*. Image mnémo. : un lit défait.
- Champ: norme, drap: produit tensoriel.

2.2 Cas du mBf

2.2.1 Isotrope

- Définition
- Écriture alternative
- Opérateur de covariance
- Propriétés usuelles
 - Auto-similarité ; incréments
- Version continue

2.2.2 Anisotrope

- Définition
- Écriture alternative
- Opérateur de covariance
- Propriétés usuelles
 - Auto-similarité ; incréments
- Version continue

2.3 Cas du mBm

2.3.1 Isotrope

- Définition
- Écriture alternative
- Opérateur de covariance
- Version continue

2.3.2 Anisotrope

- Définition
- Écriture alternative
- Opérateur de covariance
- Version continue

3 Chapitre 3 : régularités & développement en ondelettes

3.1 Régularité Hölderienne & dimension fractale

Il a été étudié l'existence d'une version continue. Que dire de la régularité Hölderienne locale et ponctuelle ?

N.B.: demander un avis sur les deux dernières présentations du cours sur les ondelettes (M1, familles de représentations).

On va suivre $(Herbin 2002)^7$ pour la structure de cette section.

3.1.1 Cas anisotrope

- Régularité Hölderienne locale
- Régularité Hölderienne ponctuelle
- Dimension de Hausdorff

⁷Erick HERBIN, From N parameter fractional Brownian motions to N parameter multifractional Brownian motions, URL: https://arxiv.org/abs/math/0503182.

3.1.2 Cas isotrope

- Régularité Hölderienne locale
- Régularité Hölderienne ponctuelle
- Dimension de Hausdorff

3.2 Développement en ondelettes

Je ne suis absolument pas certain de la position de cette section dans la structure.

4 Chapitre X : Cas particulier : mBm avec exposant de Hurst aléatoire

Bon. J'en parle comme d'un « à côté », mais... Il n'y a qu'à voir le traitement de ce sujet dans $(Ayache2019)^3$ pour comprendre que ce n'est pas lui rendre honneur. Et en fouillant arXiv, c'est plus frappant encore.