Exercícios de codificação Assembly

Questão 1. Implemente um código Assembly no processador hipotético Neander que seja capaz de efetuar uma subtração. As posições de memória 128 e 129 devem conter, respectivamente, o minuendo e o subtraendo. O resultado deverá ser armazenado na posição 130.

Casos de teste para validação do programa desenvolvido:

Endereço	128	129	130
Caso 1	5	2	3
Caso 2	15	25	246 (-10 em complemento de 2) 11110110
Caso 3	55	70	241 (-15 em complemento de 2) 11110001
Caso 4	126	 -1 (não esqueça de representar em complemento de 2. Considerando que o Neander não entende na digitação o complemento de 2 insira o número -1 convertendo o binário resultante do complemento de dois para o decimal.) 	127

Questão 2. Implemente um código que seja capaz de calcular o endereço da rede a qual um IPv4 pertence dados o IPv4 e a Máscara. A memória de dados deve ser organizada da seguinte forma:

Palavras 128, 129, 130 e 131 – Bytes do IPv4 Palavras 132, 133, 134, 135 – Bytes da Máscara Palavras 136, 137, 138, 139 – IP da rede calculado

Casos de teste para validação do programa desenvolvido:

Endereço	IPv4	Máscara	IP da rede calculado
Caso 1	10.10.10.1	255.0.0.0	10.0.0.0
Caso 2	192.168.1.35	255.255.255.0	192.168.1.0
Caso 3	200.132.35.123	255.255.255.192	200.132.35.64

Questão 3. Implemente um código Assembly no Neander que seja capaz de contar até um número previamente estabelecido na posição de memória 129. A posição de memória 128 deve conter inicialmente o valor zero (0) e ir sendo atualizada conforme o contador for sendo incrementado durante a execução do programa.

Questão 4. Implemente um código Assembly no Neander que seja capaz de decrementar um valor até zero (0) a partir de um número previamente estabelecido na posição de memória 129. A posição de memória 128 deve conter inicialmente o valor informado na posição 129 e ir sendo decrementado até chegar a zero (0) durante a execução do programa.

Questão 5: Escrever um programa para o simulador Neander que multiplique dois valores inteiros positivos de 8 bits e armazene o produto obtido (8 bits). Não é necessário se preocupar com números negativos e multiplicações que provoquem overflow.. Os valores dados e calculados devem estar obrigatoriamente nas seguintes posições:

Palavra 128 - multiplicando

Palavra 129 - multiplicador

Palavra 130 – resultado da multiplicação

Casos de teste para validação do programa desenvolvido:

Endereço	128	129	130
Caso 1	5	3	15
Caso 2	23	10	230
Caso 3	1	200	200