Gimballed EDF propelled VTVL vehicle design and control

Patricio Whittingslow Luis Cretton

2 de abril de 2021

Resumen Un resumen debería no incluir referencias y no superar 250 palabras.

LIA

${\rm \acute{I}ndice}$

Gi	Iosario	2
\mathbf{Si}	glas	2
1.	Introducción	3
2.	Modelo 2D simplificado	3
	2.1. Modelado matemático	3
	2.2. Armado de sistema lineal	4
	2.3. Representación en espacio de estados	4
3.	Ecuaciones de movimiento de cuerpo rígido	6
	3.1. Notación	6
	3.2. Notación del álgebra a utilizar	
	3.3. Variables de estado	8
	3.4. Ecuaciones diferenciales	8
	3.5. Dinámica angular del vehículo	10
4.	Simulación	11
	4.1. Sistema no-lineal	11
	4.2. Sistema de control	11
	4.3. Resultados de simulación	12
5.	Desarrollo de software	12
	5.1. Elección de arquitectura	12
	5.2. Flujo de control	13
	5.3. Interfaz con hardware	

LIA Siglas

Glosario

Corrutina Una unidad de procesamiento que puede ejecutarse en simultaneo con otras corrutinas.

Linear Quadratic Regulator Regulador basado en control óptimo que busca reducir error cuadratico de una función costo.

Siglas

I²C Protocolo de comunicación de dos hilos que permite comunicar varios circuitos integrados en un bus.

GPIO Salida digital de uso genérico. Pueden estar en *high* (tensión de fuente) o *low* (puesto a tierra).

SPI Serial peripheral interface. Un protocolo de comunicación full-duplex de Motorola.

UART Protocolo de comunicación universal asincrono.

Nota del autor

Si el documento es abierto desde un lector PDF moderno (Chrome, Adobe Acrobat Reader, entre otros), se podrá navegar el mismo mediante las referencias (haciendo click derecho).

1. Introducción

Los vehículos VTVL son tan viejos como el primer alunizaje. Traen en si varias ventajas frente a otros vehículos voladores como la gran reducción de espacio necesario para despegar y aterrizar. Esto no es un detalle menor dado que la mayor parte de la superficie terrestre de la tierra no son pistas de aterrizaje si no más bien terreno formado naturalmente.

Este documento propone el diseño, simulación, control y fabricación de un vehículo eléctrico con capacidades VTVL que podría usarse para transporte de insumos médicos a zonas de acceso limitado o para investigar el fenómeno del *fuel sloshing* en vehículos con tanques esbeltos.

Figura 1: Dos vehículos VTVL eléctricos modernos. "VBat" (Izq.) y "Ikarus" (Der.).

Los vehículos VTVL eléctricos son propulsados por hélices en su mayoría y constan casi siempre de 3 o más propulsores en un arreglo simétrico y plano. Recientemente hay un interés por la construcción de vehículos de una sola hélice por la buena relación empuje—peso que tienen. Sin embargo, estos vehículos no vienen sin sus complicaciones:

- La rotación dada al aire por la hélice causa un momento en el eje de propulsión que es contrarrestado en vehículos multirrotores.
- Inclinar al rotor durante su funcionamiento causa una fuerza perpendicular a la dirección de inclinación conocido como el efecto giroscópico.

El primer punto es mitigado fácilmente agregando álabes a la salida del chorro para enderezar el flujo y contrarrestar la rotación. El segundo punto solo se resuelve conociendo las ecuaciones de momento angular y controlando actuadores con un sistema de control a lazo cerrado.

2. Modelo 2D simplificado

Esta siguiente sección detallará el tratamiento matemático efectuado para controlar un vehículo con propulsión vectorizada en el plano. El propósito es ilustrar a un nivel simple las herramientas que serán aplicadas para controlar el vehículo diseñado.

2.1. Modelado matemático

Comenzamos con las ecuaciones dinámicas de un vehículo en el plano con control de propulsión vectorizada (por ángulo)

$$\begin{cases} \ddot{y} = \frac{F}{m}\sin(\gamma + \beta) \\ \ddot{z} = \frac{F}{m}\cos(\gamma + \beta) - g \\ \ddot{\gamma} = \frac{I_{\text{CG}} \cdot F}{I_{xx}}\sin\beta \end{cases}$$

Figura 2: Diagrama de cuerpo libre de un vehículo con propulsión vectorizada 2D.

donde L_{CG} y F están en función del tiempo, $m = m_0 - \int \dot{m}$ y $\theta = \gamma + \beta$. Vale la pena aclarar que no se tomarán en cuenta los siguientes efectos:

- Coeficiente de arrastre
- Viento
- Fuel sloshing
- Efectos relativistas

2.2. Armado de sistema lineal

Se propone un punto de operación alrededor del cual se efectúa la linealización las ecuaciones. El estado del vehículo es *vertical y quieto en el espacio.* *

$$\gamma^* = 0$$
$$\beta^* = 0$$
$$F^* = mg$$

en este caso F es la desviación del punto de operación. Desde ahora en adelante $\Delta F = F - mg$.

2.3. Representación en espacio de estados

El número de variables de estado será igual a número de almacenadores de energía independientes. Estos son

z Energía potencial por la gravedad

^{*}La linealización es valida solo para un vehículo vertical. Se deberá modificar el método para modelar un vehículo orbital.

- \dot{y}, \dot{z} Energía cinética del vehículo
 - $\dot{\gamma}$ Momento angular del vehículo

entonces, las variables de estado son las siguientes

$$x_1 = y$$

$$x_2 = \dot{y}$$

$$x_3 = z$$

$$x_4 = \dot{z}$$

$$x_5 = \gamma$$

$$x_6 = \dot{\gamma}$$

donde $\dot{x_1} = x_2$, $\dot{x_3} = x_4$ y $\dot{x_5} = x_6$

Se aprovecha la expansión de Taylor para la linealización de expresiones trigonométricas:

$$\sin(x+y)|_{x=x_0+\Delta x,y=y_0+\Delta y} \approx \sin(x_0+y_0) + \cos(x_0+y_0)(x-x_0) + \cos(x_0+y_0)(y-y_0)$$

Las ecuaciones dinámicas de los estados 2,3, y 4 son dadas por las ecuaciones mostradas al comienzo de esta sección. Abajo están las ecuaciones de estados

$$\dot{x_2} = \frac{F}{m} \left(\gamma + \beta \right) = gx_5 + gu_2 \tag{1}$$

$$\dot{x_4} = \frac{F}{m} - g = \frac{F - F_0}{m} = \frac{u_1}{m} \tag{2}$$

$$\dot{x_6} = \frac{L_{\text{CG}} \cdot F}{I_{xx}} \beta = \frac{L_{\text{CG}} \cdot mg}{I_{xx}} u_2 \tag{3}$$

donde T_s es el periodo de muestreo.

Los vectores de entrada y salida son

$$\mathbf{u}(t) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} \Delta F \\ \beta \end{bmatrix}$$

$$\mathbf{y}(t) = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} y \\ z \\ \gamma \end{bmatrix}$$

tal que las ecuaciones de salida son

$$y_1 = x_1 \tag{4}$$

$$y_2 = x_3 \tag{5}$$

$$y_3 = x_5 \tag{6}$$

Se escriben las matrices del sistema y de control ($\mathbf{D} = [0]$)

El sistema mostrado en (7) es fully state controllable.

3. Ecuaciones de movimiento de cuerpo rígido

Se hará referencia a la figura 2 para explicar las variables en juego en el modelo 3D debido a la dificultad inherente de mostrar las 16 variables de estado en un dibujo del modelo 3D.

Figura 3: Marcos de referencia tomados para el análisis de cuerpo rígido. Por simplicidad se toman los centros de masa del cardán y del rotor como coincidentes en el punto \mathcal{R} .

3.1. Notación

La notación es la del libro Rigid Body Dynamics of Mechanisms, Theoretical Basics Hahn [2013]. Se requiere un tratamiento algebraico explicito de los marcos de referencia y representación debido al caso especial de un gimballed rotor. Este tratamiento facilita la programación de la simulación y subsecuentemente el control, el cual se volvería ambiguo y complejo con un tratamiento más común o simplificado.

 $\underline{r}_{\mathcal{CO}} = [x,y,z]$: Posición absoluta del centro de masa del vehículo leasé "posición de \mathcal{C} respecto \mathcal{O} ")

 $\underline{r}_{\mathcal{RC}}\,:$ Posición del centro de masa del cardán respecto al centro de masa del vehículo

 $\eta = [\phi, \theta, \psi]$: Ángulos de actitud del vehículo (Ángulos Euler)

 $\underline{\omega}_r^{\mathrm{G}}$: Velocidad angular del rotor del EDF representado en el marco G (dirección constante)

 $\underline{\omega}_{\rm BN}^{\rm B}$: Velocidad angular de B
 respecto a N, representado en el marco B.

 α, β : Ángulo de actuación de vectorización del EDF o ángulo de actitud del marco G

 δ : Ángulo de actuación de los dos flaps anti-roll

m: Masa del vehículo sin rotor

 m_r : Masa del rotor

g : Aceleración de la gravedad

 $\underline{F}^{\mathrm{B}}$: Empuje del EDF representado en el marco B

A^{NB}: Matriz de transformación de cosenos directores de un marco B a el marco N

Caracterización del EDF

 τ_c : Torque efectivo de control del EDF

 K_T : Constante de empuje del EDF

 $K_{\mathcal{O}}$: Coeficiente de torque viscoso de fricción

Q: Torque viscoso de fricción

 τ_r : Torque de reacción por el swirl de salida

Caracterización del mecanismo anti-roll:

 K_{F_L} : Coeficiente de lift de los flaps anti-roll

 K_{F_D} : Coeficiente de drag de los flaps anti-roll

 F_L : Lift de los flaps anti-roll

 F_D : Drag de los flaps anti-roll

Matriz de inercia:

 $J_c^{\rm B}$: Vehículo sin rotor respecto a C representado en B

 J_{rR}^{G} : Rotor respecto a R representado en G

 $J_{g\mathcal{R}}^{G}$: Cardán y motor sin rotor respecto a \mathcal{R} representado en G

3.2. Notación del álgebra a utilizar

El producto escalar se define como • para diferenciarlo de simple multiplicación vectorial (·). $\tilde{\omega}$ es la matriz skew del vector que reemplaza el producto vectorial ya que $\tilde{r} \cdot v = r \times v$

$$\tilde{\omega}_{LR}^L = \left(\begin{array}{ccc} 0 & -\omega_{zLR}^L, & \omega_{yLR}^L \\ \omega_{zLR}^L & 0 & -\omega_{xLR}^L \\ -\omega_{yLR}^L & \omega_{xLR}^L & 0 \end{array} \right)$$

Se dice que $J_{\mathcal{C}}^{\mathrm{B}}$ es la matriz de inercia respecto el punto \mathcal{C} , representado en el marco B : es decir, las componentes de la matriz de inercia están en la base de B. Esto se puede escribir así:

$$J_{\mathcal{C}}^{\mathrm{B}} = J_{b1}\hat{\mathbf{b}}_{1} + J_{b2}\hat{\mathbf{b}}_{2} + J_{b3}\hat{\mathbf{b}}_{3}$$

La derivada del término anterior respecto un marco N quedaría escrito

$$^{\mathrm{N}}\dot{J}_{\mathcal{C}}^{\mathrm{B}} = {^{\mathrm{N}}}\frac{\mathrm{d}J_{\mathcal{C}}^{\mathrm{B}}}{\mathrm{d}t} = \mathbf{A}^{\mathrm{NB}} \cdot {^{\mathrm{B}}}\frac{\mathrm{d}J_{\mathcal{C}}^{\mathrm{B}}}{\mathrm{d}t}$$

Se pueden demostrar las siguientes ecuaciones

$$\dot{\mathbf{A}}^{\mathrm{RL}} = \mathbf{A}^{\mathrm{RL}} \cdot \tilde{\omega}_{\mathrm{LR}}^{\mathrm{L}} = \tilde{\omega}_{\mathrm{LR}}^{\mathrm{R}} \cdot \mathbf{A}^{\mathrm{LR}} = -\tilde{\omega}_{\mathrm{LR}}^{\mathrm{L}} \cdot \mathbf{A}^{\mathrm{RL}}$$

$$\mathbf{A}^{\mathrm{BN}} = (\mathbf{A}^{\mathrm{NB}})^{\mathsf{T}} = (\mathbf{A}^{\mathrm{NB}})^{-1} \quad \Rightarrow \quad \mathbf{A}^{\mathrm{NB}} \cdot \mathbf{A}^{\mathrm{BN}} = \mathbf{I}$$

$$(8)$$

$$\mathbf{A}^{\mathrm{BN}} = (\mathbf{A}^{\mathrm{NB}})^{\mathsf{T}} = (\mathbf{A}^{\mathrm{NB}})^{-1} \quad \Rightarrow \quad \mathbf{A}^{\mathrm{NB}} \cdot \mathbf{A}^{\mathrm{BN}} = \mathbf{I}$$
 (9)

donde ω_{LR}^L es la velocidad angular vectorial del marco L con respecto a R representado en L, A^{RL} es la matriz de cosenos directores que transforma una vector de una base ortogonal L a otra base ortogonal R, y $\dot{\mathbf{A}}^{\mathrm{RL}}$ es la derivada de la matriz \mathbf{A}^{RL} respecto R.

3.3. Variables de estado

Se tendrán las variables de estado de posición y velocidad donde z positivo es alejándose de la tierra.

$$\underline{r}_{\mathcal{CO}}^{\mathrm{N}} = \begin{bmatrix} x & y & z \end{bmatrix}, \qquad \underline{\dot{r}}_{\mathcal{CO}}^{\mathrm{N}} = \begin{bmatrix} \dot{x} & \dot{y} & \dot{z} \end{bmatrix}$$

El movimiento cuerpo rígido será descrito por 3 ángulos de Euler (Cardán o Bryant en algunas bibliografías) ϕ , θ y ψ (roll, pitch, yaw respectivamente).

Figura 4: Diagrama mostrando las rotaciones de ángulo de euler en el orden que son efectuadas para describir el sistema. ϕ representa el pitch, θ el yaw y ψ el roll. Se muestran las últimas posiciones de los ejes rotados con una linea punteada.

Los ángulos de la vectorización de la tobera serán α y β . δ corresponde a los actuadores que contrarrestan el roll del vehículo mediante dos flaps. Los ángulos α y β describen la dirección en la que está apuntando la tobera (equivalente a la orientación G) respecto la dirección del vehículo (marco B). $\omega_r = \omega_r^{\rm G}$ es la velocidad angular del rotor.

Se escriben las variables de estado y el vector input, donde F es la fuerza que hace la tobera sobre el vehículo (la cual depende de la velocidad del vehículo)[†]

$$\mathbf{x} = \begin{bmatrix} \underline{r}_{\mathcal{C}\mathcal{O}}^{\mathrm{N}} & \eta & \underline{\dot{r}}_{\mathcal{C}\mathcal{O}}^{\mathrm{N}} & \underline{\omega}_{\mathrm{BN}}^{\mathrm{B}} & \omega_{r} & \alpha & \beta & \delta \end{bmatrix}^{\top}$$
(11)

$$\mathbf{u} = \begin{bmatrix} \tau_c & \dot{\alpha} & \dot{\beta} & \dot{\delta} \end{bmatrix}^\top \tag{12}$$

En la próxima sección se buscará obtener el vector de variables de estado derivado en el tiempo $\dot{\mathbf{x}}$.

3.4. Ecuaciones diferenciales

Definimos la transformación de los ángulos euler con una matriz de transformación \mathbf{A}^{BN} donde c y s son las funciones coseno y seno, respectivamente.

$$\mathbf{A}^{\mathrm{BN}} = \begin{bmatrix} \mathbf{c}\,\theta \cdot \mathbf{c}\,\psi & \mathbf{c}\,\theta \cdot \mathbf{s}\,\psi & -\mathbf{s}\,\theta \\ \mathbf{s}\,\phi \cdot \mathbf{s}\,\theta \cdot \mathbf{c}\,\psi - \mathbf{c}\,\phi \cdot \mathbf{s}\,\psi & \mathbf{s}\,\phi \cdot \mathbf{s}\,\theta \cdot \mathbf{s}\,\psi + \mathbf{c}\,\phi \cdot \mathbf{c}\,\psi & \mathbf{s}\,\phi \cdot \mathbf{c}\,\theta \\ \mathbf{c}\,\phi \cdot \mathbf{s}\,\theta \cdot \mathbf{c}\,\psi + \mathbf{s}\,\phi \cdot \mathbf{s}\,\psi & \mathbf{c}\,\phi \cdot \mathbf{s}\,\theta \cdot \mathbf{s}\,\psi - \mathbf{s}\,\phi \cdot \mathbf{c}\,\psi & \mathbf{c}\,\phi \cdot \mathbf{c}\,\theta \end{bmatrix}$$
(13)

La transformación nos servirá para poder pasar de la dinámica que está definida en el marco del vehículo B al marco N donde se tienen las variables de estado que se desean controlar.

 $^{^{\}dagger}$ En el código ϕ , θ y ψ aparecen como q,r,s

Podemos obtener la velocidad en el marco del cuerpo

$$\underline{\dot{r}}_{\mathcal{C}\mathcal{O}}^{\mathrm{B}} = \mathbf{A}^{\mathrm{BN}} \cdot \underline{\dot{r}}_{\mathcal{C}\mathcal{O}}^{\mathrm{N}} \tag{14}$$

La obtención de la velocidad angular del cuerpo se complica por el hecho que la razón de cambio de los ángulos de Euler no son vectores cartesianos, si no más bien parámetros que describen la orientación del cuerpo rígido en el espacio.[‡] Para relacionar la velocidad angular con η es necesario utilizar la matriz de actitud cinemática $\mathbf{H}(\eta)$.

$$\mathbf{H}(\underline{\eta}) = \begin{bmatrix} 1 & \sin(\phi)\tan(\theta) & \cos(\phi)\tan(\theta) \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi)\sec(\theta) & \cos(\phi)\sec(\theta) \end{bmatrix}$$
(15)

La matriz de actitud cinemática se usa para transformar

$$\underline{\dot{\eta}} = \mathbf{H}(\underline{\eta}) \cdot \underline{\omega}_{\mathrm{BN}}^{\mathrm{N}} \tag{16}$$

$$\frac{\dot{\eta} = \mathbf{H}(\underline{\eta}) \cdot \underline{\omega}_{\text{BN}}^{\text{N}} \qquad (16)$$

$$\underline{\omega}_{\text{BN}}^{\text{B}} = \mathbf{A}^{\text{BN}} \cdot \underline{\omega}_{\text{BN}}^{\text{N}} \qquad (17)$$

e inversamente

$$\underline{\omega}_{\rm BN}^{\rm N} = \mathbf{H}^{-1}(\eta) \cdot \dot{\eta} \tag{18}$$

(19)

La fuerza que impulsa al vehículo en el marco del cuerpo se obtiene transformando del marco del cardán donde se conocen los componentes, al marco cuerpo. La matriz es calculada reemplazando $\phi \equiv \alpha$, $\theta \equiv \beta$, y $\psi = 0$.

$$\underline{F}^{\mathrm{B}} = \mathbf{A}^{\mathrm{BG}} \cdot \underline{F}^{\mathrm{G}} \tag{20}$$

La aceleración del centro de masa del vehículo medido en el marco del cuerpo B es igualada a la fuerza

$${}^{\mathrm{B}}\frac{\mathrm{d}}{\mathrm{d}t}\left(\underline{\dot{r}}_{\mathcal{CO}}^{\mathrm{B}}\right) = \frac{1}{m+m_r} \cdot \underline{F}^{\mathrm{B}} \tag{21}$$

luego obtenemos la aceleración en coordenadas globales

$$\underline{\ddot{r}}_{\mathcal{CO}}^{N} = \mathbf{A}^{NB} \cdot {}^{B} \frac{\mathrm{d}}{\mathrm{d}t} \left(\underline{\dot{r}}_{\mathcal{CO}}^{B} \right) - \underline{g}^{N}$$
(22)

Los momentos actuantes externos en el marco del vehículo respecto su centro de gravedad $\mathcal C$ están en función del diseño de los flaps anti roll Romarowski [2020].

$$\underline{M}_{\mathcal{C}}^{\mathrm{B}} = \underline{\tilde{r}}_{\mathcal{R}\mathcal{C}}^{\mathrm{B}} \cdot \underline{F}^{\mathrm{B}} + \mathbf{A}^{\mathrm{BG}} \cdot \begin{bmatrix} 0 \\ 0 \\ \omega_r^2 K_{F_L} d_T \delta + \tau_r \end{bmatrix}$$
(23)

La aceleración angular en el marco B sale del desarrollo de la sección 3.5

$$^{\mathrm{B}}\frac{\mathrm{d}}{\mathrm{d}t}\left(\underline{\omega}_{\mathrm{BN}}^{\mathrm{B}}\right) = \left(J_{\mathcal{C}}^{\mathrm{B}}\right)^{-1} \cdot \left(-\underline{\tilde{\omega}}_{\mathrm{BN}}^{\mathrm{B}} \cdot J_{\mathcal{C}}^{\mathrm{B}} \cdot \underline{\omega}_{\mathrm{BN}}^{\mathrm{B}} - \mathbf{A}^{\mathrm{BG}} \cdot \underline{\tilde{\omega}}_{\mathrm{GB}}^{\mathrm{G}} \cdot J_{\mathrm{r}\mathcal{R}}^{\mathrm{G}} \cdot \underline{\omega}_{r}^{\mathrm{G}} - \underline{\tilde{\omega}}_{\mathrm{BN}}^{\mathrm{B}} \cdot J_{\mathrm{r}\mathcal{R}}^{\mathrm{G}} \cdot \underline{\omega}_{r}^{\mathrm{G}} - \mathbf{A}^{\mathrm{BG}} \cdot J_{\mathrm{r}\mathcal{C}}^{\mathrm{G}} \cdot \underline{\omega}_{r}^{\mathrm{G}} + \underline{M}_{\mathcal{C}}^{\mathrm{B}}\right)$$

$$(24)$$

El rotor y los servos son modelados como de primer orden por el momento. Son limitados por velocidad máxima según sus especificaciones.

Las ecuaciones diferenciales se pueden entonces escribir

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{r}_{\mathcal{C}\mathcal{O}}^{\mathrm{N}} & \dot{\underline{\eta}} & \ddot{\underline{r}}_{\mathcal{C}\mathcal{O}}^{\mathrm{N}} & \mathrm{B}\frac{\mathrm{d}}{\mathrm{d}t} \left(\underline{\omega}_{\mathrm{BN}}^{\mathrm{B}}\right) & \dot{\omega}_{r} & \dot{\alpha} & \dot{\beta} & \dot{\delta} \end{bmatrix}^{\mathsf{T}}$$
(25)

 $^{^{\}ddagger}$ Como bien sabemos la matriz de transformación ${f A}$ solo es aplicable para transformar vectores cartesianos de una base ortogonal a otra. Los parámetros η conforman un vector de configuración, no un vector cartesiano!

3.5. Dinámica angular del vehículo

El momento angular del vehículo respecto de su centro de masa (C) y representado en el marco fijo-tierra N debe tomar en cuenta el momento angular por tener un cuerpo con velocidad lineal y angular propia.

$$L_{\mathcal{C}}^{N} = \underbrace{\mathbf{A}^{NB} \cdot J_{\mathcal{C}}^{B} \cdot \omega_{BN}^{B}}_{\text{Vehículo}} + \underbrace{\mathbf{A}^{NG} J_{g\mathcal{R}}^{G} \cdot \omega_{GN}^{G} + m_{g} \cdot \tilde{r}_{\mathcal{R}\mathcal{C}}^{N} \cdot \dot{r}_{\mathcal{R}\mathcal{C}}^{N}}_{\text{Reptive}} + \underbrace{\mathbf{A}^{NG} \cdot J_{r\mathcal{R}}^{G} \cdot \omega_{r}^{G} + m_{r} \cdot \tilde{r}_{\mathcal{R}\mathcal{C}}^{N} \cdot \dot{r}_{\mathcal{R}\mathcal{C}}^{N}}_{\text{Rotor}}$$
(26)

Esta ecuación describe los efectos de tener un cardán con un rotor integrado acoplado al vehículo sin embargo algunos términos se podrían considerar despreciables debido al diseño del cardán.

Ambos gimbals del cardán tienen su eje de giro cercano a su centro de masa lo cual significa que la velocidad relativa entre los puntos \mathcal{R} y \mathcal{C} va tener poco impacto sobre los torques internos del vehículo. Se considera que

$$\dot{\underline{r}}_{\mathcal{RC}} = 0 \tag{27}$$

La velocidad angular de los gimbals es poca ya que su actuación ocurre en el orden de la décima de grado lo cual implica un bajo impacto del término del cardán cuando es integrado en el tiempo. El término $\mathbf{A}^{\mathrm{NG}}J_{g\mathcal{R}}^{\mathrm{G}}\cdot\omega_{\mathrm{GN}}^{\mathrm{G}}$ entonces pasa a formar parte de la inercia del resto del vehículo $J_{\mathcal{C}}^{\mathrm{B}}$, el cual ahora solo excluye al rotor.

El momento angular nos queda simplificado:

$$L_{\mathcal{C}}^{\mathrm{N}} = \mathbf{A}^{\mathrm{NB}} \cdot J_{\mathcal{C}}^{\mathrm{B}} \cdot \omega_{\mathrm{BN}}^{\mathrm{B}} + \mathbf{A}^{\mathrm{NG}} J_{r\mathcal{R}}^{\mathrm{G}} \cdot \omega_{r}^{\mathrm{G}}$$
(28)

donde ω_r es la velocidad del rotor y $J_{r\mathcal{R}}^{G}$ es la matriz de inercia del rotor tomado alrededor de su centro de masa representado en coordenadas del marco cardán G.

Derivamos el momento angular con respecto a N y junto con $J_{\mathcal{C}}^{\mathrm{B}} \approx \mathrm{constante}$ §

$$\dot{L}_{C}^{N} = \dot{\mathbf{A}}_{C}^{NB} \cdot J_{C}^{B} \cdot \omega_{BN}^{B} + \mathbf{A}_{C}^{NG} \cdot J_{rR}^{G} \cdot \omega_{r}^{G}
= \dot{\mathbf{A}}_{C}^{NB} \cdot J_{C}^{B} \cdot \omega_{BN}^{B} + \mathbf{A}_{C}^{NB} \cdot \underbrace{\dot{J}_{C}^{B}}_{\approx 0} \cdot \omega_{BN}^{B} + \mathbf{A}_{C}^{NB} \cdot J_{C}^{B} \cdot \dot{\omega}_{BN}^{B} + \dot{\mathbf{A}}_{C}^{NG} \cdot J_{rR}^{G} \cdot \omega_{r}^{G} + \mathbf{A}_{C}^{NG} \cdot \dot{\mathbf{A}}_{C}^{G} \cdot \omega_{r}^{G} \right)$$

la derivada de la inercia del cuerpo se anula y luego se aplica la regla de la cadena a la derivada

$$\overset{\text{N}}{L}_{\mathcal{C}}^{\text{N}} = \dot{\mathbf{A}}^{\text{NB}} \cdot J_{\mathcal{C}}^{\text{B}} \cdot \omega_{\text{BN}}^{\text{B}} + \mathbf{A}^{\text{NB}} \cdot J_{\mathcal{C}}^{\text{B}} \cdot \dot{\omega}_{\text{BN}}^{\text{B}} + \dot{\mathbf{A}}^{\text{NG}} \cdot J_{\text{r}\mathcal{R}}^{\text{G}} \cdot \omega_{r}^{\text{G}} + \mathbf{A}^{\text{NG}} \cdot \overset{\text{N}}{\frac{\text{d}}{\text{d}t}} \left(J_{\text{r}\mathcal{R}}^{\text{G}} \cdot \omega_{r}^{\text{G}} \right) \\
= \mathbf{A}^{\text{NB}} \cdot \tilde{\omega}_{\text{BN}}^{\text{B}} \cdot J_{\mathcal{C}}^{\text{B}} \cdot \omega_{\text{BN}}^{\text{B}} + \mathbf{A}^{\text{NB}} \cdot J_{\mathcal{C}}^{\text{B}} \cdot \dot{\omega}_{\text{BN}}^{\text{B}} + \mathbf{A}^{\text{NG}} \cdot \tilde{\omega}_{\text{GN}}^{\text{G}} \cdot J_{\text{r}\mathcal{R}}^{\text{G}} \cdot \omega_{r}^{\text{G}} + \mathbf{A}^{\text{NG}} \cdot \left(\overset{\text{N}}{J}_{r\mathcal{R}}^{\text{G}} \cdot \omega_{r}^{\text{G}} + J_{r\mathcal{R}}^{\text{G}} \cdot \overset{\text{N}}{\omega_{r}^{\text{G}}} \right) \\
= \mathbf{A}^{\text{NB}} \cdot \tilde{\omega}_{\text{BN}}^{\text{B}} \cdot J_{\mathcal{C}}^{\text{B}} \cdot \omega_{\text{BN}}^{\text{B}} + \mathbf{A}^{\text{NB}} \cdot J_{\mathcal{C}}^{\text{B}} \cdot \dot{\omega}_{\text{BN}}^{\text{B}} + \mathbf{A}^{\text{NG}} \cdot \tilde{\omega}_{\text{GN}}^{\text{G}} \cdot J_{r\mathcal{R}}^{\text{G}} \cdot \omega_{r}^{\text{G}} + \mathbf{A}^{\text{NG}} \cdot \left(\overset{\text{N}}{J}_{r\mathcal{R}}^{\text{G}} \cdot \omega_{r}^{\text{G}} + J_{r\mathcal{R}}^{\text{G}} \cdot \overset{\text{N}}{\omega_{r}^{\text{G}}} \right) \\
= \mathbf{A}^{\text{NB}} \cdot \tilde{\omega}_{\text{BN}}^{\text{B}} \cdot J_{\mathcal{C}}^{\text{B}} \cdot \omega_{\text{BN}}^{\text{B}} + \mathbf{A}^{\text{NB}} \cdot J_{\mathcal{C}}^{\text{B}} \cdot \dot{\omega}_{\text{BN}}^{\text{B}} + \mathbf{A}^{\text{NG}} \cdot \tilde{\omega}_{\text{GN}}^{\text{G}} + J_{r\mathcal{R}}^{\text{G}} \cdot \omega_{r}^{\text{G}} + J_{r\mathcal{R}}^{\text{G}} \cdot \omega_{r}^{\text{G}} \right) \\
= \mathbf{A}^{\text{NB}} \cdot \tilde{\omega}_{\text{BN}}^{\text{B}} \cdot J_{\mathcal{C}}^{\text{B}} \cdot \omega_{\text{BN}}^{\text{B}} + \mathbf{A}^{\text{NB}} \cdot J_{\mathcal{C}}^{\text{B}} \cdot \dot{\omega}_{\text{BN}}^{\text{B}} + \mathbf{A}^{\text{NG}} \cdot \tilde{\omega}_{r}^{\text{G}} + \mathbf{A}^{\text{NG}} \cdot \tilde{\omega}$$

donde \dot{J}_{rR}^{G} se puede considerar despreciable por la geometría ligera del conjunto cardán y por actuaciones pequeñas (mencionadas anteriormente).

Como el rotor es fijo a al vehículo alrededor de un punto cercano a \mathcal{R} y el movimiento del gimbal es restringido por los actuadores se supone que el rotor es parte del cuerpo rígido del vehículo y se plantea su momento angular como un vector libre. Así podemos igualar $J_{r\mathcal{R}}^{G} \equiv J_{r\mathcal{C}}^{G} = J_{r\mathcal{C}}^{G}$, y por extensión, $J_{\mathcal{R}}^{B} \equiv J_{\mathcal{C}}^{B}$.

$$=\mathbf{A}^{\mathrm{NB}}\cdot\tilde{\boldsymbol{\omega}}_{\mathrm{BN}}^{\mathrm{B}}\cdot\boldsymbol{J}_{\mathcal{C}}^{\mathrm{B}}\cdot\boldsymbol{\omega}_{\mathrm{BN}}^{\mathrm{B}}+\mathbf{A}^{\mathrm{NB}}\cdot\boldsymbol{J}_{\mathcal{C}}^{\mathrm{B}}\cdot\dot{\boldsymbol{\omega}}_{\mathrm{BN}}^{\mathrm{B}}+\mathbf{A}^{\mathrm{NG}}\cdot\tilde{\boldsymbol{\omega}}_{\mathrm{GN}}^{\mathrm{G}}\cdot\boldsymbol{J}_{\mathrm{r}}^{\mathrm{G}}\cdot\boldsymbol{\omega}_{r}^{\mathrm{G}}+\mathbf{A}^{\mathrm{NG}}\cdot\boldsymbol{J}_{\mathrm{r}}^{\mathrm{G}}\cdot{}^{\mathrm{N}}\dot{\boldsymbol{\omega}}_{r}^{\mathrm{G}}$$

multiplicando por \mathbf{A}^{BN}

 $^{^{\}S}$ La inercia del vehículo en su propio marco $J_{\mathcal{C}}^{\mathrm{B}}$ es constante excepto por las variaciones introducidas al agruparlo con el término del cardán $J_{q\mathcal{C}}^{\mathrm{B}}$, el cual varía en función a la actuación α, β .

LIA 4 SIMULACIÓN

$$\mathbf{A}^{\mathrm{BN}} \sum_{i} M_{i\mathcal{C}}^{\mathrm{N}} = \sum_{i} M_{i\mathcal{C}}^{\mathrm{B}} = \tilde{\omega}_{\mathrm{BN}}^{\mathrm{B}} \cdot J_{\mathcal{C}}^{\mathrm{B}} \cdot \omega_{\mathrm{BN}}^{\mathrm{B}} + J_{\mathcal{C}}^{\mathrm{B}} \cdot \dot{\omega}_{\mathrm{BN}}^{\mathrm{B}} + \mathbf{A}^{\mathrm{BG}} \cdot \tilde{\omega}_{\mathrm{GN}}^{\mathrm{G}} \cdot J_{\mathrm{r}}^{\mathrm{G}} \cdot \omega_{r}^{\mathrm{G}} + \mathbf{A}^{\mathrm{BG}} \cdot J_{\mathrm{r}}^{\mathrm{G}} \cdot {}^{\mathrm{N}} \dot{\omega}_{r}^{\mathrm{G}}$$

entonces

$$J_{\mathcal{C}}^{\mathrm{B}} \cdot \dot{\omega}_{\mathrm{BN}}^{\mathrm{B}} = -\tilde{\omega}_{\mathrm{BN}}^{\mathrm{B}} \cdot J_{\mathcal{C}}^{\mathrm{B}} \cdot \omega_{\mathrm{BN}}^{\mathrm{B}} - \mathbf{A}^{\mathrm{BG}} \cdot \tilde{\omega}_{\mathrm{GN}}^{\mathrm{G}} \cdot J_{\mathrm{r}}^{\mathrm{G}} \cdot \omega_{r}^{\mathrm{G}} - \mathbf{A}^{\mathrm{BG}} \cdot J_{\mathrm{r}}^{\mathrm{G}} \cdot {}^{\mathrm{N}} \dot{\omega}_{r}^{\mathrm{G}} + \sum_{i} M_{i\mathcal{C}}^{\mathrm{B}} + \sum_{i} M_{i\mathcal{C$$

donde
$$\omega_{GN}^{G} = \omega_{GB}^{G} + \omega_{BN}^{G} = \omega_{GB}^{G} + \mathbf{A}^{GB}\omega_{BN}^{B}$$

Esto está bien? el término $\tilde{\omega}_{\rm BN}^{\rm B}$ - $J_{\rm r}^{\rm G} \cdot \omega_r^{\rm G}$ nos hace ruido

$$\begin{split} J_{\mathcal{C}}^{\mathrm{B}} \cdot \dot{\omega}_{\mathrm{BN}}^{\mathrm{B}} &= -\tilde{\omega}_{\mathrm{BN}}^{\mathrm{B}} \cdot J_{\mathcal{C}}^{\mathrm{B}} \cdot \omega_{\mathrm{BN}}^{\mathrm{B}} - \mathbf{A}^{\mathrm{BG}} \cdot \tilde{\omega}_{\mathrm{GB}}^{\mathrm{G}} \cdot J_{\mathrm{r}}^{\mathrm{G}} \cdot \omega_{r}^{\mathrm{G}} - \mathbf{A}^{\mathrm{BG}} \mathbf{A}^{\mathrm{GB}} \cdot \tilde{\omega}_{\mathrm{BN}}^{\mathrm{B}} \cdot J_{\mathrm{r}}^{\mathrm{G}} \cdot \omega_{r}^{\mathrm{G}} - \mathbf{A}^{\mathrm{BG}} \cdot J_{\mathrm{r}}^{\mathrm{G}} \cdot \omega_{r}^{\mathrm{G}} + \sum_{i} M_{i\mathcal{C}}^{\mathrm{B}} \\ \end{split}$$

donde
$${}^{\mathrm{N}}\dot{\omega}_{r}^{\mathrm{G}} = \mathbf{A}^{\mathrm{GN}}\cdot{}^{\mathrm{G}}\dot{\omega}_{r}^{\mathrm{G}} = \mathbf{A}^{\mathrm{GN}}\cdot\dot{\omega}_{r}\hat{\mathbf{g}}_{3}$$

 \mathbf{A}^{GN} debería ser \mathbf{A}^{NG} posiblemente

4. Simulación

Para comprobar el sistema de control se definió el sistema no-lineal en MATLAB, se obtuvo el sistema lineal sobre un punto de operación tomando el jacobiano del sistema de ecuaciones diferenciales para controlar el sistema, y finalmente se integró el sistema no lineal en el tiempo retroalimentado con el sistema de control.

Se investigó la respuesta del vehículo ante perturbaciones Delta-Dirac de orientación.

4.1. Sistema no-lineal

El sistema (25) describe la dinámica no-lineal del vehículo con 16 ecuaciones. Estas pueden ser integradas mediante un método numérico para ecuaciones diferenciales ordinarias multivariables no-autónomas. El requerimiento no-autónomo surge de la necesidad de incorporar el vector \mathbf{u} a la integración, el cual incluye las actuaciones en base a lo que leen los sensores.

Para satisfacer el requerimiento no-autónomo se tuvo que implementar un método numérico basado en Runge-Kutta orden 4. El método fue probado y contrastado con soluciones analíticas conocidas.

4.2. Sistema de control

Se optó por controlar mediante el controlador LQR debido a la simplicidad de implementación y adaptabilidad para problemas de variables de estado. Como se mencionó anteriormente, se obtiene el jacobiano del sistema (25) alrededor del punto de operación. Esta es la matriz del sistema A. La matriz B también es el jacobiano del sistema pero diferenciado respecto u. Finalmente, C es la combinación lineal de las mediciones de los sensores (ver sección 2 para entender el proceso).

Se modelaron las siguientes imperfecciones en el sistema:

- Delay en medición/actuación
- Desalineación de sensores (acelerómetro y giróscopo)

La matriz costo asociada al equilibrio es construida asignando los siguientes valores a la diagonal: 5 a las posiciones globales, 1 a las velocidades, 1e-3 a la velocidad del rotor del EDF, 1e-4 a la velocidad angular en pitch y yaw del vehículo, y 1e-5 a las variables restantes (actuadores, ángulos de Euler y velocidad angular en roll).

La matriz costo asociada a los actuadores es diagonal con los siguientes valores: 1000 a actuadores de pitch y yaw del gimbal, 1e-5 al actuador de roll, y 1e-6 al control velocidad del rotor del EDF.

4.3. Resultados de simulación

5. Desarrollo de software

5.1. Elección de arquitectura

La decisión de software a usar depende del controlador a usar, poder de cálculo disponible, interfases de periféricos y funcionalidad deseada.

El controlador a usar es el ARM Cortex-A72 que sería comprado en el paquete comercial conocido como Raspberry Pi 4B+. El producto provee salidas para los siguientes usos

- UART
- SPI
- I²C
- GPIO

La Raspberry Pi provee un entorno con Linux instalado que permite la programación con virtualmente cualquier lenguaje de programación en existencia. Dado estas condiciones, el lenguaje de programación elegido es **Go** (Golang) debido a los siguientes puntos

- Seguro Modelo de memoria Go, sistema de tipado fuerte
- Simple Claridad de sintaxis
- Concurrencia Crear corrutinas es simple, paralelizar corrutinas es trivial
- Rendimiento Superior a Python, Java y Matlab. Comparable a C
- Estable The Go 1 promise (La promesa Go 1)
- Comprobado Usado en sistemas de alto-riesgo/alta-complejidad (Kubernetes, Docker, Go-HEP)
- Portable Todos los programas Go compilan a código nativo (código de máquina) para cualquier arquitectura y sistema operativo. Incluso se puede programar microcontroladores (TinyGo)

[¶]Hoy en día hay pocos lenguajes con sistemas de tipos fuertes. Contrario a la creencia popular, C y C++ ambos son tipados débilmente.

LIA

5.2. Flujo de control

Figura 5: Gráfico de flujo de control (CFG) del programa de vuelo. Las lineas de flujo azules son corrutinas independientes al programa principal. Las lineas negras son flujo del programa principal. Las lineas rojas son flujo del programa principal al encontrar un error.

Se ilustra el flujo de control a grandes rasgos usando un CFG en la figura 5. El programa principal corre la rutina overlord que a su vez comanda flightProgram y espera que esta devuelva control a overlord. El propósito de overlord es guardar el estado del vehículo y ante una falla irrecuperable en flightProgram, terminar con todas las corrutinas generadas por flightProgram y sus afiliadas y a su vez reiniciar flightProgram nuevamente con el último estado antes de la falla.

5.3. Interfaz con hardware

Como se mencionó anteriormente, la computadora elegida tiene varios puertos que servirán como interfases con periféricos, entre ellos

- ADC (sensores)
- Generadores de PWM (para actuadores)
- Blinkenlights

Para la interacción del software con el hardware se usará la librería periph.io. Esta librería permite la interacción a través de los protocolos de comunicación de la Raspberry Pi. Los drivers para los periféricos fueron programados según la información dada en las datasheet.

Agradecimientos

Dan Etenberg por hacer todo posible. Ben Romarowski por ayuda con la dinámica de cuerpo rígido y aerodinámica de los álabes.

Referencias

Hubert Hahn. Rigid Body Dynamics of Mechanisms: 1 Theoretical Basis. Springer Science & Business Media, 2013.

Ben Romarowski. Dynamics and control of gimballed edf. Technical report, LIA Aerospace, 2020.