

Tiziana Ferrari@egi.eu

TLP: WHITE Public

18 Jan 2023, IS-ENES GA

EGI Federation

European flagship digital infrastructure for data-intensive scientific computing

77,000 researchers worldwide

Why a federation?

- Support science at international scale
- Build an hyperscale compute facility for research
- Invest nationally, access globally
- Bring computing to the data

A membership organization

IS-ENES is member of the EGI Council since July 2020 through CMCC

Technical Architecture

- ⇒ Foundation of the EOSC Compute Platform http://go.egi.eu/egi-ace
- ⇒ Governance, Architectures and Business Models for Data and Cloud Federations: the EOSC and GAIA-X Case Studies https://zenodo.org/record/5081865

Collaboration

- R&D of technical solutions of common interest for federated data access and analysis, data spaces and digital twins
- Collaboration with other research communities
 - Access to federating services of the EGI
 - Federation, e.g. Check-in
 - Projects for integration and technical support of IS-ENES data analytics tools

EGI Community and IS-ENES collaborative projects

2018-2021

2018-2021

2022-2025

Data analytics in the cloud with IS-ENES: Ophidia and ECAS

Climate Data Analytics in the cloud: EOSC-Hub and INDIGO-DataCloud

Big Data Challenges, Research, and Technologies in the Earth and Planetary Sciences

A workshop to be held Monday December 5th at the 2016 IEEE International Big Data Conference

A distributed EU/US testbed for analytics workflows

S. Fiore, M. Plóciennik, et al.: Distributed and cloud-based multi-model analytics experiments on large volumes of climate change data in the earth system grid federation eco-system. BigData 2016: 2911-2918

EGI reusable open components for the federated data access

Federated Trust and Identity: Check-in

A standards based and interoperable Authentication and Authorization service

Federated Data: DataHub

Replication of scientific data to/from distributed providers with transparent access for users

Federated access to applications

AppDB for community-based VM image sharing, and CVMFS for scalable software distribution across the federation

Towards a European compute continuum with IS-ENES use cases

1 HPC as a Service

Virtual infrastructures on HPC facilities

2 Access via ssh + federated identity

Enable used of OpenID Connect to access ssh login nodes of HPC systems + integration of accounting and monitoring

3 HTC middleware/Gateways

Reuse HTC middleware so HPC systems can be integrated into existing research workloads.

Scenario 1: experienced users

- Access HPC with ssh-oidc
- All software deployed as user, no additional privileges needed
 - Data movement from/to HPC using DataHub, user-side fuse mount of remote datasets
 - Ophidia Big Data Analytics framework deployed as containers with udocker (container runtime)

Scenario 2: non-expert users

- No direct interaction with the HPC system for users, JupyterHub as a gateway
- · Users login with Check-in, fine-grained authorization based on user group membership
- User-level Jupyter servers running as containers with udocker

HPC System

ENES Data Space in EOSC

Data science environment for climate data analysis. Single entry point for:

- Datasets
- Storage & Compute resources
- Data Science Software Stack
- . IDE & Applications
- SaaS/PaaS approach

A multi-disciplinary environment where researchers can publish, find and re-use data, tools and services, enabling them to better conduct their work

- > Builds on existing infrastructures and services supported by the European Commission, Member States and research communities.
- > Brings these together in a federated 'system of systems"

Data Space Building Blocks

Data Space: "a federated data ecosystem within a certain application domain and based on shared policies and rules", Data space design principles

Source: OpenDEI project

Data Space

Industrial

Public

Validate

All data

spaces

Reference architectures for Data Spaces

Building Blocks

Data Space **Implementation**

Implement Design Integrate

Certified & Validated Building Blocks

- Identify Management
 - Data Routing
 - Data Analytics
 - Encryptian
 - Anonymization

Technical Building Blocks (Hardware, Software, Middleware, Networking...)

Technical Building Blocks

enable the implementation of the technical architecture of a data space.

Certified & Validated Building Blocks

- Service Level Agreements
 - Smart Contracts
 - Accounting Schemes
 - Billing Schemes
- Governance Structure
 - Data Policies
 - Security Policies
- Incident Management
- Regulatory Campliance

Business, Organizational and Operational Building Blocks (Artifacts)

Governance Building Blocks

refer to business, operational and organizational agreements among data space participants

As been contributing to scientific computing innovation for the benefit of many scientific communities beyond climate modelling