ClearanceRate_F1Scallops

Samuel Gurr

10/12/2021

Merge to master file 'ClearRate_Master'

Date from: - 20210914 - 20210930

```
# call the 914 data and remove blanks
clear.rate_914_Scallops <- merge( # note - merging with th elengths removed the blanks from the clearan
  (clear.rate_914 %>% dplyr::filter(!Chamber_tank %in% 'Blank')),
  (length.resp.clear %>%
    dplyr::filter(Date %in% 20210914) %>%
    dplyr::mutate(Chamber_tank = sub("_", "", Chamber_tank))) ) %>%
 dplyr::select(!c('Food'))
# a bit more work with the 930 data to merge with the 914
clear.rate_930_Scallops <- merge( (data.frame(melt(clear.rate_930, id.vars = c('Date', 'Chamber_tank','</pre>
 dplyr::filter(!Fed_Unfed %in% 'blank') %>%
 dplyr::mutate(Time._min = (gsub(".*_","", variable))) %>%
 dplyr::rename(Count = value) %>%
 dplyr::arrange(Run, Plate, pH, Replicate, Number, Fed_Unfed, Time._min)), #merge with...
    (length.resp.clear %>%
      dplyr::filter(Date %in% 20210930) %>%
      dplyr::mutate(Chamber_tank = sub("_", "", Chamber_tank)) %>%
      dplyr::mutate(Fed_Unfed = ifelse(Food == 1, 'fed', 'unfed')))
 ) %>%
 dplyr::select(!c('variable', 'Food', 'Sample.ID'))
ClearRate_Master
                        <- rbind(clear.rate_914_Scallops, clear.rate_930_Scallops)</pre>
# calculate the clearace rate normalized for shell length
ClearRate_Master$Cells_ml <- (ClearRate_Master$Count)*(1000/33)</pre>
print(head(ClearRate_Master))
```

```
Date Run pH Chamber_tank Fed_Unfed Time._min Count Plate Replicate
## 1 20210914 1 7.5
                            7.5A
                                      <NA>
                                                  0 1314
                                                             NA
                                                                        Α
## 2 20210914
             1 7.5
                            7.5A
                                      <NA>
                                                 10 1186
                                                             NA
                                                                        Α
## 3 20210914 1 7.5
                            7.5A
                                      <NA>
                                                 27 1295
                                                             NA
                                                                        Α
```

```
## 4 20210914
                1 7.5
                               7.5A
                                         <NA>
                                                     47
                                                           984
                                                                  NA
## 5 20210914
               1 7.5
                               7.5A
                                         <NA>
                                                     57
                                                           681
                                                                  NΑ
                                                                             Α
## 6 20210914
                               7.5A
               1 7.5
                                         <NA>
                                                     70
                                                           849
                                                                  NA
                                                                             Α
     Number Length.um. Notes Cells_ml
## 1
          1
               1970.48
                             39818.18
## 2
          1
               1970.48
                             35939.39
## 3
          1
               1970.48
                              39242.42
               1970.48
                              29818.18
## 4
          1
## 5
          1
               1970.48
                              20636.36
## 6
               1970.48
                              25727.27
          1
```

Visualize raw data & simple slopes/algae loss time-1

Plot the raw Flow cytometry output

• note: some data points were omitted in the worksheet, review the 'raw' vs 'worksheet_R' data files

```
# 20210914 DATA ......
SlopePlots_914 <- ClearRate_Master[!is.na(ClearRate_Master$Cells_ml),] %>%
 dplyr::filter(Date %in% 20210914) %>%
 dplyr::mutate(Time._min = as.numeric(as.character(Time._min))) %>%
 ggplot(aes(Time._min, Cells_ml, color=Replicate)) +
 geom_point(shape=1, color = "black")+
 ggtitle("RAW DATA: F1 Scallops, Clearance Rate 20210914")+
 labs(y = expression(Live~algae~cells~"("~cells~mL^{-1}~")"),
      x = expression(Time~"("~minutes~")")) +
 theme(plot.title= element_text(size =16, face ="bold",
                             lineheight = 8, vjust=1), aspect.ratio=1)+
 stat_smooth(method="lm", se = F) +
 theme_bw() +
 scale_shape_identity() +
 facet_wrap( ~ pH, scales = "free_x" )
SlopePlots_914
```

```
## 'geom_smooth()' using formula 'y ~ x'
```

RAW DATA: F1 Scallops, Clearance Rate 20210914


```
# Clearance rate anlaysis for 9/30 data
ClearRate_Master.914 <- ClearRate_Master %>%
  dplyr::filter(Date %in% 20210914) %>%
  dplyr::mutate(uniq_Identifier = paste(pH, "Run", Run, "Rep", Replicate, "Num", Number, sep='_'))
loop_914 <- as.data.frame(unique(ClearRate_Master.914$uniq_Identifier)) %>% dplyr::rename(ID = "unique(
SlopeTable_914 <- data.frame() # run this before the loop</pre>
for(i in 1:nrow(loop 914)){
  dat <- ClearRate_Master.914 %>% filter(uniq_Identifier %in% loop_914[i,])
    slope<- summary(lm((dat$Cells_ml) ~ as.numeric(dat$Time._min)))$coef[2,"Estimate"]</pre>
    SLOPE <- summary(lm((dat$Cells_ml) ~ as.numeric(dat$Time._min)))$r.squared
    pval <- summary(lm((dat$Cells_ml) ~ as.numeric(dat$Time._min)))$coef[2,"Pr(>|t|)"]
    mod <- lm(as.numeric(dat$Time._min) ~ dat$Cells_ml)</pre>
    norm_assum <- shapiro.test(resid(mod))</pre>
    shapiro_pval <- norm_assum$p.value</pre>
    # assign the data table
    SLOPE.loop <- data.frame(matrix(nrow = 1, ncol = 5)) # create a new data table
    colnames(SLOPE.loop) <- c('pH', 'Replicate', 'slope', 'SLOPE', 'pval') # assign headers</pre>
                          <- gsub("_.*", "\\1", loop_914[i,])</pre>
    SLOPE.loop$pH
    SLOPE.loop\$Replicate \leftarrow gsub("^(?:[^]+_){4}([^]+).*", "\1", loop_914[i,])
    SLOPE.loop$slope
                          <- slope * 60 # cells per mL per hour
    SLOPE.loop$Number
                          \leftarrow gsub("^(?:[^]+)_{6}([^]+).*", "\1", loop_914[i,])
    SLOPE.loop$SLOPE
                            <- SLOPE
    SLOPE.loop$pval
                          <- pval
    SLOPE.loop$shapiro_pval <- shapiro_pval</pre>
```

```
# loop additions
   df <- data.frame(SLOPE.loop) # name dataframe for this single row</pre>
   SlopeTable_914 <- rbind(SlopeTable_914,df) # bind to a cumulative list dataframe
   # print(SlopeTable_914) # show loop progress in the console
}# outside loo
SLOPE_mod_914 <- aov(lm(slope ~ pH, data= SlopeTable_914))</pre>
   <- paste( (summary(SLOPE_mod_914)[[1]][["Df"]])[1], (summary(SLOPE_mod_914)[[1]][["Df"]])[2], sep</pre>
Fval <- (summary(SLOPE_mod_914)[[1]][["F value"]])[1]</pre>
pval <- (summary(SLOPE_mod_914)[[1]][["Pr(>F)"]])[1]
SlopeFig914_geombox <- ggplot(SlopeTable_914, aes(pH , abs(slope) , fill = pH)) +</pre>
  theme(panel.grid=element_blank()) +
  geom_boxplot(size=0.2, alpha=0.1, aes(fill=pH)) +
  scale_fill_manual(values=c("grey50","white")) +
  geom_point(shape = 21, size = 2, position = position_jitterdodge(jitter.width = 0.1)) +
  theme_classic() +
  scale_x_discrete(labels= c('Elevated (H)', 'Ambient (L)')) +
  theme(axis.text=element_text(size=12),
       axis.title=element_text(size=14,face="bold")) +
  labs(title = "F1 Scallops: Slope algae cells/time - feeding rate trials 20210914",
       y = expression(Slope~"="~absolute~value~"("~Live~algae~cells~mL^{-1}~hour^{-1}~")"),
       x = expression(italic(p)*CO[2]~Treatment~"("~mu*atm~")")) +
  annotate("text", x=2, y= 25000, size = 4, label = "aov(slope~pH Treatment)") +
  annotate("text", x=2, y= 24300, size = 4, label= paste('DF =',DF,'F =', signif(Fval, digits=3), 'p va
SlopeFig914_geombox
```



```
SlopePlots_930 <- ClearRate_Master[!is.na(ClearRate_Master$Cells_ml),] %>%
 dplyr::filter(Date %in% 20210930) %>%
 dplyr::mutate(pH_feed = paste(pH, Fed_Unfed, sep='_')) %>%
 dplyr::mutate(Time._min = as.numeric(as.character(Time._min))) %>%
 ggplot(aes(Time._min, Cells_ml, color=Replicate)) +
 geom_point(shape=1, fill = "white", color = "black")+
 ggtitle("RAW DATA: F1 Scallops, Clearance Rate 20210930")+
 labs(y = expression(Live~algae~cells~"("~cells~mL^{-1}~")"),
      x = expression(Time~"("~minutes~")")) +
 theme(plot.title= element text(size =16, face ="bold",
                             lineheight = 8, vjust=1), aspect.ratio=1)+
 stat smooth(method="lm", se = F) +
 theme_bw() +
 scale_shape_identity() +
 facet_wrap( ~ pH_feed, scales = "free_x" )
SlopePlots_930
```

'geom_smooth()' using formula 'y ~ x'

RAW DATA: F1 Scallops, Clearance Rate 20210930


```
# Clearance rate anlaysis for 9/30 data
                          <- ClearRate_Master %>%
ClearRate_Master.930
 dplyr::filter(Date %in% 20210930) %>%
 dplyr::mutate(uniq_Identifier = paste(pH, Fed_Unfed, "Run", Run, "Rep",Replicate, "Num", Number, sep=
loop_930 <- as.data.frame(unique(ClearRate_Master.930\u00a9uniq_Identifier)) %>% dplyr::rename(ID = "unique(
SlopeTable_930 <- data.frame() # run this before the loop</pre>
for(i in 1:nrow(loop 930)){
 dat <- ClearRate_Master.930 %>% filter(uniq_Identifier %in% loop_930[i,])
 slope<- summary(lm((dat$Cells_ml) ~ as.numeric(dat$Time._min)))$coef[2,"Estimate"]</pre>
 SLOPE <- summary(lm((dat$Cells_ml) ~ as.numeric(dat$Time._min)))$r.squared</pre>
 pval <- summary(lm((dat$Cells_ml) ~ as.numeric(dat$Time._min)))$coef[2,"Pr(>|t|)"]
 mod <- lm(as.numeric(dat$Time._min) ~ dat$Cells_ml)</pre>
 norm_assum <- shapiro.test(resid(mod))</pre>
 shapiro_pval <- norm_assum$p.value</pre>
 # assign the data table
 SLOPE.loop <- data.frame(matrix(nrow = 1, ncol = 6)) # create a new data table
 colnames(SLOPE.loop) <- c('pH', 'Replicate', 'Fed_Unfed', 'slope', 'SLOPE', 'pval') # assign headers
 SLOPE.loop$pH
                      <- gsub("_.*", "\\1", loop_930[i,])
  SLOPE.loop\$Replicate \leftarrow gsub("^(?:[^_]+_){5}([^_]+).*", "\1", loop_930[i,]) 
 SLOPE.loop$slope
                      <- slope * 60 # cells per mL per hour
                      <- gsub("^(?:[^_]+_){7}([^_]+).*", "\\1", loop_930[i,])
 SLOPE.loop$Number
 SLOPE.loop$SLOPE
                        <- SLOPE
 SLOPE.loop$pval
                      <- pval
```

```
SLOPE.loop$shapiro_pval <- shapiro_pval</pre>
  # loop additions
  df <- data.frame(SLOPE.loop) # name dataframe for this single row</pre>
  SlopeTable_930 <- rbind(SlopeTable_930,df) # bind to a cumulative list dataframe
  #print(SlopeTable_930) # show loop progress in the console
}# outside loo
SLOPE mod 930 <- aov(lm(slope ~ pH*Fed Unfed, data= SlopeTable 930))
summary(SLOPE mod 930)
                              Mean Sq F value
##
                      Sum Sq
                                                 Pr(>F)
## pH
                1 1.176e+08 1.176e+08 1.136 0.290525
                1 1.478e+09 1.478e+09 14.284 0.000351 ***
## Fed_Unfed
## pH:Fed_Unfed 1 4.590e+07 4.590e+07
                                       0.444 0.507794
              63 6.518e+09 1.035e+08
## Residuals
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
DF.930 <- paste( (summary(SLOPE_mod_930)[[1]][["Df"]])[1], (summary(SLOPE_mod_930)[[1]][["Df"]])[2],
Fval.930 <- (summary(SLOPE_mod_930)[[1]][["F value"]])[1]</pre>
pval.930 <- (summary(SLOPE_mod_930)[[1]][["Pr(>F)"]])[1]
SlopeFig930_geombox <- SlopeTable_930 %>%
  mutate(pH_feed = paste(pH, Fed_Unfed, sep = '_')) %>%
  ggplot(aes(pH , abs(slope) , fill = pH)) +
    theme(panel.grid=element blank()) +
   geom_boxplot(size=0.2, alpha=0.1, aes(fill=pH)) +
    scale_fill_manual(values=c("grey50","white")) +
    geom_point(shape = 21, size = 2, position = position_jitterdodge(jitter.width = 0.1)) +
   theme_classic() +
    scale_x_discrete(labels= c('Elevated (H)', 'Ambient (L)')) +
   theme(axis.text=element_text(size=12),
         axis.title=element_text(size=14,face="bold")) +
   labs(title = "F1 Scallops: Slope algae cells/time - feeding rate trials 20210930",
         y = expression(Slope~"="~absolute~value~"("~Live~algae~cells~mL^{-1}~hour^{-1}~")"),
         x = expression(italic(p)*CO[2]~Treatment~"("~mu*atm~")")) +
    facet_wrap(~ Fed_Unfed)
SlopeFig930_geombox
```


Calculate Clearance Rate

Note: the following clusters calculate CR for the start/end Algae counts (i.e. 20210914 time 0 and time 90 minutes; 20210930 time 0 and time 60 minutes)

CLEARANCE RATE EQUATION

$$FR = (V/t * (ln(C_0/C_t) - A))/L$$

- V == the volume of the vessel
- **t** == time of the trial interval (i.e. 60 minutes or 1 hour)
- $ln(C_0/C_t) == ratio$ of the live algae concentration (cells ml-1) at time 0 (C0) and at the elapsed time interval(s) (Ct) take the natural log of this number
- $A == \ln(C_0/C_t)$ for the 'blank' values in each treatment, accounts for the sink or stuck algae cells
- ullet L == normalization factor between individuals here we will use the shell length in mm

'A' Calculate the blank values for each trial

'summarise()' has grouped output by 'pH'. You can override using the '.groups' argument.

##		рН	Timemin	meanBla	ank_l	n_AlgaeI	Loss	sdBlank_ln_AlgaeLoss
##	1	7.5	10			0.005925	5943	NA
##	2	7.5	15			0.008379	9498	0.001565165
##	3	7.5	20			0.083124	1754	NA
##	4	7.5	30			0.066622	2217	0.034126783
##	5	7.5	40			0.065622	2318	NA
##	6	7.5	50			0.094424	1309	NA
##	7	7.5	57			0.059777	7204	NA
##	8	7.5	60			0.098939	9948	NA
##	9	7.5	70			0.101756	318	NA
##	10	7.5	75			0.075223	3421	NA
##	11	7.5	90			0.089593	3318	0.053841127
##	12	8.0	10			0.015870	0864	0.001415206
##	13	8.0	15			0.081890	972	NA
##	14	8.0	30			0.112614	1144	NA
##	15	8.0	40			0.067635	5835	NA
##	16	8.0	45			0.076359	9279	0.067200682
##	17	8.0	47			0.046063	3258	NA
##	18	8.0	50			0.040346	822	NA
##	19	8.0	57			0.044518	3856	NA
##	20	8.0	60			0.158305	5235	NA
##	21	8.0	70			0.024924	1890	0.015757351
##	22	8.0	75			0.112731	1849	NA
##	23	8.0	90			0.068248	3862	0.056330183
##		seB]	lank_ln_Al	_				
##				NA				
##			0.00	1106739				
##	3			NA				
##			0.01	9703108				
##				NA				
##	6			NA				
##	7			NA	1			

```
## 10
                         NA 1
## 11
               0.031085189 3
               0.001000702 2
## 13
                         NA 1
## 14
## 15
                         NA 1
## 16
               0.047518058 2
## 17
                         NA 1
## 18
                         NA 1
## 19
                         NA 1
## 20
                         NA 1
## 21
               0.011142130 2
## 22
                         NA 1
## 23
               0.028165092 4
## 'summarise()' has grouped output by 'pH'. You can override using the '.groups' argument.
      pH Time._min meanBlank_ln_AlgaeLoss sdBlank_ln_AlgaeLoss
## 1 7.5
                 20
                                0.07899175
                                                       0.09373166
## 2 7.5
                 30
                                0.01338708
## 3 7.5
                 40
                                                               NA
                                0.14527004
                                0.06080047
                                                       0.07900592
## 4 7.5
                60
## 5 8.0
                 20
                                0.06528042
                                                       0.03669390
## 6 8.0
                 30
                                0.04766821
                                                       0.00226676
## 7 8.0
                 40
                                0.12783337
                                                               NA
## 8 8.0
                 60
                                0.06835669
                                                       0.03782168
##
     seBlank_ln_AlgaeLoss n
## 1
              0.066278294 2
## 2
                        NA 1
## 3
                        NA 1
## 4
              0.045614090 3
## 5
              0.021185232 3
## 6
              0.001602841 2
## 7
                        NA 1
## 8
              0.021836358 3
```

'A' Call the blank values for each trial - continued....

NA 1

NA 1

8

9

- Call the blank value **specifically for the final timepoint** of the clearance rate trial(s)!
- this value will be called in the for loop when calculating CR in following cluster(s)

20210914 Clearance Rate data

```
df_total.914
                          <- data.frame() # start dataframe
for (i in 1:nrow(loop_914)) {
  dat <- ClearRate_Master.914 %>%
    dplyr::filter(uniq_Identifier == loop_914[i,]) %>%
    dplyr::arrange(Time._min)
  CO <- (dat %>% dplyr::filter(Time._min == 0))$Cells_ml[1]
  dat2 <- dat %>%
    #dplyr::mutate(diff = as.numeric(Time._min) - lag(as.numeric(Time._min), default = first(as.numeric
    dplyr::filter(Time._min %in% 90) %>%
   dplyr::mutate(Blank = if(pH == 7.5) Blank_914_pH7.5 else Blank_914_pH8.0 ) %>%
    dplyr::mutate(AlgaeLossRatio = C0 / as.numeric(Cells_ml) ) %>%
   dplyr::filter(!AlgaeLossRatio < 1) %>%
   dplyr::mutate(ln_AlgaeLossRatio = ln(AlgaeLossRatio)) %>%
   \# dplyr::mutate(ClearanceRate = ( (25/1000) / (diff/60) * \# V / t == Volume of the vessel (in Lite
                                       ( ln_AlgaeLossRatio ) / Length.um. ) ) %>%
   dplyr::mutate(ClearanceRate_L_hour_mm = ( (25/1000) * # V / t == Volume of the vessel (in Liters as
                                        ((ln_AlgaeLossRatio / (as.numeric(Time._min)/60) - Blank))) /
   dplyr::mutate(Time_period = paste((as.numeric(substr(Time._min,1,1)) -1), "0-", Time._min, sep ='')
   dat20M <- dat2 %>% dplyr::filter(!Time._min == 0)
  if (nrow(dat20M) > 0) {
   ClearRate.table
                              <- data.frame(matrix(nrow = nrow(dat20M), ncol = 9)) # create dataframe t</pre>
    colnames(ClearRate.table) <- c('Date', 'ID', 'pH', 'Replicate', 'Num', 'Run', 'Time_period', 'AlgaeLo
   ClearRate.table$Date
                                                <- dat20M$Date
   ClearRate.table$ID
                                                <- loop 914[i,]
   ClearRate.table$pH
                                               <- gsub("_.*", "\\1", ClearRate.table$ID)</pre>
   ClearRate.table$Replicate
                                                <- gsub("^(?:[^_]+_){4}([^_]+).*", "\\1", ClearRate.tabl
   ClearRate.table$Num
                                               <- gsub("^(?:[^_]+_){6}([^_]+).*", "\\1", ClearRate.tabl
   ClearRate.table$Run
                                               <- gsub("^(?:[^_]+_){2}([^_]+).*", "\\1", ClearRate.tabl
   ClearRate.table$Time_period
                                               <- paste((as.numeric(substr(dat20M$Time._min,1,1)) -1),</pre>
   ClearRate.table$AlgaeLossRatio
                                               <- dat20M$AlgaeLossRatio</pre>
   ClearRate.table$ClearanceRate_L_hour_mm <- dat20M$ClearanceRate_L_hour_mm</pre>
             <- data.frame(ClearRate.table) # name dataframe for this single row</pre>
   df_total.914 <- rbind(df_total.914,df) #bind to a cumulative list dataframe
    #print(df_total.914) # print to monitor progress
  }
  else {}
}
ClearRates_914_Means <- df_total.914 %>%
  #dplyr::filter(!ClearanceRate L hour meter %in% '-Inf') %>%
  dplyr::group_by(pH) %>%
  dplyr::summarise(
   meanCR = mean(ClearanceRate_L_hour_mm),
    sdCR = sd(ClearanceRate_L_hour_mm),
   seCR = sd(ClearanceRate_L_hour_mm) / sqrt(length(ClearanceRate_L_hour_mm)),
   n = n()) \% \%
  na.omit()
```

print(ClearRates_914_Means)

```
## # A tibble: 2 x 5
##
                       sdCR
                                 seCR
     ηН
             meanCR
                                           n
##
     <chr>
              <dbl>
                      <dbl>
                                <dbl> <int>
## 1 7.5
           0.00378 0.00288 0.000831
                                          12
## 2 8
           0.00236 0.00170 0.000490
                                          12
```

```
# summary(lmer(meanCR~pH+ (1|Time period), data=ClearRates 914 Means))
# summary(aov(lm(meanCR~pH*Time_period, data=ClearRates_914_Means)))
```

mod914CR <- aov(lm(ClearanceRate_L_hour_mm~ pH , data = (df_total.914 %>% dplyr::filter(!ClearanceRate pander(summary(mod914CR), style='rmarkdown')

Table 1: Analysis of Variance Model

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
pH Residuals		1.206e-05 0.0001229		2.158 NA	0.156 NA

check_model(mod914CR) # observe the diagnostics of the model

Linearity

Influential Observations

Coints should be inside the contour lines

Normality of Residuals

Distribution should be close to the normal curve

Homogeneity of Variance

Reference line should be flat and horizontal

Normality of Residuals

ts should fall along the line

Standard Normal Distribution Quantile:

```
shapiro.test(residuals(mod914CR)) # non normal
##
##
        Shapiro-Wilk normality test
## data: residuals(mod914CR)
## W = 0.92006, p-value = 0.05859
leveneTest(mod914CR) # good
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = median)
                       Df F value Pr(>F)
## group 1 1.2472 0.2761
##
                         22
\#summary(lmer(ClearanceRate\_L\_hour\_mm^pH + (1/Replicate), data = (df\_total.914 \%>\% dplyr::filter(!ClearanceRate\_L\_hour\_mm^pH + (df\_total.914 \%)) data = (df\_total.914 \%) dat
CR_914_barplot <- ClearRates_914_Means %>%
     #dplyr::filter(!Time_period %in% c('40-50', '50-60')) %>%
     ggplot(aes(x=pH , y=meanCR, fill = pH)) +
     geom_bar(position=position_dodge(), aes(y=meanCR), stat="identity", alpha=0.5) +
     scale_fill_manual("Treatment", values = c("8" = "grey50", "7.5" = "black")) +
     geom_errorbar(position=position_dodge(width=0.9), aes(ymin=meanCR+seCR, ymax=meanCR+seCR), width=0.2,
     geom_linerange(aes(ymin = meanCR, ymax = meanCR+seCR)) +
     geom_point(position=position_dodge(width=0.9), aes(y=meanCR)) +
     theme_classic() +
     ggtitle("Clearance Rate, F1 Scallops 20210914 (0-90 minutes)") # +
     # facet_wrap(~Time_period)
CR_914_barplot
```

Clearance Rate, F1 Scallops 20210914 (0-90 minutes)


```
CR_914_boxplot <- df_total.914 %>%
  #dplyr::filter(!ClearanceRate_L_hour_mm %in% '-Inf') %>%
  #dplyr::filter(!Time_period %in% c('40-50', '50-60')) %>%
  ggplot(aes(pH , ClearanceRate_L_hour_mm , fill = pH)) +
  theme(panel.grid=element_blank()) +
  geom_boxplot(size=0.2, alpha=0.1, aes(fill=pH)) +
  scale_fill_manual(values=c("black", "grey50")) +
  geom_point(shape = 21, size = 2, position = position_jitterdodge(jitter.width = 0.1)) +
  theme_classic() +
  theme(axis.text=element_text(size=12),
        axis.title=element_text(size=14,face="bold")) +
  # labs(title = "F1 Scallops: Slope algae cells/time - feeding rate trials 20210930",
         y = expression(Slope^{-u} - absolute^{-u}("-Live^{-algae^{-cells^{-n}}-1}-hour^{-1}-")"),
         x = expression(italic(p)*CO[2]~Treatment~"("~mu*atm~")")) +
  ggtitle("Clearance Rate, F1 Scallops 20210914 (0-90 minutes)")
CR 914 boxplot
```

Clearance Rate, F1 Scallops 20210914 (0-90 minutes)

20210930 Clearance Rate data

##

```
dplyr::mutate(AlgaeLossRatio = CO / as.numeric(Cells_ml) ) %>%
       dplyr::filter(!AlgaeLossRatio < 1) %>%
       dplyr::mutate(ln_AlgaeLossRatio = ln(AlgaeLossRatio)) %>%
       # dplyr::mutate(ClearanceRate = ((25/1000) / (diff/60) * # V / t == Volume of the vessel (in Lit)
                                                                            ( ln_AlgaeLossRatio ) / Length.um. ) ) %>%
       dplyr::mutate(ClearanceRate\_L\_hour\_mm = ((25/1000) * # V / t == Volume of the vessel (in Liters as the literal content of the vessel (in Lit
                                                                                          ((ln_AlgaeLossRatio / (as.numeric(Time._min)/60) - Bl
       dplyr::mutate(Time_period = paste((as.numeric(substr(Time._min,1,1)) -1), "0-", Time._min, sep ='')
   # dat20M <- dat2 %>% dplyr::filter(!Time. min == 0)
       if (nrow(dat2) > 0) {
       ClearRate.table
                                                        <- data.frame(matrix(nrow = nrow(dat2), ncol = 10)) # create dataframe to</pre>
       colnames(ClearRate.table) <- c('Date', 'ID', 'pH', 'Fed_Unfed', 'Replicate', 'Num', 'Run', 'Time_peri</pre>
       ClearRate.table$Date
                                                                                        <- dat2$Date
       ClearRate.table$ID
                                                                                        <- loop_930[i,]</pre>
                                                                                        <- gsub("_.*", "\\1", ClearRate.table$ID)</pre>
       ClearRate.table$pH
                                                                                        <- gsub("^(?:[^_]+_){1}([^_]+).*", "\\1", ClearRate.table</pre>
       ClearRate.table$Fed_Unfed
                                                                                        <- gsub("^(?:[^_]+_){5}([^_]+).*", "\\1", ClearRate.tabl</pre>
       ClearRate.table$Replicate
                                                                                       <- gsub("^(?:[^_]+_){7}([^_]+).*", "\\1", ClearRate.tabl
<- gsub("^(?:[^_]+_){3}([^_]+).*", "\\1", ClearRate.tabl
       ClearRate.table$Num
       ClearRate.table$Run
       ClearRate.table$Time_period
                                                                                       <- paste((as.numeric(substr(dat2$Time._min,1,1)) -1), "0</pre>
       ClearRate.table$AlgaeLossRatio
                                                                                       <- dat2$AlgaeLossRatio</pre>
       ClearRate.table$ClearanceRate_L_hour_mm <- dat2$ClearanceRate_L_hour_mm
                        <- data.frame(ClearRate.table) # name dataframe for this single row</pre>
       df_total.930 <- rbind(df_total.930,df) #bind to a cumulative list dataframe
       #print(df_total.930) # print to monitor progress
       else {}
## Warning in if (pH == 7.5) Blank_930_pH7.5 else Blank_930_pH8.0: the condition
## has length > 1 and only the first element will be used
## Warning in if (pH == 7.5) Blank_930_pH7.5 else Blank_930_pH8.0: the condition
## has length > 1 and only the first element will be used
ClearRates_930_Means <- df_total.930 %>%
   dplyr::filter(!ClearanceRate_L_hour_mm < 0) %>%
   dplyr::group_by(pH, Fed_Unfed, Time_period) %>%
   dplyr::summarise(
       meanCR = mean(ClearanceRate_L_hour_mm),
       sdCR = sd(ClearanceRate L hour mm),
       seCR = sd(ClearanceRate_L_hour_mm) / sqrt(length(ClearanceRate_L_hour_mm)),
       n = n()) \%
   na.omit()
## 'summarise()' has grouped output by 'pH', 'Fed_Unfed'. You can override using the '.groups' argument
```

ClearRates_930_Means

```
<chr>
##
     <chr>
          <chr>
                                    <dbl>
                                             <dbl>
                                                      <dbl> <int>
## 1 7.5
           fed
                     50-60
                                  0.00364 0.00339
                                                   0.000846
                                                                16
##
  2 7.5
           unfed
                     50-60
                                  0.00142 0.000604 0.000201
                                                                 9
## 3 8
           fed
                     50-60
                                  0.00480 0.00383
                                                   0.000903
                                                                18
## 4 8
           unfed
                     50-60
                                  0.00204 0.00146 0.000334
                                                                19
# summary(lmer(meanCR~pH*Fed_Unfed + (1|Time_period), data=ClearRates_930_Means))
# summary(aov(lm(meanCR~pH*Fed_Unfed, data=ClearRates_930_Means)))
mod930CR <- aov(lm(ClearanceRate_L_hour_mm~ pH * Fed_Unfed, data = (df_total.930 %>% dplyr::filter(!Cl
```

seCR

n

sdCR

Table 2: Analysis of Variance Model

meanCR

	Df	$\operatorname{Sum}\operatorname{Sq}$	Mean Sq	F value	Pr(>F)
pН	1	4.353e-06	4.353e-06	0.5458	0.463
$\mathbf{Fed}\mathbf{_Unfed}$	1	9.774e-05	9.774e-05	12.26	0.0008984
$pH:Fed_Unfed$	1	1.018e-06	1.018e-06	0.1277	0.7222
Residuals	58	0.0004625	7.974e-06	NA	NA

check_model(mod930CR) # observe the diagnostics of the model

A tibble: 4 x 7

Groups:

pH, Fed_Unfed [4]

Fed_Unfed Time_period

pander(summary(mod930CR), style='rmarkdown')


```
shapiro.test(residuals(mod930CR)) # non normal
##
##
  Shapiro-Wilk normality test
## data: residuals(mod930CR)
## W = 0.89661, p-value = 7.692e-05
leveneTest(mod930CR) # good
## Levene's Test for Homogeneity of Variance (center = median)
        Df F value Pr(>F)
## group 3 4.7854 0.00478 **
##
        58
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# summary(lmer(ClearanceRate_L_hour_mm~ pH * Fed_Unfed + (1|Replicate), data = (df_total.930 %>% dplyr
ClearRates_930_Means$pH_feed <- paste(ClearRates_930_Means$pH, ClearRates_930_Means$Fed_Unfed, sep='_')
CR_930_boxplot <- ClearRates_930_Means %>%
#dplyr::filter(!Time_period %in% c('40-50', '50-60')) %>%
ggplot(aes(x=pH , y=meanCR, fill = pH)) +
  geom_bar(position=position_dodge(), aes(y=meanCR), stat="identity", alpha=0.5) +
  scale_fill_manual(values=c("black", "grey50")) +
  geom_errorbar(position=position_dodge(width=0.9), aes(ymin=meanCR+seCR, ymax=meanCR+seCR), width=0.2,
  geom_linerange(aes(ymin = meanCR, ymax = meanCR+seCR)) +
  geom_point(position=position_dodge(width=0.9), aes(y=meanCR)) +
  theme_classic() +
  ggtitle("Clearance Rate, F1 Scallops 20210930 (0-60 minutes)") +
  facet_wrap(~ Fed_Unfed)
CR_930_boxplot
```

Clearance Rate, F1 Scallops 20210930 (0-60 minutes)


```
CR_930_barplot <- df_total.930 %>%
  dplyr::filter(!ClearanceRate_L_hour_mm < 0) %>%
  #dplyr::filter(!ClearanceRate_L_hour_mm %in% '-Inf') %>%
  #dplyr::filter(!Time_period %in% c('40-50', '50-60')) %>%
  ggplot(aes(pH , ClearanceRate_L_hour_mm , fill = pH)) +
  theme(panel.grid=element_blank()) +
  geom_boxplot(size=0.2, alpha=0.1, aes(fill=pH)) +
  scale_fill_manual(values=c("black", "grey50")) +
  geom_point(shape = 21, size = 2, position = position_jitterdodge(jitter.width = 0.1)) +
  theme_classic() +
  theme(axis.text=element text(size=12),
        axis.title=element_text(size=14,face="bold")) +
  # labs(title = "F1 Scallops: Slope algae cells/time - feeding rate trials 20210930",
         y = expression(Slope \sim "="\sim absolute \sim value \sim "("\sim Live \sim algae \sim cells \sim mL^{-1} \sim hour^{-1} \sim ")"),
         x = expression(italic(p)*CO[2]~Treatment~"("~mu*atm~")")) +
  ggtitle("Clearance Rate, F1 Scallops 20210930 (0-60 minutes)") +
  facet_wrap(~ Fed_Unfed)
CR_930_barplot
```

Clearance Rate, F1 Scallops 20210930 (0-60 minutes)

pdf ## 2