	Lecture 21: Interval Estimation
Point	estimation!
	$\hat{\theta} = \hat{\theta}(\chi) \in \mathcal{C}$ idea $\hat{\theta} \approx \hat{\theta}$
Interv	al Estimation:
	$C = C(X) C C$ idea " $0 \in C$ "
pre	efer if C'is an interval.
Defn	: Interval Estimator
An	interval est. of OEGCR is a pair of functions
	$L = L(\chi)$ and $U = U(\chi)$
that	satisfy L = U Yx.
idea	i'. want to say "L=0=U" (approx.)
Sometr	ves want a one-sided interval
	e.g. $L = -\infty$ or $U = \infty$
we	Set $(-\infty, U]$ or $[L,\infty)$.
	g \(U \) L \(\text{\$\text{\$\left}} \)

Mov	e severally if I have a set C(X) C G
itz	assoc. conf. coef. is
	$ - \alpha = \min_{\theta \in \hat{G}} \mathbb{P}_{\theta}(\theta \in C)$
Defu	. Conf. Interval (Conf. Set.
Cor	if. Interal = int. est. + conf. coef.
(or	if. Set. = Set. est. + conf. coef.
Me	n We look of Po(OEC) fixed = random
How	do I buid a conf. set/interval?
B	asically one way: invert a hypothesis fest
	HT A Conf. Set.

Ex, Xn ind N(h, 52) Consider a HT fer H: M=Mo V. Ha! M + Mo herd a HT, last time saw that a X-level test fer this was to reject when $\frac{1}{|X-\mu_0|} > 3\omega_2 = F(1-\omega_2)$ N(0,1) $R(\mu_{\delta}) = \begin{cases} \chi \in \mathcal{L} & | \frac{|\bar{\chi} - \mu_{\delta}|}{6/\sqrt{\kappa}} > 30/2 \end{cases}$ 1 set of the that don't asree w Hor H= Ho $A(\mu_0) = \mathcal{X} \setminus \mathcal{R}(\mu_0) = \left\{ \chi \in \mathcal{X} \mid \frac{|\chi - \mu_0|}{6/\pi^2} \leq 30/2 \right\}$ 2 set of 1 in agreement W/ Ho: M= Mo

$$= \frac{X - \mu_{0}}{\sqrt{N}} \leq \frac{3}{\sqrt{N}} \leq \frac{3}{\sqrt$$

50 YM: Py(L= M=U) >1-0 Jo min Pu(L < u < U) > (- X 1.e. [L, W] is a CI w conf. coef. > 1-0 lest Inversion For $0, \epsilon$ (-) let $A(0, \cdot)$ be the accept region a &- lave! test fer H: 0=00 V. Ha: 0 + 0 ad then let $C(1) = \{0 \mid 1 \in A(0)\}$ this is a I-d conf. set. 5 Hg! M= 20 mannymmen manymment Hz: 4=-10 Ho: M= 4 Ho: M= 5.5 pts where = 1-x CI for or

Two worlds! HT: fix 00 and test Hi: 0=00 to do this I determe some rule $A(O_0) =$ set of χ where $\theta = O_0$ is vec is recognable? CI! Fix X want to determe which O are Consistent w/ X C(x) = { set of of consistent } c 6 Ex. (et Xn ~ Exp(B) SEXn=B $f(x) = \frac{1}{\beta} e^{-\chi/\beta} f(x < 0)$ lets make a CI by invertige the LRT H.: B=B. V. Halb #B. $\lambda = \frac{L(\hat{\beta}_{0})}{L(\hat{\beta})} = \frac{L(\beta_{0})}{L(X)} = \frac{\frac{1}{\beta_{0}}N \exp(-NX/\beta_{0})}{\frac{1}{X}N \exp(-N)}$

$$= \left(\frac{\overline{X}}{\beta o}\right)^{N} e^{N} e^{-N\overline{X}/\beta o}$$

$$= \left(\frac{\overline{X}}{\beta o}\right)^{N} e^{N} e^{-N\overline{X}/\beta o}$$

$$= \left(\frac{\overline{X}}{\beta o}\right)^{N} e^{N} e^{-N\overline{X}/\beta o} + e^{N} e^{N} e^{-N} e^{N} e^{$$