Drinking Water Surveillance Program
MANITOUWADGE
WELL SUPPLY
REPORT FOR 1991 AND 1992

Ontario

1991/1992 District Contacts for Northwest Ontario

District contacts

Don Murray/Jim Murphy (807) 475-1670 Thunder Bay District Office DWSP study

Atikokan
Beardmore
Manitouwadge
Marathon
Nipigon
Red Rock
Terrace Bay
Thunder Bay (Bare Point)
Thunder Bay (Loch Lomond)

Peter Fox/John Barr (807) 468-2725 Kenora District Office Dryden Emo Fort Frances Kenora Rainy River

1991/1992 District Contacts for Northeast Ontario

District contacts

DWSP study

Gerry LaHaye (705) 949-4640 Sault Ste. Marie District Office Chapleau Sault Ste Marie

Frank Driscoll (705) 476-1001 North Bay District Office

North Bay

Roger Roy (705) 670-3214 Sudbury District Office Sudbury

MANITOUWADGE WELL SUPPLY DRINKING WATER SURVEILLANCE PROGRAM REPORT FOR 1991 AND 1992

JUNE 1994

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1994

This publication may be reproduced for non-commercial purposes with appropriate attribution.

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

MANITOUWADGE WELL SUPPLY 1991 AND 1992 REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

The Manitouwadge well supply has a groundwater source. Wells 1 and 2 are located adjacent to the reservoir. Wells 3, 4 and 5 are located approximately one kilometer from the reservoir. Raw water from the remote wells is pumped through a 250 mm diameter ductile iron water main directly to the reservoir. The raw water from all wells passes through two parallel aeration towers in which the water cascades down the baffled towers, mixes in the reservoir and is disinfected. This supply has a maximum pumping capacity of 13.2 x 1000 $\rm m^3/day$. The Manitouwadge well supply serves a population of approximately 4,500.

Raw water from 4 wells, treated water from the reservoir and at one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

Table A is a summary of all results by group.

The health related guideline for turbidity was exceeded in one treated water sample. The District Officer was notified. Operational staff reported the bacteriological quality at that time was good, indicating acceptable disinfection.

No other known health related guidelines were exceeded.

The Manitouwadge well supply, for the sample years 1991 and 1992, produced acceptable quality water and this was maintained in the distribution system.

TABLE A DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 MANITOUWADGE WELL SUPPLY

SUMMARY TABLE BY SCAN

A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIFIABLE
A '.' INDICATES THAT NO SAMPLE WAS TAKEN

		WELL	-		WELL	2		WELL 3			WELL 4		
0 0 0 0 0 0 0 0	SCAN	TESTS	POSITIVE %	%POSITIVE	TESTS	POSITIVE %POSITIVE	SITIVE	TESTS	POSITIVE %POSITIVE	OSITIVE	TESTS	POSITIVE %POSITIVE	ITIVE
	BACTERIOLOGICAL	23	-	7	2	0	0	27	М	11	2	0	0
	CHEMISTRY (FIELD)	23	23	100	2	2	100	92	26	100	2	2	100
	CHEMISTRY (LABORATORY)	303	238	78	23	19	82	327	250	92	23	19	82
	METALS	312	115	36	72	80	33	336	117	34	54	٥	37
	CHLOROAROMATICS	98	0	0	14	0	0	112	0	0	14	0	0
	PESTICIDES AND PCB	261	0	0	35	0	0	295	0	0	35	0	0
	PHENOL I CS	13	-	7	-	0	0	13	-	7	-	0	0
	POLYAROMATIC HYDROCARBONS	101	0	0	•	٠	٠	84	0	0	•		•
	SPECIFIC PESTICIDES	2	0	0	•		٠	2	0	0	•	٠	•
	VOLATILES	379	-	0	31	-	2	410	14	m	31	0	0
	RADIONUCLIDES	14	7	, 58	•		٠	. 14	2	35	•		٠
TOTAL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,529	383		132	30	1	1,646	416		132	30	

TABLE A DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 MANITOUWADGE WELL SUPPLY

SUMMARY TABLE BY SCAN

IABLE

		RESERVOIR IREAIED	RESERVOIR TREATED TESTS POSITIVE %POSITIVE	I VE	DIST. SYSTEM WARBLER DR	DIST, SYSTEM WARBLER DR JESTS POSITIVE	I VE
	SCAN						,
	BACTERIOLOGICAL	33	2	15	35	æ	22
	CHEMISTRY (FIELD)	99	99	84	128	103	80
	CHEMISTRY (LABORATORY)	336	292	27	295	204	88
	METALS	336	123	36	621	278	77
	CHLOROAROMATICS	112	0	0	112	0	0
	PESTICIDES AND PCB	596	0	0	178	0	0
	PHENOL I CS	14	-	7	•		
	POLYAROMATIC HYDROCARBONS	29	0	0	78	Ο.	0
	SPECIFIC PESTICIDES	2	0	0	2	0	0
	VOLATILES	410	75	10	410	75	10
	RADIONUCL IDES	14	23	21	٠		
TOTAL	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1,686	765		2,137	935	1

DRINKING WATER SURVEILLANCE PROGRAM

MANITOUWADGE WELL SUPPLY 1991 AND 1992 REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

Appendix A has a full description of the DWSP.

The DWSP was initiated for the Manitouwadge well supply in January 1991. This is the first published DWSP report.

PLANT DESCRIPTION

The Manitouwadge well supply has a groundwater source. Wells 1 and 2 are located adjacent to the reservoir. Wells 3, 4 and 5 are located approximately one kilometer from the reservoir. Raw water from the remote wells is pumped through a 250 mm diameter ductile iron water main directly to the reservoir. The raw water from all wells passes through two parallel aeration towers in which the water cascades down the baffled towers, mixes in the reservoir and is disinfected. This supply has a maximum pumping capacity of 13.2 x 1000 $\rm m^3/day$. The Manitouwadge well supply serves a population of approximately 4,500.

The sample day flows ranged from 1.8 x 1000 m^3/day to 4.6 x 1000 m^3/day .

General information for the water supply is presented in Table 1 and a schematic of plant processes, chemical addition points and sampling locations in Figure 1.

SAMPLING AND ANALYSES

Stringent DWSP sampling protocols were followed to ensure that all samples were collected in a uniform manner (see Appendix B).

Sample lines at the wells and the reservoir were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line.

Supply operating personnel routinely analyzed parameters for process control (see Table 2 if data is provided).

At all distribution system locations, two types of samples were obtained, a standing and a free flow. The standing sample consisted of water that had been in the household plumbing and service connection for a minimum of six hours. These samples were used to make an assessment of the change in the levels of inorganic compounds and metals due to leaching from, or deposition on, the plumbing system. The only analyses carried out on the standing samples, therefore, were laboratory chemistry and metals. The free flow sample represented fresh water from the distribution system main, since the sample tap was flushed for five minutes prior to sampling.

Raw water from 4 wells, treated water from the reservoir and at one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

RESULTS

Field measurements were recorded on the day of sampling and were entered onto the DWSP database as submitted by plant personnel.

Table 3 (when data is provided) contains information on flow rate and treatment chemicals dosages.

Table 4 is a summary of all results by parameter and by water type. If a parameter was not detected, the total number of negative sample results is given. In contrast, if a parameter was detected at any location, the detailed results for all samples are provided.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment and Energy laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 lists all parameters analyzed in the DWSP.

Associated guidelines and detection limits are also supplied on Tables 4 and 5. Parameters are listed alphabetically within each scan.

DISCUSSION

GÉNERAL

Water quality was judged by comparison with the Ontario Drinking Water Objectives publication (ODWOs). When an Ontario Drinking Water Objective (ODWO) was not available, guidelines/limits from other agencies were used. These guidelines were obtained from the Parameter Listing System database.

The guidelines are evaluated on the results from the free flowing samples. Standing samples in the distribution system can show elevated concentrations in certain metals if the water is corrosive or if the standing time is excessive. Flushing the tap until the water achieves the coolest temperature will ensure that the water used for consumption will contain minimum concentrations of metals.

IN REPORTS FOR GROUND WATER SUPPLIES, WHERE:

- TREATMENT CAN BE LIMITED TO DISINFECTION;
- MANY WELLS CAN FEED INTO THE DISTRIBUTION SYSTEM INDEPENDENTLY; AND
- TREATED SAMPLES, WHEN AVAILABLE, ARE TAKEN FROM RESERVOIRS; THIS SECTION WILL DISCUSS:
 - RESULTS FROM RAW, TREATED AND DISTRIBUTED WATERS;
 - THOSE PARAMETERS WITH CONCENTRATIONS ABOVE GUIDELINE VALUES;
 - POSITIVE ORGANIC PARAMETERS DETECTED.

In this report comments are combined for all sample locations for each parameter discussed.

BACTERIOLOGICAL

Guidelines for bacteriological sampling and testing of a supply are developed to maintain a proper supervision of its bacteriological quality. Routine monitoring programs usually require that multiple samples be collected in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples. Standard plate count was the only bacteriological analysis conducted on the treated and distributed water. No results were above the guideline.

INORGANIC & PHYSICAL

CHEMISTRY (LABORATORY)

Calcium exceeded the European Economic Community Aesthetic Guideline Level of 100 mg/L in 5 of 28 treated and distributed water samples with a maximum reported value of 118.1 mg/L.

Colour in drinking water may be due to the presence of natural or synthetic substances as well as certain metallic ions. Colour is measured in Hazen units (HZU).

Colour exceeded the ODWO Aesthetic Objective of 5 HZU in 1 of 28 treated and distributed water samples with a maximum reported value of 6.0 HZU.

Elevated conductivity is often associated with high hardness levels.

Conductivity exceeded the European Economic Community Aesthetic Guideline Level of 400 umho/cm in all 28 treated and distributed water samples with a maximum reported value of 808 umho/cm.

The ODWOs indicate that a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters provides an acceptable balance between corrosion and encrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and possess a tendency to form scale deposits and result in excessive soap consumption.

Hardness exceeded the ODWO Recommended Operational Guideline of 80--100~mg/L and also exceeded 200 mg/L in all 28 treated and distributed water samples with a maximum reported value of 389 mg/L.

Dissolved solids exceeded the ODWO Aesthetic Objective of 500 mg/L in 1 of 28 treated and distributed water samples with a maximum reported value of 520 mg/L.

Turbidity in water is caused by the presence of suspended matter such as clay, silt, colloidal particles, plankton and other microscopic organisms. The most important potential health effect of turbidity is its interference with disinfection in the treatment plant and the maintenance of a chlorine residual. The ODWO Maximum Acceptable Concentration for turbidity is 1.0 Formazin Turbidity Unit (FTU).

Turbidity exceeded the ODWO Maximum Acceptable Concentration of 1.0 FTU in 1 of 14 treated water samples with a maximum reported value of 5.7 FTU. The corresponding and more reliable field turbidity results were not reported. In ground water samples, turbidity can increase if the samples are not analyzed immediately in the field. This is frequently caused by precipitating iron and manganese but can also be due to precipates formed from sulphides or calcium. The District Officer was advised of the situation.

METALS

Manganese, in high concentrations, can contribute to laundry staining and undesirable tastes.

Manganese exceeded the ODWO Aesthetic Objective of 50.0 ug/L in 13 of 28 treated and distributed water samples with a maximum reported value of 750 ug/L.

The numerous minerals and salts detected above aesthetic guidelines is characteristic of many groundwater sources.

ORGANIC

CHLOROAROMATICS

The results of the chloroaromatic scan showed that none were detected.

CHLOROPHENOLS

The chlorophenol scan was not requested during this sampling period.

PESTICIDES AND PCB

The results of the pesticide and PCB scan showed that none were detected above trace levels.

PHENOLICS

Phenolic compounds are present in the aquatic environment as a result of natural and/or industrial processes. The ODWOs have been revised to replace the phenolic aesthetic objective with objectives for specific phenols.

Phenolics was found at a positive level in 1 of the 14 treated water samples analyzed. The maximum observed level was 1.4 ug/L.

POLYAROMATIC HYDROCARBONS

The results of the polyaromatic hydrocarbon scan showed that none were detected.

SPECIFIC PESTICIDES

The specific pesticide scan was not requested during this sampling period.

VOLATILES

The detection of benzene, ethylbenzene, toluene and xylenes at low, trace levels may be a laboratory artifact derived from the analytical methodology. Trace levels of styrene are considered to be laboratory artifacts resulting from the sample shipping containers.

Tetrachloroethylene was found at positive levels in 2 of 28 treated and distributed water samples analyzed. The maximum observed level was 0.9 ug/L. This was below the ODWO Health Related Guidance Value of 65 ug/L.

Tetrachloroethylene was detected at positive levels in all 14 raw water samples from well 3. The maximum observed level was 5.4 ug/L.

Trichloroethylene was detected at low trace levels in 8 of 14 raw water samples from one well.

1,1,1-Trichloroethane was detected at positive levels in 2 raw water samples from well 1. Trace levels were detected in most sample sites. The maximum observed level was 0.46 ug/L. The US Environmental Protection Agency (EPA) has a Maximum Contaminant Level of 200 ug/L:

Trihalomethanes (THMs) are produced during the water treatment process and will always occur in chlorinated waters. THMs are comprised of chloroform, chlorodibromomethane and dichlorobromomethane. Bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs. Only total THM results are discussed. Starting in 1991, samples from the distribution system were quenched with sodium thiosulphate to stop the further production of THMs in the sample bottle. This provided a more representative estimation of the THMs consumed in tap water.

Total trihalomethanes were found at positive levels in 24 of 28 treated and distributed water samples analyzed. The maximum observed level was 48.1 ug/L. This was below the ODWO Maximum Acceptable Concentration of 350 ug/L.

Chloroform was detected at trace levels in 9 of 13 raw water samples from one well. It was not evident that backmixing of chlorine had occurred when the raw water samples were taken and it suggests that chloroform may be present at trace levels in the raw water source. However, the pump at this location is lubricated with treated chlorinated water which contains chloroform.

RADIOLOGICAL

RADIONUCLIDES

There are more than 200 radionuclides, some of which occur naturally and others which originate from the activities of society. The radionuclides currently of greater interest from a health view-point are tritium, strontium-90, iodine-131, cesium-137 and radium-226. The gross beta and gross alpha determinations are suitable for preliminary screening except for tritium which must be measured separately. Radionuclides are measured in becquerels per litre (Bq/L). No results were above the available guidelines.

CONCLUSIONS

The health related guideline for turbidity was exceeded in one treated water sample. In groundwater supplies turbidity can increase in the sample due to precipitation of iron and manganese. The District Officer was advised to check the bacteriological results in the treated and distributed water to ensure there was adequate disinfection. Operational staff reported the bacteriological quality at that time was good, indicating acceptable disinfection.

No other known health related guidelines were exceeded.

The Manitouwadge well supply, for the sample years 1991 and 1992, produced acceptable quality water and this was maintained in the distribution system.

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM

PLANT GENERAL REPORT

PLANT NAME:

MANITOUWADGE WELL SUPPLY

WORKS #:

220000219

UTM #:

165384545373961

DISTRICT:

THUNDER BAY NORTHWEST

REGION:

DISTRICT OFFICER:

D.W. MURRAY

SUPERINTENDENT:

OSMO KANKKUNEN

ADDRESS:

MANITOU RD.

MANITOUWADGE, ONTARIO

POT 2CO

807-826-3227 (EXT. 226)

MUNICIPALITY:

AUTHORITY:

MANITOUWADGE MUNICIPAL

PLANT INFORMATION

MAXIMUM PUMPING CAPACITY: 13.200 (X 1000 M3/DAY)

RATED CAPACITY: 10.560 (X 1000 M3/DAY)

MUNICIPALITY _____

POPULATION

MANITOUWADGE

4,500

TABLE 3
DRINKING WATER SURVEILLANCE PROGRAM MANITOUMADGE WELL SUPPLY SAMPLE DAY CONDITIONS
AND TREATMENT CHEMICAL DOSAGES IN (MG/L) FOR 1991 AND 1992

POST CHLORINATION

	. 78	1.06	1.42	1.02	1.02	1.63	2.03	1.40	1.40	1.43
FLOW (1000M3)	2.841	2.736	4.536	3.528	4.608	3,168	3.528	3.168	3.600	1.872
DELAY * TIME(HRS)	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.
DATE	FEB 13			JUL 23					MAY 05	
DA				91						26

* THE DELAY TIME BETWEEN THE RAW AND TREATED WATER SAMPLING, SHOULD ESTIMATE THE RETENTION TIME.

KEY TO TABLE 4 and 5

. A	ONTARIO DRINKING WATER OBJECTIVES (ODWO) 1. Maximum Acceptable Concentration (MAC) 1+. MAC for Total Trihalomethanes 2. Interim Maximum Acceptable Concentration (IMAC) 3. Aesthetic Objective (AO) 3*. AO for Total Xylenes 4. Recommended Operational Guideline 5. Health Related Guidance Value
В	HEALTH & WELFARE CANADA (H&W) 1. Maximum Acceptable Concentration (MAC) 2. Proposed MAC 3. Interim MAC 4. Aesthetic Objective (AO)
С	WORLD HEALTH ORGANIZATION (WHO) 1. Guideline Value (GV) 2. Tentative GV 3. Aesthetic GV
D	US ENVIRONMENTAL PROTECTION AGENCY (EPA) 1. Maximum Contaminant Level (MCL) 2. Suggested No-Adverse Effect Level (SNAEL) 3. Lifetime Health Advisory 4. EPA Ambient Water Quality Criteria
F	EUROPEAN ECONOMIC COMMUNITY (EEC) 1. Health Related Guideline Level 2. Aesthetic Guideline Level 3. Maximum Admissable Concentration (MADC)
G	CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE

I NEW YORK STATE AMBIENT WATER GUIDELINE

N/A NONE AVAILABLE

LABORATORY RESULTS, REMARK DESCRIPTIONS

•	No Sample Taken
BDL	Below Minimum Measurement Amount
<t< td=""><td>Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)</td></t<>	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
>	Results Are Greater Than The Upper Limit
<=>	Approximate Result
! 48	No Data: Sample Age Exceeded 48 Hours
!AR	No Data: No Numeric Results
! AW	No Data: Analysis Withdrawn
!BT	No Data: Sample Broken In Transit
!cs	No Data: Contamination Suspected
!EF	No Data: Laboratory Equipment Failure
!IR	No Data: Insufficient Sample
!IS	No Data: Insufficient Sample
!LA	No Data: Laboratory Accident
!NP	No Data: No Procedure
!NR	No Data: Sample Not Received
!OP	No Data: Obscured Plate
!PE	No Data: Procedure Error: Sample Discarded
!PR	No Data: Preservative Required
!QU ·	No Data: Quality Control Unacceptable
!RE	No Data: Received Empty
!RO	No Data: No Numeric Results
!SM	No Data: Sample Missing
!ss	No Data: Sample Improperly Preserved
! U	No Data: Sample Unsuitable For Analysis
!UB	No Data: Bottle Broken

!UN No Data: Result Unreliable

No Data: Unpreserved Sample Required !UR Α Approximate Value A3C Approximate, Total Count Exceeded 300 Colonies Approximate Value, Exceeded Normal Range A> Additional Peak, Less Than, Not Priority Pollutant APS ARO Additional Information In Laboratory Report CRO Calculated Result Only Not All Required Tests Found NAF Ioncal Calculated on Incomplete Data Set RID RMP P and M-Xylene Not Separated Result Obtained by Repeat Analysis RRR Rerun Verification RRV SFA Sample Filtered: Filtrate Analyzed Sample Incorrectly Labelled SIL SPS Several Peaks, Small, Not Priority Pollutant U48 Unreliable: Sample Age Exceeded 48 Hours UAL Unreliable: Sample Age Exceeded Limit UAU Unreliable: Sample Age Unknown UCS Unreliable: Contamination Suspected USD Unreliable: Sample Decomposition Noted

Wrong Sample Description On Bottle

WSD

DIST. SYSTEM WARBLER DR STANDING				•											٠		
DIST, SYSTEM WARBLER DR FREE FLOW		٠	1)	٠		9	36	7	2	~	~	0	7	SOi .	0 .	2	0
RESERVOIR TREATED	GUIDELINE = 0 (A1)	٠	GUIDELINE = 5/100ML (A1)		GUIDELINE = 500 (A3)	2	2	2	0	15	SOi	0	0	SOI	0	2	SDi
WELL 4 RAW	GU1	BDL	GUI	BDL	GUI	٠	•	٠	٠	•					٠		٠
WELL 3 RAW	DET'N LIMIT = 0	BDL	DET'N LIMIT = 0	BDL	DET'N LIMIT = 0				75	69	•	٠	٠	٠	٠		٠
WELL 2 . RAW	CAL	BDL	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	BDL					٠		•				•	٠	٠
WELL 1 RAW	BACTERIOLOGICAL	BDL	TOTAL COLIFORM MF (CT/100ML)	BDL	CNT MF (CT/ML	٠	٠		-			•	•	•	٠	•	٠
	FECAL COLIFORM MF (CT/100ML	20 SAMPLES	TOTAL COLIFORM	20 SAMPLES	STANDRD PLATE CNT MF (CT/ML	1991 JAN	1991 FEB	1991 APR .	1991 JUN	1991 JUL	1991 AUG	1991 SEP	1991 OCT	1991 NOV	1992 JAN	1992 MAY	1992 JUL

DIST. SYSTEM WARBLER OR STANDING	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		000	000	000.	000.		000	000.	000.	.200	.200			. 200	.200	002.	000	.200	.200	200	002	.200	.200	.200		• ;	.200	002.	.200	000	.200	.200	200.	002.	200	007	7400
DIST. SYSTEM WARBLER DR FREE FLOW	P	000.	000	000.	000.	000.	000	000	000	000.	.200	* * * * * * * * * * * * * * * * * * *		.200	.200	.200	002.	000	.200	.200	2002.	002	.200	.200	٠		.200	.200	002.	2002.	000	.200	.200	.200	2002.	002.	007.	
RESERVOIR TREATEO	GUIDELINE = N/A	006.	000	000	000.	000.		000	000	000.		1	GUIDELINE = N/A	. 300	200	. 200	007	008.	007.		. 800	2002	007.			GUIDELINE = N/A	1.200			007	.800	007.			002.1	002.	007	. 200
WELL 3 WELL 4 RAW RAW	DET'N LIMIT = 0					٠	•				٠		DET'N LIMIT = 0		•	•				•	٠	•	•	٠	•	DET'N LIMIT ≈ 0		٠	٠	• (•		•			
WELL 2 RAW	(FIELO)	٠		•	٠	•		•		•	٠		^	٠	•	•	•		•	٠	٠	•	•	•		, ^	•	•	•	•	•	•	•	•	•	•		. •
WELL 1 RAW	CHEMISTRY FLO CHLORINE (COMB) (MG/L	1991 JAN				1991 JUL .	1991 AUG					1992 JUL	FLD CHLORINE FREE (MG/L				1991 APR 1001 MAY				1991 SEP			1992 MAY		FLD CHLORINE (TOTAL) (MG/L			991 APR						1991 UCI			

	,		
DIST. SYSTEM WARBLER DR STANDING	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.600 7.800 7.400 7.400 7.600 7.600 7.600 7.600 7.600 7.600 7.600 7.600 7.600 11.000 11.000 11.000 8.000 8.000	6.000
DIST. SYSTEM WARBLER DR FREE FLOW	(A4)	7.600 7.600 7.400 7.400 7.400 7.600	000.9
RESERVOIR TREATED	GUIDELINE = 6.5-8.5 (A4)	7.600 7.400 7.400 7.400 7.600 7.600 7.200 7.600 7.600 7.600 7.600 7.600 7.600 7.600 7.600 7.600 7.600 7.600 7.600 7.600 7.600 7.600 7.600 8.000 8.000 6.000 6.000 6.000 6.000 6.000 7.000 8.000 8.000 8.000 7.000 8.000	6.000
M M	ਰ ਹ	7.400	5.000
WELL 3 WELL RAW RAW	DET'N LIMIT = N/A	7.200 7.200 7.200 7.200 7.200 7.400 7.400 7.400 7.400 7.400 7.400 7.200	6.000
WELL 2 RAW	ELD)	7.200	5.000
WELL 1 RAW	CHEMISTRY (FIELD)	7.000 7.000 7.000 7.000 7.000 7.200 7.200 7.200 7.200 7.000 7.000 6.000 7.000 7.000 7.000 7.000 7.000 7.000 7.000 7.000	6.000
	PH (DMNSLESS	1991 JAN 7 7 1991 JAN 7 1991 APR 1991 APR 1991 APR 1991 SEP 1992 JUL 1992 AAY 1992 JUL 1991 JAN 7 1991 JAN 7 1991 JAN 7 1991 JAN 7 1991 APR 1991 APR 1991 APR 1991 AUG 1991 APR 1991 AUG 1991 AU	1992 MAY 1992 JUL

X T	RAW	RAW	RAW	RAW	I KEA I CU	WARBLER DR FREE FLOW	WARBLEK DK STANDING
ALKALINITY (MG/L	CHEMISTRY ((LABORATORY)	DET'N LIMIT = 0.2	IOD	GUIDELINE = 30-500 (A4)	A4)	
NA1. 100	305.700	٠	270,600		250.500	252,400	
	368 700		328, 700		255,000	246.100	243.100
	226.900		251,400		207,900	238,000	226.400
	366 200		171,500	٠	228,600	220,300	205.300
	318 500		210.300		258,700	232,500	235.800
	238 000	•	108 300		200,500	217,700	233.400
	342.300	. ,	206.000		205,000	221.300	221.600
	273.500		243,600	٠	281.300	236.600	236.700
	301 200		251.300	٠	231.900	248.400	245.800
	323 100		254,700		259,300	242.700	243.600
	282 500	•	225 000		248,000	253,900	251,500
	288 500	•	237 600		246.800	252,500	252,400
	411 400	•	198.500		209,100	195.800	196.600
	,	287.200	257.300	237.400	248.300	289,700	276.000
CALCIUM (MG/L	(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DET'N LIMIT = 0.20	GU1	GUIDELINE = 100 (F2)		
991 JAN	057.66	b	97.500	٠	91.700	95.950	• 6
1991 FEB	SII		SII	٠	91.700	94.700	98.500
	99.800		85.600	٠	91.000	98.200	000.76
	124.800		68.000	٠	84.000	84.000	86.000
	110 000	•	009-06		100,000	94.200	95.000
	80.200	•	80,400		81,400	88.600	93.800
	116 000	•	88.400		84.400	007.06	90.000
	002 76	•	98,400		105,000	007.76	98.400
	100 7.00	•	99 600		92,300	006.66	101,300
	108.400		000 66	•	009.96	007.76	98.200
	117 700	•	08 800	•	104 000	105 400	102.300
	78 / 00		92.860		90 100	96 800	104.900
	70.400		007:14		001.00	002.00	81 700
1992 MAY 1992 JUL		125.600	109.100	100.800	107.600	118.100	112.000
CYANIDE (MG/L			DET'N LIMIT = 0.001	1 1 1 1 1 1 1 1 1	GUIDELINE = 0.2 (A1)	(
	į		ě		ā		
36 SAMPLES	BOL	٠	BDŁ	WS i	BUL		•

DIST. SYSTEM WARBLER DR		٠	35,700	25.400	18,200	31.300	30.300	26.800	30.400	38.700	38.200	38.700	43.800	15.800	54.200	6 B B B B B B B B B B B B B B B B B B B		T> 006.	3.000	1.500 <t< td=""><td>000.4</td><td>1.000 <t< td=""><td>3.000</td><td>1.500</td><td>3.000</td><td>1.000 <t< td=""><td></td><td>1,000 <t< td=""><td>3.500</td><td>2.500</td></t<></td></t<></td></t<></td></t<>	000.4	1.000 <t< td=""><td>3.000</td><td>1.500</td><td>3.000</td><td>1.000 <t< td=""><td></td><td>1,000 <t< td=""><td>3.500</td><td>2.500</td></t<></td></t<></td></t<>	3.000	1.500	3.000	1.000 <t< td=""><td></td><td>1,000 <t< td=""><td>3.500</td><td>2.500</td></t<></td></t<>		1,000 <t< td=""><td>3.500</td><td>2.500</td></t<>	3.500	2.500
DIST. SYSTEM WARBLER DR FREE FLOW		36.200	36.300	28.000	22.800	31.100	25.700	27.500	31.800	39.800	39.000	40.700	48.400	16.900	63.100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.500	1.500 <t< td=""><td></td><td>1.500 <t< td=""><td>7.000</td><td>3.000</td><td>3.000</td><td>2.000</td><td>3.500</td><td>2,000</td><td>2.500</td><td>2.500</td><td>4.500</td><td>2.500</td></t<></td></t<>		1.500 <t< td=""><td>7.000</td><td>3.000</td><td>3.000</td><td>2.000</td><td>3.500</td><td>2,000</td><td>2.500</td><td>2.500</td><td>4.500</td><td>2.500</td></t<>	7.000	3.000	3.000	2.000	3.500	2,000	2.500	2.500	4.500	2.500
RESERVOIR IREATED	GUIDELINE = 250 (A3)	47.500	52,100	32.100	33.900	39.400	20.400	20.600	50.900	36.400	52.200	36.800	30.300	18,300	700.77	GUIDELINE = 5 (A3)	2.000 <1	2.000 <t< td=""><td>3.500</td><td>3.000</td><td>7.000</td><td>3.000</td><td>3.500</td><td>3.000</td><td>3.500</td><td>3.000</td><td>3.500</td><td>3.000</td><td>000.9</td><td>2.500</td></t<>	3.500	3.000	7.000	3.000	3.500	3.000	3.500	3.000	3.500	3.000	000.9	2.500
WELL 4 RAW	90109		٠		٠			٠					٠	٠	35.600	301N9		٠	٠	٠	•		٠			٠			•	3.500
WELL 3 RAW R	DET'N LIMIT = 0.20	006.69	68,900	30.400	8.700	18.700	14.700	18.400	34.500	51,200	41.900	35.000	36.900	18,000	76.900	DET'N LIMIT = 0.50	1.500 <1	T> 005.	2.500	BDL	3.000	2.000	2.000	1.500	2.500	2.000	3.000	3.000	3.000	3.000
WELL 2 RAW	ABORATORY)	•			•	٠	•	•		•	٠	٠	٠		90.300	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٠	٠		•	٠	٠			•				٠	11.000
WELL 1 RAW	CHEMISTRY (LABORATORY	61.000	59.600	56,100	56.300	59.600	60.200	909.09	62.700	. 69.300	70.200	82.600	79.300	65.400			3.000	2.000 <t< td=""><td>4.000</td><td>3.500</td><td>4.500</td><td>3.000</td><td>7.000</td><td>3.500</td><td>4.500</td><td>4.000</td><td>2.500</td><td>3.000</td><td>5.500</td><td>٠</td></t<>	4.000	3.500	4.500	3.000	7.000	3.500	4.500	4.000	2.500	3.000	5.500	٠
	CHLORIDE (MG/L	1001 JAN		1991 APR		1991 MAY		1991 JUL		1991 SEP						COLOUR (HZU	1991 JAN	1991 FEB	1991 APR			1991 JUN				1991 OCT		1992 JAN		1992 JUL

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 MANITOUWADGE WELL SUPPLY

DIST. SYSTEM WARBLER OR

DIST. SYSTEM WARBLER OR

RESERVOIR TREATED

WELL 4 RAW

WELL 2 RAW

WELL 1 RAW

6						579 607		-							3)			2.700 2.800										
GUIDELINE = 400 (F2)	. 711	. 740	. 615		. 627	. 534	. 544	. 736	. 636	. 746	. 657	. 678	. 526	648 701	GUIDELINE = 5.0 (A3)	2.300	. 2.500	. 2.900	. 2.800	. 2.500	2.700	3.400	3.100	. 2.600	. 2.600	. 2.300	. 2.200	3.500
DET'N LIMIT = 1.0	864	848	. 621	. 483	. 547	. 552	570	. 653	. 761	. 209	. 624	. 652	. 540		DET'N LIMIT = 0.10	2.100	2.400	2.100	2.100	1.900	2.000	2.000	2.300	2.000	1.800	2.100	2.100	2.200
CHEMISTRY (LABORATORY) HO/CM)	. 847	835	. 262	. 022	. 724	835	838	834	. 884	897	826	. 844	878	. 862	(WG/L)	3.100	3.200	3.300	3.100	2.900	2.800	3.100	3.800	3.200	3,300	2.400	2.100	4.300
CONDUCTIVITY (UMHO/CM	1991 JAN		1991 APR	-		1991 JUN			1991 SEP	1991 OCT	1991 NOV	1992 JAN		1992 JUL	DISS ORG CARBON (MG/L	1991 JAN		1991 APR		1991 MAY	1991 JUN			1991 SEP				1992 MAY

															,									•					
DIST. SYSTEM WARBLER DR STANDING		٠	. 100 .	.120	. 100	. 100	001	.100	. 100	.100	.100	.080	. 140	.100		•	318.700	304.000	278.000	305.000	304.000	289.000	316.000	007.626.	316.900	552.500	339.700	267.000	369.000
DIST. SYSTEM WARBLER DR FREE FLOW	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.100	.100	.100	.080	001.	001	. 100	.100	.100	.100	.080	.140	. 100	7)	313.000	310.700	317.000	275.000	302.000	288.000	291.000	222 400	322.000	274.900	341.000	323.400	271.000	389,000
RESERVOIR TREATED	GUIDELINE = 1.5 (A1)	.100	080.	. 100	080.	080.	120	080	.100	080.	.100	1> 070°	.120	090.	GUIDELINE = 80-100 (A4)	310.000	514,000	300.000	283.000	323.000	266.000	274.000	201 800	501.800	321.300	555.800	302.600	278.000	351,000
, 4 1	, <u>5</u>	٠	٠	•	٠						. 1		٠	.100	פ					٠	٠		•	•	•				325.000
WELL 3 WELL RAW RAW	DET'N LIMIT = 0.01	080.	.100	. 100	.120	071.	140	. 120	.100	.100	.120	.080	. 140	. 120	DET'N LIMIT = 0.5	348.000	115	290.000	233.000	295.000	270.000	292.000	000.025	557.400	313.100	520.000	305.800	291.000	357.000
WELL 2 RAW	ORATORY)		٠		٠	•	•	•			•		•	090.		٠							•	•	•				399,000
WELL 1 RAW .	CHEMISTRY (LABORATOR	090.	090.	.080		1> 070	090	090.	090.	090.	.080	.080	.080		^	352.000	SI	347.000	708.600	368.000	298.000	385.000	257.500	226,200	004.076	380.300	275.200	459.000	•
3 02	FLUORIDE (MG/L		1991 FEB		1991 APR		1991 JUN			1991 001	1991 NOV	1992 JAN	_	1992 JUL	HARDNESS (MG/L							1991 JUL						1992 MAY	1992 JUL

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 MANITOUWADGE WELL SUPPLY

DIST. SYSTEM WARBLER DR STANDING	2		.556 NAF	2 055 MAF	1.316	.226	769.	1.516	1.194 NAF	1.511	.460		3.261 NAF	1.880	a p p p p p p p p p p p p p p p p p p p		2.230	1.870	1.950	1,900	2.050	1.950	2.050	1.980	2.070	1,980	2,180	1.710	2,150
DIST. SYSTEM WARBLER DR FREE FLOW	9 b b b b b b b b b b b b b b b b b b b	3.811	3.158 NAF	2.071 NAF	1.272	.057	659.	1.983	1.750' NAF	5.142	1.266	2.983	1.598 NAF	3.854	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.930	2,080	1.920	1.800	1.850	2.000	1.850	2.100	1.920	2.060	1.970	2.200	1.680	2.270
RESERVOIR TREATED	GUIDELINE = N/A		3.053 NAF			.055	.420	4.132	3.251 NAF	5.863	1.498	5.070	. 22/ NAF	4.412	GUIDELINE = 10 (F2)	2.180	2.270	1.910	1.950	2.000	1.750	1.800	2.300	1.900	2.210	1.830	2.090	1.610	2.000
WELL 4 RAW .		٠	•			٠	•	•	•					2.987	5	٠		•	٠	٠	٠						٠		1.730
WELL 3 RAW	DET'N LIMIT = N/A	5.157	.000 NAF	3.973 NAF	1.190	3.714	1.247	2.088	4.088 NAF	798.4	2.632	3.032	061.	2.487	DET'N LIMIT = 0.01	2.730	SII	2.400	1.950	2.100	2.200	1.950	2.350	2.330	2.420	1.970	2.090	1.950	2.060
WELL 2 RAW	ORATORY)	•				٠				•			. !	.548			٠		٠		٠		•	•	•		٠		2.620
WELL 1	CHEMISTRY (LABORAT)		.000 NAF			3.356	6.030		5.895 NAF	7 200	7.5 510	3 20% NAF		0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	^	2.180	i 18	2.280	2.500	2.300	2.550	2.350	2.400	2.340	2.480	2.340	2.050	2,470	٠
WEL	IONCAL (DMNSLESS		1991 APR	1991 APR				1991 AUG	1991 SEP					1992 JUL	POTASSIUM (MG/L			1991 APR						1991 SEP					1992 JUL

																1														
DIST. SYSTEM WARBLER DR STANDING			1.127	1.110	. 985	1.173	1.179	1.161	1.206	1.232	1.205	1.536	1.367	1.103	1.401	0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	٠	17.600	16.800	15.300	16.500	16.900	15.800	17.100	17.700	17.450	18.750	18.900	15.600	21.600
DIST. SYSTEM WARBLER DR FREE FLOW		1.041	1.054	1.089	1.053	1.093	1.027	1.132	1.157	1.240	1.150	1,453	1.361	1.047	1.273		17.950	18.000	17.500	15.800	16.400	16.200	15.900	17.100	17.750	17.400	18.950	19.750	15.600	22.700
RESERVOIR TREATED	GUIDELINE ≈ N/A	1.084	1.001	1.045	1.052	1.150	1.019	1.093	1.252	1.247	1.140	1.377	1.282	1.127	1.211	GUIDELINE = 30.0 (F2)	19.790	20.650	17.600	17,800	17.800	15.300	15.300	19.500	17.250	19.450	18.500	18.850	15.900	20.000
WELL 4 RAW	ਹ					٠		٠						•	1.175	1	٠		٠	٠		٠		٠	•			•	٠	17.820
WELL 3 WELL RAW RAW	DET'N LIMIT = N/A	.807	٠	1.030	.808	.955	.837	.983	1.076	1.129	.953	1.254	. 1.226	1.018	1.211	0ET'N LIMIT = 0.1	25.430	SIi	18.600	15.300	16.800	16.900	17.300	19.600	21.550	20.300	17.850	18.900	17.300	20.500
WELL 2 RAW	(LABORATORY)				•		٠						•	٠	1.123		٠	•	٠		٠	٠		٠						20.800
WELL 1 RAW	· _ ^	759	٠	.884	1.243	1.035	806.	1.186	1.048	1.115	1.058	1.321	1.101	1.360	٠		25.100	STi	23.700	23.600	22.600	23.800	23.500	23.500	25.250	24.300	21.000	19.300	29.500	
2 (2	CHEMISTR LANGELIERS INDEX (DMNSLESS	1001 JAN					1991 JUN	1991 JUL	1991 AUG		1991 OCT	1991 NOV	1992 JAN		1992 JUL	MAGNESIUM (MG/L	1991 JAN	1991 FEB	1991 APR			1991 JUN		1991 AUG		1991 OCT		1992 JAN	1992 MAY	1992 JUL

Page 22

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 MANITOUWADGE WELL SUPPLY

DIST. SYSTEM WARBLER DR STANDING

DIST. SYSTEM WARBLER DR FREE FLOW

RESERVOIR TREATED

> WELL 4 RAW

WELL 3 RAW

WELL 2 RAW

WELL 1 RAW

		15.100	12 400	00%	17, 400	000	13.600	12.600	13.200	16.300	16 300	14. 700	18 500	8 460	22 400	000.77	,		010	010	17 400	7 700	7 700	7	801	700	801		.002 <1	.012	. 006 <t< th=""><th>1> 400.</th><th>1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></t<>	1> 400.	1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	15.600	15,000	13 800	10,500	10.800	14.800	12.200	12.200	14,000	14 200	16 300	16 000	20.300	000.02	05.030	000.02		1/ 700	1> 000.		1 7 700				801	60L	BOL	BOL	BDL	.004 <t< td=""><td>.008 <1</td><td>RDI</td><td></td></t<>	.008 <1	RDI	
NE = 200 (A4)	18 200	20 300	2000	15.000	15.000	17.400	10.200	10 200	10 700	000	14.000	1, 700	700	18.100	9.450	18.900	INE = 0.05 (F2)	ć	80L 00/ <1					.004 <1	801	BUL	80L	BDL	1> 200.	.004 <t< td=""><td>014</td><td>100</td><td></td></t<>	014	100	
GUIDELINE				•			,								• (15.100	GUIDELINE										٠				•	. 000	1 +00.
DET'N LIMIT = 0.20		24.700	SI	16.200	009.9	10,600	7 800	0000	8.200	13.600	16.500	14.500	14.200	16.000	9.560	18.800	DET'N LIMIT = 0.002		BOL	801	.002 <t< td=""><td>BDL</td><td>.002 <t< td=""><td>.002 <1</td><td>BDL</td><td>BOL</td><td>. BOL</td><td>BDL</td><td>ROI</td><td>000 €1</td><td></td><td>BUL</td><td>BOL</td></t<></td></t<>	BDL	.002 <t< td=""><td>.002 <1</td><td>BDL</td><td>BOL</td><td>. BOL</td><td>BDL</td><td>ROI</td><td>000 €1</td><td></td><td>BUL</td><td>BOL</td></t<>	.002 <1	BDL	BOL	. BOL	BDL	ROI	000 €1		BUL	BOL
RATORY)			٠		٠		•			٠		٠				37,100	2 E E E E E E E E E E E E E E E E E E E		٠	٠					٠	•			•	•		•	BOL
CHEMISTRY (LABORATORY)		23.600	SII	22.400	22.300	007 20	53.400	22.400	22.800	23.800	25.200	26.500	31.700	17.650	23.200		(WG/L)		108	BDL	.018	1> 700°	.002 <1	.002 <1	BDL	BOL	RDI	a loa	000		1> 700.	.002 <t< td=""><td>٠</td></t<>	٠
SODIUM CMG/L				1991 APR							1991 SEP	1991 OCT					AMMONIUM TOTAL (MG/L		1991 JAN		1001 APR				1001								1992 JUL

														٠																
DIST. SYSTEM WARBLER DR STANDING			.001 <7	.001 <t< th=""><th></th><th></th><th></th><th></th><th>T> 100.</th><th>801</th><th>BDL</th><th>.002 <t< th=""><th>.003 <t< th=""><th>.001 <t< th=""><th>. 002 <1</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th></th><th>.760</th><th>.415</th><th>.210</th><th>.565</th><th>.630</th><th>.530</th><th>.595</th><th>.710</th><th>.720</th><th>.870</th><th>. 945</th><th>. 180</th><th>1.040</th></t<></th></t<></th></t<></th></t<>					T> 100.	801	BDL	.002 <t< th=""><th>.003 <t< th=""><th>.001 <t< th=""><th>. 002 <1</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th></th><th>.760</th><th>.415</th><th>.210</th><th>.565</th><th>.630</th><th>.530</th><th>.595</th><th>.710</th><th>.720</th><th>.870</th><th>. 945</th><th>. 180</th><th>1.040</th></t<></th></t<></th></t<>	.003 <t< th=""><th>.001 <t< th=""><th>. 002 <1</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th></th><th>.760</th><th>.415</th><th>.210</th><th>.565</th><th>.630</th><th>.530</th><th>.595</th><th>.710</th><th>.720</th><th>.870</th><th>. 945</th><th>. 180</th><th>1.040</th></t<></th></t<>	.001 <t< th=""><th>. 002 <1</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th></th><th>.760</th><th>.415</th><th>.210</th><th>.565</th><th>.630</th><th>.530</th><th>.595</th><th>.710</th><th>.720</th><th>.870</th><th>. 945</th><th>. 180</th><th>1.040</th></t<>	. 002 <1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		.760	.415	.210	.565	.630	.530	.595	.710	.720	.870	. 945	. 180	1.040
DIST. SYSTEM WARBLER DR FREE FLOW		BDL	BDL	. 801			. 001 <t< td=""><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>.001 <t< td=""><td></td><td>. 001 <1</td><td>.003 <t< td=""><td>0 1 1 9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>.820</td><td>.765</td><td>.505</td><td>.335</td><td>.555</td><td>. 485</td><td>.535</td><td>.580</td><td>.740</td><td>.725</td><td>.875</td><td>1.020</td><td>.200</td><td>1.070</td></t<></td></t<></td></t<>	BOL	BOL	BDL	BDL	.001 <t< td=""><td></td><td>. 001 <1</td><td>.003 <t< td=""><td>0 1 1 9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>.820</td><td>.765</td><td>.505</td><td>.335</td><td>.555</td><td>. 485</td><td>.535</td><td>.580</td><td>.740</td><td>.725</td><td>.875</td><td>1.020</td><td>.200</td><td>1.070</td></t<></td></t<>		. 001 <1	.003 <t< td=""><td>0 1 1 9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>.820</td><td>.765</td><td>.505</td><td>.335</td><td>.555</td><td>. 485</td><td>.535</td><td>.580</td><td>.740</td><td>.725</td><td>.875</td><td>1.020</td><td>.200</td><td>1.070</td></t<>	0 1 1 9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.820	.765	.505	.335	.555	. 485	.535	.580	.740	.725	.875	1.020	.200	1.070
RESERVOIR TREATED	GUIDELINE = 1.0 (A1)	.001 <t< td=""><td>108</td><td>BDL</td><td>BOL</td><td>.001 <t< td=""><td>.001 <t< td=""><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>.001 <t< td=""><td></td><td>1> 200.</td><td>.002 <t< td=""><td>LINE = 10.0 (A1)</td><td>076</td><td>.915</td><td>.575</td><td>. 645</td><td>.760</td><td>.430</td><td>.405</td><td>1.100</td><td>089*</td><td>1.040</td><td>.815</td><td>.880</td><td>.275</td><td>1.060</td></t<></td></t<></td></t<></td></t<></td></t<>	108	BDL	BOL	.001 <t< td=""><td>.001 <t< td=""><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>.001 <t< td=""><td></td><td>1> 200.</td><td>.002 <t< td=""><td>LINE = 10.0 (A1)</td><td>076</td><td>.915</td><td>.575</td><td>. 645</td><td>.760</td><td>.430</td><td>.405</td><td>1.100</td><td>089*</td><td>1.040</td><td>.815</td><td>.880</td><td>.275</td><td>1.060</td></t<></td></t<></td></t<></td></t<>	.001 <t< td=""><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>.001 <t< td=""><td></td><td>1> 200.</td><td>.002 <t< td=""><td>LINE = 10.0 (A1)</td><td>076</td><td>.915</td><td>.575</td><td>. 645</td><td>.760</td><td>.430</td><td>.405</td><td>1.100</td><td>089*</td><td>1.040</td><td>.815</td><td>.880</td><td>.275</td><td>1.060</td></t<></td></t<></td></t<>	BDL	BDL	BDL	BOL	.001 <t< td=""><td></td><td>1> 200.</td><td>.002 <t< td=""><td>LINE = 10.0 (A1)</td><td>076</td><td>.915</td><td>.575</td><td>. 645</td><td>.760</td><td>.430</td><td>.405</td><td>1.100</td><td>089*</td><td>1.040</td><td>.815</td><td>.880</td><td>.275</td><td>1.060</td></t<></td></t<>		1> 200.	.002 <t< td=""><td>LINE = 10.0 (A1)</td><td>076</td><td>.915</td><td>.575</td><td>. 645</td><td>.760</td><td>.430</td><td>.405</td><td>1.100</td><td>089*</td><td>1.040</td><td>.815</td><td>.880</td><td>.275</td><td>1.060</td></t<>	LINE = 10.0 (A1)	076	.915	.575	. 645	.760	.430	.405	1.100	089*	1.040	.815	.880	.275	1.060
WELL 4 RAW	GUIDE			٠								٠			.002 <t< td=""><td>GUIDEL INE</td><td>٠</td><td></td><td></td><td></td><td>٠</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>1.520</td></t<>	GUIDEL INE	٠				٠								•	1.520
WELL 3 WE RAI	DET'N LIMIT = 0.001	301	BOL	001 <1	BDL		.001 <	BDL	.001 <t< td=""><td>.001 <1</td><td>BDL</td><td>.002 <1</td><td></td><td>. 001 <t< td=""><td>.003 <t< td=""><td>DET'N LIMIT = 0.005</td><td>1.210</td><td>1.070</td><td>.125</td><td>BDL</td><td>020.</td><td>.030</td><td>.040</td><td>.210</td><td>.340</td><td>.310</td><td>.800</td><td>.820</td><td>.080</td><td>.930</td></t<></td></t<></td></t<>	.001 <1	BDL	.002 <1		. 001 <t< td=""><td>.003 <t< td=""><td>DET'N LIMIT = 0.005</td><td>1.210</td><td>1.070</td><td>.125</td><td>BDL</td><td>020.</td><td>.030</td><td>.040</td><td>.210</td><td>.340</td><td>.310</td><td>.800</td><td>.820</td><td>.080</td><td>.930</td></t<></td></t<>	.003 <t< td=""><td>DET'N LIMIT = 0.005</td><td>1.210</td><td>1.070</td><td>.125</td><td>BDL</td><td>020.</td><td>.030</td><td>.040</td><td>.210</td><td>.340</td><td>.310</td><td>.800</td><td>.820</td><td>.080</td><td>.930</td></t<>	DET'N LIMIT = 0.005	1.210	1.070	.125	BDL	020.	.030	.040	.210	.340	.310	.800	.820	.080	.930
WELL 2 RAW	BORATORY)												٠	٠	.002 <t< td=""><td>0 1 7 8 9 8 8 8 8 8 2 2 2 2 5 6 6 7</td><td>٠</td><td></td><td></td><td></td><td></td><td></td><td>٠</td><td></td><td>٠</td><td></td><td>•</td><td></td><td></td><td>1.430</td></t<>	0 1 7 8 9 8 8 8 8 8 2 2 2 2 5 6 6 7	٠						٠		٠		•			1.430
WELL 1 RAW	CHEMISTRY (LABORATORY)	1> 100	.001 <1	.001 <1	.001 <t< td=""><td>.002 <t< td=""><td>.002 <t< td=""><td>.002 <t< td=""><td>.001 <1</td><td>1> £00.</td><td>.002 <t< td=""><td>. 000 <t< td=""><td>.003 <t< td=""><td>.008</td><td></td><td>(MG/L)</td><td>1.040</td><td>.920</td><td>1.080</td><td>1,100</td><td>1.120</td><td>1,100</td><td>1.100</td><td>1.120</td><td>.915</td><td>1.070</td><td>1.750</td><td>2.020</td><td>.575</td><td>•</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.002 <t< td=""><td>.002 <t< td=""><td>.002 <t< td=""><td>.001 <1</td><td>1> £00.</td><td>.002 <t< td=""><td>. 000 <t< td=""><td>.003 <t< td=""><td>.008</td><td></td><td>(MG/L)</td><td>1.040</td><td>.920</td><td>1.080</td><td>1,100</td><td>1.120</td><td>1,100</td><td>1.100</td><td>1.120</td><td>.915</td><td>1.070</td><td>1.750</td><td>2.020</td><td>.575</td><td>•</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.002 <t< td=""><td>.002 <t< td=""><td>.001 <1</td><td>1> £00.</td><td>.002 <t< td=""><td>. 000 <t< td=""><td>.003 <t< td=""><td>.008</td><td></td><td>(MG/L)</td><td>1.040</td><td>.920</td><td>1.080</td><td>1,100</td><td>1.120</td><td>1,100</td><td>1.100</td><td>1.120</td><td>.915</td><td>1.070</td><td>1.750</td><td>2.020</td><td>.575</td><td>•</td></t<></td></t<></td></t<></td></t<></td></t<>	.002 <t< td=""><td>.001 <1</td><td>1> £00.</td><td>.002 <t< td=""><td>. 000 <t< td=""><td>.003 <t< td=""><td>.008</td><td></td><td>(MG/L)</td><td>1.040</td><td>.920</td><td>1.080</td><td>1,100</td><td>1.120</td><td>1,100</td><td>1.100</td><td>1.120</td><td>.915</td><td>1.070</td><td>1.750</td><td>2.020</td><td>.575</td><td>•</td></t<></td></t<></td></t<></td></t<>	.001 <1	1> £00.	.002 <t< td=""><td>. 000 <t< td=""><td>.003 <t< td=""><td>.008</td><td></td><td>(MG/L)</td><td>1.040</td><td>.920</td><td>1.080</td><td>1,100</td><td>1.120</td><td>1,100</td><td>1.100</td><td>1.120</td><td>.915</td><td>1.070</td><td>1.750</td><td>2.020</td><td>.575</td><td>•</td></t<></td></t<></td></t<>	. 000 <t< td=""><td>.003 <t< td=""><td>.008</td><td></td><td>(MG/L)</td><td>1.040</td><td>.920</td><td>1.080</td><td>1,100</td><td>1.120</td><td>1,100</td><td>1.100</td><td>1.120</td><td>.915</td><td>1.070</td><td>1.750</td><td>2.020</td><td>.575</td><td>•</td></t<></td></t<>	.003 <t< td=""><td>.008</td><td></td><td>(MG/L)</td><td>1.040</td><td>.920</td><td>1.080</td><td>1,100</td><td>1.120</td><td>1,100</td><td>1.100</td><td>1.120</td><td>.915</td><td>1.070</td><td>1.750</td><td>2.020</td><td>.575</td><td>•</td></t<>	.008		(MG/L)	1.040	.920	1.080	1,100	1.120	1,100	1.100	1.120	.915	1.070	1.750	2.020	.575	•
	NITRITE (MG/L	1001 JAN			1991 APR		1991 JUN		1991 AUG				1992 JAN	1992 MAY		NITRATE (TOTAL) (MG/L	1991 JAN	1991 FEB	1991.APR	1991 APR	1991 MAY	1991 JUN	1991 JUL		1991 SEP			1992 JAN	1992 MAY	1992 JUL

	;															;														
DIST. SYSTEM WARBLER OR STANDING	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		072	170	240	280	110	. 190	. 160	.170	130	170	230	170	.140			8.220	8.250	8.200	8.290	8.310	8.330	8.310	8.310	8.300	8.600	8.420	8.360	8.390
DIST. SYSTEM WARBLER DR FREE FLOW	4	. 130	100	T> 090			. 100	.120	.140	. 120	. 110	. 130	. 150	. 160	.110		8.130	8.160	8.190	8.250	8.220	8.210	8.300	8.280	8.320	8.250	8.500	8.450	8.300	8.220
RESERVOIR TREATED	GUIDELINE = N/A	.210	.160	. 100	. 150	170	T> 090.	.110	. 180	.100	.150	.140	.200	180	.120	CHIDELINE A S-R S (AC)	8.200	8.110	8.240	8.240	8.210	8.270	8.320	8.260	8.390	8.220	8.440	8.410	8.340	8.260
7	Ing		٠					٠							.170	1110						٠		٠						8.270
WELL 3 WELL RAW .	DET'N LIMIT = 0.02	.130	.130	T> 090.	. 070 cT		T> 070.	.180	.110	.110	T> 090.	.130	.150	.120	.130	DET'N JIMIT = N/A	7.870	7.990	8.170	8.200	8.140	8.100	8,190	8.170	8.210	8.060	8.380	8.370	8.240	8.240
WELL 2 RAW	(LABORATORY)		•			٠	٠		٠	•					.180	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		٠												8.050
WELL 1 RAW	CHEMISTRY (LA KJELD (MG/L)	.170	. 180	. 160	.150	.200	1> 080.	.180	. 190	.210	.160	. 280	.170	.200	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.760	8.100	8.010	8.090	7.970	8.110	8.070	8.120	8.120	8.000	8.280	8.230	8,100	
	NITROGEN TOT KJE					1991 MAY							1992 JAN	_	1992 JUL	PH (DMNSLESS)	1991 JAN		1991 APR					1991 AUG	1991 SEP				_	1992 JUL

DIST. SYSTEM WARBLER DR STANDING							٠	٠	٠	٠							2 6 4 6 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			٠				٠	٠		٠		•		۰
OIST. SYSTEM DI WARBLER DR WA FREE FLOW ST			•		•		٠	٠	٠			٠		•	٠		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		÷	٠	÷	•	٠	٠	٠	٠		9	6		٠
RESERVOIR TREATED	GUIDELINE = N/A	1001 <1					.001 <1	.001 <t< td=""><td>.001 <t< td=""><td>T> 000.</td><td>.001 <1</td><td>.001 <t< td=""><td>BDL</td><td>.001 <1</td><td>108</td><td>.001 <1</td><td>GUIDELINE = 0.40 (F2)</td><td>.015</td><td>BDL</td><td>108</td><td>.003 <1</td><td>BDL</td><td>801</td><td>T> 500.</td><td>BDL</td><td>BDL</td><td>108</td><td>.002 <1</td><td>108</td><td>T> 300.</td><td>1> 5003</td></t<></td></t<></td></t<>	.001 <t< td=""><td>T> 000.</td><td>.001 <1</td><td>.001 <t< td=""><td>BDL</td><td>.001 <1</td><td>108</td><td>.001 <1</td><td>GUIDELINE = 0.40 (F2)</td><td>.015</td><td>BDL</td><td>108</td><td>.003 <1</td><td>BDL</td><td>801</td><td>T> 500.</td><td>BDL</td><td>BDL</td><td>108</td><td>.002 <1</td><td>108</td><td>T> 300.</td><td>1> 5003</td></t<></td></t<>	T> 000.	.001 <1	.001 <t< td=""><td>BDL</td><td>.001 <1</td><td>108</td><td>.001 <1</td><td>GUIDELINE = 0.40 (F2)</td><td>.015</td><td>BDL</td><td>108</td><td>.003 <1</td><td>BDL</td><td>801</td><td>T> 500.</td><td>BDL</td><td>BDL</td><td>108</td><td>.002 <1</td><td>108</td><td>T> 300.</td><td>1> 5003</td></t<>	BDL	.001 <1	108	.001 <1	GUIDELINE = 0.40 (F2)	.015	BDL	108	.003 <1	BDL	801	T> 500.	BDL	BDL	108	.002 <1	108	T> 300.	1> 5003
WELL 3 WELL 4 RAW RAW	DET'N LIMIT = 0.0005				· PUL	800	. 000 <t< td=""><td>. 80L</td><td>. 801</td><td>. BDL .</td><td>. 000 < 1</td><td>. 000.</td><td>. BOL .</td><td>801</td><td>. 80L</td><td>108 BDL 80L</td><td>DET*N LIM(T = 0.002</td><td>BOL</td><td>. 002 <1</td><td>. BDL</td><td>. 80L</td><td>. 002 <1</td><td>801</td><td>. 007 <t< td=""><td>. 004 <t< td=""><td>. 801</td><td>. 801</td><td>. 003 <1</td><td>. 108</td><td>. 018</td><td>801 801</td></t<></td></t<></td></t<>	. 80L	. 801	. BDL .	. 000 < 1	. 000.	. BOL .	801	. 80L	108 BDL 80L	DET*N LIM(T = 0.002	BOL	. 002 <1	. BDL	. 80L	. 002 <1	801	. 007 <t< td=""><td>. 004 <t< td=""><td>. 801</td><td>. 801</td><td>. 003 <1</td><td>. 108</td><td>. 018</td><td>801 801</td></t<></td></t<>	. 004 <t< td=""><td>. 801</td><td>. 801</td><td>. 003 <1</td><td>. 108</td><td>. 018</td><td>801 801</td></t<>	. 801	. 801	. 003 <1	. 108	. 018	801 801
WELL 2 RAW	STRY (LABORATORY)	101 <t< td=""><td></td><td></td><td></td><td>.000 <t< td=""><td>.000 <1</td><td>.000 <t< td=""><td>BDL</td><td>.000 <t< td=""><td>.000 <1</td><td>.001 <t< td=""><td>BDL</td><td>BDL .</td><td>BDL</td><td>108 .</td><td></td><td>BDL .</td><td>.004 <i< td=""><td></td><td>.004 <1</td><td></td><td></td><td>.002 <t .<="" td=""><td>. 108</td><td>.002 <1</td><td>.002 <t .<="" td=""><td></td><td></td><td>.006 <1</td><td>. 80L</td></t></td></t></td></i<></td></t<></td></t<></td></t<></td></t<></td></t<>				.000 <t< td=""><td>.000 <1</td><td>.000 <t< td=""><td>BDL</td><td>.000 <t< td=""><td>.000 <1</td><td>.001 <t< td=""><td>BDL</td><td>BDL .</td><td>BDL</td><td>108 .</td><td></td><td>BDL .</td><td>.004 <i< td=""><td></td><td>.004 <1</td><td></td><td></td><td>.002 <t .<="" td=""><td>. 108</td><td>.002 <1</td><td>.002 <t .<="" td=""><td></td><td></td><td>.006 <1</td><td>. 80L</td></t></td></t></td></i<></td></t<></td></t<></td></t<></td></t<>	.000 <1	.000 <t< td=""><td>BDL</td><td>.000 <t< td=""><td>.000 <1</td><td>.001 <t< td=""><td>BDL</td><td>BDL .</td><td>BDL</td><td>108 .</td><td></td><td>BDL .</td><td>.004 <i< td=""><td></td><td>.004 <1</td><td></td><td></td><td>.002 <t .<="" td=""><td>. 108</td><td>.002 <1</td><td>.002 <t .<="" td=""><td></td><td></td><td>.006 <1</td><td>. 80L</td></t></td></t></td></i<></td></t<></td></t<></td></t<>	BDL	.000 <t< td=""><td>.000 <1</td><td>.001 <t< td=""><td>BDL</td><td>BDL .</td><td>BDL</td><td>108 .</td><td></td><td>BDL .</td><td>.004 <i< td=""><td></td><td>.004 <1</td><td></td><td></td><td>.002 <t .<="" td=""><td>. 108</td><td>.002 <1</td><td>.002 <t .<="" td=""><td></td><td></td><td>.006 <1</td><td>. 80L</td></t></td></t></td></i<></td></t<></td></t<>	.000 <1	.001 <t< td=""><td>BDL</td><td>BDL .</td><td>BDL</td><td>108 .</td><td></td><td>BDL .</td><td>.004 <i< td=""><td></td><td>.004 <1</td><td></td><td></td><td>.002 <t .<="" td=""><td>. 108</td><td>.002 <1</td><td>.002 <t .<="" td=""><td></td><td></td><td>.006 <1</td><td>. 80L</td></t></td></t></td></i<></td></t<>	BDL	BDL .	BDL	108 .		BDL .	.004 <i< td=""><td></td><td>.004 <1</td><td></td><td></td><td>.002 <t .<="" td=""><td>. 108</td><td>.002 <1</td><td>.002 <t .<="" td=""><td></td><td></td><td>.006 <1</td><td>. 80L</td></t></td></t></td></i<>		.004 <1			.002 <t .<="" td=""><td>. 108</td><td>.002 <1</td><td>.002 <t .<="" td=""><td></td><td></td><td>.006 <1</td><td>. 80L</td></t></td></t>	. 108	.002 <1	.002 <t .<="" td=""><td></td><td></td><td>.006 <1</td><td>. 80L</td></t>			.006 <1	. 80L
WELL 1 RAW	CHEMISTRY PHOSPHORUS FIL REACT (MG/L	1001		FE8	APK	APR	MAY		JUL	AUG	SEP	OCT	NOV		MAY	1992 JUL	PHOSPHORIIS TOTAL (MG/L	1991 JAN	1991 FEB		APR	MAY	NOS		AUG	1991 SEP		1991 NOV	1992 JAN	MAY	1992 JUL

DIST. SYSTEM WARBLER DR STANDING		408.000 CRO 370.000 CRO 332.000 CRO 371.000 CRO 371.000 CRO 378.000 CRO 421.000 CRO 422.000 CRO 422.000 CRO 422.000 CRO 422.000 CRO	57.480 60.690 60.690 60.340 50.780 54.510 54.240 57.080 57.080 57.080 57.20
DIST. SYSTEM WARBLER DR FREE FLOW		418.000 CRO 413.000 CRO 385.000 CRO 350.000 CRO 371.000 CRO 378.000 CRO 436.000 CRO 436.000 CRO 436.000 CRO 436.000 CRO 436.000 CRO 436.000 CRO 520.000 CRO	54, 530 54, 430 57, 480 57, 480 56, 940 58, 010 59, 880 56, 880 56, 880 56, 840 54, 240 72, 650 46, 650
RESERVOIR TREATED.	GUIDELINE = 500 (A3)	462.000 CRO 481.000 CRO 400.000 CRO 395.000 CRO 54.000 CRO 354.000 CRO 478.000 CRO 413.000 CRO 427.000 CRO 441.000 CRO 441.000 CRO 441.000 CRO 441.000 CRO	GUIDELINE = 500 (A3) 54.440 38.670 52.820 48.660 45.810 57.250 61.330 44.660 57.080 45.900 58.680 62.700 62.700 60.280
WELL 4 RAW	GUIDE		GUIDE
WELL 3 RAW RAW	DET'N LIMIT = N/A	454.000 565.000 404.000 CRO 314.000 CRO 356.000 CRO 471.000 CRO 474.000 CRO 461.000 CRO 461.000 CRO 461.000 CRO 461.000 CRO 461.000 CRO 461.000 CRO 461.000 CRO	DET'N LIMIT = 0.20 50.620 49.610 71.980 72.690 77.170 78.40 80.660 70.470 64.300 60.620 63.230 86.990 61.230
WELL 2 RAW	(LABORATORY)	620.000	58.500
WELL 1 RAW	CHEMISTRY (MG/L)	441.000 542.800 517.000 CRO 500.000 CRO 503.000 CRO 436.000 349.000 385.000 381.000 518.000 564.000	24, 940 22, 790 27, 310 28, 830 29, 300 33, 690 32, 380 30, 190 25, 200 25, 200 21, 490 33, 980 41, 290 22, 630
. K	RESIDUE FILTRATE	1991 JAN 1991 FEB 1991 APR 1991 MAY 1991 JUL 1991 AUG 1991 SEP 1991 OCT 1992 JAN 1992 JAN	SULPHATE (MG/L 1991 JAN 1991 APR 1991 APR 1991 JUL 1991 AUG 1991 SEP 1991 OCT 1992 JAN 1992 JAN 1992 JAN

															OSI
DIST. SYSTEM WARBLER DR STANDING		٠	.830	.370	.530	097.	. 150	.300	.200	.270	.310	.520	.260	.630	7 007.
DIST. SYSTEM WARBLER DR FREE FLOW		T> 081.	009.	.280	.260	.540	.130	.290	.190	.270	.250	.350	.400	.240 <1	OSU 065.
RESERVOIR DI	GUIDELINE = 1.0 (A1)	5.700 RRV	097.	.260	.190 <1	.710	.140	.290	.250	.240 <1	.270	.370	.270	.260	4.500 USD
TRES TRE	GUÌDELIN														1.770 USD
WELL 3 WELL A	DET'N LIMIT = 0.05	077	.540	.530	.460	.720	.080	.630	.230	009.	.310	.340	.420	.230 <t< td=""><td>1.470 USO</td></t<>	1.470 USO
WELL 2 W RAW R			٠		•	۰	٠		•		٠		•	٠	5.100 USD
WELL 1 RAW	CHEMISTRY (LABORATORY	.530	.710	.780	.740	1.130	.290	.650	067*	.770	.860	067	007	1.180	
⊇r 62	TURBIDITY (FTU	1991 JAN	1991 FEB			1991 MAY				1991 SEP			1992 JAN	1992 MAY	1992 JUL

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 MANITOUWADGE WELL SUPPLY

DIST. SYSTEM WARBLER DR STANDING			BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BOL	.060 ×T	BOL	BDL	BOL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3,000	3.800	3.500	2.300	3,400	2.500	1.900	T> 096.	2.400	2.300	1,700	4.200	4.300
DIST. SYSTEM WARBLER DR FREE FLOW .	0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 0 0 0 0	BDL	BDL	801	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0 6 1 1 1 3 8 8 8 8 8 8 8 8 8 8	1,500	2.000	2.100	2,400	1.900	3.900	1.800	1.800	2.300	1.700	1.800	1.300	3.200	3.700
RESERVOIR IREATED	GUIDELINE = N/A	108	BDL	108	108	· 108	108	BDL	BDL	BD1	108	801	108	BDL	BDL	GUIDELINE = 100 (A4)	17.000	. 2.100	2.400	2.400	2.200	2.600	2.400	2.000	2.200	1.800	2.000	1.500	3.700	3.500
7 7	5	٠	٠		•	٠		٠				٠			BDL	5	٠	٠	•			٠	•	•		•		•		3.100
WELL 3 WELL 4 RAW RAW	DET'N LIMIT = 0.05	108	, BDF	BDL	BDL	108	BOL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	DET'N LIMIT = 0.10	1.400	2.500	2.600	2.500	2.200	4.100	2.100	1.600	1.800	1.800	1.600	1.000 <t< td=""><td>3.400</td><td>3.100</td></t<>	3.400	3.100
WELL 2 RAW	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠	5		٠		٠		٠	٠	٠		٠	٠	TOB	8 8 9 7 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠		٠	٠	٠		٠	•	٠	٠		٠	•	3.700
WELL 1 RAW	METALS	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.300	1.900	2.400	2.800	2.300	2.700	13.000	1.600	1.900	1.700	3.200	3.500	3.600	٠
	SILVER (UG/L				1991 APR	1991 MAY			1991 AUG				1992 JAN	1992 MAY	1992 JUL	ALUMINUM (UG/L						1991 JUN						1992 JAN		1992 JUL

DIST. SYSTEM WARBLER DR STANDING)) 1) 1 () 1 () 1 1 1 1 1 1 1 1 1 1		.170 <1	801	108		. 290 <1		170 <1		T> 004.	.370 <	.610 <t< th=""><th></th><th></th><th>30.000</th><th>28.000</th><th>25.000</th><th>29.000</th><th>29.000</th><th>26,000</th><th>27.000</th><th>31,000</th><th>28,000</th><th>30.000</th><th>70.000</th><th>27.000</th><th>39.000</th></t<>			30.000	28.000	25.000	29.000	29.000	26,000	27.000	31,000	28,000	30.000	70.000	27.000	39.000
DIST. SYSTEM WARBLER DR FREE FLOW	1 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3	750 <7	.310 <t< td=""><td>BDL</td><td>.230 <1</td><td></td><td>1>021.</td><td>1> 00c.</td><td></td><td>15 05F.</td><td>.320 <7</td><td>.120 <</td><td>1> 074.</td><td></td><td>30.000</td><td>30.000</td><td>29.000</td><td>26.000</td><td>29.000</td><td>28.000</td><td>25.000</td><td>28.000</td><td>31,000</td><td>28,000</td><td>32.000</td><td>41.000</td><td>25.000</td><td>74.000</td></t<>	BDL	.230 <1		1>021.	1> 00c.		15 05F.	.320 <7	.120 <	1> 074.		30.000	30.000	29.000	26.000	29.000	28.000	25.000	28.000	31,000	28,000	32.000	41.000	25.000	74.000
RESERVOIR TREATED	GUIDELINE = 25 (A1)	1.100	.530 <t< td=""><td>80 F</td><td>8DL</td><td></td><td>120 <1</td><td>15 0/1.</td><td></td><td></td><td>.430 <t< td=""><td>.250 <1</td><td>.290 <t< td=""><td>GUIDELINE = 1000 (A2)</td><td>56.000</td><td>38,000</td><td>31,000</td><td>31.000</td><td>34.000</td><td>24.000</td><td>28.000</td><td>37.000</td><td>30.000</td><td>37,000</td><td>28.000</td><td>39.000</td><td>23.000</td><td>37.000</td></t<></td></t<></td></t<>	80 F	8DL		120 <1	15 0/1.			.430 <t< td=""><td>.250 <1</td><td>.290 <t< td=""><td>GUIDELINE = 1000 (A2)</td><td>56.000</td><td>38,000</td><td>31,000</td><td>31.000</td><td>34.000</td><td>24.000</td><td>28.000</td><td>37.000</td><td>30.000</td><td>37,000</td><td>28.000</td><td>39.000</td><td>23.000</td><td>37.000</td></t<></td></t<>	.250 <1	.290 <t< td=""><td>GUIDELINE = 1000 (A2)</td><td>56.000</td><td>38,000</td><td>31,000</td><td>31.000</td><td>34.000</td><td>24.000</td><td>28.000</td><td>37.000</td><td>30.000</td><td>37,000</td><td>28.000</td><td>39.000</td><td>23.000</td><td>37.000</td></t<>	GUIDELINE = 1000 (A2)	56.000	38,000	31,000	31.000	34.000	24.000	28.000	37.000	30.000	37,000	28.000	39.000	23.000	37.000
WELL 4 RAW	0.101										 •		,130 <t< td=""><td>Idiua</td><td></td><td></td><td></td><td>٠</td><td>•</td><td>•</td><td></td><td>•</td><td>•</td><td></td><td></td><td>•</td><td></td><td>29.000</td></t<>	Idiua				٠	•	•		•	•			•		29.000
WELL 3 W RAW R	DET'N LIMIT = 0.10	1.500	.330 <t< td=""><td>BDL</td><td>.140 <t< td=""><td>BDL</td><td>.280 <1</td><td>1> 012.</td><td></td><td>.270 <t< td=""><td>.270 <1</td><td>.240 <t< td=""><td>.420 <t< td=""><td>DET'N LIMIT = 0.05</td><td>48.000</td><td>48.000</td><td>35.000</td><td>25.000</td><td>31.000</td><td>29.000</td><td>27.000</td><td>33.000</td><td>39.000</td><td>34.000</td><td>31,000</td><td>37.000</td><td>29.000</td><td>38.000</td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	.140 <t< td=""><td>BDL</td><td>.280 <1</td><td>1> 012.</td><td></td><td>.270 <t< td=""><td>.270 <1</td><td>.240 <t< td=""><td>.420 <t< td=""><td>DET'N LIMIT = 0.05</td><td>48.000</td><td>48.000</td><td>35.000</td><td>25.000</td><td>31.000</td><td>29.000</td><td>27.000</td><td>33.000</td><td>39.000</td><td>34.000</td><td>31,000</td><td>37.000</td><td>29.000</td><td>38.000</td></t<></td></t<></td></t<></td></t<>	BDL	.280 <1	1> 012.		.270 <t< td=""><td>.270 <1</td><td>.240 <t< td=""><td>.420 <t< td=""><td>DET'N LIMIT = 0.05</td><td>48.000</td><td>48.000</td><td>35.000</td><td>25.000</td><td>31.000</td><td>29.000</td><td>27.000</td><td>33.000</td><td>39.000</td><td>34.000</td><td>31,000</td><td>37.000</td><td>29.000</td><td>38.000</td></t<></td></t<></td></t<>	.270 <1	.240 <t< td=""><td>.420 <t< td=""><td>DET'N LIMIT = 0.05</td><td>48.000</td><td>48.000</td><td>35.000</td><td>25.000</td><td>31.000</td><td>29.000</td><td>27.000</td><td>33.000</td><td>39.000</td><td>34.000</td><td>31,000</td><td>37.000</td><td>29.000</td><td>38.000</td></t<></td></t<>	.420 <t< td=""><td>DET'N LIMIT = 0.05</td><td>48.000</td><td>48.000</td><td>35.000</td><td>25.000</td><td>31.000</td><td>29.000</td><td>27.000</td><td>33.000</td><td>39.000</td><td>34.000</td><td>31,000</td><td>37.000</td><td>29.000</td><td>38.000</td></t<>	DET'N LIMIT = 0.05	48.000	48.000	35.000	25.000	31.000	29.000	27.000	33.000	39.000	34.000	31,000	37.000	29.000	38.000
WELL 2 RAW	3							٠		•	 ٠	•	.880 <t< td=""><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>٠</td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>٠</td><td>48.000</td></t<>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠			•								•	٠	48.000
WELL 1 RAW	METALS	1.500	1> 074.	80L	901	108	T> 044.	130 ZT			T> 054.	.500 <1		(43.000	42.000	43.000	43.000	45.000	47.000	42.000	000.44	48.000	48.000	40.000	52.000	52.000	٠
	ARSENIC (UG/L	1991 JAN			1991 APR		1991 JUN	1991 JUL		1991 OCT				BARIUM (UG/L			1991 APR		1991 MAY		1991 JUL		1991 SEP					1992 JUL

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 MANITOUWADGE WELL SUPPLY

DIST. SYSTEM WARBLER DR STANDING	1	٠	18.000 <t< td=""><td>31.000</td><td>26.000</td><td>9.400 <1</td><td>16.000 <t< td=""><td>12.000 <t< td=""><td>15.000 <t< td=""><td>36.000</td><td>20.000 <1</td><td>13.000 <t< td=""><td>14.000 <t< td=""><td>9.300 <t< td=""><td>17.000 <t< td=""><td>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</td><td>•</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>, 801</td><td>BOL</td><td>BOL</td><td>80L</td><td>BDL</td><td>BOL</td><td>80L</td><td>BDL</td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	31.000	26.000	9.400 <1	16.000 <t< td=""><td>12.000 <t< td=""><td>15.000 <t< td=""><td>36.000</td><td>20.000 <1</td><td>13.000 <t< td=""><td>14.000 <t< td=""><td>9.300 <t< td=""><td>17.000 <t< td=""><td>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</td><td>•</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>, 801</td><td>BOL</td><td>BOL</td><td>80L</td><td>BDL</td><td>BOL</td><td>80L</td><td>BDL</td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	12.000 <t< td=""><td>15.000 <t< td=""><td>36.000</td><td>20.000 <1</td><td>13.000 <t< td=""><td>14.000 <t< td=""><td>9.300 <t< td=""><td>17.000 <t< td=""><td>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</td><td>•</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>, 801</td><td>BOL</td><td>BOL</td><td>80L</td><td>BDL</td><td>BOL</td><td>80L</td><td>BDL</td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	15.000 <t< td=""><td>36.000</td><td>20.000 <1</td><td>13.000 <t< td=""><td>14.000 <t< td=""><td>9.300 <t< td=""><td>17.000 <t< td=""><td>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</td><td>•</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>, 801</td><td>BOL</td><td>BOL</td><td>80L</td><td>BDL</td><td>BOL</td><td>80L</td><td>BDL</td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<>	36.000	20.000 <1	13.000 <t< td=""><td>14.000 <t< td=""><td>9.300 <t< td=""><td>17.000 <t< td=""><td>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</td><td>•</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>, 801</td><td>BOL</td><td>BOL</td><td>80L</td><td>BDL</td><td>BOL</td><td>80L</td><td>BDL</td><td>BDL</td></t<></td></t<></td></t<></td></t<>	14.000 <t< td=""><td>9.300 <t< td=""><td>17.000 <t< td=""><td>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</td><td>•</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>, 801</td><td>BOL</td><td>BOL</td><td>80L</td><td>BDL</td><td>BOL</td><td>80L</td><td>BDL</td><td>BDL</td></t<></td></t<></td></t<>	9.300 <t< td=""><td>17.000 <t< td=""><td>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</td><td>•</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>, 801</td><td>BOL</td><td>BOL</td><td>80L</td><td>BDL</td><td>BOL</td><td>80L</td><td>BDL</td><td>BDL</td></t<></td></t<>	17.000 <t< td=""><td>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</td><td>•</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>, 801</td><td>BOL</td><td>BOL</td><td>80L</td><td>BDL</td><td>BOL</td><td>80L</td><td>BDL</td><td>BDL</td></t<>	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	•	BDL	BDL	BDL	BDL	, 801	BOL	BOL	80L	BDL	BOL	80L	BDL	BDL
DIST. SYSTEM WARBLER DR FREE FLOW	, , , , , , , , , , , , , , , , , , ,	15.000 <t< td=""><td>12.000 <t< td=""><td>28.000</td><td></td><td></td><td></td><td>10.000 <t< td=""><td>14.000 <t< td=""><td>30.000</td><td>17.000 <t< td=""><td>12.000 <t< td=""><td>15.000 <1</td><td>8.300 <t< td=""><td>21.000</td><td></td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	12.000 <t< td=""><td>28.000</td><td></td><td></td><td></td><td>10.000 <t< td=""><td>14.000 <t< td=""><td>30.000</td><td>17.000 <t< td=""><td>12.000 <t< td=""><td>15.000 <1</td><td>8.300 <t< td=""><td>21.000</td><td></td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	28.000				10.000 <t< td=""><td>14.000 <t< td=""><td>30.000</td><td>17.000 <t< td=""><td>12.000 <t< td=""><td>15.000 <1</td><td>8.300 <t< td=""><td>21.000</td><td></td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<>	14.000 <t< td=""><td>30.000</td><td>17.000 <t< td=""><td>12.000 <t< td=""><td>15.000 <1</td><td>8.300 <t< td=""><td>21.000</td><td></td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t<></td></t<></td></t<>	30.000	17.000 <t< td=""><td>12.000 <t< td=""><td>15.000 <1</td><td>8.300 <t< td=""><td>21.000</td><td></td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t<></td></t<>	12.000 <t< td=""><td>15.000 <1</td><td>8.300 <t< td=""><td>21.000</td><td></td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t<>	15.000 <1	8.300 <t< td=""><td>21.000</td><td></td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<>	21.000		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
RESERVOIR TREATED	GUIDELINE = 5000 (A1)	23.000~	38.000	37.000	16.000 <t< td=""><td>12.000 <t< td=""><td>12.000 <t< td=""><td>12.000 <t< td=""><td>21.000</td><td>19.000 <t< td=""><td>48.000</td><td>12.000 <t< td=""><td>14.000 <t< td=""><td>9.800 <t td="" ·<=""><td>14.000 <t< td=""><td>GUIDELINE = 6800 (D4)</td><td>108</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	12.000 <t< td=""><td>12.000 <t< td=""><td>12.000 <t< td=""><td>21.000</td><td>19.000 <t< td=""><td>48.000</td><td>12.000 <t< td=""><td>14.000 <t< td=""><td>9.800 <t td="" ·<=""><td>14.000 <t< td=""><td>GUIDELINE = 6800 (D4)</td><td>108</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	12.000 <t< td=""><td>12.000 <t< td=""><td>21.000</td><td>19.000 <t< td=""><td>48.000</td><td>12.000 <t< td=""><td>14.000 <t< td=""><td>9.800 <t td="" ·<=""><td>14.000 <t< td=""><td>GUIDELINE = 6800 (D4)</td><td>108</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t></td></t<></td></t<></td></t<></td></t<></td></t<>	12.000 <t< td=""><td>21.000</td><td>19.000 <t< td=""><td>48.000</td><td>12.000 <t< td=""><td>14.000 <t< td=""><td>9.800 <t td="" ·<=""><td>14.000 <t< td=""><td>GUIDELINE = 6800 (D4)</td><td>108</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t></td></t<></td></t<></td></t<></td></t<>	21.000	19.000 <t< td=""><td>48.000</td><td>12.000 <t< td=""><td>14.000 <t< td=""><td>9.800 <t td="" ·<=""><td>14.000 <t< td=""><td>GUIDELINE = 6800 (D4)</td><td>108</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t></td></t<></td></t<></td></t<>	48.000	12.000 <t< td=""><td>14.000 <t< td=""><td>9.800 <t td="" ·<=""><td>14.000 <t< td=""><td>GUIDELINE = 6800 (D4)</td><td>108</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t></td></t<></td></t<>	14.000 <t< td=""><td>9.800 <t td="" ·<=""><td>14.000 <t< td=""><td>GUIDELINE = 6800 (D4)</td><td>108</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t></td></t<>	9.800 <t td="" ·<=""><td>14.000 <t< td=""><td>GUIDELINE = 6800 (D4)</td><td>108</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t>	14.000 <t< td=""><td>GUIDELINE = 6800 (D4)</td><td>108</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<>	GUIDELINE = 6800 (D4)	108	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
WELL 4 RAW) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			•			•		•				٠	•	29.000	5	•	٠	•	٠			٠	٠	٠			,		BDL
WELL 3 RAW	DET'N LIMIT = 2.00	29.000		18.000 <t< td=""><td>15.000 <t< td=""><td>9.200 <t< td=""><td>12.000 <t< td=""><td></td><td>14.000 <t< td=""><td>20.000 <t< td=""><td>15.000 <t< td=""><td>11.000 <1</td><td>12.000 <t< td=""><td>11.000 <t< td=""><td>20.000 <t< td=""><td>DET'N LIMIT = 0.05</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	15.000 <t< td=""><td>9.200 <t< td=""><td>12.000 <t< td=""><td></td><td>14.000 <t< td=""><td>20.000 <t< td=""><td>15.000 <t< td=""><td>11.000 <1</td><td>12.000 <t< td=""><td>11.000 <t< td=""><td>20.000 <t< td=""><td>DET'N LIMIT = 0.05</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	9.200 <t< td=""><td>12.000 <t< td=""><td></td><td>14.000 <t< td=""><td>20.000 <t< td=""><td>15.000 <t< td=""><td>11.000 <1</td><td>12.000 <t< td=""><td>11.000 <t< td=""><td>20.000 <t< td=""><td>DET'N LIMIT = 0.05</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	12.000 <t< td=""><td></td><td>14.000 <t< td=""><td>20.000 <t< td=""><td>15.000 <t< td=""><td>11.000 <1</td><td>12.000 <t< td=""><td>11.000 <t< td=""><td>20.000 <t< td=""><td>DET'N LIMIT = 0.05</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		14.000 <t< td=""><td>20.000 <t< td=""><td>15.000 <t< td=""><td>11.000 <1</td><td>12.000 <t< td=""><td>11.000 <t< td=""><td>20.000 <t< td=""><td>DET'N LIMIT = 0.05</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	20.000 <t< td=""><td>15.000 <t< td=""><td>11.000 <1</td><td>12.000 <t< td=""><td>11.000 <t< td=""><td>20.000 <t< td=""><td>DET'N LIMIT = 0.05</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<>	15.000 <t< td=""><td>11.000 <1</td><td>12.000 <t< td=""><td>11.000 <t< td=""><td>20.000 <t< td=""><td>DET'N LIMIT = 0.05</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t<></td></t<></td></t<>	11.000 <1	12.000 <t< td=""><td>11.000 <t< td=""><td>20.000 <t< td=""><td>DET'N LIMIT = 0.05</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t<></td></t<>	11.000 <t< td=""><td>20.000 <t< td=""><td>DET'N LIMIT = 0.05</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t<>	20.000 <t< td=""><td>DET'N LIMIT = 0.05</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<>	DET'N LIMIT = 0.05	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
WELL 2 RAW						٠					٠				27.000		٠	٠			٠	•			•					BDL
WELL 1 RAW	METALS	41.000	28.000	000.09	51.000	21.000	32.000	21.000	25.000	35.000	000.99	22.000	21.000	32.000		^	BDL	BDL		.080 <t< td=""><td>BOL</td><td>BDL</td><td>BDL</td><td>B0L</td><td></td><td>T> 090.</td><td>BDL</td><td>BDL</td><td>BDL</td><td></td></t<>	BOL	BDL	BDL	B0L		T> 090.	BDL	BDL	BDL	
3 ℃	BORON (UG/L	1991 JAN .			1991 APR		1991 JUN					1991 NOV		1992 MAY	1992 JUL	BERYLLIUM (UG/L			1991 APR	1991 APR		1991 JUN							1992 MAY	1992 JUL

DIST. SYSTEM WARBLER OR STANDING			RDI	.110 <1	BOL	BDL	T> 080.	108	901	BOL	BOL	BOL	BOL	T> 080.	T> 080.			. 180 <t< td=""><td>T> 011.</td><td>.130 <</td><td>. 100 <t< td=""><td>T> 035.</td><td>B0L</td><td>1> 071.</td><td>T> 011.</td><td>.040 <t< td=""><td>108</td><td>1> 071.</td><td>.200 <t< td=""><td>.510 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	T> 011.	.130 <	. 100 <t< td=""><td>T> 035.</td><td>B0L</td><td>1> 071.</td><td>T> 011.</td><td>.040 <t< td=""><td>108</td><td>1> 071.</td><td>.200 <t< td=""><td>.510 <t< td=""></t<></td></t<></td></t<></td></t<>	T> 035.	B0L	1> 071.	T> 011.	.040 <t< td=""><td>108</td><td>1> 071.</td><td>.200 <t< td=""><td>.510 <t< td=""></t<></td></t<></td></t<>	108	1> 071.	.200 <t< td=""><td>.510 <t< td=""></t<></td></t<>	.510 <t< td=""></t<>
DIST. SYSTEM WARBLER OR FREE FLOW	? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RDI	BDI	BOL	BOL	BDL	1> 090.	BOL	BOL	BOL	B0L	.110 <t< td=""><td>B01</td><td>301</td><td>BOL</td><td></td><td>6.200</td><td>. 150 <t< td=""><td>T> 030.</td><td>.080 <t< td=""><td>BOL</td><td>. 290 <t< td=""><td>BOL</td><td>. 100 <t< td=""><td>.180 <t< td=""><td>T> 070.</td><td>BOL</td><td>1> 061.</td><td>.030 <t< td=""><td>T> 013.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	B01	301	BOL		6.200	. 150 <t< td=""><td>T> 030.</td><td>.080 <t< td=""><td>BOL</td><td>. 290 <t< td=""><td>BOL</td><td>. 100 <t< td=""><td>.180 <t< td=""><td>T> 070.</td><td>BOL</td><td>1> 061.</td><td>.030 <t< td=""><td>T> 013.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 030.	.080 <t< td=""><td>BOL</td><td>. 290 <t< td=""><td>BOL</td><td>. 100 <t< td=""><td>.180 <t< td=""><td>T> 070.</td><td>BOL</td><td>1> 061.</td><td>.030 <t< td=""><td>T> 013.</td></t<></td></t<></td></t<></td></t<></td></t<>	BOL	. 290 <t< td=""><td>BOL</td><td>. 100 <t< td=""><td>.180 <t< td=""><td>T> 070.</td><td>BOL</td><td>1> 061.</td><td>.030 <t< td=""><td>T> 013.</td></t<></td></t<></td></t<></td></t<>	BOL	. 100 <t< td=""><td>.180 <t< td=""><td>T> 070.</td><td>BOL</td><td>1> 061.</td><td>.030 <t< td=""><td>T> 013.</td></t<></td></t<></td></t<>	.180 <t< td=""><td>T> 070.</td><td>BOL</td><td>1> 061.</td><td>.030 <t< td=""><td>T> 013.</td></t<></td></t<>	T> 070.	BOL	1> 061.	.030 <t< td=""><td>T> 013.</td></t<>	T> 013.
RESERVOIR TREATED	GUIDELINE = 5.0 (A1)	075	. 110 <t< td=""><td>BDL</td><td>BOL</td><td>T> 090.</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>. 070 <t< td=""><td>BDL</td><td>108</td><td>BOL</td><td>GUIDELINE = N/A</td><td>7.100</td><td>.120 <t< td=""><td></td><td>. 170 <t< td=""><td>BOL</td><td></td><td>.030 <t< td=""><td>.220 <t< td=""><td></td><td>1> 070.</td><td>108</td><td></td><td>.250 <1</td><td>.420 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	BOL	T> 090.	BDL	BOL	BOL	BOL	BOL	. 070 <t< td=""><td>BDL</td><td>108</td><td>BOL</td><td>GUIDELINE = N/A</td><td>7.100</td><td>.120 <t< td=""><td></td><td>. 170 <t< td=""><td>BOL</td><td></td><td>.030 <t< td=""><td>.220 <t< td=""><td></td><td>1> 070.</td><td>108</td><td></td><td>.250 <1</td><td>.420 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	108	BOL	GUIDELINE = N/A	7.100	.120 <t< td=""><td></td><td>. 170 <t< td=""><td>BOL</td><td></td><td>.030 <t< td=""><td>.220 <t< td=""><td></td><td>1> 070.</td><td>108</td><td></td><td>.250 <1</td><td>.420 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>		. 170 <t< td=""><td>BOL</td><td></td><td>.030 <t< td=""><td>.220 <t< td=""><td></td><td>1> 070.</td><td>108</td><td></td><td>.250 <1</td><td>.420 <t< td=""></t<></td></t<></td></t<></td></t<>	BOL		.030 <t< td=""><td>.220 <t< td=""><td></td><td>1> 070.</td><td>108</td><td></td><td>.250 <1</td><td>.420 <t< td=""></t<></td></t<></td></t<>	.220 <t< td=""><td></td><td>1> 070.</td><td>108</td><td></td><td>.250 <1</td><td>.420 <t< td=""></t<></td></t<>		1> 070.	108		.250 <1	.420 <t< td=""></t<>
WELL 4 RAW	GUIDE					٠					•	٠			BDL	GUIDE			٠		٠			٠						.340 <t< td=""></t<>
WELL 3 WEIRAM RAW	DET'N LIMIT = 0.05	BDI	801	BOL	BDL	T> 001.	BOL	BOL	BOL	DET'N LIMIT = 0.02	8.100	.120 <t< td=""><td>1> 090.</td><td>T> 090.</td><td>BDL</td><td>.250 <t< td=""><td>BDL</td><td>.080 ×T</td><td>.130 <t< td=""><td>.050 ×T</td><td>BOL</td><td>.210 <t< td=""><td>.120 <t< td=""><td>.420 <1</td></t<></td></t<></td></t<></td></t<></td></t<>	1> 090.	T> 090.	BDL	.250 <t< td=""><td>BDL</td><td>.080 ×T</td><td>.130 <t< td=""><td>.050 ×T</td><td>BOL</td><td>.210 <t< td=""><td>.120 <t< td=""><td>.420 <1</td></t<></td></t<></td></t<></td></t<>	BDL	.080 ×T	.130 <t< td=""><td>.050 ×T</td><td>BOL</td><td>.210 <t< td=""><td>.120 <t< td=""><td>.420 <1</td></t<></td></t<></td></t<>	.050 ×T	BOL	.210 <t< td=""><td>.120 <t< td=""><td>.420 <1</td></t<></td></t<>	.120 <t< td=""><td>.420 <1</td></t<>	.420 <1						
WELL 2 RAW			. ,		٠					٠	•			٠	108	9 e e e e e e e e e e e e e e e e e e e	٠						٠	٠						T> 003.
WELL 1 RAW	METALS	RDI	RDI	80L	BOL	B0L	. B0L	BOL	BOL	BOL	BOL	BOL	BOL	BOL			8.200	1> 071.	.220 <1	1> 061.	.320 <t< td=""><td>.530 <t< td=""><td>.250 <t< td=""><td>T> 005.</td><td>1> 073.</td><td>.330 <1</td><td>BDL</td><td>T> 080.</td><td>T> 055.</td><td></td></t<></td></t<></td></t<>	.530 <t< td=""><td>.250 <t< td=""><td>T> 005.</td><td>1> 073.</td><td>.330 <1</td><td>BDL</td><td>T> 080.</td><td>T> 055.</td><td></td></t<></td></t<>	.250 <t< td=""><td>T> 005.</td><td>1> 073.</td><td>.330 <1</td><td>BDL</td><td>T> 080.</td><td>T> 055.</td><td></td></t<>	T> 005.	1> 073.	.330 <1	BDL	T> 080.	T> 055.	
	CADMIUM (UG/L	1001 IAN	1901 FFR	1991 APR	1991 APR	1991 MAY	1991 JUN	1991 JUL	1991 AUG	1991 SEP	1991 OCT	1991 NOV	1992 JAN	1992 MAY	1992 JUL	COBALT (UG/L							1991 JUL							

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 MANITOUWADGE WELL SUPPLY

DIST. SYSTEM WARBLER DR STANDING	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		3.000 <1 3.000 <1 2.900 <1 5.900 <1 5.900 <1 80L 80L 80L 80L 80L 80L 80L	560.000 410.000 390.000 1300.000 1300.000 1200.000 140.000 1500.000 1500.000 1500.000 340.000
DIST. SYSTEM WARBLER DR FREE FLOW	1		2.400 <t 2.400 <t 8.400 <t 5.200 <t 1.600 <t 801 801 801 801 801 801 801 801 801 801</t </t </t </t </t 	50.000 53.000 71.000 36.000 91.000 120.000 130.000 130.000 140.000 93.000 62.000 90.000
RESERVOIR TREATED	.iNE = 50.0 (A1)		- N W W .	1000 (A3) 16.000 1.500 <t 1.800="" 1.900="" 2.000="" 2.200="" 3.100="" 4.400="" <t="" <t<="" td=""></t>
. 7	GUIDELINE		3.000 <1	GUIDELINE 2.200 < T
WELL 3 WELL	DET'N LIMIT = 0.50	11.000 B0L 2.200 <t 2.600 <t< td=""><td></td><td>2.400 <1 1.700 <1 1.700 <1 1.400 <1 1.400 <1 1.900 <1 1.900 <1 1.500 <1 2.500 <1 2.5</td></t<></t 		2.400 <1 1.700 <1 1.700 <1 1.400 <1 1.400 <1 1.900 <1 1.900 <1 1.500 <1 2.500 <1 2.5
2	. DE		1> 068.	2.600 <1
WELL 1 WELL RAW RAW	METALS	12.000 .710 <t 10.000 10.000</t 	1.500 <1 5.800 .520 <1 2.000 <1 4,200 <1 13.000 .830 <1 .570 <1 .890 <1	1.900 <1 1.400 <1 1.600 <1 1.600 <1 2.400 <1 2.400 <1 1.800 <1 1.600 <1 1.700 <1 1.700 <1 1.300 <1 1.300 <1
W. 8.4	CHROMIUM (UG/L		1991 MAY 1991 JUN 1991 JUL 1991 SEP 1991 OCT 1991 OCT 1992 JAN 1992 MAY 1992 JUL	1991 JAN 1991 JAN 1991 FEB 1991 APR 1991 APR 1991 JUN 1991 JUN 1991 SEP 1991 OCT 1991 OCT 1992 JAN 1992 JAN 1992 JAN

DIST. SYSTEM WARBLER DR STANDING		٠	B0L	6.900 <1		19,000 <1	12,000 <7		13,000 <t< td=""><td>BOL</td><td>14.000 < 1</td><td></td><td></td><td></td><td>29.000 <t< td=""><td></td><td>•</td><td></td><td>•</td><td>18.000</td><td>25.000</td><td>30.000</td><td>33.000</td><td>32.000</td><td>23.000</td><td>38,000</td><td>26.000</td><td>26.000</td><td>000.89</td><td>47.000</td><td>47.000</td><td>43.000</td></t<></td></t<>	BOL	14.000 < 1				29.000 <t< td=""><td></td><td>•</td><td></td><td>•</td><td>18.000</td><td>25.000</td><td>30.000</td><td>33.000</td><td>32.000</td><td>23.000</td><td>38,000</td><td>26.000</td><td>26.000</td><td>000.89</td><td>47.000</td><td>47.000</td><td>43.000</td></t<>		•		•	18.000	25.000	30.000	33.000	32.000	23.000	38,000	26.000	26.000	000.89	47.000	47.000	43.000
DIST. SYSTEM WARBLER DR FREE FLOW		7,000 <7	BOL	9.000 <1	7.900 <1	14.000 < 1	7.100 <1						1> 000.22	BOL	35.000 <t< td=""><td>1</td><td>٠</td><td>0 0 0 0 0 0 0 0 0 0 0 1 1 1 1</td><td>19,000</td><td>17,000</td><td>33,000</td><td>33,000</td><td>32.000</td><td>23.000</td><td>23.000</td><td>26.000</td><td>39.000</td><td>23.000</td><td>33.000</td><td>72.000</td><td>2.400</td><td>000.09</td></t<>	1	٠	0 0 0 0 0 0 0 0 0 0 0 1 1 1 1	19,000	17,000	33,000	33,000	32.000	23.000	23.000	26.000	39.000	23.000	33.000	72.000	2.400	000.09
RESERVOIR TREATED	LINE = 300 (A3)	BOL	24.000 <1	13.000 <t< td=""><td></td><td>19.000 <1</td><td>6.300 <t< td=""><td>43.000 <t< td=""><td>26.000 <t< td=""><td>7.700 <t< td=""><td>30.000 <t< td=""><td>15.000 <t< td=""><td>14.000 <t< td=""><td>₹3.000 <t< td=""><td>8.700 <t< td=""><td>LINE = 1.0 (A1)</td><td>BOL</td><td>LINE = 50.0 (A3)</td><td>750.000</td><td>51,000</td><td>63.000</td><td>84.000</td><td>86.000</td><td>29.000</td><td>98.000</td><td>130.000</td><td>58.000</td><td>180.000</td><td>37.000</td><td>82.000</td><td>000.79</td><td>39.000</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		19.000 <1	6.300 <t< td=""><td>43.000 <t< td=""><td>26.000 <t< td=""><td>7.700 <t< td=""><td>30.000 <t< td=""><td>15.000 <t< td=""><td>14.000 <t< td=""><td>₹3.000 <t< td=""><td>8.700 <t< td=""><td>LINE = 1.0 (A1)</td><td>BOL</td><td>LINE = 50.0 (A3)</td><td>750.000</td><td>51,000</td><td>63.000</td><td>84.000</td><td>86.000</td><td>29.000</td><td>98.000</td><td>130.000</td><td>58.000</td><td>180.000</td><td>37.000</td><td>82.000</td><td>000.79</td><td>39.000</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	43.000 <t< td=""><td>26.000 <t< td=""><td>7.700 <t< td=""><td>30.000 <t< td=""><td>15.000 <t< td=""><td>14.000 <t< td=""><td>₹3.000 <t< td=""><td>8.700 <t< td=""><td>LINE = 1.0 (A1)</td><td>BOL</td><td>LINE = 50.0 (A3)</td><td>750.000</td><td>51,000</td><td>63.000</td><td>84.000</td><td>86.000</td><td>29.000</td><td>98.000</td><td>130.000</td><td>58.000</td><td>180.000</td><td>37.000</td><td>82.000</td><td>000.79</td><td>39.000</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	26.000 <t< td=""><td>7.700 <t< td=""><td>30.000 <t< td=""><td>15.000 <t< td=""><td>14.000 <t< td=""><td>₹3.000 <t< td=""><td>8.700 <t< td=""><td>LINE = 1.0 (A1)</td><td>BOL</td><td>LINE = 50.0 (A3)</td><td>750.000</td><td>51,000</td><td>63.000</td><td>84.000</td><td>86.000</td><td>29.000</td><td>98.000</td><td>130.000</td><td>58.000</td><td>180.000</td><td>37.000</td><td>82.000</td><td>000.79</td><td>39.000</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	7.700 <t< td=""><td>30.000 <t< td=""><td>15.000 <t< td=""><td>14.000 <t< td=""><td>₹3.000 <t< td=""><td>8.700 <t< td=""><td>LINE = 1.0 (A1)</td><td>BOL</td><td>LINE = 50.0 (A3)</td><td>750.000</td><td>51,000</td><td>63.000</td><td>84.000</td><td>86.000</td><td>29.000</td><td>98.000</td><td>130.000</td><td>58.000</td><td>180.000</td><td>37.000</td><td>82.000</td><td>000.79</td><td>39.000</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	30.000 <t< td=""><td>15.000 <t< td=""><td>14.000 <t< td=""><td>₹3.000 <t< td=""><td>8.700 <t< td=""><td>LINE = 1.0 (A1)</td><td>BOL</td><td>LINE = 50.0 (A3)</td><td>750.000</td><td>51,000</td><td>63.000</td><td>84.000</td><td>86.000</td><td>29.000</td><td>98.000</td><td>130.000</td><td>58.000</td><td>180.000</td><td>37.000</td><td>82.000</td><td>000.79</td><td>39.000</td></t<></td></t<></td></t<></td></t<></td></t<>	15.000 <t< td=""><td>14.000 <t< td=""><td>₹3.000 <t< td=""><td>8.700 <t< td=""><td>LINE = 1.0 (A1)</td><td>BOL</td><td>LINE = 50.0 (A3)</td><td>750.000</td><td>51,000</td><td>63.000</td><td>84.000</td><td>86.000</td><td>29.000</td><td>98.000</td><td>130.000</td><td>58.000</td><td>180.000</td><td>37.000</td><td>82.000</td><td>000.79</td><td>39.000</td></t<></td></t<></td></t<></td></t<>	14.000 <t< td=""><td>₹3.000 <t< td=""><td>8.700 <t< td=""><td>LINE = 1.0 (A1)</td><td>BOL</td><td>LINE = 50.0 (A3)</td><td>750.000</td><td>51,000</td><td>63.000</td><td>84.000</td><td>86.000</td><td>29.000</td><td>98.000</td><td>130.000</td><td>58.000</td><td>180.000</td><td>37.000</td><td>82.000</td><td>000.79</td><td>39.000</td></t<></td></t<></td></t<>	₹3.000 <t< td=""><td>8.700 <t< td=""><td>LINE = 1.0 (A1)</td><td>BOL</td><td>LINE = 50.0 (A3)</td><td>750.000</td><td>51,000</td><td>63.000</td><td>84.000</td><td>86.000</td><td>29.000</td><td>98.000</td><td>130.000</td><td>58.000</td><td>180.000</td><td>37.000</td><td>82.000</td><td>000.79</td><td>39.000</td></t<></td></t<>	8.700 <t< td=""><td>LINE = 1.0 (A1)</td><td>BOL</td><td>LINE = 50.0 (A3)</td><td>750.000</td><td>51,000</td><td>63.000</td><td>84.000</td><td>86.000</td><td>29.000</td><td>98.000</td><td>130.000</td><td>58.000</td><td>180.000</td><td>37.000</td><td>82.000</td><td>000.79</td><td>39.000</td></t<>	LINE = 1.0 (A1)	BOL	LINE = 50.0 (A3)	750.000	51,000	63.000	84.000	86.000	29.000	98.000	130.000	58.000	180.000	37.000	82.000	000.79	39.000
	GUIDELINE											٠			BOL	GUIDELINE	BOL	GUIDELINE	,										٠	•		.570
WELL 4 RAW	00.9			<t></t>	<t></t>	<7	<t.< td=""><td></td><td></td><td></td><td><t></t></td><td></td><td></td><td></td><td></td><td>0.02</td><td></td><td>.0.05</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t.<>				<t></t>					0.02		.0.05														
WELL 3 RAW	DET'N LIMIT =	19,000	19.000									23.000	BOL	BOL	BOL	DET'N LIMIT =	108.	DET'N LIMIT =	8,300	7 100	5.400	7,600	5.300	7.700	8.100	8.700	7.700	8.200	48.000	000.09	17.000	23.000
WELL 2 RAW	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,		٠			•					٠			1> 009.9	* * * * * * * * * * * * * * * * * * *	BOL	* 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		•	•		•		•	٠	•					4.100
WELL 1 RAW	METALS	50.000 <1		79.000	94.000	1> 000.09	65.000	72.000	85.000	92.000	100.000	33.000 <1	28.000 <t< td=""><td>100,000</td><td>٠</td><td></td><td>108</td><td></td><td>51 000</td><td>110 000</td><td>280.000</td><td>280.000</td><td>290,000</td><td>300.000</td><td>370.000</td><td>350.000</td><td>000.077</td><td>550.000</td><td>73.000</td><td></td><td>700.000</td><td></td></t<>	100,000	٠		108		51 000	110 000	280.000	280.000	290,000	300.000	370.000	350.000	000.077	550.000	73.000		700.000	
WELL	IRON (UG/L)	1001 NAI. 1001		1991 APR							1991 OCT	1991 NOV	1992 JAN	1992 MAY		MERCURY (UG/L	43 SAMPLES	MANGANESE (UG/L	1001 IAN				1991 MAY					1991 OCT		1992 JAN	1992 MAY	1992 JUL

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 MANITOUWADGE WELL SUPPLY

DIST. SYSTEM WARBLER OR STANDING	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		. 730	.740	006.	T> 067.	.570	.620	.590	.950	.590	099.	.740	.800	.450 <t< th=""><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th></th><th>1,900 <t< th=""><th>3.200</th><th>3.300</th><th>BDL</th><th>.800 <t< th=""><th>108</th><th>1.500 <1</th><th>1.400 <t< th=""><th>1.600 <t< th=""><th>BOL</th><th>BOL</th><th>1.600 <7</th><th>2.000 <1</th></t<></th></t<></th></t<></th></t<></th></t<>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1,900 <t< th=""><th>3.200</th><th>3.300</th><th>BDL</th><th>.800 <t< th=""><th>108</th><th>1.500 <1</th><th>1.400 <t< th=""><th>1.600 <t< th=""><th>BOL</th><th>BOL</th><th>1.600 <7</th><th>2.000 <1</th></t<></th></t<></th></t<></th></t<>	3.200	3.300	BDL	.800 <t< th=""><th>108</th><th>1.500 <1</th><th>1.400 <t< th=""><th>1.600 <t< th=""><th>BOL</th><th>BOL</th><th>1.600 <7</th><th>2.000 <1</th></t<></th></t<></th></t<>	108	1.500 <1	1.400 <t< th=""><th>1.600 <t< th=""><th>BOL</th><th>BOL</th><th>1.600 <7</th><th>2.000 <1</th></t<></th></t<>	1.600 <t< th=""><th>BOL</th><th>BOL</th><th>1.600 <7</th><th>2.000 <1</th></t<>	BOL	BOL	1.600 <7	2.000 <1
DIST, SYSTEM WARBLER OR FREE FLOW	7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	029	.580	.710	.630	.500 <t< td=""><td>.630</td><td>.610</td><td>₽> 005.</td><td>.410 <t< td=""><td>.680</td><td>.650</td><td>099.</td><td>.680</td><td>.410 <t< td=""><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>25.000</td><td>.250 <t< td=""><td>1.500 <t< td=""><td>1.600 <1</td><td>B0L</td><td>1> 007.</td><td>B0L</td><td>.950 <t< td=""><td>1,300 <t< td=""><td>.430 <t< td=""><td>BOL</td><td>1> 066.</td><td>BOL</td><td>1.800 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.630	.610	₽> 005.	.410 <t< td=""><td>.680</td><td>.650</td><td>099.</td><td>.680</td><td>.410 <t< td=""><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>25.000</td><td>.250 <t< td=""><td>1.500 <t< td=""><td>1.600 <1</td><td>B0L</td><td>1> 007.</td><td>B0L</td><td>.950 <t< td=""><td>1,300 <t< td=""><td>.430 <t< td=""><td>BOL</td><td>1> 066.</td><td>BOL</td><td>1.800 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.680	.650	099.	.680	.410 <t< td=""><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>25.000</td><td>.250 <t< td=""><td>1.500 <t< td=""><td>1.600 <1</td><td>B0L</td><td>1> 007.</td><td>B0L</td><td>.950 <t< td=""><td>1,300 <t< td=""><td>.430 <t< td=""><td>BOL</td><td>1> 066.</td><td>BOL</td><td>1.800 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25.000	.250 <t< td=""><td>1.500 <t< td=""><td>1.600 <1</td><td>B0L</td><td>1> 007.</td><td>B0L</td><td>.950 <t< td=""><td>1,300 <t< td=""><td>.430 <t< td=""><td>BOL</td><td>1> 066.</td><td>BOL</td><td>1.800 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1.500 <t< td=""><td>1.600 <1</td><td>B0L</td><td>1> 007.</td><td>B0L</td><td>.950 <t< td=""><td>1,300 <t< td=""><td>.430 <t< td=""><td>BOL</td><td>1> 066.</td><td>BOL</td><td>1.800 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	1.600 <1	B0L	1> 007.	B0L	.950 <t< td=""><td>1,300 <t< td=""><td>.430 <t< td=""><td>BOL</td><td>1> 066.</td><td>BOL</td><td>1.800 <t< td=""></t<></td></t<></td></t<></td></t<>	1,300 <t< td=""><td>.430 <t< td=""><td>BOL</td><td>1> 066.</td><td>BOL</td><td>1.800 <t< td=""></t<></td></t<></td></t<>	.430 <t< td=""><td>BOL</td><td>1> 066.</td><td>BOL</td><td>1.800 <t< td=""></t<></td></t<>	BOL	1> 066.	BOL	1.800 <t< td=""></t<>
RESERVOIR IREATED	GUIDELINE = N/A	BOL	.350 <7	. 590	T> 074.	.420 <t< td=""><td>.970.</td><td>059.</td><td>.360 <t< td=""><td>.520</td><td>T> 067.</td><td>.630</td><td>0.29</td><td>.850</td><td>.430 <t< td=""><td>GUIDELINE = 350 (03)</td><td>40.000</td><td>BOL</td><td>1.300 <1</td><td>1.300 <1</td><td>801</td><td>108</td><td>BOL</td><td>1> 070.</td><td>1.600 <1</td><td>1> 067.</td><td>108 .</td><td>BOL</td><td>108</td><td>1.</td></t<></td></t<></td></t<>	.970.	059.	.360 <t< td=""><td>.520</td><td>T> 067.</td><td>.630</td><td>0.29</td><td>.850</td><td>.430 <t< td=""><td>GUIDELINE = 350 (03)</td><td>40.000</td><td>BOL</td><td>1.300 <1</td><td>1.300 <1</td><td>801</td><td>108</td><td>BOL</td><td>1> 070.</td><td>1.600 <1</td><td>1> 067.</td><td>108 .</td><td>BOL</td><td>108</td><td>1.</td></t<></td></t<>	.520	T> 067.	.630	0.29	.850	.430 <t< td=""><td>GUIDELINE = 350 (03)</td><td>40.000</td><td>BOL</td><td>1.300 <1</td><td>1.300 <1</td><td>801</td><td>108</td><td>BOL</td><td>1> 070.</td><td>1.600 <1</td><td>1> 067.</td><td>108 .</td><td>BOL</td><td>108</td><td>1.</td></t<>	GUIDELINE = 350 (03)	40.000	BOL	1.300 <1	1.300 <1	801	108	BOL	1> 070.	1.600 <1	1> 067.	108 .	BOL	108	1.
WELL 4 RAW	0.05			•	٠	<t></t>	•	٠	٠	·	<t> .</t>	٠	٠		<t> 700</t>	0.20	•			. 1>	٠		٠	. 1>		. □				<t> .630 <t< td=""></t<></t>
WELL 3 RAW	DET'N LIMIT =	.320	.320	.520	099.		009.	.560				072°	.780	•	.480	DET'N LIMIT =	34.000		2.200		30F		108		2.200		301	108	BOL	1.400
WELL 2 RAW		٠	٠	٠	٠		٠	•	•	•			٠		.200 <1	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٠		٠	٠	٠	٠	٠	٠	•	٠		٠	•	1> 087.
WELL 1 RAW	METALS	. 170 < 7	T> 022.	.300 <t< td=""><td>.330 <t< td=""><td>T> 091.</td><td></td><td></td><td></td><td></td><td>.280 <t< td=""><td>T> 022.</td><td>.270 <t< td=""><td>.540</td><td></td><td>(</td><td>28.000</td><td>108</td><td>.330 <7</td><td>1.200 <t< td=""><td>108</td><td>BOL</td><td>BOL</td><td>1,700 <t< td=""><td>2.400</td><td>T> 067.</td><td>B0L</td><td>BOL</td><td>T> 028.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.330 <t< td=""><td>T> 091.</td><td></td><td></td><td></td><td></td><td>.280 <t< td=""><td>T> 022.</td><td>.270 <t< td=""><td>.540</td><td></td><td>(</td><td>28.000</td><td>108</td><td>.330 <7</td><td>1.200 <t< td=""><td>108</td><td>BOL</td><td>BOL</td><td>1,700 <t< td=""><td>2.400</td><td>T> 067.</td><td>B0L</td><td>BOL</td><td>T> 028.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 091.					.280 <t< td=""><td>T> 022.</td><td>.270 <t< td=""><td>.540</td><td></td><td>(</td><td>28.000</td><td>108</td><td>.330 <7</td><td>1.200 <t< td=""><td>108</td><td>BOL</td><td>BOL</td><td>1,700 <t< td=""><td>2.400</td><td>T> 067.</td><td>B0L</td><td>BOL</td><td>T> 028.</td><td></td></t<></td></t<></td></t<></td></t<>	T> 022.	.270 <t< td=""><td>.540</td><td></td><td>(</td><td>28.000</td><td>108</td><td>.330 <7</td><td>1.200 <t< td=""><td>108</td><td>BOL</td><td>BOL</td><td>1,700 <t< td=""><td>2.400</td><td>T> 067.</td><td>B0L</td><td>BOL</td><td>T> 028.</td><td></td></t<></td></t<></td></t<>	.540		(28.000	108	.330 <7	1.200 <t< td=""><td>108</td><td>BOL</td><td>BOL</td><td>1,700 <t< td=""><td>2.400</td><td>T> 067.</td><td>B0L</td><td>BOL</td><td>T> 028.</td><td></td></t<></td></t<>	108	BOL	BOL	1,700 <t< td=""><td>2.400</td><td>T> 067.</td><td>B0L</td><td>BOL</td><td>T> 028.</td><td></td></t<>	2.400	T> 067.	B0L	BOL	T> 028.	
	MOLYBDENUM (UG/L			1991 APR										1992 MAY	1992 JUL	NICKEL (UG/L			1991 APR										1992 MAY	

DIST, SYSTEM WARBLER DR STANDING			2.000	1.900	3.300	.570	1.600	1.700	1.700	.130 <1	1.800	2.400	1.400	3.500	005.4			.620	T> 054.	.550	.510	.720	.630	.560	.520	.560	009.	.550	1> 057.	T> 098.
DIST. SYSTEM WARBLER OR FREE FLOW	, , , , , , , , , , , , , , , , , , ,	.340 <1	.270 <t< td=""><td>.250 <1</td><td>T> 074.</td><td>.550</td><td>.610</td><td>T> 084.</td><td>T> 07E.</td><td>.310 <t< td=""><td>T> 054.</td><td>1> 072.</td><td>.360 <t< td=""><td>. 190 <t< td=""><td>.370 <1</td><td></td><td>1> 057.</td><td>.560</td><td>1> 087.</td><td>T> 024.</td><td>079.</td><td>059.</td><td>.610</td><td>.430 <t< td=""><td>T> 074.</td><td>.560</td><td>.850</td><td>1> 077</td><td>1> 057.</td><td>.270 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.250 <1	T> 074.	.550	.610	T> 084.	T> 07E.	.310 <t< td=""><td>T> 054.</td><td>1> 072.</td><td>.360 <t< td=""><td>. 190 <t< td=""><td>.370 <1</td><td></td><td>1> 057.</td><td>.560</td><td>1> 087.</td><td>T> 024.</td><td>079.</td><td>059.</td><td>.610</td><td>.430 <t< td=""><td>T> 074.</td><td>.560</td><td>.850</td><td>1> 077</td><td>1> 057.</td><td>.270 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	T> 054.	1> 072.	.360 <t< td=""><td>. 190 <t< td=""><td>.370 <1</td><td></td><td>1> 057.</td><td>.560</td><td>1> 087.</td><td>T> 024.</td><td>079.</td><td>059.</td><td>.610</td><td>.430 <t< td=""><td>T> 074.</td><td>.560</td><td>.850</td><td>1> 077</td><td>1> 057.</td><td>.270 <t< td=""></t<></td></t<></td></t<></td></t<>	. 190 <t< td=""><td>.370 <1</td><td></td><td>1> 057.</td><td>.560</td><td>1> 087.</td><td>T> 024.</td><td>079.</td><td>059.</td><td>.610</td><td>.430 <t< td=""><td>T> 074.</td><td>.560</td><td>.850</td><td>1> 077</td><td>1> 057.</td><td>.270 <t< td=""></t<></td></t<></td></t<>	.370 <1		1> 057.	.560	1> 087.	T> 024.	079.	059.	.610	.430 <t< td=""><td>T> 074.</td><td>.560</td><td>.850</td><td>1> 077</td><td>1> 057.</td><td>.270 <t< td=""></t<></td></t<>	T> 074.	.560	.850	1> 077	1> 057.	.270 <t< td=""></t<>
RESERVOIR TREATED	GUIOELINE = 10 (A1)	BOL	BOL		T> 090.		T> 080.	2.000	108	1> 090.	BOL	T> 070.	BDL	301	. 160 <t< td=""><td>GUIOELINE = 146 (D4)</td><td>.360 <t< td=""><td>009.</td><td>.420 <t< td=""><td>.380 <t< td=""><td>.560</td><td>.510</td><td>.550</td><td>.420 <t< td=""><td>T> 007.</td><td>.380 <7</td><td>. 530</td><td>.390 <t< td=""><td>079.</td><td>.230 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	GUIOELINE = 146 (D4)	.360 <t< td=""><td>009.</td><td>.420 <t< td=""><td>.380 <t< td=""><td>.560</td><td>.510</td><td>.550</td><td>.420 <t< td=""><td>T> 007.</td><td>.380 <7</td><td>. 530</td><td>.390 <t< td=""><td>079.</td><td>.230 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	009.	.420 <t< td=""><td>.380 <t< td=""><td>.560</td><td>.510</td><td>.550</td><td>.420 <t< td=""><td>T> 007.</td><td>.380 <7</td><td>. 530</td><td>.390 <t< td=""><td>079.</td><td>.230 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.380 <t< td=""><td>.560</td><td>.510</td><td>.550</td><td>.420 <t< td=""><td>T> 007.</td><td>.380 <7</td><td>. 530</td><td>.390 <t< td=""><td>079.</td><td>.230 <t< td=""></t<></td></t<></td></t<></td></t<>	.560	.510	.550	.420 <t< td=""><td>T> 007.</td><td>.380 <7</td><td>. 530</td><td>.390 <t< td=""><td>079.</td><td>.230 <t< td=""></t<></td></t<></td></t<>	T> 007.	.380 <7	. 530	.390 <t< td=""><td>079.</td><td>.230 <t< td=""></t<></td></t<>	079.	.230 <t< td=""></t<>
WELL 4 RAW	GU101		٠	•			٠			٠	٠		٠		108	GUID												٠		.360 <t< td=""></t<>
WELL 3 WE	0ET'N LIMIT = 0.05	T> 090.		T> 090.		. 090 ×T	BOL	. 060 ×T	80L	1> 090.	. 100 <t< td=""><td>T> 011.</td><td>BOL</td><td>. 120 <t< td=""><td>108</td><td>DET'N LIMIT = 0.05</td><td>T> 067.</td><td>009.</td><td>.430 <t< td=""><td>T> 067.</td><td>079.</td><td>.720</td><td>.580</td><td>1> 087.</td><td>T> 074.</td><td>.540</td><td>.750</td><td>.770</td><td>.410 <t< td=""><td>T> 092.</td></t<></td></t<></td></t<></td></t<>	T> 011.	BOL	. 120 <t< td=""><td>108</td><td>DET'N LIMIT = 0.05</td><td>T> 067.</td><td>009.</td><td>.430 <t< td=""><td>T> 067.</td><td>079.</td><td>.720</td><td>.580</td><td>1> 087.</td><td>T> 074.</td><td>.540</td><td>.750</td><td>.770</td><td>.410 <t< td=""><td>T> 092.</td></t<></td></t<></td></t<>	108	DET'N LIMIT = 0.05	T> 067.	009.	.430 <t< td=""><td>T> 067.</td><td>079.</td><td>.720</td><td>.580</td><td>1> 087.</td><td>T> 074.</td><td>.540</td><td>.750</td><td>.770</td><td>.410 <t< td=""><td>T> 092.</td></t<></td></t<>	T> 067.	079.	.720	.580	1> 087.	T> 074.	.540	.750	.770	.410 <t< td=""><td>T> 092.</td></t<>	T> 092.
WELL 2 RAW	5 d d d d d d d d d d d d d d d d d d d	٠			•			٠			•			٠	108	1 0 1 1 1 1 1 1 1 1 1 1 1 1	٠	٠			٠		٠				٠	٠		7> 050.
WELL 1 RAW	METALS	BDL	108	301	BDL	108	BOL	T> 070.	BOL	BDL	BOL		.240 <t< td=""><td>108</td><td></td><td></td><td>.390 <t< td=""><td>.370 <</td><td>.340 <t< td=""><td>.390 <t< td=""><td>T> 054.</td><td>069.</td><td>076</td><td>.360 <t< td=""><td>T> 074.</td><td>.350 <t< td=""><td>.610</td><td>.500 <t< td=""><td>.360 <t< td=""><td>0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	108			.390 <t< td=""><td>.370 <</td><td>.340 <t< td=""><td>.390 <t< td=""><td>T> 054.</td><td>069.</td><td>076</td><td>.360 <t< td=""><td>T> 074.</td><td>.350 <t< td=""><td>.610</td><td>.500 <t< td=""><td>.360 <t< td=""><td>0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.370 <	.340 <t< td=""><td>.390 <t< td=""><td>T> 054.</td><td>069.</td><td>076</td><td>.360 <t< td=""><td>T> 074.</td><td>.350 <t< td=""><td>.610</td><td>.500 <t< td=""><td>.360 <t< td=""><td>0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.390 <t< td=""><td>T> 054.</td><td>069.</td><td>076</td><td>.360 <t< td=""><td>T> 074.</td><td>.350 <t< td=""><td>.610</td><td>.500 <t< td=""><td>.360 <t< td=""><td>0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></t<></td></t<></td></t<></td></t<></td></t<>	T> 054.	069.	076	.360 <t< td=""><td>T> 074.</td><td>.350 <t< td=""><td>.610</td><td>.500 <t< td=""><td>.360 <t< td=""><td>0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></t<></td></t<></td></t<></td></t<>	T> 074.	.350 <t< td=""><td>.610</td><td>.500 <t< td=""><td>.360 <t< td=""><td>0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></t<></td></t<></td></t<>	.610	.500 <t< td=""><td>.360 <t< td=""><td>0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></t<></td></t<>	.360 <t< td=""><td>0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></t<>	0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	LEAD (UG/L	1991 JAN	1991 FEB										1992 JAN			ANTIMONY (UG/L	1991 JAN						1991 JUL							

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 MANITOUWADGE WELL SUPPLY

DIST. SYSTEM WARBLER OR STANDING		• 4	80L 80L	1.300 <t< th=""><th>1.200 <t< th=""><th>BOL</th><th>80L</th><th>1.300 <t< th=""><th>2.800 <t< th=""><th>BOL</th><th>108</th><th>BOL</th><th></th><th>•</th><th>100.000</th><th>100.000</th><th>319.000</th><th>110.000</th><th>92.000</th><th>100.000</th><th>110.000</th><th>100.000</th><th>100.000</th><th>130,000</th><th>93.000</th><th>130.000</th></t<></th></t<></th></t<></th></t<>	1.200 <t< th=""><th>BOL</th><th>80L</th><th>1.300 <t< th=""><th>2.800 <t< th=""><th>BOL</th><th>108</th><th>BOL</th><th></th><th>•</th><th>100.000</th><th>100.000</th><th>319.000</th><th>110.000</th><th>92.000</th><th>100.000</th><th>110.000</th><th>100.000</th><th>100.000</th><th>130,000</th><th>93.000</th><th>130.000</th></t<></th></t<></th></t<>	BOL	80L	1.300 <t< th=""><th>2.800 <t< th=""><th>BOL</th><th>108</th><th>BOL</th><th></th><th>•</th><th>100.000</th><th>100.000</th><th>319.000</th><th>110.000</th><th>92.000</th><th>100.000</th><th>110.000</th><th>100.000</th><th>100.000</th><th>130,000</th><th>93.000</th><th>130.000</th></t<></th></t<>	2.800 <t< th=""><th>BOL</th><th>108</th><th>BOL</th><th></th><th>•</th><th>100.000</th><th>100.000</th><th>319.000</th><th>110.000</th><th>92.000</th><th>100.000</th><th>110.000</th><th>100.000</th><th>100.000</th><th>130,000</th><th>93.000</th><th>130.000</th></t<>	BOL	108	BOL		•	100.000	100.000	319.000	110.000	92.000	100.000	110.000	100.000	100.000	130,000	93.000	130.000
DIST. SYSTEM WARBLER DR FREE FLOW	, , , , , , , , , , , , , , , , , , ,	1.800 <t< td=""><td>80L 80L</td><td>801</td><td>1.200 < 1</td><td></td><td>1.300 <t< td=""><td>1.500 <t< td=""><td>BDL</td><td>1,100 <t< td=""><td>BDL</td><td>1,400 <1</td><td></td><td>110,000</td><td>100.000</td><td>110.000</td><td>92,000</td><td>100.000</td><td>91,000</td><td>100.000</td><td>110.000</td><td>100,000</td><td>120.000</td><td>130.000</td><td>93,000</td><td>140.000</td></t<></td></t<></td></t<></td></t<>	80L 80L	801	1.200 < 1		1.300 <t< td=""><td>1.500 <t< td=""><td>BDL</td><td>1,100 <t< td=""><td>BDL</td><td>1,400 <1</td><td></td><td>110,000</td><td>100.000</td><td>110.000</td><td>92,000</td><td>100.000</td><td>91,000</td><td>100.000</td><td>110.000</td><td>100,000</td><td>120.000</td><td>130.000</td><td>93,000</td><td>140.000</td></t<></td></t<></td></t<>	1.500 <t< td=""><td>BDL</td><td>1,100 <t< td=""><td>BDL</td><td>1,400 <1</td><td></td><td>110,000</td><td>100.000</td><td>110.000</td><td>92,000</td><td>100.000</td><td>91,000</td><td>100.000</td><td>110.000</td><td>100,000</td><td>120.000</td><td>130.000</td><td>93,000</td><td>140.000</td></t<></td></t<>	BDL	1,100 <t< td=""><td>BDL</td><td>1,400 <1</td><td></td><td>110,000</td><td>100.000</td><td>110.000</td><td>92,000</td><td>100.000</td><td>91,000</td><td>100.000</td><td>110.000</td><td>100,000</td><td>120.000</td><td>130.000</td><td>93,000</td><td>140.000</td></t<>	BDL	1,400 <1		110,000	100.000	110.000	92,000	100.000	91,000	100.000	110.000	100,000	120.000	130.000	93,000	140.000
RESERVOIR TREATED	GUIDELINE = 10 (A1)	1.600 <1	BOL	801	80L		1.200 <t< td=""><td>380 80L</td><td>1.400 <t< td=""><td>1.100 <t< td=""><td>BDL</td><td>B0L</td><td>GUIDELINE = N/A</td><td>120.000</td><td>120.000</td><td>110.000</td><td>110.000</td><td>000.021</td><td>100,000</td><td>120.000</td><td>100.000</td><td>120.000</td><td>000.66</td><td>130.000</td><td>000.96</td><td>120.000</td></t<></td></t<></td></t<>	380 80L	1.400 <t< td=""><td>1.100 <t< td=""><td>BDL</td><td>B0L</td><td>GUIDELINE = N/A</td><td>120.000</td><td>120.000</td><td>110.000</td><td>110.000</td><td>000.021</td><td>100,000</td><td>120.000</td><td>100.000</td><td>120.000</td><td>000.66</td><td>130.000</td><td>000.96</td><td>120.000</td></t<></td></t<>	1.100 <t< td=""><td>BDL</td><td>B0L</td><td>GUIDELINE = N/A</td><td>120.000</td><td>120.000</td><td>110.000</td><td>110.000</td><td>000.021</td><td>100,000</td><td>120.000</td><td>100.000</td><td>120.000</td><td>000.66</td><td>130.000</td><td>000.96</td><td>120.000</td></t<>	BDL	B0L	GUIDELINE = N/A	120.000	120.000	110.000	110.000	000.021	100,000	120.000	100.000	120.000	000.66	130.000	000.96	120.000
WELL 4 RAW	8 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	٠		•						٠	٠	BOL		٠		•	•	•	• •	٠	٠		٠	٠	٠	110.000
WELL 3 RAW	DET'N LIMIT = 1.00	2.100 <t< td=""><td>1.000 BDL .</td><td>801</td><td>108 80F</td><td>BOL</td><td>108 BD1</td><td>80L</td><td>1.300 <1</td><td>BOL</td><td>BDL</td><td>BOL</td><td>DET'N LIMIT = 0.10</td><td>160.000</td><td>. 140.000</td><td>120.000</td><td>91.000</td><td>100.000</td><td>100,000</td><td>120.000</td><td>130.000</td><td>120.000</td><td>120.000</td><td>120.000</td><td>100.000</td><td>120.000</td></t<>	1.000 BDL .	801	108 80F	BOL	108 BD1	80L	1.300 <1	BOL	BDL	BOL	DET'N LIMIT = 0.10	160.000	. 140.000	120.000	91.000	100.000	100,000	120.000	130.000	120.000	120.000	120.000	100.000	120.000
WELL 2 RAW	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠			• •		٠					BOL		٠				•	• •		٠	٠				140.000
WELL 1 RAW	METALS	1.300 <f< td=""><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>801 801</td><td>B01</td><td>1,700 <t< td=""><td>BOL</td><td>BOL</td><td>٠</td><td>^</td><td>140,000</td><td>140,000</td><td>160.000</td><td>160.000</td><td>120 000</td><td>150.000</td><td>150.000</td><td>150.000</td><td>150,000</td><td>130.000</td><td>150.000</td><td>180.000</td><td></td></t<></td></f<>	BOL	BDL	BDL	BDL	801 801	B01	1,700 <t< td=""><td>BOL</td><td>BOL</td><td>٠</td><td>^</td><td>140,000</td><td>140,000</td><td>160.000</td><td>160.000</td><td>120 000</td><td>150.000</td><td>150.000</td><td>150.000</td><td>150,000</td><td>130.000</td><td>150.000</td><td>180.000</td><td></td></t<>	BOL	BOL	٠	^	140,000	140,000	160.000	160.000	120 000	150.000	150.000	150.000	150,000	130.000	150.000	180.000	
3 02	SELENIUM (UG/L		1991 FEB 1991 APR	1991 APR			1991 AUG			1992 JAN		1992 JUL	STRONTIUM (UG/L				1991 APR	1001 IIN								1992 JUL

DIST. SYSTEM WARBLER DR STANDING	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11.000	14.000	31.000	7.200		1.800 <1	9.500	6.200	23.000	21.000		٠	BDL	BDL	BOL	BDL	801	B0L	801	BDL	BDL	.120 <t< td=""><td>108</td><td>801</td><td>BOL</td></t<>	108	801	BOL
DIST, SYSTEM WARBLER DR FREE FLOW		37.000	15.000 17.000	32.000	7.600		7 000.2	11.000	6.200	21.000	22,000		BOL	BDL	BOL	BDL	BDL	BOL	108	108	80L	BDL	.150 <t< td=""><td>BDL</td><td>108</td><td>BDL</td></t<>	BDL	108	BDL
RESERVOIR TREATED	GUIDELINE = N/A	40.000	15.000	32.000	7.700	1.900 <t< td=""><td>7 300</td><td>11.000</td><td>5.700</td><td>23.000</td><td>19.000</td><td>GUIOELINE = 13 (D4)</td><td>BDL</td><td>BOL</td><td>BOL</td><td>108</td><td>BOL</td><td>BDL</td><td>BDL</td><td>108</td><td>BDL</td><td>BOL</td><td>T> 070.</td><td>BOL</td><td>80r</td><td>BDL</td></t<>	7 300	11.000	5.700	23.000	19.000	GUIOELINE = 13 (D4)	BDL	BOL	BOL	108	BOL	BDL	BDL	108	BDL	BOL	T> 070.	BOL	80r	BDL
WELL 4 RAW	GUID			٠			•			٠	19.000	GU10		٠		٠		•		•	•	•		٠		1> 070.
WELL 3 W	DET'N LIMIT = 0.50	43.000	15.000	32.000	7,700	1.800 <t< td=""><td>7 200</td><td>11.000</td><td>6.100</td><td>22.000</td><td>20.000</td><td>DET'N LIMIT = 0.05</td><td>. 070 <t< td=""><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>1> 070.</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>1> 070.</td><td>BDL</td><td>BOL</td><td>T> 070.</td></t<></td></t<>	7 200	11.000	6.100	22.000	20.000	DET'N LIMIT = 0.05	. 070 <t< td=""><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>1> 070.</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>1> 070.</td><td>BDL</td><td>BOL</td><td>T> 070.</td></t<>	BOL	BDL	BDL	BDL	1> 070.	BDL	BDL	BDL	BDL	1> 070.	BDL	BOL	T> 070.
WELL 2 RAW	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			٠					٠	٠	22.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		٠	٠	٠	٠	•	•	٠	٠	•	٠		٠	801
WELL 1 RAW	METALS	47.000	19.000	42.000	9.900	2.200 <t< td=""><td>00000</td><td>11.000</td><td>6.700</td><td>33.000</td><td></td><td></td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>108</td><td>BOL</td><td>80r</td><td>80r</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>٠</td></t<>	00000	11.000	6.700	33.000			BDL	BDL	BDL	BDL	108	BOL	80r	80r	BOL	BDL	BDL	BDL	BDL	٠
	TITANIUM (UG/L		1991 APR 1991 APR			1991 AUG		1991 NOV	1992 JAN	1992 MAY	1992 JUL	THALLIUM (UG/L	1991 JAN				1991 MAY								1992 MAY	1992 JUL

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 MANITOUWADGE WELL SUPPLY

	1																9 8 4			_	_	_	_	_		_	_	_	_	_	_	_
DIST. SYSTEM WARBLER OR STANDING			•	2.000	1.800	1.700	1.500	1.700	1.500	1.800	1.800	1.500	1.800	2,400	1.900	2.000	4					.310 <t< td=""><td></td><td>T> 070.</td><td>BDL</td><td>.310 <t< td=""><td>.350 <t< td=""><td>.200 <1</td><td>.120 <⊺</td><td>.320 <t< td=""><td></td><td>1> 025.</td></t<></td></t<></td></t<></td></t<>		T> 070.	BDL	.310 <t< td=""><td>.350 <t< td=""><td>.200 <1</td><td>.120 <⊺</td><td>.320 <t< td=""><td></td><td>1> 025.</td></t<></td></t<></td></t<>	.350 <t< td=""><td>.200 <1</td><td>.120 <⊺</td><td>.320 <t< td=""><td></td><td>1> 025.</td></t<></td></t<>	.200 <1	.120 <⊺	.320 <t< td=""><td></td><td>1> 025.</td></t<>		1> 025.
DIST. SYSTEM WARBLER DR FREE FLOW		c	2.000	1.900	1.600	1,700	1.500	1.800	1.600	1.700	1.600	1.500	1,700	2,300	2,000	1.700	à 5 b 5 c 5 c 5 c 5 c 5 c 5 c 5 c 5 c 5 c		059.		T> 090.		.260 <t< td=""><td>1> 091.</td><td>BDL</td><td>.380 <t< td=""><td>.340 <t< td=""><td>.180 <t< td=""><td>.200 <1</td><td>.330 <t< td=""><td>.310 <t< td=""><td>.370 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1> 091.	BDL	.380 <t< td=""><td>.340 <t< td=""><td>.180 <t< td=""><td>.200 <1</td><td>.330 <t< td=""><td>.310 <t< td=""><td>.370 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.340 <t< td=""><td>.180 <t< td=""><td>.200 <1</td><td>.330 <t< td=""><td>.310 <t< td=""><td>.370 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.180 <t< td=""><td>.200 <1</td><td>.330 <t< td=""><td>.310 <t< td=""><td>.370 <t< td=""></t<></td></t<></td></t<></td></t<>	.200 <1	.330 <t< td=""><td>.310 <t< td=""><td>.370 <t< td=""></t<></td></t<></td></t<>	.310 <t< td=""><td>.370 <t< td=""></t<></td></t<>	.370 <t< td=""></t<>
RESERVOIR TREATED	GUIDELINE = 100 (A1)	000	001.2	1.400	1.500	1.300	1,300	1.800	1,500	1,200	1.600	1,400	1.900	2.300	1,400	2.100	GUIDELINE = N/A	C C			.130 <t< td=""><td></td><td>. 190 <t< td=""><td>.160 <t< td=""><td>BDL</td><td>.320 <t< td=""><td>.420 <1</td><td>.240 <1</td><td>1> 051.</td><td>.380 <t< td=""><td>.310 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		. 190 <t< td=""><td>.160 <t< td=""><td>BDL</td><td>.320 <t< td=""><td>.420 <1</td><td>.240 <1</td><td>1> 051.</td><td>.380 <t< td=""><td>.310 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<>	.160 <t< td=""><td>BDL</td><td>.320 <t< td=""><td>.420 <1</td><td>.240 <1</td><td>1> 051.</td><td>.380 <t< td=""><td>.310 <t< td=""><td></td></t<></td></t<></td></t<></td></t<>	BDL	.320 <t< td=""><td>.420 <1</td><td>.240 <1</td><td>1> 051.</td><td>.380 <t< td=""><td>.310 <t< td=""><td></td></t<></td></t<></td></t<>	.420 <1	.240 <1	1> 051.	.380 <t< td=""><td>.310 <t< td=""><td></td></t<></td></t<>	.310 <t< td=""><td></td></t<>	
WELL 4 RAW	9					٠	٠	,•	٠				٠	٠	٠	1.700	0		•		•	•										.310 <t< td=""></t<>
WELL 3 WE	DET'N LIMIT = 0.05	C	6.900	2.800	2.300	2,200	2.400	2.500	2.400	2.400	2.700	2.600	1.600	2.400	2.400	2.100	DET*N LIMIT = 0.05			1> 067	.140 <t< td=""><td></td><td>.430 <t< td=""><td>,250 <j< td=""><td>T> 070.</td><td>.310 <t< td=""><td>.390 <t< td=""><td>.330 <t< td=""><td>.250 <t< td=""><td>.380 <t< td=""><td></td><td>T> 044.</td></t<></td></t<></td></t<></td></t<></td></t<></td></j<></td></t<></td></t<>		.430 <t< td=""><td>,250 <j< td=""><td>T> 070.</td><td>.310 <t< td=""><td>.390 <t< td=""><td>.330 <t< td=""><td>.250 <t< td=""><td>.380 <t< td=""><td></td><td>T> 044.</td></t<></td></t<></td></t<></td></t<></td></t<></td></j<></td></t<>	,250 <j< td=""><td>T> 070.</td><td>.310 <t< td=""><td>.390 <t< td=""><td>.330 <t< td=""><td>.250 <t< td=""><td>.380 <t< td=""><td></td><td>T> 044.</td></t<></td></t<></td></t<></td></t<></td></t<></td></j<>	T> 070.	.310 <t< td=""><td>.390 <t< td=""><td>.330 <t< td=""><td>.250 <t< td=""><td>.380 <t< td=""><td></td><td>T> 044.</td></t<></td></t<></td></t<></td></t<></td></t<>	.390 <t< td=""><td>.330 <t< td=""><td>.250 <t< td=""><td>.380 <t< td=""><td></td><td>T> 044.</td></t<></td></t<></td></t<></td></t<>	.330 <t< td=""><td>.250 <t< td=""><td>.380 <t< td=""><td></td><td>T> 044.</td></t<></td></t<></td></t<>	.250 <t< td=""><td>.380 <t< td=""><td></td><td>T> 044.</td></t<></td></t<>	.380 <t< td=""><td></td><td>T> 044.</td></t<>		T> 044.
WELL 2 RAW	·					٠		•	•					٠	•	.870	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			٠		•										.260 <1
WELL 1	METALS	C	004.	.920	.890	076	006.	1.000	.850	.880	.870	.880	076	1,300	1,000		(0	077.	.310 <t< td=""><td>BOL</td><td>.200 <1</td><td>108</td><td>BDL</td><td>901</td><td>.240 <7</td><td>.200 <1</td><td>.160 <7</td><td>BDL</td><td>.220 <</td><td>.240 <t< td=""><td></td></t<></td></t<>	BOL	.200 <1	108	BDL	901	.240 <7	.200 <1	.160 <7	BDL	.220 <	.240 <t< td=""><td></td></t<>	
W 23	URANTUM (UG/L						1991 MAY							1992 JAN		1992 JUL	VANADIUM (UG/L			1991 FEB		1991 APR									1992 MAY	

													•											
DIST. SYSTEM WARBLER DR STANDING						٠		٠			0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠		٠	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			٠		٠		٠		•
DIST. SYSTEM WARBLER DR FREE FLOW		JOB .	1 d d d d d d d d d d d d d d d d d d d	BDL		BDL		BDL		BDL	* 1	BOL		BDL	• 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	BDL		BDL .		108		BDL		BDL
RESERVOIR TREATED	GUIDELINE = 450 (04)	108	GUIDELINE = N/A	108	GUIDELINE = N/A	108 ·	GUIDELINE = N/A	BDL	GUIDELINE = 10000 (I)	BDL	GUIDELINE = 38000 (D4)	BDL	GUIDELINE = N/A	BDL	GUIDELINE = 10 (C1)	BDL	GUIDELINE = 1900 (D4)	BDL	GUIDELINE = N/A	BDL	GUIDELINE = 74000 (D4)	BDL	GUIDELINE = N/A	BDL
LL 4	9	BDL	9	. BDL	9	BDL	9	BDL	9	BDL		BDL	G	108		BDL		BDL		BDL		BDL	Ü	BDL
WELL 3 WELL RAW RAW	DET*N LIMIT = 1.000	, BDL	DET*N LIMIT = 5.000	108	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 5.000	BDL
2		BDL	1 1)) 1 1	BDL		BDL	1 6 7 1 6 6	BDL		BDL	! ! ! !	BDL		BDL	P B B B B B	BDL		BDL		BDL		BDL		TOB
WELL	ATICS)		^		^		^		^		^		^						^		^		^	1
WELL 1 RAW	CHLOROAROMATICS HEXACHLOROBUTADIENE (NG/L)	33 SAMPLES BDL	123-TRICHLOROBENZENE (NG/L	33 SAMPLES BDL	1234-TETCLOROBENZENE (NG/L	33 SAMPLES BOL	1235-TETCLOROBENZENE (NG/L	33 SAMPLES BDL	124-TRICHLOROBENZENE (NG/L	33 SAMPLES BDL	1245-TETCLOROBENZENE (NG/L	33 SAMPLES BOL	135-TRICHLOROBENZENE (NG/L	33 SAMPLES BDL	HEXACHLOROBENZENE (NG/L	33 SAMPLES BOL	HEXACHLOROETHANE (NG/L)	33 SAMPLES BDL	OCTACHLOROSTYRENE (NG/L	33 SAMPLES BDL	PENTACHLOROBENZENE (NG/L	33 SAMPLES BDL	236-TRICHLOROTOLUENE (NG/L	33 SAMPLES BDL

Σ			P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 108
DIST. SYSTEM WARBLER DR FREE FLOW		801	1 1 1 1 1 1 1 1 1 1 1 1 1	801
	GUIDELINE = N/A		GUIDELINE = N/A	801
WELL 3 WELL 4 RAW RAW	LIMIT = 5.000		DET'N LIMIT = 5.000	BDL
WELL 2 RAW	,TICS	708	^	BDL
WELL 1 RAW	CHLOROARO CHLOROARO LOROTOLUENE (NG/L	33 SAMPLES BDL	26A-TRICHLOROTOLUENE (NG/L	33 SAMPLES BDL

### BOL ### BOL #### BOL ###############	2
1.000 GUIDELINE = 700 (G) 1.000 GUIDELINE = 300 (G) 8DL 8DL 2.000 GUIDELINE = 7000 (A1) 8DL 8DL 2.000 GUIDELINE = 7000 (A1) 8DL 8DL 2.00 GUIDELINE = 7000 (A1) 8DL 8DL 2.00 GUIDELINE = 7000 (A1) 8DL 8DL 2.00 GUIDELINE = 74000 (D4) 8DL 8DL 5.00 GUIDELINE = 74000 (D4) 8DL 8DL 5.00 GUIDELINE = 74000 (D4) 8DL 8DL 8DL 8DL 5.000 GUIDELINE = 1600 (D3) 8DL 8DL 8DL 8DL 8DL 8DL 8DL 8DL	DET'N LIMIT
1.00	DET'N LIMIT
1.000 GUIDELINE = 4000 (A1) 2.000 GUIDELINE = 7000 (A1) 2.000 GUIDELINE = 7000 (A1) 80L BDL 2.00 GUIDELINE = 7000 (A1) 80L BDL 80L BDL 80L BDL 5.00 GUIDELINE = 74000 (D4) 80L BDL 5.00 GUIDELINE = 74000 (D4) 80L BDL 5.000 GUIDELINE = 74000 (D4) 80L BDL 5.000 GUIDELINE = 1600 (D3) 80L BDL 5.000 GUIDELINE = 1600 (D3) 80L BDL 5.000 GUIDELINE = 1600 (D3) 80L BDL 5.000 GUIDELINE = N/A	DET'N LIMIT
1.000 GUIDELINE = 4000 (A1) 2.000 GUIDELINE = 7000 (A1) 2.00 GUIDELINE = 7000 (A1) 80L BDL 80L BDL 80L BDL 80L BDL 5.00 GUIDELINE = 74000 (D4) 80L BDL 5.00 GUIDELINE = 74000 (D4) 80L BDL 5.00 GUIDELINE = 74000 (D4) 80L BDL 5.000 GUIDELINE = 1600 (D3)	BDL
2.000 GUIDELINE = 7000 (A1). 2.000 GUIDELINE = 7000 (A1). 2.00 GUIDELINE = 7000 (A1). 80L BDL 2.00 GUIDELINE = 700000 (A1). 80L BDL 5.00 GUIDELINE = 74000 (D4). 80L BDL 5.00 GUIDELINE = 74000 (D4). 80L BDL 5.000 GUIDELINE = 1600 (D3). 80L BDL 5.000 GUIDELINE = 1600 (D3). 80L BDL 5.000 GUIDELINE = 1600 (D3).	DET'N LIMIT
2.000 GUIDELINE = 7000 (A1). 2.00 GUIDELINE = 7000 (A1) 2.00 GUIDELINE = 700 (A1) 80L BDL 80L BDL 5.0 GUIDELINE = 700000 (A1) 80L BDL 5.00 GUIDELINE = 74000 (D4) 80L BDL 5.000 GUIDELINE = 74000 (D4) 80L BDL 5.000 GUIDELINE = 1600 (D3)	BOL
2.00 GUIDELINE = 7000 (A1) 80L BDL 2.00 GUIDELINE = 700 (A1) 80L BDL 80L BDL 5.0 GUIDELINE = 74000 (D4) 80L BDL 5.00 GUIDELINE = 74000 (D4) 80L BDL 5.000 GUIDELINE = 74000 (D4) 80L BDL 5.000 GUIDELINE = 1600 (D3) 80L BDL 5.000 GUIDELINE = 1600 (D3) 80L BDL 5.000 GUIDELINE = 1600 (D3) 80L BDL	OET'N LIMIT
2.00 GUIDELINE = 7000 (A1) 2.00 GUIDELINE = 700 (A1) 80L BDL 80L BDL 2.00 GUIDELINE = 74000 (D4) 80L BDL 5.000 GUIDELINE = 74000 (D4) 80L BDL 5.000 GUIDELINE = 1600 (D3) 80L BDL 5.000 GUIDELINE = 1600 (D3) 80L BDL 5.000 GUIDELINE = 1600 (D3) 80L BDL	BDL
2.00 GUIDELINE = 700 (A1) 8DL BDL 5.0 GUIDELINE = 900000 (A1) 8DL BDL 2.00 GUIDELINE = 74000 (D4) 8DL BDL 5.000 GUIDELINE = 74000 (D4) 8DL BDL 5.000 GUIDELINE = 1600 (D3) 8DL BDL 5.000 GUIDELINE = 1600 (D3) 8DL BDL 5.000 GUIDELINE = N/A	OET'N LIMIT
2.00 GUIDELINE = 700 (A1) 80L BDL 5.0 GUIDELINE = 900000 (A1) 80L BDL 5.00 GUIDELINE = 74000 (D4) 80L BDL 5.000 GUIDELINE = 74000 (D4) 80L BDL 5.000 GUIDELINE = 1600 (D3) 80L BDL 5.000 GUIDELINE = 1600 (D3) 80L BDL 5.000 GUIDELINE = N/A	BOL
80L	DET'N LIMIT
5.0 GUIDELINE = 900000 (A1) 2.00 GUIOELINE = 74000 (D4) 8.00 GUIOELINE = 74000 (D4) 8.00 GUIDELINE = 1600 (D3) 8.00 GUIDELINE = 1600 (D3) 8.01 BDL 8.00 BDL 8.01 BDL 8.01 BDL 8.01 BDL	ВОГ
80L BDL 2.00 GUIOELINE = 74000 (D4) 80L BDL 5.000 GUIOELINE = 74000 (D3) 80L BDL 5.000 GUIDELINE = 1600 (D3) 80L BDL 5.000 GUIDELINE = N/A 80L BDL	OET'N LIMIT
2.00 GUIOELINE = 74000 (D4) 8DL BDL 5.000 GUIOELINE = 74000 (D4) 8DL 6.000 GUIOELINE = 1600 (D3) 8DL 8DL 8DL 8DL 8DL 8DL 8DL	BDL
\$.000 GUIDELINE = 74000 (D4) \$.000 GUIDELINE = 1600 (D3) \$00 GUIDELINE = N/A \$.00 GUIDELINE = N/A	DET'N LIMIT
5.000 GUIOELINE = 74000 (D4) 8DL 8DL 5.000 GUIDELINE = 1600 (D3) 80L 8DL 5.00 GUIDELINE = N/A 8DL	BDL
5.000 GUIDELINE = 1600 (D3) 80L BDL 5.00 GUIDELINE = N/A 80L BDL	DET'N LIMIT
5.000 GUIDELINE = 1600 (D3) 80L BDL 5.00 GUIDELINE = N/A 80L	BDL
80L 8DL 5.00 GUIDELINE = N/A 8DL	DET'N LIMIT
5.00 GUIDELINE = N/A BDL BDL	BDL
BDL	DET'N LIMIT
	BDL

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 MANITOUWADGE WELL SUPPLY

RESERVOIR DIST. SYSTEM DIST. SYSTEM TREATED WARBLER DR FREE FLOW STANDING	NE = 3000 (A1)	. 108 108	NE = 3000 (A1)	80f , 80t	NE = N/A	. 108 108	NE = N/A	. BOL BOL .	1	901 801	NE = 3000 (A2)	901			NE = 30000 (A1))	. 601	NE = 500D (A1)	. 801	NE = 300000 (D3)		, C 4 7 0000 7 = 1 m
RES	GUIDELINE	BDL	GUIDELINE	BDL	GUIDELINE	BDL	GUIDELINE	BDL		BDL	GUIDELINE	BDL	GUIDELINE	80L	GUIDELINE	BDL	GUIDELINE	BDL	GUIDELINE	BOL	GUIDELINE	BDL	GUIDELINE
WELL 3 WELL 4 RAW RAW	DET*N LIMIT = 1.000	BDL	DET'N LIMIT = 1.000	_	DET'N LIMIT = 5.000	108	DET'N LIMIT = 2.000	900	DET'N LIMIT = 5,000	108	DET'N LIMIT = 20.00	108	DET'N LIMIT = 5.000	708	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 500.0	BDL	DET*N LIMIT = 50,0	BDL	DETAIL IMIT = 50 0
WELL 2 RAW	PC8	901	0 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	BDL	8 8 9 9 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	BDL	1 1 4 9 5 9 9	BDL	0 0 0 0 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0	BDL	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108	5 5 6 0 0 0 0 0 0 0 0	BDL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOL	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	108	6 6 6 6 6 6 6 6 7 7
-	PESTICIDES AND PCB	BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL		BDL	\rangle \rangle	BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL	t t t t t t t t t t t t t t t t t t t	BDL	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	708	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL	* * * * * * * * * * * * * * * * * * *
WELL RAW	PESTIC:	27 SAMPLES	HEPTACHLOR (NG/L	33 SAMPLES	MIREX (NG/L)	33 SAMPLES	OXYCHLORDANE (NG/L	33 SAMPLES	O,P-DDT (NG/L	33 SAMPLES	PCB (NG/L)	33 SAMPLES	P,P-DDD (NG/L	33 SAMPLES	P,P-DDE (NG/L	33 SAMPLES	P,P-DDT (NG/L	33 SAMPLES	TOXAPHENE (NG/L	33 SAMPLES	AMETRINE (NG/L	28 SAMPLES	ATDA71ME /MC/I

WELL. 1 RAW	-	WELL 2 RAW	WELL		WELL 4 RAW	RESERVOIR TREATED	DIST. SYSTEM WARBLER DR FREE FLOW	DIST. SYSTEM WARBLER DR STANDING
ATRATONE (NG/L	PESTICIDES AND PCB	ND PCB	0ET-1	DET'N LIMIT = 50.0		GUIDELINE = N/A		, p p p p p p p p p p p p p p p p p p p
28 SAMPLES	BDL	Bol	_	BDL	108	108		٠
CYANAZINE (BLADEX) (NG/L	(NG/L)	9 9 9 9 9 9 9 9 1 7	DET	DET'N LIMIT = 100.0	1 6 1 1 5 2	GUIDELINE = 10000 (A2)	42)	, g g g g g g g g g g g g g g g g g g g
28 SAMPLES	BOL	108 101	_	BOL	BDL	108		•
DESETHYL ATRAZINE (NG/L	(NG/L)	5 7 5 7 7 7 1 1 1 1	DET	DET'N LIMIT = 200.0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	GUIDELINE = 60000 (A2)	42)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
28 SAMPLES	BOL	. B0L		BDL	BDL	108		
DESETHYL SIMAZINE (NG/L	(NG/L)	0 0 1 1 1 2 2 3 3 1 1 1 1	DET +N	DET'N LIMIT = 200.0	1 1 1 1 1 1	GUIDELINE = 10000 (A2)	42)	, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
28 SAMPLES	BOL	108		BDL	BDL	108		٠
PROMETONE (NG/L	^	0	DET 'N	DET'N LIMIT = 50.000	1 1 1 1 1 1 1	GUIDELINE = 52500 (03)	3)	, , , , , , , , , , , , , , , , , , ,
28 SAMPLES	B0L	BOL		BOL	BDL	108		
PROPAZINE (NG/L	^	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET	DET'N LIMIT = 50.000))))) 0	GUIDELINE = 700000 (D3)	(03)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 SAMPLES	BOL	108	_1	BDL	BDL	108		
PROMETRYNE (NG/L	^		DET 'A	DET'N LIMIT = 50.000		GUIDELINE = 1000 (A2)		, B B B B B B B B B B B B B B
28 SAMPLES	801	BOL		BOL	BDL	r 801		•
METRIBUZIN (SENCOR) (NG/L) (NG/L	_	DET 'N	DET'N LIMIT = 100.0	1 1 2 5 1	GUIDELINE = 80000 (A1)	41)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
28 SAMPLES	BDL	108	_	BOL	BDL	108		
SIMAZINE (NG/L	^		DET 'N	DET'N LIMIT = 50.00	0 0 0 0 0	GUIDELINE = 10000 (A2)	12)	, s s s s s s s s s s s s s s s s s s s
28 SAMPLES	BDL	108		108	108	٦ 80 ا		٠
ALACHLOR (LASSO) (NG/L	NG/L)		DET	DET'N LIMIT = 500.0	} } } 1 1 1	GUIDELINE = 5000 (A2)	5)	, , , , , , , , , , , , , , , , , , ,
28 SAMPLES	BDL	108		BOL	BDL	L 80L		
METOLACHLOR (NG/L	^		DET 'N	DET'N LIMIT = 500.0	5 5 6 5 5	GUIDELINE = 50000 (A2)	12)	, , , , , , , , , , , , , , , , , , ,
28 SAMPLES	BDL	108		801	RDI	BDI		

noi
BOL
no

Page 46

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 MANITOUWADGE WELL SUPPLY

EΑ) 3 1 1 1				•										
DIST. SYSTEM WARBLER DR STANDING	5 1 2 7 4 1 1 9 2 2 4 4 4 4 4 4 7 4 7 8 8 8 8 8 8 8 8 8 8 8														
DIST. SYSTEM WARBLER DR FREE FLOW) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													•	٠
RESERVOIR TREATED	GUIDELINE = N/A	1> 008.	BDI	108	TOB BDT	108	1> 005.	1> 007	. 200 <1	1.400	108	108	1> 007.	1> 007.	708
WELL 4 RAW	0.2	٠	٠	٠	٠	•	٠	٠			٠		٠	•	BDL
WELL 3 RAW	DET'N LIMIT =	1> 009.	. BDL	BDL	BDL	801	.200 <	1> 007.	.200 <t< td=""><td>1.400</td><td>1> 007.</td><td>BDL</td><td>T> 008.</td><td>BDL</td><td>! RE</td></t<>	1.400	1> 007.	BDL	T> 008.	BDL	! RE
WELL 2 RAW		•						٠							BDL
WELL 1 RAW	PHENOLICS	T> 008.	.200 <t< td=""><td>BDL</td><td>BDL</td><td>BDL</td><td>.200 <t< td=""><td>BDL</td><td>.200 <t< td=""><td>1.000</td><td>T> 007.</td><td>BDL</td><td>T> 009.</td><td>BDL</td><td>٠</td></t<></td></t<></td></t<>	BDL	BDL	BDL	.200 <t< td=""><td>BDL</td><td>.200 <t< td=""><td>1.000</td><td>T> 007.</td><td>BDL</td><td>T> 009.</td><td>BDL</td><td>٠</td></t<></td></t<>	BDL	.200 <t< td=""><td>1.000</td><td>T> 007.</td><td>BDL</td><td>T> 009.</td><td>BDL</td><td>٠</td></t<>	1.000	T> 007.	BDL	T> 009.	BDL	٠
3 0	PHENOLICS (UG/L						1991 JUN							1992 MAY	1992 JUL

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 MANITOUWADGE WELL SUPPLY

	,								,		,													
DIST. SYSTEM WARBLER DR STANDING)) () () () () () () () () ()	•	4				1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			٠	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	٠		•		٠		٠		٠		٠		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
DIST. SYSTEM WARBLER DR FREE FLOW	2	108	1 1 1 1 1 1 1 0 0 0 0 1 1 2 7 7 9 9 9	108	()	BDL	v 1 5 5 12 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	BOL		BOL	, , , , , , , , , , , , , , , , , , ,	BOL		BDL	1 1 1 5 5 6 7 7 8 8 9 8 9 1 1 5 8 9 8 9 9 8 9 9 9 9 9 9 9 9 9 1 1 1 1 1	108		BDL		BDL		BDL		BDL
RESERVOIR IREATED	GUIDELINE = N/A	. BDL	GUIDELINE = N/A	. 801	GUIDELINE = 42000 (D4)	. 801	GUIDELINE = N/A	. BOL	GUIDELINE = N/A	. BoL	GUIDELINE = N/A	BDL	GUIDELINE = N/A	. BDL	GUIDELINE = N/A	. BDL	GUIDELINE = N/A	. BDL	GUIDELINE = N/A	. BDL	GUIDELINE = N/A	. 80L	GUIDELINE = 10 (A1)	80L
WELL 3 WELL 4 RAW RAW	DET'N LIMIT = 10.0	BDL	DET'N LIMIT = 1.0	BOL	DET'N LIMIT = 20.0	BDL	DET'N LIMIT = 20.0	BDL	DET'N LIMIT = 20.0	BDL	DET'N LIMIT = 50.0	807	DET'N LIMIT = 5.0	108	DET'N LIMIT = 50.0	801	DET'N LIMIT = 10.0	108	DET'N LIMIT = 10.0	. BDL	DET'N LIMIT = 1.0	BOL	DET'N LIMIT = 5.0	PDL
WELL 2 RAW	POLYAROMATIC HYDROCARBONS		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٠	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 6 6 7 7 7 7 7 7 7		1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٠			5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	٠	^			•	^	٠		9 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
WELL 1 RAW	PHENANTHRENE (NG/L)	20 SAMPLES BDL	ANTHRACENE (NG/L)	20 SAMPLES BOL	FLUORANTHENE (NG/L)	20 SAMPLES BOL	PYRENE (NG/L)	20 SAMPLES BOL	BENZO(A)ANTHRACENE (NG/L	20 SAMPLES BOL	CHRYSENE (NG/L)	PLES	DIMETH. BENZ(A)ANTHR (NG/L	16 SAMPLES BOL	BENZO(E) PYRENE (NG/L)	SAMPLES	BENZO(B) FLUORANTHEN (NG/L	20 SAMPLES BOL	PERYLENE (NG/L)	20 SAMPLES BOL	BENZO(K) FLUORANTHEN (MG/L	20 SAMPLES BOL	BENZO(A) PYRENE (NG/L)	20 SAMPLES BOL

Page 48

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 MANITOUWADGE WELL SUPPLY

	:		!		,				;	
DIST. SYSTEM WARBLER DR STANDING	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٠.) 1 1 1 1 4 4 5 6 7 9 9 9 9 9 9 9 9 9 9 9 9) }		1	٠
DIST. SYSTEM WARBLER DR FREE FLOW	1	BDL	1	BDL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL	1 1 1 1 3 3 5 5 5 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1	BDL
RESERVOIR TREATED	GUIDELINE = N/A	. BDL	GUIDELINE = N/A	· BDL	GUIDELINE = N/A	. BDL	GUIDELINE = N/A	BDL	GUIDELINE = N/A	. BDL
WELL 3 WELL 4 RAW RAW	DET'N LIMIT = 20.0	BDL	DET'N LIMIT = 10.0	BDL	DET'N LIMIT = 20.0	BDL	DET'N LIMIT = 2.0	BDL	DET'N LIMIT = 10.0	BDL
WELL 2 RAW	POLYAROMATIC HYDROCARBONS EN (NG/L)	٠			^	•	^		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
WELL 1 RAW	BENZO(G,H,I) PERYLEN (NG/L	20 SAMPLES BDL	DIBENZO(A,H) ANTHRAC (NG/L	20 SAMPLES BDL	INDENO(1,2,3-C,D) PY (NG/L	20 SAMPLES BDL	BENZO(B) CHRYSENE (NG/L	20 SAMPLES BDL	CORONENE (NG/L)	20 SAMPLES BDL

					4											1														
DIST. SYSTEM WARBLER DR STANDING						٠			٠	•		٠		٠		1	٠	٠	٠	٠	٠		٠	٠	٠	٠	٠		٠	٠
DIST. SYSTEM WARBLER DR FREE FLOW		BDL	BDL	BDL	BDL	BDL	BDĽ	108	108	B0L	108	BDL	BDL	BDL	BDL	1 7 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL	BDL	BDL	BDL	.100 <t< td=""><td>BOL</td><td>B0L</td><td>BOL</td><td>BDL</td><td>BDL</td><td>T> 050.</td><td>T> 050.</td><td>BDL</td><td>BOL</td></t<>	BOL	B0L	BOL	BDL	BDL	T> 050.	T> 050.	BDL	BOL
RESERVOIR TREATED	GUIDELINE = 5 (A1)	BDL	BDL	BDL	BDL	.150 <t< td=""><td>.150 <t< td=""><td>T> 050.</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>LINE = 24 (A3)</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>.300 <t< td=""><td>.250 <1</td><td>.150 <t< td=""><td>B0L</td><td>T> 050.</td><td>BDL</td><td>T> 050.</td><td>BDL</td><td>BDL</td><td>TG8 .</td></t<></td></t<></td></t<></td></t<>	.150 <t< td=""><td>T> 050.</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>LINE = 24 (A3)</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>.300 <t< td=""><td>.250 <1</td><td>.150 <t< td=""><td>B0L</td><td>T> 050.</td><td>BDL</td><td>T> 050.</td><td>BDL</td><td>BDL</td><td>TG8 .</td></t<></td></t<></td></t<>	T> 050.	BOL	BOL	BOL	BDL	BDL	BDL	BDL	LINE = 24 (A3)	BDL	BDL	BDL	BDL	.300 <t< td=""><td>.250 <1</td><td>.150 <t< td=""><td>B0L</td><td>T> 050.</td><td>BDL</td><td>T> 050.</td><td>BDL</td><td>BDL</td><td>TG8 .</td></t<></td></t<>	.250 <1	.150 <t< td=""><td>B0L</td><td>T> 050.</td><td>BDL</td><td>T> 050.</td><td>BDL</td><td>BDL</td><td>TG8 .</td></t<>	B0L	T> 050.	BDL	T> 050.	BDL	BDL	TG8 .
7	GUIDE						٠								BDL	GUIDELINE	•	٠		•	٠	•	•	•				•		BDL
WELL 3 WELL RAW RAW	DET'N LIMIT = 0.05	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	DET'N LIMIT = 0.05	BDL	BOL	. BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	.100 <t< td=""><td>BDL</td><td>BDL</td><td>BDL</td></t<>	BDL	BDL	BDL
WELL 2 RAW		٠					,	٠			٠	٠	٠		BDL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠	٠					٠			٠	٠	٠	٠	TOB
WELL 1 RAW	VOLATILES	BDL	BDL	BDL	BDL	BDL	BDL	108	108	BDL	BDL	BDL	BDL	BDL	٠	(BDL	BDL	BDL	BDL	BOL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
	BENZENE (UG/L														1992 JUL	TOLUENE (UG/L													1992 MAY	

DIST. SYSTEM WARBLER DR STANDING	1		
DIST. SYSTEM WARBLER DR FREE FLOW	, , , , , , , , , , , , , , , , , , ,	801 801 801 801 801 .050 <7 .100 <7 .100 <7 .150 <7 .100 <7 .1	108 108 108 108 108 108 108 108 108 108
RESERVOIR TREATED	GUIDELINE = 2.4 (A3)	80L 80L 80L 100 100 150 150 150 150 150 150 150 150	GUIDELINE = 300 (A3*) GUIDELINE = 300 (A3*) GUIDELINE = 300 (A3*) BDL BDL BDL BDL BDL BDL BDL BD
WELL 4 RAW	ğU10e		8DL GU10E
WELL 3 W RAW R	DET'N LIMIT = 0.05	801 .050 <t .100 <t .801 .801 .801 .801 .100 <t .050 <t .801 .050 <t .100 <t .100 <t .100 <t< td=""><td>DET'N LIMIT = 0.10 BDL BDL BDL BDL BDL BDL BDL BD</td></t<></t </t </t </t </t </t </t 	DET'N LIMIT = 0.10 BDL BDL BDL BDL BDL BDL BDL BD
WELL 2 RAW			108
WELL 1 RAW	VOLATILES //)	8DL .050 <7 .100 <7 .050 <7	108 108 108 108 108 108 108 108 108 108
3 2	ETHYLBENZENE (UG/L	1991 JAN 1991 FEB 1991 APR 1991 ADR 1991 JUL 1991 AUG 1991 OCT 1991 NOV 1992 JAN 1992 JAN	P-XYLENE (UG/L 57 SAMPLES M-XYLENE (UG/L 1991 JAN 1991 APR 1991 APR 1991 AN 1991 JUN 1991 JUN 1991 OCT 1991 OCT 1992 JAN 1992 JAN 1992 JAN 1992 JAN 1992 JAN

OIST, SYSTEM WARBLER OR STANDING	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	,			٠	٠		•	٠	٠	٠	٠	٠	٠	•			٠	٠		٠		•		٠	٠	٠			٠
DIST, SYSTEM WARBLER DR FREE FLOW		BD	BDI	BDL	108	BDL	801	BDL	BOL	80 L	BOL	B0L	BDL	BDL	BDL		BDL	108	. 100 <t< td=""><td>BDL</td><td>108</td><td>30F</td><td>T> 050.</td><td>BDL</td><td>.200 <t< td=""><td>108</td><td>.300 <1</td><td>. 100 <t< td=""><td>1> 001.</td><td>.200 <1</td></t<></td></t<></td></t<>	BDL	108	30F	T> 050.	BDL	.200 <t< td=""><td>108</td><td>.300 <1</td><td>. 100 <t< td=""><td>1> 001.</td><td>.200 <1</td></t<></td></t<>	108	.300 <1	. 100 <t< td=""><td>1> 001.</td><td>.200 <1</td></t<>	1> 001.	.200 <1
RESERVOIR TREATED	INE = 300 (A3*)	BOS	i ca	80r	BDL	.150 <t< td=""><td>T> 050.</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>108</td><td>INE = 100 (D1)</td><td>BDL</td><td>BDL</td><td>1> 050.</td><td>.100 <ī</td><td>B01</td><td>. 250 <t< td=""><td>.200 <t< td=""><td>B0L</td><td></td><td>.100 <t< td=""><td>. 150 <t< td=""><td>.100 <t< td=""><td>.200 <1</td><td>.200 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 050.	BDL	BOL	BOL	BOL	BDL	BDL	BDL	108	INE = 100 (D1)	BDL	BDL	1> 050.	.100 <ī	B01	. 250 <t< td=""><td>.200 <t< td=""><td>B0L</td><td></td><td>.100 <t< td=""><td>. 150 <t< td=""><td>.100 <t< td=""><td>.200 <1</td><td>.200 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.200 <t< td=""><td>B0L</td><td></td><td>.100 <t< td=""><td>. 150 <t< td=""><td>.100 <t< td=""><td>.200 <1</td><td>.200 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	B0L		.100 <t< td=""><td>. 150 <t< td=""><td>.100 <t< td=""><td>.200 <1</td><td>.200 <t< td=""></t<></td></t<></td></t<></td></t<>	. 150 <t< td=""><td>.100 <t< td=""><td>.200 <1</td><td>.200 <t< td=""></t<></td></t<></td></t<>	.100 <t< td=""><td>.200 <1</td><td>.200 <t< td=""></t<></td></t<>	.200 <1	.200 <t< td=""></t<>
7	GUIDELINE =											٠			301	GUIDELINE	٠		*	٠	٠								٠	.250 <1
WELL 3 WELL	DET'N LIMIT = 0.05	IOA	100	30F	B0L	B0L	BOL	108	108	BDL	BDL	BDL	108	108	BDL	DET'N LIMIT = 0.05	BOL	.150 <t< td=""><td>.150 <t< td=""><td>.050 <1</td><td>108</td><td>108</td><td>BDL</td><td>BDL</td><td>.150 <t< td=""><td>BDL</td><td>.200 <t< td=""><td>.050 <t< td=""><td>.250 <t< td=""><td>.250 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.150 <t< td=""><td>.050 <1</td><td>108</td><td>108</td><td>BDL</td><td>BDL</td><td>.150 <t< td=""><td>BDL</td><td>.200 <t< td=""><td>.050 <t< td=""><td>.250 <t< td=""><td>.250 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.050 <1	108	108	BDL	BDL	.150 <t< td=""><td>BDL</td><td>.200 <t< td=""><td>.050 <t< td=""><td>.250 <t< td=""><td>.250 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	BDL	.200 <t< td=""><td>.050 <t< td=""><td>.250 <t< td=""><td>.250 <t< td=""></t<></td></t<></td></t<></td></t<>	.050 <t< td=""><td>.250 <t< td=""><td>.250 <t< td=""></t<></td></t<></td></t<>	.250 <t< td=""><td>.250 <t< td=""></t<></td></t<>	.250 <t< td=""></t<>
2	DET		۰					٠				•	٠		108	130		٠							٠			٠		.200 <t< td=""></t<>
WELL 1 WELL RAW RAW	VOLATILES	IUB	300	80 E	108	BDL	BDL	BDL	BOL	BDL	BOL	108	108	BOL	٠		BDL	BOL	. 100 <1	.100 <t< td=""><td>T> 050.</td><td>BDL</td><td>B0L</td><td>BOL</td><td>.150 <t< td=""><td>T> 050.</td><td>.100 <1</td><td>.100 <7</td><td>.350 <1</td><td></td></t<></td></t<>	T> 050.	BDL	B0L	BOL	.150 <t< td=""><td>T> 050.</td><td>.100 <1</td><td>.100 <7</td><td>.350 <1</td><td></td></t<>	T> 050.	.100 <1	.100 <7	.350 <1	
R. R. A.	O-XYLENE (UG/L			1991 APR						1991 SEP			1992 JAN	1992 MAY	1992 JUL	STYRENE (UG/L	1991 JAN	1991 FEB	1991 APR						1991 SEP				1992 MAY	1992 JUL

Page 52

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 MANITOUWADGE WELL SUPPLY

DIST. SYSTEM WARBLER DR STANDING					٠	•		٠	٠	•	•			٠		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠	, , , , , , , , , , , , , , , , , , ,		٠	٠	٠	٠	•	•		٠	٠	٠		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DIST. SYSTEM WARBLER DR FREE FLOW	1	BDL		BDL	BDL	80F	BDL	Bol	BOL	308	BDI.	BDL	BDL	7.500 ucs	108	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	BD£	0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.700	4.700	16.500	20.800	14.300	21 100	15,300	20.700	33.200	.300 <t< td=""><td>14.800</td><td>17,100</td><td>001.61</td></t<>	14.800	17,100	001.61
RESERVOIR TREATED	GUIDELINE = 7 (D1)	BDL	GUIDELINE = 50 (A1)	BDL	BDL 801	BDL	BDL	BDL	BDL	BDL	108	8Df	BDL	3.500 UCS	BDL	GUIDELINE = 70 (D1)	BDL	GUIDELINE = N/A	BDL	LINE = 350 (A1+)	3.100	2.800	000.6	10.700	7.900	30.400	4,000	27.300	36.900	.200 <7	28.100	1.300	007.61
7 _	9	BDL	GUIDE		٠	• •	٠		•	•	• •		•	٠	BDL	GUIDE	BDL	GUIDE	108	GUIDELINE			٠			•	• •	•		٠	•	500 ×	1, 000
WELL 3 WELL RAW RAW	DET'N LIMIT = 0.100	BDL	DET'N LIMIT = 0.50	BDL	B01	BOL	BOL	BOL	80L		108	801	BDL	2.500 UCS	BDL	DET'N LIMIT = 0.10	BOL	DET*N LIMIT = 0.100	BDL	DET'N LIMIT = 0.10	BOL	301	301	801	BOL	801	BDL	BDL	BDL	. 200 <t< td=""><td>BDL</td><td>80L 400 <1</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<>	BDL	80L 400 <1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2	1 0 , 3 0	BDL	30	٠				٠				٠	٠	٠	BDL	DE	BDL	30	301	DE		•	•		٠	• •		٠				1 700	
L 1 WELL RAW	VOLATILES NE (UG/L)		(ng/r)	BDL	BDL	BDL	BDL	BDL	BOL	BDL	BDL	BDL	BDL	1.500 UCS		VE (UG/L)	BDL	(1/90)	BDL	^	BDL			1> 007			.200 <1	BDL			.300 <1		6 6 6 8 3 0 0 1 0 4 4 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WELL	THYLE	57 SAMPLES	METHYLENE CHLORIDE (UG/L		1991 FEB				1991 JUL						1992 JUL	T12-DICHLOROETHYLENE (UG/L	57 SAMPLES	1,1-DICHLOROETHANE (UG/L	57 SAMPLES	CHLOROFORM (UG/L			1991 APR	1991 APR							1992 JAN 1902 MAY		

	,																			5 5		ı		b														
DIST. SYSTEM WARBLER DR, STANDING				٠		•		•	•	٠		•	•	•	٠	•	0 9 0 9 0 1 0 1 0 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1			5 0 0 0 0 0 0 0 0 0 0 0 0 0	٠							٠		٠	٠					•		
DIST. SYSTEM WARBLER DR FREE FLOW	, a 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	901	1> 040.	30F	BOI	700	901	BUL	108	108	108	108	108	BDL	BDL	108	3 8 8 8 8 8 8 8 8 6 8 6 8 8 8 8 8 8 8 8		BDL	. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL		108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BUI	BDL	108	BDL	108	108	308	108	TOB	108	108	BDL	HOR	BDL
RESERVOIR TREATED	GUIDELINE = 200 (01)	.040 <t< td=""><td>1> 090.</td><td>T> 040.</td><td>1× 0.00</td><td></td><td></td><td>BUL</td><td></td><td>1> 070°</td><td>108</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td></td><td>GUIDELINE = 5 (A1)</td><td>BDL</td><td>GUIDELINE = 5 (A1)</td><td>BDL</td><td>GUIDELINE = 5 (D1)</td><td>108</td><td>GUIDELINE = 50 (A1)</td><td>IUB</td><td>108</td><td>108</td><td>BDL</td><td>306</td><td>BDL</td><td>108 .</td><td>108</td><td>108</td><td>108</td><td>BDL</td><td>BOL</td><td>108</td><td>108</td></t<>	1> 090.	T> 040.	1× 0.00			BUL		1> 070°	108	BDL	BDL	BDL	BDL	BOL		GUIDELINE = 5 (A1)	BDL	GUIDELINE = 5 (A1)	BDL	GUIDELINE = 5 (D1)	108	GUIDELINE = 50 (A1)	IUB	108	108	BDL	306	BDL	108 .	108	108	108	BDL	BOL	108	108
•	ng	٠	٠						•				,		٠	BDL		ಕ	BDL	ರ	BOL	บ	BOL	ಠ					٠	٠	٠			٠		٠	• .	BDL
WELL 3 WELL 4 RAW RAW	DET'N LIMIT = 0.02	.060 <1	T> 060	1> 070	Iua	900	13 090.	BDL	80 L	BDL	BDL	BOL	.040 <7	B0L	801			DET'N LIMIT = 0.05	108	DET'N LIMIT = C.20	BDL	DET'N LIMIT = 0.05	HOB	DET'N LIMIT = 0.10	C	.100 <⊤	.100 <t< td=""><td>.100 <t< td=""><td>. 100 <t< td=""><td>BDL</td><td>T> 001.</td><td>. 100 <t< td=""><td></td><td>.200 <t< td=""><td>BDL</td><td>108</td><td>BOL</td><td>901</td></t<></td></t<></td></t<></td></t<></td></t<>	.100 <t< td=""><td>. 100 <t< td=""><td>BDL</td><td>T> 001.</td><td>. 100 <t< td=""><td></td><td>.200 <t< td=""><td>BDL</td><td>108</td><td>BOL</td><td>901</td></t<></td></t<></td></t<></td></t<>	. 100 <t< td=""><td>BDL</td><td>T> 001.</td><td>. 100 <t< td=""><td></td><td>.200 <t< td=""><td>BDL</td><td>108</td><td>BOL</td><td>901</td></t<></td></t<></td></t<>	BDL	T> 001.	. 100 <t< td=""><td></td><td>.200 <t< td=""><td>BDL</td><td>108</td><td>BOL</td><td>901</td></t<></td></t<>		.200 <t< td=""><td>BDL</td><td>108</td><td>BOL</td><td>901</td></t<>	BDL	108	BOL	901
	6 8 6 6 8		•		,						•				,	.080 <t< td=""><td></td><td></td><td>BDL</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>108</td><td>: : : : :</td><td>BOL</td><td>0 0 0 0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٠</td><td>٠</td><td></td><td>٠</td><td></td><td>•</td><td>BOL</td></t<>			BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	108	: : : : :	BOL	0 0 0 0								٠	٠		٠		•	BOL
WELL 2 RAW	(^																				
WELL 1 RAW	VOLATILES ANE (UG/L	.340	100 <t< td=""><td>1> 090</td><td></td><td></td><td></td><td></td><td></td><td>.100 <t< td=""><td>.100 <t< td=""><td>. 100 <t< td=""><td>.140 <t< td=""><td>097</td><td>RDI</td><td>i •</td><td></td><td>NE (UG/L</td><td>BDL</td><td>RIDE (UG/L</td><td>108</td><td>ANE (UG/L</td><td>BDL</td><td>0 1 0 5</td><td>IUa</td><td>801</td><td>BDL</td><td>108</td><td>108</td><td>108</td><td>BDL</td><td>BDL</td><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	1> 090						.100 <t< td=""><td>.100 <t< td=""><td>. 100 <t< td=""><td>.140 <t< td=""><td>097</td><td>RDI</td><td>i •</td><td></td><td>NE (UG/L</td><td>BDL</td><td>RIDE (UG/L</td><td>108</td><td>ANE (UG/L</td><td>BDL</td><td>0 1 0 5</td><td>IUa</td><td>801</td><td>BDL</td><td>108</td><td>108</td><td>108</td><td>BDL</td><td>BDL</td><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td></td></t<></td></t<></td></t<></td></t<>	.100 <t< td=""><td>. 100 <t< td=""><td>.140 <t< td=""><td>097</td><td>RDI</td><td>i •</td><td></td><td>NE (UG/L</td><td>BDL</td><td>RIDE (UG/L</td><td>108</td><td>ANE (UG/L</td><td>BDL</td><td>0 1 0 5</td><td>IUa</td><td>801</td><td>BDL</td><td>108</td><td>108</td><td>108</td><td>BDL</td><td>BDL</td><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td></td></t<></td></t<></td></t<>	. 100 <t< td=""><td>.140 <t< td=""><td>097</td><td>RDI</td><td>i •</td><td></td><td>NE (UG/L</td><td>BDL</td><td>RIDE (UG/L</td><td>108</td><td>ANE (UG/L</td><td>BDL</td><td>0 1 0 5</td><td>IUa</td><td>801</td><td>BDL</td><td>108</td><td>108</td><td>108</td><td>BDL</td><td>BDL</td><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td></td></t<></td></t<>	.140 <t< td=""><td>097</td><td>RDI</td><td>i •</td><td></td><td>NE (UG/L</td><td>BDL</td><td>RIDE (UG/L</td><td>108</td><td>ANE (UG/L</td><td>BDL</td><td>0 1 0 5</td><td>IUa</td><td>801</td><td>BDL</td><td>108</td><td>108</td><td>108</td><td>BDL</td><td>BDL</td><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td></td></t<>	097	RDI	i •		NE (UG/L	BDL	RIDE (UG/L	108	ANE (UG/L	BDL	0 1 0 5	IUa	801	BDL	108	108	108	BDL	BDL	108	108	108	108	108	
3 &	VOLATIL	1991 JAN	1001 FFR								1991 SEP	1991 OCT	1991 NOV	1992 JAN				1,2 DICHLOROETHANE (UG/L	57 SAMPLES	CARBON TETRACHLORIDE	57 SAMPLES	1, 2-DICHLOROPROPANE	57 SAMPLES	TRICHLOROETHYLENE (UG/L	1001 IAN					1991 JUN								1992 JUL

DIST. SYSTEM WARBLER DR STANDING		•								•	•			•	٠	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠		٠		٠		•		٠			٠	•			
DIST. SYSTEM WARBLER OR FREE FLOW		1.850	1.900	4.150	3.800	3.650	3.400	3.800	4,250	5.900	7.700	BDL	7.700	BDL	5.800	d d d d d d d d d d d d d d d d d d d	BDL	5 5 5 7 7 7 7 8 9 9 9	BDL	T> 004.	.> 007.			T> 007.	.500 <t< td=""><td>7> 007.</td><td>1> 000°</td><td>1.100</td><td>BDL</td><td>2.100</td><td>108</td><td>1.900</td></t<>	7> 007.	1> 000°	1.100	BDL	2.100	108	1.900
RESERVOIR TREATED	GUIDELINE = 350 (A1+)	1.900	2,000	3.000	3.450	3.300	5,150.	5.200	1.600	8.200	9.700	108	12.500	108	000°9	GUIDELINE = 0.6 (D4)	108	GUIDELINE = 350 (A1+)	.800 <t< td=""><td>T> 000.</td><td>T> 000.</td><td>.800 <1</td><td></td><td></td><td></td><td>.300 <1</td><td>1.400</td><td>1.500</td><td>108</td><td>2.500</td><td>108</td><td>1.200</td></t<>	T> 000.	T> 000.	.800 <1				.300 <1	1.400	1.500	108	2.500	108	1.200
١	N9														BDL	N9	108	N9													•	BDL
WELL 3 WELL RAW RAW	DET'N LIMIT = 0.05	BDL	BDL	BOL	BOL	BOL	B0L	BDL	BOL	801	BDL	BOL	801	BOL	T 80L	DET'N LIMIT = 0.05	901	DET'N LIMIT = 0.10	BDL	BDL	BDL	BDL	BOL	108	108	801	108	108	108	BOL	108	BDL
WELL 2 RAW	^		٠		٠								•		.300 <t< td=""><td>(</td><td>801</td><td>^</td><td>•</td><td></td><td></td><td>•</td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>•</td><td>BDL</td></t<>	(801	^	•			•		•						•	•	BDL
WELL 1 RAW	VOLATILES THANE (UG/L	BDL	BDL	BDL	BDL	1> 001.	BDL	BDL	- 108	108	108	BOL	108	BDL		HANE (UG/L	BOL	THANE (UG/L	BDL	BOL	108	108	80L	80L	80L	B0L	801	ROL	B0L	BDL	. BDL	
	VOLATILE DICHLOROBROMOMETHANE (UG/L	1991 JAN							1991 AUG			1991 NOV	1992 JAN	1992 MAY	1992 JUL	112-TRICHLOROETHANE	57 SAMPLES	CHLOROD I BROMOMET HANE	1991 JAN	1991 FEB	1991 APR			1991 JUN								1992 JUL

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 MANITOUWADGE WELL SUPPLY

DIST. SYSTEM WARBLER DR STANDING			•		٠							٠			٠		c c c c c c c c c c c c c c c c c c c	•					3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DIST. SY WARBLER I STANDING			_	<t></t>	<t></t>	<t></t>	<1	<1	<t></t>		<1	<1	<t></t>	<1	<t></t>		6 6 6 6 6 9						7 0 0 0 0 0		9 0 0 2 2 0	0 0 0 0 0
DIST. SYSTEM WARBLER DR FREE FLOW							150 <	> 250 <		.500	× 007.	> 300.			× 007°	. 150	0 0 0 0 0 0 0 0 0 0 0	BDL		BDL	7 0 0 0 0 0 0 0 0 0	BDL		108	• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL
RESERVOIR TREATED	IE = 65 (A5)	000		.200 <1	.250 <t< td=""><td>.100 <t< td=""><td>.150 <t< td=""><td>.200 <t< td=""><td>.200 <1</td><td>.100 <t< td=""><td>.300 <t< td=""><td>.300 <t< td=""><td>.350 <t< td=""><td>.200 <1</td><td>BOL</td><td>.250 <t< td=""><td>IE = 350 (A1+)</td><td>BDL</td><td>WE = 0.17 (04)</td><td>108</td><td>VE = 2 (D1)</td><td>108</td><td>VE = 70 (D1)</td><td>BDL</td><td>VE = 1510 (03)</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.100 <t< td=""><td>.150 <t< td=""><td>.200 <t< td=""><td>.200 <1</td><td>.100 <t< td=""><td>.300 <t< td=""><td>.300 <t< td=""><td>.350 <t< td=""><td>.200 <1</td><td>BOL</td><td>.250 <t< td=""><td>IE = 350 (A1+)</td><td>BDL</td><td>WE = 0.17 (04)</td><td>108</td><td>VE = 2 (D1)</td><td>108</td><td>VE = 70 (D1)</td><td>BDL</td><td>VE = 1510 (03)</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.150 <t< td=""><td>.200 <t< td=""><td>.200 <1</td><td>.100 <t< td=""><td>.300 <t< td=""><td>.300 <t< td=""><td>.350 <t< td=""><td>.200 <1</td><td>BOL</td><td>.250 <t< td=""><td>IE = 350 (A1+)</td><td>BDL</td><td>WE = 0.17 (04)</td><td>108</td><td>VE = 2 (D1)</td><td>108</td><td>VE = 70 (D1)</td><td>BDL</td><td>VE = 1510 (03)</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.200 <t< td=""><td>.200 <1</td><td>.100 <t< td=""><td>.300 <t< td=""><td>.300 <t< td=""><td>.350 <t< td=""><td>.200 <1</td><td>BOL</td><td>.250 <t< td=""><td>IE = 350 (A1+)</td><td>BDL</td><td>WE = 0.17 (04)</td><td>108</td><td>VE = 2 (D1)</td><td>108</td><td>VE = 70 (D1)</td><td>BDL</td><td>VE = 1510 (03)</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.200 <1	.100 <t< td=""><td>.300 <t< td=""><td>.300 <t< td=""><td>.350 <t< td=""><td>.200 <1</td><td>BOL</td><td>.250 <t< td=""><td>IE = 350 (A1+)</td><td>BDL</td><td>WE = 0.17 (04)</td><td>108</td><td>VE = 2 (D1)</td><td>108</td><td>VE = 70 (D1)</td><td>BDL</td><td>VE = 1510 (03)</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<>	.300 <t< td=""><td>.300 <t< td=""><td>.350 <t< td=""><td>.200 <1</td><td>BOL</td><td>.250 <t< td=""><td>IE = 350 (A1+)</td><td>BDL</td><td>WE = 0.17 (04)</td><td>108</td><td>VE = 2 (D1)</td><td>108</td><td>VE = 70 (D1)</td><td>BDL</td><td>VE = 1510 (03)</td><td>BOL</td></t<></td></t<></td></t<></td></t<>	.300 <t< td=""><td>.350 <t< td=""><td>.200 <1</td><td>BOL</td><td>.250 <t< td=""><td>IE = 350 (A1+)</td><td>BDL</td><td>WE = 0.17 (04)</td><td>108</td><td>VE = 2 (D1)</td><td>108</td><td>VE = 70 (D1)</td><td>BDL</td><td>VE = 1510 (03)</td><td>BOL</td></t<></td></t<></td></t<>	.350 <t< td=""><td>.200 <1</td><td>BOL</td><td>.250 <t< td=""><td>IE = 350 (A1+)</td><td>BDL</td><td>WE = 0.17 (04)</td><td>108</td><td>VE = 2 (D1)</td><td>108</td><td>VE = 70 (D1)</td><td>BDL</td><td>VE = 1510 (03)</td><td>BOL</td></t<></td></t<>	.200 <1	BOL	.250 <t< td=""><td>IE = 350 (A1+)</td><td>BDL</td><td>WE = 0.17 (04)</td><td>108</td><td>VE = 2 (D1)</td><td>108</td><td>VE = 70 (D1)</td><td>BDL</td><td>VE = 1510 (03)</td><td>BOL</td></t<>	IE = 350 (A1+)	BDL	WE = 0.17 (04)	108	VE = 2 (D1)	108	VE = 70 (D1)	BDL	VE = 1510 (03)	BOL
4 RES	CUIDELINE		•		•											.100 <t< td=""><td>GUIDELINE</td><td>BDL</td><td>GUIDELINE</td><td>BOL</td><td>GUIDELINE</td><td>BDL</td><td>GUIDELINE</td><td>BDL</td><td>GUIDELINE</td><td>BDL</td></t<>	GUIDELINE	BDL	GUIDELINE	BOL	GUIDELINE	BDL	GUIDELINE	BDL	GUIDELINE	BDL
WELL .	11 = 0.05		2.900	3.750	5.250	3.750	3.950	2.600	3,250	3.400	5.400	4.500	.650	.750	.500	.900	DET'N LIMIT = 0.20	BDL	HT = 0.05	BDL	0ET'N LIMIT = 0.100	BDL	IIT = 0.100	BDL	HT = 0.10	BDL
WELL 3 RAW	OET'N LIMIT =	•	'n	3.	5.	3.	3.	2.	3,	3.	5.	4.	•		1,	•	DET'N LIM		DET'N LIMIT		DET'N LIM		DET*N LIMIT		DET'N LIMIT	
WELL 2 RAW				٠	٠	•	•	•	٠	٠	٠	٠				108	8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	108		B0L	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108		BDL	9 9 9 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	BDL
1.1	VOLATILES IE (UG/L)	į	BOL	BDL	.050 <t< td=""><td>BDL</td><td>BDL</td><td>BDL</td><td>801</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>٠</td><td>(</td><td>BDL</td><td>NE (UG/L</td><td>BDL</td><td>3/1)</td><td>BOL</td><td>NE (UG/L</td><td>BDL</td><td>\rac{1}{\chinter{1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}</td><td>BDL</td></t<>	BDL	BDL	BDL	801	BDL	BDL	BDL	BDL	BDL	BDL	٠	(BDL	NE (UG/L	BDL	3/1)	BOL	NE (UG/L	BDL	\rac{1}{\chinter{1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	BDL
WELL	VOLATIL TETRACHLOROETHYLENE (UG/L			1991 FEB	1991 APR	1991 APR				1991 AUG						1992 JUL	BROMOFORM (UG/L	57 SAMPLES	1122-TETCHLOROETHANE (UG/L	57 SAMPLES	VINYL CHLORIDE (UG/L	9 SAMPLES	C12-DICHLOROETHYLENE (UG/L	9 SAMPLES	CHLOROBENZENE (UG/L	57 SAMPLES

			,		1																	
DIST. SYSTEM WARBLER DR STANDING	5 1 6 1 7 8 8 9 1 9 1 1 6 6 7 7 8 8		5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		h P P P P P P P P P P P P P P P P P P P				•			٠	٠			٠	٠	•
DIST. SYSTEM WARBLER DR FREE FLOW	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL		BDL	, , , , , , , , , , , , , , , , , , ,	BDL	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	BDL	P P P R R R R R R R R R R R R R R R R R	009.9	6.950	005.12	18.800	21.700	25.400	20.250	27.500	42.000	80L	7,000	1 000 00	20.800
RESERVOIR TREATED	GUIDELINE = 5 (A1)	BDL	GUIDELINE = 3750 (D3)	BDL	GUIDELINE = 200 (A1)	BDL	GUIDELINE = 50 (D1)	BDL	GUIDELINE = 350 (A1)	5.700	5.700	14.900	12,250	42.050	36,100	2.900	36.900	48.100	. 801	45.100		22.900
, ,	מחום	108	GUID	BDL	GUID	BOL	BOIDE	BDL	GUID		٠	• (•		BUL
WELL 3 WELL 4 RAW RAW	DET'N LIMIT = 0.10	901	DET'N LIMIT = 0.10	108	DET'N LIMIT = 0.05	BDL	DET'N LIMIT = 0.05	BDL	DET*N LIMIT = 0.50	. BDL	80L 80I	108	80T	901	901	BOL	108	708 801	108	907		
WELL 2 RAW		BDL	^	BDL	_	BDL		800	^		•		٠					•	•	•	7 000 C	2000
WELL 1 RAW	VOLATILES VOLATILES VOLATILES	BDL	ENZENE (UG/L	BDL	ENZENE (UG/L	BDL	OMIDE (UG/L)	BDL	TOTL TRIHALOMETHANES (UG/L	BDL	80L 801	BDL	BDL	BDL	108	80L	80F	80L 801	108	301)	•
1	VOLATIL 1,4-DICHLOROBENZENE (UG/L	57 SAMPLES	1,3-DICHLOROBENZENE (UG/L	57 SAMPLES	1,2-DICHLOROBENZENE (UG/L	57 SAMPLES	ETHYLENE DIBROMIDE (UG/L	57 SAMPLES	TOTL TRIHALOM	1991 JAN	1991 FEB 1991 APR	1991 APR	1991 MAY		1991 JUL		1991 SEP				1992	-

	,				,						1			:
DIST, SYSTEM WARBLER DR STANDING		٠		٠		٠								
DIST. SYSTEM WARBLER DR FREE FLOW		٠				٠	_				1			
RESERVOIR TREATED	GUIDELINE = N/A	. 80L	GUIDELINE = N/A	. 8DL	GUIDELINE = 50 (A1)	108	GUIDELINE = 0.55 (D1)	060.	GUIDELINE = N/A		GUIDELINE = 40000 (A1)	. 80L	GUIDELINE = 10 (A1)	108
WELL 3 WELL 4 RAW RAW	DET'N LIMIT = 0.70	108	DET'N LIMIT = 0.70	BDL	DET'N LIMIT = 0.70	108	DET'N LIMIT = 0.04	.100	DET'N LIMIT = 0.04	.090	DET'N LIMIT = 7.00	12.000 8DL	DET'N LIMIT = 0.70	BDL
WELL 2 RAW														0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WELL 1 RAW	RADIONUCLIDES	BDL	(7,	108	(]	BDL	J/U (80/L	060°	17 (80/L	.100	(11.000 BDL	ال)	BDL
	COBALT 60 (80/L	6 SAMPLES	CESIUM 134 (80/L	6 SAMPLES	CESIUM 137 (80/L	6 SAMPLES	GROSS ALPHA COUNT (BO/L	1991 MAY 1992 JAN	GROSS BETA COUNT (BQ/L	1991 MAY 1992 JAN	TRITIUM (BO/L	1991 MAY 1992 JAN	1001NE 131 (B0/L	6 SAMPLES

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE	
BACTERIOLOGICAL				
FECAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0	0	(A1)
STANDARD PLATE COUNT MEMBRANE FILT.	CT/ML	0	500/ML	(A3)
TOTAL COLIFORM BACKGROUND MF	CT/100ML	0	N/A	(41)
TOTAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0	5/100ML	(A1)
CHEMISTRY (FLD)				
FIELD COMBINED CHLORINE RESIDUAL	MG/L	0	N/A	
FIELD TOTAL CHLORINE RESIDUAL	MG/L	0	N/A	
FIELD FREE CHLORINE RESIDUAL	MG/L	0	N/A	•
FIELD PH	DMNSLESS	N/A	6.5-8.5	
FIELD TEMPERATURE	DEG.C	N/A	15.0	
FIELD TURBIDITY	FTU	N/A	1.0	(A1)
CHEMISTRY (LAB)				
ALKALINITY	MG/L	0.20	30-500	(A4)
AMMONIUM TOTAL	MG/L	0.002	0.05	(F2)
CALCIUM	MG/L	0.20	100.0	(F2)
CHLORIDE	MG/L	0.20	250.0	(A3)
COLOUR	TCU	0.50		(A3)
CONDUCTIVITY	UMHO/CM	1.00	400.0	
CYANIDE	MG/L	0.001		(A1)
DISSOLVED ORGANIC CARBON	MG/L	0.10		(A3)
FLUORIDE	MG/L	0.01		(A1)
HARDNESS	MG/L	0.50	80-100	(A4)
IONCAL	DMNSLESS	N/A	N/A N/A	
LANGELIERS INDEX MAGNESIUM	DMNSLESS MG/L	N/A 0.10	30.0	(52)
NITRATES (TOTAL)	MG/L	0.005	10.0	,
NITRITE	MG/L	0.001	1.0	• •
NITROGEN TOTAL KJELDAHL	MG/L	0.02	N/A	,
PH	DMNSLESS	N/A	6.5-8.5	(A4)
PHOSPHORUS FIL REACT	MG/L	0.0005	N/A	
PHOSPHORUS TOTAL	MG/L	0.002	0.4	(F2)
POTASSIUM	MG/L	0.010	10.0	
RESIDUE FILTRATE (CALCULATED TDS)	MG/L	N/A	500.0	
SODIUM	MG/L	0.20		(A4)
SULPHATE	MG/L	0.20		(A4)
TURBIDITY	FTU	0.05	1.0	(A1)
* The Maximum Acceptable Concentration (MAC) for <u>matu</u>	urally occurring	fluoride in	drinking wate

er is 2.4 mg/L.

CHLOROAROMATICS

1,2,3-TRICHLOROBENZENE	NG/L	5.0	N/A	
1,2,3,4-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1.2.3.5-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1.2.4-TRICHLOROBENZENE	NG/L	5.0	10000	(I)
1.2.4.5-TETRACHLOROBENZENE	NG/L	1.0	38000	(D4)
1.3.5-TRICHLOROBENZENE	NG/L	5.0	N/A	
2,3,6-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2.4.5-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2,6A-TRICHLOROTOLUENE	NG/L	5.0	N/A	
HEXACHLOROBENZENE (HCB)	NG/L	1.0	10	(C1)
HEXACHLOROBUTADIENE	NG/L	1.0	450	(D4)
HEXACHLOROETHANE	NG/L	1.0	1900	(D4)
OCTACHLOROSTYRENE	NG/L	1.0	N/A	
PENTACHLOROBENZENE	NG/L	1.0	74000	(D4)
CHLOROPHENOLS				
2,3,4-TRICHLOROPHENOL	NG/L	100.0	N/A	
2,3,4,5-TETRACHLOROPHENOL	NG/L	20.0	N/A	
2,3,5,6-TETRACHLOROPHENOL	NG/L	10.0	N/A	

		DETECTION		
SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE	
2 (5 7220) 2220				
2,4,5-TRICHLOROPHENOL	NG/L	100.0	2600000	(04)
2,4,6-TR1CHLOROPHENOL	NG/L	20.0	5000	(A1)
PENTACHLOROPHENOL	NG/L	10.0	60000	(A1)
METALS				
ALUMINUM	UG/L	0.10	100	(A4)
ANTIMONY	UG/L	0.05	146	(D4)
ARSENIC	UG/L	0.10	25	(A1)
BARIUM	UG/L	0.05	1000	(A2)
BERYLLIUM	UG/L	0.05	6800	(D4)
BORON CADMIUM	UG/L	2.00	5000 5	(A1)
CHROMIUM	UG/L UG/L	0.05 0.50	50	(A1) (A1)
COBALT	UG/L	0.02	N/A	(AI)
COPPER	UG/L	0.50	1000	(A3)
IRON	UG/L	6.00	300	(A3)
LEAD	UG/L	0.05	10	(A1)
MANGANESE	UG/L	0.05	50	(A3)
MERCURY	UG/L	0.02	1	(A1)
MOLYBDENUM	UG/L	0.05	N/A	
NICKEL	UG/L	0.20	350	(D3)
SELENIUM	UG/L	1.00	10	(A1)
SILVER	UG/L	0.05	N/A	
STRONTIUM THALLIUM	UG/L	0.10	N/A	(0/)
TITANIUM	UG/L UG/L	0.05 0.50	13 N/A	(D4)
URANIUM	UG/L	0.05	100	(A1)
VANADIUM	UG/L	0.05	N/A	(01)
ZINC	UG/L	0.20	5000	(A3)
POLYNUCLEAR AROMATIC HYDROCARBONS				
ANTHRACENE	NG/L	1.0	N/A	
BENZO(A) ANTHRACENE	NG/L	20.0	N/A	
BENZO(A) PYRENE BENZO(B) CHRYSENE	NG/L	5.0	10	(A1)
BENZO(B) FLUORANTHENE	NG/L NG/L	2.0 10.0	N/A N/A	
BENZO(E) PYRENE	NG/L	50.0	N/A	
BENZO(G,H,I) PERYLENE	NG/L	20.0	N/A	
BENZO(K) FLUORANTHENE	NG/L	1.0	N/A	
CHRYSENE	NG/L	50.0	N/A	
CORONENE	NG/L	10.0	N/A	
DIBENZO(A,H) ANTHRACENE	NG/L	10.0	N/A	
DIMETHYL BENZO(A) ANTHRACENE	NG/L	5.0	N/A	
FLUORANTHENE	NG/L	20.0	42000	(D4)
INDENO(1,2,3-C,D) PYRENE PERYLENE	NG/L	20.0	N/A	
PHENANTHRENE	NG/L NG/L	10.0 10.0	N/A N/A	
PYRENE	NG/L	20.0	N/A	
PESTICIDES & PCB				
ALACHLOR (LASSO)	NG/L	500.0	5000	(A2)
ALDRIN	NG/L	1.0	700	(A1)
ALPHA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	700	(G)
ALPHA CHLORDANE	NG/L	2.0	7000	(A1)
AMETRINE	NG/L	50.0	300000	(D3)
ATRATONE	NG/L	50.0	N/A	(12)
ATRAZINE DESETHYL ATRAZINE	NG/L NG/L	50.0 200.0	60000 60000	(A2)
BETA HEXACHLOROCYCLOHEXANE (BHC)	NG/L NG/L	1.0	300	(G)
CYANAZINE (BLADEX)	NG/L	100.0	10000	(A2)
DIELDRIN	NG/L	2.0	700	(A1)
ENDOSULFAN 1 (THIODAN 1)	NG/L	2.0	74000	(D4)
ENDOSULFAN 2 (THIODAN 11)	NG/L	5.0	74000	(D4)
ENDOSULFAN SULPHATE (THIODAN SULPHATE)	NG/L	5.0	N/A	

SCAN/PARAMETER	UNIT		UIDELINE	
•••••				
ENDRIN	NG/L	5.0	1600	(D3)
GAMMA CHLORDANE	NG/L	2.0	7000	(A1)
HEPTACHLOR	NG/L	1.0	3000	(A1)
HEPTACHLOR EPOXIDE	NG/L	1.0	3000	(A1)
HEXACHLOROCYCLOPENTADIENE	NG/L	5.0	206000	(D4)
LINDANE (GAMMA BHC)	NG/L	1.0	4000	(A1)
METHOXYCHLOR	NG/L	5.0	900000	(A1)
METOLACHLOR	NG/L	500.0 100.0	50000	(A2)
METRIBUZIN (SENCOR)	NG/L		80000	(A1)
MIREX	NG/L	5.0 5.0	N/A 30000	(11)
P,P-DDD	NG/L	5.0	30000	(A1) (A1)
O,P-DDT	NG/L	5.0	30000	(A1)
P,P-DDT	NG/L NG/L	1.0	30000	(A1)
P,P-DDE OXYCHLORDANE	NG/L	2.0	N/A	(41)
PCB	NG/L	20.0	3000	(A2)
PROMETONE	NG/L	50.0	52500	(D3)
PROMETRYNE	NG/L	50.0	1000	(A2)
PROPAZINE	NG/L	50.0	700000	(D3)
SIMAZINE	NG/L	50.0	10000	(A2)
DESETHYL SIMAZINE	NG/L	200.0	10000	(A2)
TOXAPHENE	NG/L	500.0	5000	(A1)
	NG/L	300.0	3000	(A1)
PHENOLICS				
PHENOLICS (UNFILTERED REACTIVE)	UG/L	0.2	N/A	
SPECIFIC PESTICIDES				
2,4 D PROPIONIC ACID	NG/L	100.0	N/A	
2,4,5-TRICHLOROPHENOXY ACETIC ACID	NG/L	50.0	280000	(A1)
2,4-DICHLOROBUTYRIC ACID (2,4-D)	NG/L	100.0	100000	(A1)
2,4-DICHLORORPHENOXYBUTYRIC ACID (2,4-DB)	NG/L	200.0	N/A	
2,4,5-TP (SILVEX)	NG/L	20.0	10000	(A1)
BUTYLATE (SUTAN)	NG/L	2000.0	245000	(D3)
CARBARYL (SEVIN)	NG/L	200.0	90000	(A1)
CARBOFURAN	NG/L	2000.0	90000	(A1)
CHLORPROPHAM (CIPC)	NG/L	2000.0	350000	(G)
CHLORPYRIFOS (DURSBAN)	NG/L	20.0	N/A	
DIALLATE	NG/L	2000.0	N/A	
DIAZINON	NG/L	20.0	20000	(A1)
DICAMBA	NG/L	50.0	120000	(A1)
DICHLOROVOS	NG/L	20.0	N/A	
EPTAM	NG/L	2000.0	N/A	
ETHION	NG/L	20.0	35000	(G)
IPC	NG/L	2000.0	N/A	
MALATHION	NG/L	20.0		(A1)
METHYL PARATHION	NG/L	50.0	9000	(D3)
METHYLTRITHION	NG/L	20.0	N/A	
MEVINPHOS	NG/L	20.0	N/A	4445
PARATHION	NG/L	20.0	50000	(A1)
PHORATE (THIMET)	NG/L	20.0	2000	(A2)
PICHLORAM	NG/L	100.0	190000	(A2)
PROPOXUR (BAYGON)	NG/L	2000.0	140000	(D3)
RELDAN	NG/L	20.0	N/A	
RONNEL	NG/L	20.0	N/A	
VOLATILES				
-1,1-DICHLOROETHANE	UG/L	0.10	N/A	
1,1-DICHLOROETHYLENE	UG/L	0.10	7	(D1)
1,2-DICHLOROBENZENE	UG/L	0.05	200	(A1)
1,2-DICHLOROETHANE	UG/L	0.05	5	(A1)
1,2-DICHLOROPROPANE	UG/L	0.05	5	(D1)
1,3-DICHLOROBENZENE	UG/L	0.10	3750	(D3)
1,4-DICHLOROBENZENE	UG/L	0.10	5	(A1)
1,1,1-TRICHLOROETHANE	UG/L	0.02	200	(D1)
1,1,2-TRICHLOROETHANE	UG/L	0.05	0.	
1,1,2,2-TETRACHLOROETHANE	UG/L	0.05	۵.	17 (D4)

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

		DETECTION	
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE
BENZENE	UG/L	0.05	5 (A1)
BROMOFORM	UG/L	0.20	350 (A1+)
CARBON TETRACHLORIDE	UG/L	0.20	5 (A1)
CHLOROBENZENE	UG/L	0.10	1510 (D3)
CHLORODIBROMOMETHANE	UG/L	0.10	350 (A1+)
CHLOROFORM	UG/L	0.10	350 (A1+)
CIS 1,2-DICHLOROETHYLENE	UG/L	0.10	70 (D1)
DICHLOROBROMOMETHANE	UG/L	0.05	350 (A1+)
ETHYLENE DIBROMIDE	UG/L	0.05	50 (D1)
ETHYLBENZENE	UG/L	0.05	2.4 (A3)
M-XYLENE	UG/L	0.10	300 (A3*)
METHYLENE CHLORIDE	UG/L	0.50	50 (A1)
O-XYLENE	UG/L	0.05	300 (A3*)
P-XYLENE	UG/L	0.10	300 (A3*)
STYRENE	UG/L	0.05	100 (D1)
TETRACHLOROETHYLENE	UG/L	0.05	65 (A5)
TRANS 1,2-DICHLOROETHYLENE	UG/L	0.10	70 (01)
TOLUENE	UG/L	0.05	24 (A3)
TOTAL TRIHALOMETHANES	UG/L	0.50	350 (A1)
TRICHLOROETHYLENE	UG/L	0.10	50 (A1)
VINYL CHLORIDE	UG/L	0.10	2 (D1)
RADIONUCLIDES			
TRITIUM	BQ/L	7.0	40000 (A1)
GROSS ALPHA COUNT	BQ/L	0.04	0.55# (D1)
GROSS BETA COUNT	BQ/L	0.04	N/A
COBALT 60	BQ/L	0.70	N/A
CESIUM 134	BQ/L	0.70	N/A
CESIUM 137	BQ/L	0.70	50 (A1)
IODINE 131	BQ/L	0.70	10 (A1)
			4,

[#] Equal to 15.0 Picocuries/litre

DRINKING WATER SURVEILLANCE PROGRAM PROGRAM DESCRIPTION

The Drinking Water Surveillance Program (DWSP) for Ontario monitors drinking water quality at municipal water supply systems. The DWSP Database Management System provides a computerized drinking water quality information system for the supplies monitored. The objectives of the program are to provide:

- immediate, reliable, current information on drinking water quality;
- a flagging mechanism for guideline exceedance;
- a definition of contaminant levels and trends;
- a comprehensive background for remedial action;
- a framework for assessment of new contaminants; and
- an indication of treatment efficiency of plant processes.

PROGRAM

The DWSP officially began in April 1986 and is designed to eventually include all municipal water supplies in Ontario. In 1992, 109 systems were being monitored. Water supply locations have been prioritized for surveillance based primarily on criteria such as population density, probability of contamination and geographical location.

An ongoing assessment of future monitoring requirements at each location will be made. Monitoring will continue at the initial locations at an appropriate level and further locations will be phased into the program as resources permit.

A major goal of the program is to collect valid water quality data in context with plant operational characteristics at the time of sampling. As soon as sufficient data have been accumulated and analyzed, both the frequency of sampling and the range of parameters may be adjusted accordingly.

Assessments are carried out at all locations prior to initial sampling, in order to acquire complete plant process and distribution system details and to designate (and retrofit if necessary) all sampling systems and locations. This ensures that the sampled water is a reflection of the water itself.

Samples are taken of raw (ambient water) and treated water at the treatment plant and of consumer's tap water in the distribution system. In order to determine possible effects of distribution on water quality, both standing and free flow water in old and new sections of the distribution system are sampled. Sampling is carried out by operational personnel who have been trained in applicable procedures.

Comprehensive standardized procedures and field test kits are supplied to sampling personnel. This ensures that samples are taken and handled according to standard protocols and that field testing will supply reliable data. All field and laboratory analyses are carried out using "approved documented procedures". Most laboratory analyses are carried out by the Ministry of Environment and Energy (MOEE), Laboratory Services Branch. Radionuclides are analyzed by the Ministry of Labour.

DATA REPORTING MECHANISM

When the analytical results are transferred from the MOEE laboratory into the DWSP system, printouts of the completed analyses are sent to the MOEE District Officer, the appropriate operational staff and are also retained by the DWSP unit.

PROGRAM INPUTS AND OUTPUTS

There are four major inputs and four major outputs in the program.

Program Input - Plant and Distribution System Description

The system description includes plant specific non-analytical information acquired through a questionnaire and an initial plant visit. During the initial assessment of the plant and distribution system, questionnaire content is verified and missing information added. It is intended that all data be kept current with scheduled annual updates.

The Plant and Distribution System Description consists of the following seven components:

1. PROCESS COMPONENT INVENTORY

All physical and chemical processes to which the water is subjected, from the intake pipe to the consumers' tap (where possible), are documented. These include: process type, general description of physical structures, material types, sizes, and retention time for each process within the plant. The processes may be as simple as transmission or as complex as carbon adsorption.

2. TREATMENT CHEMICALS

Chemicals used in the treatment processes, their function, application point, supplier and brand-name are recorded. Chemical dosages applied on the day of sampling are recorded in DWSP.

3. PROCESS CONTROL MEASUREMENTS

Documentation of in-plant monitoring of process parameters (eg. turbidity, chlorine residuals, pH, aluminum residuals) including methods used, monitoring locations and frequency is contained in this section. Except for the recorded Field Data, in-plant monitoring results are not retained in DWSP but are retained by the water treatment plant personnel.

4. DESIGN FLOW AND RETENTION TIME

Hydraulic capacity, designed and actual, is noted here. Retention time (the time that a block of water is retained in the plant) is also noted. Maximum, minimum and average flow, as well as a record of the flow rate on the day of sampling, are recorded in DWSP.

5. DISTRIBUTION SYSTEM DESCRIPTION

This area includes the storage and transmission characteristics of the distribution system after the water leaves the plant.

6. SAMPLING SYSTEM

Each plant is assessed for its adequacy in terms of the sampling of bacteriological, organic and inorganic parameters. Prime considerations in the assessment and design of the sampling system are:

- i/ the sample is an accurate representation of the actual water condition, eg. raw water has had no chemical treatment;
- ii/ the water being sampled is not being modified by the sampling system;
- iii/ the sample tap must be in a clean area of the plant, preferably a lab area;
 and
- iv/ the sample lines must be organically inert (no plastic, ideally stainless steel).

It is imperative that the sampled water be a reflection not of the sampling system but of the water itself.

The sampling system documentation includes: origin of the water; date sampling was initiated; size, length and material type (intake, discharge and tap); pump characteristics (model, type, capacity); and flow rate.

7. PERSONNEL

This section contains the names, addresses and phone numbers of current plant management and operational staff, distribution system management and operational staff, Medical Officer of Health and appropriate MOEE personnel associated with the plant.

Program Input - Field Data

The second major input to DWSP is field data. Field data is collected at the plant and from the distribution system sites on the day of sampling. Field data consists of general operating conditions and the results of testing for field parameters. General operating conditions include chemicals used, dosages, flow and retention time on the day of sampling, as well as, monthly maximum, minimum and average flows. Field parameters include turbidity, chlorine residuals (free, combined and total), temperature and pH. These parameters are analyzed according to standardized DWSP protocols to allow for interplant comparison.

Program Input - Laboratory Analytical Data

The third major input to DWSP is Laboratory Analytical Data. Samples gathered from the raw, treated and distribution sampling sites are analyzed for the presence of approximately 180 parameters at a frequency of two to twelve times per year. Sixty-five percent of the parameters are organic. Parameters measured may have health or aesthetic implications when present in drinking water. Many of the parameters may be used in the treatment process or may be treatment by-products. Due to the nature of certain analytical instruments, parameters may be measured in a "scan" producing some results for parameters that are not on the DWSP priority list, but which may be of interest. The majority of parameters are measured on a routine basis. Those that are technically more difficult and/or costly to analyze, however, are done less frequently. These include Specific Pesticides and Chlorophenols.

Although the parameter list is extensive, additional parameters with the potential to cause health or aesthetic related problems may be added provided reliable analytical and sampling methods exist.

All laboratory generated data is derived from standardized, documented analytical protocols. The analytical method is an integral part of the data and as methods change, notation will be made and comparison data documented.

Program Input - Parameter Reference Information

The fourth major input to DWSP is Parameter Reference Information. This is a catalogue of information for each substance analyzed on DWSP. It includes parameter name and aliases, physical and chemical properties, basic toxicology, world-wide health limits, treatment methods and uses. The Parameter Reference Information is computerized and can be accessed through the Query function of the DWSP database. An example is shown in figure 1.

Program output - Query

All DWSP information is easily accessed through the Query function, therefore, anything from addresses of plant personnel to complete water quality information for a plant's water supply is instantly available. The DWSP computer system makes relatively complex inquiries manageable. A personal password allowing access into the DWSP query mode in all MOEE offices is being developed by the DWSP group.

Program Output - Action Alerts

Drinking Water quality in Ontario is evaluated against provincial objectives as outlined in the Ontario Drinking Water Objectives publication. Should the reported level of a substance in treated water exceed the Ontario Drinking Water Objective, an "Action Alert" requiring resampling and confirmation is issued. This assures that operational staff, health authorities and the public are notified as soon as possible of the confirmation of an exceedance and remedial action taken. This report supplies a history of the occurrence of past exceedances at the plant plus a historical summary on the parameter of concern.

In the absence of Ontario Drinking Water Objectives, guidelines/limits from other agencies are used. The Parameter Listing System, published by MOEE (ISBN 0-7729-4461-X), catalogues and keeps current guidelines for 650 parameters from agencies throughout the world. If these guidelines are exceeded, the results are flagged and evaluated by DWSP personnel. An "Action Alert" will be issued if warranted.

Program Output - Report Generation

Custom reports can be generated from DWSP to meet MOEE Regional needs and to respond to public requests.

Program Output - Annual Reports

It is the practice of DWSP to produce an annual report containing analytical data along with companion plant information.

PARAMETER REFERENCE INFORMATION

NAME:

BENZENE

CAS#:

71-43-2

MOLECULAR FORMULAE:

C6H6

DETECTION LIMIT:

(FOR METHOD POCODO) 0.05 μ g/L

SYNONYMS:

BENZOL; BENZOLE; COAL NAPHTHA; CARBON OIL (27)

CYCLOHEXATRIENE (41)

CHARACTERISTICS:

COLOURLESS TO LIGHT-YELLOW, MOBILE, NONPOLAR LIQUID, OF HIGHLY REFRACTIVE NATURE, AROMATIC ODOUR; VAPOURS BURN

WITH SMOKING FLAME (30)

PROPERTIES:

SOLUBILITY IN WATER: 1780-1800 mg/L AT 25C (41)

THRESHOLD ODOUR: 0.5 - 10 PPM IN WATER THRESHOLD TASTE: 0.5 mg/L IN WATER (39)

ENVIRONMENTAL FATE: MAY BIOACCUMULATE IN LIVING ORGANISMS AND APPEARS TO ACCUMULATE IN ANIMAL TISSUES THAT EXHIBIT A HIGH LIPID CONTENT OR REPRESENT MAJOR METABOLIC SITES, SUCH AS LIVER OR BRAIN; SMALL QUANTITIES EVAPORATE FROM

SOILS OR ARE DEGRADED RATHER QUICKLY (80)

SOURCES:

COMMERCIAL: PETROLEUM REFINING; SOLVENT RECOVERY; COAL TAR DISTILLATION (39); FOOD PROCESSING AND TANNING INDUSTRIES;

COMBUSTION OF CAR EXHAUST.

ENVIRONMENTAL: POSSIBLE SOURCE IS RUNOFF.

USES:

DETERGENTS; NYLON; INTERMEDIATE IN PRODUCTION OF OTHER COMPOUNDS, SUCH AS PESTICIDES; SOLVENT FOR EXTRACTION AND RECTIFICATION IN RUBBER INDUSTRY; DEGREASING AND CLEANSING

AGENT; GASOLINE.

OXIDATION

REMOVAL:

THE FOLLOWING PROCESSES HAVE BEEN SUCCESSFUL IN REMOVING BENZENE FROM WASTEWATER: GAC ADSORPTION, PRECIPITATION WITH ALUM AND SUBSEQUENT REMOVAL VIA SEDIMENTATION, COAGULATION AND FLOCCULATION, SOLVENT EXTRACTION,

ADDITIONAL PROPERTIES:

MOLECULAR WEIGHT: 78.12 MELTING POINT: 5.5°C (27) BOILING POINT: 80.1°C (27)

SPECIFIC GRAVITY: 0.8790 AT 20°C (27) VAPOUR PRESSURE: 100 MM AT 26.1°C (27)

HENRY'S LAW CONSTANT: 0.00555 ATM-M3/MOLE (41)

LOG OCT./WATER PARTITON COEFFICIENT: 1.95 TO 2.13 (39) CARBON ADSORPTION: K=1.0; 1/N=1.6; R=0.97; PH=5.3 (41)

SEDIMENT/WATER PARTITION COEFFICIENT: NO DATA

DWSP SAMPLING GUIDELINE

i) Raw and Treated at Plant

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -220 mL plastic bottle with white seal on cap

-do not rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals

-500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃) (Caution: HNO₃ is corrosive)

Volatiles (duplicates)

(OPOPUP)

-45 mL glass vial with septum

(teflon side must be in contact with sample)

-do <u>not</u> rinse bottle

-fill bottle completely without bubbles

Organics

(OWOC),(OWTRI)

-1 L amber glass bottle per scan

-do not rinse bottle
-fill to 2 cm from top

Specific Pesticides (OWCP), (PEOP), (PECAR)

-as per Organics

-three extra bottles must be filled

Polyaromatic hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do <u>not</u> rinse bottle

-fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Cyanide (Treated only)

-500 mL plastic bottle (PET 500) -rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops sodium hydroxide (NaOH)

(Caution: NaOH is corrosive)

Mercury

-250 mL glass bottle

-rinse bottle and cap three times

-fill to top of label

-add 20 drops each nitric acid (HNO_3) and potassium dichromate ($K_2Cr_2O_7$) (Caution: $HNO_3\&K_2Cr_2O_7$ are corrosive)

Phenols -250 mL glass bottle

-do not rinse bottle, preservative has been added

-fill to top of label

Radionuclides -4 L plastic jug

(as scheduled) -do <u>not</u> rinse, carrier added

-fill to 5 cm from top

Organic Characterization

-1 L amber glass bottle; instructions as per organic

(GC/MS - once per year)
(PBVOL), (PBEXT)

-250 mL glass bottle -do not rinse bottle

-fill completely without bubbles

Steps:

1. Let sampling water tap run for an adequate time to clear the sample line.

- 2. Record time of day on submission sheet.
- 3. Record temperature on submission sheet.
- 4. Fill up all bottles as per instructions.
- 5. Record chlorine residuals (free, combined and total for treated water only), turbidity and pH on submission sheet.
- 6. No smoking in area of sample location.

ii) Distribution Samples (standing water)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃)

(Caution: HNO₃ is corrosive)

Steps:

- 1. Record time of day on submission sheet.
- 2. Place bucket under tap and open cold water.
- 3. Fill to predetermined volume.
- 4. After mixing the water, record the temperature on the submission sheet.

- 5. Fill general chemistry and metals bottles.
- 6. Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

iii) Distribution Samples (free flow)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -250 mL plastic bottle with white seal on cap

-do not rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid HNO₃ (Caution: HNO₃ is corrosive)

Volatiles (duplicate)

(OPOPUP)

-45 mL glass vial with septum

(teflon side must be in contact with sample)
-do not rinse bottle, preservative has been added

-fill bottle completely without bubbles

Organics

-1 L amber glass bottle per scan

(OWOC)

-do not rinse bottle
-fill to 2 cm from top

Polyaromatic Hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do not rinse bottle
-fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Steps:

- 1. Record time of day on submission sheet.
- 2. Let cold water flow for five minutes.
- 3. Record temperature on submission sheet.
- 4. Fill all bottles as per instructions.
- Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

,

,

*

.

•

