Network Manager

Application Note #2

May 30, 2016 00DA0209-001, Rev S

Network Manager Interface

Introduction

This application note describes the implementation details of the Network Manager Interface (NMI). Application note #01, 00DA0109 provides an overview of the Network Manager (NM).

The Network Managers (NM) handle the alarm data management for Senstar's proprietary security networks. The Network Manager is available either as a Windows Application (kit # 00FG0200) or a Windows Service (kit # 00FG0220). There are six variants of the NM Application, one each for the Silver, Crossfire, Sennet, Sentrax, Voice over Ethernet (VoE), and MX networks. The Network Manager Service handles the alarm data management for the Silver, FiberPatrol, CCC, Crossfire, Krypton, Sennet, and Starcom networks.

Note	This document refers to both the Network Manager Application and the
	Network Manager Service as the Network Manager unless describing a
	specific feature or function which pertains only to one of them.

The Network Managers function as data servers which collect and distribute alarm point data and control point status for third party Security Management Systems (SMS) via the Network Manager Interface (NMI) or generic text, or legacy Starcom protocol (contact Senstar Customer Service for Starcom protocol details). The third party organization is responsible for writing the software, which establishes communication to the Network Manager and implements the NMI.

Software developers have 2 choices when implementing the NMI:

- establish the TCP/IP communication and process raw NMI messages;
 OR
- use an MFC DLL, which provides a higher level integration to the NMI TCP/IP messages.

Both methods are supported by the Network Manager software, to provide developers greater flexibility when interfacing to the NM products. The Network Manager Interface Software Development Kit (SDK) includes the files necessary for developing an interface. It also demonstrates the two methods through sample programs, written in C++ for Windows MFC framework. The programs serve as examples and test applications, and all source code is included.

If a developer is using raw NMI messages and redundant Network Managers, the application can connect to only the active NM. Therefore, when trying to connect to redundant Network Managers initially, or after losing the connection, you must hunt between the two specified IP addresses for the active NM.

page 2 00DA0209-001, Rev S

Network Manager Simulators

There are two Network Manager Simulators, one for the Network Manager Application (NMSimul) and one for the Network Manager Service (NMS Simul). The Network Manager Simulator is used in place of a Network Manager to simulate the operation of a Network Manager with a connected network of security devices. Use a simulator to test system databases before installing and connecting the network devices. Developers should also use a simulator to test and verify the interfaces to third party display applications.

Note	Refer to the online help for information about using the Network Manager
	Simulator.

Network Manager SDK installation

Use the Network Manager installation program (Setup.exe) to install the NMI development components, and the sample programs that demonstrate its use.

During the initial installation:

On the Network Manager Installshield Wizard dialog, check the boxes beside the components that you want to install.

Or to modify an existing installation:

Select **Modify**, and then select the appropriate components from the Network Manager Interface tree structure.

This selection creates a folder C:\Senstar\Network Manager\SDK, which contains the folders and files necessary for a developer to use the Network Manager Interface. Examples are included with the installation to demonstrate the NMI usage, and to test the Network Manager and connected equipment.

IP address configuration

To prevent unauthorized access, you must configure the Network Manager program with the IP addresses of all computers with which it will communicate. A Network Manager will not allow connections from any computer that is not on its registered address list.

Note	Consult the Network Manager's online documentation for additional
	information.

Network Manager Interface TCP/IP

To write an interface that establishes its own TCP/IP connection, and then processes raw NMI messages, requires the NMTcpip.h header file. The header file includes message type definitions, Silver definitions, FiberPatrol definitions, CCC definitions, Crossfire definitions, Sennet definitions, Sentrax definitions, VoE definitions, MX definitions, Starcom definitions, and other sensor specific definitions. The NMTcpip.h file is included as part of the Network Manager Interface Development Components installation.

The connection is a client-server asynchronous relationship with the NM being the server. The client attaches to port 849 + the NM's Unit ID (1-10) at the NM Computer's IP address. If the client's IP address is in the Network Manager's list, and is not already in use, the connection is accepted.

Conventions:

- Bytes are in hexadecimal.
- Words and other multibyte types are stored least significant byte first.
- Bit 0 is the least significant bit in a byte or word.

All messages have a common format for the first 5 bytes:

Byte #	1	2	3	4	5	6	7
Data	E0	31	03	00	01	XX	XX

- Bytes 1 & 2 are constant values.
- Bytes 3 & 4 are the length of the message from the message type to the end of the data.
- Byte 5 is the message type.
- Byte 6 is the start of the data, if required.

NMI message summary

The client sends one of the following message types to the NM. The NM typically responds with the same message type. The NM can also send unsolicited messages. These are noted below.

This message has no data bytes, requires no response, and should be ignored by the recipient. The Windows O/S may be slow to report a TCP/IP connection loss unless a message is being sent. The NM periodically sends this message to check the status of a connection to an SMS client. An SMS client may use this message for the same purpose.

Message format:

Byte #	1	2	3	4	5
Data	E0	31	01	00	00

Byte 5, the message type, is 00.

NM MT LOOPBACK

Two bytes of data are loaded by the client. The inverted values are returned. The client can use this to verify the TCP/IP connection as Windows can be slow to report TCP/IP link failures.

page 4 00DA0209-001, Rev S

Client query:

Byte #	1	2	3	4	5	6	7
Data	E0	31	03	00	01	AA	FF

- Byte 5, the message type, is 01.
- Bytes 6 & 7 are user defined and each may be any value between 00-FF.

Server response:

Byte #	1	2	3	4	5	6	7
Data	E0	31	03	00	01	55	00

• Bytes 6 & 7 are the inverted values of the user's input.

NM_MT_DEVC_TYPE

This message is used to request the identity of a specific device, indicated by its address, or of all devices.

TIP	Use the NM_D_DEVC_TYPE structure available in the NMTcpip.h header to
	simplify parsing the response message.

Client query:

Byte #	1	2	3	4	5	6	7
Data	E0	31	03	00	02	01	00

- Byte 5, the message type, is 02.
- Bytes 6 & 7 are the device address. This shows device 1.

Server response:

The server sends this message in response to the client query or unsolicited when a new device is detected.

Byte #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Data	E0	31	0B	00	02	01	00	01	01	03	00	00	01	00	01

- Byte 5, the message type, is 02.
- Bytes 6 & 7 are the device address. An address of 0 is the Network Controller.
- Bytes 8 & 9 are the device type.
- Bytes 10 & 11 are the total number of diagnostic alarms (3).
- Bytes 12 & 13 are the total number of alarms (256).
- Bytes 14 & 15 are the total number of control points (256).

If the device address was -1 (FF FF) in the query, each device's data would be appended to this message and the message length would increase by 10 bytes per device.

NM_MT_COMM_STAT

This message is used to retrieve the communications status for a device, or for all devices.

TIP	Use the NM_D_COMM_STAT structure available in the NMTcpip.h header
	to simplify parsing the response message.

Client query:

Byte #	1	2	3	4	5	6	7
Data	E0	31	03	00	03	01	00

- Byte 5, the message type, is 03.
- Bytes 6 & 7 are the device address.

Server response:

The server sends this message in response to the client query or unsolicited upon a change in communication status.

Byte #	1	2	3	4	5	6	7	8	9
Data	E0	31	05	00	03	01	00	01	02

- Byte 5, the message type, is 03.
- Bytes 6 & 7 are the device address.
- Byte 8 indicates if the device is connected (True 1, False 0).
- Byte 9 is the communication status (bit 0: Side A Fault, bit 1: Side B Fault).

If the device address was -1 (FF FF) in the query, each device's data would be appended to this message and the message length would increase by 4 bytes per device.

NM_MT_DIAG_ALARM

The server sends this message unsolicited when a diagnostic alarm changes state.

TIP	Use the NM_D_DIAG_ALARM structure available in the NMTcpip.h header
	to simplify parsing the response message.

Server Response:

Byte #	1	2	3	4	5	6	7	8	9	10
Data	E0	31	06	00	04	03	00	01	00	01

- Byte 5, the message type, is 04.
- Bytes 6 & 7 are the device address.
- Bytes 8 & 9 are the point number.
- Byte 10 is the new state for the diagnostic point. Active is 1 and Inactive is 0.

NM_MT_DIAG_ALARMS

This message is used to retrieve diagnostic alarm information from a device.

TIP	Use the NM_D_DIAG_ALARMS structure available in the NMTcpip.h header
	to simplify parsing the response message.

Client query:

Byte #	1	2	3	4	5	6	7
Data	E0	31	03	00	05	01	00

- Byte 5, the message type, is 05.
- Bytes 6 & 7 are the device address.

page 6 00DA0209-001, Rev S

Server Response:

Byte #	1	2	3	4	5	6	7	8	9	10
Data	E0	31	06	00	05	01	00	08	00	02

- Byte 5, the message type, is 05.
- Bytes 6 & 7 are the device address.
- Bytes 8 & 9 are the number of diagnostic alarms defined for the device.
- Bytes 10 to the number required; there are enough bytes to contain 1 status bit for each diagnostic alarm that has been defined.

NM MT SENSOR ALARM

This message is used to retrieve the status of a sensor alarm.

TIP	Use the NM_D_SENSOR_ALARM structure available in the NMTcpip.h
	header to simplify parsing the response message.

Client query:

Byte #	1	2	3	4	5	6	7	8	9
Data	E0	31	05	00	06	01	00	05	00

- Byte 5, the message type, is 06.
- Bytes 6 & 7 are the device address.
- Bytes 8 & 9 are the sensor alarm number.

Server response/unsolicited message:

The server sends this message unsolicited when a sensor alarm changes state.

Byte #	1	2	3	4	5	6	7	8	9	10	11	12
Data	E0	31	80	00	06	01	00	05	01	01	00	00

- Byte 5, the message type, is 06.
- Bytes 6 & 7 are the device address.
- Bytes 8 & 9 are the sensor alarm number.
- Byte 10 is the status bit 0 is alarm and bit 1 is tamper.
- Bytes 11 & 12 are the number of alarm location structures that follow.

Location Structure

Bytes 13 to the number required are alarm location information. This applies only for sensors that provide target locating information, such as OmniTrax, FlexZone-20 / -60 and the FiberPatrol Sensor Unit (SU). Location information is sent for each location that changed state and for all active locations.

For OmniTrax & FlexZone-20 / -60

TIP	Use the NM_AG_OTRX_LOCN structure available in the NMTcpip.h header to simplify parsing the OmniTrax alarm location information.
TIP	Use the NM_AG_FLXZN_LOCN structure available in the NMTcpip.h header to simplify parsing the FlexZone alarm location information.

Byte #	13	14
Data	0A	C0

- Bytes 13 & 14, Bits 0-13 are the distance from the processor along the cable, in meters.
- Bit 14 indicates the side, Side A is 0 and Side B is 1.
- Bit 15 indicates if the location is active (1) or has just turned inactive (0).

This example indicates an active location on Side B, 10 m from the processor.

For FiberPatrol SU

TIP	Use the NM_FP_SU_LOCN structure available in the NMTcpip.h header to
	simplify parsing the FiberPatrol SU alarm location information.

Byte #	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
Data	01	00	C0	07	44	91	45	35	42	A5	FE	97	C2	00	00	C8	42

- Byte 13, Bit 0 indicates if the location is active (1) or has just turned inactive (0).
- Bytes 14-17 are a float value containing the distance of the target along the fiber. The units are meters or feet depending on the FiberPatrol configuration setting.
- Bytes 18-21 are a float value giving the latitude of the target.
- Bytes 22-25 are a float value giving the longitude of the target.
- Bytes 26-29 are a float value giving the altitude of the target.

Values for latitude, longitude and altitude may be 0 if the value is not available from FiberPatrol.

This example indicates an active location at 543 meters (or feet) at latitude 45.317936, longitude -75.997354, altitude 100.

The way that ranging sensors report alarms is configurable on the SMS TCP/IP configuration tab of the NMS Front Panel via the Enable Location Reporting and Enable Location Tracking checkboxes:

Example 1:

- Enable Location Reporting is not checked. Enable Location Tracking is not applicable. (i.e., report as non-ranging sensor).
 - No location information is included in the alarm reports.
 - An alarm report is sent at the initial alarm detection and when the alarm ends.

Example:

Device Addr.	Alarm #	Status	# Locations
5	2	0x1	0
5	2	0x0	0

Example 2:

- Enable Location Reporting is checked. Enable Location Tracking is not checked.
 - Location information is included in the initial alarm report.
 - An alarm report is sent at the initial alarm detection and when the alarm ends.

Example: Target crossing at 524 meters (Alarm Hold time defined).

Device Addr.	Alarm #	Status	# Locations	Location			
Device Addi.	Alaini #	Otatus	# Locations	Active	Position		
5	2	0x1	1	1	524		
5	2	0x0	0				

page 8 00DA0209-001, Rev S

Example 3:

- Enable Location Reporting is checked. Enable Location Tracking is checked.
 - Location information is included in the alarm reports.
 - An alarm report is sent at the initial alarm detection, when the location status changes, and when the alarm ends.

Example: Targets Crossing at 524 and 550 meters (Alarm Hold time defined).

Device Addr.	Alarm #	Status	# Locations	Loca	ation	Location		
Device Addi.	Alailli #	Status	# Locations	Active	Postion	Active	Position	
5	2	0x1	1	1	524			
5	2	0x1	2	1	524	1	550	
5	2	0x1	2	1	550	0	524	
5	2	0x1	1	0	550			
5	2	0x0	0					

NM_MT_SENSOR_ALARMS

The client uses this message to query a device for sensor alarms.

TIP	Use the NM_D_SENSOR_ALARMS structure available in the NMTcpip.h
	header to simplify parsing the response message.

Client query:

Byte #	1	2	3	4	5	6	7
Data	E0	31	03	00	07	01	00

- Byte 5, the message type, is 07.
- Bytes 6 & 7 are the device address.

Server response:

Byte #	1	2	3	4	5	6	7	8	9	10	11
Data	E0	31	07	00	07	03	00	06	00	AA	01

- Byte 5, the message type, is 07.
- Bytes 6 & 7 are the device address.
- Bytes 8 & 9 are the number of sensor alarm points.
- Byte 10 to the number required; enough bytes to contain 2 bits for each sensor alarm point; bit 0: alarm, bit 1: tamper.

In this example, there are 6 alarms, therefore, 12 bits are required. Sensor alarm points 1-4 are in tamper; sensor alarm point 5 is in alarm.

NM_MT_FILTER_ALARM

This message is used to retrieve the status of a sensor alarm filtered by the point's shunt status.

TIP	Use the NM_D_FILTER_ALARM structure available in the NMTcpip.h
	header to simplify parsing the response message.

Client query:

Byte #	1	2	3	4	5	6	7	8	9
Data	E0	31	05	00	10	01	00	05	00

- Byte 5, the message type, is 16.
- Bytes 6 & 7 are the device address.
- Bytes 8 & 9 are the sensor alarm number.

Server response/unsolicited message:

The server sends this message unsolicited when a sensor alarm's filtered state changes.

Byte #	1	2	3	4	5	6	7	8	9	10	11	12
Data	E0	31	80	00	10	01	00	05	00	01	00	00

- Byte 5, the message type, is 16.
- Bytes 6 & 7 are the device address.
- Bytes 8 & 9 are the sensor alarm number.
- Byte 10 is the status; bit 0: alarm and bit 1: tamper.
- Bytes 11 & 12 are the number of alarm location structures that follow (see NM_MT_SENSOR_ALARM).

This example indicates an alarm on sensor point 5 of device 1.

NM_MT_FILTER_ALARMS

The client uses this message to query a device for sensor alarms filtered by the shunt states.

TIP	Use the NM_D_FILTER_ALARMS structure available in the NMTcpip.h
	header to simplify parsing the response message.

Client query:

Byte #	1	2	3	4	5	6	7
Data	E0	31	03	00	11	01	00

- Byte 5, the message type, is 17.
- Bytes 6 & 7 are the device address.

Server response/unsolicited message:

The server sends this message unsolicited when a sensor alarm's filtered state changes.

Byte #	1	2	3	4	5	6	7	8	9	10	11
Data	E0	31	07	00	11	01	00	06	00	55	02

- Byte 5, the message type, is 17.
- Bytes 6 & 7 are the device address.
- Bytes 8 & 9 are the number of sensor alarm points.
- Byte 10 to the number required; enough bytes to contain 2 bits each for each sensor alarm point; bit 0: alarm and bit 1: tamper.

In this example, there are 6 alarms, therefore, 12 bits are required. Sensor points 1 - 4 are in alarm; sensor point 5 is in tamper.

page 10 00DA0209-001, Rev S

NM_MT_SHUNT

The client sends this message to change the shunt state for a sensor point's alarm and tamper states. Shunting blocks the reporting of the state in the NM MT FILTER ALARM message.

TIP	Use the NM_D_SHUNT structure available in the NMTcpip.h header to
	simplify parsing the response message.

The server will respond with a NM_MT_FILTER_ALARM message if the shunt state is changed.

Client request:

Byte #	1	2	3	4	5	6	7	8	9	10	11
Data	E0	31	07	00	0E	01	00	05	00	01	00

- Byte 5, the message type, is 14.
- Bytes 6 & 7 are the device address.
- Bytes 8 & 9 are the sensor alarm number.
- Byte 10 is a mask of which shunt bits to change; bit 0: alarm and bit 1: tamper.
- Byte 11 is the shunt states to set (1 = shunted); bit 0: alarm and bit 1: tamper.

This example clears shunting the alarm state of sensor point 5 on device 1.

NM_MT_SHUNTS

The client uses this message to query or set the shunt status of all the sensor points on a device.

TIP	Use the NM_D_SHUNTS structure available in the NMTcpip.h header to
	simplify parsing the response message.

The server sends this message in response to a query. The server will respond with a NM MT FILTER ALARMS message if the shunt state of at least one point is changed.

Client query:

Byte #	1	2	3	4	5	6	7
Data	E0	31	03	00	0F	01	00

- Byte 5, the message type, is 15.
- Bytes 6 & 7 are the device address.

Client request/Server response:

Byte #	1	2	3	4	5	6	7	8	9	10	11
Data	E0	31	07	00	0F	01	00	06	00	55	03

- Byte 5, the message type, is 15.
- Bytes 6 & 7 are the device address.
- Bytes 8 & 9 are the number of sensor alarm points.
- Byte 10 to the number required; enough bytes to contain 2 bits each for each sensor point; bit 0: alarm and bit 1: tamper.

In this example, there are 6 sensor points, therefore, 12 bits are required. Sensor points 1 - 4 alarm condition is shunted; sensor point 5 alarm and tamper conditions are shunted.

NM_MT_PRE_ALARMS

The client sends this message to query a device for sensor pre-alarms. This message is supported only by the NMS, and only when enabled (see NMS Front Panel > Configure dialog > SMS tab > TCP/IP tab to enable). Pre-alarms are currently supported only for Silver based FlexZone zone alarms.

TIP	Use the NM_D_PRE_ALARMS structure available in the NMTcpip.h header
	to simplify parsing the response message.

Client query:

Byte #	1	2	3	4	5	6	7
Data	E0	31	03	00	15	01	00

- Byte 5, the message type, is 21.
- Bytes 6 & 7 are the device address.

Server response/unsolicited message:

The server sends this message unsolicited when a sensor pre-alarm changes state.

Byte #	1	2	3	4	5	6	7	8	9	10
Data	E0	31	06	00	15	01	00	08	00	28

- Byte 5, the message type, is 21.
- Bytes 6 & 7 are the device address.
- Bytes 8 & 9 are the number of sensor alarm points.
- Byte 10 to the number required; enough bytes to contain 1 bit for each sensor alarm point; a 1 in a bit indicates the corresonding point is in pre-alarm.

In this example, there are 8 alarms. Therefore, 8 bits (1 byte) are required. Sensor alarm points 4 & 6 are in pre-alarm.

NM_MT_CONTROL

The client sends this message to change the state of an output point.

TIP	Use the NM_D_CONTROL structure available in the NMTcpip.h header to
	simplify parsing the response message.

The server sends this message when a device reports a change of output state.

Client request:

Byte #	1	2	3	4	5	6	7	8	9	10
Data	E0	31	06	00	80	03	00	01	00	01

- Byte 5, the message type, is 08.
- Bytes 6 & 7 are the device address.
- Bytes 8 & 9 are the point number.
- Byte 10 is the new state for the point. Active is 1; Inactive is 0.

page 12 00DA0209-001, Rev S

Server response:

Byte #	1	2	3	4	5	6	7	8	9	10
Data	E0	31	06	00	08	03	00	01	00	01

The format of the server message is identical to the client message.

NM_MT_CONTROLS

The client uses this message to query or set the state of the output points of a device.

TIP	Use the NM_D_CONTROLS structure available in the NMTcpip.h header to
	simplify parsing the response message.

The server sends this message in response to a client query.

Client query:

Byte #	1	2	3	4	5	6	7
Data	E0	31	03	00	09	03	00

- Byte 5, the message type, is 09.
- Bytes 6 & 7 are the device address.

Client request/Server Response:

Byte #	1	2	3	4	5	6	7	8	9	10	11
Data	E0	31	07	00	09	03	00	0C	00	03	04

- Byte 5, the message type, is 09.
- Bytes 6 & 7 are the device address.
- Bytes 8 & 9 are the number of control points.
- Bytes 10 to the end are enough bytes to contain 1 status bit for each control point. The status points are packed starting with the least significant bit of the first byte.

In this example, there are 12 control points. The 2 bytes required to contain the data indicate that control points 1, 2 and 12 are active. The message length indicates the length from the message type to the end of the data bytes.

NM_MT_STANDBY

The client uses this message to force a redundant NM into standby mode. This message has no effect on a redundant NM when the alternate NM is not available to go online, or on a non-redundant NM.

Client request:

Byte #	1	2	3	4	5
Data	E0	31	01	00	0A

• Byte 5, the message type, is 10.

Server Response:

None, NM goes off-line, Client must make the connection to the alternate NM.

NM_MT_MATE_STAT

In a redundant configuration, the client uses this message to query the state of the mate NM (the standby NM).

Client request:

Byte #	1	2	3	4	5
Data	E0	31	01	00	0B

• Byte 5, the message type, is 11.

Server Response:

Byte #	1	2	3	4	5	6
Data	E0	31	02	00	0B	01

The server sends this message in response to the client query, or unsolicited upon a change in communication status.

- Byte 5, the message type, is 11.
- Byte 6 is the connection status 0 = unconnected, 1 = connected.

NM_MT_DESC

This message is used to query the Network Manager's description for a Device or Comm/Diagnostic/ Sensor/Control Point.

TIP	Use the NM_D_DESC structure available in the NMTcpip.h header to
	simplify parsing the response message.

Client request:

Byte #	1	2	3	4	5	6	7	8	9	10
Data	E0	31	06	00	08	03	00	01	00	01

- Byte 5, the message type, is 18.
- Bytes 6 & 7 are the device address.
- Bytes 8 & 9 are the point number (n/a forDevice descriptions).
- Byte 10 is the description type requested (0-Device, 1-Comm Point, 2-Diagnostic Point, 3-Sensor Point, 4-Control Point).

Server response:

Byte #	1	2	3	4	5	6	7	8	9	10	11-n
Data	E0	31	06	00	08	03	00	01	00	01	01

- Byte 5, the message type, is 18.
- Bytes 6 & 7 are the device address.
- Bytes 8 & 9 are the point number (n/a forDevice descriptions).
- Byte 10 is the description type requested (0-Device, 1-Comm Point, 2-Diagnostic Point, 3-Sensor Point, 4-Control Point).
- Byte 11 to the number required is a null terminated stringcontaining the description (string is in little endian Unicode).

NM_MT_DEVC_SMRY

This message is used to retrieve a summary of the communication and diagnostic status for a device.

TIP	Use the NM_D_DEVC_SMRY structure available in the NMTcpip.h header
	to simplify parsing the response message.

page 14 00DA0209-001, Rev S

Client query:

Byte #	1	2	3	4	5	6	7
Data	E0	31	03	00	13	01	00

- Byte 5, the message type, is 19
- Bytes 6 & 7 are the device address

Server response:

The server sends this message in response to the client query or unsolicited upon a change in status.

Byte #	1	2	3	4	5	6	7	8
Data	E0	31	04	00	13	01	00	18

- Byte 5, the message type, is 19
- Bytes 6 & 7 are the device address
- Byte 8 is the device status summary
 - Bit 0: Comm. fail active or mismatch between configured and connected device type
 - Bit 1: 1 or more comm. side faults active
 - Bit 2: 1 or more fatal diagnostic alarms active
 - Bit 3: 1 or more warning diagnostic alarms active
 - Bit 4: Enclosure tamper alarm active

NM_MT_SENSOR_TRBL

Client query:

The client uses this message to query a device for those sensor alarms whose alarm reporting capability might be compromised due to active Comm. fail, Device mismatch or Diagnostic alarms.

TIP	Use the NM_D_SENSOR_TRBL structure available in the NMTcpip.h
	header to simplify parsing the response message.

Byte #	1	2	3	4	5	6	7
Data	E0	31	03	00	14	01	00

- Byte 5, the message type, is 20
- Bytes 6 & 7 are the device address

Server response:

The server sends this message in response to the client query or unsolicited upon a change in status.

Byte #	1	2	3	4	5	6	7	8	9	10	11
Data	E0	31	05	00	20	01	00	0A	00	18	00

- Byte 5, the message type, is 20
- Bytes 6 & 7 are the device address
- Byte 8 & 9 are the number of sensor alarm points
- Byte 10 to the number required; enough bytes to contain 1 bit for each sensor alarm point; A 1 in a bit indicates the corresponding point's alarm reporting capability may be compromised.

In this example there are 10 alarms, therefore 10 bits (2 bytes) are required. Sensor alarm points 4 & 5 are in trouble and as a result may not report alarms.

VoE NM only

NM_MT_AUDIO_FOLDER

This message is used to set and retrieve the folder used to store audio recordings. (The folder pathname is specified in UNC syntax as a NULL terminated, little endian Unicode string.)

Client query:

Byte #	1	2	3	4	5	6	7
Data	E0	31	03	00	0C	01	00

- Byte 5, the message type is 12.
- Bytes 6 & 7 are the audio channel.

Client command/server response:

Byte #	1	2	3	4	5	6	7	8	9	10	11	12	13
Data	E0	31	1F	00	0C	01	00	5C	00	5C	00	53	00
Byte #	14	15	16	17	18	19	20	21	22	23	24	25	26
Data	52	00	56	00	5C	00	43	00	5C	00	41	00	75
Byte #	27	28	29	30	31	32	33	34	35				
Data	00	64	00	69	00	6F	00	00	00				

- Byte 5, the message type is 12.
- Bytes 6 & 7 are the audio channel.
- Bytes 8 to the number required are the folder pathname.

In this example, Audio channel 1 stores it's audio recordings in \\SRV\C\Audio.

NM_MT_AUDIO_EVENT

The server sends this message unsolicited when an audio recording ends. All strings are NULL terminated, little endian Unicode strings.

TIP	Use the NM_D_AUDIO_EVENT structure available in the NMTcpip.h header
	to simplify parsing the response message.

Byte #	1	2	3	4	5	6	7	8	9	10	11	
Data	E0	31	??	??	0D	01	00	??	??	??	??	

- Byte 5, the message type, is 13.
- Bytes 6 & 7 are the audio channel.
- Bytes 8 & 9, length of recording file pathname in wide characters (WCHAR) including terminating NULL.
- Bytes 10 & 11, length of recording description in wide characters (WCHAR) including terminating NULL.
- Byte 12 to N, recording file pathname.
- Byte N+1 to number required, recording description.

The recording filename is based on the time the recording started and has the format "Ch# C# N# start_time.wav" for Intercom channels and

"Ch# C# PA start_time.wav" for Public Address channels.

page 16 00DA0209-001, Rev S

The recording description has the format

"Ch_desc, Intercom, Ctrl_Id, Target_Id," for Intercom channels and

"Ch_desc, PA, Ctrl_Id, start_time-end_time" for Public Address channels.

The **start_time** & **end_time** is specified in the format "**YYYYMMDD_hhmmss**".

Where:

Ch#	Identifies the channel (e.g., Ch1 is Channel 1)
C#	Identifies the Control Node (e.g., C4 is Control Node 4)
N#	Identifies the Target Node (e.g., N5 is Target Node 5)
Ch_desc	Label assigned to audio channel in VoNM configuration dialog
Ctrl_id	Identification label assigned to Control node on UCM IPCC Config tab
Target_id	Identification label assigned to Target node on UCM IPCC Config tab
YYYY	4 digit year
MM	2 digit month
DD	2 digit day
hh	2 digit hour in 24 hour format
mm	2 digit minute
ss	2 digit second

NMI DLL

The NMI DLL was written in Visual Studio C++ with MFC. To include the DLL in your software, four files are required:

- NMTcpip.h contains message type definitions, Silver definitions, CCC definitions, Crossfire definitions, Sennet definitions, Sentrax definitions, VoE definitions, MX definitions and other sensor specific definitions
- NMDII.h contains the function prototypes,
- · NM.lib is required by the linker, and
- NM.dll is the dynamically linked library.

These files are included as part of the Network Manager Interface Development Components installation. An application can poll for TCP/IP messages from a Network Manager by periodically calling NM_GetMessage (recommended once every 10 ms). Alternately, the application can specify a message (nRxMsg parameter of NM_OpenNetwork) to post to a window (handle specified in NM_Set_HWND) when a TCP/IP message is received from a Network Manager. The corresponding message handler function in the application then calls NM_GetMessage when a message is available to be processed.

The following are the descriptions of the exported functions:

NM_Set_HWND - This function designates the Window that will receive messages.

void NM_Set_HWND(HWND hWnd);

hWnd - handle to Window that will receive messages

NM_StatusWindow - This function is used to open and close the Status Information window.

void NM StatusWindow(BOOL bShow);

bShow - true = Open, false = Close

NM_OpenNetwork - NM_OpenNetwork opens the connection to the Network Manager.

Returned:

HANDLE - Handle to Network Manager

Notes:

Use inet_ntoa to convert in_addr to dotted address ascii string Use inet_addr to convert dotted address ascii string to in_addr

HANDLE NM_OpenNetwork(in_addr addrNM1, in_addr addrNM2, UINT nUnitId,

UINT nRxMsg = WM APP);

addrNM1 - IP address of primary network manager addrNM2 - IP address of alternate network manager

nUnitID - Unit Id of network manager

nRxMsg - Message number to use to signal message received for processing

NM CloseNetwork - This function closes the connection to the Network Manager.

void NM_CloseNetwork(HANDLE hNetManager);

hNetManager - Handle to Network Manager returned by OpenNetwork

NM_SetStandby - This function sets the active Network Manager to standby, thereby transferring control to the alternate Network Manager and making it active. This applies only to redundant NM configurations.

void NM SetStandby(HANDLE hNetManager)

hNetManager - Handle to Network Manager returned by OpenNetwork

NM_DeviceType - Get the Device type for a specified device.

Returned:

int - Device Type (-1 = No device, 0 = Network dependent device type)

int NM_DeviceType(HANDLE hNetManager, int nDevice);

hNetManager - Handle to Network Manager returned by OpenNetwork

nDevice - Device number

NM_LinkStat - Get the specified Network Manager's Link State.

Returned:

bool - Status of link to Network Manager (true = connected)

bool NM_LinkStat(HANDLE hNetManager);

hNetManager - Handle to Network Manager returned by OpenNetwork

NM_GetMessage - Get the next message from the specified Network Manager.

Returned:

bool - true = Success

- false = No message available

bool NM_GetMessage(HANDLE hNetManager, int& nSrcAddr, int& nMsgType);

hNetManager - Handle to Network Manager returned by OpenNetwork nSrcAddr - Storage for source device # from current message

nMsgType - Storage for Message type from current message (see NMTcpip.h for message type

definitions)

NM RqstMate - Send a Mate NM Connection Status request message to a Network Manager.

void NM RqstMate(HANDLE hNetManager)

hNetManager - Handle to Network Manager returned by OpenNetwork

page 18 00DA0209-001, Rev S

NM_MateStat - Get the Mate NM Connection Status from the current NM_MT_MATE_STAT

message. Returned:

bool - false = Unconnected

- true = Connected

bool NM_MateStat(HANDLE hNetManager)

hNetManager - Handle to Network Manager returned by OpenNetwork

NM_RqstDevcSmry - Sends the Device Summary request message to a Network Manager

void NM_RqstDevcSmry(HANDLE hNetManager, int nDevice);

hNetManager - Handle to Network Manager returned by OpenNetwork

nDevice - Device Number

NM_GetDevcSmry - Get the Device Summary from the current NM_MT_DEVC_SMRY message.

bool NM_GetDevcSmry(HANDLE hNetManager, bool& bCommFail, bool& bCommFault,

bool& bDiagFatal, bool& bDiagWarn, bool& bEnclTamp);

hNetManager - Handle to Network Manager returned by OpenNetwork

bCommFail - storage for comm. fail summary status bCommFault - storage for comm. fault summary status

bDiagFatal - storage for fatal diagnostic alarm summary status
bDiagWarn - storage for warning diagnostic alarm summary status

bEnclTamper - storage for enclosure tamper alarm status

NM_RqstComm - Send a Communication Status request message to a Network Manager.

void NM RgstComm(HANDLE hNetManager);

hNetManager - Handle to Network Manager returned by OpenNetwork

NM_GetComm - Get a device's communication status from the current NM_MT_COMM_STAT message.

Returned:

bool - true = Success

- false = Failure, invalid for current message type, or device #

bool NM_GetComm(HANDLE hNetManager, int nDevice, bool& bConnected, UINT* uSideFault = NULL);

hNetManager - Handle to Network Manager returned by OpenNetwork

nDevice - Device number

bConnected - Storage for Comm status (true = connected)
uSide - Pointer to Storage for side fault status (optional)

bit 0 = X side, bit 1 = Y side (true = fault)

NM RgstDiagAlrm - Send the Diagnostic Alarm request message to a Network Manager.

void NM RqstDiagAlrm(HANDLE hNetManager, int nDevice);

hNetManager - Handle to Network Manager returned by OpenNetwork

nDevice - Device number

NM_RqstSensAlrm - Send Sensor Alarm request for a single alarm point on a device.

void NM_RqstSensAlrm(HANDLE hNetManager, int nDevice, int nPoint); hNetManager - Handle to Network Manager returned by OpenNetwork

nDevice - Device number nPoint - Alarm point number

NM_RqstSensAlrm - Send the Sensor Alarm request message for all the alarm points on a device.

void NM RgstSensAlrm(HANDLE hNetManager, int nDevice);

hNetManager - Handle to Network Manager returned by OpenNetwork

nDevice - Device number

NM_RqstFiltAlarm - Send Filtered Sensor Alarm request for a single alarm point on a device.

void NM_RqstSensAlrm(HANDLE hNetManager, int nDevice, int nPoint);

hNetManager - Handle to Network Manager returned by OpenNetwork nDevice - Device number

nDevice - Device number nPoint - Alarm point number

NM_RqstFiltAlarm - Send Filtered Sensor Alarm request for all the alarm points on a device.

void NM_RqstSensAlrm(HANDLE hNetManager, int nDevice);

hNetManager - Handle to Network Manager returned by OpenNetwork

nDevice - Device number

NM RqstPreAlarm - Send Sensor Pre-Alarm request for all the alarm points on a device.

void NM_RqstPreAlrm(HANDLE hNetManager, int nDevice);

hNetManager - Handle to Network Manager returned by OpenNetwork

nDevice - Device number

NM_RqstSensTrbl - Sends the Sensor Trouble request message to a Network Manager

void NM RgstSensTrbl(HANDLE hNetManager, int nDevice);

hNetManager - Handle to Network Manager returned by OpenNetwork

nDevice - Device Number

NM_GetAlarm - Get the point status from the Current NM_MT_DIAG_ALARM(S),

NM_MT_SENSOR_ALARM(S), NM_MT_PRE_ALARMS, or NM_MT_SENSOR_TRBL message.

Returned:

bool - true = Success

- false = Failure, invalid for current message type, device type or point #

bool NM_GetAlarm(HANDLE hNetManager, int& nPoint, UINT& uStatus);

hNetManager - Handle to Network Manager returned by OpenNetwork

nPoint - Storage for point number

filled by function for NM_MT_SENSOR_ALARM messages
 specified for NM_MT_SENSOR_ALARMS messages

uStatus - Storage for point status

NM_MT_DIAG_ALARM(S): 0 = secure, 1 = alarm

NM_MT_SENSOR_ALARM(S): 0 = secure, 1 = alarm, 2 = tamper, 3 = alarm &

tamper

NM_MT_PRE_ALARMS: 0 = secure, 1 = pre-alarm NM_MT_SENSOR_TRBL: 0 = secure, 1 = trouble

NM_GetFiltAlarm - Get the point status from the current NM_MT_FILTER_ALARM or NM_MT_FILTER_ALARMS message.

Returned:

bool - true = Success

- false = Failure, invalid for current message type, device type or point #

bool NM_GetSensAlarm(HANDLE hNetManager, int& nPoint, UINT& uStatus);

hNetManager - Handle to Network Manager returned by OpenNetwork

nPoint - Storage for point number

- filled by function for NM_MT_FILTER_ALARM messages - specified for NM_MT_FILTER_ALARMS messages

uStatus - Storage for point status (0 = secure, 1 = alarm, 2 = tamper, 3 = alarm & tamper)

page 20 00DA0209-001, Rev S

NM_GetLocn - Get the alarm location from the current NM_MT_SENSOR_ALARM or NM MT FILTER ALARM message.

Returned:

bool - true = Success (always fails for non-ranging sensors)

- false = Failure, invalid for current message type, device type or point #

bool NM GetLocn(HANDLE hNetManager, int& nPoint, int& nLocn, HGLOBAL &hLocn);

hNetManager - Handle to Network Manager returned by OpenNetwork

nPoint - Storage for point number

- filled by function for NM_MT_..._ALARM messages

nLocn - Storage for number of alarm locations

hLocn - Storage for handle to alarm locations (delete after use with GlobalFree())

- storage structure dependent on device type (see NMTcpip.h)

NM_SetShunt – Set the shunt state of a sensor point on a device.

void NM_RqstSetShunt(HANDLE hNetManager, int nDevice, int nPoint, BYTE uMask, BYTE uState);

hNetManager - Handle to Network Manager returned by OpenNetwork

nDevice - Device number nPoint - Alarm point number

uMask - Shunts to change (Bit 0: Alarm shunt, Bit 1: Tamper shunt)

uState - State to set (Bit 0: Alarm shunt state, Bit 1: Tamper shunt state, 1 = Shunt active)

NM_SetShunts – Set the shunt state for all sensor points on a device.

void NM_RqstSetShunt(HANDLE hNetManager, int nDevice, int nPoints, BYTE* pState);

hNetManager - Handle to Network Manager returned by OpenNetwork

nDevice - Device number

nPoint - Number of Alarm points

uState - Pointer to array of bytes containing shunt states, 2 bits per point

(Bit 0: Alarm shunt state, Bit 1: Tamper shunt state. 1 = Shunt active)

e.g., Byte 0 bit 0 & 1 (least significant bits) contain shunt state for sensor point 1

e.g., Byte 0 bit 6 & 7 contain shunt state for sensor point 3

NM_RqstShunt – Send Shunt status request for all the alarm points on a device.

void NM_RqstShunt(HANDLE hNetManager, int nDevice);

hNetManager - Handle to Network Manager returned by OpenNetwork

nDevice - Device number

NM_GetShunt – Get the shunt status from the current NM_MT_SHUNTS message.

Returned:

bool - true = success

- false = failure, invalid for current message type, device type or point #

bool NM_GetShunt(HANDLE hNetManager, int& nPoint, UINT& uStatus); hNetManager - Handle to Network Manager returned by OpenNetwork

nPoint - point number

uStatus - storage for shunt status

(Bit 0: Alarm shunt state, Bit 1 Tamper shunt state. 1 = Shunt active)

NM_SetControl - Set the state of a control point on a device.

void NM SetControl (HANDLE hNetManager, int nDevice, int nControl, BYTE bState);

hNetManager - Handle to Network Manager returned by OpenNetwork

nDevice - Device number nControl - Control point number

bState - State to set (Active = 1, Inactive = 0)

NM_SetControls - This function sets all control points for a device.

void NM SetControls(HANDLE hNetManager, int nDevice, int nControls, BYTE* pState);

hNetManager - Handle to Network Manager returned by OpenNetwork

nDevice - Device number nControls - Number of controls

pState - Pointer to array of bytes containing control states, 1 bit per control (Active = 1,

Inactive = 0)

- e.g. Byte 0 bit 0 (least significant bit) contains state for control 1

- e.g. Byte 0 bit 7 contains state for control 8

NM_RqstControl - Send a Control status request message to a Network Manager.

void NM RqstControl(HANDLE hNetManager, int nDevice);

hNetManager - Handle to Network Manager returned by OpenNetwork

nDevice - Device number

 ${\bf NM_GetControl}$ - Get the Control status from the current ${\bf NM_MT_CONTROL}$ or

NM_MT_CONTROLS message.

Returned:

bool - true = Success

- false = Failure, invalid for current message type, device type or point #

bool NM_GetControl(HANDLE hNetManager, int& nControl, UINT& uStatus);

hNetManager - Handle to Network Manager returned by OpenNetwork

nControl - Control number

- filled by function for NM_MT_CONTROL message
- specified for NM_MT_CONTROLS messages

bStatus - Storage for Control status (false = clear, true = active)

NM_RqstAudioFolder - Send Audio Folder request message

void NM_RqstAudioFolder(HANDLE hNetManager, int nChannel); hNetManager - Handle to Network Manager returned by OpenNetwork

nChannel - Channel number

NM_SetAudioFolder - Send Audio Folder message

void NM_SetAudioFolder(HANDLE hNetManager, int nChannel, wchar_t* pPathname);

hNetManager - Handle to Network Manager returned by OpenNetwork

nChannel - Channel number

pPathname - Pointer to null terminated wide character string containing pathname of folder used

to store audio recordings for specified channel.

Note: String is in little endian Unicode format

NM GetAudioFolder - Get Audio Folder from current message

Returned:

bool - true = Success

- false = Failure, invalid for current message type

void NM GetAudioFolder(HANDLE hNetManager, int nChannel, HGLOBAL& hPathname);

hNetManager - Handle to Network Manager returned by OpenNetwork

nChannel - Channel number

- Filled by function for NM_MT_AUDIO_FOLDER message

hPathname - Storage for handle of null terminated wide character string containing pathname of

folder used to store audio recordings for specified channel. (Delete after use with

GlobalFree())

- Filled by function for NM_MT_AUDIO_FOLDER message

Note: String is in little endian Unicode format

page 22 00DA0209-001, Rev S

NM_GetAudioEvent - Get Audio Event information from current message

Returned:

bool - true = Success

- false = Failure, invalid for current message type

void NM_GetAudioEvent(HANDLE hNetManager, int nChannel, HGLOBAL& hFilename,

HGLOBAL& hDesc);

hNetManager - Handle to Network Manager returned by OpenNetwork

nChannel - Channel number

- Filled by function for NM_MT_AUDIO_EVENT message

hFilename - Storage for handle of null terminated wide character string containing file pathname

of audio recording for specified channel. (Delete after use with GlobalFree())

- Filled by function for NM_MT_AUDIO_EVENT message

hDesc - Storage for handle of null terminated wide character string containing description of

audio recording for specified channel. (Delete after use with GlobalFree())

- Filled by function for NM_MT_AUDIO_EVENT message

Note: Strings are in little endian Unicode format

NM_RqstPointDesc - Send a Point description request message

void NM_RqstPointDesc (HANDLE hNetManager, int nDevice, int nPoint, int nType);

hNetManager - Handle to Network Manager returned by OpenNetwork

nDevice - Device number

nPoint - Point number (n/a for Device descriptions)

nType - Description Type (0-Device, 1-Comm Point, 2-Diagnostic Point, 3-Sensor Point,

4-Control Point)

NM_GetPointDesc - Get Point description from current message

Returned:

bool - true = Success

- false = Failure, invalid for current message type

bool NM RqstPointDesc (HANDLE hNetManager, int& nPoint, int nType, HGLOBAL& hDesc);

hNetManager - Handle to Network Manager returned by OpenNetwork nPoint - Point number from message (n/a for Device descriptions)

nType - Description Type from message

hDesc - Storage for handle of null terminated wide character string containing description of

device/point. (Delete after use with GlobalFree())

Note: String is in little endian Unicode format

NM DLL Test - NMI test application

The NM DLL Test application (TestDLL) is a windows based Visual C++ MFC application, developed using Microsoft Visual Studio 2012. It uses the NM DLL functions to interface with a Network Manager. It is one of the programs used to verify the Network Manager TCP/IP display interface. A second sample application, NM TCP/IP Test (TestTcpIp) is available to demonstrate using the TCP/IP messages to interface with a Network Manager. The following screen shot, shows the main window of the NM DLL Test application. Network Manager connection status and messages are reported in the display space. Menu items to Pause, Resume and Clear the display space are under the Display menu. Also, the NM DLL Status Info dialog can be displayed or hidden from the Display menu. Menu items to connect to a Network Manager and to test available NMI DLL functions are available under the Misc menu.

Figure 1: NM DLL Test window

To connect to the Network Manager, select **Misc > Connect**. The following popup appears.:

Figure 2: NM connection window

 Enter the IP address of the computer running the Network Manager. For redundant Network Managers, enter the IP address of each computer. The NMI DLL will search for the active Network Manager using these addresses.

- 2. Use the **Unit ID** to select a specific Network Manager.
- 3. Select Connect and TestDLL uses the NM_OpenNetwork function to make the connection.

The following menu items on the Misc menu become active when connected to a Network Manager:

page 24 00DA0209-001, Rev S

Figure 3: NM DLL Test window - Misc menu

Disconnect

The **NM** CloseNetwork function is used to disconnect from the Network Manager.

Mate Status

The **NM_RqstMate** function is used to request the status of the connection between the active and standby Network Managers. The Network Manager responds with the **NM_MT_MATE_STAT** message and TestDLL uses the **NM_MateStat** function to retrieve the connection status and reports it in the display area. A status of unconnected (false) is always returned from a non-redundant Network Manager.

Standby

The **NM_SetStandby** function is used to request the active Network Manager to enter standby mode and transfer control to the alternate Network Manager. The NMI DLL will automatically connect to the newly active Network Manager and the connection loss and new connection will be reported in the display area. This only applies to redundant NM configurations and will have no effect if the alternate NM is not available to go online.

Comm Status

The **NM_RqstComm** function is used to request the communication status between the Network Manager and all of its nodes. The Network Manager responds with the **NM_MT_COMM_STAT** message and TestDLL uses the **NM_GetComm** function to retrieve the communication status for each device and reports it in the display area.

In addition, the Network Manager sends unsolicited **NM_MT_COMM_STATUS** messages when a device's communication status changes. When this occurs, TestDLL uses **NM_GetComm** function to retrieve the device number and communication status and reports it in the display area.

Req Device Status

Req Device Status performs a combined Req Diag Alarms, Req Sensor Alarms, Req Filtered Alarms, Req Shunts, and Req Controls.

Req Device Desc

The **NM_RqstPointDesc** function is used to request the description for the device. The Network Manager responds with the **NM_MT_DESC** message and TestDLL uses the **NM_GetPoint Desc** function to retrieve the description.

Req Device Summary

The **NM_RqstDevcSmry** is used to request a summary of the communication and diagnostic status for a device. The Network Manager responds with the **NM_MT_DEVC_SMRY** message and TestDLL uses the **NM_GetDevcSmry** function to retrieve the status summary.

In addition, the Network Manager sends unsolicited **NM_MT_DEVC_SMRY** messages when a summary status point changes state, which TestDLL reports in the display area.

Req Diag Alarms

The **NM_RqstDiagAlrm** function is used to request the Diagnostic alarm status for a device. The Network Manager responds with the **NM_MT_DIAG_ALARMS** message and TestDLL uses the **NM_GetAlarm** function to retrieve the status for a diagnostic alarm point.

In addition, the Network Manager sends unsolicited **NM_MT_DIAG_ALARM** messages when diagnostic alarm points change state. When this occurs, TestDLL uses the **NM_GetAlarm** function to retrieve the point number and state and reports it in the display area.

Req Diag Desc

The **NM_RqstPointDesc** function is used to request the description for the diagnostic point. The Network Manager responds with the **NM_MT_Desc** message and TestDLL uses the **NM_GetPoint Desc** function to retrieve the description.

Req Sensor Alarm (single point variant)

The NM_RqstSensAlarm function is used to request the Sensor alarm status for a single sensor alarm point on a device. The Network Manager responds with the NM_MT_SENSOR_ALARM message and TestDLL uses the NM_GetAlarm function to retrieve the status for sensor alarm point and reports it in the display area. For a ranging sensor (e.g., OmniTrax) TestDll uses the NM_GetLocn function to retrieve location information for the alarm and also reports the information in the display area. See NMTcpip.h for how the device type's location information is provided.

In addition, the Network Manager sends unsolicited **NM_MT_SENSOR_ALARM** messages when a sensor alarm point changes state, which TestDLL reports in the display area

Req Sensor Alarms (all points variant)

The **NM_RqstSensAlrm** function is used to request the status for all sensor alarm points on a device. The Network Manager responds with the **NM_MT_SENSOR_ALARMS** message and TestDLL uses the **NM_GetAlarm** function to retrieve the status for each sensor alarm point and reports them in the display area.

Req Filter Alarm (single point variant)

The **NM_RqstFiltAlarm** function is used to request the Filtered alarm status for a single sensor alarm point on a device. The Network Manager responds with the **NM_MT_FILTER_ALARM** message and the TestDLL uses the **NM_GetFiltAlarm** function to retrieve the status for the sensor alarm point and reports it in the display area. For a ranging sensor (e.g., OmniTrax) TestDll uses the **NM_GetLocn** function to retrieve location information for the alarm, and also reports the information in the display area. See NMTcpip.h for details about how the device type's location information is provided.

page 26 00DA0209-001, Rev S

In addition, the Network Manager sends unsolicited **NM_MT_FILTER_ALARM** messages when a sensor alarm point changes state and the new state is not shunted. The Network Manager also sends **NM_MT_FILTER_ALARM** messages in response to changes to the sensor point's shunt state using the **NM_SetShunt** function (**NM_MT_SHUNT** message). The TestDLL reports the contents of these messages in the display area.

Req Filter Alarms (all points variant)

The **NM_RqstFiltAlarm** is used to request the Filtered alarm status for all sensor alarm points on a device. The Network Manager responds with the **NM_MT_FILTER_ALARMS** message and the TestDLL uses the **GetFiltAlarm** function to retrieve the status for each sensor alarm point and reports them in the display area.

In addition the Network Manager sends **NM_MT_FILTER_ALARMS** messages in response to changes to a device's shunt status using the **NM_SetShunts** function (**NM_MT_SHUNTS** message). TestDLL reports the contents of these messages in the display area.

Req Pre Alarms

The **NM_RqstPreAlarm** function is used to request the pre-alarm status for all sensor alarm points on a device. The Network Manager responds with the **NM_MT_PRE_ALARMS** message and the TestDLL uses the **NM_GetAlarm** function to retrieve the status for each sensor alarm point and reports them in the display area.

In addition, the Network Manager sends unsolicited **NM_MT_PRE_ALARMS** messages when a sensor alarm point pre-alarm changes state, which TestDLL reports in the display area.

Reg Sensor Trouble

The **NM_RqstSensTrbl** is used to request which sensor alarms whose alarm reporting capability might be compromised due to active Comm. fail, Device mismatch or Diagnostic alarms. The Network Manager responds with the **NM_MT_SENSOR_TRBL** message and TestDLL uses the **NM_GetAlarm** function to retrieve the status for each sensor alarm point and reports them in the display area.

In addition, the Network Manager sends unsolicited **NM_MT_SENSOR_TRBL** messages when a sensor alarm point trouble status changes state, which TestDLL reports in the display area.

Set Shunt

The **NM_SetShunt** function is used to set the shunt state for a sensor alarm point on a device. If the message results in a change of state, the Network Manager responds with a **NM_MT_FILTER_ALARM** message containing the resulting filtered alarm state. TestDLL uses the **NM_GetFiltAlarm** function to retrieve the status for the sensor alarm point and reports it in the display area.

Set Shunts

The **NM_SetShunts** function is used to set the shunt state for all sensor alarm points on a device. If the message results in a change of state of a sensor alarm point, the Network Manager responds with a **NM_MT_FILTER_ALARMS** message containing the filtered alarm state of all sensor alarm points on the device. TestDLL uses the **NM_GetFiltAlarm** function to retrieve the status for the sensor alarm point and reports it in the display area.

Req Shunts

The **NM_RqstShunt** function is used to request the shunt status for all sensor alarm points on a device. The Network Manager responds with a NM_MT_SHUNTS message and TestDLL uses the **GetShunt** function to retrieve the shunt status for the sensor alarm points and reports them in the display area.

Reg Alarm Desc

The **NM_RqstPointDesc** function is used to request the description for the alarm. The Network Manager responds with the **NM_MT_Desc** message and TestDLL uses the **NM_GetPoint Desc** function to retrieve the description.

Set Control

The **NM_SetControl** function is used to set the state for a control point on a device. If the message results in a change of state of the control point, the Network Manager responds with a **NM_MT_CONTROL** message containing the updated state. TestDLL uses the **NM_GetControl** function to retrieve the point number and its status and reports it in the display area.

In addition, the Network Manager sends unsolicited **NM_MT_CONTROL** messages when control points change state due to other Display or UCM applications. Silver Network devices will also send control point state changes for points under local control of the device.

Set Controls

The **NM_SetControls** function is used to set the state for all the control points on a device. If the message results in a change of state of a control point, the Network Manager responds with a **NM_MT_CONTROLS** message containing all control point states for the device. TestDLL uses the **NM_GetControl** function to retrieve the statuses and reports them in the display area.

Req Controls

The **NM_RqstControl** function is used to request the status for all the control points on a device. The Network Manager responds with a **NM_MT_CONTROLS** message and TestDLL uses the **NM_GetControl** function to retrieve the status for the control points and reports them in the display area.

Req Control Desc

The **NM_RqstPointDesc** function is used to request the description for the control. The Network Manager responds with the **NM_MT_Desc** message and TestDLL uses the **NM_GetPoint Desc** function to retrieve the description.

Set Audio Folder

The **NM_SetAudioFolder** function is used to specify the folder to be used to store audio recordings for an audio channel.

Reg Audio Folder

The **NM_RqstAudioFolder** function is used to request the folder used by an audio channel for recordings. The Network Manager responds with an **NM_MT_AUDIO_FOLDER** message containing the folder name and TestDLL uses the **GetAudioFolder** function and reports it in the display area. (Applies only to VoE Network Manager.)

In addition, the VoE NM sends unsolicited **NM_MT_AUDIO_EVENT** messages when an audio recording ends. TestDLL uses the **NM_GetAudioEvent** function to retrieve the audio channel, the pathname of the recording and the description of the event.

page 28 00DA0209-001, Rev S

Silver point assignments

The Silver Network defines valid device addresses ranging from 1 to 60.

#define NM_AG_MIN_ADDR 1

#define NM_AG_MAX_ADDR 60

Silver Device defines:

#define NM_AG_OTRX 0X201 // OmniTrax

#define NM_AG_XFLD 0X203 // XField

#define NM_AG_XFLD_LT 0X20A // XField LT

#define NM AG IO16 0X204 // 16I/16O

#define NM_AG_4100 0X206 // MPS-4100

#define NM AG FLXPS 0X207 // FlexPS

#define NM AG UWAVE 0X208 // UltraWave

#define NM AG FLXZN 0X20F // FlexZone-60

#define NM AG FLXZ20 0X20B // FlexZone-20

#define NM_AG_FLXZ4 0X20D // FlexZone-4

#define NM_AG_AMUX 0X20E // Audio MUX (virtual device)

#define NM_AG_ULIO 0X209 // UltraLink I/O

#define NM_AG_RBX510 0X210 // rBOX510 (embedded controller for NMS)

#define NM_AG_ALE 0X211 // Alarm Logic Engine (virtual device)

The following tables include the point definitions for Silver compatible devices:

OmniTrax inp	ut point mapping		
Point	Description	Point	Description
Diagnostic ala	arms	1	
1	Enclosure tamper	9	2 V 5 / 1 V 2 rail fault
2	Program flash error	10	Battery fault
3	RAM error	11	Input power fail
4	Processor boot fail	Cable faults	
5	Option card fail	12	Side A cable supervision
6	8 V rail fault	13	Side B cable supervision
7	3 V 3 rail fault	14	Side A interference (jam)
8	+5 V / - 5 V rail fault	15	Side B interference (jam)
Sensor alarm	s		
1	AUX input 1 (bit 0 alarm, bit 1 supervision)	7	Option card input Opt5 (bit 0 alarm, bit 1 supervision)
2	AUX input 2 (bit 0 alarm, bit 1 supervision)	8	Option card input Opt6 (bit 0 alarm, bit 1 supervision)
3	Option card input Opt1 (bit 0 alarm, bit 1 supervision)	9	Option card input Opt7 (bit 0 alarm, bit 1 supervision)
4	Option card input Opt2 (bit 0 alarm, bit 1 supervision)	10	Option card input Opt8 (bit 0 alarm, bit 1 supervision)
5	Option card input Opt3 (bit 0 alarm, bit 1 supervision)	11 to 60	Cable zone #n (bit 0 alarm, bit 1 unused)
6	Option card input Opt4 (bit 0 alarm, bit 1 supervision)		

Point	Dutput point mapping (controls) Description	Point	Description
			·
1	Processor relay 1	7	Option card relay Opt3
2	Processor relay 2	8	Option card relay Opt4
3	Processor relay 3	9	Option card relay Opt5
4	Processor relay 4	10	Option card relay Opt6
5	Option card relay Opt1	11	Option card relay Opt7
6	Option card relay Opt2	12	Option card relay Opt8
XField/XFie	eld LT input point mapping		
Point	Description	Point	Description
Diagnostic	alarms	-	
1	Enclosure tamper	10	Battery fault
2	Program flash error	11	Input power fail
3	RAM error	12	Side A supervision
4	Processor boot fail	13	Side B supervision
5	Option card fail	14	Side A spoof
6	8 V rail fault	15	Side B spoof
7	3 V 3 rail fault	16	Jam
8	+5 V / - 5 V rail fault	17	Side A service required
9	2 V 5 / 1 V 2 rail fault	18	Side B service required
Sensor ala	rms		
1	AUX input 1 - (bit 0 alarm, bit 1 supervision)	7	Option card input Opt5 - (bit 0 alarr bit 1 supervision)
2	AUX input 2 - (bit 0 alarm, bit 1 supervision)	8	Option card input Opt6 - (bit 0 alarr bit 1 supervision)
3	Option card input Opt1 - (bit 0 alarm, bit 1 supervision)	9	Option card input Opt7 - (bit 0 alarr bit 1 supervision)
4	Option card input Opt2 - (bit 0 alarm, bit 1 supervision)	10	Option card input Opt8 - (bit 0 alarr bit 1 supervision)
5	Option card input Opt3 - (bit 0 alarm, bit 1 supervision)	11	Side A alarm (bit 0 alarm, bit 1 unused)
6	Option card input Opt4 - (bit 0 alarm, bit 1 supervision)	12	Side B alarm (bit 0 alarm, bit 1 unused)
XField/XFie	eld LT output point mapping (controls)		
Point	Description	Point	Description
1	Processor relay 1	8	Option card relay Opt4
2	Processor relay 2	9	Option card relay Opt5
3	Processor relay 3	10	Option card relay Opt6

11

12

13

14

Processor relay 4

Option card relay Opt1

Option card relay Opt2

Option card relay Opt3

5

6

7

Option card relay Opt7

Option card relay Opt8

Side A self-test

Side B self-test

page 30 00DA0209-001, Rev S

	out point mapping		
Point	Description	Point	Description
Diagnostic a			
1	Enclosure tamper	5	3V3 Rail Fault
2	Program flash error	6	5V Rail Fault
3	RAM error	7	Battery fault
4	8V Rail Fault	8	Input power fail
Sensor alar	ms		
1 - 16	processor inputs 1 - 16 (bit 0: Alarm	n; bit 1: Tamper)	
16I/16O out	tput point mapping (controls)		
Points	Description		
1 - 16	processor relays 1 - 16		
MPS-4100 i	input point mapping		
Point	Description	Point	Description
Sensor alar	ms		
1	Microwave 1 (bit 0: Alarm, bit 1: tamper)	2	Microwave 2 (bit 0: Alarm, bit 1: tamper)
MPS-4100	output point mapping (controls)		
Points	Description	Points	Description
1	Audio Select 1	3	Self-Test 1-2 + Self-Test LED 1
2	Audio Select 2	4	Self-Test LED 2
FlexPS inpu	ut point mapping		-
Point	Description	Point	Description
Diagnostic a	alarms		
1	Enclosure tamper	5	3V3 Rail Fault
2	Program flash error	6	Battery fault
3	RAM error	7	Input power fail
4	8V Rail Fault		
Sensor alar	ms		
1 - 2	processor Aux inputs 1 - 2 (bit 0: Al	arm; bit 1: Tamp	per)
3 - 4	Side A/B (bit 0: Alarm; bit 1: Tampe	r)	
FlexPS outp	out point mapping (controls)		
Points	Description		
1 - 4	processor relays 1 - 4		
5 - 6	audio select Side A/B		

7 - 8

self-test Side A/B

Point	Description	Point	Description
Diagnostic	alarms (receiver)	+	
1	Enclosure tamper	6	5V5 Rail fault
2	Program flash error	7	3V3 Rail fault
3	RAM error	8	5V Rail fault
4	Transmitter link fault	9	Input power fail
5	Transmitter mismatch		
Diagnostic	alarms (transmitter)	1	
10	Enclosure tamper	13	5V5 Rail fault
11	Program flash error	14	3V3 Rail fault
12	Ram error	15	5V Rail fault
		16	Input power fail
Sensor ala	rms	1	
1	Receiver Aux input (bit 0: Alar	m; bit 1: Tamper)	
2	Microwave (bit 0: Alarm; bit 1:	unused)	

UltraWave outp	UltraWave output point mapping (controls)	
Points	Description	
1 - 2	Receiver relays 1 - 2	
3	self-test	

FlexZone-60 input point mapping					
Point	Description	Point	Description		
Diagnostic a	Diagnostic alarms				
1	Enclosure tamper	16	Processor offline		
2	Program flash error	17	Gate Module Rcvr Fault		
3	RAM error	18	Gate Module Rcvr Interference		
4	Processor boot fail	19	Gate Module 1 Comm Fail		
5	8V Rail fault	20	Gate Module 1 Encosure tamper		
6	3V Rail fault	21	Gate Module 1 Program flash error		
7	1V8 Rail fault	22	Gate Module 1 I2C Bus fault		
8	1V2 Rail fault	23	Gate Module 1 2V7 Rail fault		
9	Input power fail	24	Gate Module 1 Low power		
7	1V8 Rail fault	25 - 30	Gate Module 2 (see Gate Module 1)		
8	1V2 Rail fault	31 - 36	Gate Module 3 (see Gate Module 1)		
9	Input power fail	37 - 42	Gate Module 4 (see Gate Module 1)		
Cable faults					
10	Side A power fault	11	Side B power fault		
12	Side A supervision	13	Side B supervision		
14	Side A interference	15	Side B interference		
Sensor alarn	Sensor alarms				
1 - 2	Processor Aux inputs 1 - 2 (bit	t 0: Alarm; bit 1: Tamp	per)		
3 - 62	Cable Zone n (bit 0: Alarm; bit	Cable Zone n (bit 0: Alarm; bit 1: unused)			

page 32 00DA0209-001, Rev S

FlexZone-60 input point mapping				
Point	Description	Point	Description	
Gate Modules 1 - 4 (bit 0: Alarm; bit 1: Tamper) NOTE: Alarm and Tamper states are not mutually exclusive for points 63, 65, 67 & 69				
63	GM1 Gate status	64	GM1 Aux input	
65	GM2 Gate status	66	GM2 Aux input	
67	GM3 Gate status	68	GM3 Aux input	
69	GM4 Gate status	70	GM4 Aux input	

FlexZone-60 output point mapping (controls)	
Points	Description
1 - 4	Processor relays 1 - 4

FlexZone-20 ir	FlexZone-20 input point mapping				
Point	Description	Point	Description		
Diagnostic alai	Diagnostic alarms				
1	Enclosure tamper	16	Processor offline		
2	Program flash error	17	Gate Module Rcvr Fault		
3	RAM error	18	Gate Module Rcvr Interference		
4	Processor boot fail	19	Gate Module 1 Comm Fail		
5	8V Rail fault	20	Gate Module 1 Encosure tamper		
6	3V Rail fault	21	Gate Module 1 Program flash error		
7	1V8 Rail fault	22	Gate Module 1 I2C Bus fault		
8	1V2 Rail fault	23	Gate Module 1 2V7 Rail fault		
9	Input power fail	24	Gate Module 1 Low power		
7	1V8 Rail fault	25 - 30	Gate Module 2 (see Gate Module 1)		
8	1V2 Rail fault	31 - 36	Gate Module 3 (see Gate Module 1)		
9	Input power fail	37 - 42	Gate Module 4 (see Gate Module 1)		
Cable faults					
10	Side A power fault	11	Side B power fault		
12	Side A supervision	13	Side B supervision		
14	Side A interference	15	Side B interference		
Sensor alarms					
1 - 2	Processor Aux inputs 1 - 2 (bit 0: Alarm; bit 1: Tamper)				
3 - 22	Cable Zone n (bit 0: Alarm; bit 1: unused)				
Gate Modules 1 - 4 (bit 0: Alarm; bit 1: Tamper) NOTE: Alarm and Tamper states are not mutually exclusive for points 23, 25, 27 & 29					
23	GM1 Gate status	24	GM1 Aux input		
25	GM2 Gate status	26	GM2 Aux input		
27	GM3 Gate status	28	GM3 Aux input		
29	GM4 Gate status	30	GM4 Aux input		
		·			

FlexZo	FlexZone-20 output point mapping (controls)	
Points	pints Description	
1 - 4	Processor relays 1 - 4	

	input point mapping	Detat	Description	
Point	Description	Point	Description	
Diagnostic				
1	Enclosure tamper	16	Processor offline	
2	Program flash error	17	Gate Module Rcvr Fault	
3	RAM error	18	Gate Module Rcvr Interference	
4	Processor boot fail	19	Gate Module 1 Comm Fail	
5	8V Rail fault	20	Gate Module 1 Encosure tamper	
6	3V Rail fault	21	Gate Module 1 Program flash error	
7	1V8 Rail fault	22	Gate Module 1 I2C Bus fault	
8	1V2 Rail fault	23	Gate Module 1 2V7 Rail fault	
9	Input power fail	24	Gate Module 1 Low power	
7	1V8 Rail fault	25 - 30	Gate Module 2 (see Gate Module 1)	
8	1V2 Rail fault	31 - 36	Gate Module 3 (see Gate Module 1)	
9	Input power fail	37 - 42	Gate Module 4 (see Gate Module 1)	
Cable faults	3			
10	Side A power fault	11	Side B power fault	
12	Side A supervision	13	Side B supervision	
14	Side A interference	15	Side B interference	
Sensor alar	rms	1	,	
1 - 2	Processor Aux inputs 1 - 2 (b	Processor Aux inputs 1 - 2 (bit 0: Alarm; bit 1: Tamper)		
3 - 6	Cable Zone n (bit 0: Alarm; bi	it 1: Tamper)		
	les 1 - 4 (bit 0: Alarm; bit 1: Tamper m and Tamper states are not mutu	•	s 7, 9, 11 & 13	
7	GM1 Gate status	8	GM1 Aux input	
9	GM2 Gate status	10	GM2 Aux input	
11	GM3 Gate status	12	GM3 Aux input	
13	GM4 Gate status	14	GM4 Aux input	
FlexZone-4	output point mapping (controls)			
Points	Description			
1 - 4	Processor relays 1 - 4			
Audio MUX	-60 output point mapping (controls)			
Points	Description	Description		
1 - 100	Audio select			
	put point mapping			
Point	Description	Point	Description	
Diagnostic	alarms (Processor card)			
1	Program flash error	3	5V5 Rail fault	
2	RAM error	4	3V3 Rail fault	

page 34 00DA0209-001, Rev S

UltraLink input	UltraLink input point mapping			
Point	Description	Point	Description	
Diagnostic ala	rms (expansion card 1)			
5	Card fail	8	RAM error	
6	Card mismatch	9	3V3 Rail fault	
7	Program flash error			
Expansion car	d 2 (10 - 14) see expansion card 1 des	cription		
Expansion car	d 3 (15 - 19) see expansion card 1 des	cription		
Expansion car	d 4 (20 - 24) see expansion card 1 des	cription		
Expansion car	d 5 (25 - 29) see expansion card 1 des	cription		
Expansion car	d 6 (30 - 34) see expansion card 1 des	cription		
Expansion car	d 7 (35 - 39) see expansion card 1 des	cription		
Expansion card 8 (40 - 44) see expansion card 1 description				
Sensor alarms				
1 - 8	processor inputs 1 - 8 (bit 0: Alarm;	oit 1: Tamper)		
9 - 40	expansion card 1 inputs 1 - 32 (bit 0	: Alarm; bit 1:	Tamper)	
41 - 72	expansion card 2 inputs 1 - 32 (bit 0	: Alarm; bit 1:	Tamper)	
73 - 104	expansion card 3 inputs 1 - 32 (bit 0	: Alarm; bit 1:	Tamper)	
105 - 136	expansion card 4 inputs 1 - 32 (bit 0	: Alarm; bit 1:	Tamper)	
137 - 168	expansion card 5 inputs 1 - 32 (bit 0	: Alarm; bit 1:	Tamper)	
169 - 200	expansion card 6 inputs 1 - 32 (bit 0	: Alarm; bit 1:	Tamper)	
201 - 232	expansion card 7 inputs 1 - 32 (bit 0	: Alarm; bit 1:	Tamper)	
233 - 264	expansion card 8 inputs 1 - 32 (bit 0	: Alarm; bit 1:	Tamper)	

UltraLink output point mapping (controls)		
Points	Description	
1 - 8	Processor relays 1 - 8	
9 - 40	expansion card 1 relays/open collector outputs 1 - 32	
41 - 72	expansion card 2 relays/open collector outputs 1 - 32	
73 - 104	expansion card 3 relays/open collector outputs 1 - 32	
105 - 136	expansion card 4 relays/open collector outputs 1 - 32	
137 - 168	expansion card 5 relays/open collector outputs 1 - 32	
169 - 200	expansion card 6 relays/open collector outputs 1 - 32	
201 - 232	expansion card 7 relays/open collector outputs 1 - 32	
233 - 264	expansion card 8 relays/open collector outputs 1 - 32	

rBOX510 embedded controller input point mapping				
Point	Description Point Description			
Diagnostic alarms				
None				
Sensor alarms				
1 - 8	DIO inputs 1 - 8			

rBOX510 embed	rBOX510 embedded controller output point mapping (controls)		
Points	Description		
1 - 8	DIO outputs 1 - 8		
Alarm Logic Eng	gine input point mapping (virtual device)		
Point	Description		
Diagnostic alarn	ns		
None	None		
Sensor alarms	Sensor alarms		
1 - 400	Logic Elements (bit 0: Alarm, bit 1: tamper) NOTE: Alarm and tamper states are not mutually exclusive.		
Alarm Logic Eng	Alarm Logic Engine output point mapping (controls) (virtual device)		
Points	Description		
1 - 400	Fanout points		

page 36 00DA0209-001, Rev S

FiberPatrol point assignments

FiberPatrol defines valid device addresses ranging from 1 to 10.

#define NM_FP_MIN_ADDR 1

#define NM_FP_MAX_ADDR 10

FiberPatrol Device defines:

#define NM_FP_SU 0X700 // FiberPatrol Sensor Unit

The following tables include the point definitions for the FiberPatrol SU:

FiberPatrol SU i	FiberPatrol SU input point mapping		
Point	Description		
Diagnostic Alarr	ms		
1	Processor Fault		
2	COM Fault (Processor to Controller Communication)		
3	Transmitter Fault (Controller)		
4	Receiver Fault (Controller)		
5	ADC Fault (Processor Signal Digitizer)		
6	Environmental Fault (Ambient Temperature)		
7	Sensor 1 Fault (Channel 1 Signal)		
8	Sensor 2 Fault (Channel 2 Signal)		
9	Optical Power Fault (Low in both Channels)		
10	Fiber Cut		
Sensor Alarms	Sensor Alarms (Note: Zone Alarm and Cut States are not mutually exclusive.)		
1 - 480	Zones 1 - 480 (bit 0: Alarm, bit 1: Cut)		

CCC point assignments

The CCC network defines valid device addresses ranging from 0 to 127 (0 to 120 when using "Boris" Card).

#define NM_C3_MIN_ADDR 0

#define NM_C3_MAX_ADDR 127

CCC Device defines:

#define NM_C3_FOST 0X600 // Innofence Fiber Optic Sensor Transducer

#define NM_C3_GPRU 0X601 // General Purpose Reporting Unit #define NM_C3_SPRU 0X602 // DTR Sensor Post Reporting Unit

#define NM_C3_VPRU 0X603 // Barricade Vibration Processing Reporting Unit

#define NM_C3_YAEL 0X604 // YAEL-16 Piezo Taut Wire Processor

The following tables include the point definitions for CCC compatible devices:

FOST input point mapping		
Point	Description	
Diagnostic Alarms		
1	Enclosure tamper	
Sensor Alarms		
1 - 2	Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: unused)	
3 - 4	Fiber 1 - 2 (bit 0: Alarm, bit 1: Tamper)	

FOST output point mapping (controls)	
Point	Description
1	Self Test

GPRU input point mapping	
Point	Description
Sensor Alarms	
1 - 8	Inputs 1 - 8 (bit 0: Alarm, bit 1: unused)

GPRU output point mapping (controls)	
Point	Description
1 - 9	Relays 1 - 9
10	Self Test

SPRU input point mapping	
Point	Description
Diagnostic Alarms	
1	Enclosure Tamper
Sensor Alarms	

page 38 00DA0209-001, Rev S

SPRU input point mapping	
Point	Description
1	Taut-wire group 1 lower (bit 0: Alarm, bit 1: unused)
2	Taut-wire group 2 lower (bit 0: Alarm, bit 1: unused)
3	Taut-wire group 3 lower (bit 0: Alarm, bit 1: unused)
4	Taut-wire group 4 lower (bit 0: Alarm, bit 1: unused)
5	Taut-wire group 5 lower (bit 0: Alarm, bit 1: unused)
6	Taut-wire group 1 upper (bit 0: Alarm, bit 1: unused)

SPRU output point mapping (controls)	
Point	Description
1	Self Test

VPRU input point mapping		
Point	Description	
Diagnostic Alar	Diagnostic Alarms	
1	Enclosure Tamper	
2	Input Power Fault	
Sensor Alarms		
1	Sensor Line 1 (bit 0: Alarm, bit 1: Tamper)	
2	Sensor Line 2 (bit 0: Alarm, bit 1: Tamper)	
3	Sensor Line 3 (bit 0: Alarm, bit 1: Tamper)	
4	Sensor Line 4 (bit 0: Alarm, bit 1: Tamper)	

VPRU output point mapping (controls)	
Point	Description
1 - 2	Relays 1 - 2
3	Self Test

YAEL input point mapping		
Point	Description	
Diagnostic Aları	Diagnostic Alarms	
1	Enclosure Tamper	
2	Input Power Fault	
3	Detector Current Fault	
4	Detector Amplifier Alarm	
Sensor alarms		
1	Fence (bit 0: Alarm, bit 1: Tamper)	

YAEL output point mapping (controls)	
Point	Description
1 - 3	TTL Output 1 - 3
4	Self Test

Crossfire point assignments

The Crossfire network defines valid device addresses ranging from 0 to 127.

#define NM_XF_MIN_ADDR 0

#define NM_XF_MAX_ADDR 127

Crossfire Device defines:

#define NM_XF_410 0X001 // PLC-410

#define NM_XF_420 0X002 // PLC-420

#define NM_XF_430 0X003 // PLC-430

#define NM_XF_4100 0X004 // MPS-4100 (Intelli-WAVE)

#define NM_XF_IFLX 0X005 // Intelli-FLEX

#define NM_XF_IFLD 0X006 // Intelli-FIELD

The following tables include the point definitions for Crossfire compatible devices:

PLC-410 input point mapping		
Point	Description	
Sensor Alarms	Sensor Alarms	
1 - 64	Inputs 1 - 64 (bit 0: Alarm)	

PLC-410 output point mapping (controls)	
Point	Description
1 - 128	Controls 1 - 128

PLC-420 input point mapping	
Point	Description
Sensor Alarms	
1 - 16	Card 1 IO-101/102 inputs 1 - 16 (bit 0: Alarm, bit 1: unused)
17 - 32	Card 1 IO-101 inputs 17 - 32 (bit 0: Alarm, bit 1: unused)
17 - 32	IO-102 inputs 1 - 16 (bit 0: Tamper, bit 1: unused)
33 - 48	Card 2 IO-101/102 inputs 1 - 16 (bit 0: Alarm, bit 1: unused)
49 - 64	Card 2 IO-101 inputs 17 - 32 (bit 0: Alarm, bit 1: unused)
	IO-102 inputs 1 - 16 (bit 0: Tamper, bit 1: unused)

page 40 00DA0209-001, Rev S

PLC-420 output point mapping (controls)	
Point	Description
1 - 16	Card 1 IO-201 outputs 1 - 16
	Card 1A IO-202 outputs 1 - 16
17 - 32	Card 1 IO-201 outputs 17 - 32
	Card 1B IO-202 outputs 1 - 16
33 - 48	Card 2 IO-201 outputs 1 - 16
	Card 2A IO-202 outputs 1 - 16
49 - 64	Card 2 IO-201 outputs 17 - 32
	Card 2B IO-202 outputs 1 - 16

PLC-430 input point mapping	
Point	Description
Sensor Alarms	
1 - 8	Inputs 1 - 8 (bit 0: Alarm, bit 1: Tamper)

PLC-430 output point mapping (controls)	
Point	Description
1 - 8	Outputs 1 - 8

MPS-4100 input point mapping	
Point	Description
Sensor Alarms	
1 - 2	Microwave 1 - 2 (bit 0: Alarm, bit 1: Tamper)

MPS-4100 output point mapping (controls)	
Point	Description
1	Audio Select 1 (Audio 2 LED)
2	Audio Select 2 (Audio 1 LED)
3	Self-Test 1 & 2 (Self-Test LED 1)
4	Self-Test LED 2

Intelli-FLEX input point mapping		
Point	Description	
Diagnostic Alarms		
1	Enclosure Tamper	
2	Low Power Fail	
Sensor alarms		
1 - 2	Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper)	
3 - 4	Side A/B (bit 0: Alarm, bit 1: Tamper)	

Intelli-FLEX output point mapping (controls)	
Point	Description
1 - 2	Relays 1 - 2
3 - 4	Audio Select Side A/B
5 - 6	Self-Test Side A/B

Intelli-FIELD input point mapping	
Point	Description
Diagnostic Alarms	
1	Enclosure Tamper
Sensor Alarms	
1 - 2	Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper)
3 - 4	Side A/B (bit 0: Alarm, bit 1: Tamper)

Intelli-FIELD output point mapping (controls)	
Point	Description
1 - 6	Relays 1 - 6 (labelled Suprv A/B, Alarm A/B, Enclosure, Power Fail)
7 - 8	Self-Test Side A/B

page 42 00DA0209-001, Rev S

Sennet point assignments

The Sennet Network defines valid device addresses ranging from 0 to 62, with address 0 reserved for the Network Controller:

#define NM_SN_MIN_ADDR 0

#define NM_SN_MAX_ADDR 62

Sennet Device defines:

#define NM_SN_TU 0X100 // TU

#define NM_SN_LTU 0X101 // LTU

#define NM_SN_SM 0X103 // Perimitrax SM

#define NM_SN_IF 0X105 // IntelliFlex

#define NM_SN_NC 0X106 // Network Controller

The following tables include the point definitions for Sennet compatible devices:

Network Controller input point mapping	
Point	Description
Diagnostic alarms	
1	ROM Error
2	RAM Error
3	Enclosure Tamper
4	AC Power Fail

Transponder Unit input point mapping		
Point	Description	
Diagnostic a	larms	
1	ROM Error	
2	RAM Error	
3	Enclosure Tamper	
4	AC Power Fail	
Sensor alarms		
1 - 16	Inputs 1 - 16 (bit 0: Alarm, bit 1: Tamper)	

Transponder Unit output point mapping (controls)	
Point	Description
1 - 8	Relays 1 - 8

Large Transpo	Large Transponder Unit input point mapping	
Point	Description	
Diagnostic ala	rms	
1	ROM Error	
2	RAM Error	
3	Enclosure Tamper	
Sensor alarms		
1 - 256	Inputs 1 - 256 (bit 0: Alarm, bit 1: Tamper)	

Large Transponder Unit output point mapping (controls) Point Description 1 - 256 Relays 1 - 256 Perimitrax Sensor Module input point mapping Point Description Diagnostic alarms 1 ROM Error 5 RX Cable Fault 2 RAM Error 6 TX Cable Fault 3 Enclosure Tamper 7 Voltage Fault 4 EEPROM Error 8 Temperature Fault Sensor alarms 1 - 8 Aux Inputs 1 - 8 (bit 0: Alarm, bit 1: Tamper) 9 - 10 Side A/B (bit 0: Alarm, bit 1: Unused) Perimitrax Sensor Module output point mapping (controls) Point Description 1 - 4 Relays 1 - 4 5 - 6 Self-Test Side A/B Intelli-FLEX input point mapping Point Description Diagnostic alarms 1 RAM Error 2 Enclosure Tamper 3 Low Power Fail Sensor alarms 1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper) Intelli-FLEX output point mapping (controls) Point Description Intelli-FLEX output point mapping (controls) Intelli-FLEX output point mapping (controls) Point Description Intelli-FLEX output point mapping (controls) Point Description Intelli-FLEX output point mapping (controls) Point Description 1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B 5 - 6 Self-Test Side A/B					
Perimitrax Sensor Module input point mapping			g (controls)		
Perimitrax Sensor Module input point mapping Point Description Diagnostic alarms 1 ROM Error 5 RX Cable Fault 2 RAM Error 6 TX Cable Fault 3 Enclosure Tamper 7 Voltage Fault 4 EEPROM Error 8 Temperature Fault Sensor alarms 1 - 8 Aux Inputs 1 - 8 (bit 0: Alarm, bit 1: Tamper) 9 - 10 Side A/B (bit 0: Alarm, bit 1: Unused) Perimitrax Sensor Module output point mapping (controls) Point Description 1 - 4 Relays 1 - 4 5 - 6 Self-Test Side A/B Intelli-FLEX input point mapping Point Description Diagnostic alarms 1 RAM Error 2 Enclosure Tamper 3 Low Power Fail Sensor alarms 1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper) 3 - 4 Side A/B (bit 0: Alarm, bit 1: Tamper) Intelli-FLEX output point mapping (controls) Point Description Diagnostic alarms 1 - 2 Relays 1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B	Point	'	Description		
Point Description Diagnostic alarms 1 ROM Error 5 RX Cable Fault 2 RAM Error 6 TX Cable Fault 3 Enclosure Tamper 7 Voltage Fault 4 EEPROM Error 8 Temperature Fault Sensor alarms 1 - 8 Aux Inputs 1 - 8 (bit 0: Alarm, bit 1: Tamper) 9 - 10 Side A/B (bit 0: Alarm, bit 1: Unused) Perimitrax Sensor Module output point mapping (controls) Point Description 1 - 4 Relays 1 - 4 5 - 6 Self-Test Side A/B Intelli-FLEX input point mapping Point Description Diagnostic alarms 1 RAM Error 2 Enclosure Tamper 3 Low Power Fail Sensor alarms 1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper) Intelli-FLEX output point mapping (controls) Point Description Diagnostic alarms 1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper) Intelli-FLEX output point mapping (controls) Point Description 1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B	1 - 256	Relays 1 - 256	Relays 1 - 256		
Diagnostic alarms	Perimitrax	Sensor Module input point mappin	ıg		
1 ROM Error 5 RX Cable Fault 2 RAM Error 6 TX Cable Fault 3 Enclosure Tamper 7 Voltage Fault 4 EEPROM Error 8 Temperature Fault Sensor alarms 1 - 8 Aux Inputs 1 - 8 (bit 0: Alarm, bit 1: Tamper) 9 - 10 Side A/B (bit 0: Alarm, bit 1: Unused) Perimitrax Sensor Module output point mapping (controls) Point Description 1 - 4 Relays 1 - 4 5 - 6 Self-Test Side A/B Intelli-FLEX input point mapping Point Description Diagnostic alarms 1 RAM Error 2 Enclosure Tamper 3 Low Power Fail Sensor alarms 1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper) 3 - 4 Side A/B (bit 0: Alarm, bit 1: Tamper) Intelli-FLEX output point mapping (controls) Point Description Diagnostic alarms 1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper) Intelli-FLEX output point mapping (controls) Point Description 1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B	Point	Description			
2 RAM Error 6 TX Cable Fault 3 Enclosure Tamper 7 Voltage Fault 4 EEPROM Error 8 Temperature Fault Sensor alarms 1 - 8 Aux Inputs 1 - 8 (bit 0: Alarm, bit 1: Tamper) 9 - 10 Side A/B (bit 0: Alarm, bit 1: Unused) Perimitrax Sensor Module output point mapping (controls) Point Description 1 - 4 Relays 1 - 4 5 - 6 Self-Test Side A/B Intelli-FLEX input point mapping Point Description Diagnostic alarms 1 RAM Error 2 Enclosure Tamper 3 Low Power Fail Sensor alarms 1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper) 3 - 4 Side A/B (bit 0: Alarm, bit 1: Tamper) Intelli-FLEX output point mapping (controls) Point Description Intelli-FLEX output point mapping (controls) Point Description Intelli-FLEX output point mapping (controls) Point Description 1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B	Diagnostic	alarms			
3 Enclosure Tamper 7 Voltage Fault 4 EEPROM Error 8 Temperature Fault Sensor alarms 1 - 8 Aux Inputs 1 - 8 (bit 0: Alarm, bit 1: Tamper) 9 - 10 Side A/B (bit 0: Alarm, bit 1: Unused) Perimitrax Sensor Module output point mapping (controls) Point Description 1 - 4 Relays 1 - 4 5 - 6 Self-Test Side A/B Intelli-FLEX input point mapping Point Description Diagnostic alarms 1 RAM Error 2 Enclosure Tamper 3 Low Power Fail Sensor alarms 1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper) 3 - 4 Side A/B (bit 0: Alarm, bit 1: Tamper) Intelli-FLEX output point mapping (controls) Point Description Intelli-FLEX output point mapping (controls) Point Description 1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B	1	ROM Error	5	RX Cable Fault	
4 EEPROM Error 8 Temperature Fault Sensor alarms 1 - 8 Aux Inputs 1 - 8 (bit 0: Alarm, bit 1: Tamper) 9 - 10 Side A/B (bit 0: Alarm, bit 1: Unused) Perimitrax Sensor Module output point mapping (controls) Point Description 1 - 4 Relays 1 - 4 5 - 6 Self-Test Side A/B Intelli-FLEX input point mapping Point Description Diagnostic alarms 1 RAM Error 2 Enclosure Tamper 3 Low Power Fail Sensor alarms 1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper) 3 - 4 Side A/B (bit 0: Alarm, bit 1: Tamper) Intelli-FLEX output point mapping (controls) Point Description Intelli-FLEX output point mapping (controls) Point Description 1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B	2	RAM Error	6	TX Cable Fault	
Sensor alarms 1 - 8	3	Enclosure Tamper	7	Voltage Fault	
1 - 8	4	EEPROM Error	8	Temperature Fault	
9 - 10 Side A/B (bit 0: Alarm, bit 1: Unused) Perimitrax Sensor Module output point mapping (controls) Point Description 1 - 4 Relays 1 - 4 5 - 6 Self-Test Side A/B Intelli-FLEX input point mapping Point Description Diagnostic alarms 1 RAM Error 2 Enclosure Tamper 3 Low Power Fail Sensor alarms 1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper) 3 - 4 Side A/B (bit 0: Alarm, bit 1: Tamper) Intelli-FLEX output point mapping (controls) Point Description 1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B	Sensor ala	arms			
Perimitrax Sensor Module output point mapping (controls) Point Description 1 - 4 Relays 1 - 4 5 - 6 Self-Test Side A/B Intelli-FLEX input point mapping Point Description Diagnostic alarms 1 RAM Error 2 Enclosure Tamper 3 Low Power Fail Sensor alarms 1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper) 3 - 4 Side A/B (bit 0: Alarm, bit 1: Tamper) Intelli-FLEX output point mapping (controls) Point Description 1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B	1 - 8	Aux Inputs 1 - 8 (bit 0: Alarm,	bit 1: Tamper)		
Point Description 1 - 4 Relays 1 - 4 5 - 6 Self-Test Side A/B Intelli-FLEX input point mapping Point Description Diagnostic alarms 1 RAM Error 2 Enclosure Tamper 3 Low Power Fail Sensor alarms 1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper) 3 - 4 Side A/B (bit 0: Alarm, bit 1: Tamper) Intelli-FLEX output point mapping (controls) Point Description 1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B	9 - 10	Side A/B (bit 0: Alarm, bit 1: U	Inused)		
1 - 4 Relays 1 - 4 5 - 6 Self-Test Side A/B Intelli-FLEX input point mapping Point Description Diagnostic alarms 1 RAM Error 2 Enclosure Tamper 3 Low Power Fail Sensor alarms 1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper) 3 - 4 Side A/B (bit 0: Alarm, bit 1: Tamper) Intelli-FLEX output point mapping (controls) Point Description 1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B	Perimitrax	Sensor Module output point mapp	ing (controls)		
Intelli-FLEX input point mapping	Point	Description			
Intelli-FLEX input point mapping Point Description Diagnostic alarms 1 RAM Error 2 Enclosure Tamper 3 Low Power Fail Sensor alarms 1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper) 3 - 4 Side A/B (bit 0: Alarm, bit 1: Tamper) Intelli-FLEX output point mapping (controls) Point Description 1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B	1 - 4	Relays 1 - 4			
Point Description Diagnostic alarms 1 RAM Error 2 Enclosure Tamper 3 Low Power Fail Sensor alarms 1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper) 3 - 4 Side A/B (bit 0: Alarm, bit 1: Tamper) Intelli-FLEX output point mapping (controls) Point Description 1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B	5 - 6	Self-Test Side A/B			
Diagnostic alarms 1 RAM Error 2 Enclosure Tamper 3 Low Power Fail Sensor alarms 1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper) 3 - 4 Side A/B (bit 0: Alarm, bit 1: Tamper) Intelli-FLEX output point mapping (controls) Point Description 1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B	Intelli-FLE	X input point mapping			
1 RAM Error 2 Enclosure Tamper 3 Low Power Fail Sensor alarms 1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper) 3 - 4 Side A/B (bit 0: Alarm, bit 1: Tamper) Intelli-FLEX output point mapping (controls) Point Description 1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B	Point	·			
2 Enclosure Tamper 3 Low Power Fail Sensor alarms 1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper) 3 - 4 Side A/B (bit 0: Alarm, bit 1: Tamper) Intelli-FLEX output point mapping (controls) Point Description 1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B	Diagnostic	alarms			
3 Low Power Fail Sensor alarms 1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper) 3 - 4 Side A/B (bit 0: Alarm, bit 1: Tamper) Intelli-FLEX output point mapping (controls) Point Description 1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B	1	RAM Error			
Sensor alarms 1 - 2	2	Enclosure Tamper			
1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper) 3 - 4 Side A/B (bit 0: Alarm, bit 1: Tamper) Intelli-FLEX output point mapping (controls) Point Description 1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B	3	Low Power Fail			
3 - 4 Side A/B (bit 0: Alarm, bit 1: Tamper) Intelli-FLEX output point mapping (controls) Point Description 1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B	Sensor ala	arms			
Intelli-FLEX output point mapping (controls) Point Description 1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B	1 - 2	Aux Inputs 1 - 2 (bit 0: Alarm,	bit 1: Tamper)		
Point Description 1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B	3 - 4	Side A/B (bit 0: Alarm, bit 1: T			
1 - 2 Relays 1 - 2 3 - 4 Audio Select Side A/B	Intelli-FLE	X output point mapping (controls)			
3 - 4 Audio Select Side A/B	Point	Description			
	1 - 2	Relays 1 - 2			
5 - 6 Self-Test Side A/B	3 - 4	Audio Select Side A/B			
	5 - 6	Self-Test Side A/B	Self-Test Side A/B		

page 44 00DA0209-001, Rev S

Sentrax point assignments

The Sentrax Network defines valid device addresses ranging from 0 to 16, with address 0 reserved for the Sentrax Control Module:

#define NM_SX_MIN_ADDR 0

#define NM_SX_MAX_ADDR 16

Sentrax Device defines:

#define NM_SX_CM 0X500 // Control Module

#define NM_SX_LTM 0X501 // Transceiver Module

The following tables include the point definitions for Sentrax compatible devices:

Control Module input point mapping				
Point	Description	Point	Description	
Diagnost	ic alarms	<u> </u>		
1	RAM Error	6	TX Cable Fault	
2	ROM Error	7	RX Cable Fault	
3	Enclosure Tamper	8	TX Cable Short	
4	TM Power OFF	9	RX Cable short	
5	CM Offline	10	TX Cable Open	
		11	RX Cable Open	

Control Module output point mapping (controls)			
Point	Description	Point	Description
1 - 32	Option Board Relays 1 - 32	33	Global Self-Test

Transceiv	Transceiver Module input point mapping			
Point	Description	Description		
Diagnosti	c alarms			
1	Enclosure Tamper			
Sensor al	arms			
Note: Aux	र input Alarm and Tamper states are not ।	mutually exclusiv	/e	
1	Aux input Side A:X (bit 0: Alarm, bit 1: Tamper)	4	Aux input Side B:Y (bit 0: Alarm, bit 1: Tamper)	
2	Aux input Side B:X (bit 0: Alarm, bit 1: Tamper)	5 - 6	Side A/B (bit 0: Alarm, bit 1: Unused)	
3	Aux input Side A:Y (bit 0: Alarm, bit 1: Tamper)			
Controls				
1 - 4	Aux Outputs 1 - 4	Aux Outputs 1 - 4		

Voice over Ethernet point assignments

The VoE Network defines valid device addresses ranging from 1 to 200.

#define NM_VO_MIN_ADDR 1

#define NM_VO_MAX_ADDR 200

VoE Device defines:

#define NM_VO_IPCC 0X400 // IP Cell Call

The following tables include the point definitions for VoE compatible devices:

IPCC input	IPCC input point mapping		
Point	Description		
Diagnostic	alarms		
1	3V3 rail fault		
2	1V8 rail fault		
3	5V rail fault		
4	2V5 rail fault		
Sensor ala	Sensor alarms		
1 - 4	Processor inputs 1 - 4 (bit 0: Alarm, bit 1: Tamper)		

IPCC outpu	IPCC output point mapping (controls)		
Point	Description		
1 - 4	Processor relays 1 - 4 (UCM programmed state for relays)		
5 - 8	Processor relays 1 - 4 (latch relay ON overriding programmed state)		
9	Audio Channel 1 Ctrl IPCC Slct		
10	Audio Channel 1 Dest IPCC Slct		
11	Audio Channel 2 Ctrl IPCC Slct		
12	Audio Channel 2 Dest IPCC Slct		
13	Audio Channel 3 Ctrl IPCC Slct		
14	Audio Channel 3 Dest IPCC Slct		
15	Audio Channel 4 Ctrl IPCC Slct		
16	Audio Channel 4 Dest IPCC Slct		
17	Audio Channel 5 Ctrl IPCC Slct		
18	Audio Channel 5 Dest IPCC Slct		

page 46 00DA0209-001, Rev S

MX point assignments

The MX network defines valid device addresses ranging from 0 to 120, with address 0 reserved for the MX-5000 Controller.

#define NM_MX_MIN_ADDR 0

#define NM_MX_MAX_ADDR 120

MX Device defines:

#define NM_MX_5000 0X300 // MX-5000

#define NM_MX_ZN 0X301 // Zone

The following tables include the point definitions for MX compatible devices:

MX-5000 input point mapping			
Point	Description	Point	Description
Diagnostic Alarms			
1	Fiber Fault	3	Input Power Fault
2	Battery Fault		

MX-5000 o	MX-5000 output point mapping (controls)		
Point	Point Description		
1	Global Self-Test (Note: Test takes approximately 15 seconds to execute. Only one Global or Zone test may run at one time.)		

Zone input point	Zone input point mapping	
Point	Point Description	
Diagnostic Alarr	ms .	
1	Trouble	
Sensor Alarms		
1	Status (bit 0: alarm, bit 1: tamper)	

Zone output point mapping (controls)		
Points	Description	
1	Audio Select (Note: Audio may only be selected one zone at a time.)	
2	Alarm Access (Note: Invalid if alarm condition active.)	
3	VPRU output point mapping (controls)	

Starcom point assignments

Note: To date all implementations of Starcom have only supported device # 00 (device controller).

#define NM_SC_MIN_ADDR 0

#define NM_SC_MAX_ADDR 0

Starcom Device defines:

#define NM_SC_DEV 0X900 // Starcom Device

The following tables include the point definitions for Starcom devices:

Starcom input point mapping				
Point	Description	Point	Description	
Diagnostic alarms				
1	ROM Error	4	Device Fault	
2	RAM Error	5	Power Fault	
3	Data Error			
Sensor Alarms				
1 - 1024	Input Points 0 - 1023 (bit 0: Alarm, bit 1: Tamper)			

Starcom output point mapping (controls)		
Point	Description	
1 - 1024	Output Points 0 - 1023	

