

Октябрь, 2019 317 группа

Содержание

Содержание

1	Вве	дение		3			
2	Эксперименты						
	2.1	Скорость поиска ближайших соседей					
		2.1.1	Дизайн эксперимента:	3			
		2.1.2	Ожидания	3			
		2.1.3	Результаты	3			
		2.1.4	Выводы	3			
	2.2	Завис	имость точности модели от количества соседей и мет-				
		рики		4			
		2.2.1	Дизайн эксперимента	4			
		2.2.2	Результаты	4			
		2.2.3	Выводы	4			
	2.3						
		2.3.1	Дизайн эксперимента	5			
		2.3.2	Результаты	5			
		2.3.3	Выводы	5			
	2.4	Анали	из модели с лучшим качеством	6			
		2.4.1	Дизайн эксперимента	6			
		2.4.2	Результаты	6			
		2.4.3	Выволы	6			

1 Введение

В этом документе представлен отчет о проделанных экспериментах по практическому заданию №1, анализ результатов.

2 Эксперименты

В этом блоке приведены все обязательные эксперименты, которые изложены в формулировке задания.

2.1 Скорость поиска ближайших соседей

2.1.1 Дизайн эксперимента:

Были протестированы 4 алгоритма поиска 5 ближайших соседей с разными размерами признакового пространства:

Алгоритмы:	Размеры признакового пространства:		
• «my_own»	• 10		
• «brute»	00		
• «kd_tree»	• 20		
• «ball_tree»	• 100		

2.1.2 Ожидания

Ожидается, что «kd_tree», «ball_tree» будут очень хорошо работать для маленького количества признаков, но с увеличением размерности признакового пространства произойдет резкое увеличение скорости работы.

2.1.3 Результаты

Подробные результаты экспериментов приведены в таблице 1:

2.1.4 Выводы

Самым стабильным алгоритмом оказался «brute», который практически не деградирует с ростом размерности. Как и ожидалось, алгоритмы, реализованные на деревьях, сильно замедлились на признаковом пространстве размерности 100.

Таблица 1: Результаты эксперимента №1

· · · · · · · · · · · · · · · · · · ·		
размерность	алгоритм	время работы
10	my_own	68.07
	brute	7.84
	kd_tree	0.44
	ball_tree	1.72
20	my_own	76.82
	brute	7.95
	kd_tree	1.40
	ball_tree	6.63
100	my_own	78.31
	brute	8.28
	kd_tree	82.76
	ball_tree	97.67

2.2 Зависимость точности модели от количества соседей и метрики

2.2.1 Дизайн эксперимента

В этом эксперименте была рассмотрена зависимость точности и времени работы модели k ближайших от следующих параметров на 3 валидационных фолдах:

- k от 1 до 10 (только влияние на точность).
- Евклидова или косинусная метрики.

2.2.2 Результаты

Зависимость средней точности от числа соседей для различных метрик приведена на графике 1

Измерения скорости для евлидовой и косинусной метрик приведены в таблице 2

2.2.3 Выводы

Из графика 1 видно, что:

1. Наилучшая точность алгоритма достигается при k=3 для обеих метрик.

Рис. 1:

Таблица 2: Скорость работы метрик (измеренная при кросс-валидации на 3 фолдах)

метрика	время
евклидова	103.42
косинусная	101.69

2. С увеличением количества соседей (при $k \ge 5$) точность начинает убывать.

Из таблицы 2 видно, что скорость работы алгоритмов практически не зависит от выбора данных метрик

2.3 Сравнение точности взвешенного метода и метода без весов

2.3.1 Дизайн эксперимента

2.3.2 Результаты

Результаты эксперимента №3 приведены на графике 2

2.3.3 Выводы

По графику 2 можно заметить, что взвешенный метод лучше по точности во всех случаях, кроме k=1, что является логичным, так как в этой

Рис. 2:

График зависимости средней точности на 3 фолдах от числа соседей для взвешенного метода и метода без вес

ситуации веса бесполезны.

2.4 Анализ модели с лучшим качеством

2.4.1 Дизайн эксперимента

Применим лучший алгоритм к исходной обучающей и тестовой выборке и проанализируем матрицу ошибок (confusion matrix).

2.4.2 Результаты

Матрица ошибок представлена на рисунке \mathbb{N}_{0} , Визуализированные объекты - на рисунке \mathbb{N}_{0}

2.4.3 Выводы

Можно увидеть, что самые частые ошибки происходят на парах цифр, представленных ниже:

• 4и9

1 и 7

• 3и5

• 3и8

Эти пары похожи по написанию, поэтому алгоритму тяжелее отличить их друг от друга.

Рассмотрим теперь объекты, на которых произошли ошибки. У них можно заметить характерные особенности:

- 1. Засечки
- 2. Крючки
- 3. Разные деформации

В большинстве случаев видно, что написаннные цифры немного деформированы и похожи на другие в некоторых чертах. Эти особенности затрудняют классификацию для алгоритма.