ЗАВДАННЯ

на курсову роботу

з дисципліни «Об'єктно-орієнтоване проектування СУ» студента групи <u>322</u>

1. Тема роботи: <u>Реалізація горизонтального зсуву відеозображення з</u> використанням методу Sobel у YUV-просторі з регулюванням контрасту та фільтрацією з різними параметрами масок

2. Графік виконання

No	Термін	Вид робіт	Виконано
1	22.02.2024	Затвердження завдання на курсову роботу	
2	07.03.2024	Ознайомлення з можливостями бібліотеки OpenCV щодо	
		завантаження з файлу і захвату з відео-камери	
		відео-зображень	
3	07.03.2024	Колірні перетворення відео-зображення.	
4	21.03.2024	Геометричні перетворення відео-зображення.	
5	04.04.2024	Виконання операцій над відео-зображенням.	
6	18.04.2024	Фільтрація шумів відео-зображення.	
7	02.05.2024	Реалізація класу для обробки відеоданих з файлу або	
		відео-камери	
8	16.05.2024	Оформлення записки до курсової роботи	
9	16.05.2024	Підготовка графічного матеріалу і доповіді	
10	30.05.2024	Захист роботи	

- 3. Вихідні дані: відеофайл для обробки або доступ до відео з вебкамери, використання бібліотеки OpenCV для Python, переходи між колірними просторами (RGB ↔ YUV), алгоритм Sobel для виділення меж, маски для фільтрації (наприклад, згладжування, підсилення контурів тощо), регулювання контрасту відео.
- 4. Зміст пояснювальної записки (перелік питань для опрацювання): вступ (актуальність теми, мета, завдання), огляд методів геометричних перетворень (зсув, поворот, масштабування тощо), теоретичні основи фільтрації та виділення меж (Sobel), опис колірних просторів, перетворення RGB ↔ YUV, регулювання контрасту в зображеннях, реалізація програми: структура класу, методи, тестування на реальному відео, висновки і пропозиції щодо покращення, перелік використаних джерел.
- 5. Перелік графічного матеріалу: блок-схема алгоритму, UML-діаграма класів, скріншоти з вікна програми (до і після обробки відео), графіки порівняння ефективності фільтрації з різними масками, кадри відео з різними параметрами

контрасту.	
До виконання прийняв:	
	(дата, підпис, ПІБ)