Total ____/45

Report By: Xinchen Yao

Lab Partner: Rebecca Rauschmayer

Lab TA: Junjie Gao

Section: AB2

Part 1. ___/15

Plots ____/6

(Attach time response plots to end or include them here)

Fig. 1 Fig. 2

Time Response to a Unit step for $\omega_{\mbox{\tiny r}}$

/6

	Controller 1		Controller 2		Controller 3	
	Prelab	Lab	Prelab	Lab	Prelab	Lab
M _p (%)	49.8%	49.8%	2.8%	2.84%	2.85%	2.83%
$t_{r}(s)$	0.052	0.035	0.23	0.228	0.07	0.067
t _s (s)	0.4	0.390	0.33	0.312	0.097	0.089
K	19.4		1.07		19.4	
K _r	1.03		1.56		1.03	
K _d	0		0		0.03	

Table 1

Compare/contrast

/3

- M_p , t_r , and t_s from Prelab with those from Lab
- Which controllers met the specifications?
- Those from Prelab are very close to the ones from Lab.
- *The third.*

Part 2. ___/12 Deriving ess components

For the system in Figure 3.1, derive the relationship between steady-state error $(e_{ss} = \omega_r - \omega)$ and natural frequency, ω_n . Consider the error as a function of both ω_r and τ_d , and model these as step inputs. Since the system is linear, superposition allows the two components to be calculated separately and then summed. Notice that e_{ss} is not the same thing as "e" in the block diagram $(e = K_r \omega_r - \omega)$.

$$\omega_n^2 = 60K + 36 \tag{1}$$

$$\omega_{r}(s) - \omega(s) = \omega_{r} - \frac{60KK_{r}}{(s+3)(s+12) + 60K}\omega_{r} + \frac{4(s+3)}{(s+3)(s+12) + 60K}\tau_{r}$$
(2)

Hint: Use the Final Value Theorem, (page 93, FPE).

Make sure you answer the following questions:

$$e_{ss}$$
 due to a step in ω_r ($\tau_d=0$) is: $\omega_r - \frac{60 \text{KK}_r}{(\text{s}+3)(\text{s}+12)+60 \text{K}} \omega_r$

To minimize this error component, ω_n should be $\sqrt{60 \text{KK}_r}$

$$e_{ss}$$
 due to a step in τ_d ($\omega_r = 0$) is: $\frac{4(s+3)}{(s+3)(s+12)+60K}\tau_r$

To minimize this error component, ω_n should be as large as possible

Part 3. /18

For controller 3, derive the relationship between ζ , ω_n , and the gains K and K_d.

$$s^{2} + 2\xi\omega_{n}s + \omega_{n}^{2} = s^{2} + (15 + 60KK_{d})s + 60K + 36$$
 (3)

$$\omega_n = \sqrt{60K + 36}$$
(4)

$$\xi = \frac{15 + 60 \text{KK}_d}{2\sqrt{60 \text{K} + 36}} \tag{5}$$

Discussion: Increasing K does what to ω_n^2 , what to ζ (and at what rate: linearly, exponentially, as K^2 , etc.) Increasing K_d does what to ω_n^2 , what to ζ (and at what rate)

Increasing K increase ω_n^2 and ζ at the rate of \sqrt{K} Increasing K_d doesn't affect ω_n^2 but increase ζ at the rate of $\frac{30K}{\sqrt{60K+36}}$

Using these equations, show how the pole locations change as $K_d>0$ increases in value.

Poles =
$$-\zeta \omega_n \pm j\omega_n \sqrt{1-\zeta^2}$$
 (6)

Discuss: As K_d grows, the poles move...(remember there are two components of this, depending on the damping)

When $\zeta < 1$, as K_d grows, the poles move closer to the real axis. When $\zeta > 1$, as K_d grows, the poles move further from the origin on the real axis.