

SUSTAINABLE BUILDING TECHNOLOGY ONTOLOGY

Abanda, F.H

Oxford Brookes University, Department of Real Estate & Construction, OX3 0BP

The Sustainable Building Technology (SBT) ontology is a structured (semantics) vocabulary that describes emerging green technologies currently being incorporated into housing developments. One major use of a structured vocabulary such as the SBT ontology is for it to be processed by both humans and machines. Like in any ontology knowledge base, the machine-processing of the SBT ontology facilitates the capture and dissemination of green technology information between construction project partners and database boundaries.

Current challenges in the housing sector Climate change, profit margins, demand versus supply, energy efficiency, etc

An overview of SBT

- Too much information about SBT
- •End-users are overwhelmed by too much information and are unable to make informed decision in their housing projects

Challenges of information representation in the construction industry

- Limited understanding of the best ways to foster knowledge creation and knowledge capture
- Major difficulty: How to ensure knowledge is readily available to individuals, project partners and companies
- Limitation of the present web in rendering information available

Semantic web technology (SWT) with ontology engineering as back-bone

Aim

"Investigate the extent to which SWT can be used as a decision support tool for practitioners in making appropriate SBT choices for housing projects".

Objectives

- Establish the state-of-the-art of both SBT and SWT
- 2) Elicit, model and represent SBT knowledge using AI techniques; and
- 3) Develop and test a prototype decision support tool for SBT selection.

Methodology

Knowledge Engineering methodology

I-Knowledge Identification

- Domain familiarisation
 Information sources
- Potential re-usable components
- Existing ontologies

II-Knowledge Specification

- Initial domain conceptualisation
- Semi-formal concepts
- Complete specification of the knowledge model
- Instances, relationships, attributes

C-Knowledge Refinement

Validation of the knowledge model
Refinement of the knowledge base

Using the above methodology, a prototype system is under development to demonstrate the strengths of SWT. To ensure maximum efficiency, the system include both the ontology and a rule knowledge base [see the system architecture below]

Achievements

Based on literature review and informal interviews with SBT experts the state-of-theart of SBT and SWT was established (objective 1).

Using knowledge representation techniques, intelligent models about the SBT have been developed (objective 2)

For the implementation, a prototype system is currently being developed to demonstrate the strengths of the SWT (objective 3)

Conclusion

The use of ontologies in encoding knowledge and semantics about SBT can greatly enhance interoperability over machines. By exploiting the capabilities of the SWT, information about SBT is well-structured and easily rendered available for interested end-users hopefully stimulating an uptake of SBT.