1 Jensen's Theorem

Theorem 1.1 (Jensen's formula): thm:jensenC Let f be holomorphic in $B_R(0)$ with zeros $(z_k)_{k=1}^n$ (with multiplicity) inside. Then

$$\ln|f(0)| = \sum \ln\left(\frac{|z_k|}{R}\right) + \frac{1}{2\pi} \int_0^{2\pi} \ln|f(Re^{i\theta}) d\theta.$$

Corollary 1.2 (Jensen's inequality): cor:jensenC Keep the setup. Then

$$|f(0)| \ge \frac{R^n}{\prod_k |z_k|} \max_{|z|=R} f(z).$$

Proof. 1. Check that if f, g satisfy the theorem then so does fg.

- 2. For f nonvanishing, apply Cauchy on $\ln f$ (and take the real part).
- 3. For $f = z a_k$, we're reduced to showing $\oint \ln |e^{i\theta} a_k| d\theta = 0$. Interpret this as the mean value of a harmonic function, so it's 0.

2 Hadamard's Theorem

Definition 2.1: The **order** of an entire function f is

$$\inf \left\{ \alpha : |f(z)| \lesssim e^{|z|^{\alpha}} \right\}.$$

Let z_k be the zeros of f with multiplicity. The **genus** is

$$\inf\left\{s: \sum_{k} \frac{1}{|z_k|^s} < \infty\right\}.$$

Theorem 2.2: product-development Let z_n be a sequence with $\lim_{n\to\infty} |z_n| = \infty$ (or a finite sequence). If f is entire with order $\alpha < \infty$ with zeros z_1, z_2, \ldots (with multiplicity, not including 0), then it has a product formula

$$\operatorname{product-formula} f(z) = z^r e^{g(z)} \prod_{n=1}^{\infty} \left(1 - \frac{z}{z_n} \right) e^{\frac{z}{z_n} + \frac{1}{2} \left(\frac{z}{z_n} \right)^2 + \dots + \frac{1}{k} \left(\frac{z}{z_k} \right)^k}, \tag{1}$$

where

- $k = \lfloor \alpha \rfloor$,
- r is the order of vanishing of f at 0, and
- g is a polynomial of degree at most a.

The product converges uniformly locally. Moreover,

$$_{\text{num-zeros}} | \{ k : z_k < R \} | \lesssim_{\varepsilon} R^{\alpha + \varepsilon}.$$
 (2)

Conversely, if $a = \lfloor \alpha \rfloor$ and z_k is a sequence satisfying (2), then the RHS of (1) defines an entire function of order at most α .

Proof. (Following Stein-Shakarchi. Ahlfors seems shorter but I haven't read it.)

- 1. Massage Jensen to give us info about the count of zeros (cf. Abel summation).
 - (1.2) Let n(r) be the number of zeros in $B_r(0)$. Then $\int_0^R n(r) \frac{dr}{r} = \sum \ln \left| \frac{R}{z_k} \right|$. Proof. Just consider 1 zero, $z z_k$. Now multiply.
- 2. (2) The relationship between order and genus. Let ρ be the order. Then
 - (a) $n(r) < C_{\varepsilon} r^{\rho_{\varepsilon}}$ for some C,
 - (b) genus $\leq \rho$.

Proof. Plugging 1.2 into Jensen 1.1, we get $\int_0^R n(r) \frac{dr}{r} \leq C' R^{\rho'}$. Noting n(r) is increasing, if it's $> C'' R^{\rho'}$ infinitely often, summing $\int_R^{2R} C'' R^{\rho-1} dr$ makes it $\succ R^{\rho'}$.

- 3. The product is well-defined. (It is a natural guess; the exponential term is to make it converge.)
 - (a) (3.2) If $|F_n 1| \le c_n$, $\sum c_n < \infty$, then $\prod_{n=1}^{\infty} = F$ uniformly, $\frac{F'}{F} = \sum \frac{F'_n}{F_n}$.
 - (b) (4.1) Let $P_k = z + \frac{z^2}{2} + \dots + \frac{z^k}{k!}$. Let $E_k = (1-z)e^{P_k(z)}$. Then for $|z| \leq \frac{1}{2}$, $|1-E_k| \leq C|z|^{k+1}$, C independent of k. Proof.

$$|1 - E_m| = |1 - (1 - z)e^{-\ln(1-z) + O(z^{k+1})}| = O(z^{k+1}).$$

(c) The Hadamard product converges and has order $\leq \alpha$. Proof. Use the above criterion and

$$\sum (1 - E_m \left(\frac{z}{z_n}\right)) \le \sum c \left| \frac{z}{|z_n|/|z|} \right|^{k+1}$$

finite if $\sum \frac{1}{|z_n|^{k+1}} < \infty$.

To see it's order α : terms for large $|z_n|$ don't contribute much; terms for small $|z_n|$ can contribute $\prod_{\left|\frac{z}{z_n}\right| \leq \frac{1}{2}} (C|z|e^{C\left(\frac{z}{z_n}\right)^k})$. The |z| contributes an ε . In the exponent we have by Abel summation

$$\sum_{n} C \left| \frac{z}{z_n} \right|^k = \int^R z^k |z|^{\alpha - k + \varepsilon} \underbrace{\left(\sum_{|z_n| < R} \frac{1}{|z_n|^{s + \varepsilon}} \right)}_{\leq C}.$$

Exponentiating gives the bound.

4. Given arbitrary f of order $\rho_0 \in [k, k+1)$, look at $\frac{f}{\text{Hadamard product}}$. It's entire and nonvanishing by construction; we need it to have order $\leq \rho_0$ as well, so it equals e^g . Thus we need a lower bound on the growth of the Hadamard product.

(a) (5.2)
$$E_k \ge \begin{cases} e^{-c|z|^{k+1}}, & |z| \le \frac{1}{2} \\ |1 - z|e^{-c'|z|^k}, & |z| \ge \frac{1}{2}. \end{cases}$$

Proof. For $|z| \leq \frac{1}{2}$, $E_k = e^{-\frac{z^{k+1}}{k+1} + \cdots}$; that first term dominates. For $|z| \geq \frac{1}{2}$, $|1-z|e^{\bullet} = e^{-\cdots - \frac{z^k}{k}}$; the last term dominates.

(b) (5.3) For any $\rho_0 < s < k+1$, $\left| \prod_{n=1}^{\infty} E_k \left(\frac{z}{z_n} \right) \right| > e^{-c|z|^s}$ when $z \notin \bigcup_n B_{|a_n|^{-k-1}}(a_n)$. Proof. Split into 3 products.

$$\prod_{|z_n| \le 2|z|} \left| 1 - \frac{z}{z_n} \right| e^{-c' \left| \frac{z}{z_n} \right|^k} \prod_{|z_n| > 2|z|} e^{-c \left| \frac{z}{z_n} \right|^{k+1}}.$$

- i. First: use the fact that z is not in the balls.
- ii. Make $\prod e \to e^{\sum}$, separate out a factor $|z_n|^{-s}$.
- iii. Same idea.
- (c) (5.4–5.5) We have $\bigcup B \subseteq \{z : |z| \in I\}$ where I has finite measure. We can apply Cauchy to bound $\ln\left(\frac{f}{\text{Hadamard}}\right)$ on the valid radii, and get it's a poly of degree $\leq s$.