IOT ENABLED SMART FARMING APPLICATION

SPRINT-4

Date	12 NOVEMBER 2022
Team ID	PNT2022TMID52223
Project Name	Project – Smart Farmer-IoT Enabled smart Farming Application

5.5 Receiving commands from IBM cloud using Python program

```
import time import
```

```
sys
```

import ibmiotf.application import ibmiotf.device import random

#Provide your IBM Watson Device Credentials

```
organization = "157uf3" deviceType = "abcd" deviceId = "7654321" authMethod = "token" authToken = "87654321"
```

Initialize GPIO

try:

```
deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
```

```
"auth-method": authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
      #.....
except Exception as e:
      print("Caught exception connecting device: %s" % str(e))
sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an
event of type "greeting" 10 times deviceCli.connect()
while True:
    #Get Sensor Data from DHT11
temp=random.randint(90,110)
Humid=random.randint(60,100)
Mois=random. Randint(20,120) data = {
  'temp': temp, 'Humid': Humid,
'Mois': Mois}
                 def myOnPublishCallback():
    #print data
      print ("Published Temperature = %s C" % temp, "Humidity = %s %%" %Humid,
"Moisture =%s deg c" % Mois "to IBM Watson")
     success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,
on_publish=myOnPublishCallback)
                                   if not success:
      print("Not connected to IoTF")
```

time.sleep(10) deviceCli.commandCallback =
myCommandCallback # Disconnect the device and
application from the cloud deviceCli.disconnect()

```
ibmiotpublishsubscribe.py - C:\Users\ELCOT\Downloads\ibmiotpublishsubscribe.py (3.7.0)
File Edit Format Run Options Window Help
                                                                                                                        - 0 X
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
deviceId = "157uf3"
deviceType = "abcd"
deviceId = "7654321"
authMethod = "token"
authToken = "87654321"
# Initialize GPIO
def myCommandCallback(cmd):
     print("Command received: %s" % cmd.data['command'])
     status=cmd.data['command']
     if status=="motoron":
     print ("motor is on")
elif status == "motoroff"
         print ("motor is off")
          print ("please send proper command")
try:
          deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-method": authMe
          deviceCli = ibmiotf.device.Client(deviceOptions)
          #.........
```


6.Flow Chart

7. Observations & Results

8. Advantages & Disadvantages Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.

• Better standards of living.

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile App.

9.Conclusion

Thus the objective of the project to implement an IoT system in order to help farmers to control and monitor their farms has been implemented successfully.

10.Bibliography

IBM cloud reference: https://cloud.ibm.com/

OpenWeather: https://openweathermap.org/