

opserous colena

J. Marine

TOPE SHESDOP

FIGURE 3

FIGURE 4

FIGURE 5

COSSION CARSON

FIGURE 6

Consensus:GATTCTGTCT TCACGCAGAA AGCGTCTAGC CATGGCGTTA GTATGAGTGT CGTGCAGCCT HCV la		#251 <u>TGGTCTGCGG A</u> ACCGGTGAG TACACCGGAA	1	#253 TTGCCAGGAC GACCGGGTCC TTTCTTGGAT CAACCCGCTC AATGCCTGGA GATTTGGGCG		#40 #261 TGCCC <u>CCGCA AGACTGCTAG CCGAGTAGTG TTGGGTCGC</u> G AAAGGCCTTG TGGTACTGCC		
GTATGAGTG		ACCGGTGAG	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	#257 AATGCCTGGA		AAAGGCCTTG	1	CGTGCAATC
CATGGCGTTA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CAACCCGCTC		#263 rg rrgggrcgc		TGATAGGGTG CTTGCGAGTG CCCCGGGAGG TCTCGTAGAC CGTGCAATC
AGCGTCTAGC		#249 CCAGGACCCC CCTCCCG <u>GG AGAGCCATAG</u>	:	TTTCTTGGAT		#2 CCGAGTAGTG		CCCCGGGAGG
TCACGCAGAA		#24 CCCTCCCGGG		#253 CCA <u>GGAC GACCGGG</u> TCC		#261 AGACTGCTAG		CTTGCGAGTG
GATTCTGTCT		CCAGGACCCC	· · · · · · · · · · · · · · · · · · ·	#253 TTGCCA <u>GGAC</u>	GA TGGT	#40 TGCCCCCGCGCA	O : O : I : I : I : I : I : I : I : I :	TGATAGGGTG
Consensus HCV la	HCV 2c HCV 3a							

6/123.

----- A-----

FIGURE 7

ostangers . ostasek

٠,

FIGURE 8A

. Sett

FIGURE 8B

FIGURE 8C

FIGURE 9A

#263 Sample #69 Sample #85 #257 #257 #253 #249 12000 10000 6000 4000 #263 #263 #261 192# Sample #73 Sample #72 r253 0000*

11/123

FIGURE 9B

COMMUNICATION LOOP

12/123

TOWN TO THOUGH

. 5525

FIGURE 9C

FIGURE 9D

FIGURE 10

FIGURE 11A -

#2) 5' Biotin

I
T A
C G A
A I — A
G C — G
A I — A
C G — C
A I — A
G C — G
C G — C
G C — G

#80) 5' - FI-TGCTCTCTGGT TGGTCTCTCGTAAT-3'

4FD91) 3' Biotin - C G A G A G A C C A - 5'

A G A T — A C — G T — A G — C T — A C — G C — C

#80) 5' - FI-T G C T C T C T G G T C T C T C G T A A T -3'

#78) 3' - A G A C C A T T A C C A G A -Biotin 5'

#4) 3' - G A G A C C A T T A C C A G A G -Biotin 5'

#79) 3' - A G A G A C C A T T A C C A G A G A -Biotin 5'

VV

#116) 3' - A G A G A C C A A C C A G A G A -Biotin 5'

#117) 3' - T A C C A G A G A ·Biotin 5'

#118) 3' - A G A G A C C A T - 5'

FIGURE 11B

$$G \qquad A$$

$$T \rightarrow A$$

$$C \rightarrow G$$

$$T \rightarrow A$$

$$G \rightarrow C$$

$$T \rightarrow A$$

$$C \rightarrow G$$

$$G \rightarrow C$$

$$C \rightarrow G$$

$$G \rightarrow C$$

$$T \rightarrow G$$

$$G \rightarrow C$$

$$G \rightarrow G$$

$$G \rightarrow$$

FIGURE 12

FIGURE 13A

19/123

FIGURE 13B

20/123

FIGURE 14

٠,

TODING STREET

FIGURE 15

	110
19	CTCGCAAGCACCCTATCAGGCAGTACCACAAGGCCTTTCGCGACCCAACACTACTCGGCTAGCAGTTTGCGGGGGGGG
2	
2a/c	
3a	J.L
	90100110120130140150160
6	1a cccaaateteebiggeattgagebiggettatecaagaaaidgaeceedgeegteetggeaatteeggtgtacteaceggttee
đ	
2a/c	
3a	3aT. Hrel. T IGTGT.
	246
1a	18 glosaccactartisectorecessassesses in electrosasses de contra de
₽	1b J
2a/c	2a/c ::
3a	3a [

23/123

24/133

FIGURE 17A

FIGURE 17C

5 Biotin

FIGURE 18A

```
HCV 1a
                                                           G G
G A
                                                             \mathsf{C}\,\mathsf{G}
                                 CCAAG
T A
A T G
T G
                                                             СG
                                                             C G
                                                             ТG
                                                             CG
                                                             ΤG
                                     TA
                                                             CG
                                     G C
                                                             GТ
                                     G C
                                                         173 G C
T' C
A T 196
                                 G C
102C G 125
G G
A T
                                                             ТG
                                                            C G
A A
                                     \mathsf{G}\;\mathsf{C}
                                  A_{C\ G\ C}^{T^T\ G} T
                                                             CG
                                                             СG
                                                           A<sub>G</sub> C
                                     GC
                                                             ΑТ
                                     ΑT
                                                  СG
                                     CG
                                                             \mathsf{C} \; \mathsf{G}
5 TGCGGGGCACGCCCAAATCT CAATT TTCC ACGACACT 3
                           (179-49-01)3 · GGCCAAGG TT TGCTGTGA 5 · D
                           (192-72-01)3 · GGCCAAGG AA TGCTGTGA 5 · |
                           (192-72-02)3 · GGCCAAGG AC TGCTGTGA 5 · |
                            (192-72-03)3 · GGCCAAGG —TGCTGTGA 5 · K
                            (192-72-04)3 · GGCCTAGG_{TT}TGCTGTGA 5 · C
                            (192-72-05)3 \cdot \text{GGCC} \overline{\text{AAGG}}_{TT} \overline{\text{TGCAGTGA}} 5 \cdot \text{C}
```

FIGURE 18B

HCV 1b	G G G A C G
CG ATT G TG CGC TG GC CGC AT	C G C G C G T G C G T G C G G T 173 G C T C A T 196 T G A C C G T A A C C G T A C G G C A G C G C A T C G C G C G C A T C G C G C G C A T C G C G C G C A T C G C G C G C A T C G C G C C G C A T C G C G C C G C C G C C G C C C C C C C
(179-49-01)3	GGCCAAGG _{TT} TGCTGTGA 5 · b
(192-72-01)3 · (GGCCAAGG AA TGCTGTGA 5 ·
(192-72-02)3	GGCCAAGGAC TGCTGTGA 5' j
(192-72-03)3	GGCCAAGG —TGCTGTGA 5 · K
	GGCCTAGG _{TT} TGCTGTGA 5 · C
(192-72-05)3	GGCCAAGG TT TGCAGTGA 5. Q

FIGURE 18C

```
AAG
C A
C A118
AT A
T G
                      HCV 2a/c
                          GGA
GGG
CG
           ТG
           TΑ
           \mathsf{G}^{\mathsf{C}}
           G C
                            C G
           \mathsf{G}^{\mathsf{C}}
                            тG
       102 T A125
GA T
                            CG
тG
(179-49-01)3 \cdot \text{GGCCAAGG}_{TT} \overline{\text{TGCTGTGA}} 5 \cdot b
(192-72-01)3 · GGCCAAGG AA TGCTGTGA 5 · |
(192-72-02)3 · GGCCAAGG AC TGCTGTGA 5 · |
(192-72-03)3 · GGCCAAGG —TGCTGTGA 5 · K
(192-72-04)3 GGCCTAGG TT TGCTGTGA 5 C
(192-72-05)3 \cdot \text{GGCCAAGG}_{TT} \overline{\text{TGCAGTGA}} 5 \cdot \text{d}
```

FIGURE 18D

```
HCV 3a
             CAAG
C A
T A
                               G \stackrel{\circ}{G} \stackrel{\circ}{A}
               T A 118
              G G
T G
                                G C G
                                  C G
               A T
               G C
                                   C G
               \mathsf{G}\;\mathsf{C}
                                   тG
               \mathsf{G}\;\mathsf{C}
                                   C G
            102C G 125
G G
A T
                                   ТG
                                   СТ
                                  G C
                G C
                               173 G C
             A_{\mathbf{T}GC}^{\mathbf{T}\mathbf{T}\mathbf{A}}C
                                  TA T 196
                                   ΤG
               GC AC
GC T T
                                  C G
A A
C G
              90CG TA
TrgC GC
                                 A_{G\ C}^{C\ G}
                TA GC
                AT CG
                                   C G
-CACGCCCA TTCC ACGACACT (179-49-01)3 · GGCCAAGG TTGCTGTGA 5 · D
(192-72-01)3 · GGCCAAGG AA TGCTGTGA 5 · |
(192-72-02)3 · GGCCAAGG TGCTGTGA 5 · |
(192-72-03)3 · GGCCAAGG —TGCTGTGA 5 · K
(192-72-04)3 · GGCCTAGG<sub>TT</sub>TGCTGTGA 5 · C
(192-72-05)3 · GGCCAAGG TT TGCAGTGA 5 · d
```


32/133

DOODER'S LOGISOL

 $\begin{matrix} \mathbf{o}^{\Omega} \\ \mathbf{o}^{\alpha} \\ \mathbf{o} \\ \mathbf{o}$

5-CAATTCCGGTGTACTCACCGGTTCC G CACGACT - 3

 σ Ω

3. - GGCCAAGGCGTCTGGTGA-F1.5. (205-13-02)

 \circ ∇ 3'-GGCCAAGG TT TGCTGTGA F1'5'(179-49-01' F1:5:(192-72-04) 3 - GGCCAAGG TTTGCAGTGA F1 · 5 · (192-72-05) 3 - - GGCCAAGG-F15 (205-27-01) 3 - GGCCTAGG TT TGCTGTGA

Φ

FIGURE 20B

 $HCV 1a \xrightarrow{A}_{C} C_{C}$ $C_{C} C_{C}$ C_{C

FT	
įΨ.	
44	
فيحاد	
-,-,	
7.1	
Ō	
Ξ	
J	
¥!	
£	
9	
T	
H Vi	
H Vi	
H Vi	

FIGURE 22			5 · (205-13-02) 5 · (179-49-01) 1)
ი ^დ ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი	HCV 1a T C T T C T T C T T T T T T T T T T T	C G C 205 5 — CAATTCCGGTGTACTCACCGGTTCC G C ACGACACT — 3	3 <u>GGCCAAGG</u> CGTCTG <u>GTGA</u> -F1.5.(205-13-C 3 <u>GGCCAAGG_{TT}TGCTGTGA</u> .F1.5.(179-49-01 3 <u>GGCCAAGG</u> -F15.(205-27-01)

Φ Φ Φ

37/123

₫
ῷ
Ü
ĬŪ
Ī
ΨĪ
ŲΠ ŧ
い こ
Ŧ .
:

,					σ	9	O	ਰ	Φ
FIGURE 24 CG CG CG CG TG TG	CG GT 173 GC HCV 1a T C	ମ ପ ଓ ଜ ନ ନ	A C C A T C C C C C C C C C C C C C C C	3.	3'-6GCCAAGGCGTCTGGTGA-F1'5'(205-13-02)	$3 \cdot - GGCCAAGG_{TT}TGCTGTGA$ F1 · 5 · (179 - 49 - 01)	3 · - GGCCTAGG TT TGCTGTGA ·· F1 · 5 · (192 - 72 - 04)	3 - GGCCAAGG TT TGCAGTGA F1 S (192-72-05)	3 GGCCAAGG - F15 - (205-27-01)

CORREGES COSISOI

FIGURE 26

3 - GGCCAAGGCGTCTGGTGA-F1 . 5 · (205-13-02) A Φ 5 - ATTCCGGTGTACTCACCGGTTCCAAACGACACT-3 (205-13-01) S.T. Ω \circ ∇ $3 \cdot - \texttt{GGCCTAGG}_{TT} \\ \texttt{TGCTGTGA} \\ - \cdots \\ \texttt{F1:5:(192-72-04)}$ $3 \cdot - \texttt{GGCCAAGG}_{TT} \\ \texttt{TGCTGTGA} \cdot \cdot \texttt{Fl·5} \cdot (179 - 49 - 01)$ 3 - GGCCAAGG TT TGCAGTGA F1 . 5 . (192-72-05) 3 - - GGCCAAGG-F15 (205-27-01) f (192-96-01)3 - TAAGGCCACATGAGT-5

FIGURE 27

FIGURE 28

٠,

ڷڮ
الل
Ф
N
Ü
न्यंत्र स्या
ÚŤ.
ī
===
===
្ឋា
<u>-</u>
ŲΠ
ᆂᅼ

	w	\Box	\circ	∇	Φ	•
G G C FIGURE 29A C C C C C C C C C C C C C C C C C C C	-3' F1'S'(205-13-02)	3'- <u>66CCAAGG_{TT}TGCTGTGA</u> —F1'5'(179-49-01)	3 · - GGCCTAGG TT TGCTGTGA F1 · S · (192-72-04) C	3 - GGCCAAGG TTTGCAGTGA F1 - 5 · (192 - 72 - 05) C	3 · - GGCCAAGG - F15 · (205-27-01)	3TAAGGCCACATGAGTG _{TT} T _T Fl S (192-96-02)
	5 - CAATTCCGG1				•	g 3 - TAAGGCCA

DOODEDHS . DESECT

FIGURE 29B

OOGGEVES. ORLSOR

. 2405 --

DNA Human genomic Ω $\boldsymbol{\sigma}$ S.T. σ ပ Ω 13 Φ 19 19 σ **1**a ပ 19 Р 1b 2a/c 3a b b b Probe Target DNA

FIGURE 30

₫
Ü
یُن
īŲ
Ĵ
<u>;:::</u>
ŮΠ
Ξ
-
<u>_</u>
-
4

		Ω
FIGURE 31		205 ACGACACT - 3 · TGCTGTGA·F1 · 5 · (179-49-01) · (205-81-01)
ე ≪ დდდდდაც ი ც იიი⊦ი⊧აი	0 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	AT CG CG TCACCGGTTCC GC205 3 - GGCCAAGG TTGCTGTG AGTG TT TT-F1 · 5 · (205-81-
	HCV 1a	AT CG SGCCAAGG TACTCACCGGTTCC GCACGACACT 3 3 - GGCCAAGG TTTGCTGTGA -F1 (10 bp)3 - CACATGAGTG TTT-F1 · S · (205-81-01)

ogenzors .osasol

FIGURE 32

			$\frac{1}{2}$	4	
	1	3а		ļ	1003
Ω		1b 2a/c 3a	11	1	1915
	8		11	-1	1918
		<u>a</u>		1	2085
	1	3a		1	1608
Ω	35	1b 2a/c 3a		1	2421
	63	15		1	2583
		ja Ja	44	1	2960
		3a		•	872
	45	1b 2a/c	13	1.	1298
יר		₽	41	ŧ	1324
		1 9	11	1	1605
		3a	3		(1068)
l	30	1b 2a/c 3a	3		
		2 2	1		
		1a			
Probe	Temp	Target			

47/123

٠,

noopeors inclisor

- المحدد

50/123

FIGURE 36

FIGURE 37A

FIGURE 37B

FIGURE 38A

55/123

53-118 69-110 75-121a75-121b

COSTON SHORES

FIGURE 38C

FIGURE 40

٠,

FIGURE 43A

ossesses os test

FIGURE 43B

٠,

63/123

3 . - GGTGTTC GT TGCGGGT -- F1-5' G33-C77(7)

-- ميھو

FIGURE 44A

nonesers losasor

0.045
0.045
0.045
0.045
0.035
0.035
0.035
0.035
0.035
0.035
0.015
0.005
0.005
0.005
0.005
0.007
19 1b 2a/c 3a 1a 1b 2a/c 3a 1a 1b 2a/c 3a 1a 1b 2a/c 3a

FIGURE 44B

II) Reverse Transcription

FIGURE 45A

III) PCR

IV) PAGE with Sequencing Ladder

A C G T RT-Products

FIGURE 45B

CONTROL DATE OF THE PROPERTY O

٠,

FIGURE 47

70/133

FIGURE 49

FIGURE 50A

73/

1	ACACUUGCUU	UUGACACAAC	UGUGUUUACU	44-50 UGCAAUCCCC	CAAAACAGAC
51	64-68 AGA AUGGU GC	AUCUGUCCAG	-	38-97 UCUGCGGUCA	CUGCCCUGUG
101	GGGCAAGGUG	AAUGUGGAAG	AAGUUGGUGG	UGAGGCCCUG	GGCAGGCUGC
151	UGGUUGUCUA	CCCAUGGACC	CAGAGGUUCU	UCGAGUCCUU	UGGGGACCUG

ISIS 1571(-) ISIS 3067(+)
1 GCGCCCCAGT CGACGCTGAG CTCCTCTGCT ACTCAGAGTT
ISIS 1570(+) 41 GCAACCTCAG CCTCGCTATG GCTCCCAGCA GCCCCCGGCC
81 CGCGCTGCCC GCACTCCTGG TCCTGCTCGG GGCTCTGTTC
121 CCAGGACCTG GCAATGCCCA GACATCTGTG TCCCCCTCAA
161 AAGTCATCCT GCCCCGGGGA GGCTCCGTGC TGGTGACATG
201 CAGCACCTCC TGTGACCAGC CCAAGTTGTT GGGCATAGAG
241 ACCCCGTTGC CTAAAAAGGA GTTGCTCCTG CCTGGGAACA
281 ACCGGAAGGT GTATGAACTG AGCAATGTGC AAGAAGATAG
ISIS 1934(-) 321 CCAACCAATG TGCTAT <u>TCAA ACTGCCCTGA TGGGCA</u> GTCA
361 ACAGCTAAAA CCTTCCTCAC CGTGTACTGG ACTCCAGAAC
401 GGGTGGAACT GGCACCCCTC CCCTCTTGGC AGCCAGTGGG
441 CAAGAACCTT ACCCTACGCT GCCAGGTGGA GGGTGGGGCA
481 CCCCGGCCA ACCTCACCGT GGTGCTGCTC CGTGGGGAGA

1 - 3URE 52B

521 AGGAGCTGAA ACGGGAGCCA GCTGTGGGGG AGCCCGCTGA as 610 561 GGTCACGACC ACGGTGCTGG TGAGGAGAGA TCACCATGGA 601 GCCAATTTCT CGTGCCGCAC TGAACTGGAC CTGCGGCCCC 641 AAGGGCTGGA GCTGTTTGAG AACACCTCGG CCCCCTACCA 681 GCTCCAGACC TTTGTCCTGC CAGCGACTCC CCCACAACTT 721 GTCAGCCCCC GGGTCCTAGA GGTGGACACG CAGGGGACCG 761 TGGTCTGTTC CCTGGACGGG CTGTTCCCAG TCTCGGAGGC 801 CCAGGTCCAC CTGGCACTGG GGGACCAGAG GTTGAACCCC 841 ACAGTCACCT ATGGCAACGA CTCCTTCTCG GCCAAGGCCT 881 CAGTCAGTGT GACCGCAGAG GACGAGGGCA CCCAGCGGCT 921 GACGTGTGCA GTAATACTGG GGAACCAGAG CCAGGAGACA 961 CTGCAGACAG TGACCATCTA CAGCTTTCCG GCGCCCAACG 1001 TGATTCTGAC GAAGCCAGAG GTCTCAGAAG GGACCGAGGT

76/

osassaus los est

1 : JRE 52C

1041 GACAGTGAAG TGTGAGGCCC ACCCTAGAGC CAAGGTGACG 1081 CTGAATGGGG TTCCAGCCCA GCCACTGGGC CCGAGGGCCC 1121 AGCTCCTGCT GAAGGCCACC CCAGAGGACA ACGGGCGCAG 1161 CTTCTCCTGC TCTGCAACCC TGGAGGTGGC CGGCCAGCTT as 1220 (+) 1201 ATACACAAGA ACCAGACCCG GGAGCTTCGT GTCCTGTATG 1241 GCCCCGACT GGACGAGAGG GATTGTCCGG GAAACTGGAC 1281 GTGGCCAGAA AATTCCCAGC AGACTCCAAT GTGCCAGGCT 1321 TGGGGGAACC CATTGCCCGA GCTCAAGTGT CTAAAGGATG ISIS 1547 (+) 1361 GCACTTTCCC ACTGCCCATC GGGGAATCAG TGACTGTCAC 1401 TCGAGATCTT GAGGCCACCT ACCTCTGTCG GGCCAGGAGC 1441 ACTCAAGGGG AGGTCACCCG CGAGGTGACC GTGAATGTGC 1481 TCTCCCCCC GTATGAGATT GTCATCATCA CTGTGGTAGC 1521 AGCCGCAGTC ATAATGGGCA CTGCAGGCCT CAGCACGTAC

77/123

DOORDAND.ORLEDJ

1561 CTCTATAACC GCCAGCGGAA GATCAAGAAA TACAGACTAC as 1630 as 1630h(+++) 1601 AACAGGCCCA AAAAGGGACC CCCATGAAAC CGAACACACA ISIS 1938 (+) 1641 AGCCACGCCT CCCTGAACCT ATCCCGGGAC AGGCCTCTT 1681 CCTCGGCCTT CCCATATTGG TGGCAGTGGT GCCACACTGA 1721 ACAGAGTGGA AGACATATGC CATGCAGCTA CACCTACCGG 1761 CCCTGGGACG CCGGAGGACA GGGCATTGTC CTCAGTCAGA 1801 TACAACAGCA TTTGGGGCCCA TGGTACCTGC ACACCTAAAA 1841 CACTAGGCCA CGCATCTGAT CTGTAGTCAC ATGACTAAGC 1881 CAAGAGGAAG GAGCAAGACT CAAGACATGA TTGATGGATG ISIS 1939 (+) 1921 TTAAAGTCTA GCCTGATGAG AGGGGAAGTG GTGGGGGAGA 1961 CATAGCCCCA CCATGAGGAC ATACAACTGG GAAATACTGA 2001 AACTTGCTGC CTATTGGGTA TGCTGAGGCC CACAGACTTA 2041 CAGAAGAAGT GGCCCTCCAT AGACATGTGT AGCATCAAAA

URE 52E

ISIS 2302 (+) 2081 CACAAAGGCC CACACTTCCT GACGGATGCC AGCTTGGGCA 2121 CTGCTGTCTA CTGACCCCAA CCCTTGATGA TATGTATTTA ISIS 1572 2161 TTCATTTGTT ATTTACCAG CTATTTATTG AGTGTCTTTT 2201 ATGTAGGCTA AATGAACATA GGTCTCTGGC CTCACGGAGC 2241 TCCCAGTCCA TGTCACATTC AAGGTCACCA GGTACAGTTG 2281 TACAGGTTGT ACACTGCAGG AGAGTGCCTG GCAAAAAGAT 2321 CAAATGGGGC TGGGACTTCT CATTGGCCAA CCTGCCTTTC 2361 CCCAGAAGGA GTGATTTTTC TATCGGCACA AAAGCACTAT 2401 ATGGACTGGT AATGGTTCAC AGGTTCAGAG ATTACCCAGT 2441 GAGGCCTTAT TCCTCCCTTC CCCCCAAAAC TGACACCTTT 2481 GTTAGCCACC TCCCCACCCA CATACATTTC TGCCAGTGTT 2521 CACAATGACA CTCAGCGGTC ATGTCTGGAC ATGAGTGCCC 2561 AGGGAATATG CCCAAGCTAT GCCTTGTCCT CTTGTCCTGT

• • URE 52F

2601 TTGCATTTCA CTGGGAGCTT GCACTATTGC AGCTCCAGTT

2641 TCCTGCAGTG ATCAGGGTCC TGCAAGCAGT GGGGAAGGGG

2681 GCCAAGGTAT TGGAGGACTC CCTCCCAGCT TTGGAAGGGT

2721 CATCCGCGTG TGTGTGTGT TGTATGTGTA GACAAGCTCT

2761 CGCTCTGTCA CCCAGGCTGG AGTGCAGTGG TGCAATCATG

2801 GTTCACTGCA GTCTTGACCT TTTGGGCTCA AGTGATCCTC

2841 CCACCTCAGC CTCCTGAGTA GCTGGGACCA TAGGCTCACA

2881 ACACCACACC T

FIGURE 53A

1	CACAGOGGGC	OGROCAUCUG	AAGAUCAGCU	AUUAGAAGAG	
41	AAAGAUCAGU	UAAGUCCUUU	GGACCUGAUC	site AGCUUG <u>AUAC</u>	80
81	AA GAACUACU	<u>GAUUUCA</u> ACU	site UCUUUGG CUU		
121	GAAACGAUGA	<u>AAUA</u> UACAAG	UUAUAUCUUG	GCUUUUCAGC	
161	UCUGCAUCGU	UUUGGGUUCU	CUUGGCUGUU	ACUGCCAGGA	
201	CCCAUAUGUA	site 210 CAAGAAGCAG	AAAACCUUAA	GAAAUAUUU <u>U</u>	
241	site 240 AAUGCAGGUC	site AUUCAGAU <u>GU</u>		GGAACUCUUU	
281	UCUUAGGCAU	<u>UUUGAAGAA</u> U	UGGAAAGAGG	AGAGUGACAG	
321	si D <u>UAAAAUAAU</u> G	te 330 CAGA GCCAAA	UUGUCUCCUU	UUACUUCAAA	
361	CUUUUUAAAA	<u>A</u> CUU <u>UAAAGA</u>		site 400 AUC CAAAAG A	i
401	GU <u>GUGGAGA</u> C	CAUCAAGGAA	GACAUGAAUG	UCAAGUUUUU	
441	CAAUAGCAAC	<u>A</u> AA <u>AAGA</u> AAC	GAGAUGACUU	J CGAAAAGCUG	

1111 53B

	481	ACUAAUUAUU	CGGUAACUGA	CUUGAAUGUC	CAACGCAAAG	
	521	CAAUACAUGA	ACUCAUCCAA	GUGAUGGCU <u>G</u>	site 560 AACUGU CGC C	
	561	3.0 03.00117.3.3	site 5		налалиосна	
	201	AG CAGCUAAA	ACAGGGAAGC	GAAAAAG GAG	UCAGAUGCUG	
	601	UUUCGAGGUC	GAAGAGCAUC	CCAGUAAUGG	UUGUCCUGCC	
	641	UACAAUAUUU	GAAUUUUAAA	UCUAAAUCUA	AUAAUUAUUU	
	681	UUUAACAUUA	UUUAUAUGGG	GAAUAUAUUU	UUA <u>GACUC</u> AU	
	721	CAAUCAAAUA	AGUAUUUAUA	AUAGCAACUU	UUGUGUAAUG	
- 17 1	761	AAAAUGAAUA	UCUAUUAAUA	ÜAUGUAUUAU	UUAUAAUUCC	
	801	UAUA <u>UCCUGU</u>	GACUGUCUCA	CUUAAUCCUU	UGUUUUCUGA	•
	841		e 850 AA GGCUAUGU	site 860 GAUU ACAA GG		880
			site 890			
	881			CCUAAGCAAG	te 910 AUCCCAUGGG	
	921	UUGUGUGUUU	AUUUCACUUG	AUGAUACAAU	GAACACUUAU	
	961	AAGUGAAGUG	auacuaucc <i>a</i>	GUUACUA		

Signal Probe (SEQ ID NO: 150)

315

FIGURE 54A

FIGURE 55A

SEQ ID NO:158

Primer 1 460 GGUCUCUCUG GUULGLCCAG AUCUGAGCCU GGGAGCUCUC UGGCUAACUA 510 GGGAACCCAC UGCUUAAGCC UCAAUAAAGC UUGCCUUGAG UGCUUCAAGU 560 AGUGUGUGCC CGUCUGUUGU GUGACUCUGG UAACUAGAGA UCCCUCAGAC Primer 2 610 CCUUUUAGUC AGUGUGGAAA AUCUCUAGCA GUGGCGCCCG AACAGGGACC 660 UGAAAGCGAA AGGGAAACCA GAGGAGCUCU CUCGACGCAG GACUCGGCUU 710 GCUGAAGCGC GCACGGCAAG AGGCGAGGGG CGGCGACUGG UGAGUACGCC 760 AAAAAUUUUG ACUAGCGGAG GCUAGAAGGA GAGAGAUGGG UGCGAGAGCG Primer 3 810 UCAGUAUUAA GCGGGGGAGA AUUAGAUCGA UGGGAAAAAA UUCGGUUAAG 860 GCCAGGGGA AAGAAAAAU AUAAAUUAAA ACAUAUAGUA UGGGCAAGCA 910 GGGAGCUAGA ACGAUUCGCA GUUAAUCCUG GCCUGUUAGA AACAUCAGAA 960 GGCUGUAGAC AAAUACUGGG ACAGCUACAA CCAUCCCUUC AGACAGGAUC Primer 4 1010 AGAAGAACUU AGAUCAUUAU AUAAUACAGU AGCAACCCUC UAUUGUGUGC 1060 AUCAAAGGAU AGAGAUAAAA GACACCAAGG AAGCUUUAGA CAAGAUAGAG

FIGURE 55B

1110 GAAGAGCAAA ACAALAGUAA GAAAAAAGCA CAGCAAGCAG CAGCUGACAC 1160 AGGACACAGC AAUCAGGUCA GCCAAAAUUA CCCUAUAGUG CAGAACAUCC Primer 5 1210 AGGGGCAAAU GGUACAUCAG GCCAUAUCAC CUAGAACUUU AAAUGCAUGG 1260 GUAAAAGUAG UAGAAGAGAA GGCUUUCAGC CCAGAAGUGA UACCCAUGUU 1310 UUCAGCAUUA UCAGAAGGAG CCACCCCACA AGAUUUAAAC ACCAUGCUAA 1360 ACACAGUGGG GGGACAUCAA GCAGCCAUGC AAAUGUUAAA AGAGACCAUC Primer 6 1410 AAUGAGGAAG CUGCAGAAUG GGAUAGAGUG CAUCCAGUGC AUGCAGGGCC 1460 UAUUGCACCA GGCCAGAUGA GAGAACCAAG GGGAAGUGAC AUAGCAGGAA 1510 CUACUAGUAC CCUUCAGGAA CAAAUAGGAU GGAUGACAAA UAAUCCACCU 1560 AUCCCAGUAG GAGAAAUUUA UAAAAGAUGG AUAAUCCUGG GAUUAAAUAA Primer 7 1610 AAUAGUAAGA AUGUAUAGCC CUACCAGCAU UCUGGACAUA AGACAAGGAC 1660 CAAAGGAACC CUUUAGAGAC UAUGUAGACC GGUUCUAUAA AACUCUAAGA 1710 GCCGAGCAAG CUUCACAGGA GGUAAAAAAU UGGAUGACAG AAACCUUGUU

FIGURE 55C

Primer 8
1810 CAGCGGCUAC ACUAGAAGAA AUGAUGACAG CAUGUCAGGG AGUAGGAGAA
1860 CCCGGCCAUA AGGCAAGAGU UUUGGCUGAA GCAAUGAGCC AAGUAACAAA
1910 UUCAGCUACC AUAAUGAUGC AGAGAGCAA UUUUUAGGAAC CAAAGAAAGA
1960 UUGUUAAGUG UUUCAAUUGU GGCAAAGAAG GGCACACAGC CAGAAAUUGC
2010 AGGGCCCCUA GGAAAAAGGG CUGUUGGAAA UGUGGAAAGG AAGGACACCA
2060 AAUGAAAGAU UGUACUGAGA G

FIGHRE 57

```
(SEQ ID NO:158)
               10=11
                                                            ACTGGGCCGGTATTCCGTTCTCAAA
ACCTGGGCCGGTATTCCGTTCTCAA
TCCTGGGCCGGTATTCCGTTCTCA
TCCTGGGCCGGTATTCCGTTCTC

TAGGACCCGGCAUAAGGCAAGAGUUUGGCUGAAGCAAUGAG-3
CGTATTCCGTTCTCAAAACCGACTTGCT-5' 13
     ID NO:164)
ID NO:165)
ID NO:166)
                                                                                                                                                                           ATCCTCCTGGG(
                                                                                                                                                                  CATCCTCGGG
TCATCCTCCTGG
                                                                                                                          TCCCTCATCCTC
CCCTCATCCTCC
CCTCATCCTCCT
                                                                                                                                                   CTCATCCTCCT
                                                                                                                   GTCCCTCATCCT
```


Donorder . Tolkok

FIGURE 59

(SEQ ID NO:180)

ACTGGGCCGGTATTCCGTTCTAAA 5'-CAUGUQ<u>AGGG</u>AGUAGGACCCGGCCAUAAGGCAAGAGUUUUGGCUGAAGCAAUGAG-3'

(SEQ ID NO:189)

TCCCTCATCCTCCTCCGCACTGCC-5,

5'-AGGGAGTAGGAGGAGG-3'

(SEQ ID NO:190)

(SEQ ID NO:193) CAAC GCTTCCTCCG-3 Ø <u>→</u> ①

(SEQ ID NO:191)

5'- CCGTCACGCCTCC 3'-TGGCAGTGCGGAGGTTGACGAAGAAGGC-5'

(SEQ ID NO:192)

oodbeeks .osasol

FIGURE 61A

SEQ ID NO:159

	primer i				
3300	AGCUGGACUG	UCAAUGACAU	ACAGAA GUUA	GUGGGGAAAU	UG AAUUG GGC
3350	AAGUCAGAUU	U ACCCA GGGA	UUA AAGUAA G	GCAAUUAUGU	AAACUCCUUA
3400	GAGGAACCAA	AGCACUAACA	GAAGUAAUAC	CACUAACAGA	AGAAGCAGAG
3450	CUAGAA CUG G	CAGAAAACAG	AGAGAUUCUA	AAAGAACCAG	UACAUGGAGU
3500	primer 2 GUAUUAUGAC	CCAUCAAAAG	ACUUAAUAGC	AGAAAU ACAG	AAGCAGGGGC
3550	A AGGCCAAUG	GACAUAUCAA	AUUUAU CAA G	AGCCAUUUAA	AAAUCUGAAA
3600	ACAGGAAAAU	AUGCAAGAAU	GAGGGGGGCC	CACACUAAUG	AUGUAAAACA
3650	AUUAACA GA G	G CAGUGCAAA	AAAUAACCAC	AGAAAGCAUA	GUAAUAUĢGG
3700	primer GAAAGACUCC	3 AA AUUUAAAU	<u>cu</u> GCCCAUAC	AAAAGGAAAC	AUGGGAAACA
3750	UGGUGGACAG	AGUAUUGGCA	AGCCACCUGG	AUUCCUGAGU	GGGAGUUUGU
3800	UAAUACCCCU	CCCUUAGUGA	. AAUUA UG GUA	CCAGUUAGAG	AAAGAACCCA
3850	UAGU AGG AGC	AGAAACCUUC	: UAUGUAGAU G	GGCAGCUAA	CAGG GAGACU
3900	primer	4 AAGCAGGAIIA	UGUUACUAAU	, J AGAG GAAGAC	C AAAAAGUUGU
2200	THE POST OF THE PERSON AND THE PERSO				

FIGURE 61B

3930	CACCCUARCU	GACACAACAA	AUCAGAAGAC	UGAGUUACAA	GCAAUUUAUC
4000	UAGCUUUGCA	GGAUU CGG GA	UUAGAAGUAA	ACAUAGUAAC	AGACUCACAA
4050	UAUGCAUUAG	GAAUCAUUCA	AGCACAA CCA	GAUCAAAGUG	AAUCAGAGUU
4100	primer 5		<u>AG</u> UUAAUAAA	AAAGGAAAAG	GUCUAUC UGG
4150	c auggguacc	AGCACACAAA	GGA AUUGGAG	GAAAUGAACA	AGUAGAUAAA
4200	UUAGUCAGUG	CUGGAAUCAG	GAAAGUACUA	UUUUUAGAUG	GAAUAGA UAA
4250	GGC CCAAGAU	GAACAUGAGA	AAUAUCACAG	UAAUU GGAG A	GCAAUGGCUA
4300	primer 6		GUAGUAGCAA	AAGAAAUA GU	AGC CAGCUGU
4350	GAUAAAUGUC	AGCUAAAAGG	AGAAGCCAUG	CAUGGACAAG	UAGACUGUAG
4400	UCCAGGAAUA	UGGCAACUAG	AUUGUACACA	UUUAGAAGGA	AAAGUUAUCC
4450	UGGUAGCAGU	UCAUGUAGCC	AGUGGAUAUA	UA GAA GCAGA	AGUUAUUCCA
4500	primer GC AGAAA CAG		AGCAUAUUUU	CUUUUAAAAU	UAGCAGGAAG
4550	AUGG CCAGUA	AAAACAAUAC	AUA CUGACAA	UGG CAGCAAU	UUC ACCGG UG
4600	CUACGGUUAG	GGCCGCCUGU	UGGUGGGCGG	GAAUCA AGCA	G GAAUUUGGA

FIGURE 61C

650	AUUCCCUACA	AUCCCCAAAG	UCAAGGAGUA	GUAGAAUCUA	UGAAUAAAGA
700	primer 8 AUUAAAGAAA		<u>AGG</u> UAAGAGA	UCAGG CUGAA	CAUCUUAAGA
750	CAGCAGUACA	AAUGGCAGUA	UUCAUCCACA	AUUUUAAAAG	AAA AGGG GGG
800	AUUGGGGGGU	AC AGUGCAGG	GGA AAGAAUA	GUAGACAUAA	UAGCAACAGA
850	CAUACAAACU	AAAGAAUUAC	AAAAACAAAU	UACAAAAAUU	CAAAAUUUUC
900	primer GGGUUUAUUA	9 <u>CAGGGACAGC</u>	AGAAAUCCAC	UUUGGA AAGG	ACCAGCAAAG
1950	CUCCUCUGGA	AAGGUG AAGG	GGCAGUAGUA	AUACAAGAUA	AUAGUGACAU
5000	AAAA GUAGU G	CCAAGAAGAA	AAGCAAAGAU	CAUUAGGGAU	UAUGGAAAAC
5050	ACAUGGCAGG	HCAHCAHHCH	ı.		

FIGURE 62

(SEQ ID NO:198)

CTCGTCTTTAGGTGAAACCTTTCCT-5 · 2 AGTCGTCTTTAGGTGAAACCTTTCCT-5 1 (SEQ ID NO:197) (SEQ ID NO:196) ACTGGTCGTTTCGAGGAGACC-5'3 (SEQ ID NO:202) (SEQ ID NO:201) 4910 ATGTTTTAAGTTTTAAAAGC 3'-CTGTATGTTTGATTTCTTAATGTTTTTGTTTA 5'-GACAUACAAACUAAAGAAUUACAAAAACAAAU (SEQ ID NO:203)
3 3 - AGCCCAAATAATGTCCCTGTCGTC (SEQ ID NO:204) (SEQ ID NO:159)

4 3'-GCCCAAATAATGTCCTCTTTA ATGGTCGTCTTTCGAGGGAAAGGUGAGGG-3'
5'-AAAUUUCGGGUUNAUUACAG<u>GGAG</u>AGCAGAAAUCCACUUGGAAAGCUCGCAAAGCUCGGAAAGGUGAGGG-3'
(SEQ ID NO:159)
3 TTTAGGTGAAACCTTTC_{AQAA}S'(SEQ ID NO:200)
4960

(SEQ ID NO:159)

٠,

FIGURE 63

(SEQ ID NO:203) ACCCGTCATTATGTTCTATTATCACTGTATTTT-5: 5 (SEQ ID NO:214) 6 3'-CCTGGTCGTTTCAGGAGAC 5'-CAAAGGACCACAAAGCUCGAAAAGGUQAAGGBCAGAAAGCUAAAAAAAAAAAAAAAAAAAAAAAAAA	(SEQ ID NO:215) (SEQ ID NO:216) (SEQ ID NO:212) (SEQ ID NO:159) (SEQ ID NO:208) 4960 (SEQ ID NO:208)
(SEQ ID NO:213) 5 3'-TCCTGGTCGTTTCGAGGAGA 6 3'-CCTGGTCGTTTCGAGGAGC 5'-GAAAGGACAGCAAAGCUCCUCUGGAAAGGUGA 4930 6 CTTTCCACT 4930 5 CCTTTCCACT	(SEQ ID NO:215) 7 3'-TCGAGGAGACCTTTCCAC (SEQ ID NO:216) 8 3'-TCGAGGAGACCTTTCCACT 5'-GAAAGGACCAGCAAAGCUCCUCGGAAAGGUGAAGG 7 TTCC 4930 7 TTCC

97/123

DOMONOUS CONTROL

FIGURE 64

(SEQ ID NO:221) TCACGTCCCCAAAA S.(SEQ ID NO:217) 4810 (SEQ ID NO:224)

(SEQ ID NO:222) 4790 (SEQ ID NO:225) 2, 4

5 - AGACAGCAGUACAAAUGGCAGUAUUCAUCCACAAUUUUAAAAGAAA<mark>AGGG</mark>SGGAUUGGGGGGGUAC<u>AGUGCAGGGGA</u>AAG-3 (SEQ ID NO:159) ACCCTAACCCCCCATGTCAC-5' 3'-CTGTCGTCATGTTTACCGTCATAAGTAGGT

GTTAAAAATTTTCTTTTCCCAAAAS'(SEQ ID NO:228)

4810 (SEQ ID NO:222) 4790

က

5 ' - AAY<mark>AGGG</mark>BGGAUUGGGGGGUAQ<u>AGUGCAGGGGA</u>PAGAAUAGUAGACAUAAUAGCAAACAAACAAAAAAA-3 CATCATCTGTATTATCGTTGTCTGTATGTTTGATTTC GTCCCCTTTCTTA_{dad}, (SEQ ID NO:219) ACCCTAACCCCCCATGTCAC-5'

(SEQ ID NO:159)

(SEQ ID NO:223)

DOBBEONS . DERECT

FIGURE 66

4790

(SEQ ID NO:224)

4810

(SEQ ID NO:221)

5'-AGTGCAGGGGGGGGG-3' (SEQ ID NO:227)

(SEQ ID NO:193) E W (SEQ 12 CAAC GCTTCCTCCG-3' (SEQ ID NO:191)

5'- CCGTCACGCCTCC

3'-TGGCAGTGCGGAGGTTGACGAAGAGGC-5' (SEQ ID NO:192)

CONTROL THE HOOSE

COMPANDED TO THE POST OF THE

CONTROLS CERTIFIE

FIGURE 69

5:-GARAGGACCAGCAAAGCUCGCAAAGGUGBAGGGGCCAGUAGUAAUACAAGAUAAUAGUGACAUAAAAGGUBC-3:

CCTTTCCACTTCCACTTCCACTTCCACTTCCACTTCCACTTCCACTTCCACTTCCACTTCCACTTCCACTTCCACTTCCACTTCCACTTCCACTTCCACTTCCACTTCCACTTCCACTTCACTTCACTTCACTTCACTTCACTTCACTCA ACCCGTCATCATTATGTTCTATTATCACTGTATTTT-5' (SEQ ID NO:209) 4960 3'-TCCTGGTCGTTTCGAGGAGA (SEQ ID NO:213)

5'-GGAAAGGTGAAGGAGGC-3' (SEQ ID NO:229)

(SEQ ID NO:193) CAAC GCTTCCTCCG-3' 3'-TGGCAGTGCGGAGGTTGACGAAGAAGGC-5'
(SEQ ID NO:192) 5'- CCGTCACGCCTCC (SEQ ID NO:191)

103/133

٠.

opaanats.ostsoe

Human PSP94

383-31-1	5'-TET-CCTGCTTATCACAATGAA-3'	(SEQ	ID	NO:230)
383-31-3	5'-TET-ACATGCACTTGCTACGAAAC-3'	(SEO	ID	NO:231)

SEQ ID NO:232

Human ubiquitin:

520-77-1 5'-TET-CCGCCACCAAAATGC-3' (SEQ ID NO:233) 520-59-2 5'-TET-GCTGGAAGATGGACG-3' (SEQ ID NO:234)

SEQ ID NO:235

ooseous osisoi

FIGURE 73

HCV-la 5'-UTR:

898-28-01	5'-TET-GGGACACTCCACCATGAATCACTC-3'	(SEQ	ID	NO:236)
898-35-01	5'-TET-CGGGAGAGCCATAGTGGTCTGCGG-3'	(SEQ	ID	NO:237)
898-35-02	5'-TET-ATTTGGGCGTGCCCCGC-3'	(SEQ	ID	NO:238)
898-35-03	5'-TET-GACCGGGTCCTTTCTTGGA-3'	(SEQ	ID	NO:239)

SEQ ID NO:240

GGGACACUCCACCAUGAAUCACUCCCCUGUGAGGAACUACUGUCUUCACGCAGAAAGCGU
CUAGCCAUGGCGUUAGUAUGAGUGUCGUGCAGCCUCCAGGACCCCCCCUCCCGGGAGAG
CCAUAGUGGUCUGCGGAACCGGUGAGUACACCGGAAUUGCCAGGACGACCGGGUCCUUUC
UUGGAUAAACCCGCUCAAUGCCUGGAGAUUUGGGCCGCCCCCCAAGACUGCUAGCCG
AGUAGUGUUGGGUCGCGAAAGGCCUUGUGGUACUGCCUGAUAGGGUGCUUGCGAGUGCC
CCGGGAGGUCUCGUAGACCGUGCACCAUGAG

HCV-1b 5'-UTR:

898-28-02	5'-TET-GGGACACTCCACCATAGATCACTC-3'	(SEQ	ID	NO:241)
898-35-01	5'-TET-CGGGAGAGCCATAGTGGTCTGCGG-3'	(SEQ	ID	NO:237)
898-35-02	5'-TET-ATTTGGGCGTGCCCCGC-3'	(SEQ	ID	NO:238)
898-35-03	5'-TET-GACCGGGTCCTTTCTTGGA-3'	(SEQ	ID	NO:239)

SEQ ID NO:242

FIGURE 75

HCV 2a/c 5'-UTR:

898-28-01 5'-TET-GGGACACTCCACCATGAATCACTC-3'(SEQ ID NO:236) 898-35-01 5'-TET-CGGGAGAGCCATAGTGGTCTGCGG-3'(SEQ ID NO:237) 898-35-02 5'-TET-ATTTGGGCGTGCCCCCGC-3' (SEQ ID NO:238) 898-35-03 5'-TET-GACCGGGTCCTTTCTTGGA-3' (SEQ ID NO:239)

GGGAGGUCUCGUAGACCGUGCACCAUGAG

FIGURE 76

HCV 3a 5'-UTR:

898-28-03	5'-TET-GGGACACTCCACCATGGATCACTC-3'	(SEQ	ID	NO:244)
898-35-01	5'-TET-CGGGAGAGCCATAGTGGTCTGCGG-3'	(SEQ	ID	NO:237)
898-35-02	5'-TET-ATTTGGGCGTGCCCCGC-3'	(SEQ	ID	NO:238)
898-35-03	5'-TET-GACCGGGTCCTTTCTTGGA-3'	(SEQ	ID	NO:239)

SEQ ID NO:245

COERTONS CHERDS

FIGURE 77A

Human Antigen CD36 mRNA Oligonucleotides

726-38-01	5'-ACAAGGGAAGAGAGATGAGGAACCAG-3'	(SEQ	ΤŊ	NO:246)
666-33-01	5'-TTTGCCTTCTCATCACCAATGG-3'	(SEQ	ID	NO:247)
937-03-01	5'-TET- aagggaagagatgag-3'	(SEQ	ID	NO:248)
937-03-02	5'-TET-aggagtttgcaagaaac-3'	(SEQ	ID	NO:249)
937-03-03	5'-TET-ggtgctgtcctgg-3'	(SEQ	ID	NO:250)
937-03-04	5'-TET-cagttttggatctttgatg-3'	(SEQ	ID	NO:251)
937-03-05	5'-TET-aggacgctgagga-3'	(SEQ	ID	NO:252)
937-03-06	5'-TET-aacaagtcaaaatcttctatg-3'	(SEQ	ID	NO:253)
937-03-07	5'-TET-caatactgcagatggag-3'	(SEQ	ID	NO:254)
937-03-08	5'-TET-aagccaggtattgca-3'	(SEQ	ID	NO:255)
937-03-09	5'-TET-ctattgtttctgcacaga-3'	(SEQ	ID	NO:256)
937-03-10	5'-TET-aaatgaagaagaacatagga-3'	(SEQ	ID	NO:257)
937-03-11	5'-TET-ggtcaagccatcaga-3'	(SEQ	ΊD	NO:258)

FIGURE 77B

Human Antigen CD36 mRNA (SEQ ID NO:259)

ACAAGGGAAGAGAUGAGGAACCAGAGCUUGUAGAAACCACUUUAAUCAUAUCCAGGA GUUUGCAAGAAACAGGUGCUUAACACUAAUUCACCUCCUGAACAAGAAAAAUGGGCUGU GACCGGAACUGUGGGCUCAUCGCUGGGGCUGUCAUUGGUGCUGUCCUGGCUGUUUUGG AGGUAUUCUAAUGCCAGUUGGAGACCUGCUUAUCCAGAAGACAAUUAAAAAGCAAGUUG UCCUCGAAGAAGUACAAUUGCUUUUAAAAAUUGGGUUAAAACAGGCACAGAAGUUUAC AGACAGUUUUGGAUCUUUGAUGUGCAAAAUCCACAGGAAGUGAUGAUGAACAGCAGCAA CAUUCAAGUUAAGCAAFAGAGGUCCUUAUACGUACAGAGUUCGUUUUCUAGCCAAGGAAA AUGUAACCCAGGACGCUGAGGACAACACAGUCUCUUUCCUGCAGCCCAAUGGUGCCAUC UUCGAACCUUCACUAUCAGUUGGAACAGAGGCUGACAACUUCACAGUUCUCAAUCUGGC UGUGGCAGCUGCAUCCCAUAUCUAUCAAAAUCAAUUUGUUCAAAUGAUCCUCAAUUCAC UUAUUAACAAGUCAAAAUCUUCUAUGUUCCAAGUCAGAACUUUGAGAGAACUGUUAUGG GGCUAUAGGGAUCCAUUUUUGAGUUUGGUUCCGUACCCUGUUACUACAGUUGGUCUG UUUUAUCCUUACAACA LUACUGCAGAUGGAGUUUAUAAAGUUUUCAAUGGAAAAGAUAA CAUAAGUAAAGUUGCCAUAAUCGACACAUAUAAAGGUAAAAGGAAUCUGUCCUAUUGGG AAAGUCACUGCGACAUGAUUAAUGGUACAGAUGCAGCCUCAUUUCCACCUUUUGUUGAG AAAAGCCAGGUAUUGCAGUUCUUUUCUGAUAUUUUGCAGGUCAAUCUAUGCUGUAUU CCUUUGCCUCUCCAGUUGAAAACCCAGACAACUAUUGUUUCUGCACAGAAAAAUUAUC UCAAAAAUUGUACAUCAUAUGGUGUGCUAGACAUCAGCAAAUGCAAAGAAGGAGACC UGUGUACAUUUCACUUCCUCAUUUUCUGUAUGCAAGUCCUGAUGUUUCAGAACCUAUUGA UGGAUUAAACCCAAAUGAAGAAGAACAUAGGACAUACUUGGAUAUUCAACCUAUAACUG GAUUCACUUUACAAUUUGCAAAACGGCUGCAGGUCAACCUAUUGGUCAAGCCAUCAGAA AAAAUUCAAGUAUUAAAGAAUCUGAAGAGGAACUAUAUUGUGCCUAUUCUUUGGCUUAA UGAGACUGGGACCAUUGGUGAUGAGAAGGCAAA

FIGURE 78

Human Ribosomal Protein L5 mRNA

761-47-01	5'-ATGGGGTTTGTTAAAGTTG-3'	(SEQ	ID	NO:260)
761-47-02	5'-GCTGGGTTTAGCTCTCAGCAGCCCGC-3'	(SEQ	ID	NO:261)
937-05-01	5'-TET- atggggtttgttaaagtt-3'	(SEQ	ID	NO:262)
937-05-02	5'-TET- gaagacgacgagagg-3'	(SEQ	ID	NO:263)
937-05-03	5'-TET- ggatgatagttcgtgtg-3'	(SEQ	ID	NO:264)
937-05-04	5'-TET- gctgcagcatattgta-3'	(SEQ	ID	NO:265)
937-05-05	5'-TET- ctgctatttggatgca-3'	(SEQ	ID	NO:266)
937-05-06	5'-TET- gcagaagtacatcgga-3'	(SEQ	ID	NO:267)
937-05-07	5'-TET- gacatgatggaggaga-3'	(SEQ	ID	NO:268)
937-05-08	5'-TET- agaagaaggatcggg-3'	(SEQ	ID	NO:269)

SEQ ID NO:270

AUGGGGUUUGUUAALGUUGUUAAGAAUAAGGCCUACUUUAAGAGAUACCAAGUGAAAUU UAGAAGACGACGAGAGGGUAAAACUGAUUAUUAUGCUCGGAAACGCUUGGUGAUACAAG AUAAAAUAAAUACLACACCCAAAUACAGGAUGAUAGUUCGUGUGACAAACAGAGAU AUCAUUUGUCAGAUUGCUUAUGCCCGUAUAGAGGGGGAUAUGAUAGUCUGCGCACGUUA UGCACACGAACUGCCAAAAUAUGGUGUGAAGG<mark>UUGGCCU</mark>GACAAAUUAUGCUGCAGCAU AUUGUACUGGCCUGCUGGCCCGCAGGCUUCUCAAUAGGUUUGGCAUGGACAAGAUC UAUGAAGGCCAAGUGGAGGUGACUGGUGAUGAAUACAAUGUGGAAAGCAUUGAUGGUCAG CCAGGUGCCUUCACCUGCUAUUUGGAUGCAGGCCUUGCCAGAACUACCACUGGCAAUAA AGUUUUUGGUGCCUGAAGGGAGCUGUGGAUGGAGCUUGUCUAUCCCUCACAGUACCA AACGAUUCCCUGGUUAUGAUUCUGAAAGCAAGGAAUUUAAUGCAGAAGUACAUCGGAAG CACAUCAUGGCCAGAAUGUUGCAGAUUACAUGCGCUACUUAAUGGAAGAAGAUGAAGA UGCUUACAAGAAACAGUUCUCUCAAUACAUAAAGAACAGCGUAACUCCAGACAUGAUGG AGGAGAUGUAUAAGAAAGCUCAUGCUGCUAUACGAGAGAAUCCAGUCUAUGAAAAGAAG CCCAAGAAAGAAGUUAAAAAGAAGAGGUGGAACCGUCCCAAAAUGUCCCUUGCUCAGAA GAAGGAUCGGGUAGCUCAAAAGAAGGCAAGCUUCCUCAGAGCUCAGGAGCGGGCUGCUG AGAGCUAAACCCAGC

FIGURE 79A

Mouse Scavenger Receptor Class B Type I mRNA Oligonucleotides

726-39-01	5'-GCTCA	AAGAATGTCCGCATAGACCCG-3'	(SEQ	ID	NO:271)
666-34-01	5'-CTGGT	rccctgagttgtttttgc-3 '	(SEQ	ID	NO:272)
937-01-01	5'-TET-	GCTCAAGAATGTCCG-3'	(SEQ	ID	NO:273)
937-01-02	5'-TET-	gggatgtggaaggag-3'	(SEQ	ID	NO:274)
937-01-03	5'-TET-	ggaccctatgtctacag-3'	(SEQ	ID	NO:275)
937-01-04	5'-TET-	acatcttggtcctgg-3'	(SEQ	ID	NO:276)
937-01-05	5'-TET-	tctcaacacgtacctc-3'	(SEQ	ID	NO:277)
937-01-06	5'-TET-	cggactcagcaaga-3'	(SEQ	ID	NO:278)
937-01-07	5'-TET-	caagggtgtttgaagg-3'	(SEQ	ID	NO:279)
937-01-08	5'-TET-	ctctgtttctctccca-3'	(SEQ	ID	NO:280)
937-01-09	5'-TET-	gtgaagatgcagctg-3'	(SEQ	ID	NO:281)
937-01-10	5'-TET-	agctggtgctgatg-3'	(SEQ	ÍD	NO:282)
937-01-11	5'-TET-	caggcctactctgag-3'	(SEQ	ID	NO:283)
937-01-12	5'-TET-	ggactctctcagcg-3'	(SEQ	ID	NO:284)

FIGURE 79B

Mouse Scavenger Receptor Class B Type I mRNA (SEQ ID NO:285)

GCUCAAGAAUGUCCGCAUAGACCCGAGCAGCCUGUCCUUCGGGAUGUGGAAGGAGAUCC CCGUCCCUUUCUACUUGUCUGUCUACUUCUUCGAAGUGGUCAACCCAAACGAGGUCCUC AACGGCCAGAAGCCAGUAGUCCGGGAGCGUGGACCCUAUGUCUACAGGGGAGUUCAGACA AAAGGUCAACAUCACCUUCAAUGACAACGACACCGUGUCCUUCGUGGAGAACCGCAGCC UCCAUUUCCAGCCUGACAAGUCGCAUGGCUCAGAGAGUGACUACAUUGUACUGCCUAACA UCUUGGUCCUGGGGGCUCGAUAUUGAUGGACAAGCCUGUGAGCCUGAAGCUGAUG AUGACCUUGGCGCUGGUCACCAUGGGCCAGCGUGCUUUUUAUGAACCGCACAGUUGGUGA GAUCCUGUGGGGCUAUGACGAUCCCUUCGUGCAUUUUUCUCAACACGUACCUCCCAGACAU GCUUCCCAUAAAGGGCAAAUUUGGCCUGUUUGUUGGGAUGAACAACUCGAAUUCUGGG UCUUCACUGUCUUCACGGGCGUCCAGAAUUUCAGCAGGAUCCAUCUGGUGGACAAAUGG AACGGACUCAGCAAGAUCGAUUAUUGGCAUUCAGAGCAGUGUAACAUGAUCAAUGGGAC UUCCGGGCAGAUGUGGGCACCCUUCAUGACACCCGAAUCCUCGCUGGAAUUCUUCAGCC CGGAGGCAUGCAGGUCCAUGAAGCUGACCUACAACGAAUCAAGGGUGUUUGAAGGCAUU CCCACGUAUCGCUUCACGGCCCCGAUACUCUGUUUGCCAACGGGUCCGUCUACCCACC CAACGAAGGCUUCUGCCCAUGCCGAGAGUCUGGCAUUCAGAAUGUCAGCACCUGCAGGUU UGGUGCGCCUCUGUUUCUCCCACCCCACUUUUACAACGCCGACCCUGUGUUGUCAG AAGCUGUUCUUGGUCUGAACCCUAACCCAAAGGAGCAUUCCUUGUUCCUAGACAUCCAŪ CCGGUCACUGGGAUCCCCAUGAACUGUUCUGUGAAGAUGCAGCUGAGCCUCUACAUCAA AUCUGUCAAGGGCAUCGGGCAAACAGGGAAGAUCGAGCCAGUAGUUCUGCCGUUGCUGUG GUUCGAACAGAGCGGAGCAAUGGGUGGCAAGCCCCUGAGCACGUUCUACACGCAGCUGGU GCUGAUGCCCCAGGUUCUUCACUACGCGCAGUAUGUGCUGCUGGGGCCUUCGU GUUGCUGGUGCCCAUCAUCUGCCAACUGCGCAGCAGAGAAAUGCUUUUUUGUUUUGGA GUGGUAGUAAAAAGGGCUCCCAGGAUAAGGAGGCCAUUCAGGCCUACUCUGAGUCCCUGA UGUCACCAGCUGCCAAGGCACGGUGCUGCAAGAAGCCAAGCUAUAGGGUCCUGAAGACA CUAUAAGCCCCCCAAACCUGAUAGCUUGGUCAGACCAGCCACCCAGUCCCUACACCCCG CUUCUUGAGGACUCUCUCAGCGGACAGCCCACCAGUGCCAUGGCCUGAGCCCCCAGAUGU CACACCUGUCCGCACGCACGCACGUGGGUGCCCACGCAUGUGCAAAAACAACUCAGGGA **CCAG**

FIGURE 80A

Rat CX3CR1 Accession No. U04808 Oligonucleotides

	/61-5/-01	5'-taatacgactcactatagggacggaag	tccaagago	cato	cactg-3'
			(SEQ	ID	NO:286)
	761-57-03	5'-gcaggtacctggtccgta-3'	(SEQ	ID	NO:287)
	781-65-01	5'-TET-ggaagtccaagagca-3'	(SEQ	ID	NO:288)
	781-65-02	5'-TET-aatggcttctttggg-3'	(SEQ	ID	NO:289)
	781-65-03	5'-TET-ggcgtcgccc-3'	(SEQ	ID	NO:290)
	781-65-04	5'-TET-tacttccgcatcgtc-3'	(SEQ	ID	NO:291)
	781-65-05	5'-TET-cttcttccctagttgtg-3'	(SEQ	ID	NO:292)
Ŭ	781-65-06	5'-TET-tgcctggccgt-3'	(SEQ	ID	NO:293)
∰ a:	781-65-07	5'-TET-gactctactaagaaccca-3'	(SEQ	ID	NO:294)
iy O	781-73-01	5'-TET-ccatcttagtggcgt-3'	(SEQ	ID	NO:295)
=	781-73-02	5'-TET-caacaagtgcctgg-3'	(SEQ	ID	NO:296)
	781-85-01	5'-TET-aacacggcgtcac-3'	(SEQ	ID	NO:297)
i	781-85-02	5'-TET-tgattaccccgagg-3'	(SEQ	'ID	NO:298)
f 1	781-85-03	5'-TET-acgctgttttcctg-3'	(SEQ	ID	NO:299)
₩ Ul	781-85-04	5'-TET-tgagacacctgtacaa-3'	(SEQ	ID	NO:300)
==	781-85-05	5'-TET-gacggagacagtgg-3'	(SEQ	ID	NO:301)
<u> </u>	781-85-06	5'-TET-caagcgagggagag-3'	(SEQ	ID	NO:302)

FIGURE 80B

Rat CX3CR1 Accession No. U04808 (SEQ ID NO:303)

GGAAGUCCAAGAGCAUCACUGACAUCUACCUCCUGAACCUGGCCUUGAGCGACCUGCUC UUUGUGGCCACUUUGCCCUUCUGGACUCACUACCUCAUCAGCCAUGAGGGCCUCCACAA CGCCAUGUGCAAGCUCACGACUGCUUUCUUCAUUGGCUUCUUUGGGGGCAUAUUCU TUCAUCACGUCAUCAGCAUCGACCGGUJACCUCGCCAUCGUCCUGGCCGCCAACUCCAUG AACAACCGGACAGUGCAACACGCGUCACCAUCAGUCUGGGCGUCUGGGCGGCCAU CUUAGUGGCGUCGCCCAGUUCAUGUUCACAAAGAGAAAGAGACAACGAAUGUUUGGGUG AUUACCCCGAGGUCCUGCAGGAAAUCUGGCCCGUGCUCCGCAACUCGGAGGUCAACAUC CUGGGCUUCGUCCUUGCUUAUCAUGAGCUUUUGCUACUUCCGCAUCGUCCGGAC GCUGUUUUCCUGCAAGAACCGGAAGAAGGCCAGAGCCAUUAGGCUCAUCCUCUUGGUGGU UGUUGUCUUCUUCUUCUGGACGCCUUACAACAUCGUGAUUUUCCUGGAGACUCUCA AAUUCUACAACUUCUUCCCUAGUUGUGGCAUGAAGAGGGACCUGAGGUGGGCCCUUAGU GUGACGGAGACAGUGGCGUUUAGCCACUGCUGCCUCAACCCCUUUAUCUACGCUUUCGC UGGGGAAAAGUUCAGAAGGUACCUGAGACACCUGUACAACAAGUGCCUGGCCGUCCUGU GUCUCCCGACCCGACUCUACUAAGAACCCAGAGUUCCUGCAUCUGACUCUGUGUAAUG CUCCUCCUGCAUUUUAUGUGCAAGAAAUACGGACCAGGUACCUGC

FIGURE 81A

Human Interleukin-1 beta (IL-16) Oligonucleotides

781-72-02 5'-TET-tgcagttttgccaag-3'

720-82-01	5'-					
gtaatttaat	taatttaatacgactcactatagggaaggtgcagttttgccaaggagtgctaaag-3'					
		(SEQ ID NO:304)				
562-15-01	5'-ctgattgaaatttatctaataaaacatcat	-3'				
		(SEQ ID NO:305)				
781-50-01	5'-TET-acttccaagctggc-3'	(SEQ ID NO:306)				
781-50-02	5'-TET-gagagtggaccacac-3'	(SEQ ID NO:307)				
781-50-03	5'-TET-gaatcagtgaagatgcc-3'	(SEQ ID NO:308)				
781-50-04	5'-TET-cattgtaccatgaaatatcc-3'	(SEQ ID NO:309)				
781-50-05	5'-TET-gaactttaatttcaggaattg-3'	(SEQ ID ⁰ NO:310)				
781-50-06	5'-TET-ccctagtctgctagc-3'	(SEQ ID NO:311)				
781-50-07	5'-TET-ttcaagtgtaacttattaacc-3'	(SEQ ID NO:312)				
781-72-01	5'-TET-aagctggccgtg-3'	(SEQ ID NO:313)				

(SEQ ID NO:314)

FIGURE 81B

Human Interleukin-1 beta (IL-18) (GenBank Accession #
M15330) (SEQ ID NO:315)

GGCAGAAGUACCUGAGCUCGCCAG<mark>UGA</mark>AAUGAUGGCUUAUUACAGUGGCAAUGAGGAUG ACUUGUUCUUUGAAGCUGAUGGCCCUAAACAGAUGAAGUGCUCCUUCCAGGACCUGGAC CUCUGCCCUCUGGAUGGCGGCAUCCAGCUACGAAUCUCCGACCACCACUACAGCAAGGG CUUCAGGCAGGCCGCGUCAGUUGUUGUGGCCAUGGACAAGCUGAGGAAGAUGCUGGUUC CCUGCCCACAGACCUUCCAGGAGAAUGACCUGAGCACCUUCUUUCCCUUCAUCUUUGAA GAAGAACCUAUCUUCUUCGACACAUGGGAUAACGAGGCUUAUGUGCACGAUGCACCUGU ACGAUCACUGAACUGCACGCUCCGGGACUCACAGCAAAAAAGCUUGGUGAUGUCUGGUC CAUAUGAACUGAAGCUCUCCAGGGACAGGAUAUGGAGCAACAAGUGGUGUUC UCCAUGUCCUUUGUACAAGGAGAAGAAAGUAAUGACAAAAUACCUGUGGCCUUGGGCCUC AAGGAAAAGAAUCUGUACCUGUCCUGCGUGUUGAAAGAUGAUAAGCCCACUCUACAGCU GGAGAGUGUAGAUCCCAAAAUUACCCAAAGAAGAAGAUGGAAAAGCGAUUUGUCUUCAA CAAGAUAGAAAUCAAUAACAAGCUGGAAUUUGAGUCUGCCCAGUUCCCCAACUGGUACA UCAGCACQUCUCAAGCAGAAAACAUGCCCGUCUUCCUGGGAGGGACCAAAGGCGGCCAG GAUAUAACUGACUUCACCAUGCAAUUUGUGUCUUCCUAAAGAGAGCUGUACCCAGAGAG UCCUGUGCUGAAUGUGGACUCAAUCCCUAGGGCUGGCAGAAAGGGAACAGÁAAGGUUUU AGGGUAGUGCUAAGAGGAUCUCCUGUCCAUCAGCCAGGACAGUCAGCUCUCCCUUUCA GGCCAAUCCCCAGCCCUUUUGUUGAGCCAGGCCUCUCUCACCUCUCUACUCACUUAA AGCCCGCCUGACAGAACCACGGCCACAUUUGGUUCUAAGAAACCCUCUGUCAUUCGCU UUCAUUGGUCUAAUUUAUUCAAAGGGGGCAAGAAGUAGCAGUGUCUGUAAAAGAGCCUA GUUUUUAAUAGCUAUGGAAUCAAUUCAAUUUGGACUGGUGUGCUCUCUUUAAAUCAAGU CCUUUAAUUAAGAQUGAAAAUAUAUAAGCUCAGAUUAUUUAAAUGGGAAUAUUUAUAAAA **UGAGCAAAUAUCAUACUGUUCA**

FIGURE 82A

Human Interferon gamma Oligonucleotides

448-59-01	5'-TET-GCATCGTTTTGGGTTCTCTT	(SEQ	ID	NO:316)
448-59-02	5'-TET-ACTTTAAAGATGACCAGAGC	(SEQ	ID	NO:317)
448-79-01	CACATTGTTCTGATCATCTG	(SEQ	ID	NO:318)
448-79-02	CGGTAACTGACTTGAATGTC	(SEQ	ID	NO:319)
448-79-03	TAGTAACTG JATAGTATCAC	(SEQ	ID	NO:320)
448-79-04	GACATTCAAGTCAGTTACCG	(SEQ	ID	NO:321)
498-20-01	AATTTAATACGACTCACTATACACATTGTTCTGA	TCATO	CTG	
		(SEQ	ID	NO:322)
498-20-02	AATTTAATACGACTCACTATACGGTAACTGACTT	GAATC	3TC	
		(SEQ	ID	NO:323)
498-20-03	5'-TET-CACATTGTTCTGATCATCTG	(SEQ	ID	NO:324)
498-20-04	5'-TET-CGGTAACTGACTTGAATGTC	(SEQ	ID	NO:325)
498-40-01	5'-		•	·•
AGTAATTTACC	GACTCACTATAGGGACACATTGTTCTGATCATCTG	AAGA		
		(SEQ	ID	NO:326)
498-40-02	5'-			
AGTAATTTACO	GACTCACTATAGGGACGGTAACTGACTTGAATGTC	CAAC		
		(SEQ	ID	NO:327)
498-84-01	5'-TET-CATTCAGATGTAGCG	(SEQ	ID	NO:328)
498-84-02	5'-TET-GACTCATCAATCAAA	(SEQ	ID	NO:329)
498-84-03	5'-TET-GATTACAAGGCTTTA	(SEQ	ID	мо:330)

FIGURE 82B

Human Interferon gamma (SEQ ID NO:141)

CACAUUGUUCUGAUCAUCUGAAGAUCAGCUAUUAGAAGAGAAAGAUCAGUUAAGUCCUUU GGACCUGAUCAGCUUGAUACAAGAACUACUGAUUUCAACUUCUUUGGCUUAAUUCUCUC GGAAACGAUGAAAUAUACAAGUUAUAUCUUGGCUUUUCAGCUCUGCAUCGUUUUGGGUUC UCUUGGCUGUUACUGCCAGGACCCAUAUGUACAAGAAGCAGAAAAACCUUAAGAAAUAUU UUAAUGCAGGUCAUUCAGAUGUAGCGGAUAAUGGAACUCUUUUCUUAGGCAUUUUGAAG AAUUGGAAAGAGGAGAGUGACAGAAAAAUAAUGCAGAGCCAAAUUGUCUCCUUUUACUU CAAACUUUUUAAAAACUUUAAAGAUGACCAGAGCAUCCAAAAGAGUGUGGAGACCAUCA AGGAAGACAUGAAUGUCAAGUUUUUCAAUAGCAACAAAAAGAAACGAGAUGACUUCGAAA AGCUGACUAAUUAUUCGGUAACUGACUUGAAUGUCCAACGCAAAGCAAUACAUGAACUCA UCCAAGUGAUGGCUGAACUGUCGCCAGCAGCUAAAACGGGAAGCGAAAAAGGAGUCAG AUGCUGUUUCGAGGUCGAAGAGCAUCCCAGUAAUGGUUGUCCUGCCUACAAUAUUUGAAU UCAUCAAUCAAAUAAGUAUUUAUAAUAGCAACUUUUGUGUAAUGAAAAUGAAUAUCUAUU AAUAUAUGUAUUAUAUUAUAUUCCUAUAUCCUGUGACUGUCUCACUUAAUCCUUUGUUUU CUGACUAAUUAGGCAAGGCUAUGUGAUUACAAGGCUUUAUGUCAGGGGCCAACUAGGCA GCCAACCUAAGCAAGAUCCCAUGGGUUGUGUGUUUAUUUCACUUGAUGAUACAAUGAAC ACUUAUAAGUGAAGUGAUACUAUCCAGUUACUA

FIGURE 83A

Pneumocystis carinii (NUCLEODTIDES 84-415 OF ACCESSION # AF236872) (SEQ ID NO:331)

GAGGGUCAUGAAAGCGGCGUGAAAACGUUAGCUAGUGAUCUGGAAUAAAUUCAGAUUGC
GACACUGUCAAAUUGCGGGGAAGCCCUAAAGAUUCAACUACUAAGCAGUUUGUGGAAAC
ACAGCUGUGGCCGAGUUAAUAGCCCCUGGGUAUAGUAACAAUGUUGAAUAUGAAUCUUUU
GCGAGAUGAAAUGGGUGAUCCGCAGCCAAGUCCUAAGGGCAUUUUUUGUCUAUGGAUGCAG
UUCAACGACUAGAUGGCAGUGGGUAUUGUAAGGAAUUGCAGUUUUCUUGCAGUGCUUAA
GGUAUAGUCUAUCCUCUUUCGAAAGAAAGAGAAAGAGUAUAU

Candida albicans (NUCLEOTIDES 72-418 OF ACCESSION # X74272) (SEQ ID NO:332)

GGGAGCCAAAAGUAGGGACGCCAUGGUUUCCAGAAAUGGGCCGCGGUGUUUUUUGACCUGC
UAGUCGAUCUGCCCAGACGUAUCUGUGGGUGGCCAGCGGCGACAUAACCUGGUACGGGG
AAGGCCUCGAAGCAGUGUUCACCUUGGGAGUGCGCAAGCACAAAGAGGUGAGUGGUGUA
UCGGGGUUAAUCCCGUGGCGAGCCGUCAGGGCGCGAGUUCUGGCAGUGGCCGUCGUAGAG
CACGGAAAGGUAUGGGCUGGCUCUCUGAGUCGGCUUAAGGUACGUGCCGUCCCACACGA
UGAAAAGUGUGCGGUGCAGAAUAGUUCCCACAGAACGAAGCUGCGCCGGAGAAAGCGAUU
UCUUGGAGCAAU

FIGURE 83B

Earwig R2 element (SEQ ID NO:333)

UAGGAUGAUAGCGCACCUGGUCAUCGUCUCUCUCAGCUGCUCACUUGCUGUUCUAAGUG
AUAAUACCGUUGUUUUUUUAGUGGGUAUUCUUUUACGCUUUCGUAGGAGCGAGUCCCAC
ACUCUUGGAGCAAUCCGGGGUAGUGCCUAAACGCAUUUCUUCAACGU

Bombyx mori R2 element (SEQ ID NO:334)

GCCUUGCACAGUAGUCCAGCGGUAAGGGUGUAGAUCAGGCCCGUCUGUUUCUCCCCCGGA GCUCGCUCCCUUGGCUUCCCUUAUAUAUUU<u>UAACAUCAGAAACA</u>GACAUUAAA<u>CAUCUA</u> CUGAUCCAAUU<u>UCGCC</u>GGCGUACGGCCACG<u>AUCGGG</u>AGGGUGGGA<u>AUCUCG</u>GGGGUCUU CCGAUCCUAAUCCAUGAUGAUGACGACCUGAGUCACUAAAGACGAUGGCAUGAUGAUCC GGCGAUG