STAT 103 Statistical Thinking

Exam 2 Review
Professor Mengshi Zhou

Chapter 10 Variable Type

A categorical variable places individuals into categories

 A quantitative variable takes on numeric values for which arithmetic operations make sense

Chapter 10 Distribution

We can use frequency tables to summarize data

The distribution of a variable:

Tells what values the variable can take and How often it takes those values.

Position	Number of Players	Rates
Catcher	34	7.7
First Baseman	19	4.3
Outfielder	83	18.9
Pitcher	215	49.0
Second Baseman	24	5.5
Shortstop	41	9.3
Third Baseman	23	5.2

Chapter 10 Bar graph and pie chart

- The wedges of the pie chart correspond to the rate of each value
- A pie chart can only be used when it represents all the parts of one whole

Chapter 10 Bar graph and pie chart

- A bar graph is more versatile than a pie chart
- One axis represents all the possible value of a categorical variable
- The rates or counts will be displayed on the other axis and cover the whole range of possible values of the numbers counted for each category.

Chapter 11 Histograms

 Quantitative variables can be illustrated with histograms

 A histogram divides the range of data into classes of equal widths and then counts the number of observations in each class

- The classes of a histogram
- Must be of equal width

Heights of Black Cherry Trees

Chapter 11 Histograms

- In a histogram, look for:
 - Skewness
 - The number of peaks
 - Any outliers that fall outside the pattern of the graph

Outliers

 Any data value away from the rest of the data a striking deviation

Shape: Symmetric or Skewed?

 Symmetric: A distribution is set to be symmetrical if it can be divided into two equal sizes of the same shape

Shape: Symmetric or Skewed?

Skewed: a skewed distribution refers to asymmetry distribution

Shape: Peaks

 Peaks occur when that data value is greater than its neighboring data points (on the left and right sides)

No peak-uniform

One peak-unimodal

Two peaks-bimodal

Chapter 12 Measure the Center

 The mean (the numerical average): The mean is found by obtaining a sum of all the observations and dividing by the sample size (n):

$$\overline{X} = \frac{\text{sum of observations}}{n}$$

 The median (the 50th percentile): The median is the middle value of a sample when the observations are sorted from smallest to largest. 50% larger than the median, 50% lower than the median.

Chapter 12 Measure the Spread

- The standard deviation is the average distance from the mean
 - As the observations become more spread from their mean, the standard deviation gets larger.
 - It is used to describe the spread only when the mean is used to describe the center
 - It is equal to zero only when there is no spread at all

Chapter 12 Measure the Spread

- The first quartile (Q1) locates the middle of the lower half of the data. So, 25% of the data sit below Q1 and 75% of the data sit above Q1.
- The third quartile (Q3) locates the middle of the upper half of the data. So, 75% of the data sit below Q3 and 25% of the data sit above Q3.
- The interquartile range (IQR) = Q3 Q1

Chapter 12 Boxplot and five-number summary

Chapter 12 Choose the right number of summarizing the distribution

- If a sample has outliers and/or skewness, resistant measures (median and IQR) are preferred over sensitive measures. This is because sensitive measures tend to overreact to the presence of outliers.
- If a sample is **reasonably symmetric with no outliers**, sensitive measures (mean and standard deviation) should be used. It is always better to use all of the observations in the sample when there are no problems with skewness and/or outliers.

Chapter 12 Skewness

Histogram Shape	Compare Two Measures of	
	Centers	
If symmetric	mean and median are	
	approximately equal	
If right skewed	mean is greater than the median	
If left skewed	mean is less than median	

Chapter 13

- □ Density Curve
- □Normal Distribution
- □68-95-99.7 rule
- $\Box Standard\ score = \frac{(observation mean)}{(standard\ deviation)}$
- □ Percentiles

Summary of Normal Distribution

- ☐ The normal distribution is unimodal
- ☐ The normal distribution is symmetric about its mean
- ☐ The curve is on or above the horizontal axis.
- ☐ The **mean** determine where the data tends to cluster
- ☐ the **standard deviation**determine how spread the
 distribution will be

What's so special about being "normal"?

- In any Normal distribution, approximately
 - 68% of all observations fall within 1 standard deviation from the mean (mean – 1sd to mean + 1sd)
 - 95% of all observations fall within 2 standard deviations from the mean (mean 2sd to mean + 2sd)

99.7% of all observations fall within 3 standard deviations from the mean (mean – 3sd to mean + 3sd)

Only **approximately** true for any set of data (No set of data is exactly described by a smooth curve)

68-95-99.7 Rule

Updated-68-95-99.7 rule

- Because the normal distribution is "symmetric", we can find more information
- Examples:
 - 34% of all observations fall between mean to mean + 1 standard deviation
 - 2.35%+0.15% = 2.50% of all observations are larger than mean + 2
 standard deviation
 - How many observations are smaller than mean 2 standard deviation?
 2.35%+0.15% = 2.50%

How many observations are larger than mean + 1 standard deviation? 13.5% + 2.25% + 0.15% = 16%

Standard Scores

- ☐ We measure the distance an observation is away from the mean in standard deviation units.
 - ☐ "this observation is 1 standard deviation above the mean"
 - ☐ "it falls 1.7 standard deviations below the mean"
- The standardized score measure how many standard deviation a data point is above/below the mean

Standard score = $\frac{(observation - mean)}{(standard\ deviation)}$

- ☐ Most often called a **z-score**
- ☐ Use z-score to compare values, find percentages or percentiles
- ☐ The larger the z-score, the less likely for that value to occur

Percentiles

- Percentile: the nth percentile is a value such that n percent of the observations lie below it (and the rest lie above it)
- If a person is in the 99th percentile of height, this people is taller than 99% of the rest of the population
- If a number is in the 50th percentile of height, this number is larger than 50 % of the observations, and smaller than 50 % of the rest of the observations
- If a number is in the 75th percentile of height, this number is larger than 75 % of the observations, and smaller than 25 % of the rest of the observations