Union-Find data structure

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python Week 6

Kruskal's algoriththm for minimum cost spanning tree (MCST)

- Process edges in ascending order of cost
- If edge (*u*, *v*) does not create a cycle, add it
 - (u, v) can be added if u and v are in different components
 - Adding edge (u, v) merges these components
- How can we keep track of components and merge them efficiently?

Kruskal's algoriththm for minimum cost spanning tree (MCST)

- Process edges in ascending order of cost
- If edge (*u*, *v*) does not create a cycle, add it
 - (u, v) can be added if u and v are in different components
 - Adding edge (u, v) merges these components
- How can we keep track of components and merge them efficiently?

- Components partition vertices
 - Collection of disjoint sets
- Need data structure to maintain collection of disjoint sets
 - find(v) return set containing v
 - union(u,v) merge sets of u, v

Union-Find data strucrure

- A set *S* partitioned into components $\{C_1, C_2, \dots, C_k\}$
 - Each $s \in S$ belongs to exactly one C_j

Union-Find data strucrure

- A set *S* partitioned into components $\{C_1, C_2, ..., C_k\}$
 - Each $s \in S$ belongs to exactly one C_i
- Support the following operations
 - MakeUnionFind(S) set up initial singleton components $\{s\}$, for each $s \in S$
 - Find(s) return the component containing s
 - Union(s,s') merges components containing s, s'

■ Assume $S = \{0, 1, ..., n-1\}$

- Assume $S = \{0, 1, ..., n-1\}$
- Set up a array/dictionary Component

- Assume $S = \{0, 1, ..., n-1\}$
- Set up a array/dictionary Component
- MakeUnionFind(S)
 - Set Component[i] = i for each i

- Assume $S = \{0, 1, ..., n-1\}$
- Set up a array/dictionary Component
- MakeUnionFind(S)
 - Set Component[i] = i for each i
- Find(i)
 - Return Component[i]

- Assume $S = \{0, 1, ..., n-1\}$
- Set up a array/dictionary Component
- MakeUnionFind(S)
 - Set Component[i] = i for each i
- Find(i)
 - Return Component[i]
- Union(i,j)

```
c_old = Component[i]
c_new = Component[j]
for k in range(n):
   if Component[k] == c_old:
        Component[k] = c_new
```

- Assume $S = \{0, 1, ..., n-1\}$
- Set up a array/dictionary Component
- MakeUnionFind(S)
 - Set Component[i] = i for each i
- Find(i)
 - Return Component[i]
- Union(i,j)

```
c_old = Component[i]
c_new = Component[j]
for k in range(n):
   if Component[k] == c_old:
        Component[k] = c_new
```

Complexity

- MakeUnionFind(S) -O(n)
- Find(i) O(1)
- Union(i,j) O(n)
- Sequence of m Union() operations takes time O(mn)

■ Another array/dictionary Members

- Another array/dictionary Members
- For each component c, Members [c] is a list of its members
- Size[c] = length(Members[c]) is the number of members

- Another array/dictionary Members
- For each component c, Members[c] is a list of its members
- Size[c] = length(Members[c]) is the number of members

■ MakeUnionFind(S)

- Set Component[i] = i for all i
- Set Members[i] = [i], Size[i] =
 1 for all i

- Another array/dictionary Members
- For each component c, Members [c] is a list of its members
- Size[c] = length(Members[c]) is the number of members

- MakeUnionFind(S)
 - Set Component[i] = i for all i
 - Set Members[i] = [i], Size[i] =
 1 for all i
- Find(i)
 - Return Component[i]

- Another array/dictionary Members
- For each component c. Members [c] is a list of its members
- Size[c] = length(Members[c]) is the number of members

- MakeUnionFind(S)
 - Set Component[i] = i for all i
 - Set Members[i] = [i]. Size[i] = 1 for all i
- Find(i)
 - Return Component[i]
- Union(i,j)

```
c_old = Component[i]
c_new = Component[i]
for k in Members[c_old]:
  Component[k] = c_new
  Members[c_new].append(k)
   Size[c new] = Size[c new] + 1
```

```
■ MakeUnionFind(S)
    ■ Set Component[i] = i for all i
    ■ Set Members[i] = [i]. Size[i] =
      1 for all i
■ Find(i)
    ■ Return Component[i]
■ Union(i,j)
  c_old = Component[i]
  c_new = Component[j]
  for k in Members[c_old]:
     Component[k] = c_new
     Members[c_new].append(k)
     Size[c new] = Size[c new] + 1
```

- MakeUnionFind(S)

 Set Component[i] = i for all i

 Set Members[i] = [i], Size[i] =
 1 for all i
- Find(i)
 - Return Component[i]
- Union(i,j)

```
c_old = Component[i]
c_new = Component[j]
for k in Members[c_old]:
    Component[k] = c_new
    Members[c_new].append(k)
    Size[c_new] = Size[c_new] + 1
```

Members[c_old] allows us to merge Component[i] into Component[j] in time O(Size[c_old]) rather than O(n)

- MakeUnionFind(S)
 - Set Component[i] = i for all i
 - Set Members[i] = [i], Size[i] = 1 for all i
- Find(i)
 - Return Component[i]
- Union(i,j)

```
c_old = Component[i]
c_new = Component[j]
for k in Members[c_old]:
    Component[k] = c_new
    Members[c_new].append(k)
    Size[c_new] = Size[c_new] + 1
```

- Members[c_old] allows us to merge Component[i] into Component[j] in time O(Size[c_old]) rather than O(n)
- How can we make use of Size[c]
 - Always merge smaller component into larger one
 - If Size[c] < Size[c'] relabel c as c', else relabel c' as c

- MakeUnionFind(S)
 - Set Component[i] = i for all i
 - Set Members[i] = [i], Size[i] = 1 for all i
- Find(i)
 - Return Component[i]
- Union(i,j)

```
c_old = Component[i]
c_new = Component[j]
for k in Members[c_old]:
    Component[k] = c_new
    Members[c_new].append(k)
    Size[c_new] = Size[c_new] + 1
```

- Members[c_old] allows us to merge Component[i] into Component[j] in time O(Size[c_old]) rather than O(n)
- How can we make use of Size[c]
 - Always merge smaller component into larger one
 - If Size[c] < Size[c'] relabel c as c', else relabel c' as c
- Individual merge operations can still take time O(n)
 - Both Size[c], Size[c'] could be about *n*/2
 - More careful accounting

- MakeUnionFind(S) ■ Set Component[i] = i for all i ■ Set Members[i] = [i]. Size[i] = 1 for all i ■ Find(i) ■ Return Component[i] ■ Union(i,j) c_old = Component[i] c_new = Component[j] for k in Members[c_old]: Component[k] = c_new Members[c_new].append(k) Size[c new] = Size[c new] + 1
- Always merge smaller component into larger one

- MakeUnionFind(S)
 - Set Component[i] = i for all i
 - Set Members[i] = [i], Size[i] = 1 for all i
- Find(i)
 - Return Component[i]
- Union(i,j)

```
c_old = Component[i]
c_new = Component[j]
for k in Members[c_old]:
    Component[k] = c_new
    Members[c_new].append(k)
    Size[c_new] = Size[c_new] + 1
```

- Always merge smaller component into larger one
- For each i, size of Component[i] at least doubles each time it is relabelled

- MakeUnionFind(S)
 - Set Component[i] = i for all i
 - Set Members[i] = [i], Size[i] =
 1 for all i
- Find(i)
 - Return Component[i]
- Union(i,j)

```
c_old = Component[i]
c_new = Component[j]
for k in Members[c_old]:
    Component[k] = c_new
    Members[c_new].append(k)
    Size[c_new] = Size[c_new] + 1
```

- Always merge smaller component into larger one
- For each i, size of Component[i] at least doubles each time it is relabelled
- After m Union() operations, at most 2m elements have been "touched"
 - Size of Component[i] is at most 2*m*

- MakeUnionFind(S)
 - Set Component[i] = i for all i
 - Set Members[i] = [i], Size[i] = 1 for all i
- Find(i)
 - Return Component[i]
- Union(i,j)

```
c_old = Component[i]
c_new = Component[j]
for k in Members[c_old]:
    Component[k] = c_new
    Members[c_new].append(k)
    Size[c_new] = Size[c_new] + 1
```

- Always merge smaller component into larger one
- For each i, size of Component[i] at least doubles each time it is relabelled
- After m Union() operations, at most 2m elements have been "touched"
 - Size of Component[i] is at most 2*m*
- Size of Component[i] grows as 1,2,4,..., so i changes component at most log *m* times

- Always merge smaller component into larger one
- For each i, size of Component[i] at least doubles each time it is relabelled
- After m Union() operations, at most 2m elements have been "touched"
 - Size of Component[i] is at most 2m
- Size of Component[i] grows as 1, 2, 4, . . . , so i changes component at most log *m* times

- Always merge smaller component into larger one
- For each i, size of Component[i] at least doubles each time it is relabelled
- After m Union() operations, at most 2m elements have been "touched"
 - Size of Component[i] is at most 2m
- Size of Component[i] grows as 1,2,4,..., so i changes component at most log m times

- Over m updates
 - At most 2m elements are relabelled
 - Each one at most $O(\log m)$ times

- Always merge smaller component into larger one
- For each i, size of Component[i] at least doubles each time it is relabelled
- After m Union() operations, at most 2m elements have been "touched"
 - Size of Component[i] is at most 2m
- Size of Component[i] grows as 1,2,4,..., so i changes component at most log m times

- Over m updates
 - At most 2m elements are relabelled
 - Each one at most $O(\log m)$ times
- Overall, *m* Union() operations take time $O(m \log m)$

- Always merge smaller component into larger one
- For each i, size of Component[i] at least doubles each time it is relabelled
- After m Union() operations, at most 2m elements have been "touched"
 - Size of Component[i] is at most 2*m*
- Size of Component[i] grows as 1,2,4,..., so i changes component at most log m times

- Over m updates
 - At most 2m elements are relabelled
 - Each one at most $O(\log m)$ times
- Overall, *m* Union() operations take time $O(m \log m)$
- Works out to time $O(\log m)$ per Union() operation
 - Amortised complexity of Union() is O(log m)

■ Sort $E = \{e_0, e_1, \dots, e_{m-1}\}$ in ascending order

- Sort $E = \{e_0, e_1, \dots, e_{m-1}\}$ in ascending order
- MakeUnionFind(V) each vertex j is in component j

- Sort $E = \{e_0, e_1, \dots, e_{m-1}\}$ in ascending order
- MakeUnionFind(V) each vertex j is in component j
- Adding and edge $e_k = (u, v)$ to the tree
 - Check that Find(u) != Find(v)
 - Merge components:
 Union(Component[u],Component[v])

- Sort $E = \{e_0, e_1, \dots, e_{m-1}\}$ in ascending order
- MakeUnionFind(V) each vertex j is in component j
- Adding and edge $e_k = (u, v)$ to the tree
 - Check that Find(u) != Find(v)
 - Merge components:
 Union(Component[u],Component[v])

- Tree has n-1 edges, so O(n) Union() operations
 - $O(n \log n)$ amortised cost, overall

- Sort $E = \{e_0, e_1, \dots, e_{m-1}\}$ in ascending order
- MakeUnionFind(V) each vertex j is in component j
- Adding and edge $e_k = (u, v)$ to the tree
 - Check that Find(u) != Find(v)
 - Merge components:
 Union(Component[u],Component[v])

- Tree has n-1 edges, so O(n) Union() operations
 - $O(n \log n)$ amortised cost, overall
- Sorting E takes $O(m \log m)$
 - Equivalently $O(m \log n)$, since $m \le n^2$

- Sort $E = \{e_0, e_1, \dots, e_{m-1}\}$ in ascending order
- MakeUnionFind(V) each vertex j is in component j
- Adding and edge $e_k = (u, v)$ to the tree
 - Check that Find(u) != Find(v)
 - Merge components:
 Union(Component[u], Component[v])

- Tree has n-1 edges, so O(n) Union() operations
 - $O(n \log n)$ amortised cost, overall
- Sorting E takes $O(m \log m)$
 - Equivalently $O(m \log n)$, since $m \le n^2$
- Overall time, $O((m+n)\log n)$

Summary

- Implement Union-Find using arrays/dictionaries Component, Member, Size
 - MakeUnionFind(S) is O(n)
 - Find(i) is *O*(1)
 - Across *m* operations, amortised complexity of each Union() operation is log *m*

Summary

- Implement Union-Find using arrays/dictionaries Component, Member, Size
 - MakeUnionFind(S) is O(n)
 - Find(i) is *O*(1)
 - Across *m* operations, amortised complexity of each Union() operation is log *m*
- Can also maintain Members [k] as a tree rather than as a list
 - Union() becomes O(1)
 - With clever updates to the tree, Find() has amortised complexity very close to O(1)

Priority Queues

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python Week 6

Job scheduler

 A job scheduler maintains a list of pending jobs with their priorities

Job scheduler

- A job scheduler maintains a list of pending jobs with their priorities
- When the processor is free, the scheduler picks out the job with maximum priority in the list and schedules it

Job scheduler

- A job scheduler maintains a list of pending jobs with their priorities
- When the processor is free, the scheduler picks out the job with maximum priority in the list and schedules it
- New jobs may join the list at any time

Job scheduler

- A job scheduler maintains a list of pending jobs with their priorities
- When the processor is free, the scheduler picks out the job with maximum priority in the list and schedules it
- New jobs may join the list at any time
- How should the scheduler maintain the list of pending jobs and their priorities?

Job scheduler

- A job scheduler maintains a list of pending jobs with their priorities
- When the processor is free, the scheduler picks out the job with maximum priority in the list and schedules it
- New jobs may join the list at any time
- How should the scheduler maintain the list of pending jobs and their priorities?

Priority queue

- Need to maintain a collection of items with priorities to optimise the following operations
- delete_max()
 - Identify and remove item with highest priority
 - Need not be unique
- insert()
 - Add a new item to the collection

- delete_max()
 - Identify and remove item with highest priority
 - Need not be unique
- insert()
 - Add a new item to the list

- Unsorted list
 - insert() is O(1)
 - \blacksquare delete_max() is O(n)

- delete_max()
 - Identify and remove item with highest priority
 - Need not be unique
- insert()
 - Add a new item to the list

- Unsorted list
 - \blacksquare insert() is O(1)
 - \blacksquare delete_max() is O(n)
- Sorted list
 - \blacksquare delete_max() is O(1)
 - \blacksquare insert() is O(n)

- delete_max()
 - Identify and remove item with highest priority
 - Need not be unique
- insert()
 - Add a new item to the list

- Unsorted list
 - insert() is O(1)
 - delete_max() is O(n)
- Sorted list
 - \blacksquare delete_max() is O(1)
 - insert() is O(n)
- Processing *n* items requires $O(n^2)$

- delete_max()
 - Identify and remove item with highest priority
 - Need not be unique
- insert()
 - Add a new item to the list

Moving to two dimensions

First attempt

Assume N processes enter/leave the queue

$$N = 25$$

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

Moving to two dimensions

First attempt

- Assume N processes enter/leave the queue
- Maintain a $\sqrt{N} \times \sqrt{N}$ array

$$N = 25$$

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

Moving to two dimensions

First attempt

- Assume N processes enter/leave the queue
- Maintain a $\sqrt{N} \times \sqrt{N}$ array
- Each row is in sorted order

$$N = 25$$

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

■ Keep track of the size of each row

$$N = 25$$

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine

$$N = 25$$

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

	5
Γ	5
	3
	4
Γ	2

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine
- Insert 15

|--|

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

5
5
3
4

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine
- Insert 15

$$N = 25$$

15	3	19	23	35	58
	12	17	25	43	67
	10	13	20		
	11	16	28	49	
	6	14			

	5
	5
	3
	4
ſ	0

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine
- Insert 15

Ν	_	25
/ V		20

ſ	5
Ì	5
Ì	3
ľ	4
ľ	2

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine
- Insert 15

$$N = 25$$

	3	19	23	35	58
	12	17	25	43	67
15	10	13	20		
	11	16	28	49	
	6	14			

5	
5	
3	
4	

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine
- Insert 15

|--|

3	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine
- Insert 15

Λ.	OF
- / \ /	
/ V	~~

3	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine
- Insert 15
- Takes time $O(\sqrt{N})$
 - Scan size column to locate row to insert, $O(\sqrt{N})$
 - Insert into the first row with free space, $O(\sqrt{N})$

3	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			

Maximum in each row is the last element

$$N = 25$$

3	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			

- Maximum in each row is the last element
- Position is available through size column

$$N = 25$$

3	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			
			•	

5442

- Maximum in each row is the last element
- Position is available through size column
- Identify the maximum amongst these

3	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			

5	
5	
4	
4	
2	

- Maximum in each row is the last element
- Position is available through size column
- Identify the maximum amongst these
- Delete it

N = 25	Ν		25
--------	---	--	----

3	19	23	35	58
12	17	25	43	
10	13	15	20	
11	16	28	49	
6	14			

5	
4	
4	
4	

- Maximum in each row is the last element
- Position is available through size column
- Identify the maximum amongst these
- Delete it
- Again $O(\sqrt{N})$
 - Find the maximum among last entries, $O(\sqrt{N})$
 - Delete it, *O*(1)

N =	25
-----	----

	3	19	23	35	58
	12	17	25	43	
ľ	10	13	15	20	
ľ	11	16	28	49	
	6	14			

5
4
4
4

- 2D $\sqrt{N} \times \sqrt{N}$ array with sorted rows
 - insert() is $O(\sqrt{N})$
 - delete_max() is $O(\sqrt{N})$
 - Processing N items is $O(N\sqrt{N})$

$$N = 25$$

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

- 2D $\sqrt{N} \times \sqrt{N}$ array with sorted rows
 - insert() is $O(\sqrt{N})$
 - delete_max() is $O(\sqrt{N})$
 - Processing *N* items is $O(N\sqrt{N})$
- Can we do better?

$$N = 25$$

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

- 2D $\sqrt{N} \times \sqrt{N}$ array with sorted rows
 - insert() is $O(\sqrt{N})$
 - delete_max() is $O(\sqrt{N})$
 - Processing *N* items is $O(N\sqrt{N})$
- Can we do better?
- Maintain a special binary tree heap
 - Height $O(\log N)$
 - insert() is $O(\log N)$
 - delete_max() is $O(\log N)$
 - Processing *N* items is $O(N \log N)$

$$N = 25$$

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

- 2D $\sqrt{N} \times \sqrt{N}$ array with sorted rows
 - insert() is $O(\sqrt{N})$
 - delete_max() is $O(\sqrt{N})$
 - Processing *N* items is $O(N\sqrt{N})$
- Can we do better?
- Maintain a special binary tree heap
 - Height $O(\log N)$
 - insert() is $O(\log N)$
 - delete_max() is $O(\log N)$
 - Processing *N* items is $O(N \log N)$
- Flexible need not fix N in advance

$$N = 25$$

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

Heaps

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python Week 6

Priority queue

- Need to maintain a collection of items with priorities to optimise the following operations
- delete_max()
 - Identify and remove item with highest priority
 - Need not be unique
- insert()
 - Add a new item to the list

Priority queue

- Need to maintain a collection of items with priorities to optimise the following operations
- delete_max()
 - Identify and remove item with highest priority
 - Need not be unique
- insert()
 - Add a new item to the list

■ Maintaining as a list incurs cost $O(N^2)$ across N inserts and deletions

2 / 13

Priority queue

- Need to maintain a collection of items with priorities to optimise the following operations
- delete_max()
 - Identify and remove item with highest priority
 - Need not be unique
- insert()
 - Add a new item to the list

- Maintaining as a list incurs cost $O(N^2)$ across N inserts and deletions
- Using a $\sqrt{N} \times \sqrt{N}$ array reduces the cost to $O(\sqrt{N})$ per operations
 - $O(N\sqrt{N})$ across N inserts and deletions

2 / 13

Binary trees

- Values are stored as nodes in a rooted tree
- Each node has up to two children
 - Left child and right child
 - Order is important
- Other than the root, each node has a unique parent
- Leaf node no children
- Size number of nodes
- Height number of levels

Heap

- Binary tree filled level by level, left to right
- The value at each node is at least as big the values of its children
 - max-heap

Heap

- Binary tree filled level by level, left to right
- The value at each node is at least as big the values of its children
 - max-heap
- Binary tree on the right is an example of a heap

Heap

- Binary tree filled level by level, left to right
- The value at each node is at least as big the values of its children
 - max-heap
- Binary tree on the right is an example of a heap
- Root always has the largest value
 - By induction, because of the max-heap property

Non-examples

No "holes" allowed

Non-examples

No "holes" allowed

Cannot leave a level incomplete

Non-examples

Heap property is violated

■ insert(77)

- insert(77)
- Add a new node at dictated by heap structure

- insert(77)
- Add a new node at dictated by heap structure
- Restore the heap property along path to the root

- insert(77)
- Add a new node at dictated by heap structure
- Restore the heap property along path to the root

- insert(77)
- Add a new node at dictated by heap structure
- Restore the heap property along path to the root
- insert(44)

- insert(77)
- Add a new node at dictated by heap structure
- Restore the heap property along path to the root
- insert(44)
- insert(57)

- insert(77)
- Add a new node at dictated by heap structure
- Restore the heap property along path to the root
- insert(44)
- insert(57)

- Need to walk up from the leaf to the root
 - Height of the tree

- Need to walk up from the leaf to the root
 - Height of the tree
- Number of nodes at level 0 is $2^0 = 1$

- Need to walk up from the leaf to the root
 - Height of the tree
- Number of nodes at level 0 is $2^0 = 1$
- Number of nodes at level j is 2^{j}

- Need to walk up from the leaf to the root
 - Height of the tree
- Number of nodes at level 0 is $2^0 = 1$
- Number of nodes at level j is 2^{j}
- If we fill k levels, $2^{0} + 2^{1} + \dots + 2^{k-1} = 2^{k} - 1$ nodes

- Need to walk up from the leaf to the root
 - Height of the tree
- Number of nodes at level 0 is $2^0 = 1$
- Number of nodes at level j is 2^{j}
- If we fill k levels, $2^0 + 2^1 + \dots + 2^{k-1} = 2^k - 1$ nodes
- If we have *N* nodes, at most 1 + log *N* levels

- Need to walk up from the leaf to the root
 - Height of the tree
- Number of nodes at level 0 is $2^0 = 1$
- Number of nodes at level j is 2^{j}
- If we fill k levels, $2^0 + 2^1 + \dots + 2^{k-1} = 2^k - 1$ nodes
- If we have *N* nodes, at most 1 + log *N* levels
- insert() is $O(\log N)$

Maximum value is always at the root

- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level

- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level
- Move "homeless" value to the root

- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level
- Move "homeless" value to the root
- Restore the heap property downwards

- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level
- Move "homeless" value to the root
- Restore the heap property downwards
- Only need to follow a single path down
 - Again $O(\log N)$

- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level
- Move "homeless" value to the root
- Restore the heap property downwards
- Only need to follow a single path down
 - Again $O(\log N)$

- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level
- Move "homeless" value to the root
- Restore the heap property downwards
- Only need to follow a single path down
 - Again $O(\log N)$

Implementation

- Number the nodes top to bottom left right
- Store as a list
 H = [h0,h1,h2,...,h9]
- Children of H[i] are at H[2*i+1], H[2*i+2]
- Parent of H[i] is at H[(i-1)//2], for i > 0

Building a heap — heapify()

■ Convert a list [v0,v1,...,vN] into a heap

Building a heap - heapify()

- Convert a list [v0,v1,...,vN] into a heap
- Simple strategy
 - Start with an empty heap
 - Repeatedly apply insert(vj)
 - Total time is $O(N \log N)$

■ List L = [v0, v1, ..., vN]

12 / 13

Madhavan Mukund Heaps PDSA using Python Week 6

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition

12 / 13

Madhavan Mukund Heaps PDSA using Python Week 6

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level
 - . . .
- Fix heap property at level 1
- Fix heap property at the root

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level

. . .

- Fix heap property at level 1
- Fix heap property at the root

■ Each time we go up one level, one extra step per node to fix heap property

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level
 - . . .
- Fix heap property at level 1
- Fix heap property at the root

- Each time we go up one level, one extra step per node to fix heap property
- However, number of nodes to fix halves

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level
 - . . .
- Fix heap property at level 1
- Fix heap property at the root

- Each time we go up one level, one extra step per node to fix heap property
- However, number of nodes to fix halves
- Second last level, $n/4 \times 1$ steps

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level
 - . . .
- Fix heap property at level 1
- Fix heap property at the root

- Each time we go up one level, one extra step per node to fix heap property
- However, number of nodes to fix halves
- Second last level, $n/4 \times 1$ steps
- Third last level, $n/8 \times 2$ steps

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level
 - . . .
- Fix heap property at level 1
- Fix heap property at the root

- Each time we go up one level, one extra step per node to fix heap property
- However, number of nodes to fix halves
- Second last level, $n/4 \times 1$ steps
- Third last level, $n/8 \times 2$ steps
- Fourth last level, $n/16 \times 3$ steps

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level
 - . . .
- Fix heap property at level 1
- Fix heap property at the root

- Each time we go up one level, one extra step per node to fix heap property
- However, number of nodes to fix halves
- Second last level, $n/4 \times 1$ steps
- Third last level, $n/8 \times 2$ steps
- Fourth last level, $n/16 \times 3$ steps
- Cost turns out to be O(n)

12 / 13

. . .

- Heaps are a tree implementation of priority queues
 - insert() is $O(\log N)$
 - delete_max() is $O(\log N)$
 - heapify() builds a heap in O(N)

- Heaps are a tree implementation of priority queues
 - insert() is $O(\log N)$
 - delete_max() is $O(\log N)$
 - heapify() builds a heap in O(N)
- Can invert the heap condition
 - Each node is smaller than its children
 - min-heap
 - delete_min() rather than
 delete_max()

Using Heaps in Algorithms

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 6

Priority queues and heaps

- Priority queues support the following operations
 - insert()
 - delete_max() or delete_min()
- Heaps are a tree based implementation of priority queues
 - insert(), delete_max() / delete_min() are both $O(\log n)$
 - heapify() builds a heap from a list/array in time O(n)
- Heap can be represented as a list/array
 - Simple index arithmetic to find parent and children of a node
- What more do we need to use a heap in an algorithm?

- Maintain two dictionaries with vertices as keys
 - visited, initially False for all v
 - distance, initially infinity for all v
- Set distance[s] to 0
- Repeat, until all reachable vertices are visited
 - Find unvisited vertex nextv with minimum distance
 - Set visited[nextv] to True
 - Recompute distance[v] for every neighbour v of nextv

```
def dijkstra(WMat,s):
  (rows,cols,x) = WMat.shape
  infinity = np.max(WMat)*rows+1
  (visited, distance) = ({},{})
 for v in range(rows):
    (visited[v],distance[v]) = (False,infinity)
 distance[s] = 0
 for u in range(rows):
    nextd = min([distance[v] for v in range(rows)
                    if not visited[v]])
    nextvlist = [v for v in range(rows)
                    if (not visited[v]) and
                        distance[v] == nextd]
    if nextvlist == []:
      break
    nextv = min(nextvlist)
    visited[nextv] = True
    for v in range(cols):
      if WMat[nextv,v,0] == 1 and (not visited[v]):
        distance[v] = min(distance[v], distance[nextv]
                                       +WMat[nextv,v,1])
 return(distance)
```

Bottleneck

- Find unvisited vertex *j* with minimum distance
 - Naive implementation requires an O(n) scan

```
def dijkstra(WMat,s):
  (rows,cols,x) = WMat.shape
  infinity = np.max(WMat)*rows+1
  (visited, distance) = ({},{})
  for v in range(rows):
    (visited[v],distance[v]) = (False,infinity)
 distance[s] = 0
 for u in range(rows):
    nextd = min([distance[v] for v in range(rows)
                    if not visited[v]])
    nextvlist = [v for v in range(rows)
                    if (not visited[v]) and
                        distance[v] == nextd]
    if nextvlist == []:
      break
    nextv = min(nextvlist)
    visited[nextv] = True
    for v in range(cols):
      if WMat[nextv,v,0] == 1 and (not visited[v]):
        distance[v] = min(distance[v], distance[nextv]
                                       +WMat[nextv,v,1])
 return(distance)
```

Bottleneck

- Find unvisited vertex *j* with minimum distance
 - Naive implementation requires an O(n) scan
- Maintain unvisited vertices as a min-heap
 - delete_min() in $O(\log n)$ time

```
def dijkstra(WMat,s):
  (rows,cols,x) = WMat.shape
  infinity = np.max(WMat)*rows+1
  (visited, distance) = ({},{})
  for v in range(rows):
    (visited[v],distance[v]) = (False,infinity)
 distance[s] = 0
 for u in range(rows):
    nextd = min([distance[v] for v in range(rows)
                    if not visited[v]])
    nextvlist = [v for v in range(rows)
                    if (not visited[v]) and
                        distance[v] == nextd]
    if nextvlist == []:
      break
    nextv = min(nextvlist)
    visited[nextv] = True
    for v in range(cols):
      if WMat[nextv,v,0] == 1 and (not visited[v]):
        distance[v] = min(distance[v], distance[nextv]
                                       +WMat[nextv,v,1])
 return(distance)
```

Bottleneck

- Find unvisited vertex *j* with minimum distance
 - Naive implementation requires an O(n) scan
- Maintain unvisited vertices as a min-heap
 - delete_min() in $O(\log n)$ time
- But, also need to update distances of neighbours
 - Unvisited neighbours' distances are inside the min-heap
 - Updating a value is not a basic heap operation

```
def dijkstra(WMat,s):
  (rows,cols,x) = WMat.shape
  infinity = np.max(WMat)*rows+1
  (visited, distance) = ({},{})
  for v in range(rows):
    (visited[v],distance[v]) = (False,infinity)
 distance[s] = 0
 for u in range(rows):
    nextd = min([distance[v] for v in range(rows)
                    if not visited[v]])
    nextvlist = [v for v in range(rows)
                    if (not visited[v]) and
                        distance[v] == nextd]
    if nextvlist == []:
      break
    nextv = min(nextvlist)
    visited[nextv] = True
    for v in range(cols):
      if WMat[nextv,v,0] == 1 and (not visited[v]):
        distance[v] = min(distance[v], distance[nextv]
                                       +WMat[nextv,v,1])
 return(distance)
```

■ Change 54 to 35

- Change 54 to 35
 - Reducing a value can create a violation with parent

- Change 54 to 35
 - Reducing a value can create a violation with parent
 - Swap upwards to restore heap, similar to insert()

- Change 54 to 35
 - Reducing a value can create a violation with parent
 - Swap upwards to restore heap, similar to insert()
- Change 29 to 71

- Change 54 to 35
 - Reducing a value can create a violation with parent
 - Swap upwards to restore heap, similar to insert()
- Change 29 to 71
 - Increasing a value can create a violation with child

- Change 54 to 35
 - Reducing a value can create a violation with parent
 - Swap upwards to restore heap, similar to insert()
- Change 29 to 71
 - Increasing a value can create a violation with child
 - Swap downwards to restore heap, similar to delete_min()

- Change 54 to 35
 - Reducing a value can create a violation with parent
 - Swap upwards to restore heap, similar to insert()
- Change 29 to 71
 - Increasing a value can create a violation with child
 - Swap downwards to restore heap, similar to delete_min()

- Change 54 to 35
 - Reducing a value can create a violation with parent
 - Swap upwards to restore heap, similar to insert()
- Change 29 to 71
 - Increasing a value can create a violation with child
 - Swap downwards to restore heap, similar to delete_min()
- Both updates are $O(\log n)$
 - Are we done?

- Change 54 to 35
 - Reducing a value can create a violation with parent
 - Swap upwards to restore heap, similar to insert()
- Change 29 to 71
 - Increasing a value can create a violation with child
 - Swap downwards to restore heap, similar to delete_min()
- Both updates are $O(\log n)$
 - Are we done?
- Locate the node to update?

- Maintain two additional dictionaries
 - Vertices are $\{0,1,\ldots,n-1\}$
 - Heap positions are $\{0, 1, \ldots, n-1\}$
 - VtoH maps vertices to heap positions
 - HtoV maps heap positions to vertices

VtoH	0	1	2	3	4	5	6	7	8
	7	3	5	2	4	1	6	0	8
HtoV	0	1	2	3	4	5	6	7	8
	7	5	3	1	4	2	6	0	8
20200									

- Maintain two additional dictionaries
 - Vertices are $\{0,1,\ldots,n-1\}$
 - Heap positions are $\{0, 1, \ldots, n-1\}$
 - VtoH maps vertices to heap positions
 - HtoV maps heap positions to vertices
- Update node 1 to 35

VtoH	0	1	2	3	4	5	6	7	8
	7	3	5	2	4	1	6	0	8
HtoV	0	1	2	3	4	5	6	7	8
	7	5	3	1	4	2	6	0	8

- Maintain two additional dictionaries
 - Vertices are $\{0,1,\ldots,n-1\}$
 - Heap positions are $\{0, 1, \dots, n-1\}$
 - VtoH maps vertices to heap positions
 - HtoV maps heap positions to vertices
- Update node 1 to 35
- Update VtoH and HtoV each time we swap values in the heap

V / 11			_	_	_	_		-	
VtoH	O	1	2	3	4	5	6	7	8
	7	1	5	2	4	3	6	0	8
HtoV	0	1	2	3	4	5	6	7	8
	7	1	3	15	4	2	6	0	8

- Using min-heaps
 - Identifying next vertex to visit is $O(\log n)$
 - Updating distance takes $O(\log n)$ per neighbour
 - Adjacency list proportionally to degree

- Using min-heaps
 - Identifying next vertex to visit is O(log n)
 - Updating distance takes $O(\log n)$ per neighbour
 - Adjacency list proportionally to degree
- Cumulatively
 - O(n log n) to identify vertices to visit across n iterations
 - O(m log n) distance updates overall

- Using min-heaps
 - Identifying next vertex to visit is O(log n)
 - Updating distance takes $O(\log n)$ per neighbour
 - Adjacency list proportionally to degree
- Cumulatively
 - O(n log n) to identify vertices to visit across n iterations
 - $O(m \log n)$ distance updates overall
- Overall $O((m+n)\log n)$

Start with an unordered list

- Start with an unordered list
- Build a heap O(n)

- Start with an unordered list
- Build a heap O(n)
- Call delete_max() n times to extract elements in descending order $O(n \log n)$

- Start with an unordered list
- Build a heap O(n)
- Call delete_max() n times to extract elements in descending order $O(n \log n)$
- After each delete_max(), heap shrinks by 1

- Start with an unordered list
- Build a heap O(n)
- Call delete_max() n times to extract elements in descending order $O(n \log n)$
- After each delete_max(), heap shrinks by 1
- Store maximum value at the end of current heap

- Start with an unordered list
- Build a heap O(n)
- Call delete_max() n times to extract elements in descending order $O(n \log n)$
- After each delete_max(), heap shrinks by 1
- Store maximum value at the end of current heap
- In place $O(n \log n)$ sort

■ Updating a value in a heap takes $O(\log n)$

- Updating a value in a heap takes $O(\log n)$
- Need to maintain additional pointers to map values to heap positions and vice versa

- Updating a value in a heap takes $O(\log n)$
- Need to maintain additional pointers to map values to heap positions and vice versa
- With this extended notion of heap, Dijkstra's algorithm complexity improves from $O(n^2)$ to $O((m+n)\log n)$

Summary

- Updating a value in a heap takes $O(\log n)$
- Need to maintain additional pointers to map values to heap positions and vice versa
- With this extended notion of heap, Dijkstra's algorithm complexity improves from $O(n^2)$ to $O((m+n)\log n)$
- In a similar way, improve Prim's algorithm to $O((m+n)\log n)$

Summary

- Updating a value in a heap takes $O(\log n)$
- Need to maintain additional pointers to map values to heap positions and vice versa
- With this extended notion of heap, Dijkstra's algorithm complexity improves from $O(n^2)$ to $O((m+n)\log n)$
- In a similar way, improve Prim's algorithm to $O((m+n)\log n)$
- Heaps can also be used to sort a list in place in $O(n \log n)$

Search Trees

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python Week 6

Sorting is useful for efficient searching

Madhavan Mukund Search Trees PDSA using Python Week 6

- Sorting is useful for efficient searching
- What if the data is changing dynamically?
 - Items are periodically inserted and deleted

- Sorting is useful for efficient searching
- What if the data is changing dynamically?
 - Items are periodically inserted and deleted
- Insert/delete in a sorted list takes time O(n)

- Sorting is useful for efficient searching
- What if the data is changing dynamically?
 - Items are periodically inserted and deleted
- Insert/delete in a sorted list takes time O(n)
- Move to a tree structure, like heaps for priority queues

For each node with value *v*

- For each node with value *v*
 - All values in the left subtree are < v</p>

- For each node with value *v*
 - All values in the left subtree are < v</p>

- For each node with value *v*
 - All values in the left subtree are < v</p>
 - All values in the left subtree are > v

- For each node with value *v*
 - All values in the left subtree are < v</p>
 - All values in the left subtree are > v

- For each node with value *v*
 - All values in the left subtree are < v</p>
 - All values in the left subtree are > v
- No duplicate values

Each node has a value and pointers to its children

Each node has a value and pointers to its children

 Each node has a value and pointers to its children

- Add a frontier with empty nodes, all fields
 - Empty tree is single empty node
 - Leaf node points to empty nodes

 Each node has a value and pointers to its children

- Add a frontier with empty nodes, all fields
 - Empty tree is single empty node
 - Leaf node points to empty nodes

4 / 13

Madhavan Mukund Search Trees PDSA using Python Week 6

Each node has a value and pointers to its children

- Add a frontier with empty nodes, all fields
 - Empty tree is single empty node
 - Leaf node points to empty nodes
- Easier to implement operations recursively

4 / 13

Madhavan Mukund Search Trees PDSA using Python Week 6

The class Tree

- Three local fields, value, left, right
- Value None for empty value -
- Empty true has all fields None
- Leaf has a nonempty value and empty left and right

```
class Tree:
    # Constructor:
    def init (self.initval=None):
        self.value = initval
        if self.value:
            self.left = Tree()
            self.right = Tree()
        else:
            self.left = None
            self.right = None
        return
    # Only empty node has value None
    def isempty(self):
        return (self.value == None)
    # Leaf nodes have both children empty
    def isleaf(self):
        return (self.value != None and
                self.left.isempty() and
                self.right.isemptv())
                           4 □ ト 4 □ ト 4 □ ト 4 □ ト 4 □ ト 9 Q (~)
```

Inorder traversal

- List the left subtree, then the current node, then the right subtree
- Lists values in sorted order
- Use to print the tree

```
class Tree:
    # Inorder traversal
   def inorder(self):
        if self.isemptv():
            return([])
        else:
            return(self.left.inorder()+
                    [self.value]+
                   self.right.inorder())
   # Display Tree as a string
   def __str__(self):
        return(str(self.inorder()))
```

Inorder traversal

- List the left subtree, then the current node, then the right subtree
- Lists values in sorted order
- Use to print the tree


```
class Tree:
    # Inorder traversal
   def inorder(self):
        if self.isempty():
            return([])
        else:
            return(self.left.inorder()+
                    [self.value]+
                   self.right.inorder())
   # Display Tree as a string
   def __str__(self):
        return(str(self.inorder()))
```

Find a value v

- Check value at current node
- If v smaller than current node, go left
- If v smaller than current node, go right
- Natural generalization of binary search

```
class Tree:
    # Check if value v occurs in tree
   def find(self,v):
        if self.isemptv():
            return(False)
        if self value == v:
            return(True)
        if v < self value.
            return(self.left.find(v))
        if v > self.value:
            return(self.right.find(v))
```

Find a value v

- Check value at current node
- If v smaller than current node, go left
- If v smaller than current node, go right
- Natural generalization of binary search

```
1 4 9
```

```
class Tree:
    # Check if value v occurs in tree
   def find(self,v):
        if self.isempty():
            return(False)
        if self value == v:
            return(True)
        if v < self value.
            return(self.left.find(v))
        if v > self.value:
            return(self.right.find(v))
```

Minimum and maximum

- Minimum is left most node in the tree
- Maximum is right most node in the tree

```
class Tree:
   def minval(self):
        if self.left.isempty():
            return(self.value)
        else:
            return(self.left.minval())
   def maxval(self):
        if self.right.isempty():
            return(self.value)
        else:
            return(self.right.maxval())
```

Minimum and maximum

- Minimum is left most node in the tree
- Maximum is right most node in the tree


```
class Tree:
   def minval(self):
        if self.left.isempty():
            return(self.value)
        else:
            return(self.left.minval())
   def maxval(self):
        if self.right.isempty():
            return(self.value)
        else:
            return(self.right.maxval())
```

- Try to find v
- Insert at the position where find fails

```
class Tree:
   def insert(self,v):
        if self.isempty():
            self.value = v
            self.left = Tree()
            self.right = Tree()
        if self.value == v:
            return
        if v < self.value:
            self.left.insert(v)
            return
        if v > self.value:
            self.right.insert(v)
            return
```

- Try to find v
- Insert at the position where find fails

Insert 21 52 74 37 16 44 91 28 83

```
class Tree:
   def insert(self,v):
        if self.isempty():
            self.value = v
            self.left = Tree()
            self.right = Tree()
        if self.value == v:
            return
        if v < self.value:
            self.left.insert(v)
            return
        if v > self.value:
            self.right.insert(v)
            return
```

- Try to find v
- Insert at the position where find fails


```
class Tree:
   def insert(self,v):
        if self.isempty():
            self.value = v
            self.left = Tree()
            self.right = Tree()
        if self.value == v:
            return
        if v < self.value:
            self.left.insert(v)
            return
        if v > self.value:
            self.right.insert(v)
            return
```

- Try to find v
- Insert at the position where find fails


```
class Tree:
   def insert(self,v):
        if self.isempty():
            self.value = v
            self.left = Tree()
            self.right = Tree()
        if self.value == v:
            return
        if v < self.value:
            self.left.insert(v)
            return
        if v > self.value:
            self.right.insert(v)
            return
```

- Try to find v
- Insert at the position where find fails


```
class Tree:
   def insert(self,v):
        if self.isempty():
            self.value = v
            self.left = Tree()
            self.right = Tree()
        if self.value == v:
            return
        if v < self.value:
            self.left.insert(v)
            return
        if v > self.value:
            self.right.insert(v)
            return
```

- Try to find v
- Insert at the position where find fails

```
Insert 65
                 52
      37
16
            44
                                   91
    28
                               83
 21
```

```
class Tree:
   def insert(self,v):
        if self.isempty():
            self.value = v
            self.left = Tree()
            self.right = Tree()
        if self.value == v:
            return
        if v < self.value:
            self.left.insert(v)
            return
        if v > self.value:
            self.right.insert(v)
            return
```

- Try to find v
- Insert at the position where find fails


```
class Tree:
   def insert(self,v):
        if self.isempty():
            self.value = v
            self.left = Tree()
            self.right = Tree()
        if self.value == v:
            return
        if v < self.value:
            self.left.insert(v)
            return
        if v > self.value:
            self.right.insert(v)
            return
```

- Try to find v
- Insert at the position where find fails

Insert 91 52 74 37 16 44 65 91 28 83 21

```
class Tree:
   def insert(self,v):
        if self.isempty():
            self.value = v
            self.left = Tree()
            self.right = Tree()
        if self.value == v:
            return
        if v < self.value:
            self.left.insert(v)
            return
        if v > self.value:
            self.right.insert(v)
            return
```

- Try to find v
- Insert at the position where find fails

Insert 91 52 74 37 16 44 65 91 28 83 21

```
class Tree:
   def insert(self,v):
        if self.isempty():
            self.value = v
            self.left = Tree()
            self.right = Tree()
        if self.value == v:
            return
        if v < self.value:
            self.left.insert(v)
            return
        if v > self.value:
            self.right.insert(v)
            return
```

Delete a value v

- If v is present, delete
- Leaf node? No problem
- If only one child, promote that subtree
- Otherwise, replace v with
 self.left.maxval() and delete
 self.left.maxval()
 - self.left.maxval() has no right child

```
class Tree:
    def delete(self.v):
        if self.isempty():
            return
        if v < self value.
            self.left.delete(v)
            return
        if v > self.value:
            self.right.delete(v)
            return
        if v == self value.
            if self.isleaf():
                self.makeemptv()
            elif self.left.isempty():
                self.copyright()
            elif self.right.isempty():
                self.copyleft()
            else:
                self.value = self.left.maxval()
                self.left.delete(self.left.maxval())
            return
```

4 D F 4 D F 4 D F 4 D F

Delete a value v


```
class Tree:
    def delete(self,v):
        if self.isempty():
            return
        if v < self.value:
            self.left.delete(v)
            return
        if v > self.value:
            self.right.delete(v)
            return
        if v == self value.
            if self.isleaf():
                self.makeemptv()
            elif self.left.isempty():
                self.copyright()
            elif self.right.isempty():
                self.copyleft()
            else:
                self.value = self.left.maxval()
                self.left.delete(self.left.maxval())
            return
                           4 日 5 4 個 5 4 国 5 4 国 6 国 6
```



```
class Tree:
    def delete(self,v):
        if self.isempty():
            return
        if v < self.value:
            self.left.delete(v)
            return
        if v > self.value:
            self.right.delete(v)
            return
        if v == self value.
            if self.isleaf():
                self.makeemptv()
            elif self.left.isempty():
                self.copyright()
            elif self.right.isempty():
                self.copyleft()
            else:
                self.value = self.left.maxval()
                self.left.delete(self.left.maxval())
            return
                           4 日 5 4 個 5 4 国 5 4 国 6 国 6
```



```
class Tree:
    def delete(self,v):
        if self.isempty():
            return
        if v < self.value:
            self.left.delete(v)
            return
        if v > self.value:
            self.right.delete(v)
            return
        if v == self value.
            if self.isleaf():
                self.makeemptv()
            elif self.left.isempty():
                self.copyright()
            elif self.right.isempty():
                self.copyleft()
            else:
                self.value = self.left.maxval()
                self.left.delete(self.left.maxval())
            return
                           4 日 5 4 個 5 4 国 5 4 国 6 国 6
```



```
class Tree:
    def delete(self,v):
        if self.isempty():
            return
        if v < self.value:
            self.left.delete(v)
            return
        if v > self.value:
            self.right.delete(v)
            return
        if v == self value.
            if self.isleaf():
                self.makeemptv()
            elif self.left.isempty():
                self.copyright()
            elif self.right.isempty():
                self.copyleft()
            else:
                self.value = self.left.maxval()
                self.left.delete(self.left.maxval())
            return
                           4 日 5 4 個 5 4 国 5 4 国 6 国 6
```



```
class Tree:
    def delete(self,v):
        if self.isempty():
            return
        if v < self.value:
            self.left.delete(v)
            return
        if v > self.value:
            self.right.delete(v)
            return
        if v == self value.
            if self.isleaf():
                self.makeemptv()
            elif self.left.isempty():
                self.copyright()
            elif self.right.isempty():
                self.copyleft()
            else:
                self.value = self.left.maxval()
                self.left.delete(self.left.maxval())
            return
                           4 日 5 4 個 5 4 国 5 4 国 6 国 6
```



```
class Tree:
    def delete(self,v):
        if self.isempty():
            return
        if v < self.value:
            self.left.delete(v)
            return
        if v > self.value:
            self.right.delete(v)
            return
        if v == self value.
            if self.isleaf():
                self.makeemptv()
            elif self.left.isempty():
                self.copyright()
            elif self.right.isempty():
                self.copyleft()
            else:
                self.value = self.left.maxval()
                self.left.delete(self.left.maxval())
            return
                           4 日 5 4 個 5 4 国 5 4 国 6 国 6
```



```
class Tree:
    def delete(self,v):
        if self.isempty():
            return
        if v < self.value:
            self.left.delete(v)
            return
        if v > self.value:
            self.right.delete(v)
            return
        if v == self value.
            if self.isleaf():
                self.makeemptv()
            elif self.left.isempty():
                self.copyright()
            elif self.right.isempty():
                self.copyleft()
            else:
                self.value = self.left.maxval()
                self.left.delete(self.left.maxval())
            return
                           4 日 5 4 個 5 4 国 5 4 国 6 国 6
```



```
class Tree:
    def delete(self,v):
        if self.isempty():
            return
        if v < self.value:
            self.left.delete(v)
            return
        if v > self.value:
            self.right.delete(v)
            return
        if v == self value.
            if self.isleaf():
                self.makeemptv()
            elif self.left.isempty():
                self.copyright()
            elif self.right.isempty():
                self.copyleft()
            else:
                self.value = self.left.maxval()
                self.left.delete(self.left.maxval())
            return
                           4 日 5 4 個 5 4 国 5 4 国 6 国 6
```



```
class Tree:
    def delete(self,v):
        if self.isempty():
            return
        if v < self.value:
            self.left.delete(v)
            return
        if v > self.value:
            self.right.delete(v)
            return
        if v == self value.
            if self.isleaf():
                self.makeemptv()
            elif self.left.isempty():
                self.copyright()
            elif self.right.isempty():
                self.copyleft()
            else:
                self.value = self.left.maxval()
                self.left.delete(self.left.maxval())
            return
                           4 日 5 4 個 5 4 国 5 4 国 6 国 6
```



```
class Tree:
    def delete(self,v):
        if self.isempty():
            return
        if v < self.value:
            self.left.delete(v)
            return
        if v > self.value:
            self.right.delete(v)
            return
        if v == self value.
            if self.isleaf():
                self.makeemptv()
            elif self.left.isempty():
                self.copyright()
            elif self.right.isempty():
                self.copyleft()
            else:
                self.value = self.left.maxval()
                self.left.delete(self.left.maxval())
            return
                           4 日 5 4 個 5 4 国 5 4 国 6 国 6
```



```
class Tree:
    def delete(self,v):
        if self.isempty():
            return
        if v < self.value:
            self.left.delete(v)
            return
        if v > self.value:
            self.right.delete(v)
            return
        if v == self value.
            if self.isleaf():
                self.makeemptv()
            elif self.left.isempty():
                self.copyright()
            elif self.right.isempty():
                self.copyleft()
            else:
                self.value = self.left.maxval()
                self.left.delete(self.left.maxval())
            return
                           4 日 5 4 個 5 4 国 5 4 国 6 国 6
```

```
class Tree:
                                                         # Convert leaf node to empty node
   def delete(self, v):
                                                         def makeempty(self):
        if self.isempty():
                                                             self.value = None
            return
                                                             self.left = None
        if v < self value.
                                                             self.right = None
            self.left.delete(v)
                                                             return
            return
        if v > self.value:
                                                         # Promote left child
            self.right.delete(v)
                                                         def copyleft(self):
            return
                                                             self.value = self.left.value
        if w == self value.
                                                             self.right = self.left.right
            if self.isleaf():
                                                             self.left = self.left.left
                self.makeemptv()
                                                             return
            elif self.left.isempty():
                self.copyright()
                                                         # Promote right child
            elif self.right.isempty():
                                                         def copyright(self):
                self.copyleft()
                                                             self.value = self.right.value
            else:
                                                             self.left = self.right.left
                self.value = self.left.maxval()
                                                             self.right = self.right.right
                self.left.delete(self.left.maxval())
                                                             return
            return
```

Complexity

- find(), insert() and delete() all walk down a single path
- Worst-case: height of the tree
- An unbalanced tree with n nodes may have height O(n)
- Balanced trees have height $O(\log n)$
- Will see how to keep a tree balanced to ensure all operations remain $O(\log n)$

13 / 13

Madhavan Mukund Search Trees PDSA using Python Week 6