Лабораторная работа 8

Модель TCP/AQM

Клюкин Михаил Александрович

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы 3.1 Реализация модели в xcos	7 7 10
4	Выводы	12
Сп	исок литературы	13

Список иллюстраций

3.1	Установка контекста	7
3.2	Модель TCP/AQM в xcos	8
3.3	Изменение размера окна и размера очереди	8
3.4	Фазовый портрет (W, Q)	9
3.5	Изменение размера окна и размера очереди при $C=0.9$	9
3.6	Фазовый портрет (W, Q) при $C=0.9$	10
3.7	Изменение размера окна и размера очереди в OpenModelica	11
3.8	Фазовый портрет в OpenModelica	11

Список таблиц

1 Цель работы

Реализовать модель TCP/AQM в xcos и OpenModelica.

2 Задание

- 1. Построить модель TCP/AQM в xcos.
- 2. Построить графики изменения размера TCP окна W(t) и размера очереди Q(t).
- 3. Построить модель TCP/AQM в OpenModelica.

3 Выполнение лабораторной работы

3.1 Реализация модели в хсоѕ

Задали переменные окружения N=1, R=1, K=5.3, C=1, W(0)=0.1, Q(0)=1 (рис. 3.1).

Рис. 3.1: Установка контекста

Реализовали саму модель TCP/AQM, используя блоки суммирования, интегрирования, произведения, констант, мультиплексера, регистрирующие устройства, задержки (рис. 3.2).

Рис. 3.2: Модель TCP/AQM в xcos

В результате получили графики изменения размера окна W(t) (зеленая линия) и размера очереди Q(t) (черная линия) (рис. 3.3).

Рис. 3.3: Изменение размера окна и размера очереди

А также получили фазовый портрет, который показывает наличие автоколебаний параметров системы (рис. 3.4).

Рис. 3.4: Фазовый портрет (W, Q)

Уменьшили скорость обработки пакетов до C до 0.9. И получили более выраженные автоколебания (рис. 3.5, 3.6).

Рис. 3.5: Изменение размера окна и размера очереди при C=0.9

Рис. 3.6: Фазовый портрет (W, Q) при C=0.9

3.2 Реализация модели в OpenModelica

Задали начальные значения, параметры и систему уравнений.

```
parameter Real N=1;
parameter Real R=1;
parameter Real K=5.3;
parameter Real C=1;

Real W(start=0.1);
Real Q(start=1);

equation

der(W) = 1/R - W*delay(W, R)/(2*R)*K*delay(Q, R);
der(Q) = if (Q==0) then max(N*W/R-C,0) else (N*W/R-C);
```

Выполнили симуляцию и получили графики изменения размера окна W(t) и

размера очереди Q(t) (рис. 3.7).

Рис. 3.7: Изменение размера окна и размера очереди в OpenModelica

Также получили фазовый портрет (рис. 3.8).

Рис. 3.8: Фазовый портрет в OpenModelica

4 Выводы

В процессе выполнения лабораторной работы реализовали модель TCP/AQM в xcos и OpenModelica.

Список литературы