Примеры решения задач линейного программирования симплекс-методом

Александр Катруца

Здесь использованы материалы из книги [1].

1. Задача 1

Решить задачу табличным симплекс методом:

$$\min_{\mathbf{x}} -10x_1 - 12x_2 - 12x_3$$
s.t. $x_1 + 2x_2 + 2x_3 \le 20$
 $2x_2 + x_2 + 2x_3 \le 20$
 $2x_1 + 2x_2 + x_3 \le 20$
 $x_{1,2,3} \ge 0$

Решение: по виду задачи ясно, что она не в канонической форме. Введём дополнительные переменные и запишем её в канонической форме:

$$\min_{\mathbf{x}} -10x_1 - 12x_2 - 12x_3$$
s.t. $x_1 + 2x_2 + 2x_3 + x_4 = 20$
 $2x_2 + x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + x_3 + x_6 = 20$
 $x_{1,2,3,4,5,6} \ge 0$

Заметим, что матрица $\mathbf{A} \in \mathbb{R}^{m \times n}$, где m=3 и n=6. Теперь нужно найти угловую точку допустимого множества, то есть такую точку, чтобы она лежала в множестве и существовало множество индексов $\mathcal{B} \subset \{1,\dots,n\}$ мощностью $|\mathcal{B}|=m=3$, что матрица из столбцов матрицы \mathbf{A} с индексами из множества \mathcal{B} была невырождена, и координаты угловой точки с индексами не из множества \mathcal{B} были нулевыми. В данном случае достаточно очевидно, что $\mathbf{x}_0=(0,0,0,20,20,20),\,\mathcal{B}_0=\{4,5,6\}$ и матрица базиса $\mathbf{B}_0=\mathbf{I}_m$ — невырождена. Если начальная угловая точка не так очевидна, необходимо выполнить двухфазный симплекс-метод или М-метод. Такой пример будет приведён ниже.

Теперь составим таблицу 1 симплекс-метода, модифицируя которую получим решение поставленной задачи. Столбцы этой таблицы соответствуют столбцам матрицы **A**. Последние m=3 строк соответствуют базисным переменным с индексами из множества \mathcal{B}_0 . В m+1 строке с конца расположены оценки замещения для каждой переменной x_i , а в первом столбце отрицательное значение целевой функции.

Таблица 1: Первоначальная таблица симплекс-метода

	x_1	x_2	x_3	x_4	x_5	x_6
$-\mathbf{c}_{\mathcal{B}_0}^{\top}\mathbf{x}_{\mathcal{B}_0} = 0$	-10	-12	-12	0	0	0
$x_4 = 20$	1	2	2	1	0	0
$x_5 = 20$	2	1	2	0	1	0
$x_6 = 20$	2	2	1	0	0	1

Выберем столбец, оценка замещения которого отрицательна и индекс котрого минимален. Поэтому $j^*=1$. Тогда $\mathbf{u}=\mathbf{B}_0^{-1}\mathbf{a}_1=\mathbf{a}_1$. Так как $u_i>0$ для $i=\in\{1,2,3\}$, то $\theta^*=10$ и $\ell\in\{5,6\}$. В соответствии с правилом Бранда выберем $\ell=5$. Таким образом, выбран ведущий элемент равный 2, он выделен жирным в таблице 1.

Далее с помощью элементарных преобразований получим базисную матрицу для новой угловой точки с базисом $\mathcal{B}_1 = \{4, 1, 6\}$. Прежде всего покажем, как изменится значение целевой функции. Для этого элементарным преобразованием занулим оценку замещения, соответствующую x_1 .

Таблица 2: Таблица симплекс-метода после первой итерации

	x_1	x_2	x_3	x_4	x_5	x_6
$-\mathbf{c}_{\mathcal{B}_1}^{T}\mathbf{x}_{\mathcal{B}_1} = 100$	0	-7	-2	0	5	0
$x_4 = 10$	0	1.5	1	1	-0.5	0
$x_1 = 10$	1	0.5	1	0	0.5	0
$x_6 = 0$	0	1	-1	0	-1	1

Далее выбираем столбец x_2 , поскольку оценка замещения отрицательная и индекс минимален (2 < 3). Аналогично предыдущей итерации $u = \mathbf{a}_2$ и $\theta^* = 0$ при $\ell = 6$. Таким образом, заменяем x_6 на x_2 и ведущий элемент равен 1 (выделен жирным). Заметим, что текущее решение является вырожденным, так как $x_6 = 0$. Поэтому значение целевой функции не меняется при смене базиса. Зануляем оценку замещения для x_2 и строки в столбце x_2 кроме строки с ведущим элементом. Получили таблицу 3.

Таблица 3: Таблица симплекс-метода после второй итерации

	x_1	x_2	x_3			x_6
$-\mathbf{c}_{\mathcal{B}_1}^{T}\mathbf{x}_{\mathcal{B}_1} = 100$	0	0	- 9	0	-2	7
$x_4 = 10$	0	0	2.5	1	1	-1.5
$x_1 = 10$	1	0	1.5	0	1	-0.5
$x_2 = 0$	0	1	-1	0	-1	1

Далее выбираем стобец x_3 , так как его индекс минимален среди столбцов с отрицательной оценкой замещения. Аналогично предыдущей итерации $\mathbf{u} = \mathbf{a}_3$ и $\theta^* = \frac{x_4}{u_1} = 4$ для $\ell = 4$. Таким образом, заменяем x_4 на x_3 . Получим следующую таблицу 4.

Поскольку все оценки замещения неотрицательны, то решение найдено и оно является оптимальным. Найденное решение соответствует $(x_1, x_2, x_3) = (4, 4, 4)$ и находится в первом столбце и последних m = 3 строках. В первом столбце и m + 1 строке с конца находится отрицательное значение значения целевой функции, то есть оптимальное значение равно -136. Знаки — в ячейках таблицы означают, что значения в этих ячейках неважны и их можно не считать.

Таблица 4: Таблица симплекс-метода после третьей итерации

	x_1	x_2	x_3	x_4	x_5	x_6
$-\mathbf{c}_{\mathcal{B}_1}^{T}\mathbf{x}_{\mathcal{B}_1} = 136$	0	0	0	3.6	1.6	1.6
$x_3 = 4$	0	0	1	0.4	0.4	-0.6
$x_1 = 4$	1	0	0	_	_	_
$x_2 = 4$	0	1	0	0.4	-0.6	0.4

2. Задача 2

В этой задаче показано, что симплекс-метод может зациклиться, и как это зацикливание может быть преодолено с помощью правила Бранда. Здесь описание переходов от таблицы к таблице не будет описано столь подробно как в предыдущем примере, поскольку они полностью аналогичны. Ведущий элемент на каждой итерации будет выделен жирно.

$$\min_{\mathbf{x}} -\frac{3}{4}x_1 + 20x_2 - \frac{1}{2}x_3 + 6x_4$$
s.t.
$$\frac{1}{4}x_1 - 8x_2 - x_3 + 9x_4 \le 0$$

$$\frac{1}{2}x_2 - 12x_2 - \frac{1}{2}x_3 + 3x_4 \le 0$$

$$x_3 \le 1$$

$$x_{1,2,3,4} \ge 0$$

Преобразуем эту задачу к канонической форме:

$$\min_{\mathbf{x}} -\frac{3}{4}x_1 + 20x_2 - \frac{1}{2}x_3 + 6x_4$$
s.t.
$$\frac{1}{4}x_1 - 8x_2 - x_3 + 9x_4 + x_5 = 0$$

$$\frac{1}{2}x_2 - 12x_2 - \frac{1}{2}x_3 + 3x_4 + x_6 = 0$$

$$x_3 + x_7 = 1$$

$$x_{1,2,3,4,5,6,7} \ge 0$$

Аналогично предыдущему примеру начальная угловая точка $\mathbf{x}_0 = (0, 0, 0, 0, 0, 0, 0, 1)$. Ей соответствует таблица 5.

Таблица 5: Изначальная таблица симплекс-метода

	x_1	x_2	x_3	x_4	x_5	x_6	x_7
$-\mathbf{c}_{\mathcal{B}}^{T}\mathbf{x}_{\mathcal{B}}=0$	-3/4	20	-1/2	6	0	0	0
$x_5 = 0$	1/4	-8	-1	9	1	0	0
$x_6 = 0$	1/2	-12	-1/2	3	0	1	0
$x_7 = 1$	0	0	1	0	0	0	1

При проведении симплекс-метода индексы будем выбирать так:

- столбец ведущего элемета определяется минимальным значением оценки замещения
- ullet ведущий элемент определяется, как минимальный индекс, соответствующий $heta^*$

Таблица 6: Таблица симплекс-метода после первой итерации

	x_1	x_2	x_3	x_4	x_5		x_7
$-\mathbf{c}_{\mathcal{B}}^{T}\mathbf{x}_{\mathcal{B}}=0$	0	-4	-7/2	33	3	0	0
$x_1 = 0$	1	-32	-4	36	4	0	0
$x_6 = 0$	0	4	3/2	-15	-2	1	0
$x_7 = 1$	0	0	1	0	0	0	1

Таблица 7: Таблица симплекс-метода после второй итерации

	x_1	x_2	x_3	x_4	x_5	x_6	x_7
$-\mathbf{c}_{\mathcal{B}}^{T}\mathbf{x}_{\mathcal{B}}=0$	0	0	-2	18		1	0
$x_1 = 0$	1	0	8	-84	-12	8	0
$x_2 = 0$	0	1	3/8	-15/4	-1/2	1/4	0
$x_7 = 1$	0	0	1	0	0	0	1

Таблица 8: Таблица симплекс-метода после третьей итерации

	· · · · · · · · · · · · · · · · · · ·						
	x_1	x_2	x_3	x_4	x_5	x_6	x_7
$-\mathbf{c}_{\mathcal{B}}^{T}\mathbf{x}_{\mathcal{B}}=0$	1/4	0	0	-3	-2	3	0
$x_3 = 0$	1/8	0	1	-21/2	-3/2	1	0
$x_2 = 0$	-3/64	1	0	3/16	1/16	-1/8	0
$x_7 = 1$	-1/8	0	0	21/2	3/2	-1	1

Таблица 9: Таблица симплекс-метода после четвёртой итерации

	x_1	x_2	x_3	x_4	x_5	x_6	x_7
$-\mathbf{c}_{\mathcal{B}}^{T}\mathbf{x}_{\mathcal{B}}=0$	-1/2	16	0	0	-1	1	0
$x_3 = 0$	-5/2	56	1	0	2	-6	0
$x_4 = 0$	-1/4	16/3	0	1	1/3	-2/3	0
$x_7 = 1$	5/2	-56	0	0	-2	6	1

Таблица 10: Таблица симплекс-метода после пятой итерации

	x_1	x_2	x_3	x_4	x_5	x_6	x_7
$-\mathbf{c}_{\mathcal{B}}^{T}\mathbf{x}_{\mathcal{B}}=0$	-7/4	44	1/2	0	0	-2	0
$x_5 = 0$	-5/4	28	1/2	0	1	-3	0
$x_4 = 0$	1/6	-4	-1/6	1	0	1/3	0
$x_7 = 1$	0	0	1	0	0	0	1

Получили таблицу 11, в точности совпадающую с изначальной таблицей 5. Таким образом, следуя указанным правилам выбора ведущего элемента симплекс-метод никогда не остановится.

Таблица 11: Таблица симплекс-метода после шестой итерации

	x_1	x_2	x_3	x_4	x_5	x_6	x_7
$-\mathbf{c}_{\mathcal{B}}^{T}\mathbf{x}_{\mathcal{B}}=0$	-3/4	20	-1/2	6	0	0	0
$x_5 = 0$	1/4	-8	-1	9	1	0	0
$x_6 = 0$	1/2	-12	-1/2	3	0	1	0
$x_7 = 1$	0	0	1	0	0	0	1

2.1 Правило Бранда

Теперь проведём итерации симплекс-метода, используя правило Бранда для выбора ведущего элемента. Можно увидеть, что вплоть до таблицы 9 последовательность шагов совпадает. Поэтому рассмотрим таблицу 9 с точки зрения правила Бранда. В таблице 12 красным отмечен ведущий элемент, выбор которого привёл к зацикливанию, а синим — ведущрий элемент, выбранный по правилу Бранда. Покажем, что его использование приведёт к остановке симплекс-метода за конечное число шагов.

Таблица 12: Таблица симплекс-метода после четвёртой итерации

	x_1	x_2	x_3	x_4	x_5	x_6	x_7
$-\mathbf{c}_{\mathcal{B}}^{T}\mathbf{x}_{\mathcal{B}}=0$	-1/2	16	0	0	-1	1	0
$x_3 = 0$						-6	0
$x_4 = 0$	-1/4	16/3	0	1	1/3	-2/3	0
$x_7 = 1$	5/2	-56	0	0	-2	6	1

Таблица 13: Таблица симплекс-метода после пятой итерации по правилу Бранда

	x_1	x_2	x_3	x_4	x_5	x_6	x_7
$-\mathbf{c}_{\mathcal{B}}^{T}\mathbf{x}_{\mathcal{B}} = 1/5$	0	24/5	0	0	-7/5	11/5	1/5
$x_3 = 1$	0	0	1		0		1
$x_4 = 1/10$	0	-4/15	0	1	2 / 15	-1/15	1/10
$x_1 = 2/5$	1	-112/5	0	0	-4/5	12/5	2/5

Таблица 14: Таблица симплекс-метода после шестой итерации по правилу Бранда

	x_1	x_2	x_3	x_4	x_5	x_6	x_7
$-\mathbf{c}_{\mathcal{B}}^{T}\mathbf{x}_{\mathcal{B}} = 5/4$	0	2	0	21/2	0	3/2	5/4
$x_3 = 1$	0	0	1	0	0	0	1
$x_5 = 3/5$	0	-8/5	0	6	4/5	-2/5	3/5
$x_1 = 1$	1	-24	0	6	0	2	1

Видно, что все оценки замещения неотрицательны, следовательны найдено решение исходной задачи: $\mathbf{x}^* = (1,0,1,0)$ и $f^* = -\frac{5}{4}$.

Список литературы

[1] Dimitris Bertsimas and John N. Tsitsiklis. *Introduction to linear optimization*, Belmont, MA: Athena Scientific, 1997, 5th edition