Điện thoại: 0946798489

BÀI 1. DÃY SỐ

- CHƯƠNG 2. DÃY SỐ CẤP SỐ CỘNG CẤP SỐ NHÂN
- | FanPage: Nguyễn Bảo Vương

PHẦN B. BÀI TẬP TỰ LUẬN (PHÂN DẠNG)

Dạng 1. Tìm số hạng của dãy số

Bài toán 1: Cho dãy số (u_n) : $u_n = f(n)$ (trong đó f(n) là một biểu thức của n). Hãy tìm số hạng u_k .

+ **Phương pháp:** Thay trực tiếp n = k vào u_n .

Bài toán 2: Cho dãy số (u_n) cho bởi $\begin{cases} u_1 = a \\ u_{n+1} = f(u_n) \end{cases}$ (với $f(u_n)$ là một biểu thức của u_n). Hãy tìm số hạng u_k .

+**Phương pháp:** Tính lần lượt $u_2; u_3; ...; u_k$ bằng cách thế u_1 vào u_2 , thế u_2 vào u_3 , ..., thế u_{k-1} vào u_{k+1} .

Bài toán 3: Cho dãy số (u_n) cho bởi $\begin{cases} u_1 = a, u_2 = b \\ u_{n+2} = c.u_{n+1} + d.u_n + e \end{cases}$. Hãy tìm số hạng u_k .

+**Phương pháp:** Tính lần lượt $u_3; u_4; ...; u_k$ bằng cách thế u_1, u_2 vào $u_3;$ thế u_2, u_3 vào $u_4; ...;$ thế u_{k-2}, u_{k-1} vào u_k .

Bài toán 4: Cho dãy số (u_n) cho bởi $\begin{cases} u_1 = a \\ u_{n+1} = f(\{n, u_n\}) \end{cases}$. Trong đó $f(\{n, u_n\})$ là kí hiệu của biểu thức u_{n+1} tính theo u_n và n. Hãy tìm số hạng u_k .

+**Phương pháp:** Tính lần lượt $u_2; u_3; ...; u_k$ bằng cách thế $\{1, u_1\}$ vào u_2 ; thế $\{2, u_2\}$ vào u_3 ; ...; thế $\{k-1, u_{k-1}\}$ vào u_k .

Câu 1. (SGK_CTST 11-Tập 1) Cho hàm số:

$$v:\{1;2;3;4;5\} \rightarrow \mathbb{R}$$

$$n \mapsto v(n) = 2n$$
.

Tính v(1), v(2), v(3), v(4), v(5).

Lời giải

$$v(1) = 2.1 = 2$$

$$v(2) = 2.2 = 4$$

$$v(3) = 2.3 = 6$$

$$v(4) = 2.4 = 8$$

$$v(5) = 2.5 = 10$$

Câu 2. (SGK CTST 11-Tập 1) Cho dãy số:

$$u:\mathbb{N}^* \to \mathbb{R}$$

$$n \mapsto u_n = n^3$$
.

- a) Hãy cho biết dãy số trên là hữu hạn hay vô hạn.
- b) Viết năm số hạng đầu tiên của dãy số đã cho.

Lời giải

$$u_1 = 1^3 = 1$$

$$u_2 = 2^3 = 8$$

$$u_3 = 3^3 = 27$$

$$u_4 = 4^3 = 64$$

$$u_5 = 5^3 = 125$$

Câu 3. (SGK CTST 11-Tập 1) Cho 5 hình tròn theo thứ tự có bán kính 1;2;3;4;5.

- a) Viết dãy số chỉ diện tích của 5 hình tròn này.
- b) Tìm số hạng đầu và số hạng cuối của dãy số trên.

a)
$$s:1;2;3;4;5 \to \mathbb{R}$$

$$n \mapsto s(n) = \pi n^2$$

b)
$$s(1) = \pi . 1^2 = \pi$$

$$s(5) = \pi.5^2 = 25\pi$$

Câu 4. Cho dãy số
$$(u_n)$$
 biết $u_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$. Tìm số hạng u_6 .

Lời giải

Thế trực tiếp:
$$u_6 = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^6 - \left(\frac{1 - \sqrt{5}}{2} \right)^6 \right] = 8.$$

Câu 5. Cho dãy số
$$(u_n)$$
 có số hạng tổng quát $u_n = \frac{2n+1}{n+2}$. Số $\frac{167}{84}$ là số hạng thứ mấy?

Lời giải

Giả sử
$$u_n = \frac{167}{84} \Leftrightarrow \frac{2n+1}{n+2} = \frac{167}{84} \Leftrightarrow 84(2n+1) = 167(n+2) \Leftrightarrow n = 250$$
.

Vậy
$$\frac{167}{84}$$
 là số hạng thứ 250 của dãy số (u_n) .

Câu 6. Cho dãy số
$$(u_n)$$
 biết
$$\begin{cases} u_1 = 1 \\ u_{n+1} = \frac{u_n + 2}{u_n + 1} \end{cases}$$
. Tìm số hạng u_{10} .

$$u_2 = \frac{u_1 + 2}{u_1 + 1} = \frac{1 + 2}{1 + 1} = \frac{3}{2}; \qquad u_3 = \frac{u_2 + 2}{u_2 + 1} = \frac{\frac{3}{2} + 2}{\frac{3}{2} + 1} = \frac{7}{5}; \qquad u_4 = \frac{u_3 + 2}{u_3 + 1} = \frac{\frac{7}{5} + 2}{\frac{7}{5} + 1} = \frac{17}{12};$$

$$u_5 = \frac{u_4 + 2}{u_4 + 1} = \frac{\frac{17}{12} + 2}{\frac{17}{12} + 1} = \frac{41}{29} \; ; \; u_6 = \frac{u_5 + 2}{u_5 + 1} = \frac{\frac{41}{29} + 2}{\frac{41}{29} + 1} = \frac{99}{70} \; ; \; u_7 = \frac{u_6 + 2}{u_6 + 1} = \frac{\frac{99}{70} + 2}{\frac{99}{70} + 1} = \frac{239}{169}$$

$$u_8 = \frac{u_7 + 2}{u_7 + 1} = \frac{\frac{239}{169} + 2}{\frac{239}{169} + 1} = \frac{577}{408} \; ; \; u_9 = \frac{u_8 + 2}{u_8 + 1} = \frac{\frac{577}{408} + 2}{\frac{577}{408} + 1} = \frac{1393}{985} \; ; \; u_{10} = \frac{u_9 + 2}{u_9 + 1} = \frac{\frac{1393}{985} + 2}{\frac{1393}{985} + 1} = \frac{3363}{2378}$$

Câu 7. Cho dãy số (u_n) được xác định như sau: $\begin{cases} u_1 = 1 \\ u_{n+1} = u_n + 2 \end{cases}$. Tìm số hạng u_{50} .

Lời giải

Từ giả thiết ta có:

$$u_1 = 1$$

$$u_2 = u_1 + 2$$

$$u_3 = u_2 + 2$$

...

$$u_{50} = u_{49} + 2$$

Cộng theo vế các đẳng thức trên, ta được:

$$u_{50} = 1 + 2.49 = 99$$

Câu 8. Cho dãy số (u_n) được xác định như sau: $\begin{cases} u_1 = 1; u_2 = 2 \\ u_{n+2} = 2u_{n+1} + 3u_n + 5 \end{cases}$. Tìm số hạng u_8 .

Lời giải

$$u_3 = 2u_2 + 3u_1 + 5 = 12$$
 $u_4 = 2u_3 + 3u_2 + 5 = 35$ $u_5 = 2u_4 + 3u_3 + 5 = 111$
 $u_6 = 2u_5 + 3u_4 + 5 = 332$ $u_7 = 2u_6 + 3u_5 + 5 = 1002$ $u_8 = 2u_7 + 3u_6 + 5 = 3005$

Câu 9. Cho dãy số (u_n) được xác định như sau: $\begin{cases} u_1 = 0 \\ u_{n+1} = \frac{n}{n+1} (u_n + 1) \end{cases}$. Tìm số hạng u_{11} .

Lời giải

$$u_{2} = \frac{1}{2}(u_{1} + 1) = \frac{1}{2} \quad u_{3} = \frac{2}{3}(u_{2} + 1) = 1 \quad u_{4} = \frac{3}{4}(u_{3} + 1) = \frac{3}{2} \quad u_{5} = \frac{4}{5}(u_{4} + 1) = 2$$

$$u_{6} = \frac{5}{6}(u_{5} + 1) = \frac{5}{2} \quad u_{7} = \frac{6}{7}(u_{6} + 1) = 3 \quad u_{8} = \frac{7}{8}(u_{7} + 1) = \frac{7}{2} \quad u_{9} = \frac{8}{9}(u_{8} + 1) = 4$$

$$u_{10} = \frac{9}{10}(u_{9} + 1) = \frac{9}{2} \quad u_{11} = \frac{10}{11}(u_{10} + 1) = 5$$

Câu 10. Cho dãy số (u_n) được xác định bởi: $\begin{cases} u_1 = \frac{1}{2} \\ u_{n+1} = u_n + 2n \end{cases}$. Tìm số hạng u_{50} .

Lời giải

Từ giả thiết ta có:

$$u_1 = \frac{1}{2}$$

$$u_2 = u_1 + 2.2$$

$$u_3 = u_2 + 2.3$$

...

$$u_{50} = u_{49} + 2.50$$

Cộng theo vế các đẳng thức trên, ta được:

$$u_{50} = \frac{1}{2} + 2.(2 + 3 + ... + 50) = \frac{1}{2} + 2.\sum_{x=2}^{50} x = 2548,5$$

Dạng 2. Xác định công thức của dãy số (un)

Ta có thể lựa chọn một trong các cách sau:

Cách 1. Sử dụng biến đổi đại số để thu gọn và đơn giản biểu thức của u_n

Cách 2. Sử dụng phương pháp quy nạp bằng việc thực hiện theo các bước sau:

Bước 1. Viết một vài số hạng đầu của dãy, từ đó dự đoán công thức cho u_n

Bước 2. Chứng minh công thức dự đoán bằng phương pháp quy nạp

Câu 11. (SGK_CTST 11-Tập 1) Cho dãy số
$$(u_n)$$
 xác định bởi:
$$\begin{cases} u_1 = 3 \\ u_{n+1} = 2u_n \end{cases} (n \ge 1).$$

- a) Chứng minh $u_2 = 2.3; u_3 = 2^2 \cdot 3; u_4 = 2^3.3$.
- b) Dự đoán công thức số hạng tổng quát của dãy số (u_n) .

Lời giải

a)
$$u_2 = 2 \cdot u_1 = 2.3$$

$$u_3 = 2.u_2 = 2.2.3 = 2^2.3$$

$$u_4 = 2.u_3 = 2.2^2.3 = 2^3.3$$

b)
$$u_n = 2^{n-1} \cdot 3$$

Câu 12. (SGK_CTST 11-Tập 1) Một chồng cột gỗ được xếp thành các lớp, hai lớp liên tiếp hơn kém nhau 1 cột gỗ (Hình 1). Gọi u_n là số cột gỗ nằm ở lớp thứ n tính từ trên xuống và cho biết lớp trên cùng có 14 cột gỗ. Hãy xác định dãy số (u_n) bằng hai cách:

- a) Viết công thức số hạng tổng quát u_n .
- b) Viết hệ thức truy hồi.

Lời giải

a)
$$u_n = 13 + n$$

b)
$$\begin{cases} u_1 = 14 \\ u_n = u_{n-1} + 1 \end{cases}$$

Câu 13. (SGK_CTST 11-Tập 1) Tìm u_2, u_3 và dự đoán công thức số hạng tổng quát u_n của dãy số:

$$\begin{cases} u_1 = 1 \\ u_{n+1} = \frac{u_n}{1 + u_n} & (n \ge 1). \end{cases}$$

$$u_2 = \frac{1}{2}; u_3 = \frac{1}{3}$$

$$u_n = \frac{1}{n}$$

 Diện thoại: 0946798489
 TOÁN 11-CHÂN TRỜI SÁNG TẠO

 Câu 14. (SGK_CTST 11-Tập 1) Cho dãy số (u_n) với $u_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + ... + \frac{1}{n(n+1)}$. Tìm u_1, u_2, u_3 và dự

đoán công thức số hạng tổng quát u_n .

Lời giải

$$u_1 = \frac{1}{2}; u_2 = \frac{2}{3}; u_3 = \frac{3}{4}$$

$$u_n = \frac{n}{n+1}$$

Câu 15. (SGK CTST 11-Tập 1) Trên lưới ô vuông, mỗi ô cạnh 1 đơn vị, người ta vẽ 8 hình vuông và tô màu khác nhau như Hình 3. Tìm dãy số biểu diễn độ dài cạnh của 8 hình vuông đó từ nhỏ đến lớn. Có nhận xét gì về dãy số trên?

Lời giải

$$u_1 = 1; u_2 = 1; u_3 = 2; u_4 = 3; u_5 = 5; u_6 = 8; u_7 = 13; u_8 = 2$$

$$u_1 = 1$$

Ta có dãy số
$$(u_n)$$
:
$$\begin{cases} u_1 = 1 \\ u_2 = 1 \\ u_n = u_{n-1} + u_{n-2} \end{cases}$$

Câu 16. Tìm 5 số hạng đầu và tìm công thức tính số hạng tổng quát u_n theo n của các dãy số sau :

a).
$$\begin{cases} u_1 = 3 \\ u_{n+1} = u_n + 2 \end{cases}$$

b).
$$\begin{cases} u_1 = 2 \\ u_{n+1} = 2u_n. \end{cases}$$

Lời giải

a).
$$\begin{cases} u_1 = 3 \\ u_{n+1} = u_n + 2 \end{cases}$$

$$u_2 = u_1 + 2 = 3 + 2 = 5.$$

$$u_3 = u_2 + 2 = 5 + 2 = 7.$$

$$u_4 = u_3 + 2 = 7 + 2 = 9$$
.

$$u_5 = u_4 + 2 = 9 + 2 = 11.$$

Từ các số hạng đầu trên, ta dự đoán số hạng tổng quát u_n có dạng:

$$u_n = 2n + 1 \quad \forall n \ge 1(*)$$

Ta dùng phương pháp chứng minh quy nạp để chứng minh công thức (*) đúng.

Với
$$n=1; u_1=2.1+1=3$$
 (đúng). Vậy (*) đúng với $n=1$.

Giả sử (*) đúng với
$$n = k$$
. Có nghĩa ta có: $u_k = 2k + 1$ (2)

Ta cần chứng minh (*) đúng với n = k + 1. Có nghĩa là ta phải chứng minh:

$$u_{k+1} = 2(k+1)+1=2k+3.$$

Thật vậy từ hệ thức xác định dãy số và theo (2) ta có:

$$u_{k+1} = u_k + 2 = 2k + 1 + 2 = 2k + 3.$$

Vậy (*) đúng khi n = k + 1. Kết luận (*) đúng với mọi số nguyên dương n.

b).
$$\begin{cases} u_1 = 2 \\ u_{n+1} = 2u_n. \end{cases}$$

Ta có:

$$u_2 = 2u_1 = 2.2 = 4 = 2^2$$

$$u_3 = 2u_2 = 2.4 = 8 = 2^3$$

$$u_4 = 2u_3 = 2.8 = 16 = 2^4$$

$$u_5 = 2u_4 = 2.16 = 32 = 2^5$$

Từ các số hạng đầu tiên, ta dự đoán số hạng tổng quát u_n có dạng: $u_n = 2^n \forall n \ge 1$ (*)

Ta dùng phương pháp chứng minh quy nạp để chứng minh cộng thức (*) đúng.

Với
$$n = 1$$
, có: $u_1 = 2^1 = 2$ (đúng). Vậy (*) đúng với $n = 1$

Giả sử (*) đúng với
$$n = k$$
, có nghĩa ta có: $u_k = 2^k$ (2)

Ta cần chứng minh (*) đúng với n = k + 1. Có nghĩa là ta phải chứng minh:

$$u_{k+1} = 2^{k+1}$$
.

Thật vậy từ hệ thức xác định dãy số và theo (2) ta có:

$$u_{k+1} = 2.u_k = 2.2^k = 2^{k+1}.$$

Vậy (*) đúng với n = k + 1. Kết luận (*) đúng với mọi số nguyên dương n.

- **Câu 17.** Dãy số (u_n) được xác định bằng cộng thức: $\begin{cases} u_1 = 1 \\ u_{n+1} = u_n + n^3 \end{cases} \forall n \ge 1.$
 - a). Tìm công thức của số hạng tổng quát.
 - b). Tính số hạng thứ 100 của dãy số.

Lời giải

a). Ta có:
$$u_{n+1} = u_n + n^3 \Rightarrow u_{n+1} - u_n = n^3$$
.

Từ đó suy ra:

$$u_1 = 1$$

$$u_2 - u_1 = 1^3$$

$$u_3 - u_2 = 2^3$$

$$u_4 - u_3 = 3^3$$

•••••

$$u_{n-1} - u_{n-2} = (n-2)^3$$

$$u_n - u_{n-1} = (n-1)^3$$

Cộng từng vế n đẳng thức trên:

$$u_1 + u_2 - u_1 + u_3 - u_2 + \dots + u_{n-1} - u_{n-2} + u_n - u_{n-1} = 1 + 1^3 + 2^3 + 3^3 + \dots + \left(n - 2\right)^3 + \left(n - 1\right)^3$$

$$\Leftrightarrow u_n = 1 + 1^3 + 2^3 + 3^3 + \dots + (n-2)^3 + (n-1)^3.$$

Bằng phương pháp quy nạp ta chứng minh được: $1^3 + 2^3 + 3^3 + ... + (n-1)^3 = \frac{(n-1)^2 \cdot n^2}{4}$

Vậy
$$u_n = 1 + \frac{n^2 (n-1)^2}{4}$$

b).
$$u_{100} = 1 + \frac{100^2 \cdot .99^2}{4} = 24502501$$
.

Câu 18. Cho dãy số (u_n) xác định bởi: $u_1 = 2$ và $u_{n+1} = 5u_n$ với mọi $n \ge 1$.

- a). Hãy tính u_2, u_4 và u_6 .
- b). Chứng minh rằng $u_n = 2.5^{n-1}$ với mọi $n \ge 1$.

Lời giải

$$u_2 = 5u_1 = 5.2 = 10.$$

$$u_3 = 5.u_2 = 5.10 = 50.$$

$$u_4 = 5.u_3 = 5.50 = 250.$$

$$u_5 = 5.u_4 = 5.250 = 1250.$$

$$u_6 = 5.u_5 = 5.1250 = 6250.$$

b). Ta sẽ chứng minh: $u_n = 2.5^{n-1}$ (1) với mọi $n \ge 1$, bằng phương pháp quy nạp

Với
$$n = 1$$
, ta có: $u_1 = 2.5^0 = 2$ (đúng). Vậy (1) đúng với $n = 1$.

Giả sử (1) đúng với
$$n = k(k \in N^*)$$
. Có nghĩa là ta có: $u_k = 2.5^{k-1}$.

Ta phải chứng minh (1) đúng với n = k + 1.

Có nghĩa ta phải chứng minh: $u_{k+1} = 2.5^k$.

Từ hệ thức xác định dãy số: (u_n) và giả thiết quy nạp ta có:

$$u_{k+1} = 5.u_k = 2.5^{k-1}.5 = 2.5^k$$
 (đpcm).

Câu 19. Cho dãy số (u_n) xác định bởi: $u_1 = 1$ và $u_{n+1} = u_n + 7$ với mọi $n \ge 1$

- a) Hãy tính u_2, u_4 và u_6 .
- b) Chứng minh rằng: $u_n = 7n 6$ (1) với mọi $n \ge 1$

$$u_2 = u_1 + 7 = 1 + 7 = 8.$$

$$u_2 = u_2 + 7 = 8 + 7 = 15.$$

$$u_4 = u_2 + 7 = 15 + 7 = 22.$$

$$u_5 = u_4 + 7 = 22 + 7 = 29.$$

$$u_6 = u_5 + 7 = 29 + 7 = 36.$$

b). Với n = 1, ta có: $u_1 = 7.1 - 6 = 1$ (đúng). Vậy (1) đúng với n = 1.

Giả sử (1) đúng với $n = k(k \in N^*)$. Có nghĩa là ta có: $u_k = 7k - 6$.

Ta phải chứng minh (1) đúng với n = k + 1. Có nghĩa ta phải chứng minh:

$$u_{k+1} = 7(k+1) - 6.$$

Từ hệ thức xác định dãy số (u_n) và giả thiết quy nạp ta có:

$$u_{k+1} = u_k + 7 = (7k - 6) + 7 = 7(k+1) - 6$$
 (đúng).

Câu 20. Cho dãy số (u_n) với $u_1 = 1$ và $u_{n+1} = 3u_n + 10$ với mọi $n \ge 1$.

Chứng minh rằng: $u_n = 2.3^n - 5 \quad \forall n \ge 1$.

Lời giải

Ta sẽ chứng minh $u_n = 2.3^n - 5$ (1) bằng phương pháp quy nạp.

Với
$$n = 1$$
, ta có: $u_1 = 2.3^1 - 1 = 1$ (đúng). Vậy (1) đúng với $n = 1$.

Giả sử (1) đúng với
$$n = k(k \in N^*)$$
. Có nghĩa là ta có: $u_k = 2.3^k - 5$ (2)

Ta phải chứng minh (1) đúng với n = k + 1. Có nghĩa ta phải chứng minh:

$$u_{n+1} = 2.3^{k+1} - 5.$$

Từ hệ thức xác định dãy số (u_n) và từ (2) ta có:

$$u_{k+1} = 3u_k + 10 = 3.(2.3^k - 5) + 10 = 2.3^k \cdot 3 - 15 + 10 = 2.3^{k+1} - 5$$
 (dpcm).

Câu 21. Cho dãy số (u_n) , biết $u_1 = 3, u_{n+1} = \sqrt{1 + u_n^2}$ với $n \ge 1, n \in \mathbb{N}$

- a). Viết năm số hạng đầu tiên của dãy số.
- b). Dự đoán công thức số hạng tổng quát u_n và chứng minh bằng phương pháp quy nạp.

Lời giải

$$u_2 = \sqrt{1 + u_1^2} = \sqrt{10}$$

$$u_3 = \sqrt{1 + u_2^2} = \sqrt{11}$$

$$u_4 = \sqrt{1 + u_3^2} = \sqrt{12}$$

$$u_5 = \sqrt{1 + u_4^2} = \sqrt{13}$$

b). Ta có:
$$u_1 = \sqrt{1+8}, u_2 = \sqrt{2+8}, u_3 = \sqrt{3+8}, u_4 = \sqrt{4+8}, u_5 = \sqrt{5+8}$$
.

Ta dự đoán $u_n = \sqrt{n+8}$ (1)

Với
$$n = 1$$
, có: $u_1 = \sqrt{1+8} = 3$ (đúng). Vậy (1) đúng với $n = 1$

Giả sử (1) đúng với
$$n = k$$
, có nghĩa ta có: $u_k = \sqrt{k+8}$ (2)

Ta cần chứng minh (1) đúng với n = k + 1. Có nghĩa là ta phải chứng minh:

$$u_{k+1} = \sqrt{k+9}$$

Thật vậy từ hệ thức xác định dãy số và theo (2) ta có:

$$u_{k+1} = \sqrt{1 + u_k^2} = \sqrt{1 + (\sqrt{k+8})^2} = \sqrt{k+9}$$

Vậy (1) đúng với n = k + 1. Kết luận (*) đúng với mọi số nguyên dương n.

Câu 22. Tìm 5 số hạng đầu và tìm công thức tính số hạng tổng quát u_n theo n của các dãy số sau :

a).
$$\begin{cases} u_1 = 1 \\ u_{n+1} = \frac{u_n}{1 + u_n} \end{cases}, \forall n \in \mathbb{N}^* \text{ b). } \begin{cases} u_1 = -1 \\ u_{n+1} = u_n + 3 \end{cases} \text{ v\'oi } n \ge 1, n \in \mathbb{N}$$

Lời giải

a). Ta có:

$$u_2 = \frac{u_1}{1 + u_1} = \frac{1}{1 + 1} = \frac{1}{2}$$
. $u_3 = \frac{u_2}{1 + u_2} = \frac{\frac{1}{2}}{1 + \frac{1}{2}} = \frac{1}{3}$.

$$u_4 = \frac{u_3}{1 + u_3} = \frac{\frac{1}{3}}{1 + \frac{1}{3}} = \frac{1}{4}. \quad u_5 = \frac{u_4}{1 + u_4} = \frac{\frac{1}{4}}{1 + \frac{1}{4}} = \frac{1}{5}.$$

Từ các số hạng đầu trên, ta dự đoán số hạng tổng quát u_n có dạng: $u_n = \frac{1}{n}, \forall n \ge 1. (*)$

Ta dùng phương pháp quy nạp để chứng minh công thức (*)

Đã có: (*) đúng với n = 1

Giả sử (*) đúng khi n = k. Nghĩa là ta có: $u_k = \frac{1}{k}$

Ta chứng minh (*) đúng khi n = k + 1. Nghĩa là ta phải chứng minh: $u_{k+1} = \frac{1}{k+1}$.

Thật vậy từ hệ thức xác định dãy số và giả thiết quy nạp ta có:

$$u_{k+1} = \frac{u_k}{1+u_k} = \frac{\frac{1}{k}}{1+\frac{1}{k}} = \frac{\frac{1}{k}}{\frac{k+1}{k}} = \frac{1}{k+1}.$$

Kết luận: (*) đúng khi n = k + 1, suy ra (*) đúng với mọi số nguyên dương n.

b). Ta có:

$$u_2 = u_1 + 3 = 2 = 3.2 - 4$$

$$u_3 = u_2 + 3 = 5 = 3.3 - 4$$

$$u_4 = u_3 + 3 = 8 = 3.4 - 4$$

$$u_5 = u_4 + 3 = 11 = 3.5 - 4$$

Từ các số hạng đầu trên, ta dự đoán số hạng tổng quát u_n có dạng: $u_n = 3n - 4, \forall n \ge 1.$ (*)

Ta dùng phương pháp quy nạp để chứng minh công thức (*)

Đã có: (*) đúng với n = 1

Giả sử (*) đúng khi n = k. Nghĩa là ta có: $u_k = 3k - 4$

Ta chứng minh (*) đúng khi n = k + 1. Nghĩa là ta phải chứng minh: $u_{k+1} = 3(k+1) - 4$

Thật vậy từ hệ thức xác định dãy số và giả thiết quy nạp ta có:

$$u_{k+1} = u_k + 3 = 3k - 4 + 3 = 3(k+1) - 4$$

Kết luận: (*) đúng khi n = k + 1, suy ra (*) đúng với mọi số nguyên dương n.

- **Câu 23.** Cho dãy số (u_n) xác định bởi: $\begin{cases} u_1 = 1 \\ u_n = 2u_{n-1} + 3 \quad \forall n \ge 2 \end{cases}$
 - 1. Viết năm số hạng đầu của dãy;
 - **2.** Chứng minh rằng $u_n = 2^{n+1} 3$;

Lời giải.

1. Ta có 5 số hạng đầu của dãy là:

$$u_1 = 1$$
; $u_2 = 2u_1 + 3 = 5$; $u_3 = 2u_2 + 3 = 13$; $u_4 = 2u_3 + 3 = 29$
 $u_5 = 2u_4 + 3 = 61$.

- 2. Ta chứng minh bài toán bằng phương pháp quy nạp
- * Với $n=1 \Rightarrow u_1=2^{1+1}-3=1 \Rightarrow$ bài toán đúng với N=1
- * Giả sử $u_k = 2^{k+1} 3$, ta chứng minh $u_{k+1} = 2^{k+2} 3$

Thật vậy, theo công thức truy hồi ta có:

$$u_{k+1} = 2u_k + 3 = 2(2^{k+1} - 3) + 3 = 2^{k+2} - 3$$
 dpcm.

- **Câu 24.** Cho hai dãy số $(u_n), (v_n)$ được xác định như sau $u_1 = 3, v_1 = 2$ và $\begin{cases} u_{n+1} = u_n^2 + 2v_n^2 \\ v_{n+1} = 2u_n \cdot v_n \end{cases}$ với $n \ge 2$.
 - **1.** Chứng minh: $u_n^2 2v_n^2 = 1 \text{ và } u_n \sqrt{2}v_n = \left(\sqrt{2} 1\right)^{2^n} \text{ với } \forall n \ge 1;$
 - **2.** Tìm công thức tổng quát của hai dãy (u_n) và (v_n) .

Lời giải.

- 1. Ta chứng minh bài toán theo quy nạp
- a) Chứng minh: $u_n^2 2v_n^2 = 1$ (1)
- Ta có $u_1^2 2v_1^2 = 3^2 2.2^2 = 1$ nên (1) đúng với n = 1
- Giả sử $u_k^2 2v_k^2 = 1$, khi đó ta có:

$$u_{k+1}^2 - 2v_{k+1}^2 = (u_k^2 + 2v_k^2)^2 - 2(2u_kv_k) = (u_k^2 - 2v_k^2)^2 = 1$$

Từ đó suy ra (1) đúng với $\forall n \ge 1$.

b) Chứng minh $u_n - \sqrt{2}v_n = (\sqrt{2} - 1)^{2^n}$ (2)

Ta có:
$$u_n - \sqrt{2}v_n = u_{n-1}^2 + 2v_{n-1}^2 - 2\sqrt{2}u_{n-1}v_{n-1} = \left(u_{n-1} - \sqrt{2}v_{n-1}\right)^2$$

- Ta có: $u_1 \sqrt{2}v_1 = 3 2\sqrt{2} = (\sqrt{2} 1)^2$ nên (2) đúng với n = 1
- Giả sử $u_k \sqrt{2}v_k = (\sqrt{2} 1)^{2^k}$, ta có:

$$u_{k+1} - \sqrt{2}v_{k+1} = (u_k - \sqrt{2}v_k)^2 = (\sqrt{2} - 1)^{2^{k+1}}$$

Vậy (2) đúng với $\forall n \ge 1$.

2. Theo kết quả bài trên và đề bài ta có: $u_n + \sqrt{2}v_n = (\sqrt{2} + 1)^{2^n}$

Do đó ta suy ra
$$\begin{cases} 2u_n = (\sqrt{2} + 1)^{2^n} + (\sqrt{2} - 1)^{2^n} \\ 2\sqrt{2}v_n = (\sqrt{2} + 1)^{2^n} - (\sqrt{2} - 1)^{2^n} \end{cases}$$

Hay
$$\begin{cases} u_n = \frac{1}{2} \left[\left(\sqrt{2} + 1 \right)^{2^n} + \left(\sqrt{2} - 1 \right)^{2^n} \right] \\ v_n = \frac{1}{2\sqrt{2}} \left[\left(\sqrt{2} + 1 \right)^{2^n} - \left(\sqrt{2} - 1 \right)^{2^n} \right] \end{cases}$$

Dạng 3: Xét tính tăng, giảm của dãy số

Cách 1: Xét hiệu $u_{n+1} - u_n$

- \square Nếu $u_{n+1}-u_n>0 \ \forall n\in \ensuremath{\mathbb{N}}^*$ thì (u_n) là dãy số tăng.
- \square Nếu $u_{n+1}-u_n<0 \ \forall n\in \mathbb{N}^*$ thì (u_n) là dãy số giảm.

Cách 2: Khi $u_n > 0 \ \forall n \in \mathbb{N}^*$ ta xét tỉ số $\frac{u_{n+1}}{u_n}$

- \Box Nếu $\frac{u_{n+1}}{u_n} > 1$ thì (u_n) là dãy số tăng.
- \square Nếu $\frac{u_{n+1}}{u_n}$ < 1 thì (u_n) là dãy số giảm.

Cách 3: Nếu dãy số (u_n) được cho bởi một hệ thức truy hồi thì ta có thể sử dụng phương pháp quy nạp để chứng minh $u_{n+1} > u_n \ \forall n \in \mathbb{N}^*$ (hoặc $u_{n+1} < u_n \ \forall n \in \mathbb{N}^*$)

* Công thức giải nhanh một số dạng toán về dãy số

Dãy số (u_n) có $u_n = an + b$ tăng khi a > 0 và giảm khi a < 0

Dãy số (u_n) có $u_n = q^n$

- \Box Không tăng, không giảm khi q < 0
- \Box Giảm khi 0 < q < 1
- \Box Tăng khi q > 1

Dãy số (u_n) có $u_n = \frac{an+b}{cn+d}$ với điều kiện $cn+d > 0 \ \forall n \in \mathbb{N}^*$

- \Box Tăng khi ad bc > 0
- \Box Giảm khi ad bc < 0

Dãy số đan dấu cũng là dãy số không tăng, không giảm

Nếu dãy số (u_n) tăng hoặc giảm thì dãy số $(q^n u_n)$ (với q < 0) không tăng, không giảm

Dãy số (u_n) có $u_{n+1} = au_n + b$ tăng nếu $\begin{cases} a > 0 \\ u_2 - u_1 > 0 \end{cases}$; giảm nếu $\begin{cases} a > 0 \\ u_2 - u_1 < 0 \end{cases}$ và không tăng không

giảm nếu a < 0

Dãy số
$$(u_n)$$
 có
$$\begin{cases} u_{n+1} = \frac{au_n + b}{cu_n + d} \\ c, d > 0, u_n > 0 \ \forall n \in \mathbb{N}^* \end{cases}$$
 tăng nếu
$$\begin{cases} ad - bc > 0 \\ u_2 - u_1 > 0 \end{cases}$$
 và giảm nếu
$$\begin{cases} ad - bc > 0 \\ u_2 - u_1 < 0 \end{cases}$$

Dãy số
$$(u_n)$$
 có
$$\begin{cases} u_{n+1} = \frac{au_n + b}{cu_n + d} \\ c, d > 0, u_n > 0 \ \forall n \in \mathbb{N}^* \end{cases}$$
 không tăng không giảm nếu $ad - bc < 0$

Blog: Nguyễn Bảo Vương: https://www.nbv.edu.vn/

$ \operatorname{N\acute{e}u} \begin{cases} (u_n) \uparrow \\ (v_n) \uparrow \end{cases} \text{ thì dãy số } (u_n + v_n) \uparrow $	Nếu $\begin{cases} (u_n) \downarrow \\ (v_n) \downarrow \end{cases}$ thì dãy số $(u_n + v_n) \downarrow$
$ \operatorname{N\acute{e}u} \begin{cases} (u_n) \uparrow; u_n \ge 0 \ \forall n \in \mathbb{N}^* \\ (v_n) \uparrow; v_n \ge 0 \ \forall n \in \mathbb{N}^* \end{cases} \text{thì dãy số } (u_n.v_n) \uparrow $	Nếu $\begin{cases} (u_n) \downarrow; u_n \ge 0 \ \forall n \in \mathbb{N}^* \\ (v_n) \downarrow; v_n \ge 0 \ \forall n \in \mathbb{N}^* \end{cases} \text{thì dãy số } (u_n.v_n) \downarrow$
Nếu $(u_n) \uparrow \text{ và } u_n \ge 0 \ \forall n \in \mathbb{N}^* \text{ thì dãy số } \left(\sqrt{u_n}\right) \uparrow$	Nếu $(u_n) \downarrow \text{ và } u_n \ge 0 \ \forall n \in \mathbb{N}^* \text{ thì dãy số } \left(\sqrt{u_n}\right) \downarrow$
và dãy số $((u_n)^m) \uparrow \forall m \in \mathbb{N}^*$	và dãy số $((u_n)^m) \downarrow \forall m \in \mathbb{N}^*$
Nếu $(u_n) \uparrow \text{ và } u_n > 0 \ \forall n \in \mathbb{N}^* \text{ thì dãy số} \left(\frac{1}{u_n}\right) \downarrow$	Nếu $(u_n) \downarrow \text{ và } u_n > 0 \ \forall n \in \mathbb{N}^* \text{ thì dãy số} \left(\frac{1}{u_n}\right) \uparrow$

Câu 25. (SGK_CTST 11-Tập 1) Xét tính tăng, giảm của các dãy số sau:

a)
$$(u_n)$$
 với $u_n = \frac{2n-1}{n+1}$;

b)
$$(x_n)$$
 với $x_n = \frac{n+2}{4^n}$;

c)
$$(t_n)$$
 với $t_n = (-1)^n \cdot n^2$.

Lời giải

a) Ta có:
$$u_n = \frac{2n-1}{n+1} = 2 - \frac{3}{n+1} < u_{n+1} = 2 - \frac{3}{n+2} \forall n \in \mathbb{N}^*$$

Vậy (u_n) là dãy số tăng

b) Ta nhận thấy các số hạng của dễ (x_n) đều là số dương. Ta lập tỉ số hai số hạng liên tiếp của

$$\text{day: } \frac{x_{n+1}}{x_n} = \frac{\frac{n+1+1}{4^{n+1}}}{\frac{n+1}{4^n}} = \frac{n+2}{4.(n+1)} < 1, \forall n \in \mathbb{N}^*$$

Suy ra $x_{n+1} < x_n, \forall n \in \mathbb{N}^*$

Vậy (x_n) là dãy số giảm

c) Ta có: $t_1 = -1; t_2 = 4; t_3 = -9$. Suy ra $t_1 < t_2, t_2 > t_3$.

Vậy $\left(t_{\scriptscriptstyle n}\right)$ không là dãy số tăng, cũng không là dãy số giảm

Câu 26. (SGK_CTST 11-Tập 1) Một chồng cột gỗ được xếp thành các lớp, hai lớp liên tiếp hơn kém nhau 1 cột gỗ (Hình 2).

Hình 2

a) Gọi $u_1 = 25$ là số cột gỗ có ở hàng dưới cùng của chồng cột gỗ, u_n là số cột gỗ có ở hàng thứ n tính từ dưới lên trên. Xét tính tăng, giảm của dãy số này.

b) Gọi $v_1 = 14$ là số cột gỗ có ở hàng trên cùng của chồng cột gỗ, v_n là số cột gỗ có ở hàng thứ n tính từ trên xuống dưới. Xét tính tăng, giảm của dãy số này.

Lời giải

a) Ta có:
$$u_n = 26 - n > u_{n+1} = 26 - n - 1 = 25 - n$$

Vậy dãy số (u_n) là dãy số giảm

b) Ta có:
$$v_n = 13 + n < v_{n+1} = 13 + n + 1 = 14 + n$$

Vậy dãy số (u_n) là dãy số tăng

Câu 27. (SGK_CTST 11-Tập 1) Xét tính tăng, giảm của dãy số (y_n) với $y_n = \sqrt{n+1} - \sqrt{n}$.

Lời giải

Ta có:

$$y_n = \sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n}) \cdot (\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

$$y_{n+1} = \frac{1}{\sqrt{n+2} + \sqrt{n+1}}$$

$$\forall n \in \mathbb{N}^*, y_{n+1} < y_n$$

Vậy dãy số (y_n) là dãy số giảm

- **Câu 28.** (SGK_CTST 11-Tập 1) Cho dãy số (u_n) với $u_n = \frac{na+2}{n+1}$. Tìm giá trị của a để:
 - a) (u_n) là dãy số tăng;
 - b) (u_n) là dãy số giảm.

Lời giải

a)
$$(u_n)$$
 là dãy số tăng khi $\forall x \in \mathbb{N}^*$ thì: $u_{n+1} > u_n$

$$\Leftrightarrow \frac{(n+1)a+2}{n+1+1} > \frac{na+2}{n+1}; \forall x \in \mathbb{N}^*$$

$$\Leftrightarrow a + \frac{2-a}{n+2} > a + \frac{2-a}{n+1}; \forall x \in \mathbb{N}^*$$

$$\Leftrightarrow \frac{2-a}{n+2} > \frac{2-a}{n+1}; \forall x \in \mathbb{N}^*$$

$$\Leftrightarrow 2-a < 0$$

$$\Leftrightarrow a > 2$$

b)
$$(u_n)$$
 là dãy số giảm khi $\forall x \in \mathbb{N}^*$ thì: $u_{n+1} < u_n$

$$\Leftrightarrow \frac{(n+1)a+2}{n+1+1} < \frac{na+2}{n+1}; \forall x \in \mathbb{N}^*$$

$$\Leftrightarrow a + \frac{2-a}{n+2} < a + \frac{2-a}{n+1}; \forall x \in \mathbb{N}^*$$

$$\Leftrightarrow \frac{2-a}{n+2} < \frac{2-a}{n+1}; \forall x \in \mathbb{N}^*$$

$$\Leftrightarrow 2-a>0$$

$$\Leftrightarrow a < 2$$

Câu 29. Xét tính tăng giảm của các dãy số sau:

1). Dãy số
$$(u_n)$$
 với $u_n = 2n^3 - 5n + 1$

2). Dãy số
$$(u_n)$$
 với $u_n = 3^n - n$.

3). Dãy số
$$(u_n)$$
 với $u_n = \frac{n}{n^2 + 1}$.

4). Dãy số
$$(u_n)$$
 với $u_n = \frac{\sqrt{n}}{2^n}$

5). Dãy số
$$(u_n)$$
 với $u_n = \frac{3^n}{n^2}$

6). Dãy số
$$(u_n)$$
: Với $u_n = \frac{3n^2 - 2n + 1}{n + 1}$

7). Dãy số
$$(u_n)$$
 với $u_n = \frac{n^2 + n + 1}{2n^2 + 1}$

8). Dãy số
$$(u_n)$$
 với $u_n = n - \sqrt{n^2 - 1}$

9). Dãy số
$$(u_n)$$
 với $u_n = \frac{\sqrt{n+1}-1}{n}$

Lời giải

1). Dãy số
$$(u_n)$$
 với $u_n = 2n^3 - 5n + 1$

Với mỗi
$$n \in N^*$$
, ta có: $u_{n+1} - u_n = \left[2(n+1)^3 - 5(n+1) + 1\right] - \left(2n^3 - 5n + 1\right)$

$$=2n^3+6n^2+6n+2-5n-5-1-2n^3+5n-1$$

$$=6n^2+6n-3=6n^2+3n+(3n-3)>0$$
 (đúng) do $n \ge 1$.

Vì thế dãy số (u_n) là một dãy số tăng.

2). Dãy số
$$(u_n)$$
 với $u_n = 3^n - n$.

Với mỗi
$$n \in N^*$$
, ta có: $u_{n+1} - u_n = [3^{n+1} - (n+1)] - (3^n - n)$.

$$=3.3^n-n-1-3^n+n$$

$$=2.3^n+3^n-3^n-1=2.3^n-1>0$$
 (đúng) (vì $n \ge 1.$)

Kết luận dãy số (u_n) là một dãy số tăng.

3). Dãy số
$$(u_n)$$
 với $u_n = \frac{n}{n^2 + 1}$.

Với mỗi $n \in N^*$, ta có:

$$u_{n+1} - u_n = \frac{n+1}{\left(n+1\right)^2 + 1} - \frac{n}{n^2 + 1} = \frac{\left(n+1\right)\left(n^2 + 1\right) - n\left[\left(n+1\right)^2 + 1\right]}{\left[\left(n+1\right)^2 + 1\right]\left(n^2 + 1\right)}$$

$$=\frac{n^3+n+n^2+1-\left(n^3+2n^2+2n\right)}{\left[\left(n+1\right)^2+1\right]\left(n^2+1\right)}=\frac{-n^2-n+1}{\left[\left(n+1\right)^2+1\right]\left(n^2+1\right)}<0.$$

Vì
$$-n^2 - n + 1 < 0 \quad \forall n \ge 1, \text{ và} \left[(n+1)^2 + 1 \right] \left(n^2 + 1 \right) > 0 \quad \forall n \ge 1.$$

Kết luận: dãy số (u_n) là một dãy số giảm.

4). Dãy số
$$(u_n)$$
 với $u_n = \frac{\sqrt{n}}{2^n}$

Dễ thấy
$$u_n > 0 \quad \forall n \in \mathbb{N}^*$$
. Xét tỉ số: $\frac{u_n}{u_{n+1}}$

Ta có:
$$\frac{u_n}{u_{n+1}} = \frac{\sqrt{n}}{2^n} \cdot \frac{2^{n+1}}{\sqrt{n+1}} = \frac{2\sqrt{n}}{\sqrt{n+1}} > 1 \quad (\forall n \ge 1)$$

Thật vậy:
$$\frac{2\sqrt{n}}{\sqrt{n+1}} > 1 \Leftrightarrow \frac{4n}{n+1} > 1 \Leftrightarrow 4n > n+1 \Leftrightarrow 3n > 1$$
 (đúng $\forall n \ge 1$)

Kết luận: (u_n) là một dãy số giảm.

5). Dãy số
$$(u_n)$$
 với $u_n = \frac{3^n}{n^2}$

Dễ thấy
$$u_n > 0 \quad \forall n \in N^*$$
. Xét tỉ số: $\frac{u_n}{u_{n+1}}$

$$\frac{u_n}{u_{n+1}} = \frac{3^n}{n^2} \cdot \frac{(n+1)^2}{3^{n+1}} = \frac{1}{3} \cdot \left(\frac{n+1}{n}\right)^2$$

Nếu
$$\frac{1}{3} \left(\frac{n+1}{n} \right)^2 > 1 \Leftrightarrow \left(\frac{n+1}{n} \right)^2 > 3$$

$$\Leftrightarrow \frac{n+1}{n} > \sqrt{3} \Leftrightarrow n+1 > \sqrt{3}.n \Leftrightarrow \sqrt{3}.n-n < 1$$

$$\Leftrightarrow (\sqrt{3}-1)n < 1 \Leftrightarrow n < \frac{1}{\sqrt{3}-1} \Rightarrow n = 1$$

Nếu
$$\frac{1}{3} \left(\frac{n+1}{n} \right)^2 < 1 \Leftrightarrow \left(\frac{n+1}{n} \right)^2 < 3 \Leftrightarrow \frac{n+1}{n} < \sqrt{3} \Leftrightarrow n+1 < \sqrt{3}.n \Leftrightarrow \left(\sqrt{3}-1 \right)n > 1$$

$$\Leftrightarrow n > \frac{1}{\sqrt{3}-1} \Leftrightarrow n > 2.$$

6). Dãy số
$$(u_n)$$
: Với $u_n = \frac{3n^2 - 2n + 1}{n + 1}$

Ta có:
$$u_n = 3n - 5 + \frac{6}{n+1}$$

Với mọi $n \in N^*$ ta có:

$$u_{n+1} - u_n = \left[3(n+1) - 5 + \frac{6}{n+2}\right] - \left(3n - 5 + \frac{6}{n+1}\right) = 3 + \frac{6}{n+2} - \frac{6}{n+1}$$

$$=3\left\lceil \frac{(n+1)(n+2)+2(n+1)-2(n+2)}{(n+2)(n+1)}\right\rceil = \frac{3(n^2+3n)}{(n+2)(n+1)} > 0. \quad \forall n \ge 1.$$

Kết luận (u_n) là dãy số tăng.

7). Dãy số
$$(u_n)$$
 với $u_n = \frac{n^2 + n + 1}{2n^2 + 1} = \frac{1}{2} + \frac{n + \frac{3}{2}}{2n^2 + 1}$

Với mọi $n \in N^*$, xét hiệu số:

$$u_{n+1} - u_n = \frac{1}{2} + \frac{n+1+\frac{3}{2}}{2(n+1)^2+1} - \left(\frac{1}{2} + \frac{n+\frac{3}{2}}{2n^2+1}\right) = \frac{n+\frac{5}{2}}{2n^2+2n+3} - \frac{n+\frac{3}{2}}{2n^2+1}$$

$$=\frac{\left(n+\frac{5}{2}\right)\left(2n^2+1\right)-\left(n+\frac{3}{2}\right)\left(2n^2+2n+3\right)}{\left(2n^2+2n+3\right)\left(2n^2+1\right)} = \frac{-5n-2}{\left(2n^2+2n+3\right)\left(2n^2+1\right)} < 0 \quad \forall n \ge 1.$$

Vậy dãy số (u_n) là dãy số giảm.

8). Dãy số
$$(u_n)$$
 với $u_n = n - \sqrt{n^2 - 1}$

Ta có:
$$u_n = n - \sqrt{n^2 - 1} = \frac{n^2 - (n^2 - 1)}{n + \sqrt{n^2 - 1}} = \frac{1}{n + \sqrt{n^2 - 1}}$$

Dễ dàng ta có:
$$(n+1) + \sqrt{(n+1)^2 - 1} > n + \sqrt{n^2 - 1}$$

$$\Rightarrow \frac{1}{\left(n+1\right)+\sqrt{\left(n+1\right)^2-1}} < \frac{1}{n+\sqrt{n^2-1}} \Leftrightarrow u_{n+1} < u_n$$

Từ đó suy ra dãy số (u_n) là dãy số giảm.

9). Dãy số
$$(u_n)$$
 với $u_n = \frac{\sqrt{n+1}-1}{n}$

Ta có:
$$u_n = \frac{(n+1)-1}{n(\sqrt{n+1}+1)} = \frac{1}{\sqrt{n+1}+1}$$

Dễ dàng ta có:
$$\sqrt{(n+1)+1}+1 > \sqrt{n+1}+1 \implies \frac{1}{\sqrt{(n+1)+1}+1} < \frac{1}{\sqrt{n+1}+1} \iff u_{n+1} < u_n$$
. Vậy dãy số

 (u_n) là dãy số giảm.

Câu 30. Xét tính tăng giảm của các dãy số (u_n) được cho bởi hệ thức truy hồi sau:

a).
$$\begin{cases} u_2 = 2 \\ u_{n+1} = \sqrt{2u_n + 3}, \forall n \in N^* \end{cases}$$
 b).
$$\begin{cases} u_1 = 3 \\ u_{n+1} = \frac{2u_n}{3 + u_n} \end{cases}$$

Lời giải

a).
$$\begin{cases} u_2 = 2 \\ u_{n+1} = \sqrt{2u_n + 3}, \forall n \in N^* \end{cases}$$

Vì
$$u_2 = \sqrt{2u_1 + 3} = \sqrt{7} > u_1$$
, ta dự đoán $u_{n+1} > u_n$ (*) với mọi $n \ge 1$.

Ta co(*) đúng với n=1.

Giả sử ta có: $u_k > u_{k-1}$. Khi đó ta có:

$$u_{k+1} = \sqrt{2u_k + 3} > \sqrt{2u_{k-1} + 3} = u_k \text{ (do } u_k > u_{k-1} \text{)}$$

Suy ra (*) đúng với mọi $n \in N^*$, suy ra (u_n) là dãy số tăng.

b).
$$\begin{cases} u_1 = 3 \\ u_{n+1} = \frac{2u_n}{3 + u_n} \end{cases}$$

Từ hệ thức truy hồi đã cho, dễ thấy $u_n > 0$ với mọi $n \in N^*$

Ta có:
$$u_2 = \frac{2u_1}{3+u_1} = \frac{6}{6} = 1 < u_1.$$

Ta dự đoán $u_{n+1} < u_n (**)$ với mọi $n \in N^*$.

Ta có (**) đúng khi n = 1. Giả sử có $u_k < u_{k-1}$

Khi đó
$$u_{k+1} = \frac{2u_k}{3+u_k} = \frac{2u_k+6-6}{3+u_k} = 2 - \frac{6}{u_k+3}.$$

Vì
$$u_k < u_{k-1}$$
 nên $\frac{6}{u_k + 3} > \frac{6}{u_{k-1} + 3} \Rightarrow u_{k+1} < 2 - \frac{6}{u_{k-1} + 3} = u_k$.

Suy ra (**) đúng với mọi $n \in \mathbb{N}^*$. Vậy (u_n) là dãy số giảm.

Câu 31. Cho dãy số
$$(u_n)$$
 xác định bởi:
$$\begin{cases} u_1 = 5 \\ u_{n+1} = u_n + 3n - 2. \end{cases}$$

- a). Tìm công thức của số hạng tổng quát.
- b). Chứng minh dãy số tăng.

Lời giải

a) Ta có:
$$u_{n+1} = u_n + 3n - 2 \Rightarrow u_{n+1} - u_n = 3n - 2$$
. Từ đó suy ra:

$$u_1 = 5$$
.

$$u_2 - u_1 = 3.1 - 2.$$

$$u_3 - u_2 = 3.2 - 2.$$

$$u_4 - u_3 = 3.3 - 2.$$

.....

$$u_{n-1} - u_{n-2} = 3(n-2) - 2.$$

$$u_n - u_{n-1} = 3(n-1) - 2.$$

Cộng từng vế của n đẳng thức trên và rút gọn, ta được:

$$u_n = 5 + 3[1 + 2 + 3 + ... + (n-1)] - 2(n-1).$$

$$\Leftrightarrow u_n = 5 + \frac{3(n-1).n}{2} - 2(n-1) = 5 + \frac{3(n-1).n - 4(n-1)}{2}$$

$$\Leftrightarrow u_n = 5 + \frac{(n-1)(3n-4)}{2}$$

Vậy:
$$u_n = 5 + \frac{(n-1)(3n-4)}{2}$$
.

b) Ta có:
$$u_{n+1} - u_n = 3n - 2 > 0 \quad \forall n \ge 1$$
.

$$\Rightarrow u_{n+1} > u_n \quad \forall n \ge 1$$
. Kết luận dãy số (u_n) là một dãy số tăng.

Câu 32. Cho dãy số
$$(a_n)$$
 định bởi:
$$\begin{cases} 0 < a_n < 1; \forall n \in N * \\ a_{n+1} (1-a_n) \ge \frac{1}{4}; \forall n \in N * \end{cases}$$

- a). Chứng minh: $a_n > \frac{1}{2} \frac{1}{2n}, \forall n \in \mathbb{N}^*(1)$
- b). Xét tính đơn điệu của dãy số (a_n) .

Lời giải

a). Ta có:
$$0 < a_n < 1 \Rightarrow a_1 > 0 = \frac{1}{2} - \frac{1}{2 \cdot 1} : (1)$$
 đúng khi n=1

Giả sử (1) đúng khi n=k
$$\in N*$$
, nghĩa là: $a_k > \frac{1}{2} - \frac{1}{2k}; k \in N*$

Ta cần chứng minh (1) đúng khi n = k + 1, nghĩa là chứng minh: $a_{k+1} > \frac{1}{2} - \frac{1}{2(k+1)}$; $k \in \mathbb{N}^*$

Ta có:
$$a_k > \frac{1}{2} - \frac{1}{2k}$$

$$\Rightarrow -a_k < -\frac{1}{2} + \frac{1}{2k} \Rightarrow 1 - a_k < 1 - \frac{1}{2} + \frac{1}{2k} = \frac{1}{2} + \frac{1}{2k} = \frac{k+1}{2k} \Rightarrow \frac{1}{1 - a_k} > \frac{2k}{k+1}$$

Theo giả thiết: $a_{k+1}(1-a_k) \ge \frac{1}{4}$

$$\Rightarrow a_{k+1} \ge \frac{1}{4(1-a_k)} > \frac{2k}{4(k+1)} = \frac{(2k+2)-2}{4(k+1)} = \frac{1}{2} - \frac{1}{2(k+1)} : (1) \text{ dúng khi } n = k+1$$

Vậy:
$$a_n > \frac{1}{2} - \frac{1}{2n}, \forall n \in \mathbb{N}^*.$$

b). Ta có:
$$a_n^2 - a_n + \frac{1}{4} = \left(a_n - \frac{1}{2}\right)^2 \ge 0 \Rightarrow a_n \left(a_n - 1\right) + \frac{1}{4} \ge 0 \Rightarrow \frac{1}{4} \ge a_n \left(1 - a_n\right)$$

Từ giả thiết suy ra: $a_{n+1}(1-a_n) \ge \frac{1}{4} \ge a_n(1-a_n) \Rightarrow a_{n+1} \ge a_n; \forall n \in \mathbb{N}^*$

Vậy: (a_n) tăng.

Câu 33. Cho a > 2. Xét dãy (U_n) xác định bởi $\begin{cases} u_1 = a^2 \\ u_{n+1} = (u_n - a)^2 \ \forall n \in \mathbb{N}^* \end{cases}$. Xét tính đơn điệu của dãy (U_n)

Ta có $u_1 = a^2 > 2a$ (do a > 2)

Giả sử
$$u_k > 2a$$
 khi đó $u_k - a > a \Rightarrow u_{k+1} = (u_k - a)^2 > a^2 > 2a$. Vậy $u_n > 2a$; $\forall n \in N*$
$$u_{n+1} - u_n = (u_n - a)^2 - u_n = u_n^2 - (2a+1)u_n + a^2$$

$$= (u_n - 2a)(u_n - 1) + (a^2 - 2a) > 0; \forall n \in N* \Rightarrow (u_n) \text{ don điệu tăng.}$$

Câu 34. Cho dãy số (u_n) định bởi: $u_n = \frac{a \cdot n^4 + 2}{2n^4 + 5}$; $n \in \mathbb{N}^*$. Định a để dãy số (u_n) tăng.

Ta có:
$$u_n = \frac{a \cdot n^4 + 2}{2n^4 + 5} = \frac{a}{2} + \frac{4 - 5a}{2(2n^4 + 3)}; n \in \mathbb{N}^*$$

$$u_{n+1} - u_n = \frac{4 - 5a}{2\left[2\left(n+1\right)^4 + 5\right]} - \frac{4 - 5a}{2\left[2n^4 + 5\right]} = \frac{4 - 5a}{2} \left[\frac{1}{2\left(n+1\right)^4 + 5} - \frac{1}{2n^4 + 5}\right]$$

$$\Rightarrow u_{n+1} - u_n = \frac{4 - 5a}{2} \frac{2n^4 + 5 - 2(n+1)^4 - 5}{\left[2(n+1)^4 + 5\right] \left[2(n+1)^4 + 5\right]}$$

$$= (4-5a)\frac{n^4 - (n+1)^4}{\left[2(n+1)^4 + 5\right]\left[2(n+1)^4 + 5\right]}$$

Mà:
$$\frac{n^4 - (n+1)^4}{\left[2(n+1)^4 + 5\right] \left[2(n+1)^4 + 5\right]} < 0; \forall n \in \mathbb{N}^*$$

Nên:
$$(u_n)$$
 tăng $\Leftrightarrow u_{n+1} - u_n > 0; \forall n \in \mathbb{N}^* \Leftrightarrow 4 - 5a < 0 \Leftrightarrow a > \frac{4}{5}$

Dạng 4: Xét tính bị chặn của dãy số

Phương pháp 1: Chứng minh trực tiếp bằng các phương pháp chứng minh bất đẳng thức

Cách 1: Dãy số (u_n) có $u_n = f(n)$ là hàm số đơn giản.

Ta chứng minh trực tiếp bất đẳng thức $u_n = f(n) \le M, \forall n \in \mathbb{N}^*$ hoặc $u_n = f(n) \ge m, \forall n \in \mathbb{N}^*$

Cách 2: Dãy số (u_n) có $u_n = v_1 + v_2 + ... + v_k + ... + v_n$ (tổng hữu hạn)

Ta làm trội $v_k \le a_k - a_{k+1}$

Lúc đó
$$u_n \le (a_1 - a_2) + (a_2 - a_3) + ...(a_n - a_{n+1})$$

Suy ra
$$u_n \le a_1 - a_{n+1} \le M, \forall n \in \mathbb{N}^*$$

Cách 3: Dãy số (u_n) có $u_n = v_1.v_2v_3...v_n$ với $v_n > 0, \forall n \in \mathbb{N}^*$ (tích hữu hạn)

Ta làm trội
$$v_k \le \frac{a_{k+1}}{a_k}$$

Lúc đó
$$u_n \le \frac{a_2}{a_1} \cdot \frac{a_3}{a_2} \dots \frac{a_{n+1}}{a_n}$$

Suy ra
$$u_n \le \frac{a_{n+1}}{a_1} \le M, \forall n \in \mathbb{N}^*$$

Phương pháp 2: Dự đoán và chứng minh bằng phương pháp quy nạp.

Nếu dãy số (u_n) được cho bởi một hệ thức truy hồi thì ta có thể sử dụng phương pháp quy nạp để chứng minh

Chú ý: Nếu dãy số (u_n) giảm thì bị chặn trên, dãy số (u_n) tăng thì bị chặn dưới

* Công thức giải nhanh một số dạng toán về dãy số bị chặn

Dãy số
$$(u_n)$$
 có $u_n = q^n$ $(|q| \le 1)$ bị chặn

Dãy số
$$(u_n)$$
 có $u_n = q^n$ $(q < -1)$ không bị chặn

Dãy số
$$(u_n)$$
 có $u_n = q^n$ với $q > 1$ bị chặn dưới

Dãy số
$$(u_n)$$
 có $u_n = an + b$ bị chặn dưới nếu $a > 0$ và bị chặn trên nếu $a < 0$

Dãy số
$$(u_n)$$
 có $u_n = an^2 + bn + c$ bị chặn dưới nếu $a > 0$ và bị chặn trên nếu $a < 0$

Dãy số
$$(u_n)$$
 có $u_n = a_m n^m + a_{m-1} n^{m-1} + ... + a_1 n + a_0$ bị chặn dưới nếu $a_m > 0$ và bị chặn trên nếu $a_m < 0$

Dãy số
$$(u_n)$$
 có $u_n = q^n \left(a_m n^m + a_{m-1} n^{m-1} + ... + a_1 n + a_0 \right)$ với $a_m \neq 0$ và $q < -1$ không bị chặn

Dãy số
$$(u_n)$$
 có $u_n = \sqrt{a_m n^m + a_{m-1} n^{m-1} + ... + a_1 n + a_0}$ bị chặn dưới với $a_m > 0$

Dãy số
$$(u_n)$$
 có $u_n = \sqrt[3]{a_m n^m + a_{m-1} n^{m-1} + ... + a_1 n + a_0}$ bị chặn dưới nếu $a_m > 0$ và bị chặn trên nếu $a_m < 0$

Dãy số (u_n) có $u_n = \frac{P(n)}{Q(n)}$ trong đó P(n) và Q(n) là các đa thức, bị chặn nếu bậc của P(n) nhỏ

hơn hoặc bằng bậc của Q(n)

Dãy số (u_n) có $u_n = \frac{P(n)}{Q(n)}$ trong đó P(n) và Q(n) là các đa thức, bị chặn dưới hoặc bị chặn trên

nếu bậc của P(n) lớn hơn bậc của Q(n)

Câu 35. (SGK_CTST 11-Tập 1) Xét tính bị chặn của các dãy số sau:

a)
$$(a_n)$$
 với $a_n = \cos \frac{\pi}{n}$;

b)
$$(b_n)$$
 với $b_n = \frac{n}{n+1}$.

Lời giải

a) Ta có:

$$a_n = \cos\frac{\pi}{n} \leq 1, \forall n \in \mathbb{N}^* \text{ . Vậy } \left(a_n\right) \text{ bị chặn trên. } a_n = \cos\frac{\pi}{n} \geq -1, \forall n \in \mathbb{N}^* \text{ . Vậy } \left(a_n\right) \text{ bị chặn dưới.}$$

Suy ra, dãy số (a_n) bị chặn.

b) Ta có:

$$b_n = \frac{n}{n+1} < 1, \forall n \in \mathbb{N}^*. \text{ Vậy } \left(b_n\right) \text{ bị chặn trên. } b_n = \frac{n}{n+1} > 0, \forall n \in \mathbb{N}^*. \text{ Vậy } \left(b_n\right) \text{ bị chặn dưới.}$$

Suy ra, dãy số (b_n) bị chặn.

Câu 36. (SGK_CTST 11-Tập 1) Xét tính bị chặn của các dãy số sau:

a)
$$(a_n)$$
 với $a_n = \sin^2 \frac{n\pi}{3} + \cos \frac{n\pi}{4}$

b)
$$(u_n)$$
 với $u_n = \frac{6n-4}{n+2}$.

Lời giải

a) $\forall n \in \mathbb{N}^*$, Ta có:

$$0 \le \sin^2 \frac{n\pi}{3} \le 1$$

$$-1 \le \cos \frac{n\pi}{4} \le 1$$

Suy ra
$$-1 \le a_n \le 2$$

Vậy dãy số (a_n) bị chặn

b)
$$u_n = \frac{6n-4}{n+2} = 6 - \frac{16}{n+2}$$

$$u_n < 6, \forall n \in \mathbb{N}^*$$
. Vậy dãy số (u_n) bị chặn trên

$$u_n > -2, \forall n \in \mathbb{N}^*$$
. Vậy dãy số (u_n) bị chặn dưới

Suy ra, dãy số (u_n) bị chặn

Câu 37. (SGK_CTST 11-Tập 1) Cho dãy số (u_n) với $u_n = \frac{2n-1}{n+1}$.

Chứng minh (u_n) là dãy số tăng và bị chặn.

$$u_n = \frac{2n-1}{n+1} = 2 - \frac{3}{n+1}$$

Ta có
$$\forall n \in \mathbb{N}^*, u_{n+1} = 2 - \frac{3}{n+2} > u_n = 2 - \frac{3}{n+1}$$

Vậy dãy số (u_n) là dãy số tăng

$$u_n = 2 - \frac{3}{n+1} > -1, \forall n \in \mathbb{N}^*$$
. Vậy dãy số (u_n) bị chặn dưới $u_n = 2 - \frac{3}{n+1} < 2, \forall n \in \mathbb{N}^*$.

Vậy dãy số (u_n) bị chặn trên

Suy ra dãy số (u_n) bị chặn

Câu 38. Xét tính bị chặn của các dãy số sau

a)
$$u_n = \frac{1}{2n^2 - 1}$$
. **b)** $u_n = 3 \cdot \cos \frac{nx}{3}$. **c)** $u_n = 2n^3 + 1$.

d)
$$u_n = \frac{n^2 + 2n}{n^2 + n + 1}$$
. **e)** $u_n = n + \frac{1}{n}$.

Lời giải

a)
$$u_n = \frac{1}{2n^2 - 1}$$
 Có $2n^2 - 1 \ge 1 \Rightarrow u_n = \frac{1}{2n^2 - 1} \le 1$, $\forall n \ge 1$. Vậy dãy số bị chặn trên bởi 1.

b)
$$u_n = 3.\cos\frac{nx}{3}$$
 có $-1 \le \cos\frac{nx}{3} \le 1 \Rightarrow -3 \le 3.\cos\frac{nx}{3} \le 3$.

Vậy dãy số bị chặn dưới bởi −3; chặn trên bởi 3.

c)
$$u_n = 2n^3 + 1$$
 có $2n^3 + 1 \ge 3$, $\forall n \ge 1$. Vậy dãy số bị chặn dưới bởi 3.

d)
$$u_n = \frac{n^2 + 2n}{n^2 + n + 1}$$
 có $u_n = \frac{n^2 + 2n}{n^2 + n + 1} = 1 + \frac{n - 1}{n^2 + n + 1} \ge 1$, $\forall n \ge 1$.

Vậy dãy số bị chặn dưới bởi 1.

e)
$$u_n = n + \frac{1}{n}$$
 có $u_n = n + \frac{1}{n} \ge 2\sqrt{n \cdot \frac{1}{n}} = 2$, $\forall n > 0$. Vậy dãy số bị chặn bởi 2.

Câu 39. Xét tính tăng hay giảm và bị chặn của dãy số: $u_n = \frac{2n-1}{n+3}$; $n \in \mathbb{N}^*$

Lời giải

Ta có:
$$u_{n+1} - u_n = \frac{2n+1}{n+4} - \frac{2n-1}{n+3} = \frac{2n^2 + 7n + 3 - 2n^2 - 7n + 4}{(n+4)(n+3)} = \frac{7}{(n+4)(n+3)} > 0; \forall n \in \mathbb{N}^*$$

Vậy: (u_n) là dãy số tăng.

Ta có
$$u_n = \frac{2n-1}{n+3} = \frac{2(n+3)-7}{n+3} = 2 - \frac{7}{n+3}$$
, suy ra:

 $\forall n \in \mathbb{N}^*, u_n < 2$ nên (u_n) bị chặn trên. Vì (u_n) là dãy số tăng $\forall n \in \mathbb{N}^*, u_1 = \frac{1}{4} \le u_n$ Nên (u_n) bị chặn dưới. Vậy (u_n) bị chặn.

Câu 40. Cho dãy số (u_n) với $u_n = 1 + (n-1) \cdot 2^n$

- a). Viết 5 số hạng đầu của dãy số.
- b). Tìm công thức truy hồi.
- c). Chứng minh dãy số tăng và bị chặn dưới.

Lời giải

$$u_1 = 1 + (1 - 1) \cdot 2^1 = 1$$

$$u_2 = 1 + (2 - 1) \cdot 2^2 = 5$$

$$u_3 = 1 + (3-1) \cdot 2^3 = 17$$

$$u_4 = 1 + (4-1).2^4 = 49$$

$$u_5 = 1 + (5 - 1).2^5 = 129$$

b). Xét hiệu:
$$u_{n+1} - u_n = 1 + n \cdot 2^{n+1} - (1 + (n+1) \cdot 2^n)$$

$$=2n \cdot 2^{n} - (n-1) \cdot 2^{n} = (2n-n+1) \cdot 2^{n} = (n+1) \cdot 2^{n} \implies u_{n+1} = u_{n} + (n+1) \cdot 2^{n}.$$

Vậy công thức truy hồi:
$$\begin{cases} u_1 = 1 \\ u_{n+1} = u_n + (n+1).2^n \end{cases} \forall n \ge 1.$$

c). Ta có: $u_{n+1} - u_n = (n+1).2^n > 0 \quad \forall n \ge 1$. Từ đó suy ra dãy số (u_n) là dãy số tăng.

Ta có: $u_n = 1 + (n-1) \cdot 2^n \ge 1$ $\forall n \ge 1$. Kết luận (u_n) là dãy số bị chặn dưới.

Câu 41. Cho dãy số (u_n) xác định bởi $\begin{cases} u_1 = 2 \\ u_{n+1} = \frac{u_n^2}{2u_n - 1}, \ n \ge 1, \ n \in \mathbb{N} \end{cases}$

- 1) Chứng minh rằng dãy số (u_n) giảm và bị chặn.
- 2) Hãy xác định số hạng tổng quát của dãy số (u_n) .

Lời giải

1) Ta có
$$u_1 = 2$$
; $u_2 = \frac{4}{3} > 1$.

Giả sử $u_k > 1$, $k \ge 2$ (giả thiết quy nạp)

Ta sẽ chứng minh $u_{k+1} > 1$ (*)

Theo công thức truy hồi (*) $\Leftrightarrow \frac{u_k^2}{2u_k - 1} > 1 \Leftrightarrow u_k^2 > 2u_k - 1 \text{ vì } (2u_k - 1 > 0)$

$$\Leftrightarrow u_k^2 - 2u_k + 1 > 0 \Leftrightarrow (u_k - 1)^2 > 0$$
 đúng (vì $u_k > 1$)

Vậy $u_n > 1$, $\forall n \in \mathbb{N}^*$, suy ra (u_n) bị chặn dưới.

+) Xét hiệu
$$u_{n+1} - u_n = \frac{u_n^2}{2u_n - 1} - u_n = \frac{u_n (1 - u_n)}{2u_n - 1} < 0 \text{ (vì } u_k > 1) \Rightarrow (u_n) \text{ giảm}$$

$$\Rightarrow 2 = u_1 > u_2 > u_3 > ... > ... \Rightarrow (u_n)$$
 bị chặn trên.

Vậy dãy số (u_n) giảm và bị chặn.

2) Từ
$$u_{n+1} = \frac{u_n^2}{2u_n - 1} \Rightarrow \frac{1}{u_{n+1}} = \frac{2}{u_n} - \frac{1}{u_n^2} = -\left(\frac{1}{u_n^2} - \frac{2}{u_n} + 1\right) = -\left(\frac{1}{u_n} - 1\right)^2$$
.

Đặt
$$v_n = \frac{1}{u_n} - 1 \Rightarrow v_1 = \frac{1}{2} - 1 = -\frac{1}{2} \text{ và } v_{n+1} = -v_n^2.$$

Từ đó suy ra $v_1 = -2^{-1}$; $v_2 = -2^{-2}$; $v_3 = -2^{-4}$; $v_4 = -2^{-8}$.

Giả sử $v_n = -2^{-2^{n-1}}$, $n \ge 4$ (giả thiết quy nạp).

$$\Rightarrow v_{n+1} = -\left(2^{-2^{n-1}}\right)^2 = -2^{-2^n}$$
. Do đó $v_n = -2^{-2^n}$, $\forall n$

Mà
$$v_n = \frac{1}{u_n} - 1 \Rightarrow u_n = \frac{1}{1 + v_n} = \frac{1}{1 - 2^{-2^{n-1}}} = \frac{2^{2^{n-1}}}{2^{2^{n-1}} - 1}.$$

Vậy số hạng tổng quát của dãy số (u_n) là $u_n = \frac{2^{2^{n-1}}}{2^{2^{n-1}}-1}$.

Câu 42. Chứng minh rằng dãy số (u_n) , với $u_n = \frac{n^2 + 1}{2n^2 - 3}$ là một dãy số bị chặn.

Lời giải

Công thức
$$u_n$$
 được viết lại: $u_n = \frac{1}{2} + \frac{5}{2(2n^2 - 3)}$ (1)

Dễ thấy $\forall n \ge 1$ ta có: $-1 \le \frac{1}{2n^2 - 3} \le \frac{1}{5}$. Do đó từ (1) suy ra $-2 \le u_n \le 1$ ($\forall n \ge 1$)

Từ đó suy ra (u_n) là một dãy số bị chặn.

Câu 43. Chứng minh dãy số (u_n) , với $u_n = \frac{7n+5}{5n+7}$ là một dãy số tăng và bị chặn.

Lời giải

Công thức
$$u_n$$
 được viết lại: $u_n = \frac{7}{5} - \frac{24}{5(5n+7)}$

Xét hiệu số:
$$u_{n+1} - u_n = \left(\frac{7}{5} - \frac{24}{5[5(n+1)+7]}\right) - \left(\frac{7}{5} - \frac{24}{5(5n+7)}\right)$$

$$=\frac{24}{5}\left(\frac{1}{5n+7}-\frac{1}{5(n+1)+7}\right)>0\quad\forall n\geq 1.\ \Rightarrow u_{n+1}>u_n.\ \text{Vậy dãy số }\left(u_n\right)\text{là dãy số tăng}.$$

Ta có:
$$0 < \frac{1}{5n+7} \le \frac{1}{12}$$
 $\forall n \ge 1 \iff 0 > -\frac{24}{5(5n+7)} \ge -\frac{2}{5} \iff \frac{7}{5} > \frac{7}{5} - \frac{24}{5(5n+7)} \ge \frac{7}{5} - \frac{2}{5}$

 $\Leftrightarrow 1 \le u_n < \frac{7}{5}$. Suy ra (u_n) là một dãy số bị chặn.

Kết luận (u_n) là một dãy số tăng và bị chặn.

- **Câu 44.** Cho dãy số (u_n) với $u_n = n^2 4n + 3$.
 - a). Viết công thức truy hồi của dãy số.
 - b). Chứng minh dãy số bị chặn dưới.
 - c). Tính tổng n số hạng đầu của dãy số đã cho.

a). Ta có:
$$u_1 = 1^2 - 4.1 + 3 = 0$$
.

Xét hiệu:
$$u_{n+1} - u_n = \left[(n+1)^2 - 4(n+1) + 3 \right] - (n^2 - 4n + 3) = 2n - 3 \implies u_{n+1} = u_n + 2n - 3.$$

b). Ta có:
$$u_n = n^2 - 4n + 4 - 1 = (n-2)^2 - 1 \ge -1 \quad \forall n \ge 1.$$

Vậy dãy số bị chặn dưới, nhưng không bị chặn trên.

c). Ta có:

$$u_{1} = 1^{2} - 4.1 + 3$$

$$u_{2} = 2^{2} - 4.2 + 3$$

$$u_{3} = 3^{2} - 4.2 + 3$$

$$...$$

$$u_{n} = n^{2} - 4.n + 3$$

$$S_{n} = (1^{2} + 2^{2} + 3^{2} + ... + n^{2}) - 4(1 + 2 + 3 + ... + n) + 3n$$

$$= \frac{n(n+1)(2n+1)}{6} - \frac{4n(n+1)}{2} + 3n$$

$$= \frac{n(n+1)(2n+1) - 12n(n+1) + 18n}{6}$$

$$= \frac{n(n+1)(2n-11) + 18n}{6}$$

Câu 45. Xét tính bị chặn của dãy số: $u_n = \left(1 + \frac{1}{n}\right)^n$; $n \in \mathbb{N}^*$

Ta có:
$$u_n = \left(1 + \frac{1}{n}\right)^n > 0; \forall n \in N^*$$
 nên (u_n) bị chặn dưới (1).

Lại có:
$$u_n = \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n C_n^k \left(\frac{1}{n}\right)^k = \sum_{k=0}^n \left[\frac{n!}{k!(n-k)!n^k}\right]$$

$$= \sum_{k=0}^{n} \left[\frac{1}{k!} \cdot \frac{(n-k+1)}{n} \cdot \frac{(n-k+2)}{n} \dots \frac{(n-k+k)}{n} \right] \le \sum_{k=0}^{n} \frac{1}{k!}; n \in \mathbb{N}^*$$

Mà:
$$\sum_{k=0}^{n} \frac{1}{k!} \le 1 + 1 + \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{(n-1).n}$$

$$=2+\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\ldots+\left(\frac{1}{n-1}-\frac{1}{n}\right)=3-\frac{1}{n}<3;\forall n\in\mathbb{N}^*$$

Suy ra: $u_n < 3, \forall n \in \mathbb{N}^*$ nên dãy số (u_n) bị chặn trên (2).

Từ (1) và (2) \Rightarrow dãy số (u_n) bị chặn.

Câu 46. Cho $U_n = 1 + \frac{1}{2^5} + \frac{1}{3^5} + ... + \frac{1}{n^5} \forall n \in \mathbb{N}^*$. Chứng minh (U_n) bị chặn trên.

Lời giải

Với
$$k = 2, 3, ..., n$$
 ta có $k^5 > k(k-1) > 0$ (do $k^5 - k(k-1) = k^2(k^3 - 1) + k > 0$)
$$\Rightarrow \frac{1}{k^5} < \frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k}$$

Do đó:

$$1 = 1$$

$$\frac{1}{2^5} < 1 - \frac{1}{2}$$

$$\frac{1}{3^5} < \frac{1}{2} - \frac{1}{3}$$

$$\frac{1}{n^5} < \frac{1}{n-1} - \frac{1}{n}$$

$$\Rightarrow U_n \le 2 - \frac{1}{n} < 2 \forall n \in N^* \Rightarrow (U_n) \text{ bị chặn trên}$$

- **Câu 47.** Cho dãy số (u_n) định bởi $\begin{cases} u_1 = 1 \\ u_{n+1} = \frac{2}{3}u_n + 5 \end{cases} \forall n \in N^*$
 - a). Chứng minh $u_n < 15, \forall n \in \mathbb{N}^*$.
 - b). Chứng minh dãy số (u_n) tăng và bị chặn dưới

Lời giải

a). Ta có
$$u_1 = 1 < 15$$
, giả sử $u_k < 15$, khi đó $u_{k+1} = \frac{2}{3}u_k + 5 < \frac{2}{3}.(15) + 5 = 15$

$$V_{ay} u_n < 15 \forall, n \in N * (1)$$

b). Ta có
$$u_{n+1} - u_n = \frac{2}{3}u_n + 5 - u_n = \frac{15 - u_n}{3} > 0, \forall n \in N*(do(1))$$

$$\Rightarrow$$
 dãy số (u_n) tăng $\Rightarrow u_n \ge u_1 = 1 \Rightarrow (u_n)$ bị chặn dưới.

Câu 48. Xét tính bị chặn của các dãy số sau:

a).
$$u_n = \frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)}$$
 b). $u_n = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$

c).
$$u_n = \frac{1}{1.3} + \frac{1}{2.5} + \dots + \frac{1}{(2n-1)(2n+1)}$$
 d). $u_n = \frac{1}{1.4} + \frac{1}{2.5} + \dots + \frac{1}{n(n+3)}$

Lời giải

a). Rõ ràng $u_n > 0, \forall n \in \mathbb{N}^*$ nên (u_n) bị chặn dưới.

Lại có:
$$\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$$
. Suy ra

$$u_n = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1} < 1, \forall n \in \mathbb{N} * \text{nên } (u_n) \text{ bị chặn trên.}$$

Kết luận (u_n) bị chặn.

b). Rõ ràng $u_n > 0, \forall n \in \mathbb{N}^*$ nên (u_n) bị chặn dưới.

Có
$$\frac{1}{k^2} < \frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k}, \forall k \ge 2, k \in \mathbb{N}$$
. Do đó:

$$u_n < 1 + \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) = 2 - \frac{1}{n} < 2$$
 với mọi số nguyên dương n, nên

 (u_n) bị chặn trên.

Kết luận (u_n) bị chặn.

c). Rõ ràng $u_n > 0, \forall n \in \mathbb{N}^*$ nên (u_n) bị chặn dưới.

Lại có:
$$\frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \left(\frac{1}{2k-1} - \frac{1}{2k+1} \right)$$
. Suy ra

$$u_n = \frac{1}{2} \left[\left(1 - \frac{1}{3} \right) + \left(\frac{1}{2} - \frac{1}{5} \right) + \dots + \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right) \right] = \frac{1}{2} \left(1 - \frac{1}{2n+1} \right) < \frac{1}{2} \text{ v\'oi mọi số nguyên dương n,}$$

nên (u_n) bị chặn trên.

Kết luận (u_n) bị chặn.

d). Rõ ràng $u_n > 0, \forall n \in \mathbb{N}^*$ nên (u_n) bị chặn dưới.

Lại có:
$$\frac{1}{k(k+3)} = \frac{1}{3} \left(\frac{1}{k} - \frac{1}{k+3} \right)$$
. Suy ra $u_n = \frac{1}{3} \left[\left(1 - \frac{1}{4} \right) + \left(\frac{1}{2} - \frac{1}{5} \right) + \left(\frac{1}{3} - \frac{1}{6} \right) \right]$

$$+ \left(\frac{1}{4} - \frac{1}{7}\right) + \dots + \left(\frac{1}{n-3} - \frac{1}{n}\right) + \left(\frac{1}{n-2} - \frac{1}{n+1}\right) + \left(\frac{1}{n-1} - \frac{1}{n+2}\right) + \left(\frac{1}{n} - \frac{1}{n+3}\right)]$$

$$u_n = \frac{1}{3} \left(1 + \frac{1}{2} + \frac{1}{3} - \frac{1}{n+1} - \frac{1}{n+2} - \frac{1}{n+3} \right) < \frac{11}{18}$$
 với mọi số nguyên dương n, nên (u_n) bị chặn trên.

Kết luận (u_n) bị chặn.

Theo dõi Fanpage: Nguyễn Bảo Vương 🍲 https://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương * https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIỆU TOÁN) # https://www.facebook.com/groups/703546230477890/

Án sub kênh Youtube: Nguyễn Vương

* https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view_as=subscriber

Tải nhiều tài liệu hơn tại: https://www.nbv.edu.vn/