Séries numériques

Exercice 1.

Déterminer la nature des séries suivantes

$$(1)\sum_{n\geq 1}\frac{n+1}{n^3}$$

$$(2)\sum_{n\geq 1}\frac{\cos(n)}{n^2}$$

(2)
$$\sum_{n\geq 1} \frac{\cos(n)}{n^2}$$
 (3) $\sum_{n\geq 1} \frac{(n+3)\sin(n)}{n(n+1)^2}$

$$(4) \sum_{n \ge 1} \frac{n+5}{n!(n+4)}$$

$$(5)\sum_{n>1}\frac{n^5}{n!}$$

$$(4) \sum_{n\geq 1} \frac{n+5}{n!(n+4)} \qquad (5) \sum_{n\geq 1} \frac{n^5}{n!} \qquad (6) \sum_{n\geq 1} \frac{(n+2)^5}{n!}$$

$$(7)\sum_{n\geq 1}\frac{\ln(n)}{n^3}$$

(7)
$$\sum_{n\geq 1} \frac{\ln(n)}{n^3}$$
 (8) $\sum_{n\geq 1} \frac{2-\cos(n)}{\sqrt{n}}$ (9) $\sum_{n\geq 1} (e^{-n}+1)$

$$(9) \sum_{n>1} (e^{-n} + 1)$$

$$(10) \sum_{n \ge 1} \frac{1}{1 + 2^n}$$

$$(11)\sum_{n\geq 1}\frac{1}{n}\tan\left(\frac{1}{n}\right)$$

$$(10)\sum_{n\geq 1}\frac{1}{1+2^n} \qquad (11)\sum_{n\geq 1}\frac{1}{n}\tan\left(\frac{1}{n}\right) \qquad (12)\sum_{n\geq 1}\ln\left(\left|\cos(\frac{2}{n})\right|\right)$$

$$(13)\sum_{n\geq 1}\frac{2^{-n}}{3^n+2}$$

$$(13) \sum_{n \ge 1} \frac{2^{-n}}{3^n + 2} \qquad (14) \sum_{n \ge 1} \frac{1}{\log(n^2 + n + 1)} \qquad (15) \sum_{n \ge 1} (\ln(n))^{-n}$$

$$(15) \sum_{n \ge 1} (\ln(n))^{-n}$$

Correction

- 1. On a une série à termes positifs. Un équivalent du terme général est $\frac{n+1}{n^3} \sim \frac{n}{n^3} = \frac{1}{n^2}$. Or la série $\sum_{n>1} \frac{1}{n^2}$ est une série de Riemann convergente car son paramètre $\alpha=2>$
 - 1. Donc d'après le critère par équivalent $\sum_{n=1}^{\infty} \frac{n+1}{n^3}$ converge.
- 2. Le terme général de cette série n'est plus toujours positif, mais on peut étudier la convergence absolue. Or

$$\left|\frac{\cos(n)}{n^2}\right| \le \frac{1}{n^2}.$$

La série $\sum_{n\geq 1} \frac{1}{n^2}$ est une série de Riemann convergente car son paramètre $\alpha=2>1$.

Donc d'après le critère par comparaison $\sum_{n>1} \frac{\cos(n)}{n^2}$ est absolument convergente donc convergente.

3. de même que précedemment on étudie l'absolue convergence de la série.

$$\left| \frac{(n+3)\sin(n)}{n(n+1)^2} \right| \le \frac{n+3}{n(n+1)^2} \tag{1}$$

Or $\sum \frac{n+3}{n(n+1)^2}$ est une série à termes positifs et son terme général vérifie $\frac{n+3}{n(n+1)^2} \sim \frac{n}{n \cdot n^2} = \frac{1}{n^2}$ Or la série $\sum_{n \geq 1} \frac{1}{n^2}$ est une série de Riemann convergente car son paramètre $\alpha = 2 > 1$. Donc d'après le critère par équivalent $\sum \frac{n+3}{n(n+1)^2}$ converge.

Par le critère par comparaison, du fait que la série de terme général $\frac{n+3}{n(n+1)^2}$ converge, $\sum_{n\geq 1} \frac{(n+3)\sin(n)}{n(n+1)^2}$ converge absolument, donc converge.

4. On a une série à terme positif. Du fait de la présence de la factorielle, on choisit d'appliquer le critère de d'Alembert pour les séries numériques. On note $u_n = \frac{n+5}{n!(n+4)}$ et on calcule

$$\frac{u_{n+1}}{u_n} = \frac{n+1+5}{(n+1)!(n+1+4)} \times \frac{n!(n+4)}{n+5}$$
$$= \frac{(n+6)(n+4)}{(n+1)(n+5)^2}$$

On voit que $\frac{u_{n+1}}{u_n} = \frac{n^2(1+\frac{6}{n})(1+\frac{4}{n})}{n^3(1+\frac{1}{n})(1+\frac{5}{n})^2} = \frac{(1+\frac{6}{n})(1+\frac{4}{n})}{n(1+\frac{1}{n})(1+\frac{5}{n})^2}$. Donc d'après le critère de d'Alembert $\sum u_n$ converge.

5. On a une série à terme positif. Du fait de la présence de la factorielle, on choisit d'appliquer le critère de d'Alembert pour les séries numériques. On note $u_n = \frac{n^5}{n!}$ et on calcule

$$\frac{u_{n+1}}{u_n} = \frac{(n+1)^5}{(n+1)!} \frac{n!}{n^5} = \frac{(n+1)^5}{n^5(n+1)}$$
$$= \frac{(1+\frac{1}{n})^5}{n+1}$$

On voit que $\frac{u_{n+1}}{u_n} = \to 0 < 1$. Donc d'après le critère de d'Alembert $\sum u_n$ converge.

6. On applique une nouvelle fois le critère de d'Alembert en posant $u_n = \frac{(n+2)^5}{n!}$ on calcule

$$\frac{u_{n+1}}{u_n} = \frac{(n+1+2)^5}{(n+1)!} \frac{n!}{(n+2)^5} = \frac{(n+3)^5}{(n+2)^5} \frac{1}{n+1}$$

Or comme précédemment on a $\frac{(n+3)^5}{(n+2)^5} \to 1$ et donc $\frac{u_{n+1}}{u_n} \to 0 < 1$.

Par le le critère de d'Alembert pour les séries numériques $\sum u_n$ converge.

7. On a $\ln(n) \le n$ et donc pour tout $n \ge 1$ $\frac{\ln(n)}{n^3} \le \frac{n}{n^3} = \frac{1}{n^2}$. Or la série $\sum_{n \ge 1} \frac{1}{n^2}$ est une série de Riemann de paramètre $\alpha = 2 > 1$, donc elle converge.

Donc par le critère par comparaison $\sum_{n\geq 1} \frac{\ln(n)}{n^3}$ converge,

AND CHE

8. On a

$$-1 \leq \cos(n) \leq 1$$

$$-1 \leq -\cos(n) \leq 1$$

$$2-1 \leq 2-\cos(n) \leq 1+2$$

$$1 \leq 2-\cos(n) \leq 3$$

$$\frac{1}{\sqrt{n}} \leq \frac{2-\cos(n)}{\sqrt{n}} \leq \frac{3}{\sqrt{n}}$$

On a donc le terme général de la série qu'on étudie qui est positif d'une part.

D'autre part $\sum_{n\geq 1}\frac{1}{\sqrt{n}}$ est une série de Riemann de paramètre $\alpha=\frac{1}{2}<1$, donc elle diverge.

Donc par le critère par comparaison des séries à terme positif la série $\sum_{n\geq 1} \frac{2-\cos(n)}{\sqrt{n}}$ diverge.

9. Pour $n \to +\infty$ $e^{-n} + 1 \to 1$ car $e^{-n} \to 0$.

Donc le terme général de cette série ne tend pas vers 0. Donc la série diverge.

- 10. On a pour tout $n ext{ } 0 \leq \frac{1}{1+2^n} \leq \frac{1}{2^n} = 2^{-n}$. La série $\sum_{n \geq 0} 2^{-n}$ est une série géométrique de paramètre $r = 2^{-1} = \frac{1}{2} < 1$, donc elle converge. Par le critère par comparaison des séries à terme général positif, $\sum_{n \geq 0} \frac{1}{1+2^n}$ converge.
- 11. pour x au voisinage de 0 on a $\tan(x) \sim x$, donc $\tan\left(\frac{1}{n}\right) \sim \frac{1}{n}$ et donc $\frac{1}{n}\tan\left(\frac{1}{n}\right) \sim \frac{1}{n^2}$.

Or la série $\sum_{n\geq 1}\frac{1}{n^2}$ est une série de Riemann de paramètre $\alpha=2>1,$ donc elle converge.

Par le critère par équivalent des séries à terme général positif, $\sum_{n\geq 1}\frac{1}{n}\tan\left(\frac{1}{n}\right)$ converge.

12. pour x proche de 0 on a $\cos(x) - 1 \sim \frac{-x^2}{2}$ et on a aussi $\ln(f(x) + 1) \sim f(x)$ si f(x) est proche de 0.

Or on peut écrire $\ln \left|\cos(\frac{2}{n})\right| = \ln \left|\cos(\frac{2}{n}) - 1 + 1\right|$. Comme $\frac{2}{n} \to 0$ on a donc $\cos(\frac{2}{n}) - 1 \sim \frac{-2}{n^2}$.

Pour n assez grand $\cos(\frac{2}{n}) - 1 + 1 \sim 1 - \frac{2}{n^2} > 0$, donc on peut enlever les valeurs absolues.

Donc vu que $\frac{-2}{n^2} \to 0$ on a

$$\ln\left|\cos\left(\frac{2}{n}\right)\right| = \ln\left|\cos\left(\frac{2}{n}\right) - 1 + 1\right|$$

$$\sim \cos\left(\frac{2}{n}\right) - 1 \sim -\frac{2}{n^2}$$

Or la série $-2\sum_{n\geq 1}\frac{1}{n^2}$ est une série de Riemann de paramètre $\alpha=2>1,$ donc elle converge.

Par le critère par équivalent des séries à terme général de signe constant (ici le terme général est négatif), $\sum_{n\geq 1} \ln \left|\cos(\frac{2}{n}) - 1 + 1\right|$ converge.

13. On peut majorer $\frac{2^{-n}}{3^n+2}<\frac{2^{-n}}{3^n}=2^{-n}3^{-n}=6^{-n}.$ Or la série $\sum\limits_{n\geq 0}6^{-n}$ est une série géométrique de paramètre $r=6^{-1}=\frac{1}{6}<1$. Donc elle converge

Par le critère par comparaison des séries à terme général positif la série $\sum_{n\geq 0} \frac{2^{-n}}{3^n+1}$

14. Remarquons que pour n assez grand on a $\ln(n^2 + n + 1) \leq n$. En effet on a $\lim_{n \to +\infty} \frac{\ln(n^2 + n + 1)}{n} = 0 \text{ car la puissance de } n \text{ l'emporte sur ln.}$

Donc on a $\frac{1}{\ln(n^2+n+1)} \ge \frac{1}{n}$.

Or $\sum_{n\geq 1}\frac{1}{n}$ diverge car c'est une série de Riemann de paramètre $\alpha=1$, donc par le critère par comparaison des séries à terme général positif, $\sum_{n\geq 1} \frac{1}{\ln(n^2+n+1)}$ diverge.

15. On utilise ici le critère de Cauchy. En effet en posant $u_n = (\ln(n)^{-n})$ on a $u_n^{1/n} =$ $\ln(n)^{-1} \to 0.$

Donc le critère de Cauchy pour les séries à terme général positif donne que $\sum_{n\geq 2} \ln(n)^{-n}$ converge.

Exercice 2.

On fixe $\alpha \in \mathbb{R}$.

Indiquer en fonction de α si les séries suivantes convergent absolument en distinguant selon les valeurs du paramètre α .

$$(1)\sum_{n\geq 0} 2^{-n}e^{in\alpha}$$

$$(1) \sum_{n \ge 0} 2^{-n} e^{in\alpha} \qquad (2) \sum_{n \ge 1} \frac{2^n}{n^2 \sin^{2n}(\alpha)} \qquad (3) \sum_{n \ge 1} \frac{n}{1 + n^3 \alpha}$$

$$(3)\sum_{n\geq 1}\frac{n}{1+n^3\alpha}$$

$$(4)\sum_{n\geq 1}e^{n(\alpha-n)}$$

$$(5)\sum_{n\geq 1}ne^{-n\alpha}$$

(4)
$$\sum_{n\geq 1} e^{n(\alpha-n)}$$
 (5) $\sum_{n\geq 1} ne^{-n\alpha}$ (6) $\sum_{n\geq 1} \frac{\alpha^2 + n}{n^2}$

1. On regarde la convergence absolue de la série. On a $|2^{-n}e^{in\alpha}|=2^{-n}$. C'est le terme général d'une série géométrique de paramètre $r=2^{-1}=\frac{1}{2}<1$, et donc elle converge. Donc $\sum\limits_{n\geq 0}2^{-n}e^{in\alpha}$ converge absolument.

Donc $\sum_{n\geq 0} 2^{-n} e^{in\alpha}$ converge pour toute valeur de α .

2. Si $\sin(\alpha)=0$ alors le terme général de la série n'est pas défini, donc si $\alpha=k\pi$ pour $k \in \mathbb{Z}$ le terme général n'est pas défini.

D'autre part appliquons maintenant le critère de Cauchy et calculons en posant $u_n = \frac{2^n}{n^2 \sin^{2n}(\alpha)} > 0$ la limite de $u_n^{1/n}$.

On a
$$u_n^{1/n} = \frac{2}{n^{2/n} \sin^2(\alpha)}$$
. Or $n^{2/n} = e^{2\frac{\ln(n)}{n}} \to e^0 = 1$.

Donc
$$\lim_{n\to+\infty} u_n^{1/n} = \frac{2}{\sin^2(\alpha)}$$
. Or comme $0 \le \sin^2(\alpha) \le 1$ on a $\frac{2}{\sin^2(\alpha)} \ge 2 > 1$.

Par le critère de Cauchy la série diverge donc pour toute valeur de α .

- 3. Pour $\alpha=0$ on a le terme général qui vaut $\frac{n}{1+n^3\alpha}=n\to +\infty$. Donc le terme général ne tend pas vers 0 et la série diverge. Pour $\alpha\neq 0$ on a $\frac{n}{1+n^3\alpha}\sim \frac{n}{\alpha n^3}=\frac{1}{\alpha}\frac{1}{n^2}$.

Or la série $\frac{1}{\alpha} \sum_{n>1} \frac{1}{n^2}$ est une série du type Riemann de paramètre $\alpha=2>1$, donc elle converge.

Donc par le critère par équivalent la série $\sum\limits_{n\geq 1}\frac{n}{1+n^3\alpha}$ converge.

4. On applique le critère de Cauchy sur le terme général de cette série en notant $u_n = e^{n(\alpha - n)}.$

On obtient
$$u_n^{1/n} = e^{\alpha - n} \to 0$$
 car $\alpha - n \to -\infty$.

Donc par le critère de Cauchy $\sum u_n$ converge quelle que soit la valeur de α .

5. De même on applique le critère de Cauchy cette fois sur $u_n = ne^{-n\alpha}$. On a $u_n^{1/n} =$ $n^{1/n}e^{-\alpha}$. Or vu que $n^{1/n}=e^{\frac{\ln(n)}{n}}\to e^0=1$ on a $u_n^{1/n}\to e^{-\alpha}$.

On a donc

- Pour $\alpha < 0$ alors $e^{-\alpha} > 1$ et la série diverge d'après le critère de Cauchy.
- Pour $\alpha > 0$ alors $e^{-\alpha} > 1$ et la série converge d'après le critère de Cauchy.
- Pour $\alpha = 0$ alors $e^{-\alpha} = 1$ et on ne peut pas conclure avec le critère de Cauchy. Cependant on remarque que dans ce cas $u_n = ne^{-n\alpha} = n \to +\infty$, donc la série diverge vu que son terme général ne tend pas vers 0.
- 6. On a l'équivalent $\frac{\alpha^2+n}{n^2} \sim \frac{n}{n^2} = \frac{1}{n}$. Or la série $\sum_{n\geq 1} \frac{1}{n}$ diverge car c'est une série de Riemann de paramètre $\alpha = 1$.

Donc par le critère par équivalent $\sum_{n>1} \frac{\alpha^2+n}{n^2}$ diverge.

Séries entières

Exercice 3.

Déterminer le rayon de convergence des séries entières suivantes

$$(1)\sum_{n\geq 1}\frac{z^n}{n^2}$$

$$(1) \sum_{n \ge 1} \frac{z^n}{n^2} \qquad (2) \sum_{n \ge 1} n^n z^n \qquad (3) \sum_{n \ge 1} z^{2n}$$

$$(3)\sum_{n\geq 1}z^{2n}$$

$$(4)\sum_{n\geq 1}\frac{\ln(n)}{\sqrt{n}}z^{n}$$

$$(5)\sum_{n\geq 1}n(n-1)z^n$$

$$(4) \sum_{n \ge 1} \frac{\ln(n)}{\sqrt{n}} z^n \qquad (5) \sum_{n \ge 1} n(n-1) z^n \qquad (6) \sum_{n \ge 0} \frac{2^n - 3^n}{5^n} z^n$$

Correction:

(1) La série est du type $\sum_{n\geq 0} a_n z^n$ avec $a_n = \frac{1}{n^2}$ pour $n\geq 1$ et $a_0=0$. Appliquons le critère de d'Alembert pour le calcul du rayon de convergence.

Cela donne

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{(n+1)^2} \times \frac{n^2}{1} = \frac{n^2}{(n+1)^2} = \frac{n^2}{n^2 \left(\frac{1}{n} + 1\right)^2} = \frac{1}{\left(\frac{1}{n} + 1\right)^2}$$

On a $\frac{1}{\left(\frac{1}{n}+1\right)^2} \to 1$ quand $n \to +\infty$.

Donc $\frac{a_{n+1}}{a_n} \to 1$ et R = 1.

(2) La série est du type $\sum_{n\geq 0} a_n z^n$ avec $a_n = n^n$ pour $n\geq 1$ et $a_0 = 0$. Appliquons le critère de Cauchy pour le calcul du rayon de convergence.

$$|a_n|^{1/n} = n$$

Donc $\lim_{n \to +\infty} |a_n|^{1/n} = +\infty$ et donc R = 0.

(3) La série est du type $\sum_{k\geq 0}a_kz^k$ avec $a_k=1$ si k=2n est pair et 0 sinon. Revenons à la définition du rayon de convergence et calculons R tel que si |z| < R alors $\sum_{k \ge 0} a_k z^k$ converge et tel que si |z| > R la série diverge.

Remarquons que à z fixé la série est du type $\sum\limits_{n\geq 1}(z^2)^n$. Il s'agit donc d'une série géométrique de paramètre z^2 . Elle converge si et seulement si $|z|^2 < 1$ c'est à dire si et seulement si |z| < 1.

Donc si |z| < 1 la série converge et si |z| > 1 la série diverge. Donc R = 1. (4) La série est du type $\sum_{n \ge 0} a_n z^n$ avec $a_n = \frac{\ln(n)}{\sqrt{n}}$ pour $n \ge 1$ et $a_0 = 0$. Appliquons le critère de d'Alembert pour le calcul du rayon de convergence.

$$\begin{aligned} \left| \frac{a_{n+1}}{a_n} \right| &= \frac{\ln(n+1)}{\sqrt{n+1}} \frac{\sqrt{n}}{\ln(n)} \\ &= \frac{\ln(n+1)}{\ln(n)} \frac{\sqrt{n}}{\sqrt{n+1}} = \frac{\ln(n(1+\frac{1}{n+1}))}{\ln(n)} \frac{\sqrt{n}}{\sqrt{n}\sqrt{1+\frac{1}{n}}} \\ &= \frac{\ln(n) + \ln\left(1 + \frac{1}{n+1}\right)}{\ln(n)} \frac{1}{\sqrt{1+\frac{1}{n}}} \\ &= \left(1 + \frac{\ln\left(1 + \frac{1}{n+1}\right)}{\ln(n)}\right) \frac{1}{\sqrt{1+\frac{1}{n}}} \end{aligned}$$

Or $\frac{\ln(1+\frac{1}{n+1})}{\ln(n)\to 0}$ quand $n\to +\infty$. Donc $\frac{a_{n+1}}{a_n}\to 1$ quand $n\to +\infty$. Donc R=1. (5) La série est du type $\sum_{n\geq 0}a_nz^n$ avec $a_n=n(n-1)$ pour $n\geq 1$ et $a_0=0$. Appliquons

le critère de d'Alembert pour le calcul du rayon de convergence.

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{(n+1)n}{n(n-1)} = \frac{n+1}{n-1} = \frac{n\left(1+\frac{1}{n}\right)}{n\left(1-\frac{1}{n}\right)} = \frac{1+\frac{1}{n}}{1-\frac{1}{n}}$$

Or $\lim_{n \to +\infty} \frac{1 + \frac{1}{n}}{1 - \frac{1}{n}} = 1$. Donc R = 1.

(6) Ici le plus simple est de revenir à la définition. Soit $z \in \mathbb{C}$. Examinons à quelle condition sur |z| la série converge.

On a
$$\left| \frac{2^n - 3^n}{5^n} z^n \right| = \frac{3^n (1 - \frac{2^n}{3^n})}{5^n} |z|^n \sim \frac{3^n}{5^n} |z|^n$$
 quand $n \to +\infty$.

La série $\sum_{n\geq 1}\frac{3^n}{5^n}|z|^n=\sum_{n\geq 1}\left(\frac{3}{5}|z|\right)^n$ est une série géométrique de paramètre $\frac{3}{5}|z|$ qui converge si et seulement si $\frac{3}{5}|z|<1$ c'est à dire si et seulement si $|z|<\frac{5}{3}$. Donc $R=\frac{5}{3}$.

Exercice 4.

Calculer le rayon de convergence R de la série $\sum_{n\geq 0} \frac{z^{2n+1}}{2n+1}$. La série converge-t-elle pour z=R?

Correction:

On remarque que la série qu'on examine est en fait la série primitive de $\sum_{n\geq 0} z^{2n}$. Cette série s'écrit aussi $\sum_{n\geq 0} (z^2)^n$. On reconnait une série géométrique de paramètre z^2 . Elle converge si et seulement si $|z^2| < 1$, c'est à dire |z| < 1. Donc R = 1.

Comme les séries dérivée et séries primitives dans le cas des séries entières ont même rayon de convergence on a donc R=1.

Pour z = R = 1 on examine donc $\sum_{n \geq 0} \frac{1}{2n+1}$. C'est une série numérique du type $\sum_{n \geq 0} u_n$ avec $u_n = \frac{1}{2n+1}$. En particulier le terme général de la série est positif et toujours non nul.

On voit bien que cette série ressemble à une série de Riemann de paramètre $\alpha=1$, donc surement divergente...

D'après le critère par équivalent on a pour $n \to +\infty$ $\frac{1}{2n+1} \sim \frac{1}{2n}$.

Or $\sum \frac{1}{n}$ diverge car c'est une série de Riemann de paramètre $\alpha = 1$, et donc $\sum \frac{1}{2n}$ diverge, et par le critère par équivalent des séries à terme positif, $\sum \frac{1}{2n+1}$ diverge.

Donc pour z = R la série diverge.