Biostatistics (MATH11230)

Vanda Inácio

University of Edinburgh

Semester 1, 2021/2022

General context

- There are various ways for modelling the dependency between the event time and the factors that might affect it.
- → The two most common approaches are known as the proportional hazards model and the accelerated failure time model.
- → Due to time constraints, here we will only cover the first class of methods: proportional hazards models.

Comparing two groups

- \hookrightarrow Let $h_S(t)$ and $h_N(t)$ be the hazards of death at time t for patients in the standard and new treatment groups, respectively.
- → A convenient model is to assume that the hazard at time t for a patient in the new treatment group is proportional to the hazard at the same time in the standard treatment.
- \hookrightarrow This proportional hazards model can be expressed as

$$h_N(t) = \psi h_S(t), \qquad t \ge 0, \tag{1}$$

where ψ is a constant.

Comparing two groups

- An implication of the proportional hazards model is that the corresponding true survival functions for individuals in the new and in the standard treatments do not cross.
- \hookrightarrow To see why, recall that by assumption $h_N(t) = \psi h_S(t)$. Integrating both sides of this expression, multiplying by (-1) and exponentiating gives

$$\exp\left\{-\int_0^t h_N(u)\mathrm{d}u\right\} = \exp\left\{-\int_0^t \psi h_S(u)\mathrm{d}u\right\}.$$

$$\exp\left\{-\int_0^t \psi h_{\mathcal{S}}(u) \mathrm{d}u\right\} = \left[\exp\left\{-\int_0^t h_{\mathcal{S}}(u) \mathrm{d}u\right\}\right]^\psi,$$

and remember that

$$S(t) = \exp\left\{-\int_0^t h(u)\mathrm{d}u\right\}.$$

Comparing two groups

 \hookrightarrow Therefore, if $S_N(t)$ and $S_S(t)$ are the survival functions for the two groups, then

$$S_N(t) = [S_S(t)]^{\psi}$$
.

- \hookrightarrow The parameter ψ is called the hazard ratio: it is the ratio of the hazard of death at any time for an individual in the standard treatment.
- \hookrightarrow If $0 < \psi < 1$, the hazard of death at time t is smaller for an individual on the new drug relative to an individual on the standard treatment.
- \hookrightarrow The new treatment is then an improvement on the standard treatment.
- \hookrightarrow On the other hand, if $\psi > 1$, the hazard of death at time t is greater for an individual in the new drug, and the standard treatment is superior.

Comparing two groups

- → An alternative way of expressing the model in (1) leads to a model that can be more easily generalised.
- \hookrightarrow Suppose that survival times are available on n individuals and denote the hazard function for the ith of these by $h_i(t)$, for $i = 1, \dots, n$.
- \hookrightarrow Also, let $h_0(t)$ be the hazard function for an individual in the standard treatment group.
- \hookrightarrow The hazard function for an individual on the new treatment is then $\psi h_0(t)$.
- \hookrightarrow The relative hazard cannot be negative and so it convenient to set $\psi = \exp(\beta)$.
- \hookrightarrow Any value of $\beta \in (-\infty, +\infty)$ will lead to a positive value of ψ .

Comparing two groups

- → Now let X be an indicator variable, which takes the value zero if an individual is on the standard treatment and one if the individual is on the new drug.
- \hookrightarrow The hazard function for individual *i* is then written as

$$h_i(t) = h(t \mid X = x_i) = h_0(t)e^{\beta x_i}$$

$$= \begin{cases} h_0(t), & \text{if } x_i = 0\\ h_0(t)e^{\beta}, & \text{if } x_i = 1 \end{cases}$$

- → This is the proportional hazards model for the comparison of two treatment groups.
- \hookrightarrow Here $\psi=e^{\beta}$ represents the ratio of the hazard of death for an individual on the new treatment relative to one on the standard treatment at any time t.

General model

- \hookrightarrow The model we have considered just now can be generalised to the situation where the hazard of death (or, more generally, the hazard of the event of interest occurring) at a particular time point depends on the values of x_1, \ldots, x_p of p explanatory variables/risk factors/covariates X_1, \ldots, X_p .
- → The values of these variables will be assumed to have been recorded at the time origin of the study.
- → We will not cover them but there are extensions of the model to cover the situation where the values of one or more explanatory variables change over time.
- \hookrightarrow Let $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})'$ be the explanatory variables for individual i.

General model

$$h_i(t) = h(t \mid \mathbf{x}_i) = h_0(t) \exp(x_{i1}\beta_1 + x_{i2}\beta_2 + \dots + x_{ip}\beta_p) = h_0(t) \exp(x_i'\beta),$$
 (2)

where $\beta = (\beta_1, \ldots, \beta_p)'$.

- \hookrightarrow Note that there is no intercept β_0 in model (2).
- → Obviously,

$$h(t \mid \mathbf{x}_i = \mathbf{0}) = h_0(t),$$

and, therefore, $h_0(t)$ is often called the baseline hazard function.

 \hookrightarrow It can be interpreted as the hazard function for a standard subject, which is a subject with $\mathbf{x} = \mathbf{0}$.

General model

- \hookrightarrow Any parametric hazard function can be used for $h_0(t)$ and as we will see next week, $h_0(t)$ can be left completely unspecified without sacrificing the ability to estimate β , by the use of Cox's semiparametric proportional hazards model.
- \hookrightarrow The hazard function for the *i*th subject always has the same general shape as $h_0(t)$, but can be, say, doubled or halved, depending in the individual's risk factors.
- \hookrightarrow The term $\exp(x_i'\beta)$ is in many cases the function of primary interest as it describes the (relative) effects of the risk factors.
- → Note that the model separates clearly the effect of time from the effect of the risk factors.

General model

→ The proportional hazards model can also be written in terms of the survival function:

$$\begin{aligned} S_i(t) &= S(t \mid \mathbf{x}_i) = \exp\left(-\int_0^t h_i(u) du\right) \\ &= \exp\left(-\int_0^t h_0(u) \exp(x_i'\beta) du\right) \\ &= \left[\exp\left(-\int_0^t h_0(u) du\right)\right]^{\exp(x_i'\beta)} \\ &= S_0(t)^{\exp(x_i'\beta)}, \end{aligned}$$

where $S_0(t)$ is the baseline survival function.

General model

→ On the log-hazard scale this model can be written as

$$\log h_i(t) = \log h_0(t) + x_i' \beta.$$

 \hookrightarrow The coefficient β_j associated with the risk factor X_j represents the change in the log hazard when X_j is increased by one unit, all the other risk factors being constant, that is,

$$\beta_j = \log h(t \mid X_1, X_2, \dots, X_j + 1, \dots, X_p) - \log h(t \mid X_1, X_2, \dots, X_j, \dots, X_p),$$

which is equivalent to the log of the ratio of the hazards at time t.

 \hookrightarrow Equivalently,

$$\frac{h(t\mid X_1,X_2,\ldots,X_j+1,\ldots,X_p)}{h(t\mid X_1,X_2,\ldots,X_i,\ldots,X_p)}=e^{\beta j}.$$

 \hookrightarrow Therefore, e^{β_j} represents the ratio of the hazards for a one unit change in X_j at any time t while keeping all the other risk factors constant.

General model

 \hookrightarrow The main assumption of this model is the **proportional hazards assumption**, that is, the fact that the ratio of the hazard functions for two subjects with covariates \mathbf{x}_i and \mathbf{x}_l is constant over time, that is,

$$\frac{h(t \mid \mathbf{x}_i)}{h(t \mid \mathbf{x}_i)} = \frac{\exp(x_i'\beta)}{\exp(x_i'\beta)} = \exp\{(\mathbf{x}_i - \mathbf{x}_i)'\beta\}.$$

- \hookrightarrow The proportional hazards model also further assumes that the relationship between the risk factors and the log hazard function is linear.

Toy example (from Klein and Moeschberger, 2003, p248)

- Let us consider for the sake of simplicity/illustration that the only risk factor that needs to be considered is race.
- → Let us consider that race is a three level factor, whose levels are: black, white, hispanic.
- → Define

$$X_1 = \begin{cases} 1, & \text{if the subject is black,} \\ 0, & \text{otherwise,} \end{cases} \qquad X_2 = \begin{cases} 1, & \text{if the subject is white,} \\ 0, & \text{otherwise.} \end{cases}$$

→ Hispanic is therefore the reference category.

Toy example (from Klein and Moeschberger, 2003, p248)

$$\begin{split} h(t \mid X_1, X_2) &= h_0(t) \exp(X_1 \beta_1 + X_2 \beta_2) \\ &= \begin{cases} h_0(t), & \text{if } X_1 = X_2 = 0 \text{ (hispanic subject),} \\ h_0(t) \exp(\beta_1), & \text{if } X_1 = 1, X_2 = 0 \text{ (black subject),} \\ h_0(t) \exp(\beta_2), & \text{if } X_1 = 0, X_2 = 1 \text{ (white subject).} \end{cases} \end{split}$$

- \hookrightarrow The risk of the event occurring among black subjects relative to the risk of the event occurring among hispanic subjects is e^{β_1} .
- \hookrightarrow The risk of the event occurring among white subjects relative to the risk of the event occurring among hispanic subjects is e^{β_2} .
- \hookrightarrow The risk of the event occurring among black subjects relative to the risk of the event occurring among white subjects is $e^{\beta_1-\beta_2}$.