

Negative Binary Numbers

- When we write a negative number, we generally use a "-" as a prefix character
- However, binary numbers can only store ones and zeros

6/7/2019

Sacramento State - Cook - CSc 35 - Spring 2019

Negative Binary Numbers

- So, how we store a negative a number?
- When a number can represent both positive and negative numbers, it is called a signed integer

• Otherwise, it is *unsigned*

6/7/2019

acramento State - Cook - CSc 35 - Spring 2019

Signed Magnitude

- One approach is to use the most significant bit (msb) to represent the negative sign
- If positive, this bit will be a zero
- If negative, this bit will be a 1
- This gives a byte a range of -127 to 127 rather than 0 to 255

6/7/2019

Sacramento State - Cook - CSc 35 - Spring 2019

Rather than use a sign bit, the value can be made negative by *inverting* each bit each 1 becomes a 0 each 0 becomes a 1 Result is a "complement" of the original This is logically the same as subtracting the number from 0

2's Complement

- Practically all computers nowadays use 2's Complement
- Similar to 1's complement, but after the number is inverted, 1 is added to the result
- Logically the same as:
 - \bullet subtracting the number from ${\bf 2^n}$
 - where *n* is the total number of bits in the integer

7/2019

2's Complement Advantages

- Since negatives are subtracted from 2ⁿ
 - they can simply be added
 - the extra carry 1 (if it exists) is discarded
 - this simplifies the hardware considerably since the processor <u>only</u> has to add
- The +1 for negative numbers...
 - makes it so there is only one zero
 - values range from <u>-128</u> to 127

6/7/2019 Sacramento State - Cook - CSc 35 - Spring 2019

2's Complement: 13 and -13 Positive 0 0 0 0 1 1 0 1 Negative Add 1 1 1 1 1 0 0 1 1

Extending Unsigned Integers

- Often in programs, data needs to moved to a integer with a larger number of bits
- For example, an 8-bit number is moved to a 16-bit representation

6/7/0010

Extending Unsigned Integers

- For unsigned numbers is fairly easy – just add zeros to the left of the number
- This, naturally, is how our number system works anyway: 000456 = 456

6/7/2019

Sacramento State - Cook - CSc 35 - Spring 201

Unsigned 13 Extended 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 672019 Secrement State - Cock - Clic 18- Spring 2019 27

Extending Signed Integers

- When the data is stored in a signed integer, the conversion is a little more complex
- Simply adding zeroes to the left, will convert a negative value to a positive one
- Each type of signed representation has its own set of rules

6/7/20

acramento State - Cook - CSc 35 - Spring 2019

2's Complement Extended Incorrectly -13 1 1 1 1 0 0 1 1 243 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 672019 Sacrameto State - Cook - Cic 25 - Spring 2019 29

Sign Magnitude Extension

- In signed magnitude, the most-significant bit (msb) stores the negative sign
- The <u>new</u> sign-bit needs to have this value
- Rules:
 - copy the old sign-bit to the new sign-bit
 - fill in the rest of the new bits with zeroes including the old sign bit

6/7/2019

acramento State - Cook - CSc 35 - Spring 2019

Multiplying Binary Numbers

- Many processors today provide complex mathematical instructions
- However, the processor only needs to know how to add
- Historically, multiplication was performed with successive additions

6/7/0010

Multiplying Scenario

- Let's say we have two variables: A and B
- Both contain integers that we need to multiply
- Our processor can only add (and subtract using 2's complement)
- How do we multiply the values?

6/7/2019

Sacramento State - Cook - CSc 35 - Spring 2019

Multiplying: The Bad Way

- One way of multiplying the values is to create a For Loop using one of the variables – A or B
- Then, inside the loop, continuously add the other variable to a running total

Sacramento State - Cook - CSc 35 - Spring 2019

Multiplying: The Bad Way

```
total = 0;
for (i = 0; i < A; i++)
{
   total += B;
}</pre>
```

Multiplying: The Bad Way

- If one of the operands A or B

 is large, then the computation could take a long time
- This is incredibly inefficient
- Also, given that A and B could contain drastically different values – the number of iterations would vary
- Required time is not constant

6/7/2019

Sacramento State - Cook - CSc 35 - Spring 2019

Multiplying: The Best Way

- Computers can perform multiplication using long multiplication – just like you do
- The number of additions is then fixed to 8, 16, 32, 64 depending on the size of the integer
- The following example multiplies 2 <u>unsigned</u> 4-bit numbers

Sacramento State - Cook - CSc 35 -

Multiplication Doubles the Bit-Count

- When two numbers are multiplied, the product will have twice the number of digits
- Examples:
 - 8-bit \times 8-bit \rightarrow 16-bit
 - 16-bit × 16-bit → 32-bit
- Often processors...
 - · will store the result in the original bit-size
 - and flag an overflow if it does not fit

67/2019 Sacramento State - Cook - CSc 35 - Spring 2019

Multiplication Review Remember: when two *n* bit numbers are multiplied, result will be 2*n* bits So... two 8-bit numbers → 16-bit two 16-bit numbers → 32-bit

• two 32-bit numbers → 64-bit

• two 64-bit numbers → 128-bit

Multiplication Tips

- Even though you are just using RAX as input, both RAX and RDX will change
- Be aware that you might lose important data, and backup to memory if needed

6/7/0016

Sacramento State - Cook - CSc 35 - Spring 2019

Additional x86 Multiply Instructions

- x86 also contains versions of the IMUL instruction that take multiple operands
- Allows "short" multiplication just stored in 1 register
- Please note: these do <u>not</u> exist for MUL

9 Sacramento State - Cook - CSc 35 - Spring 201

IMUL (few more combos)

IMUL immediate, reg

IMUL memory, reg

IMUL reg, reg

6/7/2019

Sacramento State - Cook - CSc 35 - Spring 2019

Signed Multiply: 1846 by 42

MOV \$1846, %rax IMUL \$42, %rax

6/7/2019 Sacramento State - Cook - CSc 35 - Spring 201

Division on the x86

- Division on the x86 is very interesting
- Like multiplication, it uses 2 registers
- The dividend (number being divided) uses two registers
 - RAX contains the lower 8 bytes
 - RDX contains the upper 8 bytes

6/7/2019

Sacramento State - Cook - CSc 35 - Spring 201

Division on the x86

- These two registers are used for the result
- The output contains:
 - RAX will contain the quotient
 - RDX will contain the remainder

2019 Sacramento State - Cook - CSc 35 - Spring 20

Sacramento State - Cook - CSc 35 - Spring 2019

Integer Data Types

- Integer data types are stored in simple binary numbers
- The number of bytes used varies: 1, 2, 4, etc....
- Languages often have a unique name for each – short, int, long, etc...

1234

6/7/2019

Floating-Point Data Type

- Floating-point numbers are usually stored using the IEEE 754 standard
- Languages often have unique names for them such as float, double, real

6/7/2019

Sacramento State - Cook - CSc 35 - Spring 2019

Floating-Point Data Type

- This is not always the case
 - some languages implement their own structures
 - e.g. COBOL
- Why?
 - some processors do not have floating-point instructions
 - or the language needs more precision and control

6/7/2019

Sacramento State - Cook - CSc 35 - Spring 201

Floating Point Numbers

Real numbers are real complex

Floating Point Numbers

- Often, programs need to perform mathematics on *real* numbers
- Floating point numbers are used to represent quantities that cannot be represented by integers

6/7/2019

Sacramento State - Cook - CSc 35 - Spring 2019

Floating Point Numbers

- Why?
 - regular binary numbers can <u>only</u> store <u>whole</u> positive and negative values
 - many numbers outside the range representable within the system's bit width (too large/small)

6/7/2019

acramento State - Cook - CSc 35 - Spring 2019

IEEE 754

- Practically modern computers use the IEEE 754 Standard to store floating-point numbers
- Represent by a mantissa and an exponent
 - · similar to scientific notation
 - the value of a number is: *mantissa* × 2^{exponent}
 - · uses signed magnitude

6/7/2019

IEEE 754

- Comes in three forms:
 - single-precision: 32-bitdouble-precision: 64-bitquad-precision: 128-bit
- Also supports special values:
 - negative and positive infinity
 - and "not a number" for errors (e.g. 1/0)

9

