

REDES DE DATOS TUIA | FCEIA UNR

Docentes | 1C 2023

Juan Pablo Michelino Emiliano Pavicich Andrea León Cavallo Iván Pellejero Esteban Toribio jpmich@fceia.unr.edu.ar pavicich@fceia.unr.edu.ar aleoncavallo@gmail.com ivan.pellejero97@gmail.com toribio.est@gmail.com

01

PROTOCOLOS Y MODELOS DE UNA RED

- 1.1. Dispositivos de una red. Topología y diagramas de red. Tipos de redes. Arquitectura de red.
- 1.2. Pila de protocolos.
 Estándares y organizaciones.
- 1.3. Modelos de referencia. Modelo OSI. Modelo TCP/IP.
- 1.4. Encapsulamiento de datos. Segmentación y secuenciación del mensaje. Unidad de datos de protocolo.
- 1.5. Direcciones. Tipos de direcciones. Direcciones de capa de red y de enlace. Redes locales y remotas.

Dispositivos de una red

Cada computadora en una red se llama **host** o **terminal**. Un terminal es el punto donde un mensaje se origina o se recibe.

Un dispositivo intermediario interconecta dispositivos finales. Los ejemplos incluyen switches, puntos de acceso inalámbrico, routers y firewalls

La comunicación a través de una red se efectúa a través de un **medio de red** que permite que un mensaje viaje desde el origen hacia el destino.

• • • • • •

Topologías y diagramas de red

Diagrama de topología física

Diagrama de topología lógica

Tipos de redes

Las infraestructuras de red pueden variar en gran medida en términos de:

- El tamaño del área que abarcan.
- La cantidad de usuarios conectados.
- La cantidad y los tipos de servicios disponibles.
- El área de responsabilidad

Los dos tipos de redes más comunes son los siguientes:

- Red de área local (LAN)
- Red de área amplia (WAN).

Intranet / Extranet / Internet

Intranet se utiliza para referirse a la conexión privada de LAN y WAN que pertenecen a una organización: está diseñada para que solo puedan acceder a ella sus miembros u otras personas autorizadas.

Es posible que una organización utilice una **extranet** para proporcionar acceso seguro a las personas que trabajan para otra organización, pero requieren datos de la empresa.

Internet es la colección global de redes interconectadas. No pertenece a una persona o un grupo.

1 1111111 111

PROTOCOLOS

Protocolos

Toda comunicación requiere el **establecimiento de** reglas:

- Emisor y receptor identificados
- Método de comunicación acordado
- Idioma y gramática común
- Velocidad y sincronización en la entrega
- Requisitos de confirmación (acuse de recibo)

Protocolos

Los **protocolos informáticos** comunes
deben estar de
acuerdo e incluir los
siguientes requisitos:

La codificación entre hosts debe tener el formato adecuado para el medio.

Proceso mediante el cual la información se convierte en otra forma aceptable para la transmisión.

Temporización

Incluyendo control de flujo (cuánta información y a qué velocidad), tiempo de espera de respuesta, método de acceso (en qué momento transmitir).

Formato y encapsulamiento

Se debe utilizar un formato o estructura específicos.

Opciones de entrega

Unidifusión (uno a uno), multidifusión (uno a muchos), difusión (uno a todos).

Suites de protocolos

Los protocolos deben poder trabajar con otros, por ello se definen suites de protocolos: un grupo de protocolos interrelacionados que son necesarios para realizar una función de comunicación.

Una manera de analizar estas interrelaciones complejas es verlas en términos de **capas**. Donde las capas inferiores se preocupan por mover datos y proporcionar servicios a las capas superiores.

Modelo OSI

El modelo de referencia OSI (Protocolos de interconexión de sistemas abiertos) proporciona una amplia lista de funciones y servicios que se pueden presentar en cada capa.

Éste tipo de modelo es coherente con todos los tipos de servicios y protocolos de red al describir qué es lo que se debe hacer en una capa determinada, pero sin regir la forma en que se debe lograr.

Modelo TCP/IP

Internet Protocol Suite o TCP/IP es el conjunto de protocolos más común y relevante que se utiliza actualmente.

Es un conjunto de protocolos de estándar abierto mantenido por la Internet Engineering Task Force (IETF)

TCP/IP coincide con precisión con la estructura de una suite de protocolos determinada.

Comparación OSI - TCP/IP

Estándares abiertos

Los estándares abiertos fomentan la interoperabilidad, la competencia y la innovación. También garantizan que ningún producto de una sola empresa pueda monopolizar el mercado o tener una ventaja desleal sobre la competencia.

Las organizaciones de estandarización generalmente son organizaciones sin fines de lucro y neutrales en lo que respecta a proveedores, que se establecen para desarrollar y promover el concepto de estándares abiertos.

Estándares de Internet

Sociedad de Internet (ISOC): promueve el desarrollo y la evolución abiertos del uso de Internet en todo el mundo.

Consejo de Arquitectura de Internet (IAB): es responsable de la administración y el desarrollo general de los estándares de Internet.

Grupo de trabajo de ingeniería de Internet (IETF): desarrolla, actualiza y mantiene las tecnologías de Internet y de TCP/IP.

Grupo de trabajo de investigación de Internet (IRTF): está enfocado en la investigación a largo plazo en relación con los protocolos de Internet y TCP/IP.

ENCAPSULAMIENTO DE DATOS

Segmentación y multiplexación

La **segmentación** es el proceso de **dividir los mensajes** en unidades más pequeñas.

La **multiplexación** es el proceso de tomar múltiples flujos de datos segmentados y entrelazarlos juntos.

La segmentación de mensajes tiene dos beneficios principales: **aumenta la velocidad** y **aumenta la eficiencia**.

Secuenciación

La **secuenciación** de mensajes es el proceso de **enumerar los segmentos** para que el mensaje pueda volver a ensamblarse en el destino.

El protocolo **TCP** es responsable de secuenciar los segmentos individuales.

.

Unidades de datos del protocolo (PDU)

La encapsulación es el proceso en el que los protocolos agregan su información a los datos. En cada etapa del proceso, una PDU tiene un nombre distinto para reflejar sus funciones nuevas.

Las PDU que pasan por la pila son las siguientes:

- 1. Datos (corriente de datos).
- 2. Segmento.
- 3. Paquete.
- 4. Trama.
- 5. Bits (secuencia de bits).

Unidades de datos del protocolo (PDU)

La encapsulación es el proceso en el que los protocolos agregan su información a los datos. En cada etapa del proceso, una PDU tiene un nombre distinto para reflejar sus funciones nuevas.

Las PDU que pasan por la pila son las siguientes:

- 1. Datos (corriente de datos).
- 2. Segmento.
- 3. Paquete.
- 4. Trama.
- 5. Bits (secuencia de bits).

DIRECCIONAMIENTO

Acceso a los datos

Tanto la capa de enlace de como las capas de red utilizan direccionamiento para entregar datos desde el origen hasta el destino.

Direcciones de la capa de red: son responsables de enviar el paquete IP desde el dispositivo de origen hasta el dispositivo final, ya sea en la misma red o a una red remota.

Direcciones de la capa de enlace de datos (MAC): son responsables de enviar la trama de enlace de datos desde una tarjeta de interfaz de red (NIC) a otra en la misma red.

Dirección lógica de capa 3 (capa de red)

Los paquetes IP contienen dos direcciones IP:

- Dirección IP de origen: la fuente de origen del paquete.
- Dirección IP de destino: el destino final del paquete.

Estas direcciones pueden estar en el mismo enlace o remoto.

Dispositivos en la misma red

Cuando los dispositivos están en la misma red, el origen y el destino tendrán el mismo número en la porción de red de la dirección.

Por ej.:

• PC1: <u>192.168.1</u>.110

Servidor FTP: <u>192.168.1.9</u>

Rol de las direcciones de la capa de enlace de datos: Misma red IP

Cuando los dispositivos están en la **misma red Ethernet**, la trama de enlace de datos utilizará la dirección MAC real de la NIC de destino.

Las direcciones MAC están integradas físicamente a la NIC Ethernet y son direcciones locales.

- La dirección MAC de origen será la del iniciador en el enlace.
- La dirección MAC de destino siempre estará en el mismo enlace que el origen, incluso si el destino final es remoto.

Función de las direcciones de capa de red

Cuando el origen y el destino tienen una parte de red diferente, esto significa que están en redes diferentes:

• PC1: <u>192.168.1</u>.110

• Servidor Web: <u>172.16.1</u>.9

Rol de las direcciones de la capa de enlace de datos: Diferentes redes IP

Cuando el destino final es remoto, la Capa 3 proporcionará a la Capa 2 la dirección IP predeterminada local de la puerta de enlace, también conocida como dirección del router.

- La puerta de enlace predeterminada (DGW) es la dirección IP de la interfaz del router que forma parte de esta LAN y será la «puerta» o «puerta de enlace» a todas las demás ubicaciones remotas.
- Todos los dispositivos de la LAN deben recibir información sobre esta dirección o su tráfico se limitará únicamente a la LAN.
- Una vez que la Capa 2 en PC1 se reenvía a la puerta de enlace predeterminada (Router), el router puede iniciar el proceso de enrutamiento para obtener la información al destino real.

Rol de las direcciones de la capa de enlace de datos: Diferentes redes IP (cont.)

- El direccionamiento de enlace de datos es direccionamiento local, por lo que tendrá un origen y un destino para cada enlace.
- El direccionamiento MAC para el primer segmento es:
 - Origen AA-AA-AA-AA
 (PC1) Envía la trama.
 - Destino 11-11-11-11
 (R1- MAC de puerta de enlace predeterminada) Recibe la trama.

Nota: Aunque el direccionamiento local L2 cambiará de enlace a enlace o salto a salto, el direccionamiento L3 sigue siendo el mismo.

Direcciones de la capa de enlace de datos

Dado que el direccionamiento de enlace de datos es direccionamiento local, tendrá un origen y un destino para cada segmento o salto del viaje al destino.

El direccionamiento MAC para el primer segmento es:

- Origen: (NIC PC1) envía tramas
- Destino: (primer router interfazDGW) recibe trama

Direcciones de la capa de enlace de datos (cont.)

El direccionamiento MAC para el segundo salto es:

- Origen (interfaz de salida del primer router) envía trama
- Destino: (segundo router) recibe trama

Direcciones de la capa de enlace de datos (cont.)

El direccionamiento MAC para el último segmento es:

- Origen: (interfaz de salida del segundo router) envía trama
- Destino: (NIC de servidor Web) recibe trama

Observe que **el paquete no se modifica, pero la trama se cambia,**por lo tanto, el direccionamiento IP
L3 no cambia de segmento a
segmento como el
direccionamiento MAC L2.

El direccionamiento L3 sigue siendo el mismo ya que es global y el destino final sigue siendo el servidor Web.

• • • • •

RECURSOS BIBLIOGRÁFICOS

- Cisco NetAcad Introduction to Networks:
 - Módulo 1: "Las redes en la actualidad"
 - Módulo 3: "Protocolos y modelos"
- Redes de Computadoras | Tannenbaum Wetherall (2012) | 5ta Edición WordPress:
 - Capítulo 1: "Introducción"
- Comunicaciones y Redes de Computadores | Stallings (2018) | 7ma Edición Pearson
 - Capítulo 1: "Introducción"
 - Capítulo 2: "Protocolos y arquitectura"