TD Introduction à la théorie des langages Salif Biaye DIC2 (GLSI)

TD1

Exercice1: Alphabets et mots

Comptons le nombre d'occurrences des lettres a et b dans les mots suivants

```
aabg,jdd,titi,babc,a^3cbbca.

|m|a dans aabg = 2

|m|a dans jdd = 0

|m|a dans titi = 0

|m|a dans babc = 1

|m|a dans a^3cbbca = 4

|m|b dans abg = 1

|m|b dans jdd = 0

|m|b dans titi = 0

|m|b dans babc = 2

|m|b dans a^3cbbca = 2
```

• Donnons l'ensemble des couples (u,v) tels que uv =abaac

```
u=a, v=baac → uv=abaac

u=ab , v=aac → uv=abaac

u=aba , v=ac → uv=abaac

u=abaac , v=c → uv=abaac

u=abaac , v=e → uv=abaac
```

- Déterminons les facteurs , les préfixes et les suffixes du mot u = abac
- 1. Les facteurs

"E"
"a"
"b"
"c"
"ab"
"ba"
"ac"
"aba"
"bac"

2. Les préfixes

"ε"
"a"
"ab"
"aba"
"abac"

3. Les suffixes

"ε"
"c"
"ac"
"bac"
"abac"

Soient les alphabets suivants :

• $\Sigma 1 = \Sigma_1 = \{a,b\}$

 $oldsymbol{arSigma} \Sigma 2 = \Sigma_1 = \{d,e,f\}$

• $\varSigma 3=\Sigma_1=\{b,cd\}$ • Donnez les alphabets suivants ainsi que quelques mots qu'ils peuvent générer par la fermeture de Kleene.

1. $\Sigma_1^1 = \{a,b\}$

 $\Sigma_1^2 = \{aa, ab, ba, bb\}$

 $\Sigma_2^3 = \{ddd, eee, fff, dde, ddf, def, fed, fef, eed, eef, edf, efd, ffe, ffd, fed, fde, \ldots\}$

 $\Sigma_2^1 U \Sigma_3^2 = \{df, e, bb, bcd, cdb, cdcd\}$

5. $(\Sigma_1 U \Sigma_2)^2 = \{aa, ab, ba, bb, ad, ae, af, bd, be, bf, ea, da, fa, db, eb, fb, ff, dd, ee, fe, ef, fd, df, de, ed\}$

Exercice 2: Langages

Langages donnés :

```
1. L1 = \Sigma^n, n \in N^* 2. L2 = \max_{a = n \le n} b 3. L3 = a^ib^j avec 0 \le i \le j 4. L4 = a^n, b^n avec (m, n) \in N^2 5. L5 = a, ba, /alorsquereprésenteL^* 6. L6 = a^n, b|n> = 0, /alorsquereprésenteL^*
```

7. L1: L'ensemble des mots non vide

- 8. L2: L'ensemble des mots dont le nombre de symbole a soit égale au nombre de symbole de b
- 9. L3: L'ensemble des mots contenant i a suivis de j b, avec i≤j avec i et j >=0
- 10. L4: L'ensemble des mots contenant n a suivis de m b, avec n et m >=0
- 11. L5: L* représente la fermeture de Kleene du langage L5
- 12. L6 : L* représente la fermeture de Kleene du langage L6

Exercice 3: Operations sur les langages

```
1. Soit l'alphabet : \Sigma = \{a,b,c\} 2. Les langages définis : -L1 = \{ab,ba\} - L2 = \{c,cc\} - L3 = \{ac\}^{**}
```

Question 1 : Calcul des opérations sur L1,L2,L3

a) L1L2

L1L2={abc,abcc,bac,bacc}

b) L1L2L3

L1L2L3={abcac,abccac,bacac,baccac}

c) L_1^2

L_1^2={abab,abba,baab,baba}

Langages donnés :

```
L1 = {abb, b, a}
L2 = {ba, baa, a}
```

1. (L1)³ ∩ L2

Calcul de (L1)²:

 $(L1)^2 = {abb, b, a}{abb, b, a}$

Calcul de (L1)³:

= {abbabbabb, abbabba, abbabba, abbabb, abbabb, abbbab, abbaba, abbaab, abbaba, abbabb, babbbb, babbab, babbab, babbb, babb, bababb, babb, bab, baa, ababb, aabbb, aabbb, aabbb, abbab, abbabb, abbabb

2. (L1)³ ∩ L2 = {baa}

3. Calcul de (L1 ∪ L2)

L1 \cup L2 = {abb, b, a} \cup {ba, baa, a} = {abb, b, a, ba, baa}

Calcul de (L1 ∪ L2)²

 $(L1 \cup L2)^2 = \{abb,\,b,\,a,\,ba,\,baa\}\{abb,\,b,\,a,\,ba,\,baa\}$

4. Calcul de (L1 ∪ L2)² · L2

Exercice 4: Reconnaisseur

• Dans quel état se trouve R Apres la lecture des mots a, ab, abb, abba

1. a

État	Entrée	État suivant
0	а	1

État	Entrée	Entrée État suivant	
0	а	1	
1	b	2	

3. abb

État	Entrée	État suivant
0	а	1
1	b	2
2	b	2

4. abba

État	Entrée	État suivant	
0	а	1	
1	b	2	
2	b	2	
2	а	2	

• Que se passe t-il quand on donne le mot aab à lire à R

on remarque qu'a partir de l'état 1 il ne pourra plus se déplacer pour lire un prochain symbole a car il n'y a pas de chemin

• les mots aba^2 b,a^2ba^2 b,ab^4 et b^3 a^2 sont-ils reconnus par R ?

aba^2 b et ab^4 seront reconnus a^2ba^2 b et a^2 ne seront pas reconnus

Exercice 5: Grammaire de réécriture

Soit la grammaire formelle $G=(\{S,R\},\{a,b\},P,S)G=(\{S,R\},\{a,b\},P,S)G=(\{S,R\},\{a,b\},P,S),$ où l'ensemble des règles de production PPP est :

- 1. S→aS
- 2. S→bR
- S→b
 R→aR
- 5. R→h5

Question 1 : Montrer que le mot abb est généré par G

Pour générer abb :

S-aS : on génère a, reste S.
 S-bR : on génère b, reste R.
 R-bS : on génère b, reste R.

4. S→b : on génère b, il ne reste plus rien.

Ainsi, le mot abbb est obtenu.

Question 2 : Montrer que le mot abb n'est pas généré par G

S→aS : on génère a, reste S.
 S→bR : on génère b, reste R.

3. R→bS : on génère b, reste R.

et donc on aura $\,$ abbR $\,$ or R ne peut pas donner $\,\epsilon\,$ donc $\,$ abb $\,$ ne peut être généré par G $\,$

TD2

Exercice 1:

Pour chaque affirmation, dire si elle est vraie ou fausse puis justifier :

1. Tout langage régulier est infini.

 $\textbf{Faux}: \varnothing \text{ est fini et } \varnothing \text{ est un langage régulier}.$

2. Il y a une infinité de langages réguliers.

Vrai : on peut avoir une infinité d'E.R et chaque E.R désigne un langage régulier.

3. L'union de 2 langages reconnaissables est reconnaissable.

Vrai : les langages reconnaissables sont clos par l'union.

4. L'intersection de deux langages reconnaissables est un langage reconnaissable.

Vrai : car les langages reconnaissables sont clos par l'intersection.

Exercice 2:

Ces E.R contiennent-elles le mot vide ?

1. (a + b)a* b(a + b(b + ab)*)*

```
    ⇔ b donc ne contient pas ∈.
    2. (a + b)(aa* + bb*a)*
    ⇔ a + b ne contient pas le mot vide ∈.
    3. (a + c)(a + b)(1 + c)(1 + d)(∈ + f)
    ⇔ ne contient pas le mot vide.
    4. (a + (b + (c + d)*))*
    ⇔ ∈ donc contient le mot vide.
```

Exercice 3:

Donnons tous les mots de longueur 0, 1, 2, 3 et 4 dans les langages réguliers suivants :

```
1. (a.b + ba)*

• L° = {e}

• L¹ = {a, b}

• L² = {aa, ba}

• L³ = {aaa, aba, baa}

• L⁴ = {abaa, baba, aaaa, aaba, baaa}

2. a(aa + b(ab)*a)*a

• L¹ = ∅

• L¹ = ∅

• L¹ = ∅

• L² = {aa}

• L² = {aa}
```

Exercice 4:

```
Soit A = {a, b}. Donnez la description des langages donnés par les expressions relationnelles :
```

```
1. A*
   \{m \in \{a, b\}_* \mid m \text{ représente l'ensemble de tous les mots }.\}
2. AA
   \{m \in \{a, b\}_* / m \text{ représente l'ensemble de tous les mots de longueur 2.} \}
3. (E + A)(E + A)
   \{m\in\{a,\,b\}_*\;/\;|m|\leq 2,\,tous\;les\;mots\;de\;longueur\;au\;plus\;2\;sur\;\{a,\,b\}_\cdot\}
4. (AA)*
   \{m\in\{a,\,b\}_* \ / \ m \ représente \ l'ensemble \ de \ mots \ de \ longueur \ paire \ sur \ A = \{a,\,b\}_\cdot\}
 5. aA*
   {m ∈ {a, b}<sub>*</sub> / m représente l'ensemble de mots commencant par a,}
6. A* a
   \{m \in \{a, b\}_* \mid m \text{ représente l'ensemble de mots terminant par a.} \}
7. A* a A*
    \{m\in\{a,\,b\}_*\:/\:m\: représente\ l'ensemble\ de\ mots\ contenant\ le\ mot\ a\ ou\ bien\ a\ est\ facteur.\}
 8. A* abA*
   \{m \in \{a, b\}_* / m \text{ représente l'ensemble de mots où ab est le facteur du mot m.}\}
   L'ensemble de tous les mots sur l'alphabet {a, b} avec au moins une occurrence de a suivie par au moins une occurrence de b.
10. (b + ab)(a + E)
   \{m\in\{a,\,b\}_*\:/\:m représente l'ensemble de mots se terminant par a.\}
11. a* + b*
    {m ∈ {a, b}* / m représente l'ensemble de mots contenant 0 ou plusieurs a ou bien 0 ou plusieurs b.}
12. (aa + b)*
   m \in \{a,b\}_* / m représente l'ensemble des mots formés de zéro ou plusieurs répétitions de "aa" et de "b"
13. (ab* a + b)
   {m ∈ {a, b}* / m est composé de zéro ou plusieurs répétitions de une occurrence de "a", suivie de zéro ou plusieurs "b", puis un autre "a", ou simplement une occurrence de "b".}
14. (ab)*
   \{m\in\{a,\,b\}_*\:/\:m\: \text{représente l'ensemble des mots contenant 0 ou plusieurs ab sur }A=\{a,\,b\}.\}
15. a* + bc* d
```

{m ∈ {a, b}* / m représente l'ensemble de mots contenant uniquement des "a" (y compris la chaîne vide), ou contenant un "b", suivi de zéro ou plusieurs "c", et se terminant par un "d".}

Exercice 5

```
1. le langage des mots qui entre deux occurrences de la lettre a ont un nombre pair de b
```

```
b* +(a(bb)a)+b*
```

 Le langage des mots tels que toutes les éventuelles occurrences de a precedent toute les éventuelles occurrences de b a* b*

Exercice 6

Le langage L(E):

Le langage L(E), qui est l'ensemble des chaînes acceptées par l'expression régulière E, est donc constitué de toutes les chaînes qui :

- Se terminent par un "c",
- Et qui avant ce "c" peuvent contenir n'importe quelle combinaison de "a" et "b", ou rien du tout (c'est-à-dire la chaîne vide).

Ainsi, le langage L(E) est formé des chaînes suivantes :

```
• "", "c", "ac", "bc", "abc", "bac", "aabbc", "abac", etc.
```

En résumé, L(E) est l'ensemble de toutes les chaînes qui se terminent par un "c", et qui avant ce "c" peuvent être composées de n'importe quel lettre entre "a" et "b" ou epsilon.