Statistics 211 In-Class Assessments

Topic: Chapter 5 Date: Oct. 11, 2016

- 1. Consider a Binomial experiment, with n independent Bernoulli trials each with probability p of success.
 - (a) Suppose we wish to test the null hypothesis $H_0: p = p_0$ vs. the two-sided alternative $H_a: p \neq p_0$. We will test at significance level α (what we have also called inference with $(1-\alpha) \times 100\%$ confidence).
 - i. Suppose H_0 is true. If we use significance level $\alpha = 0.05$, what is the probability we will commit a Type I error due to a p-value less than 0.05?
 - ii. Suppose H_0 is true. If we use significance level $\alpha = 0.01$, what is the probability we will commit a Type I error due to a p-value less than 0.01?
 - iii. For a given alternative value $p_1 \neq p_0$, the *power* of a test (e.g., a bootstrap-based test) is the probability of rejecting H_0 due to a p-value less than α . Consider two possible alternative values p_1 and p_2 such that $p_0 < p_1 < p_2$. Which of the following would you expect to be true?
 - A. Power to detect p_1 = power to detect p_2 = α
 - B. Power to detect p_1 < power to detect p_2
 - C. Power to detect $p_1 > \text{power to detect } p_2$
- 2. Consider a random sample x_1, x_2, \ldots, x_n from a population with $\underline{\text{median}} \theta$. Suppose we wish to test the null hypothesis $H_0: \theta = 0$ vs. the one-sided alternative $H_a: \theta > 0$. Which of the following shows how to use the bootstrap to compute a p-value? In each, let x be the R variable containing our n observations.
 - (a) Code:

```
med_obs <- median(x)
x_0 <- x - median(x)
med_b <- numeric(B)
for(b in 1:B) {
   med_b[b] <- median(sample(x, replace = TRUE))
}
p_val <- sum(med_b > med_obs) / B
```

(b) Code:

```
med_obs <- median(x)
x_0 <- x - median(x)
med_b <- numeric(B)
for(b in 1:B) {
   med_b[b] <- mean(sample(x_0, replace = FALSE))</pre>
```

```
}
   p_val <- sum(med_b > med_obs) / B
(c) Code:
   med_obs <- median(x)</pre>
   x_0 < x - median(x)
   med_b <- numeric(B)</pre>
   for(b in 1:B) {
     med_b[b] <- mean(sample(x, replace = TRUE))</pre>
   p_val <- sum(med_b > med_obs) / B
(d) Code:
   med_obs <- median(x)</pre>
   x_0 < x - median(x)
   med_b <- numeric(B)</pre>
   for(b in 1:B) {
     med_b[b] <- median(sample(x_0, replace = TRUE))</pre>
   p_val <- sum(med_b > med_obs) / B
```