Cálculo diferencial e integral I Resolución de Problemas de Funciones

Vite Riveros Carlos Emilio

9 septiembre del 2022

1. Encuentre el dominio de las siguientes funciones:

(a)
$$f(x) = \sqrt{1 - x^2}$$

Para que $\sqrt{1-x^2}$ esté definida, se tiene que:

$$1 - x^2 \ge 0$$

$$1 \ge x^2$$

$$\sqrt{1} \ge \sqrt{x^2}$$

$$|x| \leq 1$$

$$-1 \le x \le 1$$

Entonces $dom f(x) = \{x \in \mathbb{R} | -1 \le x \le 1\}.$

(b)
$$f(x) = \sqrt[3]{1+x}$$

 $\sqrt[3]{1+x}$ es una expresión de la forma $\sqrt[3]{a}$ por lo tanto su dominio es $dom f(x) = \{x \in \mathbb{R}\}.$

(c)
$$f(x) = \sqrt{|1 - x^2|}$$

Para que $\sqrt{|1-x^2|}$ esté definida, $|1-x^2| \ge 0$. Pero por definición del valor absoluto $|a| = a \ge 0$, entonces $dom f(x) = \{x \in \mathbb{R}\}$.

(d)
$$f(x) = \frac{1}{1-x} + \frac{1}{x-2}$$

Para que $\frac{1}{1-x} + \frac{1}{x-2}$ esté definida se tiene que $1-x \neq 0$ y $x-2 \neq 0$, entonces:

$$1 - x = 0, x = 1$$

$$x - 2 = 0, x = 2$$

Entonces cuando x=2 o x=1, no está definida la función, por lo que $dom f(x)=\{x\in\mathbb{R}|x\neq 2, x\neq 1\}.$

(e)
$$f(x) = \sqrt{1 - \sqrt{x^2 - 1}}$$

Para que $\sqrt{1-\sqrt{x^2-1}}$ esté definida, se tiene que $1-\sqrt{x^2-1} \ge 0$ y a su vez que $x^2-1 \ge 0$. Por lo que:

$$x^{2} - 1 \ge 0, x^{2} \ge 1$$
$$\sqrt{x^{2}} \ge \sqrt{1}, |x| \ge 1$$
$$x \ge 1, x \le -1$$

Y ahora $1 - \sqrt{x^2 - 1} \ge 0$:

$$1 - \sqrt{x^2 - 1} \ge 0$$

$$1 \ge \sqrt{x^2 - 1}$$

$$1^2 \ge (\sqrt{x^2 - 1})^2$$

$$1 \ge |x^2 - 1|$$
En el caso $x^2 - 1 \le 1$:
$$x^2 - 1 \le 1, x^2 \le 2$$

$$\sqrt{x^2} \le \sqrt{2}, |x| \le \sqrt{2}$$
$$x < \sqrt{2}, x > -\sqrt{2}$$

En el caso
$$x^2 - 1 \ge -1$$
:

$$x^{2} - 1 \ge -1, \ x^{2} \ge 0$$

 $\sqrt{x^{2}} \ge \sqrt{0}, \ |x| \ge 0$

$$x\geq 0,\, x\leq 0$$

Como en el segundo caso x podía ser cualquier número en \mathbb{R} . Tenemos que $x \leq \sqrt{2}$ o $x \geq -\sqrt{2}$

Tenemos entonces que $x \ge 1, \ x \le -1, \ x \le \sqrt{2}, \ x \ge -\sqrt{2}$. Esto simplificado queda como $\sqrt{2} \ge x \ge 1$ o $-1 \le x \le \sqrt{2}$.

Por lo que $dom f(x) = \{x \in \mathbb{R} | \sqrt{2} \ge x \ge 1, -1 \le x \le \sqrt{2} \}.$

O también $dom f(x) = \{x \in \mathbb{R} | \sqrt{2}, 1] \bigcup [-1, -\sqrt{2}] \}$

(f)
$$f(x) = \frac{x^2 - 1}{x + 1}$$

Para que $\frac{x^2-1}{x+1}$ esté definida, $x+1\neq 0$ o $x\neq -1$. Por lo que $dom f(x)=\{x\in \mathbb{R}|x\neq -1\}$

2. Si $f(x) = \frac{1}{1+x}$, calcule las siguientes expresiones:

(a)
$$f(f(x))$$

$$f(f(x)) = \frac{1}{1+f(x)} = \frac{1}{1+\frac{1}{1+x}} = \frac{1}{\frac{1+x}{1+x} + \frac{1}{1+x}} = \frac{1+x}{2+x}$$

$$dom f(f(x)) = \{x \in \mathbb{R} | x \neq -1, x \neq -2\}$$

(b)
$$f(\frac{1}{x})$$

 $f(\frac{1}{x}) = \frac{1}{1+\frac{1}{x}} = \frac{1}{\frac{x+1}{x}} = \frac{x}{x+1}$
 $dom f(\frac{1}{x}) = \{x \in \mathbb{R} | x \neq -1, x \neq 0\}$

(c)
$$\frac{1}{f(x)}$$

 $\frac{1}{f(x)} = \frac{1}{\frac{1}{1+x}} = 1 + x$
 $dom \frac{1}{f(x)} = \{x \in \mathbb{R} | x \neq -1\}$

(d)
$$f(cx)$$

$$f(cx) = \frac{1}{1+cx}$$

$$dom f(cx) = \{x \in \mathbb{R} | cx \neq -1\}$$

(e)
$$f(x+y)$$

 $f(x+y) = \frac{1}{1+(x+y)} = \frac{1}{1+x+y}$
 $dom f(x+y) = \{x \in \mathbb{R} | x+y \neq -1\}$

(f)
$$f(x) + f(y)$$

$$f(x) + f(y) = \frac{1}{1+x} + \frac{1}{1+y} = \frac{(1+y)+(1+x)}{(1+x)(1+y)} = \frac{x+y+2}{(1+y)+(x+xy)}$$

$$= \frac{x+y+2}{xy+x+y+1} \ dom f(x) + f(y) = \{x \in \mathbb{R} | x \neq -1, y \neq -1, xy + x + y \neq -1\}$$

3. Sean f, g y h tres funciones. Demuestre o de un contraejemplo para determinar si las siguientes afirmaciones son verdaderas o falsas.

(a)
$$f \circ (g+h) = f \circ g + f \circ h$$

Falsa. Contraeiemplo:

$$f(x) = x^2, g(x) = 3, h(x) = 2$$

$$f(g(x) + h(x)) = (3 + 2)^2 = 25$$

$$f(g(x)) + f(h(x)) = 3^2 + 2^2 = 13$$

$$f \circ (g + h) \neq f \circ g + f \circ h$$

(b)
$$(g+h) \circ f = g \circ f + h \circ f$$

Verdadera.

$$(g+h)\circ f=(g+h)\circ f(x)=g\circ f(x)+h\circ f(x)=g(f(x))+h(f(x))$$

Por definición $(a+b)\circ c(x)=a\circ c(x)+b\circ c(x)$

$$g \circ f + h \circ f = g \circ f(x) + h \circ f(x) = g(f(x)) + h(f(x))$$

Por definición $a \circ c(x) + b \circ c(x) = a(c(x)) + b(c(x))$

Por lo tanto $(g+h) \circ f = g \circ f + h \circ f$

(c)
$$\frac{1}{f \circ g} = \frac{1}{f} \circ g$$

Verdadera.

$$\frac{1}{f} \circ g = (\frac{1}{f} \circ g)(x) = \frac{1}{f(g)} \circ (x)$$

$$= \frac{1}{f(g(x))} = \frac{1}{f \circ g}$$

(d)
$$\frac{1}{f \circ g} = f \circ (\frac{1}{g})$$

Falsa. Contraejemplo:

Function Contents Jempson
$$f(x) = 2x, g(x) = 5$$

$$\frac{1}{f(g(x))} = \frac{1}{2(5)} = \frac{1}{10}$$

$$f(\frac{1}{g(x)}) = 2(\frac{1}{5}) = \frac{2}{5}$$
Por lo tanto $\frac{1}{f \circ g} \neq f \circ (\frac{1}{g})$

7. Pruebe que, si f es una función tal que **para toda función** g se satisface que $(f \circ g)(x) = (g \circ f)(x)$ para toda $x \in \mathbb{R}$, entonces f(x) = x para toda $x \in \mathbb{R}$.

Proof. Supongamos que $c \in \mathbb{R}$. Entonces sea $g : \mathbb{R} \to \mathbb{R}$ por regla de correspondencia, dada por g(x) = c, donde c es la función constante.

$$f(c) = f(g(c)) = (f \circ g)(c) = (g \circ f)(c) = g(f(c)) = c$$

Debido a que c fue arbitraria, f(x) = x para todo $x \in \mathbb{R}$