REMARKS ON POLYNOMIAL PARAMETRIZATION OF SETS OF INTEGER POINTS

SOPHIE FRISCH

ABSTRACT. If, for a subset S of \mathbb{Z}^k , we compare the conditions of being parametrizable (a) by a single k-tuple of polynomials with integer coefficients, (b) by a single k-tuple of integer-valued polynomials and (c) by finitely many k-tuples of polynomials with integer coefficients (variables ranging through the integers in each case), then $a \Rightarrow b$ (obviously), $b \Rightarrow c$, and neither implication is reversible. We give different characterizations of condition (b). Also, we show that every co-finite subset of \mathbb{Z}^k is parametrizable a single k-tuple of polynomials with integer coefficients.

If $f = (f_1, \ldots, f_k) \in (\mathbb{Z}[x_1, \ldots, x_n])^k$ is a k-tuple of polynomials with integer coefficients in several variables, we call range or image of f the range of the function $f: \mathbb{Z}^n \longrightarrow \mathbb{Z}^k$ defined by substitution of integers for the variables; and likewise for a k-tuple of integer-valued polynomials $(f_1, \ldots, f_k) \in (\operatorname{Int}(\mathbb{Z}^n))^k$, where

$$\operatorname{Int}(\mathbb{Z}^n) = \{ g \in \mathbb{Q}[x_1, \dots, x_n] \mid \forall a \in \mathbb{Z}^n : g(a) \in \mathbb{Z} \}.$$

If $S \subseteq \mathbb{Z}^k$ is the range of $f = (f_1, \dots, f_k)$, we say that f parametrizes S.

We want to compare two kinds of polynomial parmetrization of sets of integers or k-tuples of integers: by integer-valued polynomials and by polynomials with integer coefficients. Consider for instance the set of integer Pythagorean triples: it takes two triples of polynomials with integer coefficients, $(c(a^2 - b^2), 2cab, c(a^2 + b^2))$ and $(2cab, c(a^2 - b^2), c(a^2 + b^2))$ to parametrize the set of integer triples (x, y, z) satisfying $x^2 + y^2 = z^2$, but the same set can be parametrized by a single triple of integer-valued polynomials [2]. Another reason for studying parametrization

²⁰⁰⁰ Mathematics Subject Classification. Primary 11D85; Secondary 11C08, 13F20.

Key words and phrases. polynomial parametrization, integer-valued polynomial, range, image of a polynomial, polynomial mapping..

This note was written while the author was enjoying hospitality at Université de Picardie, Amiens.

by integer-valued polynomials are various sets of integers in number theory and combinatorics that come parametrized by integer-valued polynomials in a natural way, for example, the polygonal numbers

$$p(n,k) = \frac{(n-2)k^2 - (n-4)k}{2}$$

where p(n, k) represents the k-th n-gonal number [3].

Now for our comparison of different kinds of polynomial parametrization of sets of integer points.

Theorem. For a set $S \subseteq \mathbb{Z}^k$ consider the conditions:

- (A) S is paraetrizable by a k-tuple of polynomials with integer coefficients, i.e., there exists $f = (f_1, \ldots, f_k)$ in $(\mathbb{Z}[x_1, \ldots, x_n])^k$ (for some n) such that $S = f(\mathbb{Z}^n)$.
- (B) S is parametrizable by a k-tuple of integer-valued polynomials, i.e., there exists $g = (g_1, \ldots, g_k)$ in $(\operatorname{Int}(\mathbb{Z}^m))^k$ (for some m) such that $S = g(\mathbb{Z}^m)$.
- (C) S is a finite union of sets, each parametrizable by a k-tuple of polynomials with integer coefficients.
- (D) S is the set of integer k-tuples in the range of a k-tuple of polynomials with rational coefficients, as the variables range through the integers, i.e., there exists $h = (h_1, \ldots, h_k)$ in $(\mathbb{Q}[x_1, \ldots, x_r])^k$ (for some r) such that $S = h(\mathbb{Z}^r) \cap \mathbb{Z}^k$.

 Then the following implications hold:

$$\begin{array}{ccc} A & & \\ \Downarrow & \\ B & \Leftrightarrow & D \\ \Downarrow & \\ C & & \end{array}$$

and $C \not\Rightarrow B$, $B \not\Rightarrow A$.

Of the implications in the theorem, $A \Rightarrow B$ and $B \Rightarrow D$ are trivial. We now show the nontrivial ones.

For D \Leftrightarrow B, we first construct, for any $f \in \mathbb{Q}[x_1, \dots, x_n]$, a parametrization of $f^{-1}(\mathbb{Z})$ by polynomials with integer coefficients, which we then plug into f to obtain an integer-valued polynomial.

Lemma 1. If q_1, \ldots, q_r are powers of different primes and for each i, S_i is a union of residue classes of $q_i \mathbb{Z}^k$ in \mathbb{Z}^k then $\bigcap_{i=1}^r S_i \subseteq \mathbb{Z}^k$ is parametrizable by a vector of polynomials with integer coefficients.

Proof. We will first parametrize a union of residue classes of $q\mathbb{Z}^k$ in \mathbb{Z}^k for a single prime power q. Let $a_0, \ldots, a_s \in \mathbb{Z}^k$ be representatives of the residue classes in question, and let t such that $2^t > s$. Expressing $l \in \{0, 1, \ldots, s\}$ in base 2, we

obtain a sequence of digits $[l]_2 = (\varepsilon_0^{(l)}, \dots, \varepsilon_t^{(l)})$. Let m be a natural number such that z^m is either congruent to 0 or to 1 mod q for every integer z. Then

$$(qy_1, \dots, qy_k) + \sum_{l=0}^{s} a_l \prod_{i=0}^{t} e_i^{(l)}(x_i), \quad \text{with} \quad e_i^{(l)}(x_i) = \begin{cases} x_i^m & \text{if } \varepsilon_i^{(l)} = 1\\ 1 - x_i^m & \text{if } \varepsilon_i^{(l)} = 0 \end{cases}$$

parametrizes $\bigcup_{l=0}^{s} (q\mathbb{Z}^k + a_l)$.

Now let q_1, \ldots, q_r be powers of different primes, and for $1 \leq i \leq r$ let S_i be a union of residue classes mod $q_i\mathbb{Z}^k$ parametrized by a polynomial vector g_i . By Chinese remainder theorem there are c_1, \ldots, c_r with $c_i \equiv 1 \mod q_i$ and $c_i \equiv 0 \mod q_j$ for $j \neq i$. We may choose c_1, \ldots, c_r with $\gcd(c_1, \ldots, c_r) = 1$. (E.g. by applying Dirichlet's theorem on primes in arithmetic progressions to find primes $p_i \in b_i + q_i\mathbb{Z}$, where b_i is the inverse of $\prod_{j\neq i} q_j \mod q_i$, and setting $c_i = p_i \prod_{j\neq i} q_j$, with p_1, \ldots, p_r different primes coprime to all q_j .) Finally, we set $h = \sum_{i=1}^r c_i g_i$. Then h parametrizes $\bigcap_{i=1}^r S_i$. \square

Lemma 2 (B \Leftrightarrow D). Let $S \subseteq \mathbb{Z}^k$. Then there exists a k-tuple of integer-valued polynomials whose range is S if and only if there exists a k-tuple of polynomials with rational coefficients such that S is the set of integer points in its range (as the variables range through the integers).

Proof. The "only if" direction (that's B \Rightarrow D) is trivial. For the other direction, D \Rightarrow B, first consider the case k=1 of a single rational polynomial $f(x_1,\ldots,x_n)=g(x_1,\ldots,x_n)/c$ with $g(x_1,\ldots,x_n)\in\mathbb{Z}[x_1,\ldots,x_n]$ and $c\in\mathbb{N}$.

Let $T = \{a \in \mathbb{Z}^n \mid f(a) \in \mathbb{Z}\}$. If $c = q_1 \cdot \ldots \cdot q_r$ is the factorization of c into prime powers and $T_i = \{a \in \mathbb{Z}^n \mid g(a) \in q_i\mathbb{Z}\}$, then $T = \bigcap_{i=1}^r T_i$. For each i, T_i is a union of residue classes of $q_i\mathbb{Z}^n$. Hence T is parametrizable by a polynomial vector $(h_1, \ldots, h_n) \in \mathbb{Z}[\underline{x}]^n$. Substituting h_i for x_i in f, we obtain an integer-valued polynomial $p(\underline{x}) = f(h_1(\underline{x}), \ldots, h_n(\underline{x}))$ whose range is exactly the set of integers in the range of f.

In the case k > 1, the argument for the set of integer points in the range of a vector of rational polynomials (f_1, \ldots, f_k) , with $f_i(x_1, \ldots, x_n) = g_i(x_1, \ldots, x_n)/c$, is similar, using $T_i = \{a \in \mathbb{Z}^n \mid \forall j : g_i(a) \in q_i\mathbb{Z}\}$. \square

Lemma 3 (B \Rightarrow C). If a set $S \subseteq \mathbb{Z}^k$ is parametrizable by a single k-tuple of integer-valued polynomials, it is parametrizable by a finite number of k-tuples of polynomials with integer coefficients.

Proof. First consider an integer-valued polynomial f(x) in one variable of degree d. Recall that the binomial polynomials $\binom{x}{n} = \frac{x(x-1)...(x-n+1)}{n!}$ form a basis of the \mathbb{Z} -module $\operatorname{Int}(\mathbb{Z})$, so that there exist integers a_0, \ldots, a_d with $f = \sum_{n=0}^d a_n \binom{x}{n}$.

It is easy to see that $\binom{cy+j}{n} \in \mathbb{Z}[y]$ for any j whenever c is a common multiple of

 $1, 2, \ldots, n$. Therefore for $c = \text{lcm}(1, 2, \ldots, d)$ and arbitrary j,

$$f_j(y) = f(cy+j) = \sum_{n=0}^{d} a_n {cy+j \choose n}$$

is in $\mathbb{Z}[y]$; and clearly the image of f is the union of the images of f_j , for $j = 0, \ldots, c-1$.

Regarding integer-valued poynomials in several variables, products of binomial polynomials in one variable each $\prod_{i=1}^n \binom{x_i}{n_i}$ form a basis of $\operatorname{Int}(\mathbb{Z}^n)$ [1, Prop. XI.1.12]. So, if $f \in \operatorname{Int}(\mathbb{Z}^n)$ is of degree d_i in x_i , and c_i is a common multiple of $1, 2, \ldots, d_i$ then for each choice of $j_1, \ldots, j_n, f_{j_1, \ldots, j_n} = f(c_1 y_1 + j_1, \ldots, c_n y_n + j_n)$, as a \mathbb{Z} -linear combination of polynomials $\prod_{i=1}^n \binom{c_i y_i + j_i}{n_i} \in \mathbb{Z}[y_1, \ldots, y_n]$ is a polynomial with integer coefficients and the image of f is the union of the images of the polynomials f_{j_1, \ldots, j_n} with $0 \le j_m < c_m$.

The same argument shows that the image of a vector of polynomials (g_1, \ldots, g_k) in $(\operatorname{Int}(\mathbb{Z}^n))^k$ is the union of the images of $c_1 \cdot \ldots \cdot c_n$ vectors of polynomials in $(\mathbb{Z}[y_1, \ldots, y_n])^k$, where $c_i = \operatorname{lcm}(1, 2, \ldots, d_i)$, d_i denoting the highest degree of any g_m in the *i*-th variable. \square

Remark. B \neq A and C \neq B: Finite sets of more than one element witness $C \neq B$. The set of integer Pythagorean triples mentioned above is parametrizable by a single triple of polynomials in $Int(\mathbb{Z}^4)$, but not by any triple of polynomials with integer coefficients in any number of variables [2] therefore B \neq A.

This completes the proof of the theorem. The remainder of this note is devoted to the fact that every co-finite set is parametrizable by a single vector of polynomials with integer coefficients. (I was asked by L. Vaserstein in connection with a remark in [4] to publish a proof of this.)

Proposition. Let $S \subseteq \mathbb{Z}^k$ such that $\mathbb{Z}^k \setminus S$ is finite. Then there exists a k-tuple of polynomials with integer coefficients whose range is S.

Proof. We may suppose that the complement of S in \mathbb{Z}^k is contained in a cuboid $\prod_{i=1}^k [0, n_i] = [0, n_1] \times \ldots \times [0, n_k]$, with n_i a non-negative integer for $1 \leq i \leq k$. We will first construct a polynomial vector whose image is $\mathbb{Z}^k \setminus \prod_{i=1}^k [0, n_i]$, by induction on k.

k=1: for $n\geq 0$, the range of the polynomial f below is $\mathbb{Z}\setminus [0,n]$:

$$f = -x_5^2(x_1^2 + x_2^2 + x_3^2 + x_4^2 + 1) + (1 - x_5^2)(x_1^2 + x_2^2 + x_3^2 + x_4^2 + n + 1).$$

Once we have a polynomial vector (f_1, \ldots, f_{k-1}) parametrizing $\mathbb{Z}^{k-1} \setminus \prod_{i=1}^{k-1} [0, n_i]$ and a polynomial f with range $\mathbb{Z} \setminus [0, n_k]$, we set

$$g_i = (1 + x_i^2)(1 - z^2)^{2m} f_i + z^2 x_i \quad (1 \le i < k)$$

and $g_k = (1 + y^2)z^{2m} f + (1 - z^2)y$

with m sufficiently large, see below, and check that the range of (g_1, \ldots, g_k) is $\mathbb{Z}^k \setminus \prod_{i=1}^k [0, n_i]$: For $z = x_1 = \ldots = x_{k-1} = 0$ we get $(f_1, \ldots, f_{k-1}, y)$, while for $z \in \{1, -1\}$ and y = 0, we have $(x_1, \ldots, x_{k-1}, f)$, so that (g_1, \ldots, g_k) certainly covers the desired range.

Also, we stay within the desired range. Indeed, for z=0, the first k-1 coordinates become $(1+x_i^2)f_i$, and their image lies within the image of (f_1,\ldots,f_{k-1}) , and for $z\in\{1,-1\}$ the last coordinate is $(1+y^2)f$, whose image is contained in the image of f.

Let $n = \max_{i} \{n_i\}$. By choosing m sufficiently large such that

$$|(1+x^2)(1-z^2)^{2m}| > |z^2x| + n$$
 and $|(1+y^2)z^{2m}| > |(1-z^2)y| + n$

for all z with $|z| \ge 2$ and all values of x and y, we make sure that (g_1, \ldots, g_k) stays within the desired range also for $|z| \ge 2$.

Having constructed a polynomial vector with range $\mathbb{Z}^k \setminus \prod_{i=1}^k [0, n_i]$, we can add additional values to the range, one by one, as follows.

If $g = (g_1, \ldots, g_k)$ is a polynomial vector whose image contains $\mathbb{Z}^k \setminus \prod_{i=1}^k [0, n_i]$, but does not contain $0 \in \mathbb{Z}^k$, and c is in $\prod_{i=1}^k [0, n_i]$, let

$$h = w^{2t}g + (1 - w^2)c,$$

with t such that $2^{2t-2} > \max_i \{n_i\}$ then the range of h is exactly the range of g together with the (possibly additional) value c. If the value $c = 0 \in \mathbb{Z}^k$ is to be added to the range of g, it must be added last. \square

References

- Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued polynomials, Amer. Math. Soc., Providence, RI, 1997.
- 2. Sophie Frisch and Leonid Vaserstein, *Parametrization of Pythagorean triples by a single triple of polynomials*, to appear in J. Pure Appl. Algebra.
- 3. Melvyn B. Nathanson, Additive number theory. The classical bases., Springer, New York, 1996.
- 4. Leonid Vaserstein, Polynomial parametrization for the solutions of Diophantine equations and arithmetic groups, to appear in Ann. of Math..

INSTITUT FÜR MATHEMATIK C, TECHNISCHE UNIVERSITÄT GRAZ, A-8010 GRAZ, AUSTRIA frisch@tugraz.at