

What is claimed is

1. A light emission device comprising:

an electric field receiving member made of a dielectric

5 material;

a first electrode disposed on one surface of said
electric field receiving member;

a second electrode disposed on said one surface of said
electric field receiving member, said second electrode and
10 said first electrode jointly defining a slit; and

a fluorescent layer disposed on said second electrode.

2. A light emission device according to claim 1,

further comprising:

15 an insulating layer and a third electrode interposed
between said second electrode and said fluorescent layer,
said insulating layer being positioned adjacent to said
second electrode.

20 3. A light emission device according to claim 1,

wherein one of said first electrode and said second
electrode is circular in shape, the other of said first
electrode and said second electrode is annular in shape
around said circular one of said first electrode and said
25 second electrode, and the slit defined between said first
electrode and said second electrode is annular in shape.

4. A light emission device according to claim 1,
wherein at least one of said first electrode and said
second electrode has at least one of a convexity and a
concavity.

5

5. A light emission device according to claim 1,
further comprising at least one of a pinhole defined in at
least one of said first electrode and said second electrode,
and a land disposed in said slit in electrically insulated
relation to said first electrode and said second electrode
10 and made of a material which is the same as the material of
said first electrode and said second electrode.

10

6. A light emission device according to claim 1,
15 wherein said electric field receiving member has a specific
dielectric constant of 1000 or greater.

15

7. A light emission device according to claim 1,
wherein said slit has a width in a range between 0.1 μm and
20 500 μm .

20

8. A light emission device according to claim 7,
wherein said slit has a width in a range between 0.1 μm and
50 μm .

25

9. A light emission device according to claim 8,
wherein said slit has a width in a range between 0.1 μm and

10 μm .

10. A light emission device according to claim 9,
wherein said slit has a width in a range between 0.1 μm and
5 1 μm .

10 11. A light emission device according to claim 1,
wherein said electric field receiving member is made of a
pizoelectric material, an antiferroelectric material, or an
electrostrictive material.

12. A light emission device comprising:
an electric field receiving member made of a dielectric
material;
15 a first electrode disposed on one surface of said
electric field receiving member;
a second electrode disposed on said one surface of said
electric field receiving member, said second electrode and
said first electrode jointly defining a slit;
20 an electrically conductive coating layer disposed on
said first electrode, said second electrode, and said slit;
and
a fluorescent layer disposed on said electrically
conductive coating layer.

25 13. A light emission device according to claim 12,
further comprising:

an insulating layer and a third electrode interposed between said electrically conductive coating layer and said fluorescent layer, said insulating layer being positioned adjacent to said electrically conductive coating layer.

5

14. A light emission device according to claim 12, wherein one of said first electrode and said second electrode is circular in shape, the other of said first electrode and said second electrode is annular in shape
10 around said circular one of said first electrode and said second electrode, and the slit defined between said first electrode and said second electrode is annular in shape.

10

15 15. A light emission device according to claim 12, wherein at least one of said first electrode and said second electrode has at least one of a convexity and a concavity.

15

20 16. A light emission device according to claim 12, further comprising at least one of a pinhole defined in at least one of said first electrode and said second electrode, and a land disposed in said slit in electrically insulated relation to said first electrode and said second electrode and made of a material which is the same as the material of said first electrode and said second electrode.

20

25

17. A light emission device according to claim 12, wherein said electric field receiving member has a specific

dielectric constant of 1000 or greater.

18. A light emission device according to claim 12,
wherein said slit has a width in a range between 0.1 μm and
5 500 μm .

19. A light emission device according to claim 18,
wherein said slit has a width in a range between 0.1 μm and
10 50 μm .

20. A light emission device according to claim 19,
wherein said slit has a width in a range between 0.1 μm and
10 μm .

21. A light emission device according to claim 20,
wherein said slit has a width in a range between 0.1 μm and
15 1 μm .

22. A light emission device according to claim 12,
20 wherein said electric field receiving member is made of a
pizoelectric material, an antiferroelectric material, or an
electrostrictive material.

25 23. A field emission display comprising a two-dimensional array of light emission devices, each of said
light emission devices comprising:

an electric field receiving member made of a dielectric

material;

a first electrode disposed on one surface of said electric field receiving member;

5 a second electrode disposed on said one surface of said electric field receiving member, said second electrode and said first electrode jointly defining a slit; and

a fluorescent layer disposed on said second electrode.

10 24. A field emission display according to claim 23, further comprising:

an insulating layer and a third electrode interposed between said second electrode and said fluorescent layer, said insulating layer being positioned adjacent to said second electrode.

15

25. A field emission display according to claim 23, wherein one of said first electrode and said second electrode is circular in shape, the other of said first electrode and said second electrode is annular in shape
20 around said circular one of said first electrode and said second electrode, and the slit defined between said first electrode and said second electrode is annular in shape.

20

25 26. A field emission display according to claim 23, wherein at least one of said first electrode and said second electrode has at least one of a convexity and a concavity.

27. A field emission display according to claim 23,
further comprising at least one of a pinhole defined in at
least one of said first electrode and said second electrode,
and a land disposed in said slit in electrically insulated
5 relation to said first electrode and said second electrode
and made of a material which is the same as the material of
said first electrode and said second electrode.

10 28. A field emission display according to claim 23,
wherein said electric field receiving member has a specific
dielectric constant of 1000 or greater.

15 29. A field emission display according to claim 23,
wherein said slit has a width in a range between 0.1 μm and
500 μm .

20 30. A field emission display according to claim 29,
wherein said slit has a width in a range between 0.1 μm and
50 μm .

31. A field emission display according to claim 30,
wherein said slit has a width in a range between 0.1 μm and
10 μm .

25 32. A field emission display according to claim 31,
wherein said slit has a width in a range between 0.1 μm and
1 μm .

33. A field emission display according to claim 23,
wherein said electric field receiving member is made of a
piezoelectric material, an antiferroelectric material, or an
electrostrictive material.

5

34. A field emission display comprising a two-
dimensional array of light emission devices, each of said
light emission devices comprising:
an electric field receiving member made of a dielectric
material;
a first electrode disposed on one surface of said
electric field receiving member;
a second electrode disposed on said one surface of said
electric field receiving member, said second electrode and
said first electrode jointly defining a slit;
an electrically conductive coating layer disposed on
said first electrode, said second electrode, and said slit;
and
a fluorescent layer disposed on said electrically
conductive coating layer.

10

15

20

25

35. A field emission display according to claim 34,
further comprising:
an insulating layer and a third electrode interposed
between said electrically conductive coating layer and said
fluorescent layer, said insulating layer being positioned
adjacent to said electrically conductive coating layer.

36. A field emission display according to claim 34,
wherein one of said first electrode and said second
electrode is circular in shape, the other of said first
electrode and said second electrode is annular in shape
5 around said circular one of said first electrode and said
second electrode, and the slit defined between said first
electrode and said second electrode is annular in shape.

37. A field emission display according to claim 34,
10 wherein at least one of said first electrode and said second
electrode has at least one of a convexity and a concavity.

38. A field emission display according to claim 34,
further comprising at least one of a pinhole defined in at
15 least one of said first electrode and said second electrode,
and a land disposed in said slit in electrically insulated
relation to said first electrode and said second electrode
and made of a material which is the same as the material of
said first electrode and said second electrode.

20
39. A field emission display according to claim 34,
wherein said electric field receiving member has a specific
dielectric constant of 1000 or greater.

25
40. A field emission display according to claim 34,
wherein said slit has a width in a range between 0.1 μm and
500 μm .

41. A field emission display according to claim 40,
wherein said slit has a width in a range between 0.1 μm and
50 μm .

5 42. A field emission display according to claim 41,
wherein said slit has a width in a range between 0.1 μm and
10 μm .

10 43. A field emission display according to claim 42,
wherein said slit has a width in a range between 0.1 μm and
1 μm .

15 44. A field emission display according to claim 34,
wherein said electric field receiving member is made of a
piezoelectric material, an antiferroelectric material, or an
electrostrictive material.