ID-Blau: Image Deblurring by Implicit Diffusion-based reBLurring AUgmentation

Jia-Hao Wu^{*,1} Fu-Jen Tsai^{*,2} Yan-Tsung Peng³ Chung-Chi Tsai⁴ Chia-Wen Lin² Yen-Yu Lin¹ National Yang Ming Chiao Tung University¹ National Tsing Hua University² National Chengchi University³ Qualcomm Technologies, Inc.⁴

```
jiahao.11@nycu.edu.tw fjtsi@gapp.nthu.edu.tw ytpeng@cs.nccu.edu.tw charles0184@gmail.com cwlin@ee.nthu.edu.tw lin@cs.nycu.edu.tw
```

CVPR 2024

Presenter: Hao Wang

Advisor: Prof. Chia-Wen Lin

- Introduction
- Method
- Experiment
- Conclusion

Introduction

- ID-Blau, a controllable blur augmentation strategy for enhancing image deblurring
- continuous blur condition field to represent blur orientations and magnitudes
- Integrates pixel-wise blur condition maps into a diffusion model to generate reblurred images.

- Introduction
- Method
- Experiment
- Conclusion

GoPro Dataset

Synthetic

$$B = g(\frac{1}{T} \int_{t=1}^{T} V(t)dt) \simeq g(\frac{1}{N} \sum_{n=1}^{N} V[n]), \qquad (1)$$

Blur Condition

Synthetic

$$\mathcal{F} = \sum_{n=1}^{N-1} \frac{f_{\theta}(V[n], V[n+1]) - f_{\theta}(V[n+1], V[n])}{2}$$

$$\mathcal{F} = [u; v] \in \mathbb{R}^{H \times W \times 2}$$

Blur Condition Field

Normalize

$$C = [x; y; z] \in \mathbb{R}^{H \times W \times 3}$$

$$\left\{egin{array}{l} x_{i,j} = rac{u_{i,j}}{\sqrt{u_{i,j}^2 + v_{i,j}^2}} \ y_{i,j} = rac{v_{i,j}}{\sqrt{u_{i,j}^2 + v_{i,j}^2}} \ z_{i,j} = rac{\sqrt{u_{i,j}^2 + v_{i,j}^2}}{M} \end{array}
ight.$$

Framework

$$\mathcal{L} = \parallel \epsilon - \epsilon_{\theta}(\sqrt{\overline{\alpha}_{t}}B_{0} + \sqrt{(1 - \overline{\alpha}_{t})}\epsilon, S, C, t) \parallel_{1}$$

- Introduction
- Method
- Experiment
- Conclusion

Illustration

Evaluation results

		GoPro		HIDE		RealBlur-J		RealBlur-R		Average Gain		
Model		PSNR		SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
MIMO-UNet+	Baseline	32.44		0.957	30.00	0.930	31.92	0.919	39.10	0.969		
	+ID-Blau	32.93	(+0.49)	0.961	30.68 (+0	1.68) 0.938	31.96 (+0.	.04) 0.921	39.38 (+0.28)	0.971	+0.37	+0.004
Restormer	Baseline	32.92		0.961	31.22	0.942	32.88	0.933	40.15	0.974		
	+ID-Blau	33.51	(+0.59)	0.965	31.66 (+0).44) 0.947	33.11 (+0.	.23) 0.937	40.31 (+0.16)	0.974	+0.36	+0.003
Strinforman	Baseline	33.08		0.962	31.03	0.940	32.48	0.929	39.84	0.974		
Stripformer	+ID-Blau	33.66	(+0.58)	0.966	31.50 (+0	47) 0.944	33.77 (+1.	.29) 0.940	41.06 (+1.22)	0.977	+0.89	+0.006
FFTformer	Baseline	34.21		0.969	31.62	0.946	32.62	0.933	40.11	0.973		
FFIIOIIIICI	+ID-Blau	34.36	(+0.15)	0.970	31.94 (+0).32) 0.949 h	32.88 (+0.	.26) 0.934	40.45 (+0.34)	0.975	+0.27	+0.002
Average Gain		+0.45		+0.003	+0.48	+0.005	+0.46	+0.005	+0.50	+0.002	_	

Qualitative results

Figure 5. Qualitative results on the GoPro testing set (left) and the HIDE dataset (right).

Qualitative results

Figure 6. Qualitative results on the RealBlur-J testing set.

Ablation study

32.27

31.86

1.25

1.50

1e6

Ablation study

GoPro ID-Blau

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Conclusion

• Proposed a diffusion-based reblurring model that can take a **sharp image** and a **controllable pixel-wise blur condtion map** to **synthesize a blurred image**.

• Parameterized the blur patterns of a blurred image with their **orientations** and **magnitudes**.

• Experimental results have shown that ID-Blau can significantly improve the performance of state-of-the-art deblurring models.