1 Теорема Хана-Банаха

Определение 1.1. Пусть X - н.п. над $\mathbb{R}(\mathbb{C})$, пространством сопряженным к X называем $X^* = \mathrm{B}(X,\mathbb{R})(\mathrm{B}(X,\mathbb{C}))$. Причем $f \in X^* \Rightarrow D(f) = X$

Замечание 1.1.1. Ключевая в этом параграфе теорема даст своего рода обоснование указанному в определении равенству $X^* = \mathrm{B}(X,\mathbb{R}),$ хотя более строго следовало бы написать $X^* = \{f \in \mathrm{B}(X,\mathbb{R}) \,|\, D(f) = X\}$ т.к. область определения ограниченного линейного функционала вообще говоря может быть произвольным линейным многообразием

Замечание 1.1.2. Как известно если Y - б.п., то $\mathrm{B}(X,Y)$ - б.п. относительно нормы оператора

$$||f||_{X^*} = \sup_{||x|| \le 1} |f(x)|$$

, а значит каким бы не было н.п. $X,\,X^*$ всегда б.п. (т.к. \mathbb{R},\mathbb{C} - б.п.)

Теорема 1 (Хана-Банаха). Пусть

- 1. X н.п.
- 2. $L \subset X$ линейное многообразие
- 3. $f \in B(X, \mathbb{R}), D(f) = L$

тогда $\exists F \in X^*$ такой что

- 1. F продолжение f
- 2. $||F||_{X^*} = ||f||_{B(X\mathbb{R})}$

 $\ensuremath{\mathcal{A}}$ оказательство. Докажем только для частного случая когда X - сепарабельно.

- **1.** Пусть $x_0 \notin L$ (если такого не существует, то L = X и утверждение тривиально) и пусть $P_{x_0} = \text{Lin}\{x_0\} = \{x \in X \mid \exists \alpha \in \mathbb{R} : x = \alpha x_0\}$ (прямая натянутая на x_0). Пусть $L_0 = L + P_{x_0}$.
- **2.** Докажем что $L_0 = L \oplus P_{x_0}$. Пусть $0 = y_0 + tx_0$, где $y_0 \in L$. Если $t \neq 0$, то $x_0 = -\frac{y_0}{t} \in L$ противоречие. Значит t = 0 и соответственно $y_0 = 0$. Представление нуля единственно 0 = 0 + 0, откуда теперь замечаем что если для некоторого $x \in L_0$: $x = y_1 + t_1x_0 = y_2 + t_2x_0$, то $0 = (y_1 y_2) + (t_1 t_2)x_0$ и очевидно $y_1 y_2 \in L$, $(t_1 t_2)x_0 \in P_{x_0}$ так что $y_1 = y_2 \wedge t_1 = t_2$.

3. Будем производить некоторые преобразования и оценки. Хоть и сложно сходу понять зачем, но увидим. Пусть $x', x'' \in L$, тогда

$$f(x') - f(x'') = f(x' - x'') \le |f(x' - x'')| \le ||f|| ||x' - x''|| = ||f|| ||x' \pm x_0 - x''|| \le ||f|| ||x' + x_0|| + ||f|| ||x_0 + x''||$$
We have

$$|f(x') - ||f|| ||x' + x_0|| \le f(x'') + ||f|| ||x'' + x_0||, \forall x', x'' \in L$$

откуда

$$\exists C \in \mathbb{R} : \sup_{y \in L} (f(y) - ||f|| ||y + x_0||) \le C \le \inf_{y \in L} (f(y) + ||f|| ||y + x_0||)$$

для последнего перехода важно было что в левой части только x', а в правой только x'', наконец замечаем

$$|f(y) - ||f|| ||y + x_0|| \le C \le f(y) + ||f|| ||y + x_0||, \forall y \in L$$

что равносильно

$$|f(y) - C| \le ||f|| ||y + x_0||, \forall y \in L$$
 (1)

4. Пусть $x\in L_0$, тогда из $\mathbf{2}$ $\exists !y\in L, t\in \mathbb{R}: x=y+tx_0$, соответственно можно задать

$$F(x) = f(y) - tC$$

, покажем что $F\in \mathrm{L}(L_0,\mathbb{R},)$. Действительно для $x_1,x_2\in L_0$ имеем $x_1=y_1+t_1x_0,x_2=y_2+t_2x_0,$ где $y_1,y_2\in L$ и $t_1,t_2\in\mathbb{R},$ тогда

$$\alpha_1 x_1 + \alpha_2 x_2 = \alpha_1 (y_1 + t_1 x_0) + \alpha_2 (y_2 + t_2 x_0), \forall \alpha_1, \alpha_2 \in \mathbb{R}$$

$$\Leftrightarrow$$

$$\alpha_1 x_1 + \alpha_2 x_2 = (\alpha_1 y_1 + \alpha_2 y_2) + (\alpha_1 t_1 + \alpha_2 t_2) x_0, \forall \alpha_1, \alpha_2 \in \mathbb{R}$$

Заметим что в $\alpha_1y_1+\alpha_2y_2\in L$ т.к. L - линейное многообразие и $\alpha_1t_1+\alpha_2t_2\in \mathbb{R}$ так что с учетом того что $L_0=L\oplus P_{x_0}$ и из определения F получаем

$$F(\alpha_1 x_1 + \alpha_2 x_2) = f(\alpha_1 y_1 + \alpha_2 y_2) - (\alpha_1 t_1 + \alpha_2 t_2)C, \forall \alpha_1, \alpha_2 \in \mathbb{R}$$

$$\Leftrightarrow$$

$$F(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 f(y_1) + \alpha_2 f(y_2) - \alpha_1 t_1 C - \alpha_2 t_2 C, \forall \alpha_1, \alpha_2 \in \mathbb{R}$$

$$\Leftrightarrow$$

$$F(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 (f(y_1) - t_1 C) + \alpha_2 (f(y_2) - t_2 C), \forall \alpha_1, \alpha_2 \in \mathbb{R}$$

$$\Leftrightarrow$$

$$F(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 F(x_1) + \alpha_2 F(x_2), \forall \alpha_1, \alpha_2 \in \mathbb{R}$$

Пусть $x \in L$, тогда $x = x + 0x_0 \in L_0$ и F(x) = f(x) - 0C = f(x), так что F - действительно продолжение f. Далее пусть $x \notin L$, тогда $t \neq 0$ и

$$|F(x)| = |f(y) - tC| = |t||f(\frac{y}{t}) - C| \stackrel{\text{(1)}}{\leq} |t| ||f|| ||\frac{y}{t} + x_0|| = ||f|| ||y + tx_0|| = ||f|| ||x||$$

, так что вообще $\forall x \in L_0 : ||F(x)|| \le ||f|| \, ||x||$. Мы доказали что $F \in \mathrm{B}(L_0, \mathbb{R})$, причем $||F|| \le ||f|| \Rightarrow ||F|| = ||f||$ т.к. норма продолжения f всегда не меньше нормы f.

5. По условию X - сепарабельно т.е. $\exists \{x_k\}_{k\in\mathbb{N}}\subset X: X=\overline{\{x_k\}_{k\in\mathbb{N}}}.$

Пусть $x_1 \notin L, L_1 = L \oplus P_{x_1}$ и воспользовавшись **1-4** построим f_1 - продолжение f на L_1 ($f_1 \in B(L_1, \mathbb{R}), ||f_1|| = ||f||$).

Пусть $x_2 \notin L_1, L_2 = L_1 \oplus P_{x_2}$ и аналогично построим f_2 - продолжение f_1 на L_2 .

Процесс продолжения приводит к последовательности вложенных линейных многообразий $L \subset L_1 \subset L_2 \subset ... \subset L_k \subset ...$ Если начиная с некоторого $K \in \mathbb{N}$ имеем $L_k = X, \forall k \geq K$, то теорема доказана. В противном случае пусть

$$X_0 = \bigcup_{k=1}^{\infty} L_k$$

, тогда заметим что $\{x_k\}_{k\in\mathbb{N}}\subset X_0$ и соответственно $\overline{X_0}=X.$

 $x \in X_0 \Rightarrow \exists k \in \mathbb{N} : x \in L_k$, пусть $F(x) = f_k(x)$ и видим что

$$|F(x)| = |f_k(x)| \le ||f_k|| \, ||x|| = ||f|| \, ||x||$$

т.е. $F \in \mathrm{B}(X_0,\mathbb{R})$, а значит можно воспользоваться теоремой о продолжении ограниченного линейного отображения со всюду плотной областью определения и теорема доказана.

Замечание 1.1. Возвращаясь к теории линейных операторов - ограниченный оператор можно было продлить со всюду-плотного линейного многообразия, а ограниченный функционал можно с произвольного. Однако, уже не единственным образом.

Следствие 1.1. Пусть
$$x_0 \neq 0$$
, тогда $\exists f \in X^* : (\|f\|_{X^*} = 1) \land (f(x_0) = \|x_0\|)$

Доказательство. Пусть $P_{x_0} = \{x \in X \mid \exists t \in \mathbb{R} : x = tx_0\}$ и пусть $x \in P_{x_0}$, тогда $x = tx_0$ для некоторого t и положим $f(x) = t \|x_0\|$. Получили $f: P_{x_0} \to \mathbb{R}$, теперь докажем что $f(x) \in L(P_{x_0}, \mathbb{R})$

Действительно если $x_1,x_2\in P_{x_0},$ то $\exists t_1,t_2\in\mathbb{R}:(x_1=t_1x_0)\wedge(x_2=t_2x_0),$ а значит

$$\alpha_1 x_1 + \alpha_2 x_2 = \alpha_1 t_1 x_0 + \alpha_2 t_2 x_0 = (\alpha_1 t_1 + \alpha_2 t_2) x_0 \in P_{x_0}$$

, и

$$f(\alpha_1 x_1 + \alpha_2 x_2) = (\alpha_1 t_1 + \alpha_2 t_2) \|x_0\| = \alpha_1(t_1 \|x_0\|) + \alpha_2(t_2 \|x_0\|) = \alpha_2 f(x_1) + \alpha_2 f(x_2)$$

Теперь заметим что

$$|f(x)| = |t| ||x_0|| = ||tx_0|| = ||x||, \forall x \in P_{x_0}$$

таким образом мы доказали что $f \in B(X, \mathbb{R}), D(f) = P_{x_0}$ и ||f|| = 1, а также как не трудно видеть $x_0 = 1 \cdot x_0$ т.е. $f(x_0) = ||x_0||$ по определению. Все необходимые нам свойства выполнены, но этот функционал задан только на одномерном линейном многообразии. Вот теперь мы и применяем теорему Хана-Банаха, продляя его на все пространство и мы получили искомый $f \in X^*$

Следствие 1.2. Пусть $x \in X$ и $\forall f \in X^* : f(x) = 0$, тогда x = 0

Доказательство. Внимательно смотрим на предыдущее следствие. Если $x \neq 0$, то $\exists f \in X^* : f(x) = ||x|| \neq 0$ что противоречит условию.

Следствие 1.3. Пусть $L \subset X$ - лин. многообразие, а $x \in X$: $\mathrm{dist}(x,L) = d > 0$, тогда $\exists f \in X^*$:

- 1. f(x) = 1
- 2. $f(y) = 0, \forall y \in L$
- 3. $||f||_{X^*} = \frac{1}{d}$

Доказательство. Пусть $L_0 = L \oplus P_x$, напомним что по определению прямой суммы $\forall z \in L_0 \exists ! y \in L, t \in \mathbb{R} : z = y + tx$. Определим функционал $f: L_0 \to \mathbb{R}$ так: f(z) = t. Из определения f сразу получаем что

$$f(x) = 1$$
 T.K. $x = 0 + 1 \cdot x \in L_0$

, а также

$$f(y) = 0, \forall y \in L \text{ T.K. } y = y + 0 \cdot x \in L_0, \forall y \in L$$

т.е. мы доказали 1. и 2.

Должно быть очевидно (после двух доказательств такого вида) что он линеен т.е. $f \in L(L_0, \mathbb{R})$. Пусть $z \in L_0 \setminus L$, тогда $z \neq 0$ т.к. $0 \in L$ и

$$|f(z)| = |t| = |t| \frac{||z||}{||z||} = \frac{|t| \, ||z||}{||y + tx||} = \frac{||z||}{\left|\left|\frac{y}{t} + x\right|\right|} = \frac{||z||}{\left|\left|x - \left(-\frac{y}{t}\right)\right|\right|}$$

, т.к. $-\frac{y}{t}\in L$ и $\mathrm{dist}(x,L)=d>0,$ имеем $\left\|x-(-\frac{y}{t})\right\|\geq d,$ откуда

$$|f(z)| = \frac{||z||}{||x - (-\frac{y}{t})||} \le \frac{1}{d} ||z||$$

и доказано $||f|| \leq \frac{1}{d}$.

Чтобы доказать что $\|f\| = \frac{1}{d}$, воспользуемся тем что

$$\operatorname{dist}(x, L) = \inf_{y \in L} \|x - y\| = d$$

, а значит $\exists \{y_n\}_{n\in\mathbb{N}}: \|x-y_n\| \xrightarrow[n \to \infty]{} d$ и замечаем

$$1 = f(x) - f(y_n) = f(x - y_n) \le ||f|| ||x - y_n|| \xrightarrow[n \to \infty]{} ||f|| d$$

т.е. $||f|| \ge \frac{1}{d}$ чем полностью доказывается требуемое 3., остается лишь заметить что по теореме Хана-Банаха оператор продляется с L_0 до X с сохранением всех трех свойств.

2 Общий вид функционалов в различных пространствах

Теорема 2 (**Рисса об общем виде**). Пусть H - г.п.

1.
$$(u \in H) \land (f(v) = (v, u), \forall v \in H) \Rightarrow (f \in H^*) \land (\|f\|_{H^*} = \|u\|_H)$$

2.
$$(f \in H^*) \Rightarrow (\exists ! u \in H : (f(v) = (v, u), \forall v \in H) \land (\|f\|_{H^*} = \|u\|_H))$$

Доказательство.

1. $f(v)=(v,u)\Rightarrow f\in L(H,\mathbb{R})$ т.к. по аксиомам скалярного произведения

$$(\alpha_1 v_1 + \alpha_2 v_2, u) = (\alpha_1 v_1, u) + (\alpha_2 v_2, u) = \alpha_1(v_1, u) + \alpha_2(v_2, u)$$

Из неравенства Коши-Буняковского получаем:

$$|f(v)| = \left|(v,u)\right| \leq \left\|v\right\| \left\|u\right\|, \forall v \in H \Rightarrow (f \in H^*) \land (\left\|f\right\|_{H^*} \leq \left\|u\right\|_H)$$

Теперь пусть $u \neq 0$ (случай u = 0 тривиален, это нулевой оператор), тогда положим

$$\hat{u} = \frac{u}{\|u\|} \Rightarrow \|\hat{u}\| = 1$$

тогда

$$f(\hat{u}) = (\frac{u}{\|u\|}, u) = \frac{(u, u)}{\|u\|} = \|u\|$$

и остается заметить что

$$||u||_{H} = |f(\hat{u})| \le ||f||_{H^*} ||\hat{u}||_{H} = ||f||_{H^*} \Rightarrow ||f||_{H^*} = ||u||_{H^*}$$

2.1. Пусть $f \in H^*$, если f = 0, то $f(v) = (v, 0), \forall v \in H$. Если $f \neq 0$, то

$$f \neq 0 \Rightarrow \ker f$$
 - подпр-во $\neq H \Rightarrow H = \ker f \oplus (\ker f)^{\perp}$

Т.к. в этом случае $(\ker f)^{\perp} \neq \{0\}$, то можем взять $x_1, x_2 \neq 0, x_1, x_2 \in (\ker f)^{\perp}$ и рассмотреть следующий интересный элемент H:

$$x = f(x_2)x_1 - f(x_1)x_2$$

Понятно что $x \in (\ker f)^{\perp}$, в тоже время

$$f(f(x_2)x_1 - f(x_1)x_2) = f(x_2)f(x_1) - f(x_1)f(x_2) = 0$$

т.е. $x \in \ker f$. Как известно $M \cap M^{\perp} = \{0\}$, так что

$$f(x_1)x_2 - f(x_2)x_1 = 0, f(x_1) \neq 0, f(x_2) \neq 0$$
 т.к. не принадлежат ядру

Мы получили что любые два элемента $(\ker f)^{\perp}$ линейно зависимы, а это означает что $\dim (\ker f)^{\perp} = 1$ - ортогональное дополнение ядра является прямой.

2.2. Таким образом

$$\exists u_0 \neq 0 : (\ker f)^{\perp} = \{ u \in H \mid \exists t \in \mathbb{R} : u = tu_0 \}$$

и с учетом того что $H = \ker f \oplus (\ker f)^{\perp}$

$$\forall v \in H \; \exists! w \in \ker f \; \exists! t \in \mathbb{R} : v = w + tu_0$$

Замечаем

$$f(v) = f(w) + tf(u_0) = 0 + tf(u_0)$$
 T.K. $w \in \ker f$

причем т.к. $u_0 \in (\ker f)^{\perp}$, то $f(u_0) \neq 0$ и мы получили явное выражение для t:

$$t = \frac{f(v)}{f(u_0)}$$

2.3. Итого $v = w + \frac{f(v)}{f(u_0)} u_0$, посчитаем скалярное произведение:

$$(v, u_0) = (w, u_0) + \frac{f(v)}{f(u_0)}(u_0, u_0) = f(v) \frac{\|u_0\|^2}{f(u_0)}$$

здесь следует напомнить что $(w, u_0) = 0$ т.к. $u_0 \in (\ker f)^{\perp}$, а $w \in \ker f$ Теперь остается принять

$$u = \frac{u_0}{\|u_0\|^2} f(u_0)$$
 т.к. тогда $(v, u) = (v, u_0) \frac{f(u_0)}{\|u_0\|^2} = f(v), \forall v \in H$

2.4. Когда такой элемент u найден, можно воспользоваться **1.** и получить $\|f\|_{H^*} = \|u\|_H$ т.е. теорема почти доказана, но нам нужна единственность. Пусть

$$u_1, u_2 \in H : f(v) = (v, u_1) = (v, u_2), \forall v \in H$$

, но тогда

$$(v, u_1 - u_2) = 0, \forall v \in H \Rightarrow (u_1 - u_2, u_1 - u_2) = 0 \Rightarrow u_1 = u_2$$

Замечание 2.1. На первый взгляд кажется что эта теорема о том что на гильбертовом пространстве H других линейных ограниченных функционалов кроме как скалярных произведений на некоторых элемент $u \in H$ - нет.

Замечание 2.2. Тем не менее, её смысл куда глубже, он заключается в том что H^* изометрически изоморфно H. Действительно: пусть $F:H^*\to H$ определяемое как $f\xrightarrow{F}u$, где $u\in H:f(v)=(v,u)$ вывод теоремы 1 о том что это отображение сюръективно, а 2 о том что оно инъективно, а значит оно взаимно-однозначно. Изометричность видно из соотношений $\|f\|_{H^*}=\|u\|_H$ в обоих выводах теоремы, это значит что $\|f\|_{H^*}=\|F(f)\|_H$. Линейность F очевидна и теперь можно считать что $H^*\sim H$

Теорема 3 (**Рисса в** l^p). Пусть 1 (<math>q - т.н. сопряженный показатель т.е. такой что $\frac{1}{p} + \frac{1}{q} = 1$)

1.
$$(\xi \in l^p) \land \left(f(x) = \sum_{k=1}^{\infty} x_k \xi_k, \forall x \in l^p \right) \Rightarrow (f \in (l^p)^*) \land \left(\|f\|_{(l^p)^*} = \|\xi\|_{l^q} \right)$$

2.
$$(f \in (l^p)^*) \Rightarrow \exists ! \xi \in l^q : (f(x) = \sum_{k=1}^{\infty} x_k \xi_k, \forall x \in l^p) \land (||f||_{(l^p)^*} = ||\xi||_{l^q})$$

Доказательство.

1. Первым делом покажем что f определен для любого $x \in l^p$:

$$f(x) = \sum_{k=1}^{\infty} x_k \xi_k \le \sum_{k=1}^{\infty} |x_k \xi_k| \stackrel{\text{н-во Гельдера}}{\le} \left(\sum_{k=1}^{\infty} |x_k|^p \right)^{\frac{1}{p}} \left(\sum_{k=1}^{\infty} |\xi_k|^q \right)^{\frac{1}{q}} = \|x\|_{l^p} \|\xi\|_{l^q}$$

Линейность очевидна по определению, оценкой выше доказывается ограниченность т.к. доказали что

$$|f(x)| \le ||\xi||_{l^q} ||x||_{l^p}, \forall x \in l^p \Rightarrow (f \in (l^p)^*) \land (||f||_{(l^p)^*} \le ||\xi||_{l^q})$$

, отдельно отметим неравенство

$$||f||_{(l^p)^*} \le ||\xi||_{l^q} \tag{2}$$

и докажем что имеет место строгое равенство, для этого нам потребуется специальный элемент:

$$\tilde{x} = (\tilde{x}_1, ..., \tilde{x}_k, ...),$$
 где $\tilde{x}_k = \frac{\text{sign } \xi_k |\xi_k|^{q-1}}{\|\xi\|_{l^q}^q}, \forall k \in \mathbb{N}$

Следует заметить что для данного определения предполагаем $\xi \neq 0$ т.к. случай $\xi = 0$ соответствует нулевому функционалу и тривиален. Убедимся что $\tilde{x} \in l^p$:

$$|\tilde{x}_k|^p = \frac{|\xi_k|^{(q-1)p} = q}{\|\xi\|_{l^q}^q}, \forall k \in \mathbb{N} \Rightarrow \sum_{k=1}^{\infty} |\tilde{x}_k|^p = \frac{\sum_{k=1}^{\infty} |\xi_k|^q}{\|\xi\|_{l^q}^q} = 1$$

, т.е. действительно $\tilde{x} \in l^p$ и $\|\tilde{x}\|_{l^p} = 1$, наконец с учетом того что $x \operatorname{sign} x = |x|$, получаем:

$$f(\tilde{x}) \leq \|f\|_{(l^p)^*} \|\tilde{x}\|_{l^p} = \|f\|_{(l^p)^*}$$

$$f(\tilde{x}) = \frac{\sum_{k=1}^{\infty} \operatorname{sign} \xi_k |\xi_k|^{q-1} \xi_k}{\|\xi\|_{l^p}^{\frac{q}{p}}} = \frac{\sum_{k=1}^{\infty} |\xi_k|^q}{\|\xi\|_{l^p}^{\frac{q}{p}}} = \frac{\|\xi\|_{l^q}^q}{\|\xi\|_{l^p}^{\frac{q}{p}}} = \|\xi\|_{l^q}^{q(1-\frac{1}{p})} = 1 = \|\xi\|_{l^q}$$

, т.е. $\|\xi\|_{l^q} \leq \|f\|_{(l^p)^*}$ и с учетом (2) имеем $\|\xi\|_{l^q} = \|f\|_{(l^p)^*}$ т.е. первая часть полностью доказана.

2. Пусть $f \in (l^p)^*$ и пусть $e^k = (0, ..., 0, 1, 0, ...)$, где 1 стоит на k-ой позиции, возьмем $\xi_k = f(e^k), \forall k \in \mathbb{N}$. Рассмотрим

$$x = (x_1, ..., x_n, x_{n+1}, ...) \in l^p$$
 и пусть $x^{(n)} = (x_1, ..., x_n, 0, ...) = \sum_{k=1}^n x_k e^k$

, если теперь обозначить $\xi^{(n)}=(\xi_1,...,\xi_n,0,...),$ то получим

$$f(x^{(n)}) = \sum_{k=1}^{n} x_k f(e^k) = \sum_{k=1}^{n} x_k \xi_k = \sum_{k=1}^{\infty} x_k^{(n)} \xi_k^{(n)}$$

Аналогично первой части рассмотрим: $\tilde{x}^{(n)}, \forall n \in \mathbb{N}$

$$\tilde{x}_{k}^{(n)} = \frac{\operatorname{sign} \xi_{k}^{(n)} \left| \xi_{k}^{(n)} \right|^{q-1}}{\| \xi^{(n)} \|_{l^{q}}^{\frac{q}{p}}}, \text{ и соотв. } \| \tilde{x}^{(n)} \|_{l^{p}} = 1$$

$$(3)$$

, и наконец (опять таки аналогично предыдущей части)

$$\begin{split} &\sum_{k=1}^{\infty} \tilde{x}_{k}^{(n)} \xi_{k}^{(n)} = \left\| \xi^{(n)} \right\|_{l^{q}} \\ &\sum_{k=1}^{\infty} \tilde{x}_{k}^{(n)} \xi_{k}^{(n)} = \sum_{k=1}^{n} \tilde{x}_{k}^{(n)} \xi_{k}^{(n)} = f(x^{(n)}) \leq \|f\|_{(l^{p})^{*}} \left\| \tilde{x}^{(n)} \right\|_{l^{p}} \stackrel{(3)}{=} \|f\|_{(l^{p})^{*}} \end{split}$$

, таким образом

$$\left\| \xi^{(n)} \right\|_{l^q}^q = \sum_{k=1}^{\infty} |\xi_k^{(n)}|^q \overset{\text{по опред. } \xi^{(n)}}{=} \sum_{k=1}^n |\xi_k|^q \le \|f\|_{(l^p)^*}^q$$

т.е. частичные суммы ряда оцениваются одним и тем же числом, соответственно ряд сходится и $\xi \in l^q$, причем

$$\|\xi\|_{l^q} \le \|f\|_{(l^p)^*}$$

Заметим что т.к. $f \in (l^p)^*$, то он непрерывен (поскольку ограничен)

$$f(x^{(n)}) \to f(x)$$

$$\wedge$$

$$\sum_{k=1}^{n} x_k \xi_k \to \sum_{k=1}^{\infty} x_k \xi_k$$

(сходится абсолютно т.к. $x \in l^p, \xi \in l^q$ + н-во Гельдера)

$$f(x) = \sum_{k=1}^{\infty} x_k \xi_k, \forall x \in l^p$$

Равенство норм доказывается аналогично первой части. Докажем единственность: пусть существует еще один

$$\eta \in l^q : f(x) = \sum_{k=1}^{\infty} x_k \eta_k, \forall x \in l^p$$

, тогда по построению ξ :

$$\xi_j = f(e^j) = \sum_{k=1}^{\infty} e_k^j \eta_k = \eta_j, \forall j \in \mathbb{N}$$

что и означает $\xi = \eta$, теорема доказана.

Замечание 3.1. Теорема устанавливает следующий изометрический изоморфизм: $(l^p)^* \sim l^q$. Это оправдывает то, что мы назвали q - сопряженным показателем. Если в предыдущей теореме, в случае гильбертовых пространств - $H^* \sim H$ т.е. сопряженное изоморфно самому ему, то в этой теореме Рисса уже другому пространству. Здесь следует заметить что среди l^p гильбертовым является лишь l^2 и предыдущая теорема Рисса пересекается с этой т.к. если p=q=2, то $(l^2)^* \sim l^2$ уже по текущей теореме.

Теорема 4 (Рисса в L^p). Пусть 1

1.
$$(g \in L^q(E)) \land \left(l(f) = \int_E fg dx, \forall f \in L^p(E)\right) \Rightarrow$$

$$\Rightarrow (l \in (L^p(E))^*) \land \left(\|l\|_{(L^p(E))^*} = \|g\|_{L^q(E)}\right)$$

2.
$$(l \in (L^p(E))^*) \Rightarrow$$

$$\Rightarrow \exists ! g \in L^q(E) : \left(l(f) = \int_E fg dx, \forall f \in L^p(E)\right) \land \left(\|g\|_{L^q(E)} = \|l\|_{(L^p(E))^*}\right)$$

Доказательство. Без доказательства т.к. требуются свойства интеграла Лебега нам неизвестные. \Box

Замечание 4.1. Теорема устанавливает следующий изометрический изоморфизм: $(L^p(E))^* \sim L^q$. На самом деле для всех используемых пространств имеются теоремы в духе теоремы Рисса (об общем виде) и каждая рассматривается отдельно.

3 Слабая сходимость

Определение 3.1. Пусть X - н.п., будем говорить что x_n сходится к x слабо и обозначать это как $x_n \rightharpoonup x$ (иногда пишут $x_n \stackrel{w}{\to} x$ от английского weak) если $\forall f \in X^* : f(x_n) \to f(x)$

Замечание 3.1.1. В противопоставление, привычная нам сходимость в X: $x_n \to x \leftrightarrow \|x_n - x\| \to 0$ называется сильной.

Теорема 5 (единственность предела \rightharpoonup). Пусть $x_n \rightharpoonup x$ и $x_n \rightharpoonup y$ в X, тогда x=y

Доказательство. По определению слабой сходимости:

$$(f(x_n) \to f(x)) \land (f(x_n) \to f(y)), \forall f \in X^*$$

$$\Rightarrow$$

$$f(x) = f(y), \forall f \in X^*$$

$$\Leftrightarrow$$

$$f(x - y) = 0, \forall f \in X^*$$
следствие 1.2
$$\Rightarrow$$

$$x - y = 0$$

, отсюда x = y, что и требовалось доказать.

Теорема 6 (сильная \Rightarrow слабая). Пусть $x_n \to x$ в X, тогда $x_n \rightharpoonup x$ в X

Доказательство. Пусть
$$f \in X^*$$
, тогда f - непрерывный, поэтому $(x_n \to x) \Rightarrow (f(x_n) \to f(x))$ т.е. $f(x_n) \to f(x), \forall f \in X^*$, ч.т.д.

Замечание 6.1. Рассмотрим пример в l^2 , последовательность $e^i = (0, ..., 0, 1, 0, ...)$, где 1 на i-ой позиции. Сильно она никуда не сходится. Пусть $f \in (l^2)^*$, воспользуемся тут теоремой Рисса:

$$\exists u \in l^2 : f(e^i) = \sum_{k=1}^{\infty} u_k e_k^i = u_k \to 0$$

, последнее верно т.к. $u\in l^2\Rightarrow \sum\limits_{k=1}^\infty |u_k|^2<\infty$ и общий член ряда должен сходиться к нулю. Мы показали что $e^i\rightharpoonup 0$, значит слабая сходимость не всегда влечет сильную. Далее рассмотрим когда это верно.

Теорема 7 (о
$$\rightharpoonup$$
 в \mathbb{R}^n). Пусть $X=\mathbb{R}^n$, тогда $(x_k \rightharpoonup x$ в $\mathbb{R}^n) \Rightarrow (x_k \to x$ в $\mathbb{R}^n)$

Доказательство. Пусть $e_1, ..., e_n$ базис в \mathbb{R}^n , $x = \sum_{i=1}^n \alpha_i e_i \in \mathbb{R}^n$ и рассмотрим функционал $f(x) = \alpha_i$ для некоторого фиксированного $i \in \{1, ..., n\}$, понятно что он линейный. В \mathbb{R}^n все нормы эквивалентны, поэтому можно взять $\|x\|_{\infty} = \sum_{i=1}^n |\alpha_i| \|x\|_{\infty} \|f(x)\|_{\infty} \|f(x)$

$$\|x\|_0 = \sum_{i=1}^n |\alpha_i|$$
 и $|f(x)| = |\alpha_i| \le \|x\|_0$, $\forall x \in \mathbb{R}^n$ т.е. этот функционал ограничен:

 $f \in (\mathbb{R}^n)^*$.

Т.к. $x_k \rightharpoonup x$, то $f(x_k) \to f(x)$ т.е. для $x_k = \sum_{i=1}^n \alpha_{ki} e_i$ имеем покоординатную сходимость $\alpha_{ki} \to \alpha_i, \forall i \in \{1, ..., n\}$, а в \mathbb{R}^n это и означает сильную сходимость $x_k \to x$, ч.т.д.

Теорема 8 (о слабой сходимости образов). Пусть X,Y - н.п., $A \in B(X,Y)$ и $x_n \rightharpoonup x$ в X, тогда $Ax_n \to Ax$ в Y

Доказательство. Требуется доказать что для произвольного $f \in Y^*$, выполнено $f(Ax_n) \to f(Ax)$, это наша цель. Рассмотрим функционал φ определенный как суперпозиция $\varphi(x) = f(Ax), \forall x \in X$. Суперпозиция линейных операторов всегда является линейным оператором, давайте это покажем:

$$\varphi(\alpha_1 x_1 + \alpha_2 x_2) = f(A(\alpha_1 x_1 + \alpha_2 x_2)) = f(\alpha_1 A x_1 + \alpha_2 A x_2) =$$

$$= \alpha_1 f(A x_1) + \alpha_2 f(A x_2) = \alpha_1 \varphi(x_1) + \alpha_2 \varphi(x_2)$$

С ограниченностью еще проще:

$$|\varphi(x)| = |f(Ax)| \le ||f||_{V^*} ||Ax||_V \le ||f|| ||A|| ||x||, \forall x \in X$$

Итого $\varphi \in X^*$, но тогда по определению слабой сходимости $x_n \rightharpoonup x$ имеем:

$$\varphi(x_n) \to \varphi(x) \Leftrightarrow f(Ax_n) \to f(Ax)$$

и видим что это то что нам и нужно.

Теорема 9 (слабая полунепрерывность нормы). Пусть X - н.п., $x_n \rightharpoonup x$, тогда $||x|| \le \varliminf_{n \to \infty} ||x_n||$

Доказательно. Пусть $d=\varinjlim_{n\to\infty}\|x_n\|$, тогда т.к. нижний предел обязательно реализуется на какой-то последовательности: $\exists x_{n_k}\subset x_n:\|x_{n_k}\|\to d$. Вспоминаем следствие 1 теоремы Хана-Банаха (для элемента x), по которому $\exists f\in X^*: (\|f\|=1)\wedge (f(x)=\|x\|)$. Т.к. $x_n\to x$, элементарно показывается что для подпоследовательности аналогично $x_{n_k}\to x$, значит

$$f(x_{n_k}) \to f(x) = ||x||$$

по определению слабой сходимости.

Остается провести оценку:

$$f(x_{n_k}) \le |f(x_{n_k})| \le ||f|| ||x_{n_k}|| \to d$$

и с учетом того что $f(x_{n_k}) \to ||x||$ получаем

$$||x|| \le \underline{\lim}_{n \to \infty} ||x_n|| = d$$

, что и требовалось.

Список теорем и утверждений

1	Теорема (Хана-Банаха)	2
1.1	Следствие	4
1.2	Следствие	5
1.3	Следствие	5
2	Теорема (Рисса об общем виде)	6
3	Теорема (Рисса в l^p)	8
4	Теорема (Рисса в L^p)	0
5	Теорема (единственность предела —)	1
6	Теорема (сильная \Rightarrow слабая)	1
7	Теорема ($\mathbf{o} \rightharpoonup \mathbf{b} \mathbb{R}^n$)	1
8	Теорема (о слабой сходимости образов)	2
9	Теорема (слабая полунепрерывность нормы)	2