Regression tree (31461 obs, without charlson)

- Sample size (in italics) and mortality rate printed below nodes
- Terminal nodes with mortality rates above and below value of 0.04 at root node are colored yellow and skyblue, respectively

Regression tree (31461 obs, with charlson)

- Sample size (in italics) and mortality rate printed below nodes
- Terminal nodes with mortality rates above and below value of 0.04 at root node are colored yellow and skyblue, respectively

Logistic regression tree (without charlson and American Indian & Alaska Native)

- At each split, an observation goes to the left branch if and only if the condition is satisfied
- Sample size (in italics) and estimated probability of death below nodes
- Logistic regression model fitted to each node

	$ exttt{agecat} \leq exttt{1}$		agecat > 1	
	Coef	P-value	Coef	P-value
(Intercept)	-6.626	0.000	-4.760	0.000
renal	1.192	0.000	0.686	0.000
agecat	0.828	0.248	0.492	0.000
CHF	0.470	0.034	0.357	0.000
MI	0.940	0.000	0.608	0.000
PVD	0.128	0.630	-0.103	0.288
cerebro	0.101	0.709	0.071	0.447
dementia	0.550	0.425	0.339	0.001
diabetes	0.233	0.166	0.036	0.653
cancer	0.112	0.713	-0.129	0.219
CPD	0.293	0.069	0.192	0.017
mildliver	0.605	0.005	-0.009	0.949
modsevliv	1.488	0.000	0.546	0.135

	$ ext{agecat} \leq ext{1}$		agecat > 1	
	Coef	P-value	Coef	P-value
sex.M	0.817	0.000	0.463	0.000
race.Black or African American	1.478	0.036	0.733	0.011
race.Native Hawaiian or Other Pacific	1.248	0.310	2.020	0.000
race.Unknown	0.398	0.580	0.204	0.496
race.White	0.727	0.305	0.457	0.110
metastatic	0.881	0.080	0.479	0.014
hemipara	0.523	0.211	-0.513	0.016
RD	0.135	0.719	0.115	0.514
PUD	-0.088	0.835	-0.396	0.067
aids	0.527	0.174	0.212	0.599

Logistic regression tree (31,461 obs, with charlson as sole linear predictor)

Red line = fitted P(died); blue line = observed death rate

GUIDE models

- Regression tree with/without American Indian & Alaska Native and with/without charlson
- Regression forest with/without American Indian & Alaska Native and and with/without charlson
- Logistic regression tree without American Indian & Alaska Native and with/without charlson

P(died) w/o charlson & Am. Indian & Alaska Nat.

February 1, 2021

STAT 443: Classification and Regression Trees (Loh)

Accuracy vs interpretability

Most	Most	
accurate	interpretable	
Classification	Logistic	Piecewise
or regression	regression	constant
forest	tree	tree

Logistic models

- Ordinary logistic regression does not allow charlson and American Indian & Alaska Native
- Logistic regression tree does not allow American Indian & Alaska Native

GUIDE importance scores

About GUIDE

- GUIDE algorithm and software have been in development for 30+ years
- GUIDE manual and free compiled code for Linux, Mac OS X and Windows are available at www.stat.wisc.edu/~loh/guide.html
- GUIDE is not implemented in R but can be used in R (see manual)
- Key references: Loh and Vanichsetakul (1988), Chaudhuri et al. (1994, 1995), Loh and Shih (1997), Kim and Loh (2001), Loh (2002, 2009, 2014, 2019), Loh and Zheng (2013), and Loh et al. (2015, 2016, 2019a,b)

Things to do before next Tuesday

- 1. Go to http://pages.stat.wisc.edu/~loh/guide.html and install GUIDE
- 2. Read the GUIDE manual

http://www.stat.wisc.edu/~loh/treeprogs/guide/guideman.pdf

3. Read article: Loh, W.-Y. (2011), Classification and regression trees, *Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery*, vol.1, 14–23

http://www.stat.wisc.edu/~loh/treeprogs/guide/wires11.pdf