4.5. ВАРИАНТЫ ЗАДАНИЯ

В таблице 1 приведены варианты заданий, в которых задан порядок n фильтра и его тип, границы полос пропускания и задерживания, коэффициенты α_{max} и α_{min} в этих полосах, добротность Q некоторых фильтров и др.

Расчет параметров фильтра (RC-звеньев) и выбор ОУ студент должен выполнить самостоятельно.

Расчетные формулы для определения параметров зависят от выбранной электрической схемы фильтра, типа обратных связей и коэффициента усиления ОУ.

В таблице 2 приведены коэффициенты c_0 , a_i , b_i , c_i для определения параметров R и C звеньев ARC-фильтра реализуемого на одном ОУ с бесконечным усилением и многопетлевой обратной связью.

										Та	блица 1.
Порядок фильтра →		3		4		5			6		
Номер звена →		1	2	1	2	1	2	3	1	2	3
Тип фильтра		1		1		1	2	3	1		5
Баттерворта (<i>B</i>)	<i>b c</i>	1,0000	1,0000 1,0000	0,7654 1,0000	1,8478 1,0000	1,0000	0,6180 1,0000	1,6180 1,0000	0,5176 1,0000	1,4142 1,0000	1,9319 1,0000
Чебышева (T): $\alpha_{max} = -0.1 \text{ дБ}$	<i>b c</i>	- 0,9694	0,9694 1,6897	0,5283 1,3300	1,2755 0,6229	0,5389	0,3331 1,1949	0,8719 0,6359	0,2294 1,1294	0,6267 0,6964	0,8561 0,2634
Чебышева (T): $\alpha_{max} = $ = - 0,5 дБ	<i>b c</i>	0,6265	0,6265 1,1425	0,3507 1,0635	0,8467 0,3564	0,3623	0,2239 1,0358	0,5862 0,4768	0,1553 1,0230	0,4243 0,5900	0,5796 0,1570
Инверсный Чебышева (I): $\alpha_{min} = -40 \text{ дБ}$	а b с	- - 1,0602	12.076 0,9699 1,0284	4,7485 0,6892 1,0375	27,676 2,0315 1,2667	- - 1,2730	2,8870 0,5039 1,0380	7,5584 1,6961 1,3344	2,1487 0,3791 1,0346	4,0095 1,3339 1,3323	29,927 2,5583 1,8705
Эллипти- ческий (E): $\alpha_{max} = -0.5$ дБ $\alpha_{min} = -40$ дБ	а b с	- - 0,6591	9,6292 0,5806 1,1462	3,0091 0,9071 0,4478	14,910 0,2719 1,0614	- - 0,5014	1,5020 0,5352 0,6811	2,9137 0,1139 1,0270	1,3095 0,7701 0,3176	9,9655 0,3058 0,7965	1,8557 0,0650 1,0142
Бесселя (<i>BS</i>)	<i>b c</i>	- 2,3222	3,6778 6,4594	5,7924 4,2076	9,1401 11,488	- 3,6467	6,7039 14,273	4,6494 18,156	5,0319 26,514	8,4967 18,801	7,4114 20,853

Коэффициент усиления каждого звена H_{0i} = 2; частота среза фильтра (кроме ППФ) f_c = 100 Гц, для ППФ f_0 = 100 Гц; Q = 8.

	Таблица 2. Варианты задан							
Номер ва- рианта	Тип фильтра	Вид Порядок фильтра фильтра		Коэффициент ос- лабления (дБ)	Примечание			
1	Баттерворта	ФНЧ	4	$\alpha_{max} = 3$				
2	Баттерворта	ФНЧ	5	$\alpha_{max} = 3$				
3	Баттерворта	ФНЧ	6	$\alpha_{max} = 3$				
4	Баттерворта	ФВЧ	4	$\alpha_{max} = 3$				
5	Баттерворта	ФВЧ	5	$\alpha_{max} = 3$				
6	Баттерворта	ФВЧ	6	$\alpha_{max} = 3$				
7	Баттерворта	ППФ	4	$\alpha_{max} = 3$	На основе ВНЧ и			
8	Баттерворта	ППФ	6	$\alpha_{max} = 3$	ФВЧ типа <i>В</i>			
9	Чебышева (Т)	ФНЧ	3	$\alpha_{max} = 0,1$	Для второй группы			
10	Чебышева (Т)	ФНЧ	4	$\alpha_{max} = 0,1$	в потоке фильтры T имеют			
11	Чебышева (Т)	ФНЧ	5	$\alpha_{max} = 0,1$	$\alpha_{max} = 0.5$ дБ			
12	Чебышева (Т)	ФНЧ	6	$\alpha_{max} = 0,1$				
13	Чебышева (Т)	ФВЧ	3	$\alpha_{max} = 0,1$				
14	Чебышева (Т)	ФВЧ	4	$\alpha_{max} = 0,1$				
15	Чебышева (Т)	ФВЧ	5	$\alpha_{max} = 0,1$				
16	Чебышева (Т)	ФВЧ	6	$\alpha_{max} = 0,1$				
17	Чебышева (Т)	ППФ	4	$\alpha_{max} = 0,1$	На основе ВНЧ и			
18	Чебышева (Т)	ППФ	6	$\alpha_{max} = 0,1$	ФВЧ типа <i>Т</i>			
19	Инверсный Чебышева (I)	ФНЧ	3	$\alpha_{min} = 40$	Для второй группы			
20	Инверсный Чебышева (I)	ФНЧ	4	$\alpha_{min} = 40$	в потоке фильтры типа <i>I</i> имеют			
21	Инверсный Чебышева (I)	ФНЧ	5	$\alpha_{min} = 40$	$\alpha_{min} = 50 \text{ дБ}$			
22	Инверсный Чебышева (I)	ФНЧ	6	$\alpha_{min} = 40$	ω _{min} σο μΒ			
23	Инверсный Чебышева (I)	ФВЧ	3	$\alpha_{min} = 40$				
24	Инверсный Чебышева (I)	ФВЧ	4	$\alpha_{min} = 40$	-			
25	Инверсный Чебышева (<i>I</i>)	ФВЧ	5	$\alpha_{min} = 40$	-			
26	Инверсный Чебышева (<i>I</i>)	ФВЧ	6	$\alpha_{min} = 40$	-			
27	Инверсный Чебышева (I)	ППФ	4	$\alpha_{min} = 40$	На основе ВНЧ и			
28	Инверсный Чебышева (I)	ППФ	6	$\alpha_{min} = 40$	ФВЧ типа <i>В</i>			
29	Эллиптический (Е)	ФНЧ	3	$\alpha_{max} = 0.5$ $\alpha_{min} = 40$				
30	Эллиптический (Е)	ФНЧ	4	$\alpha_{max} = 0.5 \alpha_{min} = 40$	-			
31	Эллиптический (Е)	ФНЧ	5	$\alpha_{max} = 0.5 \alpha_{min} = 40$	1			
32	Θ ллиптический (E)	ФВЧ	3	$\alpha_{max} = 0.5 \alpha_{min} = 40$	1			
33	Эллиптический (Е)	ФВЧ	4	$\alpha_{max} = 0.5 \alpha_{min} = 40$	†			
34	Эллиптический (Е)	ФВЧ	5	$\alpha_{max} = 0.5 \alpha_{min} = 40$	1			
35	Эллиптический (E)	ППФ	4	$\alpha_{max} = 0.5 \alpha_{min} = 40$	1			
36	Эллиптический (Е)	ППФ	6	$\alpha_{max} = 0.5 \alpha_{min} = 40$	†			
37	Бесселя (<i>BS</i>)	-	3	$\alpha_{max} = 3$ $\alpha_{max} = 3$	На частоте среза			
38	Бесселя (<i>BS</i>)	-	4	$\alpha_{max} = 3$	ω_c			
39	Бесселя (<i>BS</i>)	=	5	$\alpha_{max} = 3$	задержка сигнала			
40	Бесселя (<i>BS</i>)	_	6	$\alpha_{max} = 3$	$t_3 = 1/\omega_c$			