USTO MB-Faculté des Mathématiques et Informatique

-Département de Mathématiques

Examen final du module Algèbre 1 : Durée :1H30 mn

Exercice:1

Soient E un ensemble non vide et R une relation binaire sur un ensemble E .

- 1. Donner la définition d'une relation d'équivalence sur un ensemble E.
- 2. Soit $n \in \mathbb{N}^*$; on définit sur \mathbb{Z} la relation binaire \Re par : $\forall x,y \in \mathbb{Z} : x \Re y \iff x-y \text{ est un multiple de n}$.
 - a- Montrer que \Re est une relation d'équivalence sur $\mathbb Z$.
 - b- Montrer que l'ensemble quotient : $\mathbb{Z}/n\mathbb{Z}{=}\{\overline{0},\overline{1},.....,\overline{n-1}\} \text{ où } \overline{a} \text{ désigne la classe d'équivalence de } a\in\mathbb{Z}$
 - c- Pour n = 5 montrer que : $\overline{9033} = \overline{3}$ et que $\overline{2015} \cap \overline{2014} = \emptyset$.

Exercice :2

Parmi les propositions suivantes ,déterminer lesquelles sont vraies et lesquelles sont fausses tout en justifiant votre réponse .

- 1. $\forall x \in \mathbb{R}$, $x \geq 2$.
- 2. $\exists . x \in \mathbb{N}$, 2 < x < 4.
- 3. $\forall x > 0, \exists y > 0, y < x$.
- 4. $\forall n \in \mathbb{N}, \exists p \in \mathbb{N} / n=2p$.
- 5. $\forall n \in \mathbb{N}, \exists p \in \mathbb{N} / n(n+1)=2p$.

Exercice :3

Soient a, b des nombres réels tels que : $a \ge 0$ et $b \ge 0$; en utilisant le raisonnement par l'absurde montrer que :

$$\frac{a}{1+b} = \frac{b}{1+a} \Longrightarrow a = b$$

Exercice :4

Soit f l'application $\mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2 + 2x + 3$

- 1. f est -elle injective? surjective? bijective?
- 2. Déterminer $f(\mathbb{R})$.
- 3. Montrer que la restriction $g:]-\infty,-1] \implies]2,+\infty]$ avec g(x)=f(x) est une bijection.
- 4. Déterminer l'application réciproque g^{-1} de g .