Chapter 1

定义集

1.1 初等数论

定义 1.1.1: 模p同余

若两多项式f(x)与g(x)同次幂系数均关于模p同余,则称f(x)和g(x)对模p同余或模p恒等.

$$f(x) \equiv g(x) \pmod{p}$$
.

定义 1.1.2: 多项式模p的次数

若f(x)的系数不全被p整除,其中系数不被p整除的最高幂次称为f(x)模p的次数.

定义 1.1.3: 容度, 本原多项式

设 $f(x) = a_n x^n + \dots + a_1 x + a_0 \in \mathbb{Z}[x]$, 且 $f(x) \neq 0$, 将 a_0, a_1, \dots, a_n 的最大公约数 (a_0, a_1, \dots, a_n) , 称为f(x)的容度. 容度为1的多项式称为本原多项式.

1.2 数学分析

1.3 微分方程

定义 1.3.1: 标准形式下的边值问题

二阶线性微分方程: $y'' + P(x)y' + Q(x)y = \phi(x), P(x), Q(x), \phi(x) \in C[a, b]$ 在满足边界条件:

$$\begin{cases} \alpha_1 y(a) + \beta_1 y'(a) = \gamma_1, & \alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2 \in \mathbb{R}, \\ \alpha_2 y(b) + \beta_2 y'(b) = \gamma_2, & \alpha_1^2 + \beta_1^2 \neq 0, \alpha_2^2 + \beta_2^2 \neq 0. \end{cases}$$

的问题称为标准形式下的边值问题. 边值问题是<mark>齐次的</mark>, 若 $\phi(x) \equiv 0$, $\gamma_1 = \gamma_2 = 0$. 否则称为非齐次的.

定义 1.3.2: 更一般的齐次边值问题

更一般的齐次边值问题是有如下形式的问题

$$\begin{cases} y'' + P(x,\lambda)y' + Q(x,\lambda)y = 0; \\ \alpha_1 y(a) + \beta_1 y'(a) = 0; \\ \alpha_2 y(b) + \beta_2 y'(b) = 0 \end{cases}$$

2 CHAPTER 1. 定义集

1.4 泛函分析

定义 1.4.1: 紧算子

设 X 是 Banach 空间, 若线性算子 T 把每一有界集映成列紧集, 则称线性算子 T 为紧算子.

定义 1.4.2: Banach空间中的凸集

设 X 是 Banach 空间, 集合 $K \subset X$ 称为是凸的, 若 $(1-t)K + tK \subset K$, $(0 \le t \le 1)$.

定义 1.4.3: 拟半范数, 半范数

设 \mathbb{K} 是 \mathbb{R} 或 \mathbb{C} , \mathcal{X} 是域 \mathbb{K} 上的向量空间.

- A. 映射 $q: \mathcal{X} \to \mathbb{R}$ 称为拟半范数, 如果
 - (i) $q(x+y) \le q(x) + q(y)$, 对于任意 $x, y \in \mathcal{X}$.
 - (ii) q(tx) = tq(x), 对任意的 $x \in \mathcal{X}$ 和 $t \in \mathbb{R}$, $t \geq 0$.
- B. 映射 $q: \mathcal{X} \to \mathbb{R}$ 称为是半范数, 如果上面的两个条件中(ii)改为
 - (ii') $q(\lambda x) = |\lambda| q(x)$, 对任意 $x \in \mathcal{X}$ 和 $\lambda \in \mathbb{K}$.
- 注: 若 $q:\mathcal{X} \to \mathbb{R}$ 是半范数,则对于任意的 $x \in \mathcal{X}, \ q(x \geq 0).$ (因 $2q(x) = q(x) + q(-x) \geq q(0) = 0$).