The Geometry Of	f Musical Logarithms	2
Fig. 1 Des	scartes Prænotanda: Arithmetic vs. geometric division	2
Fig. 2a Fo	ogliano (1529): Geometric mean	2
	Descartes's example in the light of Fogliano's construction	
Fig. 3	Interval and pitch classes according to Descartes	
Fig. 4.		
Fig. 5		
Fig. 6a	Fludd circles	6
Fig. 6b	Numerationis Speculum	7
Fig. 7 Fre	tboard of the barbitum. Resolves Fig. 6a	7
Fig. 8 Flu	dd's Speculum adapted	8
Fig. 9 Des	scartes's instrument to construct geometric progressions	8
Fig. 10 Th	ne division of the whole tone 9:8 into semi-tones 17:16 and 18:17	
(Zarlino 1	571)	
Fig. 11	Beeckman chromatic and diatonic scale	
Table 1	Analysis of the chromatic scale given by Beeckman	9
Table 2	Bürgi's geometric/arithmetic progression	
Fig. 12 Pa	scal's Triangle according to Stifel 1544	10
Fig. 13a		
Fig. 13b	Division of the octave 6 : 8 : 9 : 12(Zarlino 1571)	10
Fig. 13c	Division of the double octave 6 : 8 : 9 : 12 : 14 : 16 : 18 : 24 and the	
	ean chromatic scale (Faber Stapulensis 1551, 32v)	
Fig. 14a	Power table (filled Lambda tetraktys)	
Fig. 14b	Fludd triangle	
_	Corkessy etc (Reany/Gilles p. 28)	
Fig. 14d	Boethius Arithmetic triangle (Mh 1)	
Fig. 15	Power tables as a self-similar structure	
Fig. 16	Two dimensional Pythagorean power grid.	
Fig. 17a	Diatonic Pythagorean scale	
Fig. 17b	53 Pythagorean fifths filling Descartes's pitch circle ($n = 53$)	
Fig. 18a	Syntonic pitch grid (Rameau 1726)	
Fig. 18b	1739_EulerTentamen_147_ChromaticScale.jpg	
Table 2	Multiple, superparticular ratios	
Table 3	The intervals of the tetraktys	
-	etc (Reany/Gilles p. 30, 61)	
	dd_1_Tract_I_Lib_VI_fol181_CausarumUniversaliumSpeculum.jpg	
Ramon Ll	ull, Ars brevis (1305)	19

The Geometry Of Musical Logarithms

Fig. 1 Descartes Prænotanda: Arithmetic vs. geometric division

Fig. 1. Arithmetic versus geometric division of the ratio 2 : 4, leading to the division of the octave into a Pythagorean fifth and fourth versus two equal diminished fifths, or 'semi-octaves'.

Fig. 2a Fogliano (1529): Geometric mean

Fig. 2a. Construction of the geometric mean of 80 and 81 by Fogliano (1529) leading to the musical interval of half a syntonic comma.

Fig. 2b. Descartes's example in the light of Fogliano's construction.

#mz_geometricMean_2_4.jpg#

Fig. 3a. Left: The consonant intervals within the octave (Diapason) according to Descartes. The closing of the octave happens at the bottom CB, where the fifth (Diapente) and the major third (Ditonus) start. The minor third is unusually called Tertia minor and not Semiditonus, however, the major third comes as Ditonus and not as Tertia major. Subtracting a consonant interval from the octave gives always a consonant interval. The minor third is defined as the fifth minus the major third, which is indicated by the radial line segments through E and D. Right: The diagram in Beeckman's copy: The angle for the minor third seems to be much bigger than 90° because the divider line does not pass through the clearly indicated centre of the circles.

Fig. 3b. The diatonic major scale, starting at ut = 540 in clockwise direction with an ambiguous tone (486/480), separated by a syntonic comma which Descartes calls *Schisma*. The diagram is completely symmetric about the bisector of the syntonic comma. The radii defining the tritone and the diminished fifth (at 405 and 288) are hardly distinguishable from a straight diameter.

In Beeckmans's copy the symmetry about a vertical is still recognizable in the lower part. However, the angle of the major tone 405-360 is about the size of the minor thirds in the lower part and the angle of the minor tone 360-324 is about the size of the accurate major tone 324/288.

Fig. 3c. The three hexachords from F (540), C(360) and G(480) have congruent angles, each given with relative solmization. The leading notes B quadratum (384) and E (288) are a byproduct of the hexachords (ut, re, mi, fa, sol, la). There are two ambiguous pitch classes at G and D. Note again that the diminished fifths (540-384 and 405-288) 'mi contra fa' (the devil in music) are on diameters of the circle.

In Beeckman's copy both tritones are far from being on diameters, and the fifth 288-384 (E-B quadratum) is close to the vertical diameter. Many of the radial dividers do not pass through the common center of the circles, which makes a quantitative evaluation of the angles problematic.

Fig. 4. Jost Buergi, Arithmetische und geometrische Progress-Tabulen (1620)

Title page of Jost Bürgi's power tables. The black numbers of the inner circle run from 1 to 9.9973... The red numbers, running from 0 = 230'270 in steps of 5000 (actually 500.0), are the power indices with respect to the base 1.0001 of the black numbers. The small circle above the red number in the center of the diagram indicates the decimal point. The points at the end of the numbers are full stops... $(1.0001^{23027.0022} = 9.999'999'997 = 10.000'000'00)$.

Fig. 5 Pitch classes as a mathematical transformation

#mz_log2_mod1.jpg#

Fig. 6a Fludd circles

Transposition circle of the lute with a chromatic scale of semitone running from 1 = A1, the lowest tone on the lowest string, to the highest tone 35 = o6 of the third circle, which is 3 octaves plus two semitones higher than the lowest note. The vertical chromatic scale below 'Claues' (keys) with tone names is meant to be a spinner. Therefore the full circle covers three octaves [UCH Vol I, Tract II Part II Lib VI, (De Instrumentis Musicis vulgariter notis): 232: Transposition Circle (230: Fretboard)].

Fig. 6b Numerationis Speculum

UCH Vol I, Tract II Part I Lib I, 9 (De Numero et Numeratione)

Fig. 7 Fretboard of the barbitum. Resolves Fig. 6a

fludd_templeOfMusic_184_230_plate_6_4_BarbitumPitchCircle_lute.jpg

Fig. 8 Fludd's Speculum adapted

8	7	6	5	4	3	2	1	0
10 ⁸	10^{7}	10^{6}	10^{5}	10^{4}	10^{3}	10^3	10^2	10^{1}
100	10	1	100	10	1	100	10	1
10^2	10^1	10^{0}	10^2	10^{1}	10^{0}	10^2	10^{1}	10^{0}
M	Millionum			1illiun	n	Vnitatem		
1 000 000				1000		1		
10^{6}				10^3		10^{0}		

A numbering starting with 0 instead of 1 would make the law $10^m \cdot 10^n = 10^{m+n}$ evident, e.g., $100 \cdot 1000$ (hundred thousand) is equal to $10^2 \cdot 10^3 = 10^{2+3} = 10^5$, which is a one followed by five zeros.

Fig. 9 Descartes's instrument to construct geometric progressions

Descartes, Géometrie (1637) (mechanical tool for the construction of several intermediate geometric proportionals). The dotted curves are the graphs of the related power functions $y = x^{\frac{1}{n}}$ with origin at A. They are the traces of pencils fixed at D, F and G on the underlying plane, while the angle XYZ is opened. The horizontal ruler YAZ is fixed. Descartes is familiar with these proportional compasses since 1619. The instrument with sufficiently many rulers could be used to determine mechanically the string length for equal temperaments.

Fig. 10 The division of the whole tone 9:8 into semi-tones 17:16 and 18:17 (Zarlino 1571)

The division is already given by Boethius, ##

Fig. 11 Beeckman chromatic and diatonic scale

100	114		130		1441/4	1	160	1772/3	200 b)
	/\	\ /	/		/ \	\ /	$^{\prime}$	/\	/
10	07	122		137		152	170	190	p)
vt	re		mi	fa		sol	re	mi	fa
100	114		130	137		152	170	190	200 b)
c	d		e	f		g	a	b	c
re	mi	fa		sol		la	etc.		
100	114	122	130	137	144	152 b)	etc.		
a	b	c		d		e	etc. 3)	

Beeckman 1614 [JIB I, Fol. 14r [Juillet 1613-Avril 1614] 29]

Table 1 Analysis of the chromatic scale given by Beeckman.

	A	В	A/B	A/B	Guessed			
				[syntonic	rationalization			
				commas]				
c = ut	100	100	1.0	0	1	1		
	107	105.9	1.01039	0.832	16/15	1.14		
d = re	114	112.2	1.01604	1.281	16/15	8/7		
	122	118.9	1.02607	2.072	16/15	1.1404		
e = mi	130	126.0	1.03175	2.516	16/15	8/7		
f = fa	137	133.5	1.02622	2.083	20/19			
	144.25	141.4	1.02016	1.607	10/0	$(10/9)^3$		
g = sol	152	149.8	1.01469	1.174	10/9	= 1.372		
	160	158.7	1.00819	0.657	10/0	190/137	5 / 1	
a = re	170	168.2	1.0107	0.857	10/9	=1.387	5/4	

	177.67	178.2	0.99703	-0.239	10/9		
b = mi	190	188.8	1.00636	0.510	10/9		
c = fa	200	200	1.0	0	20/19		
				octave	1.968	1.985	

A: Beeckman/Stevin 1614

B: Stevin, Vande Spiegheling, scaled down from 5000/10000 to 100/200 (1 d.p.).

Table 2 Bürgi's geometric/arithmetic progression

1.0001^{0} 1.0001^{1}	= 1 = 1.0001	= 1.0000 = 1.0001
1.0001^2 1.0001^3	= 1.0002000 $= 1.000300030001$	= 1.0002 = 1.0003
1.0001 1.0001^4	= 1.000300030001	= 1.0003 = 1.0004
 1.0001 ¹⁰⁰	= 1.01004966	= 1.0100
1.0001^{101}	= 1.01015067	= 1.0102

Fig. 12 Pascal's Triangle according to Stifel 1544

I	7	2 I	35	35	2 I	7	1 3uder Bfurfolit Coff
	I	6	15	20	15	6	1 3u der Sensicubic Cost
		II	1 5	10	10	15	1 3u der Surfolie Coff
		'	I	4	6	14	Ti gu der Zenßgenß Coff
		5	<u> </u>	II	. 3	3	T zuder Cubic Coff
			1	<u> </u>	I	2 .	Ti gu der Quadrat Coff
•				-	Ī	ſ	1 3u der Linien Coff
						1	ī

1554_Rudolff_Stifel_45_PascalTriangle.jpg

Fig. 13a Tetraktys

Fig. 13b Division of the octave 6:8:9:12(Zarlino 1571).

The division of the octave into two fourths with intermediate major tone 9: 8, according to Zarlino (1571), leading to the proportion 6: 8: 9: 12. The four numbers are arranged equidistantly as points representing numbers. The curved connections highlight all possible ratios. The related graph (points and connections) is isomorphic to a tetrahedron. This diagram is sometimes called the 'second tetractys'.

Fig. 13c Division of the double octave 6:8:9:12:14:16:18:24 and the Pythagorean chromatic scale (Faber Stapulensis 1551, 32v)

Both representations express a somehow logarithmic understanding of pitch and intervals. The second octave (Diapason) is an exact copy of the first. However, in the upper diagram the ratio between the fifth (Diapente) and the fourth (Diatessaron) is close to 2:1 instead of about 7:5. The left side of the lower diagram seems to graphically distinguish whole tones from semitones, however the three semitones TR are not wider than the tone. The caption 'Monochordum chromaticum' is rather misleading. The word 'monochordum' is uesed metaphorically for tone system, which is studied with the monochord, and 'chromaticum' refers to a Greek chromatic genus. It is $2,1^-,1^+,3,1^-,3,1^+$ where the ordinary semi-tone (1^-)

is Pythagorean $^{25}/_{243} \approx 1.0535$ and the major semi-tone (1 $^+$) is $^{9}/_{8}$: $^{25}/_{243} = ^{2187}/_{2048} \approx 1.0679$, which gives translated into modern notation $d-e-f-f^{\#}-a-b^{b}-c^{\#}-d$ (ascending) or $d-c-b-b^{b}-g-f^{\#}-e^{b}-d$ (descending) in German notation (d, e, f, fis, a, b, cis, d versus d, c, h, b, g, fis, es, d). Note that the two tetrachords are neither symmetric nor congruent, so that ascending and descending scales with the same inner structure are essentially different.

Fig. 14a Power table (filled Lambda tetraktys)

Power table $2^k \cdot 3^m$ for positive integers k and m.

Fig. 14b Fludd triangle

The diagram explains a sophisticated mensural notation system of the ars nova period (14th century), which freely combines binary with ternary multiples of the smallest value on top. Four directions, each of them defining geometric progressions (common factor r) are clearly indicated (r=2: Duplares, r=3: Triplares, r=3/2: Sesquialteræ, r=4/3: Sesquitertiæ). As a consequence of the 45° angle at 1 the two directions Duplares and Triplares seem to be comparably scaled, however a closer inspection shows that fourths are wider than fifths.

Fig. 14c Torkessy etc (Reany/Gilles p. 28)

Fig. 14d Boethius Arithmetic triangle (Mh 1)

09xx_Boethius_DeInstitutioneArithmetica_Matrix_2011_Sonar_3000JahreAnanlysis_094_detail.jpg

The horizontal direction of this number triangle (Latitudo) is multiplication by 3 (triplares), the diagonal direction (Angularis) is multiplication by four (quadruplares) and the unnamed vertically down direction is multiplication by four and division by three (sesquitertiæ) for example the fourth column down reads 27 - 36 - 48 - 64. The manuscript contains similar diagrams for 2/3, for 3/4 and for 4/5. It is mentioned in the text that with the aid of such triangles one can determine arbitrarily long geometric progressions for any superparticular ratio. Therefore, the triangle for the base numbers 80 and 81 with 56 rows and columns could be used in order to measure the octave in terms of syntonic commas and to determine the angles in Descartes's diagrams. Writing $\binom{81}{80}^{56}$ as an exact integer ratio needs 107 decimal digits in both, numerator and denominator.

Fig. 15 Power tables as a self-similar structure

Fig. 16 Two dimensional Pythagorean power grid.

$y \setminus x$	-4	-3	-2	-1	0	1	2	3	4
4	<u>81</u> 16	<u>81</u> 8	<u>81</u> 4	<u>81</u> 2	<u>81</u>	162	324	648	1296
3	<u>27</u> 16	<u>27</u> 8	<u>27</u> 4	$\frac{27}{2}$	27	<u>54</u>	108	216	432
2	<u>9</u> 16	$\frac{9}{8}$	<u>9</u> 4	$\frac{9}{2}$	9	18	<u>36</u>	72	144
1	3 16	$\frac{3}{8}$	$\frac{3}{4}$	$\frac{3}{2}$	3	6	12	<u>24</u>	48
0	1 16	1/8	1/4	1/2	1	2	4	8	<u>16</u>
-1	1 48	1/24	<u>1</u> 12	<u>1</u> 6	$\frac{1}{3}$	$\frac{2}{3}$	<u>4</u> 3	$\frac{8}{3}$	<u>16</u> 3
-2	$\frac{1}{144}$	$\frac{1}{72}$	$\frac{1}{36}$	$\frac{1}{18}$	<u>1</u> 9	<u>2</u> 9	$\frac{4}{9}$	$\frac{8}{9}$	<u>16</u> 9
-3	<u>1</u> 432	$\frac{1}{216}$	$\frac{1}{108}$	<u>1</u> 54	<u>1</u> 27	<u>2</u> 27	$\frac{4}{27}$	$\frac{8}{27}$	16 27
-4	1 1296	$\frac{1}{648}$	$\frac{1}{324}$	$\frac{1}{162}$	1 81	2 81	<u>4</u> 81	<u>8</u> 81	16 81

Fig. 17a Diatonic Pythagorean scale

Fig. 17b 53 Pythagorean fifths filling Descartes's pitch circle (n = 53).

The 53rd fifth in anti-clockwise (small dark point) almost coincides with the start point (bigger circle) at (1|0).

Fig. 18a Syntonic pitch grid (Rameau 1726)

p. Colomne	2 de Colomne	3. me Colomne	4 . Colomne	5. Colomne	6. Colomne	7 the Colomne	8 The Colomna
ut1	mi5	Sol425	Sis25	ré\$1625	faeee3125	lass5625	utesss. 78195.
Sol3	Si5	rés75	fatt375	las875	utero 9375	miess 46875	Solopes . 234375
rég	fao45	lat225	ut \$ \$ 1125	miss 5625	Soloo . 28125	Sing140625	restag. 703125
la27	ut \$135	mis675	Sols	Sist 16875	resss 84375	fassos 421875	Lange 210 93 75
	Sol4 4.405	Sist 2025	re 1 1 10125	fass	lasss 253125	utasa 1265625	misson. 6328125
Si243	ré 0 ª1215	fass	la * 1	utess. 151875	misso59375		
far729	la 1 3645	utto8225	missa. 91125	Solass. 455625	Siese 2278125		
ut 0 2187	mis 10935		Siss. 273375	re 000 1366875	faccos 6834375		
Solg6561	Sis 32805	re \$6 164025	fates. 820125	lasss. 4100625	uteres 20503125		
rés19683	fast. 98415	lass 492075	ut 111 2460375	miggs. 12301875			
las 59049	ut 11 295245	miss1476225	Solus 7381125	Sigge 36905625			
mis177147	Solas. 885735	Siss 4428675	reses 22143375	fa 100 1. 11071 6875			
Sig531441	reas 2657205	fares 13286025	lasss. 66430125	utpes . 332150625			
fatt594323	lass 7971615	utess . 39858075	misss. 199290375				
uto \$ 4782969	miss 23914845	Solus 19574225	Sitte: 597871125				
Sol4 . 14348907	Si44 71744535	resse 358722675	fattt 1793613375				
	fatt. 215233605	lassed 1076168025	ut 11 11 5380840125				
la 10 d 129140163		missed 3228504075					
mies387420489	Solar 1937102445	Sine 0685512225					10
Sigo 1162261467	ressed. 5811307335	fame 20056536695					
fatte 3486784401	la 300 17433022005.	uters British 10005					
ut 994 10460353203	mima . 52301766015						
Solate 31381059609	Sign 156005208045.						
	fames470715894135						
lacot 282429536481							
ni and 847288609443							
Sisse. 2541865828329							
annt7625597484987							
9							

Table of pitch classes according to Jean-Philippe Rameau (1726). The power table with powers of 3 (Pythagorean fifths) in the vertical and powers of 5 (Syntonic thirds) in the horizontal direction contains pitch names in absolute solmization. The octaves, powers of two, do not occur at all. For example, the entry la### 15,625 in the first row means la increased by 3 semitones. This corresponds to $5^6/2^{14} = 15,625 / 16,384 = 0.9537$. In other words la### is almost a semitone, 24.64° degrees in Cartesian angles (3.8 syntonic commas) below ut ($2 \cdot 360 - 6 \cdot 115.89 = 24.64$). However la### 1,076,168,025 = $3^{16} \cdot 5^2$ leading to $3^{16} \cdot 5^2/2^{30} = \frac{1.076,168,025}{1,073,741,824} = 1.00226$ is 1.17° in Cartesian angles (0.18 syntonic commas) above ut. Hence the two tones with the same name la### are 25.8° or 4 syntonic commas apart.

Fig. 18b 1739_Euler__Tentamen_147_ChromaticScale.jpg

$$2^{n} \cdot 3^{s}(3);$$
 $2^{n} \cdot 3^{s}(3^{s});$ $2^{n} \cdot$

Above. The pitch classes of the diatonic chromatic scale according to Leonhard Euler. The direction of ascending fifths (V, powers of 3) is top right to bottom left, the direction of ascending major thirds is top left to bottom right (III, powers of 5). Note the enharmonic mistake at the bottom B (B-flat) should be As (A-sharp).

Below. Chromatic scale interpreted with powers of 3 and 5. The octaves are expressed as 2^n . The common factor 3^3 seems to serve as a scaling factor for absolute pitch, leading to C 3^4 = 81. However, 3^5 leads to C = 243 and a = 405 if these numbers are interpreted in Hertz.

Not used

Table 2 Multiple, superparticular ratios

1:2	1:3 1	: 4	multiple	1 : n	
1:2	2:3 3	: 4	superparticular	n:(n+1)	difference 1
1:3	2:4=1:	2	super <u>bi</u> partiens	n:(n+2)	difference 2
1:4			supertripartiens	n:(n+3)	difference 3

The intervals of the tetraktys Table 3

1:2/2:4	dupla / diapason	octave	2
1:3	tripla /	twelft	h
1:4	quadrupla / bisdiap	ason	double octave
2:3	sesquialtera / diape	nte	fifth
3:4	sesquiquarta / diate	ssaron	fourth

Torkessy etc (Reany/Gilles p. 30, 61)

1617_Fludd_1_Tract_I_Lib_VI_fol181_CausarumUniversaliumSpeculum.jpg

Ramon Llull, Ars brevis (1305)

 $1305_LlullRamon_lohri_AnnulusCombinatorics.jpg$

arithm	etic							geometric
neutral	element		0		1			
first or	der	+				÷		second order
second	order	•	÷					third order
additio	n	a+b			$a \cdot b$			multiplication
inverse		-b	=0-b		1/ _b	$=b^{-1}$		
subtrac	tion	a-b	= a + (-	(b)	a/ _b	$=a\cdot b^{-1}$		division
multipl	ication	$n \cdot a$	$=\underline{a+a}$	++a	a^n	$=\underline{a\cdot a\cdot}$	<u>a</u>	powers
				n n	ļ			
divisio	n	$a \div n$	$=a\cdot\frac{1}{n}$		$\sqrt[n]{a}$	$=a^{1/n}$		surds
mean		$\frac{a+b}{2}$	=(a+b)).1/2	$\sqrt{a \cdot b}$	$=(a\cdot b)^{b}$	1/2	
1	$\sqrt{2}$	2	$\sqrt{8}$	4	$\sqrt{32}$	8	$\sqrt{12}$	28
1		2		4		8		
	$\sqrt{2}$		$\sqrt{8}$		$\sqrt{32}$		$\sqrt{12}$	28
	$1\sqrt{2}$		$2\sqrt{2}$		$4\sqrt{2}$		8√.	$\overline{2}$
	$\sqrt{2} \cdot (1$		2		4		8)	

				deviation	cents
$(\frac{5}{4})^3$	=	125/64	=1.953	$\downarrow 0.047$	
$(\frac{6}{5})^4$	=	1296/ 625	= 2.074	↑ o.074	
$(\frac{9}{8})^{6}$	=	531441/ /262144	= 2.027	↑ o.o27	X
$(10/9)^6$	=	1 000 000 / 531441	=1.882	↓ 0.118	
$(10/9)^7$	=	10 000000/47282969	= 2.091	↑ 0.091	
$\left(\frac{18}{17}\right)^{12}$	=	•••	=1.986	↓ 0.014	X
$(\frac{7}{6})^4$			=1.853	↓ 0.147	
$(\frac{7}{6})^5$			= 2.161	↑ 0.161	
$(\frac{8}{7})^{5}$			=1.950	$\downarrow 0.050$	
$(\frac{8}{7})^{6}$			= 2.228	↑ 0.228	
$\left(\frac{11}{10}\right)^{7}$			=1.949	$\downarrow 0.051$	
$\left(\frac{11}{10}\right)^{8}$			= 2.144	↑ 0.144	
$\left(\frac{12}{11}\right)^{7}$			=1.839	↓ 0.161	
$(\frac{12}{11})^8$			= 2.006	↑ 0.006	X
$(13/12)^8$			=1.897	↓ 0.103	
$\left(\frac{13}{12}\right)^9$			= 2.055	↑ 0.055	