Link-uri utile

- Grup tutoriat
- Exerciții rezolvate
- Cursurile de la Băețica
- Cursurile de la Mincu

Sfaturi

- La ambii profesori este important să scrii toată rezolvarea **pas cu pas**, și să fie **corect** din punct de vedere logic.
 - Dacă omiți pași care ți se par evidenți, profesorul ar putea să întrebe la corectură cum de ai obținut un anume rezultat.
 - În special la Mincu: În cazul în care nu ești sigur dacă e nevoie să arăți/verifici ceva ca parte a unei demonstrații, nu pierzi nimic dacă scrii în plus.
 - Mare grijă la diferența dintre $p \implies q$ și $p \iff q!$ De asemenea, e important să pui conectori logici (\implies , aşadar, deci) între propozițiile pe care le scrii, altfel nu ar fi clar cum decurge rezolvarea.
- Întotdeauna trebuie să ai în minte **ce îți cere problema** (concluzia). Multă lume ajunge să dea răspunsul corect dar la cu totul altă întrebare. Dacă nu înțelegi ce vrea enunțul de la tine, poți cere clarificări de la profesor.

Exerciții

Exercițiul 1. Fie polinoamele $f=X^2+\hat{2}X+\hat{1},\,g=X^2+\hat{2}X+\hat{2}$ din $\mathbb{Z}_3[X]$. Demonstrați că

$$\mathbb{Z}_3[X]/(f) \ncong \mathbb{Z}_3[X]/(g)$$

Demonstrație. Vrem să găsim o justificare de ce nu ar putea fi izomorfe inelele factor. Observăm că polinomul f este reductibil:

$$f(\hat{0}) = \hat{1}$$

$$f(\hat{1}) = \hat{1}$$

$$f(\hat{2}) = \hat{0} \implies f = (X - \hat{2})(X - \hat{2})$$

În timp ce polinomul g este ireductibil:

$$g(\hat{0}) = \hat{2}$$

$$g(\hat{1}) = \hat{2}$$

$$g(\hat{2}) = \hat{1}$$

Din curs avem o proprietate care ne zice că atunci când factorizăm printr-un polinom ireductibil, cum avem în cazul $\mathbb{Z}_3[X]/(g)$, obținem un corp. Ar fi suficient să arătăm că $\mathbb{Z}_3[X]/(f)$ nu e corp.

Când polinomul prin care factorizăm este reductibil, putem să îi scriem descompunerea în factori în inelul factor ca să obținem divizori ai lui zero:

$$\overline{(\underbrace{X-\hat{2}}_{\neq 0})(\underbrace{X-\hat{2}}_{\neq 0})} = \overline{X^2 + \hat{2}X + \hat{1}} = \overline{\hat{0}}$$

De
oarece are divizori al lui zero, $\mathbb{Z}_3[X]/(f)$ nu este corp. Deci nu poate fi izomorf cu
 $\mathbb{Z}_3[X]/(g)$.

Exercițiul 2. Fie $J=(X^3+1)$ un ideal al inelului $\mathbb{Q}[X]$. Determinați elementele nilpotente și idempotente ale lui $\mathbb{Q}[X]/J$.

Demonstrație. Elementele inelului factor sunt de forma

$$\frac{\mathbb{Q}[X]}{J} = \left\{ aX^2 + bX + c \mid a, b, c \in \mathbb{Q} \right\}$$

și mai știm și că $\widehat{X}^3 = \widehat{-1}$.

Pentru ca un polinom să fie nilpotent trebuie ca

$$(aX^2 + bX + c)^n = \hat{0}$$
 pentru un $n \in \mathbb{N}$

Dacă dezvoltăm și ne uităm doar la termenul liber, obținem că

$$\hat{c}^n = \hat{0}$$

deci trebuie ca c să fie nilpotent, în cazul nostru singura posibilitate este c=0. Repetăm raționamentul pentru

$$(a\widehat{X^2 + bX})^n = \hat{0} \iff \widehat{X}^n (a\widehat{X + b})^n = \hat{0}$$

Dacă ne uităm doar la termenul de grad n obținem că $\widehat{X^nb^n}=\hat{0},$ de unde b este nilpotent, deci este 0.

Analog obținem că a=0. Singurul nilpotent al inelului factor este $\hat{0}$.

Pentru ca un polinom să fie idempotent trebuie ca

$$(aX^{2} + bX + c)^{2} = aX^{2} + bX + c$$

Desfăcând paranteza și folosindu-ne de identitatea de mai sus obținem

$$\widehat{a^{2}X^{4}} + \widehat{b^{2}X^{2}} + \widehat{c^{2}} + 2\widehat{abX^{3}} + 2\widehat{acX^{2}} + 2\widehat{bcX} = \widehat{aX^{2}} + \widehat{bX} + \widehat{c}$$

$$\widehat{-a^{2}}\widehat{X} + \widehat{b^{2}}\widehat{X^{2}} + \widehat{c^{2}} - 2\widehat{ab} + 2\widehat{ac}\widehat{X^{2}} + \widehat{bc}\widehat{X} = \widehat{aX^{2}} + \widehat{bX} + \widehat{c}$$

$$\widehat{X^{2}}(\widehat{b^{2}} + 2\widehat{ac}) + X(\widehat{-a^{2}} + \widehat{bc}) + \widehat{c^{2}} - 2\widehat{ab} = \widehat{aX^{2}} + \widehat{bX} + \widehat{c}$$

$$\begin{cases} b^{2} + 2ac = a \\ -a^{2} + bc = b \\ c^{2} - 2ab = c \end{cases}$$

Singurele soluții ale acestui sistem sunt a=b=c=0 și a=b=0, c=1. Deci singurii idempotenți din inelul factor sunt 0 și 1.

Exercițiul 3. Se dă polinomul $f = X^4 + X^2 + 1$. Notăm cu $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ rădăcinile complexe ale polinomului. Scrieți un polinom care să aibă rădăcinile $2\alpha_1 + 1, 2\alpha_2 + 1, 2\alpha_3 + 1, 2\alpha_4 + 1$.

Demonstrație. Vrem să obținem un nou polinom f' în Y care să aibă acele rădăcini. Pentru asta notăm Y = 2X + 1 și extragem X-ul:

$$Y = 2X + 1 \iff Y - 1 = 2X \iff \frac{Y - 1}{2} = X$$

Înlocuind, obținem polinomul

$$f' = \left(\frac{Y-1}{2}\right)^4 + \left(\frac{Y-1}{2}\right)^2 + 1$$

În această formă se vede că $f'(2\alpha_k+1)$ este egal cu $f(\alpha_k)=0, \, \forall k\in\overline{1,4}$. Mai rămâne să desfacem parantezele ca să scriem polinomul în forma lui obișnuită (ca să fie mai ușor, putem înmulți cu $\frac{1}{16}$, vom avea aceleași rădăcini).