Question	Answer	Marks	Guidance
(a)	$1+1+a+b-12 = 0 [\Rightarrow a+b=10]$ $4+36+2a-6b-12 = 0 [\Rightarrow 2a-6b=-28]$	B1 B1	B1 for each equation. Allow unsimplified. Can be implied by correct values for a and b .
	a = 4, b = 6	B1	
	Centre is $\left(-\frac{theira}{2}, -\frac{theirb}{2}\right)$ [-2,-3]	B1 FT	Or $x = -2, y = -3$
		4	

Question	Answer	Marks	Guidance				
(b)	Gradient of AC is $\frac{1-\text{their } y}{1-\text{their } x} \left[= \frac{13}{12} = \frac{1+3}{1+2} = \frac{4}{3} \right]$	*M1	Using <i>their</i> centre correctly.				
	Gradient of tangent is $=\frac{-1}{their}\frac{4}{3}\left[=-\frac{3}{4}\right]$	A1 FT	Use of $m_1 m_2 = -1$ to obtain the gradient of the tangent.				
	Equation: $y-1 = 'their - \frac{3}{4}'(x-1)$ or $y = -\frac{3}{4}x + \frac{7}{4}$	DM1	Using (1,1) with <i>their</i> gradient of the tangent at A.				
	3x + 4y = 7 or $4y + 3x = 7$. or integer multiples of these	A1					
	Alternative method for question (b)						
	$2x + 2y\frac{dy}{dx} + 4 + 6\frac{dy}{dx} = 0$	*M1	Implicit differentiation with at least one <i>y</i> term differentiated correctly.				
	$8\frac{dy}{dx} = -6 \Rightarrow \frac{dy}{dx} = -\frac{6}{8}$	A1					
	Equation: $y-1 = \text{`their} - \frac{3}{4}, (x-1) \text{ or } y = -\frac{3}{4}x + \frac{7}{4}$	DM1	Using (1,1) with <i>their</i> gradient of the tangent at A.				
	3x + 4y = 7 or $4y + 3x = 7$. or integer multiples of these	A1					
	Alternative method for question (b)						
	$\frac{dy}{dx} = \frac{1}{2} \left\{ 25 - (x+2)^2 \right\}^{-\frac{1}{2}} \left(-2x - 4 \right)$	*M1	Rearranging to form $y =$ and differentiating using the chain rule.				
	$\frac{dy}{dx} = \frac{1}{2}(25 - 9)^{-\frac{1}{2}}(-6) = -\frac{6}{8}$	A1					

Question	Answer	Marks	Guidance
(b)	Equation: $y-1 = 'their - \frac{3}{4}'(x-1)$ or $y = -\frac{3}{4}x + \frac{7}{4}$	DM1	Using $(1,1)$ with <i>their</i> gradient of the tangent at A .
	3x + 4y = 7 or $4y + 3x = 7$. or integer multiples of these	A1	
		4	