Resources Allocation

Objectives

- After completing this lesson, you should be able to:
 - Manage resource allocation between PDBs and within a PDB
 - Control PDB IO rate limit
 - Enable parallel statement queuing at PDB level
 - Avoid excessive session PGA
 - Manage PDB performance profiles

Allocating Resources in the CDB

- Choose a strategy:
 - Allow all PDBs to use all the resources.
 - Gives maximum flexibility for each PDB
 - Allows any PDB to consume all available resources
 - Assign a minimum allocation to each PDB.
 - Ensures all PDBs get a specific share of the resources
 - Allows any PDB to consume any unused resources
 - Assign a maximum allocation to each PDB.
 - Prevents a PDB from taking more than the maximum value assigned
 - May result in unused capacity

Resource Manager and Pluggable Databases

- In a CDB, the Resource Manager manages resources:
 - Between PDBs
 - Within each PDB

Managing Resources Between PDBs

- PDBs compete for resources: CPU, Exadata I/O, and parallel servers
 - System shares are used to allocate resources for each PDB.
 - Limits are used to cap resource utilization of each PDB.
- When a new PDB is plugged in, the CDB DBA can specify a default or an explicit allocation.

Fach PDB has one share. With a total of 3 shares, each PDB is guaranteed 1/3 CDB1 or 33% of the CPU. PDB2 PDB3 PDB1 1 share 1 share 1 share **Guaranteed CPU Guaranteed CPU Guaranteed CPU** = 1/3 (33%)= 1/3 (33%)= 1/3 (33%)

If this PDB is more important, you can explicitly allocate it more shares. It then gets more resources than the other PDBs.

CDB Resource Plan Basics: Limits

- Four limits can be defined for each PDB:
 - Utilization limit for CPU, Exadata I/Os, and parallel servers
 - Parallel server limit to override the utilization limit
 - Memory min
 - Memory limit
- You can change default values.

PDB IO Rate Limit

- MAX IOPS: Number of IOs issued per second
- MAX MBPS: MB of IO issued per second
- Set to 0 by default (no value at the CDB root level) → no limit
- Stored in the PDB dictionary
- Migrated with the PDB on an unplug or a plug into a new CDB


```
SQL> ALTER SESSION SET CONTAINER = PDB1;

SQL> ALTER SYSTEM SET MAX_IOPS = 5000 SCOPE=SPFILE;

SQL> ALTER SYSTEM SET MAX_MBPS = 6000 SCOPE=SPFILE;

OPS, IOMBPS, AVG_IO_THROTTLE
```

DBA_HIST_RSRC_PDB_METRIC

IO_REQUESTS, IO_MEGABYTES,
IOPS, IOMBPS,
AVG_IO_THROTTLE

CDB Resource Plan: Full Example

Specifies allocation of CPU, Exadata I/O, parallel servers

Limits usage of CPU, Exadata I/O Limits usage of parallel servers

PDB/Directive Name	Shares	Utilization Limit	Parallel Server Limit	Memory Limit	Memory Minimum
(Default Allocation)	(1)	(100%)	(100%)	(100%)	
(Autotask Allocation)	(-1)	(90%)	(100%)	(100%)	
PDB1	1	30%	50%	50%	30%
PDB2	1	30%	80%	40%	10%
PDB3	1	30%	30%	30%	10%
PDB4	2	100%	100%	100%	50%

PDB1 is:

- Guaranteed 1/5 (20%) of CPU and Exadata disk bandwidth
- Limited to 30% of CPU and Exadata disk bandwidth
- Limited to 50% of the parallel servers

Sets minimum of memory

Limits usage of memory

Maintaining a CDB Resource Plan

```
SQL> CONNECT / AS SYSDBA
SQL> EXEC DBMS RESOURCE MANAGER.CREATE PENDING AREA();
                  CREATE CDB PLAN
                                      CREATE CDB PLAN DIRECTIVE
 UPDATE CDB PLAN
                            DBMS RESOURCE MANAGER
                                                              DELETE CDB PLAN
  UPDATE CDB PLAN DIRECTIVE
                                           DELETE CDB PLAN DIRECTIVE
SQL> EXEC DBMS RESOURCE MANAGER. VALIDATE PENDING AREA()
SQL> EXEC DBMS RESOURCE MANAGER.SUBMIT PENDING AREA()
```

Managing Resources Within a PDB

- In a non-CDB database, workloads within a database are managed with resource plans.
- In a PDB, workloads are also managed with resource plans, also called PDB resource plans.
- The functionality is similar except for the following differenges RSRC_PLAN

Non-CDB Database	PDB Database
Multilevel resource plans	Single-level resource plans only
Up to 32 consumer groups	Up to eight consumer groups
Subplans	No subplans

Putting It Together

- How do CDB and PDB resource plans work together?
 - Resources allocated to a PDB, based on CDB resource plan

CDB Plan Resource allocated to a consumer group based on the PDB resource plan

PDB	Shares	Utilization Limit
PDB1	1	50%
PDB2	1	50%
PDB3	2	100%

Consumer Group	Shares	Utilization Limit
OLTP	3	100%
REPORTS	1	50%
OTHER	1	50%

- What does this mean for PDB3 Reports?
 - Guaranteed 50% (2/4) x 20% (1/5) = 10% of the resources
 - Limited to 100% x 50% = 50% of the resources

Considerations

- Setting a PDB resource plan is optional. If not specified, all sessions within the PDB are treated equally.
- A non-CDB is plugged into a CDB with a plan:
 - The plan runs exactly the same on the PDB if:
 - Consumer groups <= 8
 - There are no subplans
 - All allocations are on level 1
 - The plan is converted.
 - The original plan is stored in the dictionary with the LEGACY status.

PDB-Level Parallel Statement Queuing

• Possible issues of parallel statements queuing in a PDB:

```
PARALLEL_DEGREE_POLICY = AUTO | ADAPTIVE
```

- Not sufficient parallel servers available
- Parallel statements queued for a long time
- A PDB DBA can make parallel statement queuing work just as it does in a non-CDB.
 - Disable parallel statement queuing at CDB level: PARALLEL_SERVERS_TARGET = 0.
 - Set the PARALLEL SERVERS TARGET initialization parameter for individual PDBs.
 - Kill a runaway SOL operation:

 SQL> ALTER SYSTEM CANCEL SQL '272,31460';
 - Dequeue a parallel statement:

```
SQL> EXEC dbms_resource_manager.dequeue_parallel_statement()
```

Define the action when dequeuing: PQ_TIMEOUT_ACTION plan directive

PDB-Level Parallel Statement Queuing: CPU_COUNT

- If CPU_COUNT is set at the PDB level, the maximum DOP generated by AutoDOP queries are the PDB's CPU_COUNT.
- Similarly, the default values for PARALLEL_MAX_SERVERS and PARALLEL SERVERS TARGET are computed based on the PDB's CPU COUNT.

Session PGA Limit

- For security purposes:
 - Avoid excessive usage of PGA memory
 - Set the PGA limit that a session can use before it hits an error

Consumer Group	Session_PGA_limit
OLTP	350
REPORTS	100
OTHER	50

NIGHT plan

Consumer Group	Session_PGA_limit
OLTP	50
REPORTS	400
OTHER	50

The number of times that sessions in a consumer group hit the session PGA limit

Performance Profiles

DBA_CDB_RSRC_PLAN_DIRECTIVES

PLUGGABLE_DATABASE = PDB1

PROFILE = LOW

Summary

- In this lesson, you should have learned how to:
 - Manage resource allocation between PDBs and within a PDB
 - Control PDB IO rate limit
 - Enable parallel statement queuing at PDB level
 - Avoid excessive session PGA
 - Manage PDB performance profiles

Practice 11: Overview

- 11-1: Managing PDB performance profiles
- 11-2: Managing resource allocation between PDBs
- 11-3: Avoiding excessive session PGA memory usage in PDBs