Tarea 1

Profesor: Jesús Rodríguez Viorato

IA & TC

AGOSTO-DICIEMBRE 2021

Tarea 1 IA & TC

Problema 1

(30 pts) Dibuja un autómata que acepte el lenguaje de todas las cadenas en $\{0,1\}^*$ que tengan un múltiplo de 3 de 1's

Solución: Sea L_1 el lenguaje que consiste en todas las cadenas en $\{0,1\}^*$ con un múltiplo de 3 de 1's.

Para cada cadena en $\{0,1\}^*$ tenemos que el número de 1's en la cadena puede ser congruente con 0,1,2 módulo 3, los estados q_0,q_1 y q_2 representarán cada una de estas posibilidades.

Por lo que pide el problema, queremos que nuestro estado aceptor sea el q_0 . Si estoy en q_0 para regresar a este camino por siguiente vez consecutiva se debió agregar exactamente tres 1's más. Con esta heurística el autómata finito deseado, que denotaremos por M_1 , es el siguiente:

Figura 1: Diagrama que ilustra al autómata M_1

y esto es lo que queríamos.

Tarea 1 IA & TC

Problema 2

(40 pts) Dibuja un autómata que acepte el lenguaje de todas las cadenas de $\{0,1\}^*$ que representen números en binario divisibles por 3.

Solución: Sea L₂ el lenguaje de los números en expansión binaria divisibles por 3.

De manera similar al problema anterior, para cada número en expansión binaria este pertenece a una clase de equivalencia módulo 3. Los estados p_0 , p_1 y p_2 representarán las clases de equivalencia 0,1 y 2 módulo 3.

Enlistando consecutivamente los números en su expansión binaria investigamos las transiciones posibles a cada uno de los estados. El estado aceptor es p_0 pues nos interesan los números múltiplos de 3; denotamos por M_2 al autómata que acepta el lenguaje L_2 y lo representamos en el siguiente diagrama:

Figura 2: Diagrama que ilustra al autómata M₂

y este es el autómata buscado.

Tarea 1 IA & TC

Problema 3

(30 pts) Construye el autómata producto de los autómatas que encontraste en los problemas 1 y 2. Esto para obtener un autómada que reconozca el lenguaje de las cadenas de o's y 1's que en binario sean divisibles por 3 pero que NO tengan un múltiplo de 3 de 1's.

Solución: Estamos buscando el autómata que acepte el lenguaje $L_2 - L_1$. Sean Q_1 y Q_2 los estados de los autómatas M_1 y M_2 construidos en los problemas anteriores. Además, sean A_1 y A_2 los estados aceptores correspondientes.

Construiremos el autómata producto, denotado por M, que acepte al lenguaje $L_2 - L_1$. Sea $Q = Q_2 \times Q_1$ el conjunto de estados del autómata producto, si A es el conjunto de estados aceptores entonces como estamos interesados en el lenguaje $L_2 - L_1$ se tiene que

$$A = \{(p,q) \in Q : p \in A_2 \mid y \mid q \notin A_1\} = \{(p_0,q_1),(p_0,q_2)\}.$$

Considerando el conjunto de estados aceptores A y la función de transición para el autómata producto, representamos a través del siguiente diagrama al autómata M que acepta el lenguaje $L_2 - L_1$:

Figura 3: Diagrama que ilustra al autómata M

y este es el autómata deseado.