Domain Adaptation

Making Machine Learning Models work Across Datasets

Roberto Souza Assistant Professor Electrical and Computer Engineering Schulich School of Engineering

October 2021

Outline

Motivation

Domain Shift and Domain Adaptation

Domain Adaptation Techniques

Summary

Learning Goals

Learn the basic domain adaptation concepts

Expose you to different domain adaptation problems

Get an overview of different domain adaptation approaches

Motivation

Domain Shift

 Domain shift: refers to the change of data distribution between one dataset (source/reference domain) and another dataset (target domain).

$$p_{source}(Y|X) \neq p_{target}(Y|X)$$

Domain Shift Problem

Different Types of Images

Domain B

Different Types of Images: Sketches and Photos

Technology Differences and Evolution

Camera comparison images: Low light/night mode

Hardware and Software Differences

philips_15

siemens_3

philips_3

ge_3

siemens_15

ge_15

Hardware and Software Differences

AIM-HIGH Study

 The carotid arteries were manually annotated at the time of the study

CARDIS Study

 Leverage AIM-HIGH annotated data to create a segmentation model for the data being collected at CARDIS study

Different Technologies

Degree of Domain Shift

 Degree of domain shift is a measure of how much the distributions of the source and target domains are different

 Previous studies have revealed that the test error generally increases in proportion to the degree of domain shift.

Degree of Domain Shift

Domain Adaptation

 Domain adaptation: domain adaptation refers to adapting a model trained in one or more source domains to a different one or more target domains.

What is the difference between domain adaptation and transfer learning?

What is the difference between domain adaptation and transfer learning?

 In domain adaptation the task in the source and target domains are the same

Domain Adaptation Categories

Supervised Domain Adaptation

- Essentially transfer learning
 - Fine-tune all layers
 - Fine-tune initial layers
 - Fine-tune final layers

Domain-Adversarial Training of Neural Networks (Unsupervised)

*Ganin et al., JMLR, 2016

$$E(\theta_f, \theta_y, \theta_d) = \frac{1}{n} \sum_{i=1}^n \mathcal{L}_y^i(\theta_f, \theta_y) - \lambda \left(\frac{1}{n} \sum_{i=1}^n \mathcal{L}_d^i(\theta_f, \theta_d) + \frac{1}{n'} \sum_{i=n+1}^N \mathcal{L}_d^i(\theta_f, \theta_d) \right)$$

To be continued...

Thank you!

