

(19) 日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開2002-25881

(P2002-25881A)

(43) 公開日 平成14年1月25日 (2002.1.25)

(51) Int-Cl.⁷
 H 01 L 21/027
 F 16 F 15/02
 G 03 F 7/22
 G 12 B 5/00
 H 01 L 21/68

識別記号

F I
 F 16 F 15/02
 G 03 F 7/22
 G 12 B 5/00
 H 01 L 21/68
 21/30

テ-ヤコ-1*(参考)
 A 2 F 0 7 8
 H 3 J 0 4 8
 T 5 F 0 3 1
 K 5 F 0 4 6
 5 0 3 B

審査請求 未請求 請求項の数17 O.L (全 15 頁) 最終頁に続く

(21) 出願番号 特願2000-199390(P2000-199390)

(71) 出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(22) 出願日 平成12年6月30日(2000.6.30)

(72) 発明者 小山内 英司
 東京都大田区下丸子3丁目30番2号キヤノン株式会社内

(72) 発明者 堆 浩太郎
 東京都大田区下丸子3丁目30番2号キヤノン株式会社内

(74) 代理人 100086287
 弁理士 伊東 哲也

最終頁に続く

(54) 【発明の名称】 移動荷重補償装置及び露光装置

(57) 【要約】

【課題】 基台及び定盤が変形せず、高精度な位置決めを図る。

【解決手段】 原版を搭載する第1のステージ2と、被露光体を搭載する第2のステージ5と、第1のステージ2を投射レンズ3に対し移動させるための移動手段と、該移動手段を支持するステージベース108と、該ステージベースを支持する基台109と、ステージベース108及び基台109間に介装した座面110と、投射レンズ3を支持し基台109を搭載する定盤4と、該定盤4を支持搭載する支持構造体12と、該定盤4及び支持構造体12間に介装したエアマウント11と、支持構造体12と基台109間に介装したエアシーリング113とを備じ、座面110はステージベース108を基台109上の複数カ所で支持固定するように配設され、エアシーリング113は座面110の真下にある。

【特許請求の範囲】

【請求項1】 移動対象物を搭載するステージと、該ステージを移動させるための移動手段と、該移動手段を支持するステージベースと、該ステージベースを支持する基台と、前記ステージベース及び基台間に介装した支持手段と、前記基台を搭載する定盤と、該定盤を支持搭載する支持構造体と、該定盤及び該支持構造体間に介装した振動除去手段と、前記支持構造体と前記基台との間、及び前記支持構造体と前記ステージベースとの間の少なくともいざれかに介装した力発生手段とを具备し、前記支持手段は前記ステージベースを前記基台上の複数カ所で支持固定して配設され、前記力発生手段は前記支持手段の支持部と中心軸が略一致するように配設されたことを特徴とする移動荷重補償装置。

【請求項2】 請求項1に記載の移動荷重補償装置を備えることを特徴とする露光装置。

【請求項3】 前記露光装置は、走査型露光装置であることを特徴とする請求項2に記載の露光装置。

【請求項4】 露光用光学系と、原版を搭載する第1のステージと、被露光体を搭載する第2のステージと、前記第1のステージを前記露光用光学系に対し移動させるための第1の移動手段と、該第1の移動手段を支持する第1のステージベースと、該第1のステージベースを支持する第1の基台と、前記第1のステージベース及び第1の基台間に介装した第1の支持手段と、前記露光用光学系を支持し前記第1の基台を搭載する定盤と、該定盤を支持搭載する支持構造体と、該定盤及び支持構造体間に介装した振動除去手段と、前記支持構造体と前記第1の基台間、及び前記支持構造体と前記第1のステージベース間の少なくともいざれかに介装した第1の力発生手段とを具备し、前記第1の支持手段は前記第1のステージベースを前記第1の基台上の複数カ所で支持固定するよう配設され、前記第1の力発生手段は前記第1の支持手段の支持部と前記露光用光学系の光軸方向に中心軸が略一致するように配設されたことを特徴とする露光装置。

【請求項5】 前記被露光体を搭載する第2のステージを前記露光用光学系に対し移動させるための第2の移動手段と、前記第2の移動手段を支持する第2のステージベースと、前記定盤に支持固定され前記第2のステージベースを搭載する第2の基台と、該第2の基台及び前記第2のステージベース間に介装した第2の支持手段と、前記第2の基台及び前記支持構造体間に介装した第2の力発生手段とを具备し、前記第2の支持手段は前記第2のステージベースを前記第2の基台上の複数カ所で支持固定するよう配設され、前記第2の力発生手段は前記第2の支持手段の支持部と前記露光用光学系の光軸方向に中心軸が略一致するように配設されたことを特徴とする請求項4に記載の露光装置。

【請求項6】 前記定盤を支持する前記振動除去手段の 50

支持反力を常に一定にするように前記第1及び第2の力発生手段の力を制御する制御手段を具备したことと特徴とする請求項4または5に記載の露光装置。

【請求項7】 前記第1及び第2の力発生手段の少なくともいざれかが流体シリングであることを特徴とする請求項4ないし6のいざれかに記載の露光装置。

【請求項8】 前記第1及び第2の力発生手段の少なくともいざれかがリニアモータであることを特徴とする請求項4ないし6のいざれかに記載の露光装置。

【請求項9】 前記第1の力発生手段が引張り材を介して、前記支持構造と前記第1の基台間、及び前記支持構造体と前記第1のステージベース間の少なくともいざれかに介装されたことを特徴とする請求項4ないし7のいざれかに記載の露光装置。

【請求項10】 前記露光装置は、走査型露光装置であることを特徴とする請求項4ないし9のいざれかに記載の露光装置。

【請求項11】 請求項2ないし10のいざれかに記載の露光装置を含む各種プロセス用の製造装置群を半導体製造工場に設置する工程と、該製造装置群を用いて複数のプロセスによって半導体デバイスを製造する工程とを有することを特徴とする半導体デバイス製造方法。

【請求項12】 前記製造装置群をローカルエリアネットワークで接続する工程と、前記ローカルエリアネットワークと前記半導体製造工場外の外部ネットワークとの間で、前記製造装置群の少なくとも1台に関する情報をデータ通信する工程とをさらに有することを特徴とする請求項11に記載の半導体デバイス製造方法。

【請求項13】 前記露光装置のベンダもしくはユーザが提供するデータベースに前記外部ネットワークを介してアクセスしてデータ通信によって前記製造装置の保守情報を得る、もしくは前記半導体製造工場とは別の半導体製造工場との間で前記外部ネットワークを介してデータ通信して生産管理を行うことを特徴とする請求項12に記載の半導体デバイス製造方法。

【請求項14】 請求項2ないし10のいざれかに記載の露光装置を含む各種プロセス用の製造装置群と、該製造装置群を接続するローカルエリアネットワークと、該ローカルエリアネットワークから工場外の外部ネットワークにアクセス可能にするゲートウェイを有し、前記製造装置群の少なくとも1台に関する情報をデータ通信することを可能にしたことを特徴とする半導体製造工場。

【請求項15】 半導体製造工場に設置された請求項2ないし10のいざれかに記載の露光装置の保守方法であって、前記露光装置のベンダもしくはユーザが、半導体製造工場の外部ネットワークに接続された保守データベースを提供する工程と、前記半導体製造工場内から前記外部ネットワークを介して前記保守データベースへのアクセスを許可する工程と、前記保守データベースに蓄積される保守情報を前記外部ネットワークを介して半導体

3
製造工場側に送信する工程とを有することを特徴とする露光装置の保守方法。

【請求項16】 請求項2ないし10のいずれかに記載の露光装置において、ディスプレイと、ネットワークインターフェースと、ネットワーク用ソフトウェアを実行するコンピュータとをさらに有し、露光装置の保守情報をコンピュータネットワークを介してデータ通信することを可能にしたことを特徴とする露光装置。

【請求項17】 前記ネットワーク用ソフトウェアは、前記露光装置が設置された工場の外部ネットワークに接続され前記露光装置のベンダもしくはユーザが提供する保守データベースにアクセスするためのユーザインターフェースを前記ディスプレイ上に提供し、前記外部ネットワークを介して該データベースから情報を得ることを可能にすることを特徴とする請求項16に記載の露光装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、半導体リソグラフィに用いる投影露光装置、各種精密加工機あるいは各種精密測定器等、及びこれらに適用される移動荷重補償装置に関するものである。

【0002】

【従来の技術】 従来、半導体素子製作に用いられる露光装置として、いわゆるステッパと呼ばれる装置が知られている。このステッパは、基板例えは半導体ウエハを投影レンズ下でステップ移動させながら、原版例えはレチクル上に形成されているパターン像を投影レンズでウエハ上に縮小投影し、1枚のウエハ上の複数箇所に順次露光していくものである。

【0003】 最近では、露光レンズの縮小倍率に合わせて、レチクルとウエハを同期スキャンさせ、レチクルパターンを走査露光し、次の露光のためにウエハをステップ移動させるスキャンステッパが、解像度及び重ね合わせ精度の性能面から露光装置の主流と見られている。

【0004】 図10は従来のスキャン露光装置における本体構造及びウエハステージの搭載例を示す正面図である。同図において、1はレチクルパターンを照明する照明部、2は不図示の転写すべきパターンを有するレチクルを搭載するレチクルステージでありスキャン露光に応じた方向に移動可能な機能を有している。3はレチクル上に形成されたパターンをウエハ上に投影する投影レンズ、4は投影レンズを支持する鏡筒定盤である。10は上面に案内面を有しレチクルステージ2を静圧空気軸受け部を介してZ方向に非接触で支持するレチクルステージベースである。109はレチクルステージベース108を搭載し支持固定するレチクルステージ基台であり、鏡筒定盤4に一体的に結合されている。110はレチクルステージベース108をレチクルステージ基台109に一体的に支持固定するための座である。

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
229
230
231
232
233
234
235
236
237
238
239
239
240
241
242
243
244
245
246
247
248
249
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
997
998
999
999
1000
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1

【課題を解決するための手段及び作用】上記目的を達成するために、本発明に係る移動荷重補償装置は、移動対象物を搭載するステージと、該ステージを移動させるための移動手段と、該移動手段を支持するステージベースと、該ステージベースを支持する基台と、前記ステージベース及び基台間に介装した支持手段と、前記基台を搭載する定盤と、該定盤を支持搭載する支持構造体と、該定盤及び該支持構造体間に介装した振動除去手段と、前記支持構造体と前記基台との間、及び前記支持構造体と前記ステージベースとの間の少なくともいざれかに介装した力発生手段とを具備し、前記支持手段は前記ステージベースを前記基台上の複数カ所で支持固定して配設され、前記力発生手段は前記支持手段の支持部と中心軸が略一致するように配設されたことを特徴とする。本発明は前記移動荷重補償装置を備える露光装置、精密加工機及び精密測定器も含む。

【0015】本発明に係る露光装置は、露光用光学系と、原版を搭載する第1のステージと、被露光体を搭載する第2のステージと、前記第1のステージを前記露光用光学系に対し移動させるための第1の移動手段と、該第1の移動手段を支持する第1のステージベースと、該第1のステージベースを支持する第1の基台と、前記第1のステージベース及び第1の基台間に介装した第1の支持手段と、前記露光用光学系を支持し前記第1の基台を搭載する定盤（鏡筒定盤）と、該定盤を支持搭載する支持構造体と、該定盤及び支持構造体間に介装した振動除去手段と、前記支持構造体と前記第1の基台間、及び前記支持構造体と前記第1のステージベースとの間の少なくともいざれかに介装した第1の力発生手段とを具備し、前記第1の支持手段は前記第1のステージベースを前記第1の基台上の複数カ所で支持固定するよう配設され、前記第1の力発生手段は前記第1の支持手段の支持部と前記露光用光学系の光軸方向に中心軸が略一致するように配設している。

【0016】また、本発明に係る露光装置は、前記被露光体を搭載する第2のステージを前記露光用光学系に対し移動させるための第2の移動手段と、前記第2の移動手段を支持する第2のステージベースと、前記定盤に支持固定され前記第2のステージベースを搭載する第2の基台と、該第2の基台及び前記第2のステージベース間に介装した第2の支持手段と、前記第2の基台及び前記支持構造体間に介装した第2の力発生手段とを具備してもよい。前記第2の支持手段は前記第2のステージベースを前記第2の基台上の複数カ所で支持固定するよう配設され、前記第2の力発生手段は前記第2の支持手段の支持部と前記露光用光学系の光軸方向に中心軸が略一致するように配設されていることが望ましい。

【0017】前記定盤を支持する前記振動除去手段の支持反力を常に一定にするように前記第1及び第2の力発生手段の力を制御する制御手段を具備することが望まし

い。前記力発生手段は、例えばエアシリングなどの流体シリングやリニアモータである。前記第1の力発生手段が鋼線などの引張り材を介して、前記支持構造体及び前記第1の基台間、あるいは前記支持構造体及び前記第1のステージベース間に介装されてもよい。本発明は、上記各露光装置が走査型露光装置である場合に、特に適している。

【0015】上記構成において、レチクルステージがY方向に駆動されるとレチクルステージの重量が移動し、レチクルステージベース（第1のステージベース）とレチクルステージ基台（第1の基台）の間に介装された第1の支持手段の3カ所の支持力バランスが変化するが、レチクルステージ基台と支持構造体の間に介装した第1の力発生手段により複数カ所の支持力バランスの変化を打ち消すことにより、定盤を支持する振動除去手段の支持力バランスが変化しない。

【0016】ウエハステージがXY方向に駆動されるとウエハステージの重量が移動し、ウエハステージベース（第2のステージベース）とウエハ基台（第2の基台）の間に介装された第2の支持手段の複数カ所の支持力バランスが変化するが、ウエハ基台と支持構造体の間に介装した第2の力発生手段により複数カ所の支持力バランスの変化を打ち消すことにより、定盤を支持する振動除去手段の支持力バランスが変化しない。したがって、計測手段の基準となる定盤が変形せずに、高精度な位置決めが行われる。

【0017】本発明は、前記露光装置を含む各種プロセス用の製造装置群を半導体製造工場に設置する工程と、該製造装置群を用いて複数のプロセスによって半導体デバイスを製造する工程とを有することを特徴とする半導体デバイス製造方法にも適用可能であり、前記製造装置群をローカルエリアネットワークで接続する工程と、前記ローカルエリアネットワークと前記半導体製造工場外の外部ネットワークとの間で、前記製造装置群の少なくとも1台に関する情報をデータ通信する工程とをさらに有する半導体デバイス製造方法にも適用でき、前記露光装置のベンダもしくはユーザが提供するデータベースに前記外部ネットワークを介してアクセスしてデータ通信によって前記製造装置の保守情報を得る、もしくは前記半導体製造工場とは別の半導体製造工場との間で前記外部ネットワークを介してデータ通信して生産管理を行う半導体デバイス製造方法にも適用できる。

【0018】本発明は、前記露光装置を含む各種プロセス用の製造装置群と、該製造装置群を接続するローカルエリアネットワークと、該ローカルエリアネットワークから工場外の外部ネットワークにアクセス可能にするゲートウェイを有し、前記製造装置群の少なくとも1台に関する情報をデータ通信することを可能にした半導体製造工場においても適用でき、該半導体製造工場に設置された前記露光装置の保守方法であって、前記露光装置の

ベンダもしくはユーザが、半導体製造工場の外部ネットワークに接続された保守データベースを提供する工程と、前記半導体製造工場内から前記外部ネットワークを介して前記保守データベースへのアクセスを許可する工程と、前記保守データベースに蓄積される保守情報を前記外部ネットワークを介して半導体製造工場側に送信する工程とを有する露光装置の保守方法にも適用でき、前記露光装置において、ディスプレイと、ネットワークインターフェースと、ネットワーク用ソフトウェアを実行するコンピュータとをさらに有し、露光装置の保守情報をコンピュータネットワークを介してデータ通信することを可能にすることが望ましい、前記ネットワーク用ソフトウェアは、前記露光装置が設置された工場の外部ネットワークに接続され前記露光装置のベンダもしくはユーザが提供する保守データベースにアクセスするためのユーザインターフェースを前記ディスプレイ上に提供し、前記外部ネットワークを介して該データベースから情報を得ることを可能にすることが好ましい。

【0019】

【実施例】(第1の実施例)本発明の実施例を図面に基づいて説明する。図1は本発明の特徴を最も良く表す第1の実施例に係る移動荷重補償装置を備えた露光装置の正面図、図2は図1の装置概要を示す上面図、図3は図1のトップステージ及びXYステージ部分の上面図である。

【0020】同図において、1はレチクルパターンを照明する照明部、2は不図示の移動対象物である原版としてのレチクルを置換するレチクルステージであり、Y方向に移動可能な機能を有している。3はレチクル上に形成されたパターンをウエハに投影する投影レンズ、4は投影レンズ3を支持する鏡筒定盤である。108は上面に案内面を有しレチクルステージ2を静圧エア軸受け部を介してZ方向に非接触で支持するレチクルステージベース、121はレチクルステージベース108に一体的に取り付けられ、レチクルステージ2を静圧エア軸受け部を介してX方向に非接触で支持しY方向に移動可能なように案内するレチクルヨガガイドである。123a及び123bはレチクルステージ2をY方向に駆動するリニアモータの固定子であり、相互に対向するようにレチクルステージベース108に配置固定されている。124a及び124bはレチクルステージ2をZ方向に駆動するリニアモータの可動子であり、相互に対向するようにレチクルステージ2に取り付けられている。109はレチクルステージベース108を搭載するレチクルステージ基台、110はレチクルステージベース108をレチクルステージ基台109に一体的に支持固定するための座面である。レチクルステージ基台109と鏡筒定盤4は一体的に結合されている。

【0021】5は不図示の移動対象物である露光光学としてのウエハを載置するトップステージであり、θ方

10

20

30

40

50

向、θ方向、α方向及びβ方向に移動可能な機能を有している。6はトップステージ5を搭載しX方向及びY方向に移動可能なXYステージ、7はXYステージ6を静圧エア軸受け部を介してY方向に非接触で支持しX方向に移動可能なように案内する可動ガイド、8は上面に案内面を有しXYステージ6及び可動ガイド7を静圧エア軸受け部を介してZ方向に非接触で支持するウエハステージベース、21はウエハステージベース8に一体的に取り付けられ可動ガイド7を静圧エア軸受け部を介してX方向に非接触で支持しY方向に移動可能なように案内するヨガガイドである。22はXYステージ6をX方向に駆動するリニアモータの固定子であって、可動ガイド7に固定されており、可動子はXYステージ6に取り付けられている。23a及び23bは可動ガイド7をY方向に駆動するリニアモータの可動子であり、相互に対向するように可動ガイド7に取り付けられている。9はウエハステージベース8を搭載するウエハステージ基台、10はウエハステージベース8をウエハステージ基台9に一体的に支持固定するための支持手段としての座面である。ウエハステージ基台9と鏡筒定盤4は一体的に結合されている。

【0022】11は鏡筒定盤4を支持するために3カ所に配置された振動除去手段としてのエアマウントがあり、12はエアマウント11を介して装置全体を支持する支持構造体である。エアマウント11は、支持構造体12から鏡筒定盤4、レチクルステージ基台109及びウエハステージ基台9に伝わる振動を絶縁する。113は座面110の真下(Z軸方向)近傍に配置された力発生手段としてのエアシリングであり、支持構造体12の最上部に固定され、レチクルステージ基台109にZ方向の力を与える。エアシリング113は剛性がほとんどないため支持構造体12の振動をレチクルステージ基台109に伝えない。

【0023】13は座面10の真下(Z軸方向)近傍に配置された力発生手段としてのエアシリングであり、基台9の下方に位置する支持構造体12の部分に固定され、ウエハステージ基台9にZ方向の力を与える。エアシリング13は剛性がほとんどないため基台12の振動をウエハステージ基台9に伝えない。133は投影レンズ3とレチクルステージ2との相対位置を計測するためのレーザ干渉計、33bは投影レンズ3とXYステージ6との相対位置を計測するためのレーザ干渉計である。また、投影レンズ3には、投影レンズ3の焦点位置とウエハ上面間の距離を計測する不図示のフォーカス計測センサが取り付けられている。

【0024】図4は、本実施例に係る露光装置のXYステージ用測定系(レーザ計測システム)の配置を示す斜視図であり、図1のトップステージ5の周辺のレーザ干

涉計3 3 a等の部分を詳細に表した図である。同図において、3 1は光源であるレーザヘッド、3 2 a及び3 2 bは図1のトップステージ5に取り付けられた反射ミラー、3 3 aはX方向を計測する干渉計、3 3 cはトップステージ5のヨーイングすなわち投影レンズ3の光軸に対するθ方向を計測する干渉計である。3 4 a、3 4 b、3 4 cは干渉鏡を電気信号に変換するレシーバであり、3 4 aはX方向用、3 4 bはY方向用、3 4 cはθ方向用である。

【0025】また、図5は本実施例に係る制御系のシステム構成図である。同図において、1 5 1はレチクルステージ2のYレーザ計測システムであり、レチクルステージ2の位置を測定する。5 0はウエハステージフォーカス計測システムであり、トップステージ5に載置されたウエハのZ、α、及びβ方向の位置を測定する。5 1は図4で示したウエハステージX、Y、θレーザ計測システムであり、トップステージ5が搭載されたXYステージ6の位置を測定する。5 3はレチクルステージ2、XYステージ6及びトップステージ5の位置信号をファイードバックし各駆動軸に所定の動作指令を行うコントローラである。1 5 6はコントローラ5 3の指令信号を基に図2に示すリニアモータ固定子1 2 3 a、1 2 3 bのコイル部に電流を流しレチクルステージ2をドライブするサーボドライバ、1 5 5はコントローラ5 3からの指令により図1及び図2中のエアシリングダ1 1 3の駆動用ドライバ、5 6はコントローラ5 3の指令信号を基に図3に示すリニアモータ固定子2 2及び2 3 a、2 3 bのコイル部に電流を流しXYステージ6をドライブするサーボドライバ、5 5はコントローラ5 3からの指令により図1中のエアシリングダ1 3の駆動用ドライバ、5 7はトップステージ5の各駆動軸を駆動するサーボドライバである。

【0026】上記構成において、まず露光すべきウエハ(図示しない)をトップステージ5に載置し、不図示の外部のコントローラからレチクルステージ2、XYステージ6及びトップステージ5に駆動信号を与え、レチクルを投影レンズ3上の所定の位置に、また上記ウエハを投影レンズ3下の所定の位置及び姿勢に駆動する。ここで、上記ウエハのX方向、Y方向、Z方向及び各軸の回転方向(それぞれα方向、β方向、及びθ方向)の目標とする位置に対する偏差が、レーザ計測システム及びフォーカス計測システムの出力を基に外部のコントローラにより計算され、各駆動部(ドライバ)にファイードバックされ、ウエハは所定の位置、姿勢に位置決め制御される。露光は、レチクルとウエハの所定の相対位置、姿勢を保しながらレチクルステージ2とXYステージ6を露光倍率に応じた速度比で移動させて走査露光をする。そして露光後、レチクルステージ2とXYステージ6を次の所定の位置に移動し走査露光するという動作を繰り返す。

10
10
20
20
30
30
40
40

【0027】レチクルステージ2及びXYステージ6の移動は、所定の速度曲線にならうようにコントローラ5 3からサーボドライバ1 5 6及び5 6に指令信号が与えられ、各々のリニアモータが前記指令信号に応じた駆動力を発生することにより行われる。

【0028】レチクルステージ2がストローク範囲内でY方向に移動し位置が変わると、レチクルステージベース1 0 8で支持する重量のバランスが変わり、3カ所の座面1 1 0に掛かる支持荷重配分が変化する。このとき、前記支持荷重変化に応じた反対方向(Ζ方向)の力がエアシリングダ1 1 3からレチクルステージ基台1 0 9に与えられるよう、コントローラ5 3からはエアシリングダ駆動用ドライバ1 5 5に指令信号が与えられる。

【0029】XYステージ6がストローク範囲内でXY方向に移動し、XYステージ6、トップステージ5及び可動ガイド7の位置が変わると、ステージベース8で支持する重量のバランスが変わり、3カ所の座面1 0 1にかかる支持荷重配分が変化する。このとき、前記支持荷重変化に応じた反対方向(Ζ方向)の力がエアシリングダ1 3からウエハステージ基台9に与えられるよう、コントローラ5 3からはエアシリングダ駆動用ドライバ5 5に指令信号が与えられる。

【0030】図6は本実施例のウエハステージ基台9下に配設されたシリンドラ部分の配置図(上面図)である。同図において、1 0 a、1 0 b、1 0 cはウエハステージベース8を支持する各々の座面である。1 3 a、1 3 b、1 3 cは前記座面の真下(Ζ方向)近傍に配設されたウエハステージ基台9に力を与える各々のエアシリングダである。R₁、R₂、R₃はエアシリングダ1 3 a、1 3 b、1 3 cがウエハステージ基台9に与える付加荷重を表し、L₁、L₂、L₃は各支持点間長さを表す。GはXYステージ6、トップステージ5及び可動ガイド7といったウエハステージ可動部全分体の重心であり、任意の位置における前記ウエハステージ重心の位置をx、yで表している。こうした構成において、ウエハステージ可動部全体の重量をWとし、付加荷重R₁、R₂、R₃と釣り合うとすると各付加荷重は次のような式(1)で表される。

【0031】

【数1】

$$R_1 = \frac{L_2 - y}{L_2} W \quad (1)$$

$$R_2 = \left(\frac{x - L_2 - y}{L_1 + 2L_2} \right) W$$

$$R_3 = \left(\frac{L_2 + y - x}{2L_2 + L_1} \right) W$$

【0032】ここで、ウエハステージ可動部の重心Gの位置が $(X, Y) = (X_a, Y_a) \sim (X_b, Y_b)$ の範囲内で変わるとすると、座面1 0 a、1 0 b、1 0 cの支持荷重変化 ΔR_1 、 ΔR_2 、 ΔR_3 *

$$\Delta R_1 = R_{1\max} - R_{1\min} = \frac{y_b - y_a}{L_3} W$$

$$\Delta R_2 = R_{2\max} - R_{2\min} = \frac{2L_2(x_b - x_a) - L_1(y_b - y_a)}{2L_1 L_2} W \quad (2)$$

$$\Delta R_3 = R_{3\max} - R_{3\min} = \frac{2L_2(x_b - x_a) + L_1(y_b - y_a)}{2L_1 L_2} W$$

【0034】 ΔR_1 、 ΔR_2 、 ΔR_3 のうち最も大きい値を W_i とし、この荷重が付加荷重 R_1 、 R_2 、 R_3 と釣り合うとすると、式(1)は次のような式(3)によって表される。

【0035】

【数3】

$$R_1 = \frac{L_2 - y}{L_2} W_R$$

$$R_2 = \frac{x - L_2 - y}{L_1 - 2L_2} W_R \quad (3)$$

$$R_3 = \frac{L_2 + y - x}{2L_2 - L_1} W_R$$

【0036】したがって、ウエハステージの位置指令信号からウエハステージ可動部の重心位置を計算し、式(3)に当てはめることにより、簡単に各付加荷重 R_1 、 R_2 、 R_3 を求めることができる。

【0037】また、レチクルステージ2の移動に応じた3カ所の座面1 1 0にかかる支持荷重配分の変化は、上記のウエハステージの場合と同様であり、Y方向の移動だけを考えればよい。したがって、エアシリング1 1 3からレチクルステージ基台1 0 9に与えるべき力を簡単に求めることができる。

【0038】本実施例の特徴としては、レチクルステージ2がY方向に駆動されることにより、レチクルステージ可動部の重量が移動し、レチクルステージベース1 0 8とレチクルステージ基台1 0 9の間に介装された3カ所の座面1 1 0の支持力バランスが変化するが、座面1 1 0の真下近傍のレチクルステージ基台1 0 9と支持構造体1 2の間に介装した3カ所のエアシリング1 1 3により、前記支持力バランスの変化を打ち消す。

【0039】また同時にXYステージ6がX-Y方向に駆動されることにより、ウエハステージベース6とウエハステージ基台9の間に介装された3カ所の座面1 0 の支

*は、各付加荷重 R_1 、 R_2 、 R_3 の最大値、最小値の差であり、式(2)のようになる。

【0033】

【数2】

持力バランスが変化するが、座面1 0 の真下近傍のウエハステージ基台9と支持構造体1 2の間に介装した3カ所のエアシリング1 1 3により、前記支持力バランスの変化を打ち消す。

【0040】したがって、装置全体を支持するエアマウント1 1 1の支持力バランスが変化せずに、計測手段の基準となる鏡筒定盤4が変形せず、例えば投影レンズ3と干涉計1 3 3間の距離変動や投影レンズ3と干渉計3 3 a間の距離変動等が無く、再現性の高い高精度な位置決めが行われる。

【0041】本実施例においては、エアシリング1 1 3の付加荷重及びエアシリング1 1 3の付加荷重をステージの位置により計算で求めているが、エアマウント1 1 1の支持力の検出手段を設け、エアシリング1 1 3の付加荷重 R_1 、 R_2 、 R_3 をその力信号を基にフィードバック制御して、鏡筒定盤4の変形を押さえるようにしても良い。また、力発生手段として各エアシリング1 1 3及び1 1 3を、各ステージ基台1 0 9及び9と支持構造体1 2の間に介装しているが、これがリニアモータであっても同等の効果が得られる。

【0042】さらに、本実施例に係る移動荷重補償装置を備える露光装置は、走査型露光装置であって、レチクルステージの移動中にレチクルパターンをウエハに露光するため、高精度な露光が可能となるという効果を奏する。

【0043】(第2の実施例) 図7は本発明の第2の実施例に係る移動荷重補償装置を備えた露光装置を示す正面図、図8は第2の実施例を示す装置の上面図である。これらの図において、図1~6に示した第1の実施例と同じ部材には同一符号を付いている。

【0044】同図において、1 1 2は支持構造体1 2に一体的に固定されたレチクルステージ支持構造体、1 1 3は座面1 1 0の真上(Z軸方向)近傍に配置されたエアシリングであり、レチクル支持構造体1 1 2に固定されている。1 1 4はレチクルステージベース1 0 8とエアシリング1 1 3を連結する引張り材としての鋼線である。エアシリング1 1 3は、鋼線1 1 4を介してレチク

ルステージベース108を真上（Z軸方向）に引き上げる力を与える。エアシリングダ113は、Z方向の剛性がほとんどないため、レチクルステージ支持構造体112の振動をレチクルステージベース108に伝えない。

【0045】上記構成の露光装置においても、第1の実施例と同様に、レチクルステージ2がストローク範囲内でY方向に移動し位置が変わると、レチクルステージベース108で支持する重量のバランスが変わり、3カ所の座面110に掛かる支持荷重配分が変化する。このとき、前記支持荷重変化に応じた反対方向（Z方向）の力がエアシリングダ113から鋼線114を介してレチクルステージベース108に与えられる。

【0046】本実施例の特徴としては、レチクルステージ2がY方向に駆動されることにより、レチクルステージ可動部の重量が移動し、レチクルステージベース108とレチクルステージ基台109の間に介装された3カ所の座面110の支持力バランスが変化するが、座面110の真上近傍のレチクルステージベース108と支持構造体112の間に介装した3カ所のエアシリングダ113により、前記支持力バランスの変化を打ち消す。したがって、装置全体を支持するエアマウント11の支持力バランスが変化せずに、計測手段の基準となる鏡鏡定盤4が変形せず、再現性の高い高精度な位置決めが行われる。また、エアシリングダ113が鋼線114を介してレチクルステージベース108にZ方向の力を与えるため、レチクルステージ支持構造体112の振動をレチクルステージベース108に伝えない。特に鋼線112を介することにより、XY方向の振動をより伝えない。

【0047】さらに、本実施例に係る移動荷重補償装置を備える露光装置は、走査型露光装置であって、レチクルステージの移動中にレチクルパターンをウェハに露光するため、高精度な露光が可能となるという効果を奏する。

【0048】（第3の実施例）図9は本発明の第3の実施例に係る移動荷重補償装置の一部を示す拡大部分断面図である。これらの図において、図1～6に示した第1の実施例と同じ部材には同一符号を付けている。

【0049】同図において、201はリニアモータの可動子、202は可動子201に固定された永久磁石、203はリニアモータの固定子、204は固定子203に固定されたコイルである。205は2つの可動子201を固定し連結する連結板、213はエアシリングダ13のロッドであり、ウェハステージ基台9に力を付与する。固定子203とエアシリングダ13は支持構造体12に固定されている。連結板205はロッド213に固定されている。すなわち、エアシリングダ13とリニアモータが並列に配置された構成である。

【0050】エアシリングダによる力とリニアモータによる力をレチクルステージ基台9に与えるこれらの構成は、レチクルステージ2の移動荷重を補償する図1中の

エアシリングダ113の部分にも同様な配置を取ることができる。

【0051】上記構成の移動荷重補償装置を備えた露光装置においても、第1の実施例と同様に、レチクル、ウェハの各ステージがストローク範囲内でY方向に移動し位置が変わると、ステージベースで支持する重量のバランスが変わり、3カ所の座面にかかる支持荷重配分が変化する。このとき、前記支持荷重変化に応じた反対方向（Z方向）の力がエアシリングダ及びリニアモータからステージベースに与えられる。

【0052】本実施例の特徴としては、ステージの移動速度が速く、エアシリングダによる荷重補償が遅れても、リニアモータによる力補償の応答が速いため、ステージ移動に伴う前記座面の支持力バランスをリアルタイムで高精度に保つことができると言える。

【0053】（半導体生産システムの実施例）次に、本発明に係る装置を用いた半導体デバイス（ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等）の生産システムの例を説明する。これは半導体製造工場に設置された製造装置のトラブル応対や定期メンテナンス、あるいはソフトウェア提供などの保守サービスを、製造工場外のコンピュータネットワークを利用して行うものである。

【0054】図11は全体システムをある角度から切り出して表現したものである。図中、1101は半導体デバイスの製造装置を提供するベンダ（装置供給メーカー）の事業所である。製造装置の実例としては、半導体製造工場で使用する各種プロセス用の半導体製造装置、例えば、前工程用機器（露光装置、レジスト処理装置、エッチング装置等のリソグラフィ装置、熟処理装置、成膜装置、平坦化装置等）や後工程用機器（組立て装置、検査装置等）を想定している。事業所1101内には、製造装置の保守データベースを提供するホスト管理システム1108、複数の操作末端コンピュータ1110、これらを結んでインターネット等を構築するローカルエリアネットワーク（LAN）1109を備える。ホスト管理システム1108は、LAN1109を事業所の外部ネットワークであるインターネット1105に接続するためのゲートウェイと、外部からのアクセスを制限するセキュリティ機能を備える。

【0055】一方、1102～1104は、製造装置のユーザとしての半導体製造メーカーの製造工場である。製造工場1102～1104は、互いに異なるメーカーに属する工場であっても良いし、同一のメーカーに属する工場（例えば、前工程用の工場、後工程用の工場等）であっても良い。各工場1102～1104内には、夫々、複数の製造装置1106と、それらを結んでインターネット等を構築するローカルエリアネットワーク（LAN）1111と、各製造装置1106の稼動状況を監視する監視装置としてホスト管理システム1107とが設けら

れている。各工場1102～1104に設けられたホスト管理システム1107は、各工場内のLAN1111を工場の外部ネットワークであるインターネット1105に接続するためのゲートウェイを備える。これにより各工場のLAN1111からインターネット1105を介してベンダ1101側のホスト管理システム1108にアクセスが可能となり、ホスト管理システム1108のセキュリティ機能によって限られたユーザだけにアクセスが許可となっている。具体的には、インターネット1105を介して、各製造装置1106の稼動状況を示すステータス情報（例えば、トラブルが発生した製造装置の症状）を工場側からベンダ側に通知する他、その通知に対応する応答情報（例えば、トラブルに対する対処方法を指示する情報、対処用のソフトウェアやデータ）や、最新のソフトウェア、ヘルプ情報などの保守情報をベンダ側から受け取ることができる。各工場1102～1104とベンダ1101との間のデータ通信及び各工場内のLAN1111でのデータ通信には、インターネットで一般的に使用されている通信プロトコル（TCP/IP）が使用される。なお、工場外の外部ネットワークとしてインターネットを利用する代わりに、第三者からのアクセスができずにセキュリティの高い専用線ネットワーク（ISDNなど）を利用することもできる。また、ホスト管理システムはベンダが提供するものに限りユーザがデータベースを構築して外部ネットワーク上に置き、ユーザの複数の工場から該データベースへのアクセスを許可するようでもよい。

【0056】さて、図12は本実施形態の全体システムを図11とは別の角度から切り出して表現した概念図である。先の例ではそれぞれが製造装置を備えた複数のユーザ工場と、該装置製造のベンダの管理システムとを外部ネットワークで接続して、該外部ネットワークを介して各工場の生産管理や少なくとも1台の製造装置の情報をデータ通信するものであった。これに対し本例は、複数のベンダの製造装置を備えた工場と、該複数の製造装置のそれぞれのベンダの管理システムとを工場外の外部ネットワークで接続して、各製造装置の保守情報をデータ通信するものである。図中、1101は製造装置ユーザ（半導体デバイス製造メーカ）の製造工場であり、工場の製造ラインには各種プロセスを行う製造装置、ここでは例として露光装置1202、レジスト処理装置1203、成膜処理装置1204が導入されている。なお図12では製造工場1101は1つだけ描いているが、実際は複数の工場が同様にネットワーク化されている。工場内の各装置はLAN1206で接続されてインターネットを構成し、ホスト管理システム1205で製造ラインの稼動管理がされている。

【0057】一方、露光装置メーカ1210、レジスト処理装置メーカ1220、成膜装置メーカ1230などベンダ（装置供給メーカ）の各事業所には、それぞれ供

給した機器の遠隔保守を行うためのホスト管理システム1211、1221、1231を備え、これらは上述したように保守データベースと外部ネットワークのゲートウェイを備える。ユーザの製造工場内の各装置を管理するホスト管理システム205と、各装置のベンダの管理システム1211、1221、1231とは、外部ネットワーク1200であるインターネットもしくは専用線ネットワークによって接続されている。このシステムにおいて、製造ラインの一連の製造機器の中のどれかにトラブルが起きると、製造ラインの稼動が休止してしまうが、トラブルが起きた機器のベンダからインターネット1200を介した遠隔保守を受けることで迅速な対応が可能で、製造ラインの休止を最小限に抑えることができる。

【0058】半導体製造工場に設置された各製造装置はそれぞれ、ディスプレイと、ネットワークインターフェースと、記憶装置にストアされたネットワークアクセス用ソフトウェアなどに装置動作用のソフトウェアを実行するコンピュータを備える。記憶装置としては内蔵メモリやハードディスク、あるいはネットワークファイルサーバーなどである。上記ネットワークアクセス用ソフトウェアは、専用又是汎用のウェブブラウザを含み、例えば図13に一例を示す様な画面のユーザインターフェースをディスプレイ上に提供する。各工場で製造装置を管理するオペレーターは、画面を参照しながら、製造装置の機種1401、シリアルナンバー1402、トラブルの件名1403、発生日1404、緊急度1405、症状1406、対処法1407、経過1408等の情報を画面上の入力項目に入力する。入力された情報はインターネットを介して保守データベースに送信され、その結果の適切な保守情報が保守データベースから返信されディスプレイ上に提示される。またウェブブラウザが提供するユーザインターフェースはさらに図示のごとくハイパーリンク機能1410～1412を実現し、オペレーターは各項目の更に詳細な情報にアクセスしたり、ベンダが提供するソフトウェアライブラリから製造装置に使用する最新バージョンのソフトウェアを引出したり、工場のオペレーターの参考に供する操作ガイド（ヘルプ情報）を引出したりすることができる。ここで、保守データベースが提供する保守情報には、上記説明した本発明に関する情報も含まれ、また前記ソフトウェアライブラリは本発明を実現するための最新のソフトウェアも提供する。

【0059】次に上記説明した生産システムを利用した半導体デバイスの製造プロセスを説明する。図14は半導体デバイスの全体的な製造プロセスのフローを示す。ステップ1（回路設計）では半導体デバイスの回路設計を行う。ステップ2（マスク製作）では設計した回路パターンを形成したマスクを製作する。一方、ステップ3（ウェハ製造）ではシリコン等の材料を用いてウェハを製造する。ステップ4（ウェハプロセス）は前工程と呼

ばれ、上記用意したマスクとウエハを用いて、リソグラフィ技術によってウエハ上に実際の回路を形成する。次のステップ5(組み立て)は後工程と呼ばれ、ステップ4によって作製されたウエハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の組立て工程を含む。ステップ6(検査)ではステップ5で作製された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経て半導体デバイスが完成し、これを出荷(ステップ7)する。前工程と後工程はそれぞれ専用の別工場で行い、これらの工場毎に上記説明した遠隔保守システムによって保守がなされる。また前工程工場と後工程工場との間でも、インターネットまたは専用線ネットワークを介して生産管理や装置保守のための情報がデータ通信される。

【0060】図15は上記ウエハプロセスの詳細なフローを示す。ステップ11(酸化)ではウエハの表面を酸化させる。ステップ12(CVD)ではウエハ表面に絶縁膜を成膜する。ステップ13(電極形成)ではウエハ上に電極を蒸着によって形成する。ステップ14(イオン打込み)ではウエハにイオンを打ち込む。ステップ15(レジスト処理)ではウエハに光感剤を塗布する。ステップ16(露光)では上記説明した露光装置によってマスクの回路パターンをウエハに焼付露光する。ステップ17(現像)では露光したウエハを現像する。ステップ18(エッチング)では現像したレジスト以外の部分を削り取る。ステップ19(レジスト剥離)ではエッチングが済んで不要となったレジストを取り除く。これらのステップを繰り返し行うことによって、ウエハ上に多重に回路パターンを形成する。各工程で使用する製造機器は上記説明した遠隔保守システムによって保守がなされているので、トラブルを未然に防ぐと共に、もしトラブルが発生しても迅速な復旧が可能であり、従来に比べて半導体デバイスの生産性を向上させることができる。

【0061】

【発明の効果】本発明では、ステージが駆動されると該ステージの重量が移動し、ステージベースと基台の間に介装された複数カ所の支持手段の支持力バランスが変化するが、基台と支持構造体の間に介装した力発生手段により複数カ所の支持力バランスの変化を打ち消し、定盤及び基台を支持する振動除去手段の支持力バランスが変化しないため、計測手段の基準となる基台、及び定盤が変形せずに、高精度な位置決めが行われるという効果を奏する。

【0062】また、本発明によれば、第1のステージ及び第2のステージを備える露光装置の場合、第1のステージであるレチクルステージがY方向に駆動されるとレチクルステージの重量が移動し、レチクルステージベースとレチクルステージ基台の間に介装された複数カ所の

座の支持力バランスが変化するが、レチクルステージ基台と支持構造体の間に介装した力発生手段により複数カ所の支持力バランスの変化を打ち消す。また同時に、第2のステージであるウエハステージがXY方向に駆動されるとウエハステージの重量が移動し、ステージベース(第1の基台)とウエハステージ基台の間に介装された複数カ所の座の支持力バランスが変化するが、ウエハステージ基台と第2の基台の間に介装した力発生手段により複数カ所の支持力バランスの変化を打ち消す。

【0063】したがって、鏡筒定盤及び各ステージ基台(装置本体構造体)を支持する振動除去手段の支持力バランスが変化しないため、計測手段の基準となるレチクルステージ基台、ウエハステージ基台及び鏡筒定盤が变形せずに、高精度な位置決めが行われる。

【0064】また、ステージ移動に伴う装置本体(鏡筒定盤及びレチクルステージ基台、ウエハステージ基台)の変形を抑えることができるため、レチクル及びウエハの大型化に伴いステージが大型化されても装置本体の高剛性化、大型化によるコストアップを抑えることができる。

【図面の簡単な説明】

【図1】 本発明の第1の実施例に係る移動荷重補償装置を備えた露光装置の正面図である。

【図2】 図1の装置概要を示す上面図である。

【図3】 図1の装置のステージ部分を示す上面図である。

【図4】 図1の装置のレーザ計測システムの配置を示す斜視図である。

【図5】 図1の装置の制御系のシステム構成図である。

【図6】 図1の装置のシリング部分の配置を示す上面図である。

【図7】 本発明の第2の実施例に係る移動荷重補償装置を備えた露光装置の正面図である。

【図8】 図7の装置の概要を示す上面図である。

【図9】 本発明の第3の実施例に係る移動荷重補償装置の一部を示す拡大部分断面図である。

【図10】 従来例の露光装置を示す正面図である。

【図11】 本発明に係る装置を用いた半導体デバイスの生産システムをある角度から見た概念図である。

【図12】 本発明に係る装置を用いた半導体デバイスの生産システムを別の角度から見た概念図である。

【図13】 ユーザインターフェースの具体例である。

【図14】 デバイスの製造プロセスのフローを説明する図である。

【図15】 ウエハプロセスを説明する図である。

【符号の説明】

1: 照明部、2: レチクルステージ、3: 投影レンズ、4: 鏡筒定盤、5: トップステージ、6: XYステージ、7: 可動ガイド、8: ウエハステージベース、10

8 : レチクルステージベース、9 : ウエハステージ基台、10 : レチクルステージ基台、1、110 : 座面、11 : エアマウント、12 : 支持構造体、13、1
13 : エアシリング、21、121 : ヨーガイド、2
2 : 固定子、22 : 固定子、23a、23b、123
a、123b : 固定子、24a、24b、124a、1
24b : 可動子、31 : レーザヘッド(光源)、32
a、32b : 反射ミラー、33a、33b、33c、1
33 : 干渉計、34a、34b、34c : レシーバー、1
101 : ベンダの事業所、1102、1103、110
4 : 製造工場、1105 : インターネット、1106 :
製造装置、1107 : 工場のホスト管理システム、11
08 : ベンダ側のホスト管理システム、1109 : ベン
ダ側のローカルエリアネットワーク(LAN)、111
0 : 操作端末コンピュータ、1111 : 工場のローカル*

*エリニアネットワーク(LAN)、1200 : 外部ネット
ワーク、1201 : 製造装置ユーザーの製造工場、12
02 : 露光装置、1203 : レジスト処理装置、120
4 : 成膜処理装置、1205 : 工場のホスト管理シス
テム、1206 : 工場のローカルエリアネットワーク(L
AN)、1210 : 露光装置メーカ、1211 : 露光裝
置メーカの事業所のホスト管理システム、1220 : レ
ジスト処理装置メーカ、1221 : レジスト処理装置メ
カの事業所のホスト管理システム、1230 : 成膜裝
置メーカ、1231 : 成膜装置メーカの事業所のホスト
管理システム、1401 : 製造装置の機種、1402 :
シリアルナンバー、1403 : トラブルの件名、140
4 : 発生日、1405 : 繁度、1406 : 症状、14
07 : 対処法、1408 : 経過、1410、1411、
1412 : ハイバーリング機能。

【図1】

【図6】

【図2】

[図3]

[図4]

[図7]

【圖 5】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

URL: http://www.maintain.co.jp/db/input.html	
トラブル DB 入力画面	
発生日	2000/3/15 1404
機器名	本多半導体製造装置
件名	動作不具合(立上機器)
機器S/N	N460NS4580001 1402
受付者	D 1405
状況	電源投入後LEDが点滅し続ける 1406
対処法	初期投入後(初期時に消ボタンを押下) 1407
結果	暫定対策済み 1408
送信	リセット 1410
	結果一覧データベースへのリンク ソフトウェアライブラリ 操作ガイド 1411 1412

【図14】

半導体デバイス製造フロー

【図15】

ウエハプロセス

フロントページの続き

(51) Int. Cl.⁷

識別記号

F 1
H 0 1 L 21/30

5 0 2 G
5 1 8

テーマー卜' (参考)

F ターム(参考) 2F078 CA02 CA08 CB02 CB05 CB12
CB16 CC01 CC11 CC15
3J048 AA02 AD02 DA01 EA07 EA13
5F031 CA02 CA05 HA53 HA55 JA02
JA06 JA14 JA17 JA28 JA29
JA30 JA32 KA06 KA07 KA08
KA11 KA12 LA03 LA08 LA15
MA27 PA06
5F046 AA23 BA05 CC01 CC02 CC20