Exponential Distribution

Exponential distribution: An exponential random variable is a gamma random variable with $\alpha=1$. The density for an exponential random variable is in the form:

$$f(x) = \frac{1}{\beta}e^{-\frac{x}{\beta}}, \quad x > 0, \beta > 0$$

The density function of a Gamma R.V. is

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-\frac{x}{\beta}}, \qquad x > 0, \alpha > 0, \beta > 0$$

When
$$\alpha=1$$
, we have,
$$f(x)=\frac{1}{\beta}e^{-\frac{x}{\beta}}, \qquad x>0, \beta>0$$

Q: in the graph, which curve has $\beta = 0.5$?

Exponential Distribution

Exponential distribution: An exponential random variable is a gamma random variable with $\alpha = 1$. The density for an exponential random variable is in the form:

$$f(x) = \frac{1}{\beta} e^{-\frac{x}{\beta}}, \qquad x > 0, \beta > 0$$

What is the moment generating function of an exponential R.V.? What are E[X] and VarX?

The moment generating function of a Gamma R.V. X is

$$m_X(t) = (1 - \beta t)^{-\alpha}$$

When $\alpha=1$, we have, the moment generating function of an exponential random variable X with parameter β is

$$m_X(t) = (1 - \beta t)^{-1}$$

$$E[X] = \beta; VarX = \beta^2$$

Exponential Distribution

Exponential distribution: An exponential random variable is a gamma random variable with $\alpha = 1$. The density for an exponential random variable is in the form:

$$f(x) = \frac{1}{\beta}e^{-\frac{x}{\beta}}, \quad x > 0, \beta > 0$$

Example: Consider a Poisson process with parameter λ representing the rate of occurrence of an event within a time interval. Let Y denote the time of the occurrence of the first event. Y has an exponential distribution with $\beta = 1/\lambda$.

The cumulative distribution function of Y is: $F(y) = P[Y \le y] = 1 - P[Y > y]$ P[Y > y] is the probability that the first occurrence of the event takes place after time y. The event Y > y happens only if no occurrence of the event are recorded in the time interval [0, y].

Let X denote the number of occurrence of the event in time interval [0, y]. Then X is a Poisson random variable with parameter λy . Thus,

$$P[Y > y] = P[X = 0] = \frac{e^{-\lambda y}(\lambda y)^0}{0!} = e^{-\lambda y}$$

Then,

$$F(y) = 1 - P[Y > y] = 1 - e^{-\lambda y} \Rightarrow f(y) = F'(y) = \lambda e^{-\lambda y} = \frac{1}{\beta} e^{-\frac{y}{\beta}}, \qquad \beta = \frac{1}{\lambda}$$

i.e., Y has an exponential distribution with parameter $\beta = \frac{1}{\lambda}$

Chi-squared distribution: Let X be a gamma random variable with $\beta=2$ and $\alpha=\frac{\gamma}{2}$, for γ a positive integer. X is said to have a chi-squared distribution with γ degree of freedom. We denote this variable by X_{γ}^2 . The density function of a chi-squared RV is in the form:

$$f(x, \gamma) = \frac{x^{(\frac{\gamma}{2} - 1)} e^{-x/2}}{2^{\frac{\gamma}{2}} \Gamma(\frac{\gamma}{2})}, x > 0$$

What is the m.g.f of a Chi-squared random variable X? What are E[X] and VarX?

The moment generating function of a Gamma R.V. X is $m_X(t)=(1-\beta t)^{-\alpha}$ When $\beta=2$ and $\alpha=\frac{\gamma}{2}$, we have, the moment generating function of an exponential random variable X with parameter γ is $m_X(t)=(1-2t)^{-\gamma/2}$

$$E[X] = \gamma$$
; $VarX = 2\gamma$

How to read Table IV: cumulative distribution function

$$P[X_{\gamma}^{2} \le t] = \alpha$$

t is called the *critical point* for *left-tailed probability* of α

How to read Table IV:

cumulative distribution function

$$P[X_{\gamma}^{2} \le t]$$

Practice: Find the critical values using the table

$$P[X_5^2 \le t] = 0.90$$

$$P[X_{10}^2 \le t] = 0.95$$

$$P[X_5^2 \le t] = 0.05$$

$$P[X_{10}^2 \le t] = 0.005$$

9.24

18.3

1.15

2.16

TABLE IV Cumulative chi-squared distribution

$P[\chi_{\gamma}^2 \le t]$													
γF	0.005	0.010	0.025	0.050	0.100	0.250	0.500	0.750	0.900	0.950	0.975	0.990	0.995
1 2	0.0000393	0.000157	0.000982	0.00393	0.0158	0.102	0.455	1.32	2.71	3.84	5.02	6.63	7.88
2	0.0100	0.0201	0.0506	0.103	0.211	0.575	1.39	2.77	4.61	5.99	7.38	9.21	10.6
3	0.0717	0.115	0.216	0.352	0.584	1.21	2.37	4.11	6.25	7.81	9.35	11.3	12.8
4	0.207	0.297	0.484	0.711	1.06	1.92	3.36	5.39	7.78	9.49	11.1	13.3	14.9
5	0.412	0.554	0.831	1.15	1.61	2.67	4.35	6.63	9.24	11.1	12.8	15.1	16.7
6	0.676	0.872	1.24	1.64	2.20	3.45	5.35	7.84	10.6	12.6	14.4	16.8	18.5
7	0.989	1.24	1.69	2.17	2.83	4.25	6.35	9.04	12.0	14.1	16.0	18.5	20.3
8	1.34	1.65	2.18	2.73	3.49	5.07	7.34	10.2	13.4	15.5	17.5	20.1	22.0
9	1.73	2.09	2.70	3.33	4.17	5.90	8.34	11.4	14.7	16.9	19.0	21.7	23.6
10	2.16	2.56	3.25	3.94	4.87	6.74	9.34	12.5	16.0	18.3	20.5	23.2	25.2
11	2.60	3.05	3.82	4.57	5.58	7.58	10.3	13.7	17.3	19.7	21.9	24.7	26.8
12	3.07	3.57	4.40	5.23	6.30	8.44	11.3	14.8	18.5	21.0	23.3	26.2	28.3

Complement cumulative distribution function

$$P[X_{\gamma}^2 \ge t]$$

In practice, we use χ_r^2 to denote the point associated with a chi-squared random variable such that

$$P[X_{\gamma}^2 \ge \chi_r^2] = r$$

 χ^2_r is called the *critical point* for the *right-tailed probability* of r

For example, for $\gamma=10$, find the value of $\chi^2_{0.05}$ using table IV.

$$\chi^2_{0.05} = 18.3$$

Normal Distribution

A random variable *X* with density

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}}, \quad -\infty \le x \le \infty, -\infty \le \mu \le \infty, \sigma > 0$$

Is said to have a **normal distribution** with parameter μ and σ .

$$X \sim N(\mu, \sigma^2)$$

The moment generating function of a normal random variable with parameter μ and σ is

$$m_X(t) = e^{(\mu t + \frac{1}{2}\sigma^2 t^2)}$$

Practice: use $m_X(t)$ of a normal random variable to find E[X] and VarX

$$\frac{d}{dt}m_X(t) = (\mu + \sigma^2 t)e^{(\mu t + \frac{1}{2}\sigma^2 t^2)} \Rightarrow E[X] = \frac{d}{dt}m_X(t)_{t=0} = \mu$$

$$\frac{d^2}{dt^2}m_X(t) = \sigma^2 e^{(\mu t + \frac{1}{2}\sigma^2 t^2)} + (\mu + \sigma^2 t)^2 e^{(\mu t + \frac{1}{2}\sigma^2 t^2)} \Rightarrow E[X^2] = \frac{d^2}{dt^2}m_X(t)_{t=0} = \sigma^2 + \mu^2$$

$$VarX = E[X^2] - (E[X])^2 = \sigma^2$$

Normal Distribution

A random variable X with density

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}}, \quad -\infty \le x \le \infty, -\infty \le \mu \le \infty, \sigma > 0$$

Is said to have a **normal distribution** with parameter μ and σ . Commonly this is represented as $X \sim N(\mu, \sigma^2)$

Practice: Let X be a normal random variable with $\mu = 1, \sigma = 0.25$, Find:

$$f(x = 0) = \frac{1}{\sqrt{2\pi} \times 0.25} e^{-8} \approx 10^{-4}$$

$$f(x = 2) = \frac{1}{\sqrt{2\pi} \times 0.25} e^{-8} \approx 10^{-4}$$

$$f(x = 2) = \frac{1}{\sqrt{2\pi} \times 0.25} e^{-8} \approx 10^{-4}$$

$$f(x = \mu) = \frac{1}{\sqrt{2\pi} \times 0.25} e^{0} \approx 1.6$$

$$f(x = \mu + \sigma) = \frac{1}{\sqrt{2\pi} \times 0.25} e^{-0.5} \approx 0.96$$

Standard Normal Distribution

Standardization theorem:

Let X be a normal random variable with μ and σ . The variable $\frac{X-\mu}{\sigma}$ is standard normal with mean 0 and standard deviation 1. The density function of a standard normal variable is

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad -\infty \le x \le \infty$$

A standard normal RV is usually denoted using Z.

$$Z \sim N(0,1)$$

Show that E[Z] = 0 and VarZ = 1

Actually, given that $E[X] = \mu$ and $VarX = \sigma^2$, we have,

$$E[Z] = E\left[\frac{X - \mu}{\sigma}\right] = E\left[\frac{X}{\sigma}\right] - \frac{\mu}{\sigma} = 0$$

$$VarZ = Var\left[\frac{X - \mu}{\sigma}\right] = \frac{1}{\sigma^2}VarX = 1$$

Standard Normal Distribution

Standardization theorem:

Let X be a normal random variable with μ and σ . The variable $\frac{x-\mu}{\sigma}$ is standard normal with mean 0 and standard deviation 1. The density function of a standard normal variable is

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad -\infty \le x \le \infty$$

A standard normal RV is usually denoted using Z.

$$Z \sim N(0,1)$$

This density function is symmetric with respect to $oldsymbol{Z}=oldsymbol{0}!!!$

What is
$$P[Z \ge 0]$$
?
Is $P[Z \ge 2] = P[Z \le -2]$ true?

The Standard Normal cumulative distribution function table

The integral of the normal density function has no close-form expression. Hence the calculation of probabilities from normal densities requires a numerical method. To solve this problem, a standard normal distribution table is created.

This table represents the following cumulative probability of a standard normal random variable Z: (*left-tailed probability*)

$$F_Z(z) = P[Z \le z]$$

Practice problem: Find the probabilities using the standard normal probability table.

0.0174
0.0174
0.9826
0.9826
0.0174

TABLE V Cumulative distribution: Standard normal

$F_{\mathbf{Z}}(z) = P[\mathbf{Z} \leq z]$										
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.00	
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003		0.07	0.08	0.09
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0003	0.0003	0.0003	0.0003	0.0002
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0004	0.0004	0.0004	0.0004	0.0002
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008		0.0006	0.0005	0.0005	0.0005
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	8000.0	0.0008	8000.0	0.0007	0.0003
	0.0010	0.0018	0.0010			0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019		0.0018	0.0017	0.0016	0.0016	0.0015	0.0015		
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0013	0.0014	0.0014
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0021		0.0020	0.0019
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0029	0.0028	0.0027	0.0026
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0059	0.0038	0.0037	0.0036
-2.4	0.0082	0.0080	0.0078	0.0075	0.00=-			0.0051	0.0049	0.0048
-2.3	0.0107	0.0104	0.0078		0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0139	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0130		0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1 -2.0			0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0143
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.00		
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322		0.0244	0.0239	0.0233
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0322	0.0314	0.0307	0.0301	0.0294
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505		0.0392	0.0384	0.0375	0.0367
-1.5	0.0668	0.0655	0.0643	0.0630		0.0495	0.0485	0.0475	0.0465	0.0455
				0.0030	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.101.								
-0.8	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.7		0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1921	0.1894	0.1867
-0.6	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.5	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0 2226	0.2200	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783		0.3336	0.3300		0.3594	0.3152	0.3520	0.3483
-0.2	0.4207	0.3783	0.3745	0.3707	0.3669	0.3632		0.3337	0.3320	0.346.
-0.1	0.4602	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974		0.3897	0.383
-0.0	0.5000	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325		0.464
_	3.3000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.404

The Standard Normal cumulative distribution function table

Example: Let X denote the number of grams of hydrocarbons emitted by an automobile per mile. Assuming that X is normal with $\mu=1$ gram and $\sigma=0.25$ gram, find the probability that a randomly selected automobile will emit between 0.9 and 1.54 grams of hydrocarbons per mile.

Solution: To find $P[0.9 \le X \le 1.54]$, we first **standardize** X

$$P[0.9 \le X \le 1.54] = P[\frac{0.9 - 1}{0.25} \le \frac{X - 1}{0.25} \le \frac{1.54 - 1}{0.25}]$$

Notice that the random variable $\frac{X-1}{0.25} = Z$ is a standard normal RV. Therefore, the problem becomes finding

$$P[-0.4 \le Z \le 2.16]$$

This can be done using the standard normal cumulative distribution table: $P[-0.4 \le Z \le 2.16] = P[Z \le 2.16] - P[Z \le -0.4] = F(2.16) - F(-0.4) = 0.9846 - 0.3446 = 0.64$

Normal Probability Rules

Let X be a normal random variable with parameters μ and σ . Then

$$P[-\sigma < X - \mu < \sigma] \approx 0.68$$

$$P[-2\sigma < X - \mu < 2\sigma] \approx 0.95$$

$$P[-3\sigma < X - \mu < 3\sigma] \approx 0.997$$

$$P[-\sigma < X - \mu < \sigma] = P\left[-1 < \frac{X - \mu}{\sigma} < 1\right] = P[-1 < Z < 1] \approx 0.68$$

$$P[-2\sigma < X - \mu < 2\sigma] = P\left[-2 < \frac{X - \mu}{\sigma} < 2\right] = P[-2 < Z < 2] \approx 0.95$$

$$P[-3\sigma < X - \mu < 3\sigma] = P\left[-3 < \frac{X - \mu}{\sigma} < 3\right] = P[-3 < Z < 3] \approx 0.997$$

If X is a normal variable, we can be 99.7% sure that a value x will be within 3σ distance from the center μ

It is 0.3% rare that a value of a normal variable can be 3σ away from the center μ .

