Modelagem Matemática I

Matheus Gabriel

Agosto 2024

1 Minimizando o Custo

1.1 Enunciado

Um estudante quer projetar um desjejum com flocos de milho e leite que seja o mais econômico possível. Levando em conta o que ele consegue comer nas suas outras refeições, ele decide que seu café da manhã deveria supri-lo com 9 gramas de proteínas, pelo menos uma terça parte da necessidade diária recomendada (NDR) de vitamina D e pelo menos uma quarta parte da NDR de cálcio. Ele encontra as seguintes informações nutricionais nas embalagens do leite e dos flocos de milho:

	Leite (meio copo)	Flocos de milho (1 xícara
Custo	7,5 centavos	50 centavos
Proteína	4 gramas	2 gramas
Vitamina D	1/8 de NDR	1/10 de NDR
Cálcio	1/6 de NDR	Nada

A fim de não ter uma mistura muito empapada ou muito seca, o estudante decide limitar-se a misturas que contenham no mínimo 1 e no máximo 3 xícaras de flocos de milho por copo de leite. Quais quantidades de leite e de flocos de milho ele deve utilizar para minimizar o custo de seu desjejum?

1.2 Modelagem e Resolução

Definimos as variáveis de decisão como:

- x_1 : Quantidade de leite em copos (meia quantidade).
- x_2 : Quantidade de flocos de milho em xícaras.

Como dito no enunciado: "Quais quantidades de leite e de flocos de milho ele deve utilizar para **minimizar o custo** de seu desjejum?", então a função objetivo a ser minimizada é:

$$z = 7.5x_1 + 50x_2 \tag{1}$$

Sujeito às seguintes restrições estabelecidas pelo enunciado:

Pelo menos 9g de proteína
$$\implies 4x_1 + 2x_2 \ge 9$$
Pelo menos $\frac{1}{3}$ NDR de vitamina D $\implies \frac{1}{8}x_1 + \frac{1}{10}x_2 \ge \frac{1}{3}$ NDR
Pelo menos $\frac{1}{4}$ NDR de Cálcio $\implies \frac{1}{6}x_1 \ge \frac{1}{4}$ NDR
Pelo menos 1 xícara de flocos de milho por copo (dois meios copos) de leite $\implies \frac{x_2}{x_1} \ge \frac{1}{2}$
No máximo 3 xícaras de flocos de milho por copo (dois meios copos) de leite $\implies \frac{x_2}{x_1} \le \frac{3}{2}$
Como se trata de um cenário real assumimos valores positivos $\implies x_1 \ge 0, x_2 \ge 0$

Além disso, a razão entre a quantidade de flocos de milho e a quantidade de leite deve satisfazer:

$$1 \le \frac{x_2}{2x_1} \le 3\tag{2}$$

Encontrando a região viável

Importante!

"A região viável é sempre a interseção de um número finito de retas e planos."

Primeira Inequação

Consideramos a inequação:

$$\frac{1}{2}x_1 + \frac{1}{3}x_2 \le 130$$

$$\frac{1}{2}x_1 + \frac{1}{3}x_2 = 130$$
(3)

$$\frac{1}{2}x_1 + \frac{1}{3}x_2 = 130\tag{4}$$

Se $x_1 = 0$, então $x_2 = 390$. Se $x_2 = 0$, então $x_1 = 260$.

1.3.2 Segunda Inequação

Consideramos a inequação:

$$\frac{1}{2}x_1 + \frac{2}{3}x_2 \le 170\tag{5}$$

$$\frac{1}{2}x_1 + \frac{2}{3}x_2 = 170\tag{6}$$

Se $x_1 = 0$, então $x_2 = 255$. Se $x_2 = 0$, então $x_1 = 340$.

Encontrando o Ponto de Interseção das Inequações

Consideramos as duas equações:

$$\frac{1}{2}x_1 + \frac{1}{3}x_2 = 130 \quad (I) \tag{7}$$

$$\frac{1}{2}x_1 + \frac{1}{3}x_2 = 130 \quad \text{(I)}$$

$$\frac{1}{2}x_1 + \frac{2}{3}x_2 = 170 \quad \text{(II)}$$
(8)

Subtraindo (I) de (II):

$$\left(\frac{1}{2}x_1 + \frac{2}{3}x_2\right) - \left(\frac{1}{2}x_1 + \frac{1}{3}x_2\right) = 170 - 130\tag{9}$$

$$\frac{2}{3}x_2 - \frac{1}{3}x_2 = 40$$

$$\frac{1}{3}x_2 = 40$$
(10)

$$\frac{1}{2}x_2 = 40\tag{11}$$

$$\mathbf{x_2} = \mathbf{120} \tag{12}$$

Substituindo $x_2 = 120$ em (I):

$$\frac{1}{2}x_1 + \frac{1}{3} \cdot 120 = 130\tag{13}$$

$$\frac{1}{2}x_1 + 40 = 130\tag{14}$$

$$\frac{1}{2}x_1 = 90\tag{15}$$

$$\mathbf{x_1} = \mathbf{180} \tag{16}$$

Então o ponto de interseção se encontra em $(180x_1, 120x_2)$.

Figure 1: Gráfico gerado a partir das duas inequações, nota-se que a região viável é onde as duas cores se sobrepoem no quadrante superior direito.