

Problem Sheet 4

for the tutorial on May 30th, 2025

Quantum Mechanics II

Summer term 2025

Sheet handed out on May 20th, 2025; to be handed in on May 27th, 2025 until 2 pm

Exercise 4.1: The dipole approximation and the $\vec{r} \cdot \vec{E}$ Hamiltonian [10 P.]

We now examine the problem of an electron bound by a central potential V(r) to a nucleus located at \vec{r}_0 . Let us start from the minimal coupling Hamiltonian (1)

$$\left\{ -\frac{\hbar^2}{2m} \left[\nabla - i \frac{e}{\hbar} \vec{A}(\vec{r}, t) \right]^2 + e \Phi(\vec{r}, t) \right\} \Psi = i \hbar \frac{\partial \Psi}{\partial t} , \qquad (1)$$

considered in the Coulomb gauge and apply the dipole approximation $\vec{A}(\vec{r},t) \simeq \vec{A}(\vec{r}_0,t)$. By performing a wave function transformation

$$\Psi(\vec{r},t) = \exp\left[\frac{ie}{\hbar}\vec{A}(\vec{r}_0,t)\cdot\vec{r}\right]\tilde{\Psi}(\vec{r},t)$$
(2)

show that the total Hamiltonian can be separated in the unperturbed Hamiltonian of the electron and the interaction term given by $\mathcal{H}_{int} = -e\vec{r} \cdot \vec{E}(\vec{r}_0, t)$.

Exercise 4.2: Phenomenological spontaneous decay in semi-classical theory [5 P.]

As long as the electromagnetic field is treated classically, the spontaneous decay of the system can only be implemented phenomenologically. Let us consider now once more the simple case of a two-level system with states $|1\rangle$ and $|2\rangle$ interacting with a classical electromagnetic field. The finite lifetime of the atomic levels can be described very well by adding phenomenological decay terms to the density operator equation. The decay rates can be incorporated by a relaxation matrix Γ defined as $\langle n|\Gamma|m\rangle = \gamma_n \delta_{nm}$, where $\{n,m\} \in \{1,2\}$. With this addition, we can write the density matrix equation of motion as

$$\dot{\rho} = -\frac{i}{\hbar} [\mathcal{H}, \rho] - \frac{1}{2} \{ \Gamma, \rho \}, \qquad (3)$$

where

$$\mathcal{H} = \hbar \Delta |2\rangle \langle 2| - \hbar \Omega (|2\rangle \langle 1| + |1\rangle \langle 2|) \tag{4}$$

is the Hamiltonian for a two-level system and $\{\Gamma, \rho\} = \Gamma \rho + \rho \Gamma$. Write down the Bloch equations resulting from Eq. (3).

Exercise 4.3: Hadamard lemma and interaction picture of the JC model [5+5 P.]

Consider the Hamiltonian of the quantum mechanical harmonic oscillator

$$\mathcal{H}_O = \hbar\omega \left(a^{\dagger} a + \frac{1}{2} \right) \tag{5}$$

with the ladder operators a, a^{\dagger} satisfying $[a, a^{\dagger}] = 1$, and $[a, a] = [a^{\dagger}, a^{\dagger}] = 0$. In the lecture, we will also find this to be the Hamiltonian for a single mode of the quantized electromagnetic field.

a) Using the time evolution operator $U = e^{-\frac{i}{\hbar}\mathcal{H}_O t}$, calculate $U^{\dagger} a U$ and $U^{\dagger} a^{\dagger} U$.

 ${\it Hint:}$ Use that according to the Hadamard lemma for two operators A and B

$$e^{A} B e^{-A} = B + [A, B] + \frac{1}{2!} [A, [A, B]] + \frac{1}{3!} [A, [A, A, B]] + \dots$$
 (6)

b) Use $\mathcal{H}_T = \mathcal{H}_O + \hbar x_g A_{gg} + \hbar x_e A_{ee}$ to transform the Jaynes-Cummings model $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_I$ with

$$\mathcal{H}_0 = \mathcal{H}_O + \hbar \omega_g A_{gg} + \hbar \omega_e A_{ee} \,, \tag{7}$$

$$\mathcal{H}_I = \hbar \left(g A_{eg} a + g^* a^{\dagger} A_{ge} \right) , \tag{8}$$

to an interaction picture Hamiltonian without explicit time dependence. Here, $A_{ij} = |i\rangle \langle j|$ and g is the atom-field mode coupling constant.

[10 P

We now examine the problem of an electron bound by a central potential V(r) to a nucleus located at \vec{r}_0 . Let us start from the minimal coupling Hamiltonian (1)

$$\left\{-\frac{\hbar^2}{2m}\left[\nabla-i\frac{e}{\hbar}\vec{A}(\vec{r},t)\right]^2+e\Phi(\vec{r},t)\right\}\Psi=i\hbar\frac{\partial\Psi}{\partial t}\,, \eqno(1)$$

considered in the Coulomb gauge and apply the dipole approximation $\vec{A}(\vec{r},t) \simeq \vec{A}(\vec{r_0},t)$. By performing a wave function transformation

$$\Psi(\vec{r},t) = \exp \left[\frac{ie}{\hbar} \vec{A}(\vec{r}_0,t) \cdot \vec{r} \right] \tilde{\Psi}(\vec{r},t)$$
 (2)

show that the total Hamiltonian can be separated in the unperturbed Hamiltonian of the electron and the interaction term given by $\mathcal{H}_{int} = -e\vec{r} \cdot \vec{E}(\vec{r}_0, t)$.

Exe	ercise	4.2 :	Phe	nome	enolo	gical	spor	ntane	eous e	decay	in s	: semi	-cla	ssic	al tl	ieor	y	- 1	[5 I	Г Р.]																										
only leve lifet the as (be in l systeme of densit $n \Gamma m$	mplen sem w of the ty ope $n\rangle = \gamma$	electronented with statement atomic erator ϵ $\gamma_n \delta_{nm}$, otion as	phen ates c level equati when	nomen $1\rangle$ and $1s$ can ion. 1	ologic d 2⟩ be de Γhe de	cally. intera escrib ecay r	Let u acting ed ve ates c	s cong with ry we can be	sider a cl ll by incon	now o assica addin	once al ele ng ph ted b	mor ectro ienoi oy a i	e th mag men relax	e sin metio ologi katio	nple c fiel cal c n ma	case ld. leca atrix	e of The y te t Γ o	a tw fini rms lefine	te to ed																										
- equ	ation	or mo	шоп ағ	8			$\dot{\rho} = -$	$-\frac{i}{\hbar}[\mathcal{H}]$	$, \rho] -$	$\frac{1}{2}\{\Gamma,$	ρ ,								(3)	+																							+	+	
	пе На		nian fo			$\mathcal{H} = I$ vel sys							/rite	dow	vn th	ie Bl	loch	equ		4) ns																										
													١,																			,										-		+	_	
									;							O			ı		I		1	ρ,			Po	$\sqrt{1}$		1			1	D		J				Pn	,	Pi	2			
								4) :	=	_	<u>-</u>	1	4				1	h.	J 4	-		1					П	-	5			1	1)	7	ړ	/	Ц	Ps	-	Ps.	4	7	_	
												' 7	Į	-	/	፟	v		۸2	7	1)	_	د 'ا) (1	ן גב	<i>/</i>			•	ſ	\				, 5°	1		7 -		13,	را <u>د</u>	<u>/_</u>		
					į) y		di	СÝ	L		رع	h	1	1 †	ut	74	1																												
												$\dot{ ho}$	11	1	_	_	ļ.	γ	1 /)1	1	_	- <i>i</i>	(ho	12	_	-	$ ho_2$	21)	Ω														
															1																															
												$\dot{ ho}_1$	2		$\frac{1}{2}$	ρ_1	2 (γ_1	_	- /	γ_2	+	2^{-1}	$i\Omega$	2) -	-i	$ ho_1$	1	2 -	+ 7	$i\rho_2$	$_2\Omega$	2									+		-	_
												$\dot{ ho}_2$:1	=	$\frac{1}{2}$	i ($ ho_2$	1	$(i\gamma$	γ1	+	i	γ ₂	_	29	$\Omega)$	+	2ρ	11	Ω	_	2μ	9_{22}	$\Omega)$												
												$\dot{ ho}_{2}$	22	_	i ($i\gamma$	$_{2}\rho$	22	+	ρ	12	Ω	_ /	o_2	Ω_1	2)																		1		
																	+				+								-															-		
																																											1	1	#	
																																												-	_	
																	+				_			-					-													-	_	_		
																																									_		1			
																	+				+								-	+													+	+	+	+
																																													#	
																	+				+			-					-	+											-	+	+	+	+	-
																	1																													
																	-																								_				_	
																	+													+													+	-	-	
																	1				1																					1	1	1	#	
																	+				+			-					-	+											+	-	+	+	+	+
																					1									1														1	1	
																	+				+								-	+											-	-	+	+	+	+
																	1				1																							1	#	
																	1				-									-											_			_	_	
																	+				+								-	+												-	+	+	+	
																	1				#																					1	1	#	#	
																	-												-	+											-	-	+	+	+	-
																	+																								<u> </u>	\perp	<u> </u>	\pm	+	-

 $\mathcal{H}_I = \hbar \left(g A_{eg} a + g^* a^{\dagger} A_{ge} \right) ,$ 2 = tw(a+4++)+ tw/9/4)(4) + tw/6)(6) % ++ (9/e) <9/a + 9 to 1/9) <(1) } 2 2 1. Octomin Propogator from 20. X and the rest commute since they act different spaces 50 U_ = U ⊗ [e: Wo+ |9) <9| + c |e) <c| 2. Transform H'z = U+ Hz Wo = [u+ 8 (e 14) < 91 + e 16> < c1)][x (91e) < 9 | a + 9 + 0 + 10> < c1)] [U & [e'wo+ |9) /41 + c'we+ |e>/cl]] compute (einsty) (g) +einet le>(e1) 1e>(g) (e:00+18>(g) + cinet le>(c1) = le>(g) e (00-00e)+ Then (e) 192491 + e-10ct le> < e1) 19> < e1 (e) < e1) = 19> < e1 e1 (c) = 19> < e1 M2 = tg e (wy-Wc)+ -iu+ le)<9 a + tg + i(wc-w)+ iw+ l9) <cl a+