

Database System Concept (CSE 3103)

Lecture 02-Day 02

Nazmus Sakib, Assistant Professor, Dept. of CSE, AUST

Select Operation – selection of rows (tuples)

Relation r

A	В	C	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

 \bullet $\sigma_{A=B \land D > 5}(r)$

A	В	C	D
α	α	1	7
β	β	23	10

Project Operation – selection of columns (Attributes)

• Relation *r*:

A	В	C
α	10	1
α	20	1
β	30	1
β	40	2

$$\blacksquare \ \prod_{A,C} (r)$$

\boldsymbol{A}	C	A	C
α	1	α	1
α	1	β	1
β	1	ß	2
ß	2		

Union of two relations

• Relations *r, s:*

\boldsymbol{A}	В
α	1
α	2
β	1
1/	•

\overline{A}	В
α	2
β	3

ightharpoonup r \cup s:

A	В
α	1
α	2
β	1
β	3

Set difference of two relations

• Relations *r*, *s*:

\boldsymbol{A}	В
α	1
α	2
β	1
1/	<u></u>

A	В
α	2
β	3

r-s

A	В
α	1
β	1

Set intersection of two relations

• Relation *r, s*:

\boldsymbol{A}	В
α	1
α	2
β	1
1	,

A	В
α	2
β	3
5	3

• $r \cap s$

Note: $r \cap s = r - (r - s)$

joining two relations -- Cartesianproduct

■ Relations *r*, *s*:

D
1
2

C	D	E
α	10	a
β	10	a
β	20	b
γ	10	b

■ *r* x s:

A	В	C	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Cartesian-product – naming issue

Relations *r*, *s*:

В
1
2

В	D	E
α	10	a
β	10	a
β	20	b
γ	10	b

■ r x s:

A	r.B	s.B	D	Ε
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	Ъ
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Renaming a Table

• Allows us to refer to a relation, (say E) by more than one name.

$$\rho_x(E)$$

returns the expression E under the name X Relations r

B
1
2

$$r \times \rho_s(r)$$

r.A	r.B	s.A	s.B
α	1	α	1
α	1	β	2
β	2	α	1
β	2	β	2

Composition of Operations

- Can build expressions using multiple operations
- Example: $\sigma_{A=C}(r x s)$

•	r	Χ	S

\boldsymbol{A}	В	C	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

•
$$\sigma_{A=C}(rxs)$$

\boldsymbol{A}	В	C	D	E
α	1	α	10	a
β	2	β	10	a
β	2	β	20	b

Joining two relations – Natural Join

- Let r and s be relations on schemas R and S respectively.
 Then, the "natural join" of relations R and S is a relation on schema R ∪ S obtained as follows:
 - Consider each pair of tuples t_r from r and t_s from s.
 - If t_r and t_s have the same value on each of the attributes in $R \cap S$, add a tuple t to the result, where
 - t has the same value as t_r on r
 - t has the same value as t_s on s

Natural Join Example

• Relations r, s:

A	В	C	D	
α	1	α	a	
β	2	γ	a	
γ	4	β	b	
α	1	γ	a	
δ	2	β	b	
1				

В	D	E
1	a	α
3	a	β
1	a	γ
2	b	δ
3	b	3
	S	

- Natural Join
 - r ⋈ s

A	В	C	D	Ε
α	1	α	a	α
α	1	α	a	γ
α	1	γ	a	α
α	1	γ	a	γ
δ	2	β	b	δ

$$\prod_{A, r.B, C, r.D, E} (\sigma_{r.B = s.B \land r.D = s.D} (r \times s)))$$

Notes about Relational Languages

- Each Query input is a table (or set of tables)
- Each query output is a table.
- All data in the output table appears in one of the input tables
- Relational Algebra is not Turning complete
- Can we compute:
 - SUM
 - AVG
 - MAX
 - MIN