BAPC 2023

Solutions presentation

The BAPC 2023 jury October 28, 2023

Problem Author: Ragnar Groot Koerkamp

Problem: Calculate the maximum overall completion percentage of downloading n packages, with m packages having finished downloading and k packages underway.

Problem Author: Ragnar Groot Koerkamp

Problem: Calculate the maximum overall completion percentage of downloading n packages,

with m packages having finished downloading and k packages underway.

Observation 1: The largest packages need to have finished downloading.

Problem Author: Ragnar Groot Koerkamp

Problem: Calculate the maximum overall completion percentage of downloading n packages,

with m packages having finished downloading and k packages underway.

Observation 1: The largest packages need to have finished downloading.

Observation 2: The packages underway need to be the next largest, and at $99.\overline{9}\%$.

Problem Author: Ragnar Groot Koerkamp

 $\textbf{Problem:} \ \, \textbf{Calculate the maximum overall completion percentage of downloading} \, \, n \, \, \textbf{packages}, \\$

with m packages having finished downloading and k packages underway.

Observation 1: The largest packages need to have finished downloading.

Observation 2: The packages underway need to be the next largest, and at $99.\overline{9}\%$.

Solution: Sort the list, sum the largest m + k packages, divide by the total sum, multiply by 100:

$$\frac{\sum_{i=1}^{m+\kappa} s_i}{\sum_{i=1}^{n} s_i} \cdot 100$$
 (assuming s_i are sorted from large to small)

Problem Author: Ragnar Groot Koerkamp

 $\textbf{Problem:} \ \, \textbf{Calculate the maximum overall completion percentage of downloading} \ \, n \, \, \textbf{packages}, \\$

with m packages having finished downloading and k packages underway.

Observation 1: The largest packages need to have finished downloading.

Observation 2: The packages underway need to be the next largest, and at $99.\overline{9}\%$.

Solution: Sort the list, sum the largest m + k packages, divide by the total sum, multiply by 100:

$$\frac{\sum_{i=1}^{m+\kappa} s_i}{\sum_{i=1}^{n} s_i} \cdot 100$$
 (assuming s_i are sorted from large to small)

Statistics: 95 submissions, 50 accepted, 21 unknown

Problem Author: Mees de Vries

Problem: Given a size *n* robot, how many attacks do you need to reduce its size to 0? Two attacks available:

Problem Author: Mees de Vries

Problem: Given a size *n* robot, how many attacks do you need to reduce its size to 0? Two attacks available:

• Sword: size = size / 2

Problem Author: Mees de Vries

Problem: Given a size *n* robot, how many attacks do you need to reduce its size to 0? Two attacks available:

■ Sword: size = size / 2

■ Claw: size = size - 1

- Sword: size = size / 2
- Claw: size = size 1

Naive solution: Just try all possible combinations: *S*, *C*, *SS*, *SC*, *CS*, *CC*, *SSS*, *SSC*, ..., until you find one that works.

- Sword: size = size / 2
- Claw: size = size 1

Naive solution: Just try all possible combinations: S, C, SS, SC, CS, CC, SSS, SSC, ..., until you find one that works.

If m is the answer, this runs in $\mathcal{O}(m2^m)$. Since $m \approx \log_2(n)$, this is $\mathcal{O}(n\log(n))$. Too slow!

Problem Author: Mees de Vries

Problem: Given a size *n* robot, how many attacks do you need to reduce its size to 0? Two attacks available:

Sword: size = size / 2

• Claw: size = size - 1

Observation: An optimal strategy is to use a series of S attacks followed by a single C.

Problem Author: Mees de Vries

Problem: Given a size *n* robot, how many attacks do you need to reduce its size to 0? Two attacks available:

- Sword: size = size / 2
- Claw: size = size 1

Observation: An optimal strategy is to use a series of S attacks followed by a single C.

Solution: Use claw attacks until the remaining size is < 1, then a single claw. Run time: $\mathcal{O}(\log(n))$

- Sword: size = size / 2
- Claw: size = size 1

Observation: An optimal strategy is to use a series of S attacks followed by a single C.

Solution: Use claw attacks until the remaining size is < 1, then a single claw. Run time: $\mathcal{O}(\log(n))$

Solution: You can also compute the answer directly as $\lceil \log_2(n) \rceil + 1$, but only if you either

- 1. Use long double in C++, which has 18 digits of precision
- 2. Calculate the bit length (in Python: $(x 1).bit_length() == ceil(log2(x))$)

- Sword: size = size / 2
- Claw: size = size 1

Observation: An optimal strategy is to use a series of S attacks followed by a single C.

Solution: Use claw attacks until the remaining size is < 1, then a single claw. Run time: $\mathcal{O}(\log(n))$

Solution: You can also compute the answer directly as $\lceil \log_2(n) \rceil + 1$, but only if you either

- 1. Use long double in C++, which has 18 digits of precision
- 2. Calculate the bit length (in Python: $(x 1).bit_length() == ceil(log2(x))$)

Float note: 64-bit floating-point numbers (double) have too low precision (only 15 digits).

- Sword: size = size / 2
- Claw: size = size 1

Observation: An optimal strategy is to use a series of S attacks followed by a single C.

Solution: Use claw attacks until the remaining size is < 1, then a single claw. Run time: $\mathcal{O}(\log(n))$

Solution: You can also compute the answer directly as $\lceil \log_2(n) \rceil + 1$, but only if you either

- 1. Use long double in C++, which has 18 digits of precision
- 2. Calculate the bit length (in Python: $(x 1).bit_length() == ceil(log2(x))$)

Float note: 64-bit floating-point numbers (double) have too low precision (only 15 digits).

Statistics: 127 submissions, 50 accepted, 12 unknown

C: Compressing Commands

Problem Author: Ragnar Groot Koerkamp

Problem: Which working directory should you use to specify n file paths (with ../), with the minimal number of relative path components?

وبطور فينسبوا والمتداد ويربونها

Solution: Convert to tree:

Solution: Convert to tree:

Compute #path components for all nodes in linear time.

Solution: Convert to tree:

Compute #path components for all nodes in linear time.

- 1. $cost("/") = \#total_path_components$.
- 2. For edge $u \to v$: $cost(v) = cost(u) + n 2 \cdot \#fileswithprefix(v)$.
- 3. Output $\min_{u} cost(u)$.

Solution: Convert to tree:

Compute #path components for all nodes in linear time.

- 1. $cost("/") = \#total_path_components$.
- 2. For edge $u \to v$: $cost(v) = cost(u) + n 2 \cdot \#fileswithprefix(v)$.
- 3. Output $min_u cost(u)$.

Insight: For edge $u \to v$, cost(v) < cost(u) iff #fileswithprefix $(v) > \frac{n}{2}$.

Solution: Convert to tree:

Compute #path components for all nodes in linear time.

- 1. $cost("/") = \#total_path_components$.
- 2. For edge $u \to v$: $cost(v) = cost(u) + n 2 \cdot \#fileswithprefix(v)$.
- 3. Output $\min_u cost(u)$.

Insight: For edge $u \to v$, cost(v) < cost(u) iff #fileswithprefix $(v) > \frac{n}{2}$.

Statistics: 82 submissions, 16 accepted, 53 unknown

Problem Author: Ivan Fever

Problem: Given the list of city names, determine the new county's name based on the existing city names.

Problem Author: Ivan Fever

Problem: Given the list of city names, determine the new county's name based on the existing

city names.

Observation: Every letter can be handled individually.

Problem Author: Ivan Fever

Problem: Given the list of city names, determine the new county's name based on the existing

city names.

Observation: Every letter can be handled individually.

Solution: For every letter position, count which letter occurs the most often.

Problem Author: Ivan Fever

Problem: Given the list of city names, determine the new county's name based on the existing

city names.

Observation: Every letter can be handled individually.

Solution: For every letter position, count which letter occurs the most often.

Statistics: 63 submissions, 56 accepted, $1\ unknown$

Problem Author: Ivan Fever

Problem: Given the list of city names, determine the new county's name based on the existing

city names.

Observation: Every letter can be handled individually.

Solution: For every letter position, count which letter occurs the most often.

Statistics: 63 submissions, 56 accepted, 1 unknown

(spoiler: they solved it! ?)

Problem Author: Jorke de Vlas and Reinier Schmiermann

Problem: Given an exam schedule, determine how many exams you can pass with optimal scheduling.

Problem Author: Jorke de Vlas and Reinier Schmiermann

Problem: Given an exam schedule, determine how many exams you can pass with optimal scheduling.

Greedy approach: Study for the first exam you can pass. Doesn't work: maybe you can study for more

shorter exams. (Sample 2!)

Problem Author: Jorke de Vlas and Reinier Schmiermann

Problem: Given an exam schedule, determine how many exams you can pass with optimal scheduling.

Greedy approach: Study for the first exam you can pass. Doesn't work: maybe you can study for more shorter exams. (Sample 2!)

Greedy approach: Study for the shortest exams first. Doesn't work: maybe you can pass all exams if you

study in order, but the first one takes a long time.

Problem Author: Jorke de Vlas and Reinier Schmiermann

Problem: Given an exam schedule, determine how many exams you can pass with optimal scheduling.

Greedy approach: Study for the first exam you can pass. Doesn't work: maybe you can study for more shorter exams. (Sample 2!)

Greedy approach: Study for the shortest exams first. Doesn't work: maybe you can pass all exams if you study in order, but the first one takes a long time.

Brute force: Try all pass/fail combinations: runs in $\mathcal{O}(2^n)$, way too slow.

Greedy approach: Study for the first exam you can pass. Doesn't work: maybe you can study for more shorter exams. (Sample 2!)

Greedy approach: Study for the shortest exams first. Doesn't work: maybe you can pass all exams if you study in order, but the first one takes a long time.

Brute force: Try all pass/fail combinations: runs in $\mathcal{O}(2^n)$, way too slow.

Observation: If at time e_i , end time of exam i, you have passed j exams, and have x minutes of study time unused, it doesn't matter which j exams you passed!

- المسالية والمسارة والمتراكية
 - Problem: Given an exam schedule, determine how many exams you can pass with optimal scheduling.
- Greedy approach: Study for the first exam you can pass. Doesn't work: maybe you can study for more shorter exams. (Sample 2!)
- Greedy approach: Study for the shortest exams first. Doesn't work: maybe you can pass all exams if you study in order, but the first one takes a long time.
 - **Brute force:** Try all pass/fail combinations: runs in $\mathcal{O}(2^n)$, way too slow.
 - **Observation:** If at time e_i , end time of exam i, you have passed i exams, and have x minutes of study time unused, it doesn't matter which *j* exams you passed!

Use dynamic programming:

$$\mathrm{DP}(i,j) = egin{cases} x, & \mathsf{max} \; \mathsf{extra} \; \mathsf{study} \; \mathsf{time} \; \mathsf{at} \; e_i \; \mathsf{with} \; j \; \mathsf{exams} \; \mathsf{passed}, \\ -\infty & \mathsf{if} \; \mathsf{it's} \; \mathsf{impossible} \; \mathsf{to} \; \mathsf{pass} \; j \; \mathsf{exams} \; \mathsf{at} \; e_i. \end{cases}$$

Problem: Given an exam schedule, determine how many exams you can pass with optimal scheduling.

DP

$$\mathrm{DP}(i,j) = egin{cases} x, & \mathsf{max} \; \mathsf{extra} \; \mathsf{study} \; \mathsf{time} \; \mathsf{at} \; e_i \; \mathsf{with} \; j \; \mathsf{exams} \; \mathsf{passed}, \\ -\infty & \mathsf{if} \; \mathsf{it's} \; \mathsf{impossible} \; \mathsf{to} \; \mathsf{pass} \; j \; \mathsf{exams} \; \mathsf{at} \; e_i. \end{cases}$$

To determine DP(i, j) there are two options:

Problem: Given an exam schedule, determine how many exams you can pass with optimal scheduling.

DP

$$\mathrm{DP}(i,j) = egin{cases} x, & \mathsf{max} \ \mathsf{extra} \ \mathsf{study} \ \mathsf{time} \ \mathsf{at} \ e_i \ \mathsf{with} \ j \ \mathsf{exams} \ \mathsf{passed}, \\ -\infty & \mathsf{if} \ \mathsf{it's} \ \mathsf{impossible} \ \mathsf{to} \ \mathsf{pass} \ j \ \mathsf{exams} \ \mathsf{at} \ e_i. \end{cases}$$

To determine DP(i,j) there are two options:

Fail exam
$$i: DP(i,j) = DP(i-1,j) + \underbrace{s_i - e_{i-1}}_{\text{Time between exams}}$$

Problem: Given an exam schedule, determine how many exams you can pass with optimal scheduling.

DP

$$\mathrm{DP}(i,j) = egin{cases} x, & \mathsf{max} \; \mathsf{extra} \; \mathsf{study} \; \mathsf{time} \; \mathsf{at} \; e_i \; \mathsf{with} \; j \; \mathsf{exams} \; \mathsf{passed}, \\ -\infty & \mathsf{if} \; \mathsf{it's} \; \mathsf{impossible} \; \mathsf{to} \; \mathsf{pass} \; j \; \mathsf{exams} \; \mathsf{at} \; e_i. \end{cases}$$

To determine DP(i,j) there are two options:

Fail exam
$$i: DP(i,j) = DP(i-1,j) + \underbrace{s_i - e_{i-1}}_{\text{Time between exams}}$$
Pass exam $i: DP(i,j) = DP(i-1,j-1) + \underbrace{s_i - e_{i-1}}_{\text{Time between exams}} - \underbrace{a_i}_{\text{Prep time}} + \underbrace{e_i - p_i}_{\text{Time saved on exam}}$

Problem: Given an exam schedule, determine how many exams you can pass with optimal scheduling.

DP

$$\mathrm{DP}(i,j) = egin{cases} x, & \mathsf{max} \; \mathsf{extra} \; \mathsf{study} \; \mathsf{time} \; \mathsf{at} \; e_i \; \mathsf{with} \; j \; \mathsf{exams} \; \mathsf{passed}, \\ -\infty & \mathsf{if} \; \mathsf{it's} \; \mathsf{impossible} \; \mathsf{to} \; \mathsf{pass} \; j \; \mathsf{exams} \; \mathsf{at} \; e_i. \end{cases}$$

To determine DP(i, j) there are two options:

Fail exam
$$i: DP(i,j) = DP(i-1,j) + \underbrace{s_i - e_{i-1}}$$

Pass exam i:
$$DP(i,j) = DP(i-1,j-1) + \underbrace{s_i - e_{i-1}}_{s_i} - \underbrace{a_i}_{s_i} + \underbrace{e_i - p_i}_{s_i}$$

Prep time Time between exams Time saved on exam

Take the maximum of these options!

Note: you can only pass exam i if you have time to prep:

$$DP(i-1, j-1) + s_i - e_{i-1} \ge a_i$$
.

Problem: Given an exam schedule, determine how many exams you can pass with optimal scheduling.

DP

$$\mathrm{DP}(i,j) = egin{cases} x, & \mathsf{max} \; \mathsf{extra} \; \mathsf{study} \; \mathsf{time} \; \mathsf{at} \; e_i \; \mathsf{with} \; j \; \mathsf{exams} \; \mathsf{passed}, \\ -\infty & \mathsf{if} \; \mathsf{it's} \; \mathsf{impossible} \; \mathsf{to} \; \mathsf{pass} \; j \; \mathsf{exams} \; \mathsf{at} \; e_i. \end{cases}$$

To determine DP(i, j) there are two options:

Fail exam
$$i: DP(i,j) = DP(i-1,j) + \underbrace{s_i - e_{i-1}}$$

Pass exam i:
$$DP(i,j) = DP(i-1,j-1) + \underbrace{s_i - e_{i-1}}_{s_i} - \underbrace{a_i}_{s_i} + \underbrace{e_i - p_i}_{s_i}$$

Prep time Time between exams Time saved on exam

Take the maximum of these options!

Note: you can only pass exam i if you have time to prep:

$$DP(i-1,j-1) + s_i - e_{i-1} \ge a_i$$
.

The solution is $\max\{j : \mathrm{DP}(n,j) > 0\}$. Run time: $\mathcal{O}(n^2)$.

Problem: Given an exam schedule, determine how many exams you can pass with optimal scheduling.

DP

$$\mathrm{DP}(i,j) = egin{cases} x, & \mathsf{max} \ \mathsf{extra} \ \mathsf{study} \ \mathsf{time} \ \mathsf{at} \ e_i \ \mathsf{with} \ j \ \mathsf{exams} \ \mathsf{passed}, \\ -\infty & \mathsf{if} \ \mathsf{it's} \ \mathsf{impossible} \ \mathsf{to} \ \mathsf{pass} \ j \ \mathsf{exams} \ \mathsf{at} \ e_i. \end{cases}$$

To determine DP(i, j) there are two options:

Fail exam
$$i: DP(i,j) = DP(i-1,j) + \underbrace{s_i - e_{i-1}}$$

Pass exam i:
$$DP(i,j) = DP(i-1,j-1) + \underbrace{s_i - e_{i-1}}_{} - \underbrace{a_i}_{} + \underbrace{e_i - p_i}_{}$$

Prep time Time between exams

Take the maximum of these options!

Note: you can only pass exam i if you have time to prep:

$$DP(i-1,j-1) + s_i - e_{i-1} \ge a_i$$
.

The solution is $\max\{j : \mathrm{DP}(n,j) > 0\}$. Run time: $\mathcal{O}(n^2)$.

Statistics: 44 submissions, 10 accepted, 30 unknown

Problem Author: Ragnar Groot Koerkamp

Problem: Determine at which minute you should enter the queue, such that the waiting time is minimized.

Problem Author: Ragnar Groot Koerkamp

Problem: Determine at which minute you should enter the queue, such that the waiting time is

minimized.

Solution: Simulation.

• Start the queue with 0 passengers.

Problem Author: Ragnar Groot Koerkamp

Problem: Determine at which minute you should enter the queue, such that the waiting time is minimized.

Solution: Simulation.

• Start the queue with 0 passengers.

• For every minute i, add a_i , save the current queue length, and subtract c.

Problem Author: Ragnar Groot Koerkamp

Problem: Determine at which minute you should enter the queue, such that the waiting time is minimized.

Solution: Simulation.

• Start the queue with 0 passengers.

• For every minute i, add a_i , save the current queue length, and subtract c.

The queue length can not go negative.

Problem Author: Ragnar Groot Koerkamp

Problem: Determine at which minute you should enter the queue, such that the waiting time is minimized.

Solution: Simulation.

• Start the queue with 0 passengers.

• For every minute i, add a_i , save the current queue length, and subtract c.

The queue length can not go negative.

• Find the minute for which the queue length was the shortest.

Problem Author: Ragnar Groot Koerkamp

Problem: Determine at which minute you should enter the queue, such that the waiting time is minimized

Solution: Simulation.

• Start the queue with 0 passengers.

• For every minute i, add a_i , save the current queue length, and subtract c.

The queue length can not go negative.

• Find the minute for which the queue length was the shortest.

Run time: $\mathcal{O}(n)$.

Problem Author: Ragnar Groot Koerkamp

Problem: Determine at which minute you should enter the queue, such that the waiting time is minimized

Solution: Simulation.

- Start the queue with 0 passengers.
- For every minute i, add a_i , save the current queue length, and subtract c.
- The queue length can not go negative.
- Find the minute for which the queue length was the shortest.

Run time: $\mathcal{O}(n)$.

Edge case: The answer is "impossible" when the current queue length in minute i is never smaller than $c \cdot (n-i)$.

Problem Author: Ragnar Groot Koerkamp

Problem: Determine at which minute you should enter the queue, such that the waiting time is minimized

Solution: Simulation.

• Start the queue with 0 passengers.

• For every minute i, add a_i , save the current queue length, and subtract c.

The queue length can not go negative.

• Find the minute for which the queue length was the shortest.

Run time: $\mathcal{O}(n)$.

Edge case: The answer is "impossible" when the current queue length in minute i is never smaller than $c \cdot (n-i)$.

Statistics: 111 submissions, 45 accepted, 18 unknown

G: Geometry Game

Problem Author: Jorke de Vlas

Problem: Determine the *most restrictive* type of quadrilateral from four points.

G: Geometry Game

Problem Author: Jorke de Vlas

Problem: Determine the *most restrictive* type of quadrilateral from four points.

Possible solution: There are multiple ways of determining the shapes, this is one of them:

- If all four sides have equal length, output "square" if the two diagonals have equal length, else "rhombus".
- If two pairs of opposite sides each have equal length, output "rectangle" if the two diagonals have equal length, else "parallelogram".
- If two pairs of adjacent sides each have equal length, output "kite".
- If two pairs of opposite sides are parallel, output "trapezium", else "none".

Problem: Determine the *most restrictive* type of quadrilateral from four points.

Possible solution: There are multiple ways of determining the shapes, this is one of them:

- If all four sides have equal length, output "square" if the two diagonals have equal length, else "rhombus".
- If two pairs of opposite sides each have equal length, output "rectangle" if the two diagonals have equal length, else "parallelogram".
- If two pairs of adjacent sides each have equal length, output "kite".
- If two pairs of opposite sides are parallel, output "trapezium", else "none".

Parallel test: Check if out-product of two vectors equals zero:

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \times \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = x_1 \cdot y_2 - x_2 \cdot y_1 = 0$$

G: Geometry Game

Problem Author: Jorke de Vlas

Problem: Determine the *most restrictive* type of quadrilateral from four points.

Possible solution: There are multiple ways of determining the shapes, this is one of them:

- If all four sides have equal length, output "square" if the two diagonals have equal length, else "rhombus".
- If two pairs of opposite sides each have equal length, output "rectangle" if the two diagonals have equal length, else "parallelogram".
- If two pairs of adjacent sides each have equal length, output "kite".
- If two pairs of opposite sides are parallel, output "trapezium", else "none".

Parallel test: Check if out-product of two vectors equals zero:

$$\left(\begin{smallmatrix}x_1\\y_1\end{smallmatrix}\right)\times\left(\begin{smallmatrix}x_2\\y_2\end{smallmatrix}\right)=x_1\cdot y_2-x_2\cdot y_1=0$$

Float note: Calculating the length of an edge $(\sqrt{x^2 + y^2})$ requires 18 digits (59 bits) of precision. double only has 53!

I.e. 64-bit integers (without \surd) or C++ long double with an epsilon of 10^{-19} works.

G: Geometry Game

Problem Author: Jorke de Vlas

Problem: Determine the *most restrictive* type of quadrilateral from four points.

Possible solution: There are multiple ways of determining the shapes, this is one of them:

- If all four sides have equal length, output "square" if the two diagonals have equal length, else "rhombus".
- If two pairs of opposite sides each have equal length, output "rectangle" if the two diagonals have equal length, else "parallelogram".
- If two pairs of adjacent sides each have equal length, output "kite".
- If two pairs of opposite sides are parallel, output "trapezium", else "none".

Parallel test: Check if out-product of two vectors equals zero:

$$\left(\begin{smallmatrix}x_1\\y_1\end{smallmatrix}\right)\times\left(\begin{smallmatrix}x_2\\y_2\end{smallmatrix}\right)=x_1\cdot y_2-x_2\cdot y_1=0$$

Float note: Calculating the length of an edge $(\sqrt{x^2 + y^2})$ requires 18 digits (59 bits) of precision. double only has 53!

I.e. 64-bit integers (without $\sqrt{\ }$) or C++ long double with an epsilon of 10^{-19} works.

Statistics: 122 submissions, 32 accepted, 48 unknown

Problem Author: Reinier Schmiermann

the state of the s

Problem Author: Reinier Schmiermann

Problem Author: Reinier Schmiermann

Problem Author: Reinier Schmiermann

Problem Author: Reinier Schmiermann

Problem Author: Reinier Schmiermann

traction of the state of the st

Problem Author: Reinier Schmiermann

Problem: Given an infinitely repeating four-colour pattern, can you find a square whose corners

have four different colors?

Observation: If you have a solution in the infinite grid, then it forms a rectangle in the original grid.

(r	W	r	W	(r)
W	g	w	g	w	g
b	\bigcirc g	b	g	b	g
W	r	w	r	W	r
W	g	W	g	w	g
b	g	b	g	b	\bigcirc g

Problem Author: Reinier Schmiermann

The street of th

Problem: Given an infinitely repeating four-colour pattern, can you find a square whose corners

Observation: If you have a solution in the infinite grid, then it forms a rectangle in the original grid.

(w)	r	W	r	W	(r)
W	g	w	g	W	g
b	\bigcirc g	b	g	b	g
W	r	w	r	W	r
w	g	W	g	w	g
b	g	b	g	b	\bigcirc g

Observation: However, not all rectangles in the original grid make squares.

have four different colors?

g	W	(b)	W	g	W	b	W
(w)	W	(r)	w	W	W	r	W
g	W	b	W	g	W	b	W
w	w	r	w	W	W	r	W

Problem Author: Reinier Schmiermann

Observation: However, not all rectangles in the original grid make squares.

Problem Author: Reinier Schmiermann

Observation: However, not all rectangles in the original grid make squares.

Which rectangles correspond to squares?

Problem Author: Reinier Schmiermann

Observation: However, not all rectangles in the original grid make squares.

g	W	(b)	W	g	W	b	W
(w)	W	(r)	w	w	W	r	W
g	W	b	W	g	W	b	W
W	W	r	W	W	W	r	W

Which rectangles correspond to squares?

Observation: For an $x \times y$ rectangle in a $w \times h$ grid, we can obtain all rectangles $(x + kh) \times (y + \ell w)$.

Observation: However, not all rectangles in the original grid make squares.

g	W	b	W	g	w	b	W
(v)	W	(r)	w	W	w	r	W
g	W	b	W	g	w	b	W
w	W	r	W	W	w	r	W

Which rectangles correspond to squares?

Observation: For an $x \times y$ rectangle in a $w \times h$ grid, we can obtain all rectangles $(x + kh) \times (y + \ell w)$.

Question: For which x, y can we pick k, ℓ such that

$$x + kh = y + \ell w \iff x - y = \ell w - kh$$
?

Observation: However, not all rectangles in the original grid make squares.

g	W	b	W	g	W	b	W
(w)	W	(r)	w	W	W	r	W
g	W	b	W	g	W	b	W
w	W	r	w	W	W	r	w

Which rectangles correspond to squares?

Observation: For an $x \times y$ rectangle in a $w \times h$ grid, we can obtain all rectangles $(x + kh) \times (y + \ell w)$.

Question: For which x, y can we pick k, ℓ such that

$$x + kh = y + \ell w \iff x - y = \ell w - kh$$
?

Answer: Bézout's theorem: if and only if $gcd(h, w) \mid x - y$.

Problem Author: Reinier Schmiermann

transming of the street manager

Observation: However, not all rectangles in the original grid make squares.

g	W	(b)	w	g	W	b	W
(v)	W	(r)	w	W	W	r	W
g	W	b	W	g	W	b	W
w	W	r	W	W	W	r	W

Which rectangles correspond to squares?

Observation: For an $x \times y$ rectangle in a $w \times h$ grid, we can obtain all rectangles $(x + kh) \times (y + \ell w)$.

Question: For which x, y can we pick k, ℓ such that

$$x + kh = y + \ell w \iff x - y = \ell w - kh$$
?

Answer: Bézout's theorem: if and only if $gcd(h, w) \mid x - y$.

In the example above: it doesn't work, because x-y=2-1=1 while $\gcd(w,h)=\gcd(4,2)=2.$

Problem Author: Reinier Schmiermann

the state of the s

Naive solution: For every rectangle in the grid, check if its corners have all four colors, and if the difference between height and width is divisible by $g = \gcd(w, h)$.

Problem Author: Reinier Schmiermann

Naive solution: For every rectangle in the grid, check if its corners have all four colors, and if the

difference between height and width is divisible by $g = \gcd(w, h)$.

Run time: $\mathcal{O}((hw)^2)$ – too slow for $h \cdot w = 200,000$.

Naive solution: For every rectangle in the grid, check if its corners have all four colors, and if the

difference between height and width is divisible by $g = \gcd(w, h)$.

Run time: $\mathcal{O}((hw)^2)$ – too slow for $h \cdot w = 200,000$.

Observation: Once the width of the rectangle is fixed, all possible rectangle heights are known, and they all differ by multiples of g.

Naive solution: For every rectangle in the grid, check if its corners have all four colors, and if the

difference between height and width is divisible by $g = \gcd(w, h)$.

Run time: $\mathcal{O}((hw)^2)$ – too slow for $h \cdot w = 200,000$.

Observation: Once the width of the rectangle is fixed, all possible rectangle heights are known, and

they all differ by multiples of g.

Observation: There are not that many combinations of colors possible.

Problem Author: Reinier Schmiermann

الملامين المنابطين

Solution: Fix two columns. Then check all colour combinations in those two columns, and store them by their row \pmod{g} .

Problem Author: Reinier Schmiermann

فالشيور استانطيب

Solution: Fix two columns. Then check all colour combinations in those two columns, and store them by their row \pmod{g} .

Then go through compatible rows, and see if they have compatible color combinations.

H: Hidden Art

Problem Author: Reinier Schmiermann

فقورر أستلنطي

Solution: Fix two columns. Then check all colour combinations in those two columns, and store them by their row \pmod{g} .

Then go through compatible rows, and see if they have compatible color combinations.

Run time: $\mathcal{O}(hw^2)$ – fast enough, but program efficiently, especially in Python!

H: Hidden Art

Problem Author: Reinier Schmiermann

بنون أوراد فارس

Solution: Fix two columns. Then check all colour combinations in those two columns, and store them by their row \pmod{g} .

Then go through compatible rows, and see if they have compatible color combinations.

Run time: $\mathcal{O}(hw^2)$ – fast enough, but program efficiently, especially in Python!

Statistics: 63 submissions, 1 accepted, 41 unknown

Problem: Given are $n \le 10^5$ countries with ascending infection rates r_i , and quarantine times t_i .

П

- *Hop*: if $r_i \ge r_i m$, go without quarantine (1 day).
- *Jump*: go with quarantine $(1 + t_i \text{ days})$.

Answer 10^5 queries: What is the fastest route from x to y.

I: International Irregularities

Problem Author: Ragnar Groot Koerkamp

П

Solution If $r_x < r_y$: We can hop directly, so print 1.

I: International Irregularities

Problem Author: Ragnar Groot Koerkamp

П

Solution If $r_x < r_y$: We can hop directly, so print 1.

Observation Jump at most once, and only in the very beginning.

П

Solution If $r_x < r_y$: We can hop directly, so print 1.

Observation Jump at most once, and only in the very beginning.

If $r_x > r_y$, four options:

- 1. Hop to the right up to m at a time.
- 2. *Jump* directly to *y*.
- 3. Jump right of y, then hop left once.
- 4. *Jump* left of y, then hop right some times.

I: International Irregularities

Problem Author: Ragnar Groot Koerkamp

Case 1: Hop to the right up to m at a time.

Define $H_k(i)$ as the rightmost country reachable within 2^k hops.

П

I: International Irregularities

Problem Author: Ragnar Groot Koerkamp

Case 1: Hop to the right up to m at a time.

Define $H_k(i)$ as the rightmost country reachable within 2^k hops.

П

Compute H_0 with two-pointers / sliding window.

Define $H_k(i)$ as the rightmost country reachable within 2^k hops.

П

Compute H_0 with two-pointers / sliding window.

Compute $H_{k+1}(i)$ as $H_k(H_k(i))$.

Define $H_k(i)$ as the rightmost country reachable within 2^k hops.

П

Compute H_0 with two-pointers / sliding window.

Compute $H_{k+1}(i)$ as $H_k(H_k(i))$.

To compute hops from x to y:

Try to go right 2^k steps without overshooting y, for decreasing k.

Define $H_k(i)$ as the rightmost country reachable within 2^k hops.

П

Compute H_0 with two-pointers / sliding window.

Compute $H_{k+1}(i)$ as $H_k(H_k(i))$.

To compute hops from x to y:

Try to go right 2^k steps without overshooting y, for decreasing k.

 $O(n \log_2(n))$ space and $O(\log_2(n))$ time per query.

Define $H_k(i)$ as the rightmost country reachable within 2^k hops.

П

Compute H_0 with two-pointers / sliding window.

Compute $H_{k+1}(i)$ as $H_k(H_k(i))$.

To compute hops from x to y:

Try to go right 2^k steps without overshooting y, for decreasing k.

 $O(n\log_2(n))$ space and $O(\log_2(n))$ time per query.

Case 2: Jump directly to y: trivial.

Define $H_k(i)$ as the rightmost country reachable within 2^k hops.

П

Compute H_0 with two-pointers / sliding window.

Compute $H_{k+1}(i)$ as $H_k(H_k(i))$.

To compute hops from x to y:

Try to go right 2^k steps without overshooting y, for decreasing k.

 $O(n \log_2(n))$ space and $O(\log_2(n))$ time per query.

Case 2: Jump directly to y: trivial.

Case 3: Hop to the right of *y*, then hop left once.

Define $H_k(i)$ as the rightmost country reachable within 2^k hops.

П

Compute H_0 with two-pointers / sliding window.

Compute $H_{k+1}(i)$ as $H_k(H_k(i))$.

To compute hops from x to y:

Try to go right 2^k steps without overshooting y, for decreasing k.

 $O(n\log_2(n))$ space and $O(\log_2(n))$ time per query.

Case 2: Jump directly to y: trivial.

Case 3: Hop to the right of *y*, then hop left once.

Keep suffix-minimum $\min_{j < i} t_j$.

Define $H_k(i)$ as the rightmost country reachable within 2^k hops.

П

Compute H_0 with two-pointers / sliding window.

Compute $H_{k+1}(i)$ as $H_k(H_k(i))$.

To compute hops from x to y:

Try to go right 2^k steps without overshooting y, for decreasing k.

 $O(n \log_2(n))$ space and $O(\log_2(n))$ time per query.

Case 2: Jump directly to y: trivial.

Case 3: Hop to the right of *y*, then hop left once.

Keep suffix-minimum $\min_{j < i} t_j$.

Add one for the hop.

Problem Author: Ragnar Groot Koerkamp

Case 4: Hop to the left of y, then hop right some times.

Iterate through the countries from left to right, keeping track of the best country to jump to first.

П

لسلحا

Case 4: Hop to the left of y, then hop right some times.

Iterate through the countries from left to right, keeping track of the best country to jump to first.

П

For each country, either:

- jump to the stored best and hop from there, or
- jump directly and update the stored best.

لسب

Case 4: Hop to the left of y, then hop right some times.

Iterate through the countries from left to right, keeping track of the best country to jump to first.

П

For each country, either:

- jump to the stored best and hop from there, or
- jump directly and update the stored best.

Statistics: 14 submissions, 0 accepted, 12 unknown

J: Jungle Job

Problem Author: Jorke de Vlas and Mike de Vries

Problem: Given a tree, can you find the number of connected subtrees of each size? (modulo $10^9 + 7$ because the answer is huge).

J: Jungle Job

Problem Author: Jorke de Vlas and Mike de Vries

Problem: Given a tree, can you find the number of connected subtrees of each size? (modulo

 $10^9 + 7$ because the answer is huge).

Observation: Let's define F(v,c) - the number of connected subtrees, that have node v as the root

and have exactly c nodes.

Problem: Given a tree, can you find the number of connected subtrees of each size? (modulo $10^9 + 7$ because the answer is huge).

Observation: Let's define F(v, c) - the number of connected subtrees, that have node v as the root and have exactly c nodes.

If we can compute F, we can get the answer to the problem by calculating $\sum_{i \in V} F(i, c)$.

Problem: Given a tree, can you find the number of connected subtrees of each size? (modulo $10^9 + 7$ because the answer is huge).

Observation: Let's define F(v, c) - the number of connected subtrees, that have node v as the root and have exactly c nodes.

If we can compute F, we can get the answer to the problem by calculating $\sum_{i \in V} F(i, c)$.

Solution: Use dynamic programming

J: Jungle Job

Problem Author: Jorke de Vlas and Mike de Vries

Base case: If v is a leaf:

$$F(v, c) = 1 \text{ if } c \text{ is 0 or 1.}$$

$$F(v,c) = 0 \text{ if } c \geq 2.$$

Base case: If v is a leaf:

$$F(v, c) = 1 \text{ if } c \text{ is } 0 \text{ or } 1.$$

$$F(v, c) = 0 \text{ if } c \ge 2.$$

DP idea: Consider the following subtree:

Base case: If v is a leaf:

$$F(v, c) = 1 \text{ if } c \text{ is 0 or 1.}$$

$$F(v, c) = 0 \text{ if } c \ge 2.$$

DP idea: Consider the following subtree:

To calculate F(v, c) we need to consider every way to distribute c-1 remaining nodes among three child subtrees of v:

$$F(v,c) = \sum_{c_1=0}^{c-1} \sum_{c_2=0}^{c-1-c_1} F(u_1,c_1) F(u_2,c_2) F(u_3,c-c_1-c_2)$$

Base case: If v is a leaf:

$$F(v, c) = 1 \text{ if } c \text{ is 0 or 1}.$$

$$F(v, c) = 0 \text{ if } c \ge 2.$$

DP idea: Consider the following subtree:

To calculate F(v, c) we need to consider every way to distribute c-1 remaining nodes among three child subtrees of v:

$$F(v,c) = \sum_{c_1=0}^{c-1} \sum_{c_2=0}^{c-1-c_1} F(u_1,c_1) F(u_2,c_2) F(u_3,c-c_1-c_2)$$

Problem: For a node with many children *m*, this will hit the time limit:

$$F(v,c) = \sum_{c_1=0}^{c-1} \sum_{c_2=0}^{c-1-c_1} \dots \sum_{c_{n-1}=0}^{c-1-\dots} \prod_{i=1}^m F(u_i,c_i)$$

J: Jungle Job

Problem Author: Jorke de Vlas and Mike de Vries

Fix: Introduce F'(v, i, c) - the number of connected subtrees, that have node v as the root, have exactly c nodes and only include first i children of node v.

Fix: Introduce F'(v, i, c) - the number of connected subtrees, that have node v as the root, have exactly c nodes and only include first i children of node v.

Base cases for node v that has m children:

$$F(v,c)=F'(v,m,c),$$

$$F'(v, 1, c) = F(u_1, c - 1),$$

DP Let's calculate F'(v, 2, c) for this graph:

DP Let's calculate F'(v, 2, c) for this graph:

For that we just need to decide how many nodes will be in the subtree of the second child and then we can recurse: $F'(v,2,c)=\sum_{c2=0}^{c-1}F'(v,1,c-c_2)F(u_2,c_2)$

J: Jungle Job

Problem Author: Jorke de Vlas and Mike de Vries

Runtime: Computing F'(v, i, c) for all c takes $O(|u_i| \cdot \sum_j |u_j|)$ time, where $|u_i|$ denotes the size of the subtree at u_i .

J: Jungle Job

Problem Author: Jorke de Vlas and Mike de Vries

Runtime: Computing F'(v, i, c) for all c takes $O(|u_i| \cdot \sum_j |u_j|)$ time, where $|u_i|$ denotes the size of the subtree at u_i .

Total time spent at |v| is $O(\sum_i \sum_i |u_i| \cdot |u_j|)$.

Runtime: Computing F'(v, i, c) for all c takes $O(|u_i| \cdot \sum_j |u_j|)$ time, where $|u_i|$ denotes the size of the subtree at u_i .

Total time spent at |v| is $O(\sum_{i}\sum_{i}|u_{i}|\cdot|u_{j}|)$.

Observation: $\sum_i \sum_j |u_i| \cdot |u_j|$ is the number of pairs of nodes with lowest common ancestor v.

Runtime: Computing F'(v, i, c) for all c takes $O(|u_i| \cdot \sum_j |u_j|)$ time, where $|u_i|$ denotes the size of the subtree at u_i .

Total time spent at |v| is $O(\sum_i \sum_j |u_i| \cdot |u_j|)$.

Observation: $\sum_{i} \sum_{j} |u_{i}| \cdot |u_{j}|$ is the number of pairs of nodes with lowest common ancestor v. Since every pair of nodes has one LCA, the total runtime is $O(n^{2})$.

Runtime: Computing F'(v, i, c) for all c takes $O(|u_i| \cdot \sum_j |u_j|)$ time, where $|u_i|$ denotes the size of the subtree at u_i .

Total time spent at |v| is $O(\sum_i \sum_i |u_i| \cdot |u_j|)$.

Observation: $\sum_i \sum_j |u_i| \cdot |u_j|$ is the number of pairs of nodes with lowest common ancestor v. Since every pair of nodes has one LCA, the total runtime is $O(n^2)$.

Statistics: 14 submissions, 6 accepted, 5 unknown

D - Kindergarten Excursion

- If a 1 is to the left of a 0, these two have to be swapped at some point. The same is true for 2/0 and 2/1.
- Process the sequence from left to right. Keep track of the number of 1's and 2's to the left of current number and calculate the result.
- Watch out for overflow.
- Linear time solution.

Statistics: 60 submissions, 12 correct, first at 1:13:57.

Problem Author: Jorke de Vlas and Mike de Vries

Problem: Given the layout of a building, with doors that lock from only one side, how many exits on the outside do we need to close all doors?

Problem Author: Jorke de Vlas and Mike de Vries

Problem: Given the layout of a building, with doors that lock from only one side, how many exits

on the outside do we need to close all doors?

Observation: If a room a has an exit, then which doors can we close using that exit?

Problem Author: Jorke de Vlas and Mike de Vries

Problem: Given the layout of a building, with doors that lock from only one side, how many exits on the outside do we need to close all doors?

Observation: If a room a has an exit, then which doors can we close using that exit?

Write $b \rightarrow a$ to mean there is a door you can close from side a. Then consider:

If there is an exit at a, you can close all these doors: just start at any leaf, close that door, and repeat.

Problem Author: Jorke de Vlas and Mike de Vries

Problem: Given the layout of a building, with doors that lock from only one side, how many exits

on the outside do we need to close all doors?

Observation: If a room a has an exit, then which doors can we close using that exit?

Write $b \rightarrow a$ to mean there is a door you can close from side a. Then consider:

If there is an exit at a, you can close all these doors: just start at any leaf, close that door, and repeat.

Maybe you can close *more* doors, but definitely these ones.

Problem Author: Jorke de Vlas and Mike de Vries

Strongly connected: For a, b nodes, if you can walk from a to b via arrows, and also b to a, we call a and b strongly connected.

Problem Author: Jorke de Vlas and Mike de Vries

Strongly connected: For a, b nodes, if you can walk from a to b via arrows, and also b to a, we call a and b strongly connected.

SCC: We can collect strongly connected nodes into groups, called *strongly connected components*.

Problem Author: Jorke de Vlas and Mike de Vries

Strongly connected: For a, b nodes, if you can walk from a to b via arrows, and also b to a, we call a and b strongly connected.

SCC: We can collect strongly connected nodes into groups, called *strongly connected components*.

Strongly connected: For a, b nodes, if you can walk from a to b via arrows, and also b to a, we call a and b strongly connected.

SCC: We can collect strongly connected nodes into groups, called *strongly connected components*. Those components themselves form an acyclic graph.

Strongly connected: For a, b nodes, if you can walk from a to b via arrows, and also b to a, we call a and b strongly connected.

SCC: We can collect strongly connected nodes into groups, called *strongly connected components*. Those components themselves form an acyclic graph.

Necessary How many exits does this graph need? We need *at least one* in the (red) components without outgoing edges. Otherwise you can never leave it once you close the last incoming door.

Necessary How many exits does this graph need? We need *at least one* in the (red) components without outgoing edges. Otherwise you can never leave it once you close the last incoming door.

Sufficient That is also *enough exits*: from any node you can follow the arrows to one of those components, which we saw is enough to close all doors.

Problem Author: Jorke de Vlas and Mike de Vries

Solution Find the strongly connected components, e.g. with Tarjan's algorithm. Output the number of SCCs without outgoing edges.

Problem Author: Jorke de Vlas and Mike de Vries

Solution Find the strongly connected components, e.g. with Tarjan's algorithm. Output the number of SCCs without outgoing edges.

Since we only have to count root-SCCs, simpler algorithms are also possible.

Problem Author: Jorke de Vlas and Mike de Vries

Solution Find the strongly connected components, e.g. with Tarjan's algorithm. Output the number of SCCs without outgoing edges.

Since we only have to count root-SCCs, simpler algorithms are also possible.

Note Be careful with recursion on python. Use a stack instead.

Solution Find the strongly connected components, e.g. with Tarjan's algorithm. Output the number of SCCs without outgoing edges.

Since we only have to count root-SCCs, simpler algorithms are also possible.

Note Be careful with recursion on python. Use a stack instead.

Runtime Runs in $\mathcal{O}(m)$.

Solution Find the strongly connected components, e.g. with Tarjan's algorithm. Output the number of SCCs without outgoing edges.

Since we only have to count root-SCCs, simpler algorithms are also possible.

Note Be careful with recursion on python. Use a stack instead.

Runtime Runs in $\mathcal{O}(m)$.

Statistics: 24 submissions, 9 accepted, 13 unknown