ASSP

Power Supply Monitor with Watch-Dog Timer

MB3773

■ DESCRIPTION

The Fujitsu MB3773 is designed to monitor the voltage level of a power supply (+5V or an arbitrary voltage) in a microprocessor circuit, memory board in a large-size computer, for example. The MB3773 also contains a watch-dog timer function to detect uncontrol. Table status of processor and reset system/processor.

If the circuit's power supply deviates more than a specified amount, then the MB3773 generates a reset signal to the microprocessor. Thus, the computer data is protected from accidental erasure.

When the MB3773 does not receive the clock pulse from the processor in the specified period, the MB3773 generates a reset signal to the mciroprocessor.

Using the MB3773 requires few external components. To monitor only a +5 volt supply, the MB3773 requires the connection of one external capacitor.

The MB3773 is available in an 8-pin Dual In-Line package space saving Flat Package, or a Single In-Line Package.

- •Precision voltage detection (Vs = 4.2V ±2.5%)
- •Threshold level with hysterisis
- •Low voltage output for reset signal (Vcc = 0.8V typ.)
- •Precision reference voltage output (VREF = 1.245 V±1.5%)
- •External clock monitor and reset signal generator
- Negative-edge input watch-dog timer
- •Minimal number of external components (one capacitor min.)
- •Available in a variety of packages
- 8-pin Dual In-Line Package
- 8-pin Flat Package
- 8-pin Single In-Line Package

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

■ PIN ASSIGNMENT

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Supply voltage	Vcc	-0.3 to +18	V
lanut volta an	VS	-0.3 to Vcc +0.3 (≤+18)	V
Input voltage	Vs	-0.3 to +18	V
RESET, RESET Supply voltage	Voн	-0.3 to Vcc +0.3 (≤+18)	V
Power dissipation(Ta ≤ 85°C)	PD	200	mW
Storage temperature	Tstg	-55 to +125	°C

NOTE: Permanent device damage may occur if the above **Absolute Maximum Ratings** are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

■ BLOCK DIAGRAM

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Unit
Supply voltage	Vcc	+3.5 to +16	V
Reset, reset sink current	loL	0 to 20	mA
VREF output current	lout	-200 to +5	μΑ
Watch clock setting time	two	0.1 to 1000	ms
Rising/falling time	tFC, tRC	<100	μs
Terminal capacitance	Ст	0.001 to 10	μF
Operating ambient temperature	Та	-40 to +85	°C

MB3773

■ ELECTORICAL CHARACTERISTICS

(1) DC Characteristics

(Vcc=5V, Ta=25°C)

Parameter	Condition	Symbol		Value			
Parameter		Symbol	Min	Тур	Max	Unit	
Supply current	Watch dog timer operating	Icc	-	600	900	μΑ	
	Vcc	VsL	4.10	4.20	4.30		
Detection voltage	Ta = -40°C to +85°C		4.05	4.20	4.35	V	
Detection voltage	Vcc	Vsh	4.20	4.30	4.40	ľ	
	Ta = -40°C to +85°C		4.15	4.30	4.45		
Hysterisis width	Vcc	VHYS	50	100	150	mV	
Reference voltage	-	VREF	1.227	1.245	1.263	V	
Reference voltage	Ta = -40°C to +85°C		1.215	1.245	1.275	V	
Reference voltage change rate	VCC = 3.5 to 16V	ΔVREF1	-	3	10	mV	
Reference voltage output loading change rate	IOUT = -200μA to+5μA	ΔVREF2	-5	-	+5	mV	
CK threshold voltage	Ta = -40°C to +85°C	VTH	0.8	1.25	2.0	V	
CK input current	VCK = 5.0V	Іін	-	0	1.0	μΑ	
OK input current	VCK = 0.0V	lı∟	-1.0	-0.1	-		
CK input current	Watch dog timer operating VCT = 1.0V	Істр	7	10	14	μА	
High level output voltage	Vs open, IRESET = -5μA	VOH1	4.5	4.9	-	V	
riigh level output voltage	Vs = 0V, IRESET = -5μ A	VOH2	4.5	4.9	-		
Output saturation voltage	Vs = 0V, IRESET = 3mA	VOL1	-	0.2	0.4		
	Vs = 0V, IRESET = 10mA	VOL2	-	0.3	0.5	V	
	Vs open, IRESET = 3mA	VOL3	-	0.2	0.4]	
	Vs open, IRESET = 10mA	VOL4	-	0.3	0.5		
Output sink current	Vs = 0V, VRESET = 1.0V	lOL1	20	60	-	4	
Output sink current	Vs open, VRESET = 1.0V	lOL2	20	60	-	- mA	

(1) DC Characteristics (Continued)

(Vcc=5V, Ta=25°C)

Parameter	Condition	Symbol	Value			Unit
Farameter	Parameter Condition Symbol		Min	Тур	Max	Oilit
CT charge current	Power on reset operating VCT = 1.0V	Істи	0.5	1.2	2.5	μА
Min. supply voltage for RESET	VRESET = 0.4V IRESET = 0.2mA	VCCL1	-	0.8	1.2	٧
Min. supply voltage for RESET	VRESET =VCC -0.1V RL (2 pin - GND) = $1M\Omega$	VCCL2	1	0.8	1.2	V

(2)AC Characteristics

(Vcc=5V, Ta=25°C)

Donomoton	Condition	Comple ed	Value			l lmi4
Parameter	Parameter Condition Symbol		Min	Тур	Max	Unit
Vcc input pulse width	5V	Ты	8.0	-	-	μs
CK input pulse width	ског	Tckw	3.0	-	-	μs
CK input frequency		Тск	20	-	-	μs
Watch dog timer watching time	CT = 0.1μF	Twd	5	10	15	ms
Watch dog timer reset time	Cτ = 0.1μF	Twr	1	2	3	ms
Rising reset hold time	CT = 0.1μF, Vcc	Tpr	50	100	150	ms
Output propagation Delay time from Vcc	RESET, RL = $2.2k\Omega$ CL = $100pF$	TPD1	-	2	10	
	RESET, RL = $2.2k\Omega$ CL = $100pF$	TPD2	-	3	10	μs
Output rising time *	$RL = 2.2k\Omega$ CL = 100pF	tR	-	1.0	1.5	116
Output falling time *	$RL = 2.2k\Omega$ CL = 100pF	tF	-	0.1	0.5	μs

^{*} Output rising/falling time are measured at 10% to 90% of voltage.

■ TYPICAL CHARACTERISTIC CURVES

Fig. 2 - Supply current vs. supply voltage

Fig. 4 - Output voltag vs. supply voltage

Fig. 6 - Output saturation voltage vs. output sink current

Fig. 3 - Output voltag vs. supply voltage

Fig. 5 - Detection voltage (VSH, VSL) vs. temperature

Fig. 7 - Output saturation voltage vs. output sink current

■ TYPICAL CHARACTERISTIC CURVES (Continued)

Fig. 8 - High level output voltage vs. high level output current (RESET pin) $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} C \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} C \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} C \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} C \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} C \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} C \\ \end{array} \\ \end{array} \\ \begin{array}{c} C \\ \end{array} \\ \begin{array}{c} C \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} C \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} C \\ \end{array} \\ \begin{array}{c} C \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} C \\ \end{array} \\ \begin{array}{c}$

Fig. 9 - High level output voltage

vs. high level output current

(RESET pin)

Fig. 11 - Reference voltage vs. reference current

Fig. 13 - Rising reset hold time vs. temperature

■ TYPICAL CHARACTERISTIC CURVES (Continued)

Fig. 14 - Reset time vs. temperature

Fig. 15 - Watch dog timer watching time vs. temperature

Fig. 16 - Terminal capacitance vs. rising reset hold time

Fig. 17 - Terminal capacitance vs. reset time

Terminal capacitance C_T (μF)

Fig. 18 - Terminal capacitance vs. watch dog timer watching time

Terminal capacitance C_T (μF)

■ APPLICATION CIRCUIT

EXAMPLE 1: Monitoring 5V Supply Voltage and Watch-dog Timer Vcc (5V) MB3773 Logic circuit 8 RESET 2 7 RESET 6 CK **GND** 5 $\frac{1}{1}$ • Supply voltage is monitored using Vs. Detection voltage are VSH and VSL.

- Vs detection voltage can be adjusted externally.
- Selecting R₁ and R₂ values that are sufficiently lower than the resistance of the IC's internal voltage divider allows the detection voltage to be set according to the resistance ratio between R₁ and R₂. (See the table below.)

R ₁ (kΩ)	R ₂ (kΩ)	Detection voltage:V _{SL} (V)	Detection voltage:Vsн (V)
10	3.9	4.4	4.5
9.1	3.9	4.1	4.2

EXAMPLE 3: With Forced Reset (with reset hold)

а Vcc O MB3773 Logic circuit 8 RESET 2 7 RESET CK 3 6 sw Ст GND 5

• Grouding pin 7 at the time of SW ON sets RESET (pin 8) to Low and RESET (pin 2) to High.

H

• Feeding the signal to pin RESIN and turning on Tr sets the RESET pin to Low and the RESET pin to High.

Example : Comp. 1, Comp. 2 : MB4204, MB47393

NOTE: The 5V supply voltage is monitored by the MB3773.

The 12V supply viltage is monitored by the external circuit. Its output is connected to the NMI pin and, when voltage drops, Comp. 2 interrrupts the logic circuit.

- Use VCC1 (=5V) to power the comparators (Comp. 1 and Comp. 2) in the external circuit shown above.
- The detection voltage of the VCC2 (=12V) supply voltage is approximately 0.2V. VCC2 detection voltage and hysterisis width can be found using the following formulas:

→Hysterisis width VHYS = V2H - V2L

Example : Comp. 1, Comp. 2 : MB4204, MB47393

NOTE: When either 5V or 12V supply voltage decreases below its detection voltage (VSL), the MB3773 RESET pin is set to High and the MB3773 RESET pin is set to Low.

- Use VCC1 (=5V) to power the comparators (Comp. 1 and Comp. 2) in the external circuit shown above.
- The detection voltage of the VCC2 (=12V) supply voltage is approximately 9.2V/9.4V and has a hysterisis width of approximately 0.2V.

For the formulas for finding hysterisis width and detection voltage, see section 4.

- Comp. 1 and Comp. 2 are used to monitor for overvoltage while the MB3773 is used to monitor for low voltage.
 - Detection voltages V1/V1H at the time of low voltage areappoximately 4.2V/4.3V. Detection voltages V2L/V2H at the time of overvoltage are approximately 6.0V/6.1V.
 - For the formulas for finding hysterisis width and detection voltage, see section 4.
- Use VCC (=5V) to power the comparators (Comp. 1 and Comp. 2) in the external circuit shown above.

EXAMPLE 8: Stopping Watch-dog Timer (Monitering only supply voltage)

These are example application circuts in which the MB3773 monitors supply voltage alone without resetting the microcomputer even if the latter, used in standby mode, stops sending the clock pulse to the MB3773.

•The watch-dog timer is inhibited by clamping the Cr pin voltage to VREF.

The supply voltage is constantly monitored even while the watch-dog timer is inhibited.

For this reason, a reset signal is output at the occurrence of either instataneous disruption or a sudden drop to low voltage.

Note that in application examples a and b, the hold signal is inactive when the watch-dog timer is inhibited at the time of resetting.

If the hold signal is active when tie microcomputer is reset, the solution is to add a gate, as in examples c and d.

(Continued)

(Continued)

(a) TPR reduction method

- (b) Standard usage
- RESET is the only output that can be used.
- Standard TPR, TWD and TWR value can be found using the following formulas.

Formulas:

TPR (ms)
$$\simeq$$
 100 \times CT (μ F)

TWD (ms)
$$\simeq$$
 100 \times CT (μ F)

TWR (ms)
$$\simeq$$
 16 \times CT (μ F)

• The above formulas allow fo standard values in determining TPR, TWD and TWR.

Reset hold time is compared below between the reduction circuit and the standard circuit.

$$CT = 0.1 \mu F$$

	Tpr reduction circuit	Standard circuit
Tpr <u>∼</u>	10ms	100ms
Two ≃	10ms	10ms
Twr ≃	1.6ms	2.0ms

MB3773

Description of Application Circuits

Using one MB3773, this application circuit monitors multiple microcomputers in one system. Signals from each microcomputer are sent to FF1, FF2 and FF3 clock inputs. Figure 2 shows these timings. Each flip-flop operates using signals sent from microcomputers as its clock pulse. When even one signal stops, the relevant receiving flip-flop stops operating. As a result, cyclical pulses are not generated at output Q3. Since the clock pulse stops arriving at the CK pin of the MB3773, the MB3773 generates a reset signal.

Note that output Q3 frequncy f will be in the following range, where the clock frequencies of CK1, CK2 and CK3 are f1, f2 and f3 respectively.

$$\frac{1}{f_0} \le \frac{1}{f} \le \frac{1}{f_1} + \frac{1}{f_2} + \frac{1}{f_3}$$

where fo is the lowest frequency among f1, f2 and f3.

- This is an example application to limit upper frequency fH of clock pulses sent from the microcomputer.
 - If the CK cycle sent from the microcomputer exceeds fH, the circuit generates a reset signal.
 - (The lower frequency has already been set using Cr.)
- When a clock pulse such as shown below is sent to pin CK, a short T₂ prevents C₂ voltage from reaching the CK input threshold level (≃1.25V), and will cause a reset signal to be output.

The T1 value can be found using the following formula:

Example: Setting C and R allow the upper T1 value to be set (See the table below.)

С	R	T1
0.01μF	10kΩ	30µs
0.1μF	10kΩ	300μs

■ PACKAGE DIMENSIONS

■ PACKAGE DIMENSIONS (Continued)

■ PACKAGE DIMENSIONS (Continued)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi

Kanagawa 211-8588, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division

3545 North First Street San Jose, CA 95134-1804, USA

Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park

Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220

http://www.fmap.com.sg/

F9803

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan. This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.