Задача 1

Постройте явное поле \mathbb{F}_8 и составьте для него таблицы сложения и умножения.

Отметим тот факт, что поле $\mathbb{F}_8\simeq \mathbb{F}_2[x]/x^3\simeq$ остаткам при деление на x^3+x^2+1 , то есть многочлены степени не более чем 2 над полем 2. По данному отображению легко строим таблицу сложения и умножения:

+	0	1	x	x+1	x^2	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$
0	0	1	x	x+1	x^2	$x^2 + x$	$x^2 + 1$	$x^2 + x +$
1	1	0	x+1	x	$x^2 + 1$	$x^2 + x + 1$	x^2	$x^2 + x$
x	x	x+1	0	1	$x^2 + x$	x^2	$x^2 + x + 1$	$x^2 + 1$
x+1	x+1	x	1	0	$x^2 + x + 1$	$x^2 + 1$	$x^2 + x$	x^2
x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	x	1	x+1
$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	x	0	x+1	1
$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$		1	x+1	0	x
$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2	x+1	1	x	0

×	0	1	x	x+1	x^2	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$
0	0	0	0	0	0	0	0	0
1	0	1	x	x+1	x^2	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$
x	0	x	x^2	$x^2 + x$	$x^2 + 1$	1	x^2	x+1
x+1	0	x+1	$x^2 + x$	$x^2 + 1$	x+1	$x^2 + x + 1$	x	x^2
x^2	0	x^2	$x^2 + 1$	1	$x^2 + x + 1$	x	x+1	$x^2 + x$
$x^2 + x$	0	$x^2 + x$	1	$x^2 + x + 1$	x	x+1	x^2	$x^2 + 1$
$x^2 + 1$	0	$x^2 + 1$	$x^2 + x + 1$	x	x+1	x^2	$x^2 + x$	1
$x^2 + x + 1$	0	$x^2 + x + 1$	x+1	x^2	$x^2 + x$	$x^2 + 1$	1	x

Задача 2

Реализуем поле \mathbb{F}_9 в виде $\mathbb{Z}_3[x]/(x^2+1)$. Перечислите в этой реализации все элементы данного поля, являющиеся пораждающими циклической группы \mathbb{F}_9^{\times} .

Для начала построим таблицу умножения:

×	0	1	2	x	x+1	x+2	2x	2x+1	2x+2
0	0	0	0	0	0	0	0	0	0
1	0	1	2	x	x+1	x+2	2x	2x+1	2x+2
2	0	2	1	2x	2x+2	2x+1	x	x+2	x+1
x	0	x	2x	2	x+2	2x+2	1	x+1	2x+1
x+1	0	x+1	2x + 2	x+2	2x	1	2x+1	2	x
x+2	0	x+2	2x+1	2x+2	1	x	x+1	2x	2
2x	0	2x	x	1	2x + 1	1+x	2	2x+2	x+2
2x+1	0	2x+1	x+2	x+1	2	2x	2x+2	x	1
2x+2	0	2x+2	x+1	2x+1	x	2	x+2	1	2x

Отметим, что порядок пораждающих элементов равен 8, откуда получаем ответ: x+1, x+2, 2x+1, 2x+2

Проверьте, что многочлен x^2+1 и y^2-y-1 непреводимы над \mathbb{Z}_3 , и установите явно изоморфизм между $\mathbb{Z}_3[x]/(x^2+1)$ и $\mathbb{Z}_3[y]/(y^2-y-1)$.

 $x^2+1=\{1,2\}$ над $\mathbb{Z}_3\Rightarrow$ корней нет. $y^2-y-1=y^2+2y+2=(y+1)^2+1=\{1,2\},$ так же без корней.

Построим таблицу умножения в $\mathbb{Z}_3[y]/(y^2-y-1)$:

×	0	1	2	y	y+1	y+2	2y	2y+1	2y+2
0	0	0	0	0	0	0	0	0	0
1	0	1	2	y	y+1	y+2	2y	2y + 1	2y+2
2	0	2	1	2y	2y + 2	2y+1	y	y+2	y+1
y	0	y	2y	y+1	2y + 1	1	2y+2	2	y+2
y+1	0	y+1	2y + 2	2y+1	2	y	y+2	2y	1
y+2	0	y+2	2y + 1	1	y	2y + 2	2	y+1	2y
2y	0	2y	y	2y+2	y+2	2	y+1	1	2y+1
2y+1	0	2y + 1	y+2	2	2y	y+1	1	2y+2	y
2y+2	0	2y + 2	y+1	y+2	1	2y	2x+1	y	2

Для корректного определения изоморфизма, нам достаточно указать, куда переходит 1 и x. Учитываю порядки элементов получаем:

$$\varphi(1) = 1$$
 $\varphi(x) = y + 1$