ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

Кафедра Прочности Летательных Аппара	тов
--------------------------------------	-----

Дипломная работа на степень бакалавра на тему:

Исследование прочности конструкции центроплана для крыльев большого удлинения.

Студент	Дынников Ю.А.
Научный руководитель степень?	Шаныгин А.Н.
Зав. кафедрой	Замула ГН

Оглавление

1	Вве	едение		2			
2	Под	дготовка к решению задачи		3			
	2.1	Программный комплекс "Conver"		3			
		2.1.1 Описание комплекса		3			
		2.1.2 Внесенные изменения		4			
		2.1.3 Сравнение работы с типовыми операциями в старой и новой в	ерсии				
		интерфейса		5			
	2.2	Подбор оптимального размера конечного элемента		7			
3 Решение задачи							
	3.1 Оптимизация геометрических параметров сечения центроплана						
		3.1.1 Постановка задачи		9			
		3.1.2 Постановка модельной задачи					
	3.2						
		3.2.1 Место закрепления двигателя					

Глава 1

Введение

В настоящее время стремительно развиваются беспилотные летательные аппараты. Некоторые из них конструируются под задачи разведки, которые налагают на ЛА требования малозаметности. [1]

Глава 2

Подготовка к решению задачи

2.1 Программный комплекс "Conver"

2.1.1 Описание комплекса

Комплекс представляет собой многоуровневую среду для автоматизированного проектирования и оптимизации ЛА. Комплекс делится на 4 уровня по степени детализации:

Рис. 2.1: Принципиальная схема четырехуровневого проектирования

- Уровень 1: расчёт аэродинамических нагрузок и аэродинамических характеристик;
- Уровень 2: расчёт инерционных нагрузок, формирование случаев нагружения, решение задач статической и динамической аэроупругости, анализ веса конструкции планера;
- Уровень 3: расчёт местной и общей устойчивости, анализ закритического состояния отдельных элементов конструкции, расчёт нелинейного НДС панелей гермокабины, расчет несущей способности элементов конструкции;
- Уровень 4: расчёт общего НДС конструкции ЛА, определение запасов прочности, определение остаточной прочности, расчет длительной прочности.

Основные особенности программного комплекса:

- 1. Эффективное проведение параметрических исследований для различных конструкций планера, что позволяет минимизировать временные затраты и снизить трудоёмкость всего процесса;
- 2. Обеспечение более высокого качественного уровня параметрических исследований на начальной стадии проектирования за счёт автоматизированного создания полноразмерных моделей конструкции ЛА и автоматизации процесса анализа результатов исследований;
- 3. Оперативная оценка веса конструкций летательных аппаратов с учётом технологических ограничений при автоматическом использовании специализированных баз данных поправочных технологических коэффициентов.

2.1.2 Внесенные изменения

В ходе работы был создан новый интерфейс для первого уровня комплекса.

Рис. 2.2: Новый интерфейс программного комплекса "Conver"

В новом интерфейсе были реализованы следующие изменения:

- Полностью переработана система визуализации
 - Добавлены инструменты масштаба и перемещения
 - Добавлена двусторонняя связь между схемой и областями ввода данных
 - Добавлена возможность отображения каждого этажа в схеме по отдельности
 - Добавлено отображение ошибок во введенных данных
- Переработана система ввода параметров отсеков
 - Добавлены визуальные подсказки, предупреждающие ошибки в данных
 - Добавлена возможность ввода параметров сразу для нескольких отсеков
- Добавлена возможность ввода нагрузок непосредственно через задание сил, действующих на отсек

- Добавлена возможность просмотра данных, получаемых из других уровней комплекca:
 - Оценочный расчет веса конструкции или выбранных отсеков
 - Расчет объема выбранных отсеков
 - Просмотр площадей стенок отсеков

Рассмотрим, как изменилась работа с типовыми операциями, с которыми приходится сталкиваться пользователю.

2.1.3 Сравнение работы с типовыми операциями в старой и новой версии интерфейса

Изменение толщин в отсеке

Задача: изменить толщину отсека в центроплане.

Прежний подход:

- Найти номер отсека по схеме (Puc.2.3) ($\sim 1-3$ мин.)
- Найти соответствующую ячейку в таблице толщин. (~ 15 сек.)
- Изменить значение в ячейке. ($\sim 5~{\rm cek.}$)

Итого: ~ 3 мин.

Рис. 2.3: Окно отображения отсеков в предыдущей версии интерфейса

Новый подход:

- Кликнуть на нужный отсек на схеме (Рис.??~ 5 сек.)
- Изменить значение в ячейке толщины нужной стенки $(\sim 5~{\rm cek.})$

Итого: ~ 10 сек.

Рис. 2.4: Окно отображения отсеков в новой версии интерфейса

Нагружение отсека заданной силой

Задача: по визуальному нахождению стенки нагрузить её заданной силой.

Прежний подход:

- Найти по схеме (Рис.2.3) отсеки, в которых может быть определена нужная стенка (~ 5 мин.)
- Найти в таблице толщин, какой из выбранных отсеков имеет толщину этой стенки отличную от нуля(~ 3 мин.)
- Из 4 уровня программы найти площадь этой стенки $(\sim 3 \text{ мин.})$
- По площади стенки найти давление, которое необходимо на неё приложить (~ 1 мин.)
- В таблице давлений найти нужную ячейку и ввести в неё полученную величину(\sim 5 мин.)

Итого: ~ 17 мин.

Новый подход:

- Кликнуть на один из отсеков, которому принадлежит эта стенка $(\sim 10 \text{ сек.})$
- Если ячейка давления на нужную стенку выделена красным, выбрать другой отсек, в котором эта ячейка не выделена красным, то есть в которой эта стенка имеет ненулевую толщину(~ 1 мин.)

- Нажать кнопку "Add load" (~ 10 сек.)
- В открывшемся окне (Рис.2.5) ввести величину прикладываемой силы и выбрать стенки отсека, на которые должна быть распределена данная нагрузка. (~ 30 сек.)
- Нажать "Add load" (~ 10 сек.)

Итого: ~ 2 мин.

Рис. 2.5: Окно добавления нагрузок в новой версии интерфейса

2.2 Подбор оптимального размера конечного элемента

Было построено 7 моделей с различным размером конечного элемента. Путем расчета моделей с заданными нагрузками были определены средние величины напряжений для стенок в наиболее напряженных отсеках (обозначены белым на Puc.2.6)

Рис. 2.6: Стык правого крыла и фюзеляжа. Схематичное изображение вида сверху

Рис. 2.7: Зависимость средних напряжений в отсеках от величины КЭ

Была получена зависимость средних напряжений в этих отсеках от размера конечного элемента ($\operatorname{Puc}.2.7$)

На основании полученных данных была определена оптимальная величина конечного элемента для дальнейшей работы над моделью, равная 0,11м.

Глава 3

Решение задачи

3.1 Оптимизация геометрических параметров сечения центроплана

3.1.1 Постановка задачи

В ходе работы было проведено исследование зависимости веса центроплана от его параметров с учетом критерия неразрушения конструкции при заданных нагрузках. Для этого была решена следующая модельная задача.

3.1.2 Постановка модельной задачи

Имеется упрощенная модель центроплана — короб переменного прямоугольного сечения с перегородками. На него передаются нагрузки посредством приложения аэродинамических нагрузок на модель крыла — короб постоянного прямоугольного сечения. Для модели центроплана имеются два параметра: относительная координата нижней точки сечения и строительная высота в плоскости симметрии самолета. Было выбрано 42 пары параметров, для каждой пары проведена оптимизация сечения с целью удовлетворения требований прочности конструкции, а именно: среднее напряжение в каждой панели не должно превышать допускаемого напряжения, равного 35кг/мм². Оптимизация проводилась алгоритмом σ/σ для каждой панели. Итоговые результаты вычислений приведены в таблице 3.1 и на Puc.3.1

 Таблица 3.1: Зависимость площади панелей центроплана и веса кессона от параметров центроплана

	Вес кессона [кг]				Площадь панелей центроплана [м²]				
N	Верхние	Нижние	Боковые		Верхние	Нижние	Боковые		
	панели	панели	стенки	\sum	панели	панели	стенки	Σ	
1	297.182	294.551	12.561	604.294	2.730	2.730	4.000	9.520	
2	225.261	237.378	27.672	490.313	2.730	2.740	5.210	10.720	
3	190.080	222.327	49.159	461.564	2.730	2.760	5.820	11.340	
4	161.544	211.467	65.963	438.972	2.730	2.760	6.450	11.950	
5	146.581	199.989	66.844	413.415	2.730	2.780	7.090	12.590	
6	134.746	191.293	70.912	396.952	2.730	2.800	7.640	13.200	
7	350.816	374.021	47.679	772.515	2.910	2.910	4.000	9.850	
8	253.752	259.311	53.180	566.245	2.910	2.850	5.210	10.990	
9	213.881	226.655	57.618	498.154	2.910	2.830	5.840	11.570	
10	188.442	205.603	62.047	456.092	2.910	2.810	6.450	12.150	
11	174.466	196.192	66.506	437.164	2.910	2.780	7.090	12.770	
12	154.328	195.919	70.963	421.210	2.910	2.770	7.680	13.350	
13	363.681	391.414	48.862	803.953	3.010	3.000	4.000	10.000	
14	258.118	275.555	53.209	586.883	3.010	2.930	5.230	11.160	
15	225.322	238.220	57.604	521.145	3.010	2.890	5.820	11.720	
16	201.612	214.755	62.046	478.413	3.010	2.860	6.440	12.310	
17	171.877	203.370	66.418	441.665	3.010	2.840	7.050	12.900	
18	163.553	201.207	70.912	435.673	3.010	2.820	7.660	13.480	
19	380.079	398.521	49.032	827.631	3.050	3.050	4.000	10.110	
20	267.143	279.590	53.134	599.866	3.050	2.980	5.210	11.240	
21	231.158	238.954	57.667	527.779	3.050	2.930	5.820	11.820	
22	197.327	218.001	62.040	477.368	3.050	2.910	6.410	12.390	
23	191.553	205.935	66.481	463.971	3.050	2.870	7.070	12.980	
24	158.352	203.948	70.897	433.199	3.050	2.850	7.660	13.560	
25	383.525	410.374	50.351	844.249	3.110	3.110	4.000	10.210	
26	279.228	288.331	53.186	620.745	3.110	3.030	5.210	11.350	
27	233.614	249.500	57.583	540.696	3.110	2.990	5.820	11.910	
28	213.922	221.683	62.125	497.728	3.110	2.950	6.450	12.500	
29	180.457	210.067	66.523	457.046	3.110	2.920	7.070	13.070	
30	167.492	205.426	71.001	443.918	3.110	2.880	7.640	13.660	
31	401.418	424.040	50.413	875.868	3.160	3.160	4.000	10.330	
32	285.115	297.451	53.649	636.214	3.160	3.070	5.230	11.470	
33	251.131	255.015	57.656	563.801	3.160	3.040	5.860	12.030	
34	212.049	229.543	62.067	503.658	3.160	3.000	6.450	12.610	
35	191.030	215.968	66.550	473.548	3.160	2.970	7.070	13.170	
36	170.765	209.184	70.962	450.912	3.160	2.920	7.660	13.740	
37	431.880	451.562	51.974	935.418	3.230	3.230	4.000	10.440	
38	291.199	306.178	54.263	651.640	3.230	3.130	5.210	11.560	
39	253.054	265.073	57.593	575.719	3.230	3.090	5.820	12.140	
40	222.782	233.403	61.948	518.132	3.230	3.050	6.400	12.700	
41	197.192	218.301	66.423	481.917	3.230	3.020	7.030	13.270	
42	175.591	210.828	70.877	457.295	3.230	2.970	7.660	13.840	

Рис. 3.1: Зависимость веса кессона от параметров центроплана

3.2 Валидация решения

В ходе работы была проведена валидация полученного решения, а именно, было проведено сравнение результатов, полученных с помощью программного комплекса, с результатами аналитических расчетов.

3.2.1 Место закрепления двигателя

Одним из наиболее проблемных мест конструкции является переход от центроплана к хвостовой части БПЛА.

Рис. 3.2: Вид центральной части фюзеляжа с выделенными стенками

Для предварительной оценки НДС наиболее нагруженных деталей и узлов хвостовой части корпуса БПЛА была решена модельная задача по оценке нагруженности вертикальных стенок, обеспечивающих передачу нагрузок от двигателя, оборудования и топлива на конструкцию центроплана (стенки обозначены на Рис. 3.2 раскраской в горизонтальную полоску, светло-серой заливкой обозначены зоны основных узлов крепления двигателя). Уровень нагружения был оценен на основе аналитических формул. Схема нагружения модельных стенок показана на Рис. 3.3

Рис. 3.3: Схема нагружения модельных стенок

Уровень нагружения оценивался по величинам касательных напряжений. Касательные напряжения в пластине при чистом сдвиге равны

$$\tau = \frac{3}{2} \cdot \frac{Q}{bh} \tag{3.1}$$

Критические касательные напряжения в пластине при чистом сдвиге равны

$$\tau_{\rm kp} = \frac{K}{12} \frac{\pi^2 D}{b^2 h} = \frac{K}{12} \frac{\pi^2 E}{(1 - \mu^2)} \left(\frac{h}{b}\right)^2, K = 5.34 + 4\frac{a}{b}$$
 (3.2)

, где a - размер пластины вдоль направления действия силы, b - размер пластины поперек направления действия силы, h - толщина пластины, D - изгибная жесткость пластины, E - модуль Юнга, μ - модуль Пуассона материала пластины, Q - приложенная сила.

Допускаемые толщины найдем из условия

$$\tau_{\rm kp} \ge \tau \to h \ge \sqrt[3]{\frac{3 \cdot 12}{2} \frac{Qb \cdot (1 - \mu^2)}{k\pi^2 E}}$$
(3.3)

Подставляя значения, получим:

$$Q = \frac{8000}{n} \text{kgc}, \ a = 1300 \text{mm}, \ b = 1009 \text{mm}, \ \mu = 0.3, \ E = 7000 \frac{\text{kgc}}{\text{mm}^2}$$
 (3.4)

$$h \ge \sqrt[3]{\frac{18 \cdot 8000 \cdot 1000 \cdot (1 - \mu^2)}{k\pi^2 E n}} = \frac{5.67}{\sqrt[3]{n}}$$
 (3.5)

Таким образом, для случаев n=2 и n=4 были получены минимальные допустимые толщины, равные

$$h \ge 4.50 \text{MM}, n = 2$$
 (3.6)

$$h \ge 2.83 \text{MM}, n = 4$$
 (3.7)

Список таблиц

3.1	Зависимость	площади	панелей	центроплана	и веса	кессона	OT	параметров	
	центроплана								10

Список иллюстраций

2.1	Принципиальная схема четырехуровневого проектирования	3
2.2	Новый интерфейс программного комплекса "Conver"	4
2.3	Окно отображения отсеков в предыдущей версии интерфейса	5
2.4	Окно отображения отсеков в новой версии интерфейса	6
2.5	Окно добавления нагрузок в новой версии интерфейса	7
2.6	Стык правого крыла и фюзеляжа. Схематичное изображение вида сверху .	7
2.7	Зависимость средних напряжений в отсеках от величины КЭ	8
3.1	Зависимость веса кессона от параметров центроплана	11
3.2	Вид центральной части фюзеляжа с выделенными стенками	12
3.3	Схема нагружения модельных стенок	12

Литература

- [1] Diaz Jesus. Usaf confirms new secret stealth plane. http://gizmodo.com/5419363/usaf-confirms-new-secret-stealth-plane, 2009.
- [2] Rabbert Klein. Black holes and their relation to hiding eggs. *Theoretical Easter Physics*, 2010. (to appear).