# COMP3203 Final Exam Notes

William Findlay et al. December 13, 2018

# Contents

| 1 | Tes           | t 1 Stuff (Brief and Important Only) | 4 |  |  |  |  |  |  |
|---|---------------|--------------------------------------|---|--|--|--|--|--|--|
|   | 1.1           | Units                                | 4 |  |  |  |  |  |  |
|   | 1.2           | Equations                            | 4 |  |  |  |  |  |  |
|   |               | 1.2.1 Frequency and Period           | 4 |  |  |  |  |  |  |
|   |               | 1.2.2 Wavelength                     | 4 |  |  |  |  |  |  |
|   |               | 1.2.3 Bandwidth                      | 4 |  |  |  |  |  |  |
|   |               | 1.2.4 Delay                          | 4 |  |  |  |  |  |  |
|   |               | 1.2.5 Delay Bandwidth Product        | 4 |  |  |  |  |  |  |
|   |               | 1.2.6 Shannon Capacity               | 5 |  |  |  |  |  |  |
|   |               | 1.2.7 Redundancy                     | 5 |  |  |  |  |  |  |
|   | 1.3           | Error Checking                       | 5 |  |  |  |  |  |  |
|   | 1.5           | Entor Checking                       | 9 |  |  |  |  |  |  |
| 2 | $\mathbf{AR}$ | Os                                   | 5 |  |  |  |  |  |  |
| _ | 2.1           | Sliding Window                       | 5 |  |  |  |  |  |  |
|   | 2.1           | 2.1.1 Go Back N                      | 5 |  |  |  |  |  |  |
|   |               | 2.1.2 Selective Reject               | 6 |  |  |  |  |  |  |
|   | 0.0           | v                                    |   |  |  |  |  |  |  |
|   | 2.2           | Stop and Wait                        | 6 |  |  |  |  |  |  |
|   |               | 2.2.1 Errors in Stop and Wait        | 6 |  |  |  |  |  |  |
|   |               | 2.2.2 Correctness                    | 8 |  |  |  |  |  |  |
| 9 | ъ <i>т</i>    |                                      | 6 |  |  |  |  |  |  |
| 3 |               | tiaccess                             | 8 |  |  |  |  |  |  |
|   | 3.1           | LANs                                 | 8 |  |  |  |  |  |  |
|   | 3.2           | The Problem with Shared Channels     | 8 |  |  |  |  |  |  |
|   | 3.3           | MAC Protocol                         | 9 |  |  |  |  |  |  |
|   | 3.4           | Uncoordinated Access Control         | 9 |  |  |  |  |  |  |
|   | 3.5           | Ethernet                             | 9 |  |  |  |  |  |  |
|   | 3.6           | Coordinated Access                   | 9 |  |  |  |  |  |  |
|   |               | 3.6.1 Tree Algorithm                 | 9 |  |  |  |  |  |  |
|   |               | 3.6.2 Binary Countdown               | 9 |  |  |  |  |  |  |
|   |               | 3.6.3 Bitmap                         | 9 |  |  |  |  |  |  |
|   |               |                                      |   |  |  |  |  |  |  |
| 4 | Wir           | reless                               | 9 |  |  |  |  |  |  |
|   | 4.1           | Cellular                             | 9 |  |  |  |  |  |  |
|   | 4.2           | Ad Hoc                               | 9 |  |  |  |  |  |  |
|   |               | 4.2.1 UDG                            | 9 |  |  |  |  |  |  |
|   |               | 4.2.2 Compass Routing                | 9 |  |  |  |  |  |  |
|   |               | 4.2.3 Face Routing                   | 9 |  |  |  |  |  |  |
|   | 4.3           | Bluetooth                            | 9 |  |  |  |  |  |  |
|   |               |                                      |   |  |  |  |  |  |  |
| 5 | GP            | $\mathbf{S}$                         | 9 |  |  |  |  |  |  |
|   | 5.1           | Three Techniques                     | 9 |  |  |  |  |  |  |
|   | 5.2           | Satellites                           | 9 |  |  |  |  |  |  |
|   |               |                                      |   |  |  |  |  |  |  |
| 6 | Rou           | Routing                              |   |  |  |  |  |  |  |
|   | 6.1           | Distance Vector (RIP)                | 9 |  |  |  |  |  |  |
|   | 6.2           | Link State Protocol (LSP)            | 9 |  |  |  |  |  |  |
|   | 6.3           | MSTs                                 | 9 |  |  |  |  |  |  |
|   | 6.4           | Dijkstra                             | 9 |  |  |  |  |  |  |
|   | 0.1           |                                      | J |  |  |  |  |  |  |
| 7 | IΡ            |                                      | 9 |  |  |  |  |  |  |
| • | 7.1           | IPv4                                 | 9 |  |  |  |  |  |  |
|   |               | 7.1.1. Classes of Address            | 0 |  |  |  |  |  |  |

|   |                  | 7.1.2 Subnets                                                                                                        | 9                                      |
|---|------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|   |                  | 7.1.3 Subnet Masks                                                                                                   | 9                                      |
|   | 7.2              | IPv6                                                                                                                 | 9                                      |
|   | 7.3              | DHCP                                                                                                                 | 9                                      |
|   | 7.4              | ARP                                                                                                                  | 9                                      |
|   |                  | 7.4.1 RARP                                                                                                           | 9                                      |
| 8 | $\mathbf{TC}$    |                                                                                                                      | 9                                      |
|   | 8.1              | How it Works (Sliding Window)                                                                                        | 9                                      |
|   | 8.2              | How it Builds Statistics                                                                                             | 9                                      |
|   | 8.3              | Equilibrium Model                                                                                                    | 9                                      |
|   |                  |                                                                                                                      |                                        |
| 9 | San              | aple Test                                                                                                            | 10                                     |
| 9 | San              | aple Test                                                                                                            |                                        |
| 9 | San<br>1         |                                                                                                                      |                                        |
| 9 | San<br>1         | _                                                                                                                    | 10                                     |
| 9 | San<br>1         | 1.1                                                                                                                  | 10<br>10                               |
| 9 | Sam 1            | 1.1<br>1.2                                                                                                           | 10<br>10<br>10                         |
| 9 | 1                | 1.1                                                                                                                  | 10<br>10<br>10<br>10                   |
| 9 | 2                | 1.1<br>1.2<br>1.3                                                                                                    | 10<br>10<br>10<br>10<br>11             |
| 9 | 2                | 1.1<br>1.2<br>1.3                                                                                                    | 10<br>10<br>10<br>10<br>11<br>11       |
| 9 | 1<br>2<br>3<br>4 | 1.1                                                                                                                . | 10<br>10<br>10<br>10<br>10<br>11<br>11 |

#### Test 1 Stuff (Brief and Important Only) 1

#### Units 1.1

| prefix | base 10 conversion | base 2 conversion |
|--------|--------------------|-------------------|
| pico   | $10^{-12}$         | $2^{-40}$         |
| nano   | $10^{-9}$          | $2^{-30}$         |
| micro  | $10^{-6}$          | $2^{-20}$         |
| milli  | $10^{-3}$          | $2^{-10}$         |
| _      | $10^{0}$           | $2^{0}$           |
| kilo   | $10^{3}$           | $2^{10}$          |
| mega   | $10^{6}$           | $2^{20}$          |
| giga   | $10^{9}$           | $2^{30}$          |
| tera   | $10^{12}$          | $2^{40}$          |
| peta   | $10^{15}$          | $2^{50}$          |
|        |                    |                   |

- $Hz \implies$  cycles per second
  - $-GHz \implies 10^9$  cycles per second
  - etc.

# **Equations**

### 1.2.1 Frequency and Period

- $T = \frac{1}{f}$   $f = \frac{1}{T}$

#### 1.2.2 Wavelength

- $\lambda = vT$
- $f = \frac{v}{\lambda}$ , since  $f = \frac{1}{T} \implies \lambda = \frac{v}{f}$ 
  - for electromagnetic waves in a vacuum, v=c

### 1.2.3 Bandwidth

- B = lowest frequency highest frequency

  - -bps
  - or any scalar of the above two

#### 1.2.4 Delay

- $\begin{array}{l} \bullet \ \ \mathrm{propagation} \ \ \mathrm{delay} = \frac{\mathrm{distance}}{\mathrm{speed} \ \mathrm{of} \ \mathrm{light} \ \mathrm{in} \ \mathrm{medium}} \\ \bullet \ \ \mathrm{transmit} \ \ \mathrm{delay} = \frac{\mathrm{packet} \ \mathrm{size}}{\mathrm{bandwidth}} \\ \bullet \ \ \mathrm{queue} \ \ \mathrm{delay} = \mathrm{buffering} \ \ \mathrm{and} \ \ \mathrm{switching} \ \ \mathrm{delays} \ \ \mathrm{at} \ \ \mathrm{nodes} \\ \end{array}$

- total delay = propagation + transmit + queue
- **RTT** or round-trip-time =  $2 \times \text{delay}$

## 1.2.5 Delay Bandwidth Product

- # of bits =  $B \times D$ - e.g., # of bits =  $10bps \times 10s = 100b$
- this is the number of bits of data that can be sent before the first bit arrives
- we can send  $2(B \times D)$  bits before we receive the first reply bit

#### 1.2.6 Shannon Capacity

- maximum theoretical capacity
- $C = B \log_2 \left(1 + \frac{S}{N}\right)$ , where  $\frac{S}{N}$  is the signal/noise ratio

  - $\begin{array}{ccc} & \text{high } \frac{S}{N} & \Longrightarrow \text{ good capacity} \\ & \text{low } \frac{S}{N} & \Longrightarrow \text{ poor capacity } \because \log_2(1+0) = 0 \end{array}$
- $\frac{S}{N}$  should be in Db

#### 1.2.7 Redundancy

- redundancy =  $\frac{n+r}{r}$
- r redundancy bits must cover n+r bits for errors
  - in other words,  $2^r$  must be able to express n+r bits
  - this means  $2^r > n + r$
  - or,  $n < 2^r r$

#### **Error Checking** 1.3

- VRC
- LRC
- CRC
  - this is usually used before ARQ
- checksum

# **ARQs**

- (A)utomatic (R)epeat Re(Q)uests
- strategy to handle errors detected by the CRC
  - or whatever other detection method
- main types
  - stop and wait
  - sliding window
    - go back N
    - selective reject

#### 2.1Sliding Window

#### 2.1.1 Go Back N

- most commonly used sliding window
- $\bullet$  sequential frames numbered  $n \mod N$
- send up to N-1 frames before an ACK is received
- unbounded sequence numbers is a hurdle for sliding window in non-FIFO channels

#### ACKs and NAKs

- if no error
  - send RR (ACK) for frame[n]
- - send REJ (NAK) for frame[n]
- if frame lost, send a NAK
- if no ACK or NAK received before timeout, assume lost

#### When Sender Receives a NAK[n]

• resend frame [n] and all frames sent since

#### When a Sender Receives No ACK or NAK

• go back to the previous ACK and resend all frames sent since

#### 2.1.2 Selective Reject

- $\bullet$  similar to go back N
- BUT we only resend the lost frame
  - out of order!
  - receiver needs sorting logic to store frames after a NAK
- in general, smaller window size



Figure 1: An example of the Selective Reject protocol.

## 2.2 Stop and Wait

- $\bullet\,$  also called an  ${\bf ABP}$ 
  - $-\ alternating\ bit\ protocol$
  - because the label bits alternate between 0 and 1
- $\bullet$  you can think of it as sliding "window" with a  $\mathbf{window}$  size of 1
- works only in **FIFO queues** 
  - suitable for data link layer

#### 2.2.1 Errors in Stop and Wait

- two main types
- frame errors
  - damaged frame
- ullet **ACK** errors
  - damaged acknowledgement



Figure 2: A diagram of the Stop and Wait ARQ protocol.

#### Frame Errors



Figure 3: A lost frame error in the Stop and Wait ARQ protocol.

- frame is damaged
  - one or more bits have been altered
- $\bullet$  discard the frame
- $\bullet\,$  source waits for ACK
  - if it doesn't receive one, it will resend

## ACK Errors

- frame is received but ACK is damaged
- sender will resend message
- $\bullet\,$  receiver will accept the same message twice
  - so we need to label frames
  - $-\,$  and label ACKs

- use a bit for this
  - ACK[b] acknowledges frame  $[b+1 \mod 2]$
  - says receiver is ready for frame[b]



Figure 4: An ACK error in the Stop and Wait ARQ protocol.

#### 2.2.2 Correctness

- satisfies:
  - safety
    - $\bullet\,$  algorithm never gives an incorrect result
    - always results in a "corrected" error
  - liveness
    - never enters a deadlock condition

## 3 Multiaccess

### 3.1 LANs

- two types
  - switched
    - lines, multiplexes, switches
    - hierarchical addressing scheme
    - routing tables
  - broadcast
    - no routing
    - flat addressing scheme
    - (M))edium (A))ccess (C))ontrol to coordinate transmissions
    - preferred over switched due to simplicity

#### 3.2 The Problem with Shared Channels

- in point-to-point networks we have signal as a function of one transmitted signal
- in *shared* networks, we may have **more than one** transmission contributing to a signal

- 3.3 MAC Protocol
- 3.4 Uncoordinated Access Control
- 3.5 Ethernet
- 3.6 Coordinated Access
- 3.6.1 Tree Algorithm
- 3.6.2 Binary Countdown
- 3.6.3 Bitmap
- 4 Wireless
- 4.1 Cellular
- 4.2 Ad Hoc
- 4.2.1 UDG
- 4.2.2 Compass Routing
- 4.2.3 Face Routing
- 4.3 Bluetooth
- 5 GPS
- 5.1 Three Techniques
- 5.2 Satellites
- 6 Routing
- 6.1 Distance Vector (RIP)
- 6.2 Link State Protocol (LSP)
- **6.3** MSTs
- 6.4 Dijkstra
- 7 IP
- 7.1 IPv4
- 7.1.1 Classes of Address
- 7.1.2 Subnets
- 7.1.3 Subnet Masks
- 7.2 IPv6
- 7.3 DHCP
- 7.4 ARP
- 7.4.1 RARP
- 8 TCP

8.1 How it Works (Sliding Window)

9

# 9 Sample Test

1

A system has an n-layer protocol hierarchy. Applications generate messages of length M Bytes. At each level of the layers, an h-Byte header is added.

1.1

[3 pts] What fraction of the network bandwidth is filled with headers? (Give the formula.)

$$overhead = \frac{nh}{nh + M}$$

1.2

[3 pts] Now assume M = 20h. What should the max number n of layers be so that the fraction in previous Question 1 does not exceed 10 % of the total?

$$\operatorname{overhead} = \frac{nh}{nh+M}$$

$$10\% \ge \frac{nh}{nh+20h}$$

$$\frac{1}{10} \ge \frac{n}{n+20}$$

$$(n+20)\frac{1}{10} \ge n$$

$$(n+20)\frac{1}{10} \ge n$$

$$\frac{n}{10} + 2 \ge n$$

$$n+20 \ge 10n$$

$$20 \ge 9n$$

$$n \le \frac{20}{9}$$

1.3

Two CDMA users are assigned the 9-bit vectors A = 110011011, B = 100101111, respectively. Are they orthogonal? (Prove or disprove!) **Hint:** Recall  $0 \to -1$  and  $1 \to +1$ .

Take inner product of vectors in mod 2.

$$\langle \vec{A}, \vec{B} \rangle \mod 2 = 1 + 0 + 0 + 0 + 1 + 0 + 0 + 1 + 1 \mod 2$$
  $\iff$  orthogonal

2

You are observing a ship from two base stations A, B. Assume that at this time of observation  $\alpha = \pi/3, \beta = \pi/4$  and  $d = 1000 \ m$ .



Derive a formula for the unknown distance x (You are not required to evaluate the trigonometric functions of  $\pi/3$  and  $\pi/4$ ).

$$x = d \frac{\tan \alpha \tan \beta}{\tan \alpha + \tan \beta}$$
$$x = 1000 \operatorname{m} \frac{\tan \frac{\pi}{3} \tan \frac{\pi}{4}}{\tan \frac{\pi}{3} + \tan \frac{\pi}{4}}$$

3

Ethernet stations a, b, c, d, e, f, g, h contend for a channel. Assume a, e, f, g, h become ready at once and that they use the tree resolution protocol to resolve contentions.



for each contention slot give in the table below the winning stations.

| Slot | Station   |
|------|-----------|
| 1    | a e f g h |
| 2    | a         |
| 3    | e f g h   |
| 4    | e f       |
| 5    | e         |
| 6    | f         |
| 7    | g h       |
| 8    | g         |
| 9    | h         |

4

5

6

7