Kronecker Product and the vec Operator

Definition 1. Let A be an $n \times p$ matrix and B an $m \times q$ matrix. The $mn \times pq$ matrix

$$m{A}\otimesm{B}=\left[egin{array}{cccc} a_{1,1}m{B} & a_{1,2}m{B} & \cdots & a_{1,p}m{B} \ a_{2,1}m{B} & a_{2,2}m{B} & \cdots & a_{2,p}m{B} \ dots & dots & dots & dots \ a_{n,1}m{B} & a_{n,2}m{B} & \cdots & a_{n,p}m{B} \end{array}
ight]$$

is called the Kronecker product of A and B. It is also called the direct product or the tensor product.

Some properties of the Kronecker product:

- 1. $A \otimes (B \otimes C) = (A \otimes B) \otimes C$ associativity,
- 2. $A \otimes (B + C) = (A \otimes B) + (A \otimes C)$ distributivity $(A + B) \otimes C = (A \otimes C) + (B \otimes C)$,
- 3. For scalar a, $a \otimes A = A \otimes a = aA$,
- 4. For scalars a and b, $a\mathbf{A}\otimes b\mathbf{B}=ab\ \mathbf{A}\otimes \mathbf{B}$,
- 5. For conforming matrices, $(A \otimes B)(C \otimes D) = AC \otimes BD$,
- 6. $(\boldsymbol{A}\otimes\boldsymbol{B})^T=\boldsymbol{A}^T\otimes\boldsymbol{B}^T,\quad (\boldsymbol{A}\otimes\boldsymbol{B})^H=\boldsymbol{A}^H\otimes\boldsymbol{B}^H$,
- 7. For vectors \boldsymbol{a} and \boldsymbol{b} , $\boldsymbol{a}^T\otimes \boldsymbol{b}=\boldsymbol{b}\boldsymbol{a}^T=\boldsymbol{b}\otimes \boldsymbol{a}^T$ (note $\boldsymbol{a}\boldsymbol{a}^T=\boldsymbol{a}\otimes \boldsymbol{a}^T$),

- 8. For partitioned matrices, $[A_1,A_2]\otimes B=[A_1\otimes B,A_2\otimes B]$, but $A\otimes [B_1,B_2]\neq [A\otimes B_1,A\otimes B_2]$,
- 9. For square nonsingular matrices \boldsymbol{A} and \boldsymbol{B} : $(\boldsymbol{A}\otimes\boldsymbol{B})^{-1}=\boldsymbol{A}^{-1}\otimes\boldsymbol{B}^{-1}$,
- 10. For $m \times m$ matrix A and $n \times n$ matrix B: $|A \otimes B| = |A|^n |B|^m$,
- 11. $\operatorname{tr}(\boldsymbol{A} \otimes \boldsymbol{B}) = \operatorname{tr}(\boldsymbol{A})\operatorname{tr}(\boldsymbol{B})$,
- 12. $rank(\mathbf{A} \otimes \mathbf{B}) = rank(\mathbf{A}) rank(\mathbf{B})$.

Definition 2. The vec operator creates a column vector from a matrix A by stacking the column vectors of $A = [a_1 a_2 \cdots a_n]$ below one another:

$$ext{vec}(oldsymbol{A}) = \left[egin{array}{c} oldsymbol{a}_1 \ oldsymbol{a}_2 \ dots \ oldsymbol{a}_n \end{array}
ight].$$

Theorem 1.

$$\operatorname{vec}(\boldsymbol{A}\boldsymbol{X}\boldsymbol{B}) = (\boldsymbol{B}^T \otimes \boldsymbol{A}) \operatorname{vec}(\boldsymbol{X}).$$

Proof. Let $oldsymbol{B} = [oldsymbol{b}_1 \ oldsymbol{b}_2 \cdots oldsymbol{b}_n]$ (of size m imes n) and $oldsymbol{X} =$

 $[oldsymbol{x}_1 \ oldsymbol{x}_2 \cdots oldsymbol{x}_m]$. Then, the kth column of $oldsymbol{A} oldsymbol{X} oldsymbol{B}$ is

$$egin{array}{lll} (m{A}m{X}m{B})_{:,k} &=& m{A}m{X}m{b}_k = m{A}\sum_{i=1}^mm{x}_ib_{i,k} \ &=& [b_{1,k}m{A}\;b_{2.k}m{A}\;\cdots\;b_{m,k}m{A}] oxedown_{i=1}^{m{x}_1} oxedown_{i=1}^{m{x}_2} oxenum_{i=1}^{m{x}_2} oxedown_{i=1}^{m{x}_2} oxedown_{i=1}^{m{x}_2} oxedown_{i=1}^{m{x}_2} oxenum_{i=1}^{m{x}_2} oxedown_{i=1}^{m{x}_2} oxenum_{i=1}^{m{x}_2} oxenum_{i=1}^{m{x}_2}$$

Stacking the columns together

$$\operatorname{vec}(\boldsymbol{A}\boldsymbol{X}\boldsymbol{B}) = \begin{bmatrix} (\boldsymbol{A}\boldsymbol{X}\boldsymbol{B})_{:,1} \\ (\boldsymbol{A}\boldsymbol{X}\boldsymbol{B})_{:,2} \\ \vdots \\ (\boldsymbol{A}\boldsymbol{X}\boldsymbol{B})_{:,n} \end{bmatrix} = \begin{bmatrix} \boldsymbol{b}_1^T \otimes \boldsymbol{A} \\ \boldsymbol{b}_2^T \otimes \boldsymbol{A} \\ \vdots \\ \boldsymbol{b}_n^T \otimes \boldsymbol{A} \end{bmatrix} \operatorname{vec}(\boldsymbol{X})$$
$$= (\boldsymbol{B}^T \otimes \boldsymbol{A}) \operatorname{vec}(\boldsymbol{X}).$$

Corollary: $vec(\boldsymbol{A}\boldsymbol{B}) = (\boldsymbol{I} \otimes \boldsymbol{A}) \ vec(\boldsymbol{B}) = (\boldsymbol{B}^T \otimes \boldsymbol{I}) \ vec(\boldsymbol{A}).$

Some Properties of the vec **Operator**

$$\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{C}) = \operatorname{vec}(\boldsymbol{A}^T)^T (\boldsymbol{I} \otimes \boldsymbol{B}) \operatorname{vec}(\boldsymbol{C}),$$

and its corollary

$$\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{vec}(\boldsymbol{A}^T)^T \operatorname{vec}(\boldsymbol{B}).$$

Also

$$\operatorname{vec}(\boldsymbol{a}\boldsymbol{a}^T) = \boldsymbol{a} \otimes \boldsymbol{a},$$

$$\operatorname{tr}(\boldsymbol{A}^T \boldsymbol{B} \boldsymbol{C} \boldsymbol{D}^T) = \operatorname{vec}(\boldsymbol{A})^T (\boldsymbol{D} \otimes \boldsymbol{B}) \operatorname{vec}(\boldsymbol{C}).$$