Calculons le nombre N de molécules de dihydrogène H_2 contenues dans la masse m = 50,0 kg:

N =
$$\frac{m}{m(H_2)} = \frac{50.0 \times 10^3}{3.34 \times 10^{-24}} = \frac{1.50 \times 10^{28}}{1.50 \times 10^{28}}$$
 molécules de H₂ (3CS)

Calculons la quantité de matière n(H2) correspondante :

$$n(H_2) = \frac{N}{N_A} = \frac{1,50 \times 10^{28}}{6,02 \times 10^{23}} = 2,49 \times 10^4 \text{ mol} (3 \text{ CS})$$

Le réactif limitant est le dihydrogène car le dioxygène est en quantités illimitées dans l'air. On considère donc une réaction en proportions stoechiométriques :

$$\frac{n(H_2)}{2} = \frac{n(O_2)}{1}$$

On en déduite que la quantité de dioxygène consommée est : $n(O_2) = \frac{2,49 \times 10^4}{2} = \frac{1,25 \times 10^4 \text{ mol}}{2}$

Calculons le nombre de molécules N' de O2 consommée :

N' =
$$n(O_2) \times N_A = 1.25 \times 10^4 \times 6.02 \times 10^{23} = 7.53 \times 10^{27}$$
 molécules de O_2 (3 CS)

Calculons la masse $m(O_2)$ d'une molécule de dioxygène O_2 :

$$m(O_2) = 2 \times m_0$$

 $m(O_2) = 2 \times 2,67 \times 10^{-23}$
 $m(O_2) = 5,34 \times 10^{-23}$ g

Calculons la masse de dioxygène m' consommé :

m' = N' × m(O_2) = 7,53 × 10^{27} × 5,34 × 10^{-23} = 4,02 × 10^5 g = 402 kg de dioxygène consommé.