Distributions

Thursday, November 23, 2023 9:51 AM

$$E(x) = \sum x_i p_i \qquad E(x^2) = \sum x_i^2 p_i$$

$$E[g(x)] = \sum g(x_i) p_i$$

$$Var(x) = E(x^2) - [E(x)]^2$$

Consider a random variable with the following probability distribution:

X=r (or x _i)	P(X=r) or (p _i)
0	0.1
1	0.2
2	0.3
3	0.3
4	0.1

Find the following

- a) P(X <= 2)
- b) P(1<X≤3)
- c) P(X>0)
- d) P(X>3 | X>2)
- e) $E(X) = 2 \cdot 1$ f) $Var(X) = \sum x_i^2 p_i (\sum x_i p_i) = 1.29$

a)
$$P(x \le 2) = P[x = 0 \text{ or } x = 1 \text{ or } x = 2]$$

= $P[x = 0] + P[x = 1] + P[x = 2] = 0.6$ = $\frac{P(x > 3 | x > 2)}{P[x > 2]}$

b)
$$P(1 < X \le 3) = P[X=2] + P[X=3] = 0.6$$
c) $P[X>0] = 1 - P[X=0] = 0.9$

$$= P(X>3)$$

$$= P(X>3)$$

$$= P(X>3)$$

$$= 0.1 = 0$$

$$P(AUB) = P(A) + P(B)$$

A & B

clisjoint

d)
$$P(X>3) X>2$$

= $\frac{P(X>3) X>2}{P[X>2]}$
= $\frac{P(X>3)}{P[X>2]}$
= $\frac{0.1}{0.4} = 0.25$

Joint Prob. Distribution

Aspiration	Naturally Aspirated	Turbocharged/Supercharged	All	
Transmission		3 7 7		
Automatic	0.316434	0.347902	0.664336	Μ
CVT	0.063811	0.010490	0.074301	5
Manual	0.076923	0.184441	0.261364	7,
A11	0.457168	0.542832	1.000000	

Marginal Prob Dist for Transmission

Marginal Prob. distribution for Aspiration

	A1	A2	A3	A4	Marginal
B1	P(A1∩B1)	P(A2∩B1)	P(A3∩B1)	P(A4∩B1)	P(B1)
B2	P(A1∩B2)	P(A2∩B2)	P(A3∩B2)	P(A4∩B2)	P(B2)
В3	P(A1∩B3)	P(A2∩B3)	P(A3∩B3)	P(A4∩B3)	P(B3)
Marginal	P(A1)	P(A2)	P(A3)	P(A4)	1

$$\begin{array}{c}
a \\
\hline
a+b+c \\
c \\
a+b+c
\end{array}$$
Sum=)

$$P(B_1 | A_1) = P(A_1 \cap B_1)$$
 Conditional Prob.
$$P(A_1) = P(A_1 \cap B_2)$$

$$P(B_2 | A_1) = P(A_1 \cap B_2)$$

$$P(A_1)$$

$$P(B_3 | A_1) = P(A_1 \cap B_3)$$

$$P(A_1)$$

Aspiration	Naturally Aspirated	Turbocharged/Supercharged	All
Transmission			
Automatic	0.316434	0.347902	0.664336
CVT	0.063811	0.010490	0.074301
Manual	0.076923	0.184441	0.261364
A11	0.457168	0.542832	1.000000

```
P(Auto | NA) = 0.316434 / 0.457168

P(CVT | NA) = 0.063811 / 0.457168

P(Man | NA) = 0.076923 / 0.457168
```

```
In [64]: pd.crosstab(index=survey['Exer'],
                    columns=survey['Smoke'],
                    margins=True, normalize=True)
                                                  A11
Smoke
         Heavy
                   Never
                            0ccas
                                      Regul
Exer
      0.032864 0.408451 0.056338 0.042254
                                             0.539906
Freq
      0.014085 0.394366 0.018779
                                   0.032864
                                             0.460094
Some
      0.046948 0.802817
                                             1.000000
                         0.075117
All
                                   0.075117
```

```
P\left(\begin{array}{c} \text{Exer} \\ \text{Freq} \end{array}\right) = \begin{array}{c} \text{Smoke} \\ \text{Heavy} \end{array}) = \begin{array}{c} 0.032864 \\ \text{P}\left(\begin{array}{c} \text{Some} \\ \text{Exer} \end{array}\right) = \begin{array}{c} \text{OCCas} \\ \text{Smoker} \end{array}) = \begin{array}{c} 0.018779 \\ \text{P}\left(\text{Heavy} \text{Smoker}\right) = \begin{array}{c} 0.046948 \end{array}
```

```
In [65]: pd.crosstab(index=survey['Exer'],
...: columns=survey['Smoke'],
...: margins=True, normalize='columns')

Out[65]:

Smoke Heavy Never Occas Regul All

Exer

Freq 0.7 0.508772 0.75 0.5625 0.539906

Some 0.3 0.491228 0.25 0.4375 0.460094

By Columns

P(Exer Freq Heavy Smoker): heavy smokers who exercise frequently

P(Exer Some Heavy Smoker): There are 30% people among the heavy smokers who exercise frequently

There are 30% people among the heavy smokers who exercise Sometimes
```