Привет! Это ВОТVА ИУ6, точнее малая ее часть. Пользоваться и распространять файлы конечно же можно. Если вы нашли ошибку в файле, можете исправить ее в исходном коде и подать на слияние или просто написать в issue. Если возникнут вопросы, пишите в комментарии под постом файла в tg.

Приятного бота) GitHub

Подготовка к экзамену

Интегралы и дифференциальные уравнения

Над файлом работали: fiixii, pluttan

Оглавление

Определения и понятия	4
Вопросы для подготовки к экзамену	9
1. Сформулировать определение первообразной. Сформулировать свойства первообразной и неопреде-	
ленного интеграла	9
 Разложение правильной рациональной дроби на простейшие. Интегрирование простейших дробей. 4, 5, 6. Сформулировать свойства определенного интеграла. Доказать теорему о сохранении определенным интегралом знака подынтегральной функции (теорема 6). Доказать теорему об оценке определенного интеграла (теорема 9). Доказать теорему об оценке модуля определенного интеграла (теорема 9). 	13
грала (теорема 8). Доказать теорему о среднем для определенного интеграла (теорема 11)	15
изводной от интеграла по его верхнему пределу.	20
8. Сформулировать свойства определенного интеграла. Вывести формулу Ньютона-Лейбница.	21
9. Сформулировать и доказать теорему об интегрировании подстановкой для определённого интеграла.	22
 Сформулировать и доказать теорему об интегрировании по частям для определённого интеграла. Сформулировать свойства определенного интеграла. Интегрирование периодических функций, интегрирование четных и нечетных функций на отрезке, симметричном относительно начала коор- 	23
динат	24
мулировать и доказать признак абсолютной сходимости для несобственных интегралов 1-го рода 15. Сформулировать определение несобственного интеграла 2-го рода и признаки сходимости таких	25
интегралов	28
16. Фигура ограничена кривой $y = f(x) \geq 0$, прямыми $x = a, \; x = b$ и $y = 0 \; (a < b)$. Вывести формулу	
для вычисления с помощью определенного интеграла площади этой фигуры	29
17. Фигура ограничена лучами $\varphi=\alpha,\ \varphi=\beta$ и кривой $r=f(\varphi)$. Здесь r и φ - полярные координаты точки, $0\leq \alpha<\beta\leq 2\pi$. Вывести формулу для вычисления с помощью определенного интеграла	
площади этой фигуры	30
определенного интеграла объема тела вращения	31
точки, $a \le x \le b$. Вывести формулу для вычисления длины дуги этой кривой	32
точки, $\alpha \leq \varphi \leq \beta$. Вывести формулу для вычисления длины дуги этой кривой	34
21. Линейные дифференциальные уравнения первого порядка. Интегрирование линейных неоднородных дифференциальных уравнений первого порядка методом Бернулли (метод " $u \cdot v$ ") и методом	
Лагранжа (вариации произвольной постоянной)	35
22. Сформулировать теорему Коши о существовании и единственности решения дифференциального	
уравнения n -го порядка. Интегрирование дифференциальных уравнений n -го порядка, допускаю-	20
щих понижение порядка	38
дифференциального уравнения n -го порядка	40

24, 25. Сформулировать опреде	еления линейно зависимой и линейно независимой систем функций.	
Сформулировать и доказа	ать теорему о вронскиане линейно зависимых функций. Сформулировать	
и доказать теорему о врон	нскиане системы линейно независимых частных решений линейного од-	
нородного дифференциал	льного уравнения n -го порядка	42
	ь теорему о существовании фундаментальной системы решений линей-	
ного однородного диффер	ренциального уравнения n -го порядка	45
27. Сформулировать и доказать	ь теорему о структуре общего решения линейного однородного диффе-	
ренциального уравнения	n-го порядка	46
	адского-Лиувилля для линейного дифференциального уравнения 2-го	
порядка		48
29. Вывести формулу для обще	его решения линейного однородного дифференциального уравнения вто-	
рого порядка при одном и	известном частном решении	49
30. Сформулировать и доказать	ь теорему о структуре общего решения линейного неоднородного диф-	
ференциального уравнени	ия n -го порядка	50
31. Вывести формулу для обще	его решения линейного однородного дифференциального уравнения	
второго порядка с постоя	нными коэффициентами в случае кратных корней характеристическо-	
го уравнения		52
32. Вывести формулу для обще	его решения линейного однородного дифференциального уравнения вто-	
рого порядка с постояннь	ыми коэффициентами в случае комплексных корней характеристического	
уравнения		53
33. Частное решение линейног	о неоднородного дифференциального уравнения с постоянными коэф-	
фициентами и правой час	стью специального вида (являющейся квазимногочленом). Сформулиро-	
вать и доказать теорему о	наложении частных решений	54
34. Метод Лагранжа вариации	произвольных постоянных для нахождения решения линейного неодно-	
родного дифференциальн	ного уравнения 2-го порядка и вывод системы соотношений для варьиру-	
емых переменных		56
35. Сформулировать определен	ние дифференциального уравнения n -го порядка, разрешенного отно-	
сительно старшей произв	водной, и сформулировать задачу Коши для такого уравнения. Описать	
• •	внения к нормальной системе дифференциальных уравнений	58
36. Сформулировать задачу Ко	ши для нормальной системы дифференциальных уравнений и теорему	
Коши о существовании и	единственности решения этой задачи. Описать метод сведения нормаль-	
•	фференциальному уравнению высшего порядка	59
	ние первого интеграла нормальной системы дифференциальных урав-	
	ахождения первых интегралов и их применение для решения системы	
дифференциальных уравн	нений	61
Формулы		62
- ·	ОВ	62
	х фигур	64
	ения	65
Вычисление ллины луги		66

Определения и понятия

1. Функция F(x) называется **первообразной** функции f(x), на некотором интервале, если для любого x из этого интервала функция F(x) дифференцируема и F'(x) = f(x).

2. Множество всех первообразных функций f(x) на (a;b) называется **неопределенным интегралом** от функции f(x) на этом интервале.

Обозначение: $\int f(x)dx = F(x) + C$

- 3. Если в рациональной дроби $R(x) = \frac{Q_m(x)}{P_n(x)}$ степень числителя меньше степени знаменателя (m < n), то дробь - **правильная**. В противном случае $(m \ge n)$, дробь - **неправиль**ная.
- 4. Простейшими дробями 1-го, 2-го, 3-го и 4-го типов называют правильные рациональные дроби следующего типа:
 - 1) $\frac{A}{x-a}$

 - 2) $\frac{A}{(x-a)^k}$, $k \in \mathbb{Z}$, k > 13) $\frac{Mx+N}{x^2+px+q}$, $D = p^2 4q < 0$ 4) $\frac{Mx+N}{(x^2+px+q)^k}$, $D = p^2 4q < 0$, $k \in \mathbb{Z}$, k > 1
- 5. **Определенным интегралом** от функции f(x) на отрезке [a;b] называется предел интегральной суммы, при условии, что n (число отрезков разбиения) неограниченно растет, а максимальная из длин отрезков разбиения $\max_k \Delta x_k \to 0$, т.е.

$$\int_{a}^{b} f(x)dx = \lim_{\substack{n \to \infty \\ \max \Delta x_k \to 0}} \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

- 6. Функция f(x) называется **интегрируемой** на отрезке [a;b], если существует предел интегральной суммы при $n \to \infty$ и $\max_k \Delta x_k \to 0$.
- 7. Функция $Y(x) = \int\limits_{-x}^{x} f(t) dt$, определенная на отрезке [a,b], называется **определенным** интегралом с переменным верхним пределом, где $[a,x]\subset [a,b].$
- 8. Пусть функция f(x) определена и непрерывна на $[a,+\infty)$. Тогда предел $\lim_{b\to +\infty} \int\limits_a^b f(x) dx$ называют несобственным интегралом с бесконечным верхним пределом (несобственный интеграл 1-го рода) и обозачают:

$$\int_{a}^{+\infty} f(x)dx$$

9. Если существует конечный предел $\lim_{b\to +\infty}\int\limits_a^bf(x)dx$, то несобственный интеграл 1 рода называется **сходящимся**. Если этот предел не существует или равен ∞ , то несобственный интеграл 1 рода называется расходящимся.

10. Пусть функция f(x) определена на [a,b]. **Несобственным интегралом 2-го рода** от функции, имеющей разрыв:

(а) в правом конце отрезка, называется предел определенного интеграла:

$$\lim_{\varepsilon \to 0} \int_{-\varepsilon}^{b-\varepsilon} f(x) dx$$

(b) в левом конце отрезка, называется предел определенного интеграла:

$$\lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} f(x) dx$$

(c) внутри отрезка (в точке $c \in (a,b)$), называется сумма пределов определенных интегралов:

$$\lim_{\varepsilon \to 0} \int_{a}^{c-\varepsilon} f(x)dx + \lim_{\varepsilon \to 0} \int_{c+\varepsilon}^{b} f(x)dx$$

и обозначается как:

$$\int_{a}^{b} f(x)dx$$

11. Пусть функция f(x) определена на [a,b]. Несобственный интеграл 2-го рода от функции, имеющий разрыв в правом (левом) конце отрезка называется **сходящимся**, если существует и конечен предел

$$\lim_{\varepsilon \to 0} \int_{a}^{b-\varepsilon} f(x) dx$$
 — (разрыв в правом конце отрезка)

$$\lim_{\varepsilon \to 0} \int\limits_{a+\varepsilon}^b f(x) dx \ -$$
 (разрыв в левом конце отрезка)

Несобственный интеграл 2-го рода от функции, имеющий разрыв в точке $c \in (a,b)$ (внутри отрезка [a,b]) называется **сходящимся**, если существуют и конечны пределы

$$\lim_{\varepsilon \to 0} \int_{a}^{c-\varepsilon} f(x)dx, \quad \lim_{\varepsilon \to 0} \int_{c+\varepsilon}^{b} f(x)dx$$

12. Несобственный интеграл $\int\limits_a^b f(x) dx$ называется **абсолютно сходящимся**, если несобственный интеграл от абсолютной величины подынтегральной функции $\int\limits_a^b |f(x)| dx$ схо-

дится.

13. Несобственный интеграл $\int\limits_a^b f(x) dx$ называется **условно сходящимся**, если он сходится, а несобственный интеграл от абсолютной величины подынтегральной функции $\int\limits_a^b |f(x)| dx$ расходится.

14. Обыкновенным дифференциальным уравнением n-го порядка называется уравнение, зависящие от одной независимой переменной x, неизвестной функции y = f(x) и ее производных $y', y'', ..., y^{(n)}$ до n-го порядка включительно.

$$F(x, y, y', ..., y^{(n)}) = 0$$

- 15. **Порядком дифференциального уравнения** называется максимальный порядок производной, входящей в это $\mathcal{I}V$.
- 16. **Решением (любым)** $\mathcal{J}V$ называется функция $y = \varphi(x)$ такая, что после подстановки ее и ее производных: $\varphi(x)$, $\varphi'(x)$, $\varphi''(x)$, ..., $\varphi^{(n)}(x)$ в $\mathcal{J}V$, получается верное тождество, т.е.

$$F\left(x, \varphi(x), \varphi'(x), ..., \varphi^{(n)}(x)\right) = 0$$

- 17. Нахождение решения ΠY называется **интегрированием** ΠY .
- 18. График решения ДУ называется интегральной кривой.
- 19. Задачей Коши называют задачу нахождения решения y=y(x) дифференциального уравнения $F(x,\ y,\ y',\ ...,\ y^{(n)})=0$, удовлетворяющего начальным условиям $y(x_0)=y_0,\ y'(x_0)=y_0',\ ...,\ y^{(n-1)}(x_0)=y_0^{(n-1)}$
- 20. Общим решением ДУ n-го порядка называется функция $y=\varphi(x,\ C_1,\ C_2,\ ...,\ C_n)$, такая что:
 - (a) При любых допустимых значениях постоянных $C_1, C_2, ..., C_n$ функция

$$y = \varphi(x, C_1, C_2, ..., C_n)$$

является решением ДУ;

(b) Каковы бы ни были начальные условия, можно единственным образом так подобрать значения постоянных $C_1^0,\ C_2^0,\ ...,\ C_n^0$, чтобы решение

$$y = \varphi(x, C_1^0, C_2^0, ..., C_n^0)$$

удовлетворяла начальным условиям.

21. **Частным решением** $\mathcal{I}V$ называется решение, получаемое из общего решения при какихлибо конкретных значениях постоянных.

22. ДУ с разделяющимися переменными называется ДУ 1-го порядка вида

$$\frac{dy}{dx} = f(x) \cdot g(y)$$
, или

$$f_1(x)g_1(y)dx + f_2(x)g_2(y)dy = 0,$$

где функции f(x), $f_{1,2}(x)$ зависят только от x, а функции g(y), $g_{1,2}(y)$ - только от y.

23. Функция f(x, y) называется **однородной** функцией степени n относительно переменных x и y, если $\forall t$ справедливо равенство:

$$f(tx, ty) = t^n f(x, y)$$

- 24. $\mathcal{J}Y \ p(x,y)dx + q(x,y)dy = 0$ называется **однородным**, если функции p(x,y) и q(x,y) являются однородными функциями одинаковой степени однородности.
- 25. ДУ вида

$$y' + p(x)y = q(x)$$

где p(x), q(x) - непрерывные функции, называют **линейным ДУ 1-го порядка**.

Если q(x)=0, то $\varPi \varPi У$ называют **однородным**. В противном случае $\left(q(x)\neq 0\right)\varPi \varPi У$ называют **неоднородным**.

26. ДУ вида

$$y' + p(x)y = q(x)y^n, n \neq 0, n \neq 1$$

называется уравнением Бернулли.

27. **Линейным дифференциальным уравнением** n-го порядка называется уравнение, являющееся линейным относительно неизвестной функции y и всех ее производных, то есть $\mathcal{I} \mathcal{Y}$ вида

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = g(x),$$

где $a_0(x),\ a_1(x),\ ...,\ a_n(x),\ g(x)$ - заданные на некотором интервале функции.

Если g(x) = 0, то $\Pi \Pi Y$ называют **однородным** ($\Pi O \Pi Y$ *n-го порядка*). В противном случае $(g(x) \neq 0)$ $\Pi \Pi Y$ называют **неоднородным** ($\Pi H \Pi Y$ *n-го порядка*).

28. Дифференциальным оператором L[y] называется выражение вида:

$$L[y] = y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_n(x)y$$

29. Система функций $y_1(x), ..., y_n(x)$ называется **линейно зависимой** на [a;b], если $\exists \alpha_1, \ \alpha_2, \ ..., \ \alpha_n$, не все равные 0, такие, что на [a;b] выполняется тождество

$$\alpha_1 y_1(x) + \alpha_2 y_2(x) + \dots + \alpha_n y_n(x) = 0$$

30. Система функций $y_1(x), ..., y_n(x)$ называется **линейно независимой** на [a;b], если на [a;b] выполняется тождество

$$\alpha_1 y_1(x) + \alpha_2 y_2(x) + \dots + \alpha_n y_n(x) = 0$$

только когда $\forall \alpha_i = 0.$

31. **Определитель Вронского** функций $y_1(x),\ y_2(x),\ ...,\ y_n(x)$ называет определитель вида:

$$W(x) = \begin{vmatrix} y_1(x) & y_2(x) & \cdots & y_n(x) \\ y'_1(x) & y'_2(x) & \cdots & y'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \cdots & y_n^{(n-1)}(x) \end{vmatrix}$$

- 32. Совокупность любых n линейно независимых частных решений $\mathcal{Л}O\mathcal{Д}V$ n-го nopядка называют его фундаментальной системой решений (ФСР).
- 33. ДУ вида

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = 0,$$

где $\forall a_i = const,$ называется **ЛОДУ n-го порядка с постоянными коэффициентами**.

34. Квазимногочленом называется сумма нескольких слагаемых вида

$$e^{\alpha x} \Big(P_n(x) \cos \beta x + Q_m(x) \sin \beta x \Big) \quad (\star)$$

где $P_n(x)$ и $Q_m(x)$ – многочлены степеней n и m соответственно, $\alpha,\beta\in\mathbb{R}.$

Вопросы для подготовки к экзамену

1. Сформулировать определение первообразной. Сформулировать свойства первообразной и неопределенного интеграла.

Функция F(x) называется **первообразной** функции f(x), на некотором интервале, если для любого x из этого интервала функция F(x) дифференцируема и F'(x) = f(x).

Свойства первообразной

Теорема 1

Если F(x) - есть первообразная функции f(x) на (a;b), то функция F(x)+C, где C=const, также является первообразной для этой функции на (a;b).

Доказательство

По условию F(x) - первообразная функции f(x) на $(a;b) \stackrel{\text{по опр.}}{\Rightarrow} \forall x \in (a;b)$ F'(x) = f(x) $(F(x) + C)' = F'(x) + C' = f(x) \stackrel{\text{по опр.}}{\Rightarrow} F(x) + C$ - первообразная f(x) на (a;b). Теорема доказана

Теорема 2

Если функция $\varphi(x)$ дифференцируема на (a;b), и $\forall x \in (a;b) \Rightarrow \varphi'(x) = 0$, то эта функция - константа на (a;b).

Доказательство

Пусть d - некоторая фиксированная точка интервала (a;b), а x - любая точка этого интервала. Тогда отрезок [x,d] или соответственно [d,x] целиком принадлежит интервалу (a;b), поэтому функция $\varphi(x)$ дифференцируема (а следовательно, и непрерывна) на этом отрезке. Применим теорему Лагранжа

$$\varphi(x) - \varphi(d) = \varphi'(\varepsilon)(x - d), \ \varepsilon \in (x; d)$$

 $\Rightarrow \varepsilon \in (a;b)$, но по условию теоремы $\forall x \in (a;b) \ \ \varphi'(x) = 0 \ \Rightarrow \ \varphi'(\varepsilon) = 0.$

Тогда $\varphi(x) - \varphi(d) = 0 \implies \forall x \in (a; b) \ \varphi(x) = \varphi(d).$

Теорема доказана

Теорема 3 (основная теорема о первообразной)

Если $F_1(x)$ и $F_2(x)$ - любые первообразные функции f(x) на некотором интервале (a;b), то $\forall x \in (a;b)$ выполняется $F_1(x) - F_2(x) = C = const.$

Доказательство

Обозначим $\Phi(x) = F_1(x) - F_2(x)$.

 $F_1(x), F_2(x)$ - первообразные функции $f(x) \Rightarrow$ они дифференцируемы на интервале (a;b) по условию \Rightarrow функция $\Phi(x)$ также дифференцируема на $(a;b) \Rightarrow \Phi'(x) = F_1'(x) - F_2'(x) =$

$$f(x) - f(x) = 0.$$

Имеем: $\forall x \in (a;b) \;\; \Phi'(x) = 0 \stackrel{\text{по Th.2}}{\Rightarrow} \;\; \Phi(x)$ - константа.

Теорема доказана

Множество всех первообразных функций f(x) на (a;b) называется **неопределенным интегралом** от функции f(x) на этом интервале.

Обозначение: $\int f(x)dx = F(x) + C$,

f(x) называется подынтегральной функцией, f(x)dx называется подынтегральным выражением.

Свойства неопределенного интеграла

Теорема 1

Производная от неопределенного интеграла равна подынтегральной функции.

$$\left(\int f(x)dx\right)' = f(x)$$

Доказательство

$$\left(\int f(x)dx\right)' \stackrel{\text{no onp.}}{=} \left(F(x) + C\right)' = F'(x) \stackrel{\text{no onp.}}{=} f(x)$$

Теорема доказана

Теорема 2

Дифференциал от неопределенного интеграла равен подынтегральному выражению.

$$d\left(\int f(x)dx\right) = f(x)dx$$

Доказательство

$$d\left(\int f(x)dx\right) = \left(\int f(x)dx\right)'dx \stackrel{\text{no Th.1}}{=} f(x)dx$$

Теорема доказана

Теорема 3

Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной C=const.

$$\int dF(x) = F(x) + C, \ C = const$$

Доказательство

$$\int dF(x) = \int F'(x)dx \stackrel{\text{no onp.}}{=} F(x) + C$$

Теорема доказана

Теорема 4

Неопределенный интеграл алгебраической суммы конечного числа функций равен алгебраической сумме неопределенных интегралов от слагаемых.

$$\int (f_1(x) \pm ... \pm f_n(x)) dx = \int f_1(x) dx \pm ... \pm \int f_n(x) dx$$

Доказательство

Возьмем дифференциал от правой части:

$$d\left(\int f_1(x)dx \pm \dots \pm \int f_n(x)dx\right) = d\int f_1(x)dx \pm \dots \pm d\int f_n(x)dx =$$
$$= f_1(x)dx \pm \dots \pm f_n(x)dx = \left(f_1(x) \pm \dots \pm f_n(x)\right)dx$$

т.е.

$$d\left(\int f_1(x)dx \pm \dots \pm \int f_n(x)dx\right) = \left(f_1(x) \pm \dots \pm f_n(x)\right)dx$$

Возьмем интеграл от обеих частей полученного равенства:

$$\int d\left(\int f_1(x)dx \pm \dots \pm \int f_n(x)dx\right) = \int \left(f_1(x) \pm \dots \pm f_n(x)\right)dx$$
$$\int f_1(x)dx \pm \dots \pm \int f_n(x)dx = \int \left(f_1(x) \pm \dots \pm f_n(x)\right)dx$$

Теорема доказана

Теорема 5

Постоянный множитель можно вынести за знак неопределенного интеграла:

$$\int k \cdot f(x) dx = k \int f(x) dx$$

Доказательство

Возьмем дифференциал от правой части:

$$d\left(k\int f(x)dx\right) = k \cdot d\left(\int f(x)dx\right) = k \cdot f(x)dx$$

Возьмем интеграл от обеих частей полученного равенства:

$$k \int f(x)dx = \int k \cdot f(x)dx$$

Теорема доказана

Теорема 6 (об инвариантности неопределенного интеграла)

Если $\int f(x)dx = F(x) + C$ и $u = \varphi(x)$ - произвольная функция, дифференцируемая на интервале (a;b), то:

$$\int f(u)du = F(u) + C$$

Доказательство

По условию $\int f(x)dx = F(x) + C$.

Тогда $\forall x \in (a;b): F'(x) = f(x)$ или dF(x) = f(x)dx, и по св-ву инвариантности формы 1-го дифференциала dF(u) = f(u)du, где $u = \varphi(x)$ - любая дифференцируемая функция на (a;b). Возьмем интеграл от обеих частей dF(u) = f(u)du:

$$\int f(u)du = \int dF(u) = F(u) + C$$

2. Разложение правильной рациональной дроби на простейшие. Интегрирование простейших дробей.

Простейшими дробями 1-го, 2-го, 3-го и 4-го типов называют правильные рациональные дроби следующего типа:

$$\begin{aligned} 1.\frac{A}{x-a} \\ 2.\frac{A}{(x-a)^k}, & k \in \mathbb{Z}, \ k > 1 \\ 3.\frac{Mx+N}{x^2+px+q}, & D = p^2 - 4q < 0 \\ 4.\frac{Mx+N}{(x^2+px+q)^k}, & D = p^2 - 4q < 0, \ k \in \mathbb{Z}, \ k > 1 \end{aligned}$$

Интегрирование простейших дробей

1.
$$\int \frac{A}{x-a} dx = A \cdot \int \frac{1}{x-a} dx = A \cdot \ln|x-a| + C$$

2.
$$\int \frac{A}{(x-a)^k} dx$$

$$\int \frac{A}{(x-a)^k} dx = A \cdot \int \frac{d(x-a)}{(x-a)^k} dx = A \cdot \frac{(x-a)^{-k+1}}{-k+1} + C$$

3. $\int \frac{Mx+N}{x^2+px+q} dx$. В числителе выделяем производную знаменателя и полученный интеграл представляем в виде суммы 2-х интегралов

$$\begin{split} \int \frac{Mx+N}{x^2+px+q} &= \frac{M}{2} \cdot \int \frac{2x+\frac{2N}{M}}{x^2+px+q} dx = \frac{M}{2} \cdot \int \frac{(2x+p)+(\frac{2N}{M}-p)}{x^2+px+q} dx = \frac{M}{2} \cdot \int \frac{(2x+p)}{x^2+px+q} dx + \\ &+ \frac{M}{2} \cdot \int \frac{(\frac{2N}{M}-p)}{x^2+px+q} dx = \frac{M}{2} \cdot \int \frac{d(x^2+px+q)}{x^2+px+q} + (N-\frac{pM}{2}) \cdot \int \frac{d(x+\frac{p}{2})}{(x+\frac{p}{2})^2+(q-\frac{p^2}{4})} = \\ &= \frac{M}{2} \cdot \ln|x^2+px+q| + (N-\frac{pM}{2}) \cdot \frac{1}{\sqrt{q-\frac{p^2}{4}}} \cdot \operatorname{arctg} \frac{x+\frac{p}{2}}{\sqrt{q-\frac{p^2}{4}}} + C \end{split}$$

$$\int \frac{Mx+N}{(x^2+px+q)^k} dx = \int \frac{Mx+N}{(x^2+px+q)^k} dx = \frac{M}{2} \cdot \int \frac{2x+\frac{2N}{M}}{(x^2+px+q)^k} dx = \\
= \frac{M}{2} \cdot \int \frac{(2x+p)+(\frac{2N}{M}-p)}{(x^2+px+q)^k} dx = \frac{M}{2} \cdot \int \frac{d(x^2+px+q)}{(x^2+px+q)^k} + \\
+ \frac{2N-pM}{2} \int \frac{d(x+\frac{p}{2})}{\left((x+\frac{p}{2})^2+(q-\frac{p^2}{4})\right)^k} = \frac{M}{2} \cdot \frac{(x^2+px+q)^{-k+1}}{-k+1} + \\$$

$$+ \frac{2N - pM}{2} \int \frac{d(x + \frac{p}{2})}{\left((x + \frac{p}{2})^2 + (q - \frac{p^2}{4})\right)^k}$$

$$I_k = \int \frac{d(x + \frac{p}{2})}{\left((x + \frac{p}{2})^2 + (q - \frac{p^2}{4})\right)^k} = \left| t = x + \frac{p}{2}, dx = dt, a = q - \frac{p^2}{4} \right| =$$

$$= \int \frac{dt}{(t^2 + a)^k} = \frac{1}{a} \int \frac{(a + t^2) - t^2}{(t^2 + a)^k} dt = \frac{1}{a} \int \frac{dt}{(t^2 + a)^{k-1}} - \frac{1}{a} \int \frac{t^2 dt}{(t^2 + a)^k} =$$

$$= \frac{1}{a} \cdot I_{k-1} - \frac{1}{a} \int \frac{\frac{t}{2} \cdot d(t^2 + a)}{(t^2 + a)^k} = \frac{1}{a} \cdot I_{k-1} - \frac{1}{a} \int \frac{t}{2(-k+1)} \frac{(-k+1)}{(t^2 + a)^k} d(t^2 + a) =$$

$$= \frac{1}{a} \cdot I_{k-1} - \frac{1}{a \cdot 2(-k+1)} \int t \cdot d\left(\frac{1}{(t^2 + a)^{k-1}}\right) =$$

$$= \left| u = t, du = dt; dv = d\left(\frac{1}{(t^2 + a)^{k-1}}\right), v = \frac{1}{(t^2 + a)^{k-1}} \right| =$$

$$= \frac{1}{a} \cdot I_{k-1} - \frac{1}{2a(1-k)} \cdot \left(\frac{t}{(t^2 + a)^{k-1}} - \int \frac{dt}{(t^2 + a)^{k-1}}\right) =$$

$$= \frac{1}{a} \cdot I_{k-1} - \frac{t}{2a(1-k)(t^2 + a)^{k-1}} + \frac{I_{k-1}}{2a(1-k)} =$$

$$= I_{k-1} \cdot \left(\frac{1}{a} + \frac{1}{2a(1-k)}\right) + \frac{t}{2a(k-1)(t^2 + a)^{k-1}}$$

Получили реккурентную формулу для I_k , причем при k=1 получим:

$$\int \frac{dt}{t^2 + a} = \frac{1}{\sqrt{a}} \arctan \frac{t}{\sqrt{a}} + C$$

Теорема (о разложении правильной рациональной дроби на сумму простейших)

Правильная рациональная дробь $\frac{Q_m(x)}{P_n(x)}$, (m < n), где $P_n(x) = a_0(x - x_1)^{k_1}...(x - x_s)^{k_s} \cdot (x^2 + p_1x + q_1)^{l_1}...(x^2 + p_tx + q_t)^{l_t}$ может быть единственным образом представлена в виде суммы простейших дробей:

$$\begin{split} \frac{Q_m(x)}{P_n(x)} &= \frac{1}{a_0} \left(\frac{A_1}{(x-x_1)} + \frac{A_2}{(x-x_1)^2} + \ldots + \frac{A_{k_1}}{(x-x_1)^{k_1}} + \ldots + \frac{B_1}{(x-x_s)} + \frac{B_2}{(x-x_s)^2} + \ldots + \frac{B_{k_s}}{(x-x_s)^{k_s}} + \frac{C_1x + D_1}{(x^2 + p_1x + q_1)} + \frac{C_2x + D_2}{(x^2 + p_1x + q_1)^2} + \frac{C_{l_1}x + D_{l_1}}{(x^2 + p_1x + q_1)^{l_1}} + \ldots + \frac{M_1x + N_1}{(x^2 + p_tx + q_t)} + \frac{M_2x + N_2}{(x^2 + p_tx + q_t)^2} + \frac{M_{l_t}x + N_{l_t}}{(x^2 + p_tx + q_t)^{l_t}} \right) \end{split}$$

где $A_1,...,A_{k_1},B_1,...,B_{k_s},C_1,...,C_{l_1},D_1,...,D_{l_1},M_1,...,M_{l_t},...,N_1,...,N_{l_t}$ - неизвестные коэффициенты, которые требуется найти.

3, 4, 5, 6. Сформулировать свойства определенного интеграла. Доказать теорему о сохранении определенным интегралом знака подынтегральной функции (теорема 6). Доказать теорему об оценке определенного интеграла (теорема 9). Доказать теорему об оценке модуля определенного интеграла (теорема 8). Доказать теорему о среднем для определенного интеграла (теорема 11).

Определенным интегралом от функции f(x) на отрезке [a;b] называется предел интегральных сумм при $n \to \infty$, который не зависит ни от способа разбиения отрезка на частичные отрезки, ни от выбора точек в них, и обозначается:

$$\int_{a}^{b} f(x)dx = \lim_{\substack{n \to \infty \\ \max \Delta x_k \to 0}} \sum_{i=1}^{n} f(\xi_i) \Delta x_k$$

Свойства определенного интеграла

Теорема 1

$$\int_{a}^{b} \left(f_{1}(x) \pm ... \pm f_{m}(x) \right) dx = \int_{a}^{b} f_{1}(x) dx \pm ... \pm \int_{a}^{b} f_{m}(x) dx$$

Доказательство

$$\int_{a}^{b} \left(f_1(x) \pm \dots \pm f_m(x) \right) dx = \lim_{\substack{n \to \infty \\ \max \Delta x_k \to 0}} \sum_{i=1}^{n} \left(f_1(\xi_i) \pm \dots \pm f_m(\xi_i) \right) \Delta x_i =$$

$$= \lim_{\substack{n \to \infty \\ \max \Delta x_k \to 0}} \sum_{i=1}^{n} f_1(\xi_i) \Delta x_i \pm \dots \pm \lim_{\substack{n \to \infty \\ \max \Delta x_k \to 0}} \sum_{i=1}^{n} f_m(\xi_i) \Delta x_i = \int_{a}^{b} f_1(x) dx \pm \dots \pm \int_{a}^{b} f_m(x) dx$$

Теорема доказана

Теорема 2

$$\int_{a}^{b} c f(x) dx = c \int_{a}^{b} f(x) dx$$

Доказательство

$$\int_{a}^{b} c f(x) dx = \lim_{\substack{n \to \infty \\ \max \Delta x_k \to 0}} \sum_{i=1}^{n} \left(c f(\xi_i) \right) \Delta x_i = c \lim_{\substack{n \to \infty \\ \max \Delta x_k \to 0}} \sum_{i=1}^{n} \left(f(\xi_i) \right) \Delta x_i = c \int_{a}^{b} f(x) dx$$

Теорема доказана

Теорема 3

$$\int_{a}^{b} c \, dx = c(b-a)$$

Доказательство

$$\int_{a}^{b} c \, dx = \lim_{\substack{n \to \infty \\ \max \Delta x_k \to 0}} \sum_{i=1}^{n} c \Delta x_i = c \lim_{\substack{n \to \infty \\ \max \Delta x_k \to 0}} \sum_{i=1}^{n} \Delta x_i = c(b-a)$$

Теорема доказана

Теорема 4

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

Доказательство

$$\int_{a}^{b} f(x)dx = \lim_{\substack{n \to \infty \\ \max \Delta x_k \to 0}} \sum_{i=1}^{n} f(\xi_i) \cdot (x_i - x_{i-1}) = -\lim_{\substack{n \to \infty \\ k} \Delta x_k \to 0}} \sum_{i=1}^{n} f(\xi_i) \cdot (x_{i-1} - x_i) = -\int_{b}^{a} f(x)dx$$

Теорема доказана

Теорема 5

Для любых a, b, c, расположенных в интервале интегрирования функции f(x),

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{a}^{b} f(x)dx,$$

Если все эти три интеграла существуют.

[3] Теорема 6 (о сохранении определенным интегралом знака подынтегральной функции)

Если функция f(x) интегрируема на [a;b] и $f(x)\geq 0$ $\Big(f(x)\leq 0\Big)$ на этом отрезке, то $\int\limits_a^b f(x)dx\geq 0$ (≤ 0)

Доказательство

Так как функция f(x) интегрируема, то

$$\int_{a}^{b} f(x)dx = \lim_{\substack{n \to \infty \\ \max \Delta x_k \to 0}} \sum_{i=1}^{n} f(\xi_i) \cdot \Delta x_i$$

Пусть по условию:

$$f(\xi_i) \ge 0, \ \Delta x_i > 0 \ \Rightarrow f(\xi_i) \Delta x_i \ge 0 \ \Rightarrow \sum_{i=1}^n f(\xi_i) \cdot \Delta x_i \ge 0 \ \Rightarrow$$

⇒ по теореме о сохранении функцией знака своего предела:

$$\int_{a}^{b} f(x)dx = \lim_{\substack{n \to \infty \\ \max \Delta x_k \to 0}} \sum_{i=1}^{n} f(\xi_i) \cdot \Delta x_i \ge 0$$

При $f(x) \leq 0$ аналогично.

Теорема доказана

Теорема 7

Если функции f(x) и $\varphi(x)$ интегрируемы на [a;b] и на этом отрезке выполняется $f(x) \ge \varphi(x)$ $(f(x) \le \varphi(x))$, тогда

$$\int_{a}^{b} f(x)dx \ge \int_{a}^{b} \varphi(x)dx \ (\le)$$

[5] Теорема 8 (об оценке модуля определенного интеграла)

Если функция f(x) непрерывна на [a;b], то

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} \left| f(x) \right| dx$$

Доказательство

По условию функция f(x) непрерывна на [a;b], тогда по теореме Вейерштрасса

$$\forall x \in [a; b] - |f(x)| \le f(x) \le |f(x)|$$

По предыдущей теореме

$$-\int_{a}^{b} |f(x)| dx \le \int_{a}^{b} f(x) dx \le \int_{a}^{b} |f(x)| dx$$

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} \left| f(x) \right| dx$$

Теорема доказана

[4] Теорема 9 (об оценке определенного интеграла)

Если m и M соответственно наименьшее и наибольшее значение функции f(x), интегрируемой на [a;b], то выполняется неравенство:

$$m(b-a) \le \int_{a}^{b} f(x)dx \le M(b-a)$$

Доказательство

По условию:

$$\forall x \in [a, b] : m \le f(x) \le M,$$

где
$$m=\min_{[a,b]}f(x),\; M=\max_{[a,b]}f(x)$$
 $f(x)$ интегрируема на $[a,b],$ следовательно:

$$\int_{a}^{b} m dx \le \int_{a}^{b} f(x) dx \le \int_{a}^{b} M dx$$

$$m(b-a) \le \int_{a}^{b} f(x)dx \le M(b-a)$$

Теорема доказана

Теорема 10

Если m и M соответственно наименьшее и наибольшее значение функции f(x), интегрируемой на [a;b], и функция $\varphi(x) \geq 0$ - интегрируема на [a;b], то

$$m\int_{a}^{b} \varphi(x)dx \le \int_{a}^{b} f(x) \cdot \varphi(x)dx \le M\int_{a}^{b} \varphi(x)dx$$

[6] Теорема 11 (о среднем)

Если функция f(x) непрерывна на [a;b] и функция $\varphi(x)$ интегрируема и знакопостоянна на [a;b], то $\exists c \in (a;b)$ такая, что

$$\int_{a}^{b} f(x)\varphi(x)dx = f(c)\int_{a}^{b} \varphi(x)dx$$

Доказательство

По условию функция f(x) непрерывна на $[a;b] \Rightarrow$ по Th Вейерштрасса $\forall x \in [a;b] \ m \le f(x) \le M$, где $m = \min_{[a,b]} f(x), \ M = \max_{[a,b]} f(x)$

$$m\varphi(x) \le f(x)\varphi(x) \le M\varphi(x) \left(\varphi(x) > 0\right)$$

По теореме 10:

$$m \int_{a}^{b} \varphi(x)dx \le \int_{a}^{b} f(x)\varphi(x)dx \le M \int_{a}^{b} \varphi(x)dx$$
$$\varphi(x) > 0 \implies \int_{a}^{b} \varphi(x)dx > 0 \implies$$
$$m \le \frac{\int_{a}^{b} f(x)\varphi(x)dx}{\int_{a}^{b} \varphi(x)dx} \le M$$

Тогда по теореме Больцано-Коши $\exists c \in (a;b)$ такая, что

$$f(c) = \frac{\int_{a}^{b} f(x)\varphi(x)dx}{\int_{a}^{b} \varphi(x)dx} \Rightarrow$$

$$f(c) \int_{a}^{b} \varphi(x) dx = \int_{a}^{b} f(x) \varphi(x) dx$$

7. Сформулировать определение интеграла с переменным верхним пределом. Доказать теорему о производной от интеграла по его верхнему пределу.

Функция $Y(x) = \int_{a}^{x} f(t)dt$, определенная на отрезке [a,b], называется определенным интегралом с переменным верхним пределом, где $[a,x] \subset [a,b]$.

Теорема (о производной от интеграла по его верхнему пределу)

Пусть функция f(x) интегрируема на отрезке [a,b] и непрерывна в каждой точке х этого отрезка. Тогда функция

$$Y(x) = \int_{a}^{x} f(t)dt$$

дифференцируема на отрезке [a, b] и Y' = f(x).

Доказательство

По определению:

$$Y(x) = \int_{a}^{x} f(t)dt$$

$$Y(x + \Delta x) = \int_{a}^{x + \Delta x} f(t)dt, \quad x + \Delta x \in [a, b]$$

Тогда приращение $\Delta Y=Y(x+\Delta x)-Y(x)=\int\limits_a^{x+\Delta x}f(t)dt-\int\limits_a^xf(t)dt=\int\limits_x^af(t)dt+\int\limits_a^{x+\Delta x}f(t)dt=\int\limits_x^{x+\Delta x}f(t)dt$

По условию теоремы f(x) непрерывна на $[a,b] \Rightarrow$ (по теореме о среднем) $\Delta Y = \int\limits_x^{x+\Delta x} f(t)dt = f(c)(x+\Delta x-x) = f(c)\Delta x$, где $c\in(x,x+\Delta x)$.

По определению производной:

$$Y'(x) = \lim_{\Delta x \to 0} \frac{\Delta Y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(c)\Delta x}{\Delta x} = \lim_{c \to x} f(c) = f(x),$$

так как $\Delta x \to 0$ и $x < c < x + \Delta x$, то $c \to x$.

8. Сформулировать свойства определенного интеграла. Вывести формулу Ньютона-Лейбница.

Свойства определенного интеграла см. в 3, 4, 5, 6

Формула Ньютона-Лейбница

Теорема (основная теорема интегрального исчисления)

Если функция f(x) непрерывна на отрезке [a,b] , и $\Phi(x)$ - какая-либо первообразная этой функции на указанном отрезке, то

$$\int_{a}^{b} f(x)dx = \Phi(x) \Big|_{a}^{b} = \Phi(b) - \Phi(a)$$

Доказательство

Одной из первообразных функции f(x) является

$$F(x) = \int_{a}^{x} f(t)dt$$

Две первообразные функции f(x) различаются, самое большее, на константу, т.е.

$$\Phi(x) - F(x) = \Phi(x) - \int_{a}^{x} f(t)dt = C$$

Подставляя сюда x = a, получаем, что $C = \Phi(a)$. Поэтому

$$\int_{a}^{x} f(t)dt = \Phi(x) - \Phi(a)$$

При x = b получим:

$$\int_{a}^{b} f(t)dt = \Phi(b) - \Phi(a)$$

*не важно, какой буквой обозначается переменная, поэтому можно заменить t на x, чтобы получить в точности доказываемое выражение.

9. Сформулировать и доказать теорему об интегрировании подстановкой для определённого интеграла.

Теорема (об интегрировании подстановкой для определённого интеграла)

Если функция f(x) непрерывна на [a;b], функции $x=\varphi(t), \ \varphi'(t), \ f\big(\varphi(t)\big)$ - непрерывны на $[\alpha;\beta]$, где $\varphi(\alpha)=a, \ \varphi(\beta)=b$, то

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt$$

Доказательство

Пусть F(x) - какая-либо первообразная для функции f(x) на [a;b]. Р/м сложную функцию $\Phi(t)=F(\varphi(t))$. Найдем ее производную:

$$\Phi'(t) = F'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t)$$

Отсюда следует, что $\Phi(t)$ является первообразной функции $f(\varphi(t))\varphi'(t)$.

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = \Phi(\beta) - \Phi(\alpha) = F(\varphi(\beta)) - F(\varphi(\alpha)) = F(b) - F(a) = \int_{a}^{b} f(x)dx,$$

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = \int_{a}^{b} f(x)dx$$

10. Сформулировать и доказать теорему об интегрировании по частям для определённого интеграла.

Теорема (об интегрировании по частям для определённого интеграла)

Если функции
$$U(x)$$
 и $V(x)$ непрерывно дифференцируемы на $(a;b)$, то $\int\limits_a^b U dV \ = \ UV \bigg|_a^b - \int\limits_a^b V dU$

Доказательство

$$d(UV) = UdV + VdU \implies UdV = d(UV) - VdU$$

U(x) и V(x) непрерывны на $[a;b], \Rightarrow \exists$ определенный интеграл от функций:

$$\int_{a}^{b} U dV = \int_{a}^{b} d(UV) - \int_{a}^{b} V dU$$

11. Сформулировать свойства определенного интеграла. Интегрирование периодических функций, интегрирование четных и нечетных функций на отрезке, симметричном относительно начала координат.

Свойства определенного интеграла см. в 3, 4, 5, 6

Интегрирование периодических функций:

Если f(x) - периодическая функция, непрерывная на [a;a+T], где T - ее период, то $\forall a\in\mathbb{R}$ и T>0:

$$\int_{a}^{a+T} f(x)dx = \int_{0}^{T} f(x)dx$$

Интегрирование четных и нечетных функций на отрезке, симметричном относительно начала координат:

Пусть f(x) - четная функция на [-a; a], т.е. $\forall x \in [-a; a] : f(x) = f(-x)$. Тогда:

$$\int_{-a}^{a} f(x) = \int_{-a}^{0} f(x)dx + \int_{0}^{a} f(x)dx = \begin{vmatrix} x = -t & dx = -dt \\ t_{1} = a & x_{1} = -a \\ x_{2} = 0 & t_{2} = 0 \end{vmatrix} =$$

$$= \int_{a}^{0} f(-t)(-dt) + \int_{0}^{a} f(x)dx = \int_{0}^{a} f(t)dt + \int_{0}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$$

Пусть f(x) - нечетная функция на [-a; a], т.е. $\forall x \in [-a; a] : -f(x) = f(-x)$. Тогда:

$$\int_{-a}^{a} f(x) = \int_{-a}^{0} f(x)dx + \int_{0}^{a} f(x)dx = \begin{vmatrix} x = -t & dx = -dt \\ x_{1} = -a & t_{1} = a \\ x_{2} = 0 & t_{2} = 0 \end{vmatrix} =$$

$$= \int_{a}^{0} f(-t)(-dt) + \int_{0}^{a} f(x)dx = -\int_{0}^{a} f(t)dt + \int_{0}^{a} f(x)dx = \int_{0}^{a} f(x)dx - \int_{0}^{a} f(x)dx = 0$$

12,13,14. Сформулировать определение несобственного интеграла 1-го рода. Сформулировать и доказать признак сходимости по неравенству для несобственных интегралов 1-го рода. Сформулировать и доказать предельный признак сравнения для несобственных интегралов 1-го рода. Сформулировать и доказать признак абсолютной сходимости для несобственных интегралов 1-го рода.

Пусть функция f(x) определена и непрерывна на $[a, +\infty)$. Тогда предел $\lim_{b\to +\infty} \int\limits_a^b f(x) dx$ называют несобственным интегралом с бесконечным верхним пределом (несобственный интеграл 1-го рода) и обозачают:

$$\int_{-\infty}^{+\infty} f(x)dx$$

[12] признак сходимости по неравенству для несобственных интегралов 1-го рода Если функции f(x) и g(x) непрерывны на $[a, +\infty)$ и $\forall x \in [a, +\infty)$ выполняется неравенство 0 < f(x) < g(x), тогда:

- 1. если сходится $\int\limits_a^{+\infty}g(x)dx$, то сходится и $\int\limits_a^{+\infty}f(x)dx$
- 2. если расходится $\int\limits_a^{+\infty} f(x) dx$, то расходится и $\int\limits_a^{+\infty} g(x) dx$

Доказательство

1) По условию $\int\limits_a^{+\infty}g(x)dx$ сходится \Rightarrow по определению \exists конечный $\lim\limits_{b\to +\infty}\int\limits_a^bg(x)dx \ = \ M,$ а значит:

$$\forall b > a : \int_{a}^{b} g(x)dx \le M$$

По условию, $\forall x \in [a, +\infty)$ выполняется неравенство: $0 \le f(x) \le g(x)$ По теореме об интегрировании неравенства:

$$0 \le \int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx \le M$$

Таким образом:

$$0 \le \int_{a}^{b} f(x)dx \le M$$

По теореме о предельном переходе в неравенстве:

^{*}аналогично определение несобственного интеграла с бесконечным нижним пределом.

$$\lim_{b \to \infty} 0 \le \lim_{b \to \infty} \int_{a}^{b} f(x) dx \le \lim_{b \to \infty} M$$
$$0 \le \int_{a}^{+\infty} f(x) dx \le M,$$

из полученного выше следует сходимость $\int\limits_{a}^{+\infty}f(x)dx$

2) По условию $\int\limits_a^{+\infty} f(x) dx$ расходится. Предположим, что $\int\limits_a^{+\infty} g(x) dx$ сходится, вопреки теореме. Но в таком случае, по доказанному выше, $\int\limits_a^{+\infty} f(x) dx$ - сходится. Это противоречит условию теоремы, а значит, $\int\limits_a^{+\infty} g(x) dx$ расходится. *Теорема доказана*

1еорема ооказана

[13] предельный признак сравнения для несобственных интегралов 1-го рода

Если функции f(x)>0 и g(x)>0 непрерывны на $[a,+\infty)$ и существует конечный предел $\lim_{x\to +\infty}\frac{f(x)}{g(x)}=\lambda>0$, то $\int\limits_a^{+\infty}f(x)dx$ и $\int\limits_a^{+\infty}g(x)dx$ сходятся или расходятся одновременно.

По условию существует конечный $\lim_{x\to +\infty}\frac{f(x)}{g(x)}=\lambda>0,$ то есть по определению предела:

$$\forall \varepsilon > 0 \ \exists M = M(\varepsilon) > 0 : \ \forall x > M \Rightarrow \left| \frac{f(x)}{g(x)} - \lambda \right| < \varepsilon$$
$$-\varepsilon < \frac{f(x)}{g(x)} - \lambda < \varepsilon$$
$$\lambda - \varepsilon < \frac{f(x)}{g(x)} < \lambda + \varepsilon \quad | \cdot g(x) > 0$$
$$(\lambda - \varepsilon)g(x) < f(x) < (\lambda + \varepsilon)g(x) \tag{1}$$

Пусть a>M. Подберем ε так, чтобы $\lambda-\varepsilon>0$

1) Пусть $\int\limits_{a}^{+\infty} f(x) dx$ сходится. Тогда, т.к. из (1) $\Rightarrow (\lambda - \varepsilon) g(x) < f(x)$, можно применить признак сходимости по неравенству: $\int\limits_{a}^{+\infty} (\lambda - \varepsilon) g(x) dx$ - сходится. Тогда и $\int\limits_{a}^{+\infty} g(x) dx$ сходится (по свойству линейности).

- 2) Пусть $\int\limits_a^{+\infty} g(x) dx$ сходится. Тогда по свойству линейности будет сходиться $\int\limits_a^{+\infty} (\lambda + \varepsilon) g(x) dx$. Из (1) $\Rightarrow f(x) < (\lambda + \varepsilon) g(x)$, тогда по признаку сходимости по неравенству, $\int\limits_a^{+\infty} f(x) dx$ сходится.
- 3) Пусть $\int_a^{+\infty} f(x) dx$ расходится. Тогда, т.к. из (1) $\Rightarrow f(x) < (\lambda + \varepsilon)g(x)$, можно применить признак сходимости по неравенству:

$$\int\limits_a^{+\infty}(\lambda+\varepsilon)g(x)dx$$
 - расходится, а значит и $\int\limits_a^{+\infty}g(x)dx$ - расходится.

4) Пусть $\int\limits_a^{+\infty}g(x)dx$ расходится. Тогда по свойству линейности будет расходиться $\int\limits_a^{+\infty}(\lambda-\varepsilon)g(x)dx$.

Из (1) $\Rightarrow (\lambda - \varepsilon)g(x) < f(x)$, тогда по признаку сходимости по неравенству, $\int\limits_a^{+\infty} f(x)dx$ - расходится.

Теорема доказана

[14] признак абсолютной сходимости для несобственных интегралов 1-го рода

Если функция y = f(x) непрерывна и знакопеременная в $[a, +\infty)$, и $\int\limits_a^{+\infty} |f(x)| dx$ сходится, то $\int\limits_a^{+\infty} f(x) dx$ сходится (последний интеграл называют абсолютно сходящимся).

Доказательство

По условию f(x) непрерывна в $[a,+\infty) \Rightarrow \forall x \in [a,+\infty): \ f(x) \leq |f(x)| \Rightarrow f(x) + |f(x)| \leq 2|f(x)|$

По условию $\int\limits_a^{+\infty}|f(x)|dx$ сходится $\Rightarrow 2\int\limits_a^{+\infty}|f(x)|dx$ тоже сходится \Rightarrow (по признаку сходимости по неравенству) $\int\limits_a^{+\infty}\Big(f(x)+|f(x)|\Big)dx$ сходится \Rightarrow

$$\int\limits_{a}^{+\infty}f(x)dx=\underbrace{\int\limits_{a}^{+\infty}\left(f(x)+|f(x)|\right)dx}_{\text{сходится}}-\underbrace{\int\limits_{a}^{+\infty}|f(x)|dx}_{\text{сходится}}$$

Таким образом, $\int\limits_{a}^{+\infty}f(x)dx$ - сходится.

15. Сформулировать определение несобственного интеграла 2-го рода и признаки сходимости таких интегралов.

Пусть функция f(x) определена на [a,b]. **Несобственным интегралом 2-го рода** от функции, имеющей разрыв:

1. в правом конце отрезка, называется предел определенного интеграла:

$$\lim_{\varepsilon \to 0} \int_{-\varepsilon}^{b-\varepsilon} f(x) dx$$

2. в левом конце отрезка, называется предел определенного интеграла:

$$\lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} f(x) dx$$

3. внутри отрезка (в точке $c \in (a,b)$), называется сумма пределов определенных интегралов:

$$\lim_{\varepsilon \to 0} \int_{a}^{-\varepsilon} f(x)dx + \lim_{\varepsilon \to 0} \int_{+\varepsilon}^{b} f(x)dx$$

и обозначается как:

$$\int_{a}^{b} f(x)dx$$

признаки сходимости несобственных интегралов 2-го рода

(они аналогичны признакам сходимости несобственных интегралов 1-го рода)

Теорема 1

Если функции f(x) и g(x) непрерывны на [a,b) и $\forall x \in [a,b)$ выполняется неравенство $0 \le f(x) \le g(x)$, тогда:

- 1. если сходится $\int\limits_a^b g(x)dx$, то сходится и $\int\limits_a^b f(x)dx$
- 2. если расходится $\int\limits_a^b f(x)dx$, то расходится и $\int\limits_a^b g(x)dx$

Теорема 2

Если функции f(x)>0 и g(x)>0 непрерывны на [a,b) и $f(b)=\infty,\ g(b)=\infty$ и существует конечный предел $\lim_{x\to b}\frac{f(x)}{g(x)}=\lambda>0,$ то $\int\limits_a^bf(x)dx$ и $\int\limits_a^bg(x)dx$ сходятся или расходятся одновременно.

16. Фигура ограничена кривой $y = f(x) \ge 0$, прямыми x = a, x = b и y = 0 (a < b). Вывести формулу для вычисления с помощью определенного интеграла площади этой фигуры.

Рассмотрим криволинейную трапецию, ограниченную $y=f(x),\ x=a,\ x=b,$ и осью Ox. разобьем основание на n частичных отрезков точками:

$$a = x_0, \; x_1, \; x_2, ..., \; x_n = b, \;$$
где $x_0 < x_1 < x_2 < ... < x_n$

Проведем прямые через эти точки, перпендикулярно оси абсцисс.

Внутри каждого отрезка зафиксируем $\xi_k \in [x_{k-1}; x_k]$

Тогда $S_k = f(\xi_k) \Delta x_k$ - площадь k-го прямоугольника с высотой $f(\xi_k)$ и шириной Δx_k . Эта площадь, при условии $\Delta x_k \to 0$, будет приблизительно равна площади криволинейной трапеции, ограниченной $y = f(x), \ x = x_{k-1}, \ x = x_k$, и осью Ox.

Составим интегральную сумму - сумму вида:

$$\sum_{k=1}^{n} S_k = \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$
, где $\Delta x_k = x_k - x_{k-1}$

Эта сумма приблизительно равна искомой площади криволинейной трапеции, причем это приближение становится более точным, если n будет неограниченно расти, а длины отрезков разбиения Δx_k , соответственно, уменьшаться. Предел интегральной суммы при перечисленных выше условиях будет равен, по определению, определенному интегралу $\int\limits_a^b f(x)dx$, и будет равен, исходя из всех рассуждений выше, искомой площади криволинейной трапеции. Таким образом,

$$S = \int_{a}^{b} f(x)dx$$

17. Фигура ограничена лучами $\varphi=\alpha,\ \varphi=\beta$ и кривой $r=f(\varphi)$. Здесь r и φ - полярные координаты точки, $0\leq \alpha<\beta\leq 2\pi$. Вывести формулу для вычисления с помощью определенного интеграла площади этой фигуры.

Пусть криволинейный сектор ограничен отрезками лучей $\varphi=\alpha,\ \varphi=\beta$ и кривой $\rho=\rho(\varphi)$, где $\rho(\varphi)$ - функция, непрерывная на отрезке $[\alpha;\beta]$. Тогда площадь этого криволинейного сектора:

$$S = \frac{1}{2} \int_{\alpha}^{\beta} \rho^{2}(\varphi) d\varphi$$

Вывод

Разобьем криволинейный сектор лучами на n частичных криволинейных секторов

$$\alpha = \varphi_0 < \varphi_1 < \dots < \varphi_n = \beta, \ \Delta \varphi_k = \varphi_k - \varphi_{k-1}$$

В каждом частичном веткоре возьмем: $\overset{\sim}{\varphi_k} \in \Delta \varphi_k, \; k=1,2,...,n$ При малых $\Delta \varphi_k$ справедливо $S_{\text{крив. сектора}} \approx S_{\text{кругового сектора}}$ В свою очередь,

$$S_{ ext{круг. сектора}} = rac{1}{2}
ho_k^2 \cdot \Delta arphi_k = S_k$$

$$S = \sum_{k=1}^{n} S_k = \frac{1}{2} \sum_{k=1}^{n} \rho^2(\widetilde{\varphi}_k) \cdot \Delta \varphi_k$$

Получили интегральную сумму для функции $\rho^2(\varphi)$.

 $\rho(\varphi)$ - непрерывна на $[a,b] \Rightarrow \rho^2(\varphi)$ - тоже непрерывна на [a,b] , следовательно существует конечный интеграл:

$$S = \frac{1}{2} \lim_{\substack{n \to \infty \\ \max \Delta \varphi_k \to 0}} \sum_{k=1}^{n} \rho^2(\widetilde{\varphi_k}) \cdot \Delta \varphi_k = \frac{1}{2} \int_{\alpha}^{\beta} \rho^2(\varphi) d\varphi$$

18. Тело образовано вращением вокруг оси Ox криволинейной трапеции, ограниченной кривой $y=f(x)\geq 0$, прямыми $x=a,\ x=b$ и $y=0\ (a< b)$. Вывести формулу для вычисления с помощью определенного интеграла объема тела вращения.

Пусть тело M заключено между плоскостями x=a и x=b, и пусть для каждой точки $x\in[a;b]$ известна площадь $S(x)=\pi f^2(x)$ фигуры, получающейся в сечении тела M плоскостью, перпендикулярной оси абсцисс и проходящей через указанную точку.

Разобьем отрезок [a;b] на части точками $a = x_0 < x_1 < ... < x_n = b$.

Тогда объем V_i части M_i тела, расположенной между плоскостями $x=x_{i-1}$ и $x=x_i$, при достаточно малом $\Delta x_i=x_i-x_{i-1}$, приблизительно равен объему цилиндра с площадью основания $S(\xi_i),\ \xi_i\in[x_{i-1};x_i]$ и высотой Δx_i :

$$V_i = S(\xi_i) \Delta x_i$$

Рассмотрим сумму $\sum\limits_{i=0}^n V_i$ в пределе при $n \to \infty$ и $\max\limits_k \Delta x_i \to 0$ (далее эти условия обозначаются "…"):

 $\lim_{n \to \infty} \sum_{i=0}^{n} V_i$, с одной стороны, равен искомому объему вращения V (с учетом всего сказанного выше).

С другой же,

$$\lim_{m} \sum_{i=0}^{n} V_{i} = \lim_{m} \sum_{i=0}^{n} S(\xi_{i}) \Delta x_{i} = \int_{a}^{b} S(x) dx = \int_{a}^{b} \pi f^{2}(x) dx = \pi \int_{a}^{b} f^{2}(x) dx$$

Таким образом,

$$V = \pi \int_{a}^{b} f^{2}(x)dx$$

19. Кривая задана в декартовых координатах уравнением y=f(x), где x и y - декартовые координаты точки, $a\leq x\leq b$. Вывести формулу для вычисления длины дуги этой кривой.

Пусть кривая AB задана уравнением y=f(x), где f(x) - функция, непрерывная на [a;b] и имеющая непрерывную первую производную на этом отрезке, тогда

$$l = \int_{a}^{b} \sqrt{1 + \left(f'(x)\right)^2} dx$$

Покажем это:

Разобьем дугу AB на n частей точками $M_0, M_1, ..., M_n$, абсциссы которых $a = x_0 < x_1 < x_2 < ... < x_{n-1} < x_n = b$

Соединив соседние точки отрезками, получим ломаную, вписанную в дугу AB. Обозначим длины отрезков $M_{i-1}M_i$ за l_i , тогда длина ломаной

$$l_{ exttt{ iny NOMAHHO}reve{u}} = l_1 + l_2 + \ldots + l_n = \sum_{i=1}^n l_i$$

Длиной l дуги AB кривой y=f(x) называется предел длины вписанной в нее ломаной, когда число ее звеньев неограниченно растет, а наибольшая из длин звеньев длина стремится к 0, т.е.

$$l = \lim_{\substack{n \to \infty \\ \max l_i \to 0}} \sum_{i=1}^n l_i$$

*При этом предполагается, что этот предел существует и не зависит от выбора точек.

Кривые, для которых существует этот предел, называют спрямляемыми**.

По формуле расстояния между двумя точками на плоскости, имеем:

$$l_i=\sqrt{(x_i-x_{i-1})^2+(y_i-y_{i-1})^2},$$
 или
$$l_i=\sqrt{(\Delta x_i)^2+(\Delta y_i)^2}=\Delta x_i\sqrt{1+\left(\frac{\Delta y_i}{\Delta x_i}\right)^2},$$
 где

$$\Delta x_i = x_i - x_{i-1}$$

$$\Delta y_i = y_i - y_{i-1} = f(x_i) - f(x_{i-1})$$

По теореме Лагранжа,

$$\frac{\Delta y_i}{\Delta x_i} = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} = f'(\xi_i), \ \xi_i \in (x_{i-1}, x_i)$$

Тогда

$$l_i = \Delta x_i \sqrt{1 + \left(f'(\xi_i)\right)^2}$$

и длина вписанной ломаной:

$$l_{ ext{\tiny ломанной}} = \sum_{i=1}^n \Delta x_i \sqrt{1 + \left(f'(\xi_i)\right)^2} \,\,$$
 — интегральная сумма

Так как f'(x) непрерывна на [a;b], то и $\sqrt{1+\big(f'(x)\big)^2}$ непрерывна на [a;b], поэтому существует предел интегральной суммы, который равен определенному интегралу:

$$l = \lim_{\substack{n \to \infty \\ \max l_i \to 0}} \sum_{i=1}^{n} \Delta x_i \sqrt{1 + (f'(\xi_i))^2} = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$$

20. Кривая задана в полярных координатах уравнением $r=f(\varphi)\geq 0$, где r и φ - полярные координаты точки, $\alpha\leq \varphi\leq \beta$. Вывести формулу для вычисления длины дуги этой кривой.

Кривая задана в полярных координатах в виде $r = f(\varphi), \ \alpha \le \varphi \le \beta$. Тогда

$$\begin{cases} x(\varphi) = r\cos\varphi \\ y(\varphi) = r\sin\varphi \end{cases}$$

$$\begin{cases} x'_{\varphi} = r'\cos\varphi - r\sin\varphi \\ y'_{\varphi} = r'\sin\varphi + r\cos\varphi \end{cases}$$

Тогда

$$y'_x = \frac{y'_{\varphi}}{x'_{\varphi}}, \ dx = x'_{\varphi}d\varphi, \ a = x(\alpha), \ b = x(\beta)$$

Подставим все в формулу длины дуги кривой, заданной в полярных координатах:

$$\begin{split} l &= \int\limits_{\alpha}^{\beta} \sqrt{1 + \left(\frac{y_{\varphi}'}{x_{\varphi}'}\right)^2} x_{\varphi}' d\varphi = \\ &= \int\limits_{\alpha}^{\beta} \sqrt{(x_{\varphi}')^2 + (y_{\varphi}')^2} d\varphi = \int\limits_{\alpha}^{\beta} \sqrt{(r'\cos\varphi - r\sin\varphi)^2 + (r'\sin\varphi + r\cos\varphi)^2} d\varphi = \\ \int\limits_{\alpha}^{\beta} \sqrt{(r')^2\cos^2\varphi - 2r'r\cos\varphi\sin\varphi + r^2\sin^2\varphi + (r')^2\sin^2\varphi + 2r'r\sin\varphi\cos\varphi + r^2\cos^2\varphi)^2} d\varphi = \\ &= \int\limits_{\alpha}^{\beta} \sqrt{(r')^2 + r^2} d\varphi \\ l &= \int\limits_{\alpha}^{\beta} \sqrt{(r')^2 + r^2} d\varphi \end{split}$$

21. Линейные дифференциальные уравнения первого порядка. Интегрирование линейных неоднородных дифференциальных уравнений первого порядка методом Бернулли (метод " $u \cdot v$ ") и методом Лагранжа (вариации произвольной постоянной).

Уравнение вида

$$y' + p(x)y = q(x),$$

где p(x) и q(x) - непрерывные функции, называется линейным дифференциальным уравнением 1-го порядка (ЛДУI)

В противном случае $(q(x) \neq 0)$ ЛДУІ называют **неоднородным** (НЛДУІ)

Интегрирование НЛДУ1 методом Бернулли

$$y' + p(x)y = q(x)$$

Решение будем искать в виде $y=U\cdot V$, где $U=U(x),\ V=V(x)$ - новые неизвестные функции.

Тогда

$$y' = U'V + V'U$$

$$U'V + V'U + p(x) \cdot UV = q(x)$$

Выносим за скобки одну из новых функций:

$$V(U' + p(x) \cdot U) + UV' = q(x)$$

Функции U и V будем искать из условий:

$$\begin{cases} U' + p(x) \cdot U = 0 \\ UV' = q(x) \end{cases}$$

1. Из первого условия находим U:

$$U' + p(x) \cdot U = 0$$

$$\frac{dU}{dx} = -p(x)U$$

$$\int \frac{dU}{U} = -\int p(x)dx$$

$$U = e^{-\int p(x)dx} + C$$

Возьмем частное решение при C = 0:

$$U = e^{-\int p(x)dx}$$

2. Из второго условия, с учетом полученного частного решения U, находим V:

$$UV' = q(x)$$

$$V'e^{-\int p(x)dx} = q(x)$$

$$\frac{dV}{dx} = q(x)e^{\int p(x)dx}$$

$$dV = q(x)e^{\int p(x)dx}dx$$

$$\int dV = \int q(x)e^{\int p(x)dx}dx$$

$$V = \int q(x)e^{\int p(x)dx}dx + C$$

Таким образом, получаем:

$$y = U \cdot V = e^{-\int p(x)dx} \left(\int q(x)e^{\int p(x)dx} dx + C \right)$$

Интегрирование НЛДУ1 методом Лагранжа

$$y' + p(x)y = q(x)$$

1. Решим соответствующее ОЛДУ1:

$$y' + p(x)y = 0$$

$$\frac{dy}{dx} = -p(x)y$$

$$\frac{dy}{y} = -p(x)dx$$

$$\int \frac{dy}{y} = -\int p(x)dx$$

$$\ln|y| = -\int p(x)dx + C$$

$$y_{\text{o.o.}} = C \cdot e^{-\int p(x)dx}$$

2. Искать общее решение $H \Pi \Pi V I$ будем в том же виде, что и решение $O \Pi \Pi V I$, но считая C неизвестной функцией от x, т.е.

$$y_{\text{о.н.}} = C(x) \cdot e^{-\int p(x)dx}$$

$$y'_{\text{\tiny O.H.}} = C'(x) \cdot e^{-\int p(x)dx} + C(x) \cdot e^{-\int p(x)dx} \cdot \left(-p(x)\right)$$

Подставляем $y_{\text{о.н.}}$, $y'_{\text{о.н.}}$ в исходное $H \Pi \Pi V I$

$$C'(x) \cdot e^{-\int p(x)dx} + C(x) \cdot e^{-\int p(x)dx} \cdot \left(-p(x)\right) + p(x) \cdot C(x) \cdot e^{-\int p(x)dx} = q(x)$$

$$C'(x) \cdot e^{-\int p(x)dx} = q(x)$$

$$\frac{dC}{dx} = q(x) \cdot e^{\int p(x)dx}$$

$$dC = q(x) \cdot e^{\int p(x)dx} dx$$

$$\int dC = \int q(x) \cdot e^{\int p(x)dx} dx$$

$$C = \int q(x) \cdot e^{\int p(x)dx} dx + C_1$$

Подставим найденную С в $y_{\text{о.н.}}$

$$y_{ ext{o.h.}} = \left(\int q(x) \cdot e^{\int p(x)dx} dx + C_1 \right) \cdot e^{-\int p(x)dx}$$

22. Сформулировать теорему Коши о существовании и единственности решения дифференциального уравнения n-го порядка. Интегрирование дифференциальных уравнений n-го порядка, допускающих понижение порядка.

Теорема Коши о существовании и единственности решения дифференциального уравнения n-го порядка

Если в уравнении $y^{(n)} = f(x, y, y', ..., y^{(n-1)})$ функция $f(x, y, y', ..., y^{(n-1)})$ и ее частные производные по аргументам $y, y', ..., y^{(n-1)}$ непрерывны в некоторой области D, то существует единственное решение y = y(x) этого уравнения, удовлетворяющее начальным условиям:

$$y(x_0) = y_0, \ y'(x_0) = y'_0, \ ..., \ y^{(n-1)}(x_0) = y_0^{(n-1)}$$

Интегрирование дифференциальных уравнений n-го порядка, допускающих понижение порядка

1.
$$y^{(n)} = f(x)$$

Общее решение находится последовательным интегрированием:

$$y^{(n-1)} = \int f(x)dx + C_1$$
$$y^{(n-2)} = \int \left(\int f(x)dx + C_1 \right) dx + C_2 = \int dx \int f(x)dx + C_1 x + C_2$$

. . .

$$y(x) = \int dx \int dx \dots \int f(x)dx + \frac{C_1}{(n-1)!}x^{n-1} + \dots + C_{n-1}x + C_n$$

2. $F(x, y^{(k)}, y^{(k+1)}, ..., y^{(n)}) = 0$ - ДУ n-го порядка, не содержащее явно $y, y', ..., y^{(k-1)}$ Порядок ДУ понижается на k заменой $y^{(k)} = p(x)$. Таким образом, ДУ примет вид:

$$F(x, p, p', ..., p^{(n-k)})$$

Общее решение этого ДУ: $p(x) = \varphi(x, C_1, ..., C_{n-k})$

С учетом замены: $y^{(k)} = \varphi(x, C_1, ..., C_{n-k})$

Решаем полученное $\mathcal{J}V$ последовательным интегрированием и находим общее решение исходного $\mathcal{J}V$:

$$y = \psi(x, C_1, ..., C_n)$$

3. $F(y, y', ..., y^{(n)}) = 0$ - ДУ n-го порядка, не содержащее явно x.

Порядок $\mathcal{Д} \mathcal{Y}$ понижаем на 1 с помощью замены

$$y' = p(y),$$

$$y'' = (p(y))' = p'(y) \cdot y' = p' \cdot p,$$

23. Сформулировать теорему Коши о существовании и единственности решения линейного дифференциального уравнения n-го порядка. Доказать свойства частных решений линейного однородного дифференциального уравнения n-го порядка.

теорема Коши о существовании и единственности решения линейного дифференциального уравнения n-го порядка

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_n(x)y = f(x) - ЛДУ$$
 п-го порядка

Если функции $p_1(x), p_2(x), ..., p_n(x), f(x)$ являются непрерывными на [a; b], то для любого начального условия

$$y(x_0) = y_0, \ y'(x_0) = y'_0, \ ..., \ y^{(n-1)}(x_0) = y_0^{(n-1)}$$

существует единственное решение $y=\varphi(x)$ ЛДУ n-го порядка, удовлетворяющее этим начальным условиям.

Свойства частных решений линейного однородного дифференциального уравнения n-го порядка

1. Если y_1 и y_2 - частные решения ЛОДУ n-го порядка, то y_1+y_2 - также является решением этого ЛОДУ.

Доказательство

$$(y_1 + y_2)^{(n)} + p_1(x) \cdot (y_1 + y_2)^{(n-1)} + \dots + p_n(x) \cdot (y_1 + y_2) =$$

$$= \underbrace{y_1^{(n)} + p_1(x)y_1^{(n-1)} + \dots + p_n(x)y_1}_{0} + \underbrace{y_2^{(n)} + p_1(x)y_2^{(n-1)} + \dots + p_n(x)y_2}_{0} = 0$$

Это означает, что y_1+y_2 по определению является решением этого ЛОДУ Теорема доказана

2. Если y_1 - частное решение $\mathcal{I}O\mathcal{I}V$ n-го порядка, то $C\cdot y_1$ - также является решением этого $\mathcal{I}O\mathcal{I}V$, C=const.

Доказательство

$$(C \cdot y_1)^{(n)} + p_1(x) \cdot (C \cdot y_1)^{(n-1)} + \dots + p_n(x) \cdot (C \cdot y_1) =$$

$$= C \cdot y_1^{(n)} + p_1(x) \cdot C \cdot y_1^{(n-1)} + \dots + p_n(x) \cdot C \cdot y_1 =$$

$$= C \cdot \underbrace{\left(y_1^{(n)} + p_1(x) \cdot y_1^{(n-1)} + \dots + p_n(x) \cdot y_1\right)}_{0} = 0$$

Это означает, что $C \cdot y_1$ по определению является решением этого $\mathcal{I}O\mathcal{I}V$

Теорема доказана

Следствие. Если y_1 и y_2 - частные решения ЛОДУ n-го порядка, то их линейная комбинация $C_1y_1+C_2y_2,\ C_1=const,\ C_2=const$ - также является решением этого ЛОДУ.

Доказательство

$$(C_{1}y_{1} + C_{2}y_{2})^{(n)} + p_{1}(x) \cdot (C_{1}y_{1} + C_{2}y_{2})^{(n-1)} + \dots + p_{n}(x) \cdot (C_{1}y_{1} + C_{2}y_{2}) =$$

$$= C_{1} \cdot y_{1}^{(n)} + p_{1}(x) \cdot C_{1} \cdot y_{1}^{(n-1)} + \dots + p_{n}(x) \cdot C_{1} \cdot y_{1} + C_{2} \cdot y_{2}^{(n)} + p_{1}(x) \cdot C_{2} \cdot y_{2}^{(n-1)} + \dots + p_{n}(x) \cdot C_{2} \cdot y_{2} =$$

$$= C_{1} \cdot \underbrace{\left(y_{1}^{(n)} + p_{1}(x) \cdot y_{1}^{(n-1)} + \dots + p_{n}(x) \cdot y_{1}\right)}_{0} + C_{2} \cdot \underbrace{\left(y_{2}^{(n)} + p_{1}(x) \cdot y_{2}^{(n-1)} + \dots + p_{n}(x) \cdot y_{2}\right)}_{0} = 0$$

Это означает, что $C_1y_1+C_2y_2$ по определению является решением этого ЛОДУ Теорема доказана

24, 25. Сформулировать определения линейно зависимой и линейно независимой систем функций. Сформулировать и доказать теорему о вронскиане линейно зависимых функций. Сформулировать и доказать теорему о вронскиане системы линейно независимых частных решений линейного однородного дифференциального уравнения n-го порядка.

Система функций $y_1(x), ..., y_n(x)$ называется **линейно зависимой** на [a;b], если $\exists \alpha_1, \alpha_2, ..., \alpha_n$, не все равные 0, такие, что на [a;b] выполняется тождество

$$\alpha_1 y_1(x) + \alpha_2 y_2(x) + \dots + \alpha_n y_n(x) = 0$$

Система функций $y_1(x), ..., y_n(x)$ называется **линейно независимой** на [a;b], если на [a;b] выполняется тождество

$$\alpha_1 y_1(x) + \alpha_2 y_2(x) + \dots + \alpha_n y_n(x) = 0$$

только когда $\forall \alpha_i = 0$.

Теорема (о вронскиане линейно зависимых функций)

Если функции $y_1(x)$, ..., $y_n(x)$ являются линейно зависимыми на [a;b], то $\forall x \in [a;b]$ определитель Вронского этих функций равен 0.

Доказательство

По условию функции $y_1(x), ..., y_n(x)$ линейно зависимы на $[a;b] \Rightarrow \exists \alpha_i$, не все равные 0, такие что

$$\begin{cases} \alpha_1 y_1(x) + \alpha_2 y_2(x) + \ldots + \alpha_n y_n(x) = 0 \text{ дифференцируем} \\ \alpha_1 y_1'(x) + \alpha_2 y_2'(x) + \ldots + \alpha_n y_n'(x) = 0 \\ \ldots \\ \alpha_1 y_1^{(n-1)}(x) + \alpha_2 y_2^{(n-1)}(x) + \ldots + \alpha_n y_n^{(n-1)}(x) = 0 \end{cases}$$

Получили *СЛОАУ* (систему линейных однородных алгебраических уравнений) с неизвестными $\alpha_1, ..., \alpha_n$ и с отличным от 0 решением, так как не все $\alpha_i = 0$ (см. выше).

Это возможно в случае, если определитель системы равен 0, но определитель этой системы и является определителем Вронского функций $y_1(x), ..., y_n(x)$, т.е.

$$\forall x \in [a; b] \begin{vmatrix} y_1(x) & y_2(x) & \cdots & y_n(x) \\ y'_1(x) & y'_2(x) & \cdots & y'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \cdots & y_n^{(n-1)}(x) \end{vmatrix} = 0$$

Теорема доказана

Теорема (о вронскиане системы линейно независимых частных решений линейного однородного дифференциального уравнения n-го порядка)

Если линейно независимые на [a;b] функции $y_1, ..., y_n$ являются частными решениями $\mathcal{I}O\mathcal{I}V$

n-го порядка с непрерывными на [a;b] коэффициентами $p_i(x),\ i=1,2,...,n,$ то $\forall x\in [a;b]$ определитель Вронского этих функций отличен от нуля.

Доказательство (от противного)

Предположим, что для какой-то точки $x_0 \in [a;b]$ $W(x_0) = 0$. Рассмотрим СЛАУ относительно $\alpha_1, \ldots, \alpha_n$

$$\begin{cases} \alpha_1 y_1(x_0) + \alpha_2 y_2(x_0) + \dots + \alpha_n y_n(x_0) = 0 \\ \alpha_1 y_1'(x_0) + \alpha_2 y_2'(x_0) + \dots + \alpha_n y_n'(x_0) = 0 \\ \dots \\ \alpha_1 y_1^{(n-1)}(x_0) + \alpha_2 y_2^{(n-1)}(x_0) + \dots + \alpha_n y_n^{(n-1)}(x_0) = 0 \end{cases}$$

Определитель этой системы $W(x_0) = 0 \; \Rightarrow$ система имеет ненулевое решение, то есть $\exists \alpha_1, \; \alpha_2, \; ..., \; \alpha_n$, не все равные 0, являющиеся решением этой СЛАУ.

Рассмотрим частное решение ЛОДУ

$$\overline{y}(x) = \alpha_1 y_1(x) + \alpha_2 y_2(x) + \dots + \alpha_n y_n(x)$$

Оно удовлетворяет в точке x_0 начальным условиям (в силу СЛАУ выше)

$$\begin{cases} \overline{y}(x_0) = \alpha_1 y_1(x_0) + \alpha_2 y_2(x_0) + \dots + \alpha_n y_n(x_0) = 0 \\ \overline{y}'(x_0) = \alpha_1 y_1'(x_0) + \alpha_2 y_2'(x_0) + \dots + \alpha_n y_n'(x_0) = 0 \\ \dots \\ \overline{y}^{(n-1)}(x) = \alpha_1 y_1^{(n-1)}(x_0) + \alpha_2 y_2^{(n-1)}(x_0) + \dots + \alpha_n y_n^{(n-1)}(x_0) = 0 \end{cases}$$

Рассмотрим частное решение $JOJY \overline{y}(x) = 0$

Оно удовлетворяет в точке x_0 начальным условиям

$$\begin{cases} \overline{\overline{y}}(x_0) = 0\\ \overline{\overline{y}}'(x_0) = 0\\ \dots\\ \overline{\overline{y}}^{(n-1)}(x_0) = 0 \end{cases}$$

Таким образом, частные решения $\overline{y}(x)$, $\overline{\overline{y}}(x)$ удовлетворяют одним и тем же начальным условиям задачи Коши. По теореме о существовании и единственности решения задачи Коши $\overline{y}(x)=\overline{\overline{y}}(x)$, иначе получим два различных частных решения, удовлетворяющих одному начальному условию.

$$\overline{y}(x) = \overline{\overline{y}}(x)$$

$$\alpha_1 y_1(x) + \alpha_2 y_2(x) + \dots + \alpha_n y_n(x) = 0$$

То есть $y_1, y_2, ..., y_n$ - линейно зависимы на [a; b], что противоречит условию линейной неза-

висимости $y_1, y_2, \ ..., \ y_n,$ а значит, получили противоречие с условием теоремы.

Таким образом $\forall x \in [a;b] \ W(x) \neq 0$

Теорема доказана

26. Сформулировать и доказать теорему о существовании фундаментальной системы решений линейного однородного дифференциального уравнения n-го порядка.

Теорема (о существовании фундаментальной системы решений линейного однородного дифференциального уравнения n-го порядка)

У каждого $\Pi O \Pi Y$ n-го порядка $y^{(n)}+p_1(x)y^{(n-1)}+...+p_n(x)y=0$ с непрерывными $p_i(x),\ i=1,2,...,n$ коэффициентами на [a;b] существует ΦCP .

Доказательство

Возьмем любой числовой определитель n-го порядка, не равный нулю

$$\begin{vmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1n} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{n1} & \beta_{n2} & \cdots & \beta_{nn} \end{vmatrix} \neq 0$$

Возьмем любую точку $x_0 \in [a;b]$ и сформулируем для уравнения n задач Коши, причём начальные условия в точке x_0 для i-ой задачи возьмём из i-го столбца этого определителя:

$$y_1(x_0) = \beta_{11} \qquad y_2(x_0) = \beta_{12} \qquad \cdots \qquad y_n(x_0) = \beta_{1n}$$

$$y'_1(x_0) = \beta_{21} \qquad y'_2(x_0) = \beta_{22} \qquad \cdots \qquad y'_n(x_0) = \beta_{2n}$$

$$\cdots \qquad \cdots \qquad \cdots \qquad \cdots$$

$$y_1^{(n-1)}(x_0) = \beta_{n1} \quad y_2^{(n-1)}(x_0) = \beta_{n2} \quad \cdots \quad y_n^{(n-1)}(x_0) = \beta_{nn}$$

Пусть $y_1(x),\ y_2(x),\ ...,\ y_n(x)$ - решения этих задач. Эта система линейно независима на [a;b], так как её определитель Вронского в точке x_0 равен взятому числовому определителю и отличен от нуля, следовательно, это фундаментальная система решений.

Теорема доказана

27. Сформулировать и доказать теорему о структуре общего решения линейного однородного дифференциального уравнения n-го порядка.

Теорема (о структуре общего решения линейного однородного дифференциального уравнения n-го порядка)

Общее решение на [a;b] ЛОДУ n-го порядка с непрерывными $p_i(x),\ i=1,2,...,n$ на [a;b] функциями равно линейной комбинации ФСР с произвольными постоянными коэффициентами

$$y_{\text{o.o.}} = C_1 y_1 + C_2 y_2 + \dots + C_n y_n$$

Доказательство

ЛОДУ п-го порядка:

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_n(x)y = 0$$

1. Докажем, что $y_{\text{o.o.}} = C_1 y_1 + C_2 y_2 + ... + C_n y_n$ - решение ДУ. Подставим его и его производные в ДУ:

$$(y_{0.0.})^{(n)} + p_1(x) \cdot (y_{0.0.})^{(n-1)} + \dots + p_n(x) \cdot y_{0.0.} = (C_1 y_1)^{(n)} + p_1(x) \cdot (C_1 y_1)^{(n-1)} + \dots + p_n(x) \cdot C_1 y_1 + \dots + (C_n y_n)^{(n)} + p_n(x) \cdot (C_n y_n)^{(n-1)} + \dots + p_n(x) \cdot C_n y_n =$$

$$= C_1 \underbrace{\left((y_1)^{(n)} + p_1(x) \cdot (y_1)^{(n-1)} + \dots + p_n(x) \cdot y_1 \right)}_{0} + \dots + C_n \underbrace{\left((y_n)^{(n)} + p_n(x) \cdot (y_n)^{(n-1)} + \dots + p_n(x) \cdot y_n \right)}_{0} = 0$$

2. Докажем, что $y_{\text{o.o.}} = C_1 y_1 + C_2 y_2 + ... + C_n y_n$ - общее решение ЛОДУ.

По условию теоремы $p_i(x)$ непрерывны на $[a;b] \Rightarrow$ выполнены условия теоремы Коши о существовании и единственности решения $\mathcal{N}O\mathcal{L}V$. Тогда решение $y_{\text{o.o.}} = C_1y_1 + C_2y_2 + \ldots + C_ny_n$ будет общим, если найдутся единственным образом C_i при произвольно заданных начальных условиях:

$$y(x_0) = y_0, \ y'(x_0) = y_0', \ ..., \ y^{(n-1)}(x_0) = y_0^{(n-1)}, \ \text{где } x_0 \in [a;b]$$

Требуем, чтобы решение и его производные этим начальным условиям:

$$\begin{cases} C_1 y_1(x_0) + C_2 y_2(x_0) + \dots + C_n y_n(x_0) = y_0 \\ \dots \\ C_1 y_1^{(n-1)}(x_0) + C_2 y_2^{(n-1)}(x_0) + \dots + C_n y_n^{(n-1)}(x_0) = y_0^{(n-1)} \end{cases}$$

Определитель этой системы есть определитель Вронского $W(x_0)$ линейно независимой системы решений однородного уравнения и $W(x_0) \neq 0$.

Следовательно существует единственное решение $C_1,\ C_2,\ ...,\ C_n$ системы уравнений для произвольной точки $(x_0,y_0,y_0',...,y_0^{(n-1)})$ \Rightarrow по определению решение $C_1y_1+C_2y_2+...+C_ny_n$ - есть общее решение \mathcal{NOJY} .

Теорема доказана

28. Вывести формулу Остроградского-Лиувилля для линейного дифференциального уравнения 2-го порядка.

Пусть дано ДУ $y'' + p_1(x)y' + p_2(x)y = 0$

Предположим, что $y_1(x)$ и $y_2(x)$ - решения этого $\mathcal{I}O\mathcal{I}V$, следовательно:

, что
$$y_1(x)$$
 и $y_2(x)$ - решения этого $JOJV$, следовательно:
$$\begin{cases} y_1''+p_1(x)y_1'+p_2(x)y_1=0 \mid \cdot (-y_2)\\ &+ \\ y_2''+p_1(x)y_2'+p_2(x)y_2=0 \mid \cdot y_1 \end{cases}$$

$$y_1y_2''-y_2y_1''+p_1(x) \; (y_1y_2'-y_2y_1')=0 \end{cases}$$

$$W(x)=\begin{vmatrix} y_1&y_2\\y_1'&y_2'\end{vmatrix}=y_1y_2'-y_2y_1'$$

$$\frac{dW(x)}{dx}=y_1'y_2'+y_1y_2''-y_2'y_1'-y_2y_1''=y_1y_2''-y_2y_1''$$

$$\frac{dW(x)}{dx}+p_1(x) \; W(x)=0-JY \; \mathbf{c} \; \mathbf{p}$$
 разделяющимися переменными
$$\frac{dW(x)}{dx}=-p_1(x) \; W(x)$$

$$\frac{dW(x)}{W(x)}=-p_1(x) dx$$

$$\int_{x_0}^x \frac{dW(x)}{W(x)}=-\int_{x_0}^x p_1(x) dx$$

$$\ln|W(x)| - \ln|W(x_0)| = -\int_{x_0}^x p_1(x)dx$$

 $W(x)=W(x_0)e^{-\int\limits_{x_0}^x p_1(x)dx}$ - формула Остроградского-Лиувилля

29. Вывести формулу для общего решения линейного однородного дифференциального уравнения второго порядка при одном известном частном решении.

Пусть дано ЛОДУ 2-го порядка $y'' + p_1(x)y' + p_2(x)y = 0$, y_1 - известное решение этого уравнения. Найдем второе частное решение, линейно независимое с y_1

$$W(x) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_2 y_1' \quad (W \neq 0)$$

$$\left(\frac{y_2}{y_1}\right)' = \frac{y_1 y_2' - y_2 y_1'}{y_1^2} = \frac{W(x)}{y_1^2} = \frac{e^{-\int p_1(x)dx}}{y_1^2} \Rightarrow$$

$$\frac{y_2}{y_1} = \int \frac{e^{-\int p_1(x)dx}}{y_1^2} dx \Rightarrow y_2 = y_1 \int \frac{e^{-\int p_1(x)dx}}{y_1^2} dx$$

Докажем, что полученное второе решение линейно независимо с y_1 :

$$\begin{split} W(x) &= \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} y_1 & y_1 \int \frac{e^{-\int p_1(x)dx}}{y_1^2} dx \\ y_1' & y_1' \int \frac{e^{-\int p_1(x)dx}}{y_1^2} dx + y_1 \frac{e^{-\int p_1(x)dx}}{y_1^2} \end{vmatrix} = \\ &= y_1 y_1' \int \frac{e^{-\int p_1(x)dx}}{y_1^2} dx + y_1 y_1 \frac{e^{-\int p_1(x)dx}}{y_1^2} - y_1' y_1 \int \frac{e^{-\int p_1(x)dx}}{y_1^2} dx = e^{-\int p_1(x)dx} \neq 0 \ \, \forall x \end{split}$$

 $\Rightarrow y_1, y_2$ - линейно независимы

Таким образом, общее решение ЛОДУ 2-го порядка

$$y = C_1 y_1 + C_2 y_1 \int \frac{e^{-\int p_1(x)dx}}{y_1^2} dx$$

30. Сформулировать и доказать теорему о структуре общего решения линейного неоднородного дифференциального уравнения n-го порядка.

Теорема (о структуре общего решения линейного неоднородного дифференциального уравнения n-го порядка)

Общее решение $H \Pi \Pi V$ n-го порядка с непрерывными на [a;b] коэфициентами $p_i(x),\ i=1,2,...,n$ и непрерывной на [a;b] функцией f(x) равно сумме общего решения соответствующего ΠO - ΠV и какого-либо частного решения самого $\Pi \Pi \Pi V$

$$y_{\text{o.H.}} = y_{\text{o.o.}} + y_{\text{ч.н.}}$$

Доказательство

 $H \Pi \Pi \Pi \Pi \Pi$ п-го порядка:

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_n(x)y = f(x)$$

1. Докажем, что $y_{\text{о.н.}}$ - решение этого ДУ:

По условию, $y_{\text{0.0.}}$ - решение соответствующего $\mathcal{I}O\mathcal{I}\mathcal{I}\mathcal{Y}$, т.е.

$$y_{\text{o.o.}}^{(n)} + p_1(x)y_{\text{o.o.}}^{(n-1)} + \dots + p_n(x)y_{\text{o.o.}} = 0$$

 $y_{\text{ч.н.}}$ - частное решение самого $H \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{Y}$, т.е.

$$y_{\text{\tiny q.H.}}^{(n)} + p_1(x)y_{\text{\tiny q.H.}}^{(n-1)} + \dots + p_n(x)y_{\text{\tiny q.H.}} = f(x)$$

Подставим $y_{\text{о.н.}} = y_{\text{о.о.}} + y_{\text{ч.н.}}$ в исходное $\mathcal{I}H\mathcal{I}Y$:

$$\begin{split} y_{\text{\tiny O,H.}}^{(n)} + p_1(x) y_{\text{\tiny O,H.}}^{(n-1)} + \ldots + p_n(x) y_{\text{\tiny O,H.}} &= (y_{\text{\tiny O,O.}} + y_{\text{\tiny Y,H.}})^{(n)} + p_1(x) \cdot (y_{\text{\tiny O,O.}} + y_{\text{\tiny Y,H.}})^{(n-1)} + \\ + \ldots + p_n(x) \cdot (y_{\text{\tiny O,O.}} + y_{\text{\tiny Y,H.}}) &= \underbrace{y_{\text{\tiny O,O.}}^{(n)} + p_1(x) y_{\text{\tiny O,O.}}^{(n-1)} + \ldots + p_n(x) y_{\text{\tiny O,O.}}}_{0} + \\ &+ \underbrace{y_{\text{\tiny Y,H.}}^{(n)} + p_1(x) y_{\text{\tiny Y,H.}}^{(n-1)} + \ldots + p_n(x) y_{\text{\tiny Y,H.}}}_{f(x)} = f(x) \end{split}$$

 $\Rightarrow y_{\text{о.н.}}$ - решение ДУ

1. Докажем, что $y_{\text{о.н.}} = y_{\text{о.о.}} + y_{\text{ч.н.}}$ - общее решение H J J J V

По теореме о структуре общего решения ЛОДУ:

$$y_{\text{o.H.}} = y_{\text{o.o.}} + y_{\text{ч.н.}} = \sum_{i=1}^{n} C_i y_i + y_{\text{ч.н.}} = C_1 y_1 + C_2 y_2 + ... + C_n y_n + y_{\text{ч.н.}},$$

где y_i - линейно независимые частные решения соответствующего $\mathcal{I}O\mathcal{I}V$, причем

$$W(x) = \begin{vmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots & y'_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{vmatrix} \neq 0 \ \forall x \in [a; b]$$

Надо доказать, что если решение $y_{0.\text{H.}} = C_1 y_1 + C_2 y_2 + ... + C_n y_n + y_{\text{ч.н.}}$ и его производные удовлетворяют заданным условиям начальным условиям $y(x_0) = y_0, \ y'(x_0) = y'_0, \ ..., \ y^{(n-1)}(x_0) = y_0^{(n-1)}$, то из этих условий можно единственным образом определить $C_1, \ C_2, \ ..., \ C_n, \ x_0 \in [a;b]$

$$\begin{cases} C_1 y_1(x_0) + C_2 y_2(x_0) + \ldots + C_n y_n(x_0) = y_0 - y_{\text{ч.н.}}(x_0) \\ \ldots \\ C_1 y_1^{(n-1)}(x_0) + C_2 y_2^{(n-1)}(x_0) + \ldots + C_n y_n^{(n-1)}(x_0) = y_0^{(n-1)} - y_{\text{ч.н.}}^{(n-1)}(x_0) \end{cases}$$

СЛАУ с $W(x) \neq 0; \ x_0 \in [a;b] \ \Rightarrow \ \exists \ \mathtt{H} \ ! \ _1 = ^0_1, \ _2 = ^0_2, \ ..., \ _n = ^0_n \ :$

$$y(x) = C_1^0 y_1(x) + C_2^0 y_2(x) + ... + C_n^0 y_n(x) + y_{\text{ч.н.}}$$
 – частное решение

Теорема доказана

31. Вывести формулу для общего решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами в случае кратных корней характеристического уравнения.

$$y'' + a_1 y' + a_2 y = 0$$
 $a_1, a_2 = const$

Характеристическое уравнение: $k^2 + a_1k + a_2 = 0$ - квадратное уравнение.

$$D = a_1^2 - 4a_2; \ k_{1,2} = \frac{-a_1 \pm \sqrt{D}}{2} = \frac{-a_1 \pm \sqrt{a_1^2 - 4a_2}}{2}$$

В случае кратных корней: D=0, т.е.

$$k = k_{1,2} = \frac{-a_1}{2} \iff a_1 = -2k$$

Первое частное решение: $y_1 = e^{kx}$

Найдем второе частное решение, линейно независимое с y_1 :

$$y_2 = y_1 \int \frac{e^{-\int a_1 dx}}{y_1^2} dx = e^{kx} \int \frac{e^{-a_1 x}}{e^{2kx}} dx = e^{kx} \int \frac{e^{2kx}}{e^{2kx}} dx = x \cdot e^{kx}$$

 $\Phi CP: y_1 = e^{kx}, y_2 = x \cdot e^{kx}$

$$y_{\text{o.o.}} = {}_{1}e^{kx} + {}_{2}xe^{kx} = e^{kx}(C_{1} + C_{2}x)$$

32. Вывести формулу для общего решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами в случае комплексных корней характеристического уравнения.

$$y'' + a_1y' + a_2y = 0$$
 $a_1, a_2 = const$

Характеристическое уравнение: $k^2 + a_1k + a_2 = 0$ - квадратное уравнение.

$$D = a_1^2 - 4a_2; \ k_{1,2} = \frac{-a_1 \pm \sqrt{D}}{2} = \frac{-a_1 \pm \sqrt{a_1^2 - 4a_2}}{2}$$

В случае комплексных (комплексно-сопряженных) корней: D < 0, т.е.

$$k_{1,2} = \alpha \pm \beta i \ (\beta \neq 0)$$

Рассмотрим $e^{k_1x}=e^{(\alpha+\beta i)x}=e^{\alpha x}(\cos\beta x+i\sin\beta x)$ - формула Эйлера Выделим действительную и мнимую части решения:

$$y_1 = e^{\alpha x} \cos \beta x$$
, $y_2 = e^{\alpha x} \sin \beta x$

$$W(x) = \begin{vmatrix} e^{\alpha x} \cos \beta x & e^{\alpha x} \sin \beta x \\ \alpha e^{\alpha x} \cos \beta x - e^{\alpha x} \beta \sin \beta x & \alpha e^{\alpha x} \sin \beta x + e^{\alpha x} \beta \cos \beta x \end{vmatrix} =$$

$$e^{\alpha x} \cos \beta x \cdot (\alpha e^{\alpha x} \sin \beta x + e^{\alpha x} \beta \cos \beta x) - (\alpha e^{\alpha x} \cos \beta x - e^{\alpha x} \beta \sin \beta x) \cdot e^{\alpha x} \sin \beta x =$$

$$= e^{2\alpha x} \cdot ((\alpha \cos \beta x \sin \beta x + \beta \cos^{2} \beta x) - (\alpha \cos \beta x \sin \beta x - \beta \sin^{2} \beta x)) =$$

$$= \beta e^{2\alpha x} \neq 0, \quad \forall x \in [a; b], \quad \text{T.K. } \beta \neq 0; \quad e^{2\alpha x} > 0$$

$$\Rightarrow \Phi \text{CP: } y_{1} = e^{\alpha x} \cos \beta x, \quad y_{2} = e^{\alpha x} \sin \beta x$$

$$y_{0,0} = \frac{1}{2} e^{\alpha x} \cos \beta x + \frac{1}{2} e^{\alpha x} \sin \beta x = e^{\alpha x} (C_{1} \cos \beta x + C_{2} \sin \beta x)$$

33. Частное решение линейного неоднородного дифференциального уравнения с постоянными коэффициентами и правой частью специального вида (являющейся квазимногочленом). Сформулировать и доказать теорему о наложении частных решений.

Квазимногочленом называется сумма нескольких слагаемых вида

$$e^{\alpha x} \Big(P_n(x) \cos \beta x + Q_m(x) \sin \beta x \Big) \quad (\star)$$

где $P_n(x)$ и $Q_m(x)$ – многочлены степеней n и m соответственно, $\alpha, \beta \in \mathbb{R}$.

Возьмем $\mathcal{I}H\mathcal{I}V$ с постоянными коэффициентами и с квазимногочленом f(x) в правой части:

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = f(x), \ \forall a_i = const$$

Рассмотрим оответствующее ЛОДУ:

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = 0$$

Составим характеристическое уравнение:

$$k^n + a_1 k^{n-1} + \dots + a_n = 0$$

Частное решение линейного неоднородного уравнения с постоянными коэффициентами $y^{(n)} + a_1 y^{(n-1)} + ... + a_n y = f(x)$, $\forall a_i = const$, и квазимногочленом в правой части рекомендуется искать методом неопределённых коэффициентов (методом подбора). Для каждого слагаемого вида (\star), входящего в правую часть решаемого уравнения, частное решение ищется в виде

$$x^r e^{\alpha x} \Big(R_s(x) \cos \beta x + T_s(x) \sin \beta x \Big) \quad (\star \star)$$

где r - кратность корней $\alpha \pm \beta i$ в характеристическом уравнении (r=0, если $\alpha \pm \beta i$ не является корнем характеристического уравнения), $s=\max(n,m),\ R_s(x)$ и $T_s(x)$ - общий вид многочленов степени S.

Для нахождения неопределённых коэффициентов выражение $(\star\star)$ подставляется в соответствующее уравнение, и затем приравниваются коэффициенты при подобных членах слева и справа. После того, как частные решения найдены для всех слагаемых, входящих в f(x), частное решение исходного уравнения определяется с помощью теоремы о наложении частных решений.

Теорема (о наложении частных решений)

Если $y_1(x)$ есть решение уравнения $L[y]=f_1(x)$, а $y_2(x)$ есть решение уравнения $L[y]=f_2(x)$, то функция $y_1(x)+y_2(x)$ есть решение уравнения $L[y]=f_1(x)+f_2(x)$, где $L[y]=y^{(n)}+a_1y^{(n-1)}+\ldots+a_ny$.

Доказательство

По условию $y_1(x)$ - решение уравнения $L[y]=f_1(x),\ y_2(x)$ - решение уравнения $L[y]=f_2(x).$ $L[y_1+y_2]=L[y_1]+L[y_2]=f_1(x)+f_2(x)\Rightarrow \Phi$ ункция $y_1(x)+y_2(x)$ есть решение уравнения $L[y]=f_1(x)+f_2(x).$

Теорема доказана

34. Метод Лагранжа вариации произвольных постоянных для нахождения решения линейного неоднородного дифференциального уравнения 2-го порядка и вывод системы соотношений для варьируемых переменных.

$$y'' + p_1(x)y' + p_2(x)y = f(x),$$

функции $p_1(x), p_2(x)$ - непрерывны на [a; b].

Рассмотрим оответствующее ЛОДУ:

$$y'' + p_1(x)y' + p_2(x)y = 0$$

Пусть $y_1(x), y_2(x)$ - известная ФСР $\Pi O \Pi Y$. Будем искать решение $\Pi H \Pi Y$ в виде

$$y = C_1(x)y_1(x) + C_2(x)y_2(x),$$

где $C_1(x)$, $C_2(x)$ - новые неизвестные функции, зависящие от x. Найдем производную y'(x):

$$y'(x) = \left(C_1(x)y_1(x) + C_2(x)y_2(x)\right) = \left(C_1(x)y_1(x)\right)' + \left(C_2(x)y_2(x)\right)' =$$

$$= C_1'(x)y_1(x) + C_1(x)y_1'(x) + C_2'(x)y_2(x) + C_2(x)y_2'(x) =$$

$$= \left(C_1'(x)y_1(x) + C_2'(x)y_2(x)\right) + C_1(x)y_1'(x) + C_2(x)y_2'(x)$$

Дальше надо вычислять вторую производную. Воспользуемся тем обстоятельством, что вместо одной функции y(x) мы ищем две функции $C_1(x)$ и $C_2(x)$, и, как следствие, можем наложить произвольную связь на эти функции. Для того, чтобы в выражении для второй производной не участвовали вторые производные функций $C_1(x)$ и $C_2(x)$, в качестве этой связи положим

$$C_1'(x)y_1(x) + C_2'(x)y_2(x) = 0$$
 (*)

Тогда:

$$y'(x) = C_1(x)y_1'(x) + C_2(x)y_2'(x)$$

$$y''(x) = \left(C_1(x)y_1'(x) + C_2(x)y_2'(x)\right)' = \left(C_1(x)y_1'(x)\right)' + \left(C_2(x)y_2'(x)\right)' =$$

$$= C_1'(x)y_1'(x) + C_1(x)y_1''(x) + C_2'(x)y_2'(x) + C_2(x)y_2''(x) =$$

$$= \left(C_1'(x)y_1'(x) + C_2'(x)y_2'(x)\right) + C_1(x)y_1''(x) + C_2(x)y_2''(x)$$

Подставляем выражения для y(x) и ее производных в исходное уравнение:

$$\left(C_1'(x)y_1'(x) + C_2'(x)y_2'(x)\right) + C_1(x)y_1''(x) + C_2(x)y_2''(x) + p_1(x) \times \left(C_1(x)y_1'(x) + C_2(x)y_2'(x)\right) + p_2(x) \cdot \left(C_1(x)y_1(x) + C_2(x)y_2(x)\right) = f(x)$$

$$\underbrace{\left(C_1'(x)y_1'(x) + C_2'(x)y_2'(x)\right) + C_1(x) \cdot \underbrace{\left(y_1''(x) + p_1(x)y_1'(x) + p_2(x)y_1(x)\right)}_{= 0, \text{ т.к. } y_1(x) - \text{решение ЛОДУ}} + C_2(x) \cdot \underbrace{\left(y_2''(x) + p_1(x)y_2'(x) + p_2(x)y_2(x)\right)}_{= 0, \text{ т.к. } y_2(x) - \text{решение ЛОДУ}} = f(x)$$

Поэтому получаем:

$$C_1'(x)y_1'(x) + C_2'(x)y_2'(x) = f(x)$$
 (**)

Уравнения (\star) , $(\star\star)$ образуют систему соотношений для варьируемых переменных:

$$\begin{cases} C_1'(x)y_1 + C_2'(x)y_2 = 0 \\ C_1'(x)y_1' + C_2'(x)y_2' = f(x) \end{cases}$$

определитель которой есть определитель Вронского линейно независимых решений $y_1(x), y_2(x),$ отличный от $0, \ \forall x \in [a;b].$ Решаем эту систему как $\mathit{CЛAY}$ относительно $C_1'(x), \ C_2'(x)$:

$$C_1'(x) = \varphi_1(x), \ C_2'(x) = \varphi_2(x)$$

Интегрируем:

$$C_1(x) = \int \varphi_1(x)dx + C_1$$
$$C_2(x) = \int \varphi_2(x)dx + C_2$$

Общее решение ЛHДУ получаем, подставив $C_1(x)$ и $C_2(x)$ в $y=C_1(x)y_1(x)+C_2(x)y_2(x)$:

$$y(x) = \left(\int \varphi_1(x) dx + C_1 \right) \cdot y_1(x) + \left(\int \varphi_2(x) dx + C_2 \right) \cdot y_2(x) =$$

$$= C_1 y_1(x) + C_2 y_2(x) + y_1(x) \int \varphi_1(x) dx + y_2(x) \int \varphi_2(x) dx,$$

где C_1 , C_2 - произвольные постоянные.

35. Сформулировать определение дифференциального уравнения n-го порядка, разрешенного относительно старшей производной, и сформулировать задачу Коши для такого уравнения. Описать метод сведения этого уравнения к нормальной системе дифференциальных уравнений.

Дифференциальным уравнением n-го порядка, разрешенным относительно старшей производной, называется уравнение

$$y^{(n)}(x) = F(x, y(x), y'(x), ..., y^{(n-1)}(x)), x \in [a; b]$$

Задачей Коши для дифференциального уравнения n-го порядка, разрешенного относительно старшей производной называют задачу нахождения решения y=y(x) дифференциального уравнения $y^{(n)}=F(x,\,y,\,y',\,...,\,y^{(n-1)})$, удовлетворяющего начальным условиям $y(x_0)=y_0,\,y'(x_0)=y_0',\,...,\,y^{(n-1)}(x_0)=y_0^{(n-1)}$

Метод сведения дифференциального уравнения n-го порядка, разрешенного относительно старшей производной к нормальной системе дифференциальных уравнений

Пусть функция y = y(x) является решением ДУ

$$y^{(n)}(x) = F(x, y(x), y'(x), ..., y^{(n-1)}(x)), x \in [a; b]$$

Введем функции

$$y_1(x) = y(x), y_2(x) = y'(x), ..., y_n(x) = y^{(n-1)}(x)$$

Тогда эти функции являются решениями нормальной системы

$$\begin{cases} y'_1(x) = y_2(x), & x \in [a; b] \\ y'_2(x) = y_3(x), & x \in [a; b] \\ \dots \\ y'_{n-1}(x) = y_n(x), & x \in [a; b] \\ y'_n(x) = F(x, y_1(x), \dots, y_n(x)), & x \in [a; b] \end{cases}$$

36. Сформулировать задачу Коши для нормальной системы дифференциальных уравнений и теорему Коши о существовании и единственности решения этой задачи. Описать метод сведения нормальной системы к одному дифференциальному уравнению высшего порядка.

Задача Коши для нормальной системы дифференциальных уравнений

Пусть функции $f_i(x, y_1, ..., y_n), i = 1, 2, ..., n$ определены и непрерывны для

$$\forall x \in [a; b], (y_1, y_2, ..., y_n) \in \mathbb{R}^n$$

Требуется определить функции $y_1(x), y_2(x), ..., y_n(x)$, являющиеся решениями нормальной системы $\mathcal{J}V$ на отрезке [a;b]

$$\begin{cases} y_1'(x) = f_1(x, y_1(x), ..., y_n(x)) \\ y_2'(x) = f_2(x, y_1(x), ..., y_n(x)) \\ ... \\ y_n'(x) = f_n(x, y_1(x), ..., y_n(x)) \end{cases}$$

и удовлетворяющие начальным условиям:

$$y_1(x_0) = y_{01}, \ y_2(x_0) = y_{02}, \ \dots, \ y_n(x_0) = y_{0n},$$

где x_0 - некоторая фиксированная точка на отрезке [a;b], а $y_{01},\ y_{02},\ ...,\ y_{0n}$ - заданные вещественные числа.

Теорема Коши о существовании и единственности решения этой задачи

Пусть правые части системы

$$y_i' = f_i(x, y_1, ..., y_n), i = 1, ..., n,$$

определены, непрерывны и имеют непрерывные частные производные по переменным $y_1, ..., y_n$ в некоторой области $G \subset \mathbb{R}^{n+1}_{x,y_1,...,y_n}$. Тогда для любой точки $(x_0, y_{10}, ..., y_{n0}) \in G$ существует решение данной системы, удовлетворяющее начальным условиям $y_i'(x_0) = y_{i0}, \ i = 1,...,n$. Любые два решения этой системы, удовлетворяющие одним и тем же начальным условиям, совпадают всюду, где они оба определены.

Метод сведения нормальной системы к одному дифференциальному уравнению высшего порядка (на примере системы 2-х уравнений)

Пусть имеется нормальная система ДУ

$$\begin{cases} y_1' = f_1(x, y_1, y_2) \\ y_2' = f_2(x, y_1, y_2) \end{cases}$$

Продифференцируем по x первое уравнение системы, и подставим в получившееся выражение $y_2'(x)$ из второго уравнения системы.

$$y_1'' = \frac{\partial f_1(x, y_1, y_2)}{\partial x} + \frac{\partial f_1(x, y_1, y_2)}{\partial y_1} y_1' + \frac{\partial f_1(x, y_1, y_2)}{\partial y_2} \cdot f_2(x, y_1, y_2)$$

Из первого уравнения определим y_2 как функцию от x, y_1, y_1' , т.е. $y_2 = y_2(x, y_1, y_1')$ и подставим эту функцию вместо y_2 в полученное выше равенство. Таким образом, следствием данной системы является дифференциальное уравнение второго порядка относительно одной неизвестной функции $y_1 = y_1(x)$.

37. Сформулировать определение первого интеграла нормальной системы дифференциальных уравнений. Описать методы нахождения первых интегралов и их применение для решения системы дифференциальных уравнений.

Функция $\Phi: G \to \mathbb{R}$ называется **первым интегралом** нормальной системы дифференциальных уравнений, если для любого решения этой системы $y_i = y_i(x), \ i = 1, ..., n$, заданного на некотором интервале I, функция

$$\Phi(x, y_1(x), ..., y_n(x))$$

постоянна на этом интервале.

Теорема (об условиях, при которых функция является первым интегралом системы)

Пусть в системе правые части непрерывно дифференцируемы в области G по всем переменным. Для того, чтобы непрерывно дифференцируемая функция $\Phi:G\to\mathbb{R}$ была первым интегралом этой системы необходимо и достаточно, чтобы производная этой функции, составленная в силу системы, равнялась нулю всюду в области G.

Применение первых интегралов для решения системы дифференциальных уравнений

Если известен первый интеграл Φ системы $\mathcal{A}V$, то, разрешая уравнение

$$\Phi(x, y_1, ..., y_n) = C$$

относительно, например, y_n , получим

$$y_n = y_n(x, y_1, ..., y_{n-1}, C)$$

Подставляя правую часть этого равенства вместо y_n в первые n-1 уравнений системы, мы перейдем к системе из n-1 уравнений относительно n-1 неизвестных функций. Таким образом, первый интеграл дает возможность понизить число уравнений в системе на 1.

Если найдены n независимых первых интегралов системы:

$$\Phi_1 = (x, y_1, ..., y_n) = C_1$$

. .

$$\Phi_n = (x, y_1, ..., y_n) = C_n$$

то, разрешая эти уравнения относительно $y_1, ..., y_n$, получим общее решение исходной системы:

$$y_1 = y_1(x, C_1, ..., C_n), ..., y_n = y_n(x, C_1, ..., C_n)$$

Формулы

Таблица простейших интегралов

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ \alpha \neq -1$$

$$\int \frac{dx}{x} = \ln|x| + C$$

$$\int a^x dx = \frac{a^x}{\ln a} + C, \ a > 0, \ a \neq 1$$

$$\int e^x dx = e^x + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C$$

$$\int \frac{dx}{\sin^2 x} = -\cot x + C$$

$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C, \quad a \neq 0$$

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C, \quad a \neq 0$$

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{a} \int \frac{a \, dx}{(x - a)(x + a)} = \frac{1}{a} \int \frac{a + x - x}{(x - a)(x + a)} dx =$$

$$= \frac{1}{a} \int \frac{d(x - a)}{x - a} + \frac{1}{2a} \int \frac{-2x \, dx}{x^2 - a^2} = \frac{1}{a} \int \frac{d(x - a)}{x - a} + \frac{1}{2a} \int \frac{-2x \, dx}{x^2 - a^2} =$$

$$= \frac{1}{a} \ln|x - a| - \frac{1}{2a} \int \frac{d(x^2 - a^2)}{x^2 - a^2} = \frac{2}{2a} \ln|x - a| - \frac{1}{2a} \ln|x^2 - a^2| + C =$$

$$= \frac{1}{2a} \ln \frac{\left(|x - a|\right)^2}{|(x - a)(x + a)|} + C = \frac{1}{2a} \ln \left|\frac{x - a}{x + a}\right| + C$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C, \ a > 0$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln\left|x + \sqrt{x^2 \pm a^2}\right| + C, \ a \neq 0$$

$$\left(\ln \left| x + \sqrt{x^2 \pm a^2} \right| \right)' = \frac{1}{x + \sqrt{x^2 \pm a^2}} \cdot \left(x + \sqrt{x^2 \pm a^2} \right)' =$$

$$= \frac{1}{x + \sqrt{x^2 \pm a^2}} \cdot \left(1 + \frac{1}{2\sqrt{x^2 \pm a^2}} \cdot 2x \right) =$$

$$= \frac{1}{x + \sqrt{x^2 \pm a^2}} \cdot \left(\frac{x + \sqrt{x^2 \pm a^2}}{\sqrt{x^2 \pm a^2}} \right) = \frac{1}{\sqrt{x^2 \pm a^2}},$$

таким образом функция $\left(\ln\left|x+\sqrt{x^2\pm a^2}\right|\right)$ - есть первообразная функции $\frac{1}{\sqrt{x^2\pm a^2}}, \Rightarrow \int \frac{dx}{\sqrt{x^2\pm a^2}} = \ln\left|x+\sqrt{x^2\pm a^2}\right| + C, \ \ a\neq 0$

$$\int \frac{dx}{\sin x} = \ln\left| \operatorname{tg} \frac{x}{2} \right| + C$$

$$\int \frac{dx}{\sin x} = \int \frac{dx}{2\sin\frac{x}{2}\cos\frac{x}{2}} = \int \frac{d\operatorname{tg}\frac{x}{2}}{\operatorname{tg}\frac{x}{2}} = \ln\left|\operatorname{tg}\frac{x}{2}\right| + C$$

$$\int \frac{dx}{\cos x} = \ln\left| \lg\left(\frac{x}{2} + \frac{\pi}{4}\right) \right| + C$$

$$\int \frac{dx}{\cos x} = \int \frac{dx}{\sin\left(x + \frac{\pi}{2}\right)} = \int \frac{dx}{2\sin\left(\frac{x}{2} + \frac{\pi}{4}\right)\cos\left(\frac{x}{2} + \frac{\pi}{4}\right)} =$$
$$= \int \frac{d \operatorname{tg}\left(\frac{x}{2} + \frac{\pi}{4}\right)}{\operatorname{tg}\left(\frac{x}{2} + \frac{\pi}{4}\right)} = \ln\left|\operatorname{tg}\left(\frac{x}{2} + \frac{\pi}{4}\right)\right| + C$$

Вычисление площадей плоских фигур

1. В декартовой ПСК:

$$S = \int\limits_a^b f(x) dx, \;\; a < b, \; f(x) \geq 0 \;\;\;$$
 — явное задание функции $f(x)$

$$S = \int\limits_{t_1}^{t_2} y(t) x'(t) dt, \ \ a < b, \ f(x) \geq 0 \quad - \text{параметрическое задание функции} \ \begin{cases} y = y(t) \\ x = x(t) \end{cases}$$

2. В полярных координатах:

$$S = \frac{1}{2} \int_{\alpha}^{\beta} r^{2}(\varphi) d\varphi, \quad \alpha \leq \varphi \leq \beta$$

Вычисление объемов тел вращения

1. Объем фигуры, ограниченной осью Ox, кривой y=f(x) и линиями $x=a,\ x=b,$ образованной вращением вокруг оси Ox

$$V = \pi \int_{a}^{b} f^{2}(x)dx$$

2. Объем фигуры, ограниченной осью Oy, кривой x=g(y) (где $g(y)=f^{-1}(y)$) и линиями $y=c,\ y=d$, образованной вращением вокруг оси Oy

$$V = \pi \int_{c}^{d} g^{2}(y)dy$$

3. Объем фигуры, ограниченной осью Ox, кривой y=f(x) и линиями $x=a,\ x=b,$ образованной вращением вокруг оси Oy

$$V = 2\pi \int_{a}^{b} x f(x) dx$$

4. Объем фигуры, заданной в полярных координатах, ограниченной линиями $\varphi=\alpha,\ \varphi=\beta,$ функцией $r=r(\varphi),$ образованной вращением вокруг оси Ox

$$V = \frac{2\pi}{3} \int_{\alpha}^{\beta} r^3(\varphi) \sin \varphi d\varphi$$

Вычисление длины дуги

1. Дуга задана кривой y=f(x)

$$l = \int_{a}^{b} \sqrt{1 + \left(f'(x)\right)^2} dx, \quad b > a$$

2. Дуга задана параметрически $\begin{cases} x=x(t)\\ y=y(t) \end{cases}$ $l=\int\limits_{-t}^{t_2}\sqrt{\big(x'(t)\big)^2+\big(y'(t)\big)^2}dt, \ \ t_2>t_1$

3. Дуга задана в полярной системе координат кривой $r=r(\varphi), \;\; \alpha \leq \varphi \leq \beta$

$$l = \int_{\alpha}^{\beta} \sqrt{r^{2}(\varphi) + (r'(\varphi))^{2}} d\varphi$$