

BD

⑨日本国特許庁(JP) ⑩特許出願公開
 ⑪公開特許公報(A) 平4-46352

⑫Int.Cl. ¹	識別記号	序内整理番号	⑬公開 平成4年(1992)2月17日
G 03 G 5/06	318 A	6906-2H	
// C 07 D 235/08		7180-4C	
241/42		6529-4C	
265/36		7624-4C	
279/16		8317-4C	
417/06		9051-4C	

審査請求 未請求 請求項の数 1 (全11頁)

⑭発明の名称 感光体

⑮特 願 平2-15856

⑯出 願 平2(1990)6月14日

⑰発明者 植田 秀昭 大阪府大阪市中央区安土町2丁目3番13号 大阪国際ビル
ミノルタカメラ株式会社内

⑱出願人 ミノルタカメラ株式会社 大阪府大阪市中央区安土町2丁目3番13号 大阪国際ビル

⑲代理人 去理士 青山 蔡 外1名

第 一 種

1. 発明の名称

感光体

2. 特別請求の範囲

1. 感光性支持体上に、下記一般式[1]で示されるステリル化物を含有する感光層を有する感光体：

[文中、R₁は、それぞれ直鎖状を有してもよいアルキル基、アルキル基、アリール基;R₂は水素原子、アルキル基、アラキル基、または置換基を有してもよいアリール基;A₁はそれぞれ直鎖状を有してもよいアリール基、または直鎖状基、または直鎖状基、または直鎖状基、イオウ原子、または直鎖状基を有してもよい直鎖状基;ZはXおよび直鎖状原子と結合する基質で直鎖状を有してもよい;XとA₁は一体となって環を形成してもよい]。

3. 発明の詳細な説明

産業上の利用分野

本発明は新規なステリル化合物を含有する感光層を有する感光体に関する。

背景の説明および問題

一般に電子写真においては、感光体の感光層表面に帯電、露光を行なって帶電画像を形成し、これを長時間で現像し、可視化させ、その可視像をそのまま感光層上に定着させて複写像を得る直接方式、また感光層上の可視像を紙などの版写材上に転写し、その版写像を定着させて複写像を得る複写方式あるいは感光層上の帶電画像を紙上に転写し、転写紙上の帶電画像を現像、定着する静電複写方式等が知られている。

この種の電子写真法に応用される感光体の感光層を構成する材料として、炭素よりセレン、硫化カドミウム、硫化亜鉛等の無機半導電性材料が知られている。

これらの光導電性材料は最も多くの改良、例えば島効で電荷の散逸が少ないこと、あるいは光吸收

BEST AVAILABLE COPY

特開平4-46352(2)

によって速やかに電荷を放送できることなどの利点を持つている反面、多種の欠点を持つている。例えば、セレン系感光体では、製造する段階が難しく、製造コストが高く、また熱や酸性的な衝撃に弱いため取り扱いに注意を要する。硫化カドミウム系感光体や硫化亜鉛系感光体では、多層の構造下で安定した感度が得られない点や、増感剤として添加した色素がヨロナ高電による電荷劣化や露光による光退色を生じるため、長期に渡って安定した特性を与えることができないという欠点を有している。

一方、ポリビニルカルバゾールをはじめとする各種の有機光導電性ポリマーが提案されてきたが、これらのポリマーは、前述の無機系光導電材料に比べ、成膜性、堅度性などの点で優れているが、未だ充分な耐候、耐久性および環境変化による安定性の点で無機系光導電材料に比べ劣っている。

また低分子量の有機光導電性化合物は、併用する粘着材の種類、組成比等を選択することにより後張の物性あるいは電子学的特性を制御すること

ジアリールアルカン系感光体は粘着材に対する相溶性は良好であるが、繰り返し使用した場合に堅度劣化が生じる。また特開昭54-59143号公報に記載されているヒゾラソン化合物は、残留電荷持続性は比較的良好であるが、帶電能、繰り返し持続性が劣るという欠点を有する。このように感光体を開発する上で実用的に好ましい特性を有する低分子量の有機化合物はほとんど無いのが現状である。

特開昭55-64249号公報には、下記一般式

(式中、X、n、Arは上記公報中に記載のもの)で表わされるステリル化合物が開示され、Xとして

(式中、Y、Rは上記公報中に記載のもの)が示さ

ができる点では珍らしいものであるが、粘着材と併用されるため、粘着材に対する高い相溶性が要求される。

これらの低分子量および低分子量の有機光導電性化合物を粘着材樹脂中に分散させた感光体は、キャリアのトラップが多いため残留電位が大きく、堅度が低い等の欠点を有する。そのため光導電性化合物に電荷移動材料を配合して前記欠点を軽減することが検討されている。

また、光導電性改性の電荷発生機能と電荷輸送機能とをそれぞれ別個の役割に分担させるようにした複合分離型感光体が検討されている。このような機能分離型感光体において、電荷輸送層に使用される電荷輸送材料としては多くの有機化合物が挙げられているが実際には様々な問題点がある。例えば、特許特3,189,447号公報に記載されている2,5-ビス(4-ジエチルアミノフェニル)1,3,4-オキサジアゾールは、粘着材に対する相溶性が悪く、結晶が出しやすい。特開特3,820,989号公報に記載されている

れている。

特開昭60-164752号公報には、下記一般式:

(式中、R1～R4は上記公報中に記載のもの)で表わされるスチリル化合物が開示されている。

特開昭60-98437号公報には、下記一般式:

(式中、Ar1～Ar4、B1～B4、nは上記公報中に記載のもの)で表わされるスチリル化合物が開示されている。

しかし、いずれの化合物も本発明の化合物と、その構造が異なり。

特開平4-46352(8)

発明の解決しようとする課題

本発明は以上の事実に鑑みて成されたもので、着色材に対する相溶性及び電荷輸送能に優れたステリル化合物を光導電性物質として合有し、感度と及び耐電圧に優れ、繰り返し使用した場合の感度劣化が少なく、電子写真特性が安定している感光体を提供することを目的とする。

問題を解決するための手段

本発明は感電性支持体上に、下記一般式[1]で表されるステリル化合物を含有する感光層を有する感光体：

[式中、R₁は、それぞれ置換基を有してもよいアルキル基、アラルキル基、アリール基；R₂は水素原子、アルキル基、アラルキル基、または置換基を有してもよいアリール基；Arはそれぞれ置換基を有してもよいアリール基、または複素環式基

を表す。Arは、置換基、例えばアルキル基(メチル基あるいはエチル基等)、アルコキシ基(メトキシ基あるいはエトキシ基等)、アリール基(フェニル基等)、ヒドロキル基、または置換アミノ基(ジニチルアミノ基、ジフェニルアミノ基等)等を有していてもよい。

Arは、R₁と直接に、または置換原子あるいは置換原子等を介して結合し、ArおよびR₁が結合している置換原子とともに環を形成してもよい。

Xは酸素原子、イオウ原子または窒素原子を表す。Xが窒素原子であるとき、置換基、例えばR₁と同様のものを有していてもよい。

2位、3位およびR₁が結合している空素と結合する置換基、例えば—CH₂—、—CH₂CH₂—あるいは—CH₂—等を表す。Zは置換基、例えば、アルキル基(メチル基あるいはエチル基等)、アリール基(例えばフェニル基等)を有していてもよい。

本発明の一般式[1]で表されるステリル化合物の好ましいArは例としては例えば次の構造式を有

：Xは酸素原子、イオウ原子、または置換基を有してもよい窒素原子；ZはXおよび窒素原子と結合する技術で置換基を有してもよい；R₁とArは一体となって環を形成してもよい】
に関する。

一般式[1]中、R₁はアルキル基、例えばメチル基あるいはエチル基等、アラルキル基、例えばベンジル基あるいはフェニル基等、またはアリール基、例えばフェニル基等を表す。それらの基は、置換基、例えばメチル基あるいはエチル基等のアルキル基またはメトキシ基あるいはエトキシ基等のアルコキシ基等を有してもよい。

R₂は水素原子、アルキル基、例えばメチル基あるいはエチル基等、アラルキル基、例えばベンジル基あるいはフェニル基等、アリール基、例えばフェニル基等を表す。R₂がアリール基であるとき、置換基、例えばメチル基、エチル基等のアルキル基あるいはメトキシ基、エトキシ基等のアルコキシ基等を有してもよい。

Arは、アリール基、例えばフェニル基等、或

するものがあげられるが、これらに限定されるものではない。

特開平4-46352 (4)

特開平4-46352 (5)

により合成することができる。

一般式[III]で表わされるリン化合物のR₁、R₂は、特にシクロヘキシル基、ベンジル基、フェニル基、アルキル基が好ましい。

上記方法における反応溶媒としては、例えば酸化水銀、アルコール類、エーテル類が良好で、メタノール、エタノール、イソプロパノール、ブタノール、2-メトキシエタノール、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、ジオキサン、テトラヒドロフラン、トルエン、キシレン、ジメチルスルホキシド、N,N-ジメチルホルニアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノンなどがあげられる。中でも酸性溶媒、例えばN,N-ジメチルホルムアミド及びジメチルスルホキシドが好適である。

溶合形としては電極ソーダ、四性カリ、ナトリウムアミド、冰炭ナトリウム及びナトリウムメチラート、ナトリウムエチラート、カリウムメチラート、カリウムエチラート、カリウム-tert-ブ

たとえば、支持体上に電荷発生材料と、ステリル化合物を樹脂バインダーに分散させて成る感光層を掛けた単層感光体や、支持体上に電荷発生材料を主成分とする電荷発生層を掛け、その上に電荷輸送層を設けた所謂複層感光体等がある。本発明のステリル化合物は光導電性物質であるが、電荷輸送材料として作用し、光を吸収することにより陽止した電荷組合を、極めて効率よく輸送することができる。

单層型感光体を構成するためには、電荷発生材料の微粒子を樹脂台紙もしくは、電荷輸送材料と樹脂を溶解した樹脂中に分散せしめ、これを導電性支持体上に塗布乾燥すればよい。この時の感光層の厚さは3~30μm、好ましくは5~20μmがよい。使用する電荷発生材料の量が少な過ぎると感度が悪く、多過ぎると感度が悪くなったり、感光層の脱着的強度が弱くなったりし、感光層中に占める割合は樹脂+重金属に対して0.01~3重量%、好ましくは0.2~2重量部の範囲がよい。

トキンド、カーブテルリチウムなどのアルコリー
トが用いられる。

反応温度は約0℃~約100℃まで広範囲に選
択することができる。好ましくは10℃~約80
℃である。

また、本発明によって使用する化合物[II]はリ
ン化合物のみわりに対応する第4級ホスホニウム
塩、例えばトリフェニルホスホニウム塩を使用し、
ワイヤティヒ(Wiethyl)の方法によりホスホリレ
ンの段階を経て、フルデヒド化合物[II]と組合す
ることによりステリル化合物[1]を合成してもよ
い。

本発明の感光体は前記一般式[1]で示されるス
テリル化合物を1種または2種以上含有する感光
層を有する。また、他の電荷輸送材料、例えばヒ
ドロゾン化合物や他のステリル化合物と組み合わ
せることによっても良好な電子導通特性を得るこ
とができる。

各種の形態の感光体は知られているが、本発明
の感光体はそのいずれの感光体であってもよい。

複層型感光体を作製するには、導電性支持体上
に電荷発生材料を真空蒸着するか、あるいは、ア
ミン等の溶剤に溶解せしめて散布するか、樹脂を
適当な濃度もしくは必要があればバインダー溶液
中を溶解させた樹脂中に分散させて作製した感光
膜を空気乾燥した後、その上に電荷輸送材料およ
びバインダーを含む樹脂を塗布乾燥して得られる。

真空蒸着する場合は、たとえば銀金属フタロン
アミニ、チタニルフタロシアニン、アルミニクロロ
フタロシアニンなどのフタロシアニン類が用いら
れる。また、分散させる場合は、たとえばビスマ
ツ酸銀などが用いられる。

このときの電荷発生層の厚みは4μm以下、好
ましくは2μm以下がよく、電荷輸送層の厚みは
3~30μm、好ましくは5~20μmがよい。

電荷輸送層中の電荷輸送材料の割合はバインダ
ー樹脂+重金属に対して0.2~2重量部、好ま
しくは、0.3~1.3重量部である。

本発明の感光体はバインダー樹脂とともに、ハ
ロゲン化バフタフィン、ボリニ化ビフェニル、ジメ

特開平4-46352(6)

タルナフタレン、ジブチルクタレート、O-ターフュニルなどの可塑剤やタロラニル、テトランアノエチレン、2,4,7-トリニトロフルオレノン、3,6-ジシアノベンゾキノン、テトランアノキノジメタン、テトラクマラム水アフル酸、3,5-ジニトロ安息香酸等の電子吸引性増感剤、メルバイオレット、ロードミンB、シアニン染料、ピリリウム塩、チアビリリウム塩等の増感剤を併用してもよい。

また、固化防止剤や紫外線吸収剤、分散剤、沈降防止剤等も適宜併用してもよい。

本発明において使用される電気絕縁性のペインダー樹脂としては、電気絶縁性であるそれ自体公知の熱可塑性樹脂あるいは熱硬化性樹脂、光硬化性樹脂や光導電性樹脂等の接着剤を使用できる。

適当な粘度調節剤の例は、これに限定されるものではないが、既和ポリニスチル樹脂、ポリアミド樹脂、アクリル樹脂、ニチレン-酢酸ビニル樹脂、イオン架橋オレフィン共重合体(アイオノマー)、ステレーン-タジエン-ブロック共重合体、

アルキル系樹脂、インダストロン系樹脂、スタアリウム酸系樹脂、アズレン系色素、フタロシアニン系樹脂等の有機物質や、セレン、セレン・チルル、セレン・硅素などのセレン合金、酸化カドミウム、セレン化カドミウム、酸化銀、アセルファスシリコン等の無機物質が挙げられる。これ以外でも、光を吸収し極めて高い確率で電荷発生を発生する材料であれば、いずれの材料であっても使用することができる。

本発明の感光体に用いられる導電性支持体としては、鋼、アルミニウム、銅、鉄、金、銀、ニッケル等の金属や合金の他ないしは板をシート状又はドラム状にしたもののが使用され、あるいはこれらの金属を、プラスティックフィルム等に真空蒸着、熱電解メッキしたもの、あるいは導電性ポリマー、酸化インジウム、酸化スズ等の導電性化合物の層を重じく積あるいはプラスティックフィルムなどの支持体上に露布もしくは蒸着によって設けられたものが用いられる。

本発明のステアリル化合物を用いた感光体の構成

ポリカーボネート、改変ビニル-酢酸ビニル共重合体、セルロースエスセル、ポリイミド、ステロール樹脂等の熱可塑性樹脂；エボキン樹脂、ウレタン樹脂、シリコーン樹脂、フェノール樹脂、メタミン樹脂、キレン樹脂、アルキッド樹脂、熱硬化アクリル樹脂等の熱硬化性樹脂；光硬化性樹脂；ポリビニルカルバゾール、ポリビニルビレン、ポリビニルアントラゼン、ポリビニルビロール等の光導電性樹脂である。

これらは単独で、または組合せて使用することができる。

これらの電気絶縁性樹脂は単独で測定して1×10⁻¹² Dc/cm以上の体積抵抗を有することが望ましい。

電荷発生材料としては、ビスマソ系樹脂、トリアリールメタン系染料、チアジン系染料、オキサジン系染料、キサンテン系染料、シアニン系色素、ステアリル系色素、ピリリウム系染料、アン系染料、キナクリドン系染料、インジゴ系染料、ベリレン系染料、多環キノン系染料、ビスベンズイミダゾ

ールを第1図から第5図に模式的に示す。

第1図は、基体(1)上に光導電性材料(3)と電荷輸送材(2)を起着層に配合した感光層(4)が形成された感光体であり、電荷輸送材として本発明のステアリル化合物が用いられている。

第2図は、感光層として電荷発生層(6)と、電荷輸送層(5)を有する複合分離型感光体であり、電荷発生層(6)の裏面に電荷輸送層(5)が形成されている。

電荷輸送層(5)中に本発明のステアリル化合物が配合されている。

第3図は、第2図と同様に電荷発生層(6)と、電荷輸送層(5)を有する複合分離型感光体であるが、第2図とは逆に電荷輸送層(5)の裏面に電荷発生層(6)が形成されている。

第4図は、第1図の感光層の裏面にさらに被膜保護層(7)を設けたものであり、感光層(4)は電荷発生層(6)と、電荷輸送層(5)を有する複合分離型感光体であってもよい。

第5図は、基体(1)と感光層(4)の間に中間層

特開平4-46352 (7)

(8)を設けたものであり、中間層(8)は吸着性の改良、密着性の向上、基体の保護、基体からの放電層への電荷注入性改善のために設けることができる。

中間層に用いられる材料としては、ポリイミド、ポリアミド、ニトロセルロース、ポリビニルブチラール、ポリビニルアルコールなどのポリマーをそのまま、または酸化スズや酸化インジウムなどの絶縁抗化合物を分散させたもの、酸化アルミニウム、酸化亜鉛、酸化ケイ素などの吸着膜等が適当である。

また中間層の膜厚は、1μm以下が望ましい。

表面保護層に用いられる材料としては、アクリル樹脂、ポリアリール樹脂、ポリカーボネート樹脂、ウレタン樹脂などのポリマーをそのまま、または酸化スズや酸化インジウムなどの絶縁抗化合物を分散させたものなどが適当である。

また、有機アズマ混合膜も使用できる。該有機アズマ混合膜は、必要に応じて溶剤溶液、空氣、ハロゲン、周波数表の第3次、第5次原子を

を施下した。その後、室温で8時間攪拌した後、一晩放置した。得られた混合物を水水900ml中に加え、各溶融で中和し、約30分後析出した結晶を通過した。通過生成物を水で洗浄し、さらにアセトニトリルによる再結晶操作を行ない、黄色針状晶2.8gを得た。

(收率72%)

元素分析は以下の通りである。

	C (%)	H (%)	N (%)
計算値 *	60.38	5.91	3.60
実験値	60.30	5.87	3.51

* C₂₂H₁₂N₂O

実験例1

下記一般式[A]で表されるビスマソ化合物

0.45g、ガリエヌテル樹脂(ハイロン200:

含んでいてもよい。

また表面保護層の膜厚は、5μm以下が望ましい。

以下、実験例を挙げて本発明を説明する。なお、実験例中、「部」とあるのは、特に断らない限り、「重量部」をあらわすものとする。

合成例 (化合物例[3]の合成)

下記式で表されるホスホネート3.0gと、

下記式で表されるアルデヒド化合物2.39gを

ジメチルカルムアミド3.0mlに溶解し、5℃以下に冷却しながら、ジメチルカルムアミド5.0ml中に、カリウム-ter-ブトキシド2gを含む溶液

東洋紡業社製)0.45gをシクロヘキサン5.0mlとともにサンドグラライダーにより分散させた。得られたビスマソ化合物の分散物を尿素1.00mmのアルミニウムマイラー上にフィルムアブリケーターを用いて、乾燥膜厚が0.3μmとなる様に塗布した後、電子線を照射して得られた電荷発生層の上にスチリル化合物[3]7.0gおよびポリカーボネート樹脂(K-1300、東洋紡業社製)7.0gを1.4ージオキサン4.00mlに溶解した溶液を乾燥膜厚が1.6μmになる様に散布し、電荷注入層を形成した。この様にして、2層からなる感光層を有する電子写真感光体を得た。

こうして得られた感光体を用いた電子写真感光装置(E-P-470Z:ミノルタカラ丘版)を用い、-8KVでコロナ帯電させ、初期表面電位V_s(V)、初期電位V_iを1/2にするために要した露光量E_i(lux·sec)、1秒間隔中に配置したときの初期電位の変化ΔDΔE_i(%)を測定した。

実験例2～4

実験例1と同様の方法で同一の構造のもの、但

特開平4-46352 (B)

し実施例1で用いたステリル化合物(3)の代りにステリル化合物[4], [5], [7]の各々用いる感光体を作製した。

こうして得られた感光体について、実施例1と同様の方法でV_a, E_{1/2}, DDR₁を測定した。

実施例5

下記一般式[B]で表されるビスアゾ化合物

0.45部、ポリスチレン樹脂(分子量40000)

0.45部をシクロヘキサン50部とともにサンドグラインダーにより分散させた。得られたビスアゾ化合物の分散液を厚さ1.00μmのアルミニママイラー上にフィルムアブリケーターを用いて、乾燥膜厚が0.3μ/mとなる様に塗布した後乾燥させた。このようにして得られた電荷発生層の上にステリル化合物[1]070部およびポリアリレート樹脂(U-100:ユニチャク社製)70部を、

せた。

得られた多環キノン系顔料の分散液を厚さ1.00μmのアルミニママイラー上にフィルムアブリケーターを用いて、乾燥膜厚が0.4μ/mとなる様に塗布した後乾燥させた。このようにして得られた電荷発生層の上にステリル化合物[2]0160部およびポリアリレート樹脂(U-100:ユニチャク社製)50部を1,4-ジオキサン600部に溶解した溶液を乾燥膜厚が1.8μmとなる様に塗布し、乾燥させて電荷発生層を形成した。

このようにして、2層からなる感光層を有する電子写真感光体を作製した。こうして得られた感光体について実施例1と同様の方法でV_a, E_{1/2}, DDR₁を測定した。

実施例10～11

実施例9と同様の方法で同一の構成のもの、但し実施例9で用いたステリル化合物[2]0の代りにステリル化合物[2]1, [2]5を各々用いる感光体を作製した。

こうして得られた感光体について、実施例1と

4-ジオキサン400部に溶解した溶液を電気伝導率が1.6MΩになる様に塗布し、電荷発生層を形成した。この様にして、2層からなる感光層を有する電子写真感光体を作製した。

実施例12

実施例9と同様の方法で同一の構成のもの、但し実施例9で用いたステリル化合物[1]0の代りにステリル化合物[1]1, [1]2, [1]3を各々用いる感光体を作製した。

こうして得られた感光体について、実施例1と同様の方法でV_a, E_{1/2}, DDR₁を測定した。

実施例13

下記一般式[C]で表される多環キノン系顔料

0.45部、ポリカーボネット樹脂(パンライトP-13000:奇人化成社製)0.45部セジクロルエタン50部とともにサンドミルにより分散させ

同様の方法でV_a, E_{1/2}, DDR₁を測定した。

実施例14

下記一般式[D]で表されるペリレン系顔料

0.45部、ブチラール樹脂(BK-1:日本化学工業社製)0.45部をジクロルエタン50部とともにサンドミルにより分散させた。

得られたペリレン系顔料の分散液を厚さ1.00μmのアルミニママイラー上にフィルムアブリケーターを用いて、乾燥膜厚が0.4μ/mとなる様に塗布した後乾燥させた。このようにして得られた電荷発生層の上にステリル化合物[2]6150部およびポリカーボネット樹脂(PC-2:三共ガス化社製)50部を1,4-ジオキサン400部に溶解した溶液を乾燥膜厚が1.8μmとなる様に塗布し、電荷発生層を形成した。

このようにして、2層からなる感光層を有する

特開平4-49352(9)

電子写真感光体を作製した。こうして得られた感光体について実施例1と同様の方法でV_o、E_{1/2}、DDR₁を測定した。

実施例13～14

実施例12と同様の方法で同一の構成のもの、但し実施例12で用いたステリル化合物[2B]の代りにステチル化合物[24]、[28]を各自用いる感光体を作製した。

こうして得られた感光体について、実施例1と同様の方法でV_o、E_{1/2}、DDR₁を測定した。

実施例15

チタニルフタロシアニン0.45部、マチラール樹脂(BX-1:日本化成工業社製)0.45部をジクロルエタン50部とともにアンドミルにより分散させた。

得られたフタロシアニン類の分散物を薄さ100μmのアセト酸マイラー上にフィルムアブリケーターを用いて、乾燥度率が0.3g/n²となるまで乾燥した後脱脂させた。このようにして得られた電荷発生層の上にステチル化合物[7]150部

通過、水洗し、成膜于120℃で乾燥した。

こうして得られた光導電性樹脂層160部を有機化性アクリル樹脂(アクリディックA405:大日本インキ社製)22.5部、メラミン樹脂(スーパー・ヘッカミンJ820:大日本インキ社製)7.5部、同量したステチル化合物[3]15部を、メチルエチカルケトンとキシレンを同量に混合して溶かすとともにボールミルボットに入れて45時間分散して感光性樹脂を調製し、この樹脂をアルミニウム基板上に塗布、乾燥して厚さ約5μmの感光層を形成させ感光体を作製した。

こうして得られた感光体について、実施例1と同様の方法、但しコロナ電流を+6KVで行なってV_o、E_{1/2}、DDR₁を測定した。

実施例19～21

実施例18と同様の方法で同一の構成のもの、但し実施例18で用いたステチル化合物[3]の代りにステチル化合物[20]、[33]、[38]を各自用いる感光体を作製した。

こうして得られた感光体について、実施例18

およびオリカーボムート液剤(PC-Z:三塩ガス化物社製)50部を1,4-ジオキサン400部に溶解した溶液を電気膜厚が18μmになるよう電着し、電荷發送層を形成した。

このようにして、2層からなる感光層を有する電子写真感光体を作製し、実施例1と同様の方法でV_o、E_{1/2}、DDR₁を測定した。

実施例16～17

実施例15と同様の方法で同一の構成のもの、但し実施例15で用いたステチル化合物[7]の代りにステチル化合物[13]、[18]を各自用いる感光体を作製した。

こうして得られた感光体について、実施例1と同様の方法でV_o、E_{1/2}、DDR₁を測定した。

実施例18

鋼フタロシアニン50部とテトラニトロ鋼フタロシアニン0.2部を98%硫酸500部に充分攪拌しながら溶解させ、これを水500.0部にあけ、鋼フタロシアニンとテトラニトロ鋼フタロシアニンの光導電性材料組成物を析出させた後、

と同様の方法でV_o、E_{1/2}、DDR₁を測定した。

実施例1～4

実施例18と同様の方法で同一の構成のもの、但し実施例18で用いたステチル化合物の代りに下記化合物[E]、[F]、[G]、[H]を各自用いるほかは実施例18と全く同様にして感光体を作製した。

こうして得られた感光体について、実施例18と同様の方法でV_o、E_{1/2}、DDR₁を測定した。

特開平4-46352 (10)

比較例5～8

実施例1～8と同様の方法で同一の真皮のもの、
但し実施例1～8で用いたステリル化物[6]の代
りに下記ステリル化合物[1]、[J]、[K]、[L]
を各々用いる以外は実施例1～8と全く同様にして
感光体を作製した。

こうして得られた感光体について、実施例1～8
と同様の方法でV_d、E_{1/2}、DDR_tを測定した。

実施例1～21、比較例1～8で得られた感光
体のV_d、E_{1/2}、DDR_tの測定結果を表1に示

す。

表1からわかるように、本発明の感光体は銀電
極でも銀層型でも可同様性能が充分あり、暗部露
射も感光体としては充分使用可能な程度に小さく、
また、感度においても優れていることがデータよ
り明らかである。

更に、市販の電子写真複数機(ミノルタカメラ
社製:EP-350Z)による正露電時(約10分)
実験テストを実施例1～8の感光体において行なっ
たが、1000枚のコピーを行なっても、初期、
最終露射において階調性が優れ、感度変化が細く、
鮮明な画像が得られ、本発明の感光体はより速し
特性も実現していることがわかる。

(以下、省略)

表1

	V _d (V)	E _{1/2} (lux · sec)	DDR _t (%)
実施例1	-660	1.2	2.7
実施例2	-650	0.5	3.1
実施例3	-660	0.7	2.8
実施例4	-660	0.7	2.6
実施例5	-650	1.0	3.5
実施例6	-660	0.6	2.8
実施例7	-650	0.8	3.2
実施例8	-660	1.0	2.7
実施例9	-670	1.2	2.8
実施例10	-660	1.3	2.6
実施例11	-670	1.0	2.4
実施例12	-650	1.3	2.8
実施例13	-670	1.8	2.3
実施例14	-670	1.5	2.4
実施例15	-660	0.7	2.7
実施例16	-650	0.6	3.1

表1(続)

	V _d (V)	E _{1/2} (lux · sec)	DDR _t (%)
実施例17	-660	0.8	2.8
実施例18	+620	0.9	13.0
実施例19	+610	0.8	13.7
実施例20	+610	1.0	14.1
実施例21	+620	0.7	13.1
比較例1	+620	36.0	6.5
比較例2	+600	5.7	14.0
比較例3	+600	3.2	14.3
比較例4	+610	4.7	13.2
比較例5	+620	15.0	12.0
比較例6	+610	5.8	11.6
比較例7	+600	6.5	13.7
比較例8	+620	8.3	12.2

発明の効果

本発明は感光体に有用な光導電性化合物を提供
した。

特開平4-46352 (11)

本発明の光導電性化合物はステリル化合物であり、特に電荷輸送材料として有用である。

本発明のステリル化合物を有する感光体は、感度、電荷輸送性、初期表面電位、耐候性等の感光体特性に優れ、繰り返し使用に対する安定性も少ない。

4. 図面の簡単な説明

第1図～第5図は本発明に係わる感光体の模式図であって、第1図、第4図、第5図は導電性支持体上に感光層を複数してなる分離型感光体の構造を示し、第2図、第3図は導電性支持体上に電荷搬送層と電荷輸送層を複層してなる複合分離型感光体の構造を示す。

- | | |
|----------|----------|
| 1…導電性支持体 | 2…電荷輸送材料 |
| 3…光導電性材料 | 4…感光層 |
| 5…電荷輸送層 | 6…電荷発生層 |
| 7…表面保護層 | 8…中間層 |

特許出願人 イノルタカメラ株式会社
代理人 井端士 背山 藤 ほか1名

第1図

第2図

第3図

第4図

第5図

Japanese Kokai Patent Application No. Hei 4[1992]-46352 A

Job No.: 166-101327

Translated from Japanese by the Ralph McElroy Translation Company
910 West Avenue, Austin, Texas 78701 USA

Ref.: JP04046352A

JAPANESE PATENT OFFICE
PATENT JOURNAL (A)
KOKAI PATENT APPLICATION NO. HEI 4[1992]-46352

Int. Cl.⁵:

G 03 G 5/06
//C 07 D 235/08
241/42
265/36
279/16
417/06

Sequence Nos. for Office Use:

6906-2H
7180-4C
6529-4C
7624-4C
8317-4C
9051-4C

Filing No.:

Hei 2[1990]-155856

Filing Date:

June 14, 1990

Publication Date:

February 17, 1992

No. of Claims:

1 (Total of 11 pages)

Examination Request:

Not filed

PHOTOSENSITIVE MATERIAL

Inventor:

Hideaki Ueda
Minolta Camera Co., Ltd.
Osaka Kokusai Bldg., 2-30-13
Azuchi-machi, Higashi-ku,
Osaka-shi

Applicant:

Minolta Camera Co., Ltd.
Osaka Kokusai Bldg., 2-30-13
Azuchi-machi, Higashi-ku,
Osaka-shi

Agents:

Tamotsu Aoyama, patent attorney,
and 1 other

[There are no amendments to this patent.]

Claim

A type of photosensitive material characterized by the fact that it has a photosensitive layer containing a styryl compound represented by following formula (I) formed on an electroconductive substrate:

(where, R₁ represents an optionally substituted alkyl group, aralkyl group, or aryl group; R₂ represents a hydrogen atom, alkyl group, aralkyl group, or optionally substituted aryl group; Ar represents an optionally substituted aryl group or heterocyclic group; X represents an oxygen atom, sulfur atom, or optionally substituted nitrogen atom; Z and X represent optionally substituted residual groups bonded with the nitrogen atom; R₂ and Ar may be bonded to each other to form a ring.)

Detailed explanation of the invention

Industrial application field

The present invention pertains to a novel type of photosensitive material containing a styryl compound.

Prior art and problems to be solved

Conventional electrophotography is made up of the following formats: in one format known as the direct system, the photosensitive layer of a photosensitive material is charged and exposed to form an electrostatic latent image, and the latent image is developed with a developing agent to form a visible image, which is directly fixed on the photosensitive material to obtain a visible picture. In another format known as the powder image transfer system, the visible image on the photosensitive material is transferred to a paper sheet or other transfer material, and the transferred image is then fixed to form a transferred picture. In yet another format known as the electrostatic transfer system, the electrostatic latent image on the photosensitive material is transferred to a transfer paper, and the electrostatic latent image on the transfer paper is developed and fixed.

Examples of materials for forming the photosensitive layer of the photosensitive material used in said electrophotographic method include selenium, cadmium sulfide, zinc oxide, and other inorganic photoconductive materials.

These photoconductive materials have many advantages, such as little dissipation of charge in the dark, and the ability of quickly dissipating the charge under light irradiation. On the other hand, it has various disadvantages. For example, for selenium based photosensitive materials, their manufacturing conditions are difficult to meet, their manufacturing costs are high, and, because they are weak under heat or mechanical impact, caution must be taken in their handling. On the other hand, for cadmium sulfide-based photosensitive material and the zinc oxide-based photosensitive materials, a stable sensitivity cannot be obtained in a humid environment, and the dye added as a sensitizing agent leads to corona discharge so that the charging property degrades and the light fading phenomenon is exhibited due to exposure. Consequently, it is impossible to have stable characteristics over a long time, which is undesired.

On the other hand, various organic photoconductive polymers, such as polyvinylcarbazole, etc., have been proposed. However, although these polymers are better than the above inorganic photoconductive materials with respect to film forming property and light weight, they are poorer than the inorganic photoconductive materials with respect to sensitivity, durability and stability against environmental variation.

Also, although low molecular weight organic photoconductive compounds have the advantage that the properties of the coating film or the electrophotographic characteristics can be controlled by selecting the type and proportion of binder, they must have good miscibility with the binder.

For the photosensitive material prepared by dispersing a high-molecular weight or low-molecular weight organic photoconductive compound in the binder resin, because there are a large number of carrier traps, the residual potential is high, and the sensitivity decreases. These are disadvantages. Consequently, the addition of a charge-transporting substance to the photoconductive compound has been proposed to solve the aforementioned problem.

Also, a function-separation type photosensitive material in which the charge-generation function and charge-transport function are performed by different substances has been proposed. For the function-separation type photosensitive material, many types of organic compounds have been proposed as the charge-transporting substance for use in the charge transport layer.

However, they have various problems. For example,

2,5-bis(p-diethylaminophenyl)-1,3,4-oxathiazole described in US Patent No. 3,189,447 has a poor miscibility with the binder, and the crystals tend to become exhausted. On the other hand, for the diarylalkane derivative described in US Patent No. 3,820,989, although the miscibility with the binder is good, when it is used repeatedly, the sensitivity varies. Also, for the melamine

compound described in Japanese Kokai Patent Application No. Sho 54[1979]-59143, although it has a relatively good residual charge property, it nevertheless has a poor charging property and poor repeated operation characteristics. At present, there are few organic compounds having low molecular weight and excellent characteristics preferred for practical application in preparing photosensitive materials.

Japanese Kokai Patent Application No. Sho 55[1980]-6424 described a type of styryl compound represented by the following formula

(where, X, n, Ar are defined in said patent application).

X represents

(where, Y and R are defined in said patent application).

Japanese Kokai Patent Application No. Sho 60[1985]-164752 described a type of styryl compound represented by the following formula:

(where, R1-R4 is defined in said patent application).

Japanese Kokai Patent Application No. Sho 60[1985]-98437 described a type of styryl compound represented by the following formula:

(where, Ar1-Ar2, R1-R4 are defined in said patent application).

However, all of these compounds are different in structure from the compounds of the present invention.

Problems to be solved by the present invention

The purpose of the present invention is to solve the problems of the prior art by providing a type of photosensitive material characterized by the fact that it is contained as a

photoconductive substance having excellent miscibility with the binder and an excellent charge-transport property, and it has excellent sensitivity and chargeability, little fatigue degradation in repeated use and a high stability of the electrophotographic characteristics.

Means to solve the problems

This invention provides a type of photosensitive material characterized by the fact that it has a photosensitive layer containing a styryl compound represented by following formula (I) formed on an electroconductive substrate:

(where, R_1 represents an optionally substituted alkyl group, aralkyl group, or aryl group; R_2 represents a hydrogen atom, alkyl group, aralkyl group, or optionally substituted aryl group; Ar represents an optionally substituted aryl group or heterocyclic group; X represents an oxygen atom, sulfur atom, or optionally substituted nitrogen atom; Z and X represent optionally substituted residual group bonded with the nitrogen atom; R_2 and Ar may be bonded to each other to form a ring).

In formula (I), R_1 represents an alkyl group such as methyl or ethyl, aralkyl groups such as benzyl or phenethyl, aryl group such as phenyl, etc. These groups may have substituents, such as a methyl group, ethyl group, or other alkyl group, or methoxy group, ethoxy group, or other alkoxy group.

R_2 represents a hydrogen atom, an alkyl group such as methyl or ethyl, aralkyl group such as benzyl or phenethyl, aryl group such as phenyl, etc. When R_2 represents an aryl group, it may have substituents, such as a methyl group, ethyl group, or other alkyl group, methoxy group, ethoxy group, or other alkoxy group, etc.

Ar represents an aryl group, such as phenyl, or a heterocyclic group. Ar may have substituents, such as an alkyl group (methyl group, ethyl group, etc.), alkoxy group (methoxy group, ethoxy group, etc.), aryl group (phenyl group, etc.), hydroxyl group, or substituted amino group (diethylamino group, diphenylamino group, etc.), etc.

Ar may be bonded to R_2 either directly or via a carbon atom or oxygen atom, and Ar and R_2 can form a ring together with their carbon atoms.

X represents an oxygen atom, sulfur atom, or nitrogen atom. When X represents a nitrogen atom, it may have substituents, such as those listed for R_1 .

Z represents the residual group bonded to nitrogen that is bonded to X and R₁, such as -CH₂-, -CH₂CH₂-, -CH=, etc. Z may have substituents, such as an alkyl group (methyl group, ethyl group, etc.), aryl group (such as phenyl group, etc.).

The following are the structural formulas of the preferable examples of the styryl compounds represented by formula (I) in the present invention. However, they are not limited to what is listed here.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

The compound represented by formula (I) of the present invention can be prepared easily using the conventional method.

For example, it may be prepared in a condensation reaction between an aldehyde compound represented by the following formula (II):

[II]

(where, R_1 , Z and X have the same meanings as those in formula (I)) and a phosphorus compound represented by the following formula (III):

(where, R_2 and Ar have the same meanings as those in (I); R_3 and R_4 represent alkyl groups, cycloalkyl groups, aralkyl groups, or aryl groups).

The preferable groups of R_3 and R_4 in the phosphorus compound represented by formula (III) include cyclohexyl groups, benzyl groups, phenyl groups, and alkyl groups.

Examples of good solvents for performing the reaction in said method include hydrocarbons, ethers, alcohols, such as methanol, ethanol, isopropanol, butanol, 2-methoxy ethanol, 1,2-dimethoxyethane, bis(2-methoxyethyl) ether, dioxane, tetrahydrofuran, toluene, oxylene, dimethyl sulfoxide, N,N-dimethylformamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolinone, etc. Among them, polar solvents such as N,N-dimethylformamide and dimethyl sulfoxide are preferred.

Examples of binders include caustic soda, caustic potassium, sodium amide, sodium hydride, sodium methylate, sodium ethylate, potassium methylate, potassium ethylate, potassium tert-butoxide, n-butyllithium, and other alcoholates.

The reaction temperature can be selected in a wide range of about 0°C to about 100°C, or preferably in the range of about 10°C to about 80°C.

Also, compound (III) used in the present invention may also be prepared by using a quaternary phosphonium salt instead of said phosphorus compound. For example, one may make use of a triphenyl phosphonium salt to condense with an aldehyde compound (II) through a phosphorylene step using the Wittig reaction to form styryl compound (I).

The photosensitive material of the present invention has a photosensitive layer containing one or several types of the styryl compound represented by formula (I). Also, by using it in combination with other charge-transporting substances, such as hydrazone compounds and other styryl compounds, it is possible to realize even better electrophotographic characteristics.

There are various forms of photosensitive materials. Any form may be adopted for the photosensitive material of the present invention. For example, it may be a single-layer photosensitive material prepared by forming a photosensitive layer having a charge-generating substance and said styryl compound dispersed in a resin binder on a substrate, and it may be a so-called laminated photosensitive material prepared by forming a charge generation layer mainly made of a charge-generating substance on a substrate and then forming a charge transport layer on said charge generation layer. The styryl compound of the present invention is a photoconductive substance. However, it functions as a charge-transporting substance. It transfers the charge carriers generated by absorbing light at very high efficiency.

When said single-layer photosensitive material is formed, the operation is as follows. Fine particles of the charge-generating substance are dispersed in a resin solution or a solution prepared by dissolving the charge-transporting substance and resin. It is then coated and dried on an electroconductive substrate. In this case, the photosensitive layer has a thickness of 3-30 μm , or preferably in the range of 5-20 μm . If the quantity of charge-generating substance is too small, the sensitivity is poor. On the other hand, if it is too large, the charging property degrades, the mechanical strength of the photosensitive layer decreases, and the mechanical strength of the photosensitive layer decreases. The proportion in the photosensitive layer with respect to 1 part by weight of the resin should be in the range of 0.01-3 parts by weight, or preferably in the range of 0.2-2 parts by weight.

When said laminated photosensitive material is prepared, the charge-generating substance is coated on the electroconductive substrate by means of vacuum vapor deposition or coating as an amine solution or the like. In another format, after coating and drying of a coating solution prepared by dissolving a pigment in an appropriate solvent and, as needed, a binder resin, a solution containing the charge-transporting substance and binder is coated and dried on it.

In the case of vacuum vapor deposition, for example, a nonmetallic phthalocyanine, titanyl phthalocyanine, aluminum chlorophthalocyanine, or other phthalocyanine compound is used. In the case of dispersion, for example, a bisazo pigment or the like may be used.

In this case, the thickness of the charge generation layer should be 4 μm or less, or preferably 2 μm or less, and the thickness of the charge transport layer should be in the range of 3-30 μm , or preferably in the range of 5-20 μm .

The proportion of charge-transporting substance in the charge transport layer with respect to 1 part by weight of the binder resin should be in the range of 0.2-2 parts by weight, or preferably in the range of 0.3-1.3 parts by weight.

Together with the binder resin, the photosensitive material of the present invention may also contain a halogenated paraffin, polybiphenyl chloride, dimethylnaphthalene, dibutyl phthalate, o-terphenyl, and other plasticizers, chloranil, tetracyanoethylene, 2,4,7-trinitrofluororenone, 5,6-dicyanobenzoquinone, tetraanthraquinomethane, tetrachlorophthalic anhydride, 3,5-dinitrobenzoic acid, and other electronegative sensitizers, methyl violet, Rhodamine B, cyanine dye, pyrylium salt, thiapyrylium salt, and other sensitizers.

Also, oxidation inhibitors, UV absorbents, dispersion aids, precipitation inhibitors, etc. may be selected appropriately for use.

Examples of the binder resins having electrically insulating property used in the present invention include well known thermoplastic resins and thermosetting resins photocuring resins, photoconductive resins, and other binder that are electrically insulating.

Examples of the appropriate binder resins include saturated polyester resins, polyamide resins, acrylic resins, ethylene-vinyl acetate resins, ion crosslinked olefin copolymers (ionomers), styrene-butadiene block copolymers, polycarbonates, vinyl chloride-vinyl acetate copolymers, cellulose esters, polyimides, styrol resins, and other thermoplastic resins; epoxy resins, urethane resins, silicone resins, phenolic resins, melamine resins, xylene resins, alkyd resins, thermosetting acrylic resins, and other thermosetting resins; photocuring resins; polyvinylcarbazole, polyvinylpyrene, polyvinylanthracene, polyvinylpyrrole, and other photoconductive resins. However, the present invention is not limited to them.

They may be used either alone or as a mixture of several types.

These electrically insulating resins preferably have a volumetric resistance of $1 \times 10^{12} \Omega \cdot \text{cm}$ measured for each resin alone.

Examples of the charge-generating substances include bisazo-based pigments, triaryl methane-based dyes, thiazine-based pigments, oxazine-based dyes, xanthine-based dyes, cyanine-based pigments, styryl-based pigments, pyridium-based dyes, azo-based pigments, quinacridone-based pigments, indigo-based pigments, perylene-based pigments, phthalocyanine quinine-based pigments, bisbenzimidazole-based pigments, indazolone-based pigments, squaric salt-based pigments, azulene-based pigments, phthalocyanine-based pigments, and other organic substances, selenium, selenium/tellurium, selenium/arsenic, and other selenium alloys, cadmium sulfide, cadmium selenide, zinc oxide, amorphous silicon, and other inorganic substances. In addition, any material that can highly efficiently absorb light to generate charge carriers may be used.

Examples of the electroconductive substrates that can be used as the photosensitive material of the present invention include sheet and drums made of foils or sheets of copper, aluminum, silver, iron, zinc, nickel, and other metals and alloys; plastic films, etc. coated with said metals by means of vacuum vapor deposition or electroless plating; paper, plastic film, etc. coated or vapor deposited with a layer of electroconductive polymer, indium oxide, tin oxide, or other electroconductive compound.

Examples of the constitution of the photosensitive material using the styryl compound of the present invention are shown schematically in Figures 1-5.

As shown in Figure 1, the photosensitive material is prepared by forming photosensitive layer (4) composed of photoconductive material (3) and charge-transporting substance (2) together with a binder on substrate (1). The styryl compound of the present invention is used as the charge-transporting substance.

The photosensitive material shown in Figure 2 is a function-separation type photosensitive material having charge generation layer (6) and charge transport layer (5) as the

photosensitive layers. Charge transport layer (5) is formed on the surface of charge generation layer (6).

The styryl compound of the present invention is contained in said charge transport layer (5).

The photosensitive material shown in Figure 3 is a function-separation type photosensitive material having the same charge generation layer (6) and charge transport layer (5) as in Figure 2. However, the configuration is the reverse of that shown in Figure 2, with charge generation layer (6) formed on the surface of charge transport layer (5).

In the photosensitive material shown in Figure 4, surface protective layer (7) is formed on the surface of the photosensitive material shown in Figure 1. Photosensitive layer (4) may also be a function-separated type photosensitive material having charge generation layer (6) and charge transport layer (5).

As shown in Figure 5, intermediate layer (8) is set between substrate (1) and photosensitive layer (4). It is possible to form intermediate layer (8) to improve various properties, such as adhesion, coating property, protection of the substrate, and the property of charge injection from the substrate to the photosensitive layer.

The intermediate layer may be made of polyimide, polyamide, nitrocellulose, polyvinylbutyral, polyvinyl alcohol, or other polymer as is. It may also be made of a dispersion of tin oxide, indium oxide, or other low-resistance compound, or a vapor deposited film of aluminum oxide, zinc oxide, silicon oxide, etc.

The thickness of the intermediate layer is preferably 1 μm or less.

The surface protective layer may be made of acrylic resin, polaryl resin, polycarbonate resin, polyurethane resin, or other polymer as is. It may also be made of a dispersion of tin oxide, indium oxide, or other low-resistance compound.

Also, it is possible to make use of an organic plasma film. As needed, the organic plasma polymer may contain oxygen, nitrogen, halogen, and atoms in Groups III and V of the Periodical Table appropriately.

The thickness of the surface protective layer is preferably 5 μm or less.

In the following, the present invention will be explained in more detail with reference to application examples. In the application examples, if not specified otherwise, "parts" refers to "parts by weight."

Synthesis example (Preparation of compound example (3))

3.04 g of the phosphate represented by the following formula

and 2.39 g of the aldehyde compound represented by the following formula

were dissolved in 30 mL of dimethylformamide. While it was cooled to 5°C or lower, a suspension prepared from 2 g of potassium tert-butoxide in 50 mL of dimethylformamide was added dropwise. Then, after the mixture was agitated at room temperature for 8 h, the mixture was allowed to stand overnight. The obtained mixture was added to 900 mL of ice water, followed by neutralization with dilute hydrochloric acid. After about 30 min, the deposited crystals were filtered out and washed with water. Then, they were recrystallized and refined by means of acetonitrile, forming 2.8 g of yellow acicular crystals.

(Yield is 72%)

The results of elemental analysis are listed below.

	C (%)	H (%)	N (%)
1 計算値 *	86.38	5.91	3.60
2 実験値	86.30	5.87	3.51

* $\text{C}_{22}\text{H}_{21}\text{NO}$

Key: 1 Computed data
2 Experimental data

Application Example 1

0.45 part of the bisazo compound represented by the following formula (A)

and 0.45 part of polyester resin (Pylon 200, product of Toyobo Co., Ltd.) were dispersed in 50 parts of cyclohexanone by means of a sand grinder. By means of a film applicator, the obtained dispersion of the bisazo compound was coated and dried on a 100- μm -thick aluminum-coated mylar film to form a layer with a dry thickness of 0.3 g/ m^2 . On this obtained charge generation

layer, a 16- μm -thick (dry film thickness) charge transport layer was formed by coating a solution prepared by dissolving 70 parts of styryl compound (3) and 70 parts of polycarbonate resin (K-1300, product of Teijin Ltd.) in 400 parts of 1,4-dioxane. In this way, an electrophotographic photosensitive material having a 2-layer photosensitive layer was obtained.

With a commercially available electrophotographic copier (EP-470Z, product of Minolta Camera Co., Ltd.), the following test was performed for the obtained photosensitive material. Corona charging was performed at -6 kV, the initial surface potential $V_0(\text{V})$, the exposure quantity $E_{1/2}$ (lux · sec) for reducing the potential to 1/2 the initial potential, and the dark decay rate DDR_1 (%) with respect to the initial potential after allowing to stand in the dark for 1 sec were measured.

Application Examples 2-4

Also, using the same method and the same constitution as those in Application Example 1, photosensitive material samples were prepared except that styryl compounds (4), (5), (7) were used in place of said styryl compound (3) used in Application Example 1.

For the obtained photosensitive materials, the same method as that in Application Example 1 was adopted to measure the values of V_0 , $E_{1/2}$, and DDR_1 .

Application Example 5

0.45 part of the bisazo compound represented by the following formula (B)

and 0.45 part of polystyrene resin (molecular weight 40,000) were dispersed in 50 parts of cyclohexane by means of a sand grinder. The obtained dispersion of bisazo compound was coated with a film applicator and dried on a 100- μm -thick aluminum-coated mylar film to form a layer with a dry thickness of 0.3 g/m². On this obtained charge generation layer, a 16- μm -thick (dry film thickness) charge transport layer was formed by coating a solution prepared by dissolving 70 parts of styryl compound (10) and 70 parts of polyacrylate resin (U-100, product of Unitika Ltd.) in 400 parts of 1,4-dioxane. In this way, an electrophotographic photosensitive material having a 2-layer photosensitive layer was obtained.

Application Examples 6-8

Photosensitive materials were prepared using the same method as that in Application Example 5, except that instead of styryl compound (10) used in Application Example 5, styryl compounds (11), (12) and (13) were used.

For the obtained photosensitive materials, the same method as that in Application Example 1 was adopted to determine the values of V_0 , $E_{1/2}$ and DDR_1 .

Application Example 9

0.45 part of the polycyclic quinone-based pigment represented by the following formula (C)

and 0.45 part of polycarbonate resin (Panlite K-13000, product of Teijin Ltd.) were dispersed in 50 parts of dichloroethane by means of a sand grinder.

The obtained dispersion of the polycyclic quinone-based pigment was coated with a film applicator and dried on a 100- μm -thick aluminum-coated mylar film to form a layer with a dry thickness of 0.4 g/m². On this obtained charge generation layer, a 18- μm -thick (dry film thickness) charge transport layer was formed by coating a solution prepared by dissolving 60 parts of styryl compound (20) and 50 parts of polyacrylate resin (U-100, product of Unitika Ltd.) in 400 parts of 1,4-dioxane.

In this way, an electrophotographic photosensitive material having a 2-layer photosensitive layer was obtained. For the obtained photosensitive material, the same method as that in Application Example 1 was adopted to determine the values of V_0 , $E_{1/2}$ and DDR_1 .

Application Examples 10-11

Photosensitive materials were prepared in the same structure and using the same method as that in Application Example 9, except that instead of styryl compound (20) used in Application Example 9, styryl compounds (21), (25) were used.

For the obtained photosensitive material, the same method as that in Application Example 1 was adopted to determine the values of V_0 , $E_{1/2}$ and DDR_1 .

Application Example 12

0.45 part of a perylene-based pigment represented by the following formula (D)

and 0.45 part of butyral resin (BX-1, product of Sekisui Chemical Co., Ltd.) were dispersed in 50 parts of dichloroethane by means of a sand grinder.

The obtained dispersion of perylene-based pigment was coated with a film applicator and dried on a 100- μm -thick aluminum-coated mylar film to form a layer with a dry thickness of 0.4 g/m². On this obtained charge generation layer, a 18- μm -thick (dry film thickness) charge transport layer was formed by coating a solution prepared by dissolving 50 parts of styryl compound (26) and 50 parts of polycarbonate resin (PC-2, product of Mitsubishi Gas Chemical Co., Ltd.) in 400 parts of 1,4-dioxane.

In this way, an electrophotographic photosensitive material having a 2-layer photosensitive layer was obtained. For the obtained photosensitive material, the same method as that in Application Example 1 was adopted to determine the values of V_0 , $E_{1/2}$ and DDR_1 .

Application Examples 13-14

Photosensitive materials were prepared with the same structure and using the same method as that in Application Example 12, except that instead of styryl compound (26) used in Application Example 12, styryl compounds (24), (28) were used.

For the obtained photosensitive material, the same method as that in Application Example 1 was adopted to determine the values of V_0 , $E_{1/2}$ and DDR_1 .

Application Example 15

0.45 part of titanyl phthalocyanine and 0.45 part of butyral resin (BX-1, product of Sekisui Chemical Co., Ltd.) were dispersed in 50 parts of dichloroethane by means of a sand grinder.

The obtained dispersion of phthalocyanine was coated with a film applicator and dried on a 100- μm -thick aluminum-coated mylar film to form a layer with a dry thickness of 0.3 g/m². On this obtained charge generation layer, a 18- μm -thick (dry film thickness) charge transport layer was formed by coating a solution prepared by dissolving 50 parts of styryl compound (7) and 50 parts of polycarbonate resin (PC-Z, product of Mitsubishi Gas Chemical Co., Ltd.) in 400 parts of 1,4-dioxane.

In this way, an electrophotographic photosensitive material having a 2-layer photosensitive layer was obtained. For the obtained photosensitive material, the same method as that in Application Example 1 was adopted to determine the values of V_0 , $E_{1/2}$ and DDR_1 .

Application Examples 16-17

Photosensitive materials were prepared with the same structure and using the same method as that in Application Example 15, except that instead of styryl compound (7) used in Application Example 15, styryl compounds (13) and (18) were used.

For the obtained photosensitive material, the same method as that in Application Example 1 was adopted to determine the values of V_0 , $E_{1/2}$ and DDR_1 .

Application Example 18

50 parts of copper phthalocyanine and 0.2 part of copper tetrannitrophthalocyanine were dissolved in 500 parts of 98% concentrated sulfuric acid while being well agitated. The solution was poured into 5000 parts of water. After the photoconductive material composition of copper phthalocyanine and copper tetrannitrophthalocyanine was dissipated, it was filtered out, water washed, and dried under reduced pressure at 120°C.

10 parts of the obtained photoconductive composition prepared above were mixed with 22.5 parts of thermosetting acrylic resin (Acrydick A 405, product of Dai-Nippon Ink Co., Ltd.), 7.5 parts of melamine resin (Superbeckamine J 820, product of Dai-Nippon Ink Co., Ltd.), and 15 parts of said styryl compound (3) together with 100 parts of a 1:1 mixture of methyl ethyl ketone and xylene as a mixed solvent, and the mixture was dispersed for 48 h to form a photosensitive solution. The solution was then coated on an aluminum substrate, and was dried to form a photosensitive material having a photosensitive layer with thickness of about 15 μm .

For the obtained photosensitive material, the same method as that in Application Example 1 (except that the corona charging was performed at +6 kV) was adopted to determine the values of V_0 , $E_{1/2}$ and DDR_1 .

Application Examples 19-21

Photosensitive materials were prepared with the same structure and using the same method as that in Application Example 18, except that instead of styryl compound (3) used in Application Example 18, styryl compounds (20), (33), (38) were used.

For the obtained photosensitive material, the same method as that in Application Example 18 was adopted to determine the values of V_0 , $E_{1/2}$ and DDR_1 .

Comparative Examples 1-4

Photosensitive materials were prepared with the same structure and using the same method as that in Application Example 18, except that instead of the styryl compound used in Application Example 18, the following listed compounds (E), (F), (G), (H) were used.

(

For the obtained photosensitive materials, the same method as that in Application Example 18 was adopted to determine the values of V_0 , $E_{1/2}$ and DDR_1 .

Comparative Examples 5-8

Photosensitive materials were prepared with the same structure and using the same method as that in Application Example 18, except that instead of styryl compound (6) used in Application Example 18, the following listed compounds (I), (J), (K), (L) were used.

For the obtained photosensitive material, the same method as that in Application Example 18 was adopted to determine the values of V_0 , $E_{1/2}$ and DDR_1 .

Table 1 lists the results of measurement of V_0 , $E_{1/2}$ and DDR_1 of the photosensitive materials prepared in Application Examples 1-21 and Comparative Examples 1-8.

As can be seen from Table 1, for the photosensitive materials of the present invention, either the laminated type or single-layer type, the charge holding property is sufficient, the dark

decay rate is sufficiently low for good use as photosensitive material, and the sensitivity is also high as can be seen from the data.

Also, an actual copying test was performed on a commercially available electrophotographic copier (EP-350Z, product of Minolta Camera Co., Ltd.) for the photosensitive material prepared in Application Example 18 by copying 1,000 sheets in the repeated positive charging mode. The gradation was found to be excellent, there was no variation in sensitivity and vivid pictures could be obtained for both the first and last copies. This indicates that the photosensitive material of the present invention also has a high stability in the repetitive operation characteristics.

Table 1

	V _o (V)	E _{1/2} (lux·sec)	DDR ₁ (%)
1 実施例1	-660	1.2	2.7
実施例2	-650	0.8	3.1
実施例3	-660	0.7	2.8
実施例4	-660	0.7	2.6
実施例5	-650	1.0	3.5
実施例6	-660	0.9	2.8
実施例7	-650	0.8	3.2
実施例8	-660	1.0	2.7
実施例9	-670	1.2	2.3
実施例10	-660	1.3	2.6
実施例11	-670	1.0	2.4
実施例12	-660	1.3	2.8
実施例13	-670	1.8	2.3
実施例14	-670	1.5	2.4
実施例15	-660	0.7	2.7
実施例16	-650	0.6	3.1

Key: 1 Application Example

Table 1 (continued).

	V _s (V)	E _{1/2} (lux · sec)	DDR _t (%)
1	実施例17 - 6 6 0	0.8	2.8
	実施例18 + 6 2 0	0.9	13.0
	実施例19 + 6 1 0	0.8	13.7
	実施例20 + 6 1 0	1.0	14.1
	実施例21 + 6 2 0	0.7	13.1
2	比較例1 + 6 2 0	36.0	6.5
	比較例2 + 6 0 0	5.7	14.0
	比較例3 + 6 0 0	3.2	14.3
	比較例4 + 6 1 0	4.7	13.2
	比較例5 + 6 2 0	15.0	12.0
	比較例6 + 6 1 0	5.8	11.6
	比較例7 + 6 0 0	6.5	13.7
	比較例8 + 6 2 0	8.3	12.2

Key: 1 Application Example
 2 Comparative Example

Effects of the invention

The present invention provides a type of photoconductive compound that can be used in preparing photosensitive materials.

The styryl compound as the photoconductive composition in the present invention is especially useful as a charge-transporting substance.

The photosensitive material having the styryl compound of the present invention has excellent characteristics, such as sensitivity, charge-transport property, initial surface potential, dark decay rate, etc. Also, it has little optical fatigue in repeated operations.

Brief description of the figures

Figures 1-5 are schematic diagrams illustrating the photosensitive material of the present invention. Figures 1, 4 and 5 illustrate the structure of the dispersion type photosensitive material having a photosensitive layer laminated on an electroconductive substrate. Figures 2 and 3

illustrate the structure of the function-separation type photosensitive material having a charge generation layer and a charge transport layer laminated on an electroconductive substrate.

- 1 Electroconductive substrate
- 2 Charge-transporting substance
- 3 Photoconductive substance
- 4 Photosensitive layer
- 5 Charge transport layer
- 6 Charge generation layer
- 7 Surface protective layer
- 8 Intermediate layer

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.