# Zero-shot AutoML with Pretrained Models

Ekrem Öztürk\*<sup>1</sup>, Fabio Ferreira\*<sup>1</sup>, Hadi S. Jomaa\*<sup>2</sup>, Lars-Schmidt Thieme<sup>2</sup>, Josif Grabocka<sup>1</sup>, Frank Hutter<sup>1,3</sup> \*equal contribution, <sup>1</sup>University of Freiburg, <sup>2</sup>University of Hildesheim, <sup>3</sup>Bosch Center for Artificial Intelligence

#### In a Nutshell

- Given a new dataset D, how should we choose a pre-trained model to fine-tune to D, and set the fine-tuning hyperparameters?
  - We meta-learn a domain-independent zero-shot surrogate model that solves this task given only trivial meta-features.
- We release a large DL meta-dataset for image classification that is over 1000 times larger than previous meta-datasets.
- We evaluate our approach on the ChaLearn AutoDL challenge benchmark, clearly outperforming all challenge contenders.

## Anytime Performance Setting

Model initialization: 20min budget, no dataset access

Training & prediction: 20min budget starting after initialization

Evaluation metric: area under the learning curve (ALC)

Evaluation starts at training time 0, i.e. **probing is very costly**. The model needs to start making
predictions as early as possible without sacrificing
performance to maximize the turquoise area.



### Related Work

To solve the **algorithm selection** problem (Rice, 1976), we use **AutoFolio** (Lindauer et al., 2015) that chooses between regression, classification, etc. using algorithm configuration (Hutter et al., 2011). **Transfer HPO** (Wistuba & Grabocka, 2021; Jomaa et al., 2021a; Salinas et al., 2020) leverages prior knowledge with few observations on the target dataset, whereas **zero-shot HPO** (Wistuba et al., 2015; Winkelmolen et al., 2020) requires no observations on the target dataset. Related to our work, **XAS** (Tornede et al., 2020) describes datasets and pipelines as joint feature vectors, and **RankML** (Laadan et al.) uses dataset meta-features to predict the ranking of ML pipelines.

## Problem Definition and Methodology

Given a set of N DL pipelines  $\mathcal{X}:=\{x_n\}_{n=1}^N$  and a collection of I datasets  $\mathcal{D}=\{D_i\}_{i=1}^I$  with meta-features  $\phi_i$  for dataset  $D_i\in\mathcal{D}$ , and a  $N\times I$  matrix of costs  $C(x_n,D_i)$  representing the cost of pipeline  $x_n$  on dataset  $D_i$ , the problem of zero-shot AutoML with pretrained models (ZAP) is to find a mapping  $f:\Phi\to\mathcal{X}$  that yields minimal expected cost over  $\mathcal{D}$ :

$$argmin_f \; \mathbb{E}_{i \sim \{1, \ldots, I\}} \left[ C(f(\phi_i), D_i) 
ight]$$

- **ZAP-AS:** Formulate the problem as algorithm selection and employ *AutoFolio* as the zero-shot model to meta-learn over the the cost matrix.
- ZAP-HPO
  - $\circ$  Project the DL pipelines into the geometric space  $\mathcal{X} \subseteq \mathcal{M} imes \Theta$

$$f(\psi)_{i,j} := f\left(x_j, \phi_i; \psi
ight) : \mathcal{M} imes \Theta imes \Phi 
ightarrow \mathbb{R}_+$$

 $\circ$  Meta-learn  $f_{\psi}$  over the cost matrix with the ranking loss objective below

$$argmin_{\psi} \sum_{(i,j,k) \in \mathcal{E}} \ \log\Bigl(\sigma\Bigl(f(\psi)_{i,j} - f(\psi)_{i,k}\Bigr)\Bigr)$$



## **Evaluation Protocol & Experiments**

Baselines: Random Selection among the pipelines, Single-best pipeline on average across the datasets, Oracle
pipelines which are the best ones per dataset, and the ChaLearn AutoDL challenge top-3 solutions DeepWisdom,
DeepBlueAl, PASA-NJU.

| Solution   | Augmentation | ML technique                                     |
|------------|--------------|--------------------------------------------------|
| DeepWisdom | FAA          | ResNet18/9<br>Meta-trained solution agents       |
| DeepBlueAI | FAA          | ResNet18<br>Adaptive ensemble learning           |
| PASA NJU   | Simple       | ResNet18/SeResnext50 Data adaptive preprocessing |

FAA: Fast AutoAugment (Lim et al., 2019)

- ZAP benchmark evaluation: 35-fold cross-validation over 525 datasets (meta-train on 510, test on the remaining 15).
- AutoDL benchmark evaluation: Meta-train on the whole meta-dataset and evaluate on the official platform.
- All the results are averaged over 10 repetitions.







