Mudcard

- Sometimes I cannot remember the code, so when I write the code, I have to check the sample code above.
 - That's fine, I do the same. Also, I still always need to check the manual to remember arguments and syntax.
- I noticed there was no space before "doctorate," so I would like to learn how I can code it without just manually adding a space in front of it.
 - I'm not sure what you mean. You just need to manually add the space.
- join and merge? is it only different that one is in pandas and the other is in polar?
 - Nope. Both packages can do all the operations we discussed in class.
 - Merge means that you place dataframes next to each other and figure out based on the type of the merge how to combine rows/columns
 - Append means that you place dataframes vertically (one below the other). Rows are not merged but additional columns might need to be added if a column is only in one of the dataframes.
 - Please play around with the code and print out the dataframes to better understand what's going on
- in the example with the space in front of 'doctorate', should we always assume that the dataframe is messed up or disorganized?
 - I'd just open the csv file either in jupyter-lab or with excel and take a look at the cells
- Is there a function to append polars? You only talked about append function for pandas.
 - Yes, you can also append dataframes in polars. Should be in the lecture 3 notes.
 If it's not there, just google it.
- A background on overall python syntax before jumping into pd and pl
 - We unfortunately don't have time for that.
 - I hope you attended the DSCoV workshop on intro python last Friday. It was announced on Ed.
- i was a bit confused by the concept of left/right in regards to merge. Is top to bottom considered left to right when it prints? What is the best way to think about this?
 - I'd suggest to work with the code, add print statements, and check yourself what the merged dataframe is for the various merge types

Lecture 4: Exploratory data analysis in python

The supervised ML pipeline

- **0. Data collection/manipulation**: you might have multiple data sources and/or you might have more data than you need
 - you need to be able to read in datasets from various sources (like csv, excel, SQL, parquet, etc)
 - you need to be able to filter the columns/rows you need for your ML model
 - you need to be able to combine the datasets into one dataframe
- 1. Exploratory Data Analysis (EDA): you need to understand your data and verify that it doesn't contain errors
 - do as much EDA as you can!
- **2. Split the data into different sets**: most often the sets are train, validation, and test (or holdout)
 - practitioners often make errors in this step!
 - you can split the data randomly, based on groups, based on time, or any other nonstandard way if necessary to answer your ML question
- **3. Preprocess the data**: ML models only work if X and Y are numbers! Some ML models additionally require each feature to have 0 mean and 1 standard deviation (standardized features)
 - often the original features you get contain strings (for example a gender feature would contain 'male', 'female', 'non-binary', 'unknown') which needs to be transformed into numbers
 - often the features are not standardized (e.g., age is between 0 and 100) but it needs to be standardized
- 4. Choose an evaluation metric: depends on the priorities of the stakeholders
 - often requires quite a bit of thinking and ethical considerations
- **5. Choose one or more ML techniques**: it is highly recommended that you try multiple models
 - start with simple models like linear or logistic regression

 try also more complex models like nearest neighbors, support vector machines, random forest, etc.

6. Tune the hyperparameters of your ML models (aka cross-validation or hyperparameter tuning)

- ML techniques have hyperparameters that you need to optimize to achieve best performance
- for each ML model, decide which parameters to tune and what values to try
- loop through each parameter combination
 - train one model for each parameter combination
 - evaluate how well the model performs on the validation set
- take the parameter combo that gives the best validation score
- evaluate that model on the test set to report how well the model is expected to perform on previously unseen data

7. Interpret your model: black boxes are often not useful

- check if your model uses features that make sense (excellent tool for debugging)
- often model predictions are not enough, you need to be able to explain how the model arrived to a particular prediction (e.g., in health care)

Learning objectives

By the end of this lecture, you will be able to

- visualize one column (categorical, ordinal, and continuous data)
- visualize column pairs (all variations of continuous and categorical columns)
- visualize multiple columns simultaneously

Dataset of the day

Adult dataset, see here

Packages of the day

matplotlib and pandas

By the end of this lecture, you will be able to

- visualize one column (categorical, ordinal, and continuous data)
- visualize column pairs (all variations of continuous and categorical columns)
- visualize multiple columns simultaneously

Data types

- **continuous data**: represented by floating point numbers usually (not always), it is a measured quantity with some unit of measurement (not always)
 - age measured in years
 - distance measured in km or miles
 - weight measured in kg or lbs
 - rates are dimensionless but usually continuous e.g., click-through rates
- ordinal data: not continuous data, there are a small number of categories and the categories can be ordered
 - satisfaction levels (satisfied, moderately satisfied, not satisfied)
 - ratings (1-5 stars or ratings like fair, average, good, excellent)
 - time categories like day of the week, month of the year
 - education level
- categorical data: there are a small number of categories and the categories cannot be ordered
 - demographic info like race, gender, or marital status
 - blood type
 - eye color
 - type of rock (igneous, sedimentary or metamorphic)

A feature's data type can sometimes be context-dependent or unclear!

- e.g., blood type could be considered ordinal in certain medical situations.
- Would people's birth year be continuous or ordinal?

Let's load the data first!

```
In [1]: import pandas as pd
import numpy as np
import matplotlib
from matplotlib import pylab as plt
df = pd.read_csv('../data/adult_data.csv')
print(df.dtypes)
```

```
int64
age
                  object
workclass
fnlwgt
                    int64
education
                  object
education-num
                    int64
                  object
marital-status
                  object
occupation
relationship
                  object
                  object
race
sex
                  object
capital-gain
                    int64
                    int64
capital-loss
hours-per-week
                    int64
native-country
                  object
                  object
gross-income
dtype: object
```

Column is continuous

```
In [2]: print(df['age'].describe())
                32561,000000
       count
                   38.581647
       mean
                   13.640433
       std
       min
                   17.000000
       25%
                   28.000000
       50%
                   37.000000
       75%
                   48.000000
       max
                   90.000000
       Name: age, dtype: float64
In [3]: plt.figure(figsize=(5,3))
        df['age'].plot.hist()
                                 # bins = int(np.sqrt(df.shape[0]))
                                 # bins = df['age'].nunique()
        plt.xlabel('age [years]')
        plt.ylabel('count')
        plt.show()
```



```
In [4]: plt.figure(figsize=(5,3))
        print(np.logspace(np.log10(1),np.log10(np.max(df['capital-gain'])),50))
        df['capital-gain'].plot.hist() # log=True, bins = np.logspace(np.log10(1),np.
        #plt.semilogy()
        #plt.semiloax()
        plt.xlabel('capital gain [USD]')
        plt.ylabel('count')
        plt.show()
       [1.00000000e+00 1.26485496e+00 1.59985807e+00 2.02358841e+00
        2.55954583e+00 3.23745424e+00 4.09491005e+00 5.17946728e+00
        6.55127487e+00 8.28641251e+00 1.04811100e+01 1.32570839e+01
        1.67682883e+01 2.12094526e+01 2.68268813e+01 3.39321138e+01
        4.29192025e+01 5.42865661e+01 6.86646323e+01 8.68508006e+01
        1.09853666e+02 1.38948954e+02 1.75750273e+02 2.22298605e+02
        2.81175493e+02 3.55646216e+02 4.49840880e+02 5.68983468e+02
        7.19681561e+02 9.10292791e+02 1.15138835e+03 1.45633926e+03
        1.84205794e+03 2.32993612e+03 2.94703125e+03 3.72756709e+03
        4.71483172e+03 5.96357829e+03 7.54306157e+03 9.54087883e+03
        1.20678279e+04 1.52640520e+04 1.93068118e+04 2.44203166e+04
        3.08881586e+04 3.90690406e+04 4.94166697e+04 6.25049197e+04
```

7.90596576e+04 9.99990000e+04]

Column is categorical

```
In [5]: print(df['occupation'].value_counts())
       occupation
       Prof-specialty
                             4140
       Craft-repair
                             4099
       Exec-managerial
                             4066
       Adm-clerical
                             3770
       Sales
                             3650
       Other-service
                             3295
       Machine-op-inspct
                             2002
                             1843
       Transport-moving
                             1597
       Handlers-cleaners
                             1370
       Farming-fishing
                              994
       Tech-support
                              928
       Protective-serv
                              649
       Priv-house-serv
                              149
       Armed-Forces
                                9
       Name: count, dtype: int64
In [6]: plt.figure(figsize=(5,3))
        df['occupation'].value_counts().plot.barh()
        plt.xlabel('count')
        plt.ylabel('occupation')
        plt.show()
```



```
In [7]: plt.figure(figsize=(5,3))
    df['occupation'].value_counts(normalize=True).plot.barh()
    plt.xlabel('fraction')
    plt.show()
```


Quiz 1

· What's wrong with this figure?

No description has been provided for this image

Ordinal features

[//]:

No description has been provided for this image

- other examples of ordinal features:
 - measure of quality (e.g., bad, average, good, excellent)
 - socioeconomic status (e.g., low income, middle income, high income)
 - education level (e.g., 8th grade, high school, BSc, MSc, PhD)
 - satisfaction rating (e.g., dislike, neutral, like)
 - time (e.g., days of the week, months, years)

The categories of an ordinal feature must be visualized in the correct order!

```
In [8]: plt.figure(figsize=(5,3))
    df['education'].value_counts().plot.barh()
    plt.xlabel('count')
    plt.ylabel('education level')
    plt.title('incorrect and misleading!')
    plt.tight_layout()
    plt.show()
```

incorrect and misleading!


```
In [9]: df['education'].value_counts()
```

```
Out[9]: education
         HS-grad
                          10501
          Some-college
                           7291
          Bachelors
                           5355
         Masters
                           1723
                           1382
          Assoc-voc
          11th
                           1175
                           1067
          Assoc-acdm
                            933
          10th
          7th-8th
                            646
          Prof-school
                            576
          9th
                            514
          12th
                            433
          Doctorate
                            413
          5th-6th
                            333
          1st-4th
                            168
          Preschool
                             51
         Name: count, dtype: int64
In [10]: correct_order = [' Preschool', ' 1st-4th', ' 5th-6th', ' 7th-8th', ' 9th',
                  ' 12th', ' HS-grad', ' Some-college', ' Assoc-voc', ' Assoc-acdm',
                   ' Masters', ' Prof-school', ' Doctorate']
         df['education'].value_counts().reindex(correct_order)
Out[10]: education
          Preschool
                             51
          1st-4th
                            168
          5th-6th
                            333
          7th-8th
                            646
          9th
                            514
          10th
                            933
          11th
                           1175
          12th
                            433
                          10501
         HS-grad
          Some-college
                           7291
         Assoc-voc
                           1382
          Assoc-acdm
                           1067
                           5355
          Bachelors
         Masters
                           1723
          Prof-school
                            576
          Doctorate
                            413
         Name: count, dtype: int64
In [11]: plt.figure(figsize=(5,3))
         df['education'].value_counts().reindex(correct_order).plot.barh()
         plt.xlabel('count')
         plt.ylabel('education')
         plt.title('correct!')
         plt.tight layout()
         plt.show()
```


By the end of this lecture, you will be able to

- visualize one column (categorical, ordinal, and continuous data)
- visualize column pairs (all variations of continuous and categorical columns)
- visualize multiple columns simultaneously

Overview

Visualization types	column continuous	column categorical
column continuous	scatter plot, heatmap	category-specific histograms, box plot, violin plot
column categorical	category-specific histograms, box plot, violin plot	stacked bar plot

Continuous vs. continuous columns

scatter plot

In [12]: df.plot.scatter('age','hours-per-week',figsize=(5,3),alpha=0.1,s=10) # alpha plt.show()

Continuous vs. continuous columns

heatmap

```
In [13]: nbins = 40
    heatmap, xedges, yedges = np.histogram2d(df['age'], df['hours-per-week'], bi
    extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]

In [14]: heatmap[heatmap == 0] = 0.1 # we will use log and log(0) is undefined
    plt.figure(figsize=(5,3))

    plt.imshow(np.log10(heatmap).T, origin='lower', vmin=0) # use log count
    #plt.imshow(heatmap.T, origin='lower', vmin=0) # use log count
    plt.xlabel('age')
    plt.ylabel('hours-per-week')
    plt.xticks(np.arange(nbins+1)[::4], xedges[::4].astype(int))
    plt.yticks(np.arange(nbins+1)[::4], yedges[::4].astype(int))
    plt.colorbar(label='log10(count)')
    plt.show()
```


Categorical vs. categorical columns

stacked bar plot

```
count_matrix = df.groupby(['race', 'gross-income']).size().unstack()
In [15]:
         print(count_matrix)
         count_matrix_norm = count_matrix.div(count_matrix.sum(axis=1),axis=0)
         print(count matrix norm)
        gross-income
                            <=50K >50K
        race
        Amer-Indian-Eskimo
                              275
                                     36
        Asian-Pac-Islander
                              763
                                    276
        Black
                             2737
                                    387
        0ther
                                     25
                              246
        White
                            20699 7117
        gross-income
                               <=50K
                                          >50K
        Amer-Indian-Eskimo 0.884244 0.115756
        Asian-Pac-Islander 0.734360 0.265640
        Black
                            0.876120 0.123880
        0ther
                            0.907749 0.092251
        White
                            0.744140 0.255860
In [16]: count_matrix_norm.plot(kind='bar', stacked=True,figsize=(5,3))
         plt.ylabel('fraction of people in group')
         plt.legend(loc=4)
         plt.show()
```


Continuous vs. categorical columns

• category-specific histograms

```
import matplotlib
from matplotlib import pylab as plt

categories = df['gross-income'].unique()
bin_range = (df['age'].min(),df['age'].max())

plt.figure(figsize=(5,3))

for c in categories:
    plt.hist(df[df['gross-income']==c]['age'],alpha=0.5,label=c,range=bin_raplt.legend()
plt.ylabel('fraction')
plt.xlabel('age')
plt.show()
```


Continuous vs. categorical columns

• box plot

```
In [18]: df[['age','gross-income']].boxplot(by='gross-income',figsize=(5,3))
    plt.ylabel('age')
    plt.show()
```


Continuous vs. categorical columns

• violin plot

```
plt.violinplot(dataset = dataset)
plt.xticks([1,2],['<=50k','>50k'])
plt.ylabel('age')
plt.show()
```


In [20]: help(plt.violinplot)

Help on function violinplot in module matplotlib.pyplot:

violinplot(dataset: 'ArrayLike | Sequence[ArrayLike]', positions: 'ArrayLike
| None' = None, *, vert: 'bool | None' = None, orientation: "Literal['vertic
al', 'horizontal']" = 'vertical', widths: 'float | ArrayLike' = 0.5, showmea
ns: 'bool' = False, showextrema: 'bool' = True, showmedians: 'bool' = False,
quantiles: 'Sequence[float | Sequence[float]] | None' = None, points: 'int'
= 100, bw_method: "Literal['scott', 'silverman'] | float | Callable[[Gaussia
nKDE], float] | None" = None, side: "Literal['both', 'low', 'high']" = 'bot
h', data=None) -> 'dict[str, Collection]'
Make a violin plot.

Make a violin plot for each column of *dataset* or each vector in sequence *dataset*. Each filled area extends to represent the

entire data range, with optional lines at the mean, the median, the minimum, the maximum, and user-specified quantiles.

Parameters

dataset : Array or a sequence of vectors. The input data.

positions: array-like, default: [1, 2, ..., n]

The positions of the violins; i.e. coordinates on the x-axis for vertical violins (or y-axis for horizontal violins).

vert : bool, optional
.. deprecated:: 3.10
Use *orientation* instead.

If this is given during the deprecation period, it overrides the *orientation* parameter.

If True, plots the violins vertically. If False, plots the violins horizontally.

orientation : {'vertical', 'horizontal'}, default: 'vertical' If 'horizontal', plots the violins horizontally.
Otherwise, plots the violins vertically.

.. versionadded:: 3.10

widths: float or array-like, default: 0.5

The maximum width of each violin in units of the *positions* axis.

The default is 0.5, which is half the available space when using default

positions.

showmeans : bool, default: False
Whether to show the mean with a line.

showextrema: bool, default: True
Whether to show extrema with a line.

showmedians: bool, default: False
Whether to show the median with a line.

quantiles : array-like, default: None If not None, set a list of floats in interval [0, 1] for each violi n, which stands for the quantiles that will be rendered for that violin. points : int, default: 100 The number of points to evaluate each of the gaussian kernel density estimations at. bw method : {'scott', 'silverman'} or float or callable, default: 'scot t' The method used to calculate the estimator bandwidth. If a float, this will be used directly as `kde.factor`. If a callable, it should take a `matplotlib.mlab.GaussianKDE` instance as its only parameter and return a float. side : {'both', 'low', 'high'}, default: 'both' 'both' plots standard violins. 'low'/'high' only plots the side below/above the positions value. data: indexable object, optional If given, the following parameters also accept a string ``s``, which is interpreted as ``data[s]`` if ``s`` is a key in ``data``:

dataset

Returns

dict

A dictionary mapping each component of the violinplot to a list of the corresponding collection instances created. The dictionary has the following keys:

- ``bodies``: A list of the `~.collections.PolyCollection` instances containing the filled area of each violin.
- ``cmeans``: A `~.collections.LineCollection` instance that marks the mean values of each of the violin's distribution.
- ``cmins``: A `~.collections.LineCollection` instance that marks
 the bottom of each violin's distribution.
- ``cmaxes``: A `~.collections.LineCollection` instance that marks
 the top of each violin's distribution.
- ``cbars``: A `~.collections.LineCollection` instance that marks
 the centers of each violin's distribution.
- ``cmedians``: A `~.collections.LineCollection` instance that marks the median values of each of the violin's distribution.
- ``cquantiles``: A `~.collections.LineCollection` instance created to identify the quantile values of each of the violin's

distribution.

Quiz 2

Pair the column name(s) with the appropriate visualization type!

By the end of this lecture, you will be able to

- visualize one column (categorical, ordinal, and continuous data)
- visualize column pairs (all variations of continuous and categorical columns)
- visualize multiple columns simultaneously

Scatter matrix

By now, you can

- visualize one column (continuous or categorical data)
- visualize column pairs (all variations of continuous and categorical columns)
- · visualize multiple columns simultaneously

Matplotlib cheatsheets!

The cheatsheets in this repo are excellent. Feel free to use them any time!

Other great resources for visualization

DATA1500 - Data Visualization & Narrative (Course offered in the spring term)

https://www.data-to-viz.com/

https://pyviz.org/

Mud card

In []: