

Introduction

#### Introduction

AI value creation by 2030

\$13 trillion



[Source: McKinsey Global Institute.]

## Demystifying AI



(artificial narrow intelligence)

E.g., smart speaker, self-driving car, web search, AI in farming and factories

(artificial general intelligence)

Do anything a human can do

## What you'll learn

- What is AI?
  - Machine Learning
  - Data
  - What makes an AI company
  - What machine learning can and cannot do
  - Optional: Intuitive explanation of Deep Learning
- Building AI projects
- Building AI in your company
- AI and society





Machine Learning

## Supervised Learning

Input

Output



| Input (A)         | Output (B)             | Application         |
|-------------------|------------------------|---------------------|
| email             | spam? (0/1)            | spam filtering      |
| audio             | text transcripts       | speech recognition  |
| English           | Chinese                | machine translation |
| ad, user info     | click? (0/1)           | online advertising  |
| image, radar info | position of other cars | Self-driving car    |
| image of phone    | defect? (0/1)          | visual inspection   |
|                   |                        |                     |

## Why Now?





What is data

## Example of a table of data (dataset)

| house<br>(square feet) | # of<br>bedrooms                            | price (1000\$)    |
|------------------------|---------------------------------------------|-------------------|
| 523<br>645             | 1 1                                         | 100<br>150        |
| 708<br>1034<br>2290    | $\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$ | 200<br>300<br>350 |
| 2545                   | $\frac{4}{4}$                               | 440               |

| image | label   |
|-------|---------|
|       | cat     |
|       | not cat |
|       | cat     |
| 6 6   | not cat |

"Google cat"

## Acquiring data

#### - Manual labeling



cat



not cat



cat



not cat

#### - From observing user behaviors

| user ID | time             | price (\$) | purchased |
|---------|------------------|------------|-----------|
| 4783    | Jan 21 08:15.20  | 7.95       | yes       |
| 3893    | March 3 11:30.15 | 10.00      | yes       |
| 8384    | June 11 14:15.05 | 9.50       | no        |
| 0931    | Aug 2 20:30.55   | 12.90      | yes       |

| machine          | temperature<br>(°C) | pressure<br>(psi) | machine<br>fault |
|------------------|---------------------|-------------------|------------------|
| 17987            | 60                  | 7.65              | N                |
| $34672 \\ 08542$ | 100<br>140          | $25.50 \\ 75.50$  | N<br>Y           |
| 98536            | 165                 | 125.00            | Y                |

- Download from websites / partnerships

#### Use and mis-use of data

Don't throw data at an AI team and assume it will be valuable.



## Data is messy

- Garbage in, garbage out
- Data problems
  - Incorrect labels
  - Missing values
- Multiple types of data

images, audio, text

| house<br>(square feet) | # of<br>bedrooms | price<br>(1000\$) |
|------------------------|------------------|-------------------|
| 523                    | 1                | 100               |
| 645                    | 1                | 0.001             |
| 708                    | unknown          | 200               |
| 1034                   | 3                | unknown           |
| unknown                | 4                | 350               |
| 2545                   | unknown          | 440               |





The terminology of AI

## Machine learning vs. data science

# Home prices

| size                                      | # of                       | # of                       | newly                 | price                                  |
|-------------------------------------------|----------------------------|----------------------------|-----------------------|----------------------------------------|
| (square feet)                             | bedrooms                   | bathrooms                  | renovated             | (1000\$)                               |
| 523<br>645<br>708<br>1034<br>2290<br>2545 | 1<br>1<br>2<br>3<br>4<br>4 | 2<br>3<br>1<br>3<br>4<br>5 | N<br>N<br>N<br>Y<br>N | 100<br>150<br>200<br>300<br>350<br>440 |

Running AI system (e.g., websites / mobile app)

Homes with 3 bedrooms are more expensive than homes with 2 bedrooms of a similar size.

Newly renovated homes have a 15% premium.

## Machine learning vs. data science

Machine learning

Data science

"Field of study that gives computers the ability to learn without being explicitly programmed." Science of extracting knowledge and insights from data.

-Arthur Samuel (1959)



## AI has many tools

- Machine learning and data science
- -Deep learning / neural network
- -Other buzzwords: Unsupervised learning, graphical models, planning, knowledge graph, ...



What makes an AI company?

#### A lesson from the rise of the Internet

#### <u>Internet Era</u>

Shopping mall + website ≠ Internet company

- A/B testing
- Short iteration time
- Decision making pushed down to engineers and other specialized roles

#### AI era

Any company + deep learning ≠ AI company

- Strategic data acquisition
- Unified data warehouse
- Pervasive automation
- New roles (e.g., MLE) and division of labor

#### AI Transformation

- 1. Execute pilot projects to gain momentum
- 2. Build an in-house AI team
- 3. Provide broad AI training
- 4. Develop an AI strategy
- 5. Develop internal and external communication



What machine learning can and cannot do

## Supervised Learning

| Input (A)         | Output (B)             | Application         |
|-------------------|------------------------|---------------------|
| email             | spam? (0/1)            | spam filtering      |
| audio             | text transcripts       | speech recognition  |
| English           | Chinese                | machine translation |
| ad, user info     | click? (0/1)           | online advertising  |
| image, radar info | position of other cars | Self-driving car    |
| image of phone    | defect? (0/1)          | visual inspection   |

Anything you can do with 1 second of thought, we can probably now or soon automate.

# What machine learning today can and cannot do

The toy arrived two days late, so I wasn't able to give it to my niece for her birthday.

Can I return it?



"Refund request"



Refund/ Support/ Shipping



Oh, sorry to hear that.
I hope your niece had a good birthday.
Yes, we can help with....

## What happens if you try?

User email

Output (B)
2-3 paragraph response

1000 examples

"My box was damaged." — Thank you for your email.

"Where do I write a review?" — Thank you for your email.

"What's the return policy?" — Thank you for your email.

"When is my box arriving?" — Thank yes now your....

### What makes an ML problem easier

1. Learning a "simple" concept

2. Lots of data available



More examples of what machine learning can and cannot do

## Self-driving car

Can do





Cannot do







hitchhiker



bike turn left signal

- 1. Data
- 2. Need high accuracy

## X-ray diagnosis











Can do

Diagnose pneumonia from ~10,000 labeled images

Cannot do

Diagnose pneumonia from 10 images of a medical textbook chapter explaining pneumonia

### Strengths and weaknesses of machine learning

#### ML tends to work well when:

- 1. Learning a "simple" function
- 2. There is lots of data available

#### ML tends to work poorly when:

- 1. Learning complex functions from small amounts of data
- 2. It is asked to perform on new types of data that it learned from









Non-technical explanation of deep learning I (optional)

## Demand prediction



## Demand prediction

price

shipping cost

marketing

material

demand



## Demand prediction





Non-technical explanation of deep learning II (optional)

## Face recognition



| 30  | 32  | 22  | 12  | 10  | 10  | 12  | 33  | 35  | 30  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 12  | 11  | 12  | 234 | 170 | 176 | 13  | 15  | 12  | 12  |
| 234 | 222 | 220 | 230 | 200 | 222 | 230 | 234 | 56  | 78  |
| 190 | 220 | 186 | 112 | 110 | 110 | 112 | 180 | 30  | 32  |
| 49  | 250 | 250 | 250 | 4   | 2   | 254 | 200 | 44  | 6   |
| 55  | 250 | 250 | 250 | 3   | 1   | 250 | 245 | 25  | 3   |
| 189 | 195 | 199 | 150 | 110 | 110 | 182 | 190 | 199 | 55  |
| 200 | 202 | 218 | 222 | 203 | 200 | 200 | 208 | 215 | 222 |
| 219 | 215 | 220 | 220 | 222 | 214 | 215 | 210 | 220 | 220 |
| 220 | 220 | 220 | 220 | 221 | 220 | 221 | 220 | 220 | 222 |

## Face recognition

