Module 7

INDEPENDENT EVENTS

Definition 1: Events $E_1, E_2, ..., E_n$ are said to be

(a) pairwise independent if

$$P\left(E_i \bigcap E_j\right) = P(E_i)P(E_j), \forall i \neq j;$$

(b) mutually independent if $\forall k \in \{2, 3, ..., n\}$ and distinct $d_1, d_2, ..., d_k \in \{1, 2, ..., n\}$

$$P\left(E_{d_1} \bigcap E_{d_2} \bigcap \cdots \bigcap E_{d_k}\right) = P\left(E_{d_1}\right)\left(E_{d_2}\right) \cdots \left(E_{d_k}\right)$$

$$\left(\sum_{j=2}^{n} \binom{n}{j}\right) = 2^n - n - 1$$
 conditions).

• Mutual independence of events $E_1, \ldots, E_n \Rightarrow$ pairwise independence of events E_1, \ldots, E_n . Converse may not be true, i.e., in general

pairwise independence of events $E_1, \ldots, E_n \implies$ mutual independence of events E_1, \ldots, E_n ; as the following example illustrates.

Example 1:

• Let $\Omega = \{1, 2, 3, 4\}$ and let $P(\cdot)$ be such that

$$P(\{i\}) = \frac{1}{4}, \quad i = 1, 2, 3, 4.$$

• Let $E_1 = \{1, 4\}, E_2 = \{2, 4\}$ and $E_3 = \{3, 4\}$. Then

$$P(E_1) = P(E_2) = P(E_3) = \frac{1}{2}$$

$$P\left(E_1 \bigcap E_2\right) = P\left(E_1 \bigcap E_3\right) = P\left(E_2 \bigcap E_3\right) = P\left(\{4\}\right) = \frac{1}{4}$$

and

$$P(E_1 \cap E_2 \cap E_3) = P(\{4\}) = \frac{1}{4}.$$

• Clearly

$$P\left(E_{i}\bigcap E_{j}\right) = P\left(E_{i}\right)P\left(E_{j}\right) = \frac{1}{4} \quad \forall i \neq j,$$

implying that E_1 , E_2 and E_3 are pairwise independent.

However

$$P(E_1 \cap E_2 \cap E_3) = \frac{1}{4} \neq \frac{1}{8} = P(E_1) P(E_2) P(E_3),$$

implying that E_1 , E_2 and E_3 are not mutually independent.

Remark 1:

- (a) Events in any subcollection of independent events are independent.
- (b) Suppose that $E_1, E_2, ..., E_n$ are independent, $k \in \{1, 2, ..., n-1\}$ and $1 \le i_1 < i_2 < \cdots < i_k \le n-1$. Then

$$P\left(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{k}} \cap E_{n}^{c}\right) = P\left(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{k}}\right)$$

$$-P\left(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{k}} \cap E_{n}\right)$$

$$= \prod_{j=1}^{k} P\left(E_{i_{j}}\right) - \left(\prod_{j=1}^{k} P\left(E_{i_{j}}\right)\right) P\left(E_{n}\right)$$

$$= \prod_{j=1}^{k} P\left(E_{i_{j}}\right) \left[1 - P\left(E_{n}\right)\right]$$

$$= \left(\prod_{j=1}^{k} P\left(E_{i_{j}}\right)\right) P\left(E_{n}^{c}\right).$$

Thus

 E_1, E_2, \ldots, E_n are independent $\Longrightarrow E_{i_1}, \ldots, E_{i_k}, E_{i_{k+1}}^c, \ldots, E_{i_n}^c$ are independent, where $1 \le k \le n-1$ and $\{i_1, i_2, \ldots, i_n\} = \{1, 2, \ldots, n\}$.

Also E_1, E_2, \ldots, E_n are independent $\implies E_1^c, E_2^c, \ldots, E_n^c$ are independent.

- (c) When we say that two random experiments are performed independently what it means is that associated events are independent
- (d) Suppose that $P(E_1) > 0$. Then E_1 and E_2 are independent if, and only if,

$$P\left(E_{1} \bigcap E_{2}\right) = P\left(E_{1}\right) P\left(E_{2}\right)$$

$$\Leftrightarrow \frac{P(E_{1} \bigcap E_{2})}{P(E_{1})} = P(E_{2})$$

$$\Leftrightarrow P\left(E_{2}|E_{1}\right) = P\left(E_{2}\right)$$

 \Leftrightarrow Conditional probability of E_2 given E_1 is the same as unconditional probability of E_2 .

- (e) If $E_1, E_2, ..., E_n$ are independent events then
 - E_1^c and $E_2 \bigcup E_3^c \bigcup E_4$ are independent;
 - $E_1 \cup E_2^c$ and E_3^c and $E_4 \cap E_5^c$ are independent.

Let E_1 , E_2 and E_3 be independent events with $P(E_i) = \frac{1}{i+1}$, i = 1, 2, 3. Find the value of $P(E_1 \bigcup E_2^c \bigcup E_3)$.

Take Home Problems:

Let $\{E_n\}_{n\geq 1}$ be a sequence of independent events (i.e., event in any finite subcollection of $\{E_n\}_{n\geq 1}$ are independent).

(a) Show that

$$P\left(\bigcup_{i=1}^{n} E_i\right) \ge 1 - e^{-\sum_{i=1}^{n} P(E_i)}, \quad n = 1, 2, \dots$$

(b) If $\sum_{i=1}^{\infty} P(E_i) = \infty$, show that

$$P\left(\bigcap_{i=1}^{\infty} E_i^c\right) = 0.$$

Abstract of Next Module

- In many situations we may not be directly interested in the sample space Ω . Rather we may be interested in some numerical aspect of Ω , i.e., we may be interested in a function $X:\Omega\to\mathbb{R}$. Such functions are called random variables (r.v.s)
- We will formally define r.v. and study the properties of probability functions induced by them.

Thank you for your patience

