Метрические алгоритмы классификации. Метод ближайших соседей

Преподаватель: Рыжиков А.С.

НИУ ВШЭ, Москва, 2018

Содержание

- Метод ближайших соседей
 - Гипотеза компактности
 - Метод ближайших соседей
 - Окно Парсена и потенциальные функции
- Модификации
 - Поиск потенциальных функций
 - Отбор эталонов и отсеивание выбросов
 - Методы поиска ближайших соседей
 - Другие модификации scikit-learn
- Пакет scikit-learn

Гипотеза компактности

Задача классификации

Дано: X - объекты, Y - ответы (метки классов), $X^I = (x_i, y_y)_{i=1}^I$ - объекты обучающей выборки

Найти: f(x) для $Y \approx f(X)$

<u>Гипот</u>еза компактности

Идея: объекты одного класса более похожи друг на друга

Мера сходства

Вопрос: а что значит "похожи"?

Ответ: объекты x_i, x_i похожи, если расстояние $ho(x_i, x_i) o 0$

Гипотеза компактности. Иллюстрация

Примеры расстояний

- $\rho_{minkowski,p}(x_i,x_j) = \left(\sum_{f=1}^F (x_i^f x_j^f)^p\right)^{1/p}$, где F количество признаков (измерений) для объектов
- расстояние Махаланобиса $\rho_{\Sigma}(x_i,x_j) = \sqrt{(x_i-x_j)^T \Sigma (x_i-x_j)}$, где Σ симметричная положительно-определённая матрица
- расстояние Левенштейна между строковыми объектами редакторское расстояние. Пример: $\rho(\textit{hello}, \textit{hell}) = 1, \rho(\textit{hello}, \textit{ehllo}) = 1$
- расстояния на других категориальных признаках

Расстояния на категориальных признаках. Примеры

- $ho(x_i,x_j)=int(x_i!=x_j)$ индикатор совпадения
- $\rho(x_i, x_j) = int(x_i! = x_j) + int(x_i == x_j)p(x_j)$ сглаженный индикатор совпадения

Метод ближайших соседей

Для задачи бинарной классификации

 $f(x, X_{train}) = sign(\Sigma_{x_i \in X_K(x)} w(x_i, x) y_i))$, где $X_K(x)$ - K ближайших соседей для нового объекта х

Для многоклассовой классификации

 $f(x,X_{train}) = argmax_{y \in \mathbb{Y}}(\Sigma_{x_i \in X_K(x)}w(x_i,x)[y_i=y])) = argmax_{y \in \mathbb{Y}}\Gamma_y(x)$, где $X_K(x)$ - К ближайших соседей для нового объекта х

Метод ближайшего соседа

$$w(x,x_i)=[i=1]$$

Преимущества:

- простота реализации
- интерпретируемость, вывод на основе прецедентов (case-base reasoning, CBR)
- скорость обучения и применения (нужно считать 1 ближайшего)

Недостатки:

- неустойчивость к погрешностям (шум, выбросы)
- отсутствие настраиваемых параметров
- низкое качество классификации
- приходится хранить всю выборку целиком

Метод К ближайших соседей

$$w(x,x_i) = [i \le K]$$

Преимущества:

- менее чувствителен к шуму
- появился параметр К

Недостатки:

- работает чуть дольше (вместо поиска одного ближайшего соседа К)
- необходимость в поиске оптимального К
- ullet неоднозначность при классификации $\Gamma_{y1}(x) = \Gamma_{y2}(x)$
- разные соседи учитываются с одним весом

Метод К взвешенных ближайших соседей

$$w(x,x_i) = [i \le K]w_i$$

Преимущества:

• однозначность классификации

Недостатки:

• каким должно быть w_i ?

Метод окна Парсена

$$\mathrm{w}(\mathrm{x}_i,\mathrm{x})=\mathcal{K}(rac{
ho(\mathrm{x}_i,\mathrm{x})}{h})$$
, где \mathcal{K} - ядро, невозрастающее, положительное на $[0,1]$

Окно постоянной ширины h:

$$f(x, X_{train}, \mathbf{h}) = argmax_{y \in \mathbb{Y}} (\Sigma_{x_i \in X_K(x)} K(\frac{\rho(x_i, x)}{\mathbf{h}})[y_i = y]))$$

Окно переменной ширины:

$$f(x, X_{train}) = argmax_{y \in \mathbb{Y}} \left(\sum_{x_i \in X_K(x)} K\left(\frac{\rho(x_i, x)}{\rho(x_{K+1}, x)} \right) [y_i = y] \right)$$

Метод потенциальных функций

$$\mathsf{w}(\mathsf{x}_i,x) = \gamma(\mathsf{x}_i)\mathcal{K}(rac{
ho(\mathsf{x}_i,x)}{h_i})$$
, где $\gamma(\mathsf{x}_i) \leq 0$ - вес i'го соседа

Физическая аналогия

 $\gamma(x_i) \leq 0$ - величина заряда в точке x_i

 h_i - характерный радиус воздействия вокруг точки обучающей выборки x_i

 ${\cal K}$ - потенциал

 y_i - знак заряда (в случае бинарной классификации)

Алгоритм настройки весов объектов

```
Data: X^I - обучающая выборка Result: \gamma(x_i): \forall x_i \in X^I инициализация: \gamma(x_i) = \gamma_i = 0: \forall i \in X^I; while число ошибок на выборке Q(f,X^I) > \epsilon do выбрать объект x_i \in X^I; if f(x_i) \neq y_i then | \gamma_i = \gamma_i + 1 | end end
```

Algorithm 1: Простой алгоритм настройки весов объектов

Преимущества и недостатки метода потенциальных функций

Преимущества:

- простота реализации
- не надо хранить выборку (потоковый алгоритм обучения)
- ullet разреженность: все объекты с $\gamma_i=0$ можно выкинуть

Недостатки:

- медленная сходимость
- результат обучения сильно зависит от порядка просмотров объектов
- ullet слишком грубо настраиваются веса γ_i
- вообще не настраиваются параметры h_i
- неустойчивость к шуму. Переобучение

Понятие отступа

Вопрос

Как получить степень эталонности объекта для классификатора?

Отступ

 $\Gamma_y(x) = \Sigma_{x_i \in X_K(x)} w(x_i, x) [y_i = y]$ - степень уверенности классификатора в принадлежности x к классу у

 $M(x_i) = \Gamma_{y_i}(x_i) - max_{y \neq y_y} \Gamma_{y}(x_i)$ - Степень типичности объекта x_i для своего класса y_i (Margin, отступ)

Понятие отступа

Отбор эталонов

Задача: выбрать оптимальное подмножество эталонов $\Omega \subseteq X^I$ $f(x,\Omega) = argmax_{y \in \mathbb{Y}}(\sum_{x_i \in X_{w}(x)} w(x_i,x)[y_i = y]))$

Отличие от предыдущих решений: теперь K ближайших соседей ищется не по всей обучающей выборке, а только по необходимому и достаточному подмножеству эталонов Ω

Вопрос: как отбирать эталонные объекты?

Ответ: алгоритм STOLP

- Исключить выбросы и, возможно, пограничные объекты
- найти по одному эталону в каждом классе
- повторять, пока есть отрицательные отступы

Алгоритм STOLP

```
Data: X^{I} - обучающая выборка, \delta, I_{0}
Result: Множество опорных объектов \Omega \subseteq X^I
forall x_i \in X^I проверить, является ли x_i выбросом do
    if M(x_i, X^I) < \delta then
    X^{I} = X^{I} \setminus \{x_i\}
end
Инициализация: взять по одному эталону от каждого класса:
\Omega = \{\operatorname{argmax}_{x_i \in X_v^I} M(x_i, X^I) | y \in Y\}
while \Omega \neq X^I do
    выделить множество объектов с ошибкой f(x, \Omega):
      E = \{x_i \in X^I \setminus \Omega : M(x_i, \Omega) < 0\}
    if |E| < l_0 then
         break:
    end
    Присоединить к \Omega объект с наименьшим отступом:
    x_i = argmin_{x \in F} M(x, \Omega), \Omega = \Omega \cup \{x_i\}
end
```

Algorithm 2: STOLP

Алгоритм STOLP: преимущества и недостатки

Преимущества:

- устойчивость к выбросам
- меньший размер хранимых в памяти объектов
- большая скорость

Недостатки:

- жадность алгоритма (множество эталонов остаётся немножко избыточно)
- ullet необходимость задавать параметр δ

Методы поиска ближайших соседей

Bonpoc: какова алгоритмическая сложность поиска ближайшего соседа для выборки размера N размерности D (D признаков)?

Методы поиска ближайших соседей

Вопрос: какова алгоритмическая сложность поиска ближайшего соседа для выборки размера N размерности D (D признаков)? **Ответ:** O(ND)

Методы поиска ближайших соседей

- bruteforce
- KDTree
- BallTree

KDTree

BallTree

Алгоритмическая сложность

- bruteforce гарантированно O(DN)
- ullet KDTree O(Dlog(N)) при малом D, O(DN) иначе
- BallTree O(Dlog(N)) гарантированно

Другие модификации scikit-learn

- RadiusNeighboursClassifier не К ближайших соседей, а из некоторого радиуса
- NearestCentroidClassifier не К ближайших соседей, а ближайший центроид

Пакет scikit-learn. Параметры

https://scikit-

learn.org/stable/modules/generated/sklearn.neighbors. KNeighbors Classifier.html