Rational decisions

Chapter 16

Outline

- Rational preferences
- ♦ Utilities
- ♦ Money
- Multiattribute utilities
- ♦ Decision networks
- ♦ Value of information

Preferences

with uncertain prizes An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations

Notation:

$$A \succ B$$

A preferred to B

$$\begin{array}{c} A \sim B \\ A \gtrsim B \end{array}$$

indifference between \boldsymbol{A} and \boldsymbol{B}

$$A \gtrsim B$$

B not preferred to A

Rational preferences

Idea: preferences of a rational agent must obey constraints

Rational preferences ⇒

behavior describable as maximization of expected utility

Constraints

Orderability
$$(A \succ B) \lor (B \succ A) \lor (A \sim B)$$

$$\frac{\overline{\mathsf{Transitivity}}}{(A \succ B) \land (B \succ C) \ \Rightarrow \ (A \succ C)}$$

$$\frac{\text{Continuity}}{A \succ B \succ C} \Rightarrow \exists p \ [p, A; \ 1-p, C] \sim B$$

Substitutability
$$A \sim B \Rightarrow [p,A;\ 1-p,C] \sim [p,B;1-p,C]$$
 Monotonicity

Monotonicity

$$A \succ B \Rightarrow (p \ge q \Leftrightarrow [p, A; 1-p, B] \succsim [q, A; 1-q, B])$$

Rational preferences contd.

Violating the constraints leads to self-evident irrationality

give away all its money For example: an agent with intransitive preferences can be induced to

If $B \succ C$, then an agent who has C would pay (say) 1 cent to get B

If $A \succ B$, then an agent who has B would pay (say) 1 cent to get A

If $C \succ A$, then an agent who has A would pay (say) 1 cent to get C

Maximizing expected utility

there exists a real-valued function U such that Given preferences satisfying the constraints <u>Theorem</u> (Ramsey, 1931; von Neumann and Morgenstern, 1944):

$$U(A) \ge U(B) \Leftrightarrow A \gtrsim B$$

 $U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i U(S_i)$

MEU principle:

Choose the action that maximizes expected utility

without ever representing or manipulating utilities and probabilities Note: an agent can be entirely rational (consistent with MEU)

E.g., a lookup table for perfect tictactoe

Utilities

Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities: adjust lottery probability p until $A \sim L_p$ compare a given state A to a standard lottery L_p that has "worst possible catastrophe" u_{\perp} with probability (1-p)"best possible prize" $u_{ op}$ with probability p

pay \$30 ? 0.999999 continue as before instant death

Utility scales

Normalized utilities: $u_{T} = 1.0$, $u_{\perp} = 0.0$

Micromorts: one-millionth chance of death useful for Russian roulette, paying to reduce product risks, etc.

QALYs: quality-adjusted life years useful for medical decisions involving substantial risk

Note: behavior is invariant w.r.t. +ve linear transformation

$$U'(x) = k_1 U(x) + k_2$$
 where $k_1 > 0$

ordinal utility can be determined, i.e., total order on prizes With deterministic prizes only (no lottery choices), only

Money

Money does <u>not</u> behave as a utility function

usually U(L) < U(EMV(L)), i.e., people are <u>risk-averse</u> Given a lottery L with expected monetary value EMV(L),

Utility curve: for what probability p am I indifferent between a fixed prize x and a lottery $[p,\$M;\ (1-p),\$0]$ for large M?

Typical empirical data, extrapolated with risk-prone behavior:

Student group utility

For each x, adjust p until half the class votes for lottery (M=10,000)

Decision networks

to enable rational decision making Add action nodes and utility nodes to belief networks

Algorithm:

For each value of action node Return MEU action compute expected value of utility node given action, evidence

Multiattribute utility

E.g., what is U(Deaths, Noise, Cost)? How can we handle utility functions of many variables $X_1 \dots X_n$?

preterence behaviour? How can complex utility functions be assessed from

complete identification of $U(x_1,\ldots,x_n)$ Idea 1: identify conditions under which decisions can be made without

and derive consequent canonical forms for $U(x_1,\ldots,x_n)$ Idea 2: identify various types of independence in preferences

Strict dominance

Typically define attributes such that U is $\operatorname{\underline{monotonic}}$ in each

<u>Strict dominance</u>: choice B strictly dominates choice A iff

 $\forall i \ X_i(B) \geq X_i(A)$ (and hence $U(B) \geq U(A)$)

Strict dominance seldom holds in practice

Stochastic dominance

Distribution p_1 stochastically dominates distribution p_2 iff $\forall t \int_{-\infty}^t p_1(x) dx \leq \int_{-\infty}^t p_2(t) dt$

stochastically dominates A_2 with outcome distribution p_2 : If U is monotonic in x, then A_1 with outcome distribution p_1 $\int_{-\infty}^{\infty} p_1(x)U(x)dx \ge \int_{-\infty}^{\infty} p_2(x)U(x)dx$

Multiattribute case: stochastic dominance on all attributes \Rightarrow optimal

Stochastic dominance contd.

exact distributions using qualitative reasoning Stochastic dominance can often be determined without

E.q., construction cost increases with distance from city S_2 is further from the city than S_1 S_1 stochastically dominates S_2 on cost

E.g., injury increases with collision speed

Can annotate belief networks with stochastic dominance information: For every value z of Y's other parents Z $X \stackrel{+}{\longrightarrow} Y$ (X positively influences Y) means that $\forall x_1, x_2 \ x_1 \geq x_2 \Rightarrow \mathbf{P}(Y|x_1, \mathbf{z})$ stochastically dominates $\mathbf{P}(Y|x_2, \mathbf{z})$

Example: car insurance

Which arcs are positive or negative influences?

Preference structure: Deterministic

 X_1 and X_2 preferentially independent of X_3 iff does not depend on x_3 preference between $\langle x_1, x_2, x_3 \rangle$ and $\langle x_1', x_2', x_3 \rangle$

E.g., $\langle Noise, Cost, Safety \rangle$: (20,000 suffer, \$4.6 billion, 0.06 deaths/mpm) vs. (70,000 suffer, \$4.2 billion, 0.06 deaths/mpm)

complement, then every subset of attributes is P.I of its complement: mutual P.I. Theorem (Leontief, 1947): if every pair of attributes is P.I. of its

<u>Theorem</u> (Debreu, 1960): mutual P.I. \Rightarrow ∃ <u>additive</u> value function:

$$V(S) = \sum_{i} V_i(X_i(S))$$

Hence assess n single-attribute functions; often a good approximation

Preference structure: Stochastic

Need to consider preferences over lotteries:

 ${f X}$ is utility-independent of ${f Y}$ iff preferences over lotteries ${f X}$ do not depend on ${f y}$

Mutual U.I.: each subset is U.I of its complement

 $\Rightarrow \exists \underline{\mathsf{multiplicative}} \mathsf{utility} \mathsf{function}$:

$$U = k_1 U_1 + k_2 U_2 + k_3 U_3 + k_1 k_2 U_1 U_2 + k_2 k_3 U_2 U_3 + k_3 k_1 U_3 U_1 + k_1 k_2 k_3 U_1 U_2 U_3$$

tests to identify various canonical families of utility functions Routine procedures and software packages for generating preference

Value of information

Can be done directly from decision network Idea: compute value of acquiring each possible piece of evidence

Example: buying oil drilling rights Consultant offers accurate survey of A. Fair price? Prior probabilities 0.5 each, mutually exclusive Current price of each block is k/2Two blocks A and B, exactly one has oil, worth k

Survey may say "oil in A" or "no oil in A", prob. 0.5 each Solution: compute expected value of information $= (0.5 \times k/2) + (0.5 \times k/2) - 0 = k/2$ $= [0.5 \times \text{ value of "buy A" given "oil in A"}]$ = expected value of best action given the information $+~0.5 \times \text{ value of "buy B" given "no oil in A"}$ minus expected value of best action without information

General formula

Possible action outcomes S_i , potential new evidence E_j Current evidence E, current best action α

$$EU(\alpha|E) = \max_{a} \sum_{i} U(S_i) P(S_i|E,a)$$

Suppose we knew $E_j = e_{jk}$, then we would choose $\alpha_{e_{jk}}$ s.t.

$$EU(\alpha_{e_{jk}}|E, E_j = e_{jk}) = \max_{a} \sum_{i} U(S_i) P(S_i|E, a, E_j = e_{jk})$$

 E_j is a random variable whose value is $\it currently$ unknown must compute expected gain over all possible values:

$$VPI_{E}(E_{j}) = (\sum_{k} P(E_{j} = e_{jk}|E)EU(\alpha_{e_{jk}}|E, E_{j} = e_{jk})) - EU(\alpha|E)$$

(VPI = value of perfect information)

Properties of VPI

Nonnegative—in expectation, not post hoc

$$\forall j, E \ VPI_E(E_j) \geq 0$$

Nonadditive—consider, e.g., obtaining E_j twice

$$VPI_E(E_j, E_k) \neq VPI_E(E_j) + VPI_E(E_k)$$

Order-independent

$$VPI_{E}(E_{j}, E_{k}) = VPI_{E}(E_{j}) + VPI_{E, E_{j}}(E_{k}) = VPI_{E}(E_{k}) + VPI_{E, E_{k}}(E_{j})$$

maximizing VPI for each to select one is not always optimal Note: when more than one piece of evidence can be gathered, evidence-gathering becomes a sequential decision problem

ualitative behaviors

- a) Choice is obvious, information worth little
- Choice is nonobvious, information worth a lot
- Choice is nonobvious, information worth little

