

Lecture 1

Key Management (Public Key)

Lecture 2

Finite Fields and ElGamal Encryption

Workshop 8: Workshop based on Lectures in Week 7

Quiz 8

ElGamal Encryption (Public Key)

COMP90043 Lecture 1

Public Key Cryptography: Diffie-Hellman and RSA

Lecture 2

- 1.1 ElGamal Encryption
 - DH Protocol to Encryption
 - Basic Ideas
 - Example
 - Security Properties.

Rcap: DLOG: An example

Example of a Cyclic group modulo p = 11

g: generator = 2 Order(size) of G = 10

What power of 2 is 3?

9

10

Recap: Example mod 11

X	2 ^x mod 11	3 ^x mod 11
0	1	1
1	2	3
3	4	9
3	8	5
4	5	4
5	10 Or -1	1
6	9	3
7	7	9
8	3	5
9	6	4
10	1	1
22/09/2020	2	3 ©

- 2 is a primitive element.
- 3 is not a primitive element
- Given any power of 2, the exponent can be obtained from reading the corresponding index in the table
- In practice a large modulus is used and hence finding the exponent is difficult. This is one of the important one way functions used in modern cryptography.
- In general finding primitive element is also an interesting problem. We use the groups where we can easily find generating elements.

University of Melbourne, 2020 Udaya Parampalli

Recap: Diffie-Hellman Protocol

Public Parameters: g: generator, order of the cyclic group: (p-1), prime: p

- Alice
- Choose Na=2
- $g^{Na} = 2^2 = 4 = Ma$

Bob

Choose Nb=6

 $g^{Nb} = 2^6 = 9 = Mb$

- Compute
- $K_{ab} = Mb^{Na}$
- $=9^2=4$
- - $K_{ab} = K_{ba} = 4$

Compute

$$K_{ba} = Ma^{Nb} = 4^6 = 4$$

ElGamal Cryptosystem

- Discovered by ElGamal in 1985.
- It directly uses Diffie-Hellman (DH) Protocol.
- What are the hard problems on which DH Protocol relies?
 - Discrete Logarithm Problem (DLP)
 - Computational DH Problem.
- The goal here is to motivate how ElGamal came up with the scheme, nearly after eight years of the discovery of DH protocol.
- What are the key features of this algorithm?

THE UNIVERSITY OF MELBOURNE

Key Features

• DH protocol can be formulated over any cyclic group where computing discrete logarithm over the group is hard.

- What is the main objective?
 - Two users connected over insecure channel arrive at a common secret by using only public parameters.
 - In our case, they arrive at $g^{(ab)}$, g is a generator of the group; a, b are random secrets chosen by the participants respectively.

Cyclic Groups

- Z_n : Integers modulo n, n is a positive integer, under multiplication
- Z_p : Integer modulo p, p is a prime number, under multiplication

- Residues of Polynomials over Z_p.
- Elliptic Curves over Z_p.
- Some examples of cyclic groups present inside a bigger groups:
- C_8 : {2,4,8,16,15,13,9,1} of order 8, 2 is the generator, operation mod 17,
- C_{30} : {2,4,8,16,1} of order 5, 2 is the generator, operation mod 31,

Order of Cyclic Groups

- What is the maximum size of cyclic groups obtained from $Z_{p,}$, p, a prime number?
- (p-1)
- What is the maximum size of cyclic groups obtained from Z_n ?
- $\phi(n) = \text{Numbers of integers} < n \text{ but relatively prime to } n.$
- What is the maximum size of cyclic groups obtained from $Z_p[x]$ mod m(x), deg(m(x)) = k?
- $P^{k}-1$.
- In fact, we can have groups whose size divides the sizes mentioned above.

A variation of Diffie-Hellman protocol

- I will use the notations as in the textbook, so that it can in your study.
- Let us now assume that one of the users in the DH protocol is fixed in advance. Assume computations mod q, q is a prime. "a": generator of the group.
- Alice generates the key in advance
 - chooses a secret key (number): $1 < x_A < q-1$
 - compute her **public key**: $y_A = a^{x_A} \mod q$
- •
- Bob knows this public key in advance.

A variation of DH

• Bob

- Choose a random k and compute a^k mod q
- Send a mod q to Alice
- Since y_A is available, compute the DH common
- $\text{key } y_{A}^{k} = a^{k x_{A}}$
- Hide the message in the common key and send it to Alice
- Bob to Alice: $C = M a^{k x_A}$
- Alice knows her secret x_A
- Obtain the common key in the cipher $(a^k)^{x_A} = a^{k x_A}$
- Recover Message $M = C/a^{k-x_A}$

The scheme ElGamal Cryptography

- Now we give the actual ElGamal Public-key cryptosystem.
- Main tool is exponentiation in a cyclic group where the DLOG is hard.
- As you will see, the security is directly related to difficulty of computing discrete logarithms.
- As before, each user (eg. Alice) generates their key
 - chooses a secret key (number): $1 < x_{\Delta} < q-1$
 - compute their **public key**: $y_A = a^{x_A} \mod q$
- NOTE: a is the generator here.

Encryption and Decryption

- Another user (eg Bob) can encrypt a message to send to A by computing the steps below:
 - Represent message M in range 0 <= M <= q−1
 - Chose random integer k with 1 \leq k \leq q-1
 - Compute one-time key $K = y_A^k \mod q$
 - Encrypt M as a pair of integers (C_1, C_2) where
 - $C_1 = a^k \mod q$; $C_2 = KM \mod q$
- Alice can then perform decryption as follows:
 - Recovering the key K as K = $C_1^{\times A}$ mod q
 - Compute M as M = C_2 K⁻¹ mod q
- Note that k needs to be changed for every new message, they need to be unique, why?
- You will see in next slide, the consequences.

Consequences

- Let $(M_1, C_1 = [C_{11}, C_{12}])$ and
- $(M_2, C_2 = [C_{21}, C_{22}])$ be two message and ciphertext pairs using the same randomization parameter k.
- What does this imply for C₁ and C₂?
 C₁₁ = a^k mod q = C₂₁ = a^k mod q
- Notice that $C_{11} = C_{21}$
- So, if Adversary knows M₁, he can then recover M₂ thus, the scheme is insecure. Hence k should be unique for all encryptions. In general a random source is required to create unique k.

THE UNIVERSITY OF MELBOURNE

Week 8

Lecture 1

Key Management (Public Key)

Lecture 2

Finite Fields and ElGamal Encryption

Workshop 8: Workshop based on Lectures in Week 7

Quiz 8