Алгоритмы и структуры данных-1 SET 1. Задача A4.

Осень 2024. Клычков М. Д.

```
1 algorithm1:
2    c = 0
3    ind = -1
4
5    for i = 0 to n
6        c1 = 0
7        for j = 0 to n
8             if A[i] = A[j]
9             c1 = c1 + 1
10        if c1 > c
11             c = c1
12             ind = i
13
14    if c > n / 2 return A[ind]
```

```
1 algorithm2:
2     c = 1, ind = 0
3
4     for i = 1 to n
5         if A[ind] = A[i]
6         c = c + 1
7         else
8               c = c - 1
9
10         if c = 0
11               ind = i
12               c = 1
13
14     return A[ind]
```

Пункт 1. Кратко поясним, что делает каждый из приведенных алгоритмов:

- algorithm1: Результат работы алгоритма элемент массива, который встречается больше, чем $\lfloor \frac{n}{2} \rfloor$ раз. Из приведенного псевдокода нельзя сделать вывод о том, что будем выведено, если такого элемента нет.
- algorithm2: Тяжело описать, что это «чудо» делает и к какому результату приведет... Фиксируется элемент (изначально это A_0), затем подсчитывается таких же элементов, причем, если встречается отличающийся элемент, то счетчик уменьшается на 1. Это можно представить графиком (по оси x количество обработанных на данный момент элементов, y значение счетчика) (рис. 1).

Рис. 1: Графическая интерпретация

После того как линия на графике достигает нуля, счетчик обнуляется и связывается с новым элементом массива. Возвращается элемент, с которым в последний раз был связан счетчик.

• algorithm3: Этот алгоритм делает то же самое, что и algorithm1, однако не возвращает результат в том случае, если искомый элемент максимальный (стоит в конце отсортированного массива).

Можно предположить, что требуется найти элемент, который повторяется больше n/2 раз, но никакой из них не реализован корректно, везде есть свои недостатки.

Приведем примеры:

1. Результаты работы алгоритмов совпадают. Пусть $A = \{1, 2, 1, 3, 1, 1\}$. Ожидаем резуль-

Приведем частичную трассировку для каждого из алгоритма:

${\tt algorithm1:}$				
c	ind	i	c_1	j
0	-1			
0	-1	0	1	0
0	-1	0	1	1
4	0	0	4	6
4	0	1	0	0
4	0	1	1	6
4	0	5	4	6
4	0	6		

$d \mid i \mid$
)
1
2
3
4
: 5
6

algorithm3:					
	c	i			
	1				
	2	1			
	3	2			
	4	3			

Действительно, результат работы каждого алгоритма -1.

2. $Результаты работы алгоритмов отличаются. Пусть <math>A = \{1,3\}$. По сути, должен вернуться «нулевой» результат, так как искомого элемента в массиве нет.

algorithm1:				
c	ind	i	c_1	j
0	-1			
0	-1	0	1	0
0	-1	0	1	1
1	0	0	1	2
1	0	1	0	0
1	0	1	1	1
1	0	1	1	2
1	0	2		

c	ind	i
1	0	
1	1	1
1	1	2

algorithm3:

 5		
c	i	
1		
1	1	
1	2	

Пункт 2. Пусть $T_1(n)$, $T_2(n)$, $T_3(n)$ — функции временной сложности для алгоритмов algorithm1, algorithm2 и algorithm3 соответственно.

Оценим приблизительно эти функции.

- 1. В algorithm1 используется двойной цикл (вложенный), каждый из которых проходит от 0 до n, следовательно, $T_1(n) = O(n^2)$.
- 2. В algorithm2 используется один цикл от 1 до n, следовательно, $T_2(n) = O(n)$.
- 3. В algorithm2 используется сортировка и один цикл от 1 до n. Будем считать, что используется одна из сортировок, работающих за $O(n \log n)$. Тогда, $T_3(n) = O(n \log n) + O(n) =$ $O(n \log n)$.

Пункт 3. Конечно, можно придираться к тому, что некоторые функции не возвращают значения, но будем считать, что там просто возвращается Null, прямо как на языке Python.

1. В алгоритме algorithm2 можно определенно не хватает существенной части. После выполненного цикла нельзя утверждать, что элемент A_{ind} является искомым, можно лишь считать, что либо результат не определен (Null подобно algorithm1), либо это действительно верный ответ. Другими словами, элемент A_{ind} — единственный претендент на ответ. Оставшуюся проверку можно провести вновь за линейное время, например, так:

```
cur = 0
for i = 0 to n
  if A[i] = A[ind]
      cur = cur + 1
if cur > n / 2
  return cur
```

Рис. 2: algorithm2 improve

Тогда, чтобы получить работающий код, нужно убрать 14 строчку и добавить вышеуказанную проверку.

2. В алгоритме algorithm3 нужно дописать следующие строки в конце приведенного, чтобы обрабатывать те повторяющиеся элементы, которые стоят в хвосте отсортированного массива.

```
if c > n / 2
  return A[n - 1]
```

Рис. 3: algorithm3 improve

Пункт 4. Так как в algorithm1 никакие улучшения не предлагались, оценим только функции временной сложности улучшенных алгоритмов algorithm2 и algorithm3: $T_2'(n)$ и $T_3'(n)$ соответственно.

$$T_2'(n) = T_2(n) + O(n) = O(n) + O(n) = O(n)$$

$$T_3'(n) = T_3(n) + O(1) = O(n \log n) + O(1) = O(n \log n)$$