

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М.В. Ломоносова

Суперкомпьютерное моделирование и технологии

Отчет по заданию №4 «Задача для трёхмерного гиперболического уравнения в прямоугольном параллелепипеде»

Вариант №1

студент 628 группы Гугучкин Егор Павлович

1. Математическая постановка задачи

В трехмерной замкнутой области

$$\Omega = [0 \le x \le L_x] \times [0 \le y \le L_y] \times [0 \le z \le L_z]$$

для $0 \le t \le T$ требуется найти решение u(x, y, z, t) уравнения в

частных производных $\frac{\partial^2 u}{\partial t^2} = \Delta u$ с начальными условиями

$$u(t = 0) = \phi(x, y, z)$$

$$\frac{\partial u}{\partial t}(t = 0) = 0$$

$$u(0, y, z, t) = 0$$

$$u(L_x, y, z, t) = 0$$

$$u(x, 0, z, t) = 0$$

$$u(x, L_y, z, t) = 0$$

$$u(x, y, 0, t) = u(x, y, L_z, t)$$

$$u_z(x, y, 0, t) = u_z(x, y, L_z, t)$$

2. Численный метод решения задачи

Введем на
$$\Omega$$
 сетку $\omega_{h\tau}=\overline{\omega_h}\,\times\,\omega_{\tau}$, где $T=T_0$,
$$L_x=L_{x0}, L_y=L_{y0}, L_z=L_{z0},$$
 $\overline{\omega_h}=\left\{\left(x_i=ih_x,y_j=jh_y,z_k=kh_z\right),i,j,k=\overline{0,N},h_xN=L_x,h_yN\right.$ $=L_y,h_zN=L_z\right\},$ $\omega_{\tau}=\left\{t_n=n\tau,n=\overline{0,K},\tau K=T\right\}$

Через ω_h обозначим множество внутренних, а через γ_h – множество граничных узлов сетки $\overline{\omega_h}$.

Для аппроксимации исходного уравнения воспользуемся следующей системой уравнений:

$$\frac{u_{i,j,k}^{n+1} - 2u_{i,j,k}^n + u_{i,j,k}^{n-1}}{\tau^2} = \Delta_h u^n, (x_i, y_i, z_i) \in \omega_h, n = \overline{1, K - 1}$$

Здесь Δ_h — семиточечный разностный аналог оператора Лапласа:

$$\Delta_h u^n = \frac{u_{i-1,j,k}^n - 2u_{i,j,k}^n + u_{i+1,j,k}^n}{h^2} + \frac{u_{i,j-1,k}^n - 2u_{i,j,k}^n + u_{i,j+1,k}^n}{h^2} + \frac{u_{i,j,k-1}^n - 2u_{i,j,k}^n + u_{i,j,k+1}^n}{h^2}$$

Приведенная выше разностная схема является явной — значения $u_{i,j,k}^{n+1}$ на (n+1)-ом шаге можно явным образом выразить через значения на предыдущих слоях.

Для начала счета должны быть заданы значения:

$$u_{i,j,k}^{0}, u_{i,j,k}^{1}, (x_{i}, y_{i}, z_{i}) \in \omega_{h}:$$

$$u_{i,j,k}^{0} = \phi(x_{i}, y_{i}, z_{i}), (x_{i}, y_{i}, z_{i}) \in \omega_{h}$$

$$u_{i,j,k}^{1} = u_{i,j,k}^{0} + \frac{\tau^{2}}{2} \Delta_{h} \phi(x_{i}, y_{i}, z_{i})$$

$$u_{i,j,0}^{n+1} = u_{i,j,N}^{n+1}$$

$$u_{i,j,1}^{n+1} = u_{i,j,N+1}^{n+1}$$

$$i, j, k = \overline{0, N}$$

3. Программная реализация

Реализовано две версии программы: последовательная и параллельная с использованием MPI +OpenMP. В качестве входных аргументов задаются следующие переменные: N — количество точек сетки вдоль одной оси, L — длина сетки вдоль одной оси, *filename* — имя выходного файла. На выходе программа выводит N, число MPI-процессов и погрешность полученного решения.

Параллельная версия программы выполнена следующим образом:

- 1. Сетка разделяется на *size* блоков, где *size* число MPI- процессов. Каждому процессу выделяется свой блок.
- 2. Процессы находят ранги процессов-соседей и вычисляют координаты границ блока.
- 3. Процессы вычисляют u_0 и u_1 для своего блока.
- 4. Процессы вычисляют u_i и обмениваются граничными значениями.
- 5. Итоговая погрешность редуцируется с помощью оператора MPI Reduce.

4. Результаты расчетов

MPI программа; L = 1; сравнение с 1-процессной последовательной программой

Число MPI- процессов N_p	Число точек сетки N^3	Время решения Т	Ускорение <i>S</i>	Погрешность σ
1	256 ³	10,281	1,000	5,96E-08
20	256 ³	13,822	0,744	5,96E-08
40	256 ³	7,086	1,451	5,96E-08
1	512 ³	74,846	1,000	3,96E-09
20	512 ³	109,696	0,682	3,96E-09
40	512 ³	55,687	1,344	3,96E-09
1	768 ³	259,663	1,000	4,53E-10
20	768 ³	363.508	0,714	4,53E-10
40	768 ³	185,656	1,399	4,53E-10

МРІ программа; L = π; сравнение с 1-процессной последовательной программой

Число MPI- процессов N_p	Число точек сетки <i>N</i> ³	Время решения Т	Ускорение <i>S</i>	Погрешность σ
1	256 ³	10,332	1,000	7,38E-09
20	256 ³	13,229	0,781	7,38E-09
40	256 ³	7,078	1,460	7,38E-09
1	512 ³	74,543	1,000	1,73E-09
20	512 ³	103,890	0,718	1,73E-09
40	512 ³	55,214	1,350	1,73E-09
1	768 ³	290,853	1,000	6,87E-10
20	768 ³	361,198	0,805	6,87E-10
40	768 ³	184,890	1,573	6,87E-10

MPI+OpenMP (128 нитей) программа; L = 1; сравнение с 1процессной последовательной программой

Число MPI- процессов N_p	Число точек сетки <i>N</i> ³	Время решения Т	Ускорение <i>S</i>	Погрешность σ
1	256 ³	10,281	1,000	5,96E-08
20	256 ³	1,576	6,522	5,96E-08
40	256 ³	1,085	9,472	5,96E-08
1	512 ³	74,846	1,000	3,96E-09
20	512 ³	10,109	7,404	3,96E-09
40	512 ³	4,957	15,099	3,96E-09
1	768 ³	259,663	1,000	4,53E-10
20	768 ³	24,566	10,570	4,53E-10
40	768 ³	17,679	14,688	4,53E-10

MPI+OpenMP (128 нитей) программа; $L=\pi$; сравнение с 1-процессной последовательной программой

Число MPI-	Число точек	Время решения Т	Ускорение <i>S</i>	Погрешность σ
процессов N_p	сетки <i>N</i> ³			
1	256 ³	10,332	1,000	7,38E-09
20	256 ³	1,503	6,873	7,38E-09
40	256 ³	1,085	9,526	7,38E-09
1	512 ³	74,543	1,000	1,73E-09
20	512 ³	9,773	7,627	1,73E-09
40	512 ³	4,812	15,491	1,73E-09
1	768 ³	290,853	1,000	6,87E-10
20	768 ³	24,148	12,045	6,87E-10
40	768 ³	16,344	17,795	6,87E-10

MPI+CUDA (1 GPU) программа; L = 1; сравнение с 1-процессной последовательной программой

Число MPI- процессов N_p	Число точек сетки N^3	Время решения Т	Ускорение <i>S</i>	Погрешность σ
1	256 ³	10,281	1,000	5,96E-08
1+GPU	256 ³	1,369	7,511	5,96E-08
2+GPU	256 ³	4,840	2,124	5,96E-08
1+GPU (3D)	256 ³	1,117	9,202	6,02E-08
1	512 ³	74,846	1,000	3,96E-09
1+GPU	512 ³	17,197	4,352	3,96E-09
2+GPU	512 ³	13,623	5,494	3,96E-09
1+GPU (3D)	512 ³	6,228	12,018	4,03E-09
1	768 ³	259,663	1,000	4,53E-10
1+GPU	768 ³	22,749	11,414	4,53E-10
2+GPU	768 ³	11,582	22,420	4,53E-10
1+GPU (3D)	768 ³	22,977	11,301	4,79E-10

где 1 — последовательная программа, 1 + GPU, 2 + GPU — программы, использующие одномерную сетку, 1 + GPU (3D) - программа, использующая трехмерную сетку.

MPI+CUDA (1 GPU) программа; $L = \pi$; сравнение с 1-процессной последовательной программой

Число MPI- процессов N_p	Число точек сетки <i>N</i> ³	Время решения Т	Ускорение <i>S</i>	Погрешность σ
1	256 ³	10,281	1,000	7,38E-09
1+GPU	256 ³	0,680	15,124	7,38E-09
2+GPU	256 ³	5,132	2,004	7,38E-09
1+GPU (3D)	256 ³	1,094	9,400	7,44E-09
1	512 ³	74,846	1,000	1,73E-09
1+GPU	512 ³	17,222	4,346	1,73E-09
2+GPU	512 ³	13,856	5,402	1,73E-09
1+GPU (3D)	512 ³	6,210	12,053	1,74E-09
1	768 ³	290,853	1,000	4,53E-10
1+GPU	768 ³	22,751	12,784	6,87E-10
2+GPU	768 ³	11,540	25,205	6,87E-10
1+GPU (3D)	768 ³	19,861	13,074	6,89E-10

где 1 — последовательная программа, 1 + GPU, 2 + GPU — программы, использующие одномерную сетку, 1 + GPU (3D) - программа, использующая трехмерную сетку.

Сравнение времени работы различных программ с сеткой размером 512^3

	Число МРІ-	Время решения Т	Время решения Т
	процессов N_p	при L = 1	при L = π
Последовательная	1	74,846	74,543
MPI	20	109,696	103,890
1711 1	40	55,687	55,214
MPI+OpenMP	20	10,109	9,773
WIFT Openivir	40	4,957	4,812
	1 + GPU	17,197	17,222
MPI+CUDA	1 + GPU (3D)	6,228	6,210
	2 + GPU	13,623	13,856

где 1 + GPU, 2 + GPU - программы, использующие одномерную сетку, 1 + GPU (3D) - программа, использующая трехмерную сетку.

Сравнение времени работы различных программ с сеткой размером 768³

	Число МРІ-	Время решения Т	Время решения Т
	процессов N_p	при L = 1	при $L = \pi$
Последовательная	1	259,663	290,853
MPI	20	363.508	361,198
1711 1	40	185,656	184,890
MDI On an MD	20	24,566	24,148
MPI+OpenMP	40	17,679	16,344
	1 + 1 GPU	22,7487	22,7507
MPI+CUDA	1 + 1 GPU (3D)	22,9767	19,8614
	2 + GPU	11,582	11,540

где 1 + GPU, 2 + GPU - программы, использующие одномерную сетку, <math>1 + GPU (3D) - программа, использующая трехмерную сетку.

5. Выводы

По полученным результатам, можно сделать вывод о том, что полученная реализация имеет высокий потенциал для распараллеливания.

Хочется отметить, что для MPI версии стоит использовать более 20-MPI процессов, из-за затрат на пересылку между процессами.

По результатам работы реализаций с помощью MPI-OpenMP (128 нитей) и MPI-CUDA также можно сделать выводы о высоком потенциале распараллеливания.