Recursive Definitions Generating Functions More Examples

2ecall

Generating Functions

- For $f: \mathbb{N} \to \mathbb{R}$, we defined $G_f(X) \triangleq \Sigma_{k \geq 0} f(k) \cdot X^k$
- The extended binomial theorem

e.g.,
$$G_f(X) = 1/(1-aX)^b$$
 for $f(k) = (-a)^k \cdot {b \choose k}$
$$= {b+k-1 \choose k} \cdot a^k, \text{ for } b \in \mathbb{Z}^+$$

- **Combinations**: e.g., $G_h(X) = G_f(X) + G_g(X)$, where h(k)=f(k)+g(k) $G_g(X) = \alpha X G_f(X)$, where g(0) = 0, $g(k) = \alpha f(k-1) ∀ k > 0$ $G_h(X) = (1+\alpha X) G_f(X)$, where h(0)=f(0), $h(k) = f(k) + \alpha f(k-1) ∀ k > 0$
- From recurrence relations
 - e.g., If f(0) = c. f(1) = d. $f(n) = a \cdot f(n-1) + b \cdot f(n-2)$, $\forall n ≥ 2$ Ø $G_f(X) = (c + (d-ac)X)/(1-aX-bX^2)$
 - e.g., If $g(k) = \sum_{j=0 \text{ to } k} f(j)$ • $G_q(X) = G_f(X)/(1-X)$

Generating Functions For Series Summation

- e.g., $g(k) = \sum_{j=0 \text{ to } k} (j+1)^2$
- $G_g(X) = G_f(X)/(1-X)$ where $f(j) = (j+1)^2$
- Consider $G(X) = 1 + X + X^2 + ... = 1/(1-X)$
 - $G'(X) = 1 + 2 \cdot X + 3 \cdot X^2 + ... = 1/(1-X)^2$

• Let $H(X) = X G(X) = X + 2 \cdot X^2 + 3 \cdot X^3 + ... = X/(1-X)^2$

So H'(X) = 1 +
$$2^2 \cdot X + 3^2 \cdot X^2 + ... = 1/(1-X)^2 + 2X/(1-X)^3$$

= $(1+X)/(1-X)^3$

is the generating function of $f(j) = (j+1)^2$.

- $G_g(X) = (1+X)/(1-X)^4$.
- Exercise: use ext. binomial theorem to compute coeff. of X^k

Calculus!

Alternately, from extended binomial theorem

Generating Functions For Counting Combinations

- e.g., Let f(n) = number of ways to throw n unlabelled balls into d labelled bins (for some fixed number d)
 - Solution 1: Use stars and bars
 - Solution 2: Reason about G_f(X)
 - © Coefficient of X^n in $G_f(X)$ must count the number of (non-negative integer) solutions of $n_1 + ... + n_d = n$
 - Can write $G_f(X) = (1+X+X^2+...)^d$
 - \circ So, $G_f(X) = [1/(1-X)]^d = (1-X)^{-d}$
 - Coefficient of $X^n = {-d \choose n} (-1)^n$ = d(d+1) ... (d+n-1) / n! = C(d+n-1,n)

- $f(0) = c. f(1) = d. f(n) = a \cdot f(n-1) + b \cdot f(n-2) ∀n≥2.$
- Suppose $X^2 aX b = 0$ has two distinct (possibly complex) solutions, x and y
- Ø Claim: ∃p,q ∀n f(n) = p⋅xⁿ + q⋅yⁿ
- Inductive step: for all $k \ge 2$ Induction hypothesis: $\forall n \le t \le 1$, $f(n) = px^n + qy^n$ To prove: $f(k) = px^k + qy^k$
 - $f(k) = a \cdot f(k-1) + b \cdot f(k-2)$ $= a \cdot (px^{k-1} + qy^{k-1}) + b \cdot (px^{k-2} + qy^{k-2}) px^k qy^k + px^k + qy^k$ $= -px^{k-2}(x^2 ax b) qy^{k-2}(y^2 ay b) + px^k + qy^k = px^k + qy^k \checkmark$

- $f(0) = c. f(1) = d. f(n) = a \cdot f(n-1) + b \cdot f(n-2) ∀n≥2.$
- Suppose $X^2 aX b = 0$ has only one solution $x \neq 0$ i.e., $X^2 aX b = (X-x)^2$, or equivalently, a = 2x, $b = -x^2$
- Let p = c, q = d/x-c so that base cases n=0,1 work
- Inductive step: for all $k \ge 2$ Induction hypothesis: $\forall n \le t \le 1$, $f(n) = (p + qn)y^n$ To prove: $f(k) = (p+qk)x^k$
 - $f(k) = a \cdot f(k-1) + b \cdot f(k-2)$ $= a (p+qk-q)x^{k-1} + b \cdot (p+qk-2q)x^{k-2} (p+qk)x^k + (p+qk)x^k$ $= -(p+qk)x^{k-2}(x^2-ax-b) qx^{k-2}(ax+2b) + (p+qk)x^k = (p+qk)x^k$ ✓

- $f(0) = c. f(1) = d. f(n) = a \cdot f(n-1) + b \cdot f(n-2) ∀n≥2.$
- Recall: $G_f(X) = (c + (d-ac)X)/(1-aX-bX^2)$
- The Let $G_f(X) = (\alpha + \beta X)/(1-\alpha X-b X^2)$. i.e., $\alpha = c$, $\beta = d-\alpha c$.
- Writing $Z = X^{-1}$, we have $G_f(X) = (\alpha Z^2 + \beta Z)/(Z^2 \alpha Z b)$
- Let $(Z^2-aZ-b) = (Z-x)(Z-y)$
 - \emptyset a = x+y, -b = xy
 - \circ $(1-aX-bX^2) = (1-xX)(1-yX)$
- Two cases: x≠y and x=y

- $f(0) = c. f(1) = d. f(n) = a \cdot f(n-1) + b \cdot f(n-2) ∀n≥2.$
- $G_f(X) = (\alpha + \beta X)/[(1-xX)(1-yX),]$ where $\alpha = c$, $\beta = d-ac$, $\alpha = x+y$, -b = xy.
- Case 1: x≠y.

 - Recall, $1/(1-xX) = \sum_{k\geq 0} (xX)^k$
 - So, $G_f(X) = (\alpha/X + \beta)/(x-y) \cdot \Sigma_{k \ge 0} (xX)^k (yX)^k$ = $\Sigma_{k \ge 1} \alpha(x \cdot (xX)^{k-1} - y \cdot (yX)^{k-1})/(x-y) + \Sigma_{k \ge 0} \beta((xX)^k - (yX)^k)/(x-y)$ = $\Sigma_{k \ge 0} (px^k + qy^k) \cdot X^k$, where $p = (\alpha x + \beta)/(x-y)$, $q = (\alpha y + \beta)/(y-x)$
 - \circ f(n) = coefficient of $X^n = px^n + qy^n$
- α = c, β = d-ac = d-(x+y)c \Rightarrow p = (d-yc)/(x-y), q = (d-xc)/(y-x),

- $f(0) = c. f(1) = d. f(n) = a \cdot f(n-1) + b \cdot f(n-2) ∀n≥2.$
- $G_f(X) = (\alpha + \beta X)/[(1-xX)(1-yX)]$ where $\alpha = c$, $\beta = d-ac$, a = x+y, -b = xy.
- Case 2: x=y≠0.
 - $G_f(X) = (\alpha + \beta X)/(1-xX)^2$
 - Recall, $1/(1-xX)^2 = \sum_{k\geq 0} (k+1).x^k \cdot X^k$
 - $\begin{aligned} (\alpha + \beta X)/(1-xX)^2 &= \Sigma_{k \geq 0} (\alpha + \beta X) \cdot (k+1) \cdot x^k \cdot X^k \\ &= \Sigma_{k \geq 0} (\alpha \cdot (k+1) \cdot x^k + \beta \cdot k \cdot x^{k-1}) \cdot X^k \\ &= \Sigma_{k \geq 0} (p+qk) x^k \cdot X^k, \text{ where } p = \alpha, \ q = (\alpha + \beta/x) \end{aligned}$

Catalan Numbers

- How many paths are there in the grid from (0,0) to (n,n) without ever crossing over to the y>x region?
- Any path can be constructed as follows
 - Pick minimum k>0 s.t. (k,k) reached
 - \circ (0,0) → (1,0) \Rightarrow (k,k-1) → (k,k) \Rightarrow (n,n) where \Rightarrow denotes a Catalan path
- Cat(n) = $\Sigma_{k=1 \text{ to } n}$ Cat(k-1)·Cat(n-k)
- \circ Cat(0) = 1
- **◎** 1, 1, 2, 5, 14, 42, 132, ...

Catalan Numbers

- \circ Cat(n) $X^n = \sum_{k=1 \text{ to } n} Cat(k-1) \cdot Cat(n-k) \cdot X^n$ = term of Xⁿ in $X \cdot (\sum_{k \geq 1} Cat(k-1) X^{k-1}) \cdot (\sum_{k \leq n} Cat(n-k) X^{n-k}), \forall n \geq 1$ For n=0, we have $Cat(0) X^0 = 1$ $G_{Cat}(X) = 1 + X G_{Cat}(X) G_{Cat}(X)$ • Solving for G in $X \cdot G^2 - G + 1 = 0$, we have $G = [1 \pm \sqrt{(1-4X)}]/(2X)$ • We need $\lim_{X\to 0} G_{cat}(X) = Cat(0) = 1$ L'Hôpital's Rule
 - Then, what is the coefficient of X^n in $G_{cat}(X)$?

• So we take $G_{cat}(X) = [1 - \sqrt{(1-4X)}]/(2X)$

Catalan Numbers

- $G_{cat}(X) = [1-\sqrt{(1-4X)}]/(2X)$
- Then, what is the coefficient of Xk in Gcat(X)?
- Use extended binomial theorem:

$$(1-4X)^{1/2} = \sum_{k\geq 0} {1/2 \choose k} (-4X)^{k} = 1 + \sum_{k\geq 1} -2 {2(k-1) \choose k-1} / k \cdot X^{k}$$

for k>0,
$$\binom{1/2}{k} = (1/2)(-1/2)(-3/2)(-5/2)...(-(2k-3)/2)/k!$$

 $= (-1)^{k-1}(1 \cdot 1 \cdot 3 \cdot ... \cdot (2k-3))/[k! \ 2^k] = (-1)^{k-1}\binom{2k-2}{k-1}/[k \ 2^{2k-1}]$
 $= (k-1)! \cdot 2^{k-1}$

$$G_{cat}(X) = \sum_{k \ge 1} {2(k-1) \choose k-1} / k \cdot X^{k-1}$$

• Cat(k) = Coefficient of
$$X^k$$
 in $G_{cat}(X) = {2k \choose k}/(k+1)$