Small data technique

Lecture 15

Changho Suh

January 26, 2024

Random forests (RFs)

Outline

1. Investigate hyperparameters.

2. Study a key measure for model *interpretation*:

Feature Importance

Hyperparameters

Two types:

DT hyperparameters + additional hyperparameters

Hyperparameters

DT hyperparameters + additional hyperparameters

"max_depth"

"max_features"

"min_samples_split"

"n estimators"

"min_samples_leaf"

"max leaf nodes"

Default parameters

DT hyperparameters + additional hyperparameters

"max_depth"

none

"max_features"

√n_features n_features

"min_samples_split" 2

"n_estimators"

100

"min_samples_leaf" 1

"max_leaf_nodes" none

Hyperparameters vs. regularization

DT hyperparameters + additional hyperparameters "max_features" "max_depth" "n_estimators" "min_samples_split" "min_samples_leaf" "max leaf nodes"

→ More regularized.

Hyperparameter search

Scikit-learn provides functions that ease search:

GridSearchCV

RandomizedSearchCV

Check details in PS.

A measure for model interpretation

RFs have a **measure** that captures **the relative importance of each feature**:

Feature Importance

Can serve model interpretation.

How to compute "feature importance"?

First, for each DT, compute "node importance":

$$\mathsf{NI}_j = G_j - \frac{m_{j, \mathsf{left}}}{m_j} G_{j, \mathsf{left}} - \frac{m_{j, \mathsf{right}}}{m_j} G_{j, \mathsf{right}}$$

→ Quantifies how well node j is split.

Then compute "feature importance" based on NI_j :

$$\mathsf{FI}_k = \frac{\sum_{j} \mathsf{NI}_{j,k}}{\sum_{j} \mathsf{NI}_{j}}$$

 $NI_{j,k} = NI_j \cdot \mathbf{1}\{k = \text{contributer of the node } j \text{ split}\}.$

Average over all DTs.

Example: MNIST

MNIST pixel importance

Summary of Day 1 lectures

Linear activation + squared error loss: LS classifier

Logistic acti. + cross entropy loss: Logistic regression

Summary of Day 1 lectures

ReLU (@hidden); Logistic (@output); Cross entropy loss

Algorithm: Gradient descent

Efficient method: backprop

Practical variant: Adam optimizer

Summary of Day 2 lectures

Advanced techniques:

- 1. Data organization
- 2. Generalization techniques
- 3. Weight initialization
- 4. Techniques for training stability
- 5. Hyperparameter search
- 6. Cross validation

Summary of Day 3 lectures

Two building blocks: Conv layer & Pooling layer Design principles: As a network is deeper,

- 1. Feature map sizes gets smaller.
- 2. # of feature maps gets bigger.

Summary of Day 4 lectures

Two building blocks: Recurrent neurons & memory cell

Basic RNNs: Trained via truncated BTTP;

Memory fades quickly.

LSTM: Offers great performance and fast training.

Summary of today's lectures

RF: An ensemble of DTs, each trained on the random subspace method

A key hyperparameter: "max_features"

A measure for interpretation: Feature importance

Many remaining issues

What if labels are not available? $\{(x^{(i)}, y^{(i)})\}_{i=1}^m$

Unsupervised learning:

Clustering, anomaly detection

Principal component analysis (PCA), autoencoder

Generative Adversarial Networks (GANs)

Many remaining issues

Advanced small data techniques:

Semi-supervised learning

Transfer learning

Simulator-based learning