

Dr. Geetha Raju

ML Engineer

Tamil Nadu e-Governance Agency, Chennai

Social Media and Data Analytics

- Social Media
 - Reinforce social bonds; manage social identities
 - Easy and open access
 - Social networking (Facebook, LinkedIn, Google+)
 - Microblogging (Twitter, Tumblr)
 - Photo sharing (Instagram, Snapchat, Pinterest)
 - Video sharing (YouTube, Facebook Live, Periscope, Vimeo)
- Practitioners, researchers and analyst rich resources social media data
- What they do?
 - Gather data
 - Find meaning / context
 - Derive insights that support decision making
 - Analyze / predict performance
- What is data in SM?
 - ▶ Post specific data likes, reactions, comments, clicks, previews, etc.,
 - ▶ User specific data name, DOB, followers, friends, etc.,
 - Network specific data followers, following, friends, community / group, etc.,

OCT 2021

SOCIAL MEDIA USE AROUND THE WORLD

USE OF SOCIAL NETWORKS AND MESSENGER SERVICES, WITH DETAIL FOR MOBILE SOCIAL MEDIA USE

A SOCIAL MEDIA USER NUMBERS MAY NOT REPRESENT UNIQUE INDIVIDUALS

TOTAL NUMBER OF ACTIVE SOCIAL MEDIA USERS* SOCIAL MEDIA USERS AS A PERCENTAGE OF THE GLOBAL POPULATION ANNUAL CHANGE IN THE NUMBER OF GLOBAL SOCIAL MEDIA USERS AVERAGE AMOUNT OF TIME PER DAY SPENT USING SOCIAL MEDIA AVERAGE NUMBER OF PLATFORMS USED EACH MONTH PER INTERNET USER

4.55

57.6%

+9.9%

+409 MILLION

2H 27M

6.7

SOURCES: KEPIOS (OCT 2021), BASED ON DATA FROM: COMPANY BARNINGS ANNOUNCEMENTS, PLATFORMS' SEUF-SERVICE ADVERTISING TOO IS, CNNIC, MEDIASCOPE. TIME SPENT DATA
FROM GWI (Q2 2021), SEE GWILDOM FORMORE DETAILS. "ADVISORY: SOCIAL MEDIA USERS MAY NOT REPRESENT UNIQUE INDIVIDUALS, AND MAY EXCEED INTERNET USER NUMBERS IN

SOME COUNTRIES. * COMPARABILITY ADVISORY: BASE CHANGES AND HISTORICAL REVISIONS. DATA MAY NOT CORRELATE WITH FIGURES PUBLISHED IN PREVIOUS REPORTS.

JUL 2021

REASONS FOR USING THE INTERNET

PRIMARY REASONS WHY GLOBAL INTERNET USERS AGED 16 TO 64 USE THE INTERNET

A Minute on the Internet in 2021

Estimated amount of data created on the internet in one minute

Source: Lori Lewis via AllAccess

Twitter Statistics 2022

Engage with customers on social at scale Start today: https://statusbrew.com/

STATUS REW

Social Media and Data Analytics

- ► Challenges in social media data
 - ▶ Time Sensitivity
 - Short length
 - Unstructured form
- ► More than 7 million web pages of text are being added to our collective repository, daily
- Processing speed
 - ▶ 15,000- 250,000 pages an hour TM software
 - ▶ 60 pages for humans

Real Life Vs Online Social Media

Information Spread and Flow in Social Media

- Information sharing
 - Why Pleasure and helps in gaining public attention
 - ▶ What Profile, Status, Location and shred content
 - How Noisy and unstructured
- Online social network information spreading (OSIS) model
- Information amplification
- Influenced by psychological and social factors
- False news
- How to analyze information flows?
 - Subgraph constructions
 - ► Activity and degree distributions
 - Network analysis

What ML / AL can do?

Category	Types of Analytics	Questions Answered
Prescriptive	Optimization Randomized Testing	 What is the best that can happen? What happens if we try this?
Predictive	 Predictive modeling / forecasting Statistical modeling 	What will happen next?What is making this happen?
Diagnostic	Data exploration Intuitive visuals	Why did this happen?What insights can I gain?
Descriptive	 Alerts Query / drill down Ad Hoc reports / scorecards Standard reports 	 What actions are needed? What is the problem? How many, often, where? What happened?

Scope of Predictive analytics on Social Media Data

Predictive systems

- Stock Market Predictions
- Spam Detection
- Content based Recommender Systems
 - ▶ News, Movie, Product reviews / suggestions.
- Social media and Text Analytics
 - Sentiment Analysis Product / Brand / Topic
 - ► Topic / Keyword / Phrase Identification
 - Cybercrimes and Cyberbullying
- ► Linguistic Rules and Machine Learning Analysis

So, Lets Start with Data Preparation

Data Collection Pipeline – Twitter Developer Account

Text Data Features

- ▶ Generate structure where there is no structure
- Challenges
 - unstructured textual form (80% 90% of world's data)
 - large text data
 - high dimension but sparse
 - word / phrase types in various languages
 - complex relationship between concepts in text
 - word ambiguity and context sensitivity
 - noisy data

NLU Vs NLP

Overview of building a Text based Predictive Model

Text Analytics - Terminologies

Document

Tokens / Terms

Corpus

Larger corpus / 3 corpora

Textual Features – Extraction Methods

- ► Bag-of-words
- > n-grams
- ➤ Scoring words counts, frequencies, binary
 - ► Histogram
 - ▶ Document Term Matrix
 - ► Term Frequency Inverse Document Frequency
- Word hashing
- Word embeddings

Document Term Matrix

	Term 1	Term 2	•	•	Term n
Document 1					
Document 2					
•					
•					
Document m					

Term Frequency – Inverse Document Frequency (TF-IDF)

■ Importance / Significance of a word.

•
$$TF = \frac{Number\ of\ times\ Term\ t\ occurs}{Total\ number\ of\ terms}$$

•
$$IDF = Log(\frac{Total\ number\ of\ docs}{Number\ of\ docs\ containing\ Term\ t})$$

•
$$TF - IDF = TF * IDF$$

Image Feature

- Matrix of numbers
- Size of this matrix depends on the number of pixels of the input image.
- Pixel Values
 - ► Intensity and Brightness how bright that pixel is?
 - what color it should be?
 - ► Important shape / objects / edges

Audio Features

High – Understood and enjoyed by humans

 instrumentation, key, chords, melody, harmony, rhythm, genre, mood, etc

Mid – Perceived by humans

 pitch, beat-related descriptors, note onsets, fluctuation patterns, s, etc

Low - statistical features which sense to the machine, but not to humans

 amplitude envelope, energy, spectral centroid, spectral flux, zero-crossing rate, Instantaneous

 Range in milliseconds – 10ms

Segment-level

Wider range

Global

scope

Temporal

 Aggregate feature for whole word / sentence Time zone

domains

Signal

 waveforms of the raw audio.

Frequency zone

• Frequency component Time-Frequency zone

 Combination of Time and Frequency Amplitude
Root mean square energy
Zero crossing rate

Fime domain

Exploratory Data Analytics

- Examine the data distribution
- ► Handling missing values of the dataset
- Handling the outliers
- Removing duplicate data
- ► Encoding the categorical variables
- Normalizing and Scaling

Predictive Modeling

- Statistical technique using machine learning and data mining
- Requires historical and existing data
- ► Forecast future based on historical and existing data
- Types of Predictive Modelling
 - Classification Model
 - Clustering Model
 - ► Time Series Model
 - Forecast Model
 - Language Model

Traditional Vs ML System

ML-Based System Testing and Monitoring

ML-Ops – System Pipeline

- Major challenges in ML Models and SM Data
 - ► Tracability What ideas have been tried? What are successful?
 - ► Reproducibility How to reproduce successful ideas?
- ML Lifecyle
 - ▶ Manage resources, data, code, time, and quality to meet objectives.

Predictive Modeling – Case Study

Predictive Modeling
Emotion Modeling

Identifiable Entities in Social Media Data

Entities	Description
ORG	referring to institutions, organizations, companies, agencies etc.,
GPE	denoting countries, states, and cities
PERSON	representing people names and fictional characters
DATE	symbolizing relative or absolute dates or time periods
TIME	pertaining to time periods that are shorter than a day
NORP	mapping to nationalities, political and religious groups or communities
LOC	signifying any non-GPE entities like water bodies, mountains, etc.,
PRODUCT	Characterizing things, objects, food, vehicles and other non-service entities
EVENT	for data indicating any disasters like battles, hurricanes, earthquakes, wars, sports and well-established happenings
PERCENT	implying any values represented in percentage format (%)

Text Data Preprocessing

Entity – Emotion Modeling

- ► Identification of entities through NER Sequence labelling task
- ▶ Understanding the emotions through emotion mining mechanism
- Build features based on discovered entities and emotion
- Study 'Correlations' by joint probability between adjacent features
- ► Interdependency modelling by statistical analysis on univariate and multi-variate entity correlation
- ► Rank based correlation Spearman's correlation coefficient

$$\rho = 1 - \frac{6\sum_{i=1}^{n}(u_i - v_i)^2}{n(n^2 - 1)}$$

Predictions – Insights on Citizen opinions

Predictions – Insights on Citizen opinions

Linear Regression model How strong is your relationship?

Predictable Network Features in Social Media

Audio – Debater - An automated Debating System

Google Cloud Platform

https://cloud.google.com/automl

CATEGORY	PRODUCT	FEATURES
Vertex AI	Vertex AI Unified platform to help you build, deploy and scale more AI models.	 Prepare and store your datasets Access the ML tools that power Google Experiment and deploy more models, faster Manage your models with confidence
Sight	AutoML Image Derive insights from object detection and image classification, in the cloud or at the edge. Try it now.	 Use REST and RPC APIs Detect objects, where they are, and how many Classify images using custom labels Deploy ML models at the edge
	AutoML Video Enable powerful content discovery and engaging video experiences. <u>Try it now.</u>	 Annotate video using custom labels Streaming video analysis Shot change detection Object detection and tracking
Language	AutoML Text Reveal the structure and meaning of text through machine learning. <u>Try it now.</u>	 Integrated REST API Custom entity extraction Custom sentiment analysis Large dataset support
	AutoML Translation Dynamically detect and translate between languages. Try it now.	 Integrated REST and gRPC APIs Supports 50 language pairs Translate with custom models
Structured data	AutoML Tabular Automatically build and deploy state-of-the-art machine learning models on structured data. <u>Try it now.</u>	 Handles wide range of tabular data primitives Easy to build models Easy to deploy and scale models

Microsoft Azure

https://azure.microsoft.com/en-in/services/cognitive-services/#overview

Azure Cognitive Services	
Speech	Improve customer experiences with Cognitive Service for Speech
Language	Speech to Text
3 3	Transcribe audible speech into readable, searchable text.
Vision	
	Text to Speech
Decision	Convert text to lifelike speech for more natural interfaces.
	Speech Translation
	Integrate real-time speech translation into your apps.
	Speaker Recognition
	Identify and verify the people speaking based on audio.

Microsoft Azure

Amazon Web Services – AI / ML Services

https://aws.amazon.com/machine-learning/

Amazon Translate »

Amazon Polly »

Amazon Transcribe »

And now, build 'problem statements' from what you know / want...!

Dr. Geetha Raju | TNeGA