背景

将 Transformer 应用到计算机视觉领域存在一些问题,比如说尺寸问题,现有的基于 Transformer 的方法先将图片分块,再映射为 token,而 token 的尺寸都是固定的;另一个问题就是分辨率的问题,高分辨率的图片导致了计算复杂度随着图片的尺寸呈二次式增长(后面又详细的计算过程)。

而 Swin Transformer 通过构建一个 hierarchical 表示方法,来解决尺寸固定问题,通过在不重叠的窗口中使用 self-attention 来解决计算复杂度的问题。

方法

使用 W-MSA 模块减小计算量

MSA 的计算量

先看一下单个 self-attention 模块的计算量。

输入时序向量 $\mathbf{x} = \{x_1, x_2, x_3, x_4\}$ 经过 input Embedding 映射到高维度向量 $\mathbf{a} = \{a_1, a_2, a_3, a_4\}$,然后向量 \mathbf{a}^{hvvc} 通过共享的参数矩阵 $\left\{W_q^{C\times C}, W_k^{C\times C}, W_v^{C\times C}\right\}$ 生成各自的 $\left\{q^i, k^i, v^i\right\}$ 。

这一步对应的计算量为:

$$3 \times h \times w \times C^2 \tag{1}$$

根据 attention 的计算公式:

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

可以看出,随后进行的是 $Q(hw \times C)$ 和 K 的转置矩阵($C \times hw$)相乘,这一步的计算量是:

$$(h \times w)^2 \times C \tag{2}$$

忽略掉除以 $\sqrt{d_k}$ 和 softmax 操作所带来的计算量,接下来就是最后一步矩阵相乘,将刚才得到的注意力分数(大小为 $hw \times hw$)和矩阵 $V_{hw \times C}$ 相乘,这一步的计算量也是:

$$(h \times w)^2 \times C \tag{3}$$

所以综上, self-attention 操作所需要的计算量有:

$$3hwC^{2} + 2(hw)^{2}C (4)$$

多头注意力机制相比于单个 self-attention 机制的计算量,多了最后的融合多头的操作,融合操作需要的计算量有:

$$h \times w \times C^2 \tag{5}$$

所以, MSA 模块需要的计算量有:

$$4hwC^2 + 2(hw)^2 C ag{6}$$

也就是原论文中公式(1)的由来

$$\Omega(MSA) = 4hwC^2 + 2(hw)^2C, \tag{1}$$

$$\Omega(W-MSA) = 4hwC^2 + 2M^2hwC, \qquad (2)$$

W-MSA 的计算量

图 1 W-MSA 划分效果示意图

如上图所示,W-MSA 模块是先把特征图划分为一个个<u>没有重叠的窗口</u>,然后对每个窗口内部使用 self-attention,那么假设将特征图划分为了 $M \times M$ 大小的窗口,那么一个特征图包含了 $\frac{h}{M} \times \frac{w}{M}$ 个窗口,那么计算量有:

$$\frac{h}{M} \times \frac{w}{M} \times (4 \times M \times M \times C^2 + 2 \times (M^2)^2 \times C)$$

$$= 4hwC^2 + 2M^2hwC$$
(7)

也就是原论文中的公式(2)。

使用 SW-MSA 进行信息交互

W-MSA 虽然可以有效的减少计算量,但是不同窗口之间没有办法进行信息 交互,为此提出了 SW-MSA, 位移窗口多头注意力机制。

第一个位移窗口使用的是常规的窗口分区方法,如下图所示,将 8×8 的特征图划分为边长为 4 (即 M=4) 的窗口(红色),然后整个特征图被划分为 2×2 个窗口。接下来,使用的窗口配置方法是将前一层的窗口进行左移 $\left\lfloor \frac{M}{2} \right\rfloor$ 个像素

点,上移 $\left|\frac{M}{2}\right|$ 个像素点,得到新的窗口划分区域(绿色框)。

新得到的绿色框中,上方绿色矩形框 1 融合了上一层窗口中的 1、2 两个窗口的信息,绿色矩形框 2 融合了上一层窗口中的 1、3 两个窗口的信息,绿色矩

形框 3 融合了上一层窗口中的 4 个窗口的信息, 绿色矩形框 4 融合了上一层窗口中的 2、4 两个窗口的信息, 绿色矩形框 5 融合了上一层窗口中的 3、4 两个窗口的信息。

图 2

SW-MSA 中的高效批量计算

位移窗口方法划分区域带来的问题就是会产生很多的窗口,而且窗口尺寸会比原来的 $M \times M$ 都小,一个直接的办法就是<u>将尺寸较小的窗口</u>(比如上图中的绿色左上角的框)<u>进行扩充</u>,扩充到 $M \times M$ 大小再进行计算,但是这样<u>计算量</u>就增加了,因为本文针对位移窗口划分方式提出了一种更加<u>高效的批量计算</u>方法,其过程示意图如下图所示。

图 3

其中 cyclic shift 操作的具体过程如下所示:

图 4 cyclic shift 过程示意图

先将绿 A 框和第一行的红色框区域内的框整体平移到最后一行,得到蓝色框中的结果,然后再将左侧红色框区域内的框和绿 A 框整体平移到最右侧,得到绿色框中的结果。最后由一开始的 9 个划分区域,又变回了 4 个划分区域(最后的红色框)。

这样位移完之后又带来了新的问题,新组合而成的 4×4 划分区域,比如说下图中带问号的区域,相比于左侧 4×4 的划分区域,该区域是由两个子窗口组合而成的,而且这两个子窗口的区域不连续,那么在之后对每一个窗口进行 selfattention 计算的时候,如下图右侧的图例所示,位置 0 处的 q 会与另一个原本不相邻的子窗口中的每一个 k 进行相关性运算时又该如何处理?

图 5 组合区域的相关性计算

针对这一问题,提出了一个掩膜机制,其示意图如下所示:

图 6 掩膜机制计算示意图

将位置 0 的 q 与特征图上其他位置像素点的 k 进行相关性计算,得到 $a^{0.1} \sim a^{0.15}$,把与另一个子窗口计算得到的 $a^{0.2} \sim a^{0.3} \sim a^{0.6} \sim a^{0.7} \sim a^{0.10} \sim a^{0.11} \sim a^{0.15}$ 减去一个比较大的数,这样使得经过 softmax 处理后,其值被抑制为 0,这样就将两个子窗口的相关性计算分隔开了。

计算完所有的 attention 后,再将刚才位移后的特征图进行位置还原。

相对位置偏置

	ImageNet		COCO		ADE20k
	top-1	top-5	APbox	AP^{mask}	mIoU
w/o shifting	80.2	95.1	47.7	41.5	43.3
shifted windows	81.3	95.6	50.5	43.7	46.1
no pos.	80.1	94.9	49.2	42.6	43.8
abs. pos.	80.5	95.2	49.0	42.4	43.2
abs.+rel. pos.	81.3	95.6	50.2	43.4	44.0
rel. pos. w/o app.	79.3	94.7	48.2	41.9	44.1
rel. pos.	81.3	95.6	50.5	43.7	46.1

图 7 位置编码对比分析

不使用位置编码、使用 ViT 中的绝对位置编码、相对位置偏置在 ImageNet 数据集上进行测试,其对比结果如上图中的红色框所示,可以看出,使用相对位置偏置的效果最好。

相对位置偏移参数是原论文中,公式(4)里的参数 B:

Attention $(Q, K, V) = \text{SoftMax}(QK^T/\sqrt{d} + B)V$

图 8 相对位置示意图

将上图中最左侧的特征图的最左上角的窗口取出,从左上角开始位置坐标编码,然后计算每个位置相对于其他位置的坐标,图中只展示了两个像素点相对坐标的计算过程,可以看出橙色圆圈内两个位置的相对坐标相同,其分别对应取出的窗口特征图中(0,0)位置和(1,0)位置右侧的相对位置坐标。而且相对位置坐标范围为[-M+1,M-1],经过一系列操作,得到相对位置索引,相对位置偏移参数保存在相对位置偏置表中,其长度为(2M-1)×(2M-1),以上图为例的话,其对应的相对位置偏置表的长度为 9×9 ,相对位置偏置参数 B 是根据上面的相对位置索引查相对位置偏置表得到的。

整体框架参数配置

	downsp. rate (output size)	Swin-T	Swin-S	Swin-B	Swin-L			
stage 1	4× (56×56)	concat 4×4, 96-d, LN	concat 4×4, 96-d, LN win. sz. 7×7,	concat 4×4, 128-d, LN win. sz. 7×7,	concat 4×4, 192-d, LN win. sz. 7×7,			
		dim 96, head 3 \times 2	$\begin{bmatrix} \text{dim 96, head 3} \end{bmatrix} \times 2$	$\begin{bmatrix} \text{dim } 128, \text{head } 4 \end{bmatrix} \times 2$	$\begin{bmatrix} \text{dim } 192, \text{head } 6 \end{bmatrix} \times 2$			
stage 2	8×	concat 2×2, 192-d, LN	concat 2×2, 192-d, LN	concat 2×2, 256-d, LN	concat 2×2 , $384-d$, LN			
	(28×28)	$\begin{bmatrix} \text{win. sz. } 7 \times 7, \\ \text{dim } 192, \text{ head } 6 \end{bmatrix} \times 2$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 192, head 6 \end{bmatrix} \times 2$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 256, head 8 \end{bmatrix} \times 2$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 384, head 12 \end{bmatrix} \times 2$			
stage 3	16×	concat 2×2, 384-d, LN	concat 2×2, 384-d, LN	concat 2×2, 512-d, LN	concat 2×2, 768-d, LN			
	(14×14)	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 384, head 12 \end{bmatrix} \times 6$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 384, head 12 \end{bmatrix} \times 18$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 512, head 16 \end{bmatrix} \times 18$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 768, head 24 \end{bmatrix} \times 18$			
stage 4	32× (7×7)	concat 2×2, 768-d, LN	concat 2×2, 768-d, LN	concat 2×2, 1024-d, LN	concat 2×2, 1536-d, LN			
		win. sz. 7×7 , $\times 2$	win. sz. 7×7 , $\times 2$	win. sz. 7×7 , $\times 2$	win. sz. 7×7,			
		dim 768, head 24 × 2	dim 768, head 24 × 2	dim 1024, head 32 × 2	$\begin{bmatrix} \text{with. S2. } 7 \times 7, \\ \text{dim 1536, head 48} \end{bmatrix} \times 2$			
Table 7. Detailed architecture specifications.								

图 9 整体框架参数配置

如上图所示,就是不同 Swin Transformer 的参数配置。