

Fused load switching system with handling protection for service personnel

Patent Number: DE4430046

Publication date: 1996-02-29

Inventor(s): WERMELINGER ANTON (CH)

Applicant(s): WERMELINGER AG (CH)

Requested Patent: DE4430046

Application Number: DE19944430046 19940824

Priority Number(s): DE19944430046 19940824

IPC Classification: H01H31/12; H02B11/26

EC Classification: H01H31/12B, H02B11/26

Equivalents:

Abstract

The fused load switching system has three blade-contact fused modules (2) that locate in separate compartments and are arranged in line to connect with a busbar. The switch housing (5) has built in contacts (7) to engage the fused modules and to provide the coupling to the bus. Cover plate (10) are built in to the fused modules. A pinion gear toothed rack (15,17) drive unit is built in to generate the motion required for the fused units, which are held within a carrier (9), and the unit is operated by moving a lever (14) through an arc.

Data supplied from the **esp@cenet** database - I2

(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) **Offenlegungsschrift**
(10) **DE 44 30 046 A 1**

(51) Int. Cl.⁶:

H01H 31/12

H 02 B 11/26

DE 44 30 046 A 1

(21) Aktenzeichen: P 44 30 046.8
(22) Anmeldetag: 24. 8. 94
(23) Offenlegungstag: 29. 2. 96

(71) Anmelder:
Wermelinger AG, Wolhusen, CH

(74) Vertreter:
von Samson-Himmelstjerna und Kollegen, 80538
München

(72) Erfinder:
Wermelinger, Anton, Wolhusen, CH

(54) Sicherungs-Lastschaltgerät und/oder -Trennschaltgerät

(57) Die Erfindung betrifft ein Sicherungs-Lastschaltgerät und/oder -Trennschaltgerät mit einem Isolierstoffgehäuse (5); und wenigstens einem Anschlußraum (3) mit Kontaktmitteln (7) zur Aufnahme eines von einem Sicherungshalter (9) gehaltenen Sicherungseinsatzes (2) und zu dessen Anschluß an Leiterschienen; wobei der Sicherungshalter (9) von einer Bedienungsperson bewegbar ist, derart, daß mit ihm der Sicherungseinsatz (2) berührungslos schaltbar ist.

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen
BUNDESDRUCKEREI 01.96 508 069/190

Beschreibung

Die Erfindung betrifft ein Sicherungs-Lastschaltgerät und/oder -Trennschaltgerät. Bei einem solchen Gerät dient ein Sicherungseinsatz zugleich als bewegbares Schaltstück zum Öffnen und Schließen eines Stromkreises.

Beim Ausschalten eines elektrischen Stromes entsteht aufgrund von Selbstinduktion ein Lichtbogen zwischen den Schalterkontakte. Dieser entwickelt hohe Temperaturen, so daß das Ausschalten eines Sicherungsschaltgeräts unter Last mit einer hohen Verletzungsgefahr für das Bedienungspersonal verbunden sein kann.

Um dem zu begegnen, ist es bekannt, zum Ausschalten unter Last Schutzwerkzeuge, z. B. Betätigungshandhaben mit amontiertem Unterarmschutz, zu verwenden. Diese können bei sachgemäßer Anwendung die Verletzungsgefahr mindern. Sie sind jedoch nur begrenzt wirksam und schließen eine unsachgemäße Bedienung oder gar eine Betätigung des Schaltgeräts ganz ohne Schutzwerkzeug nicht aus, so daß eine nicht unerhebliche Verletzungsgefahr bestehen bleibt.

Die Erfindung geht von dem technischen Problem aus, ein Sicherungs-Lastschaltgerät und/oder -Trennschaltgerät anzugeben, bei dem dieser Nachteil vermieden wird.

Die Erfindung löst dieses Problem mit einem Sicherungs-Lastschaltgerät und/oder -Trennschaltgerät mit

- a) einem Isolierstoffgehäuse; und
- b) wenigstens einem Anschlußraum mit Kontaktmitteln zur Aufnahme eines von einem Sicherungshalter gehaltenen Sicherungseinsatzes und zu dessen Anschluß an Leiter schienen;
- c) wobei der Sicherungshalter von einer Bedienungsperson bewegbar ist, derart daß mit ihm der Sicherungseinsatz berührungslos schaltbar ist.

Das erfindungsgemäße Schaltgerät schließt durch die Kapselung des Sicherungseinsatzes weitgehend aus, daß die Bedienungsperson mit einem Lichtbogen in Berührung kann und erschwert eine unsachgemäße Verwendung. Die Verletzungsgefahr ist so praktisch ausgeräumt. Das Sicherungs-Lastschaltgerät und/oder -Trennschaltgerät ist wahlweise ein- oder mehrpolig schaltbar.

Um mit dem Schaltgerät mehrere Phasen, insbesondere die drei Phasen eines Drehstromsystems schalten zu können, hat es mehrere, insbesondere drei Anschlußräume (Anspruch 2).

In Niederspannungsanlagen für industrielle und ähnliche Anlagen bei Strömen von ca. 6—1250 A verwendet man im allgemeinen Sicherungseinsätze mit Messerkontaktstücken, und zwar insbesondere Sicherungseinsätze des NH-Systems (Niederspannungs-Hochleistungs-Sicherungssystem). Das Schaltgerät ist daher vorzugsweise für Sicherungseinsätze mit Messerkontaktstücken, insbesondere für NH-Sicherungseinsätze ausgebildet (Anspruch 3).

Eine weitere Herabsetzung der Verletzungsgefahr und auch der Gefahr von Beschädigungen des Schaltgeräts durch Lichtbögen bewirken Maßnahmen, die zu einem möglichst schnellen Erlöschen eines Lichtbogens beitragen (bzw. zu einem Nicht-Wiederzünden bei Wechselstrom, wo der Lichtbogen bei jedem Nulldurchgang erlischt). Eine solche Maßnahme ist eine derartige Ausbildung des Schaltgeräts, daß bei der Ausschaltbe-

wegung eine Zweifach-Unterbrechung des Stromkreises stattfindet (Anspruch 4). Denn um die Zweifach-Unterbrechung zu überspringen, müssen sich zwei in Reihe geschaltete Lichtbögen ausbilden, deren gesamte Lichtbogenspannung ungefähr das Zweifache derjenigen einer Einfach-Unterbrechung beträgt. Dies bedingt ein schnelleres Erlöschen. Am wirksamsten ist diese Maßnahme, wenn die Unterbrechung an beiden Sicherungskontakten nahezu gleichzeitig stattfindet.

Für eine Handbetätigung weist das Schaltgerät vorzugsweise einen für die Ausführung der Schaltbewegung vorgesehenen Bedienhebel auf (Anspruch 5). Eine besonders gute Handhabbarkeit ist dann gegeben, wenn der Bedienhebel in der Schließstellung nach oben weist und für eine Ausschaltbetätigung zur Bedienungsperson hin nach unten schwenkbar ist, denn diese Anordnung erlaubt ein besonders schnelles Öffnen bei relativ geringem Krafteinsatz.

Zur Umsetzung der Bewegung einer von einer Bedienungsperson betätigbar Einrichtung (bei der es sich vorzugsweise um den Bedienhebel handelt) in eine Schaltbewegung des Sicherungseinsatzes ist das Schaltgerät vorzugsweise mit einem Getriebe ausgerüstet, daß antriebsseitig an die betätigbare Einrichtung (bzw. den Bedienhebel) und abtriebsseitig an den Sicherungshalter gekoppelt ist (Anspruch 6).

Einerseits fordert man im allgemeinen von einem Schaltgerät, daß das Ein- und Ausschalten in einer ganz bestimmten Richtung möglich sein soll (z. B. soll — wie oben erwähnt — ein Ausschalten durch Schwenken des Bedienhebels von oben nach unten möglich sein). Andererseits ist es wünschenswert, das Schaltgerät in verschiedenen Stellungen montieren zu können (z. B. um es gleichermaßen an oben oder unten verlaufende stromschienen anschließen zu können, was einer Drehung um 180° entspricht). Um beiden Anforderungen zu genügen, weist das Getriebe vorzugsweise zwei gegenläufig wirkende Antriebselemente auf, an welche der Bedienhebel wahlweise ankoppelbar ist (Anspruch 7). Wenn man zum Beispiel ein Schaltgerät mit einer Ausschaltbewegungsweise "Schwenken von oben nach unten" um 180° gedreht montiert, erlaubt diese Maßnahme, die ursprüngliche Betätigungsweise einfach durch Abkoppeln des Bedienhebels von seinem ursprünglichen Antriebselement und Ankoppeln an das gegenläufig wirkende wieder herzustellen.

Insbesondere wenn das Schaltgerät eine längliche Form hat (z. B. um als "Schaltleiste" neben anderen an einer Schaltwand montiert werden zu können), kann die Gefahr bestehen, daß der (die) Sicherungshalter oder ein diese(n) tragendes Teil bei der Schaltbewegung im Isolierstoffgehäuse verkantet (verkanten). Um dies auszuschließen, greift vorteilhaft das Getriebe abtriebsseitig an wenigstens zwei in Längsrichtung des Schaltgerätes beabstandeten Orten an dem (den) Sicherungshalter(n) oder an wenigstens einem dieser(n) tragenden Teil an (Anspruch 8). Vorzugsweise ist das Getriebe abtriebsseitig für geradlinige Bewegungen ausgelegt. Die Sicherungseinsätze werden so in einer geradlinigen Translationsbewegung von den Kontaktmitteln entfernt (und nicht etwa in einer Schwenkbewegung).

Bevorzugt realisiert man das an zwei beabstandeten Orten angreifende Getriebe durch ein solches, das zwei in der Längsrichtung beabstandete Ritzel-Zahnstangen-Triebe umfaßt (Anspruch 9). Ein derartiges Getriebe setzt auf besonders einfache Weise eine antriebsseitige Schwenkbewegung in eine abtriebsseitige geradlinige Bewegung unter Ausschluß eines Verkantens um. Auch

erlaubt es die oben erwähnte wahlweise Ankoppelbarkeit des Bedienhebels besonders einfach zu realisieren, indem der Bedienhebel durch eine lösbare Verbindung wahlweise an gegenläufigen Ritzeln des Ritzel-Zahnstangen-Triebs befestigbar ist (Anspruch 10). Vorzugsweise ist die lösbare Verbindung eine elastische Rastverbindung.

Will man das Schaltgerät (wie in dem obigen Beispiel) um 180° gedreht montieren, so kann man den Bedienhebel ohne Werkzeug von einem Ritzel oder einem Paar von gleichläufigen Ritzeln lösen und an dem gegenläufigen Ritzel bzw. Ritzelpaar elastisch einrasten.

Beim Schalten eines mehrphasigen Stromkreises kann es für bestimmte Anwendungen erwünscht sein, alle Phasen gemeinsam zu schalten (z. B. in der Industrie zum Ein- und Ausschalten eines Drehstrommotors). Für andere Anwendungen kann es hingegen notwendig sein, einzelne Phasen auszuschalten, ohne daß hiervon die anderen Phasen betroffen werden (z. B. in einem Energieversorgungsbetrieb). Um ein und dasselbe Schaltgerät für diese verschiedenen Anwendungen einsetzen zu können, ist es vorzugsweise mit Mitteln zum wahlweisen An- oder Abkoppeln der Sicherungshalter untereinander ausgestattet, derart, daß nur ein, mehrere oder alle Sicherungshalter gemeinsam eine Schaltbewegung ausführen (Anspruch 11). Je nachdem, ob ein, mehrere oder alle Sicherungshalter eine Ausschaltbewegung ausführen sollen, wählt man vor einer Ausschaltbetätigung eine entsprechende Kopplung der Sicherungshalter. Will man beispielsweise bei einem Schaltgerät mit Phasen 1–3 nur Phase 1 ausschalten, so koppelt man vor dem Betätigen Sicherungshalter 2 und 3 von Sicherungshalter 1 ab. Will man z. B. Phasen 1 und 3 ausschalten, so koppelt man Sicherungshalter 1 mit Sicherungshalter 3 und koppelt diese von Sicherungshalter 2 ab. Will man z. B. alle drei Phasen ausschalten, koppelt man alle drei Sicherungshalter aneinander. Besonders vorzugsweise koppelt man die Sicherungshalter nicht direkt aneinander, sondern indirekt über ein diese tragendes Teil, das wiederum mit einem einzigen Betätigungsmechanismus, z. B. dem oben genannten Getriebe, gekoppelt sein dar. Dadurch kann man mit einem einzigen Betätigungsmechanismus wahlweise eine, mehrere oder alle Phasen schalten.

In Notfällen kann es erforderlich sein, daß bestimmte Phasen (in der Regel alle Phasen) schnellstens ausschaltbar sind. Ausreichend Zeit, um erst die entsprechende Kopplung der Sicherungshalter einzustellen, bleibt dann natürlich nicht. Vorzugsweise sind daher die An- und Abkoppel-Mittel so ausgebildet, daß eine eingestellte Kopplung während oder nach Ausführung eines Schaltspiels automatisch durch eine Standardkopplung ersetzt wird (Anspruch 12). Die Standardkopplung ist insbesondere derart, daß beim nächsten Schalten alle Sicherungsschalter die Schaltbewegung gemeinsam ausführen. Mit "Schaltspiel" ist eine vollständige Aus- und Einschaltbetätigung gemeint. Für die nächste Ausschaltbetätigung ist das Schaltgerät dann immer im Zustand der Standardkopplung bereit. Ist eine andere Kopplung erwünscht, muß diese jedes Mal aktiv aufs Neue eingestellt werden.

Besonders einfach können die An- und Abkoppelmittel durch Rastmittel realisiert werden. Genauer weisen die An- und Abkoppelmittel zwischen einer ersten und einer zweiten Raststellung bewegbare Rastmittel auf, derart, daß ein Sicherungshalter in der ersten Raststellung der Rastmittel die Schaltbewegung ausführt, nicht hingegen in der zweiten Raststellung. Will man eine

bestimmte Kopplung voreinstellen, so bringt man, z. B. von Hand, die entsprechenden Rastmittel vor der Ausschaltbetätigung in die entsprechende Raststellung. Bei der oben erwähnten automatischen Rücksetzung in die Standardkopplung erfolgt während oder nach Ausführung des Schaltspiels automatisch eine Rücksetzung der Rastmittel in die der Standardkopplung entsprechenden Raststellungen.

Für eine optimale Lichtbogenlöschung sollte die Ausschaltbewegung mit einer ganz bestimmten Geschwindigkeit erfolgen. Ist die Geschwindigkeit nämlich klein, bleiben die Schalterkontakte nach der Trennung noch relativ lange nahe beieinander, was günstig für den Bestand des Lichtbogens ist. Eine große Geschwindigkeit führt hingegen wegen der dann abrupteren Stromunterbrechung zu höheren Selbstinduktionsspannungen, was wiederum günstig für den Lichtbogen ist. Das Optimum liegt dazwischen. Bei einer sog. abhängigen Handbetätigung, bei der die Schaltgeschwindigkeit allein von der Bedienungsperson definiert wird, kann man das Optimum kaum treffen. Um dem zu begegnen, ist (sind) für den (die) Sicherungseinsatz (-einsätze) jeweils ein Antriebs-Speicher, insbesondere eine Feder vorgesehen, der zumindest einen Teil der beim Betätigen des Schaltgeräts aufgebrachten Energie zunächst speichert und dann in einem Zug für die Schaltbewegung freigibt (Anspruch 14). Bei einer entsprechenden konstruktiven Auslegung des Antriebsspeichers kann man dadurch eine für die Lichtbogenlöschung optimale Schaltgeschwindigkeit sicherstellen, weitgehend unabhängig von der Betätigungs geschwindigkeit.

Bei einem mehrphasigen Strom bewirkt eine Unterbrechung einer Phase Selbstinduktions-Spannungsspitzen, jeweils bezogen auf die anderen Phasen. Bei einer gleichzeitigen Unterbrechung aller Phasen addieren sich deren Spannungsspitzen zu einem relativ hohen Gesamtwert, was einer schnellen Lichtbogenlöschung entgegenwirkt. Um dem zu begegnen, bildet man die Antriebs-Speicher vorzugsweise so aus, daß bei einer Ausschaltbetätigung des Schaltgeräts die Freigabe der gespeicherten Energie für mehrere oder alle Sicherungshalter zeitlich versetzt erfolgt (Anspruch 15).

Im Stand der Technik versucht man einen niedrigen Übergangswiderstand durch eine flächige Ausbildung der Sicherungskontakte zu erzielen. Beispielsweise ist bei Messerkontaktsicherungen das Gegenstück zum Kontaktmesser als im Querschnitt U-förmige, flächige Kontakt hülse ausgebildet. Tatsächlich gelingt aber mit dieser flächigen Ausbildung gar keine Flächenauflage, sondern nur eine Einpunktauflage an jeder Seite des Kontaktmessers. Um dem gegenüber einen geringeren Übergangswiderstand zu erzielen, werden die Kontaktmittel vorzugsweise durch mehrere einzeln elastisch bewegliche Punktkontaktelemente pro Anschluß gebildet (Anspruch 16), wodurch man an jedem Punktkontaktelement mindestens eine Einpunktauflage und insgesamt eine echte Mehrpunktauflage erhält.

Besonders einfach realisiert man diese Maßnahme, indem jeweils zwei sich gegenüberliegende Punktkontaktelemente durch eine federnde Kontaktzange gebildet werden (Anspruch 17).

Einen ganz besonders einfachen Aufbau der Kontaktmittel und auch der stromzuführenden Leiterschienen erhält man, indem die Kontaktzangen als Doppelkontaktzange ausgebildet sind, die mit ihrer einen Kontaktzange die Leiterschiene und mit ihrer gegenüberliegenden anderen Kontaktzange den Sicherungskontakt greift (Anspruch 18).

Vorzugsweise sind in den Leiterschienen Vertiefungen für die Leiterschienen-Punktkontakte der Doppelkontaktezange ausgebildet, so daß an jedem Leiterschienen-Punktkontakt eine Zweipunktauflage realisiert wird (Anspruch 19). Die Leiterschienenkontakte haben hierdurch einen relativ zu den Sicherungskontakten kaum ins Gewicht fallenden Übergangswiderstand. Außerdem stellt der Eingriff der Doppelkontaktezange in die Vertiefungen sicher, daß sie mechanisch fester mit den Leiterschienen als mit den Sicherungskontaktmessern verbunden sind und somit nicht unerwünscht zusammen mit einem Sicherungseinsatz herausgezogen werden.

Lichtbögen sind auch deshalb so gefährlich, da sie relativ lang werden und dabei unberechenbare Formen annehmen können, so daß sie unerwartet als unerreichbar erachtete Raumgebiete erreichen können. Um dem durch Sicherstellen eines schnellen Löschen in einem definierten Raumbereich zu begegnen, ist das Schaltgerät vorzugsweise mit wenigstens einer Löschblechanordnung ausgestattet, die wenigstens einen aus dem Bereich der Schaltbewegungsbahn des Sicherungskontaktes wegführenden (d. h. nach außen führenden) Löschblechschlitz, und insbesondere mehrere übereinanderliegende Löschblechschlitzte bildet (Anspruch 20). Die Löschbleche beeinflussen das Magnetfeld des Lichtbogenstroms derart, daß der Lichtbogen in den Löschblechschlitz gedrängt wird. Man nennt das Magnetfeld daher auch "selbstinduziertes magnetisches Blasfeld". Wegen der damit einhergehenden Erhöhung der Lichtbogenspannung und Kühlung erlischt der Lichtbogen schnell in einem definierten Raumbereich. Da sich ein Lichtbogen unvorhersehbar auf einer oder der anderen Seite der Schaltbewegungsbahn ausbilden kann, ist die Löschblechanordnung vorteilhaft an beiden Seiten der Schaltbewegungsbahn, symmetrisch zu ihr, angeordnet.

Beim Einwandern des Lichtbogens in den Löschblechschlitz bzw. die mehreren übereinanderliegenden Löschblechschlitzte teilt er sich in mehrere Einzellichtbögen auf. In den Abschnitten dazwischen fließt der Lichtbogenstrom in den Löschblechen. Das von diesem, in den Löschblechen fließen den Strom herrührende Magnetfeld kann den Teillichtbogen im Löschblechschlitz entweder nach außen oder nach innen drängen, je nachdem ob der Strom von innen oder von außen zum Teillichtbogen hin fließt. Beispielsweise wird bei einer Löschblechanordnung mit drei übereinanderliegenden Löschblechen, die zwei Löschblechschlitzte bilden, dem weiter innen liegenden Teillichtbogen der Strom im mittleren Löschblech von außen zugeführt. Dieser Strom drängt den Teillichtbogen also unerwünschterweise nach innen. Um demgegenüber eine Stromzuführung von außen und damit ein Drängen nach außen sicherzustellen, ist wenigstens ein Teil der Löschbleche doppelwandig ausgeführt, wobei die beiden Löschblechwände an ihren inneren Enden elektrisch miteinander verbunden sind (Anspruch 21).

Vorzugsweise ist wenigstens ein Löschblechschlitz an seinem dem Schaltbewegungsbereich abgewandten (d. h. äußeren) Ende offen (Anspruch 22). Durch diese Maßnahme kann sich ein Teillichtbogen nach Durchwandern des Löschblechschlitzes nach außen aus diesem erstrecken, was wegen der damit einhergehenden Erhöhung der Lichtbogenspannung und Kühlung zu einem noch schnelleren Erlöschen führt. Besonders vorzugsweise mündet der Löschblechschlitz mit dem offenen Ende in eine Löschkammer. Dadurch ist sichergestellt, daß der Lichtbogen in einem bestimmten, dafür

vorgesehenen Bereich des Schaltgeräts erlischt, ohne irgendwelche Schäden anrichten zu können.

Vorteilhaft ist hierbei wenigstens eines der Löschbleche eines Löschblechschlitzes an seinem dem Schaltbewegungsbereich abgewandten Ende gekrümmmt (Anspruch 23). Die Krümmung trägt einerseits wegen der durch sie bedingten Feldverformung dazu bei, den Lichtbogen weiter nach außen zu drängen. Andererseits begünstigt sie auch wegen der mit ihr verbundenen Feldstärkeerniedrigung ein schnelleres Erlöschen des Lichtbogens. Besonders vorteilhaft sind bei mehreren übereinanderliegenden Löschblechschlitzten die Krümmungen an aufeinanderfolgenden Schlitzten alternierend ausgebildet, da dies eine räumliche Separierung der austretenden Teillichtbögen unterstützt.

Vorzugsweise ist (sind) das (die) Kontaktmitteln nächstgelegene(n) Löschblech(e) elektrisch mit den Kontaktmitteln verbunden (Anspruch 24). Diese Maßnahme unterstützt ein besonders rasches Eindringen des Lichtbogens in den den Kontaktmitteln nächstgelegenen Löschblechschlitz.

Der im Sicherungseinsatz verlaufende Schmelzdraht hat gegenüber den Leiterschienen und auch den Sicherungskontakten im allgemeinen einen relativ großen Widerstand, so daß sich der Sicherungseinsatz im Betrieb beträchtlich erwärmen kann. Um trotz des Einschlusses im Isolierstoffgehäuse für eine ausreichende Abfuhr dieser Verlustwärme zu sorgen, ist das Schaltgerät vorzugsweise mit wenigstens einem durchgehenden Kanal zur Belüftung des (der) Sicherungseinsatzes (-einsätze) ausgestattet (Anspruch 25).

Besonders vorzugsweise ist der durchgehende Kanal im wesentlichen gerade und ohne Verengungen ausgebildet (Anspruch 26), da so die Luftführung, z. B. durch Konvektion, mit hohem Fluß, geringem Strömungswiderstand und in einer im wesentlichen laminaren Strömung erfolgen kann, was eine besonders wirksame Kühlung ermöglicht.

Vorteilhaft münden die äußeren offenen Enden der Löschblechschlitzte in den durchgehenden Kanal, so daß wenigstens ein Abschnitt des durchgehenden Kanals gleichzeitig als Löschkammer dient (Anspruch 27). Neben einer kompakteren Bauform des Schaltgeräts trägt dies zur Kühlung des Lichtbogenplasmas und damit zum schnelleren Löschen der Lichtbögen bei.

Die Leiterschienen selbst geben im allgemeinen praktisch keine Verlustwärme ab. Sie stehen jedoch über die Kontaktmittel in thermischem Kontakt mit dem (den) Sicherungseinsatz (-einsätzen). Eine Kühlung der Leiterschienen trägt daher mittels Wärmeleitung indirekt zur Kühlung des (der) Sicherungseinsatzes (-einsätze) bei. Vorteilhaft weist deshalb das Schaltgerät wenigstens einen durchgehenden Kanal zur Belüftung der Leiterschienen auf (Anspruch 28).

Die Erfindung wird nun an Hand von Ausführungsformen und der beigefügten schematischen Zeichnung näher erläutert. In der Zeichnung zeigen:

Fig. 1 eine Seitenansicht eines Schaltgeräts in Schließstellung, wobei Einbauten im Schaltgerät als Phantomlinien gezeichnet sind;

Fig. 2 eine Seitenansicht des Schaltgeräts von Fig. 1, jedoch ohne Seitenwand eines Schaltgerätgehäuses;

Fig. 3 eine Seitenansicht des Geräts von Fig. 1 mit einem Sicherungseinsatz in Schließstellung, einem in Offenstellung und einem in einer aus dem Gerät genommenen Stellung, ohne die Seitenwand des Schaltgerätgehäuses und eines Anschlußraumgehäuses.

Fig. 4 einen Querschnitt entlang der Linie A-A in Fig.

2;

Fig. 5 einen vergrößerten Ausschnitt von Leiterschienen-Punktkontakten von Fig. 4;

Fig. 6 einen Querschnitt entlang Linie B-B in Fig. 2;

Fig. 7 einen vergrößerten Ausschnitt eines Antriebsspeicherbereichs von Fig. 3; und

Fig. 8 und 9 Ansichten zweier verschiedener Sicherungshalter mit Sicherungseinsatz, mit Blickrichtung in Längsrichtung des Sicherungseinsatzes.

Das Sicherungs-Lastschaltgerät 1 kann drei Messerkontakt-Schmelzsicherungseinsätze 2 des NH-Sicherungssystems aufnehmen. Es eignet sich somit zum Schalten und Absichern eines Drehstromkreises. Es hat die Form einer langgestreckten Schaltleiste, die neben anderen Schaltleisten an Sammelschienen angeordnet werden kann. Jeder Sicherungseinsatz 2 ist in einem eigenen Anschlußraum 3 angeordnet, der bis auf Belüftungsschlitz 4 und Öffnungen zu Belüftungskanälen 48 vollständig geschlossen ist, und zwar sowohl in Schließstellung eines Sicherungseinsatzes 2 (Fig. 3, oberer Sicherungseinsatz) als auch in dessen Offenstellung (Fig. 3, mittlerer Sicherungseinsatz).

Um diesen vollständigen Abschluß zu erzielen, wirken mehrere Gehäuse bzw. Gehäuseteile zusammen: Ein äußeres Schaltgerätgehäuse 5 in Form eines langgestreckten, an einer Längsseite offenen Quaders, das Leiterschienen 6 zur Stromzuführung und Kontaktmittel 7 zum Anschluß der Sicherungseinsätze 2 an die Leiterschienen 6 aufnimmt; darin beweglich eingesetzt ein Anschlußraumgehäuse 8, das ebenfalls im wesentlichen quaderförmig ist, an zwei gegenüberliegenden Seiten im wesentlichen offen ist und durch Zwischenwände 54 die in Längsrichtung hintereinander liegenden Anschlußräume 3 definiert, wobei eine offene Seite zum Durchgriff der Kontaktmittel 7 bestimmt ist; und eine Abdeckplatte 10 an einem Sicherungshalter 9, die auf die andere offene Seite aufsetzbar ist und sie verschließt. Das Schaltgerätgehäuse 5, die Anschlußraumgehäuse 8 und die Abdeckplatten 10 sind aus Isolierstoff gefertigt.

Die Leiterschienen 6 führen von Zugangsklemmen 11 am Boden des Schaltgerätgehäuses 5 (d. h. an der der offenen Seite gegenüberliegenden Seite) zu den Kontaktmitteln 7 eines Sicherungskontakts und von den Kontaktmitteln 7 des anderen Sicherungskontakts zu Abgangsklemmen 12, die für alle Phasen gemeinsam an einem Stirnende des Schaltgeräts 1 bei einer Abgangsabdeckung 13 angeordnet sind. Die Zugangsklemmen 11 sind so beabstandet, daß das Schaltgerät 1 an Sammelschienen anschließbar ist. Um an (je nach Landesnorm) verschiedenen beabstandeten Sammelschienen zu passen, weisen die Zugangsklemmen 11 Langlöcher auf. Das Schaltgerät 1 kann wahlweise mit den Abgangsklemmen 12 unten (Fig. 1) oder oben (Fig. 2) montiert werden, wofür — was unten noch näher erläutert wird — keinerlei Umbau, sondern nur ein Umstecken eines Bedienhebels 14 erforderlich ist.

Zur Ausführung der Schaltbewegung der Sicherungseinsätze 2 dient ein Ritzel-Zahnstangen-Trieb 15 (Fig. 2 und 3). Er setzt eine antriebsseitige Schwenkbewegung des Bedienhebels 14 abtriebsseitig in eine geradlinige Translationsbewegung des Anschlußraumgehäuses 8 und der daran gekoppelten Sicherungshalter 9 mit den Sicherungseinsätzen 2 um. Er umfaßt zwei Paare von miteinander kämmenden, gegenläufigen Ritzeln 16, die am Schaltgerätgehäuse 5 gelagert sind und von denen das in Einbaustellung obere bewegungsschlüssig mit dem Bedienhebel 14 verbunden ist. Die Ritzeln 16 kämmen in Längsrichtung außen mit Zahnstangen 17 am

Anschlußraumgehäuse 8. Ritzel 16 und Zahnstangen 17 sind im Inneren des Schaltgeräts 1 nahe der Seitenwände des Schaltgerätgehäuses 5 angeordnet. Die Paare von Zahnstangen 17 sind in Längsrichtung des Lastschaltgeräts 1 um wenigstens die Hälfte der Länge eines Anschlußraums 3, vorzugsweise um wenigstens eine ganze Länge hiervon, beabstandet, um ein Verkanten des Anschlußraumgehäuses 8 im Schaltgerätgehäuse 5 bei einer Schaltbetätigung auszuschließen. Die Sicherungseinsätze 2 sind mit ihren Längsachsen parallel zur Schaltgerätlängsachse angeordnet. Durch die geradlinige Translationsbewegung senkrecht zu dieser Achse werden sie mit beiden Sicherungskontakten bzw. Kontaktmessern 31 gleichzeitig von den Kontaktmitteln 7 abgezogen, so daß das Schaltgerät 1 eine Doppeltrennung jeder Phase realisiert.

Der Bedienhebel 14 ist als elastisch zusammendrückbarer Bügel ausgebildet, der in komplementäre Ausnehmungen 18 in den Ritzeln 16 eines gleichläufigen Ritzelpaars bewegungsschlüssig einrasten kann. Zum "Umbau" des Schaltgeräts 1 von einer Stellung mit z. B. unten liegenden Abgangsklemmen 12 in eine solche mit oben liegenden, löst man — ohne jedes Werkzeug — den Bedienhebel 14 durch Zusammendrücken aus den Ausnehmungen 18 des einen Paares von Ritzeln 16 und verbindet ihn mit dem anderen, dann oben liegenden Paar von Ritzeln 16 durch elastisches Einrasten in dessen Ausnehmungen 18. Somit kann in beiden Einbaustellungen ein Abschalten durch Ziehen des Bedienhebels 14 von oben zur Bedienungsperson hin nach unten erfolgen.

Das Schaltgerät 1 erlaubt, mit einer Ausschaltbetätigung wahlweise entweder nur eine Phase, zwei Phasen oder alle drei Phasen auszuschalten. Hierzu dient jeweils ein An- und Abkoppelmittel zwischen jedem Sicherungshalter 9 und dem Schaltgerätgehäuse 5 (Fig. 6 und 7). Es wird gebildet durch ein Paar von längsbeweglichen federbelasteten Raststangen 19 am Sicherungshalter 9, die bei nicht komprimierter Feder in Längsrichtung über gegenüberliegende Ränder der Abdeckplatte 10 ragen und in komplementäre Rastlöcher 20 im Anschlußraumgehäuse 8 eingreifen können. In dieser "ersten Raststellung" sind Sicherungshalter 9 und Anschlußraumgehäuse 8 miteinander gekoppelt. Bei einer Ausschaltbetätigung folgt der Sicherungshalter 9 und damit der Sicherungseinsatz 2 der — Bewegung des Anschlußraumgehäuses 8 nach außen, so daß die Kontaktmesser 31 der Sicherungseinsätze 2 von den Kontaktmitteln 7 getrennt werden.

Durch Zusammendrücken eines Griffpaars 21 auf der Abdeckplatte 10 können. Die Raststangen 19 aus den Rastlöchern 20 ausgerückt werden. Die Raststangen 19 sind außerdem seitlich verschiebbar, d. h. in einer Richtung senkrecht zur Längsrichtung und zur Schaltbewegungsrichtung. Diese seitliche Verschiebbarkeit ermöglicht es, die Raststangen 19 auf eine im wesentlichen glatte Fläche 22 neben dem Rastloch 20 aufzusetzen. Da die Reibungskraft zwischen Kontaktmitteln 7 und den Kontaktmessern 31 größer ist als diejenige zwischen den Raststangen 19 und den glatten Flächen 22, folgt der Sicherungshalter 9 der Bewegung des Anschlußraumgehäuses 8 bei einer Ausschaltbetätigung nicht; der Sicherungseinsatz 2 bleibt mit den Kontaktmitteln 7 verbunden. In dieser "zweiten Raststellung" sind also Sicherungshalter 9 und Anschlußraumgehäuse 8 voneinander abgekoppelt.

Aus sicherheitstechnischen Gründen sollen nach jedem Schaltspiel alle Sicherungshalter 9 mit dem An-

schlußraumgehäuse 8 gekoppelt sein, damit bei einer ggf. notwendigen Notabschaltung rasch alle Phasen getrennt werden können. Für ein automatisches Rücksetzen der An- und Abkoppelmittel in diese "Standardkopplung" dienen im Bereich jedes Rastloches 20 am Anschlußraumgehäuse 8 eine trichterförmige Rücksetzführung 23 und eine Mittennut 24. Die Rücksetzführung 23 umrandet die glatte Fläche 22 und begrenzt so die maximal mögliche seitliche Versetzung der Raststange 19. Auf dem Niveau des Rastloches 20 läßt sie die größte seitliche Versetzung zu, um das Abkoppeln des Sicherungshalter 9 vom Anschlußraumgehäuse 8 zu erlauben. Zum Boden des Anschlußraumgehäuses 8 hin verengt sie sich, so daß die seitlich versetzte Raststange 19 im Verlauf einer Ausschaltbetätigung des Schaltgeräts 1, der der abgekoppelte Sicherungshalter 9 ja nicht folgt, von ihr zur Mitte hin zurückgesetzt wird und schließlich aufgrund der Federbelastung in die gegenüber der glatten Fläche 22 vertiefe Mittennut 24 fällt. Fig. 6 veranschaulicht diesen Rücksetzvorgang durch Darstellung mehrerer aufeinanderfolgender "Stationen" der Raststange 19. Im Verlauf der anschließenden Einschaltbetätigung wird die Raststange 19 von der Mittennut 24 mittig geführt, so daß sie schließlich am Ende der Einschaltbetätigung aufgrund der Federbelastung selbsttätig wieder in das Rastloch 20 einrasten muß. Damit ist nach jedem Schaltspiel automatisch die Standardkopplung eingerichtet.

Um beispielsweise von dem in Fig. 1 gezeigten Zustand des Schaltgeräts 1 zu dem in Fig. 3 gezeigten zu gelangen, drückt man zunächst an der obersten Abdeckplatte 10 das Griffpaar 21 zusammen und übt dann einen seitlichen Druck darauf aus, um durch Ausrücken der Raststangen 19 aus den Rastlöchern 20 und Aufsetzen auf die glatten Flächen 22 die Kopplung zwischen dem obersten Sicherungshalter 9 und dem Anschlußraumgehäuse 8 zu lösen. Anschließend schwenkt man den Bedienhebel 14 von oben in die in Fig. 3 gezeigt waagrechte Position. Die Schwenkbewegung wird durch den Ritzel-Zahnstangen-Trieb 15 in eine geradlinige Translationsbewegung des Anschlußraumgehäuses 8 nach vorne umgesetzt. Dieser Bewegung folgen die gekoppelten Sicherungshalter 9, d. h. der untere und mittlere, jedoch nicht der abgekoppelte obere Sicherungshalter 9. Entsprechend werden der untere und der mittlere Sicherungseinsatz 2 von ihren Kontaktmitteln 7 weggezogen, während der obere Sicherungseinsatz 2 mit seinen Kontaktmitteln 7 verbunden bleibt. Durch weiteres Zusammendrücken des Griffpaars 21 des untersten Sicherungshalters 9 zieht man die Raststangen 19 vor einen äußeren Rand 25 der Rücksetzführung 23 und kann ihn dann mit dem daran gehaltenen Sicherungseinsatz 2 aus dem Anschlußraum 3 nehmen. Die Raststangen 19 des abgekoppelten Sicherungshalters 9 sind im Verlauf der Ausschaltbetätigung durch die Rücksetzführung 23 in die Mittennut 24 gesetzt worden. Nach Wiedereinsetzen des herausgenommenen Sicherungshalters 9 kann man das Schaltgerät 1 durch Schwenken des Bedienhebels 14 nach oben wieder in die in Fig. 1 gezeigte Schließstellung bringen. Hierdurch werden der untere und mittlere Sicherungseinsatz 2 wieder mit ihren Kontaktmitteln 7 in Verbindung gebracht. Die Raststangen 19 des oberen Sicherungshalters 9 gleiten im Verlauf der Einschaltbetätigung entlang der Mittennut 24 und rasten schließlich in die Rastlöcher 20 ein, so daß alle Sicherungshalter 9 wieder mit dem Anschlußraumgehäuse 8 gekoppelt sind.

Jeder Sicherungshalter 9 ist mit einem Antriebs-Speicher

in Form von Druckfedern 26, die zwischen die Abdeckplatte 10 und eine den Sicherungseinsatz 2 tragende Halterplatte 27 geschaltet sind, ausgestattet (Fig. 7). Das der Abdeckplatte 10 abgewandte Ende der Druckfedern 26 sitzt auf dem abgewinkelten Ende 28 einer mit der Abdeckplatte 10 verbundenen Lasche 29 auf, wohingegen das ihr zugewandte Ende auf einem stufenförmigen Endabschnitt 30 der Halterplatte 27 aufsitzt.

Bei einer Ausschaltbetätigung des Schaltgeräts 1 wird zunächst nur die mit dem Anschlußraumgehäuse 8 gekoppelte Abdeckplatte 10 unter Kompression der Druckfedern 26 nach außen bewegt. Die Halterplatte 27 mit dem Sicherungseinsatz 2 folgt dieser Bewegung nicht, solange die Haftreibungskraft zwischen den Kontaktmessern 31 und den Kontaktmitteln 7 größer als die Druckkraft der Druckfedern 26 ist. Letztere nimmt mit zunehmender Kompression der Druckfedern 26 zu, bis sie schließlich gleich groß wie die Haftreibungskraft wird. In diesem Augenblick werden die Kontaktmesser 31 von den Kontaktmitteln 7 weggezogen, wobei die Bewegung wegen des geringeren Gleitreibungsbeiwerts zügig erfolgt. Somit erfolgt die Ausschaltbewegung mit einer Geschwindigkeit, die nahezu unabhängig von der Schwenkgeschwindigkeit des Bedienhebels 14 ist. Durch einfache konstruktive Maßnahmen (z. B. Auswahl einer bestimmten Federcharakteristik, Federvorspannung, Reibung zwischen Laschen 29 und Halterplatten 27) ist die Geschwindigkeit der Ausschaltbewegung auf einen mittleren, für eine Lichtbogenlöschung optimalen Wert eingestellt.

Auch der Schwenkwinkel des Bedienhebels 14, bei dem das Auslösen des Antriebs-Speichers erfolgt, ist durch einfache konstruktive Maßnahmen (z. B. eine bestimmte Wahl der Druckfedorvorspannungen) konstruktiv einstellbar. Bei einer bevorzugten Ausführungsform sind die den verschiedenen Sicherungseinsätzen 2 zugeordneten Antriebs-Speicher konstruktiv verschiedenen eingestellt (z. B. durch verschiedene Druckfedorvorspannungen), derart, daß die Ausschaltbewegung bei verschiedenen Winkelstellungen und damit zeitlich versetzt stattfindet.

Bei einer Einschaltbetätigung tritt der Antriebsspeicher nicht in Aktion; hier wird die Betätigungs Kraft direkt über einen Anschlag 32 an der Lasche 29 auf die Halterplatte 27 übertragen.

Die Kontaktmittel 7 werden durch Doppelkontaktezzangen 33 mit in entgegengesetzte Richtungen weisenden Zangenöffnungen 34, 35 gebildet (Fig. 4). Im Inneren jeder Zangenöffnung 34, 35 sind zwei sich gegenüberliegende, im wesentlichen kugelabschnittsförmige Vorsprünge 36 ausgebildet. Die Doppelkontaktezzange 33 ist in der Längsrichtung der Zangenöffnungen 34, 35 zweigeteilt, und zwar in zwei Zangenbackenteile 37. Diese sind elastisch miteinander verbunden, hier durch zwei U-förmige, entgegengesetzt gerichtete Blattfedern 38. Die elastische Verbindung der Zangenbackenteile 37 ist derart, daß sie einer Spreizung der Zangenöffnungen 34, 35 entgegenwirkt, wobei die Zangenbackenteile 37 in Längsrichtung nicht völlig starr zueinander liegen, sondern eine kleine Strecke gegeneinander verschiebbar sind.

Die Leiterschienen 6 sind so geformt, daß sich jeweils unterhalb eines Kontaktmessers 31 ein mit diesem fluchten der Leiterschienenabschnitt 39 befindet, das heißt, daß die Mittelebenen des Kontaktmessers 31 und des Leiterschienenabschnitts 39 in einer Ebene liegen. In dem Leiterschienenabschnitt 39, und zwar in dessen gegenüberliegenden Flachseiten, befinden sich jeweils

mehrere prismenförmige Vertiefungen 40, die so angeordnet sind, daß bei aufgesteckter Doppelkontaktezange 33 die Vorsprünge 36 der ersten Zangenöffnung 34 in jeweils eine Vertiefung auf jeder Flachseite eingreifen können (Fig 5). Die Passung der ersten Zangenöffnung 34 an dem Leiterschienenabschnitt 39 — einerseits kugelabschnittförmige Vorsprünge 36, andererseits prismenförmige Vertiefungen 40 — stellt zusammen mit der gegenseitigen Längsverschiebbarkeit der die Vorsprünge 36 tragenden Zangenbackenteile 37 eine Vierpunktluflage der Doppelkontaktezange 33 an dem Leiterschienenabschnitt 39 sicher.

Die zweite Zangenöffnung 35 dient der Aufnahme des Kontaktmessers 31 in der Schließstellung des Sicherungseinsatzes 2. Die Passung — einerseits kugelabschnittförmige Vorsprünge 36, andererseits ebene Kontaktmesserflächen — stellt hier eine Zweipunktauflage der Doppelkontaktezange 33 sicher. Wegen der unterschiedlichen Passungen ist auch die Haltekraft an dem Kontaktmesser 31 geringer als an dem Leiterschienenabschnitt 39, so daß sichergestellt ist, daß bei der Ausschaltbewegung das Kontaktmesser 31 die Doppelkontaktezange 33 nicht etwa mitnimmt, sondern diese mit dem Leiterschienenabschnitt 39 verbunden bleibt.

Mehrere Doppelkontaktezangen 33 sind pro Kontaktmesser 31 angeordnet, um eine Vielpunktauflage und damit einen relativ geringen elektrischen Übergangswiderstand zu realisieren. Bei der gezeigten Ausführungsform mit drei Doppelkontaktezangen 33 pro Kontaktmesser 31 ist beispielsweise an jedem Kontaktmesser 31 eine Sechspunktauflage und an dem zugeordneten Leiterschienenabschnitt 39 eine Zwölfpunktauflage realisiert.

Eine Löschblechanordnung 41 für jeden Sicherungskontakt befindet sich in Ausschaltbewegungsrichtung unmittelbar außerhalb der Kontaktmittel 7 (Fig. 4). Sie umfaßt zwei zur Mittelebene des Kontaktmessers 31 symmetrische Löschblechstapel 42. Diese werden jeweils durch mehrere, in Ausschaltbewegungsrichtung übereinander angeordnete Löschbleche gebildet, die aus einem stromleitenden und magnetisierbaren Material sind. Bei dem hier gezeigten Schaltgerät 1 umfaßt ein Löschblechstapel 42 drei Löschbleche 43—45, die zwischen sich zwei vom Schaltbewegungsbereich seitlich nach außen führende Löschblechschlitzte 46, 47 bilden. Das erste Löschblech 43 berührt mit seinem inneren Ende die Doppelkontaktezangen 33, so daß es elektrisch mit ihnen in Kontakt steht. An seinem äußeren Ende ist es gekrümmmt, im Querschnitt hat es die Form eines "J". Das zweite Löschblech 44 hat im Querschnitt im wesentlichen die Form eines "U" mit nach innen gewandtem Verbindungsbogen. Anders ausgedrückt ist es doppelwandig, wobei den Löschblechschlitzte 46, 47 jeweils eine Wand zugewandt ist und die beiden Wände nur an deren inneren Enden elektrisch miteinander verbunden sind. Das dritte Löschblech 45 ähnelt im Querschnitt der Form eines "O", das jedoch elektrisch an seiner in Schaltbewegungsrichtung äußeren Seite unterbrochen ist. Die Krümmungen im äußeren Bereich des ersten 43 und dritten 45 Löschblechs sind einander entgegengesetzt. Die beiden Wände des zweiten Löschblechs 44 sind in ihrem äußeren Bereich mit einem spitzen Winkel (z. B. ungefähr jeweils 20°) abgewinkelt, so daß sie jeweils der Krümmung des ersten 43 bzw. dritten 45 Löschblechs etwas folgen. Die Löschbleche 43—45 sind mit ihren inneren Enden so angeordnet, daß sie dem Messerkontakt 31 bei dessen Schaltbewegung möglichst nahe kommen, ohne ihn jedoch zu berühren.

Die Löschblechschlitzte 46, 47 führen somit von dem Schaltbewegungsbereich nach außen, wo sie aufgrund der entgegengesetzten Krümmungen und Abwinklungen etwas voneinander weg weisend in einen von zwei seitlichen Kanälen 48 zur Belüftung der Sicherungseinsätze 2 münden.

Bei einer Ausschaltbewegung des Sicherungseinsatzes 2 bildet sich im Augenblick der Trennung des Kontaktmessers 31 von den Vorsprünge 36 der zweiten Zangenöffnung 35 ein Lichtbogen dazwischen aus. Dieser wird von einem, im wesentlichen durch die Löschbleche 43—45 bedingten, selbsterregten magnetischen Blasfeld seitlich zu einem der beiden Löschblechstapel 12 hin gedrängt und tritt, unterstützt durch die elektrische Verbindung des ersten Löschblechs 43 mit den Kontaktmitteln 7, in den ersten Löschblechschlitz 46 ein. Im Verlauf der weiteren Ausschaltbewegung verlängert sich der Lichtbogen, dringt auch in den zweiten Löschblechschlitz 47 ein und wird in Teillichtbögen aufgeteilt, die jeweils die Löschblechschlitzte 46, 47 und ggf. die Strecke vom dritten Löschblech 45 zum Messerkontakt 31 überspringen. Zwischen den Teillichtbögen fließt der Lichtbogenstrom in den Löschblechen 43—45, und zwar wegen der doppelwandigen, innen verbundenen Ausbildung des mittleren Löschblechs 44 nur jeweils zwischen dem inneren Löschblechende und dem Ort des Teillichtbögens. Aufgrund dieser Stromzuführung werden die Teillichtbögen in den Löschblechschlitzte 46, 47 weiter magnetisch nach außen gedrängt, bis sie sich schließlich in den freien Raum des Kanals 48 ausbauchen, wie es in Fig. 5 bei Bezugszeichen 55 veranschaulicht ist. Durch die hiermit verbundene Erhöhung der Lichtbogenspannung und Kühlung erlöschen sie rasch in dem dafür vorgesehenen Bereich der Kanäle 48. Diese dienen somit auch als Lichtbogen-Löschkammern.

Die beiden Kanäle 48 zur Belüftung der Sicherungseinsätze 2 durchziehen das Lastschaltgerät 1 im wesentlichen über dessen gesamte Länge in einer seitlichen Position innerhalb der Ritzel 16 und Zahnräder 17, und zwar im wesentlichen gerade und ohne Verengungen des freien Kanalquerschnitts. Dieser beträgt für beide Kühikanäle 48 zusammen wenigstens 1/12, vorzugsweise wenigstens 1/10 und besonders vorzugsweise wenigstens 1/9 der Gesamtquerschnittsfläche (mit Schnittrichtung senkrecht zur Längsachse) des Lastschaltgeräts 1. Die Kanäle 48 öffnen sich jeweils in den Anschlußräumen 3 zu den Sicherungseinsätzen 2 hin und ermöglichen so die Abführung der von der Verlustwärme der Sicherungseinsätze 2 erwärmten Luft, bei im wesentlichen senkrechter Einbaulage durch Konvektion.

Unter den Kanälen 48 (d. h. zum Boden des Schaltgerätgehäuses 5 hin) ist außerdem jeweils ein Kanal 49 zur Belüftung der Leiterschienen 6 ausgebildet, die das Schaltgerät 1 ebenfalls im wesentlichen gerade und ohne Verengungen über seine gesamte Länge durchziehen. Der freie Querschnitt beider Kanäle 49 zusammen beträgt wenigstens ein 1/36, vorzugsweise wenigstens ein 1/30 und besonders vorzugsweise wenigstens ein 1/27 des Gesamtquerschnitts des Schaltgeräts 1. Die (ggf. durch Konvektion) in den Kanälen 49 bewegte Luft überstreicht einen Teil der Oberfläche der seitlichen Leiterschienen 6 und kühlte diese, was durch Wärmeleitung zur Kühlung der Sicherungseinsätze 2 beiträgt.

Das Schaltgerät 1 ist für verschiedene Sicherungsnormen geeignet. Hierzu müssen nur entsprechend angepaßt Sicherungshalter 9 verwendet werden. Entsprechend der Schweizer SEV-Norm ist beispielsweise für

jedes Kontaktmesser 31 an der Halterplatte 27 ein Haken 50 mit einer Andruckfeder 51 angeordnet, zwischen die das Kontaktmesser 31 einschnappen kann (Fig. 8). Sicherungseinsätze 2 gemäß der deutschen DIN-Norm sind hingegen bereits mit einer T-förmigen Haltenase 52 ausgestattet, die durch ein Loch 53 in die Halterplatte 27 einsetzbar ist und in einen engeren Teil des Lochs 53 verschiebbar ist, so daß sie durch Hinterschneiden der Halterplatte 27 gehalten werden (Fig. 9).

5

10

Patentansprüche

1. Sicherungs-Lastschaltgerät und/oder -Trennschaltgerät mit:
 - a) einem Isolierstoffgehäuse (5); und
 - b) wenigstens einem Anschlußraum (3) mit Kontaktmitteln (7) zur Aufnahme eines von einem Sicherungshalter (9) gehaltenen Sicherungseinsatzes (2) und zu dessen Anschluß an Leiterschienen (6);
 - c) wobei der Sicherungshalter (9) von einer Bedienungsperson bewegbar ist, derart, daß mit ihm der Sicherungseinsatz (2) berührungslos schaltbar ist.
2. Schaltgerät nach Anspruch 1, mit mehreren, insbesondere drei Anschlußräumen (3).
3. Schaltgerät nach einem der vorhergehenden Ansprüche, welches für Sicherungseinsätze (2) mit Messerkontaktstücken (31), insbesondere für NH-Sicherungseinsätze, ausgebildet ist.
4. Schaltgerät nach einem der vorhergehenden Ansprüche, welches so ausgebildet ist, daß bei der Schaltbewegung in die Offenstellung eine Zwei-fach-Unterbrechung stattfindet.
5. Schaltgerät nach einem der vorhergehenden Ansprüche, mit einem für die Ausführung der Schaltbewegung vorgesehenen Bedienhebel (14).
6. Schaltgerät nach einem der vorhergehenden Ansprüche, mit einem Getriebe, das abtriebsseitig an den Sicherungshalter (9) und antriebsseitig an eine von einer Bedienungsperson betätigbare Einrich-tung, insbesondere den Bedienhebel (14) gekoppelt ist.
7. Schaltgerät nach Anspruch 6, bei welchem das Getriebe zwei gegenläufig wirkende Antriebselemente aufweist, an welche der Bedienhebel (14) wahlweise ankoppelbar ist.
8. Schaltgerät nach Anspruch 6 oder 7, bei welchem das Getriebe abtriebsseitig an wenigstens zwei in Längsrichtung des Schaltgerätes (1) beabstandeten Orten an dem/den Sicherungshalter(n) (9) oder an wenigstens einem diese(n) tragenden Teil (5) an-greift, wobei das Getriebe insbesondere für gerad-linige Bewegungen ausgelegt ist.
9. Schaltgerät nach Anspruch 8, bei welchem das Getriebe zwei in der Längsrichtung beabstandete Ritzel-Zahnstangen-Triebe (15) umfaßt.
10. Schaltgerät nach Anspruch 7 und 9, bei welchem die gegenläufig wirkenden Antriebselemente ge-genläufige Ritzel (16) des Ritzel-Zahnstangen-Triebs (15) sind, an denen der Bedienhebel (14) durch eine lösbare Verbindung, insbesondere eine elastische Rastverbindung, wahlweise befestigbar ist.
11. Schaltgerät nach Anspruch 2 oder einem der auf Anspruch 2 rückbezogenen Ansprüche 3 bis 9, mit Mitteln zum wahlweisen An- oder Abkoppeln der Sicherungshalter (9) untereinander, derart, daß nur

25

30

35

40

45

50

55

60

65

ein, mehrere oder alle Sicherungshalter (9) gemein-sam eine Schaltbewegung ausführen.

12. Schaltgerät nach Anspruch 11, bei welchem die An- und Abkoppel-Mittel so ausgebildet sind, daß eine eingestellte Kopplung während oder nach Ausführung eines Schaltspiels automatisch durch eine Standardkopplung ersetzt wird, welche insbesondere derart ist, daß beim nächsten Schalten alle Sicherungshalter (9) die Schaltbewegung gemein-sam ausführen.

13. Schaltgerät nach Anspruch 11 oder 12, bei welchem die An- und Abkoppelmittel zwischen einer ersten und einer zweiten Raststellung bewegbare Rastmittel aufweisen, derart, daß ein Sicherungshalter (9) in der ersten Raststellung der Rastmittel die Schaltbewegung ausführt, nicht hingegen in der zweiten Raststellung.

14. Schaltgerät nach einem der vorhergehenden Ansprüche, bei welchem für den (die) Sicherungsein-satz (-einsätze) (2) jeweils ein Antriebs-Speicher, insbesondere eine Feder (26) vorgesehen ist, der zumindest einen Teil der beim Betätigen des Schaltgeräts (1) aufgebrachten Energie zunächst speichert und dann in einem Zug für die Schaltbe-wegung freigibt.

15. Schaltgerät nach den Ansprüchen 2 und 14, bei welchem die Antriebs-Speicher so ausgebildet sind, daß die Freigabe der gespeicherten Energie für mehrere oder alle Sicherungshalter (9) zeitlich ver-setzt erfolgt.

16. Schaltgerät nach einem der vorhergehenden Ansprüche, bei welchem die Kontaktmittel (7) pro Anschluß durch mehrere einzeln elastisch bewegliche Punktkontaktelemente gebildet werden.

17. Schaltgerät nach Anspruch 16, bei welchem je-weils zwei sich gegenüberliegende Punktkontakt-elemente durch eine federnde Kontaktzange gebil-det werden.

18. Schaltgerät nach Anspruch 17, bei welchem die Kontaktzangen als Doppelkontakte (33) ausgebildet sind, die mit ihrer einen Kontaktzange (34) die Leiterschienen (6) und mit ihrer gegenüberlie-genden anderen Kontaktzange (35) den Siche-rungskontakt (31) greift.

19. Schaltgerät nach Anspruch 18, bei welchem in den Leiterschienen (6) Vertiefungen (40) für die Leiterschienen-Punktkontakte der Doppelkontakte (33) ausgebildet sind, so daß an jedem Leiter-schienen-Punktkontakt eine Zweipunktauflage realisiert wird.

20. Schaltgerät nach einem der vorhergehenden Ansprüche, mit wenigstens einer Löschblechanord-nung (41), die wenigstens einen aus dem Bereich der Schaltbewegungsbahn des Sicherungskontaktes (31) wegführenden Löschblechschlitz (46, 47), und insbesondere mehrere übereinanderliegende Löschblechschlitz (46, 47), bildet.

21. Schaltgerät nach Anspruch 20, bei welchem we-nigstens ein Teil der Löschbleche (43, 44, 45) dop-pelwandig ausgeführt ist, wobei die Löschblech-wände der Doppelwand an ihren dem Schaltbewe-gungsbereich zugewandten Enden elektrisch mit-einander verbunden sind.

22. Schaltgerät nach Anspruch 20 oder 22, bei wel-chem wenigstens ein Löschblechschlitz (46, 47) an seinem dem Schaltbewegungsbereich abgewandten Ende offen ist und insbesondere in eine Lösch-kammer mündet.

23. Schaltgerät nach Anspruch 22, bei welchem wenigstens eines der Löschebleche eines Löscheblechschlitzes (46, 47) an seinem dem Schaltbewegungsbereich abgewandten Ende gekrümmmt ist, wobei insbesondere bei mehreren übereinanderliegenden Löscheblechschlitzten (46, 47) die Krümmungen an aufeinanderfolgenden Schlitzten (46, 47) alternierend sind. 5

24. Schaltgerät nach einem der Ansprüche 20 bis 23, bei welchem das (die) den Kontaktmittein (7) 10 nächstgelegene(n) Löchblech(e) (43) elektrisch mit den Kontakt mitteln (7) verbunden ist.

25. Schaltgerät nach einem der vorhergehenden Ansprüche, mit wenigstens einem durchgehenden Kanal (48) zur Belüftung des (der) Sicherungeinsatzes (-einsätze) (2). 15

26. Schaltgerät nach Anspruch 25, bei welchem der durchgehende Kanal (48) im wesentlichen gerade und ohne Verengungen ausgebildet ist.

27. Schaltgerät nach Anspruch 21 und 25 oder 26, 20 bei welchem wenigstens ein Abschnitt des durchgehenden Kanals (48) gleichzeitig als Löschkammer dient.

28. Schaltgerät nach einem der vorhergehenden Ansprüche, welches wenigstens einen durchgehenden Kanal (49) zur Belüftung der Leiterschienen (6) 25 aufweist.

Hierzu 6 Seite(n) Zeichnungen

30

35

40

45

50

55

60

65

- Leerseite -

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9