ER-to-Relational Mapping

- Mapping from ER to Relational
 - Map each entity to a table
 - Map each attribute to a column
 - Map relationships
 - Map many-to-many relationships to a table
 - Use key propagation for one-to-one and one-tomany relationships
 - If relationship has attributes then map it a table

1

ER-to-Relational Mapping (Cont.)

- Mapping keys
- For strong entities use the key as the key for the corresponding table
- For weak entities use the combination of the entity's key and the key from the strong entity
- Use the keys from the two entity types as the key for the relationship (table)

EER Mapping

- Mapping high degree relationship type
- Mapping generalization and specialization

First alternative:

Create one table for $S(\underline{s1}, s2, s3)$ Create one table for $A(\underline{s1}, a)$ Create one table for $B(\underline{s1}, b)$

Second alternative:

Create one table for $A(\underline{s1}, s2, s3,a)$ Create one table for $B(\underline{s1}, s2,s3,b)$

3

EER Modeling

 Mapping <u>disjoint</u> and <u>overlapping</u> generalization and specialization

- Third alternative: Create one table
 - If Disjoint:

C(s1, s2, s3, a, b)

Note: s3 is the qualifying attribute

• If Overlapping:

C(S1, s2, s3, aflag, a, bflag, b)

When aflag true then take value of a

When bflag true then take value of b

EER Modeling

- For total participation
 - At least one of the flag must be true
 - Why?
- For non-total participation
 - For non-total participation one or both flags may be false
 - Why?
- The last approach would work for both disjoint and overlapping generalization and specialization
- That is an over-kill for disjoint since the qualifying attribute plays the same role

5

EER Mapping

- Mapping of Shared Subclass
 - 9.2.2 (pp297)
- Mapping of Categories
 - 9.2.3 (pp297-298)