Politecnico di Milano – Facoltà di Ingegneria dei Sistemi – A.A. 2011/2012 Corso di Laurea in Ingegneria Fisica – Corso di Metodi Analitici e Statistici per l'Ingegneria Fisica Secondo appello di Metodi Analitici (25-6-12) – Prof. I. FRAGALÀ

I. ANALISI COMPLESSA

(i) Fissato $z_0 \in \mathbb{C}$, siano f(z) e g(z) due funzioni di variabile complessa rispettivamente con singolarità essenziale in z_0 e con singolarità di tipo polo in z_0 . Si dimostri che la funzione h(z) = f(z)g(z) possiede una singolarità essenziale in z_0 .

[Suggerimento: si ragioni per assurdo, concludendo che se così non fosse allora anche f(z) avrebbe una singolarità di tipo polo in z_0]

(ii) Si classifichino le singolarità della funzione

$$\frac{e^{\frac{1}{z^2}}z}{\sin^3(z)} \ .$$

Per la singolarità $z_0 = 0$ si usi il punto (i).

(iii) Calcolare il seguente integrale:

$$\int_{C_1(0)} \frac{e^{\frac{1}{z^2}} z}{\sin^3(z)} \, \mathrm{d}z \ ,$$

dove $C_1(0)$ è la circonferenza di centro 0 e raggio 1 nel piano complesso percorsa una volta in senso antiorario.

Soluzione.

(i) Supponiamo per assurdo che la singolarità di h(z) in z_0 sia un polo di ordine k (eventualmente con k=0 nel caso di singolarità eliminabile). Sia inoltre k_0 l'ordine del polo di g(z). Abbiamo per definizione che

$$\lim_{z \to z_0} f(z)g(z)(z - z_0)^k$$

esiste finito ed è diverso da zero. Ma allora anche

$$\lim_{z \to z_0} f(z)(z - z_0)^{k - k_0} = \lim_{z \to z_0} f(z)g(z)(z - z_0)^k \lim_{z \to z_0} \frac{1}{(z - z_0)^{k_0} g(z)}$$

esiste finito ed è diverso da zero. Ciò significherebbe che f(z) in z_0 ha un polo di ordine $k-k_0$, il che è impossibile perché per ipotesi z_0 è una singolarità essenziale per f(z).

- (ii) La funzione $\frac{e^{z^{-2}}z}{\sin^3(z)}$ possiede singolarità nei punti $z_k=k\pi,\ k\in\mathbb{Z}$. Per $k\neq 0$ sono tutti poli di ordine 3, mentre la singolarità $z_0=0$ è di tipo essenziale perché lo è per la funzione $f(z)=e^{z^{-2}}$ e $g(z)=\frac{z}{\sin^3(z)}$ ha un polo di ordine 2 in z_0 .
- (iii) L'integrale è nullo dato che l'integranda è una funzione pari e quindi il suo residuo è 0.

II. ANALISI FUNZIONALE

Si consideri la seguente successione di funzioni:

$$f_n(x) := \frac{1}{\left(1 + \frac{x}{n}\right)^n} \qquad \forall x \in [0, 1] .$$

- (i) Calcolare il limite puntuale f(x) di $f_n(x)$.
- (ii) Discutere la convergenza di f_n negli spazi $L^p[0,1]$ per ogni $p \in [1,\infty)$.

Soluzione.

(i) Per ogni $x \in (0,1]$ si ha

$$\lim_{n \to \infty} f_n(x) = \frac{1}{\left[\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^{\frac{n}{x}}\right]^x} = e^{-x} ,$$

mentre per x=0 la successione è identicamente uguale a 1. Perciò il limite puntuale è $f(x)=e^{-x}$ per ogni $x\in[0,1]$.

(ii) Al punto precedente abbiamo mostrato che f_n converge puntualmente alla funzione e^{-x} . Siccome la successione è dominata dalla funzione costante d(x)=1, che appartiene a $L^p[0,1]$ per ogni $p\in[1,\infty]$, dal teorema della convergenza dominata deduciamo che f_n converge a e^{-x} anche in $L^p[0,1]$ per ogni $p\in[1,\infty)$.

III. SERIE/TRASFORMATA DI FOURIER

- (i) Si enunci l'identità di Parseval in uno spazio di Hilbert.
- (ii) Si consideri la funzione $f: \mathbb{R} \to \mathbb{R}$, periodica di periodo 2π , definita su $[0, 2\pi]$ da

$$f(t) = \frac{1}{(t - \sin t)^{\alpha}} .$$

Si dica per quali valori del parametro $\alpha > 0$ converge la serie $\sum_{k \geq 1} a_k^2 + b_k^2$, dove a_k e b_k sono i coefficienti di Fourier di f(t).

Soluzione.

- (i) Si veda uno dei testi consigliati.
- (ii) Per l'identità di Parseval la serie di Fourier di f appartiene a l^2 se e solo se $f \in L^2(0, 2\pi)$. Poiché per $t \to 0$ si ha $f(t) \sim t^{-3\alpha}$, deve essere $6\alpha < 1$, ovvero $\alpha < 1/6$.