Simulating Mobile MOUD Clinics and Targeted Overdose Prevention for Opioid Use Disorder in Massachusetts: A Simplified Markov Model Inspired by RESPOND

Siqi Li

Department of Biostatistics Brown University

May 8th, 2025

Table of Contents

Introduction

Methods

Results

4 Discussion

Introduction: Background & Challenges

- U.S. opioid crisis: major ongoing public health emergency
- Opioid Use Disorder (OUD): chronic, relapsing condition → high overdose death risk
 - Overdose deaths rising consistently for over 20 years
- Medications for OUD (MOUD) (e.g., buprenorphine, methadone):
 effective but underused
 - Barriers: provider shortage, stigma, transport, regulation
- High-risk groups: homeless, recently incarcerated, rural "treatment deserts"
 - High overdose risk post-jail/detox release
 - Gaps in integrated, community-based recovery support

Introduction: Opportunities & Study Goals

- Mobile MOUD clinics & telehealth: promising, low-barrier strategies
 - Deliver person-centered care in underserved areas and treatment deserts
 - Overcome barriers such as stigma, provider shortage, transportation
 - Improve engagement among high-risk groups (e.g., post-incarceration, homeless)
- Simulation modeling as a decision-support tool

Siqi Li

- Enables evaluation of intervention impact before large-scale implementation
- Study goal: Develop a simplified Markov model inspired by RESPOND
 - Simulate weekly transitions among key OUD states
 - Compare outcomes under status quo vs. mobile MOUD + targeted prevention
 - Inform MOUD expansion strategies and overdose prevention planning

Markov Model Inspired by RESPOND 05/08/2025

Methods: RESPOND Model Structure

Figure 1: RESPOND Core
Simulation Model

Figure 2: RESPOND's Care Delivery Model

Methods: Simplified Markov Model Structure

Figure 3: Simplified Markov Model

- Compulsive Use Active opioid use without treatment
- On MOUD Non-active use while on medication (e.g., methadone, buprenorphine, naltrexone)
- Withdrawal Non-active use after stopping treatment or detox
 - Fatal Overdose Death from opioid overdose
- Death Death from other causes (absorbing state)

05/08/2025

Methods: Data and Parameter Estimation

Table 1: Weekly Transition Probabilities

From State To State		Value	Source
Compulsive Use	On MOUD	0.002675905	MA DPH
Compulsive Use	Withdrawal	0.00058	10
Compulsive Use	Fatal Overdose 0.0001253437		7, MA DPH
Compulsive Use	Death	Death 0.0001683808 MA I	
Compulsive Use	Compulsive Use	0.9964504	-
On MOUD	Withdrawal	0.0567	7, N-SSATS
On MOUD	Compulsive Use	0.002448776	7, N-SSATS
On MOUD	Death	0.000162375	MA DPH
On MOUD	On MOUD	0.9406888	-
Withdrawal	Compulsive Use	0.00329	11, 12
Withdrawal	Death	0.000162375	MA DPH
Withdrawal	Withdrawal	0.9965476	-
Fatal Overdose	Death	1	-
Death	Death	1	-

Methods: Data and Parameter Estimation

Table 2: Probability of Fatal Overdose Within One Week Following Relapse

Relapse From State	Value	Source
On MOUD	0.0000713976	13, 14
Withdrawal	0.0002506874	13, 14

```
# Fill in transition probabilities for the status quo scenario
P_statusquo["Compulsive Use", ] <- c(0.9964504, 0.002675905, 0.00058, 0.0001253437, 0.0001683808)
P_{\texttt{statusquo}}["0n \ \texttt{MOUD"}, \ ] <- \ c(0.002448776*(1-0.0000713976), \ 0.9406888, \ 0.0567, \ 0.002448776*0.0000713976, \ 0.000162375)
P_statusquo["Withdrawal", ] <- c(0.00329*(1-0.0002506874), 0, 0.9965476, 0.00329*0.0002506874, 0.000162375)
P_statusquo["Fatal Overdose", ] <- c(0, 0, 0, 0, 1)
P_statusquo["Death", ] <- c(0, 0, 0, 0, 1)
```

Table 3: Final Weekly Transition Probability (Status Quo)

From State	Compulsive Use	On MOUD	Withdrawal	Fatal Overdose	Death
Compulsive Use	0.996450400	0.002675905	0.000580000	0.0001253437	0.0001683808
On MOUD	0.002448601	0.940688800	0.056700000	0.0000001748	0.0001623750
Withdrawal	0.003289175	0.000000000	0.996547600	0.0000008248	0.0001623750
Fatal Overdose	0.000000000	0.000000000	0.000000000	0.0000000000	1.00000000000
Death	0.000000000	0.000000000	0.000000000	0.0000000000	1.0000000000

Methods: Intervention Design

- Simulated a simplified Markov model with weekly cycles over 5 years (260 weeks)
- Initial cohort: 300,000 individuals in Compulsive Use state
- Compared two scenarios:
 - Status Quo: baseline treatment engagement and relapse risk
 - Enhanced Intervention:
 - ↑ Probability of initiating MOUD (simulating mobile clinic outreach)
 - \$\diamonup\$ Overdose risk during relapse (reflecting naloxone & peer support)
- Outputs: weekly population distribution, cumulative overdose deaths

Table 4: Final Weekly Transition Probability (Intervention Status)

From State	Compulsive Use	On MOUD	Withdrawal	Fatal Overdose	Death
Compulsive Use	0.989132692	0.010000000	0.0005757406	0.0001244232	0.0001671442
On MOUD	0.002448759	0.940688800	0.0567000000	0.0000000171	0.0001623750
Withdrawal	0.003289342	0.000000000	0.9965476000	0.0000006580	0.0001623750
Fatal Overdose	0.000000000	0.000000000	0.0000000000	0.0000000000	1.00000000000
Death	0.000000000	0.000000000	0.0000000000	0.0000000000	1.0000000000

Methods: Sensitivity Analysis

Goal: Assess robustness of model outcomes under uncertainty in key parameters.

Deterministic Sensitivity Analysis

- Varied one parameter at a time; others held constant
- Key parameters:
 - Weekly MOUD initiation probability from *Compulsive Use*
 - Overdose risk during relapse from *On MOUD* and *Withdrawal*
- Parameters ≥ 0.001 : $\pm 50\%$ range
- Extremely small probabilities: fixed alternative values based on published estimates

Methods: Sensitivity Analysis

Probabilistic Sensitivity Analysis

- 1,000 Monte Carlo simulations per intervention scenario
- Transition probabilities sampled from beta distributions
- Parameters calibrated using means and standard errors from:
 - Administrative records
 - Prior modeling studies
- Generated 95% uncertainty intervals for:
 - Cumulative overdose deaths
 - State distribution averages
 - Relative benefit of enhanced intervention

Table 5: Outcomes of Enhanced Intervention vs Status Quo

Outcome	Status Quo, mean value (95% UI)	Intervention, mean value
Overdose Deaths (Year 1)	1794.946 (1749.351-1834.708)	1508.608
Overdose Deaths (Year 5)	6994.380 (6405.431-7546.728)	4180.659
Alive (Year 1)	295604.5 (295560.8-295654.5)	295918.1
Alive (Year 5)	280435.0 (279857.5-281050.4)	283369.3
Compulsive Use (Year 1)	252519.8 (240089.6-263492.1)	178212.5
Compulsive Use (Year 5)	164694.8 (141521.0-187601.2)	71525.27
On MOUD (Year 1)	11463.40 (7930.144-15402.55)	33306.45
On MOUD (Year 5)	7540.603 (5799.246-9153.694)	12388.40
Withdrawal (Year 1)	31621.30 (24138.62-40162.31)	84399.09
Withdrawal (Year 5)	108199.6 (86457.00-130375.7)	199455.7

Table 6: One-way Deterministic Sensitivity Analysis

Parameter	Value	Overdose Deaths	Compulsive Use	On MOUD	Withdrawal
CU_to_MOUD	0.001338	7874.85	201619.6	4627.94	73267.09
$CU_{to}MOUD$	0.004014	6282.79	136275.7	9479.42	135424.4
ODOnMOUD	0.000001	7005.97	164361.4	7591.18	108471.2
ODOnMOUD	0.000100	7006.54	164361.0	7591.16	108471.1
$OD_Withdrawal$	0.000001	6992.40	164372.0	7591.62	108473.5
$\mathrm{OD}_{-}\mathrm{Withdrawal}$	0.000100	6997.94	164367.7	7591.44	108472.6

Key Findings: Impact of Intervention

- Mobile MOUD clinics and overdose prevention strategies can substantially reduce fatal overdoses.
- The intervention promotes shifts into **more stable**, **recovery-oriented states**, reducing time spent in compulsive use.
- Even modest improvements in MOUD access and reduced relapse risk generate large population-level benefits.
- Supports statewide policy planning to expand low-barrier treatment access and recovery services.

Key Findings: Population-Level Outcomes

- **2,800 lives saved** over 5 years (40% reduction in cumulative overdose deaths).
- Significant redistribution of population:
 - ↓ Compulsive Use
 - ↑ Withdrawal and On MOUD
- Reflects improved MOUD **initiation**, **retention**, and longer periods of abstinence.
- Consistent with **clinical goals** of long-term stabilization and relapse prevention.

Key Findings: Time Trends and Cumulative Effects

- Overdose death reduction was modest at first:
 - Year 1: $\downarrow 0.01$ percentage points
 - Year 5: ↓ 0.94 percentage points
- Benefits compound over time as more people engage in treatment.
- Shrinking high-risk population → progressively larger impact on mortality.
- Highlights importance of **early and sustained intervention** for long-term gains.

Key Findings: Impact of Intervention

Figure 4: Cumulative Overdose Deaths: Intervention vs. Status Quo

Discussion: Model Structure & Limitations

• Strengths:

- Captures key OUD behaviors: relapse, dropout, reengagement
- Weekly cycles allow for fine-grained transition tracking
- Transparent, interpretable structure for policy use

• Limitations:

- Closed cohort; no incident OUD cases included
- Parameters derived from literature and may not reflect local heterogeneity
- Does not model:
 - Mixed adherence (MOUD + opioid use)
 - Comorbidities or social networks
 - Economic costs and resource use

Improved Model Structure

Figure 4: Improved Simplified Markov Model

- [1] National Academies of Sciences, Engineering, and Medicine. *Substance use disorders: Opioid use disorder*. Washington, DC: The National Academies Press, 2020.
- https://www.ncbi.nlm.nih.gov/books/NBK553166/
- [2] K. Herlinger, A. Lingford-Hughes. *Opioid use disorder and the brain: A clinical perspective*. **Addiction**, 117(2):495–505, 2022.
- https://doi.org/10.1111/add.15636
- [3] S. E. Wakeman et al. Comparative effectiveness of different treatment pathways for opioid use disorder. JAMA Network Open, 3(2):e1920622, 2020.
- https://doi.org/10.1001/jamanetworkopen.2019.20622
- [4] A. Cernasev et al. A systematic literature review of patient perspectives of barriers and facilitators to access, adherence, stigma, and persistence to treatment for substance use disorder. Exploratory Research in Clinical and Social Pharmacy, 2:100029, 2021.
- https://doi.org/10.1016/j.rcsop.2021.100029
- [5] A. Macmadu et al. Optimizing the impact of medications for opioid use disorder at release from prison and jail settings: A microsimulation modeling study. International Journal of Drug Policy, 91:102841, 2021.
- https://doi.org/10.1016/j.drugpo.2020.102841

[6] E. Paradis-Gagné, M.-C. Jacques, P. Pariseau-Legault, H. E. Ben Ahmed, I. R. Stroe. The perspectives of homeless people using the services of a mobile health clinic in relation to their health needs: A qualitative study on community-based outreach nursing. Journal of Research in Nursing, 28(2):154–167, 2023.

https://doi.org/10.1177/17449871231159595

[7] A. Chatterjee, E. A. Stewart, S. A. Assoumou, S. A. Chrysanthopoulou, H. Zwick, R. A. Harris, R. O'Dea, B. R. Schackman, L. F. White, B. P. Linas. *Health and economic outcomes of offering buprenorphine in homeless shelters in Massachusetts*. **JAMA Network Open**, 7(10):e2437233, 2024.

https://doi.org/10.1001/jamanetworkopen.2024.37233

- [8] Syndemics Lab. RESPOND model materials, 2024.
- https://www.syndemicslab.org/respond-model-materials
- [9] Massachusetts Department of Public Health. *Public Health Data Warehouse (PHD) Mass.gov.* Accessed May 2, 2025.
- https://www.mass.gov/public-health-data-warehouse-phd
- [10] B. Nosyk, L. Li, E. Evans, N. Huntington, Y.-I. Hser. Characterizing longitudinal health state transitions among heroin, cocaine, and methamphetamine users. Drug and Alcohol Dependence, 140:69–77, 2014.

https://doi.org/10.1016/j.drugalcdep.2014.03.029

- [11] A. Neaigus, V. A. Gyarmathy, M. Miller, V. M. Frajzyngier, S. R. Friedman, D. C. Des Jarlais. Transitions to injecting drug use among noninjecting heroin users: Social network influence and individual susceptibility. JAIDS Journal of Acquired Immune Deficiency Syndromes, 41(4):493–503, 2006.
- https://doi.org/10.1097/01.qai.0000186391.49205.3b
- [12] N. G. Shah, N. Galai, D. D. Celentano, D. Vlahov, S. A. Strathdee. Longitudinal predictors of injection cessation and subsequent relapse among a cohort of injection drug users in Baltimore, MD, 1988–2000. Drug and Alcohol Dependence, 83(2):147–156, 2006.
- https://doi.org/10.1016/j.drugalcdep.2005.11.007
- [13] J. R. Morgan, B. R. Schackman, Z. M. Weinstein, A. Y. Walley, B. P. Linas. Overdose following initiation of naltrexone and buprenorphine medication treatment for opioid use disorder in a United States commercially insured cohort. Drug and Alcohol Dependence, 200:34–39, 2019.
- https://doi.org/10.1016/j.drugalcdep.2019.02.031
- [14] L. Sordo, G. Barrio, M. J. Bravo, B. I. Indave, L. Degenhardt, L. Wiessing, M. Ferri, R. Pastor-Barriuso. Mortality risk during and after opioid substitution treatment: Systematic review and meta-analysis of cohort studies. BMJ, 357:j1550, 2017.
- https://doi.org/10.1136/bmj.j1550

[15] Substance Abuse and Mental Health Services Administration (SAMHSA). National Survey of Substance Abuse Treatment Services (N-SSATS): 2022. U.S. Department of Health and Human Services, 2025.

https://www.samhsa.gov/data/data-we-collect/ n-ssats-national-survey-substance-abuse-treatment-services

