# Skin Cancer Image Classification

Machine Learning And Optimization For Identification of Skin Cancer From Images

# Skin Cancer Facts

- Skin cancer is the most common cancer type worldwide
- 1 in 5 people in North America will get skin cancer in their lives
- On average, 2 people die from skin cancer every hour
- Early detection dramatically improves survivability and quality of life for those affected



### HAMM10000 Dataset

10,000+ Images, Well documented, Labelled by CSV file



melanoma (MEL)



melanocytic nevi (NV)



basal cell carcinoma (BCC)



**Actinic keratoses**)



benign keratosis-like lesions (BKL)



dermatofibroma (DF)



vascular lesions (VASC)

### ML Model for Skin Cancer Identification

- 1. Obtain dataset (HAMM10000)
- 2. Clean Data
- Create, Fit, and Optimize a Convolution Neural Network (CNN) for Skin Cancer Image Classification
- 4. Use and fit pre-trained models (VGG, ResNet, ShuffleNet V2, MobileNetV2)
- 5. Implementation of best model

# Important Steps

- Standardizing Image Size
- Image Data Manipulation
  - o rotation, shear, zoom, flip, shift
- Optimization of CNN
  - o number of layers, load rate
- Using Pre-trained Models
  - VGG, ResNet, ShuffleNet V2,
    MobileNetV2
- Implementation of Best Model

## Data Processing

#### **Image Processing**

(From Keras, ImageDataGenerator)

- 1. Image Size Standardization
- 2. Rotation Range
- 3. Shear Range
- 4. Zoom Range
- 5. Horizontal Flip
- 6. Width Shift
- 7. Height Shift

#### **Convolution Neural Network Creation**

- 1. Sequential
- 2. Network Layers
  - a. Convolution
  - b. Normalization
  - c. Max Pooling
- 3. Flatten
- 4. Dense
- 5. Dropout

Pre-trained Models: VGG, ResNet, ShuffleNet V2, MobileNetV2