Introduction to Causal Inference

Evgeniy Riabenko Facebook, Core Data Science riabenko.e@gmail.com

Machine Learning in High Energy Physics Summer School June 6, 2019 Why bother?

Predictive models are great, why do we need causal inference?

- ▶ in real life today's train could differ from tomorrow's test
- $\,\blacktriangleright\,$ especially if we want to act on the results of the predictions!
- lacktriangle causal mechanisms are more stable than correlations

What is causality?

Lewis D. (1973) *Causation*. The journal of philosophy: 556-567: causation is "something that makes a difference, and the difference it makes must be a difference from what would have happened without it".

The "interventionis" definition: T causes Y iff changing T leads to a change in Y, keeping everything else constant.

The causal effect is the magnitude by which Y is changed by a unit change in T.

Keeping everything else constant: parallel, counterfactual reality.

Causal questions are weird!

The Three Layer Causal Hierarchy

Level	Typical Activity	Typical Question	Examples
1. Association	Seeing	What is?	What does a symptom tell me about
$\mathbf{P}(y x)$			a disease?
			What does a survey tell us about
			the election results?
2. Intervention	Doing,	What if?	What if I take aspirin, will my
$\mathbf{P}(y do(x), z)$	Intervening	What if I do X?	headache be cured?
			What if we ban cigarettes?
3. Counterfactual	Imagining,	Why?	Was it the aspirin that stopped my
$\mathbf{P}(y_x x', y')$	Retrospection	Was it X that caused Y?	headache?
		What if I had acted	What I had not been smoking the
		differently?	past 2 years?

Pearl J. Theoretical Impediments to Machine Learning with Seven Sparks from the Causal Revolution. arXiv:1801.04016v1, 2018

Potential outcomes framework

 Y_{1i} — the outcome for unit i that would be observed in condition T=1 ("treatment"), Y_{0i} — the outcome that would be observed, all else held constant, in condition T=0 ("control"). Causal effect of treatment on Y:

$$\tau_i = Y_{1i} - Y_{0i}$$

•

Fundamental problem of causal inference: only one outcome is observed for each unit \Rightarrow causal effect cannot be measured.

Solution — estimate something else, e.g. average causal effect:

$$ATE = \mathbb{E}(\tau_i) = \mathbb{E}(Y_{1i} - Y_{0i}) = \mathbb{E}(Y_{1i}) - \mathbb{E}(Y_{0i})$$

(population) average treatment effect.

Randomized experiment

- ► A large population of experimental units
- ► Treatment T with support {0,1}
- ▶ Each unit in $i \in U$ has potential outcomes Y_{0i}, Y_{1i}
- ► Population average treatment effect:

$$ATE = \mathbb{E}\left(Y_1 - Y_0\right)$$

- ightharpoonup Random sample of size N from the population
- ► Sample average treatment effect an estimate of ATE:

SATE =
$$\frac{1}{N} \sum_{i=1}^{N} (Y_{1i} - Y_{0i})$$

- ▶ Randomly assign N_1 units to treatment $(T_i = 1)$ and $N_0 = N N_1$ to control $(T_i = 0)$
- Observe $Y_i = T_i Y_{1i} + (1 T_i) Y_{0i}$
- ► Because treatment assignment is random,

$$\widehat{\text{SATE}} = \frac{1}{N_1} \sum_{i: T=1} Y_i - \frac{1}{N_0} \sum_{i: T=1} Y_i = \bar{Y}_1 - \bar{Y}_0$$

is an unbiased estimate of SATE (and ATE)

Randomized experiment

Experiment is not always feasible:

- ightharpoonup thunderstorms ightharpoonup forest fires we cannot manipulate the treatment
- $\blacktriangleright \ \mathsf{TV} \ \mathsf{violence} \to \mathsf{cruelty} \mathsf{treatment} \ \mathsf{is} \ \mathsf{difficult} \ \mathsf{to} \ \mathsf{fix}, \ \mathsf{response} \ \mathsf{is} \ \mathsf{difficult} \ \mathsf{to} \ \mathsf{measure} \ \mathsf{in} \ \mathsf{a} \ \mathsf{lab}$
- lacktriangledown alcohol consumption ightarrow performance in school unethical

In such cases we have to resort to observational data.

Example 1:

Σ	Recovered	Not recovered	Recovery
			rate
Drug	273	77	78%
Placebo	289	61	83%

Placebo is 5% more effective

Men	Recovered	Not recovered	Recovery
			rate
Drug	81	6	93%
Placebo	234	36	87%

Drug is 5% more effective

Women	Recovered	Not recovered	Recovery
			rate
Drug	192	71	73%
Placebo	55	25	69%

Drug is 4% more effective

Does the drug increases chance to recover compared to placebo?

Conclusion 1: drug is 5% worse than placebo.

$$\widehat{ATE} = \mathbf{P}(recovery | drug) - \mathbf{P}(recovery | placebo)$$

Conclusion 2: drug is 4.51% better than placebo (assuming patients are 49% women).

$$\widehat{\text{ATE}} = \sum_{ser.} \left(\mathbf{P}(recovery | drug, sex_i) - \mathbf{P}(recovery | placebo, sex_i) \right) \mathbf{P}(sex_i)$$

Which one is correct? What would happen if we intervene?

Example 2:

Σ	Recovered	Not recovered	Recovery
			rate
Drug	273	77	78%
Placebo	289	61	83%

Placebo is 5% more effective

Low pressure by the	Recovered	Not recovered	Recovery
end of treatment			rate
Drug	81	6	93%
Placebo	234	36	87%

Drug is 5% more effective

High pressure by the	Recovered	Not recovered	Recovery
end of treatment			rate
Drug	192	71	73%
Placebo	55	25	69%

Drug is 4% more effective

In example 1, conclusion 2 is correct, in example 2- conclusion 1.

Everything depends on the directions of causal relationships between a feature determining subgroups and the rest of features.

Causal graphs

Causal relationships could be represented on graphs where variables are vertices and directed edges are causal relationships.

Edges — direct causes, directed paths — indirect causes. Graph encodes all causal assumptions:

- ► occupation does affect outcome Y
- ► age does not affect stress
- stress does not affect occupation
- ► treatment does not affect stress
- ▶ .

Elements of causal graph

$$A \rightarrow B \rightarrow C$$
 — chain

B — mediator

Example:

- ► A school budget
- ► B average score of graduates
- ightharpoonup C proportion of students admitted to college

Properties:

- 1. A and B. B and C are dependent:
 - $\exists a, b : \mathbf{P}(B = b | A = a) \neq \mathbf{P}(B = b)$
 - $\exists b, c : \mathbf{P}(C = c | B = b) \neq \mathbf{P}(C = c)$
- 2. C and A are likely dependent
- 3. $C \perp A|B$ conditionally independent: $\forall a, b, c$

$$\mathbf{P}(C=c\,|A=a,B=b\,)=\mathbf{P}(C=c\,|B=b\,)$$

(if B is fixed, then A and C are independent)

Elements of causal graph

$$B \leftarrow A \rightarrow C - \text{fork}$$

A — confounder

Example:

- ► A average daily temperature
- ▶ B ice cream sales
- ightharpoonup C number of violent crimes per day

Properties:

- 1. A and B, A and C are dependent
- 2. B and C are likely dependent
- 3. $B \perp C|A$ conditionally independent

Elements of causal graph

$B \to A \leftarrow C$ — collider

A — also collider

Example (Monty Hall problem):

- ► A choice of the game host
- ightharpoonup B choice of the player
- ► C position of the prize

Properties:

- 1. B and A, C and A are dependent
- 2. B and C are independent
- 3. $B \not\perp C|A$ conditionally dependent

Intervention

We need to use observational data to estimate the effect of **intervention**: what would happen with Y if we set the value of T equal to t? Notation: do(T=t).

Potential outcomes are outcomes under intervention:

$$Y_{1i} = Y_i | do(T=1), Y_{0i} = Y_i | do(T=0)$$

Hence, causal effect could be represented through intervention:

$$ATE = \mathbb{E}(Y_{1i}) - \mathbb{E}(Y_{0i}) = \mathbb{E}(Y_i | do(T=1)) - \mathbb{E}(Y_i | do(T=0))$$

Intervention

Drug effect in terms of interventions:

$$\begin{split} \text{ATE} = & \mathbf{P}(Y = \text{recovery} \left| do\left(T = \text{drug}\right)\right) - \\ & - & \mathbf{P}(Y = \text{recovery} \left| do\left(T = \text{placebo}\right)\right). \end{split}$$

Graph surgery

Graph surgery — removal of all edges directed into treatment variable X.

Example 1, original graph G:

Modified graph G_m :

$$\mathbf{P}(Y=u|do(X=x)) = \mathbf{P}_m(Y=u|X=x)$$

Graph surgery

In the modified graph:

$$\mathbf{P}_m(X = x) = \mathbf{P}(X = x),$$

 $\mathbf{P}_m(Y = y | T = t, X = x) = \mathbf{P}(Y = y | T = t, X = x),$

because the edges pointing to T and Y did not change;

$$\mathbf{P}_m(X=x|T=t) = \mathbf{P}_m(X=x),$$

because T and X are independent;

$$\begin{split} \mathbf{P}(Y=y\,|do\,(T=t)\,) &= \mathbf{P}_m(\,Y=y|\,T=t) = \\ &= \sum_x \mathbf{P}_m(\,Y=y|\,T=t,X=x)\,\mathbf{P}_m(\,X=x|\,T=t) = \\ &= \sum_x \mathbf{P}_m(\,Y=y|\,T=t,X=x)\,\mathbf{P}_m(X=x) = \\ &= \sum_x \mathbf{P}(Y=y\,|T=t,X=x)\,\mathbf{P}(X=x)\,. \end{split}$$

Graph surgery

```
In example 1:
```

 $\begin{aligned} \mathbf{P}(Y &= \mathsf{recovery} \, | do \, (T = \mathsf{drug})) = 0.832, \\ \mathbf{P}(Y &= \mathsf{recovery} \, | do \, (T = \mathsf{placebo})) = 0.7818 \\ \Rightarrow \mathsf{ATE} = 0.05. \end{aligned}$

In example 2 $G = G_m$:

Therefore, $\mathbf{P}(Y=y | do(T=t)) = \mathbf{P}_m(Y=y | T=t) = \mathbf{P}(Y=y | T=t)$ $\mathbf{P}(Y=\text{recovery} | do(T=\text{drug})) = 0.78,$ $\mathbf{P}(Y=\text{recovery} | do(T=\text{placebo})) = 0.83$ $\Rightarrow \text{ATE} = -0.05.$

Adjustment formula

Adjustment formula allows to calculate the effect of an intervention by conditioning on the vertices of X:

$$\mathbf{P}(Y = y | do(T = t)) = \sum \mathbf{P}(Y = y | T = t, X = x) \mathbf{P}(X = x).$$

What is X?

Causal effect formula:

$$\mathbf{P}(Y = y | do(T = t)) = \sum_{x} \mathbf{P}(Y = y | T = t, PA = x) \mathbf{P}(PA = x),$$

where PA — parents of T.

Assumptions of conditioning on X

Ignorability (no unmeasured confounders)

Under random experiments, $T \perp X$ for both observed and unobserved covariates.

But conditioning and related techniques can only construct $T \perp X$ for observed covariates.

So assume that after conditioning on observed covariates, any unmeasured covariates are irrelevant:

$$\mathbf{P}(Y_T | X) = \mathbf{P}(Y_T | X, T)$$

Stable Unit Treatment Value (SUTVA) (no spillover)

The effect of treatment on an individual is independent of whether or not others are treated:

$$\mathbf{P}(Y_i | do(T_i, T_j)) = \mathbf{P}(Y_i | do(T_i))$$

Overlap (common support)

There should be overlap on observed covariates between treated and untreated individuals:

$$0 < \mathbf{P}(T = 1 | X = x) < 1$$

Unknown parents

Socioeconomical status — unobservable variable; how can we estimate the effect of intervention on T?

More definitions

Path — a sequence of vertices where each vertex is connected to the next one with an edge. **Directed path** — a path where all edges have the same direction. **Backdoor path** from A to B starts with $A \leftarrow$ and ends with $\rightarrow B$.

A path P is **blocked** by variable X, if:

- 1. P contains $A \rightarrow B \rightarrow C$, $A \leftarrow B \rightarrow C$, $B \in X$
- 2. P contains $A \to B \leftarrow C$, $B \notin X$ and all the descendants of $B \notin X$

Backdoor criterion

For an ordered pair of vertices (A,B) in acyclic graph G a set of vertices X satisfies **backdoor criterion**, if it:

- ightharpoonup X does not contain the descendants of A
- ightharpoonup X blocks all backdoor paths from A to B

If X satisfies backdoor criterion for (T, Y), then

$$\mathbf{P}(Y = y | do(T = t)) = \sum_{x} \mathbf{P}(Y = y | T = t, X = x) \mathbf{P}(X = x)$$

(backdoor formula).

Backdoor criterion

To calculate less conditional probabilities, backdoor formula could be simplified:

$$\mathbf{P}(Y = y | do(T = t)) = \sum_{x} \mathbf{P}(Y = y | T = t, X = x) \mathbf{P}(X = x) =$$

$$= \sum_{x} \frac{\mathbf{P}(Y = y, T = t, X = x)}{\mathbf{P}(T = t | X = x)}$$

This way

- ► the method is called **inverse probability weighting**
- $lackbox{ denominator } e_i = \mathbf{P}(T=t \, | X=x)$ propensity score.

Biking vs Cholecterol

Avg Cholesterol = 206

Regression

Model Y as a function of T and X:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + \alpha T + \varepsilon,$$

- i.e., $Cholesterol = \beta_0 + \beta_1 \cdot Age + \alpha \cdot Excercise + \varepsilon$.
- $\hat{\alpha}$ an estimate of the average effect of changing T from 0 to 1, **if** among X_1,\ldots,X_k there are:
 - \blacktriangleright all the parents of T, or a set of variables that satisfies backdoor criterion for (T,Y)
 - ightharpoonup no colliders of T and Y

Also, the model must be true.

Matching

Matching

- ▶ Paired individuals provide the counterfactual estimate for each other
- ► Reduces sample size
- ► Could be approximate:
 - lacktriangle on distances in X space
 - lacktriangle on propensity scores $e_i = \mathbf{P}(T=1 | X=x)$

Stratification

Stratification

- ► Many:many matching
- ► Stratum sizes bias-variance tradoeff
- ▶ You can stratify on binned propensity scores! But they must be well-calibrated.

Weighting

Propensity scores could be used as weights:

$$\widehat{ATE} = \frac{1}{N_1} \sum_{i: T_i = 1} w_i Y_i - \frac{1}{N_0} \sum_{j: T_j = 1} w_j Y_j,$$

$$w_i = \frac{T}{e_i} + \frac{1 - T}{1 - e_i}$$

Inverse Probability of Treatment Weighting (IPTW).

- \blacktriangleright High variance when e_i close to 0 or 1 (could be stabilized heuristically)
- ► Assumes propensity score model is correctly specified

Doubly robust

Combines models $\hat{Y}_{T=t}$ and propensity scores \hat{e} :

$$DR_{1} = \begin{cases} \frac{Y}{\hat{e}} - \frac{\hat{Y}_{T=1}(1-\hat{e})}{\hat{e}}, & T = 1, \\ \hat{Y}_{T=1}, & T = 0; \end{cases}$$

$$DR_{0} = \begin{cases} \hat{Y}_{T=0}, & T = 1, \\ \frac{Y}{1-\hat{e}} - \frac{\hat{Y}_{T=1}\hat{e}}{1-\hat{e}}, & T = 0 \end{cases}$$

Causal effect on T — difference between mean DR_1 and DR_0 .

- ► Works if at least one of two is correctly specified
- ▶ But if both propensity score or regression are slightly incorrect, may become very biased

Causal analysis simple checks

- $\,\blacktriangleright\,$ Adding random covariates should not change the analysis
- ► AA-test: randomizing the treatment should turn causal effect into 0
- ► Subampling should not change the conclusions

References

- ► theory:
 - ▶ Pearl J., Glymour M., Jewell N.P. Causal Inference in Statistics: A Primer, 2016
 - ▶ Pearl J., Mackenzie D. The Book of Why: The New Science of Cause and Effect, 2018
 - ► Morgan S.L., Winship C. Counterfactuals and Causal Inference (2015, 2nd ed)
- ▶ good introduction: https://causalinference.gitlab.io/kdd-tutorial/
- ► implementations:
 - ► http://www.bnlearn.com/(R)
 - ► https://github.com/microsoft/dowhy (Python)