

De la silhouette au squelette à la silhouette

Master 1 informatique

MATTIOLI Pierre DUFOIN Maxime

La squelettisation

- Qu'est ce que c'est?
- A quoi cela peut servir ?
 - → Propriétés du squelette
 - → Utilités

 Développé par Harry Blum
 en 1968

Original

Squelette

Fonctionnement

Partie 1

- Calcul de profondeur
- Amincissement
 - → Concept du « feu de forêt »

original

profondeur

Fonctionnement

Partie 2

- Récupération du squelette
- Reconstitution approximative de la forme initiale

Déterminisation de profondeur

Pseudo-code

```
Entrée : Matrice de l'image M de pixels PI

Debut

4 matrices directionelles PR. Dir={H,B,G,D}

P Matrice finale.

Pour PI dans M :

Si PI-(Dir)=0

PR[PI]=1

Sinon

PR[PI]=PR[PI-Dir]+1

Repeter pour les 4 directions

P=min(PR(Dir))
```

Exemple

Amincissement de l'image

Pseudo-code

```
Entrée : Liste de pixels Pi par ordre P de profondeur.
Debut
4 listes frontières F(N,S,E,W)
Pour P(1->Pmax)
   Pour (Pi € P)
       Assigner Pi à F approprié
    Pour Pi € F
        Si Pi simple non terminal
           Marquer Pi
   Pour Pi € F
        Si Pi marqué
            Supprimer Pi
   Repeter pour les 4 F
Fin
```

7/15

Explications

Relation de voisinage

4-voisinage (4d)

8-voisinage (8d)

Frontières

4d 8/15

Explications

Point simple

Point connexe

Explications

Point terminal

- → est simple mais non supprimable
- → Ceci peut causer des « barbules »

Explications des tests

4d

8d

Création des coordonnées du squelette

squelette

Dimension de l'image

Reconstitution

Pseudo-code

```
Entrée : Fichier « squelette » F de Pixels Pi de profondeur P

Debut

Pour Pi € F :

Pi=noir

Pour x de 1à P

Remplir Pi[i(+-)x][j(+-)x]

Si Pi terminal :

Tant que (k²+l²<P²)

Remplir Pi[i(+-)k][j(+-)l]

Incrementer k ou l

Retourne matrice image

Fin
```

Exemple

Conclusion et remerciements

Un grand merci à
M. François-Xavier DUPE
pour le temps qu'il nous a consacré
et son aide!