

**PERFORMANCE VERIFICATION TEST REPORT
METSAT AMSU-A2 RECEIVER ASSEMBLY
FOR
INTEGRATED ADVANCED MICROWAVE SOUNDING UNIT-A
(AMSU-A)**

**CONTRACT NO. NASS-32314
CDRL PAR 3.3.2.1**

SEPTEMBER 1998

SUBMITTED TO

**NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND 20771**

SUBMITTED BY

**AEROJET ELECTRONIC SYSTEMS PLANT
1100 WST HOLLYVALE STREET
AZUSA, CALIFORNIA 91702**

AMSU-A RECEIVER VERIFICATION TEST REPORT

LEVEL OF ASSEMBLY: SUBASSEMBLY

TEST ITEM: AMSU-A2 RECEIVER ASSEMBLY
P/N: 1356441-1, S/N: F03

TYPE OF HARDWARE: METSAT FLIGHT MODEL (FM)

TYPE OF TEST: FUNCTIONAL PERFORMANCE

VERIFICATION TEST PROCEDURE: AE-26002/6A

TEST FACILITY LOCATION: AESP
AZUSA, CALIFORNIA

SIGNATURE:

TEST ENGINEER: G. E. Ma DATE: 9/21/98

TABLE OF CONTENTS

SECTION		PAGE
1.0	INTRODUCTION	1
2.0	REASON FOR TEST	1
3.0	ACCEPTANCE TEST	1
4.0	ORGANIZATION OF TEST DATA	5
5.0	SUMMARY AND RECOMMENDATIONS	5
6.0	TEST DATA	5

1.0 INTRODUCTION

The AMSU-A receiver subsystem comprises two separated receiver assemblies; AMSU-A1 and AMSU-A2 (P/N 1356441-1). The AMSU-A1 receiver contains 13 channels and the AMSU-A2 receiver 2 channels. The AMSU-A1 receiver assembly is further divided into two parts; AMSU-A1-1 (P/N 1356429-1) and AMSU-A1-2 (P/N 1356409-1), which contain 9 and 4 channels, respectively. Figures 1 and 2 illustrate the functional block diagrams of the AMSU-A1 and AMSU-A2 receivers.

The AMSU-A receiver subsystem stands in between the antenna and signal processing subsystems of the AMSU-A instrument and comprises the RF and IF components from isolators to attenuators as shown in Figures 1 and 2. It receives the RF signals from the antenna subsystem, down-converts the RF signals to IF signals, amplifies and defines the IF signals to proper power level and frequency bandwidth as specified for each channel, and inputs the IF signals to the signal processing subsystem.

The test reports for the METSAT AMSU-A receiver subsystem are prepared separately for the A1 and A2 receivers so that each receiver stands alone during integration of instruments into the spacecraft. This test report presents the test data of the METSAT AMSU-A2 Flight Model No. 3 (FM-3) receiver. The tests are performed per the Acceptance Test Procedure for the AMSU-A Receiver Subsystem, AE-26002/6A. The functional performance tests are conducted either at the component or subsystem level. While the component-level tests are performed over the entire operating temperature range predicted by thermal analysis, the subsystem-level tests are conducted at ambient temperature only.

2.0 REASON FOR TEST

The Acceptance Test Procedure for the AMSU-A Receiver Subsystem, AE-26002/6A, is prepared to describe in detail the configuration of the test setups and how the tests are to be conducted to verify that the receiver subsystem meets the specifications as required either in the AMSU-A Instrument Performance and Operation Specification, S-480-80, or in AMSU-A Receiver Subsystem Specification, AE-26608, derived by the Aerojet System Engineering. Test results that verify the conformance to the specifications demonstrates the acceptability of that particular receiver.

3.0 ACCEPTANCE TEST

The acceptance tests for the AMSU-A receiver subsystem are performed either at the component or subsystem level. The component-level tests are conducted per the Acceptance Test Procedure of each component at supplier's facilities. The subsystem-level tests are conducted per the Acceptance Test Procedure (ATP), AE-26002/6A at Aerojet Azusa facility.

Figure 1. AMSU-A1 Receiver Functional Block Diagram

Figure 2. AMSU-A2 Receiver Functional Block Diagram

The component-level tests include the center frequency, center frequency stability, bandpass characteristics, gain stability, and gain compression. Although the bandpass characteristics can change slightly in subsystem level, these performance are mainly dependent on the component characteristics. The subsystem-level tests include the center frequency, IF output power, bandpass characteristics, noise figure, noise power stability, and the tunable short test (for Protoflight Model only).

The subsystem-level tests are performed on the AMSU-A2 receiver. However, since the diplexer of the AMSU-A2 system is inseparably integrated to the receiver, the acceptance tests are conducted with the feedhorn directly connected to the diplexer that precedes the receiver. These tests are performed at room ambient temperature only.

Wire connections between the D-sub connectors and platinum resistance temperature (PRT) sensors and thermistors, and D-sub connector and survival heaters through the thermal switches are verified by measuring either the resistances between the respective two pins or the voltages across the two respective pins. The component bias voltages are verified by measuring the voltages across the two respective banana jacks of the breakout box that are connected to corresponding pins of the D-sub connector.

During the acceptance tests of the receiver per ATP, AE-26002/6A, we have encountered two failures and an anomaly. These problems were properly addressed and corrected resulting in satisfactory performances that met the specifications. The first failure was the noise figure of the channel 1 that read 5.26dB against the specification of 4.5dB. The noise figure of the mixer/IF amplifier (S/N: 7A31) used in channel 1 was in out-of-specification condition (SDAR No. 98-124) at component-level tests. The noise figure of the channel could be improved by optimizing the LO power of the mixer/IF amplifier and replacing the isolator (from S/N: 05 to S/N: 11) for better impedance matching, but was still marginal (4.56dB) at higher end (+40°C) of the operating temperature. The mixer/IF amplifier was consequently returned to the vendor (Spacek Labs.) and retuned to improve the noise figure. The unit was installed back to the receiver successfully meeting the specifications. The test data with the retuned mixer/IF amplifier were included in the test report. The second failure was a faulty PRT sensor (RT 17) that read higher value than the specification. The PRT was replaced and the correct reading was verified as addressed in F/AR No. 130. The anomaly was associated with the channel 2. A sudden increase in IF power was noticed during the noise figure test on the channel 2 and no power change was observed with warm and cold loads. Strong spurious signals were observed at that time over the passband on the spectrum analyzer. Investigation on the receiver components revealed no anomalies and the same anomaly could not be repeated there after. We suspected some kind of electromagnetic interference but have not been able to identify the source. The channel was subjected to thermal cycling test from -5°C to +40°C three times while monitoring the bandpass characteristics on the spectrum analyzer but still revealed no anomaly. This anomaly is addressed in F/AR No. 131.

The tunable short tests were not performed as they were performed on previous EOS AMSU-A2 receiver.

4.0 ORGANIZATION OF TEST DATA

The test data are organized in the following formats. The test data obtained at the component level are first summarized for each category for all applicable receiver channels. The bandpass characteristics of the filters are summarized only for the data measured at mid-temperature. Supporting component test data over the operating temperature range then follows the summaries. The subsystem-level test data then follows the component test data. Test data recorded in the test sheet as prepared in the Acceptance Test Procedure and related data plots are included in this test report.

5.0 SUMMARY AND RECOMMENDATIONS

The METSAT AMSU-A2 FM-3 receiver subsystem successfully passed all performance requirements and was delivered to the System Engineering for system integration and test. The test data indicated adequate margins for all performance specifications.

We have again encountered a noise figure failure on the channel 1 of the receiver. Although the noise figure of the mixer/IF amplifier (S/N: 7A31) used in channel 1 was out of specification (SDAR No. 98-124) at component-level tests, it became obvious that the mixer performances change depending on the LO power level and the impedance matching at the RF port. A set of the receiver front-end components (an isolator, a diplexer, and a feedhorn) were sent to Spacek to test the noise figure of the remaining Channel 1 mixer/IF amplifiers as in the AMSU-A receiver. Also an ECN was generated on the ATP for the mixer/IF amplifiers to find the optimum LO power level for each unit and to conduct the functional tests at this optimum power level instead of the nominal +10dBm.

6.0 TEST DATA

In the following, the component and subsystem-level test data are organized as delineated in Paragraph 4.0.

COMPONENT-LEVEL TEST DATA

**CENTER FREQUENCY AND FREQUENCY STABILITY
FOR
LOCAL OSCILLATORS (LOs)
(DROs)**

CENTER FREQUENCY OF LOs

Channel No.	1	2
Specification (GHz)	23.8	31.4
Setting Accuracy (+/-GHz)	0.002	0.002
Measured (GHz)	23.80040	31.40115

FREQUENCY STABILITY OF LOs

Channel No.	1	2
<u>Short-Term Specification (+/-MHz)</u>	8	8
Setting Accuracy (+/-MHz)	2	2
W/ Temp. & Voltage (+/-MHz)	6	6
Measured (MHz) Total	+1.27, -0.12	+4.32, -1.88
<u>Long-Term Specification (+/-MHz)</u>	2	2
By Design or Analysis * (+/-MHz)	0.1	0.1

* Based on accelerated life-test data of DROs.

Channel 1 LO

DRO (P/N: 1336610-1, S/N: 87060)

LITTON**Solid State**

TEST DATA SHEET 7.2
FUNCTIONAL PERFORMANCE TESTS
 INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LS K 9604 CF
 SERIAL NUMBER: 87060

QUAL TEST N/AAESD 1336610-1
 ACCEPT TEST ✓

Basic Electrical Test; Ref. Test Para. 5.2.2

SPECIFICATION**MEASUREMENT AT $T_{nom} \pm 1^\circ C$** **LIMIT**Measurement at $V_{op}=10$ VDC

Temperature	<u>18</u>	$^\circ C$	
Input Voltage	<u>10</u>	VDC	10.0 ± 0.2 VDC
Input Current	<u>68.6</u>	mA	Table IIIB
Input Power, P_{diss}	<u>0.686</u>	W DC	P_{diss} max
Frequency, $f_{T_{nom}}$	<u>23.80040</u>	GHz	Table IIIB
RF Output Power, $P_{T_{nom}}$	<u>14.0</u>	dBm	12 to 17 dBm
Frequency Setting Accuracy, $\Delta f_s (= f_{T_{nom}} - F_o)$	<u>0.4</u>	MHz	

Frequency and RF Output Power Variation With Voltage, Ref. Test Para 5.2.3

Measurement at 9.5 VDC or at 9.5 VDC

Temperature	<u>18</u>	$^\circ C$	
Input Voltage	<u>9.5</u>	VDC	9.5 VDC or Para. 5.2.3.2
Input Current	<u>68.6</u>	mA	Table IIIB
Frequency, f_{meas}	<u>23.80041</u>	GHz	Table IIIB
RF Output Power, P_{meas}	<u>14.0</u>	dBm	12 to 17 dBm

Measurement at 10.5 VDC or at 10.5 VDC

Temperature	<u>18</u>	$^\circ C$	
Input Voltage	<u>10.5</u>	VDC	10.5 VDC or Para. 5.2.3.3
Input Current	<u>68.6</u>	mA	Table IIIB
Frequency, f_{meas}	<u>23.80042</u>	GHz	Table IIIB
RF Output Power, P_{meas}	<u>14.0</u>	dBm	12 to 17 dBm

Calculate Frequency Variation, $\Delta f_v = f_{meas} - f_{T_{nom}}$,

$$\Delta f_v \text{ at } 9.5 \text{ VDC or at } \underline{9.5} \quad VDC = \underline{0.01} \text{ MHz}$$

$$\Delta f_v \text{ at } 10.5 \text{ VDC or at } \underline{10.5} \quad VDC = \underline{0.02} \text{ MHz}$$

Calculate RF Output Power Variation, $\Delta P_v = P_{meas} - P_{T_{nom}}$,

$$\Delta P_v \text{ at } 9.5 \text{ VDC or at } \underline{9.5} \quad VDC = \underline{\phi} \text{ dB}$$

$$\Delta P_v \text{ at } 10.5 \text{ VDC or at } \underline{10.5} \quad VDC = \underline{\phi} \text{ dB}$$

Accept ✓ Reject _____Test Performed by
Litton QA

1/N
09/1
VOLU:

Date 5-22-98
Date MAY 28 1998

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 38 OF 68
56348	A	1300823	B3	

LITTON**Solid State**

TEST DATA SHEET 7.3

FUNCTIONAL PERFORMANCE TESTS

INITIAL DATA SET N/A FINAL DATA SET ✓LITTON TYPE LS K 9604 CF
SERIAL NUMBER: 87060AESD 1336610-1
ACCEPT TEST ✓

Temperature Testing at T=10°C, Ref. Test Para. 5.2.5.1

<u>SPECIFICATION</u>	<u>MEASUREMENT AT T=10° ± 1°C</u>	<u>LIMIT</u>
----------------------	-----------------------------------	--------------

Measurement at V_{op}=10 VDC

Temperature	<u>10</u> °C	<u>10° ± 1°C</u>
Input Voltage	<u>10</u> VDC	<u>10.0 ± 0.2 VDC</u>
Input Current	<u>68.2</u> mA	<u>Table IIIB</u>
Input Power, P _{diss}	<u>0.682</u> W DC	<u>Pdiss max</u>
Frequency, f _{10°C}	<u>23.80020</u> GHz	<u>Table IIIB</u>
RF Output Power, P _{10°C}	<u>14.0</u> dBm	<u>12 to 17 dBm</u>

Frequency and RF Output Power Variation With Voltage, Ref. Test Para 5.2.5.1

Measurement at 9.5 VDC or at 9.5 VDC

Temperature	<u>10</u> °C	<u>Table IIIB</u>
Input Voltage	<u>9.5</u> VDC	<u>9.5 VDC or Para. 5.2.3.2</u>
Input Current	<u>68.2</u> mA	<u>Table IIIB</u>
Frequency, f _{meas}	<u>23.80020</u> GHz	<u>Table IIIB</u>
RF Output Power, P _{meas}	<u>14.0</u> dBm	<u>12 to 17 dBm</u>

Measurement at 10.5 VDC or at 10.5 VDC

Temperature	<u>10</u> °C	<u>Table IIIB</u>
Input Voltage	<u>10.5</u> VDC	<u>10.5 VDC or Para. 5.2.3.3</u>
Input Current	<u>68.2</u> mA	<u>Table IIIB</u>
Frequency, f _{meas}	<u>23.80020</u> GHz	<u>Table IIIB</u>
RF Output Power, P _{meas}	<u>14.0</u> dBm	<u>12 to 17 dBm</u>

Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{10°C}$:

Δf_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>φ</u> MHz
Δf_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>φ</u> MHz
Δf_T at 10.0 VDC ($= f_{10°C} - f_{T_{nom}}$)	=	<u>- 0.2</u> MHz

Calculate RF Output Power Variation, $\Delta P_V = P_{meas} - P_{10°C}$:

ΔP_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>φ</u> dB
ΔP_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>φ</u> dB
ΔP_T at 10.0 VDC ($= P_{10°C} - P_{T_{nom}}$)	=	<u>φ</u> dB

Test Performed by
Litton Q.A.

Accept <u>✓</u>	Reject _____
Date <u>5-22-98</u>	
Date <u>MAY 22 1998</u>	

CODE IDENT NO. 56348	SIZE A	NUMBER 1300823	REV B3	SHEET 39 OF 68
-------------------------	-----------	-------------------	-----------	----------------

LITTON
Solid State

TEST DATA SHEET 7.4
FUNCTIONAL PERFORMANCE TESTS
INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LS K 9604 CF
SERIAL NUMBER: 87060

AESD 1336610-1
ACCEPT TEST ✓

Temperature Extreme Testing at T_{min}, Ref. Test Para 5.2.5.2

<u>SPECIFICATION</u>	<u>MEASUREMENT AT T_{min} ± 1°C</u>	<u>LIMIT</u>
----------------------	---	--------------

Measurement at V_{op}=10 VDC

Temperature	<u>-5</u> °C	Table IIIB
Input Voltage	<u>10</u> VDC	10.0 ± 0.2 VDC
Input Current	<u>67.9</u> mA	Table IIIB
Input Power, P _{diss}	<u>0.679</u> W DC	P _{diss} max
Frequency, f _{Tmin}	<u>23.79965</u> GHz	Table IIIB
RF Output Power, P _{Tmin}	<u>13.8</u> dBm	12 to 17 dBm

Frequency and RF Output Power Variation With Voltage, Ref. Test Para 5.2.5.2

Measurement at 9.5 VDC or at 9.5 VDC

Temperature	<u>-5</u> °C	Table IIIB
Input Voltage	<u>9.5</u> VDC	9.5 VDC or Para 5.2.3.2
Input Current	<u>67.8</u> mA	Table IIIB
Frequency, f _{meas}	<u>23.79965</u> GHz	Table IIIB
RF Output Power, P _{meas}	<u>13.8</u> dBm	12 to 17 dBm

Measurement at 10.5 VDC or at 10.5 VDC

Temperature	<u>-5</u> °C	Table IIIB
Input Voltage	<u>10.5</u> VDC	10.5 VDC or Para 5.2.3.3
Input Current	<u>67.8</u> mA	Table IIIB
Frequency, f _{meas}	<u>23.79965</u> GHz	Table IIIB
RF Output Power, P _{meas}	<u>13.8</u> dBm	12 to 17 dBm

Calculate Frequency Variation, $\Delta f_v = f_{meas} - f_{Tmin}$:

Δf_v at 9.5 VDC or at <u>9.5</u>	VDC =	<u>0</u> MHz
Δf_v at 10.5 VDC or at <u>10.5</u>	VDC =	<u>0</u> MHz
Δf_T at 10.0 VDC ($= f_{Tmin} - f_{Tnom}$)	=	<u>0.75</u> MHz

Calculate RF Output Power Variation, $\Delta P_v = P_{meas} - P_{Tmin}$:

ΔP_v at 9.5 VDC or at <u>9.5</u>	VDC =	<u>0</u> dB
ΔP_v at 10.5 VDC or at <u>10.5</u>	VDC =	<u>0</u> dB
ΔP_T at 10.0 VDC ($= P_{Tmin} - P_{Tnom}$)	=	<u>-0.2</u> dB

Accept ✓ Reject _____

Date 5.22-98

Date MAY 28 1998

Test Performed by
Litton Q.A.

vn
LITTON
160

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 40 OF 68
56348	A	1300823	B3	

LITTON**Solid State**

TEST DATA SHEET 7.5
FUNCTIONAL PERFORMANCE TESTS
INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LS K 9604 CF
SERIAL NUMBER: 87060

AESD 1336610-1
ACCEPT TEST ✓

Temperature Testing at T=30°C, Ref. Test Para. 5.2.5.3

<u>SPECIFICATION</u>	<u>MEASUREMENT AT T=30° ±1°C</u>	<u>LIMIT</u>
----------------------	----------------------------------	--------------

Measurement at V_{op}=10 VDC

Temperature	<u>30</u> °C	<u>30° ± 1°C</u>
Input Voltage	<u>10</u> VDC	<u>10.0 ± 0.2 VDC</u>
Input Current	<u>68.6</u> mA	<u>Table IIIB</u>
Input Power, P _{diss}	<u>0.686</u> W DC	<u>Pdiss max</u>
Frequency, f _{30°C}	<u>23.80057</u> GHz	<u>Table IIIB</u>
RF Output Power, P _{30°C}	<u>14.2</u> dBm	<u>12 to 17 dBm</u>

Frequency and RF Output Power Variation With Voltage, Ref. Test Para 5.2.5.3

Measurement at 9.5 VDC or at 9.5 VDC

Temperature	<u>30</u> °C	<u>Table IIIB</u>
Input Voltage	<u>9.5</u> VDC	<u>9.5 VDC or Para. 5.2.3.2</u>
Input Current	<u>68.6</u> mA	<u>Table IIIB</u>
Frequency, f _{meas}	<u>23.80059</u> GHz	<u>Table IIIB</u>
RF Output Power, P _{meas}	<u>14.2</u> dBm	<u>12 to 17 dBm</u>

Measurement at 10.5 VDC or at 10.5 VDC

Temperature	<u>30</u> °C	<u>Table IIIB</u>
Input Voltage	<u>10.5</u> VDC	<u>10.5 VDC or Para. 5.2.3.3</u>
Input Current	<u>68.7</u> mA	<u>Table IIIB</u>
Frequency, f _{meas}	<u>23.80060</u> GHz	<u>Table IIIB</u>
RF Output Power, P _{meas}	<u>14.2</u> dBm	<u>12 to 17 dBm</u>

Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{30^\circ C}$:

Δf_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>0.02</u> MHz
Δf_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>0.03</u> MHz
Δf_T at 10.0 VDC ($= f_{30^\circ C} - f_{T_{nom}}$)	=	<u>0.17</u> MHz

Calculate RF Output Power Variation, $\Delta P_V = P_{meas} - P_{30^\circ C}$:

ΔP_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>0.2</u> dB
ΔP_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>0.2</u> dB
ΔP_T at 10.0 VDC ($= P_{30^\circ C} - P_{T_{nom}}$)	=	<u>0.2</u> dB

Test Performed by
Litton Q.A.

VJ
SECTION 1
11/00

Accept ✓ Reject _____
Date 5-22-98
Date MAY 28 1998

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 41 OF 68
56348	A	1300823	B3	

TEST DATA SHEET 7.6
FUNCTIONAL PERFORMANCE TESTS
INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LS K 9604 CF
SERIAL NUMBER: 87060

AESD 1336610-
ACCEPT TEST ✓

Temperature Extreme Testing at T_{max}, Ref. Test Para. 5.2.5.4

<u>SPECIFICATION</u>	<u>MEASUREMENT AT T_{max} ± 1°C</u>	<u>LIMIT</u>
----------------------	---	--------------

Measurement at V_{op}=10 VDC

Temperature	<u>40</u> °C	Table IIIB
Input Voltage	<u>10</u> VDC	10.0 ± 0.2 VDC
Input Current	<u>68.8</u> mA	Table IIIB
Input Power, P _{diss}	<u>0.688</u> W DC	P _{diss} max
Frequency, f _{T_{max}}	<u>23.80079</u> GHz	Table IIIB
RF Output Power, P _{T_{max}}	<u>14.2</u> dBm	12 to 17 dBm

Frequency and RF Output Power Variation With Voltage, Ref. Test Para 5.2.5.4

Measurement at 9.5 VDC or at 9.5 VDC

Temperature	<u>40</u> °C	Table IIIB
Input Voltage	<u>9.5</u> VDC	9.5 VDC or Para 5.2.3.2
Input Current	<u>68.8</u> mA	Table IIIB
Frequency, f _{meas}	<u>23.80080</u> GHz	Table IIIB
RF Output Power, P _{meas}	<u>14.2</u> dBm	12 to 17 dBm

Measurement at 10.5 VDC or at 10.5 VDC

Temperature	<u>40</u> °C	Table IIIB
Input Voltage	<u>10.5</u> VDC	10.5 VDC or Para 5.2.3.3
Input Current	<u>68.8</u> mA	Table IIIB
Frequency, f _{meas}	<u>23.80080</u> GHz	Table IIIB
RF Output Power, P _{meas}	<u>14.2</u> dBm	12 to 17 dBm

Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{T_{max}}$:

Δf_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>0.01</u> MHz
Δf_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>0.01</u> MHz
Δf_T at 10.0V ($= f_{T_{max}} - f_{T_{nom}}$)	=	<u>0.39</u> MHz

Calculate RF Output Power Variation, $\Delta P_V = P_{meas} - P_{T_{nom}}$:

ΔP_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>0.2</u> dB
ΔP_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>0.2</u> dB
ΔP_T at 10.0V ($= P_{T_{max}} - P_{T_{nom}}$)	=	<u>0.2</u> dB

Accept ✓ Reject _____
 Date 5-22-98
 Date MAY 28 1998

Test Performed by
Litton Q.A.

CODE IDENT NO. 56348	SIZE A	NUMBER 1300823	REV B3	SHEET 42 OF 68
-------------------------	-----------	-------------------	-----------	----------------

LITTON**Solid State**

TEST DATA SHEET 7.7
FUNCTIONAL PERFORMANCE TESTS
 INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LS K 9604 CF AESD 1336610-1
 SERIAL NUMBER: 87060 QUAL TEST N/A ACCEPT TEST ✓

Power Supply Immunity: Ref. Test Para. 5.2.4

SPECIFICATION	MEASUREMENT AT $T_{nom} \pm 1^\circ C$	LIMIT
Initial Measurement		
Temperature	<u>18</u> °C	Table IIIB
Input Voltage	<u>10</u> VDC	10.0 ± 0.2 VDC
Input Current	<u>68.6</u> mA	Table IIIB
Input Power	<u>0.686</u> W DC	Pdiss max
Frequency ($f_{T_{nom}}$)	<u>23.80036</u> GHz	Table IIIB
RF Output Power	<u>14.1</u> dBm	12 to 17 dBm
Frequency Setting Accuracy, Δf_s ($= f_{T_{nom}} - F_o$)	<u>0.36</u> MHz	

Performance After Short Circuit on Power Supply: Ref Test Para 5.2.4.2

Input Voltage	<u>10</u> VDC	10.0 ± 0.2 VDC
Input Current	<u>68.6</u> mA	Table IIIB
Input Power	<u>0.686</u> W DC	Pdiss max
Frequency	<u>23.80037</u> GHz	Table IIIB
RF Output Power	<u>14.1</u> dBm	12 to 17 dBm

Over Voltage: Ref Test Para 5.2.4.3

Overvoltage Input Voltage	<u>28</u> VDC	+28V
---------------------------	---------------	------

Performance After Input Overvoltage

Input Voltage	<u>10</u> VDC	10.0 ± 0.2 VDC
Input Current	<u>68.6</u> mA	Table IIIB
Input Power	<u>0.686</u> W DC	Pdiss max
Frequency	<u>23.80035</u> GHz	Table IIIB
RF Output Power	<u>14.1</u> dBm	12 to 17 dBm

Reverse Polarity: Ref Test Para 5.2.4.4

Reverse Input Voltage	<u>-10</u> VDC	-10.0 ± 0.2 VDC
-----------------------	----------------	---------------------

Performance After Reverse Input Voltage

Input Voltage	<u>10</u> VDC	10.0 ± 0.2 VDC
Input Current	<u>68.6</u> mA	Table IIIB
Input Power	<u>0.686</u> W DC	Pdiss max
Frequency, $f_{T_{nom}}$	<u>23.80034</u> GHz	Table IIIB
RF Output Power	<u>14.1</u> dBm	12 to 17 dBm
Frequency Setting Accuracy, Δf_s ($= f_{T_{nom}} - F_o$)	<u>0.34</u> MHz	

Accept ✓ Reject _____
 Date 5-22-98
 Date MAY 20 1998

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 43 OF 68
56348	A	1300823	B3	

TEST DATA SHEET 7.23B
FUNCTIONAL PERFORMANCE TESTS
INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LS K 9604 CF
SERIAL NUMBER: 87060 QUAL TEST N/A AESD 1336610-1
ACCEPT TEST ✓

Frequency Pulling and Load VSWR 2.5:1 max. all phases. Ref Test Para. 5.9

TEST DESCRIPTIONLIMITS

Output Open and Short. Ref. Test Para. 5.9.5

Temperature	<u>24</u> °C	<u>24°C ± 5°C</u>
Frequency:	<u>23.80046</u> GHz	Table IIIB
RF Output Power:	<u>14.0</u> dBm	12 to 17 dBm
Input Voltage	<u>10</u> VDC	<u>10 ± 0.2</u> VDC
Input Current:	<u>68.6</u> mA	Table IIIB
Results:	<u>✓</u> Acceptable	No Damage or Degradation

Calculate maximum Frequency Accuracy (both positive and negative),

$\Delta f_{acc} = \Delta f_S$ (Use worst-case Δf_S from 7.2, 7.7, and 7.22A) + Δf_H (from 7.22A) + Δf_L (from 7.23A):

Maximum Δf_{acc} = 0.49 MHz (Positive) Table IIIB
- 0.10 MHz (Negative) Table IIIB

Calculate maximum Short-term Frequency Stability (both positive and negative),

$\Delta f_{V+T} = \Delta f_V + \Delta f_T$ (Use worst-case Δf_V and Δf_T from 7.2 thru 7.6):

Maximum Δf_{V+T} = 0.78 MHz (Positive) Table IIIB
- 0.02 MHz (Negative) Table IIIB

Calculate maximum overall RF Output Power Stability (both positive and negative),

$\Delta P_{ov} = \Delta P_V + \Delta P_T$ (Use worst-case ΔP_V and ΔP_T from 7.2 thru 7.6) + ΔP_H (from 7.22A) + ΔP_L (from 7.23A):

Maximum ΔP_{ov} = 0.61 dB (Positive) 1.0 dB
- 0.90 dB (Negative) -1.0 dB

Accept ✓ Reject _____

Test Performed by VN Date 5-26-98

Litton Q.A. LITTON
169 Date MAY 28 1998

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 61 OF 68
56348	A	1300823	B3	

Channel 2 LO

DRO (P/N: 1336610-2, S/N: 87053)

LITTON**Solid State**

TEST DATA SHEET 7.2
FUNCTIONAL PERFORMANCE TESTS
 INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LS A 9635 CF
 SERIAL NUMBER: 87053

QUAL TEST N/AAESD 1336610-2
 ACCEPT TEST ✓

Basic Electrical Test; Ref. Test Para. 5.2.2

SPECIFICATION**MEASUREMENT AT $T_{nom} \pm 1^\circ C$** **LIMIT**Measurement at $V_{op}=10$ VDC

Temperature	<u>18</u>	$^\circ C$	Table IIIB
Input Voltage	<u>10</u>	VDC	
Input Current	<u>121</u>	mA	
Input Power, P_{diss}	<u>1.21</u>	W DC	
Frequency, $f_{T_{nom}}$	<u>3140115</u>	GHz	
RF Output Power, $P_{T_{nom}}$	<u>16.0</u>	dBm	

Frequency Setting Accuracy,
 $\Delta f_s (= f_{T_{nom}} - F_o)$

<u>1.15</u>	MHz
-------------	-----

P_{diss} max
Table IIIB
12 to 17 dBm

Frequency and RF Output Power Variation With Voltage, Ref. Test Para 5.2.3

Measurement at 9.5 VDC or at 9.5 VDC

Temperature	<u>18</u>	$^\circ C$
Input Voltage	<u>9.5</u>	VDC
Input Current	<u>121</u>	mA
Frequency, f_{meas}	<u>3140115</u>	GHz
RF Output Power, P_{meas}	<u>16.0</u>	dBm

Table IIIB
9.5 VDC or Para. 5.2.3.2
Table IIIB
Table IIIB
12 to 17 dBm

Measurement at 10.5 VDC or at 10.5 VDC

Temperature	<u>18</u>	$^\circ C$
Input Voltage	<u>10.5</u>	VDC
Input Current	<u>121</u>	mA
Frequency, f_{meas}	<u>3140116</u>	GHz
RF Output Power, P_{meas}	<u>16.0</u>	dBm

Table IIIB
10.5 VDC or Para. 5.2.3.3
Table IIIB
Table IIIB
12 to 17 dBm

Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{T_{nom}}$,

Δf_V at 9.5 VDC or at 9.5 VDC = φ MHz
 Δf_V at 10.5 VDC or at 10.5 VDC = 0.01 MHz

Calculate RF Output Power Variation, $\Delta P_V = P_{meas} - P_{T_{nom}}$,

ΔP_V at 9.5 VDC or at 9.5 VDC = φ dB
 ΔP_V at 10.5 VDC or at 10.5 VDC = φ dB

Accept ✓ Reject _____Test Performed by
Litton QADate 4-28-98
Date MAY 08 1998JED
LIT. SN
1160

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 38 OF 68
56348	A	1300823	B3	

LITTON
Solid State

TEST DATA SHEET 7.3
FUNCTIONAL PERFORMANCE TESTS
INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LS A 9635 CF
SERIAL NUMBER: 87053 QUAL TEST N/A AESD 1336610-2
ACCEPT TEST ✓

Temperature Testing at T=10°C, Ref. Test Para. 5.2.5.1

<u>SPECIFICATION</u>	<u>MEASUREMENT AT T=10° ±1°C</u>	<u>LIMIT</u>
----------------------	----------------------------------	--------------

Measurement at V_{op}=10 VDC

Temperature	<u>10</u> °C	<u>10° ± 1°C</u>
Input Voltage	<u>10</u> VDC	<u>10.0 ± 0.2 VDC</u>
Input Current	<u>121</u> mA	<u>Table IIIB</u>
Input Power, P _{diss}	<u>1.21</u> W DC	<u>Pdiss max</u>
Frequency, f _{10°C}	<u>3140193</u> GHz	<u>Table IIIB</u>
RF Output Power, P _{10°C}	<u>16.0</u> dBm	<u>12 to 17 dBm</u>

Frequency and RF Output Power Variation With Voltage, Ref. Test Para 5.2.5.1

Measurement at 9.5 VDC or at 9.5 VDC

Temperature	<u>10</u> °C	<u>Table IIIB</u>
Input Voltage	<u>9.5</u> VDC	<u>9.5 VDC or Para. 5.2.3.2</u>
Input Current	<u>121</u> mA	<u>Table IIIB</u>
Frequency, f _{meas}	<u>3140194</u> GHz	<u>Table IIIB</u>
RF Output Power, P _{meas}	<u>16.0</u> dBm	<u>12 to 17 dBm</u>

Measurement at 10.5 VDC or at 10.5 VDC

Temperature	<u>10</u> °C	<u>Table IIIB</u>
Input Voltage	<u>10.5</u> VDC	<u>10.5 VDC or Para. 5.2.3.3</u>
Input Current	<u>121</u> mA	<u>Table IIIB</u>
Frequency, f _{meas}	<u>3140195</u> GHz	<u>Table IIIB</u>
RF Output Power, P _{meas}	<u>16.0</u> dBm	<u>12 to 17 dBm</u>

Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{10°C}$:

Δf_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>0.01</u> MHz
Δf_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>0.02</u> MHz
Δf_T at 10.0 VDC ($= f_{10°C} - f_{T_{nom}}$)	=	<u>+ 0.78</u> MHz

Calculate RF Output Power Variation, $\Delta P_V = P_{meas} - P_{10°C}$:

ΔP_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>0</u> dB
ΔP_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>0</u> dB
ΔP_T at 10.0 VDC ($= P_{10°C} - P_{T_{nom}}$)	=	<u>0</u> dB

Test Performed by
Litton Q.A.

JED
LIT. QN
160

Accept ✓ Reject _____
Date 4-28-98
Date May 03 1998

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 39 OF 68
56348	A	1300823	B3	

TEST DATA SHEET 7.4
FUNCTIONAL PERFORMANCE TESTS
INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LS A 9635 CF AESD 1336610-2
SERIAL NUMBER: 87053 QUAL TEST N/A ACCEPT TEST ✓

Temperature Extreme Testing at T_{min}, Ref. Test Para. 5.2.5.2

<u>SPECIFICATION</u>	<u>MEASUREMENT AT T_{min} ± 1°C</u>	<u>LIMIT</u>
----------------------	---	--------------

Measurement at V_{op}=10 VDC

Temperature	<u>-5</u> °C	Table IIIB
Input Voltage	<u>10</u> VDC	10.0 ± 0.2 VDC
Input Current	<u>120</u> mA	Table IIIB
Input Power, P _{diss}	<u>1.20</u> W DC	Pdiss max
Frequency, f _{Tmin}	<u>3140288</u> GHz	Table IIIB
RF Output Power, P _{Tmin}	<u>16.0</u> dBm	12 to 17 dBm

Frequency and RF Output Power Variation With Voltage, Ref. Test Para 5.2.5.2

Measurement at 9.5 VDC or at 9.5 VDC

Temperature	<u>-5</u> °C	Table IIIB
Input Voltage	<u>9.5</u> VDC	9.5 VDC or Para 5.2.3.2
Input Current	<u>120</u> mA	Table IIIB
Frequency, f _{meas}	<u>3140289</u> GHz	Table IIIB
RF Output Power, P _{meas}	<u>16.0</u> dBm	12 to 17 dBm

Measurement at 10.5 VDC or at 10.5 VDC

Temperature	<u>-5</u> °C	Table IIIB
Input Voltage	<u>10.5</u> VDC	10.5 VDC or Para 5.2.3.3
Input Current	<u>120</u> mA	Table IIIB
Frequency, f _{meas}	<u>3140290</u> GHz	Table IIIB
RF Output Power, P _{meas}	<u>16.0</u> dBm	12 to 17 dBm

Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{Tmin}$:

Δf_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>0.01</u> MHz
Δf_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>0.02</u> MHz
Δf_T at 10.0 VDC ($= f_{Tmin} - f_{Tnom}$)		<u>1.73</u> MHz

Calculate RF Output Power Variation, $\Delta P_V = P_{meas} - P_{Tmin}$:

ΔP_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>φ</u> dB
ΔP_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>φ</u> dB
ΔP_T at 10.0 VDC ($= P_{Tmin} - P_{Tnom}$)	=	<u>φ</u> dB

Accept ✓ Reject

Test Performed by
Litton Q.A.

JED UT-01
15n

Date 4. 28- 98
Date MAY 01 1998

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 40 OF 68
56348	A	1300823	B3	

LITTON**Solid State**

TEST DATA SHEET 7.5

FUNCTIONAL PERFORMANCE TESTS

INITIAL DATA SET N/A FINAL DATA SET ✓LITTON TYPE LS A 9635 CF
SERIAL NUMBER: 87053QUAL TEST N/AAESD 1336610-2
ACCEPT TEST ✓

Temperature Testing at T=30°C, Ref. Test Para. 5.2.5.3

SPECIFICATIONMEASUREMENT AT T=30° ± 1°CLIMITMeasurement at V_{op}=10 VDC

Temperature	<u>30</u>	°C	<u>30° ± 1°C</u>
Input Voltage	<u>10</u>	VDC	<u>10.0 ± 0.2 VDC</u>
Input Current	<u>123</u>	mA	<u>Table IIIB</u>
Input Power, P _{diss}	<u>1.23</u>	W DC	<u>Pdiss max</u>
Frequency, f _{30°C}	<u>31. 39956</u>	GHz	<u>Table IIIB</u>
RF Output Power, P _{30°C}	<u>16.0</u>	dBm	<u>12 to 17 dBm</u>

Frequency and RF Output Power Variation With Voltage, Ref. Test Para 5.2.5.3

Measurement at 9.5 VDC or at 9.5 VDC

Temperature	<u>30</u>	°C	<u>Table IIIB</u>
Input Voltage	<u>9.5</u>	VDC	<u>9.5 VDC or Para. 5.2.3.2</u>
Input Current	<u>123</u>	mA	<u>Table IIIB</u>
Frequency, f _{meas}	<u>31. 39951</u>	GHz	<u>Table IIIB</u>
RF Output Power, P _{meas}	<u>16.0</u>	dBm	<u>12 to 17 dBm</u>

Measurement at 10.5 VDC or at 10.5 VDC

Temperature	<u>30</u>	°C	<u>Table IIIB</u>
Input Voltage	<u>10.5</u>	VDC	<u>10.5 VDC or Para. 5.2.3.3</u>
Input Current	<u>123</u>	mA	<u>Table IIIB</u>
Frequency, f _{meas}	<u>31. 39946</u>	GHz	<u>Table IIIB</u>
RF Output Power, P _{meas}	<u>16.0</u>	dBm	<u>12 to 17 dBm</u>

Calculate Frequency Variation, $\Delta f_v = f_{meas} - f_{30^\circ C}$:

$$\begin{array}{lll} \Delta f_v \text{ at } 9.5 \text{ VDC or at } & \text{VDC} = & -0.05 \text{ MHz} \\ \underline{9.5} & & \\ \Delta f_v \text{ at } 10.5 \text{ VDC or at } & \text{VDC} = & -0.10 \text{ MHz} \\ \underline{10.5} & & \\ \Delta f_v \text{ at } 10.0 \text{ VDC } (=f_{30^\circ C} - f_{T_{nom}}) & = & -1.59 \text{ MHz} \end{array}$$

Calculate RF Output Power Variation, $\Delta P_v = P_{meas} - P_{30^\circ C}$:

$$\begin{array}{lll} \Delta P_v \text{ at } 9.5 \text{ VDC or at } & \text{VDC} = & \phi \text{ dB} \\ \underline{9.5} & & \\ \Delta P_v \text{ at } 10.5 \text{ VDC or at } & \text{VDC} = & \phi \text{ dB} \\ \underline{10.5} & & \\ \Delta P_v \text{ at } 10.0 \text{ VDC } (=P_{30^\circ C} - P_{T_{nom}}) & = & \phi \text{ dB} \end{array}$$

Accept ✓ Reject _____
Date 4-28-98
Date MAY 1 1998Test Performed by
Litton Q.A.

JED

LITTON
M 60

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 41 OF 68
56348	A	1300823	B3	

LITTON / SOLID STATE DIVISION / 3251 OLCOTT ST / SANTA CLARA, CA 95054

LITTON**Solid State**

TEST DATA SHEET 7.6
FUNCTIONAL PERFORMANCE TESTS
INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LS A 9635 CF
SERIAL NUMBER: 87053

QUAL TEST N/A

AESD 1336610- 2
ACCEPT TEST ✓

Temperature Extreme Testing at T_{max}, Ref. Test Para. 5.2.5.4

<u>SPECIFICATION</u>	<u>MEASUREMENT AT T_{max} ± 1°C</u>	<u>LIMIT</u>
----------------------	---	--------------

Measurement at V_{op}=10 VDC

Temperature	<u>40</u>	°C	Table IIIB
Input Voltage	<u>10</u>	VDC	10.0 ± 0.2 VDC
Input Current	<u>123</u>	mA	Table IIIB
Input Power, P _{diss}	<u>1.23</u>	W DC	P _{diss} max
Frequency, f _{T_{max}}	<u>3139824</u>	GHz	Table IIIB
RF Output Power, P _{T_{max}}	<u>16.0</u>	dBm	12 to 17 dBm

Frequency and RF Output Power Variation With Voltage, Ref. Test Para 5.2.5.4

Measurement at 9.5 VDC or at 9.5 VDC

Temperature	<u>40</u>	°C	Table IIIB
Input Voltage	<u>9.5</u>	VDC	9.5 VDC or Para 5.2.3.2
Input Current	<u>124</u>	mA	Table IIIB
Frequency, f _{meas}	<u>3139818</u>	GHz	Table IIIB
RF Output Power, P _{meas}	<u>16.0</u>	dBm	12 to 17 dBm

Measurement at 10.5 VDC or at 10.5 VDC

Temperature	<u>40</u>	°C	Table IIIB
Input Voltage	<u>10.5</u>	VDC	10.5 VDC or Para 5.2.3.3
Input Current	<u>124</u>	mA	Table IIIB
Frequency, f _{meas}	<u>3139812</u>	GHz	Table IIIB
RF Output Power, P _{meas}	<u>16.0</u>	dBm	12 to 17 dBm

Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{T_{max}}$:

Δf_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>- 0.06</u>	MHz
Δf_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>- 0.12</u>	MHz
Δf_T at 10.0V ($= f_{T_{max}} - f_{T_{nom}}$)	=	<u>2.91</u>	MHz

Calculate RF Output Power Variation, $\Delta P_V = P_{meas} - P_{T_{nom}}$:

ΔP_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>φ</u>	dB
ΔP_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>φ</u>	dB
ΔP_T at 10.0 VDC ($= P_{T_{max}} - P_{T_{nom}}$)	=	<u>φ</u>	dB

Test Performed by
Litton Q.A.

JED
1160

Accept ✓Reject Date 4.28-98Date MAY 01 1998

CODE IDENT NO. 56348	SIZE A	NUMBER 1300823	REV B3	SHEET 42 OF 68
-------------------------	-----------	-------------------	-----------	----------------

LITTON**Solid State**

TEST DATA SHEET 7.7
FUNCTIONAL PERFORMANCE TESTS
INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LSA 9635 CF AESD 1336610-2
SERIAL NUMBER: 87053 QUAL TEST N/A ACCEPT TEST ✓

Power Supply Immunity, Ref. Test Para. 5.2.4

<u>SPECIFICATION</u>	<u>MEASUREMENT AT T_{nom} ± 1°C</u>	<u>LIMIT</u>
----------------------	---	--------------

Initial Measurement

Temperature	<u>18</u> °C	Table IIIB
Input Voltage	<u>10</u> VDC	10.0 ± 0.2 VDC
Input Current	<u>122</u> mA	Table IIIB
Input Power	<u>1.22</u> W DC	Pdiss max
Frequency (f _{T_{nom}})	<u>31.40110</u> GHz	Table IIIB
RF Output Power	<u>16.0</u> dBm	12 to 17 dBm
Frequency Setting Accuracy, Δf _s (= f _{T_{nom}} -F _o)	<u>1.1</u> MHz	

Performance After Short Circuit on Power Supply: Ref Test Para 5.2.4.2

Input Voltage	<u>10</u> VDC	10.0 ± 0.2 VDC
Input Current	<u>122</u> mA	Table IIIB
Input Power	<u>1.22</u> W DC	Pdiss max
Frequency	<u>31.40110</u> GHz	Table IIIB
RF Output Power	<u>16.0</u> dBm	12 to 17 dBm

Over Voltage: Ref Test Para 5.2.4.3

Overvoltage Input Voltage	<u>28</u> VDC	+28V
---------------------------	---------------	------

Performance After Input Overvoltage

Input Voltage	<u>10</u> VDC	10.0 ± 0.2 VDC
Input Current	<u>122</u> mA	Table IIIB
Input Power	<u>1.22</u> W DC	Pdiss max
Frequency	<u>31.40111</u> GHz	Table IIIB
RF Output Power	<u>16.0</u> dBm	12 to 17 dBm

Reverse Polarity: Ref Test Para 5.2.4.4

Reverse Input Voltage	<u>-10</u> VDC	-10.0 ± 0.2 VDC
-----------------------	----------------	---------------------

Performance After Reverse Input Voltage

Input Voltage	<u>10</u> VDC	10.0 ± 0.2 VDC
Input Current	<u>122</u> mA	Table IIIB
Input Power	<u>1.22</u> W DC	Pdiss max
Frequency, f _{T_{nom}}	<u>31.40110</u> GHz	Table IIIB
RF Output Power	<u>16.0</u> dBm	12 to 17 dBm
Frequency Setting Accuracy, Δf _s (= f _{T_{nom}} -F _o)	<u>1.1</u> MHz	

Test Performed by VN UT-2M
Litton Q.A. •160

Accept ✓ Reject _____
Date 4-28-98
Date MAY 01 1998

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 43 OF 68
56348	A	1300823	B3	

LITTON
Solid State

TEST DATA SHEET 7.23B
FUNCTIONAL PERFORMANCE TESTS
INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LSA 9635 CF AESD 1336610- 2
SERIAL NUMBER: 87053 QUAL TEST N/A ACCEPT TEST ✓

Frequency Pulling and Load VSWR 2.5:1 max. all phases. Ref Test Para. 5.9

TEST DESCRIPTION

LIMITS

Output Open and Short. Ref. Test Para. 5.9.5

Temperature	<u>24</u>	°C	$24^{\circ}\text{C} \pm 5^{\circ}\text{C}$
Frequency:	<u>31.40065</u>	GHz	Table IIIB
RF Output Power:	<u>15.6</u>	dBM	12 to 17 dBM
Input Voltage	<u>10</u>	VDC	10 ± 0.2 VDC
Input Current:	<u>122</u>	mA	Table IIIB
Results:	<u>✓</u>	Acceptable	No Damage or Degradation

Calculate maximum Frequency Accuracy (both positive and negative),

$\Delta f_{acc} = \Delta f_S$ (Use worst-case Δf_S from 7.2, 7.7, and 7.22A) + Δf_H (from 7.22A) + Δf_L (from 7.23A):

Maximum Δf_{acc} = 1.39 MHz (Positive) Table IIIB
- 0.28 MHz (Negative) Table IIIB

Calculate maximum Short-term Frequency Stability (both positive and negative),

$\Delta f_{V+T} = \Delta f_V + \Delta f_T$ (Use worst-case Δf_V and Δf_T from 7.2 thru 7.6):

Maximum Δf_{V+T} = 2.93 MHz (Positive) Table IIIB
- 1.60 MHz (Negative) Table IIIB

Calculate maximum overall RF Output Power Stability (both positive and negative),

$\Delta P_{ov} = \Delta P_V + \Delta P_T$ (Use worst-case ΔP_V and ΔP_T from 7.2 thru 7.6) + ΔP_H (from 7.22A) + ΔP_L (from 7.23A):

Maximum ΔP_{ov} = 0.42 dB (Positive) 1.0 dB
- 0.30 dB (Negative) -1.0 dB

Accept ✓ Reject _____

Test Performed by VN Date 4-30-98

Litton Q.A. LITTON M 60 Date _____

CODE IDENT NO. 56348	SIZE A	NUMBER 1300823	REV B3	SHEET 61 OF 68
-------------------------	-----------	-------------------	-----------	----------------

**BANDPASS CHARACTERISTICS
FOR
IF FILTERS**

3 dB BANDWIDTH OF IF FILTERS

Channel No.	1	2
<u>Specification</u> (MHz)	135	90
3 dB bandwidth (MHz) *	127	82
$f_L - f_H$ (MHz)	8-135	8-90
<u>Measured</u> (MHz)		
3 dB bandwidth (MHz)	125.64	80.22
$f_L - f_H$ (MHz)	8.52-134.16	9.16-89.38

* Actual specifications for IF filters.

Channel 1 Bandpass Filter

IF Filter (S/N: 1331559-6, S/N: P232-005)

APPENDIX E

ACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL72.5-125-10SS1 S/N P232-005
 AEROJET 1331559-6 REV. E

3.0 dB BANDWIDTH

ACCEPTANCE TEST PROCEDURE
 63-0005-02 PARA 4.5.3

	-10°C	+15°C	+40°C
{7} UPPER 3.0 dB BANDEDGE	<u>134.38</u> MHz (133.0-135.0)	<u>134.16</u> Mhz (133.0-135.0)	<u>133.93</u> MHz (133.0-135.0)
{8} LOWER 3.0 dB BANDEDGE	<u>8.53</u> MHz (8.0-10.0)	<u>8.52</u> Mhz (8.0-10.0)	<u>8.50</u> MHz (8.0-10.0)
{9} 3.0 dB RELATIVE BANDWIDTH	<u>125.85</u> MHz (123.0-127.0)	<u>125.64</u> Mhz (123.0-127.0)	<u>125.43</u> MHz (123.0-127.0)
{10} ADD {7} AND {8} ÷ 2 =	<u>71.46</u> MHz (72.5 NOM)	<u>71.34</u> MHz (72.5 NOM)	<u>71.22</u> Mhz (72.5 NOM)
{10a) RECORD MEASURED TEMPERATURE	<u>-13.2</u> °C (-15.0 TO -10.0)	<u>+14.0</u> °C (12.5 TO 17.5)	<u>+42.0</u> °C (40.0 TO 45.0)
{6} ATTACH TRANSMISSION LOSS PERFORMANCE X-Y PLOT	✓ (✓)	✓ (✓)	✓ (✓)

PASSBAND RIPPLE

ACCEPTANCE TEST PROCEDURE
 63-0005-02 PARA 4.5.4

	-10°C	+15°C	+40°C
{11a} MIN INSERTION LOSS FREQ	<u>30.24</u> MHz	<u>30.24</u> Mhz	<u>29.45</u> MHz
MIN INSERTION LOSS PERFORMANCE	<u>-0.16</u> dB	<u>-0.16</u> dB	<u>-0.17</u> dB
{11b} 75% BW LOWER BANDEDGE FREQ	<u>10.13</u> MHz	<u>10.05</u> Mhz	<u>10.00</u> MHz
75% BW LOWER BANDEDGE I.L. PERF	<u>-0.42</u> dB	<u>-0.44</u> dB	<u>-0.46</u> dB
{11c} 75% BW UPPER BANDEDGE FREQ	<u>103.88</u> MHz	<u>103.80</u> Mhz	<u>103.75</u> MHz
75% BW UPPER BANDEDGE I.L. PERF	<u>-0.42</u> dB	<u>-0.44</u> dB	<u>-0.46</u> dB
{11d} PERFORMANCE DELTA (I.L. @ {11b} - I.L. @ {11a})	<u>0.26</u> dB	<u>0.28</u> dB	<u>0.29</u> dB
{11e} PERFORMANCE DELTA (I.L. @ {11c} - I.L. @ {11a})	<u>0.26</u> dB	<u>0.28</u> dB	<u>0.29</u> dB

Prepared in accordance with MIL-STD-100

CONTRACT NO.	SIZE A	CAGE CODE 57032	DWG. NO. 63-0005-02	REV. J
DADEN-ANTHONY ASSOCIATES INC.		FILE: ACAD.63/0502APFJ.DOC	SHEET	12

FINAL FUNCTIONAL PERFORMANCE

TRANSMISSION LOSS

SERIAL NO. P232-005

-10C DATA

OPR: R. HOGGATT DATE 12/11/96

MARKER PARAMETER

MARKER 1	16.250000 MHz	72.500000 MHz
	OFF	-.2553 dB

MARKER 2	128.750000 MHz	71.456911 MHz
	OFF	OFF

MARKER 3	25.625000 MHz	8.529639 MHz
	OFF	-.3.2553 dB

MARKER 4	119.375000 MHz	134.384183 MHz
	OFF	-.3.2553 dB

MKR STIMULUS OFFSET	0.000000 MHz	89.425802 MHz
	0 dB	-.3.2342 dB

REFERENCE MARKER PLACEMENT	OFF	OFF
MARKER SEARCH	CONTINUOUS	CONTINUOUS
TARGET VALUE	OFF	OFF
MARKER WIDTH VALUE	-14 dB	-9 dB
MARKER TRACKING	-3 dB	-3 dB
	OFF	OFF
	OFF	OFF

FINAL FUNCTIONAL PERFORMANCE

TRANSMISSION LOSS

SERIAL NO. P232-005

+15C DATA

OPR: R. HOGGATT DATE 12/1/96

MARKER PARAMETERS Channel 1 Channel 2

MARKER 1	16.250000 MHz	72.500000 MHz
	OFF	- .2682 dB

MARKER 2	128.750000 MHz	71.338889 MHz
	OFF	OFF

MARKER 3	25.625000 MHz	8.516631 MHz
	OFF	-3.2683 dB

MARKER 4	119.375000 MHz	134.161148 MHz
	OFF	-3.2683 dB

MKR STIMULUS OFFSET	0.000000 MHz	89.425802 MHz
	0 dB	-3.2342 dB

REFERENCE MARKER PLACEMENT	OFF	OFF
----------------------------	-----	-----

MARKER SEARCH	CONTINUOUS	CONTINUOUS
---------------	------------	------------

TARGET VALUE	OFF	OFF
--------------	-----	-----

MARKER WIDTH VALUE	-3 dB	-3 dB
--------------------	-------	-------

MARKER TRACKING	OFF	OFF
-----------------	-----	-----

**FINAL FUNCTIONAL PERFORMANCE
TRANSMISSION LOSS
SERIAL NO. P232-005**

+40C DATA

OPR: R. HOGGATT DATE 12/11/96

MARKER PARAMETER

Channel 2

MARKER 1	11.250000 MHz	72.500000 MHz
	OFF	-2772 dB
MARKER 2	128.750000 MHz	71.217370 MHz
	OFF	
MARKER 3	25.625000 MHz	8.561220 MHz
	OFF	-3.2772 dB
MARKER 4	112.375000 MHz	133.933520 MHz
	OFF	-3.2772 dB
MKR STIMULUS OFFSET	6.660000 MHz	89.425802 MHz
	0 dB	-3.2342 dB
REFERENCE MARKER PLACEMENT	OFF	OFF
MARKER SEARCH	CONTINUOUS	CONTINUOUS
TARGET VALUE	OFF	OFF
MARKER WIDTH VALUE	-14 dB	-3 dB
	-3 dB	-3 dB
MARKER TRACKING	OFF	OFF
	OFF	OFF

APPENDIX F

ACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL72.5-125-10SS1 S/N P232-005
 AEROJET 1331559-6 REV. E

PASSBAND RIPPLE (CON'T)

{11f} RECORD PASS/FAIL (0.5 dB MAX)

PASS/FAIL

PASS/FAIL

PASS/FAIL

{11g) ATTACH PASSBAND RIPPLE
PERFORMANCE X-Y PLOT(S)}

✓(√)

✓(√)

✓(√)

OUT-OF-BAND REJECTION

ACCEPTANCE TEST PROCEDURE

-10°C

+15°C

+40°C

63-0005-02 PARA 4.5.5

Fc=72.5 MHz.

REF {5A} FOR INSERTION LOSS @ Fc

{12} WORST CASE REJECTION FROM
0.300 MHz TO 1.0 MHz>100 dB
(40.0 dB MIN)>100 dB
(40.0 dB MIN)>100 dB
(40.0 dB MIN){13a} WORST CASE REJECTION FROM
153.75 MHz TO 1000.0 MHz-69.7 dB
(40.0 dB MIN)-69.7 dB
(40.0 dB MIN)-69.8 dB
(40.0 dB MIN)

{13c} RECORD MEASURED TEMPERATURE

-13.1 °C
(-15.0 TO -10.0)+14.0 °C
(12.5 TO 17.5)+42.0 °C
(40.0 TO 45.0){14} ATTACH REJECTION PERFORMANCE
X-Y PLOT(S)✓(√)
✓(√)✓(√)
✓(√)✓(√)
✓(√)TEST PERFORMED BY JZ. HOGGALL DATE 12/11/96DA
6NOTE IF TEST WITNESSED BY AESD: _____ GSI: Not witnessed
this time. DLD

***** END OF FUNCTIONAL PERFORMANCE TEST *****

OUTLINE AND MOUNTING DIMENSIONS VERIFICATION

{16} REFERENCE CUSTOMER DRAWING 1331559

DESCRIPTION OF MEASUREMENT	DIMENSION AND TOLERANCE	ACTUAL MEASUREMENT
OVER ALL LENGTH	3.50 ± .03	<u>3.501</u>
MOUNTING HOLE CENTER	0.125 ± .010	<u>0.127</u>
BETWEEN UPPER MOUNTING HOLES	<u>3.250</u>	<u>3.250</u>
BETWEEN LOWER MOUNTING HOLES	<u>3.250</u>	<u>3.249</u>

Prepared in accordance with MIL-STD-100

CONTRACT NO.	SIZE A	CAGE CODE 57032	DWG. NO. 63-0005-02	REV. J
DADEN-ANTHONY ASSOCIATES INC.		FILE: ACAD/63/0502APFJ.DOC	SHEET	13

**FINAL FUNCTIONAL PERFORMANCE
REJECTION PERFORMANCE
SERIAL NO. P232-005**

-10C DATA

OPR: R. HOGGATT DATE 12/11/96

MARKER PARAMETER CHANNEL 2

MARKER 1	1.000000 MHz	72.500000 MHz
	OFF	0 dB

MARKER 2	5.000000 MHz	153.750000 MHz
	OFF	-70.79 dB

MARKER 3	5.000000 MHz	177.742800 MHz
	OFF	-69.67 dB

MARKER 4	5.000000 MHz	1000.000000 MHz
	OFF	OFF

MKR STIMULUS OFFSET	0.000000 MHz	0.000000 MHz
	0 dB	0 dB

REFERENCE MARKER PLACEMENT	OFF	MARKER 1
MARKER SEARCH	CONTINUOUS	CONTINUOUS
TARGET VALUE	OFF	OFF
MARKER WIDTH VALUE	-3 dB	-3 dB
MARKER TRACKING	OFF	OFF
	OFF	OFF

FINAL FUNCTIONAL PERFORMANCE

REJECTION PERFORMANCE

SERIAL NO. P232-005

+15C DATA

OPR: R. HOGGATT DATE 12/11/96

MARKER 1	1.000000 MHz OFF	72.500000 MHz 0 dB
MARKER 2	5.000000 MHz OFF	153.750000 MHz -71.846 dB
MARKER 3	5.000000 MHz OFF	177.742802 MHz. -69.734 dB
MARKER 4	5.000000 MHz OFF	1000.000000 MHz OFF
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	0.000000 MHz 0 dB

REFERENCE MARKER PLACEMENT	OFF	MARKER 1
MARKER SEARCH	CONTINUOUS	CONTINUOUS
TARGET VALUE	OFF	OFF
MARKER WIDTH VALUE	-3 dB	-3 dB
MARKER TRACKING	OFF	OFF

FINAL FUNCTIONAL PERFORMANCE

REJECTION PERFORMANCE

SERIAL NO. P232-005

+40C DATA

OPR: R. HOGGATT DATE 12/11/96

MARKER PARAMETERS

Marker 1 Channel 2

MARKER 1	1.000000 MHz OFF	72.500000 MHz 0 dB
MARKER 2	5.000000 MHz OFF	153.750000 MHz -73.673 dB
MARKER 3	5.000000 MHz OFF	177.742800 MHz -69.828 dB
MARKER 4	5.000000 MHz OFF	1000.000000 MHz OFF
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	0.000000 MHz 0 dB

REFERENCE MARKER PLACEMENT	OFF	MARKER 1
MARKER SEARCH	CONTINUOUS	
TARGET VALUE	OFF	OFF
MARKER WIDTH VALUE	-3 dB	-3 dB
MARKER TRACKING	OFF	OFF

APPENDIX F**ACCEPTANCE TEST REPORT**

BANDPASS FILTER MODEL HL72.5-125-10SS1 S/N PZ32-005
 AEROJET 1331559-6 REV. E

BANDPASS CHARACTERISTICS MEASUREMENT

PER ATP PARA 4.6

(REF: AE-24687, PARA 4.8.2)

RECORD THE AMBIENT ROOM TEMPERATURE +24.0 °C (+19°C TO +29.0°C)

{15} ATTACH PASSBAND PERFORMANCE X-Y PLOT

✓ (✓)

{24} TEST POINT MATRIX

REF	FREQ	UNIT	VALUE	REF	FREQ	UNIT	VALUE
F1	0.5	MHz	<u>-100.7</u> dB	F11	(*) 80.0	MHz	<u>-0.30</u> dB
F2	1.0	MHz	<u>-92.7</u> dB	F12	(*) 100.0	MHz	<u>-0.40</u> dB
F3	5.0	MHz	<u>-30.0</u> dB	F13	120.0	MHz	<u>-0.64</u> dB
F4	7.5	MHz	<u>-8.79</u> dB	F14	130.0	MHz	<u>-1.06</u> dB
F5	10.0	MHz	<u>-0.75</u> dB	F15	135.0	MHz	<u>-5.23</u> dB
F6	15.0	MHz	<u>-0.29</u> dB	F16	140.0	MHz	<u>-21.7</u> dB
F7	25.0	MHz	<u>-0.19</u> dB	F17	150.0	MHz	<u>-55.4</u> dB
F8	(*) 45.0	MHz	<u>-0.18</u> dB	F18	200.0	MHz	<u>-73.9</u> dB
F9	(*) 65.0	MHz	<u>-0.25</u> dB	F19	500.0	MHz	<u>-104.2</u> dB
F10	72.5	MHz	<u>-0.29</u> dB	F20	1000.0	MHz	<u>-105.0</u> dB

TEST PERFORMED BY: R. Hoggatt DATE 12/18/96NOTE IF TEST WITNESSED BY AESD _____ GSI. Not witnessed
this time. DLD

***** END OF BANDPASS CHARACTERISTICS TEST *****

FUNCTIONAL PERFORMANCE TEST**ACCEPTANCE TEST PROCEDURE**

63-0005-02 PARA 4.1

BRIEF TEST DESCRIPTION: THE TESTS DESCRIBED IN APPENDIX F PAGE 10 THRU PAGE 13 ARE PERFORMED TO DOCUMENT THE FUNCTIONAL PERFORMANCE OF THE UNIT AT THE CONCLUSION OF ALL ENVIRONMENTAL TESTING. THE TESTS ARE AS FOLLOWS AND IN ANY SEQUENCE:

- a.) VSWR PER ATP PARA 4.5.1.
- b.) INSERTION LOSS PER ATP PARA 4.5.2
- c.) INSERTION LOSS VS TEMPERATURE PER ATP PARA 4.5.6.
- d.) 3.0 dB BANDWIDTH PER ATP PARA 4.5.3.
- e.) CENTER FREQUENCY (fc) PER ATP PARA 4.5.7 (PART OF 3.0 dB B/W TEST)
- f.) PASSBAND RIPPLE PER ATP PARA 4.5.4 (PART OF INSERTION LOSS TEST).
- g.) OUT-OF-BAND REJECTION PER ATP PARA 4.5.5.

Prepared in accordance with MIL-STD-100

CONTRACT NO.

SIZE	CAGE CODE	DWG. NO.	REV.
A	57032	63-0005-02	J
DADEN-ANTHONY ASSOCIATES INC.	FILE: ACAD\63\0502APFJ.DOC	SHEET	10

**POST THERMAL CYCLE
PASSBAND CHARACTERISTICS
SERIAL NO. P232-005**

AMBIENT

OPR: R. HOGGATT DATE DEC 18 1996

MARKER PARAMETERS

Channel 1 Channel 2

MARKER 1	45.000000 MHz	45.000000 MHz
	OFF	-1814 dB

MARKER 2	65.000000 MHz	65.000000 MHz
	OFF	-2546 dB

MARKER 3	80.000000 MHz	80.000000 MHz
	OFF	-2979 dB

MARKER 4	100.000000 MHz	100.000000 MHz
	OFF	-3952 dB

MKR STIMULUS OFFSET	0.000000 MHz	0.000000 MHz
	0 dB	0 dB

REFERENCE MARKER PLACEMENT	OFF	OFF
MARKER SEARCH	CONTINUOUS	CONTINUOUS

TARGET VALUE	OFF	OFF
--------------	-----	-----

MARKER WIDTH VALUE	-3 dB	-3 dB
--------------------	-------	-------

	OFF	OFF
--	-----	-----

MARKER TRACKING	OFF	OFF
-----------------	-----	-----

Channel 2 Bandpass Filter

IF Filter (S/N: 1331559-3, S/N: P229-003)

APPENDIX C**QUALIFICATION TEST REPORT**

BANDPASS FILTER MODEL HL50-80-10SS1 S/N P229-003
 AEROJET 1331559-3 REV. C

3.0 dB BANDWIDTH

QUALIFICATION TEST PROCEDURE
 63-0005-010 PARA 4.5.3

	-10°C	+15°C	+40°C
{7} UPPER 3.0 dB BANDEDGE	<u>89.53</u> MHz (88.0-90.0)	<u>89.38</u> Mhz (88.0-90.0)	<u>89.22</u> MHz (88.0-90.0)
{8} LOWER 3.0 dB BANDEDGE	<u>9.16</u> MHz (8.0-10.0)	<u>9.16</u> Mhz (8.0-10.0)	<u>9.15</u> MHz (8.0-10.0)
{9} 3.0 dB RELATIVE BANDWIDTH	<u>80.37</u> MHz (78.0-82.0)	<u>80.22</u> Mhz (78.0-82.0)	<u>80.07</u> MHz (78.0-82.0)
{10} ADD {7} AND {8} ÷ 2 =	<u>49.35</u> MHz (50.0 NOM)	<u>49.27</u> MHz (50.0 NOM)	<u>49.19</u> Mhz (50.0 NOM)
{10a} RECORD MEASURED TEMPERATURE	<u>-13.5</u> °C (-15.0 TO -10.0)	<u>+14.3</u> °C (12.5 TO 17.5)	<u>+43.6</u> °C (40.0 TO 45.0)
{6} ATTACH TRANSMISSION LOSS PERFORMANCE X-Y PLOT	<u>✓</u> (✓)	<u>✓</u> (✓)	<u>✓</u> (✓)

PASSBAND RIPPLE

QUALIFICATION TEST PROCEDURE
 63-0005-010 PARA 4.5.4

	-10°C	+15°C	+40°C
{11a} MIN INSERTION LOSS FREQ	<u>27.00</u> MHz	<u>27.00</u> Mhz	<u>27.00</u> MHz
MIN INSERTION LOSS PERFORMANCE	<u>-0.17</u> dB	<u>-0.17</u> dB	<u>-0.18</u> dB
{11b} 75% BW LOWER BANDEDGE FREQ	<u>11.27</u> MHz	<u>11.17</u> Mhz	<u>11.12</u> MHz
75% BW LOWER BANDEDGE I.L. PERF	<u>-0.37</u> dB	<u>-0.39</u> dB	<u>-0.41</u> dB
{11c} 75% BW UPPER BANDEDGE FREQ	<u>71.27</u> MHz	<u>71.17</u> Mhz	<u>71.12</u> MHz
75% BW UPPER BANDEDGE I.L. PERF	<u>-0.37</u> dB	<u>-0.39</u> dB	<u>-0.41</u> dB
{11d} PERFORMANCE DELTA (I.L. @ {11b} - I.L. @ {11a})	<u>0.20</u> dB	<u>0.22</u> dB	<u>0.23</u> dB
{11e} PERFORMANCE DELTA (I.L. @ {11c} - I.L. @ {11a})	<u>0.20</u> dB	<u>0.22</u> dB	<u>0.23</u> dB

Prepared in accordance with MIL-STD-100

CONTRACT NO.	SIZE A	CAGE CODE 57032	DWG. NO. 63-0005-010	REV. H
DADEN-ANTHONY ASSOCIATES INC.		FILE: ACAD/63/0510APCH.DOC	SHEET	13

FINAL FUNCTIONAL PERFORMANCE

TRANSMISSION LOSS

SERIAL NO. P229-003

-10C DATA

OPR: R. HOGGATT DATE 11/26/96

MARKER PARAMETERS Channel 1 Channel 2

MARKER 1	14.000000 MHz	50.000000 MHz
	OFF	-3.2353 dB

MARKER 2	86.000000 MHz	49.345679 MHz
	OFF	OFF

MARKER 3	20.000000 MHz	9.164363 MHz
	OFF	-3.2354 dB

MARKER 4	80.000000 MHz	89.526996 MHz
	OFF	-3.2354 dB

MKR STIMULUS OFFSET	0.000000 MHz	89.425802 MHz
	0 dB	-3.2342 dB

REFERENCE MARKER PLACEMENT	OFF	OFF
MARKER SEARCH	CONTINUOUS	CONTINUOUS

TARGET VALUE	OFF	OFF
--------------	-----	-----

MARKER WIDTH VALUE	-3 dB	-3 dB
	OFF	OFF

MARKER TRACKING	OFF	OFF
-----------------	-----	-----

**FINAL FUNCTIONAL PERFORMANCE
TRANSMISSION LOSS
SERIAL NO. P229-003
+40C DATA**

OPR: R. HOGGATT DATE 11/26/96 Channel 1 Channel 2

MARKER 1	14.000000 MHz OFF	50.000000 MHz -.2626 dB
MARKER 2	86.000000 MHz OFF	49.186938 MHz OFF
MARKER 3	20.000000 MHz OFF	9.154363 MHz -3.2627 dB
MARKER 4	80.000000 MHz OFF	89.219514 MHz -3.2627 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	89.425802 MHz -3.2342 dB
REFERENCE MARKER PLACEMENT	OFF	OFF
MARKER SEARCH	CONTINUOUS	CONTINUOUS
TARGET VALUE	OFF	OFF
MARKER WIDTH VALUE	-14 dB	-3 dB
	-3 dB	-3 dB
MARKER TRACKING	OFF	OFF
	OFF	OFF

APPENDIX CQUALIFICATION TEST REPORT

BANDPASS FILTER MODEL HL50-80-10SS1 S/N P229-003
 AEROJET 1331559-3 REV. E

PASSBAND RIPPLE (CON'T)

{11f} RECORD PASS/FAIL (0.5 dB MAX)

PASS/FAIL

PASS/FAIL

PASS/FAIL

{11g) ATTACH PASSBAND RIPPLE
PERFORMANCE X-Y PLOT(S)

✓(√)

✓(√)

✓(√)

OUT-OF-BAND REJECTION

QUALIFICATION TEST PROCEDURE

-10°C

+15°C

+40°C

63-0005-010 PARA 4.5.5

Fc=50.0 MHz.

REF {5A} FOR INSERTION LOSS @ Fc

{12} WORST CASE REJECTION FROM
0.300 MHz TO 1.0 MHz

>100 dB
(40.0 dB MIN)

>100 dB
(40.0 dB MIN)

>100 dB
(40.0 dB MIN)

{13a} WORST CASE REJECTION FROM
102.0 MHz TO 1000.0 MHz

-50.8 dB
(40.0 dB MIN)

-51.4 dB
(40.0 dB MIN)

-52.2 dB
(40.0 dB MIN)

{13c} RECORD MEASURED TEMPERATURE
X-Y PLOT(S)

-13.7 °C
(-15.0 TO -10.0)

+14.2 °C
(12.5 TO 17.5)

+43.8 °C
(40.0 TO 45.0)

{14} ATTACH REJECTION PERFORMANCE
X-Y PLOT(S)

✓(√)
✓(√)

✓(√)
✓(√)

✓(√)
✓(√)

TEST PERFORMED BY R. HOGGAN

DATE 11/26/96

DA
5

NOTE IF TEST WITNESSED BY AESD:

GSI:

→ NOT WITNESSED
THIS TIME
RD

OUTLINE AND MOUNTING DIMENSIONS VERIFICATION

{16} REFERENCE CUSTOMER DRAWING 1331559

DESCRIPTION OF MEASUREMENT	DIMENSION AND TOLERANCE	ACTUAL MEASUREMENT
OVER ALL LENGTH	3.50 ± .03	<u>3.502</u>
MOUNTING HOLE CENTER	0.125 ± .010	<u>.125</u>
BETWEEN UPPER MOUNTING HOLES	<u>3.250</u>	<u>3.250</u>
BETWEEN LOWER MOUNTING HOLES	<u>3.250</u>	<u>3.250</u>

Prepared in accordance with MIL-STD-100

CONTRACT NO.	SIZE A	CAGE CODE	DWG. NO.	REV. H
DADEN-ANTHONY ASSOCIATES INC.		57032	63-0005-010	

FINAL FUNCTIONAL PERFORMANCE

REJECTION PERFORMANCE

SERIAL NO. P229-003

-10C DATA

OPR: R. HOGGATT DATE 11/26/96

MARKER PARAMETERS Channel 1 Channel 2

MARKER 1	1.000000 MHz	50.000000 MHz
	OFF	0 dB

MARKER 2	5.000000 MHz	102.000000 MHz
	OFF	-50.75 dB

MARKER 3	5.000000 MHz	102.000000 MHz
	OFF	OFF

MARKER 4	5.000000 MHz	1000.000000 MHz
	OFF	OFF

MKR STIMULUS OFFSET	0.000000 MHz	0.000000 MHz
	0 dB	0 dB

REFERENCE MARKER PLACEMENT	OFF	MARKER 1
MARKER SEARCH	CONTINUOUS	CONTINUOUS

TARGET VALUE	OFF	OFF
--------------	-----	-----

MARKER WIDTH VALUE	-3 dB	-3 dB
	OFF	OFF

MARKER TRACKING	OFF	OFF
-----------------	-----	-----

FINAL FUNCTIONAL PERFORMANCE

REJECTION PERFORMANCE

SERIAL NO. P229-003

+15C DATA

OPR: R. HOGGATT DATE 11/26/96

MARKER PARAMETER CHANNEL 1 CHANNEL 2

MARKER 1	1.000000 MHz	50.000000 MHz
	OFF	0 dB

MARKER 2	5.000000 MHz	102.000000 MHz
	OFF	-51.436 dB

MARKER 3	5.000000 MHz	102.000000 MHz
	OFF	OFF

MARKER 4	5.000000 MHz	1000.000000 MHz
	OFF	OFF

MKR STIMULUS OFFSET	0.000000 MHz	0.000000 MHz
	0 dB	0 dB

REFERENCE MARKER PLACEMENT	OFF	MARKER 1
MARKER SEARCH	CONTINUOUS	CONTINUOUS
TARGET VALUE	OFF	OFF
MARKER WIDTH VALUE	-3 dB	-3 dB
MARKER TRACKING	OFF	OFF
	OFF	OFF

**FINAL FUNCTIONAL PERFORMANCE
REJECTION PERFORMANCE
SERIAL NO. P229-003
+40C DATA**

OPR: R. HOGGATT DATE 11/26/96 Channel 2

MARKER 1	1.000000 MHz	50.000000 MHz
OFF		0 dB
MARKER 2	5.000000 MHz	102.000000 MHz
OFF		-52.233 dB
MARKER 3	5.000000 MHz	102.000000 MHz
OFF		OFF
MARKER 4	5.000000 MHz	1000.000000 MHz
OFF		OFF
MKR STIMULUS OFFSET	0.000000 MHz	0.000000 MHz
	0 dB	0 dB
REFERENCE MARKER PLACEMENT	OFF	MARKER 1
MARKER SEARCH	CONTINUOUS	CONTINUOUS
TARGET VALUE	OFF	OFF
MARKER WIDTH VALUE	-3 dB	-3 dB
MARKER TRACKING	OFF	OFF
	OFF	OFF

APPENDIX C

QUALIFICATION TEST REPORT

BANDPASS FILTER MODEL HL50-80-10SS1 S/N P229-003
 AEROJET 1331559-3 REV. E

BANDPASS CHARACTERISTICS MEASUREMENT

PER QTP PARA 4.6

(REF: AE-24687, PARA 4.8.2)

RECORD THE AMBIENT ROOM TEMPERATURE +23.5 °C (+19°C TO +29.0°C)

{15} ATTACH PASSBAND PERFORMANCE X-Y PLOT

✓ (✓)

{24} TEST POINT MATRIX

REF	FREQ	UNIT	VALUE	REF	FREQ	UNIT	VALUE
F1	0.5	MHz	-100.7 dB	F11	(*) 60.0	MHz	-0.31 dB
F2	1.0	MHz	-93.5 dB	F12	(*) 70.0	MHz	-0.38 dB
F3	5.0	MHz	-32.2 dB	F13	80.0	MHz	-0.58 dB
F4	7.5	MHz	-11.7 dB	F14	85.0	MHz	-0.81 dB
F5	10.0	MHz	-1.71 dB	F15	90.0	MHz	-4.98 dB
F6	15.0	MHz	-0.32 dB	F16	100.0	MHz	-42.0 dB
F7	20.0	MHz	-0.23 dB	F17	200.0	MHz	-80.2 dB
F8	(*) 30.0	MHz	-0.18 dB	F18	300.0	MHz	-98.0 dB
F9	(*) 40.0	MHz	-0.22 dB	F19	500.0	MHz	-106.1 dB
F10	50.0	MHz	-0.26 dB	F20	1000.0	MHz	-97.2 dB

TEST PERFORMED BY: R. HoggattDATE 11/26/96DA
5

NOTE IF TEST WITNESSED BY AESD _____

GSI _____

→ Not Witnessed
This time
DA

***** END OF BANDPASS CHARACTERISTICS TEST *****

FUNCTIONAL PERFORMANCE TEST

QUALIFICATION TEST PROCEDURE

63-0005-010 PARA 4.1

BRIEF TEST DESCRIPTION: THE TESTS DESCRIBED IN APPENDIX C PAGE 10 THRU PAGE 13 ARE PERFORMED TO DOCUMENT THE FUNCTIONAL PERFORMANCE OF THE UNIT AT THE CONCLUSION OF ALL ENVIRONMENTAL TESTING. THE TESTS ARE AS FOLLOWS AND IN ANY SEQUENCE:

- a.) VSWR PER QTP PARA 4.5.1.
- b.) INSERTION LOSS PER QTP PARA 4.5.2
- c.) INSERTION LOSS VS TEMPERATURE PER QTP PARA 4.5.6.
- d.) 3.0 dB BANDWIDTH PER QTP PARA 4.5.3.
- e.) CENTER FREQUENCY (fc) PER QTP PARA 4.5.7 (PART OF 3.0 dB BW TEST)
- f.) PASSBAND RIPPLE PER QTP PARA 4.5.4 (PART OF INSERTION LOSS TEST).
- g.) OUT-OF-BAND REJECTION PER QTP PARA 4.5.5.

Prepared in accordance with MIL-STD-100

CONTRACT NO.	SIZE A	CAGE CODE 57032	DWG. NO. 63-0005-010	REV. H
DADEN-ANTHONY ASSOCIATES INC		FILE: ACAD/63/0510APCH.DOC	SHEET	11

**POST THERMAL CYCLE
PASSBAND CHARACTERISTICS
SERIAL NO. P229-003**

AMBIENT

OPR: R. HOGGATT DATE 11/26/96

MARKER PARAMETERS Channel 2

MARKER 1	OFF	1.000000 MHz	30.000000 MHz	- .1846 dB
MARKER 2	OFF	5.000000 MHz	40.000000 MHz	- .2200 dB
MARKER 3	OFF	5.000000 MHz	60.000000 MHz	- .3143 dB
MARKER 4	OFF	5.000000 MHz	70.000000 MHz	- .3944 dB
MKR STIMULUS OFFSET	0 dB	0.000000 MHz	0.000000 MHz	0 dB
REFERENCE MARKER PLACEMENT	OFF		OFF	
MARKER SEARCH	CONTINUOUS		CONTINUOUS	
TARGET VALUE	OFF		OFF	
MARKER WIDTH VALUE	-3 dB		-3 dB	
MARKER TRACKING	OFF		OFF	

GAIN STABILITY AND GAIN COMPRESSION
FOR
MIXER/IF AMPLIFIERS

GAIN-TEMPERATURE SENSITIVITY FOR MIXER/AMPLIFIERS

Channel No.	1	2
Specification (+/-dB/°C)	0.02	0.02
Measured (dB/°C)	-0.017	-0.002

Channel 1 Mixer/Amplifier

Mixer/Amplifier (P/N: 1331562-11, S/N: 7A31)

TEST DATA SHEET NO. 6. AMPLIFIER TESTS

GAIN FLATNESS TEST: ATP PARAGRAPH 5.1.3

GAIN FLATNESS (dB)ppK	SPEC. GAIN FLATNESS (dB)ppK	ACC	REJ
<u>0.4</u>	<u>0.5</u>		—

GAIN VERSUS VOLTAGE SENSITIVITY TEST: ATP PARAGRAPH 5.1.4

ECN
CAMSU-1352

AMPLIFIER VOLTAGE	GAIN READING (dBm)	$\Delta G/\Delta V$	SPEC. $\Delta G/\Delta V$	ACC	REJ
<u>9.96</u>	<u>70.66</u>	<u>2.25</u>	<u>2.0</u>		—
<u>10.00</u>	<u>70.75</u>				
<u>10.04</u>	<u>70.84</u>				
$\Delta G_V =$	<u>0.18</u> dB				

DATE ACC REJ

PART NO. 1331562-115 SPACEK QA 6-29-98

SER NO. 7A31 TEST FAILURE: _____

TESTED BY: 7FP FAILURE ANALYSIS NO. _____

END DATE: 6-5-98

END TIME: 1600
Spacek Labs, Inc.
212 E. Gutierrez St.
Santa Barbara, CA, 93101

Amplifier Gain

Amb Temp +23

Model No.	1331562 - 11
Serial No.	7A 331
Date	6-5-98
Tested By	77H

Amplifier Gain (db)

01
1

Frequency (MHz)

TEST DATA SHEET NO. 7. AMPLIFIER TESTS

GAIN VERSUS TEMPERATURE SENSITIVITY TEST: ATP PARAGRAPH 5.1.5

Nominal Temperature (°C)	Relative Gain	ΔG/ΔT	SPEC	ACC	REJ
T1 -6	G _{T1} 71.30	* 0.013	0.035dB/°C	QA 1	
T2 +8	G _{T2} 71.12	* 0.026	0.020dB/°C	QA 1	
T3 +25	G _{T3} 70.60	* 0.021	0.035dB/°C	QA 1	
T4 +40	G _{T4} 70.35				

ECN
CAMSU-1352

* Perform the following calculations and record on the TDS

$$\Delta G/\Delta T = \frac{G_{Ti} - G_{Ti+1}}{T_i - T_{i+1}} \quad i = 1,2,3,4 \quad \Delta G_T = 0.95 \text{ dB}$$

$$\Delta G_{TOTAL} = \Delta G_V + \Delta G_T + 0.4 = 1.53 \text{ dB Spec } 1.4 \text{ dB}$$

ACC _____ REJ _____

ECN
CAMSU-1352

DATE ACC REJ

PART NO. 1331562-116

SPACEK QA

6-29-98

QA 1

SER NO. 7A31

TEST FAILURE: _____

TESTED BY: 778

FAILURE ANALYSIS NO. _____

END DATE: 6-5-98

Spacek Labs, Inc.
212 E. Gutierrez St.
Santa Barbara, CA, 93101

END TIME: 1600

Amplifier Gain

Amb Temp +23

Model No. 1331542-11
Serial No. 7A31
Date 6-5-98
Tested By JZT

Amplifier Gain (db)

8

150

Frequencies (MHz)

ea

TEST DATA SHEET NO. 8. AMPLIFIER TESTSOUTPUT 1.0 dB COMPRESSION POINT TEST: ATP PARAGRAPH 5.1.6

DASH #

11	12	13	14	15	16	17	18	19	20	FREQ. (MHz)	P2 COMP (dBm)	OUTPUT COMP. at+10(dBm)	SPEC. COMP.	PT(dBm)	ACC	REJ
X	X	X	X	X	X	X	X	X	X	10	-2.3	0.7	(S-)			
										20						
										50						
										100	-2.4	0.6	(S-)			
X	X	X	X	X	X	X	X	X	X	150	-2.4	0.6	(S-)			
										200						
										400						
										500						
										X						
										X						
										1000						
										X						
										1500						

AMPLIFIER NOISE FIGURE AND TOTAL POWER TEST: ATP PARAGRAPH 5.1.7DATE: 6-5-98 AMBIENT ROOM TEMPERATURE °C: 23°

AMPLIFIER OUTPUT POWER AMBIENT (dBm)	AMPLIFIER OUTPUT POWER (-77 K)(dBm)	Y FACTOR (dB)	AMPLIFIER NOISE FIGURE (dB)
<u>-22.5</u>	<u>-26.3</u>	<u>3.8</u>	<u>1.04</u>

Above data taken with Daden filter attached (except -19).

Intermediate test results for information only

PART NO. 1331562-11E DATE 6-28-98 ACC (S-) REJ
 SPACEK QA

SER NO. 7A31 TEST FAILURE: _____

TESTED BY: 777 FAILURE ANALYSIS NO. _____

END DATE: 1600 6/5/98

END TIME: 1600

Spacek Labs, Inc.
 212 E. Gutierrez St.
 Santa Barbara, CA, 93101

TEST DATA SHEET NO. 13. MIXER-AMPLIFIER ASSEMBLY TESTS

NOISE FIGURE, TOTAL POWER AND CURRENT VS. TEMPERATURE TEST: ATP PARA 5.4.8.

DATE: 6-24-98 AMBIENT ROOM TEMPERATURE °C: +21

UUT TEMP °C.	UUT CURRENT	MIXER- AMP. OUTPUT POWER (AMBIENT) (dBm)	MIXER- AMP. OUTPUT POWER (77 DEG K) (dBm)	Y FACTOR (dB)	MIXER- AMP. NOISE FIGURE (dB)	SPEC. MIXER- AMP. NOISE FIGURE (dB)	ACC	REJ
-6	<u>43.3</u>	<u>-21.30</u>	<u>-23.10</u>	<u>1.80</u>	<u>3.4</u>	<u>3.5</u>	QA 1	
+8	<u>43.4</u>	<u>-21.50</u>	<u>-23.20</u>	<u>1.70</u>	<u>3.6</u>	<u>3.5</u>		QA 1
+28	<u>43.5</u>	<u>-21.80</u>	<u>-23.50</u>	<u>1.70</u>	<u>3.6</u>	<u>3.5</u>		QA 1
+40	<u>43.6</u>	<u>-22.10</u>	<u>-23.75</u>	<u>1.65</u>	<u>3.7</u>	<u>3.5</u>		QA 1

Noise figure change 0.3 dB Spec is .5dB peak to peak on -20

NOTE: Above data to be taken with the Daden filter, except on the -19 unit.

ACC QA 1 REJ

NEΔT-NOISE POWER STABILITY TEST: ATP PARAGRAPH 5.4.9

Date: 6-23-98 Ambient Room Temperature °C: 24

Attach computer generated NEΔT spreadsheet to this test data sheet.

Record the calculated Nps(K) from spreadsheet data: 0.037

Record Nps(K) 0.07 for dash number from Aerojet specification AE-24869, Table II.
Accept units if calculated Nps(K) is less than or equal to specified Nps(K), otherwise reject.

ACG QA 1 REJ
6-29-98 DATE ACC REJ

PART NO. 1331562-116

SPACEK QA

SER NO. 7A31

TEST FAILURE: _____

TESTED BY: DL

FAILURE ANALYSIS NO. _____

END DATE: 6-24-98

Spacek Labs, Inc.
212 E. Gutierrez St.
Santa Barbara, CA, 93101

END TIME: 1600

5.4.14 Noise Power Profile

Model No.: 1331562-11C

Serial No.: 7431

Date: 6-24-98

Tested by: J.W.

Spectrum Analyzer Parameters

Vertical Scale: 2 dB/div.

Scan Width: 30 mhz/Div.

IF Band Width: 10 Khz

Scan Time: 3 sec/Div.

04

Channel 2 Mixer/Amplifier

Mixer/Amplifier (P/N: 1331562-12, S/N: 7A22)

TEST DATA SHEET NO. 6. AMPLIFIER TESTS

GAIN FLATNESS TEST: ATP PARAGRAPH 5.1.3

GAIN FLATNESS (dB)ppK	SPEC. GAIN FLATNESS (dB)ppK	ACC	REJ
<u>0.30</u>	<u>0.50</u>	QA	—

GAIN VERSUS VOLTAGE SENSITIVITY TEST: ATP PARAGRAPH 5.1.4

AMPLIFIER VOLTAGE	GAIN READING (dBm)	$\Delta G/\Delta V$	SPEC. $\Delta G/\Delta V$	ACC	REJ	ECN
<u>9.96</u>	<u>70.92</u>	<u>2.25</u>	<u>2.0</u>	—	QA	<u>CAMSU-1352</u>
<u>10.00</u>	<u>71.00</u>					
<u>10.04</u>	<u>71.09</u>					
$\Delta G_V =$	<u>0.18</u> dB					

DATE ACC REJ

PART NO. 1331562-126 SPACEK QA 6-29-98 QA

SER NO. 7A22 TEST FAILURE: _____

TESTED BY: 277 FAILURE ANALYSIS NO. _____

END DATE: 6-5-98

Spacek Labs, Inc.
212 E. Gutierrez St.
Santa Barbara, CA, 93101

END TIME: 1600

Amplifier Gain

Amb Temp + 23°C

TEST DATA SHEET NO. 7. AMPLIFIER TESTS

GAIN VERSUS TEMPERATURE SENSITIVITY TEST: ATP PARAGRAPH 5.1.5

Nominal Temperature (°C)	Relative Gain	ΔG/ΔT	SPEC	ACC	REJ
T1 - 6	G _{T1} 71.55	* 0.012	0.035dB/°C	QA 1	
T2 + 8	G _{T2} 71.38	* 0.019	0.020dB/°C	QA 1	
T3 + 28	G _{T3} 71.01	* 0.026	0.035dB/°C	QA 1	
T4 + 40	G _{T4} 70.70				

* Perform the following calculations and record on the TDS

$$\Delta G/\Delta T = \frac{G_{Ti} - G_{Ti+1}}{T_i - T_{i+1}} \quad i = 1, 2, 3, 4 \quad \Delta G_T = 0.85 \text{ dB}$$

$$\Delta G_{TOTAL} = \Delta G_V + \Delta G_T + 0.4 = 1.43 \text{ dB Spec } 1.4 \text{ dB}$$

ACC _____

REJ 1

ECN
CAMSU-1352

DATE ACC REJ

PART NO. 1331562-125

SPACEK QA

6-27-88

QA 1

SER NO. 7A22

TEST FAILURE: _____

TESTED BY: 777

FAILURE ANALYSIS NO. _____

END DATE: 6-5-98

Spacek Labs, Inc.
212 E. Gutierrez St.
Santa Barbara, CA, 93101

END TIME: 9-1600

SPACEK LABS, INC.
MM-WAVE TECHNOLOGY

Amplifier Gain

Amb Temp +23

Amplifier Gain (db)

Model No. 1331562-12
Serial No. 7A22
Date 6-5-98
Tested By 772

FREQUENCY (MHz)

TEST DATA SHEET NO. 8. AMPLIFIER TESTS

OUTPUT 1.0 dB COMPRESSION POINT TEST: ATP PARAGRAPH 5.1.6

DASH #

11	12	13	14	15	16	17	18	19	20	FREQ. (MHz)	P2 COMP (dBm)	OUTPUT COMP. at+10(dBm)	SPEC. COMP.	ACC	REJ
X	X	X	X	X	X	X	X	X	X	10	-2.5	0.5	1.0	OK	OK
										20					
										50	-2.4	0.6	1.0		
X	X	X	X	X	X	X	X	X	X	100	-2.6	0.4	0.0	OK	OK
X										150					
										200					
										400					
										X	500				
										X	1000				
										X	1500				

AMPLIFIER NOISE FIGURE AND TOTAL POWER TEST: ATP PARAGRAPH 5.1.7

DATE: 6-5-98 AMBIENT ROOM TEMPERATURE °C: 23°

AMPLIFIER OUTPUT POWER AMBIENT (dBm)	AMPLIFIER OUTPUT POWER (-77 K)(dBm)	Y FACTOR (dB)	AMPLIFIER NOISE FIGURE (dB)
<u>-24.2</u>	<u>-27.9</u>	<u>3.1</u>	<u>1.11</u>

Above data taken with Daden filter attached (except -19).

Intermediate test results for information only

PART NO. 1331562-125

SPACEK QA

DATE 6-27-98 ACC OK REJ OK

SER NO. 7A 22

TEST FAILURE: _____

TESTED BY: 777

FAILURE ANALYSIS NO. _____

END DATE: 6-5-98

Spacek Labs, Inc.
212 E. Gutierrez St.
Santa Barbara, CA, 93101

END TIME: 1600

TEST DATA SHEET NO. 13. MIXER-AMPLIFIER ASSEMBLY TESTS

NOISE FIGURE, TOTAL POWER AND CURRENT VS. TEMPERATURE TEST: ATP PARA 5.4.8.

DATE: 6-24-98 AMBIENT ROOM TEMPERATURE °C: 72.1

UUT TEMP °C.	UUT CURRENT	MIXER- AMP.	MIXER- AMP.	Y FACTOR (77 DEG K)	MIXER- NOISE FIGURE (dB)	SPEC. MIXER- AMP.	REJ
		OUTPUT POWER (AMBIENT) (dBm)	OUTPUT POWER (77 DEG K) (dBm)			NOISE FIGURE (dB)	
-6	43.9	-22.50	-24.45	1.95	3.2	3.2	ACC REJ
+8	43.9	-22.80	-24.75	1.95	3.2	3.2	ACC REJ
+28	44.0	-23.30	-25.25	1.95	3.2	3.2	ACC REJ
+40	44.1	-23.50	-25.40	1.90	3.2	3.2	ACC REJ

Noise figure change 0 dB Spec is .5dB peak to peak on -20

NOTE: Above data to be taken with the Daden filter, except on the -19 unit.

ACC REJ

NEΔT-NOISE POWER STABILITY TEST: ATP PARAGRAPH 5.4.9

Date: 6-23-98 Ambient Room Temperature °C: 25

Attach computer generated $NE\Delta T$ spreadsheet to this test data sheet.

Record the calculated Nps(K) from spreadsheet data: 0.028

Record Nps(K) 0.07 for dash number from Aerojet specification AE-24869, Table II.
Accept units if calculated Nps(K) is less than or equal to specified Nps(K), otherwise reject.

ACC REJ

DATE ACC REJ
6-29-98

PART NO. 1331562-125

SPACEK QA

SER NO. 7A22

TEST FAILURE: _____

TESTED BY: 7791

FAILURE ANALYSIS NO. _____

END DATE: 6-23-98

Spacek Labs, Inc.

END TIME: 1600

212 E. Gutierrez St.

Santa Barbara, CA, 93101

5.4.14 Noise Power Profile

Model No.: 1331562-12G

Serial No.: 7A22

Date: 6-29-98

Tested by: *DS*

Spectrum Analyzer Parameters

Vertical Scale: 2 dB/div.

Scan Width: 30 mhz/Div.

IF Band Width: 10 Khz

Scan Time: 3 sec/Div.

No video filter

QA
1

SUBSYSTEM-LEVEL TEST DATA

TEST DATA
FOR
AMSU-A2 (P/N: 1356441-1, S/N: F03)

CENTER FREQUENCY OF LOs

Channel No.	1	2
Specification (GHz) *	23.8	31.4
Setting Accuracy (+/-GHz)	0.008	0.008
Measured (GHz) **	23.8005	31.4007

* Specification in vacuum condition.

** Measured at ambient pressure (standard atmosphere).

TEST DATA SHEET 3
LO Frequency Test Data (Paragraph 3.5.1) (A2)

Test Setup Verified: Y. Yinck
Signature

Baseplate Temperature (T_B) 25.2 °C

Compo- nent	Channel No.	V_b (V)	I_b (mA)	P _{dc} (mW)			f ₀ (GHz)		
				Required (Max)	Measured	Pass/ Fail	Required	Measured	Pass/ Fail
LO	1	10.02	68.6	2,000	687.4	P	23.800 ± 0.008	23.800	P
	2	10.02	122.3	2,100	1225.4	P	31.400 ± 0.008	31.400	P
Mixer/ Amps	All	10.01	84.0	900	840				
TOTAL				5,000	2752				

Pass = P, Fail = F

Part No.: 1356441-1
Serial No.: F03

Test Engineer: Y. Yinck
(7A)
Quality Assurance: 268 WS 8 '98
Date: 07/27/98

TEST DATA SHEET 2
LO Frequency Test Data (Paragraph 3.5.1) (A1-2)

Test Setup Verified: _____

Baseplate Temperature (T_B) _____ °C

Signature _____

Component	Channel No.	$V_b(V)$	$I_b(mA)$	$P_{dc}(mW)$			$f_o(GHz)$		
				Required (Max)	Measured	Pass/Fail	Required	Measured	Pass/Fail
LO	3			2,700			50.300 ± 0.008		
	4			2,700			52.800 ± 0.003		
	5			2,700			53.596 ± 0.003		
	8			2,700			55.500 ± 0.008		
Mixer/ Amps	All			1,800					
TOTAL				12,600					

Pass = P, Fail = F

Part No.: _____

Test Engineer: _____

Serial No.: _____

Quality Assurance: _____

Date: _____

07/27/98 P/N: 1356441-1 S/N: F03
REF -20.0 dBm HARMONIC 6 Chan #1, Center Frequency. -59.00 dBm

FOR REFERENCE ONLY

07/27/98 P/N: 1356A11-1 S/N: F03

Chan #2
MKR 31.400 666 0 GHz
-68.20 dBm

REF 0.0 dBm

10 dB /

CNVLOSS

20.0 dB

SPAN

500 kHz

7.7M
7/27/98

CENTER 31.400 666 GHz
RES BW 10 kHz
VBW 30 kHz

SPAN 500 kHz
SWP 30.0 msec

CHAN 31.400 666 0 GHz
-68.20 dBm

TEST DATA SHEET 6
IF Output Test Data (Paragraph 3.5.2) (A2)Test Setup Verified: 7.2

Signature

Baseplate Temperature (T_B) 25, 1°C

Compo- nent	Channel No.	V_b (V)	I_b (mA)	P_o (dBm)	Atten (dB)	P_o (dBm)		
						Required	Measured	Pass/ Fail
LO	1	10.02	68.7	-21.51	6	-27.0 ± 1.0	-27.44	P
	2	10.02	122.2	-23.09	4	-27.0 ± 1.0	-27.14	P
Mixer/ Amps	All	10.01	84.0					

Pass = P, Fail = F

Part No.: 1356441-1
Serial No.: F03Test Engineer: John
Quality Assurance: 1A (263) MS 6 '98
Date: 8/5/98

10 June 1998

TEST DATA SHEET 9
Bandpass Characteristics Test Data (Paragraph 3.5.3) (A2)

Test Setup Verified: J. Dunn Baseplate Temperature (T_B) 25.1 °C
Signature

Compo- nent	Channel No.	V_b (V)	I_b (mA)	3 dB BW Frequency (MHz)		3 dB BW Frequency (MHz)		Pass/ Fail
				Lower	Higher	Required MAX.	Measured	
LO	1	10.02	68.7	8.5	133.4	135	124.9	P
	2	10.02	122.2	9.0	88.1	90	79.1	P
Mixer/ Amps	All	10.01	84.0					

Compo- nent	Channel No.	V_b (V)	I_b (mA)	40 dB BW Frequency (MHz)		40 dB BW Frequency (MHz) (Ref. Only)		Pass/ Fail
				Lower	Higher	Required MAX.	Measured	
LO	1	10.02	68.7	3.6	146.0	351	142.4	P
	2	10.02	122.2	3.6	99.9	234	96.3	P
Mixer/ Amps	All	10.01	84.0					

Part No.: 1356441-1Serial No.: F03Test Engineer: J. DunnQuality Assurance: 1A 269, AUG 6 '98Date: 8/5/98

FOR REFERENCE ONLY

8/5/98

ANSU-A2, S/N: F03

REF -48.4 dBm ATTEN 10 dB cH1, 3dB BPF -53.44 dBm

٤٦

四八九

7.7.20
8/5/98

SWP SPAN 130 MHz

VBW 30 Hz

CENTER 72 MHz BES BW 1 MHz

FOR REFERENCE ONLY

FOR REFERENCE ONLY

9/5/98
MKR 3.63 MHz

-99.00 dBm

REF -38.4 dBm ATTEN 0 dB C/H 1 , STOP BAND

10 dB/
hp

AMSU-A2, S/N: F03

7.7 ~
9/5/98

MARKER

3.63 MHz
-99.00 dBm

*

STOP 10.0 MHz
SWP 10.0 sec

START 0 Hz
RES BW 30 kHz VBW 3000 Hz

FOR REFERENCE ONLY

AM50-A2, S/N: F03

٤٧

四
DB

7.7.198

FOR REFERENCE ONLY

FOR REFERENCE ONLY

AMSU-A2, S/N: F03
REF -37.8 dBm ATTEM 0 dB CH2, STOP BAND

10 dB /

C
7.7 m
8/5/98

START 0 Hz
RES BW 30 kHz VBW 300 Hz

STOP 10.0 MHz
SWP 5.00 sec

TEST DATA SHEET 12 (Sheet 1 of 4)
Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A2)

Test Setup Verified: <u>7.2 runs</u>		Baseplate Temperature (T_B) <u>25.1 °C</u>							
		Signature							
Compo- nent	Channel No.	V_b (V)	I_b (mA)	T_H (°C)	V_H (V)		T_c (°C)	V_C (V)	
					Mean	Standard Deviation		Mean	Standard Deviation
LO	1	10.02	68.7	22.4	-0.8859,00019	-194.0	-0.6491,00021		
				22.4	-0.8859,00021	-194.0	-0.6494,00022		
				22.4	-0.8861,0.00024	-194.0	-0.6499,0.00018		
				22.4	-0.8860,0.00030	-194.0	-0.6491,0.00016		
				22.4	-0.8862,0.00026	-194.0	-0.6491,0.00018		
				22.4	-0.8861,0.00021	-194.0	-0.6486,0.00021		
				22.4	-0.8860,0.00024	-194.0	-0.6489,0.00018		
				22.4	-0.8857,0.00021	-194.0	-0.6506,0.00021		
				22.4	-0.8858,0.00022	-194.0	-0.6494,0.00021		
				22.4	-0.8859,0.00021	-194.0	-0.6496,0.00017		
Mixer/ Amps	All	10.01	84.0						
IF Amps	All	N/A	N/A						

Part No.: 1356441-1
Serial No.: F03

Test Engineer: Hugh
Quality Assurance: 268 TA AUG 6 98
Date: 8/5/98

TEST DATA SHEET 12 (Sheet 2 of 4)
Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A2)

Test Setup Verified: 2. J. Young
Signature

Baseplate Temperature (T_B) 25.1°C

Component	Channel No.	V_b (V)	I_b (mA)	T_H (°C)	V_H (V)		T_C (°C)	V_C (V)	
					Mean	Standard Deviation		Mean	Standard Deviation
LO	2	10.02	122.2	22.4	-0.9184	.00030	-194.0	-0.6343	.00022
					-0.9182	.00028	-194.0	-0.6355	.00020
					-0.9180	.00025	-194.0	-0.6390	.00023
					-0.9180	.00024	-194.0	-0.6376	.00018
					-0.9185	.00029	-194.0	-0.6379	.00023
					-0.9176	.00027	-194.0	-0.6364	.00033
					-0.9178	.00027	-194.0	-0.6367	.00023
					-0.9178	.00028	-194.0	-0.6370	.00024
					-0.9180	.00031	-194.0	-0.6369	.00025
					-0.9182	.00028	-194.0	-0.6365	.00022
Mixer/Amps	All	10.01	84.0	XXXXXXXXXX					
IF Amps	All	N/A	N/A	XXXXXXXXXX					

Part No.: 1356441-1

Test Engineer: J. Young

Serial No.: F03

Quality Assurance: 892 AL AUG 6 '98

Date: 8/5/98

TEST DATA SHEET 12 (Sheet 3 of 4)
Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A2)

Test Setup Verified: <u>J. J. Murray</u> Signature			Baseplate Temperature (T_B) <u>25.1 °C</u>						
Channel No.	NF (dB)				NPS (K)				
	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
1		<u>4.43</u>				<u>0.06</u>			
		<u>4.44</u>				<u>0.05</u>			
		<u>4.44</u>				<u>0.12</u>			
		<u>4.43</u>				<u>0.04</u>			
		<u>4.43</u>				<u>0.15</u>			
		<u>4.42</u>				<u>0.05</u>			
		<u>4.42</u>				<u>0.12</u>			
		<u>4.46</u>				<u>0.05</u>			
		<u>4.43</u>				<u>0.09</u>			
		<u>4.44</u>				<u>0.06</u>			
	<u>4.5</u>	<u>4.43</u>	<u>PASS</u>	<u>0.09</u>		<u>0.08</u>	<u>0.109</u>	<u>PASS</u>	
Pass = P, Fail = F									
Part No.: <u>1356441-1</u>	Test Engineer: <u>J. J. Murray</u>								
Serial No.: <u>F03</u>	Quality Assurance: <u>TA 268 AUG 6 '98</u>								
Date: <u>8/5/98</u>									

TEST DATA SHEET 12 (Sheet 4 of 4)
Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A2)

Test Setup Verified: 2. J. Hung Baseplate Temperature (T_B) 25.1 °C
Signature

Channel No.	NF (dB)				NPS (K)				
	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
2	3.95	3.79				0.11			
		3.81				0.08			
		3.87				0.05			
		3.85				0.07			
		3.84				0.10			
		3.83				0.05			
		3.83				0.05			
		3.84				0.07			
		3.83				0.14			
		3.82				0.09			
	3.95		3.83	PASS	0.09		0.08	0.088	PASS

Pass = P, Fail = F

Part No.: 1356441-1

Test Engineer: H. H. Hung

Serial No.: F03

Quality Assurance: 7A 268 JUN 6 '98

Date: 8/5/98

FOR REFERENCE ONLY

AMSU-A TEST

AMSU-A2, CH1, S/N: F03, NF & NPS TEST DATA, 8/5/98

SEQ	TEMP_TEST	TEST TEMP	VOLTAGE	STD_DEV	NF (dB)	NPS(K)
1	WARM TEST	295.55	-.88586811	.00018701	-----	-----
2	COLD TEST	79.15	-.64914267	.00020888	4.42996726	.06328436
3	WARM TEST	295.55	-.88586305	.00020670	-----	-----
4	COLD TEST	79.15	-.64945649	.00022485	4.43583659	.04979668
5	WARM TEST	295.55	-.88610158	.00024144	-----	-----
6	COLD TEST	79.15	-.64993358	.00018073	4.44142888	.12464550
7	WARM TEST	295.55	-.88602142	.00020369	-----	-----
8	COLD TEST	79.15	-.64906493	.00015985	4.42645801	.03778222
9	WARM TEST	295.55	-.88621120	.00025596	-----	-----
10	COLD TEST	79.15	-.64913782	.00017587	4.42523785	.14639002
11	WARM TEST	295.55	-.88605315	.00020628	-----	-----
12	COLD TEST	79.15	-.64857011	.00021146	4.41690783	.04796879
13	WARM TEST	295.55	-.88599476	.00023632	-----	-----
14	COLD TEST	79.15	-.64888429	.00017968	4.42348572	.11569308
15	WARM TEST	295.55	-.88569251	.00020783	-----	-----
16	COLD TEST	79.15	-.65060294	.00020703	4.45942310	.05399737
17	WARM TEST	295.55	-.88578735	.00022385	-----	-----
18	COLD TEST	79.15	-.64940639	.00020693	4.43593649	.09312813
19	WARM TEST	295.55	-.88585445	.00021137	-----	-----
20	COLD TEST	79.15	-.64954845	.00016679	4.43950544	.06421409

CH. 1 ,124.9 MHz MHz

NOISE FIGURE AVERAGE (dB) = 4.43343355713

NOISE POWER STABILITY (K) = .0796880252946

NOISE POWER STABILITY DELTA (K) = .108627800355

NPS_MAX (K) = .146390022254 NPS_MIN (K) = .0377622218995

INTEGRATION TIME = .158

FOR REFERENCE ONLY

AMSU-A TEST

AMSU-A2, CH2, S/N: F03, NF & NPS TEST DATA, 8/5/98

SEQ	TEMP_TEST	TEST TEMP	VOLTAGE	STD_DEV	NF (dB)	NPS(K)
1	WARM TEST	295.55	-.91842115	.00029823	-----	-----
2	COLD TEST	79.15	-.63426112	.00022195	3.78878200	.11153333
3	WARM TEST	295.55	-.91815703	.00028055	-----	-----
4	COLD TEST	79.15	-.63549702	.00020496	3.81069244	.08122245
5	WARM TEST	295.55	-.91798321	.00025239	-----	-----
6	COLD TEST	79.15	-.63899286	.00023300	3.86706438	.04735485
7	WARM TEST	295.55	-.91797747	.00024260	-----	-----
8	COLD TEST	79.15	-.63764348	.00018349	3.84600690	.07145909
9	WARM TEST	295.55	-.91849413	.00029019	-----	-----
10	COLD TEST	79.15	-.63789604	.00022815	3.84434793	.09968517
11	WARM TEST	295.55	-.91761317	.00026822	-----	-----
12	COLD TEST	79.15	-.63642141	.00033495	3.83089611	.05201938
13	WARM TEST	295.55	-.91781943	.00026878	-----	-----
14	COLD TEST	79.15	-.63666101	.00022669	3.83239892	.05353282
15	WARM TEST	295.55	-.91780166	.00027553	-----	-----
16	COLD TEST	79.15	-.63701677	.00023537	3.83813342	.07111340
17	WARM TEST	295.55	-.91801952	.00031342	-----	-----
18	COLD TEST	79.15	-.63687885	.00025101	3.83362953	.13507782
19	WARM TEST	295.55	-.91816777	.00028382	-----	-----
20	COLD TEST	79.15	-.63634087	.00021946	3.82366477	.08788561

CH. 2 ,79.1 MHz MHz

NOISE FIGURE AVERAGE (dB) = 3.83160776469

NOISE POWER STABILITY (K) = .081088391029

NOISE POWER STABILITY DELTA (K) = .0877228786147

NPS_MAX (K) = .135077823845 NPS_MIN (K) = .0473548452308

INTEGRATION TIME = .158

TEST DATA SHEET 17
Temperature Sensor and Thermistor Test Data (Paragraph 3.6.1) (A1-2)

Test Setup Verified: _____

Baseplate Temperature (T_B) _____ °C

Signature

Reference Designation	Specification	Measured Value	Pass/Fail
RT 41	$2200 \pm 100 \Omega$	Ω	
RT 42	$2200 \pm 100 \Omega$	Ω	
RT 43	$2200 \pm 100 \Omega$	Ω	
RT 44	$2200 \pm 100 \Omega$	Ω	
RT 12	$2200 \pm 100 \Omega$	Ω	
RT 17	$2200 \pm 100 \Omega$	Ω	
RT 18	$2200 \pm 100 \Omega$	Ω	
RT 19	$2200 \pm 100 \Omega$	Ω	
RT 22	$2200 \pm 100 \Omega$	Ω	
RT 33	$2200 \pm 100 \Omega$	Ω	
TB 58	$3000 \pm 100 \Omega$	Ω	
TB 59	$3000 \pm 100 \Omega$	Ω	
TB 54	4.1 – 4.6 V	V	

Pass = P, Fail = F

Part No.: _____

Test Engineer: _____

Serial No.: _____

Quality Assurance: _____

Date: _____

TEST DATA SHEET 18
Temperature Sensor and Thermistor Test Data (Paragraph 3.6.1) (A2)

Test Setup Verified: T. Trink
Signature

Baseplate Temperature (T_B) 22.9 °C

Reference Designation	Specification	Measured Value	Pass/Fail
RT 12	$2200 \pm 100 \Omega$	2,174 Ω	P
RT 19	$2200 \pm 100 \Omega$	2,173 Ω	P
RT 20	$2200 \pm 100 \Omega$	2,172 Ω	P
RT 13	$2200 \pm 100 \Omega$	2,174 Ω	P
RT 14	$2200 \pm 100 \Omega$	2,170 Ω	P
RT 17	$2200 \pm 100 \Omega$	2,586 Ω	F
TB 58	$3000 \pm 100 \Omega$	3,001 Ω	P
TB 59	$3000 \pm 100 \Omega$	3,001 Ω	P
TB 53	4.1 - 4.6 V	4.3 V	P

RETEST RT 17 = 2177 Ω (PASS)

Pass = P, Fail = F

T. Trink 8/5/98

Ref
TAR
135824

Part No.: 1356441-1

Test Engineer: T. Trink

Serial No.: F03

Quality Assurance: RT 17 Passed

Date: 07/27/98

TEST DATA SHEET 21
Survival Heater and Thermal Switch Test Data (Paragraph 3.6.3) (A1-2)

Test Setup Verified: _____ Baseplate Temperature (T_B) _____ °C
Signature

Reference Designation	Open Switch		Closed Switch		
	>10 MΩ	Pass/Fail	Specification	Measured Value	Pass/Fail
HR1/TS1			40 - 48 Ω		
HR2/TS2			40 - 48 Ω		

Pass = P, Fail = F

Part No.: _____

Test Engineer: _____

Serial No.: _____

Quality Assurance: _____

Date: _____

TEST DATA SHEET 22
Survival Heater and Thermal Switch Test Data (Paragraph 3.6.3) (A2)

Test Setup Verified: 22mug
Signature

Baseplate Temperature (T_B) 23.0 °C

Reference Designation	Open Switch		Closed Switch		
	>10 MΩ	Pass/Fail	Specification	Measured Value	Pass/Fail
HR1/TS1	50M	P	50 - 65 Ω	53.4 Ω	P
	50M	P		54.2 Ω	P
HR2/TS2	50M	P		57.9 Ω	P
	50M	P		57.9 Ω	P

Pass = P, Fail = F

Part No.: 1356441-1

Test Engineer: J. Yinch

Serial No.: F03

Quality Assurance: 7A 259 NUS 6 '98

Date: 07/27/98

TEST DATA SHEET 23 (Sheet 3 of 3)
Bias Voltage Verification Test Data (Paragraph 3.6.4) (A2)

Test Setup Verified: Y. Trinh
Signature

Baseplate Temperature (T_B) 23.3 °C

Reference Designation	Specification	Measured Value (V)	Pass/Fail
Mixer/IF AMP Ch 1, 2	+10 ±0.1	10.0	P
DRO Ch 1	+10 ±0.1	10.01	P
DRO Ch 2	+10 ±0.1	10.01	P

Part No.: 1356441-1

Serial No.: F03

Test Engineer: Y. Trinh

Quality Assurance: TA 268 AUG 6 '98

Date: 07/27/98

TEST DATA SHEET 3
LO Frequency Test Data (Paragraph 3.5.1) (A2)

Test Setup Verified: 27m
Signature

Baseplate Temperature (T_B) 23.8 °C

Component	Channel No.	V_b (V)	I_b (mA)	P_{dc} (mW)			f_o (GHz)		
				Required (Max)	Measured	Pass/Fail	Required	Measured	Pass/Fail
LO	1	10.01	68.6	2,000	686.7	P	23.800 ± 0.008	23.801	P
	2			2,100			31.400 ± 0.008		
Mixer/Amps	All	10.01	84.0	900	840.8				
TOTAL				5,000					

Pass = P, Fail = F

Part No.: 1356441-1

Test Engineer: Hester

Serial No.: F03

Quality Assurance: NS 997A 190

NOTE:

Date: 8/28/98

CHANNEL #1 ONLY

FOR REFERENCE ONLY

MKR 23.800.867 2 GHz

-73.6 dBm

5 HARMONIC

EEE-17-3 DBM

RE
hp

卷之三

CNVLOSS
18.0
dB

CENTER 23.800 867 GHz
BES BW 10 kHz VBW 30 kHz

TEST DATA SHEET 6
IF Output Test Data (Paragraph 3.5.2) (A2)Test Setup Verified: 7.7
SignatureBaseplate Temperature (T_B) 24.5 °C

Compo- nent	Channel No.	V_b (V)	I_b (mA)	P_o (dBm)	Atten (dB)	P_o (dBm)		
						Required	Measured	Pass/ Fail
LO	1	10.01	68.6	-21.67	6	-27.0 ± 1.0	-27.56	P
	2					-27.0 ± 1.0		
Mixer/ Amps	All	10.01	84.0					

NOTE: CHANNEL #1 ONLY

Pass = P, Fail = F

Part No.: 1356441-1
Serial No.: F03Test Engineer: Thittler
Quality Assurance: 7A 190 AUG 29 98
Date: 8/28/98

TEST DATA SHEET 9
Bandpass Characteristics Test Data (Paragraph 3.5.3) (A2)

Test Setup Verified: 725
Signature

Baseplate Temperature (T_B) 24.6 °C

Component	Channel No.	V_b (V)	I_b (mA)	3 dB BW Frequency (MHz)		3 dB BW Frequency (MHz)		Pass/Fail
				Lower	Higher	Required MAX.	Measured	
LO	1	10.01	68.6	8.6	135.2 126.6 <u>7.25</u>	135	126.6 118.0 <u>7.25</u>	P
	2					90		
Mixer/Amps	All	10.01	84.0					

Component	Channel No.	V_b (V)	I_b (mA)	40 dB BW Frequency (MHz)		40 dB BW Frequency (MHz) (Ref. Only)		Pass/Fail
				Lower	Higher	Required MAX.	Measured	
LO	1	10.01	68.6	3.6	147.8	351	144.2	P
	2					234		
Mixer/Amps	All	10.01	84.0					

NOTE: CHANNEL #1 ONLY

Part No.: 1556441-1

Serial No.: F03

Test Engineer: John S.

Quality Assurance: 7A 190 105 89 93

Date: 8/28/98

9/20/96 A2 9/20-F03

CH1 3dB DTR 1 MHz

FOR REFERENCE ONLY

A2, SW:FO3

8/28/98
SPAN 200 MHz
SWP 93.1 sec

FOR REFERENCE ONLY

A2, S/N: F03

REF -38.2 dBm ATEN 0 dB CH1, STOP BAND

10 dB/

8/28/98
MKA 9.91 MHz
-59.70 dBm
STOP 10.0 MHz
SWP 3.00 sec

TEST DATA SHEET 12 (Sheet 1 of 4)
Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A2)Test Setup Verified: 7.7ms
SignatureBaseplate Temperature (T_B) 24.8 °C

Component	Channel No.	V_b (V)	I_b (mA)	T_H (°C)	V_H (V)		T_C (°C)	V_C (V)	
					Mean	Standard Deviation		Mean	Standard Deviation
LO	1	10.01	68	22.4	- .866	.00023	-194	- .628	.00015
				22.4	- .866	.00021	-194	- .628	.00018
				22.4	- .866	.00022	-194	- .628	.00017
				22.4	- .866	.00021	-194	- .628	.00015
				22.4	- .866	.00021	-194	- .628	.00018
				22.4	- .866	.00021	-194	- .628	.00016
				22.4	- .866	.00022	-194	- .628	.00019
				22.4	- .866	.00022	-194	- .628	.00016
				22.4	- .866	.00021	-194	- .628	.00016
				22.4	- .866	.00021	-194	- .628	.00016
Mixer/Amps	All	10.01	84						
IF Amps	All	N/A	N/A						

Part No.: 1356441-1Test Engineer: ZhuSerial No.: F03Quality Assurance: 7A 190Date: 8/29/98

TEST DATA SHEET 12 (Sheet 3 of 4)
Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A.2)Test Setup Verified: 2200
SignatureBaseplate Temperature (T_B) 24.8 °C

Channel No.	NF (dB)				NPS (K)				
	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
1		4.31			0.11	103 2.23			
		4.31			0.07	057 2.23			
		4.31			0.09	082 2.23			
		4.31			0.07	056 2.23			
		4.31			0.07	049 2.23			
		4.31			0.07	051 2.23			
		4.31			0.10	087 2.23			
		4.31			0.02	072 2.23			
		4.31			0.07	051 2.23			
		4.31			0.07	047 2.23			
	4.5		4.31	P	0.09		0.08	0.04	P

Pass = P, Fail = F

Part No.: 1356441-1Test Engineer: J. H. H.Serial No.: F03Quality Assurance: QC 23 98 7A 190Date: 8/29/98

FOR REFERENCE ONLY

AMSU-A TEST

AMSU-A2, CH1, S/N: F03, NF & NPS TEST DATA, 8/29/98

$T_b = 24.8^{\circ}\text{C}$

SEQ	TEMP_TEST	TEST TEMP	VOLTAGE	STD_DEV	NF (dB)	NPS(K)
1	WARM TEST	295.55	-.86560682	.00023023	-----	10317780
2	COLD TEST	79.15	-.62817393	.00015285	4.31573048	-----
3	WARM TEST	295.55	-.86564980	.00020989	-----	.05651540
4	COLD TEST	79.15	-.62772390	.00017977	4.30687535	-----
5	WARM TEST	295.55	-.86567406	.00021991	-----	-----
6	COLD TEST	79.15	-.62781224	.00017327	4.30817603	.08221006
7	WARM TEST	295.55	-.86600353	.00020982	-----	-----
8	COLD TEST	79.15	-.62830199	.00014964	4.31278842	.05611305
9	WARM TEST	295.55	-.86600953	.00020779	-----	-----
10	COLD TEST	79.15	-.62865490	.00018243	4.31920669	.04953027
11	WARM TEST	295.55	-.86576745	.00020813	-----	-----
12	COLD TEST	79.15	-.62798261	.00016293	4.31006349	.05079461
13	WARM TEST	295.55	-.86588375	.00022243	-----	-----
14	COLD TEST	79.15	-.62774606	.00018523	4.30416558	.08745254
15	WARM TEST	295.55	-.86577516	.00021582	-----	-----
16	COLD TEST	79.15	-.62812313	.00016152	4.31254604	.07269012
17	WARM TEST	295.55	-.86574085	.00020833	-----	-----
18	COLD TEST	79.15	-.62815616	.00016311	4.31361227	.05153908
19	WARM TEST	295.55	-.86556312	.00020709	-----	-----
20	COLD TEST	79.15	-.62791390	.00015525	4.31152640	.04731723

CH. 1 *wrong data* 118 MHz MHz

wrong data

NOISE FIGURE AVERAGE (dB) = 4.3114710646

NOISE POWER STABILITY (K) = .0657340148965

NOISE POWER STABILITY DELTA (K) = .0558605719374

NPS_MAX (K) = .103177799574 NPS_MIN (K) = .0473172276363

INTEGRATION TIME = .158

**AMSU-A2, CH1, RECEIVER SHELF, S/N F03
(BPF 126.6 MHZ & LO FREQUENCY 23.801 GHZ)**

**AMSU-A2, CH1, RECEIVER SHELF, S/N F03
(BPF 126.6 MHZ & LO FREQUENCY 23.801 GHZ)**

FOR REFERENCE ONLY

TEST DATA SHEET 18
Temperature Sensor and Thermistor Test Data (Paragraph 3.6.1) (A2)

Test Setup Verified: H. Kapp
Signature

Baseplate Temperature (T_B) 22.5 °C

Reference Designation	Specification	Measured Value	Pass/Fail
RT 12	$2200 \pm 100 \Omega$	2172 Ω	P
RT 19	$2200 \pm 100 \Omega$	2171 Ω	P
RT 20	$2200 \pm 100 \Omega$	2169 Ω	P
RT 13	$2200 \pm 100 \Omega$	2174 Ω	P
RT 14	$2200 \pm 100 \Omega$	2168 Ω	P
RT 17	$2200 \pm 100 \Omega$	2171 Ω	P
TB 58	$3000 \pm 100 \Omega$	3005 Ω	P
TB 59	$3000 \pm 100 \Omega$	3006 Ω	P
TB 53	4.1 – 4.6 V	4.34 V	P

Pass = P, Fail = F

Part No.: 1356441-1
Serial No.: F03

Test Engineer: H. Kapp
Quality Assurance: 7A 190 *AUG 22 98*
Date: 8/28/98

TEST DATA SHEET 22
Survival Heater and Thermal Switch Test Data (Paragraph 3.6.3) (A2)

Test Setup Verified: 725
Signature

Baseplate Temperature (T_B) 22.5 °C

Reference Designation	Open Switch		Closed Switch		
	>10 MΩ	Pass/Fail	Specification	Measured Value	Pass/Fail
HR1/TS1	$>50\text{M}\Omega$	P	50 - 65 Ω	58.4 Ω	P
	$>50\text{M}\Omega$	P		58.4 Ω	P
HR2/TS2	$>50\text{M}\Omega$	P		58.1 Ω	P
	$>50\text{M}\Omega$	P		57.8 Ω	P

Pass = P, Fail = F

Part No.: 1356441-1
Serial No.: F03

Test Engineer: John

Quality Assurance: 7A 190 906 29 93

Date: 8/28/98

TEST DATA SHEET 23 (Sheet 3 of 3)
Bias Voltage Verification Test Data (Paragraph 3.6.4) (A2)

Test Setup Verified: 7.21
Signature

Baseplate Temperature (T_B) 22.5 °C

Reference Designation	Specification	Measured Value (V)	Pass/Fail
Mixer/IF AMP Ch 1, 2	+10 ±0.1	10.01 V	P
DRO Ch 1	+10 ±0.1	10.01 V	P
DRO Ch 2	+10 ±0.1		

NOTE: CHANNEL #1 ONLY

Part No.: 1356441-1

Serial No.: F03

Test Engineer: J. H. H.

Quality Assurance: MIC 29 98 74 180

Date: 8/28/98

National Aeronautics and
Space Administration

Report Documentation Page

1. Report No. ---	2. Government Accession No. ---	3. Recipient's Catalog No. ---	
4. Title and Subtitle Integrated Advanced Microwave Sounding Unit-A (AMSU-A), Performance Verification Report		5. Report Date September 1998	
		6. Performing Organization Code ---	
7. Author(s) R. Kapper		8. Performing Organization Report No. 11225	
		10. Work Unit No. ---	
9. Performing Organization Name and Address Aerojet 1100 W. Hollyvale Azusa, CA 91702		11. Contract or Grant No. NAS 5-32314	
		13. Type of Report and Period Covered Final	
12. Sponsoring Agency Name and Address NASA Goddard Space Flight Center Greenbelt, Maryland 20771		14. Sponsoring Agency Code ---	
15. Supplementary Notes ---			
16. ABSTRACT (Maximum 200 words) This is the Performance Verification Report, METSAT AMSU-A2 Receiver Assembly, P/N 1356441-1, S/N 106 For The EOS/AMSU-A1 for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).			
17. Key Words (Suggested by Author(s)) EOS Microwave System		18. Distribution Statement Unclassified --- Unlimited	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of pages ---	22. Price ---

NASA FORM 1626 OCT 86

PREPARATION OF THE REPORT DOCUMENTATION PAGE

The last page of a report facing the third cover is the Report Documentation Page, RDP. Information presented on this page is used in announcing and cataloging reports as well as preparing the cover and title page. Thus, it is important that the information be correct. Instructions for filing in each block of the form are as follows:

Block 1. Report No. NASA report series number, if preassigned.

Block 2. Government Accession No. Leave blank.

Block 3. Recipient's Catalog No. Reserved for use by each report recipient.

Block 4. Title and Subtitle. Typed in caps and lower case with dash or period separating subtitle from title.

Block 5. Report Date. Approximate month and year the report will be published.

Block 6. Performing Organization Code. Leave blank.

Block 7. Authors. Provide full names exactly as they are to appear on the title page. If applicable, the word editor should follow a name.

Block 8. Performing Organization Report No. NASA installation report control number and, if desired, the non-NASA performing organization report control number.

Block 9. Performing Organization Name and Address. Provide affiliation (NASA program office, NASA installation, or contractor name) of authors.

Block 10. Work Unit No. Provide Research and Technology Objectives and Plants (RTOP) number.

Block 11. Contract or Grant No. Provide when applicable.

Block 12. Sponsoring Agency Name and Address. National Aeronautics and Space Administration, Washington, D.C. 20546-0001. If contractor report, add NASA installation or HQ program office.

Block 13. Type of Report and Period Covered. NASA formal report series; for Contractor Report also list type (interim, final) and period covered when applicable.

Block 14. Sponsoring Agency Code. Leave blank.

Block 15. Supplementary Notes. Information not included

elsewhere: affiliation of authors if additional space is required for Block 9, notice of work sponsored by another agency, monitor of contract, information about supplements (file, data tapes, etc.) meeting site and date for presented papers, journal to which an article has been submitted, note of a report made from a thesis, appendix by author other than shown in Block 7.

Block 16. Abstract. The abstract should be informative rather than descriptive and should state the objectives of the investigation, the methods employed (e.g., simulation, experiment, or remote sensing), the results obtained, and the conclusions reached.

Block 17. Key Words. Identifying words or phrases to be used in cataloging the report.

Block 18. Distribution Statement. Indicate whether report is available to public or not. If not to be controlled, use "Unclassified-Unlimited." If controlled availability is required, list the category approved on the Document Availability Authorization Form (see NHB 2200.2, Form FF427). Also specify subject category (see "Table of Contents" in a current issue of STAR) in which report is to be distributed.

Block 19. Security Classification (of the report). Self-explanatory.

Block 20. Security Classification (of this page). Self-explanatory.

Block 21. No. of Pages. Count front matter pages beginning with iii, text pages including internal blank pages, and the RDP, but not the title page or the back of the title page.

Block 22. Price Code. If Block 18 shows "Unclassified-Unlimited," provide the NTIS price code (see "NTIS Price Schedules" in a current issue of STAR) and at the bottom of the form add either "For sale by the National Technical Information Service, Springfield, VA 22161-2171" or "For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402-0001," whichever is appropriate.

REPORT DOCUMENTATION PAGE		Form Approved OMB No. 0704-0188		
<p>Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.</p>				
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED		
4. TITLE AND SUBTITLE Integrated Advanced Microwave Sounding Unit-A (AMSU-A), Performance Verification Report		5. FUNDING NUMBERS NAS 5-32314		
6. AUTHOR(S) R. KapOper				
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Aerojet 1100 W. Hollyvale Azusa, CA 91702		8. PERFORMING ORGANIZATION REPORT NUMBER 11225 September 1998		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) NASA Goddard Space Flight Center Greenbelt, Maryland 20771		10. SPONSORING/MONITORING AGENCY REPORT NUMBER ---		
11. SUPPLEMENTARY NOTES ---				
12a. DISTRIBUTION/AVAILABILITY STATEMENT ---		12b. DISTRIBUTION CODE ---		
13. ABSTRACT (Maximum 200 words) This is the Performance Verification Report, METSAT AMSU-A2 Receiver Assembly, P/N 1356441-1, S/N 106 For The EOS/AMSU-A1 for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).				
14. SUBJECT TERMS EOS Microwave System		15. NUMBER OF PAGES ---		
17. SECURITY CLASSIFICATION OF REPORT Unclassified		18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT SAR

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filing in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1. Agency Use Only(Leave blank)

Block 2. Report Date Full publication date including day, month, and year, if available (e.g., 1 Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g., 10 Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume report the primary title, add volume number and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. Funding Numbers To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:

C - Contract	PR - Project
G - Grant	TA - Task
PE - Program Element	WU - Work Unit
	Accession No.

Block 6. Author(s) Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of thereport. If editor or compiler, this should follow the name(s).

Block 7. Performing Organization Name(s) and Address(es). Self-explanatory.

Block 8. Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es) Self-explanatory.

Block 10. Sponsoring/Monitoring Agency Reports Number (if known).

Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with ...; Trans. of ...; To be published in ... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12.a Distribution/Availability Statement Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g., NOFORN, REL, ITAR).

DOD - See DoDD 5230.24 *Distribution Statement on Technical Documents*

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12.b Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the standard Distribution for Unclassified Scientific and Technical Reports.

NASA - Leave blank.

NTIS - Leave blank.

Block 13. Abstract. Include a brief Maximum 200 words factual summary of the most significant information contained in the report.

Block 14. Subject Terms. Keywords or phases identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. Price Code. Enter appropriate price code(T/S only).

Block 17 - 19. Security Classifications. Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.

Block 20. Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

DOCUMENT APPROVAL SHEET

TITLE			DOCUMENT NO.	
Performance Verification Report METSAT AMSU-A2 Receiver Assembly, P/N 1356441-1, S/N 106			Report 11225 September 1998	
INPUT FROM: R. Kapper	DATE	CDRL: 208	SPECIFICATION ENGINEER:	
CHECKED BY:		DATE	JOB NUMBER:	
APPROVED SIGNATURES			DEPT. NO.	DATE
Product Team Leader (R. Kapper) <u>R. Kapper</u> Systems Engineer (R. Platt) <u>R. Platt</u> Design Assurance (E. Lorenz) <u>E. Lorenz</u> Quality Assurance (R. Taylor) <u>R. Taylor</u> F02 Technical Director/PMO (R. Hauerwaas) <u>R. Hauerwaas</u> Configuration Management (J. Cavanaugh) <u>J. Cavanaugh</u>			8661 8311 8331 7831 4001 8361	9/21/98 10/7/98 10/8/98 10/8/98 10/8/98 10/12/98
By my signature, I certify the above document has been reviewed by me and concurs with the technical requirements related to my area of responsibility.				
RELEASE (Data Center) <u>FINAL</u>				
Please return this sheet and the reproducible master to Jim Kirk (Bldg. 1/Dept. 8631), ext. 2081.				