Linear Regression - Example

SSSA - Applied Statistics - Chiara Seghieri and Costanza Tortù

2023-12-07

Preliminaries

Recall packages

Import Data

The data consists of a number of demographic variables (age, race, academic background, and previous real earnings), as well as a treatment indicator, and the real earnings in the year 1978 (the response).

Robert Lalonde, "Evaluating the Econometric Evaluations of Training Programs", American Economic Review, Vol. 76, pp. 604-620

```
rm(list=ls())
data("lalonde")
```

Have a first look at data

```
dim(lalonde) # units x variables
## [1] 614
head(lalonde)
##
       treat age educ
                        race married nodegree re74 re75
                                                               re78
                   11 black
## NSW1
           1 37
                                   1
                                            1
                                                         9930.0460
## NSW2
           1 22
                     9 hispan
                                   0
                                             1
                                                  0
                                                       0 3595.8940
              30
                                   0
                                            0
                                                  0
## NSW3
           1
                    12 black
                                                       0 24909.4500
           1 27
                                   0
                                            1
                                                  0
                                                         7506.1460
## NSW4
                    11
                       black
                                            1
## NSW5
            1 33
                    8 black
                                   0
                                                           289.7899
## NSW6
              22
                     9 black
                                                       0 4056.4940
```

Inspect variables

```
colnames(lalonde)

## [1] "treat" "age" "educ" "race" "married" "nodegree" "re74"

## [8] "re75" "re78"

quantitative_variables <- c("age", "educ", "re74", "re75", "re78")
qualitative_variables <- c("treat", "race", "married", "nodegree")

dummies <- c("treat", "married", "nodegree")</pre>
```

```
lalonde$treat_factor <- as.factor(lalonde$treat)</pre>
lalonde$race_factor <- as.factor(lalonde$race)</pre>
lalonde$married_factor <- as.factor(lalonde$married)</pre>
lalonde$nodegree_factor <- as.factor(lalonde$nodegree)</pre>
qualitative_variables_factors <- c("treat_factor", "race_factor",</pre>
                                    "married_factor", "nodegree_factor")
all_variables <- c(quantitative_variables, qualitative_variables_factors)</pre>
Let's focus on quantitative variables
pairs.panels(lalonde[, quantitative_variables],
             method = "pearson", # correlation method
             hist.col = "#00AFBB",
             density = TRUE, # show density plots
             ellipses = TRUE # show correlation ellipses
                                                    10000
                      5 10 15
                                                            25000
       age
                                                                    0.11
                                     0.33
                                                    0.14
                      -0.13
                      educ
                                                                    0.16
                                     0.14
                                                    0.02
                                     re74
                                                                    0.34
                                                    0.55
                                                     re75
                                                                    0.26
                                                                    re78
```

35000

0 20000 50000

15000

mies as quantitative variables and compute correlation, but pay attention to the interpretation!!!!!!

Run a regression model

The response variable measures earnings in 1978 while the marital status the age, the education, the race and the training program are independent variables.

Make sure your data meet the normality assumption

Let's have a look at the distribution of earnings in 1978

```
hist(lalonde$re78,
    main ="Histogram of real earnings in 1978",
    col = "red",
    xlab = "Earnings in 1978")
```

Histogram of real earnings in 1978

, c

This is far

from normality, let's apply a normalization trasformation $\,$

```
re78_BN <- bestNormalize(lalonde$re78)</pre>
re78_BN
## Best Normalizing transformation with 614 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
  - arcsinh(x): 12.5241
##
##
  - Center+scale: 7.1465
##
   - Double Reversed Log_b(x+a): 8.3531
##
   - Log_b(x+a): 17.6774
  - orderNorm (ORQ): 3.7705
  - sqrt(x + a): 3.7965
## - Yeo-Johnson: 5.2671
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## orderNorm Transformation with 614 nonmissing obs and ties
   - 457 unique values
   - Original quantiles:
##
##
          0%
                   25%
                             50%
                                        75%
                                                 100%
       0.000
               238.283 4759.018 10893.592 60307.930
lalonde$re78_normalized <- re78_BN$x.t</pre>
hist(lalonde$re78_normalized,
     main ="Histogram of normalized real earnings in 1978",
     col = "orange",
     xlab = "Normalized Earnings in 1978")
```

Histogram of normalized real earnings in 1978

Simple Linear Regression

We investigate the relationship between the education and the real earnings in the year 1978 educ: years of education re78: earnings in 1978

```
##
## Call:
## lm(formula = re78_normalized ~ educ, data = lalonde)
##
## Residuals:
##
                 1Q
                      Median
## -1.63840 -0.69846 -0.02051 0.64832 3.08381
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
                          0.15053 -3.507 0.000486 ***
## (Intercept) -0.52797
## educ
               0.05408
                           0.01420
                                    3.808 0.000154 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9242 on 612 degrees of freedom
## Multiple R-squared: 0.02315,
                                   Adjusted R-squared: 0.02155
## F-statistic: 14.5 on 1 and 612 DF, p-value: 0.0001542
```

plot(lalonde\$age, lalonde\$re78_normalized, pch=16)
abline(simple_model_normalized, col="red")

Further inspect your model plot(simple_model_normalized)

Residuals vs Leverage

Multiple Regression

We investigate the determinants of real earnings in the year 1978

age: gae (years), numeric treat: attendence of a training program educ: years of education married: marital status re78: earnings in 1978

```
##
## Call:
  lm(formula = re78_normalized ~ age + educ + as.factor(race) +
       married + treat + nodegree, data = lalonde)
##
##
## Residuals:
##
                1Q Median
                                 3Q
                                        Max
  -1.7674 -0.6991 -0.0141 0.6426
                                    3.2332
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                     0.3191322
                                                 -2.955 0.00325 **
                         -0.9429339
## age
                           0.0009189
                                     0.0041241
                                                  0.223
                                                         0.82377
## educ
                           0.0602261
                                      0.0206487
                                                  2.917
                                                         0.00367 **
## as.factor(race)hispan
                          0.3542669
                                      0.1331197
                                                  2.661
                                                         0.00799 **
## as.factor(race)white
                           0.2565782
                                     0.1003492
                                                  2.557
                                                         0.01080 *
## married
                           0.2604112 0.0853849
                                                  3.050
                                                         0.00239 **
```

Furtehr inspect your model

plot(multiple_model_normalized)

Residuals vs Fitted

Fitted values
Im(re78_normalized ~ age + educ + as.factor(race) + married + treat + nodeg ...

Theoretical Quantiles
Im(re78_normalized ~ age + educ + as.factor(race) + married + treat + nodeg ...
Scale-Location

Fitted values
Im(re78_normalized ~ age + educ + as.factor(race) + married + treat + nodeg ...

Residuals vs Leverage

lm(re78_normalized ~ age + educ + as.factor(race) + married + treat + nodeg ...

Add valuable interactions

```
##
## Call:
## lm(formula = re78_normalized ~ age + educ + as.factor(race) +
##
       married + treat + nodegree + as.factor(race) * educ + treat *
       nodegree, data = lalonde)
##
##
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
  -1.8607 -0.6772 0.0010 0.6355
                                     3.2442
##
## Coefficients:
##
                                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                               -1.0857162
                                           0.3831280
                                                      -2.834
                                                               0.00475 **
## age
                                0.0009009
                                           0.0041194
                                                        0.219
                                                               0.82695
                                           0.0295796
                                                               0.02000 *
##
  educ
                                0.0689941
                                                        2.332
## as.factor(race)hispan
                                0.9586613
                                           0.4438597
                                                               0.03118 *
                                                        2.160
## as.factor(race)white
                                0.0731624
                                           0.3724158
                                                        0.196
                                                               0.84432
## married
                                0.2573807
                                           0.0857845
                                                        3.000
                                                               0.00281 **
## treat
                                0.2720856
                                           0.1625284
                                                        1.674
                                                               0.09463
## nodegree
                                0.0862717
                                                               0.50415
                                           0.1290781
                                                        0.668
## educ:as.factor(race)hispan -0.0666634 0.0445307
                                                      -1.497
                                                               0.13491
```