Metagenomics Lesson 1

Metagenomics Lesson 1

What is Metagenomics?

What kinds of questions can metagenomics be used to answer?

Is metagenomics right for me?

Yay! You got data! Now what?

What is Metagenomics?

What is Metagenomics?

"Amplicon sequencing" or "metabarcoding" is sequencing a specific target region from many genomes (e.g. 16S rRNA gene, *nifH* gene)

"Shotgun Metagenomics" is (incomplete) sequencing of a mixture of genomes using an untargeted approach

Incomplete because one drop of seawater contains about...

- 10^6 bacteria/mL * $3x10^6$ bp/bacteria = $3x10^{12}$ bp/mL
 - + 10^3 euks/mL * $3x10^8$ bp/euk = $3x10^{11}$ bp/mL
 - = 3.3 Tbp/mL
 - = 210 MiSeq runs/mL
 - = 0.5 NovaSeq run/mL
 - 0.5 Genbank/mL = 0.2 SRA / L

One scoop of soil contains about...

- 10^{10} bacteria/g * $4x10^6$ bp/bacteria = $4x10^{16}$ bp/g
 - + 10^5 euks/g * $3x10^8$ bp/euk = $3x10^{13}$ bp/g
 - = 40 Pbp/g
 - = 2.6M MiSeq runs/g
 - = 6,000 NovaSeq runs/g
 - 6,000 Genbank/g = 2.8 SRA / g

One pinch of stool contains about...

- 10^{11} bacteria/g * $4x10^6$ bp/bacteria = $4x10^{17}$ bp/g
 - + 10^6 euks/g * $3x10^8$ bp/euk = $3x10^{14}$ bp/g
- + 10^8 colonocytes/g * $3x10^9$ bp/cell = $3x10^{17}$ bp/g
 - = 700 Pbp/g
 - = 45M MiSeq runs/g
 - = 100k NovaSeq runs/g
 - 100k Genbank/g = 40 SRA / g

What kinds of questions can metagenomics be used to answer?

Comparative Metagenomics

Intercommunity Similarity
Metadata Correlations
Biomarker Detection

Sharpton (2014)

What kinds of questions can metagenomics be used to answer?

Who is there? (Taxonomy & Molecular Evolution)

- Is this gene present in this sample?
- How many homologs of this gene appear in this sample?
- Which genomes encode this gene?
- Is this pathogen present in this environment?
- How closely related is this uncultured strain to this cultured representative?
- How many ecotypes of this bacterium appear in this environment?
- How the h*Il many prokaryotic Phyla are there in the world??

What are they doing? (Community Ecology & Function)

- What proteins do symbionts encode to mediate relationships with their host?
- Which genes/pathways/genomes co-occur in this environment?
- What antibiotic resistance genes does this community encode?
- How many different carbon fixation pathways exist in hydrothermal vents?
- Are there novel CRISPR-Cas systems yet to be discovered?

Is metagenomics right for me?

You might try amplicon sequencing if...

- You need to detect rare genes or species
- You're working with eukaryotes
- You have many (1000s) samples to run

You might try Quantitative PCR if...

- You only care about presence/absence
- You want to quantify how many copies of a gene/species is present in a sample

You might try isolate genomics if...

- You can isolate your organism of interest
- You're working with eukaryotes

You might try single-cell genomics if...

- Your interest is population genetics
- Your interest is in novel taxa
- Your interest is horizontal gene transfer and pangenomes

You might try meta-/transcriptomics if...

- You want levels of gene expression
- You're working with eukaryotes

Future Metagenomics Lessons

Other BVCN Topics

#amplicons

Taxonomic Classification

#functionalannotation

Assembly

#transcriptomics

Binning

#networkscience

For more info go to:
https://github.com/biovcnet/topi
c-metagenomics

#population-genetics-and-comparative-genomics

Demo #1 by Alexis Marshall on Quality Control

https://www.youtube.com/watch?v=7jRTyfdIXLo