Množiny, výroky, zobrazení a elementární funkce

- 1. Jsou dány tři intervaly $A = \langle -7; 2 \rangle$, $B = \langle -2; 5 \rangle$ a $C = \langle 2; \infty \rangle$. Zapište:
 - a) $A \cap B$
 - b) $A \cap C$
 - c) $A \cup B$
 - d) $(A \cap B) \cup C$
 - e) $(A \cup B) \cap C$
 - f) $(A \cap C) \cup (B \cap C)$
- 2. Rozhodněte, zda uvedené výrokové formule jsou tautologiemi ($tautologie=v\acute{y}rok$ $v\check{z}dy$ $pravdiv\acute{y}$):
 - a) $\neg(\neg A) \Leftrightarrow A$
 - b) $(A \Rightarrow B) \Leftrightarrow (A \land \neg B)$
- 3. Mějme zadané následující tři zobrazení:
 - a) $f: \{1; 2; 3; 4\} \rightarrow \{a, b, c, d\}, f(1) = a, f(2) = d, f(3) = b, f(4) = c, f(1) = d$
 - b) $g:\{1;2;3;4\} \to \{a,b,c,d\}, g(1)=b, g(2)=c, g(3)=d, g(4)=a$
 - c) $h: \{1; 2; 3; 4\} \rightarrow \{a, b, c, d\}, h(1) = b, h(2) = a, h(3) = c, h(4) = c$

U každého předpisu ověřte, zda se skutečně jedná o zobrazení, a dále zkoumejte jejich vlastnosti (prosté, na, ...).

- 4. Podrobně prozkoumejte následující funkce (určete D(f), H(f), graf funkce a další vlastnosti):
 - a) f(x) = -2x + 1
 - b) $f(x) = \frac{2x+1}{x-3}$
 - c) $f(x) = 3x^2 + 6x + 3$
 - d) $f(x) = |x^3 + 4|$
 - e) $f(x) = 2^{x+1} 4$
 - f) $f(x) = \log_2(x+4) 1$
 - g) $f(x) = 3\cos(2x \frac{\pi}{3})$
 - $f(x) = -2\sin(-x)$
 - $i) f(x) = 1 + \tan x$
 - i) $f(x) = \cot(x \frac{\pi}{3})$

Výsledky:

- 1. a) $\langle -2; 2 \rangle$
 - b) {2}
 - c) (-7;5)
 - d) $\langle -2; \infty \rangle$
 - e) (2;5)
 - f) (2;5)
- 2. a) je tautologie
 - b) není tautologie
- 3. a) f není zobrazení, protože prvek 1 z definičního oboru má dva obrazy
 - b) g zobrazení je, dále je prosté i na, čili je vzájemně jednoznačné
 - c) h zobrazení je, ale není prosté, protože prvek c z oboru hodnot má dva vzory, není ani na, protože prvek d z oboru hodnot nemá žádný vzor

