CSE 417T Introduction to Machine Learning

Review of Exam 2 Instructor: Chien-Ju (CJ) Ho

- Homework 5: Due Apr 30 (Tomorrow).
 - Keep track of your late days
- Exam 1: May 4 (Tuesday)
 - Duration: 75+5 Minutes
 - Content: Focus on the content of 2nd half of the semester
 - Though knowledge is cumulative
 - Time: Lecture time (unless you have requested for exceptions last week)
 - Format: Gradescope online exam + Zoom (with camera on)
 - Information access during exam:
 - Allowed: Textbook, slides, hardcopy materials (e.g., your own notes)
 - Not allowed: search for information online during exam, talk to any other persons
 - Other notes
 - Practice questions are now on Gradescope (get familiar with interface)
 - Follow Piazza announcements

More Exam Information

- Join **Zoom** (on mycanvas) and **turn on camera** before starting the exam
 - Won't be recorded
 - Students taking the exam at a different time need to do so as well
 - The Zoom + Camera policy is "softly" enforced
 - I might ask you for reasons for not following
 - No penalty as long as there are legitimate reasons
- We won't be able to answer questions during the exam
 - I don't answer individual questions even during in-person exams for fairness concerns
 - Will take into account of potential mistakes on our end
 - E.g., if there are multiple feasible answers for the multi-choice questions
 - Will give points if you choose one of the feasible ones

More Exam Information

- Please do not discuss the exam within 24 hours of the exam
 - Some students take the exam at a different time
 - Piazza will be locked (no public posts) next Tuesday
- Get familiar with how to submit math-heavy answers on Gradescope
 - prepare blank papers, having a smooth process of taking photos and upload file
- No office hours after (including) next Tuesdays

Again, follow Piazza for the latest announcements

Plans for Today

• Brief review of course content.

Discussion of the practice questions.

Discussion of any other questions you might have.

Brief Review

A quick review brushed over what we talked about.

Not guaranteed (and not likely) to cover everything in the exam.

Decision Tree <u>Hypothesis</u>

- Pros
 - Easy to interpret, handle multi-type data, easy to implement
- Cons
 - bad generalization
 - VC dimension is infinity, high variance, easily overfit
- Why we care?
 - One of the classical model
 - Building block for other models (e.g., random forest)

Decision tree learning:

Goal: minimize E_{in} subject to $size(tree) \leq C$

approximately

General_DecisionTreeLearn(D)

Create a root node rIf termination conditions are met return a single node tree with leaf prediction based on Else: Greedily find a feature A to split according to split criteria For each possible value v_i of ALet D_i be the dataset containing data with value v_i for feature ACreate a subtree DecisionTreeLearn(D_i) that being the child of root r

ID3: Using Information Gain as Selection Criteria

- Information gain of choosing feature A to split
 - $Gain(D,A) = H(D) \sum_{i} \frac{|D_{i}|}{|D|} H(D_{i})$ [The amount of decrease in entropy]
- ID3: Choose the split that maximize Gain(D, A)

Notations: H(D): Entropy of D |D| is the number of points in D

```
General\_DecisionTreeLearn(D)
```

Create a root node *r*

If termination conditions are met

return a single node tree with leaf prediction based on

Else: Greedily find a feature A to split according to split criteria For each possible value v_i of A

Let D_i be the dataset containing data with value v_i for feature A Create a subtree DecisionTreeLearn(D_i) that being the child of root r

- ID3 termination conditions
 - If all labels are the same
 - If all features are the same
 - If dataset is empty
- ID3 leaf predictions
 - Most common labels (majority voting)
- ID3 split criteria
 - Information gain

Ensemble Learning

- Goal: Utilize a set of weak learners to obtain a strong learner.
- Format of ensemble learning
 - Construct many diverse weak learners
 - Aggregate the weak learners

Bagging:

- Construct diverse weak learners
 - (Simultaneously) bootstrapping datasets
 - Train weak learners on them
- Aggregate the weak learners
 - Uniform aggregation

Boosting

- Construct diverse weak learners
 - Adaptively generating datasets
 - Train weak learners on them
- Aggregate the weak learners
 - Weighted aggregation

Weak learner preference:

Fully-grown decision trees (low bias, high variance)

Decision stumps (high bias, low variance)

Bagging and Random Forest

- Construct many random trees
 - Bootstrapping datasets (Sample with replacement from D)
 - Learn a max-depth tree for each of them
 - Other randomizations
 - When choosing split features, choose from a random subset (instead of all features)
 - Randomly project features (similar to non-linear transformation) for each tree
- Aggregate the random trees
 - Classification: Majority vote $\bar{g}(\vec{x}) = sign\left(\frac{1}{M}\sum_{m=1}^{M}g_m(\vec{x})\right)$
 - Regression: Average $\bar{g}(\vec{x}) = \frac{1}{M} \sum_{m=1}^{M} g_m(\vec{x})$

Outline of a Boosting Algorithm

- Initialize D_1
- For t = 1 to T
 - Learn g_t from D_t
 - Reweight the distribution and obtain D_{t+1} based on g_t and D_t
- Output weighted-aggregate($g_1, ..., g_T$)
 - Classification: $G(\vec{x}) = \bar{g}(\vec{x}) = sign\left(\frac{1}{T}\sum_{t=1}^{T}\alpha_{t}g_{t}(\vec{x})\right)$

Questions

How to learn g_t from D_t How to reweight the distribution and obtain D_{t+1} How to perform weighted aggregation

AdaBoost Algorithm

- Given $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$
- Initialize $D_1(n) = 1/N$ for all n = 1, ..., N
- For t = 1, ..., T
 - Learn g_t from D_t (using decision stumps)
 - Calculate $\epsilon_t = E_{in}^{(D_t)}(g_t)$
 - Set $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
 - Update $D_{t+1}(n) = \frac{1}{Z_t} D_t(n) e^{-\alpha_t y_n g_t(\vec{x}_n)}$
- Output $G(\vec{x}) = sign(\sum_{t=1}^{T} \alpha_t g_t(\vec{x}))$

Nearest Neighbors

- Predict \vec{x} according to its nearest neighbor
 - Given $D = \{(\vec{x}_1, y_1), (\vec{x}_2, y_2), ..., (\vec{x}_N, y_N)\}$
 - Let $\vec{x}_{[1]}$ be \vec{x}' s nearest neighbor, i.e., the closest point to \vec{x} in D
 - Let $y_{[i]}(\vec{x})$ or $y_{[i]}$ be the label of $\vec{x}_{[i]}$

Nearest neighbor hypothesis

$$g(\vec{x}) = y_{[1]}(\vec{x})$$

• k-nearest neighbor (K-NN)

$$g(\vec{x}) = sign(\sum_{i=1}^{k} y_{[i]}(\vec{x}))$$

1-Nearest Neighbor

 $g(\vec{x})$ looks like a Voronoi diagram

- Properties of 1-Nearest Neighbor (NN)
 - No training is needed
 - Good interpretability
 - In-sample error $E_{in} = 0$
 - VC dimension is ∞
- This seems to imply bad learning models from what we talk about so far? Why we care?
- What we really care about is E_{out}
 - VC analysis: $E_{out} \leq E_{in}$ + Generalization error
 - We can infer E_{out} through E_{in} and model complexity
 - NN has nice guarantees outside of VC analysis

Properties of Nearest Neighbors

• 1-NN

• Given mild conditions, for 1-nearest neighbor, when $N \to \infty$, with high probability,

$$E_{out} \leq 2E_{out}^*$$

• That is, we can not infer E_{out} from E_{in} , but we know it cannot be much worse than the best anyone can do.

• k-NN:

• Tuning k moderates the tradeoff of generalization vs approximation

Support Vector Machines

- Goal: Find the max-margin linear separator
- If the data is linearly separable
 - Hard-Margin SVM (Assume data is linearly separable)

```
minimize_{\overrightarrow{w},b} \frac{1}{2}\overrightarrow{w}^T\overrightarrow{w} subject to y_n(\overrightarrow{w}^T\overrightarrow{x}_n+b)\geq 1, \forall n
```

•
$$g(\vec{x}) = sign(\vec{w}^* \vec{x} + b^*)$$

- If the data is not linearly separable
 - Soft-margin SVM
 - Nonlinear transformation Dual Formulation and Kernel Tricks

Soft-Margin SVM

- For each point (\vec{x}_n, y_n) , we allow a deviation $\xi_n \geq 0$
 - The constraint becomes: $y_n(\vec{w}^T\vec{x}_n + b) \ge 1 \xi_n$
 - We add a penalty for each deviation: Total penalty $C \sum_{n=1}^{N} \xi_n$

```
minimize \overline{w}, b, \overline{\xi} = \frac{1}{2} \overrightarrow{w}^T \overrightarrow{w} + C \sum_{n=1}^N \xi_n

subject to y_n (\overrightarrow{w}^T \overrightarrow{x}_n + b) \ge 1 - \xi_n, \forall n

\xi_n \ge 0, \forall n
```


Remarks:

- C is a hyper-parameter we can choose, e.g., using validation
 - Larger C => less tolerable to noise => smaller margin
- Soft-margin SVM is still a Quadratic Program, with efficient solvers

Primal-Dual Formulations of Hard-Margin SVM

Primal

minimize
$$_{\overrightarrow{w},b}$$
 $\frac{1}{2}\overrightarrow{w}^T\overrightarrow{w}$ subject to $y_n(\overrightarrow{w}^T\overrightarrow{x}_n+b)\geq 1, \forall n$

Given optimal $\vec{\alpha}^*$:

- $\vec{w}^* = \sum_{\alpha_n^* > 0} \alpha_n^* y_n \vec{x}_n$
- Find a $\alpha_n^* > 0$, $b^* = y_n \vec{x}_n^T \vec{w}^*$

Dual + Kernel Trick

maximize
$$\alpha \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m K(\vec{x}_n, \vec{x}_m)$$
 subject to $\sum_{n=1}^{N} \alpha_n y_n = 0$ $\alpha_n \ge 0, \forall n$

- Both can be efficiently solved using QP solver.
- We can infer the solution from one to the other

Recover $(\overrightarrow{w}^*, b^*)$ from $\overrightarrow{\alpha}^*$ with Kernel Tricks

- Note that $\vec{\alpha}^*$ is solved in the \vec{z} space
 - $\vec{w}^* = \sum_{\alpha_n^* > 0} \alpha_n^* y_n \Phi(\vec{x}_n)$
 - Find a $\alpha_n^* > 0$, $b^* = y_n \overrightarrow{w}^* \Phi(\overrightarrow{x}_n)$
 - We want to avoid the transformation!
- Let's look at the hypothesis

•
$$g(\vec{x}) = sign(\vec{w}^{*T}\Phi(\vec{x}) + b^*)$$

$$\vec{w}^{*T} \Phi(\vec{x}) = \left(\sum_{\alpha_n^* > 0} \alpha_n^* y_n \Phi(\vec{x}_n)\right)^T \Phi(\vec{x})$$

$$= \sum_{\alpha_n^* > 0} \alpha_n^* y_n \Phi(\vec{x}_n)^T \Phi(\vec{x})$$

$$= \sum_{\alpha_n^* > 0} \alpha_n^* y_n K(\vec{x}_n, \vec{x})$$

$$b^* = y_n - \vec{w}^{*T} \Phi(\vec{x}_n)$$

$$= y_n - \left(\sum_{\alpha_m^* > 0} \alpha_m^* y_m \Phi(\vec{x}_m)\right)^T \Phi(\vec{x}_n)$$

$$= y_n - \sum_{\alpha_m^* > 0} \alpha_m^* y_m K(\vec{x}_m, \vec{x}_n)$$

• Still can be computed in the \vec{x} space!

Kernel Functions

- Q-th order Polynomial kernel $K_{\Phi_Q}(\vec{x}, \vec{x}') = (1 + \vec{x}^T \vec{x}')^Q$
 - The corresponding $\Phi(x)$: Q-th order polynomial transform
- Gaussian RBF Kernel $K_{\Phi}(\vec{x}, \vec{x}') = e^{-\gamma \|\vec{x} \vec{x}'\|^2}$
 - The corresponding $\Phi(x) = e^{-x^2} \left(1, \sqrt{\frac{2}{1}} x, \sqrt{\frac{2^2}{2!}} x^2, \dots \right)$
- When we plug in $K(\vec{x}, \vec{x}')$ in dual SVM
 - We are finding the max-margin separator in an infinite dimensional space
 - Seems to introduce infinite generalization error?
 - Maximizing margin help mitigate this issue
 - The number of support vectors provides indicators on the generalization

Support Vectors

- $\alpha_n^* > 0 \Rightarrow (\vec{x}_n, y_n)$ is a support vector
 - $y_n(\overrightarrow{w}^*\overrightarrow{x}_n + b^*) = 1 \xi_n$
- SVM classifier can be expressed using support vectors
 - $g(\vec{x}) = sign(\sum_{\alpha_n^* > 0} \alpha_n^* y_n K(\vec{x}_n, \vec{x}) + b^*))$
- Connection to generalization error through LOOCV

Neural Networks

 θ : activation function

(Specify the "activation" of the neuron)

We mostly focus on feed-forward network structure

Notations of Neural Networks (NN)

- Notations:
 - $\ell = 0$ to L: layer
 - $d^{(\ell)}$: dimension of layer ℓ
 - $\vec{x}^{(\ell)}$: the nodes in layer ℓ
 - $w_{i,j}^{(\ell)}$: weights; characterize hypothesis in NN
 - $s_j^{(\ell)} = \sum_{i=0}^{d^{(\ell-1)}} w_{i,j}^{(\ell)} x_i^{(\ell-1)}$: linear signals
 - θ : activation function

•
$$x_j^{(\ell)} = \theta\left(s_j^{(\ell)}\right)$$

Forward Propagation (evaluate $h(\vec{x})$)

- A Neural network hypothesis h is characterized by $\left\{w_{i,j}^{(\ell)}\right\}$
- How to evaluate $h(\vec{x})$?

$$\mathbf{x} = \mathbf{x}^{(0)} \xrightarrow{\mathbf{w}^{(1)}} \mathbf{s}^{(1)} \xrightarrow{\theta} \mathbf{x}^{(1)} \xrightarrow{\mathbf{w}^{(2)}} \mathbf{s}^{(2)} \xrightarrow{\theta} \mathbf{x}^{(2)} \cdots \xrightarrow{\mathbf{w}^{(L)}} \mathbf{s}^{(L)} \xrightarrow{\theta} \mathbf{x}^{(L)} = h(\mathbf{x}).$$

```
Forward propagation to compute h(\mathbf{x}):

\mathbf{x}^{(0)} \leftarrow \mathbf{x} \qquad \qquad [\mathbf{Initialization}]
\mathbf{for} \ \ell = 1 \ \text{to} \ L \ \mathbf{do} \qquad \qquad [\mathbf{Forward \ Propagation}]
\mathbf{s}^{(\ell)} \leftarrow (\mathbf{W}^{(\ell)})^{\mathrm{T}} \mathbf{x}^{(\ell-1)}
\mathbf{x}^{(\ell)} \leftarrow \begin{bmatrix} 1 \\ \theta(\mathbf{s}^{(\ell)}) \end{bmatrix}
\mathbf{s} \in \mathbf{end \ for}
\mathbf{s} \in h(\mathbf{x}) = \mathbf{x}^{(L)} \qquad [\mathbf{Output}]
```

Given weights $w_{i,j}^{(\ell)}$ and $\vec{x}^{(0)} = \vec{x}$, we can calculate all $\vec{x}^{(\ell)}$ and $\vec{s}^{(\ell)}$ through forward propagation.

Backpropagation Algorithm

- Recall that $\frac{\partial e_n(W)}{\partial w_{i,j}^{(\ell)}} = \delta_j^{(\ell)} x_i^{(\ell-1)}$
- Backpropagation Algorithm
 - Initialize $w_{i,j}^{(\ell)}$ randomly
 - For t = 1 to T
 - Randomly pick a point from D (for stochastic gradient descent)
 - Forward propagation: Calculate all $x_i^{(\ell)}$ and $s_i^{(\ell)}$
 - Backward propagation: Calculate all $\delta_j^{(\ell)}$
 - Update the weights $w_{i,j}^{(\ell)} \leftarrow w_{i,j}^{(\ell)} \eta \delta_j^{(\ell)} x_i^{(\ell-1)}$
 - Return the weights

Discussion

- Backpropagation
 - gradient descent with efficient gradient computation
 - E_{in} is not convex in weights
 - Gradient descent doesn't guarantee to converge to global optimal
 - Run it many times, each with a different initialization (initialization matters)
- Regularization
 - Weight-based regularization, early stopping, dropout, adding noise, etc
- Deep learning
 - Neural Networks with many layers
 - Enable hierarchical representations of data

Radial Basis Function

•
$$h(\vec{x}) = \sum_{k=1}^{K} w_k \phi\left(\frac{\|\vec{x} - \vec{\mu}_k\|}{r}\right)$$

- Connection to linear models
 - Parametric RBF is essentially linear model with nonlinear transformation
- Connection to nearest neighbor
 - RBF is based on the similarity to a set of points
- Connection to SVM with RBF Kernel
 - Using K representative points vs. using support vectors
- Connection to Neural Networks
 - RBF can be graphically represented as a one-hidden layer network

Practice Questions