显存不够,如何训练大型神经网络?

夕小瑶的卖萌屋 3月3日

以下文章来源于NLPCAB,作者李如

前阵子微软开源了DeepSpeed训练框架,从测试效果来看有10倍的速度提升,而且对内存进行了各种优化,最大可以训练 100B(illion)参数的模型。同时发布了这个框架训练出的17B模型 Turing-NLG,处于目前壕赛事的顶端。

训100B的模型就先别想了(狗头),先把110M的BERT-base训好上线吧。本文主要介绍模型训练中速度和内存的优化策略,针对以下几种情况:

- 1. 我明天就要答辩了,今天必须把这十个实验跑完
- 2. 我的模型有些大,好不容易放到一张卡上,训完一亿样本之前我就可以领N+1了
- 3. 我想出了一个绝妙的T6模型,却加载不进12GB的卡里,又拿不到今年的best paper了

(以上纯属虚构,如有雷同请赶紧看下文)

现实总是残酷的,其实限制大模型训练只有两个因素: 时间和空间(=GPU=钱),根据不同情况可以使用的方案大致如下:

1. 梯度累加 Gradient Accumulation

如果只有单卡,且可以加载模型,但batch受限的话可以使用梯度累加,进行N次前向后反向更新一次参数,相当于扩大了N倍的batch size。

正常的训练代码是这样的:

```
for i, (inputs, labels) in enumerate(training_set):
loss = model(inputs, labels) # 计算loss
optimizer.zero_grad() # 清空梯度
loss.backward() # 反向计算梯
度
optimizer.step() # 更新参数
```

加入梯度累加后:

```
for i, (inputs, labels) in enumerate(training_set):
loss = model(inputs, labels) # 计算loss
loss = loss / accumulation_steps # Normalize our loss (if average
d)
loss.backward() # 反向计算梯度,累加到之前梯度上
if (i+1) % accumulation_steps == 0:
    optimizer.step() # 更新参数
    model.zero_grad() # 清空梯度
```

要注意的是,batch扩大后,如果想保持样本权重相等,学习率也要线性扩大或者适当调整。另外batchnorm也会受到影响,小batch下的均值和方差肯定不如大batch的精准,可以调整BN中的momentum参数解决[2]。

2. 梯度检查点 Gradient Checkpointing

如果只有一张卡,又想训大模型,可以尝试压缩模型所占显存。

梯度检查点是一种以时间换空间的方法,通过减少保存的激活值压缩模型占用空间,但是在计算梯度时必须从新计算没有存储的激活值。

细节可以参考陈天奇的Training Deep Nets with Sublinear Memory Cost[3]。

注: 第一行节点是前向, 第二行是反向

3. 混合精度训练 Mixed Precision Training

混合精度训练在单卡和多卡情况下都可以使用,通过cuda计算中的half2类型提升运算效率。一个half2类型中会存储两个FP16的浮点数,在进行基本运算时可以同时进行,因此FP16的期望速度是FP32的两倍。举个Gelu的FP16优化票子:

混合精度训练[5]不是很难理解,但要注意以下几点:

- 1. 混合精度训练不是单纯地把FP32转成FP16去计算就可以了,只用FP16会造成80%的精度损失
- 2. Loss scaling: 由于梯度值都很小,用FP16会下溢,因此先用FP32存储loss并放大,使得梯度也得到放大,可以用FP16存储,更新时变成FP32再缩放
- 3. 在涉及到累加操作时,比如BatchNorm、Softmax,FP16会上溢,需要用FP32保存,一般使用GPU中TensorCore的 FP16*FP16+FP32=FP32运算

整体流程: FP32权重 -> FP16权重 -> FP16计算前向 -> FP32的loss,扩大 -> 转为FP16 -> FP16反向计算梯度 -> 缩放为FP32的梯度更新权重

!! 手工分割线:接下来就是壕赛道了!!

4. 分布式训练 Distributed Training

分布式训练就是多张卡并行训练,一般有以下两种情况:

- Multi-GPU: 单机多卡,通过PCIE、NVlink、GPU Direct P2P来通信
- Multi-Node: 多机多卡,通过Sockets (Ethernet) 或者InfiniBand with GPU Direct RDMA通信

实践中可以使用英伟达的NCCL通信框架,多机通过IB(InfiniBand)可以接近机内的通信速度[6]。底层的东西就不多说了(我也不太懂),实际上对于炼丹师来说就是找运维爸爸提供帮助,并借助开源框架配置上服务器地址就行了。

并行训练有多种优化策略,主要目的就是减少计算中的参数同步(Sync)和数据传输。

目前32GB的卡最多能放1.3B参数的模型,塞得下的话可以使用数据并行的方式,否则可以把不同层放在不同机器上进行训练。两种方式的区别看下图[7]就明白啦:

4.1 数据并行 Data Parallelism

数据并行有两种方式[9]:

Parameter Server

集群中有一个master和多个worker,master需要等待所有节点计算完毕统一计算梯度,在master上更新参数,之后把新的参数广播给worker。这种方式的主要瓶颈在master,因此也可以异步训练,即不等待其他节点,收到一个worker的梯度后就更新参数,但这样其他worker在旧参数上算完后的梯度会作用到新参数上,导致模型优化过头,陷入次优解。

Ring All-Reduce

集群中所有worker形成一个闭环,把数据分成K份,计算完一份就把累加好的梯度传给下家,同时接受上家的梯度, 迭代到最后所有worker的梯度都是相等的,可以同步更新参数,比PS架构要高效,是目前的主流方式。下图[10]展 示了Scatter Reduce和All Gather两个阶段:

4.2 模型并行 Model Parallelism

模型并行目前并不常见,一是因为大部分模型单卡都放得下,二是因为通讯开销比数据并行多,因为反向传播需要把loss对每层激活值的梯度都传回去,样本数量大的话激活值也有很多。

Pipelined Parallelism

Pipeline的并行方式就是把模型的不同层放到不同机器上,顺序地进行前向和反向计算。19年谷歌和微软先后放出了GPipe[11]和PipeDream[12]的论文和源码,给大家梳理一下他们的心路历程:

首先来看最naive的模型并行方式,实在是有些浪费生命:

注: 反向需要计算对参数和激活值的偏导,所以耗时更长。

所以谷歌GPipe提出了一个改进,其实就是把数据分片,像allreduce一样计算完一些就传给下个节点,最后同步更新参数,但这样看还是不能挽救我们的青春:

于是微软提出了PipeDream,其实就是**把同步变为了小数据上的异步**,计算完一个数据分片就立刻反向,反向完了就更新梯度,谁也别等谁,大家一起疯狂干起来:

但这样就有一个问题,就是大家越干越乱,比如worker1在计算5的前向时用的是1反向后的参数,但之后计算5反向的梯度时参数早就被2/3/4更新了。于是作者加入了Weight stashing机制,把每个数据对应的参数都存起来!这样worker1在5反向的时候就可以从百宝箱里拿出之前的参数,进行更新:

那问题又来了:worker1上5的前向是用1的参数,但worker3上是用3的,最后汇总的时候不就又乱了?于是作者又加入了Vertical Sync机制,强制所有worker在计算5的时候都用1的参数。这样在最后汇总模型的时候,就能拿到一致的参数了。但这样同步会导致很多计算作废,比如5更新时用的1的权重,但2/3/4的权重都白计算了,所以默认是不用Vertical Sync的,这样每层虽然不完全一致,但由于weight stashing,所有的参数都是有效的。

Tensor Slicing

神经网络可以看作一个复合函数,本质就是各个tensor之间的计算,我们定义好的CNN、RNN其实就是计算函数的集合。从这个角度来思考,模型并行其实就是把各个tensor计算分散到不同的机器上。这方面的研究有18年的FlexFLow和Mesh-TensorFlow,英伟达的威震天[13]也是使用这个策略。下面以Transformer为例说明一下如何拆分。

Transformer主要有self-attention和FFN组成,对于FFN中的第一层Y=GLUE(XA)可以有两种拆分方式:

可以看到,第一种需要在计算GLUE时同步,因此威震天通过第二种方式进行tensor切片,self-attention也采用类似的策略,这样只需要在前向时通过g聚合,反向时通过f聚合就可以了:

(b) Self-Attention

剩下的Layernorm和dropout还是需要同步后计算:

同时,作者也在vocab的维度对embedding进行了切分,并把最后的MLM预测和cross-entropy融合到一起,减少网络通信量(否则需要传输batch_size*seq_len *vocab_size个prob,改过后只传batch_size *seq_len个loss值)。

随着模型越来越大,分布式训练甚至推理肯定是一个趋势,在工程上还有很多可以优化的点,不仅是上面介绍的分

布式策略,还有网络通信优化、内存优化等。

5. 加速优化器 LAMB

上文提到的数据并行虽然可以接近线性地提升训练速度,但过大的Batch会降低模型精度和收敛速度(对数据的拟合变差)。因此谷歌在19年推出了LAMB[14]优化器,全称为Layer-wise Adaptive Moments optimizer for Batch training,针对大batch做了优化,在分布式训练的场景下可训65536/32768的样本,减少迭代次数,从而缩短训练时间,感受一下金钱的味道:

Solver	batch size	steps	F1 score on dev set	TPUs	Time
Baseline	512	1000k	90.395	16	81.4h
LAMB	512	1000k	91.752	16	82.8h
LAMB	1k	500k	91.761	32	43.2h
LAMB	2k	250k	91.946	64	21.4h
LAMB	4k	125k	91.137	128	693.6m
LAMB	8k	62500	91.263	256	390.5m
LAMB	16k	31250	91.345	512	200.0m
LAMB	32k	15625	91.475	1024	101.2m
LAMB	64k/32k	8599	90.584	1024	76.19m

LAMB主要是综合了Adam和LARS(Layerwise Adaptive Rate Scaling),对学习率进行调整。上文提到当batch变大时学习率也需要变大,这样会导致收敛不稳定,LARS通过给LR乘上权重与梯度的norm比值来解决这个问题[15]:

$$\lambda_l = \eta rac{||x^l||}{||
abla L(x^l)||}$$

这里的norm都是取一层的权重计算,所以是layerwise。可以这样理解上面的公式:刚开始训练时,权重比较小,而 loss和梯度比较大,所以学习率开始较小,但随着权重变大&梯度变小会慢慢warmup。当对一些样本拟合很好,loss 接近0时,梯度变小,学习率又会增大,跳出局部最优,防止过拟合。

LAMB融合了这种layerwise的自适应思想:

Algorithm 2 LAMB

Input: $x_1 \in \mathbb{R}^d$, learning rate $\{\eta_t\}_{t=1}^T$, parameters $0 < \beta_1, \beta_2 < 1$, scaling function $\phi, \epsilon > 0$ Set $m_0 = 0, v_0 = 0$ for t = 1 to T do

Draw b samples S_t from \mathbb{P} .

Compute $g_t = \frac{1}{|\mathcal{S}_t|} \sum_{s_t \in \mathcal{S}_t} \nabla \ell(x_t, s_t)$. $m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$ $v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$ Compute ratio $r_t = \frac{m_t}{\sqrt{v_t} + \epsilon}$ $x_{t+1}^{(i)} = x_t^{(i)} - \eta_t \frac{\phi(\|x_t^{(i)}\|)}{\|r_t^{(i)} + \lambda x_t^{(i)}\|} (r_t^{(i)} + \lambda x_t)$ end for

图中的公式稍稍有改动,一个是给权重norm加了映射,本质都是起scale的作用;另一个是梯度公式中加了weight decay,也就是目标函数中的L2正则化。

总结

本文介绍了从速度和内存去优化模型训练的几种方式,实践中各种都是可以混合起来的,比如混合精度+数据并行、数据并行+模型并行、数据并行+梯度检查点等。DeepSpeed里基本涵盖了本文所讲的策略,用pytorch的同学可以安排起来了~

最后,在介绍各种策略的时候,由于篇幅原因也有省略一些假设和最终效果,感兴趣的同学们可以深入研读参考资料里的内容~如果路过的大佬们发现哪里有错误烦请指出~

- 如何让BERT拥有视觉感知能力? 两种方式将视频信息注入BERT
- 模型训练太慢? 显存不够用? 这个算法让你的GPU老树开新花
- 训练效率低? GPU利用率上不去? 快来看看别人家的tricks吧~
- 如何打造高质量的NLP数据集
- 万万没想到,我的炼丹炉玩坏了

多考文献

- [1] 微软Turing-NLG: https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
- [2] 梯度累加: https://www.zhihu.com/question/303070254/answer/573037166
- [3] 陈天奇 Training Deep Nets with Sublinear Memory Cost: https://www.zhihu.com/question/274635237/answer/755102181
- [4] 高开远 Reformer解读: https://zhuanlan.zhihu.com/p/104935987
- [5] 混合精度训练: https://zhuanlan.zhihu.com/p/84219777
- [6] 英伟达NCCL: https://www.zhihu.com/question/63219175/answer/206697974
- [7] 数据并行与模型并行: https://www.zhihu.com/question/53851014/answer/158794752

[8] 分布式之数据并行: https://zhuanlan.zhihu.com/p/68615246 [9] AllReduce: https://zhuanlan.zhihu.com/p/100012827 [10] AllReduce细节: https://zhuanlan.zhihu.com/p/56991108

[11] GPipe: https://arxiv.org/pdf/1811.06965.pdf
[12] PipeDream: https://arxiv.org/pdf/1806.03377.pdf
[13] Megatron-LM: https://arxiv.org/abs/1909.08053
[14] LAMB: https://arxiv.org/abs/1904.00962v3

[15] LAMB解读: https://towardsdatascience.com/an-intuitive-understanding-of-the-lamb-optimizer-46f8c0ae4866

夕小瑶的卖萌屋

关注&星标小夕,带你解锁炼丹秘籍 订阅号主页下方「**撩一下**」有惊喜哦

声明:pdf仅供学习使用,一切版权归原创公众号所有;建议持续关注原创公众号获取最新文章,学习愉快!