Math 483/583 - High Performance Scientific Computing

Instructor Chris Swierczewski

Teaching Assistants
Meghana Velegar - 583
Sean Santos - 483

Overview

- "High Performance Scientific Computing"
- Course goals and syllabus
- Homework, quizzes, and final exam
- This week's homework
- Demo of SageMathCloud

Course Sections

Online In-Class Online Masters / **EDGE** AMath 483 SLN 10212 SLN 21245 AMath 583 SLN 10230 SLN 21246 SLN 10231

High Performance Scientific Computing

- "High Performance" multiple cores, computers, or clusters with hundreds to thousands of cores
- "Scientific Computing" problems that appear in optimization, numerical analysis, geometry, data analysis

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Date of introduction

Moore's Law

transistors on a CPU doubles every two years

Moore's Law

*but clock speed and FLOPS are not doubling every two years

*but clock speed and FLOF are not doubling every two years

MILKYWAY-2

Current world's fastest supercomputer. http://top500.org

Course Goals

- techniques for writing fast single-core, multi-core, and multi-machine code
- tools for managing "programmer time"
- applications and tools for scientific computing

Knowledge gained from course will be useful for both supercomputers as well desktop environments.

Course Goals

Software efficiency

- computer hardware: CPU, memory, floating point arithmetic, cache
- Unix and command-line software development
- languages: Python and C
- efficient single-core programming
- parallel programming with OpenMP and MPI

Course Goals

- Programmer efficiency
 - version control systems
 - makefiles and scripting
 - debugging code
 - test suites
 - reproducibility: documentation and reusability

N-Body Simulation

Parameter Optimization

Syllabus (link)

Grading

Homework - 40%

- Automated Tests
 - "toy" test suite given to students
 - additional tests described, but not given
- Report and Analysis
 - derivations, analysis, plots

60 / 100	Automated Tests
20 / 100	Report and Analysis
10/100	Documentation and Reproducibility
10/100	Performance*

Homework - 40%

- Documentation and Reproducibility
- Performance
 - - 3 std. dev. 0 / 10 pts
 - - 2 std. dev. 5 / 10 pts
 - +/- 1 std. dev. 10 / 10 pts
 - + 2 std. dev. 15 / 10 pts

60 / 100	Automated Tests
20 / 100	Report and Analysis
10 / 100	Documentation and Reproducibility
10 / 100	Performance*

Quizzes

- Every Monday (including next week!)
- Understanding of Lecture Content and Assigned Reading from previous week
- Taken online via Canvas
 - 15 minutes timed
 - Start: Monday at 4:15pm
 - End: Monday at 4:45pm

Academic Integrity

Dont's:

- you may not work as a partner with another student on an assignment,
- you may not show your solutions to another student or look at their solution,
- you may not discuss homework solutions in the course chat room or on the Issues pages,

Academic Integrity

· Dos':

- asking for help in understanding a part of a lecture,
- assistance in the use of a software tool or library
- requesting a reference on a given software tool or library,
- discussion of topics beyond the scope of this course. (It's fun!)

Asking Questions

- I will not answer email about the course after the first week.
- All questions should be posted to the appropriate repository's Issues Page in GitHub
 - logistics questions —> <u>Syllabus Issues</u>
 - Homework #1 Questions —> Homework #1 Issues Page
- Gitter Chat Room
 - online office hours (TBD)

Lecture Notes

- See "Lectures" repository
 - slides
 - code
 - other notes

Philosophy of the Course

- Many topics to cover! Not enough time.
- Lectures are "introductions" to topics.
- Lectures and Homework give enough "hands on" experience for further experimentation.
- Primary and Secondary References (see Syllabus) are major source of information.

Philosophy of this Course

- There is no textbook for life, but there are countless resources.
 - Learn how to find information on the internet, in books, from each other.

Prerequisites

- Courses:
 - Math 301 or CSE 142
- Highly recommended
 - solid linear algebra background
 - solid programming skills

Before we continue...

- Homework follow instructions on the <u>New</u>
 Student Checklist
- Homework Learn Python
 - · quiz next Monday basic Python, Unix, and Git
 - Official Python Tutorial Sections 3,4,5,6,14

Demo: SageMathCloud and the Terminal