Image Pyramids

$$N^2 + \frac{1}{4}N^2 + \frac{1}{16}N^2 + \dots = 1\frac{1}{3}N^2$$

Efficient Visual Search

- Pyramids: Start the search in a small image
- •search area is small in larger levels (e.g. ±1) using the estimate from the smaller level

Applications for Pyramids

- Detection and Search (Esp. huge images)
- Browsing in Image Databases
- Motion Computation

Image Resizing

Reduce:

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

1. Blur

-E.g. Convolve with a 3×3 filter $(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}) \times (\frac{1}{4}, \frac{1}{2}, \frac{1}{4})^T$, or a 5×5 filter $\frac{1}{16}(1, 4, 6, 4, 1) \times ...$ or larger

2. Sub-sample

- Select only every 2nd pixel in every 2nd raw

Expand:

- 1. Zero Padding $(a_1, 0, a_2, 0, a_3, 0, ...)$
- 2. Blur
 - Note: Expand blur needs different normalizations!
 - Is zero padding followed by blur with $(\frac{1}{2}, 1, \frac{1}{2})$ OK?

Blur Kernels

Commonly Used - Binomial Coefficients

- Odd number of coefficients (have a center)
- Sum of coefficients normalized to 1
- Fast to compute (using shift and add)
- Asymptotically similar to a Gaussian

$$(1\ 1) *...*(1\ 1) / 2^{2k}$$

Blur & Sub-sample (Reduce)

Zero-Pad & Blur (Expand)

Handling Image Boundaries Never Cyclic...

Mirror on last pixel. ?=2 Mirror after last pixel. ?=0 Duplicate last pixel. ?=0

Gaussian Pyramid

```
G_n - Reduce\{G_{n-1}\} G_3 — Reduce\{G_2\} G_2 — Reduce\{G_1\} G_1 — Reduce\{G_0\} G_0 — Original Image
```

- 2D Picture
 - Reduce Rows, Reduce Columns

5-Level Gaussian Pyramid (Wikipedia)

Laplacian Pyramid

$$L_n + L_{n-1} = Expand\{L_n\} + L_{n-1} =$$

= $Expand\{G_n\} + (G_{n-1} - Expand\{G_n\}) = G_{n-1}$

$$\sum_{i=k}^{n} (\mathbf{L}_i) = \mathbf{G}_k \qquad \sum_{i=0}^{n} (\mathbf{L}_i) = \mathbf{G}_0$$

 G_1

 G_0

 $Expand\{G_1\}$

 $L_0 = G_0 - Expand\{G_1\}$

Laplacian Pyramid as a Band-Pass Filter

Gaussian Pyramid – Convolution with a Gaussian filter

Laplacian Pyramid as a Band-Pass Filter

Gaussian Pyramid (<u>in the Fourier domain</u>) – Multiplication with a Gaussian kernel

Laplacian Pyramid as a Band-Pass Filter

 In the Fourier domain, the Laplacian is the difference between two powers of Gaussian kernels:

Level 1

Level 2

Level 3

Pyramid Compression

- Build a Laplacian Pyramid
- Quantize pyramid values to 3-5 values
 - Optimal Quantization
- Compress using Entropy Compression
 - (Huffman, Lempel-Ziv)
- Reconstruct normally
- Next Generation: Wavelet Compression

Pyramid Compression

Fig. 5. Pyramid data compression. The original image represented at 8 bits perpixel is shown in (a). The node values of the Laplacian pyramid representation of this image were quantitized to obtain effective data rates of 1 b/p and 1/2 b/p. Reconstructed images (b) and (c) show relatively little degradation.

Picture Merging with Spline

For every Row:

$$C(i) = H_l(i-x)A(i) + H_r(i-x)B(i)$$

Multiresolution Spline

- Given two images A and B to be splined in middle
- Construct Laplacian Pyramid L_a and L_b
- Create a third Laplacian Pyramid L_c where for each level k

$$L_{c}(i,j) = \begin{cases} L_{a}(i,j) & \text{if } i < width/2 \\ (L_{a}(i,j) + L_{b}(i,j))/2 & \text{if } i = width/2 \\ L_{b}(i,j) & \text{if } i > width/2 \end{cases}$$

Sum all levels in L_c to get the blended image

Pyramid Blending Arbitrary Shape

- Given two images A and B, and a binary mask M
- Construct Laplacian Pyramids L_a and L_b
- Construct a Gaussian Pyramid G_m
- Create a third Laplacian Pyramid L_c where for each level k

$$L_c(i,j) = G_m(i,j)L_a(i,j) + (1 - G_m(i,j))L_b(i,j)$$

• Sum all levels L_c in to get the blended image

© prof. dmartin

Pyramids (not Laplacian) & sea (talu)

