1) Implement the function:

 $F=\Pi M(0,1,3,4,18,23,28,30)+\Pi Mx(5,11,12,14,15,22,31)$ Fill in the truth table. Implement the function using 16:1 MUX and also get the minimal SOP equation using the k-map on the next page.

Decimal	ABCDE F E	(E)		
0	000000			
1	00001 0	0		
2	00010 1	Ē		
3	000110	E		
4	001000	- /		
5	00101 X	EX		
6	00110	E+E		
7	00111			
8	01000 \	E+Ē		
9	01001	640	_	
10	01010	E+EX		
11	01011 X			
12	01100 X	EXTE		
13	01101 (
14	01110 X	X		
15	01111 X			
16	10000 (E+E		
17	10001			
18	10010 0	E		
19	10011			
20	10100	ETE		
21	10101			
22	10110 %	ĒX		
23	101110			
24	110001	E+Ē		
25	11001			
26	11010	ETE		
27	11011			
28	111000	E		
29	11101			
30	111100	EX		
31	11111 ×			

2. Consider a 4-bit adder and a 4 to 2 priority encoder. The inputs to the system are A3-A0, B3-B0, and I3-I0. I3-I0 are decimal equivalents to decimal number 3—o respectively. Convert the 4-bit adder to adder/subtractor circuit using only 5 gates of your choice. Which ever gate you choose, all the 5 gates should be same. The system should work as follows. If I0 or I3 is 1 then A+B If Io or I3 is 1 then A-B

3) Design and draw a 4-bit universal shift register application using only multiplexers. The system should function according to the following function table. The outputs of the shift register is Q3-Q0

S2 S1	SO	Funtion	
0 (0	Shift Left	
0 0	1	Shift Right	
0 1	0	Set	
0 1	1	Ring Counter	
1 0	0	Load New Inputs (I3-I0)	
1 0	1	Johnson Counter	
1 1	0	Toggle	
1 1	1	HOLD	

4) Design a flip-flop with the below given truth table using a S-R flip-flop.

	U	V	Output
Ones m	0	0	SET
	0	aboratieleis alla	RESET
	1	0	TOGGLE
	1	1	SET