- 1. В корзине 6 шаров, из которых 4 белых и 2 черных. Вытаскивается 3 шара. Случайной величиной является число белых шаров. Для данной случайной величины составить ряд распределения, записать функцию распределения и нарисовать ее график. Найти вероятность события $P(0.5 < \xi < 2.5)$.
- 2. В тире стрелку, попавшему в мишень, выдается призовой патрон для следующего выстрела. Вероятность попадания при одном выстреле 0.8. Найти закон распределения дискретной случайной величины ξ числа патронов, выданных стрелку, если он купил только один патрон. Построить функцию распределения.
- 3. Написать биномиальный закон распределения дискретной случайной величины ξ числа появлений «орла» при двух подбрасываниях монеты. Найти функцию распределения случайной величины.
- 4. В партии из 10 деталей имеется 8 стандартных. Наудачу отобраны две детали. Составить закон распределения числа стандартных деталей среди отобранных.
- 5. Случайная величина ξ имеет показательное распределение с параметром $\lambda = 1$. Найти значение x0 такое, что $P(\xi < x) = P(\xi > x)$.
- 6. Дана плотность распределения случайной величины $p(x) = e^{(a|x|)}$. Найти параметр а и функцию распределения.

Задача 87. Плотность распределения случайной величины (рис. 13)

$$p(x) = \begin{cases} a \cos x, & x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \\ 0, & x \notin \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]. \end{cases}$$

Найти параметр a, функцию распределения и вероятность $P(\pi/6 < \xi <$

- 7. π).
- 8. Случайная величина ξ имеет показательное распределение с плотностью р ξ (x) = λ e^($-\lambda$ x) (x > 0). Найти плотность распределения случайной величины $\eta = \sqrt{\xi}$, a) $\eta = \xi^2$; б) $\zeta = 1 e^{-(-\lambda\xi)}$.

Задача 102. Случайная величина ξ имеет нормальное распределение с параметрами (0; 1). Найти плотности распределения случайных величин а) $\eta = \xi^2$; б) $\zeta = e^{\xi}$.

Задача 103. Плотность случайной величины ξ имеет вид

$$p_{\xi}(x) = \begin{cases} 2x, & x \in [0; 1], \\ 0, & x \notin [0; 1]. \end{cases}$$

Найти плотность распределения величины $\eta = \ln \xi$.

Задача 104. Пусть F(x) — непрерывная строго возрастающая функция распределения и $F^{-1}(x)$ — обратная к ней функция и ξ — случайная величина, равномерно распределенная на отрезке [0;1]. Показать, что случайная величина $\eta = F^{-1}(\xi)$ имеет своей функцией распределения $F(x)^{1}$.