

Обзор алгоритмов

Составитель: Рощупкин Александр

Обзор алгоритмов

Цель алгоритмов

Вычислительные ресурсы современных компьютеров конечны, вычислительные потребности современных приложений всегда растут

Основные ресурсы компьютеров:

- Процессорное время
- * Оперативная память

Основная цель алгоритмов: как решить задачу быстрее и потратить на её решение меньше памяти

Виды алгоритмов

- * Комбинаторные алгоритмы
- * Алгоритмы на графах
- * Алгоритмы поиска
- Алгоритмы на строках
- * Алгоритмы сжатия данных
- * Алгоритмы сортировки
- * Алгоритмы компьютерной графики
- * Криптографические алгоритмы
- * Алгоритмы грамматического разбора И другие...

Оценка алгоритма

- * **Временная эффективность** количество операций, которое выполняет алгоритм
- * Пространственная эффективность количество памяти, требуемое для выполнения алгоритма

В большинстве алгоритмов количество выполняемых операций напрямую зависит от размера входных данных

- * Поиск максимального элемента массива зависит от длинны массива
- * Чем больше входных данных, тем дольше работает алгоритм

RAM - машина

- * Для универсального подсчёта числа операций, выполняемых алгоритмом, необходимо формально описать систему команд абстрактного исполнителя, измеряемого в операциях или тактах процессора
- * Однопроцессорная машина с произвольным доступом к памяти
- * Основные правила:
 - * Арифметические и логические операции (+,-,*,/,%) 1 такт
 - * Обращение к ячейке памяти 1 такт
 - * Условный переход, условие (if) 1 такт
 - * Цикл, условие плюс количество тактов в теле 1 + k тактов

Пример суммы элементов

* Вычислим количество операций алгоритма вычисления суммы п элементов в примере на **псевдокоде**

```
    function sumArray(a[1..n])
    sum = 0
    for i = 1 to n do
    sum = sum + a[i]
    end for
    return sum
    end function
```

В строке 2 выполняется одна операция записи в память.

Далее, перед выполнением каждой из n итераций цикла происходят проверка условия его окончания i=n и переход на строку 4 или 6.

На каждой итерации в строке 4 выполняется четыре операции: чтение из памяти значений sum и a[i], их сложение и запись результата в память. В конце алгоритма выполняется возврат результирующего значения – одна операция

Количество операций T(n) = 4n + 2

Усреднённое значение

- * Обычно точный анализ числа операций алгоритма во многих случаях не требуется.
- * Достаточно ограничиться подсчетом лишь тех операций, суммарное количество которых зависит от размера входных данных.
- * Так, в алгоритме SUMARRAY строки 2 и 6 не имеют значимого влияния на итоговое время выполнения, которое фактически определяется только операциями в строке 4.
- st При анализе вычислительной сложности алгоритмов мы будем игнорировать операции, связанные с проверкой условия окончания цикла for и автоматическим увеличением его счетчика.

Фактически количество операций T(n) = 4n

Худший случай работы алгоритма

- * Существует большое количество алгоритмов, время выполнения которых зависит не только от размера входных данных, но и от их значений.
- * В качестве примера рассмотрим алгоритм LINEARSEARCH линейного поиска заданного значения x в массиве из n элементов.

```
function LINEARSEARCH(a[1..n], x)

for i = 1 to n do

if a[i] = x then

return i

end if

end for

return -1

end function
```

Худший случай работы алгоритма

* **Лучший случай (best case)** – экземпляр задачи (набор входных данных), на котором алгоритм выполняет наименьшее число операций. В нашем примере a[1,2,3] - входной массив, первый элемент которого содержит искомое значение x = 1. В этой ситуации требуется выполнить

$$T$$
best $(n) = 3$

операции: проверка условия окончания цикла, условие в цикле (строка 3) и возврат найденного значения (строка 4). Таким образом, время работы алгоритма в лучшем случае – теоретическая нижняя граница времени его работы.

* Худший случай (worst case) – экземпляр задачи, на котором алгоритм выполняет наибольшее число операций. Для рассматриваемого алгоритма – массив, в котором отсутствует искомый элемент или он расположен в последней ячейке. В этой ситуации требуется выполнить

$$T_{worst}(n) = 2n + 1$$

операции: n раз проверить условие окончания цикла и условие в нем, за- тем вернуть значение –1. Время работы алгоритма в худшем случае – теоретическая верхняя граница времени его работы.

Скорость роста функций

* Допустим что у нас есть два алгоритма решения одной и той же задачи. И у нас есть функции $T_1(n)$ и $T_2(n)$ зависимости числа операций алгоритмов от размера их входных данных для худшего случая. Определимся, что

$$T_1(n) = 90n^2 + 201n + 2000,$$

 $T_2(n) = 2n^3 + 3$

* Возникает вопрос: какой из алгоритмов предпочтительнее использовать на практике?

Скорость роста функции

- * Сравним графики функций T1(n) и T2(n)
- * Обычно алгоритмы сравниваются на больших размерах данных

Скорость роста основных функций

- * С константная скорость (нет роста)
- * log n логарифмическая скорость
- * n линейная скорость
- * n log n линейно-логарифмическая скорость
- * n² квадратичная скорость
- * n³ кубическая скорость
- * 2ⁿ экспоненциальная скорость
- * n! факториальная скорость

Вывод: чем медленнее растёт количество операций алгоритма в зависимости от размера данных, тем эффективнее алгоритм

Асимптотические обозначения

- Как правило функция T(n) имеет локальные экстремумы – неровный график с выпуклостями и впадинами
- * Проще работать с верхними и нижними границами

Асимптотические обозначения

Для указания границ функций T(n) в теории вычислительной сложности алгоритмов (computational complexity theory) используют асимптотические обозначения:

- * O (о большое) асимптотическая верхняя граница
- * Ω (омега большое) асимптотическая нижняя граница
- * Ө (тета большое) асимптотически точная граница
- * *o* (о малое)
- ω (омега малое)

Классы сложности алгоритма

в О-нотации

Обозначение класса	Название класса	Пример
<i>O</i> (C)	Константная сложность	Алгоритм определения четности целого числа. Время выполнения таких алгоритмов не зависит от размера входных данных
$O(\log n)$	Логарифмическая сложность	Алгоритм бинарного поиска в упорядоченном массиве. Такие алгоритмы на каждом шаге обрабатывают лишь часть входного набора данных
O(n)	Линейная сложность	Алгоритм поиска минимального элемента в неупорядоченном массиве. Просмотр всего набора входных данных
$O(n \log n)$	Линейно- логарифмическая сложность	Алгоритм сортировки слиянием. Такая сложность характерна для алгоритмов, разработанных по методике («разделяй и властвуй»)
$O(n^2)$	Квадратичная сложность	Алгоритм сортировка выбором
$O(n^3)$	Кубическая сложность	Алгоритм умножения квадратных матриц по определению
$O(2^n)$	Экспоненциальная сложность	Алгоритмы, обрабатывающие все подмножества некоторого множества из n элементов

Логарифмическая сложность

- Логарифм числа b по основанию а определяется[2] как показатель степени, в которую надо возвести основание а, чтобы получить число b
- * Нахождение $x = \log_a b$ равносильно решению уравнения $a^x = b$
- * Например $\log_2 8 = 3$ потому что $2^3 = 8$

Бинарный поиск

- * Двоичный поиск классический алгоритм поиска элемента в отсортированном массиве, использующий дробление массива на половины
- * Метод деления на половины (метод дихотомии) позволяет найти нужный элемент не перебирая каждый элемент, а перебирая меньше чем N элементов исходной коллекции

Дополнительный материал (поиск в подстроке)

Алгоритмы поиска подстроки

- * Алгоритмы представлены со среднем временем поиска и худшим
- * Простой алгоритм O(2n)(n*m)
- * Алгоритм Рабина Карпа O(n+m)(n*m)
- * Алгоритм Бойера Mypa O(n+m)(n*m)
- * Алгоритм Кнута Морриса Пратта O(n+m)(n+m)

Пример простого поиска

Найти в стоке А="ААААВ" подстроку Х="АААВ"

- * Идти по проверяемой строке **A** и искать в ней вхождение первого символа искомой строки **X**. Когда находим, делаем гипотезу, что это и есть то самое искомое вхождение.
- * Затем остается проверять по очереди все последующие символы шаблона на совпадение с соответствующими символами строки **A**. Если они все совпали значит вот оно, прямо перед нами.
- * Но если какой-то из символов не совпал, то ничего не остается, как признать нашу гипотезу неверной, что возвращает нас к символу, следующему за вхождением первого символа из **X**

Алгоритм КМП

Алгоритм поиска <u>Knuth-Morris-Pratt String</u> или <u>алгоритм</u> КМР ищет появление «шаблона» в основном «тексте», используя наблюдение, что, когда происходит несоответствие, само слово содержит достаточную информацию, чтобы определить, где может начаться следующее соответствие, тем самым минуя повторное рассмотрение ранее согласованных символов

Основные определения:

- Префикс символы с начала строки
- Суффикс символы с конца строки
- Собственные префикс и суффикс это значит что они не совпадают со всей строкой
- * Префикс функция для і-ой позиции это длина максимального префикса строки, который короче і и который совпадает с суффиксом префикса длины і

Визуализация алгоритма КМП

- * http://jovilab.sinaapp.com/visualization/algorithms/strings/kmp
- * https://people.ok.ubc.ca/ylucet/DS/KnuthMorrisPratt.
 html

Домашнее задание

- * Сравнить рост функций, используемых для сравнения сложности алгоритма. Упорядочить рост функций по возрастанию. Каждую функцию представить классом с методом вычисления функции
- * Написать метод выполняющий двоичный поиск элемента в списке
- Написать метод выполняющий поиск подстроки