Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECC603	Digital Image Processing and Machine Vision	03		× 	03		-	03	

Course	Course Name	Examination Scheme							
Code		Theory Marks			S	Exam	Term Work	Practical and Oral	Total
		Internal Assessment			End Sem.	Duration			
		Test1	Test2	Avg.	Exam.	(Hrs.)	1		
ECC603	Digital Image Processing and Machine Vision	20	20	20	80	03	Ö		100

Prerequisites:

- 1. Signals and Systems
- 2. Discrete Time Signal Processing
- 3. Python Programming Skill Lab

Course Objectives:

- To teach the fundamentals and mathematical models in digital image processing and Machine Vision
- 2. To teach quality enhancement of image through filtering operations
- 3. To teach the students image morphology and restoration techniques
- 4. To expose the students to segmentation techniques in image processing and Machine Vision
- 5. To teach the techniques of extracting image attributes like regions and shapes
- 6. To learn classification and recognition algorithms for machine vision

Course Outcomes:

After successful completion of the course student will be able to

- 1. Understand fundamentals of image processing and machine vision
- Enhance the quality of image using spatial and frequency domain techniques for image enhancement
- 3. Learn image morphology and restoration techniques
- 4. Learn image segmentation techniques based on principle of discontinuity and similarity using various algorithms
- Represent boundaries and shapes using standard techniques.
- Classify the object using different classification methods

Module No.	Unit Topics No.						
1	DIGITAL IMAGE FUNDAMENTALS AND POINTERPROGRAMMENTALS						
	1.1	Throduction Steps in Digital Image Processing concept of annual	04				
		mensity resolution, Relationships between pixels	02				
	1.2	Point Processing: Image Negative Log Transform Bound I	02				
	Bit plane slicing, Contrast stretching, Histogram equalization and Histogram Specification						
2	IMAGE ENHANCEMENT						
	2.1	2.1 Spatial Domain filtering: The Mechanics of Spatial Filtering					
		Smoothing Spatial Filters-Linear Filters-Averaging Chan C. I.	03				
		1 Media Michael Hitti, Application of Median filtering for Main					
		Shar pennig Spatial Filters. The Laplacian Unchara Macking and					
		Ingliboost Filtering, Using First-Order Derivatives — The Gradient Callat					
	2.2	Trewitt and Roberts					
	2.2	Frequency Domain Filtering:	02				
		Introduction to 2-D DFT and its application in frequency domain filtering, Wavelet transform, Haar transform					
		wavelet dansform, Haar transform					
	2.3	Frequency Domain Filtering Fundamentals, Fourier Spectrum and Phase					
		angle ,Steps for Filtering in the Frequency Domain, Correspondence Between	03				
		Filtering in the Spatial and Frequency Domains Frequency domain Image					
		Smoothing and snarpening filter - Ideal, Butterworth, Gaussian					
3	2.1	IMAGE MORPHOLOGY AND RESTORATION	06				
	3.1	Morphology: Erosion and Dilation, Opening and Closing, The Hit or Miss.	04				
	3.2	Transformation, Boundary extraction, Hole filling, Thinning and thickening	W.				
	3.2	Restoration: A Model of the Image Degradation/Restoration Process, Noise	02				
4	models, Removal periodic noise, Principle of Inverse filtering IMAGE SEGMENTATION						
	4.1	Point, Line, and Edge Detection: Detection of Isolated Points, Line	08				
		detection, edge models, Canny's edge detection algorithm, Edge linking:	05				
		Local processing and boundary detection using regional processing					
		Local processing and boundary detection using regional processing (polygonal fitting)					
	4.2						
	4.2	Thresholding: Foundation, Role of illumination and reflectance, Basic	01				
	4.3	global thresholding					
	4.3	Region Based segmentation: Region Growing, Region Splitting and	02				
5		INTRODUCTION TO MACHINE VISION AND DESCRIPTORS					
	5.1		05				
	5.1	Principle of machine vision, real world applications, chain code, simple	03				
		geometric border representation, Fourier Transform of boundaries, Boundary					
	5.2	description using segment sequences					
6	5.2	Introduction to Texture, co-occurrence matrix	02				
0		MACHINE VISION ALGORITHMS	08				
4	6.1	Knowledge representation, Classification Principles, Classifier setting,	02				
	-	Classifier Learning, Confusion Matrix					
	6.2	K-means clustering algorithm, Introduction, bays decision theory continuous	06				
		case, two category classification, Bayesian classifier ,Support vector machine					
		TOTAL	39				

Text Books:

- Milan Sonka ,Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis, and Machine Vision" Cengage Engineering, 3rd Edition, 2013
- 2. Gonzales and Woods, "Digital Image Processing", Pearson Education, India, Third Edition,
- 3. R. O. Duda and P. E. hart, Pattern classification and scene analysis, Wiley Interscience publication
- 4. Christopher M. Bishop; Pattern Recognition and Machine Learning, Springer, 2006

Reference books:

- 1. Anil K.Jain, "Fundamentals of Image Processing", Prentice Hall of India, First Edition, 1989.
- 2. W Pratt, "Digital Image Processing", Wiley Publication, 3rd Edition, 2002
- 3. Forsyth and Ponce, Computer vision: A modern approach, PHI
- Frank Y Shish, Image Processing and Pattern Recognition: Fundamentals and Techniques, Wiley
 Wiley-IEEE Press, 2010

Internal Assessment (20-Marks):

Internal Assessment (IA) consists of two class tests of 20 marks each. IA-1 is to be conducted on approximately 40% of the syllabus and IA-2 will be based on remaining contents (approximately 40% syllabus but excluding contents covered in IA-I). Duration of each test shall be one hour. Average of the two tests will be considered as IA marks.

End Semester Examination (80-Marks):

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- Question No: 01 will be compulsory and based on entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3. Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4. Total 04 questions need to be attempted.