Fiche hyperbole et questions

Exercice 1:

Soit f la fonction définie sur $\mathbb{R} \setminus \{1\}$ par $f(x) = \frac{1}{x-1} + 2$.

1) Compléter le tableau de valeurs suivant :

x	-3	-1	0	0,5	0,75	1	1,25	1,5	2	3	5
f(x)											

- 2) Tracer \mathscr{C}_f (courbe représentative de f) dans un repère orthonormé.
- 3) Compléter les phrases suivantes :
 - **a)** Si $x \in [-3; 0]$ alors $f(x) \in ...$
 - **b)** Si $x \in [2; 3]$ alors $f(x) \in$
 - c) Si $x \in [1,5; +\infty[$ alors $f(x) \in$
 - **d**) Si $x \in [0; 1[alors <math>f(x) \in$
 - **e)** Si $x \in]-\infty$; -1] alors $f(x) \in$
 - **f)** Si $x \in [1]$; 3] alors $f(x) \in$
 - **g)** Si $f(x) \in [0; 1, 5]$ alors $x \in ...$
 - **h)** Si $f(x) \in [3; 4]$ alors $x \in$
 - i) Si $f(x) \in [0; 4]$ alors $x \in$
 - **j)** Si $f(x) \in [1; 3]$ alors $x \in$

 - 1) Si $f(x) \in (2; 3]$ alors $x \in$

Exercice 2:

Soit f la fonction définie sur \mathbb{R}^* par $f(x) = \frac{-1}{x} + 1$

1) Compléter le tableau de valeurs suivant :

x	-4	-2	-1	-0,5	-0,25	0	0,25	0,5	1	2	4
f(x)	\/s		C								

- 2) Tracer \mathscr{C}_f (courbe représentative de f) dans un repère orthonormé.
- 3) Compléter les phrases suivantes :
 - a) Si $x \in [-2; -0.25]$ alors $f(x) \in$
 - **b)** Si $x \in [0,5; 2]$ alors $f(x) \in ...$
 - c) Si $x \in [1; +\infty[$ alors $f(x) \in$
 - **d**) Si $x \in [-1; 0[$ alors $f(x) \in$
 - e) Si $x \in]-\infty$; -0.5] alors $f(x) \in$
 - **f)** Si $x \in (0; 2]$ alors $f(x) \in ...$
 - **g)** Si $f(x) \in [-1; 0]$ alors $x \in ...$
 - **h)** Si $f(x) \in [1,5; 3]$ alors $x \in ...$
 - i) Si $f(x) \in [-1; 3]$ alors $x \in ...$
 - **j)** Si $f(x) \in [-3; 2]$ alors $x \in ...$
 - **k)** Si $f(x) \in]-\infty$; 0] alors $x \in ...$
 - **l)** Si $f(x) \in]1; 3]$ alors $x \in$

Solutions

Exercice 1:

1) Compléter le tableau de valeurs suivant :

x	-3	-1	0	0,5	0,75	1	1,25	1,5	2	3	5
f(x)	1,75	1,5	1	0	-2		6	4	3	2,5	2,25

2) Tracer \mathscr{C}_f (courbe représentative de f) dans un repère orthonormé.

3) Compléter les phrases suivantes :

a) Si $x \in [-3; 0]$ alors $f(x) \in [1; 1,75]$

b) Si $x \in [2; 3]$ alors $f(x) \in [2, 5; 3]$

c) Si $x \in [1,5; +\infty[$ alors $f(x) \in]2; 4]$

d) Si $x \in [0; 1[alors <math>f(x) \in]-\infty; 1]$

e) Si $x \in]-\infty$; -1] alors $f(x) \in [1,5; 2[$

f) Si $x \in [1; 3]$ alors $f(x) \in [2, 5; +\infty[$

g) Si $f(x) \in [0; 1,5]$ alors $x \in [-1; 0,5]$

h) Si $f(x) \in [3; 4]$ alors $x \in [1, 5; 2]$

i) Si $f(x) \in [0; 4]$ alors $x \in]-\infty; 0,5] \cup [1,5; +\infty[$

j) Si $f(x) \in [1; 3]$ alors $x \in]-\infty; 0] \cup [2; +\infty[$

k) Si $f(x) \in]-\infty$; 1] alors $x \in [0; 1[$

1) Si $f(x) \in [2; 3]$ alors $x \in [2; +\infty[$

Exercice 2:

1) Compléter le tableau de valeurs suivant :

x	-4	-2	-1	-0,5	-0,25	0	0,25	0,5	1	2	4
f(x)	1,25	1,5	2	3	5		-3	-1	0	0,5	0,75

2) Tracer \mathscr{C}_f (courbe représentative de f) dans un repère orthonormé.

3) Compléter les phrases suivantes :

- a) Si $x \in [-2; -0.25]$ alors $f(x) \in [1.5; 5]$
- **b)** Si $x \in [0,5; 2]$ alors $f(x) \in [-1; 0,5]$
- c) Si $x \in [1; +\infty[$ alors $f(x) \in [0; 1[$
- **d)** Si $x \in [-1; 0[$ alors $f(x) \in [2; +\infty[$
- e) Si $x \in]-\infty$; -0,5] alors $f(x) \in]1$; 3]
- **f)** Si $x \in [0; 2]$ alors $f(x) \in [-\infty; 0, 5]$
- **g)** Si $f(x) \in [-1; 0]$ alors $x \in [0, 5; 1]$
- **h)** Si $f(x) \in [1,5; 3]$ alors $x \in [-2; -0,5]$
- i) Si $f(x) \in [-1; 3]$ alors $x \in]-\infty; -0.5] \cup [0.5; +\infty[$
- **j)** Si $f(x) \in [-3; 2]$ alors $x \in]-\infty; -1] \cup [0, 25; +\infty[$
- **k)** Si $f(x) \in]-\infty$; 0] alors $x \in]0$; 1]
- 1) Si $f(x) \in [1; 3]$ alors $x \in]-\infty; -0,5]$