Post-Regularization: a Systematic Taxonomy

a seminar presentation by Yara Mohammadi Bahram

Supervisor: Dr. Amin Sadeghi

Presentation Overview

- Motivation
 - What is regularization?
 - Problems of conventional regularization
 - What is post-regularization
- Taxonomy
 - Top-level overview
 - Early regularization
 - Late regularization
 - Post-regularization
- Final remarks

Motivation

What is Regularization?

(Kuka cka et al., 2017)

"Any method of variance reduction form that aims at making the model generalize better, i.e., produce better results on the test set".

Problems of conventional regularization

- Regularization methods are traditionally integrated into the training process
 - modifying the strength of regularization on a trained model usually requires retraining the model from scratch.
- Deep learning models are becoming more and more complex
 - The use of pre-trained models is becoming more common

...Disentangling the regularization process from model training is an increasingly viable concept that has been almost neglected so far.

What is Post-Regularization?

- Regularization methods, that are disentangled from the model training process
- regularization methods, that are specifically crafted to take pre-trained unregularized models out of their overfitting solutions

Taxonomy

Top-level overview

Early regularization

yara.mohammadi@gmail.com

A mini-taxonomy for conventional regularizations

$$Minimize_{w} \frac{1}{|D|} \sum_{(x_{i},y_{i})\in D} L(f_{w}(x_{i}), y_{i}) + R(\ldots)$$

Regularization via:

- Data
- Model
- Error function
- Regularization term
- Optimization

Early regularization

Туре	Method family	Method	Papers	Description
Fixed	Via data	Adding noise, Batch normalization, Dropout, Augmentation, Data synthesis, Adversarial training, Label smoothing, Model compression,	(Kukačka et al., 2017), (Moradi et al., 2020)	Conventional regularizations that usually are applied as a part of the training and cannot be modified after the training.
	Via Model	Choice of architecture, layers, activation functions, model selection, multi-task learning, Ensemble,		
	Via loss function	Weight decay, Jacobian, Similarity measures,		
	Via Optimization	Weight smoothing, Flat minima search, Hessian penalty, Choice of optimization, Momentum, Learning rate,		
Adjustable	**	Dynamic Regularization	(Wang et al., 2020)	Modeling the regularization strength as a function of the training loss in a CNN.
Reducing search cost	3/4	Neural Architecture search, Hyperparameter optimization	(Ren et al., 2021), (Yu & Zhu, 2020)	Improving the time needed to find the optimal hyperparameters for the model and task.

Table 1: Methods of early regularization (Section 3).

Late regularization

Late regularization

Type	Method	Papers	Description
Increase	Curriculum Magnitude Pruning	(Bartoldson et al., 2019)	Introducing and increasing pruning strength in later epochs.
(Curriculum	Curriculum dropout	(Morerio et al., 2017)	Increasing dropout strength in later epochs
regularization)	Efficientnet V2	(Tan & Le, 2021)	Increasing the size of input images and augmentation strength in later epochs.
Start	Self-distillation	(Zhang et al., 2019), (Mobahi et al., 2020)	Smoothening the output and sparsifying weights of a pre-trained model by self-distillation post-training
	Adding a regularization term	(Jakubovitz & Giryes, 2018)	Improving generalization and robustness by post-training with an additional Jacobian regularization term
	Feature augmentations	(Khan & Fraz, 2020), (Kapoor et al., 2020)	Fine-tuning neural networks with additional self-supervision using feature augmentations
(fine-tuning)	Retraining the last layer	(Moreau & Audiffren, 2016)	Showing that splitting the training to representation learning and fine-tuning the last layer improves generalization
	Unsupervised fine-tuning	(Cerisara et al., 2021)	Optimizing the approximation of true classifier risk after supervised training. (Converges to a wider region)
	Post-training quantization and pruning	(Lazarevich et al., 2021) (Gholami et al., 2021)	Compressing pre-trained models.
	Dropout for transfer-learning	(Wu et al., 2021)	Forcing the output distributions of different sub-models generated by dropout to be consistent with each other
	Transfer learning in Neural Machine Translation	(Barone et al., 2017)	Exploring variants of L2 and Dropout regularization for domain-adaptation of pre-trained NMT models
	Regularizing transfer-learning	(Li & Zhang, 2021)	Improving regularization and robustness by Fine-tuning neural networks by L2 norm and label weight correction regularization

Table 2: Methods of late regularization (Section 4). Fine-tuning regularizations can fit inside the post-regularization table as well.

Post-regularization

A demonstration

Simple polynomial regression:

$$f(x) = c_0 + c_1 x + c_2 x^2 \dots c_n x^n$$

 $(1, x, x^2, x^3)$ Multicollinearity, multicollinearity everywhere...

Orthogonal polynomial regression:

$$P_0(x_i) = 1$$

$$P_1(x_i) = \lambda_1 \left[\frac{x_i - \overline{x}}{d} \right]$$

$$P_2(x_i) = \lambda_2 \left[\left(\frac{(x_i - \overline{x})}{d} \right)^2 - \left(\frac{n^2 - 1}{12} \right) \right]$$

$$P_3(x_i) = \lambda_3 \left[\left(\frac{(x_i - \overline{x})}{d} \right)^3 - \left(\frac{x_i - \overline{x}}{d} \right) \left(\frac{3n^2 - 7}{20} \right) \right]$$

Post-regularization

Туре	Method family	Method	Papers	Description
		PCA, Fourier transform, JPEG	-	Impose orthogonality in feature/function vectors
Modified Training	Via disentangling	VAE, Orthogonal DNN	(Kingma & Welling, 2019), (Choi et al., 2020)	Disentangle features for easier feature selection
		Continual Learning	(Mai et al., 2022)	Disentangling what the model learns across different augmentation and regularization strengths.
		Quantization and Pruning aware training	(Gholami et al., 2021)	Make model more flexible for feature/model selection
		Slimmable neural networks	(Yu & Huang, 2019b), (Yu & Huang, 2019a)	Training networks in a way to be executable at arbitrary width with instant and adaptive accuracy-efficiency trade-off at runtime
	Via ensembling	Iterate Averaging	(Izmailov et al., 2018), (Wu et al., 2020), (Granziol et al., 2020)	Saving the SGD optimization path and adjusting the regularization strength after training via geometric averaging of the path ensemble.
		Bagging, Gradient boosting, ResNet	(Siu, 2019)	Training a series of weak classifiers and deciding how many of them to keep at runtime. ResNet behaves like boosting algorithms
Black-box	*	Certified robustness	(Cohen et al., 2019)	Certified adversarial robustness via Randomized smoothing
		Test-time augmentations	(Kim et al., 2020), (Cohen & Giryes, 2021) (Shanmugam et al., 2021)	Averaging the prediction over different transformations of the input data at test-time

Table 3: Methods of post-regularization (Section 5).

Final remarks

- Post-Regularization is an increasingly viable concept in machine learning and It requires more attention.
- We hope to enable the discovery of new and improved post-regularization methods by our taxonomy.

No regularization (Overfit)

