Title

D. Zack Garza

January 29, 2020

Contents

Recall that the Riemann-Zeta function a product expansion

$$\zeta(s) = \sum n^{-s} = \prod_{p \in P} (1 - p^{-s})^{-1}$$

where the product is taken over all primes P.

Let $X = V(\{f_i\}) := V(f)$ be the vanishing locus of a family of polynomials in $F = \mathbb{F}_q[x_1, \dots, x_n]$ for some prime power q.

Let $N_m = \left| \left\{ \mathbf{x} \in X(\mathbb{F}_q) \mid f_i(\mathbf{x}) = 0 \right\} \right| = |V(f)| \subset F$, the number of \mathbb{F}_q points, or equivalently just the size of this variety.

Then the Hasse-Weil Zeta function is defined as

$$\zeta_X(t) = \exp\sum_{m\geq 1} \frac{N_m}{m} t^m$$

We immediately make a change of variables and send $t \to q^{-s}$ to obtain

$$\zeta_X(s) = \exp \sum_{m \ge 1} \frac{N_m}{m} (q^{-s})^m.$$

Why? Turns the zeta function into a Dirichlet series in s. Yields $|t| = q^{-\Re(s)}$. Defined for $|t| < \frac{1}{q}$ in \mathbb{C} , extended to all of \mathbb{C} as a rational function in x. Converts "All zeros of ζ_X have absolute value $\frac{1}{\sqrt{q}}$ " to "All zeros of ζ_X have real part $\frac{1}{2}$ ".

Explanation of why exponential appears

Rough explanation: Take a bad first approximation and then correct. Let X be a fixed variety, for $p \in X$ define $||p||_X = q^n$ where n is the n occurring in the minimal field of definition of p, which is \mathbb{F}_{q^n} .

Attempt to define

$$\zeta_{X,q}(s) = \prod_{p \in X} \frac{1}{1 - \|p\|_X^{-s}}.$$