ATIYAH-MACDONALD SOLUTIONS

VINCENT TRAN

1. Primary Decomposition

Exercise 1.0.1. If an ideal \mathfrak{a} has a primary decomposition, then $\operatorname{Spec}(A/\mathfrak{a})$ has only finitely many irreducible components.

Proof. By the First Uniqueness Theorem, the associated primes to $\mathfrak a$ is independent on the decomposition. As $\mathfrak a$ being decomposable implies that $\mathfrak a$ is a finite intersection, the number of associated primes must be finite. Finally, because irreducible components of $\operatorname{Spec}(A/\mathfrak a)$ correspond to minimal primes belonging to $\mathfrak a$ by the remark after Prop 4.6, this implies that there are a finite number of irreducible components.

Exercise 1.0.2. If $\mathfrak{a} = r(\mathfrak{a})$, then \mathfrak{a} has no embedded prime ideals.

Proof. I'm going to assume that \mathfrak{a} is decomposable, because otherwise the definition in the chapter doesn't make sense. Thus decompose \mathfrak{a} as a minimal primary decomposition $\cap^n \mathfrak{q}_i$ and let $r(\mathfrak{q}_i) = \mathfrak{p}_i$. Then $\mathfrak{a} = r(\mathfrak{a}) = r(\cap^n \mathfrak{q}_i) = \cap^n r(\mathfrak{q}_i) = \cap^n \mathfrak{p}_i$. If there were any embedded prime ideals among the \mathfrak{p}_i , then we could eliminate the term and see that $\cap^n r(\mathfrak{q}_i)$ is not minimal, a contradiction. Thus there are no embedded primes.

Exercise 1.0.3. If A is absolutely flat, every primary ideal is maximal.

Proof. Let \mathfrak{q} be a primary ideal. Our strategy will be to show that A/\mathfrak{q} is a field. Then A/\mathfrak{q} is absolutely flat by Exercise 2.28 (homomorphic image).

By Exercise 2.28, all non-units are zero divisors, and because \mathfrak{q} is primary, all zero-divisors are nilpotents. By Exercise 1.10, a ring where every element is either nilpotent or a unit is local. By Exercise 2.28, this implies that A/\mathfrak{q} is a field.

Exercise 1.0.4. In the polynomial ring Z[t], the ideal $\mathfrak{m}=(2,t)$ is maximal and the ideal $\mathfrak{q}=(4,t)$ is \mathfrak{m} -primary, but is not a power of \mathfrak{m} .

Proof. First we can see that \mathfrak{m} is maximal because $\mathbb{Z}[t]/\mathfrak{m} \cong \mathbb{Z}_2$, which is a field. Then, \mathfrak{q} is \mathfrak{m} -primary because

(1) it is a primary ideal for if $ab = 0 \in \mathbf{Z}[t]/\mathfrak{q}$, then because $\mathbf{Z}[t]/\mathfrak{q} \cong \mathbf{Z}_4$, we either have one of the terms equivalent to 4 in \mathbf{Z}_4 or both terms are equivalent to 2. The former case is $ab \in \mathfrak{q} \implies a \in \mathfrak{q}$ and the latter is when $a \notin \mathfrak{q} \implies b^n \in \mathfrak{q}$, with n = 2 here.

1

(2) to check that $\sqrt{\mathfrak{q}} = \mathfrak{m}$, it suffices to show that $(\mathbf{Z}[t]/\mathfrak{q})/\mathfrak{N} \cong \mathbf{Z}[t]/\mathfrak{m}$ with \mathfrak{N} the nilradical of $\mathbf{Z}[t]/\mathfrak{q}$. We can see that the nilradical of $\mathbf{Z}[t]/\mathfrak{q} \cong \mathbf{Z}_4$ is isomorphic to the ideal (2) in \mathbf{Z}_4 , and $(\mathbf{Z}[t]/\mathfrak{q})/\mathfrak{N} \cong \mathbf{Z}_4/(2) \cong \mathbf{Z}_2 \cong \mathbf{Z}[t]/\mathfrak{m}$.

Finally, suppose FTSOC that $(4,t)=(2,t)^n$. If n>2, $4\notin (2,t)$. Thus n=2 as n=1 is obviously eliminated. But $(2,t)^2=(4,2t,t^2)$, which doesn't contain t. \square

Exercise 1.0.5. In the polynomial ring K[x,y,z] where K is a field and x,y,z are independent indeterminates, let $\mathfrak{p}_1=(x,y), \,\mathfrak{p}_2=(x,z), \,\mathfrak{m}=(x,y,z);\,\mathfrak{p}_1$ and \mathfrak{p}_2 are prime, and \mathfrak{m} is maximal. Let $\mathfrak{a}=\mathfrak{p}_1\mathfrak{p}_2$. Show that $\mathfrak{a}=\mathfrak{p}_1\cap\mathfrak{p}_2\cap\mathfrak{m}^2$ is a reduced primary decomposition of \mathfrak{a} . Which components are isolated and which are embedded?

Proof. Obviously $\mathfrak{a} \subseteq \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$ as $\mathfrak{a} = (x^2, xz, yx, yz)$. Now suppose we have $a \in \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$. Then because $a \in \mathfrak{p}_1$, a = xp(x,y,z) + yq(x,y,z). Because $a \in \mathfrak{p}_2$ and $xp(x,y,z) \in \mathfrak{p}_2$ and y is prime in K[x,y,z], we must have that either x|q(x,y,z) or z|q(x,y,z). In either case, x^2 or yz|yq(x,y,z), so that term is in $\mathfrak{p}_1\mathfrak{p}_2$.

Thus all we need to show now is that $xp(x, y, z) \in \mathfrak{p}_1\mathfrak{p}_2$. From the above, we can also conclude that $yq(x, y, z) \in \mathfrak{m}^2$. Thus we know that $xp(x, y, z) \in \mathfrak{m}^2$, hence either x, y, z divides p. In all three cases, this puts xp in $\mathfrak{p}_1\mathfrak{p}_2$. Hence $a \in \mathfrak{a}$.

Because $\sqrt{m^2} = \mathfrak{m}$ as \mathfrak{m} is prime, \mathfrak{m} is an associated prime. As $\mathfrak{p}_1, \mathfrak{p}_2$ are prime, they are associated primes. Clearly $\mathfrak{p}_1, \mathfrak{p}_2$ are minimal and contain \mathfrak{m} , so \mathfrak{p}_i are isolated and \mathfrak{m} is embedded.

Exercise 1.0.6. Let X be an infinite compact Hausdorff space, C(X) the ring of real-valued continuous functions on X (Chapter 1, Exercise 26). Is the zero ideal decomposable in this ring?

Proof. No. Recall that by Exercise 1.16 that every maximal ideal is of the form $\mathfrak{m}_x = \{f \in C(X) | f(x) = 0\}$. First we show that every primary ideal is contained in exactly one maximal ideal. Suppose we have primary $\mathfrak{p} \subseteq \mathfrak{m}_x \cap \mathfrak{m}_y$.

Because X is Hausdorff, there is open disjoint neighborhoods U, V such that $x \in U$ and $y \in V$. By Urysohn's Lemma, we have $f_x, f_y \in C(X)$ such that $f_x(x) = 1, f_x(U^c) = 0, f_y(y) = 1, f_y(V^c) = 0$. Then $f_x f_y = 0$ because f_x is nonzero on U and f_y is non-zero on V, so their product is non-zero on $U \cap V = \emptyset$. Because $f_x(x) = 1$ and $f_y(y) = 1$, neither are in \mathfrak{p} . But this contradicts \mathfrak{p} being primary.

Now suppose FTSOC that $(0) = \cap^n \mathfrak{q}_i$. Let $\mathfrak{q}_i \subseteq \mathfrak{m}_{x_i}$. Now take a point $x \notin \{x_i\}$. By Urysohn's Lemma, there is δ_i that vanishes on x_i and not x. Let f_i be the product of an element in \mathfrak{q}_i that doesn't vanish on x (because $\mathfrak{q}_i \not\subseteq \mathfrak{m}_x$) with δ_i . Then $\prod f_i \in \cap \mathfrak{q}_i$ but isn't 0 as it doesn't vanish on x. This contradicts $(0) = \cap^n \mathfrak{q}_i$.

Exercise 1.0.7. Let A be a ring an let A[x] denote the ring of polynomials in one indeterminate over A. For each ideal \mathfrak{a} of A, let $\mathfrak{a}[x]$ denote the set of all polynomials in A[x] with coefficients in \mathfrak{a} .

- (i) $\mathfrak{a}[x]$ is the extension of \mathfrak{a} to A[x].
- (ii) If \mathfrak{p} is a prime ideal in A, then $\mathfrak{p}[x]$ is a prime ideal in A[x].
- (iii) If \mathfrak{q} is a \mathfrak{p} -primary ideal in A, then $\mathfrak{q}[x]$ is a $\mathfrak{p}[x]$ -primary ideal in A[x].

- (iv) If $\mathfrak{a} = \bigcap_{i=1}^n \mathfrak{q}_i$ is a minimal primary decomposition in A, then $\mathfrak{a}[x] = \bigcap_{i=1}^n \mathfrak{q}_i[x]$ is a minimal primary decomposition in A[x].
- (v) If \mathfrak{p} is a minimal prime ideal of \mathfrak{a} , then $\mathfrak{p}[x]$ is a minimal prime ideal of $\mathfrak{a}[x]$.

Proof. i) The image of \mathfrak{a} in A[x] is \mathfrak{a} . The ideal generated by it includes ax^n for $a \in \mathfrak{a}$ and natural n. Thus all polynomials with coefficients in \mathfrak{a} are in the ideal. Finally, all elements of the ideal generated by \mathfrak{a} in A[x] have coefficients in \mathfrak{a} by definition (finite sums of products of elements of A[x] with elements of \mathfrak{a}).

- ii) We have that $A[x]/\mathfrak{p}[x] \cong (A/\mathfrak{p})[x]$ because each element of $A[x]/\mathfrak{p}[x]$ is a polynomial with coefficients in A/\mathfrak{p} . A polynomial ring over an integral domain $(A/\mathfrak{p})[x]$ is an integral domain.
- iii) Consider $A[x]/\mathfrak{q}[x]$. By the above, this is isomorphic to $(A/\mathfrak{q})[x]$. Now suppose we have a zero divisor in this ring, say fg=0. Then by chapter 1 exercise 2, we have $a \in A/\mathfrak{q}$ such that af=0. Thus every coefficient of f is a zero divisor in A/\mathfrak{q} . Therefore every coefficient is nilpotent, as \mathfrak{q} is primary. By Chapter 1 Exercise 2 again, this makes f nilpotent.

Next we can see that $\mathfrak{p}[x] \subseteq r(\mathfrak{q}[x])$ because $\mathfrak{q} \subseteq \mathfrak{q}[x]$ and $r(\mathfrak{q}[x])$ is an ideal in A[x]. Finally, we can note that $\mathfrak{q}[x] \subseteq \mathfrak{p}[x]$ because $\mathfrak{q} \subseteq \mathfrak{p}$, and as $r(\mathfrak{q}[x])$ is the smallest prime ideal containing $\mathfrak{q}[x]$, it must equal $\mathfrak{p}[x]$.

Lemma 1.1. $\mathfrak{p} \subseteq \mathfrak{q} \iff \mathfrak{p}[x] \subseteq \mathfrak{q}[x]$

Proof. If $\mathfrak{p} \subseteq \mathfrak{q}$, any polynomial with coefficients in \mathfrak{p} have coefficients in \mathfrak{q} . If $\mathfrak{p}[x] \subseteq \mathfrak{q}[x]$, then $\mathfrak{p} \subseteq \mathfrak{p}[x]$ gives us that $\mathfrak{p} \subseteq \mathfrak{q}$ (\mathfrak{q} is the degree zero component).

iv) We can see that $\cap \mathfrak{q}_i[x] = (\cap \mathfrak{q}_i)[x]$ because a polynomial in all $\mathfrak{q}_i[x]$ has coefficients in all \mathfrak{q}_i . By iii), all we need to show is that $\cap \mathfrak{q}_i[x]$ is a minimal primary decomposition. Condition i) is clearly met because the degree 0 components are distinct. The conditions for ii) are satisfied because of the above lemma and the fact that $(\mathfrak{q}_i)[x] = \cap \mathfrak{q}_i[x]$.

v) This is because of iv) and the lemma above.

Exercise 1.0.8. Let k be a field. Show that in the polynomial ring $k[x_1, \ldots, x_n]$ the ideals $\mathfrak{p}_i = (x_1, \ldots, x_i)$ $(1 \le i \le n)$ are prime and all their powers are primary. Use Exercise 7.

Proof. Clearly $k[x_1, \ldots, x_n]/\mathfrak{p}_i$ is prime because this is isomorphic to $k[x_{i+1}, \ldots, x_n]$, an integral domain. Let $\mathfrak{q}_i^m = \mathfrak{p}_i^m \cap k[x_1, \ldots, x_i]$. Then $\mathfrak{p}_i^m = (\mathfrak{q}_i^m)^e = \mathfrak{q}_i^m[x_{i+1}, \ldots, x_n]$. By 7iii), it then suffices to show that \mathfrak{q}_i^m is \mathfrak{q}_i primary (as this will then make $\mathfrak{q}_i^m[x_{i+1}, \ldots, x_n]$ primary). By discussion in the chapter, $r(\mathfrak{q}_i^m) = \mathfrak{q}_i$. So all we need to do is to show that \mathfrak{q}_i^m is primary in $k[x_1, \ldots, x_i]$.

Suppose we have ab = 0 in $k[x_1, \ldots, x_i]/\mathfrak{q}_i^m$. We can see that a or b has no degree 0 component, because otherwise we would have a degree 0 element that can't be cancelled out (\mathfrak{q}_i^m) is a homogenous ideal, so we still get a direct sum decomposition of $k[x_1, \ldots, x_i]/\mathfrak{q}_i^m$. Finally, because all monomials are nilpotent in this ring, this implies that a or b is in the ideal of nilpotents, showing that all non-units are nilpotent. Hence \mathfrak{q}_i^m is primary.

Exercise 1.0.9. In a ring A, let D(A) denote the set of prime ideals \mathfrak{p} which satisfy the following condition: there exists $a \in A$ such that \mathfrak{p} is minimal in the set of prime ideals containing (0:a). Show that $x \in A$ is a zero divisor $\iff x \in \mathfrak{p}$ for some $\mathfrak{p} \in D(A)$.

Let S be a multiplicatively closed subset of A, and identify $\operatorname{Spec}(S^{-1}A)$ with its image in $\operatorname{Spec}(A)$ (Chapter 3, Exercise 21). Show that

$$D(S^{-1}A) = D(A) \cap \operatorname{Spec}(S^{-1}A).$$

If the zero ideal has a primary decomposition, show that D(A) is the set of associated prime ideals of 0.

Proof. Suppose that $x \in \mathfrak{p}$ for some $\mathfrak{p} \in D(A)$. Then because $a\mathfrak{p} \subseteq (0)$, ax = 0 and x is a zero divisor.

If x is a zero divisor: Suppose ax = 0. Then $x \in (0:a)$, and $(0:a) \neq (1)$ because A can be assumed to be non-zero. Thus there is $\mathfrak{p} \supseteq (0:a)$. Because the intersection of a descending chain of prime ideals is prime, we can find a minimal such prime among those containing (0:a).

$$D(S^{-1}A) = D(A) \cap \operatorname{Spec}(S^{-1}A):$$

 \subseteq : The left hand side is the set of minimal prime ideals that contain some $(0:\frac{a}{b})$. By the inclusion respecting bijection from Proposition 3.11, these correspond to minimal prime ideals in A that don't meet S. Because each $S^{-1}\mathfrak{p}$ contains $(0:\frac{a}{b})$, the contraction contains (0:a) for if ac=0 for $c\in A$, then $\frac{a}{b}\cdot\frac{c}{1}=0$ in $S^{-1}A$.

 \supseteq : The right hand side is the set of minimal prime ideal that doesn't contain S by Proposition 3.11 yet contain (0:a) for some a (it is minimal among these primes because the bijection $\operatorname{Spec} S^{-1}A$ to a subset of $\operatorname{Spec} A$ respects inclusions). Thus these biject to minimal prime ideals of S^{-1} , and they contain $(0:\frac{a}{1})$ because $\forall \frac{p}{q} \in S^{-1}\mathfrak{p}, \frac{a}{1}\frac{p}{q} = \frac{ap}{q} = 0$ because $p \in \mathfrak{p}$ and ap = 0.

Finally, assume that there is a primary decomposition, say $0 = \cap \mathfrak{q}_i$ with associated primes $\mathfrak{p}_i = r(0:a_i)$. Take $\mathfrak{p} \in D(A)$ and let \mathfrak{p} be minimal among prime ideals containing (0:a). Then $\mathfrak{p} \supseteq r(0:a)$ because r(0:a) is the intersection of prime ideals containing (0:a). Thus

$$\mathfrak{p} \supseteq r(\cap \mathfrak{q}_i : a) = \cap r(\mathfrak{q}_i : a) \supseteq r(0 : a) \supseteq (0 : a).$$

The latter containment is due to 0 being in all the \mathfrak{q}_i so that $(\mathfrak{q}_i : a) \supseteq (0 : a)$.

We can see that $\bigcap r(\mathfrak{q}_i:a) = \bigcap_{\mathfrak{n}_i \in S \subseteq \{\mathfrak{p}_i\}} \mathfrak{n}_i$ where S is some subset of the associated primes. This is because for each $i, a \in \mathfrak{q}_i$ implies that $(\mathfrak{q}_i:a) = A$, allowing us to remove it from the intersection, and if $a \notin \mathfrak{q}_i$, then because \mathfrak{q}_i is primary, $x \in (\mathfrak{q}_i:a) \implies ax \in \mathfrak{q}_i \implies x^a \in \mathfrak{q}_i$ for some a. Thus by taking the radical of $(\mathfrak{q}_i:a)$, we see that $x \in \mathfrak{p}_i$.

Next, by Proposition 1.11, $\mathfrak{p} \supseteq \mathfrak{p}_i$ for some *i*. The minimality of \mathfrak{p} then implies that $\mathfrak{p} = \mathfrak{p}_i$, an associated prime.

Now conversely, an associated prime $\mathfrak{p}_i = r(0:a_i)$ is minimal among primes containing $(0:a_i)$ by definition of the radical.

Exercise 1.0.10. For any prime ideal \mathfrak{p} in a ring A, let $S_{\mathfrak{p}}(0)$ denote the kernel of the homomorphism $A \to A_{\mathfrak{p}}$. Prove that

- (i) $S_{\mathfrak{p}}(0) \subseteq \mathfrak{p}$.
- (ii) $r(S_{\mathfrak{p}}(0)) = \mathfrak{p} \iff \mathfrak{p}$ is a minimal prime ideal of A.
- (iii) If $\mathfrak{p} \supseteq \mathfrak{p}'$, then $S_{\mathfrak{p}}(0) \subseteq S_{\mathfrak{p}'}(0)$.

(iv) $\cap_{\mathfrak{p}\in D(A)}S_{\mathfrak{p}}(0)=0$, where D(A) is defined in Exercise 9.

- *Proof.* i) Any $a \in S_{\mathfrak{p}}(0)$ has the property that $\frac{a}{1} = 0$, i.e. $\exists s \in A \setminus \mathfrak{p}$ such that as = 0 in A. Mapping this into A/\mathfrak{p} , we have that $as \equiv 0$. Because A/\mathfrak{p} is an integral domain and $s \notin \mathfrak{p}$, $a \equiv 0 \implies a \in \mathfrak{p}$.
- iii) Let $a \in S_{\mathfrak{p}}(0)$. Then there is $s \in A \setminus \mathfrak{p} \subseteq A \setminus \mathfrak{p}'$ such that as = 0 in A. But then $\frac{a}{1} = 0 \in A_{\mathfrak{p}'}$ because $A \setminus \mathfrak{p} \subseteq A \setminus \mathfrak{p}'$, so we can use the same element to prove that it vanishes.
 - ii)

 \Longrightarrow) Suppose we have $\mathfrak{q} \subseteq \mathfrak{p}$. Then by iii) $S_{\mathfrak{p}}(0) \subseteq S_{\mathfrak{q}}(0)$. So we then have

$$S_{\mathfrak{p}}(0) \subseteq S_{\mathfrak{q}}(0) \subseteq \mathfrak{q} \subseteq \mathfrak{p}.$$

But because $r(S_{\mathfrak{p}}(0)) = \mathfrak{p}$ and the radical is the intersection of the prime ideals containing it, this implies that $\mathfrak{p} \subseteq \mathfrak{q}$. Thus $\mathfrak{p} = \mathfrak{q}$ and \mathfrak{p} is minimal.

- \Leftarrow) Because $\mathfrak p$ is minimal, $S \setminus \mathfrak p$ is maximal among multiplicatively closed subsets of A that don't contain 0. Thus for any $x \in \mathfrak p$, $0 \in$ the multiplicatively closed subset spanned by $S \cup \{x\}$. Hence there is $s \in S$ and n such that $sx^n = 0$. Thus $x \in r(0:s)$. But $S_{\mathfrak p}(0) = \bigcup_{s \in A \setminus \mathfrak p} (0:s)$ by Proposition 3.11. So by the remark on page 9, $r(S_{\mathfrak p}(0)) = \bigcup r(0:s) \implies x \in r(S_{\mathfrak p}(0))$. As x was arbitrary, $\mathfrak p \subseteq r(S_{\mathfrak p}(0))$, which by exercise i) gives us that $\mathfrak p \subseteq r(S_{\mathfrak p}(0)) \subseteq r(\mathfrak p) = \mathfrak p$. Thus $r(S_{\mathfrak p}(0)) = \mathfrak p$.
- iv) Obviously 0 is in the intersection. Now suppose we have $x \neq 0$. Then $(0:x) \neq (1)$, so we can take a minimal prime ideal \mathfrak{q} containing (0:x). This is in D(A) by definition. Because $(0:x) \subseteq \mathfrak{q}$, there is no $s \in A \setminus \mathfrak{q}$ such that xs = 0 by definition of (0:x). Thus $x \notin S_{\mathfrak{q}}(0)$. Hence $x \notin \cap S_{\mathfrak{p}}(0)$.

Exercise 1.0.11. If \mathfrak{p} is a minimal prime ideal of a ring A, show that $S_{\mathfrak{p}}(0)$ (Exercise 10) is the smallest \mathfrak{p} -primary ideal.

Let \mathfrak{a} be the intersection of the ideals $S_{\mathfrak{p}}(0)$ as \mathfrak{p} runs through the minimal prime ideals of A. Show that \mathfrak{a} is contained in the nilradical of A.

Suppose that the zero ideal is decomposable. Prove that $\mathfrak{a} = 0$ if and only if every prime ideal of 0 is isolated.

Proof. If $\mathfrak p$ is a minimal prime, then $r(S_{\mathfrak p}(0))=\mathfrak p$ by Exercise 4.10ii. Further, $S_{\mathfrak p}(0)$ is a primary ideal for if we have $ab\in S_{\mathfrak p}(0)$, then there is $c\in A\setminus \mathfrak p$ such that abc=0. As $0\in \mathfrak p$ and $\mathfrak p$ is prime, $c\notin \mathfrak p\Longrightarrow ab\in \mathfrak p$. Thus either a or b are in $\mathfrak p=r(S_{\mathfrak p}(0))$. Finally, $S_{\mathfrak p}(0)$ is the smallest $\mathfrak p$ -primary ideal because given a $\mathfrak p$ -primary ideal I, $I\subseteq r(I)=\mathfrak p$. Thus $A\setminus \mathfrak p\cap I=\emptyset$, so $I_{\mathfrak p}$ is $\mathfrak p_{\mathfrak p}$ -primary by Proposition 4.8, and the contraction of $I_{\mathfrak p}$ is I. But the contraction contains $S_{\mathfrak p}(0)$.

Because $S_{\mathfrak{p}}(0) \subseteq r(S_{\mathfrak{p}}(0))$, we have that $\mathfrak{a} \subseteq r(\mathfrak{a}) = \cap r(S_{\mathfrak{p}_i}(0))$ where the \mathfrak{p}_i range over minimal prime ideals. But by Exercise 4.10ii, $r(S_{\mathfrak{p}_i}(0)) = \mathfrak{p}_i$. Thus $\mathfrak{a} \subseteq \cap \mathfrak{p}_i$. The RHS equals the nilradical because the nilradical is the intersection of all prime ideals, and we can just remove non-minimal ones.

Assume that the zero ideal is decomposable into $\cap \mathfrak{q}_i$ with $r(\mathfrak{q}_i) = \mathfrak{p}_i$.

Assume every prime ideal of 0 is isolated. Then no By Exercise 4.9, D(A) is the set of associated primes of 0, which by assumption are isolated. So by Exercise 4.10iv, $\bigcap_{\mathfrak{q}\in D(A)}S_{\mathfrak{q}}(0)=0$.

Suppose that $\mathfrak{a} = 0$. For each minimal prime \mathfrak{p}^j , let $\{\mathfrak{p}_{j,i}\}$ meet $A \setminus \mathfrak{p}^j$. Let $\mathfrak{q}_{j,i}$ be the corresponding primary components. By Proposition 4.9, $\mathfrak{a} = \cap_j \cap_{j,i} \mathfrak{q}_{j,i}$. As

this contains Then because of Exercise 4.10iii), $\cap S_{\mathfrak{q}}(0) \subseteq \cap S_{\mathfrak{p}}(0)$ where \mathfrak{q} range over associated primes of 0 as each \mathfrak{q} contains a minimal prime ideal. Thus $\cap S_{\mathfrak{q}}(0) = 0$.

Exercise 1.0.12. Let A be a ring, S a multiplicatively closed subset of A. For any ideal \mathfrak{a} , let $S(\mathfrak{a})$ denote the contraction of $S^{-1}\mathfrak{a}$ in A. The ideal $S(\mathfrak{a})$ is called the saturation of \mathfrak{a} with respect to S. Prove that

- (i) $S(\mathfrak{a}) \cap S(\mathfrak{b}) = S(\mathfrak{a} \cap \mathfrak{b}).$
- (ii) $S(r(\mathfrak{a})) = r(S(\mathfrak{a})).$
- (iii) $S(\mathfrak{a}) = (1) \iff \mathfrak{a} \text{ meets } S.$
- (iv) $S_1(S_2(\mathfrak{a})) = (S_1S_2)(\mathfrak{a}).$

If \mathfrak{a} has a primary decomposition, prove that the set of ideals $S(\mathfrak{a})$ (where S runs through all multiplicatively closed subsets of A) is finite.

Proof. i) Because of Exercise 1.18, $S(\mathfrak{a}) \cap S(\mathfrak{b}) = \mathfrak{a}^c \cap \mathfrak{b}^c = (\mathfrak{a} \cap \mathfrak{b})^c = S(\mathfrak{a} \cap \mathfrak{b})$.

- ii) Because of Exercise 1.18, $S(r(\mathfrak{a})) = r(\mathfrak{a})^c = r(\mathfrak{a}^c) = r(S(\mathfrak{a})).$
- iii) Proposition 3.11.
- iv) By Proposition 3.11ii), $S_2(\mathfrak{a}) = \mathfrak{a}^{ec} = (S_2^{-1}\mathfrak{a})^c = \cup_{s_2 \in S_2} (\mathfrak{a} : s_2)$. Thus $S_1(S_2(\mathfrak{a})) = \cup_{s_1 \in S_1} \cup_{s_2 \in S_2} ((\mathfrak{a} : s_2) : s_1)$. By Exercise 1.12, this equals $\cup_{s_1 \in S_1} \cup_{s_2 \in S_2} (\mathfrak{a} : s_2 s_1)$. This then equals $\cup_{s \in S_1 S_2} (\mathfrak{a} : s) = ((S_1 S_2)^{-1}\mathfrak{a})^c = S_1 S_2(\mathfrak{a})$.

Now suppose that \mathfrak{a} has a decomposition $\cap \mathfrak{q}_i$. Then by Proposition 4.9, $S(\mathfrak{a})$ is an intersection of a finite subset of the \mathfrak{q}_i 's. There are only finitely many possibilities.

Exercise 1.0.13. Let A be a ring and \mathfrak{p} a prime ideal of A. Then *nth symbolic power of* \mathfrak{p} is defined to be the ideal (in the notation of Exercise 12)

$$\mathfrak{p}^{(n)} = S_{\mathfrak{p}}(\mathfrak{p}^n)$$

where $S_{\mathfrak{p}} = A \setminus \mathfrak{p}$. Show that

- (i) $\mathfrak{p}^{(n)}$ is a \mathfrak{p} -primary ideal;
- (ii) if \mathfrak{p}^n has a primary decomposition, then $\mathfrak{p}^{(n)}$ is its \mathfrak{p} -primary component;
- (iii) If $\mathfrak{p}^{(m)}\mathfrak{p}^{(n)}$ has a primary decomposition, then $\mathfrak{p}^{(m+n)}$ is its \mathfrak{p} -primary component
- (iv) $\mathfrak{p}^{(n)} = \mathfrak{p}^n \iff \mathfrak{p}^{(n)}$ is \mathfrak{p} -primary.

Proof. i) Suppose we have $ab \in \mathfrak{p}^{(n)}$ and $a \notin \mathfrak{p}^{(n)}$. Then by Proposition 3.11, $S_{\mathfrak{p}}(\mathfrak{p}^n) = \bigcup_{s \in A \setminus \mathfrak{p}} (\mathfrak{p}^n : s)$. Now let s be such that $ab \in (\mathfrak{p}^n : s)$. Then $abs \in \mathfrak{p}^n$.

If $bs \in \mathfrak{p}$, then because $s \notin \mathfrak{p}$, $b \in \mathfrak{p} \implies b^n \in \mathfrak{p}^{(n)}$, the requirement for $\mathfrak{p}^{(n)}$ to be primary. If $bs \notin \mathfrak{p}$, then $a \in (\mathfrak{p}^n : bs) \subseteq \bigcup_{s \in A \setminus \mathfrak{p}} (\mathfrak{p}^n : s)$.

Finally, because $r((S_{\mathfrak{p}}\mathfrak{p}^n)^c) = r(S_{\mathfrak{p}}\mathfrak{p}^n)^c = (S_{\mathfrak{p}}\mathfrak{p})^c$ because of Proposition 4.8. Then by Proposition 3.11 this equals \mathfrak{p} .

Exercise 1.0.14. Let \mathfrak{a} be a decomposable ideal in a ring A and let \mathfrak{p} be a maximal element of the set of ideals $(\mathfrak{a}:x)$, where $x\in A$ and $x\notin \mathfrak{a}$. Show that \mathfrak{p} is a prime ideal belonging to \mathfrak{a} .

Proof. First we can see that \mathfrak{p} is prime: suppose we have $ab \in \mathfrak{p} = (\mathfrak{a} : x)$. Because \mathfrak{a} is decomposable, $(\mathfrak{a} : x) = (\cap \mathfrak{q}_i : x) = \cap (\mathfrak{q}_i : x)$. If $a \notin \mathfrak{p}$, then $(\mathfrak{p} : a) \supseteq \mathfrak{p}$. But then $(\mathfrak{p} : a) = (\cap (\mathfrak{q}_i : x) : a) = \cap ((\mathfrak{q}_i : x) : a) = \cap (\mathfrak{q}_i : ax) = (\cap \mathfrak{q}_i : ax) = (\mathfrak{a} : ax)$ by Exercise 1.12 in the chapter.

If $ax \notin \mathfrak{a}$, then because \mathfrak{p} is maximal $(\mathfrak{p}:a) = \mathfrak{p}$, and $b \in (\mathfrak{p}:a)$. If $ax \in \mathfrak{a}$, then by definition, $a \in (\mathfrak{a}:x)$.

Finally, \mathfrak{p} is a prime ideal belonging to \mathfrak{a} because it is of the right form for the Uniqueness Theorem: $\mathfrak{p} = (\mathfrak{a} : x) = r(\mathfrak{a} : x)$.

Exercise 1.0.15. Let \mathfrak{a} be a decomposable ideal in a ring A, let Σ be an isolated set of prime ideals belonging to \mathfrak{a} , and let \mathfrak{q}_{Σ} be the intersection of the corresponding primary components. Let f be an element of A such that, for each prime ideal \mathfrak{p} belonging to \mathfrak{a} , we have $f \in \mathfrak{p} \iff \mathfrak{p} \notin \Sigma$, and let S_f be the set of all powers of f. Show that $\mathfrak{q}_{\Sigma} = S_f(\mathfrak{a}) = (\mathfrak{a}:f^n)$ for all large n.

Proof. First we can show that $S_f(\mathfrak{a}) = (\mathfrak{a}:f^n)$ We use Proposition 3.11 to get that $\mathfrak{a}^{ec} = \bigcup_n (\mathfrak{a}:f^n)$. Clearly $(\mathfrak{a}:f^n) \subseteq (\mathfrak{a}:f^{n+1})$. Thus if we show that $(\mathfrak{a}:f^n)$ stabilizes for some large enough n, we have shown this part. Now

Take some $q \in \mathfrak{q}_{\Sigma}$. Then $q \in \mathfrak{q}_i$ for some isolated component

Exercise 1.0.16. If A is a ring in which every ideal has a primary decomposition, show that every ring of fractions $S^{-1}A$ has the same property.

Proof. Just Proposition 4.9 and Proposition 3.11.

Exercise 1.0.17. Let A be a ring with the following property.

(L1) For every ideal $\mathfrak{a} \neq (1)$ in A and every prime ideal \mathfrak{p} , there exists $x \notin \mathfrak{p}$ such that $S_{\mathfrak{p}}(\mathfrak{a}) = (\mathfrak{a} : x)$, where $S_{\mathfrak{p}} = A \setminus \mathfrak{p}$.

Then every ideal in A is an intersection of (possibly infinitely many) primary ideals. [Let \mathfrak{a} be an ideal $\neq (1)$ in A, and let \mathfrak{p}_1 be a minimal element of the set of prime ideals containing \mathfrak{a} . Then $\mathfrak{q}_1 = S_{\mathfrak{p}_1}(\mathfrak{a})$ is \mathfrak{p}_1 -primary (by Exercise 11), and $\mathfrak{q}_1 = (\mathfrak{a} : x)$ for some $x \notin \mathfrak{p}_1$. Show that $\mathfrak{a} = \mathfrak{q}_1 \cap (\mathfrak{a} + ((x)))$.

Now let \mathfrak{a}_1 be a maximal element of the set of ideals $\mathfrak{b} \supseteq \mathfrak{a}$ such that $\mathfrak{q}_1 \cap \mathfrak{b} = \mathfrak{a}$, and choose \mathfrak{a}_1 so that $x \in \mathfrak{a}_1$, and therefore $\mathfrak{a}_1 \not\subseteq \mathfrak{p}_1$. Repeat the construction starting with \mathfrak{a}_1 and so on. At the *n*th stage we have $\mathfrak{a} = \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_n \cap \mathfrak{a}_n$ where the \mathfrak{q}_1 are primary ideals, \mathfrak{a}_n is maximal among the ideals \mathfrak{b} containing $\mathfrak{a}_{n-1} = \mathfrak{a}_n \cap \mathfrak{q}_n$ such that $\mathfrak{a} = \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_n \cap \mathfrak{b}$, and $\mathfrak{a}_n \not\subseteq \mathfrak{p}_n$. If at any stage we have $\mathfrak{a}_n = (1)$, the process stops, and \mathfrak{a} is a finite intersection of primary ideals. If not, continue by transfinite induction, observing that each \mathfrak{a}_n strictly contains \mathfrak{a}_{n-1} .

 \square

2. Integral Dependence and Valuations

Exercise 2.0.1. Let $f: A \to B$ be an integral homomorphism of rings. Show that $f^*: \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ is a *closed* mapping, i.e. that it maps closed sets to closed sets. (This is a geometrical equivalent of (5.10).)

Proof. We want to show that for all ideals $\mathfrak{a} \subseteq B$, $f^*(V(\mathfrak{a})) = V(\mathfrak{b})$ for some ideal $\mathfrak{b} \subseteq A$. I propose that we let $\mathfrak{b} = f^{-1}(\mathfrak{a})$ (which is an ideal because preimages take ideals to ideals).

- \subseteq : For $\mathfrak{p} \in V(\mathfrak{a})$, $\mathfrak{a} \subseteq \mathfrak{p}$. Thus $\mathfrak{b} = f^{-1}(\mathfrak{a}) \subseteq f^{-1}(\mathfrak{p}) = f^*(\mathfrak{p}) \implies f^*(\mathfrak{p}) \in V(\mathfrak{b})$.
- \supseteq : Take some $\mathfrak{p} \in V(\mathfrak{b})$. We can first note that because $\mathfrak{b} = f^{-1}(\mathfrak{a})$ and $0 \in \mathfrak{a}$, $\ker f \subseteq \mathfrak{b} \subseteq \mathfrak{p}$. Then $f(\mathfrak{p})$ is prime as an ideal of f(A), because if $f(a)f(b) \in f(\mathfrak{p})$, then $f(ab) \in f(\mathfrak{p})$ implies that there is some $c \in \ker f$ such that $ab c \in \mathfrak{p}$. Because $\ker f \subseteq \mathfrak{p}$, $ab \in \mathfrak{p} \implies$ either a or b is in \mathfrak{p} , showing that $f(\mathfrak{p})$ is prie.

Then by Theorem 5.10, as B is integral over f(A), $\exists \mathfrak{q} \in \operatorname{Spec} B$ such that $\mathfrak{q} \cap f(A) = f(\mathfrak{p})$. Finally, $f^{-1}(\mathfrak{q}) = \mathfrak{p}$ shows that this map is surjective.

Exercise 2.0.2. Let A be a subring of a ring B such that B is integral over A, and let $f: A \to \Omega$ be a homomorphism of A into an algebraically closed field Ω . Show that f can be extended to a homomorphism of B into Ω .

Proof. We can extend f by mapping $x \in B$ as follows. Suppose x satisfies the minimal monic A relation

$$x^n + a_1 x^{n-1} + \dots + a_n = 0.$$

Exercise 2.0.3. Let $f: B \to B'$ be a homomorphism of A-algebras, and let C be an A-algebra. If f is integral, prove that $f \otimes 1: B \otimes_A C \to B' \otimes_A C$ is integral. (This includes (5.6) ii) as a special case.)

Proof. It suffices to show that pure tensors are integral over $\operatorname{im}(f \otimes 1)$ because they generate $B' \otimes_A C$ and sums and products of integral elements are integral (i.e. Corollary 5.3). Now suppose we have $b' \otimes c$ and

$$(b')^n + a_1(b')^{n-1} + \dots + a_n = 0$$
 $a_i \in f(A)$

because f is integral.

Then we will show that

$$(b'\otimes c)^n + a_1(1\otimes c)(b'\otimes c)^{n-1} + \cdots + a_n(1\otimes c^n)(1\otimes 1)$$

will be an integral equation for $b' \otimes c$ over $f(B \otimes_A C)$. First, each $a_i(1 \otimes c^i)$ is in $f(B \otimes_A C)$ as $a_i \in f(B)$. Then we expand:

$$(b' \otimes c)^{n} + a_{1}(1 \otimes c)(b' \otimes c)^{n-1} + \dots + a_{n}(1 \otimes c^{n})(1 \otimes 1)$$

$$= ((b')^{n} \otimes c^{n}) + (a_{1}(b')^{n-1} \otimes c^{n-1}) + \dots + (a_{n} \otimes c^{n})$$

$$= ((b')^{n} + a_{1}(b')^{n-1} + \dots + a_{n}) \otimes c^{n}$$

$$= 0 \otimes c^{n} = 0$$

Exercise 2.0.4. Let A be a subring of B such that B is integral over A. Let \mathfrak{n} be a maximal ideal of B and let $\mathfrak{m} = \mathfrak{n} \cap A$ be the corresponding maximal ideal of A (see (5.8)). Is $B_{\mathfrak{n}}$ necessarily integral over $A_{\mathfrak{m}}$?

Proof.

Exercise 2.0.5. Let $A \subseteq B$ be rings, B integral over A.

- (i) If $x \in A$ is a unit in B then it is a unit of A.
- (ii) The Jacobson radical of A is the contraction of the Jacobson radical of B.

Proof. i) Suppose we have xb = 1 with $b \in B$. Then we have some integral relation of lowest degree

$$b^n + a_1 b^{n-1} + \dots + a_n = 0$$

with $a_i \in A$. By multiplying it by x, we get

$$b^{n-1} + a_1 b^{n-2} + \dots + a_{n-1} + a_n x = 0$$

But this is an integral relation of lower degree, implying that b is the root of a polynomial over A with degree 1. But this just implies that $b \in A$.

ii) The contraction of the Jacobson radical of B is $(\bigcap_{\mathfrak{m} \in \operatorname{Specm} B} \mathfrak{m}) \cap A$. By Corollary 5.8, $\mathfrak{m} \in \operatorname{Specm} B \iff \mathfrak{m} \cap A$ is Maximal. Thus $(\bigcap_{\mathfrak{m} \in \operatorname{Specm} B} \mathfrak{m}) \cap A = \bigcap_{\mathfrak{n} \in \operatorname{Specm} A} \mathfrak{n}$, which is the Jacobson radical of A.

Exercise 2.0.6. Let B_1, \ldots, B_n be integral A-algebras. Show that $\prod_{i=1}^n B_i$ is an integral A-algebra.

Proof. Suppose we have $(b_1, b_2, b_n) \in \prod B_i$ with

$$f_i(b_i) = b_i^{n_i} + a_{1i}^{n_i-i} + \dots + a_{n_ii} = 0.$$

Then let $f(x) = \prod f_i(x)$. This is a polynomial over A, and by considering it as a polynomial in $\prod B_i$, we can see that (b_1, b_2, \ldots, b_n) is a root of it: the ring operation is done coordinate wise, so $f((b_1, b_2, \ldots, b_n)) = (f(b_1), f(b_2), \ldots, f(b_n)) = (0, 0, \ldots, 0)$.

Exercise 2.0.7. Let A be a subring of a ring B, such that the set $B \setminus A$ is closed under multiplication. Show that A is integrally closed in B.

Proof. Suppose we have an integral relation for $b \in B \setminus A$ of least degree,

$$b^n + a_1 b^{n-1} + \dots + a_n = 0.$$

Then I claim that we get a contradiction from this:

$$b(b^{n-1} + a_1b^{n-2} + \dots + a_{n-1}) + a_n = 0.$$

Suppose that $b^{n-1} + a_1b^{n-2} + \cdots + a_{n-1} \in A$. Then by subtracting the element of A, we get a lower degree integral relation, a contradiction. Thus $b^{n-1} + a_1b^{n-2} + \cdots + a_{n-1} \in B \setminus A$. Because $B \setminus A$ is multiplicatively closed, $b(b^{n-1} + a_1b^{n-2} + \cdots + a_{n-1}) \in B \setminus A$. But $-a_n$ is in A, a contradiction.

Exercise 2.0.8.

- (i) Let A be a subring of an integral domain B, and let C be the integral closure of A in B. Let f, g be monic polynomials in B[x] such that $fg \in C[x]$. Then f, g are in C[x].
- (ii) Prove the same result without assuming that B (or A) is an integral domain.

Proof. ii) We use induction on the degree of fg.

First we show it for fg of degree 2. Then f(x) = x + a and g(x) = x + b for some $a, b \in B$. If $fg \in C$, then $f(x)g(x) = x^2 + (a + b)x + ab$.

Using the quadratic formula shows us that -a, -b are roots of this polynomial, so -a, -b are integral over A[a+b,ab]. Because $a+b,ab \in C$, A[a+b,ab] is finitely generated as an A-module. As -a, -b are integral over A[a+b,ab], A[a+b,ab,-a,-b] is finitely generated as an A-module. Hence $-a, -b \in C$. Thus $f,g \in C[x]$.

Finally, assume it is true up to fg of degree n-1. Let $f(x)=f_1(x)x+b_1$ and $g(x)=g_1(x)x+b_2$. Note that if $fg\in C[x]$, $(b_1g_1(x)+b_2f_1(x))x+b_1b_2\in C[x]$, being the last two terms of fg. Thus by subtracting off $(b_1g_1(x)+b_2f_1(x))x+b_1b_2$, the result is also in C[x]. Thus $f_1(x)g_1(x)x^2\in C[x]$, so $f_1(x)g_1(x)\in C[x]$. By our induction hypothesis, $f_1,g_1\in C[x]$. Thus $f_1(x)x+b_1,g_1(x)x+b_2$ are in C[x]. \square

Exercise 2.0.9. Let A be a subring of a ring B and let C be the integral closure of A in B. Prove that C[x] is the integral closure of A[x] in B[x].

Proof. We use induction on the degree to first show that C[x] is integral over A[x]. Obviously degree 0 terms of C[x] are integral over A[x]. We can also show that x is integral over A[x], since it is the root of y - x.

Now assume that all terms of C[x] up to degree n-1 are integral over A[x]. Say we have $f = c_0 x^n + \cdots + c_n$. By induction hypothesis, $c_1 x^{n-1} + \cdots + c_n$ is integral over A[x]. Thus if we show that $f - (c_1 x^{n-1} + \cdots + c_n) = c_0 x^n$ is integral over A[x], we are done. Finally, because x and c_0 are integral over A[x] and products of integral elements are integral, $c_0 x^n$ is integral.

Now FTSOC suppose we have $f = b_0 x^n + \cdots + b_n \in B[x] \setminus C[x]$ integral over A[x]. We can pick one with the least number of non-zero coefficients. Then any integral relation of f will produce an integral relation for b_n by focusing on the degree 0 component. Thus $b_n \in C$. Hence $f - b_n$ is also integral over A[x] and in $B[x] \setminus C[x]$. But $f - b_n$ has fewer non-zero coefficients than f, contradicting our assumption, allowing us to conclude that C[x] is the integral closure of A[x]. \square