EIE3105: Introduction to Computing and AVR/ARM (Chapter 1 and 2)

Dr. Lawrence Cheung Semester 1, 2021/22

Topics

- Internal organization of computers
- Memory
- CPU (Central Processing Unit)
- Connecting memory to CPU
- Connecting I/Os (Inputs/Outputs) to CPU
- How computers work
- How Instruction decoder works
- Von Neumann vs. Harvard architecture
- Microcontrollers vs. Microprocessors
- AVR features and members

Internal organization of computers

- Memory
- CPU
- I/O
 - Input
 - Example: Keyboard, Mouse, Sensor
 - Output
 - Example: LCD, printer, hands of a robot

Memory

- Everything that can store, retain, and recall information
 - Example: hard disk, a piece of paper, etc.

4

Memory characteristics

- Capacity
 - The number of bits that a memory can store.
 - Example: 128 Kbits, 256 Mbits
- Organization
 - How the locations are organized?
 - Example: a 128 x 4 memory has 128 locations, 4 bits each
- Access time
 - How long it takes to get data from memory?

ROM

- Read-only memory
- Do not lose its content when the power is turned off.

Types

- Mask ROM
- PROM (Programmable ROM)
- EPROM (Erasable PROM)
- UV-EPROM (Ultra-Violet Erasable PROM)
- EEPROM (Electronic Erasable PROM)
- Flash EPROM

- Mask ROM
 - Programmed by the IC manufacturer
- PROM (Programmable ROM)
 - OTP (One-Time Programmable)
 - You can program it only once

UV-EPROM

- You can shine ultraviolet (UV) radiation to erase it.
- Erasing takes up to 20 minutes.
- The entire contents of ROM are erased.

Table	0-5:	Some	UV-EP	ROM	Chips
--------------	------	------	-------	-----	-------

Part #	Capacity	Org.	Access	Pins	V_{PP}
2716	16K	$2K \times 8$	450 ns	24	25 V
2732	32K	$4K \times 8$	450 ns	24	25 V
2732A-20	32K	$4K \times 8$	200 ns	24	21 V
27C32-1	32K	$4K \times 8$	450 ns	24	12.5 V CMOS
2764-20	64K	$8K \times 8$	200 ns	28	21 V
2764A-20	64K	$8K \times 8$	200 ns	28	12.5 V
27C64-12	64K	$8K \times 8$	120 ns	28	12.5 V CMOS

EEPROM

- Erase electrically
- Erase instantly
- Each byte can be erased separately.

Part No.	Capacity	Org.	Speed	Pins	V_{PP}
2816A-25	16K	2K × 8	250 ns	24	5 V
2864A	64K	$8K \times 8$	250 ns	28	5 V
28C64A-25	64K	$8K \times 8$	250 ns	28	5 V CMOS
28C256-15	256K	$32K \times 8$	150 ns	28	5 V
28C256-25	256K	32K × 8	250 ns	28	5 V CMOS

9

- Flash EPROM
 - Flash memory
 - Erase in a flash
 - The entire device is erased at once.
 - Unlike EEPROM, there is no byte erasure option.

Part No.	Capacity	Org.	Speed	Pins	V_{PP}
28F256-20	256K	$32K \times 8$	200 ns	32	12 V CMOS
28F010-15	1024K	$128K \times 8$	150 ns	32	12 V CMOS
28F020-15	2048K	256K × 8	150 ns	32	12 V CMOS

RAM

- Random access memory
- Loss data when the power is turned off.

Types

- SRAM (Static RAM)
- DRAM (Dynamic RAM)
- NV-RAM (Non-volatile RAM)

SRAM

- Made of flip-flops (Transistors)
- Advantages:
 - Fast
 - No need for refreshing
- Disadvantages:
 - High power consumption
 - Expensive

- DRAM
 - Made of capacitors
 - Advantages:
 - Less power consumption
 - Cheap
 - High capacity
 - Disadvantages:
 - Slow
 - Refresh needed

- NV-RAM
 - Made of SRAM, Battery, control circuitry
 - Advantages:
 - Very fast
 - Infinite program/erase cycle
 - Non-volatile
 - Disadvantage:
 - Expensive

CPU

- Tasks:
 - It executes instructions.
 - It recalls the instructions one after another and execute them.

Connecting memory to CPU

Memory pinout

Connecting memory to CPU

17

Connecting memory to CPU

18

Connecting I/Os to CPU

CPU should have lots

Connecting I/Os to CPU using bus

Connecting I/Os and memory to CPU

24

Memory Mapped I/O

Solution

- 1. Write the address range in binary
- 3. Using a NAND, design a logic circuit whose output activates when the fixed address is given to it.

Another example for address decoder

 Design an address decoder for address of 300H to 3FFH.

Inside the CPU

- PC (Program Counter)
- Instruction decoder
- ALU (Arithmetic Logic Unit)
- Registers

Opcode 100 How Instruction decoder works

Operand	register (x)
00001	В
00010	С
00011	D

Opcode 110

Operand	Register $(x_H) \leftarrow \text{Register } (x_L)$
00001	A ← B
00010	A ← C
00011	$A \leftarrow D$
00100	B ← A
00101	C ← A
00110	D←A

Operation Code	Meaning
000	A ← x
001	A ← [x]
010	A ← A – register (x)
011	$A \leftarrow A + x$
100	A ← A + register (x)
101	$A \leftarrow A - x$
110	Register $(x_H) \leftarrow \text{Register } (x_L)$
111	[x] ← A

Von Neumann vs. Harvard architecture

Harvard architecture

Von Neumann architecture

General purpose microprocessors

Microcontrollers

- General purpose microprocessors
 - CPU for Computers
 - No RAM, ROM, I/O on CPU chip itself
 - Example: Intel's x86, Motorola's 680
 - CPU is stand-alone, RAM, ROM, I/O, timer are separated.
 - Designer can decide on the amount of ROM, RAM and I/O ports.
 - General-purpose
 - Expensive

Microcontrollers

- A smaller computer
- On-chip RAM, ROM, I/O ports...
- Example: Motorola's 6811, Intel's 8051, Zilog's Z8 and PIC 16X
- CPU, RAM, ROM, I/O and timer are all on a single chip.
- Fix amount of on-chip ROM, RAM, I/O ports
- Single-purpose
- Cheap
- For applications in which cost, power and space are critical.

- Embedded System
 - An embedded system means the processor is embedded into that application.
 - An embedded product uses a microprocessor or microcontroller to do one task only.
 - In an embedded system, there is only one application software that is typically burned into ROM.

- Three Criteria in Choosing a Microcontroller:
- Meeting the computing needs of the task efficiently and cost effectively
 - Speed, the amount of ROM and RAM, the number of I/O ports and timers, size, packaging, power consumption
 - Easy to upgrade
 - Cost per unit

- 2. Availability of software development tools
 - Assemblers, debuggers, C compilers, emulator, simulator, technical support
- 3. Wide availability and reliable sources of the microcontrollers

Microcontrollers vs. Microprocessors

Some embedded products using microcontrollers

Home	Office				
Appliances	Telephones				
Intercom	Computers				
Telephones	Security systems				
Security systems	Fax machine				
Garage door openers	Microwave				
Answering machines	Copier				
Fax machines	55 Part 7400 March 114 - 115				
Home computers	Laser printer				
TVs	Color printer				
Cable TV tuner	Paging				
VCR	Auto				
Camcorder	Trip computer				
Remote controls	Engine control				
Video games	Air bag				
Cellular phones	ABS				
Musical instruments	Instrumentation				
Sewing machines	Security system				
Lighting control					
Paging	Transmission control				
Camera	Entertainment				
Pinball machines	Climate control				
Toys	Cellular phone				
Exercise equipment	Keyless entry				

Class Exercise 1

 In each of following embedded products, what is the most important factor (the power consumption, the ROM size and the number of interrupt service pins) in choosing a microcontroller?

Class Exercise 1 (Your work / Answer)

A mobile electronic device product uses to drive of a number of external devices

The power consumption

A mobile electronic device uses battery

The ROM size

A mobile electronic device uses a complicated real-time operating system

The number of interrupt service pins

39

- 8-bit microcontrollers
 - AVR (Advanced and Virtual RISC or Alf and Vegard RISC)
 - RISC = Reduced Instruction Set Computing
 - PIC (Peripheral Interface Controller)
 - HCS12 (Freescale semiconductor)
 - 8051 (Intel)
- 32-bit microcontrollers
 - ARM (Advanced RISC Machine)
 - PIC32

40

- Classic AVR
 - Example: AT90S2313, AT90S4433
- Mega
 - Example: ATmega8, ATmega32, ATmega128
- Tiny
 - Example: ATtiny13, ATtiny25
- Special Purpose AVR
 - Example: AT90PWM216,AT90USB1287

43

Table 1-3: So	me Memb	ers of the	Classic Fam	ily			
Part Num	Code	Data	Data	I/O pins	ADC	Timers	Pin numbers
	ROM	RAM	EEPROM	pins			& Package
AT90S2313	2K	128	128	15	0	2	SOIC20,PDIP20
AT90S2323	2K	128	128	3	0	1	SOIC8,PDIP8
AT90S4433	4K	128	256	20	6	2	TQFP32,PDIP28

Notes:

- 1. All ROM, RAM, and EEPROM memories are in bytes.
- Data RAM (General-Purpose RAM) is the amount of RAM available for data manipulation (scratch pad) in addition to the Registers space.

Table 1-4: So	me Meml	ers of the	Mega Famil	у			
Part Num	Code	Data	Data	I/O pins	ADC	Timers	Pin numbers
	ROM	RAM	EEPROM	pins			& Package
ATmega8	8K	1K	0.5K	23	8	3	TQFP32,PDIP28
ATmega16	16K	1K	0.5K	32	8	3	TQFP44,PDIP40
ATmega32	32K	2K	1K	32	8	3	TQFP44,PDIP40
ATmega64	64K	4K	2K	54	8	4	TQFP64,MLF64
ATmega1280	128K	8K	4K	86	16	6	TQFP100,CBGA

Notes:

- All ROM, RAM, and EEPROM memories are in bytes.
- 2. Data RAM (General-Purpose RAM) is the amount of RAM available for data manipulation (scratch pad) in addition to the Registers space.
- 3. All the above chips have USART for serial data transfer.

Table 1-5: Some Members of the Tiny Family								
Part Num	Code ROM	Data RAM	Data EEPROM	I/O pins pins	ADC	Timers	Pin numbers & Package	
ATtiny13	1K	64	64	6	4	1	SOIC8,PDIP8	
ATtiny25	2K	128	128	6	4	2	SOIC8,PDIP8	
ATtiny44	4K	256	256	12	8	2	SOIC14,PDIP14	
ATtiny84	8K	512	512	12	8	2	SOIC14,PDIP14	

Table 1-6: Some Members of the Special purpose Family							
Code	Data	Data	$\mathbf{Max}\mathbf{I}/0$) Special	Timer	s Pin numbers	
ROM	RAM	EEPROM	pins	Capabilities		& Package	
128K	4K	4K	53	CAN	4	LQFP64	
128K	8K	4K	48	USB Host	4	TQFP64	
16K	1K	0.5K	19 7	Advanced PWM	1 2	SOIC24	
16K	1K	0.5K	54	LCD	3 '	TQFP64,MLF64	
	Code ROM 128K 128K 16K	Code Data ROM RAM 128K 4K 128K 8K 16K 1K	Code Data Data ROM RAM EEPROM 128K 4K 4K 128K 8K 4K 16K 1K 0.5K	Code Data Data Max I/O ROM RAM EEPROM pins 128K 4K 4K 53 128K 8K 4K 48 16K 1K 0.5K 19	Code Data Data Max I/O Special ROM RAM EEPROM pins Capabilities 128K 4K 4K 53 CAN 128K 8K 4K 48 USB Host 16K 1K 0.5K 19 Advanced PWIv	Code Data Data Max I/O Special Timer ROM RAM EEPROM pins Capabilities 128K 4K 4K 53 CAN 4 128K 8K 4K 48 USB Host 4 16K 1K 0.5K 19 Advanced PWM 2	

AVR in textbook and lab.

- AVR in textbook: ATmega32
 - 8-bit AVR
 - SRAM: 2 KB
 - EEPROM: 1 KB
 - Flash memory: 32 KB
 - Clock speed: 16 MHz
 - 4 PWM channels

48

AVR in textbook and lab.

- AVR in laboratory exercise: Atmega328p
 - 8-bit AVR (same)
 - SRAM: 2 KB (same)
 - EEPROM: 1 KB (same)
 - Flash memory: 32 KB (same)
 - Clock speed: 20 MHz (different)
 - 6 PWM channels (different)
 - P: picoPower (power saving)

ARM in textbook and lab.

- ARM Cortex-M3
- Model No.: STM32F103RB
 - STMicroeletronics
 - 32: 32 bits
 - F1: ATM Cortex-M3
 - 03: Performance
 - LQFP64: IC package

Reference Readings

- Chapter 1 and 2 The AVR Microcontroller and Embedded Systems: Using Assembly and C, M. A. Mazidi, S. Naimi, and S. Naimi, Pearson, 2014.
- Chapter 2 The Definitive Guide To The ARM Cortex-M3, Joseph Yiu, 2nd edition, Newnes, 2010.

End