Summary

February 11, 2016

Contents

0.1	Input	Graphs	3
	0.1.1	propanone	3
	0.1.2	propenol	3
	0.1.3	butenol	3
	0.1.4	butanone	4
	0.1.5	2-pentenol	4
	0.1.6	2-pentanone	5
	0.1.7	3-pentenol	7
	0.1.8	3-pentanone	5
	0.1.9	3-methylbutenol	6
	0.1.10	3-methylbutanone	6
	0.1.11	methanal	7
	0.1.12	ethanal	7
	0.1.13	propanal	7
0.2	Input	Rules	8
	0.2.1	2.2.1 Aldol-Reaktion (saeurekatalytisch) main	8
	0.2.2	2.2.1 Aldol-Reaktion (saeurekatalytisch) Keto-Enol-Tautomerisation	6
	0.2.3	1.1. ChlorierungAlkane	6
	0.2.4	1.2.1 Arndt-Eistert-Synthese	10
	0.2.5	1.2.2 cannizzaro-Reaktion	11
	0.2.6	1.2.3. Claisen-Kondensation	12
	0.2.7	1.2.4. Grignard-Reaktion 1	13
	0.2.8	1.2.4. Grignard-Reaktion 2	14
	0.2.9	1.2.4. Grignard-Reaktion 1	16
	0.2.10	1.2.4. Grignard-Reaktion 4	17
	0.2.11	1.2.5 Knoevenagel-Reaktion Esterspaltung	18
		1.2.5 Knoevenagel-Reaktion hin	19
	0.2.13	1.2.5 Knoevenagel-Reaktion rueck	20
	0.2.14	1.2.6 Prileschajew-Oxidation 1	21
	0.2.15	br-naexchange	22
	0.2.16	1.2.7 Wurz-Reaktion c-chondformation	23
	0.2.17	1.2.8 Wurz-Fittig-Synthese	24
	0.2.18	1.3.1 Kerhalogenierung von Aromaten	25
	0.2.19	2.1.1 Aldol-Reaktion (basekatalysiert)	26
	0.2.20	2.1.2 Mannich Reaktion	27
	0.2.21	2.2.1 Aldol-Reaktion (saeurekatalytisch) main	28
	0.2.22	2.2.1 Aldol-Reaktion (saeurekatalytisch) Keto-Enol-Tautomerisation	29
		2.2.2 Baeyer-Villiger-Oxidation	29
	0.2.24	2.2.3 cyanhydrinbildung aldhyd	30
	0.2.25	2.2.3 cyanhydrinbildung ketone	31
	0.2.26	2.2.4 Perkin-Reaktion	32

0.2.27	2.3.1 AcyloinKondensation	33
0.2.28	2.3.2. Pinakol-Kopplung	35
0.2.29	3.1.1 Lossen-Abbau	35
0.2.30	3.2 Bimolekulare Eliminierung, E2	36
0.2.31	4.1 Wagner-Meerwein-Umlagerung	37
0.2.32	4.2. Pinakol Umlagerung 1	38
0.2.33	4.2. Pinakol Umlagerung 2	39
	8 8	40
0.2.35	4.3. Fries-Umlagerung Para 2	41
	8 8	42
		43
		44
0.2.39	4.4. Keto-Enol-Tautomerie 2	45
	0 0	46
		46
	8 8	47
0.2.43	4.7. Claisen-Umlagerung 1	48
	8 8	49
		50
	8 8	51
	8 8	52
	0 0	54
	v v	55
	8	57
0.2.51		58
	71 / 6 2	59
0.2.53	DG NonHyper, dg 0	60

0.1 Input Graphs

0.1.1 propanone

File: out/000_g_0.10100000

File: out/000_g_0.11110100

0.1.2 propenol

File: out/001_g_1.10100000

File: out/001_g_1.11110100

0.1.3 butenol

File: out/002_g_2.10100000

File: out/002_g_2.11110100

0.1.4 butanone

File: out/003_g_3.10100000

CH₃

H₃C

File: out/003_g_3.11110100

0.1.5 2-pentenol

File: out/004_g_4.10100000

CH₃

OH

File: out/004_g_4.11110100

0.1.6 2-pentanone

File: out/005_g_5.10100000

CH₃ CH₃

File: out/005_g_5.11110100

0.1.7 3-pentenol

File: out/006_g_6.10100000

CH₃

CH₃

File: out/006_g_6.11110100

0.1.8 3-pentanone

File: out/007_g_7.10100000

File: out/007_g_7.11110100

0.1.9 3-methylbutenol

File: out/008_g_8.10100000

CH₃

OH

CH₃

File: out/008_g_8.11110100

$0.1.10 \quad {\tt 3-methylbutanone}$

File: out/009_g_9.10100000

File: out/009_g_9.11110100

0.1.11 methanal

File: out/010_g_10.11110100

0.1.12 ethanal

File: out/011_g_11.10100000 H₃C O

File: out/011_g_11.11110100

0.1.13 propanal

File: out/012_g_12.10100000

File: out/012_g_12.11110100

0.2 Input Rules

0.2.1 2.2.1 Aldol-Reaktion (saeurekatalytisch) main

Files: out/014_r_0.10100000.{L, K, R}

Files: out/015_r_0.11100100.{L, K, R}

File: out/016_r_0_combined

0.2.2 2.2.1 Aldol-Reaktion (saeurekatalytisch) Keto-Enol-Tautomerisation

Files: $out/019_r_1.10100000.\{L, K, R\}$

Files: out/020_r_1.11100100.{L, K, R}

File: out/021_r_1_combined

0.2.3 1.1. Chlorierung Alkane

Files: out/024_r_2.10100000.{L, K, R}

Files: $out/025_r_2.11100100.\{L, K, R\}$

File: out/026_r_2_combined

0.2.4 1.2.1 Arndt-Eistert-Synthese

Files: $out/029_r_3.10100000.\{L, K, R\}$

Files: $out/030_r_3.11100100.\{L, K, R\}$

File: out/031_r_3_combined

0.2.5 1.2.2 cannizzaro-Reaktion

Files: out/034_r_4.10100000.{L, K, R}

Files: out/035_r_4.11100100.{L, K, R}

File: out/036_r_4_combined

0.2.6 1.2.3. Claisen-Kondensation

Page 12 af 60

Files: $out/040_r_5.11100100.\{L, K, R\}$

 $File: \ out/041_r_5_combined$

0.2.7 1.2.4. Grignard-Reaktion 1

Files: out/044_r_6.10100000.{L, K, R}

Files: out/045_r_6.11100100.{L, K, R}

File: out/046_r_6_combined

0.2.8 1.2.4. Grignard-Reaktion 2

Page 14 af 60

Files: $out/049_r_7.10100000.\{L, K, R\}$

Files: out/050_r_7.11100100.{L, K, R}

File: out/051_r_7_combined

0.2.9 1.2.4. Grignard-Reaktion 1

Files: out/054_r_8.10100000.{L, K, R}

Files: out/055_r_8.11100100.{L, K, R}

File: $out/056_r_8_combined$

0.2.10 1.2.4. Grignard-Reaktion 4

Files: $out/059_r_9.10100000.\{L, K, R\}$

Files: $out/060_r_9.11100100.\{L, K, R\}$

File: out/061_r_9_combined

0.2.11 1.2.5 Knoevenagel-Reaktion Esterspaltung

Files: out/064_r_10.10100000.{L, K, R}

Files: out/065_r_10.11100100.{L, K, R}

File: out/066_r_10_combined

0.2.12 1.2.5 Knoevenagel-Reaktion hin

Files: out/070_r_11.11100100.{L, K, R}

File: out/071_r_11_combined

0.2.13 1.2.5 Knoevenagel-Reaktion rueck

Files: $out/074_r_12.10100000.\{L, K, R\}$

Files: out/075_r_12.11100100.{L, K, R}

File: out/076_r_12_combined

0.2.14 1.2.6 Prileschajew-Oxidation 1

Files: out/079_r_13.10100000.{L, K, R}

Files: out/080_r_13.11100100.{L, K, R}

File: $out/081_r_13_combined$

0.2.15 br-naexchange

Files: out/084_r_14.10100000.{L, K, R}

Files: out/085_r_14.11100100.{L, K, R}

File: $out/086_r_14_combined$

0.2.16 1.2.7 Wurz-Reaktion c-cbondformation

Files: out/089_r_15.10100000.{L, K, R}

Files: $out/090_r_15.11100100.\{L, K, R\}$

File: $out/091_r_15_combined$

0.2.17 1.2.8 Wurz-Fittig-Synthese

Files: out/094_r_16.10100000.{L, K, R}

Files: out/095_r_16.11100100.{L, K, R}

File: $out/096_r_16_combined$

0.2.18 1.3.1 Kerhalogenierung von Aromaten

Files: $out/099_r_17.10100000.\{L, K, R\}$

Files: out/ $100_r_17.11100100.\{L, K, R\}$

File: out/101_r_17_combined

0.2.19 2.1.1 Aldol-Reaktion (basekatalysiert)

Files: out/104_r_ $18.10100000.\{L, K, R\}$

Files: $out/105_r_18.11100100.\{L, K, R\}$

File: out/106_r_18_combined

0.2.20 2.1.2 Mannich Reaktion

Files: out/109_r_19.10100000.{L, K, R}

Files: out/110_r_19.11100100.{L, K, R}

File: $out/111_r_19_combined$

0.2.21 2.2.1 Aldol-Reaktion (saeurekatalytisch) main

Files: $out/114_r_{20.10100000.\{L, K, R\}}$

Files: out/115_r_20.11100100.{L, K, R}

File: out/116_r_20_combined

0.2.22 2.2.1 Aldol-Reaktion (saeurekatalytisch) Keto-Enol-Tautomerisation

Files: out/119_r_21.10100000.{L, K, R}

Files: out/120_r_21.11100100.{L, K, R}

File: out/121_r_21_combined

0.2.23 2.2.2 Baeyer-Villiger-Oxidation

Files: $out/124_r_22.10100000.\{L, K, R\}$

Files: out/125_r_22.11100100.{L, K, R}

File: out/126_r_22_combined

0.2.24 2.2.3 cyanhydrinbildung aldhyd

Files: out/129_r_23.10100000.{L, K, R}

Files: out/130_r_23.11100100.{L, K, R}

File: $out/131_r_23_combined$

0.2.25 2.2.3 cyanhydrinbildung ketone

Files: out/134_r_24.10100000.{L, K, R}

Files: out/135_r_24.11100100.{L, K, R}

File: out/136_r_24_combined

0.2.26 2.2.4 Perkin-Reaktion

Files: out/139_r_25.10100000.{L, K, R}

Files: out/ $140_r_25.11100100.\{L, K, R\}$

File: $out/141_r_25_combined$

0.2.27 2.3.1 AcyloinKondensation

Files: out/144_r_26.10100000.{L, K, R}

Files: out/145_r_26.11100100.{L, K, R}

File: out/146_r_26_combined

0.2.28 2.3.2. Pinakol-Kopplung

Files: $out/149_r_27.10100000.\{L, K, R\}$

Files: out/150_r_27.11100100.{L, K, R}

File: $out/151_r_27_combined$

0.2.29 3.1.1 Lossen-Abbau

Files: out/154_r_28.10100000.{L, K, R}

Files: out/155_r_28.11100100.{L, K, R}

File: out/156_r_28_combined

0.2.30 3.2 Bimolekulare Eliminierung, E2

Files: out/160_r_29.11100100.{L, K, R}

File: out/161_r_29_combined

${\bf 0.2.31}\quad {\bf 4.1~Wagner-Meerwein-Umlagerung}$

Files: out/164_r_30.10100000.{L, K, R}

Files: out/165_r_30.11100100.{L, K, R}

File: out/166_r_30_combined

0.2.32 4.2. Pinakol Umlagerung 1

Files: out/169_r_31.10100000.{L, K, R}

Files: out/170_r_31.11100100.{L, K, R}

File: out/171_r_31_combined

0.2.33 4.2. Pinakol Umlagerung 2

Files: out/174_r_32.10100000.{L, K, R}

Files: out/175_r_32.11100100.{L, K, R}

File: $out/176_r_32_combined$

0.2.34 4.3. Fries-Umlagerung Para 1

Files: out/179_r_33.10100000.{L, K, R}

Files: out/180_r_33.11100100.{L, K, R}

File: out/181_r_33_combined

0.2.35 4.3. Fries-Umlagerung Para 2

Files: out/184_r_34.10100000.{L, K, R}

Files: out/185_r_34.11100100.{L, K, R}

File: $out/186_r_34_combined$

0.2.36 4.3. Fries-Umlagerung Ortho 3

Files: out/189_r_35.10100000.{L, K, R}

Files: $out/190_r_35.11100100.\{L, K, R\}$

File: out/191_r_35_combined

0.2.37 4.3. Fries-Umlagerung Ortho 4

Files: out/194_r_36.10100000.{L, K, R}

Files: out/195_r_36.11100100.{L, K, R}

File: out/196_r_36_combined

0.2.38 4.4. Keto-Enol-Tautomerie 1

Files: out/200_r_37.11100100.{L, K, R}

File: $out/201_r_37_combined$

0.2.39 4.4. Keto-Enol-Tautomerie 2

Files: $out/204_r_38.10100000.\{L, K, R\}$

Files: out/205_r_38.11100100.{L, K, R}

File: out/206_r_38_combined

0.2.40 4.5. Beckmann-Umlagerung 1

Files: out/209_r_39.10100000.{L, K, R}

Files: out/210_r_39.11100100.{L, K, \overline{R} }

File: out/211_r_39_combined

0.2.41 4.5. Beckmann-Umlagerung 2

Page 46 af 60

Files: $out/214_r_40.10100000.\{L, K, R\}$

Files: out/215_r_40.11100100.{L, K, R}

File: out/216_r_40_combined

0.2.42 4.6 Benzilsaureumlagerung

Files: out/219_r_41.10100000.{L, K, R}

Files: $out/220_r_41.11100100.\{L, K, R\}$

File: out/221_r_41_combined

0.2.43 4.7. Claisen-Umlagerung 1

Files: $out/224_r_42.10100000.\{L, K, R\}$

Files: $out/225_r_42.11100100.\{L, K, R\}$

File: $out/226_r_42_combined$

0.2.44 4.7. Claisen-Umlagerung 2

Files: $out/229_r_43.10100000.\{L, K, R\}$

Files: out/230_r_43.11100100.{L, K, R}

 $File: \ out/231_r_43_combined$

0.2.45 4.7. Claisen-Umlagerung 3

Files: out/234_r_44.10100000.{L, K, R}

Files: out/235_r_44.11100100.{L, K, R}

File: out/236_r_44_combined

0.2.46 4.7. Claisen-Umlagerung 4

Files: out/239_r_45.10100000.{L, K, R}

Files: out/240_r_45.11100100.{L, K, R}

File: out/241_r_45_combined

0.2.47 4.7. Claisen-Umlagerung 5

Files: out/244_r_46.10100000.{L, K, R}

Files: out/245_r_46.11100100.{L, K, R}

File: out/246_r_46_combined

0.2.48 4.7. Claisen-Umlagerung 6

Files: out/249_r_47.10100000.{L, K, R}

Files: out/250_r_47.11100100.{L, K, R}

, — — —

${\bf 0.2.49}\quad {\bf 5.1}\ {\bf Erlenmaeyer\text{-}Ploechl\text{-}Azlacton\text{-}Synthese}$

Files: $out/254_r_48.10100000.\{L, K, R\}$

Files: out/255_r_48.11100100.{L, K, R}

File: out/256_r_48_combined

0.2.50 Wittig1

Files: out/259_r_49.10100000.{L, K, R}

Files: out/260_r_49.11100100.{L, K, R}

File: $out/261_r_49_combined$

0.2.51 5.3 Wolff-Kishner-Rule

Files: out/264_r_50.10100000.{L, K, R}

Files: out/265_r_50.11100100.{L, K, R}

File: $out/266_r_50_combined$

$0.2.52 \quad \mathrm{DG\ Hyper},\, \mathrm{dg_0}$

0.2.53 DG NonHyper, dg_0

File: out/333_dgNonHyper_0