Przygotowujemy aplikacje do zarządzania załadunkiem kontenerów. Kontenery mogą być później transportowane za pomocą różnego rodzaju pojazdów - statków, pociągów, ciężarówek itp.

Projektowany przez nas system będzie się zajmować załadunkiem kontenerów na kontenerowiec - statek wyposażony w specjalne prowadnice pozwalające na przewóz kontenerów.

Kontenery mogą być różnych typów w zależności od ładunku. Banany powinny być transportowane w kontenerach chłodniczych; mleko powinno być transportowane w kontenerach na płyny; hel powinien być transportowany w kontenerach na gaz. Wszystkie te kontenery mają pewne cechy wspólne:

Wszystkie kontenery mają:

- Masę ładunku (w kilogramach)
- Wysokość (w centymetrach)
- Waga własna (waga samego kontenera, w kilogramach)
- Głębokość (w centymetrach)
- Numer seryjny
 - Format numeru to KON-C-1
 - Pierwszy człon numery to zawsze "KON"
 - Drugi człon reprezentuje rodzaj kontenera
 - Trzeci człon to liczba. Liczby powinny być unikalne. Nie powinno być możliwości powstania dwóch kontenerów o tym samym numerze. Numery powinny być generowane przez system.
- Maksymalna ładowność danego kontenera w kilogramach

Wszystkie kontenery powinny pozwolić na:

- Opróżnienie ładunku
- Załadowanie kontenera daną masą ładunku

 Jeśli masa ładunku jest większa niż pojemność danego kontenera powinniśmy wyrzucić błąd OverfillException

Kontenery na płyny (L)

Kontenery na płyny pozwalają na przewożenie ładunku niebezpiecznego (np. paliwo) i ładunku zwykłego (np. mleko).

- Kontenery tego typu powinny implementować interfejs IHazardNotifier
 - Interfejs ten pozwala na wysłanie notyfikacji tekstowej w trakcie zajścia niebezpiecznej sytuacji wraz z informacją o numerze kontenera.
- W momencie uruchomienia metody ładującej towary do kontenera powinniśmy:
 - Jeśli kontener przechowuje niebezpieczny ładunek możemy go wypełnić jedynie do 50% pojemności
 - W innym wypadku możemy go wypełnić do 90% jego pojemności
 - Jeśli naruszymy dowolną z opisanych reguł powinniśmy zgłosić informacje o próbie wykonania niebezpiecznej operacji.

Kontenery na gaz (G)

Kontenery przechowujące gaz przechowują dodatkową informacje na temat ciśnienia (w atmosferach).

- W momencie kiedy opróżniamy kontener na gaz pozostawiamy
 5% jego ładunku wewnątrz kontenera.
- Powinien zaimplementować interfejs IHazardNotifier. Metoda powinna pozwolić na informowanie o zajściu niebezpiecznego zdarzenia wraz z numerem seryjnym danego kontenera.

 Jeśli masa ładunku przekroczy dopuszczalną ładowność chcemy zwrócić błąd.

Kontener chłodniczy (C)

Kontener chłodniczy zawiera informacje na temat:

- Rodzaj produktu, który może być przechowywany w danym kontenerze.
- Temperatura utrzymywana w kontenerze.
- Kontener może przechowywać wyłącznie produkty tego samego typu.
- Temperatury kontenera nie może być niższa niż temperatura wymagana przez dany rodzaj produktu.

Example of possible products and temperatures.

Product	Temperature
Bananas	13,3
Chocolate	18
Fish	2
Meat	-15
Ice cream	-18
Frozen pizza	-30
Cheese	7,2
Sausages	5
Butter	20,5
Eggs	19

Nasza aplikacja powinna pozwolić na przygotowanie danego kontenerowca do rejsu. O samym kontenerowcu chcielibyśmy pamiętać:

- Wszystkie kontenery jakie dany statek transportuje
- Maksymalna prędkość jaką kontenerowiec może rozwijać (w węzłach)
- Maksymalna liczba kontenerów, które mogą być przewożone

 Maksymalna waga wszystkich kontenerów jakie mogą być transportowane poprzez statek (w tonach)

Chcemy, aby aplikacja wspierała następujące operacje:

- Stworzenie kontenera danego typu
- Załadowanie ładunku do danego kontenera
- Załadowanie kontenera na statek
- Załadowanie listy kontenerów na statek
- Usunięcie kontenera ze statku
- Rozładowanie kontenera
- Zastąpienie kontenera na statku o danym numerze innym kontenerem
- Możliwość przeniesienie kontenera między dwoma statkami
- Wypisanie informacji o danym kontenerze
- Wypisanie informacji o danym statku i jego ładunku

Następnie w metodzie Main spróbuj wykorzystać przygotowane przez siebie klasy i metody. Sprawdź czy jesteś w stanie wykonać wszystkie opisane w tekście akcje.

Rozszerzenie zadania - symulacja działania aplikacji

Zadanie dla chętnych. Spróbuj przygotować interfejs konsolowy, który pozwoliłby na realizację wszystkich funkcji. Przykład działania interfejsu został pokazany poniżej.

Użytkownik uruchamia aplikacje. System wyświetla:

Lista kontenerowców: Brak	
Lista kontenerów:	

```
Brak
Możliwe akcje:
1. Dodaj kontenerowiec
```

Użytkownik wybiera 1. W tym momencie system prosi po kolei o podanie wszystkich niezbędnych danych. Po zakończeniu system wyświetla ponownie ekran główny.

```
Lista kontenerowców:
Statek 1 (speed=10, maxContainerNum=100,
maxWeight=40000)

Lista kontenerów:
Brak

Możliwe akcje:
1. Dodaj kontenerowiec
2. Usun kontenerowiec
3. Dodaj kontener
```

Po dodaniu kontener pojawia się na liście kontenerów. Następnie użytkownik ma możliwość umieszczenie kontener'a na statku, usunięcie danego kontenera....