Algorithmique de l'IA Classification

Ahmed CHADLI Fares GRABA Rémi WATRIGANT Sonia AKROUNE Yasser KADDOUR

20 mai 2010

- Introduction
- 2 Naïve Bayes
- **3** C4.5
- 4 L'implémentation
- 6 Résultats

- Introduction
 - Définitions
 - Critères d'évaluation
- 2 Naïve Bayes
- 3 C4.5
- 4 L'implémentation
- 6 Résultats

Définitions

- $E = E_1 \times ... \times E_n$ ensemble des instances.
- $A \subset E$ ensemble d'apprentissage.
- $T \subset E$ ensemble de test.
- $C = \{c_1, ..., c_k\}$ ensemble des classes.
- $f: E \longrightarrow C$ la fonction d'affectation.

Un classifieur prend en entrée :

- $\{(x, f(x)) : x \in A\}$
- T

Et doit ensuite créer une fonction

$$\hat{f}: T \longrightarrow C$$

Critères d'évaluation

Une instance $x \in \mathcal{T}$ est bien classée ssi $\hat{f}(x) = f(x)$. On mesure alors :

- Pourcentage d'instances de T bien classées (resp. mal classées).
- Pour une classe $c \in C$:
 - Faux positifs : $FP = |\{x \in T : \hat{f}(x) = c \land f(x) \neq c\}|$. Valeur optimale : 0.
 - Faux négatifs : $FN = |\{x \in T : \hat{f}(x) \neq c \land f(x) = c\}|$. Valeur optimale : 0.
 - Vrais positifs : $TP = |\{x \in T : \hat{f}(x) = f(x) = c\}|$. Valeur optimale : |T|.
 - Precision : $\frac{TP}{TP+FP}$. Valeur optimale : 1.
 - Recall : $\frac{TP}{TP+FN}$. Valeur optimale : 1.
 - F-Mesure : $2 * \frac{precision*recall}{precision+recall}$. Valeur optimale : 1.

- Introduction
- Naïve Bayes
 - Théorème de Bayes
 - Naïve Bayes
- 3 C4.5
- 4 L'implémentation
- 6 Résultats

Théorème de Bayes

A et B deux évènements.

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Théorème de Bayes

Indépendance des évènements

 $A_1, A_2, ... A_n$ des évènements. Si $A_1, A_2, ... A_n$ sont conditionnellement indépendants alors

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1).P(A_2)...P(A_n)$$

Théorème de Bayes

Généralisation du théorème de Bayes

Si $A_1, A_2, ...A_n$ sont conditionnellement indépendants alors

$$P(B|A_1 \cap A_2 \cap ... \cap A_n) = \frac{P(A_1|B).P(A_2|B)...P(A_n|B).P(B)}{P(A_1).P(A_2)...P(A_N)}$$

Naïve Bayes

- On calcule dans l'ensemble d'apprentissage A, pour chaque classe $c_i \in C$ la probabilité $P(c = c_i)$
- Pour chaque valeur $e_{j,k}$ de chaque ensemble E_j et pour chaque classe c_i on calcule la probabilité $P(e_i = e_{j,k} | c = c_i)$
- Pour chaque instance $x = (x_1, x_2, ...x_n)$ de T:

$$\hat{f}(x) = \underset{c_i}{\text{arg max}} \{ P(c = c_i | e_1 = x_1 \cap e_2 = x_2 \cap ... \cap e_n = x_n) \}$$

avec la formule de Bayes généralisée et en supposant que les e_j sont conditionnellement indépendants.

- Introduction
- 2 Naïve Bayes
- 3 C4.5
- 4 L'implémentation
- 6 Résultats

L'algorithme C4.5

En bref:

- Algorithme dû à Ross Quinlan.
- Extension de son précédent algorithme ID3.
- Méthode générant un arbre de décision.

Pour construire un noeud de l'arbre :

- Choix d'un attribut qui sépare le mieux l'ensemble d'apprentissage.
- Critère : Entropie relative de chaque attribut.
- L'attribut qui a l'entropie relative la plus forte est choisi pour séparer l'ensemble d'instances.

Points forts de C4.5:

- Peut traiter des attributs discrets comme continus.
- Peut traiter des valeurs manquantes.
- Arbres plus petits grâce à un élagage.

- Introduction
- 2 Naïve Bayes
- 3 C4.5
- 4 L'implémentation
- 6 Résultats

L'implémentation

- Langage Java
- Utilise des fichiers .data en entrée
- Utilisation de la librairie Weka pour l'implémentation de C4.5

3 exécutables :

- 2 en ligne de commande :
 - 1 pour classer un fichier data avec C4.5 ou Naivebayes
 - 1 pour classer plusieurs fichiers .data. Retourne un tableau LaTeX.
- 1 interface graphique.

- 1 Introduction
- 2 Naïve Bayes
- 3 C4.5
- 4 L'implémentation
- 6 Résultats

Résultats

Dataset	inst.	nature	att.	class.	Classification error		
					C 4.5	Naive Bayes	EWD + Naive Bayes
balance-scale	625	num	5	3	24.057%	11.321%	11.321%
cancer	699	num	11	2	5.063%	2.101%	2.101%
car	1728	mix	7	4	10.562%	13.946%	13.946 %
cmc	1473	num	10	3	46.2%	48.104%	49.501%
glass	214	num	11	6	1.389%	50.685%	9.589%
hayes-roth	132	num	6	3	24.444%	46.667%	44.444%
iris	150	num	5	3	3.922%	5.882%	0.0%
kr-vs-kp	3196	nom	37	2	0.645%	14.627%	14.627%
krkopt	28056	mix	7	18	36.125%	64.975%	64.975%
nursery	12960	mix	9	3	24.013%	25.987%	25.987%
tic-tac-toe	958	nom	10	2	15.385%	30.982%	30.982%
transfusion	748	num	5	2	26.772%	27.559%	25.197%
wine	178	num	14	3	16.667%	29.508%	1.639%
Z00	101	mix	18	7	14.706%	11.765%	11.765 %
Mean error					17.853	27.436	21,862%