myproblemset

September 10, 2017

2016 A6 Find the smallest constant C such that for every real polynomial P(x) of degree 3 that has a root in the interval [0, 1],

$$\int_0^1 |P(x)| \ dx \le C \max_{x \in [0,1]} |P(x)|.$$

(1.07, 0.0, 0.02)

2016 A5 Suppose that G is a finite group generated by the two elements g and h, where the order of g is odd. Show that every element of G can be written in the form

$$g^{m_1}h^{n_1}g^{m_2}h^{n_2}\cdots g^{m_r}h^{n_r}$$

with $1 \le r \le |G|$ and $m_1, n_1, m_2, n_2, \dots, m_r, n_r \in \{-1, 1\}$. (Here |G| is the number of elements of G.) (17.65, 0.18, 0.18)

2016 B5 Find all functions f from the interval $(1, \infty)$ to $(1, \infty)$ with the following property: if $x, y \in (1, \infty)$ and $x^2 \le y \le x^3$, then $(f(x))^2 \le f(y) \le (f(x))^3$. (20.32,0.58,0.11)

2015 B6 For each positive integer k, let A(k) be the number of odd divisors of k in the interval $[1, \sqrt{2k})$. Evaluate

$$\sum_{k=1}^{\infty} (-1)^{k-1} \frac{A(k)}{k}.$$

(1.51, 2.0, 0.01)

2007 A-1 Find all values of α for which the curves $y = \alpha x^2 + \alpha x + \frac{1}{24}$ and $x = \alpha y^2 + \alpha y + \frac{1}{24}$ are tangent to each other. (31.55, 1.02, 1.45)

- 2009 B–2 A game involves jumping to the right on the real number line. If a and b are real numbers and b > a, the cost of jumping from a to b is $b^3 ab^2$. For what real numbers c can one travel from 0 to 1 in a finite number of jumps with total cost exactly c? (32.5,0.05,1.03)
- 2000 A-1 Let A be a positive real number. What are the possible values of $\sum_{j=0}^{\infty} x_j^2$, given that x_0, x_1, \ldots are positive numbers for which $\sum_{j=0}^{\infty} x_j = A$?

 (38.46,0.25,0.68)
- 2002 A-5 Define a sequence by $a_0 = 1$, together with the rules $a_{2n+1} = a_n$ and $a_{2n+2} = a_n + a_{n+1}$ for each integer $n \ge 0$. Prove that every positive rational number appears in the set

$$\left\{\frac{a_{n-1}}{a_n}: n \ge 1\right\} = \left\{\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{3}{2}, \dots\right\}.$$

(39.05, 1.1, 0.4)

2003 B-1 Do there exist polynomials a(x), b(x), c(y), d(y) such that

$$1 + xy + x^2y^2 = a(x)c(y) + b(x)d(y)$$

holds identically?

(35.82, 0.19, 0.26)