

ADJOINTS OF LINEAR TRANSFORMATIONS

Definition

Suppose $T \in \mathcal{L}(V, W)$. In other words, T is a linear map from a vector space V to a vector space W where V and W are over the same field of scalars.

An adjoint of T is a function $S: W \to V$ satisfying

$$\langle Tv,w\rangle = \langle v,Sw\rangle \quad \text{for every } v \in V \text{ and every } w \in W$$

It is not hard to see that there always exists an adjoint, and that this adjoint is unique. Thus, we speak of *the adjoint* of T.

Notation

We denote the adjoint of T by T^* . This notation is meant to remind of complex conjugation, for reasons which will become apparent shortly.

Examples

Space to the plane. Define $T: \mathbb{R}^3 \to \mathbb{R}^2$ by

$$T(x_1, x_2, x_3) = (x_2 + 3x_3, 2x_1)$$

We claim that the adjoint of T is $T^*: \mathbb{R}^2 \to \mathbb{R}^3$ defined by

$$T^*(y_1, y_2) = (2y_2, y_1, 3y_1)$$

Properties

Proposition 1 (Adjoint is Linear). Suppose $T \in \mathcal{L}(V, W)$. The adjoint of T is linear.

Proposition 2 (Adjoint properties). Suppose V and W are finite dimensional inner product spaces over a field \mathbf{F} , which is \mathbf{R} or \mathbf{C} . Suppose $S, T \in \mathcal{L}(V, W)$. Then

1.
$$(S+T)^* = S^* + T^*$$

2.
$$(\lambda T)^* = \lambda^* T^*$$
 for all $\lambda \in \mathbf{F}$

3.
$$(T^*)^* = T$$

4.
$$I^* = I$$

Proposition 3. Suppose V, W, U are finite dimensional inner product spaces over \mathbb{R} or \mathbb{C} . For all $T \in \mathcal{L}(V, W)$ and $S \in \mathcal{L}(W, U)$,

$$(ST)^* = T^*S^*$$

