Nucleotide Sequence Alignment Part 2

Some slides contributed by Daniel Lopresti

Major stages of sequence alignment

- Parsing (read the data)
- Scoring
 - Fill the values of the m x n grid based on alignment score
 - Looking up the score on the substitution matrix
 - Different kinds of substitution matrices
 - Gap penalties
- Backtracking
 - Following the chain of maximum scores backwards to determine the actual alignment of nucleotides.
- Output (print the result)

On scoring

- Not every kind of alignment is allowed
 - These are okay they have biological explanations

- Gap to gap is not okay
 - Exists in theory, but has no biological relevance

 This also makes no sense in the context of the grid

How deletions happen

- Chromosomal crossovers
 - Matching regions of a homologous chromosome break and rejoin during gamete cell division
 - Unequal crossovers result in deletions

 Crossovers in an inversion can frequently lead to deletions, because of curvature

How Insertions can happen

- Retroviral activity
 - Retroviral Integrases (like HIV integrase, shown below) help insert Viral DNA into host DNA, so that the host creates viral proteins

- Slippage in DNA polymerase
 - In replication, polymerase can accidentally add extra base(s)

The basis for scoring

	-	A	С	G	Т
-		-1	-1	-1	-1
Α	-1	1	-4	-4	-4
С	-1	-4	1	-4	-4
G	-1	-4	-4	1	-4
Т	-1	-4	-4	-4	1

Scoring without gap penalties

		G	G	Α	Т	С
	0				•	•
С					•	•
G	•	•				
С	•	•	•	•		•

Note: there are several orders to score in

- All of these orders are the same
- Scores depend on scores to the left, up, and upper left
- Be careful how you do this to avoid confusion (e.g. bugs)
- This is how I am going to run the example

The (very) important first square

An important generalization of the method

 You can think of each box on the grid as a node, connected to predecessors and successors.

$$s_x = \max_{\text{of}} \begin{cases} s_y + \text{weight of edge } (y, x) \text{ where} \\ y \in \text{Predecessors}(x) \end{cases}$$

- It is very easy to write bugs where you add values from the wrong predecessors or edges.
- Not every node has the same # or "kind" of edge

Step 2: Guanine is aligned with a gap

Step 3: A second G is aligned with a gap

Step 4: Adenine is aligned with a gap

Step 5: Thymine is aligned with a gap

Step 6: Cytosine is aligned with a gap

Step 7: Cytosine is aligned with a gap

Step 8: Take the max of 3 possibilities

Step 9: Take the max of 3 possibilities

Lehigh University | CSE 308 Bioinformatics: Issues and Algorithms | Lecture 19

Step 9: Take the max of 3 possibilities

Step 10: Take the max of 3 possibilities

Step 11: Take the max of 3 possibilities

Step 12: Take the max of 3 possibilities

Step 13: Take the max of 3 possibilities

Lehigh University | CSE 308 Bioinformatics: Issues and Algorithms | Lecture 19

Step 14: Take the max of 3 possibilities

Step 15: Take the max of 3 possibilities

Step 16: Finishing off the grid

		G	G	Α	<u> </u>	C
	O	-1	-2	-3	-4	-5
С	-1	-2	-3	-4	-5	-3
G	-2	O	-1	-2	-3	-4
С	-3	-1	-2	-3	-4	-2

What exactly we've done

 We have scored the grid based on substitution rules, and a linear gap penalty

 Later in this lecture we will see how to score based on an <u>affine</u> gap penalty

Backtracking Step 1: Begin with highest val

_		G	G	Α	Т	С
	O	-1	-2	-3	-4	-5
С	-1	-2	-3	-4	-5	-3
G	-2	0	-1	-2	-3	-4
С	-3	-1	-2	-3	-4	-2

Backtracking Step 2: Find the path we took

Backtracking Step 2: Find the path we took

Backtracking Step 3: Find the path we took

Aga	ain only one		G	Α	Т	C
possibl	e maximal e point	entry 1	-2	-3	-4	-5
С	-1	-2	-3	-4	-5	-3
G	-2	0	-1 -1	-2	-3	-4
С	-3	-1	-2	-3	-4	-2

Backtracking Step 4: Find the path we took

Backtracking Step 5: Find the path we took

Backtracking Step 6: Find the path we took

Backtracking Result

Next time: Affine Gap Scoring

- So far we have talked about linear gap penalties.
 - For each gap, you add a certain score (-1)
- Affine Gap penalties have a gap opening penalty as well as a gap extension penalty
 - Opening penality > extension penalty
- Affine Gap penalties encourage high scoring sequences to avoid lots of little gaps

• For next time, <u>carefully read</u> Jones and Pevsner Chapter 6.9. It's complicated.

Questions