SOLUSI KUIS MATDIS 4

1. Di labtek V terdapat 25 telephone. Apakah mungkin menghubungkan telephone-telephone tersebut sehingga setiap telephone terkoneksi dengan 7 telephone lainnya? (Taufiq)

Jawaban

Jika setiap telephone harus terkoneksi dengan 7 telephone lainnya, maka Setiap node memiliki derajat 7.

Total derajat semua simpul = $25 \times 7 = 175$ (25 node, dengan masing-masing node memiliki derajat 7)

Padahal, berdasarkan lemma jabat tangan

Lemma Jabat Tangan. Jumlah derajat semua simpul pada suatu graf adalah genap, yaitu dua kali jumlah sisi pada graf tersebut.

Dengan kata lain, jika
$$G = (V, E)$$
, maka $\sum_{v \in V} d(v) = 2|E|$

Total derajat semua simpul haruslah genap.

Karena pada graf ini total derajat semua simpulnya bernilai 175 (ganjil), **Maka** graf ini tidak mungkin dibentuk.

- 2. Diberikan sebuah data penting berisi "STRUKTUR DISKRIT" dalam sebuah script. Data tersebut kemudian di-compressed menggunakan metode Huffman. (gill)
 - a. Tentukan kode huffman setiap karakter dari data teks tersebut (termasuk spasi)!
 - b. Tentukan panjang pesan dalam bit setelah pengkodean Huffman!

Jawaban:

Akan dilakukan pencacahan banyak setiap karakter unik yang ada pada data "STRUKTUR DISKRIT". Hasil pencacahan setiap karakter unik adalah sebagai berikut.

S = 2

T = 3

R = 3

U = 2

K = 2

D = 1

I = 2

_ = 1

Berikut ini adalah pembentukan pohon huffman dan hasil pohon huffman yang terbentuk.

Pohon Huffman untuk setiap karakter unik dari "STRUKTUR DISKRIT".

Simbol	Frekuensi	Peluang	Kode Huffman	
T	3	3/16	00	
S	2	2/16	010	
U	2	2/16	011	
K	2	2/16	100	
I	2	2/16	101	
R	3	3/16	110	
D	1	1/16	1110	
_	1	1/16	1111	

b. Panjang pesan dalam bit setelah pengkodean Huffman adalah

$$(3 \times 2) + (2 \times 3) + (2 \times 3) + (2 \times 3) + (2 \times 3) + (3 \times 3) + (1 \times 4) + (1 \times 4) = 47$$
 bit

3. Bentuklah *minimum spanning tree* dari graf berikut dengan menggunakan algoritma prim dan tentukan bobot totalnya. Jika terdapat sisi dengan bobot yang sama, utamakan sisi dengan jumlah simpul terkecil. Algoritma dimulai dari simpul 0. (*Nanda*)

Jawaban:

Langkah	Sisi	Bobot Total	Pohon Rentang
1	(0,1)	2	0 0
2	(0,2)	7	0
3	(2,8)	10	0
4	(2,5)	14	55-28-8
5	(5,6)	18	\$ 2 8
6	(7, 8)	22	
7	(4,7)	26	

4. Cari tahu apakah kedua graf di bawah ini isomorfik atau tidak! Jika tidak, sebutkan alasannya. Jika iya, tunjukkan simpul-simpul yang berkorespondensi. (Nanda)

Jawaban:

Ya, kedua graf isomorfik. Berikut merupakan graf 1 yang memiliki bentuk seperti graf 2 untuk menunjukkan bahwa kedua graf isomorfik.

5. Tentukan kompleksitas waktu dari algoritma yang ditulis dalam bahasa c++ berikut ini. Proses yang dihitung waktunya hanya di bagian "sum += j", untuk proses lainnya abaikan waktunya (*Taufiq*)

Note: asumsikan n merupakan integer kelipatan 2

A. Tentukan T(n)

B. Tentukan dalam notasi Big-O

Jawaban

```
Iterasi ke-1, i=n, jumlah operasi penambahan sebanyak n kali Iterasi ke-2, i=n/2, jumlah operasi penambahan sebanyak n/2 kali
```

.

Iterasi ke-k, i = 1, jumlah operasi penambahan sebanyak 1 kali

sehingga, jumlah operasi penambahan seluruhnya adalah $= n + n/2 + n/4 + \ldots + 2 + 1 \mbox{ (deret geometri sepanjang k, dimana } n = 2^k$

karena n kelipatan 2) = n(1 - (1/2)k)1 - 1/2= $2n - n/(2^k)$ = 2n - 1 (karena $n = 2^k$)

Jadi, T(n) = 2n - 1

Dan, notasi Big-O nya adalah O(n)

- 6. Tentukan apakah pernyataan kompleksitas algoritma berikut ini BENAR atau SALAH. Jika SALAH, berikan pernyataan yang benar. (**Fu**)
 - a. Diberikan T(n) = 5n dan T(n) = 5n, maka pernyataan T(n) + T(n) = O(n) adalah benar
 - b. Diberikan T(n) = 2 + n + 4n, maka pernyataan T(n) = O(n) adalah benar
 - c. Diberikan T(n) = 2 + n + 4n, maka pernyataan $T(n) = O(\log n)$ adalah benar
 - d. Diberikan T(n) = 5n dan T(n) = 5n, maka pernyataan T(n)T(n) = O(n) adalah benar
 - e. Diberikan T(n) = 3 + 6 + 9 + ... + 3n dan T(n) = 2 + n + 4n, maka pernyataan T(n) = O(n) = T(n) adalah salah.

Jawaban:

a. SALAH

$$O(f(n)) + O(g(n)) = O(\max\{f(n), g(n)\})$$
, sehingga $T(n) = O(n)$ dan $T(n) = O(n)$, sehingga $T(n) + T(n) = O(n)$

b. BENAR

$$T(n) = 2 + n + 4n = O(n)$$
 secara definisi memenuhi pernyataan $T(n) = O(f(n))$ jika terdapat C dan n sedemikian sehingga $T(n) \le C \cdot f(n)$ untuk $n \le n \to \underline{\text{tidak}}$ menyiratkan seberapa atas fungsi f itu

c. SALAH

$$T(n) = 2 + n + 4n = O(n)$$
, karena $log n < n$ maka dapat dikatakan pernyataan $T(n) = O(log n)$ adalah salah

d. BENAR

$$T(n)T(n) = O(f(n))O(g(n)) = O(f(n)g(n))$$
 sehingga $T(n)T(n) = O(n \cdot n) = O(n)$

e. SALAH

$$T(n) = 3 + 6 + 9 + \dots + 3n$$

= $3(1 + 2 + 3 + \dots + n) \le 3(n + n + n + \dots + n)$ untuk $n \ge 1$
= $3n = O(n)$

 $T(n) = O(n) \rightarrow T(n)$ yang merupakan polinom derajat m memiliki Big-O notation O(n)

Maka, dapat dikatakan bahwa T(n) = O(n) = T(n).