Last tre ne almost got to the investmenth.
Recalli
Than: Let J. U - R" he continuely differentiable
Photos an invertible (no true).
and suppose peusit. P(p) is an invertible low towns, then IB=BE(p) = U such that if we set W=F(B) us have I:B = W is bijective is, the invector that
ne have $f:B \rightarrow w$ is bijectre é, the invectore de la la contaction $f:B \rightarrow w$ is bijectre é, the invectore de la contaction $f:B \rightarrow w$ is bijectre é, $f(x)$
13 also cont. oil. of (tr), (tx) = (tx)
tr x+B.
(from chan rule; f-1(f(x)) = id
$(4^{-1})^{1}(p(x))\cdot p^{1}(x)=(id)$
$(x_{1}-x_{1}) \longrightarrow (x_{1}-x_{1})$ $(x_{1}-x_{1}) \longrightarrow (x_{1}-x_{1})$ $(x_{1}-x_{1}) \longrightarrow (x_{1}-x_{1})$ $(x_{2}-x_{1}) \longrightarrow (x_{2}-x_{1})$
$(x_{1}-x_{2}) = (x_{1}-x_{2})$ $(x_{1}-x_{2}) = (x_{2}-x_{2})$ $(x_{1}-x_{2}) = (x_{2}-x_{2})$ $(x_{2}-x_{2}) = (x_{2}-x_{2})$
Juday: neil show it is importer for suffriently small 8.
small &.

cente oftenows.s.; $B = B_{\epsilon}(b) \xrightarrow{t} \mathbb{R}_{n}$ to(b) imple Crazy strategy Chor x, ell (chectop) Conside (p.(x) = x + f'(p) (f(x) - f(x)) Notice that p(x) =x only when 0=(W1-(W1) 'G)'4 only when flx)-f(x)=0 ton=ton Goal: (to show 1-1) mont & ent. if x, x o E BE(P) then fixed = f(xe) = f(xe) and y when xe=x $\varphi(x) = x$ way well find & ; nell show it & small then I from it is care

Lall x MUT: fr x = B, lp) $\|\varphi(x)-\varphi(x_0)\|\leq \frac{1}{2}\|x-x_0\|$ but notice y(x) = x = f(x) = f(x)so if f(x) = f(x) then y(x) = xalso f(x) = f(x) $\Rightarrow y(x) = x$ > 11x-x011 = 2 (1x-x0) = ||x-x_0| = 0 = x=x_0 We should: if we know that $\forall x \in B_{\epsilon}(p)$ that 11 9/2 (2) (= 2 () = x+f() (f(2)-f(2)) then f(x)=f(x) = x=xo. fr x,xoeBe(p) Matetrani A = f'(p) Im forms (const)

y = f(xo) (const rectr) $y(x) = x + A^{-1}(y - f(x)) = x + A^{-1}y - A^{-1}f(x)$

 $(\varphi'(x) = I_n - A^{-1} f'(x) = A^{-1} (A - P'(x))$

(SKIP AHEAD)

$$\varphi'(x) = I_n - A^{-1} f'(x) = A^{-1} (A - f'(x))$$
 $\| \varphi'(x) \| = \| A^{-1} (A - f'(x)) \|$
 $\leq \| A^{-1} \| \| A - f'(x) \|$
 $= \| A^{-1} \| \| f'(x) - f'(x) \|$

3570 sd. #xeBs(p) 11 f'(p)-P(x)11 < E

count $|Q'(x)| < \frac{1}{2}$ $|Q'(x)| < \frac{1}{2}$ |

38 s.l. xeBs(6) => (19'(6)-6'(1)) < \(\frac{1}{2} \) => 1(2)(4) = \(\frac{1}{2} \) \(\frac{

Implicit funden theorem
Des: conside a lun trus.
$\mathbb{R}^{n+m} \xrightarrow{T} \mathbb{R}^m$
mignlifers an rector,
T(1) = 0
(T,(3), T2(3) ~ Tm(3))
il your're lu cky, have mindep. Conditions solais are n+m-m=ndmil.
if lecture, solus determed by first n coordinates.
"Thu: if T: R"+" - R"
$ \begin{array}{c c} \hline T_1 & T_2 \\ m \times n & m \times m \end{array} $

y is uniquely detrived by x
i.e. y=g(x) g cont.deff.