1. Klausur zur Vorlesung "Theoretische Physik 1" (Mechanik) - WS 01/02

Prof. Dr. P. Ring, Physik Department, TU München

Anmerkungen:

Die Klausur besteht aus 3 Aufgaben. Es können insgesamt 50 Punkte erreicht werden.

Erlaubte Hilfmittel: Mathematische Formelsammlung

Bearbeitungszeit: 90 Minuten

Beschriften Sie bitte jedes von Ihnen verwendete Blatt mit Ihrem Namen, Ihrer Matrikel-

nummer und dem Namen Ihres Ubungsgruppenleiters.

1 Multiple Choice Fragen (16P)

Regeln:

nein

ja

- Es müssen nicht alle Fragen beantwortet werden.
- Für jede richtig beantwortete Frage gibt es einen Punkt.
- Für jede falsch beantwortete Frage gibt es einen Minus-Punkt.
- Die Gesamtzahl der durch Multiple-Choice erreichten Punkte ist jedoch nie negativ.

Vorsicht: Multiple-Choice-Fragen sind gefährlich. Verbringen Sie nicht zu lange Zeit mit Ihnen!

1.1 Zum 3. Kepler'schen Gesetz (4P):

Falls die Gravitationswechselwirkung zwischen den Planeten vernachlässigt wird und die Newton'sche Mechanik zugrunde gelegt wird, gilt im Grenzfall einer unendlich schweren Sonnenmasse für die Ellipsen-Bahnen der Planeten:

\bigcirc	\bigcirc	Die Umlaufzeiten verschiedener Planeten verhalten sich wie die von den Bahnen eingeschlossenen Flächen.
\bigcirc	\bigcirc	Die Quadrate der Umlaufzeiten verschiedener Planeten verhalten sich wie die Kuben der entsprechenden Halbachsen.
\bigcirc	\bigcirc	Die Produkte aus Drehimpuls und Umlaufzeit verschiedener Planeten verhalten sich wie die von den Bahnen eingeschlossenen Flächen.
\bigcirc	\bigcirc	Die korrekt als richtig identifizierten Aussagen gelten auch bei endlicher Sonnenmasse.

1.2 Zum Virialsatz (4P):

Ein Massenpunkt führe im Feld eines zentral-symmetrischen Potentials V(r) eine gebundene Bewegung aus. Dabei seien $\langle T \rangle_t$ und $\langle V \rangle_t$ die zeitlichen Mittelwerte seiner kinetischen und seiner potentiellen Energie.

ja nein

- $\bigcirc \quad \bigcirc \quad \text{F\"{u}r } V \sim r^2 \text{ ist } \langle T \rangle_t = \langle V \rangle_t.$
- $\bigcirc \quad \bigcirc \quad \text{Für } V \sim 1/r \text{ ist } \langle T \rangle_t = 2 \langle V \rangle_t.$
- $\bigcirc \quad \bigcirc \quad \text{F\"{u}r } V \sim r^4 \text{ ist } \langle T \rangle_t = 2 \, \langle V \rangle_t.$
- \bigcirc Für $V \sim 1/r$ ist $\langle T \rangle_t = E$.

1.3 Zu den Variationsprinzipien (4P):

Wir betrachten das Hamilton'sche Prinzip $\delta I=0$ mit $I=\int Ldt$ und das Prinzip der extremalen Wirkung von Maupertius $\delta S=0$ mit $S=\int p\,dq$. Dabei sind folgende Variationen $\delta q(t)$ des Pfades zugelassen:

ja nein

- \bigcirc Beim Hamilton'schen Prinzip sind beliebige Variationen des Pfades $\delta q(t)$ zugelassen, solange an den Integrationsgrenzen $\delta q(t)=0$.
- \bigcirc Beim Hamilton'schen Prinzip sind beliebige Variationen des Pfades $\delta q(t)$ zugelassen, bei denen die Energie erhalten ist, und bei denen δq an den Integrationsgrenzen verschwindet.
- \bigcirc Beim Maupertius'schen Prinzip sind beliebige Variationen des Pfades $\delta q(t)$ zugelassen, bei denen δq am Anfangspunkt des Pfades verschwindet.
- \bigcirc Die Wirkung S ist ein f-dimensionales Integral im Phasenraum, wobei f die Zahl der Freiheitsgrade eines Teilchensystems ist.

1.4 Zur Lagrange- und Hamilton-Funktion (4P):

Ausgehend von einer Lagrangefunktion $L(q,\dot{q},t)=T(q,\dot{q})-V(q,t)$, wobei T eine quadratische Form in den Geschwindigkeiten \dot{q} ist, betrachten wir die Hamiltonfunktion $H=p\dot{q}-L$ mit $p=\partial L/\partial \dot{q}$:

ja nein

O Es gilt:

$$\frac{dH}{dt} = \frac{\partial L}{\partial t}$$

- \bigcirc \bigcirc Es gilt: H = T + V
- \bigcirc Die natürlichen Variablen von H sind q und \dot{q} .
- \bigcirc Falls Vexplizit von der Zeit tabhängt, ist die Hamiltonfunktion Heine Erhaltungsgröße.

2 Teilchen auf der Stange (15P)

Ein Teilchen der Masse m
 wird durch eine Zwangskraft auf einer (masselosen) Stange gehalten, auf der es sich reibungsfrei bewegen kann (Siehe Abbildung). Die Stange rotiert in einem festen Winkel θ zur z-Achse mit der konstanten Winkelgeschwindigkeit ω . Es wirken keine weiteren Kräfte.

a) Leiten Sie die Lagrange Funktion des Teilchens explizit in Kugelkoordinaten her. (6P)

- b) Bestimmen Sie die Bewegungsgleichung des Teilchens aus der in a) gewonnenen Lagrangefunktion. (3P)
- c) Bestimmen Sie r(t) mit der Anfangsbedingung $r(0) = r_0 > 0$ und $\dot{r}(0) = 0$. Diskutieren Sie r(t) für den Fall $t \to \infty$. Wohin bewegt sich das Teilchen in diesem Limes ? (6P)

3 Potentialbewegung (19P)

Ein Teilchen der Masse m bewege sich in einem allgemeinen Zentralpotential

$$V(r) = -\frac{c}{r^{\lambda}}, \qquad (1)$$

wobei $\lambda c > 0$, $\lambda \neq 0$ und zugleich $\lambda < 2$.

- a) Wie lautet das zugehörige effektive Potential $V_{eff}(r)$? (2P)
- b) Finden Sie die Beziehung zwischen Radius und Drehimpuls, für die sich das Teilchen auf einer stabilen Kreisbahn mit Radius r_0 bewegt. (Hinweis: Es kann zur Vereinfachung ohne Beweis vorausgesetzt werden, daß der Parameterraum von $V_{eff}(r)$ die Existenz gebundener Zustände definitiv erlaubt.) (3P)
- c) Zeigen Sie explizit, daß man für die Kreisfrequenz ω_0 eines Umlaufs auf diesem Orbit folgenden Ausdruck erhält (2P):

$$\omega_0 = \sqrt{\frac{c \, \lambda}{m \, r_0^{\lambda + 2}}}$$

Betrachten Sie nun zusätzlich zur Kreisbewegung kleine Schwingungen um die Kreisbahn in radialer Richtung.

- d) Wie lautet das (effektive) Potential für diese radiale Bewegung im Fall kleiner Schwingungen? (Hinweis: Führen Sie eine Taylor-Entwicklung bis zum ersten kinematisch relevanten Term durch.) (3P)
- e) Leiten Sie den Zusammenhang zwischen der Kreisfrequenz der radialen Schwingung ω_R und ω_0 her. (Hinweis: Drücken Sie mit Hilfe der in Teilaufgabe b) gefundenen Beziehung den Drehimpuls als eine Funktion von r_0 aus.) (5P)
- f) Welche Bedingung muß λ erfüllen, damit sich periodische, geschlossene Orbits ergeben? (2P)
- g) Diskutieren Sie das Verhältnis ω_R/ω_0 sowohl für den Fall eines Coulomb Potentials, als auch für den Fall des harmonischen Oszillators. (2P)