Spectral Clustering of Graphs with the Bethe Hessian

Alaa Saade¹ Florent Krzakala^{1,2} Lenka Zdeborová³

¹Laboratoire de Physique Statistique, CNRS UMR 8550, Université P. et M. Curie Paris 6 et École Normale Supérieure, 24, rue Lhomond, 75005 Paris, France.

 2 ESPCI and CNRS UMR 7083 Gulliver, 10 rue Vauquelin, Paris 75005

³Institut de Physique Théorique, CEA Saclay and URA 2306, CNRS, 91191 Gif-sur-Yvette, France

Clustering by the Laplacian $L=D-A^{{\scriptsize \scriptsize [1]}}$

Input: Adjacency matrix $A \in \mathbb{R}^{n \times n}$, number of clusters q

- q = 2
 - ullet Cluster by the signs of the 2nd eigenvector of L
- q > 2
 - ullet Let u_1,\cdots,u_q be the first q eigenvectors of L
 - Let $U=(u_1,\cdots,u_q)\in\mathbb{R}^{n imes q}$

• Let
$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = U$$

• Cluster the points $y_1, \cdots, y_n \in \mathbb{R}^q$ with k-means

^[1] Ulrike Luxburg (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4):395-416.

Clustering by the Adjacency Matrix $A^{ extstyle{ iny [2]}}$

^[2]Avrim Blum, John Hopcroft, and Ravindran Kannan (2016). Foundations of Data Science (pp. 275-281).

Spectral Clustering in Sparse Networks

- ullet Clustering based on A fails to detect communities
- Locally tree-like structure
- Leading eigenvalues of A are dictated by the vertices of highest ${\rm degree}^{{\rm [3]}}$
- Corresponding eigenvectors are localized around these vertices^[3]

^[3]Michael Krivelevich and Benny Sudakov (2003). The largest eigenvalue of sparse random graphs. Combinatorics, Probability and Computing, 12(01):61-72.

Clustering by the Non-Backtracking Matrix^[4]

ullet The 2m imes 2m non-backtracking matrix B

$$B_{(u \to v),(x \to y)} = \begin{cases} 1 & \text{if } v = x \text{ and } u \neq y \\ 0 & \text{otherwise} \, . \end{cases}$$

- ullet The spectrum of B is not sensitive to high-degree vertices
- ullet Properties of B
 - A tree contributes zero eigenvalues to the spectrum
 - ullet Unicyclic components yield eigenvalues either 1 or -1

^[4]Florent Krzakala, Cristopher Moore, et al (2013). Spectral redemption in clustering sparse networks. Proceedings of the National Academy of Sciences, 110(52):20935–20940.

Stochastic Block Model

- Stochastic block model
 - ullet q groups of vertices with size n/q
 - ullet Each vertex v has a group label $g_v \in \{1, \cdots, q\}$
 - ullet Adjacency matrix A is generated according to the distribution

$$\Pr[A_{u,v} = 1] = \begin{cases} c_{in}/n & g_u = g_v \\ c_{out}/n & g_u \neq g_v \end{cases}, \text{ where } c_{in} > c_{out}$$

- Average degree $c = (c_{\mathrm{i}n} + c_{\mathrm{o}ut})/2$
 - $L = D A \approx c\mathbb{1} A$
 - Clustering by the largest q eigenvectors of A
- ullet G becomes sparse when n is large

Experiments

(a) The spectrum of ${\cal A}$

(b) The spectrum of ${\cal B}$

$$ullet$$
 $n=4000$, $c_{\mathrm in}=5$ and $c_{\mathrm out}=1$

- The radius of the bulk
 - For A, $2\sqrt{c} = 3.46$
 - For B, $\sqrt{c} = \sqrt{3}$

Experiments

Figure: The accuracy of spectral clustering based on different matrices

- $n = 10^5$
- Performance is measured by overlap

$$\left(\frac{1}{n}\sum_{u}\delta_{g_{u},\tilde{g}_{u}}-\frac{1}{q}\right)\left/\left(1-\frac{1}{q}\right)\right.$$

Detecting Number of Clusters

- \bullet Each circle's radius is $\sqrt{\rho(B)}$
- $\bullet\,$ The number of real eigenvalues outside the circle indicates the number q of clusters

Reducing the Computational Complexity

ullet All eigenvalues μ of B not ± 1 are the roots of the equation $^{ extstyle extst$

$$\det \left[\mu^2 \mathbb{1} - \mu A + (D - \mathbb{1}) \right] = 0 \tag{1}$$

• Roots of eq. (1) are eigenvalues of

$$B' = \begin{pmatrix} 0 & D - 1 \\ -1 & A \end{pmatrix}$$

ullet Clustering by a $2n \times 2n$ matrix rather than a $2m \times 2m$ one

The Bethe Hessian Matrix

ullet All eigenvalues μ of B not ± 1 are the roots of the equation

$$\det \left[\mu^2 \mathbb{1} - \mu A + (D - \mathbb{1}) \right] = 0 \tag{1}$$

ullet The Bethe Hessian matrix H(r)

$$H(r) := r^2 \mathbb{1} - rA + (D - \mathbb{1})$$

- \forall real eigenvalue μ of B, $H(\mu)$ has a eigenvalue 0
 - Let $r_c = \sqrt{
 ho(n)}$
 - ullet Eigenvectors of $H(r_c)$'s negative eigenvalues reveal clustering

An Example

Experiments

PART	Non-backtracking [9]	Bethe Hessian
Polbooks $(q = 3)$ [1]	0.742857	0.757143
Polblogs $(q = 3)$ [1]	0.864157	0.865794
Karate $(q = 2)$ [24]	1	1
Football $(q = 12)$ [6]	0.924111	0.924111
Dolphins $(q = 2)$ [16] Adjnoun $(q = 2)$ [8]	$0.741935 \\ 0.625000$	$\begin{array}{c} 0.806452 \\ 0.660714 \end{array}$

Conclusions and Perspectives

The End