

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

NOVEMBER 2012

MEMORANDUM

MARKS: 150

This memorandum consists of 30 pages.

NSC – Memorandum

NOTE:

- If a candidate answered a question TWICE, mark the FIRST attempt ONLY.
- If a candidate crossed out an attempt of a question and did not redo the question, mark the crossed out question.
- Consistent accuracy applies in ALL aspects of the memorandum.

QUESTION 1

1.1.1	(2x-1)(x+4)=0		
	$x = \frac{1}{2}$ or -4		✓ answer
	$x = \frac{1}{2}$ or -4		✓ answer
			(2)
1.1.2	$3x^2 - x = 5$ $3x^2 - x - 5 = 0$	Note: if a candidate uses incorrect formula award max	✓ standard form
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1 mark (for standard form)	✓ subs into correct formula
	$= \frac{-(-1) \pm \sqrt{(-1)^2 - 4(3)(-5)}}{2(3)}$ $= \frac{1 \pm \sqrt{61}}{6}$ $= 1,47 \text{or} -1,14$	Note: if a candidate has not rounded off correctly, penalise 1 mark	✓✓ answer (4)
	OR $3x^{2} - x = 5$ $x^{2} - \frac{1}{3}x = \frac{5}{3}$		✓ division by 3
	$\left(x - \frac{1}{6}\right)^2 = \frac{5}{3} + \frac{1}{36}$ $\left(x - \frac{1}{6}\right) = \pm\sqrt{\frac{61}{36}}$ $x = \frac{1}{6} \pm\sqrt{\frac{61}{36}}$		$\checkmark \left(x - \frac{1}{6}\right) = \pm \sqrt{\frac{61}{36}}$
	$6 \sqrt{36}$ = 1,47 or -1,14 OR		✓✓ answer (4)

$3x^2$	-x	= 5
$\mathcal{I}_{\mathcal{N}}$	л	-

$$3x^2 - x - 5 = 0$$

$$x^2 - \frac{x}{3} - \frac{5}{3} = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-\left(-\frac{1}{3}\right) \pm \sqrt{\left(-\frac{1}{3}\right)^2 - 4\left(1\right)\left(-\frac{5}{3}\right)}}{2(1)}$$

$$= \frac{\frac{1}{3} \pm \sqrt{\frac{61}{9}}}{2}$$

$$= 1,47 \quad \text{or} \quad -1,14$$

✓ standard form

✓ subs into correct formula

✓ answer

(4)

1.1.3 $x^2 + 7x - 8 < 0$

$$(x+8)(x-1)<0$$

$$\frac{+ \quad 0 \quad - \quad 0 \quad +}{-8 \quad 1}$$
 OR —

✓ factors

OR

Therefore the solution is:

$$-8 < x < 1$$
 OR $x \in (-8; 1)$ **OR**

OR

$$x^2 + 7x - 8 < 0$$

$$(x+8)(x-1)<0$$

$$\therefore x+8<0 \text{ and } x-1>0 \qquad \text{or} \qquad x+8>0 \text{ and } x-1<0$$

$$x<-8 \text{ and } x>1 \qquad \qquad x>-8 \text{ and } x<1$$
No solution

✓ factors

$$-8 < x < 1$$
 OR $x \in (-8; 1)$ **OR**

(4)

(4)

Mathematics/P1 DBE/November 2012

NOTE:

In this alternative, award max 3/4 marks since there is no conclusion

√ factors

$$x^{2} + 7x - 8 < 0$$
$$(x+8)(x-1) < 0$$

$$\frac{-8}{-8}$$

✓ graph with bolded line

1.2.1 4y - x = 4 and xy = 8

$$x = 4y - 4$$

y = -1 or y = 2

x = -8 or x = 4

$$(4y-4)y = 8$$

$$(y-1)y=2$$

$$y^2 - y - 2 = 0$$

$$(y+1)(y-2) = 0$$

Note: If candidate makes

$$\checkmark x = 4y - 4$$

✓ substitution

√ factors

✓ y-values

 $\checkmark \checkmark x$ -values

OR

$$4y - x = 4 \quad \text{and} \quad xy = 8$$

(x; y) = (-8; -1) or (4; 2)

$$x = 4y - 4$$

$$(4y-4)y = 8$$

$$(y-1)y = 2$$

$$y - x = 4 \quad \text{and} \quad xy = 8$$

By inspection
$$y = -1$$
 or $y = 2$

$$x = -8$$
 or $x = 4$

$$(x; y) = (-8; -1)$$
 or $(4; 2)$

(6)

(6)

OR

$$4y - x = 4 \quad \text{and} \quad xy = 8$$

$$x = 4y - 4$$

$$\checkmark x = 4y - 4$$

$$(4y-4)y = 8$$

$$(y-1)y=2$$

$$y^2 - y - 2 = 0$$

$$y = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-2)}}{2(1)}$$

$$y = -1$$
 or $y = 2$

$$x = -8$$
 or $x = 4$

$$(x; y) = (-8; -1)$$
 or $(4; 2)$

$$\checkmark \checkmark x$$
-values

Mathematics/P1 DBE/November 2012

OR

$$4y - x = 4 \quad \text{and} \quad xy = 8$$

$$y = \frac{x}{4} + 1$$

$$x\left(\frac{x}{4}+1\right) = 8$$

$$\frac{x^2}{4} + x - 8 = 0$$

$$x^2 + 4x - 32 = 0$$

$$(x+8)(x-4) = 0$$

$$x = -8$$
 or $x = 4$

$$y = -1$$
 or $y = 2$
 $(x; y) = (-8; -1)$ or $(4; 2)$

OR

$$4y - x = 4 \quad \text{and} \quad xy = 8$$

$$y = \frac{x}{4} + 1$$

$$x\left(\frac{x}{4}+1\right) = 8$$

$$\frac{x^2}{4} + x - 8 = 0$$

$$x^2 + 4x - 32 = 0$$

$$x = \frac{-4 \pm \sqrt{4^2 - 4(1)(-32)}}{2(1)}$$

$$x = -8$$
 or $x = 4$

$$y = -1$$
 or $y = 2$

$$(x; y) = (-8; -1)$$
 or $(4; 2)$

OR

$$xy = 8$$
 and $4y - x = 4$

$$x = \frac{8}{y}$$

$$4y - \frac{8}{y} = 4$$

$$4y^2 - 4y - 8 = 0$$

$$y^2 - y - 2 = 0$$

$$(y-2)(y+1)=0$$

$$y = -1$$
 or $y = 2$

$$x = -8$$
 or $x = 4$

$$(x; y) = (-8; -1)$$
 or $(4; 2)$

$$\checkmark y = \frac{x}{4} + 1$$

✓ substitution

✓ factors

✓ *x*-values

✓ ✓ y-values

(6)

 $\checkmark y = \frac{x}{4} + 1$

✓ subs into correct formula

✓ *x*-values

(6)

✓ substitution

✓ factors

✓ y-values

OR

$$xy = 8 \quad \text{and} \quad 4y - x = 4$$

$$x = \frac{8}{y}$$

$$4y - \frac{8}{y} = 4$$

$$4y^2 - 4y - 8 = 0$$

$$y^2 - y - 2 = 0$$

$$y = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-2)}}{2(1)}$$

$$y = -1$$
 or $y = 2$

$$x = -8$$
 or $x = 4$

$$(x; y) = (-8; -1)$$
 or $(4; 2)$

OR

$$xy = 8$$
 and $4y - x = 4$

$$y = \frac{8}{x}$$

$$4\left(\frac{8}{x}\right) - x = 4$$

$$0 = x^2 + 4x - 32$$

$$0 = (x+8)(x-4)$$

$$x = -8$$
 or $x = 4$

$$y = -1$$
 or $y = 2$

$$(x; y) = (-8; -1)$$
 or $(4; 2)$

OR

$$xy = 8$$
 and $4y - x = 4$

$$y = \frac{8}{x}$$

$$4\left(\frac{8}{x}\right) - x = 4$$

$$0 = x^2 + 4x - 32$$

$$x = \frac{-4 \pm \sqrt{4^2 - 4(1)(-32)}}{2(1)}$$

$$x = -8$$
 or $x = 4$

$$y = -1$$
 or $y = 2$

$$(x; y) = (-8; -1)$$
 or $(4; 2)$

$$\checkmark x = \frac{8}{y}$$

✓ substitution

✓ subs into correct formula

✓ y-values

 $\checkmark x$ -values

(6)

(6)

 $\checkmark y = \frac{8}{x}$

✓ substitution

✓ factors

✓ *x*-values

✓ ✓ v-values

 $y = \frac{8}{}$

✓ substitution

✓ subs into correct formula

✓ *x*-values

✓✓ v-values

1.2.2	4x - y = 4	\checkmark interchanges x and y
		(2)
	OR	
	y = 4x - 4	
	OR	
	$x = \frac{y+4}{4}$	
	OR	
	4x - y - 4 = 0	
	OR	
	$x = \frac{1}{4}y + 1$	
1.3.1	$\sqrt{2p+5} = 0$	(2 7 0
	2p+5=0	$\checkmark 2p + 5 = 0$ or
	2p = -5	$\sqrt{2p+5} = 0$ or $\sqrt{2p+5} = 0$ or $\frac{-2 \pm \sqrt{0}}{7}$
	$p = -\frac{5}{2}$	✓ answer
1.3.2	$\frac{2}{2p+5<0}$	(2)
1.3.2		✓ answer
	$p < -\frac{5}{2}$	(1) [21]

	l
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
2x - (3x + 1) = (3x - 7) - 2x or	5) 2
2x - 3x - 1 = 3x - 7 - 2x $2x - (3x + 1) = (3x - 1)$	(x-7)-2x
-x-1=x-7	
$-2x = -6$ \checkmark answer	
x = 3	(2)
OR	, ,
$T_2 = \frac{T_1 + T_3}{2}$ $\checkmark T_2 = \frac{T_1 + T_3}{2}$	
	-(3r-7)
$2x = \frac{(3x+1)+(3x-7)}{2}$ or $2x = \frac{(3x+1)+(3x-7)}{2}$	$\frac{(3x-r)}{2}$
4x = 6x - 6	
$6 = 2x$ \checkmark answer	
x = 3	(2)
OR $\checkmark T_3 - T_1 = 2(T_2 - T_3)$	T_1 or
$T_3 - T_1 = 2(T_2 - T_1)$ (3x-7)-(3x+1)=2	- /
(3x-7)-(3x+1)=2(2x-(3x+1))	
-8 = -2x - 2	
2x = 6	
$x = 3$ \checkmark answer	
	(2)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$T_{11} = 10 + (11-1)(-4)$ $\sqrt{a} = -4$	
=-30	(2)
OR	` /
10; 6; 2; -2; -6; -10; -14; -18; -22; -26; -30 ✓ expands sequen	nce
$\therefore T_{11} = -30$	
	(2)

NSC - Memorandum

2.2.2 $S_n = \frac{n}{2} [2a + (n-1)d]$

$$-560 = \frac{n}{2} [2(10) + (n-1)(-4)]$$

$$-1120 = -4n^2 + 24n$$

$$4n^2 - 24n - 1120 = 0$$

$$n^2 - 6n - 280 = 0$$

$$(n-20)(n+14)=0$$

$$n = 20$$
 or -14

 $\therefore n = 20$ only

Note: if candidate substitutes into

award 1/6 marks

incorrect formula, award 0/6

OR

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
 Note: if candidate writes answer only,

$$-560 = \frac{n}{2} [2(10) + (n-1)(-4)]$$

$$-1120 = -4n^2 + 24n$$

$$4n^2 - 24n - 1120 = 0$$

$$n^2 - 6n - 280 = 0$$

$$n = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(-280)}}{2(1)}$$

$$n = 20$$
 or -14

$$\therefore n = 20$$
 only

OR

$$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$$

$$-560 = \frac{n}{2} [2(10) + (n-1)(-4)]$$

$$-560 = \frac{20n}{2} - \frac{4n^2}{2} + \frac{4n}{2}$$

$$2n^2 - 12n - 560 = 0$$

$$n^2 - 6n - 280 = 0$$

$$(n-20)(n+14)=0$$

$$n = 20$$
 or -14

$$\therefore n = 20$$
 only

✓ correct formula

✓ substitution of a and d

DBE/November 2012

✓ subs
$$S_n = -560$$

$$\checkmark -4n^2 + 24n + 1120 = 0$$
 or $4n^2 - 24n - 1120 = 0$ or

$$n^2 - 6n - 280 = 0$$

√ factors

✓ selects n = 20 only

(6)

✓ correct formula

 \checkmark substitution of a and d

$$\checkmark$$
 subs $S_n = -560$

$$\checkmark 4n^2 - 24n - 1120 = 0$$
 or

$$-4n^2 + 24n + 1120 = 0$$
 or

$$n^2 - 6n - 280 = 0$$

✓ subs into correct formula

✓ selects n = 20 only

(6)

✓ correct formula

✓ substitution of a and d

✓ subs
$$S_n = -560$$

$$\checkmark 2n^2 - 12n - 560 = 0$$
 or

$$-2n^2 + 12n + 560 = 0$$
 or $n^2 - 6n - 280 = 0$

✓ selects n = 20 only

OR										
$S_{11} = 1$	-110									$\checkmark S_{11} = -110$
n	12	13	14	15	16	17	18	19	20	
T_n	-34	-38	-42	-46	-50	-54	-58	-62	-66	✓ sequence expanded
S_n	-144	-182	-224	-270	-320	-374	-432	-494	-560	✓✓ series calculated
	20	•						•		✓✓ answer
∴ <i>n</i> =	20									diswer (

3.1.1	$T_n = ar^{n-1}$ $= 27\left(\frac{1}{3}\right)^{n-1}$	Note: The final answer can also be written as 3^{4-n} or $\left(\frac{1}{3}\right)^{n-4}$	✓ $a = 27$ and $r = \frac{1}{3}$ ✓ substitute into correct formula (2)
3.1.2	$-1 < r < 1$ or $ r < 1$ OR The common ratio (r) is $\frac{1}{3}$	Note: If candidate concludes series is not convergent, award 0 marks. which is between -1 and 1.	✓ answer (1) ✓ answer (1)
	$ \begin{array}{c c} \mathbf{OR} \\ -1 < \frac{1}{3} < 1 \end{array} $		✓ answer (1)
3.1.3	$S_{\infty} = \frac{a}{1 - r}$ $= \frac{27}{1 - \frac{1}{3}}$ $= \frac{81}{2} \text{ or } 40,5 \text{ or } 41$	Note: If $r > 1$ or $r < -1$ is substituted then $0/2$ marks.	✓ substitution ✓ answer (2)

4/4 marks

Note: If candidate lets the volume of the first tank be a specific value (instead of a variable) and his/her argument follows correctly, award

3.2 Let *V* be the volume of the first tank.

$$\frac{V}{2}; \frac{V}{4}; \frac{V}{8}.....$$

$$S_{19} = \frac{\frac{V}{2} \left[1 - \left(\frac{1}{2} \right)^{19} \right]}{1 - \frac{1}{2}}$$

$$524287 \text{ J}$$

$$= \frac{524287}{524288}V$$
$$= 0.9999980927 V$$

< V

Yes, the water will fill the first tank without spilling over.

Note: If candidate answers 'Yes' only with no justification: 1/4 marks $=\frac{524287}{524288}V$

✓ substitute into correct formula

✓ answer

✓ conclusion

(4)

OR

Let *V* be the volume of the first tank.

$$\frac{V}{2}; \frac{V}{4}; \frac{V}{8}.....$$

$$S_{19} = \frac{\frac{V}{2} \left[1 - \left(\frac{1}{2}\right)^{19} \right]}{1 - \frac{1}{2}}$$

$$1 - \frac{1}{2}$$

$$= V \left[1 - \left(\frac{1}{2} \right)^{19} \right]$$

$$< V \cdot 1$$

Yes, the water will fill the first tank without spilling over.

✓ substitute into

✓ observes that

correct formula

$$\left[1 - \left(\frac{1}{2}\right)^{19}\right] < 1$$

✓ conclusion

(4)

OR

Let *V* be the volume of the first tank.

$$\frac{V}{2}; \frac{V}{4}; \frac{V}{8}....$$

$$S_{\infty} = \frac{\frac{V}{2}}{1 - \frac{1}{2}}$$

Since the first tank will hold the water from infinitely many tanks without spilling over, certainly:

Yes, the first tank will hold the water from the other 19 tanks without spilling over.

✓ substitute into correct formula

✓✓ correct argument

(4)

Copyright reserved

Please turn over

Mathematics/P1 12 DBE/November 2012

If the tanks are emptied on		
_	e by one, starting from the second, each remaining space, so the first tank can other 19 tanks.	✓ Yes (explicit or understood from the argument.) ✓ ✓ ✓ argument (4)
3.3.1 $T_n = -2(n-5)^2 + 18$		
Term $1 = -14$ Term $2 = 0$ Term $3 = 10$		$\begin{array}{ c c c c } \checkmark - 14 \\ \checkmark 0 \\ \checkmark 10 \end{array}$ (3)
3.3.2 Term 5 OR $n = 5$ OR T	5	✓ answer (1)
3.3.3 Second difference = $2a$ Second difference = $2(-2)$ Second difference = -4		✓ subs – 2 into $2a$ ✓ answer (2)
OR -14	0 10	
14	10	✓ first differences
	-4	✓ second difference
Second difference = – 4		(2)
3.3.4 $-2(n-5)^{2} + 18 < -2(n-5)^{2} + 128 < 0$	Note: Answer only award	$\checkmark T_n < -110$
$-2n^{2} + 20n - 50 + 128 < 0$ $-2n^{2} + 20n + 78 < 0$ $n^{2} - 10n - 39 > 0$		✓ standard form ✓ factors
(n-13)(n+3) > 0 + 0 - 0 +		✓ critical values
n < -3 13 or $n > 13$	-3 \	✓ inequalities $\checkmark n > 13$
$n \ge 14$; $n \in \mathbb{N}$ OR $n > 1$	13; $n \in \mathbb{N}$	(accept: $n \ge 14$)
OR		

13 NSC – Memorandum

$$-2(n-5)^{2} + 18 < -110$$

$$-2(n-5)^{2} + 128 < 0$$

$$(n-5)^{2} - 64 > 0$$

$$[(n-5)-8](n-5)+8] > 0$$

$$[(n-5)-8][(n-5)+8] > 0$$
$$(n-13)(n+3) > 0$$

$$n < -3$$
 or $n > 13$
 $n \ge 14$; $n \in \mathbb{N}$ **OR** $n > 13$; $n \in \mathbb{N}$

OR

$$-2(n-5)^{2} + 18 < -110$$

$$-2(n-5)^{2} < -128$$

$$(n-5)^{2} > 64$$

$$n-5 < -8 \text{ or } n-5 > 8$$

$$n < -3 \text{ or } n > 13$$

 $n \ge 14$; $n \in \mathbb{N}$ **OR** n > 13; $n \in \mathbb{N}$

OR

$$T_n = -2(n-5)^2 + 18$$
$$T_n = -2n^2 + 20n - 32$$

$$-2n^2 + 20n - 32 < -110$$
$$-2n^2 + 20n - 78 < 0$$

$$n^2 - 10n - 39 > 0$$

$$(n-13)(n+3) > 0$$

n < -3 or n > 13

 $n \ge 14$; $n \in \mathbb{N}$ **OR** n > 13; $n \in \mathbb{N}$

OR

$$-14$$
; 0; 10; 16; 18; 16; 10; 0; -14 ; -32 ; -54 ; -80 ; -110 $n ≥ 14$; $n ∈ N$

$$T_{v} < -110$$

$$\checkmark (n-5)^2 - 64 > 0$$

- √ factors
- ✓ critical values
- ✓ inequalities

$$\sqrt{n} > 13$$

(accept: $n \ge 14$)

 $T_n < -110$

$$\checkmark 2(n-5)^2 > 128$$

$$\checkmark$$
 8 and − 8

$$√ n - 5 > 8$$

✓
$$n-5 < -8$$

$$\checkmark n > 13$$

(accept: $n \ge 14$)

 $\checkmark T_n < -110$

- ✓ standard form
- ✓ factors
- ✓ critical values

✓ inequalities

$$\checkmark n > 13$$

(accept: $n \ge 14$)

(6)

✓✓✓✓ expansion

✓ ✓ conclusion of $n \ge 14$

(accept n > 13)

(6) **[21]**

Copyright reserved

Please turn over

4.1.1	$y = 3.2^{\circ} - 6$ y = 3 - 6 y = -3 (0; -3)	✓ answer
4.1.2	$0 = 3.2^x - 6$	
	Note: If a candidate interchanges $3.2^x = 6$ question 4.1.1 and 4.1.2: 0/3 marks $x = 1$ (1:0) Note: If a candidate says that $3.2^x = 6^x$	\checkmark y = 0 ✓ x-value (2)
	Note: If a candidate says that $3.2^x = 6^x$ (i.e. wrong mathematics) s/he will arrive at correct answer BUT award max 1/2	
4.1.3	y = -6	✓intercepts ✓ asymptote ✓ shape (3)
4.1.4	$y > -6$ OR $(-6; \infty)$	✓ answer (1)

$$0 = a(-2)^2 + b(-2) + 12$$

$$0 = a(6)^2 + b(6) + 12$$

$$a(6)^2 + b(6) + 12$$

$$0 = 4a - 2(4) + 12$$
$$a = -1$$
$$y = -x^{2} + 4x + 12$$

$$0 - 4a - 2b +$$

i.e.
$$\frac{0 = 36a + 6b + 12}{0 = 24b - 96}$$

$$b = 4$$

✓ subs
$$S(-2;0)$$
 and $T(6;0)$

$$\checkmark y = -x^2 + 4x + 12$$

Mathematics/P1 DBE/November 2012

	O.D.		
	$12 = a(0-2)^2 + q$	0 = 16a + q $12 = 4a + q$ $12 = -12a$ $a = -1$ $q = 16$	✓ $y = a(x-2)^2 + q$ ✓ subs R(0; 12) and S(-2; 0) (or T(6; 0)) ✓ a-value
	$y = -(x-2)^{2} + 16$ $= -(x^{2} - 4x + 4) + 16$ $= -x^{2} + 4x + 12$		$\checkmark y = -x^2 + 4x + 12 \tag{4}$
	OR y = a(x-6)(x+2) $= a(x^2 - 4x - 12)$		✓ $y = a(x-6)(x+2)$ ✓ expand ✓ a -value
4.2.3	$= -(x^2 - 4x - 12)$ $= -x^2 + 4x + 12$		$\checkmark y = -x^2 + 4x + 12 \tag{4}$
1.2.5	$\frac{dy}{dx} = 0$ $-2x + 4 = 0$ $x = 2$		✓x-value
	$x = 2$ $y = -(2)^{2} + 4(2) + 12$ $= 16$		✓ y-value
	TP of f is (2; 16) OR		(2)
	$x = -\frac{b}{2a}$ $= -\frac{4}{2(-1)}$		✓ x-value ✓ y-value
	$= 2$ $y = -(2)^{2} + 4(2) + 12$ $= 16$ TP of f is (2; 16)		(2)
	OR		
	$f(x) = -(x-2)^{2} + 16$ TP of f is (2; 16)		✓ x-value ✓ y-value
			(2)

	NSC – Memorandum					
	OR $x = \frac{-2+6}{2}$ = 2 $y = -(2)^{2} + 4(2) + 12$ = 16 TP of f is (2; 16)	✓ x-value ✓ y-value (2)				
4.2.4	$k < 16$ OR $(-\infty;16)$	✓✓ answer (2)				
4.2.5	Maximum value of $h(x) = 3^{f(x)-12}$ occurs at max value of $f(x)$ Maximum value = 3^{16-12} = 81	✓ subs 16 for $f(x)$ ✓ 3 ⁴ or 81 (3)				
	OR Maximum value of $h(x) = 3^{f(x)-12}$ occurs at max value of $f(x)$ $h(2) = 3^{f(2)-12}$ $= 3^{16-12}$ $= 3^4$ or 81 OR	✓ subs 16 for $f(x)$ ✓ 3^4 or 81 (3)				
	$f(x)-12 = -x^2 + 4x$ $= x(4-x)$ which has a maximum value of $f(2) = 4$ $\therefore \text{ Maximum value of } h(x) \text{ is } 3^4 \text{ or } 81$	✓ subs $f(2) = 4$ ✓ 3^4 or 81 (3) [20]				

DBE/November 2012

5.1	$0 \le x \le 3$ OR $[0;3]$ Note: if the candidate gives $0 < x < 3$, award $1/2$ marks	$ \begin{array}{c} \checkmark \ 0 \le x \\ \checkmark \ x \le 3 \end{array} \tag{2} $
5.2	$f^{-1}: x = -\sqrt{27y} $ $x^{2} = 27y $ $y = \frac{x^{2}}{27} x \le 0 OR (-\infty; 0]$	✓ interchange x- and y- values ✓ $y = \frac{x^2}{27}$ ✓ $x \le 0$ or $(-\infty;0)$
5.3	P(-9; 3)	✓ shape ✓ end at origin ✓ any other point on the graph (3)
5.4	Reflection about the <i>x</i> -axis	✓ answer (1)
	OR $(x; y) \to (x; -y); x \ge 0$	✓ answer (1) [9]

Mathematics/P1 DBE/November 2012 19

QUESTION 6

$f(x) = \frac{a}{x-5} + 1$ $0 = \frac{a}{(2)-5} + 1$ $-1 = \frac{a}{-3}$ $a = 3$ $f(x) = \frac{3}{x-5} + 1$		√ x - 5 $ √ + 1 $ ✓ substitution of $ (2; 0) $ $ √ a = 3 $ (4)
OR $(x-5)(y-1) = k$ $(2-5)(0-1) = k$ $k = 3$ $(x-5)(y-1) = 3$ $y = \frac{3}{x-5} + 1$	NOTE: $f(x) = \frac{x-2}{x-5}$ as an alternative simplified form.	$\checkmark (x-5)$ $\checkmark (y-1)$ $\checkmark \text{ substitution of}$ $(2;0)$ $\checkmark k = 3$ (4)

QUESTION 7

7.1.1	$A = P(1-i)^n$		$\checkmark i, n \text{ and } P$
	$= 120\ 000(1-0.09)^5$		identified ✓ subs into
	= R74 883,86	NOTE: Incorrect formula	correct formula ✓ answer (3)
7.1.2	$A = P(1+i)^{n}$ $= 120\ 000(1+0.07)^{5}$ $= R168\ 306.21$	(in 7.1.1 or 7.1.2) award max 1/3 marks	✓ i, n and P identified ✓ subs into correct formula ✓ answer (3)
7.1.3	Sinking fund needed: $F_{y} = R 90 000$		
	V		$\checkmark F_v = R 90 000$
	$F_{v} = \frac{x[(1+i)^{n}-1]}{i}$	$\checkmark i = \frac{0,085}{12} = \frac{17}{2400}$	
	$90\ 000 = \frac{x \left[\left(1 + \frac{0,085}{12} \right)^{61} - 1 \right]}{0,085}$		in annuity formula $\checkmark n = 61$
	0,085	✓ subs into	
	$x = R \ 1 \ 184,68$ NOTE: Incom	rrect formula award max 2/5 marks	correct formula ✓ answer
Copyright			Dlease turn over

OR

Consider the scenario as money deposited at the beginning of every month, but in the last month an additional payment was made at the end of the month:

$$F_{v} = \frac{x(1+i)[(1+i)^{n} - 1]}{i} + x$$

$$= x \left(\frac{(1+i)[(1+i)^{n} - 1]}{i} + 1 \right)$$

$$90\ 000 = x \left[\frac{\left(1 + \frac{0,085}{12}\right) \left[\left(1 + \frac{0,085}{12}\right)^{60} - 1\right]}{\frac{0,085}{12}} + 1 \right]$$

$$x = \frac{90000\left(\frac{0,085}{12}\right)}{\left(1 + \frac{0,085}{12}\right)\left[\left(1 + \frac{0,085}{12}\right)^{60} - 1\right] + \left(\frac{0,085}{12}\right)}$$
$$= R1184,68$$

 $\checkmark i = \frac{0,085}{12} = \frac{17}{2400}$ in annuity formula

✓ n = 60 in annuity formula

 $\checkmark F_v = R 90 000$

✓ subs into correct formula

✓ answer

(5)

OR

Present value of sinking fund needed:

$$90000 = P_{\nu} \left(1 + \frac{0,085}{12} \right)^{61}$$
$$P_{\nu} = R58513,03$$

Using the present value formula:

$$P_{\nu} = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$58513,03 = \frac{x\left[1 - \left(1 + \frac{0,085}{12}\right)^{-61}\right]}{\frac{0,085}{12}}$$

$$x = R \ 1 \ 184,68$$

 $\checkmark i = \frac{0,085}{12} = \frac{17}{2400}$ in annuity formula $\checkmark n = 61$

$$\checkmark P_v = R58513,03$$

✓ subs into correct formula

✓ answer

(5)

7.2

$$P_{v} = \frac{x[1 - (1 + i)^{-n}]}{i}$$

$$900\,000 = \frac{18\,000 \left[1 - \left(1 + \frac{0,105}{12}\right)^{-n}\right]}{\frac{0,105}{12}}$$

$$1 - \frac{900\,000\left(\frac{0,105}{12}\right)}{18\,000} = \left(1 + \frac{0,105}{12}\right)^{-n}$$
$$-n = \log_{\left(1 + \frac{0,105}{12}\right)} \frac{9}{16}$$

n = 66.04 months

She will be able to maintain her current lifestyle for a little more than 66 months using her pension money.

OR

$$P_{v} = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$900\,000 = \frac{18\,000\left[1 - \left(1 + \frac{0,105}{12}\right)^{-n}\right]}{\frac{0,105}{12}}$$

$$1 - \frac{900\,000 \left(\frac{0,105}{12}\right)}{18\,000} = \left(1 + \frac{0,105}{12}\right)^{-n}$$

$$-n\log\left(1+\frac{0{,}105}{12}\right) = \log\frac{9}{16}$$

n = 66,04 months

She will be able to maintain her current lifestyle for a little more than 66 months using her pension money.

Note: If F_v formula used, possibly award one each for x, i, use of logs: max 3/6 marks

If any other incorrect formula is used, award 0/6 marks

Note: If candidate

rounds off early in

Question 7.2 (and obtain 58 months).

penalise 1 mark

$$\checkmark x = 18\ 000$$
 $\checkmark i = \frac{0,105}{12}$ in

annuity formula

- ✓ subs into correct formula
- √ simplification
- ✓ use of logs
- ✓ answer in months (6)

$$\checkmark x = 18\,000$$
 $\checkmark i = \frac{0,105}{12}$ in annuity formula

- ✓ subs into correct formula
- ✓ simplification
- ✓ use of logs
- ✓ answer in months (6)

 $18000 \div \left(18000 - \frac{0,105}{12} \times 900\ 000\right) = \left(1 + \frac{0,105}{12}\right)^n$

 $\checkmark x = 18000$

 $\checkmark i = \frac{0,105}{12}$ in

annuity formula
✓ subs into

correct formula

OR

$$A = F_{v}$$

$$P(1+i)^{n} = \frac{x[(1+i)^{n} - 1]}{i}$$

$$900000 \left(1 + \frac{0,105}{12}\right)^{n} = \frac{18000 \left[\left(1 + \frac{0,105}{12}\right)^{n} - 1\right]}{\frac{0,105}{12}}$$

$$\frac{0,105}{12} \times 900\ 000 \left(1 + \frac{0,105}{12}\right)^{n} = 18000 \left(1 + \frac{0,105}{12}\right)^{n} - 18000$$

$$18000 = 18000 \left(1 + \frac{0,105}{12}\right)^{n} - \frac{0,105}{12} \times 900\ 000 \left(1 + \frac{0,105}{12}\right)^{n}$$

$$18000 = \left(1 + \frac{0,105}{12}\right)^{n} \left(18000 - \frac{0,105}{12} \times 900\ 000\right)$$

✓ simplification

✓ use of logs

✓ answer in months (6)

[17]

She will be able to maintain her current lifestyle for a little more than 66 months using her pension money.

 $\frac{16}{9} = \left(1 + \frac{0,105}{12}\right)^n$

 $-n = \log_{\left(1 + \frac{0,105}{12}\right)} \frac{9}{16}$

n = 66.04 months

QUESTION 8

8.1 $f(x) = 2x^{2} - 5$ $f(x+h) = 2(x+h)^{2} - 5$ $= 2x^{2} + 4xh + 2h^{2} - 5$ $f(x+h) - f(x) = 4xh + 2h^{2}$ $f'(x) = \lim_{h \to 0} \frac{4xh + 2h^{2}}{h}$ $= \lim_{h \to 0} \frac{h(4x + 2h)}{h}$ $= \lim_{h \to 0} (4x + 2h)$ = 4xOR

Note: If candidate makes a notation error Penalise 1 mark

Note: If candidate uses differentiation rules Award 0/5 marks

✓ substitution of of x + h

✓ simplification to $4xh + 2h^2$

√ formula

 $\checkmark \lim_{h\to 0} (4x + 2h)$

✓ answer

(5)

Copyright reserved

Please turn over

$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
$= \lim_{h \to 0} \frac{\left[2(x+h)^2 - 5\right] - \left(2x^2 - 5\right)}{h}$	✓ formula
$= \lim_{h \to 0} \frac{1}{h}$ $= \lim_{h \to 0} \frac{\left[2(x^2 + 2xh + h^2) - 5\right] - 2x^2 + 5}{h}$	\checkmark substitution of $x + h$
$= \lim_{h \to 0} \frac{[2x^2 + 4xh + 2h^2 - 5] - 2x^2 + 5}{h}$	simplification to $\frac{4xh + 2h^2}{h}$
$=\lim_{h\to 0}\frac{4xh+2h^2}{h}$	h
$=\lim_{h\to 0}\frac{h(4x+2h)}{h}$	
$= \lim_{h \to 0} (4x + 2h)$ $= 4x$	$ \checkmark \lim_{h \to 0} (4x + 2h) $ $ \checkmark \text{answer} $
8.2 dy	(5) $\checkmark -4x^{-5}$
$\begin{vmatrix} \frac{dy}{dx} = -4x^{-5} + 6x^2 - \frac{1}{5} \\ = \frac{-4}{x^5} + 6x^2 - \frac{1}{5} \end{vmatrix}$ Note: notation error penalise 1 mark Note: candidates of their answer with	do $\left \right _{6x^2}$
positive exponents	$\stackrel{5}{=}$ $\stackrel{5}{=}$ $\stackrel{(3)}{=}$
$g(x) = \frac{x^2 + x - 2}{x - 1}$	
$= \frac{(x+2)(x-1)}{x-1}$	
	✓ simplification
$g'(x) = 1 \qquad (x \neq 1)$	✓ answer (2)
8.3.2 The function is undefined at $x = 1$.	✓ answer
Division by zero is undefined.	(1)
OR The denominator cannot be zero.	
OR In the definition of the derivative, $g'(1) = \lim_{h \to 0} \frac{g(1+h) - g(1)}{h}$, but $g(1) = \lim_{h \to 0} \frac{g(1+h) - g(1)}{h}$	(1)
does not exist.	[11]

9.1.1	$f(x) = -x^{3} - x^{2} + 16x + 16$ $f'(x) = -3x^{2} - 2x + 16$ $0 = -3x^{2} - 2x + 16$ $3x^{2} + 2x - 16 = 0$ $(3x + 8)(x - 2) = 0$ $x = -\frac{8}{3} \text{ or } x = 2$ OR	Note: if neither $f'(x) = 0$ nor $0 = -3x^2 - 2x + 16$ explicitly stated, award maximum 3/4 marks	✓ $f'(x) = -3x^2 - 2x + 16$ ✓ $f'(x) = 0$ or $0 = -3x^2 - 2x + 16$ ✓ factors ✓ x values (4)
	$f(x) = -x^{3} - x^{2} + 16x + 16$ $f'(x) = -3x^{2} - 2x + 16$ $0 = -3x^{2} - 2x + 16$ $0 = 3x^{2} + 2x - 16$ $x = \frac{-2 \pm \sqrt{2^{2} - 4(3)(-16)}}{2(3)}$ $x = -\frac{8}{3} \text{ or } x = 2$		✓ $f'(x) = -3x^2 - 2x + 16$ ✓ $f'(x) = 0$ or $0 = -3x^2 - 2x + 16$ ✓ subs into formula ✓ x values (4)
9.1.2	$f''(x) = 0$ $-6x - 2 = 0$ $x = -\frac{1}{3}$ OR $-\frac{8}{7} + 2$		$f''(x) = -6x - 2$ $\checkmark -6x - 2 = 0$ $\checkmark \text{ answer}$ (3)
	$x = \frac{-\frac{8}{3} + 2}{2}$ $x = -\frac{1}{3}$ OR $f'(x) = -3x^2 - 2x + 16$ $x = \frac{-(-2)}{2(-3)}$		2 $\checkmark \checkmark \text{ answer}$ (3) $\checkmark \checkmark x = \frac{-(-2)}{2(-3)}$
	$=-\frac{1}{3}$ OR		✓ answer (3)

	$f(x) = -x^3 - x^2 + 16x + 16$	$\checkmark \checkmark x = \frac{-(-1)}{2(-1)}$
	$x = \frac{-\left(-1\right)}{3\left(-1\right)}$	3(−1) ✓ answer
		(3)
	$=-\frac{1}{3}$	
9.2.1	$g(x) = -2x^2 - 9x + 5$	
	$g(-1) = -2(-1)^2 - 9(-1) + 5$	
	=12	$\checkmark g(-1) = 12$
	g'(x) = -4x - 9	$\checkmark g(-1) = 12$ $\checkmark g'(x) = -4x - 9$
	$m_{\rm tan} = -4(-1) - 9$	
	=-5	$ \checkmark m_{\text{tan}} = -5 $
	y = -5x + c	$m_{\rm tan} = -3$
	12 = -5(-1) + c	
	c = 7	
	y = -5x + 7	✓ answer (4)
	OR	
	$g(x) = -2x^2 - 9x + 5$	
	$g(-1) = -2(-1)^2 - 9(-1) + 5$	$\sqrt{a(1)} = 12$
	=12	$\begin{cases} \mathbf{v} & g(-1) = 12 \\ \mathbf{v} & \sigma'(x) = -4x - 9 \end{cases}$
	g'(x) = -4x - 9	g(x) = 1x
	$m_{\text{tan}} = -4(-1) - 9$	$\checkmark g(-1) = 12$ $\checkmark g'(x) = -4x - 9$ $\checkmark m_{tan} = -5$
	=-5	
	y - 12 = -5(x+1)	✓ answer
	y = -5x + 7	(4)
9.2.2		(+)
	x	✓ sketch
		✓ 7 ✓ correct inequality
	q > 7	(3)
	OR	
	$y = -5x + q$ and $y = -2x^2 - 9x + 5$	✓ method
	$-5x + q = -2x^2 - 9x + 5$	√ 7
	$q = -2(x+1)^2 + 7$	✓ ′/ ✓ correct inequality
	$q = -2(x+1) + 7$ $\therefore q > 7$	(3)

	OR	
	$y = -5x + q$ and $y = -2x^2 - 9x + 5$	✓ method
	$-5x + q = -2x^2 - 9x + 5$	• method
	$2x^2 + 4x + q - 5 = 0$	
	$-4\pm\sqrt{16-4(2)(q-5)}$	
	$x = \frac{-4 \pm \sqrt{16 - 4(2)(q - 5)}}{2(2)}$	
	$-4 + \sqrt{56 - 8a}$	
	$x = \frac{-4 \pm \sqrt{56 - 8q}}{4}$	
	56-8q < 0	. –
	q > 7	✓ 7 ✓ correct inequality
		(3)
	OR	
	Since $g(-1)=12$ and at $x=-1$, tangent equation is $y=-5x+7$,	
	$y = -5x + q$ not intersecting g \Rightarrow	
	12 < -5(-1) + q	
	12-5 < q	
	7 < q	✓ method
		√ 7
		✓ correct inequality
		(3)
9.3	$h'(x) = 12x^2 + 5$	$\checkmark h'(x) = 12x^2 + 5$
	For all values of x : $x^2 \ge 0$	
	$12x^2 \ge 0$	
	$12x^2 + 5 \ge 5$	
	$12x^2 + 5 > 0$	✓ clearly argues
	For all values of x: $h'(x) > 0$	that $h'(x) > 0$
	All tangents drawn to h will have a positive gradient.	
	It will never be possible to draw a tangent with a negative gradient to	✓ conclusion
	the graph of h .	(3)
	OR	
	$h'(x) = 12x^2 + 5$	(11) 12 2 -
	Suppose $h'(x) < 0$ and try to solve for x:	$\checkmark h'(x) = 12x^2 + 5$
	$12x^2 + 5 < 0$	
	$r^2 = 5$	✓ clearly argues that
	$x^2 < -\frac{5}{12}$	h'(x) < 0 is
	but x^2 is always positive	impossible
	\therefore no solution for x	
	$h'(x) \ge 0$ for all $x \in R$	✓ conclusion
	i.e. there are no tangents with negative slopes	(3)
Copyrigh	t reserved	Please turn over

OR

$$h'(x) = 12x^2 + 5$$

 $\checkmark h'(x) = 12x^2 + 5$

Since clearly h'(x) > 0 for all $x \in R$,

it will never be possible to draw a tangent with a negative gradient to the graph of h.

✓ argues h'(x) > 0 by drawing a sketch

✓ conclusion

(3)

[17]

10.1	$s(t) = 2t^{2} - 18t + 45$ $s'(t) = 4t - 18$ $s'(0) = 4(0) - 18$ $= -18 \ m/s$	Note: answer only award 0/3 marks	✓ $s'(t)$ ✓ subs $t = 0$ into $s'(t)$ formula ✓ answer
			(3)
10.2	$s''(t) = 4 \mathrm{m/s^2}$		✓ answer (1)
10.3	4t - 18 = 0 $4t = 18$		$\checkmark s'(t) = 0$
	$t = \frac{9}{2}$ seconds or 4,5 seconds \mathbf{OR}		✓ answer (2)
	$s(t) = 2\left(t - \frac{9}{2}\right)^2 + \frac{9}{2}$		$s(t) = 2\left(t - \frac{9}{2}\right)^2 + \frac{9}{2}$
	$t = \frac{9}{2}$ seconds or 4,5 second	S	✓ answer (2)
	OR $s(t) = 2t^2 - 18t + 45$ -18		$\checkmark t = -\frac{-18}{2(2)}$
	$t = -\frac{-18}{2(2)}$ $t = \frac{9}{2}$ seconds or 4,5 seconds		✓ answer (2) [6]

11.1	No, because (15; 5) does not lie within the feasible region.	✓ answer
	OR	(with motivation)
	No, because according to the constraints, the <i>x</i> -value (number of scientific calculators) must be at least 20.	(1)
11.2	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$ \checkmark x \ge 20 $ $ \checkmark \checkmark x + 2y \le 50 $ $ \checkmark \checkmark x + y \le 40 $ $ \checkmark y \ge 0 $ (6)
11.3.1	A	✓ answer (1)
11.3.2	All points on the search line yield the same profit. Hence no such point exists. OR	✓✓ No point exists (2)
	If such an $(x; y)$ exists, $Q = x + 3y$ and $y = -\frac{1}{3}x + 15$ so $45 = 3y + x = Q$ $Q = 4500$ Hence, there is no such point.	✓✓ No point exists (2)

11.3.3	Q = ax + by	$\checkmark y = -\frac{a}{b}x + \frac{Q}{b}$
	$y = -\frac{a}{b}x + \frac{Q}{b}$	$b^{n}b$
		a
	$-1 \le -\frac{a}{b} \le -\frac{1}{2}$	$\checkmark -1 \le -\frac{a}{b}$
	$\frac{1}{2} \le \frac{a}{b} \le 1$	$\checkmark \frac{a}{\le 1}$
	$\frac{1}{2} \leq \frac{1}{b} \leq 1$	b ✓ answer
	The maximum value of $\frac{a}{l}$ is 1.	(4)
	b	[14]

TOTAL: 150