AMS projekt

Rasmus Bækgaard, 10893 og Kristoffer Sterndorff-Jessen, 09607

Figur 1: Systemet...

Indhold

1	Pro	jektbe	skrivelse												3
2	Sys	tembes	skrivelse												3
	2.1	Hardw	are opbyg	gning .		 	 			 					3
	2.2	Softwa	re design			 	 	 •	 •	 		•		 •	4
3	Tek	niske o	overvejel	ser											5
	3.1	RS232	-kabel			 	 			 					5
	3.2	Driver	S			 	 			 					5
		3.2.1	LM75 .			 	 			 					5
		3.2.2	LCD162			 	 			 					6
	3.3	FreeR	ΓOS			 	 			 					7
		3.3.1	Lcd162T	ask		 	 			 					7
		3.3.2	Buzzer .			 	 			 					7
		3.3.3	GSM-mo	odemme	et .	 	 			 					8
	3.4	Ideel o	pbygning			 	 			 				 •	9
4	Tes	tresult	ater												9
5	Kor	ıklusio	n											-	11

1 Projektbeskrivelse

Følgende projekt er udviklet i Anvendte Microcontroller Systemer, AMS, af Rasmus Bækgaard, 10893, og Kristoffer Sterndorff-Jessen, 09607.

Projektets formål består i, at måle temperaturen på et givet område, vise dette på et display og hvis temperaturen overstiger en given værdi, sendes en SMS til en givet bruger, samt en buzzer afgiver en lyd.

Produktet kan bruges til, f.eks. at overvåge apparater, der har tendens til at overophede og give besked til en tekniker herom. Samtidig kan den aktuelle temperatur ses på displayet.

2 Systembeskrivelse

Systemet er opbygget på STK-500 boarded, hvorpå der er tilkoblet forskellige elementer:

- Et LM75 print
- Et Demo Board med et LCD162 påbygget.
- Et MC35i GSM modem

På STK-500 boardet er der lagt software på, hvor styresystemet er FreeRTOS, version 7.1.0, samt drivers til Demo Board'et, LED'er, UART'en og LM75 printet.

2.1 Hardware opbygning

Kabler er forbundet som vist på tabel 1.

Forbindelsen mellem STK-500's RS232 Spare og MC35i er med et 9-pinskabel, hvor pin 2 og 3 (RX og TX) er byttet rundt, således at microcontrolleren sender igennem TX og MC35i modtager i sin RX.

STK500	LM75	Demo Board	MC35i	STK500
PORTA	•	10 pins, Display	•	•
PB0	•	•	•	RXD
PB1	•	•	•	TXD
PB7	•	Buzzer	•	•
PC0	SCL	•	•	•
PC1	SDA	•	•	•
PC8 og PC 9	GND og VCC	•	•	•
RS232 Spare	•	•	RS232 input	•

Tabel 1: Hardware forbindelser

2.2 Software design

Softwaren er, som nævnt tidligere i afsnittet, skrevet oven på FreeRTOS i *C.* FreeRTOS giver mulighed for, at skrive i forskellige tråde, samt kommunikation med message queues. Der er lavet en tråd til, at opsamle temperaturværdierne fra LM75-printet, og sender dette til en queue. Det valideres også om temperaturen har overskrevet en givet værdi, som derefter starter en buzzer i 2 sekunder.

En anden tråd kigger hele tiden på førnævnte queue, og udskriver disse værdier til displayet og sender en besked til GSM-modemet for, at sende en SMS til brugeren.

Trådene og deres interaktion ses på figur 2.

Figur 2: Systemets tasks

3 Tekniske overvejelser

3.1 RS232-kabel

Forbindelsen til GSM-modemet sker vha. et 9-pins kabel. Det er forbundet til STK-500's Spare port og GSM-modemets RS-232 interface.

Når der skrives til GSM-modemet køres dette igennem UART-driveren, som sender og modtager igennem RS-232 stikket. Interfacet på STK-500 og GSM-modemet er det samme, hvilket resulterer i, at et han-han kabel mellem de to vil få modtagerpindene sat sammen senderpindene sat sammen, hvilket resulterer i ingen kommunikation.

For at løse dette, designede vi et 9-pins kabel, hvor pin 2 og 3 var byttet, således at det passede med senderpindene blev sat til modtagerpindene.

Figur 3: 9-Pin hun stik for STK-500 Spare og GSM-modem

3.2 Drivers

Til projektet er der blevet brugt nogle drivere fra opgaverne fra AMS-forløbet, samt udleveret drivere til UART'en og LED'erne. Herunder er en liste over de drivere, som vi selv har arbejdet på.

3.2.1 LM75

Driveren til temperatursensoren, LM75, er baseret på en opgave fra AMS-forløbet. Den kommunikerer med STK-500 vha. I^2C -bussen og kan i princippet måle fra $-155^{\circ}C$ til $+155^{\circ}C$, hvilket vi dog ikke har test eller finder relevant for denne opstilling.

Fra tasken void LM75SensorTask (void *pvParameters) kaldes LM75-driverens funktion til, at modtage ny temperatur fra LM75-printet, vist i Listing 1.

Listing 1: LM75's metode til at spørge på ny data

```
int LM75_temperature(unsigned char SensorAddress)
{
   i2c_start();

   unsigned char address = ((0b01001000 | SensorAddress) << 1) | 0 
        x01;
   i2c_write(address); //Address write

   unsigned char tempMSB = i2c_read(0x00);
   unsigned char tempLSB = i2c_read(0x01);
   i2c_stop();

return (tempLSB>>7) | (tempMSB<<<1);
}</pre>
```

Ved at give en adresse på slaven i I²C-bussen som parameter, startes I²C'en og der sendes en forespørgsel på denne slave, hvorefter denne sender sin data retur. Eftersom temperaturen er 9 bit lang, shiftes de to læsninger, således MSB og LSB står korrekt og returneres i en int.

3.2.2 LCD162

Driveren til Demo Board, der indeholder et LCD162 display, er baseret på en opgave fra AMS-forløbet. Denne kan udskrive tekst på displayet, hvilket benyttes til at vise den aktuelle temperatur.

Der udskrives hovedsagligt strings og ints på displayet. På Listing 2 og Listing 3 ses hvordan disse funktioner er skrevet.

Listing 2: LCD162 metode til visning af en string

```
void LCDDispString(char* str)
{
    for(int i = 0 ; i < 32 ; i++)
    {
        if(str[i] == '\0')
            break;
        sendData(str[i]);
     }
}</pre>
```

Listing 2 virker således, at den modtager en char*, hvor den steppes igennem char for char og udskrives indtil hele strengen er udskrevet, eller har skrevet flere tegn end der kan være på displayet.

Listing 3: LCD162 metode til visning af en integers

```
1 void LCDDispInteger(int i)
{
3   char arr[3];
   itoa(i, arr, 10);
5   LCDDispString(arr);
}
```

Listing 3 virker således, at den tager imod den ønskede int, som overføres til et array med plads til 3 chars¹, hvorefter itoa-funktionen skriver dataen in i arrayet i decimal format. Til sidst udskrives det vha. LCDDispString, vist i Listing 2.

3.3 FreeRTOS

Vha. FreeRTOS, Real Time Operating System, er systemet blevet bygget med flere tasks der kan køre sideløbende², sender beskeder til beskedkøer der håndteres vha. mutexes.

Systemet gør brug af to tasks, LM75SensorTask og Lcd162Task.

3.3.1 Lcd162Task

Denne task henter temperatur værdier fra LM75 via en queue. Hvis denne queue er tom, går tasken i dvale og venter på en værdi skal ankomme. Den hentede værdi udskrives på LCD-displayet via funktionen LCDDispInteger, der er vist i Listing 3.

Som funktionen er lige nu, er der en simpel if-sætning, som holder øje med, om temperaturen overstiger en bestemt værdi, som sætter buzzeren og GSM-modemet i gang. Efter at have været sat i gang én gang, sættes et flag, således at der buzzes i intervaller af to sekunder ad gangen og GSM modem ikke sender beskeder konstant. Det var dog ikke den originale tanke, at disse to funktioner skulle kaldes her. Se afsnit 3.4 for bedre beskrivelse.

3.3.2 Buzzer

Buzzeren, der sidder på Demo Board'et, kan afspille toner som advarsel. Til afspilningen kan der angives en bestemt frekvens, der er bestemt ved følgende formel:

 $^{^{1}}$ Her burde være 6 pladser, så der er plads til -32768 og op til +32767

²De kører vha. en scheduler, som afsætter lidt tid til hver og det forekommer derfor sideløbende

$$frekvens = \frac{3686400Hz}{2 \cdot 32 \text{ prescale} \cdot (1 + OCRn)} \Leftrightarrow OCRn = \frac{57600}{frekvens} - 1$$

3.3.3 GSM-modemmet

Via UART'en på STK-500 kommunikerer vi med et GSM modul, MC35i, således vi kan sende beskeder, når der bliver målt en for høj temperaturværdi på LM75. Når vi kommunikerer med modemmet, skriver vi strenge til den via vores UART driver. Modemmet som standard, laver et echo til os, hvilket vil sige, at det vi skriver til den, skriver den tilbage til os, samt et respons. Så når vi sendte den en kommando og ventede på et respons vi kunne arbejde videre på, skulle vi være opmærksomme på, at det vi først får tilbage, er vores egen kommando. Men denne echo kunne konfigureres væk, ved at skrive en simple kommando til den³.

Når en kommando blev udført korrekt på modemmet, ville der i de fleste tilfælde blive sendt et OK tilbage. I koden blev det derfor implementeret således, at hver gang en kommando blev sendt til modemmet, ville programmet vente på dette OK, før den næste kommando ville blive sendt. Dette var tanken, men det var ikke det som blev udført i praksis. I den endelig version af vores program, blev denne "wait for OK"erstattet med et delay, da vi aldrig fik OK tilbage når modemmet var tilsluttet STK-500.

Hvis vi testede præcis den samme kode, når modemmet var tilsluttet computeren via RS-232, fik vi altid det forventede respons tilbage. Men når vi kørte koden på STK-500, fik vi aldrig OK tilbage. Vi fik respons fra den, men det kom an på om echo var sluttet til eller fra. Hvis echo var sluttet til og vi sendte AT af sted, for at teste om der var forbindelse, ville vi forvente at få AT\n OK tilbage. Hvis echo var taget fra og vi igen sendte AT af sted, ville vi forvente kun at få OK tilbage. Men vi fik kun \r\n tilbage. Vi mistænkte vores hjemmelavet 9-PIN kabel til at være problemet, men vi fik stadig echo tilbage og kunne læse dette.

Grundet manglede tid, blev systemet til sidst implementeret med delays, selvom det ikke er optimalt. Dog viste det sig funktionelt i vores tilfælde. Hvis systemet skulle udvides, var dette punkt af høj prioritet.

 $^{^3}$ ATE0\r - Alle strenge der blev skrevet til modemmet, skulle afsluttes med "\r", som er carriage return, for at eksekvere kommandoen.

3.4 Ideel opbygning

Systemet var fra starten tænkt til, at køre flere tasks, således vi fik delt ansvaret ud så meget som muligt. Dvs. alle tilsluttede komponenter(LCD162, LM75, buzzer og modemmet) alle ville få deres egne tasks. Idet buzzeren og modemmet sjældent ville blive brugt, var det ideelt at holde dem i dvale, mens en anden task skulle sætte dem i gang, når de skulle bruges. Derfor blev checkTempTask et slags mellemled imellem temperatur-delen og alarmerings-delen af systemet. Figur 4 viser og beskriver meget godt det tænkte design af systemet.

Figur 4: Ideel opbygning af systemet

Desværre blev systemet i sidste ende ikke som først planlagt. Vi stødte tit ind i hukommelses problemer, idet systemet havde 5 tasks kørende, samt beskedkøer. Under FreeRTOSConfig.h blev der ændret på TOTAL_HEAP_SIZE og MINIMAL_STACK_SIZE for at kunne få programmet til at compile, men det ændrede stadig ikke på, at det ikke ville køre når overført til MEGA32.

For at kunne få noget til at virke, blev systemet modificeret, så i stedet for fem tasks, endte det med 2 tasks - nemlig LM75SensorTask og Lcd162Task.

Kigger man på figur 4 igen kan man se, at det endelige design består af den venstre del af figuren; de 2 tasks, xQueue1 og LCD displayet og BuzzerTask og GSMTask blev lavet om til void funktioner.

4 Testresultater

Da systemet blev udviklet, var det vigtigt at teste koden og komponenter, som tingene blev kodet og udviklet. Til at starte med blev de enkelte dele af systemet testet hver for sig, så man var sikker på, den enkelte del virkede, før den blev koblet sammen med andre dele. F.eks. blev værdierne fra LM75 testet via seriel forbindelse gennem RS232 til en computer. Med programmet *Tera Term*, kan man se, om der kommer nogle værdier ud, og om de passer nogenlunde overens med realiteten. De andre dele af systemet(GSM, LCD162 og Buzzer), blev også testet individuelt inden nogle tasks blev sat sammen.

Når alle tasks virkede individuelt, var det næste skridt at teste nogle samlet. For at kunne holde øje med, hvor i koden man befandt sig, når der opstod fejl, var det brugbart at bruge LED-driveren. Denne indeholder en simpelt toggle funktion, som får en bestemt LED til at skifte når denne kaldes. En test kan ses for funktionen ModemOutput på Listing 4. Hvis programmet skulle gå i stå et sted, i f.eks. en deadlock, er det også muligt at se, hvor i programmet man er kommet til via LEDs.

Alle individuelle tests, samt enkelte sammensatte tests virkede efter hensigten. Problemet kom først, da alt blev sat sammen. Det var dog ikke rigtigt muligt at teste her, pga. hukommelses plads. Selvom nogle ændringer blev lavet i FreeRTOSconfig.h filen, så det kunne compile, ville programmet slet ikke starte på Mega32-processoren.

For at sikre, at den indbyggede timing i FreeRTOS ikke blev ændret af tilføjet kode⁴, blev der oprettet en simpel task. Den task havde kun én funktion, nemlig at toggle LED 0 hvert 100 millisekund. Herved var det hurtigt at opdage, hvis programmet fra start ikke kørte, hvis programmet pludseligt ændrede timing eller programmet gik i stå. Denne task blev slettet, da hukommelsespladsen løb op.

```
Listing 4: ModemOutput med LED-test
```

```
void ModemOutput(void *pvParameters)
2 {
    char buffer = 0;
    char flag = 1;
6    while(1)
    {
        while(!CharReady())
        {
            vTaskDelay(100);
            toggleLED(1);
        }
}
```

⁴FreeRTOS bruger Timer1 til at schedulere med.

```
\mathtt{LCDGotoXY}(0,1);
14
       while(flag)
16
         toggleLED(2);
18
         buffer = ReadChar();
         if(buffer == '\r')
20
           flag = 0;
22
         LCDDispChar(buffer);
24
       flag = 1;
26
       toggleLED(3);
       vTaskDelay(50);
28
30 }
```

5 Konklusion

Litteratur

- [1] kel, AT Command Set (GSM 07.07, GSM 07.05, Siemens specific commands) for the SIEMENS Mobile Phones S35i, C35i, M35i. Siemens, 1.0 ed., 3 2000.
- [2] S. C. Engine, *TC35i Terminal*. Siemens, 02.07 ed., 1 2004. DocId: TC35i_ATC_V02.07.
- [3] S. C. Engine, TC35i Terminal. Siemens, 01.05 ed., 7 2003. DocId: TC35i T HD v01.05.
- [4] ATMEL, "8-bit Microcontroller with 32KBytes In-System Programmable Flash." http://www.atmel.com/Images/doc2503.pdf, 2011.
- [5] http://www.asciitable.com/, "ASCII Table and Description." http://www.asciitable.com/, 2010.