

1. Démarche de l'étude SDF

2. Types des méthodes d'analyse

2.1 Méthodes inductives

AMDEC

AMDEC

- Méthode conçue pour l'aéronautique américaine en 1960.
- Devenue aujourd'hui connue dans divers domaine, réglementaire dans les études de sûreté des industries « à risque » (aérospatial, nucléaire, chimie).
- Elle est applicable :

à un produit : AMDEC produit,

à un processus : AMDEC processus,

à un système de production : AMDEC moyen de production.

 L'AMDEC est une technique d'analyse prévisionnelle qui permet d'estimer les risques d'apparition de défaillance ainsi que les conséquences sur le bon fonctionnement du moyen de production, et d'engager les actions correctives et préventives nécessaires.

AMDEC

L'objectif est de réaliser une maintenance basée sur la fiabilité (RCM) en :

AMDEC

LES MODES DE DEFAILLANCE

- C'est la manière dont un système vient à ne pas fonctionner.
- Il est relatif à la fonction de chaque élément.
- Une fonction a 4 façons de ne pas être correctement effectuée :
 - ✓ Perte de fonction : la fonction cesse de se réaliser, la fonction ne se réalise pas lorsqu'on la sollicite.
 - ✓ Fonction dégradée : la fonction ne se réalise pas parfaitement, altération de performances
 - ✓ Fonction intempestive : la fonction se réalise lorsqu'elle n'est pas sollicitée. Exp perturbations (parasites)

Classification des défaillances	Exemples de défauts qualités et de mode				
	de défaillance				
	 Cassure, rayure 				
	 Mauvaise dimension, forme 				
	 Mauvais état de surface 				
	 Déformation 				
	■ Défaut d'alignement				
Perte de fonction	 Défaut de positionnement 				
	 Défaut d'assemblage 				
	 Absence de pièce 				
	 Rupture 				
	 Blocage, grippage, coincement 				
	 Obturation 				
	■ fuite				
	■ jeu, mauvais guidage				
	■ frottement				
Dégradation de fonction de l'élément	 usure, fatigue, corrosion 				
	 désalignement, excentration 				
	 desserrage, désolidarisation 				
	 colmatage 				
	■ contamination				

AMDEC

LES CAUSES DE DEFAILLANCE

Il existe différents types de causes amenant le mode de défaillance :

- Causes internes au matériel (conception et fabrication)
- Causes externes dues à l'environnement, au milieu, à l'exploitation,
- Causes externes dues à la main d'œuvre.
- Causes externes au matériel : Autre système

Classification des causes de défaillance	Exemples des causes de défaillance		
Conception	 Non-conformité au cahier des charges Sous-dimensionnement, coefficient de sécurité trop faible Constituant non fiable Technologie non adaptée Erreurs de cotation, tolérance Mauvais choix de forme, matière 		
Fabrication et réalisation	 Non respect des plans, matériaux, Défaut interne matière Opération mal réalisée Outil usagé, endommagé Installation défectueuse Erreur de manutention 		
Milieu ambiant lors de l'exploitation	 Température Humidité Vibrations, chocs, coups de bélier. Pollution. Outils, produit traité Fixation, implantation, assises 		
Exploitation	 Réglage, contrôle défectueux Utilisation non conforme, sur charge Défaut de maintenance Usure naturelle ou accélérée, fatigue Contraintes mécaniques 		
Autre système	Source d'énergieSystème en amont, en aval		

AMDEC

EFFETS DE LA DÉFAILLANCE

Conséquences de la défaillance sur :

- ☐ le fonctionnement et l'état matériel du systè
- ☐ la disponibilité.
- ☐ la maintenance du système.
- ☐ la sécurité des utilisateurs.
- ☐ l'environnement du système.

Classification des effets des défaillances	Exemples d'effets de defaillance
Effet sur le fonctionnement et l'état matériel du système	 Défaut de fonctionnement Pertes de performance Dégâts matériels, avaries Pannes, arrêts
Effets sur la disponibilité	 Durée d'arrêt du flux de production Ralentissement de cadence allongement du cycle non-conformité du produit fabriqué rebut, retouche, déclassement, dérogation
Effets sur la maintenance	 frais de réparation coûts directs de maintenance
Effets sur la sécurité des utilisateurs et sur l'environnement du système	dommages corporelspollution contamination
Effets sur les opérations suivantes MAHFOUD 4A ENSAM	 perturbation du flux arrêt de production rebuts, retouches dégradation du processus sécurité des opérateurs environnement

AMDEC

CRITICITÉ DE LA DÉFAILLANCE

A chaque défaillance peut être affecté un niveau de criticité élaboré à partir de trois critères indépendants :

Critère	Définition	
Fréquence	Fréquence (occurrence ou probabilité) d'apparition d'une défaillance due à une cause particulière	
Gravité	Gravité des effets de la défaillance sur le système ou l'utilisateur	
Probabilité de non -détection	Risque de ne pas détecter une défaillance avant qu'elle n'atteigne l'utilisateur du système	C= F x D
	déterminée à partir de ses niveaux de fréquence,	
Criticité	gravité et probabilité de non -détection	
Seuil de criticité	Valeur limite (atteinte par la criticité ou par l'un des critères) à partir de laquelle la défaillance est jugée critique.	

AMDEC

Des grilles de cotation sont utilisées pour faire l'évaluation des critères de fréquence (F), gravité (G) et probabilité de non-détection (N).

Cotation	Fréquence F	Gravité G	Probabilité de non- détection N		
1	Très faible Mineure		Détectable à coup sûr		
2	Faible	Significative	Détection possible		
3	Moyenne	Moyenne	Détection improbable		
4	Forte	Majeure	Indétectable		
5		Catastrophique			

C ou I.P.R.: Evaluation de la criticité: elle est exprimée par l'Indice de Priorité des Risques.

- Si I.P.R. < Seuil 1 → famille3 Rien à signaler
- Si Seuil1 =< I.P.R.< Seuil2 → famille2 Surveillance accrue à envisager, valeur à la limite de l'acceptable
- Si I.P.R. >= Seuil2 → famille1 Mise en place d'actions permettant de corriger donc d'améliorer le moyen ou l'installation utilisé

AMDEC: Exemple

Machine à poser des turbulateurs

Le système étudié est une machine qui introduit des fils torsadés (turbulateurs) dans des radiateurs de climatisation d'automobiles ; la fonction des turbulateurs étant de faciliter l'échange thermique entre l'eau du radiateur et l'air ambiant.

AMDEC: Exemple

Machine à poser des turbulateurs

AMDEC: Exemple

Date de l'analyse :	AMDEC MACHINE – ANALYSE DES MODES DE DÉFAILLANCE DE LEURS EFFETS ET DE LEUR CRITICITÉ				for	Phase de		page : 1/1		
l l	Système : Machine de pose de turbulateurs		Sous - Ensemble : Entrainement			fonctionnement Normal			Nom : F.H.	
Élément	Fonction	Mode de	Cause de la	e de la Effet de la Détection		Criticité			Action	
Liement	1 Offiction	défaillance	défaillance	défaillance	Detection	F	G	N	С	Corrective
		Pas				1	3	2	6	
	Entrainer les turbulateurs	d'entrainement				1	3	2	6	
		Mauvais entrainement				2	3	3	18	

Niveaux	Fréquence	Gravité (Indisponibilité)	Non-Détection
1	1 défaillance maxi par an	Pas d'arrêt de production	Visible par l'opérateur
2	1 défaillance maxi par trimestre	Arrêt ≤ 1 heure	Détection aisée par un agent de maintenance
3	1 défaillance maxi par mois	1heure < arrêt ≤1 jour	Détection difficile
4	1 défaillance maxi par semaine	Arrêt >1 jour	Indécelable

Données:

- Les défaillances ci-dessus entrainent des arrêt de 24 heures maxi.
- Le réducteur et les roulements sont changés maximum 1 fois par an.
- Par contre, les courroies cassent tous les 5 mois.

2.2 Méthodes Déductives

Diagramme Causes/Effet (ISHIKAWA)

Diagramme Causes/Effet

- C'est un outil permettant de visualiser et d'identifier de façon ordonnée les causes possibles d'un effet constaté que l'on cherche à analyser, et donc de déterminer les moyens pour y remédier.
- Appelé diagramme en arête de poisson, arbre des causes ou diagramme d'Ishikawa (du nom de son inventeur : le japonais Kaoru Ishikawa).

Diagramme Causes/Effet : Exemple

Mauvais fonctionnement d'une installation hydraulique

Diagramme Causes/Effet : Exemple

2.2 Méthodes Déductives

Arbre de défaillance (ADD)

Arbre de défaillance

- La méthode de l'arbre de défaillances, encore appelée arbre des causes (fault tree) est née en 1962 dans la société Bell Telephone.
- Cette méthode a pour objectif de déterminer les combinaisons possibles d'évènements qui entraînent l'occurrence d'un évènement indésirable (ou redouté). L'idée est de représenter graphiquement la logique de dysfonctionnement d'un système.

Composition de l'arbre de défaillance:

- Evènement Redouté (ER): C'est l'événement indésirable pour lequel on fait l'étude de toutes les causes qui y conduisent. Cet événement est unique pour un arbre de défaillance et se trouve au "sommet" de l'arbre.
- E1, E2, E3,...: Évènements intermédiaires.
- A, B, C,..: Événements de bases (causes racines)
- Portes logiques

Arbre de défaillance

Les évenements

Symbole	Nom	Signification
	Rectangle	Evenement redouté ou intermédiaire
	Cercle	Evenement elementaire
	Losange	Evenement elementaire non developpé soit parcque ses consequences sont négligeables soit par manque d'informations
	Double losange	Evénement élémentaire dont le développement est à faire ultérieurement
	Maison	Evénement de base survenant normalement pour le fonctionnement du système: On peut aussi le définir comme un événement non-probabilisé, que l'on doit choisir de mettre à 1 ou à 0 avant tout traitement de l'arbre.

Arbre de défaillance

Les Portes logiques et connexions

Dénomination
Porte « ET »
Porte « OU »
Porte « combinaison »

Arbre de défaillance

Arbre de défaillance

Quel est le risque de se trouver dans la noirceur?

A : rupture de courant (P=0.01)

B: rupture de fusible (P=0.1)

C: lampe 1 brulée (P=0.05)

D: lampe 2 brulée (P=0.05)

Arbre de défaillance

Quel est le risque de ne pas avoir d'eau de refroidissement?

Evénement redouté: « Pas d'eau de refroidissement » Causes possible :

- Débit nul en aval de V1 ET en aval de V2
 - Si débit nul en aval de V1 :
 - V1 bloquée ou Débit nul en aval de P1
 - Si V1 bloquée : V1 fermée/bouchée ou Erreur de l'opérateur
 - Si débit nul en aval de P1 : P1 arrêtée ou Réservoir vide
 - Si débit nul en aval de V2 :
 - V2 bloquée ou Débit nul en aval de P2
 - Si V2 bloquée : V2 fermée/bouchée ou Erreur de l'opérateur
 - Si débit nul en aval de P2 : P2 arrêtée ou Réservoir vide

Arbre de défaillance

Arbre de défaillance

Quel est le risque de ne pas avoir d'eau de refroidissement?

TopEvent FTA Fault Tree Analysis Software

Arbre de défaillance

Quel est le risque de ne pas avoir d'eau de refroidissement?

Arbre de défaillance

	Minimal Cut Set	Order
1	R	1
2	Ор	1
3	V1.V2	2
4	P2.V1	2
5	P1.V2	2
6	P1.P2	2

6 Coupes min: {R}, {Op}, {V1.V2},{ V1.P2}, {V2.P1}, {P1.P2}

TD1