Exercise 1

Yiwei Ye

Steps:

- 1. To find the coordinates of the origin of A seen from B:
 - We constructed a rotation matrix R_AB using the 30-degree angle between frame A's x-axis and frame B's y-axis.
 - The rotation matrix R_AB is:

R_AB = [[cos(30 degrees), sin(30 degrees)], [-sin(30 degrees), cos(30 degrees)]]

- Using the coordinates of point p in both frames, we found the translation vector t_AB so that when we rotate point p from A and add t_AB, we get its coordinates in B.
- The coordinates of the origin of A seen from B are the negative of t_AB, which are approximately (7.10, 1.46).
- 2. To find the coordinates of the origin of B seen from A:
 - We used the inverse of the rotation matrix R_AB, which is its transpose R_BA, because rotation matrices are orthogonal.
 - The origin of B seen from A is found by rotating the negative of t_AB by R_BA.
 - The coordinates of the origin of B seen from A are approximately (5.42, 4.82).
- 3. To find the coordinates of a point p expressed in A if $B_q = (3, 1)$:
 - We applied the inverse rotation matrix R_BA to the given coordinates of point q in frame B.
 - We then added the origin of B as seen from A to this rotated vector to find the coordinates in frame A.
 - The coordinates of point q expressed in A are approximately (7.51, 7.18).

In conclusion:

1. Coordinates of the origin of A seen from B:

The translation vector t_AB was calculated using the given point coordinates in both frames A and B, and considering the rotation due to a 30-degree angle.

The coordinates of the origin of A as seen from B were found to be approximately (7.10, 1.46).

2. Coordinates of the origin of B seen from A:

Using the inverse transformation (the transpose of the rotation matrix), we found the coordinates of the origin of B as seen from A to be approximately (5.42, 4.82).

3. Coordinates of point p expressed in A if $B_q = (3, 1)$:

For point q with known coordinates in frame B, we applied the inverse rotation and translation to find its coordinates in frame A, resulting in approximately (7.51, 7.18).