REDUCT

ANTON BOBKOV

Claim 0.1. Suppose we have a collection of vectors $\{\vec{p}_i\}_{i\in I}$ with each $\vec{p}_i \in \mathbb{Q}_p^m$. Pick a subset $J \subset I$ and $j \in I$ such that

$$\vec{p}_j \in \operatorname{span}\left\{\vec{p}_i\right\}_{i \in J}$$

Suppose we have $\vec{x} \in \mathbb{Q}_p^m, \alpha \in \mathbb{Z}$ with

$$\operatorname{val}(\vec{p_i} \cdot \vec{x}) > \alpha \text{ for all } i \in J$$

Then

$$\operatorname{val}(\vec{p_i} \cdot \vec{x}) > \alpha - \gamma$$

for some $\gamma \in \mathbb{Z}^{\geq 0}$. Moreover γ can be chosen independent of choice of J, j, \vec{x}, α depending only on $\{\vec{p}_i\}_{i \in I}$.

Suppose we have a finite $T \subset \mathbb{Q}_p, V \subset \mathbb{Z}$. We view it as a tree (T,V) as follows. Branches through the tree are elements of T. Branching points are defined by open balls as follows. Branching points is $(t_1, \operatorname{val}(t_1 - t_2))$ for all $t_1, t_2 \in T$. Branching point is also (t, v) for all $t \in T, v \in V$. An interval is two balls $(t_1, v_1) \supset (t_2, v_2)$ with no balls in between. There are at most $2|T| \cdot |V|$ different intervals.

We work with a collection of formulas $\Psi(\bar{x}, \vec{y})$ of the form

$$\vec{p_i} \cdot \bar{x} + c_i(\vec{y}) \in \lambda_i Q_i$$

 $\operatorname{val}(\vec{p_i} \cdot \bar{x} + c_i(\bar{y})) \square_i v_i$

for $i \leq I$ with $|\bar{x}| = m$ with $Q_i = Q_{n_i, m_i}$ for some n_i, m_i . We work with a parameter set B of size N. Consider a tree (T, V)

$$T = \{c_i(b) \mid b \in B, i \le I\}$$

 $V = \{v_i \mid i \le I\}$

This tree has at most $O(N) = N \cdot I \cdot I$ many intervals.

For some $x, x' \in \mathcal{M}$ we say they have the same Ψ -type if they have the same Ψ type over B.

For some $x, x' \in \mathcal{M}$ we say they have the same Q-type if

- $x + c_i(b)$ is in the same Q^i -coset as $x' + c_i(b)$ for all $i \leq I, b \in B$
- $\operatorname{val}(x + c_i(b)) \square_i \ v_i \text{ iff } \operatorname{val}(x' + c_i(b)) \square_i \ v_i \text{ for all } i \leq I, b \in B$

Lemma 0.2. $c, c' \in \mathcal{M}^m$ have the same Ψ -type if all $p_i(c), p_i(c')$ have the same Q^i -type

1

Lemma 0.3. For any $Q = Q_{n,m}$ there exists θ_Q such that for all $\theta \geq \theta_Q$ the following holds. Suppose we have $x, y, c \in \mathcal{M}$ such that

$$val(x - y) - \theta > val(x - c) = val(y - c)$$

Then x - c and y - c lie in the same coset of Q.

Lemma 0.4. Fix θ sufficiently large to satisfy previous lemma for all Q_i . Define an enumeration of near balls

$$B_1(c,\alpha), B_2(c,\alpha), \dots B_{N_{\theta}}(c,\alpha)$$

Definition 0.5. Let $c \in \mathcal{M}$. It lies in our tree between (c_L, α_L) and (c_U, α_U) . Suppose c lies in one of the near balls in a branching point above or below it. Then define its interval type to be the index of that near ball. Otherwise define its interval type to be the coset of $c - c_U$ of Q_i for all $i \in I$. Denote the space of all the possible branch types Bt. We have

$$|\operatorname{Bt}| = N_\theta + \prod_{i \leq I} (\text{number of cosets of } Q_i)$$

depends only on Ψ , independent from B.

Lemma 0.6. If c, c' are in the same interval and have the same interval type then they have the same Q-type.

Definition 0.7. For $c \in \mathcal{M}$ and $\alpha, \beta \in \mathbb{Z}$ let $c \upharpoonright [\alpha, \beta] \in \mathbb{Z}_p^{\beta-\alpha}$ be the record of coefficients of c for valuations between α, β . More precisely write c in its power series form

$$c = \sum_{\gamma \in \mathbb{Z}} c_{\gamma} p^{\gamma} \text{ with } c_{\gamma} \in \mathbb{Z}_p$$

Then $c \upharpoonright [\alpha, \beta]$ is just $(c_{\alpha}, c_{\alpha+1}, \dots c_{\beta})$.

For any c define F(c), the floor of c to be the valuation of the largest branching point below c.

Let $f: \mathcal{M}^n \longrightarrow \mathcal{M}^I$ with $f(\bar{c}) = (p_i(\bar{c}))_{i \leq I}$. Define segment space Sg to be the image of f.

For some element (a_i) in segment space look at floors $F(a_i)$. Partition the segment space by order type of $\{F(a_i)\}$. Work in a fixed partition Sg'. After relabeling we may assume that

$$F(a_1) \ge F(a_2) \ge \dots$$

Consider (relabeled) sequence of vectors $\vec{p_1}, \vec{p_2}, \dots, \vec{p_I}$. Choose the unique subset of linearly independent vectors $J \subset I$. For any index $i \in I$ we call it independent if $i \in J$ and we call it dependent otherwise.

For all a_i record its interval type.

For a_i with i independent, record the interval of a_i .

Pick a_i with i dependent. Let j be the largest independent index with j < i. Record $a_i \upharpoonright [F(a_j) - \gamma, F(a_j)]$.

Combining all the records defines a function

$$g: \operatorname{Sg}' \longrightarrow \operatorname{Bt}^I \times \operatorname{Pt}^m \times \operatorname{Ct}^I$$

We claim that for $\bar{a}, \bar{a}' \in \operatorname{Sg}'$ if we have $g(\bar{a}) = g(\bar{a}')$ then all a_i, a_i' have the same Q-type.

REDUCT 3

Proof. Suppose we have $\bar{a}, \bar{a}' \in \operatorname{Sg}'$ that map to the same image by g. Suppose i is independent. Then by construction, a_i, a_i' map to the same interval of the tree and have the same interval type. Thus they have the same Q-type. Otherwise, suppose i is dependent. Pick largest j < i such that j is independent. We have $F(a_i) \leq F(a_j)$ and $F(a_i') \leq F(a_j')$. Moreover $F(a_j) = F(a_j')$ as they are mapped to the same interval (as j is independent).

Claim 0.8.
$$val(a_i - a'_i) > F(a_i) - \gamma$$

Proof. Let $\bar{x}, \bar{x}' \in \mathbb{Q}_p^m$ be some elements with

$$\vec{p}_k \cdot \bar{x} = a_k$$

 $\vec{p}_k \cdot \bar{x}' = a_k'$ for all $k \le I$

Let J be the set of independent indices less than i. We have

$$\operatorname{val}(a_k - a_k') > F(a_k) \text{ for all } k \leq J$$

as for independent indices a_k, a'_k lie in the same interval.

$$\operatorname{val}(a_k - a_k') > F(a_j)$$
 for all $k \leq J$ by monotonicity of $F(a_k)$ $\operatorname{val}(\vec{p}_k \cdot \bar{x} - \vec{p}_k \cdot \bar{x}') > F(a_j)$ for all $k \leq J$ $\operatorname{val}(\vec{p}_k \cdot (\bar{x} - \bar{x}')) > F(a_j)$ for all $k \leq J$

J and i match the requirements of the claim above by independence so we conclude

$$\operatorname{val}(\vec{p}_i \cdot (\bar{x} - \bar{x}')) > F(a_j) - \gamma$$

$$\operatorname{val}(\vec{p}_i \cdot \bar{x} - \vec{p}_i \cdot \bar{x}') > F(a_j) - \gamma$$

$$\operatorname{val}(a_i - a_i')) > F(a_j) - \gamma$$

as needed.

By record of continuations (which a_i, a'_i agree on) we have

$$a_i = a_i' \upharpoonright F(a_i)$$

As $F(a_i) \leq F(a_j)$, a_i, a_i' have to lie in the same interval. They also agree on interval type. Thus they have the same Q-type.

Now suppose we have $c, c' \in \mathcal{M}^m$ such that g(f(c)) = g(f(c')). Then f(c) components have the same Q-type as f(c') components. Then c, c' have the same Ψ -type. Thus the number of possible Ψ -types is bound by the size of the range of g.

$$|\operatorname{Ct}| = p^{\gamma}$$

 $|\operatorname{Pt}| \le N \cdot I^2$ (the only component dependent on N)

Moreover we need at most I! many partitions of Sg. This gives us

$$I! \cdot |Bt|^I \cdot (N \cdot I^2)^m \cdot p^{\gamma I} = O(N^m)$$

upper bound for the possible number of Ψ -types.

E-mail address: bobkov@math.ucla.edu