NPTEL » Natural Language Processing

If already registered, click to

check your payment status

As per our records you have not submitted this assignment.

1 point

1 point

1 point

1 point

2 points

1 point

1 point

Week 12

Books

Jan 2024

Download videos

Text Transcripts

Problem Solving Session -

○ B)

Score: 0

Accepted Answers:

No, the answer is incorrect.

Accepted Answers:

Score: 0

Which of the following are true? A) Given a CFG and its corresponding CNF, they produce different languages. B) It requires '2n-1' productions or steps in CNF to generate a string w of length 'n'. C) For a given grammar, there can be more than one CNF. D) None of the above □ A) □ B) □ C) □ D) No, the answer is incorrect. Score: 0 Accepted Answers: B) C) $S \rightarrow xSy|V$

2) Consider the CFG given below: $V \rightarrow Vz | \epsilon$ How many non-terminals should be added to convert the CFG into CNF? A) 2 B) 4 C) 5 D) 3 (A)

(C) O D) No, the answer is incorrect. Score: 0 Accepted Answers:

In the above Q. 2) How many different numbers of Null productions in the CFG to CNF converted form?

A) 0 C) 2 D) 3 (A) B) (C) O D) No, the answer is incorrect.

In the above Q. 2) How many different numbers of production rules/steps in the CFG to CNF converted form?? A) 2

B) 4 C) 7 D) 10 ○ A) ○ B) (C) O D)

For Question 5 to 7 consider the following PCFG fragment:

 $S \rightarrow NN VP$ $S \rightarrow VP NN$ 0.50 0.50 $NP \rightarrow NN PB$ 0.40 $PB \rightarrow PPNN$ 0.30 $VP \rightarrow VBNN$ 0.30 $VP \rightarrow VBNP$ 0.20 $VP \rightarrow NN VB$ 0.25 $VP \rightarrow NNPB$ 0.15 $PP \rightarrow with$ 0.10 $PP \rightarrow without$ 0.10 $VB \rightarrow play$ V B → enjoy/like 0.30 0.20 NN → children/students V B → watch/enjoy 0.25 0.15 NN → cricket/football 0.20 0.15 $NN \rightarrow \text{friends}$ *NN* → football/cricket 0.10 *NN* → music/painting 0.12

For a sentence S = w1w2w3w4, assume that the cells in the table are indexed as follows:

> 3 13 14 w_1 2324 w_2 33 34 w_3 44

Using CKY algorithm, find the probability score for the most probable tree for the sentence S_1 = "students play football with friends".

> A) 6.06×10^{-4} B) 1.62×10^{-6}

> C) 2.73×10^{-3} D) 4.33×10^{-6}

○ A)

B) O C) O D)

No, the answer is incorrect. Score: 0

Accepted Answers: B)

○ A)

B)

C)

Using CKY algorithm, find the number of parse trees for the sentence S_2 = students

like painting and the probability score for at least one of the probable trees. A) $1, 4.95 \times 10^{-3}$ B) 3, 0.36×10^{-3}

C) 2, 0.99×10^{-3} D) 2, 0.54×10^{-3}

(C) O D) No, the answer is incorrect. Score: 0 Accepted Answers:

Consider the expression below: P("students enjoy cricket like painting", $N_{34|G}$) = P_j P("students enjoy cricket like painting" $|\mathcal{N}_{34}, G\rangle$ What does the L.H.S. represent?

A) Probability of the sentence "students enjoy cricket like painting", given a grammar G.

B) Probability of the sentence "students enjoy cricket like painting", given a grammar G and that there is some consistent spanning of the segment "cricket like", i.e. from word 3 to 4.

C) Probability of the sentence "students enjoy cricket like painting", given a grammar G and some rule which derives the segment "cricket like".

D) None of the above (A)

(C) O D) No, the answer is incorrect. Score: 0 Accepted Answers:

○ B)

Which of the following grammars are valid CNF?

a) A \rightarrow B 2. A \rightarrow BCD 3. A \rightarrow BC b) B ightarrow CD B ightarrow b B ightarrow ϵ c) $C \rightarrow c C \rightarrow c C \rightarrow c$ d) $A \rightarrow BC \quad A \rightarrow a$ A) a B) b

C) c D) d

No, the answer is incorrect. Score: 0

(A)

○ B)

(C)

O D)

Accepted Answers: