Multilayer and deeper

Jason G. Fleischer, Ph.D.

Asst. Teaching Professor

Department of Cognitive Science, UC San Diego

jfleischer@ucsd.edu

@jasongfleischer

https://jgfleischer.com

Some slides in this lecture are courtesy of Roger Grosse

Multilayer NNs

A simple example architecture

- D layers deep
- Each layer of M neurons has N inputs from neurons in the previous layer
- Fully connected (all to all)
- MxN weight matrix W
- The M neurons each sum up weighted inputs and run the sum through an activation function (often a non-linearity)

Multilayer NNs

A simple example architecture

 Each layer is a function of the one below it

$$\mathbf{h}^{(1)} = f^{(1)}(\mathbf{x})$$

$$\mathbf{h}^{(2)} = f^{(2)}(\mathbf{h}^{(1)})$$

$$\cdots$$

$$\mathbf{y} = f^{(D)}(\mathbf{h}^{(\mathbf{D})})$$

 Or more simply it is a modular composition of the functions of each layer

$$\mathbf{y} = f^{(1)} \circ f^{(2)} \dots \circ f^{(D)}$$

Hidden layers

Self-organized features

- One way to understand what MLPs are doing is to think of each layer as being optimized to provide information to the one above
- In some NN architectures this means that hidden layers are learning feature transformations that enable a better decision at the output

"Audi A7"

Some activation functions:

2 1 0 -1 -2 -3 -4 -3 -2 -1 0 1 2 3 4

Linear

$$y = z$$

Rectified Linear Unit (ReLU)

$$y = \max(0, z)$$

Soft ReLU

$$y = \log 1 + e^z$$

Some activation functions:

Hard Threshold

$$y = \begin{cases} 1 & \text{if } z > 0 \\ 0 & \text{if } z \le 0 \end{cases}$$

Logistic

$$y = \frac{1}{1 + e^{-z}}$$

Hyperbolic Tangent (tanh)

$$y = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Picking an activation function

- Hidden layers
 - ReLU for CNN, and more generally
 - Sigmoid, logistic, tanh only for recurrent neural networks, more generally X
 - Vanishing gradients can be a problem because the gradients are very similar in the middle
- Output layer based on the type of prediction problem that you are solving:
 - Regression Linear Activation Function
 - Binary Classification—Sigmoid/Logistic Activation Function
 - Multiclass Classification—Softmax

Multilayer NNs

- MLP are universal function approximators if you let them get big enough
 - two layers of arbitrary width with any nonlinearity (even not very nonlinear ones like ReLU)
 - single layers for certain nonlinearities (RBF)

Backprop & automatic differentiation

Problem

Assigning responsibility for errors to weights

- For Perceptron (and other algorithms), there are one set of weights. So we can optimize them
- For MLP there's weights -> nonlinearity -> weights -> nonlinearity -> etc
- Nonlinearity means there's no lumped equivalent linear system to optimize (can't do GD on a single super sized weight matrix)
- So...
 - We have errors (loss) at the output layers. We can GD to make those weights better.
 - Need to assign responsibility for the output loss to a previous layer and construct a local loss that we can GD to optimize those weights
 - And keep doing that recursively until we optimize the first set of weights

Backpropogation

- Forward pass: calculate the outputs... and therefore the loss
- Backward pass: calculate the gradients and adjust the weights
 - At each layer using the gradient from the layer above

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial r} \frac{\partial r}{\partial x}$$

Recall: Univariate logistic least squares model

$$z = wx + b$$

$$y = \sigma(z)$$

$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Let's compute the loss derivatives.

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial r} \frac{\partial r}{\partial x}$$

How you would have done it in calculus class

$$\mathcal{L} = \frac{1}{2}(\sigma(wx+b)-t)^{2}$$

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\partial}{\partial w} \left[\frac{1}{2}(\sigma(wx+b)-t)^{2} \right]$$

$$= \frac{1}{2} \frac{\partial}{\partial w} (\sigma(wx+b)-t)^{2}$$

$$= (\sigma(wx+b)-t) \frac{\partial}{\partial w} (\sigma(wx+b)-t)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b) \frac{\partial}{\partial w} (wx+b)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b)$$

What are the disadvantages of this approach?

A more structured way to do it

Computing the loss:

$$z = wx + b$$

$$y = \sigma(z)$$

$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Computing the derivatives:

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}y} = y - t$$

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}y} \,\sigma'(z)$$

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z} \,x$$

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z}$$

Remember, the goal isn't to obtain closed-form solutions, but to be able to write a program that efficiently computes the derivatives.

- We can diagram out the computations using a computation graph.
- The nodes represent all the inputs and computed quantities, and the edges represent which nodes are computed directly as a function of which other nodes.

