				185
W. 30	J UNITS	$ \overline{\underline{\zeta}}_{\text{double}} $	eds etc.	/
Minga basi BA				
	- 10) L>	general	a. Solution in [75
· possonisions no · Nodes Hi	des:-	d +0 a s	olution are a	20
ous busisinaad	des. solov	NO POS Y		
- Nodes to	onodes:-	ory of the	re cooretooints	
optional solution				
N- QUEENS	PROBLEM:-			100000
For given num	nber of que	ere, eac	N, place the	V
each other. The	ze board su	ich that	they donot	æ
ion the same ?	دهری دی این	or diag	onal.	
Loss 2 1:-	0012	.2.		
9	Toivial Solut		2	
For n=2 and :	n=3:24&	1	4	
9				
D 19:47/3 7031. 287	sack becau	71. Karay	also called ?	

Scanned by TapScanner

SUBSET SUM PROBLEM:

Given a set of orwonbers and a suon value, find elements of elements of elements of adds up to give the suon value.

1. S= {3,5,6,7}, d= 15

The state space tree constructed will always be a bimosy tree.

Stopping condition:

be added executes a larger sum that d.
i.e. B+ai+1 > d

4 St Zi aj < d vonen sum volue is too sonall

No subsect throughout one summer of I.

The set elements should be sorted.

S= \$3,5,6,73, d=15

BRANCH	AND	Bours
		POUND

Optimization problem:-

Lamacionization (knapsack problem)

Solutions:-

-speasible and optional

KNAPSACK PROBLEM:-

La State space tree is generated in BFS masson using branch and bound.

we calculate upperbound for maximization.

For knapsack problem we calculate the upperbound using <u>value</u> ration.

PROBLEM: = S.W=10 word, babbo see & breat mester

Item:	weigh	ot along	Value	val	ue hos	eigh cost to
01	4		\$40	8	10	
20		6,3	\$42	£7	6	in desc-
3	5	26	\$25	8	5	ending.
48	3	S)	\$ 12	.4	4	4.

State space tree ->

31=CW

34 :

Scanned by TapScanner

Scanned by TapScanner

TRAVELLING SALESMAN PROBLEM (TSP):-

La missionies mission problem.

By using exhaustive season (boute force) complexity is in the order of on! for a graph with or vertices

Scanned by TapScanner

APPROXIMATION ALGORITHMS

1. NEAREST NEIGHBOR ALGORITHM

Follows greedy technique.

Note:

with approximation algorithm we only get an approximate solution which need not be the exact solution.

Start from an arbitrary vertex. While From there visit the nearest unvisited vertex. From there on carry on these substanties steps until you reach the final vertex and then consider the parts to initial vertex (for measurement)

Steps:- (Algorithon)

- 1. Choose an asbitrary city as the start
- 2. Repeat the following operation until all cities have been visited:

a) Go to-the unvisited city nearest to-the one visited last (ties can be broken arbitrarily)

3. Return to the starting city.

MULTIFRAGMENT HEURISTIC ALGORITHM:-

MINIMUN SPANNING TREE BASED ALGORITHM:-

Twice - around the tree algorithm.

Using Kruetal's finding oninion um spanoing trees-

walk $\rightarrow a-b-c-b-d-e-d-b-a$ cancelling repeated vertices we get $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e$

of Repostation east= 39/item gots einthouses &

walk $\rightarrow a \rightarrow b \rightarrow p \leftrightarrow c \rightarrow e \rightarrow d \rightarrow p \leftrightarrow a$ $a \rightarrow b \rightarrow c \rightarrow e \rightarrow d \rightarrow a$ +b+al cost = 19

Algorithm:-

- 1. Construct a ornionismum spanning tree of the graph corresponding to a given inetance of the travelling S.P.
- 2. Stasting at an arbitrary vertex perform a woulk around the oninimum spanning tree, seconding all the vertices passed by.
- 3. Sass the vestex list obtained in step 2 and elionistate from it all repeated occurances of the same vertex except for the starting one at the starting of the list. This step is equivalent to making shortcute. The vertices resonaising form as hamiltanian circuit

2. Choietofides Algorithon:

a - c -> e -> d -> b -> a

a-b-c-e-d-b-a a-b-c-e-d-a

Costs 37

vertices with add degree

a, b, c, e

(a,b) (Ge) - 15

(a,c) (b,e) - 17

(a,e) (b,0-18

Consider lowest cost

Scanned by TapScanner

Lest a, b, as agrid be bee 4 arbitrary or

torthous sudrene This method also using ornionionum S.T. but is better than twice around the tree. It uses the concept of Eulesian circuit in a multigraph. A Emerian circuit exists in a connected onuttigraph it as only if all its vertices have even degrees. The choistafides algorithm obtaine such a multigraph by adding to the grouph the edges of a missionum noeignt onatching of all odd degree vertices in its MST. Then the algorithm finds an Eulerian airauit in the multigraph and transforme it isto a harmiltorian circuits by short cuts exactly the same way it is done in the last step of traids asound the tree algorithm.

es. Definitions of: grade read son tont-03

- e class P problems. @ broo () probbo
- · class NP problems . (10,18,0) (10) = (10) = + (10) +
- · NP complete probleme.
- · non-deterministic algorithms.

fals file? move & is

· polynomially redudble problems.

from the cas = sca sure 54, cos, decas)? f. (m) + feles 60 (max Eg. cm), ge (m)) of or poraxégorigon worker c= 20s= 2000x {c, sig