```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from functools import partial
from scipy import integrate
from scipy.optimize import brentq, fsolve, minimize_scalar, curve_fit
from scipy.stats import norm, multivariate_normal
\# Parameters (WTI Sep '23 (CLU23) on July 07 2023)
futures_price = 73.77
strike_price = 73.0
risk_free_rate = 0.05235
time to maturity = 40/365
vol_black = 0.32
vol_bachelier = vol_black*futures_price
# Mount Google Drive
from google.colab import drive
drive.mount('/content/gdrive')
```

Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mount("/content/gdrive", forcibly remount, call drive.mount("/content/gdrive"), forcibly remount, call drive.mount("/content/gdrive"), forcibly remount("/content/gdrive"), forcibly re

▼ Bachelier (1900)

$$\begin{split} dF_t &= \sigma_a dW_t \\ C_{BC}(F,K,\sigma_a,r,\tau) &= e^{-r\tau} \left[(F-K)N(m_a) + \sigma_a \sqrt{\tau} n(m_a) \right] \\ P_{BC}(F,K,\sigma_a,r,\tau) &= e^{-r\tau} \left[(K-F)(1-N(m_a)) + \sigma_a \sqrt{\tau} n(m_a) \right] \\ \text{where} \\ m_a &= \frac{F-K}{\sigma_a \sqrt{\tau}} \end{split}$$

```
# Bachelier (1900)
class Bachelier:
    def __init__(self, F, vol, r, tau):
     self.F = F
      self.vol = vol
      self.r = r
      self.tau = tau
    def option_pricer(self, K , vol = None, option_type = 'call'):
      Bachelier formula
      return call/put option price
      # default parameter
      if vol == None:
        vol = self.vol
      m = (self.F - K) / (vol * self.tau**0.5)
      if option_type == 'call':
        return np.exp(-self.r * self.tau) * ((self.F - K) * norm.cdf(m) + vol * self.tau**0.5 * norm.pdf(m))
      elif option_type == 'put':
         \texttt{return np.exp(-self.r * self.tau) * ((K - self.F) * (1 - norm.cdf(m)) + vol * self.tau**0.5 * norm.pdf(m)) } \\ 
    def simulate_F(self, paths = 100000, steps = 2):
      Monte Carlo simulation
      return underlying futures price and time vector
      # initialize vectors
      arr_F = np.zeros((paths, steps))
      arr_F[:,0] = self.F
```

```
# generate Brownian motion
      arr_w = np.random.standard_normal(size = (paths, steps-1))
      # compute the corresponding price
      t_vec, dt = np.linspace(0, self.tau, steps, retstep=True)
      for t in range(0, steps-1):
        arr_F[:,t+1] = arr_F[:,t] + self.vol * dt**0.5 * arr_w[:,t]
      return arr F, t vec
bachelier = Bachelier(futures_price, vol_bachelier, risk_free_rate, time_to_maturity)
bachelier_call = bachelier.option_pricer(K = strike_price, option_type = 'call')
bachelier put = bachelier.option pricer(K = strike price, option type = 'put')
print(f'Bachelier formula:')
print(f'call is {bachelier_call:.4f}')
print(f'put is {bachelier_put:.4f}')
    Bachelier formula:
    call is 3.4976
    put is 2.7320
# verify through Monte Carlo simulation
paths = 1000000
arr_F, _ = bachelier.simulate_F(paths = paths)
arr_V = np.exp(-risk_free_rate*time_to_maturity) * np.maximum(arr_F[:,-1] - strike_price, 0)
mean_call, ste_call = arr_V.mean(), arr_V.std() / paths**0.5
arr_V = np.exp(-risk_free_rate*time_to_maturity) * np.maximum(strike_price - arr_F[:,-1], 0)
mean_put, ste_put = arr_V.mean(), arr_V.std() / paths**0.5
print(f'Monte Carlo simulation:')
print(f'call is {mean_call:.4f} with standard error {ste_call:.6f}')
print(f'put is {mean_put:.4f} with standard error {ste_put:.6f}')
    Monte Carlo simulation:
    call is 3.4964 with standard error 0.004795
    put is 2.7342 with standard error 0.004276
```

▼ Black (1976)

$$\begin{split} dF_t &= \sigma_G F_t dW_t \\ C_{BL}\left(F,K,\sigma_a,r,\tau\right) &= e^{-r\tau}\left[FN(m_G + \frac{\sigma_G\sqrt{\tau}}{2}) - KN(m_G - \frac{\sigma_G\sqrt{\tau}}{2})\right] \\ P_{BL}\left(F,K,\sigma_a,r,\tau\right) &= e^{-r\tau}\left[K(1-N(m_G - \frac{\sigma_G\sqrt{\tau}}{2})) - F(1-N(m_G + \frac{\sigma_G\sqrt{\tau}}{2}))\right] \\ \text{where} \\ m_G &= \frac{\ln(F-K)}{\sigma_G\sqrt{\tau}} \end{split}$$

```
# Black (1976)
class Black:
    def __init__(self, F, vol, r, tau):
        self.F = F
        self.vol = vol
        self.r = r
        self.tau = tau

def option_pricer(self, K, vol = None, option_type = 'call'):
    "''
    Black formula
    return call/put option price
    "''
    # default parameter
    if vol == None:
        vol = self.vol
```

```
m = np.log(self.F / K) / (vol * self.tau**0.5)
     if option_type == 'call':
        return np.exp(-self.r * self.tau) * ( self.F * norm.cdf(m + 0.5*vol*self.tau**0.5) -
                                                   K * norm.cdf(m - 0.5*vol*self.tau**0.5))
      elif option type == 'put':
        return np.exp(-self.r * self.tau) * ( K * (1 - norm.cdf(m - 0.5*vol*self.tau**0.5)) -
                                                    self.F * (1 - norm.cdf(m + 0.5*vol*self.tau**0.5)))
    def simulate_F(self, paths = 100000, steps = 2):
      Monte Carlo simulation
      return underlying futures price and time vector
     # initialize vectors
      arr_F = np.zeros((paths, steps))
     arr_F[:,0] = self.F
      # generate Brownian motion
      arr_w = np.random.standard_normal(size = (paths, steps-1))
      # compute the corresponding price
      t_vec, dt = np.linspace(0, self.tau, steps, retstep=True)
      for t in range(0, steps-1):
        arr_F[:,t+1] = arr_F[:,t] * np.exp( -0.5 * self.vol**2 * dt + self.vol * dt**0.5 * arr_w[:,t] )
      return arr F, t vec
black = Black(futures_price, vol_black, risk_free_rate, time_to_maturity)
black_call = black.option_pricer(K = strike_price, option_type = 'call')
black_put = black.option_pricer(K = strike_price, option_type = 'put')
print(f'Black formula:')
print(f'call is {black_call:.4f}')
print(f'put is {black_put:.4f}')
    Black formula:
    call is 3.4801
    put is 2.7145
# verify through Monte Carlo simulation
paths = 1000000
arr_F, _ = black.simulate_F(paths = paths)
arr_V = np.exp(-risk_free_rate*time_to_maturity) * np.maximum(arr_F[:,-1] - strike_price, 0)
mean_call, ste_call = arr_V.mean(), arr_V.std() / paths**0.5
arr_V = np.exp(-risk_free_rate*time_to_maturity) * np.maximum(strike_price - arr_F[:,-1], 0)
mean_put, ste_put = arr_V.mean(), arr_V.std() / paths**0.5
print(f'Monte Carlo simulation:')
print(f'call is {mean_call:.4f} with standard error {ste_call:.6f}')
print(f'put is {mean_put:.4f} with standard error {ste_put:.6f}')
    Monte Carlo simulation:
    call is 3.4786 with standard error 0.005082
    put is 2.7116 with standard error 0.003997
```

Heston (1993)

$$\begin{cases} dF_t = \sqrt{v_t} F_t dW_t^1 \\ dv_t = \kappa(\theta - v_t) dt + \sigma \sqrt{v_t} dW_t^2 \\ dW_t^1 dW_t^2 = \rho dt \end{cases}$$

```
# Heston (1993)

def cf(u, tau, mu, rho, v0, theta, kappa, sigma):
    """
    Heston characteristic function in Schoutens (2004)
    """
```

```
d = ((kappa - rho*sigma*u*1j)**2 + sigma**2*(1j*u + u**2))**0.5
       g = (kappa - rho*sigma*u*1j - d)/(kappa - rho*sigma*u*1j + d)
       cf_ = np.exp(1j*u*mu*tau +
                                theta*kappa*sigma**-2*((kappa - rho*sigma*u*1j - d)*tau - 2*np.log((1 - g*np.exp(-d*tau))/(1 - g))) + (1 - g)((1 - g)(1 - g)(1
                               v0*sigma**-2*(kappa - rho*sigma*u*1j - d)*(1 - np.exp(-d*tau))/(1 - g*np.exp(-d*tau)))
       return cf
class Heston:
       def __init__(self, F, v0, theta, kappa, sigma, rho, r, tau):
           self.F = F
           self.v0 = v0 # spot variance
          self.theta = theta
          self.kappa = kappa
           self.sigma = sigma
           self.rho = rho
           self.r = r
           self.tau = tau
          if 2*kappa * theta < sigma**2:</pre>
             print(f'Warning: Feller condition fails')
       def option_pricer(self, K, option_type = 'call'):
           Fourier inversion
           return call/put option price
           k = np.log(K/self.F)
           cf_ = partial(cf, tau = self.tau, mu = 0, rho = self.rho, v0 = self.v0,
                                     theta = self.theta, kappa = self.kappa, sigma = self.sigma )
           integrand_Q1 = lambda u: np.real((np.exp(-u*k*1j) * cf_(u-1j) / (u*1j)) / cf_(-1j))
           integrand_Q2 = lambda u: np.real(np.exp(-u*k*1j) * cf_(u) / (u*1j))
           Q1 = 1/2 + 1/\text{np.pi} * integrate.quad(integrand_Q1, 1e-15, np.inf, limit=2000)[0]
           Q2 = 1/2 + 1/np.pi * integrate.quad(integrand_Q2, 1e-15, np.inf, limit=2000)[0]
           if option_type == 'call':
              return np.exp(-self.r * self.tau) * ( self.F * Q1 - K * Q2)
           elif option_type == 'put':
              return np.exp(-self.r * self.tau) * ( K * (1-Q2) - self.F * (1-Q1) )
       def simulate_F(self, paths = 10000, steps = None):
           Monte Carlo simulation
           return underlying futures price and time vector
           # default parameter
           if steps == None:
             steps = int(self.tau*252*10)
           # Initialize vectors
           arr_F = np.zeros((paths, steps)); arr_F[:,0] = self.F
           arr_v = np.zeros((paths,steps)); arr_v[:,0] = self.v0
           # Generate 2D Brownian motions
           arr_w = multivariate_normal.rvs( mean = np.array([0, 0]),
                                                                         cov = np.array([[1, self.rho], [self.rho, 1]]),
                                                                          size = (paths, steps-1) )
           # Compute the corresponding paths
           t vec, dt = np.linspace(0, self.tau, steps, retstep=True)
           for t in range(0,steps-1):
              arr_F[:,t+1] = arr_F[:,t] + arr_F[:,t] * ( arr_v[:,t] * dt )**0.5 * arr_w[:,t,0]
               arr_v[:,t+1] = arr_v[:,t] + self.kappa * ( self.theta - arr_v[:,t] ) * dt + self.sigma * ( arr_v[:,t] * dt ) **0
              arr_v[arr_v[:,t+1] < 0.0, t+1] = 1e-5 \# prevent negative variance
           return arr_F, t_vec
```

```
heston = Heston(futures_price, v0, theta, kappa, sigma, rho, risk_free_rate, time_to_maturity)
heston_call = heston.option_pricer(K = strike_price, option_type = 'call')
heston_put = heston.option_pricer(K = strike_price, option_type = 'put')
print(f'Fourier inversion formula:')
print(f'call is {heston_call:.4f}')
print(f'put is {heston_put:.4f}')
    Fourier inversion formula:
    call is 3.5003
    put is 2.7348
# verify through Monte Carlo simulation
paths = 100000
arr_F, _ = heston.simulate_F(paths = paths)
arr_V = np.exp(-risk_free_rate*time_to_maturity) * np.maximum(arr_F[:,-1] - strike_price, 0)
mean_call, ste_call = arr_V.mean(), arr_V.std() / paths**0.5
arr_V = np.exp(-risk_free_rate*time_to_maturity) * np.maximum(strike_price - arr_F[:,-1], 0)
mean_put, ste_put = arr_V.mean(), arr_V.std() / paths**0.5
print(f'Monte Carlo simulation:')
print(f'call is {mean_call:.4f} with standard error {ste_call:.6f}')
print(f'put is {mean_put:.4f} with standard error {ste_put:.6f}')
    Monte Carlo simulation:
    call is 3.5074 with standard error 0.015641
    put is 2.7336 with standard error 0.013548
```

▼ Quadratic Normal Model (Bouchouev, 2023)

$$\begin{cases} dF_t = \sigma(F_t)dW_t \\ \sigma(F_t) = a + \epsilon(F) = a + bF + cF^2 \end{cases}$$

$$C(F, K, a, b, c, r, \tau) = C_{BC}(F, K, \sigma_a = a, r, \tau) + e^{-r\tau}U$$

$$P(F, K, a, b, c, r, \tau) = P_{BC}(F, K, \sigma_a = a, r, \tau) + e^{-r\tau}U$$

where

 C_{BC} : Bachelier call formula P_{BC} : Bachelier put formula $U = \sqrt{\tau} n (\frac{F - K}{a\sqrt{\tau}}) [\frac{b}{2} (F + K) + \frac{c}{3} (F^2 + FK + K^2 + \frac{a^2 \tau}{2})]$

ATM INV vs Futures

$$\sigma(F) = a + bF + cF^2 = a - \frac{b^2}{4c} + c(F - \frac{-b}{2c})^2$$

```
# calibrate parameters a, b, c on historical data (base case)
sigma_qnm = lambda f : 0.01*(f-50)**2 + 20
arr_f = np.arange(0,141,2)

plt.figure(figsize=(12,5))
plt.plot(arr_f, sigma_qnm(arr_f))

plt.xlim(0,160)
plt.ylim(0,140)
plt.grid()

plt.show()
```



```
# parameters
c = 0.01
b = -50 * 2 * c
a = 20 + b**2/4/c
# Quadratic Normal Model (2023)
class ONM:
    def __init__(self, F, a, b, c, r, tau):
      self.F = F
      self.a = a
      self.b = b
      self.c = c
      self.r = r
      self.tau = tau
    def option_pricer(self, K, option_type = 'call'):
      The method of linearization
      return call/put option price
      m = (self.F - K)/(self.a * self.tau**0.5)
       \texttt{C\_BC = np.exp(-self.r * self.tau) * ((self.F - K)*norm.cdf(m) + self.a * self.tau**0.5 * norm.pdf(m)) } 
      P\_BC = np.exp(-self.r * self.tau) * ((K - self.F)*(1-norm.cdf(m)) + self.a * self.tau**0.5 * norm.pdf(m))
      U = self.tau**0.5 * norm.pdf(m) * (self.b*(self.F + K)/2 +
                              self.c*(self.F**2 + self.F*K + K**2 + 0.5*self.a**2*self.tau)/3)
      if option_type == 'call':
        return C_BC + U*np.exp(-self.r * self.tau)
      elif option_type == 'put':
        return P_BC + U*np.exp(-self.r * self.tau)
    def simulate_F(self, paths = 10000, steps = None):
      Monte Carlo simulation
      return underlying futures price and time vector
      # default parameter
      if steps == None:
        steps = int(self.tau*252*10)
      # Initialize vectors
      arr_F = np.zeros((paths, steps))
      arr_F[:,0] = self.F
      # generate Brownian motion
      arr_w = np.random.standard_normal(size = (paths, steps-1))
      # compute the corresponding price
      t_vec, dt = np.linspace(0, self.tau, steps, retstep=True)
      vol_ = lambda f : self.a + self.b*f + self.c*f**2
      for t in range(0, steps-1):
        arr_F[:,t+1] = arr_F[:,t] + vol_(arr_F[:,t]) * dt**0.5 * arr_w[:,t]
      return arr F, t vec
qnm = QNM(futures_price, a, b, c, risk_free_rate, time_to_maturity)
qnm_call = qnm.option_pricer(K = strike_price, option_type = 'call')
qnm_put = qnm.option_pricer(K = strike_price, option_type = 'put')
print(f'The method of linearization:')
print(f'call is {qnm_call:.4f}')
print(f'put is {qnm_put:.4f}')
     The method of linearization:
    call is 3.7870
     put is 3.0214
# verify through Monte Carlo simulation
paths = 100000
arr_F, _ = qnm.simulate_F(paths = paths)
 \texttt{arr}\_\texttt{V} = \texttt{np.exp}(-\texttt{risk}\_\texttt{free}\_\texttt{rate*time}\_\texttt{to}\_\texttt{maturity}) \ * \ \texttt{np.maximum}(\texttt{arr}\_\texttt{F}[:,-1] \ - \ \texttt{strike}\_\texttt{price}, \ 0)
```

mean_call, ste_call = arr_V.mean(), arr_V.std() / paths**0.5

```
arr_V = np.exp(-risk_free_rate*time_to_maturity) * np.maximum(strike_price - arr_F[:,-1], 0)
mean_put, ste_put = arr_V.mean(), arr_V.std() / paths**0.5

print(f'Monte Carlo simulation:')
print(f'call is {mean_call:.4f} with standard error {ste_call:.6f}')
print(f'put is {mean_put:.4f} with standard error {ste_put:.6f}')

Monte Carlo simulation:
    call is 3.7491 with standard error 0.018323
    put is 3.0196 with standard error 0.013715
```

Option Prices across Models

```
arr_strike = np.arange(65,85,1)
# call option
arr_bachelier_call = bachelier.option_pricer(K = arr_strike, option_type = 'call')
arr_black_call = black.option_pricer(K = arr_strike, option_type = 'call')
list heston call = []
for strike_ in arr_strike:
 list_heston_call.append(heston.option_pricer(K = strike_, option_type = 'call'))
arr_qnm_call = qnm.option_pricer(K = arr_strike, option_type = 'call')
# put option
arr_bachelier_put = bachelier.option_pricer(K = arr_strike, option_type = 'put')
arr_black_put = black.option_pricer(K = arr_strike, option_type = 'put')
list_heston_put = []
for strike in arr strike:
  list_heston_put.append(heston.option_pricer(K = strike_, option_type = 'put'))
arr_qnm_put = qnm.option_pricer(K = arr_strike, option_type = 'put')
# create subplots
fig = plt.figure(figsize=(16,5))
ax1 = fig.add subplot(121)
ax1.plot(arr_strike, arr_bachelier_call, '.', linewidth = 0.5, label = 'Bachelier')
ax1.plot(arr_strike, arr_black_call, '.', linewidth = 0.5, label = 'Black')
ax1.plot(arr_strike, list_heston_call, '.', linewidth = 0.5, label = 'Heston')
ax1.plot(arr_strike, arr_qnm_call, '.', linewidth = 0.5, label = 'QNM')
ax1.set_title('Call Option Price')
ax1.set_xlabel('stike price K')
ax1.set ylabel('option price')
ax1.legend(loc='upper right')
ax2 = fig.add_subplot(122)
ax2.plot(arr_strike, arr_bachelier_put, '.', linewidth = 0.5, label = 'Bachelier')
ax2.plot(arr_strike, arr_black_put, '.', linewidth = 0.5, label = 'Black')
ax2.plot(arr_strike, list_heston_put, '.', linewidth = 0.5, label = 'Heston')
ax2.plot(arr_strike, arr_qnm_put, '.', linewidth = 0.5, label = 'QNM')
ax2.set_title('Put Option Price')
ax2.set_xlabel('stike price K')
ax2.set_ylabel('option price')
ax2.legend(loc='lower right')
plt.show()
```

Call Option Price

Put Option Price

Bachelier

Bachelier

Implied Volatility

plt.plot(arr_strike, list_ibv_qnm, '.', label = 'QNM')

plt.title('Black Implied Volatility (IBV)')

plt.xlabel('stike price K')
plt.ylabel('implied volatility')
plt.legend(loc = 'lower right')

plt.show()

```
ō
def implied_volatility(option_price, F, K, r, tau, option_type = 'call', model = 'black', method='brent', disp=True):
        Return Implied volatility
       model: black (default), bachelier
       methods: brent (default), fsolve, minimization
    # model
   if model == 'bachelier':
     bachelier = Bachelier(F, F*0.1, r, tau)
     obj_fun = lambda vol : option_price - bachelier_.option_pricer(K = K, vol = vol, option_type = option_type)
   else: # model == 'black'
     black_ = Black(F, 0.1, r, tau)
     obj_fun = lambda vol : option_price - black_.option_pricer(K = K, vol = vol, option_type = option_type)
   # numerical method
    if method == 'minimization':
     obj_square = lambda vol : obj_fun(vol)**2
     res = minimize_scalar( obj_square, bounds=(1e-15, 8), method='bounded')
     if res.success == True:
       return res.x
    elif method == 'fsolve':
       X0 = [0.1, 0.5, 1, 3] # set of initial guess points
        for x0 in X0:
           x, _, solved, _ = fsolve(obj_fun, x0, full_output=True, xtol=1e-8)
            if solved == 1:
               return x[0]
   else:
       x, r = brentq( obj_fun, a = 1e-15, b = 500, full_output = True)
       if r.converged == True:
           return x
    # display strikes with failed convergence
   if disp == True:
       print(method, K)
    return -1
# Black implied volatility (IBV)
list_ibv_bachelier, list_ibv_black, list_ibv_heston, list_ibv_qnm = [], [], [], []
for stirke_, bachelier_, black_, heston_, qnm_ in zip(arr_strike, arr_bachelier_call, arr_black_call, list_heston_call,
  list_ibv_bachelier.append(implied_volatility(bachelier_, futures_price, stirke_, risk_free_rate, time_to_maturity,
                                                          option_type = 'call', model = 'black', method='brent', disp=T
  list_ibv_black.append(implied_volatility(black_, futures_price, stirke_, risk_free_rate, time_to_maturity,
                                                          option_type = 'call', model = 'black', method='brent', disp=T
  list_ibv_heston.append(implied_volatility(heston_, futures_price, stirke_, risk_free_rate, time_to_maturity,
                                                          option_type = 'call', model = 'black', method='brent', disp=T
  list_ibv_qnm.append(implied_volatility(qnm_, futures_price, stirke_, risk_free_rate, time_to_maturity,
                                                          option_type = 'call', model = 'black', method='brent', disp=T
# create plot
plt.plot(arr_strike, list_ibv_bachelier, '.', label = 'Bachelier')
plt.plot(arr_strike, list_ibv_black, '.', label = 'Black')
plt.plot(arr_strike, list_ibv_heston, '.', label = 'Heston')
```

0.35 - 0.34 - 0.33 - 0.32 - 0.30 - 0.29 - Bachelier Black Heston

```
# Bachelier implied volatility (INV)
list_inv_bachelier, list_inv_black, list_inv_heston, list_inv_qnm = [], [], [], []
for stirke_, bachelier_, black_, heston_, qnm_ in zip(arr_strike, arr_bachelier_call, arr_black_call, list_heston_call,
     list_inv_black.append(implied_volatility(black_, futures_price, stirke_, risk_free_rate, time_to_maturity,
                                                                                                                                                         option_type = 'call', model = 'bachelier', method='brent', di
     list\_inv\_heston.append(implied\_volatility(heston\_, \ futures\_price, \ stirke\_, \ risk\_free\_rate, \ time\_to\_maturity, \ risk\_free\_rate, \ risk\_
                                                                                                                                                         option_type = 'call', model = 'bachelier', method='brent', di
      list_inv_qnm.append(implied_volatility(qnm_, futures_price, stirke_, risk_free_rate, time_to_maturity,
                                                                                                                                                         option_type = 'call', model = 'bachelier', method='brent', di
plt.plot(arr_strike, list_inv_bachelier, '.', label = 'Bachelier')
plt.plot(arr_strike, list_inv_black, '.', label = 'Black')
plt.plot(arr_strike, list_inv_heston, '.', label = 'Heston')
plt.plot(arr_strike, list_inv_qnm, '.', label = 'QNM')
plt.title('Bachelier Implied Volatility (INV)')
plt.xlabel('stike price K')
plt.ylabel('implied volatility')
plt.legend(loc = 'lower right')
plt.show()
```


▼ QNM Model Calibration

	Туре	Last	Volume	Open Int	Daily Premium	Type.1	Last.1	Volume.1	Open Int.1	Daily Premium.1	1
Strike											
49.0	Call	24.77	NaN	4.0	24770.0	Put	0.04	18.0	877.0	40.00	
49.5	Call	24.27	1.0	1.0	24270.0	Put	0.05	NaN	557.0	50.00	
50.0	Call	23.77	346.0	804.0	23770.0	Put	0.05	115.0	4225.0	50.00	
50.5	Call	23.28	1.0	157.0	23280.0	Put	0.05	NaN	438.0	50.00	
51.0	Call	22.78	NaN	689.0	22780.0	Put	0.06	11.0	749.0	60.00	

```
# OTM options with high trading volume (>100) to compute implied vol
list_data = []
for index_ in df_raw_data.index:
   if index_ < futures_price:
        if df_raw_data.loc[index_, 'Volume.1'] > 100:
            list_data.append((index_, df_raw_data.loc[index_, 'Last.1'], 'put'))
   else:
        if df_raw_data.loc[index_, 'Volume'] > 100:
            list_data.append((index_, df_raw_data.loc[index_, 'Last'], 'call'))

arr_data = np.array(list_data)
df_data = pd.DataFrame({'price': arr_data.T[1].astype(float), 'option type': arr_data.T[2]}, index = arr_data.T[0].astydf_data.head()
```

	price	option type	1
50.0	0.05	put	
54.5	0.10	put	
55.0	0.10	put	
57.0	0.15	put	
60.0	0.26	put	

```
# IBV and IMV
list_ibv_mkt, list_inv_mkt = [], []
for strike_, price_, option_type_ in zip(df_data.index, df_data.loc[:,'price'], df_data.loc[:,'option type']):
  list_ibv_mkt.append(implied_volatility(price_, futures_price, strike_, risk_free_rate, time_to_maturity,
                                                           option_type = option_type_, model = 'black', method='brent',
  list\_inv\_mkt.append(implied\_volatility(price\_, \ futures\_price, \ strike\_, \ risk\_free\_rate, \ time\_to\_maturity, \\
                                                            option_type = option_type_, model = 'bachelier', method='bren
# create subplots
fig = plt.figure(figsize=(16,5))
ax1 = fig.add_subplot(121)
ax1.plot(df_data.index, list_ibv_mkt, '.')
ax1.set_title('Black Implied Volatility (IBV)')
ax1.set_xlabel('stike price K')
ax1.set_ylabel('implied volatility')
ax2 = fig.add_subplot(122)
ax2.plot(df_data.index, list_inv_mkt, '.')
ax2.set title('Bachelier Implied Volatility (INV)')
ax2.set_xlabel('stike price K')
ax2.set_ylabel('implied volatility')
plt.show()
```


▼ Calibration Scheme

ax2.legend(loc='upper right')

plt.show()

$$argmin_{\theta} \sum_{i=1}^{N} \left(P_i(K_i) - f(K_i | \Theta) \right)^2$$

```
# calibration
def qnm option pricer(arr K, a, b, c):
  list_price, qnm_ = [], QNM(futures_price, a, b, c, risk_free_rate, time_to_maturity)
  for K_ in arr_K:
    if K_ < futures_price:</pre>
      list_price.append(qnm_.option_pricer(K = K_, option_type = 'put'))
      list_price.append(qnm_.option_pricer(K = K_, option_type = 'call'))
  return list_price
params, _ = curve_fit(qnm_option_pricer, df_data.index, df_data.loc[:,'price']
                       , p0=[a, b, c], bounds=([-np.inf, -np.inf, -np.inf], [np.inf, np.inf, np.inf]))
qnm_calibration = QNM(futures_price, params[0], params[1], params[2], risk_free_rate, time_to_maturity)
arr_qnm_call = qnm_calibration.option_pricer(K = df_data.index, option_type = 'call')
\# IBV and IMV
list_ibv_qnm, list_inv_qnm = [], []
for strike_, price_ in zip(df_data.index, arr_qnm_call):
  list_ibv_qnm.append(implied_volatility(price_, futures_price, strike_, risk_free_rate, time_to_maturity,
                                                            option_type = 'call', model = 'black', method='brent', disp=F
  list_inv_qnm.append(implied_volatility(price_, futures_price, strike_, risk_free_rate, time_to_maturity,
                                                            option_type = 'call', model = 'bachelier', method='brent', di
# create subplots
fig = plt.figure(figsize=(16,5))
ax1 = fig.add_subplot(121)
ax1.plot(df_data.index, list_ibv_mkt, '.', label = 'Market')
ax1.plot(df_data.index, list_ibv_qnm, '.', label = 'QNM')
ax1.set_title('Black Implied Volatility (IBV)')
ax1.set_xlabel('stike price K')
ax1.set_ylabel('implied volatility')
ax1.legend(loc='upper right')
ax2 = fig.add_subplot(122)
ax2.plot(df_data.index, list_inv_mkt, '.', label = 'Market')
ax2.plot(df_data.index, list_inv_qnm, '.', label = 'QNM')
ax2.set_title('Bachelier Implied Volatility (INV)')
ax2.set_xlabel('stike price K')
ax2.set_ylabel('implied volatility')
```


26 -

▼ Technicle note - Quadratic Normal Model

Consider an underlying futures price, F_t , with the following dynamics:

$$\begin{cases} dF_t = \sigma(F_t)dW_t \\ \sigma(F_t) = a + \epsilon(F_t) \end{cases}$$

Here, ϵ represents a small perturbation that only depends on the space F.

Under the no-arbitrage condition, any derivative price V(F,t) in this economy satisfies the following partial differential equation (PDE):

$$\frac{\partial V}{\partial t} + \frac{(a+\epsilon)^2}{2} \frac{\partial^2 V}{\partial F^2} = rV$$

We are specifically interested in the European call option price, C(F, t). We conjecture that $C = C_{BC} + e^{-r(T-t)}U$, where C_{BC} is the Bachelier call formula. Substituting this into the above PDE, we obtain:

$$(\frac{\partial C_{BC}}{\partial t} + \frac{a^2}{2} \frac{\partial^2 C_{BC}}{\partial F^2} - rC_{BC}) + e^{-r(T-t)}(\frac{\partial U}{\partial t} + \frac{a^2}{2} \frac{\partial^2 U}{\partial F^2} + a\varepsilon \frac{\partial^2 C_{BC} e^{r(T-t)}}{\partial F^2}) + e^{-r(T-t)}(\frac{\varepsilon^2}{2} \frac{\partial^2 C_{BC} e^{r(T-t)}}{\partial F^2} + (a\varepsilon + \frac{\varepsilon^2}{2})\frac{\partial^2 U}{\partial F^2}) = 0$$

The Bachelier formula C_{BC} solves the first parenthesis. The terms grouped in the last parenthesis are of higher order with respect to ϵ . Therefore, any U satisfying the second parenthesis makes the PDE hold for some small perturbation ϵ . Let's consider $\tau=T-t$ and $U=\sqrt{\tau}n\left(\frac{F-K}{a\sqrt{\tau}}\right)p(F,\tau)$. After changes of variables, the PDE is now transformed into the following:

$$p + \tau \frac{\partial p}{\partial t} - \frac{a\tau}{2} \frac{\partial^2 p}{\partial F^2} + (F - K) \frac{\partial p}{\partial F} = \epsilon$$

Let $\epsilon(F) = bF + cF^2$ and $p(F, \tau) = w_0 + w_1F + w_2F^2 + w_3\tau$. The PDE relates these two functions through a set of linear equations:

$$\begin{cases} w_0 - Kw_1 = 0 \\ 2w_1 - 2Kw_2 = b \\ 3w_2 = c \\ 2w_3 = a^2w_2 \end{cases}$$

The solution to the above linear system is:

$$\int w_0 = \frac{Kb}{2} + \frac{K^2c}{3}$$
 完成時間: 晚上10:50