Note on binding of an association particle to semantic particles

D. Gueorguiev 11/25/21

Primitive semantic particles

Let us consider two primitive semantic particles - V_i and V_j connected through association particle (link) $A_{i,j}$.

$$V_i$$
---- V_j

The particles V_i and V_j are represented by their semantic signatures \mathbf{V}_i and \mathbf{V}_j . The association link $A_{i,j}$ is represented with its association matrix $\mathbf{A}_{i,j}$ and semantic significance vector $\mathbf{W}_{i,j}$.

The association matrix $\mathbf{A}_{i,j}$ captures the affinity force $F(V_i,V_j,t)$ between the particles V_i and V_j at the time t of constructing the compound structure involving those particles. Note that the magnitude of affinity force between the particles may change as their semantic positions and signatures are altered in the future. A change in the affinity force $F(V_i,V_j,t+\Delta t)$ at a future moment $t+\Delta t$ may change the matrix $\mathbf{A}_{i,j}$ of the association link between the altered particles. Altering the semantic position of a particle will require reevaluating the semantic links of this particle with the relevant enclosing contexts.

The association matrix has the following structure:

 $\mathbf{A}_{i,j} = \left[\mathbf{a}_{p_1,q_1} \dots \ \mathbf{a}_{p_m,q_n}\right]$ where the pairs p,q denote all relevant property pairs where the left property belongs to V_i and the right property belongs to V_j . Let us denote with $\mathcal P$ the set of property indices which belong to V_i and with Q the set of indices which belong to V_j . Then $p \in \mathcal P$ and $q \in Q$. Note that the map $\mathcal P \to Q$ is many-to-many. That is, the same index p may appear multiple times with different $q \in Q$ and the same index p may appear multiple times with different $p \in \mathcal P$. The property association matrices $\mathbf{a}_{p,q}$ have the following structure:

$$\mathbf{a}_{p,q} = \begin{bmatrix} \mathbf{r}_{1}^{p} & \mathbf{r}_{1}^{q} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{r}_{2}^{p} & \mathbf{r}_{2}^{q} \\ \mathbf{0} & \mathbf{0} \\ \vdots & \vdots \\ \mathbf{0} & \mathbf{0} \\ \mathbf{r}_{k}^{p} & \mathbf{r}_{l}^{q} \end{bmatrix}$$

So $\mathbf{a}_{p,q}$ is a two-column matrix of size $N \times 2$ with non-zero regions in each column denoted by the vectors \mathbf{r}_i where $\sum_{i=1}^k \operatorname{size}(\mathbf{r}_{i=1}^p) \leq N$ and $\sum_{j=1}^l \operatorname{size}(\mathbf{r}_j^q) \leq N$. The non-zero regions \mathbf{r}_i^p and \mathbf{r}_j^q are also known as the *active regions* of the association link between the two properties $P_p \in ptree(V_i)$ and $P_q \in ptree(V_j)$ at time t. For details refer to Note On Binding Of An Association Property to Semantic Properties.

The binding force between the two V-particles is conveyed through the Association Particle which exposes the active regions which are to be considered. The binding force is given with the expression:

$$F^{b}(V_{i}, V_{j}|A_{i,j}) = \sum_{P_{k} \in \{V_{i} \cap A_{i,j}\}, P_{l} \in \{V_{j} \cap A_{i,j}\}} \sum_{a \in P_{k}, b \in P_{l}} f(\mathbf{r}_{a}^{k}, \mathbf{r}_{b}^{l})$$

The set $\{V_i \cap A_{i,j}\}$ denotes all properties of V_i which are included in $\mathbf{A}_{i,j}$. Similarly, the set $\{V_j \cap A_{i,j}\}$ denotes all properties of V_j which are included in $\mathbf{A}_{i,j}$. The notation $V_i, V_j | A_{i,j}$ reflects the fact that the property pairs contributing to the total binding force is filtered by the chosen in $\mathbf{A}_{i,j}$ property pairs. In other words, the Association Particle is acting as a filter which selects which property pairs are relevant and will contribute to the binding force between V_i and V_j .

Obviously $F^b(V_i, V_j | A_{i,j})$ will be smaller or equal than the binding force $F^b(V_i, V_j)$ created by considering all property pairs without any Association Particle acting as a filter:

$$F^{b}(V_{i}, V_{j}|A_{i,j}) \leq F^{b}(V_{i}, V_{j})$$
 where $F^{b}(V_{i}, V_{j})$ is given as

$$F^b\big(V_i,V_j\big) = \textstyle \sum_{P_k \in \{V_i\}, P_l \in \{V_i\}} \textstyle \sum_{a \in P_k, b \in P_l} f\big(\mathbf{r}_a^k, \mathbf{r}_b^l\big)$$