PROVA SCRITTA DI ELETTRONICA 1 9 FEBBRAIO 2017

1) Nel circuito in figura, i transistori e i diodi possono essere descritti da un modello "a soglia", con V_{γ} =0.75 V e $V_{CE,sat}$ =0.2V. Si determini il margine di immunità ai disturbi della rete.

 $V_{cc} = 5 \text{ V}, \ \beta_{F} = 100, \ R_1 = 3 \text{ k}\Omega, \ R_2 = 5 \text{ k}\Omega, \ R_3 = 10 \text{ k}\Omega, \ R_4 = 2.5 \text{ k}\Omega.$

2) Nel circuito in figura, il transistore MOS è caratterizzato dalla tensione di soglia V_{Tn} e dal coefficiente β_n .

Il segnale di ingresso Vi abbia l'andamento seguente:

$$V_i = \begin{cases} V_{dd} \ (t < 0) \\ 0 \ (t > 0) \end{cases}$$

Si determini il tempo necessario a compiere il 50% del transitorio di variazione della carica sul condensatore C.

 $V_{dd} = 3.3 \text{ V}, \ \beta_n = 1.4 \text{ mA/V}^2, \ V_{Tn} = 0.35 \text{ V}, \ R_1 = 2 \text{ k}\Omega, \ R_2 = 500 \ \Omega, \ C = 60 \text{ fF}.$

Esame di ELETTRONICA DEI SISTEMI DIGITALI A: l'esercizio 2 (tempo disponibile 1h 15m).

Esame di ELETTRONICA 1 / FONDAMENTI DI ELETTRONICA A: svolgere gli esercizi 1 e 2 (tempo disponibile 2h e 30m).

- Indicare su ciascun foglio nome, cognome, data e numero di matricola
- Non usare penne o matite rosse
- L'elaborato deve essere contenuto in un unico foglio (4 facciate) protocollo

9.2.2017 - Esercizio 1

Osservazioni preliminari:

- il diodo D_2 e il transistore T sono necessariamente o entrambi OFF o entrambi ON ($I_B = I_{D2}$);
- se il diodo D_2 e il transistore sono ON ($V_x > 2 V_y$), allora necessariamente il diodo D_1 è ON (ma non viceversa).

1)
$$V_{i} < V_{\gamma} \rightarrow D_{1} \text{ OFF } \rightarrow D_{2}, T \text{ OFF } \rightarrow I_{C} = 0 \rightarrow V_{u} = V_{cc} - R_{4}I_{C} = V_{cc}$$

2) $D_{1} \text{ ON, } D_{2}, T \text{ OFF:}$

$$V_{x} = V_{i} - R_{1}I_{R1}$$

$$V_{x} = V_{\gamma} + R_{2}I_{R2}$$

$$I_{R1} = I_{B} + I_{R2}$$

$$I_{R} = 0$$

$$\downarrow V_{x} = 0.281 + 0.625 V_{i} \xrightarrow{V_{x} < 2V_{\gamma}} V_{i} < 1.95 \text{ V}, V_{u} = V_{cc}$$

3) D_1 , D_2 ON, T ON (RN):

$$V_{x} = V_{i} - R_{1}I_{R1}$$

$$V_{x} = V_{\gamma} + R_{2}I_{R2}$$

$$I_{R1} = I_{B} + I_{R2}$$

$$V_{D2} = V_{BE} = V_{\gamma} \rightarrow I_{B} = \frac{(V_{x} - 2V_{\gamma})}{R_{3}}$$

$$\Rightarrow V_{u} = 30.66 - 13.16 V_{i} (*)$$

che vale fino a che il transistore T non satura:

$$V_{CE} = V_u > V_{CE,sat} \xrightarrow{(*)} V_i < 2.31 \text{ V}$$

4)
$$D_1$$
, D_2 ON, T ON (SAT) $\rightarrow V_u = V_{CE,sat}$

L'andamento della caratteristica statica di trasferimento è quindi il seguente:

$$N_{ML} = V_{ILMAX} - V_{OLMAX} = 1.75 \text{ V}$$

 $N_{MH} = V_{OHMIN} - V_{IHMIN} = 2.69 \text{ V}$ $\rightarrow N_M = \min(N_{ML}, N_{MH}) = 1.75 \text{ V}$

9.2.2017 - Esercizio 2

1)
$$t < 0$$
: $V_i = V_{dd} \rightarrow M_1 \text{ON}$

In condizioni statiche ($I_c=0$), supponendo M_1 LIN (*) e scartando una soluzione non significativa si ottiene:

$$I_{R1} = \frac{V_{dd} - V_u}{R_1}$$

$$I_{R2} = \frac{V_x}{R_2}$$

$$I_D = \beta_n \left((V_{dd} - V_x - V_T)(V_u - V_x) - \frac{(V_u - V_x)^2}{2} \right)$$

$$V_C = V_u - V_x$$

$$I_{R1} = \frac{V_{dd} - V_u}{R_1}$$

$$I_{R2} = \frac{V_x}{R_2}$$

$$V_u = 0.967 \text{ V}$$

$$V_u = 0.583 \text{ V}$$

$$V_v = 0.383 \text{ V}$$

che soddisfa l'ipotesi (*):

$$V_{GS} = V_{dd} - V_x = 2.717 > V_{DS} = V_c = 0.383$$

2) t > 0: $V_i = 0 \rightarrow M_1 \text{OFF}$

Per $t \to \infty$, al termine del transitorio, si ha:

$$I_c = I_{R1} = I_{R2} = 0 \rightarrow \begin{cases} V_u = V_{dd} \\ V_x = 0 \\ V_c = V_{dd} \end{cases}$$

Nel corso del transitorio, la tensione ai capi del condensatore quindi passa da $0.383\,$ a $3.3\,$ V. Il 50% della variazione si raggiunge quindi per:

$$V_c = \frac{0.383 + 3.3}{2} = 1.842 \text{ V}$$

Si ha:

$$I_{R1} = \frac{V_{dd} - V_u}{R_1}$$

$$I_{R2} = \frac{V_u - V_c}{R_2}$$

$$I_C = C \frac{dV_C}{dt}$$

$$I_C = C \frac{dV_C}{dt}$$

da cui, separando le variabili e integrando per V_c : 0.383 \rightarrow 1.842 V si ottiene:

$$t_{50\%} = \int_{0.383}^{1.842} \frac{C}{1.32 \ 10^{-3} - 0.4 \ 10^{-3} \ V_c} dV_c = 103.97 \text{ ps}$$