POSCAT Seminar 2: Algorithm Verification & Efficiency

yougatup @ POSCAT

Topic

Topic today

- Problem Solving Procedure
 - Algorithm Verification
 - Computational Efficiency
- Basic arithmetic
 - Multiplication
 - Power
 - Greatest Common Divisor
- Primarity Testing
 - Naïve approach
 - Eratosthenes' sieve

- Stable Matching
- Implementation
 - Basic implementation
 - Covering today's topic

Problem Solving Procedure

- ▶ 문제를 푸는 과정
 - 알고리즘을 개발한 후에 이 알고리즘이 정확하다는 것을 증명
 - 이 알고리즘이 충분히 빠른 알고리즘인지를 생각
 - 괜찮은 알고리즘이면 위의 알고리즘을 오류 없이 구현
- ▶ 정확성의 증명과 효율성
 - 알고리즘의 정확성에 대한 수학적 증명
 - 알고리즘의 시간이 얼마나 걸릴지 계산하는 과정

Multiplication

$$x \cdot y = \begin{cases} x & if \ y = 1 \\ x \cdot (y - 1) + x & otherwise \end{cases}$$

Verification: Is this algorithm **true**?

Efficiency: How long does it takes?

Multiplication

$$x \cdot y = \begin{cases} x & if \ y = 1 \\ x \cdot (y - 1) + x & otherwise \end{cases}$$

Verification: Is this algorithm **true**?

Multiplication

$$x \cdot y = \begin{cases} x & if \ y = 1 \\ x \cdot (y - 1) + x & otherwise \end{cases}$$

Verification: Is this algorithm **true**?

Proof: use Mathematical Induction

$$x \cdot y = x + x + \dots + x$$

Multiplication

$$x \cdot y = \begin{cases} x & if \ y = 1 \\ x \cdot (y - 1) + x & otherwise \end{cases}$$

Efficiency: How long does it takes?

Multiplication

$$x \cdot y = \begin{cases} x & \text{if } y = 1 \\ x \cdot (y - 1) + x & \text{otherwise} \end{cases}$$

Efficiency: How long does it takes?

What is the unit?

- 알고리즘의 대략적인 연산횟수를 계산
 - 연산을 오래 하는 알고리즘이면 시간도 더 느릴 것이다
 - 사칙연산, 비교연산 등 연산에 관계없이 모두 1번이라 생각
 - ─ 데이터 크기에 따라 연산 횟수가 달라짐 → n에 대한 함수 필요
 - 정확하게는 세기 어려움

```
1 int sum = 0;
2
3 for(int i=1;i<=n;i++)
4     sum = sum + i;</pre>
```

몇 번의 연산이 필요한가?

- 알고리즘의 대략적인 연산횟수를 계산
 - 연산을 오래 하는 알고리즘이면 시간도 더 느릴 것이다
 - 사칙연산, 비교연산 등 연산에 관계없이 모두 1번이라 생각
 - ─ 데이터 크기에 따라 연산 횟수가 달라짐 → n에 대한 함수 필요
 - 정확하게는 세기 어려움

```
1 int sum = 0;
2
3 for(int i=1;i<=n;i++)
4     sum = sum + i;</pre>
```

몇 번의 연산이 필요한가 ? 약 n번

- 알고리즘의 대략적인 연산횟수를 계산
 - 연산을 오래 하는 알고리즘이면 시간도 더 느릴 것이다
 - 사칙연산, 비교연산 등 연산에 관계없이 모두 1번이라 생각
 - ─ 데이터 크기에 따라 연산 횟수가 달라짐 → n에 대한 함수 필요
 - 정확하게는 세기 어려움

```
1 int sum = 0;
2
3 for(int i=1;i<=n;i++)
4     sum = sum + i;</pre>
```

몇 번의 연산이 필요한가 ? O(n)


```
1 for(int i=1;i<=n;i++){
2    for(int j=1;j<=n;j++){
3         A[i][j] = 1;
4    }
5 }
6
7 for(int i=1;i<=n;i++)
8    A[i][i] = 2;</pre>
```



```
1 for(int i=1;i<=n;i++){
2    for(int j=1;j<=n;j++){
3        A[i][j] = 1;
4    }
5 }
6
7 for(int i=1;i<=n;i++)
8    A[i][i] = 2;</pre>
```

$$O(n^2 + n)$$


```
1 for(int i=1;i<=n;i++){
2    for(int j=1;j<=n;j++){
3         A[i][j] = 1;
4    }
5 }
6
7 for(int i=1;i<=n;i++)
8    A[i][i] = 2;</pre>
```



```
1 for(int i=1;i<=n;i++){
2    for(int j=1;j<=n-i;j++){
3         if(Data[j] > Data[j+1]){
4         int temp = Data[j];
5         Data[j] = Data[j+1];
6         Data[j+1] = temp;
7         }
8     }
9 }
```



```
1 for(int i=1;i<=n;i++){
2    for(int j=1;j<=n-i;j++){
3         if(Data[j] > Data[j+1]){
4         int temp = Data[j];
5         Data[j] = Data[j+1];
6         Data[j+1] = temp;
7         }
8     }
9 }
```

```
swap loop (3 \cdot \{ (n-1) + (n-2) + \dots + 1 \})
```



```
1 for(int i=1;i<=n;i++){
2    for(int j=1;j<=n-i;j++){
3         if(Data[j] > Data[j+1]){
4         int temp = Data[j];
5         Data[j] = Data[j+1];
6         Data[j+1] = temp;
7       }
8    }
9 }
```



```
1 for(int i=1;i<=n;i++){
2    for(int j=1;j<=n-i;j++){
3         if(Data[j] > Data[j+1]){
4         int temp = Data[j];
5         Data[j] = Data[j+1];
6         Data[j+1] = temp;
7         }
8     }
9 }
```



```
1 for(int i=1;i<=n;i++){
2    for(int j=1;j<=n-i;j++){
3         if(Data[j] > Data[j+1]){
4         int temp = Data[j];
5         Data[j] = Data[j+1];
6         Data[j+1] = temp;
7         }
8     }
9 }
```



```
1 for(int i=1;i<=n;i++){
2    for(int j=1;j<=n-i;j++){
3         if(Data[j] > Data[j+1]){
4         int temp = Data[j];
5         Data[j] = Data[j+1];
6         Data[j+1] = temp;
7         }
8     }
9 }
```


Example

```
1 for(int i=1;i<=n;i++){
2    for(int j=1;j<=n-i;j++){
3         if(Data[j] > Data[j+1]){
4         int temp = Data[j];
5         Data[j] = Data[j+1];
6         Data[j+1] = temp;
7         }
8     }
9 }
```

사실 대부분의 경우에는 최고차 항만 고려하면 됨

Multiplication

$$x \cdot y = \begin{cases} x & \text{if } y = 1 \\ x \cdot (y - 1) + x & \text{otherwise} \end{cases}$$

Efficiency: How long does it takes?

What is the unit?

Multiplication

$$x \cdot y = \begin{cases} x & if \ y = 1 \\ x \cdot (y - 1) + x & otherwise \end{cases}$$

Efficiency: How long does it takes?

What is the unit ?

→ The number of operations!

Multiplication

$$x \cdot y = \begin{cases} x & if \ y = 1 \\ x \cdot (y - 1) + x & otherwise \end{cases}$$

Efficiency: How long does it takes?

So, what is the efficiency?

Multiplication

$$x \cdot y = \begin{cases} x & if \ y = 1 \\ x \cdot (y - 1) + x & otherwise \end{cases}$$

Efficiency: How long does it takes?

So, what is the efficiency?

Multiplication

$$x \cdot y = \begin{cases} x & if \ y = 1 \\ x \cdot (y - 1) + x & otherwise \end{cases}$$

Efficiency: How long does it takes?

So, what is the efficiency ?

→ We need pseudo-code

Multiplication

$$x \cdot y = \begin{cases} x & if \ y = 1 \\ x \cdot (y - 1) + x & otherwise \end{cases}$$

Efficiency: How long does it takes?

```
1 for(int i=1;i<=y;i++)
2     result = result + x;</pre>
```


Multiplication

$$x \cdot y = \begin{cases} x & \text{if } y = 1 \\ x \cdot (y - 1) + x & \text{otherwise} \end{cases}$$

Efficiency: How long does it takes?

```
1 for(int i=1;i<=y;i++)
2    result = result + x;</pre>
```

O(y)

Multiplication

$$x \cdot y = \begin{cases} x & if \ y = 1 \\ x \cdot (y - 1) + x & otherwise \end{cases}$$

Efficiency: How long does it **takes**?

```
1 for(int i=1;i<=y;i++)
2    result = result + x;</pre>
```

O(y)

e!

Multiplication

$$x \cdot y = \begin{cases} x & \text{if } y = 1 \\ x \cdot (y - 1) + x & \text{otherwise} \end{cases}$$

Efficiency: How long does it takes?

```
1 for(int i=1;i<=y;i++)
2    result = result + x;</pre>
```

O(y)

Done!

Is there another algorithm faster?

Multiplication

$$x \cdot y = \begin{cases} x + (2 \cdot x \cdot \left\lfloor \frac{y}{2} \right\rfloor) & \text{if y is odd} \\ 2 \cdot x \cdot \left\lfloor \frac{y}{2} \right\rfloor & \text{if y is even} \end{cases}$$

Verification: Is this algorithm **true**?

Efficiency: How long does it takes?

Multiplication

$$x \cdot y = \begin{cases} x + (2 \cdot x \cdot \left\lfloor \frac{y}{2} \right\rfloor) & \text{if y is odd} \\ 2 \cdot x \cdot \left\lfloor \frac{y}{2} \right\rfloor & \text{if y is even} \end{cases}$$

Verification: Is this algorithm **true**? Mathematical Induc.

Efficiency: How long does it **takes**? $O(\log y)$

Multiplication

$$x \cdot y = \begin{cases} x + (2 \cdot x \cdot \left\lfloor \frac{y}{2} \right\rfloor) & \text{if y is odd} \\ 2 \cdot x \cdot \left\lfloor \frac{y}{2} \right\rfloor & \text{if y is even} \end{cases}$$

Verification: Is this algorithm **true**? Mathematical Induc.

Efficiency: How long does it **takes**? $O(\log y)$

그냥 x*y 하면 될걸 무슨 이런 헛짓을...

Power

Derive the efficient algorithm to calculate x^y Find correct algorithm which takes $O(\log y)$ Also, give me the pseudo-code

• Euclid's Rule

$$\gcd(x,y) = \gcd(x \bmod y, y)$$

Claim. G =
$$gcd(x, y) = gcd(x - y, y)$$
 if $x \ge y$

Proof.

• Euclid's Rule

$$\gcd(x,y) = \gcd(x \bmod y, y)$$

Claim. G =
$$gcd(x, y) = gcd(x - y, y)$$
 if $x \ge y$

Proof. Any divisor of both x and y also divides x-y

Therefore, gcd(x, y) is the divisor or gcd(x - y, y) $gcd(x, y) \leq gcd(x - y, y)$

• Euclid's Rule

$$\gcd(x,y) = \gcd(x \bmod y, y)$$

Claim. G =
$$gcd(x, y) = gcd(x - y, y)$$
 if $x \ge y$

Proof. Also, any divisor of both x-y and y also divides xTherefore, $gcd(x,y) \ge gcd(x-y,y)$

$$\therefore \gcd(x,y) = \gcd(x-y,y)$$

• Euclid's Rule

$$\gcd(x,y) = \gcd(x \bmod y, y)$$

Then
$$G = \gcd(x, y) = \gcd(x \bmod y, y)$$
 if $x \ge y$

• Euclid's Rule

$$\gcd(x,y) = \gcd(x \bmod y, y)$$

• Euclid's Rule

$$\gcd(x,y) = \gcd(x \bmod y, y)$$

gcd(248, 32) gcd(24, 32)

• Euclid's Rule

$$\gcd(x,y) = \gcd(x \bmod y, y)$$

gcd(248, 32) gcd(24, 32) gcd(32, 24)

• Euclid's Rule

$$\gcd(x,y) = \gcd(x \bmod y, y)$$

gcd(248, 32) gcd(24, 32) gcd(32, 24) gcd(8, 24)

• Euclid's Rule

$$\gcd(x,y) = \gcd(x \bmod y, y)$$

gcd(248, 32) gcd(24, 32) gcd(32, 24) gcd(8, 24) gcd(24, 8)

• Euclid's Rule

$$\gcd(x,y) = \gcd(x \bmod y, y)$$

```
gcd(248, 32)
gcd(24, 32)
gcd(32, 24)
gcd(8, 24)
gcd(24, 8)
```

8 divides 24! Therefore, gcd(24, 8) = 8

• Euclid's Rule

$$\gcd(x,y) = \gcd(x \bmod y, y)$$

How long does it takes?

• Euclid's Rule

$$\gcd(x,y) = \gcd(x \bmod y, y)$$

How long does it takes?

Claim. If $a \ge b$ then $a \mod b < a/2$ Consider the cases $b \le a/2$ and b > a/2

• Euclid's Rule

$$\gcd(x,y) = \gcd(x \bmod y, y)$$

How long does it takes?

Claim. If $a \ge b$ then $a \mod b \le a/2$ Consider the cases $b \le a/2$ and b > a/2

If
$$b \le a/2$$
 then $a \mod b < b \le a/2$
 $b > a/2$ then $a \mod b = a - b < a/2$

• Euclid's Rule

$$\gcd(x,y) = \gcd(x \bmod y, y)$$

How long does it takes?

After two consecutive round, a and b are at least half

 $\rightarrow O(\log n)$

Problem Definition

Given p, determine whether p is prime number or not Given a interval [s, e], show all of the prime numbers in the interval

Approach

- Naïve approach
- Eratosthenes' seive

Given p, determine whether p is prime number or not

Naïve approach

For all $2 \le i \le p-1$, test whether i divides p If there is such i, then p is NOT prime number Otherwise, p is prime number

Verification: Is this algorithm **true**?

Efficiency: How long does it takes?

Given p, determine whether p is prime number or not

Naïve approach

For all $2 \le i \le p-1$, test whether i divides p If there is such i, then p is NOT prime number Otherwise, p is prime number

Verification: Is this algorithm **true**? By definition of prime number

Efficiency: How long does it **takes**? O(p)

Given p, determine whether p is prime number or not

Naïve approach

```
For all 2 \le i \le p-1, test whether i divides p
If there is such i, then p is NOT prime number
Otherwise, p is prime number
```

Verification: Is this algorithm **true**? By definition of prime number

Efficiency: How long does it **takes**? O(p)

Is there another algorithm faster?

Given p, determine whether p is prime number or not

We don't have to consider all such i!

It is sufficient to consider $2 \le i \le \sqrt{p}$, Why?

Verification: Is this algorithm **true**? By definition of prime number

Efficiency: How long does it **takes**? O(p)

Given p, determine whether p is prime number or not

We don't have to consider all such i!

It is sufficient to consider $2 \le i \le \sqrt{p}$, Why?

If p is tested as prime number when $i > \sqrt{p}$, It must be tested before!

Verification: Is this algorithm **true**? By definition of prime number

Efficiency: How long does it **takes**? O(p)

Given p, determine whether p is prime number or not

We don't have to consider all such i!

It is sufficient to consider $2 \le i \le \sqrt{p}$, Why?

If p is tested as prime number when $i > \sqrt{p}$, It must be tested before!

Verification: Is this algorithm **true**? By definition of prime number

Efficiency: How long does it takes? $O(\sqrt{p})$

Given a interval [s, e], show all of the prime numbers in the interval

Naïve approach

For all numbers x in the interval, test it

Verification: Is this algorithm **true**? Trivial

Efficiency: How long does it takes? $O(n\sqrt{n})$

Given a interval [s, e], show all of the prime numbers in the interval

Naïve approach

For all numbers x in the interval, test it

Verification: Is this algorithm **true**? Trivial

Efficiency: How long does it takes? $O(n\sqrt{n})$

Is there another algorithm faster?

Simple Algorithm

- 1. '1' is not a prime number by definition
- 2. Pick the smallest value among we have, which is 2
- 3. Erase all the numbers divided by 2 (except 2)
- 4. Pick the smallest value among we have, which is 3
- 5. Erase all the numbers divided by 3 (except 3)
- 6. Repeat this procedure

Simple Algorithm

Simple Algorithm

'1' is not a prime number by definition

Simple Algorithm

Pick the smallest value among we have, which is 2

Simple Algorithm

Erase all the numbers divided by 2 (except 2)

2 3

5

7

9

11

13

15

Simple Algorithm

Pick the smallest value among we have, which is 3

2 3

5

7

9

11

13

15

Simple Algorithm

Erase all the numbers divided by 3 (except 3)

2 3

5

7

11

13

Simple Algorithm

Pick the smallest value among we have, which is 5

2 3

5

7

11

13

Simple Algorithm

Erase all the numbers divided by 5 (except 5)

2 3

5

7

11

13

Simple Algorithm

Repeat this procedure

2 3

5

7

11

13

Analysis

Verification: Is this algorithm **true**? It looks like ...

Efficiency: How long does it takes?

Analysis

```
Verification: Is this algorithm true? It looks like ...
```

Efficiency: How long does it **takes**?

Suppose that we want to find all the prime numbers in [1, n] Let's focus on a integer x in the interval Then x is "clicked" as many as the number of divisor of x It must be bounded by $O(\log x)$ for each x

Therefore, It takes $O(n \log n)$

Much better than $O(n\sqrt{n})$!

Bipartite Matching

Problem Definition (weak)

Maximize the number of matched pair on bipartite graph

Bipartite Matching

Problem Definition (weak)

Maximize the number of matched pair on bipartite graph

Stable Matching

Problem Definition (weak)

N명의 남자와 여자가 미팅을 하기 위해서 만남 남자와 여자 모두 원하는 상대방의 우선순위를 정함 서로 짝이 아닌 두 남녀가 자신의 짝보다 상대방을 더 선호하면?

Problem Definition (weak)

N명의 남자와 여자가 미팅을 하기 위해서 만남 남자와 여자 모두 원하는 상대방의 우선순위를 정함 서로 짝이 아닌 두 남녀가 자신의 짝보다 상대방을 더 선호하면?

Problem Definition (weak)

N명의 남자와 여자가 미팅을 하기 위해서 만남 남자와 여자 모두 원하는 상대방의 우선순위를 정함 서로 짝이 아닌 두 남녀가 자신의 짝보다 상대방을 더 선호하면?

이런 불상사가 나지 않도록 짝을 짓는 것이 가능한가?

Problem Definition (weak)

N명의 남자와 여자가 미팅을 하기 위해서 만남 남자와 여자 모두 원하는 상대방의 우선순위를 정함 서로 짝이 아닌 두 남녀가 자신의 짝보다 상대방을 더 선호하면?

이런 불상사가 나지 않도록 짝을 짓는 것이 가능한가?

→ Yes! 가능하다는 것을 해를 구하는 알고리즘으로 증명 2012년 노벨 경제학상을 받게 한 알고리즘 (Gale-Shapely Algorithm)

- Problem Definition (weak)
 - 1. 처음에 남성이 모두 가장 선호하는 여성에게 프로포즈를 함
 - 2. 여성이 그 중 가장 마음에 드는 남성을 고르고 나머지는 퇴짜
 - 3. 퇴짜맞은 남성은 그 다음으로 선호하는 여성이 파트너가 있던 말던 프로포즈를 함
 - 4. 여성은 현재 자신의 파트너보다 프로포즈 한 남성이 더 마음에 든다면 자신의 파트너에게 퇴짜를 놓음
 - 5. 이 과정을 계속해서 반복!

Correctness

```
    Is it terminate?
    Is there any lonely man or woman? // 짝 없는 사람이 존재하는가?
```

─ Is it stable ? // 불상사가 없는가 ?

- Correctness
 - Is it terminate ?

// 언젠간 <mark>종료</mark>하는가 ?

Correctness

— Is it terminate?

// 언젠간 종료하는가?

각 남성은 많아야 n명에게 프로포즈를 하고, 같은 사람에게 두 번 하지 않는다. 따라서 이 과정은 언젠간 종료된다.

- Correctness
 - ─ Is there any lonely man or woman ? // 짝 없는 사람이 존재하는가 ?

Correctness

─ Is there any lonely man or woman ? // 짝 없는 사람이 존재하는가 ?

여성이 짝이 없다고 가정하자. 그렇다면 한 명도 프로포즈한 남성이 없다. 그러면 모든 남성이 n-1명의 여성과 짝을 이룬다는 것이므로 모순.

남성이 짝이 없다고 가정하자. 그렇다면 모두 퇴짜를 맞았다는 것이다. 그러면 모든 여성이 n-1명의 남성과 짝을 이룬다는 것이므로 모순.

- Correctness
 - Is it stable ?

// **불상사**가 없는가 ?

Correctness

— Is it stable?

// **불상사**가 없는가 ?

불상사가 생긴 남성과 여성이 존재한다고 가정하자. 편의상 현재 파트너를 X, 불상사가 생기는 파트너를 Y 이라고 하자. 남성은 Y를 X보다 더 좋아한다. 그러면 X보다 Y에게 더 먼저 프로포즈 했을 것. 여성은 현재 이 남성과 파트너가 아니므로 퇴짜를 놓았다는 뜻이다. 하지만 여성 역시 현재 자신의 파트너보다 이 남성이 더 좋은 상황이다. 더 좋은 사람을 퇴짜 놓은 상황이므로 모순.

Question?

- To-do List
 - 코딩 합시다 ☺

