Esame di Ricerca Operativa del 04/07/17

(Cognome)	(Nome)	(Numero di Matricola)

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \min & 12 \ y_1 + 6 \ y_2 - 5 \ y_3 - 7 \ y_4 + 5 \ y_5 + 4 \ y_6 + 9 \ y_7 \\ y_1 - y_2 + y_3 - y_4 + y_5 - 2 \ y_6 - y_7 = -3 \\ -y_1 - y_2 + 2 \ y_3 + y_4 - y_6 - y_7 = -1 \\ y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x =	, ,	· / /
{2, 4}	y =		

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{4,7}					
2° iterazione						

Esercizio 3. Una ditta produce vernici in tre diversi stabilimenti (Brescia, Bergamo, Cremona) e le vende a tre imprese edili (A, B, C). Il costo di produzione delle vernici varia a causa della diversa efficienza produttiva degli stabilimenti: la produzione costa 9 euro/kg nello stabilimento di Brescia, 10.5 euro/kg in quello di Bergamo e 10 euro/kg in quello di Cremona. Il costo (in euro) per spedire un kg di vernice da uno stabilimento ad un cliente è indicato nella seguente tabella:

	imprese edili					
stabilimento	A	В	\mathbf{C}			
Brescia	0.3	0.4	0.5			
Bergamo	0.3	0.35	0.15			
Cremona	0.45	0.35	0.25			

I tre stabilimenti possono produrre al massimo 8600, 9100 e 10800 kg di vernice all'anno. In base alle previsioni sulle vendite, la domanda annuale delle tre imprese edili è pari a 5500, 8000 e 6500 kg di vernice. Per bilanciare la produzione si richiede che la produzione nell'impianto di Brescia sia almeno la metà della produzione nell'impianto di Bergamo ed almeno un terzo della produzione nell'impianto di Cremona. Determinare quanti kg di vernice deve produrre la ditta in ogni stabilimento in modo da minimizzare il costo totale.

produire la ditta in ogni stabilimento in modo da minimizzare il costo totale.
variabili decisionali:
modello:
COMANDIDIMATLAR

c=	intlinprog=
A=	b=
Aeq=	beq=
lb=	ub=

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,4) (2,5) (4,3)				
(4,6) (5,7) (6,7)	(3,7)	x =		
(1,2) $(1,3)$ $(1,4)$				
(3,5) $(5,7)$ $(6,7)$	(3,7)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) (1,4) (2,5) (3,7) (4,6) (6,7)	
Archi di U	$(3,\!5)$	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	iter 4 iter		r 5	5 iter 6		iter 7		
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s =$ $N_t =$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min 10 \ x_1 + 9 \ x_2 \\ 16 \ x_1 + 15 \ x_2 \ge 67 \\ 10 \ x_1 + 13 \ x_2 \ge 42 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_I(P)$ =

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_S(P) =$

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 516 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	18	10	17	11	21	5	22
Volumi	296	428	5	80	215	467	429

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile =	$v_I(P) =$
--------------------	------------

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P) =$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1^2 + x_2^2 - 4x_1 - 2x_2$ sull'insieme

$$\{x \in \mathbb{R}^2: x_1^2 + 4x_2^2 - 4x_1 - 8x_2 + 4 \le 0, x_1 \le 2\}.$$

Soluzioni del	Mass	imo	Mini	Sella			
x	λ	μ	globale	locale	globale	locale	
(0,1)							
(2,0)							
(2,2)							
(2,1)							

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -2 \ x_1^2 + 8 \ x_1 + 6 \ x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (0,0), (-5,-2), (-3,-5) e (-5,3). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
$\left(-5, \frac{4}{3}\right)$						

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \min & 12 \ y_1 + 6 \ y_2 - 5 \ y_3 - 7 \ y_4 + 5 \ y_5 + 4 \ y_6 + 9 \ y_7 \\ y_1 - y_2 + y_3 - y_4 + y_5 - 2 \ y_6 - y_7 = -3 \\ -y_1 - y_2 + 2 \ y_3 + y_4 - y_6 - y_7 = -1 \\ y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile	Degenere
		(si/no)	(si/no)
$\{1, 2\}$	x = (3, -9)	SI	NO
$\{2, 4\}$	y = (0, 2, 0, 1, 0, 0, 0)	SI	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{4, 7}	(-1, -8)	(0, 0, 0, 1, 0, 0, 2)	2	2	7
2° iterazione	{2, 4}	$\left(\frac{1}{2}, -\frac{13}{2}\right)$	(0, 2, 0, 1, 0, 0, 0)	6	$\frac{4}{3}$, 2	2

Esercizio 3.

Variabili decisionali: numerati con 1, 2 e 3 gli stabilimenti di Brescia, Bergamo e Cremona rispettivamente, e numerati con 1, 2 e 3 i clienti, indichiamo con x_{ij} la quantità di vernice prodotta dall'impianto i per il cliente j. Modello:

$$\begin{cases} & \min \ 9.30 \ x_{11} + 9.40 \ x_{12} + 9.50 \ x_{13} + 10.80 \ x_{21} + 10.85 \ x_{22} + 10.65 \ x_{23} + 10.45 \ x_{31} + 10.35 \ x_{32} + 10.25 \ x_{33} \\ & x_{11} + x_{12} + x_{13} \le 8600 \\ & x_{21} + x_{22} + x_{23} \le 9100 \\ & x_{31} + x_{32} + x_{33} \le 10800 \\ & x_{11} + x_{21} + x_{31} \ge 5500 \\ & x_{12} + x_{22} + x_{32} \ge 8000 \\ & x_{13} + x_{23} + x_{33} \ge 6500 \\ & x_{11} + x_{12} + x_{13} \ge (x_{21} + x_{22} + x_{23})/2 \\ & x_{11} + x_{12} + x_{13} \ge (x_{31} + x_{32} + x_{33})/3 \\ & x > 0 \end{cases}$$

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,4) (2,5) (4,3)				
(4,6) (5,7) (6,7)	(3,7)	x = (0, 0, 7, 3, 0, 0, 11, 5, 0, -4, -4)	NO	SI
(1,2) (1,3) (1,4)				
(3,5) $(5,7)$ $(6,7)$	(3,7)	$\pi = (0, 3, 10, 4, 20, 17, 27)$	NO	SI

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) $(1,4)$ $(2,5)$ $(3,7)$ $(4,6)$ $(6,7)$	(1,2) (1,3) (1,4) (2,5) (3,7) (4,6)
Archi di U	(3,5)	(3,5)
x	(0, 0, 7, 3, 0, 4, 2, 0, 5, 0, 1)	(0, 1, 6, 3, 0, 4, 3, 0, 4, 0, 0)
π	(0, 3, 13, 4, 7, 8, 18)	(0, 3, 10, 4, 7, 8, 15)
Arco entrante	(1,3)	(3,5)
ϑ^+,ϑ^-	9,1	6,1
Arco uscente	(6,7)	(1,3)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	· 2	iter	. 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7		
	π	p	π	p	π	p	π	p	π	p	π	p	π	p		
nodo visitato	1				3		2		4	1	Ę	j	7	7	(3
nodo 2	17	1	17	1	17	1	17	1	17	1	17	1	17	1		
nodo 3	14	1	14	1	14	1	14	1	14	1	14	1	14	1		
nodo 4	19	1	19	1	19	1	19	1	19	1	19	1	19	1		
nodo 5	$+\infty$	-1	21	3	20	2	20	2	20	2	20	2	20	2		
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	25	4	25	4	25	4	25	4		
nodo 7	$+\infty$	-1	33	3	33	3	33	3	23	5	23	5	23	5		
$\stackrel{\text{insieme}}{Q}$	2, 3	, 4	2, 4,	5, 7	4, 5	, 7	5, 6	5, 7	6,	7	(3	Q)		

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	11	(0, 11, 0, 0, 0, 0, 11, 0, 0, 0, 0)	11
1 - 2 - 5 - 7	8	(8, 11, 0, 8, 0, 0, 11, 0, 0, 8, 0)	19
1 - 3 - 5 - 7	1	(8, 12, 0, 8, 0, 1, 11, 0, 0, 9, 0)	20
1 - 4 - 6 - 7	5	(8, 12, 5, 8, 0, 1, 11, 0, 5, 9, 5)	25

Taglio di capacità minima: $N_s = \{1, 2, 3, 5\}$ $N_t = \{4, 6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min & 10 \ x_1 + 9 \ x_2 \\ 16 \ x_1 + 15 \ x_2 \ge 67 \\ 10 \ x_1 + 13 \ x_2 \ge 42 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(0, \frac{67}{15}\right)$$
 $v_I(P) = 41$

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(0,5)$$
 $v_S(P) = 45$

c) Calcolare un taglio di Gomory.

$$r = 2 r = 4$$
 15 $x_1 + 14 x_2 \ge 63 3 $x_1 + 2 x_2 \ge 9$$

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 516 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	18	10	17	11	21	5	22
Volumi	296	428	5	80	215	467	429

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile =
$$(0, 0, 1, 1, 1, 0, 0)$$
 $v_I(P) = 49$

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(\frac{27}{37}, 0, 1, 1, 1, 0, 0\right)$$
 $v_S(P) = 62$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1,x_2)=x_1^2+x_2^2-4x_1-2x_2$ sull'insieme

$$\{x \in \mathbb{R}^2: x_1^2 + 4x_2^2 - 4x_1 - 8x_2 + 4 \le 0, x_1 \le 2\}.$$

Soluzioni del	sistema LK	Mass	Massimo		Minimo		
x	λ	μ	globale	locale	globale	locale	
(0,1)	(-1,0)		SI	SI	NO	NO	NO
(2,0)	(-1/4,0)		NO	NO	NO	NO	SI
(2,2)	(-1/4,0)		NO	NO	NO	NO	SI
(2,1)	(0,0)		NO	N0	SI	SI	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -2 \ x_1^2 + 8 \ x_1 + 6 \ x_2 \\ x \in P \end{cases}$$

dove P è il poliedro di vertici (0,0), (-5,-2), (-3,-5) e (-5,3). Fare una iterazione del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
$\left(-5, \frac{4}{3}\right)$	(-1,0)	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$	(0, -6)	<u>5</u> 9	$\frac{5}{9}$	(-5, -2)