Are meanings of the same word competing with each other

in-the-moment during statistical word learning?

Matilde E SIMONETTI¹, Iring KOCH¹, Tanja C ROEMBKE¹ ¹ RWTH Aachen University, Germany

Introduction

Cross-Situational Word Learning (CSWL)

If a word and its meaning have above baseline probability of co-occurring, this information can be used across situations to learn the correct mappings (Yu & Smith, 2007).

1:1 Mapping

Multiple Mappings

MASSET

1:2 Mapping

There are different types of mappings: Simple (1:1) mapping

1 word mapping onto 1 object

Complex mappings

- 2:1 2 words mapping onto 1 object (translations)
- 1:2 1 word mapping onto 2 objects (homographs, false friends)

What do we know?

Previous research (e.g., Benitez et al., 2016) has shown that:

- People can maintain multiple hypotheses and meanings for each word
- But some are stronger than others (the ones that co-occur)

Multiple meanings of a word are activated in the moment and compete with each other (e.g., Roembke & McMurray, 2016)

What DON'T we know?

It is currently not clear how in-the-moment competition between different meanings unfolds for more complex mappings and to what extent different meanings compete even when they are not presented at the same time

Thus, we will investigate in-the-moment competition between multiple referents for 1:2 mappings in CSWL using eye-tracking

Methods

- Participants: 40 German-English Bilinguals
- **Mappings**: 6 1:1 mappings and 6 1:2 mappings
- Trials: 480 divided into 5 blocks

Results

Behavioural:

Block

All analyses are conducted using (general) linear mixed models

Hypotheses:

- •/H1: Participants will be able to learn
- **H2:** It will be harder to acquire 1:2 than 1:1 mappings (replication of Simonetti et al. 2025)

Eye-tracking:

Eye-movements to the target object on correct trials were fit to a four points logistic

Hypotheses:

• H3: 1:2 mappings will result in more competition than 1:1 mappings

Time

Resulting in:

H3a: 1:2 mappings will have a lower upper asymptote than 1:1

H3b: 1:2 mappings will have a higher cross-over point than 1:1

H3c: 1:2 mappings will have a X lower slope than 1:1

Discussion

We were able to replicate the behavioural results and see more online competition for 1:2 than for 1:1 mapping, even as the second meaning was not present during the trial

1:2 mappings had a delayed fixation and a lower upper asymptote than 1:1 mappings → suggesting less confidence in decision and that activation builds more slowly over time for these words, even when they select the correct referent

However:

Each individual meaning (object) for 1:2 mappings was seen only half as often as those in the 1:1 condition

Where does the competition arise from?

The different frequency or the mapping type?

In a **second experiment** (currently ongoing), each meaning in the 1:2 condition is presented just as frequently as in the 1:1 condition to distinguish between the two possibilities

References

Benitez, V. L., Yurovsky, D., & Smith, L. B. (2016). Competition between multiple words for a referent in cross-situational Simonetti, M. E., Koch, I., & Roembke, T. C. (2025). How do multiple meanings affect word learning and remapping?. word learning. Journal of Memory and Language, 90, 31-48. Memory & Cognition, 1-20. Roembke, T. C., & McMurray, B. (2016). Observational word learning: Beyond propose-but-verify and associative bean Yu, C., & Smith, L. B. (2007). Rapid word learning under uncertainty via cross-situational statistics. Psychological Science,

counting. Journal of Memory and Language, 87, 105–127.

18(5), 414–420.