Datenbereinigung von Zeitreihen

Von der Anomalienerkennung zur Anomalienreparatur

Jose Rodriguez Parra Flores Klaus-Johan Ziegert

18. September 2019

Gliederung

- Einführung
- ② Grundlagen
- 3 Iterative Minimum Repairing
- 4 Evaluierung
- Schluss

Überblick

Einführung ●00000

- Einführung
 - Motivation
 - Zielsetzung
- ② Grundlagen
- Iterative Minimum Repairing
- 4 Evaluierung
- Schluss

Motivation: Problem

Messgeräte liefern unzuverlässige Daten

- GPS Tracker sind nahe von Gebäuden unzuverlässig
- Sensoren sind empfindlich gegenüber äußere Einflüsse
 - Z.B. starker Fall der Temperaturen bei einem Windzug

Abbildung: GPS-Tracking auf dem Campus der Tsinghua Universität [1]

Motivation: Anwendungen der Anomalienerkennung

Umgang von unzuverlässigen Daten mit Anomalienerkennung

- Unzuverlässige Datenpunkte entfernen
 - Ausreißer werden entfernt (:)
 - Entfernen aufeinanderfolgende Fehler machen Ergebnis unbrauchbar oder werden als solche ggf. nicht entfernt
- Unzuverlässige Datenpunkte reparieren
 - Einzelne Ausreißer werden leicht korrigiert 😐
 - Aufeinanderfolgende Fehler werden zu stark verändert (In der Praxis liegen die Messungen nahe bei den korrekten Werten) (:)

Motivation: Problemerweiterung

Hinzunahme von korrekt markierten Werten

- Markierung durch den Benutzer
 - Z.B. markiert der Benutzer in beliebigen Zeitabständen seinen aktuellen Standort
- Präzise Messgeräte liefern in längeren Zeitabstände korrekte Werte

蕻

Überblick

- Einführung
 - Motivation
 - Zielsetzung
- ② Grundlager
- Iterative Minimum Repairing
- 4 Evaluierung
- Schluss

Zielsetzung

Ziel der Arbeit

- Berücksichtigung der markierten Werte in der Anomalienerkennung
 - Aufeinanderfolgende Fehler sollen besser abgeschätzt werden
- Anomalienreparatur mit den Minimum-Change-Prinzip vereinbaren
 - Keine drastische Veränderungen der Messwerte
- Neue Anomalienreparatur hinsichtlich Berechnungslaufzeit, Ergebnisgenauigkeit usw. optimieren
- Neue Anomalienreparatur mit unterschiedlichen Einstellungen mit weitere Verfahren empirisch vergleichen

- Einführung
- ② Grundlagen
 - Problemstellung
 - Reparatur durch Anomalienerkennung
 - Andere Reparatur Methoden
- 3 Iterative Minimum Repairing
- 4 Evaluierung
- Schluss

Problemstellung

Zeitreihenreparatur

- Gegeben:
 - Unzuverlässige Messung $x = x[1], \dots, x[n]$
 - ullet Unvollständige, aber dafür ausschließlich korrekte Messung x^{truth}
- Nur in der Evaluierung: vollständige, korrekte Messung x^{truth*}
- Gesucht:
 - ullet Reparatur y mit minimalen RMS-Fehler $\Delta(x^{\mathrm{truth}*},y)$
 - $\Delta(x^{\text{truth*}}, y) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i^{\text{truth*}} y_i)^2}$

UH

UHI

Problemstellung: Beispiel Zahlen & Bewertung

Zeitreihen vom Beispiel

- $x = \{6, 10, 9.6, 8.3, 7.7, 5.4, 5.6, 5.9, 6.3, 6.8, 7.5, 8.5\}$
- $x^{\text{truth}} = \{6, 5.6, 5.4, \underline{\ \ \ \ \ \ \ \ }, 5.4, \underline{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }, \underline{\ \ \ \ \ \ \ \ \ \ \ }, 8.5\}$
- $y = \{6, 5.6, 5.4, 5.2, 5.4, 5.4, 5.6, 5.9, 6.3, 6.8, 7.5, 8.5\}$
- $x^{\text{truth*}} = \{6, 5.6, 5.4, 5.2, 5.3, 5.4, 5.6, 5.9, 6.3, 6.8, 7.5, 8.5\}$

Bewertung des Beispiels

$$\Delta(x^{\text{truth*}}, y) =$$

$$\sqrt{\frac{1}{12}}\left((6-6)^2+\cdots+(5.3-5.4)^2+\cdots+(8.5-8.5)^2\right)\approx 0.03$$

- Einführung
- 2 Grundlagen
 - Problemstellung
 - Reparatur durch Anomalienerkennung
 - Andere Reparatur Methoden
- 3 Iterative Minimum Repairing
- 4 Evaluierung
- Schluss

Anomalien

- Wikipedia: Abweichung von der Regel
- Werte x_i mit Abweichung τ (Bsp. $\tau = 2\sigma$):

$$|x_i - x_i^{\mathsf{truth}}| > \tau$$

Jose, Klaus U+

Reparatur durch Anomalienerkennung

Autoregressive Modell AR(p)

• Prädiktion aus den vorangegangen p Werte:

$$x_t' = \sum_{i=1}^p \phi_i x_{t-i} + \epsilon_t$$

Reparatur:

$$y_t = \begin{cases} x_t' & \text{falls kein Label und } |x_t' - x_t| > \tau \\ x_t & \text{sonst} \end{cases}$$

Reparatur durch Anomalienerkennung

Autoregressives exogenes Modell ARX(p)

Exogenes Variabel y

$$y'_t = x_t + \sum_{i=1}^{p} \phi_i (y_{t-i} - x_{t-i}) + \epsilon_t$$

• y'_t Mögliche Reparatur:

$$y_t = \begin{cases} y_t' & \text{falls kein Label und } |y_t' - x_t| > \tau \\ y_t & \text{sonst} \end{cases}$$

ARX(1) Reparatur Beispiel

ARX(1) Reparatur Beispiel

$$p = 1$$
, $\phi = 0.5$ und $\tau = 0.1$
 $y'_{4} = 8.3 + 0.5 \cdot (5.4 - 9.6)$

$$y_4' = 6.2$$

$$|6.2 - 8.3| = 2.1 > 0.1$$

$$y_4 = y_4' = 6.2$$

AR(1)

$$X_t = \phi X_{t-1} + \epsilon_t$$

AR(1)

$$X_t = \phi X_{t-1} + \epsilon_t$$

Kleinste Quadrate Schätzung

$$\frac{\partial}{\partial \phi} \sum_{k=2}^{n} (X_k - \phi X_{k-1})^2 = 2 \sum_{k=2}^{n} (X_k - \phi X_{k-1})(-X_{k-1})$$
 (1)

Jose, Klaus

Kleinste Quadrate Schätzung

$$2\sum_{k=2}^{n} (X_k - \phi X_{k-1})(-X_{k-1}) = 0$$

$$\sum_{k=2}^{n} (-X_k X_{k-1} + \phi X_{k-1}^2) = 0$$

$$-\sum_{k=2}^{n} X_k X_{k-1} + \sum_{k=2}^{n} \phi X_{k-1}^2 = 0$$

$$\sum_{k=2}^{n} \phi X_{k-1}^2 = \sum_{k=2}^{n} X_k X_{k-1}$$

$$\hat{\phi} = \frac{\sum_{k=2}^{n} X_k X_{k-1}}{\sum_{k=2}^{n} X_k^2}$$

Beispiel

$$x = \{6, 10, 9.6, 8.3, 7.7, 5.4, 5.6, 5.9, 6.3, 6.8, 7.5, 8.5\}$$

$$y = \{6, 5.6, 5.4, 8.3, 7.7, 5.4, 5.6, 5.9, 6.3, 6.8, 7.5, 8.5\}$$

$$y - x = \{0, -4.4, -4.2, 0, 0, 0, 0, 0, 0, 0, 0\}$$

$$\phi = \frac{(-4.2) \cdot (-4.4)}{(-4.2)^2 + (-4.4)^2} = 0.5$$

υп

Überblick

- Einführung
- ② Grundlagen
 - Problemstellung
 - Reparatur durch Anomalienerkennung
 - Andere Reparatur Methoden
- 3 Iterative Minimum Repairing
- 4 Evaluierung
- 5 Schluss

Gleitender Mittelwert

• Reparatur alle Werte durch y_i

$$y_j = \frac{1}{k} \sum_{i=1}^k x_{j-i} \quad j \in \{k, ..., n\}$$

UH

Jose, Klaus

Gleitender Mittelwert

• Reparatur alle Werte durch y_i

$$y_j = \frac{1}{k} \sum_{i=1}^k x_{j-i} \quad j \in \{k, ..., n\}$$

Exponentiell Gewichteten Gleitender Mittelwert (EWMA)

•

$$v_j = \sum_{i=0}^{n} (1 - \beta) \beta^i x_{j-i} \quad j \in \{k, ..., n\}$$

• Effizient durch Dynamischesprogrammierung:

$$v_i = \beta v_{i-1} + (1 - \beta)x_i$$
 mit $V_0 = 0$

Jose, Klaus

SCREEN

- Die Reparatur erfolgt nur über zwei aufeinander folgende Werte
- Bedingung wie schnell ein Wert sich ändern kann
- gut für spikes aber nicht für Fehlern über längeren Zeitraum

Überblick

- Iterative Minimum Repairing
 - IMR
 - Optimierung 1: Matrix-Pruning IMR

IMR Intuition

Intuitiver Ansatz von IMR

- ARX nutzt markierte Werte effizient, aber verändert die Werte zu drastisch.
- IMR Ansatz:
 - Wende ARX an
 - 2 Wähle einen Reparaturwert mit minimalen Abstand zur Messung
 - Wiederhole Prozedur bis aktuelle Reparatur sich nicht signifkant ändert
- Motivation: Reparierte Werte verbessern zukünftige Reparaturen

IMR = ARX + Minimum-Change-Prinzip

- 1: **Eingabe**: Messung x, markierte Werte x^{truth} , Ordnung p, Schwellenwert τ und max-num-iterations
- 2: **Ausgabe**: Reparatur *y*
- 3: $y^{(0)} \leftarrow \text{Initialize}(x, x^{\text{truth}})$
- 4: **for** $k \leftarrow 0$ **to** max-num-iterations **do**
- 5: $\phi^{(k)} \leftarrow \text{Estimate}(x, y^{(k)})$
- 6: $\hat{y} \leftarrow \mathsf{Candidate}(x, y^{(k)}, \phi^{(k)})$
- 7: $y^{(k+1)} \leftarrow \text{Evaluate}(x, y^{(k)}, \hat{y})$
- 8: **if** Converge $(y^{(k)}, y^{(k+1)})$ **then**
- 9: **break**
- 10: end if
- 11: end for
- 12: **return** $y^{(k)}$

IMR: Initialisierung

- 1: **Eingabe**: Messung x, markierte Werte x^{truth} , Ordnung p, Schwellenwert τ und max-num-iterations
- 2: **Ausgabe**: Reparatur *y*
- 3: $y^{(0)} \leftarrow \text{Initialize}(x, x^{\text{truth}})$
- 4: **for** $k \leftarrow 0$ **to** max-num-iterations **do**
- 5: $\phi^{(k)} \leftarrow \text{Estimate}(x, y^{(k)})$
- 6: $\hat{y} \leftarrow \mathsf{Candidate}(x, y^{(k)}, \phi^{(k)})$
- 7: $y^{(k+1)} \leftarrow \text{Evaluate}(x, y^{(k)}, \hat{y})$
- 8: **if** Converge $(y^{(k)}, y^{(k+1)})$ **then**
- 9: break
- 10: end if
- 11: end for
- 12: **return** $y^{(k)}$

Initiale Reparatur

Initiale Reparatur $y^{(0)}$ ist Messung x und übernimmt die markierten Werte aus $x^{\rm truth}$

IMR: ARX auf aktuelle Reparatur anwenden

- 1: **Eingabe**: Messung x, markierte Werte x^{truth} , Ordnung p, Schwellenwert τ und max-num-iterations
- 2: **Ausgabe**: Reparatur *y*
- 3: $y^{(0)} \leftarrow \text{Initialize}(x, x^{\text{truth}})$
- 4: **for** $k \leftarrow 0$ **to** max-num-iterations **do**
- 5: $\phi^{(k)} \leftarrow \text{Estimate}(x, y^{(k)})$
- 6: $\hat{y} \leftarrow \mathsf{Candidate}(x, y^{(k)}, \phi^{(k)})$
- 7: $y^{(k+1)} \leftarrow \text{Evaluate}(x, y^{(k)}, \hat{y})$
- 8: **if** Converge $(y^{(k)}, y^{(k+1)})$ **then**
- 9: **break**
- 10: end if
- 11: end for
- 12: **return** $y^{(k)}$

IMR: ARX auf aktuelle Reparatur anwenden

Kandidaten

- Parameterschätzung ϕ : aktuelle Reparatur $y^{(k)}$ wird als x^{truth} interpretiert.
- Kandidaten \hat{y} sind neue Reparaturwerte

IMR: Minimum-Change

- 1: **Eingabe**: Messung x, markierte Werte x^{truth} , Ordnung p, Schwellenwert τ und max-num-iterations
- 2: **Ausgabe**: Reparatur y
- 3: $v^{(0)} \leftarrow \text{Initialize}(x, x^{\text{truth}})$
- 4: **for** $k \leftarrow 0$ **to** max-num-iterations **do**
- $\phi^{(k)} \leftarrow \text{Estimate}(x, y^{(k)})$ 5:
- $\hat{y} \leftarrow \mathsf{Candidate}(x, y^{(k)}, \phi^{(k)})$ 6:
- $y^{(k+1)} \leftarrow \text{Evaluate}(x, y^{(k)}, \hat{y})$ 7:
- if Converge($y^{(k)}, y^{(k+1)}$) then 8:
- break 9:
- end if 10:
- 11: end for
- 12: return $v^{(k)}$

IMR: Minimum-Change

Minimum-Change

- ullet Zu geringe Änderungen werden herausgefiltert $|y_i^{(k)} \hat{y}_i| > au$
- ullet Geringste Änderung zu Messung x wird als Kandidat ausgewählt

- 1: **Eingabe**: Messung x, markierte Werte x^{truth} , Ordnung p, Schwellenwert τ und max-num-iterations
- 2: **Ausgabe**: Reparatur *y*
- 3: $y^{(0)} \leftarrow \text{Initialize}(x, x^{\text{truth}})$
- 4: **for** $k \leftarrow 0$ **to** max-num-iterations **do**
- 5: $\phi^{(k)} \leftarrow \text{Estimate}(x, y^{(k)})$
- 6: $\hat{y} \leftarrow \mathsf{Candidate}(x, y^{(k)}, \phi^{(k)})$
- 7: $y^{(k+1)} \leftarrow \text{Evaluate}(x, y^{(k)}, \hat{y})$
- 8: if Converge $(y^{(k)}, y^{(k+1)})$ then
- 9: **break**
- 10: end if
- 11: end for
- 12: **return** $y^{(k)}$

Terminierung

- Zwei Möglichkeiten der Terminierung:
 - Maximale Anzahl der Iterationen wird erreicht
 - Konvergenz: Neue Reparatur $y^{(k+1)}$ ist gleich aktuelle Reparatur $y^{(k)}$
- Allgemeine Konvergenzfrage ist noch offen

- Iterative Minimum Repairing
 - IMR
 - Optimierung 1: Matrix-Pruning IMR

Motivation von Matrix-Pruning IMR

Laufzeit- & Platzproblem

- Parameterschätzung beansprucht viel Zeit und Platz
- Matrizen V und Z bestehen aus $y_i^{(k)} x_i$:
 - wenige markierte Werte vorhanden
 - markierte Werte häufig identisch zur Messung
 - Reparaturwerte ändern sich nicht signifkant
 - ullet ightarrow dünnbesetzte Matrizen
- Matrix-Pruning: Löschen von Zeilen mit 0en

Matrix Pruning IMR Beispiel

Beispiel

Zeilen mit 0en in Z und entsprechende Zeile in V sind entfernbar:

- Einführung
- 2 Grundlagen
- Iterative Minimum Repairing
 - IMR
 - Optimierung 1: Matrix-Pruning IMR
 - Optimierung 2: Inkrementelle Berechnung
- 4 Evaluierung
- Schluss

Inkrementelle Berechnung (IMR-IC)

Intuition

• IMR Algorithmus berechnet ϕ^k in jede Iteration k

$$\phi^k \leftarrow \textit{Estimate}(x, y^k)$$

• Minimum-Change-Prinzip, ein Wert r wird geändert

$$y_r^k \neq y_r^{k-1}$$

• Fast alle Werte in Z^k, Z^{k-1} und V^k, V^{k-1} bleiben unverändert

Inkrementelle Berechnung (IMR-IC)

Rekursive Formel

Sei
$$\phi^{(k)} = (A^{(k)})^{-1}B^{(k)}$$
 mit $A^{(k)} = (Z^{(k)})'Z^{(k)}$ und $B^{(k)} = (Z^{(k)})'V^{(k)}$

Fall: $1 \le i \le p$

$$a_{ii}^{(k)} = a_{ii}^{(k-1)} + \begin{cases} 0 & \text{falls } r < p+1-i \lor r > n-i \\ z_r^{(k)} z_r^{(k)} - z_r^{(k-1)} z_r^{(k-1)} & \text{falls } p+1-i \le r \le n-i \end{cases}$$

Inkrementelle Berechnung (IMR-IC)

Fall: $1 \le i \le p, \ 1 \le j \le p, \ i < j$

$$a_{ij}^{(k)} = a_{ji}^{(k)} = a_{ij}^{(k-1)} + (z_r^{(k)} - z_r^{(k-1)}) \times$$

$$\begin{cases}
0 & \text{falls } r n - i \\
z_{r+j-i}^{(k-1)} & \text{falls } p + 1 - j \le r$$

Fall: $1 \leq i \leq p$

$$b_{i}^{(k)} = b_{i}^{(k-1)} + (z_{r}^{(k)} - z_{r}^{(k-1)}) \times$$

$$\begin{cases}
0 & \text{falls } r n - i \\
z_{r+i}^{(k-1)} & \text{falls } p + 1 - i \le r n - i \\
(z_{r+i}^{(k-1)} + z_{r-i}^{(k-1)}) & \text{falls } p + 1 \le r \le n - i
\end{cases}$$

8

- 1: **Eingabe**: Messung x, Reparatur/Label y
- 2: Ausgabe: $\phi^{(k)}$
- 3: **if** k = 0 **then**
- 4: Init $A^{(0)}, B^{(0)}$ mit $Z^{(0)}, V^{(0)}$
- 5: **else**
- 6: $r \operatorname{Index} y_r^{(k)} \neq y_r^{(k-1)}$
- 7: Erstelle $A^{(k)}$, $B^{(k)}$ mit hilfe von $A^{(k-1)}$ und $B^{(k-1)}$ nach rekursive Formeln
- 8: end if
- 9: $\phi^{(k)} \leftarrow (A^{(k)})^{-1}B^{(k)}$
- 10: return $\phi^{(k)}$

Datenbereinigung von Zeitreihen Jose, Klaus

- **Evaluierung**
 - Versuchsbeschreibung

Versuchsaufabau

- Versuchsperson bewegt sich mit dem Handy auf den Hauptcampus
- Strecke ist festgelegt $(x^{\text{truth}}, x^{\text{truth}*})$
- 186 von 742 GPS-Daten wurden als fehlerhaft festgestellt

Jose, Klaus

- **Evaluierung**
 - Versuchsbeschreibung
 - Ordnung

Jose, Klaus

Abbildung: Unterschiedliche Ordnung p über GPS-Daten mit $\tau=0.2$, Datengröße 750 und Markierungsrate 0.2

UHI

- **Evaluierung**
 - Versuchsbeschreibung
 - Ordnung
 - Schwellenwert

Abbildung: Unterschiedliche Schwellenwerte τ über GPS-Daten mit p=3, Datengröße 750 und Markierungsrate 0.2

UHI

- **Evaluierung**
 - Versuchsbeschreibung

 - Schwellenwert
 - Maximale Anzahl von Iterationen

Abbildung: Unterschiedliche maximale Anzahl von Iterationen über GPS-Daten mit $\tau=0,2,~p=3$ und Datengröße 750

- **Evaluierung**
 - Versuchsbeschreibung

 - Markierungsrate

Abbildung: Unterschiedliche Markierungsraten über GPS-Daten mit $\tau=0,2$, p=3 und Datengröße 750

UHI

- Einführung
- 2 Grundlagen
- 3 Iterative Minimum Repairing
- 4 Evaluierung
- Schluss
 - Zusammenfassung und Ausblick
 - Literatur

Zusammenfassung

- Inkrementelle Reparatur der Daten durch Anomalienerkennungsverfahren
- Minimum-Change-Prinzip und temporäre Eigenschaften
- Bessere Laufzeit durch Matrix-Pruning
- IC Parameter Schätzung in O(1)
- Höhere Genauigkeit der Reparatur als State-of-the-art Verfahren

Zusammenfassung und Ausblick

Zusammenfassung

- Inkrementelle Reparatur der Daten durch Anomalienerkennungsverfahren
- Minimum-Change-Prinzip und temporäre Eigenschaften
- Bessere Laufzeit durch Matrix-Pruning
- IC Parameter Schätzung in O(1)
- Höhere Genauigkeit der Reparatur als State-of-the-art Verfahren

Ausblick

Andere Modelle anstatt ARX

Vielen Dank für die Aufmerksamkeit

- Einführung
- 2 Grundlagen
- 3 Iterative Minimum Repairing
- 4 Evaluierung
- Schluss
 - Zusammenfassung und Ausblick
 - Literatur

Shaoxu song - tsinghua university.

Aoqian Zhang, Shaoxu Song, Jianmin Wang, and Philip S Yu.

Time series data cleaning: From anomaly detection to anomaly repairing.

Proceedings of the VLDB Endowment, 10(10):1046–1057, 2017.

