Shane M. Parker, PhD (June 06, 2023)

Frank Hovorka Assistant Professor of Chemistry Case Western Reserve University Department of Chemistry 10900 Euclid Ave., Cleveland, OH 44106 web: quantumparker.com ph: (216) 368-3697 orcid: 0000-0002-1110-3393

scholar: OqC2Vc8AAAAJ

positions

2021 –	Frank Hovorka Assistant Professor of Chemistry Case Western Reserve University	Cleveland, OH
2019 – 2021	Assistant Professor of Chemistry Case Western Reserve University	Cleveland, OH
2014 – 2019	Postdoctoral Fellow (Arnold O. Beckman Postdoctoral Fellow since 2016) University of California Irvine Advisor: Professor Filipp Furche	Irvine, CA
2009 – 2014	PhD, Theoretical Chemistry Northwestern University Advisor: Professor Mark Ratner and Professor Tamar Seideman	Evanston, IL
2008 – 2009	Fulbright Fellow Technische Universität München Advisor: Professor Notker Rösch	Munich, Germany
2004 – 2008	B.S., Chemistry & B.S., Mathematics University of Florida Advisor: Professor N. Yngve Öhrn	Gainesville, FL

publications

- Y. J. Franzke, C. Holzer, J. H. Andersen, T. Begusic, F. Bruder, S. Coriani, F. Della Sala, E. Fabiano, D. A. Fedotov, S. Fürst, S. Gillhuber, R. Grotjahn, M. Kaupp, M. Kehry, M. Krstic, F. Mack, S. Majumdar, B. D. Nguyen, S. M. Parker, F. Pauly, A. Pausch, E. Perlt, G. S. Phun, A. Rajabi, D. Rappoport, B. Samal, T. Schrader, M. Sharma, E. Tapavicza, R. S. Treß, V. Voora, A. Wodynski, J. M. Yu, B. Zerulla, F. Furche, C. Hättig, M. Sierka, D. P. Tew, F. Weigend Journal of Chemical Theory and Computation, (2023), accepted Turbomole: Today and Tomorrow
- W. B. Martin, S. M. Parker, V. Rodionov (2023), under review

Errors in characterization and modeling undermine the report of the synthesis of γ-graphyne via alkyne metathesis

22 Z. Zhou, F. Della Sala, S. M. Parker

The Journal of Physical Chemistry Letters, 14, 1968-1976 (2023)

Minimal auxiliary basis set approach for the electronic excitation spectra of organic molecules

- 21 V. G. Desyatkin, W. B. Martin, A. E. Aliev, N. E. Chapman, A. F. Fonseca, D. S. Galvão, E. Roy Miller, K. H. Stone, Z. Wang, D. Zakhidov, F. T. Limpoco, S. R. Almahdali, S. M. Parker, R. H. Baughman, V. O. Rodionov *Journal of the American Chemical Society*, **144**, 17999-18008 (2022)
 Scalable Synthesis and Characterization of Multilayer y-Graphyne, New Carbon Crystals with a Small Direct Band Gap
- 20 Z. Zhou, S. M. Parker

The Journal of Chemical Physics, **155**, 204111 (2021)

Accelerating molecular property calculations with semiempirical preconditioning

- 19 M. Gupta, M. Singha, D. Rasale, Z. Zhou, S. Bhandari, S. Beasley, J. Sakr, S. M. Parker, R. Spitale Organic Letters, 23, 7183-7187 (2021)
 Multipolity orthogonal biocopiugation of visual pucleosides for RNA metabolic labeling.
 - Mutually orthogonal bioconjugation of vinyl nucleosides for RNA metabolic labeling
- 18 J. Jimenez, Z. Zhou, A. L. Rheingold, S. M. Parker, G. Sauvé *Inorganic Chemistry*, **60**, 13320-13331 (2021)

Tuning the properties of azadipyrromethene-based near-infrared dyes using intramolecular BO-chelation and peripheral substitutions

17 S. M. Parker, C. J. Schiltz

The Journal of Chemical Physics, 153, 174109 (2020)

Surface hopping with cumulative probabilities: even sampling and improved reproducibility

16 S. Balasubramani, G. P. Chen, S. Coriani, M. Diedenhofen, M. S. Frank, Y. J. Franzke, F. Furche, R. Grotjahn, M. E. Harding, C. Hättig, A. Hellweg, B. Helmich-Paris, C. Holzer, U. Huniar, M. Kaupp, A. Marefat Khah, S. Karbalaei Khani, T. Müller, F. Mack, B. D. Nguyen, S. M. Parker, E. Perlt, D. Rappoport, K. Reiter, S. Roy, M. Rückert, G. Schmitz, M. Sierka, E. Tapavicza, D. P. Tew, C. van Wüllen, V. K. Voora, F. Weigend, A. Wodyński, J. M. Yu The Journal of Chemical Physics, 152, 184107 (2020)

TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations

15 S. M. Parker, S. Roy, F. Furche

Physical Chemistry Chemical Physics, 21, 18999-19010 (2019)

Multistate hybrid time-dependent density functional theory with surface hopping accurately captures ultrafast thymine photodeactivation

14 M. Kubota, S. Nainar, S. M. Parker, W. England, F. Furche, R. Spitale

ACS Chemical Biology, 14, 1698-1707 (2019)

Expanding the Scope of RNA Metabolic Labeling with Vinyl Nucleosides and Inverse Electron-Demand Diels-Alder Chemistry

13 S. M. Parker, D. Rappoport, F. Furche

Journal of Chemical Theory and Computation, 14, 807-819 (2018)

Quadratic response properties from TDDFT: trials and tribulations

12 M. Muuronen, S. M. Parker, E. Berardo, A. Le, M. Zwijnenburg, F. Furche

Chemical Science, 8, 2179-2183 (2017)

Mechanism of Photocatalytic Water Oxidation on Small TiO₂ Nanoparticles

11 S. M. Parker, S. Roy, and F. Furche

The Journal of Chemical Physics, 145, 134105 (2016)

Unphysical divergences in response theory

10 V. A. Nasluzov, S. M. Parker, A. Genest, A. M. Shor, E. A. Ivanova-Shor, N. Rösch

Kinetics and Catalysis, **56**, 631 (2015)

Trinuclear tantalum clusters grafted to hydroxylated silica surfaces: A density-functional embedded-cluster study

9 I. Kim, S. M. Parker, T. Shiozaki

Journal of Chemical Theory and Computation, 11, 3636 (2015)

Orbital Optimization in the Active Space Decomposition Model

8 S. M. Parker, T. Shiozaki

The Journal of Chemical Physics, 141, 211102 (2014)

Active space Decomposition with multiple sites: Density matrix renormalization group algorithm

7 S. M. Parker, M. Smeu, I. Franco, M. A. Ratner, T. Seideman

Nano Letters, 14, 4587 (2014)

Molecular Junctions: Can Pulling Influence Optical Controllability

6 S. M. Parker, T. Shiozaki

Journal of Chemical Theory and Computation, 10, 3738 (2014)

Quasi-diabatic states from active space decomposition

5 S. M. Parker, T. Seideman, M. A. Ratner, T. Shiozaki

Journal of Physical Chemistry C, 118, 12700 (2014)

Model Hamiltonian analysis of singlet fission from first principles

4 S. M. Parker, T. Seideman, M. A. Ratner, T. Shiozaki

The Journal of Chemical Physics, 139, 021108 (2013)

Active-space decomposition for molecular dimers

3 Y. Wu, V. A. Karttunen, S. M. Parker, A. Genest, N. Rösch

Organometallics, 32, 2363 (2013)

Olefin Hydrosilylation Catalyzed by a Bis-N-Heterocyclic Carbene Rhodium Complex. A Density Functional Theory Study

2 S. M. Parker, M. A. Ratner, T. Seideman *Molecular Physics*, **110**, 1941 (2012)

Simulating strong field control of axial chirality using optimal control theory

1 S. M. Parker, M. A. Ratner, T. Seideman

The Journal of Chemical Physics, **135**, 224301 (2011)

Coherent control of molecular torsion

book chapters

1 S. M. Parker, F. Furche

Frontiers in Quantum Chemistry, edited by M. J. Wójcik, H. Nakatsuji, B. Kirtman, Y. Ozaki, Springer Singapore (2018) Response theory and molecular properties

reports in media and professional journals

2020	Scilight featured article	Photochemistry simulations dramatically improve reliability and reproducibility
2020	JCP Editor's choice	Cumulative surface hopping paper highlighted by AIP
2019	PCCP Editor's choice	Multi-state TDDFT paper selected as outstanding article by Editor-in-Chief

awards

2021	Finalist, John S. Diekhoff Award for Distinguished Graduate Student Teaching, CWRU
2021 - 2024	Frank Hovorka Assistant Professor of Chemistry, CWRU
2020 - 2021	Glennan Fellowship, CWRU
2020	STAIR Mentor Fellows Program, CWRU
2019	Nominated, John S. Diekhoff Award for Distinguished Graduate Student Teaching, CWRU
2016 - 2019	Arnold O. Beckman Postdoctoral Fellowship
2010 - 2013	Department of Energy Office of Science Graduate Fellowship
2009	Participant, 59th Lindau Nobel Laureate Meeting
2008 - 2009	Fulbright Fellowship Technische Universität München
2006	Anderson Scholar with Highest Distinction, UF academic achievement and uninterrupted study

current and pending support

• Project Title: Predictive tools for excited state chemistry

Amount: \$786,146
Status: current

Source: Case Western Reserve University

Start Date: 07/2019

Project Objective: Develop excited state electronic structure methods capable of powering nonadiabatic molecular dy-

namics simulations

• Project Title: Photochemistry with Resonating Mean-Field

Amount: \$650,000 Status: current

Source: NSF CAREER, Division of Chemistry (CHE) **Start Date:** 06/01/2023 **End Date:** 05/30/2028

Project Objective: Develop algorithms and an implementation for the Resonating Mean-Field method towards establishing

Resonating Mean-Field as a tool for photochemistry simulations

Award ID: CHE-2236959

invited lectures

July 2023	Fast spectra with the minimal auxiliary basis approach to TDDFT Rutgers TDDFT Workshop	Rutgers, NJ
October 2022	Fast Spectra with the minimal auxiliary basis approach to TDDFT Benasque 9th TDDFT Workshop	Benasque, Spain
August 2022	Accelerating Quantum Chemistry with Semiempirical Preconditioning CWRU-Tohoku 8th Annual Data Science in Engineering and Life Sciences Sym	Cleveland, Ohio
August 2018	Excited-State Chemistry with TDDFT 256th American Chemical Society National Meeting and Exposition	Boston, Massachussetts
August 2018	Ensemble Optimized Time-Dependent Density Functional Theory 256th American Chemical Society National Meeting and Exposition	Boston, Massachussetts
July 2017	Nonlinear properties from TDDFT: trials and tribulations Excited States: Electronic Structure and Dynamics	Telluride, Colorado
April 2017	Nonlinear properties from TDDFT: trials and tribulations 253rd American Chemical Society National Meeting and Exposition	San Francisco, California
June 2015	Non-adiabatic molecular dynamics 98th Meeting of the Canadian Society of Chemistry	Ottawa, Ontario
June 2014	Model Hamiltonians from the Active-space Decomposition Method McMaster University, Department of Chemistry	Hamilton, Ontario

pedagogical lectures

October 2022	TDDFT in Chemistry and Biochemistry (2 lectures)	Benasque, Spain
	Benasque 9th TDDFT School	
July 2017	Nonadiabatic molecular dynamics with TDDFT (2 lectures)	Telluride, Colorado
	Telluride School on Time-dependent Density Functional Theory	

courses taught

- CHEM446/337: **Quantum Mechanics I** (Fall 2019, 2021, 2023)
- CHEM447: Modern Physical Chemistry (co-taught) (Fall 2019, 2022)
- CHEM336: **Physical Chemistry II** (Spring 2020, 2021, 2023)
- CHEM442/342: Computational Chemistry (Fall 2020, 2022)