TD 2

EXERCICE 1. En 2007, Netflix a lancé un des premiers gros *challenges* à l'ensemble des statisticiens, informaticiens et autre *data scientists*. Il s'agissait de battre leur propre algorithme de prédiction de préférence des utilisateurs, **Cinematch**. Grossièrement, les données sont un sous-ensemble des entrées d'une matrice $M = (M_{i,j})_{1 \le i \le m, 1 \le j \le p} : M_{i,j} \in \{1,2,3,4,5\}$ est la note donnée par l'utilisateur i au film j. Il s'agit de reconstruire les entrées non observées. On propose la représentation suivante : on observe les entrées correspondant aux indices (supposés indépendants) $X_1 = (i_1, j_1), \ldots, X_n = (i_n, j_n) \sim \Pi$. Ces entrées sont notées $Y_\ell = M_{i_\ell, j_\ell}$. Pour toute matrice $N \in \{1, \ldots, 5\}^{n \times p}$ on définit

$$R(N) = \mathbb{E}[(Y_{\ell} - N_{i_{\ell}, j_{\ell}})^{2}] = \sum_{i=1}^{m} \sum_{j=1}^{p} (N_{i,j} - M_{i,j})^{2} \Pi((i, j))$$

et

$$r_n(N) = \frac{1}{n} \sum_{\ell=1}^n (Y_\ell - N_{i_\ell, j_\ell})^2.$$

Une hypothèse naturelle est qu'il existe un certain nombre, disons $K \ll m, p$, de comportements de base (amateurs de science-fiction, amateurs de cinéma russe...) et que les goûts de chaque utilisateur peuvent être approchés par une combinaison linéaire de ces goûts de base. On propose donc la loi π a priori suivante :

$$\underbrace{N}_{m \times p} = \underbrace{U}_{m,K} \underbrace{V}_{K,p}$$

où les entrées $U_{i,h}$ et $V_{h,j}$ sont i.i.d de loi $\mathcal{U}([-\sqrt{c/K},\sqrt{c/K}])$ avec c>0 constant. Noter qu'on a alors bien $N_{i,j}=\sum_{h=1}^K U_{i,h}V_{h,j}$, les $(U_{1,1},\ldots,U_{m,1}),\ldots,(U_{1,K},\ldots,U_{m,K})$ sont interprétés comme les K comportements de base. Pour tout $\lambda>0$ on pose

$$\hat{M}_{\lambda} = \int N \pi_{\exp(-\lambda r_n)}(\mathrm{d}N).$$

Pour simplifier les notations, pour toute matrice H on notera $||H|| = \sup_{i,j} |H_{i,j}|$.

1) Expliquer pourquoi, pour tout $\lambda > 0$,

$$R(\hat{M}_{\lambda}) \leq \int R(N) \pi_{\exp(-\lambda r_n)}(dN).$$

- 2) Pourquoi serait-il déraisonnable de prendre c < 5? On supposera donc que $c \ge 5$.
- 3) Vérifier que les variables aléatoires $|(Y_{\ell} N_{i_{\ell},j_{\ell}})^2 R(N)|$ sont bornées par $4c^2$.
- 4) En déduire que l'on a, pour tout $\varepsilon > 0$, avec proba. au moins 1ε ,

$$R(\hat{M}_{\lambda}) \leq \frac{2 \vee \left(1 + \frac{4c^{2}\lambda}{n}g\left(\frac{8c^{2}\lambda}{n}\right)\right)}{1 - \frac{4c^{2}\lambda}{n}g\left(\frac{8c^{2}\lambda}{n}\right)} \inf_{\rho} \left[\int R(N)\rho(\mathrm{d}N) + \frac{\mathcal{K}(\rho, \pi) + \log\left(\frac{2}{\varepsilon}\right)}{\lambda}\right]$$

où g est la fonction de Bernstein.

On va tenter de majorer cet inf de façon explicite. Pour ceci, pour toutes matrices U^0 et V^0 et $\delta > 0$ on définit $\rho_{U^0,V^0,\delta}$ comme la loi π restreinte à l'ensemble $\{(U,V): \|U-U^0\| \le \delta, \|V-V^0\| \le \delta\}$.

5) Démontrer que

$$\int R(N)\rho_{U^0,V^0,\delta}(\mathrm{d}N) \le R(U^0V^0) + \delta^2 K(\sqrt{K}\delta + c)^2.$$

6) Démontrer que

$$\mathcal{K}(\rho, \pi) = (m+p)K \log \left(\frac{1}{\delta} \sqrt{\frac{c}{K}}\right).$$

7) En déduire qu'il existe une constante (pouvant dépendre du choix de c) C(c) telle que

$$R(\hat{M}_{\lambda}) \leq \mathcal{C}(c) \inf_{\|U^0\|, \|V^0\| \leq \sqrt{c/K}} \left[R(U^0 V^0) + \frac{(m+p)K \log \left(\frac{cn}{(m+p)K}\right) + \log \left(\frac{2}{\varepsilon}\right)}{n} \right].$$

On pourra expliciter C(c).

- 8) Discuter la borne obtenue. En particulier, on pourra supposer qu'il existe effectivement U^0 et V^0 avec $||U^0||, ||V^0|| \le \sqrt{c/K}$ et $M = U^0V^0$, et se concentrer sur la vitesse $\frac{(m+p)K}{n}$. Est-il possible de reconstruire correctement une matrice à $m \times p$ entrées en n'observant que n entrées aléatoires, avec $n \ll m, p$?
- 9) Question subsidiaire : comment implémenteriez-vous le calcul de \hat{M}_{λ} en pratique?
- 10) Question encore plus subsidiaire : en pratique, on ne connaît pas K. Que proposeriezvous?

EXERCICE 2. Dans cet exercice, on va étendre des résultats du cours démontrés pour des variables bornées à des variables non bornées. Pour ceci, on commence par essayer d'étendre l'inégalité de Bernstein à des variables aléatoires non bornées.

- 1) Soit Z une variable aléatoire de loi exponentielle $\mathcal{E}(\theta)$. On pose $f(\lambda) = \log \mathbb{E}e^{\lambda(Z \mathbb{E}(Z))}$.
 - (a) Rappeler une formule explicite pour $f(\lambda)$ et son domaine de définition.
 - (b) Démontrer que pour tout $u \in]0,1[,-\log(1-u)-u \le \frac{u^2}{2(1-u)}$ et en déduire que

$$\log \mathbb{E} e^{\lambda Z} \le \frac{\operatorname{Var}(Z)\lambda^2}{2(1-c\lambda)}$$

pour une constante c que l'on précisera.

Par analogie, on dit que Z' est sous-exponentielle avec les paramètres (v, c) ssi pour tout $\lambda \in]-1/c, 1/c[$,

$$\log \mathbb{E}e^{\lambda Z'} \le \frac{v\lambda^2}{2(1-c\lambda)}.$$

- (c) Soient Z et Z' deux variables sous-exponentielles de paramètres respectifs (v,c) et (v',c). Démontrer que Z+Z' est sous-exponentielle de paramètres (v+v',c). Démontrer que αZ , pour $\alpha \in \mathbb{R}$, est sous-exponentielle $(\alpha^2 v,c)$.
- (d) Soit Z une variable aléatoire $\mathcal{N}(0,\sigma^2)$. Démontrer que Z^2 est sous-exponentielle de paramètres $(2\sigma^2,2)$.
- 2) Soient Z_1, \ldots, Z_n des variables aléatoires indépendantes, centrées, sous-exponentielles de paramètre (v, c). Démontrer que pour tout $\lambda \in]-n/c, n/c[$ on a

$$\mathbb{E}e^{\frac{\lambda}{n}\sum_{i=1}^{n}Z_{i}} \le e^{\frac{v\lambda^{2}}{2n(1-c\frac{\lambda}{n})}}.$$

- 3) On suppose que l'on observe $(X_1, Y_1), \ldots, (X_n, Y_n)$ i.i.d de loi P. On suppose que l'on a f_1, \ldots, f_M des fonctions $\mathcal{X} \to \mathbb{R}$, un ensemble $\Theta \subset \mathbb{R}^M$ et une fonction de perte ℓ (pas forcément bornée). On définit pour $\theta \in \Theta$ la fonction $f_{\theta}(\cdot) = \sum_{i=1}^{M} \theta_i f_i(\cdot)$ et on suppose que pour tout $\theta \in \Theta$, $\ell(Y_i, f_{\theta}(X_i))$ est une variable sous-exponentielle de paramètres (v, c).
 - (a) En suivant la preuve du cours, démontrer que, pour tout $\varepsilon \in]0,1[$ on a

$$\mathbb{P}\left\{ \int R(f_{\theta}) \pi_{\exp(-\lambda r_n)}(\mathrm{d}\theta) \leq \inf_{\rho} \left[\int R(f_{\theta}) \rho(\mathrm{d}\theta) + \frac{v\lambda}{n\left(1 - c\frac{\lambda}{n}\right)} + 2\frac{\mathcal{K}(\rho, \pi) + \log\left(\frac{2}{\varepsilon}\right)}{\lambda} \right] \right\}.$$

(b) Comparer avec le résultat du cours pour les variables bornées (par exemple, en appliquant ce théorème au cas de la MS-agrégation).