Introducción

Monday, October 29, 2018

Algoritmos Paralelos

- · Paralelismo como paradigma para resolucción de problemas
- · Se puede llevar a cabo en aspectos como en simuladores.

Proceso

- Un proceso es cualquier secuencia de operación nes que están ejecutándose en memoria activa
- · Permite descubrir el comportamiento de un objeto

Procesos Disjuntos

- · se ejecutan en diferentes bloques de un programa
- No tienen posibilidad de acceder entre sí

Procesos Cooperations

- · Cooperar para realizar una tarea
- · Comparten recursos en común . Requieren alguna forma de sincronización

// Programación Concurrente/Poralelo/ distribuido

· Resulta en multiple hibs de control que se comunican entre sí

- Mesulta en multiple milos de control que se comunican entre sí
- · Un programa concurrente es aquel por varios
 procesos que se ejecutan en un solo procesador
 siguiendo un esquema de paralelismo temporal
- · Un programa es aquel formado por varios
 processos en varios processadores conectades
 mediante una red de comunicación

TACTA

· Un programa distribuido comporte la definición de uno paralelo, la diferencia es que la red de comunicación esta en otros lugures geográficos

Ventaja

- · Aumento de velocidad
- · Eficiencia del procesamiento · Simplicidad en la expresión de Modelos

Desventagos

· Difficultad de realizar algoritmos en paralelo

FALTA

Diganización en la memoria

FALTA

Memoria Comportida

FACTA

Memoria Activo

FALTA

1 Granularidad

Es un indicador de la cantidad de trabajo que cada procesador puede realizar de manera independiente.

PI

FALTA

- ▶ Granularidad fina
 - · Los procesadores ejecuten unas cuantas instrucciones y aumenta la cantidad de comunicaciones contre procesadores
 - · La relación de tiempo

· La relación de tiempo

De Balance de Carga

- · El balance de carga se refiere a la forma de repartir el total de las tareas a realizar entre el total de procesadores disponible
- · Balance de carga re divide en Z:
 - Estático Dinámico

Clasificación

Monday, November 5, 2018

Clasificación de Fly

- · Simple Instrucción Simple Datos -> SIDD
- · Simple Instrucción Multiples Datos -> DIMD
- · Multiple Instrucción simple Dato -> MI 3D
- · Multiple Instrucción Multiples Patos > MIMO

TAREA Describir cada uno e indiar 2
ejemplos de cada uno

Clasificación Algoritmico

- 1) Paralelismo Algoritmica
- ·Se basa en la paralelización de tareas cuasiindependientes que se ejecutan secciones del algoritmo
- · Se relaciona con el modelo de Flujo de datos ya que TALTA
- 2] Paralelismo Geométrico
- · Se basa en tareas independientes

	ut basa en tareas inaepenaienico										
•	Cont	siote	en	divi	dir lo	5 00	atos	del	اطص	ema	
	de	una	ma	nera	simé	frica	con	sidera	and	0	
	UNG	Out	5 11,6	KION	unifor	me,	siend	o ca	da 1	oroces a	9
3	ρ_{a}	ralelia	smo	Farm	(Hunag	ier W	Jorker)			
)					
•	Deb	10	a \	a in a	depende	ncia,	se no	ecesi	a		
	œ	Un	دەەر	dinad	or qu	e 5e	ence	arga c	k i	distribu))r
	el	trak	og o								
	Mé	trica	2	- De	sempe	no					
					t						
1]	Tler	npos	de	, pro	cesami	ento	g +	empo			
	Con	n Unic	ació	0							
-	E۱	tiem	100	oced	2 20	o divid	irse	entre	el		
	tie	mpo									
				FAL:	IA						
2)	5	eed	()								
	عاد	eea	φ								
3	Efu	cienci	α								
				0					1		
Lc	ı m	edido	n de	etici	enca	se	4500	a a	la	idea	

la medida de eficiencia se asocia a la idea 4 Fracción Serial Niveles de Paralelismo Puralelismo a nivel de instrucción en diferentes procesa dores

Archivos

- · Compromise | Hemoria Mús Cara → Menor cantidad Espacio/Tiempo | La Mús veloz
- Los archivos son permanentes en memoria secundaria (Tiempo indefinido)
- Un archivo es un flujo de bytes de información
- · Operaciones Eliminar Editar

- Pregunta 1) Principal Forma de almacenamien to de información

 Examen 3 Los sistemas
 - 3 Los sistemas operativos los utilizan como primitivas

Organización Física

· Cada plato puede ser leido o escrito por una cabeza (head) que se encuentra al fincí del brazo (arm)

Movimientos/ Brazo Mecánicos Piscos

· Paginación g segmentación de los discos

- · Paginación g segmentación de los discos (Lo hace el 05)
- Drganización Lógica
 - · 1 byte = 8 bits
 - · | kilobyte = 1024 bytes
 - l megabyte = 1048576 = (2°) bytes
 - 1 gigabyte = 1024 megabyte = 2 30 bytes

 - Hemoria Principal

 Hemoria Externa 10 mil veces más lento
 - · Se consideran bloque para el uso y movimientos de estos.
 - Bloques Tam. memoria *

 Bloques Tam. del bloque

 Oisponibles
 - cantidad = Tumaño del bloque
 de registros Tumaño de cada
 registro
 - = Cantidad de registios Contidud de registios

necesarics Contidud de registios por bloque Implementación Archivos FALTA