El magnetismo en la materia

Magnetización:

$$\vec{M} = \frac{\vec{m}}{V}$$
 $\vec{B} = \vec{B}_{ap} + \mu_0 \vec{M}$

En materiales para magnéticos y ferromagnéticos \vec{M} tiene misma dirección y sentido que el campo. En los diamagnéticos sentido contrario.

En materiales paramagnéticos y diamagnéticos:

$$\overrightarrow{M}=\chi_{m}rac{\overline{B_{ap}}}{\mu_{0}}$$
 χ_{m} : susceptibilidad magnética.

$$ec{B}=ec{B}_{ap}(1+\chi_m)=K_mec{B}_{ap}$$
 K_m : permeabilidad relativa. $\mu=\mu_0K_m$ μ : permeabilidad.

En materiales paramagnéticos: $\chi_m>0$ y de valor muy pequeño. (Uranio, Aluminio, Sodio...)

En diamagnéticos: $\chi_m < 0$ y de valor muy pequeño. (Plomo, Bismuto, Mecurio, Plata, Cobre...)

En ferromagnéticos: $\chi_m>0$ y de valor muy elevado. (Hierro, Cobalto, Niquel....)

En materiales ferromagnéticos:

$$B = B_{ap}(1 + \chi_m) = \mu_0 n I(1 + \chi_m) = \mu n I$$

Ciclo de histéresis: Se presenta en los materiales ferromagnéticos.

Con B_r campo remanente y H_c campo coercitivo