MAXIMUM RATINGS

Collector-Emitter Voltage

Collector-Base Voltage

Emitter-Base Voltage

Total Device Dissipation

Total Device Dissipation

Derate above 25°C

Temperature Range

Operating and Storage Junction

@ TA = 25°C Derate above 25°C

@ $T_C = 25^{\circ}C$

Rating

Collector Current — Continuous

Unit

Vdc

Vdc

Vdc

mAdc

Watt

mW/°C

Watts

mW/°C

°C

2N2218A

2N2219A

2N2221A

2N2222A

40

75

6.0

800

2.28

1.2

6.85

-65 to +200

2N5581

2N5582

40

75

6.0

800

2N5581 2N5582

3.33

2.0

11.43

2N2218

2N2219 2N2221

2N2222

30

60

5.0

800

8.0

4.57

3.0

17.1

2N2218,A 2N2221,A 2N2219,A 2N2222,A

Symbol

VCEO

VCBO

VEBO

lc

PD

Po

T_J, T_{stg}

2N2218, A/2N2219, A 2N2221, A/2N2222, A 2N5581/82

JAN, JTX, JTXV AVAILABLE

2N2218, A/2N2219, A CASE 79-04 TO-39 (TO-205AD) STYLE 1

2N2221, A/2N2222, A CASE 22-03 TO-18 (TO-206AA) STYLE 1 2N5581/2N5582

CASE 26-03 TO-46 (TO-206AB) STYLE 1 **GENERAL PURPOSE TRANSISTORS**

NPN SILICON

T-27-13

T-27-15

T-27-19

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (IC = 10 mAdc, IB = 0)	Non-A Suffix A-Suffix, 2N5581, 2N5582	V(BR)CEO	30 40	<u></u>	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μAdc, I _E = 0)	Non-A Suffix A-Suffix, 2N5581, 2N5582	V(BR)CBO	60 75	=	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0)	Non-A Suffix A-Suffix, 2N5581, 2N5582	V(BR)EBO	5.0 6.0	1 1	Vdc
Collector Cutoff Current (VCE = 60 Vdc, VEB(off) = 3.0 Vdc)	A-Suffix, 2N5581, 2N5582	CEX		10	nAdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0) (V _{CB} = 60 Vdc, I _E = 0) (V _{CB} = 50 Vdc, I _E = 0, T _A = 150°C) (V _{CB} = 60 Vdc, I _E = 0, T _A = 150°C)	Non-A Suffix A-Suffix, 2N5581, 2N5582 Non-A Suffix A-Suffix, 2N5581, 2N5582	ICBO	- - -	0.01 0.01 10 10	μAdc
Emitter Cutoff Current (VEB = 3.0 Vdc, IC = 0)	A-Suffix, 2N5581, 2N5582	IEBO	_	10	nAdc
Base Cutoff Current (VCE = 60 Vdc, VEB(off) = 3.0 Vdc)	A-Suffix	IBL		20	nAdc
ON CHARACTERISTICS DC Current Gain (IC = 0.1 mAdc, VCE = 10 Vdc)	2N2218,A, 2N2221,A, 2N5581(1) 2N2219,A, 2N2222,A, 2N5582(1)	hFE	20 35	_	
(I _C = 1.0 mAdo, V _{CE} = 10 Vdo)	2N2218,A, 2N22221,A, 2N5581 2N2219,A, 2N2222,A, 2N5582		25 50	_	
(I _C = 10 mAdc, V _{CE} = 10 Vdc)	2N2218,A, 2N2221,A, 2N5581(1) 2N2219,A, 2N2222,A, 2N5582(1)		35 75	_	
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, T_A = -55^{\circ}C)$	2N2218A, 2N2221A, 2N5581 2N2219A, 2N2222A, 2N5582		15 35	=	
$(I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})(1)$	2N2218,A, 2N2221,A, 2N5581 2N2219,A, 2N2222,A, 2N5582		40 100	120 300	

MOTOROLA SC XSTRS/R F 12E D 6367254 0086243 1 2N2218/19/21/22, A SERIES, 2N5581/82 7-27-13

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

ELECTRICAL CHARACTERISTICS (continued) (T _A = 25°C unless otherwise noted.) Characteristic Symbol		アジフンソ			
		Symbol	Min	Max	Unit
$(I_C = 150 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})(1)$	2N2218,A, 2N2221,A, 2N5581 2N2219,A, 2N2222,A, 2N5582		20 50	_	
(i _C = 500 mAdc, V _{CE} = 10 Vdc)(1)	2N2218, 2N2221 2N2219, 2N2222 2N2218A, 2N2221A, 2N5581 2N2219A, 2N2222A, 2N5582		20 30 25 40	_ _ _	
Collector-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc)	Non-A Suffix A-Suffix, 2N5581, 2N5582	V _{CE(sat)}	_	0.4 0.3	Vdc
(IC = 500 mAdc, IB = 50 mAdc)	Non-A Suffix A-Suffix, 2N5581, 2N5582		_	1.6 1.0	
Base-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc)	Non-A Suffix A-Suffix, 2N5581, 2N5582	V _{BE(sat)}	0.6 0.6	1.3 1.2	Vdc
(I _C = 500 mAde, I _B = 50 mAde)	Non-A Suffix A-Suffix, 2N5581, 2N5582		_	2.6 2.0	

SMALL-SIGNAL CHARACTERISTICS		1 .	-	1	
Current-Gain Bandwidth Product(2) (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	Ali Types, Except 2N2219A, 2N2222A, 2N5582	ft	250 300		MHz
Output Capacitance(3) (VCB = 10 Vdc, IE = 0, f = 100 kHz)		Cobo	-	8.0	pF
Input Capacitance(3) (VEB = 0.5 Vdc, IC = 0, f = 100 kHz)	Non-A Suffix A-Suffix, 2N5581, 2N5582	C _{ibo}	11	30 25	pF
Input Impedance (I _C = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	2N2218A, 2N2221A 2N2219A, 2N2222A	h _{ie}	1.0 2.0	3.5 8.0	kohms
$(I_C = 10 \text{ mAde, V}_{CE} = 10 \text{ Vdc, f} = 1.0 \text{ kHz})$	2N2218A, 2N2221A 2N2219A, 2N2222A		0.2 0.25	1.0 1.25	
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	2N2218A, 2N2221A 2N2219A, 2N2222A	h _{re}	–	5.0 8.0	X 10-4
$(I_C = 10 \text{ mAde, } V_{CE} = 10 \text{ Vdc, } f = 1.0 \text{ kHz})$	2N2218A, 2N2221A 2N2219A, 2N2222A		_	2.5 4.0	
Small-Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	2N2218A, 2N2221A 2N2219A, 2N2222A	hfe	30 50	150 300	
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	2N2218A, 2N2221A 2N2219A, 2N2222A		50 75	300 375	!
Output Admittance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	2N2218A, 2N2221A 2N2219A, 2N2222A	h _{oe}	3.0 5.0	15 35	μmhos
(I _C = 10 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	2N2218A, 2N2221A 2N2219A, 2N2222A		10 25	100 200	
Collector Base Time Constant (I _E = 20 mAdo, V _{CB} = 20 Vdc, f = 31.8 MHz)	A-Suffix	rb'C _C		150	ps
Noise Figure (I _C = 100 μ Adc, V _{CE} = 10 Vdc, R _S = 1.0 kohm, f = 1.0 kHz)	2N2222A	NF		4.0	dB
Real Part of Common-Emitter High Frequency Input Impedance (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 300 MHz)	2N2218A, 2N2219A 2N2221A, 2N2222A	Re(h _{ie})	-	60	Ohms

⁽¹⁾ Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%.
(2) f⊤ is defined as the frequency at which |hfe| extrapolates to unity.
(3) 2N5581 and 2N5582 are Listed C_{cb} and C_{eb} for these conditions and values.

2N2218/19/21/22, A SERIES, 2N5581/82

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
SWITCHING CHAR	ACTERISTICS				,
Delay Time	(VCC = 30 Vdc, VBE(off) = 0.5 Vdc,	td	_	10	ns
Rise Time	I _C = 150 mAdc, I _{B1} = 15 mAdc) (Figure 14)	t _r	_	25	ns
Storage Time	(V _{CC} = 30 Vdc, I _C = 150 mAdc,	ts		225	ns
Fall Time	I _{B1} = I _{B2} = 15 mAdc) (Figure 15)	tf		60	ns
Active Region Time Constant (IC = 150 mAdc, VCE = 30 Vdc) (See Figure 12 for 2N2218A, 2N2219A, 2N2221A, 2N2222A)		TA	_	2.5	ns

T-27-13 T-27-15

FIGURE 1 - NORMALIZED DC CURRENT GAIN

T-27-19

FIGURE 2 - COLLECTOR CHARACTERISTICS IN SATURATION REGION

This graph shows the effect of base current on collector current. β_o (current gain at the edge of saturation) is the current gain of the transistor at 1 volt, and β_r (forced gain) is the ratio of I_c/I_p in a circuit.

EXAMPLE: For type 2N2219, estimate a base current (I) to insure saturation at a temperature of 25 °C and a collector current of 150 mA. Observe that at $l_c=150$ mA an overdrive factor of at least 2.5

Observe that at $t_c=150$ mA an overdrive factor of at least 2.3 is required to drive the transistor well into the saturation region. From Figure 1, it is seen that h_{tt} @ 1 volt is approximately 0.62 of h_{tt} @ 10 volts. Using the guaranteed minimum gain of 100 @ 150 mA and 10 V, $\beta_0=62$ and substituting values in the overdrive equation,

$$\frac{\beta_o}{\beta_r} = \frac{h_{re} @ 1.0 \text{ V}}{I_c/I_{er}} \qquad 2.5 = \frac{62}{150/I_{er}}$$

$$2.5 = \frac{62}{150/l_{\#}}$$

I#≈6.0 mA

MOTOROLA SMALL-SIGNAL TRANSISTORS, FETs AND DIODES

2N2218/19/21/22, A SERIES, 2N5581/82

FIGURE 4 - TEMPERATURE COEFFICIENTS 9V, TEMPERATURE COEFFICIENT (mV/ºC) (25°C to 175°C) θVC for VCE(sat) OVB for VBE 1.0 IC, COLLECTOR CURRENT (mA)

h PARAMETERS

 V_{CE} = 10 Vdc, f = 1.0 kHz, T_A = 25 $^{\circ}$ C

This group of graphs illustrates the relationship between hife and other "h" parameters for this series of transistors. To obtain these curves, a high-gain and a low-gain unit were selected and the same units were used to develop the correspondingly numbered curves on each graph.

MOTOROLA SMALL-SIGNAL TRANSISTORS, FETs AND DIODES

2N2218/19/21/22, A SERIES, 2N5581/82

SWITCHING TIME CHARACTERISTICS

 $I_{\rm C}/I_{\rm BI}=10$ t., t, STORAGE AND FALL TIME (ns) 100 **= 20** 50 $I_{\rm C}/I_{\rm BI}=10$ 30 20 LOW GAIN TYPES $T_J = 25^{\circ}C$ 10 20 30 50 100 Ic. COLLECTOR CURRENT (mA)

FIGURE 12 — DELAY AND RISE TIME EQUIVALENT TEST CIRCUIT GENERATOR RISE TIME ≤ 2.0 ns PW ≤ 200 ns OUTY CYCLE = 2.0% +30 V 200 619 OSCILLOSCOPE $\begin{array}{ll} R_{in} > 100 \text{ k ohms} \\ C_{in} \leq 12 \text{ pF} \\ \text{RISE TIME} \leq 5.0 \text{ ns} \end{array}$

