

Analyse Numérique Corrigé Série 13

1. (Elimination de Gauss – version de Doolittle) On considère l'algorithme de Doolittle suivant pour calculer la décomposition A = LU d'une matrice $A \in \mathbb{R}^{n \times n}$ à l'aide de la méthode de Gauss, ici formulé sans recherche de pivot :

(Algorithme de Doolittle)

```
1: U \leftarrow A, L \leftarrow I

2: for k = 1, ..., n do

3: for j = k, ..., n do

4: u_{kj} \leftarrow a_{kj} - \ell_{k,1:k-1}^T u_{1:k-1,j}

5: for i = k+1, ..., n do

6: \ell_{ik} \leftarrow (a_{ik} - \ell_{i,1:k-1}^T u_{1:k-1,k})/u_{kk}
```

- (a) Justifier que l'on peut remplacer les termes a_{kj} , a_{ik} qui apparaissent dans l'algorithme ci-dessus par respectivement u_{ki} , u_{ik} , sans modifier le résultat de l'algorithme.
 - **Sol.:** En effet, au début de l'algorithme on a U = A, et on remarque qu'à l'étape k de l'algorithme, u_{kj}, u_{ik} n'on encore jamais été modifiés, et valent donc a_{kj}, a_{ik} , respectivement.
- (b) Justifier que cet algorithme met en oeuvre l'algorithme de la décomposition A = LU, où L est une matrice triangulaire inférieure avec des 1 sur la diagonale.

Indication. Pour les parties triangulaires supérieure et inférieure de la matrice A, montrer :

$$a_{kj} = \ell_{k,1:k-1}^T \mathbf{u}_{1:k-1,j} + \ell_{kk} u_{kj}, \quad j = k, \dots, n,$$

 $a_{ik} = \ell_{i,1:k-1}^T \mathbf{u}_{1:k-1,k} + \ell_{ik} u_{kk}, \quad i = k+1, \dots, n.$

Sol.: L'égalité A = LU s'écrit

$$a_{ij} = (LU)_{ij} = \sum_{r=1}^{\min(i,j)} \ell_{ir} u_{rj}, \quad i, j = 1, \dots n.$$

car L est triangulaire inférieure et A est triangulaire supérieure. Ceci correspond aux formules de l'indication. En remarquant $\ell_{kk} = 1$, l'algorithme calcule donc bien les coefficients ℓ_{ik} et u_{ki} par récurrence sur $k = 1, \ldots, i = k, \ldots n$.

(c) (0.5 pts) (*) Modifier l'algorithme pour ajouter la recherche partielle de pivot.

Sol.:

1:
$$U \leftarrow A, \ L \leftarrow I, \ P \leftarrow I$$

2: $for \ k = 1, ..., n \ do$
3: $Chercher \ i \geq k \ tel \ que \ |u_{ik}| \ soit \ maximal$
4: $if \ u_{ik} \neq 0 \ then$
5: $u_{k,k:n} \leftrightarrow u_{i,k:n} \ (\'echanger \ deux \ lignes)$
6: $\ell_{k,1:k-1} \leftrightarrow \ell_{i,1:k-1}$
7: $p_{k,1:n} \leftrightarrow p_{i,1:n}$
8: $for \ j = k, ..., n \ do$
9: $u_{kj} \leftarrow u_{kj} - \ell_{k,1:k-1}^T u_{1:k-1,j}$
10: $for \ i = k+1, ..., n \ do$
11: $\ell_{ik} \leftarrow (u_{ik} - \ell_{i,1:k-1}^T u_{1:k-1,k})/u_{kk}$

2. (*, tout l'exercice) (Décomposition LU et élimination de Gauss)

Soit $A = (a_{ij})$ une matrice carrée à diagonale dominante par colonne, c.-à-d.,

$$|a_{jj}| > \sum_{i \neq j} |a_{ij}|, \ \forall j. \tag{1}$$

(a) (0.25 pts) Montrer que A est inversible.

Indication: Montrer que $A^{\mathsf{T}} \mathbf{x} = \mathbf{0}$ implique $\mathbf{x} = \mathbf{0}$.

Sol.: Soit un vecteur \mathbf{x} tel que $A^{\mathsf{T}}\mathbf{x} = \mathbf{0}$. Il suffit de montrer $\mathbf{x} = \mathbf{0}$ (en effet noyau nul équivaut à inversible pour une matrice carrée, et A inversible équivaut à A^{T} inversible). Par l'absurde, supposons $\mathbf{x} \neq \mathbf{0}$ et soit $x_j \neq 0$ la plus grande composante de \mathbf{x} en valeur absolue. On a $\sum_i a_{ij} x_i = 0$, d'où $a_{jj}x_j = -\sum_{i\neq j} a_{ij}x_i$. On déduit

$$|a_{jj}x_j| \le \sum_{i \ne j} |a_{ij}||x_i| \le \sum_{i \ne j} |a_{ij}||x_j|.$$

En divisant par $x_j \neq 0$, on obtient $|a_{jj}| \leq \sum_{i \neq j} |a_{ij}|$ ce qui contredit l'hypothèse.

(b) (0.25 pts) Démontrer qu'au premier pas d'une décomposition LU de A, il n'y a pas d'échanges de lignes, même si on utilise la recherche de pivot partielle (c'est-à-dire une recherche de pivots dans la même colonne à chaque étape de l'algorithme).

Sol.: Comme A est une matrice à diagonale dominante on a $|\ell_{i1}| = |\frac{a_{i1}}{a_{11}}| < 1$. Donc une recherche de pivot n'est pas nécessaire.

(c) (0.25 pts) Démontrer
$$\sum_{i=2}^{n} |\ell_{i1}| < 1$$
 où $\ell_{i1} = a_{i1}/a_{11}$.

Sol.: A partir de l'équation (1) on a pour j = 1, $|a_{11}| > \sum_{i=2}^{n} |a_{i1}|$, d'où

$$\sum_{i=2}^{n} |\ell_{i1}| = \sum_{i=2}^{n} \left| \frac{a_{i1}}{a_{11}} \right| < 1.$$
 (2)

(d) (0.75 pts) En utilisant les points précédents et un raisonnement par récurrence, démontrer que pendant la décomposition LU de A, il n'y a pas d'échanges de lignes, même si on utilise la recherche de pivot partielle.

Sol.: On rappelle que pour la première itération on a

$$a_{ij}^{(1)} = a_{ij} - \ell_{i1} a_{1j},$$

On va faire deux estimations de $a_{ij}^{(1)}$, pour $i \neq j$

$$|a_{ij}^{(1)}| = |a_{ij} - \ell_{i1}a_{1j}| \le |a_{ij}| + |\ell_{i1}||a_{1j}| \tag{3}$$

 $et \ pour \ i = j$

$$|a_{jj}^{(1)}| = |a_{jj} - \ell_{j1}a_{1j}| \ge |a_{jj}| - |\ell_{j1}||a_{1j}|. \tag{4}$$

Donc on peut sommer (3) sur toute la colonne et utiliser (2)

$$\sum_{\substack{i \neq j \\ 2 \leq i \leq n}} |a_{ij}^{(1)}| \leq \sum_{\substack{i \neq j \\ 2 \leq i \leq n}} |a_{ij}| + \sum_{\substack{i \neq j \\ 2 \leq i \leq n}} |\ell_{i1}| |a_{1j}|$$

$$\leq \sum_{\substack{i \neq j \\ 2 \leq i \leq n}} |a_{ij}| + (1 - |\ell_{j1}|) |a_{1j}|$$

$$= \sum_{\substack{i \neq j \\ 1 \leq i \leq n}} |a_{ij}| - |\ell_{j1}| |a_{1j}|$$

On peut utiliser maintenant (1) et l'estimation (4)

$$\sum_{i \neq j} |a_{ij}^{(1)}| < |a_{jj}| - |\ell_{j1}||a_{1j}|$$

$$\leq |a_{jj}^{(1)}|.$$

Donc après la première itération on a que la sous matrice de taille $(n-1) \times (n-1)$ est aussi diagonale dominante.

Finalement on peut conclure que si on réitère l'idée on peut faire une élimination de Gauss sans avoir besoin de chercher du pivot.

3. (Algorithme de Thomas)

L'algorithme de Thomas est une formulation simplifiée de la factorisation LU qui peut être utilisée pour résoudre des systèmes linéaires Ax = b où la matrice A est une matrice tridiagonale. Soit A une matrice tridiagonale (de taille $n \times n$):

$$A = \begin{pmatrix} d_1 & r_1 & & & \\ \ell_2 & d_2 & r_2 & & & \\ & \ell_3 & \ddots & \ddots & & \\ & & \ddots & \ddots & r_{n-1} \\ & & & \ell_n & d_n \end{pmatrix}.$$

(a) Calculer la décomposition LU de A.

Sol.: En multipliant L et U on trouve que

$$\begin{pmatrix} 1 & 0 & & & \\ \ell_{21} & 1 & 0 & & \\ \ell_{31} & \ell_{32} & 1 & & \\ & & \ddots & \ddots & \\ \ell_{n1} & \ell_{n2} & \cdots & \ell_{n(n-1)} & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & \cdots & u_{1(n-1)} & u_{1n} \\ 0 & u_{22} & \cdots & u_{2(n-1)} & u_{2n} \\ 0 & 0 & u_{32} & \cdots & u_{3n} \\ & & \ddots & \ddots & \\ 0 & 0 & \cdots & 0 & u_{nn} \end{pmatrix} = \begin{pmatrix} u_{11} & u_{12} & \cdots & u_{1(n-1)} & u_{1n} \\ * & * & \cdots & * & * \\ * & * & * & \cdots & * & * \\ * & * & * & \cdots & * & * \\ * & * & * & \cdots & * & * \end{pmatrix}$$

$$\Rightarrow u_{13} = u_{14} = \cdots = u_{1} = 0.$$

Puis

$$\begin{pmatrix} 1 & 0 & & & \\ \ell_{21} & 1 & 0 & & \\ \ell_{31} & \ell_{32} & 1 & & \\ & & \ddots & \ddots & \\ \ell_{n1} & \ell_{n2} & \cdots & \ell_{n(n-1)} & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & 0 & \cdots & 0 \\ 0 & u_{22} & \cdots & \cdots & u_{2n} \\ 0 & 0 & u_{32} & \cdots & u_{3n} \\ & & \ddots & \ddots & \\ 0 & 0 & \cdots & 0 & u_{nn} \end{pmatrix} = \begin{pmatrix} u_{11} & u_{12} & 0 & \cdots & 0 \\ * & * & u_{23} & \cdots & u_{2n} \\ * & * & * & * & \cdots & * \\ & & \ddots & \ddots & \\ * & * & * & \cdots & * & * \end{pmatrix}$$

$$\Rightarrow u_{24} = u_{25} = \dots = u_{2n} = 0.$$

 $etc.\ Ainsi$

$$U = \begin{pmatrix} \delta_1 & \rho_1 \\ & \delta_2 & \rho_2 \\ & & \ddots & \ddots \\ & & & \ddots & \rho_{n-1} \\ & & & & \delta_n \end{pmatrix},$$

Puis

 $\Rightarrow \ell_{31} = \ell_{41} = \dots = \ell_{n1} = 0$

Puis

$$\Rightarrow \ell_{42} = \ell_{43} = \dots = \ell_{4n} = 0.$$

Ainsi

$$L = \begin{pmatrix} 1 & & & \\ \lambda_2 & 1 & & & \\ & \lambda_3 & \ddots & & \\ & & \ddots & \ddots & \\ & & & \beta_n & 1 \end{pmatrix},$$

Calculons les coefficients λ_i , ρ_i et δ_i

$$(LU)_{i,j} = \sum_{k=1}^{n} L_{i,k} U_{k,j} = L_{i,i-1} U_{i-1,j} + L_{i,i} U_{i,j},$$

pour $j \in \{i - 1, i, i + 1\}$.

Ainsi on trouve que $(LU)_{i,i-1} = \ell_i$, $(LU)_{i,i} = d_i$, $(LU)_{i,i+1} = r_i$, ce qui donne

$$\lambda_i \delta_{i-1} = \ell_i, \qquad \lambda_i \rho_{i-1} + \delta_i = d_i, \qquad \rho_i = r_i,$$

d'où la solution

$$\lambda_i = \ell_i / \delta_{i-1}, \qquad \delta_i = d_i - \lambda_i r_{i-1}, \qquad \rho_i = r_i, \qquad pour \ i = 2, \dots, n,$$

avec $\delta_1 = d_1$.

(b) Quel est le nombre approximatif d'opérations dont on a besoin pour construire L et U? Donner la solution sous la forme Cn^k .

Sol.: D'après le point précédent on voit que l'on a besoin d'environ 2n opérations pour construire les δ_i et n opérations pour construire les λ_i . Il faut donc environ 3n opérations pour construire L et U.

(c) On suppose maintenant que L et U sont construits. Résoudre le système linéaire Ax = b en utilisant les résultats précédents. Quel est le nombre approximatif d'opérations, donné sous la forme Cn^k , de cet algorithme?

Sol.: Les matrices L, U étant calculées et vu que $Ax = b \Leftrightarrow Ly = b$, Ux = y, on résout d'abord Ly = b:

$$y_1 = b_1,$$

 $y_i = b_i - \lambda_i y_{i-1}$ pour $i = 2, \dots, n$,

et après on résout Ux = y:

$$x_n = y_n/\delta_n,$$

 $x_i = (y_i - r_i x_{i+1})/\delta_i$ pour $i = n - 1, \dots, 1.$

Il faut environ 2n opérations pour calculer les y_i et 3n opérations pour construire les x_i . Le nombre d'opérations est donc environ 5n.