scorecal

Empirical score calibration under the microscope

Ross W. Gayler

30/08/2019 - Credit Scoring & Credit Control XVI, Edinburgh, UK

https://www.rossgayler.com - https://orcid.org/0000-0003-4679-585X

Introduction

What is score calibration?

- Calibration: Answers the question "What do my scores mean?" by empirically determining function from score to expected value of some outcome statistic
 - Inherently about groups (cases with the same score)
 - · Case outcome is binary (e.g. Good, Bad)
 - Outcome statistic is some function of binary outcomes of a group of cases
 (e.g. Pr(Bad|score) or logit(Pr(Good|score)))
 - Result of calibration is a function from score to outcome statistic
 - Fitting a function to the data (i.e. curve fitting)
 - Typically, the function is approximately linear from score to log-odds
- · Scaling: Transform group outcome statistic to a desired scale
 - \cdot e.g. 1:1 odds \mapsto zero points; double odds \mapsto Δ +100 points
 - · Think of converting temperature from Fahrenheit to Celsius
 - · Calibration is always on some scale, maybe not the one you want

Calibration parameters

Calibration depends on:

- Substantive parameters
 - Score definition (function from case attributes to a number)
 - · Number is commonly integer, may be real
 - Population of cases
 - · Outcome definition
- Technical parameters of calibration function estimation
 - · Curve fitting technique
 - Fitting technique tuning parameters

How is the calibration function used?

- · Operational process management
 - · Set decision thresholds
 - Make loss predictions
- Technical diagnosis of the scoring model (my focus)
 - For a well-behaved scoring model, the score to log-odds function is generally quite linear (by definition)
 - · Nonlinearity indicates there is possibly a problem
 - · What is the problem? (shape of nonlinearity not absolutely diagnostic)
 - Does the problem matter? (size of nonlinearity)
 - How to fix the problem? ("fix" may be a work-around)

Calibration function zoo

Some calibration function patterns that may be encountered:

Typical approaches to calibration function estimation

- Logistic regression from score to outcome, over cases
 - glm(outcome == "Good" ~ score, family=binomial)
 - · Estimated function forced to be linear
 - · Unless you use poly(score) but there are better ways
 - Blind to any nonlinearities
- Score bands
 - Group scores into bands; calculate outcome statistic for each band
 - Calibration function is a step-function
 - Doesn't assume *any* relationship between neighbouring bands
 - · Can model any relationship (coarsely because of band widths)
 - · Local patterns may be hidden by bands (because of band widths)
 - · Doesn't make efficient use of data (doesn't use score ordering)
 - · Typically small number of observations per band
 - · Large variance of estimates obscures patterns

Score band approach

Simulated data with linear score to log-odds relationship (n = 2,000; 7% Bad; 10 bands)

scorecal

scorecal objectives

scorecal: An R package for score calibration

Be a better microscope for examining deviations from linearity in calibration functions Issues to be addressed:

- Use data efficiently (assume continuity and smoothness)
- · Relative magnitude of linear and nonlinear components
- Common scores
- Sparsity of cases in extreme tails
- · Spike deviations

Use data efficiently - issue & approach

- Score band approach does not make efficient use of data because it assumes:
 - · No relationship between neighbouring bands
 - No significance to ordering of scores within bands
- Expect neighbouring scores to have similar outcome statistics (continuity of scores and smoothness of calibration curve)
 - Use smoothing spline or local regression models
 - · Cases "borrow strength" from their neighbours (like having a moving-window estimator)
 - The effective number of cases used per score value is higher, giving narrower confidence intervals
 - But, outcome statistic estimates at neighbouring point values are correlated (which follows from assuming smoothness)

Use data efficiently - example

The same simulated data (95% confidence intervals)

Relative magnitude of linear and nonlinear components - issue & approach

- · Global linear trend is expected pattern
- · Global linear trend generally much stronger than nonlinearities
 - · Nonlinearities are harder to see when combined with the strong linear component
- Decompose calibration function into linear and nonlinear components
 - · Fit linear model and use as offset in nonlinear models
 - Regularisation of nonlinear component makes the linear component the default pattern when data is sparse (similar effect to a Bayesian prior)
- Display nonlinear components separately

Relative magnitude of linear and nonlinear components - example

Common scores - issue & approach

For discrete scores, some score values are very common (occur on a large fraction of cases), e.g. bureau scores for New-to-Bureau cases

- For moving-window estimators with window width set at fixed fraction of cases, the fraction of cases on a common score may exceed the window width
 - · No variance of the predictor (score) within the window; regression fails
- · For smoothing-spline estimators, can reduce the effective number of score values
- Use jittering (add small random noise) to break tied scores
 - Jittering magnitude chosen to preserve order of scores
 - · (Mostly) does no harm if using a smoothing-spline estimator
- Average the outcome estimates for all the jittered scores derived from the same unjittered score (i.e. transform the result back to the unjittered scores)

Common scores - example

Histograms of unjittered and jittered simulated data for a small range of scores

Sparsity of cases in extreme tails - issue

Distributions of scores tend to be skewed and heavy-tailed

- · Cases are sparse in the extreme tails
 - · Confidence interval of fitted calibration curve may be very wide in tails
 - May include positive and negative slopes
 - Pattern is ill-defined in tails (needs stronger assumptions to extract the pattern)
 - · Extreme tails have small fraction of cases
 - Generally not practically important
 - · But, tend to be visually dominant
- Can cause technical problems
 - · May be *very* few cases between smoothing spline knots
 - May be only one outcome class between smoothing spline knots
 - Case density may vary strongly within local regression window
 - · Pattern at dense end of window may dominate pattern at sparse end

Sparsity of cases in extreme tails - approach

- · For nonlinear smooth fit, transform jittered score to *normal* density first
 - Compresses heavy tails; expands light tails
 - Estimate calibration curve then inverse transform back to original score scale
 - Transform is to normal density rather than uniform, because uniform is too aggressive
- Effect of density transform is to increase smoothing where tails are heavy and decrease smoothing where tails are light
 - · Smoothing is effectively low-pass filtering
 - · Compression of tails by transformation shifts frequencies of patterns up
 - · Higher frequencies are attenuated more by the smoothing
 - Inverse transformation back to original scores shifts frequencies down again
 - $\boldsymbol{\cdot}$ Expansion of tails by transformation does the converse

Sparsity of cases in extreme tails - example - nonlinear smooth

The same simulated data (nonlinear components; 95% confidence intervals)

Sparsity of cases in extreme tails - example - total curve

The same simulated data (combined components; 95% confidence intervals)

Spike deviations - issue

- · A specific score can have an outcome probability very different from neighbours
 - Interpretable as the cases in the spike having the wrong score
 - Possibly due to score calculation error
 - · Possibly due to applying scorecard to a different population
- · Difficult to detect unless the score is a common score
- · Difficult to detect in a continuous scorecard because spikes are spread

Spike deviations - issue with smoothing approach

- Spike deviations break assumption of smoothness
- · Analysis developed so far *hides* spikes

Spike deviations - approach

Approach: Model spikes with an indicator variable for each spike score

- Issue: To find the spikes we need an indicator variable for each unique score
 - · Ideally, fit smooth and select spikes simultaneously with regularised regression
 - This is possible, but I haven't done it yet
- · Current approach:
 - Pre-filter potential spikes by frequency (say > 1% cases)
 - Use lasso regression to select spikes with smooth as offset
 - Re-estimate smooth with selected spikes as added predictors

Spike deviations - example data

New simulated data with nonlinear score to log-odds relationship and a spike deviation (n = 20,000; n_spike = 1,000; 10% Bad; 10 bands)

Spike deviations - example results

Compare smoothed nonlinear components estimated with and without spike term

Conclusions

- Calibration curves can be usefully decomposed into linear, smooth nonlinear, and spike components
- The decomposition can be automated reasonably well
 - Everything breaks under some circumstances
- The method is a work in progress
- \cdot All the R code for this presentation is publicly available
 - The R package will soon be publicly available (very alpha)

Meta conclusions

Content of analysis - simple stuff can be interesting

- · Useful inferences can be drawn from comparatively restricted evidence
- · Apparently simple problems can be full of subtleties

Tools for analysis - openness and reproducibility are important

- · Reproducible computational research
 - Open source tools
 - Open source research
 - Tools to simplify reproducibility
 - Workflows for reproducibility

Resources

This presentation is implemented as an executable R notebook, which is publicly accessible on GitHub at: github.com/rgayler/scorecal_CSCC_2019

https://doi.org/10.5281/zenodo.3381631

This presentation is licensed under a Creative Commons Attribution 4.0 International License

The scorecal R package will be publicly accessible on GitHub at: github.com/rgayler/scorecal