Descafeinando la Inteligencia Computacional:

Algoritmos Genéticos

Dr. Gregorio Toscano Pulido email: gtoscano@cinvestav.mx

Introducción

Características

Podemos enfatizar las siguientes características del algoritmo genético:

- Representación flexible (binaria).
- Operadores genéticos: Cruza y Mutación
- Elitismo para converger.

- Representación
- Población inicial
- Función de evaluación
- Operadores genéticos
- Valores de parámetros

- Cadenas Binarias (Tradicional)
- Códigos de Gray (Binaria)
- Punto Flotante (Binaria)
- Punto Flotante (Real)
- Punto Flotante (Entera)

- Expresiones S en LISP (Programación Genética)
- Listas Binarias de Longitud Variable (messy-GA)
- Híbridos (AG Estructurado)

$$b = \lfloor \log_2(n) \rfloor + 1$$

Podemos discretizar el rango de cada variable fijando una precisión deseable y posteriormente se tratan esos valores como si fueran enteros.

Ejemplo:

$$-1.5 \le x \le 2.0$$

Precisión: 3 dígitos

$$L = \lfloor \log_2[(l_{sup} - l_{inf})10^{prec}] \rfloor + 1$$

$$L = \lfloor \log_2((2.0 + 1.5) \times 10^3) \rfloor + 1$$

$$L = \lfloor 11.77 \rfloor + 1$$

$$L = 12 \text{ bits}$$

Decodificación

- \bullet 0 = 0000000 (valor mínimo = límite inferior)
- $= 2^8 1 = 1111111$ (valor máximo = límite superior)
- Binario a decimal (fenotipo).

Función esfera 12 ®

Sphere function


```
# Cadena Apt
1 0111111110 254
2 001010001 81
3 111001001 457
4 011000010 194
5 001010101 85
6 001011110 94
```

#	Cadena	Apt	Frac	%
1	011111110	254	0.22	21.8
2	001010001	81	0.07	7.0
3	111001001	457	0.39	39.2
4	011000010	194	0.17	16.7
5	001010101	85	0.07	7.3
6	001011110	94	0.08	8.1
	Totales	1165	1.0	100.0

#	Cadena	Apt	Frac	%
1	011111110	254	0.22	21.8
2	001010001	81	0.07	7.0
3	111001001	457	0.39	39.2
4	011000010	194	0.17	16.7
5	001010101	85	0.07	7.3
6	001011110	94	0.08	8.1
	Totales	1165	1.0	100.0

#	Cadena	Apt	Frac	%
1	011111110	254	0.22	21.8
2	001010001	81	0.07	7.0
3	111001001	457	0.39	39.2
4	011000010	194	0.17	16.7
5	001010101	85	0.07	7.3
6	001011110	94	0.08	8.1
	Totales	1165	1.0	100.0

#	Rnd	# Sel	Cadena	Apt
1	693	3	111001001	457

#	Cadena	Apt	Frac	%
1	011111110	254	0.22	21.8
2	001010001	81	0.07	7.0
3	111001001	457	0.39	39.2
4	011000010	194	0.17	16.7
5	001010101	85	0.07	7.3
6	001011110	94	0.08	8.1
	Totales	1165	1.0	100.0

#	Rnd	# Sel	Cadena	Apt
1	693	3	111001001	457
2	262			

#	Cadena	Apt	Frac	%
1	011111110	254	0.22	21.8
2	001010001	81	0.07	7.0
3	111001001	457	0.39	39.2
4	011000010	194	0.17	16.7
5	001010101	85	0.07	7.3
6	001011110	94	0.08	8.1
	Totales	1165	1.0	100.0

#	Rnd	# Sel	Cadena	Apt
1	693	3	111001001	457
2	262	2	001010001	81

Apt

94

254

457

1597

#	Cadena	Apt	Frac	%
1	011111110	254	0.22	21.8
2	001010001	81	0.07	7.0
3	111001001	457	0.39	39.2
4	011000010	194	0.17	16.7
5	001010101	85	0.07	7.3
6	001011110	94	0.08	8.1

1165

1.0

100.0

Totales

1	693	3	111001001	457
2	262	2	001010001	8:
3	28	1	011111110	254

6

Cadena

001011110

011111110

111001001

Total:

Sel

Rnd

1152

179

351

#	Cadena	Apt
1	011111110	254
2	001010001	81
3	111001001	457
4	011000010	194
5	001010101	85
6	001011110	94
	Totales	1165

#	Cadena	Apt
1	011111110	254
2	001010001	81
3	111001001	457
4	011000010	194
5	001010101	85
6	001011110	94
	Totales	1165

```
# Ind 1 Ind 2
1 6 2
2
```

#	Cadena	Apt
1	011111110	254
2	001010001	81
3	111001001	457
4	011000010	194
5	001010101	85
6	001011110	94
	Totales	1165

```
Ind 1 Ind 2 Apt 1
                     Apt 2
  6
              94
                        81
```

#	Cadena	Apt
1	011111110	254
2	001010001	81
3	111001001	457
4	011000010	194
5	001010101	85
6	001011110	94
	Totales	1165

```
Ind 1 Ind 2 Apt 1 <> Apt 2
6
       94 >
                    81
```

#	Cadena	Apt
1	011111110	254
2	001010001	81
3	111001001	457
4	011000010	194
5	001010101	85
6	001011110	94
	Totales	1165

```
# Ind 1 Ind 2 Apt 1 <> Apt 2 Gana
1 6 2 94 > 81 6
2
```

#	Cadena	Apt
1	011111110	254
2	001010001	81
3	111001001	457
4	011000010	194
5	001010101	85
6	001011110	94
	Totales	1165

#	Ind 1	Ind 2	Apt 1	<>	Apt 2	Gana	Apt
1	6	2	94	>	81	6	94
2							

#	Cadena	Apt
1	011111110	254
2	001010001	81
3	111001001	457
4	011000010	194
5	001010101	85
6	001011110	94
	Totales	1165

#	Ind 1	Ind 2	Apt 1	<>	Apt 2	Gana	Apt
1	6	2	94	>	81	6	94
2	4	1	194		254		

#	Cadena	Apt
1	011111110	254
2	001010001	81
3	111001001	457
4	011000010	194
5	001010101	85
6	001011110	94
	Totales	1165

#	Ind 1	Ind 2	Ant 1	 Apt 2	Gana	Ant
				81		
	4			254		
_	7	-	* 9 *	-34	-	-54

ш	Cadana	A 1	#	Ind 1	Ind 2	Apt 1	<>	
#	Cadena	Apt		6	2	94	>	
1	011111110	254	_			,		
2	001010001	81	2	4	1	194	<	
_			3	4	2	194	>	
3	111001001	457	4	3	1	457	>	
4	011000010	194	_		_	81		
5	001010101	85	5	2	5		<	
6	001011110		6	5	3	85	<	
6	001011110	94						
	Totales	1165						

#	Ind 1	Ind 2	Apt 1	<>	Apt 2	Gana	Apt
1	6	2	94	>	81	6	94
2	4	1	194	<	254	1	254
3	4	2	194	>	81	4	194
4	3	1	457	>	254	3	457
5	2	5	81	<	85	5	85
6	5	3	85	<	457	3	457
							1541

Cruza

Mutación

Mutación 19 ®

Algoritmo

³ Crear población inicial $\mathcal{P}(0)$;

Evaluar individuo x_i ;

1 Inicializar parámetros;

4 for *each* x_i ∈ $\mathcal{P}(0)$ **do**

 $t \leftarrow 0$;

```
6 repeat
         Selectionar \mathcal{P}'de\mathcal{P}(t):
         Cruzar \mathcal{P}':
         Mutar \mathcal{P}':
         Aplicar elitismo;
10
          for each x_i \in \mathcal{P}' do
11
               Evaluar individuo x_i;
12
         \mathcal{P}(t+1) \leftarrow \mathcal{P}';
13
         t \leftarrow t + 1:
14
15 until se cumpla criterio de terminación;
```

$$f(x,y) = -20 \exp\left(-0.2\sqrt{0.5(x^2 + y^2)}\right)$$
$$-\exp\left(0.5(\cos(2\pi x) + \cos(2\pi y))\right)$$
$$+ e + 20$$
$$x, y \in [-32.768, 32.768]$$

Función de Beale

$$f(x,y) = (1.5 - x + xy)^{2} + (2.25 - x + xy^{2})^{2}$$
$$+ (2.625 - x + xy^{3})^{2}$$
$$x, y \in [-4.5, 4.5]$$
$$f(x^{*} = 3, y^{*} = 0.5) = 0$$

Otras funciones

Test functions for single-objective optimization (set)

https://en.wikipedia.org/wiki/Test_functions_for_optimization

Name	Plot	Formula	Global minimum	Search domain
Rastrigin function		$f(\mathbf{x}) = An + \sum_{i=1}^{n} \left[z_i^2 - A \cos(2\pi x_i) \right]$ where: $A = 10$	f(0,0) = 0	$-5.12 \leq x,y \leq 5.12$
Acidey's function	-	$\begin{split} f(x,y) &= -20 \exp\left[-0.2\sqrt{0.5 \left(x^2 + y^2\right)}\right] \\ &- \exp[0.5 \left(\cos 2\pi x + \cos 2\pi y\right)] + e + 20 \end{split}$	f(0,0) = 0	$-5 \leq x,y \leq 5$
Sphere function	A STATE OF THE STA	$f(\mathbf{z}) = \sum_{i=1}^{n} x_i^2$	$f(x_1,\dots,x_n)=f(0,\dots,0)=0$	$-\infty \leq x_i \leq \infty, 1 \leq i \leq n$
Rosenbrock function		$f(x) = \sum_{i=1}^{n-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right]$	$\label{eq:min} \begin{aligned} \operatorname{Min} &= \begin{cases} n = 2 & \rightarrow & f(1,1) = 0, \\ n = 3 & \rightarrow & f(1,1,1) = 0, \\ n > 3 & \rightarrow & f(1,\ldots,1) = 0 \end{cases} \end{aligned}$	$-\infty \leq z_i \leq \infty, 1 \leq i \leq n$
Beale's function		$\begin{split} f(x,y) &= \left(1.5 - x + xy\right)^2 + \left(2.25 - x + xy^2\right)^2 \\ & + \left(2.625 - x + xy^2\right)^2 \end{split}$	f(3, 0.5) = 0	$-4.5 \leq x,y \leq 4.5$
Goldstein-Price function		$\begin{split} f(x,y) &= \left[1 + (x+y+1)^3 \left(19 - 14x + 3x^2 - 14y + 6xy + 3y^2\right)\right] \\ &\left[30 + (2x-3y)^3 \left(18 - 32x + 12x^2 + 48y - 36xy + 27y^2\right)\right] \end{split}$	f(0,-1)=3	$-2 \leq x,y \leq 2$

Coello Coello, Carlos A. Introducción a los Algoritmos Genéticos. Soluciones Avanzadas.
 Tecnologías de Información y Estrategias de Negocios, Año 3, Número 17, pp. 5–11, Enero de 1995.

http://delta.cs.cinvestav.mx/~ccoello/revistas/genetico.pdf.gz

Dr. Gregorio Toscano Pulido *<gtoscano@cinvestav.mx>*

http://www.tamps.cinvestav.mx/~gtoscano