

MAP433 Statistique

PC 5: Régression

25 septembre 2015

1 Modèle de régression multiple

On considère le modèle de regression multiple

$$\mathbf{Y} = \beta_0 \mathbf{e} + \mathbf{X}\beta + \sigma \xi$$
, où $\mathbb{E}[\xi] = 0$, $\mathbb{E}[\xi \xi^T] = I_n$, $\mathbf{e} = (1, 1, \dots, 1)^T$

avec \mathbf{X} une matrice $n \times k$ de rang k et \mathbf{Y} , ξ des vecteurs de \mathbb{R}^n . Les paramètres $\beta_0 \in \mathbb{R}$ et $\beta \in \mathbb{R}^k$ sont inconnus. On note $\hat{\beta}_0$ et $\hat{\beta}$ les estimateurs des moindres carrés de β_0 et β .

- 1. On note $\widehat{\mathbf{Y}} = \hat{\beta}_0 \mathbf{e} + \mathbf{X} \hat{\beta}$ $\overline{Y} = n^{-1} \mathbf{e}^T \mathbf{Y}$ et $\overline{\widehat{\mathbf{Y}}} = n^{-1} \mathbf{e}^T \widehat{\mathbf{Y}}$. Montrer que $\overline{\widehat{\mathbf{Y}}} = \overline{Y}$. En déduire que $\overline{Y} = \hat{\beta}_0 + (n^{-1} \mathbf{e}^T \mathbf{X}) \hat{\beta}$.
- 2. Montrer l'équation d'analyse de la variance :

$$\|\mathbf{Y} - \overline{Y}\mathbf{e}\|^2 = \|\mathbf{Y} - \widehat{\mathbf{Y}}\|^2 + \|\widehat{\mathbf{Y}} - \overline{Y}\mathbf{e}\|^2.$$

En déduire que le coefficient de détermination

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}} \quad \text{où } \mathbf{Y} = \begin{bmatrix} Y_{1} \\ \cdots \\ Y_{n} \end{bmatrix} \qquad \hat{\mathbf{Y}} = \begin{bmatrix} \hat{Y}_{1} \\ \cdots \\ \hat{Y}_{n} \end{bmatrix}$$

est toujours inférieur à 1.

- 3. Supposons que $\mathbf{Z} = [\mathbf{e}, \mathbf{X}]$ est de rang k+1. Calculez en fonction de \mathbf{Z} la matrice de covariance de $(\hat{\beta}_0, \hat{\beta})$. Comment accède-t-on à $\text{Var}(\hat{\beta}_j)$, pour $j=0,\ldots,k$?
- 4. Proposer un estimateur sans biais de σ^2 puis de la matrice de covariance de $(\hat{\beta}_0, \hat{\beta})$.
- 5. On suppose dorénavant que $\beta_0 = 0$ et donc $\mathbf{Y} = \mathbf{X}\beta + \sigma\xi$ avec $\mathbb{E}[\xi] = 0$ et $\mathbb{E}[\xi\xi^T] = I_n$. L'estimateur des moindres carrés $\tilde{\beta}$ dans ce modèle est-il égal à $\hat{\beta}$?
- 6. A-t-on la relation $\widehat{\widehat{\mathbf{Y}}} = \overline{Y}$? Que dire du R^2 dans ce modèle?

Corrigé:

Dans ce corrigé, on note $\mathbf{Z} = [\mathbf{e}, \mathbf{X}]$.

1. D'une part, \overline{Y} e est le projeté orthogonal de Y sur e. D'autre part, \widehat{Y} est le projeté orthogonal de Y sur Im(Z); puis $\overline{\widehat{Y}}$ est le projeté orthogonal de \widehat{Y} sur e. Donc $\overline{Y} = \overline{\widehat{Y}}$. Comme

$$\overline{\widehat{\mathbf{Y}}} = n^{-1} \mathbf{e}^T \left(\widehat{\mathbf{Y}} \right) = n^{-1} \mathbf{e}^T \left(\hat{\beta}_0 \mathbf{e} + \mathbf{X} \hat{\beta} \right)$$

on obtient le résultat demandé.

- 2. On écrit $\mathbf{Y} \overline{Y}\mathbf{e} = \mathbf{Y} \widehat{\mathbf{Y}} + \widehat{\mathbf{Y}} \overline{Y}\mathbf{e}$. Puisque $\mathbf{Y} \widehat{\mathbf{Y}}$ est dans l'orthogonal de $\operatorname{Im}(\mathbf{Z})$ et $\widehat{\mathbf{Y}} \overline{Y}\mathbf{e}$ est dans $\operatorname{Im}(\mathbf{Z})$, on obtient la décomposition de la variance. On en déduit que $R^2 \leq 1$ en observant que $R^2 = \|\widehat{\mathbf{Y}} \overline{Y}\mathbf{e}\|^2 / \|\mathbf{Y} \overline{Y}\mathbf{e}\|^2$.
- 3. **Z** est une matrice $n \times (k+1)$; si elle est de rang k+1, alors Z^TZ est inversible. La covariance de $(\hat{\beta}_0, \hat{\beta})$ est $\sigma^2(\mathbf{Z}^T\mathbf{Z})^{-1}$. La diagonale de cette matrice collecte la variance de chaque composante du vecteur $(\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k)$.
- 4. Estimateur sans biais

$$\hat{\sigma}_n^2 = \frac{1}{n - (k+1)} \|\mathbf{Y} - \widehat{\mathbf{Y}}\|^2$$

- 5. $\tilde{\beta} \neq \beta$.
- 6. on n'a plus la relation " $\overline{\hat{\mathbf{Y}}} = \overline{Y}$ ". On peut avoir $R^2 \geq 1$.

2 Le modèle ANOVA

On dispose d'observations de variables aléatoires

$$Y_{ij} = m_i + \xi_{ij}, \quad i = 1, \dots, k, \quad j = 1, \dots, l,$$

où $\mathbf{m} = (m_1, \dots, m_k)^T \in \mathbb{R}^k$ et les ξ_{ij} sont des variables aléatoires i.i.d. de loi $\mathcal{N}(0, \sigma^2)$.

- 1. Montrer qu'il s'agit d'un modèle de régression linéaire avec la matrice \mathbf{X} que l'on précisera. Que vaut $B = \mathbf{X}^T \mathbf{X}$?
- 2. Montrer que la condition $m_1 = m_2 = \cdots = m_k$ s'écrit sous la forme $\mathbf{Gm} = 0$ avec une matrice \mathbf{G} que l'on précisera.
- 3. On estime **m** par l'estimateur des moindre carrés $\widehat{\mathbf{m}}$. Quelle est la covariance de $\widehat{\mathbf{m}}$?
- 4. Proposer un estimateur de Gm. Quel est son biais? sa covariance?
- 5. Proposer un estimateur $\hat{\sigma}^2$ de σ^2 . Quelle est sa distribution?

Corrigé

On note $\mathbf{e}_{1:q}$ le vecteur (colonne) de \mathbb{R}^q dont toutes les composantes valent 1.

1. On a

Par suite,

$$\mathbf{X}^T\mathbf{X} = l \mathbf{I}_{k \times k}$$

2. On a

3.

$$\widehat{\mathbf{m}} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \ \mathbf{X}^T \mathbf{Y} = l^{-1} \mathbf{X}^T \mathbf{Y} = \begin{bmatrix} l^{-1} \sum_{j=1}^l Y_{1,j} \\ & \ddots \\ l^{-1} \sum_{j=1}^l Y_{k,j} \end{bmatrix}$$

La covariance de $\widehat{\mathbf{m}}$ est $\sigma^2 l^{-1}$ I.

- 4. Un estimateur de \mathbf{Gm} est $\mathbf{G}\hat{\mathbf{m}}$; qui est sans biais et dont la matrice de covariance est $\sigma^2 l^{-1} \mathbf{G} \mathbf{G}^T$.
- 5. Un estimateur sans biais de $\hat{\sigma}^2$ est

$$\hat{\sigma}^2 = \frac{1}{n-k} \|\mathbf{Y} - \mathbf{X}\widehat{\mathbf{m}}\|^2 = \frac{1}{k(l-1)} \|\mathbf{Y} - \mathbf{X}\widehat{\mathbf{m}}\|^2 = \frac{1}{k(l-1)} \sum_{i=1}^k \sum_{j=1}^l (Y_{i,j} - \bar{\mathbf{Y}}_{i.})^2.$$

Et sa loi est $\frac{\sigma^2}{k(l-1)} \chi^2(k(l-1))$.

3 Théorème de Gauss-Markov

On considère le modèle de régression $\mathbf{Y} = \mathbf{X} \underset{(n,k)}{\beta} + \sigma \underset{(n,1)}{\xi}$. On suppose que \mathbf{X} est une matrice déterministe, $\mathbb{E}[\xi] = 0$, $\mathbb{E}[\xi \xi^T] = I_n$, $\mathrm{Rang}(\mathbf{X}) = k$. On note $\hat{\beta}$ l'estimateur des MC de β .

- 1. Montrer que $\hat{\beta}$ est sans biais et expliciter sa matrice de covariance.
- 2. Soit $\tilde{\beta}$ un estimateur de β linéaire en \mathbf{Y} , i.e., $\tilde{\beta} = \mathbf{L}\mathbf{Y}$ pour une matrice $\mathbf{L} \in \mathbb{R}^{k \times n}$ déterministe. Donner une condition nécessaire et suffisante sur \mathbf{L} pour que $\tilde{\beta}$ soit sans biais. On supposera maintenant cette hypothèse vérifiée.
- 3. Calculer la matrice de covariance de $\tilde{\beta}$. En posant $\Delta = \mathbf{L} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$ montrer que $\Delta \mathbf{X} = 0$ et $\operatorname{cov}(\tilde{\beta}) = \operatorname{cov}(\hat{\beta}) + \sigma^2 \Delta \Delta^T$. En déduire que

$$\mathbb{E}[(\tilde{\beta} - \beta)(\tilde{\beta} - \beta)^T] \ge \mathbb{E}[(\hat{\beta} - \beta)(\hat{\beta} - \beta)^T] \quad \text{(inégalité au sens matriciel)}.$$

4. En passant aux risques quadratiques $\mathbb{E}[\|\tilde{\beta} - \beta\|^2]$ et $\mathbb{E}[\|\hat{\beta} - \beta\|^2]$, en déduire que l'estimateur des MC est optimal dans la classe de tous les estimateurs linéaires sans biais.

Corrigé:

1.
$$\mathbb{E}\left[\hat{\beta}\right] = \beta$$
 et $\text{Cov}(\hat{\beta}) = \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}$.

- 2. $\mathbf{L}\mathbf{X} = I$.
- 3. $Cov(\tilde{\beta}) = \sigma^2 LL^T$. De plus,

$$\Delta \Delta^T = \mathbf{L} \mathbf{L}^T + (\mathbf{X}^T \mathbf{X})^{-1} - \mathbf{L} \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} - (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{L}^T$$

et les deux derniers termes valent $-2(\mathbf{X}^T\mathbf{X})^{-1}$ puisque $\mathbf{L}\mathbf{X} = I$. On en déduit la relation sur les matrices de covariance ; puis la relation de domination en observant que $\lambda^T \Delta \Delta^T \lambda = \|\Delta^T \lambda\|^2 \ge 0$ pour tout $\lambda \in \mathbb{R}^k$.

4. La relation entre les matrices entraine en particulier que tout i, $Var(\tilde{\beta}_i) \ge Var(\beta_i)$. Le risque quadratique est la trace de la matrice de covariance, et c'est aussi la somme des variances de chaque composante.

4 Régression Ridge

On considère le modèle de régression $\mathbf{Y} = \mathbf{X} \underset{(n,1)}{\beta} + \sigma \underset{(n,1)}{\xi}$. On suppose que \mathbf{X} est une matrice déterministe, $\mathbb{E}[\xi] = 0$, $\mathbb{E}[\xi \xi^T] = I_n$.

- 1. On suppose que k > n. Que dire de l'estimation par moindres carrés?
- 2. On appelle estimateur Ridge regression de paramètre de régularisation $\lambda>0$ l'estimateur

$$\hat{\beta}_{\lambda} = \arg\min_{\beta \in \mathbb{R}^k} \left\{ \|\mathbf{Y} - \mathbf{X}\beta\|^2 + \lambda \|\beta\|^2 \right\}.$$

Exprimez $\hat{\beta}_{\lambda}$ en fonction de **X**, **Y** et λ . Cet estimateur est-il défini pour k > n?

- 3. Calculez la moyenne et la matrice de covariance de l'estimateur Ridge. Est-il sans biais?
- 4. On suppose maintenant que k=1, ce qui correspond au modèle de régression simple. Montrer qu'il existe une valeur de λ telle que, pour certaines valeurs de β , le risque $\mathbb{E}\left[(\hat{\beta}_{\lambda}-\beta)^{2}\right]$ de l'estimateur Ridge de paramètre λ est inférieur au risque $\mathbb{E}\left[(\hat{\beta}_{0}-\beta)^{2}\right]$ de l'estimateur des MC.

Corrigé:

- 1. Il n'y a pas unicité de l'estimateur MC.
- 2. On a $\hat{\beta}_{\lambda} = (\mathbf{X}^T \mathbf{X} + \lambda I)^{-1} \mathbf{X}^T \mathbf{Y}$ qui est défini pour k > n.
- 3. Son espérance et sa matrice de covariance sont respectivement

$$\left(\mathbf{X}^T\mathbf{X} + \lambda I\right)^{-1}\mathbf{X}^T\mathbf{X}\boldsymbol{\beta}, \qquad \qquad \sigma^2 \left(\mathbf{X}^T\mathbf{X} + \lambda I\right)^{-1}\mathbf{X}^T\mathbf{X}\left(\mathbf{X}^T\mathbf{X} + \lambda I\right)^{-1}.$$

4. Notons $R_{\lambda}(\beta)$ le risque de l'estimateur Ridge; et $R_0(\beta)$ celui de l'estimateur MC. Si $\beta^2 ||\mathbf{X}||^2/\sigma^2 < 1$ alors pour tout $\lambda > 0$, $R_{\lambda}(\beta) < R_0(\beta)$. Si $\beta^2 ||\mathbf{X}||^2/\sigma^2 > 1$ alors pour tout λ assez petit, $R_{\lambda}(\beta) < R_0(\beta)$.