A fast direct solver for structured matrices

Kenneth L. Ho and Leslie Greengard

Courant Institute of Mathematical Sciences New York University, 251 Mercer Street, New York, NY 10012

greengard@courant.nyu.edu

Introduction

We have developed a fast direct solver for structured linear systems based on multilevel matrix compression. Starting with a hierarchically block-separable matrix [2], we embed an approximation of the original matrix into a larger, but highly structured sparse one. The resulting representation allows for efficient storage, fast matrix-vector multiplication, fast matrix factorization, and fast application of the inverse.

The algorithm proceeds in two phases: a precomputation phase, consisting of matrix compression and factorization, followed by a solution phase to apply the matrix inverse. For boundary integral equations which are not too oscillatory, e.g., based on the Green's functions for the Laplace or low-frequency Helmholtz equations, both phases typically have complexity $\mathcal{O}(N)$ in two dimensions, where N is the number of discretization points. In our current three-dimensional implementation, the corresponding costs are $\mathcal{O}(N^{3/2})$ and $\mathcal{O}(N\log N)$ for precomputation and solution, respectively.

Extensive numerical experiments show a speedup of ~ 100 for the solution phase over modern fast multipole methods; however, the cost of precomputation remains high. Thus, the solver is particularly suited to problems where large numbers of iterations would be required.

- (1) Reduced sensitivity to the conditioning of A.
- (2) Fast application of A^{-1} to multiple right-hand sides.
- (3) Efficient handling of low-rank perturbations of A.

Several closely related efforts:

- H-matrices (Hackbusch et al.)
- HSS matrices (Gu, Chandrasekaran, et al.)
- skeletonization-based schemes (Martinsson and Rokhlin, G-, Gueyffier, Martinsson, Rokhlin).

Structured matrices

Let $A\mathbf{x} = \mathbf{f}$ be written in the form

$$A_{11}\mathbf{x}_1 + A_{12}\mathbf{x}_2 + \dots + A_{1p}\mathbf{x}_p = \mathbf{f}_1$$

 $A_{21}\mathbf{x}_1 + A_{22}\mathbf{x}_2 + \dots + A_{2p}\mathbf{x}_p = \mathbf{f}_2$
... (1)

 $A_{p1}\mathbf{x}_1 + A_{p2}\mathbf{x}_2 + \dots + A_{pp}\mathbf{x}_p = \mathbf{f}_p,$

where \mathbf{x}_i and \mathbf{f}_i are complex vectors of dimension N_i and $A_{ij} \in \mathbf{C}^{N_i \times N_j}$. Assuming $N = \sum_{i=1}^p N_i$, solution of the full linear system by classical Gaussian elimination is well-known to require $O(N^3)$ work.

Definition The matrix A is said to be *block-separable* [2] if each off-diagonal submatrix A_{ij} can be decomposed as the product of three low-rank matrices:

$$A_{ij} = L_i S_{ij} R_j \tag{2}$$

where $L_i \in \mathbf{C}^{N_i \times k_i^r}$, $S_{ij} \in \mathbf{C}^{k_i^r \times k_j^c}$, and $R_j \in \mathbf{C}^{k_j^c \times N_j}$, with $k_i^r \ll N_i$ and $k_j^c \ll N_j$. Note that in (2), the left matrix L_i depends only the index i and the right matrix R_j depends only on the index j.

A = D + LSR,

where

$$D = \begin{bmatrix} A_{11} & & \\ & \ddots & \\ & & A_{nn} \end{bmatrix} \tag{4}$$

is a block-diagonal $N \times N$ matrix consisting of the diagonal blocks of A, and

$$S = \begin{bmatrix} 0 & S_{12} & \cdots & S_{1p} \\ S_{21} & 0 & \cdots & S_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ S_{p1} & S_{p2} & \cdots & 0 \end{bmatrix}$$
 (5)

is a dense $K_r \times K_c$ matrix, where $K_r = \sum_{i=1}^p k_i^r$ and $K_c = \sum_{i=1}^p k_i^c$, with zero diagonal blocks. L and R are given by

$$L = \begin{bmatrix} L_1 & & \\ & \ddots & \\ & & L_p \end{bmatrix}, \qquad R = \begin{bmatrix} R_1 & & \\ & \ddots & \\ & & R_p \end{bmatrix}. \tag{6}$$

They are block-diagonal $N \times K_{\rm r}$ and $K_{\rm c} \times N$ matrices, respectively. This is, of course, an effective compression of A only when $K_{\rm r}, K_{\rm c} \ll N$. A useful feature of the representation (3) is that it permits rapid inversion. To see this, let $z \equiv Rx$ and let $y \equiv Sz$. We can then write the original system in the form

$$\begin{bmatrix} D & L \\ R & -I \\ -I & S \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} b \\ 0 \\ 0 \end{bmatrix}. \tag{7}$$

Such a factorization can be computed recursively if the matrix supports the block-separable property at each level of the hierarchy. The result is a telescoping representation

$$A \approx D^{(1)} + L^{(1)} \left[D^{(2)} + L^{(2)} \left(\cdots D^{(\lambda)} + L^{(\lambda)} SR^{(\lambda)} \cdots \right) R^{(2)} \right] R^{(1)}$$

Example: Suppose $\phi(x) = \int K(x,y) \rho(y) \, dy$ with K(x,y) = log ||x-y||, discretized at N=8192 points in the unit square, and compress to relative precision $\epsilon=10^{-3}$ using a five-level quadtree-based scheme.

Data sparsification by recursive skeletonization. At each level, the surviving skeletons are shown, colored by block index, with the total number of skeletons remaining given by N_l .

Numerical results

CPU times for solving the Helmholtz equation in various cases at low frequency ($\omega=10$ in 2D and $\omega\approx3.18$ in 3D) using LAPACK/ATLAS, FMM/GMRES, and recursive skeletonization; The precision was set to $\epsilon=10^{-9}$ in 2D and $\epsilon=10^{-6}$ in 3D.

Multiple scattering

We show how our solver can be combined with fast iterative methods to great effect by considering a multiple scattering problem.

$$\left(\Delta + k^2\right)u = 0 \quad \text{in } \mathbf{R}^2 \setminus \bigcup_{i=1}^p \Omega_i$$

with, e.g., Neumann (sound-hard) boundary conditions

Real part $\Re(u)$ of the pressure field in response to a vertical plane wave for various multiple scattering geometries characterized by the separation distance d/λ in wavelengths.

Molecular electrostatics

Letting Σ be a molecular surface, a classical model for the electrostatic potential φ is Poisson's equation:

$$-\nabla \cdot \left[\varepsilon\left(x\right)\nabla\varphi\left(x\right)\right] = \sum_{i=1}^{n} q_{i}\delta\left(x - x_{i}\right), \tag{8}$$

We generated a molecular surface for a short segment of DNA consisting of N=19752 triangles and solved an integral equation for the induced polarization charge to precision $\epsilon=10^{-3}$.

The total solution time was ≈ 592 s, with an inverse application time of ≈ 0.08 s, to be compared with ≈ 27 s using FMM/GMRES.

Conclusions

We have developed a multilevel matrix compresssion and solution algorithm. The matrix structure required is fairly general and relies only on the assumption that the matrix have low-rank off-diagonal blocks. It is competitive with fast iterative methods based on FMM/GMRES in both 2D and 3D, provided that the kernel of the integral equation is not too oscillatory.

A principal limitation of all current hierarchical direct solvers is the growth in skeleton size in 3D, which prohibits the scheme from achieving optimal $\mathcal{O}(N)$ complexity. New methods to curtail this growth are under development, at least for non-oscillatory cases.

Finally, although all numerical results are reported here for a single CPU core, the algorithm is naturally suited for HPC systems.

References

[0] K. L. HO AND L. GREENGARD, A fast direct solver for structured linear systems by recursive skeletonization, submitted.

[1] L. GREENGARD, D. GUEYFFIER, P.-G. MARTINSSON, AND V. ROKHLIN, Fast direct solvers for integral equations in complex three-dimensional domains, Acta Numer, 18 (2009), pp. 243–275.

[2] A. GILLMAN, P. YOUNG, AND P.G. MARTINSSON, A direct solver with O(N) complexity for integral equations on one-dimensional domains, in review.

[3] P.-G. MARTINSSON AND V. ROKHLIN, *A fast direct solver for boundary integral equations in two dimensions*, J Comput Phys, 205 (2005), pp. 1–23.

[4] S. CHANDRASEKARAN, M. Gu, AND T. PALS, A fast ULV decomposition solver for hierarchically semiseparable representations, SIAM J Matrix Anal Appl, 28 (2006), pp. 603–622.

[5] W. HACKBUSCH AND S. BÖRM, *Data-sparse approximation by adaptive* \mathcal{H}^2 *-matrices*, Computing, 69 (2002), pp. 1–35.

Acknowledgments

Supported by DOE under contract DEFGO288ER25053. Thanks to Zydrunas Gimbutas and NSF (K.L.H.).