批改日期		

深圳大学实验报告

课程名称:	大学	物理实验	(<u></u>)		
实验名称:	RLC	串联谐振			_
学 院:	数	学与统计学	<u> </u>		_
指导教师 <u>:</u>	也	記燕翔、李	颖贞		
报告人:	王曦	组号: _	20		<u>-</u>
学号202	<u>1192010</u> 회	ç验地点 <u></u>	致原	楼 210	
实验时间:	2022 _年	11	月	10	日
提交时间.	2022	. 年 11 月 1′	7 FI		

1

一、实验目的

- 1. 研究交流电路的谐振现象,认识 RLC 电路的谐振特性;了解 RLC 的选频特性.
- 2. 学习测绘 RLC 电路谐振曲线的方法.
- 3. 测绘串联电路在 $R=100~\Omega$ 、R=200 Ω 谐振 f-I 曲线.

二、实验原理

1. RLC 串联电路的谐振

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$
 (1),

电压与电流的位相差为

$$\varphi = \arctan \frac{\omega L - \frac{1}{\omega C}}{R} \enskip (2). \label{eq:phi}$$

当

$$\omega L - \frac{1}{\omega C} = 0 \tag{3}$$

时,Z有极小值,I有极大值,此时的圆频率称为谐振圆频率

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 (4).

图 1:RLC 串联电路

图 2: RLC 串联谐振曲线

谐振时:I 有极大值, U_L 和 U_C 相等,相位相反.

品质因素

$$Q = \frac{U_L}{U} = \frac{U_C}{U} = \frac{1}{\omega_0 CR} = \frac{\omega_0 L}{R} = \frac{1}{R} \sqrt{\frac{L}{C}}$$
(5).

图 3: RLC 串联谐振曲线

通频带宽度

$$\Delta f=f_2-f_1=rac{f_0}{Q}$$
 (6).

Q因子:在系统的共振频率下,当信号振幅不随时间变化时,系统储存能量和每个周期外界所提供能量的比例.Q往往是≥1的,所以*Uc*和*Uc*可以比U大得多,故串联谐振常称为电压谐振.Q越大,带宽越小,谐振曲线越尖锐.Q值还标志着电路的频率选择性,即谐振峰的尖锐程度.

三、实验仪器:

DH4503型 RLC 电路试验仪、固玮数字示波器.

四、实验内容与步骤

4.1 测定串联电路的谐振曲线.

图 7:RLC 串联电路

图 8:RLC 串联谐振曲线

- 4.1.1 共地问题:被测电压的元件必须和电源共地.
- 4.1.2 测量共振频率及共振时的作图时,将这一组数据(f_0 、 U_R)插入.
- 4.2 测定共振频率和共振时的 U_R 、 U_C 和 U_L . 需将 R 和 C(L) 位置互换以保证共地.
- 4.3 实验步骤
- (1) 按电路图连接电路, 电源调至正弦波, 电容调至 $C=4.4\times 10^{-8}~\mathrm{F}$, 电阻调至 $R=100~\Omega$.
- (2)将电源两端连接至示波器的通道 1,调节幅度直至电源电压为 1 V.
- (3) 将电阻两端连接至示波器的通道 2.
- (4) 将频率调至 2400 Hz 附近, 直至 U_R 出现最大值, 此时的频率为谐振频率, 同时测定并记录 U_R 、 U_C
- 和 U_L ,注意测量时被测元件与电源共地.
- (5)将电阻与电源共地,按表格要求调节频率,记录每个频率对应的电压值.

五、数据记录:

组号: ___20___; 姓名___王曦___

5.1 测定串联电路的谐振曲线

电容
$$C=4.4 imes 10^{-8} \, \mathrm{F}$$
 ,电感 $L=0.1 \, \mathrm{H}$,电感阻值 $R_L=20 \, \Omega$.

$f/{ m Hz}$	$R_1=100~\Omega$		$R_2=200~\Omega$		$f/{ m Hz}$	$R_1=100~\Omega$		$R_2=200~\Omega$	
	u/mV	i/mA	u/mV	i/mA		u/mV	i/mA	u/mV	i/mA
1600	81.5	0.815	161	0.805	2400	726	7. 26	867	4. 335
1700	97.2	0.972	191	0. 955	2450	588	5. 88	798	3.990
1800	117	1. 17	238	1. 190	2500	459	4. 59	701	3. 505
1900	146	1. 46	283	1. 415	2550	371	3. 71	610	3.050
2000	190	1. 90	359	1. 795	2600	308	3. 08	539	2.695
2100	266	2. 66	477	2. 385	2700	236	2. 36	433	2. 165
2150	318	3. 18	546	2. 730	2800	186	1.86	353	1.765
2200	401	4. 01	640	3. 200	2900	156	1. 56	299	1.495
2250	520	5. 20	745	3. 725	3000	134	1. 34	261	1.305
2300	677	6. 77	840	4. 200	3100	119	1. 19	233	1.165
2350	779	7. 79	884	4. 420	3200	106	1.06	209	1.045

以 f=1600 Ω 时为例:

$$i_1=rac{u}{R_1}=rac{81.5}{100}~ ext{mA}=0.815~ ext{mA}$$
 (7). $i_2=rac{u}{R_2}=rac{161}{200}~ ext{mV}=0.805~ ext{mA}$ (8).

5.2 测定共振频率和共振时的 U_R 、 U_C 和 U_L .

共振频率的理论值

$$f = \frac{1}{2\pi\omega} = \frac{1}{2\pi\sqrt{LC}}$$

$$= \frac{1}{2\times 3.14 \times \sqrt{4.4 \times 10^{-8} \times 0.1}} \text{ Hz} = 2400.57 \text{ Hz}$$
(9).

(1) $R_1=100$ Ω 时,

共振频率的理论值 $f_0 = 2400.57 \text{ Hz}$;共振频率的测量值 $f_0' = 2367 \text{ Hz}$; $U_R = 782 \text{ mV}$.

达到共振时: $U_L = 11.9 \text{ V}, U_C = 11.9 \text{ V}.$

帶宽:
$$\dfrac{U_R}{\sqrt{2}} = \frac{U_R}{553 \text{ mV 时,}} \ f_1 = \frac{193 \text{ Hz,}}{2193 \text{ Hz,}} \ f_2 = \frac{2542 \text{ Hz.}}{2542 \text{ Hz.}}$$

谐振频率的理论值与测量值间的误差

$$\delta_1 = \frac{|f_1 - f_0|}{f_0} = \frac{|2367 - 2400.57|}{2400.57} \times 100\% = 1.40\%$$
 (10).

(2) $R_2 = 200 \,\Omega$ [5],

共振频率的理论值 $f_0 = {}_{2400.57~{
m Hz}}$;共振频率的测量值 $f_0' = {}_{2362~{
m Hz}}$; $U_R = {}_{885~{
m mV}}$.

达到共振时: $U_L = _{6.79}$ V, $U_C = _{6.77}$ V.

带宽:
$$\dfrac{U_R}{\sqrt{2}}=_{ ext{626 mV 时,}} f_1=_{ ext{2211 Hz,}} f_2=_{ ext{2524Hz.}}$$

谐振频率的理论值与测量值间的误差

$$\delta_2 = \frac{|f_2 - f_0|}{f_0} = \frac{|2362 - 2400.57|}{2400.57} \times 100\% = 1.61\%$$
 (11).

六、数据处理

6.1 作 RLC 串联电路的谐振曲线.

图 9:RLC 串联谐振曲线

- 6.2 用四种方法计算 Q 值并比较.
- (1) R=100 Ω时,

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{1}{R_1 + R_L} \sqrt{\frac{L}{C}} = \frac{1}{100 + 20} \sqrt{\frac{0.1}{4.4 \times 10^{-8}}} = 12.563$$

$$Q = \frac{U_L}{U} = \frac{11.9}{1} = 11.900$$

$$(13),$$

$$Q = \frac{U_C}{U} = \frac{11.9}{1} = 11.900$$

$$(14),$$

$$Q = \frac{f_0}{f_2 - f_1} = \frac{2400.57}{2542 - 2193} = 6.878$$

$$(15).$$

前三种计算方式求得的Q值相近,用带宽求得的Q值偏小,且与前三种方式求得的Q值相差较大.

(2) R=200 Ω 时,

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{1}{R_1 + R_L} \sqrt{\frac{L}{C}} = \frac{1}{200 + 20} \sqrt{\frac{0.1}{4.4 \times 10^{-8}}} = 6.853$$

$$Q = \frac{U_L}{U} = \frac{6.79}{1} = 6.790$$
(17),

$$Q = \frac{U_C}{U} = \frac{6.79}{1} = 6.790$$
(18),

$$Q = \frac{f_0}{f_2 - f_1} = \frac{2400.57}{2524 - 2211} = 7.670 \tag{19}$$

前三种计算方式求得的 Q 值相近, 用带宽求得的 Q 值偏大, 但相较于 R=100 Ω 时差距较小.

七、结果陈述:

7.1 实验测得

- (1)R=100 Ω时,谐振频率为 2367 Hz,与理论值相差 1.40%.
- (2)R=200 Ω时,谐振频率为 2362 Hz,与理论值相差 1.61%.
- 7.2 实验测得达到谐振时

(1)R=100
$$\Omega$$
时, $U_R = _{782 \text{ mV}}$, $U_L = _{11.9 \text{ V}}$, $U_C = _{11.9 \text{ V}}$.

$$(2)_{R=200 \Omega \text{ BH}}, \quad U_R = _{885 \text{ mV}}, \quad U_L = _{6.79 \text{ V}}, \quad U_C = _{6.77 \text{ V}}.$$

- 7.3 用四种方式分别计算品质因数 Q, 结果分别为
- (1) R=100 Ω时, 12.563、11.900、11.900、6.878.
- (2) R=200 Ω时, 6.853、6.790、6.790、7.670.

八、实验总结与思考题

- 8.1 实验总结.
- (1) 实验测得 R=100 Ω 时的谐振频率与理论值相差 1.40%, R=200 Ω 时的谐振频率与理论值相差 1.61%, 原因可能是导线与示波器接触不良, 仪器老旧, 运行时发热导致电路元件的电阻增大.
- (2) 用带宽求得的品质因数的值与用其他方法求得的值差距较大,且 $R=100\ \Omega$ 的时差距比 $R=200\ \Omega$ 时的 差距大,原因可能是 $R=100\ \Omega$ 时 Q值较大,谐振曲线较尖锐,带宽更小,测量误差更大.
- 8.2 思考题.
- (1)实验中 RLC 串联电路发生谐振时是否有 $U_{R_0}=U$ (U_{R_0} 为电阻上的电压, U 为电源的输出电压)和 $U_C=U_L$?
 - ① $U_{R_0} \neq U$,因为电感和电容存在电阻,会分走一部分电源的输出电压.
 - ②理论上有 $U_C=U_L$,因为容抗和感抗相等时电路才能谐振,此时两者在串联电路中互相抵消,分压相

等.实际上因电感存在电阻.故 U_L 略大于 U_C .

(2)研究 RLC 串联电路谐振时,L 值、C 值和 R 值的选择会影响什么,要注意哪些问题.								
①L 值和 C 值的选择影响谐振频率和品质因数,R 值的选择影响品质因数.								
②选择合适的 L 值和 C 值使得谐振频率在数据表格的中间部分.								
③选择合适的 R 值,避免远大于电感和电容的阻值的电阻分走绝大部分电压,增大测量误差.								
`	5/51+ H V					1至火江:		
114	コ 4d .lm lin 3i							
指-	导教师批阅	划意见:						
上 / 末 / 五 c →								
成绩评定:								
							1	
	预习	操作及记录	数据处理与结果陈述 30 分	思考题	报告整体	总分		
	(20分)	(40分)	※41~1年7年7年7日7日	10分	印象	167)		