Second Order System

Transfer Function

$$H(s)=rac{\omega_n^2}{s^2+2\zeta\omega_n s+\omega_n^2},\;\;\omega_n>0$$

Poles

$$s=-\zeta \omega_n\pm \omega_n \sqrt{\zeta^2-1}$$

where ζ is the **damping ratio** and ω_n is the **undamped natural frequency.**

Underdamped System: $0 \ge \zeta < 1$

Critically Damped System: $\zeta=1$

Overdamped System: $\zeta > 1$

Underdamped & Critically Damped System,

 $0 \ge \zeta \ge 1$

Define poles at,

$$s=-\sigma\pm j\omega_d$$

such that,

$$\sigma = \zeta \omega_n, \;\; \omega_d = \omega_n \sqrt{1-\zeta^2}$$

where ω_d is the **damped natural frequency.**

The transfer function becomes:

$$H(s) = rac{\omega_n^2}{(s+\sigma+j\omega_d)(s+\sigma-j\omega_d)} = rac{\omega_n^2}{\left(s+\sigma
ight)^2+\omega_d}$$

Step Response

$$y(t) = 1 - e^{-\sigma t}(cos(\omega_d t) + rac{\sigma}{\omega_d} sin(\omega_d t))$$

Overdamped System, $\zeta > 1$

Poles are at,

$$-\zeta\omega_n\pm\omega_n\sqrt{\zeta^2-1}$$

The transfer function becomes:

$$H(s) = rac{\omega_n^2}{(s + \zeta \omega_n + \omega_n \sqrt{\zeta^2 - 1})(s + \zeta \omega_n - \omega_n \sqrt{\zeta^2 - 1})}$$

Step Response

$$y(t) = 1 - k_1 e^{(-\zeta\omega - \omega_n\sqrt{\zeta^2-1})t} - k_2 e^{(-\zeta\omega + \omega_n\sqrt{\zeta^2-1})t}$$

For some constants k_1 and k_2 .

Performance Measures

Rise Time, t_r

Rise time is the time required to go from 10% to 90% of the final value.

$$t_r pprox rac{2.16 \zeta + 0.6}{\omega_n}$$

which is good for $0.3 > \zeta > 0.8$.

Cruder approximation:

$$t_r pprox rac{1.8}{\omega_n}$$

Peak Time, t_p

Peak time is the time at which the maximum value is reached.

$$t_p = rac{\pi}{\omega_d} = rac{\pi}{\omega_n \sqrt{1-\zeta^2}}$$

Peak Value, M_p

Peak value is the maximum value the output reaches.

$$M_p=1+e^{-\sigmarac{\pi}{\omega_d}}=1+e^{-rac{\pi\zeta}{\sqrt{1-\zeta^2}}}$$

Overshoot Percentage, %OS

Overshoot percentage is the percentage by which the response overshoots from the steady state value in the first peak.

$$\%OS = e^{-rac{\pi \zeta}{\sqrt{1-\zeta^2}}} imes 100$$

Settling Time, t_{s}

Settling time is the time required to get within 2% of the final value and stay there.

$$t_spprox rac{4}{\sigma}=rac{4}{\zeta\omega_n}$$