El paradigma imperativo de Neumann: El lenguaje \mathcal{S}^{Σ}

Sintaxis de \mathcal{S}^{Σ}

- Definiciones:
 - Definimos $Sig:Num^* o Num^*$ como:

$$Sig(arepsilon) = 1$$
 $Sig(lpha 0) = lpha 1$
 $Sig(lpha 1) = lpha 2$
 $Sig(lpha 2) = lpha 3$
 $Sig(lpha 3) = lpha 4$
 $Sig(lpha 4) = lpha 5$
 $Sig(lpha 5) = lpha 6$
 $Sig(lpha 6) = lpha 7$
 $Sig(lpha 6) = lpha 7$
 $Sig(lpha 7) = lpha 8$
 $Sig(lpha 8) = lpha 9$
 $Sig(lpha 9) = Sig(lpha) 0$

• Definimos $Dec:\omega \to Num^*$ como:

$$Dec(0) = \varepsilon$$
 $Dec(n+1) = Sig(Dec(n))$

- Notar que para $n \in N$, Dec(n) es la notación usual decimal de n
- Para hacer más ágil la notación, escribiremos \bar{n} en lugar de Dec(n), por lo que $Dec=\lambda n[\bar{n}]$
- Sintaxis: La sintaxis de \mathcal{S}^Σ será dada utilizando el alfabeto $\Sigma \cup \Sigma_P$ donde

$$\Sigma_P = Num \cap \{\leftarrow, +, \dot{-}, ., \neq, \stackrel{\sim}{,} \varepsilon, N, K, P, L, I, F, G, O, T, B, E, S\}$$

- Las palabras de la forma:
 - $Nar{k}$ con $k\in N$ son llamadas *variables numéricas de* \mathcal{S}^{Σ}
 - $Par{k}$ con $k\in N$ son llamadas *variables alfabéticas de* \mathcal{S}^{Σ}
 - $Lar{k}$ con $k\in N$ son llamadas *labels de* \mathcal{S}^{Σ}
- Una instrucción básica de S^{Σ} es una palabra $(\Sigma \cup \Sigma_P)^*$ la cual es de alguna de las siguientes formas (donde $a \in \Sigma$; $k, n \in N$):
 - $N\bar{k} \leftarrow N\bar{k} + 1$
 - $N\bar{k} \leftarrow N\bar{k}\dot{-}1$
 - Si el contenido de $N\bar{k}$ es 0, dejarlo sin modificar. Caso contrario, disminuir en 1 el contenido de $N\bar{k}$
 - $N\bar{k} \leftarrow N\bar{n}$
 - Copiar el contenido de $Nar{n}$ en $Nar{k}$ sin modificar el contenido de $Nar{n}$

- $Nar{k} \leftarrow 0$
- $P\bar{k} \leftarrow P\bar{k}$. a
 - Modificar el contenido de $Par{k}$ agregando el símbolo a a la derecha
- $Par{k} \leftarrow {}^{\smallfrown} Par{k}$
 - Si el contenido de $P\bar{k}$ es ε , dejarlo sin modificar. Caso contrario, eliminar el primer símbolo del contenido de $P\bar{k}$
- $P\bar{k} \leftarrow P\bar{n}$
- $P\bar{k} \leftarrow \varepsilon$
- IF $Nar{k}
 eq 0$ GOTO $Lar{n}$
- IF $Par{k}$ BEGINS a GOTO $Lar{n}$
 - Si el contenido de $P\bar{k}$ comienza con el símbolo a, entonces ir a la instrucción con label $L\bar{n}$. Caso contrario, continuar con la siguiente instrucción
- GOTO $L\bar{n}$
- SKIP
- Una instrucción de S^{Σ} es ya sea una instrucción básica de S^{Σ} , o una palabra de la forma αI , donde $\alpha \in \{L\bar{n} : n \in N\}$ e I es una instrucción básica de S^{Σ} .
 - Usaremos Ins^{Σ} para denotar el conjunto de todas las instrucciones de \mathcal{S}^{Σ}
 - Cuando I es de la forma $L\bar{n}J$ con J una instrucción básica, diremos que $L\bar{n}$ es la *label de I*
- Un *programa* de \mathcal{S}^Σ es una palabra de la forma $I_1I_2\ldots I_n$ donde $n\geq 1, I_1,\ldots,I_n\in Ins^\Sigma$ y además se cumple la *ley de los GOTO*: $\forall i\in\{1,\ldots,n\}$, si GOTO $L\bar{m}$ es un tramo final de I_i , entonces $\exists j\in\{1,\ldots,n\}$ tal que I_j tiene label $L\bar{m}$
 - Usaremos Pro^Σ para denotar el conjunto de todos los programas de \mathcal{S}^Σ
 - Definimos $n(\mathcal{P})$ como la cantidad de instrucciones de \mathcal{P} , e $I_i^{\mathcal{P}}$ como la i -ésima instrucción de \mathcal{P} para $i \in \{1,\dots,n(\mathcal{P})\}$. Además, $I_i^{\mathcal{P}} = \varepsilon$ cuando i=0 o $i>n(\mathcal{P})$
 - Notamos con $\lambda \mathcal{P}[n(\mathcal{P})]$ y $\lambda i \mathcal{P}[I_i^{\mathcal{P}}]$
- Lemas:
 - Parseo de programas: Sea Σ un alfabeto finito, se tiene que:
 - Si $I_1\ldots I_n=J_1\ldots J_m$ con $I_1,\ldots,I_n,J_1,\ldots,J_m\in Ins^\Sigma$, entonces n=m y $I_i=J_iorall i\geq 1$
 - Si $\mathcal{P} \in Pro^{\Sigma}$, entonces existe una *única* sucesión de instrucciones I_1, \ldots, I_n tal que $\mathcal{P} = I_1 \ldots I_n$ Luego, esto significa que, dado un programa \mathcal{P} , tenemos unívocamente

Luego, esto significa que, dado un programa \mathcal{P} , tenemos univocamente determinados $n(\mathcal{P})$ e $I_1,\ldots,I_{n(\mathcal{P})}$ tales que $\mathcal{P}=I_1\ldots I_{n(\mathcal{P})}$

Semántica de \mathcal{S}^{Σ}

Definiciones:

• Bas: Definimos $Bas: Ins^{\Sigma} \to (\Sigma \cup \Sigma_P)^*$ dada por

$$Bas(I) = egin{cases} J & ext{si } I ext{ es de la forma } Lar{k}J ext{ con } J \in Ins^{\Sigma} \ I & ext{en otro caso} \end{cases}$$

- Asumiremos siempre que en una computación vía un programa de \mathcal{S}^{Σ} , todas excepto una cantidad finita de las variables numéricas tienen el valor 0 y todas excepto una cantidad finita de las variables alfabéticas tienen el valor ε
- *Estado*: Un estado es un par $(\vec{s}, \vec{\sigma}) = ((s_1, s_2, \dots), (\sigma_1, \sigma_2, \dots)) \in \omega^{[N]} \times \Sigma^{*[N]}$ y, si $i \geq 1$, entonces diremos que s_i es el contenido o valor de la variable $N\bar{i}$ en el estado $(\vec{s}, \vec{\sigma})$ y σ_i es el contenido o valor de la variable $P\bar{i}$ en el estado $(\vec{s}, \vec{\sigma})$
- Descripción instantánea: Una descripción instantánea es una terna $(i, \vec{s}, \vec{\sigma})$ tal que $(\vec{s}, \vec{\sigma})$ es un estado e $i \in \omega$.
 - Es decir, $\omega imes \omega^{[N]} imes \Sigma^{*[N]}$ es el conjunto de todas las descripciones instantáneas
 - Intuitivamente, $(i, \vec{s}, \vec{\sigma})$ nos dice que las variables están en el estado $(\vec{s}, \vec{\sigma})$ y que la instrucción que debemos realizar es $I_i^{\mathcal{P}}$
- Sucesora: Dado un programa \mathcal{P} , definimos $S_{\mathcal{P}}:\omega\times\omega^{[N]}\times\Sigma^{*[N]}\to\omega\times\omega^{[N]}\times\Sigma^{*[N]}$ como la función que asignará a una descripción instantánea $(i,\vec{s},\vec{\sigma})$ la descripción instantánea sucesora de $(i,\vec{s},\vec{\sigma})$ con respecto a \mathcal{P} . Es decir, hay varios casos posibles:
 - Si $i \notin \{1, \dots, n(\mathcal{P})\}$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i, \vec{s}, \vec{\sigma})$
 - Si $Bas(I_i^{\mathcal{P}})=Nar{k}\leftarrow Nar{k}\dot{-}1$, entonces $S_{\mathcal{P}}(i,ec{s},ec{\sigma})=(i+1,(s_1,\ldots,s_{k-1},s_k\dot{-}1,s_{k+1},\ldots),ec{\sigma})$
 - Si $Bas(I_i^\mathcal{P})=Nar{k}\leftarrow Nar{k}+1$, entonces $S_\mathcal{P}(i,ec{s},ec{\sigma})=(i+1,(s_1,\ldots,s_{k-1},s_k+1,s_{k+1},\ldots),ec{\sigma})$
 - Si $Bas(I_i^{\mathcal{P}}) = Nar{k} \leftarrow Nar{n}$, entonces $S_{\mathcal{P}}(i,ec{s},ec{\sigma}) = (i+1,(s_1,\ldots,s_{k-1},s_n,s_{k+1},\ldots),ec{\sigma})$
 - Si $Bas(I_i^{\mathcal{P}})=Nar{k}\leftarrow 0$, entonces $S_{\mathcal{P}}(i,ec{s},ec{\sigma})=(i+1,(s_1,\ldots,s_{k-1},0,s_{k+1},\ldots),ec{\sigma})$
 - Si $Bas(I_i^{\mathcal{P}}) = ext{IF } Nar{k}
 eq 0 ext{ GOTO } Lar{m}$, entonces hay dos posibilidades:
 - ullet Si el valor de $Nar{k}$ es 0, entonces $S_{\mathcal{P}}(i,ec{s},ec{\sigma})=(i+1,ec{s},ec{\sigma})$
 - Si el valor de $Nar{k}$ es no nulo, entonces $S_{\mathcal{P}}(i, ec{s}, ec{\sigma}) = (\min\{l: I_l^{\mathcal{P}} ext{ tiene label } Lar{m}\}, ec{s}, ec{\sigma})$
 - Si $Bas(I_i^{\mathcal{P}}) = P\bar{k} \leftarrow {}^{\curvearrowright}P\bar{k}$, entonces $S_{\mathcal{P}}(i,\vec{s},\vec{\sigma}) = (i+1,\vec{s},(\sigma_1,\ldots,\sigma_{k-1},\,{}^{\curvearrowright}\sigma_k,\sigma_{k+1},\ldots))$
 - Si $Bas(I_i^{\mathcal{P}}) = Par{k} \leftarrow Par{k}.\,a$, entonces $S_{\mathcal{P}}(i,ec{s},ec{\sigma}) = (i+1,ec{s},(\sigma_1,\ldots,\sigma_{k-1},\sigma_k a,\sigma_{k+1},\ldots))$
 - Si $Bas(I_i^{\mathcal{P}}) = Par{k} \leftarrow Par{n}$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, \vec{s}, (\sigma_1, \ldots, \sigma_{k-1}, \sigma_n, \sigma_{k+1}, \ldots))$
 - Si $Bas(I_i^{\mathcal{P}}) = P\bar{k} \leftarrow arepsilon$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, \vec{s}, (\sigma_1, \ldots, \sigma_{k-1}, arepsilon, \sigma_{k+1}, \ldots))$

- Si $Bas(I_i^{\mathcal{P}}) = \text{IF } P\bar{k} \text{ BEGINS } a \text{ GOTO } L\bar{m}$, entonces hay dos posibilidades:
 - Si el valor de $Par{k}$ comienza con a, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (\min\{l: I_l^{\mathcal{P}} ext{ tiene label } Lar{m}\}, \vec{s}, \vec{\sigma})$
 - Si el valor de $Par{k}$ no comienza con a, entonces $S_{\mathcal{P}}(i,ec{s},ec{\sigma})=(i+1,ec{s},ec{\sigma})$
- Si $Bas(I_i^{\mathcal{P}}) = \operatorname{GOTO} L\bar{m}$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (\min\{l: I_l^{\mathcal{P}} \text{ tiene label } L\bar{m}\}, \vec{s}, \vec{\sigma})$
- Si $Bas(I_i^{\mathcal{P}}) = \text{SKIP}$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, \vec{s}, \vec{\sigma})$
- Computación partiendo de un estado: Dado un programa \mathcal{P} y un estado $(\vec{s}, \vec{\sigma})$, a la infinitupla

$$((1, \vec{s}, \vec{\sigma}), S_{\mathcal{P}}(1, \vec{s}, \vec{\sigma}), S_{\mathcal{P}}(S_{\mathcal{P}}(1, \vec{s}, \vec{\sigma})), \dots)$$

la llamaremos la computación de \mathcal{P} partiendo del estado $(\vec{s}, \vec{\sigma})$.

- Diremos que $S_{\mathcal{P}}(S_{\mathcal{P}}(\dots(S_{\mathcal{P}}(1,\vec{s},\vec{\sigma}))\dots)) = (j,\vec{u},\vec{\eta})$ con $S_{\mathcal{P}}$ aplicado t veces, es la descripción instantánea obtenida luego de t pasos partiendo del estado $(\vec{s},\vec{\sigma})$, y $(\vec{u},\vec{\eta})$ es el estado obtenido luego de t pasos partiendo del estado $(\vec{s},\vec{\sigma})$
- Detención:
 - Cuando la primer coordenada de $S_{\mathcal{P}}(S_{\mathcal{P}}(\dots(S_{\mathcal{P}}(1,\vec{s},\vec{\sigma}))\dots))$ (con $S_{\mathcal{P}}$ aplicado t veces) es $n(\mathcal{P})+1$, diremos que \mathcal{P} se detiene (luego de t pasos), partiendo desde el estado $(\vec{s},\vec{\sigma})$
 - Caso contrario, si ninguna de las primeras coordenadas en la infinitupla de la computación es igual a $n(\mathcal{P})+1$, diremos que \mathcal{P} no se detiene partiendo desde el estado $(\vec{s},\vec{\sigma})$