Cartesian Plane: Point-Slope Formula for Lines

Video companion

1 Introduction

In this video: Demystify formulas for equations of lines

$$y - y_0 = m(x - x_0)$$
 Point-slope form
 $y = mx + b$ Slope-intercept form

2 Slope of a line segment

Slope of \overrightarrow{AB} :

$$m = \frac{d - b}{c - a} = \frac{\text{"rise"}}{\text{"run"}}$$

3 Examples

Slope of \overrightarrow{AB} :

$$m = \frac{3-2}{3-1} = \frac{1}{2}$$

 $m = \frac{1}{2}$ is a positive slope.

Slope of \overrightarrow{CO} :

$$m = \frac{0-1}{0-(-1)} = -1$$

m = -1 is a negative slope.

4 Equation of a line

For a point (x, y) to be on the line, the line segment from (2, 1) to (x, y) need to have a slope of 1.

$$1 = \frac{y-1}{x-2}$$
$$y-1 = 1(x-2)$$

The line is defined by this formula:

$$\ell = \{(x, y) \in \mathbb{R}^2 : y - 1 = 1(x - 2)\}$$

Check that (3,2) is on the line:

$$(3,2) \in \ell$$
?
 $2-1 \stackrel{?}{=} 1(3-2)$
 $1 \stackrel{?}{=} 1 \quad \checkmark$

Check if (5,1) is on the line:

$$(5,1) \in \ell$$
?
 $1-1 \stackrel{?}{=} 1(5-2)$
 $0 \stackrel{?}{=} 3 \times$

5 Point-slope formula

If a line ℓ has slope m, and if (x_0, y_0) is any point on ℓ , then ℓ has the equation

$$y - y_0 = m(x - x_0).$$