A Proposal for Weak-Memory Local Reasoning

Ian Wehrman (UT Austin)
Josh Berdine (Microsoft Research)

Overview

Project: a separation logic with x86-TSO semantics.

Goal: nice proofs of concurrent data structures.

Racy by design; can't avoid the memory model.

Small, ubiquitous, hard to get right, even worse to debug.

Overview

Project: a separation logic with x86-TSO semantics.

Goal: nice proofs of concurrent data structures.

Racy by design; can't avoid the memory model.

Small, ubiquitous, hard to get right, even worse to debug.

Caveat: work is in progress.

Lots of details remain; no soundness proof yet.

x86-TSO

Store: $[e] = f_p$

enqueue (e,f) on pth write buffer, if e is allocated in heap.

x86-TSO

Store: $[e] = f_p$

enqueue (e,f) on pth write buffer, if e is allocated in heap.

Load: $x = [e]_p$

x=v if (e,v) is the most recent write to e in the p^{th} buffer else if heap(e) = v.

x86-TSO

Store: $[e] = f_p$

enqueue (e,f) on pth write buffer, if e is allocated in heap.

Load: $x = [e]_p$

x=v if (e,v) is the most recent write to e in the p^{th} buffer else if heap(e) = v.

Fence: fence_p

commit all writes from the pth buffer to mem in FIFO order.

Local reasoning

Restrict reasoning to relevant resources.

(strong) partial heaps.

Local reasoning

Restrict reasoning to relevant resources.

(strong) partial heaps.

(weak) partial heaps & partial write buffers.

Basic resources

Represented with predicates:

```
(strong)  emp - empty heap.  points to  e \mapsto f - exactly one heap cell at address e with value f.
```

Basic resources

Represented with predicates:

```
(strong)
emp - empty heap.
points to  

→ e → f - exactly one heap cell at address e with value f.
(weak)
emp - empty heap & empty write buffers.
leads to  

→ e → f - empty heap & one write to e on p<sup>th</sup> buffer with value f,
or heap cell at address e with value f & empty write buffers.
```

Barriers

Represented with logical operations **bar**_p that flush writes pending on pth buffer.

 $\mathbf{bar}_p(e \rightarrow_p f)$ – heap cell at e with value f & empty write buffers.

Barriers

Represented with logical operations **bar**_p that flush writes pending on pth buffer.

 $bar_p(e \rightarrow_p f)$ – heap cell at e with value f & empty write buffers.

$$e \mapsto f \triangleq \mathbf{bar}_p(e \rightarrow_p f)$$

Structured resources

Represented with separating conjunctions:

(strong)

P * Q – disjoint union of heaps.

Structured resources

Represented with separating conjunctions:

```
    (strong)
    P*Q - disjoint union of heaps.
    (weak)
    P*Q - disjoint union of heaps & interleaved write buffers.
    sequential -> P; Q - disjoint union of heaps & concatenated write buffers.
```

 $e \rightarrow_p e' * f \rightarrow_p f' - 2$ writes to distinct locations in either order; either may have not yet committed.

 $e \rightarrow_p e' * f \rightarrow_p f' - 2$ writes to distinct locations in either order; either may have not yet committed.

 $e \rightarrow_p e'$; $f \rightarrow_p f' - 2$ writes to distinct locations in order; if f has committed then so has e.

 $e \rightarrow_p e' * f \rightarrow_p f' - 2$ writes to distinct locations in either order; either may have not yet committed.

 $e \rightarrow_p e'$; $f \rightarrow_p f' - 2$ writes to distinct locations in order; if f has committed then so has e.

 $e \mapsto e'$; $f \rightarrow_p f' - 2$ writes to distinct locations in order; e in heap; f may have not yet committed.

 $e \rightarrow_p e' * f \rightarrow_p f' - 2$ writes to distinct locations in either order; either may have not yet committed.

 $e \rightarrow_p e'$; $f \rightarrow_p f' - 2$ writes to distinct locations in order; if f has committed then so has e.

 $e \mapsto e'$; $f \rightarrow_p f' - 2$ writes to distinct locations in order; e in heap; f may have not yet committed.

 $e \mapsto f$; $e \rightarrow_p f'$ - inconsistent.

Counting permissions

Weaken sequential conjunction to describe successive writes to a location.

Counting permissions

Weaken sequential conjunction to describe successive writes to a location.

e.g.,
$$(x \rightarrow_{p,-1} 1)$$
; $(x \rightarrow_{p,-1} 2)$; $(x \rightarrow_{p,2} 3)$

 $n \ge 0$ indicates the most recent write...

... and no more than n previous writes.

n < 0 indicates a previous write.

Counting permissions

Weaken sequential conjunction to describe successive writes to a location.

e.g.,
$$(x \rightarrow_{p,-1} 1)$$
; $(x \rightarrow_{p,-1} 2)$; $(x \rightarrow_{p,2} 3)$

 $n \ge 0$ indicates the most recent write...

... and no more than n previous writes.

n < 0 indicates a previous write.

e.g.,
$$(x \rightarrow_{p,0} 1)$$
; $(x \rightarrow_{p,-1} 2) \models false$

Program logic

Sep. logic for C-like language w/atomic regions.

Resource invariants describe shared memory, ala CSL.

Semantics of atomic commands does **not** include fences.

Program logic

Sep. logic for C-like language w/atomic regions.

Resource invariants describe shared memory, ala CSL.

Semantics of atomic commands does not include fences.

$$R \vdash \{P\} c \{Q\}$$
 means:

executions of c that start in an R * P state

- 1) always respect invariant R,
- 2) have no memory errors, and
- 3) terminate in an $\mathbb{R} * \mathbb{Q}$ state, or else diverge.

Invariant expansion

Invariants are heap-and-variable assertions.

e.g., R ≜
$$\exists ab . x \mapsto_0 a * y \mapsto_0 b * (a=1 \lor b=1).$$

Invariant expansion

Invariants are heap-and-variable assertions.

e.g., R ≜ ∃ab .
$$x \mapsto_0 a * y \mapsto_0 b * (a=1 \lor b=1)$$
.

exp(R) denotes states that always preserve invariant R while committing writes.

e.g.,
$$(x \mapsto_{-1} 0 * y \mapsto_{-1} 1)$$
, $x \to_{p,1} 1$, $y \to_{p,1} 0 \models exp(R)$.

Frame rules

int. frame

$$R \vdash \{ P \} c \{ Q \} \mod(c) \cap \text{fv}(F) = \emptyset$$

$$R \vdash \{ F * P \} c \{ F * Q \}$$

Frame rules

int. frame

$$R \vdash \{P\} c \{Q\} \mod(c) \cap \text{fv}(F) = \emptyset$$

$$R \vdash \{F * P\} c \{F * Q\}$$

seq. frame

$$R \vdash \{P\} c \{Q\} \mod(c) \cap \text{fv}(F) = \emptyset$$

 $R \vdash \{F; P\} c \{F; Q\}$

Axioms

load

$$R \vdash \{ e \rightarrow_{p,n} f, Q \} x \coloneqq [e]_p \{ (e \rightarrow_{p,n} f, Q) \land x = f \}$$

where $n \ge 0$ and $x \notin fv(e,f,R)$.

Axioms

load

$$R \vdash \{ e \rightarrow_{p,n} f, Q \} x \coloneqq [e]_p \{ (e \rightarrow_{p,n} f, Q) \land x = f \}$$
where $n \ge 0$ and $x \notin fv(e,f,R)$.

store

$$R \vdash \{\ e \rightarrow_{p,n} e'\ ,\ Q\ \}\ [e] \coloneqq f_p\ \{\ e \rightarrow_{p,-1} e'\ ,\ Q\ ,\ e \rightarrow_{p,n+1} f\ \}$$
 where $n \ge 0$.

Axioms

load

$$R \vdash \{ e \rightarrow_{p,n} f, Q \} x \coloneqq [e]_p \{ (e \rightarrow_{p,n} f, Q) \land x = f \}$$
where $n \ge 0$ and $x \notin fv(e,f,R)$.

store

$$R \vdash \{\ e \rightarrow_{p,n} e'\ ,\ Q\ \}\ [e] \coloneqq f_p\ \{\ e \rightarrow_{p,\text{-}1} e'\ ,\ Q\ ,\ e \rightarrow_{p,n+1} f\ \}$$
 where $n \ge 0$.

fence

$$R \vdash \{Q\} \text{ fence}_p \{ \mathbf{bar}_p(Q) \}$$

Memory management

allocate

$$R \vdash \{ emp \} x = new(e)_p \{ x \rightarrow_{p,0} e \}$$

Memory management

allocate

$$R \vdash \{ emp \} x := new(e)_p \{ x \rightarrow_{p,0} e \}$$

dispose

$$R \vdash \{e \rightarrow_{p,0} - \} \text{ free(e)}_p \{emp\}$$

Concurrency rules

parallel

$$\frac{R \vdash \{P\} c \{Q\} \quad R \vdash \{P'\} c' \{Q'\} \quad (\S)}{R \vdash \{P*P'\} c \parallel c' \{Q*Q'\}}$$

Concurrency rules

parallel

$$\frac{R \vdash \{P\} c \{Q\} \quad R \vdash \{P'\} c' \{Q'\} \quad (\S)}{R \vdash \{P*P'\} c \parallel c' \{Q*Q'\}}$$

atomic

$$\mathbf{emp} \vdash \{ R * P \} c \{ \mathbf{exp}(R) * Q \} \quad (\dagger)$$

$$R \vdash \{ P \} \langle c \rangle \{ Q \}$$

Concurrency rules

parallel

$$R \vdash \{P\} c \{Q\} \quad R \vdash \{P'\} c' \{Q'\} \quad (\S)$$

$$R \vdash \{P * P'\} c \parallel c' \{Q * Q'\}$$

atomic

$$\mathbf{emp} \vdash \{ R * P \} c \{ \mathbf{exp}(R) * Q \}$$
 (†)
$$R \vdash \{ P \} \langle c \rangle \{ Q \}$$

share

$$R \vdash \{ P \} c \{ Q \}$$

$$emp \vdash \{ exp(R) * P \} c \{ exp(R) * Q \}$$

Very simple example

$$\mathbf{emp} \vdash \{ x \mapsto_0 4 \} \langle [x] = 4_p \rangle \parallel \langle y = [x]_q \rangle \{ y=4 \}$$

store ax.

emp
$$\vdash \{ x \mapsto_0 4 \} [x] = 4_p \{ x \mapsto_{-1} 4 ; x \rightarrow_{p,1} 4 \}$$

$$\mathbf{emp} \vdash \{ x \mapsto_0 4 \} \langle [x] \coloneqq 4_p \rangle \parallel \langle y \coloneqq [x]_q \rangle \{ y = 4 \}$$

store ax.

conseq.

$$\mathbf{emp} \vdash \{ x \mapsto_0 4 \} \langle [x] = 4_p \rangle \parallel \langle y = [x]_q \rangle \{ y=4 \}$$

store ax.

conseq.

atomic

$$\begin{array}{l} \textbf{emp} \vdash \{ \ x \mapsto_0 4 \ \} \ [x] \coloneqq 4_p \ \{ \ x \mapsto_{-1} 4 \ ; \ x \rightarrow_{p,1} 4 \ \} \\ \\ \textbf{emp} \vdash \{ \ x \mapsto_0 4 \ \} \ [x] \coloneqq 4_p \ \{ \ \textbf{exp}(x \mapsto_0 4) \ \} \\ \\ x \mapsto_0 4 \vdash \{ \ \textbf{emp} \ \} \ \langle\![x] \coloneqq 4_p \rangle \ \{ \ \textbf{emp} \ \} \\ \dots \vdash \{ \ \textbf{emp} \ \} \ \langle\![x] \vDash 4_p \rangle \ \{ \ \textbf{y} = 4 \ \} \end{array}$$

$$\mathbf{emp} \vdash \{ x \mapsto_0 4 \} \langle [x] = 4_p \rangle \parallel \langle y = [x]_q \rangle \{ y=4 \}$$

```
store ax.
```

conseq.

atomic

parallel

```
\begin{array}{l} \textbf{emp} \vdash \{ \ x \mapsto_0 4 \ \} \ [x] \coloneqq 4_p \ \{ \ x \mapsto_{-1} 4 \ ; \ x \to_{p,1} 4 \ \} \\ \\ \hline \\ x \mapsto_0 4 \vdash \{ \ \textbf{emp} \ \} \ \langle [x] \coloneqq 4_p \ \} \ \textbf{emp} \ \} \\ \hline \\ x \mapsto_0 4 \vdash \{ \ \textbf{emp} \ \} \ \langle [x] \coloneqq 4_p \rangle \ \{ \ \textbf{emp} \ \} \\ \hline \\ x \mapsto_0 4 \vdash \{ \ \textbf{emp} \ \} \ \langle [x] \coloneqq 4_p \rangle \ \| \ \langle y \coloneqq [x]_q \rangle \ \{ \ \textbf{emp} \ * \ y = 4 \ \} \\ \end{array}
```

$$\mathbf{emp} \vdash \{ x \mapsto_0 4 \} \langle [x] = 4_p \rangle \parallel \langle y = [x]_q \rangle \{ y=4 \}$$

```
store ax.
```

conseq.

atomic

parallel

share

conseq.

```
\begin{array}{l} \textbf{emp} \vdash \{ \ x \mapsto_0 4 \ \} \ [x] \coloneqq 4_p \ \{ \ x \mapsto_{-1} 4 \ ; \ x \to_{p,1} 4 \ \} \\ \\ \textbf{emp} \vdash \{ \ x \mapsto_0 4 \ \} \ [x] \coloneqq 4_p \ \{ \ \textbf{emp} \ \} \\ \\ \textbf{x} \mapsto_0 4 \vdash \{ \ \textbf{emp} \ \} \ \langle [x] \coloneqq 4_p \rangle \ \{ \ \textbf{emp} \ \} \\ \\ \textbf{x} \mapsto_0 4 \vdash \{ \ \textbf{emp} \ \} \ \langle [x] \coloneqq 4_p \rangle \ \| \ \langle y \coloneqq [x]_q \rangle \ \{ \ \textbf{emp} \ast \ y = 4 \ \} \\ \\ \textbf{emp} \vdash \{ \ \textbf{exp}(x \mapsto_0 4) \ \} \ \langle [x] \coloneqq 4_p \rangle \ \| \ \langle y \coloneqq [x]_q \rangle \ \{ \ \textbf{exp}(x \mapsto_0 4) \ast \ y = 4 \ \} \\ \\ \textbf{emp} \vdash \{ \ x \mapsto_0 4 \ \} \ \langle [x] \coloneqq 4_p \rangle \ \| \ \langle y \coloneqq [x]_q \rangle \ \{ \ y = 4 \ \} \\ \end{array}
```

Intermission

Heap-only invariants yield a simple but weak logic.

Can't reason about the *history* of writes to shared state.

Each write must preserve the invariant.

Intermission

Heap-only invariants yield a simple but weak logic.

Can't reason about the *history* of writes to shared state.

Each write must preserve the invariant.

Split assertions into shared heap & local buffer parts.

Heap part: summarization of writes checked against invariant.

Buffer part: exact history of local writes to shared state.

... really nice, come talk to us!

Let
$$c_w \triangleq \langle [d] := 1_p \rangle; \langle [r] := 1_p \rangle$$

Let
$$c_w \triangleq \langle [d] := 1_p \rangle$$
; $\langle [r] := 1_p \rangle$
Let $c_r \triangleq \langle x := [r]_q \rangle$; $\langle y := [d]_q \rangle$

```
Let c_{w} \triangleq \langle [d] := 1_{p} \rangle; \langle [r] := 1_{p} \rangle

Let c_{r} \triangleq \langle x := [r]_{q} \rangle; \langle y := [d]_{q} \rangle

Let R \triangleq \exists d', r' . d \mapsto_{0} d' * r \mapsto_{0} r' * (r'=1 \Rightarrow d'=1)

Spec: emp \vdash \{R\} c_{w} \parallel c_{r} \{x=1 \Rightarrow y=1\}
```

Let
$$c_{w} \triangleq \langle [d] := 1_{p} \rangle$$
; $\langle [r] := 1_{p} \rangle$
Let $c_{r} \triangleq \langle x := [r]_{q} \rangle$; $\langle y := [d]_{q} \rangle$
Let $R \triangleq \exists d', r' . d \mapsto_{0} d' * r \mapsto_{0} r' * (r'=1 \Rightarrow d'=1)$
Spec: $emp \vdash \{R\} c_{w} \parallel c_{r} \{x=1 \Rightarrow y=1\}$

True, but can't prove that c_w preserves invariant.

$$R \vdash \{ emp \} \langle [d] = 1 \rangle \{ emp \}$$

store

emp
$$\vdash$$
 { $d \mapsto d'$ } [d] \coloneqq 1 { $d \mapsto d'$; $d \rightarrow 1$ }

$$R \vdash \{ emp \} \langle [d] = 1 \rangle \{ emp \}$$

```
store
```

frame

$$emp \vdash \{ d \mapsto d' \} [d] \coloneqq 1 \{ d \mapsto d' ; d \to 1 \}$$

$$emp \vdash \{ d \mapsto d' * r \mapsto r' * (r'=1 \Rightarrow d'=1) \} [d] \coloneqq 1 \{ (d \mapsto d' ; d \to 1) * r \mapsto r' * (r'=1 \Rightarrow d'=1) \}$$

$$R \vdash \{ emp \} \langle [d] = 1 \rangle \{ emp \}$$

```
frame

\frac{}{\text{emp} \vdash \{d \mapsto d'\} [d] = 1 \{d \mapsto d'; d \to 1\}}

\text{conseq.}

\frac{}{\text{emp} \vdash \{d \mapsto d' * r \mapsto r' * (r'=1 \Rightarrow d'=1)\} [d] = 1 \{(d \mapsto d'; d \to 1) * r \mapsto r' * (r'=1 \Rightarrow d'=1)\}}

\frac{}{\text{emp} \vdash \{d \mapsto d' * r \mapsto r' * (r'=1 \Rightarrow d'=1)\} [d] = 1 \{(d \mapsto d' * r \mapsto r') ; d \to 1 * (r'=1 \Rightarrow d'=1)\}}
```

$$R \vdash \{ emp \} \langle [d] = 1 \rangle \{ emp \}$$

```
store
                                                     emp \vdash { d \mapsto d' } [d] \coloneqq 1 { d \mapsto d' ; d \rightarrow 1 }
 frame
              emp \vdash { d \mapsto d' * r \mapsto r' * (r'=1 \Rightarrow d'=1) } [d] = 1 { (d \mapsto d' ; d \Rightarrow 1) * r \mapsto r' * (r'=1 \Rightarrow d'=1) }
conseq.
              emp \vdash \{d \mapsto d' * r \mapsto r' * (r'=1 \Rightarrow d'=1)\} [d] = 1 \{(d \mapsto d' * r \mapsto r'); d \to 1 * (r'=1 \Rightarrow d'=1)\}
conseq.
                                        emp \vdash { d \mapsto d' * r \mapsto r' * (r'=1 \Rightarrow d'=1) } [d] = 1 { exp(R) }
                                                              R \vdash \{ emp \} \langle [d] = 1 \rangle \{ emp \}
                                                                  OK: (d \mapsto d' * r \mapsto r'); d \to 1 * (r'=1 \Rightarrow d'=1) \Rightarrow exp(R)
```

```
store
                                                     emp \vdash \{d \mapsto d'\}[d] = 1\{d \mapsto d'; d \rightarrow 1\}
 frame
              emp \vdash { d \mapsto d' * r \mapsto r' * (r'=1 \Rightarrow d'=1) } [d] = 1 { (d \mapsto d' ; d \Rightarrow 1) * r \mapsto r' * (r'=1 \Rightarrow d'=1) }
conseq.
              emp \vdash \{ d \mapsto d' * r \mapsto r' * (r'=1 \Rightarrow d'=1) \} [d] = 1 \{ (d \mapsto d' * r \mapsto r') ; d \to 1 * (r'=1 \Rightarrow d'=1) \}
conseq.
                                        \mathbf{emp} \vdash \{ d \mapsto d' * r \mapsto r' * (r'=1 \Rightarrow d'=1) \} [d] = 1 \{ \mathbf{exp}(R) \}
 exists
                                                              emp \vdash \{R\} [d] = 1 \{ exp(R) \}
atomic
                                                              R \vdash \{ emp \} \langle [d] = 1 \rangle \{ emp \}
                                                                 OK: (d \mapsto d' * r \mapsto r'); d \to 1 * (r'=1 \Rightarrow d'=1) \Rightarrow exp(R)
```

$$R \vdash \{ emp \} \langle [r] = 1 \rangle \{ emp \}$$

store

emp
$$\vdash \{ r \mapsto r' \} [r] = 1 \{ r \mapsto r' ; r \rightarrow 1 \}$$

$$R \vdash \{ emp \} \langle [r] = 1 \rangle \{ emp \}$$

```
store
```

frame

$$\begin{array}{c} \textbf{emp} \vdash \{ \ r \mapsto r' \ \} \ [r] \coloneqq 1 \ \{ \ r \mapsto r' \ ; \ r \to 1 \ \} \\ \\ \textbf{emp} \vdash \{ \ r \mapsto r' \ast d \mapsto d' \ast (r'=1 \Rightarrow d'=1) \ \} \ [r] \coloneqq 1 \ \{ \ (r \mapsto r' \ ; \ r \to 1) \ast d \mapsto d' \ast (r'=1 \Rightarrow d'=1) \ \} \end{array}$$

$$R \vdash \{ emp \} \langle [r] = 1 \rangle \{ emp \}$$

$$R \vdash \{ emp \} \langle [r] = 1 \rangle \{ emp \}$$

```
store
                                                           emp \vdash \{ r \mapsto r' \} [r] = 1 \{ r \mapsto r' ; r \rightarrow 1 \}
 frame
                emp \vdash \{ r \mapsto r' * d \mapsto d' * (r'=1 \Rightarrow d'=1) \} [r] = 1 \{ (r \mapsto r' ; r \to 1) * d \mapsto d' * (r'=1 \Rightarrow d'=1) \}
conseq.
                \mathbf{emp} \vdash \{ d \mapsto d' * r \mapsto r' * (r'=1 \Rightarrow d'=1) \} [r] \coloneqq 1 \{ (d \mapsto d' * r \mapsto r') ; r \rightarrow 1 * (r'=1 \Rightarrow d'=1) \}
conseq.
                                           \mathbf{emp} \vdash \{ d \mapsto d' * r \mapsto r' * (r'=1 \Rightarrow d'=1) \} [r] = 1 \{ \mathbf{exp}(R) \}
                                                                  R \vdash \{ emp \} \langle [r] = 1 \rangle \{ emp \}
                                                                  NOT OK: (d \mapsto d' * r \mapsto r'); r \to 1 * (r'=1 \Rightarrow d'=1) \Rightarrow exp(R)
```

Post-mortem

Can't prove
$$R \vdash \{emp\} [r] = 1 \{emp\} ...$$

... because first write was absorbed into the invariant.

Want to prove instead something like:

$$R \vdash \{ ...; d \rightarrow 1 \} [r] = 1 \{ ...; d \rightarrow 1; r \rightarrow 1 \}$$

Idea: heap state is shared, but writes are local.

Weaken (*) to allow read-only heap sharing:

$$x \mapsto_{0,\frac{1}{2}} 4 * x \mapsto_{0,\frac{1}{2}} 4 \equiv x \mapsto_{0,\frac{1}{2}} 4$$

Weaken (*) to allow read-only heap sharing:

$$x \mapsto_{0,\frac{1}{2}} 4 * x \mapsto_{0,\frac{1}{2}} 4 \equiv x \mapsto_{0,\frac{1}{2}} 4$$

$$x \mapsto_{0,1} 4 * x \mapsto_{-,-} - \equiv false$$

Weaken (*) to allow read-only heap sharing:

$$x \mapsto_{0,\frac{1}{2}} 4 * x \mapsto_{0,\frac{1}{2}} 4 \equiv x \mapsto_{0,\frac{1}{2}} 4$$

$$x \mapsto_{0,1} 4 * x \mapsto_{-,-} - \equiv false$$

$$x \mapsto_{-1,1} 3$$
; $x \rightarrow_{p,1,1} 4 \equiv (x \mapsto_{-1,1} 3 \lor x \mapsto_{-1,1} 4) * (x \mapsto_{-1,1} 3 ; x \rightarrow_{p,1,1} 4)$

Weaken (*) to allow read-only heap sharing:

$$x \mapsto_{0,1/2} 4 * x \mapsto_{0,1/2} 4 \equiv x \mapsto_{0,1/2} 4$$

$$x \mapsto_{0,1} 4 * x \mapsto_{-,-} - \equiv false$$

$$x \mapsto_{-1,1} 3$$
; $x \rightarrow_{p,1,1} 4 \equiv (x \mapsto_{-1,1} 3 \lor x \mapsto_{-1,1} 4) * (x \mapsto_{-1,1} 3 ; x \rightarrow_{p,1,1} 4)$

store, allocate & dispose axioms: full splitting permission.

Stubborn example, again

Let
$$R_{c,s} \triangleq \exists d',r'$$
. $d \mapsto_{c,s} d' * r \mapsto_{c,s} r' * (r'=1 \Rightarrow d'=1)$

Important equivalences:

$$R_{0,1} \equiv R_{0,\frac{1}{2}} * R_{0,\frac{1}{2}} \text{ and}$$

$$R_{-1,1} ; d \rightarrow_{1,1} 1 ; r \rightarrow_{1,1} 1 \equiv (R_{0,\frac{1}{2}}) * (R_{-1,\frac{1}{2}} ; d \rightarrow_{1,\frac{1}{2}} 1 ; r \rightarrow_{1,\frac{1}{2}})$$

Strong specs now provable:

$$\begin{array}{l} R_{0,\frac{1}{2}} \vdash \{ \ R_{0,\frac{1}{2}} \} \ c_w \ \{ \ R_{-1,\frac{1}{2}} \ ; \ d \rightarrow_{1,\frac{1}{2}} 1 \ ; \ r \rightarrow_{1,\frac{1}{2}} \} \ \ and \\ \\ \textbf{emp} \vdash \{ \ R_{0,1} \ \} \ c_w \parallel c_r \ \{ \ x{=}1 \Rightarrow y{=}1 \ \} \end{array}$$