

Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет транспорта» (РУТ (МИИТ)) Кафедра «Физика» им. П.Н. Лебедева

Институт, группа	К работе допущен	
• • • • • • • • • • • • • • • • • • • •		(дата, подпись преподавателя)
Студент	Работа выполнена	
•		(дата, подпись преподавателя)
Преподаватель	Отчет принят	
	1	(дата, подпись преподавателя)

РАБОЧАЯ ТЕТРАДЬ ПО ЛАБОРАТОРНОЙ РАБОТЕ №: Т-1

Определение отношения теплоемкостей газа
методом Клемана – Дезорма

1. Запишите цель проводимого эксперимента:	
2. Что называется удельной теплоемкостью вещества? Напишите определение и форму	улу
3. Что называется молярной теплоемкостью? Напишите определение и формулу.	
4. Как определяется молярная теплоемкость идеального газа при постоянном объе Напишите вывод формулы для C_V .	:ме?
5. Как определяется молярная теплоемкость идеального газа при постоянном давлен Напишите вывод формулы для C_P .	ши'

 Напишите форм теплоемкостей γ. I 	улу для определені Тоясните входящие в фо		значения отношени
	зывается: а) изохоричес		
г) адиабатическим	? Нарисуйте графики эт	гих процессов в коорд	инатах <i>PV</i> .
Изохорический процесс	Изотермический процесс	Изобарический процесс	Адиабатический процесс

8. На рисунках ниже приведено пояснение метода Клемана – Дезорма. Опишите происходящие в установке (рис. 1) процессы в соответствии с графиками (рис. 2).

Рисунок 1 – Лабораторный стенд

Рисунок 2 — Графики процессов в эксперименте

1) Начальное состояние газа в баллоне Б: давление воздуха равно атмосферному $P_{\rm A}$,
температура воздуха $T_{\rm A}$ равна температуре окружающей среды.
2) Насосом в баллон подкачивается воздух до
9. Напишите вывод формулы для экспериментального определения величины ү.

=		

10. **Заполните таблицу измерений в лаборатории.** При работе с установкой №4 замените в таблице величины Δh_i на ΔP_i .

Измеряемые	Номер опыта									
величины	1	2	3	4	5	6	7	8	9	10
Δh_1										
Δh_2										
Расчетные величины										
$\Delta h_1 - \Delta h_2$										
γ										

Обработка результатов измерений

1. Вычислите значения γ по формуле из п. 9 рабочей тетради в зависимости от того, что измеряли (Δh или ΔP), и внесите их в таблицу выше:

- 2. Вычислите среднее арифметическое значение $\langle \gamma \rangle$ для всех полученных значений γ_i : $\langle \gamma \rangle = \frac{\sum_{i=1}^n \gamma_i}{n} =$
- 3. Вычислите величину среднего квадратичного отклонения S по формуле:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (\gamma_i - \langle \gamma \rangle)^2}{n(n-1)}} =$$

Подп	ись студента Дата
	$\gamma = \langle \gamma \rangle \pm \Delta \gamma =$
7.	Сравните значения γ и $\gamma_{\rm T}$. Запишите окончательный результат измерений в виде:
ид	еальный газ:
	Найдите теоретическое значение $\gamma_{\scriptscriptstyle T}$, рассматривая воздух как двухатомный
5.	Оцените относительную погрешность δγ полученного значения:
4.	P = 0.95:
4	Найдите абсолютную погрешность измерений $\Delta \gamma$ при доверительной вероятности