Intelligent Data Analysis

Martin Russell School of Computer Science Tuesday, 19 March 2019

Exercise sheet – week 9 – Gaussian Mixture Models (GMMs)

- 1. Let $X = \{x_1, x_2, x_3, ..., x_N\}$ be a set of real numbers.
 - a. Show that the Maximum Likelihood estimate of the parameters m and v of a Gaussian probability density function for the set X are given by:

$$m = \frac{1}{N} \sum_{n=1}^{N} x_n$$
, $v = \frac{1}{N} \sum_{n=1}^{N} (x_n - m)^2$

[6 marks]

b. Are these values of m and v a local or global maximum? Justify your answer.

[4 marks]

2. A 2-dimensional Gaussian PDF g has mean $m = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ and covariance matrix $C = \begin{bmatrix} 13 & -5.2 \\ -5.2 & 7 \end{bmatrix}$.

The matrix C has eigenvalue decomposition $C = UDU^T$, where:

$$U = \begin{bmatrix} \cos\left(\frac{\pi}{3}\right) & -\sin\left(\frac{\pi}{3}\right) \\ \sin\left(\frac{\pi}{3}\right) & \cos\left(\frac{\pi}{3}\right) \end{bmatrix}, D = \begin{bmatrix} 4 & 0 \\ 0 & 16 \end{bmatrix}.$$

a. Sketch a 1-standard-deviation contour for g.

[4 marks].

b. Calculate $g\left(\begin{bmatrix} 1.5\\1.5 \end{bmatrix}\right)$. Show all of your calculations.

[4 marks].

- 3. What are the similarities and differences between using an M component GMM to model a set of data points in N dimensional space compared to using a set of M centroids obtained through clustering? [4 marks].
- 4. Why is the E-M algorithm necessary? Why doesn't the simple maximum likelihood parameter estimation procedure from question 1 apply to an M-component Gaussian Mixture Model (GMM)?
 [4 marks].
- 5. Let $X = \{x_1, x_2, x_3, x_4\}$, where $x_1 = 1$, $x_2 = 7$, $x_3 = 5$, $x_4 = 4$. Suppose that:
 - g_1 is a Gaussian PDF with mean m_1 = 2 and variance v_1 = 2, and
 - g_2 is a Gaussian PDF with mean m_2 = 3 and variance v_2 = 2, and
 - g is the Gaussian Mixture Model $g(x) = 0.3 \times g_1(x) + 0.7 \times g_2(x)$. Type equation here.
 - a. Calculate the new values of the means m_1 and m_2 after the application of one iteration of the E-M algorithm with the samples X. [8 marks].
 - b. Are the new values of means m_1 and m_2 guaranteed to correspond to a global or local maximum of the likelihood function? [4 marks].

[Total marks 38]