# w203\_lab2: regression models draft

```
schema <- cols(
  state = "c",
  cases_total = "i",
  cases_last_7_days = "i",
  case_rate = "n",
  case_rate_last_7_days = "n",
  deaths_total = "i",
  deaths_last_7_days = "i",
  death_rate = "n",
  death_rate_last_7_days = "n",
  tests total = "i",
  tests_positive = col_factor(
   levels = c("0-5\%", "6-10\%", "11-20\%"),
   ordered = TRUE
   ),
  test rate = "i",
  white_cases = "i",
  white_pop = "i",
  black_cases = "i",
  black_pop = "i",
  hispanic_cases = "i",
  hispanic_pop = "i",
  other_cases = "i",
  other_pop = "i",
  white_deaths = "i",
  black_deaths = "i",
  hispanic_deaths = "i",
  other_deaths = "i",
  emerg_date = col_date(format = "%d/%m/%Y"),
  beg_bus_close_date = col_date(format = "%d/%m/%Y"),
  end_bus_close_date = col_date(format = "%d/%m/%Y"),
  bus_close_days = "i",
  beg_shelter_date = col_date(format = "%d/%m/%Y"),
  end_shelter_date = col_date(format = "%d/%m/%Y"),
  shelter_days = "i",
  mask_date = col_date(format = "%d/%m/%Y"),
  mask_use = "1",
  mask_legal = "l",
  beg_maskbus_date = col_date(format = "%d/%m/%Y"),
  end_maskbus_date = col_date(format = "%d/%m/%Y"),
  maskbus_use = "l",
  gov_party = col_factor(
   levels = c("R", "D"),
   ordered = FALSE
  ),
  pop_dens = "n",
```

```
pop_total = "i",
pre_cond_total = "i",
serious_illness_pct = "n",
all_cause_deaths_total = "i",
homeless_total = "i",
medicaid_pct = "i",
life_expectancy = "n",
unemployment_rate = "n",
poverty_rate = "n",
weekly_UI_max_amount = "i",
household_income = "i",
age_0_18 = "i",
age_19_25 = "i",
age_26_34 = "i",
age_35_54 = "i",
age_{55_{64}} = "i",
age_65 = "i",
mob_RR = "i",
mob_GP = "i",
mob_PK = "i",
mob_TS = "i",
mob_WP = "i",
mob_RS = "i"
```

```
df <- read_delim(
  file = "clean_covid_19_LB_version.csv",
  delim = ";",
  col_names = TRUE,
  col_types = schema,
  na = ""
)</pre>
```

Question: Should we include test\_rate (or any transformation of it) as an initial variable on our model? Answer: Yes, we should include test\_rate on our initial model version with no transformation

```
plot1 <- df %>%
    ggplot(aes(y = case_rate, x = test_rate)) +
    geom_point() +
    labs(
        title = "Relationship between Test Rate and Case Rate by state",
        x = "Test Rate per 100K",
        y = "Case Rate per 100K"
    )
plot1
```

# Relationship between Test Rate and Case Rate by state



```
plot2 <- df %>%
  ggplot(aes(y = case_rate, x = log(test_rate))) +
  geom_point() +
  labs(
    title = "Relationship between Squared Test Rate and Case Rate by state",
    x = "Squared Test Rate per 100K",
    y = "Case Rate per 100K"
  )
plot2
```

#### Relationship between Squared Test Rate and Case Rate by state



```
df$sqrt_test_rate = df$test_rate^2
```

```
mod1_1 <- lm(case_rate ~</pre>
              mask_use,
            data = df
mod1_2 \leftarrow lm(case\_rate \sim
              mask_use +
              test_rate,
            data = df
mod1_3 <- lm(case_rate ~</pre>
              mask_use +
              log(test_rate),
            data = df
            )
std_errors = list(
  sqrt(diag(vcovHC(mod1_1))),
  sqrt(diag(vcovHC(mod1_2))),
  sqrt(diag(vcovHC(mod1_3)))
stargazer(mod1_1, mod1_2, mod1_3, se = std_errors, type = "text")
```

```
##
##
                                     Dependent variable:
##
##
                                          case_rate
                         (1)
                                            (2)
                                                               (3)
##
## mask use
                       -830.000**
                                         -990.470***
                                                           -983.274***
                       (343.609)
##
                                         (324.753)
                                                           (337.720)
##
## test_rate
                                           0.018*
                                           (0.010)
##
##
## log(test_rate)
                                                             893.463*
##
                                                             (523.727)
##
                      3,302.765***
                                       2,530.239***
## Constant
                                                            -6,155.628
                       (293.589)
                                          (501.044)
##
                                                            (5,533.903)
## Observations
                          51
                                            51
                                                               51
                        0.121
                                          0.236
                                                              0.211
## Adjusted R2
                                          0.204
                                                              0.178
                        0.103
## Residual Std. Error 1,076.417 (df = 49) 1,013.835 (df = 48) 1,030.367 (df = 48)
## F Statistic 6.738** (df = 1; 49) 7.416*** (df = 2; 48) 6.416*** (df = 2; 48)
## Note:
                                                  *p<0.1; **p<0.05; ***p<0.01
```

Question: Should we include pop\_dens as an another initial variable on our model on top of test\_rate? Answer: No, we should not add pop\_dens to our regression model

```
plot3 <- df %>%
    ggplot(aes(y = case_rate, x = pop_dens)) +
    geom_point() +
    labs(
        title = "Relationship between Population Density and Case Rate by state",
        x = "Population Density",
        y = "Case Rate per 100K"
    )
plot3
```

# Relationship between Population Density and Case Rate by state



```
plot4 <- df %>%
    ggplot(aes(y = case_rate, x = log(pop_dens))) +
    geom_point() +
    labs(
        title = "Relationship between Log Population Density and Case Rate by state",
        x = "Log Population Density",
        y = "Case Rate per 100K"
    )
plot4
```

# Relationship between Log Population Density and Case Rate by state



```
mod2_1 <- lm (case_rate ~</pre>
                 mask_use +
                 test_rate,
               data = df
mod2_2 \leftarrow lm (case_rate \sim
                 mask_use +
                 test_rate +
                 pop_dens,
               data = df
mod2_3 \leftarrow lm (case_rate \sim
                 mask_use +
                 test_rate +
                 log(pop_dens),
               data = df
std_errors = list(
  sqrt(diag(vcovHC(mod2_1))),
  sqrt(diag(vcovHC(mod2_2))),
  sqrt(diag(vcovHC(mod2_3)))
  )
```

stargazer(mod2\_1, mod2\_2, mod2\_3, se = std\_errors, type = "text")

| ##             |                                        |                                                   |                                             |                            |  |
|----------------|----------------------------------------|---------------------------------------------------|---------------------------------------------|----------------------------|--|
| ##<br>##<br>## |                                        |                                                   | Dependent variable:                         |                            |  |
| ##<br>##<br>## |                                        | (1)                                               | case_rate<br>(2)                            | (3)                        |  |
|                | mask_use                               | -990.470***<br>(324.753)                          | -972.696***<br>(325.461)                    | -984.312***<br>(370.777)   |  |
|                |                                        | 0.018*<br>(0.010)                                 | 0.019*<br>(0.011)                           | 0.018<br>(0.012)           |  |
| ##<br>##<br>## | pop_dens                               |                                                   | -0.001<br>(0.002)                           |                            |  |
| ##<br>##<br>## |                                        |                                                   |                                             | -6.833<br>(152.039)        |  |
| ##<br>##       |                                        | 2,530.239***<br>(501.044)                         | 2,493.487***<br>(521.334)                   | 2,588.169**<br>(1,200.805) |  |
| ##<br>##<br>## | Observations<br>R2<br>Adjusted R2      | 51<br>0.236<br>0.204<br>Error 1,013.835 (df = 48) | 51<br>0.242<br>0.194<br>1,020.343 (df = 47) |                            |  |
|                | ====================================== |                                                   |                                             |                            |  |

Question: Should we include any variable to control for age demographics? If yes, which variable does the better job in improving our model explanability?

Answer: Yes, we should include age\_below\_25

#### var(df[ ,c(4, 51:56)], na.rm=TRUE)

```
##
                                age_0_18
                                           age_19_25 age_26_34
                                                                     age_35_54
                 case_rate
## case_rate 1291651.53020 1200.3352941 513.0494118 54.7219608 -335.82666667
## age_0_18
                1200.33529
                               5.0329412
                                           0.8741176 -0.1870588
                                                                   -0.76000000
## age_19_25
                 513.04941
                               0.8741176
                                           0.5717647
                                                       0.4541176
                                                                   -0.22000000
## age_26_34
                  54.72196
                              -0.1870588
                                           0.4541176
                                                       2.2596078
                                                                    0.31333333
## age_35_54
                -335.82667
                              -0.7600000
                                          -0.2200000
                                                      0.3133333
                                                                    0.98666667
## age_55_64
                -471.88980
                              -1.8047059
                                          -0.5505882 -1.0980392
                                                                    0.05333333
## age_65
                -746.74706
                              -2.9505882
                                          -1.0188235 -1.6705882
                                                                   -0.44000000
##
                 age_55_64
                                 age_65
## case_rate -471.88980392 -746.747059
## age_0_18
               -1.80470588
                              -2.950588
## age_19_25
               -0.55058824
                              -1.018824
## age_26_34
               -1.09803922
                              -1.670588
```

```
## age_35_54
                0.05333333
                             -0.440000
## age_55_64
                1.53019608
                              1.872941
## age_65
                1.87294118
                              4.294118
df$age_below_25 = df$age_0_18 + df$age_19_25
df$age_above_55 = df$age_55_64 + df$age_65
var(df[ ,c(4, 64:65)], na.rm=TRUE)
##
                  case_rate age_below_25 age_above_55
## case_rate
                1291651.530 1713.384706 -1218.636863
## age_below_25
                   1713.385
                                            -6.324706
                                7.352941
## age_above_55
                  -1218.637
                               -6.324706
                                             9.570196
plot5 <- df %>%
  ggplot(aes(y = case_rate, x = age_below_25)) +
  geom_point() +
  labs(
   title = "Relationship between Pct Below 25 and Case Rate by state",
   x = "\% of Population Below 25",
    y = "Case Rate per 100K"
  )
plot5
```

#### Relationship between Pct Below 25 and Case Rate by state



```
plot6 <- df %>%
    ggplot(aes(y = case_rate, x = age_above_55)) +
    geom_point() +
    labs(
        title = "Relationship between Pct Above 55 and Case Rate by state",
        x = "% of Population Above 55",
        y = "Case Rate per 100K"
    )
plot6
```

#### Relationship between Pct Above 55 and Case Rate by state



```
age_above_55,
data = df
)

std_errors = list(
    sqrt(diag(vcovHC(mod3_1))),
    sqrt(diag(vcovHC(mod3_2))),
    sqrt(diag(vcovHC(mod3_3)))
)

stargazer(mod3_1, mod3_2, mod3_3, se = std_errors, type = "text")
```

| ##<br>##              |                           | Dependent variable: |               |  |
|-----------------------|---------------------------|---------------------|---------------|--|
| ##                    | (1)                       | case_rate<br>(2)    | (3)           |  |
| ## mask_use           |                           | -806.717***         | -1,059.154*** |  |
| ##                    | (324.753)                 | (265.274)           | (286.999)     |  |
| ## test_rate          | 0.018*                    | 0.020*              | 0.016         |  |
| ## test_rate          | (0.010)                   | (0.012)             | (0.012)       |  |
| ##                    | <b>(</b>                  |                     | ,             |  |
| ## age_below_25       |                           | 224.736***          |               |  |
| ##                    |                           | (76.416)            |               |  |
| ## ## ago abovo 55    |                           |                     | -129.544**    |  |
| ## age_above_55<br>## |                           |                     | (52.140)      |  |
| ##                    |                           |                     | (02.110)      |  |
| ## Constant           | 2,530.239***              | -4,942.849*         | 6,553.500***  |  |
| ##                    | (501.044)                 | (2,790.278)         | (1,555.372)   |  |
| ##                    |                           |                     |               |  |
| ## Observations       | 51                        | <br>51              | 51            |  |
| ## R2                 | 0.236                     | 0.516               | 0.357         |  |
| ## Adjusted R2        | 0.204                     | 0.485               | 0.316         |  |
|                       | Error 1,013.835 (df = 48) |                     |               |  |
|                       | 7.416*** (df = 2; 48)     | ·                   |               |  |

Question: Should we include any variable to control for socio-economic differences among states? If yes, which variable does the better job in improving our model explanability?

Answer: No, we should not include any variable to control for socio-economic differences. Poverty\_rate could be an option, but it has high collinearity with black\_pop. And at the final model black\_pop does a better job than poverty\_rate.

```
var(df[ ,c(4, 44, 47, 48, 50)], na.rm = TRUE)
```

case\_rate homeless\_total unemployment\_rate poverty\_rate

```
## case_rate
                      1310901.7404
                                      2298722.238
                                                           -534.4865
                                                                        8944.9616
## homeless_total
                      2298722.2384 593414662.410
                                                         32545.7747
                                                                       -7124.5159
                                                                         184.7886
## unemployment_rate
                         -534.4865
                                        32545.775
                                                           113.7861
## poverty_rate
                         8944.9616
                                        -7124.516
                                                            184.7886
                                                                         816.6220
## household_income -3030031.8669
                                      3380857.778
                                                         -2281.5012 -16739.5698
##
                     household income
## case rate
                         -3030031.867
## homeless_total
                          3380857.778
## unemployment_rate
                            -2281.501
## poverty_rate
                           -16739.570
## household_income
                        104263090.902
plot7 <- df %>%
  ggplot(aes(y = case_rate, x = homeless_total)) +
  geom_point() +
 labs(
   title = "Relationship between Homeless Population and Case Rate by state",
```

x = "Homeless Population",
y = "Case Rate per 100K"

) plot7

### Relationship between Homeless Population and Case Rate by state



```
plot8 <- df %>%
    ggplot(aes(y = case_rate, x = log(homeless_total))) +
    geom_point() +
    labs(
```

```
title = "Relationship between Log Homeless Population and Case Rate by state",
    x = "Log Homeless Population",
    y = "Case Rate per 100K"
)
plot8
```

#### Relationship between Log Homeless Population and Case Rate by state



```
plot9 <- df %>%
    ggplot(aes(y = case_rate, x = household_income)) +
    geom_point() +
    labs(
        title = "Relationship between Median Household Income and Case Rate by state",
        x = "Household Income",
        y = "Case Rate per 100K"
    )
plot9
```

# Relationship between Median Household Income and Case Rate by state



```
plot10 <- df %>%
    ggplot(aes(y = case_rate, x = poverty_rate)) +
    geom_point() +
    labs(
        title = "Relationship between Poverty Rate and Case Rate by state",
        x = "Poverty Rate",
        y = "Case Rate per 100K"
    )
plot10
```

# Relationship between Poverty Rate and Case Rate by state



```
mod4_1 \leftarrow lm (case_rate \sim
                  mask_use +
                  test_rate +
                  age_below_25,
                data = df
                  )
mod4_2 \leftarrow lm (case\_rate \sim
                  mask_use +
                  test_rate +
                  age_below_25 +
                  log(homeless_total),
                data = df
                  )
mod4_3 \leftarrow lm (case\_rate \sim
                  mask_use +
                  test_rate +
                  age_below_25 +
                  household_income,
                data = df
                  )
mod4_4 \leftarrow lm (case_rate \sim
                  mask_use +
                   test_rate +
```

| Dependent variable:                |                        |              |                        |             |
|------------------------------------|------------------------|--------------|------------------------|-------------|
| #                                  |                        | case         | _rate                  |             |
| #                                  | (1)                    | (2)          | (3)                    | (4          |
| #<br># mask_use                    | -806.717***            | -857.694***  | -854.375***            | <br>-849.6  |
| #                                  | (265.274)              | (300.554)    | (267.011)              | (226.       |
| #                                  |                        |              |                        |             |
| # test_rate                        | 0.020*                 | 0.020        | 0.019                  | 0.02        |
| #                                  | (0.012)                | (0.012)      | (0.012)                | (0.0        |
| #                                  |                        |              |                        |             |
| # age_below_25                     | 224.736***             | 225.388***   | 216.980***             | 210.0       |
| #                                  | (76.416)               | (74.665)     | (76.178)               | (61.        |
| #                                  |                        | 04 404       |                        |             |
| <pre># log(homeless_total) "</pre> |                        | 81.191       |                        |             |
| #                                  |                        | (154.671)    |                        |             |
| #<br># household_income            |                        |              | -0.007                 |             |
| # nousenoid_income<br>#            |                        |              | (0.011)                |             |
| #                                  |                        |              | (0.011)                |             |
| "<br># poverty_rate                |                        |              |                        | 11.0        |
| #                                  |                        |              |                        | (4.5        |
| #                                  |                        |              |                        |             |
| # Constant                         | -4,942.849*            | -5,625.272** | -4,165.459             | -5,958.     |
| #                                  | (2,790.278)            | (2,718.923)  | (2,981.378)            | (2,177      |
| #                                  |                        |              |                        |             |
| #                                  |                        |              |                        |             |
| # Observations                     | 51                     | 51           | 50                     | 5           |
| # R2                               | 0.516                  | 0.522        | 0.534                  | 0.5         |
| # Adjusted R2                      | 0.485                  | 0.481        | 0.493                  | 0.5         |
|                                    |                        |              | 815.392  (df = 45)     |             |
| # F Statistic                      | 16.684*** (df = 3; 47) | ·            | 12.903*** (df = 4; 45) | 16.492*** ( |

Question: Should we include any variable to control for race mix differences among states? If yes, which variable does the better job in improving our model explanability?

Answer: Yes, we should include the log(black\_pop)

```
var(df[ ,c(4, 14, 16, 18)], na.rm=TRUE)
```

```
##
                               white_pop black_pop hispanic_pop
                   case_rate
## case_rate
                1291651.5302 -1410.79725 3061.76588
                                                       612.26275
                  -1410.7973
                                          -76.75765
## white_pop
                               292.47843
                                                      -116.18157
                   3061.7659
                               -76.75765 113.49647
                                                       -14.41765
## black_pop
## hispanic_pop
                    612.2627 -116.18157 -14.41765
                                                       108.31843
```

```
plot11 <- df %>%
    ggplot(aes(y = case_rate, x = black_pop)) +
    geom_point() +
    labs(
        title = "Relationship between % of Blacks and Case Rate by state",
        x = "% of Blacks in Total Population",
        y = "Case Rate per 100K"
    )
plot11
```

## Relationship between % of Blacks and Case Rate by state



```
plot12 <- df %>%
    ggplot(aes(y = case_rate, x = log(black_pop))) +
    geom_point() +
    labs(
        title = "Relationship between Log % of Blacks and Case Rate by state",
```

```
x = "Log % of Blacks in Total Population",
y = "Case Rate per 100K"
)
plot12
```

#### Relationship between Log % of Blacks and Case Rate by state



df\$black\_pop[df\$black\_pop == 0] = 0.01

```
age_below_25 +
    log(black_pop),
    data = df
    )

std_errors = list(
    sqrt(diag(vcovHC(mod5_1))),
    sqrt(diag(vcovHC(mod5_2))),
    sqrt(diag(vcovHC(mod5_3)))
    )

stargazer(mod5_1, mod5_2, mod5_3, se = std_errors, type = "text")
```

| ‡<br>‡                             | Dependent variable:                         |                                             |                   |
|------------------------------------|---------------------------------------------|---------------------------------------------|-------------------|
| !<br>!                             | (1)                                         | case_rate<br>(2)                            | (3)               |
| t<br>t mask_use                    | <br>-806.717***                             |                                             | <br>-1,050.513*** |
| ŧ                                  | (265.274)                                   | (243.679)                                   | (249.837)         |
| t<br>test_rate                     | 0.020*                                      | 0.020*                                      | 0.020*            |
| ‡                                  | (0.012)                                     | (0.012)                                     | (0.011)           |
| t<br>tage_below_25                 | 224.736***                                  | 220.471***                                  | 220.014***        |
| ŧ                                  | (76.416)                                    | (64.117)                                    | (63.693)          |
| t<br>t black_pop                   |                                             | 29.167**                                    |                   |
| ŧ                                  |                                             | (14.469)                                    |                   |
| t<br>t log(black_pop)              |                                             |                                             | 182.231**         |
| ŧ                                  |                                             |                                             | (71.793)          |
| t<br>Constant                      | -4,942.849*                                 | -5,068.198**                                | -4,922.534**      |
| <b>!</b><br>!                      | (2,790.278)                                 | (2,316.645)                                 | (2,354.761)       |
| t<br>t Observations                | <br>51                                      | <br>51                                      | <br>51            |
| R2                                 | 0.516                                       | 0.589                                       | 0.595             |
| # Adjusted R2                      | 0.485                                       | 0.554                                       | 0.560             |
| Residual Std. Error<br>F Statistic | 815.744 (df = 47)<br>16.684*** (df = 3; 47) | 759.202 (df = 46)<br>16.512*** (df = 4; 46) |                   |

Question: Should we include any indicator from Google mobility? If yes, which variable does the better job in improving our model explanability?

Answer: Yes, we should include the mob\_TS variable

```
var(df[ ,c(4, 57:62)], na.rm=TRUE)
##
                            mob_R&R
                                       mob\_G\&P
                case_rate
                                                     mob_P
                                                               mob\_TS
                                                                          mob_WP
## case_rate 1291651.5302 1618.18235 995.136471 -9142.82078 4669.04157 1177.39843
## mob_R&R
              1618.1824
                            56.02824 31.997647
                                                  139.19059
                                                              96.65882
                                                                        40.62118
## mob_G&P
                995.1365
                            31.99765 34.543529
                                                  90.81412
                                                              61.47176
                                                                         23.22824
## mob_P
               -9142.8208 139.19059 90.814118 1348.20314
                                                            168.71373
                                                                        77.12627
## mob_TS
               4669.0416
                           96.65882 61.471765
                                                168.71373
                                                            301.09255
                                                                        98.56745
## mob_WP
               1177.3984
                           40.62118 23.228235
                                                 77.12627
                                                             98.56745
                                                                        45.01255
## mob_RES
               -582.8475 -16.50941 -8.345882 -45.63020 -39.23961 -15.12039
##
                mob RES
## case_rate -582.847451
              -16.509412
## mob R&R
## mob_G&P
              -8.345882
## mob_P
              -45.630196
## mob TS
             -39.239608
## mob_WP
             -15.120392
## mob_RES
               8.043137
plot13 <- df %>%
  ggplot(aes(y = case_rate, x = mob_TS)) +
  geom_point() +
  labs(
   title = "Relationship between Mobility in Terminal Stations and Case Rate by state",
    x = "Mobility in Terminal Stations",
    y = "Case Rate per 100K"
  )
plot13
```

#### Relationship between Mobility in Terminal Stations and Case Rate by state



```
mod6_1 <- lm (case_rate ~</pre>
                 mask_use +
                 test_rate +
                 age_below_25 +
                 log(black_pop),
               data = df
mod6_2 \leftarrow lm (case_rate \sim
                 mask_use +
                 test_rate +
                 age_below_25 +
                 log(black_pop) +
                 mob_TS,
               data = df
                 )
std_errors = list(
  sqrt(diag(vcovHC(mod6_1))),
  sqrt(diag(vcovHC(mod6_2)))
stargazer(mod6_1, mod6_2, se = std_errors, type = "text")
```

| ##<br>## |                     | Dependent variable:                     |                         |  |  |
|----------|---------------------|-----------------------------------------|-------------------------|--|--|
| ##       |                     | case                                    | case_rate               |  |  |
| ##       |                     | (1)                                     | (2)                     |  |  |
| ##<br>## | mask_use            | -1,050.513***                           | -961.366***             |  |  |
| ##       | _                   | (249.837)                               | (240.032)               |  |  |
| ##       | test rate           | 0.020*                                  | 0.024**                 |  |  |
| ##       | 0000_1400           | (0.011)                                 | (0.012)                 |  |  |
| ##       | aga halay 25        | 220.014***                              | 191.802***              |  |  |
| ##       | age_below_25        | (63.693)                                | (57.522)                |  |  |
| ##       | - 4 >               | 400.004                                 | 004 405                 |  |  |
| ##       | log(black_pop)      | 182.231**<br>(71.793)                   | 221.195***<br>(83.120)  |  |  |
| ##       |                     | (, 2, , , , , , , , , , , , , , , , , , | (00.120)                |  |  |
| ##<br>## | mob_TS              |                                         | 16.017**                |  |  |
| ##       |                     |                                         | (7.479)                 |  |  |
|          | Constant            | -4,922.534**                            | -3,999.773*             |  |  |
| ##       |                     | (2,354.761)                             | (2,133.506)             |  |  |
| ##       |                     |                                         |                         |  |  |
|          | Observations        | 51                                      | 51                      |  |  |
|          | R2<br>Adjusted R2   | 0.595<br>0.560                          | 0.633<br>0.593          |  |  |
| ##       | Residual Std. Error | 754.292 (df = 46)                       |                         |  |  |
|          | F Statistic         |                                         | 15.550*** (df = 5; 45)  |  |  |
|          | Note:               |                                         | .1; **p<0.05; ***p<0.01 |  |  |

Question: Should we include any other variable related to policies adopted by states? If yes, which variable does the better job on improving our model explanability?

Answer: Yes, we should include shelter\_days and bus\_close\_days just a matter of performing an acid test on the mask\_use (see if it continues to be statistically and pratically significant)

```
var(df[,c(4, 28, 31, 34, 37)], na.rm=TRUE)
```

```
##
                      case_rate bus_close_days shelter_days
                                                                mask_legal
## case rate
                  1224051.20041
                                 -2318.7163265 -14179.758367 -96.71877551
                                                               -0.69183673
## bus_close_days
                    -2318.71633
                                    194.9897959
                                                   231.138776
## shelter_days
                   -14179.75837
                                    231.1387755
                                                  1849.307755
                                                                 4.39510204
## mask_legal
                      -96.71878
                                     -0.6918367
                                                     4.395102
                                                                 0.19632653
## maskbus use
                      -78.98816
                                      1.5734694
                                                     3.795102
                                                                 0.01673469
##
                   maskbus_use
## case_rate
                  -78.98816327
## bus_close_days
                    1.57346939
## shelter_days
                    3.79510204
## mask_legal
                    0.01673469
## maskbus_use
                    0.12285714
```

```
plot14 <- df %>%
    ggplot(aes(y = case_rate, x = shelter_days)) +
    geom_point() +
    labs(
        title = "Relationship between Shelter in Place and Case Rate by state",
        x = "Number of Days of Shelter in Place",
        y = "Case Rate per 100K"
    )
plot14
```

### Relationship between Shelter in Place and Case Rate by state



```
plot15 <- df %>%
    ggplot(aes(y = case_rate, x = bus_close_days)) +
    geom_point() +
    labs(
        title = "Relationship between Non-Essential Business Closure and Case Rate by state",
        x = "Number of Days of Non-Essential Business Closed",
        y = "Case Rate per 100K"
    )
plot15
```

# Relationship between Non-Essential Business Closure and Case Rate by



Number of Days of Non-Essential Business Closed

```
mod7_1 <- lm (case_rate ~</pre>
                 mask_use +
                 sqrt_test_rate +
                 age_below_25 +
                 log(black_pop) +
                 mob_TS,
               data = df
                 )
mod7_2 \leftarrow lm (case\_rate \sim
                 mask_use +
                 sqrt_test_rate +
                 age_below_25 +
                 log(black_pop) +
                 mob_TS +
                 shelter_days,
               data = df
                 )
mod7_3 \leftarrow lm (case_rate \sim
                 mask_use +
                 sqrt_test_rate +
                 age_below_25 +
                 log(black_pop) +
                 mob_TS +
                 bus_close_days,
```

```
data = df
                )
mod7_4 \leftarrow lm (case_rate \sim
                mask_use +
                sqrt_test_rate +
                age_below_25 +
                log(black_pop) +
                mob_TS +
                shelter_days +
                bus_close_days,
              data = df
                )
std_errors = list(
  sqrt(diag(vcovHC(mod7_1))),
  sqrt(diag(vcovHC(mod7_2))),
  sqrt(diag(vcovHC(mod7_3))),
  sqrt(diag(vcovHC(mod7_4)))
stargazer(mod7_1, mod7_2, mod7_3, mod7_4, se = std_errors, type = "text")
```

| ## ========             |                       |                       |                       |                 |  |
|-------------------------|-----------------------|-----------------------|-----------------------|-----------------|--|
| ##<br>##                | Dependent variable:   |                       |                       |                 |  |
| ##<br>##                |                       | case                  | <br>rate              |                 |  |
| ##                      | (1)                   | (2)                   | (3)                   | (4)             |  |
| ##<br>## mask_use       | <br>-941.458***       | <br>-923.895***       | -930.044***           | <br>-914.3'     |  |
| ## mask_ase<br>##       | (254.014)             | (266.207)             | (294.184)             | (299.3          |  |
| ##                      | 0.0000                | 0.00000               | 0.00000               | 0.00            |  |
| ## sqrt_test_rate<br>## | 0.00000*<br>(0.00000) | 0.00000*<br>(0.00000) | 0.00000*<br>(0.00000) | 0.000<br>(0.000 |  |
| ##                      | (0.0000)              | (0.0000)              | (0.0000)              | (0.00           |  |
| ## age_below_25         | 189.009***            | 186.940***            | 188.893***            | 186.9           |  |
| ##                      | (55.740)              | (56.016)              | (51.068)              | (52.            |  |
| ##<br>## log(black_pop) | 214.014***            | 211.922***            | 214.376**             | 212.1           |  |
| ##                      | (80.323)              | (82.095)              | (87.554)              | (88.4           |  |
| ##                      |                       |                       |                       |                 |  |
| ## mob_TS               | 15.181**              | 14.441*               | 15.499**              | 14.79           |  |
| ##<br>##                | (7.521)               | (8.017)               | (7.885)               | (8.3            |  |
| ## shelter_days         |                       | -0.847                |                       | -1.0            |  |
| ##                      |                       | (2.048)               |                       | (1.8            |  |
| ##<br>## bus_close_days |                       |                       | 5.860                 | 6.5             |  |
| ## bus_close_days<br>## |                       |                       | (12.697)              | (12.            |  |
| ##                      |                       |                       | • • • • •             | ,               |  |
| ## Constant             | -3,252.670*           | -3,163.101            | -3,524.995**          | -3,456          |  |
| ##                      | (1,937.655)           | (1,942.548)           | (1,689.708)           | (1,735          |  |

```
##
## Observations
                       51
## R2
                      0.630
                                      0.631
                                                       0.628
                                                                        0.6
## Adjusted R2
                      0.589
                                      0.581
                                                       0.576
                                                                        0.5
                                 736.018 (df = 44)
                                                  720.555 (df = 43)
## Residual Std. Error 728.564 (df = 45)
                                                                   727.921 (
## F Statistic 15.334*** (df = 5; 45) 12.536*** (df = 6; 44) 12.087*** (df = 6; 43) 10.171*** (
## Note:
                                                               *p<0.1; **p<0.05
```

Question: What should be our final three model versions?

```
Answer: model\_1 \sim mask\_use + test\_rate \ model\_2 \sim mask\_use + test\_rate + below\_25 + log(black\_pop) \\ model\_3 \sim mask\_use + test\_rate + below\_25 + log(black\_pop) + shelter\_days + bus\_close\_days
```

model\_1 is point of departure model\_2 is our best model model\_3 is aimed to stress the significance of our coefficient when we add another policies that compete for variability with mask\_use

```
mod8_1 <- lm (case_rate ~</pre>
                 mask_use +
                 test_rate,
               data = df
                 )
mod8_2 <- lm (case_rate ~</pre>
                 mask use +
                 test_rate +
                 age_below_25 +
                 log(black_pop) +
                 mob_TS,
               data = df
                 )
mod8_3 <- lm (case_rate ~</pre>
                 mask_use +
                 test_rate +
                 age_below_25 +
                 log(black_pop) +
                 mob TS +
                 shelter_days +
                 bus_close_days,
               data = df
                 )
std errors = list(
  sqrt(diag(vcovHC(mod8_1))),
  sqrt(diag(vcovHC(mod8_2))),
  sqrt(diag(vcovHC(mod8_3)))
stargazer(mod8_1, mod8_2, mod8_3, se = std_errors, type = "text")
```

| ##<br>## |                   |                                         | Dependent variable:    |                         |  |  |
|----------|-------------------|-----------------------------------------|------------------------|-------------------------|--|--|
| ##<br>## |                   | (1)                                     | case_rate<br>(2)       | (3)                     |  |  |
| ##<br>## | mask_use          | -990.470***                             | -961.366***            | -940.666***             |  |  |
| ##<br>## |                   | (324.753)                               | (240.032)              | (284.877)               |  |  |
|          | test_rate         | 0.018*                                  | 0.024**                | 0.023*                  |  |  |
| ##<br>## |                   | (0.010)                                 | (0.012)                | (0.012)                 |  |  |
|          | age_below_25      |                                         | 191.802***             | 190.437***              |  |  |
| ##<br>## |                   |                                         | (57.522)               | (54.186)                |  |  |
|          | log(black_pop)    |                                         | 221.195***             | 219.955**               |  |  |
| ##<br>## |                   |                                         | (83.120)               | (91.170)                |  |  |
|          | mob_TS            |                                         | 16.017**               | 15.920*                 |  |  |
| ##<br>## |                   |                                         | (7.479)                | (8.452)                 |  |  |
| ##       | shelter_days      |                                         |                        | -0.768                  |  |  |
| ##<br>## |                   |                                         |                        | (1.764)                 |  |  |
|          | bus_close_days    |                                         |                        | 6.819                   |  |  |
| ##<br>## |                   |                                         |                        | (12.360)                |  |  |
|          | Constant          | 2,530.239***                            | -3,999.773*            | -4,228.707**            |  |  |
| ##<br>## |                   | (501.044)                               | (2,133.506)            | (1,982.136)             |  |  |
| ##       |                   |                                         |                        |                         |  |  |
|          | Observations      | 51                                      | 51                     | 50                      |  |  |
|          | R2<br>Adjusted R2 | 0.236<br>0.204                          | 0.633<br>0.593         | 0.633<br>0.572          |  |  |
|          | •                 |                                         | 725.343 (df = 45)      |                         |  |  |
| ##       | F Statistic       | 7.416*** (df = 2; 48)                   | 15.550*** (df = 5; 45) | 10.355*** (df = 7; 42)  |  |  |
|          | Note:             | ======================================= | *p<0                   | .1; **p<0.05; ***p<0.01 |  |  |

What would it look like if we had added poverty rate?

```
mod8_3 \leftarrow lm (case_rate \sim
                mask_use +
                test_rate +
                age_below_25 +
                poverty_rate +
                log(black_pop) +
                mob_TS +
                shelter_days +
                bus_close_days,
              data = df
                )
std_errors = list(
  sqrt(diag(vcovHC(mod8_1))),
  sqrt(diag(vcovHC(mod8_2))),
  sqrt(diag(vcovHC(mod8_3)))
  )
stargazer(mod8_1, mod8_2, mod8_3, se = std_errors, type = "text")
```

| ##       |                |                     |                    |                   |  |
|----------|----------------|---------------------|--------------------|-------------------|--|
| ##       |                |                     |                    |                   |  |
| ##       |                | Dependent variable: |                    |                   |  |
| ##       |                |                     | case_rate          |                   |  |
| ##       |                | (1)                 | (2)                | (3)               |  |
| ##       |                |                     |                    |                   |  |
|          | mask_use       |                     | -971.910***        | -940.918***       |  |
| ##       |                | (324.753)           | (244.600)          | (276.727)         |  |
| ##       |                | 0.0104              | 0.004              | 0.000#            |  |
| ##       | test_rate      | 0.018*<br>(0.010)   | 0.024**<br>(0.011) | 0.022*<br>(0.012) |  |
| ##       |                | (0.010)             | (0.011)            | (0.012)           |  |
|          | age_below_25   |                     | 193.802***         | 191.382***        |  |
| ##       |                |                     | (53.306)           | (49.384)          |  |
| ##       |                |                     | (66.666)           | (10.001)          |  |
|          | poverty_rate   |                     | 5.400              | 8.045             |  |
| ##       |                |                     | (4.658)            | (6.156)           |  |
| ##       |                |                     |                    |                   |  |
| ##       | log(black_pop) |                     | 181.651**          | 157.591*          |  |
| ##       |                |                     | (84.299)           | (91.597)          |  |
| ##       |                |                     |                    |                   |  |
|          | mob_TS         |                     | 11.207             | 7.960             |  |
| ##       |                |                     | (8.462)            | (10.611)          |  |
| ##       |                |                     |                    |                   |  |
|          | shelter_days   |                     |                    | -2.655            |  |
| ##       |                |                     |                    | (3.235)           |  |
| ##       |                |                     |                    | 10.489            |  |
| ##<br>## |                |                     |                    | (13.039)          |  |
| ##       |                |                     |                    | (13.033)          |  |
| π#       |                |                     |                    |                   |  |

| ##<br>## | Constant                                | 2,530.239***<br>(501.044) | -4,776.968**<br>(1,942.991) | -5,374.913***<br>(1,812.792) |
|----------|-----------------------------------------|---------------------------|-----------------------------|------------------------------|
| ##       |                                         |                           |                             |                              |
| ##       |                                         |                           |                             |                              |
| ##       | Observations                            | 51                        | 51                          | 50                           |
| ##       | R2                                      | 0.236                     | 0.646                       | 0.658                        |
| ##       | Adjusted R2                             | 0.204                     | 0.597                       | 0.591                        |
| ##       | Residual Std. Error                     | 1,013.835 (df = 48)       | 721.192 (df = 44)           | 707.701 (df = 41)            |
| ##       | F Statistic                             | 7.416*** (df = 2; 48)     | 13.362*** (df = 6; 44)      | 9.844*** (df = 8; 41)        |
| ##       | ======================================= |                           |                             |                              |
| ##       | Note:                                   |                           | *p<0.                       | 1; **p<0.05; ***p<0.01       |