Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica

EL-2207 Elementos Activos

Profesores: Dr.-Ing. Juan José Montero Rodríguez

Ing. Mauricio Segura Quiros Ing. Aníbal Ruiz Barquero

I Semestre 2019

Reposición

17 de junio de 2019

Total de Puntos:	56
Puntos obtenidos:	
Porcentaje:	
Nota:	

Nombre:	Carné:	

Instrucciones Generales

- Resuelva el examen en forma ordenada y clara.
- No se aceptarán reclamos de desarrollos con lápiz, borrones o corrector de lapicero.
- Si trabaja con lápiz, debe encerrar en recuadro su respuesta final con lapicero.
- El uso de lapicero rojo no está permitido.
- El uso del teléfono celular no es permitido. Este tipo de dispositivos debe permanecer totalmente apagado durante el examen.
- No se permite el uso de calculadora programable.
- Únicamente se atenderán dudas de forma.
- El instructivo de examen debe ser devuelto junto con su solución.
- El examen es una prueba individual.
- El no cumplimiento de los puntos anteriores equivale a una nota igual a cero en el ejercicio correspondiente o en el examen.
- Esta prueba tiene una duración de 3 horas, a partir de su hora de inicio.

Falso o verdadero	de 15
Problema 1	de 15
Problema 2	de 12
Problema 3	de 14

Problema 1. Contactos M-S y S-S

15 pts

En la Figura 1.1 se muestra el diagrama de bandas de energía de una unión PN dada, donde se observa la actividad de portadores del diodo de unión PN descrito. Se sabe que el semiconductor tiene un área de $10\mu m$ x $10\mu m$, está construido con Silicio y además está dopado con $N_A = 2x10^{15}$ cm⁻³ y $N_D = 3x10^{17}$ cm⁻³. Para dicho diagrama determine:

Figura 1.1: Diagrama de bandas de energía con tensión aplicada

1 Pt 1.1. La polarización a la cual corresponde la Figura 1.1. 1 Pt 1.2. El tipo de portador al que se asocia la actividad que describe la figura 1.1. 1.3. El tipo de contacto al que se asocian las placas de los extremos del semiconductor que se 1 Pt describe en la figura 1.1. 1.4. Esboce el potencial de la juntura sin tensión aplicada, señalando ϕ_n , ϕ_p , x_n y x_p . 2 Pts 1.5. El diagrama de la polarización opuesta a la descrita en la figura 1.1 y explique su funcionamiento en términos de polarización y tipo de portador asociado a su actividad. 3 Pts 1 Pt 1.6. El potencial del lado N respecto al valor intrínseco sin tensión aplicada. 1.7. El potencial del lado P respecto al valor intrínseco sin tensión aplicada. 1 Pt 1.8. El potencial ϕ_B de contacto de la unión PN de la figura 1.1. 1 Pt 1.9. La longitud de la zona de vaciamiento sin tensión aplicada. 2 Pts 1.10. La capacidad de vaciamiento con una tensión aplicada de -3V. 2 Pts

Problema 2. Modelo de Ebers-Moll BJT

15 pts

El circuito de la Figura 2.1 está polarizado en DC. El transistor está caracterizado por las constantes $I_{ES} = -1.25 \times 10^{-14} \, A$, $I_{CS} = -2.1 \times 10^{-14} \, A$, $\alpha_R = 0.58 \, \text{y} \, V_A = 5 \, V$. Las tensiones de alimentación son $V_{EE} = +3 \, V \, \text{y} \, V_{CC} = -3 \, V$. El transistor opera en saturación con una tensión $V_{EB} = 0.612 \, V$.

Figura 2.1. Amplificador BJT.

- 2.1. Dibuje el circuito equivalente utilizando el modelo de Ebers-Moll completo.
- 2 pts
- 2.2. Dibuje el circuito equivalente utilizando el modelo de Ebers-Moll simplificado.
- 1 pts

2.3. Calcule el valor de α_F que se debe utilizar en el modelo de Ebers-Moll.

- 1 pts
- 2.4. Utilizando el modelo de Ebers-Moll simplificado y sin calcular β_F , determine las tensiones de CD en los nodos V10, V11 y V12 y las corrientes en cada una de las terminales del transistor.

V10 =	IB =
V11 =	IC =
V12 =	IE =

2.5. Dibuje el circuito equivalente de pequeña señal utilizando el modelo π .

2 pts

2.6. Calcule los valores numéricos de r_{π} y r_{o} .

2 pts

2.7. Utilizando el modelo π del transistor BJT, determine la ganancia $A_{v1} = V_{11}/V_{10}$.

1 pts

Problema 3. Polarización MOSFET

12 pts

El circuito de la Figura 3.1 describe una fuente de corriente constante, la corriente de salida es I_{out} . Como se evidencia en la figura, el transistor M2 presenta efecto de substrato. Se requiere obtener una corriente Iout = 0.5 mA. Los parámetros de ambos transistores son iguales y se encuentran en la tabla adjunta.

Figura 3.1. Fuente de corriente.

Parámetros de M1 y M2		
$V_{TH0}=0.6\ V$		
$K' = 120 \text{ uA/V}^2$		
W/L=10/0.18		
$\gamma=0.37~V^{1/2}$		

 $\phi_{\rm B} = 0.6 \, {\rm V}$

 $\lambda = 0$

- 3.1. Calcule la tensión Vb1 si se requiere una corriente de salida I_{out} de 0.5 mA.
- 2 nts

3.2. Calcule VX si el transistor M1 está al borde de saturación.

2 pts

3.3. Calcule VTH del transistor M2 considerando el efecto de substrato.

- 2 pts
- 3.4. Calcule VGS del transistor M2 asumiendo que éste se encuentra en la región de saturación. 2 pts
- 3.5. Calcule el valor que debe tener Vb2 para la operación correcta de esta fuente de corriente. 2 pts
 - z pis

3.6. Demuestre que M2 está efectivamente en saturación.

Problema 4. Pequeña señal MOSFET

14 pts

pts

2 pts

El inversor CMOS de la Figura 4.1 se quiere utilizar como amplificador de pequeña señal con relaciones W/L ideales de W1/L1 = 10/0.18 y W2/L2 = 30/0.18. Sin embargo, por un error de parte del diseñador, el inversor CMOS se fabricó en silicio con un ancho W1 de 8 µm en lugar de usar 10 µm. Por este motivo, la tensión de salida es 1.256 V para una entrada de 0.900 V ($V_{OUT} \neq V_{DD}/2$). La corriente en este punto de operación es $I_{D1} = I_{D2} = 2.43$ mA.

Los parámetros del inversor se muestran en la tabla adjunta.

Figura 4.1. Inversor CMOS.

Parámetros del inversor $Kn' = \mu n Cox' = 120 \ \mu A/V^2$ $Kp' = \mu p Cox' = 40 \ \mu A/V^2$ $L1 = L2 = 0.18 \ \mu m$ $W1 = 8 \ \mu m$ $W2 = 30 \ \mu m$ $\lambda 1 = 0.1 \ V^{-1}$ $\lambda 2 = 0.125 \ V^{-1}$ $VDD = 1.8 \ V$ $Vin (DC) = 0.9 \ V$ $Vout (DC) = 1.256 \ V$ $ID1 = ID2 = 2.43 \ mA$

Figura 4.2. Tensión de entrada en función de t.

- 2.1 Dibuje el circuito equivalente del inversor usando el modelo π analógico.
- 2.2 Determine el valor de gm1, gm2, ro1 y ro2.
- 2.3 Determine la ganancia Av del diseño con el error (W1=8 $\mu m,$ W2=30 $\mu m).$
- 2.4 Calcule la impedancia de salida del inversor CMOS vista desde la terminal V_{OUT} .
- 2.5 Dibuje la forma de onda de salida (en función de t) para la entrada de la Figura 4.2.
- 2.6 Explique cuál es el problema de no linealidad que presenta esta onda de salida, en relación con la región de operación del transistor durante todo el periodo. Para este punto asuma V_{THp} =-0.4 V $\boxed{2 \text{ pts}}$