

Memoria Esterna (secondaria)

- Dischi magnetici
 - □ RAID
 - □ Rimovibili

- Ottica
 - □ CD-ROM
 - □ CD-Recordable (CD-R)
 - □ CD-R/W
 - □ DVD
- Nastri magnetici

Dischi Magnetici

- Disco rivestito con materiale magnetico (ossido di ferro)
- Materiale usato per il disco: era in alluminio
- Ora è di vetro, perché
 - □ Migliora l'uniformità della superficie
 - aumenta l'affidabilità
 - □ Riduce i difetti della superficie
 - riduce gli errori di lettura/scrittura
 - □ Permette di ridurre la distanza della testina dal disco
 - □ Maggiore rigidità
 - □ Più resistente agli urti

Meccanismi di lettura e scrittura

- Memorizzazione e recupero dell'informazione tramite bobina conduttiva detta testina (head)
- Unica testina per lettura/scrittura oppure testine separate
- Durante la lettura/scrittura, la testina è stazionaria, mentre il disco ruota
- Scrittura
 - □ la corrente che fluisce nella bobina produce un campo magnetico
 - impulsi elettrici inviati alla testina
 - □ 0 e 1 memorizzati sul disco sotto forma di campi magnetici (con direzione opposta)
- Lettura (tradizionale)
 - i campi magnetici presenti sul disco, muovendosi rispetto alla testina, inducono corrente sulla bobina
 - □ la bobina è la stessa sia per la scrittura che per la lettura
- Lettura (come avviene ora)
 - □ testina di lettura separata, ma vicina a quella di scrittura
 - realizzata da sensore magneto-resistivo (MR), parzialmente schermato
 - □ la resistenza elettrica dipende dalla direzione del campo magnetico
 - operazioni ad alta frequenza
 - alta densità di memorizzazione e velocità

- Anelli o tracce concentriche
 - □ Spazi tra tracce adiacenti
 - □ Riducendo gli spazi si aumenta la capacità del disco
 - ☐ Stesso numero di bit per traccia (variable packing density)
 - □ Velocità angolare costante
- Tracce divise in settori
- Dimensione minima di blocco coincide con un settore
- Si può avere più di un settore per blocco

- Problema: bit vicini al centro del disco ruotante hanno velocità relativa più bassa di quelli più in periferia
- Soluzione: aumentare lo spazio tra i bit in tracce differenti
- Quindi il disco può ruotare con velocità angolare costante
 - □ Settori a forma di "torta" e tracce concentriche
 - □ Possibile indirizzare tracce e settori individualmente
 - □ Si sposta la testina sulla traccia di interesse e si aspetta il settore
 - □ Spreco di spazio nelle tracce più esterne
 - minore densità di memorizzazione dei dati
- Per aumentare la capacità si adotta registrazione a più zone
 - □ Ogni zona ha numero fisso di bit per traccia
 - □ Circuiti più complessi

Ricerca Settori

- Bisogna riconoscere l'inizio della traccia e del settore
- Formato disco
 - ☐ Informazione aggiuntiva non disponibile all'utente
 - □demarca tracce e settori

Caratteristiche

- Testina fissa (raro) o mobile
- Disco rimovibile o fisso
- A faccia singola o doppia (più frequente)
- Piatto singolo o multiplo
- Meccanismo della testina
 - □ con contatto (Floppy)
 - □a distanza fissa
 - ☐ Separazione aerodinamica (Winchester)

Testina fissa/mobile

- Testina fissa
 - □ Una testina in lettura/scrittura per traccia
 - □ Testine montate su braccio fisso
- Testina mobile
 - □ Una testina in lettura/scrittura per faccia disco
 - ☐ Montate su braccio mobile

Disco rimovibile o fisso

- Disco rimovibile
 - □ Può essere rimosso e sostituito con un altro disco
 - □ Capacità di memorizzazione "illimitata"
 - □ Facilita il trasferimento di dati fra sistemi
- Disco fisso
 - ☐ Montato in modo permanente

Piatti multipli

- Una testina per faccia disco
- Testine aggregate ed allineate
- Tracce allineate su ogni piatto formano i cilindri
- I dati sono distribuiti sul cilindro
 - □riduce gli spostamenti delle testine
 - □ aumenta la velocità (transfer rate)

Disco rigido Winchester (1)

- Sviluppati da IBM a Winchester (USA)
- Unità sigillate (polvere proibita!!)
- Uno o più dischi
- Le testine (foil) planano sulla superficie dei dischi sfruttando la portanza del loro profilo (come un'ala di aeroplano)
- Testine vicinissime alla superficie dei dischi:
 - □ minore interferenze nel leggere la superficie del disco...
 - quindi possibilità di aumentare la densità di memorizzazione

Disco rigido Winchester (2)

- Universali
- Economici
- Fra i più veloci dispositivi di memorizzazione esterna
- Diventano sempre più capienti
 - □ 250 Gigabyte facilmente disponibili ed economici

Prestazioni

- Tempo di posizionamento (seek time)
 - □ spostamento della testina sulla giusta traccia 5-20 ms, difficilmente riducibile
- Latenza [rotazionale] (latency)
 - □ attesa che il settore di interesse cada sotto la testina
 - □ dipende dalla velocità di rotazione Esempio

 $RPM=3600 \Rightarrow RPS=60 \Rightarrow 1 \text{ rotazione } \approx 16.7 \text{ms} \Rightarrow T_L=8.35 \text{ms}$

- Tempo di accesso = (seek + latency)
- Tempo di trasferimento:

$$T = \frac{b}{rN}$$

b #byte da trasferire
N #byte per traccia
r velocità rotazione
(in rotazioni per sec.)

Supporti su disco: esempi

Characteristics	Seagate Barracuda ES.2	Seagate Barracuda 7200.10	Seagate Barracuda 7200.9	Seagate	Hitachi Microdrive
Application	High-capacity server	High-performance desktop	Entry-level desktop	Laptop	Handheld devices
Capacity	1 TB	750 GB	160 GB	120 GB	8 GB
Minimum track-to-track seek time	0.8 ms	0.3 ms	1.0 ms	_	1.0 ms
Average seek time	8.5 ms	3.6 ms	9.5 ms	12.5 ms	12 ms
Spindle speed	7200 rpm	7200 rpm	7200	5400 rpm	3600 rpm
Average rotational delay	4.16 ms	4.16 ms	4.17 ms	5.6 ms	8.33 ms
Maximum transfer rate	3 GB/s	300 MB/s	300 MB/s	150 MB/s	10 MB/s
Bytes per sector	512	512	512	512	512
Tracks per cylinder (number of platter surfaces)	8	8	2	8	2

- Redundant Array of Independent Disks
- o anche: Redundant Array of Inexpensive Disks
- 7 levelli (da 0 a 6)
- Livelli non gerarchici
- Insieme di dischi fisici visti dal sistema operativo come un singolo dispositivo logico
- Dati distribuiti sui dispositivi fisici
- Possono usare capacità di memorizzazione ridondante per memorizzare informazioni sulla parità

- Nessuna ridondanza, in questo caso
- Dati distribuiti su tutti i dischi in "strisce" (strip)
- "Round Robin striping"
- Velocità accresciuta
 - □ Richieste multiple di dati hanno bassa probabilità di coinvolgere lo stesso disco (quindi, meno conflitti di risorse...)
 - □ I dischi eseguono la ricerca dei settori in parallelo
 - □ Un insieme di dati ha alta probabilità di essere distribuita su più dischi

- Contenuto replicato su più dischi (Mirrored Disks)
- Dati distribuiti su più dischi
- 2 copie dei dati su dischi separati
- Lettura e scrittura su entrambi i dischi
- Recupero (da guasto) dell'informazione è semplice
 - □ Sostituire disco malfunzionante & ricopia informazione
 - □ Nessun tempo di inattività per riparazioni
- Costoso

RAID 2

(non commercializzato)

- Dischi sincronizzati (accesso parallelo) in modo che la testina di ciascun disco si trovi nella stessa posizione su ogni disco
- Unità di informazione piccole
 - □ spesso singolo byte/word
- Codici di correzione degli errori calcolati tra bit corrispondenti sui vari dischi
- Dischi a parità multipla memorizzano codici correttori di Hamming in posizioni corrispondenti
- Molta ridondanza
 - □ costoso
 - □ tipicamente non utilizzato

- Simile al RAID 2
- Solo un disco ridondante, indipendentemente dal numero di dischi presenti nell'array
- Semplice bit di parità per ogni insieme corrispondente di bit
- Dati presenti su un disco difettoso possono essere ricostruiti a partire dai dati sui dischi rimanenti e dalle informazioni sulla parità
- Velocità di trasferimento molto alta

(non commercializzato)

- Ogni disco opera indipendentemente
- Ottimo per alti ritmi di richieste I/O
- Unità di informazione ampia
- Parità bit a bit calcolata tra unità di informazione per ogni disco
- Informazione di parità memorizzata su un disco ad hoc (parity disk)

- Come RAID 4
- Parità distribuita su tutti i dischi
- Allocazione round robin per la parità
- Evita il "collo di bottiglia" del disco di parità del RAID 4
- Usato comunemente sui server di rete

- Calcolo di parità tramite due metodi distinti
- Memorizzata in blocchi separati su dischi differenti
- Se l'utente richiede N dischi, ne occorrono N+2
- Alta affidabilità sui dati
 - per perdere i dati devono guastarsi tre dischi
 - □scrittura molto più lenta

RAID 5 & 6

block 4
block 8
block 12
P(16-19)

block 1 block 5 block 9 P(12-15) block 16 block 2 block 6 P(8-11) block 13 block 17 block 3
P(4-7)
block 10
block 14

block 18

block 7 block 11 block 15 block 19

(f) RAID 5 (block-level distributed parity)

block 0 block 4 block 8 block 12 block 1 block 5 block 9 P(12-15) block 2 block 6 P(8-11) Q(12-15) block 3 P(4-7) Q(8-11) block 13

P(0-3) Q(4-7) block 10 block 14 Q(0-3) block 7 block 11 block 15

(g) RAID 6 (dual redundancy)