

Lecture (1)

Tanta University

Faculty of Engineering

Equal interval:

الفروق المتساوية equal interval

Newton's forward

Newton's backward

Difference table:

$X \mid Y$	Δy	$\Delta^2 y$	$\Delta^3 y$
	$(y_1 - y_o) = \Delta y_o$	Newto	on s forward
x_1 y_1	$(y_2 - y_1) = \Delta y_1$	$\Delta y_1 - \Delta y_o \neq \Delta^2 y_o$	$\Delta^2 y_1 - \Delta^2 y_0 = \Delta^3 y_0$
$x_2 y_2$	$(y_3 - y_2) = \Delta y_2$	$\Delta y_2 - \Delta y_1 = \Delta^2 y_1$	
$x_3 \left(y_3\right)$		Newton's backward	

Mechatronics Engineering

Lecture (1)

Faculty of Engineering

Newton's forward:

$$\Delta \text{ (Delta)}$$

$$x = x_o + Sh$$

$$S = \frac{x - x_o}{h}, \quad 0 < S < 1$$

$$y = f(x) = y_o + S\Delta y_o + \frac{S(S-1)}{2!}\Delta^2 y_o + \frac{S(S-1)(S-2)}{3!}\Delta^3 y_o + \dots$$

$$\frac{S(S-1)(S-2)\dots(S-n+1)}{n!}\Delta^n y_o$$

Newton's backward:

$$S = \frac{x - x_n}{h}, S < 0$$

$$y = f(x) = y_n + S\nabla y_n + \frac{S(S+1)}{2!}\nabla^2 y_n + \frac{S(S+1)(S+2)}{3!}\nabla^3 y_o + \dots$$

$$\frac{S(S+1)(S+2)\dots(S+n-1)}{n!}\nabla^n y_o$$

Example (10):

From the following data given $f(x) = \sin(x)$ estimate the value of $\sin(30.2^\circ)$, $\sin(31.3^\circ)$

X	30.0	30.5	31.0	31.5
Y	0.50000	0.50754	0.51504	0.52250

Lecture (1)

Tanta University

Faculty of Engineering

Solution:

Difference is given by table

X	$F(x_i)$	$\Delta F(x_i)$	$\Delta^2 F(x_i)$	$\Delta^3 F(x_i)$
30.0	0.50000			
	115	0.00754	-	
30.5	0.50754		-0.00004	
		0.00750		0.00000
31.0	0.51504		-0.00004	
		0.00746	\ /	
31.5	0.52250	W/_		

$$h = 0.5 \text{ At } x = 30.2^{\circ}$$

Newton, s forward

$$y = p_3(x) = y_o + S \Delta y_o + \frac{S(S-1)}{2!} \Delta^2 y_o + \dots$$

$$S = \frac{x - x_o}{h} = \frac{30.2 - 30}{0.5} = 0.4$$

عدد موجب 0.4

$$p_3(x) = p_3(30.2) = 0.5 + 0.4(0.00754) + \frac{0.4(0.4 - 1)}{2!}(-0.00004) + 0$$
$$p_3(x) = p_3(30.2) = 0.50302$$

$$h = 0.5 \text{ At } x = 31.3^{\circ}$$

Newton's backward

Mechatronics Engineering

Lecture (1)

Faculty of Engineering

$$S = \frac{-x_n + x}{h} = \frac{-31.5 + 31.3}{0.5} = -0.4$$

عدد سالب 4.0-

$$P_3(x) = P_3(31.3) = y_n + S\nabla y_n + \frac{S(S+1)}{2!}\nabla^2 y_n + \dots$$

$$P_3(31.3) = 0.5225 - 0.4(0.00746) - 0.4\frac{(-0.4+1)}{2!}(-0.00004) + 0$$

$$P_3(31.3) = 0.5195$$

Lecture (1)

Faculty of Engineering

Interpolation with Spline function:

هنا الفكرة تختلف عن الطرق السابقة في أنه نكون بين كل نقطتين في الجدول بدالة كثيرة حدود $S_i(x)$ أما في الطرق

 $P_{n}(x)$ الأخرى هناك دالة كثيرة حدود واحدة تصل بين جميع النقاط

Linear Interpolation (First Degree Spline):

نصل بين كل النقاط بخط مستقيم

$$S_i(x) = y_i + \frac{y_{i+1} - y_i}{x_{i+1} - x_i} (x - x_i)$$

$$S_i(x) = y_i + \delta_i(x - x_i) \rightarrow i = 0, 1, 2, 3, ...$$

Example (11):

Find a spline of degree one to interpolate the following data and use the resulting spline to approximate f(2.2)

X	1	1.5	2	2.5	3
y = F(x)	1	3	7	10	15

Solution:

$$S_i(x) = y_i + \delta_i(x - x_i)$$

Mechatronics Engineering

Lecture (1)

Tanta University

Faculty of Engineering

A .	•	\sim
/\ t	1 -	- 11
/ 1.	ı. –	- 17

$$S_0(x) = y_0 + \delta_0(x - x_0)$$

$$S_0(x) = 1 + 4(x-1) \rightarrow S_0(x) = 4x - 3$$

At
$$i = 1$$

$$S_1(x) = y_1 + \delta_1(x - x_1)$$

$$S_1(x) = 3 + 8(x - 1.5) \rightarrow S_1(x) = 8x - 9$$

At
$$i = 2$$

$$S_2(x) = y_2 + \delta_2(x - x_2)$$

$$S_2(x) = 7 + 6(x-2) \rightarrow S_2(x) = 6x - 5$$

At
$$i = 3$$

$$S_3(x) = y_3 + \delta_3(x - x_3)$$

$$S_3(x) = 10 + 10(x - 2.5) \rightarrow S_3(x) = 10x - 15$$

\mathcal{X}	y = F(x)	δ_{i}
1	1	
1.5	3	$\frac{3-1}{1.5-1} = 4 \rightarrow \delta_0$
1.3	3	7-3
2	7	$\frac{7-3}{2-1.5} = 8 \to \delta_1$
2.5	10	$\frac{10-7}{3-2.5} = 6 \rightarrow \delta_2$
2.5	10	15-10
3	15	$\frac{15-10}{3-2.5} = 10 \to \delta_3$
3	13	

So that
$$S_i(x) = \begin{bmatrix} (4x-3)if & x \in [1,1.5] \\ (8x-9)if & x \in [1.5,2] \\ (6x-5)if & x \in [2,2.5] \\ (10x-15)if & x \in [2.5,3] \end{bmatrix}$$

The value of x = 2.2 lies in $\begin{bmatrix} 2, 2.5 \end{bmatrix}$

$$f(2.2) = 6(2.2) - 5 = 8.2$$

lechatronics Engineerii Lecture (1)

Tanta University

Faculty of Engineering

Nature Cubic Splines:

نصل بين كل نقطتين في الجدول بكثيرة حدود من الدرجة الثالثة ويكون على الشكل:

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3 \rightarrow i = 0, 1, 2, 3, \dots$$

Where:

 a_i, b_i, c_i, d_i are constants

$$a_i = y_i$$
, $b_i = \frac{y_{i+1} - y_i}{h} - \frac{h}{3} (c_{i+1} + 2c_i)$, $d_i = \frac{(c_{i+1} - c_i)}{3h}$

To calculate c_i

$$c_{i-1} + 4c_i + c_{i+1} = \frac{3}{h^2} [y_{i+1} - 2y_i + y_{i-1}] \rightarrow i = 1, 2, 3, \dots$$

$$c_0 = c_n = 0$$

ممكن كتابتها ع<mark>لى الص</mark>ورة :

$$\begin{bmatrix} 4 & 1 & 0 & 0 & 0 \\ 1 & 4 & 1 & 0 & 0 \\ 0 & 1 & 4 & 1 & 0 \\ 0 & 0 & 1 & 4 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \end{bmatrix} = \frac{3}{h^2} \begin{bmatrix} y_2 - 2y_1 + y_0 \\ y_3 - 2y_2 + y_1 \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$$

Example (12):

Use the values given by $f(x) = x^3 + 2$ at x = 0, 0.2, 0.4, 0.6, 0.8 and 1 to find approximation of f(x) at x = 0.1, 0.3, 0.5, 0.7, 0.9 using the Natural Cubic Spline Interpolation

Solution:

X	0	0.2	0.4	0.6	0.8	1
y = F(x)	2	2.008	2.064	2.216	2.512	3

$$C_0 = C_5 = 0$$

Mechatronics Engineering

Lecture (1)

Faculty of Engineering

Tanta University

$$\therefore c_{i-1} + 4c_i + c_{i+1} = \frac{3}{h^2} [y_{i+1} - 2y_i + y_{i-1}]$$

At i = 1

$$\therefore c_0 + 4c_1 + c_2 = \frac{3}{h^2} [y_2 - 2y_1 + y_0]$$

$$0 + 4c_1 + c_2 = \frac{3}{(0.2)^2} [2.064 - 2 \times 2.008 + 2]$$

$$4c_1 + c_2 = 3.6 \rightarrow (1)$$

At i = 2

$$\therefore c_1 + 4c_2 + c_3 = \frac{3}{h^2} [y_3 - 2y_2 + y_1]$$

$$c_1 + 4c_2 + c_3 = \frac{3}{(0.2)^2} [2.216 - 2 \times 2.064 + 2.008]$$

$$c_1 + 4c_2 + c_3 = 7.2 \rightarrow (2)$$

At i = 3

$$\therefore c_2 + 4c_3 + c_4 = \frac{3}{h^2} [y_4 - 2y_3 + y_2]$$

$$c_1 + 4c_2 + c_3 = \frac{3}{(0.2)^2} [2.512 - 2 \times 2.216 + 2.0]$$

$$c_2 + 4c_3 + c_4 = 10.8 \rightarrow (3)$$

At i = 4

$$\therefore c_3 + 4c_4 + c_5 = \frac{3}{h^2} [y_5 - 2y_4 + y_3]$$

$$c_3 + 4c_4 + c_5 = \frac{3}{(0.2)^2} [3 - 2 \times 2.512 + 2.21]$$

Tanta University

Department of Physics and Engineering Mathematics Numerical analysis (BAS127)

Mechatronics Engineering

Lecture (1)

Faculty of Engineering

$$c_3 + 4c_4 + c_5 = c_3 + 4c_4 + 0 = c_3 + 4c_4 = 14.4 \rightarrow (4)$$

بحل المعادلات 1و2و 3و4 معا نحصل على الاتى:

$$\begin{cases} C_0 = 0 \\ C_1 = \frac{612}{1045} \\ C_2 = \frac{1314}{1045} \\ C_3 = \frac{1656}{1045} \\ C_4 = \frac{3348}{1045} \\ C_5 = 0 \end{cases}$$

بمعرفة c_i يمكن حساب باقى الثوابت:

$$a_{i} = y_{i} = \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \end{bmatrix} = \begin{bmatrix} 2 \\ 2.008 \\ 2.064 \\ 2.216 \\ 2.512 \end{bmatrix}$$

$$\therefore b_{i} = \frac{y_{i+1} - y_{i}}{h} - \frac{h}{3} (c_{i+1} + 2c_{i})$$

$$b_0 = \frac{y_1 - y_0}{0.2} - \frac{0.2}{3} [C_1 + 2C_0]$$

$$b_0 = \frac{2.0 - 2}{0.2} - \frac{0.2}{3} [612/_{1045} + 2(0)] = 9.56 * 10^{-4}$$

$$b_1 = \frac{y_2 - y_1}{0.2} - \frac{0.2}{3} [C_2 + 2C_1]$$

$$b_1 = \frac{2.064 - 2.0}{0.2} - \frac{0.2}{3} [1314/_{1045} + 2(612/_{1045})] = 617/_{5225}$$

$$b_2 = \frac{y_3 - y_2}{0.2} - \frac{0.2}{3} [C_3 + 2C_2]$$

$$b_2 = \frac{2.216 - 2.064}{0.2} - \frac{0.2}{3} [1656/_{1045} + 2(1314/_{1045})] = \frac{2543}{5225}$$

Mechatronics Engineering

Lecture (1)

Tanta University

Faculty of Engineering

$$b_{3} = \frac{y_{4} - y_{3}}{0.2} - \frac{0.2}{3} [C_{4} + 2C_{3}]$$

$$b_{3} = \frac{2.512 - 2.216}{0.2} - \frac{0.2}{3} [3348/_{1045} + 2(1656/_{1045})] = \frac{5513}{5225}$$

$$b_{4} = \frac{y_{5} - y_{4}}{0.2} - \frac{0.2}{3} [C_{5} + 2C_{4}]$$

$$b_{4} = \frac{3 - 2.512}{0.2} - \frac{0.2}{3} [0 + 2(3348/_{1045})] = \frac{10517}{5225}$$

$$d_i = \frac{\left(c_{i+1} - c_i\right)}{3h}$$

$$d_0 = \frac{c_1 - c_0}{3(0.2)}$$

$$d_0 = \frac{\frac{612}{1045} - 0}{3(0.2)} = \frac{204}{209}$$

$$d_1 = \frac{c_2 - c_1}{3(0.2)}$$

$$d_1 = \frac{\frac{1314}{1045} - \frac{612}{1045}}{3(0.2)} = \frac{234}{209}$$

$$d_2 = \frac{c_3 - c_2}{3(0.2)}$$

$$d_2 = \frac{{}^{1656}/{}_{1045} - {}^{1314}/{}_{1045}}{{}_{3(0.2)}} = \frac{6}{11}$$

$$d_3 = \frac{c_4 - c_3}{3(0.2)}$$

$$d_3 = \frac{3348/_{1045} - 1656/_{1045}}{3(0.2)} = \frac{564}{209}$$

$$d_4 = \frac{c_5 - c_4}{3(0.2)}$$

$$d_4 = \frac{0 - \frac{3348}{1045}}{3(0.2)} = -\frac{1116}{209}$$

Mechatronics Engineering

Lecture (1)

Tanta University

Faculty of Engineering

$$\therefore S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3 \to i = 0, 1, 2, 3, \dots$$

At i = 0

$$\therefore S_0(x) = a_0 + b_0(x - x_0) + c_0(x - x_0)^2 + d_0(x - x_0)^3$$

$$\therefore S_0(x) = 2 + 0.001(x - 0) + 0(x - 0)^2 + 0.976(x - 0)^3$$

$$S_0(x) = 2 + 0.001x + 0.976x^3, x \in [0, 0.2]$$

At i = 1

$$\therefore S_1(x) = a_1 + b_1(x - x_1) + c_1(x - x_1)^2 + d_1(x - x_1)^3$$

$$\therefore S_1(x) = 2.008 + 0.118(x - 0.2) + 0.586(x - 0.2)^2 + 1.12(x - 0.2)^3$$

$$\therefore S_1(x) = \sqrt{x} \in [0.2, 0.4]$$

$$S_2(x) = a_2 + b_2(x - x_2) + c_2(x - x_2)^2 + d_2(x - x_2)^3$$

$$= 2.064 + \frac{2543}{5225}(x - 0.4) + \frac{1314}{1045}(x - 0.4)^2 + \frac{6}{11}(x - 0.4)^3$$

$$S_3(x) = a_3 + b_3(x - x_3) + c_3(x - x_3)^2 + d_3(x - x_3)^3$$

$$= 2.216 + \frac{5513}{5225}(x - 0.6) + \frac{1656}{1045}(x - 0.6)^2 + \frac{564}{209}(x - 0.6)^3$$

$$S_4(x) = a_4 + b_4(x - x_4) + c_4(x - x_4)^2 + d_4(x - x_4)^3$$

$$= 2.512 + \frac{10517}{5225}(x - 0.8) + \frac{3348}{1045}(x - 0.8)^2 - \frac{1116}{209}(x - 0.8)^3$$

$$S(0.1) \rightarrow \in [0,0.2]$$

$$\therefore S(0.1) = 2 + 0.001 \times 0.1 + 0.976 (0.1)^3 = 2.001, x \in [0, 0.2]$$

$$S(0.3) \rightarrow \in [0.2, 0.4]$$

$$\therefore S(0.3) = 2.008 + 0.118(0.3 - 0.2) + 0.586(0.3 - 0.2)^{2} + 1.12(0.3 - 0.2)^{3} = 2.02678$$

Lecture (1)

Faculty of Engineering

Tanta University

At
$$x = 0.5$$

$$\therefore S_2(0.5) = 2.125789$$

At
$$x = 0.7$$

$$\therefore S_3(0.7) = 2.340057$$

At
$$x = 0.9$$

$$\therefore S_4(0.9) = 2.739981$$

Lecture (1)

Tanta University

Faculty of Engineering

Exercises

1- Find a polynomial of order (2) that interpolates the table

X	0.2	0.4	0.6
Y	-0.95	-0.82	-0.65

2- Determine a polynomial of degree ≤3 that interpolates the data

X	1.2	2.1	3	3.6
Y	0.7	8.1	27.7	45.1

3- Determine the Lagrange polynomial that interpolates the data in the following table

X	0	2	4	6
Y	1	-1	3	4

- 4- Let $f(x) = 2x^2 e^x + 1$ contrast a Lagrange polynomial of degree two or less using $x_o = 0, x_1 = 0.5$ and $x_2 = 1$ approximate f(0.8).
- 5- Determine a polynomial of degree ≤5 using Newton's divided differences that interpolate the data in the following table

X	1	2	3	4	5	6
Y	14.5	19.5	30.5	53.5	94.5	159.5

Use the resulting polynomial to estimate the value of f(4.5). Compare of the exact value of f(4.5) = 71.375

6- To investigate the relationship between yield of Potatoes (y) and level of fertilizer application (x). An experimenter divided a field into (5) pots of equal size and applied differing amounts of fertilizers to each. the data recorded for each plot are given by the table (in Kgs)

Lecture (1)

Tanta University

Faculty of Engineering

X	1	2	3	4	5
Y	22	23	25	30	28

• Find the interpolation polynomial for this table.

According to the interpolating polynomial, approximately how many Kgs would you expect from a plot to which 2.5 Kgs of fertilizer had been applied?

Best wishes
Dr. Ashraf Almahallawy