

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE INGENIERÍA

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

Curso: Matemáticas discretas

Ayudantes: Francisca Caprile, Catalina Ortega, Matías Fernández e

Ignacio Vergara

Ayudantía 6 (Repaso I1)

22 de Septiembre

 $2^{\underline{0}}$ semestre 2023 - Profesores G. Diéguez - S. Bugedo - N. Alvarado
- B. Barías

Ejercicio 1 — Inducción, I1 2023-1

Sea $D = a_1, a_2, ..., a_n \subseteq \mathbb{N}$ tal que n es impar y $a_1 < a_2 < ... < a_n$ se define median(D) como la mediana del conjunto D tal que $median(D) = a_{\frac{n+1}{2}}$. Además se define un intervalo de naturales I = [a, b] como los números naturales entre a y b incluyéndolos (por ejemplo, I = [3, 6] = 3, 4, 5, 6).

Demuestre usando inducción fuerte que para todo conjunto finito D y para todo intervalo de naturales I, si I contiene más de la mitad de los elementos de D, entonces la mediana de D está en el intervalo I. Formalmente esto es equivalente a demostrarque si $|I \cap D| > \frac{|D|}{2}$, entonces $median(D) \in I$ (|A| corresponde a la cantidad de elementos que tiene el conjunto A)

Solución:

PD: Si $|I \cap D| > \frac{|D|}{2} \to \text{median}(D) \in I$

La desmostración de esta pregunta se hace con inducción fuerte.

$$P(n): \text{Para } |D| = n \text{ se tiene que } \forall I. |I \cap D| > \frac{|D|}{2} \rightarrow \text{ median}(D) \in I$$

Caso base: Tenemos que |D|=1, luego si $|I\cap D|>\frac{|D|}{2}$ entonces necesariamente se tiene que $|I\cap D|=1$ por lo cual, $D\subseteq I$ obteniendo así que $median(D)=a_{\frac{n+1}{2}}=a_1\in I$

Hipótesis inductiva: Supongamos que $\forall D$ tal que |D| < n se cumple P(|D|).

Tesis inductiva: Sea D cualquiera tal que |D| = n, tenemos los siguientes casos:

- 1. $a_1 \in I \land a_n \in I$ Se puede observar que $D \subseteq I$ (puesto que $a_1 \in I \land a_n \in I$ y I por definición contiene a todos los naturales entre a_1 y a_n), por lo que $median(D) \in I$ (gracias a que todos los elementos de D están contenidos en I).
- 2. $a_1 \in I \land a_n \notin I$. Como tenemos que $|I \cap D| > \frac{|D|}{2} \land a_1 \in I$, debido a que I tiene números consecutivos se tiene que la intersección entre D e I es, por lo menos,

$$a_1, a_2, ..., a_{\frac{n+1}{2}} \in I$$

Por lo tanto $median(D) \in I$.

- 3. $a_1 \notin I \land a_n \in I$ Análogo al anterior.
- 4. $a_1 \notin I \land a_n \notin I$ Sea $D' = \{a_2, a_3, ..., a_{n-1}\}$, luego se tiene que

$$|I \cap D'| = |I \cap D| > \frac{|D|}{2} > \frac{|D'|}{2}$$

Por lo que por hipótesis inductiva tenemos que: $median(D') \in I$ y finalmente, como se eliminaron a_1 y a_n de D para obtener D' tenemos que median(D) = median(D') por lo cual, $median(D) \in I$.

Ejercicio 2 — Lógica proposicional, Examen 2022-1

Una fórmula proposicional α se dice que es una cláusula conjuntiva si es de la forma $\alpha = a_1 \wedge a_2 \wedge \ldots \wedge a_n$ para algún $n \geq 1$ y cada a_i es un literal con $1 \leq i \leq n$, esto es, a_i es una variable proposicional o la negación de una variable proposicional. Por ejemplo, $p \wedge \neg q \wedge r$ y $\neg q \wedge s \wedge q \wedge s$ son cláusulas conjuntivas.

Sean $\alpha = a_1 \wedge \ldots \wedge a_n$ y $\beta = b_1 \wedge \ldots \wedge b_m$ dos cláusulas conjuntivas satisfacibles, no necesariamente con el mismo conjunto de variables proposicionales. Demuestre que $\alpha \models \beta$ si, y solo si, $\{b_1, \ldots, b_m\} \subseteq \{a_1, \ldots, a_n\}$.

Solución:

Se procede a demostrar ambas direcciones del bicondicional.

$$\alpha \models \beta \rightarrow \{b_1, \dots, b_m\} \subseteq \{a_1, \dots, a_n\}$$

Por contrapositivo, suponemos que $\{b_1,\ldots,b_m\} \not\subseteq \{a_1,\ldots,a_n\}$. Entonces, existe $b \in \{b_1,\ldots,b_m\}$ tal que $b \not\in \{a_1,\ldots,a_n\}$. Como α es satisfacible, entonces existe una valuación v_1,\ldots,v_k tal que $\alpha(v_1,\ldots,v_k)=1$. Por el mismo argumento del ítem anterior, se tiene que $a_i(v_1,\ldots,v_k)=1$ para todo $1 \leq i \leq k$.

Dicho eso, existen 2 casos:

- 1. La variable de b no está en α : Nombremos como p_{k+1} a la variable presente en b. Luego, para una valuación $v_1, \ldots, v_k, v_{k+1}$ con $v_{k+1} \in \{0,1\}$ siempre se cumplirá que $a_i(v_1, \ldots, v_k, v_{k+1}) = 1$ para $1 \le i \le n$. Eligiendo v_{k+1} como 0 o 1 dependiendo del literal b, podemos llegar a que la valuación cumple que $\beta(v_1, \ldots, v_k, v_{k+1}) = 0$. Por lo tanto, $\alpha \not\models \beta$.
- 2. La variable de b sí está en α : Como $b \notin \{a_1, \ldots, a_n\}$, luego existe $1 \leq j \leq n$ tal que $a_j \equiv \neg b$. Así, $b(v_1, \ldots, v_k) = 0$ y entonces $\beta(v_1, \ldots, v_k) = 0$. Por lo tanto, $\alpha \not\models \beta$.

$$\alpha \models \beta \leftarrow \{b_1, \dots, b_m\} \subseteq \{a_1, \dots, a_n\}$$

Por contrapositivo, suponga que $\alpha \not\models \beta$. Luego, existe una valuación v_1, \ldots, v_k tal que $\alpha(v_1, \ldots, v_k) = 1$ y $\beta(v_1, \ldots, v_k) = 0$. Es decir, $a_i(v_1, \ldots, v_k) = 1$ para $1 \leq i \leq n$ y existe un b_j con $1 \leq j \leq m$ tal que $b_j(v_1, \ldots, v_k) = 0$.

Claramente, $a_i \not\equiv b_j$ para todo $1 \leq i \leq n$. Por lo tanto, $b_j \notin \{a_1, \ldots, a_n\}$ y entonces $\{b_1, \ldots, b_m\} \not\subseteq \{a_1, \ldots, a_n\}$.

Ejercicio 3 — Lógica de predicados (I1-2023-1)

Para una fórmula proposicional $\alpha(p_1,...,p_n)$ con variables proposicionales $p_1,...,p_n$ se define el conjunto:

valuaciones(
$$\alpha$$
) = { $(v_1, ..., v_n \mid \alpha(v_1, ..., v_n) = 1$ }

En otras palabras, valuaciones(α) es el conjunto de todas las valuaciones que satisfacen a α .

Dadas α_1 y α_2 dos fórmulas en lógica proposicional, decimos que α_1 es #-equivalente a α_2 si se cumple que el número de valuaciones que satisfacen a α_1 es igual al número de valuaciones que satisfacen a α_1 . Es decir, | valuaciones(α_1) |=| valuaciones(α_2) |.

Si α_1 y α_2 son #-equivalentes, escribiremos $\alpha_1 \equiv_{\#} \alpha_2$.

- (a) Sea $\alpha_1, \alpha_2, ..., \alpha_n$ una secuencia de fórmulas proposicionales tal que $\alpha_i \models \alpha_{i+1}$ para cada $1 \leq i < n$. Demuestre que si $\alpha_1 \equiv_{\#} \alpha_n$, entonces $\alpha_i \equiv \alpha_j$, para todo $i \neq j$.
- (b) Demuestre que $\equiv_{\#}$ no cumple con el teorema de composición. En otras palabras, que no cumple que para todo par de fórmulas $\alpha_1(p_1,...,p_n)$ y $\alpha_2(p_1,...,p_n)$, si $\alpha_1 \equiv_{\#} \alpha_2$, entonces $\alpha_1(\beta_1,\beta_2,...\beta_n) \equiv_{\#} \alpha_2(\beta_1,\beta_2,...\beta_n)$ para cualquier fórmula $\beta_1,\beta_2,...\beta_n$

Solución:

(a) Como sabemos que $\alpha_i \models \alpha_{i+1} \ i \in \{1,...,n\}$. Luego, por definición de consecuencia lógica se tiene que todas aquellas valuaciones que satisfacen a α_i necesariamente satisfacen a α_{i+1} , entonces se tiene que | valuaciones (α_i) $|\leq|$ valuaciones (α_{i+1}) | (notar que la desigualdad aparece pues, α_{i+1} puede llegar a satisfacerse con más valuaciones que aquellas en valuaciones (α_i)).

Luego, por hipótesis tenemos que,

$$| \text{valuaciones}(\alpha_1) | \leq | \text{valuaciones}(\alpha_2) | \leq \dots \leq | \text{valuaciones}(\alpha_n) | (1)$$

Además, como $\alpha_1 \equiv_{\#} \alpha_n$, se tiene que,

$$| \text{valuaciones}(\alpha_1) | = | \text{valuaciones}(\alpha_n) |$$

pues todas aquellas valuaciones que satisfacen a α_1 son las mismas que satisfacen a α_n . Por lo cual la desigualdad inicial (1) queda como,

$$| \text{valuaciones}(\alpha_1) | = | \text{valuaciones}(\alpha_2) | = \dots = | \text{valuaciones}(\alpha_n) |$$
 (2)

Luego, como | valuaciones (α_i) |=| valuaciones (α_{i+1}) | y α_i |= α_{i+1} , entonces necesariamente, valuaciones (α_i) = valuaciones (α_{i+1}) lo que es equivalente a decir que,

$$\alpha_i \equiv \alpha_{i+1}$$

Por lo cual de manera generalizada se obtiene que,

$$\alpha_1 \equiv \alpha_2 \equiv \dots \equiv \alpha_n$$

Obteniendo así que,

$$\alpha_i \equiv \alpha_{i+1} \forall i \neq j$$

(b) Para demostrar lo pedido basta con encontrar un ejemplo que no cumpla con el teorema de composición. Sean las siguiente fórmulas proposicionales:

$$\alpha_1(p,q)=p$$

$$\alpha_2(p,q) = q$$

Podemos ver que $\alpha_1 \equiv_{\#} \alpha_2$, pues ambas fórmulas tienen 2 valuaciones que las satisfacen, específicamente:

$$\alpha_1(1,0) = \alpha_1(1,1) = 1$$

$$\alpha_2(0,1) = \alpha_2(1,1) = 1$$

Luego, definimos las fórmulas β_1 y β_2 :

$$\beta_1(r,s) = r \wedge s$$

$$\beta_2(r,s) = r \vee s$$

Con las definiciones anteriores tenemos que $\alpha_1(\beta_1, \beta_2)$ y $\alpha_2(\beta_1, \beta_2)$) quedan de la siguiente manera:

$$\alpha_1(\beta_1, \beta_2) = \beta_1 = r \wedge s$$

$$\alpha_2(\beta_1, \beta_2) = \beta_2 = r \vee s$$

En este caso, podemos ver que | valuaciones $(\alpha_1(\beta_1, \beta_2))$ | \neq | valuaciones $(\alpha_2(\beta_1, \beta_2))$ |, pues para el primer caso hay 1 valuación que satisface la fórmula y para el segundo hay 3 valuaciones que la satisfacen.

Por lo tanto, concluimos que:

$$\alpha_1(\beta_1, \beta_2) \not\equiv_{\#} \alpha_2(\beta_1, \beta_2)$$

Entonces, que da demostrado que $\equiv_{\#}$ no cumple con el teorema de composición.

Ejercicio 4 — Conjuntos y relaciones, I2 2017-2

Sean A, B, C y D conjuntos, y sea $S = \{A_0, A_1, \ldots\}$ uma colección enumerable de conjuntos. Demuestre las siguientes propiedades:

a)
$$A \subseteq B \land C \subseteq D \Rightarrow A \times C \subseteq B \times D$$

b)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

c)
$$\left(\bigcap_{i\in\mathbb{N}}A_i\right)\times B=\bigcap_{i\in\mathbb{N}}\left(A_i\times B\right)$$

Solución:

a) Supongamos que $A \subseteq B, C \subseteq D$ y sea $(x,y) \in A \times C$ arbitrario, luego tenemos

$$(x,y) \in A \times C \implies x \in A \land y \in C$$
 (def. de producto cruz)
 $\Rightarrow x \in B \land y \in C$ (por $A \subseteq B$)
 $\Rightarrow x \in B \land y \in D$ (por $C \subseteq D$)
 $\Rightarrow (x,y) \in B \times D$ (def. de producto cartesiano)

Finalmente, como (x, y) es arbitrario se cumple que $A \times C \subseteq B \times D$.

b) Por demostrar:

$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

$$(A \cup B) \times C = \{(x,y) \mid (x \in A \lor x \in B) \land y \in C\}$$
 (def. producto cruz)
$$= \{(x,y) \mid (x \in A \land y \in C) \lor (x \in B \land y \in C)\}$$
 (distributividad de \land)
$$= \{(x,y) \mid ((x,y) \in A \times C) \lor ((x,y) \in B \times C)\}$$
 (def. producto cruz)
$$= \{(x,y) \mid (x,y) \in (A \times C) \cup (B \times C)\}$$
 (def. de unión)
$$= (A \times C) \cup (B \times C)$$

c)