Machine Learning Homework1

I. INTRODUCTION

此篇文章為機器學期課程的第一份作業,透過crx.csv與 data.csv兩種資料集來實作多種分類模型,並比較多種調整方式與已被廣泛使用的分類套件之間的成效差異。

II. METHODOLOGY OF USE

A. Linear classifier with update rule

訓練階段一次讀取單筆資料,若分類正確則讀取下筆資料,若分類不正確,透過標籤答案與預測答案之差異,判斷各特徵的調整方向,個特徵調整的幅度透過Learning Rate 超參數控制,其值會隨著訓練迭代次數而逐漸降低,整個訓練過程直至分類結果收斂或第最大迭代次數。

B. Linear classifier with Least-squared manner

根據最小平方法的原則,訓練過程一步到位,一次讀 取所有資料點,透過公式解搭配矩陣運算,求出最佳的 模型參數。

C. Voted perceptron and Average voted perceptron

基於 A. Linear classifier 的架構,但是在訓練過程中將每次更改模型時的歷史參數都記錄起來,搭配對應的訓練正確率作為投票權重,以 Voted 和 Average voted 兩種加權方式進行預測任務。

D. Large margin classifier

同樣基於 A. Linear Classifier 的架構,也與 C. 同樣在訓練過程中將所有的模型歷史參數都記錄起來,但不同的是選擇最佳模型時,要先計算所有歷史模型參數的||W||^2,並選擇最小值的對應參數當作訓練最終的模型參數.

E. Soft large margin classifier

當訓練過程中,遇到模型無法正確分類的資料點,是無法計算及對應的 margin 的,為了使得其產生反向影響力,增加分錯時的成本,加入 C 超參數來調整 penalty 程度。

III. EXPERIMENT

A. Experiment settings

將兩種資料 crx.csv 和 data.csv 皆以 70:30 比例切分訓練資料集與驗證資料集,將各種模型以訓練資料及訓練,並以測試資料集測試模型分類成效,RANDOM_STATE 超參數預設設定為11,Learning Rate 預設設定為0.1,最大疊代次數預設設定為50次。

B. Performance on classification task

Dataset	Method	Accuracy
crx	Linear classifier (update rule)	0.702
	Linear classifier (least-squared manner)	0.880
	Voted perceptron	0.875
	Average Voted perceptron	0.875
	Large margin classifier	0.755
	Soft large margin classifier	0.755
	Existing SVM	0.875
data	Linear classifier (update rule)	0.953
	Linear classifier (least-squared manner)	0.947
	Voted perceptron	0.953
	Average Voted perceptron	0.947
	Large margin classifier	0.942
	Soft large margin classifier	0.965
	Existing SVM	0.965

IV. CONCLUSION

Linear classifier (update rule) 分類的成效普通,最大原因可能是訓練過程中每次只關注單個樣本,可能導致顧此失彼,為了正確分類新的樣本,而讓已經分類正確的樣本又再次變成錯誤的分類,相當依賴訓練過程中樣本輸入的順序,而考量所有資料,一步到位訓練的 Linear classifier (least-squared manner) 分類方法,則有不錯的成效,但是 Linear classifier (update rule) 透過加權的考量,不管是 Voted perceptron 或是 Average Voted perceptron 都大大提升了分類成效來到 0.86/0.95 (對應 crx/data 資料集),甚至達到了與 Existing SVM 相當的成效。

以上所有模型的相關實作程式碼都有上傳至 Github:

https://github.com/littlemilkwu/ds_ncku_machine_learni