Analysis II Definitions

By Shun (@shun4midx)

Definitions

2-18-25 (Week 1): Riemann-Stieltjes Integrals (Functions of Bounded Variation)

Definition 1.1. Let $I \subseteq \mathbb{R}$ be an interval, $f: I \to \mathbb{R}$ be a function.

- (1) f is non-increasing/decreasing if $f(x) \ge / > f(y) \ \forall x \le y, \ x, y \in I$
- (2) f is non-decreasing/increasing if $f(x) \le / < f(y) \ \forall x \le y, \ x, y \in I$
- (3) f is **monotonic** if (1) or (2) holds

Definition 1.2. Let $f: I \to \mathbb{R}$ be monotonic. For $x \in I$, define:

- The **left limit** at x to be $\underline{f(x-) = \lim_{y < x, y \to x} f(y)}$ if $(x \varepsilon, x) \cap I \neq \emptyset$ for $\varepsilon > 0$ (e.g. we cannot just pick a point at the boundary)
- The **right limit** at x to be $f(x+) = \lim_{y>x, y\to x} f(y)$ if $(x,x+\varepsilon)\cap I \neq \emptyset$ for $\varepsilon>0$

Definition 1.3. Let a < b and $[a, b] \in \mathbb{R}$ be a segment.

- A partition or a subdivision of [a,b] is a finite sequence $P=(x_k)_{0\leq k\leq n}$ s.t. $a=x_0< x_1<\cdots< x_n=b$, where n is the length of P. We denote $\mathrm{Supp}(P):=\{x_k\mid 0\leq k\leq n\}$ as the support of P.
- For a <u>finite subset</u> $A \subseteq [a,b]$ with $a,b \in A$, we may find a partition P of [a,b] s.t. Supp(P) = A. This is called the **partition corresponding to** A.
- We say $[x_{k-1}, x_k]$ is the k^{th} subinterval of P, $\underline{\Delta x_k := x_k x_{k-1}}$, $1 \le k \le n$. Then, we say the mesh size of P is $\underline{||P||} := \max_{1 \le k \le n} \Delta x_k$
- Let P, P' be partitions. If $Supp(P) \subseteq Supp(P')$, then we say P' is **finer** than P, and we say $\underline{P \subseteq P'}$. This also implies $\underline{||P||} \leq ||P'||$.
- Let P_1 , P_2 be partitions. Define their **joint partition** or **smallest comon refinement** to be $\underline{P} := P_1 \vee P_2$, which is the partition P with support = $\underline{\operatorname{Supp}}(P_1) \cup \operatorname{Supp}(P_2)$.
- We denote $\underline{\mathcal{P}([a,b])}$ as the collection of **all** possible partitions of [a,b].

Definition 1.4. Let $f:[a,b]\to\mathbb{R}$ be a function, $P=(x_k)_{0\leq k\leq n}\in\mathcal{P}([a,b])$, define $\Delta f_k:=f(x_k)-f(x_{k-1})$ for $1\leq k\leq n$. Define $\underline{V_P(f)}:=\sum_{k=1}^n|\Delta f_k|$ and $\underline{V_f}=V_f([a,b])=\sup_{P\in\mathcal{P}([a,b])}\overline{V_P(f)}\in[0,\infty]$ to be the **total variation** of f. We say that f is of **bounded variation** if $V_P<+\infty$. We write $\underline{\mathcal{BV}([a,b])}=\mathcal{BV}([a,b],\mathbb{R})$ for the collection of such functions defined on [a,b].