Technical University of Crete School of Electrical and Computer Engineering

Course: Optimization

Exercise 1 (80/1000)

Report Delivery Date: 6 November 2022

Instructor: Athanasios P. Liavas

In this exercise, we will study simple concepts from Calculus of Several Variables (Taylor expansions), Convex Sets, and Convex Functions (Note: $\mathbb{R}_+ = \{x \in \mathbb{R} \mid x \geq 0\}$, $\mathbb{R}_{++} = \{x \in \mathbb{R} \mid x > 0\}$).

You must prepare an electronic (LaTeX) report and upload the pdf file.

1. (0) Let $f: \mathbb{R}_+ \to \mathbb{R}$, with $f(x) = \frac{1}{1+x}$. Let $x_0 \in \mathbb{R}_+$, and define the first- and second-order Taylor approximations of f at x_0 as

$$f_{(1)}(x) = f(x_0) + f'(x_0)(x - x_0),$$

$$f_{(2)}(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2.$$
(1)

- (a) Find the analytic expressions for functions f' and f'';
- (b) (0) Draw in a common plot f(x), $f_{(1)}(x)$ and $f_{(2)}(x)$ and, in order to understand the behavior of the approximations, consider various values of x_0 .
- 2. (0) Let $f: \mathbb{R}^2_+ \to \mathbb{R}$, with $f(x_1, x_2) = \frac{1}{1+x_1+x_2}$.
 - (a) (0) Compute and plot, via mesh, f for $x_1, x_2 \in [0, x_*]$, with $x_* > 0$.
 - (b) (0) Plot the level sets of f, via contour. What do you observe? Can you explain the phenomenon?
 - (c) (0) Compute the first- and second-order Taylor approximations of f at point $\mathbf{x}_0 = (x_{0,1}, x_{0,2})$.
 - (d) (0) Draw on a common plot f and its first-order Taylor approximation.
 - (e) (0) Draw on a common plot f and its second-order Taylor approximation.

- 3. (20) Let $\mathbb{S}_{\mathbf{a},b} = \{ \mathbf{x} \in \mathbb{R}^n \, | \, \mathbf{a}^T \mathbf{x} \leq b \}$.
 - (a) (5) Prove that $\mathbb{S}_{\mathbf{a},b}$ is convex.
 - (b) (15) Prove that $\mathbb{S}_{\mathbf{a},b}$ is *not* affine (a counterexample is sufficient).
- 4. (10) Find the point \mathbf{x}_* that is co-linear with \mathbf{a} and lies on the hyperplane $\mathbb{H}_{\mathbf{a},b} := \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^T \mathbf{x} = b\}.$
- 5. (20) Check whether the following functions are convex or not (using, for example, the second derivative rule).
 - (a) (5) $f : \mathbb{R}_+ \to \mathbb{R}$, with $f(x) = \frac{1}{1+x}$;
 - (b) (5) $f: \mathbb{R}^2_+ \to \mathbb{R}$, with $f(x_1, x_2) = \frac{1}{1 + x_1 + x_2}$;
 - (c) (5) $f: \mathbb{R}_{++} \to \mathbb{R}$, with $f(x) = x^a$, for (to get a better feeling, plot function x^a , for various values of a)
 - i. $a \ge 1$ and $a \le 0$;
 - ii. $0 \le a \le 1$.
 - (d) (5) $f_1, f_2 : \mathbb{R}^n \to \mathbb{R}$, with $f_1(\mathbf{x}) = ||\mathbf{x}||_2$ and $f_2(\mathbf{x}) = ||\mathbf{x}||_2^2$ (plot the functions for n = 2).
- 6. (20) Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, and $f : \mathbb{R}^n \to \mathbb{R}$, with $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$.
 - (a) (10) Assume that the columns of **A** are linearly independent and prove that f is strictly convex (Prove that the Hessian of $f(\mathbf{x})$ is positive definite).
 - (b) (10) Plot f for m=3 and n=2. In order to generate the data, generate a random (3×2) matrix \mathbf{A} , a random (2×1) vector \mathbf{x} , and compute $\mathbf{b} = \mathbf{A}\mathbf{x}$. Then, plot, via mesh, function f in a square around the true value \mathbf{x} use also the contour statement. What do you observe?

Repeat the above procedure by assuming that $\mathbf{b} = \mathbf{A}\mathbf{x} + \mathbf{e}$, where \mathbf{e} is a "small noise" vector. What do you observe?