COL 351: Analysis and Design of Algorithms

Lecture 32

(s,t)-Cuts

Definition: Any partition (A, \bar{A}) of vertices satisfying $s \in A$, $t \in \bar{A}$.

Definitions

For any cut (A, \bar{A}) ,

$$c(A, \bar{A}) = \sum_{\substack{(x,y) \in \\ (A \times \bar{A}) \cap E}} c(x,y)$$

$$f_{out}(A) = \sum_{\substack{(x,y) \in \\ (A \times \bar{A}) \cap E}} f(x,y)$$

$$f_{in}(A) = \sum_{\substack{(x,y) \in \\ (\bar{A} \times A) \cap E}} f(x,y)$$

$$E_{9} \leq 30$$

(s,t)-Min-Cut

Definition:

A cut (A, \bar{A}) with $s \in A$, $t \in \bar{A}$ for which $c(A, \bar{A})$, i.e. capacity, is minimised.

Property of Flows & Cuts

Property: For any (s, t)-cut (A, \overline{A}) and any flow f,

$$value(f) = f_{out}(A) - f_{in}(A)$$

Proof: For any (s, t)-cut (A, \bar{A}) and any flow f,

value(f) =
$$f_{out}(s)$$

= $f_{out}(s) + \sum_{v \in A \setminus s} f_{out}(v) - f_{in}(v)$
= $\sum_{v \in A} f_{out}(v) - f_{in}(v)$
= $f_{out}(A) - f_{in}(A)$

Property of Flows & Cuts

Property: For any (s, t)-cut (A, \overline{A}) and any flow f,

$$value(f) = f_{out}(A) - f_{in}(A)$$

Corollary: For any
$$(s, t)$$
-cut (A, \bar{A}) and any flow f , value $(f) \leqslant c(A, \bar{A})$

Implication: The value of (s, t)-max-flow is at most capacity of (s, t)-min-cut.

Max-flow Min-cut Theorem

Theorem: The value of (s, t)-max-flow is same as the capacity of (s, t)-min-cut.

Proof idea:

- 1. We showed the value of (s, t)-max-flow is at most the capacity of (s, t)-min-cut.
- 2. We will next show existence of a flow f and cut (A, \bar{A}) satisfying

value(
$$f$$
) = $c(A, \bar{A})$.

Max-Flow Algorithm

Ford-Fulkerson-algo(G, s, t):

```
1. Initialise f=0
2. While(\exists s \to t path in G_f):
2.1 Let P be an s \to t path in G_f
2.2 Let c_{min} = \min\{c(e) \mid e \in P\}
2.3 For each (x,y) \in P:

If (x,y) is forward edge : f(x,y) = f(x,y) + c_{min}

If (x,y) is backward edge : f(x,y) = f(x,y) - c_{min}
3. Return f.
```

<u>Proof:</u> Let f be max-flow computed from Ford Fulkerson algorithm.

Let $A = \text{vertices reachable from } s \text{ in } G_f$, and let $\bar{A} = V \setminus A$.

Claim 1: For each edge
$$(x, y) \in A \times \bar{A}$$
, $f(x, y) = c(x, y)$.

Suppose $f(x, y) \nleq c(x, y)$.

Then $C_n(x, y) > 0$
 \Rightarrow y is reachable from s in C_{1} . Contradiction $f(x, y) = c(x, y)$

Claim 2: For each edge $f(x, y) \in A \times \bar{A}$, $f(x, y) = 0$.

Suppose $f(x, y) > 0$.

Then $f(x, y) > 0$.

Ford Fulkerson Algorithm

The (s, t)-flow computed by Ford-Fulkerson is optimal.

Running time: 🔧

You can assume that all capacities are at least 1.

SCENARIO

When all edge copacities are integers, and F = value of man-flow.

Then

Time taken by Ford Fulkerson $= O(F \cdot (m+n))$

How bad can be running time of Ford Fulkerson?

Remark:
The edge (a,b) disappears / reappears O(1000) times.

Claim:

Number of iterations can be exponential in input size

Max-Flow Efficient Algorithms

Edmonds-Karp-algo(G, s, t):

- 1. Initialise f = 0
- 2. **While**($\exists s \rightarrow t \text{ path in } G_f$):
 - 2.1 Let P be an $s \to t$ shortest-path in G_f
 - 2.2 Let $c_{min} = \min\{c(e) \mid e \in P\}$
 - 2.3 For each $(x, y) \in P$:

If (x, y) is forward edge : $f(x, y) = f(x, y) + c_{min}$

If (x, y) is backward edge : $f(x, y) = f(x, y) - c_{min}$

3. Return f.

Claim:

Number of iterations is

O(mn)

Thus, time =
$$O(m \cdot n \cdot (m+n))$$

Observations

Claim 1: The distances of vertices from s in G_f can only increase with time.

When we more

Brom Grad to Genew

distance of vertices

from s' CANNOT

decrease.