实验名称:β射线的吸收

实验人员: 朱天宇

学号: 202211010110

实验目的

1、了解β射线在物质中的吸收规律。

2、利用吸收系数法和最大射程法,确定β射线的最大能量,并鉴别放射性核素。

实验原理

测定射线的能量是鉴別放射性核素的一种常用方法。 β 射线能量的测量可用 β 吸收法或利用各种 β 谱仪直接測量 β 谱。本实验介绍一种最为简单的方法——吸收法,即通过测定 β 粒子在吸收物质中的吸收系数或最大射程,然后换算出能量。此法求得能量的不确定性低于5%,目前在核燃料后处理、保健物理及污染分析等工作中有着广泛的应用。原子核在发生□衰变时,放出的□粒子其强度随能量变化为一条从零开始到最大能量 $E_{\beta max}$ 的连续分布曲线。一般来说,核素的不同,其最大能量 $E_{\beta max}$ 不同,因此,测定 β 射线的最大能量便提供了一种鉴別放射性核素的依据。一束 β 射线通过吸收物质时,其强度随吸收层厚度增加而逐渐减弱的现象叫做 β 吸收。对大多数 β 谱,吸收曲线的开始部分在半对数坐标纸上是一条直线,这表明它近似地服从指数衰减规律

 $rac{I}{I_0}=e^{-\mu_m d_m}$,其中 μ_m 为物质的质量吸收系数, d_m 为质量厚度

连续 β 谱的吸收曲线是许多单能电子吸收曲线的叠加;同时, β 射线穿过吸收物质时,受到原子核的多次散射,运动方向有很大改变,因此无确定的射程可言,亦不能如同单能 α 粒子的吸收那样,用平均射程来反映粒子的能量。确定 β 射线最大能量的方法,常用的有以下两种:

一、吸收系数法

实验证明,不同的吸收物质, μ_m 随物质的原子序数Z的增加而缓慢增加。对一定的吸收物质, μ_m 还与 $E_{\beta max}$ 有关。对于铝有下面的经验公式 $\mu_m=rac{17}{E_{b}^{1.14}}$,其中 μ_m 的单位取 cm^2/g , $E_{\beta max}$ 的单位为MeV.

二、最大射程法。

一般用 β 射线在吸收物质中的最大射程 R_{β} 来代表它在该物质中的射程。因此全吸收厚度就代表 R_{β} 。通过 R_{β} 与 $E_{\beta max}$ 的经验公式或曲线即得到 $E_{\beta max}$ 。经验证明,在铝中的 R_{β} (g/cm^2)和 $E_{\beta max}$ (MeV)的关系如下:

当 $E_{eta max}$ >0.8MeV时, $E_{eta max}=1.85R_{eta}+0.245$

当 $0.15 MeV < E_{eta max}$ <0.8MeV时, $E_{eta max} = 1.92 R_{eta}^{0.725}$

当 $E_{eta max}$ <0.2MeV时, $R_{eta}=0.685E_{eta max}^{1.67}$

在这种方法中, $E_{\beta max}$ 的不确定性与 R_{β} 和射程——能量关系式的准确程度有关。实际测量中,常把计数率降到原始计数率(无吸收)万分之一处的吸收厚度作为 R_{β} 。在测量吸收曲线时, β 射线和轫致辐射干扰能够使得在吸收厚度超过 R_{β} 后仍有较高的计数。

实验结果与数据处理

1. 在半对数坐标纸上画出吸收曲线, 计算并标出各实验点的相对误差。

根据实验测定的数据,要求误差小于2%,故去除单次计数小于2500的通道的数据。本底射线的强度(计数率)为: 49.83 计数/秒。α射线的强度以及穿过各个铝板后的强度如下表:

铝板个数	0	1	2	3	4	5	6	7	8	9	1
计数率 (计数/秒)	11652.630	6117.335	3577.815	2389.621	1816.609	1522,838	1365.184	1263.21	1195.879	1131.615	1084
续表	11	12	13	14	15	16	17	18	19	20	
	1043.08	995.5294	951.4133	911.6598	874.8266	842.5933	811.1026	777.2444	745.8831	710.44	

去除本底强度后,将计数数据取对数lg,绘制出吸收曲线

2. 利用吸收曲线上近似直线部分的实验点,进行直线拟合确定 μ_m 并计算出 $E_{eta max}$

考虑到铝板厚度小时,部分低能的 β 粒子也能穿过,应取吸收曲线的后半部分,又考虑到接近最大射程后有轫致辐射干扰,取 $0d_0-3d_0$ 的数据点进行拟合

得到参数k及其误差为 $k = -(0.232 \pm 0.016)(/$ 个数)

注:由于我们以铝板个数而非厚度进行拟合,并且取10为底数,得到的参数k实际是吸收系数乘以单个铝板质量厚度 $\rho d_0=0.02g/cm^2$ 以及系数lg(e)的参数lg(e) $\mu \rho d_0$,计算能量为

$$E_{eta max}=(rac{17}{\mu_m})^{1/1.14}=(rac{17}{k/lg(e)/d_0
ho})^{1/1.14}$$
=0.5583 Mev= 558.3 keV

3.用直接外推法,求出 R_{β} ,并计算 $E_{eta max}$ 。

按照直接外推法,求出相对强度降低到百分之一的厚度,从2中的拟合图像可知y=k*x+b,当y=10^{-2}时,x=(-2-b)/k=7.7067,乘以单片的质量厚度 $\rho d_0=0.02g/cm^2$,得到 $R_{\beta}=0.154g/cm^2$,从2知 $E_{\beta max}$ 应在0.15-0.8Mev左右,套用公式 $E_{\beta max}=1.92R_{\beta}^{0.725}=0.4949Mev$ 比较知待测源为Cs=137,查资料知其最大β衰变的能量为0.512MeV。相对误差为3.34%。

思考题

1.内转换常在重原子的最内几个电子壳层中发生,发射y射线,其能量较高;β射线一般会取代外层电子,能量较低。

2.α射线的穿透能力差,在空气中的射程只有1~2厘米;β射线穿透本领较强。α粒子是带正电的重粒子,在空气中极易电离,也容易与其他粒子碰撞,所以速度降低得很快,穿透能力差。

- 3.取 $E_{eta max}=0.765 MeV$,代入经验公式求出 $R_{eta}=0.2810 g/cm^2$,不能,不同元素的电子排布不同,致密程度也不同,测出来的经验曲线也不同,经验公式也不同。
- 4.粒子被散射后,所测得粒子数减少,测得吸收系数增大。可以选择原子核比较小的元素充当吸收片从而减少散射的影响。
- 5.采用较薄的吸收片,依此增加吸收片的数量,直到吸收曲线明显不成直线。因为这样测出来比较精确,单吸收偏数量要多,多次测量导致时间过长。
- 6.吸收系数法直接通过 μ_m 求出最大能量,需要对曲线斜率进行拟合,但总体来说比较方便。直接外推法,有三段拟合公式,拟合较为精准,但是外推的过程误差很大。