NLP CLASSIFICATION SUBREDDITS

"STOCKS" VS "STOCKMARKET"

Goal of this project is to use python code classifiers to determine if a subreddit title belongs to "stocks" or "StockMarket"

SAMPLE OF PHRASES

stocks

'Will Beijing Supersede Hong Kong?'

StockMarket

'How to Value a Company with Multiples'

15130 Data points extracted with Pushshift API

STOCKS

STOCKMARKET

TRAINING

MODEL

PARAMETERS

DATA

15130 data points Evenly from both subreddits

TOKENS

CountVectorizer,
TfidfVectorizer

ESTIMATOR

6 models inc. NB, RF, Adaboost, VotingClassifier, SVM, LogReg

NGRAM AND ESTIMATORS

COUNTVECTORIZER()

Based on trials

Logistic Regression can handle many features

Pre-determined list of stop words is used

LOGISTICREGRESSIONCV()

5

 \Diamond

CV

Cross Validation to ensure reproducibility

200

MAXITER

To prevent make fitting manageable

random seed: 42, n_jobs: -1

GRADING

MODEL

LOGISTIC REGRESSION

"Better than a coin flip"

LOGISTIC REGRESSION - COEFFICIENTS

TOP 3 COEFFICIENTS

FEATURE	COEFFICIENT	ODDS
STOCKS	0.57	1.76
QUESTION	0.56	1.75
ADVICE	0.53	1.70

LOGISTIC REGRESSION - COEFFICIENTS

Based on data there is 2.15 times as many `stocks` titles with the word "question"

Every word "question" in a subreddit title is 1.75 times as likely to be considered from `stocks` subreddit

CONCLUSION

MODEL

Logistic Regression is the best trialled model

ACCURACY

Model can be useful to up to 61%

RANKING

model coefficients understandable

SMART

Is the model better than human classification?

THANKS!

Do you have any questions?

changjulian17@gmail.com github.com/changjulian17

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**

Please keep this slide for attribution

