

COMP20008 Elements of Data Processing

Data linkage and privacy

Announcements

- Friday May 5th guest lecturer: Scott Thomson from Google
- Feedback on phase2A submissions will be released this Thursday (May 4th).

Outline

Last week

- How to define similarity between records?
- How to efficiently do linkage when matching two large databases
- Blocking

Today: How to maintain privacy when doing data linkage?

- Why is privacy important?
- An example method for privacy preserving linkage

Data Linkage and Privacy

- If data matching is being conducted within a single organisation and is using databases within the organisation, privacy/ confidentiality is generally not a concern.
 - Can assume individuals doing the matching are authorised, aware of policies and don't have malicious intent
 - E.g. University of Melbourne: administrator who is matching student academic results database against database of applicants for PhD study
- On the other hand, problems can arise if
 - Matched data is being passed to another organisation or being made public
 - Data matching is being conducted across databases from different organisations

Example 1: Need for privacy in public health

- Research team investigating effects of car accidents on the public health system. Research questions
 - Most common injuries for what types of car accident?
 - When and where accidents occurred, the road and weather conditions at time of accident and health of people involved in accident, as well as two years later?
- Data needed
 - Hospital data on patients
 - Private health insurance data
 - Police
 - Road traffic authorities
- These organisations can't share all their data with the research team.

Example 2: Need for privacy - business

- Two businesses wish to co-operate
 - Find how many customers and suppliers in common
 - Don't want to share all their confidential data with another
 - Need techniques for sharing such that
 - Only records in the two databases that are similar with each other (according to some similarity function) are identified.
 - The identities of these records and their similarities are revealed to both organisations
 - Neither of the two parties must be able to learn anything else about the other party's confidential data (the non similar records)

Example 3: Need for privacy – national security

- National crime investigation unit analysing crimes of national significance (significance to all of Australia)
- Wants to link its own database about suspicious individuals to different databases around Australia
 - Tax
 - Law enforcement
 - Financial institutions
- Only linked records should be available to the unit
 - It should not get access from the bank to financial data about non-suspicious individuals
 - It should not get access to tax records about non-suspicious individuals

Privacy Preserving Data Linkage: Problem Statement

- How can we perform data linkage for two databases, each from a different organisation
 - Without revealing any information about individuals who do not get linked across the databases (i.e. individuals who occur in one database and not in the other)
- We will need
 - Methods for computing similarity of records, without revealing the record values
 - Hashing: an important tool

Hashing

- A hash function H maps a data item of arbitrary size to a data item of fixed size
- Example 1
 - H(James) = 10
 - H(Kate) = 11
 - H(The quick brown fox jumped over the lazy dog) = 20
 - [take first letter of the string, 'J', 'K' or 'T']
- Example 2
 - H(32)=2
 - H(20)=2
 - H(6)=0
 - H(7)=1
 - [remainder when dividing by 3]

Non invertible (one way) hash function

- Non invertible hash function. Given the output H(X), extremely hard to reconstruct X. Examples
 - MD5 hash function (produces a 32 digit hex number)
 - H(James)= d52e32f3a96a64786814ae9b5279fbe5
 - H(I love data wrangling)= 614416fa9d994aa8225ebd7c50f22060
 - H(12345678)= 25d55ad283aa400af464c76d713c07ad
 - SHA-3-512 hash function (produces a 64 digit hex number)
 - H(James)=02c56351888fa73ff825ffd65526b264ebefe7916fa5d8d5c58 e766bfdd1de8e85b68bf12599b9d21eca6683d4abfa8616acfa6834e7c4 78e394374a7b015898
 - H(12345678)=8a56bac869374c669443a1626ff0967af258123f83faf6b5 5e31dd541e6bbd90308a3385713294bf2e8861bc8cf8f8feda41f9c4db1 9d5811a6b5de85eac9870

Hash function Demo

http://emn178.github.io/online-tools/sha3_512.html

Hash encoding for exact matching: 2 party protocol

- Each organisation
 - Applies a (one way) hash function to the attribute used to join the databases
 - Shares its hashed values with the other organisation. Each checks which ones match. These are the linked records.

Org. A

Name	H(Name)
Jill	8347
Jane	6992

Org. B

Name	H(Name)
Bob	2332
Jane	6992

Exact matching: 2 party protocol

- Form groups of 4-5:
 - You need one laptop that is connected to the internet
 - Open *lecture17.ipynb* (available via LMS)
 - Create a dictionary with Student name as its key & student's favorite movie as its value (first name only)
 - Use capital letters to start the name
 - Email the output to enaghi@unimelb.edu.au

Small changes in input, large change in output

- Disadvantage 1: What about single character differences in the original value? E.g. MD5 hash function
 - H(James)= d52e32f3a96a64786814ae9b5279fbe5
 - H(Jamex)= c3bfa7fa6ad2b987619bb4c932e65b4a
 - Single character difference results in a completely different output. This is generally true for one way hash functions such as MD5, SHA

Dictionary attack

- Disadvantage 2: An organisation could mount a dictionary attack to "invert" the hash function. E.g. Organisation A generates a hash dictionary by computing hashes for all words of length 4
 - H(aaaa)=…
 - H(aaab)= ...
 - H(aaac)= ...
 - H(aaad)= ...
 -
 - − H(zzzz)= ...
- Organisation A then scans the hashed values received from Organisation B. Checks if any match its hash dictionary. If yes, privacy is lost for those items.
- Could also generate dictionary for all known words, pairs of words, [up to some limit of feasibility]
- d077f244def8a70e5ea758bd8352fcd8 example

2 party protocol: Disadvantages

Back to the previous example

Hash encoding for exact matchine: 3 party protocol

- Possible solution
 - Involve a trusted 3rd party (Organisation C)
 - Organisations A and B send their hashed values to Organisation C, who then checks for matches.
 - What if Organisation C is malicious?
 - Organisation C could mount a dictionary attack and guess the hashed values
 - Solution: A and B perform "dictionary attack resistant" hashing

3rd Party Protocol using salt

٨	Name	H(Name)
А	Jill+SECRET_KEY	1112
	Jane+SECRET Key	9341

В	Name	H(Name)
	Bob+SECRET_KEY	2996
	Jane+SECRET_KEY	9341

 Organisations A and B concatenate a secret word to every name field in their data before hashing (known as a salt).
 Organisation C does not know what this word is and thus can't perform a dictionary attack to "reverse" the hashed values it receives.

Hashing and salting

- In June 2012 dating site eHarmony was hacked
 - 1.5 million password hashes publicly released
- In June 2012 social networking site LinkedIn was hacked
 - 6.5 million hashed password stolen and publicly released
- Neither company used a salt when hashing the passwords
 - Many passwords were thus susceptible to a brute force dictionary attack on the hashed values

Question

- The two party protocol isn't robust to a dictionary attack.
 - Why doesn't adding salt to the hash function help here?

Frequency attack

- This third party scheme prevents a dictionary attack, but may still be susceptible to a frequency attack.
 - 3rd party compares the distribution of hashed values to some known distribution
 - E.g. distribution of surname frequencies in a public database versus distribution of hash values
 - May be able to guess some of the hashed values!
- Organisations A and B could prevent this by adding random records to manipulate the frequency distribution

Frequency attack [slide from Peter Christen]

Summary/ Privacy preserving linkage

- Organisations A and B can determine which records in the two databases are an exact match in a privacy preserving manner by
 - using a trusted third party C, and
 - using one way hash functions with a salt, and
 - adding random records
- A reasonably private scheme (depending on how much the third party is trust)

Challenge 1

- The hash based technique using the 3rd party, can only compute exact similarity between strings in a privacy preserving manner.
- What if we wish to compute approximate similarity between two strings in a privacy preserving manner?
 - To be covered in Monday's lecture

Challenge 2: Public release

- Suppose organisation wishes to make one of its internal datasets public, for social good purposes
 - E.g. NASA releasing images of Mars
 - City of San Francisco, crime data
 - CERN, particle physics data
 - Bank, data on credit scoring and people who experiences financial distress
- Can be very, very difficult to prevent data linkage attacks or reverse engineering of people's identities
 - America Online search logs
 - Medicare Benefits Schedule data (
 https://pursuit.unimelb.edu.au/articles/understanding-the-maths-is-crucial-for-protecting-privacy)

America Online Search Logs

- In 2006, America Online released a file with 3 months of "anonymized" search queries of 658k users.
 - After a public outcry, data quickly taken down, but couldn't be removed completely from the Web
 - Ranked 58 out of the 101 dumbest moments in business by CNNMoney.com
 - http://www.nytimes.com/2006/08/09/technology/09aol.html?_r=0

User id	Time	Search Query
1		
1		
1		
2		
2		
2		
3		

Public release: Solutions

- Don't release the data at all!, or
- Release an obfuscated version of the data (e.g. with noise added to all the records)
 - This is the basis of methods such as k-anonymity and differential privacy (we will likely look at in a couple of weeks)

Acknowledgements

- Material in this lecture partly adapted from
 - Data Matching: Concepts and Techniques for Record Linkage, Entity Resolution and Duplicate Detection, Peter Christen, Springer, 2012. Available as an e-book for download by University Library
 - Read Sections 1,2, 4.1,4.2,5.4, 8.1, 8.2

What you need to know from this lecture

- be able to explain in what circumstances privacy is an important issue for data linkage -understand the objective of privacy preserving data linkage
- understand the use of one way hashing for exact matching in a 2 party privacy preserving data linkage protocol
- understand the vulnerabilities of 2 party privacy preserving data linkage protocol to i) small differences in input, ii) dictionary attack
- understand the operation of the 3 party protocol for privacy preserving linkage, using hash encoding with salt for exact matching. Understand the disadvantages of this protocol

Plan for coming lectures

- Next lecture on Friday (May 5th): Scott Thomson from Google
- Next Monday (May 8th): Approximate Privacy-Preserving Matching Techniques