Embedded Machine Learning Lab Challenge

By Valentin & Max

Magnitude Pruning

Magnitude Pruning

pruning ~40% of params

precision over recall

recall

1.0

Taylor Pruning [1]

Channel pruning based on importance

- Defined by approximate change in loss caused by removing channel
- Activations & gradients gathered during forward passes

Iterative Pruning

For 10 iterations:

- 1. Taylor prune *k* least important channels
 - *k* proportional to num of params
- 2. Fine-tune for 10 epochs to regain performance
 - Very low learning rate
- 3. Evaluate AP
 - Compare APs over iterations

Pruning Statistics

References

[1] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, & Jan Kautz. (2017). Pruning Convolutional Neural Networks for Resource Efficient Inference.