Groups, Homomorphisms. 4 HW

$$f: \mathbb{R} \rightarrow \mathbb{R} \longrightarrow \Gamma_f = \{(a, f(x)) | a \in \mathbb{R}^d\}$$

$$f(a) = a^2$$

$$(f+g)^{(a)} = f^{(a)} + g^{(a)}$$

= $x^2 + 2x$

$$(f \cdot g)(1) = f(1) \cdot g(1) = 21^{3}$$

as a group w/ t

Construct a group honomorphism Ø: Z -> G & ø is inj.

$$Z \cong \varphi(Z) \leq G$$
, Z should be big tie to its $\varphi(Z)$

$$f: R_{>0} \longrightarrow f(R_{>0})_{//}$$

$$\phi: \mathbb{Z}, \stackrel{\leftarrow}{\longrightarrow} G$$

$$\uparrow_{n} = G$$

$$\uparrow_{n} = X \times \text{huph!}$$

$$\downarrow_{n} = X \times \text{huph!}$$

$$\downarrow_{n} = X \times \text{huph!}$$

$$\downarrow_{n} = X \times \text{huph!}$$

1 1 ×

1.
$$\phi(n)(n) = n$$
 $\phi(n) = f_n$ where $f_n(n) = n$

$$\phi(n+m)(n) = f_n(n)(n) + \phi(n)(n)(n)$$
i.e. $\phi(n+m) = \phi(n) + \phi(m)$

2.
$$\phi(n)(1) = x^n$$

3.
$$\phi(n)(x) = nx$$

 $\phi(n+n)(x) = (n+n)x = nx + mx = \phi(n)(x) + \phi(m)(x)$
Grp huph!

$$\phi(n) = \phi(m)$$
 is $n = m^{\frac{1}{2}}$

1.
$$\phi(n) = \phi(m)$$

$$f_n = f_m \quad i.e. \quad f_n(x) = f_m(x) \quad \forall x \in \mathbb{R}$$

$$v = v$$

$$v = v$$

3.
$$\phi(n) = \phi(m)$$

$$f_n = f_m \quad i.e. \quad f_n(t) = f_m(t) \quad \forall t \in \mathbb{R}$$

Can freat
$$\mathbb{Z}$$
 as "a subgroup" of \mathbb{Q}

$$(\omega|+)$$

Exercise Can you repeat the argument and show

R is "a subgroup" of
$$G$$
 ($w(+)$)

Matrices | w addition

$$\alpha \neq 0$$

Let
$$(aT) = det \begin{pmatrix} a \\ q \\ a \end{pmatrix} = a^n$$
Let $\begin{pmatrix} a \\ 1 \end{pmatrix} = a$

$$\det \begin{pmatrix} a \\ \vdots \end{pmatrix} = a = \det \begin{pmatrix} a \\ \vdots \end{pmatrix}$$

"kernel" measures failure of injectivity

"special linear group"

- * G = {f: R -> R} w| add n is a B1G group
- * GLn(R) is an example of a non-abelian group (natrices wrt mult)
- * det is a grp hmph
- * Can think of different groups as subgroups of other groups via inj group huph.