SEMANA 11 EJEMPLO DE APLICACIÓN: PHOTO OCR

DESCRIPCIÓN DEL PROBLEMA Y CANALIZACIÓN

SLIDING WINDOW

OBSERVAMOS UNA APLICACIÓN EN APRENDIZAJE SUPERVISADO EL CUAL ETIQUETA A LAS PERSONAS DETECTADAS CON Y=1 Y POR CONSIGUIENTE A LAS QUE NO CON Y=0

Photo OCR pipeline

1. Text detection

2. Character segmentation

3. Character classification

OBTENER MUCHOS DATOS Y DATOS ARTIFICIALES

ALGORITMOS CON BAJO SESGO

BUEN DESEMPEÑO

DE TU ALGORITMO

Pero....¿Donde sacamos demasiados datos de entrenamiento?

- Cuando no tenemos ningún dato
- Cuando tenemos un pequeño conjunto de entrenamiento con etiqueta.

CON ESTO AHORRAMOS TIEMPO Y COSTOS, PERO DEBEMOS EVALUAR SI APLICARLO A NUESTRO ALGORITMO ES RECOMENDABLE Y EFICAZ

ANÁLISIS AL TOPE : ¿EN QUE PARTE DE LA CANALIZACIÓN TRABAJAR?

Es importante estructurar nuestros procesos de ejecución e ir midiendo el rendimiento en cada una de sus componentes, para detectar en cual vale la pena poner nuestros esfuerzos, de esta manera tomaremos decisiones eficientes.

Estimating the errors due to each component (ceiling analysis)

What part of the pipeline should you spend the most time trying to improve?

Component	Accuracy
Overall system	72% - 117%
Text detection	89%
Character segmentation	90%
Character recognition	100%