

ス 「 ス 人

Masters in Computation മ cienc D Univers T hicago

INTRODUC TION N

ARCH QUESTION:

ured pension funds ideology by fac

about influence liabiliti ugge

politic nvestment actor behavior

esearch, and Ing polarization to 9 state that to

DATA

project uses sources: data from three primary

- Public annualized details on 170 large U.S. pension plans (95% of population) Plans Data: contains
- Years: 2001-2016.
- Variables: over 150
- **Topics** assumptions, alloca fund characteristics include: e: funding, accounting allocation, returns, an
- **N** Correlates of State Policy Project (MSU): contains annualized state-level data on all 50 U.S. states
- Years: 1900-2016 (with missingness)
- Variables: over 900
- policy, education, election information, government, public opinion, partisanship, and ideology Topics include: economic and fiscal
- Shor-McCarthy State Aggregate Ideology Data Legislative
- Years: 1993-2016
- Variables: 26
- Topics include: state political polarization ideology

RIBUT

SNOI

ĭ N

San

nples

Leaf:

0

Year

Return

True

False

urn <= 0.01

samples

mse = 0.0 samples = value = 0.

.049 = 10 0.35

value = 0.564

Dem

Heterogeneity

0.493

mse

0.01

samples value = (

s = 691 0.569

PA

RAMETERS:

Sen Rep Heterogeneity

0.551

mse

0.011

samples

739

value = 0.561

7

Туре	(one train/test split)	(Bootstrapped)	Mode	Network (2 folds)
MSE	0.0091	0.0073	0.0038	0.0074
Error	0.0956	0.0859	0.0621	0.0865

state

fund risk behavi

political ideology and pension risk behavior, albeit a small

or,

There

2

a relationship between

CONCLUSIONS

one.

Following

Following previous work on board ideology and wealth, the state political and economic environment

MODEL

RA

STEP __ **VARIABLE** SELEC

Exploratory data analysis using Principal Component Analysis to variables (final independent var plots ar o select \supset

STEP 2: **PREPROCESSING**

Clean NAs and scale variables N(0,1)

STEP ω COMPETING MODELS

- -Deci ision Tree (one train-test plit)
- 2 Deci ision Tree (bootstrapped)
- 4 Random Forest Model
- 4 Neu Network with 4 fold cross

RESULTS

- Model has of significant. 0.0038). the מ data formed owever, given the distribution , this rate is *only slightly* low error the best. This I model
- The decision below (MSE = three factor categories play partitioning the data. tree with five layers shows 0.0091) shows that all a role in
- other higher 5 associated trees not shown, i homogeneity in p with it appears politics is **=**: return.

Table the Random Forest

associations, but allocations, but in

associated with

Higher funded ratios

acios were generally lower equity

also relates to ri

sk-taking behavior.

with higher

equi

investment

t higher previous urns were associated uity allocations,

which is

an inco

nsistent finding.

Limitations:

played a role in

the

models

Cost accounting

methods

also

Error rates, whil

e low, are not very

significant

Neural Net:

it is

difficult to

see

which variables

are

playing the

roles

Low interpretab

ility

of

RFM

and

general, from the higher below tree and

ECISION

MODEL

150 150 250 200 100 200 100 250 50 50 0 0.2 0.4 0.6 0.8 Senate Dem Heterogeneity 0.2 Prev Year Inv Return 0.0 0.2 mse = 0.001 samples = 11 value = 0.548 ax-depth: 4 mse = 0.006 samples = 12 value = 0.504 unded Ratio <= 0. mse = 0.009 samples = 38 value = 0.48 House member mse = 0.01 samples value mse = 0.009 samples = 15 value = 0.412

Total Observations

Total Observations

s = 270.453

Taxes (%GSP) <= 4 mse = 0.008

.905

GASB Cost Method < mse = 0.021

samples

s = 89 0.521

value

samples = 602 value = 0.576

value

samples value = (

\$ = 202 0.553

mse = 0.006 samples = 400 value = 0.588

mse = 0.008 samples = 64 value = 0.565

mse = 0.036 samples = 25 value = 0.408

mse:

0.01

8

0

Funded

Ratio

0

200

300

Equities

0

0.6 Total

Total Observations

Total Observations

300

Ideas largest

- dataset had 1,233 observations
- Use deep learning neural nets with

for Future Work:

- Build with more data: the cleaned
- regularization

NEURAL PAR AMET ERS

- Logistic Activation
- **LBFGS** Solver
- 4-Folds

CONI AC ME

PHONE: **GITHUB:** github.com/bethbailey EMAIL: baileyb@uchicago.edu (616) 402-7831

