LICENCIATURAS EM ENGENHARIA INFORMÁTICA

Unidade Curricular: ANÁLISE MATEMÁTICA II

Ano Letivo: 2017/2018

EXAME DA ÉPOCA NORMAL - TESTE A+B » Data: 29/06/2018

Código da prova: **2906201801**

Nota: A resolução completa dos exercícios inclui a justificação do raciocínio utilizado.

Duração: 2h30+30m

Nome do aluno: Número:

- 1. Considere a equação não linear $e^x \ln(-x) = 0 \Leftrightarrow f(x) = 0$
- [0.5] (a) Indique um intervalo de amplitude igual a 1 no qual a equação dada tem uma única raiz x^* real e negativa. Justifique a sua resposta!
- [0.5] **(b)** Determine um valor aproximado da raiz localizada utilizando o método da bisseção uma vez. Indique a precisão do resultado obtido.
- [0.5] (c) O resultado obtido na alínea anterior é uma aproximação inicial favorável à aplicação do método de Newton-Raphson ou das tangentes? Obtenha um valor aproximado da raiz efetuando uma iteração.
- [1.5] (d) Complete a função seguinte e averigue se a script imediatamente a seguir traduz corretamente a resolução em MATLAB da equação não linear dada. Justifique a sua resposta, corrigindo se for esse o caso os erros existentes na *script*.

```
function x = MTangentes(f,dfdx,x0,kmax,tol)
 k=____; x(k)=____;
 while(_____)
     x(k+1) = ____;
end
% Script01 de interface do MTangentes
Clear; clc;
strF = 'exp(x) - ln(x)';
f=@(x) vectorize(eval(strF));
while(1)
   a=str2num(input('a=','s'));
                               b=str2num(input('b=','s'));
   if ~((isscalar(a)&&isreal(a))&&(isscalar(b)&&isreal(b))&& b>a) continue end;
   if (f(a)*f(b)>0) break; end
end
      = diff(f('x')); % Derivada simbólica
df
      = @(x) eval(vectorize(char(df)));
d2fdx2 = @(x) eval(vectorize(char(diff(df))));
while(1)
   x0 = str2num(input('x0=','s'));
   if ~(isscalar(x0)&& isreal(x0)) continue; end
    if(f(x0)*d2fdx2(x0)<0) break; end
end
kmax = input('k_max='); tol = str2num(input('tol=','s'));
xT = MTangentes(dfdx,f,x0,kmax,tol) % Chamada do método das tangentes
```

2. Na serenata da Queima das Fitas a guitarra de Coimbra é rainha!

Na figura seguinte o tampo da guitarra é limitado pelas funções f e g, a boca por um círculo de raio 1/2, o braço por segmentos de reta e a cabeça por segmentos de reta e um arco de circunferência de raio 1.

$$f(x) := \begin{vmatrix} \sec & 0 < x \le 2 \\ \cot & 0 & y = 3\sqrt{1 - \frac{x^2}{4}} \\ \sec & \cos & -\pi \le x \le 0 \\ \cot & 0 & y = 3\cos(\frac{1}{2}x) \end{vmatrix}$$
 e $g(x) = -f(x)$

Figura 1 – Gráfico e desenho de uma guitarra de Coimbra

- [2.0] (a) Aplicando a interpoladora de Newton das diferenças divididas, determine o polinómio interpolador de grau 2 da função f(x) para $x \in [-\pi, 0]$ e a equação do segmento de reta com declive negativo da parte da cabeça da guitarra.
- [2.5] **(b)** Obtenha um valor aproximado dos integrais $I_1 = \int_0^2 f(x) \, dx$ e $I_2 = \int_{-\pi}^0 -g(x) \, dx$, utilizando respetivamente a regra de Simpson simples (n=2) e a dos trapézios simples (n=1). Recorrendo à figura 1 interprete os resultados obtidos.
 - 3. Considere o seguinte problema de valor inicial $y'=y-yt^2, \ y(0)=6, \ t\in \left[0,2\right]$
- [0.5] (a) Mostre que $y(t) = 6 \times \exp\left(t \frac{t^3}{3}\right)$ é a solução exata do PVI.

 Apresente a instrução em Matlab através da qual, utilizando uma função da *Symbolic Math Toolbox*, se obtém a solução exata do PVI dado.
- [2.0] (b) Relativamente ao PVI da alínea anterior, complete a tabela seguinte e interprete os resultados obtidos.

Aproximações							Erros			
		$y(t_i)$	y_i	y_i	y_i	y_i	$ y(t_i)-y_i $	$ y(t_i)-y_i $	$ y(t_i)-y_i $	$ y(t_i)-y_i $
i	t_{i}	Exata	Euler	EulerM	RK2	RK4	Euler	EulerM	RK2	RK4
0	0	6					0	0	0	0
1					9	11.5938		2.6864		
2	2	3.0805		-4.5					7.5805	1.2086

4. Considere as funções reais de duas variáveis reais definidas por:

$$f(x,y) = -x^2 - y^2; \quad g(x,y) = \sqrt{1 + f(x,y)}; \quad h(x,y) := \begin{vmatrix} \sec & 1 < x^2 + y^2 \le 4 \\ \cot \tilde{a}o & z = f(x,y) + 1 \end{vmatrix}; \quad j(x,y) = \begin{cases} g(x,y) \\ h(x,y) \end{cases}$$

- [0.5] (a) Determine o domínio da função j e represente-o geometricamente. O domínio é aberto? Justifique.
- [1.5] (b) Identifique as superfícies associadas às funções e trace um esboço da superfície de equação z = j(x,y).
- [1.5] (c) Resolva apenas <u>duas</u> das alíneas seguintes.

Qual o valor lógico das seguintes afirmações? Justifique a sua resposta.

- i) As figuras 2, 3 e 4 são gráficos 3D de funções reais de duas variáveis reais e as figuras 2 e 4 representam funções simétricas.
- ii) O vetor $\left[0 \quad y \quad -\frac{\sqrt{3}}{3}y + \frac{2}{3}\sqrt{3}\right]$ define a equação da reta tangente à curva de intersecção da superfície de equação z = j(x,y) com o plano x = 0 no ponto de coordenadas $P(0,\frac{1}{2},\frac{\sqrt{3}}{2})$.
- iii) A função j não é contínua nos pontos do cordão de soldadura definido por: $C = \left\{ \left(x,y \right) \in \mathbb{R}^2 : x^2 + y^2 = 1 \right\}.$
- iv) A função seguinte, definida em Maple, é simétrica da função j M:=(x,y)->piecewise($x^2+y^2<=1$, $sqrt(1-x^2-y^2)$, $1< x^2+y^2<=4$, $-x^2-y^2+1$)
- [1.5] (d) Das alíneas seguintes resolva apenas <u>uma</u>
 - i) Supondo que o potencial em qualquer ponto do plano xOy é dada por V=-f(x,y), a taxa de variação máxima do potencial no ponto $P\left(1,1\right)$ ocorre na direção e sentido do vetor $\vec{w}=\left\langle -1,-1\right\rangle$?

 Justifique a sua resposta e determine a taxa de variação do potencial em P segundo o vetor $\vec{u}=-\frac{\vec{w}}{\|\vec{w}\|}$.
 - ii) Utilizando diferenciais e supondo que a temperatura em qualquer ponto do plano xOy é dado por $T = \sqrt{-f(x,y)}$, obtenha uma aproximação da diferença da temperatura entre os pontos (1,1) e (1.12,1.12).
 - iii) Mostre que se z = f(x,y) (x+y), $x = \rho \cos \theta$ e $y = \rho \sin \theta$,

então
$$\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 z}{\partial \rho^2} + \frac{\partial^2 z}{\partial \theta \partial \rho} + \frac{\partial^2 z}{\partial y^2} = \sin(\theta) - \cos(\theta).$$

- iv) Determine a equação do plano tangente à superfície definida por $z=1-f(x-1,y-1) \ \text{ se } (x-1)^2+(y-1)^2\leq 4 \ , \text{ no ponto } P\left(1,1,1\right). \text{ Represente a superfície e o plano tangente.}$
- 5. As figuras 5 e 6 representam um molde de uma taça de espumante, composto por quatro partes: segmento de um paraboloide de raio 2 e altura 4; calote esférica de raio 1; cone de raio e altura 2; cilindro de raio 2 e altura 0.25

[2.0] (a) Associando os conjuntos seguintes a três sistemas de coordenadas 3D, mostre que o sólido é definido por $S = S_1 \cup S_2 \cup S_3 \cup S_4 \text{ , onde:}$

$$\begin{split} S_1 &= \left\{ (\rho, \theta, z) \in \mathbb{R}^3 : 1 \leq \rho \leq 2 \wedge 0 \leq \theta \leq 2\pi \wedge z = \rho^2 - 1 \right\}; \\ S_2 &= \left\{ (R, \theta, \varphi) : R = 1 \wedge 0 \leq \theta \leq 2\pi \wedge \frac{\pi}{2} \leq \varphi \leq \pi \right\} \\ S_3 &= \left\{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \leq 4 \wedge -3 \leq z \leq -\sqrt{x^2 + y^2} - 1 \right\} \\ S_4 &= \left\{ (\rho, \theta, z) \in \mathbb{R}^3 : 0 \leq \rho \leq 2 \wedge 0 \leq \theta \leq 2\pi \wedge -3.25 \leq z \leq -3 \right\} \end{split}$$

[2.0] (b) Determine o volume que "ocupa" o espumante Terras do Demo dentro desta taça (capacidade da taça) e a massa da base da taça ($S_3 \cup S_4$) sabendo que a sua densidade é 3.

Nota: por uma questão de simplificação dos cálculos para o cálculo do volume do espumante, considere que a espessura da taça é desprezável.

- [1.0] (c) Das alíneas seguintes resolva apenas uma
 - i) Usando o integral triplo deduza as fórmulas do volume de um cone e de um cilindro de raio r e altura h.
 - ii) Determine a área da superfície parabólica do cálice.
 - iii) Complete a rotina seguinte em MAPLE e apresente uma 2ª versão em MATLAB com critérios de validação dos parâmetros de entrada.

```
Polares2Cartesianas := proc(rho, theta)
local x, y;
x := _____;
```

y :=;
return [,];
end proc;
Nome Completo:
Número:
Curso
Licenciatura em Eng. Informática
Licenciatura em Eng. Informática - Pós-laboral
Licenciatura em Informática - Curso Europeu
Trabalhador-Estudante
Sim
Não
Frequência às aulas de AM2
Regime diurno
Regime Pós-laboral
Foi assíduo às aulas de AM2 (frequência a mais de 70% das aulas lecionadas)
Sim
Não
Fez atividades de aprendizagem e avaliação ao longo do semestre
Não
Sim
At01_Matlab - Integração Numérica (Presencial)
At02_Matlab - MNEDO_PVI
At03_Matlab - Máquina para derivação e integração
At01_TP - Cálculo Diferencial e Integral em IR^n
Participação nos fóruns temáticos de AM2 (pelo menos 3 vezes)
Acompanhou registos sobre AM2 e outros na página » facebook/armeniocorreia
Sim
Não