§ 3. Дифференцирование и интегрирование несобственных интегралов под знаком интеграла

1°. Дифференцирование по параметру. Если 1) функция f(x,y) непрерывна вместе со своей производной $f_y'(x,y)$ в области $a\leqslant x<+\infty$, $y_1< y< y_2$;

2)
$$\int_{a}^{+\infty} \mathbf{f}(x, y) \ dx \ \text{сходится}; \ 3) \int_{a}^{+\infty} \mathbf{f}'_{y}(x, y) \ dx \ \text{сходится равномерно}$$

в нитервале (y_1, y_2) , то

$$\frac{d}{dy}\int_{a}^{+\infty}f(x, y) dx = \int_{a}^{+\infty}f'_{y}(x, y) dx$$

при $y_1 < y < y_2$ (правило Лейбница). 2° . Формула интегрировання по параметру. Если 1) функция f(x, y) непрерывна при $x \geqslant a$ и $y_1 \leqslant y \leqslant y_2$; 2) $\int f(x, y) dx$ сходится равномерио в конечном сегменте (y_1, y_2) , то

$$\int_{y_1}^{y_2} dy \int_{a}^{+\infty} f(x, y) dx = \int_{a}^{+\infty} dx \int_{y_1}^{y_2} f(x, y) dy.$$
 (1)

Если $f_i(x, y) \ge 0$, то формула (1) вериа также и для бесконечного промежутка (y_1, y_2) в предположении, что виутренние интегралы равенства (1) непрерывны и одна из частей равенства (1) имеет смысл.

3784. Пользуясь формулой

$$\int_{0}^{1} x^{n-1} dx = \frac{1}{n} \quad (n > 0),$$

вычислить интеграл

$$I = \int_0^1 x^{n-1} \ln^m x \, dx, \, \text{где } m - \text{натуральное число.}$$

3785. Пользуясь формулой

$$\int_{0}^{+\infty} \frac{dx}{x^2 + a} = \frac{\pi}{2\sqrt{a}} \quad (a > 0),$$

вычислить интеграл

$$I = \int_{0}^{+\infty} \frac{dx}{(x^2 + a)^{n+1}}$$
, где n —натуральное число.