

Kľúče (Keys)

Architekt Archibald si vymyslel novú escape hru. Hru tvorí n izieb. Tie sú očíslované od 0 po n-1. Na začiatku hry je v každej izbe jeden kľúč. Každý kľúč má nejaký typ. Aj typy kľúčov sú očíslované od 0 po n-1. Typ kľúča, ktorý začína v izbe i, označíme r[i]. Hodnoty r[i] nemusia byť navzájom rôzne - teda viaceré kľúče môžu mať ten istý typ.

Medzi izbami vedie m **obojsmerných** prechodov. Prechody majú čísla od 0 po m-1. Prechod číslo j spája dve rôzne izby: u[j] a v[j]. Medzi každými dvoma izbami môže viesť ľubovoľné množstvo prechodov.

Hru hrá jeden hráč. Ten počas hry zbiera kľúče a prechádza prechodmi. Pojem **"použiť** prechod j" znamená, že hráč sa pomocou tohto prechodu dostane z izby u[j] do izby v[j] alebo naopak. Každý prechod má svoj typ c[j]. Hráč môže použiť prechod j len ak už niekedy skôr zobral kľúč typu c[j].

Hra sa hrá v ťahoch. Na začiatku každého ťahu je hráč v nejakej izbe x. V ťahu môže spraviť jednu z dvoch akcií:

- Ak v izbe x ešte je kľúč, môže ho zobrať, čím získa kľúč typu r[x].
- Použiť nejaký prechod j. Takýto prechod musí mať u[j]=x alebo v[j]=x a navyše hráč už musí mať nejaký kľúč typu c[j]. Hráč o kľúč **nikdy** nepríde: odkedy ho raz vzal, môže ho ľubovoľne veľakrát použiť.

Hra začne tým, že sa hráč zjaví v nejakej miestnosti a nemá žiadne kľúče. Hovoríme, že miestnosť t je **dosiahnuteľná** z miestnosti s, ak hráč, ktorý hru začne v miestnosti s, vie spraviť nejakú postupnosť ťahov, ktorou sa dostane do miestnosti t.

Pre každú miestnosť i sa pozrieme na to, koľko miestností (vrátane jej samotnej) je z nej dosiahnuteľných. Tento počet označíme p[i]. Archibald by chcel vedieť, z ktorých miestností je toho dosiahnuteľného najmenej - teda pre ktoré i ($0 \le i \le n-1$) je hodnota p[i] minimálna.

Detaily implementácie

Tvojou úlohou je implementovať nasledujúcu funkciu:

```
int[] find_reachable(int[] r, int[] u, int[] v, int[] c)
```

- r: pole dĺžky n. Pre každé i ($0 \le i \le n-1$) platí, že kľúč v izbe i má typ r[i].
- u,v: dve polia dĺžky m. Pre každé j ($0 \leq j \leq m-1$), prechod j spája miestnosti u[j] a v[j].
- c: pole dĺžky m. Pre každé j ($0 \le j \le m-1$), na použitie prechodu j treba kľúč typu c[j].

• Keď táto funkcia dobehne, mala by vrátiť pole a dĺžky n. Hodnota prvku a[i] má byť 1 pre tie i, pre ktoré je p[i] minimálne (teda pre všetky $j,\ 0 \leq j \leq n-1$, platí $p[i] \leq p[j]$). Pre všetky ostatné i má a[i] byť 0.

Príklady

Príklad 1

Uvažujme toto volanie tvojej funkcie:

Ak hráč začne v izbe 0, môže spraviť nasledovnú postupnosť ťahov:

aktuálna izba	ťah
0	zober kľúč typu 0
0	prejdi prechodom 0 do izby 1
1	zober kľúč typu 1
1	prejdi prechodom 2 do izby 2
2	prejdi prechodom 2 do izby 1
1	prejdi prechodom 3 do izby 3

Vidíme teda, že izba $\,3$ je dosiahnuteľná z izby $\,0$. A vlastne sme už aj ukázali, že aj ostatné izby sú z izby $\,0$ dosiahnuteľné. Preto $\,p[0]=4$.

V nasledujúcej tabuľke sú pre každú začiatočnú izbu uvedené všetky izby, ktoré sú z nej dosiahnuteľné.

izba i kde začíname	dosiahnuteľné z nej	p[i]
0	[0,1,2,3]	4
1	[1,2]	2
2	[1,2]	2
3	[1,2,3]	3

Najmenšia z hodnôt $\,p[i]\,$ je $\,2.$ Túto hodnotu dostaneme pre $\,i=1\,$ a $\,i=2.$ Správnym výstupom je teda pole $\,[0,1,1,0].$

Príklad 2

Opäť tu máme tabuľku s dosiahnuteľnými izbami:

izba i kde začíname	dosiahnuteľné z nej	p[i]
0	[0,1,2,3,4,5,6]	7
1	[1,2]	2
2	[1,2]	2
3	[3,4,5,6]	4
4	[4,6]	2
5	[3, 4, 5, 6]	4
6	[4,6]	2

Minimum poľa p má hodnotu 2. Izby, pre ktoré sa nadobúda toto minimum, sú $i \in \{1,2,4,6\}$. Správna návratová hodnota je preto [0,1,1,0,1,0,1].

Príklad 3

izba i kde začíname	dosiahnuteľné z nej	p[i]
0	[0,1]	2
1	[0, 1]	2
2	[2]	1

Teraz je najmenšou hodnotou v poli $\,p\,$ hodnota $\,1\,$ pre $\,i=2\,$, čomu zodpovedá návratová hodnota tvojej funkcie $\,[0,0,1]\,$.

Obmedzenia

- $2 \le n \le 300\,000$
- $1 \le m \le 300000$
- $0 \le r[i] \le n-1$ pre všetky $0 \le i \le n-1$
- $0 \leq u[j], v[j] \leq n-1$ a u[j]
 eq v[j] pre všetky $0 \leq j \leq m-1$
- $0 \le c[j] \le n-1$ pre všetky $0 \le j \le m-1$

Podúlohy

- 1. (9 points) c[j]=0 pre všetky $0\leq j\leq m-1$ a navyše $n,m\leq 200$
- 2. (11 points) $n,m \leq 200$
- 3. (17 points) $n, m \leq 2000$
- 4. (30 points) $c[j] \leq 29$ (for all $0 \leq j \leq m-1$) a $r[i] \leq 29$ (pre všetky $0 \leq i \leq n-1$)
- 5. (33 points) bez dodatočných obmedzení

Ukážkový grader

Ukážkový grader očakáva vstup v nasledovnom formáte:

- riadok 1: n m
- riadok 2: r[0] r[1] ... r[n-1]
- riadok 3+j ($0 \le j \le m-1$): u[j] v[j] c[j]

Ukážkový grader vypíše návratovú hodnotu tvojej funkcie find_reachable v nasledovnom formáte:

• riadok 1: a[0] a[1] ... a[n-1]