Un puente entre MLOps y DevOps con OpenShift Al

Juan Vicente Herrera @jvicenteherrera

Move models from experimentation to production faster

Operationalize AI is the catalyst for incorporating AI into practical applications

Operationalize AI is the process of integrating AI capabilities into the day-to-day operations of an organization. It involves taking your models from experimentation to production while contributing to the overall goals of the organization.

Operationalizing AI/ML requires collaboration

Every member of your team plays a critical role in a complex process

Conceptual machine learning architecture

Gather and prepare data

Data storage
Data lake
Data exploration
Data preparation
Stream processing

Develop model

ML notebooks
ML libraries

Deploy models in an application

Model lifecycle CI/CD

Model monitoring and managemer

Monitor / alerts
Model visualization
Model drift

Hybrid, multi cloud platform with self service capabilities

Compute acceleration

Infrastructure

Physical

Virtual

Private cloud

Public cloud

Edge

Enter MLOps

MLOps incorporates DevOps and GitOps to improve the lifecycle management of the ML application

Just like DevOps, MLOps requires changes.

Multi-disciplinary teams

Cross-train on the basics.

Automation

Automate everything that can be automated.

Patience

It's a gradual process, so it won't happen overnight.

Metrics

Pair measuring and tracking with transparency.

The MLOps workflow

MLOps with open source

Open Data Hub

An open source MLOps suite

- Multi-tenant data science platform
- Self-service workbenches

- Al pipeline editor
- Define workflows through Jupyter

- Preinstalled machine learning libraries
- Custom stack can be integrated

Kubeflow Pipelines

- Machine learning workflow orchestration
- Experiment tracking

- Distributed model training
- Parallelize workloads across nodes and GPUs

Kserve ModelMesh

- Deploying machine learning models as micro-services
- Pre-built inference servers

Understanding the building blocks

A common platform to bring IT, data science, and app dev teams together

Model development

Conduct exploratory data science in JupyterLab with access to core AI / ML libraries and frameworks including
TensorFlow and PyTorch using our notebook images or your

Lifecycle Management

Create repeatable data science pipelines for model training and validation and integrate them with devops pipelines for delivery of models across your enterprise.

Model serving & monitoring

Deploy models across any cloud, fully managed, and self-managed OpenShift footprint and centrally monitor their performance.

MLOps with Red Hat OpenShift

Workbench images

Data Science Projects

Project Resources

Serve, scale, and monitor your models

Data science pipelines component

- Continuously deliver and test models in production
- Schedule, track, and manage pipeline runs
- Easily build pipelines using graphical front end

- Orchestrate data science tasks into pipelines
- Chain together processes like data prep, build models, and serve models

Creating Pipelines with Kubeflow Pipelines

- Data Science Pipelines (DSP) allows data scientists to track progress as they iterate over development of ML models.
 With DSP, a data scientist
- They can create and track experiments to arrive at the best version of of training data, model hyperparameters, model code, etc., and repeatably rerun these experiments.

Creating Pipelines with Kubeflow Pipelines Flip coin example

- 1. Define a pipeline in Python.
- 2. Compile the Python file into a Tekton resource definition.
- 3. Import the pipeline.
- 4. Execute the pipeline.

Creating and Using Model Servers

- 1. Create a custom Scikit-learn model server by creating a Python container and a RHOAl serving runtime.
- 2. Deploy a version of the diabetes model trained with Scikit-learn by using the RHOAl console.

