Recitation: Functions

Discrete Mathematics TAs (plaigarised primarily from the book)

May 11, 2022

1 Questions

- 1. 10 points Determine whether $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is onto if
 - (a) f(m,n) = 2m n

Solution: This is clearly onto, since f(0, -n) = n for every integer n.

(b) $f(m,n) = m^2 - n^2$

Solution: We know that $m^2 - n^2 = (m-n)(m+n)$. The resultant output is a factor of 2 numbers. We can see that the output 2 is not possible to generate in any case. We can justify this by contradiction. If $m^2 - n^2 = (m-n)(m+n) = 2$, then one of the factors must be 2 (the other being 1) or the factor must be -2 (the other being -1). In order to get 2 or -2, m and n must have same parity (both even or both odd) since the desired factor is even. In either case, both m-n and m+n are then even, so this expression is divisible by 4. This leads to a contradiction since 2 is not divisible by 4. \perp

(c) f(m,n) = m + n + 1

Solution: This is clearly onto, since f(0, n-1) = n for every integer n.

(d) f(m,n) = |m| - |n|

Solution: This is onto. To achieve negative values we set m=0, and to achieve nonnegative values we set n=0.

(e) $f(m,n) = m^2 - 4$

Solution: This is not onto, for the same reason as in part (b). In fact, the range here is clearly a subset of the range in that part.

2. 5 points if $f: A \to B$ is a one to one function show that there exists a function $g: B \to A$ such that g is onto.

Recitation: Functions

Solution: A function is simply a relation. We can take the inverse of the relation, where an inverse is $R^{-1} = \{(b, a) \mid (a, b) \in f\}$, since for each a, there exists one unique b mapped to in f, we know that for each b that exists there is one a in R^{-1} , therefore the onto condition is met if R^{-1} is indeed a function. Some values in $b \in B$ might not have an associated pair (b, a) in R, let C be the set containing all these bs. Take any arbitrary value $a_0 \in A$ then we can construct a new relation g which is $R^{-1} \cup \{(b, a_0) \mid b \in C\}$. This relation is a function since each member from the domain B maps to one value in A. It is onto since each value in A is mapped to.

3. 5 points if $f:A\to B$ is a onto function show that there exists a function $g:B\to A$ such that g is one to one.

Solution: A function is simply a relation. We can take the inverse of the relation, where an inverse is $R^{-1} = \{(b,a) \mid (a,b) \in f\}$, Since f is onto, each b has some a that it is mapped to, and no two as are mapped by the same by b. R^{-1} might not be a function since one b might map to multiple a, in order to make it a function we can create a function g that is a subset of R^{-1} with only one element for each b to map to. The resulting is a function and is one-to-one since no two as are mapped by the same b.

4. 5 points Show that for every one-to-one and onto function $f:A\to B$ it has an inverse function g, such that $\forall a\in A, g(f(a))=a$ and $\forall b\in A, f(g(b))=b$

Solution: Proof. Let $f: A \to B$ be one-to-one and onto. We will define a function $g: B \to A$ as follows. Let $b \in B$. Since f is onto, there exists $a \in A$ such that f(a) = b. Let g(b) = a. Since f is injective, this a is unique, so g is well-defined.

Now we much check that g is the inverse of f. First we will show that g(f(a)) = a for all a. Let $a \in A$. Let b = f(a). Then, by definition, $f^{-1}(b) = a$. Then g(f(a)) = g(f(a)) = g(b) = a. Now we will show that f(g(b)) for all b. Let $b \in B$. Let a = g(b). Then, by definition, f(a) = b. Then f(g(b)) = f(g(b)) = f(a) = b.

5. 7 points 1. Let I be the set of decimals of the form $0.d_1d_2d_3d_4...$ Construct a one to one function from I to $I \times I$

Solution: f(x) = (x, x) where $\forall x \in I$.

2. Find either an onto function from I to $I \times I$ or a one to one function from for $I \times I$ to I

Solution: Simply use cantor's diagnolization proof to map $I \times I$ to I

3. Do I and $I \times I$ have the same cardinality?

Solution: Yes as there is a bijection between them

6. 5 points Let $f: A \to B$ and $g: B \to C$ If $C_0 \subseteq C$, show that $(g \circ f)^{-1}(C_0) = f^{-1}(g^{-1}(C_0))$ Recitation: Functions

Solution: If $C_0 \subset C$, show that $(g \circ f)^{-1}(C_0) = f^{-1}(g^{-1}(C_0))$. For any element $a \in A$, we have

$$a \in (g \circ f)^{-1}(C_0) \Leftrightarrow (g \circ f)(a) \in C_0$$
$$\Leftrightarrow g(f(a)) \in C_0$$
$$\Leftrightarrow f(a) \in g^{-1}(C_0)$$
$$\Leftrightarrow a \in f^{-1}(g^{-1}(C_0))$$

Thus, the two sets are equal.

7. 5 points Let $f: A \to B$ and $g: B \to C$

If f and g are injective, show that $g \circ f$ is injective.

Solution: Suppose $g \circ f(x) = g \circ f(y)$, we show that this implies x = y

$$g(f(x)) = g(f(y))$$

As g is injective, then f(x) = f(y)As f is injective, then x = y $g \circ f$ is injective

8. 5 points Let $f: A \to B$ and $g: B \to C$

If f and g are surjective, show that $g \circ f$ is surjective.

Solution: Let $z \in C$ As g is surjective $\exists y \in B$, s.t. g(y) = z

As f is surjective $\exists x \in A$, s.t. f(x) = y

Therefore $z = g(f(x)) = g \circ f(x)$, thus $z \in range(g \circ f)$.

 $g \circ f$ is surjective

9. 5 points In mathematics and computer science, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x.

Let g be a function from the set A to the set B. Let S be a subset of B. We define the inverse image of S to be the subset of A whose elements are precisely all pre-images of all elements of S. We denote the inverse image of S by $g^{-1}(S)$, so $g^{-1}(S) = \{a \in A \mid g(a) \in S\}$. (Beware: The notation g^{-1} is used in two different ways. Do not confuse the notation introduced here with the notation $g^{-1}(y)$ for the value at g of the inverse of the invertible function g. Notice also that $g^{-1}(S)$, the inverse image of the set S, makes sense for all functions g, not just invertible functions.)

Let g(x) = |x|. Find

(a) $g^{-1}(\{0\})$.

Solution: Answer: $\{x \mid 0 \le x < 1\}$

(b) $g^{-1}(\{-1,0,1\})$

Solution: Answer: $\{x \mid -1 \le x < 2\}$

(c) $g^{-1}(\{x \mid 0 < x < 1\}).$

Solution: There is no integer in range 0 < x < 1, hence no number will give this output.

Recitation: Functions

Answer: \emptyset

10. 5 points Let f be a function from the set A to the set B. Let S be a subset of B. We define the inverse image of S to be the subset of A whose elements are precisely all pre-images of all elements of S. We denote the inverse image of S by $f^{-1}(S)$, so $f^{-1}(S) = \{a \in A \mid f(a) \in S\}$. (Beware: The notation f^{-1} is used in two different ways. Do not confuse the notation introduced here with the notation $f^{-1}(y)$ for the value at g of the inverse of the invertible function g. Notice also that g in the inverse image of the set g in the set g invertible functions.)

Let f be a function from A to B. Let S and T be subsets of B. Show that $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$.

Solution: We need to prove two things. First suppose $x \in f^{-1}(S \cap T)$. This means that $f(x) \in S \cap T$. Therefore $f(x) \in S$ and $f(x) \in T$. That means $x \in f^{-1}(S)$, and $x \in f^{-1}(T)$. Thus we have shown that $f^{-1}(S \cap T) \subseteq f^{-1}(S) \cap f^{-1}(T)$.

Conversely, suppose that $x \in f^{-1}(S) \cap f^{-1}(T)$. Then $x \in f^{-1}(S)$ and $x \in f^{-1}(T)$, so $f(x) \in S$ and $f(x) \in T$. Thus we know that $f(x) \in S \cap T$, so by definition $x \in f^{-1}(S \cap T)$. This shows that $f^{-1}(S) \cap f^{-1}(T) \subseteq f^{-1}(S \cap T)$, as desired.