DM N°6 (pour le 06/12/2011)

Partie I

- 1. Soit k un entier $\geqslant 1$. Montrer que la fonction $t \mapsto \frac{\mathrm{e}^{-kt}}{\sqrt{t}}$ est intégrable sur $]0, +\infty[$. On note $J_k = \int_0^{+\infty} \frac{\mathrm{e}^{-kt}}{\sqrt{t}} \, \mathrm{d}t$.
- **2.** Donner la valeur de J_k . On pourra utiliser l'égalité : $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.
- 3. Montrer que la fonction $t \mapsto \frac{1}{\sqrt{t} \operatorname{ch} t}$ est intégrable sur $]0, +\infty[$.

On note
$$K = \frac{1}{2\sqrt{\pi}} \int_0^{+\infty} \frac{dt}{\sqrt{t} \cot t}$$

- **4. a)** Montrer que : $K = \frac{1}{\sqrt{\pi}} \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}(1 + e^{-2t})} dt$.
 - **b)** En déduire que : $K = \sum_{k=0}^{+\infty} \frac{(-1)^k}{\sqrt{2k+1}}$.
- 5. Montrer que $\frac{1}{2} < K < 1$.

Partie II

Soit *n* un entier ≥ 1 . Pour tout réel *x* dans $]0, \pi[$, on pose :

$$u_n(x) = \frac{\sin(nx)}{\sqrt{n}}, \quad f_n(x) = \sum_{k=1}^n u_k(x)$$
 et $A_n(x) = \sum_{k=1}^n \sin(kx)$

- **6. a)** Pour tout x dans $]0, \pi[$, montrer que $A_n(x) = \frac{\sin(nx/2)\sin((n+1)x/2)}{\sin(x/2)}$.
 - **b)** Si $n \ge 2$, montrer que $f_n(x) = \sum_{k=1}^{n-1} A_k(x) \left(\frac{1}{\sqrt{k}} \frac{1}{\sqrt{k+1}} \right) + \varepsilon_n(x)$ où $(\varepsilon_n(x))_{n \ge 2}$ est une suite tendant vers 0.
- 7. En déduire la convergence de la série de terme général $u_n(x)$.
- **8. a)** Montrer l'existence d'une constante C > 0 telle que $f_{2n}(\pi/(4n)) f_n(\pi/(4n)) \ge C\sqrt{n}$. Expliciter une telle constante.
 - **b)** La suite de fonctions $(f_n)_{n \ge 1}$ converge-t-elle uniformément sur $]0, \pi[$?

On désigne par i le nombre complexe de module 1 et d'argument $\pi/2$. Si z=a+ib est un nombre complexe avec a et b réels, on désigne par $\mathcal{I}mm(z)$ sa partie imaginaire, c'est-à-dire b.

- 9. a) Soit $x \in]0, \pi[$. Déterminer le tableau de variations de la fonction $t \mapsto |e^{ix-t} 1|$ définie pour $t \in]0, +\infty[$.
 - **b)** Montrer que la fonction $t \mapsto \frac{e^{-t}}{\sqrt{t}(1-e^{ix-t})}$ est intégrable sur $]0,+\infty[$.
 - c) Établir alors que : $f_n(x) = \frac{1}{\sqrt{\pi}} \mathcal{I}m \, \text{m} \int_0^{+\infty} \frac{e^{ix-t} (e^{ix-t})^{n+1}}{\sqrt{t}(1 e^{ix-t})} \, dt$.
 - **d)** En déduire que : $f(x) = \frac{\sin x}{2\sqrt{\pi}} \int_0^{+\infty} \frac{dt}{\sqrt{t}(\cot t \cos x)}$.
 - e) Montrer que f(x) > 0.
 - **f)** En comparant les valeurs de cht et e^t sur $]0,+\infty[$, montrer que $1/2 < f(\pi/2) < 1$.

Partie III

Dans cette partie, $x \in]0, \pi/2[$.

- 10. a) Établir que la fonction $u \mapsto \frac{1}{\sqrt{u}(\operatorname{sh}^2 u + \sin^2 x)}$ est intégrable sur $]0, +\infty[$.
 - **b)** Montrer que : $f(2x) = \frac{\sin 2x}{2\sqrt{2\pi}} \int_0^{+\infty} \frac{du}{\sqrt{u}(\sinh^2 u + \sin^2 x)}$.
- **11.** Montrer que f est de classe \mathscr{C}^0 sur $]0, \pi[$.
- **12.** Montrer que f est de classe \mathscr{C}^1 sur $]0,\pi[$.

