FMI, Info, Anul I Semestrul I, 2016/2017 Logică matematică și computațională Laurențiu Leuştean, Alexandra Otiman, Andrei Sipos

Seminar 7

(S7.1) (Metoda reducerii la absurd)

Să se arate că pentru orice mulțime de formule Γ și orice formule φ, ψ ,

$$\Gamma \cup \{\neg \psi\} \vdash \neg(\varphi \to \varphi) \Rightarrow \Gamma \vdash \psi.$$

Demonstrație: Avem

- $\Gamma \cup \{\neg \psi\} \vdash \neg(\varphi \to \varphi)$ Ipoteză
- (3)
- (4)
- $\Gamma \vdash \varphi \rightarrow \varphi$ Propozițiile 1.48 și 1.42.(ii) (5)

 $\Gamma \vdash \psi$ (6)(MP): (4), (5).

(S7.2) Să se arate că pentru orice formule φ, ψ ,

- (i) $\{\psi, \neg \psi\} \vdash \varphi$;
- (ii) $\vdash \neg \psi \rightarrow (\psi \rightarrow \varphi)$;
- (iii) $\vdash \neg \neg \varphi \rightarrow \varphi$;
- (iv) $\vdash \varphi \rightarrow \neg \neg \varphi$.

Demonstrație: Demonstrăm (i):

$$(1) \qquad \vdash \neg \psi \to (\neg \varphi \to \neg \psi) \qquad (A1)$$

(2)
$$\{\neg\psi\} \vdash \neg\varphi \rightarrow \neg\psi$$
 Teorema deducție

(1)
$$\vdash \neg \psi \rightarrow (\neg \varphi \rightarrow \neg \psi)$$
 (A1)
(2) $\{\neg \psi\} \vdash \neg \varphi \rightarrow \neg \psi$ Teorema deducţiei
(3) $\{\neg \psi\} \vdash (\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$ (A3) şi Propoziţia 1.40.(i)
(4) $\{\neg \psi\} \vdash \psi \rightarrow \varphi$ (MP): (2), (3)

(4)
$$\{\neg\psi\} \vdash \psi \rightarrow \varphi$$
 (MP): (2), (3)

(5)
$$\{\psi, \neg \psi\} \vdash \varphi$$
 Teorema deducţiei.

Punctul (ii) se obține din (i) aplicând de două ori Teorema deducției:

$$(1) \quad \{\psi, \neg \psi\} \quad \vdash \varphi \tag{S7.2}.(i)$$

(2)
$$\{\neg\psi\} \vdash \psi \rightarrow \varphi$$
 Teorema deducției

(3)
$$\vdash \neg \psi \rightarrow (\psi \rightarrow \chi)$$
 Teorema deducției.

Demonstrăm în continuare (iii).

(1)
$$\{\neg \varphi, \neg \neg \varphi\} \vdash \neg(\varphi \to \varphi)$$
 (i)

(2)
$$\{\neg\neg\varphi\} \vdash \varphi$$
 (1) si (S7.1)

Demonstrăm (iv):

(1)
$$\vdash \neg \neg \neg \varphi \rightarrow \neg \varphi$$
 (iii) cu $\varphi := \neg \varphi$

$$(1) \vdash \neg \neg \neg \varphi \rightarrow \neg \varphi \qquad (iii) \circ (2) \vdash (\neg \neg \neg \varphi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \neg \neg \varphi) \qquad (A3)$$

(3)
$$\vdash \varphi \rightarrow \neg \neg \varphi$$
 (MP): (1), (2).

(S7.3) ("Reciproca" axiomei 3)

Să se arate că pentru orice formule φ, ψ ,

$$\vdash (\varphi \to \psi) \to (\neg \psi \to \neg \varphi).$$

Demonstrație:

(1)
$$\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\} \vdash \varphi \to \psi$$
 Propoziția 1.40.(ii)

2)
$$\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\} \vdash \neg \psi$$
 Propoziția 1.40.(ii)

(3)
$$\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\} \vdash \neg \neg \varphi$$
 Propoziția 1.40.(ii)

(4)
$$\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\} \vdash \neg \neg \varphi \to \varphi$$
 (S7.2).(iii) şi Propoziția 1.42.(ii)

(5)
$$\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\} \vdash \varphi$$
 (MP): (3), (4)

(6)
$$\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\} \vdash \psi$$
 (MP): (1), (5)

(7)
$$\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\} \vdash \neg \psi \to (\psi \to \neg(\varphi \to \varphi))$$
 (S7.2).(ii) şi Propoziţia 1.42.(ii)

(7)
$$\{\varphi \rightarrow \psi, \neg \psi, \neg \neg \varphi\}$$
 $\vdash \neg \psi \rightarrow (\psi \rightarrow \neg(\varphi \rightarrow \varphi))$ (S7.2).(ii) şi P
(8) $\{\varphi \rightarrow \psi, \neg \psi, \neg \neg \varphi\}$ $\vdash \psi \rightarrow \neg(\varphi \rightarrow \varphi)$ (MP): (2), (7)
(9) $\{\varphi \rightarrow \psi, \neg \psi, \neg \neg \varphi\}$ $\vdash \neg(\varphi \rightarrow \varphi)$ (MP): (6), (8)

(9)
$$\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\} \vdash \neg(\varphi \to \varphi)$$
 (MP): (6), (8)
(10) $\{\varphi \to \psi, \neg \psi\} \vdash \neg \varphi$ (9) şi (S7.1)

(11)
$$\{\varphi \to \psi\} \vdash \neg \psi \to \neg \varphi$$
 Teorema deducţiei

(12)
$$\vdash (\varphi \to \psi) \to (\neg \psi \to \neg \varphi)$$
 Teorema deducției.

(S7.4) Să se arate că pentru orice formule $\varphi, \psi,$

$$\{\psi, \neg \varphi\} \vdash \neg(\psi \to \varphi).$$

Demonstrație: Avem

(1)	$\{\psi, \neg \varphi, \neg \neg (\psi \to \varphi)\}$	$\vdash \psi$	Propoziția 1.40.(ii)
(2)	$\{\psi, \neg \varphi, \neg \neg (\psi \to \varphi)\}$	$\vdash \neg \varphi$	Propoziția 1.40.(ii)
(3)	$\{\psi, \neg \varphi, \neg \neg (\psi \to \varphi)\}$	$\vdash \neg \neg (\psi \to \varphi)$	Propoziția 1.40.(ii)
(4)	$\{\psi, \neg \varphi, \neg \neg (\psi \to \varphi)\}$	$\vdash \neg \neg (\psi \to \varphi) \to (\psi \to \varphi)$	(S7.2).(iii) şi Prop. 1.42.(ii)
(5)	$\{\psi, \neg \varphi, \neg \neg (\psi \to \varphi)\}$	$\vdash \psi \to \varphi$	(MP): (3), (4)
(6)	$\{\psi, \neg \varphi, \neg \neg (\psi \to \varphi)\}$	$\vdash \varphi$	(MP): (1), (5)
(7)	$\{\psi, \neg \varphi, \neg \neg (\psi \to \varphi)\}$	$\vdash \neg \varphi \to (\varphi \to \neg (\varphi \to \varphi))$	(S7.2).(ii) și Prop. 1.42.(ii)
(8)	$\{\psi, \neg \varphi, \neg \neg (\psi \to \varphi)\}$	$\vdash \varphi \to \neg(\varphi \to \varphi)$	(MP): (2), (7)
(9)	$\{\psi, \neg \varphi, \neg \neg (\psi \to \varphi)\}$	$\vdash \neg(\varphi \to \varphi)$	(MP): (6), (8)
(10)	$\{\psi, \neg \varphi\}$	$\vdash \neg(\psi \to \varphi)$	(9) şi (S7.1).

3