

The Role of Automation in Undergraduate Computer Science Education

Full Text: PDF Act this Article

Author: Chris Wilcox Colorado State University, Fort Collins, CO, USA

Published in:

Proceeding

SIGCSE '15 Proceedings of the 46th ACM Technical Symposium on Computer Science Education

Pages 90-95

ACM New York, NY, USA @2015

table of contents ISBN: 978-1-4503-2966-8 doi>10.1145/2676723.2677226

· Downloads (6 Weeks): 10

· Downloads (12 Months): 105

Downloads (cumulative): 170

Citation Count: 1

Recent authors with related interests

Concepts in this article

powered by

IBM Watson™

Presented by: Garrett Dancik

September 19, 2016

http://dl.acm.org/citation.cfm?id=2677226

Article: The Role of Automation in Undergraduate Computer Science

- Background:
 - Grading is a very time-consuming element of teaching
 - Automated grading has advantages
 - Students can submit programs online where they are automatically graded
 - Students receive relatively fast feedback
 - Students can submit multiple times, can make corrections and, ideally, better learn concepts
- Objective: Look at effect of automatic grading on learning and other outcomes

Figure 3: Automated Program Grading Interface.

```
Classes, Methods, Data
 What does the following code print?
public class Peer (
                                       A 13 34 14 45
  static int i = 12;
                                       B. 13 45 14 45
  int j = 23;
                                       C. 14 34 14 45
  public static void main(...) {
                                       D. 14 45 14 45
    Peer p1 = new Peer();
                                       E. Will not compile
     Peer p2 = new Peer();
    p1.i++; p1.j = 34; p2.i++; p2.j = 45;
     System.out.println(p1.i+" "+p1.j+" "+p2.i+" "+p2.j);
                     CS 160, Spring Semester 2914
```

Figure 4: Peer Instruction Example Question.

	Semester	Zeros Included	Mean	Median	Sample Size	Stddev	Variance	Increase	Statistical Significance
	Spring 2013	Yes	66.1	71.0	234	20.3	410.4	+0.0%	base semester
ı	Spring 2013	No	68.5	71.0	234	16.2	264.0	+0.0%	base semester
	Fall 2013	Yes	70.3	76.3	252	24.1	582.7	+6.4%	t = 2.07 p = 0.0388
	Fall 2013	No	75.7	79.0	252	14.7	216.3	+10.6%	t = 5.04 p < 0.0001
	Spring 2014	Yes	73.9	78.0	232	20.5	422.3	+11.8%	t = 4.11 p < 0.0001
	Spring 2014	No	77.6	78.0	232	12.5	156.8	+13.3%	t = 6.63 p < 0.0001

Figure 5: Analysis of Exam Scores.

Semester	Statistic	Average
Spring 2013	Submissions	231
Spring 2015	Per Student	1.11
Fall 2013	Submissions	677
1 411 2013	Per Student	2.95
Spring 2014	Submissions	856
Opinig 2014	Per Student	4.11

Figure 7: Comparison of Submission Rates.

Conclusions

- Article contributions: the combined adoption of new pedagogic techniques (automated grading + peer instruction)
 - improves the average final exam scores and overall grade.
 - decreases the student withdrawal rate.
 - improves student attendance.

Limitations

- Cannot directly separate effect from automated grading vs. peer instruction
- Are students just better over time (uncontrolled extraneous variable)?

Additional observations

- Automated grading has an unforgiving nature
- Some students throw submissions at automated grading

Project idea: development of an automated tool for learning *R* programming

R programming and swirl

- R (<u>http://www.r-project.org</u>) is a free environment for statistical computing and graphics
- R is an interpreted language
- Many packages are available for specialized analyses (http://cran.r-project.org/web/packages/)
- Swirl (<u>http://swirlstats.com</u>) is a package where you can "learn R, in R."
 - Questions are hard-coded
 - This makes swirl appropriate for learning but not for practice and/or assessment

Proposed project

- Develop a swirl-based package that generates templatebased problems to help students practice R programming and data analysis concepts
- Question templates that use random variable names and/or values:
 - Question: Create a vector named 'x' that stores the values 3 and 11.
 - Solution: x = c(3,11)
- Improvement: values in red above are randomly generated each time.

Questions:

- 1. What is the best way to learn a new programming language?
- 2. How do I create a package in R with this changes?
- 3. How do I implement the random number generation

Question: Create a vector named 'x' that stores the values <INT1,1,20> and <INT2,1, 20>

Solution: x = c(INT1, INT2)