Отчет по лабораторной работе N210

Исследование линейных двухполюсников и четырёхполюсников

Выполнили студенты 420 группы Понур К.А., Сарафанов Ф.Г., Сидоров Д.А.

Содержание

1	Pac	чет це	пей
	1.1	Расче	г импеданса некоторых линейных элементов
		1.1.1	Импеданс конденсатора
		1.1.2	Импеданс индуктивности
		1.1.3	Импеданс резистора
2	Дву	/хполю	осники. Расчет цепи и экспериментальные данные
	2.1	Схема	№1. Последовательная RC – цепочка
		2.1.1	Импеданс
		2.1.2	Разность фаз
		2.1.3	Результаты эксперимента
	2.2	Схема	\mathbb{N}^2 . Последовательная LC — цепочка
		2.2.1	Импеданс
		2.2.2	Разность фаз
		2.2.3	Результаты эксперимента
	2.3	Схема	№3. Двухполюсник $R[RC]$
		2.3.1	Импеданс
		2.3.2	Разность фаз
		2.3.3	Результаты эксперимента
	2.4	Четве	ртая схема
3	Пят	гая схе	ема 14
1	Шо	emoa e	YOM 2

1. Расчет цепей

1.1. Расчет импеданса некоторых линейных элементов

Будем рассчитывать импеданс методом комплексных амплитуд. Полагая известным

$$\widehat{U} = U_0 e^{i(\omega t + \varphi_u)} = U_0 \exp(i\varphi_u) \exp(i\omega t) = \widehat{U}_0 \exp(i\omega t)$$
(1)

где $\widehat{U}_0 = U_0 \exp(i\varphi_u)$ – комплексная амплитуд напряжения, включающая в себя начальную фазу.

Будем предполагать, что мы нашли $\widehat{J}=\widehat{J}(\widehat{U}),$ используя связь тока и напряжения:

$$\widehat{J} = \widehat{J}_0 \exp(i\omega t) \tag{2}$$

Возможен обратный ход – от известного тока через линейную связь перейти к напряжению.

Тогда импеданс по определению найдется как

$$\widehat{z} = \frac{\widehat{U}_0}{\widehat{J}_0} \tag{3}$$

1.1.1 Импеданс конденсатора

Рассчитаем импеданс конденсатора методом комплексных амплитуд.

$$\widehat{J} = C \frac{\mathrm{d}\widehat{U}}{\mathrm{d}t} \tag{4}$$

Отсюда получаем:

$$\widehat{J} = i\omega C U_0 \exp(i\varphi_u) \exp(i\omega t) \tag{5}$$

И комплексная амплитуда тока:

$$\widehat{J}_0 = i\omega C U_0 \exp(i\varphi_u) \tag{6}$$

Получаем комплексный импеданс конденсатора

$$\widehat{z}_C = \frac{\widehat{U}_0}{\widehat{J}_0} = \frac{U_0 \exp(i\varphi_u)}{U_0 i\omega C \exp(i\varphi_u)} = \frac{1}{i \cdot \omega C}$$
(7)

1.1.2 Импеданс индуктивности

В данном случае удобно считать известным ток.

$$\widehat{U} = L \frac{\mathrm{d}\widehat{J}}{\mathrm{d}t} \tag{8}$$

Отсюда получаем:

$$\widehat{U} = i\omega L J_0 \exp(i\varphi_j) \exp(i\omega t) \tag{9}$$

И комплексная амплитуда напряжения:

$$\widehat{U}_0 = i\omega L J_0 \exp(i\varphi_j) \tag{10}$$

Получаем комплексный импеданс конденсатора

$$\widehat{z}_L = \frac{\widehat{U}_0}{\widehat{J}_0} = \frac{i\omega L J_0 \exp(i\varphi_j)}{J_0 \exp(i\varphi_j)} = i \cdot \omega L$$
(11)

1.1.3 Импеданс резистора

Пусть известен ток.

$$\widehat{U} = \widehat{J}R \tag{12}$$

Отсюда получаем:

$$\widehat{U} = RJ_0 \exp(i\varphi_i) \exp(i\omega t) \tag{13}$$

И комплексная амплитуда напряжения:

$$\widehat{U}_0 = RJ_0 \exp(i\varphi_i) \tag{14}$$

Получаем комплексный импеданс конденсатора

$$\widehat{z}_R = \frac{\widehat{U}_0}{\widehat{J}_0} = \frac{RJ_0 \exp(i\varphi_j)}{J_0 \exp(i\varphi_j)} = R \tag{15}$$

2. Двухполюсники. Расчет цепи и экспериментальные данные

2.1. Схема №1. Последовательная RC – цепочка

Рис. 1: Последовательная RC – цепочка

2.1.1 Импеданс

Импеданс RC — цепочки найдем, используя ранее вычисленные импедансы линейных элементов:

$$\widehat{z} = \frac{1}{i \cdot \omega C} + R \tag{16}$$

$$z = \sqrt{\frac{1}{\omega^2 C^2} + R^2} = \sqrt{\frac{1}{\omega^2 C^2} + \frac{R^2 \omega^2 C^2}{\omega^2 C^2}} = \frac{\sqrt{1 + (\omega R C)^2}}{\omega C}$$
(17)

Экспериментально можно снимать зависомость $U_{13}\equiv U_{\rm вx}$ и $U_{23}\equiv U_{\rm вых}$ от частоты. Из закона Ома найдем тогда импеданс цепочки.

$$\widehat{J}_{13} = \widehat{J}_{23} \quad \Rightarrow \quad \frac{\widehat{U}_{13}}{\widehat{z}} = \frac{\widehat{U}_{23}}{R} \tag{18}$$

Взяв по модулю, получим нужное соотношение:

$$z = \frac{U_{\text{bx}}}{U_{\text{BMX}}}R\tag{19}$$

2.1.2 Разность фаз

Также найдем зависимость разности фаз от частоты:

$$|\tan \varphi| = \left| \frac{\operatorname{Im} \widehat{z}}{\operatorname{Re} \widehat{z}} \right| = \left| \frac{-(\omega C)^{-1}}{R} \right| = \frac{1}{\omega RC}$$
 (20)

2.1.3 Результаты эксперимента

Таблица 1: Результаты эксперимента для первой схемы

ν , Гц	ω , Гц	a	b	φ , рад	$\tan \varphi$	U_{in} , B	U_{in} , B	z, Om
15	94	6.9	7.0	1.19	2.502	7.446	0.453	213 683
25	157	6.9	7.0	1.19	2.502	7.532	1.064	92026
40	251	6.9	7.0	1.19	2.502	7.512	1.600	61035
100	628	6.2	7.0	1.00	1.566	7.412	3.364	28643
200	1256	4.7	7.0	0.74	0.906	7.410	5.016	19205
300	1884	3.7	7.0	0.56	0.623	7.320	5.909	16104
400	2512	3.0	7.0	0.44	0.474	7.270	6.297	15009
500	3140	2.5	7.0	0.37	0.382	7.236	6.536	14392
1000	6280	1.3	7.0	0.19	0.189	7.300	7.030	13499
2000	12560	0.7	7.0	0.10	0.101	7.282	7.160	13221
3 000	18 840	0.4	7.0	0.06	0.057	7.270	7.175	13172

Рис. 2: Зависимость $z(\omega)$ для последовательной RC–цепочки

Рис. 3: Зависимость $\tan \varphi(\omega)$ для последовательной RC–цепочки

2.2. Схема №2. Последовательная LC — цепочка

Рис. 4: Последовательная RC – цепочка

2.2.1 Импеданс

$$\widehat{z} = i\omega L + R \tag{21}$$

$$z = \sqrt{(\omega L)^2 + R} \tag{22}$$

Очевидно, что аналогично последовательной RC-цепочке

$$z = \frac{U_{\text{bx}}}{U_{\text{Bbix}}}R\tag{23}$$

2.2.2 Разность фаз

$$|\tan \varphi| = \left| \frac{\operatorname{Im} \widehat{z}}{\operatorname{Re} \widehat{z}} \right| = \left| \frac{\omega L}{R} \right| = \frac{\omega L}{R}$$
 (24)

2.2.3 Результаты эксперимента

Таблица 2: Результаты эксперимента для второй схемы

ν, Гц	ω , Гц	a	b	φ , рад	$\tan \varphi$	U_{in} , B	U_{in} , B	z, Om
15	94	0.0	7.0	0.00	0.000	6.985	6.632	13 692
100	628	0.0	7.0	0.00	0.000	6.964	6.614	13688
300	1884	0.4	7.0	0.06	0.057	7.021	6.666	13692
500	3140	0.5	7.0	0.07	0.072	6.980	6.619	13709
700	4396	0.8	7.0	0.11	0.108	6.951	6.584	13725
1 000	6280	0.9	7.0	0.13	0.130	6.990	6.549	13875
1500	9420	1.3	7.0	0.19	0.189	7.075	6.654	13823
2000	12560	1.9	7.0	0.27	0.282	7.077	6.616	13906
3000	18840	2.7	7.0	0.40	0.418	7.033	6.482	14105
5000	31400	4.0	7.0	0.61	0.696	7.079	6.111	15059
10000	62800	6.2	7.0	1.09	1.908	7.164	4.577	20348
15000	94200	6.8	7.0	1.33	4.093	6.892	3.038	29496
13 600	85 408	6.9	7.0	1.40	5.853	7.317	3.372	28 212

Рис. 5: Зависимость $z(\omega)$ для последовательной LC–цепочки

Рис. 6: Зависимость $\tan \varphi(\omega)$ для последовательной LC–цепочки

2.3. Схема №3. Двухполюсник R[RC]

Рис. 7: Двухполюсник R[RC]

2.3.1 Импеданс

Сначала рассчитаем импеданс параллельно соединенных конденсатора и резистора R

$$\frac{1}{\widehat{z}_0} = \frac{1}{R} + i\omega C \tag{25}$$

$$\hat{z}_0 = \frac{R}{1 + i\omega CR} \tag{26}$$

Комплексный импеданс всей схемы будет равен:

$$\hat{z} = \hat{z}_0 + R = \frac{R}{1 + i\omega RC} + R = \frac{R(1 - i\omega RC)}{1 + (\omega RC)^2} + R$$
 (27)

$$z = \sqrt{\text{Im}^2 \,\hat{z} + \text{Re}^2 \,\hat{z}} = R \sqrt{\left(1 + \frac{1}{1 + (\omega RC)^2}\right)^2 + \left(\frac{\omega C}{1 + (\omega RC)^2}\right)^2}$$
 (28)

2.3.2 Разность фаз

$$\tan \varphi = \frac{\operatorname{Im} \widehat{z}}{\operatorname{Re} \widehat{z}} = \frac{-\frac{\omega R^2 C}{1 + (\omega R C)^2}}{\frac{R + R + R(\omega R C)^2}{1 + (\omega R C)^2}} = \frac{-\omega R^2 C}{R + R + R(\omega R C)^2} = -\frac{\omega R C}{2 + (\omega R C)^2}$$
(29)

Из уравнения видно, что на малых частотах $z \approx 2R$, а при высоких $z \approx R$.

2.3.3 Результаты эксперимента

Таблица 3: Результаты эксперимента для третей схемы

ν, Гц	ω , Гц	a	b	φ , рад	$\tan \varphi$	U_{in} , B	U_{in} , B	z, Om
10	63	0.4	7.0	0.06	0.057	7.060	3.538	25941
15	94	0.5	7.0	0.07	0.072	7.111	3.587	25772
20	126	0.6	7.0	0.09	0.086	7.126	3.615	25624
25	157	0.7	7.0	0.10	0.101	7.131	3.639	25477
30	188	0.8	7.0	0.11	0.108	7.127	3.657	25335
40	251	0.9	7.0	0.13	0.130	7.120	3.698	25031
100	628	1.5	7.0	0.22	0.219	7.066	3.988	23033
200	1256	2.0	7.0	0.29	0.298	7.129	4.600	20147
300	1884	2.1	7.0	0.30	0.314	7.086	5.107	18038
400	2512	2.1	7.0	0.30	0.314	7.045	5.507	16631
350	2198	2.1	7.0	0.30	0.314	7.058	5.318	17254
450	2826	1.9	7.0	0.27	0.282	7.026	5.559	16431
500	3140	1.9	7.0	0.27	0.282	7.012	5.789	15747
550	3454	1.7	7.0	0.25	0.250	6.991	5.916	15362
600	3768	1.7	7.0	0.25	0.250	6.980	6.005	15111
800	5024	1.4	7.0	0.20	0.204	6.942	6.272	14389
1000	6280	1.2	7.0	0.17	0.174	6.922	6.432	13990
1500	9420	0.9	7.0	0.13	0.130	7.059	6.761	13573
3000	18 840	0.5	7.0	0.07	0.072	7.031	6.895	13256
6000	37680	0.3	7.0	0.04	0.043	6.996	6.905	13171
12000	75360	0.1	7.0	0.01	0.014	7.060	6.978	13153

Рис. 8: Зависимость $z(\omega)$ для R[RC]–двухполюсника

Рис. 9: Зависимость $\tan \varphi(\omega)$ для R[RC]–двухполюсника

2.4. Четвертая схема

Рассчитаем импеданс параллельно соединенных катушки и резистора R

$$\frac{1}{\widehat{z}_1} = \frac{1}{R} + \frac{1}{i\omega L} \tag{30}$$

$$\widehat{z}_1 = \frac{R\omega^2 L^2 + iR^2\omega L}{R + \omega L} \tag{31}$$

А импеданс всей схемы:

$$\widehat{z}_0 = \frac{R\omega^2 L^2}{R + \omega L} + R + i \frac{iR^2 \omega L}{R + \omega L}$$
(32)

3. Пятая схема

4. Шестая схема

