

The 2025 ICPC Vietnam Southern Provincial Contest

Problem C

Weighted Substring Queries

Time limit: 1 second Memory limit: 256 megabytes

You are given N distinct strings. The *i*-th string is s_i and has weight c_i . You are also given a text string T.

For each query [L, R] (1-indexed, inclusive), consider the substring

$$st = T[L] T[L+1] \dots T[R].$$

Define the value of the substring st as

$$\operatorname{val}(L, R) = \sum_{i=1}^{N} c_i \cdot k_i,$$

where k_i is the number of (possibly overlapping) occurrences of s_i as a **contiguous** substring of st. For every query, output val(L, R).

Input

The first line contains two integers N and Q $(1 \le N, Q \le 10^5)$.

Each of the next N lines contains a string s_i and an integer c_i $(1 \le c_i \le 10^9)$. All s_i are pairwise distinct.

The next line contains the text string T.

Each of the last Q lines contains two integers L and R denoting a query.

Additional guarantees:

- The total length of all input strings (all s_i plus T) does not exceed 10^5 .
- The total number of occurrences of all s_i inside T is at most 10^5 .

Output

Print Q lines. The j-th line contains a single integer — the answer to the j-th query.

Sample Input	Sample Output
6 3	17
she 3	6
he 2	6
her 5	
sh 1	
er 4	
us 2	
ushersheher	
1 5	
2 4	
6 8	

The 2025 ICPC Vietnam Southern Provincial Contest

Note

For the first query [1,5], the substring is usher. Occurrences inside usher:

• she occurs 1 time: contributes 3

• he occurs 1 time: contributes 2

• her occurs 1 time: contributes 5

• sh occurs 1 time: contributes 1

• er occurs 1 time: contributes 4

• us occurs 1 time: contributes 2

Total: 3 + 2 + 5 + 1 + 4 + 2 = 17.