

Altera Transceiver PHY IP Core

User Guide

101 Innovation Drive San Jose, CA 95134 www.altera.com

UG-01080-1.11

10.1 December 2010

Contents

Chapter 1. Introduction	
PCS	
PMA	
Reset Controller	
Avalon-MM PHY Management	
Serial Loopback	
Unsupported Features	1–8
Chapter 2. Getting Started	
Installation and Licensing	2–1
Design Flows	
MegaWizard Plug-In Manager Flow	
Specifying Parameters	
Simulate the IP Core	
Chapter 3. 10GBASE-R PHY IP Core	
Release Information	3–3
Device Family Support	
Performance and Resource Utilization	
Parameter Settings	
Interfaces	
SDR XGMII TX Interface	
SDR XGMII RX Interface	
Avalon-MM Interface	
Register Descriptions	
Status Interface	
Clocks, Reset, and Powerdown	
Serial Interface	
External PMA Control and Reconfig Interface	
TimeQuest Timing Constraints	
Chapter 4. XAUI PHY IP Core	
Release Information	
Device Family Support	
Performance and Resource Utilization	
Parameter Settings	
Configurations	
Interfaces	
SDR XGMII TX Interface	
SDR XGMII RX Interface	
Avalon-MM Interface	
Register Descriptions	
Transceiver Serial Data Interface	
Dynamic Reconfiguration Interface	
Clocks, Reset, and Powerdown	
PMA Channel Controller	
PMA Control and Status Interface Signals–Soft IP Implementation (Optional)	
PMA Control and Status Interface Signals–Hard IP Implementation (Optional)	
TimeQuest Timing Constraints	4–16

iv Contents

Chapter 5. Interlaken PHY IP Core	
Device Family Support	
Performance and Resource Utilization	
Parameter Settings	
Interface	
Avalon-ST TX Interface	
Avalon-ST RX Interface	
Avalon Memory-Mapped (Avalon-MM) Management Interface	
Register Descriptions	
PLL Interface	
TX and RX Serial Interface	
Optional Clocks for Deskew	
Simulation Testbench	
Sintulation restocated	
Chapter 6. PCI Express PHY (PIPE) IP Core	
Device Family Support	6 1
Resource Utilization	
Parameter Settings	
Interfaces	
Avalon-ST TX Input Data from PCI Express PHYMAC	
Avalon-ST RX Output Data to PCI Express PHYMAC	
Avalon Memory-Mapped (Avalon-MM) PHY Management Interface	
PHY Management Signals	
Register Descriptions	
PIPE Interface	
Transceiver Serial Interface	
Simulation	6–12
Observation 7. Occasion Physics Occasion	
Chapter 7. Custom PHY IP Core	
Device Family Support	
Performance and Resource Utilization	
Parameter Settings	
General Options	
8B/10B Encoder and Decoder	
Word Alignment	
Rate Match FIFO	
Byte Ordering	
Interfaces	
Avalon-ST TX Input Data from the MAC	7–9
Avalon-ST RX Output Data to the MAC	7–9
Avalon-MM PHY Management Interface	
PHY Management Signals	
Register Descriptions	7–11
Clock Interface	7–13
Transceiver Serial Data Interface	7–14
Optional Status Signals	7–14
Dynamic Partial Reconfiguration I/O Interface	
Chapter 8. Low Latency PHY IP Core	
Device Family Support	8–2
Performance and Resource Utilization	
Parameter Settings	

Contents

Avalon-ST TX and RX Data Interface to the MAC Avalon-MM PHY Management Interface Register Descriptions Serial Data Interface Optional Status Interface	
Chapter 9. Transceiver Reconfiguration Controller	
Register Descriptions	9–2
Steps to Achieve PMA Controls Reconfiguration	
Chapter 10. Migrating from Stratix IV to Stratix V XAUI PHY Parameter Differences Port Differences PCI Express PHY (PIPE) Parameter Differences Port Differences Custom PHY Parameter Differences Port Differences Port Differences	10-1 10-2 10-4 10-4 10-5 10-8
Additional Information	
Revision History	Info-1
How to Contact Altera	Info–3
Typographic Conventions	Info-3

vi Contents

The *Altera*® *Transceiver PHY IP Core User Guide* describes the following protocol-specific PHYs:

- 10GBASE-R PHY IP Core
- XAUI PHY IP Core
- Interlaken PHY IP Core
- PCI Express PHY (PIPE) IP Core
- Custom PHY IP Core
- Low Latency PHY IP Core

The protocol-specific PHYs automatically configure settings for the physical coding sublayer (PCS) module, leaving a small number of parameters in the physical media attachment (PMA) module for you to configure. You can use the Custom PHY for applications that require more flexible settings. The design of all of these PHYs is modular and uses standard interfaces. All PHYs include an Avalon® Memory-Mapped (Avalon-MM) interface to access control and status registers and an Avalon Streaming (Avalon-ST) interface to connect to the MAC for data transfer. The control and status registers store device-dependent information about the PCS and PMA modules. You can access this device-dependent information using the device-independent Avalon-MM interface, reducing overall complexity of your design and the number of device-dependent signals that you must expose in your top-level module.

For more information about the Avalon-MM and Avalon-ST protocols, including timing diagrams, refer to the *Avalon Interface Specifications*.

Table 1–1 shows hard and soft implementation support for these IP cores in Stratix® V devices. Typically, the PCS and PMA are implemented as hard logic, saving FPGA resources and reducing the complexity of verification. In some cases, the PCS is also available in soft logic as Table 1–1 indicates.

Table 1–1. Stratix V GX Support for Protocol Specific PHY IP Cores

PHY Protocol	Soft PCS	Hard PCS	Hard PMA
10GBASE-R	No	Yes	Yes
XAUI	Yes	No	Yes
Interlaken	No	Yes	Yes
PCI Express Gen1 and Gen2	No	Yes	Yes
Custom PHY	No	Yes	Yes
Low latency PHY	No	Yes	Yes

1–2 Chapter 1: Introduction

Figure 1–1 illustrates the top level modules that comprise the PHY IP cores.

Figure 1-1. Altera Modular PHY Design

SS TO THE OUTBOOK OF THE OUTBOOK OF

The following sections provide a brief introduction to each of the modules illustrated in Figure 1–1.

PCS

The PCS implements part of the physical layer specification for networking protocols. Depending upon the protocol that you choose, the PCS may include many different functions. Some of the most commonly included functions are: 8B/10B, 64b/66b, or 64b/67b encoding and decoding, rate matching and clock compensation, scrambling and de-scrambling, word alignment, phase compensation, error monitoring, and gearbox.

PMA

The PMA receives and transmits differential serial data on the device external pins. The transmit (TX) channel supports programmable pre-emphasis and programmable output differential voltage (V_{OD}). It converts parallel input data streams to serial data. The RX channel supports offset cancellation to correct for process variation and programmable equalization. It converts serial data to parallel data for processing in the PCS. The PMA also includes a clock data recovery (CDR) module with separate CDR logic for each RX channel.

Reset Controller

The reset controller manages signals to reset and power down the PHY channels and PLLs. The PHY channels operate in two modes: bonded and non-bonded. In bonded mode, a single Clock Generation Buffer (CGB) divides the output it receives from the TX PLL to create the parallel clock inputs the TX channel PMA and PCS modules. The parallel clocks for each channel are carefully tuned to keep the clock skew below 150 ps. Figure 1–2 illustrates bonded mode for Stratix V devices.

Figure 1-2. Stratix V Device Bonded Mode Clocking

In non-bonded mode, separate CGBs are used for each channel and the skew between channels is not carefully controlled. Figure 1–3 illustrates mode for Stratix V devices.

Figure 1-3. Stratix V Device Non-Bonded Mode Clocking

The reset controller generates a reset sequence appropriate for the protocol. Using the reset controller section of the memory map, you can choose have the reset sequence apply to all channels (the default behavior), or mask out some channels so that those channels will not be affected by the reset sequence. For bonded modes, you should allow the reset sequence to affect all channels.

The reset controller drives the following reset signals:

- rx_analogreset—This signal resets the analog CDR and deserializer logic present in the RX channel. (CDR is the first step of the power-up process.)
- rx_digitalreset—This signal resets all digital logic in the RX PCS and PMA.
- tx_digitalreset—This signal resets all logic in the TX PCS.

The reset controller also includes a signal to power down the PLLs and transceiver channels:

pll_powerdown—This signal powers down a single clock generation circuit. pll_powerdown is only asserted during a full reset sequence, which is only possible when the device enters user mode or when you assert and deassert the PHY management interface reset input.

The Quartus® II software automatically selects the power-down channel feature, which takes effect when you configure the Stratix IV or Stratix V device. All unused channels and blocks consume no power, reducing overall power consumption.

Table 1–2 lists the bonding requirements for the protocol-specific PHYs.

Table 1-2. Bonding Requirements

Protocol	Bonded	Non-Bonded
10GBASE-R	_	✓
XAUI	✓	_
Interlaken < ×4	-	✓
Interlaken > ×4	✓	_
PCI Express ×1	-	✓
PCI Express ×2, ×4, ×8	✓	_
Custom PHY (1)	✓	✓
Low Latency PHY (1)	✓	✓

Note to Table 1-2:

The precise sequence of events that occurs to reset the transceiver PHY depends upon the configuration chosen. The reset sequence for configurations that only include TX channels is far simpler because it does not require the RX analog logic to recover the clock from the input data stream or to perform offset cancellation. Figure 1–4 illustrates the critical signals of the reset circuitry for a duplex PHY. As this figure illustrates, the typical reset sequence includes the following steps:

- 1. After the PLL locks, tx ready is asserted.
- 2. After offset cancellation completes rx_oc_busy is deasserted. (Offset cancellation corrects for process variations which may result in analog voltages that are offset from the required ranges.)

⁽¹⁾ You can choose either bonded or non-bonded clocks for the Custom and Low Latency PHY IP cores to meet the requirements of your design.

3. Finally, rx_ready is asserted and phy_mgmt_clk_reset goes low, ending the reset state.

Figure 1-4. Reset Sequence

Figure 1–5 shows the hardware modules and internal signals that implement reset in Stratix V devices.

Figure 1-5. Block Diagram of the Reset Sequence Controller

For additional timing diagrams illustrating resets for many configurations, refer to *Reset Control and Power Down* in volume 4 of the *Stratix IV Device Handbook* for Stratix IV devices or *Reset Control and Power Down* in volume 2 of the *Stratix V Device Handbook* for Stratix V devices.

Avalon-MM PHY Management

You can use the Avalon-MM PHY Management module to read and write the control and status registers in the PCS and PMA. This module includes both Avalon-MM master and slave ports and acts as a bridge. It transfers commands received from an embedded controller on its slave port to its master port. The Avalon-MM PHY management master interface connects the Avalon-MM slave ports of PCS and PMA registers and the Transceiver Reconfiguration module, allowing you to manage these Avalon-MM slave components through a simple, standard interface. (Refer to Figure 1–1 on page 1–2.)

Serial Loopback

All of the PHYs, with the exception of PCI Express, support serial loopback mode in both Stratix IV and Stratix V devices. PCI Express supports reverse parallel loopback mode as required by the *PCI Express Base Specification*. Figure 1–6 shows the datapath for serial loopback. The data from the FPGA fabric passes through the TX channel and is looped back to the RX channel, bypassing the RX buffer. The received data is available to the FPGA logic for verification. Using the serial loopback option, you can check the operation of all enabled PCS and PMA functional blocks in the TX and RX channels. When serial loopback is enabled, the TX channel sends the data to both the tx_serial_data output port and the RX channel.

Figure 1-6. Serial Loopback

Unsupported Features

The protocol-specific PHYs are not supported in SOPC Builder in the current release.

This chapter provides a general overview of the Altera IP core design flow to help you quickly get started with any Altera IP core. The Altera IP Library is installed as part of the Quartus II installation process. You can select and parameterize any Altera IP core from the library. Altera provides an integrated parameter editor that allows you to customize IP cores to support a wide variety of applications. The parameter editor guides you through the setting of parameter values and selection of optional ports. The following sections describe the general design flow and use of Altera IP cores.

Installation and Licensing

The Altera IP Library is distributed with the Quartus II software and downloadable from the Altera website (www.altera.com).

Figure 2–1 shows the directory structure after you install an Altera IP core, where *<path>* is the installation directory. The default installation directory on Windows is **C:\altera**<*version number>*; on Linux it is */opt/altera*<*version number>*.

Figure 2-1. IP core Directory Structure

You can evaluate an IP core in simulation and in hardware until you are satisfied with its functionality and performance. Some IP cores require that you purchase a license for the IP core when you want to take your design to production. After you purchase a license for an Altera IP core, you can request a license file from the Altera Licensing page of the Altera website and install the license on your computer. For additional information, refer to *Altera Software Installation and Licensing*.

Design Flows

You can use the following flow(s) to parameterize Altera IP cores:

MegaWizard Plug-In Manager Flow

Figure 2-2. Design Flows

The MegaWizard Plug-In Manager flow offers the following advantages:

- Allows you to parameterize an IP core variant and instantiate into an existing design
- For some IP cores, this flow generates a complete example design and testbench.

MegaWizard Plug-In Manager Flow

The MegaWizard Plug-In Manager flow allows you to customize your IP core and manually integrate the function into your design.

Specifying Parameters

To specify IP core parameters with the MegaWizard Plug-In Manager, follow these steps:

- Create a Quartus II project using the New Project Wizard available from the File menu.
- 2. In the Quartus II software, launch the **MegaWizard Plug-in Manager** from the Tools menu, and follow the prompts in the MegaWizard Plug-In Manager interface to create or edit a custom IP core variation.

- 3. To select a specific Altera IP core, click the IP core in the **Installed Plug-Ins** list in the MegaWizard Plug-In Manager.
- 4. Specify the parameters on the **Parameter Settings** pages. For detailed explanations of these parameters, refer to the "Parameter Settings" chapter in this document.

Some IP cores provide preset parameters for specific applications. If you wish to use preset parameters, click the arrow to expand the Presets list, select the desired preset, and then click **Apply**. To modify preset settings, in a text editor edit the *<installation directory*>\ip\altera\uniphy\lib\<*IP core*>.qprs file.

5. If the IP core provides a simulation model, specify appropriate options in the wizard to generate a simulation model.

Altera IP supports a variety of simulation models, including simulation-specific IP functional simulation models and encrypted RTL models, and plain text RTL models. These are all cycle-accurate models. The models allow for fast functional simulation of your IP core instance using industry-standard VHDL or Verilog HDL simulators. For some cores, only the plain text RTL model is generated, and you can simulate that model.

For more information about functional simulation models for Altera IP cores, refer to Simulating Altera Designs in volume 3 of the Quartus II Handbook.

Use the simulation models only for simulation and not for synthesis or any other purposes. Using these models for synthesis creates a nonfunctional design.

- 6. If the parameter editor includes **EDA** and **Summary** tabs, follow these steps:
 - a. Some third-party synthesis tools can use a netlist that contains the structure of an IP core but no detailed logic to optimize timing and performance of the design containing it. To use this feature if your synthesis tool and IP core support it, turn on **Generate netlist**.
 - b. On the **Summary** tab, if available, select the files you want to generate. A gray checkmark indicates a file that is automatically generated. All other files are optional.

If file selection is supported for your IP core, after you generate the core, a generation report (<variation name>.html) appears in your project directory. This file contains information about the generated files.

7. Click the Finish button, the parameter editor generates the top-level HDL code for your IP core, and a simulation directory which includes files for simulation.

The Finish button may be unavailable until all parameterization errors listed in the messages window are corrected.

8. Click **Yes** if you are prompted to add the Quartus II IP File (.qip) to the current Quartus II project. You can also turn on **Automatically add Quartus II IP Files to all projects**.

You can now integrate your custom IP core instance in your design, simulate, and compile. While integrating your IP core instance into your design, you must make appropriate pin assignments. You can create virtual pin to avoid making specific pin assignments for top-level signals while you are simulating and not ready to map the design to hardware.

For some IP cores, the generation process also creates a complete example design in the *<variation_name>_*example_design_fileset/example_project/ directory. This example demonstrates how to instantiate and connect the IP core.

For information about the Quartus II software, including virtual pins and the MegaWizard Plug-In Manager, refer to Quartus II Help.

Simulate the IP Core

You can simulate your IP core variation with the functional simulation model and the testbench or example design generated with your IP core. The functional simulation model and testbench files are generated in a project subdirectory. This directory may also include scripts to compile and run the testbench.

For a complete list of models or libraries required to simulate your IP core, refer to the scripts provided with the testbench.

For more information about simulating Altera IP cores, refer to *Simulating Altera Designs* in volume 3 of the *Quartus II Handbook*.

3. 10GBASE-R PHY IP Core

The Altera 10GBASE-R PHY IP core implements the functionality described in *IEEE 802.3 Clause 49*. It delivers serialized data to an optical module that drives multi-mode optical fiber at a line rate of 10.3125 Gbps. In a multi-channel implementation of 10GBASE-R, each channel of the 10GBASE-R PHY IP core operates independently. You can instantiate multiple channels to achieve higher bandwidths. The PCS is available in soft logic for Stratix IV GT devices; it connects to a separately instantiated hard PMA.

Figure 3–1 illustrates a multiple 10 GbE channel IP core in a Stratix IV GT device.

Figure 3-1. Complete 10GBASE-R PHY Design

In this configuration, 10GBASE-R PHY IP core includes a soft PCS and a hard PMA. The soft PCS connects to an Ethernet MAC running at 156.25 Mbps and transmits data to a hard 10 Gbps transceiver PMA running at 10.3125 Gbps in a Stratix IV GT device.

To make most effective use of this soft PCS and hard PMA configuration, you can group up to four channels in a single quad and control their functionality using one Avalon-MM PHY management bridge, transceiver reconfiguration module, and low latency controller. As Figure 3–1 illustrates, the Avalon-MM bridge Avalon-MM master port connects to the Avalon-MM slave port of the transceiver reconfiguration and low latency controller modules so that you can update analog settings using the standard Avalon-MM interface.

This configuration does not require all four channels in a quad run the 10GBASE-R protocol.

Figure 3–2 shows the 10GBASE-R PHY IP core available for Stratix V devices. Both the PCS and PMA of the 10GBASE-R PHY are available as hard IP blocks in Stratix V, devices saving FPGA resources.

Stratix V FPGA 10GBASE-R PHY IP Core SDR XGMII 72 bits @ 156.25 Mbps Hard PCS Networ 10GBASE-R **PMD** Interfac XFI/SFI Copper Hard PMA 64b/66b or Scrambler 10/3125 Gbps serial Optical **PRBS** Gearbox Avalon-MM Control & Status

Figure 3–2. 10GBASE-R PHY with Hard PCS with Hard PMA in Stratix V Devices

- For a 10-Gbps Ethernet solution that includes both the Ethernet MAC and the 10GBASE-R PHY, refer to the 10-Gbps Ethernet MAC MegaCore Function User Guide.
- For more detailed information about the 10GBASE-R transceiver channel datapath, clocking, and channel placement, refer to the "10GBASE-R" section in the *Transceiver Protocol Configurations in Stratix V Devices* chapter of the *Stratix V Device Handbook*.

Release Information

Table 3–1 provides information about this release of the 10GBASE-R PHY IP core.

Table 3-1. 10GBASE-R Release Information

Item	Description	
Version	10.1	
Release Date	December 2010	
Ordering Codes (Note 1)	IP-10GBASERPCS (primary) IPR-10GBASERPCS (renewal)	
Product ID	00D7	
Vendor ID	6AF7	

Note to Figure 3-1:

Device Family Support

IP cores provide either final or preliminary support for target Altera device families. These terms have the following definitions:

- *Final support—Verified* with final timing models for this device.
- *Preliminary support*—Verified with preliminary timing models for this device.

Table 3–2 shows the level of support offered by the 10GBASE-R IP core for Altera device families.

Table 3-2. Device Family Support

Device Family	Support
Stratix IV GT devices-soft PCS and hard PMA	Final
Stratix V devices-hard PCS and hard PMA	Preliminary
Other device families	No support

For speed grade information, refer to "Transceiver Performance Specifications" the *DC and Switching Characteristics* chapter in volume 3 of the *Stratix IV Handbook* for Stratix IV devices or *DC and Switching Characteristics for Stratix V Devices* in volume 3 of the *Stratix V Handbook* for Stratix V devices.

⁽¹⁾ No ordering codes or license files are required for Stratix V devices.

Performance and Resource Utilization

Table 3–3 shows the typical expected device resource utilization for a single duplex channel using the current version of the Quartus II software targeting a Stratix IV GT device. The numbers of combinational ALUTs, logic registers, and memory bits are rounded to the nearest 100.

Table 3-3. 10GBASE-R PHY Performance and Resource Utilization—Stratix IV GT Device

Channels	Combinational ALUTs	Logic Registers (Bits)	Memory Bits
1	5200	4100	4700
4	15600	1300	18800
10	38100	32100	47500

Parameter Settings

To configure the 10GBASE-R PHY IP core in the parameter editor, click Installed Plug-Ins > Interfaces > Ethernet > 10GBASE-R PHY v10.1. The 10GBASE-R PHY IP core is available for the Stratix IV or Stratix V device family.

This section describes the 10GBASE-R PHY parameters, which you can set using the parameter editor. Table 3–4 lists the settings available on **General Options** tab.

Table 3-4. Parameters

Name	Value	Description	
General Options			
Device family Stratix IV GT Stratix V The target family. Stratix V devices use a hard PCS. Stratix IV devices use a hard PMA.		The target family. Stratix V devices use a hard PCS. Stratix IV devices use a soft PCS. Both devices use a hard PMA.	
Number of channels	1-32	The total number of 10Gbase-R PHY channels.	
Mode of operation	Duplex TX only RX only	Stratix V devices allow duplex, TX, or RX mode. Stratix IV GX devices only support duplex mode.	
Reference Clock Frequency	322.265625 MHz 644.53125 MHz	Stratix V devices support both frequencies. Stratix IV GX devices only support 644.53125 MHz.	
	ı	Additional Options	
Enable additional control and status pins	On/Off	If you turn this option on, the following 2 signals are brought out to the top level of the IP core to facilitate debugging: hi_ber and block_lock.	
Use external PMA control and reconfig	On/Off	If you turn this option on, the PMA controller and reconfiguration block are external, rather than included 10GBASE-R PHY IP core, allowing you to use the same PMA controller and reconfiguration IP cores for other protocols in the same transceiver quad. This option is available in Stratix IV devices.	
Starting channel number	0–96	Specifies the starting channel number. Must be 0 or a multiple of 4. You only need to set this parameter if you are using external PMA and reconfiguration modules.	

For a description of the Analog options, refer the to "PMA Analog Options" on page 8–4.

Interfaces

Figure 3–3 illustrates the top-level signals of the 10Base-R PHY.

For more information about _hw.tcl files, refer to the *Component Interface Tcl Reference* chapter in the *SOPC Builder User Guide*.

Figure 3-3. 10GBASE-R PHY Pinout Showing Interfaces for Both Internal and External Transceivers

The following sections describe the signals in each interface.

SDR XGMII TX Interface

Table 3–5 describes the signals in the SDR XGMII TX interface. These signals are driven from the MAC to the PCS. This is an Avalon-ST sink interface.

Table 3-5. SDR XGMII TX Inputs (Note 1)

Signal Name	Direction	Description
xgmii_tx_dc <n>[71:0]</n>	Sink	Contains 8 lanes of data and control for XGMII. Each lane consists of 8 bits of data and 1 bit of control. Lane 0-[7:0]/[8] Lane 1-[16:9]/[17] Lane 2-[25:18]/[26] Lane 3-[34:27]/[35] lane 4-[43:36]/[44] Lane 5-[52:45]/[53]
		Lane 6–[61:54]/[62]Lane 7–[70:63]/[71]
		Refer to Table 3–6 for the mapping of the xgmii_tx_dc data and control to the xgmii_sdr_data and xgmii_sdr_ctrl signals.
tx_ready	Output	Asserted when the TX channel is ready to transmit data. Because the readyLatency on this Avalon-ST interface is 0, the MAC may drive xgmii_tx_dc_valid as soon as tx_ready is asserted.
xgmii_tx_clk	Input	The XGMII TX clock which runs at 156.25 MHz.

Note to Table 3-5:

(1) <n> is the channel number

For more information about the Avalon-ST protocol, including timing diagrams, refer to the Avalon Interface Specifications.

Table 3–6 provides the mapping from the XGMII TX interface to the XGMII SDR interface.

Table 3-6. Mapping from XGMII TX Bus to XGMII SDR Bus (Part 1 of 2)

Signal Name	XGMII Signal Name	Description
xgmii_tx_dc[7:0]	xgmii_sdr_data[7:0]	Lane 0 data
xgmii_tx_dc[8]	xgmii_sdr_ctrl[0]	Lane 0 control
xgmii_tx_dc[16:9]	xgmii_sdr_data[15:8]	Lane 1 data
xgmii_tx_dc[17]	xgmii_sdr_ctrl[1]	Lane 1 control
xgmii_tx_dc[25:18]	xgmii_sdr_data[23:16]	Lane 2 data
xgmii_tx_dc[26]	xgmii_sdr_ctrl[2]	Lane 2 control
xgmii_tx_dc[34:27]	xgmii_sdr_data[31:24]	Lane 3 data
xgmii_tx_dc[35]	xgmii_sdr_ctrl[3]	Lane 3 control
xgmii_tx_dc[43:36]	xgmii_sdr_data[39:32]	Lane 4 data
xgmii_tx_dc[44]	xgmii_sdr_ctrl[4]	Lane 4 control
xgmii_tx_dc[52:45]	xgmii_sdr_data[47:40]	Lane 5 data

Table 3-6. Mapping from XGMII TX Bus to XGMII SDR Bus (Part 2 of 2)

Signal Name	XGMII Signal Name	Description
xgmii_tx_dc[53]	xgmii_sdr_ctrl[5]	Lane 5 control
xgmii_tx_dc[61:54]	xgmii_sdr_data[55:48]	Lane 6 data
xgmii_tx_dc[62]	xgmii_sdr_ctrl[6]	Lane 6 control
xgmii_tx_dc[70:63]	xgmii_sdr_data[63:56]	Lane 7 data
xgmii_tx_dc[71]	xgmii_sdr_ctrl[7]	Lane 7 control

SDR XGMII RX Interface

Table 3–7 describes the signals in the SDR XGMII RX interface. This is an Avalon-ST source interface. These signals are driven from the PCS to the MAC.

Table 3-7. SDR XGMII RX Inputs (Note 1)

Signal Name	Direction	Description
		Contains 8 lanes of data and control for XGMII. Each lane consists of 8 bits of data and 1 bit of control.
		■ Lane 0-[7:0]/[8]
		■ Lane 1-[16:9]/[17]
		■ Lane 2–[25:18]/[26]
xqmii rx dc <n>[71:0]</n>	Source	■ Lane 3–[34:27]/[35]
xgiii1_1x_dc<11>[/1:0]	Jource	■ lane 4-[43:36]/[44]
		■ Lane 5–[52:45]/[53]
		■ Lane 6–[61:54]/[62]
		■ Lane 7–[70:63]/[71]
		Refer to Table 3—8 for the mapping of the xgmii_rx_dc data and control to the xgmii_sdr_data and xgmii_sdr_ctrl signals.
rx_ready	Input	Asserted when the RX channel is ready to receive data. Because the readyLatency on this Avalon-ST interface is 0, the PCS may drive xgmii_rx_dc_valid as soon as rx_ready is asserted.
xgmii_rx_clk	Output	This clock is generated by the same reference clock that is used to generate the transceiver clock. Its frequency is 156.25 MHz. Use this clock for the MAC interface to minimize the size of the FIFO between the MAC and SDR XGMII RX interface.

Note to Table 3-7:

(1) <n> is the channel number

Table 3–8 provides the mapping from the XGMII RX interface to the XGMII SDR interface.

Table 3-8. Mapping from XGMII RX Bus to the XGMII SDR Bus (Part 1 of 2)

Signal Name	XGMII Signal Name	Description
xgmii_rx_dc[7:0]	xgmii_sdr_data[7:0]	Lane 0 data
xgmii_rx_dc[8]	xgmii_sdr_ctrl[0]	Lane 0 control
xgmii_rx_dc[16:9]	xgmii_sdr_data[15:8]	Lane 1 data

Table 3-8. Mapping from XGMII RX Bus to the XGMII SDR Bus (Part 2 of 2)

Signal Name	XGMII Signal Name	Description
xgmii_rx_dc[17]	xgmii_sdr_ctrl[1]	Lane 1 control
xgmii_rx_dc[25:18]	xgmii_sdr_data[23:16]	Lane 2 data
xgmii_rx_dc[26]	xgmii_sdr_ctr1[2]	Lane 2 control
xgmii_rx_dc[34:27]	xgmii_sdr_data[31:24]	Lane 3 data
xgmii_rx_dc[35]	xgmii_sdr_ctrl[3]	Lane 3 control
xgmii_rx_dc[43:36]	xgmii_sdr_data[39:32]	Lane 4 data
xgmii_rx_dc[44]	xgmii_sdr_ctrl[4]	Lane 4 control
xgmii_rx_dc[52:45]	xgmii_sdr_data[47:40]	Lane 5 data
xgmii_rx_dc[53]	xgmii_sdr_ctrl[5]	Lane 5 control
xgmii_rx_dc[61:54]	xgmii_sdr_data[55:48]	Lane 6 data
xgmii_rx_dc[62]	xgmii_sdr_ctrl[6]	Lane 6 control
xgmii_rx_dc[70:63]	xgmii_sdr_data[63:56]	Lane 7 data
xgmii_rx_dc[71]	xgmii_sdr_ctrl[7]	Lane 7 control

Avalon-MM Interface

The Avalon-MM module provides access to the PCS and PMA registers, the Transceiver Reconfiguration IP core, and the Low Latency PHY Controller IP core. PHY management block includes Avalon-MM master and slave interfaces and acts as a bridge. It transfers commands received on its Avalon-MM slave interface to its Avalon-MM port.

Table 3–9 describes the signals that comprise the Avalon-MM PHY Management interface.

Table 3-9. Avalon-MM PHY Management Interface

Signal Name	Direction	Description
phy_mgmt_clk	Input	The clock signal that controls the Avalon-MM PHY management, calibration, and reconfiguration interfaces. For Stratix IV devices, the maximum frequency is 50 MHz.
phy_mgmt_clk_reset	Input	Global reset signal that resets the entire 10GBASE-R PHY. A positive edge on this signal triggers the reset controller.
phy_mgmt_addr[8:0]	Input	9-bit Avalon-MM address. Refer to for the address fields.
phy_mgmt_writedata[31:0]	Input	Input data.
phy_mgmt_readdata[31:0]	Output	Output data.
phy_mgmt_write	Input	Write signal. Asserted high.
phy_mgmt_read	Input	Read signal. Asserted high.
phy_mgmt_waitrequest	Output	When asserted, indicates that the Avalon-MM slave interface is unable to respond to a read or write request. When asserted, control signals to the Avalon-MM slave interface must remain constant.

Refer to the "Typical Slave Read and Write Transfers" and "Master Transfers" sections in the "Avalon Memory-Mapped Interfaces" chapter of the Avalon Interface Specifications for timing diagrams.

Register Descriptions

Table 3–10 specifies the registers that you can access over the Avalon-MM PHY management interface using word addresses and a 32-bit embedded processor. A single address space provides access to all registers.

Table 3-10. 10GBASE-R Register Descriptions (Part 1 of 3)

Word Addr	Bit	R/W	Name	Description
	<u>I</u>		PMA Common Co	ntrol and Status
0x021	[31:0]	RW	cal_blk_powerdown	Writing a 1 to channel <n> powers down the calibration block for channel <n></n></n>
0x022	[31:0]	R	pma_tx_pll_is_locked	Bit[P] indicates that the TX/CMU PLL (P) is locked to the input reference clock.
			Reset Contro	l and Status
0x041	[31:0]	RW	reset_ch_bitmask	Reset controller channel bitmask for digital resets. The default value is all 1s. Channel <n> can be reset when <n> = 1.</n></n>
0x042	[1:0]	W	reset_control (write)	Writing a 1 to bit 0 initiates a TX digital reset using the reset controller module. The reset affects channels enabled in the reset_ch_bitmask. Writing a 1 to bit 1 initiates a RX digital reset of channels enabled in the reset_ch_bitmask. Both bits 0 and 1 self-clear.
		R	reset_status (read)	Reading bit 0 returns the status of the reset controller TX ready bit. Reading bit 1 returns the status of the reset controller RX ready bit.
	[31:4,0]	RW	reset_fine_control	You can use the reset_fine_control register to create your own reset sequence. The reset control module, illustrated in Figure 1–1 on page 1–2, performs a standard reset sequence at power on and whenever the phy_mgmt_clk_reset is asserted. Bits [31:4,0] are reserved.
0x044	[1]	RW	reset_tx_digital	Writing a 1 causes the internal TX digital reset signal to be asserted, resetting all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.
	[2]	RW	reset_rx_analog	Writing a 1 causes the internal RX digital reset signal to be asserted, resetting the RX analog logic of all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.
	[3]	RW	reset_rx_digital	Writing a 1 causes the RX digital reset signal to be asserted, resetting the RX digital channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.

Table 3-10. 10GBASE-R Register Descriptions (Part 2 of 3)

Word Addr	Bit	R/W	Name	Description				
	PMA Channel Control and Status							
0x061	[31:0]	RW	pma_serial_loopback	Writing a 1 to channel <n> puts channel <n> in serial loopback mode.</n></n>				
0x063	[31:0]	R	pma_rx_signaldetect	When asserted, the signal level circuit senses if the specified voltage level exists at the receiver input buffer. Bit <n> corresponds to channel <n>.</n></n>				
0x064	[31:0]	RW	pma_rx_set_locktodata	When set, programs the RX CDR PLL to lock to the incoming data. Bit <n> corresponds to channel <n>.</n></n>				
0x065	[31:0]	RW	pma_rx_set_locktoref	When set, programs the RX CDR PLL to lock to the reference clock. Bit <n> corresponds to channel <n>.</n></n>				
0x066	[31:0]	R	pma_rx_is_lockedtodata	When asserted, indicates that the RX CDR PLL is locked to the RX data, and that the RX CDR has changed from LTR to LTD mode. Bit <n> corresponds to channel <n>.</n></n>				
0x067	[31:0]	R	pma_rx_is_lockedtoref	When asserted, indicates that the RX CDR PLL is locked to the reference clock. Bit <n> corresponds to channel <n>.</n></n>				
			10GBASE-R PCS-S	Stratix IV Devices				
0x080	[31:0]	RW	INDIRECT_ADDR	Provides for indirect addressing of all PCS control and status registers. Use this register to specify the logical channel address of the PCS channel you want to access.				
	[2]	RW	DGID EDDDIK GMT	When set to 1, clears the error block count register.				
0x081	[2]	1100	RCLR_ERRBLK_CNT	To block: Block synchronizer				
	[3]	RW	RCLR_BER_COUNT	When set to 1, clears the bit error rate (BER) register.				
	رق	1100	KCDK_BEK_COON1	To block: BER monitor				
	[0]	R	PCS_STATUS	When asserted indicates that the PCS link is up.				
	[1]	R	HI_BER	When asserted by the BER monitor block, indicates that the PCS is recording a high BER.				
				From block: BER monitor				
	[2]	R	BLOCK_LOCK	When asserted by the block synchronizer, indicates that the PCS is locked to received blocks.				
				From Block: Block synchronizer				
0x082	[2]	R	my ereo em i	When asserted, indicates the TX FIFO is full.				
	[3]	11	TX_FIFO_FULL	From block: TX FIFO				
	[4]	R	DV FIFO FIIII	When asserted, indicates the RX FIFO is full.				
	ניין	4] R RX_FIFO_FULL		From block: RX FIFO				
	[5]	R	RX_SYNC_HEAD_ERROR	When asserted, indicates an RX synchronization error. This signal is Stratix V devices only.				
	[6]	R	RX_SCRAMBLER_ERROR	When asserted, indicates an RX scrambler error. This signal is Stratix V devices only.				

Table 3-10. 10GBASE-R Register Descriptions (Part 3 of 3)

Word Addr	Bit	R/W	Name	Description
0,000	[5:0]	R	BER_COUNT	Records the bit error rate (BER). Not available for Stratix V devices. From block: BER monitor
0x083	[7:0]	R	ERROR_BLOCK_COUNT	Records the number of blocks that contain errors. Not available for Stratix V devices. From Block: Block synchronizer

Status Interface

Table 3–11 describes signals that provide status information.

Table 3-11. Status Outputs

Signal Name	Direction	Description
block_lock	Output	Asserted to indicate that the block synchronizer has established synchronization.
hi_ber	Output	Asserted by the BER monitor block to indicate a high bit error rate.

Clocks, Reset, and Powerdown

The phy_mgmt_clk_reset signal is the global reset that resets the entire PHY. A positive edge on this signal triggers a reset.

Refer to the *Reset Control and Power Down* chapter in volume 2 of the *Stratix IV Device Handbook* for additional information about reset sequences in Stratix IV devices.

When connected to the hard PMA, the PCS runs at 257.8125 MHz using the pma_rx_clock provided by the PMA. You must provide the PMA a input reference clock running at 644.53725MHz to generate the 257.8125 MHz clock. Figure 3–4 illustrates the clock generation and distribution for Stratix IV devices.

Figure 3-4. Stratix IV GT Clock Generation and Distribution

Figure 3–5 illustrates the clock generation and distribution for Stratix V devices.

Figure 3-5. Stratix V Clock Generation and Distribution

To ensure proper functioning of the PCS, the maximum PPM difference between the pll_ref_clk and xgmii_tx_clk clock inputs is 100 PPM. To meet this specification, you should use xgmii_rx_clk to drive xgmii_tx_clk. The CDR logic recovers 257.8125 MHz clock from the incoming data.

Table 3–13 describes the clock inputs.

Table 3-12. Clock Signals

Signal Name	Direction	Description
pll_ref_clk	Input	TX PLL reference clock which must be 644.53725 MHz.

Serial Interface

Table 3–13 describes the input and outputs of the transceiver.

Table 3–13. Transceiver Serial Interface (Note 1)

Signal Name	Direction	Description
rx_serial_data <n></n>	Input	Receiver input data
tx_serial_data <n></n>	Output	Transmitter output data

Note to Table 3-13:

(1) <n> is the channel number

External PMA Control and Reconfig Interface

Table 3–14 describes the additional top-level signals 10GBASE-R PHY IP core when the configuration includes external modules for PMA control and reconfiguration. You enable this configuration by turning on **Use external PMA control and reconfig** available for Stratix IV GT devices. This configuration is illlustrated in Figure 3–1 on page 3–1.

Table 3-14. External PMA and Reconfiguration Signals

Signal Name	Direction	Description
gxb_pdn	Input	When asserted, powers down the entire GX block. Active high.
pll_locked	Output	When asserted, indicates that the PLL is locked. Active high.
pll_pdn	Input	When asserted, powers down the TX PLL. Active high.
cal_blk_pdn	Input	When asserted, powers down the calibration block. Active high.
rx_oc_busy	Output	When asserted, indicates offset cancellation is in progress. The transceiver must remain in reset until offset cancellation completes. Active high.
cal_blk_clk	Input	Calibration clock. For Stratix IV devices only. It must be in the range 37.5–50 MHz. You can use the same clock for the phy_mgmt_clk and the cal_blk_clk.
reconfig_to_gxb[3:0]	Input	Reconfiguration signals from the transceiver reconfiguration controller to the PHY device. This signal is only available in Stratix IV devices.
reconfig_from_gxb[16:0]	Output	Reconfiguration RAM. The PHY device drives this RAM data to the transceiver reconfiguration IP.

TimeQuest Timing Constraints

The timing constraints for Stratix IV GX designs are in $alt_10gbaser_phy.sdc$. If your design does not meet timing with these constraints, use $LogicLock^{TM}$ for the $alt_10gbaser_pcs$ block. You can also apply LogicLock to the $alt_10gbaser_pcs$ and slightly expand the lock region to meet timing.

? For more information about LogicLock, refer to About LogicLock Regions in Quartus II Help. Example 3–1 provides the Synopsys Design Constraints File (.sdc) timing constraints for the 10GBASE-R IP core. To pass timing analysis, you must decouple the clocks in different time domains. Be sure to verify the each clock domain is correctly buffered in the top level of your design. You can find the .sdc file in your top-level working directory. This is the same directory that includes your top-level .v or .vhd file.

Example 3-1. Synopsys Design Constraints for Clocks

```
#****************
# Timing Information
#*****************
set_time_format -unit ns -decimal_places 3
   *******************
# Create Clocks
#***************
create_clock -name {xgmii_tx_clk} -period 6.400 -waveform { 0.000 3.200 } [get_ports
{xgmii_tx_clk}]
create_clock -name {phy_mgmt_clk} -period 20.00 -waveform { 0.000 10.000 } [get_ports
{phy_mgmt_clk}]
create_clock -name {pll_ref_clk} -period 1.552 -waveform { 0.000 0.776 } [get_ports
{ref_clk}]
#derive_pll_clocks
derive_pll_clocks -create_base_clocks
#derive_clocks -period "1.0"
# Create Generated Clocks
                   ***********
create_generated_clock -name pll_mac_clk -source [get_pins -compatibility_mode
{*altpl1_component|auto_generated|pl11|clk[0]}]
create_generated_clock -name pma_tx_clk -source [get_pins -compatibility_mode
{*siv_alt_pma|pma_direct|auto_generated|transmit_pcs0|clkout}]
## Set Clock Latency
#*****************
# Set Clock Uncertainty
   ************
derive clock uncertainty
set_clock_uncertainty -from [get_clocks
{*siv_alt_pma|pma_ch*.pma_direct|receive_pcs*|clkout}] -to pll_ref_clk -setup 0.1
set_clock_uncertainty -from [get_clocks
{*siv_alt_pma|pma_direct|auto_generated|transmit_pcs0|clkout}] -to pll_ref_clk -setup
Ò.08
set_clock_uncertainty -from [get_clocks
{*siv_alt_pma|pma_ch*.pma_direct|receive_pcs*|clkout}] -to pll_ref_clk -hold 0.1 set_clock_uncertainty -from [get_clocks
{*siv_alt_pma|pma_direct|auto_generated|transmit_pcs0|clkout}] -to pll_ref_clk -hold
# Set Input Delay
  *****
#***************
# Set Output Delay
#***************
# Set Clock Groups
              set_clock_groups -exclusive -group phy_mgmt_clk -group xgmii_tx_clk -group [get_clocks
*siv_alt_pma | pma_ch*.pma_direct | transmit_pcs*|clkout}] -group [get_clocks *siv_alt_pma | pma_ch*.pma_direct | receive_pcs*|clkout}] -group [get_clocks
{*pll_siv_xgmii_clk|altpll_component|auto_generated|pll1|clk[0]}]
```

Synopsys Design Constraints for Clocks (continued)

```
# Set False Path
set_false_path -from {*siv_10gbaser_xcvr*clk_reset_ctrl|rx_pma_rstn} -to [get_clocks
{{*siv_alt_pma|pma_ch*.pma_direct|transmit_pcs*|clkout}
 *siv_alt_pma|pma_ch*.pma_direct|receive_pcs*|clkout}
*pll_siv_xgmii_clk|altpll_component|auto_generated|pll1|clk[0]} phy_mgmt_clk
xgmii_tx_clk}]
set_false_path -from {*siv_10gbaser_xcvr*clk_reset_ctrl|rx_usr_rstn} -to [get_clocks
{{*siv_alt_pma|pma_ch*.pma_direct|transmit_pcs*|clkout}
{*siv_alt_pma|pma_ch*.pma_direct|transmit_pcs*|clkout}
*pll_siv_xgmii_clk|altpll_component|auto_generated|p111|clk[0]} phy_mgmt_clk
xgmii_tx_clk}]
set_false_path -from {*siv_10gbaser_xcvr*clk_reset_ctrl|tx_pma_rstn} -to [get_clocks
{{*siv_alt_pma|pma_ch*.pma_direct|receive_pcs*|clkout}}
 *siv_alt_pma|pma_ch*.pma_direct|transmit_pcs*|clkout|
{*pll_siv_xgmii_clk|altpll_component|auto_generated|pll1|clk[0]} phy_mgmt_clk
xgmii_tx_clk}]
set_false_path -from {*siv_10gbaser_xcvr*clk_reset_ctrl|tx_usr_rstn} -to [get_clocks
{{*siv_alt_pma|pma_ch*.pma_direct|receive_pcs*|clkout}
{*siv_alt_pma|pma_ch*.pma_direct|transmit_pcs*|clkout}
{*pll_siv_xgmii_clk|altpll_component|auto_generated|p111|clk[0]} phy_mgmt_clk
xgmii_tx_clk}]
set_false_path -from {*siv_10gbaser_xcvr*rx_analog_rst_lego|rinit} -to [get_clocks
{{*siv_alt_pma|pma_ch*.pma_direct|receive_pcs*|clkout}}
 *siv_alt_pma|pma_ch*.pma_direct|transmit_pcs*|clkout|
{*pll_siv_xgmii_clk|altpll_component|auto_generated|pll1|clk[0]} phy_mgmt_clk
xgmii_tx_clk}]
set_false_path -from {*siv_10gbaser_xcvr*rx_digital_rst_lego|rinit} -to [get_clocks
{{*siv_alt_pma|pma_ch*.pma_direct|receive_pcs*|clkout}
{*siv_alt_pma|pma_ch*.pma_direct|transmit_pcs*|clkout}
*pll_siv_xgmii_clk|altpll_component|auto_generated|p111|clk[0]} phy_mgmt_clk
xgmii_tx_clk}]
# Set Multicycle Paths
#******************
#**************
# Set Maximum Delay
#*****************
#***************
# Set Minimum Delay
#**********************
#***************
# Set Input Transition
#**********************
```


This **.sdc** file is only applicable to the 10GBASE-R PHY IP core when compiled in isolation. You can use it as a reference to help in creating your own **.sdc** file.

The Altera XAUI PHY IP core implements the *IEEE 802.3 Clause 48* specification to extend the operational distance of the XGMII interface and reduce the number of interface signals. XAUI extends the physical separation possible between the 10 Gbps Ethernet MAC function implemented in an Altera FPGA and the Ethernet standard PHY component on a PCB to one meter.

Figure 4–1 illustrates the top-level blocks of the XAUI PHY for Stratix IV GX or Stratix V devices.

Arria II GX, Cyclone IV GX, Stratix IV GX or GT, or Stratix V FPGA

SDR XGMII
72 bits @ 156.25 Mbps

PCS
8B/10B
Word Aligner
Phase Comp

Avalon-MM
Control & Status

4 x 3.125 Gbps serial

Figure 4–1. XAUI PHY with Hard IP PCS and PMA in Stratix IV GX or Stratix V Devices

For Stratix IV GX and GT devices, you can choose a hard XAUI physical coding sublayer (PCS) and physical media attachment (PMA), or a soft XAUI PCS and PMA in low latency mode. You can also combine both hard and soft PCS configurations in the same device, using all six channels in a transceiver bank. In Quartus II version 10.1, the PCS is only available in soft logic for Stratix V devices.

For more detailed information about the XAUI transceiver channel datapath, clocking, and channel placement, refer to the "XAUI" section in the *Transceiver Protocol Configurations in Stratix V Devices* chapter of the *Stratix V Device Handbook*.

Release Information

Table 4–1 provides information about this release of the XAUI PHY IP core.

Table 4–1. XAUI Release Information (Part 1 of 2)

Item	Description
Version	10.1
Release Date	December 2010
Ordering Codes (Note 1)	IP-XAUIPCI (primary)—soft PCS IPR-XAUIPCS (renewal)—soft PCS
Product ID	00D7

Table 4–1. XAUI Release Information (Part 2 of 2)

Item	Description	
Vendor ID	6AF7	

Note to Table 4-1:

(1) No ordering codes or license files are required for the hard PCS and hard PMA PHY in Arria II GX, Cyclone IV GX, or Stratix IV GX or GT devices.

Device Family Support

IP cores provide either final or preliminary support for target Altera device families. These terms have the following definitions:

- *Final support*—*Verified* with final timing models for this device.
- *Preliminary support*—Verified with preliminary timing models for this device.

Table 4–2 shows the level of support offered by the XAUI IP core for Altera device families.

Table 4-2. Device Family Support

Device Family	Support	
Arria II GX-hard PCS and hard PMA	Final	
Cyclone IV GX-hard PCS and hard PMA	Preliminary	
Stratix IV GX and GT devices-soft or hard PCS and hard PMA	Final	
Stratix V devices-soft PCS + hard PMA	Preliminary	
Other device families	No support	

Performance and Resource Utilization

Table 4–3 shows the typical expected device resource utilization for different configurations using the current version of the Quartus II software targeting a Stratix IV GX (EP4SG230KF40C2ES) device.

Table 4–3. XAUI PHY Performance and Resource Utilization—Stratix IV GX Device

Implementation	Number of 3.125 Gbps Channels	Worst-Case Frequency	Combinational ALUTs	Dedicated Registers	Memory Bits
Soft XAUI	4	183.18 MHz	4500	3200	5100
Hard XAUI	4	400 MHz	2000	1300	0

Parameter Settings

To configure the XAUI IP core in the parameter editor, click Installed Plug-Ins > Interfaces > Ethernet > XAUI PHY v10.1.

This section describes the XAUI PHY IP core parameters, which you can set using the parameter editor. Table 4–4 lists the settings available on **General Options** tab.

Table 4-4. General Options

Name	Value	Description
Device family	Arria II GX Cyclone IV GX Stratix IV Stratix V	The target device family.
Starting channel number	0–124	The physical starting channel number in the Altera device for channel 0 of this XAUI PHY. In Arria II GX, Cyclone IVGX, and Stratix IV devices, this starting channel number must be 0 or a multiple of 4. There are no numbering restrictions for Stratix V devices. Assignment of the starting channel number is needed for serial transceiver dynamic reconfiguration.
XAUI interface type	Hard XAUI Soft XAUI	Specifies whether the interface is implemented in soft or hard logic. Each interface includes 4 channels.
Number of XAUI interfaces	1	Specifies the number of XAUI interfaces. Only 1 is available in the current release.

Table 4–5 describes the settings available on the **Additional Options** tab.

Table 4-5. Advanced Options—Stratix IV

Name	Value	Description
Soft XAUI PLL type	CMU PLL ATX PLL	Allows you to choose a clock multiplier unit (CMU) or auxiliary transmit (ATX) PLL. The CMU PLL is designed to achieve low TX channel-to-channel skew. The ATX PLL is designed to improve jitter performance. This option is only available for the soft PCS.
Include control and status ports	On/Off	If you turn this option on, the top-level IP core include the status signals and digital resets shown in Figure 4–3 on page 4–5 and Figure 4–4 on page 4–6. If you turn this option off, you can access control and status information using Avalon-MM interface to the control and status registers. The default setting is off.
External PMA control and configuration	On/Off	If you turn this option on, the PMA signals are brought up to the top level of the XAUI IP core. This option is useful if your design includes multiple instantiations of the XAUI PHY IP core. To save FPGA resources, you can instantiate the Low Latency PHY Controller and Transceiver Reconfiguration Controller IP cores separately in your design to avoid having these IP cores instantiated in each instance of the XAUI PHY IP core.
		If you turn this option off, the PMA signals remain internal to the core. The default setting is off. This option is only available for Arria II GX and Stratix IV GX devices.
Advanced	l Options—Arria	II GX, Cyclone IV GX, a Stratix V Devices
Include control and status ports	On/Off	If you turn this option on, the top-level IP core includes the TX and RX status signals shown in Figure 4–3 on page 4–5.

For a description of the PMA analog options, refer to "PMA Analog Options" on page 8–4.

Configurations

Figure 4–2 illustrates one configuration of the XAUI IP core. As this figure illustrates, if your variant includes a single instantiation of the XAUI IP core, the transceiver reconfiguration control logic is included in the XAUI PHY IP core.

Figure 4-2. XAUI PHY Using One Channel Low Latency PHY Controller

For more information about transceiver reconfiguration, refer to Chapter 9, Transceiver Reconfiguration Controller.

Interfaces

Figure 4–3 illustrates the top-level signals of the XAUI PHY IP core for the soft IP implementation which is available for Stratix IV GX and Stratix V devices. Figure 4–4 illustrates the top-level signals of the XAUI PHY IP core for the hard IP implementation which is available for Stratix IV GX devices. With the exception of the optional signals available for debugging, the pinout of the two implementations is nearly identical.

The **block diagram** shown in the GUI labels the external pins with the *interface type* and places the *interface name* inside the box. The interface type and name are used to define component interfaces in the **_hw.tcl**.

■ For more information about _hw.tcl files refer to refer to the *Component Interface Tcl Reference* chapter in the *SOPC Builder User Guide*.

Figure 4-3. XAUI Top-Level Signals—Soft PCS and Hard PMA

Figure 4–4 illustrates the top-level signals of the XAUI PHY IP core for the hard IP implementation which is available for Arria II GX, Cyclone IV GX, and Stratix IV GX devices.

Figure 4-4. XAUI Top-Level Signals-Hard IP PCS and PMA

Note to Figure 4-3:

(1) reconfig_fromgxb[67:17] is terminated to ground internally.

The following sections describe the signals in each interface.

SDR XGMII TX Interface

The XAUI PCS interface to the FPGA fabric uses a single data rate (SDR) XGMII interface. This interface implements a simple version of Avalon-ST protocol. The interface does not include ready or valid signals; consequently, the sources always drive data and the sinks must always be ready to receive data.

For more information about the Avalon-ST protocol, including timing diagrams, refer to the *Avalon Interface Specifications*.

This interface runs at 156.25 MHz in accordance with XGMII specification; however, data is only driven on the rising edge of clock. To meet the bandwidth requirements, the datapath is eight bytes wide with eight control bits, instead of the standard four bytes of data and four bits of control. The XAUI IP core treats the datapath as two, 32-bit data buses and includes logic to interleave them, starting with the low-order bytes. Figure 4–5 illustrates the mapping.

Figure 4-5. Interleaved SDR XGMII Data

Table 4–6 describes the signals in the SDR TX XGMII interface.

Table 4-6. SDR TX XGMII Interface

Signal Name	Direction	Description
		Contains 4 lanes of data and control for XGMII. Each lane consists of 16 bits of data and 2 bits of control.
		■ Lane 0-[7:0]/[8], [16:9]/[17]
xgmii_tx_dc[71:0]	Source	■ Lane 1-[25:18]/[26], [34:27]/[35]
		■ Lane 2-[43:36]/[44], [52:45]/[53]
		■ Lane 3-[61:54]/[62],[70:63]/[71]
xgmii_tx_clk	Input	The XGMII SDR TX clock which runs at 156.25 MHz.

SDR XGMII RX Interface

Table 4–6 describes the signals in the SDR RX XGMII interface.

Table 4-7. SDR XGMII Interface

Signal Name	Direction	Description
xgmii_rx_dc[71:0]	Sink	Contains 4 lanes of data and control for XGMII. Each lane consists of 16 bits of data and 2 bits of control. Lane 0-[7:0]/[8], [16:9]/[17] Lane 1-[25:18]/[26], [34:27]/[35] Lane 2-[43:36]/[44], [52:45]/[53] Lane 3-[61:54]/[62],[70:63]/[71]
		= Lane & [energy[en],[releas],[releas]
xgmii_rx_clk	Output	The XGMII SDR RX MAC interface clock which runs at 156.25 MHz.

Avalon-MM Interface

The Avalon-MM PHY management block includes master and slave interfaces. This component acts as a bridge. It transfers commands received on its Avalon-MM slave interface to its Avalon-MM port. This interface provides access to the PCS and PMA registers, the Transceiver Reconfiguration, and the Low Latency PHY Controller IP cores. Table 4-8 describes the signals that comprise the Avalon-MM PHY Management interface.

Table 4-8. Avalon-MM PHY Management Interface

Signal Name	Direction	Description
phy_mgmt_clk	Input	Avalon-MM clock input.
phy_mgmt_clk_reset	Input	Global reset signal that resets the entire XAUI PHY. A positive edge on this signal triggers the reset controller.
phy_mgmt_addr[8:0]	Input	9-bit Avalon-MM address.
phy_mgmt_writedata[31:0]	Input	32-bit input data.
phy_mgmt_readdata[31:0]	Output	32-bit output data.
phy_mgmt_write	Input	Write signal. Asserted high.
phy_mgmt_read	Input	Read signal. Asserted high.
phy_mgmt_waitrequest	Output	When asserted, indicates that the Avalon-MM slave interface is unable to respond to a read or write request. When asserted, control signals to the Avalon-MM slave interface must remain constant.

For more information about the Avalon-MM interface, including timing diagrams, refer to the Avalon Interface Specifications.

Register Descriptions

Table 4–9 specifies the registers that you can access using the Avalon-MM PHY management interface using word addresses and a 32-bit embedded processor. A single address space provides access to all registers.

Table 4-9. XAUI PHY IP Core Registers (Part 1 of 4)

Word Addr	Bits	R/W	Register Name	Description
			PMA Common Control	and Status Registers
0x021	[31:0]	RW	cal_blk_powerdown	Writing a 1 to channel <n> powers down the calibration block for channel <n>.</n></n>
0x022	[31:0]	R	pma_tx_pll_is_locked	Bit[P] indicates that the TX/CMU PLL (P) is locked to the input reference clock. There is typically one pma_tx_pll_is_locked bit per system.
			Reset Contro	l Registers
0x041	[31:0]	RW	reset_ch_bitmask	Reset controller channel bitmask for digital resets. The default value is all 1s. Channel $\langle n \rangle$ can be reset when $\langle n \rangle = 1$.

Table 4–9. XAUI PHY IP Core Registers (Part 2 of 4)

Word Addr	Bits	R/W	Register Name	Description
0x042	[1:0]	W	reset_control (write)	Writing a 1 to bit 0 initiates a TX digital reset using the reset controller module. The reset affects channels enabled in the reset_ch_bitmask. Writing a 1 to bit 1 initiates a RX digital reset of channels enabled in the reset_ch_bitmask.
		R	reset_status(read)	Reading bit 0 returns the status of the reset controller TX ready bit. Reading bit 1 returns the status of the reset controller RX ready bit.
	[31:4,0]	RW	reset_fine_control	You can use the reset_fine_control register to create your own reset sequence. The reset control module, illustrated in Figure 1–1 on page 1–2, performs a standard reset sequence at power on and whenever the phy_mgmt_clk_reset is asserted. Bits [31:4, 0] are reserved.
0x044	[1]	RW	reset_tx_digital	Writing a 1 causes the internal TX digital reset signal to be asserted, resetting all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.
	[2]	RW	reset_rx_analog	Writing a 1 causes the internal RX digital reset signal to be asserted, resetting the RX analog logic of all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.
	[3] RW reset_rx_digital		reset_rx_digital	Writing a 1 causes the RX digital reset signal to be asserted, resetting the RX digital channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.
			PMA Control and	Status Registers
0x061	[31:0]	RW	phy_serial_loopback	Writing a 1 to channel <n> puts channel <n> in serial loopback mode.</n></n>
0x063	[31:0]	R	pma_rx_signaldetect	When channel <n> =1, indicates that receive circuit for channel <n> senses the specified voltage exists at the RX input buffer. This option is only operational for the PCI Express PHY IP core.</n></n>
0x064	[31:0]	RW	pma_rx_set_locktodata	When set, programs the RX CDR PLL to lock to the incoming data. Bit <n> corresponds to channel <n>.</n></n>
0x065	[31:0]	RW	pma_rx_set_locktoref	When set, programs the RX CDR PLL to lock to the reference clock. Bit <n> corresponds to channel <n>.</n></n>
0x066	[31:0]	R	pma_rx_is_lockedtodata	When asserted, indicates that the RX CDR PLL is locked to the RX data, and that the RX CDR has changed from LTR to LTD mode. Bit <n> corresponds to channel <n>.</n></n>
00x06 7	[31:0]	R	pma_rx_is_lockedtoref	When asserted, indicates that the RX CDR PLL is locked to the reference clock. Bit <n> corresponds to channel <n>.</n></n>

Table 4-9. XAUI PHY IP Core Registers (Part 3 of 4)

Word Addr	Bits	R/W	Register Name	Description		
	XAUI PCS					
	[31:2]	_	Reserved	_		
0x081	[1]		tx_digital reset	Resets the TX PCS clock domain. To block: RX PCS.		
0,001		RW		Resets the RX PCS clock domain.		
	[0]		rx_digital reset	To block: TX PCS.		
	[31:4]	_	Reserved	_		
0x082	[3:0]	RW	invpolarity[3:0]	Inverts the polarity of corresponding bit on the RX interface. Bit 0 maps to lane 0 and so on.		
	[04.4]		Deserved	To block: Word aligner.		
	[31:4]	_	Reserved			
0x083	[3:0]	RW	invpolarity[3:0]	Inverts the polarity of corresponding bit on the TX interface. Bit 0 maps to lane 0 and so on.		
				To block: Serializer.		
	[31:16]	_	Reserved	_		
	[15:8]		syncstatus[7:0]	Records the synchronization status of the corresponding bit. The RX sync status regsiter has 2 bits per channel for a total of 8 bits per XAUI link. Reading the value of the syncstatus register clears the bits.		
0x084				From block: Word aligner.		
[7:0]	[7:0]	R	patterndetect[7:0]	When asserted, indicates that the programmed word alignment pattern has been detected in the current word boundary. The RX pattern detect signal is 2 bits wide per channel or 8 bits per XAUI link. Reading the value of the patterndetect registers clears the bits.		
				From block: Word aligner.		
	[31:16]	_	Reserved	_		
0x085	[15:8]		disperr[7:0]	Indicates that the received 10-bit code or data group has a disparity error. When set, the corresponding errdetect bits are also set. There are 2 bits per RX channel for a total of 8 bits per XAUI link. Reading the value of the errdetect register clears the bits		
				From block: 8B/10B decoder.		
	[7:0]	R	errdetect[7:0]	When set, indicates that a received 10-bit code group has an 8B/10B code violation or disparity error. It is used along with disperr to differentiate between a code violation error, a disparity error, or both. There are 2 bits per RX channel for a total of 8 bits per XAUI link. Reading the value of the errdetect register clears the bits. From block: 8B/10B decoder.		
	1			FIUIII DIUCK. OD/ IUD UECUUEI.		

Table 4–9. XAUI PHY IP Core Registers (Part 4 of 4)

Word Addr	Bits	R/W	Register Name	Description
	[31:8]	_	Reserved	_
			<pre>phase_comp_fifo_error[3: 0]</pre>	Indicates a RX phase compensation FIFO overflow or underrun condition on the corresponding lane. Reading the value of the phase_comp_fifo_error register clears the bits.
0x086		R,		From block: RX phase compensation FIFO.
	[3:0]	sticky	rlv[3:0]	Indicates a run length violation. Asserted if the number of consecutive 1s or 0s exceeds the number that was set in the Runlength check option. Bits 0-3 correspond to lanes 0-3, respectively. Reading the value of the RLV register clears the bits.
				From block: Word aligner.
	[31:16]	_	Reserved	_
	[15:8]		rmfifodatainserted[7:0]	When asserted, indicates that the RX rate match block inserted a R column. Goes high for one clock cycle per inserted R column. Reading the value of the rmfifodatainserted register clears the bits.
0x087		R,		From block: Rate match FIFO.
	[7:0]	sticky	rmfifodatadeleted[7:0]	When asserted, indicates that the rate match block has deleted an R column. The flag goes high for one clock cycle per deleted R column. There are 2 bits for each lane. Reading the value of the rmfifodatadeleted register clears the bits. From block: Rate match FIFO.
	[31:8]	_	Reserved	_
	[7:4]	R,	rmfifoempty[3:0]	When asserted, indicates that the rate match FIFO is empty (5 words). Bits 0-3 correspond to lanes 0-3, respectively. Reading the value of the rmfifoempty register clears the bits.
0x088		sticky		From block: Rate match FIFO.
	[3:0]		rmfifofull[3:0]	When asserted, indicates that rate match FIFO is full (20 words). Bits 0-3 correspond to lanes 0-3, respectively. Reading the value of the rmfifofull register clears the bits.
	101.01			From block: Rate match FIFO.
	[31:3]	_	Reserved	
0x089	[2:0]	R, sticky	<pre>phase_comp_fifo_error[2: 0]</pre>	Indicates a TX phase compensation FIFO overflow or underrun condition on the corresponding lane. Reading the value of the phase_comp_fifo_error register clears the bits.
				From block: TX phase compensation FIFO.
0x08a	[0]	RW	simulation_flag	Setting this bit to 1 shortens the duration of reset and loss timer when simulating. Altera recommends that you keep this bit set during simulation.

Transceiver Serial Data Interface

Table 4–10 describes the signals in the XAUI transceiver serial data interface. There are four lanes of serial data for both the TX and RX interfaces. This interface runs at 3.125 GHz. There is no separate clock signal because it is encoded in the data.

Table 4-10. Serial Data Interface

Signal Name	Direction	Description
xaui_rx_serial_data[3:0]	Input	Serial input data.
xaui_tx_serial_data[3:0]	Output	Serial output data.

Dynamic Reconfiguration Interface

As silicon progresses towards smaller process nodes, circuit performance is affected more by variations due to process, voltage, and temperature. These process variations result in analog voltages that can be offset from required ranges. Dynamic reconfiguration compensates for variations due to process, voltage, and temperature. Table 4–11 describes the signals in the reconfiguration interface. If your XAUI PHY IP core includes a single transceiver quad, these signals are internal to the core. If your design uses more than one quad, they are external.

Table 4-11. Dynamic Reconfiguration Interface

Signal Name	Direction	Description
reconfig_togxb_data[3:0]	Input	Reconfiguration signals from the Transceiver Reconfiguration IP core to the XAUI transceiver.
reconfig_fromgxb[67:0]	Output	Reconfiguration signals from the XAUI transceiver to the Transceiver Reconfiguration IP core. For XAUI variants using a hard PCS and PMA, reconfig_fromgxb[67:17] are terminated to ground internally. The soft PCS in Stratix IV GX and GT devices use 68 bits.

Dynamic reconfiguration is only supported for Stratix IV devices in the current release.

Clocks, Reset, and Powerdown

Figure 4–6 illustrates the clock inputs and outputs for the XAUI IP cores with hard PCS and PMA blocks.

Figure 4-6. Clock Inputs and Outputs, Hard PCS

Figure 4–7 illustrates the clock inputs and outputs for the XAUI IP cores with soft PCS and PMA blocks.

Figure 4-7. Clock Inputs and Outputs, Soft PCS

Table 4–12 describes the optional reset signals.

Table 4-12. Clock and Reset Signals

Signal Name	Direction	Description
pll_ref_clk	Input	This is a 156.25 MHz reference clock that is used by the TX PLL and CDR logic.
rx_analogreset	Input	This signal resets the analog CDR and deserializer logic in the RX channel. It is only available in the hard IP implementation.
rx_digitalreset	Input	PCS RX digital reset signal.
tx_digitalreset	Input	PCS TX digital reset signal.

PMA Channel Controller

Table 4–13 describes the signals in this interface.

Table 4-13. Low Latency PHY Controller

Signal Name	Direction	Description
cal_blk_powerdown	Input	Powers down the calibration block. A high-to-low transition on this signal restarts calibration. Only available in Arria II GX and Stratix IV GT devices.
gxb_powerdown	Input	When asserted, powers down the entire transceiver block. Only available in Arria II GX and Stratix IV GX, and Stratix IV GT devices.
pll_powerdown	Input	Powers down the CMU PLL. Only available in Arria II GX and Stratix IV GX, and Stratix IV GT devices.
pll_locked	Output	Indicates CMU PLL is locked. Only available in Arria II GX and Stratix IV GX, and Stratix IV GT devices.
rx_ready	Output	Indicates PMA RX has exited the reset state.
tx_ready	Output	Indicates PMA TX has exited the reset state.

PMA Control and Status Interface Signals—Soft IP Implementation (Optional)

Table 4–14 lists the optional PMA control and status signals available in the soft IP implementation. You can also access the state of these signals using the Avalon-MM PHY Management interface to read the control and status registers which are detailed in Table 4–9 on page 4–8. However, in some cases, you may need to know the instantaneous value of a signal to ensure correct functioning of the XAUI PHY. In such cases, you can include the required signal in the top-level module of your XAUI PHY IP core.

Table 4–14. Optional Control and Status Signals—Soft IP Implementation, Stratix IV GX and Stratix V Devices

Signal Name	Direction	Description
rx_channelaligned	Output	When asserted, indicates that all 4 RX channels are aligned.
rx_disperr[7:0]	Output	Received 10-bit code or data group has a disparity error. It is paired with rx_errdetect which is also asserted when a disparity error occurs. The rx_disperr signal is 2 bits wide per channel for a total of 8 bits per XAUI link.
rx_errdetect[7:0]	Output	When asserted, indicates an 8B/10B code group violation. It is asserted if the received 10-bit code group has a code violation or disparity error. It is used along with the rx_disperr signal to differentiate between a code violation error, a disparity error, or both.The rx_errdetect signal is 2 bits wide per channel for a total of 8 bits per XAUI link.
rx_syncstatus[7:0]	Output	Synchronization indication. RX synchronization is indicated on the rx_syncstatus port of each channel. The rx_syncstatus signal is 2 bits wide per channel for a total of 8 bits per XAUI link.

PMA Control and Status Interface Signals—Hard IP Implementation (Optional)

Table 4–15 lists the PMA control and status signals. You can access the state of these signals using the Avalon-MM PHY Management interface to read the control and status registers which are detailed in Table 4–9 on page 4–8. However, in some cases, you may need to know the instantaneous value of a signal to ensure correct functioning of the XAUI PHY. In such cases, you can include the required signal in the top-level module of your XAUI PHY IP core.

Table 4-15. Optional Control and Status Signals—Hard IP Implementation, Stratix IV GX Devices (Part 1 of 2)

Signal Name	Direction	Description
rx_invpolarity[3:0]	input	Dynamically reverse the polarity of every bit of the RX data at the input of the word aligner.
rx_set_locktodata[3:0]	Input	Force the CDR circuitry to lock to the received data.
rx_is_lockedtodata[3:0]	Output	When asserted, indicates the RX channel is locked to input data.
rx_set_locktoref[3:0]	Input	Force the receiver CDR to lock to the phase and frequency of the input reference clock.
rx_is_lockedtoref[3:0]	Output	When asserted, indicates the RX channel is locked to input reference clock.
tx_invpolarity[3:0]	input	Dynamically reverse the polarity the data word input to the serializer in the TX datapath.
		Serial loopback enable.
		■ 1-enables serial loopback
rx_seriallpbken	input	 0-disables serial loopback
TX_SelTalTpbKell		This signal is asynchronous to the receiver. The status of the serial loopback option is recorded by the PMA channel controller, word address 0x061.
rx_channelaligned	Output	When asserted indicates that the RX channel is aligned.
pll_locked	Output	In LTR mode, indicates that the receiver CDR has locked to the phase and frequency of the input reference clock.
rx_rmfifoempty[3:0]	Output	Status flag that indicates the rate match FIFO block is empty (5 words). This signal remains high as long as the FIFO is empty and is asynchronous to the RX datapath.
rx_rmfifofull[3:0]	Output	Status flag that indicates the rate match FIFO block is full (20 words). This signal remains high as long as the FIFO is full and is asynchronous to the RX data.
rx_disperr[7:0]	Output	Received 10-bit code or data group has a disparity error. It is paired with rx_errdetect which is also asserted when a disparity error occurs. The rx_disperr signal is 2 bits wide per channel for a total of 8 bits per XAUI link.
rx_errdetect[7:0]	Output	Transceiver 8B/10B code group violation or disparity error indicator. If either signal is asserted, a code group violation or disparity error was detected on the associated received code group. Use the rx_disperr signal to determine whether this signal indicates a code group violation or a disparity error. The rx_errdetect signal is 2 bits wide per channel for a total of 8 bits per XAUI link.

Table 4-15. Optional Control and Status Signals—Hard IP Implementation, Stratix IV GX Devices (Part 2 of 2)

Signal Name	Direction	Description
rx_patterndetect[7:0]	Output	Indicates that the word alignment pattern programmed has been detected in the current word boundary. The rx_patterndetect signal is 2 bits wide per channel for a total of 8 bits per XAUI link.
rx_rmfifodatadeleted[7:0]	Output	Status flag that is asserted when the rate match block deletes a R column. The flag is asserted for one clock cycle per deleted R column.
rx_rmfifodatainserted[7:0]	Output	Status flag that is asserted when the rate match block inserts a R column. The flag is asserted for one clock cycle per inserted R column.
rx_runningdisp[7:0]	Output	Asserted when the current running disparity of the 8B/10B decoded byte is negative. Low when the current running disparity of the 8B/10B decoded byte is positive.
rx_syncstatus[7:0]	Output	Synchronization indication. RX synchronization is indicated on the rx_syncstatus port of each channel. The rx_syncstatus signal is 2 bits wide per channel for a total of 8 bits per XAUI link.
rx_phase_comp_fifo_error[3:0]	Output	Indicates a RX phase comp FIFO overflow or underrun condition.
tx_phase_comp_fifo_error[3:0]	Output	Indicates a TX phase compensation FIFO overflow or underrun condition.
rx_rlv[3:0]	Output	Asserted if the number of continuous 1s and 0s exceeds the number that was set in the run-length option. The rx_rlv signal is asynchronous to the RX datapath and is asserted for a minimum of 2 recovered clock cycles.

TimeQuest Timing Constraints

Example 4–1 provides the **.sdc** timing constraints for the XAUI clocks. To pass timing analysis you must decouple the clocks in different time domains.

Example 4-1. Synopsys Design Constraints for Clocks

```
set_time_format -unit ns -decimal_places 3
derive_pll_clocks
derive_clock_uncertainty
# input clocks
create_clock -name {xgmii_tx_clk}-period 6.400 -waveform {0.000 3.2} \
    [get_ports {xgmii_tx_clk}]
create_clock -name {phy_mgmt_clk} -period 20.000 -waveform {0.000 10.0} \
    [ get_ports {phy_mgmt_clk} ]
\label{lem:create_clock} \mbox{-name {refclk} -period 6.400 -waveform {0.000 3.2}} \ \backslash \mbox{-}
    [ get_ports {pll_ref_clk} ]
# generated clocks
# xgmii_rx_clk is generated from coreclkout
#***** Use this section for Stratix IV Hard XAUI *****
create_generated_clock -name {xgmii_rx_clk_0} -source [get_pins -compatibility_mode
{*hxaui_0|hxaui_alt4gxb|hxaui_alt4gxb_alt4gxb_dksa_component|central_clk_div0|
coreclkout}]-multiply_by 1 [get_ports {xgmii_rx_clk}]
#***** Use this section for Stratix IV Soft XAUI *****
#create_generated_clock -name {xgmii_rx_clk_0} -source [get_pins -compatibility_mode
{*alt_pma_0|alt_pma_tgx_inst|pma_direct|auto_generated|central_clk_div0|refclkout} ] \
#-multiply_by 1 [get_ports {xgmii_rx_clk}]
```

Synopsys Design Constraints for Clocks (continued)

```
#***** Use this section for Stratix V Soft XAUI *****
#create_generated_clock -name {xgmii_rx_clk_0} -source [get_pins -compatibility_mode
{\tt \{*alt\_pma\_0|alt\_pma\_sv\_inst|sv\_xcvr\_generic\_inst|channel\_tx[0].duplex\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0].tx\_pcs|ch[0
|clkout} ] -multiply_by 1 [get_ports {xgmii_rx_clk}]
# internal clocks
# There should be no direct (unsynchronized) paths from coreclkout to mgmt_clk
#***** Use this section for Stratix IV Soft XAUI *****
#set clock groups -asynchronous -group
{*alt_pma_0|alt_pma_tgx_inst|pma_direct|auto_generated|central_clk_div0|refclkout} -
group {phy_mgmt_clk}
#set_clock_groups -asynchronous -group
{*alt_pma_0|alt_pma_tgx_inst|pma_direct|auto_generated|receive_pma*|deserclock*}-group
{phy mamt clk}
#set_clock_groups -asynchronous -group {refclk} -group {phy_mgmt_clk}
#***** Use this section for Stratix V Soft XAUI ****
#set_clock_groups -asynchronous -group
{*alt_pma_0|alt_pma_sv_inst|sv_xcvr_generic_inst|channel_rx*.rx_pma*|*} -group
{phy_mgmt_clk}
#set_clock_groups -asynchronous -group
{*alt_pma_0|alt_pma_sv_inst|sv_xcvr_generic_inst|channel_tx*.duplex_pcs|*} -group
{phy_mgmt_clk}
#set_clock_groups -asynchronous -group
{*alt_pma_0|alt_pma_sv_inst|sv_xcvr_generic_inst|channel_tx*.duplex_pcs|ch*.rx_pcs|clo
cktopld*} -group
{*alt_pma_0|alt_pma_sv_inst|sv_xcvr_generic_inst|channel_tx*.duplex_pcs|ch*.tx_pcs|clk
#set_clock_groups -asynchronous -group {refclk} -group {phy_mgmt_clk}
```

This **.sdc** file is only applicable to the XAUI IP core when compiled in isolation. You can use it as a reference to help in creating your own **.sdc** file.

Interlaken is a high speed serial communication protocol for chip-to-chip packet transfers. The Altera Interlaken PHY IP core implements *Interlaken Protocol Specification, Rev 1.2.* It supports multiple instances, each with 1–24 lanes running at up to 10.3125 Gbps on Stratix V devices. The key advantage of Interlaken is its low I/O count compared to earlier protocols such as SPI 4.2. Other key features include flow control, low overhead framing, and extensive integrity checking. The Interlaken physical coding sublayer (PCS) transmits and receives Avalon-ST data on its FPGA fabric interface. It transmits and receives high speed differential serial data using the PCML I/O standard. Figure 5–1 illustrates the top-level modules of the Interlaken PHY.

Figure 5-1. Interlaken PHY IP Core

For more information about the Avalon-ST protocol, including timing diagrams, refer to the *Avalon Interface Specifications*.

Interlaken operates on 64-bit data words which are striped round robin across the lanes to reduce latency. Striping renders the interface independent of exact lane count. The protocol accepts packets on 256 logical channels. Packets are split into small bursts which can optionally be interleaved. The burst semantics include integrity checking and per channel flow control.

The Interlaken PCS supports the following framing functions on a per lane basis:

- Gearbox
- Block synchronization
- 64b/67b encoding and decoding
- Scrambling and descrambling
- Lane-based CRC32
- DC balancing

For more detailed information about the Interlaken transceiver channel datapath, clocking, and channel placement, refer to the "Interlaken" section in the Transceiver Protocol Configurations in Stratix V Devices chapter of the Stratix V Device Handbook.

Device Family Support

IP cores provide either final or preliminary support for target Altera device families. These terms have the following definitions:

- *Final support*—*Verified* with final timing models for this device.
- *Preliminary support*—Verified with preliminary timing models for this device.

Table 5–1 shows the level of support offered by the Interlaken PHY IP core for Altera device families

Table 5-1. Device Family Support

Device Family	Support
Stratix V devices-hard PCS + hard PMA	Preliminary
Other device families	No support.

Performance and Resource Utilization

Table 5–2 shows the typical expected device resource utilization for different configurations using the current version of the Quartus II software targeting a Stratix V (5SGXMB6R2F45C2) device.

Table 5-2. Interlaken Performance and Resource Utilization—Stratix V Device

Number of Lanes	Combinational ALUTs	Logic Registers	Memory Bits
1	434	263	0
4	509	346	0
10	633	517	0
15	753	659	0
20	951	916	0

Parameter Settings

To configure the Interlaken IP core in the parameter editor, click Installed Plug-Ins > Interfaces > Interlaken > Interlaken PHY v10.1. The Interlaken IP core is only available when you select the Stratix V device family.

This section describes the Interlaken PHY parameters, which you can set using the parameter editor. Table 5–3 describes the parameters that you can set on the **General** tab.

Table 5-3. Parameters

Parameter	Value	Description
General		
Device family	Stratix V	Specifies the device family.

Table 5-3. Parameters

Parameter	Value	Description	
Datapath mode	Duplex, RX, TX	Specifies the mode of operation as Duplex , RX , or TX mode.	
	3125 Mbps	Specifies the link bandwidth. The following table specifies the frequency of the reference clock you must provide to achieve these lane rates and the corresponding PCS frequency.	
Lane rate	5000 Mbps 6250 Mbps 6375 Mbps 10312.5 Mbps	Rate Ref Clock 3125 156.25 5000 250.0 6250 312.5 6375 318.75 10312.5 515.625	
Number of lanes	1-24	Specifies the number of lanes in a link over which data is striped.	
Metaframe length in words	1-8191	Specifies the number of words in a metaframe. The default value is 2048.	
		Optional Ports	
Add signals	On/Off	When you turn this option on, rx_parallel_data[71:69] are included in the top-level module. These optional signals report the status of word and synchronization locks and CRC32 errs. Refer to Table 5–5 on page 5–5 for more information.	
Create tx_coreclkin port	On/Off	When selected tx_coreclkin is available as input port which drives the write side of TX FIFO, When deselected, an internal state machine takes control. tx_user_clkout (which is a master tx_clockout) drives the TX write side of FIFO. tx_user_clkout is also available as an output port.	
Create rx_coreclkin port	On/Off	When selected rx_coreclkin is available as input port which drives the read side of RX FIFO, When deselected, an internal state machine takes control. rx_user_clkout (which is a master rx_clockout) drives the RX read side of FIFO. rx_user_clkout is also available as an output port.	

Interface

Figure 5–2 illustrates the top-level signals of the Interlaken PHY IP core.

The **block diagram** shown in the GUI labels the external pins with the *interface type* and places the *interface name* inside the box. The interface type and name are used to define interfaces in the **_hw.tcl**.

For more information about _hw.tcl, files refer to the Component Interface Tcl Reference chapter in Volume 4 of the Quartus II Handbook.

Figure 5-2. Top-Level Interlaken Signals (Note 1)

Note to Figure 5-2:

(1) < n > = the number of channels in the interface, so that the width of tx_data in 4-channel instantiation is [263:0].

The following sections describe the signals in each interface.

Avalon-ST TX Interface

Table 5–4 lists the signals in the Avalon-ST TX interface.

Table 5-4. Avalon-ST TX Signals

Signal Name	Direction	Description
tx_parallel_data[63:0]	Sink	Avalon-ST data driven from the FPGA fabric.
tx_parallel_data[64]	Sink	Indicates whether tx_parallel_data[63:0] represents command or data. When 0, tx_parallel_data[63:0] is data. When 1, tx_parallel_data[63:0] is control.
tx_parallel_data[65]	Sink	When asserted, indicates that tx_parallel_data[63:0] is valid.
tx_ready	Source	When asserted, indicates that the TX interface has exited the reset state.
tx_datain_bp	Source	When asserted, indicates that this Avalon-ST sink interface is ready to receive data. The readyLatency on this Avalon-ST interface is 0 cycles; consequenty, the application drives tx_parallel_data[63:0]as soon as tx_ready is asserted. (tx_datain_bp is connected to the ~partialfull of the TX FIFO, so that when tx_datain_bp is deasserted the TX FIFO is almost full and back pressures the MAC.)

Table 5-4. Avalon-ST TX Signals

Signal Name	Direction	Description
tx_clkout	Output	Output clock from the PCS.
tx_user_clkout	Output	Master channel tx_clkout is available when you do not create the optional tx_coreclkin.

Avalon-ST RX Interface

Table 5–5 describes the signals in the Avalon-ST RX interface.

Table 5-5. Avalon-ST RX Signals

Signal Name	Direction	Description
rx_parallel_data <n>[63:0]</n>	Source	Avalon-ST data driven from the PCS to the FPGA fabric.
rx_parallel_data <n>[64]</n>	Source	When asserted, indicates that rx_dataout[63:0]is valid.
rx_parallel_data <n>[65]</n>	Source	Indicates whether rx_dataout[63:0] represents command or data. When 0, rx_dataout[63:0] is data. When 1, rx_dataout[63:0] is control.
rx_parallel_data <n>[66]</n>	Source	This is a strobe specifying that the current data word is a synchronization word. It is used for metaframe validation.
rx_parallel_data <n>[67]</n>	Source	When asserted, indicates that the RX FIFO is full.
rx_parallel_data <n>[68]</n>	Source	When asserted, indicates that the RX FIFO can accept new data.
rx_parallel_data <n>[69]</n>	Source	When asserted, indicates that the RX synchronization state machine has locked to a single synchronization word. The synchronization state machine must lock to 4, consecutive synchronization words to exit the synchronization state. This signal is optional.
rx_parallel_data <n>[70]</n>	Source	When asserted, indicates that the RX synchronization state machine has received 4 consecutive, valid synchronization words. This signal is optional.
rx_parallel_data <n>[71]</n>	Source	When asserted, indicates a CRC32 error. This signal is optional.
rx_ready	Source	When asserted, indicates that the RX interface has exited the reset state.
rx_clkout	Output	Output clock from the TX PCS.
rx_fifo_clr <n></n>	Input	When asserted, the RX FIFO is flushed. This signal allows you to clear the FIFO if synchronization is not achieved.
rx_dataout_bp <n></n>	Sink	When asserted, enables data transmission. This signal functions as a read enable. The RX interface has a ready latency of 1 cycle so that rx_dataout <n>[63:0] and rx_ctrlout are valid the cycle after rx_dataout_bp<n> is asserted.</n></n>
rx_user_clkout	Output	Master channel rx_clkout is available when you do not create the optional rx_coreclkin.

Avaion Memory-Mapped (Avaion-MM) Management Interface

The Avalon-MM PHY management block includes master and slave interfaces. This component acts as a bridge. It transfers commands received on its Avalon-MM slave interface to its Avalon-MM port. This interface manages PCS and PMA modules, resets, error handling, and serial loopback controls. Table 5–6 describes the signals that comprise the Avalon-MM PCS management interface.

Table 5-6. Avalon-MM PCS Management Interface

Signal Name	Direction	Description
phy_mgmt_clk	Input	Avalon-MM clock input.
phy_mgmt_clk_reset	Input	Global reset signal that resets the entire interlaken PHY. A positive edge on this signal triggers the reset controller.
phy_mgmt_addr[8:0]	Input	9-bit Avalon-MM address.
phy_mgmt_writedata[31:0]	Input	Input data.
phy_mgmt_readdata[31:0]	Output	Output data.
phy_mgmt_write	Input	Write signal.
phy_mgmt_read	Input	Read signal.
phy_mgmt_waitrequest	Output	When asserted, indicates that the Avalon-MM slave interface is unable to respond to a read or write request. When asserted, control signals to the Avalon-MM slave interface must remain constant.

Register Descriptions

Table 5–7 specifies the registers that you can access using the Avalon-MM PHY management interface using word addresses and a 32-bit embedded processor. A single address space provides access to all registers.

Table 5-7. Interlaken Registers (Part 1 of 3)

Word Addr	Bits	R/W	Register Name	Description		
			PMA Common Control	and Status Registers		
0x022 [31:0] R pma_tx_pll_is_locked		pma_tx_pll_is_locked	Bit[P] indicates that the TX/CMU PLL (P) is locked to the input reference clock. There is typically one pma_tx_pll_is_locked bit per system.			
	Reset Control Registers					
0x041	[31:0]	RW	reset_ch_bitmask	Reset controller channel bitmask for digital resets. The default value is all 1s. Channel $\langle n \rangle$ can be reset when $\langle n \rangle = 1$.		
0x042 [1:0]		W	reset_control (write)	Writing a 1 to bit 0 initiates a TX digital reset using the reset controller module. The reset affects channels enabled in the reset_ch_bitmask. Writing a 1 to bit 1 initiates a RX digital reset of channels enabled in the reset_ch_bitmask.		
		R	reset_status(read)	Reading bit 0 returns the status of the reset controller TX ready bit. Reading bit 1 returns the status of the reset controller RX ready bit.		

Table 5-7. Interlaken Registers (Part 2 of 3)

Word Addr	Bits	R/W	Register Name	Description			
	[31:4,0]	RW	reset_fine_control	You can use the reset_fine_control register to create your own reset sequence. The reset control module, illustrated in Figure 1–1 on page 1–2, performs a standard reset sequence at power on and whenever the phy_mgmt_clk_reset is asserted. Bits [31:4, 0] are reserved.			
0x044	[1]	RW	reset_tx_digital	Writing a 1 causes the internal TX digital reset signal to be asserted, resetting all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.			
	[2]	RW	reset_rx_analog	Writing a 1 causes the internal RX digital reset signal to be asserted, resetting the RX analog logic of all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.			
	[3]	RW	reset_rx_digital	Writing a 1 causes the RX digital reset signal to be asserted, resetting the RX digital channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.			
	PMA Control and Status Registers						
0x061	[31:0]	RW	phy_serial_loopback	Writing a 1 to channel <n> puts channel <n> in serial loopback mode.</n></n>			
0x064	[31:0]	RW	pma_rx_set_locktodata	When set, programs the RX CDR PLL to lock to the incoming data. Bit <n> corresponds to channel <n>.</n></n>			
0x065	[31:0]	RW	pma_rx_set_locktoref	When set, programs the RX CDR PLL to lock to the reference clock. Bit <n> corresponds to channel <n>.</n></n>			
0x066	[31:0]	R	pma_rx_is_lockedtodata	When asserted, indicates that the RX CDR PLL is locked to the RX data, and that the RX CDR has changed from LTR to LTD mode. Bit <n> corresponds to channel <n>.</n></n>			
00x067	[31:0]	R	pma_rx_is_lockedtoref	When asserted, indicates that the RX CDR PLL is locked to the reference clock. Bit <n> corresponds to channel <n>.</n></n>			

Table 5-7. Interlaken Registers (Part 3 of 3)

Word Addr	Bits	R/W	Register Name	Description
			Stratix V Devi	ce Registers
	[23:0]	_	Reserved	_
	[24]	R	rx_word_lock	Asserted when the first alignment pattern is found. The RX FIFO generates this synchronous signal.
	[25]	R	rx_sync_lock	Asserted by the frame synchronizer to indicate that 4 sync words have been identified so that the RX metaframe is synchronized.
				From block: Frame synchronizer.
	[26]	R	rx_framing_err	Asserted by the frame synchronizer to indicate an RX synchronization error.
				From block: Frame synchronizer.
0x081	XU01 [27] R rx_crc32_err	Asserted by the CRC32 checker to indicate a CRC error in the corresponding RX lane. From block: CRC32 checker.		
	[28]	R	rx_scrm_err	Asserted by the frame synchronizer to indicate an RX scrambler mismatch.
				From block: Frame synchronizer.
	[29] R rx_sync_word_er		rx_sync_word_err	Asserted by the frame synchronizer to indicate that a sync word is missing.
				From block: Frame synchronizer.
	[31:30]	-	Reserved	_

PLL Interface

Table 5–9 describes the signals in the PLL interface.

Table 5-8. Serial Interface

Signal Name	Direction	Description
pll_ref_clk	Input	Reference clock for the PHY PLLs. Refer to the Lane rate entry in Table 5–3 on page 5–2 for required frequencies.

TX and RX Serial Interface

Table 5–9 describes the signals in the chip-to-chip serial interface.

Table 5-9. Serial Interface

Signal Name	Direction	Description
tx_serial_data	Output	Differential high speed serial output data. Using the PCML I/O standard. Clock is recovered from the data.
rx_serial_data	Input	Differential high speed serial input data. Using the PCML I/O standard. Clock is recovered from the data.

Optional Clocks for Deskew

Table 5–10 describes the optional clocks that you can create to reduce clock skew.

Table 5-10. Serial Interface

Signal Name	Direction	Description
tx_coreclkin	Input	When enabled tx_coreclkin is available as input port which drives the write side of TX FIFO. Altera recommends using this clock to reduce clock skew. When disabled, tx_cllkout drives the write side the TX FIFO.
rx_coreclkin	Input	When enabled rx_coreclkin is available as input port which drives the read side of RX FIFO. Altera recommends using this clock to reduce clock skew. When disabled, rx_cllkout drives the write side the RX FIFO.

Simulation Testbench

When you generate your Interlaken PHY IP core, the Quartus II software generates the HDL files that define your parameterized IP core. In addition, the Quartus II software generates an example Tcl script to compile and simulate your design in ModelSim. Figure 5–3 illustrates the directory structure for the generated files.

Figure 5–3. Directory Structure for Generated Files

Table 5–11 describes the key files and directories for the parameterized Interlaken PHY IP core and the simulation environment which are in clear text.

Table 5-11. Generated Files

File Name	Description		
<pre><pre><pre><pre>project_dir></pre></pre></pre></pre>	The top-level project directory.		
<design_name>.v or .vhd</design_name>	The top-level design file.		
<design_name>.qip</design_name>	A list of all files necessary for Quartus II compilation.		
<design_name>.bsf</design_name>	A Block Symbol File (. bsf) for your Interlaken PHY.		
<pre><pre><pre><pre>project_dir>/<design_name>/</design_name></pre></pre></pre></pre>	The directory that stores the HDL files that define the Interlaken PHY IP core. These files are used for synthesis.		

Table 5-11. Generated Files

File Name	Description		
alt_interlaken_pcs_top.v	The top-level static Verilog HDL file for the Interlaken PHY IP core. It includes parameterized port widths.		
altera_wait_generate.v	Generates waitrequest for alt_interlaken_pcs.		
alt_interlaken_pcs_sv.v	The transceiver core and memory-mapped logic for specified number of lanes for PMA and PLLs.		
amm_slave.v	The Avalon-MM slave logic.		
alt_reset_ctrl_tgx_cdrauto.sv	The reset controller logic.		
<pre><pre><pre><pre><pre><pre>c_dir>/<design_name>_sim/</design_name></pre> alt_interlaken_pcs/</pre></pre></pre></pre></pre>	The simulation directory.		
	The example Tcl script to compile and simulate the parameterized Interlaken PHY IP core. You must edit this script to include the following information:		
	■ The simulation language		
modelsim_example_script.tcl	The top-level Interlaken variation name		
	■ The name of your testbench		
	These variables are illustrated in Example 5–1		

Both the Verilog and VHDL Interlaken PHY IP have been tested extensively with the following simulators:

- ModelSim SE
- Synopsys VCS MX
- Cadence NCSim

If you select VHDL for Interlaken PHY, only the wrapper generated by the Quartus II software is in VHDL. All the underlying files are written Verilog or System Verilog. To enable simulation using a VHDL-only ModelSim license, the underlying Verilog and System Verilog files for the Interlaken PHY are encrypted so that they can be used with the top-level VHDL wrapper without purchasing a mixed-language simulator.

Example 5-1. Testbench Variables

```
## Set your language and top level design name here
##
# language = verilog (verilog variant of the PHY IP) or vhdl (vhdl variant of the PHY IP)
# defaulted to verilog
set language verilog
## Set your top level design name here
##
# dut_name = top-level Verilog variant name as generated by Qmegawiz
set dut_name <top level Verilog design name>
# tb_name = top-level testbench name.
# Can be Verilog or VHDL depending on your Modelsim license.
set tb_name <top level Verilog/VHDL testbench name>
```

6. PCI Express PHY (PIPE) IP Core

The Altera PCI Express PHY (PIPE) IP core implements physical coding sublayer (PCS) and physical media attachment (PMA) modules as defined by the *Intel PHY Interface for PCI Express (PIPE) Architecture* specification. The PCI Express PHY (PIPE) connects to a PCI Express PHYMAC to create a complete PCI Express design. Altera supports the Gen1 and Gen2 specifications and ×1, ×2, ×4, or ×8 operation for a total aggregate bandwidth of 2–32 Gbps.

Figure 6–1 illustrates the top-level blocks of the PCI Express PHY (PIPE) for Stratix V GX devices.

Figure 6-1. PCI Express PHY (PIPE) with Hard IP PCS and PMA in Stratix V GX Devices

•

For more detailed information about the PCI Express PHY PIPE transceiver channel datapath, clocking, and channel placement, refer to the "PCI Express" section in the *Transceiver Protocol Configurations in Stratix V Devices* chapter of the *Stratix V Device Handbook*.

Device Family Support

IP cores provide either final or preliminary support for target Altera device families. These terms have the following definitions:

- *Final support*—*V*erified with final timing models for this device.
- Preliminary support—Verified with preliminary timing models for this device.

Table 6–1 shows the level of support offered by the PCI Express PIPE IP core for Altera device families

Table 6-1. Device Family Support

Device Family	Support
Stratix V devices-hard PCS + hard PMA	Preliminary
Other device families	No support

Resource Utilization

Table 6–2 shows the typical expected device resource utilization for different configurations using the current version of the Quartus[®] II software targeting a Stratix V GX device.

Table 6-2. PCI Express PHY (PIPE) Performance and Resource Utilization—Stratix V Devices

Number of Lanes	Combinational ALUTs	Logic Registers	Memory Bits	PLLs
Gen1 ×1	460	285	0	2
Gen1 ×4	530	373	0	5
Gen1 ×8	590	425	0	9
Gen2 ×1	460	295	0	2
Gen2 ×4	530	373	0	5
Gen2 ×8	590	425	0	9

Parameter Settings

To configure the PCI Express PHY (PIPE) IP core in the parameter editor, click Installed Plug-Ins > Interfaces > PCI Express > PCI Express PHY (PIPE) v10.1. The PCI Express PHY PIPE IP core is only available when you select the **Stratix V** device family.

This section describes the PCI Express PHY PIPE parameters, which you can set using the parameter editor. Table 6–3 lists the settings available on **General Options** tab.

Table 6-3. General Options

Name Value		Description	
Number of lanes 1, 4, 8		The total number of PCI Express lanes	
Protocol version Gen1 (2.5 Gbps) Gen2 (5.0 Gbps)		Specifies the protocol version. Gen1 implements <i>PCI Express Base Specification 1.1.</i> Gen2 implements <i>PCI Express Base Specification 2.0.</i>	
Deserialization factor 8, 16		Specifies the width of the interface between the PHYMAC and PHY (PIPE). Using the 16-bit interface, reduces the required clock frequency by half at the expense of extra FPGA resources.	
IPE low latency ynchronous mode On/Off		When enabled, the rate match FIFO in low latency mode.	
PLL reference clock frequency 100 MHz 125 MHz		The PIPE standard requires a 100 MHz input clock. The 125 MHz option is provided as a convenience which, depending on your design, may reduce the number of clock sources you must generate on your PCB.	
Run length 40–160		Specifies the legal number of consecutive 0s or 1s.	
Enable electrical idle inferencing	True/False	When True , enables the PIPE interface to infer electrical idle instead of detecting electrical idle using analog circuitry. For more information about inferring electrical idle, refer to "Section 4.2.3.4 Inferring Electrical Idle" in the PCI Express Base Specification 2.0.	

Interfaces

Figure 6–2 illustrates the top-level pinout of the PCI Express PHY (PIPE) IP core.

Figure 6-2. PCI Express PHY (PIPE) Top-Level Signals (Note 1)

Note to Figure 6-2:

(1) <n> is the number of lanes. The PHY (PIPE) supports ×1, ×4, ×8 operation. <d> is the total descrialization factor from the input pin to the PHYMAC interface. <s> is the symbols size.

The **block diagram** shown in the GUI labels the external pins with the *interface type* and places the *interface name* inside the box. The interface type and name are used in the **_hw.tcl**.

The following sections describe the signals in each interface.

Avaion-ST TX Input Data from PCI Express PHYMAC

Table 6–4 describes the signals in the Avalon-ST input interface. These signals are driven from the PCI Express PHYMAC to the PCS. This is an Avalon sink interface.

For more information about the Avalon-ST protocol, including timing diagrams, refer to the *Avalon Interface Specifications*.

Table 6-4. Avalon-ST TX Inputs

Signal Name	Dir	Description
pipe_txdata[<n><d>-1:0]</d></n>	Sink	This is TX parallel data driven from the PCI Express PHYMAC. The ready latency on this interface is 0, so that the PHY must be able to accept data as soon as the PHY comes out of reset.
pipe_txdatak[<n><d>/8-1:0]</d></n>	Sink	Data and control indicator for the received data. When 0, indicates that pipe_txdata is data, when 1, indicates that pipe_txdata is control.

Avaion-ST RX Output Data to PCI Express PHYMAC

Table 6–5 describes the signals in the Avalon-ST output interface. These signals are driven from the PHY (PIPE) to the PHYMAC. This is an Avalon source interface.

Table 6-5. Avalon-ST RX Inputs

Signal Name	Dir	Description
pipe_rxdata[<n><d>-1:0]</d></n>	Source	This is RX parallel data driven from the PHY (PIPE). The ready latency on this interface is 0, so that the MAC must be able to accept data as soon as the PHY comes out of reset.
pipe_rxdatak[<n><d>/8-1:0] Source</d></n>		Data and control indicator for the source data. Bit 0 correspond the low byte of pipe_rxdata. Bit 1 corresponds to the upper byte. When 0, indicates that pipe_rxdata is data, when 1, indicates that pipe_rxdata is control.
pipe_rxvalid[<n>-1:0]</n>	Source	Asserted when RX data and control are valid.

Avaion Memory-Mapped (Avaion-MM) PHY Management Interface

The Avalon-MM PHY management block includes master and slave interfaces. This component acts as a bridge. It transfers commands received on its Avalon-MM slave interface to its Avalon-MM port. This interface provides access to features of the PCS and PMA that are not part of the standard PIPE interface.

Figure 6–3 illustrates the internal modules of the PCI Express PHY (PIPE) IP core.

Figure 6-3. PCI Express PIPE IP Core (Note 1)

Note to Figure 6-3:

(1) Blocks in gray are soft logic. Blocks in white are hard logic.

PHY Management Signals

Table 6–6 describes the signals that comprise the Avalon-MM PHY Management interface.

Table 6-6. Avalon-MM PHY Management Interface

Signal Name	Direction	Description
phy_mgmt_clk	Input	Avalon-MM clock input.
phy_mgmt_clk_reset	Input	Global reset signal that resets the entire PHY (PIPE). A positive edge on this signal triggers the reset controller. Refer to Figure 1–4 on page 1–7 for a timing diagram illustrating the reset sequence for a duplex channel.
phy_mgmt_address[8:0]	Input	9-bit Avalon-MM address.
phy_mgmt_writedata[31:0]	Input	Input data.
phy_mgmt_readdata[31:0]	Output	Output data.
phy_mgmt_write	Input	Write signal.
phy_mgmt_read	Input	Read signal.
phy_mgmt_waitrequest	Output	When asserted, indicates that the Avalon-MM slave interface is unable to respond to a read or write request. When asserted, control signals to the Avalon-MM slave interface must remain constant.

Register Descriptions

Table 6–7 describes the registers that you can access over the Avalon-MM PHY management interface using word addresses and a 32-bit embedded processor. A single address space provides access to all registers.

Table 6-7. PCI Express PHY (PIPE) IP Core Registers (Part 1 of 4)

Word Addr	Bits	R/W	Register Name	Description		
	PMA Common Control and Status Registers					
0x022	[31:0]	R	pma_tx_pll_is_locked	Bit[P] indicates that the TX/CMU PLL (P) is locked to the input reference clock. There is typically one pma_tx_pll_is_locked bit per system.		
	Reset Control Registers					
0x041	[31:0]	RW	reset_ch_bitmask	Reset controller channel bitmask for digital resets. The default value is all 1s. Channel $\langle n \rangle$ can be reset when $\langle n \rangle = 1$.		
0x042	[1:0]	W	reset_control (write)	Writing a 1 to bit 0 initiates a TX digital reset using the reset controller module. The reset affects channels enabled in the reset_ch_bitmask. Writing a 1 to bit 1 initiates a RX digital reset of channels enabled in the reset_ch_bitmask.		
		R	reset_status(read)	Reading bit 0 returns the status of the reset controller TX ready bit. Reading bit 1 returns the status of the reset controller RX ready bit.		

Table 6-7. PCI Express PHY (PIPE) IP Core Registers (Part 2 of 4)

Word Addr	Bits	R/W	Register Name	Description		
0x044 [1] R	[31:4,0]	RW	reset_fine_control	You can use the reset_fine_control register to create your own reset sequence. The reset control module, illustrated in Figure 1–1 on page 1–2, performs a standard reset sequence at power on and whenever the phy_mgmt_clk_reset is asserted. Bits [31:4, 0] are reserved.		
	[1]	RW	reset_tx_digital	Writing a 1 causes the internal TX digital reset signal to be asserted, resetting all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.		
	RW	reset_rx_analog	Writing a 1 causes the internal RX digital reset signal to be asserted, resetting the RX analog logic of all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.			
	[3]	RW	reset_rx_digital	Writing a 1 causes the RX digital reset signal to be asserted, resetting the RX digital channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.		
	PMA Control and Status Registers					
0x061	[31:0]	RW	phy_serial_loopback	Writing a 1 to channel <n> puts channel <n> in serial loopback mode.</n></n>		
0x063	[31:0]	R	pma_rx_signaldetect	When channel $\langle n \rangle = 1$, indicates that receive circuit for channel $\langle n \rangle$ senses the specified voltage exists at the RX input buffer. This option is only operational for the PCI Express PHY IP core.		
0x064	[31:0]	RW	pma_rx_set_locktodata	When set, programs the RX CDR PLL to lock to the incoming data. Bit <n> corresponds to channel <n>.</n></n>		
0x065	[31:0]	RW	pma_rx_set_locktoref	When set, programs the RX CDR PLL to lock to the reference clock. Bit <n> corresponds to channel <n>.</n></n>		
0x066	[31:0]	R	pma_rx_is_lockedtodata	When asserted, indicates that the RX CDR PLL is locked to the RX data, and that the RX CDR has changed from LTR to LTD mode. Bit <n> corresponds to channel <n>.</n></n>		
00x067	[31:0]	R	pma_rx_is_lockedtoref	When asserted, indicates that the RX CDR PLL is locked to the reference clock. Bit <n> corresponds to channel <n>.</n></n>		
PCI Express PCS						
0x080	[31:0]	RW	Lane or group number	Specifies lane or group number for indirect addressing which is used for all PCS control and status registers. For variants that stripe data across multiple lanes, this is the logical group number. For non-bonded applications, this is the logical lane number.		

Table 6-7. PCI Express PHY (PIPE) IP Core Registers (Part 3 of 4)

Word Addr	Bits	R/W	Register Name	Description
	[31:6]	R	Reserved	_
0x081	[5:1]	R	rx_bitslipboundary selectout	Records the number of bits slipped by the RX Word Aligner to achieve word alignment. Used for very latency sensitive protocols.
				From block: Word aligner.
	[0]	R	rx_phase_comp_fifo_error	When set, indicates an RX phase compensation FIFO error. From block: RX phase compensation FIFO.
	[31:1]	R	Reserved	_
0x082	[0]	RW	tx_phase_comp_fifo_error	When set, indicates a TX phase compensation FIFO error. From block: TX phase compensation FIFO.
	[31:6]	RW	Reserved	_
0x083	[5:1]	RW	tx_bitslipboundary_selec	Records the number of bits slipped by the TX bit slipper in the TX serial output. Used for very latency sensitive protocols.
				From block: TX bit-slipper.
	[0]	RW	tx_invpolarity	When set, the TX channel inverts the polarity of the TX data. To block: Serializer.
	[31:1]	RW	Reserved	_
0x084	[0]	RW	rx_invpolarity	When set, the RX channel inverts the polarity of the received data. The 8B/10B decoder inverts the decoder input sample and then decodes the inverted samples.
				To block: 8B/10B decoder.
	[31:4]	RW	Reserved	_
0x085 [2]	[3]	RW	rx_bitslip	When set, the word alignment logic operates in bitslip mode. Every time this register transitions from 0 to 1, the RX data slips a single bit.
				To block: Word aligner.
	[2]	RW	rx_bytereversal_enable	When set enables byte reversal on the RX interface.
				To block: Word aligner.
	[1]	RW	rx_bitreversal_enable	When set enables bit reversal on the RX interface.
				To block: Word aligner.
	[0]	RW	rx_enapatternalign	When set, the word alignment logic operates in pattern detect mode.
				To block: Word aligner.

Table 6-7. PCI Express PHY (PIPE) IP Core Registers (Part 4 of 4)

Word Addr	Bits	R/W	Register Name	Description
	[31:20]	R	Reserved	_
	[19:16]	R	rx_rlv	When set, indicates a run length violation.
				From block: Word aligner.
	[15:12]	R	rx_patterndetect	When set, indicates that RX word aligner has achieved synchronization.
				From block: Word aligner.
	[11:8]	R	rx_disperr	When set, indicates that the received 10-bit code or data group has a disparity error. When set, the corresponding errdetect bits are also set.
0x086				From block: 8B/10B decoder.
	[7:4]	R	rx_syncstatus	When set, indicates that the RX interface is synchronized to the incoming data.
				From block: Word aligner.
	[3:0]	R	rx_errdetect	When set, indicates that a received 10-bit code group has an 8B/10B code violation or disparity error. It is used along with Rx disparity to differentiate between a code violation error and a disparity error, or both.
				In PIPE mode, the PIPE specific output port called pipe_rxstatus encodes the errors.
				From block: 8B/10B decoder.

PIPE Interface

Table 6–8 describes the signals in the PIPE interface.

Table 6–8. PIPE Interface (Part 1 of 2)

Direction	Description	
Sink	This is the 100 MHz input reference clock source for the PHY PLL. You can optionally provide a 125 MHz input reference clock by setting the PLL reference clock frequency parameter to 125 MHz.	
Sink	A 125 MHz clock used for the receiver detect circuitry.	
Sink	This signal instructs the PHY to start a receive detection operation. After power-up asserting this signal starts a loopback operation. Refer to section 6.4 of the <i>Intel PHY Interface for PCI Express (PIPE) Architecture</i> for a timing diagram.	
Sink	This signal forces the transmit output to electrical idle. Refer to section 7.3 of the <i>Intel PHY Interface for PCI Express (PIPE) Architecture</i> for timing diagrams.	
Sink	Transmit de-emphasis selection. In PCI Express Gen2 (5 Gbps) mode it selects the transmitter de-emphasis: 1'b0: -6 dB 1'b1: -3.5 dB	
	Sink Sink Sink	

Table 6–8. PIPE Interface (Part 2 of 2)

Signal Name	Direction	Description	
pipe_txcompliance	Sink	When asserted for one cycle, sets the 8B/10B encoder output running disparity to negative. Used when transmitting the compliance pattern. Re to section 6.11 of the <i>Intel PHY Interface for PCI Express (PIPE) Architecture</i> for more information.	
pipe_txmargin	Sink	Transmit V_{OD} margin selection. The PCI Express MegaCore function hard IP sets the value for this signal based on the value from the Link Control 2 Register. This is 3 bits in the PIPE Specification.	
		Specifies the link frequency, as follows:	
		■ 0 -Gen1 operation, or 2.5 Gbps	
pipe_rate	Sink	■ 1-Gen2 operation, or 5.0 Gbps	
		Figure 6–4 on page 6–11 illustrates the timing of a rate switch from Gen1 to Gen2 and back to Gen1.	
		This signal requests the PHY to change its power state to the specified state. The following encodings are defined:	
		■ 2b'00- P0, normal operation	
pipe_powerdown <n>[1:0] (1)</n>	Sink	■ 2b'01-P0s, low recovery time latency, power saving state	
		■ 2b'10-P1, longer recovery time (64 us maximum latency), lower power state	
		■ 2b'11-P2, lowest power state. (not supported)	
pipe_rxpolarity	Sink	When 1, instructs the PHY layer to invert the polarity on the 8B/10B receiver decoding block.	
pipe_rxelecidle	Source	When asserted, indicates receiver detection of an electrical idle.	
pipe_phystatus	Source	This signal is used to communicate completion of several PHY requests.	
pipe_rxstatus <n>[2:0] (1)</n>	Source	This signal encodes receive status and error codes for the receive data stream and receiver detection. The following encodings are defined: 000-receive data OK 001-1 SKP added 010-1 SKP removed 011-Receiver detected	
		■ 100-Both 8B/10B decode error and (optionally) RX disparity error	
		101-Elastic buffer overflow	
		■ 110-Elastic buffer underflow	
		111–Receive disparity error.	
rx_eidleinfersel[<n>-1:0]</n>	Sink	When this option is set in the parameter editor, the RX interface infers electrical idle instead of using analog circuitry to detect a device at the other end of the link.	
	Source	Indicates whether the transceiver is using full- or low-swing voltages as defined by the tx_pipemargin.	
pipe_txswing		0-Full swing	
		■ 1-Low swing	

Note to Table 6-8:

(1) < n> is the number of lanes. The PHY (PIPE) supports $\times 1$, $\times 4$, $\times 8$ operation.

Figure 6–4 illustrates the pipe_pclk switching from Gen1 to Gen2 and back to Gen1.

Figure 6-4. Rate Switch from Gen1 to Gen2

Note to Figure 6-4:

- (1) Time T1 is pending characterization.
- (2) $\langle n \rangle$ is the number of lanes.

Transceiver Serial Interface

Table 6–9 describes the differential serial TX and RX connections to FPGA pins.

Table 6-9. Transceiver Differential Serial Interface

Signal Name	Direction	Description
rx_serial_data[<n>-1:0]</n>	Input	Receiver differential serial input data, <n> is the number of lanes.</n>
tx_serial_data[<n>-1:0]</n>	Output	Transmitter differential serial output data <n> is the number of lanes.</n>

Table 6–10 describes the signals the optional status signals.

Table 6–10. Status Signals (Note 1)

Signal Name	Direction	Signal Name
tx_ready	Output	When asserted, indicates that the TX interface is ready to transmit.
rx_ready	Output	When asserted, indicates that the RX interface is ready to receive.
pll_locked[-1:0]	Output	When asserted, indicates that the PLL is locked to the input reference clock. This signal is asynchronous.
rx_is_lockedtodata[<n>-1:0]</n>	Output	When asserted, the receiver CDR is in to lock-to-data mode. When deasserted, the receiver CDR lock mode depends on the rx_locktorefclk signal level.
rx_is_lockedtoref[<n>-1:0]</n>	Output	Asserted when the receiver CDR is locked to the input reference clock. This signal is asynchronous.
rx_syncstatus[<d><n>/8-1:0]</n></d>	Output	Indicates presence or absence of synchronization on the RX interface. Asserted when word aligner identifies the word alignment pattern or synchronization code groups in the received data stream.

Note to Table 6-10:

(1) <n> is the number of lanes. <d> is the deserialization factor. <p> is the number of PLLs.

Simulation

When you generate your PCIe PIPE IP core, the Quartus II software generates the HDL files that define your parameterized IP core. In addition, the Quartus II software generates an example Tcl test script to compile and simulate your design. Figure 6–5 illustrates the directory structure for the generated files.

Figure 6–5. Directory Structure for Generated Files

If you select VHDL for PCIe PIPE PHY, only the wrapper generated by the Quartus II software is in VHDL. All the underlying files are written Verilog or System Verilog. To enable simulation using a VHDL-only ModelSim license, the underlying Verilog and System Verilog files for the PCIe PIPE PHY are encrypted so that they can be used with the top-level VHDL wrapper without purchasing a mixed-language simulator.

For more information about simulating with ModelSim, refer to the *Mentor Graphics ModelSim Support* chapter in volume 3 of the *Quartus II Handbook*.

Altera provides an example Tcl script, **modelsim_example_script.tcl**, with the PCI Express PIPE PHY IP core to illustrate how to compile and simulate the core in ModelSim. You must edit this script to include the following information:

- The simulation language
- The top-level PCIe PIPE PHY variation name
- The name of your testbench

Example 6–1 shows the part of the Tcl script that you must edit.

Example 6-1. Simulation Variables

```
## Set your language and top level design name here
##
# language = verilog (verilog variant of the PHY IP) or vhdl (vhdl variant of the PHY IP)
# defaulted to verilog
set language verilog
## Set your top level design name here
##
# dut_name = top-level Verilog variant name as generated by Qmegawiz
set dut_name <top level Verilog design name>
# tb_name = top-level testbench name.
# Can be Verilog or VHDL depending on your Modelsim license.
set tb_name <top level Verilog/VHDL testbench name>
```

7. Custom PHY IP Core

The Altera Custom PHY IP core is a generic PHY that you can customize for use in Stratix V FPGAs. You can connect your application's MAC-layer logic to the Custom PHY to transmit and receive data at rates of 0.600–8.5 Gbps. You can parameterize the physical coding sublayer (PCS) to include the functions that your application requires. The following functions are available:

- 8B/10B encode and decode
- Three different word alignment modes
- Rate matching
- Byte ordering

Your MAC layer must use the Avalon-ST to transmit and receive data from the Custom PHY. The Avalon-ST protocol is a simple protocol designed for driving high bandwidth, low latency, unidirectional data. To access control and status registers in the Custom PHY, your design must include an embedded controller with an Avalon-MM master interface. This is a standard, memory-mapped protocol that is typically used to read and write registers and memory.

For more information about the Avalon-ST and Avalon-MM protocols, refer to the *Avalon Interface Specifications*.

Figure 7–1 illustrates the top-level signals and modules of the Custom PHY.

Stratix V FPGA Custom PHY IP Core Avalon-ST Tx and Rx PCS: ASIC from Tx Serial Data PMA: Custom Avalon-ST Reconfig 8B/10B ASSP **FPGA** Word Aligner Analog Buffers MAC Rx Serial Data Avalon-MM Cntrl and Status Rate Match FIFO **SERDES Byte Ordering** Backplane

Figure 7-1. Custom PHY IP Core

For more detailed information about the Custom datapath and clocking, refer to the "Custom Configurations with the Standard PCS" section in the Custom Transceiver Configuration Datapath in Stratix V Devices chapter of the Stratix V Device Handbook.

Device Family Support

IP cores provide either final or preliminary support for target Altera device families. These terms have the following definitions:

■ *Final support—Verified* with final timing models for this device.

■ *Preliminary support*—Verified with preliminary timing models for this device.

Table 7–1 shows the level of support offered by the Custom PHY IP core for Altera device families

Table 7-1. Device Family Support

Device Family	Support
Arria II GX	Preliminary
Arria II GZ	Preliminary
HardCopy IV GX	Preliminary
Stratix IV GX	Preliminary
Stratix V devices-hard PCS and hard PMA	Preliminary
Other device families	No support

Performance and Resource Utilization

Accurate resource utilization numbers are not available at this time.

Parameter Settings

To configure the Custom PHY IP core in the parameter editor, click Installed Plug-Ins > Interfaces > Transceiver PHY > Custom PHY v10.1.

General Options

The **General Options** tab allows you to set the basic parameters of your PHY. Table 7–2 lists the settings available on the **General Options** tab.

Table 7-2. General Options (Part 1 of 2)

Name Value		Description		
Arria II GX Arria II GZ Device family HardCopy IV Stratix IV Stratix V		Specifies the device family.		
Mode of operation TX RX		You can select to transmit data, receive data, or both. Stratix IV only supports Duplex mode in the current release.		
Number of lanes 1–32		The total number of lanes in each direction.		
FPGA fabric transceiver interface width	8,10,16,20, 32,40	Specifies the total serialization factor, from an input or output pin to the MAC-layer logic.		
Enable bonding On/Off		When enabled, a single clock drives multiple lanes, reducing clock skew.		
Data rate 600-8500 Mbps		Specifies the data rate.		
Input clock frequency 60–700 MHz		Specifies the frequency of the PLL input reference clock.		
	Additional Options			
Enable TX Bitslip	On/Off	When enabled, the TX bitslip word aligner is operational.		

Table 7-2. General Options (Part 2 of 2)

Name Va		Description	
Create rx_coreclkin port	On/Off	This is an optional clock to drive the coreclk of the RX PCS	
Create tx_coreclkin port	On/Off	This is an optional clock to drive the coreclk of the TX PCS	
		When you turn this option on, the following signals are added to the top level of your transceiver for each lane:	
		<pre>rx_syncstatus<n></n></pre>	
		<pre>rx_is_lockedtoref<n></n></pre>	
Create optional port	On/Off	<pre>rx_is_locedtodata<n></n></pre>	
		<pre>tx_forceelecidle</pre>	
		<pre>rx_is_lockedtoref</pre>	
		<pre>rx_is_lockedtodata</pre>	
		<pre>rx_signaldetect</pre>	
Avelen dete interferen	0=/0#	When you turn this option on, there is a separate Avalon-ST bus for each lane which includes the control and status signals for that lane. Layout and transmission of data is big endian. Refer to Figure 7–2. This option must be on to use the Transceiver Toolkit.	
Avalon data interfaces	On/Off	When you turn this option off, the TX and RX interfaces are configured as a single data and control bus, regardless of the number of lanes. The layout and transmission of the TX and RX buses is little endian. Refer to Figure 7–3.	

Figure 7–2 shows the top-level interfaces when you enable Avalon data interfaces.

Figure 7-2. Custom PHY with Avalon Interfaces Enabled

Figure 7-3. Custom PHY with Avalon Interfaces Enabled

8B/10B Encoder and Decoder

The 8B/10B encoder generates 10-bit code groups (control or data word) with proper disparity from the 8-bit data and 1-bit control identifier. The 8B/10B decoder receives 10-bit data from the rate matcher and decodes it into an 8-bit data + 1-bit control identifier. Table 7–3 lists the settings available on the **8B/10B** tab.

Table 7-3. 8B/10B Options

Name	Value	Description
Enable 8B/10B decoder/encoder	On/Off	Enable this option if your application requires 8B/10B encoding and decoding. This option on adds the $tx_{datak} < n >$, $tx_{datak} < n >$, and $tx_{unningdisp} < n >$ signals to your transceiver.
Enable manual disparity control	On/Off	When enabled, you can use the tx_forcedisp signal to control the disparity of the 8B/10B encoder. Turning this option on adds the tx_forcedisp and tx_dispval signals to your transceiver.
Create optional 8B/10B status port	On/Off	Enable this option on to include additional 8B/10B the rx_errdetect and rx_disperr error signals at the top level of the Custom PHY IP core.

Word Alignment

The word aligner restores word boundaries of received data based on a predefined alignment pattern. This pattern can be 7, 8, 10, 16, 20, or 32 bits long. The word alignment module searches for a programmed pattern to identify the correct boundary for the incoming stream. Table 7–4 lists the settings available on the **Word Aligner** tab.

Table 7-4. Word Aligner Options

Name	Value	Description
		You can select 1 of the following 3 modes:
	Manual	■ Manual—In this mode you enable the word alignment function by asserting rx_enapatternalign using the Avalon-MM interface. Word aligner starts searching for the alignment pattern as soon as this control signal is asserted.
	Bit slipping	■ Bit Slip Mode —You can use bit slip mode to shift the word boundary using the Avalon-MM interface. For every rising edge of the rx_bitslip signal, the word boundary is shifted by 1 bit. Each bit slip removes the earliest received bit from the received data.
Word alignment mode		Automatic Synchronization State Machine Mode—In this mode, word alignment is controlled by a programmable state machine. This mode can only be used with 8B/10B encoding. The data width at the word aligner can be 10 or 20 bits. You can specify the following parameters:
3	Automatic	 Number of consecutive valid words before sync state is reached: Specifies the number of consecutive valid words needed to reduce the built up error count by 1. Valid values are 0-255.
	synchronization state machine	 Number of bad data words before loss of sync state: Specifies the number of bad data words required for alignment state machine to enter loss of sync state. Valid values are 0–255.
		 Number of valid patterns before sync state is reached: Specifies the number of consecutive patterns required to achieve synchronization. Valid values are 0–255.
		 Word alignment pattern length: Allows you to specify a 7- or 10-bit pattern for use in the word alignment state machine.
		 Word alignment pattern: Allows you to specify a word alignment pattern.
Enable run length violation checking	On/Off	If you turn this option on, you can specify the run length which is the maximum legal number of contiguous 0s or 1s.
Run length	40-640	Specifies the threshold for a run-length violation.

Table 7–5 provides more information about the word alignment function.

Table 7-5. Word Aligner Options

Configuration	PMA-PCS Interface Width (bits)	Word Alignment Mode	Word Alignment Pattern Length (bits)	Word Alignment Behavior
	8	Manual alignment	16	User-controlled signal starts alignment process. Alignment occurs once unless signal is re-asserted.
		Bit-slip	16	User-controlled signal shifts data 1 bit at a time.
Custom single-width		Manual alignment		User-controlled signal starts alignment process. Alignment occurs once unless signal is re-asserted.
og.oa	10	Bit-slip	7, 10	User-controlled signal shifts data 1 bit at a time.
	10	Automatic synchronized state machine	7, 10	Data must be 8B/10B encoded and aligns to selected word aligner pattern.
	16	Manual alignment	8, 16, 32	User-controlled signal starts alignment process. Alignment occurs once unless signal is re-asserted.
		Bit-slip	8, 16, 32	User-controlled signal shifts data 1 bit at a time.
Custom double-width	20	Manual alignment	8, 16, 32	User-controlled signal starts alignment process. Alignment occurs once unless signal is re-asserted.
		Bit-slip	7, 10, 20	User-controlled signal shifts data 1 bit at a time.
		Automatic Synchronized State Machine	7 and 10 bits	Automatically selected word aligner pattern length and pattern.
PCIe PIPE PHY	10	Automatic synchronized state machine	10	Automatically selected word aligner pattern length and pattern.

Rate Match FIFO

The rate match FIFO compensates for small clock frequency differences between the upstream transmitter and the local receiver clocks by inserting or removing skip (SKP) symbols or ordered-sets from the inter-packet gap (IPG) or idle streams. It deletes SKP symbols or ordered-sets when the upstream transmitter reference clock frequency is greater than the local receiver reference clock frequency. It inserts SKP symbols or ordered-sets when the local receiver reference clock frequency is greater than the upstream transmitter reference clock frequency.

If you enable the rate match FIFO, the parameter editor provides options to enter the rate match insertion and deletion patterns. The lower 10 bits are the control pattern, and the upper 10 bits are the skip pattern. Table 7–6 lists the settings available on the **Rate Match** tab.

Table 7-6. Rate Match FIFO Options (Note 1)

Name	Value	Description	
Enable rate match FIFO	On/Off	Turn this option on, to enable the rate match functionality. Turning this option on adds the rx_rmfifofull, rxrmfifoempty, rxrmfifodatainserted, and rx_rmfifodatadeleted status signals to your PHY.	
Rate match insertion/deletion +ve disparity pattern	1101000011 1010000011	Enter a 10-bit skip pattern (bits 10–19) and a 10-bit control pattern (bits 0–9). The skip pattern must have neutral disparity.	
Rate match insertion/deletion -ve disparity pattern	0010111100 0101111100	Enter a 10-bit skip pattern (bits 10–19) and a 10-bit control pattern (bits 0–9). The skip pattern must have neutral disparity.	

Note to Table 7-6:

Byte Ordering

The byte ordering block is available when the PCS width is doubled at the byte deserializer. Byte ordering identifies the first byte of a packet by determining whether the programmed start-of-packet (SOP) pattern is present; it inserts enough pad characters in the data stream to force the SOP to the lowest order byte lane. Table 7–7 describes the byte order options.

You cannot enable Rate Match FIFO when your application requires byte ordering. Because the rate match function inserts and deletes idle characters, it may shift the SOP to a different byte lane.

Table 7-7. Byte Order Options

Name	Value	Description
Enable byte ordering block	On/Off	Turn this option on if your application uses serialization to create a datapath that is larger than 1 symbol. This option is only available if you use the byte deserializer.
Enable byte ordering block manual control	On/Off	Turn this option on to choose manual control of byte ordering. This option creates the rx_enabyteord signal. A byte ordering operation occurs whenever rx_enabyteord is asserted. To perform multiple byte ordering operations, deassert and reassert rx_enabyteord.
Byte ordering pattern	11111011	Specifies the pattern that identifies the SOP.
Byte ordering pad pattern	0000000	Specifies the pad pattern that is inserted to align the SOP.

⁽¹⁾ The rate match FIFO is not supported in Stratix V devices.

Table 7–8 lists the **Datapath** options.

Table 7-8. Datapath Options

Name	Value	Description	
Deserializer block width	Auto Single	Specifies the mode of operation for the deserializer which clocks in serial input data from the RX buffer using the high-speed recovered clock and deserializes it using the low-speed parallel recovered clock. Forwards deserialized data to the RX PCS channel. The following 3 modes are supported:	
	Double	 Auto—Instructs the Quartus II software to determine the appropriate width 	
		■ Single—supports 8- and 10-bit deserialization factors	
		■ Double —supports 16- and 20-bit deserialization factors	
Deserializer actual width	Auto Single Double	Specifies the mode selected.	

For a description of the Analog options, refer the to "PMA Analog Options" on page 8–4.

Interfaces

Figure 7–4 illustrates the top-level signals of the Custom PHY IP core.

Figure 7-4. Custom PHY Top-Level Signals (Note 1)

Note to Figure 7-4:

(1) < n > is the number of lanes. < d > is the descrialization factor. < s > is the symbol size in bits. is the number of PLLs.

The **block diagram** shown in the GUI labels the external pins with the *interface type* and places the *interface name* inside the box. The interface type and name are used in the **hw.tcl**.

For more information about _hw.tcl files, refer to *Component Interface Tcl Reference* chapter in the *SOPC Builder User Guide*.

The following sections describe the signals in each interface.

Avalon-ST TX Input Data from the MAC

Table 7–9 describes the signals in the Avalon-ST input interface. These signals are driven from the MAC to the PCS. This is an Avalon sink interface.

For more information about the Avalon-ST protocol, including timing diagrams, refer to the *Avalon Interface Specifications*.

Table 7-9. Avalon-ST TX Interface

Signal Name	Direction	Description
tx_parallel_data <n>[<d>-1:0]</d></n>	Sink	This is TX parallel data driven from the MAC. The ready latency on this interface is 0, so that the PHY must be able to accept data as soon as it comes out of reset.
tx_clkout	Output	This is the clock for TX parallel data, control, and status signals.
tx_datak <n> Sink</n>		Data and control indicator for the received data. When 0, indicates that tx_data is data, when 1, indicates that tx_data is control.
tx_forcedisp	Sink	When asserted, this control signal enables disparity to be forced on the TX channel. This signal is created if you turn On the Enable manual disparity control option on the 8B/10B tab.
tx_dispval	Sink	This control signal specifies the disparity of the data. This port is created if you turn On the Enable disparity control option on the 8B/10B tab.

Avaion-ST RX Output Data to the MAC

Table 7–10 describes the signals in the Avalon-ST output interface. These signals are driven from the PCS to the MAC. This is an Avalon source interface.

Table 7–10. Avalon-ST RX Interface (Part 1 of 2)

Signal Name	Direction	Description
rx_parallel_data[<n><d>-1:0]</d></n>	Source	This is RX parallel data driven from the Custom PHY IP core. The ready latency on this interface is 0, so that the MAC must be able to accept data as soon as the PHY comes out of reset. Data driven from this interface is always valid.
rx_clkout	Output	This is the clock for the RX parallel data source interface.
rx_datak <n></n>	Source	Data and control indicator for the source data. When 0, indicates that rx_parallel_data is data, when 1, indicates that rx_parallel_data is control.

Table 7–10. Avalon-ST RX Interface (Part 2 of 2)

Signal Name	Direction	Description
rx_runningdisp	Source	This status signal indicates the disparity of the incoming data.
rx_enabyteord	Input	This signal is created if you turn On the Enable byte ordering block control option on the Byte Order tab. A byte ordering operation occurs whenever rx_enabyteord is asserted. To perform multiple byte ordering operations, deassert and reassert rx_enabyteord.

Avalon-MM PHY Management Interface

The Avalon-MM PHY management module includes master and slave interfaces. This component acts as a bridge. It transfers commands received on its Avalon-MM slave interface to its Avalon-MM master port. This interface provides access to control and status information for the PCS, PMA, and Reconfiguration blocks.

Figure 7–5 illustrates the role of the PHY Management module in the Custom PHY.

Figure 7–5. Custom PHY IP Core (Note 1)

Note to Figure 7-5:

(1) Blocks in gray are soft logic. Blocks in white are hard logic.

PHY Management Signals

Table 7–11 describes the signals in the PHY Management interface.

Table 7–11. Avalon-MM PHY Management Interface

Signal Name	Direction	Description
	Input	Avalon-MM clock input. The frequency range for the phy_mgmt_clk varies for different devices, as follows:
phy_mgmt_clk		 Arria II GX, Arria II GZ, HardCopy IV GX, and Stratix IV GX devices: 37.5–125 MHz
		■ Stratix V devices: 50–150 MHz
phy_mgmt_clk_reset	Input	Global reset signal. A positive edge on this signal triggers a reset.
phy_mgmt_address[8:0]	Input	9-bit Avalon-MM address.
phy_mgmt_writedata[31:0]	Input	Input data.
phy_mgmt_readdata[31:0]	Output	Output data.
phy_mgmt_write	Input	Write signal.
phy_mgmt_read	Input	Read signal.

Register Descriptions

Table 7–12 specifies the registers that you can access over the PHY management interface using word addresses and a 32-bit embedded processor. A single address space provides access to all registers.

Table 7–12. Low Latency PHY IP Core Registers (Part 1 of 3)

Word Addr	Bits	R/W	Register Name	Description	
			PMA Common Control	and Status Registers	
0x021	[31:0]	RW	cal_blk_powerdown	Writing a 1 to channel <n> powers down the calibration block for channel <n>.</n></n>	
0x022	[31:0]	R	pma_tx_pll_is_locked	Bit[P] indicates that the TX/CMU PLL (P) is locked to the input reference clock. There is typically one pma_tx_pll_is_locked bit per system.	
	Reset Control Registers				
0x041	[31:0]	RW	reset_ch_bitmask	Reset controller channel bitmask for digital resets. The default value is all 1s. Channel $\langle n \rangle$ can be reset when $\langle n \rangle = 1$.	
0x042	[1:0]	W	reset_control (write)	Writing a 1 to bit 0 initiates a TX digital reset using the reset controller module. The reset affects channels enabled in the reset_ch_bitmask. Writing a 1 to bit 1 initiates a RX digital reset of channels enabled in the reset_ch_bitmask.	
		R	reset_status(read)	Reading bit 0 returns the status of the reset controller TX ready bit. Reading bit 1 returns the status of the reset controller RX ready bit.	

Table 7–12. Low Latency PHY IP Core Registers (Part 2 of 3)

Word Addr	Bits	R/W	Register Name	Description		
	[31:4,0]	RW	reset_fine_control	You can use the reset_fine_control register to create your own reset sequence. The reset control module, illustrated in Figure 1–1 on page 1–2, performs a standard reset sequence at power on and whenever the phy_mgmt_clk_reset is asserted. Bits [31:4, 0] are reserved.		
0x044	[1]	RW	reset_tx_digital	Writing a 1 causes the internal TX digital reset signal to be asserted, resetting all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.		
	[2]	RW	reset_rx_analog	Writing a 1 causes the internal RX digital reset signal to be asserted, resetting the RX analog logic of all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.		
	[3]	RW	reset_rx_digital	Writing a 1 causes the RX digital reset signal to be asserted, resetting the RX digital channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.		
	PMA Control and Status Registers					
0x061	[31:0]	RW	phy_serial_loopback	Writing a 1 to channel <n> puts channel <n> in serial loopback mode.</n></n>		
0x063	[31:0]	R	pma_rx_signaldetect	When channel <n> =1, indicates that receive circuit for channel <n> senses the specified voltage exists at the RX input buffer. This option is only operational for the PCI Express PHY IP core.</n></n>		
0x064	[31:0]	RW	pma_rx_set_locktodata	When set, programs the RX CDR PLL to lock to the incoming data. Bit <n> corresponds to channel <n>.</n></n>		
0x065	[31:0]	RW	pma_rx_set_locktoref	When set, programs the RX CDR PLL to lock to the reference clock. Bit <n> corresponds to channel <n>.</n></n>		
0x066	[31:0]	R	pma_rx_is_lockedtodata	When asserted, indicates that the RX CDR PLL is locked to the RX data, and that the RX CDR has changed from LTR to LTD mode. Bit <n> corresponds to channel <n>.</n></n>		
00x06 7	[31:0]	R	pma_rx_is_lockedtoref	When asserted, indicates that the RX CDR PLL is locked to the reference clock. Bit <n> corresponds to channel <n>.</n></n>		
			Low Late	ncy PCS		
0x080	[31:0]	RW	Lane or group number	Specifies lane or group number for indirect addressing which is used for all PCS control and status registers. For variants that stripe data across multiple lanes, this is the logical group number. For non-bonded applications, this is the logical lane number.		
	[31:6]	R	pcs8g_rx_status	Reserved.		
0x082	[0]	R	rx_phase_comp_fifo_error	When set, indicates an RX phase compensation FIFO error. From block: RX phase Compensation FIFO		
5,002	[5:1]	R	rx_bitslipboundaryselect out	This is an output from the bit slip word aligner which shows the number of bits slipped. From block: Word aligner.		

Table 7–12. Low Latency PHY IP Core Registers (Part 3 of 3)

Word Addr	Bits	R/W	Register Name	Description
	[31:1]	R	pcs8g_tx_status	Reserved.
0x082	[0]	RW	tu phogo gome fife comes	When set, indicates an TX phase compensation FIFO error.
	[0]	I I VV	tx_phase_comp_fifo_error	From block: TX phase Compensation FIFO
	[31:6]	RW	pcs8g_tx_control	Reserved.
0.000	[0]	RW	tx_invpolarity	When set, the TX interface inverts the polarity of the TX data.
0x083				To block: 8B/10B encoder.
	[5:4]	RW	hit -1i-h	Sets the number of bits that the TX bit slipper needs to slip.
	[5:1]	L VV	tx_bitslipboundary_select	To block: Word aligner.
	[31:1]	RW	Reserved.	_
0x084 [0] F	RW	rx_invpolarity	When set, the RX channels inverts the polarity of the received data.	
				To block: 8B/10B decoder.
	[31:4]	RW	pcs8g_rx_wa_control	Reserved.
	[0]	RW	rx_enapatternalign	When set in manual word alignment mode, the word alignment logic begins operation when this pattern is set.
				To block: Word aligner.
	[4]	[4] DW 11.		When set, enables bit reversal on the RX interface.
0x085	0x085 [1] RW rx_bitreversal_enabl	rx_bitreversal_enable	To block: Word aligner.	
-	[2]	RW	DW 1. 1. 1	When set, enables byte reversal on the RX interface.
	[2]	[2] RW rx_bytereversal		To block: Byte deserializer.
	[3]	RW	rx_bitslip	Every time this register transitions from 0 to 1, the RX data slips a single bit.
				To block: Word aligner.

Clock Interface

Table 7–13 describes optional and required clocks for the Custom PHY. The input reference clock, pll_ref_clk, drives a PLL inside the PHY-layer block, and a PLL output clock, rx_clkout (described in Table 7–10 on page 7–9) is used for all data, command, and status inputs and outputs.

Table 7-13. Clock Signals

Signal Name	Direction	Description
pll_ref_clk	Input	Reference clock for the PHY PLLs. Frequency range is 50–700 MHz.
rx_coreclkin	Input	This is an optional clock to drive the coreclk of the RX PCS.
tx_coreclkin	Input	This is an optional clock to drive the coreclk of the TX PCS
pipe_pclk	Output	Clock for TX and RX parallel data, control, and status.

Transceiver Serial Data Interface

Table 7–14 describes the differential serial data interface and the status signals for the RX interface.

Table 7–14. Serial Interface and Status Signals (Note 1)

Signal Name	Direction	Signal Name
rx_serial_data[<n>-1:0]</n>	Input	Receiver differential serial input data.
tx_serial_data[<n>-1:0]</n>	Output	Transmitter differential serial output data.

Note to Table 7-14:

(1) <n> is the number of lanes. <d> is the deserialization factor. <s> is the symbol size in bits. <p> is the number of PLLs.

Optional Status Signals

Table 7–15 describes the optional status signals for the RX interface.

Table 7-15. Serial Interface and Status Signals (Part 1 of 2) (Note 1)

Signal Name	Direction	Signal Name
tx_ready	Output	When asserted, indicates that the TX interface is ready to transmit.
rx_ready	Output	When asserted, indicates that the RX interface is ready to receive.
pll_locked[-1:0]	Output	When asserted, indicates that the PLL is locked to the input reference clock.
<pre>tx_forceelecidle[<n>-1:0]</n></pre>	Input	When asserted, enables a circuit to detect a downstream receiver. It is used for the PCI Express protocol.
<pre>tx_bitslipboundaryselect [<n>4:0]</n></pre>	Input	This signal is used for bit slip word alignment mode. It selects the number of bits that the TX block must slip to achieve a deterministic latency.
rx_disperr[<d s=""><n>-1:0]</n></d>	Output	When asserted, indicates that the received 10-bit code or data group has a disparity error.
rx_errdetect[<d s=""><n>-1:0]</n></d>	Output	When asserted, indicates that a received 10-bit code group has an 8B/10B code violation or disparity error.
rx_syncstatus[<d s=""><n>-1:0]</n></d>	Output	Indicates presence or absence of synchronization on the RX interface. Asserted when word aligner identifies the word alignment pattern or synchronization code groups in the received data stream. This signal is optional.
rx_is_lockedtoref[<n>-1:0]</n>	Output	Asserted when the receiver CDR is locked to the input reference clock. This signal is asynchronous. This signal is optional.
rx_is_lockedtodata[<n>-1:0]</n>	Output	When asserted, the receiver CDR is in to lock-to-data mode. When deasserted, the receiver CDR lock mode depends on the rx_locktorefclk signal level. This signal is optional.
rx_signaldetect[<n>-1:0]</n>	Output	Signal threshold detect indicator required for the PCI Express protocol. When assertied, it indicates that the signal present at the receiver input buffer is above the programmed signal detection threshold value.
rx_bitslip	Input	Used for manual control of bit silpping. The word aligner slips a bit of the current word for every rising edge of this signal.

Table 7–15. Serial Interface and Status Signals (Part 2 of 2) (Note 1)

Signal Name	Direction	Signal Name
<pre>rx_bitslipboundaryselectout [<n>-1:0]</n></pre>	Output	This signal is used for bit slip word alignment mode. It reports the number of bits that the RX block slipped to achieve a deterministic latency.

Note to Table 7-14:

(1) <n> is the number of lanes. <d> is the deserialization factor. <s> is the symbol size in bits. is the number of PLLs.

Dynamic Partial Reconfiguration I/O Interface

As silicon progresses towards smaller process nodes, circuit performance is affected more by variations due to process, voltage, and temperature. These process variations result in analog voltages that can be offset from required ranges. The calibration performed by the dynamic reconfiguration interface compensates for variations due to process, voltage and temperature. Table 7–16 describes the signals in the reconfiguration interface. This interface uses the Avalon-MM PHY Management interface clock.

Table 7-16. Reconfiguration Interface

Signal Name	Direction	Description
reconfig_togxb [3:0]	Sink	Reconfiguration signals from the Transceiver Reconfiguration Controller.
reconfig_fromgxb [16:0]	Source	Reconfiguration signals to the Transceiver Reconfiguration Controller.

The Altera Low Latency IP core receives and transmits differential serial data, recovering the RX clock from the RX input stream. The PMA connects to a simplified PCS that whose single function doubles the width of the TX and RX datapaths. An Avalon-ST interface is used for TX and RX data for the MAC interface. An Avalon-MM interface provides access to control and status information.

Figure 8–1 illustrates the top-level modules of the Low Latency PHY IP core.

Figure 8–1. Low-Latency PHY IP Core—Stratix IV and Stratix V Devices

Because the Low latency PHY IP core bypasses much of the standard PCS, it minimizes the PCS latency. Table 8–1 the compares the latency of the standard and low latency PCS.

Table 8–1. TX Datapath Latency (Note 1)

Block	Normal Latency	Low Latency			
	TX Channel				
TX Phase Compensation FIFO	4–5	3–5			
Byte Serializer	1–2	0–2 (2)			
RX Channel					
Word Aligner	3–7 (3)	1			
Byte Serializer	1–2	1			
Byte Ordering	1–3	0			
RX Phase Compensation FIFO	3–4	2–3			

Notes to Table 8-1:

- (1) These numbers are preliminary, pending device characterization.
- (2) This value depends on whether the block is enabled or disabled.
- (3) This value depends on the configuration mode.
- For more detailed information about the Low Latency datapath and clocking, refer to the "Standard PCS Custom and Low Latency Configurations" section in the Custom Transceiver Configuration Datapath in Stratix V Devices chapter of the Stratix V Device Handbook.
- For more information about the Avalon-MM and Avalon-ST protocols, including timing diagrams, refer to the *Avalon Interface Specifications*.

Device Family Support

IP cores provide either final or preliminary support for target Altera device families. These terms have the following definitions:

- *Final support*—*Verified* with final timing models for this device.
- Preliminary support—Verified with preliminary timing models for this device.

Table 8–1 shows the level of support offered by the PMA IP core for Altera device families.

Table 8-1. Device Family Support

Device Family	Support
Stratix V devices	Preliminary
Other device families	No support.

Performance and Resource Utilization

Accurate resource utilization numbers are not available at this time.

Parameter Settings

To configure the Low Latency PHY IP core in the parameter editor, click Installed Plug-Ins > Interfaces > Transceiver PHY > Low Latency PHY v10.1.

Table 8–2 lists the settings available on **General Options** tab.

Table 8-2. General Options

Name	Value	Description
Device family	Stratix V	This IP core is only available Stratix V. Arria II GX, Arria II GZ, HardCopy IV GX, and Stratix IV GX devices are not supported in this release.
Number of lanes	1-32	Number of channels, default value is 1. For Stratix V devices, the valid range is 1–24 for the non-bonded mode and 1–5 for the bonded mode.
Mode of operation	Duplex RX TX	Specifies the mode of operation as Duplex , RX , or TX mode.
Phase compensation FIFO mode	None Embedded	When you select Embedded the PCS includes the phase compensation FIFO and byte serializer, if required, to double the data width. Default is None .
Serialization factor	8, 10, 16, 20, 32, 40, 50, 64, 66	This option indicates the parallel data interface width. The maximum width for Stratix IV devices is 40 bits. The 64- and 66-bit options are not available in the current release.
Data rate	600-12500 Mbps	Specifies the data rate in Mbps. If you choose Bonded mode on the Additional Options tab, the maximum data rate is 800 Mbps.
Input clock frequency	60-700 MHz	TX PLL input reference frequency in MHz. The allowed range depends on the device you choose.

Table 8-2. General Options

Name	Value	Description
Enable lane bonding	On/Off	When enabled, the PMA uses bonded clocks.
Avalon data interfaces	On/Off	When you turn this option on, there is a separate Avalon-ST bus for each lane which includes the control and status signals for that lane. Layout and transmission of data is big endian. When you turn this option off, the TX and RX interfaces are configured as a single data and control bus, regardless of the number of lanes. The layout and transmission of the TX and RX buses is little endian.

The parameters on the **Additional Options** tab control clocking and PCS options. Both bonded (\times N) and non-bonded modes are available. In bonded modes, a single PLL can drive all channels as Figure 1–2 on page 1–4 illustrates.

Table 8–3 describes the options available on the **Additional Options** tab.

Table 8-3. Additional Options (Part 1 of 2)

Name	Value	Description
Enable tx_coreclkin	On/Off	When you turn this option on, tx_coreclk connects to the write clock of the TX phase compensation FIFO and you can clock the parallel TX data generated in the FPGA fabric using this port. This port allows you to clock the write side of the TX phase compensation FIFO with a user-provided clock, either the FPGA fabric clock, the FPGA fabric-TX interface clock, or the input reference clock. This option must be turned on if the serialization factor is not 40 in Stratix V devices when 10G PCS is used.
Enable rx_coreclkin (Note 1)	On/Off	When you turn this option on, rx_coreclk connects to the read clock of the RX phase compensation FIFO and you can clock the parallel RX output data using rx_coreclk. This port allows you to clock the read side of the RX phase compensation FIFO with a user-provided clock, either the FPGA fabric clock, the FPGA fabric RX interface clock, or the input reference clock.
Enable TX bitslip	On/Off	When set, the word aligner operates in bit-slip mode. This option is available for Stratix V devices using the 10G PCS.
Select 10G PCS	On/Off	This option selects the higher throughput 10G PCS rather than the standard PCS. This option is available for Stratix V devices.
Deserializer block width	Auto Single Double	Specifies the datapath width between the transceiver PCS and PMA. The deserializer clocks in serial input data from the RX buffer using the high-speed recovered clock and deserializes it using the low-speed parallel recovered clock. The Auto mode is available in the current release so that the Quartus II software determines the correct setting.
Deserializer actual width	Auto Single Double	Indicates the selected deserializer width.

Table 8-3. Additional Options (Part 2 of 2)

Name	Value	Description
Parameters for Stratix IV and Derivatives		
PLL type	CMU, ATX	Allows you to choose a clock multiplier unit (CMU) or auxiliary transmit (ATX) PLL. The CMU PLL is designed to achieve low TX channel-to-channel skew. The ATX PLL is designed to improve jitter performance. This option is only available for Stratix IV GX devices.
Starting channel number	0-96	The physical channel number for this transceiver channel.

Note to Table 8-3:

(1) For more information refer to the "FPGA Fabric-Transceiver Interface Clocking" section in the Stratix IV Transceiver Clocking chapter.

Table 8–4 describes the **Analog Options** tab. Many of the analog options control pre-emphasis. Programmable pre-emphasis boosts high frequencies in the transmit data signal, which might be attenuated in the transmission media. Using pre-emphasis can maximize the data opening at the far-end receiver. By applying pre-emphasis, the high-frequency components are boosted; that is, pre-emphasized. There are three pre-emphasis taps—pre-tap, first post-tap, and second post-tap. The pre-tap sets the pre-emphasis on the data bit before the transition. The first post-tap and second post-tap set the pre-emphasis on the transition bit and the successive bit, respectively. The pre-tap and second post-tap also provide inversion control. These settings are only required for Stratix IV GX and GT. These are automatically calculated for Stratix V GX devices.

Table 8-4. PMA Analog Options (Part 1 of 2)

Name	Value	Description
TX termination resistance	OCT_85_OHMS OCT_100_OHMS OCT_120_OHMS OCT_150_OHMS	Indicates the value of the termination resistor for the transmitter.
Select the transmitter VOD control setting	0-7	Sets V _{OD} for the various TX buffers.
Pre-emphasis pre-tap setting	0–7	Sets the amount of pre-emphasis on the TX buffer.
Enable the pre-emphasis pre-tap polarity inversion	On Off	Determines whether or not the pre-emphasis control signal for the pre-tap is inverted. If you turn this option on, the pre-emphasis control signal is inverted.
Select the TX pre-emphasis first post-tap setting	0–15	Sets the amount of pre-emphasis for the 1st post-tap.
Specifies the pre-emphasis second post-tap setting	0-7	Sets the amount of pre-emphasis for the 2nd post-tap.
Enable the pre-emphasis second post-tap polarity inveresion	On Off	Determines whether or not the pre-emphasis control signal for the second post-tap is inverted. If you turn this option on, the pre-emphasis control signa is inverted.
Select the receiver common mode voltage	TRISTATE 0.82V 1.1v	Specifes the RX common mode voltage.

Table 8-4. PMA Analog Options (Part 2 of 2)

Name	Value	Description
RX termination resistance	OCT_85_OHMS OCT_100_OHMS OCT_120_OHMS OCT_150_OHMS	Indicates the value of the termination resistor for the receiver.
Receiver DC gain	0–4	Sets the equalization DC gain using one of the following settings:
		■ 0-0 dB
		■ 1–3 dB
neceiver be gain		■ 2-6 dB
		■ 3–9 dB
		■ 4–12 dB
Receiver static equalizer setting:	0–15	This option sets the equalizer control settings. The equalizer uses a pass band filter. Specifying a low value passes low frequencies. Specifying a high value passes high frequencies.

Interfaces

Figure 8–2 illustrates the top-level signals of the Low Latency PHY IP core.

Figure 8-2. Top-Level PMA Signals

Note to Figure 8-2:

(1) <n> is the number of channels or the number of PLLs. <d> is the deserialization factor.

Figure 8–3 shows the interface connectivity of the PMA IP core.

Figure 8-3. PMA

The following sections describe each interface.

Avalon-ST TX and RX Data Interface to the MAC

Table 8–5 describes the signals in the Avalon-ST interface. These signals are named from the point of view of the MAC so that the TX interface is an Avalon-ST sink interface and the RX interface is an Avalon-ST source.

Table 8-5. Avalon-ST interface

Signal Name	Direction	Description
tx_parallel_data <n>[<d-1>:0]</d-1></n>	Sink	This is TX parallel data driven from the MAC FPGA fabric. The ready latency on this interface is 0, so that the PCS in Low-Latency Bypass Mode or the MAC in PMA Direct mode must be able to accept data as soon as it comes out of reset.
tx_clkout[<n>-1:0]</n>	Output	This is the clock for TX parallel data.
tx_ready[<n-1>:0]</n-1>	Output	When asserted, indicates that the Low Latency IP core is ready to receive data from the MAC. This signal is only used in Stratix IV devices.
rx_parallel_data <n><d-1>:0]</d-1></n>	Source	This is RX parallel data driven by the Low Latency PHY IP core. Data driven from this interface is always valid.
rx_ready[<n-1>:0]</n-1>	Output	This is the ready signal for the RX interface. The ready latency on this interface is 0, so that the MAC must be able to accept data as soon as the PMA comes out of reset. This signal is only used in Stratix IV devices.

Avaion-MM PHY Management Interface

You can use the Avalon-MM PHY Management interface to read and write registers that control the TX and RX channels, the PMA powerdown and PLL registers, and loopback modes. Table 8–6 describes the signals in this interface.

Table 8–6. Avalon-MM PHY Management Interface

Signal Name	Direction	Description
phy_mgmt_clk	Input	This clock signal that controls the Avalon-MM PHY management, calibration, and reconfiguration interfaces. For Stratix IV devices, the maximum frequency is 50 MHz. For Stratix V devices, the maximum frequency is 150 MHz.
phy_mgmt_reset	Input	Global reset signal. A positive edge on this signal triggers a reset.
phy_mgmtaddress[8:0]	Input	9-bit Avalon-MM address.
phy_mgmtwritedata[31:0]	Input	Input data.
phy_mgmtreaddata[31:0]	Output	Output data.
phy_mgmtwrite	Input	Write signal.
phy_mgmtread	Input	Read signal.

Register Descriptions

Table 8–7 describes the registers that you can access over the PHY Management Interface using word addresses and a 32-bit embedded processor.

Table 8-7. PMA Channel Control and Status

Byte Offset	Bits	R/W	Register Name	Description
0x063	[31:0]	R	pma_rx_signaldetect	When channel <n>=1, indicates that receive circuit for channel <n> senses the specified voltage exists at the RX input buffer. This option is only operational for the PCI Express PHY IP core.</n></n>
0x064	[31:0]	RW	pma_rx_set_locktodata	When set, programs the RX CDR PLL to lock to the incoming data. Bit <n> corresponds to channel <n>.</n></n>
0x065	[31:0]	RW	pma_rx_set_locktoref	When set, programs the RX CDR PLL to lock to the reference clock. Bit <n> corresponds to channel <n>.</n></n>
0x066	[31:0]	R	pma_rx_is_lockedtodata	When asserted, indicates that the RX CDR PLL is locked to the RX data, and that the RX CDR has changed from LTR to LTD mode. Bit <n> corresponds to channel <n>.</n></n>
0x067	[31:0]	R	pma_rx_is_lockedtoref	When asserted, indicates that the RX CDR PLL is locked to the reference clock. Bit <n> corresponds to channel <n>.</n></n>

Serial Data Interface

Table 8–8 describes the signals that comprise the serial data interface.

Table 8-8. Serial Data Interface

Signal Name	Direction	Description
rx_serial_data[<n-1>:0]</n-1>	Sink	Differential high speed input serial data.
tx_serial_data [<n-1>:0]</n-1>	Source	Differential high speed output serial data.

Note to Table 8-8:

(1) <n> is the number of modules connecting to the Transceiver Reconfiguration IP core.

Optional Status Interface

Table 8–9 describes the signals that comprise the optional status interface.

Table 8-9. Optional Status Interface

Signal Name	Direction	Description
rx_clkout[<n-1>:0]</n-1>	Output	Low speed clock recovered from the serial data.
rx_is_lockedtodata[<n-1>:0]</n-1>	Output	When asserted, indicates that the RX CDR is locked to incoming data. This signal is optional. If latency is not critical, you can read the value of this signal from the Rx_is_lockedtodata register.
rx_is_lockedtoref[<n-1>:0]</n-1>	Output	When asserted, indicates that the RX CDR is locked to the input reference clock. This signal is optional. When the RX CDR is locked to data, you can ignore transitions on this signal. If latency is not critical, you can read the value of this signal from the Rx_is_lockedtoref register.
pll_locked[<n-1>:0]</n-1>	Output	When asserted, indicates that the TX PLL is locked to the input reference clock. This signal is asynchronous.
<pre>tx_coreclkin[<n-1>:0]</n-1></pre>	Input	This is an optional clock to drive the write side of the TX PCS FIFO.
rx_coreclkin[<n-1>:0]</n-1>	Input	This is an optional clock to drive the read side of the RX PCS FIFO.
tx_bitslip	Output	When set, the data sent to the PMA is slipped. The maximum number of bits that can be slipped is equal to the value selected in the serialization factor field - 1 or $<$ d> -1.

Note to Table 8-9:

(1) <n> is the number of modules connecting to the Transceiver Reconfiguration IP core.

9. Transceiver Reconfiguration Controller

You can use the Altera Transceiver Reconfiguration Controller to dynamically reconfigure the TX and RX analog settings in Stratix IV GX devices. This modules is included in the Transceiver Toolkit, the XAUI PHY IP core, and the 10GBASE-R PHY IP core. Figure 9–1 shows the top-level modules of the Transceiver Reconfiguration Controller.

- In Stratix IV devices, the PCI Express IP core uses a different reconfiguration IP core. Refer to the "Transceiver Offset Cancellation" section in the PCI Express Compiler User Guide for more information.
- For information about dynamic reconfiguration feature in Stratix V devices, refer to the *Dynamic Reconfiguration in Stratix V Devices* chapter of the *Stratix V Device Handbook*.

Stratix IV GX Altera PHYs: 10GBase-R **XAUI** Transceiver Reconfiguration IP Cores Reconfig to Analog Controller Embedded Avalon-MM Controller PHY reconfig_togxb[3:0] Dynamic Mgmt Offset econfig fromaxb[16:0] Reconfiguration Cancel-**Device Independent Interfaces Device Dependent Interface**

Figure 9–1. Transceiver Reconfiguration Controller for Use in a System that Implements Dynamic Reconfiguration

You can access the dynamic reconfiguration functionality using an embedded processor to drive the Avalon-MM PHY management interface of the Transceiver Toolkit, the XAUI PHY IP core or the 10GBASE-R PHY IP core as appropriate. The Analog Control and Offset Cancellation modules translate device independent commands received on their Avalon-MM slave interface to the Reconfiguration Controller module which converts them into device dependent commands on the dynamic reconfiguration interface.

You can change the following analog PMA settings:

- Pre-emphasis
- DC gain
- Differential output voltage (V_{OD})

During power-up, the Stratix IV GX devices perform offset cancellation for the RX channels to correct for process variations. You cannot reconfigure the PMA analog settings before this process completes.

Refer to Figure 1–4 on page 1–7 which illustrates the critical signals for the reset of a duplex channel.

Register Descriptions

Table 9–1 describes the analog Transceiver Reconfiguration control and status registers.

Table 9-1. Dynamic Reconfiguration Control and Status Registers (Part 1 of 2)

Offset	Bits	R/W	Register Name	Description	
	[31:10] —		Reserved	_	
0x108	[9:0]	RW	logical_channel_address	The logical channel address. Must be specified when performing dynamic updates.	
0x109	[31:10]		Reserved	_	
0.103	[9:0]	R	physical_channel_address	The physical channel address.	
	[31:10]	_	Reserved	_	
	[9]	RW		Error. When asserted, indicates an error. This bit is asserted if any of the following conditions occur: The channel address is invalid.	
0x10A				■ The pre-emphasis value is invalid.	
	[8]	RW	status	Busy. When asserted, indicates that the a reconfiguration operation is in progress.	
	[7:2]	_		Reserved.	
	[1]	RW		${\tt Read.}$ Writing a 1 to this bit specifies a read operation.	
	[0]	RW		Write. Writing a 1 to this bit specifies a write operation.	
	[31:5]	_	Reserved	_	
				Specifies the offset of the PMA analog setting to be reconfigured. The following analog settings are available:	
				■ 0-V _{0D}	
				■ 1-Pre-emphasis pre-tap	
0x10B		RW		2–Pre-emphasis first post-tap	
	[4:0]		tx_rx_word_offset	3-Pre-emphasis second post-tap	
				■ 4-15—reserved	
				■ 16-RX equalization DC gain	
				■ 17-RX equalization control	
				■ 13-18—reserved	

Table 9-1.	Dynamic	Reconfiguratio	n Control a	nd Status Regist	ers (Part 2 of 2))

Offset	Bits	R/W	Register Name	Description
0x10C	[15:0]	RW	reconfig_data	Reconfiguration data.
0.00	[31:16]	— Reserved —		_
0x110			eye_monitor	For complete information about the EyeQ interface and registers refer to, "EyeQ Interface Register Mapping" in the <i>Stratix IV Dynamic Reconfiguration</i> chapter in volume 2 of the <i>Stratix IV Device Handbook</i> .

Steps to Achieve PMA Controls Reconfiguration

You can use the Avalon-MM interface to change settings for the TX and RX channels. Complete the following steps to reconfigure a setting:

- 1. Write the channel to be configured to the logical_channel_address.
- 2. Set the tx_rx_word_offset, indicating which PMA analog control is to be changed.
- 3. Write the reconfiguration data to the reconfig_data register.
- 4. Set the read or write bit to 1.
- 5. Read the busy bit until it is deasserted, indicating that the operation has completed.

10. Migrating from Stratix IV to Stratix V

Previously, Altera provided the ALTGX megafunction as a general purpose transceiver PHY solution. The current release of the Quartus II software includes protocol-specific PHY IP cores that simplify the parameterization process.

The design of these protocol-specific transceiver PHYs is modular and uses standard interfaces. An Avalon-MM interface provides access to control and status registers that record the status of the PCS and PMA modules. Consequently, you no longer must include signals in the top level of your transceiver PHY to determine the status of the serial Rx and Tx interfaces. Using standard interfaces to access this device-dependent information should ease future migrations to other device families and reduce the overall design complexity. However, to facilitate debugging, you may still choose to include some device-dependent signals in the top level of your design during the initial simulations or even permanently. All protocol-specific PHY IP in Stratix V devices also include embedded controls for post-reset initialization, and reconfiguration, which are available through the Avalon-MM interface.

This chapter enumerates the differences between the ALTGX megafunction for use with Stratix IV GX devices and the protocol-specific transceiver PHYs for use with Stratix V GX devices in the current release. The following devices are included:

- XAUI PHY
- PCI Express PHY (PIPE)
- Custom PHY

XAUI PHY

This section lists the differences between the parameters and signals for the XAUI PHY IP core and the ALTGX megafunction when configured in the XAUI functional mode.

Parameter Differences

Table 10–1 lists the XAUI PHY parameters and the corresponding ALTGX megafunction parameters.

Table 10–1. Comparison ALTGX Megafunction and XAUI PHY Parameters (Part 1 of 2)

ALTGX Parameter Name (Default Value)	XAUI PHY Parameter Name	Comments	
Number of channels	Number of XAUI interfaces	In Stratix V devices, this parameter is locked to 1 (for 4 channels). You cannot change it in the current release.	
Train receiver clock and data recover (CDR) from pll_inclk (On)	Not available as parameters in the MegaWizard interface	Use assignment editor to make these assignment	
Tx PLL bandwidth mode (Auto)			
Rx CDR bandwidth mode (Auto)			

Table 10–1. Comparison ALTGX Megafunction and XAUI PHY Parameters (Part 2 of 2)

ALTGX Parameter Name (Default Value)	XAUI PHY Parameter Name	Comments	
Acceptable PPM threshold between receiver CDR VCO and receiver input reference clock (± 1000)			
Analog power (Auto)			
Loopback option (No loopback)			
Enable static equalizer control (Off)			
DC gain (0)			
Receiver common mode voltage (0.82v)			
Use external receiver termination (Off)			
Receiver termination resistance (100 ohms)	Not available as parameters in	Use assignment editor to make these assignments	
Transmitter buffer power (1.5v)	the MegaWizard interface		
Transmitter common mode voltage (0.65v)			
Use external transmitter termination (Off)			
Transmitter termination resistance (100 ohms)			
VOD setting (4)			
Preemphasis 1st post-tap (0)			
Preemphasis pre-tap setting (0)			
Preemphasis second post-tap setting (0)			
Analog controls (Off)			
Enable ADCE (Off)	—Not available as parameters in	Not available in 10.0	
Enable channel and transmitter PLL reconfig (Off)	the MegaWizard interface	NOT AVAIIADIE III 10.0	
Starting channel number (0)	No longer required	Automatically set to 0. The Quartus II software handles lane assignments	
Enable run length violation checking with run length of (40)	Not available as parameters in	Use assignment editor	
Enable transmitter bit reversal (Off)	the MegaWizard interface		
Word alignment pattern length (10)			

Port Differences

Table 10–4 lists the differences between the top-level signals in Stratix IV GX and Stratix V GX/GS devices.

Table 10-2. Correspondences between XAUI PHY Stratix IV GX and Stratix V Device Signals (Part 1 of 3) (Note 1)

Stratix IV GX De	vices	Stratix V Devices					
Signal Name	Width	Signal Name	Width				
Reference Clocks and Resets							
pll_inclk	1	refclk	1				
rx_cruclk	[< <i>n</i> > -1:0]	Not available	_				
cal_blk_clk	1	Not available	_				
reconfig_clk	1	Not available	_				

Table 10-2. Correspondences between XAUI PHY Stratix IV GX and Stratix V Device Signals (Part 2 of 3) (Note 1)

Stratix IV GX Devices		Stratix V Devices		
Signal Name	Width	Signal Name	Width	
coreclkout	1	xgmii_rx_clk	1	
rx_coreclk	[< <i>n</i> > – 1:0]	Not available	_	
tx_coreclk	[< <i>n</i> > - 1:0]	xgmii_tx_clk	1	
Not available	_	rx_pma_ready	1	
Not available	_	tx_pma_ready	1	
	Da	ta Ports		
rx_datain	[< <i>n</i> >-1:0]	xaui_rx_serial	[3:0]	
tx_datain	[16< <i>n</i> > -1:0]	xgmii_tx_dc	[63:0]	
rx_dataout	[16< <i>n</i> > - 1:0]	xgmii_rx_dc	[63:0]	
tx_dataout	[< <i>n</i> > -1:0]	xaui_tx_serial	[3:0]	
	Optional Tx a	and Rx Status Ports		
gxb_powerdown	[< <i>n</i> >/4 – 1:0]	Not available, however you can access	_	
pll_powerdown	[< <i>n</i> >/4 – 1:0]	them through the Avalon-MM PHY	_	
rx_analogreset	[< <i>n</i> >/4 – 1:0]	management interface.	_	
rx_digitalreset	[< <i>n</i> >/4 – 1:0]	[< <i>n</i> >/4 - 1:0] rx_digitalreset		
tx_digitalreset	[< <i>n</i> >/4 – 1:0]	tx_digitalreset	1	
pll_locked	[< <i>n</i> >-1:0]	Not available	_	
rx_locktorefclk	[< <i>n</i> > -1:0]	Not available	_	
rx_locktodata	[< <i>n</i> > -1:0]	Not available	_	
rx_pll_locked	[< <i>n</i> >/4 – 1:0]	Not available	_	
rx_freqlocked	[< <i>n</i> >/4 – 1:0]	Not available	_	
rx_phase_comp_fifo_error	[< <i>n</i> >/4 – 1:0]	Not available	_	
tx_phase_comp_fifo_error	[< <i>n</i> >/4 – 1:0]	Not available	_	
cal_blk_powerdown	_	Not available	_	
rx_syncstatus	[2< <i>n</i> > - 1:0]	rx_syncstatus	[< <i>n</i> >*2 – 1:0]	
rx_patterndetect	[2< <i>n</i> > - 1:0]	Not available	_	
rx_invpolarity	[< <i>n</i> > – 1:0]	Not available	_	
rx_ctrldetect	[2< <i>n</i> > - 1:0]	Not available	_	
rx_errdetect	[2< <i>n</i> > - 1:0]	rx_errdetect	[< <i>n</i> >*2 – 1:0]	
rx_disperr	[2< <i>n</i> > - 1:0]	rx_disperr	[< <i>n</i> >*2 – 1:0]	
tx_invpolarity	[< <i>n</i> > – 1:0]	Not available	_	
rx_runningdisp	[2< <i>n</i> > - 1:0]	Not available	_	
rx_rmfifofull	[2< <i>n</i> > - 1:0]	Not available	_	
rx_rmfifoempty	[2< <i>n</i> > - 1:0]	Not available	_	
rx_rmfifodatainserted	[2< <i>n</i> > - 1:0]	Not available	_	
rx_rmfifodatadeleted	[2< <i>n</i> > - 1:0]	Not available	_	

[31:0]

Stratix IV GX Devices		Stratix V Devices	
Signal Name	Width	Signal Name	Width
	Transceive	er Reconfiguration	
reconfig_clk	1	Not available	_
reconfig_togxb	[3:0]	Not available	_
reconfig_fromgxb	[16:0]	Not available	_
	Avalon MM M	lanagement Interface	·
		phy_mgmt_clk_rst	1
		phy_mgmt_clk	1
		phy_mgmt_address	[8:0]
Not available		phy_mgmt_read	1
		phy_mgmt_readdata	[31:0]
		phy_mgmt_write	1

Table 10–2. Correspondences between XAUI PHY Stratix IV GX and Stratix V Device Signals (Part 3 of 3) *(Note 1)*

Note to Table 10-2:

PCI Express PHY (PIPE)

This section lists the differences between the parameters and signals for the PCI Express PHY (PIPE) IP core and the ALTGX megafunction when configured in the PCI Express (PIPE) functional mode.

phy_mgmt_writedata

Parameter Differences

Table 10–3 lists the PCI Express PHY (PIPE) parameters and the corresponding ALTGX megafunction parameters.

Table 10-3. Comparison of ALTGX Megafunction and PCI Express PHY (PIPE) Parameters (Part 1 of 2)

ALTGX Parameter Name (Default Value)	PCI Express PHY (PIPE) Parameter Name	Comments
Number of channels	Number of Lanes	
Channel width	Deserialization factor	
Subprotocol	Protocol Version	
input clock frequency	PLL reference clock frequency	
Starting Channel Number	_	Automatically set to 0. Quartus II software handles lane assignments.
Enable low latency sync	pipe_low_latency_syncronous_mode	
Enable RLV with run length of	pipe_run_length_violation_checking	Always on
Enable electrical idle inference functionality	Enable electrical idle inferencing	
_	phy_mgmt_clk_in_mhz	For embedded reset controller to calculate delays

⁽¹⁾ $\langle n \rangle$ = the number of lanes. $\langle d \rangle$ = the total deserialization factor from the pin to the FPGA fabric.

Table 10-3. Comparison of ALTGX Megafunction and PCI Express PHY (PIPE) Parameters (Part 2 of 2)

ALTGX Parameter Name (Default Value)	PCI Express PHY (PIPE) Parameter Name	Comments
Train receiver CDR from pll_inclk (false)		
Tx PLL bandwidth mode (Auto)		
Rx CDR bandwidth mode (Auto)		
Acceptable PPM threshold (±300)		
Analog Power(VCCA_L/R) (Auto)		
Reverse loopback option (No loopback)		
Enable static equalizer control (false)		
DC gain (1)		
Rx Vcm (0.82)		
Force signal detection (Off)		
Signal Detect threshold (4)		Hee engine ment editor to
Use external receiver termination (Off)	Not available in MegaWizard Interface	Use assignment editor to make these assignments
Rx term (100)		
Transmitter buffer power(VCCH) (1.5)		
Tx Vcm (0.65)		
Use external transmitter termination (Off)		
Tx Rterm (100)		
VCO control setting (5)		
Pre-emphasis 1st post tap (18)		
Pre-tap (0)		
2nd post tap (0)		
DPRIO - Vod, Pre-em, Eq and EyeQ (Off)		
DPRIO - Channel and Tx PLL Reconfig (Off)		

Port Differences

Table 10–4 lists the differences between the top-level signals in Stratix IV GX and Stratix V GX/GS devices. PIPE standard ports remain, but are now prefixed with pipe_. Clocking options are simplified to match the PIPE 2.0 specification.

Table 10-4. PCIe PHY (PIPE) Correspondence between Stratix IV GX Device and Stratix V Device Signals (Part 1 of 3) (Note 1)

Stratix IV GX Device Signal Name	Stratix V Device Signal Name	Width
	Reference Clocks and Resets	·
pll_inclk	pll_ref_clk	1
rx_cruclk	Not available	[<n>-1:0]</n>
tx_coreclk	Not available	[<n>-1:0]</n>
rx_coreclk	Not available	[<n>-1:0]</n>
tx_clkout/coreclkout	pipe_pclk	1

Table 10-4. PCIe PHY (PIPE) Correspondence between Stratix IV GX Device and Stratix V Device Signals (Part 2 of 3) (Note 1)

Stratix IV GX Device Signal Name	Stratix V Device Signal Name	Width	
pll_powerdown		1	
rx_analogreset		1	
rx_digitalreset	Refer to the "Avalon-MM PHY Management	1	
tx_digitalreset	Interface" on page 6–6 and "PCI Express PHY (PIPE) IP Core Registers" on page 6–6	1	
gxb_powerdown		1	
cal_blk_powerdown		1	
Not available	tx_ready (reset control status)	1	
Not available	rx_ready (reset curl status)	1	
	PIPE interface Ports	•	
tx_datain	pipe_txdata	[<n><d>-1:0]</d></n>	
tx_ctrlenable	pipe_txdatak	[(<d>/8)*<n>-1:0]</n></d>	
tx_detectrxloop	pipe_txdetectrx_loopback	[<n>-1:0]</n>	
tx_forcedispcompliance	pipe_txcompliance	[<n>-1:0]</n>	
tx_forceelecidle	pipe_txelecidle	[<n>-1:0]</n>	
txswing	pipe_txswing	[<n>-1:0]</n>	
tx_pipedeemph[0]	pipe_txdeemph	[<n>-1:0]</n>	
tx_pipemargin[2:0]	pipe_txmargin	[3 <n>-1:0]</n>	
rateswitch[0]	pipe_rate[1:0]	[<n>-1:0]</n>	
powerdn	pipe_powerdown	[2 <n>-1:0]</n>	
rx_elecidleinfersel	pipe_eidleinfersel	[3 <n>-1:0]</n>	
rx_dataout	pipe_rxdata	[<n>-*<d>-1:0]</d></n>	
rx_ctrldetect	pipe_rxdatak	[(<d>/8)*<n>-1:0]</n></d>	
pipedatavalid	pipe_rxvalid	[<n>-1:0]</n>	
pipe8b10binvpolarity	pipe_rxpolarity	[<n>-1:0]</n>	
pipeelecidle	pipe_rxelecidle	[<n>-1:0]</n>	
pipephydonestatus	pipe_phystatus	[<n>-1:0]</n>	
pipestatus	pipe_rxstatus	[3 <n>-1:0]</n>	
	Non-PIPE ports	•	
rx_pll_locked	rx_is_lockedtoref	[<n>1:0]</n>	
rx_freqlocked	rx_is_lockedtodata	[<n>1:0]</n>	
pll_locked	pll_locked	1	
rx_syncstatus	rx_syncstatus (also management interface)	[(<d>/8)*<n>-1:0]</n></d>	
	•		

Table 10–4. PCIe PHY (PIPE) Correspondence between Stratix IV GX Device and Stratix V Device Signals (Part 3 of 3) (Note 1)

Stratix IV GX Device Signal Name	Stratix V Device Signal Name	Width	
rx_locktodata		[<n>-1:0]</n>	
rx_locktorefclk		[<n>-1:0]</n>	
tx_invpolarity		[<n>-1:0]</n>	
rx_errdetect		[(<d>/8)*<n>-1:0]</n></d>	
rx_disperr	Refer to the "Avalon-MM PHY Management	[(<d>/8)*<n>-1:0]</n></d>	
rx_patterndetect	Interface" on page 6–6	[(<d>/8)*<n>-1:0]</n></d>	
tx_phase_comp_fifo_error		[<n>-1:0]</n>	
rx_phase_comp_fifo_error		[<n>-1:0]</n>	
rx_signaldetect		[<n>-1:0]</n>	
rx_rlv		[<n>-1:0]</n>	
rx_datain	rx_serial_data	[<n>-1:0]</n>	
tx_dataout	tx_serial_data	[< <i>n</i> >-1:0]	
cal_blk_clk	cal_blk_clk	1	
fixedclk	fixedclk	1	
	Reconfiguration		
reconfig_clk		1	
reconfig_togxb	Refer to the "Avalon-MM PHY Management Interface" on page 6–6	[3:0]	
reconfig_fromgxb	interface on page o o	[16:0]	
Av	alon MM Management Interface		
	phy_mgmt_clk_reset	1	
	phy_mgmt_clk	1	
	phy_mgmt_address	[8:0]	
Not available	phy_mgmt_read	1	
	phy_mgmt_readdata	[31:0]	
	phy_mgmt_write	1	
	phy_mgmt_writedata	[31:0]	

Note to Table 10-4:

(1) $\langle n \rangle$ = the number of lanes. $\langle d \rangle$ = the total describination factor from the pin to the FPGA fabric.

Custom PHY

This section lists the differences between the parameters and signals for the Custom PHY IP core nd the ALTGX megafunction when configured in the Basic functional mode.

Parameter Differences

Table 10–5 lists the Custom PHY parameters and the corresponding ALTGX megafunction parameters.

Table 10-5. Comparison of ALTGX Megafunction and Custom PHY Parameters

ALTGX Parameter Name (Default Value)	Custom PHY Parameter Name	
General		
What is the number of channel?	Number of lanes	
Which subprotocol will you be using? (×4, ×8)	Bonded group size in lanes (1-5)	
What is the channel width?	Serialization factor	
What is the effective data rate?	Data rate	
What is the input clock frequency?	Input clock frequency	
tx/rx_8b_10b_mode	Enable 8B/10B encoder/decoder	
What is the deserializer block width?	Deserializer block width: (1)	
Single Double	Auto Single Double	
Protocol Settings–Word Aligner	Word Aligner	
Use manual word alignment mode Use manual bitslipping mode Use the built-in 'synchronization state machine'	Word alignment mode	
Enable run length violation checking with a run length of	Run length	
What is the word alignment pattern	Word alignment pattern	
What is the word alignment pattern length	Word aligner pattern length	
Protocol Settings—Rate match/Byte order	Rate Match	
What is the 20-bit rate match pattern1 (usually used for +ve disparity pattern)	Rate match insertion/deletion +ve disparity pattern	
What is the 20-bit rate match pattern1 (usually used for -ve disparity pattern)	Rate match insertion/deletion -ve disparity pattern	
Protocol Settings—Rate match/Byte order	Byte Order	
What is the byte ordering pattern	Byte ordering pattern	

Note to Table 10-5:

(1) This parameter is on the $\boldsymbol{Datapath}$ tab.

Port Differences

Table 10–4 lists the differences between the top-level signals in Stratix IV GX and Stratix V GX/GS devices.

Table 10-6. Custom PHY Correspondences between Stratix IV GX Device and Stratix V Device Signals

ALTGX	Custom PHY	Width		
Avalon MM Management Interface				
	phy_mgmt_clk_reset	1		
	phy_mgmt_clk	1		
	phy_mgmt_address	8		
Not available	phy_mgmt_read	1		
	phy_mgmt_readdata	32		
	phy_mgmt_write	1		
	phy_mgmt_writedata	32		
	Clocks	·		
pll_inclk	pll_ref_clk	[-1:0]		
	Avalon-ST Tx Interface	9		
tx_datain	tx_parallel_data	[<d><n>-1:0]</n></d>		
tx_ctrlenable	tx_datak	[<d><n>-1:0]</n></d>		
rx_ctrldetect	rx_datak	[<d><n>-1:0]</n></d>		
	Avalon-ST Rx Interface	e		
rx_dataout	rx_parallel_data	[<d><n>-1:0]</n></d>		
rx_runningdisp	rx_runningdisp	[<d 8=""><n>-1:0]</n></d>		
rx_enabyteord	rx_enabyteord	[<n>-1:0]</n>		
	High Speed Serial I/O			
rx_datain	rx_serial_data	[<n>-1:0]</n>		
tx_dataout	tx_serial_data	[<n>-1:0]</n>		
rx_freqlocked	rx_is_lockedtodata	[<n>-1:0]</n>		

Note to Table 10-6:

(1) $\langle n \rangle$ = the number of lanes. $\langle d \rangle$ = the total deserialization factor from the pin to the FPGA fabric.

This chapter provides additional information about the document and Altera.

Revision History

The table below displays the revision history for the chapters in this user guide.

Date	Version	Changes Made
December		 Corrected frequency range for the phy_mgmt_clk for the Custom PHY IP core in Table 7–11 on page 7–11.
	1.11	■ Added optional reconfig_fromgxb[67:0] to Figure 4–3 on page 4–5. Provided more detail on size of reconfig_fromgxb in Table 4–11 on page 4–12
2010	1.11	■ Removed table providing ordering codes for the Interlaken PHY IP core. Ordering codes are not required for Stratix V devices using the hard implementation of the Interlaken PHY.
		Added note to 10GBASE-R release information table stating that "No ordering codes or license files are required for Stratix V devices."
	-	Introduction
		Revised reset diagram.
December 2010	1.1	Added block diagram for reset
2010		Removed support for SOPC Builder
		Getting Started
December 2010	1.1	Removed description of SOPC Builder design flow. SOPC Builder is not supported in this release.
		10GBASE-R PHY Transceiver
		Added Stratix V support
		■ Changed phy_mgmt_address from 16 to 9 bits.
		■ Renamed management interface, adding phy_ prefix
December	1.1	■ Renamed block_lock and hi_ber signals rx_block_lock and rx_hi_ber, respectively.
2010		Added top-level signals for external PMA and reconfiguration controller in Stratix IV devices. Refer to Table 3–14 on page 3–13.
		■ Removed the mgmt_burstcount signal.
		Changed register map to show word addresses instead of a byte offset from a base address.
		XAUI PHY Transceiver
		Added support for Arria II GX and Cyclone IV GX with hard PCS
		■ Renamed management interface, adding phy_ prefix
Dacambar		Changed phy_mgmt_address from 16 to 9 bits.
December 2010	1.1	■ Renamed many signals. Refer to "XAUI Top-Level Signals—Soft PCS and Hard PMA" on page 4–5 and "XAUI Top-Level Signals—Hard IP PCS and PMA" on page 4–6 as appropriate.
		Changed register map to show word addresses instead of a byte offset from a base address.
		■ Removed the rx_ctrldetect and rx_freqlocked signals.

Date	Version	Changes Made
		Interlaken PHY Transceiver
		Added simulation support in ModelSim SE, Synopsys VCS MX, Cadence NCSim
		■ Changed number of lanes supported from 4–24 to 1–24.
		■ Changed reference clock to be 1/20th rather than 1/10th the lane rate.
December 2010	1.1	■ Renamed management interface, adding phy_ prefix
		■ Changed phy_mgmt_address from 16 to 9 bits.
		■ Changed many signal names, refer to Figure 5–2 on page 5–4. Changed register map to show word addresses instead of a byte offset from a base address.
	1	PCI Express PHY (PIPE)
		Added simulation support in ModelSim SE
		Added PIPE low latency configuration option
December		■ Changed phy_mgmt_address from 16 to 9 bits.
2010	1.1	Changed register map to show word addresses instead of a byte offset from a base address
		Added tx_ready, rx_ready, pipe_txswing, and pipe_rxeleciidle signals
		Added rx_errdetect, rx_disperr, and rx_a1a2sizeout register fields
	•	Custom PHY Transceiver
		Added support for 8B/10B encoding and decoding in Stratix V devices
		Added support for rate matching in Stratix V devices.
		Added support for Arria II GX, Arria II GZ, HardCopy IV GX, and Stratix IV GX devices
December	1.1	■ Renamed management interface, adding phy_ prefix
2010	1.1	■ Changed phy_mgmt_address from 8 to 9 bits.
		 Added many optional status ports and renamed some signals. Refer to Figure 7–4 on page 7–8 and subsequent signal descriptions.
		Changed register map to show word addresses instead of a byte offset from a base address
	- 1	Low Latency PHY IP Core
		■ Renamed management interface, adding phy_ prefix
		■ Changed phy_mgmt_address from 16 to 9 bits.
December	1.1	Changed register map to show word addresses instead of a byte offset from a base address
2010	1.1	Removed rx_offset_cancellation_done signal. Internal reset logic determines when offset cancellation has completed.
		Removed support for Stratix IV GX devices.
	1	Transceiver Reconfiguration Controller
December	4.4	Reconfiguration is now integrated into the XAUI PHY IP core and 10GBASE-R PHY IP core.
2010	1.1	Revised register map to show word addresses instead of a byte offset from a base address.
	l	Migrating from Stratix IV to Stratix V
December 2010	1.1	■ Changed phy_mgmt_address from 16 to 9 bits.

Date	Version	Changes Made
		■ Corrected address offsets in Table 9–1 on page 9–2. These are byte offsets and should be: 0x00, 0x04, 0x08, 0x0C, 0x10, not 0x00, 0x01, 0x02, 0x03, 0x04.
November 2010	1.1	 Corrected base address for transceiver reconfiguration control and status registers in Table 9–1 on page 9–2. It should be 0x420, not 0x400.
		■ Corrected byte offsets in Table 7–12 on page 7–11 and Table 6–7 on page 6–6. The base address is 0x200. The offsets are 0x000–0x018.
July 2010	1.0	■ Initial release.

How to Contact Altera

To locate the most up-to-date information about Altera products, refer to the following table.

Contact (1)	Contact Method	Address
Technical support	Website	www.altera.com/support
Technical training	Website	www.altera.com/training
	Email	custrain@altera.com
Product literature	Website	www.altera.com/literature
Non-technical support (General)	Email	nacomp@altera.com
(Software Licensing)	Email	authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.

Typographic Conventions

The following table shows the typographic conventions this document uses.

Visual Cue	Meaning
Bold Type with Initial Capital Letters	Indicate command names, dialog box titles, dialog box options, and other GUI labels. For example, Save As dialog box. For GUI elements, capitalization matches the GUI.
bold type	Indicates directory names, project names, disk drive names, file names, file name extensions, software utility names, and GUI labels. For example, \text{qdesigns} \text{directory, d: drive, and chiptrip.gdf} \text{ file.}
Italic Type with Initial Capital Letters	Indicate document titles. For example, AN 519: Stratix IV Design Guidelines.
italic type	Indicates variables. For example, $n + 1$.
	Variable names are enclosed in angle brackets (< >). For example, <file name=""> and <project name="">.pof file.</project></file>
Initial Capital Letters	Indicate keyboard keys and menu names. For example, the Delete key and the Options menu.
"Subheading Title"	Quotation marks indicate references to sections within a document and titles of Quartus II Help topics. For example, "Typographic Conventions."

Visual Cue	Meaning
	Indicates signal, port, register, bit, block, and primitive names. For example, data1, tdi, and input. The suffix n denotes an active-low signal. For example, resetn.
Courier type	Indicates command line commands and anything that must be typed exactly as it appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.
	Also indicates sections of an actual file, such as a Report File, references to parts of files (for example, the AHDL keyword SUBDESIGN), and logic function names (for example, TRI).
4	An angled arrow instructs you to press the Enter key.
1., 2., 3., and a., b., c., and so on	Numbered steps indicate a list of items when the sequence of the items is important, such as the steps listed in a procedure.
	Bullets indicate a list of items when the sequence of the items is not important.
	The hand points to information that requires special attention.
?	A question mark directs you to a software help system with related information.
•••	The feet direct you to another document or website with related information.
CAUTION	A caution calls attention to a condition or possible situation that can damage or destroy the product or your work.
WARNING	A warning calls attention to a condition or possible situation that can cause you injury.
23	The envelope links to the Email Subscription Management Center page on the Altera website, where you can sign up to receive update notifications for Altera documents.