Градиент и дифференциальные операторы

Верещагин Антон Сергеевич канд. физ.-мат. наук, доцент

Кафедра аэрогидродинамики ФЛА НГТУ

QR-код презентации

16 апреля 2020 г.

Аннотация

Градиент и его свойства. Потенциальный вектор и его свойства. Градиент вектора по вектору. Субстанциональная производная.

Рассмотрим скалярное поле функции $\varphi(\vec{r}) = \varphi(x,y,z)$.

Рассмотрим скалярное поле функции $\varphi(\vec{r})=\varphi(x,y,z).$ Проведём некоторую кривую L, параметризованную с помощью параметра s – расстояния до некоторой точки M:

$$x = x(s)$$
, $y = y(s)$, $z = z(s)$.

Рассмотрим скалярное поле функции $\varphi(\vec{r}) = \varphi(x,y,z)$. Проведём некоторую кривую L, параметризованную с помощью параметра s – расстояния до некоторой точки M:

$$x = x(s)$$
, $y = y(s)$, $z = z(s)$.

Тогда производная вдоль кривой имеет вид:

$$\frac{d}{ds}\varphi(x(s),y(s),z(s)) = \frac{\partial \varphi}{\partial x}\frac{dx}{ds} + \frac{\partial \varphi}{\partial y}\frac{dy}{ds} + \frac{\partial \varphi}{\partial z}\frac{dz}{ds}.$$

Рассмотрим скалярное поле функции $\varphi(\vec{r})=\varphi(x,y,z)$. Проведём некоторую кривую L, параметризованную с помощью параметра s – расстояния до некоторой точки M:

$$x = x(s)$$
, $y = y(s)$, $z = z(s)$.

Тогда производная вдоль кривой имеет вид:

$$\frac{d}{ds}\varphi(x(s),y(s),z(s)) = \frac{\partial \varphi}{\partial x}\frac{dx}{ds} + \frac{\partial \varphi}{\partial y}\frac{dy}{ds} + \frac{\partial \varphi}{\partial z}\frac{dz}{ds}.$$

Обыкновенные производные в равенстве – направляющие косинусы (\vec{s} – единичный вектор касательных)

$$\frac{dx}{ds} = \cos(\vec{s}, x), \quad \frac{dy}{ds} = \cos(\vec{s}, y), \quad \frac{dz}{ds} = \cos(\vec{s}, z),$$

Рассмотрим скалярное поле функции $\varphi(\vec{r}) = \varphi(x,y,z)$. Проведём некоторую кривую L, параметризованную с помощью параметра s – расстояния до некоторой точки M:

$$x = x(s)$$
, $y = y(s)$, $z = z(s)$.

Тогда производная вдоль кривой имеет вид:

$$\frac{d}{ds}\varphi(x(s),y(s),z(s)) = \frac{\partial\varphi}{\partial x}\frac{dx}{ds} + \frac{\partial\varphi}{\partial y}\frac{dy}{ds} + \frac{\partial\varphi}{\partial z}\frac{dz}{ds}.$$

Обыкновенные производные в равенстве – направляющие косинусы (\vec{s} – единичный вектор касательных)

$$\frac{dx}{ds} = \cos(\vec{s}, x), \quad \frac{dy}{ds} = \cos(\vec{s}, y), \quad \frac{dz}{ds} = \cos(\vec{s}, z),$$

то

$$\frac{d\varphi}{ds} = \frac{\partial \varphi}{\partial x}\cos(\vec{s}, x) + \frac{\partial \varphi}{\partial y}\cos(\vec{s}, y) + \frac{\partial \varphi}{\partial z}\cos(\vec{s}, z).$$

Рассмотрим скалярное поле функции $\varphi(\vec{r})=\varphi(x,y,z)$. Проведём некоторую кривую L, параметризованную с помощью параметра s – расстояния до некоторой точки M:

$$x = x(s)$$
, $y = y(s)$, $z = z(s)$.

Тогда производная вдоль кривой имеет вид:

$$\frac{d}{ds}\varphi(x(s),y(s),z(s)) = \frac{\partial\varphi}{\partial x}\frac{dx}{ds} + \frac{\partial\varphi}{\partial y}\frac{dy}{ds} + \frac{\partial\varphi}{\partial z}\frac{dz}{ds}.$$

Обыкновенные производные в равенстве – направляющие косинусы (\vec{s} – единичный вектор касательных)

$$\frac{dx}{ds} = \cos(\vec{s}, x), \quad \frac{dy}{ds} = \cos(\vec{s}, y), \quad \frac{dz}{ds} = \cos(\vec{s}, z),$$

TO

$$\frac{d\varphi}{ds} = \frac{\partial \varphi}{\partial x} \cos(\vec{s}, x) + \frac{\partial \varphi}{\partial y} \cos(\vec{s}, y) + \frac{\partial \varphi}{\partial z} \cos(\vec{s}, z).$$

Таким образом, $\frac{d\varphi}{ds}$ — проекция вектора $(\frac{\partial\varphi}{\partial x},\frac{\partial\varphi}{\partial y},\frac{\partial\varphi}{\partial z})$ на вектор \vec{s} .

Определение градиента

Определение

Вектор с компонентами $(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z})$ называется градиентом функции φ в точке M и обозначается $\operatorname{grad} \varphi$.

Определение градиента

Определение

Вектор с компонентами $(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z})$ называется градиентом функции φ в точке M и обозначается $\operatorname{grad} \varphi$.

Отсюда

$$\operatorname{grad} \varphi = \vec{\mathbf{i}} \frac{\partial \varphi}{\partial x} + \vec{\mathbf{j}} \frac{\partial \varphi}{\partial y} + \vec{\mathbf{k}} \frac{\partial \varphi}{\partial z}.$$

Определение градиента

Определение

Вектор с компонентами $(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z})$ называется градиентом функции φ в точке M и обозначается $\operatorname{grad} \varphi$.

Отсюда

$$\operatorname{grad}\varphi = \vec{\mathbf{i}}\frac{\partial\varphi}{\partial x} + \vec{\mathbf{j}}\frac{\partial\varphi}{\partial y} + \vec{\mathbf{k}}\frac{\partial\varphi}{\partial z}.$$

Длина вектора

$$|\operatorname{grad}\varphi| = \sqrt{\left(\frac{\partial\varphi}{\partial x}\right)^2 + \left(\frac{\partial\varphi}{\partial y}\right)^2 + \left(\frac{\partial\varphi}{\partial z}\right)^2}.$$

Еще одно выражение для производной вдоль направления \vec{s} :

$$\frac{d\varphi}{ds} =$$

Еще одно выражение для производной вдоль направления \vec{s} :

$$\frac{d\varphi}{ds} = \vec{s} \cdot \operatorname{grad} \varphi =$$

Еще одно выражение для производной вдоль направления \vec{s} :

$$\frac{d\varphi}{ds} = \vec{s} \cdot \operatorname{grad} \varphi = |\operatorname{grad} \varphi| \cos(\operatorname{grad} \varphi, \vec{s}),$$

из которого вытекает следующее определение:

Еще одно выражение для производной вдоль направления \vec{s} :

$$\frac{d\varphi}{ds} = \vec{s} \cdot \operatorname{grad} \varphi = |\operatorname{grad} \varphi| \cos(\operatorname{grad} \varphi, \vec{s}),$$

из которого вытекает следующее определение:

Определение

Градиентом функции φ называется вектор, имеющий направление быстрейшего роста функции φ и по величине равный производной в этом направлении.

Оператор набла или оператор Гамильтона

Определение

Дифференциальный оператор

$$\nabla = \vec{\mathbf{i}} \frac{\partial}{\partial x} + \vec{\mathbf{j}} \frac{\partial}{\partial y} + \vec{\mathbf{k}} \frac{\partial}{\partial z}$$

называется наблой или оператором Гамильтона.

Оператор набла или оператор Гамильтона

Определение

Дифференциальный оператор

$$\nabla = \vec{\mathbf{i}} \frac{\partial}{\partial x} + \vec{\mathbf{j}} \frac{\partial}{\partial y} + \vec{\mathbf{k}} \frac{\partial}{\partial z}$$

называется наблой или оператором Гамильтона.

В терминах оператора набла градиент функции можно записать в виде:

$$\nabla \varphi = \vec{\mathbf{i}} \frac{\partial \varphi}{\partial x} + \vec{\mathbf{j}} \frac{\partial \varphi}{\partial y} + \vec{\mathbf{k}} \frac{\partial \varphi}{\partial z}.$$

Через произвольную точку M проведем поверхность уровня

$$\varphi(x, y, z) = \text{const.}$$

$$\frac{d}{ds}\varphi(x(s),y(s),z(s)) =$$

Через произвольную точку M проведем поверхность уровня

$$\varphi(x, y, z) = \text{const.}$$

Т.к. производная вдоль любой кривой, лежащей на поверхности уровня, от $\varphi(x, y, z)$ равна

Через произвольную точку M проведем поверхность уровня

$$\varphi(x,y,z) = \text{const.}$$

Т.к. производная вдоль любой кривой, лежащей на поверхности уровня, от $\varphi(x,y,z)$ равна

$$\frac{d}{ds}\varphi(x(s),y(s),z(s)) = \lim_{\Delta s \to 0} \frac{\varphi(x(s+\Delta s),y(s+\Delta s),z(s+\Delta s)) - \varphi(x(s),y(s),z(s))}{\Delta s} =$$

Через произвольную точку M проведем поверхность уровня

$$\varphi(x,y,z) = \text{const.}$$

Т.к. производная вдоль любой кривой, лежащей на поверхности уровня, от $\varphi(x,y,z)$ равна

$$\frac{d}{ds}\varphi(x(s),y(s),z(s)) = \lim_{\Delta s \to 0} \frac{\varphi(x(s+\Delta s),y(s+\Delta s),z(s+\Delta s)) - \varphi(x(s),y(s),z(s))}{\Delta s} = \frac{1}{2} \frac{1}{2}$$

Через произвольную точку M проведем поверхность уровня

$$\varphi(x, y, z) = \text{const.}$$

Т.к. производная вдоль любой кривой, лежащей на поверхности уровня, от $\varphi(x,y,z)$ равна

$$\frac{d}{ds}\varphi(x(s),y(s),z(s)) = \lim_{\Delta s \to 0} \frac{\varphi(x(s+\Delta s),y(s+\Delta s),z(s+\Delta s)) - \varphi(x(s),y(s),z(s))}{\Delta s} = \frac{1}{2} \frac{1}{2}$$

Следовательно градиент ортогонален касательной плоскости в т. M,

Через произвольную точку M проведем поверхность уровня

$$\varphi(x, y, z) = \text{const.}$$

Т.к. производная вдоль любой кривой, лежащей на поверхности уровня, от $\varphi(x,y,z)$ равна

$$\frac{d}{ds}\varphi(x(s),y(s),z(s)) = \lim_{\Delta s \to 0} \frac{\varphi(x(s+\Delta s),y(s+\Delta s),z(s+\Delta s)) - \varphi(x(s),y(s),z(s))}{\Delta s} = \frac{1}{2} \exp(-\frac{1}{2} \frac{1}{2} \frac{1}{$$

Следовательно градиент ортогонален касательной плоскости в т. M, и

$$\operatorname{grad}\varphi = \frac{\partial \varphi}{\partial n}\vec{n},$$

где \vec{n} – вектор единичной нормали к поверхности уровня.

Определение

Поверхностью тока вектора \vec{v} называется поверхность, образованная линиями тока, проходящими через некоторую наперед заданную кривую.

Определение

Поверхностью тока вектора \vec{v} называется поверхность, образованная линиями тока, проходящими через некоторую наперед заданную кривую.

Определение

Определение

Поверхностью тока вектора \vec{v} называется поверхность, образованная линиями тока, проходящими через некоторую наперед заданную кривую.

Определение

Трубкой тока вектора \vec{v} называется часть пространства, заключенная внутри поверхности тока, образованной замкнутой кривой.

Пусть векторные линии для поля скоростей $\vec{v}(x,y,z)$ определяются соотношением

$$\Phi(x, y, z) = 0.$$

Определение

Поверхностью тока вектора \vec{v} называется поверхность, образованная линиями тока, проходящими через некоторую наперед заданную кривую.

Определение

Трубкой тока вектора \vec{v} называется часть пространства, заключенная внутри поверхности тока, образованной замкнутой кривой.

Пусть векторные линии для поля скоростей $\vec{v}(x,y,z)$ определяются соотношением

$$\Phi(x, y, z) = 0.$$

По определению поверхности тока \vec{v} является касательным в любой точке этой поверхности и следовательно

$$\vec{v} \cdot \operatorname{grad} \Phi = 0,$$

что является уравнением поверхности тока.

Пусть

$$d\vec{r} = \vec{\mathbf{i}}dx + \vec{\mathbf{j}}dy + \vec{\mathbf{k}}dz,$$

Пусть

$$d\vec{r} = \vec{\mathbf{i}}dx + \vec{\mathbf{j}}dy + \vec{\mathbf{k}}dz,$$

$$d\vec{r} \cdot \operatorname{grad} \varphi =$$

Пусть

$$d\vec{r} = \vec{\mathbf{i}}dx + \vec{\mathbf{j}}dy + \vec{\mathbf{k}}dz,$$

$$d\vec{r} \cdot \operatorname{grad} \varphi = \left(\vec{\mathbf{i}} dx + \vec{\mathbf{j}} dy + \vec{\mathbf{k}} dz\right) \cdot \left(\vec{\mathbf{i}} \frac{\partial \varphi}{\partial x} + \vec{\mathbf{j}} \frac{\partial \varphi}{\partial y} + \vec{\mathbf{k}} \frac{\partial \varphi}{\partial z}\right) =$$

Пусть

$$d\vec{r} = \vec{\mathbf{i}}dx + \vec{\mathbf{j}}dy + \vec{\mathbf{k}}dz,$$

$$d\vec{r} \cdot \operatorname{grad} \varphi = \left(\vec{\mathbf{i}} dx + \vec{\mathbf{j}} dy + \vec{\mathbf{k}} dz\right) \cdot \left(\vec{\mathbf{i}} \frac{\partial \varphi}{\partial x} + \vec{\mathbf{j}} \frac{\partial \varphi}{\partial y} + \vec{\mathbf{k}} \frac{\partial \varphi}{\partial z}\right) =$$

$$= \frac{\partial \varphi}{\partial x} dx + \frac{\partial \varphi}{\partial y} dy + \frac{\partial \varphi}{\partial z} dz =$$

Пусть

$$d\vec{r} = \vec{\mathbf{i}}dx + \vec{\mathbf{j}}dy + \vec{\mathbf{k}}dz,$$

$$d\vec{r} \cdot \operatorname{grad} \varphi = \left(\vec{\mathbf{i}} dx + \vec{\mathbf{j}} dy + \vec{\mathbf{k}} dz \right) \cdot \left(\vec{\mathbf{i}} \frac{\partial \varphi}{\partial x} + \vec{\mathbf{j}} \frac{\partial \varphi}{\partial y} + \vec{\mathbf{k}} \frac{\partial \varphi}{\partial z} \right) =$$

$$= \frac{\partial \varphi}{\partial x} dx + \frac{\partial \varphi}{\partial y} dy + \frac{\partial \varphi}{\partial z} dz = d\varphi$$

Пусть

$$d\vec{r} = \vec{\mathbf{i}}dx + \vec{\mathbf{j}}dy + \vec{\mathbf{k}}dz,$$

тогда

$$d\vec{r} \cdot \operatorname{grad} \varphi = \left(\vec{\mathbf{i}} dx + \vec{\mathbf{j}} dy + \vec{\mathbf{k}} dz \right) \cdot \left(\vec{\mathbf{i}} \frac{\partial \varphi}{\partial x} + \vec{\mathbf{j}} \frac{\partial \varphi}{\partial y} + \vec{\mathbf{k}} \frac{\partial \varphi}{\partial z} \right) =$$

$$= \frac{\partial \varphi}{\partial x} dx + \frac{\partial \varphi}{\partial y} dy + \frac{\partial \varphi}{\partial z} dz = d\varphi$$

Таким образом для произвольного вектора $d\vec{r}$

$$d\varphi = d\vec{r} \cdot \operatorname{grad} \varphi.$$

Теорема о градиенте

Теорема (о градиенте функции)

Если для некоторой скалярной функции $\varphi(\vec{r})$ найдется такой вектор \vec{a} ,

Теорема о градиенте

Теорема (о градиенте функции)

Если для некоторой скалярной функции $\varphi(\vec{r})$ найдется такой вектор \vec{a} , что для произвольных векторов $d\vec{r}$ справедливо равенство

$$d\varphi = d\vec{r} \cdot \vec{a},$$

Теорема о градиенте

Теорема (о градиенте функции)

Если для некоторой скалярной функции $\varphi(\vec{r})$ найдется такой вектор \vec{a} , что для произвольных векторов $d\vec{r}$ справедливо равенство

$$d\varphi = d\vec{r} \cdot \vec{a},$$

то вектор \vec{a} есть градиент функции $\varphi(\vec{r}): \vec{a} = \operatorname{grad} \varphi$.

Теорема о градиенте

Теорема (о градиенте функции)

Если для некоторой скалярной функции $\varphi(\vec{r})$ найдется такой вектор \vec{a} , что для произвольных векторов $d\vec{r}$ справедливо равенство

$$d\varphi = d\vec{r} \cdot \vec{a},$$

то вектор \vec{a} есть градиент функции $\varphi(\vec{r}): \vec{a} = \operatorname{grad} \varphi$.

Доказательство.

Из равенства для полного дифференциала $d\varphi$ вычтем равенство из условия теоремы, тогда

$$0 = d\vec{r} \cdot (\vec{a} - \operatorname{grad} \varphi).$$

Теорема о градиенте

Теорема (о градиенте функции)

Если для некоторой скалярной функции $\varphi(\vec{r})$ найдется такой вектор \vec{a} , что для произвольных векторов $d\vec{r}$ справедливо равенство

$$d\varphi = d\vec{r} \cdot \vec{a},$$

то вектор \vec{a} есть градиент функции $\varphi(\vec{r}): \vec{a} = \operatorname{grad} \varphi$.

Доказательство.

Из равенства для полного дифференциала $d\varphi$ вычтем равенство из условия теоремы, тогда

$$0 = d\vec{r} \cdot (\vec{a} - \operatorname{grad} \varphi).$$

В силу произвольности $d\vec{r}$ $\vec{a} = \operatorname{grad} \varphi$.

Градиент функции, зависящий только от расстояния до начала координат

Пусть
$$\varphi = \varphi(r)$$
, где $r = \sqrt{x^2 + y^2 + z^2}$.

Градиент функции, зависящий только от расстояния до начала координат

Пусть
$$\varphi = \varphi(r)$$
, где $r = \sqrt{x^2 + y^2 + z^2}$.

$$2\vec{r} \cdot d\vec{r} =$$

Градиент функции, зависящий только от расстояния до начала координат

Пусть
$$\varphi = \varphi(r)$$
, где $r = \sqrt{x^2 + y^2 + z^2}$.

$$2\vec{r} \cdot d\vec{r} = d(\vec{r} \cdot \vec{r}) =$$

Градиент функции, зависящий только от расстояния до начала координат

Пусть
$$\varphi = \varphi(r)$$
, где $r = \sqrt{x^2 + y^2 + z^2}$.

$$2\vec{r} \cdot d\vec{r} = d(\vec{r} \cdot \vec{r}) = dr^2 =$$

Градиент функции, зависящий только от расстояния до начала координат

Пусть
$$\varphi = \varphi(r)$$
, где $r = \sqrt{x^2 + y^2 + z^2}$.

$$2\vec{r} \cdot d\vec{r} = d(\vec{r} \cdot \vec{r}) = dr^2 = 2rdr \implies$$

Градиент функции, зависящий только от расстояния до начала координат

Пусть
$$\varphi = \varphi(r)$$
, где $r = \sqrt{x^2 + y^2 + z^2}$.

Рассмотрим выражение

$$2\vec{r} \cdot d\vec{r} = d(\vec{r} \cdot \vec{r}) = dr^2 = 2rdr \quad \Rightarrow \quad dr = d\vec{r} \cdot \frac{\vec{r}}{r}.$$

$$d\varphi =$$

Градиент функции, зависящий только от расстояния до начала координат

Пусть
$$\varphi = \varphi(r)$$
, где $r = \sqrt{x^2 + y^2 + z^2}$.

Рассмотрим выражение

$$2\vec{r} \cdot d\vec{r} = d(\vec{r} \cdot \vec{r}) = dr^2 = 2rdr \quad \Rightarrow \quad dr = d\vec{r} \cdot \frac{\vec{r}}{r}.$$

$$d\varphi = \varphi'(r)dr =$$

Градиент функции, зависящий только от расстояния до начала координат

Пусть
$$\varphi = \varphi(r)$$
, где $r = \sqrt{x^2 + y^2 + z^2}$.

Рассмотрим выражение

$$2\vec{r} \cdot d\vec{r} = d(\vec{r} \cdot \vec{r}) = dr^2 = 2rdr \quad \Rightarrow \quad dr = d\vec{r} \cdot \frac{\vec{r}}{r}.$$

$$d\varphi = \varphi'(r)dr = d\vec{r} \cdot \frac{\varphi'(r)}{r}\vec{r}.$$

Градиент функции, зависящий только от расстояния до начала координат

Пусть
$$\varphi = \varphi(r)$$
, где $r = \sqrt{x^2 + y^2 + z^2}$.

Рассмотрим выражение

$$2\vec{r} \cdot d\vec{r} = d(\vec{r} \cdot \vec{r}) = dr^2 = 2rdr \quad \Rightarrow \quad dr = d\vec{r} \cdot \frac{\vec{r}}{r}.$$

Тогда

$$d\varphi = \varphi'(r)dr = d\vec{r} \cdot \frac{\varphi'(r)}{r}\vec{r}.$$

По теореме о градиенте

$$\operatorname{grad} r = \frac{\vec{r}}{r},$$

Градиент функции, зависящий только от расстояния до начала координат

Пусть
$$\varphi = \varphi(r)$$
, где $r = \sqrt{x^2 + y^2 + z^2}$.

Рассмотрим выражение

$$2\vec{r} \cdot d\vec{r} = d(\vec{r} \cdot \vec{r}) = dr^2 = 2rdr \quad \Rightarrow \quad dr = d\vec{r} \cdot \frac{\vec{r}}{r}.$$

Тогда

$$d\varphi = \varphi'(r)dr = d\vec{r} \cdot \frac{\varphi'(r)}{r}\vec{r}.$$

По теореме о градиенте

$$\operatorname{grad} r = \frac{\vec{r}}{r}, \quad \operatorname{grad} \varphi = \frac{\varphi'(r)}{r} \vec{r}.$$

Определение

Вектор, являющийся градиентом некоторой скалярной функции, называется потенциальным вектором,

Определение

Вектор, являющийся градиентом некоторой скалярной функции, называется потенциальным вектором, а поле такого вектора—потенциальным и сама скалярная функция потенциалом.

Определение

Вектор, являющийся градиентом некоторой скалярной функции, называется потенциальным вектором, а поле такого вектора—потенциальным и сама скалярная функция потенциалом.

Пример потенциального поля $\vec{a}(\vec{r})$

Определение

Вектор, являющийся градиентом некоторой скалярной функции, называется потенциальным вектором, а поле такого вектора—потенциальным и сама скалярная функция потенциалом.

Пример потенциального поля $\vec{a}(\vec{r})$

•
$$\vec{a}(\vec{r}) = x\vec{i} + y\vec{j} + z\vec{k} = \vec{r}$$
,

Определение

Вектор, являющийся градиентом некоторой скалярной функции, называется потенциальным вектором, а поле такого вектора—потенциальным и сама скалярная функция потенциалом.

Пример потенциального поля $\vec{a}(\vec{r})$

•
$$\vec{a}(\vec{r}) = x\vec{i} + y\vec{j} + z\vec{k} = \vec{r}, \ \varphi(\vec{r}) = 1/2(x^2 + y^2 + z^2) = r^2/2;$$

Определение

Вектор, являющийся градиентом некоторой скалярной функции, называется потенциальным вектором, а поле такого вектора—потенциальным и сама скалярная функция потенциалом.

Пример потенциального поля $\vec{a}(\vec{r})$

•
$$\vec{a}(\vec{r}) = x\vec{i} + y\vec{j} + z\vec{k} = \vec{r}, \varphi(\vec{r}) = 1/2(x^2 + y^2 + z^2) = r^2/2;$$

•
$$\vec{a}(\vec{r}) = \vec{r}/r$$
,

Определение

Вектор, являющийся градиентом некоторой скалярной функции, называется потенциальным вектором, а поле такого вектора—потенциальным и сама скалярная функция потенциалом.

Пример потенциального поля $\vec{a}(\vec{r})$

•
$$\vec{a}(\vec{r}) = x\vec{i} + y\vec{j} + z\vec{k} = \vec{r}, \ \varphi(\vec{r}) = 1/2(x^2 + y^2 + z^2) = r^2/2;$$

•
$$\vec{a}(\vec{r}) = \vec{r}/r$$
, $\varphi(\vec{r}) = r$.

Определение

Линейным интегралом по кривой γ от векторной функции $\vec{a}(\vec{r})$, между точками M и N назовем выражение

Определение

Линейным интегралом по кривой γ от векторной функции $\vec{a}(\vec{r})$, между точками M и N назовем выражение

$$\int\limits_{\gamma} \vec{a} \cdot d\vec{r} = \lim_{\Delta \vec{x}_i \to 0} \sum_{i=0}^{n-1} \vec{a}_i \cdot \Delta \vec{x}_i$$

Определение

Линейным интегралом по кривой γ от векторной функции $\vec{a}(\vec{r})$, между точками M и N назовем выражение

$$\int\limits_{\gamma} \vec{a} \cdot d\vec{r} = \lim_{\Delta \vec{x}_i \to 0} \sum_{i=0}^{n-1} \vec{a}_i \cdot \Delta \vec{x}_i$$

независимо от способа разбиения дуги MN.

Определение

Линейным интегралом по кривой γ от векторной функции $\vec{a}(\vec{r})$, между точками M и N назовем выражение

$$\int\limits_{\gamma} \vec{a} \cdot d\vec{r} = \lim_{\Delta \vec{x}_i \to 0} \sum_{i=0}^{n-1} \vec{a}_i \cdot \Delta \vec{x}_i$$

независимо от способа разбиения дуги MN. Здесь $\vec{x}_0 = M$, $\vec{x}_1,...,\vec{x}_{n-1},\vec{x}_n = N-$ разбиение дуги MN на n частей;

Определение

Линейным интегралом по кривой γ от векторной функции $\vec{a}(\vec{r})$, между точками M и N назовем выражение

$$\int\limits_{\gamma} \vec{a} \cdot d\vec{r} = \lim_{\Delta \vec{x}_i \to 0} \sum_{i=0}^{n-1} \vec{a}_i \cdot \Delta \vec{x}_i$$

независимо от способа разбиения дуги MN. Здесь $\vec{x}_0 = M$, $\vec{x}_1,...,\vec{x}_{n-1},\vec{x}_n = N$ — разбиение дуги MN на п частей; $\Delta \vec{x}_i = \vec{x}_{i+1} - \vec{x}_i$ $(i=\overline{0,n-1})$;

Определение

Линейным интегралом по кривой γ от векторной функции $\vec{a}(\vec{r})$, между точками M и N назовем выражение

$$\int\limits_{\gamma} \vec{a} \cdot d\vec{r} = \lim_{\Delta \vec{x}_i \to 0} \sum_{i=0}^{n-1} \vec{a}_i \cdot \Delta \vec{x}_i$$

независимо от способа разбиения дуги MN. Здесь $\vec{x}_0 = M$, $\vec{x}_1,...,\vec{x}_{n-1},\vec{x}_n = N$ – разбиение дуги MN на п частей; $\Delta \vec{x}_i = \vec{x}_{i+1} - \vec{x}_i$ $(i = \overline{0}, n-1)$; $\vec{a}_i = \vec{a}(\vec{x}_i)$.

Пусть задана кривая $\vec{r} = \vec{r}(s)$, параметризованная параметром, связанным с длиной дуги s:

$$x = x(s), y = y(s), z = z(s).$$

Пусть задана кривая $\vec{r} = \vec{r}(s)$, параметризованная параметром, связанным с длиной дуги s:

$$x = x(s), \quad y = y(s), \quad z = z(s).$$

Вектор $\vec{s} = \frac{d\vec{r}}{ds}$ – единичный касательный вектор,

Пусть задана кривая $\vec{r} = \vec{r}(s)$, параметризованная параметром, связанным с длиной дуги s:

$$x = x(s), \quad y = y(s), \quad z = z(s).$$

Вектор $\vec{s} = \frac{d\vec{r}}{ds}$ — единичный касательный вектор, а $a_s = \vec{a} \cdot \vec{s}$ — длина проекции \vec{a} на \vec{s} в заданной точке.

Пусть задана кривая $\vec{r} = \vec{r}(s)$, параметризованная параметром, связанным с длиной дуги s:

$$x = x(s), y = y(s), z = z(s).$$

Вектор $\vec{s}=\frac{d\vec{r}}{ds}$ — единичный касательный вектор, а $a_s=\vec{a}\cdot\vec{s}$ — длина проекции \vec{a} на \vec{s} в заданной точке. Тогда

$$\int\limits_{\gamma} \vec{a} \cdot d\vec{r} =$$

Пусть задана кривая $\vec{r} = \vec{r}(s)$, параметризованная параметром, связанным с длиной дуги s:

$$x = x(s)$$
, $y = y(s)$, $z = z(s)$.

Вектор $\vec{s}=\frac{d\vec{r}}{ds}$ – единичный касательный вектор, а $a_s=\vec{a}\cdot\vec{s}$ – длина проекции \vec{a} на \vec{s} в заданной точке.

$$\int_{\gamma} \vec{a} \cdot d\vec{r} = \int_{\gamma} (a_x dx + a_y dy + a_z dz) =$$

Пусть задана кривая $\vec{r} = \vec{r}(s)$, параметризованная параметром, связанным с длиной дуги s:

$$x = x(s), y = y(s), z = z(s).$$

Вектор $\vec{s}=\frac{d\vec{r}}{ds}$ — единичный касательный вектор, а $a_s=\vec{a}\cdot\vec{s}$ — длина проекции \vec{a} на \vec{s} в заданной точке.

$$\int_{\gamma} \vec{a} \cdot d\vec{r} = \int_{\gamma} (a_x dx + a_y dy + a_z dz) =$$

$$= \int_{\gamma} (a_x \frac{dx}{ds} + a_y \frac{dy}{ds} + a_z \frac{dz}{ds}) ds =$$

Пусть задана кривая $\vec{r} = \vec{r}(s)$, параметризованная параметром, связанным с длиной дуги s:

$$x = x(s), y = y(s), z = z(s).$$

Вектор $\vec{s}=\frac{d\vec{r}}{ds}$ – единичный касательный вектор, а $a_s=\vec{a}\cdot\vec{s}$ – длина проекции \vec{a} на \vec{s} в заданной точке.

$$\int_{\gamma} \vec{a} \cdot d\vec{r} = \int_{\gamma} (a_x dx + a_y dy + a_z dz) =$$

$$= \int_{\gamma}^{s_1} (a_x \frac{dx}{ds} + a_y \frac{dy}{ds} + a_z \frac{dz}{ds}) ds = \int_{\gamma}^{s_1} \vec{a} \cdot \vec{s} ds =$$

Пусть задана кривая $\vec{r} = \vec{r}(s)$, параметризованная параметром, связанным с длиной дуги s:

$$x = x(s), y = y(s), z = z(s).$$

Вектор $\vec{s}=\frac{d\vec{r}}{ds}$ – единичный касательный вектор, а $a_s=\vec{a}\cdot\vec{s}$ – длина проекции \vec{a} на \vec{s} в заданной точке.

$$\int_{\gamma} \vec{a} \cdot d\vec{r} = \int_{\gamma} (a_x dx + a_y dy + a_z dz) =$$

$$= \int_{s_0}^{s_1} (a_x \frac{dx}{ds} + a_y \frac{dy}{ds} + a_z \frac{dz}{ds}) ds = \int_{s_0}^{s_1} \vec{a} \cdot \vec{s} ds = \int_{s_0}^{s_1} a_s ds.$$

Циркуляция вектора

Определение

Линейный интеграл вектора \vec{a} вдоль замкнутой кривой C

Циркуляция вектора

Определение

Линейный интеграл вектора \vec{a} вдоль замкнутой кривой C называется циркуляцией вектора по замкнутому контуру C

Определение

Линейный интеграл вектора \vec{a} вдоль замкнутой кривой C называется циркуляцией вектора по замкнутому контуру C и обозначается

$$\Gamma_C(\vec{a}) = \oint_C \vec{a} \cdot d\vec{r}.$$

Определение

Линейный интеграл вектора \vec{a} вдоль замкнутой кривой C называется циркуляцией вектора по замкнутому контуру C и обозначается

$$\Gamma_C(\vec{a}) = \oint_C \vec{a} \cdot d\vec{r}.$$

Аддитивность циркуляции

Определение

Линейный интеграл вектора \vec{a} вдоль замкнутой кривой C называется циркуляцией вектора по замкнутому контуру C и обозначается

$$\Gamma_C(\vec{a}) = \oint_C \vec{a} \cdot d\vec{r}.$$

Аддитивность циркуляции

Определение

Линейный интеграл вектора \vec{a} вдоль замкнутой кривой C называется циркуляцией вектора по замкнутому контуру C и обозначается

$$\Gamma_C(\vec{a}) = \oint_C \vec{a} \cdot d\vec{r}.$$

Аддитивность циркуляции

$$\oint_{C_1} \vec{a} \cdot d\vec{r} + \oint_{C_2} \vec{a} \cdot d\vec{r} =$$

$$= \oint_{C} \vec{a} \cdot d\vec{r}.$$

Теорема

Линейный интеграл вектора $\vec{a} = \operatorname{grad} \varphi$ вдоль любой кривой L,

Теорема

Линейный интеграл вектора $\vec{a} = \operatorname{grad} \varphi$ вдоль любой кривой L, соединяющей точки $M_0(\vec{r}_0)$ и $M_1(\vec{r}_1)$,

Теорема

Линейный интеграл вектора $\vec{a}=\operatorname{grad}\varphi$ вдоль любой кривой L, соединяющей точки $M_0(\vec{r}_0)$ и $M_1(\vec{r}_1)$, равен разности значений функций φ в этих точках.

Теорема

Линейный интеграл вектора $\vec{a} = \operatorname{grad} \varphi$ вдоль любой кривой L, соединяющей точки $M_0(\vec{r}_0)$ и $M_1(\vec{r}_1)$, равен разности значений функций φ в этих точках.

Доказательство.

Теорема

Линейный интеграл вектора $\vec{a}=\operatorname{grad}\varphi$ вдоль любой кривой L, соединяющей точки $M_0(\vec{r}_0)$ и $M_1(\vec{r}_1)$, равен разности значений функций φ в этих точках.

Доказательство.

$$\int_{\vec{r_0}}^{\vec{r_1}} \vec{a} \cdot d\vec{r} =$$

Теорема

Линейный интеграл вектора $\vec{a}=\operatorname{grad}\varphi$ вдоль любой кривой L, соединяющей точки $M_0(\vec{r}_0)$ и $M_1(\vec{r}_1)$, равен разности значений функций φ в этих точках.

Доказательство.

$$\int_{\vec{r_0}}^{\vec{r_1}} \vec{a} \cdot d\vec{r} = \int_{s_0}^{s_1} (a_x \frac{dx}{ds} + a_y \frac{dy}{ds} + a_z \frac{dz}{ds}) ds =$$

Теорема

Линейный интеграл вектора $\vec{a}=\operatorname{grad}\varphi$ вдоль любой кривой L, соединяющей точки $M_0(\vec{r}_0)$ и $M_1(\vec{r}_1)$, равен разности значений функций φ в этих точках.

Доказательство.

$$\int_{r_0}^{r_1} \vec{a} \cdot d\vec{r} = \int_{s_0}^{s_1} (a_x \frac{dx}{ds} + a_y \frac{dy}{ds} + a_z \frac{dz}{ds}) ds =$$

$$= \int_{s_0}^{s_1} (\frac{\partial \varphi}{\partial x} \frac{dx}{ds} + \frac{\partial \varphi}{\partial y} \frac{dy}{ds} + \frac{\partial \varphi}{\partial z} \frac{dz}{ds}) ds =$$

Теорема

Линейный интеграл вектора $\vec{a}=\operatorname{grad}\varphi$ вдоль любой кривой L, соединяющей точки $M_0(\vec{r}_0)$ и $M_1(\vec{r}_1)$, равен разности значений функций φ в этих точках.

Доказательство.

$$\int_{r_0}^{r_1} \vec{a} \cdot d\vec{r} = \int_{s_0}^{s_1} (a_x \frac{dx}{ds} + a_y \frac{dy}{ds} + a_z \frac{dz}{ds}) ds =$$

$$= \int_{s_0}^{s_1} (\frac{\partial \varphi}{\partial x} \frac{dx}{ds} + \frac{\partial \varphi}{\partial y} \frac{dy}{ds} + \frac{\partial \varphi}{\partial z} \frac{dz}{ds}) ds = \int_{s_0}^{s_1} \frac{d}{ds} \varphi(x(s), y(s), z(s)) ds =$$

Теорема

Линейный интеграл вектора $\vec{a}=\operatorname{grad}\varphi$ вдоль любой кривой L, соединяющей точки $M_0(\vec{r}_0)$ и $M_1(\vec{r}_1)$, равен разности значений функций φ в этих точках.

Доказательство.

$$\int_{r_0}^{r_1} \vec{a} \cdot d\vec{r} = \int_{s_0}^{s_1} (a_x \frac{dx}{ds} + a_y \frac{dy}{ds} + a_z \frac{dz}{ds}) ds =$$

$$= \int_{s_0}^{s_1} (\frac{\partial \varphi}{\partial x} \frac{dx}{ds} + \frac{\partial \varphi}{\partial y} \frac{dy}{ds} + \frac{\partial \varphi}{\partial z} \frac{dz}{ds}) ds = \int_{s_0}^{s_1} \frac{d}{ds} \varphi(x(s), y(s), z(s)) ds =$$

$$= \varphi(\vec{r}_1) - \varphi(\vec{r}_0).$$

Два следствия теоремы:

Два следствия теоремы:

• значение интеграла от градиента функции зависит только от конечной и начальной точки и не зависит от пути интегрирования;

Два следствия теоремы:

- значение интеграла от градиента функции зависит только от конечной и начальной точки и не зависит от пути интегрирования;
- интеграл от градиента функции по замкнутому контуру равен 0

Два следствия теоремы:

- значение интеграла от градиента функции зависит только от конечной и начальной точки и не зависит от пути интегрирования;
- интеграл от градиента функции по замкнутому контуру равен 0 (или циркуляция потенциального вектора по любому контуру равна 0).

Теорема

Если циркуляция вектора \vec{a} по любому замкнутому контуру равна нулю в некоторой области,

Теорема

Если циркуляция вектора \vec{a} по любому замкнутому контуру равна нулю в некоторой области, то вектор \vec{a} – потенциальный вектор,

Теорема

Если циркуляция вектора \vec{a} по любому замкнутому контуру равна нулю в некоторой области, то вектор \vec{a} — потенциальный вектор, т.е. равен градиенту некоторой скалярной функции φ .

Теорема

Если циркуляция вектора \vec{a} по любому замкнутому контуру равна нулю в некоторой области, то вектор \vec{a} — потенциальный вектор, т.е. равен градиенту некоторой скалярной функции φ .

Доказательство.

Теорема

Если циркуляция вектора \vec{a} по любому замкнутому контуру равна нулю в некоторой области, то вектор \vec{a} — потенциальный вектор, т.е. равен градиенту некоторой скалярной функции φ .

Доказательство.

Введем $\varphi(\vec{r})$ вида:

$$\varphi(\vec{r}) = \varphi(\vec{r}_0) + \int_{\vec{r}_0}^{\vec{r}} \vec{a} \cdot d\vec{r}.$$

Теорема

Если циркуляция вектора \vec{a} по любому замкнутому контуру равна нулю в некоторой области, то вектор \vec{a} — потенциальный вектор, т.е. равен градиенту некоторой скалярной функции φ .

Доказательство.

Введем $\varphi(\vec{r})$ вида:

$$\varphi(\vec{r}) = \varphi(\vec{r}_0) + \int_{\vec{r}_0}^{\vec{r}} \vec{a} \cdot d\vec{r}.$$

Интеграл в правой части не зависит от пути интегрирования в силу условия теоремы.

Теорема

Если циркуляция вектора \vec{a} по любому замкнутому контуру равна нулю в некоторой области, то вектор \vec{a} — потенциальный вектор, т.е. равен градиенту некоторой скалярной функции φ .

Доказательство.

Введем $\varphi(\vec{r})$ вида:

$$\varphi(\vec{r}) = \varphi(\vec{r}_0) + \int_{\vec{r}_0}^{\vec{r}} \vec{a} \cdot d\vec{r}.$$

Интеграл в правой части не зависит от пути интегрирования в силу условия теоремы.

Полный дифференциал введенной функции

$$d\varphi = \vec{a} \cdot d\vec{r},$$

справедлив для любых $d\vec{r}$,

Теорема

Если циркуляция вектора \vec{a} по любому замкнутому контуру равна нулю в некоторой области, то вектор \vec{a} — потенциальный вектор, т.е. равен градиенту некоторой скалярной функции φ .

Доказательство.

Введем $\varphi(\vec{r})$ вида:

$$\varphi(\vec{r}) = \varphi(\vec{r}_0) + \int_{\vec{r}_0}^{\vec{r}} \vec{a} \cdot d\vec{r}.$$

Интеграл в правой части не зависит от пути интегрирования в силу условия теоремы.

Полный дифференциал введенной функции

$$d\varphi = \vec{a} \cdot d\vec{r},$$

справедлив для любых $d\vec{r}$, значит $\vec{a}=\operatorname{grad}\varphi$.

Пусть задана кривая $\vec{r} = \vec{r}(s)$, параметризованная параметром, связанным с длиной дуги s:

$$x = x(s)$$
, $y = y(s)$, $z = z(s)$.

Пусть задана кривая $\vec{r} = \vec{r}(s)$, параметризованная параметром, связанным с длиной дуги s:

$$x = x(s)$$
, $y = y(s)$, $z = z(s)$.

Вектор
$$\vec{s} = \frac{d\vec{r}}{ds}$$
 – единичный касательный вектор.

Пусть задана кривая $\vec{r} = \vec{r}(s)$, параметризованная параметром, связанным с длиной дуги s:

$$x = x(s), y = y(s), z = z(s).$$

Вектор $\vec{s} = \frac{d\vec{r}}{ds}$ – единичный касательный вектор. Введем оператор

$$\vec{s} \cdot \nabla = \cos(\vec{s}, x) \frac{\partial}{\partial x} + \cos(\vec{s}, y) \frac{\partial}{\partial y} + \cos(\vec{s}, z) \frac{\partial}{\partial z},$$

Пусть задана кривая $\vec{r} = \vec{r}(s)$, параметризованная параметром, связанным с длиной дуги s:

$$x = x(s), y = y(s), z = z(s).$$

Вектор $\vec{s} = \frac{d\vec{r}}{ds}$ – единичный касательный вектор.

Введем оператор

$$\vec{s} \cdot \nabla = \cos(\vec{s}, x) \frac{\partial}{\partial x} + \cos(\vec{s}, y) \frac{\partial}{\partial y} + \cos(\vec{s}, z) \frac{\partial}{\partial z},$$

тогда

$$\frac{\partial}{\partial s}a(x(s),y(s),z(s)) = \vec{s} \cdot \operatorname{grad} a = (\vec{s} \cdot \nabla)a.$$

Пусть задана кривая $\vec{r} = \vec{r}(s)$, параметризованная параметром, связанным с длиной дуги s:

$$x = x(s)$$
, $y = y(s)$, $z = z(s)$.

Вектор $\vec{s} = \frac{d\vec{r}}{ds}$ – единичный касательный вектор.

Введем оператор

$$\vec{s} \cdot \nabla = \cos(\vec{s}, x) \frac{\partial}{\partial x} + \cos(\vec{s}, y) \frac{\partial}{\partial y} + \cos(\vec{s}, z) \frac{\partial}{\partial z},$$

тогда

$$\frac{\partial}{\partial s}a(x(s),y(s),z(s)) = \vec{s} \cdot \operatorname{grad} a = (\vec{s} \cdot \nabla)a.$$

Определение

Onepamop

$$(\vec{v} \cdot \nabla) = v_x \frac{\partial}{\partial x} + v_y \frac{\partial}{\partial y} + v_z \frac{\partial}{\partial z}$$

называется производной вдоль направления,

Пусть задана кривая $\vec{r} = \vec{r}(s)$, параметризованная параметром, связанным с длиной дуги s:

$$x = x(s), y = y(s), z = z(s).$$

Вектор $\vec{s} = \frac{d\vec{r}}{ds}$ – единичный касательный вектор.

Введем оператор

$$\vec{s} \cdot \nabla = \cos(\vec{s}, x) \frac{\partial}{\partial x} + \cos(\vec{s}, y) \frac{\partial}{\partial y} + \cos(\vec{s}, z) \frac{\partial}{\partial z},$$

тогда

$$\frac{\partial}{\partial s}a(x(s),y(s),z(s)) = \vec{s} \cdot \operatorname{grad} a = (\vec{s} \cdot \nabla)a.$$

Определение

Onepamop

$$(\vec{v} \cdot \nabla) = v_x \frac{\partial}{\partial x} + v_y \frac{\partial}{\partial y} + v_z \frac{\partial}{\partial z}$$

называется производной вдоль направления, где $\vec{v} = (v_x, v_y, v_z)$ – заданное направление.

Рассмотрим нестационарное движение жидкости, в которой определено нестационарное скалярное поле $\varphi(t,x,y,z)$,

Рассмотрим нестационарное движение жидкости, в которой определено нестационарное скалярное поле $\varphi(t,x,y,z)$, тогда введем понятие местной производной

$$\frac{\partial \varphi}{\partial t} =$$

Рассмотрим нестационарное движение жидкости, в которой определено нестационарное скалярное поле $\varphi(t,x,y,z)$, тогда введем понятие местной производной

$$\frac{\partial \varphi}{\partial t} = \lim_{\Delta t \to 0} \frac{\varphi(t + \Delta t, M) - \varphi(t, M)}{\Delta t}.$$

Рассмотрим нестационарное движение жидкости, в которой определено нестационарное скалярное поле $\varphi(t,x,y,z)$, тогда введем понятие местной производной

$$\frac{\partial \varphi}{\partial t} = \lim_{\Delta t \to 0} \frac{\varphi(t + \Delta t, M) - \varphi(t, M)}{\Delta t}.$$

Если же рассматривать изменения функции, перемещаясь вместе с жидкостью, тогда

$$\frac{d\varphi}{dt} =$$

Рассмотрим нестационарное движение жидкости, в которой определено нестационарное скалярное поле $\varphi(t,x,y,z)$, тогда введем понятие местной производной

$$\frac{\partial \varphi}{\partial t} = \lim_{\Delta t \to 0} \frac{\varphi(t + \Delta t, M) - \varphi(t, M)}{\Delta t}.$$

Если же рассматривать изменения функции, перемещаясь вместе с жидкостью, тогда

$$\frac{d\varphi}{dt} = \lim_{\Delta t \to 0} \frac{\varphi(t + \Delta t, \vec{r}_0 + \vec{v}\Delta t) - \varphi(t, \vec{r}_0)}{\Delta t}.$$

Рассмотрим нестационарное движение жидкости, в которой определено нестационарное скалярное поле $\varphi(t,x,y,z)$, тогда введем понятие местной производной

$$\frac{\partial \varphi}{\partial t} = \lim_{\Delta t \to 0} \frac{\varphi(t + \Delta t, M) - \varphi(t, M)}{\Delta t}.$$

Если же рассматривать изменения функции, перемещаясь вместе с жидкостью, тогда

$$\frac{d\varphi}{dt} = \lim_{\Delta t \to 0} \frac{\varphi(t + \Delta t, \vec{r}_0 + \vec{v}\Delta t) - \varphi(t, \vec{r}_0)}{\Delta t}.$$

И тогда

$$\frac{d\varphi}{dt} = \frac{\partial \varphi}{\partial t} + \vec{v} \cdot \nabla \varphi, \quad \frac{d\vec{a}}{dt} = \frac{\partial \vec{a}}{\partial t} + (\vec{v} \cdot \nabla) \vec{a}.$$