DM549/DS(K)820/MM537/DM547

Lecture 7: More on Sets; Functions

Kevin Schewior Email: kevs@sdu.dk

University of Southern Denmark

September 23, 2023

Last Time: Sets

Definition (Definition 2.1.1)

A set (mængde) is an unordered collection of different objects, called *elements*. If object x is an element of set A, we write $x \in A$; otherwise we write $x \notin A$.

Notation: explicit enumeration, enumeration with "..." or set-builder notation.

Definition

For a finite set A, the *cardinality* of A is the number of elements in A, denoted |A|.

Intervals: [3, 5], (3, 7), (2, 4], etc.

Last Time: Subsets, Supersets, and Power Sets

Definition (Definition 2.1.3)

A set A is a *subset* (delmængde) of another set B if, for all $x \in A$, it holds that $x \in B$. In that case, we write $A \subseteq B$. We also say that B is a *superset* of A. If that is not the case, we write $A \nsubseteq B$.

If $A \subseteq B$ and $A \neq B$, we say that A is a *proper subset* (ægte delmængde) of B and write $A \subset B$. If that is not the case, we write $A \not\subset B$.

Definition (Definition 2.1.6)

For a set A, its power set (potensmængde) is

$$\mathcal{P}(A) = \{ S \mid S \subseteq A \},\$$

the set of all subsets of A.

Last Time: Set Operations

We learned:

- $A \cap B = \{ x \mid x \in A \land x \in B \}$
 - ▶ A and B are called disjoint if $A \cap B = \emptyset$
- $A \cup B = \{x \mid x \in A \lor x \in B\}$
- $A \setminus B = \{ x \mid x \in A \land x \notin B \}$
- $\overline{A} = U A$
 - U is the universe

A Quiz

Go to pollev.com/kevs

De Morgan's Law for Sets

Theorem (Example 2.2.10)

For any two sets A, B, it holds that

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
 and $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Remark: Notice the correspondence between

- \blacksquare \cup and \vee .
- \blacksquare \cap and \wedge ,
- \blacksquare and \neg .

Tuples (vs. Sets)

Definition (Definition 2.1.7)

An n-tuple (n-tupel) is an ordered collection of not necessarily different objects, denoted as (a_1, a_2, \ldots, a_n) where a_i is the object at the i-th position of the tuple, for $i \in \{1, \ldots, n\}$.

Sets:

- the order does not matter,
- objects are all different,
- \blacksquare we use \in .

Naming:

- 2-tuples are called pairs,
- 3-tuples are called triples,
- 4-tuples are called *quadruples*,
- etc.

Tuples:

- the order matters,
- objects can be identical,
- we do not use \in (there is no proper notation).

The Cartesian Product

Definition (Definitions 2.1.8 and 2.1.9)

For two sets A, B, their Cartesian product (Kartesisk produkt) is

$$A \times B = \{(a,b) \mid a \in A \land b \in B\},\$$

the set containing all pairs where an element of A is at the first position and an element of B is at the second position.

Likewise, for sets A_1, A_2, \ldots, A_n

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_1 \in A_1 \wedge a_2 \in A_2 \wedge \cdots \wedge a_n \in A_n\}.$$

Further,

$$\underbrace{A \times A \times \cdots \times A}_{n \text{ times}}$$

for $n \in \mathbb{Z}^+$ is denoted A^n .

A Quiz

Go to pollev.com/kevs

Functions

Definition (Definitions 2.3.1 and 2.3.2)

Let A and B be nonempty sets. A function (funktion) f from A to B, for each $x \in A$, assigns precisely one element $f(x) \in B$ to x.

We write $f: A \to B$, call A the *domain* (definitionsmængden) of f, and call B the *codomain* (sekundarmængden) of f.

Remarks:

- To specify a function, the domain and codomain of the function must be specified.
- The word "precisely" is important in the definition.
- Sometimes, functions are referred to as mappings or transformations.

The Image of a Function

Definition (Definition 2.3.4)

Let $f: A \to B$ be a function. The *image* or *range* (værdimængden eller billedmængden) of f is

$$Im(f) = \{f(x) \mid x \in A\} = \{y \in B \mid \exists x \in A : f(x) = y\},\$$

the set of all possible values f(x) for $x \in A$.

Injective, Surjective, Bijective

Definition (Definition 2.3.5)

A function $f:A \rightarrow B$ is called *injective* or *one-to-one* (injektiv eller en-til-en) if

$$\forall x_1, x_2 \in A : (f(x_1) = f(x_2) \Rightarrow x_1 = x_2),$$

that is, f assigns any value $y \in B$ to at most one $x \in A$.

Definition (Definition 2.3.7)

A function $f: A \rightarrow B$ is called *surjective* or *onto* (surjektiv eller på) if

$$\forall y \in B : \exists x \in A : f(x) = y,$$

that is, Im(f) = B.

Definition (Definition 2.3.8)

A function $f:A\to B$ is called *bijective* or a *one-to-one correspondence* (bijektion eller en-til-en-korrespondance) if it is both injective and surjective.

Injective, Surjective, Bijective: An Alternative View

A function f is called...

- injective if each "y value" is "hit" by at most one "x value",
- surjective if each "y value" is "hit" by at least one "x value",
- bijective if each "y value" is "hit" by exactly "x value".

A Quiz

Go to pollev.com/kevs

