

# UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

| COMBINED SCIENCE Paper 2 |  | 2                   | 5129/02<br>May/June 2012<br>hours 15 minutes |
|--------------------------|--|---------------------|----------------------------------------------|
| CENTRE<br>NUMBER         |  | CANDIDATE<br>NUMBER |                                              |
| CANDIDATE<br>NAME        |  |                     |                                              |
|                          |  |                     |                                              |

No Additional Materials are required.

#### **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

| For Examiner's Use |
|--------------------|
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |

This document consists of 21 printed pages and 3 blank pages.



© UCLES 2012

1 Fig. 1.1 shows a photograph of some red blood cells that have been greatly magnified.





Fig. 1.1

| (a) | (i)   | State the function of red blood cells.                                                               |
|-----|-------|------------------------------------------------------------------------------------------------------|
|     |       |                                                                                                      |
|     |       | [1]                                                                                                  |
|     | (ii)  | State <b>two</b> features of red blood cells that make them efficient in carrying out this function. |
|     |       | feature 1                                                                                            |
|     |       | feature 2[2]                                                                                         |
|     | (iii) | Explain the importance of each feature in (a)(ii).                                                   |
|     |       | importance of feature 1                                                                              |
|     |       |                                                                                                      |
|     |       | importance of feature 2                                                                              |
|     |       | [2]                                                                                                  |
| (b) | Naı   | me the liquid part of the blood that surrounds the red blood cells.                                  |
|     |       | [1]                                                                                                  |

2 (a) A string is used to pull a cube across a smooth horizontal surface.

This is shown in Fig. 2.1.

For Examiner's Use



Fig. 2.1

The cube has a mass of 0.20 kg. The constant force accelerating the cube is 0.32 N.

Calculate the acceleration of the cube.

**(b)** On Earth, the gravitational field strength  $g = 10 \,\text{N/kg}$ .

Calculate the weight of the cube.

3

| (a) | Sodium reacts with chlorine to produce sodium chloride.  The equation for the reaction is                    | For<br>Examiner's<br>Use |
|-----|--------------------------------------------------------------------------------------------------------------|--------------------------|
|     | $2Na + Cl_2 \longrightarrow 2NaCl$                                                                           |                          |
|     | The relative molecular mass, $M_{\rm r}$ , of sodium chloride is 58.5. ( $A_{\rm r}$ : Na, 23; C $l$ , 35.5) |                          |
|     | Complete the following sentences.                                                                            |                          |
|     | 46 g of sodium reacts withg of chlorine and produces                                                         |                          |
|     | g of sodium chloride.                                                                                        |                          |
|     | 4.6 g of sodium reacts withg of chlorine and produces                                                        |                          |
|     | g of sodium chloride.                                                                                        |                          |
|     | 1.15 g of sodium producesg of sodium chloride. [4]                                                           |                          |
| (b) | State the type of bonding present in sodium chloride.                                                        |                          |
| (c) | State why chlorine is used in the purification of water supplies.                                            |                          |
|     |                                                                                                              |                          |
|     | [1]                                                                                                          |                          |

- 4 (a) State the units of the moment of a force. [1]
  - (b) Fig. 4.1 shows a spanner being used to undo a bolt.





Fig. 4.1

The force needed to undo the bolt is smaller when a spanner with a longer handle is used.

| Explain why. |     |
|--------------|-----|
|              |     |
|              |     |
|              | [2] |

- **5** Atoms are made up of electrons, protons and neutrons.
  - (a) Complete Fig. 5.1 to show the relative charge and the relative mass of each particle.

| particle | relative charge | relative mass    |
|----------|-----------------|------------------|
| electron |                 | <u>1</u><br>1840 |
| proton   | +1              |                  |
| neutron  |                 | 1                |

[3]

Fig. 5.1

- **(b)** <sup>12</sup>C and <sup>14</sup>C are isotopes of the element carbon.
  - (i) State how the two isotopes are different.

| ••••• | • • • • • • • • • • • • • • • • • • • • | <br> |
|-------|-----------------------------------------|------|
|       |                                         |      |

(ii) Explain why the two isotopes have the same chemical properties.

**6** Fig. 6.1 shows the human digestive system.





Fig. 6.1

(a) State a letter in Fig. 6.1 which shows where

| glucose is absorbed, | [1]                  |
|----------------------|----------------------|
|                      | glucose is absorbed, |

(ii) most water is absorbed. ..... [1]

(b) Some digestion takes place in the stomach.

Suggest and explain the importance of **another** function of the stomach.

function .....

explanation of importance .....

[2]

| (c) | There is a tube between the gall bladder and the duodenum.                  | For |
|-----|-----------------------------------------------------------------------------|-----|
|     | State and explain how digestion is affected when this tube becomes blocked. | Use |
|     |                                                                             |     |
|     |                                                                             |     |
|     |                                                                             |     |
|     |                                                                             |     |
|     |                                                                             |     |
|     | [3]                                                                         |     |

| 7 | (a) | Respiration is defined as the release of energy from food substances in living cells. | For               |
|---|-----|---------------------------------------------------------------------------------------|-------------------|
|   |     | State <b>two</b> differences between aerobic respiration and anaerobic respiration.   | Examiner's<br>Use |
|   |     | 1                                                                                     |                   |
|   |     |                                                                                       |                   |
|   |     | 2                                                                                     |                   |
|   |     | [2]                                                                                   |                   |
|   | (b) | The breathing of a student is observed while he is resting.                           |                   |
|   |     | The student then exercises vigorously and his breathing is observed again.            |                   |
|   |     | State two visible differences in his breathing before and during exercise.            |                   |
|   |     | 1                                                                                     |                   |
|   |     |                                                                                       |                   |
|   |     | 2                                                                                     |                   |
|   |     | [2]                                                                                   |                   |

(c) Athletes compete in races of different distances.

For Examiner's Use

Fig. 7.1 shows the percentage of energy released by aerobic respiration and anaerobic respiration during these races.



**8** A ripple tank is used to show wave motion on the surface of water.

For Examiner's Use

The wave has a wavelength of 0.5 cm and an amplitude of 4.0 mm.

(a) Complete Fig. 8.1 to show at least one wavelength of a wave with this wavelength and amplitude. [2]



Fig. 8.1

(b) The wave has a frequency of 6.0 Hz.

Calculate the speed of the wave.

speed = ......cm/s [2]

9 (a) In Fig. 9.1, the boxes on the left give the names of some elements. The boxes on the right show the reaction of elements with water. Draw a line to link each element to its reaction with water. element reaction with water reacts vigorously with copper steam reacts vigorously with magnesium cold water no reaction iron reacts slowly with cold potassium water and steam [4] Fig. 9.1 **(b)** When a metal reacts with water, hydrogen gas is released.

For Examiner's Use

State the test for hydrogen gas.

For Examiner's Use

[4]

10 Use words from the list to complete the sentences below.

| mesophyll osmosis respiration                              |  |  |  |  |  |  |
|------------------------------------------------------------|--|--|--|--|--|--|
| phloem photosynthesis xylem                                |  |  |  |  |  |  |
| root hair transpiration                                    |  |  |  |  |  |  |
| Each word may be used once, more than once or not at all.  |  |  |  |  |  |  |
| Water enters a plant by moving into the cells by           |  |  |  |  |  |  |
| the process of                                             |  |  |  |  |  |  |
| Water moves from cell to cell across the plant by the same |  |  |  |  |  |  |
| process until it reaches the                               |  |  |  |  |  |  |
| Water moves upwards to the leaves where it is lost through |  |  |  |  |  |  |

the stomata. This process is called ......

11 A ball on the end of a nylon string is given a charge.

A positively-charged rod is brought close to the ball.

The ball moves away from the positive charge, as shown in Fig. 11.1.





Fig. 11.1

| (a) | Explain why the ball moves away from the positively-charged object. |         |
|-----|---------------------------------------------------------------------|---------|
|     |                                                                     | <br>[2] |
| (b) | A spark is seen between two charged objects.                        | ,       |
|     | A spark is a flow of charge.                                        |         |
|     | State the name given to the rate of flow of charge.                 |         |
|     |                                                                     | [1]     |

For Examiner's Use

| 12 | A la | ımp i         | s marked '240V, 60W'.                                                                                            |
|----|------|---------------|------------------------------------------------------------------------------------------------------------------|
|    | (a)  | The           | e lamp is working normally.                                                                                      |
|    |      | Cal           | culate                                                                                                           |
|    |      | (i)           | the current in the lamp,                                                                                         |
|    |      |               |                                                                                                                  |
|    |      |               |                                                                                                                  |
|    |      |               |                                                                                                                  |
|    |      |               | current = A [2]                                                                                                  |
|    |      | <i>(</i> ***) |                                                                                                                  |
|    |      | (ii)          | the electrical energy converted in 10 minutes.                                                                   |
|    |      |               |                                                                                                                  |
|    |      |               |                                                                                                                  |
|    |      |               | energy =J [2]                                                                                                    |
|    | (b)  |               | ne lamps may produce waves in the infra-red, the visible or the ultraviolet regions of electromagnetic spectrum. |
|    |      | Sta           | te the name given to a component of the spectrum with wavelengths that are                                       |
|    |      | (i)           | longer than those of infra-red radiation,[1]                                                                     |
|    |      | (ii)          | shorter than those of ultraviolet radiation. [1]                                                                 |
|    |      |               |                                                                                                                  |

| 13 | Buta | ane, | natural gas and petrol are fossil fuels.                                            | For               |
|----|------|------|-------------------------------------------------------------------------------------|-------------------|
|    | (a)  | Nan  | ne the main constituent of natural gas[1]                                           | Examiner's<br>Use |
|    | (b)  | Petr | rol is a mixture of different hydrocarbons.                                         |                   |
|    |      | Ехр  | plain the meaning of the term <i>hydrocarbon</i> .                                  |                   |
|    |      |      |                                                                                     |                   |
|    |      |      |                                                                                     |                   |
|    |      |      | [2]                                                                                 |                   |
|    | (c)  | Bala | ance the equation for the combustion of butane.                                     |                   |
|    |      |      | $2C_4H_{10} + \dots O_2 \longrightarrow \dots CO_2 + \dots H_2O$ [1]                |                   |
|    | (d)  | Son  | ne fossil fuels contain sulfur compounds.                                           |                   |
|    |      | (i)  | State the name of a compound of sulfur that is formed when these fuels are burned.  |                   |
|    |      |      | [1]                                                                                 |                   |
|    |      | (ii) | State and explain an environmental problem associated with this compound of sulfur. |                   |
|    |      |      |                                                                                     |                   |
|    |      |      |                                                                                     |                   |
|    |      |      | [2]                                                                                 |                   |

## 14 Fig. 14.1 shows part of a food web.



For



Fig. 14.1

**(b) (i)** State how many species of herbivore and how many species of carnivore are shown in the food web.

For Examiner's Use

Write your answers in Table 14.1.

**Table 14.1** 

| type of organism | number of species |
|------------------|-------------------|
| herbivore        |                   |
| carnivore        |                   |

| 2 |  |
|---|--|
|   |  |

|     | (ii)  | State the number of species in the longest food chain shown in Fig. 14.1.     |     |
|-----|-------|-------------------------------------------------------------------------------|-----|
|     |       | species                                                                       | [1] |
|     | (iii) | Explain why a short food chain is more efficient than a long food chain.      |     |
|     |       |                                                                               |     |
|     |       |                                                                               |     |
|     |       |                                                                               | [2] |
| (c) | Pre   | dict what would happen on the food web if 90% of the moths died. Explain why. |     |
|     | pre   | diction                                                                       |     |
|     | ехр   | lanation                                                                      |     |
|     |       |                                                                               |     |
|     |       |                                                                               | [2] |

For Examiner's Use

| 15 | An  | athle | te runs on a circular track.                              |
|----|-----|-------|-----------------------------------------------------------|
|    | He  | runs  | 400 m in 50 s.                                            |
|    | (a) | Cal   | culate the average speed of the runner.                   |
|    |     |       |                                                           |
|    |     |       |                                                           |
|    |     |       | speed =m/s [2]                                            |
|    | (b) | The   | athlete maintains a constant speed on the circular track. |
|    |     | Exp   | lain why his velocity is not constant.                    |
|    |     |       |                                                           |
|    |     |       | [1]                                                       |
|    |     |       |                                                           |
| 16 | Bra | ss ar | nd stainless steel are both alloys.                       |
|    | (a) | Nar   | ne the two elements present in brass.                     |
|    |     |       | and[2]                                                    |
|    | (b) | (i)   | State one use of stainless steel.                         |
|    |     |       | [1]                                                       |
|    |     | (ii)  | Explain how and why alloys are made.                      |
|    |     | ` ,   |                                                           |
|    |     |       |                                                           |
|    |     |       |                                                           |
|    |     |       | [2]                                                       |
|    |     |       |                                                           |
|    |     |       |                                                           |

| 17 | (a) | a) Explain what is meant by the <i>principle of energy conserva</i> | ation.               | For Examiner's |
|----|-----|---------------------------------------------------------------------|----------------------|----------------|
|    |     |                                                                     |                      | Use            |
|    |     |                                                                     | [1]                  |                |
|    | (b) | Coal is burned to generate electrical energy.                       |                      |                |
|    |     | Complete the following sentences.                                   |                      |                |
|    |     | The energy in coal is                                               | oray.                |                |
|    |     | The energy in coal is ene                                           | ergy.                |                |
|    |     | When coal is burned this energy is converted into energy.           |                      |                |
|    |     | Steam is produced and used to turn a turbine.                       |                      |                |
|    |     | The turbine has energy.                                             | [3]                  |                |
|    |     |                                                                     |                      |                |
| 18 | The | he following is a list of substances.                               |                      |                |
|    |     | aluminium oxide ammonium sulfate cal                                | cium carbonate       |                |
|    |     | potassium nitrate sodium hydroxide                                  | sodium oxide         |                |
|    | Use | se the list to complete the following sentences.                    |                      |                |
|    | Eac | ach substance may be used once, more than once or not at            | all.                 |                |
|    | (a) | a)is used to remove                                                 | ve acidic impurities |                |
|    |     | during the extraction of iron in a blast furnace.                   | [1]                  |                |
|    | (b) | A substance that reacts with both acids and alkalis is              |                      |                |
|    |     |                                                                     | [1]                  |                |
|    | (c) | A substance that contains two of the elements essential for         | or                   |                |
|    |     | •                                                                   |                      |                |
|    |     | plant growth is                                                     | [1]                  |                |
|    | (d) | plant growth is                                                     |                      |                |
|    | (d) | plant growth is                                                     | uce                  |                |

19 Fig. 19.1 shows a basic transformer.

20

For Examiner's Use



Fig. 19.1

| (a) | Complete the labels on Fig. 19.1.                                                       | [2] |
|-----|-----------------------------------------------------------------------------------------|-----|
| (b) | The output of a transformer is connected to a lamp.                                     |     |
|     | Explain why the lamp does not light when the input to the transformer is direct current | nt. |
|     |                                                                                         |     |
|     |                                                                                         |     |
|     |                                                                                         | [2] |
|     |                                                                                         |     |
| Ехр | lain what is meant by the half-life of a radioactive source.                            |     |

## 21

## **BLANK PAGE**

## **BLANK PAGE**

#### **BLANK PAGE**

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

**DATA SHEET** 

|                                    |                             |                                                       |                 |                             |                     | Ė                             | he Perio         | The Periodic Table of the Elements | e of the                     | Element                        | S                           |                                    |                               |                        |                            |                         |                              |
|------------------------------------|-----------------------------|-------------------------------------------------------|-----------------|-----------------------------|---------------------|-------------------------------|------------------|------------------------------------|------------------------------|--------------------------------|-----------------------------|------------------------------------|-------------------------------|------------------------|----------------------------|-------------------------|------------------------------|
|                                    |                             |                                                       |                 |                             |                     |                               |                  | Gr                                 | Group                        |                                |                             |                                    |                               |                        |                            |                         |                              |
| _                                  | =                           |                                                       |                 |                             |                     |                               |                  |                                    |                              |                                |                             | =                                  | IV                            | ^                      | N                          | NII V                   | 0                            |
|                                    |                             |                                                       |                 |                             |                     |                               | 1 Hydrogen       |                                    |                              |                                |                             |                                    |                               |                        |                            |                         | 4 <b>He</b> Helium           |
| 7 Lithium                          | 9<br><b>Be</b><br>Beryllium | E                                                     |                 |                             |                     | •                             |                  | 1                                  |                              |                                |                             | 11 Boron 5                         | 12<br><b>C</b><br>Carbon<br>6 | 14 <b>N</b> Nitrogen 7 | 16<br>Oxygen               | 19<br>Fluorine          | 20 <b>Ne</b> Ne on 10        |
| 23<br><b>Na</b><br>Sodium          | 24 Mg Magnesium             | §                                                     |                 |                             |                     |                               |                  |                                    |                              |                                |                             | 27<br><b>A1</b><br>Aluminium<br>13 | 28<br><b>Si</b><br>Silicon    | 31<br>Phosphorus       | 32<br><b>Sulfur</b><br>16  | 35.5 <b>C1</b> Chlorine | 40<br><b>Ar</b><br>Argon     |
| 38                                 | 8 <b>€</b>                  | 45                                                    | 84 🗜            | 51                          | <b>ن</b> 25         | 55                            | 26<br>TT         | 69                                 | 269<br><b>Z</b>              | 2 <b>2</b>                     | 65                          | ۶ ر                                | 73                            | 75<br><b>A c</b>       | 1                          | 8 <b>હે</b>             | 8 <b>7</b>                   |
| Potassium<br>19                    | Calcium<br>20               | 2 2                                                   | Titanium<br>22  | Vanadium<br>23              | Chromium<br>24      | Manganese<br>25               | lron 26          | Cobalt<br>27                       | Nickel<br>28                 | Copper<br>29                   | Zinc<br>30                  | Gallium<br>31                      | Germanium<br>32               |                        | Selenium<br>34             | Bromine<br>35           | Krypton<br>36                |
| 88<br><b>B</b>                     | ຶ ທັ                        | 68 <b>&gt;</b>                                        | 91<br>Zr        | SS QN                       | 96<br><b>Mo</b>     | J <sub>C</sub>                | 101<br><b>BC</b> | 103<br><b>R</b>                    | 106<br><b>Pd</b>             | 108<br><b>Ag</b>               |                             | 115<br><b>In</b>                   | 119<br><b>Sn</b>              |                        |                            | 127<br>I                | 131<br><b>Xe</b>             |
| Rubidium<br>37                     | Strontium<br>38             | 39                                                    | Zirconium<br>40 | Niobium<br>41               | Molybdenum<br>42    | Ε                             | Ruthenium<br>44  | Rhodium<br>45                      | Palladium<br>46              |                                | _                           | Indium<br>49                       |                               | >                      | _                          | lodine<br>53            | Xenon<br>54                  |
| 133                                | 137                         |                                                       | 178             | 181                         | 184                 | 186                           | 190              | 192                                | 195                          |                                | 201                         | 204                                |                               | 209                    | 209                        | 210                     | 222                          |
| Caesium<br>55                      | Barium<br>56                | Lanthanum 57 *                                        | Hafnium<br>72   | <b>Ta</b><br>Tantalum<br>73 | W<br>Tungsten<br>74 | <b>Re</b><br>Rhenium<br>75    |                  | Lr<br>Iridium<br>77                | Platinum                     | <b>Au</b><br>Gold<br>79        | Hg<br>Mercury<br>80         | Tt<br>Thallium<br>81               | Pb<br>Lead<br>82              | Bismuth<br>83          | Po<br>Polonium<br>84       | At<br>Astatine<br>85    | Radon<br>86                  |
| 223<br><b>Fr</b><br>Francium<br>87 | 226 <b>Ra</b> Radium 88     | 227<br>AC<br>n Actinium 89                            |                 |                             |                     |                               |                  |                                    |                              |                                |                             |                                    |                               |                        |                            |                         |                              |
| * 58–71<br>† 90–10                 | Lantha<br>33 Actin          | * 58–71 Lanthanoid series<br>† 90–103 Actinoid series | 1               | 140<br>Cerium               | 141<br>Praseodymium | 144<br><b>Nd</b><br>Neodymium | Pm<br>Promethium | Samarium                           | 152<br><b>Eu</b><br>Europium | 157<br><b>Gd</b><br>Gadolinium | 159<br><b>Tb</b><br>Terbium | 162<br>Dy<br>Dysprosium            | 165<br><b>Ho</b>              | 167<br><b>Er</b> bium  | 169<br><b>Tm</b><br>hulium | Yb Ytterbium            | 175<br><b>Lu</b><br>Lutetium |
|                                    | a                           | sem cimote eviteler – e                               | nic mass        | 58                          | 59                  | 09                            | 61               |                                    | 63                           | 64                             | 65                          |                                    | 29                            | 68                     |                            |                         | 71                           |

a = relative atomic mass X = atomic symbol **м** 🗙

q Key

Thorium 232 **Th** 28 90 b = atomic (proton) number

The volume of one mole of any gas is 24dm3 at room temperature and pressure (r.t.p.). Plutonium 94 Neptunium

**5**80

S59 Nobelium

258 **Md** 

257 **Fm** Fermium 100

252 **ES** 

**5**2

247 **BK** 

247 **Cm** Curium

Am Americium

244 **Pu** 

238

**Pa**