Title

D. Zack Garza

Saturday 26^{th} September, 2020

Contents

1 Saturday, September 26

1

1 | Saturday, September 26

Remark 1.

There is a natural action of $MCG(\Sigma)$ on $H_1(\Sigma; \mathbb{Z})$, i.e. a homology representation of $MCG(\Sigma)$:

$$\rho: \mathrm{MCG}(\Sigma) \to \mathrm{Aut}_{\mathrm{Grp}}(H_1(\Sigma; \mathbb{Z}))$$
$$f \mapsto f_*.$$

Theorem 1.1 (Mapping Class Group of the Torus).

The homology representation of the torus induces an isomorphism

$$\sigma: \mathrm{MCG}(\Sigma_2) \xrightarrow{\cong} \mathrm{SL}(2,\mathbb{Z})$$

Proof.

• For f any automorphism, the induced map $f_*: \mathbb{Z}^2 \to \mathbb{Z}^2$ is a group automorphism, so we can consider the map

$$\tilde{\sigma}: \operatorname{Map}(X, X) \to \operatorname{GL}(2, \mathbb{Z})$$

$$f \mapsto f_*.$$

• This will descend to the quotient MCG(X) iff $\tilde{\sigma}$ is constant