SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

I B.Tech I Semester (SVEC-19) Regular Examinations December - 2019 ENGINEERING PHYSICS

[Electrical and Electronics Engineering, Electronics and Communication Engineering, Electronics and Instrumentation Engineering]

Time: 3 hours		81	Max	Max. Marks: 60		
Answer One Question from each Unit						
All questions carry equal marks						
		(UNIT-I)				
1.	a)	Derive the expression for maxima and minima of interference in thin films.	8 Marks	L3	CO1	PO1
	b)	Write short note on Double refraction. (OR)	4 Marks	L1	CO1	PO2
2.	a)	Explain the theory of a plane transmission diffraction grating.	9 Marks	L2	CO1	PO1
	b)	A half wave plate is fabricated for a wave length of 3800Å, for	3 Marks	L4	CO1	PO1
	,	what wave length does it work as a quarter wave plate.				
		UNIT-II				
3.	a)	Write Maxwell's equations in differential form.	4 Marks	L1	CO2	PO2
	b)	Show that the velocity of EM waves is same as the velocity of	8 Marks	L4	CO2	PO1
	-,	light. (OR)				
4.	a)	Derive the expression for the Numerical Aperture (NA) of an	6 Marks	L3	CO2	PO2
••	,	optical fibre.	0 1/10/11/2	20	002	102
	b)	Differentiate between the step index and graded index optical	6 Marks	L4	CO2	PO2
		fibres.				
(UNIT-III)						
5.	a)	Derive an expression for electron concentration in an intrinsic	6 Marks	L3	CO3	PO1
٥.	u)	semiconductors.	o ividing	23	005	101
	b)	Define Hall Effect. Obtain an expression for Hall coefficient.	6 Marks	L2	CO3	PO1
		1				PO2
		(OR)				
6.	a)	Explain the construction and working of semiconductor laser.	8 Marks	L2	CO3	PO1
	b)	Explain how solids are classified on the basis of energy band	4 Marks	L1	CO3	PO1
		gap.				
		UNIT-IV				
7.	a)	Explain the frequency dependence of polarization.	6 Marks	L1	CO4	PO1
	b)	Derive the Clausius-Mosotti relation in dielectrics subjected to	6 Marks	L2	CO4	PO2
		a static electric field.				
		(OR)				
8.	a)	Derive an expression for orbital magnetic moment of an	6 Marks	L3	CO4	PO2
		electron.				
	b)	Differentiate between soft and hard magnetic material based on	6 Marks	L4	CO4	PO1
		hysteresis curve.				
UNIT-V						
9.	a)	What are the critical parameters? Explain BCS theory.	8 Marks	L2	CO5	PO1
						PO2
	b)	Write short notes on high T _C super conductors.	4 Marks	L1	CO5	PO1
		(OR)				
10.	a)	Define Nano materials. Give the classification of Nano	4 Marks	L1	CO5	PO1
		materials.		_		PO2
	b)	Explain the synthesis of Nano materials by PLD method.	8 Marks	L2	CO5	PO1