회귀분석

선형관계의 강도

- \rightarrow 관측된 종속변수값(관측값): y_i
- ightharpoonup 선형관계로 설명되는 y 부분(예측값): $\widehat{y_i} = \widehat{\beta_0} + \widehat{\beta_1}x$
- \triangleright 선형관계로 설명되지 않는 y 부분(잔차): $e_i = y_i \widehat{y}_i = y_i (\widehat{\beta}_0 + \widehat{\beta}_1 x)$

$$> SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \widehat{\beta_0} - \widehat{\beta_1} x_i)^2 = S_{yy} - \frac{S_{xy}^2}{S_{xx}}$$

선형관계의 강도

>
$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \widehat{\beta_0} - \widehat{\beta_1} x_i)^2 = S_{yy} - \frac{S_{xy}^2}{S_{xx}}$$

$$> SST = S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

$$> S_{yy} = \left(S_{yy} - \frac{S_{xy}^2}{S_{xx}}\right) + \frac{S_{xy}^2}{S_{xx}} = SSE + \frac{S_{xy}^2}{S_{xx}}$$

 $\sum \frac{S_{xy}^2}{S_{xx}}$: 자료의 y 값들의 총변동 중에서 회귀모형에 의해서 설명될 수 있는 부분(회귀제곱합: SSR)

선형관계의 강도

▶ 총제곱합의 분해:

$$S_{yy}(y)$$
 총변동: SST) =
$$\frac{S_{xy}^{2}}{S_{xx}}(\text{선형관계로 설명 되는 변동: }SSR) + \left(S_{yy} - \frac{S_{xy}^{2}}{S_{xx}}\right)(\text{선형관계로 설명되지 않는 변동: }SSE)$$

▶ 결정계수:

$$R^2 = \frac{SSR}{SST} = \frac{S_{xy}^2}{S_{xx}S_{yy}} = 1 - \frac{SSE}{SST}$$

$$ightrarpoonup$$
 표본상관계수: $\mathbf{r} = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$ \Rightarrow $R^2 = r^2$

예제

예제. 다음 표는 어떤 알레르기 증세에 효과가 있다고 하는 새로 개발된 약품의 복용량(mg)과 효과가 지속되는 기간(일)을 기록한 자료이다.

복용량(x)										
지속기간(y)	9	5	12	9	14	16	22	18	24	22

잔차의 검토

▶ 단순선형회귀모형

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

오차 ε_i 에 대한 가정

- (1) ε_i 의 평균은 0이다.
- (2) ε_i 들은 서로 독립이다. (독립성)
- (3) ε_i 의 분산은 σ^2 이다. (등분산성)
- (4) ε_i 는 정규분포 $N(0, \sigma^2)$ 을 따른다. (정규성)

잔차의 검토 – 선형성, 등분산성 검정

➤ 잔차 vs. 적합값(예측값)

잔차의 검토 – 선형성, 등분산성 검정

▶ 잔차 vs. 독립변수값

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i$$
: 선형 관계

잔차의 검토 – 오차의 정규성 검정

- ▶ 잔차의 히스토그램
- ▶ 잔차의 정규확률그림

잔차의 검토 – 오차의 독립성 검정

▶ 관측시간에 따른 잔차의 산점도

잔차의 검토 – 오차의 독립성 검정

 $ightharpoonup e_i$ 와 e_{i-1} 의 산점도

수고하셨습니다.

▶ 과제 X