SBML Model Report

Model name: "Tang2010_PolyGlutamate"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah¹ and Carole J Proctor² at September 27th 2010 at 12:21 a.m. and last time modified at June third 2014 at 9:03 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	27
events	2	constraints	0
reactions	72	function definitions	0
global parameters	48	unit definitions	1
rules	1	initial assignments	0

Model Notes

This a model from the article:

Experimental and computational analysis of polyglutamine-mediated cytotoxicity.

Tang MY, Proctor CJ, Woulfe J, Gray DA. <u>PLoS Comput Biol.</u>2010 Sep 23;6(9). 20885783, **Abstract:**

Expanded polyglutamine (polyQ) proteins are known to be the causative agents of a number

¹EMBL-EBI, viji@ebi.ac.uk

²Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, UK, c.j.proctor@newcastle.ac.uk

of human neurodegenerative diseases but the molecular basis of their cytoxicity is still poorly understood. PolyQ tracts may impede the activity of the proteasome, and evidence from single cell imaging suggests that the sequestration of polyQ into inclusion bodies can reduce the proteasomal burden and promote cell survival, at least in the short term. The presence of misfolded protein also leads to activation of stress kinases such as p38MAPK, which can be cytotoxic. The relationships of these systems are not well understood. We have used fluorescent reporter systems imaged in living cells, and stochastic computer modeling to explore the relationships of polyQ, p38MAPK activation, generation of reactive oxygen species (ROS), proteasome inhibition, and inclusion body formation. In cells expressing a polyQ protein inclusion, body formation was preceded by proteasome inhibition but cytotoxicity was greatly reduced by administration of a p38MAPK inhibitor. Computer simulations suggested that without the generation of ROS, the proteasome inhibition and activation of p38MAPK would have significantly reduced toxicity. Our data suggest a vicious cycle of stress kinase activation and proteasome inhibition that is ultimately lethal to cells. There was close agreement between experimental data and the predictions of a stochastic computer model, supporting a central role for proteasome inhibition and p38MAPK activation in inclusion body formation and ROS-mediated cell death.

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2010 The BioModels.net Team. For more information see the terms of use.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Definition item

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cytosol			3	1	litre	Z	

3.1 Compartment cytosol

This is a three dimensional compartment with a constant size of one litre.

4 Species

This model contains 27 species. The boundary condition of two of these species is set to true so that these species' amount cannot be changed by any reaction. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

	Compartment	Derived Unit	Constant	Boundary Condi-
				tion
PolyQ	cytosol	item		
Proteasome	cytosol	item		
NatP	cytosol	item		\Box
MisP	cytosol	item		\Box
MisP_Proteasome	cytosol	item		
AggP1	cytosol	item		
AggP2	cytosol	item		\Box
AggP3	cytosol	item		\Box
AggP4	cytosol	item		
AggP5	cytosol	item	\Box	\Box
AggPolyQ1	cytosol	item		
AggPolyQ2	cytosol	item	\Box	\Box
AggPolyQ3	cytosol	item	\Box	\Box
AggPolyQ4	cytosol	item		
AggPolyQ5	cytosol	item		\Box
SeqAggP	cytosol	item		\Box
AggP_Proteasome	cytosol	item		\Box
mRFPu	cytosol	item		\Box
mRFPu_Proteasome	cytosol	item		\Box
PolyQ_Proteasome	cytosol	item		
ROS	cytosol	item		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
p38_P		cytosol	item	В	\Box
p38		cytosol	item		
Source		cytosol	item	\square	\square
Sink		cytosol	item	\square	\square
p38death		cytosol	item		
PIdeath		cytosol	item	\Box	\Box

5 Parameters

This model contains 48 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kaggPolyQ			$5 \cdot 10^{-8}$		\overline{Z}
kdisaggPol	yQ1		$5\cdot 10^{-7}$		$ \overline{\checkmark} $
kdisaggPol	yQ2		$4 \cdot 10^{-7}$		
kdisaggPol	y Q 3		$3 \cdot 10^{-7}$		
kdisaggPol	yQ4		$2 \cdot 10^{-7}$		
kdisaggPol	y Q 5		10^{-7}		
${\tt kseqPolyQ}$			$8 \cdot 10^{-7}$		
kinhprot			$5\cdot 10^{-9}$		
kaggMisP			10^{-11}		
kagg2MisP			10^{-10}		
kdisaggMis	P1		$5 \cdot 10^{-7}$		
kdisaggMis	P2		$4 \cdot 10^{-7}$		
kdisaggMis			$3 \cdot 10^{-7}$		
kdisaggMis	P4		$2 \cdot 10^{-7}$		$ \overline{\checkmark} $
kdisaggMis	P5		10^{-7}		
ksynmRFPu			0.138		
kbinmRFPu			$5 \cdot 10^{-7}$		
krelmRFPu			10^{-8}		
kdegmRFPu			0.005		
${\tt ksynPolyQ}$			0.007		
${\tt kbinPolyQ}$			$5 \cdot 10^{-8}$		
krelPolyQ			10^{-9}		
${\tt kdegPolyQ}$			0.003		
kgenROS			0.002		
kremROS			$2 \cdot 10^{-4}$		
kgenROSAgg	P		$5 \cdot 10^{-6}$		
kgenROSSeq.	AggP		10^{-7}		\square
kactp38			$5 \cdot 10^{-6}$		\square
kinactp38			0.002		
${\tt kseqMisP}$			10^{-9}		
kseqAggPPr	ot		$5 \cdot 10^{-7}$		
kseqPolyQP:	rot		$5 \cdot 10^{-7}$		\checkmark
kseqMisPPr	ot		$5 \cdot 10^{-7}$		\checkmark
kseqmRFPuP:	rot		$5 \cdot 10^{-7}$		
${\tt kseqmRFPu}$			10^{-10}		\checkmark
${\tt ksynNatP}$			2.400		
kmisfold			$2 \cdot 10^{-6}$		

Id	Name	SBO	Value	Unit	Constant
krefold			$8 \cdot 10^{-5}$		lacksquare
${\tt kbinMisPProt}$			$5 \cdot 10^{-8}$		$\overline{\mathbf{Z}}$
krelMisPProt			10^{-8}		
kdegMisP			0.010		$\overline{\mathbf{Z}}$
kgenROSp38			$7 \cdot 10^{-4}$		$\overline{\mathbf{Z}}$
kp38act			1.000		
kp38death			$9 \cdot 10^{-8}$		
kPIdeath			$2.5 \cdot 10^{-8}$		
kproteff			1.000		\Box
kalive			1.000		
oligomers	oligomers		0.000		

6 Rule

This is an overview of one rule.

6.1 Rule oligomers

Rule oligomers is an assignment rule for parameter oligomers:

$$oligomers = AggPolyQ1 + AggPolyQ2 + AggPolyQ3 + AggPolyQ4 + AggPolyQ5 \quad (1) \\$$

Derived unit item

7 Events

This is an overview of two events. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

7.1 Event PIcellDeath

Trigger condition

$$PIdeath > 0 (2)$$

Assignment

$$kalive = 0 (3)$$

7.2 Event p38cellDeath

8 Reactions

This model contains 72 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

		Table 5. Overview of an reactions			
$N_{\bar{0}}$	Id Name	Reaction Equation SBO			
1	polyQSynthesis	$Source \longrightarrow PolyQ$			
2	polyqProteasomeBinding	$PolyQ + Proteasome \longrightarrow PolyQ_Proteasome$			
3	polyqProteasomeRelease	$PolyQ_Proteasome \longrightarrow PolyQ + Proteasome$			
4	PolyQDegradation	PolyQ_Proteasome → Proteasome			
5	mRFPuSynthesis	Source \longrightarrow mRFPu			
6	mRFPuProteasomeBinding	$mRFPu+Proteasome \longrightarrow mRFPu_Proteasome$			
7	mRFPuProteasomeRelease	$mRFPu_Proteasome \longrightarrow mRFPu+Proteasome$			
8	mRFPuDegradation	$mRFPu_Proteasome \longrightarrow Proteasome$			
9	PolyQAggregation1	$2 \operatorname{PolyQ} + \operatorname{ROS} \longrightarrow \operatorname{AggPolyQ1} + \operatorname{ROS}$			
10	PolyQAggregation2	$PolyQ + AggPolyQ1 + ROS \longrightarrow AggPolyQ2 + ROS$			
11	PolyQAggregation3	$PolyQ + AggPolyQ2 + ROS \longrightarrow AggPolyQ3 + ROS$			
12	PolyQAggregation4	$PolyQ + AggPolyQ3 + ROS \longrightarrow AggPolyQ4 + ROS$			
13	PolyQAggregation5	$PolyQ + AggPolyQ4 + ROS \longrightarrow AggPolyQ5 + ROS$			
14	PolyQDisaggregation5	tion5 $AggPolyQ5 \longrightarrow PolyQ + AggPolyQ4$			
15	PolyQDisaggregation4	$AggPolyQ4 \longrightarrow PolyQ + AggPolyQ3$			
16	PolyQDisaggregation3	$AggPolyQ3 \longrightarrow PolyQ + AggPolyQ2$			
17	PolyQDisaggregation2	$AggPolyQ2 \longrightarrow PolyQ + AggPolyQ1$			
18	PolyQDisaggregation1 $AggPolyQ1 \longrightarrow 2 PolyQ$				
19	$ \texttt{PolyQInclusionFormation} \qquad \qquad \texttt{PolyQ} + \texttt{AggPolyQ5} \longrightarrow \texttt{7} \texttt{SeqAggP} $				
20	PolyQInclusionGrowth	$\operatorname{PolyQ} + \operatorname{SeqAggP} \longrightarrow 2\operatorname{SeqAggP}$			
21	ProteasomeInhibition1	$\verb roteasomeInhibition1 AggPolyQ1 + Proteasome \longrightarrow AggP_Proteasome $			
22	ProteasomeInhibition2	$AggPolyQ2 + Proteasome \longrightarrow AggP_Proteasome$			
23	ProteasomeInhibition3	$AggPolyQ3 + Proteasome \longrightarrow AggP_Proteasome$			

N⁰	Id Name	Reaction Equation SBO		
24	ProteasomeInhibition4	AggPolyQ4 + Proteasome → AggP_Proteasome		
25	ProteasomeInhibition5	$AggPolyQ5 + Proteasome \longrightarrow AggP_Proteasome$		
26	mRFPuProteasomeSequestering	mRFPu_Proteasome + SeqAggP \longrightarrow 2 SeqAggP		
27	mRFPuSequestering	$mRFPu + SeqAggP \longrightarrow 2 SeqAggP$		
28	ROSgenerationBasal	$Source \longrightarrow ROS$		
29	ROSgenerationSmallAggPolyQ1	$AggPolyQ1 \longrightarrow AggPolyQ1 + ROS$		
30	ROSgenerationSmallAggPolyQ2	$AggPolyQ2 \longrightarrow AggPolyQ2 + ROS$		
31	ROSgenerationSmallAggPolyQ3	$AggPolyQ3 \longrightarrow AggPolyQ3 + ROS$		
32	ROSgenerationSmallAggPolyQ4	$AggPolyQ4 \longrightarrow AggPolyQ4 + ROS$		
33	ROSgenerationSmallAggPolyQ5	$AggPolyQ5 \longrightarrow AggPolyQ5 + ROS$		
34	ROSgenerationAggPProteasome	$AggP_Proteasome \longrightarrow AggP_Proteasome + ROS$		
35	ROSremoval	$ROS \longrightarrow Sink$		
36	p38activation	$ROS + p38 \longrightarrow ROS + p38 P$		
37	p38inactivation	$p38.P \longrightarrow p38$		
38	AggP-	$AggP$ _Proteasome + Seq $AggP \longrightarrow 2$ Seq $AggP$		
	_ProteasomeSequestering			
39	PolyQ-	PolyQ_Proteasome + SeqAggP \longrightarrow 2 SeqAggP		
	_ProteasomeSequestering	, , , , , , , , , , , , , , , , , , , ,		
40	MisP-	$MisP_Proteasome + SeqAggP \longrightarrow 2 SeqAggP$		
	_ProteasomeSequestering	, 60		
41	ProteinSynthesis	Source \longrightarrow NatP		
42	Misfolding	$NatP + ROS \longrightarrow MisP + ROS$		
43	Refolding	MisP → NatP		
44	MisP-	MisP+Proteasome → MisP-Proteasome		
	_ProteasomeBinding			
45	MisP-	$MisP_Proteasome \longrightarrow MisP+Proteasome$		
	_ProteasomeRelease			
46	MisP-	MisP_Proteasome → Proteasome		
	_Degradation			

Nº	Id Name	Reaction Equation	SBO
47	MisP-	$2 \operatorname{MisP} \longrightarrow \operatorname{AggP1}$	
	_Aggregation1		
48	MisP-	$MisP + AggP1 \longrightarrow AggP2$	
	_Aggregation2		
49	MisP-	$MisP + AggP2 \longrightarrow AggP3$	
	_Aggregation3		
50	MisP-	$MisP + AggP3 \longrightarrow AggP4$	
	_Aggregation4		
51	MisP-	$MisP + AggP4 \longrightarrow AggP5$	
	$_$ Aggregation5		
52	MisP-	$AggP1 \longrightarrow 2 MisP$	
	_Disaggregation1		
53	MisP-	$AggP2 \longrightarrow MisP + AggP1$	
	_Disaggregation2		
54	MisP-	$AggP3 \longrightarrow MisP + AggP2$	
	_Disaggregation3		
55	MisP-	$AggP4 \longrightarrow MisP + AggP3$	
	_Disaggregation4	A D5 A5 D A D4	
56	MisP-	$AggP5 \longrightarrow MisP + AggP4$	
	_Disaggregation5	M. D. A. D. G. G. A. D.	
57	MisP-	$MisP + AggP5 \longrightarrow 7 SeqAggP$	
5 0	_InclusionFormation	M'-D + CAD 2CAD	
58 50	MisPInclusionGrowth	$MisP + SeqAggP \longrightarrow 2 SeqAggP$	
59 60	ProteasomeInhibitionAggP1	$AggP1 + Proteasome \longrightarrow AggP_Proteasome$	
	ProteasomeInhibitionAggP2	$AggP2 + Proteasome \longrightarrow AggP_Proteasome$	
61	ProteasomeInhibitionAggP3	$AggP3 + Proteasome \longrightarrow AggP_Proteasome$	
62 63	ProteasomeInhibitionAggP4	$AggP4 + Proteasome \longrightarrow AggP_Proteasome$	
64	ProteasomeInhibitionAggP5	$AggP5 + Proteasome \longrightarrow AggP_Proteasome$ $AggP1 \longrightarrow AggP1 + ROS$	
04	ROSgenerationSmallAggP1	$Aggr1 \longrightarrow Aggr1 + ROS$	

N⁰	Id Name	Reaction Equation SBO
65	ROSgenerationSmallAggP2	$AggP2 \longrightarrow AggP2 + ROS$
66	ROSgenerationSmallAggP3	$AggP3 \longrightarrow AggP3 + ROS$
67	ROSgenerationSmallAggP4	$AggP4 \longrightarrow AggP4 + ROS$
68	ROSgenerationSmallAggP5	$AggP5 \longrightarrow AggP5 + ROS$
69	p38_P_ROS-	$p38_P \longrightarrow p38_P + ROS$
	_Generation	
70	ROSgenerationSeqAggP	$SeqAggP \longrightarrow SeqAggP + ROS$
71	P38DeathPathway	$p38_P \longrightarrow p38_P + p38$ death
72	PIDeathPathway	$AggP_Proteasome \longrightarrow AggP_Proteasome + PIdeath$

$\textbf{8.1 Reaction} \; \texttt{polyQSynthesis}$

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Source \longrightarrow PolyQ \tag{6}$$

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
Source		

Product

Table 7: Properties of each product.

Id	Name	SBO
PolyQ		

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{ksynPolyQ} \cdot \text{Source} \cdot \text{kalive}$$
 (7)

8.2 Reaction polyqProteasomeBinding

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$PolyQ + Proteasome \longrightarrow PolyQ Proteasome$$
 (8)

Reactants

Table 8: Properties of each reactant.

Id	Name	SBO
PolyQ		
Proteasome		

Product

Table 9: Properties of each product.

racie 3. Freperiies of each producti			
Id	Name	SBO	
PolyQ_Proteasome			

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{kbinPolyQ} \cdot \text{PolyQ} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (9)

8.3 Reaction polyqProteasomeRelease

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$PolyQ_Proteasome \longrightarrow PolyQ + Proteasome$$
 (10)

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
PolyQ_Proteasome		

Products

Table 11: Properties of each product.

Id	Name	SBO
PolyQ		
Proteasome		

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{krelPolyQ} \cdot \text{PolyQ} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (11)

8.4 Reaction PolyQDegradation

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$PolyQ_Proteasome \longrightarrow Proteasome \tag{12}$$

Reactant

Table 12: Properties of each reactant.

Id Name SBO

PolyQ_Proteasome

Product

Table 13: Properties of each product.

Id	Name	SBO
Proteasome		

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{kdegPolyQ} \cdot \text{PolyQ} \cdot \text{Proteasome} \cdot \text{kalive} \cdot \text{kproteff}$$
 (13)

8.5 Reaction mRFPuSynthesis

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Source \longrightarrow mRFPu \tag{14}$$

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
Source		

Product

Table 15: Properties of each product.

Id	Name	SBO
mRFPu		

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{ksynmRFPu} \cdot \text{Source} \cdot \text{kalive}$$
 (15)

8.6 Reaction mRFPuProteasomeBinding

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$mRFPu + Proteasome \longrightarrow mRFPu_Proteasome$$
 (16)

Reactants

Table 16: Properties of each reactant.

Id	Name	SBO
mRFPu		
Proteasome		

Product

Table 17: Properties of each product.

Id	Name	SBO
mRFPu_Proteasome		

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{kbinmRFPu} \cdot \text{mRFPu} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (17)

8.7 Reaction mRFPuProteasomeRelease

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$mRFPu_Proteasome \longrightarrow mRFPu+Proteasome$$
 (18)

Reactant

Table 18: Properties of each reactant.

Id Name SBO

Iu		Ivanic	эро
mR.FP11	Proteasome		

Products

Table 19: Properties of each product.

Id	Name	SBO
mRFPu		
Proteasome		

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{krelmRFPu_Proteasome} \cdot \text{kalive}$$
 (19)

8.8 Reaction mRFPuDegradation

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$mRFPu_Proteasome \longrightarrow Proteasome$$
 (20)

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
mRFPu_Proteasome		

Product

Table 21: Properties of each product.

Id	Name	SBO
Proteasome		

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{kdegmRFPu} \cdot \text{mRFPu} \cdot \text{Proteasome} \cdot \text{kalive} \cdot \text{kproteff}$$
 (21)

8.9 Reaction PolyQAggregation1

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$2 \text{PolyQ} + \text{ROS} \longrightarrow \text{AggPolyQ1} + \text{ROS}$$
 (22)

Reactants

Table 22: Properties of each reactant.

Id	Name	SBO
PolyQ ROS		

Products

Table 23: Properties of each product.

Id	Name	SBO
AggPolyQ1 ROS		

Kinetic Law

Derived unit contains undeclared units

$$\nu_9 = kaggPolyQ \cdot PolyQ \cdot (PolyQ - 1) \cdot 0.5 \cdot \frac{ROS^2}{10^2 + ROS^2} \cdot kalive \tag{23}$$

8.10 Reaction PolyQAggregation2

This is an irreversible reaction of three reactants forming two products.

Reaction equation

$$PolyQ + AggPolyQ1 + ROS \longrightarrow AggPolyQ2 + ROS$$
 (24)

Reactants

Table 24: Properties of each reactant.

Id	Name	SBO
PolyQ AggPolyQ1 ROS		

Products

Table 25: Properties of each product.

Id	Name	SBO
AggPolyQ2 ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = kaggPolyQ \cdot PolyQ \cdot AggPolyQ1 \cdot \frac{ROS^2}{10^2 + ROS^2} \cdot kalive \tag{25}$$

8.11 Reaction PolyQAggregation3

This is an irreversible reaction of three reactants forming two products.

Reaction equation

$$PolyQ + AggPolyQ2 + ROS \longrightarrow AggPolyQ3 + ROS$$
 (26)

Reactants

Table 26: Properties of each reactant.

Id	Name	SBO
PolyQ AggPolyQ2 ROS		

Products

Table 27: Properties of each product.

Id	Name	SBO
AggPolyQ3 ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{kaggPolyQ} \cdot \text{PolyQ} \cdot \text{AggPolyQ2} \cdot \frac{\text{ROS}^2}{10^2 + \text{ROS}^2} \cdot \text{kalive}$$
 (27)

8.12 Reaction PolyQAggregation4

This is an irreversible reaction of three reactants forming two products.

Reaction equation

$$PolyQ + AggPolyQ3 + ROS \longrightarrow AggPolyQ4 + ROS$$
 (28)

Reactants

Table 28: Properties of each reactant.

Id	Name	SBO
PolyQ AggPolyQ3 ROS		

Products

Table 29: Properties of each product.

Id	Name	SBO
AggPolyQ4 ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{kaggPolyQ} \cdot \text{PolyQ} \cdot \text{AggPolyQ3} \cdot \frac{\text{ROS}^2}{10^2 + \text{ROS}^2} \cdot \text{kalive}$$
 (29)

8.13 Reaction PolyQAggregation5

This is an irreversible reaction of three reactants forming two products.

Reaction equation

$$PolyQ + AggPolyQ4 + ROS \longrightarrow AggPolyQ5 + ROS$$
 (30)

Reactants

Table 30: Properties of each reactant.

Id	Name	SBO
PolyQ AggPolyQ4 ROS	:	

Products

Table 31: Properties of each product.

Id	Name	SBO
AggPolyQ5 ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{kaggPolyQ} \cdot \text{PolyQ} \cdot \text{AggPolyQ4} \cdot \frac{\text{ROS}^2}{10^2 + \text{ROS}^2} \cdot \text{kalive}$$
 (31)

8.14 Reaction PolyQDisaggregation5

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$AggPolyQ5 \longrightarrow PolyQ + AggPolyQ4 \tag{32}$$

Reactant

Table 32: Properties of each reactant.

Id	Name	SBO
AggPolyQ5		

Products

Table 33: Properties of each product.

Id	Name	SBO
PolyQ		
AggPolyQ4		

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{kdisaggPolyQ5} \cdot \text{AggPolyQ5} \cdot \text{kalive}$$
 (33)

8.15 Reaction PolyQDisaggregation4

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$AggPolyQ4 \longrightarrow PolyQ + AggPolyQ3 \tag{34}$$

Reactant

Table 34: Properties of each reactant.

Id	Name	SBO
AggPolyQ4		

Products

Table 35: Properties of each product.

Id	Name	SBO
PolyQ AggPolyQ3		

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{kdisaggPolyQ4} \cdot \text{AggPolyQ4} \cdot \text{kalive}$$
 (35)

8.16 Reaction PolyQDisaggregation3

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$AggPolyQ3 \longrightarrow PolyQ + AggPolyQ2 \tag{36}$$

Reactant

Table 36: Properties of each reactant.

Id	Name	SBO
AggPolyQ3		

Products

Table 37: Properties of each product.

Id	Name	SBO
PolyQ		
AggPolyQ2		

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{kdisaggPolyQ3} \cdot \text{AggPolyQ3} \cdot \text{kalive}$$
 (37)

8.17 Reaction PolyQDisaggregation2

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$AggPolyQ2 \longrightarrow PolyQ + AggPolyQ1 \tag{38}$$

Reactant

Table 38: Properties of each reactant.

Id	Name	SBO
AggPolyQ2		

Products

Table 39: Properties of each product.

Id	Name	SBO
PolyQ		
AggPolyQ1		

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{kdisaggPolyQ2} \cdot \text{AggPolyQ2} \cdot \text{kalive}$$
 (39)

8.18 Reaction PolyQDisaggregation1

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$AggPolyQ1 \longrightarrow 2PolyQ \tag{40}$$

Reactant

Table 40: Properties of each reactant.

Id	Name	SBO
AggPolyQ1		

Product

Table 41: Properties of each product.

Id	Name	SBO
PolyQ		

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{kdisaggPolyQ1} \cdot \text{AggPolyQ1} \cdot \text{kalive}$$
 (41)

8.19 Reaction PolyQInclusionFormation

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$PolyQ + AggPolyQ5 \longrightarrow 7 SeqAggP$$
 (42)

Reactants

Table 42: Properties of each reactant.

Id	Name	SBO
PolyQ		
AggPolyQ5		

Product

Table 43: Properties of each product.

Id	Name	SBO
SeqAggP		

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \text{kaggPolyQ} \cdot \text{PolyQ} \cdot \text{AggPolyQ5} \cdot \text{kalive}$$
 (43)

8.20 Reaction PolyQInclusionGrowth

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$PolyQ + SeqAggP \longrightarrow 2 SeqAggP \tag{44}$$

Reactants

Table 44: Properties of each reactant.

Id	Name	SBO
PolyQ		
${\tt SeqAggP}$		

Product

Table 45: Properties of each product.

Id	Name	SBO
SeqAggP		_

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = kseqPolyQ \cdot PolyQ \cdot SeqAggP \cdot kalive$$
 (45)

8.21 Reaction ProteasomeInhibition1

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$AggPolyQ1 + Proteasome \longrightarrow AggP_Proteasome$$
 (46)

Reactants

Table 46: Properties of each reactant.

Id	Name	SBO
AggPolyQ1 Proteasome		

Product

Table 47: Properties of each product.

Id	Name	SBO
AggP_Proteasome		

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{kinhprot} \cdot \text{AggPolyQ1} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (47)

8.22 Reaction ProteasomeInhibition2

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$AggPolyQ2 + Proteasome \longrightarrow AggP_Proteasome$$
 (48)

Reactants

Table 48: Properties of each reactant.

Id	Name	SBO
AggPolyQ2 Proteasome		

Product

Table 49: Properties of each product.

ruble 15. 1 Toperties	or cach p	loudet.
Id	Name	SBO
AggP_Proteasome		

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \text{kinhprot} \cdot \text{AggPolyQ2} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (49)

8.23 Reaction ProteasomeInhibition3

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$AggPolyQ3 + Proteasome \longrightarrow AggP_Proteasome$$
 (50)

Reactants

Table 50: Properties of each reactant.

Id	Name	SBO
AggPolyQ3 Proteasome		

Product

Table 51: Properties of each product.

Id	Name	SBO
AggP_Proteasome		

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{kinhprot} \cdot \text{AggPolyQ3} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (51)

8.24 Reaction ProteasomeInhibition4

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$AggPolyQ4 + Proteasome \longrightarrow AggP_Proteasome$$
 (52)

Reactants

Table 52: Properties of each reactant.

Name	SBO
Ī	Name

Product

Table 53: Properties of each product.

Id	Name	SBO
AggP_Proteasome		

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{kinhprot} \cdot \text{AggPolyQ4} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (53)

8.25 Reaction ProteasomeInhibition5

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$AggPolyQ5 + Proteasome \longrightarrow AggP_Proteasome$$
 (54)

Reactants

Table 54: Properties of each reactant.

Id	Name	SBO
AggPolyQ5		

Id	Name	SBO
Proteasome		

Product

Table 55: Properties of each product.

Id	Name	SBO
AggP_Proteasome		

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \text{kinhprot} \cdot \text{AggPolyQ5} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (55)

8.26 Reaction mRFPuProteasomeSequestering

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$mRFPu_Proteasome + SeqAggP \longrightarrow 2SeqAggP$$
 (56)

Reactants

Table 56: Properties of each reactant.

Id	Name	SBO
${\tt mRFPu_Proteasome}$		
SeqAggP		

Product

Table 57: Properties of each product.

Id	Name	SBO
SeqAggP		

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \text{kseqmRFPuProt} \cdot \text{mRFPu_Proteasome} \cdot \text{SeqAggP} \cdot \text{kalive}$$
 (57)

8.27 Reaction mRFPuSequestering

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$mRFPu + SeqAggP \longrightarrow 2 SeqAggP$$
 (58)

Reactants

Table 58: Properties of each reactant.

Id	Name	SBO
mRFPu		_
${\tt SeqAggP}$		

Product

Table 59: Properties of each product.

Id	Name	SBO
SeqAggP		

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = \text{kseqmRFPu} \cdot \text{mRFPu} \cdot \text{SeqAggP} \cdot \text{kalive}$$
 (59)

8.28 Reaction ROSgenerationBasal

This is an irreversible reaction of one reactant forming one product.

Reaction equation

Source
$$\longrightarrow$$
 ROS (60)

Reactant

Table 60: Properties of each reactant.

Id	Name	SBO
Source		

Product

Table 61: Properties of each product.

Id	Name	SBO
ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{28} = \text{kgenROS} \cdot \text{Source} \cdot \text{kalive}$$
 (61)

8.29 Reaction ROSgenerationSmallAggPolyQ1

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$AggPolyQ1 \longrightarrow AggPolyQ1 + ROS$$
 (62)

Reactant

Table 62: Properties of each reactant.

Id	Name	SBO
AggPolyQ1		

Products

Table 63: Properties of each product.

Id	Name	SBO
AggPolyQ1		

Id	Name	SBO
ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = \text{kgenROSAggP} \cdot \text{AggPolyQ1} \cdot \text{kalive}$$
 (63)

8.30 Reaction ROSgenerationSmallAggPolyQ2

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$AggPolyQ2 \longrightarrow AggPolyQ2 + ROS$$
 (64)

Reactant

Table 64: Properties of each reactant.

Id	Name	SBO
AggPolyQ2		

Products

Table 65: Properties of each product.

Id	Name	SBO
AggPolyQ2 ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{30} = kgenROSAggP \cdot AggPolyQ2 \cdot kalive$$
 (65)

8.31 Reaction ROSgenerationSmallAggPolyQ3

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$AggPolyQ3 \longrightarrow AggPolyQ3 + ROS \tag{66}$$

Reactant

Table 66: Properties of each reactant.

Id	Name	SBO
AggPolyQ3		

Products

Table 67: Properties of each product.

Id	Name	SBO
AggPolyQ3 ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = kgenROSAggP \cdot AggPolyQ3 \cdot kalive$$
 (67)

8.32 Reaction ROSgenerationSmallAggPolyQ4

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$AggPolyQ4 \longrightarrow AggPolyQ4 + ROS \tag{68}$$

Reactant

Table 68: Properties of each reactant.

Id	Name	SBO
AggPolyQ4		

Products

Table 69: Properties of each product.

Id	Name	SBO
AggPolyQ4 ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{32} = kgenROSAggP \cdot AggPolyQ4 \cdot kalive$$
 (69)

8.33 Reaction ROSgenerationSmallAggPolyQ5

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$AggPolyQ5 \longrightarrow AggPolyQ5 + ROS$$
 (70)

Reactant

Table 70: Properties of each reactant.

Id	Name	SBO
AggPolyQ5		

Products

Table 71: Properties of each product.

Id	Name	SBO
AggPolyQ5 ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{33} = \text{kgenROSAggP} \cdot \text{AggPolyQ5} \cdot \text{kalive}$$
 (71)

8.34 Reaction ROSgenerationAggPProteasome

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$AggP_Proteasome \longrightarrow AggP_Proteasome + ROS$$
 (72)

Reactant

Table 72: Properties of each reactant.

Id	Name	SBO
AggP_Proteasome		

Products

Table 73: Properties of each product.

Id	Name	SBO
AggP_Proteasome ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{34} = \text{kgenROSAggP} \cdot \text{AggP_Proteasome} \cdot \text{kalive}$$
 (73)

8.35 Reaction ROSremoval

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$ROS \longrightarrow Sink$$
 (74)

Reactant

Table 74: Properties of each reactant.

Id	Name	SBO
ROS		

Table 75: Properties of each product.

Id	Name	SBO
Sink		

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = \text{kremROS} \cdot \text{ROS} \cdot \text{kalive}$$
 (75)

8.36 Reaction p38activation

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$ROS + p38 \longrightarrow ROS + p38_P \tag{76}$$

Reactants

Table 76: Properties of each reactant.

Id	Name	SBO
ROS		
p38		

Products

Table 77: Properties of each product.

Id	Name	SBO
ROS		
p38_P		

Kinetic Law

$$v_{36} = \text{kactp38} \cdot \text{ROS} \cdot \text{p38} \cdot \text{kalive}$$
 (77)

8.37 Reaction p38inactivation

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$p38_P \longrightarrow p38 \tag{78}$$

Reactant

Table 78: Properties of each reactant.

Id	Name	SBO
p38_P		

Product

Table 79: Properties of each product.

Id	Name	SBO
p38		

Kinetic Law

Derived unit contains undeclared units

$$v_{37} = \text{kinactp38} \cdot \text{p38} \cdot \text{P} \cdot \text{kalive}$$
 (79)

8.38 Reaction AggP_ProteasomeSequestering

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$AggP_Proteasome + SeqAggP \longrightarrow 2 SeqAggP$$
 (80)

Reactants

Table 80: Properties of each reactant.

Id	Name	SBO
AggP_Proteasome SeqAggP		

Table 81: Properties of each product.

Id	Name	SBO
SeqAggP		

Kinetic Law

Derived unit contains undeclared units

$$v_{38} = \text{kseqAggPProt} \cdot \text{AggP_Proteasome} \cdot \text{SeqAggP} \cdot \text{kalive}$$
 (81)

8.39 Reaction PolyQ_ProteasomeSequestering

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$PolyQ_Proteasome + SeqAggP \longrightarrow 2SeqAggP$$
 (82)

Reactants

Table 82: Properties of each reactant.

Id	Name	SBO
PolyQ_Proteasome SeqAggP		

Product

Table 83: Properties of each product.

Id	Name	SBO
SeqAggP		

Kinetic Law

$$v_{39} = \text{kseqPolyQProt} \cdot \text{PolyQ_Proteasome} \cdot \text{SeqAggP} \cdot \text{kalive}$$
 (83)

8.40 Reaction MisP_ProteasomeSequestering

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$MisP_Proteasome + SeqAggP \longrightarrow 2 SeqAggP$$
 (84)

Reactants

Table 84: Properties of each reactant.

Id	Name	SBO
MisP_Proteasome		
${\tt SeqAggP}$		

Product

Table 85: Properties of each product.

Id	Name	SBO
SeqAggP		

Kinetic Law

Derived unit contains undeclared units

$$v_{40} = \text{kseqMisPProt} \cdot \text{MisP_Proteasome} \cdot \text{SeqAggP} \cdot \text{kalive}$$
 (85)

8.41 Reaction ProteinSynthesis

This is an irreversible reaction of one reactant forming one product.

Reaction equation

Source
$$\longrightarrow$$
 NatP (86)

Reactant

Table 86: Properties of each reactant.

Id	Name	SBO
Source		

Table 87: Properties of each product.

Id	Name	SBO
NatP		

Kinetic Law

Derived unit contains undeclared units

$$v_{41} = \text{ksynNatP} \cdot \text{Source} \cdot \text{kalive}$$
 (87)

8.42 Reaction Misfolding

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$NatP + ROS \longrightarrow MisP + ROS$$
 (88)

Reactants

Table 88: Properties of each reactant.

Id	Name	SBO
NatP		·
ROS		

Products

Table 89: Properties of each product.

Id	Name	SBO
MisP		
ROS		

Kinetic Law

$$v_{42} = \text{kmisfold} \cdot \text{NatP} \cdot \text{ROS} \cdot \text{kalive}$$
 (89)

8.43 Reaction Refolding

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$MisP \longrightarrow NatP$$
 (90)

Reactant

Table 90: Properties of each reactant.

Id	Name	SBO
MisP		

Product

Table 91: Properties of each product.

Id	Name	SBO
NatP		

Kinetic Law

Derived unit contains undeclared units

$$v_{43} = \text{krefold} \cdot \text{MisP} \cdot \text{kalive}$$
 (91)

8.44 Reaction MisP_ProteasomeBinding

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$MisP + Proteasome \longrightarrow MisP_Proteasome$$
 (92)

Reactants

Table 92: Properties of each reactant.

Id	Name	SBO
MisP		_
Proteasome		

Table 93: Properties of each product.

ruere yet rreperiors	or caren p	
Id	Name	SBO
MisP_Proteasome		

Kinetic Law

Derived unit contains undeclared units

$$v_{44} = \text{kbinMisPProt} \cdot \text{MisP} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (93)

8.45 Reaction MisP_ProteasomeRelease

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$MisP_Proteasome \longrightarrow MisP+Proteasome$$
 (94)

Reactant

Table 94: Properties of each reactant.

Id	Name	SBO
MisP_Proteasome		

Products

Table 95: Properties of each product.

Id	Name	SBO
MisP		
Proteasome		

Kinetic Law

$$v_{45} = \text{krelMisPProt} \cdot \text{MisP_Proteasome} \cdot \text{kalive}$$
 (95)

8.46 Reaction MisP_Degradation

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$MisP_Proteasome \longrightarrow Proteasome$$
 (96)

Reactant

Table 96: Properties of each reactant.

Id Name SBO

MisP_Proteasome

Product

Table 97: Properties of each product.

Id	Name	SBO
Proteasome		

Kinetic Law

Derived unit contains undeclared units

$$v_{46} = \text{kdegMisP} \cdot \text{MisP_Proteasome} \cdot \text{kalive} \cdot \text{kproteff}$$
 (97)

8.47 Reaction MisP_Aggregation1

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$2MisP \longrightarrow AggP1$$
 (98)

Reactant

Table 98: Properties of each reactant.

Id	Name	SBO
MisP		

Table 99: Properties of each product.

Id	Name	SBO
AggP1		

Kinetic Law

Derived unit contains undeclared units

$$v_{47} = \text{kaggMisP} \cdot \text{MisP} \cdot (\text{MisP} - 1) \cdot 0.5 \cdot \text{kalive}$$
 (99)

8.48 Reaction MisP_Aggregation2

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$MisP + AggP1 \longrightarrow AggP2 \tag{100}$$

Reactants

Table 100: Properties of each reactant.

Id	Name	SBO
MisP		
AggP1		

Product

Table 101: Properties of each product.

Id	Name	SBO
AggP2		

Kinetic Law

$$v_{48} = \text{kagg2MisP} \cdot \text{MisP} \cdot \text{AggP1} \cdot \text{kalive}$$
 (101)

8.49 Reaction MisP_Aggregation3

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$MisP + AggP2 \longrightarrow AggP3 \tag{102}$$

Reactants

Table 102: Properties of each reactant.

Id	Name	SBO
MisP		
AggP2		

Product

Table 103: Properties of each product.

Id	Name	SBO
AggP3		

Kinetic Law

Derived unit contains undeclared units

$$v_{49} = \text{kagg2MisP} \cdot \text{MisP} \cdot \text{AggP2} \cdot \text{kalive}$$
 (103)

8.50 Reaction MisP_Aggregation4

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$MisP + AggP3 \longrightarrow AggP4 \tag{104}$$

Reactants

Table 104: Properties of each reactant.

Id	Name	SBO
MisP		

Id	Name	SBO
AggP3		

Table 105: Properties of each product.

Id	Name	SBO
AggP4		

Kinetic Law

Derived unit contains undeclared units

$$v_{50} = \text{kagg2MisP} \cdot \text{MisP} \cdot \text{AggP3} \cdot \text{kalive}$$
 (105)

8.51 Reaction MisP_Aggregation5

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$MisP + AggP4 \longrightarrow AggP5 \tag{106}$$

Reactants

Table 106: Properties of each reactant.

Id	Name	SBO
MisP		
AggP4		

Product

Table 107: Properties of each product.

Id	Name	SBO
AggP5		

Kinetic Law

Derived unit contains undeclared units

$$v_{51} = \text{kagg2MisP} \cdot \text{MisP} \cdot \text{AggP4} \cdot \text{kalive}$$
 (107)

8.52 Reaction MisP_Disaggregation1

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$AggP1 \longrightarrow 2MisP \tag{108}$$

Reactant

Table 108: Properties of each reactant.

Id	Name	SBO
AggP1		

Product

Table 109: Properties of each product.

Id	Name	SBO
MisP		

Kinetic Law

Derived unit contains undeclared units

$$v_{52} = \text{kdisaggMisP1} \cdot \text{AggP1} \cdot \text{kalive}$$
 (109)

8.53 Reaction MisP_Disaggregation2

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$AggP2 \longrightarrow MisP + AggP1 \tag{110}$$

Reactant

Table 110: Properties of each reactant.

Id	Name	SBO
AggP2		

Table 111: Properties of each product.

Id	Name	SBO
MisP		
AggP1		

Kinetic Law

Derived unit contains undeclared units

$$v_{53} = \text{kdisaggMisP2} \cdot \text{AggP2} \cdot \text{kalive}$$
 (111)

8.54 Reaction MisP_Disaggregation3

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$AggP3 \longrightarrow MisP + AggP2 \tag{112}$$

Reactant

Table 112: Properties of each reactant.

Id	Name	SBO
AggP3		

Products

Table 113: Properties of each product.

Id	Name	SBO
MisP		
AggP2		

Kinetic Law

Derived unit contains undeclared units

$$v_{54} = \text{kdisaggMisP3} \cdot \text{AggP3} \cdot \text{kalive}$$
 (113)

8.55 Reaction MisP_Disaggregation4

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$AggP4 \longrightarrow MisP + AggP3 \tag{114}$$

Reactant

Table 114: Properties of each reactant.

Id	Name	SBO
AggP4		

Products

Table 115: Properties of each product.

Id	Name	SBO
MisP		
AggP3		

Kinetic Law

Derived unit contains undeclared units

$$v_{55} = \text{kdisaggMisP4} \cdot \text{AggP4} \cdot \text{kalive}$$
 (115)

8.56 Reaction MisP_Disaggregation5

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$AggP5 \longrightarrow MisP + AggP4 \tag{116}$$

Reactant

Table 116: Properties of each reactant.

Id	Name	SBO
AggP5		

Products

Table 117: Properties of each product.

Id	Name	SBO
MisP		
AggP4		

Kinetic Law

Derived unit contains undeclared units

$$v_{56} = \text{kdisaggMisP5} \cdot \text{AggP5} \cdot \text{kalive}$$
 (117)

8.57 Reaction MisP_InclusionFormation

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$MisP + AggP5 \longrightarrow 7 SeqAggP$$
 (118)

Reactants

Table 118: Properties of each reactant.

Id	Name	SBO
MisP		
AggP5		

Product

Table 119: Properties of each product.

Id	Name	SBO
SeqAggP		

Kinetic Law

Derived unit contains undeclared units

$$v_{57} = \text{kagg2MisP} \cdot \text{MisP} \cdot \text{AggP5} \cdot \text{kalive}$$
 (119)

8.58 Reaction MisPInclusionGrowth

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$MisP + SeqAggP \longrightarrow 2 SeqAggP \tag{120}$$

Reactants

Table 120: Properties of each reactant.

Id	Name	SBO
MisP		
${\tt SeqAggP}$		

Product

Table 121: Properties of each product.

Id	Name	SBO
SeqAggP		

Kinetic Law

Derived unit contains undeclared units

$$v_{58} = \text{kseqMisP} \cdot \text{MisP} \cdot \text{SeqAggP} \cdot \text{kalive}$$
 (121)

8.59 Reaction ProteasomeInhibitionAggP1

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$AggP1 + Proteasome \longrightarrow AggP_Proteasome$$
 (122)

Reactants

Table 122: Properties of each reactant.

Id	Name	SBO
AggP1 Proteasome		

Product

Table 123: Properties of each product.

Id	Name	SBO
AggP_Proteasome		

Kinetic Law

Derived unit contains undeclared units

$$v_{59} = \text{kinhprot} \cdot \text{AggP1} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (123)

8.60 Reaction ProteasomeInhibitionAggP2

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$AggP2 + Proteasome \longrightarrow AggP_Proteasome$$
 (124)

Reactants

Table 124: Properties of each reactant.

Id	Name	SBO
AggP2 Proteasome		

Table 125: Properties of each product.

Tueste 128: 11eperties	or cach p	or o a a c c .
Id	Name	SBO
AggP_Proteasome		

Kinetic Law

Derived unit contains undeclared units

$$v_{60} = \text{kinhprot} \cdot \text{AggP2} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (125)

8.61 Reaction ProteasomeInhibitionAggP3

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$AggP3 + Proteasome \longrightarrow AggP_Proteasome$$
 (126)

Reactants

Table 126: Properties of each reactant.

Id	Name	SBO
AggP3 Proteasome		

Product

Table 127: Properties of each product.

Id	Name	SBO
AggP_Proteasome		

Kinetic Law

$$v_{61} = \text{kinhprot} \cdot \text{AggP3} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (127)

8.62 Reaction ProteasomeInhibitionAggP4

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$AggP4 + Proteasome \longrightarrow AggP_Proteasome$$
 (128)

Reactants

Table 128: Properties of each reactant.

Id	Name	SBO
AggP4 Proteasome		

Product

Table 129: Properties of each product.

Id	Name	SBO
AggP_Proteasome		

Kinetic Law

Derived unit contains undeclared units

$$v_{62} = \text{kinhprot} \cdot \text{AggP4} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (129)

8.63 Reaction ProteasomeInhibitionAggP5

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$AggP5 + Proteasome \longrightarrow AggP_Proteasome$$
 (130)

Reactants

Table 130: Properties of each reactant.

Id	Name	
AggP5		

Id	Name	SBO
Proteasome		

Table 131: Properties of each product.

Tuble 131: 1 Toperties of each product.		
Id	Name	SBO
AggP_Proteasome		

Kinetic Law

Derived unit contains undeclared units

$$v_{63} = \text{kinhprot} \cdot \text{AggP5} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (131)

8.64 Reaction ROSgenerationSmallAggP1

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$AggP1 \longrightarrow AggP1 + ROS \tag{132}$$

Reactant

Table 132: Properties of each reactant.

Id	Name	SBO
AggP1		

Products

Table 133: Properties of each product.

Id	Name	SBO
AggP1 ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{64} = \text{kgenROSAggP} \cdot \text{AggP1} \cdot \text{kalive}$$
 (133)

8.65 Reaction ROSgenerationSmallAggP2

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$AggP2 \longrightarrow AggP2 + ROS \tag{134}$$

Reactant

Table 134: Properties of each reactant.

Id	Name	SBO
AggP2		

Products

Table 135: Properties of each product.

Id	Name	SBO
AggP2 ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{65} = kgenROSAggP \cdot AggP2 \cdot kalive$$
 (135)

8.66 Reaction ROSgenerationSmallAggP3

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$AggP3 \longrightarrow AggP3 + ROS \tag{136}$$

Reactant

Table 136: Properties of each reactant.

Id	Name	SBO
AggP3		

Products

Table 137: Properties of each product.

Id	Name	SBO
AggP3 ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{66} = \text{kgenROSAggP} \cdot \text{AggP3} \cdot \text{kalive}$$
 (137)

8.67 Reaction ROSgenerationSmallAggP4

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$AggP4 \longrightarrow AggP4 + ROS \tag{138}$$

Reactant

Table 138: Properties of each reactant.

Id	Name	SBO
AggP4		

Products

Table 139: Properties of each product.

Id	Name	SBO
AggP4 ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{67} = \text{kgenROSAggP} \cdot \text{AggP4} \cdot \text{kalive}$$
 (139)

8.68 Reaction ROSgenerationSmallAggP5

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$AggP5 \longrightarrow AggP5 + ROS \tag{140}$$

Reactant

Table 140: Properties of each reactant.

Id	Name	SBO
AggP5		

Products

Table 141: Properties of each product.

Id	Name	SBO
AggP5 ROS		

Kinetic Law

$$v_{68} = \text{kgenROSAggP} \cdot \text{AggP5} \cdot \text{kalive}$$
 (141)

8.69 Reaction p38_P_ROS_Generation

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$p38_P \longrightarrow p38_P + ROS$$
 (142)

Reactant

Table 142: Properties of each reactant.

Id	Name	SBO
p38_P		

Products

Table 143: Properties of each product.

Id	Name	SBO
p38_P ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{69} = \text{kgenROSp38} \cdot \text{p38} \cdot \text{P} \cdot \text{kp38act} \cdot \text{kalive}$$
 (143)

8.70 Reaction ROSgenerationSeqAggP

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$SeqAggP \longrightarrow SeqAggP + ROS \tag{144}$$

Reactant

Table 144: Properties of each reactant.

Id	Name	SBO
SeqAggP		

Table 145: Properties of each product.

Id	Name	SBO
SeqAggP ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{70} = \text{kgenROSSeqAggP} \cdot \text{SeqAggP} \cdot \text{kalive}$$
 (145)

8.71 Reaction P38DeathPathway

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$p38_P \longrightarrow p38_P + p38death$$
 (146)

Reactant

Table 146: Properties of each reactant.

Id	Name	SBO
p38_P		

Products

Table 147: Properties of each product.

Id	Name	SBO
p38_P		
p38death		

Kinetic Law

$$v_{71} = \text{kp38death} \cdot \text{p38} \cdot \text{P} \cdot \text{kalive} \cdot \text{kp38act}$$
 (147)

8.72 Reaction PIDeathPathway

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$AggP_Proteasome \longrightarrow AggP_Proteasome + PIdeath$$
 (148)

Reactant

Table 148: Properties of each reactant.

Id Name SBO

AggP_Proteasome

Products

Table 149: Properties of each product.

Id Name SBO

AggP_Proteasome
PIdeath

Kinetic Law

Derived unit contains undeclared units

$$v_{72} = \text{kPIdeath} \cdot \text{AggP_Proteasome} \cdot \text{kalive}$$
 (149)

9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

9.1 Species PolyQ

Initial amount 1000 item

This species takes part in 15 reactions (as a reactant in polyqProteasomeBinding, PolyQAggregation1, PolyQAggregation2, PolyQAggregation3, PolyQAggregation4, PolyQAggregation5, PolyQInclusionFor PolyQInclusionGrowth and as a product in polyQSynthesis, polyqProteasomeRelease, PolyQDisaggregation5, PolyQDisaggregation4, PolyQDisaggregation3, PolyQDisaggregation2, PolyQDisaggregation1).

$$\frac{d}{dt} \text{PolyQ} = v_1 + v_3 + v_{14} + v_{15} + v_{16} + v_{17} + 2v_{18} - v_2
-2v_9 - v_{10} - v_{11} - v_{12} - v_{13} - v_{19} - v_{20}$$
(150)

9.2 Species Proteasome

Initial amount 1000 item

This species takes part in 19 reactions (as a reactant in polyqProteasomeBinding, mRFPuProteasomeBinding, ProteasomeInhibition1, ProteasomeInhibition2, ProteasomeInhibition3, ProteasomeInhibition4, ProteasomeInhibition5, Misp_ProteasomeBinding, ProteasomeInhibitionAggP1, ProteasomeInhibiti ProteasomeInhibitionAggP3, ProteasomeInhibitionAggP4, ProteasomeInhibitionAggP5 and as a product in polyqProteasomeRelease, PolyQDegradation, mRFPuProteasomeRelease, mRFPuDegradation, Misp_ProteasomeRelease, Misp_Degradation).

$$\frac{d}{dt} \text{Proteasome} = v_3 + v_4 + v_7 + v_8 + v_{45} + v_{46} - v_2 - v_6 - v_{21} - v_{22} - v_{60} - v_{21} - v_{22} - v_{60} - v_{61} - v_{62} - v_{63}$$

$$(151)$$

9.3 Species NatP

Initial amount 19500 item

This species takes part in three reactions (as a reactant in Misfolding and as a product in ProteinSynthesis, Refolding).

$$\frac{d}{dt}NatP = |v_{41}| + |v_{43}| - |v_{42}|$$
 (152)

9.4 Species MisP

Initial amount 0 item

This species takes part in 16 reactions (as a reactant in Refolding, MisP_ProteasomeBinding, MisP_Aggregation1, MisP_Aggregation2, MisP_Aggregation3, MisP_Aggregation4, MisP_Aggregation5, MisP_InclusionFormation, MisPInclusionGrowth and as a product in

Misfolding, MisP_ProteasomeRelease, MisP_Disaggregation1, MisP_Disaggregation2, MisP_Disaggregation3, MisP_Disaggregation4, MisP_Disaggregation5).

$$\frac{d}{dt}MisP = v_{42} + v_{45} + 2 v_{52} + v_{53} + v_{54} + v_{55} + v_{56} - v_{43} - v_{44} - 2 v_{47} - v_{48} - v_{49} - v_{50} - v_{51} - v_{57} - v_{58}$$
(153)

9.5 Species MisP_Proteasome

Initial amount 0 item

This species takes part in four reactions (as a reactant in MisP_ProteasomeSequestering, MisP_ProteasomeRelease, MisP_Degradation and as a product in MisP_ProteasomeBinding).

$$\frac{d}{dt} \text{MisP_Proteasome} = |v_{44}| - |v_{40}| - |v_{45}| - |v_{46}|$$
 (154)

9.6 Species AggP1

Initial amount 0 item

This species takes part in seven reactions (as a reactant in MisP_Aggregation2, MisP_Disaggregation1, ProteasomeInhibitionAggP1, ROSgenerationSmallAggP1 and as a product in MisP_Aggregation1, MisP_Disaggregation2, ROSgenerationSmallAggP1).

$$\frac{d}{dt}AggP1 = |v_{47}| + |v_{53}| + |v_{64}| - |v_{48}| - |v_{52}| - |v_{59}| - |v_{64}|$$
(155)

9.7 Species AggP2

Initial amount 0 item

This species takes part in seven reactions (as a reactant in MisP_Aggregation3, MisP_Disaggregation2, ProteasomeInhibitionAggP2, ROSgenerationSmallAggP2 and as a product in MisP_Aggregation2, MisP_Disaggregation3, ROSgenerationSmallAggP2).

$$\frac{d}{dt}AggP2 = v_{48} + v_{54} + v_{65} - v_{49} - v_{53} - v_{60} - v_{65}$$
(156)

9.8 Species AggP3

Initial amount 0 item

This species takes part in seven reactions (as a reactant in MisP_Aggregation4, MisP_Disaggregation3, ProteasomeInhibitionAggP3, ROSgenerationSmallAggP3 and as a product in MisP_Aggregation3, MisP_Disaggregation4, ROSgenerationSmallAggP3).

$$\frac{d}{dt}AggP3 = v_{49} + v_{55} + v_{66} - v_{50} - v_{54} - v_{61} - v_{66}$$
(157)

9.9 Species AggP4

Initial amount 0 item

This species takes part in seven reactions (as a reactant in MisP_Aggregation5, MisP_Disaggregation4, ProteasomeInhibitionAggP4, ROSgenerationSmallAggP4 and as a product in MisP_Aggregation4, MisP_Disaggregation5, ROSgenerationSmallAggP4).

$$\frac{\mathrm{d}}{\mathrm{d}t} AggP4 = |v_{50}| + |v_{56}| + |v_{67}| - |v_{51}| - |v_{55}| - |v_{62}| - |v_{67}|$$
(158)

9.10 Species AggP5

Initial amount 0 item

This species takes part in six reactions (as a reactant in MisP_Disaggregation5, MisP_InclusionFormation, ProteasomeInhibitionAggP5, ROSgenerationSmallAggP5 and as a product in MisP_Aggregation5, ROSgenerationSmallAggP5).

$$\frac{d}{dt}AggP5 = |v_{51}| + |v_{68}| - |v_{56}| - |v_{57}| - |v_{63}| - |v_{68}|$$
(159)

9.11 Species AggPolyQ1

Initial amount 0 item

This species takes part in seven reactions (as a reactant in PolyQAggregation2, PolyQDisaggregation1, ProteasomeInhibition1, ROSgenerationSmallAggPolyQ1 and as a product in PolyQAggregation1, PolyQDisaggregation2, ROSgenerationSmallAggPolyQ1).

$$\frac{d}{dt}AggPolyQ1 = v_9 + v_{17} + v_{29} - v_{10} - v_{18} - v_{21} - v_{29}$$
(160)

9.12 Species AggPolyQ2

Initial amount 0 item

This species takes part in seven reactions (as a reactant in PolyQAggregation3, PolyQDisaggregation2, ProteasomeInhibition2, ROSgenerationSmallAggPolyQ2 and as a product in PolyQAggregation2, PolyQDisaggregation3, ROSgenerationSmallAggPolyQ2).

$$\frac{d}{dt}AggPolyQ2 = |v_{10}| + |v_{16}| + |v_{30}| - |v_{11}| - |v_{17}| - |v_{22}| - |v_{30}|$$
(161)

9.13 Species AggPolyQ3

Initial amount 0 item

This species takes part in seven reactions (as a reactant in PolyQAggregation4, PolyQDisaggregation3, ProteasomeInhibition3, ROSgenerationSmallAggPolyQ3 and as a product in PolyQAggregation3, PolyQDisaggregation4, ROSgenerationSmallAggPolyQ3).

$$\frac{d}{dt}AggPolyQ3 = |v_{11}| + |v_{15}| + |v_{31}| - |v_{12}| - |v_{16}| - |v_{23}| - |v_{31}|$$
(162)

9.14 Species AggPolyQ4

Initial amount 0 item

This species takes part in seven reactions (as a reactant in PolyQAggregation5, PolyQDisaggregation4, ProteasomeInhibition4, ROSgenerationSmallAggPolyQ4 and as a product in PolyQAggregation4, PolyQDisaggregation5, ROSgenerationSmallAggPolyQ4).

$$\frac{d}{dt} AggPolyQ4 = v_{12} + v_{14} + v_{32} - v_{13} - v_{15} - v_{24} - v_{32}$$
(163)

9.15 Species AggPolyQ5

Initial amount 0 item

This species takes part in six reactions (as a reactant in PolyQDisaggregation5, PolyQInclusionFormation, ProteasomeInhibition5, ROSgenerationSmallAggPolyQ5 and as a product in PolyQAggregation5, ROSgenerationSmallAggPolyQ5).

$$\frac{d}{dt}AggPolyQ5 = |v_{13}| + |v_{33}| - |v_{14}| - |v_{19}| - |v_{25}| - |v_{33}|$$
(164)

9.16 Species SeqAggP

Initial amount 0 item

This species takes part in 18 reactions (as a reactant in PolyQInclusionGrowth, mRFPuProteasomeSequestering mRFPuSequestering, AggP_ProteasomeSequestering, PolyQ_ProteasomeSequestering, MisP_ProteasomeSequestering, MisPInclusionGrowth, ROSgenerationSeqAggP and as a product in PolyQInclusionFormation, PolyQInclusionGrowth, mRFPuProteasomeSequestering, mRFPuSequestering, AggP_ProteasomeSequestering, PolyQ_ProteasomeSequestering, MisP_ProteasomeSequestering, MisP_InclusionFormation, MisPInclusionGrowth, ROSgenerationSeqAggP_ProteasomeSequestering, MisP_InclusionGrowth, ROS

$$\frac{d}{dt} \text{SeqAggP} = 7 v_{19} + 2 v_{20} + 2 v_{26} + 2 v_{27} + 2 v_{38} + 2 v_{39} + 2 v_{40} + 7 v_{57} + 2 v_{58} + v_{70} - v_{20} - v_{26} - v_{27} - v_{38} - v_{39} - v_{40} - v_{58} - v_{70}$$
(165)

9.17 Species AggP_Proteasome

Initial amount 0 item

This species takes part in 15 reactions (as a reactant in ROSgenerationAggPProteasome, AggP_ProteasomeSequestering, PIDeathPathway and as a product in ProteasomeInhibition1, ProteasomeInhibition2, ProteasomeInhibition3, ProteasomeInhibition4, ProteasomeInhibition5, ROSgenerationAggPProteasome, ProteasomeInhibitionAggP1, ProteasomeInhibitionAggP2, ProteasomeInhibitionAggP3, ProteasomeInhibitionAggP4, ProteasomeInhibitionAggP5, PIDeathPathway).

$$\frac{d}{dt} AggP_Proteasome = v_{21} + v_{22} + v_{23} + v_{24} + v_{25} + v_{34} + v_{59} + v_{60}$$

$$+ v_{61} + v_{62} + v_{63} + v_{72} - v_{34} - v_{38} - v_{72}$$
(166)

9.18 Species mRFPu

Initial amount 300 item

This species takes part in four reactions (as a reactant in mRFPuProteasomeBinding, mRFPuSequestering and as a product in mRFPuSynthesis, mRFPuProteasomeRelease).

$$\frac{d}{dt} mRFPu = |v_5| + |v_7| - |v_6| - |v_{27}|$$
(167)

9.19 Species mRFPu_Proteasome

Initial amount 0 item

This species takes part in four reactions (as a reactant in mRFPuProteasomeRelease, mRFPuDegradation, mRFPuProteasomeSequestering and as a product in mRFPuProteasomeBinding).

$$\frac{d}{dt} mRFPu_Proteasome = v_6 - v_7 - v_8 - v_{26}$$
 (168)

9.20 Species PolyQ_Proteasome

Initial amount 0 item

This species takes part in four reactions (as a reactant in polyqProteasomeRelease, PolyQDegradation, PolyQ_ProteasomeSequestering and as a product in polyqProteasomeBinding).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{PolyQ_Proteasome} = |v_2| - |v_3| - |v_4| - |v_{39}| \tag{169}$$

9.21 Species ROS

Initial amount 10 item

This species takes part in 29 reactions (as a reactant in PolyQAggregation1, PolyQAggregation2, PolyQAggregation3, PolyQAggregation4, PolyQAggregation5, ROSremoval, p38activation, Misfolding and as a product in PolyQAggregation1, PolyQAggregation2, PolyQAggregation3, PolyQAggregation4, PolyQAggregation5, ROSgenerationBasal, ROSgenerationSmallAggPolyQ1, ROSgenerationSmallAggPolyQ2, ROSgenerationSmallAggPolyQ3, ROSgenerationSmallAggPolyQ4, ROSgenerationSmallAggPolyQ5, ROSgenerationAggPProteasome, p38activation, Misfolding, ROSgenerationSmallAggP1, ROSgenerationSmallAggP2, ROSgenerationSmallAggP3, ROSgenerationSmallAggP5, p38_P_ROS_Generation, ROSgenerationSeqAggP).

$$\frac{d}{dt}ROS = v_9 + v_{10} + v_{11} + v_{12} + v_{13} + v_{28} + v_{29} + v_{30} + v_{31} + v_{32} + v_{33} + v_{34} + v_{36} + v_{42} + v_{64} + v_{65} + v_{66} + v_{67} + v_{68} + v_{69} + v_{70} - v_9 - v_{10} - v_{11} - v_{12} - v_{13} - v_{35} - v_{36} - v_{42}$$

$$(170)$$

9.22 Species p38_P

Initial amount 0 item

This species takes part in six reactions (as a reactant in p38inactivation, p38_P_ROS_Generation, P38DeathPathway and as a product in p38activation, p38_P_ROS_Generation, P38DeathPathway).

$$\frac{d}{dt}p38.P = |v_{36}| + |v_{69}| + |v_{71}| - |v_{37}| - |v_{69}| - |v_{71}|$$
(171)

9.23 Species p38

Initial amount 100 item

This species takes part in two reactions (as a reactant in p38activation and as a product in p38inactivation).

$$\frac{d}{dt}p38 = |v_{37}| - |v_{36}| \tag{172}$$

9.24 Species Source

Initial amount 1 item

This species takes part in four reactions (as a reactant in polyQSynthesis, mRFPuSynthesis, ROSgenerationBasal, ProteinSynthesis), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Source} = 0\tag{173}$$

9.25 Species Sink

Initial amount 1 item

This species takes part in one reaction (as a product in ROSremoval), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Sink} = 0\tag{174}$$

9.26 Species p38death

Initial amount 0 item

This species takes part in one reaction (as a product in P38DeathPathway).

$$\frac{\mathrm{d}}{\mathrm{d}t} p38 \mathrm{death} = v_{71} \tag{175}$$

9.27 Species PIdeath

Initial amount 0 item

This species takes part in one reaction (as a product in PIDeathPathway).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PIdeath} = v_{72} \tag{176}$$

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

 $[^]d$ EML Research gGmbH, Heidelberg, Germany