1 State Models

Consider a system with

- 1. n, the order of the ODE
- 2. m, the number of inputs
- 3. p, the number of outputs

General procedure:

- 1. Create n state variables
- 2. Create n first order ODEs
- 3. Write $\dot{x} = f(x, u)$
- 4. Write y = h(x, u)

If the system is linear, then the state model is

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

2 Numerical Simulation with MATLAB

Example, some random order 4 system with $x_1(0) = 1$, $x_2(0) = 2$, $u_1 = \cos(t)$, $u_2 = \sin(t)$.

```
function x_dot = f(t, x)
x_dot = [
    x(3);
    x(4);
    -10*x(1) + 10*x(2) + cos(t)
    10*x(1) - 10*x(2) - sin(t)
];
end

[t, x] = ode45(@f, [0, 10], [1, 2, 0, 0]);
```

3 Linearization

Select a point (x_0, u_0) and to be the equilibrium point. That is,

$$f(x_0, u_0) = 0$$

From the set of equilibrium points, choose the appropriate one to linearize about. Then,

$$A = \frac{\partial f}{\partial x} \Big|_{x=x_0, u=u_0}$$

$$B = \frac{\partial f}{\partial u} \Big|_{x=x_0, u=u_0}$$

$$C = \frac{\partial h}{\partial x} \Big|_{x=x_0, u=u_0}$$

$$D = \frac{\partial h}{\partial u} \Big|_{x=x_0, u=u_0}$$

Example for inverted pendulum on a cart with equilibrium point $x_0 = (x_10, 0, 0, 0)$ and $u_0 = 0$.

```
% Declare symbolic variables
syms x1 x2 x3 x4 u
% Define the system
f = [
    x3;
    x4;
    (4*x4^2*\sin(x2) - 3*\cos(x2)*\sin(x2) + 4*u)/(4 - 3*\cos(x2)^2);
    (-3*x4^2*sin(x2)*cos(x2) + 3*sin(x2) - 3*u*cos(x2))/(4 - 3*cos(x2))
   )^2);
];
h = [x1; x2];
% Compute the Jacobian
dfdx = jacobian(f, [x1, x2, x3, x4])
dfdu = jacobian(f, u)
dhdx = jacobian(h, [x1, x2, x3, x4])
dhdu = jacobian(h, u)
A = subs(dfdx, [x1, x2, x3, x4, u], [x10, 0, 0, 0])
B = subs(dfdu, [x1, x2, x3, x4, u], [x10, 0, 0, 0, 0])
C = subs(dhdx, [x1, x2, x3, x4, u], [x10, 0, 0, 0, 0])
D = subs(dhdu, [x1, x2, x3, x4, u], [x10, 0, 0, 0, 0])
```

4 Solutions to Linear Systems

Split the system into two parts: the zero-input response and the zero-state response.

$$x(t) = x_{z-i}(t) + x_{z-s}(t)$$

 $y(t) = Cx_{z-i}(t) + Cx_{z-s}(t) + Du(t)$

4.1 Zero-Input Response

The zero-input problem is:

$$\dot{x} = Ax$$

$$y = Cx$$

$$x(0) = x_0$$

$$u = 0$$

The solution is

$$x_{z-i}(t) = e^{At}x_0$$
$$y_{z-i}(t) = Ce^{At}x_0$$

4.2 Matrix exponential properties

$$e^{At} = \sum_{k=0}^{\infty} \frac{A^k t^k}{k!}$$

$$e^{At}|_{t=0} = I$$

$$e^{At_1} e^{At_2} = e^{A(t_1 + t_2)}$$

$$e^{A_1 t} e^{A_2 t} = e^{(A_1 + A_2)t} \iff A_1 A_2 = A_2 A_1$$

$$(e^{At})^{-1} = e^{-At}$$

$$Ae^{At} = e^{At} A$$

$$\frac{d}{dt} e^{At} = Ae^{At} = e^{At} A$$

$$e^{At} = Ve^{Dt} V^{-1} = \mathcal{L}^{-1} \{sI - A\}^{-1}$$

4.3 Zero-State Response

The zero-state problem is:

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

$$x(0) = 0$$

$$u = u(t)$$

By integrating factor method, the solution is:

$$x_{\text{z-s}}(t) = \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau$$
$$y_{\text{z-s}}(t) = \int_0^t Ce^{A(t-\tau)} Bu(\tau) d\tau + Du(t)$$

5 Laplace Transform Method

5.1 Laplace Transform and Properties

$$\mathcal{L}f(t) = F(s) = \int_0^\infty f(t)e^{-st}dt$$

$$\mathcal{L}\dot{f}(t) = sF(s) - f(0)$$

$$\mathcal{L}\ddot{f}(t) = s^2F(s) - sf(0) - \dot{f}(0)$$

$$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{F(s)}{s}$$

$$\mathcal{L}f(t - t_d) = e^{-st_d}F(s)$$

5.2 Poles and Convergence

- In general, the right most pole determines the region of convergence.
- Use the analogy that the real part of poles correspond to the expontential decay rate of the system and the imaginary part corresponds to the oscillation frequency.
- Repeated poles is correspond to te^{-at} or $t\sin(at)$.
- idk i might add fvt later

5.3 Transfer Function

The transfer function is defined from:

$$Y(s) = \underbrace{C(sI - A)^{-1}x_0}_{Y_{z-i}(s)} + \underbrace{\left[C(sI - A)^{-1}B + D\right]U(s)}_{Y_{z-s}(s)}$$
$$G(s) = C(sI - A)^{-1}B + D$$