The smallest grammar problem

Edgar Dorausch 05. Juli 2019

Motivation und Anwendung

Motivation und Anwendung

Mustererkennung

z.B. DNA-Analyse, NLP

Motivation und Anwendung

- Mustererkennung z.B. DNA-Analyse, NLP
- Kompression

Kontextfreie Grammatik

Eine KFG ist ein Quadrupel $(\Sigma, \Gamma, S, \Delta)$ mit

- \bullet Σ Terminalalphabet
- Γ Nichtterminalalphabet
- S Startsymbol
- Δ Menge von Regeln der Form $T \to \alpha$ $T \in \Gamma$; $\alpha \in (\Sigma \cup \Gamma)^*$

Besonderheit:

Grammatiken sollen nur ein Wort erzeugen (straight-line grammar):

- Grammatik muss azyklisch sein
- ullet Für jedes $T\in\Gamma$ existiert nur eine Regel in Δ

Expansion eines Strings α

Erschöpfendes Anwenden der Regeln

Notation: $\langle \alpha \rangle$

Expansion eines Strings α

Erschöpfendes Anwenden der Regeln

Notation: $\langle \alpha \rangle$

Größe einer Grammatik G

Anzahl der Zeichen in den rechten Seiten der Grammatikregeln

Notation:
$$m = |G| = \sum_{(T \to \alpha) \in \Delta} |\alpha|$$

Größe der kleinsten Grammatik für einen String: m*

Beispiel

$$G: \left\{ egin{aligned} S
ightarrow rha Tber \ T
ightarrow bar \end{aligned}
ight\}$$

$$\langle \mathcal{S}
angle = rhabarber_barbara \ |\langle \mathcal{S}
angle| = 17 \ |\mathcal{G}| = 11$$

Approximation Ratio

Sei G_A die Grammatik, die von einem Algorithmus A erzeugt wird.

$$a(n) = \max_{\alpha \in \Sigma^n} \frac{|G_A| \text{ für } \alpha}{m^* \text{ für } \alpha}$$

Approximation Ratio

Sei G_A die Grammatik, die von einem Algorithmus A erzeugt wird.

$$a(n) = \max_{\alpha \in \Sigma^n} \frac{|G_A| \text{ für } \alpha}{m^* \text{ für } \alpha}$$

Worstcase!

Tabelle 1: Landau Notation

$$\begin{array}{ccc} f \in o(g) & "f < g" \\ \text{(Upper bound)} \ f \in \mathcal{O}(g) & "f \leq g" \\ f \in \Theta(g) & "f = g" \\ \text{(Lower bound)} \ f \in \Omega(g) & "f \geq g" \\ f \in \omega(g) & "f > g" \end{array}$$

• Vertex Cover lässt sich auf SGP reduzieren

- Vertex Cover lässt sich auf SGP reduzieren
- Zusammenhang mit Addition Chains (nicht im Vortrag)

Vertex Cover

Suche (minimale) Menge von Knoten, sodass jede Kante mindestens einen dieser Knoten enthält.

Vertex Cover

Suche (minimale) Menge von Knoten, sodass jede Kante mindestens einen dieser Knoten enthält.

9

Vertex Cover

Suche (minimale) Menge von Knoten, sodass jede Kante mindestens einen dieser Knoten enthält.

(Kein Vertex Cover!)

Vertex Cover

Suche (minimale) Menge von Knoten, sodass jede Kante mindestens einen dieser Knoten enthält.

NP-härte

• Betrachte nur Graphen mit maximalen Knoten-Grad 3

NP-härte

- Betrachte nur Graphen mit maximalen Knoten-Grad 3
- Überführung von Graphen zu Wörtern

NP-härte

- Betrachte nur Graphen mit maximalen Knoten-Grad 3
- Überführung von Graphen zu Wörtern
- Zeige, dass man über die kleinsete Grammatik einen Vertex Cover bestimmen kann

NP-härte

- Betrachte nur Graphen mit maximalen Knoten-Grad 3
- Überführung von Graphen zu Wörtern
- Zeige, dass man über die kleinsete Grammatik einen Vertex Cover bestimmen kann
- Berechne Upper Bound für effiziente Approximation (außer P = NP)

Beispiel Graph

$$V = \{a, b, c, d\}$$

$$E = \{\{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}\}$$

Graphen zu String überführen

$$\alpha = \prod_{v_i \in V} (\#v_i \ddagger v_i \# \ddagger)^2 \prod_{v_i \in V} (\#v_i \# \ddagger) \prod_{\{v_i, v_j\} \in E} (\#v_i \# v_j \# \ddagger)$$

Graphen zu String überführen

$$\alpha = \prod_{v_i \in V} (\#v_i \ddagger v_i \# \ddagger)^2 \prod_{v_i \in V} (\#v_i \# \ddagger) \prod_{\{v_i, v_j\} \in E} (\#v_i \# v_j \# \ddagger)$$

$$V = \{a, b, c, d\}; E = \{\{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}\}$$

$$\alpha_{Beispiel} = (\#a \ddagger a \# \ddagger)^2 (\#b \ddagger b \# \ddagger)^2 (\#c \ddagger c \# \ddagger)^2 (\#d \ddagger d \# \ddagger)^2$$

$$\#a \# \ddagger \#b \# \ddagger \#c \# \ddagger \#d \# \ddagger$$

$$\#a \#b \# \ddagger \#a \#c \# \ddagger \#b \#c \# \ddagger \#b \#d \# \ddagger$$

```
\alpha_{Beispiel} = (\#a \ddagger a\#\ddagger)^2 (\#b \ddagger b\#\ddagger)^2 (\#c \ddagger c\#\ddagger)^2 (\#d \ddagger d\#\ddagger)^2
\#a\# \ddagger \#b\# \ddagger \#c\# \ddagger \#d\#\ddagger
\#a\#b\# \ddagger \#a\#c\# \ddagger \#b\#c\# \ddagger \#b\#d\#\ddagger
```

Eigenschaften der kleinsten Grammatik

• Jedes Nichtterminal expandiert zu $\#v_i$, $v_i\#$ oder $\#v_i\#$

```
\alpha_{Beispiel} = (\#a \ddagger a\#\ddagger)^2 (\#b \ddagger b\#\ddagger)^2 (\#c \ddagger c\#\ddagger)^2 (\#d \ddagger d\#\ddagger)^2
\#a\# \ddagger \#b\# \ddagger \#c\# \ddagger \#d\#\ddagger
\#a\#b\# \ddagger \#a\#c\# \ddagger \#b\#c\# \ddagger \#b\#d\#\ddagger
```

Eigenschaften der kleinsten Grammatik

- Jedes Nichtterminal expandiert zu $\#v_i$, $v_i\#$ oder $\#v_i\#$
- ullet Enthält Regeln der Form $T_j o \# v_i$ und $T_j o v_i \#$

```
\alpha_{Beispiel} = (\#a \ddagger a\#\ddagger)^2 (\#b \ddagger b\#\ddagger)^2 (\#c \ddagger c\#\ddagger)^2 (\#d \ddagger d\#\ddagger)^2
\#a\# \ddagger \#b\# \ddagger \#c\# \ddagger \#d\#\ddagger
\#a\#b\# \ddagger \#a\#c\# \ddagger \#b\#c\# \ddagger \#b\#d\#\ddagger
```

Eigenschaften der kleinsten Grammatik

- Jedes Nichtterminal expandiert zu $\#v_i$, $v_i\#$ oder $\#v_i\#$
- ullet Enthält Regeln der Form $T_j o \# v_i$ und $T_j o v_i \#$
- $C = \{v_i \in V | \exists T_j \to \#v_i \#\}$ ist (minimale) Vertex Cover

•
$$m^* = 15|V| + 3|E| + |C|$$

- $m^* = 15|V| + 3|E| + |C|$
- Es ist (*NP*) hart Vertex Cover kleiner als $\frac{145}{144} \cdot |C|$ zu finden $(\frac{145}{144} \approx 1,006944...)$

- $m^* = 15|V| + 3|E| + |C|$
- Es ist (*NP*) hart Vertex Cover kleiner als $\frac{145}{144} \cdot |C|$ zu finden $(\frac{145}{144} \approx 1,006944...)$
- $\rho = \frac{15|V|+3|E|+\frac{145}{144}|C|}{15|V|+3|E|+|C|}$

- $m^* = 15|V| + 3|E| + |C|$
- Es ist (*NP*) hart Vertex Cover kleiner als $\frac{145}{144} \cdot |C|$ zu finden $(\frac{145}{144} \approx 1,006944...)$
- $\bullet \ \ \rho \geq \frac{15|V| + 3 \cdot \frac{3}{2}|V| + \frac{145}{144} (\frac{1}{3}|V|)}{15|V| + 3 \cdot \frac{3}{2}|V| + \frac{1}{3}|V|} = \frac{8569}{8568} \approx 1,0001167...$

Approximationsalgorithmen

Approximationsalgorithmen

• LZ78

- LZ78
- Bisection

- LZ78
- Bisection
- Sequential

- LZ78
- Bisection
- Sequential
- Global algorithms

- LZ78
- Bisection
- Sequential
- Global algorithms
- Longest Match

- LZ78
- Bisection
- Sequential
- Global algorithms
- Longest Match
- Greedy

- LZ78
- Bisection
- Sequential
- Global algorithms
- Longest Match
- Greedy
- Re-Pair

Lower bound bestimmen

Lower bound bestimmen

• Bestimme lower bound von m $m \in \Omega(f_l(n))$

Lower bound bestimmen

- Definiere α_k (n = $|\alpha_k|$)
- Bestimme lower bound von m $m \in \Omega(f_l(n))$
- Bestimme upper bound von m* $m^* \in \mathcal{O}(f_u(n))$

Lower bound bestimmen

- Bestimme lower bound von m $m \in \Omega(f_l(n))$
- Bestimme upper bound von m^* $m^* \in \mathcal{O}(f_u(n))$

$$\Rightarrow a(n) \in \Omega(\frac{f_l(n)}{f_u(n)})$$

LZ78

• Gänginger Kompressionsalgorithmus

LZ78

- Gänginger Kompressionsalgorithmus
- Abraham Lempel und Jacob Ziv (1978)

LZ78

- Gänginger Kompressionsalgorithmus
- Abraham Lempel und Jacob Ziv (1978)
 Verwendung bei GIF und TIFF

LZ78 - Datenstrukturen

• Strings als Sequenzen von Paaren (i,c) dargestellt i...Index eines Vorgänger-Paares oder $0;c\in\Sigma$

LZ78 - Datenstrukturen

- Strings als Sequenzen von Paaren (i, c) dargestellt i...Index eines Vorgänger-Paares oder $0; c \in \Sigma$
- Jedes Paar repräsentiert Substring

LZ78 - Datenstrukturen

- Strings als Sequenzen von Paaren (i, c) dargestellt i...Index eines Vorgänger-Paares oder $0; c \in \Sigma$
- Jedes Paar repräsentiert Substring
- Wenn i gleich 0 dann ist dieser Substring gleich c

LZ78 - Datenstrukturen

- Strings als Sequenzen von Paaren (i, c) dargestellt i...Index eines Vorgänger-Paares oder 0; $c \in \Sigma$
- Jedes Paar repräsentiert Substring
- Wenn i gleich 0 dann ist dieser Substring gleich c
- Andernfalls ist der Substring des i-ten Paares gefolgt von c

$$(0,a)$$
 (1,b) $(0,b)$ (2,a) (3,a) (2,€)
1 2 3 4 5 6

LZ78 Grammatiken

• Paar $\hat{=}$ Nichterminal

LZ78 Grammatiken

• Paar $\hat{=}$ Nichterminal

$$\bullet \ \begin{cases} X_j \to c, & i = 0 \\ X_j \to X_i c, & \mathsf{sonst} \end{cases}$$

LZ78 Grammatiken

$$\begin{cases} X_j \to c, & i = 0 \\ X_j \to X_i c, & \text{sonst} \end{cases}$$

$$\bullet \quad S \to X_1 ... X_k$$

•
$$S \rightarrow X_1...X_k$$

LZ78 Grammatiken

- Paar $\hat{=}$ Nichterminal
- $\bullet \begin{cases} X_j \to c, & i = 0 \\ X_j \to X_j c, & \text{sonst} \end{cases}$
- $S \rightarrow X_1...X_k$

$$S \to X_1 X_2 X_3 X_4 X_5 X_6$$
 (0,a) (1,b) (0,b) (2,a) (3,a) (2,€)
 $X_1 \to a; X_2 \to X_1 b; X_3 \to b$ a ab b aba ba ab€
 $X_4 \to X_2 a; X_5 \to X_3 a; X_4 \to X_6 \in$

LZ78 - Algorithmus

 String wird Schrittweise in einem Durchlauf von links nach rechts in eine Sequenz von Paaren übersetzt

- String wird Schrittweise in einem Durchlauf von links nach rechts in eine Sequenz von Paaren übersetzt
- ullet Finde in jedem Schritt das kürzeste Präfix γ des verbleibenden Strings das nicht Expansion eines bereits erzeugten Paars ist

- String wird Schrittweise in einem Durchlauf von links nach rechts in eine Sequenz von Paaren übersetzt
- ullet Finde in jedem Schritt das kürzeste Präfix γ des verbleibenden Strings das nicht Expansion eines bereits erzeugten Paars ist
- Am Ende des Strings muss eventuell ein weiteres Zeichen hinzugefügt werden

- String wird Schrittweise in einem Durchlauf von links nach rechts in eine Sequenz von Paaren übersetzt
- ullet Finde in jedem Schritt das kürzeste Präfix γ des verbleibenden Strings das nicht Expansion eines bereits erzeugten Paars ist
- Am Ende des Strings muss eventuell ein weiteres Zeichen hinzugefügt werden
- Ein neues Paar wird an die Liste angehangen:
 - 1. Wenn da $\gamma = 1$ ist füge $(0, \gamma)$ hinzu

- String wird Schrittweise in einem Durchlauf von links nach rechts in eine Sequenz von Paaren übersetzt
- ullet Finde in jedem Schritt das kürzeste Präfix γ des verbleibenden Strings das nicht Expansion eines bereits erzeugten Paars ist
- Am Ende des Strings muss eventuell ein weiteres Zeichen hinzugefügt werden
- Ein neues Paar wird an die Liste angehangen:
 - 1. Wenn da $\gamma = 1$ ist füge $(0, \gamma)$ hinzu
 - 2. Andernfalls ist $\gamma = \alpha c$.
 - α ... Expansion eines Paars mit dem Index i_{α}
 - \Rightarrow Paar: (i, c)

Beispiel

aabbababaab€

Beispiel

aabbababaab€

aabbababaab
$$\in$$

$$\underbrace{(0,a)}_{a} \text{ abbababaab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \text{ bababaab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \underbrace{(0,b)}_{b} \text{ ababaab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \underbrace{(0,b)}_{b} \underbrace{(2,a)}_{aba} \text{ baab} \in$$

aabbabababe

$$\underbrace{(0,a)}_{a} \text{ abbababaab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \text{ bababaab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \underbrace{(0,b)}_{b} \text{ ababaab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \underbrace{(0,b)}_{b} \underbrace{(2,a)}_{aba} \text{ baab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \underbrace{(0,b)}_{b} \underbrace{(2,a)}_{aba} \underbrace{(3,a)}_{ba} \text{ ab} \in$$

aabbababab€
$$\underbrace{(0,a)}_{a} \text{ abbababab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \text{ bababaab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \underbrace{(0,b)}_{b} \text{ ababaab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \underbrace{(0,b)}_{b} \underbrace{(2,a)}_{aba} \underbrace{(3,a)}_{ba} \text{ ab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \underbrace{(0,b)}_{b} \underbrace{(2,a)}_{aba} \underbrace{(3,a)}_{ba} \underbrace{(2,€)}_{ab€}$$

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

•
$$|\alpha_k| = k \frac{k+1}{2} + (1+k)(k+1)^2$$

= $k^3 + \frac{7}{2}k^2 + \frac{7}{2}k + 1$

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

- $|\alpha_k| = k \frac{k+1}{2} + (1+k)(k+1)^2$ = $k^3 + \frac{7}{2}k^2 + \frac{7}{2}k + 1$
- $n = |\alpha_k| \in \Theta(k^3)$

UpperBound m^*

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

•
$$m^* \in \mathcal{O}(1 + \log(\frac{k^2 + k}{2}) + \log(k + 1)^2 + 1 + \log(k))$$

UpperBound m*

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

- $m^* \in \mathcal{O}(1 + \log(\frac{k^2 + k}{2}) + \log(k + 1)^2 + 1 + \log(k))$
- $m^* \in \mathcal{O}(\log k)$

UpperBound m*

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

- $m^* \in \mathcal{O}(1 + \log(\frac{k^2 + k}{2}) + \log(k + 1)^2 + 1 + \log(k))$
- $m^* \in \mathcal{O}(\log k)$
- $m^* \in \mathcal{O}(\log n^{\frac{1}{3}}) = \mathcal{O}(\log n)$

LowerBound m

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

• String wird in zwei Phasen in eine Paar-Sequenz übersetzt

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

- String wird in zwei Phasen in eine Paar-Sequenz übersetzt
- Erste Phase: alle Strings a...ak zu Paaren übersetzt

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

- String wird in zwei Phasen in eine Paar-Sequenz übersetzt
- Erste Phase: alle Strings a...ak zu Paaren übersetzt
- Zweite Phase: a^iba^j für alle $i,j \in [0,k]$ wird ein Paar erstellt

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

- String wird in zwei Phasen in eine Paar-Sequenz übersetzt
- Erste Phase: alle Strings a...ak zu Paaren übersetzt
- Zweite Phase: a^iba^j für alle $i,j \in [0,k]$ wird ein Paar erstellt
- $m \in \Omega(\sum_{z=1}^{k} z + (k+1)^2) = \Omega(k^2)$

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

- String wird in zwei Phasen in eine Paar-Sequenz übersetzt
- Erste Phase: alle Strings a...ak zu Paaren übersetzt
- Zweite Phase: a^iba^j für alle $i,j \in [0,k]$ wird ein Paar erstellt
- $m \in \Omega(\sum_{z=1}^{k} z + (k+1)^2) = \Omega(k^2)$
- $m \in \Omega(n^{2/3})$

LowerBound

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

• $m^* \in \mathcal{O}(\log n)$

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

- $m^* \in \mathcal{O}(\log n)$
- $m \in \Omega(n^{2/3})$

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

- $m^* \in \mathcal{O}(\log n)$
- $m \in \Omega(n^{2/3})$
- $a(n) \in \Omega(\frac{n^{2/3}}{\log n})$

Upper bound ... 1m* 2m* 3m*

Upper bound ... 1m* 2m* 3m*

Global Algorithms

• Klasse von Algorithmen

Global Algorithms

- Klasse von Algorithmen
- Haben alle ein upper bound von $\mathcal{O}((\frac{n}{\log(n)})^{\frac{2}{3}})$

Global Algorithms

- Klasse von Algorithmen
- Haben alle ein upper bound von $\mathcal{O}((\frac{n}{\log(n)})^{\frac{2}{3}})$
- · Lower bounds sind sehr schlecht

Global Algorithms - Verfahren

Grammatik schrittweise verbessert

- Grammatik schrittweise verbessert
- Initialisiere Grammatik mit $S \to \alpha$

- Grammatik schrittweise verbessert
- Initialisiere Grammatik mit $S \to \alpha$
- ullet Wähle einen String γ

- Grammatik schrittweise verbessert
- Initialisiere Grammatik mit $S \rightarrow \alpha$
- ullet Wähle einen String γ
- Füge $T \to \gamma$ (T... neues Nichtterminal)

- Grammatik schrittweise verbessert
- Initialisiere Grammatik mit $S \rightarrow \alpha$
- ullet Wähle einen String γ
- \bullet Füge $T \rightarrow \gamma$ (T... neues Nichtterminal)

Auswahl von γ

• $|\gamma| \ge 2$

Auswahl von γ

- $|\gamma| \geq 2$
- \bullet γ kommst mind. zwei mal in Grammatik vor (ohne Überschneidung)

Auswahl von γ

- $|\gamma| \geq 2$
- \bullet γ kommst mind. zwei mal in Grammatik vor (ohne Überschneidung)
- ullet Alle Strings länger als γ kommen seltener vor

Upper bound

• Ähnlich upper bound von LZ78

- Ähnlich upper bound von LZ78
- Auflistung von Substrings der Länge 2

- Ähnlich upper bound von LZ78
- Auflistung von Substrings der Länge 2
- Einordnung in Gruppen

- Ähnlich upper bound von LZ78
- Auflistung von Substrings der Länge 2
- Einordnung in Gruppen
- Abschätzen der Gesamt-Expansionslänge der Gruppen

Upper bound (1/4)

• Wähle $\frac{2}{9}m$ Substrings der Länge 2 (ohne Überschneidung)

Upper bound (1/4)

- Wähle ²/₉ m Substrings der Länge 2 (ohne Überschneidung)
- ist immer möglich

Upper bound (2/4)

• Sortiere Substrings aufsteigend nach deren Expansionslänge

- Sortiere Substrings aufsteigend nach deren Expansionslänge
- Füge die ersten 2m* Substrings der ersten Gruppe hinzu

- Sortiere Substrings aufsteigend nach deren Expansionslänge
- Füge die ersten 2m* Substrings der ersten Gruppe hinzu
- ullet Füge die nächsten $3m^*$ Substrings der zweiten Gruppe hinzu

- Sortiere Substrings aufsteigend nach deren Expansionslänge
- Füge die ersten 2m* Substrings der ersten Gruppe hinzu
- Füge die nächsten 3m* Substrings der zweiten Gruppe hinzu
- usw. ...(bis zur Gruppe mit gm^* Elementen)

- Sortiere Substrings aufsteigend nach deren Expansionslänge
- Füge die ersten 2m* Substrings der ersten Gruppe hinzu
- ullet Füge die nächsten $3m^*$ Substrings der zweiten Gruppe hinzu
- usw. ...(bis zur Gruppe mit gm^* Elementen)
- $2m^* + 3m^* + ... + gm^*(g+1)m^* > \frac{2}{9}m$

- Sortiere Substrings aufsteigend nach deren Expansionslänge
- Füge die ersten 2m* Substrings der ersten Gruppe hinzu
- ullet Füge die nächsten $3m^*$ Substrings der zweiten Gruppe hinzu
- usw. ...(bis zur Gruppe mit gm^* Elementen)
- $2m^* + 3m^* + ... + gm^*(g+1)m^* > \frac{2}{9}m$
- $m^* \sum_{k=2}^{g+1} k = m^* (\frac{g^2}{2} + \frac{3g}{2}) > \frac{2}{9} m$

- Sortiere Substrings aufsteigend nach deren Expansionslänge
- Füge die ersten 2m* Substrings der ersten Gruppe hinzu
- ullet Füge die nächsten $3m^*$ Substrings der zweiten Gruppe hinzu
- usw. ...(bis zur Gruppe mit gm^* Elementen)
- $2m^* + 3m^* + ... + gm^*(g+1)m^* > \frac{2}{9}m$
- $m^* \sum_{k=2}^{g+1} k = m^* (\frac{g^2}{2} + \frac{3g}{2}) > \frac{2}{9} m$
- $m \in \mathcal{O}(g^2m^*)$

Upper bound (3/4)

ullet Sei $\sigma=$ "Gesamt-Expansionslänge"

- Sei $\sigma =$ "Gesamt-Expansionslänge"
- Für jedes α in i-ten Gruppen gilt: $|\langle \alpha \rangle| \ge i + 1$ (mk-Lemma)

- Sei $\sigma =$ "Gesamt-Expansionslänge"
- Für jedes α in i-ten Gruppen gilt: $|\langle \alpha \rangle| \ge i + 1$ (mk-Lemma)
- $2^2m^* + 3^2m^* + ... + g^2m^* \le \sigma$

- Sei $\sigma =$ "Gesamt-Expansionslänge"
- Für jedes α in i-ten Gruppen gilt: $|\langle \alpha \rangle| \ge i + 1$ (mk-Lemma)
- $2^2m^* + 3^2m^* + \dots + g^2m^* \le \sigma$
- $\sigma \leq 2n$

- Sei $\sigma =$ "Gesamt-Expansionslänge"
- Für jedes α in i-ten Gruppen gilt: $|\langle \alpha \rangle| \ge i + 1$ (mk-Lemma)
- $2^2m^* + 3^2m^* + ... + g^2m^* \le \sigma$
- $\sigma \leq 2n$
- $2^2m^* + 3^2m^* + \dots + g^2m^* \le 2n$

- Sei $\sigma =$ "Gesamt-Expansionslänge"
- Für jedes α in i-ten Gruppen gilt: $|\langle \alpha \rangle| \ge i + 1$ (mk-Lemma)
- $2^2m^* + 3^2m^* + \dots + g^2m^* \le \sigma$
- $\sigma \leq 2n$
- $2^2m^* + 3^2m^* + ... + g^2m^* \le 2n$
- $m^* \sum_{k=2}^g k^2 = m^* (\frac{g^3}{3} + \frac{g^2}{2} + \frac{g}{6} 1) \le 2n$

- Sei $\sigma =$ "Gesamt-Expansionslänge"
- Für jedes α in i-ten Gruppen gilt: $|\langle \alpha \rangle| \ge i + 1$ (mk-Lemma)

•
$$2^2m^* + 3^2m^* + ... + g^2m^* \le \sigma$$

- $\sigma \leq 2n$
- $2^2m^* + 3^2m^* + ... + g^2m^* \le 2n$
- $m^* \sum_{k=2}^{g} k^2 = m^* (\frac{g^3}{3} + \frac{g^2}{2} + \frac{g}{6} 1) \le 2n$
- $g^3 \in \mathcal{O}(\frac{n}{m^*}) \Rightarrow g \in \mathcal{O}((\frac{n}{m^*})^{\frac{1}{3}})$

•
$$m \in \mathcal{O}(g^2m^*)$$
 und $g \in \mathcal{O}((\frac{n}{m^*})^{\frac{1}{3}})$

- $m \in \mathcal{O}(g^2m^*)$ und $g \in \mathcal{O}((\frac{n}{m^*})^{\frac{1}{3}})$
- $m \in \mathcal{O}((\frac{n}{m^*})^{\frac{2}{3}}m^*) = \mathcal{O}((\frac{n}{\log(n)})^{\frac{2}{3}}m^*)$

•
$$m \in \mathcal{O}(g^2m^*)$$
 und $g \in \mathcal{O}((\frac{n}{m^*})^{\frac{1}{3}})$

•
$$m \in \mathcal{O}((\frac{n}{m^*})^{\frac{2}{3}}m^*) = \mathcal{O}((\frac{n}{\log(n)})^{\frac{2}{3}}m^*)$$

•
$$a(n) = \max_{\alpha \in \Sigma^n} \frac{m}{m^*} \in \mathcal{O}((\frac{n}{\log(n)})^{\frac{2}{3}})$$

Greedy

In jeder Iteration wird das γ gewählt welches die Größe der Grammatik am meisten senkt.

• interessant für Kompression und Musterkennung (NLP)

- interessant für Kompression und Musterkennung (NLP)
- Optimale Lösen ist NP-hart

- interessant für Kompression und Musterkennung (NLP)
- Optimale Lösen ist NP-hart
- Mit bekannten Verfahren lassen sich Approximation generieren (zB LZ78)

- interessant für Kompression und Musterkennung (NLP)
- Optimale Lösen ist NP-hart
- Mit bekannten Verfahren lassen sich Approximation generieren (zB LZ78)
- Approximationen können sehr gut sein ("LZ77 Variant")