Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/003266

International filing date:

28 February 2005 (28.02.2005)

Document type: -

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2004-091866

Filing date:

26 March 2004 (26.03.2004)

Date of receipt at the International Bureau: 21 April 2005 (21.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

日本国特許庁 JAPAN PATENT OFFICE

03.03.2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2004年 3月26日

出 願 番 号 Application Number: 特願2004-091866

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

JP2004-091866

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出 願 人
Applicant(s):

TDK株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 4月 8日

TDK株式会社内

TDK株式会社内

特許願 【書類名】 99P07357 【整理番号】 平成16年 3月26日 【提出日】 特許庁長官 殿 【あて先】 H01L 41/187 【国際特許分類】 【発明者】 東京都中央区日本橋一丁目13番1号 【住所又は居所】 東 智久 【氏名】 【発明者】 東京都中央区日本橋一丁目13番1号 【住所又は居所】 廣瀬 正和 【氏名】 【特許出願人】 000003067 【識別番号】 TDK株式会社 【氏名又は名称】 【代理人】 100100077 【識別番号】 【弁理士】、 【氏名又は名称】 大場 充 【手数料の表示】 085823 【予納台帳番号】 21,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 【物件名】 明細書 1 【物件名】

> 図面 1 要約書 1

【物件名】

【物件名】

【請求項1】

Pba[(Mn₁/₃ Nb₂/₃) x Tiy Zr₂]O₃ で表される主成分を有し(ただし、0.97 $\leq \alpha \leq 1$.01、0.04 \leq x \leq 0.16、0.48 \leq y \leq 0.58、0.32 \leq z \leq 0.41)、

かつ副成分としてA1、Ga、In、Ta及びScから選択される少なくとも1種の元素を、各元素の酸化物換算で0.01~1.0wt%含有することを特徴とする圧電磁器組成物。

【請求項2】

前記主成分の α 、x、y及びzが、0.98 $\leq \alpha$ <1.00、0.06 \leq x \leq 0.14、0.49 \leq y \leq 0.57、0.33 \leq z \leq 0.40であり、

前記副成分としてAlをAl₂O₃換算で0.05~0.75wt%含有することを特徴とする請求項1に記載の圧電磁器組成物。

【請求項3】

前記副成分として、SiをSiO2換算で0.005~0.15wt%含有することを 特徴とする請求項1又は2に記載の圧電磁器組成物。

【請求項4】

電気特性Qmax (Qmax=tanθ:θは位相角)が30以上、

電気機械結合係数 k_1 5 の熱衝撃付加前後の変化率の絶対値 $| \Delta k_1$ 5 | が 4 %以下、 2 0 | でを基準としたときの| 4 | 0 | における発振周波数 | 6 の変化率の絶対値 | | 6 | 6 | 7 | 7 | 8 | 7 | 8 | 7 | 8 | 8 | 9 | 8 | 9

【請求項5】

電気特性Qmaxが100以上、

電気機械結合係数 k_1 5 の熱衝撃付加前後の変化率の絶対値 $| \Delta k_1$ 5 | が 2 %以下、 2 0 $\mathbb C$ を基準としたときの| -4 0 $\mathbb C$ における発振周波数 $| F_0$ の変化率の絶対値 $| \Delta F_0$ (| -4 0 $\mathbb C$) | が 0 . 2 %以下、 2 0 $\mathbb C$ を基準としたときの 8 5 $\mathbb C$ における発振周波数 $| F_0$ の変化率の絶対値 $| \Delta F_0$ (8 5 $\mathbb C$) | が 0 . 2 %以下であることを特徴とする圧電磁器組成物。

【書類名】明細書

【発明の名称】圧電磁器組成物

【技術分野】

[0001]

本発明は、レゾネータ等に好適な圧電磁器組成物に関する。

【背景技術】

[0002]

現在実用化されている圧電磁器組成物のほとんどは、室温付近において正方晶系または 菱面体晶系のPZT (PbZrO3-PbTiO3 固溶体)系やPT (PbTiO3)系 などのペロプスカイト構造を有する強誘電体から構成されている。また、これらの組成に 対してPb (Mg1/3 Nb2/3) O3 やPb (Mn1/3 Nb2/3) O3 等の第三成分を置換し、あるいは様々な副成分を添加することにより、多種多様な要求特性への対応が はかられている。

[0003]

圧電磁器組成物は電気エネルギと機械エネルギを自由に変換し取り出せる機能を有しており、レゾネータ、フィルタ、アクチュエータ、着火素子あるいは超音波モータなどとして使用されている。例えば、圧電磁器組成物をレゾネータとして使用する場合、電気特性としての $Q_{max} = tan\theta:\theta$ は位相角)が大きいことが要求されているだけではなく、近年では表面実装型部品が広く普及しており、プリント基板に実装される際に、ハンダリフロー炉を通すために耐熱性が高いことも要求されている。

[0004]

【特許文献1】特開2000-103674号公報

【発明の開示】

【発明が解決しようとする課題】

[0005]

本発明は、このような技術的課題に基づいてなされたもので、電気特性Qmax、耐熱性、さらには共振周波数の温度特性のいずれもが優れた圧電磁器組成物を提供することを目的とする。

【課題を解決するための手段】

[0006]

本発明者は、副成分としてA1、Ga、In、Ta及びScから選択される1種又は2種の元素を所定量、具体的には当該元素の酸化物換算で0. 01~1. 0w t %含むことにより、前記課題を解決できることを知見した。本発明はこの知見に基づくものであり、

Pba[(Mn1/3 Nb2/3) x Tiy Zrz]O3 …式(1)

(式(1)中、0.97 $\leq \alpha \leq 1$.01、

- $0.04 \le x \le 0.16$
- $0.48 \le y \le 0.58$
- $0.32 \le z \le 0.41$ である。

なお、式(1)中、 α 、x、y及びzはそれぞれモル比を表す。)で示される主成分に

対して、副成分としてAl、Ga、In、Ta及びScから選択される少なくとも1種の元素を当該元素の酸化物換算で0.01~1.0 wt%含むことを特徴とする圧電磁器組成物である。

[0007]

本発明の圧電磁器組成物は、主成分の α 、x、y及びzが、0.98 $\leq \alpha$ < 1.00、0.06 \leq x \leq 0.14、0.49 \leq y \leq 0.57、0.33 \leq z \leq 0.40 であり、副成分としてAlをAl2O3換算で0.05 ~ 0.75 w t %含有することが望ましい。さらに、本発明の圧電磁器組成物は、副成分としてSiをSiO2換算で0.005 ~ 0.15 w t %含有することが望ましい。

[0008]

以上の本発明によれば、Pb、Zr、Ti、Mn、Nbを主成分とするペロブスカイト化合物を主成分とし、副成分としてAl、Ga、In、Ta及びScから選択される1種又は2種の元素を含む焼結体から構成され、電気特性Qmaxが100以上、電気機械結合係数 k_{15} の熱衝撃付加前後の変化率の絶対値 $|\Delta k_{15}|$ が2%以下、20 \mathbb{C} を基準としたときの-40 \mathbb{C} における発振周波数Fo0の変化率の絶対値 $|\Delta Fo$ 0(-40 \mathbb{C})|が0.2%以下、20 \mathbb{C} を基準としたときの85 \mathbb{C} における発振周波数Fo0の変化率の絶対値 $|\Delta Fo$ 0の変化率の絶対値 $|\Delta Fo$ 0の変化率の絶対値 $|\Delta Fo$ 0、2%以下である圧電磁器組成物を提供することができる

【発明の効果】

[0009]

以上説明したように、本発明によれば、電気特性Qmax、耐熱性、さらには共振周波数の温度特性のいずれもが優れた圧電磁器組成物を得ることができる。

【発明を実施するための最良の形態】

[0010]

以下、実施の形態に基づいて本発明による圧電磁器組成物について詳細に説明する。 <化学組成>

本発明による圧電磁器組成物は、Pb、Zr、Ti、Mn、Nbを主成分とするペロブスカイト化合物を含み、以下の式(1)で示される主成分を有する。ここでいう化学組成は焼結後における組成をいう。

[0011]

Pb.[(Mn1/3 Nb2/3) x Tiy Zrz]O3 …式(1)

式 (1) 中、0. $9.7 \le \alpha \le 1$. 01、

- $0. 04 \le x \le 0.16$
- $0.48 \le y \le 0.58$
- $0.32 \le z \le 0.41$ である。

なお、式 (1) 中、α、 x 、 y 及び z はそれぞれモル比を表す。

[0012]

次に、式(1)中における α 、x、y及びzの限定理由を説明する。

P b 量を示す α は、0.97 \leq α \leq 1.01の範囲とすることが望ましい。 α が0.97未満では、緻密な焼結体を得ることが困難である。一方、 α が1.01を超えると良好な耐熱性を得ることができない。よって、 α は、0.97 \leq α \leq 1.01の範囲とすることが望ましく、さらに0.98 \leq α < 1.00とすることが望ましく、0.99 \leq α < 1.00とすることがより望ましい。

[0013]

Mn 量及びNb 量を示すx は、 $0.04 \le x \le 0.16$ の範囲とすることが望ましい。x が 0.04 未満では、電気特性 Q_{max} が小さくなる。一方、x が 0.16 を超えると、良好な耐熱性を得ることができなくなる。よって、x は、x を x と x を x と x を x と x を x と x を x と x を x x 0 x 1 1 と x 5 と x 5 と x 2 x 2 x 2 x 2 x 3 x 3 x 4 と x 5 x 5 x 2 x 2 x 3 x 4 と x 5 x 2 x 3 x 4 と x 5 x 5 x 5 x 6 x 5 x 6 x 6 x 6 x 6 x 7 x 6 x 6 x 6 x 7 x 6 x 7 x 6 x 6 x 7 x 8 x 9 x 1 1 2 x 6 x 6 x 6 x 8 x 9 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 7 x 6 x 6 x 7 x 8 x 9 x 7 x 8 x 9 x 9 x 8 x 9 x

[0014]

Ti最を示す y は、 $0.48 \le y \le 0.58$ の範囲とする。 y が 0.48未満では、良好な耐熱性を得ることができない。一方、y が 0.58を超えると良好な温度特性を得ることが困難になる。よって、y は、 $0.48 \le y \le 0.58$ の範囲とすることが望ましく、 $3.50 \le y \le 0.55$ とすることが望ましく、 $3.50 \le y \le 0.55$ とすることがより望ましい。

[0015]

Zr量を示す z は、 $0.32 \le z \le 0.41$ の範囲とする。 z が 0.32 未満又は 0.41 を超えると良好な温度特性が得られなくなる。よって、z は、 $0.32 \le z \le 0.4$ の範囲とすることが望ましく、さらに $0.33 \le z \le 0.40$ とすることが望ましく、 $0.34 \le z \le 0.39$ とすることがより望ましい。

[0016]

以上の主成分を有する本発明による圧電磁器組成物は、副成分としてAI、GaxInx Ta及びScx から選択される少なくとも1 種の元素を、各元素の酸化物換算で0.01 1.0wt %含有する。以上の主成分を有し、さらに上記副成分を含有させることで、電気特性、耐熱性及び温度特性に優れる圧電磁器組成物を得ることができる。副成分の量は式 (1) のPbx[(Mn1/3Nb2/3)xTiyZrz]O3 に対して当該元素の酸化物換算で0.01 1.0wt %、望ましくは0.05 1.0xt 1.0wt %、这らに望ましくは1.0xt 1.0xt 1.0xt

[0017]

本発明による圧電磁器組成物に副成分として SiO_2 を含有させてもよい。 SiO_2 の含有はセラミックスの強度を向上させる上で有効である。 SiO_2 を含有する場合において、望ましい SiO_2 量は、式(1)の Pb_a [($Mn_1/3$ $Nb_2/3$) x Ti_y Zr_z]O₃に対して0.005~0.15wt%、より望ましい SiO_2 量は0.01~0.12wt%、さらに望ましい SiO_2 量は0.07wt%である。

[0018]

<製造方法>

次に、本発明による圧電磁器組成物の望ましい製造方法について、その工程順に説明する。

(原料粉末、秤量)

主成分の原料として、酸化物または加熱により酸化物となる化合物の粉末を用いる。具体的にはPbO粉末、TiO2粉末、ZrO2粉末、MnCO3粉末、Nb2O5粉末等を用いることができる。原料粉末は式(1)の組成となるように、それぞれ秤量する。

なお、上述した原料粉末に限らず、2種以上の金属を含む複合酸化物の粉末を原料粉末としてもよい。

[0019]

(仮焼)

原料粉末を湿式混合した後、700~950℃の範囲内で所定時間保持する仮焼を行う 出証特2005-3031409 。このときの雰囲気は N_2 または大気とすればよい。仮焼の保持時間は $0.5\sim5$ 時間の範囲で適宜選択すればよい。

なお、主成分の原料粉末と副成分の原料粉末を混合した後に、両者をともに仮焼に供する場合について示したが、副成分の原料粉末を添加するタイミングは上述したものに限定されるものではない。例えば、まず主成分の粉末のみを秤量、混合、仮焼及び粉砕する。そして、仮焼粉砕後に得られた主成分の粉末に、副成分の原料粉末を所定量添加し混合するようにしてもよい。

[0020]

(造粒・成形)

粉砕粉末は、後の成形工程を円滑に実行するために顆粒に造粒される。この際、粉砕粉末に適当なバインダ、例えばポリビニルアルコール(PVA)を少量添加し、かつこれらを十分に混合し、その後 350μ mのメッシュを通過させて整粒することにより造粒粉末を得る。次いで、造粒粉末を $200\sim300$ MPaの圧力で加圧成形し、所望の形状の成形体を得る。

[0021]

(焼成)

成形時に添加したバインダを除去した後、 $1\,1\,0\,0\sim1\,2\,5\,0\,$ での範囲内で所定時間成形体を加熱保持し焼結体を得る。このときの雰囲気は N_2 または大気とすればよい。加熱保持時間は $0.\,5\sim4$ 時間の範囲で適宜選択すればよい。

[0022]

(分極処理)

焼結体に分極処理用の電極を形成した後、分極処理を行う。分極処理は、 $50\sim300$ \mathbb{C} の温度で、 $1.0\sim2.0$ \mathbb{E} \mathbb{C} \mathbb{C}

分極処理温度が50℃未満になると、Ecが高くなるため分極電圧が高くなり、分極が困難になる。一方、分極処理温度が300℃を超えると、絶縁オイルの絶縁性が著しく低下するため分極が困難となる。よって、分極処理温度は50~300℃とする。望ましい分極処理温度は60~250℃、より望ましい分極処理温度は80~200℃である。

また、印加する電界が1.0 E c を下回ると分極が進行しない。一方、印加する電界が2.0 E c を超えると実電圧が高くなって焼結体がブレークしやすくなり、圧電磁器組成物の作製が困難となる。よって、分極処理の際に印加する電界は1.0~2.0 E c とする。望ましい印加電界は1.1~1.8 E c、より望ましい印加電界は1.2~1.6 E c である。

[0 0.2 3]

分極処理時間が 0. 5 分未満となると、分極が不十分となって十分な特性を得ることができない。一方、分極処理時間が 3 0 分を超えると分極処理に要する時間が長くなり、生産効率が劣る。よって、分極処理時間は 0. 5~3 0 分とする。望ましい分極処理時間は 0. 7~2 0 分、より望ましい分極処理時間は 0. 9~1 5 分である。

分極処理は、上述した温度に加熱された絶縁オイル、例えばシリコンオイル浴中で行う。なお、分極方向は所望の振動モードに応じて決定する。ここで、振動モードを厚みすべり振動としたい場合には、分極方向を図1(a)に示した方向とする。厚みすべり振動とは、図1(b)に示すような振動である。

[0024]

圧電磁器組成物は、所望の厚さまで研磨された後、振動電極が形成される。次いで、ダイシングソー等で所望の形状に切断された後、圧電素子として機能することとなる。

本発明における圧電磁器組成物は、レゾネータ、フィルタ、共振子、アクチュエータ、 着火素子あるいは超音波モータ等の圧電素子の材料として好適に用いられる。

[0025]

本発明が推奨する組成を選択することで、Qmaxが30以上の電気特性、電気機械結合係数k15の熱衝撃付加前後の変化率の絶対値 | k15変化率 | が4%以下という耐熱

さらに本発明によれば、 Q_{max} が100以上の電気特性、電気機械結合係数 k_{15} の 熱衝撃付加前後の変化率の絶対値 $|\Delta k_{15}|$ が2%以下という耐熱性、20 でを基準としたときの-40 における発振周波数 F_{0} の変化率の絶対値 $|\Delta F_{0}|$ (-40 で)|が0.2%以下、20 でを基準としたときの85 でにおける発振周波数 F_{0} の変化率の絶対値 $|\Delta F_{0}|$ (85 で)|が0.2%以下という温度特性を得ることができる。

さらにまた本発明によれば、 Q_{max} が120以上の電気特性、電気機械結合係数 k_1 5の熱衝撃付加前後の変化率の絶対値 $|\Delta k_15|$ が1.8%以下という耐熱性、20 \mathbb{C} を基準としたときの-40 \mathbb{C} における発振周波数 F_0 の変化率の絶対値 $|\Delta F_0|$ 0 \mathbb{C} 1 \mathbb{C} 1 \mathbb{C} 2 \mathbb{C} 2 \mathbb{C} 2 を基準としたときの \mathbb{C} 3 \mathbb{C} 4 \mathbb{C} 5 \mathbb{C} 6 \mathbb{C} 6 \mathbb{C} 7 \mathbb{C} 7 \mathbb{C} 8 \mathbb{C} 9 \mathbb{C} 9

[0026]

ここで、本発明における電気機械結合係数 k_{15} は測定周波数約 4 MH z においてインピーダンスアナライザ(アジレントテクノロジー社製 4294 A)を用いて測定する。なお、電気機械結合係数 k_{15} は以下の式(2)に基づき求めた。なお、式(2)中、F r :共振周波数、F a :反共振周波数である。電気機械結合係数 k_{15} をそれぞれ測定した後、試料をアルミ箔で包み、265 のはんだ浴に 10 秒間浸漬した後に圧電素子をアルミ箔から取り出し室温で 24 時間大気中放置した。この 24 時間放置後に、再度、電気機械結合係数 k_{15} を測定し、 Δk_{15} を求めた。なお、後述する実施例でも、同様の手順で Δk_{15} を求めた。

【0027】 【数1】

$$k_{15} = \sqrt{\frac{\pi \cdot F r}{2 \cdot F a}} c o t \left(\frac{\pi \cdot F r}{F a}\right) \cdots \vec{\pi} (2)$$

[0028]

また、本発明における発振周波数 F_0 は、等価回路定数を用いると以下に示す式(3) \sim (6)の関係がある。式(3) \sim (6)において、 F_0 :発振周波数、 F_1 :共振周波数、 F_2 : 直列容量、 G_2 : 直列容量、 G_3 : 直列容量、 G_4 : 直列容量、 G_4 : 直列容量、 G_5 : 直列容量、 G_6 : 立列容量、 G_6 : 立列容量、 G_6 : 自由容量、 G_6 : 自由容量、 G_6 : 自由容量、 G_6 : 自由容量である。また、圧電共振子の等価回路を図2に示しておく。図2中、 G_6 : 自力容量である。式(3)に示すように、共振周波数 G_6 : 直列容量 G_6 : 自力容量 G_6 : 自力公司 G_6 : 自力公司G

[0029]

本発明では、20 Cにおける発振周波数 F_0 (20 C) を基準とし、さらに-40 Cにおける発振周波数 (-40 C) 及び85 Cにおける発振周波数 (85 C) を測定する。そして、発振周波数 F_0 と-40 Cにおける発振周波数 F_0 の変化率 ΔF_0 (-40 C) 及び発振周波数 F_0 と85 Cにおける発振周波数 F_0 の変化率 ΔF_0 (85 C) を求め、温度特性を評価する。

[0030]

【数2】

$$F_0 = F r \sqrt{1 + \frac{C_1}{C_0 + C_L}} \cdots \overline{x}(3)$$

【0031】 【数3】

$$C_1 = \frac{F a^2 - F r^2}{F a^2} C d \dots \pm (4)$$

【0032】 【数4】

$$C_0 = C d - C_1 \cdots 式(5)$$

【0033】

$$C_{L} = \frac{C_{L1} \cdot C_{L2}}{C_{L1} + C_{L2}} \cdots \sharp (6)$$

$$\Rightarrow \frac{C_{L1}}{2} (C_{L1} = C_{L2})$$

【実施例1】

[0034]

出発原料として、PbO粉末、TiO2 粉末、ZrO2 粉末、MnCO3 粉末、Nb2 O5 粉末、Al2O3、SiO2 粉末を準備した。この原料粉末を、モル比でPbo.9 o[(Mn1/3Nb2/3)o.1oTio.51Zro.39]O3 となるように秤量した後、各粉末の総重量に対して副成分としてのSiO2 を0.02 wt 9 %、さらに 12O3 粉末を表 1 に示す量だけ添加し、各々ボールミルを用いて湿式混合を1 0 時間行った。

得られたスラリーを十分に乾燥させた後、大気中、800℃で2時間保持する仮焼を行った。仮焼体が平均粒径0.7 μ mになるまでボールミルにより微粉砕した後、微粉砕粉末を乾燥させた。乾燥させた微粉砕粉末に、バインダとしてPVA(ポリビニルアルコール)を適量加え、造粒した。1軸プレス成形機を用いて造粒粉末を245MPaの圧力で成形した。得られた成形体に対して脱バインダ処理を行った後、大気中、1150~1250℃で2時間保持して、縦17.5mm×横17.5mm×厚さ1.5mmの焼結体(試料)を得た。

[0035]

試料の両面をラップ盤で厚み 0.5 mmに平面加工した後に、ダイシングソーで縦×横 = 15 mm×5.0 mmに切断加工し、その両端部(5.0 mm方向)に分極用の仮電極を形成した。その後、温度 150℃のシリコンオイル槽中で 3k V/mmの電界を 15分間印加する分極処理を行った。なお、分極方向は図 1に示した方向とした。その後、仮電極を除去した。なお、仮電極除去後の試料のサイズは縦 15 mm×横 4.0 mm×厚さ 0.5 mmである。再度ラップ盤でおよそ厚さ 0.3 mmまで研磨し、真空蒸着装置を用いて

[0036]

続いて、以上の試験片 1 から縦 4 mm×横 0.7 mm×厚さ 0.3 mmの圧電素子を切り出した。こうして電気特性 Q_{max} 及び電気機械結合係数 k_{15} の測定用試料を得た(図3)。電気機械結合係数 k_{15} は厚みすべり振動モードでの電気エネルギと機械エネルギの変換効率を表し、圧電材料の基本物性の一つであり、上述の(2)式より算出した。電気特性 Q_{max} 及び電気機械結合係数 k_{15} の測定にはインピーダンスアナライザ(アジレントテクノロジー社製 4294A)を使用し、4 MH z 付近で測定した。電気特性 Q_{max} は共振周波数 Q_{max} は共振周波数 Q_{max} に位相角 (Q_{max} と反共振周波数 Q_{max} の間での Q_{max} (Q_{max})の最大値を表し、レゾネータとして重要な特性の一つで、低電圧駆動に寄与する。

[0037]

電気特性Qmaxを測定した試料をアルミ箔で包み、265℃のはんだ槽に10秒間含浸して取り出して、アルミ箔を取り除いてから24時間室温で放置した。試験前と試験後(24時間放置後)での電気機械結合係数k15の変化率Δk15を算出した。その結果を表1に示す。

[0038]

また、電気特性 Q_{max} を測定した試料を 20 $\mathbb C$ の恒温槽に入れ、十分に温度が安定したときの発振周波数 F_0 (20 $\mathbb C$) を周波数カウンタ(アジレントテクノロジー社製 53 181A)で測定した。 20 $\mathbb C$ における発振周波数 F_0 (20 $\mathbb C$) を測定した試料を、 -40 $\mathbb C$ 185 180

[0039]

【表1】

温度特性	AF ₀ (85°C)	0.08	0.05	0.10	0.14	0.19				
	AF ₀ (-40°C) AF ₀ (85°C)	0.18	0.16	0.21	0.27	0.33				
耐熱性	Δk ₁₅ (%)	3.9	3.0	2.9	1.9	3.0	\			
電気特性	電気特∮ Q _{max}		125	128	145	110				
	z (mol)			0.39						
(+y+z=1)	y (mol)		0.51							
主成分(x+y+z=1)	(lom)	,	0.10							
	(lom)		0.990							
副成分(B)	SiO ₂ (wt%)		0.02							
	Al ₂ O ₃ (wt%)	0.01	0.02	0.10	0.50	1.00	主命公:Dr [(Mz Nh) T; Zr]O			
計	S S	-	2	က	4	5				

【0040】 【数6】

$$\Delta F_0$$
 (-40°C) = $\frac{F_0 (-40°C) - F_0 (20°C)}{F_0 (20°C)} \times 100$ (%) ···式(7)

[004]1]

【数7】

 $\Delta F_0 (85\%) = \frac{F_0 (85\%) - F_0 (20\%)}{7} \times 100 (\%)$

…式(8)

[0042]

表1に示すように、副成分としてのAl2O3の添加量を増やしていくと耐熱性(電気 機械結合係数 k $_1$ $_5$ の変化率の絶対値:| Δ k $_1$ $_5$ |)が向上することがわかる。ただし 、Al2〇3の添加量をあまり増やすと|Δk15|が3.0%を超えて大きくなる傾向 を示している。よって、Al2 〇3 の添加による耐熱性の向上という効果を享受するため には、Al2O3の添加量は0.01~1.0wt%、望ましくは0.05~0.75w t%、さらに望ましくは0. $2\sim0$. 7wt%とする。そして、 $A12O_3$ の添加量をこ の範囲にすれば、温度特性を | △F。(-40℃) | ≤0.4%、 | △F。(85℃) | ≦0. 4%とすることができる。

【実施例2】

[0043]

表 2 に示す組成(主成分:Pb。[(Mn1/3 Nb2/3) x Tiy Zrz]O3)と なるように秤量した後に、実施例1と同様にして圧電磁器組成物を作製し、やはり実施例 1と同様にして各特性を測定した。その結果を表2に示す。なお、実施例2は、副成分と してのAl2O3及びSiO2の添加量を固定する一方、主成分中のα、x、y及びzの 値を変化させている。また、表 2 中の試料 N o . に付されている*印は、比較例であるこ とを示している。

[0044]

試料	副月			主成分(x+y+z=1)			電気特性	耐熱性	温度特性			
No.	Al₂O₃ (重量%)	SiO₂ (重量%)	α (mol)	x (mol)	y (mol)	z (mol)	Q _{max}	Δk ₁₅ (%)	ΔF ₀ (-40°C)	ΔF ₀ (85°C)		
6*				0.02	0.56	0.42	29 -	1.1	0.24	0.14		
7				0.04	0.58	0.38	81	0.9	0.11	0.14		
8					0.56	0.40	85	1.0	0.25	0.02		
9					0.55	0,41	117	1.4_	0.29 `	0.09		
10*					0.54	0.42	108	1.4	0.54	0.19		
11				0.06	0.56	0.38	95	1,1	0.09	0.04		
12*					0.52	0.42	177	1.5	1.10	0.77		
13*				0.08	0.59	0.33	98	1.5	0.28	0.41		
14					0.54	0.38	112	1.7	0.11	0.02		
15				0.09	0.55	0.36	114	1.8	0.03	0.19		
16					0.54	0.37	119	1.8	0.05	0.11		
17			0.990		0.53	0.38	124_	1.5	0.13	0.03		
18					0.52	0.39	154	1.8	0.24	0.07		
19				0.10	0.58	0.32	81	1.7	0.23	0.30		
20	0.5	0.02			0.54	0.36	147	2.1	0.02	0.14		
21					0.53	0.37	146	1.8	0.05	0.06		
22					0.52	0.38	158	1.7	0.14	0.02		
23					0.51	0.39	183	1.6	0.25	0.13		
24		4		0.11	0.53	0.36	135	2.7	0.00	0.09		
25					0.52	0.37	127	1.9	0.07	0.00		
26					0.51	0.38	163	2.0	0.16	0.10		
27					0.50	0.39	170	2.0	0.27	0,22		
28	.]	İ	0.995		0.58	0.30	80	2.2	0.29	0.40		
29					0.56	0.32	98	2.3	0.20	0.28		
30		.			0.50	0.38	177	2.6	0.13	0.15		
31				0.09	0.55	0.36	128	1.3	0.00	0.17		
32					0.54	0.37	131	1.6	0.08	0.08		
33	j		3,000	0.00	0.53	0.38	129	1.2	0.14	0.02		
34					0.52	0.39	154	0.8	0.26	0.10		

主成分:Pba[(Mn_{1/3}Nb_{2/3})_xTi_yZr_z]O₃

[0045]

P b 量を示す α が 0. 9 9 0 の試料(N o. 1 5 \sim 1 8)と 0. 9 9 5 の試料(N o. 3 1 \sim 3 4)を比較すると、温度特性は両者遜色ないといえるが、電気特性 Q_m a x 、耐熱性ともに α が 0. 9 9 5 の試料の方が優れている。

Mn及びNb量を示すxが0.02と小さい試料(No.6)は、電気特性Qmaxが 30未満と低い値となる。xが大きくなると電気特性Qmaxにとっては好ましいが、耐熱性が劣化する傾向を示す。

次に、yが0.59とTi量が多い試料(No.13)は、温度特性の指標の1つである Δ Fo (85°C)の絶対値($|\Delta$ Fo (85°C))が0.4%を超えてしまう。一方、例えば、試料No.19~23を参照すると、yが小さくなるにつれて温度特性($|\Delta$ Fo (85°C)))が低下する傾向にあることがわかる。

また、zが0. 42とZr量が多い試料(No. 10、12)は、温度特性が劣化する。ただし、zが小さく、つまりZr量が少なくなるとやはり温度特性が低下する傾向にあ

る。

[0046]

以上の結果に基づいて、本発明では、主成分を、Pb。[(Mn₁/3 Nb₂/3) x Tiy Zr₂]O₃ …式 (1) において、0.97 $\leq \alpha \leq 1$.01、0.04 $\leq x \leq 0$.16、0.48 $\leq y \leq 0$.58、0.32 $\leq z \leq 0$.41 とした。 【実施例3】

[0047]

実施例 1、2 と同様にして、表 3 に示す組成の圧電磁器組成物を作製し、やはり実施例 1、2 と同様にして各特性を測定した。その結果を表 3 に示す。なお、原料粉末として G a 2 O 3 粉末、 T a 2 O 3 粉末、 S c 2 O 3 粉末、 I n 2 O 3 粉末を用意した。表 3 に示すように、副成分としての G a 2 O 3、 T a 2 O 3、 S c 2 O 3、 I n 2 O 3 も、実施例 1、 2 で説明した A I 2 O 3 と同様の効果を発揮することが確認された。 【 0 0 4 8 】

【表3】

	=	\neg		Т	T		\exists	\neg		\neg	T	T	\neg
温度特性	AF ₆ (85°C)	0.25	0.23	0.07	0.30	0.17	0.09	0.12	0.17	0.15	0.13	0.04	0.13
	\DF_0(-40°C)	0.40	0.35	0.12	0.15	0.03	0.05	0.25	0.30	0.25	0.15	0.09	0.16
耐熱性	Δk ₁₅ (%)	2.2	2.0	2.7	2.8	1.9	1.6	2.9	2.7	2.2	4.5	4.7	4.2
電気特性 Omax		141	145	166	107	119	140	147	138	131	81	129	120
主成分(x+y+z=1)	z (mol)	0.39	0.39	0.39	0.36	0.38	0.39	0.39	0.39	0.39	0.39	0.39	0.39
	y (mol)	0.51	0.51	0.51	0.55	0.53	. 0.52	0.51	0.51	0.51	0.51	0.51	0.51
	х (шоп)	0.10	0.10	0,10	0.09	0,09	0.09	0.10	0.10	0.10	0.10	0.10	0.10
	α (mot)	1.000	1.000	1,000	0.995	0.995	0.995	0.990	0.890	0.990	1.000	1.000	1.000
	SiO ₂ (wt%)						600	70.05					
副成分	MnCO ₃ (wt%)	ı	1	ı	-	-	1	-		_	0.20	0:30	0.50
	In ₂ O ₃ (wt%)		1	-	7	١	1	ı	1	0.02	. 1	1	1
	Sc ₂ O ₃ (wt%)	,	_	_	-	ı	-	0.02	0,10	1	-	ı	ı
	Ta ₂ O ₅ (wt%)	1	1	05.0	0.50	0,50	0.50	1	ı	1	,	1	-
	Ga ₂ O ₃ (wt%)	0.02	0.10	_	1	1	1	'	1	·	١	,	ı
	Al ₂ O ₃ (wt%)	1	-	ı	1	1		'	,	0.45	,	-	_
武海 No.		35	36	37	38	39	\$	14	42	43	44*	42*	46.

成分:Pb。[(Mn, /3Nb2/3),Ti,Zr2]O3

【図面の簡単な説明】

[0049]

【図1】分極方向を説明するための図である。

【図2】圧電共振子の等価回路図である。

【図3】上下両面に振動電極が形成された状態の試験片の断面図である。

【符号の説明】

[0050]

1…試験片、2…振動電極

【図2】

【図3】

【書類名】要約書

【要約】

【課題】 電気特性Qmax、耐熱性、さらには共振周波数の温度特性のいずれもが優れ た圧電磁器組成物を提供する。

Pba[(Mn1/3Nb2/3) x Ti y Z r z]O3 …式(1) 【解決手段】

(式 (1) 中、0. $97 \le \alpha \le 1$. 01、

0. $0.4 \le x \le 0.16$.

0. $4.8 \le y \le 0.58$.

0. $32 \le z \le 0$. 41である。

なお、式 (1) 中、 α 、x、y及びzはそれぞれモル比を表す。) で示される主成分に 対して、副成分としてA1、Ga、In、Ta及びScから選択される少なくとも1種の 元素を当該元素の酸化物換算で 0. 01~1. 0wt%含むことを特徴とする圧電磁器組 成物。

【選択図】なし

特願2004-091866

出願人履歴情報

識別番号

[000003067]

1. 変更年月日 [変更理由] 住 所 氏 名 2003年 6月27日 名称変更 東京都中央区日本橋1丁目13番1号 TDK株式会社