QCD background data-driven estimation

UCY-CMS Group Weekly Meeting

S. Konstantinou

University of Cyprus (UCY)

Sunday 13th November, 2022

Many BSM theories need to enlarge their Higgs sector to two Higgs doublets

- ► The minimal two-Higgs-doublet models (2HDMs) predict 5 physical states:
 - lacktriangle two neutral, ${\cal CP}$ -even particles h and H ($m_{
 m h} \leq m_{
 m H})$
 - ightharpoonup one neutral, \mathcal{CP} -odd particle A^0
 - ► two charged Higgs bosons H[±]

SM fermion coupling to 2HDs (no FCNCs):

- I All quarks & leptons couple to Φ_2
- II All u-type to Φ_2 and all d-type & ℓ to Φ_1
- X Both u & d types couple to Φ_2 , all ℓ to Φ_1
- Y Roles of two doublets reversed wrt type II

Туре	и	d	ℓ
I	Φ ₂	Φ ₂	Φ ₂
H	Φ ₂	Φ_1	Φ ₁
III (X)	Φ ₂	Φ ₂	Φ_1
IV (Y)	Φ ₂	Φ ₁	Φ ₂

For each 2HDMs type there are 7 free parameters (incl. $m_{\rm h}$, $m_{\rm H}$, $m_{\rm A}$, $m_{\rm H}^{\pm}$):

- **1** $\beta \equiv \frac{V_2}{V_1}$, the ratio of the Higgs doublet VEVs
- $\sin(\beta \alpha)$, α : the mixing angle of the \mathcal{CP} -even states
- $\mathbf{0} \ m_{12},$ diagonal term of the mass matrix of the Higgs doublets

Three mass categories are commonly defined in H^{\pm} searches:

$$lacktriangle$$
 Light $m_{
m H^\pm} < m_{
m t} - m_{
m b}$, intermediate $m_{
m H^\pm} \sim m_{
m t}$, heavy $m_{
m H^\pm} > m_{
m t} + m_{
m b}$

Decay BRs model-dependent ⇒ different searches constrain different scenarios.

BRs of $H^{\pm} \rightarrow tb$ dominanates at high $m_{H^{\pm}}$, for wide range of $tan \beta$

This analysis searches for a heavy H[±]

Fully-hadronic final state of associated production characterised by:

- ► High jet & b jet multiplicities
- ✓ Large branching ratio $\mathcal{B} \simeq 46\%$
- ✓ Invariant mass reconstruction of H[±]
- ✗ QCD multijet & tt̄ background
- Combinatorial (self-)background

Various m_{H^\pm} reconstruction techniques available due to signal process kinematics:

- **Resolved t**: At moderate $m_{H^{\pm}} \& p_{T,H^{\pm}}$ the decay products of H^{\pm} are well separated
- ▶ Boosted W/t: As m_H increases the H[±] decay products become boosted
- **Boosted H** $^{\pm}$: As $p_{_{\rm T},{_{\rm H}}^{\pm}}$ increases its decay products become collinear

Previous results

- Resolved t, Boosted W/t studied separately by dedicated analyses
- 2016 ReReco data
- ► CADI HIG-18-015

This work

- Resolved t, Boosted t
- ► Full Run II data
- ► This talk: status of 2017-2018 data
- Last report (HExtended): 25 Oct 2021

Resolved (UCY, HIP)

- Resolved t (t^{res}) identification: custom top tagger (BDT)
- ▶ Selected events contain \geq 7 jets, \geq 3 b-tagged, 2 t^{res}
- ▶ H[±]mass reconstruction (m_{bt}) : leading p_T t^{res} + leading p_T b jet
- ► Main background:
 - ► Misid. B: From data using CRs (ABCD method)
 - Genuine B: from simulation
- $ightharpoonup m_{bt}$ is used to extract the signal in the presence of the SM background.

Boosted (MIT, BUAP)

Events are split in four main categories

- ▶ Boosted t/W identification: Based on m_{SD} , $\tau_{\textit{N}}$, $N_{\textit{b}}$ subjets
- lackbox H $^\pm$ mass reconstruction (m_{bt}): t + leading $p_{
 m T}$ b jet
- ► Further categorization according to:
 - ▶ $N_b \in [=1, =2, \ge 3]$
 - $N_i^{extra} \in [< 3, \ge 3]$
 - ▶ m_{tb} ∈ [below, in, above] of FWHM of signal
- Main background

 $\begin{aligned} \mathsf{QCD} \ : \ \mathsf{from \ data \ using \ CRs \ (inverted \ } \tau_{\mathit{N}}), \\ \mathsf{sidebands \ with \ } m_{\mathsf{tb}} \! \in [\mathsf{below}, \mathsf{above}]) \end{aligned}$

 $t\overline{t}$: from sim., normalized in CR with 1 ℓ

 \blacktriangleright H_T is used to extract the signal from SM background inside the m_{bt} window.

Associated production

Resolved and Boosted analysis overlayed limits

- ▶ Boosted: best sensitivity for $m_{_{\mathbf{II}}\pm}>0.8$ TeV
- Reported limit at each mass value is determined by the analysis with the best expected sensitivity.
- 21.3 to 0.007 pb for masses 0.2 to 3 TeV
- ▶ No excess above the estimated background
- Interpretation in hMSSM: maximum $\tan \beta = 0.88$ is excluded for $m_{\rm H}^{\pm} = 0.20\text{-}0.55$ TeV

s-channel

Assoc. boosted categories

- Boosted analysis sets upper limits in the s-channel production
 - 4.5-0.023 pb for $m_{\rm H}^{\pm}$ 0.8 to 3 TeV
- Boosted categories
 - Most sensitive main category is t1b
 - Least sensitive category is Wbj

Signal region (SR):

Trigger	H_T + multijet + 1 or 2 b jets
e veto	$ ho_{ m T} > 10$ GeV, $ \eta < 2.4$, Loose minilso, cutBasedElectronID (veto)
μ veto	$ ho_{ m T} > 10$ GeV, $ \eta <$ 2.4, Loose minilso isCutBasedIDLoose
au veto	$ ho_{ m T} >$ 20 GeV, $ \eta <$ 2.3, DeepTau $D_{ m e}^{ m vloose}$, $D_{\mu}^{ m medium}$, $D_{j}^{ m loose}$
≥ 7 jets	$p_T^{6th} >$ 40 GeV, $p_T^{7th} >$ 30 GeV, $ \eta <$ 2.4, Tight ID, $H_T >$ 500 GeV
\geq 3 b jets	$p_{ m T} >$ 40 GeV, DeepJet Medium WP
≥ 1 resolved top (t^{res})	custom DNN medium, $130 < m_{ m t^{res}} < 210~{ m GeV}$

SR categorization based on t^{res}

- ► $1M1L_{t^{res}}$: medium $t_{\rm H}^{res}$ loose-not-medium t_{assoc}^{res}
- \triangleright 2 $M_{t^{res}}$: both t^{res} medium tagged

Invariant H[±] mass reconstruction:

$$m_{\rm tb} = t_{ldg}^{\rm res} + b {\rm jet}_{ldg}^{\rm free} p_{\rm T}$$

RESOLVED top tagging

A fully connected NN is developed to reconstruct resolved top-quarks

▶ Distinguishes trijets from top-quark decays and trijets from combinatorial background.

- Training on simulated $t\bar{t}$ events
 - ► Signal: truth-matched trijets
 - ► Background: non-matched trijets

background

Mass decorrelation using sample reweighting:

Background is reweighted such that m_{top} matches the signal.

SF vs t^{res} p_{T} measured in a region with 1 isolated ℓ

HIG-21-010 Submitted to JHEP Documentation: AN 2021/019

Approved by JMAR group

RESOLVED background

Main background for the $H^{\pm} \rightarrow$ tb fully hadronic final state:

- ► QCD multijet **C** DATA DRIVEN
- ► EWK processes (mainly $t\bar{t}$) < SIMULATION

QCD background measurement

Defining 3 orthogonal control regions (CR) for each SR

- ▶ t_{assoc}^{res} mass: In-mass \rightarrow Off-mass "sidebands"
- ► $t_{H^{\pm}}^{res}$ mva: t-tagged (t) \rightarrow non t-tagged (!t)

"ABCD" method

$$N_{QCD}^{SR} = \sum_{i}^{\text{bins}} N_{QCD,i}^{CR(off-mass,t)} \cdot \left(\frac{N_{QCD,i}^{CR(in-mass,|t)}}{N_{QCD,i}^{CR(off-mass,|t)}} \right)$$

- ▶ Performed in 3 bins of the $t_{assoc}^{res} p_{T}$:

RESOLVED signal extraction

A parameterized DNN is developed to extract signal from SM background

- ightharpoonup Signal: $H^\pm o$ tb for different mass hypotheses
- $\qquad \qquad \textbf{Background: } \ t\bar{t} \rightarrow \mathsf{SR, Combinatorial} \rightarrow \mathsf{CR}^{(\textit{off-mass},t)} \qquad \qquad \boxed{\textit{t\bar{t}} \ \mathsf{MC}}$

Input variables

1
$$\Delta\theta(t_{H+}, b_{H+})$$
 in H^{\pm} CM

- $2 H_{T,3b}$
- $3 p_T(bb_{dRmin})$
- 4 $m(bb_{maxPt})$

5 y23 =
$$p_{T,j3}^2/(p_{T,j1}+p_{T,j2})^2$$

- 6 $p_{T,b(H^{\pm})}/H_{T,3b}$
- 7 m_u±
- 8 $p_T^{Asym}(H^{\pm}, b_{H^{\pm}})$
- 9 Circularity
- 10 Sphericity
- 11 Aplanarity
- 12 Number of medium tops
- 13 True mass

Parameterized DNN

- ightharpoonup True mass is the θ parameter
 - In background events, the true mass is randomly assigned to the same values used for signal
- ► Training (test) is done using 2017 (2018) data

BOOSTED event selection

Signal region (SR): ✓ FIXME

Trigger	H_T + multijet + 1 or 2 b jets
	H_T + AK8 jet + trim mass
ℓ veto	same as resolved
$= 1$ boosted top (t^{bst})	loose ID, $p_{ m T}>$ 400 GeV, $ \eta <$ 2.4, $m_{ m SD}\in$ [105,210] GeV, $ au_{ m 32}<$ 0.67, $N_{b~ m subjets}\geq 1$
≥ 4 jets	$p_{ m T} >$ 40 GeV, $ \eta <$ 2.4, tight ID, $H_T >$ 500 GeV
≥ 2 b jets	$p_{ m T} >$ 40 GeV, DeepJet Medium WP
$\geq 1 t^{res}$	same as resolved
Kinematic requirements	$\Delta R(t^{bst}, b^{ldg}) > 1.0$
	$\max(m_{bb}) > 200 \; ext{GeV}$

SR categorization **←** FIXME

Invariant H[±] mass reconstruction:

$$m_{\rm th} = t^{bst} + biet^{ldg} p_T$$

BACKUP