Диференциално и интегрално сямтане на фунцкции на две и повече променливи

Иво Стратев

15 юни 2017 г.

За функция на две променливи $f(x,y): D \subseteq \mathbb{R}^2 \to \mathbb{R}$ въвеждаме пониятията - частна функция и частна производна.

Нека $(x_0, y_0) \in D$ и нека $\varphi(x) = f(x, y_0)$ и $\psi(y) = f(x_0, y)$ са дефинирани в околоност на точката (x_0, y_0) . Тогава φ е частната фунцкция на f в точката (x_0, y_0) по x и ψ е частната фунцкция на f в точката (x_0, y_0) по y. Съответно производната на φ по x и производната на ψ по y наричаме частни производни на f в точката (x_0, y_0) и ги означаваме съответно с f'_x и f'_y или $\frac{\partial f}{\partial x}$ и $\frac{\partial f}{\partial y}$ т.е

$$f'_x(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0) = \varphi'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$
$$f'_y(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0) = \psi'(y_0) = \lim_{k \to 0} \frac{f(x_0, y_0 + k) - f(x_0, y_0)}{k},$$

ако съществуват границите разбира се.

По аналогичен начин дефинираме и пониятията частна функция и частна производна в точка от дефиниционното множество на дадена фунцкия на три променливи:

За функцията на три променливи $f(x,y,z): D\subseteq \mathbb{R}^3 \to \mathbb{R}$, нека $(x_0,y_0,z_0)\in D$ и нека $\varphi(x)=f(x,y_0,z_0), \ \psi(y)=f(x_0,y,z_0)$ и $\tau(z)=f(x_0,y_0,z)$ са дефинирани в околоност на точката (x_0,y_0,z_0) . Тогава φ е частната фунцкция на f в точката (x_0,y_0,z_0) по x,ψ е частната фунцкция на f в точката (x_0,y_0,z_0) по x. Съответно производната на φ по x, производната на ψ по y и производната на τ по x наричаме частни производни на x в точката x0, x0, x0 и ги означаваме съответно с x1, x2, x3, x4, x5, x6, x7, x7, x8, x9, x9,

$$f'_x(x_0, y_0, z_0) = \frac{\partial f}{\partial x}(x_0, y_0, z_0) = \varphi'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0, z_0) - f(x_0, y_0, z_0)}{h}$$

$$f'_{y}(x_{0}, y_{0}, z_{0}) = \frac{\partial f}{\partial y}(x_{0}, y_{0}, z_{0}) = \psi'(y_{0}) = \lim_{h \to 0} \frac{f(x_{0}, y_{0} + h, z_{0}) - f(x_{0}, y_{0}, z_{0})}{h}$$
$$f'_{z}(x_{0}, y_{0}, z_{0}) = \frac{\partial f}{\partial z}(x_{0}, y_{0}, z_{0}) = \tau'(z_{0}) = \lim_{h \to 0} \frac{f(x_{0}, y_{0}, z_{0} + h, z_{0}) - f(x_{0}, y_{0}, z_{0})}{h},$$

ако съществуват границите разбира се.

Преминаваме към пониятията за частни функции и частни производни на функция на много променливи:

Нека
$$f(x_1,\ldots,x_d):\ D\subseteq\mathbb{R}^d\to\mathbb{R}$$
, нека $m=(m_1,\ldots,m_d)\in D$ и нека

 $\forall i \in \{1, \ldots, d\} \ \varphi_i(t) = f(m_1, \ldots, m_{i-1}, t, m_{i+1}, \ldots, m_d)$. Тогава функциите φ_i , които са фунцкии само на една променлива, наричаме частните функции на fв точката m по съответната променлива, дефинирани в околоност на точката m и така под частна производна на функцията f по променливата x_i в точката $m = (m_1, \dots, m_d)$, разбираме (ако съществува) границата:

$$f'_{x_i}(m) = \frac{\partial f}{\partial x_i}(m) = \varphi'_i(m_i) = \lim_{h \to 0} \frac{f(m_1, \dots, m_{i-1}, m_i + h, m_{i+1}, \dots, m_d) - f(m)}{h}$$

Отъждествявайки точките от пространството \mathbb{R}^d със съотвестващите им радиус вектори и гледайки на f като фунцкия приемаща d-мерен вектор от реални числа можем да запишем горната граница по следния начин:

$$f'_{x_i}(\overrightarrow{m}) = \frac{\partial f}{\partial x_i}(\overrightarrow{m}) = \varphi'_i(m_i) = \lim_{h \to 0} \frac{f(\overrightarrow{m} + h\overrightarrow{e_i}) - f(\overrightarrow{m})}{h}$$
, където векторът $\overrightarrow{e_i} \in \mathbb{R}^d$

има единицица само на i-та позиция и 0-ли на всички останали позиции.

Ще продължим да отъжествяваме точка от пространството \mathbb{R}^d със съотвестващия й радиус вектор. Навсякъде вектора $\overrightarrow{e_i}$ ще бъде вектор с единаца само на і-та позиция и 0 във всички останали, като този вектор ще принадлежи на съответното пространство \mathbb{R}^d без това да бива изрично посочвано.

Дефиниция за диференцируема функция на две променливи:

Нека
$$f(x,y): D \subseteq \mathbb{R}^2 \to \mathbb{R}, (x_0,y_0) \in D$$

 $\iff \exists A, B \in \mathbb{R}, \exists \alpha, \beta :$ Тогава f е диференцируема в точката (x_0, y_0) $\lim_{t\to 0} \alpha(t)=0 \ \land \ \lim_{s\to 0} \beta(s)=0.$ И за достатъчно малки $h,k\in\mathbb{R}$ е изпълено, че:

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + A.h + B.k + \alpha(h).h + \beta(k).k$$

Алтернативна дефиниция за диференцируема функция на две променливи:

Ако в горната дефинция положим: $x = x_0 + h \land y = y_0 + k$ получаваме следната дефиниция:

Нека
$$f(x,y): D \subseteq \mathbb{R}^2 \to \mathbb{R}, (x_0,y_0) \in D$$

Тогава f е диференцируема в точката $(x_0,y_0)\iff\exists A,B\in\mathbb{R},\ \exists\alpha,\beta:\lim_{t\to 0}\alpha(t)=0 \land \lim_{s\to 0}\beta(s)=0.$ И за точки $(x,y)\in D$ с достатъчно "близко" до точката (x_0,y_0) е изпълено, че:

$$f(x,y) = f(x_0, y_0) + A.(x - x_0) + B.(y - y_0) + \alpha(x - x_0).(x - x_0) + \beta(y - y_0).(y - y_0)$$

Дефиниция за диференцируема функция на много променливи:

Нека $f(x_1, ..., x_d)$: $D \subseteq \mathbb{R}^d \to \mathbb{R}$, $m = (m_1, ..., m_d) \in D$ f е диференцируема в точката $m \iff \forall i \in \{1, ...d\} \ \exists A_i \in \mathbb{R}, \ \exists \alpha_i : \lim_{t \to 0} \alpha_i(t) = 0$. И за вектори $\overrightarrow{h} = (h_1, ..., h_d)$, които са с достатъчно малка норма е в сила равенството:

$$f(\overrightarrow{m} + \overrightarrow{h}) = f(\overrightarrow{m}) + \sum_{i=1}^{d} A_i(\overrightarrow{m}) \cdot h_i + \sum_{i=1}^{d} \alpha_i(h_i) \cdot h_i$$

Алтернативна дефиниция за диференцируема функция на много променливи:

Нека $f(x_1,\ldots,x_d): D\subseteq \mathbb{R}^d \to \mathbb{R}, \ m=(m_1,\ldots,m_d)\in D \ f$ е диференцируема в точката $m\iff \forall i\in\{1,\ldots d\}\ \exists A_i\in\mathbb{R},\ \exists \alpha_i: \lim_{t\to 0}\alpha_i(t)=0.$ И за точки $x=(x_1,\ldots,x_d)$, достатъчно "близко" до точката m е в сила равенството:

$$f(\overrightarrow{x}) = f(\overrightarrow{m}) + \sum_{i=1}^{d} A_i(\overrightarrow{m})(x_i - m_i) + \sum_{i=1}^{d} \alpha_i(x_i - m_i)(x_i - m_i)$$

Отстъпление:

От теоремата за крайните нараствания на Лагранж за функция на една променлива знаем, че ако

$$\varphi \in C[a, a+b] \land \exists \varphi' \in C(a, a+b) \implies$$

 $\exists c \in (0,1): \ \varphi(a+b) - \varphi(a) = (a+b-a)\varphi'(a+cb) = b\varphi'(a+cb).$ Ще използваме тази теорема в следващите доказателства.

Теорема (Формула за нарастването на функция на две променливи)

Нека $f(x,y): D\subseteq \mathbb{R}^2 \to R$ е функция дефинира в околност на точката $(x_0,y_0)\in D$ и нека частните производни f'_x,f'_y съществуват и са непрепъснати в същата околност. Тогава за вектори (h,k), имащи достатъчно малка норма, то:

$$\exists \alpha, \beta : \lim_{(s,t)\to(0,0)} \alpha(s,t) = 0 \land \lim_{(s,t)\to(0,0)} \beta(s,t) = 0 \Longrightarrow$$
$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + hf'_x(x_0, y_0) + kf'_y(x_0, y_0) + h\alpha(h, k) + k\beta(h, k)$$

Доказателство:

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) =$$

$$= (f(x_0 + h, y_0 + k) - f(x_0, y_0 + k)) + (f(x_0, y_0 + k) - f(x_0, y_0)) \implies$$

(От теоремата за крайните нараствания) $\exists \theta, \eta \in (0,1)$:

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = hf'_x(x_0 + \theta h, y_0 + k) + kf'_y(x_0, y_0 + \eta k) =$$

$$= h(f'_x(x_0 + \theta h, y_0 + k) - f'_x(x_0, y_0) + f'_x(x_0, y_0)) + k(f'_y(x_0, y_0 + \eta k) - f'_y(x_0, y_0) + f'_y(x_0, y_0))$$

Ако означим $\alpha(h,k) = f_x'(x_0 + \theta h, y_0 + k) - f_x'(x_0, y_0)$ и

$$\beta(h,k) = f_{\eta}'(x_0, y_0 + \eta k) - f_{\eta}'(x_0, y_0)$$

От непрекъснатостта на $f_x', f_y' \Longrightarrow$

$$\lim_{(s,t)\to(0,0)} \alpha(s,t) = 0 \quad \wedge \quad \lim_{(s,t)\to(0,0)} \beta(s,t) = 0 \implies$$

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = h(\alpha(h, k) + f'_x(x_0, y_0)) + k(\beta(h, k) + f'_y(x_0, y_0)) \implies$$

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + hf'_x(x_0, y_0) + kf'_y(x_0, y_0) + h\alpha(h, k) + k\beta(h, k) \quad \Box$$

Ако означим $(x,y)=(x_0+h,y_0+k) \implies (h,k)=(x-x_0,y-y_0)$ тогава формулата може да бъде записана:

$$f(x,y) = f(x_0, y_0) + f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0) + \alpha(x - x_0, y - y_0)(x - x_0) + \beta(x - x_0, y - y_0)(y - y_0)$$

Теорема (Формула за нарастването на функция на много променливи)

Нека $f(x_1, ..., x_d)$: $D \subseteq \mathbb{R}^d \to R$, $m = (m_1, ..., m_n) \in D$, r > 0 е функция дефинира в околност на точката m.

Нека съществуват всички частни производни f'_{x_i} и те са непрекъснати в разглежданата околност. Тогава за вектори $\overrightarrow{h}=(h_1,\ldots,h_d)\in R^d$, имащи достатъчно малка норма то:

$$\forall i \in \{1, \dots d\} \quad \exists \alpha_i : \lim_{\overrightarrow{t} \to \overrightarrow{0}} \alpha_i(\overrightarrow{t}') = 0 \implies$$

$$f(\overrightarrow{m} + \overrightarrow{h}) = f(\overrightarrow{m}) + \sum_{i=1}^d f'_{x_i}(\overrightarrow{m})h_i + \sum_{i=1}^d \alpha_i(\overrightarrow{h})h_i$$

$$\begin{split} h &= \sum_{i=1}^{d} h_{i} \overrightarrow{e_{i}'} \\ f(\overrightarrow{m} + \overrightarrow{h}) - f(\overrightarrow{m}) = \\ &= f(\overrightarrow{m} + \overrightarrow{h}) + \sum_{i=1}^{d} \left[f\left(\overrightarrow{m} + \sum_{j=i}^{d} h_{j} \overrightarrow{e_{j}'}\right) - f\left(\overrightarrow{m} + \sum_{j=i}^{d} h_{j} \overrightarrow{e_{j}'}\right) \right] - f(\overrightarrow{m}) = \\ &= \sum_{i=1}^{d} \left[f\left(\overrightarrow{m} + \sum_{j=i}^{d} h_{j} \overrightarrow{e_{j}'}\right) - f\left(\overrightarrow{m} + \sum_{j=i+1}^{d} h_{j} \overrightarrow{e_{j}'}\right) \right] = \\ &= \sum_{i=1}^{d} h_{i} f'_{x_{i}} \left(\overrightarrow{m} + \theta_{i} h_{i} \overrightarrow{e_{i}'} + \sum_{j=i+1}^{d} h_{j} \overrightarrow{e_{j}'}\right) = \\ &= \sum_{i=1}^{d} h_{i} \left[f'_{x_{i}} \left(\overrightarrow{m} + \theta_{i} h_{i} \overrightarrow{e_{i}'} + \sum_{j=i+1}^{d} h_{j} \overrightarrow{e_{j}'}\right) - f'_{x_{i}}(\overrightarrow{m}) + f'_{x_{i}}(\overrightarrow{m}) \right], \end{split}$$

за подходящи $\theta_i \in (0,1)$

Ако
$$\forall i \in \{1, \dots, d\} \ \alpha_i(\overrightarrow{h}) = f'_{x_i} \left(\overrightarrow{m} + \theta_i h_i \overrightarrow{e_i} + \sum_{j=i+1}^d h_j \overrightarrow{e_j} \right) - f'_{x_i}(\overrightarrow{m}),$$

$$f'_{x_i} \in C(K) \implies \lim_{\overrightarrow{t} \to \overrightarrow{0}} \alpha_i(\overrightarrow{t}) = 0 \implies$$

$$f(\overrightarrow{m} + \overrightarrow{h}) - f(\overrightarrow{m}) = \sum_{i=1}^{d} h_i \left[\alpha_i(\overrightarrow{h}) + f'_{x_i}(\overrightarrow{m}) \right] \implies$$

$$f(\overrightarrow{m} + \overrightarrow{h}) = f(\overrightarrow{m}) + \sum_{i=1}^{d} f'_{x_i}(\overrightarrow{m})h_i + \sum_{i=1}^{d} \alpha_i(\overrightarrow{h})h_i \quad \Box$$

Ако означим
$$\overrightarrow{x} = (x_1, \dots, x_d) = \overrightarrow{m} + \overrightarrow{h} \implies \overrightarrow{h} = \overrightarrow{x} - \overrightarrow{m} \implies$$

 $(h_1, \ldots, h_d) = (x_1 - m_1, \ldots, x_d - m_d)$. Тогава формулата може да бъде записана:

$$f(\overrightarrow{x}) = f(\overrightarrow{m}) + \sum_{i=1}^{d} f'_{x_i}(\overrightarrow{m})(x_i - m_i) + \sum_{i=1}^{d} \alpha_i(\overrightarrow{x} - \overrightarrow{m})(x_i - m_i)$$

Дефиниция за графика на функция:

Нека
$$f(x_1,\ldots,x_d):D\subseteq\mathbb{R}^d\to\mathbb{R}$$

$$G_f = \{(x_1, \dots, x_d, f(x_1, \dots, x_d)) \in \mathbb{R}^{d+1} \mid (x_1, \dots, x_d) \in D\}$$

Множеството G_f наричаме градика на функцията f на d променливи.

Дефиниция за допирателна равнина към графика на функция:

Нека $m = (m_1, \ldots, m_d) \in D$. Тогава под допирателна равнина към графиката G_f в точката (m, f(m)) ще разбираме равнината в пространството R^{d+1} с уравнение:

$$l(x_1, \dots, x_d) = f(\overrightarrow{m}) + \sum_{i=1}^d f'_{x_i}(\overrightarrow{m})(x_i - m_i)$$

Теорема (За диференцирне на съставни функции на две променливи)

Нека f(x,y) е дефинирана в околност на точката (x_0,y_0) и нека $\varphi(t),\psi(t)$ са дефинирани и диференцируеми в околност на точката $r \in \mathbb{R}$,

 $x_0 = \varphi(r), \ y_0 = \psi(r).$ Ако f е диференцируема в $(x_0, y_0),$ а $\varphi(t), \psi(t)$ в $r \implies F(t) = f(\varphi(t), \psi(t))$ е диференцируема в r и

$$F'(r) = f'_x(\varphi(r), \psi(r))\varphi'(r) + f'_y(\varphi(r), \psi(r))\psi'(r)$$

Доказателство:

От формулата за нарастването: $\exists \alpha, \beta: \lim_{(h,k) \to (0,0)} \alpha(h,k) = \lim_{(h,k) \to (0,0)} \beta(h,k) = 0$

$$F(t) - F(r) = f(x, y) - f(x_0, y_0) =$$

$$= f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0) + + \alpha(x - x_0, y - y_0)(x - x_0) + \beta(x - x_0, y - y_0)(y - y_0) \implies$$

$$F'(r) = \lim_{t \to r} = f'_x(\varphi(r), \psi(r)) \frac{\varphi(t) - \varphi(r)}{t - r} + f'_y(\varphi(r), \psi(r)) \frac{\psi(t) - \psi(r)}{t - r} + \frac{\varphi(r) - \varphi(r)}{t - r} + \frac{\varphi(r)}{t - r} + \frac{\varphi(r$$

Теорема (За диференцирне на съставни функции на много променливи)

Нека $f(x_1,\ldots,x_d): D\subseteq \mathbb{R}^d \to R, \ m=(m_1,\ldots,m_d)\in D, \ f$ е дефинирана в околност на точката m и нека $\varphi_1(t),\ldots,\varphi_d(t)$ са дефинирани и диференцируеми в околност на точката $r\in \mathbb{R}, \ \forall i\in \{1,\ldots,d\} \ m_i=\varphi_i(r).$ Ако f е диференцируема в m, а $\varphi_1(t),\ldots,\varphi_d(t)$ в $r\implies F(t)=f(\varphi_1(t),\ldots,\varphi_d(t))$ е диференцируема в r и $F'(r)=\sum_{i=1}^d f'_{x_i}(\varphi_1(r),\ldots,\varphi_d(r))\varphi'_i(r)$

От формулата за нарастването: $\forall i \in \{1, \dots, d\} \ \exists \alpha_i : \lim_{\overrightarrow{s} \to \overrightarrow{0}} \alpha_i(s) = 0,$

$$F(t) - F(r) = f(\overrightarrow{x}) - f(\overrightarrow{m}) = \sum_{i=1}^{d} f'_{x_i}(\overrightarrow{m})(x_i - m_i) + \sum_{i=1}^{d} \alpha_i(\overrightarrow{x} - \overrightarrow{m})(x_i - m_i) \implies$$

$$F'(r) = \lim_{t \to r} = \sum_{i=1}^{d} f'_{x_i}(\overrightarrow{m}) \frac{\varphi_i(t) - \varphi_i(r)}{t - r} + \sum_{i=1}^{d} \alpha_i \left(\sum_{j=1}^{d} (\varphi_i(t) - \varphi_i(r)) \overrightarrow{e_j} \right) \frac{\varphi_i(t) - \varphi_i(r)}{t - r} = \sum_{i=1}^{d} f'_{x_i}(\overrightarrow{m}) \frac{\varphi_i(t) - \varphi_i(r)}{t - r} + \sum_{i=1}^{d} \alpha_i \left(\sum_{j=1}^{d} (\varphi_i(t) - \varphi_i(r)) \overrightarrow{e_j} \right) \frac{\varphi_i(t) - \varphi_i(r)}{t - r} = \sum_{i=1}^{d} f'_{x_i}(\overrightarrow{m}) \frac{\varphi_i(t) - \varphi_i(r)}{t - r} + \sum_{i=1}^{d} \alpha_i \left(\sum_{j=1}^{d} (\varphi_i(t) - \varphi_i(r)) \overrightarrow{e_j} \right) \frac{\varphi_i(t) - \varphi_i(r)}{t - r} = \sum_{i=1}^{d} f'_{x_i}(\overrightarrow{m}) \frac{\varphi_i(t) - \varphi_i(r)}{t - r} + \sum_{i=1}^{d} \alpha_i \left(\sum_{j=1}^{d} (\varphi_i(t) - \varphi_i(r)) \overrightarrow{e_j} \right) \frac{\varphi_i(t) - \varphi_i(r)}{t - r} = \sum_{i=1}^{d} f'_{x_i}(\overrightarrow{m}) \frac{\varphi_i(t) - \varphi_i(r)}{t - r} + \sum_{i=1}^{d} \alpha_i \left(\sum_{j=1}^{d} (\varphi_i(t) - \varphi_i(r)) \overrightarrow{e_j} \right) \frac{\varphi_i(t) - \varphi_i(r)}{t - r} = \sum_{i=1}^{d} f'_{x_i}(\overrightarrow{m}) \frac{\varphi_i(t) - \varphi_i(r)}{t - r} = \sum_{i=1}^{d} f'_{x_i}(\overrightarrow{m}) \frac{\varphi_i(t) - \varphi_i(r)}{t - r} + \sum_{i=1}^{d} f'_{x_i}(\overrightarrow{m}) \frac{\varphi_i(t) - \varphi_i(r)}{t - r} = \sum_{i=1}^{d} f'_{x_i}(\overrightarrow{m}) \frac{\varphi_i(t) - \varphi_i(r)}{t -$$

$$= \sum_{i=1}^{d} f'_{x_i}(\varphi_1(r), \dots, \varphi_d(r))\varphi'_i(r) + 0 \quad \Box$$

Дефиниция за Якобиан:

Нека $D, D_1, \ldots, D_n \subseteq \mathbb{R}^d$, $\forall i \in \{1, \ldots, d\}$ $f_i : D_i \to \mathbb{R}$,

 $f: D \to \mathbb{R}^d: f(x_1, \dots, x_d) = (f_1(x_1, \dots, x_d), \dots, f_d(x_1, \dots, x_d)),$ е диференцируема в околност на точката m. Тогава под якобиан или функционална детерминанта разбираме:

$$D(f(\overrightarrow{m})) = \begin{vmatrix} f'_{1x_1}(\overrightarrow{m}) & f'_{1x_2}(\overrightarrow{m}) & \dots & f'_{1x_d}(\overrightarrow{m}) \\ f'_{2x_1}(\overrightarrow{m}) & f'_{2x_2}(\overrightarrow{m}) & \dots & f'_{2x_d}(\overrightarrow{m}) \\ & & & & \\ f'_{dx_1}(\overrightarrow{m}) & f'_{dx_2}(\overrightarrow{m}) & \dots & f'_{dx_d}(\overrightarrow{m}) \end{vmatrix}$$

Дефиниция за производна по направление:

Нека $f:D\subseteq\mathbb{R}^d\to\mathbb{R}$ е диференцруема в $m\in D$ и нека $\overrightarrow{v}=(v_1\ldots,v_d)\in\mathbb{R}^d$:

$$\|\overrightarrow{v}\| = \sqrt{\sum_{i=1}^d v_i^2} = 1$$
. Тогава под производна на функцията f по направление \overrightarrow{v} в точката m ще разбираме (ако съществува) границата:

$$f'_{\overrightarrow{v}}(\overrightarrow{m}) = \frac{\partial f}{\partial \overrightarrow{v}}(\overrightarrow{m}) = \lim_{t \to 0} \frac{f(\overrightarrow{m} + t\overrightarrow{v}) - f(\overrightarrow{m})}{t} = \sum_{i=1}^{d} v_i f'_{x_i}(\overrightarrow{m}) = \left\langle (\overrightarrow{grad}(f))(\overrightarrow{m}), \overrightarrow{v} \right\rangle = \sum_{i=1}^{d} v_i f'_{x_i}(\overrightarrow{m}) = \left\langle (\overrightarrow{grad}(f))(\overrightarrow{m}), \overrightarrow{v} \right\rangle = \sum_{i=1}^{d} v_i f'_{x_i}(\overrightarrow{m}) = \left\langle (\overrightarrow{grad}(f))(\overrightarrow{m}), \overrightarrow{v} \right\rangle = \sum_{i=1}^{d} v_i f'_{x_i}(\overrightarrow{m}) = \left\langle (\overrightarrow{grad}(f))(\overrightarrow{m}), \overrightarrow{v} \right\rangle = \sum_{i=1}^{d} v_i f'_{x_i}(\overrightarrow{m}) = \left\langle (\overrightarrow{grad}(f))(\overrightarrow{m}), \overrightarrow{v} \right\rangle = \sum_{i=1}^{d} v_i f'_{x_i}(\overrightarrow{m}) = \left\langle (\overrightarrow{grad}(f))(\overrightarrow{m}), \overrightarrow{v} \right\rangle = \sum_{i=1}^{d} v_i f'_{x_i}(\overrightarrow{m}) = \left\langle (\overrightarrow{grad}(f))(\overrightarrow{m}), \overrightarrow{v} \right\rangle = \sum_{i=1}^{d} v_i f'_{x_i}(\overrightarrow{m}) = \left\langle (\overrightarrow{grad}(f))(\overrightarrow{m}), \overrightarrow{v} \right\rangle = \sum_{i=1}^{d} v_i f'_{x_i}(\overrightarrow{m}) = \sum_{i=1}^{d}$$

$$= \|(\overrightarrow{grad}(f))(\overrightarrow{m})\|\cos \sphericalangle \left((\overrightarrow{grad}(f))(\overrightarrow{m}), \overrightarrow{v}\right)$$

Дефиниция за градиент:

Под градиент на функията $f:D\subseteq\mathbb{R}^d\to\mathbb{R}$ в точката $m\in D$ разбираме вектор с кординати, равни на частните производни в тази точка:

$$(\overrightarrow{grad}(f))(\overrightarrow{m}) = (f'_{x_1}(\overrightarrow{m}), \dots f'_{x_d}(\overrightarrow{m})) = \sum_{i=1}^d f'_{x_i}(\overrightarrow{m}) \overrightarrow{e_i} = \sum_{i=1}^d \frac{\partial f}{\partial x_i}(\overrightarrow{m}) \overrightarrow{e_i}$$

Означение за производна от втори ред:

С $\frac{\partial^2 f}{\partial x_i \partial x_j}$ или с $f''_{x_i x_j}$ означаваме производната на функцията $\frac{\partial f}{\partial x_i} = f'_{x_i}$

Теорема (за равенството между смесените производни на функция на две променливи)

Нека f(x,y) е дефинирана и непрекъсната в околност на точката (x_0,y_0) и съществуват и са непрекъснати частните производни: $f'_x, f'_y, f''_{xy}, f''_{yx}$ в разглежданата околност на точката (x_0,y_0) . Тогава $f''_{xy}(x_0,y_0) = f''_{yx}(x_0,y_0)$

Нека
$$W(h,k) = f(x_0 + h + y_0 + k) - f(x_0 + h, y_0) - f(x_0, y_0 + k) + f(x_0, y_0)$$

Нека $\varphi(x) = f(x, y_0 + k) - f(x, y_0), \ \theta_1, \theta_2 \in (0, 1)$ (зависещи от h, k) \Longrightarrow $W(h,k) = \psi(x_0 + h) - \psi(x_0) = h\varphi'(x_0 + \theta_1 h) =$ $= h(f'_x(x_0 + \theta_1 h, y_0 + k) - f'_x(x_0 + \theta_1 h, y_0)) =$ $= hkf''_{xy}(x_0 + \theta_1 h, y_0 + \theta_2 k) \Longrightarrow$ $\lim_{(h,k)\to(0,0)} \frac{W(h,k)}{hk} = \lim_{(h,k)\to(0,0)} f''_{xy}(x_0 + \theta_1 h, y_0 + \theta_2 k) = f''_{xy}(x_0, y_0)$
Нека $\psi(y) = f(x_0 + h, y) - f(x_0, y), \ \theta_3, \theta_4 \in (0,1)$ (зависещи от h, k) \Longrightarrow $W(h,k) = \psi(y_0 + k) - \psi(y_0) = k\psi'(y_0 + \theta_3 k) =$ $= k(f'_y(x_0 + h, y_0 + \theta_3 k) - f'_y(x_0, y_0 + \theta_3 k)) =$ $= khf''_{yx}(x_0 + \theta_4 h, y_0 + \theta_3 k) \Longrightarrow$ $\lim_{(h,k)\to(0,0)} \frac{W(h,k)}{hk} = \lim_{(h,k)\to(0,0)} f''_{yx}(x_0 + \theta_4 h, y_0 + \theta_3 k) = f''_{yx}(x_0, y_0) \Longrightarrow$ $f''_{xy}(x_0, y_0) = f''_{yx}(x_0, y_0)$

Дефиниция за локален максимум на фунцкия на много променливи

Нека функцията $f(x_1, \ldots, x_d) : D \subset \mathbb{R}^d \to \mathbb{R}$. Точката $m \in D$ се нарича точка на локален максимум за f, ако: m е вътрешна за D и $\exists \varepsilon > 0 : \forall x \in D : \|\overrightarrow{x} - \overrightarrow{m}\| < \varepsilon \implies f(\overrightarrow{x}) \leq f(\overrightarrow{m})$

Дефиниция за локален минимум на фунцкия на много променливи

Нека функцията $f(x_1, \ldots, x_d) : D \subset \mathbb{R}^d \to \mathbb{R}$. Точката $m \in D$ се нарича точка на локален минимум за f, ако: m е вътрешна за D и $\exists \varepsilon > 0 : \forall x \in D : \|\overrightarrow{x} - \overrightarrow{m}\| < \varepsilon \implies f(\overrightarrow{x}) \ge f(\overrightarrow{m})$

Дефиниция за строг локален максимум на фунцкия на много променливи

Нека функцията $f(x_1,\ldots,x_d): D\subset \mathbb{R}^d \to \mathbb{R}$. Точката $m\in D$ се нарича точка на строг локален максимум за f, ако: m е вътрешна за D и $\exists \varepsilon>0: \ \forall x\in D: \ x\neq m \ \land \ \|\overrightarrow{x}-\overrightarrow{m}\|<\varepsilon \implies f(\overrightarrow{x})< f(\overrightarrow{m})$

Дефиниция за строг локален минимум на фунцкия на много променливи

Нека функцията $f(x_1,\ldots,x_d):D\subset\mathbb{R}^d\to\mathbb{R}$. Точката $m\in D$ се нарича точка на строг локален минимум за f, ако: m е вътрешна за D и $\exists \varepsilon>0:\ \forall x\in D:\ x\neq m\ \land\ \|\overrightarrow{x}-\overrightarrow{m}\|<\varepsilon\implies f(\overrightarrow{x})>f(\overrightarrow{m})$

Дефиниция за локален екстремум на фунцкия на много променливи

Накратко за една точка казваме, че е локален екстремум за някоя функция, ако той е или локален максимум или локален минимум за нея.

Дефиниция за строг локален екстремум на фунцкия на много променливи

Накратко за една точка казваме, че е строг локален екстремум за някоя функция, ако той е или строг локален максимум или строг локален минимум за нея.

Дефиниция за критична точка на фунцкия на много променливи

Точка, вътрешна за дефиниционната област, в която всички частни производни на дадена функция се анулират, наричаме критична точка за функцията.

Критерии на Силвестър за наличие на локален екстремум

Критерии на Силвестър за наличие на локален екстремум на функция на две променливи

Нека f(x,y) е двукратно гладка функция, дефинирана в околност на точката (x_0,y_0) и нека $f'_x(x_0,y_0)=f'_y(x_0,y_0)=0$.

Нека
$$\Delta_1 = f_{xx}''(x_0, y_0), \ \Delta_2 = \begin{vmatrix} f_{xx}''(x_0, y_0) & f_{xy}''(x_0, y_0) \\ f_{yx}''(x_0, y_0) & f_{yy}''(x_0, y_0) \end{vmatrix}$$

Ако $\Delta_1 > 0 \land \Delta_2 > 0 \implies (x_0, y_0)$ е строг локален минимум за f.

Ако $\Delta_1 < 0 \land \Delta_2 > 0 \implies (x_0, y_0)$ е строг локален максимум за f.

Ако $\Delta_2 < 0 \implies (x_0, y_0)$ не е локален екстремум за f.

Критерии на Силвестър за наличие на локален екстремум на функция на три променливи

Нека f(x,y,z) е двукратно гладка функция, дефинирана в околност на точката (x_0,y_0,z_0) и нека $f'_x(x_0,y_0,z_0)=f'_y(x_0,y_0,z_0)=f'_z(x_0,y_0,z_0)=0$.

Нека
$$\Delta_1 = f''_{xx}(x_0, y_0), \ \Delta_2 = \begin{vmatrix} f''_{xx}(x_0, y_0) & f''_{xy}(x_0, y_0) \\ f''_{yx}(x_0, y_0) & f''_{yy}(x_0, y_0) \end{vmatrix},$$

$$\Delta_{3} = \begin{vmatrix} f''_{xx}(x_{0}, y_{0}, z_{0}) & f''_{xy}(x_{0}, y_{0}, z_{0}) & f''_{xz}(x_{0}, y_{0}, z_{0}) \\ f''_{yx}(x_{0}, y_{0}, z_{0}) & f''_{yy}(x_{0}, y_{0}, z_{0}) & f''_{yz}(x_{0}, y_{0}, z_{0}) \\ f''_{zx}(x_{0}, y_{0}, z_{0}) & f''_{zy}(x_{0}, y_{0}, z_{0}) & f''_{zz}(x_{0}, y_{0}, z_{0}) \end{vmatrix}$$

Ако $\Delta_1>0$ \wedge $\Delta_2>0$ \wedge $\Delta_3>0$ \Longrightarrow (x_0,y_0,z_0) е строг локален минимум за f.

Ако $\Delta_1 < 0 \land \Delta_2 > 0 \land \Delta_3 < 0 \implies (x_0,y_0,z_0)$ е строг локален максимум за f.

Ако $\Delta_2 < 0 \implies (x_0, y_0, z_0)$ не е локален екстремум за f.

Критерии на Силвестър за наличие на локален екстремум на функция на много променливи

Нека $f(x_1, \ldots, x_d)$ е двукратно гладка функция, дефинирана в околност на точката $m = (m_1, \ldots, m_d)$ и нека $(\overrightarrow{grad}(\overrightarrow{m})) = \overrightarrow{0}$

Нека
$$\forall k \in \{1, \dots, d\}$$
 $\Delta_k = \begin{vmatrix} f''_{x_1x_1}(\overrightarrow{m}) & f''_{x_1x_2}(\overrightarrow{m}) & \dots & f''_{x_1x_k}(\overrightarrow{m}) \\ f''_{x_2x_1}(\overrightarrow{m}) & f''_{x_2x_2}(\overrightarrow{m}) & \dots & f''_{x_2x_k}(\overrightarrow{m}) \end{vmatrix}$

$$\vdots \\ f''_{x_kx_1}(\overrightarrow{m}) & f''_{x_kx_2}(\overrightarrow{m}) & \dots & f''_{x_kx_k}(\overrightarrow{m}) \end{vmatrix}$$

Ако $\forall k \in \{1,\ldots,d\} \ \Delta_k > 0 \implies \overrightarrow{m}$ е строг локален минимум за f.

Ако $\forall k \in \{1,\ldots,d\} \ (-1)^k \Delta_k > 0 \implies \overrightarrow{m}$ е строг локален максимум за f.

Ако $\exists k \in \{1, \dots, \left\lfloor \frac{d}{2} \right\rfloor\} : \Delta_{2k} < 0 \implies \overrightarrow{m}$ не е локален екстремум за f.

Дефиниция за измеримо множество

Дефиниция за разтоние в \mathbb{R}^2

Под разтояние в \mathbb{R}^2 между две точки $P(x_p,y_p),\;Q(x_q,y_q)$ разбираме числото

$$\rho(P,Q) = \sqrt{(x_q - x_p)^2 + (y_q - y_p)^2}$$

Дефиниция за кръгова околност в \mathbb{R}^2

Под кръгова околност на точката $P \in \mathbb{R}^2$ разбираме отворен кръг с радиус $r \in \mathbb{R}$ $B(P,r) = \{Q \in \mathbb{R}^2 \mid \rho(Q,P) < r\}$

Дефиниця за вътрешна точка в \mathbb{R}^2

Точката $P \in \mathbb{R}^2$ се нарича вътрешна за множеството $M \subset \mathbb{R}^2$, ако

 $\exists r > 0 : B(P, r) \subseteq M.$

Дефиниця за външна точка в \mathbb{R}^2

Точката $P \in \mathbb{R}^2$ се нарича външна за множеството $M \subset \mathbb{R}^2$, ако е вътрешна за множеството $\mathbb{R}^2 \backslash M$.

Дефиниця за контурна точка в \mathbb{R}^2

Точката $P \in \mathbb{R}^2$ се нарича контурна за множеството $M \subset \mathbb{R}^2$, ако е не е нито вътрешна, нито външна за множеството M.

Дефиниця за контурн на множество, подмножество на \mathbb{R}^2

Контур наричаме множеството от контурните точки на дадено подмножество на \mathbb{R}^2 .

Дефиниця за ограничено множество

Едно множество наричаме ограничено, ако числовото множество $\{\rho((0,0),P)\}_{P\in M}$ е ограничено отгоре.

Дефиниция за правоъгълник в \mathbb{R}^2

Множеството $K_{\overline{(a,c),(b,d)}} = \{(x,y) \in \mathbb{R}^2 \mid a,b,c,d \in \mathbb{R}, \; (\min\{a,b\} \leq x \leq \max\{a,b\}) \land (\min\{c,d\} \leq y \leq \max\{c,d\}) \}$ наричаме правогълник в \mathbb{R}^2

$$\mu(K_{\overline{(a,c),(b,d)}})=|a-b|.|c-d|$$
 - мярка на правоъгълник в \mathbb{R}^2

Дефиниция за елементарно ножество в \mathbb{R}^2

Под елементарно множество в \mathbb{R}^2 разбираме множеството

$$E = \bigcup_{i=1}^n K_i$$
, K_i - правоъгълник

Под мярка на елементарното множество E разбираме числото $\mu(E) = \sum_{i=1}^n \mu(K_i)$

Дефиниция за измеримо ножество в \mathbb{R}^2

Нека D е ограничено подмножество на \mathbb{R}^2 , тогава: под горна мярка на множеството D разбираме числото $\overline{\mu}(D) = \inf\{\mu(E_{out}) \mid E_{out} \supset D, E_{out} - \text{ елем. множество}\}$ под долна мярка на множеството D разбираме числото $\mu(D) = \inf\{\mu(E_{in}) \mid E_{in} \subset D, E_{in} - \text{ елем. множество}\}.$

Ако $\overline{\mu}(D) = \underline{\mu}(D)$ то множеството D се нарича измеримо и неговата мярка е равна на общата стойност на долната и горната мярка, мярката на множеството D бележим с $\mu(D)$, която се нарича мярка на Пеано-Жордан на множеството D.

Дефиниция за пренебрежимо множество по Пеано-Жордан

Едно множество A се нарича пренебрежимо по Пеано-Жордан, ако $\overline{\mu}(A)=0.$

Необходимо и достатъчно условие за измеримост на множество (критерий за измеримост)

Едно ограничено множество A е измеримо тогава и само тогава, когато неговият контур е пренебрежимо множество.

Дефиниция за криволинеен трапец с вертикални основи

Нека $a,b \in \mathbb{R}$: $a \leq b$ и нека $g,h \in C[a,b]$: $\forall x \in [a,b] \ g(x) \leq h(x)$ Тогава множеството $D = \{(x,y) \in \mathbb{R}^2 \mid (a \leq x \leq b) \land (g(x) \leq y \leq h(x))\}$ наричаме

Дефиниция за криволинеен трапец с хоризонтални основи

Нека $c,d \in \mathbb{R}$: $c \leq d$ и нека $\varphi,\psi \in C[c,d]$: $\forall y \in [c,d] \ \varphi(y) \leq \psi(y)$ Тогава множеството $D = \{(x,y) \in \mathbb{R}^2 \mid (c \leq y \leq d) \land (\varphi(y) \leq x \leq \psi(y))\}$ наричаме криволинеен трапец с хоризонтални основи.

Пресмятане на двойни интеграли

Пресмятане на двоен интеграл в правоъгълник

Нека
$$a,b,c,d\in\mathbb{R},\quad D: \begin{cases} a\leq x\leq b\\ c\leq y\leq d \end{cases} \implies$$

$$f: D \to \mathbb{R} \implies \iint_D f(x,y) \ dxdy = \int_a^b \int_c^d f(x,y) \ dy \ dx = \int_c^d \int_a^b f(x,y) \ dxdy$$

Пресмятане на двоен интеграл в криволинеен трапец с вертикални основи

Нека
$$a,b \in \mathbb{R}, \ \varphi,\psi \in C[a,b]: \quad D: \begin{cases} a \leq x \leq b \\ \varphi(x) \leq y \leq \psi(x) \end{cases} \implies$$

$$f: D \to \mathbb{R} \implies \iint_D f(x,y) \ dxdy = \int_a^b \int_{\varphi(x)}^{\psi(x)} f(x,y) \ dy \ dx$$

Пресмятане на двоен интеграл в криволинеен трапец с хоризонтални основи

Нека
$$c, d \in \mathbb{R}, g, h \in C[c, d] : D : \begin{cases} c \leq y \leq d \\ g(y) \leq x \leq h(y) \end{cases} \Longrightarrow$$

$$f: D \to \mathbb{R} \implies \iint_D f(x, y) \ dxdy = \int_c^d \int_{g(x)}^{h(x)} f(x, y) \ dxdy$$

Криволинейни интеграли

Криволинеен интеграл от първи род

Нека
$$a,b\in\mathbb{R}$$
 $\gamma: \begin{cases} a\leq t\leq b\\ x=\varphi(t) \end{cases}$ е гладка крива $y=\psi(t)$

и няма особени точки $(\forall t \in [a,b] \ (\varphi'(t),\psi'(t)) \neq (0,0)) \implies$

$$f: \gamma \to \mathbb{R} \implies \int_{\gamma} f(x, y) dl = \int_{a}^{b} f(\varphi(t), \psi(t)) \sqrt{\varphi'(t)^{2} + \psi'(t)^{2}} dt$$

Пресмятане на центъра на тежестта на гладка крива

Нека
$$a,b,\in\mathbb{R},$$
 $\begin{cases} a\leq t\leq b \\ x=\varphi(t) \\ y=\psi(t) \\ \rho(x,y)$ - функция, даваща плътността на кривата във всяка точка

Масата на киравата е равна на $m_{\gamma} = \int_{\gamma} \rho(x,y) dl$.

Ако
$$\eta_u = \int_{\gamma} u \rho(x, y) dl$$
.

Тогава координатите на центъра на тежестта на кривата са:

$$(x_c, y_c) = \left(\frac{\eta_x}{m_\gamma}, \frac{\eta_y}{m_\gamma}\right)$$

Криволинеен интеграл от втори род

Нека
$$a,b\in\mathbb{R}$$
 $\gamma: \begin{cases} a\leq t\leq b\\ x=\varphi(t) \end{cases}$ е гладка крива, без особени точки \Longrightarrow $y=\psi(t)$

$$P, Q \in C(\gamma) \implies \int_{\gamma} P(x, y) \, dx + Q(x, y) \, dy =$$

$$= \int_{a}^{b} P(\varphi(t), \psi(t)) \varphi'(t) + Q(\varphi(t), \psi(t)) \psi'(t) dt$$

Ако γ е затворена, без точки на самопресичане ще ползваме означението:

$$\oint_{\gamma} P(x,y) \ dx + Q(x,y) \ dy$$

Дефиниция за пълен диференциал и потенциал:

Изразът: P(x,y) dx + Q(x,y) dy се нарича пълен диференциал, ако същестува функция u(x,y), такава че:

$$u'_x(x,y) = P(x,y) \wedge u'_y(x,y) = Q(x,y)$$

 Φ ункцията u се нарича потенциал на векторната Φ ункция (векторното поле)

$$\overrightarrow{F}(x,y)=(P(x,y),Q(x,y))$$
 и градиента на функцията u съвпада с \overrightarrow{F} т.е $\overrightarrow{F}=\overrightarrow{grad}(u)=\nabla u$

Теорема (В R^2) От съществуването на потенциал следва независимост на пътя на криволинеен интеграл от втори род

Нека
$$(a, b \in \mathbb{R}, \ \gamma : \begin{cases} a \le t \le b \\ x = \varphi(t) \\ y = \psi(t) \end{cases}$$

и P(x,y) dx + Q(x,y) dy е пълен диференциал с потенциал u(x,y) то:

$$\oint_{\gamma} P(x,y) \, dx + Q(x,y) \, dy = \oint_{\gamma} u'_x \, dx + u'_y \, dy =$$

$$= \int_a^b P(\varphi(t), \psi(t)) \varphi'(t) + Q(\varphi(t), \psi(t)) \psi'(t) \, dt =$$

$$= \int_a^b du(\varphi(t), \psi(t)) = u(\varphi(t), \psi(t))|_a^b = u(\varphi(a), \psi(a)) - u(\varphi(b), \psi(b)) \quad \Box$$

Теорема (В R^2) От независимост на пътя на криволинеен интеграл от втори род следва съществуването на потенциал

Нека
$$I = \oint_{\Gamma} P(x,y) \; dx + Q(x,y) \; dy$$
 - независи от пътя и

нека
$$u(x,y) = \int_{(x_0,y_0)}^{(x,y)} P(u,v) du + Q(u,v) dv$$
. Тогава

$$u'_{x}(x,y) = \lim_{h \to 0} \frac{u(x+h,y) - u(x,y)}{h} =$$

$$= \lim_{h \to 0} \frac{\int_{(x_{0},y_{0})}^{(x+h,y)} P(u,v)du + Q(u,v)dv - \int_{(x_{0},y_{0})}^{(x,y)} P(u,v)du + Q(u,v)dv}{h} =$$

$$= \lim_{h \to 0} \frac{\displaystyle\int_{(x,y)}^{(x+h,y)} P(u,v) du + Q(u,v) dv}{h}$$

$$\Gamma: \begin{cases} u = t \in [x, x+h] \\ v = y \end{cases} \implies$$

$$u'_x(x,y) = \lim_{h \to 0} \frac{\int_x^{x+h} P(t,y).1 + Q(t,y).0 \ dt}{h} =$$

$$= \lim_{h \to 0} \frac{\int_{x}^{x+h} P(t, y) dt}{h} = \lim_{h \to 0} \frac{(x+h-x)P(x+\theta h, y)}{h} = \lim_{h \to 0} P(x+\theta h, y) = P(x, y) \implies u'_{x}(x, y) = P(x, y)$$

$$u'_{y}(x,y) = \lim_{k \to 0} \frac{u(x,y+k) - u(x,y)}{k} =$$

$$= \lim_{k \to 0} \frac{\int_{(x_{0},y_{0})}^{(x,y+k)} P(u,v)du + Q(u,v)dv - \int_{(x_{0},y_{0})}^{(x,y)} P(u,v)du + Q(u,v)dv}{k} =$$

$$= \lim_{k \to 0} \frac{\int_{(x,y)}^{(x,y+k)} P(u,v)du + Q(u,v)dv}{k}$$

$$\Gamma: \begin{cases} u = x \\ v = t \in [y, y + k] \end{cases} \implies$$

$$u'_y(x,y) = \lim_{k \to 0} \frac{\int_y^{y+k} P(x,t).0 + Q(x,t).1 \ dt}{k} =$$

$$= \lim_{k \to 0} \frac{\int_y^{y+k} Q(x,t) dt}{k} = \lim_{k \to 0} \frac{(y+k-y)Q(x,y+\eta k)}{k} =$$

$$= \lim_{k \to 0} Q(x,y+\eta k) = Q(x,y) \implies u_y'(x,y) = Q(x,y) \implies$$

$$u(x,y): u_x'(x,y) = P(x,y) \land u_y'(x,y) = Q(x,y) \quad \Box$$

Формула на Гаус - Грийн

Нека $D \subset \mathbb{R}^2$, $P, Q, P'_y, Q'_x \in C(D)$, $\Gamma = \partial D \Longrightarrow$

$$\iint_D \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dxdy = \oint_{\Gamma} P(x, y) dx + Q(x, y) dy$$

Лема 1:

Нека
$$D_1:$$

$$\begin{cases} c \le y \le d \\ n(y) \le x \le N(y) \end{cases}.$$

Ако функцията Q(x,y) е дефинирана и непрекъсната в множеството D заедно с часттната си производна Q'_x . Γ_1 е контура на множеството D_1 и интегрирането се извършва в посока, обратна на часовниковата стрелка \Longrightarrow

$$\iint_{D_1} \frac{\partial Q}{\partial x} \, dx dy = \oint_{\Gamma_1} Q(x, y) \, dy$$

$$\iint_{D_1} \frac{\partial Q}{\partial x} \, dx dy = \int_c^d \int_{n(y)}^{N(y)} Q'_x(x, y) \, dx dy = \int_c^d \int_{n(y)}^{N(y)} dQ(x, y) \, dy =$$

$$= \int_c^d Q(N(y), y) - Q(n(y), y) \, dy$$

$$\oint_{\Gamma_1} Q(x,y) \ dy = \int_{\widehat{AB}} Q(x,y) \ dy + \int_{\widehat{BC}} Q(x,y) \ dy - \int_{\widehat{DC}} Q(x,y) \ dy - \int_{\widehat{AD}} Q(x,y) \ dy$$

$$\widehat{AB} : \begin{cases} n(c) \le x \le N(c) \\ y = c \end{cases} \qquad \widehat{BC} : \begin{cases} c \le y \le d \\ x = N(y) \end{cases}$$

$$\widehat{DC} : \begin{cases} n(d) \le x \le N(d) \\ y = d \end{cases} \qquad \widehat{AD} : \begin{cases} c \le y \le d \\ x = n(y) \end{cases} \implies$$

$$\oint_{\Gamma_1} Q(x, y) \, dy = 0 + \int_c^d Q(N(y), y) \, dy - 0 - \int_c^d Q(n(y), y) \, dy =$$

$$= \int_c^d Q(N(y), y) - Q(n(y), y) \, dy \implies \iint_{\Gamma_1} \frac{\partial Q}{\partial x} \, dx dy = \oint_{\Gamma_2} Q(x, y) \, dy =$$

Лема 2:

Нека
$$D_1:$$

$$\begin{cases} a \le x \le b \\ m(x) \le y \le M(x) \end{cases}$$

Ако функцията P(x,y) е дефинирана и непрекъсната в множеството D заедно с часттната си производна P'_y . Γ_2 е контура на множеството D_2 и интегрирането се извършва в посока, обратна на часовниковата стрелка \Longrightarrow

$$-\iint_{D_2} \frac{\partial P}{\partial y} \, dx dy = \oint_{\Gamma_2} P(x, y) \, dx$$

$$-\iint_{D_2} \frac{\partial P}{\partial y} dx dy = -\int_a^b \int_{m(x)}^{M(x)} P_y'(x, y) dy dx = -\int_a^b \int_{m(x)}^{M(x)} dP(x, y) dx =$$

$$= -\int_a^b P(x, M(x)) - P(x, m(x)) dx$$

$$\oint_{\Gamma_2} P(x,y) \ dx = \int_{\widehat{AB}} P(x,y) \ dx + \int_{\widehat{BC}} P(x,y) \ dx - \int_{\widehat{DC}} P(x,y) \ dx - \int_{\widehat{AD}} P(x,y) \ dx$$

$$\widehat{AB}$$
: $\begin{cases} a \le x \le b \\ y = m(x) \end{cases}$ \widehat{BC} : $\begin{cases} x = b \\ m(b) \le y \le M(b) \end{cases}$

$$\widehat{DC}: \begin{cases} a \le x \le b \\ y = M(x) \end{cases} \widehat{AD}: \begin{cases} x = a \\ m(a) \le y \le M(a) \end{cases} \Longrightarrow$$

$$\oint_{\Gamma_2} P(x, y) \ dx = \int_a^b P(x, m(x)) \ dx + 0 - \int_a^b P(x, M(x)) \ dx - 0 = 0$$

$$= \int_{a}^{b} P(x, m(x)) - P(x, M(x)) dx \implies - \iint_{D_{2}} \frac{\partial P}{\partial y} dx dy = \oint_{\Gamma_{2}} P(x, y) dx \quad \Box$$

Използвана литература:

- 1. Записки от лекциите на доц. д-р. Първан Първанов от курса Диференциално и интегрално смятене 2, воден през летния семестър на 2017г. на спец. Информатика във ФМИ към СУ "Св. Климент Охридкси"
- 2. Рони Леви, Диференциално и интегрално смятане на функции на няколко променливи, София 2015 Университетско издателство "Св. Климент Охридкси"
- 3. Е. Любенова П. Недевски К. Николов Л. Николова В. Попов, РЪКОВОДСТВО ПО МАТЕМАТИЧЕСКИ АНАЛИЗ ВТОРА ЧАСТ, СОФТЕХ София 2008