Exercise 2

Holo

Friday 19th January, 2024

Exercise 1.

Part 1.1.

Lets remember that a cycle is just a function f for a finite set X to itself such that $\operatorname{Supp}(f) = \{f^{(n)}(a)\}_{0 \le n \le |X|}$ for any $a \in \operatorname{Supp}(f)$.

To see that the 2-cycles, let's call this set C_2 , generate the cycles (that we already saw generate the permutation group) we first note that $e \in \langle C_2 \rangle$ because if $a, b \in X$ then (a, b)(b, a) = e. Now, let f be a non-identity cycle, we know that $\operatorname{Supp}(f) \neq \emptyset$, let a be such witness. Let f_i be $(f^i(a), f^{i+1}(a))$, because X is finite we must have $\{f_i\}_{i \in \omega}$ finite and clearly we have $f = f_0 \circ f_1 \circ \cdots \circ f_{|\{f_i\}_{i \in \omega}|-1}$.

Part 1.2.

Let the set of (i, i + 1) be F_2 . To see that it generates S_n we will show that F_2 generates C_2 .

Because $(a,b)^{-1} = (b,a)$ we may will always assume that when we write (a,b) we have a < b, and because if (g_i) is a sequence from F_2 that generates (c - a, b - a) we can shift all of g_i by a to get (c,b) it is enough to show that we generate (1,k) to prove we generate (a,b) for all a,b with b-a=k-1.

We will use induction on k in (1, k), starting with 2. The base case is trivial so lets assume we generate (1, k) and show (1, k + 1).

We can compose (1, k) with (k, k+1) and then again with (1, k) to get g = (1, k)(k, k+1)(1, k). Clearly g(i) = i for $i \notin \{1, k, k+1\}$, g(k) = (1, k)(k, k+1)(1, k)k = (1, k)(k, k+1)1 = (1, k)1 = k, g(1) = (1, k)(k, k+1)(1, k)1 = (1, k)(k, k+1)k = (1, k)k+1 = k+1 and g(k+1) = (1, k)(k, k+1)(1, k)k+1 = (1, k)(k, k+1)k+1 = (1, k)k = 1, in other words g = (1, k+1) and we are done.

Part 1.3.

First we notice that $(1, \ldots, n)k \equiv k+1 \pmod{n}$, so let $1 and look at <math>h = (1, \ldots, n)^{(p-1)}(1, 2)(1, \ldots, n)^{(-(p-1))}$. Plugin the values of p, p+1 and $k \notin \{p, p+1\}$ we see that h = (p, p+1).

Exercise 2.

Part 2.1.

Clearly if a is a multiply of lcm (d_1, d_2) then it is a multiply of both d_1, d_2 , in other words $\langle \text{lcm}(d_1, d_2) \rangle \subseteq \langle d_1 \rangle \cap \langle d_2 \rangle$.

To see the other direction let $x \in \langle d_1 \rangle \cap \langle d_2 \rangle$, but this means that x is a multiply of both d_1 and d_2 , then $x = k \operatorname{lcm}(d_1, d_2) + r, r < \operatorname{lcm}(d_1, d_2)$, if $r \neq 0$ then it divides both d_1, d_2 , contradiction to the minimality, so $x = k \operatorname{lcm}(d_1, d_2) \implies x \in \langle \operatorname{lcm}(d_1, d_2) \rangle$

Part 2.2.

Assume $\operatorname{lcm}(|g|,|h|) = k|gh| + r, r < |gh|$ and look at $(gh)^{\operatorname{lcm}(|g|,|h|)} = (gh)^{k|gh|+r} = (gh)^r$.

But $(gh)^{\operatorname{lcm}(|g|,|h|)} = g^{\operatorname{lcm}(|g|,|h|)}h^{\operatorname{lcm}(|g|,|h|)} = 0$, so r must be divisible by both |g| and |h|, which contradiction to the minimality of $\operatorname{lcm}(|g|,|h|)$ unless r = 0.

Part 2.3.

We have that $C = AB = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, with $C^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$.

On the other hand, $A^4 = I_2$ and $B^6 = I_2$, in particular from the previous part, if AB = BA then $(AB)^{\text{lcm}(4,6)} = C^{\text{lcm}(4,6)} = I_2 \neq \begin{bmatrix} 1 & \text{lcm}(4,6) \\ 0 & 1 \end{bmatrix}$

Part 2.4.

It is enough to show that for 2 disjoint cycles d, d' we have that |dd'| = lcm(|d|, |d'|). If $d^{|dd'|}$ or $d'^{|dd'|}$ is the identity we are done (as it implies that the other is the identity, and from the previous parts we get |dd'| = lcm(|d|, |d'|)), but then $d^{|dd'|}, d'^{|dd'|}$ are 2 disjoint nontrivial cycles, in particular $(dd')^{|dd'|} = d^{|dd'|}d'^{|dd'|} \neq e$, contradiction.

Exercise 3.

Part 3.1.

If |g| = n then the function $\mathbb{Z}_n \to G : k \mapsto g^k$ is clearly an isomorphism. Similarly, the same function with domain \mathbb{Z} will be an isomorphism for $|g| = \infty$.

Part 3.2.

(1,1), (1,1)+(1,1)=(0,2), (0,2)+(1,1)=(1,0), (1,0)+(1,1)=(0,1), (0,1)+(1,1)=(1,2), (1,2)+(1,1)=(0,0), (0,0)+(1,1)=(1,1) so $\langle (1,1)\rangle=\mathbb{Z}_2\times\mathbb{Z}_3$ and |(1,1)|=6, so from the previous part they are isomorphic.

Part 3.3.

$$(a,b) + (a,b) = (0,0), (0,0) + (a,b) = (a,b)$$
 for all (a,b) , so $\mathbb{Z}_2 \times \mathbb{Z}_2$ is not cyclic.

Exercise 4.

If $H, K \neq H \cup K$, there exists $h \in H \setminus K, k \in K \setminus H$. If $hk \in H \cup K$ then it is in one of H, K, which is clearly a contradiction as we will have $h^{-1}hk \in H$ or $hkk^{-1} \in K$.

Exercise 5.

Part 5.1.

If $C \in \mathrm{SL}_n(\mathbb{F}_p)$ then clearly $\det(AC) = \det(A)\det(C) = \det(A)$ hence we have $A \cdot \mathrm{SL}_n(\mathbb{F}_p) \subseteq \{B \in \mathrm{GL}_n(\mathbb{F}_p) \mid \det(B) = \det(A)\}.$

Take B with $\det(B) = \det(A)$, then $\det(A^{-1}B) = \det(A^{-1})\det(B) = \det(A)^{-1}\det(B) = \det(B)^{-1}\det(B) = 1$, hence $A^{-1}B \in \operatorname{SL}_n(\mathbb{F}_p)$.

Part 5.2.

For each $k \in [1, p]$ there exists a matrix A_k with determinate k, all of which are in $GL_n(\mathbb{F}_p)$ and those matrices bijects to $GL_n(\mathbb{F}_p)/SL_n(\mathbb{F}_p)$ by a natural map, composing $k \mapsto A_k \to A_k SL_n(\mathbb{F}_n)$ will finish the proof.

Exercise 6.

Part 6.1.

First we will observe that $\sigma^{-1} = \sigma^{n-1}, \tau^{-1} = \tau$.

We will prove by induction on the length of the term that every $x \in D_n$ is either of the form σ^k or $\tau \sigma^k$.

To do this we notice that $\sigma\tau\sigma\tau = e \implies \sigma\tau = \tau^{-1}\sigma^{-1} = \tau\sigma^{n-1}$, which easily implies that $\sigma^{-1}\tau = \tau\sigma^{(n-1)^2} = \tau\sigma$. Indeed we can define an embedding $j: D_n \to S_n$ with $j(\tau) = (x \mapsto n - 1 - x)$ and $j(\sigma) = (x \mapsto x + 1 \pmod{n})$, and then

$$j(\sigma\tau\sigma\tau) = x \mapsto ((n-1-((n-1-x)+1))+1 \pmod{n})$$

$$=x \mapsto ((n-1-(n-x))+1 \pmod{n})$$

$$=x \mapsto ((x-1)+1 \pmod{n})$$

$$=x \mapsto x$$

$$=j(e)$$

Now given $x \in D_n$ a term of length p > 2, it is of the form gh for $g \in \{\tau, \sigma\}$ and h of length p-1, by the induction hypothesis h is either of the form σ^k , in which case we are done, or of the form $\tau \sigma^k$. So $x = g(\tau \sigma^k) = (g\tau)\sigma^k$, if $g = \tau$ we are done, otherwise $x = (\tau \sigma^{n-1})\sigma^k = \tau \sigma^{k-1}$.

Part 6.2.

Let $g, h \in D_n$, let's also assume neither of them is e.

Let $g = \sigma^p, h = \sigma^q$, in this case $gh = \sigma^{p+q \pmod{n}}$.

Let $g = \tau \sigma^p, h = \sigma^q$, in this case $gh = \tau \sigma^p \sigma^q = \tau \sigma^{p+q \pmod{n}}$.

Let $g = \sigma^p, h = \tau \sigma^q$, in this case $gh = \sigma^p \tau \sigma^q$, from the observation we did in the previous part we can repeatedly move τ back using the identity $\sigma \tau = \tau \sigma^{-1}$, so $\sigma^p \tau = \tau \sigma^{-p} \implies gh = \sigma^p \tau \sigma^q = \tau \sigma^{q-p \pmod{n}}$

Let
$$g = \tau \sigma^p$$
, $h = \tau \sigma^q$, in this case $gh = \tau \sigma^p \tau \sigma^q = \tau^2 \sigma^{q-p \pmod{n}} = \sigma^{q-p \pmod{n}}$

Part 6.3.

From the previous part we can find for all $g = \sigma^k$ an h such that $gh = \tau^i \sigma^{1-k}$, $hg = \tau^i \sigma^{1+k}$, which are equal only for k = n/2. $(i \in \{0, 1\})$

Similarly for $g = \tau \sigma^k$ we can find h such that $gh = \tau^i \sigma^{k-1}$, $hg = \tau^i \sigma^{k+1}$, which are never equal (unless n = 2, k = 1, in which case $\tau \sigma = e$).

So all we need to check is $\sigma^{n/2}$, and quickly plugging it in the equations from the previous part we can see it works.