Human Computer Interaction

UNIT-6
Lecture 1:
Cognitive Architecture

Mr. Nachiket Sainis

B K Birla Institute of Engineering & Technology,
Pilani

Cognitive Architecture Lecture 1: Introduction

Objective

- There are three components in HCI Human,
 Computer and Interaction
- Among them, human is the most important (consideration of human in design differentiates HCI from other fields)
- Design should take into account human (which resulted in user centred/participatory design approaches)

Objective

- In the previous lectures, we have learned about the model-based approaches (to reduce design time and effort) [Unit- II]
 - In those lectures, we have already seen how individual models of human factors are taken into account (Fitts' law etc.)
 - Also learned about GOMS a simple model of human behavior

Objective

- However, human behavior is very complex
 - We need more complex approaches, taking into account different components of human behavior
 - Such complexities are sought to be captured in integrated cognitive architectures (CA), which are found to be very useful in HCI
 - In this lecture, we shall learn about the CA and its application in HCI

Human/User

- A user can be viewed as an information processing system
- Information i/o ...
 - Input: visual, auditory, haptic
 - Output: movement/motor action
 - Processor: Cognitive, Perceptual, Motor
- Information stored in memory (Sensory, Shortterm, Long-term)

Human/User

- The information taken as input and stored are processed and applied in various ways
 - Reasoning
 - Problem solving
 - Skill
 - Error
- Also, emotion influences human capabilities

Message

- We want to model these activities of human information processor (HIP)
- Such (HIP) model can
 - Validate understanding of ourselves
 - Inform the design of better user interfaces
 - Develop robust automated design approaches

HIP Models

- There are broadly two approaches to model HIP
 - Computational HIP modeled using computer metaphors
 - Connectionist Biological metaphor to model HIP;
 HIP as a neural network

HIP Models

- Our focus computational approaches
- Computational HIP models can be of two types
 - Production systems: the information processing behavior is implemented as a set of production (IF-THEN-ELSE) rules
 - Non-production systems

Cognitive Architectures (CA)

- CA a broad theory of human cognition based on a wide selection of human experimental data, and implemented as a running computer simulation program
- Essentially, CAs are computational HIP models taking into account all the components of cognition

Cognitive Architectures (CA)

- There are many CAs developed, most of them are production systems with few non-production systems
- Examples of CAs developed as production systems:
 - Model Human Processor, Soar, EPIC, ACT-R/PM
- Example of non-production CAs Integrated Cognitive Subsystems

CA and HCI

- CAs are relevant to usability
 - They can provide an engineering perspective to usability analysis
 - Can be used to develop HCI-related applications
 - Can serve an important role in HCI as a theoretical science

- Engineering requires quantitative predictions
 - Helps compare alternative designs and identify design problems
- Qualitative/quantitative guidelines may not be sufficient to compare two "nearly equally good" designs
 - Need some theory/model to "compute" certain "parameters" of the designs to compare them

- Usability engineering involves similar situation
- Every design must be subjected to usability test
 - UE experts mostly rely on intuition/experience/guidelines to do so

- Ex: intuition may say interface X is faster than Y, but how much? 10%. 20%
 - Such quantitative data is required, as small savings in execution time may result in large financial savings
- Requires quantitative prediction theories

- Computational models based on CAs can provide such quantitative answers
- The models can predict many useful quantities such as
 - Execution time
 - Error rate
 - Transfer of knowledge

- The models can predict many useful quantities such as
 - Learning rates
 - Memory load
 - Many more performance measures
 - Results may not be accurate but sufficient for comparison

- Models based on CA can be employed for evaluations in situations where traditional usability evaluation may be very costly or even impossible
 - For example, evaluation involving fighter pilots or astronauts
- GOMS/cognitive walkthroughs etc. can also provide quantitative predictions
 - They are abstracted from some underlying architectures
 - CA based models can predict much more

CA Applications

- By definition, CAs are executables, making them suitable for several HCI-relevant applications
 - Intelligent Tutoring Systems
 - The Lisp tutoring system
 - Populating simulated worlds/situations
 - Training fighter pilots
 - Multi-party game
 - Virtual reality

CA - Issues

Many aspects of human behavior are yet to be accounted for

Error behavior

• It is difficult to mimic such behavior, which sometimes is required to evaluate usability

- Emotion

Recently some promising works are being done

CA - Issues

Simulated agents usually interact with an interface using a specification of the system

-An active research area is to enable simulated agents access interfaces in ways that approximate the richness and limitation of human perceptual-motor capabilities

- At present, understanding and implementing CAs requires specialization
 - Usability of CA specification languages needs improvements