Optimization in Communication Networks Lecture 1: Course Introduction

February 28, 2016

Course Webpage

- All course-related materials can be downloaded at http://klms.kaist.ac.kr
- Please regularly check!
- Please make sure that your e-mail address used by klms is correct.

Instructor and Class Information

- Instructor: Yung Yi, Office: N1, 810
- Education 3.0 course: Lecture videos will be uploaded, and required to see them before the class
- In the class, we will discuss problems, questions, etc.
- T.A.: Hyeryung Jang, hrjang@lanada.kaist.ac.kr, Jaeyoung Choi, jychoi@lanada.kaist.ac.kr
- Location and Time: Mon, 7:00 PM 10:00 PM, N1, EDU 3.0 lecture room
- Office Hours: To be announced
- Please check regularly for new updates, questions, and answers!
- See syllabus for more detailed information
- Please actively correct typos and errors in the lecture slides!

What This Course Is About

- "A" Modeling and analysis of networking and communication problems
- Theory-driven algorithm and protocol development
- Main focus: problems that need optimization and stochastic theory
- Final message that the student can take away with, I hope:
 - "Now I can model and analyze my research problems."
 - "What papers do I have to see?"
 - "What books do I have to see?"
 - "I can read many papers on networking and communication analysis! I don't worry about equations."

What Is Modeling and Analysis?

- Evaluate performance of existing protocols, algorithms, and system, and further motivate us to develop new algorithms
- One way: Empirical data from field trials and deployments, test-bed operations, computer simulations/emulations
- Another way: do math! obtain provable clues: Why working, Why not working, How to modify?
- Needs assumptions: not too restrictive, not too detailed (tractability is the key)
- Key of successful modeling and analysis: plausible assumptions, nice analysis with good tools: cannot be done in a short time, and needs practice
- This course: practice how to model, practice how to make assumptions, and practice maths.

Tools

- Many tools for modeling, design and analysis of communication networks
- Main theory: optimization and stochastic theory (not that deep, but needs some serious thinking)
- Supporting theory: information theory, game theory, communication theory, other probabilistic tools, graph theory, economic modeling, physics/biology modeling ...
- What is required from the students
 - Willingness to learn
 - Willingness to practice with hands
 - Willingness to think about problems for a long time
 - Willingness to prove things
 - Willingness to see big pictures first
- Please note the grading policies and rules!

What This Course Is Not About

- Not a math course on probability or convex analysis (not many rigorous proofs)
- Not an OR course on queueing or optimization theory (only basic topics)
- Not an EE course on digital communication (cover only selected topics)
- Not a EE/CS course on networking (cover only selected topics)
- Not a CS course on algorithms (a little bit of computational complexity analysis)

Communication Networks

How to send information from one point to another (and for other source-destination configurations) over a medium?

Main Questions in Communication Networks

- How to meet requirements from applications (e.g., accuracy, throughput, latency, jittering, mobility support...)?
- How to represent and use the information?
- How to utilize the communication medium?
- How to connect users?
- How to reach one point from another?
- How to coordinate among the transmitters and receivers?
- How to regulate competition among users?
- How to make the system robust to failures, attacks, variations, growth across space and over time?

Communication Networks

- Fixed or dynamic topology? Who are transceivers and who are relays?
- Direct link or switched architecture? Circuit switch or packet switch or something else?
- How to divide into (possibly different types of) subnetworks?
- End-to-end control or hop-by-hop control?
- How to get on the communication medium?
- How to get from one point to another?
- How to monitor and adjust overall state of the network?
- How to ensure accurate, secure, dependable, timely, and usable transfer of information across space among competing users?

Layered Architecture

- Divide and conquer: break the overall big problem into smaller ones with standardized interfaces
- Each layer provides a service to upper layers and utilizes the services provided by lower layers
- Performance may not be 'optimal', but makes the architecture simple and flexible

Application
Presentation
Session
Transport
Network
Link
Physical

Optimization mentality is one way of model, analyze, and design such systems.

Optimization, Convexity

minimize
$$f(x)$$
 subject to $x \in \mathcal{X}$,

where f(x) is a convex function, and \mathcal{X} is a convex set.

Why optimization?

Efficiency of a mechanism: measured by "how far from optimal?"

Throughput maximization, delay minimization, energy minimization

What is the way to make my boy/girl friend maximally happy with my limited amount of money? That's what we are doing in communication networks

Why convex optimization?

Easy to solve!

Locally-optimal is globally optimal!

Zero duality gap!, Largrange duality theory

Easy to develop distributed solutions!

What happens, if non-convex?We will see...

Questions in Optimization Mentality

- How to describe the constraint set?
- Can the problem be solved globally and uniquely?
- What kind of properties does it have? How does it relate to another optimization problem?
- Can we numerically solve it in an efficient, robust, and distributed way?
- Can we optimize multiple objectives simultaneously?
- Can we optimize over a sequence of time instances?
- Can we find the problem for a given solution?

Optimization of Communication Networks

Three meanings of 'optimization of communication systems':

- Formulate the problem as an optimization problem
- Interpret a given solution as an optimizer/algorithm for an optimization problem
- Extend the underlying theory by optimization theoretic techniques

A remarkably powerful, versatile, widely applicable and not yet fully recognized viewpoint

Applications in communication systems also stimulate new developments in optimization theory and algorithms

Two Views

Network to be optimized
 Optimization is a tool

Network as an optimizer
 Optimization is a mentality and language

TCP and Optimization

- Network Utility Maximization
- Congestion Control ≈ Maximizing Network Utility
- Frank Kelly's Seminal Paper in 1998 → Cross-layer optimization in wireless networks

$$x_1 + x_2 \le c_1$$

$$x_1 + x_3 \le c_2$$

Bandwidth Sharing in the Internet

Assuming that NUM is used as a resource allocation mechanism (i.e., congestion control),

- What happens to the network for dynamically arriving and departing TCP sessions?
- What are the session-level performance metric?
- How does the session-level performance depend on the specific NUM (i.e., different utility functions)?
- NUM: Faster-time scale resource allocation, This topic: Slower-time scale session-level dynamics

Basic Theories

- Markov chain: how to measure throughput, measured by stability?
- Pareto-optimal allocation
- Fluid-limit: Very useful tool to prove stability
- Poisson process, gradient algorithm, distributed algorithm, convergence, rate of convergence, etc
- Modes of convergence of the sequence of random variables
- etc.

LAD (Layering As optimization Decomposition)

Multi-hop: TCP/IP/MAC/Physical

MAC Scheduling

Opportunistic Scheduling: Wireless Cellular

Interference Management in DSL

- Electromagnetic coupling causes *crosstalk*
- Crosstalk leads to major decrease in bit rates

Interference Management in Multi-cell Wireless Networks

Optimization in DTN (Delay Toleration Networks)

Advice from the Instructor

- Write equations and math with your hand!
- "Print out the handout, and write something small in the blank space of the handout": a short-cut to obtain just the minimum gain from this course!
- Try to understand the big pictures, principles, and fundamentals, and then go to the details
- Read the papers and books related to this course (I will let you know).
- Use the office hours actively.
- This course focuses more on layer 2 and higher.
 However, it will give PHY guys a lot of nice chances to look at larger context.
- To Do

Have fun, and study actively. Search and read papers. Ask many questions to me. Discuss many things with your colleagues

Not To Do

Worry about grades, i.e., grade-oriented activity. Be lazy. Sleep or be silent in the class.

Course Project

- You may need to read about 5-10 papers
- Make about one and a half hour presentation slides
- Make presentation at the final workshop day
 Tutorial Workshop on Optimization in Communication Networks
- What to do

Read papers, and understand very well

Make self-contained, easy-to-understand lecture slides

Make nice presentation

- Will invite other professors or senior PhD students or post-docs (if available) for grading
- Will advertise the workshop to EE
- Start early!