Quizlet

not depleted by that use.

Midterm #2: Stallings - Chapter 6 - Concurrency: Deadlock/Starvation

Study online at quizlet.com/_4150w9

1.	allows the three necessary conditions by makes judicious choices to assure that the deadlock point is never reached.	Deadlock avoidance	I	A set of processes is when each process is blocked awaiting an event that can only be triggered by another blocked process in the set.	deadlocked
2.	can be defined as permanent blocking of a set of processes that compete for system resources or communicate with each other.	Deadlock	:	strategies are very conservative and solve deadlock by limiting access to resources and imposing restrictions on processes.	Deadlock prevention
3.	A closed chain of processes, such that each process holds at least one resource needed by the next process in the chain is called	circular wait	•	The strategy of deadlock is to design a system in such a way that the possibility of deadlock is excluded	prevention
4.	The condition can be prevented by	circular wait		The strategy of resource allocation denial is referred to as the	banker's algorithm
5. 1 r	defining a linear ordering of resource types. The condition can be prevented by requiring that a process request all of its required resources at one time an blocking the process until all requests can be granted simultaneously	hold and wait	1	Three conditions of policy must be present for a deadlock to be possible: mutual exclusion, no preemption, and	hold and wait
				Three general approaches exist for dealing with deadlock: prevent, avoid, and	detect
6.	Examples of include processors, I/O channels, main, secondary memory, devices, and files, databases, and semaphores.	reusable resources		True or False: All deadlocks involve conflicting needs for resources by two or more processes.	True
7.	The faster form of interprocess communication provided in Unix is	shared memory		True or False: An atomic operation executes without nterruption and without interference	True
8.	Inspired by co-routines, a is a circular buffer allowing two processes to communicate on the producer-consumer model.	pipe		True or False: An indirect method of deadlock prevention is to prevent the occurrence of circular wait.	False
9.	The is a directed graph that shows a state of the system of resources/processes, with each process/resource represented by a node.	resource allocation graph		True or False: An unsafe state is one which there is at least one sequence of resource allocations to processes that does not result in a deadlock.	False
10.	The of the system reflects the current allocation of resources to processes.	state		True or False: A useful tool in characterizing the allocation of resources to processes is the resource	True
11.	Once the processes have progressed into the, those processes will deadlock.	fatal region		allocation graph. True or False:	False
12.	One of the most significant contributions of UNIX to the development of operating	pipe		Deadlock avoidance is more restrictive than deadlock prevention.	
13.	systems is the Requested resources are granted whenever possible with	deadlock detection	I	True or False: Deadlock avoidance requires knowledge of future process resource requests.	True
14.	A resource is one that can be created and destroyed.	consumable	ı	True or False: Deadlock is permanent because none of the	True
15.	A resource is one that can be safely used by only one process at a time and is	reusable		events are ever triggered.	

30. True or False: For deadlock to occur, there must not only be a fatal region, but also a sequence of resource requests that has led into the fatal region.	True
31. True or False: If access to a resource requires mutual exclusion, then mutual exclusion must be supported by the OS	True
32. True or False: Interrupts, signals, messages, and information in I/O buffers are all examples of reusable resources.	False
33. True or False: The dining philosophers' problem can be representative of problems dealing with the coordination of shared resources which may occur when an application includes concurrent threads of execution.	True
34. True or False: The OS may preempt the second process and require it to release its resources if a process requests a resource that is currently held by another process	True
35. With only on process may use a resource at a time; no process may access a resource that has been allocated to another process.	mutual exclusion