TEST REPORT

Reference No. : WTS18S11128838W

FCC ID : 2AGE6-2461RC

Applicant :: Shenzhen Silver Star Intelligent Technology Co., Ltd.

Address Building A1, Silver Star Hi-Tech Industrial Park, Guanguang Road,

Guanlan Street, Longhua District, Shenzhen, Guangdong, China

Manufacturer : Shenzhen Silver Star Intelligent Technology Co., Ltd.

Address..... Building A1, Silver Star Hi-Tech Industrial Park, Guanguang Road,

Guanlan Street, Longhua District, Shenzhen, Guangdong, China

Product.....: Robot Vacuum Cleaner

Model(s). : K1

Additional model(s) : K1R, i6, i7, i9, M2, M6

Standards : FCC CFR47 Part 15 Section 15.249:2018

Date of Receipt sample : 2018-11-12

Date of Test : 2018-11-14 to 2018-12-13

Date of Issue..... : 2019-01-02

Test Result.....: Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Approved by:

Robin Zhou / Test Engineer

Philo Zhong / Manager

Reference No.: WTS18S11128838W Page 2 of 52

1 Laboratories Introduction

Waltek Services (Shenzhen) Co., Ltd is a professional third-party testing and certification laboratory with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by ILAC (International Laboratory Accreditation Cooperation) member. A2LA (American Association for Laboratory Accreditation, the certification number is 4243.01) of USA, CNAS (China National Accreditation Service for Conformity Assessment, the registration number is L3110) of China. Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC (The Federal Communications Commission), CEC (California energy efficiency), ISED Canada (Innovation, Science and Economic Development Canada). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as Intertek (ETL-SEMKO), TÜV Rheinland, TÜV SÜD, etc.

Waltek Services (Shenzhen) Co., Ltd is one of the largest and the most comprehensive third party testing laboratory in China. Our test capability covered four large fields: safety test. Electro Magnetic Compatibility (EMC), and energy performance, wireless radio. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

1.1 Test Facility

A. Accreditations for Conformity Assessment (International)

Country/Region	Scope Covered By	Scope	Note
USA		FCC ID \ SDoC(VOC/DOC)	1
Canada	ISO/IEC 17025	IC ID \ VOC	2
Japan		MIC-T \ MIC-R	-
Europe		EMCD\RED	_
Taiwan		NCC	-
Hong Kong		OFCA	_
Australia		RCM	-
India		WPC	-
Thailand		NTC	-
Singapore		IDA	-

Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- 2. ISED Canada Registration No.: 7760A

B.TCBs and Notify Bodies Recognized Testing Laboratory.

Recognized Testing Laboratory of	Notify body number
TUV Rheinland	
Intertek	
TUV SUD	Optional.
SGS	
Phoenix Testlab GmbH	0700
Element Materials Technology Warwick Ltd.	0891
Timco Engineering, Inc.	1177
Eurofins Product Service GmbH	0681

2 Contents

	00\		Page
_		ER PAGEORATORIES INTRODUCTION	
1			
	1.1	TEST FACILITY	
2		TENTS	
3	REVI	SION HISTORY	6
4	GENE	ERAL INFORMATION	
	4.1	GENERAL DESCRIPTION OF E.U.T	7
	4.2	DETAILS OF E.U.T.	
	4.3 4.4	CHANNEL LIST	
5		IPMENT USED DURING TEST	
	5.1	EQUIPMENTS LIST	9
	5.2	MEASUREMENT UNCERTAINTY	
	5.3	SUBCONTRACTED	
6	TEST	Г SUMMARY	11
7	CONI	DUCTED EMISSION	
	7.1	E.U.T. OPERATION	
	7.2 7.3	EUT SETUP MEASUREMENT DESCRIPTION	
	7.4	TEST RESULT	
8	RADI	IATION SPURIOUS EMISSION TEST	15
	8.1	EUT OPERATION	15
	8.2	TEST SETUP	
	8.3 8.4	SPECTRUM ANALYZER SETUP TEST PROCEDURE	
	8.5	TEST RESULT	
9	PERI	ODIC OPERATION	22
10	OUTS	SIDE OF BAND EMISSION	26
	10.1	Test Procedure	26
	10.2	TEST RESULT	26
11	BANI	DWIDTH MEASUREMENT	28
	11.1	TEST PROCEDURE	
	11.2 11.3	TEST SETUP TEST RESULT	
12	_	ENNA REQUIREMENT	
13	FCC I	ID: 2AGE6-2461RC RF EXPOSURE REPORT	32
	13.1	REQUIREMENTS	32
	13.2	THE PROCEDURES / LIMIT	
	13.3 13.4	MPE CALCULATION METHOD	
14		TOGRAPHS- MODEL K1 TEST SETUP PHOTOS	
14	FILL	IUGRAFIO- WUDEL NI IESI SEIUP PHUIUS	

Reference No.: WTS18S11128838W Page 5 of 52

	14.1	PHOTOGRAPH - RADIATION SPURIOUS EMISSION	34
	14.2	PHOTOGRAPH – CONDUCTED EMISSION TEST SETUP	35
15	РНОТ	TOGRAPHS - CONSTRUCTIONAL DETAILS	36
	15.1	PHOTOGRAPHS –MODEL K1 EXTERNAL PHOTOS	36
	15.2	PHOTOGRAPHS – MODEL K1 INTERNAL PHOTOS	44

Reference No.: WTS18S11128838W Page 6 of 52

3 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS18S11128838W	2018-11-12	2018-11-14 to 2018-12-13	2019-01-02	original	-	Valid

Reference No.: WTS18S11128838W Page 7 of 52

4 General Information

4.1 General Description of E.U.T.

Product(s): Robot Vacuum Cleaner

Model(s): K1

Additional model(s): K1R, i6, i7, i9, M2, M6

Model Differences:

Only the model names and appearance are different, the model K1

is the tested sample.

Type of Modulation: GFSK

Frequency Range: 2404MHz-2480MHz, 65 Channels in total

Antenna installation: PCB Printed Antenna

4.2 Details of E.U.T.

Ratings: Input Voltage: 19V --- , Charging Voltage: 19V ---

Main Power: 24W, Working Voltage: 14.4V **---**Lithium battery capacity: 2500mAh (36Wh)

Charging by DS docking station from Class 2 power supply

(Model: NLB060190W1A4S58,

Input: 100-240V~ 50/60Hz 0.4A Max, Output: 19V === 600mA, Manufacturer: SHENZHEN NALIN ELEC. TECH. CO., LTD)

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2404	2	2405	3	2406
4	2407	5	2408	6	2409
7	2410	8	2411	9	2412
10	2413	11	2414	12	2418
13	2419	14	2420	15	2421
16	2422	17	2423	18	2424
19	2425	20	2426	21	2427
22	2428	23	2429	24	2430
25	2434	26	2435	27	2436
28	2437	29	2438	30	2439
31	2440	32	2441	33	2442
34	2443	35	2444	36	2445
37	2446	38	2450	39	2451
40	2452	41	2453	42	2454

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
43	2455	44	2456	45	2457
46	2458	47	2459	48	2460
49	2461	50	2462	51	2466
52	2467	53	2468	54	2469
55	2470	56	2471	57	2472
58	2473	59	2474	60	2475
61	2476	62	2477	63	2478
64	2479	65	2480	66	N/A

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Tests carried out under FCC part 15.249

Test mode	Low channel	Middle channel	High channel
Transmitting	2404MHz	2442MHz	2480MHz

5 Equipment Used during Test

5.1 Equipments List

2 3 4 3m Semi-ar Item 1 Sp 2 B Ar	Equipment MI Test Receiver LISN Limiter Cable nechoic Chamber for Equipment Dectrum Analyzer Broad-band Horn Intenna(1-18GHz) adband Preamplifier Coaxial Cable (above 1GHz)	Manufacturer R&S SCHWARZBECK York Laplace Radiation Emission Manufacturer R&S SCHWARZBECK COMPLIANCE DIRECTION Top	Model No. ESCI NSLK 8128 MTS-IMP-136 RF300 ons Model No. FSP30 BBHA 9120 D PAP-1G18	Serial No. 101155 8128-289 261115-001- 0024 - Serial No. 100091 667	Last Calibration Date 2018-09-15 2018-09-15 2018-09-15 2018-07-18 Last Calibration Date 2018-04-20 2018-05-18	Calibration Due Date 2019-09-14 2019-09-14 2019-07-17 Calibration Due Date 2019-04-19 2019-05-17
2 3 4 3m Semi-ar Item 1 Sp 2 B Ar 3 Broa	LISN Limiter Cable nechoic Chamber for Equipment Dectrum Analyzer Broad-band Horn Intenna(1-18GHz) adband Preamplifier Coaxial Cable (above 1GHz)	SCHWARZBECK York Laplace r Radiation Emission Manufacturer R&S SCHWARZBECK COMPLIANCE DIRECTION	NSLK 8128 MTS-IMP-136 RF300 ons Model No. FSP30 BBHA 9120 D	8128-289 261115-001- 0024 - Serial No. 100091	2018-09-15 2018-09-15 2018-07-18 Last Calibration Date 2018-04-20	2019-09-14 2019-07-17 2019-07-17 Calibration Due Date 2019-04-19
3 4 3m Semi-ar Item 1 Sp 2 B Ar 3 Broa	Limiter Cable nechoic Chamber for Equipment Dectrum Analyzer Broad-band Horn Intenna(1-18GHz) adband Preamplifier Coaxial Cable (above 1GHz)	York Laplace Pr Radiation Emission Manufacturer R&S SCHWARZBECK COMPLIANCE DIRECTION	MTS-IMP-136 RF300 ons Model No. FSP30 BBHA 9120 D	261115-001- 0024 - Serial No. 100091	2018-09-15 2018-07-18 Last Calibration Date 2018-04-20	2019-09-14 2019-07-17 Calibration Due Date 2019-04-19
4 3m Semi-ar Item 1 Sp 2 B Ar 3 Broa	Cable nechoic Chamber for Equipment Dectrum Analyzer Broad-band Horn Intenna(1-18GHz) adband Preamplifier Coaxial Cable (above 1GHz)	Laplace or Radiation Emission Manufacturer R&S SCHWARZBECK COMPLIANCE DIRECTION	RF300 ons Model No. FSP30 BBHA 9120 D	0024 - Serial No. 100091	2018-07-18 Last Calibration Date 2018-04-20	2019-07-17 Calibration Due Date 2019-04-19
3m Semi-ar Item 1 Sp 2 B Ar 3 Broa	Equipment Dectrum Analyzer Broad-band Horn Intenna(1-18GHz) Edband Preamplifier Coaxial Cable (above 1GHz)	Radiation Emission Manufacturer R&S SCHWARZBECK COMPLIANCE DIRECTION	Model No. FSP30 BBHA 9120 D	100091	Last Calibration Date 2018-04-20	Calibration Due Date 2019-04-19
1 Sp 2 B Ar 3 Broa	Equipment Dectrum Analyzer Broad-band Horn Intenna(1-18GHz) Edband Preamplifier Coaxial Cable (above 1GHz)	Manufacturer R&S SCHWARZBECK COMPLIANCE DIRECTION	Model No. FSP30 BBHA 9120 D	100091	Date 2018-04-20	Due Date 2019-04-19
1 Sp 2 B Ar 3 Broa	pectrum Analyzer Broad-band Horn Intenna(1-18GHz) Indband Preamplifier Coaxial Cable (above 1GHz)	R&S SCHWARZBECK COMPLIANCE DIRECTION	FSP30 BBHA 9120 D	100091	Date 2018-04-20	Due Date 2019-04-19
2 B Ar 3 Broa	Broad-band Horn ntenna(1-18GHz) adband Preamplifier Coaxial Cable (above 1GHz)	SCHWARZBECK COMPLIANCE DIRECTION	BBHA 9120 D			
2 Ar 3 Broa	ntenna(1-18GHz) adband Preamplifier Coaxial Cable (above 1GHz)	COMPLIANCE DIRECTION		667	2018-05-18	2019-05-17
	Coaxial Cable (above 1GHz)	DIRECTION	PAP-1G18			
4	(above 1GHz)	Ton		2004	2018-04-07	2019-04-06
	nectrum Analyzor	100	1GHz-18GHz	EW02014-7	2018-04-07	2019-04-06
5 Sp	Jeonum Anaryzei	R&S	FSP40	100501	2018-11-13	2019-11-12
K	Broad-band Horn Itenna(18-40GHz)	SCHWARZBECK	BBHA 9170	BBHA917065 1	2018-05-18	2019-05-17
7 Micr	rowave Broadband Preamplifier (18-40GHz)	SCHWARZBECK	BBV 9721	100472	2018-05-18	2019-05-17
8 S	Signal Generater	R&S	SMP22	100102	2018-09-15	2019-09-14
9	Cable	Тор	18-40GHz	-	2018-09-15	2019-09-14
3m Semi-ar	3m Semi-anechoic Chamber for Radiation Emissions					
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	2018.04.20	2019.04.19
2 T	rilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2018.04.19	2019.04.18
3 Act	tive Loop Antenna	Com-power	AL-130R	10160007	2018-04-17	2019-04-16
4	Amplifier	ANRITSU	MH648A	M43381	2018-04-20	2019-04-19
5	Cable	HUBER+SUHNER	CBL2	525178	2018-04-20	2019-04-19
RF Conduc	ted Testing					0 111 11
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1. Sp	oectrum Analyzer	R&S	FSP30	100091	2018-04-20	2019-04-19
2.	Coaxial Cable	Тор	10Hz-30GHz	-	2018-09-12	2019-09-11

Reference No.: WTS18S11128838W Page 10 of 52

3	Antenna Connector*	Realacc	45RSm	-	2018-09-12	2019-09-11
4	DC Block	Gwave	GDCB-3G-N- SMA	140307001	2018-09-12	2019-09-11

[&]quot;*": The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5.2 Measurement Uncertainty

Parameter	Uncertainty	
Radio Frequency	± 1 x 10 ⁻⁶	
RF Power	± 1.0 dB	
RF Power Density	± 2.2 dB	
Radiated Spurious Emissions test	± 5.03 dB (30M~1000MHz)	
	± 5.47 dB (1000M~25000MHz)	
Conducted Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)	
Confidence interval: 95%. Confidence factor:k=2		

5.3 Subcontracted

Whether parts	of tests for the product have been subcontracted to other labs:
Yes	⊠ No
If Yes, list the r	elated test items and lab information:
Test Lab: N/A	

Lab address: N/A Test items: N/A

6 Test Summary

Test Items	Test Requirement	Result
Conducted Emissions	15.207	Pass
	15.249(a)	
Radiated Spurious Emission	15.209	Pass
	15.205(a)	
	15.249	
Outside of Band Emission	15.205	Pass
	15.209	
Periodic Operation	15.35(c)	Pass
Bandwidth	15:215(c)	Pass
Antenna Requirement	15.203	Pass
RF Exposure	1.1307	Pass
Note: Pass=Compliance; NC	C=Not Compliance; NT=Not Tested; N/A=Not App	licable

Reference No.: WTS18S11128838W Page 12 of 52

7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013
Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Fraguenov (MHz)	Conducted Limit (dBµV)				
Frequency (MHz)	Qsi-peak	Average			
0.15 to 0.5	66 to 56*	56 to 46*			
0.5 to 5.0	56	46			
5.0 to 30 60 50					
*Decreases with the logarithm of the frequency.					

Test Result: PASS

7.1 E.U.T. Operation

Limit:

Operating Environment:

Temperature: 25.5 °C
Humidity: 51 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the worst test data (Low channel) were shown in the report.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

7.4 Test Result

Live line:

Neutral line:

Reference No.: WTS18S11128838W Page 15 of 52

8 Radiation Spurious Emission Test

Test Requirement: FCC Part15 Paragraph 15.249&15.209&15.205

Test Method: ANSI 63.10: 2010

Measurement Distance: 3m

Test Result: PASS

15.249(a)Limit:

Fundamental frequency	Field strength	of fundamental	Field strength of harmonics		
	mV/m	dBuV/m	uV/m	dBuV/m	
902-928 MHz	50	94	500	54	
2400-2483.5 MHz	50	94	500	54	
5725-5875 MHz	50	94	500	54	
24.0-24.25 GHz	250	108	2500	68	

15.209 Limit:

F	Field Stren	ngth	Field Strength Limit at	t 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

Note: RF Voltage(dBuV)=20 log₁₀ RF Voltage(uV)

8.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 51.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10: 2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30MHz to 1GHz.

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m

Turn Table From 0° to 360°

Turn Table

Absorbers

Spectrum

Analyzer

Combining

Network

AMP

The test setup for emission measurement above 1 GHz.

System

8.3 Spectrum Analyzer Setup

Sweep Speed	. Auto
IF Bandwidth	.10kHz
Video Bandwidth	.10kHz
Resolution Bandwidth	.10kHz
z	
Sweep Speed	. Auto
Detector	.PK
Resolution Bandwidth	.100kHz
Video Bandwidth	.300kHz
Sweep Speed	. Auto
Detector	.PK
Resolution Bandwidth	.1MHz
Video Bandwidth	.3MHz
Detector	.Ave.
Resolution Bandwidth	.1MHz
Video Bandwidth	.10Hz
	Sweep Speed

Reference No.: WTS18S11128838W Page 18 of 52

8.4 Test Procedure

1. 1The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane; For above1GHz, the EUT is 1.5m above ground plane.

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

8.5 Test Result

Test Frequency: 9 kHz ~ 30 MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

	103		quericy. Solvin	2 ~ 100112						
_	Receiver			Turn	RX An	tenna	Corrected	Corrected		
Frequency	Read	ding	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dB _l	μV)	(PK/QP)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
				GF	SK Low	Channel				
144.33	54.	49	QP	355	1.4	Н	-16.65	37.84	43.50	-5.66
144.33	44.	86	QP	238	1.8	V	-16.65	28.21	43.50	-15.29
2404.00	95.	64	PK	78	1.7	V	-12.99	82.65	114.00	-31.35
4808.00	54.	51	PK	195	1.6	V	0.84	55.35	74.00	-18.65
7212.00	50.	02	PK	34	1.7	V	3.54	53.56	74.00	-20.44
2317.06	55.	59	PK	339	1.5	V	-13.19	42.40	74.00	-31.60
2384.07	52.	96	PK	110	1.4	Н	-13.14	39.82	74.00	-34.18
2497.75	54.	32	PK	276	1.7	V	-13.08	41.24	74.00	-32.76
			P	AV=PK + D	uty Cycle	Correcti	on Factor			
				Duty Cy	/cle					
Frequency(N	ИHz)	Pk	K(dBµV/m)	Correct	ion	AV(dB	μV/m)	Limit(dBµV/m)	Marg	in(dB)
				Factor (dB)					
2404.00)		82.65	-25.7	3	56.	92	94.00	-37	.08
4808.00)		55.35	-25.7	3	29.	62	54.00	-44	.38
7212.00	7212.00		53.56	-25.7	3	27.	83	54.00	-46	.17
2317.06			42.40	-25.7	3	16.	67	54.00	-57	.33
2384.07	,		39.82	-25.7	3	14.	09	54.00	54.00 -59	
2497.75	5		41.24	-25.7	3	15.	51	54.00	-58	.49

Frequency		eiver ding	Detector	Turn table Angle	RX An	tenna Polar	Corrected Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dB	μV)	(PK/QP)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
				GF	SK Middle	e Channe	el			
144.33	53.	.51	QP	90	1.1	Н	-16.65	36.86	43.50	-6.64
144.33	46	.24	QP	178	1.4	V	-16.65	29.59	43.50	-13.91
2442.00	94	.55	PK	220	1.1	V	-12.93	81.62	114.00	-32.38
4884.00	55.	.64	PK	360	1.3	V	1.64	57.28	74.00	-16.72
7326.00	51.	.07	PK	262	1.4	V	3.50	54.57	74.00	-19.43
2344.79	56	.25	PK	347	1.3	V	-13.19	43.06	74.00	-30.94
2369.05	52	.08	PK	342	2.0	Н	-13.14	38.94	74.00	-35.06
2498.16	52	.77	PK	81	1.5	V	-13.08	39.69	74.00	-34.31
			I	AV=PK + Di	uty Cycle	Correcti	on Factor			
Frequency(N	1Hz)	PK	((dBμV/m)	Duty Cy Correct Factor (ion	AV(dB	μV/m)	Limit(dBµV/m) Ma		n(dB)
2442.00			81.62	-25.7	3	55.	89	94.00	-38	.11
4884.00	4884.00		57.28	-25.7	3	31.	55	54.00	-42	.45
7326.00	7326.00		54.57	-25.73	3	28.	84	54.00	-45	.16
2344.79			43.06	-25.73	3	17.	33	54.00	-56	.67
2369.05			38.94	-25.73	3	13.	21	54.00	-60	.79
2498.16			39.69	-25.73	3	13.	96	54.00	-60	.04

	Rec	eiver		Turn	RX An	tenna	Corrected	Corrected		
Frequency		ading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dE	BμV)	(PK/QP)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
				GFS	SK High (Channel				
144.33	52	2.23	QP	177	1.6	Н	-16.65	35.58	43.50	-7.92
144.33	47	7.24	QP	280	1.2	V	-16.65	30.59	43.50	-12.91
2480.00	93	3.92	PK	75	2.0	V	-12.95	80.97	114.00	-33.03
4960.00	58	3.13	PK	312	1.2	V	2.44	60.57	74.00	-13.43
7440.00	51	.27	PK	29	1.0	V	3.46	54.73	74.00	-19.27
2327.60	56	3.93	PK	204	1.6	V	-13.19	43.74	74.00	-30.26
2377.67	54	l.16	PK	266	1.3	Н	-13.14	41.02	74.00	-32.98
2497.06	54	1.50	PK	132	1.2	V	-13.08	41.42	74.00	-32.58
	-		ļ	- AV=PK + Du	- ty Cycle (- Correctio	n Factor			
Frequency(M	lHz)	PK((dBµV/m)	Duty Cyc Correction Factor (d	on	AV(dB _L	uV/m)	Limit(dBµV/m) Marg	in(dB)
2480.00			80.97	-25.73		55.2	24	94.00	-38	3.76
4960.00			60.57	-25.73		34.8	34	54.00	-39	.16
7440.00			54.73	-25.73		29.0	00	54.00	-45	5.00
2327.60			43.74	-25.73		18.0)1	54.00	-55	5.99
2377.67			41.02	-25.73		15.2	29	54.00	-58	3.71
2497.06			41.42	-25.73		15.6	69	54.00	-58	3.31

Test Frequency: From 18GHz to 25GHz

The measurements were more than 20 dB below the limit and not reported.

9 Periodic Operation

The duty cycle was determined by the following equation:

To calculate the actual field intensity, the duty cycle correction factor in decibel is needed for later use and can be obtained from following conversion

Duty Cycle (%) =Total On interval in a complete pulse train/ Length of a complete pulse train * % Duty Cycle Correction Factor (dB) = $20 * Log_{10}$ (Duty Cycle)

Low Chan	nel
Total transmission time(ms)	2.48
Length of a complete transmission period(ms)	48.00
Duty Cycle(%)	5.17
Duty Cycle Correction Factor(dB)	-25.73

High Char	nel
Total transmission time(ms)	2.48
Length of a complete transmission period(ms)	48.00
Duty Cycle(%)	5.17
Duty Cycle Correction Factor(dB)	-25.73

High Char	nel
Total transmission time(ms)	2.48
Length of a complete transmission period(ms)	48.00
Duty Cycle(%)	5.17
Duty Cycle Correction Factor(dB)	-25.73

Refer to the duty cycle plot (as below)

Test plots Low Channel

Middle Channel

High Channel

Reference No.: WTS18S11128838W Page 26 of 52

10 Outside of Band Emission

Test Requirement: 15.249(d):Emissions radiated outside of the specified frequency

bands, except for harmonics, shall be attenuated by at least 50 dB

below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

Test Method: ANSI C63.10:2013

Test Mode: Transmitting

10.1 Test Procedure

Refer to section 8.4 of this test report.

10.2 Test Result

Band edge-left side

Remark: The worst case (Vertical) was recoded.

Remark: The worst case (Vertical) was recoded.

Reference No.: WTS18S11128838W Page 28 of 52

11 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.215(c)

Test Method: ANSI C63.10:2013

Test Mode: Transmitting

11.1 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer: RBW = 30 kHz, VBW =100 kHz, Span=1MHz

11.2 Test Setup

11.3 Test Result

Operation mode	20dB Bandwidth (kHz)	99% Bandwidth (kHz)
Low channel	768.00	682.00
Middle channel	768.00	728.00
High channel	768.00	724.00

Test result plot as follows:

Mode: Low channel

Mode: Middle channel

Reference No.: WTS18S11128838W Page 30 of 52

Mode: High channel

12 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT has one PCB Printed Antenna, the gain is 0dBi. meets the requirements of FCC 15.203.

Reference No.: WTS18S11128838W Page 32 of 52

13 FCC ID: 2AGE6-2461RC RF Exposure Report

Test Requirement: FCC Part 1.1307

Evaluation Method: FCC Part 2.1091 & KDB 447498 D01 General RF Exposure Guidance v06

13.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

13.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTS18S11128838W Page 33 of 52

13.3 MPE Calculation Method

$$\mathbf{S} = \frac{P \times G}{4 \times \pi \times R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = output power to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

From the peak EUT RF output power, the minimum mobile separation distance, R=20cm, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (dBi)	Antenna Gain (numeric)	Source-based time-averaged maximum output power(dBm	Source-based time-averaged maximum output power(mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)	Reult
0	1.0	-12.55	0.056	0.0000111	1	Compliance

Note: the following is Source-based time-averaged maximum output power Calculation

morning to course based time averaged maximum catput power calculate				
Frequency	Source-based time- averaged maximum output power	Substituted (0dBm)	Source-based time-averaged maximum output power	
(MHz)	(dBµV/m)	(dBµV/m)	(dBm)	
2404	82.65	95.20	-12.55	

13.4 Result: Compliance

No SAR measurement is required.

14 Photographs- Model K1 Test Setup Photos

14.1 Photograph - Radiation Spurious Emission

Test frequency from 9 kHz to 30MHz

Test frequency from 30MHz to 1GHz

Test frequency above 1GHz

14.2 Photograph – Conducted Emission Test Setup

15 Photographs - Constructional Details

15.1 Photographs – Model K1 External Photos

Reference No.: WTS18S11128838W Page 37 of 52

Reference No.: WTS18S11128838W Page 38 of 52

Reference No.: WTS18S11128838W Page 41 of 52

15.2 Photographs – Model K1 Internal Photos

Reference No.: WTS18S11128838W Page 45 of 52

Reference No.: WTS18S11128838W Page 51 of 52

=====End of Report=====