

{ Vcc 核 → Pulled -up GND 核 → Pulled -down 3.3V -> 4.7 Kohn. (no key) high -> RC2 -> D (i) Rco → D RCI -> D 挖扭 press →通电 Rc3 -> high -> 1. key 3 (Ti) RCO > 0 RC1 -> 0 RC2 -> 1 (iii) Resistor RI R2 R3 provide the default state to scan lines. So if the resistor are pulled to GND, they will & have default state of OV, while if resistors are pulled high, they will have state of supply. (i.e. 3.3V or 5'V). The vesister values should be suitable, the pull-up should not create loading effect along with the parascitic capacitance of traces, and, also should not act as weak pull-up. Campus

Jeven it →bit =0	
	Date
Q2, 9600, 8, E, 2.	(10)
(a) 9600 symbol/sec 8 data bit/per word	even parity 2 stop bit
init()	
// configue a pin of I/o part for output and call it pin Tx. Set Tx = MARK // initially at the idle or stop level.	
transmitChar (val) // start bit, 8 data bits, Even Set Tx = SPACE, even Bit = 0	en parity ? stop bit.
delay (SYMBOL-PERIOD). for i=0 to 7	(Set not)
if bit i of val is 1, set Tx = M	ARK evenBit = ~ evenBit
else, set $T_X = SPACE$	ANN , COUNTY
delay (SYMBOL-PERIOD - LOOP-PERIOD)	
$T_X = even Bit$	
TX = MARK //Stopbit X Z.	
delay (Symbol_PERIOD) * 2	
一并 同.	
-> Asyn & Syn	(8)
(c) OIn Syn, a common clock is shared by the transmitter and	
receiver, while in Asyn, each character contains its own start/stop bits.	
2 In Syn, data is sent in frames/blocks. In Asyn, is bytes/characters.	
1 In Syn, there is no gap between the data. But	in Asyn there is agapo
3 In Syn, there is no gap between the data. But due to the s	start/step bit feature.
@ DSPI is full duplex, I2C is half duple	2×
@ SPI is multi master/slave, I2C is sig single master.	
a SPI is 3 (4) wire protocol I2C is 2 wire.	
@SPI is taster than 12c.	
DIZC has extra overhead start and stop bit,	while SPI does not.
	KOKUYO

Q(a) Vout = Scale x Vpp/24 VPD = 3.3 V VCON -> OXEB bitmask -> 0001 1110 -> 0x1E (ii) oldScale = (VCON & bitmask) >71 ob 1110 1011 0000 (010 >>1 -> 0b (0000 0101) = 0x05 (111) 1-375 V = Scale × 3.3 → Scale = 10 New Scale = (10) = 0xA = 0b (0000 1010) VCON = (VCON & ~ mask) / (new Scale < - 1) 06 1110 1011 (1110 0001) (1110 0001) [06 0000 1010 << 1=(0001 0100) ob (1111 0101) = 0x F5 YCON final = 06 (1111 0101) (IV) Software debounce. So Count based Measure switch value repeatedly, value must be I same for N polls to be considered debounce (stable). Opigital filter based Digital simulation of low pass filter (with schmitt trigger)

Q4(b) max timeout duration

18

11)
$$f_{osc} = 10 \text{ MHZ}$$

 $f_{src} = \frac{f_{osc}}{4} = \frac{19}{4} \text{ MHZ} \rightarrow T_{scr} = \frac{1}{f} = 0.4 \text{ (MS)}$

1 Largest timeset = 0.4 × 8 × 2 16 µs = 209715.5 µs timeout duration

②分享 Resolution = 04 ×8 = 3.2 MS timer resolution.

(ii) $\{f_A = 10 \text{ MZ} \quad \{f_B = 8 \text{ MZ} \}$ $\{t_A = 100 \text{ ms} \quad \{t_B = 125 \text{ ms} \}$ $\{f_B = 125 \text{ ms} \}$ $\{f_B = 125 \text{ ms} \}$ $\{f_B = 8 \text{ MZ} \}$ $\{f_B = 8 \text{ MZ} \}$

ta = 4 tick

(iii) tick period = 25 mg $\frac{2.5 \times 10^4}{0.4 \times 1^{16}} = 0.9537 < 1$ 不需要教分数 $\Rightarrow \frac{2.5 \times 10^4}{0.4} = 62500$

2 - 62500 = 3036

(īv)

taskA()=

static count = TASK_TICKS // 4 ticks

decrement count

if count is 0 =

set count = TASK_TICKS
main Body Of TASKA()

Best Wishes for you!

Campus

- Hanlin CAI