MODULE OPTIMISATION NON LISSE POUR LE MACHINE LEARNING Pas de document autorisé

Sujet d'examen convexité : 31 janvier 2020

Nom:

 $Pr\acute{e}nom:$

Dans les réponses, on utilisera les notations suivantes : $\theta \in [0,1]$ et $x_{\theta} = \theta x + (1-\theta)y$.
Exercice $1: Max-sup (10pt)$
Pour $i \in \mathbb{N}$, on suppose que les fonctions $f_i : \mathbb{R}^n \to \mathbb{R}$ sont convexes sur \mathbb{R}^n .
1. Pour $p \in \mathbb{N}$, montrer que
$\max_{0 \leq i \leq p} f_i(x)$
est convexe sur \mathbb{R}^n . Réponse :
Soit $\mathcal{A} \subset \mathbb{R}$ un ensemble non vide et $\forall \alpha \in \mathcal{A}, f_{\alpha} : \mathbb{R}^n \to \mathbb{R}$ convexes sur \mathbb{R}^n . 2. Montrer que
$\sup_{\alpha \in \mathcal{A}} f_{\alpha}(x)$
est convexe sur \mathbb{R}^n . Réponse :

3. En déduire que la fonction définie sur les matrices symétriques, $A\mapsto \lambda_{\max(A)}$ est

convexe. Réponse :

Exercice 2: Fonction distance (10pt)

Soit $C \subset \mathbb{R}^n$ une partie convexe non vide, et $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, $(x,y) \mapsto f(x,y)$ une fonction convexe sur $\mathbb{R}^n \times \mathbb{R}^n$, minorée inférieurement (i.e., $\exists m > 0, \forall (x,y) \in \mathbb{R}^n \times \mathbb{R}^n$, f(x,y) > m).

4. Montrer que

$$g: \mathbb{R}^n \to \mathbb{R}, \ y \mapsto \inf_{y \in C} f(x, y)$$

est convexe sur \mathbb{R}^n . Réponse :

5. Conséquence de 4. Supposons de plus C est fermée, et que $x\mapsto \|x\|$ est la norme Euclidienne de \mathbb{R}^n . Montrer que

$$g: \mathbb{R}^n \to \mathbb{R}, \ x \mapsto \min_{y \in C} \|x - y\|$$

est convexe sur $\mathbb{R}^n.$ Réponse :