Cantor's sætning v.2

Dan Saattrup Nielsen

De fleste af os kender Cantor's sætning, som siger, at der ikke er nogen surjektiv afbildning fra en given mængde A til $\mathcal{P}(A)$, hvor $\mathcal{P}(A)$ er potensmængden af A. Ækvivalent kan det siges at $|\mathcal{P}(A)| > |A|$, hvor |X| er kardinaliteten af X, som medfører $|\mathbb{R}| > |\mathbb{N}|$. En generalisering af denne sætning vil her vises, som bevist af Julius König i den anden halvdel af det 19. århundrede. Først starter vi med en definition.

Definition 1 Givet et uendeligt kardinaltal λ , defineres kofinaliteten $cf(\lambda)$, til at være det mindste kardinaltal κ således, at der eksisterer en afbildning $f: \kappa \to \lambda$, som opfylder, at $\sup(f(\kappa)) = \lambda$.

Man kan se kofinaliteten som en form for størrelsesbetragtning. Som et eksempel vil \aleph_{ω} , foreningen af de ω første uendelige kardinaltal $\aleph_0, \aleph_1, \ldots$, virke uoverskueligt stort, og det vil være svært at have en intuition omkring størrelsesforskellen mellem \aleph_{ω} og $\aleph_{\omega+1}$ f.eks. Men da vi kan konstruere en funktion $f: \aleph_0 \to \aleph_{\omega}$ givet ved $f(n) := \aleph_n$, vil det netop være tilfældet at $\sup(f(\aleph_0)) = \aleph_{\omega}$, så $cf(\aleph_{\omega}) \leq \aleph_0$; på den anden side kan nævnes at $cf(\aleph_{\omega+1}) = \aleph_{\omega+1}$. Pludselig virker $\aleph_{\omega+1}$ derfor meget større end \aleph_{ω} , som også afspejler sig ift. forskellige egenskaber ved de to, som vi dog ikke vil komme ind på her. Det bemærkes også at $cf(\lambda) \leq \lambda$, da vi altid som minimum kan tage identitetsafbildningen $f: \lambda \to \lambda$ med $\sup(f(\lambda)) = \lambda$. Vi kan herefter formulere sætningen som

Sætning 2 (Königs sætning) $Hvis \ \lambda \ er \ et \ uendeligt \ kardinaltal, <math>gælder \ \lambda^{cf(\lambda)} > \lambda.$

Bevis. Lad $\kappa := cf(\lambda)$ og konstruér $f : \kappa \to \lambda$, så billedet af f er ubegrænset i λ . Betragt nu en arbitrær afbildning $G : \lambda \to {}^{\kappa}\lambda$.\(^1\) Det er nok at vise, at G ikke er surjektiv. For alle $\alpha < \kappa$, lad

$$A_{\alpha} = \{ G_{\eta}(\alpha) \mid \eta < f(\alpha) \}.$$

Da gælder det for alle $\alpha < \kappa$ at $A_{\alpha} \subseteq \lambda$ og $|A_{\alpha}| \leq f(\alpha) < \lambda$. Specielt gælder det for $\alpha < \kappa$ at $\lambda \backslash A_{\alpha} \neq \emptyset$. Definér nu $h(\alpha)$, til at være det mindste element af $\lambda \backslash A_{\alpha}$ for alle $\alpha < \kappa$. Da gælder det, for alle $\alpha < \kappa$ og $\eta < f(\alpha)$, at

$$h(\alpha) \neq G_{\eta}(\alpha)$$
.

Derudover ses det klart ud fra vores konstruktion af f, at der for enhvert $\eta < \lambda$ findes et $\alpha < \kappa$ således at $\eta < f(\alpha)$. Derfor gælder det, at $h \neq G_{\eta}$, for alle $\eta < \lambda$. Altså er G ikke surjektiv, og $|{}^{\kappa}\lambda| > |\lambda|$. Men da κ var defineret til at være $cf(\lambda)$, samt at $|{}^{cf(\lambda)}\lambda| = |\lambda|^{|cf(\lambda)|}$ ved hjælp af kardinaltalsregning, fås at $|\lambda|^{|cf(\lambda)|} > |\lambda|$. Men da λ og $cf(\lambda)$ begge er kardinaltal, gælder $|\lambda| = \lambda$ og $|cf(\lambda)| = cf(\lambda)$, så vi har at $\lambda^{cf(\lambda)} > \lambda$.

Korollar 3 Hvis κ er et uendeligt kardinaltal, gælder $cf(2^{\kappa}) > \kappa$.

Bevis. Benyt König's sætning med $\lambda := 2^{\kappa}$, til at få uligheden

$$(2^{\kappa})^{cf(2^{\kappa})} > 2^{\kappa}.$$

Men, hvis $\mu \leq \kappa$, gælder det at

$$(2^{\kappa})^{\mu} = 2^{\kappa \otimes \mu} = 2^{\kappa},$$

hvor regneregler for kardinaltal blev benyttet undervejs. Dette medfører, at $cf(2^{\kappa}) \nleq \kappa$, som dermed giver $cf(2^{\kappa}) > \kappa$, fordi ordinaltallene er totalt ordnede.

 $^{^{1\}kappa}\lambda$ er mængden af funktioner fra κ til λ .

Hermed kan Cantor's sætning bevises, som et korollar.

Korollar 4 (Cantor's sætning) $|\mathcal{P}(A)| > |A|$ for alle mængder A.

Bevis. Det er klart for endelige A, så antag A er uendelig. Lad $\kappa := |A|$. Da det vides, at $|\mathcal{P}(A)| = 2^{\kappa}$ og, at det per definition gælder, at $2^{\kappa} \geq cf(2^{\kappa})$, fås, ved brug af Korollar 3, at

$$|\mathcal{P}(A)| = 2^{\kappa} \ge cf(2^{\kappa}) > \kappa = |A|.$$

Litteratur

[1] Schimmerling, Ernest. A Course on Set Theory. Cambridge University Press, 2011.