Introduction to Industrial Organization

Perfect Competition, Monopoly, and Dominant Firm

Jian-Da Zhu

National Taiwan University

September 19, 2019

Outline

- Perfect Competition
 - Assumptions
 - Shutdown decision for firms
 - Short-run and long-run equilibrium
 - Elasticities
 - Efficiency and welfare
- Monopoly
 - Assumptions
 - Elasticity
 - Welfare and deadweight loss
- Dominant Firm
 - Assumptions
 - Equilibrium

Perfect Competition

Perfect Competition

Assumptions:

- Homogeneous products (only one single good)
- Perfect information: All consumers and producers know the price and utilities for each person.
- No transaction costs
- No externalities
- Many (infinite) buyers (consumers) and sellers (firms).
- All firms and buyers are price takers. Price is determined by the market.

Profit Maximization

• The profit maximization problem for a single firm:

$$\max_{q} \pi = \max_{q} P \cdot q - c(q)$$

• First-order condition (F.O.C.):

$$\frac{\partial \pi}{\partial q} = 0 \Rightarrow P - \frac{\partial c(q)}{\partial q} = 0 \Rightarrow P = MC(q)$$

ullet Given a price P_0 , the firm produces at the quantity level q_0 , where $P_0=MC(q_0)$.

Figure for Perfect Competition

Shutdown Decisions (I)

- Total cost is $C(q_0) = q_0 AC(q_0)$.
- ullet Supply curve: As price increases, the firm increase the production along the curve MC(q).
- Shutdown decision:
 - ► The firm produces only if the revenues are higher than avoidable costs.
 - ▶ In the short run, avoidable costs are variable costs VC(q) if all fixed costs are sunk. If $P \cdot q < VC(q) \Rightarrow P < AVC(q)$, then the firm will shut down.
 - ▶ In the long run, avoidable costs are total costs C(q). If $P \cdot q < C(q) \Rightarrow P < AC(q)$, then the firm will shut down.
 - ▶ In the short run, if proportion α of fixed costs are not sunk, such as refundable rent, then avoidable costs are $VC(q) + \alpha F$. The firm will shut down if $P \cdot q < VC(q) + \alpha F \Rightarrow P < AVC(q) + \frac{\alpha F}{q}$

Shutdown Decisions (II)

- Short-run shutdown point P_s . (All the fixed costs are sunk.)
- Long-run shutdown point P_l .

Short-Run Equilibrium

- \bullet There are n identical firms.
- Short-run market supply curve, S; Short-run equilibrium price, P_0 , and quantity, $Q_0=nq_0$. $(Q_s=nq_s)$
- Firms are making a positive profit.

Long-Run Equilibrium

- Firms are free to enter into the market.
- The equilibrium price, $P^* = \text{minimum of } AC$; the equilibrium number of firms, n^* ; the equilibrium output $Q^* = n^*q^*$.
- Firms make zero profit because of free entry.

Long-Run Equilibrium

- Note: The long-run supply curve need not be flat. It may be upward-sloping.
 - Case 1: minimum of AC is rising in market demand.

Example: An expansion of output causes the prices of some key inputs to increase.

Case 2: A few firms can produce at low costs.

Example: Two types of firms: n_1 low-cost, efficient firms with smaller AC_1 , and n_2 high-cost firms with higher AC_2 .

Residual Demand Curve

ullet Definition: The demand curve facing a particular firm is called the residual demand curve, $D_r(p)$

$$D_r(p) \equiv D(p) - S_o(p); \ D_r(p) = 0 \text{ if } S_o(p) > D(p),$$

where $S_o(p)$ is the supply of other firms.

Elasticities

Price Elasticity of Demand/Supply

$$\epsilon = \frac{\frac{\Delta Q(P)}{Q(P)}}{\frac{\Delta P}{P}} = \frac{\Delta Q(P)}{\Delta P} \frac{P}{Q(P)}$$

- Example:
 - The slope of demand is very steep \Rightarrow inelastic demand $|\epsilon| < 1$
 - The slope of demand is very flat \Rightarrow elastic demand $|\epsilon| > 1$

Elasticities and the Residual Demand Curve (I)

• The elasticity of demand facing firm i is ϵ_i .

$$\begin{split} D_r(p) &= D(p) - S_o(p) \\ \Rightarrow \frac{dD_r(P)}{dP} &= \frac{dD(P)}{dP} - \frac{dS_o(P)}{dP} \\ \Rightarrow \frac{dD_r(P)}{dP} \frac{P}{q} &= \frac{dD(P)}{dP} \frac{P}{q} - \frac{dS_o(P)}{dP} \frac{P}{q} \\ \Rightarrow \underbrace{\frac{dD_r(P)}{dP} \frac{P}{q}}_{\epsilon_i} &= \underbrace{\frac{dD(P)}{dP} \frac{P}{Q}}_{\epsilon_i} \underbrace{\frac{Q}{q}}_{n} - \underbrace{\frac{dS_o(P)}{dP} \frac{P}{Q_o}}_{\eta_0} \underbrace{\frac{Q_o}{q}}_{n-1} \\ \Rightarrow \epsilon_i &= n\epsilon - (n-1)\eta_0, \end{split}$$

where ϵ is the market elasticity of demand, and η_0 is the elasticity of supply of the other firm. $(Q_o=(n-1)q;Q=nq)$

Elasticities and the Residual Demand Curve (II)

- The residual demand curve facing the firm is much flatter than the market demand curve.
- The single firm's demand elasticity is much higher than the market elasticity.

$$\epsilon_i = n\epsilon - (n-1)\eta_0$$

- Given the supply of other firms is completely inelastic ($\eta_0=0$), $\epsilon_i=n\epsilon$. For instance, if $\epsilon=-1$ and n=500, then $\epsilon_i=-500$. The elasticity of demand facing a single firm is very large.
- In a perfect competition market, $n=\infty$. The elasticity of demand facing a firm is infinite, so the demand curve facing a competitive firm is horizontal at the market price. A competitive firm is a price taker.

Efficiency and Welfare

- Welfare = consumer surplus(CS) + producer surplus (PS)
- In the competitive equilibrium
 - Firms: P = MC(q). Profits are maximized, so producer surplus is maximized.
 - Consumers: consumer surplus is maximized.
- Deadweight loss is defined as the welfare loss from the competitive equilibrium.

Summary and Example

- Summary:
 - Welfare is maximized under perfect competition.
 - Free entry is a crucial factor for perfect competition market, so the firms make zero profits in the long run.
 - All the firms are price takers.
- Example: U.S. agricultural markets
 - Many farms as sellers, and no farm has even 1 percent of total sales.
 - ▶ The elasticity of demand facing each farm is extremely large.

Crop	Estimated Market Demand Elasticity	Number of Farms	Each Farm's Residual Demand Elasticity
Fruits			
apples	-0.2	28,160	-5,620
grapes	-1.03	19,961	-20,560
Vegetables			
asparagus	-0.65	2,672	-11,140
cucumbers	-0.30	6,821	-2,046

Sources: Carlton and Perloff (2005)

Monopoly

Monopoly (I)

- Assumptions:
 - Only one firm in the market
 - Facing the downward-sloping demand $\operatorname{curve}(P(Q))$
- Profit maximization problem:

$$\max_{Q} \pi = \underbrace{P(Q)Q}_{\text{Revenue}} - \underbrace{C(Q)}_{\text{Cost}}$$

First-order condition:

$$\frac{\partial \pi}{\partial Q} = 0 \Rightarrow \underbrace{\frac{\partial P(Q)}{\partial Q}Q + P(Q)}_{\text{Marginal revenue}} - \underbrace{\frac{\partial C(Q)}{\partial Q}}_{\text{Marginal cost}} = 0$$

Monopoly (II)

From F.O.C,

$$\begin{split} \frac{\partial P(Q)}{\partial Q}Q + P(Q) &= MC(Q) \\ \Rightarrow \frac{\partial P(Q)}{\partial Q} \frac{Q}{P(Q)} P(Q) + P(Q) &= MC(Q) \\ \Rightarrow P(Q) \left(1 + \frac{1}{\frac{\partial Q}{\partial P} \frac{P(Q)}{Q}}\right) &= MC(Q), \end{split}$$

where $\frac{\partial Q}{\partial P} \frac{P(Q)}{Q}$ is the demand elasticity.

We obtain

$$P\left(1 + \frac{1}{\epsilon}\right) = MC.$$

Example

- Deciding the price for monopoly is equivalent to deciding the quantity.
- There is no supply curve for monopoly.
- Example:
 - Inverse demand function: P = a bQ
 - Cost function: cQ (constant marginal cost)
 - Maximization problem:

$$\max_{Q}(a-bQ)Q - cQ = aQ - bQ^2 - cQ$$

- First-order condition:

$$\underbrace{a - 2bQ}_{\mathsf{MR}} - \underbrace{c}_{\mathsf{MC}} = 0$$

- Marginal revenue: a 2bQ; marginal cost: c.
- Optimal output: $Q_m = \frac{a-c}{2b}$; optimal price: $P_m = \frac{a+c}{2}$.

Figure for Monopoly

Elasticity (I)

From F.O.C:

$$P(1 + \frac{1}{\epsilon}) = MC$$

$$\Rightarrow \underbrace{\frac{P - MC}{P}}_{\text{price-cost margin}} = \underbrace{-\frac{1}{\epsilon}}_{\text{positive}}$$

- The price-cost margin is also called the Lerner Index of market power.
- If the demand is very elastic, $\epsilon=-100$, then the price-cost margin is $\frac{1}{100}$. As $\epsilon \to -\infty$, $\frac{P-MC}{P} \to 0 \Rightarrow P \to MC$.
- If the demand is less elastic, $\epsilon=-2$, then the price-cost margin is $\frac{1}{2}$. The optimal price is much higher than the marginal cost.

Elasticity (II)

- How about inelastic demand? $-1 < \epsilon < 0$ Answer: Monopoly never operates on the inelastic portion of the demand. If so, raise the price!
- In actual markets, demand curves shift over time, so a rational monopoly should change its price over time.

Comparison with Competitive Market

- Price: $P_m > P_c$; Quantity: $Q_m < Q_c$
- Consumer surplus:
 - Competitive market: △ ABC
 - Monopoly: △ ADE
- Producer surplus (profits):
 - Competitive market: 0
 - Monopoly: □ DEFC
- Total Welfare: $W_c > W_m$
 - Competitive market:
 - $W_c = \triangle \mathsf{ABC} + 0$
 - Monopoly: $W_m = \triangle ADE + \square DEFC$
- Deadweight loss $W_c W_m = \triangle$ EFB

Creating and Maintaining a Monopoly

- All the firms merge or act as a monopoly. (We will address the detail in the oligopoly part)
- The firm takes strategic actions that prevent entry by other firms.
 (entry deterrence part)
- Three other reasons:
 - The firm may have special knowledge.
 - Example: one firm has a lower marginal cost.
 - ▶ The government may protect it from entry.
 - The market may only be large enough for a single firm to produce profitably.
 - When total production costs would rise if two or more firms produced instead of one, the single firm in a market is called a natural monopoly.
 - In some industries, such as electrical, gas, telephone, and cable television, there is a relatively high fixed cost.

Dominant Firm

Dominant Firm (I)

Assumptions:

- There is one firm (dominant firm) that is much larger than any other firm (fringe firm).
- All firms, except the dominant firm, are price takers, determining their output levels by setting P=MC.
- The number of firms is fixed (No-Entry Model); many fringe firms are free to enter into the market (Free-Entry Model).
- Dominant firm knows the market's demand curve.
- Dominant firm can predict how much output the competitive fringe will produce at any given price; that is, it knows fringe's supply curve.
- ullet There is one dominant firm (d) and n fringe firms (f) in the market.
- Two types of models: free entry market / no entry market

Dominant Firm (II)

- Reasons to be the dominant firm:
 - More efficient than its rivals: better management or better technology.
 - Early entrant: with lower costs, grow large optimally
 - Government may favor the original firm. For instance, USPS does not need to pay taxes or highway fees.
 - Superior product in the market
 - A group of firms may collectively act as a dominant firm (cartel)

Dominant Firm (No Entry) (I)

• The residual demand faces the dominant firm $D_d(P) = D(P) - S_o(P)$:

Dominant Firm (No Entry) (II)

• The residual demand faces the dominant firm $D_d(P) = D(P) - S_o(P)$:

Dominant Firm (No Entry) (III)

• The residual demand faces the dominant firm $D_d(P) = D(P) - S_o(P)$:

Dominant Firm (No Entry) (IV)

ullet Obtain the marginal revenue line MR_d from the residual demand curve

Dominant Firm (No Entry) (V)

• Case 1: Optimal price and quantity for dominant firm: P^* and Q_d^* ; optimal quantity for each fringe firm: q_f^* .

Dominant Firm (No Entry) (VI)

• Case 2: Optimal price and quantity for dominant firm: P^* and Q_d^* ; optimal quantity for each fringe firm: $q_f^* = 0$. (Monopoly case)

Dominant Firm (Free Entry) (I)

 If many fringe firms are free to enter into the market, then the residual demand faces the dominant firm:

Dominant Firm (Free Entry) (II)

ullet Obtain the marginal revenue line MR_d from the residual demand curve

Dominant Firm (Free Entry) (III)

• Case 1: Optimal price and quantity for dominant firm: P^* and Q_d^* ; optimal quantity for all the fringe firm: $Q_f^* = Q^* - Q_d^*$.

Dominant Firm (Free Entry) (IV)

• Case 2: Optimal price and quantity for dominant firm: P^* and Q_d^* ; optimal quantity for each fringe firm: $q_f^* = 0$. (Monopoly case)

Homework 1

- Please provide an example for the dominant firm. If possible, show it.
- Do you think that this dominant firm has the market power to decide the price?
- Do you think that all the fringe firms are price takers?
- List some reasons in this market to be the dominant firm.
- Do you expect which kinds of market structure will be in the future?