(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年6 月2 日 (02.06.2005)

PCT

(10) 国際公開番号 WO 2005/050177 A1

(51) 国際特許分類7:

G01N 21/35, 22/00

(21) 国際出願番号:

PCT/JP2004/017361

(22) 国際出願日:

2004年11月22日(22.11.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2003-391201

2003年11月20日(20.11.2003) JP

特願 2004-311458

2004年10月26日(26.10.2004) JP

(71) 出願人 *(*米国を除く全ての指定国について*)*: 独立 行政法人産業技術総合研究所 (NATIONAL INSTI-TUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY) [JP/JP]; 〒1008921 東京都千代田区 霞が関1丁目3番1号 Tokyo (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 川手 悦男 (KAWATE, Etsuo) [JP/JP]; 〒3058568 茨城県つくば市 梅園 1-1-1 中央第2 独立行政法人産業技術総合 研究所内 Ibaraki (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

/続葉有/

(54) Title: METHOD AND INSTRUMENT FOR MEASURING COMPLEX DIELECTRIC CONSTANT OF SAMPLE BY OPTICAL SPECTRUM MEASUREMENT

(54) 発明の名称: 光学スペクトルの測定による試料の複素誘電率測定方法及び測定装置

$$\frac{2nd\sqrt{1-\left(\sin\frac{\theta}{n}\right)^2}}{1}=N$$
 (Eq. 7)

(57) Abstract: A substrate like a parallel flat plate satisfies the inference condition when the wavelength (λ) of the incident light satisfies [Eq. 7] (where d is the thickness, n is the refractive index, θ is the angle of incidence, and N is an integer). In this case, in the transmission spectrum, the lights strengthen each other and a peak of the fringe appears; in the reflection spectrum, the lights weaken each other and a bottom of the fringe appears. At wave lengths (frequencies) near the wavelength (λ), as the angle of incidence is increased, the transmittance approaches zero and the reflectance approaches 1. Increase of the thickness by placing a thin film on the substrate is similar to increase of the thickness of the substrate in [Eq. 7], and therefore the wavelength satisfying the interference condition shifts to the longer wavelength (low frequency) side. Owing to these three effects, the spectrum of the ratio of the optical spectrum of the system composed of the substrate and the thin film to the optical (transmission or reflection) spectrum of only the substrate at a large angle of incidence is a spectrum having a structure where the maximum value is adjacent to the minimum value. By analyzing the relative transmission or reflection spectrum, the complex dielectric constant of the thin film can be determined.

(84) 指定国 /表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

添付公開書類:

— 国際調査報告書

(57) 要約:

平行平板状の基板は、入射光の波長(λ)が

【数7】

$$\frac{2nd\sqrt{1-\left(\sin\frac{\theta}{n}\right)^2}}{2}=N$$

(dは厚さ、nは屈折率、θ は入射角度、Nは整数)になるところで干渉条件を満たす。このとき 透過スペクトルでは光が強めあい、フリンジのピークが現れ、反射スペクトルでは光が弱めあい、フリンジのボトム(底)になる。その周辺波長(周波数)では、入射角度を増加させると透過率 はゼロに近づき、一方反射率は増加して1に近づく。この基板に薄膜を載せて厚さを増加させることは、【数7】において基板の厚さを増加させることに類似していて、干渉条件を満たす波長 は長波長(低周波数)側にずれる。これら3つの効果のために、大きな入射角度で基板のみの 光学(透過や反射)スペクトルに対する基板と薄膜からなる系の光学スペクトルの比のスペクトルは、最大値と最小値が隣接した構造のスペクトルになり、この相対透過スペクトル又は相対 反射スペクトルを解析することより薄膜の複素誘電率を求めることができる。