Exercises Reasoning Part MAIR

- 1. Consider the following statement.
 - (a) For all sentences α and β : if $\models \alpha \lor \beta$, then $\models \alpha$ or $\models \beta$.
 - (b) For all sentences α and β : if $\neg \alpha \models \beta$, then $\models \alpha \vee \beta$.

Are these statements true? (Justify your answer.)

- 2. Write a sentence of FOL whose models are:
 - (a) all first-order models with at most two elements in the domain
 - (b) all first-order models with at least two elements in the domain
 - (c) all first-order models with exactly two elements in the domain.
- 3. Using unary predicate symbols Student, Green and Bicycle (Student(x) stands for "x is a student", Green(x) for "x is green" and Bicycle(x) stands for "x is a bicycle"), and a binary predicate symbol Has (Has(x,y) stands for "x has y" i.e., "x owns y"), translate the following sentences from English into first order logic.
 - (a) Every bicycle is green.
 - (b) Every student has a green bicycle.
- 4. Express the following sentences in first order logic using predicate symbols Student (unary, Student(a) means a is a student), Tutor (binary, Tutor(b, a) means b is a's tutor), Lazy (unary), Happy (unary):
 - (a) Every student has a tutor.
 - (b) There are no lazy students.
 - (c) No student has two different tutors.
 - (d) If a student is lazy, then the student's tutor is not happy.
 - (e) There is a tutor all of whose tutees are lazy.
- 5. Consider an interpretation where the domain consists of 4 suitcases a, b, c, d where a and b are large and c and d are small. In other words, the predicate symbol Large is interpreted as the set $\{a, b\}$ and Small is interpreted as the set $\{c, d\}$. There is also a predicate symbol FitsIn that is interpreted as the set of pairs $\{(c, a), (c, b), (d, a), (d, b)\}$ (small suitcases fit inside large ones). Are the following first order sentences true or false in this interpretation (and why):
 - (a) $\forall x \forall y (Large(x) \land Small(y) \rightarrow FitsIn(x, y))$
 - (b) $\forall x \forall y (Large(x) \land Small(y) \rightarrow FitsIn(y, x))$
 - (c) $\exists x \forall y Fits In(x, y)$

- (d) $\forall x \exists y \neg Fits In(x, y)$
- (e) $\forall x \forall y (\neg FitsIn(x, y) \lor \neg FitsIn(y, x))$
- 6. Which class of human beings is described by the following concept?

$$\neg \forall child.Male \sqcap \neg \forall child.Female$$

- 7. Translate the concept in the previous exercise in FOL.
- 8. Translate the following FOL sentence in DL and describe the concept in natural language.

$$\exists y (neighbour(x, y) \land Old(y)) \land \forall y (neighbour(x, y) \rightarrow Friendly(y)).$$

9. Translate the following FOL sentence in DL and describe the concept in natural language.

$$\exists y (neighbour(x, y) \land \forall z (neighbour(y, z) \rightarrow \neg Friendly(z))).$$

- 10. For the interpretation \mathcal{I} from the picture, determine:
 - (a) $(\neg \mathsf{Employee})^{\mathcal{I}}$
 - (b) $(\neg \mathsf{EmpStud} \sqcap \forall \mathsf{empBy.Company})^{\mathcal{I}}$

- (c) (Student $\sqcap \forall \mathsf{pays}.\bot)^\mathcal{I}$
- 11. For the interpretation $\mathcal I$ from the picture, determine whether:
 - (a) $\mathcal{I} \Vdash \exists \mathsf{worksFor}. \top \sqsubseteq \mathsf{Employee}$
 - (b) $\mathcal{I} \Vdash \mathsf{Employee} \sqsubseteq \exists \mathsf{worksFor}. \top$
 - $(c) \ \mathcal{I} \Vdash \exists \mathsf{empBy}. \top \sqsubseteq \exists \mathsf{worksFor}. \mathsf{Company}$
- 12. For the interpretation ${\mathcal I}$ from the picture, determine whether:
 - (a) $\mathcal{I} \Vdash (\mathsf{mary}, \mathsf{ibm}) : \mathsf{empBy}$
 - $(b) \ \mathcal{I} \Vdash (\mathsf{ibm},\mathsf{john}) : \mathsf{worksFor}$
 - (c) $\mathcal{I} \Vdash \mathsf{john} : \forall \mathsf{empBy.Company}$
- 13. Explain for each of the following FOL sentences why they are not expressible in DL (at least not in the standard way).
 - (a) $\exists xyzP(x,y,z)$, where P is a 3-ary predicate.
 - (b) $\forall x \forall y (P(x,y) \to P(y,x))$.
 - (c) $\forall x P(x, x)$.
- 14. What does it mean for a logic to be decidable?
- 15. Is propositional logic decidable? And FOL?
- 16. Is any extension of a decidable logic decidable?