Metaheurísticas Populacionais: Algoritmos Genéticos e Enxame de Partículas

Guilherme de Alencar Barreto

gbarreto@ufc.br

Departamento de Engenharia de Teleinformática (DETI) Engenharias de Computação, Telecomunicações e Teleinformática Universidade Federal do Ceará — UFC www.researchgate.net/profile/Guilherme_Barreto2/

Conteúdo dos Slides

- População de Indivíduos/Partículas: Visão Matricial
- Enxame de Partículas: Atualização da Posição/Velocidade
- Algoritmos Genéticos: Seleção/Recombinação/Mutação
- Exemplos Computacionais

População de Indívíduos/Partículas

Representação de um indivíduo/cromossomo/partícula

• Nas metaheurísticas populacionais, o i-ésimo indivíduo, cromossomo (GA) ou partícula (PSO) é representado com um vetor-linha de dimensão p: $\mathbf{x}_i \in \mathbb{R}^p$.

$$\mathbf{x}_i = [x_{i1} \ x_{i,2} \ \cdots \ x_{ij} \ \cdots \ x_{ip}], \tag{1}$$

em que o elemento x_{ij} é chamado de gene no jargão de algoritmos genéticos.

População de Indívíduos/Partículas

Representação de um indivíduo/cromossomo/partícula

• Assim, uma população de N indivíduos na iteração ou geração t é representada como uma matriz $\mathbf{P}(t)$, de dimensão $N \times p$.

$$\mathbf{P}(t) = \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_i \\ \vdots \\ \mathbf{x}_N \end{bmatrix} = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,j} & \cdots & x_{1,p} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{i,1} & x_{i,2} & \cdots & x_{i,j} & \cdots & x_{i,p} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{N,1} & x_{N,2} & \cdots & x_{N,j} & \cdots & x_{N,p} \end{bmatrix}$$
(2)

- Cada linha dessa matriz corresponde a uma solução-candidata para o problema de interesse.
- ullet Portanto, a cada geração/iteração, uma metaheurística populacional avalia N soluções candidatas.

População de Indívíduos/Partículas

Formalização Matemática do Problema

- A cada iteração t uma nova população é formada por meio de operações matemáticas sobre as linhas da matriz $\mathbf{P}(t)$.
- Pode-se entender a população a ser avaliada na próxima iteração, ${\bf P}(t+1)$, como resultante da aplicação sucessiva de transformações não-lineares às linhas da população ${\bf P}(t)$.
- Formalmente, temos a seguinte representação:

$$T\left(\mathbf{P}(t)\right) \to \mathbf{P}(t+1).$$
 (3)

Formalização Matemática do Problema

- ullet Em algoritmos genéticos, a transformação (ou operador) T é resultado da aplicação sequencial de três outros operadores, a saber:
 - ① Operador seleção (S).
 - 2 Operador **recombinação** (R).
 - **③** Operador **mutação** (M).
- ullet Assim, que podemos escrever a transformação T como

$$M\left(R\left(S\left(\mathbf{P}(t)\right)\right)\right) \to \mathbf{P}(t+1).$$
 (4)

Formalização Matemática do Problema

- Em otimização por enxame de partículas, a transformação (ou operador) T é resultado da aplicação sequencial de dois outros operadores, a saber:
 - Operador atualização de velocidade (V).
 - **2** Operador atualização de posição (X).
- ullet Assim, podemos escrever a transformação T como

$$X(V(\mathbf{P}(t))) \to \mathbf{P}(t+1).$$
 (5)

Parte I

Otimização por Enxame de Partículas

Otimização por Enxame de Partículas

Introdução

Metaheurística para otimização global inspirada no comportamento social de animais que se organizam e se movimentam em grupos, tais como cardume de peixes e revoada de pássaros.

(a) Revoada

(b) Cardume

Otimização por Enxame de Partículas

Introdução

- Proposta por Kennedy e Eberhart em 1995, no seguinte artigo:
 - J. Kennedy & R. C. Eberhart (1995). "Particle swarm optimization". In: Proceedings of the IEEE International Conference on Neural Networks (ICNN'1995), pp. 1942–1948. doi:10.1109/ICNN.1995.488968.
- É um metaheurística populacional, estocástica, livre de gradiente, e de inspiração biológica.
- Soluções são representadas por entidades matemáticas abstratas, denominadas de partículas, com posição e velocidades específicas e que formam um enxame em um espaço de possíveis soluções.

Otimização por Enxame de Partículas

Introdução

- O poder exploratório do algoritmo PSO provém da troca ou compartilhamento de informação entre as partículas e da percepção que cada partícula tem do seu desempenho.
- A informação compartilhada entre partículas confere um elemento social ao algoritmo e permite a exploração do espaço de buscas por distâncias maiores.
- A informação de cada partícula sobre o seu próprio desempenho confere um elemento de auto-percepção (i.e. cognitivo) ao algoritmo e, portanto, de exploração local do espaço de busca.
- O embate de forças exploratórias de naturezas distintas, global e local, é chamado de dilema **Exploração** × **Explotação**.

Otimização por Enxame de Partículas

Topologia Global: Cada partícula conectada a todas as outras

- Isto implica que a informação sobre o desempenho de cada partícula está disponível a todas as outras.
- Confere um caráter instantâneo à propagação de informação e, por isso, não é biologicamente plausível.

Otimização por Enxame de Partículas

Topologia Local: Cada partícula conectada à sua vizinhança apenas

- Implica que a informações sobre cada partícula não estão disponíveis de imediato a todas as outras.
- Confere um caráter não-instantâneo à propagação de informação, sendo mais biologicamente plausível.

Formalismo Matemático: PSO Global

- No algoritmo PSO, cada partícula $\mathbf{x}_i(t) = [x_{i,1}(t) \quad \cdots \quad x_{i,j}(t) \quad \cdots \quad x_{i,p}(t)] \text{ deve manter um registro de sua melhor posição} \\ \mathbf{x}_i^{best} = [x_{i,1}^{best} \quad \cdots \quad x_{i,j}^{best} \quad \cdots \quad x_{i,p}^{best}] \text{ até a iteração atual } t.$
- ullet Entende-se por busca local aquela realizada em torno de ${f x}_i^{best}.$
- Logo, uma variação de posição na direção de \mathbf{x}_i^{best} produz uma componente de velocidade na iteração t dada por

$$\mathbf{v}_i^{cog}(t) = \mathbf{x}_i^{best} - \mathbf{x}_i(t), \tag{6}$$

em que o sobrescrito cog remete à idéia de um elemento 'cognitivo' influenciando a velocidade da i-ésima partícula.

• Pode-se entender $\mathbf{v}_i^{cog}(t)$ como uma estimativa rude do gradiente na direção de \mathbf{x}_i^{best} .

Formalismo Matemático

- No algoritmo PSO global, também é necessário manter um registro da melhor posição \mathbf{x}_g^{best} dentro do enxame até a iteração atual t.
- ullet Assim, busca global é aquela realizada na direção de ${f x}_g^{best}$.
- Logo, uma variação de posição na direção de \mathbf{x}_g^{best} produz uma componente de velocidade na iteração t dada por

$$\mathbf{v}_i^{soc}(t) = \mathbf{x}_g^{best} - \mathbf{x}_i(t), \tag{7}$$

em que o sobrescrito soc remete à idéia de um elemento 'social' influenciando a velocidade da i-ésima partícula.

• Pode-se entender $\mathbf{v}_i^{soc}(t)$ como uma estimativa rude do gradiente na direção de \mathbf{x}_q^{best} .

• As componentes de velocidade $\mathbf{v}_i^{cog}(t)$ e $\mathbf{v}_i^{soc}(t)$ são linearmente combinadas em uma equação recursiva de atualização da velocidade da *i*-ésima partícula:

$$\mathbf{v}_{i}(t+1) = w\mathbf{v}_{i}(t) + c_{1}\mathbf{r}_{1}(t) \circ \mathbf{v}_{i}^{cog}(t) + c_{2}\mathbf{r}_{2}(t) \circ \mathbf{v}_{i}^{soc}(t), \tag{8}$$

$$= w\mathbf{v}_{i}(t) + c_{1}\mathbf{r}_{1}(t) \circ (\mathbf{x}_{i}^{best} - \mathbf{x}_{i}(t)) + c_{2}\mathbf{r}_{2}(t) \circ (\mathbf{x}_{g}^{best} - \mathbf{x}_{i}(t)), \tag{9}$$

em que \circ denota o produto de Hardamad. As constantes $c_1>0$ e $c_2>0$ são chamados de coeficientes de aceleração (uma escolha comum: $c_1=c_2=2,05$). A constante $w\in[0,4-0,9]$ é chamado de fator de inércia.

• Os vetores $\mathbf{r}_1(t)$ e $\mathbf{r}_2(t)$ têm dimensão $p \times 1$ e seus elementos são números aleatórios uniformes entre 0 e 1: $r_{1,i}(t) \sim U(0,1), \ r_{2,i}(t) \sim U(0,1), \ j=1,\ldots,p.$

 Uma vez atualizada a velocidade da i-ésima, sua posição é atualizada por meio da seguinte equação recursiva:

$$\mathbf{x}_i(t+1) = \mathbf{x}_i(t) + \alpha \mathbf{v}_i(t+1), \tag{10}$$

em que $0 \le \alpha \le 1$ é a taxa de aprendizagem cujo o papel é controlar o quanto a atualização na velocidade das partículas influenciará em suas posições. É comum fazer $\alpha=1$.

- No Octave/Matlab, os vetores aleatórios \mathbf{r}_1 e \mathbf{r}_2 são facilmente geradas pelos seguintes comandos:
 - >> r1=rand(p,1);
 - >> r2=rand(p,1);

- Os vetores aleatórios $\mathbf{r}_1(t)$ e $\mathbf{r}_2(t)$ conferem estocasticidade ao movimento das partículas ao multiplicar os vetores \mathbf{v}_i^{cog} e \mathbf{v}_i^{soc} .
- Considere, por exemplo, o 2o. termo à esquerda da igualdade, da Eq. (8):

$$c_{1}\mathbf{r}_{1}(t) \circ \mathbf{v}_{i}^{cog}(t) = \begin{bmatrix} c_{1} \cdot r_{11}(t) \cdot v_{i,1}^{cog}(t) \\ c_{1} \cdot r_{12}(t) \cdot v_{i,2}^{cog}(t) \\ \vdots \\ c_{1} \cdot r_{1j}(t) \cdot v_{i,j}^{cog}(t) \\ \vdots \\ c_{1} \cdot r_{1p}(t) \cdot v_{i,p}^{cog}(t) \end{bmatrix} = \begin{bmatrix} c_{1} \cdot r_{11}(t) \cdot (x_{i,1}^{best} - x_{i,1}(t)) \\ c_{1} \cdot r_{12}(t) \cdot (x_{i,2}^{best} - x_{i,2}(t)) \\ \vdots \\ c_{1} \cdot r_{1j}(t) \cdot (x_{i,j}^{best} - x_{i,j}(t)) \\ \vdots \\ c_{1} \cdot r_{1p}(t) \cdot (x_{i,p}^{best} - x_{i,p}(t)) \end{bmatrix}$$

$$(11)$$

- Sem os números aleatórios $r_{1j}(t) \sim U(0,1), \ j=1,\ldots,p$, a contribuição das componentes $v_{i,j}^{cog}(t) = x_{i,j}^{best} x_{i,j}(t)$ ao vetor \mathbf{v}_i^{cog} seria <u>determinística</u>. Ou seja, saberíamos exatamente para onde a partícula se moveria na próxima iteração.
- Com a introdução dos números aleatórios $r_{1j}(t)$, a contribuição das componentes $v_{i,j}^{cog}(t) = x_{i,j}^{best} x_{i,j}(t)$ ao vetor \mathbf{v}_i^{cog} é <u>estocástica</u>. Ou seja, não sabemos exatamente para onde a partícula se mover na próxima iteração, embora saibamos que o movimento ocorre na vizinhança de \mathbf{x}_i^{best} .
- O mesmo raciocínio se aplica à parte ao termo $c_2 \mathbf{r}_2(t) \circ \mathbf{v}_i^{soc}(t)$ da equação de ajuste da velocidade.

Metaheurísticas Populacionais Algoritmo PSO Global (Versão Matricial)

- É possível ainda escrever a forma matricial das equações de ajuste da velocidade e posição das partículas do enxame.
- Assim, atualizamos uma matriz de velocidade por meio da seguinte expressão:

$$\mathbf{V}(t+1) = w\mathbf{V}(t) + c_1\mathbf{R}_1(t) \circ \mathbf{V}^{cog}(t) + c_2\mathbf{R}_2(t) \circ \mathbf{V}^{soc}(t), \quad (12)$$

em que agora usamos matrizes de números aleatórios ${f R}_1(t)$ e ${f R}_1(t)$. O operador \circ denota o produto de Hadamard.

 A matriz de posições das partículas é atualizada por meio da seguinte equação recursiva:

$$\mathbf{X}(t+1) = \mathbf{X}(t) + \alpha \mathbf{V}(t+1), \tag{13}$$

em que α é a taxa de aprendizagem.

Algoritmo PSO Global (Versão Matricial)

ullet A matriz $\mathbf{V}^{cog}(t) \in \mathbb{R}^{N imes p}$ da Eq. 12 é definida como

$$\mathbf{V}^{cog}(t) = \begin{bmatrix} \mathbf{v}_{1}^{cog}(t) \\ \vdots \\ \mathbf{v}_{i}^{cog}(t) \\ \vdots \\ \mathbf{v}_{N}^{cog}(t) \end{bmatrix}_{N \times p} = \begin{bmatrix} \mathbf{x}_{1}^{best} - \mathbf{x}_{1}(t) \\ \vdots \\ \mathbf{x}_{i}^{best} - \mathbf{x}_{i}(t) \\ \vdots \\ \mathbf{x}_{N}^{best} - \mathbf{x}_{N}(t) \end{bmatrix}_{N \times p}$$

$$= \begin{bmatrix} \mathbf{x}_{1}^{best} \\ \vdots \\ \mathbf{x}_{i}^{best} \\ \vdots \\ \mathbf{x}_{N}^{best} \end{bmatrix}_{N \times p} = \begin{bmatrix} \mathbf{x}_{1}(t) \\ \vdots \\ \mathbf{x}_{i}(t) \\ \vdots \\ \mathbf{x}_{N}(t) \end{bmatrix}_{N \times p}$$

$$= \mathbf{X}^{best} - \mathbf{X}(t), \quad (15)$$

em que \mathbf{X}^{best} é uma matriz $N \times p$ contendo as melhores posições até o momento para as N partículas do enxame.

Algoritmo PSO Global (Versão Matricial)

ullet E a matriz e $\mathbf{V}^{soc}(t) \in \mathbb{R}^{N imes p}$ da Eq. 12 é dada por

$$\mathbf{V}^{soc}(t) = \begin{bmatrix} \mathbf{v}_{1}^{soc}(t) \\ \vdots \\ \mathbf{v}_{i}^{soc}(t) \\ \vdots \\ \mathbf{v}_{N}^{soc}(t) \end{bmatrix}_{N \times p} = \begin{bmatrix} \mathbf{x}_{g}^{best} - \mathbf{x}_{1}(t) \\ \vdots \\ \mathbf{x}_{g}^{best} - \mathbf{x}_{i}(t) \\ \vdots \\ \mathbf{x}_{g}^{best} - \mathbf{x}_{N}(t) \end{bmatrix}_{N \times p}$$

$$= \begin{bmatrix} \mathbf{x}_{g}^{best} \\ \vdots \\ \mathbf{x}_{g}^{best} \\ \vdots \\ \mathbf{x}_{g}^{best} \end{bmatrix}_{N \times p} - \begin{bmatrix} \mathbf{x}_{1}(t) \\ \vdots \\ \mathbf{x}_{i}(t) \\ \vdots \\ \mathbf{x}_{N}(t) \end{bmatrix}_{N \times p}$$

$$= \mathbf{X}_{g}^{best} - \mathbf{X}(t), \quad (17)$$

em que $\mathbf{X}_g^{best} = \mathbf{1}_N \mathbf{x}_g^{best}$ é uma matriz $N \times p$ contendo o vetor \mathbf{x}_g^{best} (melhor posição de todo o enxame até o momento) repetido N vezes, e $\mathbf{1}_N$ é um vetor de 1's de dimensão $N \times 1$.

- Uma das vantagens da notação matricial consiste em entender o algoritmo PSO global como um operador matemático sobre uma matriz; no caso, a matriz que define a população de partículas do enxame.
- Há também ganhos de velocidade consideráveis ao se implementar o algoritmo PSO global na forma matricial, principalmente em ambientes de programação como Octave e Matlab.
- No Octave/Matlab, tais matrizes s\u00e3o facilmente geradas pelos seguintes comandos:

```
\bullet >> R1=rand(N, p));
```

```
\bullet >> R2=rand(N, p));
```

Pseudocódigo: Algoritmo PSO Global

Passo 1: Inicialização da População

1 Inicializar aleatoriamente posição e velocidade das partículas:

$$\mathbf{x}_i(0) \sim U(\mathbf{x}^l, \mathbf{x}^u), \quad i = 1, \dots, N.$$
(18)

$$\mathbf{v}_i(0) \sim U(-|\mathbf{x}^u - \mathbf{x}^l|, |\mathbf{x}^u - \mathbf{x}^l|), \quad i = 1, \dots, N.$$
(19)

em que \mathbf{x}^l e \mathbf{x}^u são, respectivamente, os limites inferiores e superiores das variáveis do problema.

- Pazer $\mathbf{x}_i^{best} = \mathbf{x}_i(0)$ e calcular $f(\mathbf{x}_i^{best})$, $i = 1, \dots, N$.
- 3 Encontrar \mathbf{x}_g^{best} :

$$\mathbf{x}_g^{best} = \arg\min_{\forall i} \left\{ f(\mathbf{x}_i^{best}) \right\}. \tag{20}$$

Pseudocódigo: Algoritmo PSO Global

Passo 2: Atualização da População

Até a convergência acontecer (ou atingir número máximo de iterações):

 ${f 2.1}$ - Atualizar a velocidade das N partículas:

$$\mathbf{V}(t+1) = w\mathbf{V}(t) + c_1\mathbf{R}_1(t) \circ \mathbf{V}^{cog}(t) + c_2\mathbf{R}_2(t) \circ \mathbf{V}^{soc}(t), \qquad (21)$$

 ${f 2.2}$ - Atualizar a posição das N partículas:

$$\mathbf{X}(t+1) = \mathbf{X}(t) + \alpha \mathbf{V}(t+1), \tag{22}$$

Pseudocódigo: Algoritmo PSO Global

Passo 3: Avaliação das Novas Posições ds Partículas

Para as N partículas do enxame:

- **3.1** Avaliar a nova posição da *i*-ésima partícula: $f(\mathbf{x}_i(t+1))$.
- 3.2 Atualizar sua melhor posição da partícula até o momento:

SE
$$f(\mathbf{x}_i(t+1)) < f(\mathbf{x}_i^{best}),$$

ENTÃO $\mathbf{x}_i^{best} = \mathbf{x}_i(t+1)$
 $f(\mathbf{x}_i^{best}) = f(\mathbf{x}_i(t+1)).$

- **3.3** Buscar melhor posição dentro do enxame: $\mathbf{x}_g^{best} = \arg\min_{\forall i} \left\{ f(\mathbf{x}_i^{best}) \right\}$.
- **3.4** Fazer $f_g^{best} = f(\mathbf{x}_g^{best})$.
- ${\bf 3.5}$ Se convergência = TRUE, então terminar execução. Caso contrário, fazer t=t+1 e ir para o Passo 2.

OBS: A convergência do algoritmo pode ser monitorada através do valor da função objetivo para a melhor solução global $f(\mathbf{x}_a^{best})$.

Experimentos Computacionais: Algoritmo PSO Global

Exemplo 1

Encontrar o mínimo da função de Ackley 1-D^a:

$$f(x) = -20e^{-0.2|x|} - e^{\cos(2\pi x)} + 20 + e,$$
(23)

para $x \in [-5,5]$. A solução ótima é f(0) = 0.

^aConferir em http://www.sfu.ca/~ssurjano/ackley.html

Exemplo 1

• Solução encontrada após 30 iterações: f(-0.00013380) = 0.00053616.

Evolução da função objetivo com um enxame de 50 partículas.

Experimentos Computacionais: Algoritmo PSO Global

Exemplo 2

Encontrar o mínimo da função de Rosenbrock 2-D ^a:

$$f(x,y) = (1-x)^2 + 100(y-x^2)^2,$$
 (24)

para $x,y\in[-5,5].$ A solução ótima é f(1,1)=0.

^aConferir em http://www.sfu.ca/~ssurjano/rosen.html

Exemplo 2

 \bullet Solução encontrada após 50 iterações: f(1.0000, 1.0001) = 0.000003.

Experimentos Computacionais: Algoritmo PSO Global

Referências Adicionais

- D. Bratton and J. Kennedy, "Defining a Standard for Particle Swarm Optimization", 2007 IEEE Swarm Intelligence Symposium, Honolulu, HI, 2007, pp. 120-127, doi: 10.1109/SIS.2007.368035.
- Eberhart R.C., Shi Y. (1998) Comparison between genetic algorithms and particle swarm optimization. In: Porto V.W., Saravanan N., Waagen D., Eiben A.E. (eds) Evolutionary Programming VII. EP 1998. Lecture Notes in Computer Science, vol 1447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0040812
- Mattos, C.L.C., Barreto, G.A. & Cavalcanti, F.R.P. An improved hybrid particle swarm optimization algorithm applied to economic modeling of radio resource allocation. Electron Commer Res 14, 51–70 (2014). https://doi.org/10.1007/s10660-013-9128-x

Parte II

Algoritmos Genéticos

Algoritmos Genéticos

Introdução

Metaheurística para otimização global inspirada na teoria da evolução pela seleção natural de Charles Darwin e Alfred Russel Wallace, com a incorporação de conceitos da genética moderna, tais como genes, cromossomos, seleção, recombinação e mutação.

(d) Molécula de DNA

Metaheurísticas Populacionais Algoritmos Genéticos

Introdução

 Teoria e várias versões de GA (binários e contínuos) estão descritas em detalhes no livro abaixo:

Andries Engelbrecht (2007). Computational Intelligence: An Introduction. John Wiley & Sons, 2a. edição.

- Assim como o algoritmo PSO, GA é um metaheurística populacional, estocástica, livre de gradiente, e de inspiração biológica (metaheurística bioinspirada).
- Soluções são representadas por entidades matemáticas abstratas, denominadas de cromossomos.

Metaheurísticas Populacionais Algoritmos Genéticos

Representação de um cromossomo/indivíduo

• Em um GA, o *i*-ésimo cromossomo ou indivíduo da população é representado com um vetor-linha de dimensão $p: \mathbf{x}_i \in \mathbb{R}^p$.

$$\mathbf{x}_i = [x_{i1} \ x_{i,2} \ \cdots \ x_{ij} \ \cdots \ x_{ip}],$$
 (25)

em que o elemento $x_{ij} \in \mathbb{R}$ define o j-ésimo gene do i-ésimo cromossomo.

Representação de um indivíduo/cromossomo

• Assim, uma população de N indivíduos na geração t é representada como uma matriz $\mathbf{P}(t)$, de dimensão $N \times p$.

$$\mathbf{X}(t) = \begin{bmatrix} \mathbf{x}_{1}(t) \\ \vdots \\ \mathbf{x}_{i}(t) \\ \vdots \\ \mathbf{x}_{N}(t) \end{bmatrix} = \begin{bmatrix} x_{1,1}(t) & x_{1,2}(t) & \cdots & x_{1,j}(t) & \cdots & x_{1,p}(t) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{i,1}(t) & x_{i,2}(t) & \cdots & x_{i,j}(t) & \cdots & x_{i,p}(t) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{N,1}(t) & x_{N,2}(t) & \cdots & x_{N,j}(t) & \cdots & x_{N,p}(t) \end{bmatrix}$$

$$(26)$$

- Cada linha dessa matriz corresponde a uma solução-candidata para o problema de interesse.
- A cada geração, N soluções candidatas são avaliadas por seu valor da função-objetivo: $f_i(t) = f(\mathbf{x}_i(t))$.

Formalização Matemática do Problema

- A cada iteração t uma nova população é formada por meio de operações matemáticas sobre as linhas da matriz $\mathbf{X}(t)$.
- Pode-se entender a população a ser avaliada na próxima iteração, $\mathbf{X}(t+1)$, como resultante da aplicação sucessiva de transformações não-lineares às linhas da população $\mathbf{X}(t)$.
- Formalmente, temos a seguinte representação:

$$T\left(\mathbf{X}(t)\right) \to \mathbf{X}(t+1).$$
 (27)

Algoritmos Genéticos

Formalização Matemática do Problema

- ullet Em GAs, o operador T é resultado da aplicação sequencial de três outros operadores:
 - ① Operador seleção (S).
 - ② Operador **recombinação** (R).
 - **3** Operador **mutação** (M).

Ou seja:
$$M\left(R\left(S\left(\mathbf{X}(t)\right)\right)\right) \to \mathbf{X}(t+1).$$
 (28)

- É comum o uso de um quarto operador, chamado de **elitismo**, antes da aplicação do operador seleção.
- Este operador seleciona (deterministicamente) um pequeno número de indivíduos com melhor avaliação para passarem automaticamente à próxima geração.

Algoritmos Genéticos

Operador Seleção: Método do Torneio

- Descreveremos aqui o método do torneio com reposição (tournament selection with replacement).
- Para formar um par de cromossomos para recombinação, selecionam-se aleatoriamente 2 pares de indivíduos da população atual $\mathbf{X}(t)$.
- Seja $(\mathbf{x}_{r_1}, \mathbf{x}_{r_2})$, o primeiro par selecionado. Deste par, escolher o indivíduo mais apto:

SE
$$f(\mathbf{x}_{r_1}) < f(\mathbf{x}_{r_2})$$
, ENTÃO \mathbf{x}_{r_1} é escolhido. (29)

• Seja $(\mathbf{x}_{r_3}, \mathbf{x}_{r_4})$ o segundo par selecionado. Escolher o cromossomo mais apto:

SE
$$f(\mathbf{x}_{r_3}) < f(\mathbf{x}_{r_4})$$
, ENTÃO \mathbf{x}_{r_3} é escolhido. (30)

Metaheurísticas Populacionais Algoritmos Genéticos

Operador Seleção: Método do Torneio

- O par $(\mathbf{x}_{r_1}, \mathbf{x}_{r_3})$ é copiado para a matriz de selecionados, $\mathbf{S}(t)$, para possível cruzamento.
- O processo de seleção de pares por torneio é repetido até que o total de linhas de $\mathbf{S}(t)$ seja igual N, assumindo que N é par.
- Em seguida, as linhas de S(t), tomadas de 2 em 2, serão processados pelo operador recombinação (*crossover*).

Algoritmos Genéticos

Operador Recombinação

- Os pares selecionados tem probabilidade p_c de gerar prole. Esta probabilidade, que deve ser alta $(0,85 < p_c < 1)$, é chamada probabilidade de cruzamento.
- Cada par de indivíduos em $\mathbf{S}(t)$ que passar por recombinação de seus genes dará origem a uma nova prole (offspring).
- A operação de recombinação pode ser dividida em 3 categorias, a depender do número de pais utilizados:
 - Assexuada: Quando a prole é gerada a partir de um só indivíduo.
 - Sexuada: Quando dois indivíduos geram prole de um ou mais filhos.
 - Múltipla: Quando mais de dois indivíduos geram prole com um ou mais filhos.

Algoritmos Genéticos

Operador Recombinação 1: Método de Wright^a

^aA. Wright. Genetic Algorithms for Real Parameter Optimization. In G. J. E. Rawlins, editor, Foundations of enetic Algorithms, pages 205–220, San Mateo, C.A., 1991. Morgan Kaufmann.

ullet Seja $(\mathbf{s}_1(t),\mathbf{s}_2(t))$ o par de cromossomos de $\mathbf{S}(t)$ em processamento.

SE $U(0,1) \leq p_c$, **ENTÃO** escolher os dois mais aptos da prole.

Indivíduo 1:
$$\tilde{\mathbf{x}}_1(t) = \mathbf{s}_1(t) + \mathbf{s}_2(t),$$
 (31)

Indivíduo 2:
$$\tilde{\mathbf{x}}_2(t) = 1.5\mathbf{s}_1(t) - 0.5\mathbf{s}_2(t),$$
 (32)

Indivíduo 3:
$$\tilde{\mathbf{x}}_3(t) = -0.5\mathbf{s}_1(t) + 1.5\mathbf{s}_2(t)$$
. (33)

SENÃO os dois indivíduos da prole são cópias exatas de seus pais.

- Por mais aptos, entende-se os cromossomos da prole com melhores valores segundo sua função-aptidão (fitness function).
- Para problema for de minimização (maximização), buscam-se os menores (maiores) valores da função-aptidão.

Operador Recombinação 2: Simulated Binary Crossover (SBX) ^a

^aK. Deb & R.B. Agrawal. Simulated Binary Crossover for Continuous Space. Complex Syst., 9:115-148, 1995

• Para cada par $(\mathbf{s}_1(t), \mathbf{s}_2(t))$ de indivíduos de $\mathbf{S}(t)$, produzir uma prole de outros dois indivíduos por meio das seguintes operações:

Indivíduo 1:
$$\tilde{x}_{1j}(t) = 0.5[(1+\gamma_j)s_{1j}(t) + (1-\gamma_j)s_{2j}(t)],$$
 (34)

Indivíduo 2:
$$\tilde{x}_{2j}(t) = 0.5[(1 - \gamma_j)s_{1j}(t) + (1 + \gamma_j)s_{2j}(t)],$$
 (35)

em que

$$\gamma_{j} = \begin{cases} (2r_{j})^{\frac{1}{\eta+1}}, & \text{se } r_{j} \leq 0.5\\ \left[\frac{1}{2(1-r_{j})}\right]^{\frac{1}{\eta+1}}, & \text{C.C.} \end{cases}$$
(36)

tal que $r_j \sim U(0,1)$, e $\eta > 0$ é o índice da distribuição. Os autores sugerem $\eta = 1$.

Metaheurísticas Populacionais Algoritmos Genéticos

Operador Recombinação 2: Simulated Binary Crossover (SBX) a

- ^aK. Deb & R.B. Agrawal. Simulated Binary Crossover for Continuous Space. Complex Syst., 9:115-148, 1999
- O operador SBX gera prole simetricamente em torno dos pais, prevenindo viés na direção de um dos pais.
- O viés aqui significa os filhos serem mais parecidos com um dos pais.
- Para valores altos de η , há uma probabilidade maior de a prole ser gerado próximo aos pais. Ou seja, prole mais semelhante aos pais.
- Para valores pequenos de η , prole será mais distante dos pais. Ou seja, prole menos semelhantes aos pais.

Operador Recombinação 2: Versão vetorial do SBX

• Para cada par $(\mathbf{s}_1(t), \mathbf{s}_2(t))$ de indivíduos de $\mathbf{S}(t)$, produzir uma prole de outros dois indivíduos por meio das seguintes operações:

Indivíduo 1:
$$\tilde{\mathbf{x}}_1(t) = 0.5[(\mathbf{1}_p + \boldsymbol{\gamma}) \circ \mathbf{s}_1(t) + (\mathbf{1}_p - \boldsymbol{\gamma}) \circ \mathbf{s}_2(t)],$$
 (37)

Indivíduo 2:
$$\tilde{\mathbf{x}}_2(t) = 0.5[(\mathbf{1}_p - \boldsymbol{\gamma}) \circ \mathbf{s}_1(t) + (\mathbf{1}_p + \boldsymbol{\gamma}) \circ \mathbf{s}_2(t)],$$
 (38)

em que $\mathbf{1}_p$ é um vetor de 1's de dimensão $1 \times p$, e γ é o vetor aleatório de mesma dimensão cujo as componentes são definidas como na Eq. (36).

Operador Recombinação

• Caso o valor do j-ésimo gene do i-ésimo indivíduo, $x_{ij}(t)$, esteja fora dos seus limites, aplicar as seguintes regras.

Regra 1 - Se ultrapassar limite superior:

SE
$$x_{ij}(t) > x_{ij}^u$$
, ENTÃO $x_{ij}(t) = x_{ij}^u$.

Regra 2 - Se ultrapassar limite inferior:

SE
$$x_{ij}(t) < x_{ij}^l$$
, ENTÃO $x_{ij}(t) = x_{ij}^l$.

Algoritmos Genéticos

Explicando o Operador Recombinação

- A operação de recombinação tem o objetivo de conferir certa variabilidade genética em função da troca de material genético entre os indivíduos.
- Ao mesmo tempo, mantém uma espécie de memória genética da população.
- A intensidade da troca é controlada pela probabilidade de recombinação.
- Se p_c é muito baixa, então haverá menor troca de informação genética devido à recombinação e, consequentemente, maior inércia (lentidão) a mudanças genéticas na população.
- ullet Por este motivo, p_c deve ser mantida em um valor alto.

Algoritmos Genéticos

Operador Mutação

• Para cada indivíduo $\tilde{\mathbf{x}}_i(t)$ da prole gerada, aplicar a seguinte regra:

SE
$$U(0,1) \leq p_m$$
, ENTÃO

$$\tilde{\mathbf{x}}_i'(t) = \tilde{\mathbf{x}}_i(t) + \alpha(\mathbf{x}^u - \mathbf{x}^l) \circ \mathbf{n}, \quad i = 1, 2.$$
 (39)

em que

- p_m é a probabilidade de mutação.
- $0 < \alpha \ll 1$ é passo (incremento) de mutação.
- O símbolo denota o produto de Hadamard.
- $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$ é um vetor aleatório p-dimensional amostrado de uma densidade gaussiana multivariada de vetor médio nulo e de matriz de covariância identidade.

Algoritmos Genéticos

Explicando o Operador Mutação

- A operação de mutação tem o objetivo de conferir certa inovação genética aos indivíduos da prole.
- A intensidade da inovação é controlada pela probabilidade de mutação.
- Se p_m é muito alta, haverá excesso de inovação, o que pode destruir a história (i.e. memória) genética da população.
- Neste caso, o GA se assemelha a uma busca global com N soluções independentes por geração.
- Por este motivo, p_m deve ser mantida em um valor bem baixo (e.g. $p_m < 5\%$).

Experimentos Computacionais: Algoritmo PSO Global

Exemplo 1

Encontrar o mínimo da função de Ackley 1-D^a:

$$f(x) = -20e^{-0.2|x|} - e^{\cos(2\pi x)} + 20 + e,$$
(40)

para $x \in [-5, 5]$. A solução ótima é f(0) = 0.

^aConferir em http://www.sfu.ca/~ssurjano/ackley.html

Experimentos Computacionais: Algoritmo Genético

Exemplo 1

 \bullet Solução encontrada após 30 iterações: f(0.0000011211)=0.0000044846.

Experimentos Computacionais: Algoritmo Genético

Experimentos Computacionais: Algoritmo Genético

Experimentos Computacionais: Algoritmo Genético

Exemplo 2

Encontrar o mínimo da função de Rosenbrock 2-D a:

$$f(x,y) = (1-x)^2 + 100(y-x^2)^2,$$
 (41)

para $x,y\in[-5,5].$ A solução ótima é f(1,1)=0.

^aConferir em http://www.sfu.ca/~ssurjano/rosen.html

Experimentos Computacionais: Algoritmo Genético

Exemplo 2

 \bullet Solução encontrada após 50 gerações: f(1.0014, 1.0029) = 0.000002.

Experimentos Computacionais: Algoritmo Genético

Experimentos Computacionais: Algoritmo Genético

Experimentos Computacionais: Algoritmo Genético

Referências Adicionais

- Goldberg, David (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison-Wesley Professional. ISBN 978-0201157673.
- Fogel, David (2006). Evolutionary Computation: Toward a New Philosophy of Machine Intelligence (3rd ed.). Piscataway, NJ: IEEE Press. ISBN 978-0471669517.
- Phelipe W. Oliveira, Guilherme A. Barreto & George A. P. Thé (2020). "A General Framework for Optimal Tuning of PID-like Controllers for Minimum Jerk Robotic Trajectories", Journal of Intelligent & Robotic Systems, volume 99, pages 467–486.