Combining different parts and outputing combined.csv

```
from google.colab import drive
import os
import pandas as pd
import numpy as np
# Mount the drive
drive.mount('/content/drive')
# Get the current working directory
cwd = os.path.abspath('/content/drive/MyDrive/CS 470 data')
# List all the files from the directory, filtering out directories
file_list = [f for f in os.listdir(cwd) if os.path.isfile(os.path.join(cwd, f))]
\ensuremath{\mathtt{\#}} Concatenate the DataFrames from each file, ignoring directories
df_concat = pd.concat([pd.read_csv(os.path.join(cwd, f)) for f in file_list], ignore_index=True)
# Remove columns named 'Unnamed: 0.1' and 'Unnamed: 0' first
df_concat = df_concat.drop(columns=['Unnamed: 0.1', 'Unnamed: 0'])
# Replace empty strings with NaN to uniformly represent missing values
df_concat.replace('', np.nan, inplace=True)
df_concat = df_concat.dropna(subset=df_concat.columns[1:], how='all')
df_concat.reset_index(drop=True, inplace=True)
df_concat.to_csv('/content/drive/MyDrive/CS 470 data/combined.csv', index=False)
df_concat
```

df_concat = pd.concat([pd.read_csv(os.path.join(cwd, f)) for f in file_list], ignore_index=True)

	Major_School	Description	Date_Added	Status_Date	GRE_Stats	GPA	Degree	Citizenship	Attribute_1	Attribute_2	Attribute_
0	Education Policy, University Of Wisconsin- Madison	NaN	January 29, 2024	Rejected on 29 Jan	NaN	NaN	Masters	International	Fall 2024	NaN	Nah
1	Computer Science, University Of Illinois	CV area. Did my undergrad at same school, One	January 29, 2024	Accepted on 29 Jan	NaN	GPA 4.00	PhD	International	Fall 2024	NaN	NaN
2	Astronomy, Indiana University Bloomington	NaN	January 29, 2024	Rejected on 28 Jan	NaN	NaN	PhD	American	Fall 2024	NaN	Naħ
3	Physics, Penn State University	Accepted for high energy theory with a focus o	January 29, 2024	Accepted on 29 Jan	NaN	GPA 3.00	PhD	International	Fall 2024	NaN	NaN
4	Integrated Program In Biochemistry (IPiB), Uni	NaN	January 29, 2024	Accepted on 29 Jan	NaN	NaN	PhD	American	Fall 2024	NaN	NaN
22040845	Advertising, University of Texas, Austin (UT A	NaN	February 11, 2006	Accepted on 2 Feb	NaN	NaN	NaN	NaN	NaN	NaN	Na h

GPA and GRE score Only for US applicants (GPA difficult to normalize and convert between different countries)

```
# Filtering out 'international' from 'Citizenship' column, ensuring proper handling of NaN values
df_USONLY = df_concat[(~df_concat['Citizenship'].str.contains("international", case=False, na=False)) & df_concat['Citizenship'].notna()]
df_USONLY
# Make data frame with Major/School, GPA, GRE, and Application Cycle, clean unnecessary data
df_gpaandgre = df_USONLY[['Major_School', 'GPA', 'GRE_Stats', 'Attribute_1', 'Status_Date']].rename(columns={'Attribute_1': 'Application Cyclo
df_gpaandgre = df_gpaandgre.dropna()
df_gpaandgre['GPA'] = df_gpaandgre['GPA'].str.replace('GPA ', '').astype(float)
df_gpaandgre = df_gpaandgre[df_gpaandgre['Application Cycle'] != 'Other']
# Simplify values to either Accept, Wailist, or Reject, remove other values
def simplify_status(status):
    if "accept" in status.lower():
       return "Accept"
    elif "wait listed" in status.lower():
       return "Waitlist"
    elif "interview" in status.lower():
        return None
    else:
        return "Reject"
df_gpaandgre['Status'] = df_gpaandgre['Status_Date'].apply(simplify_status)
df_gpaandgre = df_gpaandgre.dropna(subset=['Status'])
# Reset the index
df_gpaandgre.reset_index(drop=True, inplace=True)
# Export to File
df_gpaandgre.to_csv('/content/drive/MyDrive/CS 470 data/gpaandgre.csv', index=False)
     <ipython-input-22-78538c01cd12>:21: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: \underline{\text{https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html\#returning-a-view-versus-a-cc}}
       df_gpaandgre['Status'] = df_gpaandgre['Status_Date'].apply(simplify_status)
```

df_gpaandgre

	Major_School	GPA	GRE_Stats	Application Cycle	Status_Date	Status
0	Human Ecology PhD - Design Studies, University	2.18	GRE 157; GRE V 155; GRE AW 4.00	Fall 2024	Accepted on 24 Jan	Accept
1	Political Science, Brown University	3.80	GRE 155; GRE V 168	Fall 2024	Rejected on 29 Jan	Reject
2	Political Science, Brown University	4.00	GRE 158; GRE V 165; GRE AW 4.50	Fall 2024	Rejected on 29 Jan	Reject
3	Sociology, Emory University	3.46	GRE 161; GRE V 163; GRE AW 3.00	Fall 2024	Rejected on 29 Jan	Reject
4	Sociology, Indiana University Bloomington	3.46	GRE 163; GRE V 161; GRE AW 3.00	Fall 2024	Rejected on 26 Jan	Reject
4	Communication		GRE 570; GRE		1tad an 0	>

Most popular Major_School

```
major_school_counts = df_gpaandgre['Major_School'].value_counts().reset_index(name='Count')
major_school_counts.rename(columns={'index': 'Major_School'}, inplace=True)
major_school_counts.head()
```

	Major_School	Count
0	Speech Language Pathology, University Of South	910
1	Economics, University Of Michigan (Ann Arbor)	884
2	Economics, Stanford University	858
3	Economics, Yale University	754
4	Economics, University Of Chicago	624

Curious about Chemistry

```
# Filter the DataFrame for programs in Chemistry
chemistry_programs = df_gpaandgre[df_gpaandgre['Major_School'].str.contains("Chemistry", case=False)]
# Extract and standardize university names from the Major_School entries for easier comparison
chemistry\_programs['University'] = chemistry\_programs['Major\_School']. apply(lambda \ x: \ x.split(',')[1] \ if \ ',' \ in \ x \ else \ x)
duplicate_chemistry_programs = chemistry_programs[chemistry_programs.duplicated(subset=['University'], keep=False)]
# Reset the index
duplicate_chemistry_programs.reset_index(drop=True, inplace=True)
# Export to File
duplicate_chemistry_programs.to_csv('/content/drive/MyDrive/CS 470 data/duplicate_chemistry_programs.csv', index=False)
duplicate_chemistry_programs
     <ipython-input-39-876d250a22a5>:5: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_">https://pandas.pydata.org/pandas-docs/stable/user_</a>
       chemistry_programs['University'] = chemistry_programs['Major_School'].apply(lambda x:
                                                 Application
              Major School GPA
                                    GRE Stats
                                                               Status Date Status
                                                                                        University
                                                       Cycle
                                      GRE 162;
                  Chemistry,
                                    GRE V 161;
                                                                                            Harvard
                                                                Accepted on
        0
                    Harvard
                             4.00
                                                     Fall 2024
                                       GRE AW
                                                                     23 Jan
                                                                                          University
                   University
                                           4.50
                  Chemistry,
                                      GRE 162;
                                    GRE V 161;
                University Of
                                                                Accepted on
                                                                                       University Of
                             4.00
                                                     Fall 2024
                                                                              Accept
                   California,
                                       GRE AW
                                                                      16 Jan
                                                                                          California
                    Berkeley
                                           4.50
                                      GRE 161:
                  Chemistry,
                                    GRE V 162;
                                                                Accepted on
                                                                                       University Of
        2
                                                     Fall 2024
                University Of
                             4.00
                                                                              Accept
                                       GRE AW
                                                                      5 Jan
                                                                                            Chicago
                    Chicago
                                           4.50
                                      GRE 164;
                  Chemistry,
                                    GRE V 165;
                                                               Rejected on 3
                                                                                             Brown
        3
                             3.92
                                                     Fall 2023
                                                                              Reject
                      Brown
                                       GRE AW
                                                                                          University
                   University
                                           4.50
                                      CDE 16/-
```

duplicate_chemistry_programs_count = duplicate_chemistry_programs['University'].value_counts().reset_index(name='Count')
duplicate_chemistry_programs_count.head()

	index	Count
0	University Of California	416
1	Yale University	260
2	Stanford University	234
3	University Of Chicago	208
4	Northwestern University	156

GPA and GRE rates for Yale University (this part is bugged, pls fix later)

```
import matplotlib.pyplot as plt
import numpy as np
# Filter the dataset for Yale University applicants only, regardless of application cycle
yale_university_applicants = duplicate_chemistry_programs[duplicate_chemistry_programs['University'].str.contains("Yale")]
# Display the DataFrame for Yale University applicants
yale_university_applicants.reset_index(drop=True, inplace=True)
yale_university_applicants.to_csv('/content/drive/MyDrive/CS 470 data/yale_university_applicants.csv', index=False)
import matplotlib.pyplot as plt
yale_university_applicants['GRE_Stats'] = yale_university_applicants['GRE_Stats'].astype(str)
yale_university_applicants['GRE_Stats'] = yale_university_applicants['GRE_Stats'].str.extract(r'GRE (\d+)').astype(float)
yale_university_applicants
# fall 2021 applicants = yale university applicants[yale university applicants['Application Cycle'] == 'Fall 2021']
# fall_2021_applicants
selected_columns = yale_university_applicants[['GPA', 'GRE_Stats', 'Application Cycle', 'Status']]
selected columns.reset index(drop=True, inplace=True)
selected\_columns
gpa = selected_columns['GPA'].values
statuses = selected columns['Status'].values
gre_quantitative = selected_columns['GRE_Stats'].values
accepted_indices = np.where(selected_columns['Status'] == 'Accept')
rejected_indices = np.where(selected_columns['Status'] == 'Reject')
gpa_accepted = gpa[accepted_indices]
gre_quantitative_accepted = gre_quantitative[accepted_indices]
gpa_rejected = gpa[rejected_indices]
gre_quantitative_rejected = gre_quantitative[rejected_indices]
# Introduce jitter to the data for better visualization
jitter = 0.02 # Adjust this value as needed for the desired amount of jitter
gpa_accepted_jittered = gpa_accepted + np.random.normal(0, jitter, size=len(gpa_accepted))
gre_accepted_jittered = gre_quantitative_accepted + np.random.normal(0, jitter, size=len(gre_quantitative_accepted))
gpa_rejected_jittered = gpa_rejected + np.random.normal(0, jitter, size=len(gpa_rejected))
gre_rejected_jittered = gre_quantitative_rejected + np.random.normal(0, jitter, size=len(gre_quantitative_rejected))
# Prepare the plot
plt.figure(figsize=(14, 9))
# Plot accepted applicants with green points and jitter
plt.scatter(gpa_accepted_jittered, gre_accepted_jittered, color='green', label='Accepted', alpha=0.6)
# Plot rejected applicants with red points and jitter
plt.scatter(gpa_rejected_jittered, gre_rejected_jittered, color='red', label='Rejected', alpha=0.6)
# Adding plot title and labels
plt.title('Accepted and Rejected Applicants at Yale University: GPA vs. GRE Quantitative Scores with Jitter')
plt.xlabel('GPA')
plt.ylabel('GRE Quantitative Scores')
plt.legend(title='Application Status')
plt.grid(True)
# Display the plot
plt.show()
```

<ipython-input-139-be4906f1526e>:10: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user-yale_university_applicants['GRE_Stats'] = yale_university_applicants['GRE_Stats'].asty <ipython-input-139-be4906f1526e>:11: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user yale_university_applicants['GRE_Stats'].str.

