PMAT 319 Winter 2016. Chapter 0.

Definition: Let G be a non-empty set. A binary operation on G is a function $*: G \times G \to G$. We put $*(\alpha, \beta) = \alpha * \beta$. We say that * is associative if and only if $(\alpha * \beta) * \gamma = \alpha * (\beta * \gamma)$ for all $\alpha, \beta, \gamma \in G$. We say * is commutative iff $\alpha * \beta = \beta * \alpha$ for all $\alpha, \beta \in G$.

We say that (G, *) is a group if:

- (1) * is an associative binary operation on G,
- (2) There is a element $i \in G$ so that $\alpha * i = i * \alpha = \alpha$ for all $\alpha \in G$, (i is called the identity element of G), and
- (3) For every $\alpha \in G$, there is a unique $\beta \in G$ so that $\alpha * \beta = \beta * \alpha = i$, (β is called the inverse of α , and we write $\beta = \alpha^{-1}$).

If (G, *) is a group and * is commutative then we say that (G, *) is an abelian group.

Exercise: Prove that (i) the identity element if exists must be unique and (ii) if β and γ are inverses of α then $\beta = \gamma$.

Example: $(\mathbb{Z}, +)$ and $(\mathbb{R} \setminus \{0\}, \cdot)$ are abelian groups.

Definition: Let (G, *) be a group. A non-empty subset H of G is a subgroup of G iff (H, *) is a group itself.

Theorem 0.1: (H, *) is a subgroup of (G, *) if and only if $\alpha * \beta^{-1} \in H$ for all $\alpha, \beta \in H$. Proof:

Theorem 0.2: Let Let (G,*) be a group. For any α , $\beta \in G$, if $\beta * \alpha = \beta * \gamma$ then $\alpha = \gamma$, (left-cancellation) if $\alpha * \beta = \gamma * \beta$ then $\alpha = \gamma$, (right-cancellation) and $(\alpha * \beta)^{-1} = \beta^{-1} * \alpha^{-1}$. Proof:

For any $\alpha \in G$, we put $\alpha^0 = i$, and for any positive integer n, $\alpha^n = \alpha^{n-1} * \alpha$ and $\alpha^{-n} = (\alpha^{-1})^n$.

If G has exactly n element for some positive integer n, we say that G is finite. Otherwise, we say that G is infinite.

Let $\alpha \in G$. We say that α is an element of order n if n is the smallest positive integer (if exists) so that $\alpha^n = i$. Otherwise, we say that α is an element of infinite order (in this case, $\alpha^n \neq i$ for all positive integers n.

Let H be a subgroup of G. If there is an element $\alpha \in H$ so that $H = \{\alpha^n \mid n \in \mathbb{Z}\}$ then we write $H = \langle \alpha \rangle$ which is called the *cyclic group* generated by α . It is clear that cyclic groups are abelian.

In general, the group generated by the elements $\alpha_1, \alpha_2, ..., \alpha_m$ is

$$\langle \alpha_1, \alpha_2, ..., \alpha_m \rangle = \{ \alpha_1^{s_1} * \alpha_2^{s_2} * ... * \alpha_m^{s_m} \mid s_1, s_2, ..., s_m \in \mathbb{Z} \}.$$

We note that if α is an element of order n then $\langle \alpha \rangle = \{i, \alpha, \alpha^2, ..., \alpha^{n-1}\}$ is a group of n elements, and if α is an element of infinite order then $\langle \alpha \rangle$ is an infinite set.

Examples: $C_4 = \langle \alpha \rangle$ and $V_4 = \langle \alpha, \beta \rangle$ and below are their Cayley tables.

Let $\alpha, \beta \in G$. Then $\alpha * \beta * \alpha^{-1}$ is called the *conjugate* of β by α , and the set $\alpha G \alpha^{-1} = \{\alpha * \beta * \alpha^{-1} \mid \beta \in G\}$ is a subgroup of G.

If H is a sugroup of G then $\alpha H \alpha^{-1}$ is called the *conjugate* of H by α . If $H = \alpha H \alpha^{-1}$ for all $\alpha \in G$ the H is called a *normal* subgroup of G.

PMAT 319 Winter 2015. Chapter 1.

The coordinate plane $\mathbb{R}^2 = \{(x,y) \mid x,y \in \mathbb{R}\}$ and the real three space $\mathbb{R}^3 = \{(x,y,z) \mid x,y,z \in \mathbb{R}\}$ are also called the *Euclidean* plane and space.

Let $\alpha: \mathbb{R}^n \to \mathbb{R}^n$ be a map (function) where n=2 or 3.

We say that α is an *injection* (one-to-one, 1-1) if and only if $\forall P, Q \in \mathbb{R}^n$, if $\alpha(P) = \alpha(Q)$ then P = Q.

We say that α is a *surjection* (onto) if and only if $\forall P \in \mathbb{R}^n$, $\exists Q \in \mathbb{R}^n$ so that $\alpha(Q) = P$. We say that α is a *bijection* (transformation) if and only if α is one-to-one and onto.

Example: Let $\gamma : \mathbb{R}^n \to \mathbb{R}^n$ and $\tau : \mathbb{R}^n \to \mathbb{R}^n$ be function defined by $\gamma(x,y) = (x^3 - x, y)$ and $\tau(x,y) = (x-2, y+3)$ for every (x,y). Then γ is onto but not one-to-one and τ is a transformation.

A line in \mathbb{R}^2 is a subset of \mathbb{R}^2 which has the form $\{(x,y) \mid ax+by+c=0\}$ for some fixed real numbers a, b and c where not both a and b are zeros.

A plane in \mathbb{R}^3 is a subset of \mathbb{R}^3 which has the form $\{(x,y,z) \mid ax+by+cz+d=0\}$ for some fixed real numbers $a,\ b,\ c$ and d where not all $a,\ b$ and c are zeros.

Two lines l and m in the plane \mathbb{R}^2 are parallel if and only if l=m or $l\cap m=\emptyset$.

Two planes Γ and Λ in \mathbb{R}^3 are parallel if and only if $\Gamma = \Lambda$ or $\Gamma \cap \Lambda = \emptyset$.

A line in \mathbb{R}^3 is the intersection of two non-parallel planes in \mathbb{R}^3 .

Two lines l and m in \mathbb{R}^2 are parallel if and only if they are coplanar, and l=m or $l\cap m=\emptyset$.

 $\alpha: \mathbb{R}^n \to \mathbb{R}^n$ is a *collineation* if it is a transformation and the image of every line is a line.

Two lines l and m in \mathbb{R}^2 are skew if and only if they are not coplanar and $l \cap m = \emptyset$.

The distance between two points (a, b) and (c, d) is $\sqrt{(a-c)^2 + (b-d)^2}$.

The distance between two points (a, b, c) and (x, y, x) is $\sqrt{(a-x)^2 + (b-y)^2 + (c-z)^2}$.

Let P, Q, R be points (elements) of \mathbb{R}^2 or \mathbb{R}^3 .

PQ is the distance between P and Q.

Now, if $P \neq Q$,

 \overleftrightarrow{PQ} is the line through P and Q.

 \overline{PQ} is the line segment from P to Q.

 \overrightarrow{PQ} is the ray with initial point P and containing Q.

P, Q and R are collinear if and only if they lie on one line.

The angle $\angle PQR$ is the union $\overrightarrow{QP} \cup \overrightarrow{QR}$.

 $m(\angle PQR)$ is the measurement of the angle $\angle PQR$ and is a number between 0 and 180, that is $0 \le m(\angle PQR) \le 180$.

Let P, Q, R be non collinear points.

 $\triangle PQR = \overline{PQ} \cup \overline{QR} \cup \overline{RP}$ is called the triangle with vertices P, Q, R and edges $\overline{PQ}, \overline{QR}$ and \overline{RP} .

 \cong denotes a congruence between geometric figures (subsets of \mathbb{R}^2 or \mathbb{R}^3). It is clear that

 $\overline{AB} \cong \overline{PQ}$ if and only if AB = PQ.

 $\angle ABC \cong \angle PQR$ if and only if $m(\angle ABC) = m(\angle PQR)$.

 $\triangle ABC \cong \triangle PQR$ if and only if AB = PQ, BC = QR, CA = RP, $m(\angle CAB) = m(\angle RPQ)$, $m(\angle ABC) = m(\angle PQR)$ and $m(\angle BCA) = m(\angle QRP)$.

Congruence Theorems:

- (SAS) If AB = PQ, $\angle A \cong \angle P$ and AC = PR then $\triangle ABC \cong \triangle PQR$.
- (ASA) If $\angle A \cong \angle P$, AB = PQ and $\angle B \cong \angle Q$ then $\triangle ABC \cong \triangle PQR$.
- (SSS) If AB = PQ, BC = QR and CA = RP then $\triangle ABC \cong \triangle PQR$.
- (SAA) If AB = PQ, $\angle B \cong \angle Q$ and $\angle C \cong \angle R$ then $\triangle ABC \cong \triangle PQR$.

Exterior Angle Theorem:

Consider $\triangle ABC$. Let D be a point on \overrightarrow{BC} but $D \notin \overline{BC}$. Then $m(\angle ACD) = m(\angle A) + m(\angle B)$.