NOSITEL VYZNAMENÁNÍ ZA BRANNON VÝCHOVU I. a II. STUPNÉ

CASOPIS PRO ELEKTRONIKU a amaterské vysílání ROČNÍK XXXVIII (LXVII) 1989 ● ČÍSLO 3

V TOMTO SEŠITĚ Z rezoluce VIII. celostáts Mdky ERA 1989..... Čtenáři nám píší...... R15 Juledky Konkursu AR 1988 AVEX VM 6671) Třetinooktávový ekvalizér..... Dálkové ovládání k TVP Color 110 ST onická ledička lejtar ni adaptër pro přijem nční zesilovač pro CD ončení).....

AMATÉRSKÉ RADIO ŘADA A

AMATÉRSKÉ RADIO ŘADA A

Vydává ÚV Svazarmu, Opletalova 29, 116 31

Praha 1, tel. 22 25 49, ve Vydavatelství NAŠE

VOJSKO, Vladislavova 26, 113 66 Praha 1, tel. 26 06 51–7. Šéfredaktor ing, Jan Klabal, OKTUKA, zástupce Luboš Kalousek, OKTFAC. Redakční rada: Předseda ing. J. T. Hyan, členové: RNDV.

V. Brunnhofer, CŠc., OKTHAQ, V. Brzák, OKTODK, K. Donát, OKTDY, ing. O. Filippi, A. Glanc, OKTGM, ing. F. Hanáček, P. Horák, Z. Hradiský, J. Hudec, OKTBY, ing. J. Jaroš, ing. I. Kolmer, ing. F. Králik, RNDr. L. Kryška, CSc., J. Kroupa, V. Němec, ing. P. Fornál, C. V. Nernec, ing. O. Petráček, OKTNB, ing. Z. Prošek, ing. F. Smolik, OKTASF, pplk. ing. F. Simek, OKTFSI, ing. M. Šredl, OKTNL doc. ing. J. Vackář, CSc., laureát st. ceny KG, J. Vortíček, Redakce Jungmannova 24, 113 66 Praha 1, tel. 26 06 51–7, ing. Klabal 1, 334, Kalousek, OKTFAC, ing. Engel, ing. Kellner, I. 353, ing. Myslík, OKTAMY, Haviís, O

tereforincké Guazy po 14. Incume. indexu 46 043. uktopisy čísta odevzdány tiskárně 6. 1. 1989 islo má vyjíř podle plánu 28. 2. 1989 Vydavatelství NASE VOJSKO, Praha

Záběr z jednání VIII. sjezdu Svazarmu. Vpravo generální tajemník ÚV KSČ Miloš Jakeš, vlevo nový předseda ÚV Svazarmu genpor. Jiří Brychta

Z rezoluce VIII. celostátního sjezdu Svazarmu

VIII. celostátní sjezd Svazarmu se konal ve dnech 3. a 4. prosince 1988 v období nástupu k celkové hospodářské a společenské přestavbě v ČSSR. Vyjadřuje plnou podporu politice KSČ zavazuje všechny členy Svazarmu aktivně se na jejím plnění podílet.

Východiska a závěry pro naši práci v příštích letech vycházejí z příznivých výsledků branně výchovné, výcvikové a zájmové branné činnosti, dosažených zásluhou úsilí většiny členů, funkcionářů a aktivistů při plnění linie VII. sjezdu. Jsou vyvolány i nutností překonat administrativně direktivní metody řízení, vážné nedostatky v ekonomickém zabezpečení dalšího rozvoje organizace, jejího vnitřního života, i v úrovni pracovní součinnosti a podílu partnerů na plnění úkolů Jednotného systému branné výchovy ve Svazarmu, jako pevné součásti Národní fronty, znamená přejít na cestu skutečně intenzivního vývoje a vyšší efektivity veškeré práce.

Uskutečňování strategické linie KSČ mezinárodně politické faktory a z toho vyplývající nároky na zabezpečení spolehlivé obrany zvyšují požadavky na větší brannou vyhraněnost politickovýchovné práce, na její kvalitu a účinnost, zejména mezi mladou generací.

To mimo jiné vyžaduje:

 účinněji spojovat politickovýchov-nou práci a brannou činnost s konkrétní situací v místě. Pružně reagovat na problémy, související s přestavbou života společnosti i s přestavbou ve Svazarmu. Pokračovat v prohlubování branně výchovného působení na veřejnost prostřednictvím masových branných akcí i dalšími formami, včetně kulturně výchovné činnosti. (Výstavky, výstavy, FAT atd.).

na ústředním výboru Svazarmu v součinnosti s FMNO a ministerstvy mládeže a tělovýchovy. v návaznosti na brannou výchovu ve středních a odborných školách, analyzovat účinnost systému přípravy branců ve Svazarmu a přijmout opatření k úpravě programů 1. a 2. výcvikového

na republikových a krajských výborech Svazarmu zvýšit účinnost metodické a kontrolní činnosti při důsledném prosazování a naplňování požadavků systému přípravy branců a přípravy k civilní obraně,

na okresních výborech Svazarmu aktivně spolupracovat s územními, státními a hospodářskými orgány, organizacemi sdruženými v Národní frontě a ČSLA. Zkvalitňovat výběr cvičitelského aktivu a oceňování výsledků jeho práce:

ústředním a republikových na ústředních výborech dořešit modernizaci učebně výcvikové základny s využitím elektroniky, výpočetní techniky

a videotechniky;

— iniciativně na všech stupních, především na ústředním výboru Svazarmu, vytvářet nezbytné ekonomické a materiálně technické podmínky širšího rozvoje zájmové branné činnosti aktivnějším uplatňováním zdůvodněných potřeb v rámci Národní fronty a výrobních resortů;

v souladu s branně výchovným posláním organizace, s využitím progresívních názorů a poznatků nejširšího aktivu členů a funkcionářů, doplnit na ústředním výboru Svazarmu programové koncepce odbornosti o nové aktivity a rozšířit tak možnosti působení organizace. V aktivech rad odbornosti na všech územních stupních důsledně. v celém dosahovaném zaměření vycházet z programových koncepcí odborností:

ve svazarmovském tisku věnovat zvýšenou pozornost popularizaci nejlepších zkušeností z činnosti Svazarmu a účinněji využívat aktivity dopisovatelů. Přispívat k růstu informovanosti členů i široké veřejnosti. Zvýšit nároky na operativnost a obsah materiálů, zpestřit žánry, šíře praktikovat posuzování aktuálních problémů života a činnosti Svazarmu s důrazem na realizaci sjezdových závěrů. Dále prohlubovat trvalou spolupráci svazarmovských orgánů s celostátními a regionálními sdělovacími prostředky, jako vý-znamnou součást tiskové politiky Svazarmu;

 dbát o využívání elektroniky a výpočetní techniky, zejména ke zkvalitňo-vání účinnosti tréninkového procesu. Účelně organizovanými branně technickými a branně sportovními soutěže-

mi motivovat zájem o soustavné a účinné provádění zájmové branné činnosti:

– zvyšovat úroveň odborně metodické práce rad odborností. Posilovat kolektivní rozhodování a osobní odpovědnost jednotlivců za stanovené úkoly. Posilovat aktivitu a iniciativu rad odborností využíváním ustanovení stanov o závaznosti jejich rozhodnutí pro rady nižších územních orgánů ve vymezených sportovně technických otázkách; – zvyšovat cílevědomost a účelnost ve využití všech zdrojů, včetně postupného rozšiřování samofinancování, zkvalitňování materiálně technické základny a ekonomického zabezpečení stanovených úkolů organizace;

— pravidla financování činnosti organizace promítnout do nového rozpočtového řádu. Příspěvek ze státního rozpočtu využívat k posílení souladu mezi hlavními úkoly organizace a jejich eko-

nomickými zdroji;

 posilovat iniciativu a samostatnost okresních výborů a základních organizací Svazarmu v tvorbě vlastních zdrojů a jejich využití. Zřizování hospodářské činnosti základních organizací Svazarmu převést do působnosti okresních výborů. Ústředním výborem Svazarmu rozšířit předměty činností a promítnout je do směrnic pro hospodářskou činnost základních organizací;

 Jednotlivými odbornostmi stanovit závazné a finančně kryté požadavky na technický rozvoj a výrobu prostředků pro činnost svazarmovské organizace

v 9. a 10. pětiletce;

— ústředními výbory zajistit výrobu těchto prostředků ve státním sektoru a podnicích ústředního výboru Svazarmu, včetně užší spolupráce s brannými organizacemi socialistických zemí v oblasti technického rozvoje;

 na okresních výborech Svazarmu zaměřit rozvoj hospodářské činnosti základních organizací na materiální a finanční potřeby svazarmovské orga-

V základních organizacích a okresních výborech Svazarmu zásadně prohloubit péči o svěřený majetek a zabezpečit jeho racionální využívání: na základě nové ekonomické situace, podmínek přestavby a demokratizace zpřesnit základní záměry a výhledy dalšího rozvoje struktury a členské základny Svazarmu. Za základ reálných výhledů rozvoje pokládat rozbor situace v okresech a místech.

Stanovené hlavní úkoly na další období vycházejí z požadavků XVII. siezdu KSC. 7., 9. a následných zasedání ústředního výboru KSČ. Plně respektují strategickou linii Komunistické strany Československa, požadavky přestavbý hospodářského mechanismu a urychlení sociálně ekonomického rozvoje naší společnosti. Vycházejí z růstu úlohy Národní fronty a společenských organizací v ní sdružených a jejich podílu na výstavbě a obraně země. Určující význam pro splnění přijatých úkolů a opatření bude mít rozvoj aktivity a iniciativy naších členů a svazarmovských kolektivů v každodenní praxi. Tím odpovědně přispějeme k naplňování našeho základního poslání při budování a obraně socialis-

Přehlídky ERA 1989

Cílem přehlídek technické tvořivosti v elektronice a radioamatérství je dále rozvíjet polytechnickou výchovu mládeže ve smyslu usnesení předsednictva vlády ČSSR, technicky tvořivou činnost ve svazarmovské elektronice a radioamatérství, aktivizovat zlepšovatelské a vynálezecké hnutí na pomoc národnímu hospodářství i vlastní organizaci a prohlubovat propagaci této činnosti na veřejnosti.

Pořádáním přehlídek technické tvořivosti si členové svazarmovských klubů elektroniky a radioklubů i ostatní účastníci porovnávají výsledky, kterých dosáhli v uplynulém roce v elektronice, výpočetní technice, elektroakustice, videotechnice a radiotechnice. Zároveň se svou činností seznamují veřejnost s cílem získat další zájemce o členství v klubech elektroniky a radioklubech

Svazarmu.

Realizace přehlídek

Místní přehlídky pořádají výbory ZO všude tam, kde jsou z hlediska dosaženého stupně rozvoje odbornosti vytvořeny k tomu podmínky. Mohou být pořádané jako neveřejné (jen pro členy Svazarmu) i veřejné. Mají dobrovolný charakter. Okresní (obvodní) nebo městské přehlídky jsou pořádány v měsících duben až červen 1989. OV (MěV) a na jejich úroveň postavené územní jednotky organizují tyto přehlídky jako akce veřejné i neveřejné. Pořadatel je povinen pozvat k účasti v dostatečném počtu a předstihu všechny ZO Svazarmu v rozsahu své působnosti a vést je k co nejširší účasti. Krajské (městské v Praze a Bratislavě) přehlídky budou pořádány do 31. října 1989 v každém kraji jako soutěžní akce veřejné.

Pořadatelem 21. přehlídky ERA 89 je ÚV Svazarmu. Celostátní přehlídka bude uspořádána ve dnech 17. až 26. listopadu 1989 v Trenčíně.

Podmínky účasti

Soutěžních přehlídek se zúčastňují ZO (kluby) a jednotliví členové Svazarmu do stupně okresu včetně bez postupového systému, a to na základě závazných přihlášek, podávaných cestou ZO Svazarmu. Na krajské přehlídky soutěžní práce přihlašují OV Svazarmu podle postupového klíče stanoveného pořadatelem v propozicích.

Na celostátní přehlídku soutěžní práce přihlašují KV Svazarmu na základě výsledků krajských přehlídek a podle propozic pořadatele. Do úrovně krajského kola včetně se mohou přehlídek zúčastnit i nečlenové Svazarmu, a to na základě přihlášek podaných prostřednictvím jiných společenských organizací NF.

Z účasti na soutěžních přehlídkách jsou vyloučeny práce, které vznikly jako úkol, vyplývající z plnění pracovního

nebo studijního poměru.

Přihlášky soutěžních prací obsahují:

 plnou adresu přihlašovatele a vysílající organizace,

- jméno autora s plnou adresou.

Na krajské a celostátní přehlídky musí přihlašovatelé jmenovat vedoucího výpravy, který zastupuje autory soutěžních prací na přehlídce. Ke každé soutěžní práci musí být přiložena základní technická dokumentace. Na krajských a celostátní přehlídce ke každé soutěžní práci musí být přiložen průvodní list, vydaný ÚV Svazarmu.

Práva a povinnosti soutěžících (autorů soutěžních prací, členů a vedoucích výprav) jsou uvedeny v soutěžním řádu. Způsob zabezpečení účasti soutěžních prací a soutěžících je uveden v propozicích přihlášky, které jsou k dispozici na OV Svazarmu.

V dňoch 22. a 23. októbra 1988 konal sa v Parku kultúry a oddychu v obvode Bratislava 4 V. zjazd Zväzarmu Sloven-

skej socialistickej republiky.

Vďaka obetavosti pracovníkov Zväzarmu ako i aktívu boli inštalované v bočných priestoroch PKO výstavky zväzarmovských odborností. Najväčší záujem podnietili ukážky výpočtovej techniky a videozáznamy z priebehu rokovania, usporiadané kabinetom elektroniky mestského výboru Zväzarmu Bratislava. Veľmi atraktívnou bola výstavka modelárstva pod patronátom ZMŠ Jozefa Gábriša, niekoľko násobného majstra sveta v leteckej akrobacii modelov.

V odbornosti rádioamatérstva mali účastníci zjazdu možnosť vidieť v práci stanicu OK3KAB.

Vo vstupnej hale PKO vzbudila záujem panelová výstava obrazového spravodajstva, ktoré podávalo stručný prehľad činnosti okresov Slovenska.

Podľa vyjadrenia viacerých účastníkov bol V. zjazd usporiadaný na vyššej organizačnej úrovni ako po ostatné ro-

Predsedom slovenského ústredného výboru Zväzarmu sa stal i pre budúce volebné obdobie opäť generálporučík Ing. Muržic. OK3WBM

Upozornění

V AR-A č. 7/1987 byl uveřejněn návrh desky s plošnými spoji (V46) pro variantu teploměru se zobrazovací jednotkou VQE14. Čtenář M. Dohnal z Kojetína upozorňuje na chybu: na desce je třeba přerušit plošný spoj tak, aby rezistor R25 mohl plnit svou funkci.

Ža upozornění děkujeme i jménem našich čtenářů. Redakce

AMATÉRSKÉ RADIO SVAZARMOVSKÝM ZO

Deset nejlepších sportovců Svazarmu za rok 1988

Při příležitosti jednání VIII. sjezdu Svazarmu v Praze (prosinec 1988) byly slavnostně vyhlášeny výsledky pravidelné novinářské ankety o nejúspěšnějšího sportovce a sportovní kolektivy Svazarmu za uplynulý rok. Tuto anketu pořádá každoročně redakce svazarmovského časopisu Svět motorů. Rok 1988 byl rokem olympijským a úspěšný start našich střelců v Soulu se samozřejmě promítl do výsledků ankety. Nejlepším sportovcem Svazarmu za rok 1988 byl vyhlášen Miroslav Varga a mezi deseti nejlepšími sportovci je celkem pět zástupců svazarmovské odbornosti střelectví. Na čtvrtém místě však skončil v této ,tvrdé olympijské konkurenci radioamatér, a sice mistr světa v rádiovém orientačním běhu Petr Kopor z radioklubu OK2KOJ v Brně (na snímku vlevo nahoře společně s B. Křesťanem). Ceny nejlepším sportovcům předali genpor. V. Horáček a šéfredaktor Světa motorů M. Ebr. Na

snímku vpravo nahoře blahopřejí trenérovi našeho reprezentačního druž-Miroslavu Popelíkovi, ROB OK1DTW. Výsledky ankety vyhlásil dlouholetý člen Svazarmu, zasloužilý umělec Luděk Munzar.

Mezi kolektivy zvítězili v novinářské anketě členové družstva mužů v disciplíně Enduro ve Světové trofeji před družstvem střelců v disciplíně skeet z olympijských her a družstvem našich parašutistek z mistrovství světa. Sportovní redakce deníku Rudé právo získala odměnu za to, že se při tipování nejvíce přiblížila konečným skutečným výsledkům ankety.

Z analýzy výsledků vrcholového svazarmovského sportu mezi VII. a VIII. sjezdem jsme vybrali tato zajímavá čísla: Nejvíce medailí ze soutěží mistrovství světa, Evropy či OH získali střelci (98), letci a parašutisté (86)

a modeláři (79). Následuje motorismus (33) a na 5. místě radioamatéři (22). Na 6. místě potápění (21), 7. kynologie (7) a 8. biation (1).

OK1DVA

Vyhodnocení soutěží ROB počítačem

1. V posledních letech se začíná využívat výpočetní technika při zpracování výsledků i v oblasti soutěží ROB. Druh techniky, programové vybavení, komfort a úroveň obsluhy jsou rozličné, zpravidla podle možností jednotlivých funkcionářů - techniků, často přímo sportovců, kteří rozvoji výpočetní techniky fandí.

Dále uvádíme technické parametry a možnosti zařízení SAPI-1 s příslušenstvím, které bylo zhotoveno na základě technického zadání oddělení elektroniky při ÚV Svazarmu. Celý systém byl ověřen na mistrovství ČSSR 1988, mezinárodní soutěži ROB ve Skalském dvoře u Nového Města na Moravě a akademickém přeboru ČSSR 1988. Zájemcům, kteří počítače SAPI-1 a dále uvedené přislušenství vlastní nebou zopůšití v organizací nebo si je mohou zapůjčit v organizaci, zašleme zdarma na požádání SW vybavení na dodanou kazetu i stručný návod k obsluze

2. Technické parametry

Základní funkce:

- automatické losování závodníků a jejich zařazování do startovních listin:
- tisk startovních listin;
- elektronické měření času infrazávorou:
- automatické vyhodnocení výsledků v duchu pravidel pro ROB;
- průběžné monitorování startovních a výsledkových listin na hlavním monitoru:
- tisk výsledkových listin v kteroukoliv dobu.

Další parametry:

- napájení ze sítě 220 V s možností zálohování akumulátorem 24 V;
- kapacita paměti pro všechny kategorie v počtech podle pravidel ROB;

3. Skladba souboru SAPI-1

Pro splnění výše uvedených funkcí musí soubor obsahovat tyto prvky:

- 1 ks Počítač SAPI-1 s osazením JZS 1, ZDR 1 A, JPR 1, REM 1 (s programem Mikrobasic), AND 1, DSM 1, RAM 1, ANK 1, TVK 1;
- 1 ks magnetofon;
- 2 ks TV přijímač;
- 1 ks infrazávora (např. výrobek TJ LIAZ Jablonec nad Nisou);

- 1 ks tiskárna D 100 (K 6313 apod.); 2 ks akumulátor 12 V/35 Ah; 1 ks univerzální deska s časovačem a vstupem čidla infrazávory.

Součástí návodu k obsluze jsou drobné úpravy na některých deskách počítače SAPI-1 a schéma univerzální desky, kterou je nutno zhotovit. Dotazy a žádosti o zaslání SW (s přiloženou kazetou) a návodu k obsluze posílejte na adresu:

Ing. Lubomír Hermann, OK1SHL, Norská 25, 460 11 Liberec 11.

Ing. Luboš Hermann, OK1SHL

A/3 (Amatérske AD) (1)

AMATÉRSKÉ RADIO MLÁDEŽI

MDŽ - svátek našich YL

Také radioamatéři si 8. března připomínají svátek žen nejen ve svých rodinách, ale i v radioklubech a kolektivních stanicích. Vždyť mnohé kolektivky se mohou pochlubit hned několika výbornými operátorkami nebo reprezentantkami také v dalších odbornostech našeho radioamatérského sportu, ve kterých proslavily nejen jméno svého radioklubu anebo kolektivní stanice, ale také dobré jméno československých radioamatérů a naší vlasti v cizině. Jsme jim vděčni nejen za tuto reprezentaci, ale také za drobnou a obětavou práci, kterou konají v našich radioklubech a kolektivních stanicích během celého roku.

Nezapomeňte proto také ani vy při spojení v březnu poblahopřát našim operátorkám k jejich svátku.

Představuieme

Ingrid Širgelová, OK3-28174, z Dolného Kubína, kterou vám dnes představuji, je mladou operátorkou kolektivní stanice OK3KXU v Dolnom Kubíně. Zájem o radioamatérský sport u ní vypěstoval její otec, který je rovněž radioamatérem. Naučil ji přijímat znaky morseovky a to byl důležitý krok k úspěšnému absolvování operátorských zkoušek. Po získání pracovního čísla v roce 1985 zahájila svoji aktivní posluchačskou činnost. Členové radioklubu OK3KXU Ingrid zapůjčili přijímač ODRA, na kterém se jí podařilo odposlouchat tisíce pěkných spojení.

Ingrid se v roce 1986 zapojila do OK — maratónu a pravidelně zasílá měsíční hlášení. V minulém ročníku OK — maratónu obsadila druhé místo v kategorii YL. Právě díky této celoroční soutěži se jí podařilo odposlouchat mnoho vzácných stanic a získala mnoho cenných provozních zkušeností. Podle jejího vyjádření by se OK — maratónu měl zúčastnit každý a zvláště začínající posluchač.

O posluchačské aktivitě Ingrid svědčí řada diplomů, které již za poměrně krátkou dobu posluchačské činnosti získala. Její nejoblíbenější diplomy, které získala, jsou TD — EA — CW ze Španělska a diplom DLD — H — 50. Velkou radost také měla z diplomu DX Award, který obdržela z USA přesně za měsíc po odeslání žádosti vydavateli. Ingrid má dosud potvrzeno 78 zemí DXCC a 292 prefixů ze všech světadílů.

Z vlastní zkušenosti Ingrid nejvíce trápí ta skutečnost, že přes veškeré sliby mnoha představitelů naší branné organizace stále trvá veliký nedostatek jakýchkoliv přijímačů pro mládež. Mladí posluchači nemají na čem poslouchat doma, ale ani v radioklubech a kolektivních stanicích. Tato skutečnost je zřejmě rozhodující příčinou, která brání většímu rozvoji radioamatérské činnosti mezi mládeží. A v tomto jí, bohužel, musí dát za pravdu všichni, kdo jsou obeznámeni s výrobním pro-

Ingrid Širgelová, OK3-28174, z Dolného Kubína

gramem podniku ÚV Svazarmu Elektronika pro nejbližší budoucnost.

Přeji Ingrid mnoho dalších úspěchů v posluchačské činnosti i v provozu kolektivní stanice OK3KXU.

Soutěž mládeže

Rada radioamatérství ÚV Svazarmu pořádá každoročně soutěž pro mládež na počest významné politické události v naší vlasti nebo na počest významného výročí. V letošním roce bude naše mládež oslavovat 40. výročí založení Pionýrské organizace SSM. Ke zvýraznění spolupráce mezi Svazarmem a Socialistickým svazem mládeže při výchově mládeže proto vyhlašuje rada radioamatérství ÚV Svazarmu

Soutěž mládeže na počest 40. výročí založení PO SSM

Soutěž mládeže bude probíhat v době od 1. do 31. března letošního roku podle podmínek celoroční soutěže OK — maratón 1989. Soutěže se může zúčastnit mládež ve věku do 19 roků, tj. narozená v roce 1970 a mladší.

Hlášení do soutěže mládeže na počest 40. výročí založení PO SSM je nutné zaslat na tiskopisu měsíčního hlášení pro OK — maratón nejpozději do 15. dubna 1989 na adresu: Radioklub OK2KMB, Box 3, 676 16 Moravské Budějovie

V hlášení do Soutěže mládeže od kolektivních stanic musí být uvedena pracovní čísla operátorů nebo jejich značky OL, jejich datum narození a počet bodů, které jednotliví mladí operátoři získali za svoji činnost na kolektivní stanici během měsíce března.

Soutěž mládeže bude vyhodnocena v kategoriích: kolektivní stanice, posluchači, OL a YL.

Tiskopisy měsíčního hlášení pro OK — maratón vám na požádání zdarma zašle kolektiv OK2KMB. Nezapomeňte

uvést, pro kterou kategorii tiskopisy hlášení požadujete.

Pro Soutěž mládeže na počest 40. výročí založení PO SSM neplatí dvojnásobné bodové zvýhodnění mládeže do 15 roků jako v celoroční soutěži OK — maratón 1989.

Posluchači, OL i kolektivní stanice si mohou body, které získají během Soutěže mládeže v březnu, započítat i do celoročního hodnocení OK — maratónu 1989.

Slavnostní vyhodnocení Soutěže mládeže na počest 40. výročí založení PO SSM bude v červnu v budově ÚV SSM v Praze.

Rada radioamatérství ÚV Svazarmu ČSSR doporučuje všem mladým operátorům kolektivních stanic, posluchačům a OL stanicím účast v Soutěži mládeže na počest 40. výročí založení PO SSM, aby tak důstojně oslavili založení této organizace mládeže.

Obracím se se žádostí na všechny vedoucí operátory kolektivních stanic, aby dali příležitost k účasti v Soutěži mládeže na počest 40. výročí založení PO SSM všem svým mladým operátorům a aby všichni také poslali svá hlášení.

V minulém roce se Soutěže mládeže na počest konání VIII. sjezdu Svazarmu zúčastnilo celkem 38 kolektivních stanic, 59 OL stanic a 163 posluchačů, z toho bylo 52 dívek. Mnozí další mladí radioamatéři se soutěže zúčastnili jako operátoři kolektivních stanic, svoje hlášení do Soutěže mládeže neposlali a nemohli být hodnoceni.

Věřím, že v letošním roce pošlou hlášení všichni mladí operátoři, posluchači i stanice OL a počet účastníků Soutěže mládeže na počest 40. výročí založení PO SSM bude ještě vyšší.

Těšíme se na vaši účast.

Z vaší činnosti

Mám radost z každého vašeho dopisu, ve kterém se mi svěřujete s vašimi úspěchy i starostmi v radioamatérské činnosti. Těší mne, že se vám rubrika pro mládež líbí a že z ní můžete čerpat rady a zkušenosti pro svoji činnost OL, posluchačskou i v kolektivních stanicích.

Zmiňoval jsem se již několikráte, že naši rubriku sledují také radioamatéři v zahraničí, o čemž svědčí dopisy, které od nich dostávám. Před několika dny jsem dostal dopis od polského posluchače SP2-0376-WL. Maciek mi napsal, že pravidelně sleduje naši rubriku, která i jemu pomáhá v radioamatérské činnosti. Je mu 17 roků a je žákem střední školy. Požádal mne, abych prostřednictvím naší rubriky předal jeho srdečné pozdravy všem československým radioamatérům. Maciek by si rád s našími radioamatéry dopisoval a vyměňoval zkušenosti z radioamatérské činnosti. Psát mu můžete česky, polsky nebo rusky. Jeho adresa je: SP2-0376-WL, Maciej Jakimiec, Chemikow 9 m 4, 87-800 Wloslawek, Poland

Základní obvody automatizační a zabezpečovací techniky

Zdeněk Kober

Dvouvstupové logické členy

V minulém čísle AR byla uveřejněna deska s plošnými spoji pro dvouvstupové logické obvody, dnes si ukážeme možnosti jejího využití.

Logický součin, AND

Na obr. 27 je integrovaným obvodem MH7400 realizována logická funkce AND. Výstup je aktivní (je na něm úroveň log. 0) jen tehdy, je-li na obou vstupech úroveň log. 0 (jsou-li oba dva aktivní).

Logický součet, OR

Stejným integrovaným obvodem je na obr. 28 realizována logická funkce OR. Výstup je aktivní (je na něm log. 0), je-li aktivní kterýkoli ze vstupů (je-li na něm úroveň log. 0) nebo oba současně.

Klopný obvod R-S

Na obr. 29 je zapojení klopného obvodu R-S. Obvod pracuje stejně jako již popsaný obvod R-S. Rozdíl mezi oběma zapojeními spočívá v tom, že obvod na obr. 29 má navíc vyveden vývod 1 integrovaného obvodu. Obvod lze tedy uvést do aktivního stavu přivedením úrovně log. 0 na vstup 5 integrovaného obvodu, "vynulovat" jej lze přivedením úrovně log. 0 na vstup 1 IO.

Vstupní jednotka SV

Na již uveřejněnou část univerzální desky s plošnými spoji lze postavit i vf část přijímače středních vln, obr. 30, obr. 31

obr. 31.
Vf signál, který zachytí anténa, je zesílen tranzistorem T1, usměrněn detekční diodou D1 a získaný nízkofre-

Obr. 30. Vstupní jednotka přijímače pro příjem středních vln

kvenční signál je zesílen tranzistorem T2. Odporové trimry P1 a P2, jimiž lze nastavit pracovní body tranzistorů, nastavíme na nejhlasitější a přitom nezkreslený signál.

Přijímač lze naladit na nejsilnější blízkou stanici posouváním cívky po feritové tyčce antény, případně lze i změnit kapacitu kondenzátoru C1. Při oživování lze mezi výstup a přívod +5 V zapojit sluchátko s velkou impedancí.

K dobrému příjmu je třeba použít vnější drátovou anténu — podle podmínek v místě příjmu délky několika desítek cm až několik metrů.

Použití modulů

Různým propojením popsaných modulů lze získat několik set elektronických obvodů (některé při různém zapojení vykonávají stejnou funkci). Dále je jako příklad uvedeno 20 možností propojení jednotlivých modulů — od spojení dvojice modulů až po 6 vzájemně propojených modulů.

Obr. 32 — při osvětlení fotorezistoru se rozsvítí (zhasne) žárovka, a to podle umístění fotorezistoru v dolní nebo horní části děliče.

Obr. 33 — při zapískání (nebo jiném hluku) se rozsvítí žárovka.

Obr. 34 — přiblížíme-li se k anténě (asi 30 cm drátu) kladně zelektrovaným předmětem, rozsvítí se LED i žárovka. Při záporně zelektrovaném předmětu se žárovka a LED rozsvítí při jeho vzdalování od antény.

Obr. 35 — jednoduchý rozhlasový přijímač. Ladí se na příjem nejsilnější místní stanice posuvem cívky po feritové tyči, popř. lze místo C1* (obr. 30) použít ladicí kondenzátor.

Obr. 36 — velmi citlivý zesilovač — senzorový spínač, reaguje i na změnu odporu čidla o odporu řádu desítek megaohmů.

Obr. 37 — při prvním písknutí se rozsvítí žárovka, při druhém zhasne.
Obr. 38 — žárovka svítí stále, při

Obr. 35 — zarovka sviti stale, pri stisknutí tlačítka na chvíli zhasne. Obr. 39 — při stisknutí tlačítka se na určitou dobu ozve tón. I když tlačítko (popř. spínač nebo některý z popsaných elektronických vstupních obvodů) bude sepnuto trvale, ozve se signál jen jedenkrát. Obvod lze tedy použít např. jako ochranu proti vtipálkům, kteří zajistí zvonkové tlačítko zápalkou, aby zvonek v bytě zvonil trvale.

Obr. 40 — na rozdíl od zapojení na obr. 38 se po stisknutí tlačítka na někoik sekund rozsvítí žárovka.

Obr. 41 — obdobné zapojení, po dotyku na senzorovou plošku se na chvíli (dáno nastavením P1 a C1) rozsvítí žárovka.

Obr. 42 — po dotyku na senzorovou plošku se na chvíli ozve tón ze sluchátka (reproduktoru).

Obr. 31. Rozmístění součástek a drátových spojek na desce s plošnými spoji (feritová anténa je na tyčce o ø 8 mm délky 50 až 100 mm, cívka má asi 70 + 7 závitů drátu o ø 0,2 mm)

Obr. 43 — při osvětlení fotorezistoru se začne (přestane) ozývat tón ze sluchátka (závisí na umístění fotorezistoru v děliči — v horní nebo spodní větvi). Obr. 44 — po osvětlení fotorezistoru začne (přestane) blikat žárovka (podle

začne (přestane) blikat žárovka (podle umístění fotorezistoru v děliči). Obr. 45 – po stisknutí tlačítka se

Obr. 45 — po stisknutí tlačítka se několik sekund ozývá tón ze sluchátka (přerušovaný).

Öbr. 46 — při prvním zapísknutí se ozve tón, který bude přerušen dalším zapísknutím.

Obr. 47 — při prvním dotyku na plošky senzorového spínače se začne ze sluchátka (reproduktoru) ozývat přerušovaný tón, který ustane při druhém dotyku.

Obr. 48 — vsune-li někdo klíč do zámku nebo uchopí do ruky kovovou kliku (zámek je spojen se vstupem ZES drátem), překlopí se obvod R-S, což vyvolá trvalý poplach.

Óbr. 49 — obvod podobný obvodu na obr. 48. Délka trvání poplachu (zde přerušovaný akustický signál) se volí nastavením C1 a P1 u MKO 2. Zapojení na obr. 48 a 49 vyžadují experimentálně zjistit nejvýhodnější odpor R_x.

Obr. 50 — při osvětlení (zastínění) fotorezistoru se rozsvítí žárovka, která zhasne až při písknutí na mikrofon. Obr. 51 — při stisknutí kteréhokoli nebo obou tlačítek (obvod OR, v druhém případě AND) vznikne poplach. Bude-li za dvouvstupovými logickými obvody AND nebo OR zařazen ještě kontaktní spínač ve funkci inver-

Závěr

toru, lze získat obvody NAND a NOR.

Systém stavebnice není uzavřený, lze jej dále rozšiřovat (např. o obvody s relé, logické a další obvody). Přitom deska s plošnými spoji velmi dobře vyhoví i při zkoušení jakéhokoliv obvodu z oblasti analogové nebo číslicové techniky s menším počtem součástek.

Elektronický anemometr

Zkoušeč tranzistorů a diod

Měřič intenzity signálu

Integrovaná štafeta

Konečně jsou tu výsledky soutěže, která měla trochu smůlu — nakonec však všechno dobře dopadlo a v těchto dnech již všichni soutěžící dostali slíbené součástky, které si v soutěži vybojovali. Celkem vás soutěžilo 938, z toho 59 děvčat. Bylo však dost těch, kteří nedosáhli ani potřebných pěti bodů k získání destičky kuprextitu — 345! Možná že někteří z nich ztratili body jen proto, že odeslali odpovědi na otázky po termínu. A takto uspěli ti ostatní: 5 až 9 bodů 335 soutěžících (destička), 10 až 13 bodů 109 soutěžících (rezistory).

14 až 17 bodů 53 soutěžící (kondenzátory),

18 až 22 bodů 66 soutěžících (tranzistory a dioda),

23 a 24 body 22 soutěžících (integrovaný obvod),

25 a více bodů 9 soutěžících.

Ti všichni dohromady dostali úctyhodné množství materiálu a součástek – posuďte sami: 593 desek kuprextitu, 774 rezistory, 447 kondenzátorů, 192 tranzistory, 96 diod, 30 integrovaných obvodů, a ti nejúspěšnější navíc (to ani nebylo v propozicích soutěže) 18 potenciometrů a 9 žárovek. A kteří to ti nejúspěšnější byli?

Śvůj úspěch pojistili zasláním soutěžního výrobku, za který získali mimořádný "příděl" bodů:

Baroň Pavel, Plzeň, 34 body, Pančocha Jaroslav, Luhačovice, 34 body,

Pančocha Ondřej, Luhačovice, 34 bo-

Kočenda Petr, Gottwaldov, 33 body, Bulis Petr, Praha 4, 29 bodů, Goliáš Robert, Luhačovice, 29 bodů, Šefl Štěpán, Plzeň, 29 bodů, Trojan Libor, Svitavy, 28 bodů.

Na vyjmenování ostatních "bodujících" by nám nestačilo několik rubrik, avšak i jim všem srdečně blahopřejeme.

66 účastníků soutěže patřilo k těm nejvytrvalejším, protože odpověděli na otázky všech osmi lekcí (devátá lekce, jak víte, již kontrolní otázky neobsahovala). Z těch jsme vylosovali, bez ohledu na jejich bodový zisk, deset výherců prémií (sady integrovaných obvodů). A tak v zásilce součástek našli navíc prémii tito soutěžící:

Odehnal Luděk, Blansko (100 integrovaných obvodů),
Novák Lubomír, Dačice (90),
Bulis Petr, Praha 4 (80),
Hlavačka Radim, Hranice na M. (70),
Ivanco Michal, Opava (60),
Krejčíř Michael, Rudoltice (50),
Nosek Milan, Veselí nad Lužnicí (40),
Žembery Rastislav, Žiar nad Hronom (30),
Kratochvíl Luboš, Praha 6 (20),

Součástky, které jsme soutěžícím odeslali, mohou použít ke zhotovení jednoho ze soutěžních výrobků (zvukový generátor) dvacátého ročníku soutěže o zadaný radiotechnický výrobek. Propozice jste jistě četli v rubrice R15 v AR A9/88 — podle nich ovšem neplatí výrobek, který byl zaslán v loňském ročníku soutěže!

Gavlas Karel, Frýdlant nad Orlicí (10).

Proto věříme, že se s mnohými účastníky Integrované štafety shledáme při hodnocení letošních výrobků, které neopomeňte poslat nejpozději do 15. května. A již teď připravujeme novou, tentokráte krátkodobou soutěž, kterou vyhlásíme na podzim tohoto roku, pravděpodobně v říjnové rubrice R15.

Ze dvaceti devíti konstrukcí, přijatých do loňského ročníku Konkursu, vybrala hodnotící komise (ve složení: předseda — Doc. Ing. J. Vackář, CSc.; zástupce předsedy — Ing. Jan Klabal, šéfredaktor AR; členové — Ing. František Hanáček, Dr. Antonín Glanc, RNDr. Ladislav Kryška, CSc., Ing. J. T. Hyan, Ing. Přemysl Engel) celkem dvacet.

Namísto věcných cen, které nebyly redakci dodány, zajistil podnik Vydavatelství Naše vojsko peněžní poukázky na odběr zboží v obchodních domech. O celkovém pořadí a výši odměn rozhodla komise na závěrečném jednání dne

25. 11. 1988 takto:

Palubní počítač	Ing. Petr Kessner, Šlapanice Ing. Jan Vomela, Brno	2600	Kčs
Jednotka kmitočtové syntézy pro přijímač FM	Pavel Kotráš, Štiřín	2200	Kčs
Elektronický variometr pro závěsné létání	Ing. Vladimír Rosol, Úhřetice	1600	Kčs
Elektronický anemometr	Karel Hyngar, Ústí nad Labem	1100	Kčs
Infrazávora	Jiří Kadlec, Havířov	1100	Kčs
Kalibrátor osciloskopov	Rudolf Bečka, Nižná	1000	Kčs
Telekomunikační zařízení mimo jednotnou tel. síť	Jan Hinze, Ostrava	1000	VX.
Stabilizované zdroje KAZ	Ing. Petr Zeman. Brno	1000	
Měřič intenzity	ing. Feti Zeillan, Dirio	1000	rcs
signálu	Ing. Libor Kasl, Plzeň Ing. Jiří Kuncl, Praha 6	700	Kčs
Impulsní zdroj IZ-300	Jaroslav Chochola, Brno	600	Kčs
AUTOTEST	Ing. Jaroslav Vomela, Brno	600	Kčs
Vysokofrekvenční			
milivoltmetr "300 M 85"	Bohumil Novotný, Pardubice		Kčs
Pulser TTL	Lubomír Pikulík, Praha 4	500	Kčs
Jednoduchý ví generátor 700 Hz — 35 MHz	Josef Šmíd. Praha 3	500	Kčs
Zkoušeč tranzistorů a diod	Petr Matuška. Brno	400	
Stereofonní zesilovač NF	Ing. Vojtěch Skřivan, Prachatice	400	
Časovač pozitivního procesu	Josef Gabrhelik, Napajedla	400	Kčs
Měřič elektrolytických			
kondenzátorů	ing. Jaroslav Belza, Praha 10	300	Kčs
Nabíječ akumulátorů	František Krajča, Mezihoří	300	Kčs
Harmonický zvonek VZC 910	Jiří Vodrážka, Praha 4	200	Kčs

S některými konstrukcemi vás seznamujeme v tomto čísle na fotografiích, prakticky všechny budou postupně uveřejňovány v AR řady A od čísla 5/1989. Všem, kteří zaslali do soutěže své příspěvky, děkujeme za účast, odměněným blahopřejeme a těšíme se na letosiní nový, jedenadvacátý ročník Konkursu. Jeho podmínky uveřejníme v AR č. 4 a věříme, že opět přinese řadu nových nápadů a zajímavých konstrukcí pro všechny čtenáře AR.

Elektronický variometr

Jednotka kmitočtové syntézy

ze objednat na dobírků na adr

AMATÉRSKÉ RADIO SEZNAMUJE...

Celkový popis

Na našem trhu se objevil druhý typ videomagnetofonu, který uvádí na trh bratislavský výrobce, nyní pod novou firmou AVEX. Tento přístroj, dodávaný rovněž firmou Philips, se od předešlého typu liší nejen vzhledově, ale i rozmístěním ovládacích prvků a také některými technickými odlišnostmi.

Jednou z velmi důležitých změn je zajištění chodu hodin při výpadku elek-trické sítě nebo v době, kdy přístroj přenášíme. Zatímco předešlý typ automaticky asi po osmi minutách chodu bez pohybu pásku odpojil elektroniku od sítě, nový model dovoluje provoz (například tuneru) trvale. Jedna z obou rotujících hlav je dvojitá, což podle návodu i nápisu na čele přístroje má zajistit perfektní reprodukci stojícího obrazu. K dispozici je i funkce nazývaná OTR, která umožňuje v libovolném okamžiku a z libovolné zařazené funkce přejít v případě nutnosti okamžitě na záznam. Oproti předešlému modelu je rozšířena možnost programování, neboť jsou zde k dispozici čtyři programové bloky a do každého z nich lze naprogramovat jeden pořad až na měsíc dopředu. Přístroj umožňuje též programovat denně nebo týdně.

Videomagnetofon je samozřejmě schopen zaznamenávat televizní obraz jak v soustavě SECAM, tak i v soustavě PAL a též zvukový doprovod s odstupem zvukové nosné 5,5 i 6,5 MHz. K přístroji je dodáván vysílač dálkového ovládání, tři miniaturní tužkové články do ovládače, anténní propojovací kablík a rozebraný konektor SCART. Kazety s páskem tentokrát přibalovány neisou. Cena přístroje byla stanovena

na 22 500 Kčs.

Základní technické údaje podle

výrobce: VHS (PAL-SECAM). Systém: TV rozsahy: všechna TV pásmá. Rozliš. schop. min 3 MHz, 240 řádků. obrazu: Odstup šumu: 46 dB. Počeť videohlav:

Počet předvoleb: 48 + AV. Počet program. bloků: Doba progr.: až 30 dnů, týdně, denně. Záznam zvuku: monofonní, podélný. Kmitočtový rozsah zvuku: 80 až 10 000 Hz (± 3 dB).

Odstup šumu: 43 dB. Kolisáni: ± 0,3 %. Napájení: 220 V, 50 Hz. 25 W (12 W standby). Příkon: Rozměry: 42×37×8,3 cm. Hmotnost: 7.5 kg.

Zkoušený přístroj plnil všechny funkce bez závád. Porovnával isem subiektivní dojem z obrazu u nového typu s předešlým modelem a subjektivním pozorováním nebylo možno zjistit žádný kvalitativní rozdíl. Skutečnost, že je nový typ označován přídomkem HQ (High Quality) se zde tedy nikterak neuplatňuje, což je plně v souladu s jinými obdobnými výrobky. Úpravy pro zlepšení jakosti obrazu byly totiž realizovány u všech výrobců plynule a zlepšený obraz tedy měly a mají i přístroje, které dosud toto označení nenesly. Dnes jsou tak označovány automaticky všechny videomagnetofo-

Funkce přístroje

Určitým zklamáním u tohoto typu je však reprodukce stojícího obrazu, o níž rozhodně nelze hovořit jako o "perfect still" (v překladu perfektně klidný), jak praví nápis na víčku kazetového prostoru. Stojící obraz se totiž téměř vždy části zřetelně chvěje spodní a působí neostrým dojmem. Nebyla to žádném případě náhodná závada, neboť se shodně projevovaly dva přístroje. zkoušené Kromě toho i v návodu k použití je rada: "ak sa

obraz trasie, zatlačte treba aj viackrát za sebou tlačidlo tracking". Zmíněná rada však ani v nejmenším nepomáhá.

Mechanická část videomagnetofonu pracovala bez chyby a při přechodech z jednoho provozního režimu na jiný se u tohoto přístroje již neozývají hlasité rány, které jsem kritizoval u předešlého modelu.

Displej přístroje, který je proti předešlému typu zcela odlišný, velkými a přehlednými znaky upozorňuje na zařazenou funkci (PLAY, STOP, CASS apod.), zato údaj hodin či počitadla je velice malý a z několika metrů těžko čitelný. Údaj o datu či obsazeném programovém bloku již z dálky nepřečteme vůbec.

Musím se bohužel opět zmínit o přikládaném návodu k použití. I když se v něm již nevyskytují tak hrubé chyby, jaké obsahoval návod k předešlému modelu, je opět psán strojem a rozmnožen na velmi nekvalitním papíru. Vycházím-li ze skutečnosti, že se má snad tento typ exportovat do západních států, nepředpokládám, že by si výrobce dovolil nabídnout zahraničnímu zájemci podobný návod. Tuzemskému zájemci to patrně musí stačit, i když za tento výrobek zaplatil nemalou sumu.

K obsahu návodu mám připomínky v tom smyslu, že jeho autor uživatele vysloveně plete mícháním anglických a českých názvů – navíc několikrát zcela nesprávně překládaných. Ačkoli je videomagnetofon popsán anglicky, v návodu jsou používána jednou originální anglická slova, jindy slova česká prostě nejednotné a matoucí. Například tlačítko STORE je označováno jako PAMĚŤ, ačkoli to znamená uložení do paměti, označení MEMORY, což je

paměť, není přeloženo vůbec. Jinde se v návodu mluví o tlačítku hodin, které však nikdo na přístroji nenalezne, protože tam je označení CL-PR a najdeme řadu dalších nepřesností. V návodu je celý odstavec věnován záznamu s kamerou, což u stolního videomagnetofonu přichází v úvahu skutečně jen u zcela zanedbatelného počtu majitelů — není tu však ani jediné slovo o přepisu z jednoho přístroje na druhý, což přichází v úvahu téměř u každého majitele.

Ve stati o odstranění případných poruch se dokonce na dvou místech tvrdí, že příčinou "zlé kvality záznamu" a také přehrávání je "zle vložená kazeta". Toto tvrzení je naprostým nesmyslem, protože kazeta je vkládána automaticky a uživatel tento pochod nemůže nikterak ovlivnit. Pokud kazetu zasuneme nesprávně, například obráceně, přístroj ji vůbec nepřijme!

U tohoto přístroj ji vubec neprijme:
U tohoto přístroje se bohužel nemohu vyhnout ani otázce prodejní ceny. Je
pravdou, že tento typ umí o něco více
než předešlý model, ale je též pravdou,
že obdobná technická zlepšení mají
dnes všechny zahraniční modely
a přitom jejich cena oproti předešlým
modelům poklesla v průměru o 7 až
12 %. V uvedeném poměru musí být
i tento typ firmou AVEX také nakupován. Proto nelze pochopit, z jakého
důvodu je jeho prodejní cena (po
odečtení ceny kazet, které nejsou dodávány) o plnou čtvrtinu (4050 Kčs)
vyšší než cena předešlého typu.

Vnější provedení přístroje

Videomagnetofon je tentokrát v kovové skříni, jejíž povrch je matně černý. Všechny hlavní ovládací prvky jsou na čelní stěně, na zadní stěně je pouze regulátor ostrosti při reprodukci, který má aretovánu střední neutrální polohu. Je umístěn vedle konektoru SCART.

Ovládací prvky, které jsou běžně používané, jsou vpředu volně přístupné, ostatní prvky, včetně nastavovacích, jsou vpředu pod odklopným víčkem. Celkové provedení lze označit jako perfektní.

Doplněk k článku "ŠIROKOPÁSMOVÝ KOMPANDÉR"

Po delších zkušenostech s provozem a oživováním většího počtu kusů kompandéru popsaného v AR-A 12/88 a 1/89 bychom chtěli seznámit čtenáře s některými problémy, které se při stavbě mohou vyskytnout.

stavbě mohou vyskytnout.
Při buzení kompandéru signálem s velkým obsahem nízkých kmitočtů se v některých případech může vyskytnout nestabilita, která se projevuje "lupáním" s periodou asi 0,1 až 0,5 s. Výskyt tohoto jevu je závislý na konkrétních kusech použitých operačních zesilovačů. Odstranit tento nedostatek lze podle zkušeností připojením rezistoru 330 kΩ paralelně ke kondenzátorům C5

a C105 (ze strany spojů). Sériový detektor, popsaný v článku, vznikl postupným vývojem kompandéru a jevil se výhodnější ve spojení s magnetofonem s posuvnou rychlostí 38 cm/s. Při delším provozu se však vyskytly drobné nedostatky fázových posuvů vznikajících při záznamu, které se projevují zvětšeným zkreslením v oblasti středních kmitočtů. Proto můžeme doporučit drobnou úpravu detektoru, s níž je na desce s plošnými spoji počítáno. Diody D1 a D101 nahradíme svitkovými kondenzátory s kapacitou 0,47 µF a paralelně k nim zapojíme rezistory 3,3 kΩ (je na ně místo na desce s plošnými spoji) a rezistory R8 a R108 nahradíme křemíkovými diodami (KA262, ...) s anodou zapojenou na zem.

Protože ani jeden z popsaných detektorů nelze vzhledem k jejich maximální jednoduchosti považovat za zcela nezávislý na fázových posuvech v signálu, může být u některých typů magnetofonů vhodné předřadit před expandér signálový invertor např. podle obr. 1. Tímto invertujícím zesilovačem je možné nahradit dříve popsaný oddělovací zesilovač nebo je možné jej předřadit celému kompandéru. Operační zesilovač je typu MAB356 (případně MAC156, MAA741 nebo typu MAB356 MAA748), odporovým trimrem můžeme nastavit zesílení. V případě přepínaného kompandéru (pro magnetofon se dvěma hlavami) necháme invertor v činnosti i při záznamu. Vhodnost této úpravy je třeba posoudit jednotlivě u každého typu magnetofonu (poslechovým testem).

22k M5 5µ 47k 3 22 7 6 5µ

Výskyt některých dalších problémů je ve větší či menší míře společný všem systémům tohoto druhu. V našem případě je nutné uvážit relativně velmi nízké pořizovací náklady a snadnou dostupnost všech součástek. Podle našeho názoru je popsané zařízení velmi dobrou názornou ukázkou vlastností širokopásmového kompandéru s možností širokého praktického využití a tak je také třeba k němu přistupovat.

Ještě jednou přijímač VKV s automatickým laděním

Tato konstrukce z AR-A č. 8/87 mě překvapila zejména citlivostí i snadným nastavením. Chtěl bych se podělit o zkušenosti s výrobou potřebných cívek

Cívky L1, L2, L3 lze zhotovit poměrně snadno — navinutím na vrták o ø 5 mm. Délka vinutí není příliš kritická a může se při slaďování značně změnit.

Při shánění potřebného mf transformátoru typu 71F819 jsem bohužel neuspěl. Nahradil jsem jej japonským typem s vnějšími rozměry 10 x 10 mm. Na očištěný základ je natupo přilepena běžná kostřička o ø5 mm, délky 10 mm, s jádrem. Na ní je vinutí podle předpisu (Ize vinout i "divoce").

Při slaďování musí jít jádrem nastavit maximum signálu s poklesem na obě strany. Ve všech případech (3 kusy) bylo maximum signálu při jádru zcela zašroubovaném. Snadná odpomoc je změnit kapacitu C9.

Cívka fázovacího obvodu L6 lze získat např. z přijímače ORBITA. Je upravena stejným způsobem. Místo pájecích špiček jsou použity přímo vývody cívky. Je zajímavé, že všechny přijímače pracovaly lépe bez stínicího krytu této cívky.

Feritové trubičky pro TI1 získáme nejspíš ze starších TV přijímačů. Tam je najdeme u kanálových voličů, případně u bloku vysokého napětí. Vf díl je možno použít i samostatně. Protože výstupní signál na vývodu 8 IO1 obsahuje i ss složku, je nutné jej odvést přes kondenzátor (v původním zapojení C28).

František Křikava

Závěr

Jak jsem již vysvětlil, přináší tento nový model oproti předešlému několik zlepšení, která mnozí zájemci nesporně uvítají. Jde především o zálohu chodu hodin při odpojení přístroje od sítě a možnost trvalého provozu (například tuneru), čehož mnozí majitelé využívají k tomu, aby u starších televizorů mohli dálkově měnit programy. Naproti tomu ani obrazově ani zvukově se od pře-

dešlého modelu nový typ nikterak neliší. Přihlédneme-li ke všem uvedeným skutečnostem, je třeba v zájmu pravdy a objektivity říci, že dvacetipětiprocentní zvýšení prodejní ceny tohoto přístroje oproti předešlému modelu rozhodně neodpovídá úměrnému zvětšení jeho užitné hodnoty. —Hs—

Třetinooktávový ekvalizér

Ing. Karel Hájek, CSc.

Třetinooktávový ekvalizér je prvek reprodukčního řetězce, který se čím dál více prosazuje do praxe, především profesionální. Tento ekvalizér byl konstruován jako doplněk k zesilovači pro CD, ovšem je možno s minimálními doplňky jej používat pro libovolné reprodukční zařízení.

Základní technické údaje

28 pásmových korektorů v kmitočtovém pásmu 31,5 Hz až 16 kHz.

Rozsah regulace korektorů:

 \pm 15 dB. Vstupní impedance: \pm 100 k Ω .

Výstupní impedance: 0Ω .

Max. vstupní napětí: 3 V.

Odstup rušivých napětí: (regulační potenciometry ve střední poloze)

70 dB.

Koncepce ekvalizéru

Ekvalizér je 28pásmový, ale lze iei bez obtíží rozšířit na 31 pásem. Toto rozšíření není pro běžnou praxi potřebné. Při realizaci třetinooktávového ekvalizéru lze vyjít ze tří základních variant. Nejčastěji se používá zapojení s neinvertujícím zesilovačem a sériovými rezonančními obvody se syntetickými induktory. Druhá možnost je zapojení s jedním invertujícím zesilovačem a pásmovými propustmi. Třetí variantou je zapojení se dvěma invertujícími zesilovači a pásmovými propustmi. Při porovnávání jednotlivých variant se ukazuje, že každá má své výhody a nevýhody.

Jako nejméně vhodné se ukazuje zapojení s jedním invertujícím zesilovačem. Největší nevýhodou jsou špatné šumové vlastnosti, ve střední poloze běžců regulačních potenciometrů se šum z jednotlivých pásmových korektorů nepotlačuje, ale naopak sečítá. Tuto negativní vlastnost odstraňuje zapojení se dvěma invertujícími zesilovači. Výhodou zapojení s invertujícími zesilovači je také relativně jednoduché nastavování pásmových propusti v korektorech. Proto se toto zapojení nejčastěji používá v parametrických ekvalizérech. Pásmové propusti pro tyto korektory nelze realizovat jednoduše - tuto nevýhodu však lze obejít použitím společného invertoru za prvním operačním zesilovačem. Zapojení je citlivé na "brum" - zejména spoj "živého" vstupu operačního zesilo-vače k regulačním potenciometrům; s ohledem na to je třeba řešit konstrukci. Další negativní vlastnost, nevhodný průběh závislost činitele jakosti na poloze regulačního potenciometru (s tím vzájemné ovlivňování pásmových konektorů i při jejich poloze ve středu regulace) lze potlačit jen použitím většího množství operačních zesilovačů

Vzhledem k uvedeným skutečnostem se jako nejvhodnější ukazuje varianta zapojení s neinvertujícím zesilovačem a sériovými rezo-nančními obvody. Má malý šum a není citlivé na "brum", má vhodný průběh činitele jakosti a sousední korektory se vzájemně ovlivňují jen málo (toto ovlivňování je dále minimalizováno rozdělením kmitočtů na tři neinvertující zesilovače [1]). Zůstává jedna nevýhoda; poměrně obtížně se nastavují jednotlivé korektory vzhledem k tomu, že všechny prvky syntetického rezonančního obvodu ovlivňují současně všechny parametry (rezonanční kmitočet,

rozsah regulace a činitel jakosti). U nejvyšších kmitočtů se navíc mohou lišit vlastnosti jednotlivých OZ a parazitní kapacity zapojení, takže chceme-li dosáhnout rovnoměrných tvarů korekční křivky (což není pro funkci zcela nutné), nevyhneme se dodatečnému nastavování některých prvků.

Důležitá je volba typu operačních zesilovačů. V současné době jsou nejvýhodnější čtyřnásobné OZ B084D s tranzistory FET na vstupu. dostupné např. v prodejně TESLA na Karlově nám. v Praze za 60 Kčs. Z úsporných důvodů lze použít pro pásmové korektory asi do kmitočtu 1 kHz typ MA1458; pak je však nutno použít kapacitu pro korekci kmitočtových vlastností OZ, jež se projevují ovlivňováním přenosu na vysokých kmitočtech při regulaci nízkých kmitočtů [2]. Použití operačních zesilovačů s tranzistory FET na vstupu (omezí-li se maximální rychlost změny úrovně signálu pasívní dolní propusti RC) zabrání vzniku dynamického intermodulačního zkreslení při velké úrovni signálu. Proto je možné použít napětí vstupního signálu 3 V bez nebezpečí vzniku uvedeného zkreslení. Ekvalizér, určený k použití se zesilovačem pro CD, rovněž popsaném v AR, omezovací člen neobsahuje. Pro použití ekvalizéru v jiném reprodukčním zařízení je vhodné tento člen RC zapojit na vstup obdobně, jak je tomu v zesilovači pro CD, a doplnit regulací a měřením úrovně.

Popis zapojení

Na obr. 1 je celkové zapojení jednoho kanálu ekvalizéru, zapojení druhého kanálu je stejné. Pro zjednodušení je zakresleno zapojení pouze jednoho z dvaceti osmi syntetických rezonančních obvodů. Zapojení ostatních je obdobné. Jiší se

Obr. 1. Zapojení jednoho kanálu ekvalizéru

pouze v hodnotách některých součástek, především kondenzátorů; rezistory jsou pro téměř všechny obvody shodné, pouze pro nejvyšší kmitočty se jejich odpory částečně liší: kompenzují reálné vlastnosti obvodů. Základní princip činnosti tohoto korektoru byl již několikrát vysvětlován v dostupné literatuře, např. [1], proto se soustředím jen na některé odlišnosti. Ekvalizér je rozdělen do tří sekcí z důvodů, částečně vysvětlených v [1]. Syntetický induktor je na rozdíl od používaných zapojení s jednotkovým zesilovačem realizován se zapojením OZ s Rc a Rd. Tím je dosaženo (při použití OZ s tranzistory FET na vstupu) dostatečné kmitočtové nezávislosti syntetického induktoru; jinak je totiž ovlivňován přenos na vysokých kmitočtech při regulaci přenosu na nízkých kmitočtech. Použijeme-li OZ typu MA1458, musíme připojit kondenzátor - korekční kapacitu 120 pF - paralelně

kondenzátorů Rc. Kapacity Ca a Cb určují nastavení kmitočtů a poměry kapacit u jednotlivých korektorů přesně odpovídají poměru korekčních kmitočtů. Ž toho vyplývá potřeba jejich přesného dovolenou výběru úchylkou Obdobně +2 %. přesné musí být i odpory Ra až Rd. Je možno pouze jedno zlepšení: odpory Rc a Rd nemusí mít požadovanou přesnost, ale musí ji mít jejich vzájemný poměr. Toto zjednodušení výběru ale neplatí pro rezistory Ra a Rb. Dále snad lze ještě podotknout, že odpory rezistorů v neinvertujících zesilovačích určují rozsah regulace, a to R2, R4 a R6 potlačení a R3, R5 a R7 zase zdůraznění přenosu. Kondenzátory C1 až C6 kompenzují vlastnosti obvodu, především parazitních ka-

Na obr. 2 je zapojení napájecího zdroje. Je využito jednoduchého zapojení se stabilizátory napětí MA7815. Sekundární vinutí lze stínit od primárního, nebo alespoň záměnou vývodů primárního vinutí zmenšit případný vliv síťového napájení v ekvalizéru.

Mechanická konstrukce

Vychází se z použití rámu, svařeného z profilů L 1 cm, a z použití hliníkových profilů L k uchycení potenciometrů a plošných spojů. Transformátor a deska se součást-

Obr. 2. Zapojení napájecího zdroje

kami zdroje jsou uchyceny na zadním panelu. Konstrukce je zřejmá z fotografie. Poměrně obtížné je zhotovení předního panelu. Otvory pro tahové potenciometry je nutno plechu frézovat duralovém tloušťky 1,6 mm. Rozteč otvorů, a tedy i rozměry celého ekvalizéru, je nutno určit podle knoflíků, které se podaří sehnat. Rozteč lze namísto použitých 13 mm zmenšit na 12 mm, ovšem odpovídající knoflíky se obtížně shánějí. Osazování desek s plošnými spoji není obtížné. Vodiče mezi potenciometry a plošnými spoji není třeba stínit.

Při použití nepřesných součástek je zapotřebí se vyzbrojit vhodným generátorem a milivoltmetrem a též značnou dávkou trpělivosti a určitých znalostí. Z vlastní zkušenosti tuto cestu nedoporučuji.

Závěrem lze shrnout, že tento konstrukční popis umožňuje realizovat za přijatelnou cenu (asi 2000 Kčs za součástky) jinak poměrně nedostupné zařízení, použitelné jak pro bytové účely s přehrávačem CD a s odpovídajícím

Obr. 3. Změřené modulové charakteristiky jednotlivých korektorů a při maximální a minimální korekci všech korektorů najednou

Elektronický schodišťový spínač

Obr. 6. Deska X08 s plošnými spoji zdroje

Obr. 7. Osazení desky s plošnými spoji zdroje.

zesilovačem, tak i pro profesionální, především hudební účely. Náklady lze zmenšit nákupem kondenzátorů v prodejnách Klenoty za výprodejní cenu 10 či 50 haléřů za kus.

Literatura

[1] Chmela, M.: Desetipásmový nf korektor. AR A7/81, s. 10 až 14.

[2] Hájek, K.: Širokopásmový syntetický induktor. PV 3893-85.

Seznam součástek

Dozietoru	
Rezistory	
R1	0,1 ΜΩ
R2 až R7	10 kΩ
Ra1 až Ra25	1,5 kΩ
Ra26	1,48 kΩ
Ra27	1,43 kΩ
Ra28	1,38 kΩ
Rb1 až Rb28	0,15 ΜΩ
Rc1 až Rc23	0,15 ΜΩ
Rc24	0,135 MΩ
Rc25	0,115 ΜΩ
Rc26	95 kΩ
Rc27	90 kΩ
Rc28	82 kΩ
Rd1 až Rd28	1,5 kΩ
R8	1,2 kΩ

Všechny odpory miniaturní, tolerance viz text. Pro druhý kanál osazení identické vyjma R8 ve zdroji

Potenciometry:

P1 až P28 22 kΩ, lineární, TP 640 pro druhý kanál stejné

Kondenzátory:

Kinilocet	CISIO	Ca = Cb
31,5 Hz	1	530 nF
40 Hz	2	422 nF
50 Hz	3	211 nF
63 Hz	4	167 nF
80 Hz	5	132 nF
100 Hz	6	106 nF
125 Hz	7	84,2 nF
160 Hz	8	66,7 nF
200 Hz	9	53 nF
250 Hz	10	42,2 nF
315 Hz	11	33,4 nF
400 Hz	12	26,5 nF
500 Hz	13	21,1 nF
630 Hz	14	16,7 nF
800 Hz	15	13,2 nF
1 kHz	. 16	10,6 nF
1,25 kHz	17	8,42 nF
1,6 kHz	18	6,67 nF
2 kHz	19	5,3 nF
2,5 kHz	20	4,22 nF
3,15 kHz	21	3,34 nF
4 kHz	22	2,65 nF
5 kHz	23	2,11 nF
6,3 kHz	24	1,67 nF
8 kHz	25	1,32 nF
10 kHz	26	1,06 nF
12,5 kHz	27	842 pF
16 kHz	28	667 pF

Xielo

Ca - Ch

Všechny kondenzátory s tolerancí ± 2 %, styroflexové, přijatelné jsou s metalizovaným papírem (ne keramické, ty jen pro malé dostavovací hodnoty)

C1. C3. C5	100 pF, keramický
C2, C4, C6	470 pF, keramický
C7, C8	100 μF/15 V, TE984
C9, C10	1 mF/25 V, TC936a
C11. C12	100 uF/15 V. TE984

Polovodičové součástky: 101 až 108 B084D 109, 1010 MA7815 KY130/80 D1 až D8 LQ1702 **D9** Transformátor: El 20×25. primární vinutí: 2200 z ø 0,15 mm, sekundární vinutí: 2× 150 z ø 0,35 mm Ostatní: síťová zásuvka pojistkové pouzdro knoflíky na potenciometry síťový spínač Isostat

Stolní kazetový magnetofon s dvojí "mechanikou" v NDR

Přístroj, uvedený na trh firmou VEB Stern Radio Sonneberg pod označením SDK 3930, je prvním typem tohoto druhu, vyráběným v NDR. Je odvozen z osvědčeného magnetofonu SK 3930 (HiFi, stereo), který byl doplněn o druhou mechanickou jednotku (MV 300), sloužící jen ke snímání záznamu. Konstrukce umožňuje začlenit magnetofon do "věže" — všechny ovládací prvky jsou na přední stěně. Přístroj má všechny funkce, kterými je vybavován "tape deck" této kategorie (automatické zastavení při všech druzích provozu, odposlech při převíjení, přepínání pro pásek CrO₂ apod.) Pro přehrávání z jedné kazety na druhou se používá pouze běžná rychlost 4,76 cm/s. Rozměry přístroje jsou 390×123×260 mm.

Dálkové ovládání k TVP COLOR 110 ST

Ing. Miroslav Chrastina

Popsané dálkové ovládání (DO) bylo zkonstruováno pro přijímač COLOR 110 ST, lze je však použít i pro jiné typy přijímačů s tím, že bude potřeba upravit výstupní obvody přijímače DO. Celé zařízení pro DO se skládá ze dvou samostatných celků — vysílače a přijímače. Dálkově jsou ovládány tyto funkce TVP: volba 7 kanálů, jas v 16 stupních, hlasitost v 16 stupních, zapnutí a vypnutí. Návrh vychází z principu přenosu popsaného v [1], proto jsou podrobněji popsány jen funkce obvodů, které jsou použity navíc.

Vysílač DO

Vysílač DO (obr. 1) je navržen tak, aby jeho klidový odběr ze zdroje (destičková baterie typ 6F22 9 V) byl co nejmenší. Konkrétně byl odběr po zformování elektrolytických kondenzátorů asi 0,5 μA. Vysílač DO vysílá infračervené impulsy o kmitočtu 140 Hz modulované kmitočtem 35,71 kHz. Počet impulsů závisí na tom, který ze spínačů S1 až S12 byl sepnut. Tento určitý počet impulsů vyhodnotí přijímač DO a přes výstupní obvod pak ovládá příslušnou funkci TV přijímače. Po stisknutí některého ze spínačů S1 až S12 se nabijí některé kondenzátory C5 až C8 podle toho, který spínač byl sepnut. Kladné napětí na kondenzátorech se zároveň objeví na vstupech JA až JD obousměrného čítače s předvo-Ibou, MHB4029, který je zapojen jako binární čítač vzad; diody D1 až D21 tvoří převodník kódu 1 ze 12 na BCD. Kladné napětí na kondenzátorech C5 až C8 se zároveň převede přes oddělovací diody D22 až D25 a rezistor R1 na bázi T1, který se uvede do vodivého stavu. Zároveň T2 připojí napájecí napětí pro IO2. Časovač IO2/1 je zapojen jako monostabilní obvod, který je spuštěn, když se jeho startovací

vstup 8 dostane na okamžik, daný časovou konstantou C1, R3, na nulovou úroveň. Při stisknutí spínače na klávesnici se tak na výstupu IO2/1 objeví kladný impuls o délce t = R4C2= 2.2 ms. Po této době se výstup IO2/1 dostane na nulovou úroveň, takže se na okamžik otevře T3 a na R7 se objeví okamzik otevre 15 a lia n/ se ubjevi kladný impuls, který spustí čítač IO1, jehož výstup 7 se dostane do stavu L a spustí časovač IO2/2, zapojený jako astabilní klopný obvod, který vytváří impulsy o kmitočtu asi 140 Hz, jež jsou přenášeny na vstup 15 IO1 přes kondenzátor C11. Čítání impulsů se zastaví podle toho, jaká kombinace stavů L a H je na vstupech předvolby IO1 v okamžiku stisknutí tlačítka na klávesnici. Kondenzátory C5 až C8 a obvod s IO2/1 přitom potlačují parazitní jevy při stisknutí tlačítka. Časová konstanta R8 až R11 a C5 až C8 je zvolena tak, aby připojení IO2 k napájecímu napětí proběhlo jen po dobu nezbytnou k vyslání všech impulsů (jeden povel obsahuje maximálně o kmitočtu 140 Hz).

Kladné impulsy z výstupu 5 IO2/2 spouštějí oscilátor 35,71 kHz, tvořený polovinou IO3. Druhá polovina IO3 již moduluje výkonový zesilovač — vysílač IČ záření tvořený T4, T5. Na velikosti

R20 závisí maximální okamžitý proud diodami D27, D28, který je omezen asi na 1 A.

Přijímač DO

IČ impulsy z vysílače DO dopadají na fotodiodu nebo fototranzistor a jsou zesilovány v předzesilovači přijímače DO (obr. 2), jehož základem je IO A244D. Popis funkce předzesilovače je v [2]. Z předzesilovače přicházejí impulsy na IO2, jenž je zapojen jako monostabilní klopný obvod, který impulsy vhodně tvaruje. Funkce dekodéru přijímače DO (obr. 3) je dostatečně popsána v [1].

Vývod 1 přijímače DO je použit pro indikaci příjmu povelu. Po přijmutí jakéhokoli povelu výstup 1 přejde z úrovně L do H, otevřou se tranzistory T5 a T6. T6 sepne napětí +18 V na vývod 3 IO MAS1008 v přepínači kanálů a tím se zobrazí čísla přijímaného kanálu v levém horním rohu obrazovky. Výstupy 2, 4, 5, 6, 7, 9, 10 jsou připojeny přes vazební kondenzátory C22 až C28 ke vstupům 9, 10, 11, 12 lO MAS560A v přepínači kanálů. Po připojení vazebních kondenzátorů na vstupy MAS560A se může stát, že i přes bezchybné přijmutí povelu se kanál nepřepne. Je to způsobeno tím, že některé IO MAS560A jsou málo citlivé na pokles napětí na vstupu. Jelikož tyto obvody jsou umístěny v objímce, lze podezřelý obvod snadno vyměnit. Výstup 14 je použit k zapínání a vypínání TV přijímače. IO6 je klopný obvod J-K, jehož výstup změní svůj stav po příchodu impulsu na vstup CL. Pokud je výstup ve stavu H, je tranzistor T7 ve vodivém stavu a relé spíná síťové napětí. Abychom mohli zapnout TVP i bez použití DO, je využit pomocný rozpínací kontakt u síťového spínače. Pokud chceme zapnout TVP síťovým polinářem na okamětik bo vodovene spínačem, na okamžik ho vypneme a ihned zapneme. Při chvilkovém vypnutí síťového spínače se sepne jeho pomocný kontakt a přes rezistor R39 se

nabije kondenzátor C29 a otevře se T8. Na nastavovacím vstupu S IO6 se objeví úroveň L na dostatečně dlouhou dobu, takže po náběhu napájecího napětí se na výstupu 8 IO6 objeví úroveň H a T7 sepne relé Re. Použité zapojení rovněž zabraňuje náhodnému zapnutí TVP po obnovení síťového napětí po jeho výpadku.

Aby se při zapnutí TVP přednostně sepnula první předvolba, je k vývodu 8 IO1 (podle servisního schématu) MAS560A připojen kondenzátor 200 μF/35 V.

Výstupy 3 a 11 jsou použity pro ovládání jasu čítačem IO3 MH74193 a to tak, že při příchodu impulsu na vstup CU čítač čítá nahoru, napětí ve společném bodu rezistorů R32 až R35 se zvětší a tím se také zvětší jas. Vstupy A, B, C IO3 jsou připojeny trvale na úroveň L a vstup L je připojen na kondenzátor C31, aby se při zapnutí síťového napětí nastavily výstupy A, B, C na úroveň L a výstup D na úroveň H (číslo 8 v binárním kódu). Obdobně je zapojen obvod pro řízení hlasitosti, takže po zapnutí TVP (jak dálkově, tak místně) je možno řídit úroveň jasu

i hlasitosti směrem nahoru i dolů a to místně i dálkově.

Výstupy 8 a 12 jsou použity pro řízení hlasitosti. Pokud na vstup CU 104 přicházejí postupně impulsy, čítač čítá nahoru, až všechny jeho výstupy mají úroveň H (číslo 15 v binárním kódu). Po příchodu dalšího impulsu budou mít výstupy úroveň L a hlasitost se změní maxima na minimum. Protože v opačném případě, tj. při zmenšování hlasitosti, by skoková změna z minima na maximum působila silně rušivě, je na výstupy A až D připojen IO5 MH7454, jehož výstup je na úrovni L do té doby, dokud všechny výstupy A až D 104 nemají úroveň L. Pak bude na výstupu 105 (vývod 8) úroveň H a zablokuje přes diodu další čítání řídicích impulsů přes vstup CD čítače IO4. V důsledku výrobních tolerancí součástek se může stát, že rozsah řízení jasu a hlasitosti u některého konkrétního TVP nebude vyhovovat. V tom případě je vhodné zapojit místo rezistorů R27 až R30 nebo R36, R38 odporové trimry vhodné velikosti (větší než jsou uvedené rezistory ve schématu), po nastavení je změřit a zaměnit je za pevné rezistory.

Oživení a nastavení přijímače a vysílače DO

Ve vysílači DO nejdříve vyměníme rezistor R20 za rezistor 10 Ω a zkratujeme emitor-kolektor T3. Po sepnutí kteréhokoli tlačítka bude vysílač vysílat neustále impulsy o kmitočtu asi 140 Hz s omezeným výkonem. Vysílač nyní přiblížíme k přijímači a v předzesilovači přijímače měříme napětí na vývodu 9 IO1 (A244D). Trimrem R17 měníme nosný kmitočet na maximum měřeného napětí. Při postupném vzdalování přijímače od vysílače dostavíme maximum příjmu také změnou indukčnosti L1 a L2 v předzesilovači přijímače.

Mechanické provedení

Klávesnice vysílače byla zhotovena postupem uvedeným v článku "Membránová klávesnice" v ročence AR 1987 s rozmístěním podle obr. 4. Jako spínací membrána byl použit alobal očištěný ze spínací strany (Kontaktol)

D27 -

Literatura

- [1] AR A12/87.
- [2] AR B6/87.
- [3] Ročenka AR 1987.
- [4] Schéma TV přijímače COLOR 110 ST.
- [5] Katalog polovodičových součástek TESLA.

[] D26								
1	2	3						
4	5	6						
+ JAS	siŤ	+ HLASITOST						
JAS	8	- HLASITOST						

Obr. 4. Klávesnice vysílače

Obr. 3. Dekodér přijímače DO

ELEKTRONICKÁ LADIČKA KYTAR

Father Star

RNDr. ing. Václav Pasáček

Oživení a nastavení

Použijeme-li bezvadné součástky, bude oživení celkem jednoduché. Nejvhodnější je osadit nejprve část stabilizátoru (zatím bez D5) a překontrolovat výstupní napětí při zatížení rezistorem 20 Ω. Mělo by být asi 5 V při napájecím napětí asi 8 V. Při napětí 9,5 V (napětí nových baterií) by nemělo překročit 5,3 V a při 5,1 V poklesnout pod 4,75 V. Jeho velikost lze nastavit (je-li náhodou mimo uvedené meze) změnou rezistoru R34. Změnou zátěže na 10 Ω se přesvědčíme, že výstupní proud není omezován předčasně. Výstupní napětí by se mělo zmenšit asi o 0,1 V oproti zatížení rezistorem 20 Ω. Při znatelně větším poklesu je potřeba zmenšit velikost rezistoru R33.

Po kontrole stabilizátoru je již možné osadit celou číslicovou část přístroje (před osazením integrovaných obvodů je nutné zapojit drátové propojky!) včetně svítivých diod. Osciloskopem můžeme ověřit průběh signálu 50 kHz na výstupu obvodu IO15 (vývod 12). Máme-li k dispozici přeladitelný generátor s výstupem TTL, můžeme již ověřit správnou funkci přístroje. Výstup generátoru spojíme s vývodem 14 obvodu IO13. Jednotlivé diody by se měly rozsvítit při kmitočtech asi 82,4 Hz

(D6), 110 Hz (D7), 147 Hz (D8), 196 Hz (D9), 247 Hz (D10) a 330 Hz (D11).

Po osazení vstupního zesilovače a tvarovače by ladička měla být schopna funkce. Vhodná citlivost se nastavuje rezistorem R1 podle citlivosti sní-mače kytary. Příliš velká citlivost se projevuje nahodilým rozsvěcováním diod, při malé se diody nerozsvěcují vůbec. Při prvním ladění je potřeba se "obrnit" trpělivostí než si na způsob ladění zvykneme a ladit nejprve v poloze "hrubě". Při správném vyladění by měla příslušná dioda svítit téměř trvale, příčemž po odeznění struny nemusí zhasnout. Stane se tak až dalším "drnknutím" jiné struny. V poloze spínače S1 "jemně" se již většinou nepodaří nastavit trvalý svit, ale dioda při odeznívání jen problikuje. Je to tím, že signál ze snímače nemá čistě sinusový průběh a je amplitudově i kmitočtově nestabilní. Při ověřování funkce nízkofrekvenčním generátorem svítí dioda trvale (neuvažujeme-li velmi rychlé pomrkávání způsobené dyna-mickým režimem čítání a zobrazování) i v této poloze, přičemž na nastavené citlivosti v širokých mezích nezáleží. Je proto vhodně vyzkoušet ladičku nejprve s generátorem. Proladovat musíme pomalu a opatrně, neboť správný kmitočet snadno "přeskočíme".

Mechanické provedení

Mechanické provedení je velmi jednoduché (obr. 4, 5). Je použita kra-bička K5, která je běžně k dostání, včetně desky kuprextitu, kterou tato krabička obsahuje. Navržená deska s plošnými spoji proto odpovídá jejím rozměrům. Krystal a jeden spínač ji přesahují, neboť deska je krátká. Lze si samozřejmě zhotovit desku na každé straně o 7 mm delší. Osazená deska je upevněna k horní část krabičky pomocí matic spínačů S1 a S2. Spínače jsou zapájeny v desce, kde je rovněž přišroubován vstupní třídutinkový nf konektor, přičemž jeho dutinky nejsou zapájeny přímo v desce, aby zástrčka nešla zasunovat příliš ztěžka. Většina sloupků horní části krabičky je odříznuta (překáží součástkám), musíme však ponechat oba krajní, sloužící ke spojení se spodním dílem. Spodní díl je bez úprav a jsou v něm umístěny (mezi sloupky) dvě ploché baterie. Rozmístění otvorů na horním dílu je na obr. 6. Horní stěna krabičky je popsána Propisotem a přestříkána bezbarvým lakem na nábytek. Při lakování je potřeba pamatovat na skutečnost, že lak i acetonové ředidlo krabičku naleptává a špatně nastříkaný lak proto již nelze smýt ředidlem.

Literatura

- [1] Brunnhofer, V. a kol.: Děliče kmitočtu z hradel. AR B5/80, s. 191.
- [2] Neméth, T.: Krystalové oscilátory s výstupem TTL, AR A3/80, s. 103.
- [3] Pacovský, J.: Rozšíření kmitočtového rozsahu čítačů, příloha AR/75, s. 61.
- [4] Polovodičové součástky 1984/85, katalog TESLA Rožnov k. p.
- [5] Pasívní elektronické součástky TESLA.

Obr. 4. Osazená deska s plošnými spoji

Obr. 5. Vnitřní provedení

a nalepený na pružnou podložku lepidlem Chemoprén. Toto řešení se ukázalo jako plně vyhovující (v článku doporučený kuflex je nedostupný). Jako spínače je možno použít jakákoli tlačítka nebo mikrospínače. Pro zvětšení dosahu (zvláště při použití méně výkonných vysílacích infračervených diod) je vhodné před světlocitlivou součástku v přijímači DO umístit spoj-

nou čočku. Pokud neseženeme čočku s filtrem IČ, použijeme jako filtr kousek vyvolaného neosvětleného barevného inverzního filmu (případně ve dvou vrs-

Zvláště velkou pozornost je třeba věnovat důkladnému stínění přijímače DO. Světlocitlivou součástku je třeba zapustit do stínicího krytu předzesilovače přijímače DO nebo před ní umístit stínicí kovovou sítku, vodivě spojenou s krytem. Jestliže přijímač bude rušen i přes pečlivě provedené jednoduché stínění, je třeba použít stínění dvojité.

Obr. 6. Rozmístění otvorů

mikroelektronika

AUTOMATICKÝ BUBENÍK

Jan Navrátil

Ke stavbě zařízení mně inspirovalo přečtení knihy "Elektronické hudební nástroje a jejich obvody" autorů R. Sýkory, F. Krutílka a J. Včelaře. Líbil se mi automatický bubeník, který měl řídicí jednotku s naprogramovanou pamětí PROM. Připojení k ZX Spectrum přes interfejs se přímo nabízelo samo (obr. 1). V současné době mám připravený další program pro tvorbu, skládání a hru rytmických celků.

Popis zapojení

Bicí jednotka (obr. 2) se skládá z generátorů, které po vybuzení spouštěcím impulsem dokmitávají tlumenými harmonickými kmity. Jsou to generátory BD — velký buben, SD — malý bubínek, TT — bongo a imitace úhozu na velký činel — CY. Jsou to harmonické oscilátory s tranzistorem, u nichž je zavedena selektivní kladná zpětná vazba trojitým derivačním článkem RC a nastaven režim nadkritického tlumení přídavnou zpětnou vazbou. Tato vazba ovlivňuje dobu doznívání jednotlivých bubínků. Výška ladění je dána hodnotami součástek v trojitém článku RC.

Generátor pro imitaci dřev (CL) je řešen jako klíčovaný oscilátor netlumených kmitů, jehož délka znění je dána délkou výstupního impulsu (20 ms).

Zbývající bicí nástroje, tj. HH — činel krátký, MR — maracas, CY — činel dlouhý (jeho šumová část) a SD — pružiny malého bubnu, jsou imitovány šumovým signálem, který je spínán diodovými cestami tak, aby průběh znění byl perkusní s exponenciálním dozníváním vhodné déiky. Kmitočtové spektrum je upraveno pomocí filtrů.

Obr. 1. Blokové schéma automatického bubeníka

Spínač akcentu při impulsu na svém vstupu zvyšuje úroveň výstupního signálu HH, CY, MR, SD asi 2krát.

Obr. 3. Zapojení spínacího obvodu

Obr. 4. Zapojení obvodu indikátoru

Odporovým trimrem v emitorech tranzistorů můžeme nastavit délku znění jednotlivých zvuků.

Vstupní obvody všech bicích nástrojů i akcentu jsou upraveny pro synchronizaci zápornými impulsy (sepnutím na zem). Proto mezi interfejs a bicí jednotku musí být připojeny tranzistory T1 až T8, které při logické úrovni H na svém vstupu sepnou vstup bicí jednotky na zem (obr. 3). Tento způsob byl zvolen pro jednodušší zápis rytmu do paměti.

Indikátor je zapojen z hradel MH7400 tak, aby při logické úrovni H na jeho vstupu svítila dioda LED. Indikátor je napájen z interfejsu +5 V (obr. 4).

Zdroj pro bicí jednotku obsahuje MA7805 a transformátor 24 V/2 W (obr. 5).

Nastavení obvodů

Po osazení desek s plošnými spoji zkontrolujeme napětí +15 V na zdroji a připojíme bicí jednotku. Připojíme ji na zesilovač a její vstupy spínáme proti zemi a ladíme jejich výšku a délku výstupních signálů podle následující tabulky:

CY	6 kHz				
SD	196 Hz				
BD	98 Hz				
TT	147 Hz				
BG	294 Hz				
CL	2350 Hz				

Pak připojíme spínací obvod podle označených výstupů a jeho vstup připojíme konektorem k MHB8255A tak, aby P0 byl váhově nejnižší a P7 nejvyšší. Totéž platí i pro indikátor.

Při úrovni H výstupního signálu z MHB8255A měla by zaznít bicí jednotka a rozsvítit se dioda LED.

Do počítače zadáme postupně programy

Obr. 2. Zapojení základní jednotky

"G", "RYTMUS", "BICÍ" a můžeme vyzkoušet zadané rytmy.

Stínicí kryt **(obr. 14),** který na závěr připevníme, zmenšuje pronikání šumu, který se indukuje do obvodů filtrů šumového signálu. Umístění bicí jednotky do vhodné krabičky ponecháme na možnostech každého zájemce o stavbu tohoto doplňku k počítači.

Obr. 5. Zapojení napájecího zdroje

Seznam použitých součástek

500 μF/35 V 2 ks 100 μF/15 V 1 ks 10 μF/15 V 1 ks TE984 TE984 Ploché miniaturní keramické kondenzátory: 100 nF 47 nF 22 nF 15 nF 10 nF 8,2 nF 6,8 nF 4,7 nF 2,2 nF 4 ks 3 ks 6 ks 9 ks 6 ks 1 ks 5 ks 3 ks 2 ks 4 ks 1 nF 680 pF 470 pF 330 pF 220 pF 100 pF 68 pF 10 pF 2 ks 2 ks 2 ks 4 ks 1 ks 4 ks 1 ks 1 ks Rezistory: 3,3 MΩ 1,5 MΩ 1,5 MΩ 68 MΩ 47 MΩ 23 MΩ 27 MΩ 22 MΩ 18 MΩ 15 MΩ 1 MΩ 68 kΩ 56 kΩ 47 kΩ $\begin{array}{lll} 47 \ k\Omega & 17 \ ks \\ 33 \ k\Omega & 2 \ ks \\ -22 \ k\Omega & 4 \ ks \\ 15 \ k\Omega & 9 \ ks \\ 10 \ k\Omega & 9 \ ks \\ 10 \ k\Omega & 1 \ ks \\ 3,3 \ k\Omega & 1 \ ks \\ 3,3 \ k\Omega & 1 \ ks \\ 330\Omega & 8 \ ks \\ \textit{PFepinač (libovolný)} \\ \textit{Transformátor} \ 220 \ V/24W-2W \end{array}$

Obr. 6. Obrazec plošných spojů desky základní jednotky X 503

Obr. 10. Rozmístění součástek na desce s plošnými spoji základní jednotky X 503

1

Obr. 8. Obrazec plošných spojů desky indikátorů X 505

Obr. 7. Obrazec plošných spojů desky spínacích obvodů X 504

P3

P4

 $M1 \square M1 \square M1 \square M1 \square M1 \square M1$

BD MR PŘ

*P*5

P6

BG

P2

4×LQ1402

Obr. 12. Rozmístění součástek na desce s plošnými spoji indikátorů X 505

4xLQ1102

SD

Obr. 9. Obrazec plošných spojů desky napájecího zdroje X 506

Obr. 14. Stínicí kryt na generátoru šumu a spojka pro desku plošných spojů spínacích obvodů se základní deskou

plošných spojů

-⊕ 15 V G5/35V G5/35V 15 905

Obr. 13. Rozmístění součástek na desce s plošnými spoji napájecího zdroje X 506

Programové vybavení

Program umožňuje hru 17 rytmů ve dvou modifikacích, celkem tedy 34 rytmů v libovolném tempu a počtu opakování. Jednotka zvuku je připojena přes interfejs z MHB8255A, např. z AR 6/85. Podle použitého typu interfejsu musíme změnit adresy řídicího registru CWR a adresy

Nejprve vložíme do počítače program "G", který umožní zobrazení českého textu, tj. v G-módu zobrazuje znaky se znaménky. Velká písmena se znaménky můžeme psát takto:

např. Č tedy "C", CHR\$ 8; OVER 0;".... a další text. Program spustíme RUN a po

100

jeho ukončení jej vymažeme pomocí NEW. Grafické znaky zůstanou uchovány.

Nyní vložíme do počítače program "RYT-MUS", který uloží od adresy 40 000 do adresy 40 615 jednotlivé bajty rytmů a CLEAR 39 999 v programu posune RAM-TOP na tuto adresu. Program spustime RUN a po jeho ukončení jej opět vymažeme pomoci NEW. Posunutím RAMTOP zůstanou i tyto uložené bajty uchovány

Nakonec vložíme program "BICI", který spustíme RUN 3. Tento program umožňuje i vlastní zpětnou nahrávku včetně grafických znaků a uložených bajtů rytmu.

Volba rytmu v programu se provádí pohybem kurzoru tlačítky č. 5, 6, 7, 8 a stiskem klávesy ENTER.

Po volbě rytmu se programem sejmou z obrazovky data délky rytmu a jeho počáteční adresa v paměti. Poté je umožněna volba tempa a počtu opakování.

Při hře program vybírá jednotlivé bajty z paměti a ty odesílá na výstupní brány interfejsu. Pa - řízení bicí jednotky, Pb

indikátor. Programově je zajištěna přítomnost impulsů na výstupu Pa (20 ms) a na výstupu Pb (až do následující změny).

Diodami LED v indikátoru můžeme kontrolovat kombinaci řídicích impulsů (svit diody znamená úder příslušného zvuku bicí jednotky).

Seznam proměnných:

a -- tempo.

b – počet opakování,

počáteční adresa výběru z paměti rytmů,

délka taktu,

x - řádek kurzoru,

y - sloupec kurzoru.

U rytmů označených "akc" má být přepínač CL-AKC v poloze AKC, jinak má být v poloze CL.

Literatura

[1] Sýkora, R., Krutílek, F., Včelař, J.: Elektronické hudební nástroje a jejich obvodv.

Prog. řádek

Obr. 15. Vývojový diagram programu "BICÍ

3 REM program G = 16: LET c=36: LET d=36: LET t=40: LET g=68: LET h=56: LET i=120: LET k=60: LET t=64: LET m=32: LET n=32: LET s=4: LET q=66: LET t=36: LET t=4: LET q=66: LET t=36: LET u=1 brazi :" 430 PRINT AT 21,0;"Po NEW zadej dalši program."

G

-RYTMUS

5 REM PROGRAM RYTHUS
10 FOR N=40000 TO 40615
15 READ C
20 POKE N,C
25 NEXT N
30 CLEAR 39999
35 STOP
40 DATA 61,0,81,1,81,0,53,0,89
40,1,0,185,0,145,0,29,0,21,1,11
3,0,145,0,121,64,81,64,153,0,145 ,0 45 CATA 248,0,16,0,144,0,248,0 ,58,0,80,0,248,0,144,0,208,0,16, 0,240,0,208,0,120,0,15,0,152,0,1 44,0 50 CATA 41,0,5,1,1,0,37,0,9,0, 5,0,41,0,5,0,9,0,5,1,33,0,5,0,41 \$3.0,30,0,243,0,144,0,208,0,16,0,240,0,208,0,144,0,208,0,152,0,144,0,208,0,144,0,208,0,152,0,144,0,520,0,520,0,530,0,0,530 .0,440,0 165 DATA 10,0,0,0,0,4,0,0,10,0, 10,0,4,0,0 170_DATA 11,0,3,37,0,9,11,0,3,3 .0.9 175 DATA 10.0,10.5,0,5,10,0,10, .0.5 180 PATA 8.0,0,0,4,0,0,0,4,0,0, 0 185 DATA 10,0,0,0,5,0,0,0,5,0,0 190 DATA 10,0,0,7,0,0,10,0,7,0,0,10,0,0,7,0,0,10,0,0,7,0,0,10,0,0,7,0,2 195 DATA 10,0,0,7,0,0,10,0,0,7,0,2,10,0,0,7,0,2,10,0,0,7,0,2,10,0,2,7,0,2

- BICÍ

1 REM Program BICI 2 LOAD "9"CODE USR "a",21*8: LOAD "5"CODE 40000,616 3 GUT 31,123: OUT 223,0: OUT

	4 5	GC		ξŲ	В	2	21	ø	•		•			<u>.</u>		_	ı	_				4	
esu																						. a	٧
1 4 Ø 4 Ø 1 0 1 2 4 Ø 1 4 Ø 1	7 0 00	CL PR Ø-	5 II 4	1T 20		э. ь	ļυ	M	ь	a					1	L				2	2	3	1
40	1 05	ŘR 4-	4	TV 300	9	 6	3 E	g	U O	i I	n .	•		_	. 1	L		_	_	2		-	1
1 012	δν 3-	EF 40	110	N I 3 : 5 @	., ''	a -	č	á	U.	H	×	\$	•	1	,	U	0	= ;	2	7	1 ; 3 1	L	4
4 Ø	3 19	2 F	41	TV 25	Ø	 	ja en	ñi c	ь	a	۰.	۰.			1	L				3	2		.5 .5
4 Ö	25 5 25	4 ~ PR	4 (I)	åè TV	4	و ت	a	n	9	o'		,	, .	3	1	L L				3			5
40 1 40	25 6 28	6- PR 8-	4 (I)	3.2 VT 3.3	7 10	2 1	Je	ā	ţ	-	5	U	۱ ر	Ą	1	La	ĸ	c		ź	2	1	5
40	0262739394 0262739394	PF	II	ųŤ 23	3	6 E	e	ā	t 		_	_	-		1	L	à	K.	c	3	2		5
40	្វី5 40	3-	4 (7 I 7 I 7 I	7	F	e. Ro	c	w K	_	Γ,	0	C	K	1	L L	ā ā	K K	c	2	2		1
70	- A	če	7	3	-	<u>ج</u> ۾	- ^	v.	+	٠.	Α.	+			1	L				2	2	1	5
40	42 1 45 2	PF 6-	II 4	77 34	. 7	⊃.	•									L							5
40	:2 48 3	96 96	4	NT 25 37	ø	4 4	90 56	1.	K F	3 1	٥				1	L							.5
40	48	O- PF	1 []	àS VI	3	2) 	ļa	į	t.	z	-				1	i.							
4 (2) 4 (2)	54 56	4 - PR 8 -	11 4	05 NT 05	9	: ::	٥v	i	ſ	9					1	L				2	2	2	3
4 g	6 06	96 4 ~	11 4(TV OO	ģ	" F	a	5.	•	d,	0	ь	į .	2	. 1	L			.		2 	2	3
+ 63	454 556 667 NT	EF	i.i.	a. T		ΑT	-	ø	,	9	,		- 1	_	" २:	n H		1			B	;	
FLA	15H 18 15	LE TE	Τ.	X	= IK	Ø :	/ d	L	Ë	Ţ	٠'	y,	= '	9 N		L	Ę	Ţ	1	z :	= 1	8.	; F
N L	ĒΤ	بر الرابا	=	٠ - ۲	À	÷ Ş⊦	Ē	R	I	Ň	T Pi	R.	Į	Ţ.	ر ر	é	Ÿ	7	×	F L	į,	15	Ä
T F N . 1 1 L/A E. 7 7	5	IF X=	E)	IN - 1	ıĸ.	Ē	Х З	: = I	 N	97 T	۳.	A.	[- [VI VI	ت د د	55 X	` ;	=	1	7 L 6	r as	E	N
1; "	_8	ÉE	F	-Ā ti	52	H ∠ે	2) : 	G	Pi Q	R.	II T	Σ, Σ,	۲ 	35 35	ìŤ	_	× :	+	1	, ý	i)	 NI
LE	Ť	4 =	y Fi	-6	15	۲ H	Ė	I	N	P P	e.	A II	, V	71 T	ر م ۾	ų Į	Ī	1 X	FI	ا ا	18	H	
 E	e O	IF	F	ΙŃ	E K	Ė	9	= N	Ģ	0 8	 	۲ ۲	D Al	VI	35 5	ş Y	=	9		T I	16	IN	1
	EE	ĒF	L	آغ •	Н	ي بو:) î	Ģ	ė	R.	I	ŅT O	Τ.	3	41 5_		×	 	J.	_ i	Ē;	٠	_
78 7	0	GC GC	, -	ro	. =	к 35	<u>ء</u> ج		5	D.	٥	=	1:	ک	1	Н	E	N	1	اوا	لد	!	U
ET EUG	92 92	L5 (=U	A	9 5 as	3	=\ OF a 1	/A RE	E	N	5 \$	्। क	RI ()	٤۱ ×	51 51	V 5	1)	× :	,	Z .	: E T	-	9
	ē,	LĒ	Ť 2	- √ = Ų	į	2(L) À	ĭĽ	R	S E	Či Ei	RI N	₹ \$	Ē	\ ()	. ز ع	(ų	× +	í	y :	+1	12	() L
61 14= UAL	UB BU: S	E CF	SI	E E N	E	EI	(E)	E.	Z (u	\$ × +	í	u u	× +)	í!	j - 5)	- 1	4) L	Ė	r'	_t	9	=
STE	5	LE TE	T	5 T	9	U₽ \$	aL I	4	1 +	5	T	Ř	\$		1	[+ 5)	S	TI	R	\$	f	Ξ	+
7577 ETVAL ET4AL ET4AL STR RIN	iŤ	ÁŤ	!-	19	,	o)		T	e	M.	p.	ò	_	= .	= *	;	à	;		, «	3.		-
PĒ	ŤΝ	ΛI Ti	Ĥ	JT T	5	ø.	, ĕ	;	Ξ.	Þ	0	٤	2 (ę i	2 1	e	P	e	ť	i	ċ ′	=	
12	1	FC OL	R	6.0	=======================================	9	Ţ	Ó	_	ь 9			٠							-		٠	. ~
PE PE	EK	E	f	+e		:	1-	Ĥ	U	S	Ε		í	:	= (:)(_	Т		2	20	3,	2	1:
11 12	5	E NE	X	Γ Γ=	e 00	~	17			a	! !	τ.		1 1	₹0	_	יצי			e f	- 6		
PF1123 14 5 1 2 3 1 3 1 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24	PF	(I	NΤ		คา	, .	, 2	1	,	a	į	٠.	J.	2 3	-, (t	ĕ		z,	n	- -	, U	
13 21	#/ 5	IF		ΙN	ıκ	Εì	4	i =	•••	ā	••		T	н	E١	4	P	R	I	N.	٢	£	T
GC 141 211 2114 1414	O.	Ŭ.	35 101	S In	IK.	٤١	4	i =		ū			Τ!	н	EN	۷ ۲	þ	Ŗ	I	N,	ŗ	۴	ΙŤ
Ä) 14	5 5	ر وو	Ĕ	ĒĒ))	i	1 35	2	4			Ğ	ö		ťů -	h	1	4	6			Ì	
14 14 ×:	.6 .7 .60	IF IF	: :	AI AI	IKIKS	E)	9	: = : =		n a			T	HI	E	4	5 B	E	O:	P		. 2	٠,
×:14	.8 .0 .0	(GC) (SF) ĮŲį	TĈ) 	1	įć	Į		,	Ē	I	M	E.	a.i	l :		ş	Ą	Ų!	Ξ,		g
151 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	.0 ○, :FF	13	E	P - E	Ē	S E	,) 5 8 E	:	:00	,	8	E 23	Ε.	۹	8	. C	P	ı	9	: 6	Ε 1 2	E	E
: E	Ē	P	À	ģ ပြွန်	Ė	1	30	Ē	Ε	Ε	ė	_	•	3 -		1 I	. :	_	B	EI	ĒĒ	5 ′ . –	·-
66 86	.5 .3, .EP	14	. E.	۳ . 1	É	EF	ر 5	ė	3	é	1	9	<u>اء</u> 3	٠,	8 E	Ē	ŕ	В	ė	: 6 E1	ا 1 خ	14	3
.11 6	7	86 F	E	p Ue	É	ુ ર	9 30 1): 	٠,	В	E	E	P F		• :	3, .a	9	:	4	81	E.E	EF RE	· =
P .	3 Er	14	3	ع د ر	Ė	Ĕ	į Ę	Ė	Ė	ŕ	ĭ	<u>ة</u>	- غ	ر م	8t	Ē	ŕ	Ŗ	Ė	Ġ E	ڊ م	iě	3
É BE	ું EF	14 86 14	E:	۲ (ا	ė	3 El	1 5	i.7	3	ŕ	1	4	ے 3	ت ا ر	56 12	. : : :	ŕ	1 B	4 Ė	: 3 E1	ع خ	i E	ا ا
, 12 22	25 25	ВЕ	E	P		З,	- 7	, ;	1	В	Ε	Ę	٤	·	٠.	3,	7	:	•	61 S	ΕE	Ę	À
058 688	9 P	0	اچهر ا 3 ,	BE	Ε	ė` t	, 3٤	3	ŕ	1	4	3	<u>ج</u> ر	6 1	E 1	E F	, o	Ė	Š	ŕ	14	۲ : ا	М ;,
.056 .056 .056 .056 .056	ø	RE	JS T	UF	S N	0																	

JEDNODUCHÝ LOGICKÝ ANALYZÁTOR

(Dokončení)

Vladimír Doval

Univerzálna doska je tvorená samostatnými navzájom izolovanými štvorčekmi, ktorých stredy sú vzdialené vzájomne 2,5 mm. Rozmiestnenie súčiastok je na obr. 5. Vodivé spoje medzi príslušnými prvkami sú zabezpečené prepojovaním pomocou vodiča so samopájkovatelnou izoláciou s označením LCUA, ktorý sa často používa na navíjanie cievok a transformátorov. Pre uřahčenie práce pri drôtovaní je užitočné si vyrobiť pomôcku v tvare tužky, vo vrchnej časti ktorej bude umiestnená cievka s vodičom. Cez vnútro prípravku sa bude viesť vodič, ktorý bude vyúsťovať cez hrot, zhotovený napr. z injekčnej ihli, ktorej koniec musí však byť zbrúsený, aby nedošlo k poškodeniu izolácie vodiča.

Takto zhotovený prípravok je podobný ovíjaciemu prípravku a práca s ním je do istej miery podobná. Vývod súčiastky, na ktorom je potrebné uskutočniť vodivé spojenie, sa ovinie jednou slučkou vodiča a potom sa zapájkuje. Pri použití tenkého vodiča LCUA 0,11÷0,15 je čas pájkovania približne takým, ako keby sme pájkovali samostatný vývod súčiastky, bez vodiča. Rozvod napájania je potrebné previesť vodičom väčšieho prirezu.

Po osadení interfejsu je možné pripojiť

Obr. 6. Prepojovací vodič

páskový vodič. Bol použitý 30-žilový vodič, ktorý sa k interfejsu pripája tak, že sa navzájem striedajú signále a zemniace vodiče. Zemniace vodiče sa na oboch koncoch pripájajú na spoločný bod GND. Pripojenie konektoru (alebo konektorov) na konci páskového vodiča závisí od použitého mikropočítača. V ďalšej časti bude opísané pripojenie LOGAN-30 k osobnému mikropočítaču PMD-85.

Prepojovacie vodiče (obr. 12) slúžia na privedenie vstupných signálov na vstupné svorky analyzátora. Boli použité tzv. chňapky, ktoré sa predávajú v modelárskych predajniach pod označením SONDA 1. Sonda 1 je opatrená na jednej strane chňapkou a na druhej bežným banánikom. Dlžka vodiča je cca 1 m. Vodič bol skrátený na 20 cm od chňapky a na tomto konci bol prispájkovaný merací kolík.

Pripojenie LOGAN-30 k mikropočítaču PMD-85

Schéma pripojenia interfejsu LOGAN-30 k PMD-85 je na **obr. 7.** K potrebným signálom sa LOGAN-30 pripája k PMD-85 cez dva konektory: konektor K5 (konektor IMS-2) a konektor K2 (aplikačný konektor).

Na konektore K5 je vyyužitá celá brána A — slúži na prenos údajov z LOGAN-30 do PMD-85 po ukončení snímania, 5 bitov brány C — štyri z nich slúžia na zadávanie režimu interfejsu LOGAN-30 a na jeho uvedenie do východzieho satvu, piaty slúži pre hardwarové hradlovanie časovača 8253. Nakoniec je využitý jeden bit brány B, ktorá je nastavená vo vstupnom režime a slúži na sledovanie ukončenia snímania vzorkovacieho procesu.

Obr. 5. Rozmiestnenie súčiastok na univerzálnej doske

Obr. 7. Schéma pripojenia LOGAN-30 k PMD-85

Programové vybavenie pre LOGAN-30

V hardwarovej časti popisu LOGAN-30 boli uvedené nevyhnutné podmienky pre jeho pripojenie k osobnému mikropočítaču, čo sa týka hardwarovej kompatibility.

Avšak samotným pripojením interfejsu LOGAN-30 k počítaču sa z neho ešte nestáva logický analyzátor. Aby bolo možné mikropočítač využiť vo funkcii logického analyzátora, je potrebné príslušné programové vybavenie. Bolo vytvorené programové vybavenie s označením LOG-30. Nevyhnutnými podmienkami pre použitie tohoto programového vybavenia sú:

- graficky orientovaný displej,

implementácia programovacieho jazyka BASIC.

voľný pamäťový priestor pre program
 v jazyku BASIC — minimálne 1,5 kB,

 voľný pamäťový priestor pre programy v jazyku Assembler 8080, asi 800 bajtov, a pre údaje 1 kB,

 dostupnosť podprogramov monitora pre vykresľovanie bodu podľa zadaných súradníc a pre lineárnu interpoláciu dvoch bodov.

Týmto požiadavkám zodpovedá väčšina najrozšírenejších osobných mikropočítačov. Programové vybavenie boli implementované pre osobné mikropočítače PMD-85 a SINCLAIR ZX Spectrum.

Programy pre ZX Spectrum oproti programom pre PMD-85 poskytujú vyšší obslužný komfort, majú zabudované stránkovanie zobrazeného procesu (1024 vzoriek) oproti zobrazeniu 1 stránky zachyteného procesu pri PMD-85 a umožňujú snímanie analogového procesu pri použití osembitového analogovo-číslicového prevodníka s MDAC 08.

Keďže výpis programov pre ZX-Spectrum by zabral oveľa viac priestoru, je uvedený len výpis pre PMD-85.

Príklady použitia LOGAN-30

Priebehy uvedené v príkladoch boli zosnímané pri napojení LOGAN-30 (cez príslušný interfejs) na ZX-Spectrum. Zosnímané priebehy a im zodpovedajúce časové diagramy boli vytlačené na mozaikovej tlačiarni D-100.

Príklad 1 — zobrazenie časových priebehov čítačov.

Proces bol zosnímaný v režime synchrónnej analýzy pri internom spustení a nastavení prepínačov interného slova na 1. Maskovanie využité nebolo. Vidno, že v 1. vzorke sú skutočne všetky priebehy na úrovni log. 0. Prepínač T/F (true/false) bol v polohe 0.

Zosnímané časové priebehy sú na **obr. 8.** (str. 57 v AR A2)

Príklad 2 — snímanie jednorázových analógových signálov. Na **obr. 9.** je zosnímaný analogový priebeh hudobného signálu. Na zosnímanie analógového signálu bol LOGAN-30 doplnený o 7bitový analógovo číslicový prevodník aproximačného typu. Použitý typ prevodníka v štandardnom zapojení (s použitím monolitického prevodníka MDAC-08) umožňuje sledovať analógové priebehy nizkofrekvenčného spektra. Bol použitý signál z reproduktorového výstupu magnetofónu, úroveň ktorého bola nastavená tak, aby ešte nedochádzalo k prebudeniu vstupu prevodníka. Priebehy boli zosnímané v asynchrónnom režime.

Výpis programov pre PMD-85

Keďže PMD-85 neumožňuje v základnom vybavení automatické spúšťanie programov a pre umiestnenie do pamäte programov v jazyku BASIC a programov v strojovom kóde by tieto museli byť nahrávané každý zvlášť, bol volený iný spôsob uloženia strojového kódu.

Po nahratí programu v jazyku BASIC a jeho spustení príkazom RUN podprogramom v riadkach 1130—1190 uloží v riadkoch 1310—1650 na požadované adresy pamäťového priestoru. Ukladané údaje sú požadovaným strojovým kódom výkonnej časti programu.

Strojový kód sa ukladá od adresy 4400H a zaberá necelých 500 bajtov. Pamäťový priestor od adresy 4000H až po začiatok programu je určený pre uloženie systémových premenných programu a pre zosnímané vzorky. Tento priestor sa celý nevyužíva, keďže zo zachytených 1024 vzoriek LOGAN-30 sa do pamäte PMD-85 prenáša len 256 vzoriek.

Na zrealizovanom vzorku LOGAN-30 bola dosiahnutá max. vzorkovacia frekvencia 5,5 MHz, pri ktorej sa ešte nevyskytovali žiadne poruchy pri zápise údajov do pamätí MHB 2114.

Je potrebné podotknúť, že boli použité pamäte 2. akosti vybrané náhodne. Je možné predpokladať, že pri výbere pamätí bude horná hranica vzorkovacej frekvencie ešte vyššia.

Zvlášť možno zdôrazniť, že doplnením popisovaného analyzátora LOGAN-30 o obvody predstihu a oneskorenia a o obvody formovania vstupnej vzorkovacej frekvencie pomocou monostabilných obvodov možno vytvoriť zariadenie, ktoré sa bude ešte viac približovať priemyselným analyzátorom. V tomto prípade však bude zrejme nutné iné konštrukčné usporiadanie, keď pri väčšom počte súčiastok by boli rozmery sondy, obsahujúcej všetky prvky, príliš velké.

Literatúra

[1] Mjasnikov, B., A., Ignatjev, M., B.: Mikroprocessory — sistemy programmirovanija i otladky. Moskva, Energoatomizdat 1985.

[2] Cigelko, B., D.: Proektirovanije mikroprocessorových i izmeritelných priborov i sistem. Moskva, izdat. Technika 1985.

[3] Dědina, B., Valášek, P.: Mikroprocesory a mikropočítače. Praha, SNTL 1983.

[4] Burger, I., Kadlec, A., Čičák, P.: Konštrukcia počítačov — príručka na cvičenie. Bratislava, SVŠT EF 1982.

[5] Barták, S., Starý, J., Neumajer, V., Tlamsa, J.: Logický analyzátor BM 583. Sdělovací technika 11/1983.

[6] Sobotka Z.: Technické prostředky pro návrh mikropočítačových systémů. Sdělovací technika 8, 9/1980.

[7] Ročenka Sdělovací techniky 1987, str. 232 až 242.

[8] Sobotka, Z.: Technické prostředky pro návrh mikropočítačových systémů. Sdělovací technika 9/1980.

[9] Gubiš, P., Chlebničan, P.: Logický analyzátor ako súčasť mikropočítača. Automatizace 3/1983.

[10] Sobotka, Z.: Přehled číslicových systémů, SNTL Praha 1981.

[11] Elektrotechnická ročenka 1987, Alfa Bratislava 1986.

```
10 REM ******OBSLUZNY PROGRAM*****
15 REM *****PRE LOGAN-30 A PMD 85
17 DISP "CAKAJ"
20 LET I1=17408:LET I2=17919
30 GOSUB 1130
172 LET ADR=16384:LET ZAC=17756
174 LET A1=ADR+5:LET A2=ADR+6:LET A3=ADR+7:LET A4=ADR+8
180 GCLEAR
190 SCALE 0,255.0,242
195 MOVE 65,140
197 LABEL 2,2; "LOGAN-28"
199 MOVE 65,110
200 LABEL 1,1;" AUTOR:DOVAL V."
201 MOVE 65,101
203 LABEL 1,1;" VUKOV PRESOV"
205 PRINT "VYBER REZIMU:"
210 PRINT "D....DEMO"
220 PRINT "L....LOGAN"
225 PRINT "A....ANAL/LOG
230 PRINT "K....KONIEC"
240 INPUT X*
250 IF X*="D" GOTO 900
260 IF X*="D" GOTO 900
260 IF X*="CHOOLOGE B00
275 IF X*="A" GOTO 290
280 GOTO 240
290 PONE 17758,32:PONE 17750,0:PONE 17519,31
300 PONE 17523,31:PONE 17673,175
310 GOTO 400
400 GCLEAR
410 PRINT "SPUSTENIE:INTERNE? (STLAC-1)"
420 PRINT "SPUSTENIE:INTERNE? (STLAC-E)"
```

```
430 INPUT A×
440 IF A×="E" THEN POKE A1,1:GOTO 520
450 IF A×="1" GOTO 470
450 IF A*= 1 440 GDTO 430 470 POKE A1.0 480 PRINT "PREDVOLBA VST.SLOVA NASTAVENA? A/N"
510 GOTO 490
520 PRINT "ANALYZA = SYNCHRONNA? (STLAC-S)"
530 PRINT " ASYNCHRONNA? (STLAC-A)"
530 IF Cx="8" THEN FOKE A2,1:GCLEAR:GOTO 700
560 IF Cx="8" THEN GOTO 580
570 GOTG 540
580 POKE A2.0
590 PRINT "ZADAJ VZORK.FREKVENCIU"
600 PRINT " F=0.032-1024 KH2 "
610 INPUT F1
615 IF ((F1(0.03)3)GR(F1)1024)) THEN 600
620 LET N=2048/F1
625 LET MS=1NT(N/256)
630 LET LS=IN; (N-MS*256)
635 POKE A3.LS
640 PONE A4.MS
645 GGLEAR
650 LET A=PEER (A2)
660 IF A=1 THEN 700
670 LET F2=2048/(MS*256+LS)
680 LET R=(1/F2)*20
682 GCLEAR
                       1 DIECIK = "#K#"MICISEKUND.F = "#F2;"NHZ"
685 PRINT
      DIFUSE (ZAC)
DISP "ZMENA PARAMETROU? (A/N) + NONTEO? (N) + UYBER
710 DISP
       REZIMILOO
REZIMO(N)"

720 INPUT DLX

730 IF BLX="N" COTO 645

740 IF DLX="K" GOTO 800

750 IF DLX="A" GOTO 400
760 IF DLx="R" G010 780
770 6010 710
780 FOKE 17738-1:POKE 17750-201:FOKE 17519-20
790 POKE 17523,20:PGKE 17673,205
795 GOTO 170
800 END
900 REM ****DEMONSTRACNY LOGICKY ANALYZATOR
910 GCLEAR
920 SCALE 0,50,0,244
930 AXES 1,0
940 E=20
950 FOR A=20 TO 160 STEP 20
960 MOVE 1.A
970 FOR I=1 TO 50
980 C=INT(0.5+RND(1))
```

```
1000 IF DEE THEN 1040
 1010 PLOT 1,E
1020 E=D
1030 PLUT 1,E
1040 NEXT 1
1050 NEXT A
1060 DISF "
                                BEMO?(D) +LOGAN?(L) +KONIEC?(K) "
1070 INFUT DAX
1080 IF DAX="D" GOTO 900
1090 IF DAX="L" GOTO 400
1100 IF DAX="K" GOTO 800
1110 GOTO 1060
1130 FOR I=11 TO I2
1135 READ A*
 1140 A1=LEFT*(A*,1):A2*=RIGHT*(A*,1)
1145 R1=ASC (A1%) : R2=ASC (A2%)
1150 1F B1(58 THEN C1=B1-48:GOTO 1160
1155 C1=B1-55
1160 IF B2<58 THEN C2=B2-48:GOTO 1170
1165 C2=B2-55
1170 D=C1*16+C2
1175 FOKE I,D
1180 NEXT I
1190 RETURN
1190 RETURN
1310 DATA 06,80,0E,00,16,3C,1E,32,C9,21,09,40,22,02,40,3A
1320 DATA 09,40,23,22,02,40,A0,32,04,40,CA,23,44,CD,7D,44
1330 DATA C3,26,44,CD,88,44,0C,C9,2A,02,40,7E,A0,CA,44,44
1340 DATA 3A,04,40,FE,00,C2,3E,44,CD,AB,44,C3,55,44,CD,7D,7
1350 DATA 44,C3,55,44,3A,04,40,FE,00,C2,52,44,CD,88,44,C3
1360 DATA 55,44,CD,93,44,2A,02,40,7E,A0,32,44,40,0C,23,22
1370 DATA 02,40,79,FE,00,C2,28,44,C9,78,0F,47,0E,01,3E,14
1380 DATA 82,57,3E,14,83,5F,21,09,40,22,02,40,C9,21,70,C1
1390 DATA 71,23,23,73,CD,7D,8C,C9,21,70,C1,71,23,23,72,CD
1400 DATA 71,8C,C9,0D,21,70,C1,71,23,23,73,23,71,23,72,CD
1400 DATA 05,CD,D0,8C,D1,C1,9C,CD,88,44,C9,21,FA,C1,36,B0
1420 DATA 00,21,70,C1,71,23,23,73,23,71,23,72,C5,B5,CD,D0
1430 DATA 8C.PI.70.CI.71.23.23.723.723.72.53.72.C3.13.C1.136.A8
1440 DATA 21.70.CI.36.400.23.23.36.D7.23.36.00.23.36.20.CI.1400 DATA D0.8C.21.70.CI.36.20.12.23.23.36.D7.23.36.FF.23.36.20.CI.1460 DATA D7.CD.D0.8C.21.70.CI.36.14.00.21.72.CI.40.37
```

990 D=10*C+A

DOKUMENTACE INFORMACE REALIZACE

S narůstajícím počtem osobních počítačů v ČSSR narůstá i potřeba výměny informací, zkušeností, softwaru — prostě kontaktu mezi uživateli těchto počítačů. Tak jako dříve v oblasti domácích počítačů bylo několik pokusů vytvořit kluby uživatelů i "písíček". Jejich efektivnost však většinou ztroskotává na tom, že jde čistě o zájmová sdružení bez ekonomického, materiálního a personálního zázemí.

Proto jsme uvítali iniciativu družstva VKUS Brno se snahou o profesionální řešení této potřeby

Závod výpočetní techniky družstva VKUS je vybaven kvalitní technikou — mimo jiné kompletním systémem CAD/CAM pro modelování a konstrukci střihů s 16 ti a 32bitovými počítači a řadou netradičních periférií. To spolu se stálými pracovníky závodu a exter-ními spolupracovníky z řad špičkových odbor-níků z vysokých škol, z výzkumných ústavů, zahraničních firem apod. by mělo být zárukou maximální serióznosti a kvality poskytovaných služeb.

Služby budou poskytovány zásadně na základě hospodářské smlouvy. Nejedná se tedy o nějaké amatérské sdružení jednotlivců, zabývajících se osobními počítači ve volném čase, ale o zprostředkování spolupráce profesionálních uživatelů osobních počítačů

Základním záměrem je zorganizování širo-ké uživatelské základny, která umožní rychlé šíření aktuálních informací a využití tvůrčího potenciálu členů; poskytování informací, do-kumentace, programů a služeb v oblasti 16ti a 32bitových počítačů typu IBM PC a operativní reakce na další potřeby uživatelů.

K poskytování informací, dokumentace

a programů bude zásadně využíváno média

pružných disků (disket) o formátu 5 1/4" (360 kB nebo 1,2 MB) nebo 3 1/2" (1,44 MB), které si dodá užívatel (objednatel). Předpokládá se pravidelná zásilka 4 x do roka. Touto cestou by všem měl být k dispozici zhruba tento rozsah informací:

- adresář všech uživatelů (adresy, spojení, používaná konfigurace, aplikace, SW),
- evidence programů, nejnovější informace z oboru zejmé-
 - překlady a komentáře článků ze zahra-ničních časopisů (BYTE, CHIP, MC, CADENCE, CADALIST aj.),
 - informace o pořádaných seminářích a akcích,
- obchodní nabídka našich a zahraničních firem.
- * zajímavé aplikace,
- aktuální nabídka školení (přednostně pro
- členy), příspěvky uživatelů.

Předpokládají se pravidelné "rubriky" těchto informací, např. MS DOS, UNIX a OS/2, počítačová grafika (CAD), editory-databázeintegrované systémy, desk top publishing, expertní systémy, počítačové sítě, nové výrobky, antivirová problematika, právní poradna, ce-

ny, atd. Stejnou cestou — tj. na disketě — bude poskytována i potřebná dokumentace. Předpokládá se možnost tvoření kvalitních manuálů včetně demonstračních příkladů z po-hledu zkušeného československého uživatele (tedy nikoli překlady zahraničních manuálů). Pro nejbližší období 1 až 2 let se počítá např. s manuály pro TurboPascal 4.0 a 5.0, dBASE IV, AUTOCAD, UNIX, OS/2, apod. Zároveň bude vytvořena evidence dostupnosti originální dokumentace k jednotlivým programo-vým produktům. Další službou budou dodáv-ky software. Předpokládá se každoročně dodávka 1 až 2 ekonomických subsystémů včetně dokumentace (např. mzdy, účetnictví, fakturace, ZP, PPS, MTZ, apod.). Dále budou průběžně dodávány drobné programy a sou-bory z oblasti základního i aplikačního softwaru (systémová čeština, drivery, fonty, antiviro-

ru (systémová čeština, drivery, fonty, antiviro-vý SW, utility, grafika, knihovny součástí do softwaru CAD apod.). Uvedené služby budou poskytovány v rámci uzavřené hospodářské smlouvy za jednorázo-vý roční poplatek ve výši 4960 Kčs. Mimo rámec hospodářské smlouvy (za zvláštní úhradu) může PC-DIR poskytovat konzultační služby, zavádět HW i SW systémy včetně zaškolení uživatelů. dodávat speciální včetně zaškolení uživatelů, dodávat speciální SW, zprostředkovávat prodej programů a podle možností po dohodě poskytovat jakékoli

další služby z oboru.
O činnosti PC-DIR, serióznosti a kvalitě jeho služeb a novinkách v jejich poskytování vás budeme průběžně na stránkách AR informo-

Zájemci o spolupráci a o členství ve vytvářené uživatelské základně se mohou obrátit přímo na družstvo VKUS Brno, Veselá 5, 625 00 nebo na redakci AR, Mikroelektronika, Jungmannova 24, 113 66 Praha 1.

KONSTRUKTÉŘI SVAZARMU

Stereofonní adaptér příjem telegrafie

Ing. Vladimír Balhar, OK1SVB

V tomto příspěvku je řešena problematika zlepšení přijmu telegrafních signálů poněkud jinak. Filtry nejsou řazeny za sebe sériově, jak bývá zvykem, ale paralelně. Množství informace, kterou musí zpracovat lidský mozek, neklesá, ale naopak roste, což kupodivu není na závadu. Výsledky jsou natolik zajímavé, že jsem se rozhodl seznámit radioamatérskou veřejnost s tímto nápadem formou jednoduchého stavebního návodu.

Princip zařízení je znázorněn na obr. 1. Mezifrekvenční signál je v detektoru směšován se signálem ze záznějového oscilátoru. Vzniklý nízkofrekvenční signál je veden do dvou filtrů s mírně rozdílnými kmitočty propustného pásma. Na výstupy filtrů jsou připojeny zesilovače se sluchátky.

Tím je dosaženo jistého stereofonního efektu. Při postupném prolaďování jednoho signálu máme pocit, že signál se objeví uprostřed hlavy, pak se posune k jednomu uchu, přes střed k druhému uchu a zmizí opět uprostřed

osc

Pókud použijeme úzkopásmový mezifrekvenční filtr (např. 600 Hz), můžeme nízkofrekvenční filtry nastavit tak, že se signál objeví v jednom uchu, přes střed se posune k druhému, kde zmizí. Záleží na libovůli posluchače, který způsob mu bude více vyhovovat (obr.

2).

Význam tohoto způsobu poslechu telegrafních signálů při příjmu jedné stanice neoceníme, ale pokud bude na kmitočtu "husto", jak už to v radioamatérských pásmech bývá, najednou zjistíme, že signály se od sebe liší nejenom výškou zázněje, ale i "polohou v naší hlavě". Spolehlivý poslech slabé stanice v těsném sousedství silnější je pak jednodušší.

detektor

filtr 1

Existuje ještě několik technických variant, a to s využitím mezifre-kvenčního zesilovače. Tyto možnosti jsou poněkud složitější a dražší. Efekt zůstává zhruba stejný. Zvýší se pouze odolnost vůči křížové modulaci na

Schéma zapojení adaptéru je na obr. 3. Jedná se o dvě pásmové propusti realizované pomocí článků RC a operačních zesilovačů. Dva operační zesilovače OZ1a, OZ1c jsou použity pro lovače OZ1a, OZ1c jsou pouzity pro realizaci pásmových propustí, dva zesilovače OZ1c, OZ1d jsou oddělovací sledovače se ziskem 1. Je možno říci, že z hlediska vysoké jakosti Q je výhodné, jestli kondenzátor C1, C2 a C3, C4 mají stejné kapacity. Jakost Q potom vypočítáme:

Zisk na vrcholu rezonanční křivky:

$$G \doteq -\frac{1}{2} \cdot -\frac{R3}{R1}$$

Jistě jste zjistili, že pro hodnoty uvedené ve schématu filtr zesiluje. Pokud budeme chtít mít zisk G = 1, pak musíme použít rezistor R1 330 kΩ. Pro druhou větev upravíme trimr P1 a rezistor R5 obdobně. Pro rezonanční kmitočet platí:

$$f_o = \frac{1}{2\pi} \cdot \frac{1}{\sqrt{\text{C1C2RR3}}}$$

$$kde R = \frac{R1R2}{R1 + R2}$$

Šířka pásma:

$$B \doteq -\frac{\text{fo}}{Q}$$

Podle uvedených vzorců si můžeme vypočítat filtr podle vlastních požadavků. Vzorce odpovídají spodnímu filtru podle obr. 3. Horní filtr se vypočítá stejně, neodpovídají však indexy značení součástek indexům ve vzorcích. To snad ale nebude problém.

Na výstupy adaptéru můžete připojit vstupy stereofonního zesilovače (luxusní varianta), nebo přímo sluchátka (varianta chudého radioamatéra). jsem miniaturní sluchátka přenosného magnetofonu (2 × 55 Ω), která nevyhověla pro značný počet vlastních rezonancí. Ty rezonance jsou nutné asi pro "vylepšení" reprodukce hudby, pro CW v této aplikaci se nehodí. Velmi dobrá byla sluchátka ARF s impedancí × 200 Ω a sluchátka ze sovětské radiostanice s impedancí 2 x 50 Ω. Stará známá sluchátka o impedanci 4000 Ω isem nezkoušel, je zde však předpoklad vlastních rezonancí.

Montáž je jednoduchá, součástky osadíme podle obr. 4 a obr. 5, zapájíme, kalafunu omyjeme ředidlem. Při pájení IO B084 pozor, tento obvod nemá rád pistolovou páječku. Je nutno dodržet zásady pro práci s obvody CMOS. Celkový pohled na hotový

adaptér je na obr. 6.

Při oživování vyzkoušíme pracovní bod použitých OZ; na všech výstupech

Obr. 4. Rozložení součástek na desce s plošnými spoji X09

Obr. 5. Deska s plošnými spoji X09 (průměr pájecích bodů 2 mm)

Obr. 6. Fotografie osazené desky s plošnými spoji

by mělo být zhruba poloviční napájecí napětí. Adaptér připojíme na vhodné místo do přijímače, pro začátek stačí sluchátkový výstup, připojíme sluchátka a oddáme se experimentům.

Trimrem P1 nastavíme stejnou výstupní úroveň z filtrů pro jednotlivé rezonance. Pak už jenom ladíme a posloucháme. Je docela zajímavé naladit si dvě stanice tak, aby jedna zněla v jednom uchu a druhá v druhém. Také si můžeme silnou stanici potlačit a slabou naladit tak, jak nám to bude neilépe vyhovovat.

Je možné, že někteří operátoři znechuceně odloží sluchátka se slovy: "Má hlava je včelín". Nemusí zoufat, stačí obě propusti nastavit na stejný kmitočet, změnou rezistorů R1, R5 nastavit zisk 1 nebo o málo více než 1, vyjmout trimr P1, propojit vstup jedné propusti s výstupem druhé a vznikne velmi jakostní dvojnásobná telegrafní propust, se kterou si budou jistě vědět

Přeji vám mnoho úspěchu při stavbě a bádání, příjemné prožitky a dobré podmínky na amatérských pásmech.

Seznam součástek

Rezistory (TR 151)	
R1	5,6 kΩ	
R2	150 Ω	
R3	680 kΩ	
R4	330 Ω	
R5	4.7 kΩ	
R6	150 Ω	
R7	680 kΩ	
R8	330 Ω	
R9	4.7 kΩ	
R10	4.7 kΩ	
Integrovan		
OZ1	B084	
Kondenzál		
C1a	10 nF	TC 282 (TC 281)
C1b	3.3 nF	TC 282
C2a	10 nF	TC 282
C2b	3.3 nF	TC 282
C3a	10 nF	TC 282
C3b	10 nF	TC 282
C4a	10 nF	TC 282
C4b	10 nF	TC 282
C5	10 μF	TE 934
C6 až C8	10 μF	TE 984
Trimry		
P1	2,2 kΩ	TP 040

Nízkofrekvenční zesilovač pro CD

Ing. Karel Hájek, CSc.

Mechanická konstrukce

Základem je rám, svařený z profilů L. Ovládací prvky, umístěné na přední straně, jsou uchyceny na subpanelu, tandemové potenciometry pro ekvalizér na dvou lištách v subpanelu. Zadní panel nese výstupní a vstuní konektory a izolovaně uchycený chladič výkonových zesilovačů. Síťový transformátor je připevněn k rámu a stíněn železným plechem. Desky s plošnými spoji zdroje a výhybek jsou přišroubovány k pomocné liště, deska výkonových zesilovačů na chladiči a

Obr. 12. Deska X10 s plošnými spoji vstupních obvodů s předzesilovači pro gramofon a mikrofon

Obr. 13. Osazení desky s plošnými spoji vstupních obvodů (na obr. není zakreslen C110; je u C10)

zbylé desky jsou prostřednictvím úchytek přepínačů lsostat připevněny k subpanelu. Pro vývod sluchátek je na čelním panelu konektor typu "jack" o průměru 6 mm. Přepínače jsou vesměs typu Isostat, Př8 může být libovolný s 2x 3 polohami. K připojení reproduktorů byly využity šestipólové nožové konektory 6 AF 89 707. Při návrhu

čelního panelu je nutné vycházet z velikosti knoflíků - ať již zakoupených v prodejnách TESLA nebo vlastní výroby. Proto ani neuvádím přesné rozměry. Možný způsob rozmístění na čelním panelu a celková mechanická koncepce je zřejmá z fotografií.

Při stavbě je třeba dbát všech zásad zemnění a stínění, především

u vstupních obvodů, ale stínit je pro iistotu vhodné všechny "živé" vodiče mezi plošnými spoji až k výkonovým zesilovačům. Výkresy plošných spojů a jejich osazení jsou na obr. 12 až 23. K osazování a oživování desky výkonových zesilovačů lze poznamenat, že integrované obvody a rezistory jsou ze strany součástek a protože tato strana je přišroubována k chladiči, jsou větší součástky (kondenzátory) a přívody připájeny ze strany spojů. Oživovat ie vhodné každý zesilovač zvlášť. Při správném osazování dobrými součástkami by sice neměly nastat žádné potíže, ale případná chyba by se při zapojení všech zesilovačů obtížně hledala. Proto je vhodné propájet rozdělenou napájecí sběrnici až po oživení všech zesilovačů. Tento poznatek mám z vlastní zkušenosti. Při prvním připojování je vhodné jistit zesilovače pojistkou.

Oživování dalších desek zesilovače by nemělo činit potíže při nastavování kmitočtů generátorů "pily" je vhodné tento kmitočet měřit.

Závěrem lze konstatovat, že realizace tohoto zesilovače je přístupná průměrným amatérům a to i finančně (cena všech součástek včetně mechanických by neměla převýšit 1300 Kčs). Součástky jsou běžně dostupné, jen čtyřnásobné operační zesilovače se vstupními tranzistory FET (B084D) byly v době stavby zesilovače pouze v prodejně na Karlově náměstí v Praze (za 60 Kčs).

Zesilovač lze používat samostatně, bez třetinooktávového ekvalizéru, který je finančně i realizačně náročnější; v tom případě není potřebný generátor pilovitého signálu.

amatérske AD 10

a vypínače fyziologické regulace

Seznam součástek

Rezistory

R1, R2, R17, R18, R39,

R41a-c, R43a-c R3, R16, R59 $0,1~M\Omega$ 1,8 kΩ R4, R13, R28 1 kΩ R5, R6, R45, R48 $8,2 \, k\Omega$ R7 až R9, R11, R26,

R42a--c $33\;k\Omega$ R10, R14 $0,27~\text{M}\Omega$

Obr. 16. Deska X12 s plošnými spoji kmitočtových výhybek

Obr. 17. Osazení desky s plošnými spoji kmitočtových výhybek

R12	330 Ω
R19,	$3,3 k\Omega$
R20, R21, R38	18 kΩ
R24a-e, R25a-e	$3,9 k\Omega$
R27	$5,6 k\Omega$
R29 až R32	18 kΩ
R33, R54, R58	0,12 Mg
R34, R40	6,8 kΩ
R35 až R37, R52	10 kΩ
*R44ac	1Ω
R46, R47	82 kΩ
R49	12 kΩ
R50, R66, R22a-e, R23a-c	$2,7 k\Omega$
R51	$1 M\Omega$
R53, R56, R60 až R64	68 kΩ
R55	15 kΩ
R57	47 kΩ
R65, R67	270
R68	1.2 kΩ

Kondenzátory	:
C1, C2	100 nF, TK7 83
C3	680 pF
C4	100 μF, TE 984
C5	330 pF
C6	20 μF/15 V, TE 984
C7	3,3 nF, styroflexový
C8 -	8,2 nF
C9	100 μF/15 V, TE 984
C10	100 nF, TK 783
C11	10 μF/15 V, TE 984
C12	39 pF
C13, C14	270 pF
C15a, C16a	1 μF, TC 215
C15b, C16b	220 nF, TC 215 nebo styrofle-
•	xový
C15c, C16c	56 nF, TC 215 nebo styrofle-
	xový
C15d, C16c	15 nF, TC 215 nebo styrofle-
•	xový
C15e, C16e	3,9 nF, TC 215 nebo styrofle-
	xový
C17	470 pF
C18	100 nF, TK 783
C19	22 nF, styroflexový
C20	3,9 nF, styroflexový
C21	56 nF, styroflexový
C22 až C24	15 nF, styroflexový
C25	6,8 nF, styroflexový
C26	1 nF, styroflexový
C27	18 nF, styroflexový
C28 až C30	2,2 nF, styroflexový
C31ac	100 nF, TK 783
C32ac	5 μF/15 V, TE 984
C33ac	100 nF, TK 783
C33ac C34ac	100 pF
C35a—c	100 nF, TK 783
C36ac	100 nF, TK 783 100 nF, TK 783
C37, C38	200 μF/25 V, TE 985
C39, C40	10 μF/15 V, TE 984
C41	1 μF, TC 215
C42°	330 pF, styroflexový
C43°	3,9 nF, styroflexový
C44*	39 nF, styroflexový
C45	3,9 nF, styroflexový
C46 až C49	2 mF/25 V, TC 936a

Všechny rezistory jsou miniaturní TR213, kondenzátory (pokud nejsou označeny) libovolné. Rezistory vyjma R52 až R68 a kondenzátory vyjma C38, C37, C41 až C46 jsou 2× (pro pravý kanál je označení o 100 vyšší). Součástky s hvězdičkou viz text.

Obr. 18. Deska X13 s plošnými spoji výkonových zesilovačů

Obr. 19. Osazení desky s plošnými spoji výkonových zesilovačů

Obr. 20. Deska X14 s plošnými spoji měřičů úrovně a generátoru pily

Obr. 21. Osazení desky s plošnými spoji měřičů úrovně a generátoru pily (připojení D105 až D111 je pro lepší přehled vypuštěno – je analogické spojům k D5 až D11, C12 a C112 označeny jako C17 a C117)

Potenciometry:

2× 0,25 MΩ logaritmický,

TP289D

P2 2× 10 kΩ lineární, TP289D

2x 22 kΩ lineární, P3a-TP645 (5 kusů)

2× 0,1 MΩ logaritmický s od-P4

bočkou TP289D

P5 25 kΩ lineární, TP280

Polovodičové součástky

101 až 106, 10106, 1011 B084D (8 kusů) 107 až 109, 10107 MDA2020 (6 ku-

až 10109 1010, 10110 sů) A277D (2 kusy)

1012

MA1458 MA7815

1013

KC309F (B, C)

T1, T2, T101, T102

KC508

T3 T4

KF517

D1a-c, D101a-c D2a-c, D102a-c

KY130/80 KY130/80

D3, D103, D4, D104 D5 až D9, D105 až D109

KA261 LQ1812

D10, D11, D110, D111 D12

LQ1212 **KA261**

D13.až D16 D17

KY708 KZ260/15 LQ1702

D18

Přepínače: Př1

4× Isostat, závislý 1x Isostat, ne-

Př2L Př2P

závislý

Isostat, nezávislý

Př3 až Př7

Isostat, nezávislý

Př8

WK 533 36

Obr. 22. Deska X15 s plošnými spoji napájecího zdroje

Obr. 24 a, b. Rozmístění ovládacích prvků a jednotlivých konstrukčních částí v zesilovači

Obr. 23. Osazení desky s plošnými spoji napájecího zdroje

Transformátor:

El, 32 × 50, primární vinutí 660 z drátu CuL o ø 0,5 mm, sekundární vinutí 2 × 44 z drátu CuL o ø 1,6 mm

Ostatní:

Konektory, pojistkové pouzdro, knoflíky a propojovací vodiče

Upozornění k začátku článku v AR A2/1988: Na obr. 5 je R17 označen jako R7; na obr. 10 není zakreslena dioda D12, která má být zapojena v propustném směru do báze T3, odpor R57 má být 47 kΩ, R58 120 kQ.

- [1] Reproduktorové soustavy v neobvyklém pohledu. AR A4/1976, s. 128.
- [2] Hájek, K.: Minimalizace dynamického zkreslení operačních zesilovačů. Sdělovací technika 5/1988, s. 125.
- [3] Hájek, K.: Kmitočtové výhybky s lineární fázovou charakteristikou. Sdělovací technika. 34, 10-11/1986. s. 362 až 363.

Literatura

- [4] Čížek, V.: Okamžitá frekvence a její fyzikální význam. Sborník "Radioelektronika '86", Bratislava, 1986, s. 3 až 7.
- [5] Salava, T.: Výhybky pro reprodukční soustavy. AR č. 5/1974, s. 173 až 175.
- [6] Hurta, J.: Nf zesilovač. Konstruk-
- ční příloha AR 1984, s. 14 až 26. [7] Gáš, B., Zuska, J.: Stereofonní zesilovač mini. AR A6/1986, s. 211 až 216.

Obr. 25., 26. Umístění desek u předního a zadního čela zesilovače

Zajímavá zapojení

VSTUPNÍ JEDNOTKA VKV

Popsaná jednotka (obr. 1) s KF907 (910) vznikla hlavně ze snahy vyhnout se cívkám navinutým na kostřičkách s jádry. Proto jsou použity vzduchové cívky. Jednotka nesplňuje zřejmě zvětšené požadavky na odolnost proti křížové modulaci, intermodulaci apod. Pokud nebydlíme přímo u vysílače, není to zrovna největší vada. Výhodou je jednoduché nastavení bez použití vf měřicích přístrojů, které většina amatérů nevlastní.

Zapojení

Protože šestice varikapů je nedostupná, je nahrazena dvěma trojicemi, jednou v horní a druhou v dolní řadě varikapů — typ KB109G. Cívky: Vzduchové, vodič Cu o ø 1 mm, stoupání 2 mm, vinuté na ø 5 mm (dřík vrtáku).

Obr. 1. Schéma zapojení (odbočka na L4 má být blíž k hornímu konci) L1 — 7 z (vstup 75 Ω na třetím závitu od země), vstup 300 Ω cívka 5 z (střed uzemněn).

L2 — 7 z (vstup na třetím závitu od země, vložena do L1). L3 — 5,5 z na bužírce ø 5 mm (zabrání

L3 — 5,5 z na bužírce ø 5 mm (zabrání mikrofoničnosti). L4 — kostra ø 5 mm, 17 z (odbočka na

třetím závitu — od napájení). L5 — tlumivka 20 z na feritové tyčce o ø 2 až 3 mm.

Konstrukce

Ná dvoustranné desce s plošnými spoji, v krabičce z plechu, která je rozdělená na tři díly, v prvém T1, kolektor prochází přepážkou do druhého pole, v něm T2, L4 kolmo a co nejdál od L2, ve třetím oscilátor. Na

jedné straně desky pasívní součástky. Na druhé tranzistory, cívky, varikapy a zem. Na kolektoru T1 feritová perla. Ladicí napětí pro konec CCIR asi 18 V. P3 — zisk (pozor na rozkmitání).

Oživení

Přesvědčíme se, zda kmitá oscilátor (druhým tunerem). Do pásma o 10,7 MHz výše nastavíme oscilátor roztahováním L3. Souběh nastavíme dole roztahováním L1, L2, nahoře P1, P2

P4 — nejvýhodnější bod směšování (0,4 V — G2).

S popsanou jednotkou spojenou s mf jedním KF524 (druhý tranzistor jen zvětšuje šum), jedním keramickým filtrem a A225D, při nastavení bez jakýchkoli vf přístrojů jsem přijímal v podkrovní místnosti (okres Ústí nad Orlicí) vysílač "Ö3" (při průměrných podmínkách příjmu) na anténu (drát 10 cm) při uspokojivém odstupu (pochopitelně mono).

Jan Stránský, Jan Šmejdíř

4 1/2 miestne panelové meradlo

Súčasný stav techniky umožňuje stavbu panelového meradla s minimálnym množstvom integrovaných obvodov a pasívnych súčiastok. Integrované obvody na panélové meradlá vyrába okrem iných firma Siliconix, Intersila a Texas Instruments. Dole popísané integrované obvody sú výrobkami firmy TI. 101 označený TL500 obsahuje analógový procesor, IO2 označený TL502 obsahuje digitálnu časť (obr. 1). Analógová časť má zabudovaný zdroj referenčného napätia, ktorým môžeme dosiahnuť rozlišovaciu schopnosť 12 bitov. Precíznym vonkajšim zdrojom referenčného napätia môžeme zväčšiť rozlišovaciu schopnosť na 14 bitov. Popisovaný prevodník pracuje na princípe "dual slope".

Analogová časť má napájanie ±12 V. Nastavenie voltmetra spočíva v nastavení zdroja referenčného napätia (trimer 500 Ω). Digitálna časť (obvod TL502) potrebuje k svojej činnosti napájacie napätie +5 V. Výstupné signály sú kompatibilné s logikou TTL a CMOS. Kondenzátorom 470 pF, ktorý je zapojený medzi vývod 17 a zem, sa nastavuje vnútorná časová základňa obvodu. Cez výstupy a, b, c, d, e, f, g možno budiť displej so spoločnou

anódou. Displej pracuje v multiplexnej prevádzke. Na výstupy D1 až D5 sú pripojené tranzistory, ktorými sú spínané jednotlivé dekády. S popisovaným voltmetrom môžeme merať jednosmerné napätie do 19,999 V. K stavbe multimetra treba ešte doplniť základné zapojenie vstupným deličom, lineárnym usmerňovačom a prevodníkom R/U. Podľa firemnej literatúry TI.

Ladislav Takács

Obr. 1. Schéma zapojenia

112 amatérské AD 1 4/3

AMATÉRSKÉ RADIO BRANNÉ VÝCHOVĚ

Přátelství — Bratrství 1988 (ke 2. straně obálky)

Vrcholnou mezinárodní soutěž v komplexním víceboji radiotelegrafistů Přátelství — Bratrství 1988 uspořádal ve dnech 17. až 24. srpna v Plovdivu Ústřední radioklub bulharské organizace OCO. Startovalo 84 závodníků ze šesti států. Z tradičních účastníků chyběli reprezentanti NDR. Delegaci ČSSR vedl plk. Ing. František Šimek, OK1FSI. Mezinárodním rozhodčím byl MS Ing. Vlastimil Jalový, OK2BMW, a trenérem Karel Pažourek, ZMS OK2BEW. V delegaci bylo 12 závodníků. Sestavy jednotlivých družstev jsou uvedeny ve výsledkové listině.

Střediskem soutěže bylo internátní doškolovací zařízení bulharské Akademie věd. Zde, v moderních učebnách, probíhaly disciplíny příjem a vysílání a v přilehlém parku telegrafní provoz družstev. Na střelnici, kde byl také hod granátem, se jezdilo 30 km do sousedního Asenovgradu. Orientační běh připravil oddíl IOF Plovdiv v Rodopech, ve výšce 1200 až 1300 m n. m. Na organi-

zaci a rozhodování při soutěži se podílelo z pořádající země jen 25 lidí. Všichni však byli vysoce kvalifikovaní a trvale maximálně využití. Vedení soutěže úzkostlivě dbalo na znění pravidel, které je však místy nedokonalé, takže v některých případech došlo ke sporným rozhodnutím. Jednalo se např. o toleranci rychlosti při příjmu nebo udělení medaile při rovnosti bodů. Oficiálně však nebyl podán žádný protest a tak soutěž, až na trapnou chybu při udělení medaile jinému závodníkovi, proběhla zdárně.

Při hodnocení sportovních výsledků lze konstatovat, že sovětští vícebojaři jsou v posledních letech neporazitelní. Získali všech 8 velkých zlatých medailí a to je výsledek zcela přesvědčivý. Obdivuhodná byla např. práce jejich mužů v telegrafním provozu, který zvládli za 18 min 45 sec s jedinou chybou a získali tak 598 b. ze 600 možných. Ve dvou kategoriích také vyhráli OB: Kyselov 62 min 45 sec a Gavrilová, roz. Čakirová 44 min 01 sec. Z výkonů československých reprezentantů je pozoruhodný historický výsledek družstva žen v telegrafním provozu. Jejich čas 24 min 47 sec a jen 3 chyby znamenaly letos 591 b. a první

místo v této těžké disciplíně. Škoda, že se děvčatům v dalších disciplínách dařilo již méně. Bronzová medaile jim zůstala na dosah. Hezký úspěch dosáhl Milan Leško. Časem 55 min 48 sec vyhrál OB a za součet bodů OB + střel. HG získal malou zlatou medaili. V témže dílčím hodnocení získal malou bronzovou medaili Stanislav VIk, který vyhrál OB časem 34 min 05 sec. Velké stříbrné medaile, které domů přivezli naši junioři a dorostenci, jsou úspě-chem také jejich kolegů, kteří se do reprezentačních trojic nedostali. Martinek, Bebjak, Beran a Švenda, Martiška, Moravanský, to byli domácí soupeři, kteří svými výkony v dlouhodobé pří-pravě stále ovlivňovali definitivní nominaci. Také jim patří dík a vysoké uznání za úspěch, který mladí českoslovenští vícebojaři v Bulharsku dosáhli.

Trojici našich mužů se dařilo jen průměrně, takže zůstali 34 b. za medai-lí. S "komplexkami" se definitivně rozloučil pětadvacetiletý RNDr. Peter Dyba. Mezi muže postupují hned tři výborní závodníci: Sláma, Leško a Bebjak. Věřme, že budou úspěšní i v nejvyšší kategorii. Snad již v Maďar-

sku 1989.

Termíny závodů na VKV v roce 1989

Kategorie A:

Název závodu	Datum	Ĉas UTC	Pásma
I. subregionální závod	4. a 5. března	od 14.00 do 14.00	145 a 433 MHz, 1,3 GHz a vyšší
II. subregionální závod	6. a 7. května	od 14.00 do 14.00	145 a 433 MHz, 1,3 GHz a vyšší
Mikrovlnný závod	3. a 4. června	od 14.00 do 14.00	1,3 GHz a vyšší
XVI. Polní den mládeže	1. července	od 10.00 do 13.00	145 a 433 MHz
XXXXI. Polní den	1. a 2. července	od 14.00 do 14.00	145 a 433 MHz, 1,3 GHz a vyšší
Závod vítězství VKV 44	29. a 30. červeno	eod 14.00 do 10.00	145 a 433 MHz
Den VKV rekordů; IARU Region I. — VHF Contest	2. a 3. září	od 14.00 do 14.00	145 MHz
Den UHF rekordů; IARU Region I. — UHF/Microwave Contest	7. a 8. října	od 14.00 do 14.00	433 MHz, 1,3 GHz a vyšší
A1 Contest; Marconi M. Contest	4. a 5. listopadu	od 14.00 do 14.00	145 MHZ

Kategorie B:

Velikonoční závod	26. března	od 07. do 13.00	145 a 433 MHz
Závod k Mezinárodnímu dni dětí	3. června	od 11.00 do 13.00	145 MHz
Východoslovenský závod	3. a 4. června	od 14.00 do 10.00	145 a 433 MHz
FM Contest — I. část	15. července	od 14.00 do 20.00	145 MHz
FM Contest — II. část	19. srpna	od 14.00 do 20.00	145 MHz
Vánoční závod	26. prosince	07.00—11.00 12.00—16.00	145 MHz

Deníky ze závodů se posílají na adresu ÚRK ČSSR, Vlnitá 33, 147 00 Praha 4-Braník, pokud není v podmínkách závodu uvedena adresa jiná. Deníky se posílají v jednom vyhotovení, pouze ze závodů konaných v září, říjnu a listopadu ve dvou vyhotoveních.

Dlouhodobé soutěže

Provozní aktiv VKV	každou třetí neděli ~ v měsíci	od 08.00 do 11.00	145 MHz
UHF/mikrovlnný aktiv	každou třetí neděli v měsíci	od 11.00 do 13.00	433 MHz a 1,3 GHz
Podzimní VKV soutěž	od 1. září do 15. listopadu	od 00.00 do 24.00	145 a 433 MHz,
k Měsíci ČSSP			1,3 GHz a vyšší

Z výsledků

Muži družstva:

1. SSSR 2657 b., 2. BLR 2645, 3. KLDR 2428, 4. ČSSR 2394.

Junioři – družstva:

1. SSSR 2621 b., 2. ČSSR 2512, 3. KLDR 2237.

Dorostenci — družstva:

1. SSSR 2691 b., 2. ČSSR 2582, 3. MLR 2388.

Ženy - družstva:

1. SSSR 2705 b., 2. MLR 2597, 3. KLDR 2529, 4. ČSSR 2520.

Muži — jednotlivci:

1. Kyselov, SSSR 710 b., 2. Čang Gvang Čol, KLDR 696, 3. Rjim Cun Gun, KLDR 691, 7. Kunčar, ČSSR 635, 9. Hrnko, ČSSR 611, 12. Dyba, ČSSR 589

Junioři - jednotlivci:

1. Gusarjev, SSSR 684 b., 2. Stefanov, SSSR 677, 3. Treťjakov, SSSR 668, 4. Leško, ČSSR 666, 5. Kováč Milan, ČSSR 636, 8. Sláma, ČSSR 622.

Dorostenci — jednotlivci:

1. Petfunin, SSSR 715 b., 2. Kim Ti Von, KLDR 713, 3. Čub, SSSR 703, 6. Vlk, ČSSR 685, 8. Pazúrik, ČSSR 676, 11. Mikeska, ČSSR 644.

Ženy — jednotlivkyně:

1. Gavrilová, SSSR 725, 2. Li In Ok, KLDR 724, 3. Kim Jong Ok, KLDR 714, 6. Hauerlandová, ČSSR 686, 10. Beňovská, ČSSR 636, 12. Palatická R., ČSSR 607.

Kalendář KV závodů na březen a duben 1989

45. 3.	ARRL Int. DX contest SSB	00.0024.00
5. 3 .	Cs. YL-OM závod	06.0008.00
5. 3.	DARC Corona 10 m RTTY	11.0017.00
1112.3	International SSTV contest	12.00-12.00
1112.3	. DIG QSO party SSB	12.0017.00
		07.00-11.00
1819. 3	. YL-ISSB'er QSO party FONE	00.0024.00
1820. 3	. BARTG Spring RTTY contest	02.0002.00
19. 3.	Concours Francophone	00.00-24.00
2526. 3	. CQ WW WPX contest SSB	00.00-24.00
2526. 3	. UBA SWL Trophy	00.0024.00
31. 3.	TEST 160 m	20.00-21.00
12. 4.	SP-DX contest CW	15.00-24.00
8. 4.	Košice 160 m	22.00-24.00
21. 4.	Závod o pohár	16.00-17.00
	osvobození Brna	
2930.4	. Helvetia XXVI	13.0013.00

Podmínky závodů ARRL Int. DX najdete v AR 2/86, Čs. YL-OM v AR 2/88, YL-ISSB'er party v AR 2/88, CQ WW WPX v AR 5/86, ale pozor, násobiči jsou prefixy bez ohledu na pásma

Stručné podmínky DIG QSO party

Část SSB — vždy druhý víkend březnu, CW vždy druhý víkend Část SSB v dubnu. Závodí se v sobotu od 12.00 do 17.00 UTC v pásnech 14, 21 a 28 MHz od 14 250, 21 300 a 28 550 kHz výše na SSB, od 14 035, 21 035 a 28 035 výše na CW. V neděli od 07.00 do 09.00 UTC na 80 m od 3535 nebo 3700 kHz výše, od 09.00-11.00 UTC na 40 m v celém rozsahu pásma. Zúčastnít se mohou všichni radioamatéři i posluchači, vyměňuje se RS(T), členové DIG navíc své číslo. Spojení se členem se hodnotí 10 body, každé jiné spojení bodem. Spojení s vlastní zemí v pásmech 20, 15 a 10 m se nenavazují. Násobiči jsou a) jednotliví členové DIG jednou za závod a b) země DXCC na každém pásmu zvlášť. Posluchači si hodnotí spojení mezi členy DIG 10 body, mezi členem a nečlenem jedním bodem. Deníky musí dojít do 31. května na adresu: R. Knobloch, Freiburger Str. 13, 7814 Breisach, NSR.

Závod o putovní pohár osvobození města Brna

Závod se koná každoročně třetí pátek v dubnu od 16.00 do 17.00 UTC, v pásmech 1,8-3,5-145 MHz provozy CW, na 145 MHz i SSB a FM. Kategorie: pásma 1,8-3,5-145 MHz, pásmo 1,8 MHz CW, pásmo 3,5 MHz CW, pásmo 145 MHz mix, pásmo 145 MHz FM, posluchači. V závodě lze navázat jedno spojení s každou stanicí na každém pásmu. Neplatí spojení přes převádě-če. Stanice registrované u OV Brno město předávají kód ve složení RS nebo RST a slovo BRNO. Ostatní RS nebo RST a pořadové číslo spojení počínaje 001. Každé spojení s brněnskou stanicí se hodnotí dvěma body, ostatní spojení jedním bodem. Stanice bude hodnocena, jestliže naváže alespoň 5 spojení. Špojení se stanicemi, které nezašlou deník, budou vyškrtnuta. V případě rovnosti bodů rozhoduje počet spojení v prvních dvaceti minutách nebo méně až do rozhodnutí. První tři stanice v každé kategorii obdrží diplom, stanice s nejvyšším počtem bodů putovní pohár. Deníky se zasílají do 14 dnů po závodě na adresu: Rada radioamatérství MěV Svazarmu Brno, Bašty 8, 657 43 Brno.

POZOR — nové podmínky závodu Košice 160 m

Závod se koná vždy druhou sobotu v dubnu od 22.00 do 24.00 UTC ve dvou hodinových etapách, výhradně telegrafním provozem v pásmu 160 m (1850—1950 kHz). Výzva CQ KVP. Vyměňuje se kód složený z RST, pořadového čísla od 001 a okresní znak. Úplné spojení se hodnotí jedním bodem, násobičí jsou jednotlivé okresy a každá stanice z okresů KKM a KKV bez ohledu na etapy. Závodí se v kategoriích: a) kolektivní stanice, b) stanice OL, c) jednotlivci OK, d) posluchači. Prvá stanice v každé kategorii obdrží věcnou cenu, 1.—3. stanice diplom a stanice s nejvyšším bodovým ziskem bez ohledu na kategorie bezplatný týdenní pobyt pro 2 osoby ve výcvik. středisku OK3VSZ Čaňa. Každý účastník obdrží výsledkovou listinú. Deníky je třeba zaslat do 14 dnů po závodě na adresu: Rada rádioamatérstva MV Zväzarmu, Alejová 5, 040 11 Košice. OK2QX

Podmínky závodu "Concours Francophone 1989

Organizace REF vyhlašuje závod pro radioamatéry hovořící francouzsky za těchto podmínek:

Datum konání: neděle 19. března 1989 od 00.00 do 24.00 UTC. Pásma: 80, 40, 20, 15 a 10 m. Druh provozu: jen SSB a jen francouzsky. Kategorie: 1) jeden operátor; 2) více operátorů; 3) posluchači. Bodování: a) za spojení mezi stanicemi ve stejné zemi jsou body; za spojení mezi stanicemi z různých zemí je 5 bodů; b) k tomu se připočítává: za spojení se stanicí z nefrankofonní země na stejném kontiz netrankotonni zeme na stejnem kontinentu 1 bod a z jiného kontinentu 2 body. *Násobiče:* F (DA), TK, FG, FH, FJ, FM, FP, FR, FS, FY, FK, FO, FT-W, FT-X, FT-Y, FT-Z, FW, 3A, C3, HB, LX, ON, VE2, 3V, 7X, CN, OD, HH, HI, TJ, TL, TN, TR, TT, TU, TY, TZ, XT, 3X, 5R, 5T, 5U, 5V, 6W, D6 a J2. Za každým násobič je 1 bod a počítalí se v každém násobič je 1 bod a počítají se v každém pásmu zvlášť. Celkový výsledek: součet bodů za všechna spojení se vynásobí součtem všech násobičů. Kód: RS a pořadové číslo spojení od 001. Klasifikace: podle kategorií celková, kontinentální a v jednotlivých zemích. Deníky: Pořadatel vyžaduje k deníku seznam spojení a je třeba jej odeslat do 20. 4. 1989 na adresu: Christian Pacchiana, F6ENV, 7 chemin des Écoles, 13110 Port de Bouc, France.

OK1DVA

Jak dlouho pracujeme SSB provozem?

Víte, že prvé SSB spojení mezi radioamatéry bylo navázáno 21. září 1947 mezi W6YX a W6VQD? Teorie přenosu SSB signálů byla však matematicky zpracována již v roce 1922 Carsonem. Prvé profesionální zařízení pro SSB provoz vyrobila v roce 1965 firma Collins a byl to typ KWM 1, kterých se do roku 1969 vyrobilo 1300 ks (dva byly zakoupeny i do ČSSR pro expedici H+Z a později používány radioamatéry). Bylo to na svou dobu vynikající zařízení (100 W výkon, me-chanický filtr 455 kHz s přeladěním 100 kHz kdekoliv mezi 14 až 30 mHz podle osazených krystalů).

Předpověď podmínek šíření KV na duben 1989

Loňský podzim byl poznamenán nejprve stagnací ve vývoji sluneční aktivity. Obrat nastal až v polovině prosince, kdy sluneční tok stoupal přes 250, číslo skyrn přes 300 a protonové erupce i Dellingerovy jevy bylo možno pozorovat denně. Sluneční rádiový tok se v listopadu vyvijel takto: 157, 167, 167, 162, 169, 165, 155, 146, 156, 152, 157, 156, 171, 179, 174, 189, 180, 166, 156, 147, 157, 150, 139, 142, 143, 142, 145, 142, 143 a 140, průměr činí 157,1, což odpovídá číslu skvrn 110,6. Z jeho denních pozorování vychází poněkud vyšší průměr: 125,6. Dvanáctiměsíční vyhlazený průměr jsme mohli počátkem prosince spočíst za květen 1988: 83,7, tedy asi o třicet více, než předpovídala světová centra ještě 1. 5.

Podmínky šíření KV bylo možno označit za pěkné bohužel jen do 2. 11. (včetně kladné fáze poruchy), pak se ještě částečně vzpamatovaly 14.-16. 11. a od 24. 11., ale po většinu listopadu byly podprůměrné s nižšími použitelnými kmitočty. K sezónně zvýšené pravděpodobnosti výskytu rozptylu v polární čapce a útlumu v pásu polárních září bohatě přispěl aktuální průběh a typ sluneční aktivity, aktivita magnetického pole Země byla většinou zvýšena a ani série klidných dnů mezi 18.—25. 11. nepřispěla ke zlepšení dříve, než od 24. 11. Hlavní příčinou tohoto zpoždění byl současný pokles sluneční radiace. Denní indexy geomagnetické aktivity z Wingstu: 8, 34, 25, 12, 10, 15, 20, 23, 12, 12, 12, 20, 10, 11, 16, 16, 12, 10, 4, 2, 6, 3, 2, 3, 10, 22, 18, 12, 9 a 30. Polární záře 30. 11. a 2. 12. začaly příliš brzy a tak zasáhly jen UA9-UA3.

Na duben 1989 byly předpovězeny tyto vyhlazené indexy: číslo skvrn 149 ± 38 a sluneční tok 203 (odpovídající číslu skyrn 158). Podle SIDC i NASA má růst pokračovat až do konce léta k R12=178 ±58, poté má dojít ke zpomalení tempa růstu nástupem maximální fáze vývoje jedenáctiletého cyklu.

Využitelnost horních pásem KV bude většinou výrazně vyšší než vloni, proti letošnímu březnu ale začnou být znát postupné sezónní změny k horšímu. Budou se zkracovat délky otevření na exponovanějších trasách, nejvíce do Tichomoří. Pokračující mírné zlepšování bude ještě patrné na jižních až západních směrech, kam se prodlouží doby otevření horních pásem až po desítku déle do noci, zatímco otevření směrem na severovýchod až východ se přesunou na odpoledne, což je zejména pro desetimetrové pásmo nevýhodné. Stabilními pásmy DX tedy budou dvacítka až patnáctka, při prudším vzestupu sluneční aktivity či kladné fázi poruchy se do plné krásy probudí i desítka. Dolní pásma budou obecně postižena větším útlumem při vyšší sluneční aktivitě. Naopak ke zlepšení dojde na trasách, kolmých na siločáry zemského magnetického pole, kde stoupne četnost výskytu ionosférických vlnovodů.

Vypočtené časy otevření (s optimy v závorkách) jsou tyto:

TOP band: Dálný východ 20.00-22.00, W3 23.30--05.20 (03.00).

Osmdesátka: JA 17.30-21.30 (20.30), 4K1

20.45—03.20 (03.00). Ctyficitka: A3 18.00, YJ 19.00, JA 15.45—22.20 (20.00), VR6 05.00, W5 01.00—05.00 (04.30), VE7 02.00—05.30 (04.00).

Tricitka: JA 15.00—22.15, 4K 01.30—04.20 (03.00), VE7 04.00.

Dvacitka: A3 16.45—18.15 (18.00), JA 14.50—21.50 (17.00), FB8X 16.00—18.00 (17.00), PY 19.30-06.30 (23.00), W5 01.00.

Sedmnáctka: 3D 15.45—18.00 (16.30), 15.00-17.30 (16.00), PY 19.20-06.20 (22.30), W3 07.00-09.30, 20.00-01.45 (23.30).

Patnáctka: P2 14.30-17.30 (16.00), W3 10.00 a 18.30-23.30.

Dvanáctka: P2 15.30, PY 19.30-23.00, W3 12.00 a 15.00-20.30. Desitka: BY1 11.00-16.15 (13.30), W3

15.00-20.20 (18.45).

OK1HH

Z RADIOAMATÉRSKÉHO SVĚTA

Pravidelným dodavatelem informací pro rubriku "Z radioamatérského světa" je Jan Sláma, OK2JS, z Velké Bíteše. Na snímku vlevo (uprostřed) jej vidíte s jeho kolegy Karlem, OK2PTW, a Štěpánem, OK2EC, při jednom z CQ contestů,

který absolvovali pod značkou OK6DX. Na snímku vpravo vidíte Jendova syna Jiřího Slámu (vpopředí) společně se Zdeňkem, OK2BX, při zpracování dat během závodu. (foto TNX OK2FD)

Maďarská expedícia do Vietnamu

2. decembra 1988 sa vrátili do vlasti maďarskí rádioamatéri, účastníci 6týždňovej DX expedície do Vietnamu. Zóli, HA5PP, Gyuri, HA5WA, a Feri, HA6MY, urobili pod značkami 3W8DX za 37 operátorských dní, z ktorých každý, ako sa sami vyjadrili, bol sprevádzaný miliónom problémov, vyše 63 000 spojení. Najviac na 15 m pásme - vyše 21 000, najmenej samozrejme na 160 m - necelých 100, väčšina z nich s JA. Vynikajúci signál najmä na horných KV pásmach a operátorská zručnosť umožnili spojenie doslova všetkým, ktorí ich zavolali. Najviac sa to prejavilo v OK DX conteste, v ktorom urobili 2210 spojení, medzi nimi množstvo OK staníc. Pri osobnom stretnutí s operátormi v Budapešti niekoľko dní po ich príchode, ktorého sa zúčastnili našej strany OK3CMR, OK3LU

Účastníci expedície do Vietnamu; zľava: Gyuri, HA5WA, Feri, HA5MY, a Zoli, HA5PP

a OK3UG, nám bolo umožnené vidieť videozáznam z ich pobytu vo Vietname a získať množstvo informácií o príprave a samotnom priebehu DX expedície. Počas svojho pobytu vo Vietname sa pokúsili získať povolenie k vysielaniu aj z Laosu — XW. Ich snaha bola po prekonaní množstva prekážok korunovaná úspechom. Pretože však povolenie získali len niekoľko dní pred plánovaným ukončením expedície a operátori boli značne fyzicky ale aj finančně vyčerpaní, rozhodli sa pre návrat domov a DX expedíciu do XW uskutočniť v priebehu tohoto roku.

Náklady na celú expedíciu si operátori hrádili sami a dosiahli sumu takmer 500 000 forintov. Táto skutočnosť do značnej miery ovplyvnila spôsob získania QSL lístkov, ktoré v tomto čase už istotne mnohí z vás vlastníte. Pekné farebné dvojstránkové QSL je možné získať na adrese uverejnenej koncom minulého roku v RZ. Platí však žásada 1 QSO = 2 IRC. Týmto spôsobom operátori chcú hradiť aspoň časť nákladov na expedíciu a získať počiatočný vklad na expedíciu do XW. Pre tých, ktorí nemajú možnosť spiatočné poštovné, v priebehu pol roka vytlačené jednoduchšie QSL v Maďarsku, ktorými budú odpovedať na lístky zaslané cez HA

Držme palce, aby aj tohtoročná DX expedícia do Laosu bola tak úspešná ako minuloročná do Vietnamu.

OK3JW

Radioamatérské šestero od protinožců

Snad všechny vydávané adresáře radioamatérů obsahují navíc řadu užitečných informací a rad. V hojné míře to platí i pro novozélandský, němž celou jednu stranu zabírají následující pravidla pod označením "The Amateur's Code".

Podle nich je radioamatér:

OHLEDUPLNÝ nikdy vědomně nepoužívá éter způsobem, kterým by ostatní připravil o potěšení.

LOAJÁLNÍ - k jeho jednání patří věrnost a podpora, prokazovaná přátelům, svému klubu a národní reprezentují organizaci. kteří radioamatérství státu. a Mezinárodní Telekomunikační Unii. POKROKOVÝ – drží krok s pokrokem

na poli vědy, techniky, vybavení stanice i úrovně provozu.

PŘÁTELSKÝ vysílá pomalu a trpělivě, je-li požádán, kamarádsky radí a pomáhá začátečníkům, ochotně spolupracuje a přispívá ve a v zájmu ostatních prospěch právě toto jsou známky hamspiritu.

VYROVNANÝ - rádio je koníčkem, který se nikdy nekříží s plněním povinností v rodině, zaměstnání, škole a společnosti.

VLASTENECKÝ jeho stanice a operátorská zručnost jsou stále připraveny být užitečné společnost a vlast.

Úspěch všem, kteří tak činí, přeje

OK1HH

Zajímavosti ze světa

V Egyptě je nyní aktivních jen 5 stanic: SU1AH, AL, FN, HK a ER. Nejlepší čas pro spojení je pátek po 16.00 na 14 220 nebo 21 250 kHz.

V prvé polovině letošního roku bude ještě stále aktivní C9MKT, i když obvykle jen 2—3 dny v každém měsíci. Pokuste se i vy o spojení se vzácnou stanicí v Mozambiku, ve dnech: 17.—19. 2., 10.—12. 3., 7.—9. 4., 12.—14. 5., 9.—11. 6. 1989.

LU8DPM, který je QSL managerem pro stanice LS1E, LU2E, ZP5JCY a ZP5Y upozorňuje, že na QSL zasílané přes byro neodpovídá a QSL je pro něj třeba zasílat výhradně direct!

D68JL je bývalý TR8JLD a QSL požaduje přes AK1E.

 FH5EG byl F6EZV do 15. 9. 1988. ● FT8ZB provozuje denně od 10.30 do 13.00 UTC maják na kmitočtu 24893 kH7

Víte že . . .

...v loňském roce byl poprvé uspo-řádán závod provozem PACKET a to jak na VKV, tak na KV pásmech? Pořadatelem byla Florida Amateur Digital Comm. Assn., název FADCA Packet QSO Party a v letošním roce se na červenec chystá druhý ročník.

. každoročně je 23. dubna pořádán Marconiho den? Vysílají zvláštní stanice se suffixem IMD a z Itálie IY4FGM. Za spojení s pěti stanicemi se vydává diplom na adrese CRAC, Box TRURO, TR1 1XP Cornwall, U.K. 100.

. OK3CSC získal diplom DXCC za pásmo 160 m?

INZERCE

2QX

Inzerci přijímá osobně a poštou Vydavatelství Naše vojsko, inzertní oddělení (inzerce ARA), Vladislavova 26, 113 66 Praha 1, tel. 26 06 51, 294. Uzávěrka tohoto čísla byla dne 18. 11. 88, do kdy jsme museli obdržet úhradu za inzerát. Při prodeji uvádějte prodejní cenu, jinak inzerát neuveřejníme. Text inzerátu pište čitelně, aby se předešlo chybám vznikajícím z nečitelnosti předlohy.

PRODEJ

3 ks výbojek IFK-120 (à 65) + B. Hynek, Slezská 98, 130 00 Praha 3. poštovné.

Ant. sous. 4x TVA21-60 s reflekt. včetně předz. + zdroj + zádrž 28. k. + držák na balk. (3200). Kompletní. J. Sejk, 251 01 Říčany 1695. Jap. paměti HN462716 (170). P. Holý, V úžlabině 14, 100 00 Praha 10, tel. 77 07 10.

Rádiový přijímač Grundig Satelit 2 000 (6000). J. Kaván, Novomeského 690, 149 00 Praha 4, tel. 795 11 04.

Měřáky ní, ví (500-5000). Seznam za frankoobálku. J. Jerhot, Riegrova 417, 379 01 Třeboň

Zahraniční časovače 555 (à 29), fungující televizor Bajkal - slabá obrazovka (800), občanské radiostanice dovezené z NSR - 27 MHz; 0,3 W (2 ks 2850). L. Novák, Petýrkova 1997. 149 00 Praha 4.

Hry a programy na počítač ZX Spectrum (plus, Delta) (2-10), zoznam za známku. P. Kvasna, Smreková 66, 976 32 Banská Bystrica.

Vysokoškol. a středoškol. knihy nové, nepoužité. Seznam za známku. V. Pařík, Zakopaná 9, 294 02 Kněžmost.

BF961, 3 (50, 58), ant. zos. VKV, OIRT, CCIR $= 25 \, dB/F = 1.2 \, dB$, III. TV 21/1,5 dB, IV. \div V. TV 26/2 dB, 21/3 dB (200, 190, 375, 185) a iné. Zeleňák, 9. mája 41, 942 01 Šurany.

Cievkový mgt. Akai GX 620 3 hlavy, 27 cm kotúče, perfektný stav (19 000). Receiver Radmor 1,4 µV, 2× 40 W. Quasi Quadro (5500), zosilovač Technic - Su-V3 (7000); kameru 8 mm Quarz (1500), IO AY-3-8500 (400); sov. ekvivalenty: ICL7107, sov. IO do počítačov, do FTVP, sov. Eprom 2 kB - zoznam proti známke. Vagóny, lokomotívy + príslušenstvo na TT, autodráhu aj na diely. I. Tóth, kpt. Jaroša 11, 040 01 Košice.

ZX Spectrum 48 k. originální manuál, příslušenství (5600); TV hry + ovladače (1200). R. Zelenka, 582 24 Oudoleň 4.

BFR90, 91, 96 (70, 70, 75). J. Vyroubal, 783 45 Senice na Hané 358

Nové tranzistory BFR90, 91, 96, BF961, 964 (à 50). Dobierkou min. 5 ks. L. Kubík, Bajzova 25, 010 01 Žilina

IO MH7400, 02, 04, 05, 10, 30, 40, 72, 74, 75, 86, 1SS1, KP101 (5), tot. 1PP75 (8), tan. kapky 4M7/6,3; 1M/35, 10M/25, 10M/10 V (10), BSY34, KU612 (4), krystal 3276,8 kHz, 1 MHz, 10 MHz (80, 100, 60), LED MAN72A (ek. LQ410) vypáj., ale nepoužité (30), sloupkové ukaz. LED MV53164 (50), MP 120 — 100 μA (150). F. Fisehmeister, Obřaňská 149, 622 00 Brno.

Komunikačný prijímač Lambda (1500). J. Přikryl, Tulská 12, 010 08 Žilina.

Tuner ST 100 (2200). J. Kožnar, 561 67 Mladkov 5.

BTV Elektronika C 430 (přenosný) na součástky (500). P. Plšek, 9. května 13, 794 01 Krnov. Generátor metrových vln 20-400 MHz, 6 rozsa-

hů. 17 ks náhrad. elektronek + příslušenství, funkční popis + schéma (3000). Osobní odběr. V. Werner, Tachovská 49, 323 25 Plzeň 1.

8085, 8048, 8155, 8251, 8255, 8259 (120, 140, 130, 90, 100, 100); 2708, 2532, 27256, ADC 0809 (100, 220, 680, 120); různé TTL, -LS, HC; krystal 18,432 MHz, 5 MHz (100, 100); sběrnice 6× FRB 62 p., tlač. klávesnice, modul Dram 64 kB eurokarta (600, 400, 1000); zdroj +5 V/5 A, -5 V/0,2 A, ±12 V/1 A (800); VKV vstup KIT 78, mf díl s A225D, stereodek. s µA758, stupnice 2x A277D a 23 LED (à 150); osc. obr. 7QR20, měřidio 100 µA (120, 120). Ing. J. Stuhi, B. Smerala 21, 586 01 Jihlava.

Osciloskop s multimetrem H 30 14 (3600), koupím vf generátor a rozmítač. M. Bilský, Sněžnická 318, 407 01 Jílové u Děčína.

TV hru - 6 her, CONIC-COLOR typ TV sport 406 (1600). V. Cepek, Havlíčkova 1568, 258 01 Vla-

Eprom 27128 (400); tvrdé GX hlavy nahr. a prehr. na cievkový mgf Akai (à 350); 2lúčovú osc. obrazovku B10S2 (300); kúpim RAM 41256. lng. M. Lévy, Bajkalská 11, 040 01 Košice.

Organ Piano-Strings (7500). B. Babiar, nám. Feb. víť. 638/56, 907 01 Myjava.

Sinclair: ZX Spectrum +; ZX Interface 1; ZX Microdrive; cartridge 11 ks; ZX Printer; 0,5 km metal. papíru; magnetofon; 2x joystick Quick Shot II; ZX Interface 2. Vše 100% stav (16 600). J. Jirsák, Chodská 17/A IV, 612 00 Brno

Měř. 1 pF-500M (800), A250D (55), A240D (35), otoč. př. 8 + 2 — sp. 2+ (85) a 12 + 3 — sp. 1+ (120), nab. 12 V/6 V (500), ant. sluč. AZ21 (50), ant. předz. - 12 k. (210), lad. k. 2× 270 + 22,5 pF (120), f. tyčky (à 35), vf sonda s in. (350), nf mult. (120), tov. hl. kov. předm. (120), ant. vstup — $2 \times 75 \Omega$ (55), repro. 25 Ω — ø 50 (100), 1 fáz. mot. 200 W (400), 2 ks robust. diody na sv. (à 250), tr. 220 V (380), 12 V a 24 V ss. (500), tranz. radio na 3 V (400), filtr KV pásem (350), vzd. lad. kond. 2× 500 pF (75), tr. 220/8, 10, 12, 14 a 24 V st. — 100 VA (350), č. relé 3 s — 60 h (500), vn autocívka 12 V (200), rozb. kon. 80 M 200 M (à 80), zdr. 12 V/200 mA ss. (200), tr. 220 V/27,2 V-19,7 V-7,53 V/1,28 A (150), dv. dipl. motýlek pro zp. příjem - 9 dB (200), růz. MPaTC kond., UCH21 (100), PY88 (50), PCF802 (60), PCL86 (à 30), ECC82 (40), EF183 (35), EF80 (30), UBL21 (35), UY1N (30), M. Pluháček, J. B. Pecky 817, 530 03 Pardubice.

C 520 D (380); VQE24D (100); D347D (20). R. Mareček, 273 24 Velvary 541. UB 855, UB 857, LM324, HM6116 (150, 100, 50,

300), MHB2114 II. akosť (60). P. Švec, Nejediého 841 02 Bratislava.

TV ant. zos. s výhybkou TESLA TAPT 03 na 24. kanál (300), BFR90, 91, 96 (à 60), ARN 6604 (100). P. Kollárik, Baronka 7, 831 06 Bratislava. Zosilňovače VKV — CCIR, ÖIRT, III. TV, IV.—V. TV všetko s BF961 (à 190), IV.-V. TV s BFT66 (350), IV.-V. TV s BFT66 + BFR91 (480), na požiadanie výhybku (à 25). I. Omámik, Odborárska 1443, 020 01 Púchov.

Hi-fi věž Alba z Velké Británie ve skříni se zásobníkem na desky, zes. 2x 15 W, gramo, optický analyzér, 3 pás. ekvalizér, dvojmagnetofon, tuner, oddělené repro (18 000). B. Weinfurterová, Dukelská 228, 339 01 Klatovy II.

Melodický zvonek s Eprom 2764, asi 150 melodií (900). M. Németh, Jilemnického 3, 943 01 Štúro-

AR 1945-54, 58, 59 vázané (à 25), 1967 (20), 1982-88 (à 40). M. Horová, Dělnická 1588, 413 01 Roudnice n. L

Súpravu Regent 1000 H (5500), B 73 Hi-fi (2000), B 90 (500), kotúčové pásky Basf, Afga 1x nahraté, ø 15 cm (100), ø 18 cm (150), disco SP, Maxi 86-88 (zoznam), originály hudobné filmy - Beta Hi-fi (à 400), kúpim disco VHS odber. M. Holečko, 052 01 Teplička 125.

Kazetový data recorder Grundig CR 100 z 4/87 (1800), Ing. P. Rous, Tlustého 2041, 193 00 Praha Horní Počernice.

Počítač ZX Spectrum Plus - nový (6300), řadič Beta 128 (4500), disketovou jednotku NEC FD 1037A DSDD 3,5" (6500), Centroface (1800), ker. filtry SFE 10,7 MHz (à 50), tranzistory BF981 (à 60). K. Varyš, Hradební 171/28, 460 07 Liberec

BFR90, 96 (70, 80), KF907, 910 (à 25), BF 981 (80). Ing. P. Lettrich, Fučíkova 14, 972 01 Bojnice. Ploš. spoje S 12 Zetawat AR 3/84 (70), R 101 VKV příj. AR/83 příloha (85), V 47 zkouš. el. příj. AR 8/87 (20), R 45 širokopás. zes. AR 6/83 (15), repro ø 55 mm 8 Ω (70), KF524 (19), KF125 (9), BF505S (15), MZH115 (15), Mi AMD 205 M (140). V. Pařík, Zakopaná 9, 294 02 Kněžmost.

IFK 120 (100). T. Michalčík, 032 14 Ľubela 193. Výbojky IFK 120 (à 100). V. Vileník, Sokolovská 24, 040 11 Košice.

ZX-Lprint 3 interface k tiskárně (1600), zesilovač sběrnice pro ZX-Spectrum (1500), joystick – Kempston interface (650). P. Krásenský, Laštůvkova 20, 635 00 Brno.

BFR90, 91, 96 (65, 70, 85), NE555 (40), BF961 (45), CD4511, 4543 (55, 60), A277D (45), Eprom 2764 (340). P. Jirout, Studentská 1770 — B 406, 708 33 Ostrava-Poruba.

Osciloskop H 3015, frek. rozs. 10 MHz (2000). M. Salaika, Jana Černého 813, 691 55 Mor. Nová Ves, tel. 922 68 Břeclav.

Rôzne LED (4-5). Zoznam za známku. J. Potočník, Kozliakovského 4, 971 01 Prievidza. Oživenú dosku TV hier AY-8610 bez IO (200), kúpim kryštál 6 MHz, IO 74LS373, 8048, Eprom 2716. P. Radványi, 925 05 Vozokany 284.

M160 + nap. zdroj (2500), devítipásm. ekvalizér (1200), ARN 8604, ARZ 4604, ARV 3604 + 2 výhybky (800). Z. Vodák, Třebíčská 33, 594 01 Velké Meziříčí.

Hodinový gen. 50 Hz — Q 3,2768 — $30 \times 60 \text{ mm}$ nastavený (235), gen. oktávy podle AR B1/79 – 28 ks IO (300), ARA 1965–75 váz. (500), SQ MC1312, 1314, 1315 vč. desky (500), LP klasika stereo, kvadro (25-40), BLR 3107 (150), NE654 (35), miniat. odpory 10M (10 ks - 5). R. Trhlík, Kárníkova 18, 621 00 Brno.

Vf tranzistory BFY90 30 ks (50), relé LUN 12 V (50), zváračka na striedavý prúd 380 V, regul. 50÷150 A tyristory ČKD R25/1200 V (160), mer. prístroj C 4341, mer. mA, V stried., jednosmerný, tranzistory zosil. činiteľ, Ω , $k\Omega$, $M\Omega$ (1200), ferit. jadrá H12, H22, E, naviniem trafa podľa dotazu. ARA + B zviazané roč. 85, 86 + příloha (130). M. Krajčinovský, Banícka 801, 058 01 Poprad, tel. 351 82.

Čítač 100 MHz podle AR A9/82 (1700), malý amat. oscil. ø obr. 7 cm 2x, vyměním osc. obr. B10S401 za 13L036V nebo koupím. V. Sahánek, 9. května 369, 285 06 Sázava.

Oscil. obr. B13S7 s PY krytem (500), mf filtr TESLA 2 MLF 10,7—15 (500). V. Duben, Na vrcholu 5/2588, 130 00 Praha 3.

Avomet I (500), Omega (500), Unimer 33 (1100), AMD 460 (800), ARO 9415 — 1100 W, 15 Ω (3000), kyt. zesil. ASO 501 (4500), combo dom. výr. 120 W sin. repro Fane 100L perfekt., záruka (7000), Maxell 720 m (à 280). M. Němec. Za nemocnicí 1067, 264 01 Sedlčany.

SPOJENÉ OCELÁRNY

národní podnik

přijme

techniky pro údržbu a opravy perzonálních počítačů s vysokoškolským nebo středoškolským vzděláním příslušného směru do odboru řízení a výpočetní technika nebo do jiných útvarů podniku.

Informace poskytne: RNDr. Přemysl Svoboda, ing. Karel Klíč, telefon Kladno 4421-5, 5421-5 nebo odbor kádrové práce POLDI SONP Kladno, telefon Kladno 761, linka 3155.

KUSUI Oscillosco

Superior in Quality. first class in Performance!

Phoenix Praha A.S., Ing. Havliček, Tel.: (2) 69 22 906

ELSIN

Reprobednu 8 0/100 W (1500). P. Dědičík, Hranická 27, 751 24 Přerov.

Kryštál 4,89861 MHz, 4,70416 MHz, 4,70694 MHz, tyristor 160 A (100, 250). Ľ. Dobšovič, Palkovičova 7, 821 08 Bratislava.

Světelné pero vč. orig. kazety a interface (1600) a 4 ks cartidge pro microdrive (1000). Vše pro ZX Spectrum +. J. Koplík, Moldavská 7, 625 00 Brno.

Radiomag. Unisono (2500), kvadro zosil. nový 2× 7 W, vhodný aj pre gramo (800), Hi-fi tuner SP 201 (3000), gramo chasiss NC 430 (700), tuner 710 A (1600), zosilovač 710 A (1000), repro 2× (400). P. Baculák, Ľud. milici 20, 040 01 Košice. Video Akai VT 120S s monitorem (8900), Spectrum + 80 kB (8000), paměti 4116 (80), 4118 (80), 2716 (100). T. Urban, Cholevova 31, 705 00 Ostrava.

KOUPĚ

J. Sťastný, Škroupova 469, 266 01 Beroun 3.

8 ks RAM 4164-12, BFT66, BRF90, 91. Písemně.

Závody průmyslové automatizace, koncernový podnik

Ceskoslovenské armády 322, 473 23 Nový Bor

přijme ihned nebo podle dohody

vedouci a samostatné odborně technické pracovníky investič	niho odbo-
ru a technické kontroly	T 11—12
samostatné analytiky výpočetního střediska pro řízení	
výroby	T 12
konstruktéry a samost. konstruktéry do odboru technické	-
konstrukce a racionalizace	T 8-11
samostatné technology — program. NC strojů	T 10-11
revizního technika elektrotechnických zařízení	T 10-11
samostatně odborně technické pracovníky	T 10

Vhodné a perspektivní zaměstnání pro absolventy vysokých a středních škol se strojírenským a ekonomickým zaměřením.

dále přijmeme

— elektromechaniky	tř. 57	zámečníky	tř. 5—7
- soustružníky-automatáře	tř. 46	- servisní mechaniky	tř. 6-8
— frézaře	tř. 57	- výrobní a montážní dělnice	tř. 45
- nástrojaře	tř. 4—8	- pracovnice do lisovny	tř. 3—5
- ostřiče nástrojů	tř. 5—6	- dílenskou kontrolorku	tř. 4
- seřizovače	tř. 5—7	— skladníky	tř. 56

Perspektiva získání bytu v letech 1989-1991. Možnost přechodného ubytování na svobodárně. Informace podá kádrový odbor podniku - telefon 2452, linka 214. Obrazovku B7S3. Ing. V. Kment, Leninova 60. 160 00 Praha 6.

2 páry obč. radiostanic, cena nerozhoduje. J. Fučík, Vrchovinská 223, 509 01 Nová Paka.

Atari ST, ST +, STM bez tiskárny. Z. Rauer, Tovární 15, 772 00 Olomouc.

Kompletní roč. ARA, B 1978-83 + příl., ARB č. 1, 2/84, č. 6/87. Miniaturní přepínače do ploš. spojů, BF458, MHB-4013, 4011, 4046 a jiné, WK 53344, WK 53341, DG7-132, barevný propisot, nepoužitý 27512 – nabídněte. Prodám AY-3-8500 (300), disco hada (3000). L. Vörös, Leninov Riadok 5, 060 01 Kežmarok.

IO-K2ZA372, pár tr. GC511—521. Zyblikievicz, Leninova 1115, 676 00 Mor. Budějovice. 2 ks IO — LA4422, cenu respektuji. J. Oršulik,

735 62 Mistřovice 42.

AY-8610, oscil. obrazovku 7QR20. V. Szakandera, Marxová 1009, 735 14 Orlová-Lutyně

10 - CIC 4820E (UM3482). Spěchá. P. Vrána, 431 59 Vysoká Pec 167, tel. 976 52.

Atari 800 XL (XE) nebo 130 XE a Dataset XL 12. Sdělte cenu, platím hotově. Z. Majerová, Tylova 395, 261 00 Příbram VII.

Paměti 256 kB, LN, MHB, krystal 10 MHz. M. Selvička, ČSA 373, 357 01 Rotava.

ZX Spectrum +, interface a tiskárnu, i jednotlivě na měs. splátky 500 Kčs. Nutné, spěchá, J. Friedman, A. Zápotockého 358, 357 51 Kynšperk n Ohří

Deck Aiwa AD-F 660 nebo 770. Slušný stav. rozumná cena. L. Blaško, Mlýnská 849/38A, Malenovice sídl., 763 02 Gottwaldov. Obrazovky B10S3 (S1), B7S2; prodám 8LO29I. L. Hauschke, Nová Závoď 931, 542 32 Úpice.

Soupravu vf cívky 5FF22116. Nabídněte. J., Canik, 382 21 Kájov 10.

Dvoukanálový osciloskop. Popis, Kanfršt, Školní 270, 407 01 Jílové u Děčína. Sinclair ZX Spectrum 128 K; +2; +3 nebo Amstrad CPC 464; 6128. Literatura, software. J. Jirsák, Orlická 366, 516 01 Rychnov n. Kněžnou. **\$041P,** BSX30 nebo NEC CI1957, AY-8610, AY-8710, CIC4820 E (UM3482), přesné 1%

ELEKTROMONT PRAHA,

státní podnik, dodavatelsko--inženýrský podnik Praha, 111 74 Praha 1-Nové Město, Na poříčí 5 a 7

přijme žáky 8. tříd ZŠ do těchto učebních oborů pro školní rok 1989/1990:

Čtyřleté studijní obory

26-70-4 Mechanik silnoproudých

zařízení

26-72-4/01 Mechanik elektronik

40měsíční učební obory

26-83-2/03 Elektromechanik s odborným zaměře-

ním pro rozvodná zařízení

26-80-2/06 Elektromechanik pro měřicí přístroje

a zařízení

26-86-2 Mechanik elektronických zařízení 24-64-2/01 Mechanik pro stroje a zařízení

24-35-2/02 Klempíř pro stavební výrobu

36-61-2 Zedník

Dívky do dvouletých učebních oborů

64-47-2 Technicko-administrativní práce 64-55-2 Zpracování technické dokumentace

Podrobné informace získáte v osobním oddělení v Praze 1, Na poříčí 5, případně na telefonním čísle 28 44 44, linka 368

ŘEDITELSTVÍ POŠTOVNÍ PŘEPRAVY PRAHA

přijme

do tříletého nově koncipovaného učebního oboru

MANIPULANT POŠTOVNÍHO PROVOZU A PŘEPRAVY

chlapce

Učební obor je určen především pro chlapce, kteří mají zájem o zeměpis a rádi cestují. Absolventi mají uplatnění ve vlakových poštách, výpravnách listovních uzávěrů a na dalších pracovištích v poštovní přepravě. Úspěšní absolventi mají možnost dalšího zvyšování kvalifikace – nástavba ukončená maturitou.

Výuka je zajištěna v Olomouci, ubytování a stravování je internátní a je zdarma. Učni dostávají zvýšené měsíční kapesné a obdrží náborový příspěvek ve výši 2000 Kčs.

Bližší informace podá

Ředitelství poštovní přepravy, Praha 1, Opletalova 40, PSČ 116 70, telef. 22 20 51-5, linka 277.

Náborová oblast:

Jihomoravský, Severomoravský kraj.

odpory, 0,5% odpory do děliče 9 Ω až 9 M Ω , LF355, BY251, CD4070 a i jiné T, IO, CMOS. M. Matlak, Vítězná 1165, 784 01 Litovel. **Zenerovy diody** ICL8069 — 1,2 V, náhrada z NDR B589D (2 ks). L. Tomis, 4. května 743, 738 01 Frýdek Místek.

ST č. 7/87, 9/71, 2/54; AR č. 1/85; HaZ č. 3/67; KV č. 1/47; RA č. 9/10, 11/12/1945. Mám staršie č. ST 1957—1971. O. Krása, Nár. povstania 2, 900 01 Modra.

AN 7105, presné R, LM334, 9347 (fy Fairchild) PTC 2 K, A2005, ICL8069 (B589D). Rôzne IO, T, isostaty. Predam DU 10 (1060), pl. spoje O 02, T 17, H 04, 5, 6, M 219, U 1, 22, 24, 229, 230, 32, 33 a iné za asi 80% MC. Krystal 31,5 MHz, 33,4 MHz, 44,0 MHz a iné (50), oscil. obr. 3KP1 (300). F. Chudiak, 029 46 Sihelné 375.

Vysílač — přijímač TORN-FU-BE II nefunkční i torzo, případně jen čelní panel. J. Páv, 294 04 Dolní Bousov 480.

Obrazovku 25LK2C pro btv Elektronika C 432. Spěchá. P. Václavek, 549 81 Meziměstí.

Sharp PC 1600, příp. i s přísl. (tiskárnu, magn.). R. Kolčava, Nad Ovčírnou 344, 760 01 Gottwaldov.

Merač elektroniek a dig. multimeter. P. Babiak, Michajlovgrodská 7, 974 01 Banská Bystrica.

CD přehrávač Technics, stříbrný, ve 100% stavu, nejraději nový. Dále CD Queen — A night at the opera, Michael Jackson — Bad. Ing. L. Navrátil, Leninova 626, 687 71 Bojkovice.

RAM 41256 a disk. jednotku na Sinclair. P. Krafčík, 338 45 Strašice 419.

Magnetofon do MZ 821. M. Kaňák, Komenského 1096, 739 11 Frýdlant n. O.

Několik sad barevných, příp. černých kuličko-

vých propisovačů do plotru Sharp MZ-1P16. Dobře zaplatím. RNDr. J. Lechner, 768 13 Litenčice 155

IO AY-3-8610, 100% stav, uveďte cenu. R. Petrák, Kirovova 23, 625 00 Brno.

Tuner Onkyo Integra T-4270 nebo Onkyo Integra T-4250 ve stříbrném provedení. K. Čuřík, ul. Osvobození 192, 763 16 Fryšták.

BNC panel, kabelové i 90 st.; Scart zás. i vidlice; BFY90, BF494, BDI35, CD4047, MHB4066, A733, ploš. spoj na videozes. s 5 výst. a videoinvertor AR 4/86. Potřebují multimetr Philips 2518; 2718 komplet. Rychle, solidně. M. Němec, Za nemocnicí 1067, 264 01 Sedlčany.

MHB4024; 4029; 4311; 4011. Z. Hrazdíra, Na podlesí 1446, 432 01 Kadaň.

TESLA Strašnice k. p.

závod J. Hakena U náklad. nádraží 6, 130 65 Praha 3

topenáře, instalatéry, str. zámečníky, provozní elektrikáře, čističe osvětlovacích těles, mazače strojů, klempíře, malíře — natěrače, sklenáře, manipulační dělníky, stavební dělníky, úklidové dělníky, strážné (možné pro důchodce).

Platové podmínky podle ZEUMS II. Ubytování pro svobodné zajistíme v podnikové ubytovně.

Zájemci hlaste se na osobním oddělení našeho podniku nebo na tel. 77 63 40. **Spičkový tuner**, stříbrné provedení, sdělte typ, citlivost a cenu. Přijedu. P. Malý, S. K. Neumanna 101, 530 01 Pardubice.

IO SAB3209 a SAB3210, násobič vn, MP 40, VQB27 alebo VQB28 (zel. 19,6 mm). M. Soumar, gen. Svobodu 13, 911 01 Trenčín.

Příručku pro konstruktéry od Donáta; Havlíček — Radiotechn. praxe; Maurenc — Poznáváme radiotechniku; Škoda — Tranzistory a baterie; Tauš — Pokusy z radiotechniky. Měřicí přístroje PU 160, indikátor PU 350, pyrometr vláknový, Vareg 2, měřič zemního odporu s magnetodynamickým měřidlem, magnetoelektrický elektromotor. V. Popovič, 561 61 Červená Voda 253.

VÝMĚNA

Na ZX Spectrum programy, návody. Ing. J. Chochola, Sídliště 660, 667 01 Židlochovice. Hry na počítač Commodore C+4, C16. V. Olejníček, 798 04 Určice 297.

RŮZNÉ

Výroba plošných spojů. Podle dodané předlohy zhotovím jednostr. plošné spoje fotocestou. Cena přibliž. 100 cm² 23 Kčs. Pro organizace možno na fakturu. M. Petira, Na kopečku 19, 541 01 Trutnov.

Kdo zapůjčí nebo prodá úplnou dokumentaci k videorekordéru Funai-VCR 4500. Čestně vrátím. V. Hájek, Havlíčkova 139, 286 01 Čáslav. Kto opraví Sord M5. J. Repiský, 966 61 Hodruša-Hamre 435

Zhotovím filmové klišé pro fotochemickou výr. ploš. spojů podle dodané předlohy nebo odkazu na příslušné AR. Ing. P. Kuneš, 561 51 Letohrad 529.

Prodám, koupím, vyměním programy na ZX Spectrum (též programy použitelné na Spectrum pod. syst. CP/M). Kdo prodá, vymění, půjčí či zajistí trvalý odběr zahr. časopisů, týkajících se Spectra (např. Crash, Svet computera, Your Sinclair, Sinclair user, Moj mikro, ZX Computing Monthly. M. Peška, Hlavní 75, 250 90 Nové Jirny.

Výzkumný ústav matematických strojů, k.

ú. o. přijme pro pracoviště Vokovice Lužná 2, Praha 6

pracovníky pro práci na vývoji polozákaznických obvodů určených pro přídavná zařízení VT a adaptéry osobních počítačů. Předpokládané vzdělání VŠ, platové zařazení podle ZEUMS II, zajímavá práce na pokrokové technologii, možnost dalšího vzdělávání (vědecká příprava), podniková a výběrová rekreace.

Bližší informace na tel. čísle 36 62 51, linka 281. Náborová oblast Praha.

NEVYUŽITÉ VYNÁLEZY

JZD Budislav, 391 26 Tučapy nabízí spolupráci a volnou kapacitu při realizaci a zavedení výroby nevyužitých vynálezů, ZN a nápadů v oborech elektronika strojírenství, zemědělství

Informace a nabídky přijímáme na adrese:

ing. Aleš Málek, Na dolinách 18/169, 147 00 Praha 4.

Sobotka, Z.: OTÁZKY A ODPOVEDE Z MIKROPROCESOROV A MIKRO-POČÍTAČOV — APLIKÁCIE. Alfa: Bratislava 1988. 480 stran, 215 obr., 77 tabulek. Cena brož. 33 Kčs.

Ve vydavatelství Alfa bylo již úspěšně publikováno několik námětů z technické literatury, zpracovaných ve formě otázek a odpovědí. Byly mezi nimi např. i překlady z ruštiny (Tarasov — Otázky a úlohy z fyziky) nebo z francouzštiny (Alsberg Doury — Farebná televízia? Nič jednoduchšie!) Ani knížka Otázky a odpovede z mikroprocesorov a mikropočítačov nebude jistě výjimkou, co do čtenářského zájmu. Tematicky volně navazuje na dvě knížky téhož autora Otázky a odpovede z mikroprocesorov a mikropočítačov — architektura a programování a Otázky a odpovede z mikroprocesorov a mikropočítačov, vydané v roce 1981 a obdobně koncipované.

Probírá prostředky, stimulující vývoj mikropočítačů, převodníky pro zpracování analogových signálů, uvádí řadu praktických aplikací mikroprocesoru 8080 s programy a zabývá se i signálovými mikropočítači včetně jejich teoretic-

kých základů.

Obsah je rozdělen do deseti, v podstatě na sobě nezávislých kapitol, do nichž jsou shrnuty otázky, postihující základní problematiku jednotlivých témat. V první kapitole jsou to technické prostředky k návrhu a oživování mikropočítačových systémů, ve druhé programy mikropočítačových systémů s mikroprocesorem 8080, ve třetí programy pro matematické operace, ve čtvrté komunikace mikroprocesoru 8080 s okolím. Dále: sériová asynchronní komunikace s mikroprocesorem 8080 (5.), A/D a D/A převodníky vazbou na mikropočítač (6.), nepřesnosti a chyby při převodu A/D a D/A (7.), základy číslicového zpracování analogových signálů (8.), číslicové filtry (9.) a signálový mikropočítač (10.). Nejobsáhlejší jsou kapitoly šestá a devátá, které svým rozsahem i počtem otázek a odpovědí převažují nad ostatními. V každé kapitole je nejdříve velmi stručně charakterizován její obsah a uvedeny předpoklady k jejímu úspěšnému zvládnutí (požadavky na rozsah předběžných znalosti), popř. další užitečné informace pro čtenáře. Text je provázen názornými obrázky, tabulkami a grafy. Forma otázek a odpovědí má tu výhodu, že je přesně vymezen každý dílčí problém a je k němu podáno zcela konkrétní a vyčerpávající vysvětlení.

Text knihy doplňuje stručný úvod, předmluva autora a v závěru pak seznam jedenácti titulů doporučené literatury. Na konec knihy zařadil autor dodatky. Obsahují stručné vysvětlení některých pojmů, výčet vlastností pamětí, s nábojovou vazbou, jejich uspořádání a použití (dodatek A), převodní tabulku některých sovětských IO s velkou hustotou integrace (dodatek B), soubor instrukcí 8080 (dodatek C), převodní tabulky z osmičkové a šestnáctkové do desítkové soustavy (dod. D, E) a tabulkou s mocninami čísla 2 (dodatek F).

Kniha je určena pracovníkům elektrotechnického průmyslu, vývojovým konstruktérům a konstruktérům mikropočítačových systémů, studentům vysokých a středních škol, pro školení a kursy z oboru mikropočítačů, a všem pracovníkům, zajímajícím se o mikroprocesorovou techniku a její využití.

JB

Stálý zájem o elektroniku a o amatérskou činnost v tomto oboru se na knižním trhu projevuje rychlým vyprodáním knih se zmíněnou tematikou brzy potom, kdy se objeví v prodejnách. To je jistě jev potěšující. Vede to však i k tomu, že vydavatelé, aby byli schopni uspokojit poptávku, sahají často k reedicím, nejsou-li k dispozici nové tituly, popř. noví autoři. To samo o sobě by sice nemuselo být na škodu, ale vzhledem k rychlému pokroku v elektronice a v její součástkové základně se stává, že obvody či zařízení, popisované ve vydávané literatuře, jsou již vývojem překonány.

Stručnou zmínkou o nových vydáních několika titulů chceme hlavně upozornit čtenáře, že se knihy, které třeba nedávno marně sháněli na základě jejich stručné charakteristiky, publikované v AR, znovu objevují na knižním trhu.

Český, T.: ANTÉNY PRO PŘÍJEM TELEVIZE. SNTL: Praha 1988. 240 stran, 219 obr., 42 tabulek. Cena brož. 28 Kčs.

Tato publikace znovu vyšla v loňském roce jako dotisk druhého vydání, tedy bez jakýchkoli změn. Obsahuje vysvětlení základů přenosu TV signálu a jeho zpracování, šíření TV signálu mezi vysílačem a přijímačem (včetně zmínky o přenosu družicemi) a popisuje stavbu antén pro jednotlivá pásma TV, anténních zesilovačů apod. Podrobnější informaci o této knížce mohou zájemci najít v AR-A č. 5/1986, s. 199.

Arendáš, M.; Ručka M.: AMATÉRSKÁ ELEKTRONIKA V DOMÁCNOSTI A PŘI REKREACI.

Také tato knížka se znovu objevuje v prodejnách v nezměněném (druhém) vydání. Obsahuje asi sto zapojení obvodů jednoduchých elektronických zařízení, použitelných k nejrůznějším účelům a vhodných k amatérské stavbě. Kromě toho uvádí i stručný výklad činnosti obvodů a některé praktické všeobecné údaje z elektroniky, z bezpečnostních předpisů apod. Podrobnější informace byla uveřejněna v AR-A č. 4/1986, s. 159.

Škeřík, J.: RECEPTÁŘ PRO ELEKT-ROTECHNIKA. SNTL: Praha 1988. 544 stran. Cena váz. 40 Kčs.

Receptář obsahuje podrobné předpisy pro přípravu různých vyzkoušených a v provozu osvědčených prostředků na lepení, tmelení, čištění kovů, skla, dřeva a jiných materiálů, jejich povrchovou úpravu a pájení. Jsou popsány i speciální inkousty, různé mazací prostředky, nátěrové hmoty, impregnační prostředky, antistatické látky, chladicí a nemrznoucí směsi a problematika výroby plošných spojů.

Na rozdíl od dvou předchozích byla tato kniha pro nové vydání přepracována a doplněna se zřetelem k novým chemickým výrobkům a návodům, které se v posledních letech dostaly do praxe. Kromě toho byly znovu uvedeny úspěšné nebo zajímavé recepty, které byly ve třetím vydání vypuštěny vzhledem k jeho omezenému rozsahu.

O třetím vydání receptáře referovalo AR-A v č. 10/1982 na s. 397. V porovnání s ním je nové vydání z roku 1988 doplněno takto: Namísto 21 kapitol jich nyní obsahuje třicet. V kapitolách o čisticích prostředcích byl jejich výčet rozšířen o komerční prostředky pro základní čištění materiálů. Byla přidána kapitola o odrezovacích roztocích. Lešticí prostředky byly doplněny statí o broušení a leštění nátěrů. Navíc byly zařazeny kapitoly o barvení a patinování kovů a o pasivaci kovových povlaků.

Nejpodstatnější rozšíření doznaly kapitoly o lepení a tmelení, ale i o nátěrových hmotách, stejně jako kapitola o konzervačních a povrchových ochranných prostředcích proti korozi.

Kniha je určena technikům, mistrům, dělníkům, zlepšovatelům a širokému okruhu zájemců o nejrůznější recepty, návody a výrobky. Je neocenitelnou pomůckou pro všechny, kdo ať již ze záliby, či z nutnosti, věnují svůj čas nejrůznější konstruktérské, opravářské nebo údržbářské činnosti.

STŘEDISKO VTEI SVAZARMU NABÍZÍ

Středisko vědeckotechnických informací Svazarmu pro elektroniku, Martinská 5, 110 00 Praha 1. * Pracovní doba: pondělí zavřeno, úterý až čtvrtek 10 až 12, 14 až 17, pátek 10 až 12, 14 až 16. ★ Telefon: 22 87 74. Služby střediska jsou poskytovány pouze osobně: vyřízování členství a hostování v 602. ZO Svazarmu, přístup ke knihovně časopisů na mikrofiších, pořizování kopií, prodej programů Mikrobáze, nepájivých kontaktních polí a poskytování dalších členských služeb.

Communications News (US) 01/87 Názory odborníků [4] Novinky v průmyslu [6] Přehled odborných setkání [26] Zázraky integrované sítě digitál-ních služeb se stávají skutečnosti [28] Klíčem k řešení je vývoj standardů [32] Rychlost přenosu bude až 50× zvyšena [40] Kanál D může přidat další užité vlastnosti (43) klá komunikáří set katili komunikáří set [44] zvysena (40) Kariai D muze produ dasi uzite visasilosii (43) Jak zkompromitovat vaši komunikačni sit (44) Uživatelė siti by mėli planovat v předstihu (49) Mezinárodni spornė body musi být odstraněny, må-li být realizována integrovaná siť digitálních služeb musi odpovídat techregrovaná siť digitálních služeb musi odpovídat techintegrovana si objednica soužeb musi objedvidat econice satelit (55) Kniha o historii mezinárodní společnosti pro komunikace [59] Technický zpravodaj [60] Recenze publikací [61] Nové výrobky [62] Nová literatura [71] Mikropočítače a příslušenství [74]

Communications News (US) 02/87
Názory odborníků [4] Novinky v průmyslu [6] Stručně o novinkách [6] Přehled odborných setkání [30] Co je to videokonference? [32] Vyší produktivita za nižší cenu [34] Uspořádání dálkové videokonference [35] Audio-konference spojuje 11 míst bez cestování [37] Hybridní slíť se satelitem a optickými vláknovými kabely [38] Komunikáchí zařízení použité u Bostonského světového obchodního centra [39] Videotelefon způsobuje revoluci ve zdravotní pěčí [40] Výrobky nabízené pro dálkové vedené konference [48] Recenze publikací [49] Lokální síť jako podpora automatizace zpracování dat a kancelářských prací [50] Roste potřeba pobočkových ústředen jako podpora automatizace zpracování dat a kancelář-ských prací [50] Roste potřeba pobočkových ústředen pro přenos hlasu a dat [51] Uvažovali jste o výhodách pronájmu telekomunikačního zařízení? [54] Nákup elek-troniky šetří železnici peníze [57] Rychlejší systém komunikačních služeb [60] Dva odborníci nabízejí rady o řízení telekomunikaci [62] Potřeba zlepšování kvality [64] Modemy stále rychlejší, menší a dokonalejší [66] Nové výrobky [72] Nová literatura [80] Mikropočítače a příslušenství [85]

Communications News (US) 03/67 Názory odborníků [4] Novinky v průmyslu [6] Stručně o novinkách [6] Přehled odborných setkáni [26] Komu-nikace přes satelit stále efektivnější [28] Vytvoření datové sítě se satelitem [36] Mali uživatelé sítě VSAT VAN [38] Zrušení regulace vysílání může vadít při uživání datové sítě se satelitem [36] Mali uživatelé sítě VSAT VAN [38] Zrušení regulace vysílání může vadit při uživání C pásma pozemními stanicemi [42] Speciální příloha Communications News Od satelitu k světlovodným vláknům [A5] Větší závazky v telekomunikacích vůči zákazníkům [A7] Služby se přizpůsobují specifickým požadavkům uživatelů [A9] Přizpůsobení telekomunikací zákazníkům [A14] Přisné požadavky vlády [A16] Co byste měli znát o síti VSAT [A18] Služby znamenají spičkové výkony [A21] Nabídky zboží a služeb [A23] Stav telekomunikací v Americe [43] Komunikační satelit pro lodě i pozemní stanice [47] Vysoké školy uči telekomunikace přes satelit [49] Informace o možnostech sdělovacích sítí [50] Výrobky pro uživatele komunikací přes satelit [51] Reportáž z ComNets 87 Expo— kvalita nad kvantitou [54] Pomoc americkému průmyslu telekomunikačních zařízení [55] Využití PC pro obchodní účetníctví [58] Měně chyb v účtech za telefon [62] Porovnání rozdílů při užití sloučených a samostatných automatických rozdělovačů hovorů [65] Strategické plánování v prostředí konkurence [68] Uživatelé se připravují na konference mezinárodní organizace pro komunikace [70] Recenze publikací [71] Nové výrobky [72] Nová literatura [82] Mikropočítače a příslušenství [86]

Communications News (US) 04/87
Názory odborníků [4] Novinky v průmyslu [6] Stručně o novinkách [6] Přehled odborných setkání [24] Opakovače digitální zprávy jsou spolehlivé [26] Hlídkové vozy používají mobilní telefon [30] Počítačové dispečerské pracoviště pro rozvoz zboží [31] Mobilní rádiové stanice v Los Angeles [33] Výrobky pro obousměrné rádiové systémy [36] Literatura o obousměrně komunikujících rádiových stanicích [46] Rychlé objednávky pomocí

telexu [48] Tip pro plánování potřeby telekomunikačních zařízení [49] Prospěch z letních odborných školení [51] Porovnání nákladů na kabely lokálních sítí [53] Vysoké školy a univerzity mají závazky při vzdělávání v oboru skoly a univerzity maji zavazky pri vzdelavani v oboru telekomunikaci [56] Inovace hradlových ústředen lokál-nich sítí [58] Umění předpovědí v obchodu [66] Recenze publikaci [70] Technický zpravodaj [70] Nové výrobky [71] Nová literatura [79] Mikropočítače a příslušenství

[85]
Communications News (US) 05/87

Názory odborníků [4] Novinky v průmyslu [6] Stručně o novinkách [6] Přehled odborných setkání [20] Analyzátory provozu sítí s protokolem [22] Zmatek na trhu digitálních osciloskopů [25] Testování analogo-číslicových obvodů [28] Možnost zapůjčení testovacího zaříze-cí [23] Testování omátoky kohálický ukokálníck sítích [23] vých obvodů [28] Možnost zapůjčení testovacího zařízení [31] Testování optických kabelů v lokálních střích [34]
ntegrovaná síť digitálních služeb je závistá na vývoji
testovacích postupů [37] Současná zařízení pro testování [40] Přehled literatury o testování [48] Důležitost
propojitelnosti center cítí společnosti USTA, USTSA [52]
Výstava Land-Mobile Expo se stále zvětšuje [53]
Připrava ICA v New Orleans [54] Co je možné nalézt na
výstavě mezinárodní organizace pro komunikace [57] 40
tel mezinárodní organizace pro komunikace [57] 40
tel mezinárodní organizace pro komunikace [57] 40
Uspěšné vedení komunikační sítě [94] Umění vyjednávat
s prodávajícím [97] Severozápad pořádá konferenci pod
záštitou mezinárodní konference pro komunikace [100]
Dodržování předpisů slouží vám [103] Nové výrobky
[106] Nová literatura [112] Mikropočítače a příslušenství
[114]

Communications News (US) 06/87 Názory odborníků [4] Novinky v průmyslu [6] Stručně o novinkách [6] Přehled odborných setkání [22] Kombinovaná síť pro digitální přenos zvuku [24] Soukromé T1 nabízejí více za nižší cenu [28] Kompatibilita systému T1 nabízejí více za nižší cenu [28] Kompatibilita systému T1 s integrovanou sítí digitálních služeb [30] Budou správné předpovědí o obecně využívaných komutovaných sítich? [33] Servisní jednotka pomáhá při údržbě sítí [37] Centrum pro výzkum vesmíru používá mikrovlnné rádiové spojení [40] Stát Montana má výkonný telekomunikační systém [41] Nabídka současných zařízení pro telekomunikace [44] Přehled literatury o komunikacich v systému T1 [50] Úspěšné vedení komunikační sítě [52] Záznam dat přenášených telefonem [54] Mezinárodní telekomunikační služby se zlepšují [57] Plány činnosti při výpadku telekomunikačního zařízení [62] Trendy v datových přenosech a komunikačních [62] Trendy v datových přenosech a komunikačních sdrúžení [67] Nová literatura [68] Nové výrobky [70] Recenze literatury [74] Technický zpravodaj [74] Mikropočítače a příslušenství [77]

Communications News (US) 07/87 Názory odborníků [4] Novinky v průmyslu [6] Přehled odborných setkání [20] Výhody a nevýhody analogové a číslicové pobočkové ústředny [22] Dnešní pobočkové ústředny mohou zprostředkovát všechny informace [23] Signalizace společným kanálem zmenšuje vliv vzdále-Signalizace společným kanálem zmenšuje vliv vzdálenosti [27] Nový komunikační systém na univerzitě spoří
peníze [30] Přetížený manipulant ústředny dostává
automatizovanou pomoc [32] Modulární systém ústředny
s možnosti budoucího rozšíření [34] Pobočková
ústředna spojená se softwarem definovanou digitální síti
[36] Plánování telekomunikací se vyplácí [37] Současné
výrobky pro komunikační spojení [38] Literatura
o systémech komuničních síti [41] Odbogníci z telekomunikací nejdou nikdy do důchodu [42] Lepší návratnost nákladů na výstavy a konference [43] Využití
telekomunikační kapacity [45] Úspěšné vedení komunikační sítě [47] Výstava na počest 40. výročí mezinárodní
organizace pro komunikace [50] Úspěchy a budoucnost
mezinárodní organizace pro komunikace [55] Pohled na
mezinárodní činnost britských telekomunikací [56] Soumezinárodní činnost britských telekomunikací [56] Sou-těžení mezi národy v telekomunikační činnosti [60] Nové výrobky [62] Nová literatura [66] Recenze publikací [70]

Communications News (US) 08/87

Názory odborniků (4) Novinky v průmyslu (6) Přehled odborných setkání [22] Světelné impulsy nahrazují elektrické [24] Světelná vlákna nabízejí některé výhody [28] Měření ztrát v krátkých světlovodných kabelech [29] [28] Měření ztrát v krátkých světlovodných kabelech [29] Největší síť svého druhu s více než 3000 milemi světlovodných kabelů [32] Výhledy v oboru vláknové optiky 1988—1992 [34] Výrobky pro uživatele vláknové optiky [40] Literatura o technice vláknové optiky [46] Ustředny pro přenos hlasu i dat si ziskávají přízeň uživatelů [50] Vlastní údržba lacinější než údržba prováděná prodejcem [56] Jak uspořádat úspěšnou výstavu pro prodejce i uživatele [58] Lepši pochopení standardizace [59] Nová literatura [60] Nové výrobky [62] Mikropočítače a příslušenství [69]

ations News (US) 09/87

Communications News (US) 09/87
Názory odborníků [2] Novinky v průmyslu [4] Obrazové
zpravodajství časopisu [24] Přéhled odborných setkání
[26] Globální informační propojení povede ke zvýšení
produktivity [28] Předvedení elektronické pošty na
výstavě Telekomunikace [30] Nové výrobky a aplikace
očekávané v devadesátých letech [32] Užití obyčejného
papíru pro obrazovou telegrafii [34] Sifrování signálu

pro bezpečný přenos obrazové telegrafie [36] Mezi-národní přenos zpráv je rozhodující při práci ve vesmíru [37] Preference prostředků elektronické pošty [38] Novinky pro zlepšení přenosu mluvených zpráv u Houston Chronicle [40] Sdělovací síť pro úřady, továrny, obchodní domy [41] Systém pro přenos souborů dat spojuje vedení s ostatními útvary [42] Přehled druhů sdělovacích zařízení [44] Přehled literatu-Přehled druhů sdelovacích zarizení [44] Přehled literatury o elektronickém přenosu zpráv [50] Komunikační satelitní systémy [54] Aplikace a trendy vývoje vláknové optiky [60] Povolání manažera v telekomunikacích [62] Stát se dobrým manažerem výžaduje různé znalosti [65] Pohled do skupiny speciálních užívatelů mezinárodní společnosti pro komunikace [67] 16. konference sdružespoiecnosti pro komunikace [67] 16. konference sdružení vysokých škol a univerzit vyučujících telekomunikace [68] Příprava výstavy TCA v San Diegu [69] Jak si naplánovat cestu na výstavu TCA [72] Přehled vystavovatelů a informace o exponátech na výstavě TCA [73] Mikropočítače a přislušenství [92] Nové výrobky [94] Technický zpravodaj [106]

Communications News (US) 10/87
Názory odborníků [2] Novinky v průmyslu [4] Přehled odborných setkání [28] Zkontrolujte analogové filtry a pasívní součástky [30] Sdružení různých frekvencí na jeden koaxiální kabel [31] Návrh rádiového systému do horského terénu [32] Mikrovlnný systém pro bezpečnost objektů [36] Dvojcestný mikrovlnný systém pro přenos zvuku, obrazu a dat [39] Integrovaný návrh sítě umožňuje rychlou instalací a snížuje náklady [40] Souhrn výrobků mikrovlnné techniky [42] Přehled literatury o mikrovlnné technice [48] Manažer v mnoha-užívatelském počítačovém telekomunikačním systému ilteratury o mikrovinné technice [48] Manažer v mnoha-uživatelském počítačovém telekomunikačním systému [50] Vytvoření sítě s obchvaty [54] Telekomunikační satelity dnes a zítra [56] Vláknová optika v USA [61] Rozhovor s vedoucími výstavy TCA [64] Připrava telekomunikační konference síředozápadu USA [68] Telecom 87 — výstava v Ženevě [72] Nové výrobky [76] Mikropočítače a příslušenství [88]

Mikropočítače a příslušenství [88]

Communications News (US) 11/87

Názory odborníků [2] Novinky v průmyslu [4] Přehled odborných setkání [24] Různé typy lokálních sítí [26] Plánování instalace lokální sítě [30] Potřeba vysoké rychlosti přenosu dat v lokální sítí [32] Předpoklady použití světlovodných vláken v lokálních sítích [34] Bezpečnost dat proti krádeži vyžaduje řízení přístupu k informacím sítě [36] Užití počítačů bez dísků zvyšuje zabezpečení dat proti krádeži [38] Lokální síť poskytuje investiční bance konkurenční výhodu [39] Jediná síť nahrazuje tří systémy [42] Informační síť akademie zdušných sil USA [45] Komponenty pro lokální sítě [48] Přehled literatury s návrhy a aplikacemi lokálních sítí [54] Přepínání užité pro sdílení času [57] Úřadovny komunikačních manažerských sdružení [59] Budovat soukromou síť nebo najmout telekomunikační služby? [60] Konference telekomunikačního sdružení TCA v San Diegu [64] Náměty k řešení každodenních problémů manažera sdělovací sítě [66] Taktování sítě T1 pro zajištění přesnosti [70] Nové exponáty na výstavě TCA v San Diegu [74] Jednání na 10. telekomunikačního zářenu [80] Anatíra činnosti úřekod v [84] Nové literatura zájmů uživatelů a pronájemců telekomunikačního za-řízení [80] Analýza činnosti ústředny [84] Nová literatura [94] Mikropočítače a příslušenství [96] Recenze publika-

Communications News (US) 12/87
Názory odborníků [2] Novinky v průmyslu [4] Obrazové zpravodajství [24] Přehled odborných setkání [27] Průvodce komunikačními programy pro PC [30] Úloha software pro řadič 32/70 umožňujícího připojení PC do počítačové sítě [33] O software pro telekomunikační systémy [34] Vývoj speciálního software pro aplikace ve sdělovacích sitich [38] Přehled software pro komunikace od různých výrobců [42] Literatura o software pro komunikace [44] Jak sjednávat obchodní kontrakty [46] Jak efektivně využívat zkušenosti telekomunikačních poradců [50] Strategie správy komunikační sitě [52] Seminář mezinárodní společnosti pro komunikace a výstava Telecom 87 v Ženevě [60] Konference CMA na Long Island [62] 12. konference telekomunikační spoa vystava leterom 67 2 zerostogo jihova katori spo-lečnosti amerického jihovýchodu [63] Nové výrobky [64] Nová literatura [70] Recenze publikací [74]

Communications News (US) 01/88
Názory odborníků [2] Novinky v průmyslu [4] Stručně o novinkách [14] Obrazové zpravodajství [16] Přehled odborných setkání [18] Kdy bude všude k dispozici integrovaná síř digitálních služeb [22] Integrovaná síř digitálních služeb se bude vyvíjet dle požadavků uživatelů [26] Uživatelé integrované sítě digitálních služeb potřebují opravdové znalosti [30] Je čas připravovat se na integrovanou síř digitálních služeb [32] Vývoj sítě pro ministerstvo obrany [34] Příklady aplikací komunikaci přes satelit [38] Systém pro počítačové překlady z dvaceti jazyků [43] Manažer nesmí být závistý na technice [44] Plány činnosti sdružení uživatelů telekomunikaci [47] Nové výrobky [48] Mikropočítače a příslušenství [54] Nová literatura [56]