Honeypot (T-POD)

Parte 1: Introducción a los Honeypots

- 1. Definición de Honeypots
- 2. Tipos de Honeypots
 - o Honeypots de Baja Interacción: Breve descripción y ejemplos.
 - Honeypots de Alta Interacción: Breve descripción y ejemplos.
- 3. Componentes y Funcionamiento
- 4. Ventajas y Desventajas
- 5. Casos de Uso

Parte 2: Configuración de un Honeypot (T-POT)

- 1. Introducción a T-POT
- 2. Requisitos Previos
- 3. Instalación de T-POT
- 4. Configuración de T-POT
- 5. Pruebas Iniciales

Parte 3: Análisis de Datos y Conclusiones

- 1. Recolección de Datos
- 2. Análisis de los Datos Recopilados
- 3. Interpretación de los Resultados
- 4. Conclusiones Finales
- 5. Limitaciones y Trabajo Futuro

Consideraciones Finales

- Referencias
- Apéndices
- Formato y Presentación

Paso a Paso Detallado

Parte 1: Introducción a los Honeypots

- 1. Investigación Inicial
- 2. Redacción

Parte 2: Configuración de T-POT

- 1. Preparativos
- 2. Documentación del Proceso

keepcoding

3. Escritura

Parte 3: Análisis de Datos y Conclusiones

- 1. Recolección de Datos
- 2. Análisis:
- 3. Escritura

Parte 1: Introducción a los Honeypots

Definición de Honeypot

Un honeypot es una herramienta de seguridad que actúa como cebo o señuelo para ciberatacantes. Se utiliza para monitorizar ataques y aprender para poder evitarlos en el futuro. Recibirán los ataques antes que los sistemas críticos.

Los honeypot crean servicios falsos propensos a ser atacados, como un servidor web o una base de datos. Estos ataques se recogen y analizan, permitiendo obtener información de los ataques y su procedencia y preparar los sistemas reales ante posibles amenazas similares.

Tipos de Honeypots

Honeypots de Baja Interacción

- Emulan algunos servicio y funcionalidades básicas del sistema
- Recopilan información básica y algo limitada del atacante con pocos recursos.
- •Son fáciles de implementar y mantener.
- •Útiles para detectar los primeros pasos de un ataque.

Honeypots de Alta Interacción

- Emulan un abanico muy amplio de servicios y comportamientos de un sistema real.
- •Permiten realizar una investigación más profunda del ataque e identificar el nivel de riesgo de la amenaza, métodos y objetivo del atacante.
- •Son más complejos y requieren más recursos y mantenimiento.

Componentes y Funcionamiento

Un honeypot está compuesto por varios elementos esenciales que le permiten atraer y registrar las actividades de los atacantes. Estos componentes incluyen:

- **Red y Sistema Operativo**: El honeypot puede estar basado en una máquina virtual o física que imita un sistema operativo específico.
- **Servicios Falsos**: Se configuran servicios que parecen vulnerables, como servidores web, SSH, FTP, entre otros, que los atacantes suelen buscar.
- **Sistemas de Monitoreo**: Herramientas que registran todas las actividades del atacante, incluyendo intentos de explotación, comandos ejecutados y movimientos dentro del sistema.

Carlos Gutierrez Torrejon Álvaro García De La Mata

keepcoding

El funcionamiento básico de un honeypot implica atraer al atacante hacia el sistema falso y registrar toda la actividad. La información recopilada se analiza posteriormente para entender mejor las tácticas y herramientas utilizadas por los atacantes, lo que ayuda a mejorar las defensas de la red real.

Ventajas y Desventajas

Ventajas

- **Detección Temprana de Ataques**: Los honeypots pueden identificar y alertar sobre intentos de intrusión en etapas tempranas.
- Análisis Detallado y accesible: Proporcionan una visión detallada de las tácticas y técnicas de los atacantes.
- **Educación y Entrenamiento**: Son útiles para entrenar al personal de seguridad en la identificación y respuesta a incidentes.
- No requieren muchos recursos

Desventajas

- Recursos Necesarios: Los honeypots de alta interacción requieren un mantenimiento elevado.
- **Falsos Positivos:** Los honeypots pueden generar una gran cantidad de datos, incluyendo actividades no maliciosas, lo que complica el análisis.
- **Vulnerabilidades:** Los honeypots poseen las mismas vulnerabilidades que los sistemas que emulan, por lo que necesitan un mantenimiento constante para ser efectivos.
- **Configuración:** Si no se configuran correctamente, pueden ser utilizados como punto de partida para ataques al resto de la red.

Casos de Uso

Los honeypots se utilizan en diversos contextos y escenarios para mejorar la seguridad informática:

Investigación de Amenazas (Threat Intelligence) Los honeypots se utilizan ampliamente en la investigación de amenazas para obtener información valiosa sobre nuevas amenazas y vulnerabilidades. Al observar directamente los métodos de los atacantes, los analistas de ciberseguridad pueden identificar patrones y desarrollar firmas de detección para nuevas variantes de malware. Esto pertenece a la rama de Threat Intelligence, que se centra en comprender y mitigar las amenazas a la seguridad a través de la recopilación y el análisis de información sobre posibles atacantes y sus métodos.

Entornos Empresariales (Security Operations) En las empresas, los honeypots se implementan para detectar y mitigar ataques internos y externos. Al integrar honeypots en la infraestructura de red, las organizaciones pueden identificar comportamientos sospechosos que podrían indicar una brecha de seguridad. Esto es especialmente útil para detectar ataques dirigidos y amenazas persistentes avanzadas (APT). Este caso de uso se clasifica dentro de **Security Operations**, que se encarga de la gestión diaria de la seguridad de una organización, incluyendo la detección y respuesta a incidentes.

Educación y Capacitación (Cybersecurity Training) Los honeypots se utilizan en entornos académicos y profesionales para enseñar ciberseguridad y para simular ataques reales durante entrenamientos. Proporcionan un entorno seguro y controlado donde los estudiantes y profesionales pueden aprender sobre las técnicas de los atacantes y practicar la respuesta a incidentes. Esto pertenece a la rama de **Cybersecurity Training**, que se enfoca en la formación y desarrollo de habilidades en ciberseguridad.

Protección de Infraestructuras Críticas (Critical Infrastructure Protection) Los honeypots son implementados en infraestructuras críticas, como servicios financieros, de energía y telecomunicaciones, para monitorear y proteger contra ataques avanzados. En estos entornos, es crucial detectar y mitigar cualquier intento de intrusión rápidamente

para evitar interrupciones significativas en los servicios esenciales. Este caso de uso se clasifica dentro de **Critical Infrastructure Protection**, que se centra en la defensa de los sistemas y activos vitales para la seguridad nacional y el bienestar público.

Desarrollo y Pruebas de Seguridad (Security Research and Development) Los honeypots también se utilizan en el desarrollo y pruebas de nuevas tecnologías de seguridad. Proporcionan un entorno donde los investigadores pueden probar la efectividad de nuevas defensas sin arriesgar los sistemas de producción. Además, permiten a los desarrolladores observar cómo los atacantes interactúan con nuevas tecnologías y ajustar las medidas de seguridad en consecuencia. Este caso de uso pertenece a la rama de Security Research and Development, que se dedica a la innovación y mejora continua de las tecnologías de seguridad.

Parte 2: Configuración de un Honeypot (T-Pot)

Vamos a implementar la solución T-Pot en su versión estándar, esto incluye sensores y herramientas de búsqueda y análisis como ElasticSearch, Suricata o Kibana.

Se va a implementar en una máquina virtual en Azure que monta un Debian 11.

Entorno virtual

Carlos Gutierrez Torrejon Álvaro García De La Mata

keepcoding

Reglas NSG

Se han implementado tres reglas NSG para permitir el acceso por SSH y WEB desde nuestras IPs públicas y permitir el tráfico desde todo internet a los puertos específicos que utiliza T-Pot

Instalación T-Pot

https://github.com/telekom-security/tpotce?tab=readme-ov-file#choose-your-distro

→Una vez montada la máquina virtual, nos conectamos por SSH

→ Actualizamos el sistema

sudo apt update

```
Mc
keepcoding@tpot:~$ sudo apt update
[sudo] password for keepcoding:
Hit:1 http://deb.debian.org/debian bullseye InRelease
Hit:2 http://deb.debian.org/debian bullseye-updates InRelease
Hit:3 http://security.debian.org/debian-security bullseye-security InRelease
Reading package lists... Done
Building dependency tree... Done
COOReading state information... Done
All packages are up to date.
```

→Instalamos curl

```
keepcoding@tpot:~$ sudo apt install curl

Reading package lists... Done

Reading dependency tree... Done

Reading state information... Done

The following additional packages will be installed:

te libcurl4

The following NEW packages will be installed:

curl libcurl4

100 upgraded, 2 newly installed, 0 to remove and 0 not upgraded.
```

→Ejecutamos el instalador sin permisos root

```
env bash -c "$(curl -sL https://github.com/telekom-
security/tpotce/raw/master/install.sh)"
```

→Seleccionamos la instalación estándar, que incluye todo lo necesario (sensores, elastic, kibana, etc)

→Establecemos el usuario para el acceso web

```
### T-Pot User Configuration ...

### Enter your web user name: tpotuser

### Your username is: tpotuser

y:### Is this correct? (y/n) y

### Enter password for your web user:
```

Carlos Gutierrez Torrejon Álvaro García De La Mata

García De La Mata keepcoding

```
[+] Pulling 12/38
w tanner_redis Skipped - Image is already being pulled by map_redis
w map data Skipped - Image is already being pulled by map web
 v conpot kamstrup 382 Skipped - Image is already being pulled by conpot guardian ast
 v conpot IEC104 Skipped - Image is already being pulled by conpot guardian ast
 w tanner api Skipped - Image is already being pulled by tanner
 v conpot ipmi Skipped - Image is already being pulled by conpot guardian ast
" sentrypeer [ ] 6.953MB / 7.462MB Pulling " ipphoney [ ] 47.54MB / 48.52MB Pulling
" ewsposter [ ] Pulling
" dionaea [ ] Pulling
" medpot [ ] Pulling " logstash [ ] Pulling
 " wordpot [ ] Pulling
 " elasticsearch [ ] Pulling
 " tpotinit [###] 23.69MB / 28.08MB Pulling
 " dicompot [ ] Pulling
 " mailoney [ ] Pulling
 " honeytrap [ ] Pulling
```

→Una vez terminada la instalación, reiniciamos y volveremos a conectar por SSH pero a través del puerto 64295

```
### Please review for possible honeypot port conflicts.
### While SSH is taken care of, other services such as
### SMTP, HTTP, etc. might prevent T-Pot from starting.

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State User Inode PID/Program name

tcp 0 0.0.0.0:64295 0.0.0.0:* LISTEN 0 36811 7565/sshd: /usr/sbi

tcp6 0 0::64295 :::* LISTEN 0 36822 7565/sshd: /usr/sbi

udp 0 0.0.0.0:68 0.0.0.0:* 0 15173 373/dhclient

### Done. Please reboot and re-connect via SSH on tcp/64295.
```

→Entramos a la carpeta de tpot y actualizamos la aplicación

```
keepcoding@tpot:~/tpotce$ ls
CHANGELOG.md data docker env.example
CITATION.cff deploy.sh docker-compose.yml genuser.sh
                                                                  install.sh
                                                                              README.md
                                                                                             uninstall.sh
                                                env.example
                                                                               SECURITY.md
                                                                                            update.sh
                                                genuserwin.psl LICENSE
                                                                                             version
                         dps.psl
keepcoding@tpot:~/tpotce$ sudo ./update.sh -y
This script should not be run as root. Please run it as a regular user.
keepcoding@tpot:~/tpotce$ ./update.sh -y
### Checking for version tag ...
######
                                     update procedure. [ OK ]
```

→Una vez finalizado iniciamos el servicio tpot y los servicios de docker

```
### Restoring T-Pot config file .env

### Done. You can now start T-Pot using 'systemctl start tpot' or 'docker compose up -d'.

keepcoding@tpot:~/tpotce$
```

sudo systemctl start tpot

Accedemos al portal a través del navegador con la IP pública de la máquina y el puerto 64297

https://23.102.235.8:64297

Accedemos a Kibana

Carlos Gutierrez Torrejon Álvaro García De La Mata

Carlos Gutierrez Torrejon Álvaro García De La Mata

