点集拓扑作业 (13)

Problem 1 设 $x_1, x_2 \cdots$ 是乘积空间 $\prod_{\alpha \in J} X_\alpha$ 中的序列. 证明:该序列收敛到 x 当且仅当 $\forall \alpha \in J$, 序列 $\pi_\alpha(x_1), \pi_\alpha(x_2), \cdots$ 收敛到 $\pi_\alpha(x)$. 这对箱拓扑成立吗?

必要性: $\forall \alpha \in J, \forall V$ 是 X_{α} 的开集, $\pi_{\alpha}(x) \in V$, 于是 $x \in \pi_{\alpha}^{-1}(V)$ 是开集, 所以 $\exists N \in \mathbb{N}, \forall n > N$, 都有 $x_n \in \pi_{\alpha}^{-1}(V)$. $\pi_{\alpha}(x_n) \in V$. 于是序列 $\pi_{\alpha}(x_1), \pi_{\alpha}(x_2), \cdots$ 收敛到 $\pi_{\alpha}(x)$.

充分性:对于 x 的基邻域 $B=igcap_{i=1}^m\pi_{\alpha_i}^{-1}(U_{\alpha_i}),$ 由于 $\pi_{\alpha}(x_n)$ 收敛到 $\pi_{\alpha}(x),$ 于是 $\exists N_i\in\mathbb{N}, \forall n_i>N_i,$

都有 $\pi_{\alpha_i}(x_{n_i})\in U_{\alpha_i}$,进而取 $N=\max\{N_i\}, \forall n>N, x_n\in\pi_{\alpha_i}^{-1}(U_{\alpha_i})$,故 $x_n\in B$. 于是命题成立. 反例:在 \mathbb{R}^ω 中赋予箱拓扑并取序列 $x_n=(0,\cdots,0,1,\cdots)$,其中有 n 个 0. 此时 $\pi_{\alpha}(x_n)$ 均收敛到

0. 在 \mathbb{R}^ω 中,考虑 $\mathbf{0}$ 的邻域 $Y=\prod_{m=1}^{+\infty}\left(-rac{1}{m},rac{1}{m}
ight), orall n\in\mathbb{N}, \exists m>n, x_n$ 的第 m 个坐标

$$1 \notin \left(-\frac{1}{m}, \frac{1}{m}\right).$$

于是不收敛到 0. 命题不成立.

Problem 2 记 $\mathbb{R}^{\infty}=\{(x_1,x_2,\cdots)\Big|\big|\{i\in\mathbb{N}_+|x_i\neq0\}\big|<+\infty\}$. 求其在 \mathbb{R}^{ω} 积拓扑和箱拓扑下的闭包.

在积拓扑下, $\forall x=(t_1,t_2,\cdots)\in\mathbb{R}^\omega$, $\exists x_n=(t_1,\cdots,t_n,0,\cdots)\in\mathbb{R}^\infty$, 由上题知 $x_n\to x$, 所以 $x\in\overline{\mathbb{R}^\infty}$. 进而 $\overline{\mathbb{R}^\infty}=\mathbb{R}^\omega$. 在箱拓扑下, $\forall x\in\mathbb{R}^\omega-\mathbb{R}^\infty$, 均有无限个坐标非零. $\forall U=\prod_{i=1}^{+\infty}U_i$ 是 x 的基邻域, 若 $x_i\neq 0$, 则取 $U_i=(x_i-\varepsilon,x_i+\varepsilon)$, 其中 $\varepsilon=\frac{|x_i|}{2}$, 于是 $0\not\in U_i$. 进而 U 中所有元素均有无限个坐标非 0. 于是 $\forall n,x_n\not\in U$, 故不存在序列 $x_n\in\mathbb{R}^\infty$ 收敛到 x. 于是 $\overline{\mathbb{R}^\infty}=\mathbb{R}^\infty$.

Problem 3 证明 \mathbb{R}^{ω} 在积拓扑下连通, 并求其在箱拓扑下的连通分支.

 $\forall x=(x_1,x_2,\cdots),y=(y_1,y_2,\cdots)\in\mathbb{R}^\omega$ 定义映射 $f:\mathbb{R}\to\mathbb{R}^\omega,\pi_i\circ f(t)=(1-t)x_i+ty_i$ 是连续映射,于是在积拓扑下,f 连续,f(0)=x,f(1)=y. 于是 \mathbb{R}^ω 道路连通进而连通. 对于箱拓扑,定义关系 $\sim:x\sim y\Leftrightarrow x-y$ 仅有有限个坐标非零. 容易验证这是等价关系. 接下来我们证明 \mathbb{R}^ω/\sim 是所有的连通分支. $\forall x\sim y$,不妨设仅有第 $1,2,\cdots,n$ 个坐标不同. 定义映射 $f:\mathbb{R}\to\mathbb{R}^\omega$ 满足当 $t\in\left[\frac{i-1}{n},\frac{i}{n}\right)$ 时, $\pi_i\circ f(t)=(nt-i)(y_i-x_i)+y_i$,其余坐标不变,则 f 连续,进而该等价类道路连通,进而连通. 等价类是开集,所以此即连通分支.

Problem 4 设 X_{α} 是 $T_1(T_2)$ 空间, 证明 $X=\prod_{\alpha\in J}X_{\alpha}$ 在积拓扑和箱拓扑下均为 $T_1(T_2)$ 空间.

对 T_1 空间, 设 $x,y\in X$. 由于 $\{x_\alpha\}$ 是 X_α 的闭集, 于是 $\overline{\{x\}}=\overline{\prod_{\alpha\in J}\{x_\alpha\}}=\prod_{\alpha\in J}\overline{\{x_\alpha\}}=\prod_{\alpha\in J}\{x_\alpha\}=\{x\}.$ 上式无关拓扑, 所以命题对 T_1 空间成立. 对 T_2 空间,

若 $x \neq y$, 则对积拓扑而言,任取 $x_{\alpha} \neq y_{\alpha}$, 由于 $\exists U_{\alpha}, V_{\alpha}$ 分别是 x_{α}, y_{α} 的开邻域且 $U_{\alpha} \cap V_{\alpha} = \phi$. 于是取 x, y 的开邻域 $\pi_{\alpha}^{-1}(U_{\alpha})$ 和 $\pi_{\alpha}^{-1}(V_{\alpha})$,于是有 $\pi_{\alpha}^{-1}(U_{\alpha}) \cap \pi_{\alpha}^{-1}(V_{\alpha}) = \pi_{\alpha}^{-1}(U_{\alpha} \cap V_{\alpha}) = \phi$. 于是 X 在积拓扑下是 T_{2} 的. 对箱拓扑而言,若 $x_{\alpha} \neq y_{\alpha}$,则 U_{α}, V_{α} 取法同上,若 $x_{\alpha} = y_{\alpha}, U_{\alpha} = V_{\alpha} = X_{\alpha}$.则 x, y 的开邻域 $\prod_{\alpha \in J} U_{\alpha}, \prod_{\alpha \in J} V_{\alpha}$ 的交集为空. 命题成立.