Properties of continuous functions

Textbook Reading: [JL] Sections 3.1, 3.2, 3.3, 3.4, 3.5 (Lebl)

Challenging (exercise 1): Solution:

 \implies) Let $f: \mathbb{R} \to \mathbb{R}$ continuous, and let U open in \mathbb{R} . By definition,

$$f^{-1}(U) = \{x \in \mathbb{R}, \ f(x) \in U\}.$$

For all $c \in f^{-1}(U)$, $c \in \mathbb{R}$, such that $f(c) \in U$. Since U is open then $\exists \varepsilon > 0$, such that $(f(c) - \varepsilon, f(c) + \varepsilon) \subset U$. Hence,

$$\forall y \in \mathbb{R}, \ |y - f(c)| < \varepsilon \implies y \in U$$

By continuity of f, for any $c \in f^{-1}(U)$, $\exists \delta > 0$, such that $\forall x \in \mathbb{R}$:

$$|x-c| < \delta \implies |f(x) - f(c)| < \varepsilon \implies f(x) \in U \implies x \in f^{-1}(U)$$

which means exactly that $(c - \delta, c + \delta) \subset f^{-1}(U)$, hence $f^{-1}(U)$ is open.

 \Leftarrow) Let f be such that for all open set U in \mathbb{R} , $f^{-1}(U)$ is an open set of \mathbb{R} . Then, for all $c \in \mathbb{R}$ and all $\varepsilon > 0$, $(f(c) - \varepsilon, f(c) + \varepsilon) = U$ is an open set of \mathbb{R} , thus

$$f^{-1}(U) = \{x \in \mathbb{R}, \ f(x) \in U\} = \{x \in \mathbb{R}, \ |f(x) - f(c)| < \varepsilon\}$$

is open and it contains c since $|f(c) - f(c)| = 0 < \varepsilon$, it follows that $\exists \delta > 0$, such that $(c - \delta, c + \delta) \subset f^{-1}(U)$, henceforth, $\forall x \in \mathbb{R}$,

$$|x-c| < \delta \implies f(x) \in U \implies |f(x) - f(c)| < \varepsilon.$$

Hence, f is continuous at any $c \in \mathbb{R}$ thus it is continuous on all \mathbb{R} .

Exercise 3.3.1 There are many examples! A Solution : Let $f:[0,1]\to\mathbb{R}$, discontinuous at x=1/2,

$$f(x) = \begin{cases} x & \text{if } x \neq \frac{1}{2} \\ 0 & \text{if } x = \frac{1}{2} \end{cases}$$

f never achieves the value y=1/2, that means $\nexists x \in [0,1]$, such that f(x)=1/2.

Exercise 3.3.2 (Seen in course session) $f:[0,1]\to\mathbb{R}$, bounded discontinuous at x=0 and x=1,

$$f(x) = \begin{cases} x & \text{if } x \neq 0 \text{ and } x \neq 1\\ \frac{1}{2} & \text{else} \end{cases}$$

Use a graph to visualize.

Exercise 3.3.3 Let $f:(0,1)\to\mathbb{R}$, continuous such that

$$\lim_{x \to 0} f(x) = 0 = \lim_{x \to 1} f(x).$$

Let \tilde{f} the extension of f defined by

$$\tilde{f}(x) = \begin{cases} f(x) & \text{if } x \neq 0 \text{ and } x \neq 1\\ 0 & \text{if } x = 0 \text{ or } x = 1 \end{cases}$$

then $\tilde{f}:[0,1]\to\mathbb{R}$ is a continuous function, thus by the Min/Max Bolzano's theorem, there exist $c,d\in[0,1]$, such that

$$\tilde{f}(c) = \min_{x \in [0,1]} \tilde{f}(x) \text{ and } \tilde{f}(d) = \max_{x \in [0,1]} \tilde{f}(x).$$

Therefore, for all $x \in [0,1]$, $\tilde{f}(c) \leqslant \tilde{f}(x) \leqslant \tilde{f}(d)$. It follows that, $\forall x \in (0,1)$,

$$\tilde{f}(c) \leqslant \tilde{f}(x) = f(x) \leqslant \tilde{f}(d)$$

Assume that neither c neither d is in (0,1), thus $\forall x \in (0,1)$,

$$0 = \tilde{f}(c) \leqslant f(x) \leqslant \tilde{f}(d) = 0$$

then $f \equiv 0$ is constant on (0,1). Hence, if on chooses $f \equiv c \neq 0$ any other non zero constant, one obtains a contradiction. It follows that, when f in not constant, at least c or d lies in (0,1), say c for example. Then, $\forall x \in (0,1)$,

$$f(c) = \tilde{f}(c) \leqslant f(x) \leqslant \tilde{f}(d) = 0$$

which implies that c is an absolute minimum of f. Remark that not necessarily both c and d lie in (0,1) as shown in the following example:

$$f(x) = \begin{cases} x & \text{if } 0 < x \le \frac{1}{2} \\ 1 - x & \text{if } \frac{1}{2} < x < 1 \end{cases}$$

f is continuous on (0,1) and has limit 0 at 0 and 1. Use a graph to visualize that d=1/2 is an absolute maximum but there is no absolute minimum (here c=0 or c=1 realizes the minimum of \tilde{f} but not of f)

Exercise 3.3.4 Let $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} \sin\frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Remark that f is discontinuous at 0 since $\lim_{x\to 0} f(x) = \lim_{x\to 0} \sin\frac{1}{x}$ does not exist. However, for any a < b, if there is y such that f(a) < y < f(b) then:

1st case : if 0 < a < b or a < b < 0, then the restriction $f_{|[a,b]} : [a,b] \to \mathbb{R}$ is continuous thus it has the I.V.T property, i.e., $\exists c \in (a,b)$, such that f(c) = y.

2nd case : if $a \leq 0 < b$, then : since

$$-1 \leqslant f(a) < y < f(b) \leqslant 1$$

 $\exists \alpha \text{ real, such that } \sin(\alpha + 2n\pi) = y \text{ for all integer } n, \text{ i.e., } f(\frac{1}{\alpha + 2n\pi}) = y. \text{ But the sequence } \frac{1}{\alpha + 2n\pi} \searrow 0$ decreasing then there exists n_0 integer such that

$$0 < c_0 = \frac{1}{\alpha + 2n_0\pi} < \frac{b}{2}$$

hence we have $a \leqslant c_0 < b$ and $f(c_0) = \sin(\alpha + 2n_0\pi) = y$.

3rd case : if $a < 0 \le b$, then : since

$$-1 \leqslant f(a) < y < f(b) \leqslant 1$$

 $\exists \beta \text{ real, such that } \sin(\beta - 2n\pi) = y \text{ for all integer } n, \text{ i.e., } f(\frac{1}{\beta - 2n\pi}) = y. \text{ But the sequence } \frac{1}{\beta - 2n\pi} \nearrow 0$ is increasing then there exists n_1 integer such that

$$\frac{a}{2} < c_1 = \frac{1}{\beta - 2n_1\pi} < b$$

hence we have $a < c_1 \le b$ and $f(c_1) = \sin(\beta - 2n_1\pi) = y$.

Exercise 3.3.14 Let $f:[0,1] \to (0,1)$, a bijection, then f([0,1]) = (0,1). By contradiction, if we assume f is continuous then by the Min/Max theorem, f achieves at $c \in [0,1]$ a minimum value and at $d \in [0,1]$ a maximum value, and

$$f([0,1]) = [f(c), f(d)]$$

which is a contradiction with f([0,1]) = (0,1). Then, f is discontinuous.

Exercise 3.3.15 Let $f: \mathbb{R} \to \mathbb{R}$ continuous.

a) One can assume c > 0. The restriction $f_{|[-c,c]} : [-c,c] \to \mathbb{R}$ is continuous then it admits the I.V.T property, i.e., $f(c)f(-c) < 0 \implies \exists d \in (-c,c), \ f(d) = 0$.

b) For example, let $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x \sin x$, then f is continuous on \mathbb{R} and satisfy

$$f(x)f(-x) = x^2 \sin^2 x \ge 0, \ \forall x \in \mathbb{R}.$$

We have for all integer n, $f(\pi/2+2n\pi)=\pi/2+2n\pi$ is an unbounded increasing sequence of reals with n and $f(\pi/2-2n\pi)=\pi/2-2n\pi$ is an unbounded decreasing sequence of reals with n, then for all $y \in \mathbb{R}$, there exists an integer n_0 such that

$$f(a) = \pi/2 - 2n_0\pi < y < \pi/2 + 2n_0\pi = f(b)$$

where $a = \pi/2 - 2n_0\pi$ and $b = \pi/2 + 2n_0\pi$. Now, a < b, and $f : [a, b] \to \mathbb{R}$ is continuous and admits the I.V.T property then there exists $c \in (a, b)$ such that f(c) = y, which mean that $f : \mathbb{R} \to \mathbb{R}$ is onto then $f(\mathbb{R}) = \mathbb{R}$.

Exercise 3.4.11

a) f and g uniformly continuous on S: implies, $\forall \varepsilon > 0$, $\forall c \in S$, there exist $\delta_1 = \delta_1(\varepsilon) > 0$ and $\delta_2 = \delta_2(\varepsilon) > 0$ such that $\forall x \in S$:

$$\begin{cases} |x - c| < \delta_1 \implies |f(x) - f(c)| < \frac{\varepsilon}{2} \\ |x - c| < \delta_2 \implies |g(x) - g(c)| < \frac{\varepsilon}{2} \end{cases}$$

thus, for $\delta = \min(\delta_1, \delta_2) > 0$, one has for all $x \in S$ such that $|x - c| < \delta$,

$$|f(x) + g(x) - f(c) - g(c)| = |f(x) - f(c) + g(x) - f(c)|$$

$$\leq |f(x) - f(c)| + |g(x) - f(c)|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Then f + g is uniformly continuous on S.

b) f uniformly continuous on S: implies, $\forall \varepsilon > 0, \forall c \in S$, there exist $\delta = \delta(\varepsilon) > 0$ such that $\forall x \in S$:

$$|x - c| < \delta \implies |f(x) - f(c)| < \frac{\varepsilon}{1 + |a|}$$

thus, for this $\delta > 0$, one has for all $x \in S$ such that $|x - c| < \delta$,

$$|h(x) - h(c)| = |a||f(x) - f(c)|$$

 $\leq \frac{|a|}{1 + |a|} \varepsilon < \varepsilon$

Then h is uniformly continuous on S.

Challenging (exercise 2):

Let f Lipschitz continuous with Lipschitz constant $L \ge 0$,

- i) If L=0 then f is constant then uniformly continuous.
- ii) If L>0, then $\forall \varepsilon>0$, $\forall c\in S$, there exist

$$\delta = \delta(\varepsilon) = \frac{\varepsilon}{L} > 0$$

such that $\forall x \in S$:

$$|x-c| < \delta \implies |f(x) - f(c)| \le L|x-c| < L\delta = \varepsilon$$

then f is uniformly continuous.

a) $f(x) = \cos x$, then $\forall x, y \in \mathbb{R}$, we know that $|\sin \alpha| \leq |\alpha|$ and that

$$\cos x - \cos y = -2\sin\left(\frac{x-y}{2}\right)\sin\left(\frac{x+y}{2}\right)$$

thus

$$|\cos x - \cos y| = 2 \left| \sin \left(\frac{x - y}{2} \right) \right| \left| \sin \left(\frac{x + y}{2} \right) \right|$$

$$\leqslant 2 \left| \sin \left(\frac{x - y}{2} \right) \right| \leqslant |x - y|$$

then f is Lipschitz continuous with Lipschitz constant L=1.

b) Let $f(x) = x^{\frac{1}{3}}$, since $f:[0,1] \to \mathbb{R}$ is a continuous function on a closed interval [0,1] then f is uniformly continuous. Let us show now that f is not Lipschitz on [0,1]. By contradiction, if f is Lipschitz on [0,1] with Lipschitz constant L > 0 ($L \neq 0$ since f is not constant) then: $\forall x, y \in [0,1], |f(x) - f(y)| \leq L|x - y|$. Hence for y = 0, one obtains that for all $n \in \mathbb{N}^*$, $x_n = 1/n \in (0,1)$,

$$x_n^{\frac{1}{3}} \leqslant Lx_n \implies L \geqslant \frac{1}{x_n^{\frac{2}{3}}} = n^{\frac{2}{3}} \to +\infty$$

which leads to a contradiction since $L \in \mathbb{R}$. Henceforth, f can not be Lipschitz continuous.