E

2 C re

following properties:

QUALITY PROTOCOL

l. Verifier first computes the commitments

Finally prover and verifier compute D^{-1} and the prover opens the result to eveal 0.

the prover P puts an integer a into a closed box, where $0 \le a < q$ for some fixed prime q and gives it to the verifier V.

At this point, \overline{V} cannot open the box, and \overline{P} cannot change his mind about a.

However, $\frac{\mathbf{P}}{\mathbf{V}}$ may later choose to open a box and reveal the contents to $\overline{\mathbf{V}}$.

Following Properties

1. From commitment A containing a, resp. B containing b,

 \overline{V} can on his own compute a commitment containing $a+b \mod q$, $a-b \mod q$.

Commitments are in a <u>multiplicative</u> group, denote these commitments by $A \cdot B$, resp. AB^{-1} .

Implies that V can <u>multiply</u> or <u>add</u> constants into a commitment. We will let A^c , cA, cA^{-1} denote commitments to ca, c + a, $c - a \mod q$, as computed from A.

2. P can convince V in honest verifier zeroknowledge that a given **commitment** is a *bit commitment*,

i.e. P knows how to open it to reveal 0 or 1.

3. P can convince V in honest verifier zero knowledge that how to open a set of given commitments A, B, C to reveal values a, b, c, for which $c = ab \mod q$. In particular, P can show that he knows how to open a single commitment A (by choosing C = A and B a default commitment to 1).

EQ

1. t
C:
wh:

bin

2. I ope

UALITY PROTOCOL

he verifier first computes the commitments
$$=C_n^{2^n}\cdot C_{n-1}^{2^{n-1}}\cdot\ldots\cdot C_0$$
, and $D=D_n^{2^n}\cdot D_{n-1}^{2^{n-1}}\cdot\ldots\cdot D_0$

ich should both be commitments to the number whose ary representation is $b_n b_{n-1} ... b_0$.

Finally prover and verifier compute CD^{-1} and the prover ens the result to reveal 0.

assume that a prover P will be generating commitments and sending them to a verifier V

unconditionally binding scheme

One finds that in each **round** of the protocol, the prover sends the coefficients of some polynomial, the verifier checks this polynomial, and returns a random element in the The operations done by the verifier in order to check the polynomials in

Categories

1. Evaluate a po

