CSE2202: Numerical Methods Lab

Online 5 A1

Problem Description:

The saturation concentration of dissolved oxygen in water as a function of temperature and chloride concentration is listed in Table 1.

T_degC temperature in degree Celsius	Dissolved Oxygen (mg/L) for temperature (degree Celsius) and concentration of chloride C = 10 g/L
	12.0
0	12.9
5	11.3
10	10.1
15	9.03
20	8.17
25	7.46
30	6.85

1. Write a program that fit 4th degree Lagrange Interpolating Polynomial and use the interpolating polynomial to find the relationship between temperatures and dissolved oxygen level using Lagrange Interpolating formula. Print a table of dissolved oxygen level for the temperature 40 to 70 degree Celsius in step size of 5 and also calculate Mean Squared Error (MSE) for data size 7. (8)

T_degC temperature in degree Celsius	Dissolved Oxygen (mg/L) for temperature (degree Celsius) and concentration of chloride C = 10 g/L
40	
45	
50	
55	
60	
65	
70	

2. Write a program that fit 3rd degree Newton Divide Difference Interpolating Polynomial and use the interpolating polynomial to find the relationship between temperatures and dissolved oxygen level using Newton Divide Difference Interpolating formula. Print a table

of dissolved oxygen level for the temperature 40 to 70 degree Celsius in step size of 5. Also calculate Mean Squared Error (MSE) for data size 7 and coefficient of the polynomials. (10)

T_degC temperature in degree Celsius	Dissolved Oxygen (mg/L) for temperature (degree Celsius) and concentration of chloride C = 10 g/L
40	
45	
50	
55	
60	
65	
70	

Function	Value
Mean Squared Error (MSE)	
A0	
A1	
A2	
A3	

Equation for calculating MSE:

$$MSE = \frac{1}{n} \sum_{i=0}^{n} (y_i - y_i^{\sim})^2$$

n = size of the data

 $y_i = dissolved$ oxygen level of given data $y_i^{\sim} = dissolved$ oxygen level of predicted data