Clase 02 - Representación Numérica

IIC1001 - Algoritmos y Sistemas Computacionales

Cristian Ruz – cruz@uc.cl

Departamento de Ciencia de la Computación Escuela de Ingeniería Pontificia Universidad Católica de Chile

Contacto

Temas

Para partir...

Contacto

Temas

Para partir...

Contacto

ignaciomunoz@uc.cl Ignacio Muñoz Ayudante jefe

- · Coordinación
- Notas de actividades, interrogaciones
- Todo lo que no sé donde más enviar

vicente.cabra@uc.cl Vicente Cabra Ayudante

Materia

fernando.concha@uc.cl Fernando Concha Avudante

Materia

alejandro.tapia@uc.cl Alejandro Tapia Ayudante

Materia

Contacto

Temas

Para partir..

Temas del curso

Sistemas computacionales

- · Representación datos, números y compresión
- · Funcionamiento hardware, procesadores y memoria.
- · Funcionamiento de sistemas operativos: ejemplo scheduling
- · Funcionamiento de Internet
- · Herramientas computacionales: github + latex

Algoritmos

- · Algoritmos y resolución de problemas
- · Eficiencia algorítmica
- · Estructuras secuenciales y ordenamiento
- · Grafos y árboles

Contacto

Temas

Para partir...

Algoritmos'

¿Qué hace este algoritmo?

Algorithm 1.1: A simple Stock Span algorithm.

```
SimpleStockSpan(quotes) \rightarrow spans
    Input: quotes, an array with n stock price quotes
    Output: spans, an array with n stock price spans
    spans \leftarrow CreateArray(n)
    for i \leftarrow 0 to n do
         k \leftarrow 1
         span\_end \leftarrow FALSE
         while i - k \ge 0 and not span_end do
             if quotes[i-k] \leq quotes[i] then
                  k \leftarrow k + 1
             else
                  span\_end \leftarrow TRUE
         spans[i] \leftarrow k
10
    return spans
11
```

Un programa

Un programa ... en C

```
#include <stdio.h>
int main() {
    printf("Hello, world\n");
    return 0;
}
```

Un programa

Un programa ... en bits

Un programa

Un programa ... en caracteres

```
# i n c l u d e <sp> < s t d i o .

35 105 110 99 108 117 100 101 32 60 115 116 100 105 111 46

h > \n \n i n t <sp> m a i n ( ) <sp> {

104 62 10 10 105 110 116 32 109 97 105 110 40 41 32 123

\n <sp> <sp> <sp> <sp> <sp> p r i n t f ( " H e l

10 32 32 32 32 112 114 105 110 116 102 40 34 72 101 108

\lambda o , <sp> w o r l d \n n " ) ; \n <sp> 108 111 44 32 119 111 114 108 100 92 110 34 41 59 10 32

\lambda sp> <sp> <sp> r e t u r n <sp> 0 ; \n } \n \rangle \n \rangl
```

Compilación

El proceso de compilación

Arquitecutra

Para llegar a ejecutar en ...

Contacto

Temas

Para partir..

¿Cómo representar información?

Bits

- Los computadores modernos funcionan en base a bits
- Un bit puede tener dos valores: 0 ó 1
- · Diversas maneras de representar 0 y 1:
 - · Hoyos en tarjetas
 - · Voltaje alto o bajo en un circuito
 - · Campo magnético en un sentido u otro
 - Presencia o ausencia de una señal.
- La tecnología moderna permite agrupar miles, millones, billones, trillones de estas unidades de información
 - · Poco espacio
 - · Alta densidad
 - · Bajo consumo energético
 - · Fácil de construir

¿Cómo representar información?

Bits

- Los bits son muy convenientes para representar información
- Pero los humanos usamos 10 valores
- Distintos sistemas de representación numérica
 - Computadores: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, ...
 - $\cdot \ \ \, \text{Humanos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...}$
- Ambos sistemas siguen reglas similiares, pero con diferente cantidad de dígitos
 - · Computadores: representación binaria, base 2
 - · Humanos: representación decimal, base 10
 - · Hay muchas más ...

Los números (naturales) son infinitos.

- · Usamos D símbolos (dígitos) para representar lo que podemos.
- · Cuando se nos acaban los dígitos, agregamos una **posición** más.
- La nueva posición indica cuántas veces hemos pasado todos los dígitos de la posición anterior.
- En base 10, usamos 10 dígitos (D=10)

$$0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, \dots$$

· Podría escribirse como:

$$0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1 \times D, 1 \times D + 1, 1 \times D + 2, 1 \times D + 3, \dots, 2 \times D, 2 \times D + 1, \dots$$

· Un número en base 10 como 13425, es una abreviación de la expresión:

$$1 \times 10000 + 3 \times 1000 + 4 \times 100 + 2 \times 10 + 5 \times 1$$

• Pero también se puede escribir usando la base D = 10:

$$1 \times 10^4 + 3 \times 10^3 + 4 \times 10^2 + 2 \times 10^1 + 5 \times 10^0$$

Estos sistemas se conocen como sistemas de representación posicional

Lo mismo pero con D=2

- Con D=2 solo tenemos dos dígitos: 0 y 1.
- · Cuando se nos acaban los dígitos, agregamos una **posición** más.
- · Usamos la misma idea que cuando teníamos $\mathit{D}=10.$

$$0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000, \dots$$

Podría escribirse como:

$$\begin{aligned} 0,1,1 \times D,1 \times D+1,1 \times D \times D,1 \times D \times D+1,1 \times D \times D+1 \times D,1 \times D \times D+1 \times D+1 \times 1, \dots \\ 0,1,1 \times D,1 \times D+1,1 \times D^2,1 \times D^2+1,1 \times D^2+1 \times D,1 \times D^2+1 \times D+1, \dots \\ 0,1,1 \times 2,1 \times 2+1,1 \times 2^2,1 \times 2^2+1,1 \times 2^2+1 \times 2,1 \times 2^2+1 \times 2+1, \dots \\ 0,1,1 \times 2,1 \times 2+1,1 \times 4,1 \times 4+1,1 \times 4+1 \times 2,1 \times 4+1 \times 2+1, \dots \end{aligned}$$

· Un número en base 2 como 101010, es una abreviación de la expresión:

$$1 \times 32 + 0 \times 16 + 1 \times 8 + 0 \times 4 + 1 \times 2 + 0 \times 1$$

• Pero también se puede escribir usando la base D=2:

$$1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

Ahora podemos hacer algunas equivalencias:

Base 10	Descomposición	Base 2	Descomposición
0	0×10^{0}	0	0×2^0
1	1×10^{0}	1	1×2^0
2	2×10^{0}	10	$1 \times 2^1 + 0 \times 2^0$
3	3×10^{0}	11	$1 \times 2^1 + 1 \times 2^0$
4	4×10^{0}	100	$1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$
5	5 × 10 ⁰	101	$1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$
6	6 × 10 ⁰	110	$1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$
7	7×10^{0}	111	$1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$
8	8 ×10 ⁰	1000	$1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$
9	9×10^{0}	1001	$1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$
10	$1 \times 10^{1} + 0 \times 10^{0}$	1010	$1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$
11	$1 \times 10^{1} + 1 \times 10^{0}$	1011	$1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$
12	$1 \times 10^{1} + 2 \times 10^{0}$	1100	$1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}$
13	$1 \times 10^{1} + 3 \times 10^{0}$	1101	$1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$
14	$1 \times 10^{1} + 4 \times 10^{0}$	1110	$1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$
15	$1 \times 10^{1} + 5 \times 10^{0}$	1111	$1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$
16	$1 \times 10^{1} + 6 \times 10^{0}$	10000	$1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$
17	$1 \times 10^{1} + 7 \times 10^{0}$	10001	$1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$
18	$1 \times 10^{1} + 8 \times 10^{0}$	10010	$1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$
19	$1 \times 10^{1} + 9 \times 10^{0}$	10011	$1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$
20	$2 \times 10^{1} + 0 \times 10^{0}$	10100	$1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$
100	$1 \times 10^2 + 0 \times 10^1 + 0 \times 10^0$	1100100	$1 \times 2^6 + 1 \times 2^5 + 1 \times 2^2$
1000	1×10^{3}	1111101000	$1 \times 2^9 + 1 \times 2^8 + 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^3$

También podemos abreviar un poco:

Base 10	Descomposición	Base 2	Descomposición
0	0 ×1	0	0 ×1
1	1 ×1	1	1 ×1
2	2 ×1	10	1 ×2 + 0 ×1
3	3 ×1	11	$1 \times 2 + 1 \times 1$
4	4 ×1	100	$1 \times 4 + 0 \times 2 + 0 \times 1$
5	5 ×1	101	$1 \times 4 + 0 \times 2 + 1 \times 1$
6	6 ×1	110	$1 \times 4 + 1 \times 2 + 0 \times 1$
7	7 ×1	111	$1 \times 4 + 1 \times 2 + 1 \times 1$
8	8 ×1	1000	$1 \times 8 + 0 \times 4 + 0 \times 2 + 0 \times 1$
9	9 ×1	1001	1 ×8 + 0 ×4 + 0 ×2 + 1 ×1
10	$1 \times 10 + 0 \times 1$	1010	1 ×8 + 0 ×4 + 1 ×2 + 0 ×1
11	$1 \times 10 + 1 \times 1$	1011	1 ×8 + 0 ×4 + 1 ×2 + 1 ×1
12	$1 \times 10 + 2 \times 1$	1100	1 ×8 + 1 ×4 + 0 ×2 + 0 ×1
13	$1 \times 10 + 3 \times 1$	1101	1 ×8 + 1 ×4 + 0 ×2 + 1 ×1
14	$1 \times 10 + 4 \times 1$	1110	1 ×8 + 1 ×4 + 1 ×2 + 0 ×1
15	$1 \times 10 + 5 \times 1$	1111	1 ×8 + 1 ×4 + 1 ×2 + 1 ×1
16	1 × 10 + 6 × 1	10000	1 × 16 + 0 × 8 + 0 × 4 + 0 × 2 + 0 × 1
17	$1 \times 10 + 7 \times 1$	10001	1 × 16 + 0 × 8 + 0 × 4 + 0 × 2 + 1 × 1
18	1 ×10 + 8 ×1	10010	1 × 16 + 0 × 8 + 0 × 4 + 1 × 2 + 0 × 1
19	$1 \times 10 + 9 \times 1$	10011	1 × 16 + 0 × 8 + 0 × 4 + 1 × 2 + 1 × 1
20	2 ×10 + 0 ×1	10100	1 × 16 + 0 × 8 + 1 × 4 + 0 × 2 + 0 × 1
100	$1 \times 100 + 0 \times 10 + 0 \times 1$	1100100	$1 \times 64 + 1 \times 32 + 1 \times 4$
1000	1×1000	1111101000	1 ×512 + 1 ×256 + 1 ×128 + 1 ×64 + 1 ×32 + 1 ×8

Conversión de binario a decimal

Tip: usaremos la notación $(x)_2$ o $(x)_{10}$ para indicar si la representación de x es binaria o decimal. Si no se usa nada, será por defecto decimal.

Suponiendo que la posición de más a la derecha es la posición 0, y que van aumentando a medida que nos movemos la izquierda, y que la última posición es la n-1, podemos convertir cualquier número binario de n bits a su equivalente decimal usando:

$$\sum_{k=0}^{n-1} s_k \times 2^k$$

donde s_k es el símbolo (bit) que se encuentra en la posición k.

Ejemplo: convertir $(100110101)_2$ a decimal:

$$1 \times 2^{0} + 1 \times 2^{2} + 1 \times 2^{4} + 1 \times 2^{5} + 1 \times 2^{8}$$
$$= 1 + 4 + 16 + 32 + 256$$
$$= 309$$

Conversión de decimal a binario

¡Disfruten el curso!