Matemática IV-2024

TP4 - Relaciones entre conjuntos

- 1. Sean los conjuntos $A = \{1, 0, -1\}$ y $B = \{4, 3, 2, 1\}$. Decide si las siguientes corresponden a relaciones de A en B. Justifica.
 - (a) $R = \{(1, 1), (0, 2)\}$
 - (b) $R = \{(-1, 1), (1, -1)\}$
 - (c) $R = \{(-1, 1), (-1, 2), (-1, 3)\}$
 - (d) $R = \{(4;1)\}$
 - (e) $R = \emptyset$
- 2. Sea $A = \{-3, -2, -1, 0, 1, 2, 3\}$, B = Z y la relación de A en B que viene definida en la forma: xRy si y sólo si y es el cuadrado de x.

Escribe R por extensión. Define R^{-1} por comprensión y por extensión.

- 3. Sean los conjuntos $A=\{a,b,c,d,e\}$, $V=\{vocales\}$ y $B=\{1,2,3\}$. Decide si las siguientes corresponden a relaciones. Justifica.
 - (a) $R = \{(a, a, a); (a, b, c); (b, c, d)\}\$ en $A \times A \times A$
 - (b) $R = \{(a, a, a); ((c, e, 2); (a, b, 1))\}$ en $A \times V \times B$
 - (c) $R = \{(a, b, 1); (e, c, 2) : (i, j, 3)\}$ en $V \times A \times B$
 - (d) $R = \{(a, z, 3); ((b, i, 2); (c, x, 1))\}$ en $A \times V \times B$
- 4. Sea $A=\{1,2,3\}$ y la relación R en $A\times A\times A$ definida en la forma: $(x,y,z)\in R$ si y sólo si x< y & y< z, siendo < el "menor" usual entre números reales. Escribe R por extensión
- 5. Para cada una de las siguientes relaciones: dar tres pares que pertenezcan y tres pares que no; indicar si son reflexivas, simétricas, antisimétricas, y/o transitivas.
 - (a) En el conjunto de los números reales
 - xRy si y sólo si $x \ge 4$ & $y \ge 5$.
 - xRy si y sólo si $y \le x \le y + 3$.
 - (b) Sean $A = \{1, 2, 3, 4\}$ y P(A) el conjunto de partes de A
 - \bullet en P(A), XRYsi y sólo si $X\cap Y=\emptyset$
 - en P(A), XRY si y sólo si $X \subset Y$

- 6. Determinar si las siguientes relaciones definidas en $A = \{a, b, c, d\}$ son reflexivas, simétricas, antisimétricas y transitivas:
 - $R_0 = \emptyset$
 - $R_1 = \{(a, a); (a, b); (d, c); (c, d)\}$
 - $R_2 = \{(a, a); (b, b); (a, b); (b, a); (d, d); (c, c)\}$
 - $R_3 = \{(a, a); (a, b); (b, a); (b, c); (c, b); (b, b)\}$
 - $R_4 = A \times A$
- 7. Escribir la matriz y los digrafos asociados a las relaciones anteriores
- 8. Sea $A = \{a, b, c, d\}$
 - (a) Dar un ejemplo de una relación R no reflexiva en A
 - (b) Dar un ejemplo de una relación R simétrica en A
 - (c) Dar un ejemplo de una relación R no transitiva en A
 - (d) Dar un ejemplo de una relación R no simétrica en A
 - (e) Dar un ejemplo de una relación R antisimétrica en A
- 9. Demostrar que si R es simétrica y transitiva y aRb para ciertos a y b, entonces aRa y bRb.
- 10. Sea A un conjunto arbirtario. Sea $R=\Delta_A$ (diagonal de A) . Analizar qué propiedades tiene R.
- 11. Proponer una relación en el conjunto de los números naturales. Mostrar que propiedades tiene (reflexividad, simetría, etc...)
- 12. Proponer una relación en el conjunto de los *alumnos de Informática*. Mostrar que propiedades tiene (reflexividad, simetría, etc...)
- 13. Dada una relación binaria R sobre un conjunto A, se define la relación complemento de R, \bar{R} por: $a\bar{R}b$ si y sólo si a no está relacionada con b por R
 - $\bullet\,$ Dar un ejemplo de una relación R y su complemento
 - Probar que si $R \subset S$ entonces $\bar{S} \subset \bar{R}$
- 14. Dada R una relación binaria sobre A, probar que:
 - (a) R es reflexiva si y sólo si R^{-1} también lo es
 - (b) R es simétrica si y sólo si $R^{-1} = R$
 - (c) R es simétrica si y sólo si R^{-1} y \bar{R} también lo son
 - (d) R es antisimétrica si y sólo si $R \cap R^{-1} \subset \Delta_A$

- 15. Se dice que una relación R sobre un conjunto A es asimétrica si cada vez que a está relacionado con b no se da que b esté relacionado con a Dar un ejemplo de una relación asimétrica
- 16. Probar que dada una relación R sobre un conjunto $A,\ R$ es asimétrica si y sólo si $R\cap R^{-1}=\emptyset$
- 17. Sean R y S dos relaciones en A. Probar que:
 - (a) Si $R \subset S$ entonces $R^{-1} \subset S^{-1}$
 - (b) Si R y S son reflexivas entonces $R \cup S$ y $R \cap S$ también lo son
 - (c) Si R y S son simétricas entonces $R \cup S$ y $R \cap S$ también lo son
- 18. Establecer las propiedades de las siguientes relaciones en H el conjunto de los seres humanos:
 - (a) Sea R la relación en H definida por xRy si y sólo si x es hermano de y
 - (b) Sea R la relación en H definida por xRy si y sólo si x es hijo de y
 - (c) Se dice que una persona a es descendiente de una persona b si es hijo, nieto, bisnieto, etc..

R es la relación en H definida por xRy si y sólo si x es descendiente de y

- 19. Establecer las propiedades de las siguientes relaciones:
 - (a) Sea N el conjunto de los números naturales. Sea \leq la relación en N dada por $x\leq y$ si y sólo si x es menor o igual a y
 - (b) Sea N el conjunto de los números naturales. Sea | la relación en N dada por x|y si y sólo si x divide a y
 - (c) Igual al anterior pero en el conjunto de los enteros.
- 20. Dado un conjunto de números reales A probar que la relación sobre $A \times A$ dada por (a,b)R(c,d) si y sólo si $a \le c$ y $b \le d$ es un orden. Es total?
- 21. Analizar que tipo de orden es el usual en el conjunto de los números rales. ¿qué pasa con los números complejos?; están ordenados?
- 22. Probar que el orden lexicográfico es un orden total
- 23. Sea $S = \{a, b, c\}$ y sea A = P(S) el conjunto de partes de S. Mostrar que A está parcialmente ordenado por el orden \subset (inclusión de conjuntos). Hallar el diagrama de Hasse.

- 24. Sea $D_{12}=\{1,2,3,4,6,12\}$ (el conjunto de los divisores de 12). Hallar el diagrama de Hasse de D_12 con la relación "divide"
- 25. Describa las parejas ordenadas por las relaciones de cada uno de los siguientes diagramas de Hasse. Determinar, si existen, los elementos máximo, mínimo y cotas inferiores y superiores

- 26. Sea R una relación de equivalencia en un conjunto no vacío A. Seam $a.b \in A$, entonces [a] = [b] si y sólo si aRb
- 27. Determinar si cada una de las siguientes colecciones de conjuntos es una partición para el conjunto $A = \{1, 2, 3, 4, 5, 6, 7, 8, \}$
 - {{4,5,6}; {1,8}; {2,3,7}}
 - {{4,5}; {1,3,4}; {6,8}; {2,7}}
 - {{1,3,4}; {2,6}; {5,8}}
- 28. Considerando el conjunto A de los alumnos que cursan Mate 4, indicar cuáles de las siguientes son particiones de A.
 - (a) $P = \{\{alumnos\ que\ aprobaron\ CADP\}; \{alumnos\ que\ aprobaron\ OC\}; \{alumnos\ que\ no\ aprobaron\ ISO\ ni\ Redes\}\}$
 - (b) $P = \{\{alumnos que están cursando Programación Distribuida \}; \{alumnos que cursan Sistemas y Organizalumnos que están cursando Lógica e Inteligencia Artificial\}\}$
- 29. Sean $A = \{1, 2, 3, 4\}$ y $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)\}$. Mostrar que R es una relación de equivalencia y hallar las clases de equivalencia. ¿ Cuál es la partición que induce R sobre A?
- 30. Dados el conjunto $A=\{a,b,c,d,e\}$ y una partición $P=\{\{a,c\};\{b\};\{d,e\}\}$. Escribir por extensión la relación de equivalencia sobre A inducida por P.

- 31. Sean $A = \{1, 2, 3, 4, 5, 6\}$ y $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4), (4, 5), (5, 4), (5, 5), (6, 6)\}$. Mostrar que R es una relación de equivalencia y determinar las clases de equivalencia. Q Qué partición de R?
- 32. Sea \sim una relación definida en $Z \times (Z0)$ dada por: $(a,b) \sim (c,d)$ si y sólo si ad = bc Probar que es de equivalencia. Hallar la clase de equivalencia del elemento (1,4). Mostrar que puede identificarse cada clase de equivalencia con un número racional (Esta es la forma de construir al conjunto de los racionales como conjunto cociente).
- 33. Hallar las clases de equivalencia módulo 3 y 5 de los números 387, 25 y 649
- 34. Hallar las respectivas clases de 13, 6, 11 y $-49 \ m\'odulo\ 4$
- 35. Averiguar si son congruentes módulo 3 entre sí los siguientes pares de números: (2, 1024), (101, 512), (1501, 1348).
- 36. Analizar para qué valores de m se hacen verdaderas las siguientes congruencias: $5\equiv_m 4, 1\equiv_m 0, 1197\equiv_m 286, 3\equiv_m -3$
- 37. Probar que la relación de congruencia módulo m es una relación de equivalencia
- 38. Probar: todo número es congruente, módulo n, con el resto de su división por n
- 39. Probar que dos enteros son congruentes módulo m si y sólo si los respectivos restos de su división por m son iguales.
- 40. Probar las siguientes propiedades para todo $a,b,c\in Z$:
 - (a) $a \equiv_n a$
 - (b) $a \equiv_n b \Rightarrow b \equiv_n a$
 - (c) $a \equiv_n b \ y \ b \equiv_n c \Rightarrow a \equiv_n c$
 - (d) $a \equiv_n b \Leftrightarrow a + c \equiv_n b + c$
 - (e) $a \equiv_n b \Rightarrow ac \equiv_n bc$
 - (f) $a \equiv_n b \Rightarrow (a, n) = (b, n)$
 - (g) $a \equiv_n 0 \Leftrightarrow n|a$

Ejercicios Adicionales

- 1. Para evitar corazones rotos por amores no correspondidos, ¿cómo debería ser la relación xRy si y sólo si x ama a y definida en el conjunto de los seres humanos?
- 2. Escribir un código que dado un conjunto y una relación, determinar si la relación cumple con las propiedades de simetría, reflexividad, transitividad y antisimetría
- 3. Analizar si es un orden parcial la relación sobre los números enteros dada por:

$$aRb$$
 si y sólo si $a^2 \le b^2$

- 4. Considerar el conjunto parcialmente ordenado L=(N,|) (los naturales con el orden "divide"). Mostrar L es un reticulado.
- 5. Dados dos relaciones de orden R y S, analizar si $R \cup S$ y $R \cap S$ también lo son
- 6. Mostrar que toda Algebra de Boole finita es un reticulado.
- 7. Sea B un algebra booleana y sea < la relación binaria definida por "a < b si y sólo si ainfb = a"

 Demostrar que < es un orden parcial.
- 8. Sea A el conjunto de las palabras de longitud 8 del alfabeto $\{0,1\}$. Mostar que la relación R dada por "aRb si y sólo si a tiene el mismo número de 1 que b" es una equivalencia. Encontrar la partición inducida por la relación.
- 9. Averiguar en qué día de la semana naciste y verificar que es el mismo que cuando cumpliste/cumplas 28 años.

Mostrar que esto es así para cualquier persona nacida entre el 1 de enero de 1901 y el 31 de diciembre de 2071.

(Obs: un año normal tiene 365 días, uno bisiesto, 366. Los años bisiestos son aquellos no seculares divisibles por 4. Los años seculares son bisiestos si y sólo si son divisibles por 400.)

10. Averiguar qué día de la semana cayó cuando se aprobó la creación de la Facultad.