Sign Language Enhanced Image Analysis Techniques Using Multiscale Feature Extraction and Attention Mechanisms for Arabic Sign Language Recognition

> Achraf Kamni Sakher Yaish

O1
Introduction

### Introduction

- Problem: Many image analysis methods miss small details which limits recognition accuracy.
- Focus: Improving image recognition for Arabic Sign Language.
- Techniques: Multiscale feature extraction, spatial-reduction attention, progressive dimensional reduction.

O2 Objective Objective

- Implement a MVTN with a custom resnet
- Capture both detailed and contextual features.
- Emphasize important regions within images.
- Compare with models like ResNet, ViT, and GoogleNet.

O3 Background



O4
Proposed Approach

Proposed Approach

- Multiscale Feature Extraction: Capture detailed/contextual features.
- Spatial-Reduction Attention: Focus on key regions.
- Dimensional Reduction: Preserve crucial information with reduced complexity.

05

Dataset & Implementation

Dataset & Implementation

• Dataset: ArASL Database Grayscale (Arabic Sign Language).

• Data Processing: Images resized to 224x224, and normalized.

• Custom Dataset Class: Efficiently loads, preprocesses, and labels images.



CG Model Architecture

## **Model Architecture**

- CNN Backbone: ResNet-18 for grayscale images.
- Multiscale Transformer: Uses self-attention, multi-head attention, and dimension reduction.

## Model Architecture



# O'7 Training Setup

## **Training Setup**

• Loss Function: Cross-Entropy.

• Optimizer: Adam with learning rate of 0.0001.

Hardware: GPU A100.

16



| Model                                     | Test Loss | Test<br>Accuracy | F1     | F2     | Precision | Recall | AUC    |
|-------------------------------------------|-----------|------------------|--------|--------|-----------|--------|--------|
| U-net                                     | 3.4595    | 4.10%            | 0.0025 | 0.0055 | 0.0013    | 0.0312 | 0.5    |
| Resnet-50                                 | 0.7056    | 82.75%           | 0.8286 | 0.8256 | 0.8474    | 0.8267 | 0.9916 |
| GoogleNet                                 | 0.0492    | 98.99%           | 0.99   | 0.99   | 0.9899    | 0.9901 | 0.9995 |
| ViT                                       | 0.1022    | 96.98%           | 0.9701 | 0.9699 | 0.9712    | 0.97   | 0.9996 |
| Custom<br>MVTN(pretrained<br>resnet)      | 0.1119    | 97.65%           | 0.9773 | 0.9769 | 0.9787    | 0.9767 | 0.9991 |
| Custom<br>MVTN(non-pretraine<br>d resnet) | 0.3272    | 91.14%           | 0.9034 | 0.9032 | 0.9354    | 0.9069 | 0.9974 |





## Conclusion

## Conclusion

- Key Findings: Deep models with multiscale feature extraction improve accuracy for complex tasks.
- Future Work: Use of pretrained models and transfer learning for enhanced performance.

## Demo

## References Figure 1: Papers with Code, (n.d.). Vision Transformer. Retrieved from https://paperswithcode.com/method/vision-transformer Figure 2: Mnasri, S., Ouarda, W., & Bellil, W. (2019). Sign language recognition: A survey. Data in Brief, 25, 104255. https://doi.org/10.1016/j.dib.2019.104255

## THANK YOU