Planche 1.

Exercice 1. Donner la nature de la série

$$\sum \ln \left(\frac{(\ln(n+1))^2}{\ln(n)\ln(n+2)} \right)$$

Exercice 2. Soit (u_n) une suite strictement positive telle que $u_{n+1}/u_n = 1/(1+(a/n)+O(1/n^2))$ lorsque $n \to +\infty$. Montrer qu'il existe $\lambda > 0$ tel que $u_n \sim \lambda/n^{\alpha}$.

Planche 2.

Exercice 1. On pose $u_n = \frac{(-1)^{n-1}}{n^{\alpha} + (-1)^n}$. Étudier la nature de la série des u_n en fonction de α .

Exercice 2. Soit (u_n) une suite strictement positive telle que la série des u_n diverge. On note S_n la somme partielle. On suppose de plus que $u_n = o(S_n)$. Étudier en fonction de α la nature de la série des u_n/S_n^{α} . Donner un équivalent de la somme partielle de la série précédente dans le cas de divergence.

Planche 3.

Exercice 1. Étudier la nature de la série des $\sin(\sqrt{1+n^2\pi^2})$.

Exercice 2. Soit f une fonction continue sur \mathbb{R} . On considère une suite (u_n) définie par $u_0 \in \mathbb{R}$ et $u_{n+1} = f(u_n)$ telle que u_n tend vers 0. On suppose que $f(x) = x - Ax^{\alpha} + o(x^{\alpha})$ pour un $\alpha > 1$ et une constante réelle A. Montrer que pour une constante C:

$$u_n \sim C n^{1/(1-\alpha)}$$