Activités Mentales

24 Août 2023

Soit $(u_n)_{n\in\mathbb{N}}$ une suite définie par $u_n = -16 + 7n$ pour tout $n \in \mathbb{N}$.

- 1 Donner les trois premiers termes de la suite.
- **2** Exprimer u_{n+1} en fonction de n.
- 3 Quelle est la nature de la suite? On démontrera le résultat
- 4 Après avoir conjecturer le sens de variation de la suite, le démontrer.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique telle que $u_0=14$ et $u_1=8$.

- **1** Quelle est la raison de la suite $(u_n)_{n\in\mathbb{N}}$? Donner la valeur de u_2 .
 - **2** Exprimer u_{n+1} en fonction de u_n .
 - **3** Conjecturer le sens de variation de la suite $(u_n)_{n \in \mathbb{N}}$.
 - 4 Démontrer le sens de variation.
 - **5** On donne maintenant $u_n = 14 6n$ pour tout $n \in \mathbb{N}$. Calculer u_{10} .

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique telle que $u_0=27$ et $u_1=15$.

- **1** Quelle est la raison de la suite $(u_n)_{n\in\mathbb{N}}$? Donner la valeur de u_2 .
- **2** Exprimer u_{n+1} en fonction de u_n .
- **3** Conjecturer le sens de variation de la suite $(u_n)_{n \in \mathbb{N}}$.
- 4 Démontrer le sens de variation.
- **5** On donne maintenant $u_n = 27 12n$ pour tout $n \in \mathbb{N}$. Calculer u_{10} .

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique telle que $u_0=17$ et $u_1=4$.

- **1** Quelle est la raison de la suite $(u_n)_{n\in\mathbb{N}}$? Donner la valeur de u_2 .
 - **2** Exprimer u_{n+1} en fonction de u_n .
- **3** Conjecturer le sens de variation de la suite $(u_n)_{n \in \mathbb{N}}$.
- 4 Démontrer le sens de variation.
- **6** On donne maintenant $u_n = 17 13n$ pour tout $n \in \mathbb{N}$. Calculer u_{10} .

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de premier terme $u_0=-20$ et de raison r=6.

- 1 Donner les trois premiers termes de la suite.
- **2** Exprimer u_{n+1} en fonction de u_n .
- **3** Conjecturer le sens de variation de la suite $(u_n)_{n \in \mathbb{N}}$.
- 4 Démontrer le sens de variation.
- **6** On donne maintenant $u_n = -20 + 6n$ pour tout $n \in \mathbb{N}$. Calculer u_{10} .

Soit $(u_n)_{n\in\mathbb{N}}$ une suite définie par $u_n = -16 + 7n$ pour tout $n \in \mathbb{N}$.

$$u_0 = -16 + 7 \times 0$$
$$= -16$$

$$u_1 = -16 + 7 \times 1$$

$$= -16 + 7$$

$$= -9$$

$$u_2 = -16 + 7 \times 2$$

$$= -16 + 14$$

$$= -2$$

$$u_{n+1} = -16 + 7(n+1)$$
$$= -16 + 7n + 7$$
$$= -9 + 7n$$

3 II semblerait que la suite soit arithmétique. Démontrons le. Soit $n \in \mathbb{N}$,

$$u_{n+1} - u_n = -9 + 7n - (-16 + 7n)$$
$$= -9 + 7n + 16 - 7n$$
$$= 7$$

4 D'après la question précédente, comme $u_{n+1} - u_n = 7 > 0$, ma suite est croissante.

Soit $(u_n)_{n \in \mathbb{N}}$ une suite arithmétique telle que $u_0 = 14$ et $u_1 = 8$.

- ① On sait que la suite est arithmétique donc la raison est donnée par $u_1-u_0=8-14=-6$. La raison de la suite $(u_n)_{n\in\mathbb{N}}$ est -6 On a alors $u_2=u_1+r=8-6=2$
- 2 On a de manière immédiate d'après la question précédente :

$$\begin{cases} u_0 = 14 \\ u_{n+1} = u_n - 6 \end{cases}$$

3 Comme $u_0 > u_1 > u_2$, on peut conjecturer que la suite est décroissante.

$$u_{n+1} - u_n = u_n - 6 - u_n$$

= -6 < 0

La suite est donc bien décroissante

6 On donne maintenant $u_n = 14 - 6n$ pour tout $n \in \mathbb{N}$. $u_{10} = 14 - 6 \times 10 = -46$.

Soit $(u_n)_{n \in \mathbb{N}}$ une suite arithmétique telle que $u_0 = 27$ et $u_1 = 15$.

- ① On sait que la suite est arithmétique donc la raison est donnée par $u_1-u_0=15-27=-12$. La raison de la suite $(u_n)_{n\in\mathbb{N}}$ est -12 On a alors $u_2=u_1+r=15-12=3$
- ② On a de manière immédiate d'après la question précédente : $\begin{cases} u_0 = 27 \\ u_{n+1} = u_n 12 \end{cases}$
- **3** Comme $u_0 > u_1 > u_2$, on peut conjecturer que la suite est décroissante.

$$u_{n+1} - u_n = u_n - 12 - u_n$$
$$= -12 < 0$$

La suite est donc bien décroissante

6 On donne maintenant $u_n = 27 - 12n$ pour tout $n \in \mathbb{N}$. $u_{10} = 27 - 12 \times 10 = -93.$

Soit $(u_n)_{n \in \mathbb{N}}$ une suite arithmétique telle que $u_0 = 17$ et $u_1 = 4$.

- ① On sait que la suite est arithmétique donc la raison est donnée par $u_1 u_0 = 4 17 = -13$. La raison de la suite $(u_n)_{n \in \mathbb{N}}$ est -13
 - On a alors $u_2 = u_1 + r = 4 13 = -9$
- ② On a de manière immédiate d'après la question précédente :

$$\begin{cases} u_0 = 17 \\ u_{n+1} = u_n - 13 \end{cases}$$

3 Comme $u_0 > u_1 > u_2$, on peut conjecturer que la suite est décroissante.

$$u_{n+1} - u_n = u_n - 13 - u_n$$
$$= -13 < 0$$

La suite est donc bien décroissante

6 On donne maintenant $u_n = 17 - 13n$ pour tout $n \in \mathbb{N}$. $u_{10} = 17 - 13 \times 10 = -113.$

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de premier terme $u_0=-20$ et de raison r=6.

$$u_0 = -20$$

$$u_1 = u_0 + r$$

$$= -20 + 6$$

$$= -14$$

$$u_2 = u_1 + r$$

$$= -14 + 6$$

$$= -8$$

- ② On a de manière immédiate d'après l'énoncé : $\begin{cases} u_0 = -20 \\ u_{n+1} = u_n + 6 \end{cases}$
- **3** Comme $u_0 < u_1 < u_2$, on peut conjecturer que la suite est croissante.

$$u_{n+1} - u_n = u_n + 6 - u_n$$
$$= 6 > 0$$

La suite est donc bien croissante.

6 On donne maintenant $u_n = -20 + 6n$ pour tout $n \in \mathbb{N}$. $u_{10} = -20 + 6 \times 10 = 40$.