

50.007 Machine Learning, Fall 2021 Homework 5

Due Thursday 9 December 2021, 5pm

This homework will be graded by Zhang Qi

In this homework, we would like to look at the Bayesian Networks. You are given a Bayesian network as below. All nodes can take 2 different values: $\{1, 2\}$.

Question 1. Without knowing the actual value of any node, are node X_1 and X_6 independent of each other? What if we know the value of node X_5 and X_{10} ? (5 points)

Question 2. What is the *effective* number of parameters needed to for this Bayesian network? What would be the *effective* number of parameters for the same network if node X_3 , X_8 and X_9 can take 5 different values: $\{1, 2, 3, 4, 5\}$, and all other nodes can only take 4 different values: $\{1, 2, 3, 4\}$? (5 points)

Question 3. If we have the following probability tables for the nodes. Compute the following probabilities. Clearly write down all the necessary steps.

(a) Calculate the following conditional probability:

$$P(\mathbf{X}_3 = 1 | \mathbf{X}_4 = 2)$$

(6 points)

(b) Calculate the following conditional probability:

$$P(\mathbf{X}_5 = 2 | \mathbf{X}_2 = 1, \mathbf{X}_{11} = 2, \mathbf{X}_1 = 1)$$

(9 points)

(Hint: find a short answer. The values in some of the probability tables may reveal some useful information.)

		2 .5	X ₁ 1 2	1 0.2 0.3	X_2 $0.$ $0.$	8	X ₂ 1 2	1 0.3 0.3	2 0.7 0.7	3	X ₃ 1 2	1 0.1 0.5	$\frac{\mathbf{X}_{4}}{0}$.9	X ₄ 1 2	1 0.5 0.6	0. 0.	.5	1 0.6	2 0.4
							X ₆	6 X	. ₇ }	ζ ₈	1 0.8	\mathbf{X}_9 2 3 0.								
	X_7				\mathbf{X}_{8}		1	1	1 :	2	0.1	0.	.9		\mathbf{X}_{10}			\mathbf{X}_{11}		
\mathbf{X}_5	1	2	X	-5	1	2	1	2	2	1	0.9	0.	.1	\mathbf{X}_9	1	2		\mathbf{X}_{10}	1	2
1	0.2	0.8	1	. (0.8	0.2	1	2	2	2	0.7	0.	.3	1	0.8	0.2	2	1	0.7	0.3
2	0.3	0.7	2	2 ().7	0.3	2	1		1	0.3	8 0.	.7	2	0.8	0.2	2	2	0.8	0.2
							2	1	1 :	2	0.2	2 0.	.8							
							2	2	2	1	0.2	2 0.	.8							
							2	2	2	2	0.9	0.	.1							

Question 4.

(a) Now, assume we do not have any knowledge about the probability tables for the nodes in the network, but we have the following 12 observations/samples. Find a way to estimate the probability tables associated with the nodes X_7 and X_9 respectively. (6 points)

\mathbf{X}_1	\mathbf{X}_2	\mathbf{X}_3	\mathbf{X}_4	\mathbf{X}_5	\mathbf{X}_6	\mathbf{X}_7	\mathbf{X}_8	\mathbf{X}_9	\mathbf{X}_{10}	\mathbf{X}_{11}
1	1	2	2	2	1	1	1	2	1	1
1	2	1	1	2	1	1	1	1	1	2
2	2	2	1	2	2	1	1	1	2	1
1	1	2	1	2	1	1	2	1	2	2
1	2	1	1	1	1	2	2	2	1	1
2	2	1	2	1	2	2	1	1	1	2
2	1	2	2	1	2	1	2	2	2	1
2	2	2	1	2	1	2	2	1	2	2
1	1	1	1	2	2	1	1	1	1	1
1	1	1	1	2	1	1	1	2	1	2
1	2	1	2	2	1	2	1	1	1	2
2	2	1	2	1	2	2	2	2	1	1

(b) Based on the above observations, you would like to find a good Bayesian network structure to model the data. You started with the initial structure shown on the previous page, and decided to delete the edge between \mathbf{X}_{10} and \mathbf{X}_{11} . Is the resulting new structure (after deleting the single edge between \mathbf{X}_{10} and \mathbf{X}_{11} from the original graph) better than the original structure in terms of BIC score? Clearly explain the reason. (9 points)

(Hint: Try to find a short answer.)