

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

Tema 1: Representación de la información

Elementos de tecnología electrónica

Los campos electromagnéticos son continuos: Electrónica analógica

Para cada magnitud (tensión, intensidad) hay infinitos valores posibles:

$$v=f(t)$$

 $i=g(t)$

Podemos tomar sólo algunos valores de una función continua: discretizar

Función analógica: infinitos valores

Función discreta: número finito de valores

Procesado digital de señal

El interruptor reduce la tensión/intensidad a sólo dos valores: on/off

 $V_{FOCO} = R_{FOCO} * I$

ON: $V_{ON/OFF}=0$; $V_{FOCO}=V_{CC}$

OFF: I=0; $V_{FOCO}=0$

Electrónica de dos valores⇔ Electrónica digital

Tensión digital

Estos valores pueden cambiar según la familia de circuito integrado

Representación de la información

- La electrónica digital se basa en dos valores de tensión.
- Por ello, utilizaremos dos valores numéricos para representar las tensiones variables.
- Los valores serán el 0 (tensión baja: L) y el 1 (tensión alta: H).

Sistemas de numeración posicional

$$N = \sum_{i=-k}^{n-1} d_i \cdot b^i$$

d_i=i-ésima cifra, b=base

	b	d	$N = 2001_{10}$
Binario	2	0-1	11111010001
Octal	8	0-7	3721
Decimal	10	0-9	2001
Hexadecimal	16	0-9,A-F	7D1

Sistemas de numeración posicional

- En electrónica digital representamos las señales mediante dos valores.
- El sistema de numeración de base 2 (binario) sólo usa dos cifras.
- Por tanto, usaremos este sistema para representar información numérica en los sistemas de electrónica digital.

Sistemas de numeración posicional

- Los números menores que 1 tienen que usar cifras a la izquierda de la coma, con exponentes negativos.
- De este modo se pueden expresar números reales:

$$14,75_{10} = 1 \cdot 10^{1} + 4 \cdot 10^{0} + 7 \cdot 10^{-1} + 5 \cdot 10^{-2}$$

$$1110,11_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 + 1 \cdot 2^{-1} + 1 \cdot 2^{-2} = 8 + 4 + 2 + 0 + 1/2 + 1/4 = 14,75$$

Conversiones entre sistemas de numeración

Binario \Leftrightarrow Octal \Leftrightarrow Hexadecimal

Hexadecimal		7	В		A		•	3	,	В		C		Z	ł
Binario	0	111	101	1	10	10	Q	011	,	101	1	11	00	0	100
Octal		7	5		6	4		3	,	5	•	7	0		4

Conversiones entre sistemas de numeración

Decimal ⇔ otros:

- División entera del número que se quiere convertir: la base buscada —> seguir dividiendo hasta que el cociente sea más pequeño que el divisor —> los restos son el número en la nueva base, de derecha a izquierda.
- Parte decimal del número que se quiere convertir x base buscada —> seguir multiplicando parte decimal mientras quede —> las partes enteras son el número en la nueva base, de izquierda a derecha.

Precisión finita

- En los sistemas digitales el número de cifras es fijo, pues representa a señales de tensión.
- Por tanto, son finitos los números que pueden ser representados: coma fija, precisión finita.
- En base 2, con n cifras a la izquierda de la coma y k cifras a la derecha de la coma:

$$N_{max} = 2^n - 1 + (1 - 2^{-k})$$

$$N_{min}=2^{-k}$$

Sistema decimal codificado en binario: BCD

Decimal	Número BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
	1010
l .	1011
No usadas	1100
	1101
	1110
	1111

- Las personas estamos más acostumbradas al código decimal→El más usado para codificar con 0 y 1: BCD (Binary Coded Decimal).
- 396₁₀= 0011 1001 0110 (16 combinaciones, 6 no se usan)
- Las operaciones aritméticas no son válidas→Reglas especiales

- Con n bits se pueden representar 2^n números enteros.
- Para representar números enteros positivos y negativos, tendremos que dividir entre dos los 2ⁿ números: 2ⁿ⁻¹ enteros positivos y otro tanto negativos.
- El cero se considera positivo.
- El método más empleado es el complemento a 2.

Números binarios positivos

Magnitud con signo

- El sistema de magnitud con signo es el más sencillo, pero tiene desventajas:
 - El cero tiene dos símbolos: +0 y -0
 - Las operaciones aritméticas no son válidas con números de este sistema
- El número más positivo es: $N_{máx} = 2^{n-1}-1$
- El número más negativo es : $N_{min} = -(2^{n-1}-1)$

Complemento a 1

 $A^{(1)} = 2^{4} - 1 - |A|$

Complemento a 2

 $A^{(2)} = 2^{4} - |A| = A^{(1)} + 1$

- El complemento a 1 se puede implementar invirtiendo 0s y 1s al número en valor absoluto.
- Sirve para implementar el complemento a 2, sumándole 1.
- El complemento a 2 sólo asigna un código al cero, por lo que hay un número negativo más: -2^{n-1} .
 - _ El número más positivo es: $N_{max} = 2^{n-1}-1$.
 - _ El número más negativo es : $N_{min} = -2^{n-1}$.

Sumandos
 0
 0
 1
 1

$$+0$$
 $+1$
 $+0$
 $+1$

 Suma
 0
 1
 1
 0

 Acarreo
 0
 0
 0
 1

Suma binaria con números negativos

- Complemento a 2 → descartar acarreo.
- Complemento a 1 → acarreo cíclico.
- Al sumar números de distinto signo, no aparece desbordamiento (overflow).
- Si son del mismo signo → bit de signo del resultado diferente → hay desbordamiento.

- El sistema de exceso a 2ⁿ⁻¹ suma a todos los números (positivos y negativos) 2ⁿ⁻¹, de modo que el resultado siempre es positivo.
- Para saber el valor de un número tenemos que restarle 2ⁿ⁻¹.
- Este sistema no vale para la suma, pues siempre aparece un 2ⁿ⁻¹de más.

$$A+2^{n-1}+B+2^{n-1}=((A+B)+2^{n-1})+2^{n-1}$$
CORRECTO

Decimal	Magnitud con signo	Complemento a 1	Complemento a 2	Exceso a 8
-8			1000	0000
-7	1111	1000	1001	0001
-6	1110	1001	1010	0010
-5	1101	1010	1011	0011
-4	1100	1011	1100	0100
-3	1011	1100	1101	0101
-2	1010	1101	1110	0110
-1	1001	1110	1111	0111
-0	1000	1111		
0	0000	0000	0000	1000
1	0001	0001	0001	1001
2	0010	0010	0010	1010
3	0011	0011	0011	1011
4	0100	0100	0100	1100
5	0101	0101	0101	1101
6	0110	0110	0110	1110
7	0111	0111	0111	1111

N=f · 10^e

f: fracción o mantisa → precisión

e: exponente → rango

Coma flotante: Versión binaria.

- ANSI/IEEE Std. 754 (1985)
 - Exponente:
 - Exceso a 2ⁿ⁻¹-1 en números normalizados.
 - Todo '0'y todo '1' reservados.
 - Fracción normalizada con el primer 1 a la izquierda de la coma.

f: fracción o mantisa -> precisión.

e: exponente → rango.

NORMALIZADA
15.000=0,15·10⁵=15·10³=0,0015·10⁷
$$\Rightarrow \begin{cases} f=0,15 & e=5 \\ f=15 & e=3 \\ f=0,0015 & e=7 \end{cases}$$

- Variante para el computador de este sistema en base 2.
- Si el número a la derecha de la coma de la fracción es '1', se dice que está normalizada.
- Si hay ceros a la derecha de la coma →desplazamos el número a la izquierda decrementando el exponente (la fracción queda normalizada sin cambiar su valor).

Ejemplo:

23 22, 21 ... 16 15, 14, 13, 12 2, 1, 0

+	exponente	fracción
---	-----------	----------

Base=2, exponente en exceso a 64.

No normalizado:

 $01010100,00000000011011=2^{20}\cdot(2^{-12}+2^{-13}+2^{-15}+2^{-16})=432$

Normalizado:

Notación científica: IEEE 754

ANSI/IEEE Std. 754 (1985)

Modo normalizado: El primer 1 a la izquierda de la coma, 1 implícito en la fracción.

Exponente en exceso a 2ⁿ⁻¹-1.

Notación científica: IEEE 754

Excepción del significado de la fracción y el exponente (todo '0' y todo '1' reservado para valores especiales):

Normalizado	±	0 < Exp < Max	Cualquier grupo de bits							
No normalizado	±	0	Cualquier grupo de bits distinto de cero							
Cero	±	0	0							
Infinito	±	1 1 11	0							
No es número	±	1 1 11	Cualquier grupo de bits distinto de cero							
Bit de signo										

Códigos alfanuméricos: ASCII

ASCII: American Standard Code for Infomation Interchange

- 7bit \rightarrow 128 caracteres.
- 1byte: 0 código ASCII
- MSB=1 → otras 128 combinaciones, para caracteres acentuados o letras griegas (Latin-1).

0 B7 B6 B5 B4 B3 B2 B1 B0

Columna Fila

Códigos alfanuméricos: ASCII

				B ₇ B ₈ B	5			
B ₄ B ₃ B ₂ B ₁	000	001	010	011	100	101	110	111
0000	NULL	DLE	SP	0	@	P		p
0001	SOH	DC1	1	1	A	Q	а	q
0010	STX	DC2	-11	2	В	R	a b	Т
0011	ETX	DC3	#	3	\mathbf{C}	S	С	S
0100	EOT	DC4	\$	4 5	D	Т	d	t
0101	ENQ	NAK	%	5	E	U	е	u
01.10	ACK	SYN	&	6	F	\mathbf{v}	f	v
0111	BEL	ETB		7	\mathbf{G}	W	g	w
1000	BS	CAN	(8	H	\mathbf{x}	g h	x
1001	HT	EM	ý	9	1	Y	i	y
1010	LF	SUB	*		J	Z	î	Z
1011	VT	ESC	+		K		k	1
1100	FF	FS	34	<	L	Ñ	1	II.
1101	CR	GS	()	(3 11)	\mathbf{M}	Ť	m	1
1110	SO	RS	108	>	N	Λ	n	32
1111	SI	US	15	7	O		O	DEI

Códigos alfanuméricos: ASCII

- La tabla anterior es para B₈=0, con B₈=1 aparecen caracteres acentuados y los correspondientes a varias lenguas europeas.
- ¿Pero qué pasa con otras lenguas?→Tabla de código, una tabla para cada lengua.
- Los caracteres chinos son muchos más que 256, no sirve el sistema de tabla de código.

Códigos alfanuméricos: UNICODE

- El sistema UNICODE asigna a cada carácter un único número entero (punto de código).
- El sistema se inició con 16 bits (UTF-16), pero actualmente utiliza 32 bits (UTF-32) para cada carácter.
- Los 2³²≈4x10⁹ caracteres son asignados por un consorcio creado por Apple, Microsoft y Sun, entre otras empresas, desde 1991.

Códigos alfanuméricos: UNICODE

Cor	Control			AS	CII			Cor	ntrol	Latin 1						
000	001	002	003	004	005	006	007	008	009	00A	00B	00C	00D	00E	00F	
0 CTRL	CTRL	SPACE	0	@	P	`	p	CTRL	CTRL	NB SP	0	À	Đ	à	D	
1 CTRL	CTRL	!	1	A	Q	a	q	CTRL	CTRL	i	\pm	Á	Ñ	á	ñ	
2 CTRL	CTRL	"	2	В	R	b	r	CTRL	CTRL	¢	2	Â	Ò	â	ò	
3 CTRL	CTRL	#	3	C	S	c	S	CTRL	CTRL	£	3	Ã	Ó	ã	ó	
4 CTRL	CTRL	\$ \$	4	D	T	d	t	CTRL	CTRL	ø	,	Ä	Ô	ä	ô	
5 CTRL	CTRL	%	5	E	U	e	u	CTRL	CTRL	$\mathbf{Y}\mathbf{Y}$	μ	Å	Õ	å	õ	
6 CTRL	CTRL	&	6	F	V	f	v	CTRL	CTRL	-	\P	Æ	Ö	æ	ö	
7 CTRL	CTRL	,	7	G	W	g	W	CTRL	CTRL	§		Ç	×	ç	÷	
8 CTRL	CTRL	(8	Η	X	h	X	CTRL	CTRL		د	È	Ø	è	ø	
9 CTRL	CTRL)	9	I	Y	i	y	CTRL	CTRL	©		É	Ù	é	ù	
A CTRL	CTRL	*	:	J	Z	j	Z	CTRL	CTRL	a	0	Ê	Ú	ê	ú	
B CTRL	CTRL	+	;	K	[k	{	CTRL	CTRL	«	»	Ë	Û	ë	û	
C CTRL	CTRL	,	<	L	\	1	1	CTRL	CTRL	¬	$\frac{1}{4} 1/4 $	Ì	Ü	ì	ü	
D CTRL	CTRL	-	=	M]	m	}	CTRL	CTRL	-	$\frac{1}{2} 1/2 $	Í	Ý	í	ý	
E CTRL	CTRL		>	N	٨	n	~	CTRL	CTRL	®	3 3/4	Î	?b]	î	'b _l	
F CTRL	CTRL	/	?	О	_	o	CTRL	CTRL	CTRL	-	6	Ϊ	В	ï	ÿ	

Los primeros 256 caracteres de UNICODE