ST5215 Advanced Statistical Theory, Lecture 1

HUANG Dongming

National University of Singapore

8 Aug 2020

Pre-Requisite: ST2131 and ST2132 or Departmental approval

Modes: 1.5h lecture + 0.5h tutorial (tentative)

Online teaching:

- Disable your webcam to release network demand
- For questions: "raise hands" or text chat in Zoom
- Keep your microphone muted unless speaking

Office Hours: Tue/Thur 16:00 - 17:00PM via Zoom (tentative) **Textbook:**

Jun Shao, Mathematical Statistics, Springer, 2nd Edition, 2003.

References:

- L. Wasserman, All of Statistics.
- G. Casella and R. L. Berger, Statistical Inference 2nd Edition.
- P. J. Bickel and K. A. Doksum, *Mathematical statistics: basic ideas and selected topics*.
- R.W. Keener, Theoretical Statistics: Topics for a Core Course.
- E.L. Lehmann G. Casella, Theory of Point Estimation.

H.D. (NUS) ST5215 8 Aug 2020 2/31

Grading Policy: 4 homework (5% \times 4 = 20%), 1 midterm (30%) and 1 final (50%).

Homework:

- Submitted to LumniNUS/Files/Submissions/HWXX by 2pm on the due date.
- Late submission will never be accepted
- Homework submission must be typeset (LTEX, Mathpix ...)
- You can discuss with your classmates on homework but you must write up your solutions independently in your own words
- You will get zero for a submission if someone's is identical or very similar to yours.

H.D. (NUS) ST5215 8 Aug 2020 3/31

Exam:

- Midterm: Thur, 01 Oct 2020, 14:00-16:00
- Final: Wed, 02 Dec 2020, 13:00 15:00
- Closed-book (No books, notes, or electronics)
- Online (you will be supervised via Zoom)

Topics and chapters:

- Probability theory: Ch 1.1 1.4.3
- Models and statistics: Ch 2.1 2.2
- Point estimators (the method of moments, the method of maximum likelihood)
- Decision theory: Ch 2.3
- UMVUE: Ch 3.1.1 3.1.3
- Bayes estimation and risk: Ch 4.1, 4.3
- Asymptotics: Ch 1.5, 2.5, 4.5
- Other topics (Linear model: Ch 3.3; U-statistics: Ch 3.2)

H.D. (NUS) ST5215 8 Aug 2020 5/31

Measure and σ -fields

- Let Ω be a set of objects. *outcome space*; sample space.
- ullet Want to measure the "size" of subsets of Ω
 - ▶ If $\Omega = \mathcal{R}$ and A = [a, b], then the size of A is naturally its length b a.
 - If $\Omega = \mathcal{R}^2$ and A is a polygon, its size is defined as its area
- For a general Ω , we need to specify which subsets are measurable (i.e., define what can be an "event")

Definition

A collection $\mathcal F$ of subsets of a set Ω is called a σ -field (or σ -algebra) if

- $\mathbf{0}$ $\emptyset \in \mathcal{F}$,
- 2 if $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$,
- \bullet if $A_i \in \mathcal{F}$ for i = 1, 2, ...,then $\bigcup A_i \in \mathcal{F}$.

A pair (Ω, \mathcal{F}) of a set Ω and a σ -field \mathcal{F} on Ω is called a *measurable space*.

H.D. (NUS) 8 Aug 2020 6/31

- ullet In probability, a σ -field is a collection of events of interest
- There can be many σ -fields on Ω
- e.g.: $\Omega = \{1, 2\}, \ \mathcal{F}_1 = \{\emptyset, \Omega\}, \ \mathcal{F}_2 = \{\emptyset, \{1\}, \{2\}, \Omega\}$

Exercise: Suppose $(\Omega_1, \mathcal{F}_1)$ and $(\Omega_2, \mathcal{F}_2)$ are two measure spaces, is $\mathcal{F}_1 \times \mathcal{F}_2 = \{A_1 \times A_2 : A_i \in \mathcal{F}_i\}$ a σ -field on $\Omega_1 \times \Omega_2$? Why? **Counter example**:

- $\Omega_1 = \{a, b\}, \Omega_2 = \{c, d\}, \mathcal{F}_i = 2^{\Omega_i}$ (the power set)
- $K = \{a\} \times \{c\} \text{ and } L = \{b\} \times \{d\}.$
- Note that by definition of the Cartesian product, $K = \{a\} \times \{c\} = \{(a, c)\}.$
- $K, L \in \mathcal{F}_1 \times \mathcal{F}_2$
- But $K \cup L = \{(a,c),(b,d)\} \notin \mathcal{F}_1 \times \mathcal{F}_2$

The smallest σ -field

- Given a collection $\mathcal C$ of subsets, there exists a σ -field $\mathcal F$ such that $\mathcal C\subset\mathcal F$ and if $\mathcal E$ is a σ -field that also contains $\mathcal C$, then $\mathcal F\subset\mathcal E$. (See Ex 1.6.2) Such $\mathcal F$ is the *smallest* σ -field that contains $\mathcal C$. It is denoted by $\sigma(\mathcal C)$ and is called the σ -field generated by $\mathcal C$
- Particularly, when $\Omega = \mathcal{R}$ and \mathcal{O} is all open sets, we call $\sigma(\mathcal{O})$ the Borel σ -field, denoted by \mathcal{B} . Elements in \mathcal{B} are called Borel sets.
- Similarly, when $\Omega = \mathcal{R}^d$ and \mathcal{O}^d is all open sets in \mathcal{R}^d , $\sigma(\mathcal{O}^d)$ is the d-dimensional Borel σ -field, denoted by \mathcal{B}^d

H.D. (NUS) ST5215 8 Aug 2020 8/31

Show that \mathcal{B} is also the σ -field generated by all closed subset of \mathcal{R} .

- ullet Let ${\mathcal C}$ be the collection of all closed subset of ${\mathcal R}$
- For any $B \in \mathcal{O}$, we have $B^c \in \mathcal{C}$, so $B^c \in \sigma(\mathcal{C})$, so $B \in \sigma(\mathcal{C})$; i.e. $\mathcal{O} \subset \sigma(\mathcal{C})$
- So $\sigma(\mathcal{O}) \subset \sigma(\mathcal{C})$
- For any $A \in \mathcal{C}$, we have $A^c \in \mathcal{O}$, so $A^c \in \sigma(\mathcal{O})$, so $A \in \sigma(\mathcal{O})$; i.e. $\mathcal{C} \subset \sigma(\mathcal{O})$,
- So $\sigma(\mathcal{C}) \subset \sigma(\mathcal{O})$
- That is, $\sigma(\mathcal{C}) = \sigma(\mathcal{O})$

H.D. (NUS) ST5215 8 Aug 2020 9/31

Measure

Definition

A (positive) measure ν on a measurable space (Ω, \mathcal{F}) is a non-negative function $\nu : \mathcal{F} \to \mathcal{R}$ such that

- $\textbf{ (non-negativity) } 0 \leq \nu(A) \leq \infty \text{ for all } A \in \mathcal{F},$
- ② (empty is zero) $\nu(\emptyset) = 0$, and
- **3** (σ -additivity): $\sum_{i=1}^{\infty} \nu(A_i) = \nu\left(\bigcup_{i=1}^{\infty} A_i\right)$ if $A_i \in \mathcal{F}$ for i = 1, 2, ... and $A_1, A_2, ...$ are disjoint.
 - The triplet $(\Omega, \mathcal{F}, \nu)$ is called a *measure space*.
- If $\nu(\Omega) = 1$, it is also called a *probability space*, and the number $\nu(A)$ is interpreted as the probability of the event A to happen. And ν is often denoted by P or \Pr .

H.D. (NUS) ST5215 8 Aug 2020 10 / 31

Examples

- Counting measure: $\nu(A) =$ the number of elements in A, $\forall A \subset \Omega$. (Note: $\nu(A)$ can be ∞)
- Lebesgue measure: There exists a unique measure m on $(\mathcal{R},\mathcal{B})$ that satisfies m([a,b])=b-a for any a < b. When \mathcal{R} is mentioned, it is by default endowed with the Borel σ -field and Lebesgue measure unless explicitly mentioned

H.D. (NUS) ST5215 8 Aug 2020 11/31

σ -finite

- A measure ν on (Ω, \mathcal{F}) is said to be σ -finite if there exists a sequence of measurable sets A_1, A_2, \ldots such that $\bigcup A_i = \Omega$ and $\nu(A_i) < \infty$ for all i.
- The Lebesgue measure is σ -finite: $\mathcal{R} = \bigcup_{i=1}^{\infty} A_i$ with $A_i = [-i, i]$ and $m(A_i) = 2i < \infty$.
- All finite measures are σ -finite.

 σ -finite is required in some important theorems (Radon-Nikodym, Fubin's), and we focus on σ -finite measures in this course.

H.D. (NUS) ST5215 8 Aug 2020 12 / 31

Product measure

How to introduce a measure on a *product space* $\Omega_1 \times \cdots \times \Omega_d$, like, $\mathcal{R}^d = \mathcal{R} \times \cdots \times \mathcal{R}$?

- For a product space $\Omega_1 \times \cdots \times \Omega_d$, where each Ω_i is endowed with a σ -field \mathcal{F}_i , the σ -field generated by $\prod_{i=1}^d \mathcal{F}_i = \{A_1 \times \cdots A_d : A_i \in \mathcal{F}_i\} \text{ is called the } \text{product } \sigma\text{-field.}$
- One can show: for $\mathcal{R}^d = \mathcal{R} \times \cdots \times \mathcal{R}$, the product σ -field is the same as \mathcal{B}^d .

Proposition

Suppose $(\Omega_i, \mathcal{F}_i, \nu_i)$, $i=1,2,\ldots,d$, are measure spaces and ν_1,\ldots,ν_d are all σ -finite. There exists a unique σ -finite measure on the product σ -field, denoted by $\nu_1 \times \cdots \times \nu_d$, such that

$$\nu_1 \times \cdots \times \nu_d(A_1 \times \cdots \times A_d) = \prod_{i=1}^d \nu_i(A_i)$$
 (1)

for all $A_i \in \mathcal{F}_i$.

Example (Lebesgue measure on \mathcal{R}^d)

- For \mathbb{R}^d , we use the Lebesgue measure m on $(\mathbb{R}, \mathcal{B})$ to define a unique product measure $m \times \cdots \times m$.
- It is called the Lebesgue measure on $(\mathcal{R}^d, \mathcal{B}^d)$.
- It is the standard/canonical measure on \mathcal{R}^d . Again, without otherwise explicitly mentioned, \mathcal{R}^d is endowed with \mathcal{B}^d) and Lebesgue measure.

Measurable functions

Recall that $f: \Omega \to \Lambda$ is a *continuous function* between two topological spaces Ω and Λ , if for every open subset A in Λ , $f^{-1}(A) = \{x \in \Omega : f(x) \in A\}$ is an open set in Ω .

Definition

Let (Ω, \mathcal{F}) and (Λ, \mathcal{G}) be two measurable spaces and $f : \Omega \to \Lambda$ a function. The function f is called a *measurable function* from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) if $f^{-1}(A) \in \mathcal{F}$ for all $A \in \mathcal{G}$.

- If f is measurable from (Ω, \mathcal{F}) to $(\mathcal{R}, \mathcal{B})$, then f is said to be *Borel measurable* or is called a *Borel function* on (Ω, \mathcal{F}) .
- If $f : \mathcal{R} \mapsto \mathcal{R}$ is continuous, then it is Borel measurable (left for homework)
- If f is measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) , then $f^{-1}(\mathcal{G}) = \{f^{-1}(A) : A \in \mathcal{G}\}$ is a sub- σ -field of \mathcal{F} (left for exercise) Usually denoted by $\sigma(f)$ and called the σ -field generated by f.

H.D. (NUS) ST5215 8 Aug 2020 15 / 31

Examples

The indicator function I_A for a measurable set A is a Borel function.
Here,

$$I_{\mathcal{A}}(x) = \begin{cases} 1 & x \in \mathcal{A}, \\ 0 & x \notin \mathcal{A}. \end{cases}$$
 (2)

• A simple function of the form

$$f(\omega) = \sum_{i=1}^{k} c_i I_{A_i}(\omega), \tag{3}$$

is a Borel function for any real numbers c_1, \ldots, c_k and measurable sets A_1, \ldots, A_k .

H.D. (NUS) ST5215 8 Aug 2020 16 / 31

Some results

- Richness: Proposition 1.4 in Shao 2003 shows that many operations (addition, multiplication, division, composition, sup, limit) of measurable functions preserve the measurability
- Approximation by simple functions: For any non-negative Borel function f, there exists a sequence of simple functions φ_n 's such that $0 \leq \varphi_1 \leq \varphi_2 \leq \cdots \leq f$ and $\lim_n \varphi_n(x) = f(x)$ for every $x \in \Omega$ Let

$$\varphi_n = \sum_{i=0}^{n2^n - 1} \cdot \frac{i}{2^n} I_{\frac{i}{2^n} \le f < \frac{i+1}{2^n}} + n \cdot I_{f \ge n}, \forall n \in \mathcal{N}$$

Check

- \bigcirc φ_n 's are simple functions
- $0 \le \varphi_1(x) \le \varphi_2(x) \le \cdots \le f(x), \forall x \in \Omega$
- 3 If $f(x) = \infty$, then $\varphi_n(x) = n \to \infty$
- If n > f(x) then $f(x) \varphi_n(x) \le \frac{1}{2^n}$, which implies $\lim_n \varphi_n(x) = f(x)$

Notations for probability

In probability theory, a measurable function is also called a *random element*, and often denoted by capital letters X, Y, Z, If X is real-valued, then it is called a *random variable* (r.v.); if it is vector-valued, then it is called a *random vector*.

Integration

We introduce the concept of Lebesgue integral by three steps:

- step 1: define integral of "simple" functions easy case
- step 2: define integral of non-negative Borel functions by approximation of simple functions
- step 3: define integral of all Borel functions

Integral of non-negative simple functions

- Suppose $f: \Omega \to \mathcal{R}$ is a simple non-negative function: $f(x) = \sum_{i=1}^k c_i I_{A_i}(x)$ for $A_i \in \mathcal{F}$ and $c_i \geq 0$.
- \bullet Define the integral of f as

$$\int f \, \mathrm{d}\nu = \sum_{i=1}^k c_i \nu(A_i)$$

- Well defined even when $\nu(A_i) = \infty$ for some A_i : $c \cdot \infty = \infty$ when c > 0 and $c \cdot \infty = 0$ when c = 0.
- Note that $\int f \, d\nu = \infty$ is possible and allowed.

Integral of a non-negative Borel function

- Any Borel function f can be approximated by a sequence of simple functions
- Use the integrals of these simple functions as proxy
- Let S_f be the collection of all non-negative simple functions such that $g \leq f$ if $g \in S_f$.
- Define the integral of f as

$$\int f \, d\nu = \sup \{ \int g \, d\nu : g \in \mathcal{S}_f \}. \tag{4}$$

Exercise: Show that if a sequence of simple functions φ_n 's satisfies $0 \le \varphi_1 \le \varphi_2 \le \cdots \le f$ and $\lim_n \varphi_n = f$, then

$$\int f \, \mathrm{d}\nu = \lim_{n} \int \varphi_n \, \mathrm{d}\nu$$

Integral of arbitrary Borel functions

- Divide f into two parts: $f = f_+ f_-$
 - Positive part: $f_+(x) = \max\{f(x), 0\}$
 - Negative part: $f_{-}(x) = -\min\{f(x), 0\} = \max\{-f(x), 0\}$. Note that the negative part is also a nonnegative function
- Define $\int f \ \mathrm{d} \nu$ as

$$\int f \, \mathrm{d}\nu = \int f_+ \, \mathrm{d}\nu - \int f_- \, \mathrm{d}\nu \tag{5}$$

if at least one of $\int f_+ d\nu$ and $\int f_- d\nu$ is finite.

- ▶ if yes, we say the integral of *f exists*
- ▶ if not, then we can the integral of f does not exist
- When both $\int f_+ d\nu$ and $\int f_- d\nu$ are finite, we say f is integrable

H.D. (NUS) 8 Aug 2020 22 / 31

Comparison with Riemann Integral

- Both are defined as the limit of a sequence of sums.
- Riemann integral: dividing the X-domain
- Lebesgue integral: dividing the *Y*-range.

- If a function is Riemann integrable on a closed interval, then its Riemann integral will coincide with its Lebesgue integral.
- A bounded function on a closed interval is Riemann integrable if and only if the set of its discontinuities has Lebesgue measure 0.

H.D. (NUS) ST5215 8 Aug 2020 23 / 31

Some notations

Integral over a subset $A \in \mathcal{F}$

- I_A is measurable, and so is the product $I_A f$.
- If the integral of $I_A f$ exists, then we can define

$$\int_{A} f \, d\nu = \int I_{A} f \, d\nu. \tag{6}$$

• Notation: $\int f \, d\nu = \int_{\Omega} f \, d\nu = \int f(x) \, d\nu(x) = \int f(x)\nu(\, dx)$ For a probability measure P and a r.v. X, the expectation of X is $\mathbb{E}X = \mathbb{E}(X) = \int X \, dP$

H.D. (NUS) 8 Aug 2020 24/31

- Let (Ω, \mathcal{F}) be a measurable space and $C \in \mathcal{F}$. Show that $\mathcal{F}_C = \{C \cap A : A \in \mathcal{F}\}$ is a σ -field on C.
- ② If f is measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) , then $f^{-1}(\mathcal{G}) = \{f^{-1}(A) : A \in \mathcal{G}\}$ is a sub- σ -field of \mathcal{F}
- **3** Show that if a sequence of simple functions φ_n 's satisfies $0 \le \varphi_1 \le \varphi_2 \le \cdots \le f$ and $\lim_n \varphi_n = f$, then

$$\int f \, \mathrm{d}\nu = \lim_n \int \varphi_n \, \mathrm{d}\nu$$

Let (Ω, \mathcal{F}) be a measurable space and $C \in \mathcal{F}$. Show that $\mathcal{F}_C = \{C \cap A : A \in \mathcal{F}\}$ is a σ -field on C. Proof:

- Since $\emptyset \in \mathcal{F}$, so $\emptyset = C \cap \emptyset \in \mathcal{F}$
- If $C \cap A \in \mathcal{F}_C$, where $A \in \mathcal{F}$. Then $A^c \in \mathcal{F}_C$. Note that $(C \cap A)^c$ w.r.t. C is $C \setminus (C \cap A) = C \cap A^c \in \mathcal{F}_C$.
- Suppose $C \cap A_i \in \mathcal{F}_C$, where $A_i \in \mathcal{F}$, $\forall i \in \mathcal{N}$. $\cup_i A_i \in \mathcal{F}$ $\cup_i (C \cap A_i) = C \cap (\cup_i A_i) \in \mathcal{F}_C$

If f is measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) , then $f^{-1}(\mathcal{G}) = \{f^{-1}(A) : A \in \mathcal{G}\}$ is a sub- σ -field of \mathcal{F} Proof:

- $\bullet \ \emptyset = f^{-1}(\emptyset) \in f^{-1}(\mathcal{G})$
- If $f^{-1}(A) \in f^{-1}(\mathcal{G})$, where $A \in \mathcal{G}$, then $A^c \in \mathcal{G}$. Note that $(f^{-1}(A))^c = f^{-1}(A^c) \in f^{-1}(\mathcal{G})$.
- If $f^{-1}(A_i) \in f^{-1}(\mathcal{G})$, where $A_i \in \mathcal{G}$ then $\cup_i A_i \in \mathcal{G}$ Note that $\cup_i f^{-1}(A_i) = f^{-1}(\cup_i A_i) \in \mathcal{G}$.

Show that if a sequence of simple functions φ_n 's satisfies $0 \le \varphi_1 \le \varphi_2 \le \cdots \le f$ and $\lim_n \varphi_n = f$, then

$$\int f \ \mathrm{d}\nu = \lim_n \int \varphi_n \ \mathrm{d}\nu$$

Proof: " \geq " : by definition of $\int f d\nu$ "<" : If we can prove this result:

Lemma

For any simple function $g \leq f$, we have

$$\int g \ d\nu \le \lim_n \int \varphi_n \ d\nu.$$

then $\sup_{g \in S_f} \int g \ d\nu \le \lim_n \int \varphi_n \ d\nu$.

For any simple function $g \leq f$, we have

$$\int g \, d\nu \le \lim_n \int \varphi_n \, d\nu.$$

Proof: Suppose $g = \sum_{j=1}^{m} b_j I_{B_j}$

- For any $c \in (0,1)$, let $A_n(c) = \{\varphi_n \ge c \cdot g\}$
- We have $\varphi_n I_{A_n(c)} \geq c \cdot g I_{A_n(c)}$.
- Hence

$$\begin{split} \int \varphi_n \; \mathrm{d}\nu &\geq \int \varphi_n I_{A_n(c)} \; \mathrm{d}\nu \geq c \cdot \int g I_{A_n(c)} \; \mathrm{d}\nu \\ &= c \sum_j b_j \nu (B_j \cap A_n(c)). \end{split}$$

- Since $\varphi_n \uparrow f$, we have $A_n(c) \uparrow \Omega$ (see next slide)
- So $\nu(B_i \cap A_n(c)) \uparrow \nu(B_i)$ (by Proposition 1.1 in JS)
- Hence

$$\lim_n \int \varphi_n \, d\nu \ge c \sum_i b_j \nu(B_j).$$

Proving $A_n(c) \uparrow \Omega$:

Fix any $x \in \Omega$.

If f(x) = 0, then $\phi_n(x) = g(x) = 0$, so $x \in A_n(c)$ for any n and c.

If f(x) > 0, then $f(x) = \lim \phi_n(x) > c \cdot g(x)$. So for all n large enough, $\phi_n(x) > c \cdot g(x)$, and $x \in A_n(c)$.

This shows $\lim_{n} A_{n}(c) = \bigcup_{n} A_{n}(c) = \Omega$.