Speaker Recognition Using Deep Neural Networks

Harald Stiff Carl Jernbäcker

Royal Institute of Technology

Problem Formulation

- Let $\mathcal{D} = \{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{i=1}^N$ where each $\boldsymbol{x}_i \in \mathbb{R}^n$ is an auditory feature vector belonging to a corresponding onehot encoded speaker label $\boldsymbol{y}_i \in \mathbb{R}^m$.
- Can we define a neural network estimator $\hat{\boldsymbol{y}} = f(\boldsymbol{x}, \Theta)$ such that $\forall (\boldsymbol{x}_i, \boldsymbol{y}_i) \in \mathcal{D}, \ f(\boldsymbol{x}_i, \Theta) \approx \boldsymbol{y}_i$?

Method

Theory

• We consider the N-layered neural network estimator in Figure 1 $f(\boldsymbol{x},\Theta) = \mathsf{SoftMax}(\boldsymbol{W}^N \sigma(\boldsymbol{W}^{N-1} \sigma(\dots \sigma(\boldsymbol{W}^1 \boldsymbol{x} + \boldsymbol{b}^1)) + \boldsymbol{b}^{N-1}) + \boldsymbol{b}^N)$ where $\Theta = \{\boldsymbol{W}^i, \boldsymbol{b}^i\}_{i=1}^N$ contains the parameters of the network.

Figure 1: An artficial neural network.

- The parameters in $\boldsymbol{\Theta}$ are updated using an ADAM optimizer provided the gradients

$$\left\{ \frac{\partial J(\mathcal{B},\Theta)}{\partial \boldsymbol{W}^{i}}, \frac{\partial J(\mathcal{B},\Theta)}{\partial \boldsymbol{b}^{i}} \right\}_{i=1}^{N}$$

where

$$J(\mathcal{B}, \Theta) = \frac{1}{n} \sum_{i=1}^{n} -\log(\boldsymbol{y}_i^T \hat{\boldsymbol{y}}_i)$$

and $\mathcal{B} = \{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{i=1}^n$ is a stochastic batch of features and labels.

ullet We define the m voted neural network estimator as

$$\hat{oldsymbol{y}}^{(m)} = rac{1}{m} \sum_{k=1}^m f(oldsymbol{x}_k, \Theta)$$

where m feature vectors belonging to the same class are used for one estimation.

Feature Collection

• We extract normalized MFCC and mel filter bank features from 112 speakers in the TIDIGITs dataset in according to Figure 2.

Figure 2: Feature collection flow chart

Results

- The best results are shown in Tables 1-2 where M, F, MF correspond to networks trained on only male speakers, female speakers and both male and female speakers respectively.
- Each hidden layer in the networks has 256 nodes
- Figures 3-4 are plots comparing the performance of the estimator using a varied amount of votes.
- Figure 5 show accuracy and loss plots with respect to the number of epochs used in training.

Figure 3: Accuracy of different estimators $\hat{\boldsymbol{y}}^{(m)}$ using model 3 in Table 1.

Figure 4: PCA cluster plots of classifications $\hat{y}^{(1)}$ and $\hat{y}^{(10)}$ using model 3 in Tables 1-2. Only classifications of features belonging to 10 male and 10 female speakers are shown.

Figure 5: Accuracy and loss plots for model 2 in Table 1.