KSIA 한국반도체산업협회

협회/조합소개

회원사 안내

행사/교육

사업안내

반도체정보

통합공지

이슈리포트

산업동향

산업의 위상 메모리 가격 및 수출동향

정책동향

국내 동향 해외 동향

디지털포럼

■ 반도체통계

현물 가격(Spot Price)

월별 반도체 시장

Digital Forum 전략연구센터에서는 반도체 시장/산업분석 세미나 영상을 제공합니다.

기술동향 https://www.technologyreview.kr/

TMIT Technology Review

토픽 스페셜 리포트 매거진 35세 미만 혁신가 뉴스레티

기후변화·에너지

What's next for batteries

What's Next 시리즈 #2: 2023년 배터리 산업 전망

2023년에는 미국 정부의 자국 내 자금 지원으로 새로운 전기차용 배터리 개발 및 배터리 제조가 활성화될 것으로 보인다.

Casey Crownhart 2023년 1월 18일

4

미리보기 2회 중 1회

https://www.technologyreview.kr/special/vol20/?utm_sou rce=homepage&utm_medium=popup&utm_campaign= magazine_vol20

MIT 테크놀로지 리뷰 코리아 Vol.20 2025년 5·6월호

MIT 테크놀로지 리뷰의 이번 주제는 '의료 기술 혁명의 시대'이다. 의료 기술은 조용하지만 확실하게 진화를 거듭하고 있다. 디지털 트윈과 AI, 뇌-컴퓨터 인터페이스, 유전자 조작과 생체 이식 기술, 그리고 과거에는 상상하기 어려웠던 새로운 효과를 내는 신약까지. AI부터 생명공학에 이르는 건강 혁신 기술을 조명한다.

https://library.tukorea.ac.kr/search/i-discovery?tabIndex=5&ALL=%EA%B8%B0%EC%88%A0%EC%9E%A1%EC%A7%80&offset=0&max=10

고 2025 미래형 자동차 기술개발 동향 및 시장 전망 (2) 亿

산업동향연구소 산업동향연구소 [2025-03-31]

흐

□ 2025 미래형 자동차 기술개발 동향 및 시장 전망 (1) 亿

산업동향연구소 산업동향연구소 [2025-03-31]

희

분자간 힘(intermolecular forces)

= 분자 간 인력

= 반데르발스 힘(van der Waals forces) < 쌍극자-쌍극자 힘

쌍극자-쌍극자 힘

- · 극성 분자는 이웃 분자의 쌍극자 사이에 반대 극성 부분끼리의 정전기적 상호작용(인력)인 쌍극자-쌍극자 힘(dipole-dipole force)이 작용한다.
- · 물질의 극성이 커질수록 쌍극자-쌍극자 힘은 커진다.

그림 4.14 쌍극자-쌍극자 힘

끓는점이 더 높은 물질은? 그 이유는?

뷰테인(C₄H₁₀)

분자량 = 58

분자량 = 58

그림 4.15 뷰테인과 아세톤의 쌍극 자-쌍극자 힘

이온-쌍극자 힘

극성 분자가 이온을 만났을 때 반대 극성 사이에서 발생하는 정전기적 인력 때문에 당연히 이온-쌍극자 힘(ion-dipole force)이 발생할 수 있다.

그림 **4.16** 이온-쌍극자 힘

4.8 분자간 힘 p. 104-105

런던 분산력

런던 분산력(London dispersion force)

무극성 분자와 무극성 분자 간의 인력은 분자 내 전자의 순간적인 쏠림 현상에 의하여 순간적으로 형성된 쌍극자에 의하여 발생하는 인력

전자 분포가 대칭

그림 4.18 런던 분산력

4.8 분자간 힘 p. 104-105

그림 4.18 런던 분산력

전체 분자 내에서 전자의 분포는 시간 평균적으로 대칭이라 할 수 있지만, 어느 한 순간적인 전자 분포는 절대 균일할 수 없다. 어느 짧은 순간에 한쪽의 전자가 다른 쪽에 비해 많아져서 순간적인 쌍극자가 형성될 수 있다.

순간적인 쌍극자의 영향으로 인접한 분자에 유도 쌍극자(induced dipole)가 형성된다. 결과적으로 순간 쌍극자와 유도 쌍극자 간의 약한 인력이 분산력이다.

런던 분산력(London dispersion force)

- (1) 무극성 분자와 무극성 분자 간의 인력은 분자 내 전자의 순간적인 쏠림 현상에 의하여 순간적으로 형성된 쌍극자에 의하여 발생하며, 이 인력을 런던 분산력이라고한다.
- (2) 분자량이 큰 분자일수록 분자 내 전자의 개수가 증가하므로 순간 쏠릴 수 있는 전 자의 수가 증가하므로 순간적인 쌍극자가 강해져서 런던 분산력도 강해진다. 즉 분자량과 런던 분산력은 비례하며 아래 자료처럼 녹는점과 끓는점도 분자량에 비 례한다.
- ★ 극성분자도 다수의 전자때문에 분산력이 존재한다.

4.8 분자간 힘 p. 106-107

수소 결합

수소 결합(**hydrogen bond**)은 <u>전기 음성도가</u> 매우 큰 원자(F, O, N)에 결합한

수소 원자와 같은 분자 또는 다른 분자의 전자가 풍부한 영역 (F, O, N) 간의 상호작용(인력)

그림 4.19 물과 암모니아의 수소 결합

4.8 분자간 힘 p. 106-107

수소 결합은 최대 40 kJ/mol의 에너지를 가질 정도로 매우 강한 인력

그림 4.20 물 분자에서 수소 결합

4.8 분자간 힘 p. 106-107

암모니아, 물, 플루오린화 수소는 수소 결합을 하기 때문에

분자량이 작음에도 비정상적으로 끓는점이 높다.

그림 4.21 이성분 수소 화합물의 끓는점 비교

조별 토론 1

펜테인의 끓는점이 더 높은 이유를 쓰시오?

조별 토론 2

HF 와 NH₃ 분자간 힘(수소결합)을 그림으로 표현하시오.

화학물 명명법

Ionic Compounds

- 금속(metal) + 비금속(nonmetal)
- 음이온, Anion (nonmetal) → "~화" (-ide)

BaCl₂ 염화 바륨 (barium chloride)

K₂O 산화 포타슘(potassium oxide)

Mg(OH)₂ 수산화 마그네슘 (magnesium hydroxide)

KNO₃ 질산 포타슘 (potassium nitrate)

금속과 양이온

Na 소듐(sodium) Na+ 소듐 (양)이온 (sodium ion)

K 포타슘(potassium) K+ 포타슘 (양)이온 (potassium ion)

Mg 마그네슘(magnesium) Mg²⁺ 마그네슘 (양)이온 (magnesium ion)

Al 알루미늄(Aluminium) Al³⁺ 알루미늄 (양)이온 (aluminium ion)

조별토론3. 주기율표 원자들이 음이온일때 이름?

탄소화 이온 질소화 이온 산화 이온

규소화 이온 인화 이온 황화 이온

셀레늄화 이온

텔루륨화 이온

플루오린화 이온 염화 이온 브로민화 이온 아이오딘화 이온

4.9 화합물의 화학식 표기와 명명법

예제 4.15

다음 화학식에 해당하는 화합물의 이름을 쓰시오.

(a) Na₂O

(b) Ca₃(PO₄)₂

- 전이금속 이온화합물 (Transition metal ionic compounds)
 - 로마숫자는 양전하 숫자

FeCl₂ 2 Cl⁻ Fe²⁺

염화 제 1철 이온 (iron(II) chloride)

Fe²⁺ 제 1철 이온(Ferrous ion) Fe³⁺ 제 2철 이온(Ferric ion)

FeCl₃ 3 Cl⁻ Fe³⁺

열화 제 2철 이온 iron(III) chloride

Fe²⁺ 제 1철 이온(Ferrous ion)

Cu¹⁺ 제 1구리 이온(cuprous ion)

Fe³⁺ 제 2철 이온(Ferric ion)

Cu²⁺ 제 2구리 이온(cupric ion)

Mn²⁺ 산화 망가니즈 (II) Mn₁O₁

Mn³⁺ 산화 망가니즈 (III) Mn₂O₃

Mn⁴⁺ 산화 망가니즈 (IV) Mn₁O₂

황화크로늄(III) Cr₂S₃ chromium(III) sulfide

OH-, CN-, NH_4^+ , NO_3^- CO₃²⁻, PO_4^{3-}

분자 화합물의 명명법

• 분자 내에 있는 두 원소 중, 하나는 양이온, 다른 하나는 음이온 취급을 한다.

• 주기율표에서는 왼쪽 아래로 갈수록 더 양 이온성이고 오른쪽 위로 갈수록 더 음 이온성

• 명명법에서는 각 원소마다 수에 관한 접두사를 포함

4.9 화합물의 화학식 표기와 명명법

- (1) 두 비금속이 만드는 화합물의 화학식은 [뒤에 있는 물질명+화]를 먼저 부르고 나서 앞에 있는 원소명을 붙인다. (영어 명명법에서는 순서대로 하되, 뒤에 있는 원소 이름의 어미를 '-ide'로 나타낸다.)
- (2) 공유 결합 물질은 원소의 개수를 밝히는 것을 원칙으로 하며, 다음의 접두사를 붙인다.

결합된 원소 수	1	2	3	4	5	6	7	8	9	10
한글식 명명	일	(٥	삼	사	오	육	칠	팔	구	십
영어식 명명	mono	di	tri	tetra	penta	hexa	hepta	octa	nona	deca

단, 경우에 따라 '일-'은 생략이 가능하다. 예를 들면, 이산화 탄소(CO₂)와 일산화 탄소(CO)는 첫 번째 원소인 탄소 앞에는 '일-'이라는 접두어를 사용하지 않고 두 번째 원소인 산소 앞에만 '일-', '이-'라는 접두어를 사용한다.

CO

 CO_2

 PCl_3

SF₄

 N_2O_4

• 이름의 앞쪽에 있는 원소에서 mono 접두사는 사용하지 않음

PCl₃→ 삼염화인(phosphorus trichloride)

산화물의 영문 표기에서 "a"는 때로 생략 N₂O₄ → dinitrogen tetroxide

분자성 화합물	국문 이름	영문 이름
СО		
CO_2		
CO ₂ SiCl ₄ B ₂ O ₃		
B_2O_3		
IF		
AsBr ₃		
N_2O_4		-

4.9 화합물의 화학식 표기와 명명법

(3) 오래전부터 전통적으로 불리던 이름(관용명 혹은 일반명)은 위의 규칙과는 관계없이 그대로 쓰고 있다.

H ₂ O	물(water)	AsH ₃	아르신(arsine)
NH ₃	암모니아(ammonia)	SbH ₃	스티빈(stibine)
PH ₃	포스핀(phosphine)	BiH ₃	비스무틴(bismuthine)

(4) 준금속과 비금속 사이의 이성분계 화합물은 두 가지 명명이 가능하며 어느 것을 써도 무방하다. 그러나 여러 원소가 결합된 경우에는 이온 결합 화합물로 명명한다.

[™] SbCl₅

- 염화 안티모니(V)(antimony(V) chloride)
- 오염화 안티모니(antimony pentachloride)

4.9 화합물의 화학식 표기와 명명법

예제 4.16

화합물 (a) P₄O₁₀과 (b) NO₂를 명명하시오.