	I	MA	\mathbf{CT}	21	132
		Spr	ing	20	20
		Exa	am i	1,	V2
Time	Limit:	75	Mi	nu	tes

Name: _	UID:

- This exam contains 8 pages (including this cover page and the draft page).
- Answer all the problems.
- Unsupported answers are considered miracles and will receive little or no credit.
- Anyone caught writing after time has expired will be given a mark of zero.

Problem	Score	Points
1		7
2		11
3		14
4		20
Total		52

Problem 1. The augmented matrix of a system of linear equations is given by

$$\begin{bmatrix}
 2 & -1 & 3 \\
 4 & k & k \\
 -4 & 3 & 1
 \end{bmatrix}$$

- a) (1 pts) Determine the number of equations and the number of variables.
- b) (6 pts) Find the value(s) of k that make the system consistent, and then solve the system.

Problem 2. Let s, t and u be fixed real numbers. Consider the matrix

$$B = \left[\begin{array}{ccc} 1 & s & s^2 \\ 1 & t & t^2 \\ 1 & u & u^2 \end{array} \right].$$

- a) (4 pts) Show that |B| = (t s)(u s)(u t).
- b) (5 pts) Find the inverse of B when s = 0, t = 1 and u = 2 or show that it does not exist.
- c) (2 pts) Determine the condition(s) on s, t and u for which B is invertible.

Problem 3. Let A be the 3×3 matrix

$$\left[\begin{array}{ccc} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{array}\right].$$

a) (8 pts) Determine the eigenvalues for A and the corresponding eigenvectors.

b) (6 pts) Use Cayley-Hamilton Theorem to express A^5 in terms of A^2 , A, and I.

Problem 4. (5 pts each) Prove or disprove <u>four</u> of the following.

a) A homogeneous system of three linear equations in two variables has infinitely many solutions.

Reason:

True False

b) If A and B are $n \times n$ matrices and A is invertible, then $|(ABA^{-1})^2| = |B^2|$.

Reason:

True

False

c) A square matrix can have two different row-echelon forms.

Reason:

True

False

d) If $\underline{\mathbf{x}}$ is an eigenvector for A relative to an eigenvalue λ , then so is $c\underline{\mathbf{x}}$ for any scaler $c\neq 0$. Reason: True False e) If A and B are 2×2 matrices such that A + B is invertible, then A or B is invertible. Reason: True False f) If A is a symmetric invertible matrix, then $5A^{-1}$ is symmetric. Reason: True False

Draft: