ĐẠI HỌC KHOA HỌC TỰ NHIÊN, ĐẠI HỌC QUỐC GIA TP.HCM KHOA CÔNG NGHỆ THÔNG TIN BỘ MÔN KHOA HỌC MÁY TÍNH

AUTOMATA VÀ NGÔN NGỮ HÌNH THỨC BÀI TẬP CHƯƠNG 1

Sinh viên thực hiện: Nguyễn Thế Hoàng (MSSV: 20120090)

Giáo viên phụ trách: Nguyễn Thanh Phương - Lê Ngọc Thành

BÀI TẬP MÔN HỌC - AUTOMATA VÀ NGÔN NGỮ HÌNH THỰC HỌC KỲ II - NĂM HỌC 2022 - 2023

Bài 1 a.
$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup A_3 \cup \ldots = \{1\} \cup \{1,2\} \cup \{1,2,3\} \cup \ldots = \mathbb{Z}^+$$

b. $\bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap A_3 \cap \ldots = \{1\} \cap \{1,2\} \cap \{1,2,3\} \cap \ldots = \{1\}$

Chứng minh: Gọi S(n) là phát biểu rằng, $\forall n \in \mathbb{N}$:

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$$

Bước cơ sở: Cho $n_0 = 0$. Rỗ ràng, S(0) là đúng khi $\sum_{i=1}^{0} \frac{1}{i(i+1)} = \frac{0}{0+1} = 0$. Bước qui nap: Giả thiết qui nap cho rằng S(k) đúng với giá tri $k \in \mathbb{N}$ tùy ý và $k \geq n_0$. Nghĩa là:

$$\sum_{i=1}^{k} \frac{1}{i(i+1)} = \frac{k}{k+1}$$

Chứng minh rằng:

$$\sum_{i=1}^{k+1} \frac{1}{i(i+1)} = \frac{k+1}{k+2}$$

Đi từ vế trái và dưa vào giả thiết qui nap, ta có:

$$\begin{split} \sum_{i=1}^{k+1} \frac{1}{i(i+1)} &= \sum_{i=1}^{k} \frac{1}{i(i+1)} + \frac{1}{(k+1)(k+2)} = \frac{k}{k+1} + \frac{1}{(k+1)(k+2)} \\ &= \frac{k(k+2)+1}{(k+1)(k+2)} = \frac{k^2+2k+1}{(k+1)(k+2)} = \frac{(k+1)^2}{(k+1)(k+2)} \\ &= \frac{k+1}{k+2} \end{split}$$

Từ đây có thể khẳng định, phát biểu S(n) đúng $\forall n \in \mathbb{N}$.

Bài 12 10 chuỗi đầu tiên theo thứ tự chuẩn tắc của ngôn ngữ \mathcal{L} :

$$\mathcal{L} = \{w \in \{a,b\}^* : |w| \equiv_3 0\} = \{\varepsilon, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaaaa\}$$

Bài 13 a.
$$\mathcal{L} = \{b^n a^1 : n \in \mathbb{N}\}$$

b. $\mathcal{L} = \{a^n : n \in \mathbb{N}\}$

Bài 14

a. $\forall \mathcal{L} : (\mathcal{L}^+)^+ = \mathcal{L}^+$

Theo định nghĩa của bao đóng trên ngôn ngữ, hiển nhiên rằng
$$\mathcal{L}^+ \subseteq (\mathcal{L}^+)^+ \, \forall \mathcal{L}$$
.
Giả sử $\exists w \in (\mathcal{L}^+)^+$. Vậy phải tồn tại các chuỗi $x_1, x_2, \dots, x_n \in \mathcal{L}^+$ nào đó sao cho $w = x_1 x_2 \dots x_n$. Với mỗi $x_i \in \mathcal{L}^+$, tồn tại một số m_i nào đó để $x_i \in \mathcal{L}^{m_i}$.
Nói cách khác, $w \in \mathcal{L}^{m_1} \mathcal{L}^{m_2} \dots \mathcal{L}^{m_n} = \mathcal{L}^{m_1 + m_2 + \dots + m_n} \subseteq \mathcal{L}^+$ (Định nghĩa phép

lũy thừa ngôn ngữ).

Vì $\mathcal{L}^+ \subseteq (\mathcal{L}^+)^+$ và $(\mathcal{L}^+)^+ \subseteq \mathcal{L}^+$ nên phát biểu ban đầu là **đúng**. Ngoài ra, phát biểu này dễ dàng mở rộng cho phát biểu sau: $\forall \mathcal{L} : (\mathcal{L}^*)^* = \mathcal{L}^*$

b. $\forall \mathcal{L} : (\mathcal{L}^*)^+ = (\mathcal{L}^+)^*$.

Vì $\mathcal{L}: (\mathcal{L}^*)^+$ không chứa chuỗi ε , trong khi $(\mathcal{L}^+)^*$ chứa chuỗi ε , nên phát biểu trên là **sai**.

c. $\forall \mathcal{L}: \mathcal{L}^* = \mathcal{L}^+ \cup \emptyset$

Vì \mathcal{L}^* chứa chuỗi ε , trong khi $\mathcal{L}^+ \cup \emptyset$ không chứa chuỗi ε (\emptyset là ngôn ngữ rỗng đồng thời không chứa chuỗi ε) nên phát biểu ban đầu là **sai**.

d. $\forall \mathcal{L} : \mathcal{L}^* \mathcal{L} = \mathcal{L}^+$

Ta thấy: $\mathcal{L}^+ = \mathcal{L}^1 \cup \mathcal{L}^2 \cup \dots$

và $\mathcal{L}^*\mathcal{L} = (\mathcal{L}^0 \cup \mathcal{L}^1 \cup \mathcal{L}^2 \cup \ldots)(\mathcal{L})$. Dễ thấy từ đây, các chuỗi thuộc ngôn ngữ $\mathcal{L}^*\mathcal{L}$ hình thành bằng cách ghép một chuỗi nào đó thuộc \mathcal{L}^i với chuỗi $\mathcal{L}, i \geq 0$. Theo định nghĩa phép lũy thừa ngôn ngữ, ta nhận được $\mathcal{L}^1 \cup \mathcal{L}^2 \cup \ldots$

Vậy $\mathcal{L}^*\mathcal{L}$ và \mathcal{L}^+ đều được tạo thành từ $\mathcal{L}^1 \cup \mathcal{L}^2 \cup \dots$ Vậy, phát biểu ban đầu là **đúng**.

e. $\forall \mathcal{L}_1, \mathcal{L}_2 : (\mathcal{L}_1 \mathcal{L}_2)^* = \mathcal{L}_1^* \mathcal{L}_2^*$

Giả sử $\mathcal{L}_1 = \{a, b\}, \mathcal{L}_2 = \{c, d\}. \mathcal{L}_1 \mathcal{L}_2 = \{ac, ad, bc, bd\}. (\mathcal{L}_1 \mathcal{L}_2)^* = \{acad, acbc, \ldots\}.$ $\mathcal{L}_1^* = \{\varepsilon, a, b, aa, ab, ba, bb, \ldots\}, \mathcal{L}_2^* = \{\varepsilon, c, d, cc, cd, dc, dd, \ldots\}.$

Xét chuỗi $acad \in (\mathcal{L}_1\mathcal{L}_2)^*$. Dễ thấy ta không có cách ghép chuỗi $\mathcal{L}_1^*\mathcal{L}_2^*$ nào để tạo được acad do mọi cách ghép nối đều yêu cầu một chuỗi phải được tạo ra từ cả \mathcal{L}_1 và \mathcal{L}_2 , trong khi không có chuỗi nào thuộc \mathcal{L}_1^* hoặc \mathcal{L}_2^* đáp ứng yêu cầu này.

Vì ví dụ phản chứng này, phát biểu ban đầu là sai.

f. $\forall \mathcal{L}_1, \mathcal{L}_2 : \mathcal{L}_1^* \cup \mathcal{L}_2^* = (\mathcal{L}_1^* \cup \mathcal{L}_2^*)^*$

Đặt $\mathcal{L}_1^* \cup \mathcal{L}_2^* = \mathcal{L}$. Ta có: $\mathcal{L} = \mathcal{L}^*$. Vì chỉ có chiều $\mathcal{L} \subseteq \mathcal{L}^*$ là đúng nên $\mathcal{L} = \mathcal{L}^*$ là sai. Do đó, phát biểu ban đầu cũng phải sai.