

Update on Alignment and Analysis

Jim Pivarski

Texas A&M University

14 January, 2010

- Update in alignment
- Optimizing our skim definition (with PAT and all of that)
- ▶ Took a quick look at some $h \to aa \to 4\mu$ signal and $pp \to \mu X$ background ($p_{T1} > 20$ GeV, $p_{T2} > 5$ GeV)

Tracker bias

Jim Pivarski

- ► CRAFT alignments showed that the tracker has some global distortion that tracker-tracks are insensitive to, but globalMuons are sensitive to it
- Appears as muon hit residuals being a function of momentum scale (low- p_T tracks disagree with high- p_T tracks about where to put a muon chamber)
- Markus Stoye is investigating this on the tracker side, sending me tracker geometries with global distortions which are weak modes of the tracker alignment
- This "kappa" alignment is a step in the right direction...

- Beam-halo tracks in overlap of neighboring CSCs are selected at HLT in a dedicated trigger, sent to a dedicated AlCa stream
- Hit pattern used to identify a track parallel to the beamline has a broader distribution in later runs (e.g. runs with \vec{B} -field on, not tested in MC)
- Muons travelling parallel to beam-line would be affected by radial component of B-field: that could be what is broadening the distribution
- Working with Joe Gartner (now responsible for this trigger) to fix it

Work-around

Jim Pivarski 5/24

- We built in a work-around: another trigger and another AICa stream that don't select overlaps
- Reprocessed this stream without the faulty HLT algorithm
- Still far too few beam-halo muons for alignment (we didn't lose an opportunity to align, but we learned something important about our trigger so that we don't lose anything in the future)
- ightharpoonup First example plot: dR/dz for identifying beam-halo amid the cosmic rays

Occupancy by station/ring

Hit distribution: global *x-y*

Jim Pivarski 7/24

Hit distribution: $r-\phi$

Jim Pivarski

- Read Alfredo's e-mail, and walked through the process of skimming and PATifying a sample
- Aysen did this on his own, too
- I optimized a set of keep statements for our purposes:
 - all generator-level information, including SimHits (which are big; we could save a lot by dropping these)
 - ▶ PAT muons and also RECO muons, including muons made with the SET algorithm
 - all tracks and the hits attached to tracks: a trick learned from AlCaRecos (we can refit tracks if needed)
 - all muon hits
 - enough calorimetry to re-run isolation, so that we can make isolation algorithms of any level of sophistication
 - beamspot, primary vertices, trigger data, which were essential in real-data exercises with prompt RECO
 - tested all of the above with the output, including calculation of MC weights (for PDF systematics studies) and event display
- Background skims of $p_{T1} > 20$ GeV, $p_{T2} > 5$ GeV are tight: we can make them looser

- PAT muons are a union of globalMuons, trackerMuons (tracker-track plus one or more segments), and standAloneMuons
- standAloneMuons are not useful for our analysis (too-loose identification and poor resolution)
- We'll want to control which algos we use: e.g. globalMuon-globalMuon, globalMuon-trackerMuon, trackerMuon-trackerMuon

Location of samples

- Signal: we generate that at Fermilab
- $ightharpoonup pp
 ightarrow \mu X$: available at Fermilab and CERN (use Fermilab)
- For the others: need CRAB access, should get Aysen set up with an account
 - just use CRAB to get a skim, then we work with the skim locally

Mass vs. R

- ▶ Wrong combinations generally have high mass
- ▶ Signal always on left, background always on right

▶ No clean-up, just a raw look at the data

- ▶ PAT matches reconstructed muons to generator-level muons for free
- ightharpoonup Remember that backgrounds have a lower p_T spectrum

PDG-id of parent

Jim Pivarski 15/24

- ▶ Most signal muons come from a_1 (PDG-id = 36)
- ▶ The rest (signal and background) are from charm and bottom mesons (PDG-ids in the 100's) and baryons (PDG-ids in the 1000's)

▶ These matches seem pretty reasonable

Jim Pivarski 17/24

► Yes indeed...

▶ q/p_T is curvature, the momentum scale that tracking actually measures (as opposed to p_T , |vecp| or something)

ECAL isolation variable

- ▶ PAT also gives us $\sum p_T$ around each muon (R < 0.3) for free
- ▶ Don't take these plots as definitive: when applied to muon pairs, they include double-counting
- Muons contribute negligibly to calorimeter energy (minimum-ionizing)

HCAL isolation variable

Jim Pivarski 20/24

Same thing for HCAL...

- ▶ PAT's "track isolation" is not what we want, because the second muon in each pair often appears in the other's isolation cone
- ▶ This is what our isolation definition improves

Good track isolation

Jim Pivarski

- ► Track isolation without counting the muons and without double-counting tracks in both muons' cones
- Aysen has developed an isolation variable like this, but we'd have to compare notes to see if it's exactly the same

Good track iso vs. calo iso

Jim Pivarski 23/24

- They're not strongly correlated: can improve isolation by cutting on both
- ► Careful with the interpretation: we're still double-counting some calo $\sum p_T$

- ▶ As we build our analysis to look for what has never before been seen ($h
 ightarrow aa
 ightarrow 4\mu$), we should show that we can see what's there
- ▶ The J/ψ is an obvious example, and we'll need to interact with many other groups whenever presenting anything related to J/ψ (because a lot of people are looking at it)
- ▶ Also in our sample: $X(3872) \rightarrow \pi^+\pi^-J/\psi$, four tracks with a different invariant mass topology
- ▶ In 500 pb $^{-1}$ of 7 TeV data, we would see as many such events as the Tevatron's 8 fb $^{-1}$
- ▶ This is an interesting state in its own right, as it may be the first example of a molecular hadron: $c\bar{c} + c\bar{c}$
- http://arxiv1.library.cornell.edu/abs/0911.2016
- ▶ Unfortunately, not much discrimination power in pp vs. $p\bar{p}$: the interesting thing about an LHC analysis is the higher cross-section, which begins to matter in 2011

- ► This is what it looks like at CDF
- www-cdf.fnal.gov/physics/preprints/cdf9700_X_mass.pdf
- ▶ 7 TeV LHC production is 15× larger, backgrounds are...?

FIG. 1: Invariant mass distribution of the X(3872) candidates. The points show the data distribution, the full line is the projection of the unbinned maximum-likelihood fit, and the dashed line corresponds to the background part of the fit. The inset shows an enlargement of the region around the X(3872) peak.