

PACE 2020 Award Ceremony

Łukasz Kowalik

Outline

- 1. PACE 2020 organization
- 2. Treedepth
- 3. Dataset
- 4. Exact track
 - Results
 - Short summary
 - Presentations of five winning teams
- 5. Heuristic track (11:15 CET, 18:15 HKT)
 - Results
 - Short summary
 - Presentations of five winning teams

Program Comittee

- Łukasz Kowalik (chair)
- Marcin Mucha
- Wojciech Nadara
- Marcin Pilipczuk
- Manuel Sorge
- Piotr Wygocki

Thanks go to

 Networks for sponsoring the prizes

 Optil.io team, in particular to Jan Badura for hosting PACE'20 on their on-line judge system

 Felix Reidl for the PACE'20 poster

... and to the participants!

Country	Number of teams
Germany	4
Netherlands	4
Japan	2
United Kingdom	2
Brazil	1
Finland	1
France	1
India	1
Kosovo	1
Poland	1
Russia	1
Ukraine	1

- 20 teams officialy submitted
- 38 more registered users in the online judge system
- 51 participants
- 12 countries
- 3 continents

Treedepth

A treedepth decomposition of a connected graph G=(V,E) is a rooted tree T, V(T)=V, such that every edge of G connects a pair of nodes that have an ancestor-descendant relationship in T.

Treedepth of **G** = minimum depth of such **T**

Why treedepth?

A natural and useful notion in

- structural graph theory (sparsity),
- logic,
- FPT algortihms

What do we know about computing treedepth?

- DP over subsets of V, O(2ⁿ) [folklore]
- DP over tree decomposition of width t O(2^{td(G)*t} poly(n) [Reidl et al. 2014]
- O(t*log^1.5 t)-approximation [Czerwiński et al. 2019, Kawarabayashi et al. 2018]
- in **P** for trees
- Computing treedepth of graphs up to 24 vtcs: reduction to ILP [Ganian et al. 2019]

Track A: Exact

Rules:

- Compute a tree decomposition of minimum depth in 30 minutes or give up.
- No formal proof of optimality required...
- ...but if your decomposition is suboptimal on any instance, you get disqualified.
- You are given 100 public instances.
- You are evaluated on 100 private instances.
- Score: number of instances solved; time as a tiebreaker

Our dataset for exact track

https://github.com/lkowalik/Treedepth-PACE-2020-instances

Results

Rank	Team	Institute	#pts	time
1	James Trimble	University of Glasgow (United Kingdom)	78	6503
2	Tuukka Korhonen	University of Helsinki (Finland)	77	5599
3	Ruben Brokkelkamp, Mees de Vries, Raymond van Venetië, Jan Westerdiep	CWI, U. Amsterdam, KdVI (Netherlands)	72	3149
4	Max Bannach, Sebastian Berndt, Martin Schuster, Marcel Wienöbst	Universität zu Lübeck, Universität Kiel (Germany)	72	4267
5	Dejun Mao, Vorapong Suppakitpaisarn, Zijian Xu	The University of Tokyo (Japan)	68	8794
6	Narek Bojikian, Alexander van der Grinten, Falko Hegerfeld, Laurence Alec Kluge, Stefan Kratsch	Humboldt-Universität zu Berlin (Germany)	64	4515
7	Tom van der Zanden	Maastricht University (Netherlands)	44	6304
8	Dmitry Sayutin (cdkrot)	ITMO University (Russia)	37	11465
9	Philip de Bruin, Erik Jan van Leeuwen (PhiliPdB)	Utrecht University (Netherlands)	27	4470
10	Jun Kawahara, Toshiki Saitoh, Akira Suzuki, Toshiyuki Takase, Katsuhisa Yamanaka (t-saitoh)	Kyoto University, Kyushu Institute of Technology, Tohoku University, Iwate University (Japan)	6	198

Closer look at the results

- The winning solver solved 78 instances
- 81 instances solved in total
- All instances up to 80 vertices solved
- The smallest treedepth of an unsolved instance is 17 (a 170 vertex road network)
- The largest treedepth of a **solved** instance was 83 (the 100 vertex Hall-Janko graph)

Table 2 Differences between the top five teams in the exact track (columns contain instances).

Name	068	074	084	088	090	094	108	112	120	148	150	174	180	182	186
Trimble	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓		✓	✓	
Korhonen	✓	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
Brokkelkamp et al.		\checkmark		\checkmark						\checkmark			\checkmark	\checkmark	✓
Bannach et al.				\checkmark			\checkmark		\checkmark	\checkmark			\checkmark	\checkmark	
Mao et al.		\checkmark									\checkmark				

Methods used

- **Bottom-up** (leaves to root): for increasing k=0,1,2... generate depth k tree decompositions of induced subgraphs of G (places 1,4,6,7)
- **Top-down** (root to leaves): list minimal separators, branch, memoize. (places 2,3,5,9,10)
- None of the approaches crushes the other
- The best solvers used a combination of **many** new and existing ideas

Talks of the five winning teams

James Trimble

University of Glasgow

as the

First Place Winner in the Exact Track of the Treedepth Challenge

Tuukka Korhonen

University of Helsinki

as the

2nd Place Winner in the Exact Track of the Treedepth Challenge

Ruben Brokkelkamp*, Raymond van Venetië**, Mees de Vries**, Jan Westerdiep**
*CWI, **U. Amsterdam

as the

3rd Place Winners in the Exact Track of the Treedepth Challenge

Max Bannach*, Sebastian Berndt*, Martin Schuster**, Marcel Wienöbst*

*Universität zu Lübeck, **Kiel University

as the

4th Place Winner in the Exact Track of the Treedepth Challenge

Dejun Mao, Vorapong Suppakitpaisarn, Zijian Xu

The University of Tokyo

as the

5th Place Winner in the Exact Track of the Treedepth Challenge

Track B: Heuristic

Rules:

- Compute a tree decomposition of **small** depth in 30 minutes.
- You are given 100 public instances.
- You are evaluated on 100 private instances.
- Score: 100*min/d for depth d
 - Does not award minor improvements much
 - Score is within (0,100]

Our dataset for heuristic track

https://github.com/lkowalik/Treedepth-PACE-2020-instances

Results

Rank	Team	Institute	#pts
1	Sylwester Swat	Poznań University Of Technology (Poland)	9710,9
2	Ben Strasser	— (Germany)	9684,1
3	Marcin Wrochna	University of Oxford (United Kingdom)	9591,2
4	James Trimble	University of Glasgow (United Kingdom)	9448
5	Max Bannach, Sebastian Berndt, Martin Schuster, Marcel Wienöbst	Universität zu Lübeck, Universität Kiel (Germany)	8935,6
6	Stéphane Grandcolas	LIS (France)	8880,6
7	Miguel Bosch Calvo, Giorgia Carranza Tejada, Dominik Jeurissen, Steven Kelk, Zhuoer Ma, Alexander Reisach, Borislav Slavchev	Maastricht University (Netherlands)	6320,2
8	Gabriel Duarte, Uéverton Souza, Samuel Silva	Fluminense Federal University (Brazil)	5068,5
9	Aman Singal	Indian Institute of Technology Dharwad (India)	4254,9
10	Oleg Evseev, Igor Kozin, Alexander Zemlyanskiy	Zaporizhzhya National University (Ukraine)	1071,7

Closer look at the results

- The winning solver was always within the ratio of 1.13 to the output of any other solver
- But each of the top 5 teams had an instance solved better than others

Methods used

- Bottom-up (leaves to root):
 pick a vertex v (according to a heuristic measure), connect its neighbors to a clique, get a
 decomposition of G-v, add v to it (as a leaf).
 (places 2,3)
- **Top-down** (root to leaves): find a *nice* separator *S*, decompose each component of *G-S* recursively (places 2,5,7,8,9)
- Many solvers used a portfolio of approaches and output the best outcome
- Preprocessing not very popular, but 3 teams used postprocessing (simple imrovements in the resulting tree).
- Again, the best solvers used a combination of many ideas

Talks of the five winning teams

Sylwester Swat

Poznań University Of Technology

as the

First Place Winner in the Heuristic Track of the Treedepth Challenge

Ben Strasser

as the

2nd Place Winner in the Heuristic Track of the Treedepth Challenge

Marcin Wrochna

University of Oxford

as the

3rd Place Winners in the Heuristic Track of the Treedepth Challenge

James Trimble

University of Glasgow

4th Place Winner in the Heuristic Track of the Treedepth Challenge

Max Bannach*, Sebastian Berndt*, Martin Schuster**, Marcel Wienöbst*

*Universität zu Lübeck, **Kiel University

as the

5th Place Winner in the Heuristic Track of the Treedepth Challenge

