Yet another results of the spectral and fragmentation study of small meteoroids

V. Vojáček, J. Borovička, P. Koten, P. Spurný, R. Štork

Astronomical institute of the Czech Academy of Sciences

Video observation of meteors

- In Ondřejov since 1990, database of faint meteors
- 2 stations, 2 direct cameras, 1 spectral camera
 This work: S-VHS cameras, Mullard image intensifiers, 2004 2014
- Orbits, spectra
- fragmentation model

Obtained data

- 152 meteors with orbits, trajectories, spectra
- Spectral classification (Borovička et al., 2005)
 - Mg I-2, Na I-1, Fe I-15
- Application of fragmentation model (Borovička et al., 2007)

Monochromatic light curves

Yet another results...

Study of morphology of faint meteors

Irons on cometary orbits

Two phases of erosion of small meteoroids

- Low resolution of cameras (200m/px), but still...
- Three categories:
 - No wake

10406060

- Low resolution of cameras (200m/px), but still...
- Three categories:
 - Short, faint wake (3 15px) 06A20013

- Low resolution of cameras (200m/px), but still...
- Three categories:
 - Long, bright wake (15 100px)
 06B18075

- Wake formation?
 - Smaller grains declerated more than larger grains (Campbell-Brown et al. 2013)
- Na free, Na poor short faint wakes, no wakes
 - No very small grains
- Irons no wakes, short faint wakes
 - Small number of grains

- Elongated endings
 - Draconids
 - Three sporadic meteors

08728076

- Elongated endings
 - Draconids
 - Three sporadic meteors
- Some parameters similar to each other:
- Velocity 25 km/s
- Higher ablation coefficient
- Grain sizes 10⁻² 10⁻³ mm
- Es $\sim 10^6 \text{ J/m}^2$

Irons

- 15x irons, 4x modelled
- 10x asteroidal
- 1x Sun approaching
- 2x Jupiter family
 - 81P/Wild 2: large range of Fe-Mg, Fe-Ni content (Zolensky et al., 2008)
- 2x Halley inclination ~ 60°

Irons

- 2x Halley inclination ~ 60°
 - ??Grand Tack model (Walsh et al. 2011): migration of big planets – planetesimals in Oort cloud

Table 1: Orbital elements of meteoroids classified as Irons. Second row for each meteor contains corresponding errors.

	a	q	Q	i	ω	Ω	V	T_J	orbit
	(AU)	(AU)	(AU)	(\circ)	(\circ)	(\circ)	(km/s)		
SZ2410	3.50	0.654	6.4	63.2	103.2	14.32	40.7	1.9	Halley
	0.09	0.001	0.2	0.2	0.3	-	0.1	0.1	
SX1938	3.6	0.486	7	63	277	143.30	43.4	1.7	Halley
	0.8	0.008	2	1	2	-	0.8	1.0	

10% meteors with second brightening

- 10% meteors with second brightening
- Cometary, S-A & Normal, Na poor, Draconids
- Model:
 - Different grain sizes
 - 2nd stage larger grains, less grains
 - Draconids smaller, more grains
 - Ablation coefficient same
 - Erosion coefficient
 - Brightening by Mg = smaller
 - Brightening by Na = larger, same

- Erosion coefficient
 - Brightening by Mg = smaller
 - Brightening by Na = larger, same

- Only cometary and Sun-approaching?
 - Material differences more common
- GAIDA Rosetta mission:
 - mix of compact and fluffy material (Fulle et al. 2015)
- Solar heating change in material properties? (increased density – model Mukai & Fechtig 1983)

Conclusion

- Wake formation: highr probability for meteoroids with larger difference in grain sizes?
- Elongated ending typical for Draconid like meteoroids
- Irons on cometary orbits?
 - We can expect iron rich particles
 - Early solar system mixing of material?
- Two stages of erosion
 - Mix of material with different structure
 - Sometimes caused by brightening of individual lines