

Edexcel A Level Maths: Pure

2.9 Transformations of Functions

Contents

- ***** 2.9.1 Translations
- * 2.9.2 Stretches
- ***** 2.9.3 Reflections

2.9.1 Translations

Your notes

Translations

What are graph transformations?

- When you alter a function in certain ways, the effects on the graph of the function can be described by geometrical transformations
- With a **translation** the shape, size, and orientation of the graph remain unchanged the graph is merely shifted (up or down, left or right) in the *xy* plane

• A particular translation (how far left/right, how far up/down) is specified by a **translation vector**:

What do I need to know about graph translations?

- The graph of y = f(x) + a is a **vertical** translation of the graph y = f(x) by the vector $\begin{pmatrix} 0 \\ a \end{pmatrix}$
 - The graph moves **up for positive** values of a and **down for negative** values of a
 - The x-coordinates stay the same

Your notes

Page 4 of 32

- The graph moves **left for positive** values of a and **right for negative** values of a
- The y-coordinates stay the same

Page 6 of 32

 $Head to \underline{www.savemyexams.com} for more awe some resources$

• Any asymptotes of **f**(**x**) are also translated. If an asymptote is parallel to the direction of translation, however, it will not be affected

Page 8 of 32

✓ Worked example	i
	i

Page 11 of 32

Copyright © Save My Exams. All Rights Reserved	
 	Your notes

Head to www.savemyexams.com for more awesome resources

2.9.2 Stretches

Your notes

Stretches

What are graph transformations?

- When you alter a function in certain ways, the effects on the graph of the function can be described by geometrical transformations
- With a **stretch** all the points on the graph are moved towards or away from either the **x** or the **y** axis by a constant scale factor

What do I need to know about graph stretches?

- The graph of y = af(x) is a vertical stretch of the graph y = f(x) by a scale factor of a, centred on the x axis
 - The x coordinates of points stay the same; y coordinates are multiplied by a
 - Points on the x axis stay where they are
 - All other points move **parallel to the y axis**, away from (a > 1) or towards (0 < a < 1) the x axis

Page 14 of 32

The graph of y = f(ax) is a horizontal stretch of the graph y = f(x) by a scale factor of $\frac{1}{a}$, centred on the

У

- The y coordinates of points stay the same; x coordinates are multiplied by $\frac{1}{a}$
- Points on the y axis stay where they are
- All other points move parallel to the x axis, away from (0 < a < 1) or towards (a > 1) the y axis

Your notes

• Any asymptotes of **f(x)** are also affected by the stretch (stretch them as you would stretch the function of a straight line)

Save my exams

 $Head to \underline{www.savemyexams.com} for more awe some resources$

• If an asymptote is one of the coordinate axes, or is parallel to the direction of the stretch, however, it will not be affected

Head to www.savemyexams.com for more awesome resources

Examiner Tip

- When you sketch a stretched graph, be sure to indicate the new coordinates of any points that are marked on the original graph.
- Try to indicate the coordinates of points where the stretched graph intersects the coordinate axes (if you don't have the equation of the original function this may not be possible).
- If the graph has asymptotes, don't forget to sketch the asymptotes of the stretched graph as well.

✓ Worked example	

Page 21 of 32

Head to www.savemyexams.com for more awesome resources

2.9.3 Reflections

Your notes

Reflections

What are graph transformations?

- When you alter a function in certain ways, the effects on the graph of the function can be described by geometrical transformations
- With a **reflection** all the points on the graph are reflected in either the **x** or the **y**

- Any asymptotes of f(x) are also affected by the reflection (reflect them as you would reflect the function of a straight line)
- If an asymptote is one of the coordinate axes, or is perpendicular to the coordinate axis in which the graph is reflected, it will not be affected

What do I need to know about graph reflections?

- The graph of y = -f(x) is a reflection in the x axis
 - The **x** coordinates of points stay the same; **y** coordinates have their signs flipped (positive to negative, negative to positive)
 - Points on the x axis stay where they are
 - All other points are reflected to the other side of the **x** axis

• The graph of y = f(-x) is a reflection in the y axis

Page 24 of 32

$Head to \underline{www.savemyexams.com} for more awe some resources$

- The **y** coordinates of points stay the same; **x** coordinates have their signs flipped (positive to negative, negative to positive)
- Points **on the y axis** stay where they are
- All other points are reflected to the other side of the **y** axis

Page 26 of 32

REFLECTION IN THE y-AXIS

y-COORDINATES STAY

THE SAME

$Head to \underline{www.savemyexams.com} for more awe some resources$

- Any asymptotes of **f(x)** are also affected by the reflection (reflect them as you would reflect the function of a straight line)
- If an asymptote is one of the coordinate axes, or is perpendicular to the coordinate axis in which the graph is reflected, it will not be affected

Worked example	

Page 31 of 32

