Hurricane Harvey Analysis

Table of Contents

- 1. Import the Data
- 2. States Impacted by harvey
- 3. Dates that Hurricane Harvey happened in between
- 4. Two States Most Impacted by Harvey
- 5. Table of Events for Two Most Impacted States
- 6. Figure of Event Types
- 7. Figure of Event Locations
- 8. Three Counties with Most Events in TEXAS
- 9. Three Counties with Most Events in LOUISIANA
- 10. Three Counties with Highest Property Cost in TEXAS
- 11. Three Counties with Highest Property Cost in LOUISIANA
- 12. Recommendations

Background and Scope

Import the Data

Imported:

- 1. State
- 2. Event_Table
- 3. CZ_Name
- 4. Begin_Date_Time
- 5. End_Date_Time
- 6. Property_Cost
- 7. Begin_Lat
- 8. Begin_Lon
- 9. End_Lat
- 10. End_Lon

uiimport("StormEvents\StormEvents_2017_finalProject.csv")

States Impacted by harvey

In order to filter the data to know which data is related to hurricane Harvey we need to filter the data to only include these states.

- Arkansas
- Kentucky

- Louisiana
- Mississippi
- North Carolina
- Tennessee
- Texas.

StormEvents2017finalProject = 10667×10 table

	State	Event_Type	CZ_Name	Begin_Date_Time	End_Date_Time	Property_Cost
1	ARKANSAS	Hail	FRANKLIN	2017-04-26 07:57	2017-04-26 07:	0
2	TEXAS	Hail	HENDERSON	2017-05-03 14:06	2017-05-03 14:	1000
3	NORTH C	Flash Flood	WAKE	2017-06-16 19:32	2017-06-16 19:	0
1	KENTUCKY	Flash Flood	KNOTT	2017-06-14 16:25	2017-06-14 16:	0
5	ARKANSAS	Drought	SEBASTIAN	2017-11-15 00:00	2017-11-30 23:	0
6	ARKANSAS	Drought	FRANKLIN	2017-11-15 00:00	2017-11-30 23:	0
7	ARKANSAS	Drought	CRAWFORD	2017-11-15 00:00	2017-11-30 23:	0
3	ARKANSAS	Drought	WASHINGTON	2017-11-15 00:00	2017-11-30 23:	0
9	ARKANSAS	Drought	MADISON	2017-11-15 00:00	2017-11-30 23:	0
10	TEXAS	Tornado	BOSQUE	2017-01-15 18:17	2017-01-15 18:	90000
11	TEXAS	Thunderstorm Wind	DALLAS	2017-01-02 05:50	2017-01-02 05:	5000
12	TEXAS	Thunderstorm Wind	LEON	2017-01-02 05:58	2017-01-02 05:	0
13	TEXAS	Thunderstorm Wind	ELLIS	2017-01-02 05:10	2017-01-02 05:	15000
14	TEXAS	Thunderstorm Wind	LEON	2017-01-02 06:04	2017-01-02 06:	0

Dates that Hurricane Harvey happened in between

I will asume that assume that Harvey related events occurred only from the 17th of August to the 3rd of September.

```
StormEvents2017finalProject = StormEvents2017finalProject( ...
    StormEvents2017finalProject.Begin_Date_Time >= datetime('2017-08-17 00:00:00') ...
& StormEvents2017finalProject.End_Date_Time < datetime('2017-09-04 00:00:00') , :);</pre>
```

At the end we will get the following table

```
StormEvents2017finalProject
```

StormEvents2017finalProject = 573×10 table

. . .

	State	Event_Type	CZ_Name	Begin_Date_Time	End_Date_Time	Property_Cost
1	TEXAS	Tropical Storm	MONTGOMERY	2017-08-25 12:00	2017-08-30 00:	7.0000e+09
2	MISSISS	Strong Wind	LOWNDES	2017-09-01 01:00	2017-09-01 01:	5000
3	NORTH C	Flash Flood	WAKE	2017-09-01 17:35	2017-09-01 18:	0
4	NORTH C	Flash Flood	CUMBERLAND	2017-09-01 19:20	2017-09-01 21:	0
5	NORTH C	Hail	LEE	2017-09-01 15:20	2017-09-01 15:	0
6	TEXAS	Tropical Storm	FORT BEND	2017-08-26 00:00	2017-08-30 00:	8.0000e+09
7	NORTH C	Hail	WAYNE	2017-09-01 13:50	2017-09-01 14:	0
8	NORTH C	Thunderstorm Wind	RICHMOND	2017-09-01 13:35	2017-09-01 13:	500
9	NORTH C	Thunderstorm Wind	WAYNE	2017-09-01 14:10	2017-09-01 14:	15000
10	NORTH C	Thunderstorm Wind	LEE	2017-09-01 14:52	2017-09-01 14:	8000
11	NORTH C	Thunderstorm Wind	LEE	2017-09-01 15:00	2017-09-01 15:	75000
12	TEXAS	Tropical Storm	GALVESTON	2017-08-25 12:00	2017-08-30 00:	1.0000e+10
13	TEXAS	Tropical Storm	SAN JACINTO	2017-08-25 12:00	2017-08-30 00:	350000000
14	NORTH C	Thunderstorm Wind	HARNETT	2017-09-01 15:45	2017-09-01 15:	8000

Two States Most Impacted by Harvey

Here we will find the two most states that have the heighest property cost

T = groupsummary(StormEvents2017finalProject, 'State', 'sum', 'Property_Cost'); % finding the t
T = sortrows(T, 'sum_Property_Cost', "descend") % sort the rows in a descending order according

 $T = 7 \times 3$ table

	State	GroupCount	sum_Property_Cost
1	TEXAS	272	7.7427e+10
2	LOUISIANA	85	75277000
3	NORTH C	59	12338500
4	MISSISS	39	915000
5	TENNESSEE	46	504000
6	KENTUCKY	20	435000
7	ARKANSAS	52	61000

T([1, 2], :) % display the first two rows

ans = 2×3 table

	State	GroupCount	sum_Property_Cost
1	TEXAS	272	7.7427e+10

	State	GroupCount	sum_Property_Cost
2	LOUISIANA	85	75277000

From here we can see that the two most impacted states are TEXAS and LOUISIANA.

Table of Events for Two Most Impacted States

Here we will create a table with only the rows which contains the states TEXAS and LOUISIANA and group them with the events most frequent

 $T = 11 \times 2 \text{ table}$

	Event_Type	GroupCount
1	Flash Flood	179
2	Tropical Storm	44
3	Tornado	33
4	Heat	30
5	Thunderstorm Wind	27
6	Flood	17
7	Storm Surge/Tide	10
8	Hurricane	9
9	Funnel Cloud	3
10	Hail	3
11	Heavy Rain	2

clear T

From the table above we can see that the events that impactes these states from most frequent to least frequent are:

- 1. Flash Flood
- 2. Tropical Storm
- 3. Tornado
- 4. Heat
- 5. Thunderstorm Wind
- 6. Flood
- 7. Strorm Surge
- 8. Hurricane

Visualizations

Figure of Event Types

First we will show a visualization for the event type and number of occurancies of events that occured in TEXAS and LOUISIANA.

TEXAS and LOUISIANA

Showing a table of frequencies to better interpret the data

```
T = groupsummary(T, 'Event_Type');
```

```
T = sortrows(T, 'GroupCount', 'descend');
T
```

 $T = 11 \times 2 \text{ table}$

	Event_Type	GroupCount
1	Flash Flood	179
2	Tropical Storm	44
3	Tornado	33
4	Heat	30
5	Thunderstorm Wind	27
6	Flood	17
7	Storm Surge/Tide	10
8	Hurricane	9
9	Funnel Cloud	3
10	Hail	3
11	Heavy Rain	2

TEXAS

TEXAS Histogram to show the frequencies

```
clear T
T = StormEvents2017finalProject(StormEvents2017finalProject.State == "TEXAS", :);
histogram(T.Event_Type)

title('Event Frequencies in TEXAS')
xlabel('Name of event')
ylabel('Frequency of each event')
```


Showing a table of frequencies to better interpret the data

```
T = groupsummary(T, 'Event_Type');
T = sortrows(T, 'GroupCount', 'descend');
T
```

 $T = 11 \times 2 \text{ table}$

	Event_Type	GroupCount
1	Flash Flood	126
2	Tropical Storm	41
3	Thunderstorm Wind	27
4	Tornado	26
5	Flood	16
6	Heat	13
7	Hurricane	9
8	Storm Surge/Tide	6
9	Funnel Cloud	3
10	Hail	3
11	Heavy Rain	2

LOUISIANA Histogram to show the frequencies

```
clear T
T = StormEvents2017finalProject(StormEvents2017finalProject.State == "LOUISIANA", :);
histogram(T.Event_Type)

title('Event Frequencies in LOUISIANA')
xlabel('Name of event')
ylabel('Frequency of each event')
```


Showing a table of frequencies to better interpret the data

```
T = groupsummary(T, 'Event_Type');
T = sortrows(T, 'GroupCount', 'descend');
T
```

 $T = 6 \times 2 \text{ table}$

	Event_Type	GroupCount
1	Flash Flood	53
2	Heat	17
3	Tornado	7
4	Storm Surge/Tide	4

	Event_Type	GroupCount
5	Tropical Storm	3
6	Flood	1

clear T

Figure of Event Locations

To calculate the are of each marker I will use a calculation in one of the examples in the documentation

```
T.A_Begin = 101 + 100*(sind(2*T.Begin_Lon));
T.A_End = 101 + 100*(sind(2*T.End_Lon));

TEXAS = T(T.State == "TEXAS", :);
LOUISIANA = T(T.State == "LOUISIANA", :);

clear T

geoscatter(TEXAS.Begin_Lat,TEXAS.Begin_Lon, TEXAS.A_Begin, TEXAS.State, 'filled')
hold on
geoscatter(LOUISIANA.Begin_Lat,LOUISIANA.Begin_Lon, LOUISIANA.A_Begin, LOUISIANA.State, 'filled')
hold off
title('Places where Hurricane Harvey started')
legend('TEXAS', 'LOUISIANA')
geobasemap colorterrain
```

Places where Hurricane Harvey started


```
geoscatter(TEXAS.End_Lat,TEXAS.End_Lon, TEXAS.A_End, TEXAS.State, 'filled')
hold on
geoscatter(LOUISIANA.End_Lat,LOUISIANA.End_Lon, LOUISIANA.A_End, LOUISIANA.State, 'filled')
hold off
title('Places where Hurricane Harvey started')
legend('TEXAS', 'LOUISIANA')
geobasemap colorterrain
```

Places where Hurricane Harvey started

clear TEXAS clear LOUISIANA

Analysis

Three Counties with Most Events in TEXAS

Table of the Three Counties with Most Events

```
T = StormEvents2017finalProject(StormEvents2017finalProject.State == 'TEXAS', :);
T = groupsummary(T, 'CZ_Name');
T = sortrows(T, 'GroupCount', 'descend')
```

 $T = 95 \times 2 \text{ table}$

	CZ_Name	GroupCount
1	HARRIS	21
2	GALVESTON	17
3	FORT BEND	13
4	ANGELINA	12
5	BRAZORIA	12
6	SABINE	12
7	BASTROP	9

	CZ_Name	GroupCount
8	CHAMBERS	8
9	CALDWELL	7
10	MONTGOMERY	6
11	MATAGORDA	5
12	WHARTON	5
13	CALHOUN	4
14	FAYETTE	4

```
T = T([1, 2, 3], :);
T
```

 $T = 3 \times 2 \text{ table}$

	CZ_Name	GroupCount
1	HARRIS	21
2	GALVESTON	17
3	FORT BEND	13

clear T

Three Counties with Most Events in LOUISIANA

Table of the Three Counties with Most Events

```
T = StormEvents2017finalProject(StormEvents2017finalProject.State == 'LOUISIANA', :);
T = groupsummary(T, 'CZ_Name');
T = sortrows(T, 'GroupCount', 'descend')
```

 $T = 30 \times 2 \text{ table}$

	CZ_Name	GroupCount
1	NATCHITOC	21
2	SABINE	15
3	RED RIVER	9
4	WINN	6
5	VERMILION	4
6	CAMERON	3
7	DE SOTO	3
8	UNION	2
9	ACADIA	1
10	BEAUREGARD	1

	CZ_Name	GroupCount
11	BIENVILLE	1
12	BOSSIER	1
13	CADDO	1
14	CALCASIEU	1

T = T([1, 2, 3], :); T

 $T = 3 \times 2 \text{ table}$

	CZ_Name	GroupCount
1	NATCHITOC	21
2	SABINE	15
3	RED RIVER	9

clear T

Three Counties with Highest Property Cost in TEXAS

Table of the Three Counties with Highest Property Cost

```
T = StormEvents2017finalProject(StormEvents2017finalProject.State == 'TEXAS', :);
T = groupsummary(T, 'CZ_Name', 'sum', 'Property_Cost');
T = sortrows(T, 'sum_Property_Cost', 'descend')
```

$T = 95 \times 3$ table

	CZ_Name	GroupCount	sum_Property_Cost
1	GALVESTON	17	2.0000e+10
2	FORT BEND	13	1.6004e+10
3	MONTGOMERY	6	1.4000e+10
4	HARRIS	21	1.0001e+10
5	JEFFERSON	4	3.0000e+09
6	BRAZORIA	12	2.0008e+09
7	ARANSAS	2	1.9500e+09
8	ORANGE	2	1.5000e+09
9	NUECES	2	1.3000e+09
10	WALKER	4	1.2000e+09
11	LIBERTY	4	1.0000e+09
12	SAN JACINTO	3	70000000
13	HARDIN	1	60000000

	CZ_Name	GroupCount	sum_Property_Cost
14	POLK	2	600000000

```
T = T([1, 2, 3], :);
T
```

$T = 3 \times 3$ table

	CZ_Name	GroupCount	sum_Property_Cost
1	GALVESTON	17	2.0000e+10
2	FORT BEND	13	1.6004e+10
3	MONTGOMERY	6	1.4000e+10

clear T

Three Counties with Highest Property Cost in LOUISIANA

Table of the Three Counties with Highest Property Cost

```
T = StormEvents2017finalProject(StormEvents2017finalProject.State == 'LOUISIANA', :);
T = groupsummary(T, 'CZ_Name', 'sum', 'Property_Cost');
T = sortrows(T, 'sum_Property_Cost', 'descend')
```

 $T = 30 \times 3$ table

	CZ_Name	GroupCount	sum_Property_Cost
1	CALCASIEU	1	60000000
2	BEAUREGARD	1	15000000
3	ACADIA	1	200000
4	CAMERON	3	72000
5	VERMILION	4	5000
6	BIENVILLE	1	0
7	BOSSIER	1	0
8	CADDO	1	0
9	CALDWELL	1	0
10	CLAIBORNE	1	0
11	DE SOTO	3	0
12	EAST CAME	1	0
13	GRANT	1	0
14	IBERIA	1	0

:

 $T = 3 \times 3$ table

	CZ_Name	GroupCount	sum_Property_Cost
1	CALCASIEU	1	60000000
2	BEAUREGARD	1	15000000
3	ACADIA	1	200000

clear T

Conclusions and Recommendations

Recommendations

If the people effected by the hurricane agreed to go to a different state then they should be sent to any state not in this table.

If the people did not agree to go to a different state then they should go to any countie not in this table if they are from TEXAS if it existed.

If the people did not agree to go to a different state then they should go to any countie not in this table if they are from LOUISIANA if it existed.

clear StormEvents2017finalProject