MPS2222A

SMALL SIGNAL TRANSISTORS (NPN)

Dimensions in inches and (millimeters)

FEATURES

- NPN Silicon Epitaxial Planar Transistor for switching and amplifier applications.
- On special request, this transistor is also manufactured in the pin configuration TO-18.
- ◆ This transistor is also available in the SOT-23 case with the type designation MMBT2222A

MECHANICAL DATA

Case: TO-92 Plastic Package Weight: approx. 0.18g

MAXIMUM RATINGS AND THERMAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified

	SYMBOL	VALUE	UNIT
Collector-Base Voltage	V _{CBO}	75	Volts
Collector-Emitter Voltage	V _{CEO}	40	Volts
Emitter-Base Voltage	VEBO	6.0	Volts
Collector Current-Continuous	Ic	600	mA
Power Dissipation at T _A =25°C Derate above 25°C	P _{tot}	625 5.0	mW mW/°C
Power Dissipation at T _C =25°C Derate above 25°C	P _{tot}	1.5 12	W mW/°C
Thermal Resistance, Junction to Ambient Air	Rөja	200	°C/W
Thermal Resistance Junction to Case	Rejc	83.3	°C/W
Junction Temperature	Tj	150	°C
Storage Temperature Range	Ts	-55 to +150	°C
		+	+

MPS2222A

ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified

	SYMBOL	MIN.	MAX.	UNIT
Collector-Base Breakdown Voltage at $I_C = 10 \mu A$, $I_E = 0$	V(BR)CBO	75	_	Volts
Collector-Emitter Breakdown Voltage ⁽¹⁾ at $I_C = 10$ mA, $I_B = 0$	V _(BR) CEO	40	_	Volts
Emitter-Base Breakdown Voltage at IE = 10 μ A, IC = 0	V _{(BR)EBO}	6.0	_	Volts
Collector-Emitter Saturation Voltage ⁽¹⁾ at $I_C = 150$ mA, $I_B = 15$ mA at $I_C = 500$ mA, $I_B = 50$ mA	VCEsat VCEsat	0.6 -	0.3 1.0	Volts Volts
Base-Emitter Saturation Voltage ⁽¹⁾ at $I_C = 150$ mA, $I_B = 15$ mA at $I_C = 500$ mA, $I_B = 50$ mA	VBEsat VBEsat	_ _	1.2 2.0	Volts Volts
Collector Cutoff Current at V _{EB} = 3 V, V _{CE} = 60 V	lcex	-	10	nA
Collector Cutoff Current at V _{CB} = 60 V, I _E = 0 at V _{CB} = 50 V, I _E = 0, T _A =125°C	Ісво	-	0.01 10	μΑ
Emitter Cutoff Current at V _{EB} = 3 V, I _C = 0	lebo	_	100	nA
Base Cutoff Current at VCE = 60 V, VEB = 3.0 V	I _{BL}	_	20	nA
DC Current Gain at $V_{CE} = 10 \text{ V}$, $I_{C} = 0.1 \text{ mA}$ at $V_{CE} = 10 \text{ V}$, $I_{C} = 1 \text{ mA}$ at $V_{CE} = 10 \text{ V}$, $I_{C} = 1 \text{ mA}$ at $V_{CE} = 10 \text{ V}$, $I_{C} = 10 \text{ mA}$, $I_{CE} = 10 \text{ V}$, $I_{C} = 10 \text{ mA}$, $I_{CE} = 10 \text{ V}$, $I_{CE} = 10 \text{ mA}$, $I_{CE} $	hFE hFE hFE hFE hFE hFE	35 50 75 35 100 50 40	- - - 300 -	- - - - -
Input Impedance at $V_{CE} = 10 \text{ V}$, $I_{C} = 1 \text{ mA}$, $f = 1 \text{ kHz}$ at $V_{CE} = 10 \text{ V}$, $I_{C} = 10 \text{ mA}$, $f = 1 \text{ kHz}$	h _{ie}	2.0 0.25	8.0 1.25	kΩ
Voltage Feedback Ratio at V _{CE} = 10 V, I _C = 1 mA, f = 1 kHz at V _{CE} = 10 V, I _C = 10 mA, f = 1 kHz	h _{re}	-	8 • 10 ⁻⁴ 4 • 10 ⁻⁴	_
Current Gain-Bandwidth Product at VCE = 20 V, IC = 20 mA, f = 100 MHz	fī	300	_	MHz
Output Capacitance at V _{CB} = 10 V, f = 1 kHz, I _E =0	Сово	_	8.0	pF
Input Capacitance at V _{EB} = 0.5 V, f = 1 kHz, I _C =0	Сіво	_	25	pF

NOTES

(1) Pulse test: Pulse width $\leq 300 \mu s$ - Duty cycle $\leq 2\%$

MPS2222A

ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified

	SYMBOL	MIN.	MAX.	UNIT
Small Signal Current Gain at V _{CE} = 10 V, I _C = 1 mA, f = 1 kHz at V _{CE} = 10 V, I _C = 10 mA, f = 1 kHz	h _{fe}	50 75	300 375	_ _
Output Admittance at $V_{CE} = 10 \text{ V}$, $I_{C} = 1 \text{ mA}$, $f = 1 \text{ kHz}$ at $V_{CE} = 10 \text{ V}$, $I_{C} = 10 \text{ mA}$, $f = 1 \text{ kHz}$	h _{oe}	5.0 25	35 200	μS
Collector Base Time Constant at $I_E = 20$ mA, $V_{CB} = 20$ V, $f = 31.8$ MHz	r _b ′C _C	-	150	ps
Noise Figure at VCE = 10 V, IC = 100 μ A, Rs = 1 k Ω f = 1 kHz	NF	-	4.0	dB
Delay Time (see fig.1) at I _{B1} = 15 mA, I _C = 150 mA, V _{CC} =30V, V _{BE} = -0.5V	t _d	-	10	ns
Rise Time (see fig.1) at I _{B1} = 15 mA, I _C = 150 mA, V _{CC} =30V, V _{BE} = -0.5V	t _r	-	25	ns
Storage Time (see fig. 2) at $I_{B1} = I_{B2} = 15$ mA, $I_{C} = 150$ mA, $V_{CC} = 30$ V	ts	-	225	ns
Fall Time (see fig. 2) at IB1 = IB2 = 15 mA, IC = 150 mA, VCC=30V	tf	-	60	ns

SWITCHING TIME EQUIVALENT TEST CIRCUIT

FIGURE 1 - TURN-ON TIME

FIGURE 2 - TURN-OFF TIME

