PadhAl: Regularization

One Fourth Labs

L2 regularization

What is the intuition behind L-2 regularization?

1. Consider the error curves for training and test set

- 2. In the case of Square error loss: $L_{train}(\theta) = \sum_{i=1}^{N} (y_i \hat{f}(x_i))^2$
 - a. Where $\theta = [W_{111}, W_{112}, + ... + W_{Lnk}]$
 - b. Our aim has been to minimise the loss function $\min_{\theta} L(\theta)$
- 3. Now, imagine if we include a new term in the minimization condition $\min_{\theta} L(\theta) = L_{train}(\theta) + \Omega(\theta)$
 - a. Here, in addition to minimising the training loss, we are also minimising some other quantity that is dependent on our parameters
 - b. In the case of L2 Regularisation, $\Omega(\theta) = \|\theta\|^2_2$ (sq.root of the sum of the squares of the weight)
 - c. $\Omega(\theta) = W_{111}^2 + W_{112}^2 + ... + W_{Lnk}^2$
 - d. Here, we should aim to minimize both $L_{train}(\theta)$ and $\Omega(\theta)$, it wouldn't make sense for either of them to be high values.
- 4. What if we set all weights to 0? In this case, the model would not have learned much, therefore $L_{train}(\theta)$ would be high.
- 5. What if we try to minimise $L_{train}(\theta)$ to 0? In this case, it is possible that some of the weights would take on large values, thereby driving the value of $\Omega(\theta)$ high.
- 6. To counter the previous point's shortcoming, we need to minimize $L_{train}(\theta)$ but shouldn't allow the weights to grow too large
- 7. Thus, as shown in the figure, in L2 Regularisation, we do not allow the training loss to be brought to be zero, instead we maintain it at slightly above zero, so that $\Omega(\theta)$ doesn't become too high
- 8. This works in the Gradient Descent Algorithm as well

PadhAl: Regularization

One Fourth Labs

- 9. The algorithm
 - a. Initialise: W_{111} , W_{112} , ... W_{313} , b_1 , b_2 , b_3 randomly
 - b. Iterate over data
 - i. Compute ŷ
 - ii. Compute L(w,b) Cross-entropy loss function
 - iii. $W_{111} = W_{111} \eta \Delta W_{111}$
 - iv. $W_{112} = W_{112} \eta \Delta W_{112}$

...

v.
$$W_{313} = W_{111} - \eta \Delta W_{313}$$

- c. Till satisfied
- 10. The derivative of the loss function w.r.t any weight is $\Delta W_{ijk} = \frac{\partial L(\theta)}{\partial W_{ijk}}$
- 11. In the case of L2 Regularisation, that value would be $\Delta W_{ijk} = \frac{\partial L_{train}(\theta)}{\partial W_{ijk}} + \frac{\partial \Omega(\theta)}{\partial W_{ijk}}$
- 12. Here, the derivative of the regularisation term will cancel out all other weights except the concerned weight and we will compute its derivative. I.e. $\frac{\partial \Omega(\theta)}{\partial W_{iik}} = 2W_{ijk}$
- 13. So the new derivative term will be $\Delta W_{ijk} = \frac{\partial L_{train}(\theta)}{\partial W_{ijk}} + 2W_{ijk}$
- 14. This process is automatically done in PyTorch.