Final Exam NATURAL LANGUAGE PROCESSING

8th of September 2015

Remember to fill in your name on all pages ${\tt Good\ Luck}$

PROBLEM 1 (1 point). Compute the Good-Turing smoothing of the words *perch*, *trout* and *bass* in a corpus that contains only the following words (words are given with their counts in the table below):

	carp	perch	white fish	trout	salmon	eel
ĺ	10	3	2	1	1	1

PROBLEM 2 (2 points). Suppose we have the following short movie reviews, each labeled with a genre, either comedy or action.

- 1. fun, couple, love, love (comedy)
- 2. fast, furious, shoot (action)
- 3. couple, fly, fast, fun, fun (comedy)
- 4. furious, shoot, shoot, fun (action)
- 5. fly, fast, shoot, love (action)

Using a simple Naïve Bayes approach with Laplace smoothing, how would we classify the following review: fun, couple, shoot, action?

PROBLEM 3 (3 points). In a set of 806,791 documents, we get the following data on a few terms and a few documents:

term	document frequency	Doc 1	Doc 2	Doc 3
car	18,165	27	4	24
auto	6,723	3	33	0
insurance	19,241	0	39	29
best	25,235	14	9	17

Compute the tf-idf value for these terms and documents. What is the cosine similarity between query "best car best insurance" and Doc 1, 2 and 3, respectively (use tf-idf weighting - nnc.ltc variation). Which of these three documents would be ranked first by a search engine using the nnc.ltc scheme?

PROBLEM 4 (1 point). What is the mean average precision (MAP) for the following sequence of retrieved documents, where R denotes a relevant document and N denotes an irrelevant document? (Assume there are 20 relevant documents in the collection)

N R R N R R N R N R N R N R N

PROBLEM 5 (3 points). Simulate the run of the Earley Parser for grammar G on the sentence The large can can hold the water, where

 $G = (\{S, NP, VP, D, J, N, V\}, \{the, large, can, hold, water\}, S, R),$ and the set R of rules is given by

$$R = \{S \rightarrow \text{NP VP, NP} \rightarrow \text{D J N} \mid \text{D N} \mid \text{J N, VP} \rightarrow \text{V VP} \mid \text{V NP}\} \cup \{\text{D} \rightarrow the, \text{J} \rightarrow large, \text{N} \rightarrow can|water, \text{V} \rightarrow can|hold}\}$$

Does the grammar G accept this sentence?

DEFINITION 1. Let w be a word that appears c times in the corpus, N_c = the count of things we've seen c times, and N = the total number of tokens in the corpus. Then,

les, and
$$N=$$
 the total number of $c^*(w)=\left\{egin{array}{ll} rac{(c+1)N_{c+1}}{N_c}, & ext{if } c>0 \\ N_1, & ext{if } c=0 \end{array}\right.$ $P^*_{GT}(w)=rac{c^*(w)}{N}$

Definition 2. Let S be a sentence, C a class of possible labels and V the vocabulary. Then,

$$c_{NB}(S) = argmax_{c \in C} P(c) \prod_{w \in S} P(w \mid c),$$

where the prior probability of the class is $P(c) = doccount(c)/N_{doc}$, and the probability of a word w given the class c, computed using Laplace (add-1) smoothing with unknown words, is:

$$P(w \mid c) = \frac{count(w, c) + 1}{\sum_{v \in V} count(v, c) + |V| + 1}$$

DEFINITION 3. SMART Notation: denotes the combination in use in an engine, with the notation ddd.qqq, using the acronyms from the following table:

Term frequency	Document frequency	Normalization
n (natural): $tf_{t,d}$	n (no): 1	n (none): 1
l (logarithm): $1 + \log_{10} (tf_{t,d})$	t (idf): $\log_{10}\left(\frac{N}{df_t}\right)$	c (cosine): $\frac{1}{\sqrt{\sum_i x_i^2}}$

DEFINITION 4. The Mean Average Precision (MAP) is the average of the precision value obtained for the top k documents, each time a relevant document is retrieved.

Precision = TP/(TP+FP)

TP = true positives (the number of gold answers that were correctly guessed)

FP = false positives (the number of guessed answers that were incorrect)

FN = false negative (the number of gold answers that were not correctly guessed)

Definition 5. Start by building a sequence of state sets called *Earley sets*

Input: $x_1x_2...x_n$

Sequence of state sets: S_0, S_1, \ldots, S_n

A set S_i contains various "tokens": $[A \to \alpha \bullet \beta, j]$

- Scan: $[A \to \dots \bullet a \dots, j] \in S_i$, $a = x_{i+1}$, add $[A \to \dots a \bullet \dots, j]$ to S_{i+1}
- Predict: $[A \to \dots \bullet B \dots, j] \in S_i$ add $[B \to \bullet \alpha, i]$ to S_i for all rules $B \to \alpha$
- Complete: $[A \to \dots \bullet, j] \in S_i$ add $[B \to \dots A \bullet \dots, k]$ to S_i for all tokens $[B \to \dots \bullet A \dots, k]$ in S_j

Accept $x_1x_2...x_n$ if in S_n there exist a rule of type $[S \to \alpha \bullet, 0]$