PROBLEM SET #2 Due Thursday, September 15 (Problems are from $Vector\ Calculus$ by Marsden and Tromba, sixth edition.)

1

Suppose $f: \mathbb{R}^3 \to \mathbb{R}$ is given by $(x, y, z) \mapsto x \cos z$ and $\vec{c}: [0, 1] \to \mathbb{R}^3$ is given by $t \mapsto t\vec{i} + t^2\vec{j}$. Compute the path integral of f along \vec{c} .

2

Given a path \vec{c} , define $\ell(c) = \int_{\vec{c}} \|\vec{c}'(t)\| dt$ to be the length of the path \vec{c} . Given $f: \mathbb{R}^3 \to \mathbb{R}$, define

$$\frac{\int_{\vec{c}} f(x, y, z) \, ds}{\ell(\vec{c})}$$

to be the average value of f along \vec{c} .

Compute the length of the semicircle parametrized by $\vec{c}:[0,\pi]\to\mathbb{R}^3$, $\theta\mapsto(0,a\sin\theta,a\cos\theta)$ where a>0. Find the average y coordinate of the points on the semicircle. (Hint: the y coordinate of a point is given by the function $f:(x,y,z)\mapsto y$.)

3

Evaluate the line integral of $\vec{F}: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto y^2 \vec{i} + 2xy \vec{j}$ along the curve $\vec{c}: [0,2\pi] \to \mathbb{R}^2$, $\theta \mapsto (\cos \theta, \sin \theta)$.

4

Suppose $\vec{c}:[a,b]\to\mathbb{R}^3$, $\vec{F}:\mathbb{R}^3\to\mathbb{R}^3$, and that $\vec{F}(\vec{c}(t))$ is perpendicular to $\vec{c}'(t)$ for all $t\in[a,b]$. Show that the line integral of \vec{F} along \vec{c} is zero. (Hint: what does perpendicularity have to do with dot products?)