Πετράκης Κωνσταντίνος Γιώργος Ηλιόπουλος

A. Shanti Bruyn

Blockchain: An Introduction

Overview

- What is blockchain?
- How does it work?
- How do the different variables within blockchain work together?

Blockchain

- Blockchain is a new type of a decentralized, distributed database
 - Solves the previously unsovable double spending problem without a middleman.

Building Blocks of Blockchain

- The Database
- A Block
 - A block number
 - Hash of the previous block
 - Nonce
 - Data: the transactions
 - Timestamp with the time the block is created
 - Hash of the current block
- The Hash (the 'proof-of-work')
 - A random number is guessed ('Nonce')
 - The Nonce is added at the end of all the data in the block
 - This is all hashed to SHA256 method
 - If the hash starts with a predetermined number of zero's a new block is found. Else the miner starts again guessing another Nonce.

Building Blocks of Blockchain

- A miner/node
 - New transactions are broadcast to all nodes
 - Each node collects new transactions into a block
 - Each node works on finding a difficult proof-of-work for its block.
 - When a node finds a proof-of-work, it broadcasts the block to all nodes
 - Nodes accept the block only if all transactions in it are valid and not already spent.
 - Nodes express their acceptance of the block by working on creating the next block in the chain, using the hash of the accepted block as the previous hash
- A transaction (valuta or complete programmable e.g. Ethereum, voting rights)

Building Block of Blockchain

- A fork
- Blockchain Safety
- Incentive

Nakamoto consensus Mathematically

• Termination: There exists a time difference function $\Delta(.)$ such that, given a time t and a value $0 < \epsilon < 1$, the probability is smaller than ϵ that at times t', $t'' > t + \Delta(\epsilon)$ a node returns two different states for the machine at time t.

Nakamoto consensus Mathematically

• Agreement: There exists a time difference function $\Delta(.)$ such that, given a $0 < \epsilon < 1$, the probability that at time t two nodes return different states for $t-\Delta(\epsilon)$ is smaller than ϵ .

Nakamoto consensus Mathematically

- Validity: If the fraction of mining power by Byzantine nodes is bounded by f, i.e. $\forall t: \frac{\sum_{b \in B(t)} m(b)}{\sum_{n \in N} m(n)} < f$, then the average fraction of state machine transitions that are not inputs of honest nodes is smaller than f. (m(i)=mining power of node i)
- At any time t, a subset of nodes $B(t) \subset N$ are Byzantine.

Indicators/Metrics

- Consensus Delay: the time it takes a system to reach agreement
 - (ϵ, δ) consesnsus delay = δ % of the time ϵ % of the nodes agree on the state (ϵ, δ) seconds ago.
 - e.g. (95%, 90%) consensus delay = 10 seconds means: 90% of the time, 95% of the nodes agree on the state of the machine 10 seconds ago.
- Fairness: optimally the largest miner and the non-largest miners' representation in the transitions set should be the same as their respective mining powers.
 - 1. transactions not coming from largest miner
 - all transactions

 one with a second control of the largest miner
 - all mining power
 - Fairness = $\frac{1}{2}$ optimally fairness = 1.0

Indicators/Metrics

- Mining power utilization = $\frac{mining power that secures the system}{total mining power}$
- Time to Prune: This implies what time a user has to wait to be confident a transaction has occured.
 - δ time to prune = δ percentile $\begin{pmatrix} \text{time node learns this transaction} \\ \text{has never taken place} \end{pmatrix}$ time a node learns about a transaction
- Time to Win: Average time wasted due to forks
 - δ time to win = $\delta \text{ percentile} \begin{cases} \text{last time a (different) node} \\ \text{dissagrees} \end{cases}$ the first time a node believes a never to be pruned transition has occured

How everything is connected

```
formula
 blocksize =
                                transaction size ×
                                                      # transactions in a block
                headersize +
    (MB)
                   (bytes)
                                      (bytes)
 total mining power
                                             m(i)
                                                    with m(i) = mining
                                                     power of node i
                             nodes \in system
 (# hashes / second)
                           (# hashes / second)
                          blocksize
 inter nodes times
                                        with b(i,j) = \text{bandwidth between}
                                        nodes i and j, i \neq j
                           (MB)
      (seconds)
                       (MB/\text{second})
 system width = \max \{ \text{ inter nodes times } \}
   (seconds)
                            (seconds)
                           total mining power
  blockfrequency
                         difficulty cryptopuzzel
                         (# hashes / second)
 (blocks/minute)
                      (expected # hashes needed)
                                 = blockfrequency
 # transactions per second
                                                        × # transactions per block
                                (# blocks / minute)
              = 1 - (1 + blockfrequency \times system width)
  P(fork)
                     \times e^{-\text{blockfrequency} \times \text{system width}}
  (\in \{0,1\})
```

P(fork) calculation

$$\mathbb{P}(\text{fork}) = \mathbb{P}\left(N(X + \underbrace{\Delta t}_{\geq \text{ system width}}) - N(X) > 1\right) \qquad \text{with } N(X) = \# \text{ blocks found in time } (0, X)$$

$$= 1 - e^{-\text{blockfrequency} \times \text{system width}} \qquad N(X) \sim \text{Poisson}\left(\frac{1}{\text{blockfrequency}}\right)$$

$$- (\text{blockfrequency} \times \text{system width})$$

$$\times e^{-\text{blockfrequency} \times \text{system width}}$$

$$= 1 - (1 + \text{blockfrequency} \times \text{system width})$$

$$\times e^{-\text{blockfrequency} \times \text{system width}}$$

Relation between variables

- Blocksize
- Headersize
- Transaction size
- Mining power node A
- Difficulty Cryptopuzzle

Changing Blocksize

Blocksize on P(fork)

Changing Header size

Changing Transaction size

Transaction size effects

Changing Mining Power node A

Mining power effect

Changing Difficulty of Cryptopuzzle

Situation Today

- Block size still an issue.
- Proof of Stake cryptocurrencies (e.g. Ethereum 2.0, Cardano)
- Blockchain for Social Networks and lots of other applications (e.g. Internet Computer)

Thank You!