CSE252C HW1

0. Homework instructions

- 1. Attempt all questions.
- 2. Please comment all your code adequately.
- 3. Include all relevant information such as text answers, output images in notebook.
- 4. Academic integrity: The homework must be completed individually.
- 5. Submission instructions:
 - (a) Submit the notebook and its PDF version on Gradescope.
 - (b) Rename your submission files as Lastname_Firstname.ipynb and Lastname_Firstname.pdf.
 - (c) Correctly select pages for each answer on Gradescope to allow proper grading.
- 6. Due date: Assignments are due Mon, May 4, by 4pm PST.

Steps to access and complete homework

- · Clone the homework repository
 - o git clone https://github.com/eric-yyjau/cse252c_hw1.git
- The homework is in the Jupyter Notebook hw1-CSE252C.ipynb
- Follow the README (this file) for installation, data and compute instructions.

1. Installation instructions

1. Set up the environment

1. [Option 1] On your own machine

- (local) SSH into your machine
- Install SWIG
 - On Ubuntu: sudo apt-get install swig (sudo required)
 - On MacOS: brew install swig
 - You need to install Homebrew first with HomeBrew
- Install Python 3.X and Pip
- [Recommended] Create an environment (e.g. with Anaconda)
 - o conda create --name py36 python=3.6 pip
 - o conda activate py36
- Install Jupyter Notebook
 - ∘ conda install jupyter
- Install kernels for Jupter Notebook
 - conda install nb_conda
- Launch Jupyter Notebook server in the conda env of the cluster
 - o jupyter notebook
 - You will be provided with a URL that you can open locally
 - In a opened notebook, change the kernel (on Menu: Kernel -> Change Kernel) to the name of the conda env you
 just created (in the case of this documentation it should be py36)

2. [Option 2] On the ieng6.ucsd.edu server

- (local) (IMPORTANT) Connect your UCSD VPN
- (local) Login with your credentials
 - o ssh {USERNAME}@ieng6.ucsd.edu
- If you cannot launch a pod, set up the environment following these instructions
- Launch your pod. You should enter a node with 1 GPU
 - launch-scipy-ml.sh -i ucsdets/cse152-252-notebook:latest -g 1
- $\bullet~$ You will be provided with a URL that you can open locally: $\scriptstyle\square$

o Click on the link. Then natigate to the jupyter notebook for a question which you are going to git clone as follows

2. Pull the repo and install dependencies

- git clone https://github.com/eric-yyjau/cse252c_hw1.git
- Install dependencies (Python 3.X with Pip)
 - pip install -r requirements.txt --user
- · Compile and install pyviso for the SfM question
 - o cd pyviso/src/
 - ∘ pip install -e . --user

2. Data

On the ieng6.ucsd.edu server, the datasets are located at - Q1: SfM - /datasets/cse152-252-sp20-public/dataset_SfM - Change the dataset path in jupyter notebooks to your paths - Q5: - /datasets/cse152-252-sp20-public/sfmlearner_h128w416 - /datasets/cse152-252-sp20-public/kitti

3. How to run

Q1: SfM - Working folder: ./pyviso

Launch Jupyter Notebook

There is a hw1-CSE252C.ipynb jupyter notebook file in the top-level directory cse252c_hw1.

Options

One toggle if_vis = True/False allows you to enable/disable the visualization. Disabling the visualization will make the for loop run significantly faster.

Output

The errors are printed and the visualizations are saved at vis/. The images should look like: To fetch the files you can use commands like scp to transfer files from the cluster to your local machine:

From your local machine:

```
scp -r <USERNAME>@dsmlp-login.ucsd.edu:/datasets/home/53/253/cs152sp20ta1/pyviso2/vis {LOCAL PATH}
```

Or from within server if your local machine has a fixed address or IP:

```
scp -r {REMOTE PATH TO THE vis FOLDER} <USERNAME>@<LOCAL ADDRESS>:{YOUR LOCAL PATH}
```

Q4: Optical Flow - Working folder: ./opticalFlow

4. [Extra] How to run training sessions

1. Set up the environment

[Option 1] On the ieng6.ucsd.edu server

- Login with your credentials
 - ssh {USERNAME}@ieng6.ucsd.edu
- Launch TMUX

- Reconmended for session management: you can come back anytime after you disconnect your session. Otherwise you have to keep your connection on for hours while training.
- Just run tmux
- To detach and come back later, use ctrl + b then d . To attach next time, use ctrl + b then a .
- For more TMUX usages please refer to online tutorials like https://linuxize.com/post/getting-started-with-tmux/
- Launch your pod
 - Follow Section 1.1.2

[Option 2] On your own server

Just launch TMUX.

2. Start training

Now you can create conda env and do your training in there following Section 1.1