```
fun append (xs,ys) =
    if xs=[]
    then ys
    else (hd xs)::append(tl xs,ys)

fun map (f,xs) =
    case xs of
      [] => []
      | x::xs' => (f x)::(map(f,xs'))

val a = map (increment, [4,8,12,16])
val b = map (hd, [[8,6],[7,5],[3,0,9]])
```

Programming Languages Dan Grossman

Pattern-Matching So Far: Precisely

Careful definitions

When a language construct is "new and strange," there is *more* reason to define the evaluation rules precisely...

- ... so let's review datatype bindings and case expressions "so far"
 - Extensions to come but won't invalidate the "so far"

Datatype bindings

Adds type t and constructors Ci of type ti->t

Ci v is a value, i.e., the result "includes the tag"

Omit "of t" for constructors that are just tags, no underlying data

Such a Ci is a value of type t

Given an expression of type t, use case expressions to:

- See which variant (tag) it has
- Extract underlying data once you know which variant

Datatype bindings

- As usual, can use a case expressions anywhere an expression goes
 - Does not need to be whole function body, but often is
- Evaluate e to a value, call it v
- If pi is the first pattern to match v, then result is evaluation of ei in environment "extended by the match"
- Pattern Ci (x1,...,xn) matches value Ci (v1,...,vn) and extends the environment with x1 to v1 ... xn to vn
 - For "no data" constructors, pattern Ci matches value Ci