CALCULS DE PASSERELLE

FASCICULE 2

GRILLES DE CALCULS

RÉGULATION DU COMPAS MAGNÉTIQUE PAR POINT TERRESTRE ÉLOIGNÉ

En effectuant un tour d'horizon, on a fait, au compas de relèvement, les observations ci-dessous d'un point dont le relèvement vrai est $Zv = \dots$. La déclinaison magnétique est $D = \dots$ Dresser le tableau des déviations et construire la courbe des déviations en fonction du cap au compas pour le secteur décrit. En déduire les déviations au du compas et au magnétique.

Exercices

Сс	000°	045°	090°	135°	180°	225°	270°	315°
Zc	152°	151°	145°	136°	134°	132°	135°	145°

 $Zv = 132^{\circ}$ $D = 10^{\circ} W$

Déviations d₁ au 303° du compas et d₂ au 200° magnétique.

Réponses:

 $d_1 = 0^{\circ}$

 $d_2 = + 8^{\circ}$

Сс	000°	045°	090°	135°	180°	225°	270°	315°
Zc	059°	057,5°	061°	066,5°	066°	062°	060,5°	061,5°

 $Zv = 112^{\circ}$

 $D = 49^{\circ} E$

Déviations d₁ au 150° du compas et d₂ au 250° magnétique.

Réponses :

 $d_1 = -4,5^{\circ}$

Сс	019°	061°	102°	150°	209°	254°	297°	332°
Zc	209,5°	206,5°	208,5°	207°	208°	223°	224°	220°

 $Z_{v} = 222^{\circ}$

 $D = 8^{\circ} E$

Déviations d₁ au 047° du compas et d₂ au 280° magnétique.

Réponses :

 $d_1 = +7^{\circ}$

 $d_2 = -10.5^{\circ}$

Сс	008°	051°	087°	126°	179°	216°	273°	319°
Zc	313,5°	312°	312,5°	317,5°	324,5°	324,5°	321,5°	317°

 $Zv = 307^{\circ}$

 $D = 12^{\circ} W$

Déviations d_1 au 110° du compas et d_2 au 345° magnétique.

Réponses :

 $d_1 = +4^{\circ}$

 $d_2 = +3,5^{\circ}$

Cc	200°	220°	240°	260°	280°	300°	320°	340°
Zc	162°	159°	158°	157,5°	158°	159°	160,5°	163°

 $Zv = 163^{\circ}$ $D = 3^{\circ}$ W

Déviations d₁ au 215° du compas et d₂ au 243° magnétique.

Réponses:

 $d_1 = +4,5^{\circ}$

 $d_2 = +7.5^{\circ}$

On note pour différents caps compas (Cc) le relèvement compas (Zc) d'un amer.

 $Zv = \dots$ Zv est le relèvement vrai de l'amer (lu sur la carte): - $D = \dots$ La carte donne la déclinaison [D(E) > 0 et D(W) < 0]

 $Zm = \dots$ Zm est le relèvement magnétique : Zm = Zv - D

Courbe de déviation

Сс	Zc	d
•••••	••••••	•••••
•••••	••••••	•••••
	•••••	

avec d = Zm - Zc

On trace alors la courbe pour le secteur décrit.

Tableau des déviations

Сс	d	Cm
••••		
	•••••	
•••••		•••••
	•••••	
•••••		
••••		

avec Cm = Cc + d

La déviation au cap compas Cc est obtenue par lecture directe sur la courbe.

La déviation pour un cap magnétique Cm est obtenue sur la courbe par double entrée ou par la méthode de Napier. On n'utilisera le tableau des déviations que si les mesures sont effectuées à des caps suffisamment rapprochés.

Courbe des déviations

$$\label{eq:definition} D\text{\'e} viations demand\'ees} \; \left\{ \begin{array}{l} d = & \text{au } & \text{du compas.} \\ d = & \text{au } & \text{magn\'etique.} \end{array} \right.$$

LOXODROMIE (distance inférieure à 300 milles)

Angle de route et distance

Exercices

Dogition de départ	Position d'arrivée	Répo	onses
Position de départ	Fosition d'arrivée	route fond	distance
$\phi_D = 35^{\circ}54,2' \text{ N}$ $G_D = 014^{\circ}30,5' \text{ E}$	$ \varphi_A = 38^{\circ}11,3' \text{ N} $ $ G_A = 015^{\circ}34,7' \text{ E} $	020,5°	146,4 milles
$\phi_D = 50^{\circ}53,7' \text{ N}$ $G_D = 001^{\circ}23,5' \text{ W}$	$\phi_A = 51^{\circ}03.8' \text{ N}$ $G_A = 002^{\circ}22.0' \text{ E}$	086°	142,3 milles
$\phi_D = 27^{\circ}50,0' \text{ S}$ $G_D = 178^{\circ}30,0' \text{ E}$	$\phi_A = 29^{\circ}17,0' \text{ S}$ $G_A = 179^{\circ}05,0' \text{ W}$	124,5°	154,2 milles
$\phi_D = 37^{\circ}29.8' \text{ S}$ $G_D = 009^{\circ}12.0' \text{ E}$	$\phi_A = 37^{\circ}29,1' \text{ S}$ $G_A = 007^{\circ}36,5' \text{ E}$	270,5°	75,8 milles
$\phi_D = 01^{\circ}06,0' \text{ N}$ $G_D = 015^{\circ}36,0' \text{ W}$	$\phi_A = 00^{\circ}30,0' \text{ S}$ $G_A = 013^{\circ}20,0' \text{ W}$	125°	166,5 milles

Grille de calcul

Position de départ	Position d'arrivée
$\phi_D = \dots$	φ _A =
$G_D = \dots$	G _A =

Règles de signes :

$$\varphi Nord > 0$$
 $\varphi Sud < 0$

$$G O uest > 0$$
 $G Est < 0$

$$\phi_m = \frac{\phi_A + \phi_D}{2} \Rightarrow \phi_m = \dots \qquad \text{et} \quad \tan Rfq = \left| \frac{g.\cos\phi_m}{l} \right| \Rightarrow Rfq = \dots \qquad \text{soit} \qquad Rf = \dots$$

Rfq, compté de 0° à 90° , prend le nom Nord ou Sud du changement en latitude l et le nom Est ou Ouest du changement en longitude g ; on en déduit Rf compté de 0° à 360° .

$$m = \frac{60 \cdot |l|}{\cos Rfq} \quad \text{(pour Rfq < 89°)} \quad \text{ou} \quad m = \frac{60 \cdot |g| \cdot \cos \phi_m}{\sin Rfq} \quad \text{(pour Rfq > 89°)} \quad \text{soit} \quad m = \dots$$

Précision des calculs : angle de route au ½ degré , distance au dixième de mille.

Remarque : les formules exactes sont évidemment applicables lorsque la distance est inférieure à 300 milles.

LOXODROMIE (distance inférieure à 300 milles)

Position estimée

Exercices

Position de départ	Route fond	Distance	Réponses
$\phi_D = 39^{\circ}51,0' \text{ S}$ $G_D = 129^{\circ}13,0' \text{ W}$	338°	150,3 milles	$\phi_A = 37^{\circ}31,6' \text{ S}$ $G_A = 130^{\circ}25,1' \text{ W}$
$\phi_D = 52^{\circ}28,3' \text{ N}$ $G_D = 002^{\circ}14,6' \text{ W}$	065°	21,5 milles	$\phi_A = 52^{\circ}37,4' \text{ N}$ $G_A = 001^{\circ}42,6' \text{ W}$
$\phi_D = 37^{\circ}42.5' \text{ S}$ $G_D = 178^{\circ}48.7' \text{ E}$	093,5°	244 milles	$\phi_A = 37^{\circ}57,4' \text{ S}$ $G_A = 176^{\circ}02,9' \text{ W}$
$\phi_D = 62^{\circ}29,0' \text{ N}$ $G_D = 001^{\circ}57,0' \text{ E}$	221°	168,7 milles	$\phi_A = 60^{\circ}21,7' \text{ N}$ $G_A = 001^{\circ}54,4' \text{ W}$
$\phi_D = 29^{\circ}50,0' \text{ N}$ $G_D = 164^{\circ}16,5' \text{ E}$	265°	74,2 milles	$\phi_A = 29^{\circ}43.5' \text{ N}$ $G_A = 162^{\circ}51.3' \text{ E}$

Grille de calcul

	Position de départ		
	$\varphi_{\mathrm{D}} = \dots$		Rf =
	G _D =		m =
$1 = \frac{\mathbf{m} \cdot \mathbf{c}}{6}$	$\frac{\cos Rf}{0} \text{et} \phi_{A} = \phi_{D} + 1 \Rightarrow$	φ _A =	
		Vérification :	$90^{\circ} < Rf < 270^{\circ} \Rightarrow l < 0$ (chemin Sud)
$\varphi_{\rm m} = \frac{\varphi_{\rm m}}{2}$	$\frac{\Lambda + \phi_{\rm D}}{2} \Rightarrow \phi_{\rm m} = \dots$	et $g = \frac{-m \cdot \sin Rf}{60 \cdot \cos \phi_m} \Rightarrow$	g =
		Vérification :	$0^{\circ} < Rf < 180^{\circ} \implies g < 0$ (chemin Est)
G _A :	$=G_{D}+g$ \Rightarrow	G _A =	

La position est donnée en degrés, minutes et dixièmes de minute.

<u>Remarque</u>: les formules exactes sont évidemment applicables lorsque la distance est inférieure à 300 milles.

LOXODROMIE

Angle de route et distance

On part du point de coordonnées $\varphi_D = \dots$, $G_D = \dots$ pour aller au point de coordonnées $\varphi_A = \dots, G_A = \dots$ Déterminer la route fond et la distance à parcourir.

Exercices

D:4: 1- 1/4	Position d'arrivée	Réponses	
Position de départ	Position d'arrivée	route fond	distance
$\phi_D = 27^{\circ}30,0' \text{ N}$ $G_D = 079^{\circ}30,0' \text{ W}$	$\phi_A = 39^{\circ}00,0' \text{ N}$ $G_A = 030^{\circ}00,0' \text{ W}$	074,5°	2570 milles
$\phi_D = 11^{\circ}45,0' \text{ N}$ $G_D = 049^{\circ}26,0' \text{ W}$	$\phi_A = 19^{\circ}30,0' \text{ S}$ $G_A = 010^{\circ}21,0' \text{ W}$	129°	2975 milles
$\phi_D = 52^{\circ}48,0' \text{ S}$ $G_D = 010^{\circ}37,0'\text{W}$	$\phi_A = 22^{\circ}32,0' \text{ S}$ $G_A = 020^{\circ}36,0' \text{ E}$	038,5°	2320 milles
$\phi_D = 58^{\circ}10,0' \text{ N}$ $G_D = 158^{\circ}25,0' \text{ W}$	$\phi_A = 35^{\circ}22,0' \text{ N}$ $G_A = 163^{\circ}57,0' \text{ E}$	228°	2040 milles
$\phi_D = 05^{\circ}45,0' \text{ S}$ $G_D = 035^{\circ}11,0' \text{ E}$	$\phi_A = 48^{\circ}40,0' \text{ N}$ $G_A = 005^{\circ}30,0' \text{ E}$	334,5°	3624 milles

Grille de calcul

Position de départ	Position d'arrivée
φ _D =	φ _A =
G _D =	G _A =

$$\Lambda_{A} = \frac{180^{\circ}}{\pi} \cdot \ln \left[\tan \left(45^{\circ} + \frac{\varphi_{A}}{2} \right) \right] = \dots \qquad \Lambda_{D} = \frac{180^{\circ}}{\pi} \cdot \ln \left[\tan \left(45^{\circ} + \frac{\varphi_{D}}{2} \right) \right] = \dots \qquad \varphi \quad \text{Nord} > 0 \quad (donc \ \Lambda \ Nord > 0) \qquad \varphi \quad Sud < 0 \quad (donc \ \Lambda \ Sud < 0) \qquad G \ Ouest > 0 \qquad G \ Est < 0$$

$$\tan Rfq = \left| \frac{g}{\lambda} \right| \implies Rfq = \dots$$
 soit:

$$m = \frac{60 \cdot \left| l \right|}{\cos Rfq} \quad \text{ou} \quad m = \frac{60 \cdot \left| g \right| \cdot \cos \phi_m}{\sin Rfq} \text{ avec } \phi_m = \frac{\phi_A + \phi_D}{2} \text{ (pour Rfq > 89°)} \quad \text{soit :} \quad m = \dots$$

Précision des calculs : angle de route au ½ degré , distance en milles.

Remarque: les formules approchées ne sont pas acceptables lorsque la distance est supérieure à 300 milles.

ORTHODROMIE

On part du point de coordonnées ϕ_D = , G_D = pour aller au point de coordonnées ϕ_A = , G_A =

- 1. Calculer la distance orthodromique m₀, l'angle de route initial V et les coordonnées du vertex, et tracer à vue sur un canevas Mercator l'arc d'orthodromie suivi.
- 2. Le navire ayant une vitesse de nœuds, calculer la route fond Rf à suivre pendant les premières heures de la traversée.
- 3. Calculer la distance loxodromique m_L et le nombre de milles gagnés en suivant l'orthodromie.

Exercices

Position de départ	Position d'arrivée	Vitesse	premières heures
$\phi_D = 38^{\circ}30,0' \text{ N}$ $G_D = 142^{\circ}00,0' \text{ E}$	$\phi_A = 37^{\circ}48,0' \text{ N}$ $G_A = 122^{\circ}30,0' \text{ W}$	16 nœuds	23
$\phi_D = 05^{\circ}22,0' \text{ N}$ $G_D = 082^{\circ}25,0' \text{ W}$	$\phi_A = 38^{\circ}30,0' \text{ S}$ $G_A = 179^{\circ}08,0' \text{ W}$	13 nœuds	12
$\phi_D = 34^{\circ}05,0' \text{ S}$ $G_D = 025^{\circ}37,0'\text{E}$	$\phi_A = 31^{\circ}58,0' \text{ S}$ $G_A = 115^{\circ}24,0' \text{ E}$	15,4 nœuds	20
$\phi_D = 53^{\circ}01,0' \text{ N}$ $G_D = 158^{\circ}39,0' \text{ E}$	$\phi_A = 33^{\circ}02,0' \text{ S}$ $G_A = 071^{\circ}38,0' \text{ W}$	16,5 nœuds	24
$\phi_D = 00^{\circ}27,0' \text{ S}$ $G_D = 048^{\circ}11,0' \text{ W}$	$\phi_A = 51^{\circ}46,0' \text{ N}$ $G_A = 003^{\circ}56,0' \text{ W}$	23 nœuds	24

Réponses

m _O (milles)	V	Coordonnées du vertex	Rf	m _L (milles)	gain (milles)
4272	056°	$\phi_V = 49^{\circ}26,5' \text{ N}$ $G_V = 170^{\circ}54,3' \text{ W}$	058°	4506	234
5915	232°	$\phi_V = 38^{\circ}30,0' \text{ S}$ $G_V = 179^{\circ}11,9' \text{ W}$	231,5°	6006	91
4355	117°	$\phi_V = 42^{\circ}34,5' \text{ S}$ $G_V = 068^{\circ}11,1' \text{ E}$	115,5°	4518	163
8356	081°	$\phi_V = 53^{\circ}31,5' \text{ N}$ $G_V = 169^{\circ}38,1' \text{ E}$	085,5°	8577	221
3845	028,5°	$\phi_V = 61^{\circ}18,4' \text{ N}$ $G_V = 042^{\circ}03,8' \text{ E}$	028,5°	3867	22

Position de départ	Position d'arrivée
φ _D =	φ _A =
G _D =	G _A =

Vitesse: nœuds

M:

distance orthodromique, elle est exprimée en degrés et 3 décimales dans les calculs.

m_o:

distance orthodromique en milles.

g :

différence de longitude entre les points de départ et d'arrivée, elle est exprimée en degrés et 3 décimales.

Ad:

angle de route initial compté de 0° à 180°.

V:

route orthodromique au départ, elle se déduit de Ad et elle est compté de 0° à 360°.

 φ_v et G_v :

coordonnées du vertex.

 g_v :

différence de longitude entre le point de départ et le vertex, elle est exprimée en degrés et 3 décimales.

 $g = G_A - G_D$

[g Ouest > 0 g Est < 0]

 $\cos M = \sin \phi_D \cdot \sin \phi_A + \cos \phi_D \cdot \cos \phi_A \cdot \cos g$

[$\varphi Nord > 0$ $\varphi Sud < 0$]

 $m_0 = 60.M$

 $m_0 = \dots milles$

 $\cos Ad = \frac{\sin \phi_A - \sin \phi_D \cdot \cos M}{\cos \phi_D \cdot \sin M}$

Ad est compté de 0° à 180°, du Nord vers l'Est ou vers l'Ouest suivant le signe de g.

Ad =

 $V = Ad \quad si \, N \, Ad \, E$

 $V = 360^{\circ}$ -Ad si N Ad Wou

V =

 $\cos \varphi_{v} = \cos \varphi_{D} \cdot \sin Ad$

 φ_v est Nord si $Ad < 90^{\circ}$ φ_v est Sud si $Ad > 90^\circ$

 $\varphi_{\rm v} = \dots$

g_v a le même nom, Est ou Ouest, que g.

 $G_v = G_D + g_v$

 $G_v =$

Route fond Rf à suivre pendant les premières heures de la traversée.

 m_L :

distance loxodromique en milles.

α:

correction Givry, elle est donnée au ½ degré près.

 $m_L = v \cdot t$

v : vitesse du navire

t: durée du parcours

 $m_L = \dots milles$

 $\alpha = \frac{m_L}{120} \cdot \sin V \cdot \tan \phi_D$

 m_L en milles $\varphi_v Nord > 0$ et $\varphi_v Sud < 0$

α en degrés

α =

 $Rf = V + \alpha$

On obtient le signe de α en faisant un graphique.

Rf =

Ecart entre deux méridiens consécutifs : 15°

RÉDUCTION D'UNE SONDE (Port principal)

Le	à l'heure $A =$, dans les environs du port de	, on a
sondé et trouvé	comme profondeur		

Exercices

		D4	Profondeur	Réponses	
Date	Heure U.T.	Port	Profondeur	facteur f	sonde
28/08	18h 45min	Brest	17,4 m	0,84	11,3 m
01/09	17h 08min	Brest	5,3 m	0,63	0,7 m
05/09	07h 30min	Brest	3,0 m	0,27	<u>0,3</u> m
27/08	19h 34min	Brest	14,5 m	0,52 / 0,49	10,5 m
02/09	04h 17min	Brest	6,0 m	0,32 / 0,28	3,0 m

Grille de calcul

Date :	Port :
Heure A:	Profondeur:

Si A est une heure UT, les heures de PM et BM seront également données en temps universel.

Heure M = le	Hauteur M =	Indiquer dans l'ordre chronologique
Heure M = le	**	les heures et hauteurs d'eau
marnage = Htr PM - Htr BM	marnage =	encadrant l'instant considéré.

Soit t l'intervalle de temps entre l'instant considéré (A) et l'heure de la BM ou de la PM la plus proche.

 $t = \text{Heure A - Heure BM (ou PM)} \implies t = \dots + h \dots + min$

Connaissant t, on obtient le facteur f dans la courbe type du port principal. Les trois critères pour choisir la portion de courbe sont :

- BM ou PM suivant l'heure la plus proche de l'instant considéré.
- VE moyenne ou ME moyenne suivant le marnage.
- signe de t : avant ou après l'heure de BM ou de PM de référence.

f = (deux décimales)	$\Delta Hr = \dots \Delta Hr = f$. marnage
Hauteur BM = + Δ Hr =	Profondeur = - Hauteur = <u></u>
Hauteur =	Sonde =

- le facteur f est toujours établi par rapport à la basse mer. Δ Hr est la correction à ajouter à la hauteur de cette basse mer pour obtenir la hauteur d'eau à l'heure A.
- La sonde est donnée au dm près, comme sur la carte marine. Elle est soulignée si elle est négative.

RÉDUCTION D'UNE SONDE (Port rattaché)

Exercices

Date	Heure U.T.	Port	Profondeur	Réponse
31/08	11h 00min	Douarnenez	21,8 m	19,7 m
30/08	21h 40min	Ile d'Ouessant	7,2 m	3,4 m
05/09	09h 07min	Camaret	2,6 m	<u>1,7</u> m
03/09	06h 03min	Baltimore	9,2 m	7,7 m
02/09	02h 58min	Cardiff	8,1 m	4,7 m

Grille de calcul

Date :	Port :	→ Port principal :
Heure A :	Profondeur:	

Si A est une heure UT, les heures de PM et BM seront également données en temps universel.

Heure M (port principal)	=	le
Correction	=	
Heure M (port rattaché)	=	le
Heure M (port principal)	=	le
Correction	=	
Heure M (port rattaché)	=	le

Hauteur M (port principal)	=
Correction	=
Hauteur M (port rattaché)	=
Hauteur M (port principal)	=
Correction	=
Hauteur M (port rattaché)	=

- a) D est la durée de la montée ou de la baissée :
- b) ma est le marnage (marnage = hauteur PM hauteur BM) :
- c) t est l'intervalle de temps entre l'heure A et la BM ou la PM :

- $D = \dots h \dots min$
- ma = m
- t = h min

$$\Delta Hr = \text{ma} \cdot \sin^2 \left(\frac{90 \cdot t}{D}\right)$$

(on suppose que la variation de hauteur est sinusoïdale)

-	HauteurM =
	$\Delta Hr = \underline{\dots}$
	Hauteur =

Prendre la PM ou la BM de référence choisie en c). Δ Hr est obtenu en appliquant la formule donnée ci-dessus. Hauteur d'eau à l'heure A (Hauteur = Hr PM - Δ Hr ou Hr BM + Δ Hr).

Profondeur =
- Hauteur =
Sonde =

La sonde est donnée au dm près, comme sur la carte marine. Elle est soulignée si elle est négative.

PASSAGE SUR UN POINT DE SONDE CONNUE (Port principal)

neure A =, un navir du port de	•	pilote compris) se
(nourra - t - il nasser	sur un fond marqué	

Exercices

Date	Heure U.T.	Tirant d'eau	Port	passer ?	Sonde	Réponse
04/09	05h 15min	3,90 m	Brest	pourra-t-il	0,7 m	06h 06min le 04/09
29/08	19h 00min	2,40 m	Brest	ne pourra-t-il plus	<u>2,0</u> m	20h 37min le 29/08
28/08	22h 08min	4,10 m	Brest	pourra-t-il	0,2 m	02h 16min le 29/08
04/09	17h 00min	3,00 m	Brest	pourra-t-il	<u>1,9</u> m	21h 26min le 04/09
02/09	09h 52min	4,00 m	Brest	ne pourra-t-il plus	1,5 m	13h 17min le 02/09

Grille de calcul

Date :	Tirant d'eau :
Heure A:	Port :
	Sonde :

Si A est une heure UT, les heures de PM et BM seront également données en temps universel.

Indiquer dans l'ordre chronologique les heures et hauteurs d'eau encadrant l'heure recherchée. Si l'on veut savoir à partir de quelle heure un navire pourra passer, on se situe en période de montant : l'heure de la BM est donnée en premier.

Heure M = le	Hauteur M =	Tirant d'eau =
Heure M = le	Hauteur M =	- <u>Sonde</u> =
	marnage =	Hauteur =
	avec marnage = Htr PM - Htr BM	- <u>Hauteur BM</u> =
		Δ Hr =

Facteur $f = \Delta Hr/ma \Rightarrow f = \dots (deux décimales)$

On appelle t l'intervalle de temps entre l'heure recherchée et l'heure de la BM ou de la PM la plus proche. Connaissant le facteur f, on obtient t dans la courbe type du port principal. Les deux critères pour choisir la courbe sont :

- BM ou PM la plus proche [on prendra la PM si f > 0.50 soit $\Delta Hr > ma/2$].
- VE moyenne ou ME moyenne suivant le marnage.

t est lu vers la gauche si l'heure recherchée est antérieure à l'heure de la PM (ou de la BM) la plus proche.

intervalle t =hmin

Heure recherchée = Heure BM (ou PM) $\pm t$ \Rightarrow

Heure recherchée = hmin , le

PASSAGE SUR UN POINT DE SONDE CONNUE (Port rattaché)

Exercices

Date	Heure U.T.	Tirant d'eau	Port	passer ?	Sonde	Réponse
01/09	14h 00min	6,10 m	Douarnenez	pourra-t-il	3,2 m	15h 56min le 01/09
02/09	21h 45min	6,40 m	Swansea	ne pourra-t-il plus	0,3 m	01h 20min le 03/09
31/08	04h 21min	2,80 m	Ile de Sein	pourra-t-il	<u>2,5</u> m	05h 04min le 31/08
03/09	10h 00min	3,10 m	Lizard Point	ne pourra-t-il plus	0,3 m	13h 22min le 03/09
27/08	16h 30min	4,20 m	Morgat	ne pourra-t-il plus	<u>0,6</u> m	18h 36min le 27/08

Grille de calcul

Date :	Tirant d'eau :	
Heure A:	Port :	→ Port principal :
	Sonde :	

Si A est une heure UT, les heures de PM et BM seront également données en temps universel.

Heure M (port principal)	=	le
Correction	=	
Heure M (port rattaché)	=	le
Heure M (port principal)	=	le
Correction	=	
Heure M (port rattaché)	_	ما

Hauteur M (port principal)	=
Correction	=
Hauteur M (port rattaché)	=
Hauteur M (port principal)	=
Correction	=
Hauteur M (port rattaché)	=

D est la durée de la montée ou de la baissée : ma est le marnage (marnage = hauteur PM - hauteur BM) :

$$t = \frac{D}{90} \cdot \sin^{-1} \sqrt{\frac{\Delta Hr}{ma}}$$

(on suppose que la variation de hauteur est sinusoïdale)

Tirant d'eau =	HauteurM =	
- <u>Sonde</u> =	Hauteur = <u></u>	
Hauteur =	Δ Hr =	\rightarrow Intervalle $t = \dots h \dots min$

avec $\Delta Hr = Hauteur PM - Hauteur$ ou $\Delta Hr = Hauteur - Hauteur BM$

Heure recherchée = Heure BM (ou PM) de référence $\pm t \implies$

Heure recherchée = hmin , le

VARIATION AU LEVER OU AU COUCHER DU SOLEIL

	Le	, le point estim	né ayant pour	coordonnées ϕ_E	=,	$G_E = \dots,$
on	a relevé le Solei	l au compas au	moment du			et obtenu
Zc	= Calc	uler la variation	l .			

Exercices

D-4-	Position	estimée	Observation du Soleil au moment du	7-	337
Date	ϕ_{E}	G_{E}	Observation du Solen au moment du	Zc	
02/09	44°27' N	136°18′ W	lever vrai	078,5°	+ 0,5°
28/08	30°43' S	150°23' E	coucher apparent du bord supérieur	281,5°	- 1,5°
03/09	18°51' S	163°46' E	lever apparent du bord inférieur	090°	- 9°
01/09	31°17' N	028°51' W	lever apparent du bord supérieur	080°	- 0,5°
02/09	33°54' S	063°17' E	coucher vrai	275°	- 4,5°
30/08	52°04' S	120°45' W	coucher apparent du bord inférieur	269,5°	+ 14,5°

Remarques

- Les Ephémérides Nautiques donnent le relèvement du Soleil, en fonction de la latitude, au moment du lever (pages paires) et au moment du coucher (pages impaires); en effet ces éléments varient peu d'un jour à l'autre et l'on fait la moyenne, le cas échéant, entre le relèvement de la veille et celui du lendemain. Ces valeurs sont établies pour une observation, au niveau de la mer, du bord supérieur du Soleil. En fait, l'élévation de l'œil n'est pas nulle et, à l'instant de référence, la partie supérieure du Soleil apparaîtra au-dessus de l'horizon, d'une quantité ne dépassant pas, pour la plupart des navires, le tiers de son diamètre. Il suffit de prendre le relèvement compas du Soleil puis de rechercher le relèvement vrai dans les Ephémérides Nautiques pour obtenir la valeur approximative de la variation.
- Les instants de début de l'aube, de lever, de coucher et de fin du crépuscule sont établis en temps universel pour le phénomène se produisant sur le méridien origine, mais l'on peut généraliser pour la journée au méridien local, sans erreur sensible, en exprimant les heures en temps civil local Tcg.

$$Tcp = Tcg + G$$

G étant la longitude du lieu exprimée en heures ($360^{\circ} = 24h$ soit $15^{\circ} = 1h$).

 On obtient D directement dans les Ephémérides Nautiques si l'on note l'heure Tcp au moment de l'observation, mais avant d'utiliser les pages quotidiennes, il faudra vérifier qu'il n'y a pas de changement de date.

$$Tcp = Tcf + f$$

f est le numéro du fuseau, on l'obtient en divisant la longitude par 15 et en arrondissant le résultat au nombre entier le plus proche ; f est positif à l'Ouest et négatif à l'Est.

La position estimée et la déclinaison sont données en degrés, minutes et dixièmes de minute (ou en degrés et 3 décimales) alors que le relèvement vrai du Soleil ne sera indiqué qu'au ½ degré près ; il n'est donc pas utile de rechercher une grande précision dans la détermination des éléments d'entrée.

Connaissant ϕ_e , D et Hv, on calcule l'azimut Az_e (ϕ_e Nord > 0 et ϕ_e Sud < 0; D Nord > 0 et D Sud < 0):

$$\cos Az_e = \frac{\sin D - \sin Hv \cdot \sin \phi_e}{\cos Hv \cdot \cos \phi_e} \qquad \text{ou} \qquad \cos Az_e = \frac{\sin D}{\cos \phi_e} \quad \text{(lever ou coucher vrai: } Hv = 0\text{)}$$

 Az_e est compté de 0° à 180° , vers l'Est pour un lever (N Az_e E) et vers l'Ouest pour un coucher (N Az_e W). Le relèvement estimé de l'astre, compté de 0° à 360° , se déduit de Az_e : $Z_e = Az_e$ (lever) ou $Z_e = 360^\circ$ - Az_e (coucher). Compte tenu de la précision demandée, on peut confondre le relèvement estimé Z_e et le relèvement vrai Z_v .

$$Az_e = \dots \qquad \qquad et \quad Z_e \approx Z_v \quad \Rightarrow \qquad \qquad Z_v = \dots \\ -Z_c = \dots \\ W = \dots \\ \qquad \qquad W = \dots$$

AZIMUT PAR L'HEURE

Le	à Tcf =	, le point estime	é ayant pour coordo	nnées $\varphi_E = \dots$,
$G_E = \dots$, on a relevé	au	du compas.	

Déterminer la variation.

Exercices

		Position	estimée			
Date	Heure Tcf	ФЕ	G_{E}	Astre	Zc	W
01/09	23h 08min	30°20' N	074°36' W	Capella	040,5°	+ 0,5°
28/08	16h 54min	23°04' S	165°55' E	Soleil	297,5°	- 12°
02/09	05h 04min	27°18' N	135°43' W	Vénus	086,5°	0°
03/09	19h 48min	48°25' N	133°01' E	Antarès	198°	+ 9°
28/08	05h 41min	40°12' S	032°25' W	Lune	285,5°	- 4,5°
02/09	04h 44min	22°59' N	148°06' E	Vénus	089,5°	- 6,5°
31/08	01h 55min	15°09' S	092°33' E	Bételgeuse	079°	+ 1°
30/08	23h 30min	54°31' N	024°16′ W	Fomalhaut	174,5°	- 1°
31/08	07h 24min	20°50' S	056°05' E	Soleil	070°	+ 5,5°
01/09	22h 48min	41°59' N	070°22' W	Lune	075°	+ 3,5°

Position estimée			
φ _e =			
G _e =			

$$G(E) \rightarrow f < 0$$
 et $G(W) \rightarrow f > 0$

On obtient f en divisant la longitude G_e par 15 et en arrondissant au nombre entier le plus proche.

Les angles horaires et la déclinaison sont donnés soit en degrés, minutes et dixièmes de minute ; soit en degrés et décimales avec 3 chiffres après la virgule.

Les angles horaires et la déclinaison Do des astres errants sont indiqués dans les pages journalières des Éphémérides Nautiques en fonction de l'heure Tcp, alors que l'ascension verse Ava et la déclinaison D des étoiles sont indiquées dans les tables des étoiles, vers la fin de l'ouvrage.

Heure ronde : Interpolation : Heure Tcp :

Soleil	Planètes et Lune	Étoiles
AHvo =	AHao =	AHso =
+ Δ AH =	+ Δ AH =	+ Δ AH =
AHvp =	AHap =	AHsp =
- G _e =	- G _e =	- G _e =
		$AHsg_e = \dots$
		+ Ava =
AHag _e =	AHag _e =	AHag _e =

Si
$$0^{\circ} < AHag_{e} < 180^{\circ} \Rightarrow P_{e} = AHag_{e}$$

Si $180^{\circ} < AHag_{e} < 360^{\circ} \Rightarrow P_{e} = 360^{\circ} - AHag_{e}$

Heure ronde :

Interpolation :

Heure Tcp :

Connaissant la latitude estimée ϕ_e , ainsi que l'angle au pôle P_e et la déclinaison D de l'astre à l'instant Tcp de l'observation, on calcule l'azimut estimé ($Az_e \mapsto Z_e \# Z_v$).

$$\tan Az_e = \frac{\sin P_e}{\tan D \cdot \cos \varphi_e - \sin \varphi_e \cdot \cos P_e}$$

Avec: $\varphi_e Nord > 0$ et $\varphi_e Sud < 0$

D Nord > 0 et D Sud < 0pas de signe pour P_e

 Az_e est compris entre -90° et + 90°; on en déduit Zv compté de 0° à 360° en donnant au résultat le nom Nord s'il est positif, Sud s'il est négatif et le même nom Est ou Ouest que l'angle au pôle (précision des calculs : $\frac{1}{2}$ degré).

et
$$Z_e \approx Z_v \implies$$

$$Z_{v} = \dots$$
 $- Z_{c} = \dots$
 $W = \dots$

LA MÉRIDIENNE

	Le à $Tcf =h$ 00min, le point estimé a pour coordonnées $\phi_E =$
G_{E}	= du compas, W =, dérive =
	esse = nœuds. Le courant est nul.
1.	Calculer l'heure Tcp pass du prochain passage du Soleil au méridien estimé supérieur.
2.	On observe à l'heure Tcp pass la hauteur du bord du Soleil, Hi =
	$\varepsilon = \dots$, élévation = mètres. Calculer la latitude.

Exercices

Date	House Tof	Position estimée		0	***	D/:	Vitesse
	Heure Tcf	ϕ_{E}	G_{E}	Cc	W	Dérive	(nœuds)
30/08	11h 00min	48°50' S	027°11' W	344°	- 28°	0°	7,2

Bord	Hauteur instrumentale	ε	élévation	Tcp pass	Latitude
inférieur	32°05,4'	- 1,1'	4 m	13h 49min 52s	48°42,9′ S

Date	Hanna Taf	Position estimée		C -	** 7	D/:	Vitesse
	Heure Tcf	ФЕ	$G_{\rm E}$	Cc	W	Dérive	(nœuds)
28/08	09h 00min	36°24' N	031°18′ E	128°	+ 3°	3° Td	14,5

Bord	Hauteur instrumentale	3	élévation	Tcp pass	Latitude
supérieur	64°19,5'	- 2,5'	16 m	09h 53min 39s	35°54,3′ N

Date	II T.f	Position estimée		0	77.7	D/:	Vitesse
	Heure Tcf	ϕ_{E}	G_{E}	Cc	W	Dérive	(nœuds)
02/09	08h 00min	34°17' N	100°26' W	153°	+ 2°	1° Bd	15,5

Bord	Hauteur instrumentale	3	élévation	Tcp pass	Latitude
inférieur	64°20,9'	- 0,8'	22 m	18h 39min 26s	33°25,3′ N

Date	TT T- C	Position estimée		0	77.7	D/:	Vitesse
	Heure Tcf	ϕ_{E}	G_{E}	Cc	W	Dérive	(nœuds)
03/09	10h 00min	25°41,6′ S	051°31,3' E	289°	- 5°	2° Bd	18

Bord	Hauteur instrumentale	3	élévation	Tcp pass	Latitude
inférieur	56°42,3'	+ 1,5'	19 m	08h 35min 30s	25°28,9′S

Position estimée
φ _e =
$G_{r} = \dots$

Tcf = le]		
+ f =	$G(E) \rightarrow f < 0$	et	$G(W) \rightarrow f > 0$
Tco = le			. , , ,
Ephémérides na	utiques		

Heure ronde Tco: G Est < 0, G Ouest > 0: $180^{\circ} < AHvg < 360^{\circ}$:

V - <i>F</i> · · · · · · · · · · · · · · · · · · ·				
AHvo =	V.			
- G _e =				
AHvg _e =	⇒	P _e =	 	

Le calcul étant effectué quelques heures avant la passage au méridien, le Soleil est dans l'Est : $P_e = 360^{\circ}$ - $AHvg_e$

cap compas
variation (NE > 0)
cap vrai
dérive (positive à tribord)
le courant est supposé nul

Vitesse du navire : V =..... nœuds

 $\gamma_A = AH'vo - AHvo$

AHvo est l'angle horaire du Soleil à Tco et AH'vo est l'angle horaire du Soleil à Tco + 1h.

$$\gamma_{\rm N} = \frac{-V \cdot \sin Rf}{60 \cdot \cos \varphi_{\rm e}}$$

V étant la vitesse du navire, Rf la route fond et φ_e la latitude estimée à l'heure Tco du calcul.

$$\gamma_A = \dots$$

$$-\gamma_N = \dots$$

$$\gamma = \dots$$

 γ_A est la variation de l'angle horaire du Soleil en 1 heure, elle est donnée par les éphémérides. γ_N est le changement en longitude du navire en 1 heure (positif si le navire va vers l'Ouest). γ est la vitesse angulaire du Soleil par rapport au navire ($\gamma < \gamma_A$ si le navire va vers l'Ouest).

Heure UT du calcul. $t = P_e/\gamma$

Heure UT du passage du Soleil au méridien estimé du navire.

Après avoir pris la hauteur instrumentale Hi du Soleil à l'heure Tcp pass, on détermine la distance zénithale Nv qui prend le nom du pôle auquel on tourne le dos pendant l'observation, puis on calcule la latitude du navire à cet instant :

Hi =
+ ε = <u></u>
Ho =
+ 1 ^{ère} cor. =
+ 2 ^{ème} cor. =
Hv =
$Nv = 90^{\circ} - Hv = \dots$
i

la déclinaison D est calculé pour l'heure Tcp pass

Ephémérides v nautiques

Do =

$$D = \overline{\qquad}$$

Nv =..... + D = φ =

LA DROITE DE HAUTEUR

Exercices

Date	Heure Tcp	Bord As	Astre	Hi	3	ε él.	Position	n estimée
Date	rieure 1cp	Bolu	Asue	LII			φЕ	G_{E}
31/08	20h 27min 14,5s	inf.	Soleil	53°05,8'	- 2,6'	21,5 m	27°23,5' N	160°11,0′ W

Réponses: Hv - He = -4,1' $Zv = 114,5^{\circ}$

Date	House Ton	Bord	A stra	Hi	3	<i>4</i> 1	Position	n estimée
Date	Heure Tcp	Bord	Astre	LI)		ε el.	φЕ	G_{E}
03/09	21h 09min 45s	sup.	Soleil	34°28,4'	+ 3,0'	15 m	12°13,9′ S	084°51,0′ W

Réponses: Hv-He = +8,4' $Zv = 288^{\circ}$

Date	Heure Tcp	Bord Astre	A stra	Hi	_	él.	Position	n estimée
Date	neure rep	Boru	Asire	nı .	3		φЕ	G_{E}
01/09	14h 28min 07s		Acrux	54°14,6'	- 0,9'	12 m	49°02,1' S	051°44,9′ E

Réponses: Hv-He = -2.3' $Zv = 223^{\circ}$

Data	Harris Tan	Dand	Anton	11:	_	ε el.	Position	n estimée
Date	Heure Tcp	Bord	Astre	Hi	3		φΕ	G_{E}
28/08	20h 43min 01s	inf.	Lune	25°05,6'	- 1,4'	7 m	19°41,7' N	133°09,8' E

Réponses: Hv-He = -6.1' $Zv = 255^{\circ}$

Data	TT T	Dand	A	11:	TT:			Positio		n estimée	
Date	Heure Tcp	Bord	Astre	Hi	3	él.	φΕ	G _E			
27/08	06h 38min 58s		Vénus	18°12,6'	+ 2,1'	20 m	16°15,5′ S	001°21,4' W			

Réponses: Hv - He = -1.0' $Zv = 0.78^{\circ}$

D	тт Т	D1	A -4	тт:	Position estime	- 21	n estimée	
Date	Heure Tcp	Bord	Astre	Hi	ε	él.	φΕ	G_{E}
29/08	06h 50min 23s	sup.	Lune	21°35,6'	+ 1,7'	13 m	47°19,8' N	020°16,8′ W

Réponses : Hv - He = +3.3' $Zv = 240.5^{\circ}$

Position estimée
$\phi_e = \dots$
G _e =

L'heure du fuseau et la date locale sont normalement connues au moment de l'observation. Si la date au méridien origine n'est pas établie avec certitude, on lève le doute en ajoutant le numéro du fuseau f à l'heure Tcf: Tcp approchée = Tcf + f

On obtient f en divisant la longitude G_e par 15 et en arrondissant au nombre entier le plus proche : G(W)) $\rightarrow f > 0$

Lune:
$$\pi = \dots$$

Étoile
AHso =
$+ \Delta AH = \underline{\dots}$
AHsp =
- G _e =
$AHsg_e = \dots$
+ Ava =
AHag _e =

Do =
$+\Delta D = \underline{\dots}$
D =

P_e =

Préciser le nom E ou W de l'angle au pôle : si $0^{\circ} < AHag_e < 180^{\circ}$, l'astre est dans l'Ouest et $P_e = AHag_e$.

Les angles horaires et la déclinaison sont donnés soit en degrés, minutes et dixièmes de minute ; soit en degrés et décimales avec 3 chiffres après la virgule.

Connaissant la latitude estimée ϕ_e ainsi que la déclinaison D et l'angle au pôle P_e de l'astre à l'instant Tcp de l'observation, on calcule la hauteur estimée H_e et l'azimut estimé ($Az_e \mapsto Z_e \# Z_v$).

$$\sin H_e = \sin \phi_e \cdot \sin D + \cos \phi_e \cdot \cos D \cdot \cos P_e$$

$$\tan Az_e = \frac{\sin P_e}{\tan D \cdot \cos \varphi_e - \sin \varphi_e \cdot \cos P_e}$$

Avec: $\varphi_e Nord > 0$ et $\varphi_e Sud < 0$

D Nord > 0 et D Sud < 0 pas de signe pour P_e

 $H_e =$

H_e est calculé au dixième de minute près.

$$\Rightarrow$$

$$Z_{v} = \dots$$

précision : 1/2 degré

 Az_e est compris entre -90° et + 90°; on en déduit Zv compté de 0° à 360° en donnant à l'azimut estimé le nom Nord s'il est positif, Sud s'il est négatif et le même nom Est ou Ouest que l'angle au pôle.

Soleil	Planète	Étoile	Lune
Hi =	Hi =	Hi =	Hi =
+ e =	+ £ =	+ ε = <u></u>	+ ε = <u></u>
Ho =		Ho =	Ho =
+ 1 ^{ère} cor. =		+ cor. =	+ 1 ^{ère} cor. =
$+2^{\text{ème}} \text{ cor.} = \underline{\dots}$	+ 2 ^{ème} cor. =		Ha =
	La deuxième correction ne		+ 2 ^{ème} cor. =
	concerne que Vénus et Mars	. ex	+ 3 ^{ème} cor. =
			(bord supérieur seulement)
Hv =	Hv =	$Hv = \dots$	$Hv = \dots$
- He = <u></u>	- He = <u></u>	- He = <u></u>	- He = <u></u>
Hv - He =	Hv - He =	Hv - He =	Hv - He =

28/08

POINT D'ÉTOILES

Le (date au méridien origine), le point estimé ayant pour coordonnées $\phi_E = \dots$, on a pris, à courts intervalles, les hauteurs suivantes d'étoiles et noté les heures Tcp correspondantes : Hi₁ = à $Tcp_1 =$ Hi₂ = à $Tcp_2 =$ Hi₃ = à $Tcp_3 = ...$ $\varepsilon = \dots$, élévation = mètres. Le navire suit une route fond au, vitesse fond = nœuds. Déterminer graphiquement le point à l'instant de la troisième observation (on traitera toutes les hauteurs avec le même point estimé).

Exercices

	Date		tion estimée	ε	Elévation	Route fond	Vitesse (nœuds)
	universelle	ФΕ	G_{E}		(mètres)		
	29/08	34°25' S	029°50' W	- 2,3'	20,5	254°	20,7
	Hi ₁ Rigit Hi ₂ Arct Hi ₃ Spic		= 58° 14,2' = 27° 13,5' = 40° 35,5'	à	$Tcp_2 = 2$	20h 00m 20h 03m	in 58s
Réponses :	5 1		$-40^{\circ} 33,3$ $G = 029^{\circ} 53,4' V$		$Tcp_3 = 2$ $Tcp_3 = 20h$	20h 07m <i>07min 2</i>	

Position estimée Date Elévation Route Vitesse 3 universelle ϕ_E G_{E} (mètres) fond (nœuds) 49°54' N 010°42' W

+1,5'

12

038°

12,3

= 52° 37,3' Rashalague Hi_1 à Tcp₁ = 20h 04min 34s= 19°34.31 Hi_2 Alphératz à Tcp₂ = 20h 08min 58s= 51015,31 Hi₃ Alkaïd à Tcp₃ = 20h 11min 04s

 $\varphi = 49^{\circ} 57,2' N$ Réponses : $G = 010^{\circ} 43.8' W$ à $Tcp_3 = 20h \ 11min \ 04s \ le \ 28/08$.

Date	Position	n estimée		Elévation	Route	Vitesse
universelle	φΕ	G_{E}	3	(mètres)	fond	(nœuds)
02/09	52°35' N	162°23' E	+ 0,8'	15	125°	14

 Hi_1 Rigel $= 24^{\circ} 32,9'$ = 17h 43min 17s à Tcp₁ Hi_2 Dubhé $= 35^{\circ} 15,3'$ à Tcp₂ = 17h 45min 58s $= 36^{\circ} 53.8'$ Hi₃ Pollux à Tcp₃ = 17h 49min 01s

 $\varphi = 52^{\circ} 33.3' N$ $G = 162^{\circ} 29.1' E$ Réponses: à $Tcp_3 = 17h \ 49min \ 01s \ le \ 02/09$.

Position estimée	
$\phi_e = \dots$	
$G_e = \dots$	

L'heure du fuseau et la date locale sont normalement connues au moment de l'observation. Si la date au méridien origine n'est pas établie avec certitude, on lève le doute en ajoutant le numéro du fuseau f à l'heure Tcf: Tcp approchée = Tcf + f.

On obtient f en divisant la longitude G_e par 15 et en arrondissant au nombre entier le plus proche avec $G(W) \rightarrow f > 0$

Etoile 1 :	Etoile 2:	Etoile 3:
Tcp ₁ = le	Tcp ₂ = le	$Tcp_3 =$ le
AHso ₁ =	AHso ₂ =	AHso ₃ =
$+ \Delta AH_1 = \underline{\dots}$	$+ \Delta AH_2 = \underline{\dots}$	$+ \Delta AH_3 = $
$AHsp_1 = \dots$	$AHsp_2 = \dots$	$AHsp_3 = \dots$
- G _e =	- G _e =	- G _e =
AHsg _{e1} =	$AHsg_{e2} = \dots$	$AHsg_{e3} = \dots$
+ AVa ₁ =	$+ AVa_2 = $	$+ AVa_3 = $
AHag _{e1} =	AHag _{e2} =	$AHag_{e3} =$

Si $0^{\circ} < AHag_e < 180^{\circ} \mapsto P_e = AHag_e$

l'astre est dans l'Ouest.

 $180^{\circ} < AHag_e < 360^{\circ} \rightarrow P_e = 360^{\circ} - AHag_e$

l'astre est dans l'Est.

$$P_{e1} = \dots \qquad \qquad P_{e2} = \dots \qquad \qquad P_{e3} = \dots \qquad \qquad P_{e3} = \dots \qquad \qquad D_{1} = \dots \qquad D_{2} = \dots \qquad D_{3} = \dots \qquad D_{3} = \dots \qquad D_{1} = \dots \qquad D_{2} = \dots \qquad D_{3} = \dots \qquad D_{3} = \dots \qquad D_{4} = \dots \qquad D_{4} = \dots \qquad D_{5} = \dots \qquad D_{6} = \dots \qquad D_{6$$

 $\sin H_e = \sin \varphi_e \cdot \sin D + \cos \varphi_e \cdot \cos D \cdot \cos P_e$

$$\tan Az_e = \frac{\sin P_e}{\tan D \cdot \cos \varphi_e - \sin \varphi_e \cdot \cos P_e}$$

Avec:

Si

 $\varphi_e Nord > 0$ et $\varphi_e Sud < 0$

D Nord > 0 et D Sud < 0

Pas de signe pour P_e

 Az_e est compris entre -90° et + 90°; on en déduit Zv compté de 0° à 360° en donnant au résultat le nom Nord s'il est positif, Sud s'il est négatif et le même nom Est ou Ouest que l'angle au pôle (précision des calculs : ½ degré).

Les corrections des hauteurs observées des étoiles sont données par la table VIII des éphémérides nautiques.

Hi ₁ =	Hi ₂ =	Hi ₃ =
+ ε =	+ ε = <u></u>	+ E =
Ho ₁ =	Ho ₂ =	$Ho_3 =$
+ cor ₁ =	$+ cor_2 = $	$+ cor_3 = $
$Hv_1 =$	$Hv_2 = \dots$	$Hv_3 =$
- He ₁ =	- He ₂ =	- He ₃ =
$Hv_1 - He_1 =$	$Hv_2 - He_2 =$	$Hv_3 - He_3 =$

Soient Vf la vitesse fond du navire et Rf la route fond (si le courant est nul, Rf = Rs).

$$m' = (Tcp_3 - Tcp_1) \cdot Vf \Rightarrow m' = \dots$$
 $m'' = (Tcp_3 - Tcp_2) \cdot Vf \Rightarrow m'' = \dots$

Position estimée :

$$\varphi_e = \dots$$

 $G_e = \dots$

Le graphique donne les changements l et g :

Position observée à Tcp₃ =:

