检索增强生成(RAG)体系:信息注入、向量 管线与微调融合

2025年10月25日

1 检索增强原理与信息注入机制

1.1 核心理念

检索增强生成(Retrieval-Augmented Generation, RAG)通过外部知识库弥补大模型的知识盲点和时效性问题。其基本流程如图?? 所示:用户查询首先编码为向量,经过向量搜索检索相关文档,再将检索到的证据与原始查询拼接或重写,最后输入到 LLM 生成带来源的回答。

Retrieval-Augmented Generation Pipeline

Queries are embedded, matched via vector search, fused with evidence, and fed into the LLM for grounded responses.

图 1: RAG 推理流水线: 查询嵌入、向量检索、上下文融合、LLM 带引用回答。

1.2 检索与生成的闭环

- 双向依赖: 检索结果的质量直接决定生成上限,而生成阶段的指令(如引用要求、回答结构)反过来影响对证据的需求。
- 信息注入策略: 常见方法包括直接拼接 (concatenation)、模板化摘要 (structured prompt)、与查询融合 (query rewriting) 以及面向段落的排序权重 (re-ranking)。

• **反馈机制**:通过生成结果对检索阶段提供反馈(如未找到答案时触发"虚无检索"或改写查询),形成自适应回路。

1.3 典型架构拓扑

类型	描述	应用场景	
经典 RAG	查询 → 检索 → 拼接 → 生 成	FAQ、知识库问答、客服机器人	
双塔 + 重排	首先使用轻量向量检索,然 后使用交叉编码器重排	法律、医疗等需要高精度匹配的 场景	
自适应检索	LLM 根据需要决定检索次 数和查询改写	工具增强型 Agent、实时信息查询	
文档先摘要	对大文档预生成摘要或结 构化节点,查询时检索摘要 再回溯全文	长文档阅读、报告生成	

2 文档分块与向量嵌入(Embeddings)

2.1 分块策略

在向量化之前需要将文档切分为语义单元,图??展示了从原始文档到向量库的步骤。

Source Document (HTML/PDF/SQL) Chunk 3 Embedding 3 Chunker Sliding Window / Semantic Solit Chunk 1 Embedding 1 Wector Store (FAISS/Milvus/ Chroma) Metadata Index + Filters

Chunking and Embedding Workflow

图 2: 分块与嵌入工作流:原始文档经滑动窗口/语义分段生成 Chunk,再编码为向量并存入向量库。

常用分块策略:

- 固定窗口 + 重叠: 适合结构化程度较低的文本,一般设置 200-512 token 的窗口,重叠 10-20% 防止断句。
- 语义分段: 基于句子、段落或语义相似度分段,采用 TextTiling、语义聚类、标题 检测等算法。
- 结构化切分: 对表格、代码、知识图谱等, 按字段或节点组织, 保留元信息。

2.2 嵌入模型选择

- 通用模型:如 OpenAI text-embedding-3-large、bge-large、m3e 等,在多语言场景表现稳定。
- **领域模型**: 针对法律、医疗、金融的专用模型,通常由开源模型 LoRA 微调(如 BAAI/bge-law)。
- 稀疏表示: 结合 BM25、ColBERT 等稀疏/混合检索方式,补充关键词匹配能力。

2.3 嵌入与元数据

每个 chunk 向量通常关联以下元数据:

- 文档 ID、段落编号、标题、创建时间、权重、标签;
- 结构化字段(如产品类别、地理位置)用于过滤;
- 原始文本以及压缩摘要,用于模型阅读或展示。

合理设计元数据可以在检索阶段进行布尔过滤、时间筛选、权重排序,提高结果相关性。

2.4 批量编码示例

Listing 1: 使用 SentenceTransformers 批量编码文档 chunk

```
return batch

return batch

encoded = dataset.map(encode_batch, batched=True, batch_size=512)

encoded.to_parquet("chunks_with_embeddings.parquet")
```

3 向量数据库(FAISS, Milvus, Chroma)

3.1 核心功能对比

引擎	特点	适用场景	
FAISS	Facebook AI 研发,支	单机/内存充足,需自定义部署与	
	持 IVF、HNSW、PQ	IVF、HNSW、PQ 调优的工程团队 索引;内存型高性能	
	等索引;内存型高性能		
Milvus	云原生架构,支持分布	企业级多副本、高可用、与对象	
	式存储、向量 + 标量	存储集成	
	过滤、CDC; 提供 Mil-		
	vus Lite		
Chroma	轻量级、嵌入式, 支持	快速原型、桌面应用、少量数据	
	SQL API、持久化到	场景	
	SQLite/Postgres		

3.2 索引策略

- 暴力检索(Flat): 精确但耗时,适合小规模或精确召回阶段(如重排前筛选)。
- 近似最近邻(ANN): IVF、HNSW、ScaNN 等方法,通过分桶或图结构实现 $O(\log n)$ 检索。
- 量化压缩: 产品量化 (PQ)、OPQ、LSQ 等降低内存占用,适合海量向量。

在工程实践中常采用"双阶段"策略: 先用 ANN 快速召回,再使用精确距离或交叉编码器重排。

3.3 Milvus 查询示例

Listing 2: 在 Milvus 中执行向量检索

```
from pymilvus import connections, Collection, utility
import numpy as np
```

```
3
  connections.connect("default", uri="http://localhost:19530")
  if not utility.has_collection("rag_chunks"):
6
      raise RuntimeError("Collection rag_chunks does not exist")
  collection = Collection("rag_chunks")
  collection.load()
11
  query_vector = np.load("query_embedding.npy")
  search_params = {"metric_type": "IP", "params": {"nprobe": 32}}
13
  results = collection.search(
15
      data=[query_vector.tolist()],
16
      anns_field="embedding",
17
      param=search_params,
18
      limit=5,
19
      output_fields=["doc_id", "text", "score", "tags"]
20
21
22
  for hit in results[0]:
23
      print(hit.id, hit.distance, hit.entity.get("doc_id"), hit.entity.
24
          get("tags"))
```

4 RAG 与 Fine-tuning 的结合方式

4.1 互补关系

- RAG 解决知识更新: 通过检索引入最新数据,降低微调频率与推理成本。
- 微调提升生成风格:对 RAG 输出的格式、语气、推理深度进行定制化:
- 联合优化:通过微调模型使其更善于阅读检索上下文、引用来源并区分多段证据。

4.2 常见组合方案

- Instruction Tuning + RAG: 先对模型进行指令微调,使其遵守回答模板,再用 RAG 注入实时知识。
- Retriever Fine-tuning: 使用对比学习(如 Contriever、ColBERT)对嵌入模型 微调,提高召回质量。

- Generator Fine-tuning: 采用 RAG 样本(问题、证据、答案)对 LLM 做监督 微调或 DPO,提升引用准确性。
- End-to-End RAG Fine-tuning:在检索和生成之间引入可微分模块(如 RETRO、Atlas) 实现联合训练。

4.3 训练数据构建

- 构造三元组: (q, d^+, d^-) 对,用于训练嵌入模型; d^- 可来自随机抽样或难负样本挖掘。
- 证据标注: 对生成答案标记引用的文档和段落,为监督微调提供对齐信号。
- **自监督数据**:通过让模型对检索内容回答问题,再将模型自评得分用于强化学习 或过滤低质量样本。

4.4 组合评估策略

指标类别	指标	关注点	工具
检索指标	Recall@k、MRR、	覆盖率与排序质量	BEIR、LlamaIndex Eval
生成指标	BLEU、 ROUGE、Fac-	表达质量与真实性	GPT-judge、FactScore
	tuality		
引用指标	Precision@k(引 用)、覆盖度	引用准确性、幻觉率	自定义正则表达式、 Heuristic
端到端	用户反馈、工单 转化率	业务 KPI	A/B Testing、在线实 验

实践建议

- 设计结构化 Prompt,将检索到的证据标号呈现,指导模型引用具体段落。
- 定期刷新向量库与嵌入模型,针对新增数据执行增量索引与热度调节。
- 使用离线与在线评测联动,确保检索与生成的优化同步推进。
- 为 RAG + 微调流程配置监控, 跟踪检索命中率、回答准确率与安全误报。

参考文献

- Lewis et al. "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks." NeurIPS, 2020.
- Izacard et al. "Few-shot Learning with RETRO." arXiv, 2022.
- Humeau et al. "Poly-encoders: Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring." ICLR, 2020.
- Xu et al. "BGE: BE Better in Embedding." arXiv, 2023.
- Chen et al. "Atlas: Few-shot Learning with Retrieval Augmented Language Models." ICML, 2022.