

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B. Sc. General Degree in Applied Sciences
First Year - Semester I Examination – March 2021

MAA 1201 – MATHEMATICAL METHODS I

Time: Two (02) hours.

C

Answer all (04) questions.

- 1. (a) If $\mathbf{u} = 2\mathbf{i} \mathbf{j} + \mathbf{k}$ and $\mathbf{v} = \mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$, find the modulus and direction cosines of $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} \mathbf{v}$. (30 marks)
 - (b) Let a, b, and c be three vectors with their magnitudes 3, 5, and 7, respectively. Suppose that $\mathbf{v} = \mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$.
 - i. Considering the dot product $\mathbf{a} \cdot \mathbf{v}$, show that $\mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} = -9$. Also, find $\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c}$ and $\mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{c}$.
 - ii. Determine the angle between **a** and **b**.

(35 marks)

- (c) Consider the vectors: $\mathbf{p} = 2\mathbf{i} + \mathbf{j} \mathbf{k}$, $\mathbf{q} = -\mathbf{i} 2\mathbf{j} + \mathbf{k}$, and $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$.
 - i. Find $\mathbf{p} \times \mathbf{r}$.
 - ii. If $\mathbf{p} \times \mathbf{r} = \mathbf{q} + \mu \mathbf{p}$ and $\mathbf{p} \cdot \mathbf{r} = 3$, where μ is a scalar, find μ and \mathbf{r} .

 (35 marks)

- 2. (a) Let the line through the points (1, -1, 3) and (2, -2, 4) be L. Find each of the following:
 - i. a vector equation for L,
 - ii. the coordinates of the point where L crosses the xy-plane,
 - iii. the point of intersection of the lines L and M, where the line M is given by $\mathbf{r} = 2\mathbf{i} + 4\mathbf{j} + 6\mathbf{k} + \mu(2\mathbf{i} + \mathbf{j} + 3\mathbf{k})$, μ being a scalar parameter,
 - iv. the angle between L and M.

(60 marks)

(b) Obtain an equation of the plane Π that contains the points: (1, 0, -1), (3, 1, 4), and (2, -2, 0).

Also, find an equation of the plane passing through the point (1,2,3) that is parallel to Π . (40 marks)

- 3. The position vector $\mathbf{r} = \mathbf{r}(t)$ of a moving particle at time t is given by the space curve $\mathbf{r} = 2\cos t\,\mathbf{i} + 2\sin t\,\mathbf{j} + 3t\,\mathbf{k}$.
 - (a) Find the components of the velocity and acceleration of the particle at time $t = \pi/4$ in the direction of i + j + k. (40 marks)
 - (b) Find each of the following at t:
 - i. the unit tangent vector, T,
 - ii. the principal unit normal vector, N,
 - iii. the unit bi-normal vector, B,
 - iv. the curvature and torsion of the curve.

(60 marks)

- **4.** (a) Consider the function: $\varphi = xy^2 4x^2y + z^2$.
 - i. Find $\nabla \varphi$ at A(1, -1, 2).
 - ii. Find the directional derivative of φ at A in the direction of $6\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$.
 - iii. Determine the maximum and minimum values of the directional derivative at A.
 - iv. What is the direction in which φ increases most rapidly at A? (55 marks)
 - (b) If $\mathbf{F} = (z^2 + 2x + 3y)\mathbf{i} + (3x + 2y + z)\mathbf{j} + (y + 2xz)\mathbf{k}$, find curl \mathbf{F} , div \mathbf{F} , and div(curl \mathbf{F}). (25 marks)
 - (c) Given $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \neq \mathbf{0}$ with $r = |\mathbf{r}|$, show that

$$\nabla \times \left(\mathbf{k} \times \nabla \frac{1}{r}\right) = \frac{-3xz \,\mathbf{i} - 3yz \,\mathbf{j} + (x^2 + y^2 - 2z^2) \,\mathbf{k}}{r^5}.$$
(20 marks)

---END---