4. Derivabilidad¹

Una función f es derivable en un punto a de su dominio si existe el límite

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h},$$

y es un número real. El número f'(a) se denomina derivada de f en a.

Si f es derivable en a, entonces f es continua en a. El recíproco no es cierto: hay funciones continuas en un punto no derivables en ese punto.

Geométricamente, la derivabilidad de f en a significa la existencia de la recta tangente a la gráfica de la función f en el punto (a, f(a)); en este caso, la ecuación de la recta tangente es

$$y = f(a) + f'(a)(x - a).$$

Así pues, f'(a) es la pendiente de la recta tangente a la gráfica de f en el punto (a, f(a)). La función correspondiente a la tangente $x \mapsto f(a) + f'(a)(x-a)$ es una función polinómica de primer grado que aproxima la función f cerca del punto a.

Las siguientes propiedades expresan el comportamiento de la derivación respecto a las operaciones.

 \blacksquare Si $f \vee g$ son derivables en a, entonces f + g es derivable en $a \vee g$

$$(f \pm g)'(a) = f'(a) \pm g'(a).$$

• Si f y g son derivables en a, entonces fg es derivable en a y

$$(fg)'(a) = f'(a)g(a) + f(a)g'(a).$$

• Si f y g son derivables en a y $g(a) \neq 0$, entonces

$$(f/g)'(a) = (f'(a)g(a) - f(a)g'(a))/g(a)^{2}.$$

■ (Regla de la cadena) Si f es derivable en a y g es derivable en f(a), entonces $g \circ f$ es derivable en a y

$$(g \circ f)'(a) = g'(f(a))f'(a).$$

Sea f una función de dominio D y sea D' el conjunto de puntos de D en los que la función f es derivable. La función $f' \colon D' \to \mathbb{R}$ que hace corresponder a cada punto $x \in D'$ el valor f'(x) de la derivada de f en x se denomina función derivada o derivada de f. Si f' es también una función derivable, su derivada se denota por f'' y se denomina segunda derivada de f. Recurrentemente, la n-ésima derivada de f, denotada $f^{(n)}$, es la derivada de la función $f^{(n-1)}$.

¹Extracto del libro "Cálculo para Ingeniería informática", por José A. Lubary y Josep M. Brunat, Edicions UPC Temes Clau 08, 2008

Tabla de derivadas

Para facilitar consultas, incluimos una tabla con las derivadas de las funciones elementales. En ella, f(x) es de la forma f(x) = g(u(x)) para ciertas funciones u y g. Implícitamente, se suponen las condiciones de existencia y derivabilidad de las funciones involucradas.

f	f'		f	f'
\overline{k}	0	$(k \in \mathbb{R})$	$\arccos u$	$-u'/\sqrt{1-u^2}$
u^k	$ku^{k-1}u'$	$(0 \neq k \in \mathbb{R})$	$\arctan u$	$u'/(1+u^2)$
$\log_a u$	$u'/(u \ln a)$	(a > 0)	$\operatorname{senh} u$	$u' \cosh u$
a^u	$u'a^u \ln a$	(a > 0)	$\cosh u$	$u' \operatorname{senh} u$
$\operatorname{sen} u$	$u'\cos u$		$\tanh u$	$u'/\cosh^2 u$
$\cos u$	$-u' \operatorname{sen} u$		$\operatorname{argsenh} u$	$u'/\sqrt{u^2+1}$
$\tan u$	$u'/\cos^2 u$		$\operatorname{arg} \cosh u$	$u'/\sqrt{u^2-1}$
$\arcsin u$	$u'/\sqrt{1-u^2}$		$arg \tanh u$	$u'/(1-u^2)$

Funciones potenciales-exponenciales

Las funciones del tipo $f(x) = u(x)^{v(x)}$, donde u y v son funciones, se denominan potenciales-exponenciales.

Para calcular la derivada de $f(x) = u(x)^{v(x)}$ se utiliza la llamada derivación logarítmica. Supongamos que u y v son funciones derivables y que $f(x) = u(x)^{v(x)}$ toma valores positivos. Tomando logaritmos, obtenemos $\ln f(x) = v(x) \ln u(x)$. Derivando ambos miembros de la igualdad, se obtiene

$$\frac{f'(x)}{f(x)} = v'(x) \ln u(x) + v(x) \frac{u'(x)}{u(x)},$$

de donde

$$f'(x) = u(x)^{v(x)}v'(x)\ln u(x) + v(x)u(x)^{v(x)-1}u'(x).$$

Una regla mnemotécnica para recordar la fórmula anterior consiste en derivar $f(x) = u(x)^{v(x)}$ primero como si u(x) fuera constante, lo que da el primer sumando, y después como si v(x) fuera constante, lo que da el segundo sumando.

Monotonía

Sea f una función e I un intervalo (de cualquier tipo) contenido en el dominio de f. La función f es creciente (resp. estrictamente creciente) en I si, para todo $x_1, x_2 \in I$, $x_1 < x_2$ implica $f(x_1) \le f(x_2)$ (resp. $f(x_1) < f(x_2)$). La función f es decreciente (resp. estrictamente decreciente) en I si, para todo $x_1, x_2 \in I$, $x_1 < x_2$ implica $f(x_1) \ge f(x_2)$ (resp. $f(x_1) > f(x_2)$). Se dice que la función f es monótona en I si es creciente o decreciente en I, y estrictamente monótona si es estrictamente creciente o estrictamente decreciente en I.

Si f es derivable en I, la relación entre f' y la monotonía de f en I se deduce del teorema del valor medio y es la siguiente:

- Si f'(x) > 0 para todo $x \in I$, entonces f es estrictamente creciente en I.
- Si f'(x) < 0 para todo $x \in I$, entonces f es estrictamente decreciente en I.
- Si f es creciente en I, entonces $f'(x) \ge 0$ para todo $x \in I$.
- Si f es decreciente en I, entonces $f'(x) \leq 0$ para todo $x \in I$.

Extremos relativos

Sea f una función y a un punto de su dominio. La función f tiene un $m\'{a}ximo$ relativo en a si existe un entorno U de a tal que $f(x) \leq f(a)$ para todo $x \in U$. La función f tiene un $m\'{n}imo$ relativo en a si existe un entorno U de a tal que $f(a) \leq f(x)$ para todo $x \in U$. Un extremo relativo es un máximo o un mínimo relativo.

Ciertas condiciones de derivabilidad sobre f dan unas condiciones necesarias y otras suficientes de existencia de extremos relativos.

- Si f tiene un extremo relativo en a y existe f'(a), entonces f'(a) = 0.
- Si f'(a) = 0 y f''(a) > 0, entonces f tiene un mínimo relativo en a.
- Si f'(a) = 0 y f''(a) < 0, entonces f tiene un máximo relativo en a.
- Si f'(a) = 0 y existe $\delta > 0$ tal que para todo x con $a \delta < x < a$ se cumple f'(x) < 0 y para todo x con $a < x < a + \delta$ se cumple f'(x) > 0, entonces f tiene un mínimo relativo en a.
- Si f'(a) = 0 y existe $\delta > 0$ tal que para todo x con $a \delta < x < a$ se cumple f'(x) > 0 y para todo x con $a < x < a + \delta$ se cumple f'(x) < 0, entonces f tiene un máximo relativo en a.

Teoremas del valor medio

Los teoremas de Rolle, de Cauchy y del valor medio que enunciamos a continuación están entre los resultados teóricos más importantes relativos a funciones derivables.

Teorema de Rolle. Si f es una función continua en un intervalo [a, b], derivable en el intervalo (a, b) y f(a) = f(b), entonces existe un punto $c \in (a, b)$ tal que f'(c) = 0.

Geométricamente, en las condiciones del teorema de Rolle, hay un punto de la curva y = f(x) con tangente horizontal.

Teorema de Cauchy. Si f y g son funciones continuas en un intervalo [a, b] y derivables en el intervalo (a, b), entonces existe un punto $c \in (a, b)$ tal que

$$g'(c)(f(b) - f(a)) = f'(c)(g(b) - g(a)).$$

Si g(x) = x, obtenemos el teorema del valor medio.

Teorema del valor medio. Si f es una función continua en un intervalo [a, b] y derivable en el intervalo (a, b), entonces existe un punto $c \in (a, b)$ tal que

$$f(b) - f(a) = f'(c)(b - a).$$

Geométricamente, esto significa que la curva y = f(x) contiene por lo menos un punto (c, f(c)) en el que la tangente es paralela a la recta que pasa por los puntos (a, f(a)) y (b, f(b)).

La derivada de una función constante es cero. Para funciones definidas en un intervalo abierto, el recíproco también es cierto:

Teorema fundamental. Si f es una función derivable en un intervalo abierto (a, b) y f'(x) = 0 para todo $x \in (a, b)$, entonces la función f es constante en (a, b).

La regla de L'Hôpital

Otra consecuencia del teorema del valor medio es la $Regla\ de\ L'H\^opital\ para$ el cálculo de límites.

Regla de L'Hôpital. Sean $\triangle \in \{a, a^+, a^-, +\infty, -\infty\}$ y f y g funciones tales que $\lim_{x \to \triangle} f(x) = \lim_{x \to \triangle} g(x) \in \{0, +\infty, -\infty\}$. Si existe el límite $\lim_{x \to \triangle} f'(x)/g'(x)$, entonces también existe el límite $\lim_{x \to \triangle} f(x)/g(x)$ y se cumple

$$\lim_{x \to \triangle} \frac{f(x)}{g(x)} = \lim_{x \to \triangle} \frac{f'(x)}{g'(x)}.$$

La regla de L'Hôpital también puede aplicarse cuando una de las funciones tiende a $+\infty$ y la otra a $-\infty$. Por ejemplo, supongamos que $\lim_{x\to\Delta} f(x) = -\infty$ y $\lim_{x\to\Delta} g(x) = +\infty$. Entonces,

$$\lim_{x\to\triangle}\frac{f(x)}{g(x)}=-\lim_{x\to\triangle}\frac{-f(x)}{g(x)}=-\lim_{x\to\triangle}\frac{-f'(x)}{g'(x)}=\lim_{x\to\triangle}\frac{f'(x)}{g'(x)}.$$

Convexidad

Sea I un intervalo contenido en el dominio de una función f. La función f es $convexa^2$ en I si, para todo $a, x, b \in I$, con a < x < b, se cumple

$$\frac{f(x) - f(a)}{x - a} < \frac{f(b) - f(a)}{b - a}.\tag{1}$$

Análogamente, la función f es c'oncava en I si, para todo $a, x, b \in I$, con a < x < b, se cumple

$$\frac{f(x) - f(a)}{x - a} > \frac{f(b) - f(a)}{b - a}. (2)$$

²En algunos libros, se denomina función *cóncava* a la que aquí definimos como *convexa* y viceversa. La definición que hemos adoptado se corresponde con sus generalizaciones en múltiples contextos matemáticos.

Las condiciones (1) y (2) pueden escribirse equivalentemente:

$$f(x) < f(a) + \frac{f(b) - f(a)}{b - a}(x - a), \quad f(x) > f(a) + \frac{f(b) - f(a)}{b - a}(x - a).$$

En ambas desigualdades, el término de la derecha corresponde a una función cuya gráfica es la recta que pasa por los dos puntos (a, f(a)) y (b, f(b)). Así pues, geométricamente, la función f es convexa o cóncava en I, según que la gráfica de la función en cada intervalo $[a, b] \subseteq I$ quede por debajo o por encima del segmento de extremos (a, f(a)) y (b, f(b)). En el caso de funciones derivables, la convexidad o concavidad se relacionan con las derivadas como sigue.

Sea f una función derivable en un intervalo I. Entonces:

- Si f es convexa en I, se cumple f(x) > f(a) + f'(a)(x-a) para todo $a, x \in I, x \neq a$.
- Si f es cóncava en I, se cumple f(x) < f(a) + f'(a)(x-a) para todo $a, x \in I, x \neq a$.

Geométricamente, las condiciones anteriores aseguran que si f es convexa (resp. cóncava), la tangente en todo punto de la gráfica queda por debajo (resp. por encima) de la función.

El criterio más usual de convexidad o concavidad es el siguiente. Sea f una función tal que existe f'' en un intervalo I.

- Si f''(x) > 0 para todo $x \in I$, entonces f es convexa en I.
- Si f''(x) < 0 para todo $x \in I$, entonces f es cóncava en I.

Sean f una función y a un punto de su dominio tal que existe un entorno $(a - \delta, a + \delta)$ de a contenido en el dominio de f. Si f es convexa en $(a - \delta, a)$ y cóncava en $(a, a + \delta)$, o bien cóncava en $(a - \delta, a)$ y convexa en $(a, a + \delta)$, se dice que a es un punto de inflexión de la función. Tenemos la condición necesaria siguiente:

■ Si a es un punto de inflexión de f y en un entorno de a existe f'' y es continua, entonces f''(a) = 0.

Extremos absolutos en intervalos cerrados

Según el Teorema de Weierstrass, toda función continua f en un intervalo cerrado [a,b] tiene máximo y mínimo absolutos en dicho intervalo, es decir, existen al menos dos puntos x_M y x_m en [a,b] tales que

$$f(x_m) \le f(x) \le f(x_M)$$
 para todo $x \in [a, b]$.

Los puntos x_m y x_M están entre los siguientes:

- Los extremos del intervalo, x = a y x = b.
- Los puntos de (a, b) en que f no sea derivable.
- Los puntos de (a,b) en que la derivada de f es cero (los cuales se llaman puntos críticos de f).

Resolución aproximada de ecuaciones

El método de Newton-Raphson

Sea f una función derivable definida en el intervalo [a, b]. Deseamos encontrar una solución de la ecuación f(x) = 0. Empezamos con un valor inicial x_0 y definimos para cada número natural n

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Geométricamente, x_{n+1} es la abcisa del punto de intersección de la recta tangente en $(x_n, f(x_n))$ con el eje de abcisas.

El valor inicial x_0 debe tomarse razonablemente cerca de la solución buscada. La derivada de f no debe anularse durante el proceso iterativo. En estas condiciones, la sucesión (x_n) converge hacia una solución de la ecuación. El método puede fallar si esta solución es múltiple.

El método de la secante

Este método se basa en la fórmula de Newton-Raphson, pero evita el cálculo de la derivada usando la siguiente aproximación:

$$f'(x_n) \simeq \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}.$$

Sustituyendo en la fórmula de Newton-Raphson, obtenemos:

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}.$$