

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Detailed Course on Group Theory For CSIR NET 2023

Gajendra Purohit

November 3

Enroll Now

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Power series: A series of the form $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ is known

as real infinite power series where an are constant.

i.e.
$$\sum_{n=0}^{\infty} a_n (x-x_0)^n = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + \dots$$

Some important facts of power series when $x_0 = 0$:

(1) Every power series converges for x = 0, for all value of coefficient a_n. i.e. if power series is not convergent other than x = 0, then this series is called nowhere convergent. (2) If a given series converge for all value of x, then we say that the given power series every where convergent.

Region of convergence:

(3) If the given power series converges for some value of x and diverge for other value of x then the set of all value of x for which it is convergent is known as region of convergence.

Radius of convergence:

Let $\sum a_n x^n$ is a power series and |x| < R is region of convergence then R is called radius of convergence.

Formula for finding radius of convergence

$$\frac{1}{R} = \overline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \overline{\lim}_{n \to \infty} |a_n|^{1/n}$$

Some useful results:

- (1) The radius of convergence of $\sum a_n x^n$ is equal to $\sum na_n x^{n-1}$.
- (2) The radius of convergence of $\sum a_n x^n$ is equal to $\sum \frac{a_n}{(n+1)} x^{n+1}.$
- (3) If R is the radius of convergence of $\sum a_n x^n$ then radius of convergence of $\sum a_n x^{pm}$ and $\sum a_n x^{pm+k}$; $k \in N$ is $(R)^{1/2}$, p > 0.
- $\sum a_n x^{pm+k} \; ; \; k \in N \text{ is } (R)^{1/p}, p > 0.$ (4) If R and R₁ are the radius of convergence of $\sum a_n x^n$ and $\sum b_n x^n$ then radius of convergence of $\sum (a_n x^n + b_n x^n)$ is min{R, R₁}

Q1. The radius of convergence of the power series

$$\sum_{n=0}^{\infty} \left(\frac{n^2}{4^n}\right) x^{5n} \text{ is } \mathbf{IIT JAM 2022}$$

(a) 4

(b) ⁵√4

(c) $\frac{1}{4}$

 $(d) \quad \frac{1}{\sqrt[5]{4}}$

Let r be the radius of convergence of the power series Q2.

$$\frac{1}{3} + \frac{x}{5} + \frac{x^2}{3^2} + \frac{x^3}{5^2} + \frac{x^4}{5^3} + \frac{x^5}{5^3} + \dots$$
 then the value of r^2

is IIT JAM 2022

(a) 1

(c)5

(b) 3 (d) 7

Q3. The radius of convergence of the power series

$$\sum_{n=1}^{\infty} \left(\frac{n+2}{n}\right)^{n^2} x^n \text{ is IIT-JAM 2020}$$

$$(a) e^2$$

(b)
$$\frac{1}{\sqrt{e}}$$

(c)
$$\frac{1}{e}$$

(d)
$$\frac{1}{e^2}$$

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Q4. Let $a_n = \frac{(1+(-1)^n)}{2^n} + \frac{(1+(-1)^{n-1})}{3^n}$ then the radius of

convergence of the power series $\sum_{n=0}^{\infty} a_n x^n$ about x = 0

IIT JAM 2018

(a) 1

(b) 2

(c) 3

(d) 4

Q5. Let k be a positive integer. The radius of convergence

of the series $\sum_{n=0}^{\infty} \frac{(n!)^k}{(kn)!} z^n$ is [CSIR NET 2014]

(a) k

(b) k^{-k}

(c) k^k

(d) ∞

Q6. The sum of the finite series

$$S = \frac{1}{2} - \frac{1}{3 \times 1!} + \frac{1}{4 \times 2!} - \frac{1}{5 \times 3!} + \dots$$
 is equal to

[CSIR-NET Nov. 2020]

(A)
$$2 - \frac{1}{e}$$

(B)
$$1 - \frac{2}{e}$$

(C)
$$\frac{2}{e}$$
 -1

(D)
$$\frac{1}{e} - 2$$

Q7. Let
$$S_1 = \frac{1}{3} - \frac{1}{2} \times \frac{1}{3^2} + \frac{1}{3} \times \frac{1}{3^3} - \frac{1}{4} \times \frac{1}{3^4} + \dots$$
 and

$$S_2 = \frac{1}{4} + \frac{1}{2} \times \frac{1}{4^2} + \frac{1}{3} \times \frac{1}{4^3} + \frac{1}{4} \times \frac{1}{4^4} + \dots$$
 Which of the

following identities is true?

[CSIR-NET Feb. 2022]

(A)
$$3S_1 = 4S_2$$
 (B) $4S_1 = 3S_2$

(B)
$$4S_1 = 3S_2$$

(C)
$$S_1 + S_2 = 0$$
 (D) $S_1 = S_2$

(D)
$$S_1 = S_2$$

Detailed Course on Group Theory For CSIR NET 2023

Gajendra Purohit

November 3

Enroll Now

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 • 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR