CSSS508, Week 3

Manipulating and Summarizing Data

Chuck Lanfear

Apr 17, 2019

Updated: Apr 13, 2019

Death to Spreadsheets

Today we'll talk more about dplyr: a package that does in R just about any calculation you've tried to do in Excel, but more *transparently*, *reproducibly*, and *safely*.

Don't be the next sad research assistant who makes headlines with an Excel error (Reinhart & Rogoff, 2010)

Modifying Data Frames with dplyr

-UW CS&SS-

But First, Pipes (%>%)

dplyr uses the magrittr forward pipe operator, usually called simply a
pipe. We write pipes like %>% (Ctrl+Shift+M).

Pipes take the object on the *left* and apply the function on the *right*: x %% f(y) = f(x, y). Read out loud: "and then..."

```
library(dplyr)
library(gapminder)
gapminder %>% filter(country == "Canada") %>% head(2)
```

```
## # A tibble: 2 x 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Canada Americas 1952 68.8 14785584 11367.
## 2 Canada Americas 1957 70.0 17010154 12490.
```

Pipes save us typing, make code readable, and allow chaining like above, so we use them *all the time* when manipulating data frames.

Using Pipes

Pipes are clearer to read when you have each function on a separate line (inconsistent in these slides because of space constraints).

```
take_these_data %>%
  do_first_thing(with = this_value) %>%
  do_next_thing(using = that_value) %>% ...
```

Stuff to the left of the pipe is passed to the *first argument* of the function on the right. Other arguments go on the right in the function.

If you ever find yourself piping a function where data are not the first argument, use . in the data argument instead.

```
yugoslavia %>% lm(pop ~ year, data = .)
```

Pipe Assignment

When creating a new object from the output of piped functions, place the assignment operator at the beginning.

```
lm_pop_year <- gapminder %>%
  filter(continent == "Americas") %>%
  lm(pop ~ year, data = .)
```

No matter how long the chain of functions is, assignment is always done at the top.¹

[1] Note this is just a stylistic convention: If you prefer, you *can* do assignment at the end of the chain.

Filtering Rows (subsetting)

Recall last week we used the filter() command to subset data like so:

```
Canada <- gapminder %>%
  filter(country == "Canada")
```

Excel analogue: Filter!

Another Operator: %in%

Common use case: Filter rows to things in some set.

We can use %in% like == but for matching *any element* in the vector on its right¹.

```
## # A tibble: 2 x 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Slovenia Europe 2002 76.7 2011497 20660.
## 2 Slovenia Europe 2007 77.9 2009245 25768.
```

[1] The c() function is how we make **vectors** in R, which are an important data type.

distinct()

You can see all the *unique values* in your data for combinations of columns using distinct():

gapminder %>% distinct(continent, year)

```
## # A tibble: 60 x 2
##
      continent year
##
   <fct>
                <int>
    1 Asia
                 1952
##
##
   2 Asia
                 1957
##
   3 Asia
                 1962
##
   4 Asia
                 1967
##
   5 Asia
                 1972
   6 Asia
                 1977
##
##
   7 Asia
                 1982
   8 Asia
                 1987
##
    9 Asia
##
                 1992
## 10 Asia
                 1997
## # ... with 50 more rows
```

distinct() drops unused variables!

Note that the default behavior of distinct() is to drop all unspecified columns. If you want to get distinct rows by certain variables without dropping the others, use distinct(.keep all=TRUE):

```
gapminder %>% distinct(continent, year, .keep_all=TRUE)
```

```
## # A tibble: 60 x 6
##
                 continent
                            year lifeExp pop gdpPercap
     country
     <fct>
                 <fct>
                           <int>
                                   <dbl>
                                            <int>
                                                     <dbl>
##
   1 Afghanistan Asia
                                    28.8 8425333
                                                      779.
                            1952
##
   2 Afghanistan Asia
##
                            1957
                                    30.3 9240934
                                                      821.
   3 Afghanistan Asia
                            1962
                                    32.0 10267083
                                                      853.
##
   4 Afghanistan Asia
                                    34.0 11537966
##
                            1967
                                                      836.
   5 Afghanistan Asia
                            1972
                                    36.1 13079460
                                                      740.
##
   6 Afghanistan Asia
##
                            1977
                                    38.4 14880372
                                                      786.
   7 Afghanistan Asia
                                    39.9 12881816
                                                      978.
##
                            1982
   8 Afghanistan Asia
##
                            1987
                                                      852.
                                    40.8 13867957
   9 Afghanistan Asia
                                                      649.
##
                            1992
                                    41.7 16317921
## 10 Afghanistan Asia
                            1997
                                    41.8 22227415
                                                      635.
## # ... with 50 more rows
```

Sampling Rows: sample_n()

We can also filter *at random* to work with a smaller dataset using sample_n() or sample_frac().

```
set.seed(413) # makes random numbers repeatable
yugoslavia %>% sample_n(size = 6, replace = FALSE)

## # A tibble: 6 x 6
```

```
country continent
                         year lifeExp pop gdpPercap
##
                                <dbl> <int>
##
    <fct>
               <fct>
                         <int>
                                                  <dbl>
## 1 Montenegro Europe
                          1962
                                 63.7 474528
                                                  4650.
## 2 Montenegro Europe
                          1982
                                 74.1 562548
                                                 11223.
## 3 Serbia
               Europe
                          1962
                                 64.5 7616060
                                                  6290.
## 4 Slovenia
               Europe
                          1952
                                 65.6 1489518
                                                  4215.
## 5 Serbia
               Europe
                          1952
                                 58.0 6860147
                                                  3581.
## 6 Croatia
               Europe
                          1997
                                                  9876.
                                 73.7 4444595
```

Use set.seed() to make all random numbers in a file come up *exactly the same* each time it is run. Read *Details* in ?set.seed if you like your brain to hurt.

Sorting: arrange()

Along with filtering the data to see certain rows, we might want to sort it:

```
yugoslavia %>% arrange(year, desc(pop))
```

```
## # A tibble: 60 x 6
                             continent year lifeExp
##
                                                         pop gdpPercap
     country
     <fct>
                                       <int>
                                               <dbl>
                                                       <int>
                                                                 <dbl>
                             <fct>
##
##
   1 Serbia
                             Europe
                                        1952
                                                58.0 6860147
                                                                 3581.
   2 Croatia
                             Europe
                                        1952
                                                61.2 3882229
                                                                 3119.
##
##
   3 Bosnia and Herzegovina Europe
                                        1952
                                                53.8 2791000
                                                                  974.
   4 Slovenia
##
                             Europe
                                        1952
                                                65.6 1489518
                                                                 4215.
   5 Montenegro
                             Europe
                                        1952
                                                59.2 413834
                                                                 2648.
##
##
   6 Serbia
                             Europe
                                        1957
                                                61.7 7271135
                                                                 4981.
##
   7 Croatia
                             Europe
                                        1957
                                                64.8 3991242
                                                                 4338.
   8 Bosnia and Herzegovina Europe
                                        1957
                                                58.4 3076000
                                                                 1354.
##
   9 Slovenia
##
                             Europe
                                        1957
                                                67.8 1533070
                                                                 5862.
## 10 Montenegro
                             Europe
                                        1957
                                                61.4 442829
                                                                 3682.
## # ... with 50 more rows
```

The data are sorted by ascending year and descending pop.

Keeping Columns: select()

Not only can we limit rows, but we can include specific columns (and put them in the order listed) using select().

```
yugoslavia %>% select(country, year, pop) %>% head(4)
```

```
## # A tibble: 4 x 3
##
     country
                             year
                                      pop
##
     <fct>
                            <int>
                                    <int>
## 1 Bosnia and Herzegovina
                            1952 2791000
## 2 Bosnia and Herzegovina
                            1957 3076000
## 3 Bosnia and Herzegovina
                            1962 3349000
## 4 Bosnia and Herzegovina
                            1967 3585000
```

Dropping Columns: select()

We can instead drop only specific columns with select() using - signs:

```
yugoslavia %>% select(-continent, -pop, -lifeExp) %>% head(4)
```

```
## # A tibble: 4 x 3
##
     country
                              year gdpPercap
     <fct>
                                        <dbl>
##
                             <int>
## 1 Bosnia and Herzegovina
                              1952
                                        974.
## 2 Bosnia and Herzegovina
                              1957
                                        1354.
## 3 Bosnia and Herzegovina
                              1962
                                        1710.
## 4 Bosnia and Herzegovina
                                        2172.
                              1967
```

Helper Functions for select()

select() has a variety of helper functions like starts_with(),
ends_with(), and contains(), or can be given a range of continguous
columns startvar:endvar. See ?select for details.

These are very useful if you have a "wide" data frame with column names following a pattern or ordering.

```
A tibble: 6 \times 292
married10 married11 married12 married13 married14 married15 married16 married17 married18 married19 married20
    <db1>
              <db1>
                         <fdb>>
                                   <db1>
                                              < db1>
                                                                  <db1>
                                                                                       <db1>
                                                                                                  < db1>
                                                                                                            < db1>
                 NA
                 NA
                            NA
                                      NA
                 NA
                                      NA
       NA
       NA
                 NA
                            NA
                                      NA
                 NA
       NA
... with 281 more variables: married21 <dbl>, married22 <dbl>, married23 <dbl>, married24 <dbl>,
  married25 <dbl>, married26 <dbl>, in_school10 <dbl>, in_school11 <dbl>, in_school12 <dbl>, in_school13 <dbl>,
  in_school14 <dbl>, in_school15 <dbl>, in_school16 <dbl>, in_school17 <dbl>, in_school18 <dbl>,
  in school19 <dbl>. in school20 <dbl>. in school21 <dbl>. in school22 <dbl>. in school23 <dbl>.
```

```
DYS %>% select(starts_with("married"))
DYS %>% select(ends_with("18"))
```

Renaming Columns with select()

We can rename columns using select(), but that drops everything that isn't mentioned:

```
yugoslavia %>%
  select(Life_Expectancy = lifeExp) %>%
  head(4)
```

Safer: Rename Columns with rename()

rename() renames variables using the same syntax as select() without dropping unmentioned variables.

```
yugoslavia %>%
   select(country, year, lifeExp) %>%
   rename(Life_Expectancy = lifeExp) %>%
   head(4)
```

```
## # A tibble: 4 x 3
                             year Life_Expectancy
##
     country
     <fct>
##
                             <int>
                                             <dbl>
## 1 Bosnia and Herzegovina
                             1952
                                              53.8
## 2 Bosnia and Herzegovina
                             1957
                                              58.4
## 3 Bosnia and Herzegovina
                              1962
                                              61.9
## 4 Bosnia and Herzegovina
                              1967
                                              64.8
```

Column Naming Practices

- *Good* column names will be self-describing. Don't use inscrutable abbreviations to save typing. RStudio's autocompleting functions take away the pain of long variable names: Hit TAB while writing code to autocomplete.
- *Valid* "naked" column names can contain upper or lowercase letters, numbers, periods, and underscores. They must start with a letter or period and not be a special reserved word (e.g. TRUE, if).
- Names are case-sensitive: Year and year are not the same thing!
- You can include spaces or use reserved words if you put backticks around the name. Spaces can be worth including when preparing data for ggplot2 or pander since you don't have to rename axes or table headings.

Column Name with Space Example

```
library(pander)
yugoslavia %>% filter(country == "Serbia") %>%
    select(year, lifeExp) %>%
    rename(Year = year, `Life Expectancy` = lifeExp) %>%
    head(5) %>%
    pander(style = "rmarkdown", caption = "Serbian life expectancy")
```

Year	Life Expectancy
1952	58
1957	61.69
1962	64.53
1967	66.91
1972	68.7

Table: Serbian life expectancy

Create New Columns: mutate()

In dplyr, you can add new columns to a data frame using mutate().

```
## # A tibble: 5 x 5
##
     year pop lifeExp pop million life exp past 40
    <int> <int>
                  <dbl>
                             <dbl>
##
                                           < [db>
## 1 1952 6860147 58.0
                             6.86
                                            18.0
                   61.7 7.27
## 2 1957 7271135
                                            21.7
## 3 1962 7616060
                   64.5
                           7.62
                                            24.5
## 4 1967 7971222
                   66.9
                           7.97
                                            26.9
## 5 1972 8313288
                   68.7
                             8.31
                                            28.7
```

Note you can create multiple variables in a single mutate() call by separating the expressions with commas.

ifelse()

A common function used in mutate() (and in general in R programming) is ifelse(). It returns a vector of values depending on a logical test.

```
ifelse(test = x==y, yes = first_value , no = second_value)
```

Output from ifelse() if x==y is...

- TRUE: first_value the value for yes =
- FALSE: second_value the value for no =

[1] "Positive" "Not Positive" NA

• NA: NA - because you can't test for NA with an equality!

For example:

```
example <- c(1, 0, NA, -2)
ifelse(example > 0, "Positive", "Not Positive")
```

"Not Positive"

ifelse() Example

Read this as "For each row, if country equals 'Bosnia and Herzegovina, make short_country equal to 'B and H', otherwise make it equal to that row's value of country."

This is a simple way to change some values but not others!

recode()

recode() is another useful function to use inside mutate(). Use recode() to change specific values to other values, particularly with factors. You can change multiple values at the same time. Note if a value has spaces in it, you'll need to put it in backticks!

```
## # A tibble: 5 x 1
## country
## <fct>
## 1 B and H
## 2 Croatia
## 3 M
## 4 Serbia
## 5 Slovenia
```

case_when()

case_when() performs multiple ifelse() operations at the same time.
case_when() allows you to create a new variable with values based on
multiple logical statements. This is useful for making categorical variables or
variables from combinations of other variables.

```
gapminder %>%
  mutate(gdpPercap_ordinal =
    case_when(
      gdpPercap < 700 ~ "low",
      gdpPercap >= 700 & gdpPercap < 800 ~ "moderate",
      TRUE ~ "high" )) %>% # Value when all other statements are FALSE
  slice(6:9) # get rows 6 through 9
```

```
## # A tibble: 4 x 7
##
    country continent year lifeExp
                                        pop gdpPercap gdpPercap ordinal
    <fct>
                        <int>
                               <dbl>
                                       <int>
                                                <dbl> <chr>
##
         <fct>
                        1977 38.4 14880372
## 1 Afghanistan Asia
                                                 786. moderate
## 2 Afghanistan Asia
                        1982 39.9 12881816
                                                978. high
## 3 Afghanistan Asia
                                                 852. high
                        1987 40.8 13867957
## 4 Afghanistan Asia
                        1992
                               41.7 16317921
                                                 649. low
```


-UW CS&SS

General Aggregation: summarize()

summarize() takes your column(s) of data and computes something using
every row:

- Count how many rows there are
- Calculate the mean
- Compute the sum
- Obtain a minimum or maximum value

You can use any function in summarize() that aggregates multiple values into a single value (like sd(), mean(), or max()).

summarize() Example

For the year 1982, let's get the number of observations, total population, mean life expectancy, and range of life expectancy for former Yugoslavian countries.

These new variables are calculated using *all of the rows* in yugoslavia

Avoiding Repetition:

summarize_at()

Maybe you need to calculate the mean and standard deviation of a bunch of columns. With summarize_at(), put the variables to compute over first in vars() (like select() syntax) and put the functions to use in a list() after.

```
yugoslavia %>%
  filter(year == 1982) %>%
  summarize_at(vars(lifeExp, pop), list(mean, sd))
```

```
## # A tibble: 1 x 4
## lifeExp_fn1 pop_fn1 lifeExp_fn2 pop_fn2
## <dbl> <dbl> <dbl> <dbl> ## 1 71.3 4008537 1.60 3237282.
```

Note it automatically names the summarized variables based on the functions used to summarize.

Avoiding Repetition

Other functions:

There are additional dplyr functions similar to summarize_at():

• summarize_all() and mutate_all() summarize / mutate *all* variables sent to them in the same way. For instance, getting the mean and standard deviation of an entire dataframe:

```
dataframe %>% summarize_all(list(mean, sd))
```

• summarize_if() and mutate_if() summarize / mutate all variables that satisfy some logical condition. For instance, summarizing every numeric column in a dataframe at once:

```
dataframe %>% summarize_if(is.numeric, list(mean, sd))
```

You can use all of these to avoid typing out the same code repeatedly!

group_by()

The special function <code>group_by()</code> changes how functions operate on the data, most importantly <code>summarize()</code>.

Functions after <code>group_by()</code> are computed *within each group* as defined by variables given, rather than over all rows at once. Typically the variables you group by will be integers, factors, or characters, and not continuous real values.

Excel analogue: pivot tables

group_by() example

```
## # A tibble: 5 x 4
     year num_countries total_pop total_gdp_per_cap
##
##
    <int>
                  <int>
                            <int>
                                              <dbl>
     1952
                      5 15436728
                                              3030.
## 1
                         16314276
                                              4187.
## 2 1957
## 3 1962
                         17099107
                                              5257.
                      5 17878535
                                              6656.
## 4 1967
## 5 1972
                         18579786
                                              8730.
```

Because we did group_by() with year then used summarize(), we get one row per value of year!

Window Functions

Grouping can also be used with mutate() or filter() to give rank orders within a group, lagged values, and cumulative sums. You can read more about window functions in this <u>vignette</u>.

```
## # A tibble: 4 x 5
## # Groups: country [2]
##
    country
                           year pop lag_pop pop_chg
    <fct>
                          <int> <int> <int> <int>
##
## 1 Bosnia and Herzegovina 2002 4165416
                                           NA
                                                   NA
## 2 Bosnia and Herzegovina 2007 4552198 4165416 386782
## 3 Croatia
                           2002 4481020
                                                   NA
                                           NA
## 4 Croatia
                           2007 4493312 4481020 12292
```


When Do We Need to Join Tables?

- Want to make columns using criteria too complicated for ifelse() or case_when()
 - We can work with small sets of variables then combine them back together.
- Combine data stored in separate data sets: e.g. UW registrar data with police stop records.
 - Often large surveys are broken into different data sets for each level (e.g. household, individual, neighborhood)

Joining in Concept

We need to think about the following when we want to merge data frames A and B:

- Which *rows* are we keeping from each data frame?
- Which *columns* are we keeping from each data frame?
- Which variables determine whether rows *match*?

Join Types: Rows and columns kept

There are many types of joins¹...

- A %>% left_join(B): keep all rows from A, matched with B wherever possible (NA when not), keep columns from both A and B
- A %>% right_join(B): keep all rows from B, matched with A wherever possible (NA when not), keep columns from both A and B
- A %>% inner_join(B): keep only rows from A and B that match, keep columns from both A and B
- A %>% full_join(B): keep all rows from both A and B, matched wherever possible (NA when not), keep columns from both A and B
- A %>% semi_join(B): keep rows from A that match rows in B, keep columns from only A
- A %>% anti_join(B): keep rows from A that *don't* match a row in B, keep columns from only A

[1] Usually left_join() does the job.

Matching Criteria

We say rows should *match* because they have some columns containing the same value. We list these in a by = argument to the join.

Matching Behavior:

- No by: Match using all variables in A and B that have identical names
- by = c("var1", "var2", "var3"): Match on identical values of var1, var2, and var3 in both A and B
- by = c("Avar1" = "Bvar1", "Avar2" = "Bvar2"): Match identical values of Avar1 variable in A to Bvar1 variable in B, and Avar2 variable in A to Bvar2 variable in B

Note: If there are multiple matches, you'll get *one row for each possible combination* (except with semi join() and anti join()).

Need to get more complicated? Break it into multiple operations.

nycflights13 Data

We'll use data in the nycflights13 package. Install and load it:

```
# install.packages("nycflights13") # Uncomment to run
library(nycflights13)
```

It includes five dataframes, some of which contain missing data (NA):

- flights: flights leaving JFK, LGA, or EWR in 2013
- airlines: airline abbreviations
- airports: airport metadata
- planes: airplane metadata
- weather: hourly weather data for JFK, LGA, and EWR

Note these are *separate data frames*, each needing to be *loaded separately*:

```
data(flights)
data(airlines)
data(airports)
# and so on...
```

Join Example #1

Who manufactures the planes that flew to Seattle?

```
## # A tibble: 6 x 2
    manufacturer
##
                             n
     <chr>
                         <int>
##
## 1 BOEING
                          2659
## 2 AIRBUS
                           475
## 3 AIRBUS INDUSTRIE
                           394
## 4 <NA>
                           391
## 5 BARKER JACK L
## 6 CIRRUS DESIGN CORP
```

Note you can perform operations on the data inside functions such as left_join() and the *output* will be used by the function.

Join Example #2

Which airlines had the most flights to Seattle from NYC?

```
flights %>% filter(dest == "SEA") %>%
    select(carrier) %>%
    left_join(airlines, by = "carrier") %>%
    group_by(name) %>%
    tally() %>%
    arrange(desc(n))
```

```
## # A tibble: 5 x 2
## name n
## <chr> ## 1 Delta Air Lines Inc. 1213
## 2 United Air Lines Inc. 1117
## 3 Alaska Airlines Inc. 714
## 4 JetBlue Airways 514
## 5 American Airlines Inc. 365
```

tally() is a shortcut for summarize(n(.)): It creates a variable n equal to the number of rows in each group.

Join Example #3

Is there a relationship between departure delays and wind gusts?

Because the data are the first argument for <code>ggplot()</code>, we can pipe them straight into a plot.

Wind Gusts and Delays

Check out those 1200 mph winds!¹

[1] These observations appear to have been fixed in the current data.

Redo After Removing Extreme Outliers, Just Trend

```
flights %>%
    select(origin, year, month, day, hour, dep_delay) %>%
    inner_join(weather, by = c("origin", "year", "month", "day", "hour")) %>%
    select(dep_delay, wind_gust) %>%
    filter(!is.na(dep_delay) & !is.na(wind_gust) & wind_gust < 250) %>%
    ggplot(aes(x = wind_gust, y = dep_delay)) +
        geom_smooth() +
        theme_bw(base_size = 16) +
        xlab("Wind gusts in departure hour (mph)") +
        ylab("Average departure delay (minutes)")
```

I removed geom_point() to focus on the mean trend produced by geom_smooth().

Wind Gusts and Delays: Mean Trend

Tinkering Suggestions

Some possible questions to investigate:

- What are the names of the most common destination airports?
- Which airlines fly from NYC to your home city?
- Is there a relationship between departure delays and precipitation?
- Use the time zone data in airports to convert flight arrival times to NYC local time.
 - What is the distribution of arrival times for flights leaving NYC over a 24 hour period?
 - Are especially late or early arrivals particular to some regions or airlines?

Warning: flights has 336776 rows, so if you do a sloppy join, you can end up with **many** matches per observation and have the data *explode* in size.

Homework 3

Pick something to look at in the nycflights13 data and write up a .Rmd file showing your investigation. Upload both the .Rmd file and the .html file to Canvas. You must use at least once: mutate(), summarize(), group_by(), and any join. *Include at least one nicely formatted plot (ggplot2) and one table (pander)*. In plots and tables, use "nice" variable names (try out spaces!) and rounded values (<= 3 digits).

This time, include all your code in your output document (echo=TRUE), using comments and line breaks separating commands so that it is clear to a peer what you are doing (or trying to do!). You must write up your observations briefly in words as well.

Note: If you want to see the nycflights13 dataframes in the environment, you will need to load *each one*: airlines, airports, flights, planes, and weather (e.g. data(flights)).

DUE: 11:59 PM, April 17th

-UW CS&SS