A row of cookies

1 second 256 MB

You want to maintain a row of cookies. In this row, the cookies are ordered from left to right. Each cookie has a *unique* number on it. You start with a row with no cookies. An example of a row of cookies are shown below.

In this example, the number of the 1st cookie is 3. The 6th cookie has number 13.

You can perform two operations:

- **Insert** a new cookie after the first k-th cookie, where $0 \le k \le 5$. If k = 0, the new cookie is inserted as the first cookie. It is possible that there are less than *k* cookies in the row; in this case, the new cookie will be inserted at the end of the row.
- **Eat** the *k*-th cookie, where $1 \le k \le 5$. Again, it is possible that there are less than *k* cooikes; in this case you do not eat any cookie.

The following example shows a few of these operations.

Step	Operation	k	New cookie number	Cookie row after the operation
(Initial)	-	-	-	(empty)
1	2 (eat)	3	-	(empty) (no 3 rd cookie)
2	1 (insert)	1	1	1 (insert at the end)
3	1 (insert)	0	3	3, 1
4	1 (insert)	1	7	3, 7, 1
5	1 (insert)	3	29	3, 7, 1, 29
6	2 (eat)	3	-	3, 7, 29
7	1 (insert)	0	90	90, 3, 7, 29
8	2 (eat)	1	-	3, 7, 29
9	1 (insert)	5	100	3, 7, 29, 100 (insert at the end)
10	2 (eat)	5	-	3, 7, 29, 100 (no 5 th cookie)

Write a program that perform these operations and output the final row at the end.

Input

The first line of the input contains an integer T, the number of operations to perform (1 <= T <= 100,000). The next T lines describe the operations.

Line 1 + i, for $1 \le i \le T$, describes the *i*-th operation in the following format. The first integer L is 1 (insert) or 2 (eat).

- If L = 1, there are two integers k and x. (0<=k<=5; 1<=x<=1,000,000,000) In this case, you want to insert a cookie with number *x* after the *k*-th cookie.
- If L = 2, there is an integer k. (1<=k<=5) In this case you want to eat the k-th cookie.

Output

You program should print the list of cookie numbers left after the last operations, one number per line.

Scoring

- There are 30% of test cases that $T \le 1,000$.
- There are 30% of test cases that all operations are insert (i.e., L = 1 in every operation).

Example

Input	Output
10	3
2 3	7
	29
$\begin{bmatrix} \bar{1} & \bar{0} & \bar{3} \end{bmatrix}$	100
1 1 7	
1 3 29	
2 3	
1 0 90	
2 1	
1 5 100 2 5	
2 3	