Propositional logic 1

 $\Gamma = F_1, \dots, F_n \ (promises); \ F \ conclusion; \ \Gamma \vDash F \iff F \ \text{is a logical consequence of } \Gamma.$ Valid formula \iff Tautology \iff True in any circumstance. Inconsistent formula \iff Unsatisfiable formula \iff False in any circumstance. G valid $\iff \neg G$ inconsistent.

	Truth table of main logical connectives							
P_1	P_2	$\neg P_1$	$P_1 \wedge P_2$	$P_1 \vee P_2$	$P_1 \rightarrow P_2$	$P_1 \leftrightarrow P_2$		
Τ	Т	F	Τ	Т	Т	T		
Т	F	F	F	Т	F	F		
F	Т	Т	F	Т	Т	F		
F	F	Т	F	F	Т	Т		

F logically equivalent to $G \iff F \equiv G \iff (F \models G \text{ and } G \models F).$

Logical equivalence rules					
$P \wedge Q$	≡	$Q \wedge P$	Commutativity of AND		
$P \lor Q$	=	$Q \lor P$	Commutativity of OR		
$(P \wedge Q) \wedge R$	=	$P \wedge (Q \wedge R)$	Associativity of AND		
$(P \lor Q) \lor R$	=	$P \vee (Q \vee R)$	Associativity of OR		
$\neg(\neg P)$	=	P	Double-negation elimination		
P o Q	=	$\neg P \rightarrow \neg Q$	Contraposition		
P o Q	=	$\neg P \land Q$	Implication elimination		
$P \leftrightarrow Q$	=	$(P \to Q) \land (Q \to P)$	Biconditional elimination		
$\neg (P \land Q)$	=	$\neg P \lor \neg Q$	De Morgan		
$\neg (P \lor Q)$	=	$\neg P \land \neg Q$	De Morgan		
$P \wedge (Q \vee R)$	=	$(P \wedge Q) \vee (P \wedge R)$	Distributivity of AND over OR		
$P \lor (Q \land R)$	≡	$(P \vee Q) \wedge (P \vee R)$	Distributivity of OR over AND		

Conjunctive Normal Form (CNF): $F = F_1 \wedge F_2 \wedge ... \wedge F_n$ where $F_i = F_{i1} \vee F_{i2} \vee ... \vee F_{ik}$. Disjunctive Normal Form (DNF): $F = F_1 \vee F_2 \vee ... \vee F_n$ where $F_i = F_{i1} \wedge F_{i2} \wedge ... \wedge F_{ik}$. Deduction Theorem: $(F_1 \wedge F_2 \wedge ... \wedge F_n) \models G \iff (\models (F_1 \wedge F_2 \wedge ... \wedge F_n)) \rightarrow G$ Proof by refutation: $(F_1 \wedge F_2 \wedge ... \wedge F_n) \models G \iff F_1 \wedge F_2 \wedge ... \wedge F_n \wedge \neg G$ inconsistent.

Natural deduction

AND:
$$\frac{\varphi}{\varphi \wedge \theta} \wedge I \qquad \frac{\varphi \wedge \theta}{\varphi} \wedge E \quad \frac{\varphi \wedge \theta}{\varphi} \wedge E.$$
OR:
$$\frac{\varphi}{\varphi \vee \theta} \vee I \quad \frac{\theta}{\varphi \vee \theta} \vee I \qquad .$$

$$[\varphi]$$

$$\vdots$$
IMPLIES:
$$\frac{\theta}{\varphi \to \theta} \to I \qquad \frac{\varphi \quad \varphi \to \theta}{\theta} \to E.$$

Ex falso sequitur quodlibet: $\frac{\bot}{\varphi}\bot$. Reduction ad absurdum: $\frac{\bot}{\varphi}$ RAA. Completeness theorem: $\Gamma \vdash \varphi \Rightarrow \Gamma \vDash \varphi$. Soundness theorem $\Gamma \vdash \varphi \Leftarrow \Gamma \vDash \varphi$.