

SY BTech Semester-IV (AY 2022-23)

Computer Science and Engineering (Cybersecurity and Forensics)

Disclaimer:

- a. Information included in these slides came from multiple sources. We have tried our best to cite the sources. Please refer to the <u>references</u> to learn about the sources, when applicable.
- b. The slides should be used only for preparing notes, academic purposes (e.g. in teaching a class), and should not be used for commercial purposes.

Information and Cyber Security (CET3004B)

Examination Scheme: Credit: 3+1

Class Continuous Assessment: 30 Marks

Lab Continuous Assessment: 30 Marks

End Semester Examination: 40 Marks

Information and Cyber Security

Course Objectives:

1. Knowledge:

- (i) To focus on the models, tools, and techniques for enforcement of security with some emphasis on the use of cryptography. Students will learn security from multiple perspectives
- (ii) To educate students on the fundamental principles and techniques of computer and network security

2. Skills:

- (i) Acquire background on hash functions, authentication, firewalls, intrusion detection techniques
- (ii) Gain hands-on experience with programming and simulation techniques for security protocols

3. Attitude:

- (i) Understand the tradeoffs and criteria/concerns for security countermeasure development
- (ii) Learn to apply methods for authentication, access control, intrusion detection and prevention

Course Outcomes:

- Analyze and resolve security issues in networks and computer systems to secure an IT infrastructure.
- Apply methods for authentication, access control, intrusion detection and prevention.
- Develop policies and procedures to manage enterprise security risks.
- Evaluate and communicate the human role in security systems with an emphasis on ethics, social engineering vulnerabilities and training.
- Identify software security vulnerabilities, summarize and mitigate security risks associated with integrating systems.

Pre-requisites

Operating Systems and Computer Networks

Syllabus

Unit: I	Foundations of Information Security: Information Security fundamentals, it's need, Confidentiality, Integrity, Availability (CIA triad), Security Policies, Procedures, Guidelines, Standards Administrative Measures and Technical Measures, Attacks, Vulnerability, Security Goals, Security Services and Defense mechanisms Cryptographic Techniques: Conventional substitution and transposition ciphers, One-time Pad, Block cipher and Stream Cipher, Cipher modes of operations, Steganography. Symmetric Cryptographic Techniques: DES, AES	9 Hrs
Unit: II	Mathematical Foundations and Public Key Cryptography: Mathematics for Security: Modular Arithmetic, Euler's theorem, Fermat Theorem, Euclidean Algorithm, Miller-Rabin Algorithm, Primality Test, Chinese Remainder Theorem, Discrete Logarithm, Asymmetric Key Cryptography: RSA algorithms. Hash algorithms: MD5, SHA1	9 Hrs

Syllabus (Continue)

	Authentication and Digital Signatures:	
	Use of Cryptography for authentication, Secure Hash function, Key Management and Distribution:	
	Symmetric Key Distribution, Using Symmetric Encryption, Symmetric Key Distribution Using	
Unit: III	Asymmetric Encryption, Distribution of Public Keys	9 Hrs
	Cryptographic Key Infrastructures, Diffie-Hellman Key Exchange, Digital Certificates x509.	
	Authentication Protocols: Remote, Mutual Authentication, Authentication Methods: Password,	
	Two way methods, Biometric Authentications, Kerberos Security	
	Network and Cyber Security:	
	Networks Security Fundamentals, Layer-wise Security concerns, Firewalls: Packet filtering,	
	Stateless and Stateful, Intrusion detection systems: host based, network based IDS, Secured Socket	
Unit: IV	Layer Security, IP level IPSEC security, Email Security: PGP, S/MIME.	9 Hrs
	Cyber Security: Definition and origin, Cyber Crime and information security, Types of Cyber	
	Crime, Classification of Cyber Criminals, Tools used in Cyber Crime, Challenges, Strategies, The	
	Legal Perspective-Indian/Global Perspective, Types of Attack, Social Engineering, Cyber stalking,	
	Ransomware.	

Syllabus (Continue)

Cybersecurity Techniques, Tools and Laws:

Unit: V

Introduction, Proxy servers and Anonymizers, Phishing, Password Cracking tools, Key-loggers and Spywares, DoS and DDoS, Viruses, Worms, Trapdoors, Salami attack, Man-in-the- middle attacks, Covert channels, SQL injection, Cyber Security Safeguards- Overview, Access control, 9 Hrs Audit, Authentication, Biometrics. Cybercrime and Legal perspectives, Cyber laws Indian context, The Indian IT Act-Challenges, Amendments, Challenges to Indian Law and cybercrime Scenario in India, Indian IT Act and Digital Signatures.

Syllabus (Continue)

1. Michael E. Whitman and Herbert J. Mattord, "Principles of Information Security", Cengage Learning;

ISBN: 1285448367

2. Christof Paa and Jan Pelzl, "Understanding Cryptography: A Textbook for Students and Practitioners",

Springer; ISBN: 3642041000

Books:(Reference)

3. William Stallings and Lawrie Brown, "Computer Security: Principles and Practice", Prentice Hall. Swiderski, Frank and Syndex, "Threat Modeling", Microsoft Press.

- 4. Ohn W. Rittinghouse, William M. Hancock, "Cyber Security Operations Handbook", Elsevier Pub.
- 5. Deborah G Johnson, "Computer Ethics", 4th Edition, Pearson Education Publication.
- 6. Earnest A. Kallman, J.P Grillo, "Ethical Decision making and IT: An Introduction with Cases", McGraw Hill Publication.

Supplementary Reading:

Web Resources: 1. https://www.newhorizons.com/promotions/cybersecurity-ebooks

MOOCs and Weblinks: COURSERA, NPTEL, etc.

- https://nptel.ac.in/courses/106106129
- https://www.udemy.com/course/hands-on-penetration-testing-labs-30/

।।न्तन्तुप श्रुपा ।।	
Assign No.	List of Assignments
1.	Write a program using JAVA or Python or C++ to implement any classical cryptographic technique
2.	Write a program using JAVA or Python or C++ to implement Feistal Cipher structure
3.	Write a program using JAVA or Python or C++ to implement S-AES symmetric key algorithm
4.	Write a program using JAVA or Python or C++ to implement RSA asymmetric key algorithm
5.	Write a program using JAVA or Python or C++ to implement integrity of message using MD5 or SHA
6.	Write a program using JAVA or Python or C++ to implement Diffie Hellman Key Exchange Algorithm
7.	Write a program using JAVA or Python or C++ to implement Digital signature using DSA
8.	Demonstrate Email Security using - PGP or S/MIME for Confidentiality, Authenticity and Integrity
9.	Demonstration of secured web applications system using SSL certificates and its deployment in Apache tomcat server
10.	Configuration and demonstration of Intrusion Detection System using Snort
11.	Configuration and demonstration of NESSUS tool for vulnerability assessment

Guidelines for CCA and LCA

CCA and LCA Marks Distribution				
	Examination Scheme	Marks		
Class Continuous	Mid-Term Theory Exam	15		
Assessment (CCA)	Component 1 (Active Learning)	10		
	Component 2 (Theory Assignment)	05		
	Practical Performance	10		
Laboratory Continuous Assessment (LCA)	Active Learning/Additional implementation/ Mini Project/On paper design	10		
	End term practical/Oral Examination	10		
End Term	End Term Theory Examination	40		
Total				

11

Unit-I

Foundations of Information Security & Cryptographic Techniques

Foundations of Information Security

* Cyber security or information security are the techniques of protecting computers, networks, programs and data from unauthorized access or attacks that are aimed for exploitation.

Benjamin Franklin once said

Three people can keep a secret......

..... if two of them are dead!

Security is Not Easy to Achieve:

- Human tendency
- Problems of storage and communication
- Trust in all the parties

Key Security Concepts

□ Elements of Information Security

- **❖** Confidentiality: authorised user can access data
- **❖** Integrity: validity of data
- Availability

Don't forget these roots!!

Attacks -- Services -- Defense

Security Policies, Procedures, Guidelines...

What is a security policy?

- A security policy is a document that states in writing how a company plans to protect its physical and information technology (IT) assets.
- Security policies are living documents that are continuously updated and changing as technologies, vulnerabilities and security requirements change.
- A company's security policy may include an <u>acceptable use policy</u>. These describe how the company plans to educate its employees about protecting the company's assets. They also include an explanation of how security measurements will be carried out and enforced, and a procedure for evaluating the effectiveness of the policy to ensure that necessary corrections are made.

Security Policies, Procedures, Guidelines...

Why are security policies important?

- Security policies are important because they protect an organizations' assets, both physical and digital. They identify all company assets and all threats to those assets.
- Physical security policies are aimed at protecting a company's physical assets, such as buildings and equipment, including computers and other IT equipment.
- Data security policies protect intellectual property from costly events, like <u>data</u> <u>breaches</u> and data leaks.

Policy:

Set of detailed rules as to what is allowed on the system and what is not allowed.

- User Policy
- System Policy
- Network Policy
- US Law
- Trust

User-level Policy

- Authentication: Method, Protection, Disclosure
- Importing software: Process, Safeguards, Location
- File protection: Default, Variations
- Equipment management: Process, Physical Security
- Backups: How, When
- Problem reporting: Who, How, Emergencies

System-level Policy

- Default configuration
- Installed Software
- Backups
- Logging
- Auditing
- Updates
- Principle servers or clients

Network-level Policy

- Supported services
- Exported services: Authentication, Protection, Restriction
- Imported services: Authentication, Protection, Privacy
- Network security mechanisms

US Law

- General advice not legal counsel
- Before performing legal actions -- consult a lawyer!
- Legal Options
- Legal Hazards
- Being the target of an investigation
- General Tips
- Civil Actions
- Intellectual Property
- Liability

Trust

- Tools of computer security are resident on computers
- Just as mutable as any other information on computers
- Can we trust our computer?
- Can we trust our software?
- Can we trust our suppliers?
- Can we trust our people?
- Trust, but verify

Aspects of Security

- * consider 3 aspects of information security:
 - security attack: Any action that compromises the security of information owned by an organization.
 - security mechanism: A process that is designed to detect, prevent, or recover from a security attack.
 - **security service:** A processing or communication service that <u>enhances the security</u> of the data processing systems and the information transfers of an organization.
- note terms
 - threat: a potential for violation of security
 - attack: an assault on system security, a deliberate attempt to evade security services

Security Attacks - Security threats

- Interruption attack on availability
- Interception attack on confidentiality
- Modification attack on integrity
- Fabrication attack on authenticity
 e.g. Email Spoofing, SQL Injection

❖ Passive Attack: make use of information from the system but does not affect system resource

Note: in dealing with passive attacks is on prevention rather than detection. i.e. encryption

* Active Attack: modification of the data stream or the creation of a false stream

Attackers

Adversary	Goal
Student	To have fun snooping on people's e-mail
Cracker	To test out someone's security system; steal data
Sales rep	To claim to represent all of Europe, not just Andorra
Businessman	To discover a competitor's strategic marketing plan
Ex-employee	To get revenge for being fired
Accountant	To embezzle money from a company
Stockbroker	To deny a promise made to a customer by e-mail
Con man	To steal credit card numbers for sale
Spy	To learn an enemy's military or industrial secrets
Terrorist	To steal germ warfare secrets

Security Services/Goals

- Confidentiality (privacy)
- ❖ Authentication (who created or sent the data)
- ❖ Integrity (has not been altered)
- ❖ Non-repudiation (prevents either sender or receiver from denying a transmitted message)
- * Access control (prevent misuse of resources)
- **❖** Availability (permanence, non-erasure)

Security Mechanism

- feature designed to detect, prevent, or recover from a security attack
- no single mechanism that will support all services required
- however one particular element underlies many of the security mechanisms in use:
 - cryptographic techniques
- specific security mechanisms:
 - encipherment, digital signatures, access controls, data integrity, authentication exchange, traffic
 padding, routing control, notarization
- pervasive security mechanisms:
 - trusted functionality, security labels, event detection, security audit trails, security recovery

Quiz: Match the Following?

a)Interruption 1)integrity

b)Interception 2)availability

c)Modification 3)authentication

d)Fabrication 4)confidentiality

The Operational Model of Network Security

• Prevention is better than cure

Problem

Problem 1: Consider an automated teller machine (ATM) in which users provide a personal identification number (PIN) and a card for account access. Give examples of confidentiality, integrity, and availability requirements associated with the system and, in each case, indicate the degree of importance of the requirement.

Solution: The system must keep personal identification number (PIN) confidential, both in the host system and during transmission for a transaction. In addition, for security the personal identification number must encrypted.

It must protect the integrity of account records and of individual transactions.

Availability of the host system is important to the economic well being of the bank, but not to its fiduciary responsibility. The availability of individual teller machines is of less concern.

Classical Cryptography

Basic Terminology

- Plaintext- the original message
- Ciphertext the coded message
- Key info used in cipher known only to sender/receiver
- Encipher (encrypt) converting plaintext to ciphertext
- Decipher (decrypt) recovering ciphertext from plaintext
- Cryptography study of encryption principles/methods
- Cryptanalysis (codebreaking) the study of principles/ methods of deciphering ciphertext without knowing key
- cryptology the field of both cryptography and cryptanalysis

Encryption Methods

- **❖ Symmetric encryption-** DES, Triple DES, AES
- * Asymmetric encryption- RSA, ECC
 - The security of encryption algorithm depends upon the key

- Symmetric encryption or conventional / private-key/ single-key
- sender and recipient share a common key
- all classical encryption algorithms are private-key
- was only type prior to invention of public-key in 1970's

Cryptography

- -- Parameters used by cryptographic systems are:
- The type of **operations** used for transforming plaintext to ciphertext
 - e.g. substitution and transposition
- The number of **keys** used e.g. symmetric, asymmetric
- The way in which the plaintext is **processed** e.g. block cipher, stream cipher

□ Substitution Ciphers:

Classical Ciphers:

- Plaintext is viewed as a sequence of elements (e.g., bits or characters)
- Substitution cipher: replacing each element of the plaintext with another element.
 - Transposition (or permutation) cipher: rearranging the order of the elements of the plaintext.
- Product cipher: using multiple stages of substitutions and transpositions

Caesar Cipher

- Earliest known substitution cipher. Invented by Julius Caesar
- Each letter is replaced by the letter **three** positions further down the alphabet.

Plain: abcdefghijklmnopqrstuvwxyz

Cipher: DEFGHIJKLMNOPQRSTUVWXYZABC

Example: **mit pune** \rightarrow **PLW SXQH**

E.g. break ciphertext using shift 2 "GCUA VQ DTGCM" Answer: easy to break

Mathematically, map letters to numbers:

а	b	С	d	е	f	g	h	i	j	k	1	m
0	1	2	3	4	5	6	7	8	9	10	11	12
n	0	р	q	r	S	t	u	V	w	X	У	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Then the general Caesar cipher is:

$$c = E_K(p) = (p + k) \bmod 26$$

$$p = D_K(c) = (c - k) \bmod 26$$

Brute-force attack: tries every possible key

Monoalphabetic Cipher

• Shuffle the letters and map each plaintext letter to a different random ciphertext letter:

Plain letters: abcdefghijklmnopqrstuvwxyz

Cipher letters: DKVQFIBJWPESCXHTMYAUOLRGZN

Plaintext: if we wish to replace letters

Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

Now we have a total of $26! = 4 \times 10^{26}$ keys.

With so many keys, it is secure against brute-force attacks.

But not secure against some cryptanalytic attacks.

Problem is language characteristics.

English Letter Frequencies

- Relative frequency of letters can be determined
- frequency of two-letter combination

- given ciphertext:

 UZQSOVUOHXMOPVGPOZPEVSG<u>ZW</u>SZOPFPESXUDBMETSXAIZ

 VUEPHZHMDZSHZOWSFPAPPDTSVPQU<u>ZW</u>YMXUZUHSX

 EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ
- count relative letter frequencies (see text)
- guess P & Z are e and t
- guess ZW is th and hence ZWP is the
- proceeding with trial and error finally get:
 it was disclosed yesterday that several informal but
 direct contacts have been made with political
 representatives of the Viet cong in Moscow

ta e e te a that e e a a

VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
e t ta t ha e ee a e th t a

EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ
e e e tat e the t

One-Time Pad

- The number of possible keys is equal to the number of possible plaintexts
- The key is selected at random from the choice of all possible keys
- Any key should only be used once
- It is unbreakable since ciphertext bears no statistical relationship to the plaintext

Plaintext:	M	E	E	T	M	E	0	U	T	S	I	D	E
Numerical Plaintext:	12	4	4	19	12	4	14	20	19	18	8	3	4
OTP:	В	D	U	F	G	Н	W	E	I	U	F	G	W
Numerical OTP:	1	3	20	5	6	7	22	4	8	20	5	6	22
Numerical Ciphertext:	13	7	24	24	18	11	10	24	1	12	13	9	
Ciphertext:	N	Н	Y	Y	S	L	K	Y	В	M	N	J	

$$c_i = p_i XOR k_i$$

4 + 22 = 0 modular 26

Two fundamental difficulties:

- Problem of making large quantities of random keys
- Problem of key distribution and protection
- * Because of these difficulties, the one-time pad is of limited utility and is useful primarily for low-bandwidth channels requiring very high security.

Transposition Cipher

- ❖ The order of alphabets in the plaintext is rearranged to form a cipher text.
- ❖ The Rail Fence cipher is a form of transposition cipher
- ❖ Plaintext is written down as a sequence of diagonals and then read off as a sequence of rows.
- ❖ The example message is: "meet me after the toga party" with a rail fence of depth 2.

m e m a t r h t g p r y e t e f e t e o a a t

Ciphertext:

MEMATRHTGPRYETEFETEOAAT

Row Transposition Cipher

- ❖ Write the message in a rectangle, row by row, and read the message off, column by column, but permute the order of the columns
- ❖ The order of the columns then becomes the key to the algorithm
- ❖ Plaintext: attack postponed until two am
- **♦** Key: 4312567

Key: 4312567

Plaintext: attackp

ostpone

duntilt

woamxyz

Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Transposition Cipher (2)

• Plaintext written in a row under the key and then arrange the column as per alphabetical order.

* Single Columnar Transposition

Preparing the Key:

• Numbered each letter of the key as per their appearance in the alphabet

h	e	a	V	e	n
4	2	1	6	3	5

Preparing the Plaintext: we are the best

h	e	a	V	e	n
4	2	1	6	3	5
W	Е	A	R	Е	T
Н	E	В	E	S	T

Transposition Cipher(3)

Encryption:

a	e	e	h	n	V
1	2	3	4	5	6
A	E	Е	W	T	R
В	E	S	Н	T	E

Decryption: ABEEESWHTTRE

h	e	a	V	e	n
4	2	1	6	3	5
W	E	A	R	E	Т
Н	E	В	Е	S	Т

Problem: Using Transposition cipher encrypt message "WE ARE THE BEST" use key 'HEAVEN'

Transposition Ciphers(4)

*** Double Columnar Transposition**

h	e	a	V	e	n
4	2	1	6	3	5
W	Е	A	R	Е	T
Н	Е	В	Е	S	T

ABEEESWHTTRE

a	n	O	t	h	e	r
1	4	5	7	3	2	6
A	В	Е	Е	Е	S	W
Н	T	Т	R	Е		

Modes of Operation

- ❖ A block cipher processes the data blocks of fixed size.
- Usually, the size of a message is larger than the block size.
- ❖ Hence, the long message is divided into a series of sequential message blocks, and the cipher operates on these blocks one at a time.
- ❖ The size of plaintext block and ciphertext block is same.
- ❖ When no. of bits in the plaintext/message are not multiple of the block size ---- Modes of operation

□ Block Cipher Modes of Operation

- * Electronic Code book (ECB) mode
- ***** Cipher Block Chaining (CBC) mode
- **❖ Feedback (CFB) modes**
- * Counter (CTR) mode

Electronic Code book (ECB) mode

- ❖ The message is divided into blocks, and each block is encrypted separately.
- ❖ If two plaintext blocks are identical then the ciphertext block are also same. Therefore, a known plaintext attack is possible.
- *** uses**: secure transmission of single values

$$C_i = E_K(P_i)$$

Cipher Block Chaining (CBC) mode

- ❖ An initialisation is random number is used to increase security.
- * It can be used to generate the hash value.
- * uses: bulk data encryption, authentication

$$C_{i} = E_{K}(P_{i} XOR C_{i-1})$$

$$C_{-1} = IV$$

Advantages:

- * For identical block of plaintext, different ciphertext blocks are generated. So secure than ECB mode.
- * Hash value, i.e. last ciphertext block, helps to identify if the message is original or modified.

Disadvantages:

- * Parallel operation cannot be performed.
- Lost/missing of any block of ciphertext stops the decryption process of the remaining blocks.

Feedback Mode: Cipher Feedback (CFB) Mode

- Can be used when the block size is smaller than the required block size.
- * The block size may be a bit or bytes, so there is no need of padding.
- * uses: stream data encryption, authentication

$$C_{i} = P_{i} XOR E_{K}(C_{i-1})$$

$$C_{-1} = IV$$

* CFB is suffered from bit errors. If in the incoming cipher block, any one bit error is there, then it causes the bit error at the same bit position in the plaintext block.

Feedback Mode: Output Feedback (OFB) Mode

- * message is treated as a stream of bits
- ❖ Free from bit error rate.
- ❖ Information about the key is not required, which help the cryptanalyst to break the cipher easily.

Counter (CTR) Mode

- * It may be faster than of cipher block chaining mode.
- * Encryption can be done in parallel.
- Padding is not required.
- Processing of plaintext blocks can be done randomly
- ❖ Integrity of the message is not maintained
- * Reuse of counter value, compromise the security.
- ❖ It is ATM and IP sec

Problem 2

Consider the CFB of operation where the block cipher is permutation cipher and key is mutation

2 3 4. If the initial vector is taken as 1010, the compute the ciphertext correspond to the plaintext 010010111100

Feistel Ciphers

- ❖ Most symmetric block ciphers are based on a Feistel Cipher Structure
- ❖ Block ciphers look like an extremely large substitution would need table of 2⁶⁴ entries for a 64-bit block
- * Horst Feistel devised the feistel cipher: based on concept of invertible product cipher
- partitions input block into two halves
 - process through multiple rounds which:
 - perform a substitution on left data half
 - based on round function of right half & sub key
 - then have permutation swapping halves
- * The plaintext is divided into two halves (L_0 and R_0). Then the two halves pass through **n** rounds of processing then combine to produce the cipher block.
- \star Each round i has as input L_{i-1} and R_{i-1} derived from the previous round as well as a sub-key K_i derived from the overall K.

The design of Feistel cipher depends on following parameter:

❖ Block Size: (larger block means greater security) 64 bits.

*** Key Size**: 56 - 128 bits.

- **❖ Number of Rounds**: a single round offers inadequate security, a typical size is 16 rounds.
- ❖ Sub-key Generation Algorithms: greater complexity should lead to a greater difficulty of cryptanalysis.
- * Round function: Again, greater complexity generally means greater resistance to cryptanalysis.

Data Encryption Standard (DES)

- **❖** IBM developed Lucifer cipher
 - by team led by Feistel
 - used 64-bit data blocks with 128-bit key
- then redeveloped as a commercial cipher with input from NSA and others in 1973 NBS issued request for proposals for a national cipher standard
- IBM submitted their revised Lucifer which was eventually accepted as the DES
- encrypts 64-bit data using 56-bit key
- DES has become widely used, especially in financial applications

Conceptual View of DES

- ❖ Every 8th bit of the key is discarded to produce a 56-bit key
- ❖ Same algorithm and key are used for encryption and decryption

Broad Level Steps in DES

- ❖ DES is based on substitution (called as confusion) and transposition (called as diffusion)
- * Each round performs the steps of substitution and transposition

❖ Initial Permutation (IP)

• The first bit of the output is taken from the 58th bit of the input; the second bit from the 50th bit, and so on, with the last bit of the output taken from the 7th bit of the input. i.e. <u>transposition</u>

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

Details of One Round in DES

Step 1: Key Transformation and Compression Permutation

- ❖ After the parity-bit drop, the key is divided into two 28-bit parts
- * Each part is circularly shifted left by one or two bit
- ❖ The two parts are then combined to form a 56-bit part
- ❖ Choose 48 of the 56 bits

Round	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Bits shifts	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

Compression Permutation

14	17	11	24	1	5	3	28	15	6	21	10
23	19	12	4	26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40	51	45	33	48
44	49	39	56	34	53	46	42	50	36	29	32

Step 2: Expansion Permutation

- ❖ 32-bit RPT is divided into 8 blocks (each block 4-bits)
- ❖ Each 4-bit block is expanded to 6-bit block. Two bits -- repeated first and forth bits

RPT Expansion Permutation Table

32	1	2	3	4	5	4	5	6	7	8	9
8	9	10	11	12	13	12	13	14	15	16	17
16	17	18	19	20	21	20	21	22	23	24	25
24	25	26	27	28	29	28	29	30	31	32	1

Step 3: S-box substitution

• Output: 32 bit

• Eight S-boxes that accept 6 bit inputs and produce 4 bit outputs

	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
\mathbf{S}_1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
s_2	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
	13	8	10	-1	3	15	4	2	-11	6	7	12	0	5	14	9
	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
S ₃	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
	-1	10	13	0	6	9	8	7	4	15	14	3	-11	5	2	12
	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
S_4	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

Step 4: P-box permutation

- ❖ The output of S-box consists of 32 bits
- ❖ It is straight permutation. No bits are used twice and no bits are ignored
- ❖ Replacement of each bit with another bit

16	7	20	21	29	12	28	17	1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9	19	13	30	6	22	11	4	25

Step 5: XOR and Swap

***** Final permutation

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

DES Decryption

- Same algorithm and key are used for encryption and decryption
- Key reversal is used i.e. K16, K15, K1

Analysis of DES

- Use of S-boxes: The table used for substitution in DES are kept secret by IBM. It takes 17 years come up with internal design of the S-boxes.
- **Key Length**: There are 2⁵⁶ possible keys i.e. 7.2 x 10¹⁶ keys. Thus, it seems that a brute-force attack on DES is impractical. A single computer performing one DES encryption per microsecond would require more than 1000 years to break DES.

Variations of DES: Double DES

 Meet-in-themiddle attack

Triple DES

Secure but more time for encryption

DES Weaknesses

Weaknesses in Cipher Design

S-boxes: At least three weaknesses are mentioned in the literature for S-boxes.

- 1. In S-box 4, the last three output bits can be derived in the same way as the first output bit by complementing some of the input bits.
- 2. Two specifically chosen inputs to an S-box array can create the same output.
- 3. It is possible to obtain the same output in a single round by changing bits in only three neighboring S-boxes.

P-boxes: One mystery and one weakness were found in the design of p-boxes:

- 1. It is not clear why the designers of DES used the initial and final permutations; these have no security benefits.
- 2. In the expansion permutation (inside the function), the first and fourth bits of every 4-bit series are repeated

Table 6.18 Weak keys

Keys befo	re pari	ties dro	p (64 bits)	Actual key (56 bits)
0101	0101	0101	0101	0000000 0000000
1F1F	1F1F	0E0E	0E0E	0000000 FFFFFF
E0E0	E0E0	F1F1	F1F1	FFFFFF 0000000
FEFE	FEFE	FEFE	FEFE	FFFFFF FFFFFF

Table 6.19 Semi-weak keys

Fin	st key i	in the p	pair	Seco	nd key	in the	pair
01FE	01FE	01FE	01FE	FE01	FE01	FE01	FE01
1FE0	1FE0	0EF1	0EF1	E01F	E01F	F10E	F10E
01E0	01E1	01F1	01F1	E001	E001	F101	F101
1FFE	1FFE	0EFE	0EFE	FE1F	FE1F	FE0E	FE0E
011F	011F	010E	010E	1F01	1F01	0E01	0E01
E0FE	EOFE	F1FE	F1FE	FEE0	FEE0	FEF1	FEF1

Why A New Cipher?

- ❖ DES has the <u>56-bit key size</u> and being too small.
- ❖ In January 1999, <u>distributed.net</u> and the <u>Electronic Frontier Foundation</u> collaborated to publicly break a DES key in 22 hours and 15 minutes

DES had outlived its usefulness:

- Vulnerabilities were becoming known
- 56-bit key was too small
- Too slow in software implementations

NIST wanted increased trust in cipher:

- Previous processes very closed
- DES suspected of having 'back doors'

Advanced Encryption Standard (AES)

* Background

• On January 2, 1997, NIST announced the initiation of the AES development.

The point stipulated that:

- The algorithm must be a symmetric block cipher
- Key lengths of 128, 192, and 256 bits must be supported
- Block length: 128, 192, and 256 bits
- Both software and hardware implementations must be possible
- Possible implementation on smart-cards
- Royalty-free

The finalists and their scores were as follows: 15 Ciphers submitted

- Rijndael (from Joan Deamen and Vincent Rijmen, 86 votes).
- Serpent (from Ross Anderson, Eli Biham, and Lars Knudsen, 56 votes).
- Twofish (from a team headed by Bruce Schneier, 31 votes).
- RC6 (from RSA Laboratories, 23 votes).
- MARS (from IBM, 13 votes)
- In November 2001, Rijndael became a U. S. Government standard published as Federal Information Processing Standard FIPS 197.
- It is not a Feistel cipher.
 - It works in parallel over the whole input block.
 - Mode of operation: ECB

- ❖ The most powerful supercomputer in the world in 2017 was the Sunway TaihuLight in China. This beast is capable of a peak speed of 93.02 petaflops. This means that the most powerful computer in the world would still take some 885 quadrillion years to brute force a 128-bit AES key.
- ❖ The number of operations required to brute force a 256-bit cipher is 3.31 x 10⁵⁶. This is roughly equal to the number of atoms in the universe!

Rijndael's Encryption Algorithm

- The basic unit for processing in the AES algorithm is a byte.
- The AES algorithm's operations are performed on a two-dimensional array of bytes called the State. It is referred as s_{r.c}
- Block = $128 \text{ bits} = 16 \text{ byte} = b_0 b_1 b_2 \dots b_{15}$
- $Key = 128 bits = 16 byte = k_0 k_1 k_2 \dots k_{15}$
- The four bytes in each column of the State array stand as one word

State representation

S _{0,0}	S _{0,1}	S _{0,2}	S _{0,3}
S _{1,0}	S _{1,1}	S _{1,2}	S _{1,3}
S _{2,0}	S _{2,1}	S _{2,2}	
S _{3,0}		S _{3,2}	

$$\mathbf{w_0} = \mathbf{s_{0,0}} \ \mathbf{s_{1,0}} \ \mathbf{s_{2,0}} \ \mathbf{s_{3,0}}$$
 $\mathbf{w_2} = \mathbf{s_{0,2}} \ \mathbf{s_{1,2}} \ \mathbf{s_{2,2}} \ \mathbf{s_{3,2}}$ $\mathbf{w_1} = \mathbf{s_{0,1}} \ \mathbf{s_{1,1}} \ \mathbf{s_{2,1}} \ \mathbf{s_{3,1}}$ $\mathbf{w_3} = \mathbf{s_{0,3}} \ \mathbf{s_{1,3}} \ \mathbf{s_{2,3}} \ \mathbf{s_{3,3}}$

Information and Cyber Security: Unit - I

94

Key (128 bits - 16 bytes)

- Implemented as a 4 x 4 matrix, where each element in the matrix is one byte.
- Algorithm consists of an **initial round**, Nr 1 standard rounds where Nr is 10, 12, 14 depending on the block and key array sizes, and a **final round**.

Nr	Nb = 4	Nb = 6	Nb = 8
Nk = 4	10	12	14
Nk = 6	12	12	14
Nk = 8	14	14	14

• Possible Round Operations

- ❖ ByteSub Substitution of Bytes
- ❖ Shift Row Shifts Rows
- ❖ MixColumn Multiplies Columns
- ❖ AddRoundKey XORs by Key

Encryption Algorithm

Structure of Each Round

SubBytes transformation

- 16 x 16 matrix whose entries are all distinct bytes.
- For example, if $s_{1,1} = \{53\}$, the result is $\{ed\}$.

										7							
		0	1	2	3	4	5	6	7	8	9	a	b	υ	d	е	f
	0	63	7c	77	7b	f2	6b	6f	с5	30	01	67	2b	fe	d7	ab	76
1	1	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	с0
1	2	b7	fd	93	26	36	3f	£7	CC	34	a 5	e5	f1	71	d8	31	15
1	3	04	с7	23	с3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
ш	4	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e 3	2f	84
ш	5	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
Ш	6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7£	50	3с	9f	a8
١.,	7	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
×	8	cd	0с	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
1	9	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
ш	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
ш	b	e 7	c8	37	6d	8d	d5	4e	a 9	6c	56	f4	ea	65	7a	ae	80
	С	ba	78	25	2e	1c	a 6	b4	с6	e 8	dd	74	1f	4b	bd	8b	8a
	d	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
	е	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e 9	ce	55	28	df
	f	8c	a1	89	0d	bf	e 6	42	68	41	99	2d	0f	b0	54	bb	16

Shift-Rows transformation

MixColumn transformation

• The mixcolumn transformation operates on the state column-by-column.

$$s'_{0,c} = (\{02\} \bullet s_{0,c}) \oplus (\{03\} \bullet s_{1,c}) \oplus s_{2,c} \oplus s_{3,c}$$

$$s'_{1,c} = s_{0,c} \oplus (\{02\} \bullet s_{1,c}) \oplus (\{03\} \bullet s_{2,c}) \oplus s_{3,c}$$

$$s'_{2,c} = s_{0,c} \oplus s_{1,c} \oplus (\{02\} \bullet s_{2,c}) \oplus (\{03\} \bullet s_{3,c})$$

$$s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus (\{02\} \bullet s_{3,c})$$

02.
$$\{d4\} \oplus 03.\{bf\} \oplus 01.\{5d\} \oplus 01.\{30\} = \{04\}$$

Multiplication

- A polynomial is irreducible if its only divisors are one and itself.
- For the AES algorithm, this irreducible polynomial is

$$m(x) = x^8 + x^4 + x^3 + x + 1$$
 or $\{01\}\{1b\}$ in hexadecimal notation

E.g.
$$\{57\} \cdot \{83\} = \{c1\}$$
, because
$$(x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) = x^{13} + x^{11} + x^9 + x^8 + x^7 + x^7 + x^5 + x^3 + x^2 + x + x^6 + x^4 + x^2 + x + 1$$
$$= x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$$

$$x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$$
 modulo $x^8 + x^4 + x^3 + x + 1$
= $x^7 + x^6 + 1$

* Add Round Key transformation

• In this operation, a Round Key is applied to the State by a simple bitwise XOR.

Key schedule

- This consists of two components: the Key Expansion and the Round Key Selection.
- The basic principle is the following:
- The total number of Round Key bits is equal to the block length multiplied by the number of rounds plus 1. (i.e. $128 \times 11 = 1408$, 1408/32 = 44)
- The Cipher Key is expanded into an Expanded Key.
- Round Keys are taken from this Expanded Key in the following way: the first Round Key consists of the first Nb words, the second one of the following Nb words, and so on.

Key = 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

Key expansion

The key expansion function depends on the value of Nk.

For $Nk \le 6$, we have:

```
KeyExpansion (byte Key [4*Nk], word W [Nb*(Nr+1)])
   for (i = 0; i < Nk; i++)
         W[i] = (Key [4*i], Key [4*i+1], Key [4*i+2], Key [4*i+3])
   for (i = Nk; i < Nb * (Nr + 1); i++)
         temp = W [i - 1];
         if (i % Nk = 0)
                    temp = SubByte (RotByte (temp)) XOR Rcon [i / Nk]
         W[i] = W[i - Nk] XOR temp
                                 Information and Cyber Security: Unit - I
```


• The round constants are independent of Nk and defined by:

$$Rcon[i] = (RC[i], '00', '00', '00')$$

with RC[1] representing an element in GF(2^8) with a value of $x^{(i-1)}$ so that:

$$RC[1] = 1$$
 (i.e. '01')

$$RC[i] = x (i.e. '02') \cdot (RC[i-1]) = x^{(i-1)}$$

Table 7.4 RCon constants

Round	Constant (RCon)	Round	Constant (RCon)
1	(01 00 00 00) ₁₆	6	(20 00 00 00) ₁₆
2	(<u>02</u> 00 00 00) ₁₆	7	(<u>40</u> 00 00 00) ₁₆
3	(<u>04</u> 00 00 00) ₁₆	8	(<u>80</u> 00 00 00) ₁₆
4	(<u>08</u> 00 00 00) ₁₆	9	(<u>1B</u> 00 00 00) ₁₆
5	(10 00 Odnformation and	Cyber Security: Un	(<u>36</u> 00 00 00) ₁₆

Key Expansion in AES-128

Key Expansion Examples

Cipher Key = 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c For **Nk** = **4**, which results in

 $w_0 = 2b7e1516$ $w_1 = 28aed2a6$ $w_2 = abf71588$ $w_3 = 09cf 4f3c$

i (dec)	temp	After RotWord()	After SubWord()	Rcon[i/Nk]	After XOR with Roon	w[i-Nk]	w[i]= temp XOR w[i-Nk]
4	09cf4f3c	cf4f3c09	8a84eb01	01000000	8b84eb01	2b7e1516	a0fafe17
5	a0fafe17					28aed2a6	88542cb1
6	88542cb1					abf71588	23a33939
7	23a33939					09cf4f3c	2a6c7605
8	2a6c7605	6c76052a	50386be5	02000000	52386be5	a0fafe17	f2c295f2
9	f2c295f2					88542cb1	7a96b943
10	7a96b943					23a33939	5935807a
11	5935807a					2a6c7605	7359£67£
12	7359£67£	59£67£73	cb42d28f	04000000	cf42d28f	f2c295f2	3d80477d
13	3d80477d					7a96b943	4716fe3e
14	4716fe3e					5935807a	1e237e44
15	1e237e44					7359£67£	6d7a883b
16	6d7a883b	7a883b6d	dac4e23c	08000000	d2c4e23c	3d80477d	ef44a541
17	ef44a541					4716fe3e	a8525b7f
18	a8525b7f					1e237e44	ъ671253Ь
19	b671253b					6d7a883b	db0bad00
20	db0bad00	0bad00db	2Ъ9563Ъ9	10000000	3b9563b9	ef44a541	d4d1c6f8
21	d4d1c6f8					a8525b7£	7c839d87
22	7c839d87					ъ671253Ъ	caf2b8bc
23	caf2b8bc	†	Information and	Cyber Security: Unit - I		db0bad00	11f915bc

Example: Nb = 4 and Nk = 4

Input: 32 43 f6 a8 88 5a 30 8d 31 31 98 a2 e0 37 07 34

Key: 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

The Round Key values are taken from the Key Expansion example

Round Number		Star Rou					Afte Sub	_			7,	Afte niftF	_	S		M	Af ixC	ter olun	nns			Rou Valu	nd] ie	Key	
	32	88	31	e0						1					1					l	2b	28	alb	09	ı
input	43	5a	31	37						1					1					⊕	7е	ae	£7	cf	_
Input	f6	30	98	07						1					1					ľ	15	d2	15	4f	
	a8	8d	a2	34						1					1					1	16	a6	88	3с	
	19	a0	9a	е9		d4	e0	b8	1e	1	d4	e0	b8	1e	1	04	e0	48	28	l	a0	88	23	2a	
1	3d	f4	С6	f8		27	bf	b4	41	1	bf	b4	41	27	1	66	cb	f8	06		fa	54	a3	6c	_
	е3	e2	8d	48		11	98	5d	52	1	5d	52	11	98	1	81	19	d3	26		fe	2c	39	76	
	be	2b	2a	08		ae	f1	е5	30	1	30	ae	f1	е5	1	е5	9a	7a	4c	1	17	b1	39	05	
					'					•					•					•					
	a4	68	6b	02		49	45	7f	77]	49	45	7£	77	1	58	1b	dlb	1b	l	f2	7a	59	73	
2	9c	9£	5b	6a		de	dlb	39	02	1	dlb	39	02	de	1	4d	4b	е7	6b	⊕	C2	96	35	59	_
_	7£	35	ea	50		d2	96	87	53	1	87	53	d2	96	1	ca	5a	ca	b0	ľ	95	b9	80	f6	
	f2	2b	43	49		89	f1	1a	3b nforn	ation	3b and C	89 vber S		1a ::Unit].	f1	ac	a8	e5		f2	43	7a	7£	

04 65 85 87 f2 4d 97 87 £2 4d 97 4.0 a.3 19 28 47 57 a.c. 83 45 5d 96 6e 4c 90 4c90 ec 37 d470 9f 77 fa d1 5 c 9 33 98 b0 3a. 66 dc 29 00 4a c3 46 e7 46 e7 4a c3 94 e442 f0 2d ad c5 8c d8 95 a6 8c d8 95 ed a.5 a6 bc £3 21 41 a 6 6e 59 8b 1b cb 3d af 3d af e9e9clod0C9 e1 b6 40 2e a1 09 31 32 2e 32 2e 09 3f 6.3 **c**3 ee 10 \oplus **£2** 38 13 42 89 07 7d 2c 7dl 2c 89 07 £9 25 0c 0c 1e 84 e7 d2 72 5f 94 c8 a6 72 5f 94 b5 b5a.8 89 02 dc 19 dc | 11 6a. output 84 09 85 0b 1d fb 97 32

Addition

The addition is performed with the XOR operation (denoted by \bigoplus) - i.e., modulo 2 - so that $1 \bigoplus 1 = 0, 1 \bigoplus 0 = 1$, and $0 \bigoplus 0 = 0$.

$$(x^6 + x^4 + x^2 + x + 1) + (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2$$
 (polynomial notation)
 $\{010101111\} \oplus \{10000011\} = \{11010100\}$ (binary notation)
 $\{57\} \oplus \{83\} = \{d4\}$ (hexadecimal notation)

Multiplication

- A polynomial is irreducible if its only divisors are one and itself.
- For the AES algorithm, this irreducible polynomial is

$$m(x) = x^8 + x^4 + x^3 + x + 1$$
 or $\{01\}\{1b\}$ in hexadecimal notation

E.g.
$$\{57\}$$
 • $\{83\}$ = $\{c1\}$, because
$$(x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) = x^{13} + x^{11} + x^9 + x^8 + x^7 + x^7 + x^5 + x^3 + x^2 + x + x^6 + x^4 + x^2 + x + 1$$

$$= x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$$

$$x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$$
 modulo $x^8 + x^4 + x^3 + x + 1$
= $x^7 + x^6 + 1$

* Rijndael's Decryption Algorithm

*** Inverse Shift-Rows transformation**

*** Inverse Sub-Bytes transformation**

									7	7							
		0	1	2	3	4	5	6	7	8	9	a	b	C	d	е	f
Г	0	52	09	6a	d5	30	36	a 5	38	bf	40	a3	9e	81	f3	d7	fb
	1	7c	e3	39	82	9b	2f	ff	87	34	8e	43	44	с4	de	е9	cb
	2	54	7b	94	32	a 6	c2	23	3d	ee	4c	95	0b	42	fa	c3	4e
	3	08	2e	a1	66	28	d9	24	b2	76	5b	a2	49	6d	8b	d1	25
	4	72	f8	f6	64	86	68	98	16	d4	a4	5c	CC	5d	65	b6	92
	5	6 C	70	48	50	fd	ed	b9	da	5e	15	46	57	a7	8d	9d	84
	6	90	d8	ab	00	8c	bc	d3	0a	f7	e4	58	05	p8	b3	45	06
١.,	7	d0	2c	1e	8f	ca	3f	0f	02	c1	af	bd	03	01	13	8a	6b
x	8	3a	91	11	41	4 f	67	dc	ea	97	f2	cf	ce	f0	b4	e6	73
	9	96	ac	74	22	e7	ad	35	85	e2	f9	37	e8	1c	75	df	6e
	a	47	f1	1a	71	1d	29	с5	89	6f	b7	62	0e	aa	18	be	1b
	b	fc	56	3e	4b	с6	d2	79	20	9a	db	0	fe	78	cd	5a	f4
	С	1f	dd	a8	33	88	07	с7	31	b1	12	10	59	27	80	e	5f
	d	60	51	7f	a 9	19	b5	4a	0d	2d	e5	7a	9f	93	с9	9с	ef
	е	a0	e	3b	4d	ae	2a	f5	b0	с8	eb	bb	30	83	53	99	61
	f	17	2b	04	7e	ba	77	d6	26	e1	69	14	63	55	21	Ö	7d

⋄ Inverse Mix-column transformation

$$\begin{bmatrix} \dot{s_{0,c}} \\ \dot{s_{1,c}} \\ \dot{s_{2,c}} \\ \dot{s_{3,c}} \end{bmatrix} = \begin{bmatrix} 0e & 0b & 0d & 09 \\ 09 & 0e & 0b & 0d \\ 0d & 09 & 0e & 0b \\ 0b & 0d & 09 & 0e \end{bmatrix} \begin{bmatrix} s_{0,c} \\ s_{1,c} \\ s_{2,c} \\ s_{3,c} \end{bmatrix} \quad \text{for } 0 \le c < \mathbf{Nb}.$$

$$\begin{split} s_{0,c}' &= (\{\texttt{Oe}\} \bullet s_{0,c}) \oplus (\{\texttt{Ob}\} \bullet s_{1,c}) \oplus (\{\texttt{Od}\} \bullet s_{2,c}) \oplus (\{\texttt{O9}\} \bullet s_{3,c}) \\ s_{1,c}' &= (\{\texttt{O9}\} \bullet s_{0,c}) \oplus (\{\texttt{Oe}\} \bullet s_{1,c}) \oplus (\{\texttt{Ob}\} \bullet s_{2,c}) \oplus (\{\texttt{Od}\} \bullet s_{3,c}) \\ s_{2,c}' &= (\{\texttt{Od}\} \bullet s_{0,c}) \oplus (\{\texttt{O9}\} \bullet s_{1,c}) \oplus (\{\texttt{Oe}\} \bullet s_{2,c}) \oplus (\{\texttt{Ob}\} \bullet s_{3,c}) \\ s_{3,c}' &= (\{\texttt{Ob}\} \bullet s_{0,c}) \oplus (\{\texttt{Od}\} \bullet s_{1,c}) \oplus (\{\texttt{O9}\} \bullet s_{2,c}) \oplus (\{\texttt{Oe}\} \bullet s_{3,c}) \\ \end{split}$$

Advantages

- * Rijndael can be implemented to run at speeds unusually fast for a block cipher on a Pentium (Pro). There is a trade-off between table size/performance.
- * Rijndael can be implemented on a Smart Card in a small amount of code, using a small amount of RAM and taking a small number of cycles. There is some ROM/performance trade-off.
- ❖ The round transformation is parallel by design, an important advantage in future processors and dedicated hardware.
- ❖ As the cipher does not make use of arithmetic operations, it has no bias towards big-or little endian processor architectures.

Limitations

- ❖ The inverse cipher is less suited to be implemented on a smart card than the cipher itself: it takes more code and cycles. (Still, compared with other ciphers, even the inverse is very fast)
- ❖ In software, the cipher and its inverse make use of different code and/or tables.
- ❖ In hardware, the inverse cipher can only partially re-use the circuitry that implements the cipher.

Comparison

	A				-	
III T	वश्च	शा	न्त	धव	ध्रवा	Ш

BASIS FOR COMPARISON	DES (DATA ENCRYPTION STANDARD)	AES (ADVANCED ENCRYPTION STANDARD)
Basic	In DES, the data block is divided into two halves.	In AES, the entire data block is processed as a single matrix.
Principle	DES work on Feistel Cipher structure.	AES work on block Cipher structure.
Plaintext	Plaintext is of 64 bits	Plaintext can be of 128,192, or 256 bits
Key size	DES in comparison to AES has smaller key size.	AES has larger key size as compared to DES.
Rounds	16 rounds	10 rounds for 128-bit algo, 12 rounds for 192-bit algo 14 rounds for 256-bit algo
Rounds Names	Expansion Permutation, Xor, S-box, P-box, Xor and Swap.	Subbytes, Shiftrows, Mix columns, Addroundkeys.
Security	DES has a smaller key which is less secure.	AES has large secret key comparatively hence, more secure.
Speed	DES is comparatively slower. Information and Cyber Security:	AES is faster.

Steganography

- * Steganography is the art and science of writing hidden message in such a way that no one, apart from the sender and intended recipient, suspects the existence of the message.
- * Steganography works by replacing bits of useless or unused data in regular computer files (such as graphics, sound, text, html or even floppy disks) with bits of different, invisible information.
- This hidden information can be plain text, cipher text or even images.
- ❖ In modern steganography, data is first encrypted by the usual means and then inserted, using a special algorithm, into redundant data that is part of a particular file format such as a JPEG image, Bitmap image.

***** Advantages:

- No one suspects existence of message
- Highly secure

Disadvantages:

• It requires a lot of overhead to hide a relatively few bits of information

Steganography	Cryptography
Unknown message passing	Known message passing
Steganography prevents discovery of the very existence of communication	Encryption prevents an unauthorized party from discovering the contents of a communication
Little known technology	Common technology
Technology still being develop for certain formats	Most of algorithm known by all
Once detected message is known	Strong current algorithm are resistant to attacks, larger expensive computing power is required for cracking
Steganography does not alter the structure of the secret message	Cryptography alter the structure of the secret message

Thank You!!!!!!