МАТЕМАТИКА. ЭКЗАМЕНАЦИОННЫЙ ТЕСТ ОБРАЗЕЦ К РАЗДЕЛУ «МАТЕМАТИЧЕСКИЙ АНАЛИЗ, ЧАСТЬ І»

Вариант 0

А. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ

Выберите один правильный ответ.

А1. Комплексное число имеет вид: $z = (1-i)^8$. Тогда:

1)
$$|z| = \sqrt{2}$$

2) Re
$$z = 1$$

2) Re
$$z = 1$$
 3) Im $z = -1$ 4) $z = 16$

4)
$$z = 16$$

А2. Функция
$$y = \frac{x^{2021} + x^{2022} + e^{2020x}}{x^{2019} + x^{2020} + x^{2021}}$$
 является

- 1) рациональной
- 2) иррациональной
- 3) трансцендентной
- 4) основной элементарной функцией

А3. Функция $\alpha(x)$ называется бесконечно малой более высокого порядка малости по сравнению с функцией $\beta(x)$ в точке a, если

1)
$$\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = C = const \neq 0$$
 2) $\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = \infty$ 3) $\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = 0$

$$2) \lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = \infty$$

$$3) \lim_{x \to a} \frac{\alpha(x)}{\beta(x)} =$$

А4. Всякая функция, непрерывная на отрезке [a;b], обладает свойством:

- 1) хотя бы в одной точке (a;b) принимает значение, равное нулю
- 2) $f(a) \cdot f(b) < 0$
- 3) достигает наибольшего значения на [a;b]
- 4) неограниченна на [a;b]

А5. Точка x_0 называется точкой разрыва 2-го рода функции f(x), если ее односторонние пределы $f(x_0 - 0), f(x_0 + 0)$ таковы, что

1)
$$f(x_0) \neq f(x_0 - 0) = f(x_0 + 0) < \infty$$

2)
$$f(x_0 - 0), f(x_0 + 0) < \infty;$$
 $f(x_0 - 0) \neq f(x_0 + 0)$

3)
$$f(x_0 - 0) = \infty$$
 или $f(x_0 + 0) = \infty$

А6. Геометрический смысл производной функции f(x) в точке x_0 состоит в следующем:

- 1) значение $f'(x_0)$ равно углу наклона графика функции в точке x_0
- 2) значение $f'(x_0)$ равно углу наклона касательной к графику функции в точке x_0
- 3) значение $f'(x_0)$ равно угловому коэффициенту касательной к графику функции в точке x_0

А7. Если монотонно возрастающая функция y = f(x) имеет производную в точке x_0 , равную $f'(x_0) \neq 0$, то обратная функция $x = f^{-1}(y)$ имеет производную в точке $y_0 = f(x_0)$, вычисляемую по формуле:

1)
$$x'_y = \frac{1}{f'(y_0)}$$

2)
$$x'_y = \frac{1}{f'(x_0)}$$

1)
$$x'_y = \frac{1}{f'(y_0)}$$
 2) $x'_y = \frac{1}{f'(x_0)}$ 3) $x'_y = \frac{1}{(f^{-1}(y_0))'}$ 4) x'_y не существует

А8. Функция y(x) задана в параметрической форме: $\begin{cases} x = x(t) \\ y = y(t); t \in R \end{cases}$

Производная этой функции вычисляется по формуле:

$$1) \quad y_x' = -\frac{x_t'}{y_t'}$$

$$2) \quad y_x' = \frac{x_t'}{y_t'}$$

$$3) \quad y_x' = \frac{y_t'}{x_t'}$$

1)
$$y'_x = -\frac{x'_t}{y'}$$
 2) $y'_x = \frac{x'_t}{y'}$ 4) $y'_x = y'_t \cdot x'_t$

А9. Формула приближенных вычислений с помощью замены приращения функции y = f(x) в точке x_0 её дифференциалом, имеет вид:

1)
$$\Delta f(x) \approx f(x_0 + \Delta x) - f(x_0)$$

2)
$$f(x_0 + \Delta x) \approx f'(x_0) \cdot \Delta x$$

3)
$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \cdot \Delta x$$

4)
$$f(x_0) \approx f'(x_0) \cdot \Delta x$$

A10. Дифференциал 2-го порядка функции y = f(x) в точке x_0 имеет вид:

1)
$$d^2 f(x_0) = f''(x_0) \cdot (dx_0)^2$$

2)
$$d^2 f(x_0) = f''(x_0) \cdot (dx)^2$$

3)
$$d^2 f(x_0) = f'(x_0) \cdot (dx)^2$$

4)
$$d^2 f(x_0) = f''(x_0) \cdot dx$$

А11. Укажите **неверное** утверждение:

- 1) Если дифференцируемая функция y = f(x) удовлетворяет условию $f'(x_0) = 0$, то она имеет экстремум в точке x_0 .
- 2) Если дифференцируемая функция y = f(x) имеет экстремум в точке x_0 , то $f'(x_0) = 0$.
- 3) Если дифференцируемая функция y = f(x) удовлетворяет условию $f'(x_0) \neq 0$, то она не имеет экстремума в точке x_0 .
- 4) Если дифференцируемая функция y = f(x) не имеет экстремума в т. x_0 , то $f'(x_0) \neq 0$.

A12. Функция y = f(x) монотонно убывает на промежутке (a;b), если:

1)
$$f'(x) < 0; \forall x \in (a;b)$$

1)
$$f'(x) < 0; \forall x \in (a;b)$$
 2) $\exists c \in (a,b): f'(c) > 0$
3) $f'(x) > 0; \forall x \in (a;b)$ 4) $\exists c \in (a,b): f'(c) = 0$

3)
$$f'(x) > 0; \forall x \in (a;b)$$

4)
$$\exists c \in (a,b): f'(c) = 0$$

A13. Если дифференцируемая функция y = f(x) имеет минимум в точке $c \in (a;b)$, то:

1)
$$f'(c) > 0$$

2)
$$f'(c) < 0$$

2)
$$f'(c) < 0$$
 3) $f'(c)$ не существует 4) $f'(c) = 0$

4)
$$f'(c) = 0$$

A14. Достаточным условием наличия точки перегиба x_0 у графика функции y = f(x)является:

- 1) изменение знака f(x) при переходе через точку x_0
- 2) изменение знака f'(x) при переходе через точку x_0
- 3) изменение знака f''(x) при переходе через точку x_0
- 4) сохранение знака f''(x) при переходе через точку x_0

A15. График функции $y = \frac{x}{x^2 - 1}$ обладает свойством:

- 1) имеет точку перегиба x = 0
- 2) имеет точку перегиба x = 1
- 3) имеет две точки перегиба
- 4) не имеет точек перегиба

В. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ.

Выберите один правильный ответ

В1. Интеграл $\int \frac{1}{\sqrt{1-x}} \cdot dx$ равен:

1)
$$\arcsin \sqrt{x} + C$$
;

1)
$$\arcsin \sqrt{x} + C$$
; 2) $\frac{2}{3(\sqrt{1-x})^3} + C$; 3) $2\sqrt{1-x} + C$; 4) $-2\sqrt{1-x} + C$

3)
$$2\sqrt{1-x} + C$$

4)
$$-2\sqrt{1-x} + C$$

В2. Формула Ньютона-Лейбница имеет вид:

$$1) \int_{a}^{b} f(x)dx = F(a) - F(b);$$

ормула Ньютона-Лейбница имеет вид:
1)
$$\int_{a}^{b} f(x)dx = F(a) - F(b)$$
; 2) $\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$
3) $\int_{a}^{b} f(x)dx = F(b) - F(a)$; 4) $\int_{-a}^{a} f(x)dx = 0$

$$3) \int_{a}^{b} f(x)dx = F(b) - F(a)$$

$$4) \int_{-a}^{a} f(x) dx = 0$$

В3. Несобственный интеграл 1-го типа $\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 1}$

- 1) расходится
- 2) сходится
- 3) не определён 4) не существует

В4. Интеграл вида $\int_{-1}^{1} \frac{dx}{x^2 - 2x + 1}$

- 1) является несобственным интегралом 2-го типа и сходится;
- 2) является несобственным интегралом 2-го типа и расходится;
- 3) является обычным определенным интегралом (собственным)

В5. Длина дуги кривой, заданной на плоскости ОХУ условием: $l: \begin{cases} x = x(t) \\ v = v(t) \end{cases}$; $\alpha \le t \le \beta$, вычисляется по формуле:

1)
$$|l| = \int_{\alpha}^{\beta} \sqrt{x'(t) + y'(t)} \cdot dt$$
 2) $|l| = \int_{\alpha}^{\beta} \sqrt{x^2(t) + y^2(t)} \cdot dt$ 3) $|l| = \int_{\alpha}^{\beta} \sqrt{(x'(t))^2 + (y'(t))^2} \cdot dt$

Для успешного прохождения теста нужно дать не менее 14 правильных ответов.

Тест составил:

Доцент

Л.А. Смирнова

_20___г.