Deep Network for Speech Emotion Recognition Master Thesis

7huowei Han

Institut für Signalverarbeitung und Systemtheorie

Universität Stuttgart

16/04/2015

Motivation

Speech Emotion Recognition

- More natural human-machine interaction requires paralinguistic information such as age, gender, emotion.
- Emotion is high-dimensional complex data with non-linear time-variant hidden features
- Traditional feature learning is labor expensive

Motivation

Deep Learning

- New research area of machine learning
- Deep architecture for building high-level representations via unsupervised feature learning
- Learning both temporal and non-temporal features
- Application in vision/audition processing, e.g. handwriting recognition (Graves, Alex, et al. 2009), traffic sign classification (Schmidhuber, et al. 2011), text translation (Google, 2014)

Table of Contents

Foundations

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine CRBM

Deep Neural Network Function and Training

Experiments

Conclusion and Outlook

Table of Contents

Foundations

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine CRBM

Deep Neural Network
Function and Training

Experiments

Conclusion and Outlook

Foundations

Framework of Emotion Recognition

- Extract spectrum features: Mel Frequency Cepstral Coefficients
- Aggrogate MFCCs to build high-level representations via unsupervised learning
- Classification based on high-level features via supervised learning

Table of Contents

Foundations

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine CRBM

Deep Neural Network
Function and Training

Experiments

Conclusion and Outlook

Conditional Restricted Boltzmann Machine

- Energy-based undirected graphical model
- Contains hidden variables (hidden units), increases the modeling capacity.
- Unsupervised feature learning
 - build high-level features from low-level features
 - □ learned features used for prediction or classification
- Successfully applied in motion capture (Graham W. Taylor, Geoffrey E. Hinton, 2006)

Restricted Boltzmann Machine

Structure

visible/input layer	$\mathbf{x} \in \{0, 1\}$
hidden layer	$\mathbf{h} \in \{0, 1\}$
weight	\mathbf{W}
visible bias	b
hidden bias	\mathbf{c}
parameter set	$oldsymbol{ heta} = \{\mathbf{W}, \mathbf{b}, \mathbf{c}\}$

Restricted Boltzmann Machine

Structure

Energy Function:
$$E_{\theta}(\mathbf{x}, \mathbf{h}) = -\mathbf{x}^T \mathbf{W} \mathbf{h} - \mathbf{b}^T \mathbf{x} - \mathbf{c}^T \mathbf{h}$$

Joint Distribution:
$$P^{RBM}(\mathbf{x}, \mathbf{h}) = \frac{1}{Z} e^{-E_{\theta}(\mathbf{x}, \mathbf{h})}$$

Partition Function:
$$Z = \sum_{\mathbf{h}} e^{-E_{\theta}(\mathbf{x},\mathbf{h})}$$

Free Energy:
$$\mathcal{F}(\mathbf{x}) = -\log \sum_{\mathbf{h}} e^{-E(\mathbf{x},\mathbf{h})}$$

Conditional RBM

- Consider visible units from previous time step as additional bias for current visible and hidden layer
- Visible layer consists of linear units with independent Gaussian noise to model real-valued data, e.g. spectral features

Conditional RBM

Energy Function:
$$E_{\boldsymbol{\theta}}^{CRBM}(\mathbf{x}, \mathbf{h}) = \left\| \frac{\mathbf{x} - \tilde{\mathbf{b}}}{2} \right\|^2 - \tilde{\mathbf{c}}^T \mathbf{h} - \mathbf{x}^T \mathbf{W} \mathbf{h}$$

$$\tilde{\mathbf{b}} = \mathbf{b} + \mathbf{A} \cdot \mathbf{x}_{< t}$$

$$\tilde{\mathbf{c}} = \mathbf{c} + \mathbf{B} \cdot \mathbf{x}_{< t}$$

$$\boldsymbol{\theta} = \{ \mathbf{W}, \mathbf{A}, \mathbf{B}, \mathbf{b}, \mathbf{c} \}$$

Free Energy: $\mathcal{F}(\mathbf{x}) = -\log\sum e^{-E(\mathbf{x},\mathbf{h})}$

Inference

Inference

$$\begin{split} P(\mathbf{x}) &= \sum_{\mathbf{h}} P(\mathbf{x}, \mathbf{h}) \\ P(\mathbf{h}) &= \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{h}) \\ P(\mathbf{h} | \mathbf{x}) &= \frac{P(\mathbf{x}, \mathbf{h})}{P(\mathbf{x})} \\ P(\mathbf{x} | \mathbf{h}) &= \frac{P(\mathbf{x}, \mathbf{h})}{P(\mathbf{h})} \\ P(h_j &= 1 \mid \mathbf{x}) &= sigmoid(\sum_i x_i W_{ij} + c_j) \\ P(x_i &= 1 \mid \mathbf{h}) &= sigmoid(\sum_i W_{ij} h_j + b_i) \end{split}$$

Maximum Likelihood Estimation $P^{\theta}(\mathbf{x})$

Maximum Likelihood Estimation $P^{\theta}(\mathbf{x})$

Kullback-Leibler Divergence:

$$Q(\mathbf{x}) \| P^{\theta}(\mathbf{x}) = \int_{-\infty}^{\infty} Q(\mathbf{x}) \cdot \log \frac{Q(\mathbf{x})}{P^{\theta}(\mathbf{x})} d\mathbf{x}$$

$$= \int_{-\infty}^{\infty} Q(\mathbf{x}) \cdot \log Q(\mathbf{x}) d\mathbf{x} - \int_{-\infty}^{\infty} Q(\mathbf{x}) \cdot \log P^{\theta}(\mathbf{x}) d\mathbf{x}$$

$$= \langle \log Q(\mathbf{x}) \rangle_{Q(\mathbf{x})} - \langle \log P^{\theta}(\mathbf{x}) \rangle_{Q(\mathbf{x})}$$

 $Q(\mathbf{x})$, true data distribution

 $P^{\theta}(\mathbf{x})$, parameterized distribution, to be estimated

$$\langle \cdot \rangle_{Q(\mathbf{x})}$$
, expectation w.r.t. $Q(\mathbf{x})$

Maximum Likelihood Estimation $P^{\theta}(\mathbf{x})$

Kullback-Leibler Divergence:

$$Q(\mathbf{x}) \| P^{\theta}(\mathbf{x}) = \int_{-\infty}^{\infty} Q(\mathbf{x}) \cdot \log \frac{Q(\mathbf{x})}{P^{\theta}(\mathbf{x})} d\mathbf{x}$$

$$= \int_{-\infty}^{\infty} Q(\mathbf{x}) \cdot \log Q(\mathbf{x}) d\mathbf{x} - \int_{-\infty}^{\infty} Q(\mathbf{x}) \cdot \log P^{\theta}(\mathbf{x}) d\mathbf{x}$$

$$= \langle \log Q(\mathbf{x}) \rangle_{Q(\mathbf{x})} - \langle \log P^{\theta}(\mathbf{x}) \rangle_{Q(\mathbf{x})}$$

 $Q(\mathbf{x})$, true data distribution

 $P^{\theta}(\mathbf{x})$, parameterized distribution, to be estimated

 $\langle \cdot \rangle_{Q(\mathbf{x})}$, expectation w.r.t. $Q(\mathbf{x})$

$$-\log P^{\theta}(\mathbf{x}) = \mathcal{F}(\mathbf{x}) + \log \sum_{\mathbf{x}} \sum_{\mathbf{h}} e^{-E_{\theta}(\mathbf{x}, \mathbf{h})}$$

$$-\frac{\partial \log P^{\boldsymbol{\theta}}(\mathbf{x})}{\partial \boldsymbol{\theta}} = \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} - \sum_{\tilde{\mathbf{x}}} P(\tilde{\mathbf{x}}) \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \boldsymbol{\theta}}$$

x, input (visible) data space

 $\tilde{\mathbf{x}},$ all possible vectors in the data space, generated by model.

$$-\log P^{\theta}(\mathbf{x}) = \mathcal{F}(\mathbf{x}) + \log \sum_{\mathbf{x}} \sum_{\mathbf{h}} e^{-E_{\theta}(\mathbf{x}, \mathbf{h})}$$

$$-\frac{\partial \log P^{\theta}(\mathbf{x})}{\partial \theta} = \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \theta} - \sum_{\tilde{\mathbf{x}}} P(\tilde{\mathbf{x}}) \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \theta}$$

x, input (visible) data space

 $\tilde{\mathbf{x}},$ all possible vectors in the data space, generated by model.

objective function by averaging log-likelihood over data:

$$-\left\langle \frac{\partial \log P^{\boldsymbol{\theta}}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{Q(\mathbf{x})} = \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{Q(\mathbf{x})} - \left\langle \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \boldsymbol{\theta}} \right\rangle_{P(\tilde{\mathbf{x}})}$$

$$-\log P^{\theta}(\mathbf{x}) = \mathcal{F}(\mathbf{x}) + \log \sum_{\mathbf{x}} \sum_{\mathbf{h}} e^{-E_{\theta}(\mathbf{x}, \mathbf{h})}$$

$$-\frac{\partial \log P^{\theta}(\mathbf{x})}{\partial \theta} = \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \theta} - \sum_{\tilde{\mathbf{x}}} P(\tilde{\mathbf{x}}) \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \theta}$$

x, input (visible) data space

 $\tilde{\mathbf{x}},$ all possible vectors in the data space, generated by model.

objective function by averaging log-likelihood over data:

$$-\left\langle \frac{\partial \log P^{\boldsymbol{\theta}}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{Q(\mathbf{x})} = \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{Q(\mathbf{x})} - \left\langle \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \boldsymbol{\theta}} \right\rangle_{P(\tilde{\mathbf{x}})}$$

Contrastive Divergence (Hinton)

- Obtain $P(\tilde{\mathbf{x}})$ by Gibbs sampling
- k=0, $P_0(\mathbf{x})(=Q(\mathbf{x}))$ is true data distribution, independent of parameter θ
- $P_{\infty}^{\boldsymbol{\theta}}(\mathbf{x}) \to P(\tilde{\mathbf{x}})$

Contrastive Divergence (Hinton)

■ In practise perform 1-Gibbs step will work well:

$$-\left\langle \frac{\partial \log P^{\boldsymbol{\theta}}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_0(\mathbf{x})} = \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_0(\mathbf{x})} - \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_1^{\boldsymbol{\theta}}(\mathbf{x})}$$

Contrastive Divergence (Hinton)

■ In practise perform 1-Gibbs step will work well:

$$-\left\langle \frac{\partial \log P^{\boldsymbol{\theta}}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_0(\mathbf{x})} = \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_0(\mathbf{x})} - \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_1^{\boldsymbol{\theta}}(\mathbf{x})}$$

$$\Delta oldsymbol{ heta} \sim \left\langle rac{\partial \mathcal{F}(\mathbf{x})}{\partial oldsymbol{ heta}}
ight
angle_{P_0} - \left\langle rac{\partial \mathcal{F}(\mathbf{x})}{\partial oldsymbol{ heta}}
ight
angle_{P_0^0}$$

Table of Contents

Foundations

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine CRBM

Deep Neural Network Function and Training

Experiments

Conclusion and Outlook

DNN for Classification

- Using high-level features to perform classification
- DNN Structure
 - □ Feedforward network
 - Recurrent network

Structure and Function

Feedforward Structure

Hidden layer pre-activation:

$$\mathbf{a}(\mathbf{x}) = \mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}$$

Hidden layer activation:

$$\mathbf{h} = f(\mathbf{a})$$

Output layer activation of single hidden layer:

$$\hat{y}(\mathbf{x}) = o(\mathbf{W}^{(2)}\mathbf{h}^{(1)} + \mathbf{b}^{(2)})$$

Output layer activation of N hidden layers:

$$\hat{y}(\mathbf{x}) = o(\mathbf{W}^{(N+1)}\mathbf{h}^{(N)} + \mathbf{b}^{(N+1)})$$

Structure and Function

Recurrent Structure

$$h_t = \mathcal{H}(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$$

$$y_t = W_{hy}h_t + b_y$$

Training

Empirical Risk Minimization

Objective

$$\arg \min_{\boldsymbol{\theta}} \frac{1}{M} \sum_{m} l(\hat{y}(\mathbf{x}^{(m)}; \boldsymbol{\theta}), y^{(m)}) + \lambda \Omega(\boldsymbol{\theta})$$

- \blacksquare Loss function $l(\hat{y}(\mathbf{x}^{(m)}; \boldsymbol{\theta}), y^{(m)})$, $\boldsymbol{\theta} = \{\mathbf{W}, \mathbf{b}\}$
- Regularizer $\lambda\Omega(\theta)$, L1 & L2 regularization

Optimization

- Stochastic gradient descent
- Layerwise pre-training & Backpropagation (BP)

Table of Contents

Foundations

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine CRBM

Deep Neural Network
Function and Training

Experiments

Conclusion and Outlook

Experiment Setup

EmoDB Database

	Joy	Neutral	Sadness	Anger	Total
No. of sentences	71	79	62	127	339
Percent (%)	21	23.2	18.3	37.5	100

Data Structure

CRBM-DNN

Confusion matrix of CRBM-DNN result.

			Classfied		
		Joy	Neutral	Sadness	Anger
	Joy	57.7%	1.4%	0.0%	40.8%
True	Neutral	17.7%	54.4%	25.3%	2.5%
	Sadness	1.6%	27.9%	70.5%	0.0%
	Anger	39.4%	1.6%	0.0%	59.1%
		recog	nition rate:59	.76%	

CRBM-LSTM

Confusion matrix of CRBM-LSTM result.

			Classfied		
		Joy	Neutral	Sadness	Anger
	Joy	11.3%	9.9%	2.8%	76.1%
True	Neutral	0.0%	72.2%	17.7%	10.1%
	Sadness	0.0%	4.8%	88.7%	6.5%
	Anger	0.8%	1.6%	0.0%	97.6%
		recogr	nition rate: 71	.98%	

LSTM with rectifier units

Confusion matrix of LSTM-Rectifier result.

			Classfied		
		Joy	Neutral	Sadness	Anger
	Joy	57.7%	7.0%	0.0%	35.2%
True	Neutral	6.3%	86.1%	6.3%	1.3%
	Sadness	0.0%	6.6%	93.4%	0.0%
	Anger	8.7%	0.0%	0.0%	91.3%
			nition rate: 83		

4 ∃ → 4 □ → 4 🗇 →

Table of Contents

Foundations

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine CRBM

Deep Neural Network
Function and Training

Experiments

Conclusion and Outlook

Conclusion

- Capturing long-term dependencies is necessary for speech emotion recognition
- CRBM-DNN is inappropriate for speech emotion recognition (ER: 40.24%)
- CRBM can capture non-temporal and temporal dependencies, but only short term

Conclusion

- Capturing long-term dependencies is necessary for speech emotion recognition
- CRBM-DNN is inappropriate for speech emotion recognition (ER: 40.24%)
- CRBM can capture non-temporal and temporal dependencies, but only short term

Model	Temporal Dependency	Memory	Generaltive
DNN	-	-	-
RBM	-	-	✓
CRBM	✓	2-5	✓
ΑE	-	-	-
RNN	✓	1-100	-
LSTM	✓	1-1000	-

Conclusion

- Capturing long-term dependencies is necessary for speech emotion recognition
- CRBM-DNN is inappropriate for speech emotion recognition (ER: 40.24%)
- CRBM can capture non-temporal and temporal dependencies, but only short term
- Frame-based classification can also reach good result
 - □ CRBM-LSTM 71.98%
 - $\hfill\Box$ LSTM with rectifier layers 83.43%
 - \Box Sentence-based model SVM 84.26% (Tobias Gruber 2014)

Outlook

- Stacking CRBM to form deep belief network
- Second order optimization to speed up learning process, e.g. Newton methods
- Bi-directional LSTM

Thank You!

Deep Network for Speech Emotion Recognition Master Thesis

7huowei Han

Institut für Signalverarbeitung und Systemtheorie

Universität Stuttgart

16/04/2015

