OTA REPORT

OTA DESIGN

- I designed Miller OTA.
- Required Specs: -
- 1- DC gain >= 60 dB
- 2- GBW >= 30 MHz
- 3-PM > 60 deg
- 4- Slew rate = 20v / 1 usec
- 5- ICMR(+) = 1.6v, ICMR(-) = 0.8v
- 6- Power < 1mW

OTA DESIGN STEPS

- I used VDD=1.8v ,CI=2pf and skywater130nm technology
- 1- To have phase margin >=60, Cc should be >=0.22 Cl so Cc>=440 fF
- 2- From slew rate equation we got the Current value, I = SR*Cc so I >= 8.8 uA
- 3- From GBW equation we got gm1,2 = GBW*2*pi*Cc then W/L)1,2
- 4- From ICMR+ equation we got W/L)3,4 and from ICMR- equation we got W/L)5,8
- ICMR+ <= VDD-Vsg3+Vth1
- ICMR- >= Vgs1+Vov5
- 5- For PM>=60 gm6 >= 10*gm1 then from W/L)6 / W/L)4 = gm6/gm4 we got W/L)6
- 6- From equation: W/L)6 / W/L)4 = I6 / I4 we got I6
- 7- Finally from equation: W/L)7 / W/L)5 = I7 / I5 we got W/L)7

OTA CALCULATED PARAMETERS

Parameter	V alue
Iref	20uA
W/L)1,2	25u/0.5u
W/L)3,4	7u/0.5u
W/L)5,8	I2u/Iu
W/L)6	90u/0.5u
W/L)7	75u/I u
Cc	2pf

- I. DC analysis to check the DC operating point and ensure that all transistors are in sat.
- 2.AC analysis: a) Differential gain

2- AC analysis b) Common mode gain

2- AC analysis c) PSRR

3-Transient analysis (The OTA as buffer)

4- Noise analysis (Input referred noise)

OTA ACHIEVED SPECS

spec	value
Av	60 dB
Acm	-11.5 dB
CMRR	71.5 dB
PSRR	57 dB
GBW	30MHz
PM	52 deg
Power	318 uW