

Linguagens Formais e Autômatos Prof. Andrei Rimsa Álvares

Lista de Exercícios I - Gustavo de Assis Xavier

Teoria de Linguagens

Exercício 01) Descreva as linguagens a seguir, todas sobre $\Sigma = \{0, 1\}$, usando as seguintes operações sobre conjuntos: união, interseção, diferença, concatenação e fecho de Kleene.

a) O conjunto de palavras de tamanho 4 sem 00 e 11.

$$L = \{ w \in [\{0,1\}^* - (\{0,1\}^* \{00,1\}^*)] \mid |w| = 4 \}$$

b) O conjunto de palavras que começam com 0 e terminam com 1.

$$L = \{ w \in [\{0\} \{0,1\}^* \{1\}] \}$$

c) Subconjunto de palavras de $\{0\}^*\{1\}^*$ com número par de 0s e ímpar de 1s.

```
L = \{ w \in [\{00\}^* \{11\}^* \{1\}] \} (aqui considero que zero é par)
```

d) Conjunto de palavras de tamanho $1 \le n \le 10$.

$$L = \{ w \in \{0,1\}^* \mid 0 < |w| < 11 \}$$

e) Conjunto de palavras que contêm 00 ou 11 ou ambas.

$$L = \{ w \in [\{0,1\}^* \{00,11\} \{0,1\}^*] \}$$

f) Conjunto de palavras que contêm 00, mas não 11.

$$L = \{ w \in [(\{0,1\}^* \{00\} \{0,1\}^*) - (\{0,1\}^* \{11\}^* \{0,1\}^*)] \}$$

g) Conjunto de palavras que não contêm 00.

$$L = \{ w \in [(\{0,1\}^*) - (\{0,1\}^*, \{00\}^+, \{0,1\}^*)] \}$$

h) Conjunto de palavras tal que o penúltimo símbolo de cada palavra seja 1.

```
L = \{ w \in [\{0,1\}^*\{1\} \{0,1\}] \}
```

i) Conjunto de palavras em que todo 0 é seguido por pelo menos dois 1s consecutivos.

$$L = \{ w \in [\{0,1\}^*\{1\} \{0,1\}] \}$$

j) Conjunto de palavras que possua um número par de 0s.

$$L = \{ w \in [\{1\}^* \{0\}^n \{1\}^* \{0\}^n]^* | n \ge 0 \}$$
 (aqui considero que zero é par)

Análise: Podemos ter qualquer número formado por 0 e 1's, desde que a quantidade de 0 se repita a cada combinação. Como "n" pode ser 0, essa palavra pode acabar com 1's também.

Linguagens Formais e Autômatos Prof. Andrei Rimsa Álvares

k) Conjunto de palavras que termine com um número par de 0s.

$$L = \{ w \in [\{0,1\}^* \{1\} \{00\}^+] \}$$

1) Conjunto de palavras que termine com um número ímpar de 1s.

$$L = \{ w \in [\{0,1\}^* \{01\} \{11\}^*] \}$$

m) Conjunto de palavras cujo tamanho é um múltiplo de 3.

$$L = \{ w \in (\{0,1\}^3)^* \}$$

Exercício 02) Seja $L = \{\lambda, a, b\}$. Quantas palavras possui L^n para $n \ge 0$? Como você descreveria essas palavras usando português?

Bom, partindo do início temos:

$$L^0 = \lambda$$
 palayras = 1.

$$L^1 = \lambda$$
, a, b palavras = 3.

$$L^2 = \lambda \lambda$$
, λa , λb , $a\lambda$, $b\lambda$, aa , ab , ba , $bb = \lambda$, a , b , aa , ab , ba , bb palayras = 7.

$$L^3 = \text{```} = \lambda$$
, a, b, aa, ab, ba, bb, $+ 2^3$ combinações. palavras =

Notamos que o número de palavras que L^n possui é: (número de palavras anteriores)+2^n (número de combinações que podemos fazer com "a" e "b" em n letras). O que nos dá que o número de palavras que L^n possui para $n \ge 0$ é dado por:

$$\sum_{n=0}^{n} 2^{n}.$$

Podemos descrever essas palavras como toda combinação de a e b, de 0 até n letras, sem repetição.

Exercício 03) Sejam $\Sigma = \{a, b\}$, $A = \{a\}\Sigma^*$ e $B = \Sigma^+\{b\}$. Descreva as seguintes linguagens usando português: AA, $A \cap B$ e A-B.

$$A \rightarrow \{a\}\Sigma^*$$

$$B \rightarrow \Sigma + \{b\}$$

Linguagens Formais e Autômatos Prof. Andrei Rimsa Álvares

• 1° - AA:

$${a}\Sigma^*{a}\Sigma^* = {a}{a,b}^*{a,b}^*$$

A linguagem é formada por um "a" inicial, seguido por uma sequência de "ab's" ({a,b}*), certamente seguidos por outro "a", e então, mais uma sequência de "ab's".

•
$$2^{\circ}$$
 - $A \cap B = \{a\} \Sigma^{*} \cap \Sigma^{+} \{b\} = \{a\} \{a,b\}^{+} \{b\}$

A interseção de $\{a\}\Sigma^* \cap \Sigma^+\{b\}$ são todos os conjuntos que podem ser formados com "a" e "b" que começam com "a" e terminam com $\{b\}$ e que tem ao menos um caractere entre eles (Σ^+ garante isso).

•
$$3^{\circ} - A - B = \{a\} \Sigma^* - \Sigma^+ \{b\} = \{a\} \{a,b\}^* \{a\}$$

Os únicos conjuntos que não são retirados por $(-\Sigma^+\{b\})$ são aqueles que não terminam com B. Essa linguagem descreve todas as palavras que começam e terminam com "a".