

CLAIMS

1. A living body measuring sensor for detecting a living body electric signal from a body surface of a measuring subject, comprising:
 - 5 a conductive electrode capacitance-coupled on said body surface of said measuring subject via an insulating member; and
 - a living body electric signal extractor circuit for outputting said living body electric signal from said conductive electrode with a low impedance.
- 10 2. The living body measuring sensor as claimed in Claim 1, wherein said conductive electrode is a metal electrode.
- 15 3. The living body measuring sensor as claimed in Claim 1, wherein said conductive electrode is a conductive fiber.
4. The living body measuring sensor as claimed in Claim 1, wherein said insulating member is a thin cloth.
- 20 5. The living body measuring sensor as claimed in Claim 1, wherein
 said living body electric signal extractor circuit includes an
 impedance converter circuit whose input is a high input impedance and
 output is a low impedance.
- 25 6. The living body measuring sensor as claimed in Claim 1 or 5, wherein
 said living body electric signal extractor circuit includes a filter circuit for
 extracting a frequency component including said living body electric signal
 from an output of said impedance converter circuit.
- 30 7. The living body measuring sensor as claimed in Claim 5 or 6, wherein
 said living body electric signal extractor circuit includes an amplifier circuit
 for amplifying said living body electric signal outputted from said
 impedance converter circuit using a high gain.
- 35 8. The living body measuring sensor as claimed in Claim 1, further

including a high permittivity member to be provided between said conductive electrode and said insulating member.

9. The living body measuring sensor as claimed in Claim 8, wherein
5 said high permittivity member is a barium titanate porcelain.

10. A living body measuring method for extracting a living body electric signal from a body surface of a measuring subject using a living body measuring sensor including a conductive electrode mounted on said body surface of said measuring subject via an insulating material, wherein
10

 said living body electric signal is outputted with a low impedance by capacitance-coupling and thereby mounting said living body measuring sensor on said body surface of said measuring subject.