// first, initialize CUDA environment
Initialize CUDA and allocate memory for input image and accumulator array.
// then, define a kernel function outside of the main function
Define a kernel function:
Calculate x, y coords of the pixel this thread is responsible for
blockId * blockDim + threadId
For each pixel (x, y) in the image:
If the pixel is an edge (Image[x, y] > 0):
For each theta in range of angles:
Calculate rho = x * cos(theta) + y * sin(theta)
Increment the accumulator at (theta, rho)
// Launch and call the kernel
Set grid and block dimensions
Call the kernel:
houghTransform< <griddimensions, blockdimensions="">>(d_img, d_accumulator, width, height, max_rho, num_thetas)</griddimensions,>
Synchronize CUDA device to make sure all threads are done
// Copy results back to host and free space
Copy accumulator from Device to Host
Free device memory
Process the accumulator in MATLAB (call this C function in MATLAB)