Armstrong公理

回例,
$$R = (A, B, C, G, H, I)$$

$$F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H \}$$

F †的某些成员:

- $A \rightarrow H$: 根据传递规则,由 $A \rightarrow B$ 和 $B \rightarrow H$ 得到
- $AG \rightarrow I$: 用G增补 $A \rightarrow C$ 得 $AG \rightarrow CG$,再由 $CG \rightarrow I$ 根据传递规则得到
- $CG \rightarrow H/$: 由 $CG \rightarrow H$ 和 $CG \rightarrow I$,可根据函数依赖的定义导出"并规则"得到,或增补 $CG \rightarrow I$ 得到 $CG \rightarrow CGI$,增补 $CG \rightarrow H$ 得到 $CGI \rightarrow HI$,再利用传递规则得到

Armstrong公理的补充定律

- □ 可用下列规则进一步简化*F* †的手工计算
- □ 以上规则可以从Armstrong公理推出
 - 例,考虑到 $\alpha \to \beta \gamma$,根据自反律可得到: $\beta \gamma \to \beta$, $\beta \gamma \to \gamma$;再由传递律可得到: $\alpha \to \beta = \alpha \to \gamma$ 成立

计算*F* +

□ 下列过程计算函数依赖集F的闭包:

```
F = F repeat for each F中的函数依赖 f 对 f应用自反律和增补律 将结果函数依赖加入F for each F中的一对函数依赖 f_1 和 f_2 if f_1和 f_2可以使用传递律结合起来 将结果函数依赖加入F until F 不再变化
```

- □ 由于包含n个元素的集合含有个2ⁿ子集,因此共有2ⁿX2ⁿ个可能的函数依赖
- □ 后面会介绍完成此任务的另一过程

- □ 如何判断集合α是否为超码
 - 一种方法是: 计算F, 在F中找出所有 $\alpha \to \beta_i$, 检查 { $\beta_1 \beta_2 \beta_3 \cdots$ }= R。 但是这么做开销很大,因为F可能很大
 - 另一种方法是: 计算 α 的闭包
- 口 定义: 给定一个属性集 α , 在函数依赖集F 下由 α 函数确定的所有属性的集合为F 下 α 的闭包(记做 α ⁺)
 - 检查函数依赖 $\alpha \rightarrow \beta$ 是否属于 $F^{+} \Leftrightarrow \beta \subseteq \alpha^{+}$
 - 判断 α 是否为超码: $\alpha \rightarrow R$ 属于 $F^+ \Leftrightarrow R \subseteq \alpha^+$

□ 计算*α* ⁺ 的算法

```
result := a; while (result) 有变化) do for each \beta \to \gamma in F do begin if \beta \subseteq result then result := result \cup \gamma end a+ := result
```

避免了找F+(反复使用公理)的麻烦

回例1,
$$R = (A, B, C, G, H, I)$$

$$F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H \}$$

- \Box $(AG)^+$
 - \blacksquare result = AG
 - result = ABCG $(A \rightarrow C \text{ and } A \rightarrow B)$
 - result = ABCGH ($CG \rightarrow H$ and $CG \subseteq AGBC$)
 - lacksquare result = *ABCGHI* ($\mathit{CG}
 ightarrow \mathit{I}$ and $\mathit{CG} \subseteq \mathit{AGBCH}$)

- □ *AG*是候选码吗?
 - **■** *AG*是超码吗?
 - 一 即, AG \rightarrow R? 由于(AG)⁺ \supseteq R, 所以AG是超码
 - 存在*AG*的子集是超码吗?
 - A^+ → R? 由于(A) + = ABCH ,所以(A) + \Rightarrow R ,所以A不是超码
 - $-G^+ \rightarrow R$? 由于 $(G)^+ = G$, 所以 $(G)^+ \stackrel{1}{\searrow} R$, 所以G不是超码
 - 综上,*AG*是候选码

- □ 例2, R = (A, B, C), $F = \{A \rightarrow B, BC \rightarrow A\}$, R的候选码是什么?
 - ∴ (BC) $^+$ = (BCA) \supseteq R, (AC) $^+$ = (ACB) \supseteq R, (AB) $^+$ = (AB) \supseteq R
 - ∴候选码是AC, BC

属性闭包的用法

- □ 属性闭包算法有多种用途:
 - 测试超码($\alpha \rightarrow R$?)
 - 一 为检测 α 是否超码,可计算 α + 并检查 α + 是否包含R 的所有属性
 - 测试函数依赖($\alpha \rightarrow \beta$?)
 - 一 为检测函数依赖 α → β 是否成立(即是否属于 F^+),只需检查是否 $\beta \subseteq \alpha^+$
 - 一 即,可计算 α +,并检查它是否包含 β
 - 一 这个检查简单而高效,非常有用
 - 计算F的闭包(F += ?)
 - 一 对每个 $\gamma \subseteq R$, 计算 γ +, 再对每个 $S \subseteq \gamma$ +, 输出函数依赖 $\gamma \rightarrow S$

- □ DBMS总是检查确保数据库更新不会破坏任何函数依赖。但如果*F*很大, 其开销就会很大。因此我们需要简化函数依赖集
- \square 直观地说,F的正则覆盖(记做 F_c)是指与F等价的"极小的"函数依赖集合
 - *F。*中任何函数依赖都不包含无关属性
 - - 例, $\alpha_1 \rightarrow \beta_1$, $\alpha_1 \rightarrow \beta_2$, $\Rightarrow \alpha_1 \rightarrow \beta_1\beta_2$

- □ 如何计算*F*。: 删除多余属性, 存在以下三种情况
 - 函数依赖集中存在可由其他函数依赖推导出的函数依赖
 - 一 例,在F中 A → C是冗余的

$$F = \{A \to C, A \to B, B \to C\}$$

$$F_c = \{A \to B, B \to C\}$$

■ 函数依赖左边部分存在属性冗余

一 例,
$$F = \{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$$
, 即 $\{A \rightarrow B, B \rightarrow C, AC \rightarrow D, A \rightarrow D\}$ ⇒ $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$ 。所以 F 蕴涵 $F' = \{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$,因此属性 C 是多余的

- 函数依赖右边部分存在属性冗余
- 例, $F = \{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$, 即 $\{A \rightarrow B, B \rightarrow C, A \rightarrow C, A \rightarrow C\}$, $\{A \rightarrow B, B \rightarrow C, A \rightarrow C, A \rightarrow C\}$, $\{A \rightarrow B, B \rightarrow C, A \rightarrow B, B \rightarrow C, A \rightarrow B\}$, 因此属性 $\{A \rightarrow B, B \rightarrow C, A \rightarrow B\}$, 因此属性 $\{A \rightarrow B, B \rightarrow C, A \rightarrow B\}$, 因此属性 $\{A \rightarrow B, B \rightarrow C, A \rightarrow B\}$, 因此属性 $\{A \rightarrow B, B \rightarrow C, A \rightarrow B\}$, $\{A \rightarrow B, B \rightarrow C, A \rightarrow B\}$, $\{A \rightarrow B, B \rightarrow C, A \rightarrow B\}$, $\{A \rightarrow B, B \rightarrow C, A \rightarrow B\}$, $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$, $\{A \rightarrow B, B \rightarrow C, A \rightarrow B\}$, $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$, $\{A \rightarrow B, B \rightarrow C, A \rightarrow B\}$, $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$, $\{A \rightarrow B, B \rightarrow C, A \rightarrow B\}$, $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$, $\{A \rightarrow B, B \rightarrow C, A \rightarrow B, B \rightarrow C\}$, $\{A \rightarrow B, B \rightarrow C, A \rightarrow B\}$, $\{A \rightarrow B, B \rightarrow C, A \rightarrow B\}$, $\{A \rightarrow B, B \rightarrow C, A \rightarrow B\}$, $\{A \rightarrow B, B \rightarrow C, A \rightarrow B\}$, $\{A \rightarrow B, B \rightarrow C, A \rightarrow B\}$, $\{A \rightarrow B, B \rightarrow C, A \rightarrow B\}$, $\{A \rightarrow B, B \rightarrow C, A \rightarrow B\}$, $\{A \rightarrow$

无关属性

- □ 考虑函数依赖集合F 及其中的函数依赖 $\alpha \rightarrow \beta$
 - 如果 $A \in \alpha$ 并且F 逻辑蕴含 $F' = (F \{\alpha \rightarrow \beta\}) \cup \{(\alpha A) \rightarrow \beta\}$,则称属性A 在 α 中是无关的
 - 一 例,给定 $F = \{A \rightarrow C, AB \rightarrow C\}$ $B \to AB \rightarrow C \to C$ 中是无关的,因为 $A \to C$ 逻辑蕴含 $AB \to C$
 - 如果 $A \in \beta$ 并且 $F' = (F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\}$ 逻辑蕴含F, 则称属性A 在 β 中是无关的
 - 一 例, 给定 $F = \{A \rightarrow C, AB \rightarrow CD\}$ $C \to AB \rightarrow CD \to CD$ 中是无关的,因为即使删除 $C \to CD$ 也能推出 $A \to CD$

检测属性是否无关

- □ 为检测属性 $A \in \alpha$ 在 α 中是否无关
 - 计算在F 下的(α {A})+

- 检查($A \{\alpha\}$) + 是否包含 β 。如果是,则A 是无关的
- □ 为检测属性A \in β 在β中是否无关
 - 计算在 $F' = (F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\}$ 下的 α^{+}
 - 检查 α^{+} 是否包含A。 如果是,则A 是无关的

 $\beta = \{A\beta'\}, \ \alpha \rightarrow \{A\beta'\}$ 。若F' 蕴涵 $\alpha \rightarrow A$,则A 可删。故只要在F' 下证明 $A \in (\alpha)^+$

□ 计算*F* 的正则覆盖

repeat

对F 中的依赖利用合并规则

 $\alpha_1 \rightarrow \beta_1$ 和 $\alpha_1 \rightarrow \beta_2$ 替换成 $\alpha_1 \rightarrow \beta_1$ β_2 找出含有无关属性的函数依赖 $\alpha \rightarrow \beta$ (在 α 或 β 中) 如果找到无关的属性,从 $\alpha \rightarrow \beta$ 中删去

until *F* 不再变化

■ 注:删除某些无关的属性之后,可能导致<mark>合并</mark>规则可以使用,所以必须重 新应用

- 回例,R = (A, B, C) $F = \{A \rightarrow BC$ $B \rightarrow C$ $A \rightarrow B$ $AB \rightarrow C$
- \Box 合并 $A \rightarrow BC$ 及 $A \rightarrow B$ 得到 $A \rightarrow BC$
 - 集合变成 $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- □ A 在 $AB \rightarrow C$ 中是无关的,因为 $B \rightarrow C$ 逻辑蕴含 $AB \rightarrow C$
 - 集合变成 $\{A \rightarrow BC, B \rightarrow C\}$
- \square C 在 $A \rightarrow BC$ 中是无关的,因为 $A \rightarrow BC$ 可由 $A \rightarrow B$ 和 $B \rightarrow C$ 逻辑 推出
- □ 正则覆盖是: $F_c=\{A \rightarrow B, B \rightarrow C\}$

□ 规范化的目标

- 以判断关系模式 R 是否为"好的"形式(不冗余,无插入、删除、更新异常)
- 当R 不是 "好的"形式时,将它分解成模式集合 $\{R_1, R_2, \ldots, R_n\}$ 使得
 - 一 每个关系模式都是"好的"形式
 - 一 分解是无损连接分解
 - 一 分解是保持依赖

- □ 分解应有的特性:
- □ 1. 原模式(R)的所有属性都必须出现在分解后的(R_1 , R_2)中: $R = R_1 \cup R_2$
- □ 2. 无损连接分解
 - 对关系模式*R*上的所有可能的关系*r*

$$r = \prod_{R1}(r) \bowtie \prod_{R2}(r)$$

■ R 分解成 R_{ℓ} 和 R_{ϱ} 是无损连接,当且仅当下列依赖中的至少一个属于 F^{+}

$$R_1 \cap R_2 \to R_1$$

$$R_1 \cap R_2 \to R_2$$

无损连接分解的条件:

分解后的二个子模式的<mark>共同属性</mark>必须是R₁或R₂的码。(适用于一分为二的分解)

□ 3. 保持依赖

- 有效地检查更新操作(以确保没有违反任何FD),允许分别验证子关系模式 R_i ,而不需要计算分解后的关系的连接
- F 在 R_i 上的限定是: $F_i \subseteq F^+$, 即 F^+ 中所有只包含 R_i 中属性的函数依赖 F_i 的集合
- $(F_1 \cup F_2 \cup \cdots \cup F_n)^+ = F^+$, $F_i \in F^+$ 中仅包含 R_i 属性的依赖集

□ 4. 没有冗余

■ R_i最好满足BCNF或3NF(BCNF和3NF将在下一课中讲解)

- \square 例, R = (A, B, C), $F = \{A \rightarrow B, B \rightarrow C\}$, 有两种分解方式
 - 第一种方式: $R_1 = (A, B) n R_2 = (B, C)$
 - 一 无损连接分解: $R_1 \cap R_2 = \{B\}$ 并且 $B \to C$, ∴ $(B)^+ = \{BC\} \supseteq R_2$
 - 一 保持依赖: 对于 R_1 ,有 F_1 = { $A \to B$ }; 对于 R_2 ,有 F_2 ={ $B \to C$ } , ∴ ($F_1 \cup F_2$) ⁺ = F^+
 - 第二种方式: $R_1 = (A, B)$ 和 $R_2 = (A, C)$
 - 一 无损连接分解: $R_1 \cap R_2 = \{A\}$ and $(A)^+ = \{AB\}$ $\supseteq R_1$
 - 一 对于 R_1 ,有 F_1 = { $A \rightarrow B$ };对于 R_2 ,有 F_2 ={ $A \rightarrow C$ },($F_1 \cup F_2$)⁺ = { $A \rightarrow B$ },A → C} ⁺ ≠ F⁺,在 R_1 , R_2 中无法不通过计算 $R_1 \bowtie R_2$,来检查 B → C ∴ 是非保持依赖

□ 为检查依赖 $\alpha \to \beta$ 在R 到 R_1 , R_2 , ··· , R_n 的分解中是否得到保持,可进行下面的简单测试

```
result = \alpha while (result \  \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for } \, ext{ for each } \, 	ext{ for } \, ext{ for each } \, 	ext{ for } \, ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each } \, 	ext{ for each
```

对于F 中的某个 $\alpha \rightarrow \beta$,投影 **)** 到各个 R_i 中,判别是否有某 个 R_i 能保持函数依赖 $\alpha \rightarrow \beta$

- 若对F 中的每个 $\alpha \rightarrow \beta$ 都能有一个 R_i 满足函数依赖,则该分解<mark>保持依赖</mark>

总结

- □ 描述了原子域和第一范式的假设
- □ 给出了数据库设计中易犯的错误,这些错误包括信息重复和插入、删除、修改异常
- □ 介绍了函数依赖的概念,展示了如何用函数依赖进行推导
- □ 理解 F^+ , α^+ , F_c
- □ 介绍了如何分解模式,一个有效的分解都必须是无损的
- □ 如果分解是保持依赖的,则给定一个数据库更新,所有的函数依赖都可以由单独的关系进行验证,无须计算分解后的关系的连接

谢谢!

