Kent Mark

583972417

4/21/2021

Com S 311 Exam 2

Exam 2

1.

a

b

	1	2	3	4	5
Kruskal's	(a, c)	(e, f)	(b, d)	(a, e)	(d, e)
Prim's	(a, c)	(a, e)	(e, f)	(d, e)	(b, d)

c. I could show that G has a unique minimum spanning tree by calculating G's minimum cost.

Minimum cost = 1 + 2 + 3 + 4 + 6 = 16

2.

a.

iter.	d[]						Selected
	S	a	b	c	d	e	Nodes
0	0	∞	8	∞	8	∞	S
1	0	3	2	6	8	∞	sb
2	0	3	2	5	8	11	sba

3	0	3	2	4	10	11	sbac
4	0	3	2	4	7	11	sbacd
5	0	3	2	4	7	8	sbacde
6	_	_	_	_	_	_	sbacde

b.

- c. I do not know how to solve this question.
- 3. To prove that L is in P we have to build an algorithm that can make decisions in polynomial time that accepts all string in L but rejects all strings not in L. This vertex algorithm will work where a user inputs: a binary string X_n where n is the length.

Pseudo code:

- i) $y \leftarrow \text{Reverse x o(n)}$
- ii) $z \leftarrow$ compliment each bit of y(on)
- iii) if y accepts z in polynomial time, then the algorithm/program outputs "YES"
- iv) else y rejects z in polynomial time, output "NO"

Correctness Check:

Repeated complementation and reversal of a string will return the string in L. Therefore if y accepts z or rejects z each of the steps will run in polynomial time. As such, L is in P.

4. This algorithm was written in C!

```
// C program to count string num
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
//k is the total num of characters
int strCount(int k, int b, int c){
//base case
if(b < 0 || c < 0){
return 0;
}
if(k == 0) {
return 1;
if(b == 0 \&\& c == 0){
return 1;
}
//in these three cases we will go with the first, second, or third choice, k decreases by 1
int alg = strCount(n - 1, b, c);
alg += strCount(n - 1, b - 1, c - 1);
alg += strCount(n - 1, b, c);
return alg;
```

5. I do not know how to solve this problem.