

- * This is an approach often used by financial investors when considering an investment
- * The key question is how much can they afford to pay for a deal while still hitting a target return on investment
- * What is their ability to pay?

- * This is most often part of an LBO model and many of the inputs come straight from the model
- * The analysis also incorporates the deal leverage so that this becomes an important variable in the calculation
- * To understand ability to pay you have to work backwards from a starting point of the equity invested

We are going to work
 through a simple
 hypothetical example to
 show how this works.

- * Most financial investors will be targeting a 20% to 25% IRR
- * We have 3 inputs for our model (in green) and can change any of them to identify the "ability to pay" valuation

Exit Multiple	8x		
EBITDA	US\$120.00		
Transaction Value	US\$960.00		
Net Debt	-US\$400.00		
Equity Value	US\$560.00		
Required IRR	20%	22.5%	25%

- * Lets say we have a 5 year investment period and our model tells us that the EBITDA will be \$120m on exit
- * Lets say we expect an 8x exit multiple = \$960m
- * Deduct net debt of \$400m = Equity Value of \$560m

Exit Multiple	8x	
EBITDA	US\$120.00	
Transaction Value	US\$960.00	
Net Debt	-US\$400.00	
Equity Value	US\$560.00	

- * We can calculate the multiple of invested capital using the formula MoIC = (1+IRR)^5
- * For each IRR this gives us a multiple and from the Exit Equity value we can derive the invested equity for each return threshold

Required IRR	20%	22.5%	25%
Holding Period	5	5	5
Implied Multiple of Invested Capital	2.49x	2.76x	3.05x
Invested Equity	US\$225.05	US\$203.01	US\$183.50
(+) Debt Raised	600	600	600
(+) Cash on Hand	0	0	0
Total Implied Deal Financing Sources	US\$825.05	US\$803.01	US\$783.50

- * From our LBO model we can identify the debt raised and the cash on hand
- * In this case cash on hand is assumed to be zero on the basis of a debt free cash free deal
- * So the Total Sources for our deal are Max Equity Investment + //
 Debt Raised

Required IRR	20%	22.5%	25%
Holding Period	5	5	5
Implied Multiple of Invested Capital	2.49x	2.76x	3.05x
Invested Equity	US\$225.05	US\$203.01	US\$183.50
(+) Debt Raised	600	600	600
(+) Cash on Hand	0	0	0
Total Implied Deal Financing Sources	US\$825.05	US\$803.01	US\$783.50

- Next we have to deduct our expenses and any cash balance or refinanced debt (both assumed to be zero to simplify)
- * This gives us an implied Equity Purchase Price

Total Implied Deal	US\$825.05	US\$803.01	US\$783.50
Financing Sources			
(-) Refinanced Debt			
(-) Cash Balance			
(-) Expenses	-US\$25.00	-US\$25.00	-US\$25.00
Implied Equity Purchase Price	US\$800.05	US\$778.01	US\$758.50
Net Debt	0	0	0
Implied Transaction Value	US\$800.05	US\$778.01	US\$758.50
EBITDA on Entry	US\$90.00	US\$90.00	US\$90.00
Implied Transaction Multiple	8.89x	8.64x	8.43x

- * The final step is to adjust for any net debt in the deal this would add to the transaction value
- * We are assuming debt free, cash free so this too is zero
- * This gives us a transaction value

Total Implied Deal Financing Sources	US\$825.05	US\$803.01	US\$783.50
(-) Refinanced Debt			
(-) Cash Balance			
(-) Expenses	-US\$25.00	-US\$25.00	-US\$25.00
Implied Equity Purchase Price	US\$800.05	US\$778.01	US\$758.50
Net Debt	0	0	0
Implied Transaction Value	US\$800.05	US\$778.01	US\$758.50
EBITDA on Entry	US\$90.00	US\$90.00	US\$90.00
Implied Transaction Multiple	8.89x	8.64x	8.43x

* This then tells us how much we can afford to pay and at what EBITDA multiple if we want to achieve our hurdle rate IRR

* This simple financial model is available to download with this lecture so that you can calculate your own ability to pay for a transaction

Total Implied Deal Financing Sources	US\$825.05	US\$803.01	US\$783.50
(-) Refinanced			
Debt			
(-) Cash Balance			
(-) Expenses	-US\$25.00	-US\$25.00	-US\$25.00
Implied Equity Purchase Price	US\$800.05	US\$778.01	US\$758.50
Net Debt	0	0	0
Implied Transaction Value	US\$800.05	US\$778.01	US\$758.50
EBITDA on Entry	US\$90.00	US\$90.00	US\$90.00
Implied Transaction Multiple	8.89x	8.64x	8.43x

