Chapter 4: Integrals Week 11

Pierre-Olivier Parisé Calculus I (MATH-241 01/02)

> University of Hawai'i Fall 2021

Upcoming this week

- 1 4.2 The Definite Integral
- 2 3.9 Antiderivatives
- 3 4.3 The Fundamental of Calculus

For a given sample of equidistributed points $x_i^* \in [a, b]$, we create the Riemann sums

$$S_n(f) := \sum_{i=1}^n f(x_i^*) \Delta x_i.$$

We also call the points x_i^* a partition of the interval [a, b]. The numbers $\Delta x_i = x_i^* - x_{i-1}^*$.

Definition 1

If f is a function on [a, b]. The definite integral of f from a to b is

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

provided the limit exists and is the same value for any sample of points x_i^* of [a, b].

PO Parisé Week 11 UHawai'i

Remarks:

- The integral $\int_a^b f(x) dx$ represent the net area between the curve y = f(x) and the x-axis when f(x) is non-negative.
- Sometimes, it is useful to work with a partition that subdivides the interval [a,b] into subintervals of different lengths. In this case, if Δx_i represents the length of the intervals $[x_{i-1},x_i]$, then the definite integral can be expressed as

$$\int_a^b f(x) dx = \lim_{\Delta x_i \to 0} \sum_{i=1}^n f(x_i^*) \Delta x_i.$$

Example 2

Show that f(x) = 1 is integrable over the interval [0, 1].

PO Parisé Week 11 UHawai'i

Which functions are integrable.

Theorem 3

If f is continuous on [a, b], or has a finite number of jump discontinuities, then f is integrable on [a, b].

So, we know that

- Any polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ is integrable on [a, b].
- The function |x| is integrable on [a, b].
- Any trigonometric function is integrable on [a, b].

Example 4

Express the following limit in term of an integral:

$$\lim_{n\to\infty}\sum_{i=1}^n(x_i^3+x_i\sin x_i)\Delta x.$$

PO Parisé Week 11 UHawai'i

How so we compute the integral of a function?

Theorem 5

If f is integrable on [a, b], then

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x$$

where $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$.

Example 6

Using the last Theorem, compute the integral $\int_0^3 (x^2 - 6x) dx$.

PO Parisé Week 11 UHawai'i

Theorem 7

If f is integrable on [a, b], then

Example 8

Suppose $\int_0^1 f(x) dx = 10$ and $\int_2^1 f(x) dx = -5$, compute the value of $\int_0^2 f(x) dx$.

PO Parisé Week 11 UHawai'i

Theorem 9

If f and g are integrable functions on [a, b] and c is a real number, then

•
$$\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx.$$

•
$$cf(x) dx = c \int_a^b f(x) dx$$
.

Example 10

Compute the value of the definite integral $\int_0^1 (4+3x^2) dx$.

PO Parisé Week 11 UHawai'i

Theorem 11

If f is integrable and $m \le f(x) \le M$ for $x \in [a, b]$, then

$$m(b-a) \leq \int_a^b f(x) dx \leq M(b-a).$$

Example 12

Estimate the integral $\int_{1}^{4} \sqrt{x} dx$.

Some other important properties of the integral are

- if $f(x) \ge 0$ for $a \le x \le b$, then $\int_a^b f(x) dx \ge 0$.
- if $f(x) \le g(x)$ for $a \le x \le b$, then $\int_a^b f(x) dx \le \int_a^b g(x) dx$.

Exercises: 3, 7, 17-20, 21-25 (Use the Theorem 18 instead of the definition), 29, 30, 34, 35-40, 59-64.

UHawai'i PO Parisé Week 11

Question 13

Can you find a function F(x) such that $F'(x) = 3x^2$?

Definition 14

A function F is called an <u>antiderivative</u> of f on an interval if F'(x) = f(x) for all x in I.

Remark: When you find an antiderivative F, the function F(x) + C where C is a constant is also an antiderivative.

Example 15

Find all the antiderivative of each of the following functions.

- a) $f(x) = \sin x$.
- b) $f(x) = x^3$.
- c) $f(x) = x^{-3}$.

PO Parisé Week 11 UHawai'i

Function	Antiderivative
cf(x)	cF(x) + C
f(x) + g(x)	F(x) + G(x) + C
$x^n \ (n \neq 1)$	$\frac{x^{n+1}}{n+1} + C$
cos x	$\sin x + C$
sin x	$-\cos x + C$
$sec^2 x$	tan x + C
sec x tan x	sec x

Table: Table of some functions and their antiderivatives

Example 16

A particle moves in a straight line and has acceleration given by a(t) = 6t + 4. Its initial velocity is v(0) = -6cm/s and its initial displacement is s(0) = 9cm. Find its position function s(t).

Exercises: 1-20, 21-22, 33-36, 46, 53-58.

Week 11 UHawai'i 11 / 15 Remember that the derivative can be viewed as a function, that is f'(x).

We can do the same thing for the integral by setting the upper limit in the integral to be x:

$$F(x) := \int_a^x f(t) dt.$$

Example 17

Suppose that f is the function given by the graph in the following figure:

If $F(x) := \int_0^x f(t) dt$, find the value of g(0), g(1), g(2).

PO Parisé Week 11 UHawai'i

We can prove that

$$\int_0^x x\,dx = \frac{x^2}{2}.$$

As you can see, the integrand is exactly the derivative of $x^2/2$. In fact, this is true in general.

Fondamental Theorem of Calculus (Part 1)

If f is conitnuous on [a, b], then the function F defined by

$$F(x) := \int_{a}^{x} f(t) dt \quad a \le x \le b$$

is continuous on [a, b] and differentiable on (a, b), and F'(x) = f(x).

Example 18

Find the derivative of the function $F(x) = \int_0^x \sqrt{1+t^2} dt$.

PO Parisé Week 11 UHawai'i

Remember: a function F is an antiderivative of f if F'(x) = f(x).

Fundamental Theorem of Calculus (Part 2)

If f is continuous on [a, b], then

$$\int_a^b f(x) dx = F(b) - F(a)$$

where F is any antiderivative of f, that is, a function F such that F'(x) = f(x).

Example 19

Evaluate the integral $\int_{-2}^{1} x^3 dx$.

Example 20

Find the area under the cosine curve from 0 to $\pi/2$.

PO Parisé Week 11 UHawai'i

The Fundamental Theorem of Calculus (FTC)

Suppose f is continuous on [a, b].

- If $F(x) = \int_a^x f(x) dx$, then F'(x) = f(x).
- If F is an antiderivative of f, then $\int_a^b f(x) dx = F(b) F(a)$.

The FTC tells us that

- differentition undoes what the integration does.
- integration undoes what the integration does.
- in other words, integration and derivation are inverse processes.

Exercises: 7-18, 19-38, 39-42, 43-46 (only find the exact value).

PO Parisé Week 11 UHawai'i 15 / 15