

Process Control: Part II- Model Predictive Control (EE6225, AY2019/20, S1)

Dr Xin Zhang

Assistant Professor

Office: NTU S2-B2c-95, Tel: 67905419

Lab: S2.2-B4-03

Email: Jackzhang@ntu.edu.sg

- 1. Answer the following questions about model predictive control (MPC)
 - (a) How to select the sampling time of MPC?

(1 Marks)

(b) How to select the prediction horizon of MPC;

(1 Marks)

(c) How to select the control horizon of MPC;

(1 Marks)

(d) How to select the constrains of MPC;

(1 Marks)

(e) How to select the weights of MPC;

(1 Marks)

- ➤ Sampling time: Set the sampling time between 5% and 10% of the minimum desired closed-loop response time.
- \triangleright Prediction horizon: If the setting time of the system is T_{set} , the prediction time should be larger than T_{set} .
- \triangleright Control horizon: The control horizon m is selected between 0.1 P and 0.2 P, where P is the prediction horizon.
- Constrains: For the output variable, soft constrain is recommended, which allow to break the limits. In addition, hard constrains should be avoided to be given to the input variable and its variable rate at the same time.
- ➤ Weights: Larger weight for important cost item; less weight for unimportant cost item.

2. For a system, its CARIMA model is as follows

$$A(z)\mathbf{v}_{k} = b(z)\Delta u_{k} \tag{1}$$

where

$$a(z) = 1 - 0.5z^{-1} \tag{2}$$

$$b(z) = 3z^{-1} + 2z^{-2}$$
 (3)

The CARIMA model based MPC expression is as follows:

$$\underline{y}_{k+1} = C_A^{-1} C_b \cdot \Delta \underline{u}_k + \left(C_A^{-1} H_b \cdot \Delta \underline{u}_{k-1} - C_A^{-1} H_A \cdot \underline{y}_k \right) \tag{4}$$

The prediction horizon is 4, please answer the following questions:

$$A(z)y_k = b(z)\Delta u_k$$

$$a(z) = 1 - 0.5z^{-1}$$

$$A(z)y_k = b(z)\Delta u_k$$
 $a(z) = 1 - 0.5z^{-1}$ $b(z) = 3z^{-1} + 2z^{-2}$

Using the definition of the prediction matrices and a horizon of 4.

$$a(z) = 1 - 0.5z^{-1}$$

$$\Delta = 1 - Z^{-1}$$

$$\Delta = 1 - Z^{-1}$$

$$A_1 \qquad A_2 \qquad A_{3,4...} = 0$$

$$\Delta = 1 - 1.5z^{-1} + 0.5z^{-2} + 0$$

$$C_{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ A_{1} & 1 & 0 & 0 \\ A_{2} & A_{1} & 1 & 0 \\ A_{3} & A_{2} & A_{1} & 1 \end{bmatrix} \Longrightarrow C_{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1.5 & 1 & 0 & 0 \\ 0.5 & -1.5 & 1 & 0 \\ 0 & 0.5 & -1.5 & 1 \end{bmatrix}$$

$$H_{A} = \begin{bmatrix} A_{1} & A_{2} \\ A_{2} & A_{3} \\ A_{3} & A_{4} \\ A_{4} & A_{5} \end{bmatrix} \longrightarrow H_{A} = \begin{bmatrix} -1.5 & 0.5 \\ 0.5 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A(z)y_k = b(z)\Delta u_k$$

$$a(z) = 1 - 0.5z^{-1}$$

$$A(z)y_k = b(z)\Delta u_k$$
 $a(z) = 1 - 0.5z^{-1}$ $b(z) = 3z^{-1} + 2z^{-2}$

Using the definition of the prediction matrices and a horizon of 4.

$$b(z) = 3z^{-1} + 2z^{-2}$$
 $b_1 = 3$ $b_2 = 2$ $b_{3,4...} = 0$

$$C_{b} = \begin{bmatrix} b_{1} & 0 & 0 & 0 \\ b_{2} & b_{1} & 0 & 0 \\ b_{3} & b_{2} & b_{1} & 0 \\ b_{4} & b_{3} & b_{2} & b_{1} \end{bmatrix} \implies C_{b} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 0 & 2 & 3 & 0 \\ 0 & 0 & 2 & 3 \end{bmatrix}$$

$$H_b = \begin{bmatrix} b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix} \qquad \Longrightarrow \qquad H_b = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$A(z)y_k = b(z)\Delta u_k$$

$$a(z) = 1 - 0.5z^{-1}$$

$$A(z)y_k = b(z)\Delta u_k$$
 $a(z) = 1 - 0.5z^{-1}$ $b(z) = 3z^{-1} + 2z^{-2}$

Using the definition of the prediction matrices and a horizon of 4.

$$\underline{y}_{k+1} = H \cdot \Delta \underline{u}_k + \left(P \cdot \Delta \underline{u}_{k-1} - Q \cdot \underline{y}_k\right)$$

$$H = C_A^{-1}C_b$$
 $P = C_A^{-1}H_b$ $Q = C_A^{-1}H_A$

$$C_{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1.5 & 1 & 0 & 0 \\ 0.5 & -1.5 & 1 & 0 \\ 0 & 0.5 & -1.5 & 1 \end{bmatrix} \qquad C_{b} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 0 & 2 & 3 & 0 \\ 0 & 0 & 2 & 3 \end{bmatrix}$$

$$C_b = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 0 & 2 & 3 & 0 \\ 0 & 0 & 2 & 3 \end{bmatrix}$$

$$H_A = \begin{bmatrix} -1.5 & 0.5 \\ 0.5 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$H_b = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

APPLICATION OF FINITE CONTROL SET MPC IN THREE PHASE INVERTER

[07/11/2019]

- Basic knowledge of power inverters
- Finite Control Set (FCS) MPC for power inverters
- Improved FCS-MPC for power inverters

APPLICATION OF FINITE CONTROL SET MPC IN THREE PHASE INVERTER

[07/11/2019]

- Basic knowledge of power inverters
- Finite Control Set (FCS) MPC for power inverters
- > Improved FCS-MPC for power inverters

Inverter as the Core Technology for Renewable Energy and Distributed Generation

Single-phase inverter and three-phase inverter

Single phase inverter's working principle

Three phase inverter = 3 single phase inverters

Topology of three phase inverter

2019/11/6

Three phase inverter SPWM control

Why SPWM control needs further improvement?

LET US TO TRY MPC CONTROLLER ©

Application of the three-phase inverter

APPLICATION OF FINITE CONTROL SET MPC IN THREE PHASE INVERTER

[07/11/2019]

- Basic knowledge of power inverters
- Finite Control Set (FCS) MPC for power inverters
- > Improved FCS-MPC for power inverters

FCS-MPC FOR POWER INVERTERS

- Preliminary

TECHNOLOGICAL 3 phase voltages can change to 2 phase voltages

DC voltage

$$\begin{bmatrix} u_{\alpha} \\ u_{\beta} \end{bmatrix} = \frac{2}{3} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} u_{a} \\ u_{b} \\ u_{c} \end{bmatrix} = \begin{bmatrix} u_{a} \\ u_{b} \\ u_{c} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} u_{\alpha} \\ u_{\beta} \end{bmatrix}$$

3 phase voltages can change to 1 voltage vector

DC voltage

$$\vec{v} = \vec{u}_a + \vec{u}_b + \vec{u}_c = \vec{u}_\alpha + \vec{u}_\beta$$

- \triangleright S₁ & S₂, S₃ & S₄, S₅ & S₆
- $ightharpoonup S_{1/2/3/4/5/6}$: 1 (Turn on); 0 (Turn off)
- > Switching leg: 1 (upper switch turn on); 0 (Upper switch turn off)

8 switching states of power inverters

Switch state 1 of power inverters

S_1	S_2	S_3	S_4	S_5	S_6
0	1	0	1	0	1
1	0	0	1	0	1
0	1	1	0	0	1
0	1	0	1	1	0
1	0	1	0	0	1
1	0	0	1	1	0
0	1	1	0	1	0
1	0	1	0	1	0

Switch state 2 of power inverters

S_1	S_2	S_3	S_4	S_5	S_6
0	1	0	1	0	1
1	0	0	1	0	1
0	1	1	0	0	1
0	1	0	1	1	0
1	0	1	0	0	1
1	0	0	1	1	0
0	1	1	0	1	0
1	0	1	0	1	0

Switch state 3 of power inverters

S_1	S_2	S_3	S_4	S_5	S_6
0	1	0	1	0	1
1	0	0	1	0	1
0	1	1	0	0	1
0	1	0	1	1	0
1	0	1	0	0	1
1	0	0	1	1	0
0	1	1	0	1	0
1	0	1	0	1	0

Switch state 4 of power inverters

S_1	S_2	S_3	S_4	S_5	S_6
0	1	0	1	0	1
1	0	0	1	0	1
0	1	1	0	0	1
0	1	0	1	1	0
1	0	1	0	0	1
1	0	0	1	1	0
0	1	1	0	1	0
1	0	1	0	1	0

Switch state 5 of power inverters

S_1	S_2	S_3	S_4	S_5	S_6
0	1	0	1	0	1
1	0	0	1	0	1
0	1	1	0	0	1
0	1	0	1	1	0
1	0	1	0	0	1
1	0	0	1	1	0
0	1	1	0	1	0
1	0	1	0	1	0

Switch state 6 of power inverters

S_1	S_2	S_3	S_4	S_5	S_6
0	1	0	1	0	1
1	0	0	1	0	1
0	1	1	0	0	1
0	1	0	1	1	0
1	0	1	0	0	1
1	0	0	1	1	0
0	1	1	0	1	0
1	0	1	0	1	0

State 6

Switch state 7 of power inverters

S_1	S_2	S_3	S_4	S_5	S_6
0	1	0	1	0	1
1	0	0	1	0	1
0	1	1	0	0	1
0	1	0	1	1	0
1	0	1	0	0	1
1	0	0	1	1	0
0	1	1	0	1	0
1	0	1	0	1	0

Switch state 8 of power inverters

S_1	S_2	S_3	S_4	S_5	S ₆
0	1	0	1	0	1
1	0	0	1	0	1
0	1	1	0	0	1
0	1	0	1	1	0
1	0	1	0	0	1
1	0	0	1	1	0
0	1	1	0	1	0
1	0	1	0	1	0

Summary: 8 switch state of power inverters

State 1

State 2

State 3

State 4

State 5

State 6

State 7

State 8

S_1	S_2	S_3	S_4	S_5	S_6
0	1	0	1	0	1
1	0	0	1	0	1
0	1	1	0	0	1
0	1	0	1	1	0
1	0	1	0	0	1
1	0	0	1	1	0
0	1	1	0	1	0
1	0	1	0	1	0

FCS-MPC FOR POWER INVERTERS

- OVERVIEW

Finite Control Set Model Predictive Control

- Finite Control Set (FCS) MPC can reduce processing time.
 - Finite number of switching states in a inverter
 - Prediction limited only to these states.
 - Select state via cost function minimization.

Suitable for discrete system

Control blocks of the FCS-MPC

- x(k): Controlled variable in current state;
- x(k+1): Controlled variable in next sampling time state.

FCS-MPC operation principle

Primary: Identifying all the possible switching states.

Step 1: Obtaining the discrete model

Step 2: Defining a cost function.

Step 3: Select the optimal switching states

Inverter topology and assumptions

- > Only two possible states for Switch: ON or OFF.
- These switching states are not acceptable:
 - Both up & down switches are ON (short circuit).
 - Both switches in each phase are OFF (no power transfer).

 S_1

 S_2

0

0

0

0

Review of 8 switch states

State 1

State 2

State 3

State 4

State 5

State 6

State 7

State 8

FCS-MPC FOR POWER INVERTERS

- STEP 1: MODEL

Inverter discrete model1: Forward Euler method

$$v = L \frac{di}{dt} + Ri + e$$
Forward Euler method
$$i(k+1) = \left(1 - \frac{T_s R}{L}\right)i(k) + \frac{T_s}{L} \left(v(k) - e(k)\right)$$

Inverter discrete model2: Backward Euler method

$$\frac{dx}{dt} = \frac{x(k+1) - x(k)}{T_s}$$

$$x(k+1) = x(k) + T_s f(x(k+1), u(k+1))$$

Backward Euler method

Sampling time

$$v = L \left(\frac{di}{dt} \right) + Ri + \epsilon$$

Backward Euler method
$$i(k+1) = \frac{T_s}{L + RT_s} [v(k+1) - e(k+1)] + \frac{L}{L + RT_s} i(k)$$

Inverter discrete model3: Midpoint Euler method

FCS-MPC FOR POWER INVERTERS

- STEP 2: COST FUNCTION

Basic cost function

 \triangleright Basic cost function: $i_{a/b/c}$ is the real current, $i_{a/b/c}^*$ is the reference

$$J = |i_a^*(k+1) - i_a(k+1)| + |i_b^*(k+1) - i_b(k+1)| + |i_c^*(k+1) - i_c(k+1)|$$

Improved cost function: reduce items

> Improved cost function:

Reduce from $i_{a/b/c}$ to $i_{\alpha/\beta}$

$$J = |i_{\alpha}^{*}(k+1) - i_{\alpha}(k+1)| + |i_{\beta}^{*}(k+1) - i_{\beta}(k+1)|$$

Practical cost function

Ideal cost function:

$$J = |i_{\alpha}^{*}(k+1) - i_{\alpha}(k+1)| + |i_{\beta}^{*}(k+1) - i_{\beta}(k+1)|$$

- > If high sampling frequency
 - Current is approximated to be constant in one step time,
 - Practical cost function:

$$J = |i_{\alpha}^{*}(k) - i_{\alpha}(k+1)| + |i_{\beta}^{*}(k) - i_{\beta}(k+1)|$$

* ADD CONSTRAINS TO THE COST FUNCTION OF THREE PHASE INVERTERS

✓ Switching frequency minimization

✓ Voltage and current ripple minimization

✓ Defining maximum allowed current and voltage

Constraints I:

Switching frequency minimization

> Switch states amount changed at each sampling time:

Weight factor: $(0\sim1)$

$$J = \left| i_{\alpha}^{*}(\mathbf{k}+1) - i_{\alpha}(\mathbf{k}+1) \right| + \left| i_{\beta}^{*}(\mathbf{k}+1) - i\beta(\mathbf{k}+1) \right| + \left| \lambda \cdot n \right|$$
Switching frequency

$$n = \sum_{i=1}^{N} |S_i(k+1) - S_i(k)|$$

- $S_i(k)$: switch state i at the current state;
- $S_i(k+1)$: switch state *i* at the next sampling period;

Constraints II:

Voltage & current ripple minimization

General form of adding voltage ripple constrain:

$$J = ||x_{ref} - x_{prediction}|| + \lambda \cdot ||v(k+1) - v(k)||$$
 Weight factor: (0~1)

General form of adding current ripple constrain:

$$J = \|x_{ref} - x_{prediction}\| + \lambda \cdot \|i(k+1) - i(k)\|$$

Current ripple constrain

Voltage ripple constrain

Constraints III:

Defining allowed maximum current & voltage

Cost function considering allowed maximum current:

$$J = \|x_{ref} - x_{prediction}\| + f_{lim}(i_{prediction}) \text{ Allowed max. } I$$

$$f_{lim}(i_{prediction}) = \begin{cases} \infty & \text{if } |i_{prediction}| > I_{\text{max}} \\ 0 & \text{if } |i_{prediction}| < I_{\text{max}} \end{cases}$$

Weight factor: (0~1)

➤ Cost function considering allowed maximum voltage:

$$J = \|x_{ref} - x_{prediction}\| + f_{lim}(v_{prediction}) \quad \text{Allowed max. } V$$

$$f_{lim}(v_{prediction}) = \begin{cases} \infty & \text{if } |v_{prediction}| < V_{\text{max}} \\ 0 & \text{if } |v_{prediction}| < V_{\text{max}} \end{cases}$$

FCS-MPC FOR POWER INVERTERS

- STEP 3: SELECT THE OPTIMAL SWITCH STATES

Select the suitable switching state

S_1	S_2	S ₃	S_4	S_5	S_6
0	1	0	1	0	1
1	0	0	1	0	1
0	1	1	0	0	1
0	1	0	1	1	0
1	0	1	0	0	1
1	0	0	1	1	0
0	1	1	0	1	0
1	0	1	0	1	0

> Practical cost function:

$$J = |i_{\alpha}^{*}(k) - i_{\alpha}(k+1)| + |i_{\beta}^{*}(k) - i_{\beta}(k+1)|$$

Select the suitable switching state to get the minimal value

FCS-MPC FOR POWER INVERTERS

- EXAMPLE

Parameters of the three-phase inverter

V_{dc}	6.6 kV	R	0.3 Ω
e _{line-line}	3.3 kV (rms)	L	2.5 mH
F	50 Hz	T_{S}	100 μs
Inominal	3.5 kA (peak)	f_s	10 kHz

Switching states of the example inverter

- Model of a three-phase inverter
 - Only 8 possible switching states
 - 7 different voltage vectors

$$S_a = \begin{cases} 1 & \text{if } S_1 \text{ on and } S_4 \text{ off} \\ 0 & \text{if } S_1 \text{ off and } S_4 \text{ on} \end{cases}$$

$$S_b = \begin{cases} 1 & \text{if } S_2 \text{ on and } S_5 \text{ off} \\ 0 & \text{if } S_2 \text{ off and } S_5 \text{ on} \end{cases}$$

$$S_c = \begin{cases} 1 & \text{if } S_3 \text{ on and } S_6 \text{ off} \\ 0 & \text{if } S_3 \text{ off and } S_6 \text{ on} \end{cases}$$

Space vectors

$$\mathbf{S} = \frac{2}{3}(S_a + \mathbf{a}S_b + \mathbf{a}^2S_c)$$

$$\mathbf{v} = \frac{2}{3}(v_{aN} + \mathbf{a}v_{bN} + \mathbf{a}^2v_{cN})$$

$$\mathbf{v} = V_{dc}\mathbf{S}$$

Detailed switching states of example inverter

$$\mathbf{v} = \frac{2}{3}(v_{aN} + \mathbf{a}v_{bN} + \mathbf{a}^2v_{cN})$$
 $a = e^{j\frac{2\pi}{3}} = -\frac{1}{2} + j\frac{\sqrt{3}}{2}$

S_1	S_2	S_3	S_4	S_5	S_6	Inverter terminal voltage space vector v
0	1	0	1	0	1	$v_0 = 0$
1	0	0	1	0	1	$v_1 = \frac{2}{3} V_{dc}$
0	1	1	0	0	1	$v_2 = \frac{1}{3} \left(-1 + j\sqrt{3} \right) V_{dc}$
0	1	0	1	1	0	$v_3 = \frac{1}{3} \left(-1 - j\sqrt{3} \right) V_{dc}$
1	0	1	0	0	1	$v_4 = \frac{1}{3} \left(1 + j\sqrt{3} \right) V_{dc}$
1	0	0	1	1	0	$v_5 = \frac{1}{3} \left(1 - j\sqrt{3} \right) V_{dc}$
0	1	1	0	1	0	$v_6 = -\frac{2}{3} V_{dc}$
1	0	1	0	1	0	$v_7 = 0$

Model of the example inverter

Load model

Vector equation for the load current dynamics

$$\mathbf{v} = R\mathbf{i} + L\frac{d\mathbf{i}}{dt} + \mathbf{e}$$

where

$$\mathbf{v} = \frac{2}{3}(v_{aN} + \mathbf{a}v_{bN} + \mathbf{a}^2v_{cN})$$

$$\mathbf{i} = \frac{2}{3}(i_a + \mathbf{a}i_b + \mathbf{a}^2i_c)$$

$$\mathbf{e} = \frac{2}{3}(e_a + \mathbf{a}e_b + \mathbf{a}^2e_c)$$

Discrete-time equations

$$\hat{\mathbf{i}}(k+1) = \left(1 - \frac{RT_s}{L}\right)\mathbf{i}(k) + \frac{T_s}{L}\left(\mathbf{v}(k) - \hat{\mathbf{e}}(k)\right)$$

$$\hat{\mathbf{e}}(k-1) = \mathbf{v}(k-1) - \frac{L}{T_s}\mathbf{i}(k) - \left(R - \frac{L}{T_s}\right)\mathbf{i}(k-1)$$

$$\frac{d\mathbf{i}}{dt} \approx \frac{\mathbf{i}(k+1) - \mathbf{i}(k)}{T_{-}}$$

Forward Euler method

Cost function of the example inverter

Cost function:

- No need for linear controllers !!
- No need for modulator (PWM or SVM) !!

Select the optimal state for the example inverter

Cost function minimization

\mathbf{v}_0	g_0	0.60	
\mathbf{v}_1	g_1	0.82	
\mathbf{v}_2	g_2	0.24	← g _{min}
\mathbf{v}_3	g_3	0.42	
\mathbf{v}_4	g ₄	0.96	
v ₅	g ₅	1.24	
\mathbf{v}_6	g_6	1.19	

- Voltage vector v₀ is used to predict i₀ and to calculate cost function (error)
- g_0 .
- Voltage vector v₁ is used to predict i₁ and to calculate cost function (error) g₁.
-
- $g_{\min} = g_2$
- Voltage vector v₂ is selected and will be applied during the next sampling interval.

Simulation of the example inverter

Simulation results with different discrete models

Simulation: ripple waveforms (comparisons)

Simulation: THD (comparisons)

Simulation: switching waveforms (comparisons)

- The backward & forward Euler based models give smaller switching frequency.
 - Less accurate
 - Less Power loss
- ➤ The Midpoint Euler based models give bigger switching frequency.
 - More accurate
 - More Power loss

APPLICATION OF FINITE CONTROL SET MPC IN THREE PHASE INVERTER

[07/11/2019]

- Basic knowledge of power inverters
- Finite Control Set (FCS) MPC for power inverters
- Improved FCS-MPC for power inverters

Review of traditional FCS-MPC: definition

- 2 level 3 phase grid-connected inverter
- Control in αβ coordinates
- Differential equation of the load: $\underline{v} = R \cdot \underline{i} + L \frac{d\underline{i}}{dt} + \underline{e}$
- v: Applied voltage vector

Review of traditional FCS-MPC

Time-discrete load model:

Euler-forwards approximation:

$$\frac{d\underline{i}}{dt} \approx \frac{\underline{i}(k+1) - \underline{i}(k)}{T_S}$$

Current prediction:

$$\underline{i}(k+1) = \left(1 - \frac{RT_s}{L}\right)\underline{i}(k) + \frac{T_s}{L}(\underline{v}(k) - \underline{e}(k))$$

• Cost function:

$$G =$$

$$|i_{\alpha}^* - i_{\alpha}(k+1)| + |i_{\beta}^* - i_{\beta}(k+1)|$$

Review of traditional FCS-MPC: flowchart

Eight voltage vectors

Problem: variable switching frequency

Not the targeted vector,
But we select it via FCS MPC method

Improved direction: Directly determine the amplitude and angle

- ➤ Need to confirm the amplitude of the phasor
- ➤ Need to confirm the angle of the phasor

Constant switching frequency (CSF)

Dichotomy solution to find the amplitude & angle

Proposed CSF-MPC

Improved MPC: Schematic diagram

Key idea: **Dichotomy**

- voltage vector search area decrease to half of the former steps.
- The convergence of voltage vector selection is fast.

Improved MPC with constant switching frequency (CSF)

Flow chart:

N: Resolution of the output voltage vector

n:

Phase search resolution

2m:

Amplitude

search resolution Search Resolution

Input: $i_s(k), \psi_s(k), \omega(k)$ $I_{s.max}(k+1), \psi_s^*(k+1), T_m^*(k+1)$ $U_{k+1}^* = U_{k+1} = U_m \cdot 2^{-N}, \theta_{k+1}^* = \theta_{k+1} = 0$ Initialization -Caculation cost function: Go $\Delta U = U_m \cdot 2^{-1}, \Delta \theta = \pi \cdot 2^{-n}$ For i = 0 : N $\Delta U_i = \Delta U \cdot 2^{-i}, \Delta \theta_i = \Delta \theta \cdot 2^{-i}$ $U_j = U_{k+1}, \theta_j = \theta_{k+1} + \Delta\theta \cdot (j-2^n)$ For $j = 0: 2^{(n+1)}$ Caculation cost function: G; No No $j=2^{(n+1)}$ $G_j < G_0$ Yes $\theta_{k+1}^* = \theta_j$ $\theta_{k+1} = \theta_{k+1}^*$ $G_0 = G_i$ $\theta_z = \theta_{k+1}, U_z = U_{k+1} + \Delta U \cdot (z - m)$ For z = 0:2mCaculation cost function: G_z No No $G_z < G_0$ z = 2mYes $U_{k+1} = U_{k+1}^{\bullet}$ $U_{k+1}^* = U_z$ $G_0 = G_z$ No i = NYes Output: U_{k+1}, θ_{k+1}

Phase Calculation Loop

Amplitude Calculation Loop

Output to PWM modulator

Explain of the flowchart

Example of the improved FCS-MPC method

PARAMETERS	Value
RATED POWER P _N	2 KW
DC BUS VOLTAGE U _{DC}	300 V
AC BUS VOLTAGE	115 V (RMS)
FILTER INDUCTANCE L	1 мН
GRID FUNDAMENTAL	50 Hz
FREQUENCY	
LINE RESISTANCE R	$0.01~\Omega$

Dynamic process of the active current

Conventional FCS-MPC

Improved CSF-MPC

Constant switching frequency

- ➤ Understand the basic concept of the FCS-MPC in power converters
- ➤ Know the tips of the FCS-MPC for a power inverter, i.e., model, cost function, select methods.
- ➤ Know the improved FCS-MPC method for a power inverter.

Thank you!

Jackzhang@ntu.edu.sg

