TikhonovNikS 26122024-170425

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой $4653~\mathrm{MF}$ ц с внутренним сопротивлением $50~\mathrm{Om}$ и доступной мощностью плюс $13~\mathrm{дБм}$.

Колебание ПЧ формируется с помощью генератора меандра частотой 1267 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 2 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 15200 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 3299 МГц до 3385 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

- 1) -75 дБм 2) -78 дБм 3) -81 дБм 4) -84 дБм 5) -87 дБм 6) -90 дБм 7) -93 дБм 8) -96 дБм
- 9) -99 дБм

На рисунке 1 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i при положительном смещении. Известно, что $r_1=r_3$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно мгновению.

Рисунок 1 – Двойной балансный смеситель

Частота гетеродина 143 МГц, частота ПЧ 46 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 1) 189 MΓ_{II}
- 2) 1001 MΓ_{II}
- 858 MΓц
- 4) 383 MΓ_{II}.

Для полного подавления **нижней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный Т-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная минус 14 градусов.

Чему равна индуктивность компонента фазовращателя, если частота Π Ч равна 36 М Γ ц?

Варианты ОТВЕТА:

1) 214.5 нГн 2) 172.7 нГн 3) 282.9 нГн 4) 227.8 нГн

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = -0.36795 - 0.12216i, \, s_{31} = 0.12372 - 0.37262i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

1) -31 дБн 2) -33 дБн 3) -35 дБн 4) -37 дБн 5) -39 дБн 6) -41 дБн 7) -43 дБн 8) -45 дБн 9) 0 дБн

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 4.9 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 29 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 6.4 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 2.)

Рисунок 2 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

1) 6 дБ 2) 6.6 дБ 3) 7.2 дБ 4) 7.8 дБ 5) 8.4 дБ 6) 9 дБ 7) 9.6 дБ 8) 10.2 дБ 9) 10.8 дБ

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 3. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Pi}|$ Какой комбинацией $\{n; m\}$ нельзя было бы объяснить наличие в спектре составляющей, отмеченной маркером 1?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 3 – Экран анализатора спектра

Варианты ОТВЕТА:

- $1) \ \{11; -39\} \quad 2) \ \{11; -39\} \quad 3) \ \{6; -21\} \quad 4) \ \{26; -93\} \quad 5) \ \{11; -39\} \quad 6) \ \{16; -57\} \quad 7) \ \{11; -39\}$
- 8) {26; -93} 9) {26; -57}