

Winning Space Race with Data Science

Sanskruti Wathare 22/07/2023

Outline

- 1. Executive Summary
- 2. Introduction
- 3. Methodology
- 4. Results
- 5. Conclusion
- 6. Appendix

Executive Summary

This presentation exhibits the detailed data analysis performed to measure the capability of running company Space Y in comparison to company Space X. To do so data was collected by web-scraping and EDA was performed on it to give us preliminary insight into it.

Furthermore the data was cleaned and organized into a structured dataset. This dataset was used to train a plethora of machine learning algorithms, the best of which was finally used to help Space Y boost its chances of competition.

Introduction

The objective of this project was to evaluate the viability of the new company Space Y to compete with Space X. We started with the intention to find out the estimate of total cost for launches, predicting successful landings and the best place to make launches.

Methodology

Executive Summary

- 1. Data collection methodology:
- 2. Perform data wrangling
- 3. Perform exploratory data analysis (EDA) using visualization and SQL
- 4. Perform interactive visual analytics using Folium and Plotly Dash
- 5. Perform predictive analysis using classification models

Data Collection

- Dataset was collected through two methods:
 - 1. Space X API
 - 2. Web-scraping
- We made use of https://api.spacexdata.com/v4 to collect data
- We scraped the following URL = https://en.wikipedia.org./wiki/List of Falcon 9/
 and Falcon Heavy launches

Data Collection - SpaceX API

https://github.com/Sans-21/IBM-Data-Science-Certi/blob/9477aae1a683bc5e5d733abcc900dd397fed8eef/jupyter-labs-spacex-data-collection-api.jpynb

```
spacex_url="https://api.spacexdata.com/v4/launches/past"

response = requests.get(spacex_url)

static_json_url='https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/API_

# Use json_normalize meethod to convert the json result into a dataframe json_data=requests.get(static_json_url).json() data =pd.json_normalize(json_data)
```


Data Collection - Scraping

https://github.com/Sans-21/IBM-Data-Science-Certi/blob/9477aae1a683bc5e5d733abcc900dd397fed8eef/jupyter-labs-webscraping.ipynb

use requests.get() method with the provided static_url
assign the response to a object
response=requests.get(static_url)

Create a BeautifulSoup object from the HTML response

Use BeautifulSoup() to create a BeautifulSoup object from a response text content
soup=BeautifulSoup(response.content)

Request the Falcon9 Launch Wiki page Extract all column/variable names from the HTML table header Create a data frame by parsing the launch HTML tables

Data Wrangling

https://github.com/Sans-21/IBM-Data-Science-Certi/blob/9477aae1a683bc5e5d733abcc900dd397fed8eef/labs-jupyter-spacex-data_wrangling_jupyterlite.jupyterlite.ipynb

```
# Apply value_counts() on column LaunchSite
df["LaunchSite"].value_counts()

CCAFS SLC 40 55
KSC LC 39A 22
VAFB SLC 4E 13
Name: LaunchSite, dtype: int64
```


EDA with Data Visualization

- To analyze the dataset we used various graphs and charts such as:
 - 1. Scatter Plot
 - 2. Bar Chart
 - 3. Line Plot
- https://github.com/Sans-21/IBM-Data-Science-
 https://github.com/Sans-21/IBM-Data-Science-
 https://github.com/Sans-21/IBM-Data-Science-
 Certi/blob/9477aae1a683bc5e5d733abcc900dd397fed8eef/jupyter-labs-eda-dataviz.ipynb.jupyterlite.ipynb

EDA with **SQL**

 To further understand the dataset we performed SQL operations on it to retrieve important information, such as:

• https://github.com/Sans-21/IBM-Data-Science-
Certi/blob/9477aae1a683bc5e5d733abcc900dd397fed8eef/jupyter-labs-eda-sql-coursera_sqllite.ipynb

Build an Interactive Map with Folium

- Markers, lines, circles and marker clusters were used
 - Markers indicated launch sites
 - Circles Highlighted areas around certain points
 - Lines Indicated distances
 - Marker clusters indicated launches in a launch site

https://github.com/Sans-21/IBM-Data-Science-Certi/blob/9477aae1a683bc5e5d733abcc900dd397fed8eef/lab_jupyter_l aunch_site_location.jupyterlite.ipynb

Build a Dashboard with Plotly Dash

- The following graphs and plots were used to visualized data:
 - · Percentage of launches by site
 - Payload range

https://github.com/Sans-21/IBM-Data-Science-Certi/blob/9477aae1a683bc5e5d733abcc900dd397fed8eef/lab_theia_plotly_dash.md.htm

Predictive Analysis (Classification)

 Four classification models were compared: logistic regression, support vector machine, decision tree and k nearest neighbors.

https://github.com/Sans-21/IBM-Data-Science-Certi/blob/9477aae1a683bc5e5d733abcc900dd397fed8eef/SpaceX_Machine_Learning_Prediction Part 5.jupyterlite.ipynb

Results

Exploratory data analysis results:

- · Space X uses 4 different launch sites;
- The first launches were done to Space X itself and NASA;
- The average payload of F9 v1.1 booster is 2,928 kg;
- · The first success landing outcome happened in 2015 fiver year after the first launch;
- · Many Falcon 9 booster versions were successful at landing in drone ships having payload above the average;
- Almost 100% of mission outcomes were successful;
- Two booster versions failed at landing in drone ships in 2015: F9 v1.1 B1012 and F9 v1.1 B1015;
- · The number of landing outcomes became as better as years passed.

Results

- Using interactive analytics was possible to identify that launch sites use to be in safety places, near sea, for example and have a good logistic infrastructure around.
- Most launches happens at east cost launch sites.

Results

 Predictive Analysis showed that Decision Tree Classifier is the best model to predict successful landings, having accuracy over 87% and accuracy for test data over 94%.

Flight Number vs. Launch Site

- According to the plot above, it's possible to verify that the best launch site nowadays is CCAF5 SLC 40, where most of recent launches were successful;
- In second place VAFB SLC 4E and third place KSC LC 39A;
- It's also possible to see that the general success rate improved over time.

Payload vs. Launch Site

- Payloads over 9,000kg (about the weight of a school bus) have excellent success rate;
- Payloads over 12,000kg seems to be possible only on CCAFS SLC 40 and KSC LC 39A launch sites.

Success Rate vs. Orbit Type

- The biggest success rates happens to orbits:
 - ES-L1;
 - GEO;
 - · HEO; and
 - SSO.
- · Followed by:
 - VLEO (above 80%); and
 - LFO (above 70%).

Flight Number vs. Orbit Type

- Apparently, success rate improved over time to all orbits;
- VLEO orbit seems a new business opportunity, due to recent increase of its frequency.

Payload vs. Orbit Type

- Apparently, there is no relation between payload and success rate to orbit GTO;
- ISS orbit has the widest range of payload and a good rate of success;
- There are few launches to the orbits SO and GEO.

Launch Success Yearly Trend

- Success rate started increasing in 2013 and kept until 2020;
- It seems that the first three years were a period of adjusts and improvement of technology.

All Launch Site Names

According to data, there are four launch sites:

Launch Site
CCAFS LC-40
CCAFS SLC-40
KSC LC-39A
VAFB SLC-4E

 They are obtained by selecting unique occurrences of "launch_site" values from the dataset.

Launch Site Names Begin with 'CCA'

5 records where launch sites begin with `CCA`:

Date	Time UTC	Booster Version	Launch Site	Payload	Payload Mass kg	Orbit	Customer	Mission Outcome	Landing Outcome
2010-06-04	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-12-08	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05-22	07:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10-08	00:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attemp

· Here we can see five samples of Cape Canaveral launches.

Total Payload Mass

Total payload carried by boosters from NASA:

Total Payload (kg) 111.268

 Total payload calculated above, by summing all payloads whose codes contain 'CRS', which corresponds to NASA.

Average Payload Mass by F9 v1.1

Average payload mass carried by booster version F9 v1.1:

Avg Payload (kg)

2.928

 Filtering data by the booster version above and calculating the average payload mass we obtained the value of 2,928 kg.

First Successful Ground Landing Date

• First successful ground landing date was :

MIN("Date") 04/08/2016

 Selecting Landing Outcomes with a success of drone ships and finding the minimum date from them gives us the above date

Successful Drone Ship Landing with Payload between 4000 and 6000

Successful Drone Ship Landings with Payload between 4000 and 6000 are

Booster_Version

F9 FT B1020

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

Number of successful and failure mission outcomes:

Mission Outcome	Occurrences
Success	99
Success (payload status unclear)	1
Failure (in flight)	1

 Grouping mission outcomes and counting records for each group led us to the summary above.

Boosters Carried Maximum Payload

Boosters which have carried the maximum payload mass

Booster Version ()
F9 B5 B1048.4
F9 B5 B1048.5
F9 B5 B1049.4
F9 B5 B1049.5
F9 B5 B1049.7
F9 B5 B1051.3

Booster Version
F9 B5 B1051.4
F9 B5 B1051.6
F9 B5 B1056.4
F9 B5 B1058.3
F9 B5 B1060.2
F9 B5 B1060.3

 These are the boosters which have carried the maximum payload mass registered in the dataset.

2015 Launch Records

 Failed landing outcomes in drone ship, their booster versions, and launch site names for in year 2015

Booster Version	Launch Site
F9 v1.1 B1012	CCAFS LC-40
F9 v1.1 B1015	CCAFS LC-40

The list above has the only two occurrences.

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Ranking of all landing outcomes between the date 2010-06-04 and 2017-

03-20:

Landing Outcome	Occurrences
No attempt	10
Failure (drone ship)	5
Success (drone ship)	5
Controlled (ocean)	3
Success (ground pad)	3
Failure (parachute)	2
Uncontrolled (ocean)	2
Precluded (drone ship)	1

This view of data alerts us that "No attempt" must be taken in account.

All Launch Sites

 Launch sites are near sea, probably by safety, but not too far from roads and railroads.

Launch Outcomes by Site

Example of KSC LC-39A launch site launch outcomes

Green markers indicate successful and red ones indicate failure.

Logistics and Safety

 Launch site KSC LC-39A has good logistics aspects, being near railroad and road and relatively far from inhabited areas.

Successful Launches by Site

 The place from where launches are done seems to be a very important factor of success of missions.

Launch Success Ratio for KSC LC-39A

· 76.9% of launches are successful in this site.

Payload vs Launch Outcome

· Payloads under 6,000kg and FT boosters are the most successful combination.

Classification Accuracy

 Four classification models were tested, and their accuracies are plotted beside;

 The model with the highest classification accuracy is Decision Tree Classifier, which has accuracies over than 87%.

Confusion Matrix

 Confusion matrix of Decision Tree Classifier proves its accuracy by showing the big numbers of true positive and true negative compared to the false ones.

Conclusions

- Different data sources were analyzed, refining conclusions along the process;
- The best launch site is KSC LC-39A;
- Launches above 7,000kg are less risky;
- Although most of mission outcomes are successful, successful landing outcomes seem to improve over time, according the evolution of processes and rockets;
- Decision Tree Classifier can be used to predict successful landings and increase profits.

