Desarrollo de aplicaciones web / multiplataforma

M02A: Bases de datos

Normalización v2

Índice

- 1. Introducción
- 2. 1FN
- 3. 2FN
- 4. 3FN
- 5. Bonus Track: Forma normal de Boyce Codd

1. Introducción.

- La normalización consiste en aplicar una serie de normas a las relaciones obtenidas tras el paso al modelo relación con el objetivo de:
 - Eliminar redundancias
 - Eliminar inconsistencia de datos
 - Garantizar la integridad referencial

2. 1ª Forma Normal

 Una tabla estará en 1FN si todos sus valores son atómicos, es decir, cada valor de los atributos es "univaluado".

<u>NIF</u>	Nombre	Apellidos	Teléfono
12345678A	Jose	Gonzalez	555121212
			666111111
12345678B	Maria	Martinez	967845125
			687458569

<u>NIF</u>	Nombre	Apellidos	<u>Teléfono</u>
12345678A	Jose	Gonzalez	555121212
12345678A	Jose	Gonzalez	666111111
12345678B	Maria	Martinez	967845125
12345678B	Maria	Martinez	687458569

- El primer paso es atomizar el campo teléfono como se muestra, sin embargo esta solución genera una fuerte redundancia de datos (Los campos Nombre y apellidos)
- Por lo tanto la solución correcta sería... (Siguiente diapositiva)

2. 1ª Forma Normal (II)

<u>ALUMNOS</u>			
NIF	Nombre	Apellidos	
12345678A	Jose	Gonzalez	
12345678B	Maria	Martinez	

<u>Alumnos-Telefono</u>		
NIF	<u>Teléfono</u>	
12345678A	555121212	
12345678A	666111111	
12345678B	967845125	
12345678B	687458569	

 La solución más óptima pasa por separar los datos en dos tablas diferentes, una para los datos que ya eran atómicos y otra para el campo multivaluado

3. 2° Forma Normal (I)

- Conceptos previos:
 - Dependencia funcional → Un atributo depende directamente de la clave.

 ○ Dependencia transitiva → Un atributo de otro atributo no clave el cual presenta una dependencia funcional con la clave.

3. 2° Forma Normal (II)

- Conceptos previos (II):
 - Dependencia completa
 Un atributo depende de la totalidad de la clave (Para casos de claves compuestas por más de un atributo).

○ Dependencia parcial → Un atributo no depende de la totalidad de la clave (Para casos de claves compuestas por más de un atributo) sino que depende funcionalmente de uno de sus atributos.

3. 2ª Forma Normal (III)

- Decimos que una relación está en 2FN cuando:
 - Está en 1FN
 - O Todos los atributos que no forman parte de la clave dependen de ella por completo

<u>CodLibro</u>	<u>CodTienda</u>	Stock	Dirección
12	22	456	C/ Falsa, 123
22	45	567	C/ Elm, 13
44	22	4	C/ Falsa, 123

- Como vemos, el campo dirección depende de CodTienda pero no de CodLibro, por tanto esta tabla no se encuentra en 2FN
- Para pasar esta tabla a 2FN...

3. 2ª Forma Normal (IV)

<u>Stock</u>			
CodLibro	<u>CodTienda</u>	Stock	
12	22	456	
22	45	567	
44	22	4	

<u>Direcciones</u>		
<u>CodTienda</u> Dirección		
22	C/ Falsa, 123	
45	C/ Elm, 13	
22	C/ Falsa, 123	

 Como vemos, la solución pasa por dividir la información en dos tablas de forma que tengamos una dependencia completa de la clave en ambas.

4. 3ª Forma Normal (I)

- Decimos que una relación está en 3FN cuando:
 - Está en 2FN
 - O Todos los atributos que no forman parte de la clave primaria son independientes entre sí, es decir, no presentan dependencias transitivas.

Cod. Emp	Nombre	Apellidos	Fecha Nac	Cod. Dpto	Nombre Dpto
001	Pepe	Perez	22/12/1958	12	Cuentas
002	Maria	Pascualez	12/11/1987	11	RRHH

- Como vemos, el campo Nombre Dpto depende de transitivamente de la clave a través del campo Cod. Dpto, por tanto esta tabla no está en 3FN
- Para pasar esta tabla a 3FN...

4. 3ª Forma Normal (II)

<u>Empleados</u>				
Cod. Emp	Nombre	Apellidos	Fecha Nac	Cod. Dpto
001	Pepe	Perez	22/12/1958	12
002	Maria	Pascualez	12/11/1987	11

<u>Departamentos</u>	
Cod. Nombre Dpto	
12	Cuentas
11	RRHH

 Una vez más, la solución pasa por crear dos tablas, eliminando la información que tenia dependencia transitiva y creando una nueva tabla para ella.

5. Forma normal de Boyce Codd

- La FNBC es una versión de la 3FN algo más estricta
- Decimos que una relación está en FNBC cuando:
 - Está en 3FN
 - O Todos los atributos no clave son clave candidata.

DNI_ALUMNO	ASIGNATURA	TUTOR
12345678A	Programación	Paco Caballero
13546789B	Base de datos	Manolo Garcia

DNI_ALUMNO	<u>ASIGNATURA</u>
12345678A	Programación
13546789B	Base de datos

<u>ASIGNATURA</u>	TUTOR
Programación	Paco Caballero
Base de datos	Manolo Garcia

6. Conclusiones

- Para que una tabla se encuentre correctamente normalizada debemos seguir
 3 principios:
 - No pueden existir atributos multivaluados.
 - Todos los atributos deben dependen de forma completa y NO transitiva de la clave.
 - o Si existen claves candidatas compuestas, no deben tener un atributo en común.

