

5	关于主索引,下列说法不正确的是。
	A. 主索引是对每一个存储块都有一个索引项
	B. 主索引通常建立在有序主文件的基于主码的排序字段上
	C. 主索引是关于主码的稠密索引
	D. 主索引是按索引字段值进行排序的一个有序文件
С	
6	数据库主索引是一种的索引。
	A. 对每一记录,都有一个索引项
	B. 对每一存储块有一个索引项
	C. 对索引字段上的每一个不同值有一个索引项
	D. 其他都不对
В	
7	关于稠密索引的下列说法正确的是。
	A. 稠密索引是对每一个存储块都有一个索引项
	B. 稠密索引的索引项的个数x与主文件索引字段上的不同值个数y有密切关系,一般而言
	要求x≤y C. 主索引通常是关于主码的稠密索引
	D. 稠密索引通常是按索引字段值进行排序的一个有序文件
D	
8	关于索引的下列说法正确的是。
	A. 在任何情况下,用索引进行查询都比不用索引进行查询要快
	B. 执行一条查询语句,当有索引时,DBMS总是首先在索引中查找,然后根据索引中的指针到主文件中查找
	C. 索引是DBMS自动建立和维护的,DBA或者用户无需建立也不能建立索引
	D. 主索引是DBMS自动建立和维护的,关于其他数据项上的索引需要DBA来建立, DBMS可自动维护DBA建立的索引
D	
9	关于索引的下列说法不正确的是。
_	A. 主索引是对每一个存储块都有一个索引项
	B. 稠密索引,对于Table中索引字段的每一个不同值,总是有一个索引项
	C. 稠密索引,对于Table中的每一个记录,总是有一个索引项
	D. 稀疏索引是对于Table中的部分记录有索引项

	关于聚簇索引和非聚簇索引,下列说法正确的是。
	A. 聚簇索引中邻近的记录在主文件中不一定是邻近存储的,聚簇索引中一定不存在重复 键值的索引项
	B. 聚簇索引中邻近的记录在主文件中一定是邻近存储的, 聚簇索引中一定不存在重复键 值的索引项
	C. 一个主文件只能有一个聚簇索引文件,但可以有多个非聚簇索引文件
	D. 一个主文件可以有 多个聚簇索引文件 ,也可以有多个非聚簇索引文件
С	
11	用B+树建立主索引,下列说法正确的是。
	A. 叶结点某索引项X的左侧指针,指向键值=X记录所在的主文件存储块
	B. 非叶结点某索引项X的左侧指针,指向键值=X记录所在的主文件存储块
	C. 叶结点某索引项X的左侧指针指向键值 <x记录所在的主文件存储块< td=""></x记录所在的主文件存储块<>
	D. 非叶结点某索引项X的左侧指针指向键值 <x记录所在的主文件存储块;< td=""></x记录所在的主文件存储块;<>
Α	
12	用B+树建立主索引,下列说法正确的是。
-	A. 叶结点某索引项X的左侧指针,指向键值=X记录所在的索引文件存储块
	B. 非叶结点某索引项X的左侧指针,指向键值=X记录所在的索引文件存储块
	C. 叶结点某索引项X的左侧指针指向键值<=X记录所在的索引文件存储块
	D. 非叶结点某索引项X的左侧指针指向键值 <x记录所在的索引文件存储块< td=""></x记录所在的索引文件存储块<>
D	
13	已知存储块大小为4096字节,在整型属性(一个整型数值占有4个字节)上建立B+树索引, 一个指针占有8个字节,则该存储块最多能有
	A. 340, 341;
	B. 339, 340;
	C. 341, 342;
	D. 341, 340;
Α	
14	已知存储块大小为4096字节,在整型属性(一个整型数值占有4个字节)上建立B树索引,一个指针占有8个字节,则该非叶结点存储块最多能有
	A . 340, 341;
	B. 340, 342;
	C. 204, 410;
	D. 204, 408;

- 15 关于B+树可以建立何种索引,下列说法不正确的是_____
 - A. 用B+树可义建立候选键属性上的稀疏索引,但主文件必须按该属性排序存储
 - B. 用B+树可义建立候选键属性上的稠密索引,但主文件必须按该属性排序存储
 - **C.** 用B+树可义建立非候选键属性上的稠密索引;主文件可以按该属性排序存储,也可以不按该属性排序存储
 - **D.** 用B+树可义建立候选键属性上的稠密索引;主文件可以按该属性排序存储,也可以 不按该属性排序存储

В

- 16 关于B+树,下列说法不正确的是
 - A. 如果发生合并,则一定会减少索引存储块的数目
 - B. 如果发生合并,则不一定会减少索引存储块的数目
 - C. 如果发生分裂,则一定会增加索引存储块的数目;
 - D. 如果发生分裂与合并,则一定伴随着指针的调整

Α

- 17 关于B+树,下列说法正确的是_____
 - A. B+树在任何情况下都可以保证结点中指针的使用率大于等于50%
 - B. B+树中所有结点的索引项,才能覆盖主文件的完整索引
 - C. 如果用B+树建立主索引,则B+树中所有结点的索引项都包含指向主文件存储块的指针
 - D. B+树索引的所有叶子结点构成主文件的一个排序索引

D

18 己知一棵B+树,如下图所示。

若要在此B+树上增加一个键值为45的索引项,插入完成后的B+树是_____

В.

19 已知一棵B+树,如下图所示。若要在此B+树上删除一个键值为30的索引项,删除完成后的B+树是_____。

45

C

20 某同学X欲产生一棵B+树,绘制出了如下图所示的结果。另一位同学Y总结了该图作为B+树存在的问题如下: (I)键值45的非叶结点的索引项不正确; (II)键值13的叶结点的最右指针指向不正确; (III)键值30的非叶结点不应该存在,应被合并到键值45的结点中; (IV)键值35的结点应被删除,因为键值30的结点被合并后,不需要了。(V)键值13的叶结点也应该被合并。按照B+树要求,你认为Y同学的说法哪些是正确的。正确的选项是

- A. Y同学的(I)-(V)说法都是正确的
- **B.** Y同学的(I)(II)III)(IV)(V)说法都是不正确的
- **C.** Y同学的(I)(II)III)(IV)说法是正确的,(V)说法不正确
- D. Y同学的(I)(II)(III)说法是正确的,(IV)(V)说法不正确

C

21 己知一棵B+树,如下图所示。

D	
25 主索引通常确定"表"数据的。	
A. 唯一性	
B. 取值范围	
C. 逻辑顺序	
D. 物理顺序	
D	
重做	