Series 2

K

August 15, 2023

Exercise 3

Suppose \mathcal{B} is a subbase for a topology \mathcal{T} on a set X.

(a)

Show that a sequence $x_n \in X$ converges to $x \in X$ if and only if for every $\mathcal{U} \in \mathcal{B}$ containing x it is $x_n \in \mathcal{U}$ for all n sufficiently large.

Solution. Let \mathcal{B} be a subbase for a topology \mathcal{T} on a set X.

" \Rightarrow ": Let $x_n \in X$ be a sequence that converges to a point $x \in X$. By the definition of convergence, we have that for every neighbourhood $\mathcal{N} \subset X$ of x it is $x_n \in \mathcal{N}$ for all $n \in \mathbb{N}$ sufficiently large.

Fix a subset $\mathcal{U} \in \mathcal{B}$ that contains x. Since any subbase consists of only open sets, \mathcal{U} is open as well. Open subsets that contain x are themselves a neighbourhood of x, thus $x_n \in \mathcal{U}$ for all $n \in \mathbb{N}$ sufficiently large as desired.

" \Leftarrow ": Let $x_n \in X$ be a sequence and $x \in X$ be a point such that for every $\mathcal{U} \in \mathcal{B}$ containing x, it is $x_n \in \mathcal{U}$ for all n sufficiently large. Fix a neighbourhood $\mathcal{N} \subset X$ of x. By the definition of a neighbourhood, there is an open set $\mathcal{V} \in \mathcal{T}$ such that $x \in \mathcal{V} \subset \mathcal{N}$. Now by the definition of a subbase, we may write

$$\mathcal{V} = \bigcup_{lpha \in I} \left(\mathcal{U}_{lpha}^1 \cap \dots \cap \mathcal{U}_{lpha}^{N_{lpha}}
ight)$$

for some collection of subsets $\mathcal{U}_{\alpha} \subset X$ indexed by a set I, for each $\alpha \in I$ it is $N_{\alpha} \in \mathbb{N}$, and it is $\mathcal{U}_{\alpha}^{1}, \ldots, \mathcal{U}_{\alpha}^{N_{\alpha}} \in \mathcal{B}$. Since $x \in \mathcal{V}$, there is an $\beta \in I$ such that $x \in \mathcal{U}_{\beta}^{1} \cap \cdots \cap \mathcal{U}_{\beta}^{N_{\beta}}$ and hence $x \in \mathcal{U}_{\beta}^{i}$ for all $1 \leq i \leq N_{\beta}$. By the given condition, this means that $x_{n} \in \mathcal{U}_{\beta}^{i}$ for all $1 \leq i \leq N_{\beta}$ and for all n sufficiently large. In turn, this gives $x_{n} \in \mathcal{U}_{\beta}^{1} \cap \cdots \cap \mathcal{U}_{\beta}^{N_{\beta}}$ for all n sufficiently large. Thus, $x_{n} \in \mathcal{V}$ for all n sufficiently large which means x_{n} converges to x.