Analysis III

Wintersemester 2014/2015

Prof. Dr. D. Lenz

Blatt 5

Abgabe Dienstag 25.11.2011

(1) Sei \mathcal{R} ein Mengenring über die Menge X und $p \in X$ gegeben. Zeigen Sie, dass die Abbildung $\delta_p : \mathcal{R} \to [0, \infty)$ definiert durch

$$\delta_p(A) := \begin{cases} 1, & p \in A, \\ 0, & p \notin A, \end{cases}$$

ein Prämaß auf (X, \mathcal{R}) ist.

(2) Es sei \mathbb{N} versehen mit dem Mengenring \mathcal{R} aller endlichen Teilmengen von \mathbb{N} . Weiterhin sei eine beliebige nichtnegative Abbildung $b: \mathbb{N} \to [0, \infty)$ gegeben. Zeigen Sie, dass $\nu_b: \mathcal{R} \to [0, \infty)$ definiert durch

$$\nu_b(A) := \sum_{x \in A} b(x), \qquad A \in \mathcal{R},$$

ein Prämaß ist.

- (3) Sei μ ein Prämaß auf (X, \mathcal{R}) . Zeigen Sie, dass die Vereinigung von abzählbar vielen μ -Nullmengen wieder eine μ -Nullmenge ist.
- (4) Sei \mathcal{R} der Mengenring der Figuren auf \mathbb{R} und λ das Lebesgueprämaß. Geben Sie ein Beispiel einer Funktion $f: \mathbb{R} \to \mathbb{R}$ an, die außerhalb einer λ -Nullmenge stetig ist.

Zusatz

(Z1) Sei \mathcal{R} der Mengenring der Figuren auf \mathbb{R} . Weiterhin sei $\phi : \mathbb{R} \to \mathbb{R}$ eine nichtfallende, rechtsstetige Funktion. Setze

$$\phi(x+) := \lim_{y \to x+} \phi(y) = \phi(x),$$

$$\phi(x-) := \lim_{y \to x-} \phi(y).$$

Für $a, b \in \mathbb{R}$ definieren wir

$$\begin{split} &\mu(]a,b[) := &\phi(b-) - \phi(a), \\ &\mu(]a,b]) := &\phi(b) - \phi(a), \\ &\mu([a,b[) := &\phi(b-) - \phi(a-), \\ &\mu([a,b]) := &\phi(b) - \phi(a-). \end{split}$$

Jedes A aus dem Mengenring lässt sich als disjunkte endliche Vereinigung $A = \bigcup_{j=1}^n A_j$ von beschränkten Intervallen schreiben. Zeigen Sie, dass die Abbildung $\mu_{\phi} : \mathcal{R} \to [0, \infty)$ definiert durch

$$\mu(A) := \sum_{j=1}^{n} \mu(A_j)$$

ein Prämaß auf (X, \mathcal{R}) ist.