Package 'kimma'

July 20, 2021

July 20, 2021
Type Package
Title Kinship In Mixed Model Analysis of RNA-seq
Version 0.1.0
Author Kim Dill-McFarland
Maintainer Kim Dill-McFarland <kadm@uw.edu></kadm@uw.edu>
Description Data analysis and linear mixed effects models with pairwise kinship for RNA-seq data.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
biocViews
Imports stats, edgeR, limma, dplyr, tibble, magrittr, tidyr, forcats, data.table, lme4, coxme, emmeans, broom, foreach, doParallel, car, tidyselect
RoxygenNote 7.1.1
Depends R (>= 2.10)
R topics documented: dat.example
extract_lmFit

2 dat.example

	lter_rare	5
	in.example	6
	mFit	7
	ummarise_kmFit	8
	ummarise_lmFit	9
Index		11
Index		11

dat.example

kimma example DGEList.

Description

RNA-seq of human dendritic cells cultured with and without virus. Samples from 3 donors and a random subset of 1000 genes were selected. Counts are unnormalized.

Usage

dat.example

Format

Formal class 'DGEList' [package "edgeR"] with 1 slot:

1. **counts** A matrix with 1000 rows and 6 columns

rownames character. ENSEMBL gene ID.

lib1 integer. Counts in library 1.

lib2 integer. Counts in library 2.

lib3 integer. Counts in library 3.

lib4 integer. Counts in library 4.

lib5 integer. Counts in library 5.

lib6 integer. Counts in library 6.

2. samples A data frame with 6 rows and 7 columns

group factor. No grouping was provided. All = 1.

lib.size numeric. Total library size for this 1000 gene subset.

norm.factors numeric. Normalizatin factors. No normalization was completed. All = 1.

libID character. Unique library ID. Matches column names in counts.

donorID character. Donor ID.

median_cv_coverage numeric. Median coefficient of variation of coverage. Quality metric for sequencing libraries calculated from original full data set.

virus character. A for media samples with no virus. B for virus-infected samples.

3. genes A data frame with 1000 rows and 5 columns

hgnc_symbol character. Current approved HGNC symbol.

Previous symbols character. Previous HGNC symbols.

Alias symbols character. Alias HGNC symbols.

gene_biotype character. Gene product type. All = protein-coding.

geneName character. ENSEMBL gene ID. Matches row names in counts.

dat.voom.example 3

Details

An edgeR DGEList data set containing unnormalized RNA-seq counts.

Source

```
https://github.com/altman-lab/P259_pDC_public
```

References

Dill-McFarland et al. 2021. Eosinophil-mediated suppression and Anti-IL-5 enhancement of plasmacytoid dendritic cell interferon responses in asthma. J Allergy Clin Immunol. In revision

dat.voom.example

kimma example EList.

Description

RNA-seq of human dendritic cells cultured with and without virus. Samples from 3 donors and a random subset of 1000 genes were selected. Counts are TMM normalized log2 counts per million (CPM).

Usage

```
dat.voom.example
```

Format

Formal class 'EList' [package "limma"] with 1 slot:

1. **genes** A data frame with 1000 rows and 5 columns

hgnc_symbol character. Current approved HGNC symbol.

Previous symbols character. Previous HGNC symbols.

Alias symbols character. Alias HGNC symbols.

gene_biotype character. Gene product type. All = protein-coding.

geneName character. ENSEMBL gene ID. Matches row names in E.

2. targets A data frame with 6 rows and 7 columns

group factor. No grouping was provided. All = 1.

lib.size numeric. Total library size for this 1000 gene subset.

norm.factors numeric. TMM normalizatin factors.

libID character. Unique library ID. Matches column names in E.

donorID character. Donor ID.

median_cv_coverage numeric. Median coefficient of variation of coverage. Quality metric for sequencing libraries calculated from original full data set.

virus character. A for media samples with no virus. B for virus-infected samples.

3. E A matrix with 1000 rows and 6 columns

rownames character. ENSEMBL gene ID.

lib1 integer. log2 CPM in library 1.

lib2 integer. log2 CPM in library 2.

4 extract_lmFit

```
lib3 integer. log2 CPM in library 3.lib4 integer. log2 CPM in library 4.lib5 integer. log2 CPM in library 5.lib6 integer. log2 CPM in library 6.#'
```

- 4. weights A matrix with 1000 rows and 6 columns
 - 1 numeric. limma gene weights for library 1.
 - 2 numeric. limma gene weights for library 2.
 - 3 numeric. limma gene weights for library 3.
 - 4 numeric. limma gene weights for library 4.
 - 5 numeric. limma gene weights for library 5.
 - 6 numeric. limma gene weights for library 6.
- 5. **design** A matrix with 6 rows and 1 column

GrandMean numeric. limma default design matrix.

Details

A limma EList data set containing normalized log2 RNA-seq counts.

Source

```
https://github.com/altman-lab/P259_pDC_public
```

References

Dill-McFarland et al. 2021. Eosinophil-mediated suppression and Anti-IL-5 enhancement of plasmacytoid dendritic cell interferon responses in asthma. J Allergy Clin Immunol. In revision

extract_lmFit

Extract lmFit model results

Description

Extract model fit and significance for all individual variables and/or contrasts

Usage

```
extract_lmFit(
  design,
  fit,
  contrast.mat = NULL,
  dat.genes = NULL,
  name.genes = "geneName"
)
```

filter_rare 5

Arguments

design model matrix output by model.matrix()

fit MArrayLM model fit output by limma::eBayes()

contrast.mat contrast matrix output by limma::makeContrasts()

dat.genes data frame with additional gene annotations. Optional. Default is NULL

character for variable name in dat.genes that matches gene names in fit. Default is "geneName"

Value

Data frame with model fit and significant for all variable and genes

Examples

filter_rare

Filter rare and low abundance genes

Description

Filter genes at a specified minimum counts per million (CPM) in a minmum number or percent of total samples.

Usage

```
filter_rare(
  dat,
  min.CPM,
  gene.var = "geneName",
  min.sample = NULL,
  min.pct = NULL
)
```

6 kin.example

Arguments

dat	DGEList output by edgeR::DEGList()
min.CPM	numeric minimum counts per million (CPM)
gene.var	character name for column with gene names in dat\$genes that matches names in expression data dat\$E. Default "geneName"
min.sample	numeric minimum number of samples
min.pct	numeric minimum percent of samples (0-100)

Value

DGEList object filtered to not rare genes

Examples

```
filter_rare(dat = dat.example, min.CPM = 0.1, min.sample = 3)
filter_rare(dat = dat.example, min.CPM = 0.1, min.pct = 10)
```

kin.example	kimma example kinship.	

Description

Pairwise kinship values between donor 1,2,3. Values are dummy data with 1 for self comparison, 0.5 for siblings, and 0.1 for unrelated.

Usage

```
kin.example
```

Format

A matrix with 3 rows and 3 variables:

```
rowname Donor ID. Same as column names donor1 numeric kinship (0-1) with donor 1 donor2 numeric kinship (0-1) with donor 2 donor3 numeric kinship (0-1) with donor 3
```

Details

Matrix of pairwise kinship values between participants

kmFit 7

kmFit

Linear mixed effects models with kinship for RNA-seq

Description

Run lmekin and corresponding lm or lme without kinships models for all genes

Usage

```
kmFit(
  dat = NULL,
  kin = NULL,
  patientID = "ptID",
  libraryID = "libID",
  counts = NULL,
  meta = NULL,
  genes = NULL,
  subset.var = NULL,
  subset.lvl = NULL,
  subset.genes = NULL,
  model,
  compare.lm = FALSE,
  compare.lme = FALSE,
  contrast = FALSE,
  contrast.mat = NULL,
  processors = 1,
  p.method = "BH"
)
```

Arguments

dat	EList object output by voom(). Contains counts (dat $\$$ E), meta (dat $\$$ targets), and genes (dat $\$$ genes).
kin	Matrix with pairwise kinship values between individuals. Must be numeric with rownames.
patientID	Character of variable name to match dat\$targets to kinship row and column names.
libraryID	Character of variable name to match dat\$targets to dat\$E colnames
	Alternate data if not using EList object
counts	Matrix of normalized expression. Rows are genes, columns are libraries.
meta	Matrix or data frame of sample and individual metadata.
genes	Matrix or data frame of gene metadata.
	Subset data (optional)
subset.var	Character list of variable name(s) to filter data by.
subset.lvl	Character list of variable value(s) or level(s) to filter data to. Must match order of subset.var
subset.genes	Character vector of genes to include in models. Model

8 summarise_kmFit

model	Character vector of model starting with \sim Should include (1 patientID) if mixed effects will be run
compare.lm	Logical if should run corresponding lm model without kinship
compare.lme	Logical if should run corresponding lme model without kinship
contrast	Logical if should run pairwise contrasts. If no matrix provided, all possible pairwise comparisons are completed.
contrast.mat	Numeric contrast matrix created limma::makeContrasts() Other
processors	Numeric processor to run in parallel
p.method	Character of FDR adjustment method. Values as in p.adjust()

Details

Data

Value

data.frame

Examples

```
# All samples and all genes
# kmFit(dat = dat.voom.example,
        patientID = "donorID", libraryID = "libID",
#
#
        kin = kin.example, compare.lme = TRUE,
        model = "~ virus + (1|donorID)")
# Subset samples and genes
kmFit(dat = dat.voom.example,
      patientID = "donorID", libraryID = "libID",
      kin = kin.example,
      compare.lme = TRUE,
      subset.var = list("donorID"), subset.lvl = list(c("donor1", "donor2")),
      subset.genes = c("ENSG00000250479", "ENSG00000250510", "ENSG00000255823"),
      model = "~ virus + (1|donorID)")
# Pairwise contrasts
kmFit(dat = dat.voom.example,
      patientID = "donorID", libraryID = "libID",
      kin = kin.example,
      compare.lm = TRUE, contrast = TRUE,
subset.genes = c("ENSG00000250479","ENSG000000250510","ENSG000000255823"),
      model = "~ donorID + (1|donorID)")
```

summarise_kmFit

Summarise kmFit FDR results

Description

Summarise number of significant genes at various FDR cutoffs. Can split by up/down fold change as well.

summarise_ImFit 9

Usage

```
summarise_kmFit(
   fdr,
   fdr.cutoff = c(0.05, 0.1, 0.2, 0.3, 0.4, 0.5),
   FCgroup = FALSE,
   intercept = FALSE
)
```

Arguments

fdr data.frame output by kimma::extract_lmFit()

fdr.cutoff numeric vector of FDR cutoffs to summarise at

FCgroup logical if should separate summary by up/down fold change groups

intercept logical if should include intercept variable in summary

Value

Data frame with total significant genes for each variable are various FDR cutoffs

Examples

summarise_lmFit

Summarise lmFit FDR results

Description

Summarise number of significant genes at various FDR cutoffs. Can split by up/down fold change as well.

Usage

```
summarise_lmFit(
   fdr,
   fdr.cutoff = c(0.05, 0.1, 0.2, 0.3, 0.4, 0.5),
   FCgroup = FALSE,
   intercept = FALSE
)
```

10 summarise_lmFit

Arguments

fdr data.frame output by kimma::extract_lmFit()
fdr.cutoff numeric vector of FDR cutoffs to summarise at

FCgroup logical if should separate summary by up/down fold change groups

intercept logical if should include intercept variable in summary

Value

Data frame with total significant genes for each variable are various FDR cutoffs

Examples

```
# Run limma model
design <- model.matrix(~ virus, data = dat.voom.example$targets)
fit <- limma::eBayes(limma::lmFit(dat.voom.example$E, design))

## Get results
fdr <- extract_lmFit(design = design, fit = fit)

# Summarise results
fdr.summary <- summarise_lmFit(fdr = fdr, fdr.cutoff = c(0.05, 0.5), FCgroup = TRUE)</pre>
```

Index