Lecture 20: Dynamic Programming II

Lecture Overview

- 5 easy steps
- Text justification
- Perfect-information Blackjack
- Parent pointers

Summary

- * DP \approx "careful brute force"
- * $DP \approx guessing + recursion + memoization$
- * DP \approx dividing into reasonable # subproblems whose solutions relate acyclicly usually via guessing parts of solution.
- * time = # subproblems \times time/subproblem treating recursive calls as O(1)(usually mainly guessing)
 - essentially an amortization
 - count each subproblem only once; after first time, costs O(1) via memoization
- * DP \approx shortest paths in some DAG

5 Easy Steps to Dynamic Programming

1. define subproblems	count # subproblems
2. guess (part of solution)	count # choices
3. relate subproblem solutions	compute time/subproblem
 4. recurse + memoize problems OR build DP table bottom-up check subproblems acyclic/topological order 	$time = time/subproblem \cdot \# sub-$
5. solve original problem: = a subproblem OR by combining subproblem solutions	\implies extra time

Examples:	Fibonacci	Shortest Paths
subprobs:	F_k	$\delta_k(s, v)$ for $v \in V$, $0 \le k < V $
	for $1 \le k \le n$	$= \min s \to v \text{ path using } \le k \text{ edges}$
# subprobs:	n	V^2
guess:	nothing	edge into v (if any)
# choices:	1	indegree(v) + 1
recurrence:	$F_k = F_{k-1}$	$\delta_k(s, v) = \min\{\delta_{k-1}(s, u) + w(u, v)\}$
	$+F_{k-2}$	$\mid (u,v) \in E\}$
time/subpr:	$\Theta(1)$	$\Theta(1 + indegree(v))$
topo. order:	for $k = 1, \dots, n$	for $k = 0, 1, V - 1$ for $v \in V$
total time:	$\Theta(n)$	$\Theta(VE)$
		$+ \Theta(V^2)$ unless efficient about indeg. 0
orig. prob.:	F_n	$\delta_{ V -1}(s,v)$ for $v \in V$
extra time:	$\Theta(1)$	$\overline{\hspace{1cm}}\Theta(V)$

Text Justification

Split text into "good" lines

- obvious (MS Word/Open Office) algorithm: put as many words that fit on first line, repeat
- but this can make very bad lines

Figure 1: Good vs. Bad Text Justification.

- Define $\underline{\text{badness}}(i, j)$ for line of words[i:j]. For example, ∞ if total length > page width, else (page width - total length)³.
- goal: split words into lines to min \sum badness
- 1. $\underline{\text{subproblem}} = \text{min. badness for suffix words}[i:]$ $\Longrightarrow \# \text{subproblems} = \Theta(n) \text{ where } n = \# \text{ words}$
- 2. $\underline{\text{guessing}} = \text{where to end first line, say } i: j$ $\implies \# \text{ choices} = n i = O(n)$

3. <u>recurrence</u>:

- DP[i] = min(badness (i, j) + DP[j] for j in range (i + 1, n + 1))
- DP[n] = 0 \implies time per subproblem = $\Theta(n)$
- 4. order: for i = n, n 1, ..., 1, 0total time = $\Theta(n^2)$

Figure 2: DAG.

5. solution = DP[0]

Perfect-Information Blackjack

- Given entire deck order: $c_0, c_1, \dots c_{n-1}$
- 1-player game against stand-on-17 dealer
- when should you hit or stand? GUESS
- goal: maximize winnings for fixed bet \$1
- may benefit from losing one hand to improve future hands!
- 1. <u>subproblems</u>: BJ(i) = best play of $c_i, \dots c_{n-1}$ where i is # cards "already played" \longrightarrow # subproblems = n
- 2. guess: how many times player "hits" (hit means draw another card) \Longrightarrow # choices $\leq n$
- 3. recurrence: BJ(i) = max(outcome $\in \{+1, 0, -1\} + BJ(i + \# \text{ cards used})$ O(n)for # hits in 0, 1, ... if valid play \sim don't hit after bust O(n)

```
) \implies \text{time/subproblem} = \Theta(n^2)
4. \underline{\text{order}}: for i in reversed(range(n)) total time = \Theta(n^3) time is really \sum_{i=0}^{n-1} \sum_{\#h=0}^{n-i-O(1)} \Theta(n-i-\#h) = \Theta(n^3) still
```

5. solution: BJ(0)

detailed recurrence: before memoization (ignoring splits/betting)

```
\Theta(n^2) \begin{cases} \exists J(i): \\ \text{if } n-i < 4: \text{ return } 0 \text{ (not enough cards)} \\ \text{for } p \text{ in range}(2, n-i-1): (\# \text{ cards taken}) \\ \text{player} = \text{sum}(c_i, c_{i+2}, c_{i+4:i+p+2}) \\ \text{if player} > 21: \text{ (bust)} \\ \text{options.append}(-1(bust) + BJ(i+p+2)) \\ \text{break} \\ \text{for } d \text{ in range}(2, n-i-p) \\ \text{dealer} = \text{sum}(c_{i+1}, c_{i+3}, c_{i+p+2:i+p+d}) \\ \text{if dealer} \geq 17: \text{ break} \\ \text{if dealer} > 21: \text{ dealer} = 0 \text{ (bust)} \\ \text{options.append}(\text{cmp}(\text{player, dealer}) + BJ(i+p+d)) \\ \text{return} \quad \max(\text{options}) \end{cases}
```


Figure 3: DAG View

Parent Pointers

To recover actual solution in addition to cost, store <u>parent pointers</u> (which guess used at each subproblem) & walk back

- typically: remember argmin/argmax in addition to min/max
- example: text justification

 \bullet just like memoization & bottom-up, this transformation is automatic no thinking required

MIT OpenCourseWare http://ocw.mit.edu

6.006 Introduction to Algorithms Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.