

集度-ANP 预测&规划架构设计

系统名称	
项目负责人	
作者	
文档提交日期	2021. 12. 27

百度在线网络技术(北京)有限公司 (版权所有,翻版必究)

目录

集	ğ−A !	NP 预测&规划架构设计	I
1.	修	§订历史	1 -
2.	概	瑶述	1 -
	2. 1	背景	1-
	2. 2	目的	1-
	2. 3	适用范围	1-
	2.4	术语和缩写	1-
3.	预	顶测规划控制架构设计与数据流	2 -
4.	PF	REDICTION 模块架构介绍	6 -
	4.1	内部架构	6 -
		CONTAINER	6 -
		EVALUATOR	
		Predictor	
5.	PL	LANNING 模块架构介绍	7 -
	5.1	内部架构与数据流	7 -
	5.2	CENTRAL DECIDER	9 -
	5.3	World Builder	9 -

1. 修订历史

版本	状态	内容	日期	撰写	批准
Version	Status	Contents	Date	Editor	Approver
V1.0	发布	初创	2021/12/27	冯硕	

2. 概述

2.1 背景

预测模块承接上游感知模块,结合高精地图和主车的定位信息,对周边障碍物的未来运动情况进行预测,帮助主车提前作出决策,从而降低交通事故的发生率,在自动驾驶系统中发挥着承上启下的关键作用。

规划模块负责整个车辆的驾驶决策和轨迹规划。规划模块结合上游模块的融合导航路径、当前定位信息、车辆状态、用户参数服务器、感知及预测信息,做出可靠的决策和局部行驶 路径构建。

控制模块承接规划模块的轨迹规划结果,通过油门、刹车和方向盘使得车辆按照规划的轨迹运行。

2.2 目的

本文档主要介绍了集度项目 ANP 预测&规划&控制模块的软件设计架构、内外部关键数据内容/流向,以及各模块中关键组件功能。

2.3 适用范围

本文档用于软件设计阶段的架构设计,它的下游是软件详细设计说明书。本文档的面向对象包括:软件研发工程师/系统工程师/测试工程师。

2.4 术语和缩写

编号	术语与缩写	解释
1	ALC (Automatic Lane Change)	自动变道辅助
2	HEA (Highway Exit Assit)	高速匝道辅助

3. 预测规划控制架构设计与数据流

在 ACU 整体架构中,预测、规划与控制模块被部署在 ORIN 芯片上,可以与域内其他模块实现数据传递,也可以对外输出外界所需要的 PNC 相关原子能力。其中控制模块指令通过板间通信传递给 MCU 实现车辆控制。

预测和规划模块都需要通过 Map Engine 去调用高精地图相关服务,不在架构图中体现。 预测模块的上游是感知、定位,下游是规划模块。输出信息包括障碍物的预测轨迹点、 本次预测时间、被预测障碍物优先级等。通过高精地图和障碍物位置的匹配关系,可以判断 当前障碍物的路况信息(道路中还是路口中),以供预测模块选择不同的算法处理模型。自 车定位信息也会用于交互模型的某些计算过程。

规划模块基于路径参考线信息、主车位姿信息、周边物理世界的障碍物信息以及交通状态,在有限的时间范围内,计算出一条合适的轨迹供车辆行驶。规划模块的路径参考线(Reference Line)是输出轨迹线的重要数据基础,轨迹线是为了确保车辆准确地行驶在参考线上。参考线的构建方式有两种:一是根据高精地图导航路径(Routing)找到对应道路中心线,二是根据感知识别车道线找到对应道路中心线。"轨迹"不同于"路径",不仅有行驶路径点信息,还包括轨迹点的相对时间信息,由此可以推导出每个轨迹点的速度、加速度等。这条轨迹必须是下游控制模块可以执行的,车辆在运动过程中的惯性、转弯角度限制等,这些因素在计算行驶轨迹都需要考虑。另外,还需要兼顾驾驶员/乘客的体验,诸如猛加速,急刹车或者急转弯都会造成非常不好的乘坐体验,这些都应该在 Planning 模块中避免。

规划模块会根据不同的 Executor 传输当前场景信息给到 Scene-Recognizer(相当于 proxy), 以切换不同工作域。比如:规划向左变道时, Scene-Recognizer 接收到此场景信息,根据场 景信息提出开启左后侧相机的需求,并传递给感知和定位模块。感知和定位模块据此更改配置方案。这涉及到 PNC 场景化-感知定位服务化的概念,即根据车辆意图和特定场景去切换对应传感器配置方案,比如车辆一路向前时,左/右后侧相机没必要开启,这样可以节省非常多的算力。

以下是 PNC 架构图中模块间数据流传递内容,本文档只罗列了关键数据信息,完整数据信息可以见《ANP PNC 系统输出原子能力汇总》。

T1: Perception To Prediction
具体数据请见感知架构设计文档

T2: Localization To Prediction
具体数据请见定位架构设计文档

T3: Prediction To Planning_WorldBuilder			
数据名称 数据解释		取值/属性	
prediction_obstacle	被预测障碍物信息	详见感知架构设计文档	

trajectory 预测轨迹信息		详见 PNC 原子能力表	
is_static	被预测障碍物静止标志位 bool		
predicted_period	本次预测的时间长度	/s	
priority	riority 被预测障碍物优先级 Normal/caution/igno		
start_timestamp	预测开始时间戳	ms	
end_timestamp	预测结束时间戳	ms	

T4: Localization To Planning_WorldBuilder 具体数据请见定位架构设计文档

T5: Vehicle_Bus To Planning_WorldBuilder			
数据名称	数据解释	取值/属性	
engine_started	Engine 是否启动	bool	
speed_mps	当前车辆速度	m/s	
throttle_percentage	加速踏板开度	%	
brake_percentage	刹车踏板开度	%	
steering_torque_nm	方向盘扭矩	Nm	
gear_location	当前档位信息	N/D/R/P	
driving_mode	当前驾驶模式	Complete_Manual/	
		Complete_Auto_Drive/	
		Auto_Steer_Only/ Auto_Speed_Only	
Light signals 灯光状态		近/远光灯,转向灯等	

T6: Relative Map To Planning_WorldBuilder			
数据名称 数据解释		取值/属性	
NavInfo	导航状态信息	HD/SDMap 匹配状态,导航是否开 启,导航完成剩余距离	
NavigationInfo	路径参考线/参考点信息	-	
		-	

T7: Localization To Planning_CentralDecider 具体数据请见定位架构设计文档

T8: Perception To Planning_CentralDecider/ WorldBuilder 具体数据请见感知架构设计文档

T9: Status Machine To Planning_WorldBuilder

Status Machine:参数服务器,用于传输用户指令给到 Planning 模块,例如拨杆变道方向/用户是否确认变道/用户设定的巡航速度值/用户选择的驾驶风格等;

T10: RelativeMap To Planning_ CentralDecider 具体数据请见 T6

T11: Planning To Scene-Recognizer(Scene_Scheme)

Planning 模块会根据不同的 Executor 传输当前场景信息给到 Scene-Recognizer,以切换不同工作域。

数据名称	数据解释	取值/属性		
SceneMode	当前场景信息	Default ICA		
		ALC_Left	ALC_Right	
		ALC All ACC		
		HEA_Exit HEA_Entry		
		HEA ETC		
		HSA City_Cruise		
		Protected_Left_Turn	Pull_over	
WorkingCondition	当前工作环境	Urban	Highway	

T12: Planning To Control				
数据名称 数据解释		取值/属性		
total_path_length	规划路径的总长度	m		
total_path_time	规划路径的总时长	S		
is_replan	是否触发 replan 的标识	bool		
gear	规划的档位信息	N/D/R/P		
Trajectory_point	轨迹规划的路径点信息	详见 PNC 原子能力表		
Decision	规划模块决策结果	详见 PNC 原子能力表		
latency_stats	规划子模块的时延信息	如 Decider/Optimizer 的时延信息		
right_of_way_status	路权状态信息	Unprotected/Protected		
engage_advice	当前规划结果的接管建议	详见 PNC 原子能力表		
TrajectoryType	轨迹类型	ANP 默认为 Normal		
Executor	Executor 信息	ExecutorType; ExecutorState;		
		详见 PNC 原子能力表		
Stage 信息 StagesTyp		StagesType; StagesState;		
		详见 PNC 原子能力表		
HighLevelDecision	HighLevel 决策信息	详见下文		

T13: Control To Vehicle_Bus				
数据名称	数据解释	取值/属性		
driving_mode	控制模式指令	详见 PNC 原子能力表		
throttle	目标油门控制指令	%		
brake	目标刹车控制指令	%		
gear_location	目标档位设置指令	N/D/R/P		
steering_rate	目标转向速率指令	%/s		
steering_target	目标转向角度指令	%		
steering_torque	目标转向扭矩指令	Nm		
parking_brake	P档刹停介入指令	bool		

speed	目标速度指令 Km/h		
acceleration	目标加速度指令	m/s2	
engine_on_off	Engine 是否启动 bool		
trajectory_fraction	on 在上一个循环规划轨迹的完成度 %		
VehicleSignal	灯光控制信息	详见 PNC 原子能力表	
latency_stats	控制模块的时延信息	详见 PNC 原子能力表	
engage_advice	系统建议的接管状态	详见 PNC 原子能力表	
DashboardColor	仪表盘颜色控制信息	Green/Yellow/Red	

4. Prediction 模块架构介绍

4.1 内部架构

4.2 Container

Container 的作用是对上游模块信息做预处理,包括感知、定位信息。预处理过程是指对上游信息的筛选/删减/分类/历史数据存储。若后续开发过程中需要涉及到一些与障碍物强交互场景(例如在狭窄非结构化道路的错车工况),Container 也会获取来自规划模块的反馈信

息。Container 中通过 LRU Cache 对上游信息进行分类筛选缓存,定期淘汰过期的障碍物,并构建障碍物特征。最终以 feature 形式与相关障碍物绑定,传递给 Evaluator。

4.3 Evaluator

预测模块根据不同的障碍物类型和路况信息选择不同的预测模型。若障碍物车辆当前在车道内行驶,则选用 Lane Sequence 模型;若障碍物车辆当前在岔路口中,则选择 Junction模型。Lane Sequence 模型输出车辆障碍物道路选择意图概率(选择不同车道 id 的概率),Junction模型通过朝向和速度的状态量,判断车辆障碍物在岔路口的出口选择,输出是障碍物进入每个路口意图的概率。

4.4 Predictor

Predictor 的作用是输出一系列障碍物预测轨迹点信息。Trajectory Generation 是针对车辆障碍物的后处理过程,基于障碍物车辆的道路/路口选择概率、状态初始量,加上地图和车辆运动学的约束信息,最终生成车辆障碍物的预测轨迹。Trajectory Extension 是针对行人障碍物的后处理过程,基于行人的感知状态量,对其做速度切线方向的轨迹延伸。

5. Planning 模块架构介绍

5.1 内部架构与数据流

P1: Planning_WorldBuilder To Planning_Executor(World_View)				
数据名称	数据解释	取值/属性		
relative_map	相对地图信息(参考线)	详见 T6		
prediction_obstacles	预测障碍物信息	详见 T3		
perception_obstacles	感知障碍物信息	详见感知架构文档		
chassis	底盘信息	详见 T5		
localization	定位信息	详见定位架构文档		
high_level_decision	Central Decider 决策信息	详见 P2		

P2: Planning_CentralDecider To Planning_Wo			ldBuilder(High_Level_Decision)	
数据名称	数据解释		取值/属性	
cruise_speed_kmph	巡航速度		km/h	
style	驾驶风格		Crazy/Wild/Moderate/Gentle/Dull	
executor_type	Executor 选择类型		详见下文	
alc_decision	ALC 决策信息		详见 PNC 原子能力表	
hea_decision	HEA 决策信息		详见 PNC 原子能力表	
city_cruise_decision	City_cruise 决策信息		详见 PNC 原子能力表	
function_status	功能状态		AP/HANP/UANP	

P3: Planning_Executor To Planning_WorldBuilder (Context)						
P4: Planning_Executor To Planning_CentralDecider (Context)						
备注:不同 Executor 传递的 Context 不同,此处只列举 base_context						
数据名称	数据解释	取值/属性				
planning_start_point	规划起始点信息	TrajectoryPoint 类型				
vehicle_state	车辆当前状态信息	坐标/位姿/航向角等,详见				
		Common-vehicle_state.proto				
has_hdmap_	当前是否有高精地图	bool				
replan_reason	重规划原因	详见 PNC 原子能力表				
stage_type	Stage 类型	详见下文				
stage_state	Stage 状态	详见 PNC 原子能力表				
executor_type	Executor 类型	详见下文				
executor_state	Executor 状态	详见 PNC 原子能力表				
engage_advice	接管建议	详见 PNC 原子能力表				
high_level_decision	Central Decider 决策信息	详见 P2				
ego_lane_id	自车车道 id	-				
reference_line_info	参考线信息	详见 PNC 原子能力表				
left_lane_group	左侧车道信息	-				
right_lane_group	右侧车道信息	-				
is_diverge_road	是否是分岔路	bool				
obstacles	障碍物信息	详见感知架构文档				
traffic_light_distance_	交通灯距离	bool				

float

5.2 Central Decider

CentralDecider 是 Planning 模块的上层决策器,其输入包括 Topic 信息、用户参数服务器 以及 Executor 的反馈信息,输出为 HighLevelDecision。在内部维护了一个分层状态机,共有 四个状态: ManualState/HighWayState/UrbanState/APState。其中 ManualState 是初始状态。下 文中的 ExecutorComponent 根据 HighLevelDecision 的结果选择具体的 Executor 和执行策略。 触发方式为时钟触发,触发频率为 10Hz(城市工况)/15Hz(高速工况)。CentralDecider 有如下优点:

- 明确特定地点、时间要做的事——战略决策;
- 提供行为的确定性和可解释性;
- 影响驾驶风格,优化方向为决策意图更近似人类;

CentralDecider 会接收来自用户输入的信息,比如巡航速度设置、驾驶风格选择、用户是 否确认变道等,将这些信息同样打包在 HighLevelDecision 中。驾驶风格的不同会影响最终 规划模块的输出结果,比如温和模式下的规划加速度会更低、跟车距离会更远。

5.3 World Builder

WorldBuilder 接收车辆底盘状态、感知、定位、预测以及路径参考线信息的原始数据,将这些不同频率/不同结构的信息进行集散处理,并抽象成 Executor 需要的高阶信息,以 Worldview 的形式输入给 Executor。

WorldBuilder 会根据当前工况选择不同构建方式的参考线作为输出。如果是在高速路工况,会选择感知车道线生成的参考线;如果是在城市道路,会选择高精地图生成的参考线。 触发方式为 Prediction 数据触发。

5.4 Executor

Executor 执行器是对决策信息的承接、分解和反馈。Executor 描述一个特定的场景(例如:ALC 自动变道)。每个 Executor 又分为一个或者多个阶段(stage),每个阶段又由不同的任务(Task)组成。执行一个场景,就是顺序执行不同阶段的不同任务。当前 ANP 中 Executor Type/Stage Type/Task Type 如上图所示。

Task 大体可以分为决策器与优化器,分为路径边界决策/优化和速度决策/优化。首先会进行路径边界决策,之后对路径结果进行优化;将优化之后的 path_point 信息传给速度决策器,再对其进行速度决策结果进行优化。以上决策/优化过程需要经过一系列算法模型完成。在 Stage 模块最后会对所有的 path point/speed point 进行合并,生成对应 Planning 轨迹线。

PNC场景化设计的优点是可以实现代码隔离,即单 executor 策略参数调整不影响其它 executors 的效果。当发现一个场景需要修改,不会影响到其他场景的配置,同时也可以针对 不同场景做优化,每种场景都有一个专门的目录进行优化。除此之外,还有利于产品侧场景 执行器可插拔重组,能够对齐产品功能定义,提升研发效率。

触发方式为 worldview 数据触发。