Examen d'Analyse 4 (SV-MT) Juin 2019

Durée: 2h.

Matériel autorisé : - résumé manuscrit de 4 pages (2 feuilles recto-verso)

- les tables de transformées de Fourier et de Laplace
- le Formulaire et Tables du CRM

Attention : sujet recopié de mémoire après l'examen, exactitude pas garantie :)

Exercice 1

I. Soit

$$f(x) = 2x \quad si \quad 0 \le x \le \frac{\pi}{2}$$

$$et f(x) = 2\pi - 2x \ si \ \frac{\pi}{2} \le x \le \pi$$

- a) Calculer $F_S f(x)$ la série de Fourier en sinus de f(x).
- b) À l'aide du théorème de Dirichlet, comparer $F_S f(x)$ et f(x) sur $[0, \pi]$.
- c) À partir de a) et de b), calculer :

$$\sum_{0}^{\infty} \frac{1}{(2n+1)^2}$$

- II. a) Trouver f(x) telle que $\mathcal{F}f(\alpha) = e^{-2i\alpha} \sin(3\alpha)$.
 - b) Trouver f(x) telle que $\mathcal{F}f(\alpha)=2\sqrt{2}\,\alpha^2e^{-\alpha^2}$
 - c) Soit

$$h(x) = \int_{-\infty}^{+\infty} \frac{1}{(x-y)^2 + 1} \frac{1}{y^2 + 4} dy$$

Calculer h(x) de façon explicite.

d) Soit
$$\mathcal{F}g(\alpha) = \frac{1}{1+\alpha^4}$$
 et $f(x) = (xg(x))''$. Calculer $\mathcal{F}f(\alpha)$.

Exercice 2

- I. Soit l'équation différentielle suivante : $y'(t) + y(t) = 8 \sinh(t)$ avec y(0) = 1.
- a) En utilisant la méthode du cours, trouver Y(z) la transformée de Laplace de y(t).
- b) En utilisant la décomposition en éléments simples et les tables de transformées de Laplace, trouver y(t).

II. Soit

$$F(z) = \frac{1}{z^4 - 2z^3 + 2z^2}$$

- a) Par un calcul de résidus, trouver une fonction f(t) dont la transformée de Laplace est F(z).
- b) Donner les abscisses de convergence de F(z).

Exercice 3

Résoudre l'équation en utilisant la séparation de variables :

$$\frac{\partial u}{\partial t} = (2 + \sin(t) + t^2) \left(\frac{\partial^2 u}{\partial x^2} + 4 u(x, t) \right) \text{pour } t > 0, x \in [0, \pi]$$
$$u(0, t) = u(\pi, t) = 0$$
$$u(x, 0) = \sum_{1}^{\infty} \frac{1}{n^3} \cos(nx)$$

Exercice 4

- 1) Soit $f \in C^{\infty}CL$, prouver $f \cdot \delta_{x} = f(a) \cdot \delta_{a}$
- 2) Soit ϕ une fonction à décroissance rapide. Soit

$$f(x) = 0 \text{ si } x < 0;$$

$$f(x) = 2x \text{ si } 0 \le x \le 1;$$

$$f(x) = \frac{1}{x} \text{ si } x > 1;$$

- a) Exprimer $\langle T_f + \delta_1, \varphi \rangle$.
- b) Exprimer $\langle (T_f)' + \delta_1, \varphi \rangle$.
- c) Soit $T_g = \left(T_f\right)' + \delta_a$. Exprimer T_g .

- 3) Résoudre $y'' + y = \delta(x)$.
- 4) Soit $g_1 = e^{-|x|}$ et $g_2 = \cos(x)$. Montrer, en utilisant la transformée de Fourier, que $g_1 * g_2 = g_2$. $\underline{\operatorname{Indice}} : F_c f(x) = \sqrt{\frac{\pi}{2}} \cdot (\delta_{-1} + \delta_1)$