NIST 양자내성암호 공모전 KEM Finalist 최적 구현 동향

정보컴퓨터공학과 권혁동 IT융합공학부 엄시우 심민주 서화정[†]

서론

양자내성암호 공모전

최적 구현 동향

결론

서론

- 양자컴퓨터는 양자역학의 원리를 사용하는 컴퓨터
 - 0과 1 전기 신호를 사용하는 고전컴퓨터에 비해 매우 빠름
- 양자컴퓨터 상에서는 특정 알고리즘의 실현이 가능
 - Grover 알고리즘: 검색에 능하며 Brute-force를 효과적으로 진행
 - Shor 알고리즘: 효과적인 소인수 분해 진행
- 기존 암호 체계의 붕괴를 야기
- NIST의 양자내성암호 공모전 진행과 KEM 분야의 최적구현물을 확인

양자내성암호 공모전

- 2017년 NIST는 양자내성암호 표준화를 위한 공모전 개최
- 2020년 Round 3 Final까지 진행
 - 공개키 암호화 부문(KEM)
 - 전자서명 부문(Digital signature)
- KEM에서는 4종류의 암호 알고리즘이 진출
 - Classic McEliece, CRYSTALS-KYBER, NTRU, Saber

	Finalists	Alternates
KEMs/Encryption	Kyber NTRU SABER Classic McEliece	Bike FrodoKEM HQC NTRUprime SIKE
Signatures	Dilithium Falcon Rainbow	GeMSS Picnic SPHINCS+

최적 구현 동향: Classic McEliece

- 1979년 제안된 알고리즘으로 부호 기반 알고리즘(Code based)
 - Round 3 Finalist 중 가장 작은 암호문 크기 보유
 - 제안된 지 오래된 알고리즘으로 신뢰성과 안전성이 높은 특징
 - Finalist 중 유일한 부호 기반 알고리즘

최적 구현 동향: Classic McEliece

- ARM Cortex-M4를 대상으로 구현
 - STM32F4-Discovery Microcontroller
 - Constant-time 구현을 시도
 - RAM이 부족 (192KB) → Flash memory (1MB)에 공개키 저장
- 레벨 1 매개변수 세트 비교
 - FrodoKEM 레벨 1 매개변수 세트 대비 Enc 80배, Dec 17배 이상 빠름
 - 레벨 1 매개변수의 Enc에 한해서는 다른 알고리즘과 대등한 연산 속도 보유

level	decapsulation	encapsulation	key generation
1	2706 681	582 100	1 430 811 294
1	2 700 001	302 199	2146932033
3	6 535 186	1081335	
5	7412111		
5	7 481 747		
	1 1 3 5	1 2706 681 3 6535 186 5 7412 111	1 2706681 582199 3 6535186 1081335 5 7412111

scheme (implementation)	level	key generation	encapsulation	decapsulation
frodokem640aes (m4)	1	48 348 105	47130922	46 594 383
kyber512 (m4)	1	463 343	566 744	525 141
kyber768 (m4)	3	763 979	923 856	862 176
lightsaber (m4f)	1	361 687	513 581	498 590
saber (m4f)	3	654 407	862 856	835 122
ntruhps2048509 (m4f)	1	79 658 656	564 411	537 473
ntruhps2048677 (m4f)	3	143 734 184	821 524	815 516
sikep434 (m4)	1	48 264 129	78 911 465	84 276 911
sikep610 (m4)	3	119 480 622	219 632 058	221 029 700

최적 구현 동향: Classic McEliece

- Key Pair Generation을 중점적으로 구현한 구현물
 - Mceliece 8192128(레벨 5 매개변수)를 대상
 - AVX(Advanced Vector eXtensions)을 활용
 - Polynomial multiplication, Gaussian Reduction을 최적 구현 지점으로 설정
 - AVX를 사용하여 구현에 필요한 명령어 숫자를 줄이는데 집중
 - 기존 대비 최대 55.57%의 성능 향상

Percentile	Original (ms)	Optimized (ms)	Speedup (%)
Private key generation	!		
25%	12, 201	4, 599	62.30
50%	12, 356	4, 628	62.50
75%	13, 421	4, 675	65.16
Public key generation			
25%	111, 852	49, 388	55.84
50%	115, 142	51, 385	55.37
75%	127, 750	67, 702	47.00
Key-pair generation			
25%	185, 268	98, 963	45.70
50%	191, 184	107, 776	43.63
75%	212, 542	118, 116	55.57

최적 구현 동향: CRYSTALS-KYBER

- Kyber는 전자서명 부문의 Dilithium과 쌍을 이루는 알고리즘
- Ring-LWE를 사용한 Module-LWE 기반의 알고리즘
 - KEM 부문 Finalist 중 유일하게 LWE 사용
 - Alternate를 포함할 경우, FrodoKEM 동일 기반 알고리즘
- Fujisaki-Okamoto 변환 사용
- Cyclotomic ring을 사용함
 - NTT(Number Theoretic Transform)를 사용하여 효율적인 구현 가능

최적 구현 동향: CRYSTALS-KYBER

- ARM Cortex series 상에서의 구현물
 - NTT, Inverse NTT, Polynomial multiplication 과정을 최적화
 - NTT를 최적화하기 위해 새로운 Butterfly structure 구성
 - 최대 16개의 unit을 사용

• 제안하는 기법을 Keygen, Enc, Dec에 적용 가능

Work	Vork Platform		$q / \lceil \log_2(q) \rceil$	LUT / REG / DSP / BRAM	Clock		atency (C	CC)
WOLK	1 latioi iii	n	$q / \lceil \log_2(q) \rceil$	LC1 / REG / DSI / BRAWI	(MHz)	NTT	INTT	PMUL
[6] ^a	Intel Corei7-6600U Skylake	256	7681 / 13	-1-1-1-	_	419	394	1278
	Intel Core i7-4770K Haswell	256	7681 / 13	-1-1-1-	_	460	440	1432
$[7]^{a,b,c}$	ARM Cortex-M4	256	7681 / 13	-/-/-/-	_	9452	10373	32576
[/]	ARM Collex-M4	256	3329 / 12	-1-1-1-	_	7725	9347	27873
$[10]^{a,b}$	Zynq-7000	256	-/16	2908 / 170 / 9 / –	_	1935	1930	_
$[11]^a$	Virtex-6	256	7681 / 13	4549 / 3624 / 1 / 12	262	2096	_	_
$[12]^a$	[12] ^a Virtex-6	256	7681 / 13	1349 / 860 / 1 / 2	313	1691	_	_
		512	12289 / 14	1536 / 953 / 1 / 3	278	3443		
$[13]^{b,c}$	Artix-7, Virtex-7	256	3329 / 12	-/-/-	225	1834	_	_
$[14]^{a,b}$	28nm CMOS	256	3329 / 12	512K / – / – / –	_	41	_	_
[14]	Zomii Civios	256	7681 / 13	31211777		45		
TW-1 BTF ^{b,c}	Spartan-6			985 / 444 / 1 / 5	138	904	904	3359
1 W-1 D1F	Artix-7			948 / 352 / 1 / 2.5	190	904	904	3339
TW-4 BTFs ^{b,c}	Spartan-6		3329 / 12	2498 / 1046 / 4 / 18	127	232	233	864
	Artix-7	256	3327712	2543 / 792 / 4 / 9	182	232	233	004
TW-16 BTFs ^{b,c}	Spartan-6			9898 / 3688 / 16 / 70	115	69	71	256
1 W-10 DIFS	Artix-7			9508 / 2684 / 16 / 35	172	07	7.1	230

최적 구현 동향: CRYSTALS-KYBER

- ARM Cortex-A74 및 Apple M1 상에서의 구현
 - 모두 ARMv8에 속하는 프로세서로 동일한 기법을 적용

•	곱셈기	를 초	적	구현 지	점으로	사용
---	-----	-----	---	------	-----	----

- Barret multiplication, Montgomery multiplication
- 병렬 연산자(NEON)을 사용하여 구현에 필요한 명령어 수를 줄임
- 기존 대비 성능 향상을 확인 가능
 - 대체로 기존 대비 1.3~1.5배의 성능 향상

Multiplication	Type	Instructions
Barret	Normal	3
	Normal	5
Polynomial	Constant	4
Folynomiai	Round off	3
	Big number	7

	Cortex-A72				Apple M1			
	K	\mathbf{E}	\mathbf{D}	K	\mathbf{E}	\mathbf{D}		
kyber512 (Ours)	62459	80710	76443	14939	24834	20893		
kyber512 [NG21]	$67903^{\rm a}$	$88906^{\rm a}$	87563^{a}	23 000	32500	29 400		
kyber512 [SKS ⁺ 21] ^b	84728	109668	108646	_	_	_		
kyber768 (Ours)	99201	127453	120665	23756	36284	31047		
kyber768 [NG21]	$110784^{\rm a}$	$141312^{\rm a}$	$138984^{\rm a}$	36 300	49200	45700		
kyber768 [SKS ⁺ 21] ^b	143791	180687	179085	_	_			
kyber1024 (Ours)	156694	192280	184161	33024	48925	44 000		
kyber1024 [NG21]	176809^{a}	$215665^{\rm a}$	$214076^{\rm a}$	55 900	71600	67 100		
${\tt kyber1024}~[SKS^+21]^{\rm b}$	228082	272418	270668	_	_	_		
lightsaber (Ours)	64 181	87 272	92813	20 137	29731	28 551		
lightsaber [NG21]c	$83960^{\rm a}$	$118583^{\rm a}$	$136203^{\rm a}$	31 200	37200	35300		
saber (Ours)	109 192	140103	147925	32865	44 917	44 074		
saber [NG21]c	158757^{a}	$206337^{\rm a}$	$226304^{\rm a}$	51 300	59900	58000		
firesaber (Ours)	175 104	211 382	222317	50 345	65402	64 593		
firesaber [NG21]c	$245249^{\rm a}$	$304128^{\rm a}$	$330750^{\rm a}$	77 000	87900	86 700		
	K	S	V	K	S	$\overline{\mathbf{V}}$		
dilithium2 (Ours)	269 724	649 230	272824	71 061	224125	69 792		
dilithium2 (ref)	410312	1353753	449633	187 842	741140	199615		
dilithium3 (Ours)	515 776	1089387	447 460	152 435	365248	104 821		
dilithium3 (ref)	743166	2308598	728866	358 848	1218027	329187		
dilithium5 (Ours)	782 752	1436988	764886	178 137	426635	167 489		
dilithium5 (ref)	1151504	2903604	1198723	544 833	1531067	557696		

최적 구현 동향: NTRU

- 격자 기반 암호 알고리즘
 - Ring 구조를 활용
 - 초기 격자 기반 암호 알고리즘 중 하나
 - SVP(Shortest Vector Problem)을 사용
 - 공개키가 주어질 때 가장 짧은 벡터를 찾기 어려움
- 연산 속도가 빠르며 키 사이즈가 작음

최적 구현 동향: NTRU

- ARM Cortex-A72와 Apple M1 상에서의 구현
 - ARMv8 프로세서군
 - Vector register를 사용한 병렬 구현
- NTT 연산을 최적 구현하는데 집중
 - 각 단계 별로 연산에 필요한 값을 레지스터에 모아서 진행
- 레퍼런스 구현물과 성능 비교 진행
 - HPS677: Enc는 약 3.05~3.24배, Dec는 약 7.89~8.49배 성능 향상
 - HRSS701: Enc는 약 6.68배, Dec는 약 7.24배 성능 향상
 - AVX 구현물에 비해서는 떨어지는 성능

Algorithm	ref (kc)		neon (kc)		AVX2 (kc)		ref/neon		AVX2/neon	
	\mathbf{E}	D	E	D	\mathbf{E}	D	\mathbf{E}	D	E	D
lightsaber	50.9	54.9	37.2	35.3	41.9	42.2	1.37	1.55	1.13	1.19
kyber512	75.7	89.5	32.6	29.4	28.4	22.6	2.33	3.04	0.87	0.77
ntru-hps677	183.1	430.4	60.1	54.6	26.0	45.7	3.05	7.89	0.43	0.84
ntru-hrss701	152.4	439.9	22.8	60.8	20.4	47.7	6.68	7.24	0.90	0.78
saber	90.4	96.2	59.9	58.0	70.9	70.7	1.51	1.66	1.18	1.22
kyber768	119.8	137.8	49.2	45.7	43.4	35.2	2.43	3.02	0.88	0.77
ntru-hps 821	245.3	586.5	75.7	69.0	29.9	57.3	3.24	8.49	0.39	0.83
firesaber	140.9	150.8	87.9	86.7	103.3	103.7	1.60	1.74	1.18	1.20
kyber1024	175.4	198.4	71.6	67.1	63.0	53.1	2.45	2.96	0.88	0.79

최적 구현 동향: Saber

- Module-LWR 방식의 격자 기반 암호
- ARM Cortex series 상에서 구현
 - Kyber와 동일한 최적 구현 기법 적용
 - 단, **32-bit용 NTT** 구현 및 연산자를 사용
 - LightSaber: 약 1.23~1.54배 성능 향상
 - Saber: 약 1.31~1.55배 성능 향상
 - FireSaber: 약 1.34~1.52배 성능 향상

		Cortex-A72	}	Apple M1			
	K	\mathbf{E}	\mathbf{D}	K	\mathbf{E}	\mathbf{D}	
kyber512 (Ours)	62 459	80710	76443	14 939	24834	20893	
kyber512 [NG21]	67 903 ^a	88906^{a}	$87563^{\rm a}$	23 000	32500	29400	
kyber512 $[SKS^+21]^b$	84 728	109668	108646	_	_	_	
kyber768 (Ours)	99 201	127453	120665	23 756	36284	31047	
kyber 768 [NG21]	110 784 ^a	$141312^{\rm a}$	$138984^{\rm a}$	36 300	49200	45700	
kyber768 $[SKS+21]^b$	143791	180687	179085	_	_	_	
kyber1024 (Ours)	156 694	192280	184 161	33 024	48925	44 000	
kyber1024 [NG21]	176 809 ^a	$215665^{\rm a}$	$214076^{\rm a}$	55 900	71600	67100	
kyber1024 [SKS+21]b	228 082	272418	270668	_	_		
lightsaber (Ours)	64181	87272	92813	20 137	29731	28551	
lightsaber [NG21]c	83 960 ^a	$118583^{\rm a}$	$136203^{\rm a}$	31 200	37200	35300	
saber (Ours)	109192	140103	147925	32865	44917	44074	
saber [NG21] ^c	158 757 ^a	$206337^{\rm a}$	$226304^{\rm a}$	51 300	59 900	58000	
firesaber (Ours)	175104	211382	222317	50345	65402	64593	
firesaber $[NG21]^c$	245 249 ^a	$304128^{\rm a}$	$330750^{\rm a}$	77 000	87900	86700	
	K	S	V	K	S	V	
dilithium2 (Ours)	269 724	649230	272824	71 061	224125	69 792	
dilithium2 (ref)	410 312	1353753	449633	187 842	741140	199615	
dilithium3 (Ours)	515 776	1089387	447 460	152 435	365248	104 821	
dilithium3 (ref)	743 166	2308598	728866	358 848	1218027	329187	
dilithium5 (Ours)	782 752	1436988	764886	178 137	426635	167 489	
dilithium5 (ref)	1 151 504	2903604	1198723	544 833	1531067	557696	

결론

- NIST 양자내성암호 공모전 Round 3 Finalist KEM 부문 알고리즘 확인
- 다양한 플랫폼 상에서 최적 구현 조사
 - 많은 구현물이 ARM 프로세서 상에서 구현을 진행
 - 강력한 병렬 구현 연산자 및 환경 지원
 - 하드웨어 구현의 경우 굉장히 뛰어난 연산 성능 향상
- 양자내성암호는 연산 성능이 떨어지는 경우가 존재
 - 원활한 보급 및 사용을 위해서는 최적 구현의 연구가 중요
 - 지속적인 연구가 필요할 것으로 전망됨

Q&A