Module 2, Lecture 2 Chemical Thermodynamics Part 2

Learning Objectives:

- Understand the concept of entropy being related to the number of possible arrangements of particles in a system.
- Qualitatively predict entropy changes.
- Carry out calculations using S°

Textbook: Chapter 19

Spontaneous processes

• A spontaneous process is one which, once started, will continue without any help.

· Originally thought that only exothermic processes were spontaneous as they would lead to a lowering in energy.

But...

Cold soft drinks warm up on standing - endothermic

Ice cubes melting endothermic $\Delta H^0 = +6 \text{ kJ mol}^{-1}$ Dissolving NH₄NO₃ in water - endothermic $\Delta H^0 = +26 \text{ kJ mol}^{-1}$

3

3

Entropy

Must also consider entropy (S).

Several definitions of entropy

- A measure of the number of possible arrangements of particles in a system
- A measure of the distribution of energy over available states in a system
- (The number of available microstates CHEM201/physics/books)
- · A measure of randomness.
- A measure of disorder?

4

Δ

Entropy

Possible arrangements of two gas molecules in two flasks:

Result	Entropy	Chance
2 molecules in left flask	low	1/4
2 molecules in right flask	low	1/4
1 molecule in each flask	high	2/4

Which result has the highest entropy?

Two molecules in each flask has higher entropy because more possible arrangements of the particles OR the system is more disordered/random.

Which result is more likely after the tap is opened?

Ordered system is very unlikely – 1 in 4 chance of both being in left flask

5

5

Entropy

Which result is more likely?

If 4 molecules, then just $0.5^4 = 6.25\%$ - a 1 in 16 chance of both being in the left flask..

If 1 mole of molecules, just $0.5^{6.023 \times 10^{23}}$ chance – less than 1 in 10^{100}

Very small chance of an ordered system, system spontaneously becomes more disordered :

- increase in entropy

6

ordered

small # of possible arrangements of sheep

disordered

large # of possible arrangements of sheep

Increase in entropy

The second law of thermodynamics

"Whenever a spontaneous event takes place in our universe, the total entropy of the universe increases"

• In thermodynamics, the universe consists of the system of interest, plus the surroundings. Because of this, the entropy of a system can decrease during a spontaneous process, as long as the entropy of the surroundings increases by a larger amount.

• The enthalpy of the universe is constant; the entropy of the universe is increasing. The available energy is constantly being dispersed throughout the universe.

The second law of thermodynamics

"Whenever a spontaneous event takes place in our universe, the **total** entropy of the universe increases"

9

q

Measuring entropy

- Unlike enthalpy, it is possible to measure absolute values of entropy for a substance.
- This is because the **third law of thermodynamics** states:
 - "at absolute zero, the entropy of a perfectly ordered pure crystalline substance is zero"

(i.e. there is NO disorder at all)

• A value measured at 1 bar is called a **standard entropy** (S°). Units are J mol⁻¹ K⁻¹.

10

Entropy

 Solids have the lowest entropies, followed by liquids, with gases having the highest.

```
S^{\circ} (H<sub>2</sub>O, s) = 41 J mol<sup>-1</sup> K<sup>-1</sup>

S^{\circ} (H<sub>2</sub>O, I) = 70 J mol<sup>-1</sup> K<sup>-1</sup>

S^{\circ} (H<sub>2</sub>O, g) = 189 J mol<sup>-1</sup> K<sup>-1</sup>
```

Careful!

- So small values note J not kJ
- Note the "K-1" in the unit.

• In contrast to $\Delta_f H^o$, S^o for an element in its standard state is **not zero**

```
S^{\circ} (H<sub>2</sub>, g, 298 K) = 130.6 J mol<sup>-1</sup> K<sup>-1</sup>
S^{\circ} (O<sub>2</sub>, g, 298 K) = 205.0 J mol<sup>-1</sup> K<sup>-1</sup>
```

This is because the reference point is the pure crystalline solid at 0 K.

11

11

Standard entropy of reaction

Can write $\Delta_r S^o$ just like for $\Delta_r H^o$:

```
\Delta_r S^\circ = \text{sum of entropy of products} - \text{sum of entropy of reactants}
\Delta_r S^\circ = \sum [S^\circ \text{ (products)}] - \sum [S^\circ \text{ (reactants)}]
```

(taking account of stoichiometry)

Can often **qualitatively** predict ΔS for a chemical reaction from the states of the substances involved.

- A reaction which results in the formation of a gas from a solid or liquid will very likely have ΔS +ve
- A reaction having fewer moles of products than reactants (all in the same phase) will very likely have ΔS –ve.

Effect of phase/number of particles

Decrease in entropy

10

13

Qualitative example

• What is the expected sign of $\Delta_r S$ for the following reactions?

 $(1) \quad N_2(I) \rightarrow N_2(g)$

https://www.youtube.com/watch?v=th43nMgN578

(2) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

For (1), we have 1 mole of liquid being converted to 1 mole of gas. Molecules of gaseous N_2 are less constrained than liquid molecules, therefore have more possible arrangements. $\Delta_r S$ will be +ve.

For (2), we have 4 moles of gas reacting to give 2 moles of gas. Fewer possible arrangements of the product molecules, therefore $\Delta_r S$ will be -ve.

Quantitative example

• Calculate $\Delta_r S^o$ for the hydrolysis of urea:

$$CO(NH_2)_2(s) \ + H_2O(I) \ \rightarrow CO_2(g) \ + \ 2NH_3(g)$$

given
$$S^{\circ} [CO(NH_2)_2(s)] = 173.8 \text{ J mol}^{-1} \text{ K}^{-1}$$

 $S^{\circ} [H_2O(I)] = 69.96 \text{ J mol}^{-1} \text{ K}^{-1}$

 S° [CO₂(g)] = 213.6 J mol⁻¹ K⁻¹

 S° [NH₃(g)] = 192.5 J mol⁻¹ K⁻¹

$$\Delta_r S^o = [213.6 + (2 \times 192.5)] - [173.8 + 69.96] \text{ J mol}^{-1} \text{ K}^{-1}$$

= 354.8 J mol}^-1 K^-1

Sanity check?

The large positive value is consistent with the formation of 3 moles of gas from an aqueous solution.

15

15

So what determines spontaneity?

- A positive value of ΔS for a particular process is no guarantee that the process will be spontaneous
- e.g. the melting of ice at -10 $^{\circ}$ C is nonspontaneous despite ΔS being positive.

• A combination of ΔH and ΔS Gibbs energy

16

Gibbs energy

• Gibbs energy (G) is defined as follows

$$G = H - TS$$

- H is the enthalpy of the system
- S is the entropy of the system
- T is the temperature in Kelvin (0 °C = 273 K)

Josiah Willard Gibbs

• Can't measure absolute values of G, so always talk about the **change** in G for a process, ΔG

$$\Delta G = \Delta H - T \Delta S$$

 When referring to a chemical reaction (rather than a physical change) we use the usual terminology

$$\Delta_{\mathbf{r}}\mathbf{G} = \Delta_{\mathbf{r}}\mathbf{H} - \mathbf{T}\Delta_{\mathbf{r}}\mathbf{S}$$

17

17

* Homework *

Chemistry – the central science 15th Ed

Brown et al.

Problems 19.81, 19.82, 19.87

Answers on Blackboard