Системы типизации лямбда-исчисления

Лекция 3. Редукция

Денис Москвин

06.03.2011

CS Club при ПОМИ РАН

Асимметрия β-конверсии

Мы строили λ-исчисление как теорию о равенстве термов.

Рассмотрим, однако, примеры:

$$\mathbf{K} \mathbf{I} \equiv (\lambda x y. x) (\lambda z. z) = \lambda y z. z$$

$$\mathbf{I} \mathbf{I} \mathbf{K}_{*} \equiv (\lambda x. x) \mathbf{I} \mathbf{K}_{*} = \mathbf{I} \mathbf{K}_{*} \equiv (\lambda x. x) (\lambda y z. z) = \lambda y z. z$$

Видно, что процесс носит односторонний характер: термы при конверсиях «упрощаются». Для исследования подобного вычислительного аспекта вводят понятие *редукции*:

- **К I** \rightarrow_{β} **K** $_*$ редуцируется за один шаг;
- II $\mathbf{K}_* \to_{\beta} \mathbf{K}_*$ редуцируется;
- **К** $\mathbf{I} =_{\beta} \mathbf{I} \mathbf{I} \mathbf{K}_{*}$ конвертируемо (равно).

Редексы

Терм вида $(\lambda_{\mathbf{x}}.M)$ N называется β -**редексом**.

Терм M[x := N] называется его **сокращением**.

Например, терм \mathbf{I} (**К** \mathbf{I}) содержит два редекса

$$(\lambda \mathbf{x}. \mathbf{x}) ((\lambda \mathbf{y} \mathbf{z}. \mathbf{y}) (\lambda \mathbf{p}. \mathbf{p}))$$

 $(\lambda \mathbf{x}. \mathbf{x}) ((\lambda \mathbf{y} \mathbf{z}. \mathbf{y}) (\lambda \mathbf{p}. \mathbf{p}))$

Может ли сокращение увеличить число редексов?

Понятие редукции

1. Бинарное отношение \Re над Λ называют *совместимым* (с операциями λ -исчисления), если

$$M \mathcal{R} N \Rightarrow (ZM) \mathcal{R} (ZN),$$

$$(MZ) \mathcal{R} (NZ),$$

$$(\lambda x. M) \mathcal{R} (\lambda x. N).$$

для любых $M, N, Z \in \Lambda$.

- 2. Совместимое отношение эквивалентности называют отношением **конгруэнтности** над Λ .
- 3. Совместимое, рефлексивное и транзитивное отношение называют отношением **редукции** над Λ .

Редукция за один шаг $ightarrow_{eta}$

Бинарное отношение β -*редукции за один шаг* \to_{β} над Λ :

$$\begin{array}{cccc} (\lambda x.\,M)\,N & \to_{\beta} & M[x:=N] \\ M \to_{\beta} N & \Rightarrow & Z\,M \to_{\beta} Z\,N \\ M \to_{\beta} N & \Rightarrow & M\,Z \to_{\beta} N\,Z \\ M \to_{\beta} N & \Rightarrow & \lambda x.\,M \to_{\beta} \lambda x.\,N \end{array}$$

Примеры:

$$(\lambda x. x) ((\lambda yz. y) (\lambda p. p)) \rightarrow_{\beta} (\lambda yz. y) (\lambda p. p) \rightarrow_{\beta} \lambda zp. p$$
$$(\lambda x. x) ((\lambda yz. y) (\lambda p. p)) \rightarrow_{\beta} (\lambda x. x) (\lambda zp. p) \rightarrow_{\beta} \lambda zp. p$$

По определению \to_{β} является совместимым (с операциями λ -исчисления).

Многошаговая редукция *→*_β

Бинарное отношение β -**редукции** \rightarrow_{β} над Λ определяется индуктивно:

- (a) $M \rightarrow_{\beta} M$
- $(b) \qquad M \to_{\beta} N \ \Rightarrow \ M \twoheadrightarrow_{\beta} N$
- (c) $M \rightarrow_{\beta} N, N \rightarrow_{\beta} L \Rightarrow M \rightarrow_{\beta} L$

Примеры:

$$\begin{array}{lll} (\lambda x.\,x)\,((\lambda\,y\,z.\,y)\,(\lambda\,p.\,p)) & \twoheadrightarrow_{\beta} & (\lambda x.\,x)\,((\lambda\,y\,z.\,y)\,(\lambda\,p.\,p)) \\ (\lambda x.\,x)\,((\lambda\,y\,z.\,y)\,(\lambda\,p.\,p)) & \twoheadrightarrow_{\beta} & (\lambda\,y\,z.\,y)\,(\lambda\,p.\,p) \\ (\lambda x.\,x)\,((\lambda\,y\,z.\,y)\,(\lambda\,p.\,p)) & \twoheadrightarrow_{\beta} & \lambda\,z\,p.\,p \end{array}$$

Отношение \to_{β} является транзитивным рефлексивным замыканием \to_{β} и, следовательно, отношением редукции.

Отношение конвертируемости $=_{\beta} (1)$

Бинарное отношение $=_{\beta}$ над Λ определяются индуктивно:

(a)
$$M \rightarrow_{\beta} N \Rightarrow M =_{\beta} N$$

(b)
$$M =_{\beta} N \Rightarrow N =_{\beta} M$$

(c)
$$M =_{\beta} N, N =_{\beta} L \Rightarrow M =_{\beta} L$$

Отношение $=_{\beta}$ является отношением конгруэнтности.

Утверждение. $M =_{\beta} N \Leftrightarrow \lambda \vdash M = N.$

Доказательство. (\Leftarrow) Индукция по генерации \vdash . (\Rightarrow) По индукции показывается

$$\begin{array}{ccc} M \rightarrow_{\beta} N & \Rightarrow & \lambda \vdash M = N; \\ M \twoheadrightarrow_{\beta} N & \Rightarrow & \lambda \vdash M = N; \\ M =_{\beta} N & \Rightarrow & \lambda \vdash M = N. \end{array}$$

Отношение конвертируемости $=_{\beta}$ (2)

Интуитивно: два терма M N связаны отношением $=_{\beta}$, если есть связывающая их цепочка \to_{β} -стрелок:

Пример. **К** $\mathbf{I} =_{\beta} \mathbf{I} \mathbf{I} \mathbf{K}_*$:

Нормальная форма (1)

- λ -терм M находится в β -нормальной форме (β -nf), если в нем нет подвыражений, являющихся β -редексами.
- λ -терм M имеет β -нормальную форму, если для некоторого N выполняется $M =_{\beta} N$ и N находится в β -nf.

Терм $\lambda x y. y (\lambda z. x)$ находится в β -нормальной форме.

Терм $(\lambda x. xx)$ у не находится в β -нормальной форме, но имеет в качестве β -nf терм у у.

Нормальная форма (2)

Лемма о редукции NF. Пусть M находится в β -нормальной форме. Тогда

$$M \twoheadrightarrow_{\beta} N \Rightarrow N \equiv M.$$

Док-во. Если терм M находится в β -нормальной форме, то он не содержит редексов. Поэтому невозможно $M \to_{\beta} N$. Поэтому, поскольку $M \to_{\beta} N$, это должно иметь место из-за рефлексивности. \blacksquare

Нормальная форма (3)

Не все термы имеют β-нормальную форму:

$$\Omega \equiv \omega \omega
\equiv (\lambda x. x x) (\lambda x. x x)
\rightarrow_{\beta} (\lambda x. x x) (\lambda x. x x)
\rightarrow_{\beta} \dots$$

Это пока не доказательство! Может быть существует терм N в β -nf, такой что $\mathbf{\Omega} =_{\beta} N$, например, так

Нормальная форма (4)

Бывают термы, «удлинняющиеся» при редукции:

$$\Omega_{3} \equiv \omega_{3} \omega_{3}$$

$$\equiv (\lambda x. x x x) (\lambda x. x x x)$$

$$\rightarrow_{\beta} (\lambda x. x x x) (\lambda x. x x x) (\lambda x. x x x)$$

$$\rightarrow_{\beta} (\lambda x. x x x) (\lambda x. x x x) (\lambda x. x x x) (\lambda x. x x x)$$

$$\rightarrow_{\beta} \dots$$

С какой скоростью будет расти $\Omega_{\mathbf{4}} \equiv \omega_4 \, \omega_4$?

Нормальная форма (5)

Не все последовательности редукций приводят β-нормальной форме:

$$egin{array}{lll} m{\mathsf{K}} \, \mathbf{I} \, \Omega & \equiv & \mathbf{K} \, \mathbf{I} \, ((\lambda x.\, x\, x)\, (\lambda x.\, x\, x)) \\ & \rightarrow_{eta} & \mathbf{K} \, \mathbf{I} \, ((\lambda x.\, x\, x)\, (\lambda x.\, x\, x)) \\ & \rightarrow_{eta} & \ldots \\ & \mathbf{K} \, \mathbf{I} \, \Omega & \equiv & (\lambda x\, y.\, x)\, \mathbf{I} \, \Omega \\ & \rightarrow_{eta} & (\lambda y.\, \mathbf{I})\, \Omega \\ & \rightarrow_{eta} & \mathbf{I} \end{array}$$

(синим отмечен сокращаемый редекс)

Редукционные графы (1)

Редукционный граф терма $M \in \Lambda$, обозначаемый $G_{\beta}(M)$, — это ориентированный мультиграф с вершинами в $\left\{ N \,|\, M \to_{\beta} N \right\}$ и дугами \to_{β} .

$$G_{\beta}(\mathbf{I}(\mathbf{I}x)) = \bullet \longrightarrow \bullet \qquad G_{\beta}(\Omega) = \bullet \bullet$$

$$G_{\beta}\left(\left(\lambda x.\,\boldsymbol{I}\right)\boldsymbol{\Omega}\right) \;=\; \stackrel{\boldsymbol{\Omega}}{\bullet} \quad \qquad G_{\beta}\left(\boldsymbol{\mathsf{K}}\,\boldsymbol{I}\,\boldsymbol{\Omega}\right) \;=\; \stackrel{\boldsymbol{\Omega}}{\bullet} \quad \qquad \stackrel{\boldsymbol{\Omega}}{\bullet} \quad \qquad \boldsymbol{\bullet}$$

$$G_{\beta}(\Omega_{3}) = ??? \qquad G_{\beta}((\lambda x. \mathbf{I}) \Omega_{3}) = ???$$

Редукционные графы (2)

$$G_{\beta}(\Omega_3) = \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \cdots$$

Не все редукционные графы конечны.

$$G_{\beta}((\lambda x. \mathbf{I}) \Omega_{3}) = \bullet \bullet \bullet \bullet \bullet \bullet \cdots \cdots$$

Не все бесконечные редукционные графы не имеют нормальной формы.

Теорема Чёрча-Россера

Теорема. [Чёрч-Россер] Если $M woheadrightarrow_{\beta} N$, $M woheadrightarrow_{\beta} K$, то существует L, такой что $N woheadrightarrow_{\beta} L$ и $K woheadrightarrow_{\beta} L$.

Иначе говоря, β-редукция обладает *свойством ромба*:

Иногда используют термин *сходимость*.

Теорема Чёрча-Россера (доказательство)

Лемма полоски (Strip lemma)

А затем из полосок составляем «ромб». [см. LCWT, 2.3]

Лемма полоски (доказательство) (1)

Лемма полоски доказывается через расширенное λ -исчисление $(\underline{\Lambda})$ с дополнительным правилом:

$$M, N \in \underline{\Lambda} \Rightarrow (\underline{\lambda}x. M) N \in \underline{\Lambda}$$

При этом на процесс одношаговой редукции подчёркивание не влияет:

$$\begin{array}{ccc} (\underline{\lambda}x.\,M)\,N & \to_{\underline{\beta}} & M[x:=N] \\ (\lambda x.\,M)\,N & \to_{\underline{\beta}} & M[x:=N] \end{array}$$

Задаются два отображения:

- ▶ $|\cdot|:\underline{\Lambda}\to\Lambda$ стирающее подчёркивание;
- $ightharpoonup \phi: \underline{\Lambda}
 ightarrow \Lambda$ редуцирующее подчёркнутые редексы.

Лемма полоски (доказательство) (2)

Три леммы: задний и нижний прямоугольники и передний треугольник.

Лемма полоски — передний прямоугольник.

Следствия теоремы Чёрча-Россера (1)

Существование общего редукта. Если $M =_{\beta} N$, то существует L, такой что, $M \twoheadrightarrow_{\beta} L$ и $N \twoheadrightarrow_{\beta} L$.

Доказательство. Индукция по генерации $=_{\beta}$.

Случай 1. $M =_{\beta} N$, поскольку $M \twoheadrightarrow_{\beta} N$. Возьмем $L \equiv N$.

Случай 2. $M =_{\beta} N$, поскольку $N =_{\beta} M$. По гипотезе индукции имеется общий β -редукт L_1 для N, M. Возьмем $L \equiv L_1$.

Случай 3. $M =_{\beta} N$, поскольку $M =_{\beta} N'$, $N' =_{\beta} N$. Тогда

Следствия теоремы Чёрча-Россера (2)

Редуцируемость к NF. Если M имеет N в качестве β -nf, то $M woheadrightarrow_{\beta} N$.

Док-во. Пусть $M =_{\beta} N$, причем N находится в β -nf. По Следствию о существовании общего редукта имеем $M \twoheadrightarrow_{\beta} L$ и $N \twoheadrightarrow_{\beta} L$ для некоторого L. Но тогда $N \equiv L$ по Лемме о редукции NF, поэтому $M \twoheadrightarrow_{\beta} N$.

Теперь мы можем доказать отсутствие NF у Ω . Иначе выполнялось бы

 $\Omega \rightarrow_{\beta} N$, N является β -nf.

Но Ω редуцируется лишь к себе и не является β -nf.

Следствия теоремы Чёрча-Россера (3)

Единственность NF. λ -терм имеет не более одной β -nf.

Док-во. Предположим M имеет два β -nf N_1 и N_2 . Тогда $N_1 =_{\beta} N_2 (=_{\beta} M)$. По Следствию о существовании общего редукта $N_1 \twoheadrightarrow_{\beta} L$ и $N_2 \twoheadrightarrow_{\beta} L$ для некоторого L. Но тогда $N_1 \equiv L \equiv N_2$ по Лемме о редукции NF. \blacksquare

Теперь мы можем доказывать «неравенства», например $\lambda \nvdash TRU = FLS$.

Иначе было бы $TRU =_{\beta} FLS$, но это две разные NF, что противоречит единственности.

Стратегии редукции (1)

Как мы можем редуцировать терм?

- ▶ Переменная: v редукция завершена.
- ▶ Абстракция: $\lambda x. M$ редуцируем M.
- ▶ Аппликация: M N. Все варианты отсюда.

Разбираем аппликацию до не-аппликации (обычно влево):

- \blacktriangleright (... ((ν N₁) N₂) ... N_k) редуцируем отдельно все N_i (обычно слева направо).
- ▶ $(...(((\lambda x. M) N_1) N_2) ... N_k)$. Все варианты отсюда.

Нормальная стратегия: сокращаем редекс $(\lambda x. M) N_1$. **Аппликативная стратегия:** редуцируем отдельно все N_i (обычно слева направо) до нормальной формы N_i' , затем сокращаем редекс $(\lambda x. M) N_1'$.

Стратегии редукции (2)

Удобно изображать терм в виде дерева. Например, для $((\lambda x. M) N_1) N_2$ дерево имеет вид:

Вершины @ задают аппликацию, вершины λ — абстракцию.

Вершины @ могут задавать редекс (@) или нет (@). В первом случае при поиске редекса — кандидата на сокращение есть три варианта (нашли, влево, вправо), во втором — два (влево, вправо).

Аппликативная структура терма

Лямбда-терм может иметь одну из двух форм:

$$\lambda \overrightarrow{x}. y \overrightarrow{N} \equiv \lambda x_1 \dots x_n. y N_1 \dots N_k, \quad n \geqslant 0, k \geqslant 0$$
$$\lambda \overrightarrow{x}. (\lambda z. M) \overrightarrow{N} \equiv \lambda x_1 \dots x_n. (\lambda y. M) N_1 \dots N_k, \quad n \geqslant 0, k > 0$$

Первая форма называется головной нормальной формой.

Переменная у называется головной переменной, а редекс $(\lambda z. M) N_1$ — головным редексом.

Операционная семантика нормальной стратегии

Синтаксические категории:

- ► Нормальные формы: NF $::= \lambda x$. NF | NANF.
- \blacktriangleright Нормальные формы не абстракции: NANF $::=v\mid NANF$ NF.
- ▶ Не абстракции: $NA = v \mid MN$.

Операционная семантика нормальной стратегии:

$$rac{NA o NA'}{NA o NA' o NA' o NA' o NA' o NANF o N$$

Нормальная стратегия всегда сокращает самый левый внешний редекс (leftmost outermost)

Операционная семантика аппликативной стратегии

Синтаксические категории:

- ▶ Нормальные формы: NF $::= \lambda x$. NF | NANF.
- \blacktriangleright Нормальные формы не абстракции: NANF $::= v \mid$ NANF NF.
- ▶ Не абстракции: $NA = v \mid MN$.

Операционная семантика аппликативной стратегии:

$$\frac{NA \to NA'}{NA \to NA' N} \ (Aппл1) \qquad \frac{N \to N'}{NANF N \to NANF N'} \ (Aппл2)$$

$$\frac{N \to N'}{(\lambda x. M) N \to (\lambda x. M) N'} \ (Aппл3)$$

$$\frac{M \to M'}{\lambda x. M \to \lambda x. M} \ (Aбстр) \qquad (\lambda x. M) NF \to M[x := NF] \ (Редук)$$

Теорема о нормализации

Теорема о нормализации. [Карри] Если терм М имеет нормальную форму, то последовательное сокращение самого левого внешнего редекса (leftmost outermost redex) приводит к этой нормальной форме.

То есть нормальная стратегия нормализует нормализуемое.

Можем доказывать отсутствие NF. Например, $\mathbf{K} \ \mathbf{\Omega} \ \mathbf{I}$.

Свойства стратегий

Недостаток нормальной стратегии — возможная неэффективность. Пусть N — «большой» терм

$$(\lambda x. Fx (Gx) x) N \rightarrow_{\beta} FN (GN) N$$

В процессе дальнейших редукций редексы в N придётся сокращать три раза. Зато в

$$(\lambda x y. y) N \rightarrow_{\beta} \lambda y. y$$

нормальная стратегия не вычисляет N ни разу.

Аппликативная стратегия в обоих примерах вычислит N один раз.

Стратегии редукции и ЯП

Аппликативная стратегия похожа на стратегию вычислений большинства языков программирования. Сначала вычисляются аргументы, затем происходит применение функции (вызов по значению).

Нормальная стратегия похожа на способ вычисления в «ленивых» языках (Haskell, Clean). Для решения указанных проблем с эффективностью используют механизм «вызова по необходимости».

Y- и **Θ**-комбинаторы

Хотя $\mathbf{Y} F =_{\beta} F(\mathbf{Y} F)$, но неверно ни $\mathbf{Y} F \twoheadrightarrow_{\beta} F(\mathbf{Y} F)$, ни $F(\mathbf{Y} F) \twoheadrightarrow_{\beta} \mathbf{Y} F$:

$$\begin{array}{ll} \mathbf{Y} \, \mathsf{F} & \equiv & (\lambda \mathsf{f}.\, (\lambda \mathsf{x}.\, \mathsf{f}\, (x\, \mathsf{x}))(\lambda \mathsf{x}.\, \mathsf{f}\, (x\, \mathsf{x}))) \, \mathsf{F} \\ \\ \rightarrow_{\beta} & (\lambda \mathsf{x}.\, \mathsf{F}\, (x\, \mathsf{x}))(\lambda \mathsf{x}.\, \mathsf{F}\, (x\, \mathsf{x})) \\ \\ \rightarrow_{\beta} & \mathsf{F}((\lambda \mathsf{x}.\, \mathsf{F}\, (x\, \mathsf{x}))(\lambda \mathsf{x}.\, \mathsf{F}\, (x\, \mathsf{x}))) \, \rightarrow_{\beta} \, \ldots \end{array}$$

Нужным свойством обладает комбинатор неподвижной точки Тьюринга Θ : $A = \lambda x y . y (x x y)$, $\Theta = A A$. Действительно

$$\Theta F \equiv A A F$$

$$\rightarrow_{\beta} (\lambda y. y (A A y)) F$$

$$\rightarrow_{\beta} F(A A F)$$

$$\equiv F(\Theta F)$$

Применение Ө-комбинатора

О-комбинатор позволяет решать рекурсивные редукционные уравнения.

Найти G, такой что $\forall X \ G \ X \twoheadrightarrow X (X \ G)$.

Домашнее задание

Покажите что для любого терма M существует такой N, находящийся в нормальной форме, что $N \mathbf{I} og_{\beta} M$.

Изобразите редукционные графы следующих термов:

```
II(III); WWW, где W \equiv \lambda x y. x y y; (\lambda x. I x x)(\lambda x. I x x).
```

Литература (1)

TAPL гл. 5

Benjamin C. Pierce, Types and Programming Languages, MIT Press, 2002

http://www.cis.upenn.edu/bcpierce/tapl

LCWT гл. 2.3

Henk Barendregt, Lambda calculi with types, Handbook of logic in computer science (vol. 2), Oxford University Press, 1993

Литература (2)

ЛИСС гл. 3, 11-15

Х. Барендрегт, Ламбда-исчисление, его синтаксис и семантика, М:Мир, 1985

I2FP гл. 3

John Harrison, Introduction to Functional Programming http://www.cl.cam.ac.uk/teaching/Lectures/funprog-jrh-1996/русский перевод: http://code.google.com/p/funprog-ru/