

同济大学《深度学习》 课程实验报告

基于 Large Movie Review 数据集的情感分类实验

任课老师: 范睿

班级: 10069801

2023 年 12 月

摘要

本实验旨在使用 Large Movie Review 数据集,通过手动构建几种经典的循环神经网络对电影的评论进行情感分类,将电影评论分为积极和消极两类。同时本实验的训练过程进行了可视化,记录了几种网络训练过程的acc 和 loss; 还在测试集上对于几种模型进行了 Accuracy、Recall、Precision、F1-score 等指标的评估。

关键词:深度学习,神经网络,RNN,LSTM,GRU

目 录

摘要	I
第一章 实验内容简述	1
1.1 问题描述	1
1.2 问题背景	1
1.3 数据集介绍	1
1.4 实验环境	1
第二章 核心算法	3
2.1 数据集的处理	3
2.1.1 构建分词器 :	3
2.1.2 构建词汇表	3
2.2 神经网络的搭建	3
2.2.1 RNN 网络	3
2.2.2 LSTM 网络	4
2.2.3 GRU 网络	4
2.3 优化器	5
2.4 损失函数	5
2.5 超参数的设置	5
第三章 实验结果	7
3.1 训练过程	7
3.2 评估过程	8
第四章 实验总结	9
4.1 实验心得及后续展望	9
参 老 → 献 10	n

第一章 实验内容简述

1.1 问题描述

在自然语言处理领域,情感分类是一个非常重要的研究问题,本实验旨在利用 Large Movie Review 数据集,通过手动构建经典的循环神经网络(RNN)、长短时记忆网络(LSTM)、门控循环单元(GRU)等模型进行情感分类。任务的核心是对电影评论进行分类,判断评论的情感倾向。选择手动搭建模型是为了更深入地理解它们的工作原理,通过实验和比较不同模型在这一任务上的表现,深入研究它们在电影评论情感分类中的性能和效果差异,最终目标是建立一个具有良好泛化能力的模型,能够准确地判断未见过的电影评论的情感倾向。

1.2 问题背景

情感分类问题在自然语言处理领域扮演着重要的角色,情感分析在影视产业、社交媒体分析等领域有着广泛的应用,通过对电影评论进行积极、消极或中性的情感分类,有助于理解用户的意图、进行情感分析,从而提供更智能的用户体验。Large Movie Review 数据集提供了一个丰富的文本资源,其中包含大量的电影评论,并且每个评论都标注了情感倾向。

通过深入挖掘不同循环神经网络模型在这一任务上的表现,可以更好地理解它们对文本情感的建模能力。这有助于进一步改进情感分类模型,提高对用户情感的敏感度,从而更好地服务于各种应用场景。

1.3 数据集介绍

Large Movie Review 数据集,常被称为 IMDb 数据集,是一个用于情感分析的经典文本分类数据集之一。该数据集由斯坦福大学的 Andrew Maas 及其团队于 2011 年创建。^[1] 它包含来自互联网电影数据库 (IMDb) 的 50,000 条电影评论,被分为 25,000 条训练集和 25,000 条测试集,每个集合中均包含正面和负面情感的评论,无论是训练集还是测试集,其中的正/负类(即积极/消极) 样本个数均相同,均为 12500 个。

这个数据集的主要用途是训练和评估自然语言处理 (NLP) 模型, 特别是用于情感分析的模型。由于 IMDb 评论的真实性和多样性, 这个数据集成为评估情感分析算法性能的重要基准之一。

1.4 实验环境

本次实验在本地进行代码的编写与调试,在 autodl 网站中租用 GPU 进行训练,以下为本实验的基本环境:

项目	内容
CPU	12 vCPU Intel(R) Xeon(R) Platinum 8352V CPU @ 2.10GHz
GPU	Nvidia RTX 4090
内存	90GB
OS	Linux (ubuntu20.04)
CUDA	11.3
编程语言	Python 3.8
框架	pytorch 1.10

配置环境过程中出现的问题

在配置实验所需要的库时,发现在用 pip install torchtext 时候,会自动 安装新版本的 pytorch,导致其他的一些包出现版本不匹配的问题,所以正确的做法应该是到 pytorch 官网或者是 Github 寻找对应的版本,在本实验中对应 pytorch 1.10 版本的 torchtext 是 0.11.0。

第二章 核心算法

2.1 数据集的处理

对于 nlp 任务来说,正确地处理数据集是非常重要的步骤,对于本实验来说,主要在于 dataset 和 dataloader 的编写。而在 dataset 部分,关键步骤是分词器和词汇表的构建。

2.1.1 构建分词器

分词是将文本分割为单词或子词的过程,是文本处理的基本步骤。通过分割文本,将连续的序列划分为模型可以理解的单元,如单词或标记。基本分词以空格或标点为基准,而进阶技术如词干提取和词形还原进一步处理单词的不规则形式。分词为文本处理奠定了基础,为后续任务如文本表示、特征提取和深度学习模型训练提供了关键支持。

2.1.2 构建词汇表

构建词汇表则是将数据集中所有唯一单词映射到唯一标识符的过程。这个词汇表为模型提供了对文本数据的数字化表示,为后续的处理和分析尊定基础。

2.2 神经网络的搭建

这部分主要是介绍了本次实验所用到的一些网络,其中包括经典的RNN 网络,LSTM 网络与 GRU 网络共三种网络。

2.2.1 RNN 网络

循环神经网络(Recurrent Neural Network, RNN)是一类具有循环连接结构的神经网络,主要用于处理序列数据和时间序列数据。相较于传统的前馈神经网络,RNN引入了循环连接,允许信息在网络内部持续传递,使其能够捕捉和处理序列中的依赖关系。^[2]

RNN 的核心思想是在网络的隐藏层中引入一个时间维度,使得网络能够接受来自上一时间步的输入信息,并将其作为当前时间步的输入,从而在处理序列数据时具有记忆能力。这种结构使得 RNN 在处理不同长度和变长序列时更加灵活,适用于自然语言处理、语音识别、时间序列分析等领域。

但是传统的 RNN 也存在梯度消失和梯度爆炸等问题,导致难以有效学习长期依赖关系,这在后面的实验结果中也有所体现下面是 RNN 网络的一个基本单元的结构图:

图 2.1: Structure of the RNN network

2.2.2 LSTM 网络

LSTM (长短时记忆网络) 是由德国计算机科学家 Sepp Hochreiter 和 Jürgen Schmidhuber 于 1997 年提出和开发的^[3]。他们的目标是克服传统循环神经网络 (RNN) 在处理长序列数据时容易出现的梯度消失和梯度爆炸的问题。通过引入门控机制和记忆单元的概念,LSTM 成功地解决了这些问题,使得神经网络能够更有效地捕捉和利用长期依赖性,从而在许多序列建模任务中取得显著的成果。

LSTM 网络包含一个记忆单元 (memory cell),该单元负责存储和更新信息。此外,它由三个门 (gates)组成,分别是输入门 (input gate)、遗忘门 (forget gate)和输出门 (output gate)。这些门控制着信息的流动,使得网络能够选择性地记住或遗忘先前的信息,并将当前的输入整合到记忆中。

按照自己的理解,输入门负责控制新的信息的传入,遗忘门决定要从记忆单元中删除哪些信息,而输出门则确定要输出的记忆。这种门的设计允许 LSTM 网络在处理长序列时更好地捕捉到关键的上下文信息,从而提高了其在各种任务,如语音识别、自然语言处理等方面的性能。

下面是 LSTM 网络一个基本单元的结构图:

图 2.2: Structure of the LSTM network

2.2.3 GRU 网络

门控循环单元 (Gated Recurrent Unit, 简称 GRU) 是一种类似于长短时记忆网络 (LSTM) 的循环神经网络 (RNN) 变体,是由 Cho 等人于 2014年提出。^[4]GRU 旨在简化 LSTM 的结构,减少其参数数量,同时保持对长期

依赖性的良好建模能力。

GRU与LSTM相似,也包含一个门控机制,但相较于LSTM的三个门(输入门、遗忘门、输出门),GRU只有两个门,即更新门(update gate)和重置门(reset gate)。这两个门允许网络选择性地更新记忆和重置记忆的部分内容,从而实现对序列信息的灵活捕捉。

更新门决定了当前时刻的记忆状态需要保留多少先前的记忆,而重置门则控制了网络在当前时刻应该考虑多少先前的信息。这使得 GRU 在一定程度上降低了模型的复杂性,减少了参数数量,从而更容易训练,在一些任务上表现非常出色。

下面是 GRU 网络一个基本单元的结构示意图:

图 2.3: Structure of the GRU network

2.3 优化器

优化器的主要任务是通过根据损失函数的梯度信息调整模型参数,实现最小化损失函数的目标。本次实验采用了 SGD 优化器进行模型的训练。SGD (Stochastic Gradient Descent) 是深度学习中基础的优化算法之一。它通过随机选择样本来计算梯度并更新模型参数,逐步优化目标函数。这种简单直接的方法使得 SGD 在训练神经网络时非常高效。通过不断迭代样本和更新参数,SGD 帮助模型逐步学习并提高性能。

2.4 损失函数

在本次实验中,采用的是交叉熵损失函数。

2.5 超参数的设置

在本实验中,训练过程中涉及到的超参数包括训练轮数 eopch, batch-size, 优化器的学习率 learning rate,SGD 优化器中用到的动量 momentum 和 weight decay。对于循环神经网络来说,主要涉及到的超参数有 vocab size, embedding dim 和 hidden dim 等。在本次实验中,选定训练轮数为 50 轮, learning rate 设置为 0.005, 但是后续经过实验发现,这两个参数选用的并

不是很好,对于本次实验来说 50 轮明显偏少,而学习率 0.005 明显比较小,使得除了 LSTM 网络(包括 LSTM 的初期) acc 基本不变化, loss 也不下降,希望在后续重新进行实验,探索合理的轮数和学习率以及其他的一些参数。

第三章 实验结果

3.1 训练过程

本次实验在原有的训练集上以 0.8:0.2 的比例重新划分了训练集和验证集。下面是对于三种网络(RNN 网络,LSTM 网络,GRU 网络)训练集上和验证集上 acc 与 loss 变化情况的记录。

首先是训练集上的变化趋势:

图 3.1: training loss and training accuracy

从两幅图中可以明显看出,当训练轮次(epoch)为50的时候,三种网络在前期表现都比较一般, acc 上升速度很慢或基本不上升, loss 不下降,而当快训练结束时,LSTM 突然发生了 acc 的上升和 loss 的下降,最终在训练集上达到了85的正确率,在验证集上也达到了80的正确率。

图 3.2: val loss and val accuracy

3.2 评估过程

该部分展示了是对三种网(RNN 网络,LSTM 网络,GRU 网络)络在测试集上进行评估,通过 Accuracy、Recall、Precision、F1-score 这四种指标进行测评。这里是通过调用 sklearn.metrics 中内置的函数来计算这几个指标。

指标 网络	Accuracy	Recall	Precision	F1-score
RNN	0.5012	0.5012	0.5036	0.5029
LSTM	0.8043	0.8043	0.8046	0.8044
GRU	0.5058	0.5058	0.5071	0.5074

第四章 实验总结

4.1 实验心得及后续展望

在这个实验中,我尝试了手动搭建了几个经典的循环神经网络模型,包括 RNN 网络、LSTM 网络以及 GRU 网络,并利用这三种网络进行基于电影评论的情感分类实验。

但是本次实验质量比较差,原因主要是没有选择合适的轮数与学习率,没有进行多次对比,导致了 RNN 和 GRU 两种网络 acc 都不高,LSTM 虽然在训练集上达到了 85 的 acc,在验证集和测试集上基本达到了 80 的 acc,但是由训练过程中的 acc 和 loss 变化分析可以说明,如果增加轮数,LSTM 肯定会有更好的表现。

后续希望可以多进行实验,寻找合适的轮数和学习率,以及进行学习率的动态调整等策略;同时除了这三种模型之外,尝试搭建 transformer 和bert 等更为复杂的神经网络,进行更为复杂的 nlp 任务。

参考文献

- [1] A L Maas, R E Daly, P T Pham, et al. Learning Word Vectors for Sentiment Analysis[C/OL]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Portland, Oregon, USA: Association for Computational Linguistics, 2011: 142–150. http://www.aclweb.org/anthology/P11-1015.
- [2] Z C Lipton, J Berkowitz, C Elkan. A critical review of recurrent neural networks for sequence learning[J]. ArXiv preprint arXiv:1506.00019, 2015.
- [3] S Hochreiter, J Schmidhuber. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8): 1735–1780. DOI: 10.1162/neco.1997.9.8.1735.
- [4] J Chung, C Gulcehre, K Cho, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. ArXiv preprint arXiv:1412.3555, 2014.