Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_tehnologic BAREM DE EVALUARE ȘI DE NOTARE

Test 6

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$b_3 = b_1 q^2 \Rightarrow b_1 = \frac{b_3}{q^2} =$	3p
	$=\frac{12}{2^2}=3$	2p
2.	$2x+1 \ge 3 \Leftrightarrow x \ge 1$	3 p
	$x \in [1, +\infty)$	2p
3.	$x+1=11-x \Rightarrow 2x=10$	3p
	x = 5, care convine	2p
4.	$C_{11}^9 = C_{11}^{11-9} = C_{11}^2$	3 p
	$C_{11}^9 - C_{11}^2 = C_{11}^2 - C_{11}^2 = 0$	2p
5.	$AB = 4\sqrt{2} , BC = 4\sqrt{2} , AC = 8$	3 p
	$AC^2 = AB^2 + BC^2$ și, cum $AB = BC$, obținem că $\triangle ABC$ este dreptunghic isoscel	2p
6.	$\sin 135^\circ = \sin \left(180^\circ - 135^\circ\right) = \sin 45^\circ$	2p
	$\frac{\sin 135^{\circ}}{\cos 45^{\circ}} = \frac{\sin 45^{\circ}}{\cos 45^{\circ}} = 1$	3p

(30 de puncte) **SUBIECTUL al II-lea**

1.a)	$\det A = \begin{vmatrix} 3 & 2 \\ -4 & -3 \end{vmatrix} = 3 \cdot (-3) - 2 \cdot (-4) =$	3 p
	=-9+8=-1	2 p
b)	$A \cdot A = \begin{pmatrix} 3 & 2 \\ -4 & -3 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ -4 & -3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	3p
	$A \cdot A \cdot A = A \cdot (A \cdot A) = A \cdot I_2 = A$	2p
c)	Matricea A este inversabilă și, cum $A \cdot A = I_2$, obținem că inversa matricei A este matricea	2p
	A	∠p
	$X = A^{-1} \cdot (I_2 + 3A) \Leftrightarrow X = A \cdot (I_2 + 3A) \Leftrightarrow X = A + 3A \cdot A \Leftrightarrow X = A + 3I_2, \text{ deci } X = \begin{pmatrix} 6 & 2 \\ -4 & 0 \end{pmatrix}$	3 p
2.a)	$2*2020 = 2 \cdot 2020 - 2 \cdot 2 - 2 \cdot 2020 + 6 =$	3 p
	=-4+6=2	2 p
b)	x * y = xy - 2x - 2y + 4 + 2 =	3 p
	= x(y-2)-2(y-2)+2=(x-2)(y-2)+2, pentru orice numere reale x și y	2p
c)	$(m-2)(n-2)+2=13 \Leftrightarrow (m-2)(n-2)=11$	2p
	Cum $m \neq n$ sunt numere naturale, obținem $m = 3$, $n = 13$ sau $m = 13$, $n = 3$	3 p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = 2e^x + 2(x-1)e^x =$	3p
	$=e^{x}(2+2x-2)=2xe^{x}, x \in \mathbb{R}$	2p
b)	$\lim_{x \to 0} \frac{f'(x)}{x} = \lim_{x \to 0} \frac{2xe^x}{x} = \lim_{x \to 0} \left(2e^x\right) =$	3p
	$=2e^{0}=2$	2 p
c)	$f'(x) \le 0$, pentru orice $x \in (-\infty, 0] \Rightarrow f$ este descrescătoare pe $(-\infty, 0]$ și $f'(x) \ge 0$, pentru orice $x \in [0, +\infty) \Rightarrow f$ este crescătoare pe $[0, +\infty)$	2p
	Pentru orice număr real x , $f(x) \ge f(0)$, deci $f(x) \ge -2$, de unde obținem $xe^x - e^x \ge -1$, deci $xe^x \ge e^x - 1$, pentru orice număr real x	3p
2.a)	$\int_{0}^{2} (x+4) f(x) dx = \int_{0}^{2} (x+2) dx = \left(\frac{x^{2}}{2} + 2x\right) \Big _{0}^{2} =$	3p
	$=\frac{4}{2}+4=6$	2 p
b)	$\int_{-2}^{0} f(x) dx = \int_{-2}^{0} \frac{x+2}{x+4} dx = \int_{-2}^{0} \frac{x+4-2}{x+4} dx = \int_{-2}^{0} \left(1 - \frac{2}{x+4}\right) dx = \left(x - 2\ln(x+4)\right) \Big _{-2}^{0} =$	3p
	$= 0 - 2 \ln 4 - (-2) + 2 \ln 2 = 2 - 2 \ln 2$	2p
c)	$\int_{-3}^{a} f'(x) \cdot f''(x) dx = \frac{1}{2} (f'(x))^{2} \Big _{-3}^{a} = \frac{1}{2} (f'(a))^{2} - \frac{1}{2} (f'(-3))^{2}, \text{ pentru orice } a \in (-3, +\infty)$	3p
	$f'(x) = \frac{2}{(x+4)^2}$, deci $\int_{-3}^{a} f'(x) f''(x) dx = 2\left(\frac{1}{(a+4)^4} - 1\right)$, pentru orice $a \in (-3, +\infty)$	2p