Exercise 10.1

For the following molecules, determine the point group and the symmetry of the MOs for the π -electrons, and, using Hückel theory, obtain the MOs and orbital energies:

- (a) trans-1,3-butadiene,
- (b) ethylene,
- (c) cyclobutadiene,
- (d) cyclopentadienyl radical C₅H₅,
- (e) naphthalene,
- (f) phenanthrene.

Solution 10.1

(a) Firstly, it is easy to find that trans-1,3-butadiene belongs to the point group \mathscr{C}_{2h} , whose character table is listed below.

Table 10.1: The character table for the \mathscr{C}_{2h} point group.

$\mathscr{C}_{\mathrm{2h}}$	E	C_2	i	σ_h
$\overline{A_g}$	1	1	1	1
B_g	1	-1	1	-1
A_u	1	1	-1	-1
B_u	1	-1	-1	1

Secondly, we mark all carbon atoms as follows.

Figure 10.1: The label of carbon atoms in trans-1,3-butadiene.

For π -electron atomic orbitals' representation Γ^{AO} , its following characters is listed below.

Table 10.2: The character of the π -electron atomic orbitals' representation Γ^{AO} .

Relevant reduction coefficients are

$$\begin{split} a_g &= \frac{1}{4} \sum_R \chi^{\text{AO}}(R) \chi^{A_g}(R) = \frac{1}{4} \left[1 \times 4 \times 1 + 1 \times 0 \times 1 + 1 \times 0 \times 1 + 1 \times (-4) \times 1 \right] = 0, \\ b_g &= \frac{1}{4} \sum_R \chi^{\text{AO}}(R) \chi^{B_g}(R) = \frac{1}{4} \left[1 \times 4 \times 1 + 1 \times 0 \times (-1) + 1 \times 0 \times 1 + 1 \times (-4) \times (-1) \right] = 2, \\ a_u &= \frac{1}{4} \sum_R \chi^{\text{AO}}(R) \chi^{A_u}(R) = \frac{1}{4} \left[1 \times 4 \times 1 + 1 \times 0 \times 1 + 1 \times 0 \times (-1) + 1 \times (-4) \times (-1) \right] = 2, \\ b_u &= \frac{1}{4} \sum_R \chi^{\text{AO}}(R) \chi^{B_u}(R) = \frac{1}{4} \left[1 \times 4 \times 1 + 1 \times 0 \times (-1) + 1 \times 0 \times (-1) + 1 \times (-4) \times 1 \right] = 0. \end{split}$$

Thus, we arrive at

$$\Gamma^{AO} = 2\Gamma^{B_g} \oplus 2\Gamma^{A_u}$$
.

We conclude that there are two basis functions in the irreducible representation Γ^{B_g} and Γ^{A_u} , respectively. Thus, to describe the effect of O_R , two suitable $2p_z$ atomic orbitals ϕ_i is enough.

Thirdly, we inspect the transformation of ϕ_i under O_R for the *trans*-1,3-butadiene, whose information is recorded below. We only list two ϕ_1 and ϕ_2 , which is enough in current case.

Table 10.3: Transformation of ϕ_i under O_R for the trans-1,3-butadiene.

$\mathscr{C}_{\mathrm{2h}}$	O_E	O_{C_2}	O_i	O_{σ_h}
ϕ_1	ϕ_1	ϕ_4	$-\phi_4$	$-\phi_1$
ϕ_2	ϕ_2	ϕ_3	$-\phi_3$	$-\phi_2$

Fourthly, it's time to discuss situations in different irreducible representation. For the irreducible representation Γ^{B_g} ,

$$P^{B_g}\phi_1 = \sum_R \chi^{B_g}(R)O_R\phi_1 = (O_E - O_{C_2} + O_i - O_{\sigma_h})\phi_1 = 2(\phi_1 - \phi_4),$$

$$P^{B_g}\phi_2 = \sum_R \chi^{B_g}(R)O_R\phi_2 = (O_E - O_{C_2} + O_i - O_{\sigma_h})\phi_2 = 2(\phi_2 - \phi_3).$$

It is easy to find that they are mutually orthogonal. They can be normalized to

$$\phi_1' = \frac{1}{\sqrt{2}}(\phi_1 - \phi_4),$$

$$\phi_2' = \frac{1}{\sqrt{2}}(\phi_2 - \phi_3).$$

Then, the effective Hamitonian matrix elements for π electrons can be calculated,

$$H'_{11} = \int_{\mathbb{R}^3} \frac{1}{\sqrt{2}} (\phi_1 - \phi_4) H^{\text{eff},\pi} \frac{1}{\sqrt{2}} (\phi_1 - \phi_4) = \frac{1}{2} (\alpha + 0 + 0 + \alpha) = \alpha,$$

$$H'_{12} = \int_{\mathbb{R}^3} \frac{1}{\sqrt{2}} (\phi_1 - \phi_4) H^{\text{eff},\pi} \frac{1}{\sqrt{2}} (\phi_2 - \phi_3) = \frac{1}{2} (\beta - 0 - 0 + \beta) = \beta,$$

$$H'_{22} = \int_{\mathbb{R}^3} \frac{1}{\sqrt{2}} (\phi_2 - \phi_3) H^{\text{eff},\pi} \frac{1}{\sqrt{2}} (\phi_2 - \phi_3) = \frac{1}{2} (\alpha - \beta - \beta + \alpha) = \alpha - \beta,$$

viz.

$$H'_{B_g} = \begin{pmatrix} \alpha & \beta \\ \beta & \alpha - \beta \end{pmatrix}.$$

Next,

$$\det(H'_{B_g} - \varepsilon^{\pi} S'_{B_g}) = \begin{vmatrix} \alpha - \varepsilon^{\pi} & \beta \\ \beta & \alpha - \beta - \varepsilon^{\pi} \end{vmatrix} = \beta^2 \begin{vmatrix} x & 1 \\ 1 & x - 1 \end{vmatrix} = \beta^2 (x^x - x - 1) = 0,$$

where

$$x = \frac{\alpha - \varepsilon^{\pi}}{\beta}.$$

Current discriminant is

$$\Delta_{B_a} = (-1)^2 - 4 \times 1 \times (-1) = 5,$$

and then two roots are

$$x_1 = \frac{1+\sqrt{5}}{2}, \quad x_2 = \frac{1-\sqrt{5}}{2},$$

which equal to

$$\varepsilon_1 = \alpha - x_1 \beta = \alpha - \frac{1 + \sqrt{5}}{2} \beta \approx \alpha - 1.618 \beta,$$
 (10.1)

$$\varepsilon_2 = \alpha - x_2 \beta = \alpha - \frac{1 - \sqrt{5}}{2} \beta = \alpha + \frac{\sqrt{5} - 1}{2} \beta \approx \alpha + 0.618 \beta. \tag{10.2}$$

For $H_{B_g}' - \varepsilon_1^\pi S_{B_g}'$, its reduced row echelon form is

$$\begin{pmatrix} 1 & \frac{-1+\sqrt{5}}{2} \\ 0 & 0 \end{pmatrix},$$

which means

$$\Phi_1 = -\frac{\sqrt{5} - 1}{2}\phi_1' + \phi_2'.$$

The sum of squares of coefficients is

$$\sum_{i} c_i^2 = \left(-\frac{\sqrt{5}-1}{2}\right)^2 + 1^2 = \frac{5-\sqrt{5}}{2}.$$

Thus, we know

$$\Phi_1^{\pi} = \sqrt{\frac{2}{5 - \sqrt{5}}} \Phi_1 = -\frac{\sqrt{5} - 1}{2} \phi_1' + \phi_2' = -\sqrt{\frac{\sqrt{5} - 1}{2\sqrt{5}}} \phi_1' + \sqrt{\frac{\sqrt{5} + 1}{2\sqrt{5}}} \phi_2'$$

$$= -\frac{1}{2} \sqrt{\frac{\sqrt{5} - 1}{\sqrt{5}}} \phi_1 + \frac{1}{2} \sqrt{\frac{\sqrt{5} + 1}{\sqrt{5}}} \phi_2 - \frac{1}{2} \sqrt{\frac{\sqrt{5} + 1}{\sqrt{5}}} \phi_3 + \frac{1}{2} \sqrt{\frac{\sqrt{5} - 1}{\sqrt{5}}} \phi_4$$

$$\approx -0.3717 \phi_1 + 0.6015 \phi_2 - 0.6015 \phi_3 + 0.3717 \phi_4. \tag{10.3}$$

Similarly, the reduced row echelon form of $H_{B_g}' - \varepsilon_2^{\pi} S_{B_g}'$ is

$$\begin{pmatrix} 1 & \frac{-1-\sqrt{5}}{2} \\ 0 & 0 \end{pmatrix},$$

which means

$$\Phi_2 = \frac{\sqrt{5} + 1}{2} \phi_1' + \phi_2'.$$

And then,

$$\Phi_2^{\pi} = \sqrt{\frac{2}{5+\sqrt{5}}} \Phi_2 = \frac{\sqrt{5}+1}{2} \phi_1' + \phi_2' = \sqrt{\frac{\sqrt{5}+1}{2\sqrt{5}}} \phi_1' + \sqrt{\frac{\sqrt{5}-1}{2\sqrt{5}}} \phi_2'
= \frac{1}{2} \sqrt{\frac{\sqrt{5}+1}{\sqrt{5}}} \phi_1 + \frac{1}{2} \sqrt{\frac{\sqrt{5}-1}{\sqrt{5}}} \phi_2 - \frac{1}{2} \sqrt{\frac{\sqrt{5}-1}{\sqrt{5}}} \phi_3 - \frac{1}{2} \sqrt{\frac{\sqrt{5}+1}{\sqrt{5}}} \phi_4
\approx 0.6015 \phi_1 + 0.3717 \phi_2 - 0.3717 \phi_3 - 0.6015 \phi_4.$$
(10.4)

In conclusion, for the irreducible representation Γ^{B_g} , relevant results are listed below.

Table 10.4: The Hückel MOs in the irreducible representation Γ^{B_g} of trans-1,3-butadiene.

order	eigenvalue	eigenfunction
1	$\alpha - 1.618\beta$	$-0.3717\phi_1 + 0.6015\phi_2 - 0.6015\phi_3 + 0.3717\phi_4$
2	$\alpha + 0.618\beta$	$0.6015\phi_1 + 0.3717\phi_2 - 0.3717\phi_3 - 0.6015\phi_4$

In the same way, for the irreducible representation Γ^{A_u} ,

$$P^{A_u}\phi_1 = \sum_R \chi^{A_u}(R)O_R\phi_1 = (O_E + O_{C_2} - O_i - O_{\sigma_h})\phi_1 = 2(\phi_1 + \phi_4),$$

$$P^{A_u}\phi_2 = \sum_R \chi^{A_u}(R)O_R\phi_2 = (O_E + O_{C_2} - O_i - O_{\sigma_h})\phi_2 = 2(\phi_2 + \phi_3).$$

It is easy to find that they are mutually orthogonal, too. They can be normalized to

$$\phi_3' = \frac{1}{\sqrt{2}}(\phi_1 + \phi_4),$$

$$\phi_4' = \frac{1}{\sqrt{2}}(\phi_2 + \phi_3).$$

Then, the effective Hamiltonian can be constructed, viz.

$$H'_{A_u} = \begin{pmatrix} \alpha & \beta \\ \beta & \alpha + \beta \end{pmatrix}.$$

Next,

$$\det(H'_{A_u} - \varepsilon^{\pi} S'_{A_u}) = \begin{vmatrix} \alpha - \varepsilon^{\pi} & \beta \\ \beta & \alpha + \beta - \varepsilon^{\pi} \end{vmatrix} = \beta^2 \begin{vmatrix} x & 1 \\ 1 & x + 1 \end{vmatrix} = \beta^2 (x^x + x - 1) = 0.$$

Current discriminant is

$$\Delta_{A_u} = 1^2 - 4 \times 1 \times (-1) = 5,$$

and then two roots are

$$x_3 = \frac{-1 + \sqrt{5}}{2}, \quad x_4 = \frac{-1 - \sqrt{5}}{2},$$

which equal to

$$\varepsilon_3 = \alpha - x_3 \beta = \alpha - \frac{-1 + \sqrt{5}}{2} \beta \approx \alpha - 0.618 \beta, \tag{10.5}$$

$$\varepsilon_4 = \alpha - x_4 \beta = \alpha - \frac{-1 - \sqrt{5}}{2} \beta = \alpha + \frac{\sqrt{5} + 1}{2} \beta \approx \alpha + 1.618 \beta. \tag{10.6}$$

For $H'_{A_u} - \varepsilon_3^\pi S'_{A_u}$, its reduced row echelon form is

$$\begin{pmatrix} 1 & \frac{1+\sqrt{5}}{2} \\ 0 & 0 \end{pmatrix},$$

which means

$$\Phi_3 = -\frac{\sqrt{5}+1}{2}\phi_3' + \phi_4'.$$

Thus,

$$\Phi_3^{\pi} = \sqrt{\frac{2}{5 + \sqrt{5}}} \Phi_3 = -\sqrt{\frac{\sqrt{5} + 1}{2\sqrt{5}}} \phi_3' + \sqrt{\frac{\sqrt{5} - 1}{2\sqrt{5}}} \phi_4'$$

$$= -\frac{1}{2} \sqrt{\frac{\sqrt{5} + 1}{\sqrt{5}}} \phi_1 + \frac{1}{2} \sqrt{\frac{\sqrt{5} - 1}{\sqrt{5}}} \phi_2 + \frac{1}{2} \sqrt{\frac{\sqrt{5} - 1}{\sqrt{5}}} \phi_3 - \frac{1}{2} \sqrt{\frac{\sqrt{5} + 1}{\sqrt{5}}} \phi_4$$

$$\approx -0.6015 \phi_1 + 0.3717 \phi_2 + 0.3717 \phi_3 - 0.6015 \phi_4. \tag{10.7}$$

For $H'_{A_u} - \varepsilon_4^\pi S'_{A_u}$, its reduced row echelon form is

$$\begin{pmatrix} 1 & \frac{1-\sqrt{5}}{2} \\ 0 & 0 \end{pmatrix},$$

which means

$$\Phi_4 = \frac{\sqrt{5} - 1}{2} \phi_3' + \phi_4'.$$

Thus,

$$\Phi_4^{\pi} = \sqrt{\frac{2}{5 - \sqrt{5}}} \Phi_4 = \sqrt{\frac{\sqrt{5} - 1}{2\sqrt{5}}} \phi_3' + \sqrt{\frac{\sqrt{5} + 1}{2\sqrt{5}}} \phi_4'$$

$$= \frac{1}{2} \sqrt{\frac{\sqrt{5} - 1}{\sqrt{5}}} \phi_1 + \frac{1}{2} \sqrt{\frac{\sqrt{5} + 1}{\sqrt{5}}} \phi_2 + \frac{1}{2} \sqrt{\frac{\sqrt{5} + 1}{\sqrt{5}}} \phi_3 + \frac{1}{2} \sqrt{\frac{\sqrt{5} - 1}{\sqrt{5}}} \phi_4$$

$$\approx 0.3717 \phi_1 + 0.6015 \phi_2 + 0.6015 \phi_3 + 0.3717 \phi_4. \tag{10.8}$$

In conclusion, for the irreducible representation Γ^{A_u} , relevant results are listed below.

Table 10.5: The Hückel MOs in the irreducible representation Γ^{A_u} of trans-1,3-butadiene.

order	eigenvalue	eigenfunction
1	$\alpha - 0.618\beta$	$-0.6015\phi_1 + 0.3717\phi_2 + 0.3717\phi_3 - 0.6015\phi_4$
2	$\alpha + 1.618\beta$	$0.3717\phi_1 + 0.6015\phi_2 + 0.6015\phi_3 + 0.3717\phi_4$

Now, we have obtained all results, which are shown as following.

Table 10.6: The Hückel MOs in all irreducible representations of trans-1,3-butadiene.

order	orbital energy	irrep	c_1	c_2	c_3	c_4
1	$\alpha + 1.618\beta$	A_u	0.3717	0.6015	0.6015	0.3717
2	$\alpha + 0.618\beta$	B_q	0.6015	0.3717	-0.3717	-0.6015
3	$\alpha - 0.618\beta$	A_u	0.6015	-0.3717	-0.3717	0.6015
4	$\alpha - 1.618\beta$	B_g	0.3717	-0.6015	0.6015	-0.3717

Besides, their phase diagrams have been painted in Fig 10.2. They obey the rule that the less nodal planes are, the lower orbital energy is.

$$\varepsilon = \alpha + 1.618\beta$$
 $\varepsilon = \alpha + 0.618\beta$ $\varepsilon = \alpha - 0.618\beta$ $\varepsilon = \alpha - 1.618\beta$

Figure 10.2: Phase diagrams of these Hückel MOs of *trans*-1,3-butadiene. Black bubbles mean plus phase while white ones mean minus phase. The color is used just for determining relative phase.

In the end, we conclude that for trans-1,3-butadiene, its ground state π -electron configuration is $(a_u)^2(b_q)^2$ and its delocalization energy is $2 \times (1.618\beta + 0.618\beta) - 4\beta = 0.472\beta$.

\mathscr{D}_2	E	C_{2z}	C_{2y}	C_{2x}
A	1	1	1	1
B_1	1	1	-1	-1
B_2	1	-1	1	-1
B_3	1	-1	-1	1

$$a = \frac{1}{4} \sum_{R} \chi^{AO}(R) \chi^{A}(R) = \frac{1}{4} \left[1 \times 2 \times 1 + 1 \times 0 \times 1 + 1 \times 0 \times 1 + 1 \times (-2) \times 1 \right] = 0,$$

$$b_{1} = \frac{1}{4} \sum_{R} \chi^{AO}(R) \chi^{B_{1}}(R) = \frac{1}{4} \left[1 \times 2 \times 1 + 1 \times 0 \times 1 + 1 \times 0 \times (-1) + 1 \times (-2) \times (-1) \right] = 1,$$

$$b_{2} = \frac{1}{4} \sum_{R} \chi^{AO}(R) \chi^{B_{2}}(R) = \frac{1}{4} \left[1 \times 2 \times 1 + 1 \times 0 \times (-1) + 1 \times 0 \times 1 + 1 \times (-2) \times (-1) \right] = 1,$$

$$b_{3} = \frac{1}{4} \sum_{R} \chi^{AO}(R) \chi^{B_{3}}(R) = \frac{1}{4} \left[1 \times 2 \times 1 + 1 \times 0 \times (-1) + 1 \times 0 \times (-1) + 1 \times (-2) \times 1 \right] = 0.$$

$$P^{B_1}\phi_1 = \sum_R \chi^{B_1}(R)O_R\phi_1 = (O_E + O_{C_{2z}} - O_{C_{2y}} - O_{C_{2x}})\phi_1 = \phi_1 + \phi_2 - (-\phi_2) - (-\phi_1) = 2(\phi_1 + \phi_2).$$

$$\phi_1' = \frac{1}{2}(\phi_1 + \phi_2).$$

$$H^{\mathrm{eff},\pi} = (\alpha + \beta).$$

$$\Psi^p i_1 = \phi_1' = \frac{1}{2} (\phi_1 + \phi_2)$$

$$\approx 0.7071 \phi_1 + 0.7071 \phi_2.$$
(10.9)

$$P^{B_2}\phi_1 = \sum_R \chi^{B_2}(R)O_R\phi_1 = (O_E - O_{C_{2z}} + O_{C_{2y}} - O_{C_{2x}})\phi_1 = \phi_1 - \phi_2 + (-\phi_2) + (-\phi_1) = 2(\phi_1 - \phi_2).$$

$$\phi_2' = \frac{1}{2}(\phi_1 - \phi_2).$$

$$H^{\mathrm{eff},\pi} = (\alpha - \beta).$$

$$\Psi^p i_1 = \phi_1' = \frac{1}{2}(\phi_1 - \phi_2) \tag{10.11}$$

$$\approx 0.7071\phi_1 - 0.7071\phi_2. \tag{10.12}$$

Thus, we obtain all results, which are shown as following.

order	orbital energy	irrep	c_1	c_2
1	$\alpha + \beta$	B_1	0.7071	-0.7071
2	$\alpha - \beta$	B_2	0.7071	-0.7071

$$\varepsilon = \alpha + \beta \qquad \qquad \varepsilon = \alpha - \beta$$

Figure 10.3: Phase diagrams of these Hückel MOs. Black bubbles mean plus phase while white ones mean minus phase. The color is used just for determining relative phase.

(c) This solution is designed for cyclobutadiene anion instead of just cyclobutadiene which is the prototypical antiaromatic hydrocarbon with 4 π electrons. Its rectangular structure is the result of a pseudo-(or second order) Jahn–Teller effect, which distorts the molecule and lowers its symmetry, converting the triplet to a singlet ground state. This distortion indicates that the π electrons are localized, in agreement with Hückel's rule which predicts that a π -system of 4 electrons is not aromatic. This information is excerpted from https://en.wikipedia.org/wiki/Cyclobutadiene.

Firstly, it is easy find that cyclobutadiene anion belongs to the point group \mathcal{D}_{4h} . However, it has only 4 π -electrons. Just \mathcal{D}_4 is good enough and its character table is shown in Table 10.7.

Table 10.7: The character table for the \mathcal{D}_4 point group.

\mathscr{D}_4	E	$2C_4$	C_2	$2C_2'$	$2C_2''$
$\overline{A_1}$	1	1	1	1	1
A_1	1	1	1	-1	-1
B_1	1	-1	1	1	-1
B_2	1	-1	1	-1	1
E	2	0	-2	0	0

Secondly, we mark all carbon atoms as follows.

Figure 10.4: The order of carbon atoms in the cyclobutadiene anion.

For π -electron atomic orbitals' representation Γ^{AO} , its following characters is listed below.

Table 10.8: The character of the π -electron atomic orbitals' representation Γ^{AO} .

\mathscr{D}_4	E	$2C_4$	C_2	$2C_2'$	$2C_2^{\prime\prime}$
$\chi^{AO}(C_i)$	4	0	0	0	-2

Relevant reduction coefficients are

$$a_1 = 0$$
, $a_2 = 1$, $b_1 = 1$, $b_2 = 0$, $e = 1$.

Then, we arrive at

$$\Gamma^{AO} = \Gamma^{A_2} \oplus \Gamma^{B_1} \oplus \Gamma^E$$
.

Thus, to describe the effect of O_R , two suitable $2p_z$ atomic orbitals is enough.

Thirdly, we inspect the transformation of ϕ_i under O_R for the cyclobutadiene anion, whose information is recorded below. We only list two ϕ_1 and ϕ_2 .

Table 10.9: Transformation of ϕ_i under O_R for the cyclobutadiene anion.

\mathscr{D}_4	E	C_4	C_2	C_4^3	$C'_{2,1}$	$C'_{2,2}$	$C_{2,1}''$	$C_{2,2}''$
ϕ_1	ϕ_1	ϕ_2	ϕ_3	ϕ_4	$-\phi_2$	$-\phi_4$	$-\phi_3$	$-\phi_1$
ϕ_2	ϕ_2	ϕ_3	ϕ_4	ϕ_1	$-\phi_1$	$-\phi_3$	$-\phi_2$	$-\phi_4$

For the irreducible representation Γ^{A_2} , the only basis function is

$$P^{A_2}\phi_1 = \sum_{R} \chi^{A_2}(R)O_R\phi_1 = (O_E + O_{C_4} + O_{C_2} + O_{C_4^3} - \sum_{k=1}^2 O_{C_{2,k}'} - \sum_{k=1}^2 O_{C_{2,k}''})\phi_1$$

= $2(\phi_1 + \phi_2 + \phi_3 + \phi_4)$.

It can be normalized to

$$\Phi_1^{\pi} = \frac{1}{2}(\phi_1 + \phi_2 + \phi_3 + \phi_4). \tag{10.13}$$

Then, the effective Hamiltonian for π electrons is

$$H' = (\alpha + 2\beta).$$

In another words, its only eigenvalue is $\alpha + 2\beta$, with eigenfunction Φ_1^{π} .

In conclusion, for the irreducible representation Γ^{A_2} , relevant results are listed below.

Table 10.10: The Hückel MOs in the irreducible representation Γ^{A_2} of cyclobutadiene anion.

order	eigenvalue	eigenfunction
1	$\alpha + 2\beta$	$0.5000\phi_1 + 0.5000\phi_2 + 0.5000\phi_3 + 0.5000\phi_4$

For the irreducible representation Γ^{B_1} , the only basis function is

$$P^{B_1}\phi_1 = \sum_R \chi^{B_1}(R)O_R\phi_1 = 2(\phi_1 - \phi_2 + \phi_3 - \phi_4).$$

It can be normalized to

$$\Phi_2^{\pi} = \frac{1}{2}(\phi_1 - \phi_2 + \phi_3 - \phi_4). \tag{10.14}$$

Then, the effective Hamiltonian for π electrons is

$$H' = (\alpha - 2\beta).$$

In another words, its only eigenvalue is $\alpha - 2\beta$, with eigenfunction Φ_2^{π} .

In conclusion, for the irreducible representation Γ^{B_1} , relevant results are listed below.

Table 10.11: The Hückel MOs in the irreducible representation Γ^{B_1} of cyclobutadiene anion.

order	eigenvalue	eigenfunction
1	$\alpha - 2\beta$	$0.5000\phi_1 - 0.5000\phi_2 + 0.5000\phi_3 - 0.5000\phi_4$

For the irreducible representation Γ^E , the only two basis functions are

$$P^{E}\phi_{1} = \sum_{R} \chi^{E}(R)O_{R}\phi_{1} = 2(\phi_{1} - \phi_{3}),$$

$$P^{E}\phi_{2} = \sum_{R} \chi^{E}(R)O_{R}\phi_{2} = 2(\phi_{2} - \phi_{4}).$$

They can be normalized to

$$\phi_3' = \frac{1}{\sqrt{2}}(\phi_1 - \phi_3),$$

$$\phi_4' = \frac{1}{\sqrt{2}}(\phi_2 - \phi_4).$$

Then, the effective Hamiltonian for π electrons is

$$H' = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix}.$$

It has a two-fold eigenvalue α . Thus, corresponding eigenfunctions can be

$$\Phi_3^{\pi} = \frac{1}{\sqrt{2}}(\phi_1 - \phi_3),\tag{10.15}$$

$$\Phi_4^{\pi} = \frac{1}{\sqrt{2}}(\phi_2 - \phi_4). \tag{10.16}$$

In another words, its only eigenvalue is α , with two eigenfunctions Φ_3^{π} and Φ_4^{π} .

In conclusion, for the irreducible representation Γ^E , relevant results are listed below.

Table 10.12: The Hückel MOs in the irreducible representation Γ^E of cyclobutadiene anion.

order	eigenvalue	eigenfunction
1	α	$0.7071\phi_1 - 0.7071\phi_3$
2	α	$0.7071\phi_2 - 0.7071\phi_4$

Now, we have obtained all results, which are shown as following.

Table 10.13: The Hückel MOs in all irreducible representations of cyclobutadiene anion.

order	orbital energy	irrep	c_1	c_2	c_3	c_4
1	$\alpha + 2.000\beta$	A_2	0.5000	0.5000	0.5000	0.5000
2	α	E	0.7071	0.0000	-0.7071	0.0000
3	α	E	0.0000	0.7071	0.0000	-0.7071
4	$\alpha - 2.000\beta$	B_1	0.5000	-0.5000	0.5000	-0.5000

Besides, their phase diagrams have been painted in Fig 10.5.

Figure 10.5: Phase diagrams of these Hückel MOs of cyclobutadiene anion. Black bubbles mean plus phase while white ones mean minus phase. The color is used just for determining relative phase.

In the end, we conclude that for cyclobutadiene anion, its ground state π -electron configuration is $(a_2)^2(e)^4$ and its delocalization energy is -2.000β , which means that cyclobutadiene anion needs other stable structures to stabilize itself.

(d) Firstly, it is easy find that cyclopentadienyl radical belongs to the point group \mathscr{D}_{5h} . However, it has only 5 π -electrons. Just \mathscr{D}_{5} is good enough and its character table is shown in Table 10.7.

Table 10.14: The character table for the \mathcal{D}_5 point group. Here, $\gamma = \frac{2\pi}{5}$.

\mathcal{D}_5	E	$2C_5$	$2C_5^2$	$5C_2'$
$\overline{A_1}$	1	1	1	1
A_2	1	1	1	-1
E_1	2	$2\cos\gamma$	$2\cos 2\gamma$	0
E_2	2	$2\cos 2\gamma$	$2\cos\gamma$	0

Secondly, we mark all carbon atoms as follows.

Figure 10.6: The order of carbon atoms in cyclopentadienyl radical.

For π -electron atomic orbitals' representation Γ^{AO} , its following characters is listed below.

Table 10.15: The character of the π -electron atomic orbitals' representation Γ^{AO} .

$$\frac{\mathscr{D}_5}{\chi^{\text{AO}}(C_i)} \quad \frac{E}{5} \quad \frac{2C_5}{0} \quad \frac{2C_5^2}{0} \quad \frac{5C_2'}{0}$$

Relevant reduction coefficients are

$$a_1 = 0$$
, $a_2 = 1$, $e_1 = 1$, $e_2 = 1$,

which equal to

$$\Gamma^{\text{AO}} = \Gamma^{A_2} \oplus \Gamma^{E_1} \oplus \Gamma^{E_2}.$$

\mathscr{D}_5	E	C_5^1	C_5^2	C_5^3	C_5^4	$C'_{2,1}$	$C'_{2,2}$	$C'_{2,3}$	$C'_{2,4}$	$C'_{2,5}$
 ϕ_1	ϕ_1	ϕ_2	ϕ_3	ϕ_4	ϕ_5	$-\phi_1$	$-\phi_3$	$-\phi_5$	$-\phi_2$	$-\phi_4$
ϕ_2	ϕ_2	ϕ_3	ϕ_4	ϕ_5	ϕ_1	$-\phi_5$	$-\phi_2$	$-\phi_4$	$-\phi_1$	$-\phi_3$

For the irreducible representation Γ^{A_2} , the only basis function is

$$P^{A_2}\phi_1 = \sum_R \chi^{A_2}(R)O_R\phi_1 = 2(\phi_1 + \phi_2 + \phi_3 + \phi_4 + \phi_5).$$

It can be normalized to

$$\phi_1' = \frac{1}{\sqrt{5}}(\phi_1 + \phi_2 + \phi_3 + \phi_4 + \phi_5). \tag{10.17}$$

Then, the effective Hamiltonian for π electrons is

$$H' = (\alpha + 2\beta).$$

In another words, its only eigenvalue is $\alpha + 2\beta$, with eigenfunction $\Phi_1^{\pi} = \phi_1'$.

In conclusion, for the irreducible representation Γ^{A_2} , relevant results are listed below.

Table 10.16: The Hückel MOs in the irreducible representation Γ^{A_2} of cyclopentadienyl radical.

				_	
order	eigenvalue	eigenfunction			
1	$\alpha + 2\beta$	$0.4472\phi_1 + 0.4472\phi_2 + 0.4472\phi_3 + 0.$	$.4472\phi_4$ -	$+0.4472\phi$	5

For the irreducible representation Γ^{E_1} , the only two basis functions are

$$P^{E_1}\phi_1 = \sum_R \chi^{E_1}(R)O_R\phi_1 = 2\phi_1 + \frac{\sqrt{5}-1}{2}(\phi_2 + \phi_5) - \frac{\sqrt{5}+1}{2}(\phi_3 + \phi_4).$$

$$P^{E_1}\phi_2 = \sum_R \chi^{E_1}(R)O_R\phi_2 = 2\phi_2 + \frac{\sqrt{5}-1}{2}(\phi_1 + \phi_3) - \frac{\sqrt{5}+1}{2}(\phi_4 + \phi_5).$$

They can be normalized to

$$\begin{split} \phi_2' &= \sqrt{\frac{1}{10}} P^{E_1} \phi_1 = \sqrt{\frac{2}{5}} \phi_1 + \frac{\sqrt{5} - 1}{2\sqrt{10}} (\phi_2 + \phi_5) - \frac{\sqrt{5} + 1}{2\sqrt{10}} (\phi_3 + \phi_4) \\ &= \sqrt{\frac{2}{5}} \left[\phi_1 + \phi_2 \cos \gamma + \phi_3 \cos 2\gamma + \phi_4 \cos 2\gamma + \phi_5 \cos \gamma \right], \\ \phi_3' &= \sqrt{\frac{1}{10}} P^{E_1} \phi_2 = \sqrt{\frac{2}{5}} \phi_2 + \frac{\sqrt{5} - 1}{2\sqrt{10}} (\phi_1 + \phi_3) - \frac{\sqrt{5} + 1}{2\sqrt{10}} (\phi_4 + \phi_5) \\ &= \sqrt{\frac{2}{5}} \left[\phi_1 \cos \gamma + \phi_2 + \phi_3 \cos \gamma + \phi_4 \cos 2\gamma + \phi_5 \cos 2\gamma \right]. \end{split}$$

However, they are not mutually orthogonal! We have to orthogonalize ϕ_2' and ϕ_3' ,

$$\phi_2' + \phi_3' = \sqrt{\frac{2}{5}} \left[(\phi_1 + \phi_2)(1 + \cos \gamma) + (\phi_3 + \phi_5)(\cos \gamma + \cos 2\gamma) + 2\phi_4 \cos 2\gamma \right]$$

$$= \sqrt{\frac{2}{5}} \left[\frac{3 + \sqrt{5}}{4} (\phi_1 + \phi_2) - \frac{1}{2} (\phi_3 + \phi_5) - \frac{\sqrt{5} + 1}{2} \Phi_4 \right],$$

$$\phi_2' - \phi_3' = \sqrt{\frac{2}{5}} \left[(\phi_1 - \phi_2)(1 - \cos \gamma) + (\phi_3 - \phi_5)(\cos 2\gamma - \cos \gamma) \right]$$

$$= \sqrt{\frac{2}{5}} \left[\frac{5 - \sqrt{5}}{4} (\phi_1 - \phi_2) - \frac{\sqrt{5}}{2} (\phi_3 - \phi_5) \right].$$

and then normalize them. Their sum of squares of coefficients are

$$\sum_{k=1}^{5} c_{2,k}^2 = \frac{3+\sqrt{5}}{2},$$
$$\sum_{k=1}^{5} c_{3,k}^2 = \frac{5-\sqrt{5}}{2},$$

and then

$$\begin{split} \phi_2'' &= \sqrt{\frac{2}{3+\sqrt{5}}} \left[\phi_2' + \phi_3' \right] = \frac{2}{\sqrt{5(3+\sqrt{5})}} \left[\frac{3+\sqrt{5}}{4} (\phi_1 + \phi_2) - \frac{1}{2} (\phi_3 + \phi_5) - \frac{\sqrt{5}+1}{2} \Phi_4 \right] \\ &= \frac{\sqrt{3+\sqrt{5}}}{2\sqrt{5}} (\phi_1 + \phi_2) - \frac{1}{\sqrt{5(3+\sqrt{5})}} (\phi_3 + \phi_5) - \frac{1+\sqrt{5}}{\sqrt{5(3+\sqrt{5})}} \phi_4 \\ &\approx 0.5117 \phi_1 + 0.5117 \phi_2 - 0.1954 \phi_3 - 0.6325 \phi_4 - 0.1954 \phi_5, \\ \phi_3'' &= \sqrt{\frac{2}{5-\sqrt{5}}} \left[\phi_2' - \phi_3' \right] = \frac{2}{\sqrt{5(5-\sqrt{5})}} \left[\frac{5-\sqrt{5}}{4} (\phi_1 - \phi_2) - \frac{\sqrt{5}}{2} (\phi_3 - \phi_5) \right] \\ &= \frac{\sqrt{5-\sqrt{5}}}{2\sqrt{5}} (\phi_1 - \phi_2) - \frac{1}{\sqrt{5-\sqrt{5}}} (\phi_3 - \phi_5) \\ &\approx 0.3717 \phi_1 - 0.3717 \phi_2 - 0.6015 \phi_3 + 0.6015 \phi_5. \end{split}$$

Then, the effective Hamiltonian for π electrons is

$$H' = \begin{pmatrix} \alpha + \frac{\sqrt{5}-1}{2}\beta & 0 \\ 0 & \alpha + \frac{\sqrt{5}-1}{2}\beta \end{pmatrix} \approx \begin{pmatrix} \alpha + 0.618\beta & 0 \\ 0 & \alpha + 0.618\beta \end{pmatrix},$$

In another words, it has only one two-fold eigenvalue $\alpha + \frac{\sqrt{5}-1}{2}\beta \approx \alpha + 0.618\beta$, with two mutually orthogonal eigenfunctions $\Phi_2^{\pi} = \phi_2''$, $\Phi_3^{\pi} = \phi_3''$.

In conclusion, for the irreducible representation Γ^{E_1} , relevant results are listed below.

Table 10.17: The Hückel MOs in the irreducible representation Γ^{E_1} of cyclopentadienyl radical.

order	eigenvalue	eigenfunction
1	$\alpha + 0.618\beta$	$0.5117\phi_1 + 0.5117\phi_2 - 0.1954\phi_3 - 0.6325\phi_4 - 0.1954\phi_5$
2	$\alpha + 0.618\beta$	$0.3717\phi_1 - 0.3717\phi_2 - 0.6015\phi_3 + 0.0000\phi_4 + 0.6015\phi_5$

For the irreducible representation Γ^{E_2} , the only two basis functions are

$$\begin{split} P^{E_2}\phi_1 &= \sum_R \chi^{E_2}(R) O_R \phi_1 = 2\phi_1 - \frac{\sqrt{5}+1}{2} (\phi_2 + \phi_5) + \frac{\sqrt{5}-1}{2} (\phi_3 + \phi_4). \\ P^{E_2}\phi_2 &= \sum_R \chi^{E_2}(R) O_R \phi_2 = 2\phi_2 - \frac{\sqrt{5}+1}{2} (\phi_1 + \phi_3) + \frac{\sqrt{5}-1}{2} (\phi_4 + \phi_5). \end{split}$$

They can be normalized to

$$\phi_4' = \sqrt{\frac{1}{10}} P^{E_1} \phi_1 = \sqrt{\frac{2}{5}} \phi_1 - \frac{\sqrt{5} + 1}{2\sqrt{10}} (\phi_2 + \phi_5) + \frac{\sqrt{5} - 1}{2\sqrt{10}} (\phi_3 + \phi_4)$$

$$= \sqrt{\frac{2}{5}} \left[\phi_1 + \phi_2 \cos 2\gamma + \phi_3 \cos \gamma + \phi_4 \cos \gamma + \phi_5 \cos 2\gamma \right],$$

$$\phi_5' = \sqrt{\frac{1}{10}} P^{E_1} \phi_2 = \sqrt{\frac{2}{5}} \phi_2 - \frac{\sqrt{5} + 1}{2\sqrt{10}} (\phi_1 + \phi_3) - \frac{\sqrt{5} - 1}{2\sqrt{10}} (\phi_4 + \phi_5)$$

$$= \sqrt{\frac{2}{5}} \left[\phi_1 \cos 2\gamma + \phi_2 + \phi_3 \cos 2\gamma + \phi_4 \cos \gamma + \phi_5 \cos \gamma \right].$$

However, they are not mutually orthogonal! We have to orthogonalize ϕ_4' and ϕ_5' ,

$$\phi_4' + \phi_5' = \sqrt{\frac{2}{5}} \left[(\phi_1 + \phi_2)(1 + \cos 2\gamma) + (\phi_3 + \phi_5)(\cos \gamma + \cos 2\gamma) + 2\phi_4 \cos \gamma \right]$$

$$= \sqrt{\frac{2}{5}} \left[\frac{3 - \sqrt{5}}{4} (\phi_1 + \phi_2) - \frac{1}{2} (\phi_3 + \phi_5) + \frac{\sqrt{5} - 1}{2} \Phi_4 \right],$$

$$\phi_4' - \phi_5' = \sqrt{\frac{2}{5}} \left[(\phi_1 - \phi_2)(1 - \cos 2\gamma) + (\phi_3 - \phi_5)(\cos \gamma - \cos 2\gamma) \right]$$

$$= \sqrt{\frac{2}{5}} \left[\frac{5 + \sqrt{5}}{4} (\phi_1 - \phi_2) + \frac{\sqrt{5}}{2} (\phi_3 - \phi_5) \right].$$

and then normalize them. Their sum of squares of coefficients are

$$\sum_{k=1}^{5} c_{4,k}^2 = \frac{3 - \sqrt{5}}{2},$$
$$\sum_{k=1}^{5} c_{5,k}^2 = \frac{5 + \sqrt{5}}{2},$$

and then

$$\begin{split} \phi_4'' &= \sqrt{\frac{2}{3-\sqrt{5}}} \left[\phi_4' + \phi_5' \right] = \frac{2}{\sqrt{5(3-\sqrt{5})}} \left[\frac{3-\sqrt{5}}{4} (\phi_1 + \phi_2) - \frac{1}{2} (\phi_3 + \phi_5) + \frac{\sqrt{5}-1}{2} \Phi_4 \right] \\ &= \frac{\sqrt{3-\sqrt{5}}}{2\sqrt{5}} (\phi_1 + \phi_2) - \frac{1}{\sqrt{5(3-\sqrt{5})}} (\phi_3 + \phi_5) + \frac{\sqrt{5}-1}{\sqrt{5(3-\sqrt{5})}} \phi_4 \\ &\approx 0.1954 \phi_1 + 0.1954 \phi_2 - 0.5117 \phi_3 + 0.6325 \phi_4 - 0.5117 \phi_5, \\ \phi_5'' &= \sqrt{\frac{2}{5+\sqrt{5}}} \left[\phi_4' - \phi_5' \right] = \frac{2}{\sqrt{5(5+\sqrt{5})}} \left[\frac{5+\sqrt{5}}{4} (\phi_1 - \phi_2) + \frac{\sqrt{5}}{2} (\phi_3 - \phi_5) \right] \end{split}$$

$$= \frac{\sqrt{5+\sqrt{5}}}{2\sqrt{5}}(\phi_1 - \phi_2) + \frac{1}{\sqrt{5+\sqrt{5}}}(\phi_3 - \phi_5)$$

$$\approx 0.6015\phi_1 - 0.6015\phi_2 + 0.3717\phi_3 - 0.3717\phi_5.$$

Then, the effective Hamiltonian for π electrons is

$$H' = \begin{pmatrix} \alpha - \frac{\sqrt{5}+1}{2}\beta & 0\\ 0 & \alpha - \frac{\sqrt{5}+1}{2}\beta \end{pmatrix} \approx \begin{pmatrix} \alpha - 1.618\beta & 0\\ 0 & \alpha - 1.618\beta \end{pmatrix},$$

In another words, it has only one two-fold eigenvalue $\alpha + \frac{\sqrt{5}-1}{2}\beta \approx \alpha - 1.618\beta$, with two mutually orthogonal eigenfunctions $\Phi_4^{\pi} = \phi_4''$, $\Phi_5^{\pi} = \phi_5''$.

In conclusion, for the irreducible representation Γ^{E_2} , relevant results are listed below.

Table 10.18: The Hückel MOs in the irreducible representation Γ^{E_2} of cyclopentadienyl radical.

order	eigenvalue	eigenfunction
1	$\alpha - 1.618\beta$	$0.1954\phi_1 + 0.1954\phi_2 - 0.5117\phi_3 + 0.6325\phi_4 - 0.5117\phi_5$
2	$\alpha - 1.618\beta$	$0.6015\phi_1 - 0.6015\phi_2 + 0.3717\phi_3 + 0.0000\phi_4 - 0.3717\phi_5$

Now, we have obtained all results, which are shown as following.

Table 10.19: The Hückel MOs in all irreducible representations of cyclopentadienyl radical.

order	orbital energy	irrep	c_1	c_2	c_3	c_4	c_5
1	$\alpha + 2.000\beta$	A_2	0.4472	0.4472	0.4472	0.4472	0.4472
2	$\alpha + 0.618\beta$	E_1	0.5117	0.5117	-0.1954	-0.6325	-0.1954
3	$\alpha + 0.618\beta$	E_1	0.3717	-0.3717	-0.6015	0.0000	0.6015
4	$\alpha - 1.618\beta$	E_2	0.1954	0.1954	-0.5117	0.6325	-0.5117
5	$\alpha - 1.618\beta$	E_2	0.6015	-0.6015	0.3717	0.0000	-0.3717

Besides, their phase diagrams have been painted in Fig 10.7.

Figure 10.7: Phase diagrams of these Hückel MOs of cyclopentadienyl radical. Black bubbles mean plus phase while white ones mean minus phase. The color is used just for determining relative phase.

In the end, we conclude that for cyclopentadienyl radical, its ground state π -electron configuration is $(a_2)^2(e_1)^3$ and its delocalization energy is $2\times 2.000\beta + 3\times 0.618\beta - 5\times 1.000\beta = 0.854\beta$, much larger than trans-1,3-butadiene (0.472β) but also much smaller than benzene (2.000β) .

(e) Firstly, it is easy find that naphthalene belongs to the point group \mathcal{D}_{2h} , whose character table is shown in Table 10.20.

Table 10.20: The character table for the \mathcal{D}_{2h} point group.

								_
$\overline{\mathscr{D}_{2\mathrm{h}}}$	E	C_{2z}	C_{2y}	C_{2x}	i	σ_{xy}	σ_{xz}	σ_{yz}
$\overline{A_g}$	1	1	1	1	1	1	1	1
B_{1g}	1	1	-1	-1	1	1	-1	-1
B_{2g}	1	-1	1	-1	1	-1	1	-1
B_{3g}	1	-1	-1	1	1	-1	-1	1
A_u	1	1	1	1	-1	-1	-1	-1
B_{1u}	1	1	-1	-1	-1	-1	1	1
B_{2u}	1	-1	1	-1	-1	1	-1	1
B_{3u}	1	-1	-1	1	-1	1	1	-1

Secondly, we mark all carbon atoms as follows.

Figure 10.8: The order of carbon atoms in naphthalene.

For π -electron atomic orbitals' representation Γ^{AO} , its following characters is listed below.

Table 10.21: The character of the π -electron atomic orbitals' representation Γ^{AO} .

Relevant reduction coefficients are

$$a_q = 0$$
, $b_{1q} = 0$, $b_{2q} = 2$, $b_{3q} = 3$, $a_u = 2$, $b_{1u} = 3$, $b_{2u} = 0$, $b_{3u} = 0$.

Thus, we arrive at

$$\Gamma^{\text{AO}} = 2\Gamma^{B_{2g}} \oplus 3\Gamma^{B_{3g}} \oplus 2\Gamma^{A_u} \oplus 3\Gamma^{B_{1u}}.$$

We conclude that there are three basis functions in the irreducible representation $\Gamma^{B_{3g}}$ and $\Gamma^{B_{1u}}$, respectively. Thus, to describe the effect of O_R , three suitable $2p_z$ atomic orbitals ϕ_i is enough.

Table 10.22: Transformation of ϕ_i under O_R for the naphthalene.

\mathscr{D}_5	E	C_{2z}	C_{2y}	C_{2x}	i	σ_{xy}	σ_{xz}	σ_{yz}
ϕ_1	ϕ_1	ϕ_6	$-\phi_9$	$-\phi_4$	$-\phi_6$	$-\phi_1$	ϕ_4	ϕ_9
ϕ_2	ϕ_2	ϕ_7	$-\phi_8$	$-\phi_3$	$-\phi_7$	$-\phi_2$	ϕ_3	ϕ_8
ϕ_5	ϕ_5	ϕ_{10}	$-\phi_5$	$-\phi_{10}$	$-\phi_{10}$	$-\phi_5$	ϕ_{10}	ϕ_5

For the irreducible representation $\Gamma^{B_{2g}}$, the only two basis functions are

$$P^{B_{2g}}\phi_1 = \sum_R \chi^{B_{2g}}(R)O_R\phi_1 = 2(\phi_1 + \phi_4 - \phi_6 - \phi_9),$$

$$P^{B_{2g}}\phi_2 = \sum_R \chi^{B_{2g}}(R)O_R\phi_2 = 2(\phi_2 + \phi_3 - \phi_7 - \phi_8).$$

They can be normalized to

$$\phi_1' = \frac{1}{2}(\phi_1 + \phi_4 - \phi_6 - \phi_9),$$

$$\phi_2' = \frac{1}{2}(\phi_2 + \phi_3 - \phi_7 - \phi_8).$$

Besides, it is easy to find that they are mutually orthogonal.

Then, the effective Hamiltonian for π electrons is

$$H'_{B_{2g}} = \begin{pmatrix} \alpha & \beta \\ \beta & \alpha + \beta \end{pmatrix}.$$

Its eigen equation is

$$\det(H'_{B_{2a}} - \varepsilon^{\pi} S'_{B_{2a}}) = \beta^2 (x^2 + x - 1) = 0.$$
(10.18)

There are two roots,

$$x_1 = \frac{-1 + \sqrt{5}}{2}, \quad x_2 = \frac{-1 - \sqrt{5}}{2},$$
 (10.19)

which equal to

$$\varepsilon_1^{\pi} = \alpha - \frac{\sqrt{5} - 1}{2}\beta,\tag{10.20}$$

$$\varepsilon_2^{\pi} = \alpha + \frac{\sqrt{5} + 1}{2}\beta. \tag{10.21}$$

For $H'_{B_{2g}} - \varepsilon_1^{\pi} S'_{B_{2g}}$, its reduced row echelon form is

$$\begin{pmatrix} 1 & \frac{1+\sqrt{5}}{2} \\ 0 & 0 \end{pmatrix},$$

which means

$$\Phi_1 = \frac{\sqrt{5} + 1}{2} \phi_1' - \phi_2'.$$

The sum of squares of coefficients is

$$\sum_{i} c_i^2 = \frac{5 + \sqrt{5}}{2},$$

Thus, we know

$$\begin{split} \Phi_1^\pi &= \sqrt{\frac{2}{5+\sqrt{5}}} \Phi_1 = \sqrt{\frac{2}{5+\sqrt{5}}} \left[\frac{\sqrt{5}+1}{2} \phi_1' - \phi_2' \right] = \sqrt{\frac{\sqrt{5}+1}{2\sqrt{5}}} \phi_1' - \sqrt{\frac{\sqrt{5}-1}{2\sqrt{5}}} \phi_2' \\ &= \frac{1}{2} \sqrt{\frac{\sqrt{5}+1}{2\sqrt{5}}} (\phi_1 + \phi_4 - \phi_6 - \phi_9) - \frac{1}{2} \sqrt{\frac{\sqrt{5}-1}{2\sqrt{5}}} (\phi_2 + \phi_3 - \phi_7 - \phi_8) \\ &\approx 0.4253 \phi_1 - 0.2629 \phi_2 - 0.2629 \phi_3 + 0.4253 \phi_4 - 0.4253 \phi_6 + 0.2629 \phi_7 + 0.2629 \phi_8 - 0.4253 \phi_9. \end{split}$$

Similarly, the reduced row echelon form of $H'_{B_{2g}} - \varepsilon_2^{\pi} S'_{B_{2g}}$ is

$$\begin{pmatrix} 1 & \frac{1-\sqrt{5}}{2} \\ 0 & 0 \end{pmatrix},$$

which means

$$\Phi_2 = \frac{\sqrt{5} - 1}{2} \phi_1' + \phi_2'.$$

And then,

$$\begin{split} \Phi_2^\pi &= \sqrt{\frac{2}{5-\sqrt{5}}} \Phi_2 = \sqrt{\frac{\sqrt{5}-1}{2\sqrt{5}}} \phi_1' + \sqrt{\frac{\sqrt{5}+1}{2\sqrt{5}}} \phi_2' \\ &= \frac{1}{2} \sqrt{\frac{\sqrt{5}+1}{2\sqrt{5}}} (\phi_1 + \phi_4 - \phi_6 - \phi_9) + \frac{1}{2} \sqrt{\frac{\sqrt{5}-1}{2\sqrt{5}}} (\phi_2 + \phi_3 - \phi_7 - \phi_8) \\ &\approx 0.2629 \phi_1 + 0.4253 \phi_2 + 0.4253 \phi_3 + 0.2629 \phi_4 - 0.2629 \phi_6 - 0.4253 \phi_7 - 0.4253 \phi_8 - 0.2629 \phi_9. \end{split}$$

$$(10.23)$$

In conclusion, for the irreducible representation $\Gamma^{B_{2g}}$, relevant results are listed below.

Table 10.23: The Hückel MOs in the irreducible representation $\Gamma^{B_{2g}}$ of naphthalene.

order	eigenvalue	eigenfunction						
		c_1	c_2	c_3	c_4	c_5		
1	$\alpha - 0.618\beta$	0.4253	- 0.2629	- 0.2629	0.4253	0.0000		
1	$\alpha = 0.016\beta$	c_6	c_7	c_8	c_9	c_{10}		
		- 0.4253	0.2629	0.2629	- 0.4253	0.0000		
		c_1	c_2	c_3	c_4	c_5		
2	$\alpha + 1.618\beta$	0.2629	0.4253	0.4253	0.2629	0.0000		
2	$\alpha + 1.016\beta$	c_6	c_7	c_8	c_9	c_{10}		
		- 0.2629	-0.4253	- 0.4253	-0.2629	0.0000		

For the irreducible representation $\Gamma^{B_{3g}}$, the only three basis functions are

$$P^{B_{3g}}\phi_1 = \sum_R \chi^{B_{3g}}(R)O_R\phi_1 = 2(\phi_1 - \phi_4 - \phi_6 + \phi_9),$$

$$P^{B_{3g}}\phi_2 = \sum_R \chi^{B_{3g}}(R)O_R\phi_2 = 2(\phi_2 - \phi_3 - \phi_7 + \phi_8),$$

$$P^{B_{3g}}\phi_5 = \sum_R \chi^{B_{3g}}(R)O_R\phi_5 = 4(\phi_5 - \phi_{10}).$$

They can be normalized to

$$\phi_3' = \frac{1}{2}(\phi_1 - \phi_4 - \phi_6 + \phi_9),$$

$$\phi_4' = \frac{1}{2}(\phi_2 - \phi_3 - \phi_7 + \phi_8),$$

$$\phi_5' = \frac{1}{\sqrt{2}}(\phi_5 - \phi_{10}).$$

Besides, it is easy to find that they are mutually orthogonal.

Then, the effective Hamiltonian for π electrons is

$$H'_{B_{3g}} = \begin{pmatrix} \alpha & \beta & -\sqrt{2}\beta \\ \beta & \alpha - \beta & 0 \\ -\sqrt{2}\beta & 0 & \alpha - \beta \end{pmatrix}.$$

Its eigen equation is

$$\det(H'_{B_{2g}} - \varepsilon^{\pi} S'_{B_{2g}}) = \beta^{3}(x-1)(x^{2} - x - 3) = 0.$$

There are three roots,

$$x_3 = 1$$
, $x_4 = \frac{1 + \sqrt{13}}{2}$, $x_2 = \frac{1 - \sqrt{13}}{2}$,

which equal to

$$\varepsilon_3^{\pi} = \alpha - \beta, \tag{10.24}$$

$$\varepsilon_4^{\pi} = \alpha - \frac{1 + \sqrt{13}}{2}\beta \approx \alpha - 2.303\beta,\tag{10.25}$$

$$\varepsilon_5^{\pi} = \alpha + \frac{\sqrt{13} - 1}{2}\beta \approx \alpha + 1.303\beta. \tag{10.26}$$

For $H'_{B_{3g}} - \varepsilon_3^\pi S'_{B_{3g}}$, its reduced row echelon form is

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -\sqrt{2} \\ 0 & 0 & 0 \end{pmatrix},$$

which means

$$\Phi_3 = \sqrt{2}\phi_4' + \phi_5'.$$

The sum of squares of coefficients is

$$\sum_{i} c_{3,i}^2 = 3,$$

Thus, we know

$$\Phi_3^{\pi} = \sqrt{\frac{2}{3}}\phi_4' + \sqrt{\frac{1}{3}}\phi_5'
= \sqrt{\frac{1}{6}}(\phi_2 - \phi_3 + \phi_5 - \phi_7 + \phi_8 - \phi_{10})
\approx 0.4082\phi_2 - 0.4082\phi_3 + 0.4082\phi_5 - 0.4082\phi_7 + 0.4082\phi_8 - 0.4082\phi_{10}.$$
(10.27)

Similarly, the reduced row echelon form of $H'_{B_{3q}} - \varepsilon_4^{\pi} S'_{B_{3q}}$ is

$$\begin{pmatrix} 1 & 0 & -\frac{\sqrt{13}-1}{2\sqrt{2}} \\ 0 & 1 & \frac{1}{\sqrt{2}} \\ 0 & 0 & 0 \end{pmatrix},$$

which means

$$\Phi_4 = \frac{\sqrt{13} - 1}{2\sqrt{2}}\phi_3' - \frac{1}{\sqrt{2}}\phi_4' + \phi_5'.$$

The sum of squares of coefficients is

$$\sum_{\cdot} c_{4,i}^2 = \frac{13 - \sqrt{13}}{4}.$$

And then,

$$\begin{split} \Phi_4^\pi &= \frac{2}{\sqrt{13 - \sqrt{13}}} \Phi_4 = \sqrt{\frac{\sqrt{13} - 1}{2\sqrt{13}}} \phi_3' - \sqrt{\frac{\sqrt{13} + 1}{6\sqrt{13}}} \phi_4' + \sqrt{\frac{\sqrt{13} + 1}{3\sqrt{13}}} \phi_5' \\ &= \frac{1}{2} \sqrt{\frac{\sqrt{13} - 1}{2\sqrt{13}}} (\phi_1 - \phi_4 - \phi_6 + \phi_9) - \frac{1}{2} \sqrt{\frac{\sqrt{13} + 1}{6\sqrt{13}}} (\phi_2 - \phi_3 - \phi_7 + \phi_8) + \sqrt{\frac{\sqrt{13} + 1}{6\sqrt{13}}} (\phi_5 - \phi_{10}) \\ &\approx 0.3006 \phi_1 - 0.2307 \phi_2 + 0.2307 \phi_3 - 0.3006 \phi_4 + 0.4614 \phi_5 \\ &\quad - 0.3006 \phi_6 + 0.2307 \phi_7 - 0.2307 \phi_8 + 0.3006 \phi_9 - 0.4614 \phi_{10}. \end{split}$$
(10.28)

Similarly, the reduced row echelon form of $H'_{B_{3q}} - \varepsilon_5^{\pi} S'_{B_{3q}}$ is

$$\begin{pmatrix} 1 & 0 & \frac{1+\sqrt{13}}{2\sqrt{2}} \\ 0 & 1 & \frac{1}{\sqrt{2}} \\ 0 & 0 & 0 \end{pmatrix},$$

which means

$$\Phi_5 = \frac{\sqrt{13} + 1}{2\sqrt{2}}\phi_3' + \frac{1}{\sqrt{2}}\phi_4' - \phi_5'.$$

The sum of squares of coefficients is

$$\sum_{i} c_{5,i}^2 = \frac{13 + \sqrt{13}}{4}.$$

And then,

$$\Phi_5^{\pi} = \frac{2}{\sqrt{13 + \sqrt{13}}} \Phi_5 = \sqrt{\frac{\sqrt{13} + 1}{2\sqrt{13}}} \phi_3' + \sqrt{\frac{\sqrt{13} - 1}{6\sqrt{13}}} \phi_4' - \sqrt{\frac{\sqrt{13} - 1}{3\sqrt{13}}} \phi_5'$$

$$= \frac{1}{2} \sqrt{\frac{\sqrt{13} + 1}{2\sqrt{13}}} (\phi_1 - \phi_4 - \phi_6 + \phi_9) + \frac{1}{2} \sqrt{\frac{\sqrt{13} - 1}{6\sqrt{13}}} (\phi_2 - \phi_3 - \phi_7 + \phi_8) - \sqrt{\frac{\sqrt{13} - 1}{6\sqrt{13}}} (\phi_5 - \phi_{10})$$

$$\approx 0.3996 \phi_1 + 0.1735 \phi_2 - 0.1735 \phi_3 - 0.3996 \phi_4 - 0.3470 \phi_5$$

$$- 0.3996 \phi_6 - 0.1735 \phi_7 + 0.1735 \phi_8 + 0.3996 \phi_9 + 0.3470 \phi_{10}.$$
(10.29)

In conclusion, for the irreducible representation $\Gamma^{B_{3g}}$, relevant results are listed below.

Table 10.24: The Hückel MOs in the irreducible representation $\Gamma^{B_{3g}}$ of naphthalene.

order	eigenvalue		e	igenfunctio	n	
		c_1	c_2	c_3	c_4	c_5
1	$\alpha - \beta$	0.0000	0.4082	- 0.4082	0.0000	0.4082
1	$\alpha - \beta$	$\overline{c_6}$	c_7	c_8	c_9	c_{10}
		0.0000	-0.4082	0.4082	0.0000	- 0.4082
		c_1	c_2	c_3	c_4	c_5
2	$\alpha - 2.303\beta$	0.3006	-0.2307	0.2307	-0.3006	0.4614
2	$\alpha = 2.505 \beta$	c_6	c_7	c_8	c_9	c_{10}
		- 0.3006	0.2307	- 0.2307	0.3006	-0.4614
		c_1	c_2	c_3	c_4	c_5
3	$\alpha + 1.303\beta$	0.3996	0.1735	-0.1735	-0.3996	-0.3470
3	$\alpha + 1.505 \beta$	c_6	c_7	c_8	c_9	c_{10}
		- 0.3996	-0.1735	0.1735	0.3996	0.3470

For the irreducible representation Γ^{A_u} , the only two basis functions are

$$P^{A_u}\phi_1 = \sum_R \chi^{A_u}(R)O_R\phi_1 = 2(\phi_1 - \phi_4 + \phi_6 - \phi_9),$$

$$P^{A_u}\phi_2 = \sum_R \chi^{A_u}(R)O_R\phi_2 = 2(\phi_2 - \phi_3 + \phi_7 - \phi_8).$$

They can be normalized to

$$\phi_6' = \frac{1}{2}(\phi_1 - \phi_4 + \phi_6 - \phi_9),$$

$$\phi_7' = \frac{1}{2}(\phi_2 - \phi_3 + \phi_7 - \phi_8).$$

Besides, it is easy to find that they are mutually orthogonal.

Then, the effective Hamiltonian for π electrons is

$$H'_{B_{2g}} = \begin{pmatrix} \alpha & \beta \\ \beta & \alpha - \beta \end{pmatrix}.$$

Its eigen equation is

$$\det(H'_{A_u} - \varepsilon^{\pi} S'_{A_u}) = \beta^2 (x^2 - x - 1) = 0.$$
(10.30)

There are two roots,

$$x_6 = \frac{1+\sqrt{5}}{2}, \quad x_7 = \frac{1-\sqrt{5}}{2},$$
 (10.31)

which equal to

$$\varepsilon_6^{\pi} = \alpha - \frac{\sqrt{5} + 1}{2} \beta \approx \alpha - 1.618\beta, \tag{10.32}$$

$$\varepsilon_7^{\pi} = \alpha + \frac{\sqrt{5} - 1}{2}\beta \approx \alpha + 0.618\beta. \tag{10.33}$$

For $H_{A_u}' - \varepsilon_6^\pi S_{A_u}',$ its reduced row echelon form is

$$\begin{pmatrix} 1 & \frac{-1+\sqrt{5}}{2} \\ 0 & 0 \end{pmatrix},$$

which means

$$\Phi_6 = \frac{\sqrt{5} - 1}{2} \phi_6' - \phi_7'.$$

The sum of squares of coefficients is

$$\sum_{i} c_{6,i}^2 = \frac{5 - \sqrt{5}}{2},$$

Thus, we know

$$\begin{split} \Phi_6^\pi &= \sqrt{\frac{2}{5-\sqrt{5}}} \Phi_6 = \sqrt{\frac{2}{5-\sqrt{5}}} \left[\frac{\sqrt{5}-1}{2} \phi_6' - \phi_7' \right] = \sqrt{\frac{\sqrt{5}-1}{2\sqrt{5}}} \phi_6' - \sqrt{\frac{\sqrt{5}+1}{2\sqrt{5}}} \phi_7' \\ &= \frac{1}{2} \sqrt{\frac{\sqrt{5}-1}{2\sqrt{5}}} (\phi_1 - \phi_4 + \phi_6 - \phi_9) - \frac{1}{2} \sqrt{\frac{\sqrt{5}+1}{2\sqrt{5}}} (\phi_2 - \phi_3 + \phi_7 - \phi_8) \\ &\approx 0.2629 \phi_1 - 0.4253 \phi_2 + 0.4253 \phi_3 - 0.2629 \phi_4 + 0.2629 \phi_6 - 0.4253 \phi_7 + 0.4253 \phi_8 - 0.2629 \phi_9. \end{split}$$

Similarly, the reduced row echelon form of $H'_{A_u} - \varepsilon_7^{\pi} S'_{A_u}$ is

$$\begin{pmatrix} 1 & -\frac{1+\sqrt{5}}{2} \\ 0 & 0 \end{pmatrix},$$

which means

$$\Phi_7 = \frac{\sqrt{5} + 1}{2} \phi_6' + \phi_7'.$$

And then,

$$\begin{split} \Phi_7^\pi &= \sqrt{\frac{2}{5+\sqrt{5}}} \Phi_7 = \sqrt{\frac{\sqrt{5}+1}{2\sqrt{5}}} \phi_6' + \sqrt{\frac{\sqrt{5}-1}{2\sqrt{5}}} \phi_7' \\ &= \frac{1}{2} \sqrt{\frac{\sqrt{5}+1}{2\sqrt{5}}} (\phi_1 - \phi_4 + \phi_6 - \phi_9) + \frac{1}{2} \sqrt{\frac{\sqrt{5}-1}{2\sqrt{5}}} (\phi_2 - \phi_3 + \phi_7 - \phi_8) \\ &\approx 0.4253 \phi_1 + 0.2629 \phi_2 - 0.2629 \phi_3 - 0.4253 \phi_4 + 0.4253 \phi_6 + 0.2629 \phi_7 - 0.2629 \phi_8 - 0.4253 \phi_9. \end{split}$$

$$(10.35)$$

In conclusion, for the irreducible representation Γ^{A_u} , relevant results are listed below.

Table 10.25: The Hückel MOs in the irreducible representation Γ^{A_u} of naphthalene.

order	eigenvalue		ei	genfunction	on	
		c_1	c_2	c_3	c_4	c_5
1	$\alpha - 1.618\beta$	0.2629	- 0.4253	0.4253	-0.2629	0.0000
1	$\alpha = 1.016\beta$	c_6	c_7	c_8	c_9	c_{10}
		0.2629	-0.4253	0.4253	- 0.2629	0.0000
	$\alpha + 0.618\beta$	c_1	c_2	c_3	c_4	c_5
2		0.4253	0.2629	-0.2629	-0.4253	0.0000
Z		c_6	c_7	c_8	c_9	c_{10}
		0.4253	0.2629	-0.2629	-0.4253	0.0000

For the irreducible representation $\Gamma^{B_{1u}}$, the only three basis functions are

$$P^{B_{1u}}\phi_1 = \sum_R \chi^{B_{1u}}(R)O_R\phi_1 = 2(\phi_1 + \phi_4 + \phi_6 + \phi_9),$$

$$P^{B_{1u}}\phi_2 = \sum_R \chi^{B_{1u}}(R)O_R\phi_2 = 2(\phi_2 + \phi_3 + \phi_7 + \phi_8),$$

$$P^{B_{1u}}\phi_5 = \sum_R \chi^{B_{1u}}(R)O_R\phi_5 = 4(\phi_5 + \phi_{10}).$$

They can be normalized to

$$\phi_8' = \frac{1}{2}(\phi_1 + \phi_4 + \phi_6 + \phi_9),$$

$$\phi_9' = \frac{1}{2}(\phi_2 + \phi_3 + \phi_7 + \phi_8),$$

$$\phi_{10}' = \frac{1}{\sqrt{2}}(\phi_5 + \phi_{10}).$$

Besides, it is easy to find that they are mutually orthogonal.

Then, the effective Hamiltonian for π electrons is

$$H'_{B_{1u}} = \begin{pmatrix} \alpha & \beta & \sqrt{2}\beta \\ \beta & \alpha + \beta & 0 \\ \sqrt{2}\beta & 0 & \alpha + \beta \end{pmatrix}.$$

Its eigen equation is

$$\det(H'_{B_{1u}} - \varepsilon^{\pi} S'_{B_{1u}}) = \beta^{3}(x+1)(x^{2} + x - 3) = 0.$$

There are three roots,

$$x_8 = -1$$
, $x_9 = \frac{-1 + \sqrt{13}}{2}$, $x_{10} = \frac{-1 - \sqrt{13}}{2}$,

which equal to

$$\varepsilon_8^{\pi} = \alpha + \beta, \tag{10.36}$$

$$\varepsilon_9^{\pi} = \alpha - \frac{\sqrt{13} - 1}{2}\beta \approx \alpha - 1.303\beta,\tag{10.37}$$

$$\varepsilon_{10}^{\pi} = \alpha + \frac{\sqrt{13} + 1}{2} \beta \approx \alpha + 2.303 \beta.$$
 (10.38)

For $H'_{B_{1u}} - \varepsilon_8^{\pi} S'_{B_{1u}}$, its reduced row echelon form is

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix},$$

which means

$$\Phi_8 = \sqrt{2}\phi_9' - \phi_{10}'.$$

Thus, we know

$$\Phi_8^{\pi} = \sqrt{\frac{1}{3}} \Phi_8 = \sqrt{\frac{2}{3}} \phi_9' + \sqrt{\frac{1}{3}} \phi_{10}' = \sqrt{\frac{1}{6}} (\phi_2 + \phi_3 + \phi_5 + \phi_7 + \phi_8 + \phi_{10})
\approx 0.4082 \phi_2 + 0.4082 \phi_3 + 0.4082 \phi_5 + 0.4082 \phi_7 + 0.4082 \phi_8 + 0.4082 \phi_{10}.$$
(10.39)

Similarly, the reduced row echelon form of $H'_{B_{3g}} - \varepsilon_4^{\pi} S'_{B_{3g}}$ is

$$\begin{pmatrix} 1 & 0 & \frac{1+\sqrt{13}}{2\sqrt{2}} \\ 0 & 1 & -\frac{1}{\sqrt{2}} \\ 0 & 0 & 0 \end{pmatrix},$$

which means

$$\Phi_9 = \frac{\sqrt{13} + 1}{2\sqrt{2}}\phi_8' - \frac{1}{\sqrt{2}}\phi_9' - \phi_{10}'.$$

And then,

$$\begin{split} \Phi_9^\pi &= \frac{2}{\sqrt{13+\sqrt{13}}} \Phi_4 = \sqrt{\frac{\sqrt{13}+1}{2\sqrt{13}}} \phi_8' - \sqrt{\frac{\sqrt{13}-1}{6\sqrt{13}}} \phi_9' - \sqrt{\frac{\sqrt{13}-1}{3\sqrt{13}}} \phi_{10}' \\ &= \frac{1}{2} \sqrt{\frac{\sqrt{13}+1}{2\sqrt{13}}} (\phi_1 + \phi_4 + \phi_6 + \phi_9) - \frac{1}{2} \sqrt{\frac{\sqrt{13}-1}{6\sqrt{13}}} (\phi_2 + \phi_3 + \phi_7 + \phi_8) - \sqrt{\frac{\sqrt{13}-1}{6\sqrt{13}}} (\phi_5 + \phi_{10}) \\ &\approx 0.3996 \phi_1 - 0.1735 \phi_2 - 0.1735 \phi_3 + 0.3996 \phi_4 - 0.3470 \phi_5 \\ &\quad + 0.3996 \phi_6 - 0.1735 \phi_7 - 0.1735 \phi_8 + 0.3996 \phi_9 - 0.3470 \phi_{10}. \end{split} \tag{10.40}$$

Similarly, the reduced row echelon form of $H'_{B_{1u}} - \varepsilon_{10}^{\pi} S'_{B_{1u}}$ is

$$\begin{pmatrix} 1 & 0 & -\frac{-1+\sqrt{13}}{2\sqrt{2}} \\ 0 & 1 & -\frac{1}{\sqrt{2}} \\ 0 & 0 & 0 \end{pmatrix},$$

which means

$$\Phi_{10} = \frac{\sqrt{13} - 1}{2\sqrt{2}}\phi_8' + \frac{1}{\sqrt{2}}\phi_9' + \phi_{10}'.$$

And then,

$$\begin{split} \Phi_{10}^{\pi} &= \frac{2}{\sqrt{13 - \sqrt{13}}} \Phi_{10} = \sqrt{\frac{\sqrt{13} - 1}{2\sqrt{13}}} \phi_8' + \sqrt{\frac{\sqrt{13} + 1}{6\sqrt{13}}} \phi_9' + \sqrt{\frac{\sqrt{13} + 1}{3\sqrt{13}}} \phi_{10}' \\ &= \frac{1}{2} \sqrt{\frac{\sqrt{13} - 1}{2\sqrt{13}}} (\phi_1 + \phi_4 + \phi_6 + \phi_9) + \frac{1}{2} \sqrt{\frac{\sqrt{13} + 1}{6\sqrt{13}}} (\phi_2 + \phi_3 + \phi_7 + \phi_8) \\ &+ \sqrt{\frac{\sqrt{13} + 1}{6\sqrt{13}}} (\phi_5 + \phi_{10}) \\ &\approx 0.3006 \phi_1 + 0.2307 \phi_2 + 0.2307 \phi_3 + 0.3006 \phi_4 + 0.4614 \phi_5 \\ &+ 0.3006 \phi_6 + 0.2307 \phi_7 + 0.2307 \phi_8 + 0.3006 \phi_9 + 0.4614 \phi_{10}. \end{split} \tag{10.41}$$

In conclusion, for the irreducible representation $\Gamma^{B_{1u}}$, relevant results are listed below.

Table 10.26: The Hückel MOs in the irreducible representation $\Gamma^{B_{1u}}$ of naphthalene.

order	eigenvalue		ei	genfunction	on	
	. 8	c_1	c_2	c_3	c_4	C ₅
1	0.10	$\frac{0.0000}{0.0000}$	0.4082	0.4082	0.0000	0.4082
	$\alpha + \beta$	c_6	c_7	c_8	c_9	c_{10}
		0.0000	0.4082	0.4082	0.0000	0.4082
	$\alpha - 1.303\beta$	c_1	c_2	c_3	c_4	c_5
2		0.3996	-0.1735	-0.1735	0.3996	-0.3470
2		$\overline{c_6}$	c_7	c_8	c_9	c_{10}
		0.3996	-0.1735	-0.1735	0.3996	-0.3470
		c_1	c_2	c_3	c_4	c_5
3	$\alpha + 2.303\beta$	0.3006	0.2307	0.2307	0.3006	0.4614
9	$\alpha + 2.505 \beta$	c_6	c_7	c_8	c_9	c_{10}
		0.3006	0.2307	0.2307	0.3006	0.4614

Now, we have obtained all results, which are shown as following.

Table 10.27: The occupied Hückel MOs in all irreducible representations of naphthalene.

	1 . 1				c .		
order	orbital energy	irrep		eı	genfunction	n	
			c_1	c_2	c_3	c_4	c_5
1	1 $\alpha + 2.303\beta$	B_{1u}	0.3006	0.2307	0.2307	0.3006	0.4614
1	$\alpha + 2.505 \beta$	D_{1u}	c_6	c_7	c_8	c_9	c_{10}
			0.3006	0.2307	0.2307	0.3006	0.4614
			c_1	c_2	c_3	c_4	c_5
2	$\alpha + 1.618\beta$	B_{2g}	0.2629	0.4253	0.4253	0.2629	0.0000
2	$\alpha + 1.010 \beta$ D_{γ}	D_{2g} -	c_6	c_7	c_8	c_9	c_{10}
			- 0.2629	-0.4253	- 0.4253	-0.2629	0.0000
		B_{3g}	c_1	c_2	c_3	c_4	c_5
3	$\alpha + 1.303\beta$		0.3996	0.1735	-0.1735	-0.3996	-0.3470
0			c_6	c_7	c_8	c_9	c_{10}
			- 0.3996	-0.1735	0.1735	0.3996	0.3470
			c_1	c_2	c_3	c_4	c_5
4	$\alpha + \beta$	B_{1u}	0.0000	0.4082	0.4082	0.0000	0.4082
4	$\alpha + \rho$	D_{1u}	c_6	c_7	c_8	c_9	c_{10}
			0.0000	0.4082	0.4082	0.0000	0.4082
			c_1	c_2	c_3	c_4	c_5
5	$\alpha + 0.618\beta$	\boldsymbol{A}	0.4253	0.2629	-0.2629	-0.4253	0.0000
9	$\alpha + 0.010 \beta$	A_u -	c_6	c_7	c_8	c_9	c_{10}
			0.4253	0.2629	-0.2629	-0.4253	0.0000

Table 10.28: The unoccupied Hückel MOs in all irreducible representations of naphthalene.

order	orbital energy	irrep		ei	genfunction	on	
			c_1	c_2	c_3	c_4	c_5
1	$\alpha - 0.618\beta$	B_{2g}	0.4253	-0.2629	-0.2629	0.4253	0.0000
1	$\alpha = 0.016 \beta$	D_{2g}	c_6	c_7	c_8	c_9	c_{10}
			-0.4253	0.2629	0.2629	-0.4253	0.0000
			c_1	c_2	c_3	c_4	c_5
2	$\alpha - \beta$	B_{3g}	0.0000	0.4082	-0.4082	0.0000	0.4082
2	$\alpha - \rho$	D_{3g}	c_6	c_7	c_8	c_9	c_{10}
			0.0000	-0.4082	0.4082	0.0000	-0.4802
			c_1	c_2	c_3	c_4	c_5
3	$\alpha - 1.303\beta$	B_{1u}	0.3996	-0.1735	-0.1735	0.3996	-0.3470
3	α 1.505 β	D_{1u}	c_6	c_7	c_8	c_9	c_{10}
			0.3996	-0.1735	-0.1735	0.3996	-0.3470
			c_1	c_2	c_3	c_4	c_5
4	$\alpha - 1.618\beta$	A_u	0.2629	-0.4253	0.4253	-0.2629	0.0000
-	α 1.010 β	2 1 u	c_6	c_7	c_8	c_9	c_{10}
			0.2629	-0.4253	0.4253	-0.2629	0.0000
			c_1	c_2	c_3	c_4	c_5
5	$\alpha - 2.303\beta$	B_{3g}	0.3006	-0.2307	0.2307	-0.3006	0.4614
0	$\alpha = 2.505 \rho$	D_{3g}	c_6	c_7	c_8	<i>C</i> 9	c_{10}
			-0.3006	0.2307	-0.2307	0.3006	-0.4614

Besides, their phase diagrams have been painted in Fig 10.9.

Figure 10.9: Phase diagrams of these Hückel MOs of naphthalene. Black bubbles mean plus phase while white ones mean minus phase. The color is used just for determining relative phase.

In the end, we conclude that for naphthalene, its ground state π -electron configuration is $(1b_{1u})^2(1b_{2g})^2(1b_{3g})^2(2b_{1u})^2(1a_u)^2$ and its delocalization energy is $2 \times 2.303\beta + 2 \times 1.618\beta + 2 \times 1.313\beta + 2 \times 1.000\beta + 2 \times 0.618\beta - 10 \times 1.000\beta = 3.684\beta$, much larger than the sum of that of trans-1,3-butadiene (0.472β) and benzene (2.000β) .

(f) Firstly, it is easy to find that phenanthrene belongs to the point group \mathscr{C}_{2h} , whose character table is listed below.

Table 10.29: The character table for the \mathcal{C}_{2h} point group.

$\mathscr{C}_{\mathrm{2h}}$	E	C_2	i	σ_h
A_g	1	1	1	1
B_g	1	-1	1	-1
A_u	1	1	-1	-1
B_u	1	-1	-1	1

Besides, its all nontrivial symmetry elements are shown in Fig 10.10.

Figure 10.10: All nontrivial symmetry elements of phenanthrene.

Secondly, we mark all carbon atoms as shown in Fig 10.11.

Figure 10.11: The label of carbon atoms in phenanthrene.

For π -electron atomic orbitals' representation Γ^{AO} , its following characters is listed below.

Table 10.30: The character of the π -electron atomic orbitals' representation Γ^{AO} .

$\mathscr{C}_{\mathrm{2v}}$	E	C_2	σ_{xz}	σ_{yz}
$\chi^{AO}(C_i)$	14	0	0	-14

Relevant reduction coefficients are

$$a_1 = 0$$
, $a_2 = 7$, $b_1 = 7$, $b_2 = 0$.

Thus, we obtain

$$\Gamma^{\text{AO}} = 7\Gamma^{A_2} \oplus 7\Gamma^{B_1}$$
.

We conclude that there are seven basis functions in the irreducible representation Γ^{A_2} and Γ^{B_1} , respectively. Thus, to describe the effect of O_R , seven suitable $2p_z$ atomic orbitals ϕ_i is enough.

Thirdly, we inspect the transformation of ϕ_i under O_R for the phenanthrene, whose information is recorded below. We have to list up to seven $2p_z$ functions in current case.

Table 10.31: Transformation of ϕ_i under O_R for the phenanthrene.

$\mathscr{C}_{\mathrm{2v}}$	E	C_2	σ_{xz}	σ_{yz}
ϕ_1	ϕ_1	$-\phi_{10}$	ϕ_{10}	$-\phi_1$
ϕ_2	ϕ_2	$-\phi_9$	ϕ_9	$-\phi_2$
ϕ_3	ϕ_3	$-\phi_8$	ϕ_8	$-\phi_3$
ϕ_4	ϕ_4	$-\phi_7$	ϕ_7	$-\phi_4$
ϕ_5	ϕ_5	$-\phi_6$	ϕ_6	$-\phi_5$
ϕ_{11}	ϕ_{11}	$-\phi_{14}$	ϕ_{14}	$-\phi_{11}$
ϕ_{12}	ϕ_{12}	$-\phi_{13}$	ϕ_{13}	$-\phi_{12}$

Fourthly, it's time to discuss situations in different irreducible representation.

For the irreducible representation Γ^{A_2} ,

$$\begin{split} P^{A_2}\phi_1 &= \sum_R \chi^{A_2}(R) O_R \phi_1 = 2(\phi_1 - \phi_{10}), \\ P^{A_2}\phi_2 &= \sum_R \chi^{A_2}(R) O_R \phi_2 = 2(\phi_2 - \phi_9), \\ P^{A_2}\phi_3 &= \sum_R \chi^{A_2}(R) O_R \phi_3 = 2(\phi_3 - \phi_8), \\ P^{A_2}\phi_4 &= \sum_R \chi^{A_2}(R) O_R \phi_4 = 2(\phi_4 - \phi_7), \\ P^{A_2}\phi_5 &= \sum_R \chi^{A_2}(R) O_R \phi_5 = 2(\phi_5 - \phi_6), \\ P^{A_2}\phi_6 &= \sum_R \chi^{A_2}(R) O_R \phi_6 = 2(\phi_{11} - \phi_{14}), \\ P^{A_2}\phi_7 &= \sum_R \chi^{A_2}(R) O_R \phi_7 = 2(\phi_{12} - \phi_{13}). \end{split}$$

It is easy to find that they are mutually orthogonal. They can be normalized to

$$\phi'_1 = \frac{1}{\sqrt{2}}(\phi_1 - \phi_{10}),$$

$$\phi'_2 = \frac{1}{\sqrt{2}}(\phi_2 - \phi_9),$$

$$\phi'_3 = \frac{1}{\sqrt{2}}(\phi_3 - \phi_8),$$

$$\phi'_4 = \frac{1}{\sqrt{2}}(\phi_4 - \phi_7),$$

$$\phi'_5 = \frac{1}{\sqrt{2}}(\phi_5 - \phi_6),$$

$$\phi'_6 = \frac{1}{\sqrt{2}}(\phi_{11} - \phi_{14}),$$

$$\phi'_7 = \frac{1}{\sqrt{2}}(\phi_{12} - \phi_{13}).$$

Then, the effective Hamitonian matrix elements for π electrons can be calculated,

$$H'_{A_2} = \begin{pmatrix} \alpha & \beta & 0 & 0 & 0 & -\beta & 0 \\ \beta & \alpha & \beta & 0 & 0 & 0 & 0 \\ 0 & \beta & \alpha & \beta & 0 & 0 & 0 \\ 0 & 0 & \beta & \alpha & \beta & 0 & 0 \\ 0 & 0 & 0 & \beta & \alpha - \beta & -\beta & 0 \\ -\beta & 0 & 0 & 0 & -\beta & \alpha & \beta \\ 0 & 0 & 0 & 0 & 0 & \beta & \alpha - \beta \end{pmatrix}$$

Next,

$$\det(H'_{A_2} - \varepsilon^{\pi} S'_{A_2}) = \beta^7 (x^7 - 2x^6 - 6x^5 + 11x^4 + 9x^3 - 15x^2 - 4x + 5) = 0,$$

where

$$x \equiv \frac{\alpha - \varepsilon^{\pi}}{\beta}.$$

Obviously, it is hard to solve this equation analytically. We have to apply numerical solution. The polynomial function $y = x^7 - 2x^6 - 6x^5 + 11x^4 + 9x^3 - 15x^2 - 4x + 5$ in the closed interval [-2.5, 2.5] can be plotted as shown in Fig 10.12.

Figure 10.12: The diagram of function $y = x^7 - 2x^6 - 6x^5 + 11x^4 + 9x^3 - 15x^2 - 4x + 5$ in the closed interval [-2.5, 2.5].

There are seven roots,

$$x_1 \approx -1.95063$$
, $x_2 \approx -1.14238$, $x_3 \approx -0.769052$, $x_4 \approx 0.605225$, $x_5 \approx 1.30580$, $x_6 \approx 1.51627$, $x_7 \approx 2.43476$.

which equal to

$$\varepsilon_1 = \alpha - x_1 \beta \approx \alpha + 1.95063\beta,\tag{10.42}$$

$$\varepsilon_2 = \alpha - x_2 \beta \approx \alpha + 1.14238\beta,\tag{10.43}$$

$$\varepsilon_3 = \alpha - x_3 \beta \approx \alpha + 0.769052\beta, \tag{10.44}$$

$$\varepsilon_4 = \alpha - x_4 \beta \approx \alpha - 0.605225 \beta, \tag{10.45}$$

$$\varepsilon_5 = \alpha - x_5 \beta \approx \alpha - 1.30580 \beta, \tag{10.46}$$

$$\varepsilon_6 = \alpha - x_6 \beta \approx \alpha - 1.51627 \beta, \tag{10.47}$$

$$\varepsilon_7 = \alpha - x_7 \beta \approx \alpha - 2.43476 \beta. \tag{10.48}$$

For $H_{B_2}' - \varepsilon_1^{\pi} S_{B_2}'$, its reduced row echelon form is

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 2.991107 \\ 0 & 1 & 0 & 0 & 0 & 0 & 2.884044 \\ 0 & 0 & 1 & 0 & 0 & 0 & 2.634595 \\ 0 & 0 & 0 & 1 & 0 & 0 & 2.255077 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1.764225 \\ 0 & 0 & 0 & 0 & 0 & 1 & -2.950499 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

which means

 $\Phi_1 = 2.991107\phi_1' + 2.884044\phi_2' + 2.634595\phi_3' + 2.255077\phi_4' + 1.764225\phi_5' - 2.950499\phi_6' - 1.000000\phi_7'.$

The sum of squares of coefficients is

$$\sum_{i=1}^{7} c_{1,i}^2 = 42.1088.$$

Thus, we know

$$\begin{split} \Phi_1^\pi &= \frac{1}{\sqrt{\sum_{i=1}^7 c_{1,i}^2}} \Phi_1 \approx 0.154104 \Phi_1 \\ &\approx 0.46094 \phi_1' + 0.44444 \phi_2' + 0.40600 \phi_3' + 0.34752 \phi_4' + 0.27187 \phi_5' - 0.45468 \phi_6' - 0.15410 \phi_7' \\ &\approx 0.32594 \phi_1 + 0.31427 \phi_2 + 0.28709 \phi_3 + 0.24573 \phi_4 + 0.19224 \phi_5 \\ &\quad - 0.19224 \phi_6 - 0.24573 \phi_7 - 0.28709 \phi_8 - 0.31427 \phi_9 - 0.32594 \phi_{10} \\ &\quad - 0.32151 \phi_{11} - 0.10897 \phi_{12} + 0.10897 \phi_{13} + 0.32151 \phi_{14}. \end{split} \tag{10.49}$$

Similarly, we can obtain other eigenvalues and their eigenfunctions. Their intermediate and final results are listed.

• $\varepsilon_2 \approx \alpha + 1.14238\beta$

The original eigenfunction is

$$\Phi_2 = 1.19554\phi_1' - 0.77669\phi_2' - 2.08281\phi_3' - 1.60267\phi_4' + 0.25195\phi_5' - 2.14244\phi_6' - 1.00000\phi_7'.$$

The sum of coefficients is

$$\sum_{i} c_{2,i}^2 = 14.5927.$$

The normalized eigenfunction is

$$\begin{split} \Phi_2^\pi &\approx 0.261777\Phi_2 \\ &\approx 0.31296\phi_1' - 0.20332\phi_2' - 0.54523\phi_3' - 0.41954\phi_4' + 0.06596\phi_5' - 0.56084\phi_6' - 0.26178\phi_7' \\ &\approx 0.22130\phi_1 - 0.14377\phi_2 - 0.38544\phi_3 - 0.29666\phi_4 + 0.04664\phi_5 \\ &\quad - 0.04664\phi_6 + 0.29666\phi_7 + 0.38544\phi_8 + 0.14377\phi_9 - 0.22130\phi_{10} \\ &\quad - 0.39658\phi_{11} - 0.18510\phi_{12} + 0.18510\phi_{13} + 0.39658\phi_{14}. \end{split}$$

• $\varepsilon_3 \approx \alpha + 0.769052\beta$

The original eigenfunction is

$$\Phi_3 = 2.70354\phi_1' + 3.84820\phi_2' + 0.25592\phi_3' - 3.65138\phi_4' - 3.06402\phi_5' + 1.76903\phi_6' + 1.00000\phi_7'.$$

The sum of coefficients is

$$\sum_{i} c_{3,i}^2 = 49.0335.$$

The normalized eigenfunction is

$$\Phi_3^{\pi} \approx 0.142808\Phi_3$$

$$\approx 0.38609\phi'_1 + 0.54955\phi'_2 + 0.03655\phi'_3 - 0.52145\phi'_4 - 0.43757\phi'_5 + 0.25263\phi'_6 + 0.14281\phi'_7$$

$$\approx 0.27301\phi_1 + 0.38858\phi_2 + 0.02584\phi_3 - 0.36872\phi_4 - 0.30941\phi_5$$

$$+ 0.30941\phi_6 + 0.36872\phi_7 - 0.02584\phi_8 - 0.38858\phi_9 - 0.27301\phi_{10}$$

$$+ 0.17864\phi_{11} + 0.10098\phi_{12} - 0.10098\phi_{13} - 0.17864\phi_{14}. \tag{10.51}$$

• $\varepsilon_4 \approx \alpha - 0.605225\beta$

 $\Phi_4 = 0.81967\phi_1' - 0.10131\phi_2' - 0.75836\phi_3' + 0.56029\phi_4' + 0.41926\phi_5' + 0.39478\phi_6' + 1.00000\phi_7'.$

$$\sum_{i} c_{4,i}^2 = 2.90277.$$

$$\begin{split} \Phi_4^\pi &\approx 0.586940 \Phi_4 \\ &\approx 0.48110 \phi_1' - 0.05946 \phi_2' - 0.44511 \phi_3' + 0.32885 \phi_4' + 0.24608 \phi_5' + 0.23171 \phi_6' + 0.58694 \phi_7' \\ &\approx 0.34019 \phi_1 - 0.04205 \phi_2 - 0.31474 \phi_3 + 0.23253 \phi_4 + 0.17400 \phi_5 \\ &\quad - 0.17400 \phi_6 - 0.23253 \phi_7 + 0.31474 \phi_8 + 0.04205 \phi_9 - 0.34019 \phi_{10} \\ &\quad + 0.16384 \phi_{11} + 0.41503 \phi_{12} - 0.41503 \phi_{13} - 0.16384 \phi_{14}. \end{split}$$

• $\varepsilon_5 \approx \alpha - 1.30580\beta$

The original eigenfunction is

$$\Phi_5 = 3.45516\phi_1' - 4.20593\phi_2' + 2.03694\phi_3' + 1.54608\phi_4' - 4.05582\phi_5' + 0.30582\phi_6' - 1.00000\phi_7'.$$

The sum of coefficients is

$$\sum_{i} c_{5,i}^2 = 53.7106.$$

The normalized eigenfunction is

$$\Phi_5^{\pi} \approx 0.136449\Phi_5
\approx 0.47145\phi_1' - 0.57389\phi_2' + 0.27794\phi_3' + 0.21096\phi_4' - 0.55341\phi_5' + 0.04173\phi_6' - 0.13644\phi_7'
\approx 0.33337\phi_1 - 0.40580\phi_2 + 0.19653\phi_3 + 0.14917\phi_4 - 0.39132\phi_5
+ 0.39132\phi_6 - 0.14917\phi_7 - 0.19653\phi_8 + 0.40580\phi_9 - 0.33337\phi_{10}
+ 0.02951\phi_{11} - 0.09648\phi_{12} + 0.09648\phi_{13} - 0.02951\phi_{14}.$$
(10.53)

• $\varepsilon_6 \approx \alpha - 1.51627\beta$

The original eigenfunction is

$$\Phi_6 = 0.04360\phi_1' + 0.45017\phi_2' - 0.72618\phi_3' + 0.65091\phi_4' - 0.26078\phi_5' + 0.51628\phi_6' - 1.00000\phi_7'.$$

The sum of coefficients is

$$\sum_{i} c_{6,i}^2 = 2.49013.$$

The normalized eigenfunction is

$$\begin{split} \Phi_6^\pi &\approx 0.633708\Phi_6 \\ &\approx 0.02763\phi_1' + 0.28528\phi_2' - 0.46018\phi_3' + 0.41249\phi_4' - 0.16526\phi_5' + 0.32717\phi_6' - 0.63371\phi_7' \\ &\approx 0.01954\phi_1 + 0.20172\phi_2 - 0.32540\phi_3 + 0.29167\phi_4 - 0.11686\phi_5 \\ &\quad + 0.11686\phi_6 - 0.29167\phi_7 + 0.32540\phi_8 - 0.20172\phi_9 - 0.01954\phi_{10} \\ &\quad + 0.23134\phi_{11} - 0.44810\phi_{12} + 0.44810\phi_{13} - 0.23134\phi_{14}. \end{split}$$

• $\varepsilon_7 \approx \alpha - 2.43476\beta$

The original eigenfunction is

$$\Phi_7 = 0.83768\phi_1' - 0.60476\phi_2' + 0.63476\phi_3' - 0.94073\phi_4' + 1.65569\phi_5' + 1.43479\phi_6' - 1.00000\phi_7'.$$

The sum of coefficients is

$$\sum_{i} c_{7,i}^2 = 8.15527.$$

The normalized eigenfunction is

$$\begin{split} \Phi_7^\pi &\approx 0.350171 \Phi_7 \\ &\approx 0.29333 \phi_1' - 0.21177 \phi_2' + 0.22228 \phi_3' - 0.32942 \phi_4' + 0.57978 \phi_5' + 0.50242 \phi_6' - 0.35017 \phi_7' \\ &\approx 0.20742 \phi_1 - 0.14974 \phi_2 + 0.15717 \phi_3 - 0.23293 \phi_4 + 0.40996 \phi_5 \\ &\quad - 0.40996 \phi_6 + 0.23293 \phi_7 - 0.15717 \phi_8 + 0.14974 \phi_9 - 0.20742 \phi_{10} \\ &\quad + 0.35527 \phi_{11} - 0.24761 \phi_{12} + 0.24761 \phi_{13} - 0.35527 \phi_{14}. \end{split}$$
(10.55)

In conclusion, for the irreducible representation Γ^{A_2} , relevant results are listed below.

Table 10.32: The Hückel MOs in the irreducible representation Γ^{A_2} of phenanthrene.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} c_7 \\ 0.2457 \\ \hline c_{14} \\ 0.3215 \\ \hline c_7 \\ 0.2967 \\ \hline c_{14} \\ 0.3966 \\ \hline c_7 \\ \end{array}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 0.2457 \\ c_{14} \\ 0.3215 \\ c_{7} \\ 0.2967 \\ c_{14} \\ 0.3966 \\ c_{7} \end{array} $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} c_{14} \\ \hline 0.3215 \\ \hline c_7 \\ \hline 0.2967 \\ \hline c_{14} \\ \hline 0.3966 \\ \hline c_7 \end{array} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 0.3215 \\ \hline c_7 \\ 0.2967 \\ \hline c_{14} \\ 0.3966 \\ \hline c_7 \\ \end{array} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} c_7 \\ \hline 0.2967 \\ \hline c_{14} \\ \hline 0.3966 \\ \hline c_7 \end{array} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.2967 c_{14} 0.3966 c_{7}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{0.3966}{c_7}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	c_7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.3687
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	c_{14}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1786
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	c_7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.2325
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	c_{14}
0.3334 0.4058 0.1065 0.1402 0.3013 0.3013	-0.1638
$\frac{0.3334}{0.3334} -0.4058 -0.1965 -0.1492 -0.3913 -0$	c_7
	-0.1492
$\frac{c_8}{c_9} = \frac{c_{10}}{c_{10}} = \frac{c_{11}}{c_{12}} = \frac{c_{13}}{c_{13}}$	c_{14}
-0.1965 0.4058 -0.3334 0.0295 -0.0965 0.0965	-0.0295
$c_1 \qquad c_2 \qquad c_3 \qquad c_4 \qquad c_5 \qquad c_6$	c_7
0.0195 0.2017 -0.3254 0.2917 -0.1169 0.1169 -0.1169	0.2917
$6 \alpha - 1.516\beta 0.0135 0.2017 -0.3264 0.2317 -0.1103 0.1103 -0.1103 0.1103 -0.1103 0.1103 -0.1103 -0.1103 -0.1103 0.1103 -0.1103 $	c_{14}
	0.2313
$c_1 \qquad c_2 \qquad c_3 \qquad c_4 \qquad c_5 \qquad c_6$	
0.2074 0.1407 0.1572 0.2320 0.4100 0.4100 0	c_7
$7 \alpha - 2.435\beta \frac{0.2074}{c_8} \frac{-0.1437}{c_9} \frac{0.1012}{c_{10}} \frac{-0.2329}{c_{11}} \frac{0.4100}{c_{12}} \frac{-0.4100}{c_{13}}$	$\frac{c_7}{0.2329}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

For the irreducible representation Γ^{B_1} ,

$$\begin{split} P^{B_1}\phi_1 &= \sum_R \chi^{B_1}(R) O_R \phi_1 = 2(\phi_1 + \phi_{10}), \\ P^{B_1}\phi_2 &= \sum_R \chi^{B_1}(R) O_R \phi_2 = 2(\phi_2 + \phi_9), \\ P^{B_1}\phi_3 &= \sum_R \chi^{B_1}(R) O_R \phi_3 = 2(\phi_3 + \phi_8), \\ P^{B_1}\phi_4 &= \sum_R \chi^{B_1}(R) O_R \phi_4 = 2(\phi_4 + \phi_7), \\ P^{B_1}\phi_5 &= \sum_R \chi^{B_1}(R) O_R \phi_5 = 2(\phi_5 + \phi_6), \end{split}$$

$$P^{B_1}\phi_6 = \sum_R \chi^{B_1}(R)O_R\phi_6 = 2(\phi_{11} + \phi_{14}),$$

$$P^{B_1}\phi_7 = \sum_R \chi^{B_1}(R)O_R\phi_7 = 2(\phi_{12} + \phi_{13}).$$

It is easy to find that they are mutually orthogonal. They can be normalized to

$$\phi_8' = \frac{1}{\sqrt{2}}(\phi_1 + \phi_{10}),$$

$$\phi_9' = \frac{1}{\sqrt{2}}(\phi_2 + \phi_9),$$

$$\phi_{10}' = \frac{1}{\sqrt{2}}(\phi_3 + \phi_8),$$

$$\phi_{11}' = \frac{1}{\sqrt{2}}(\phi_4 + \phi_7),$$

$$\phi_{12}' = \frac{1}{\sqrt{2}}(\phi_5 + \phi_6),$$

$$\phi_{13}' = \frac{1}{\sqrt{2}}(\phi_{11} + \phi_{14}),$$

$$\phi_{14}' = \frac{1}{\sqrt{2}}(\phi_{12} + \phi_{13}).$$

Then, the effective Hamitonian matrix elements for π electrons can be calculated,

$$H'_{B_1} = \begin{pmatrix} \alpha & \beta & 0 & 0 & 0 & \beta & 0 \\ \beta & \alpha & \beta & 0 & 0 & 0 & 0 & 0 \\ 0 & \beta & \alpha & \beta & 0 & 0 & 0 & 0 \\ 0 & 0 & \beta & \alpha & \beta & 0 & 0 & 0 \\ 0 & 0 & 0 & \beta & \alpha + \beta & \beta & 0 & 0 \\ \beta & 0 & 0 & 0 & \beta & \alpha & \beta & 0 \\ 0 & 0 & 0 & 0 & 0 & \beta & \alpha + \beta \end{pmatrix}$$

Next,

$$\det(H'_{B_1} - \varepsilon^{\pi} S'_{B_1}) = \beta^7 (x^7 + 2x^6 - 6x^5 - 11x^4 + 9x^3 + 15x^2 - 4x - 5) = 0.$$

We also apply numerical approach to solve $x^7 + 2x^6 - 6x^5 - 11x^4 + 9x^3 + 15x^2 - 4x - 5 = 0$. The function $y = x^7 + 2x^6 - 6x^5 - 11x^4 + 9x^3 + 15x^2 - 4x - 5$ in the closed interval [-2.5, 2.5] is plotted as shown in Fig 10.13.

Figure 10.13: The diagram of function $y = x^7 + 2x^6 - 6x^5 - 11x^4 + 9x^3 + 15x^2 - 4x - 5$ in range [-2.5, 2.5].

There are also seven roots,

$$x_8 \approx -2.43476$$
, $x_9 \approx -1.51627$, $x_{10} \approx -1.30580$, $x_{11} \approx -0.605225$, $x_{12} \approx 0.769052$, $x_{13} \approx 1.14238$, $x_{14} \approx 1.95063$.

which equal to

$$\varepsilon_8 \approx \alpha + 2.43476\beta,$$
 (10.56)

$$\varepsilon_9 \approx \alpha + 1.51627\beta,$$
(10.57)

$$\varepsilon_{10} \approx \alpha + 1.30580\beta,\tag{10.58}$$

$$\varepsilon_{11} \approx \alpha + 0.605225\beta,\tag{10.59}$$

$$\varepsilon_{12} \approx \alpha - 0.769052\beta,\tag{10.60}$$

$$\varepsilon_{13} \approx \alpha - 1.14238\beta,\tag{10.61}$$

$$\varepsilon_{14} \approx \alpha - 1.95063\beta. \tag{10.62}$$

And then, their eigenfunctions can be solved. Intermediate and final results are listed below, too.

• $\varepsilon_8 \approx \alpha + 2.43476\beta$ The original eigenfunction is

$$\Phi_8 = 0.83768\phi_8' + 0.60476\phi_9' + 0.63476\phi_{10}' + 0.94073\phi_{11}' + 1.65569\phi_{12}' + 1.43479\phi_{13}' + 1.00000\phi_{14}'.$$

The sum of coefficients is

$$\sum_{i} c_{8,i}^2 = 8.15527.$$

The normalized eigenfunction is

$$\begin{split} \Phi_8^\pi &\approx 0.350171 \Phi_8 \\ &\approx 0.29333 \phi_8' + 0.21177 \phi_9' + 0.22228 \phi_{10}' + 0.32942 \phi_{11}' + 0.57978 \phi_{12}' \\ &\quad + 0.50242 \phi_{13}' + 0.35017 \phi_{14}' \\ &\approx 0.20742 \phi_1 + 0.14974 \phi_2 + 0.15717 \phi_3 + 0.23293 \phi_4 + 0.40996 \phi_5 \\ &\quad + 0.40996 \phi_6 + 0.23293 \phi_7 + 0.15717 \phi_8 + 0.14974 \phi_9 + 0.20742 \phi_{10} \\ &\quad + 0.35527 \phi_{11} + 0.24761 \phi_{12} + 0.24761 \phi_{13} + 0.35527 \phi_{14}. \end{split} \tag{10.63}$$

• $\varepsilon_9 \approx \alpha + 1.51627\beta$

The original eigenfunction is

$$\Phi_9 = 0.04360\phi_8' - 0.45017\phi_9' - 0.72618\phi_{10}' - 0.65091\phi_{11}' - 0.26078\phi_{12}' + 0.51628\phi_{13}' + 1.00000\phi_{14}'.$$

The sum of coefficients is

$$\sum_{i} c_{9,i}^2 = 2.49013.$$

The normalized eigenfunction is

$$\begin{split} \Phi_9^\pi &\approx 0.633708\Phi_9 \\ &\approx 0.02763\phi_8' - 0.28528\phi_9' - 0.46018\phi_{10}' - 0.41249\phi_{11}' - 0.16526\phi_{12}' \\ &\quad + 0.32717\phi_{13}' + 0.63371\phi_{14}' \\ &\approx 0.01954\phi_1 - 0.20172\phi_2 - 0.32540\phi_3 - 0.29167\phi_4 - 0.11686\phi_5 \\ &\quad - 0.11686\phi_6 - 0.29167\phi_7 - 0.32540\phi_8 - 0.20172\phi_9 + 0.01954\phi_{10} \\ &\quad + 0.23134\phi_{11} + 0.44810\phi_{12} + 0.44810\phi_{13} + 0.23134\phi_{14}. \end{split}$$

• $\varepsilon_{10} \approx \alpha + 1.30580\beta$

The original eigenfunction is

$$\Phi_{10} = 3.45516\phi_8' + 4.20593\phi_9' + 2.03694\phi_{10}' - 1.54608\phi_{11}' - 4.05582\phi_{12}' + 0.30582\phi_{13}' + 1.00000\phi_{14}'.$$

The sum of coefficients is

$$\sum_{i} c_{10,i}^2 = 53.7106.$$

The normalized eigenfunction is

$$\begin{split} \Phi_{10}^{\pi} &\approx 0.13645 \Phi_{10} \\ &\approx 0.47145 \phi_8' + 0.57389 \phi_9' + 0.27794 \phi_{10}' - 0.21096 \phi_{11}' - 0.55341 \phi_{12}' \\ &\quad + 0.04173 \phi_{13}' + 0.13644 \phi_{14}' \\ &\approx 0.33337 \phi_1 + 0.40580 \phi_2 + 0.19653 \phi_3 - 0.14917 \phi_4 - 0.39132 \phi_5 \\ &\quad - 0.39132 \phi_6 - 0.14917 \phi_7 + 0.19653 \phi_8 + 0.40580 \phi_9 + 0.33337 \phi_{10} \\ &\quad + 0.02951 \phi_{11} + 0.09648 \phi_{12} + 0.09648 \phi_{13} + 0.02951 \phi_{14}. \end{split} \tag{10.65}$$

• $\varepsilon_{11} \approx \alpha + 0.605225\beta$

The original eigenfunction is

$$\Phi_{11} = 0.81967\phi_8' + 0.10131\phi_9' - 0.75836\phi_{10}' - 0.56029\phi_{11}' + 0.41926\phi_{12}' + 0.39478\phi_{13}' - 1.00000\phi_{14}'.$$

The sum of coefficients is

$$\sum_{i} c_{11,i}^2 = 2.90277.$$

The normalized eigenfunction is

$$\begin{split} \Phi_{11}^{\pi} &\approx 0.586940 \Phi_{11} \\ &\approx 0.48110 \phi_8' + 0.05946 \phi_9' - 0.44511 \phi_{10}' - 0.32885 \phi_{11}' + 0.24608 \phi_{12}' \\ &\quad + 0.23171 \phi_{13}' - 0.58694 \phi_{14}' \\ &\approx 0.34019 \phi_1 - 0.04205 \phi_2 - 0.31474 \phi_3 + 0.23253 \phi_4 + 0.17400 \phi_5 \\ &\quad + 0.17400 \phi_6 + 0.23253 \phi_7 - 0.31474 \phi_8 - 0.04205 \phi_9 + 0.34019 \phi_{10} \\ &\quad + 0.16384 \phi_{11} - 0.41503 \phi_{12} - 0.41503 \phi_{13} + 0.16384 \phi_{14}. \end{split} \tag{10.66}$$

• $\varepsilon_{12} \approx \alpha - 0.769052\beta$

The original eigenfunction is

$$\Phi_{12} = 2.70354\phi_8' - 3.84820\phi_9' + 0.25592\phi_{10}' + 3.65138\phi_{11}' - 3.06402\phi_{12}' + 1.76903\phi_{13}' - 1.00000\phi_{14}'.$$

The sum of coefficients is

$$\sum_{i} c_{12,i}^2 = 49.0335.$$

The normalized eigenfunction is

$$\begin{split} \Phi_{12}^{\pi} &\approx 0.142808\Phi_{12} \\ &\approx 0.38609\phi_8' - 0.54955\phi_9' + 0.03655\phi_{10}' + 0.52145\phi_{11}' - 0.43757\phi_{12}' \\ &\quad + 0.25263\phi_{13}' - 0.14281\phi_{14}' \\ &\approx 0.27301\phi_1 - 0.38858\phi_2 + 0.02584\phi_3 + 0.36872\phi_4 - 0.30941\phi_5 \\ &\quad - 0.30941\phi_6 + 0.36872\phi_7 + 0.02584\phi_8 - 0.38858\phi_9 + 0.27301\phi_{10} \\ &\quad + 0.17864\phi_{11} - 0.10098\phi_{12} - 0.10098\phi_{13} + 0.17864\phi_{14}. \end{split}$$

• $\varepsilon_{13} \approx \alpha - 1.14238\beta$

The original eigenfunction is

$$\Phi_{13} = 1.19554\phi_8' + 0.77669\phi_9' - 2.08281\phi_{10}' + 1.60267\phi_{11}' + 0.25195\phi_{12}' - 2.14244\phi_{13}' + 1.00000\phi_{14}'.$$

The sum of coefficients is

$$\sum_{i} c_{13,i}^2 = 14.5927.$$

The normalized eigenfunction is

$$\begin{split} \Phi_{13}^{\pi} &\approx 0.261777 \Phi_{13} \\ &\approx 0.31296 \phi_8' + 0.20332 \phi_9' - 0.54523 \phi_{10}' + 0.41954 \phi_{11}' + 0.06596 \phi_{12}' \\ &\qquad \qquad - 0.56084 \phi_{13}' + 0.26178 \phi_{14}' \\ &\approx 0.22130 \phi_1 + 0.14377 \phi_2 - 0.38554 \phi_3 + 0.29666 \phi_4 + 0.04664 \phi_5 \\ &\qquad \qquad + 0.04664 \phi_6 + 0.29666 \phi_7 - 0.38554 \phi_8 + 0.14377 \phi_9 + 0.22130 \phi_{10} \\ &\qquad \qquad - 0.39658 \phi_{11} + 0.18510 \phi_{12} + 0.18510 \phi_{13} - 0.39658 \phi_{14}. \end{split}$$

• $\varepsilon_{14} \approx \alpha - 1.95063\beta$

The original eigenfunction is

$$\Phi_{14} = 2.99111\phi_8' - 2.88404\phi_9' + 2.63460\phi_{10}' - 2.25508\phi_{11}' + 1.76423\phi_{12}' - 2.95050\phi_{13}' + 1.00000\phi_{14}'.$$

The sum of coefficients is

$$\sum_{i} c_{14,i}^2 = 42.1088$$

The normalized eigenfunction is

$$\begin{split} \Phi_{14}^{\pi} &\approx 0.154104 \Phi_{14} \\ &\approx 0.46094 \phi_8' - 0.44444 \phi_9' + 0.40600 \phi_{10}' - 0.34752 \phi_{11}' + 0.27187 \phi_{12}' \\ &\qquad \qquad - 0.45468 \phi_{13}' + 0.15410 \phi_{14}' \\ &\approx 0.32594 \phi_1 - 0.31427 \phi_2 + 0.28709 \phi_3 - 0.24573 \phi_4 + 0.19224 \phi_5 \\ &\qquad \qquad + 0.19224 \phi_6 - 0.24573 \phi_7 + 0.28709 \phi_8 - 0.31427 \phi_9 + 0.32594 \phi_{10} \\ &\qquad \qquad - 0.32151 \phi_{11} + 0.10897 \phi_{12} + 0.10897 \phi_{13} - 0.32151 \phi_{14}. \end{split} \tag{10.69}$$

In conclusion, for the irreducible representation Γ^{B_1} , relevant results are listed below.

Table 10.33: The Hückel MOs in the irreducible representation Γ^{B_1} of phenanthrene.

		e Huckel MOs in the irreducible representation Γ^{B_1} of phenanthrene.						tom che.
order	eigenvalue			ei	genfunction	on		
		c_1	c_2	c_3	c_4	c_5	c_6	c_7
1	$\alpha + 2.435\beta$	0.2074	0.1497	0.1572	0.2329	0.4100	0.4100	0.2329
1	$\alpha + 2.455 \beta$	$\overline{c_8}$	c_9	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
	•	0.1572	0.1497	0.2074	0.3553	0.2476	0.2476	0.3553
		c_1	c_2	c_3	c_4	c_5	c_6	c_7
2	$\alpha + 1.516\beta$	0.0195	-0.2017	-0.3254	-0.2917	-0.1169	-0.1169	-0.2917
	α 1.010 β	c_8	c_9	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
		-0.3254	-0.2017	0.0195	0.2313	0.4481	0.4481	0.2313
		c_1	c_2	c_3	c_4	c_5	c_6	c_7
3	$\alpha + 1.306\beta$	0.3334	0.4058	0.1965	-0.1492	-0.3913	-0.3913	-0.1492
9	$\alpha + 1.500 \beta$	c_8	c_9	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
		0.1965	0.4058	0.3334	0.0295	0.0965	0.0965	0.0295
		c_1	c_2	c_3	c_4	c_5	c_6	c_7
4	$\alpha + 0.605\beta$	0.3402	-0.0420	-0.3147	0.2325	0.1740	0.1740	0.2325
4	$\alpha + 0.003 \beta$	c_8	c_9	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
		-0.3147	-0.0420	0.3402	0.1638	-0.4150	-0.4150	0.1638
		c_1	c_2	c_3	c_4	c_5	c_6	c_7
5	$\alpha - 0.769\beta$	0.2730	-0.3886	0.0258	0.3687	-0.3094	-0.3094	0.3687
0	$\alpha = 0.103 \beta$	c_8	c_9	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
		0.0258	-0.3886	0.2730	0.1786	-0.1010	-0.1010	0.1786
		c_1	c_2	c_3	c_4	c_5	c_6	c_7
6	$\alpha - 1.142\beta$	0.2213	0.1438	-0.3855	0.2967	0.0466	0.0466	0.2967
U	α 1.142 β	c_8	c_9	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
		-0.3855	0.1438	0.2213	-0.3966	0.1851	0.1851	-0.3966
		c_1	c_2	c_3	c_4	c_5	c_6	c_7
7	$\alpha - 1.951\beta$	0.3259	-0.3143	0.2871	-0.2457	0.1922	0.1922	-0.2457
•	$\alpha = 1.501\beta$	c_8	c_9	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
		0.2871	-0.3143	0.3259	-0.3215	0.1090	0.1090	-0.3215
		0.20.1				0.200	0.200	0.0==0

Now, we have obtained all results, which are shown in Table 10.34

Table 10.34: The occupied Hückel MOs in all irreducible representations of phenanthrene.

order	orbital energy	irrep			ei	genfunction	on			
		Р	c_1	c_2	c_3	c_4	c ₅	c_6	c_7	
	. 0.4050	D	$\frac{1}{0.2074}$	0.1497	0.1572	0.2329	0.4100	0.4100	0.2329	
1	$\alpha + 2.435\beta$	B_1	c_8	c_9	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}	
			$\frac{0.1572}{0.1572}$	0.1497	0.2074	0.3553	0.2476	0.2476	0.3553	
			c_1	c_2	c_3	c_4	c_5	c_6	c_7	
0	o. 1 1 051 0		$\frac{1}{0.3259}$	0.3143	0.2871	0.2457	0.1922	-0.1922	-0.2457	
2	$\alpha + 1.951\beta$	A_2	$\overline{c_8}$	c_9	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}	
			-0.2871	-0.3143	-0.3259	-0.3215	-0.1090	0.1090	0.3215	
			c_1	c_2	c_3	c_4	c_5	c_6	c_7	
0	. 4 7400	ъ	$\frac{1}{0.0195}$	-0.2017	-0.3254	-0.2917	-0.1169	-0.1169	-0.2917	
3	$\alpha + 1.516\beta$	B_1	c_8	c_9	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}	
			-0.3254	-0.2017	0.0195	0.2313	0.4481	0.4481	0.2313	
			c_1	c_2	c_3	c_4	c_5	c_6	c_7	
		-	$\frac{1}{0.3334}$	0.4058	0.1965	-0.1492	-0.3913	-0.3913	-0.1492	
4	$\alpha + 1.306\beta$	B_1	c_8	c_9	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}	
			$\frac{0.1965}{0.1965}$	0.4058	0.3334	0.0295	0.0965	0.0965	0.0295	
			c_1	c_2	c_3	c_4	c_5	c_6	c_7	
_			$\frac{1}{0.2213}$	-0.1438	-0.3855	-0.2967	0.0466	-0.0466	0.2967	
5	$\alpha + 1.142\beta$	A_2	$\overline{c_8}$	c_9	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}	
			$\frac{0.3855}{0.3855}$	0.1438	-0.2213	-0.3966	-0.1851	0.1851	0.3966	
			c_1	c_2	c_3	c_4	c_5	c_6	c_7	
C	$\alpha + 0.769\beta$	$\alpha + 0.769\beta$	4	$\frac{1}{0.2730}$	0.3886	0.0258	-0.3687	-0.3094	0.3094	0.3687
6			$\alpha + 0.769\beta$	A_2	c_8	c_9	c_{10}	c_{11}	c_{12}	c_{13}
			-0.0258	-0.3886	-0.2730	0.1786	0.1010	-0.1010	-0.1786	
			c_1	c_2	c_3	c_4	c_5	c_6	c_7	
-	$7 \qquad \alpha + 0.605\beta$	D	0.3402	-0.0420	-0.3147	0.2325	0.1740	0.1740	0.2325	
1		$\alpha + 0.605\beta$	$\alpha + 0.005 \beta$	B_1	c_8	c_9	c_{10}	c_{11}	c_{12}	c_{13}
			-0.3147	-0.0420	0.3402	0.1638	-0.4150	-0.4150	0.1638	
			c_1	c_2	c_3	c_4	c_5	c_6	c_7	
8	$\alpha - 0.605\beta$	1	0.3402	-0.0420	-0.3147	0.2325	0.1740	-0.1740	-0.2325	
0	$\alpha = 0.005 \beta$	A_2	$\overline{c_8}$	c_9	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}	
			0.3147	0.0420	-0.3402	0.1638	0.4150	-0.4150	-0.1638	
			c_1	c_2	c_3	c_4	c_5	c_6	c_7	
9	$\alpha - 0.769\beta$	B_1	0.2730	-0.3886	0.0258	0.3687	-0.3094	-0.3094	0.3687	
Э	$\alpha = 0.709\beta$	D_1	c_8	c_9	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}	
			0.0258	-0.3886	0.2730	0.1786	-0.1010	-0.1010	0.1786	
			c_1	c_2	c_3	c_4	c_5	c_6	c_7	
10	$\alpha - 1.142\beta$	B_1	0.2213	0.1438	-0.3855	0.2967	0.0466	0.0466	0.2967	
10	α 1.142 β	D_1	c_8	c_9	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}	
			-0.3855	0.1438	0.2213	-0.3966	0.1851	0.1851	-0.3966	
			c_1	c_2	c_3	c_4	c_5	c_6	c_7	
11	$\alpha - 1.306\beta$	A_2	0.3334	-0.4058	0.1965	0.1492	-0.3913	0.3913	-0.1492	
-11	a 1.500p	112	c_8	c_9	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}	
			-0.1965	0.4058	-0.3334	0.0295	-0.0965	0.0965	-0.0295	
			c_1	c_2	c_3	c_4	c_5	c_6	c_7	
12	$\alpha - 1.516\beta$	A_2	0.0195	0.2017	-0.3254	0.2917	-0.1169	0.1169	-0.2917	
	$\alpha = 1.010\beta$	2	<u>c₈</u>	<i>c</i> ₉	c ₁₀	c ₁₁	c_{12}	c ₁₃	c_{14}	
			0.3254	-0.2017	-0.0195	0.2313	-0.4481	0.4481	-0.2313	
			c_1	c_2	c_3	c_4	c_5	c_6	c_7	
13	$\alpha - 1.951\beta$	B_1	0.3259	-0.3143	0.2871	-0.2457	0.1922	0.1922	-0.2457	
	2.002/0	- 1	<u>c₈</u>	<i>c</i> ₉	c ₁₀	c ₁₁	c ₁₂	c ₁₃	c_{14}	
			0.2871	-0.3143	0.3259	-0.3215	0.1090	0.1090	-0.3215	
			c_1	c_2	c_3	c_4	c_5	c_6	c_7	
14	$\alpha - 2.435\beta$	A_2								
	=:-00p	2								

0.2074	-0.1497	0.1572	-0.2329	0.4100	-0.4100	0.2329
c_8	c_9	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
-0.1572	0.1497	-0.2074	0.3553	-0.2476	0.2476	-0.3553

Besides, their phase diagrams have been painted in Fig 10.14.

Figure 10.14: Phase diagrams of these Hückel MOs of phenanthrene. Black bubbles mean plus phase while white ones mean minus phase. The color is used just for determining relative phase.

In the end, we conclude that for phenanthrene, its ground state π -electron configuration is $(1b_1)^2(1a_2)^2(2b_1)^2(3b_1)^2(2a_2)^2(3a_2)^2(4b_1)^2$ and its delocalization energy is $2\times 2.435\beta + 2\times 1.951\beta + 2\times 1.516\beta + 2\times 1.306\beta + 2\times 1.142\beta + 2\times 0.769\beta + 2\times 0.605\beta - 14\times 1.000\beta = 5.448\beta$, much larger than the sum of that of trans-1,3-butadiene (0.472β) and two benzenes $(2.000\beta \times 2)$.

	lpha-2.435eta	$(7a_2)$
	$\alpha-1.951\beta$	$(7b_1)$
	$\alpha-1.516\beta$	$(6a_{2})$
	$\alpha-1.306\beta$	$(5a_2)$
	$\alpha-1.142\beta$	$(6b_1)$
	$\alpha-0.769\beta$	$(5b_1)$
	$\alpha-0.605\beta$	$(4a_2)$
-××-	$\alpha + 0.605\beta$	$(4b_{\scriptscriptstyle 1})$
-××-	$\alpha+0.769\beta$	$(3a_2)$
-××-	$\alpha+1.142\beta$	$(2a_2)$
-××-	$\alpha+1.306\beta$	$(3b_1)$
-××-	$\alpha+1.516\beta$	$(2b_{\scriptscriptstyle 1})$
-××-	$\alpha+1.951\beta$	$(1a_2)$
-××-	$\alpha + 2.435\beta$	$(1b_{\scriptscriptstyle 1})$