2020 北京丰台初三三模

数 学

2020.07

. 5

| 1. 本试卷共 9 页, 共三道大题, 28 道小题, 满分 100 分. 考试时间 120 分钟。

生

2. 在试卷和答题卡上认真填写学校名称、姓名和考号。

须

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

知

- 4. 在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。
- 5. 考试结束,将本试卷、答题卡一并交回。
- 一、选择题(本题共16分,每小题2分)

第1-8题均有四个选项,符合题意的选项只有一个.

1.《北京市生活垃圾管理条例》对生活垃圾分类提出更高要求,于2020年5月1日起施行,施行的目的在于加强生活垃圾管理,改善城乡环境,保障人体健康.下列垃圾分类标志,既是轴对称图形又是中心对称图形的是()

2. 自 2020 年 1 月 23 日起,我国仅用大概 10 天就建成了火神山医院,18 天建成了雷神山医院,彰显了"中国速度"。雷神山医院和火神山医院总建筑面积约为 113800 平方米。将 113800 用科学记数法表示应为()

- (A) 1.138×10^5
- (B) 11.38×10^4
- (C) 1.138×10^4
- (D) 0.1138×10^6

3. 实数 a, b, c 在数轴上的对应点的位置如图所示,若 |a| = |b| ,则下列结论中错误的是()

- (A) b+c>0
- (B) a+c>0

- (C) a+b>0
- (D) ac < 0

4. 若正多边形的内角和是 540°,则该正多边形的一个外角为()

- (A) 45° (B) 60° (C) 72° (D) 90°
- 5. 如图,在平面直角坐标系xOy中,已知点A(2,1),点B(3,-1),平移线段AB,使点A落在点A(-2,2)处,

- (A) (-1,-1)
- (B) (-1,0)

(C) (1,0)

(D) (3.0)

- 6. 如果 $a = \sqrt{3} 1$,那么代数式 $(1 + \frac{1}{a 1}) \div \frac{a}{a^2 1}$ 的值为()

- (A) 3 (B) $\sqrt{3}-2$ (C) $\frac{\sqrt{3}}{3}$ (D) $\sqrt{3}$
- 7. 如图, $AB \in OO$ 的直径, CD 是弦, 若 $\angle CDB = 32^{\circ}$, 则 $\angle CBA$ 的度数为 ()
- (A) 68° (B) 58° (C) 64° (D) 32°

8. 某校在"爱护地球,绿化祖国"的活动中,组织同学开展植树造林活动,为了了解同学的植树情况,学校抽查 了初三年级所有同学的植树情况(初三年级共有两个班),并将调查数据整理绘制成如下所示的部分数据尚不完整 的统计图表. 下面有四个推断:

		初三年级植林	对情况统计表		
棵树/棵	1	2	3	4	5
人数	7	33	a	12	3

- ① a 的值为 20;
- ②初三年级共有80人;
- ③一班植树棵树的是中位数一定是 3;
- ④二班植树棵树的是众数是 2.

其中合理的是()

- (A) (1)3 (B) (2)4 (C) (2)3 (D) (2)3(4)
- 二、填空题(本题共16分,每小题2分)
- 9. 若代数式 $\frac{1}{x+1}$ 在实数范围内有意义,则 x 的取值范围是_____.
- 10. 如图,一个正方形被分成两个正方形和两个一模一样的矩形,请根据图形,写出一个含有 a,b 的正确的等式

(第10 题)

(第11题)

(第12 题)

- 11. 如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪,从量角器的点A处观测,当量角器的0刻度 线 AB 对准旗杆顶端时,铅垂线对应的度数是 50° ,则此时观测旗杆顶端的仰角度数是
- 12. 如图所示的网格是正方形网格,则 ∠AOB ____ ∠COD (填">"、"="或"<").
- 13. 如图, D, E 分别是 $\triangle ABC$ 的边 AB, AC 的中点, 若 $\triangle ADE$ 的面积为 1, 则四边形 DBCE 的面积等于

- 14. 能够说明"设a,b是任意非零实数,若a>b,则 $\frac{1}{a}<\frac{1}{b}$ "是假命题的一组整数的a,b值依次为______.
- 15. 如图, 在平面直角坐标系 xOy 中, 已知函数 $y_1 = \frac{3}{r}(x>0)$ 和 $y_2 = -\frac{1}{r}(x<0)$, 点M 为y 轴正半轴上一点, N为x轴上一点,过M作y轴的垂线分别交 y_1 , y_2 的图象于A,B两点,连接AN,BN,则 ΔABN 的面积为_____
- 16. 小宇计划在某外卖网站点如下表所示的菜品. 已知每份订单的配送费为3元, 商家为了促销, 对每份订单的总 价(不含配送费)提供满减优惠:满 30 元减 12 元,满 60 元减 30 元,满 100 元减 45 元.如果小宇在购买下表中

的所有菜品时,采取适当的下订单方式,那么他点餐的总费用最低可为_____元.

菜品	单价 (含包装费)	数量
水煮牛肉 (小)	30 元	1
醋溜土豆丝 (小)	12 元	1
豉汁排骨 (小)	30 元	1
手撕包菜(小)	12 元	1
米饭	3 元	2

- 三、解答题(本题共68分,第17-23题,每小题5分,第24-26题6分,第27题7分,第28题8分)
- 17. 下面是小方设计的"作一个30°角"的尺规作图过程.

已知: 直线 AB 及直线 AB 外一点 P.

求作: 直线 AB 上一点 C, 使得 $\angle PCB = 30^{\circ}$.

作法: ①在直线 AB 上取一点 M;

- ②以点P为圆心,PM为半径画弧,与直线AB交于点M、N;
- ③分别以M、N 为圆心,PM 为半径画弧,在直线 AB 下方两弧交于点Q.
- ④连接PQ,交AB于点O.
- ⑤以点P为圆心,PQ为半径画弧,交直线AB于点C且点C在点O的左侧.

则 $\angle PCB$ 就是所求作的角.

根据小方设计的尺规作图过程,

- (1) 使用直尺和圆规补全图形; (保留作图痕迹)
- (2) 完成下面的证明.

证明: :: PM = PN = QM = QN,

∴四边形 *PMON* 是_____.

- ∴ *PQ* ⊥ *MN*, *PQ* = 2*PO* (______). (填写推理依据)
- :在 $Rt\Delta POC$ 中, $sin \angle PCB = \frac{PO}{PC} = \underline{$ (填写数值)
- $\therefore \angle PCB = 30^{\circ}$.

18.
$$\sqrt[3]{27} - \left| -\sqrt{3} \right| + \left(-\frac{1}{2} \right)^{-2} + 3 \tan 30^{\circ}$$

19. 解不等式组
$$\begin{cases} 3x-4 > 2(x-3) \\ \frac{x+4}{3} \ge x \end{cases}$$
,并写出它的所有非负整数解.

- 20. 已知关于 x 的一元二次方程 $ax^2 + 2x 3 = 0$ 有实数根.
- (1) 求a的取值范围;
- (2) 若该方程有两个相等的实数根,求 a 的值及方程的根.
 - 21. 如图,在 $\triangle ABC$ 中,AB=AC,点 D 是 BC 边的中点,连接 AD,分别过点 A,C 作 $AE/\!\!/BC$, $CE/\!\!/AD$ 交于点 E,连接 DE,交 AC 于点 O.
 - (1) 求证: 四边形 ADCE 是矩形;
 - (2) 若 AB=10, $\sin \angle COE = \frac{4}{5}$, 求 CE 的长.
- 21. 如图,在 ΔABC 中,AB=AC,点D是BC边的中点,连接AD,分别过点A,C作 $AE \parallel BC$, $CE \parallel AD$ 交于点E,连接DE,交AC于点O.
- (1) 求证: 四边形 ADCE 是矩形;
- (2) 若 AB = 10, $sin \angle COE = \frac{4}{5}$, 求 CE 的长.

22. 为了研究一种新冠病毒的特效药,选 100 名患者随机分成两组,每组各 50 名,一组服药,另一组不服药,12 周后,记录了两组患者的生理指标 x 和 y 的数据,并制成下图,

其中"*"表示服药者,"+"表示未服药者;

同时记录了服药患者在4周、8周、12周后的指标z的改善情况,并绘制成条形统计图.

根据以上信息,回答下列问题:

- (1) 从服药的 50 名患者中随机选出一人,求此人指标x 的值大于 1.7 的概率;
- (2) 设这 100 名患者中服药者指标 y 数据的方差为 S_1^2 ,未服药者指标 y 数据的方差为 S_2^2 ,则 S_1^2 ______ S_2^2 ;(填 " > "、 "=" 或 " < ")
- (3) 对于指标 z 的改善情况,下列推断合理的是.
- ①服药 4 周后,超过一半的患者指标 z 没有改善,说明此药对指标 z 没有太大作用;
- ②在服药的12周内,随着服药时间的增长,对指标z的改善效果越来越明显.
- 23. 如图,四边形 OABC 中, $\angle OAB = \angle OCB = 90^{\circ}$, BA = BC . 以 O 为圆心,以 OA 为半径作 $\bigcirc O$.
- (1) 求证: BC 是 $\bigcirc O$ 的切线;
- (2) 连接 BO 并延长交 $\bigcirc O$ 于点 D ,延长 AO 交 $\bigcirc O$ 于点 E ,与 BC 的延长线交于点 F ,
- ①补全图形;
- ②若 AD = AC 求证: OF = OB.

24. 如图 24-1,在弧 MN 和弦 MN 所组成的图形中, P 是弦 MN 上一动点,过点 P 作弦 MN 的垂线,交弧 MN 于点 Q ,连接 MQ . 已知 MN = 6cm ,设 M , P 两点间的距离为 xcm , P 、 Q 两点间的距离为 y_1cm , M , Q 两点间的距离为 y_2cm .

小轩根据学习函数的经验,分别对函数 y_1 , y_2 随自变量 x 的变化而变化的规律进行了探究. 下面是小轩的探究过程,请补充完整:

(1) 按照下表中自变量 x 的值进行取点、画图、测量,分别得到了 y_1 , y_2 与 x 的几组对应值:

x/cm	0	1	2	3	4	5	6
y_1 / cm	0	2. 24	2.83	3.00	2.83	2. 24	0
y_2 / cm	0	2. 45	3. 46	4. 24	4.90	m	6

上表中m的值为_____. (保留两位小数)

(2)在同一平面直角坐标系 xOy (图 24-2)中,函数 y_1 的图象如图,请你描出补全后的表中 y_2 各组数值所对应的点 (x,y_2) ,并画出函数 y_2 的图象;

(3)结合函数图象,解决问题: 当 ΔMPQ 有一个角是 60°时,MP的长度约为_____cm. (保留两位小数)

25. 在平面直角坐标系 xOy 中,直线 l: y = kx - 4k + 1 经过点 A(1, n) $(n \ge 4, n)$ 整数 $y = \frac{4}{x}(x > 0)$ 图象为 G .

- (1) 对于任意的k 直线必过一定点, 直接写出这个点的坐标;
- (2) 横、纵坐标都是整数的点叫做整点. 记图象G与直线I围成的区域(不含边界)为W.
- ①当n=5时,求k的值,并写出区域W内的整点个数;
- ②若区域W内恰有 4 个整点,结合函数图象,求k的值.

- 26. 在平面直角坐标系 xOy 中,二次函数 $y = ax^2 + bx + c$ 的图象经过点 A(0, -4) 和 B(-2, 2).
- (1) 求c的值,并用含a的式子表示b;
- (2) 当-2 < x < 0 时,若二次函数满足 y 随 x 的增大而减小,求 a 的取值范围;
- (3) 直线 AB 上有一点 C(m,5),将点 C 向右平移 4 个单位长度,得到点 D,若抛物线与线段 CD 只有一个公共点,求 a 的取值范围.

27. 如图,在 ΔABC 中, $\angle BAC=30^\circ$,AB=AC,将线段AC绕点A逆时针旋转 $\alpha(0^\circ<\alpha<180^\circ)$,得到线段AD. 连接BD,交AC 于点P.

- (1) 当 $\alpha = 90^{\circ}$ 时,
- ①依题意补全图形;
- ②求证: PD = 2PB;
- (2) 写出一个 α 的值,使得 $PD = \sqrt{3}PB$ 成立,并证明.

28. 过三角形的任意两个顶点画一条弧,若弧上的所有点都在该三角形的内部或边上,则称该弧为三角形的"形内弧".

- (1) 如图, 在等腰 $Rt\Delta ABC$ 中, $\angle A = 90^{\circ}$, AB = AC = 2.
- ①在下图中画出一条 $Rt\Delta ABC$ 的形内弧;
- ②在 $\triangle ABC$ 中,其形内弧的长度最长为_____.

- (2) 在平面直角坐标系中,点D(-2,0),E(2,0),F(0,1),点M为 ΔDEF 形内弧所在圆的圆心. 求点M 纵坐标 y_M 的取值范围;
- (3) 在平面直角坐标系中,点 $M\left(2,2\sqrt{3}\right)$,点G为x轴上一点. 点P为 ΔOMG 最长形内弧所在圆的圆心,求点P 纵坐标 y_P 的取值范围.

一、选择题(本题共16分,每小题2分)

题号	1	2	3	4	5	6	7	8
答案	С	A	С	С	В	D	В	D

	1古 / 5 1 1 1 1	/ 未晒井	16 🗘	每小题2分)	
→ `	吳工咫	【平赵六	10 万,	苺小砂4刀 丿	

9. x	1: 10.	a	b	2	a2	2ab	b2 (答案不唯一); 11.40°; 12.<;

13.3; 14.1; -1 (答案不唯一); 15.2; 16.54.

三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,

28 题,每小题 7 分)

17. (1) 略;	2 4	2															•	•	•																							:	各	眠)		1		(٠.	7	1
------------	-----	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	---	--	---	--	---	--	---	--	----	---	---

(2) 菱形;1分

"菱形的对角线相互垂直且平分" 分

.....1 分

18. 解:

3

原式 3-3 4 34分

=7....5分

19. 解: 由①, 得 x 2, ... ······ 1分

由②,得x 2,....2分

∴此不等式组的解集是 2 x 2... ······ 4 分

∴此不等式组所有非负整数解是 0、1、2........5分

20. 解: (1) : 已知关于 x 的一元二次方程 ax2+2x-3=0 有实数根.

∴ 0.....1分

∴ 4 12a 0

解得

3

又∵a 0

н .							
且 a 0	· · · · · · · · · · · · · · · · · · ·	3分					
(2): 该方程有两	丙个相等的实数 机	見					
∴ 4 12a	0						
3							
	. ··· 4	分					
∴ 13x2 2x	3 0 ∴ x1 x	2 3	•••••	··5	分		
21. (1) 证明: ::	AB=AC,点D是E	BC 边的中点,					
<i>:</i> .	AD			BC	于		点
D. • • • • • •	• • • • • • •						• • • •
• • • • • • •	• • • • • •	•••1					
∵AE∥BC, CE∥AD	,						
∴四边形 ADCE 是平	至行四边形.						
: 平	行	四	边	形	ADCE	是	矩
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	行 • • • • • • •	四 • • • • • •	边 • • • • •	形••••	ADCE	是 • • • •	矩
形. • • • • •	• • • • • •	四 • • • • • •	边 • • • • •	形	ADCE	是	矩
形. • • • • • • • • • • • • • • • • • • •	• • • • • •	四 • • • • • •	边 • • • • •	形	ADCE	是	矩
形. • • • • • · · · · · · · · · · · · · ·	• • • • • •	四 • • • • • •	边 • • • • •	形	ADCE	是••••	矩 • • • •
形. • • • • • • 2 (2)解: 过点E们 : AB=10,	F EF⊥AC 于 F.	四 • • • • • •	边 • • • • •	形	ADCE	是	矩 • • • •
形. • • • • • • 2 (2)解: 过点 E 作 ∵AB=10, ∴AC=10.	F EF⊥AC 于 F.	四 • • • • •	边 • • • • •	形	ADCE	是	矩 • • •
形. • • • • • • • 2 (2)解: 过点 E 们 ∵AB=10, ∴AC=10. ∵对角线 AC, DE 交	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • • • •		形	ADCE	是	矩 • • •
形. • • • • • • • 2 (2)解:过点E们 ∵AB=10, ∴AC=10. ∵对角线AC,DE交 ∴DE=AC=10.	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • • • •		形	ADCE	是	矩
形. • • • • • • • · • · · · · · · · · · ·	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • • • •		形	ADCE	是	矩 • • • •
形. • • • • • • • · · · · · · · · · · · ·	E EF⊥AC 于 F. 乏于点 O,	• • • • •	•••3		ADCE	是	矩

∴a 的取值范围是

∴0F=3.

· OE=OC=5,
∴CF=2.
∴
CE=25. • • • • • • • • • • • • • • • • • • •
•••••
22. 解: (1)指标 x 的值大于 1.7 的概率=
或 6%2 分
(2)S12>S22; (填 ">"、 "=" 或 "<") ·························4 分
(3)推断合理的是②. ······5 分 23. (1) 证明: 连接 B0,
∵∠0AB=∠0CB=90°,
∴ △ABO 和△CBO 都是直角三角形.
∵BA=BC, BO=BO
∴Rt△ABO≌△CBO1 分
∴OC=OA.
∴BC 是⊙0 切线2 分
(2) ①补全图形3分
②证明: ∵BA, BC 是⊙0 的两条切线, 切点分别为 A, C,
∴BA=BC, ∠DBA=∠DBC.
∴BD 是 AC 的垂直平分线.
∵0A=0C,
∴∠AOB=∠COB.
∵ADAC, AE 为⊙0 的直径,
∴CEDE.
∴∠COE=∠DOE.
∴∠AOB=∠DOE,
• /AOB= /BOC= /COF=60° 4 分

"BC 是⊙0 的切线, 切点为 C,

$\therefore \angle OCB = \angle OCF = 90^{\circ}$.
∴∠OBC=∠OFC=30°.
: .
OF=OB. • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • 5 分
24. (1) 5. 502 分
(2) 如图4 分
(3) 1.50, 4.50··················6 分 25. 解: (1)(4,1)1 分
(2) ①y kx 4k 1, 经过点 A (1, 5),
∴k 4k 1 5.
解得
此时区域 W 内有 2 个整点3 分
②: n 为整数,
∴当 n=6 时,直线 y kx 4k 1,经过点 A (1,6),区域 W 内有 4 个整点,
此时,可得
・・・・・・・4 分当 n=7 时,直线 y kx 4k 1,经过点 A (1,7),区域 W 内有 5 个整点,
∴当 n≥7 时,区域 W 内整点个数大于 4 个,・・・・・・・・・・・・・・・・・・・・・・・・ 5 分
\therefore
5
k 3
.

26. 解: (1) 把点 A (0, -4) 和 B (-2, 2) 分别代入 y=ax2+bx+c 中,得
c=-4, ····································
4a-2b+c=2.
∴b=2a-3. ·····2分
(2) 当 a<0 时,依题意抛物线的对称轴需满足
23
2
≤a<0.
当 a>0 时,依题意抛物线的对称轴需满足 23
2
≥0. 解得 0 <a≤3< td=""></a≤3<>
2
∴a 的取值范围是 3
4分
(3) 可求直线 AB 表达式为 y=-3x-4, 把 C (m, 5) 代入得 m=-3.
∴C (-3, 5), 由平移得 D (1, 5).
①当 a>0 时,若抛物线与线段 CD 只有一个公共点,
(如图 1),则抛物线上的点(1,a+2a-3-4)在 D 点
的下方.
∴ a+2a-3-4<5.
解得 a<4. ∴0 <a<4.< td=""></a<4.<>
②当 a<0 时,若抛物线的顶点在线段 CD 上,
则抛物线与线段只有一个公共点. (如图 2)
:.

27. 解: (1) ①如图:
②:AC=AD, AB=AC,
∴AB=AD, ∠ABD=∠ADB.
又∵∠BAC=30°, ∠BAD=90°,
∴∠ABD=∠ADB=30°.
∴AP=BP. ·····2 分
在Rt△APD中,∠ADB=30°,
∴PD=2AP. ∴PD=2PB. ····································
(2) 当 α =60°(或 120°)时, PD=3PB(写对一种情况即得满分)(可以多种解
法)4 分
情况 I: 当 α =60° 时
过点 D 作 DF L AC, 垂足为点 F,
过点 B 作 BE L AC, 垂足为点 E,
∴DF // BE. ∴ △DFP ∽ △BEP. ······5 分
在Rt△ABE中,∠BAC=30°,
∴AC=2BE.
在Rt△ADF中,∠CAD=60°,
∴AD=
23
3DF. ······6 分
$\mathbf{Z} : \mathbf{AD} = \mathbf{AC} = \mathbf{AB},$
∴2BE=
23
3DE,即 3BE=DF.

∴3PB=PD. ·····7 分

过点 D 作 DF L AC, 交 CA 的延长线于点 F,
过点 B 作 BE L AC, 垂足为点 E,
∴DF // BE.
∴△DFP∽△BEP. ·····5 分
λ
DFPDBE=PB
在 Rt△ABE 中,∠BAC=30°,
∴AC=2BE.
在 Rt△ADF 中,∠FAD=60°,∴AD=
$\mathbf{X} : \mathbf{AD} = \mathbf{AC} = \mathbf{AB}$
∴2BE=23
3DE,即 3BE=DF.
∴3PB=PD. ······7 分
28. (1) ①
类似以上作答,只要弧上所有点都出现在三角形内部,均给分1分
②当 OB 2 时,Rt △ABC 的形内弧最长,此时弧长 . (学生不必画出图象)
3 分
(2) 当圆心在 x 轴下方时,此时最长形内弧与线段 DF, EF 相切
∴ △DOF∽ △DOM1,
∴OF OM1 OD2.
∴OM1 4.
∴yM 4. ······4 分
当圆心在 x 轴上方时,此时最长形内弧与 x 轴相切
•• ∧ FGM2 ∞ ∧ HFG. • HG HM2 HF2

情况 II: 当 α =120° 时

综上所述,

43yP 3 或 23yP 3. ·····7 分