Name:

(key)

Show all work clearly and in order. Please box your answers. 10 minutes.

Choose ONE side. Clearly put an X on the side you do not want me to grade, otherwise I will grade the first side worked on.

1. The function $y_1 = x^4$ is a solution to $x^2y'' - 7xy' + 16y = 0$. Use the reduction of order equation formula to find a second solution $y_2(x)$. (NOTE: you do not need to vertify that y_1 is a solution, just find y_2 .)

Standard Form:
$$y'' - \frac{7}{x}y' + \frac{16}{x^2}y = 0$$
, assume x70

$$y_{2} = y_{1} \int \frac{e^{-SP(x)dx}}{(y_{1})^{2}} dx = x^{4} \int \frac{e^{-S(-7/x)dx}}{(x^{4})^{2}} dx$$

$$= x^{4} \int \frac{e^{\ln(x^{4})}}{x^{8}} dx$$

$$= x^{4} \int \frac{e^{\ln(x^{4})}}{x^{8}} dx = x^{4} \int \frac{1}{x} dx = \ln(x) x^{4}$$

$$= x^{4} \int \frac{x^{7}}{x^{8}} dx = x^{4} \int \frac{1}{x} dx = \ln(x) x^{4}$$

2. Determine whether the given set of functions is linearly independent on the interval (0,∞). SHOW WORK AND CLEARLY STATE whether the set of functions is linearly independent or linearly dependent.

(a)
$$f_1(x) = x$$
, $f_2(x) = x \ln(x)$

$$W = \begin{vmatrix} f_1 & f_2 \\ f_1' & f_2' \end{vmatrix} = \begin{vmatrix} \times & \chi \ln(x) \\ 1 & \chi(x) + \ln(x) \end{vmatrix} = \chi (1 + \ln(x)) - \chi \ln(x)$$

$$= \chi \neq 0 \text{ on } (0, \infty)$$

Hence, f, and frame [Inearly independent.]

(b)
$$g_1(x) = 2$$
, $g_2(x) = \sec^2(x)$, $g_3(x) = 1 - 12\sec^2(x)$

 $\frac{50L1!}{2(2)} - 12 \left(\frac{\sec^2(x)}{9^2} \right) - 1 \left(\frac{1 - 12 \sec^2(x)}{9^3} \right) = 1 - 12 \sec^2(x) - 1 + 12 \sec^2(x) = 0$ $\frac{1}{2} \left(\frac{1}{2} \right) - 12 \left(\frac{\sec^2(x)}{9^2} \right) - 1 \left(\frac{1 - 12 \sec^2(x)}{9^3} \right) = 1 - 12 \sec^2(x) - 1 + 12 \sec^2(x) = 0$ $\frac{1}{2} \left(\frac{1}{2} \right) - 12 \left(\frac{\sec^2(x)}{9^2} \right) - 1 \left(\frac{1 - 12 \sec^2(x)}{9^3} \right) = 1 - 12 \sec^2(x) - 1 + 12 \sec^2(x) = 0$ $\frac{1}{2} \left(\frac{1}{2} \right) - 12 \left(\frac{\sec^2(x)}{9^2} \right) - 1 \left(\frac{1 - 12 \sec^2(x)}{9^3} \right) = 1 - 12 \sec^2(x) - 1 + 12 \sec^2(x) = 0$ $\frac{1}{2} \left(\frac{1}{2} \right) - 12 \left(\frac{\sec^2(x)}{9^2} \right) - 1 \left(\frac{1 - 12 \sec^2(x)}{9^3} \right) = 1 - 12 \sec^2(x) - 1 + 12 \sec^2(x) = 0$ $\frac{1}{2} \left(\frac{1}{2} \right) - 12 \left(\frac{\sec^2(x)}{9^2} \right) - 1 \left(\frac{1 - 12 \sec^2(x)}{9^3} \right) = 1 - 12 \sec^2(x) - 1 + 12 \sec^2(x) = 0$ $\frac{1}{2} \left(\frac{1}{2} \right) - 12 \left(\frac{1 - 12 \sec^2(x)}{9^2} \right) - 1 \left(\frac{1 - 12 \sec^2(x)}{9^3} \right) = 1 - 12 \sec^2(x) - 1 + 12 \sec^2(x) = 0$ $\frac{1}{2} \left(\frac{1}{2} \right) - 12 \left(\frac{1 - 12 \sec^2(x)}{9^2} \right) - 1 \left(\frac{1 - 12 \sec^2(x)}{9^3} \right) = 1 - 12 \sec^2(x) - 1 + 12 \sec^2(x) = 0$ $\frac{1}{2} \left(\frac{1}{2} \right) - 12 \left(\frac{1 - 12 \sec^2(x)}{9^2} \right) - 1 \left(\frac{1 - 12 \sec^2(x)}{9^3} \right) = 1 - 12 \sec^2(x) - 1 + 12 \sec^2(x) = 0$ $\frac{1}{2} \left(\frac{1}{2} \right) - 12 \left(\frac{1 - 12 \sec^2(x)}{9^2} \right) - 1 \left(\frac{1 - 12 \sec^2(x)}{9^2} \right) = 1 - 12 \sec^2(x) - 1 + 12 \sec^2(x) = 0$ $\frac{1}{2} \left(\frac{1}{2} \right) - 12 \left(\frac{1 - 12 \sec^2(x)}{9^2} \right) - 1 \left(\frac{1 - 12 \sec^2(x)}{9^2} \right) = 1 - 12 \sec^2(x) - 1 + 12 \sec^2(x) = 0$ $\frac{1}{2} \left(\frac{1 - 12 \sec^2(x)}{9^2} \right) - 1 \left(\frac{1 - 12 \sec^2(x)}{9^2} \right) = 1 - 12 \sec^2(x) = 0$ $\frac{1}{2} \left(\frac{1 - 12 \sec^2(x)}{9^2} \right) - 1 \left(\frac{1 - 12 \sec^2(x)}{9^2} \right) = 1 - 12 \sec^2(x) = 0$ $\frac{1}{2} \left(\frac{1 - 12 \sec^2(x)}{9^2} \right) - 1 \left(\frac{1 - 12 \sec^2(x)}{9^2} \right) = 1 - 12 \sec^2(x) = 0$ $\frac{1}{2} \left(\frac{1 - 12 \sec^2(x)}{9^2} \right) - 1 \left(\frac{1 - 12 \sec^2(x)}{9^2} \right) = 1 - 12 \sec^2(x) = 0$ $\frac{1}{2} \left(\frac{1 - 12 \sec^2(x)}{9^2} \right) = 1 - 12 \sec^2(x) = 0$ $\frac{1}{2} \left(\frac{1 - 12 \sec^2(x)}{9^2} \right) = 1 - 12 \sec^2(x) = 0$ $\frac{1}{2} \left(\frac{1 - 12 \sec^2(x)}{9^2} \right) = 1 - 12 \sec^2(x) = 0$ $\frac{1}{2} \left(\frac{1 - 12 \sec^2(x)}{9^2} \right) = 1 - 12 \sec^2(x) = 0$ $\frac{1}{2} \left(\frac{1 - 12 \sec^2(x)}{9^2} \right) = 1 - 12 \sec^2(x) = 0$ $\frac{1}{2} \left(\frac{1 - 12 \sec^2(x)}{9^2} \right) = 1 - 12 \sec^2(x) = 0$ $\frac{1}{2} \left($

Sol! Show the Wranskian 13 O on (0,00), Have

3. Find the general solution to the following:

(a)
$$y'' + 5y' + 6y = 0$$

$$m^{2}+5m+6=0$$

 $(m+3)(m+2)=0$
 $m=-3$ $|m=-2$
 $y=C,e^{-3x}+C_{2}e^{-2x}$

(b)
$$y^{(4)} - 6y''' + 9y'' = 0$$

$$m^{4}-6m^{3}+9m^{2}=0$$

 $m^{2}(m^{2}-6m+9)=0$
 $m^{2}(m-3)(m-3)=0$
 $m=0$ $|m=0|$ $m=3$ $|m=3$

$$y = C_1 e^{x} + C_2 \times e^{x} + C_3 e^{3x} + C_4 \times e^{3x}$$

$$y = C_1 + C_2 \times + C_3 e^{3x} + C_4 \times e^{3x}$$

(c)
$$y^{(4)} - 81y = 0$$

$$m^{4} - 81 = 0$$

 $(m^{2} - 9)(m^{2} + 9) = 0$
 $(m - 3)(m + .3)(m^{2} + 9) = 0$
 $m = 3$ $m = -3$ $m^{2} = -9$
 $m = \pm \sqrt{-9} = \pm 3c$
 $m = -3c$
 $m = \pm \sqrt{-9} = \pm 3c$
 $m = -3c$
 $m = -3$