Quantitative Management Assignment#8

Rakhee Moolchandani

11/01/2020

This notebook contains the code for the Assignment 8.

Using Benchmarking Libraries for DEA

We will now run DEA analysis using the benchmarking library. First, install the library, if you don't have it already.

```
#install.packages("Benchmarking")
#install.packages("readxl")
library(Benchmarking)
library(readxl)
```

Now, we read our input data. We will read the data from an excel file. Remember our problem had 6 DMUs with two inputs and two outputs.

Inputs: Staffing Labor, Cost of Supplies

##

<chr>

Outputs: No of patient-days reimbursed by third party, No of patient-days reimbursed privately

```
#Read the data from excel file
data <- read_excel("DEA.xlsx")</pre>
#See the data
data
## # A tibble: 6 x 5
   DMU `Staff Hours per~ `Supplies per Da~ `Reimbursed Pati~ `Privately Paid ~
                        <dbl>
                                            <dbl>
     <chr>
                                                              <dbl>
                                                                                 <dbl>
## 1 Facil~
                           150
                                              0.2
                                                              14000
                                                                                  3500
## 2 Facil~
                           400
                                              0.7
                                                              14000
                                                                                 21000
## 3 Facil~
                           320
                                              1.2
                                                              42000
                                                                                 10500
## 4 Facil~
                           520
                                              2
                                                              28000
                                                                                 42000
                           350
                                              1.2
## 5 Facil~
                                                              19000
                                                                                 25000
## 6 Facil~
                           320
                                              0.7
                                                              14000
                                                                                 15000
#Facility1 to Facility 6 are the DMUs
namesDMU <- data[1]</pre>
namesDMU
## # A tibble: 6 x 1
##
    DMU
```

```
## 1 Facility 1
## 2 Facility 2
## 3 Facility 3
## 4 Facility 4
## 5 Facility 5
## 6 Facility 6
#Lets see the Inputs
inputs \leftarrow data[c(2,3)]
inputs
## # A tibble: 6 x 2
     `Staff Hours per Day` `Supplies per Day`
##
                     <dbl>
                                         <dbl>
## 1
                        150
                                           0.2
## 2
                        400
                                           0.7
## 3
                        320
                                           1.2
## 4
                        520
                                           2
## 5
                        350
                                           1.2
## 6
                        320
                                           0.7
#Now, see the outputs
outputs \leftarrow data[c(4,5)]
outputs
## # A tibble: 6 x 2
    `Reimbursed Patient-Days` `Privately Paid Patient-Days`
##
                          <dbl>
                                                         <dbl>
## 1
                          14000
                                                          3500
## 2
                          14000
                                                         21000
## 3
                          42000
                                                         10500
## 4
                          28000
                                                         42000
## 5
                          19000
                                                         25000
## 6
                          14000
                                                         15000
#Create the input matrix
x <- matrix(c(data$`Staff Hours per Day`,data$`Supplies per Day`),ncol = 2)
#Lets see the input matrix
х
        [,1] [,2]
## [1,] 150 0.2
## [2,]
        400 0.7
## [3,]
        320 1.2
## [4,]
        520 2.0
## [5,]
         350 1.2
        320 0.7
## [6,]
#Create the output matrix
y <- matrix(c(data$`Reimbursed Patient-Days`,data$`Privately Paid Patient-Days`),ncol = 2)
\#Lets see the output matrix
У
##
         [,1] [,2]
## [1,] 14000 3500
## [2,] 14000 21000
## [3,] 42000 10500
```

```
## [4,] 28000 42000
## [5,] 19000 25000
## [6,] 14000 15000
```

#plot the graph for Inputs
dea.plot.isoquant(x[,1],x[,2])

#plot the graph for Outputs
dea.plot.transform(y[,1],y[,2])

We now run the DEA analysis for different assumptions:

We use the option of FDH, Free disposability hull, no convexity assumption

```
#DEA input or output efficiency measures, peers, lambdas and slacks
e1 \leftarrow dea(x,y,RTS = "FDH")
#Show the Efficiency
e1
## [1] 1 1 1 1 1 1
#Show the list of objects calculated
str(e1)
## List of 7
              : num [1:6] 1 1 1 1 1 1
## $ eff
## $ objval
               : num [1:6] 1 1 1 1 1 1
             : int [1:6] 1 2 3 4 5 6
## $ peers
                : num [1:6, 1:6] 1 0 0 0 0 0 1 0 0 ...
## $ lambda
   ..- attr(*, "dimnames")=List of 2
##
##
   .. ..$ : NULL
## ....$ : chr [1:6] "L1" "L2" "L3" "L4" ...
## $ RTS
              : chr "fdh"
## $ ORIENTATION: chr "in"
## $ TRANSPOSE : logi FALSE
## - attr(*, "class")= chr "Farrell"
#Show the peers
peers(e1)
##
       peer1
## [1,]
## [2,]
## [3,]
## [4,]
           4
## [5,]
## [6,]
           6
#Show the lambda
lambda(e1)
       L1 L2 L3 L4 L5 L6
## [1,] 1 0 0 0 0 0
## [2,] 0 1 0 0 0 0
## [3,]
        0 0 1 0 0 0
## [4,]
        0 0 0 1 0 0
## [5,]
        0 0 0
                 0 1 0
## [6,]
        0 0 0 0 0 1
#Add the Efficiency, Peers & Lambda values in the table
report1 <- cbind(data, e1$eff, e1$lambda, e1$peers)
#Name the columns of the table
colnames(report1) <- c(names(namesDMU), names(inputs), names(outputs), 'Efficiency', 'Lambda1', 'Lambda2', 'L</pre>
#Sow the table
report1
            DMU Staff Hours per Day Supplies per Day Reimbursed Patient-Days
## 1 Facility 1
                               150
                                                0.2
                                                                      14000
```

```
400
                                                      0.7
## 2 Facility 2
                                                                               14000
## 3 Facility 3
                                   320
                                                      1.2
                                                                               42000
## 4 Facility 4
                                   520
                                                      2.0
                                                                               28000
## 5 Facility 5
                                   350
                                                      1.2
                                                                               19000
## 6 Facility 6
                                   320
                                                      0.7
                                                                               14000
     Privately Paid Patient-Days Efficiency Lambda1 Lambda2 Lambda3 Lambda4
##
## 1
                               3500
                                                       1
                                                                 0
## 2
                              21000
                                               1
                                                       0
                                                                 1
                                                                         0
                                                                                  0
## 3
                              10500
                                               1
                                                       0
                                                                 0
                                                                         1
                                                                                  0
## 4
                                               1
                                                       0
                                                                 0
                                                                         0
                              42000
                                                                                  1
## 5
                              25000
                                               1
                                                       0
                                                                 0
                                                                         0
                                                                                  0
## 6
                                               1
                                                       0
                                                                 0
                                                                         0
                                                                                  0
                              15000
     Lambda5 Lambda6 Peers
##
## 1
            0
                     0
## 2
            0
                     0
                           2
                           3
## 3
            0
                     0
## 4
            0
                     0
                           4
                           5
## 5
            1
                     0
## 6
                     1
                           6
```

#plot the graph for FDH Assumption
dea.plot(x,y,RTS="FDH",txt = rownames(report1))

The results indicate that DMUs 1, 2, 3, 4, 5 and 6 all are efficient.

We use the option of CRS, Constant Return to Scale, convexity and free disposability

```
#DEA input or output efficiency measures, peers, lambdas and slacks
e2 <- dea(x,y,RTS = "CRS")
#Show the Efficiency
e2</pre>
```

```
## [1] 1.0000 1.0000 1.0000 1.0000 0.9775 0.8675
#Show the list of objects calculated
str(e2)
## List of 12
## $ eff
              : num [1:6] 1 1 1 1 0.977 ...
## $ lambda : num [1:6, 1:6] 1 0 0 0 0.2 ...
    ..- attr(*, "dimnames")=List of 2
##
##
    ....$ : NULL
    ....$ : chr [1:6] "L1" "L2" "L3" "L4" ...
## $ objval
               : num [1:6] 1 1 1 1 0.977 ...
## $ RTS
                : chr "crs"
## $ primal
               : NULL
                : NULL
## $ dual
## $ ux
                : NULL
## $ vy
                : NULL
                :function (x)
## $ gamma
## $ ORIENTATION: chr "in"
## $ TRANSPOSE : logi FALSE
## $ param
                : NULL
## - attr(*, "class")= chr "Farrell"
#Show the peers
peers(e2)
       peer1 peer2 peer3
## [1,]
           1
                NA
                      NA
## [2,]
           2
                NA
                      NA
## [3,]
           3 NA
                      NA
## [4,]
           4
                NA
                      NA
## [5,]
                2
                       4
           1
## [6,]
#Show the lambda
lambda(e2)
##
              L1
                         L2 L3
## [1,] 1.0000000 0.00000000 0 0.0000000
## [2,] 0.0000000 1.00000000 0 0.0000000
## [3,] 0.0000000 0.00000000 1 0.0000000
## [4,] 0.0000000 0.00000000 0 1.0000000
## [5,] 0.2000000 0.08048142 0 0.5383307
## [6,] 0.3428571 0.39499264 0 0.1310751
#Add the Efficiency & Lambda values in the table
report2 <- cbind(data, e2$eff, e2$lambda)
#Name the columns of the table
colnames(report2)<- c(names(namesDMU), names(inputs), names(outputs), 'Efficiency', 'Lambda1', 'Lambda2', 'L</pre>
#Sow the table
report2
            DMU Staff Hours per Day Supplies per Day Reimbursed Patient-Days
## 1 Facility 1
                               150
                                                0.2
                                                                      14000
                               400
                                                0.7
                                                                      14000
## 2 Facility 2
## 3 Facility 3
                               320
                                                1.2
                                                                      42000
```

2.0

28000

520

4 Facility 4

```
## 5 Facility 5
                                 350
                                                   1.2
                                                                         19000
                                                   0.7
                                                                         14000
## 6 Facility 6
                                 320
     Privately Paid Patient-Days Efficiency
                                               Lambda1
                                                           Lambda2 Lambda3
                                                                              Lambda4
                             3500 1.0000000 1.0000000 0.00000000
                                                                         0 0.0000000
## 1
## 2
                            21000
                                  1.0000000 0.0000000 1.00000000
                                                                         0 0.0000000
## 3
                            10500 1.0000000 0.0000000 0.00000000
                                                                         1 0.0000000
## 4
                                  1.0000000 0.0000000 0.00000000
                                                                         0 1.0000000
                                  0.9774987 0.2000000 0.08048142
## 5
                            25000
                                                                         0 0.5383307
## 6
                            15000 0.8674521 0.3428571 0.39499264
                                                                         0 0.1310751
     Lambda5 Lambda6
##
## 1
           0
           0
                   0
## 2
## 3
           0
                   0
                   0
## 4
           0
## 5
           0
                   0
## 6
           0
                   0
```

#plot the graph for CRS Assumption
dea.plot(x,y,RTS="CRS",txt = rownames(report2))

The results indicate that DMUs 1, 2, 3 and 4 are efficient. DMU(5) is only 97.7% efficient, and DMU(6) is 86.7% efficient.

We use the option of VRS, Variable returns to scale, convexity and free disposability

```
#DEA input or output efficiency measures, peers, lambdas and slacks
e3 <- dea(x,y,RTS = "VRS")
#Show the Efficiency
e3</pre>
```

[1] 1.0000 1.0000 1.0000 1.0000 1.0000 0.8963

```
#Show the list of objects calculated
str(e3)
## List of 12
## $ eff
              : num [1:6] 1 1 1 1 1 ...
               : num [1:6, 1:6] 1 0 0 0 0 ...
    ..- attr(*, "dimnames")=List of 2
    ....$ : NULL
    ....$ : chr [1:6] "L1" "L2" "L3" "L4" ...
##
## $ objval
              : num [1:6] 1 1 1 1 1 ...
                : chr "vrs"
## $ RTS
## $ primal
                : NULL
## $ dual
              : NULL
## $ ux
                : NULL
## $ vy
                : NULL
## $ gamma :function (x)
## $ ORIENTATION: chr "in"
## $ TRANSPOSE : logi FALSE
## $ param
             : NULL
## - attr(*, "class")= chr "Farrell"
#Show the peers
peers(e3)
       peer1 peer2 peer3
        1 NA
## [1,]
## [2,]
           2
                NA
## [3,]
           3 NA
                      NA
## [4,]
           4 NA
                      NA
## [5,]
           5
                NA
                      NA
## [6,]
                 2
                       5
           1
#Show the lambda
lambda(e3)
                        L2 L3 L4
              L1
## [1,] 1.0000000 0.0000000 0 0.0000000
## [2,] 0.0000000 1.0000000 0 0.0000000
## [3,] 0.0000000 0.0000000 1 0 0.0000000
## [4,] 0.0000000 0.0000000 0 1 0.0000000
## [5,] 0.0000000 0.0000000 0 0 1.0000000
## [6,] 0.4014399 0.3422606 0 0 0.2562995
#Add the Efficiency & Lambda values in the table
report3 <- cbind(data, e3$eff, e3$lambda)
#Name the columns of the table
colnames(report3) <- c(names(namesDMU), names(inputs), names(outputs), 'Efficiency', 'Lambda1', 'Lambda2', 'L</pre>
#Show the table
report3
           DMU Staff Hours per Day Supplies per Day Reimbursed Patient-Days
## 1 Facility 1
                               150
                                                0.2
                                                                     14000
## 2 Facility 2
                               400
                                                0.7
                                                                     14000
## 3 Facility 3
                               320
                                                1.2
                                                                     42000
                               520
                                                2.0
                                                                     28000
## 4 Facility 4
                               350
                                                1.2
                                                                     19000
## 5 Facility 5
```

```
320
                                                   0.7
                                                                          14000
## 6 Facility 6
                                                          Lambda2 Lambda3 Lambda4
##
     Privately Paid Patient-Days Efficiency
                                               Lambda1
                                  1.0000000 1.0000000 0.0000000
## 1
                             3500
                                                                        0
## 2
                            21000
                                   1.0000000 0.0000000 1.0000000
                                                                         0
                                                                                 0
## 3
                            10500
                                   1.0000000 0.0000000 0.0000000
                                                                         1
                                                                                 0
## 4
                            42000
                                  1.0000000 0.0000000 0.0000000
                                                                        0
                                                                                 1
## 5
                            25000 1.0000000 0.0000000 0.0000000
                                                                         0
                                                                                 0
                            15000 0.8963283 0.4014399 0.3422606
                                                                         0
                                                                                 0
## 6
##
       Lambda5 Lambda6
## 1 0.000000
                     0
## 2 0.0000000
                     0
                     0
## 3 0.0000000
## 4 0.000000
                     0
## 5 1.0000000
                     0
## 6 0.2562995
                     0
```


The results indicate that DMUs 1, 2, 3, 4 and 5 are efficient. DMU(6) is only 89.6% efficient.

We use the option of IRS, Increasing returns to scale, convexity and free disposability

```
#DEA input or output efficiency measures, peers, lambdas and slacks
e4 \leftarrow dea(x,y,RTS = "IRS")
#Show the Efficiency
```

[1] 1.0000 1.0000 1.0000 1.0000 1.0000 0.8963

```
#Show the list of objects calculated
str(e4)
## List of 12
## $ eff
              : num [1:6] 1 1 1 1 1 ...
               : num [1:6, 1:6] 1 0 0 0 0 ...
    ..- attr(*, "dimnames")=List of 2
    ....$ : NULL
    ....$ : chr [1:6] "L1" "L2" "L3" "L4" ...
##
## $ objval
              : num [1:6] 1 1 1 1 1 ...
                : chr "irs"
## $ RTS
## $ primal
                : NULL
## $ dual
               : NULL
                : NULL
## $ ux
## $ vy
                : NULL
## $ gamma :function (x)
## $ ORIENTATION: chr "in"
## $ TRANSPOSE : logi FALSE
## $ param
             : NULL
## - attr(*, "class")= chr "Farrell"
#Show the peers
peers(e4)
       peer1 peer2 peer3
        1 NA
## [1,]
## [2,]
           2
                NA
## [3,]
           3 NA
                      NA
## [4,]
           4 NA
                      NA
## [5,]
           5
                NA
                      NA
## [6,]
                 2
                       5
           1
#Show the lambda
lambda(e4)
                        L2 L3 L4
              L1
## [1,] 1.0000000 0.0000000 0 0.0000000
## [2,] 0.0000000 1.0000000 0 0.0000000
## [3,] 0.0000000 0.0000000 1 0 0.0000000
## [4,] 0.0000000 0.0000000 0 1 0.0000000
## [5,] 0.0000000 0.0000000 0 0 1.0000000
## [6,] 0.4014399 0.3422606 0 0 0.2562995
#Add the Efficiency & Lambda values in the table
report4 <- cbind(data, e4$eff, e4$lambda)
#Name the columns of the table
colnames(report4)<- c(names(namesDMU), names(inputs), names(outputs), 'Efficiency', 'Lambda1', 'Lambda2', 'L</pre>
#Show the table
report4
           DMU Staff Hours per Day Supplies per Day Reimbursed Patient-Days
## 1 Facility 1
                               150
                                                0.2
                                                                     14000
## 2 Facility 2
                               400
                                                0.7
                                                                     14000
## 3 Facility 3
                               320
                                                1.2
                                                                     42000
                               520
                                                2.0
                                                                     28000
## 4 Facility 4
                               350
                                                1.2
                                                                     19000
## 5 Facility 5
```

```
320
                                                   0.7
                                                                         14000
## 6 Facility 6
                                                          Lambda2 Lambda3 Lambda4
##
     Privately Paid Patient-Days Efficiency
                                               Lambda1
                                  1.0000000 1.0000000 0.0000000
## 1
                             3500
                                                                        0
## 2
                            21000
                                   1.0000000 0.0000000 1.0000000
                                                                         0
                                                                                 0
## 3
                            10500
                                   1.0000000 0.0000000 0.0000000
                                                                         1
                                                                                 0
## 4
                            42000
                                  1.0000000 0.0000000 0.0000000
                                                                        0
                                                                                 1
## 5
                            25000 1.0000000 0.0000000 0.0000000
                                                                         0
                                                                                 0
                            15000 0.8963283 0.4014399 0.3422606
                                                                         0
                                                                                 0
## 6
##
       Lambda5 Lambda6
## 1 0.000000
                     0
## 2 0.0000000
                     0
                     0
## 3 0.0000000
## 4 0.000000
                     0
## 5 1.0000000
                     0
## 6 0.2562995
                     0
#plot the graph for IRS Assumption
```

dea.plot(x,y,RTS="IRS",txt = rownames(report4))

The results indicate that DMUs 1, 2, 3, 4 and 5 are efficient. DMU(6) is only 89.6% efficient.

We use the option of DRS, Decreasing returns to scale, convexity, down-scaling and free disposability

```
#DEA input or output efficiency measures, peers, lambdas and slacks
e5 \leftarrow dea(x,y,RTS = "DRS")
#Show the Efficiency
```

[1] 1.0000 1.0000 1.0000 1.0000 0.9775 0.8675

```
#Show the list of objects calculated
str(e5)
## List of 12
## $ eff
              : num [1:6] 1 1 1 1 0.977 ...
               : num [1:6, 1:6] 1 0 0 0 0.2 ...
    ..- attr(*, "dimnames")=List of 2
    ....$ : NULL
    ....$ : chr [1:6] "L1" "L2" "L3" "L4" ...
##
## $ objval
              : num [1:6] 1 1 1 1 0.977 ...
                : chr "drs"
## $ RTS
## $ primal
                : NULL
## $ dual
               : NULL
                : NULL
## $ ux
## $ vy
                : NULL
## $ gamma :function (x)
## $ ORIENTATION: chr "in"
## $ TRANSPOSE : logi FALSE
## $ param
             : NULL
## - attr(*, "class")= chr "Farrell"
#Show the peers
peers(e5)
       peer1 peer2 peer3
        1
## [1,]
                NA
## [2,]
           2
                NA
## [3,]
           3 NA
                      NA
## [4,]
           4
              NA
                      NA
## [5,]
           1
                2
                       4
## [6,]
                 2
                       4
           1
#Show the lambda
lambda(e5)
              L1
                         L2 L3
## [1,] 1.0000000 0.00000000 0 0.0000000
## [2,] 0.0000000 1.00000000 0 0.0000000
## [3,] 0.0000000 0.00000000 1 0.0000000
## [4,] 0.0000000 0.00000000 0 1.0000000
## [5,] 0.2000000 0.08048142 0 0.5383307
## [6,] 0.3428571 0.39499264 0 0.1310751
#Add the Efficiency, Peers & Lambda values in the table
report5 <- cbind(data, e5$eff, e5$lambda)
#Name the columns of the table
colnames(report5)<- c(names(namesDMU), names(inputs), names(outputs), 'Efficiency', 'Lambda1', 'Lambda2', 'L</pre>
#Show the table
report5
           DMU Staff Hours per Day Supplies per Day Reimbursed Patient-Days
## 1 Facility 1
                               150
                                                0.2
                                                                      14000
## 2 Facility 2
                               400
                                                0.7
                                                                      14000
## 3 Facility 3
                               320
                                                1.2
                                                                      42000
                               520
                                                2.0
                                                                      28000
## 4 Facility 4
                               350
                                                1.2
                                                                      19000
## 5 Facility 5
```

```
320
                                                                          14000
## 6 Facility 6
                                                   0.7
##
     Privately Paid Patient-Days Efficiency
                                               Lambda1
                                                           Lambda2 Lambda3
                                                                              Lambda4
                             3500 1.0000000 1.0000000 0.00000000
## 1
                                                                          0 0.0000000
## 2
                                   1.0000000 0.0000000 1.00000000
                                                                          0 0.0000000
                            21000
## 3
                            10500
                                   1.0000000 0.0000000 0.00000000
                                                                          1 0.0000000
## 4
                            42000
                                  1.0000000 0.0000000 0.00000000
                                                                          0 1.0000000
## 5
                            25000 0.9774987 0.2000000 0.08048142
                                                                          0 0.5383307
## 6
                            15000 0.8674521 0.3428571 0.39499264
                                                                          0 0.1310751
##
     Lambda5 Lambda6
## 1
           0
                   0
## 2
           0
                   0
           0
                   0
## 3
           0
                   0
## 4
                   0
## 5
           0
## 6
           0
                   0
```

```
#plot the graph for IRS Assumption
dea.plot(x,y,RTS="DRS",txt = rownames(report5))
```


The results indicate that DMUs 1, 2, 3 and 4 are efficient. DMU(5) is only 97.7% efficient, and DMU(6) is 86.7% efficient.

We use the option of FRH, Additivity (scaling up and down, but only with integers), and free disposability

```
#DEA input or output efficiency measures, peers, lambdas and slacks
e6 <- dea(x,y,RTS = "ADD")
#Show the Efficiency
e6</pre>
```

[1] 1 1 1 1 1 1

```
#Show the list of objects calculated
str(e6)
## List of 12
## $ eff
                : num [1:6] 1 1 1 1 1 1
## $ lambda
               : num [1:6, 1:6] 1 0 0 0 0 0 0 1 0 0 ...
    ..- attr(*, "dimnames")=List of 2
    ....$ : NULL
##
    ....$ : chr [1:6] "L1" "L2" "L3" "L4" ...
## $ objval
               : num [1:6] 1 1 1 1 1 1
                : chr "add"
## $ RTS
## $ primal
                : NULL
## $ dual
                : NULL
## $ ux
                : NULL
## $ vy
                : NULL
            :function (x)
## $ gamma
## $ ORIENTATION: chr "in"
## $ TRANSPOSE : logi FALSE
## $ param
              : NULL
## - attr(*, "class")= chr "Farrell"
#Show the peers
peers(e6)
       peer1
## [1,]
## [2,]
           2
## [3,]
## [4,]
## [5,]
## [6,]
#Show the lambda
lambda(e6)
       L1 L2 L3 L4 L5 L6
## [1,] 1 0 0 0 0 0
## [2,] 0 1 0 0 0 0
## [3,] 0 0 1 0 0 0
## [4,] 0 0 0 1 0 0
## [5,] 0 0 0 0 1 0
## [6,] 0 0 0 0 1
#Add the Efficiency, Peers & Lambda values in the table
report6 <- cbind(data, e6$eff, e6$lambda)
#Name the columns of the table
colnames(report6) <- c(names(namesDMU), names(inputs), names(outputs), 'Efficiency', 'Lambda1', 'Lambda2', 'L</pre>
#Sow the table
report6
           DMU Staff Hours per Day Supplies per Day Reimbursed Patient-Days
                                                0.2
## 1 Facility 1
                               150
                                                                     14000
## 2 Facility 2
                               400
                                                0.7
                                                                     14000
                               320
## 3 Facility 3
                                                1.2
                                                                     42000
## 4 Facility 4
                               520
                                                2.0
                                                                     28000
                               350
                                                1.2
                                                                     19000
## 5 Facility 5
```

```
0.7
                                                                              14000
## 6 Facility 6
                                   320
##
     Privately Paid Patient-Days Efficiency Lambda1 Lambda2 Lambda3 Lambda4
## 1
                               3500
                                                       1
                                                                0
## 2
                             21000
                                              1
                                                       0
                                                                1
                                                                         0
                                                                                  0
## 3
                             10500
                                              1
                                                       0
                                                                0
                                                                         1
                                                                                  0
## 4
                             42000
                                              1
                                                       0
                                                                0
                                                                         0
                                                                                  1
## 5
                             25000
                                                       0
                                                                0
                                                                         0
                                                                                  0
                                                       0
                                                                0
                                                                         0
                                                                                  0
## 6
                             15000
##
     Lambda5 Lambda6
## 1
            0
## 2
            0
                     0
            0
                     0
## 3
            0
                     0
## 4
                     0
## 5
            1
## 6
                     1
#plot the graph for FDH Assumption
dea.plot(x,y,RTS="ADD",txt = rownames(report5))
```


The results indicate that DMUs 1, 2, 3, 4, 5 and 6 all are efficient.

Compare and Contrast the above Results

##

Lets compare the efficiency of all the DMUs for all the assumptions

```
#Add the Efficiency of all the DMUs for all the Assumptions in a table
EfficiencyReport <- cbind(data[,1],e1$eff,e2$eff,e3$eff,e4$eff,e5$eff,e6$eff)
#Name the columns of the table
colnames(EfficiencyReport) <- c(names(namesDMU), 'FDH Efficiency', 'CRS Efficiency', 'VRS Efficiency', 'IRS</pre>
#Show the Efficiency table
EfficiencyReport
```

DMU FDH Efficiency CRS Efficiency VRS Efficiency IRS Efficiency

```
1.0000000
                                                                   1.0000000
## 1 Facility 1
                             1
                                    1.0000000
## 2 Facility 2
                                    1.0000000
                                                    1.0000000
                                                                   1.0000000
                             1
## 3 Facility 3
                             1
                                    1.0000000
                                                    1.0000000
                                                                   1.0000000
## 4 Facility 4
                             1
                                    1.0000000
                                                    1.0000000
                                                                   1.0000000
## 5 Facility 5
                             1
                                    0.9774987
                                                    1.0000000
                                                                   1.0000000
## 6 Facility 6
                             1
                                    0.8674521
                                                    0.8963283
                                                                   0.8963283
    DRS Efficiency FRH Efficiency
          1.0000000
## 1
                                 1
## 2
         1.0000000
                                 1
## 3
         1.0000000
                                 1
## 4
         1.0000000
                                 1
## 5
          0.9774987
                                 1
## 6
          0.8674521
                                 1
#Let's compare the Efficiency of all the DMUs for all the assumptions using a plot
#Concatenate the Efficiency
spreadsheet <- cbind(e1$eff,e2$eff,e3$eff,e4$eff,e5$eff,e6$eff)</pre>
#Name the rows
rownames(spreadsheet) <- c("Facility1", "Facility2", "Facility3", "Facility4", "Facility5", "Facility6")
#Name the columns
colnames(spreadsheet) <- c ("FDH","CRS","VRS","IRS","DRS","FRH")</pre>
#See the result
spreadsheet
##
             FDH
                       CRS
                                 VRS
                                            IRS
                                                      DRS FRH
               1 1.0000000 1.0000000 1.0000000 1.0000000
## Facility1
## Facility2
               1 1.0000000 1.0000000 1.0000000 1.0000000
              1 1.0000000 1.0000000 1.0000000 1.0000000
## Facility3
## Facility4
              1 1.0000000 1.0000000 1.0000000 1.0000000
## Facility5
               1 0.9774987 1.0000000 1.0000000 0.9774987
## Facility6
               1 0.8674521 0.8963283 0.8963283 0.8674521
#plot the graph
barplot(t(spreadsheet),col=cm.colors(6),xlab = "DMUs", ylab="Efficiency",beside=TRUE)
```


- 1) Facility 1 is fully efficient for all the assumptions.
- 2) Facility 2 is fully efficient for all the assumptions.
- 3) Facility 3 is fully efficient for all the assumptions.
- 4) Facility 4 is fully efficient for all the assumptions.
- 5) Facility 5 is fully efficient for FDH, VRS, IRS and FRH assumptions. For assumptions DRS and CRS, it is 97.7% efficient.
- 6) Facility 6 is fully efficient for FDH and FRS assumptions. For CRS and DRS assumptions, it is 86.7% efficient. For IRS and VRS assumptions, it is 89.6% efficient.