MA 515 Homework 6

Zheming Gao

November 20, 2017

Problem 1

Problem 2

Proof. Suppose $x \neq y$. Let $V = span\{x, y\}$ functional $f: V \to \mathbb{R}$ such that $\forall s, t \in \mathbb{R}$,

$$f(sx + ty) = s||x|| - t||y||.$$

Hence, f(x) = ||x||, f(y) = -||y|| and $f(x) \neq f(y)$. By the theorem, there exists a functional $F: X \to \mathbb{R}$ such that F = f on V and $||f||_{\infty} = ||F||_{\infty}$, which is a contradiction.

Problem 3

Problem 7

Proof. 1. $\langle x, x \rangle = 1/2(\|x + x\|^2 - \|x\|^2 - \|x\|^2) = \|x\|^2 \ge 0$. And $\langle x, x \rangle = 0$ if and only if x = 0.

- 2. It is also clear that $\langle x, y \rangle = \langle y, x \rangle, \forall x, y \in X$.
- 3. We will show $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$, $\forall x, y, z \in X$. By definition, we know

$$\langle x, y + z \rangle = \frac{1}{2} (\|x + y + z\|^2 - \|x\|^2 - \|y + z\|^2).$$

and

$$||x + y + z||^{2} = 2||x||^{2} + 2||y + z||^{2} - ||x - y - z||^{2}$$

$$= 2||x + y||^{2} + 2||z||^{2} - ||x + y - z||^{2}$$
(1)

Also, with Parallelogram theorem, we have

$$||x - y - z||^2 + ||x + y - z||^2 = 2||x - z|| + 2||y||^2.$$

Hence, plug it in (1) and have

$$||x + y + z||^2 = ||x||^2 + ||y + z||^2 + ||x + y||^2 + ||z||^2 - ||x - z||^2 - ||y||^2.$$

which implies

$$\langle x, y + z \rangle = \frac{1}{2} (\|x + y\|^2 - \|x - z\|^2 + \|z\|^2 - \|y\|^2)$$

$$= \frac{1}{2} (\|x + y\|^2 - \|y\|^2 - \|x\|^2 - \|x - z\|^2 + \|z\|^2 + \|x\|^2)$$

$$= \langle x, y \rangle + \langle x, z \rangle$$

4. We need to show that $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle, \forall x, y \in X, \lambda \in \mathbb{R}$.

To show this, we need a few steps. Firstly, it holds for $\lambda \in \mathbb{N}$ and it can be proved by induction. Also,

$$\langle x, -y \rangle = \frac{1}{2} (\|x - y\|^2 - \|x\|^2 - \|y\|^2)$$

$$= \frac{1}{2} (-\|x + y\|^2 + \|y\|^2 + \|x\|^2)$$

$$= -\langle x, y \rangle$$

Hence, it holds for $\lambda = -1$ and so holds for $\lambda \in \mathbb{Z}$.

Next we will show that it holds for $\lambda \in \mathbb{Q}$. Let $\lambda = p/q, (q \neq 0), p, q \in \mathbb{Z}$. Hence,

$$q < x, \lambda y > = q < x, \frac{p}{q}y > = < x, py > = p < x, y > .$$

Both sides divided by q and we have $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle, \forall \lambda \in \mathbb{Q}$.

Since \mathbb{Q} is dense in \mathbb{R} , $\forall \lambda \in \mathbb{R}$, there exists a sequence of rational numbers $\{\lambda_n\}_{n\in\mathbb{N}}$ such that $\lambda_n \to \lambda$. Hence, $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$, $\forall \lambda \in \mathbb{R}$.

In conclusion, $<\cdot,\cdot>$ is an inner product.

Problem 8

(i) Proof. Suppose $\|\cdot\|_1$ is induced by inner product, i.e., $\|\cdot\|_1 = \sqrt{\langle\cdot,\cdot\rangle}$. However, if so, then $\|\cdot\|$ must satisfy parallelogram identity. For $a = (1,1)^T$, $b = (-1,2)^T$,

$$2||a||_1^2 + 2||b||_1^2 = 26 \neq 18 = ||a - b||_1^2 + ||a + b||_1^2.$$

This is a contradiction.

(ii) Still, it breaks the parallelogram identity.

Let f(x) = x, g(x) = 2x. Hence, $||f||_{\infty} = 1$, $||g||_{\infty} = 2$. But $||f+g||_{\infty} = 3$, $||f-g||_{\infty} = 1$. So

$$||f + g||_{\infty} + ||f - g||_{\infty} \neq 2||f||_{\infty} + 2||g||_{\infty}.$$

Problem 9

Proof. " \Rightarrow ", proved in class. $\langle x, x_n \rangle$ converges $\langle x, x \rangle = ||x||^2$. Hence,

$$\lim_{n \to +\infty} \|x_n - x\|^2 = \lim_{n \to +\infty} \langle x_n - x, x_n - x \rangle = \lim_{n \to +\infty} \|x_n\|^2 - 2\langle x, x_n \rangle + \|x\|^2 = 0$$

" \Leftarrow " . If $x_n \to x$, then by Cauchy-Schwartz inequality,

$$0 \leqslant \lim_{n \to +\infty} |\langle x_n - x, x \rangle| \leqslant \lim_{n \to +\infty} ||x_n - x|| ||x|| = 0.$$

By squeeze theorem, $\lim_{n\to+\infty} \langle x_n - x, x \rangle = 0$. Hence, $x_n \rightharpoonup x$.

Also,

$$0 = \overline{\lim}_{n \to +\infty} \|x_n - x\|^2 = \overline{\lim}_{n \to +\infty} \langle x_n - x, x_n - x \rangle$$

$$= \overline{\lim}_{n \to +\infty} \|x_n\|^2 - 2 \overline{\lim}_{n \to +\infty} \langle x, x_n \rangle + \|x\|^2$$

$$= \overline{\lim}_{n \to +\infty} \|x_n\|^2 - 2 \overline{\lim}_{n \to +\infty} \langle x, x_n \rangle + \|x\|^2$$

$$= \overline{\lim}_{n \to +\infty} \|x_n\|^2 - \|x\|^2$$

Similarly, we have $\underline{\lim}_{n\to+\infty} \|x_n\|^2 - \|x\|^2 = 0$. Hence, $\lim_{n\to+\infty} \|x_n\| = \|x\|$.

Problem 10

Proof. (i) (Shown in class) Since $\{e_n\}_{n\in\mathbb{N}}$ is an orthonormal basis of \mathcal{H} , for any $x\in\mathcal{H}$, it can be expressed as

$$x = \sum_{i=1}^{\infty} \alpha_i e_i \qquad \alpha_i \in \mathbb{R}.$$

Hence,

$$\langle x, e_i \rangle = \alpha_i$$
 and $\langle x, x \rangle = ||x||^2 = \sum_{i=1}^{\infty} \alpha_i^2 < +\infty.$

Hence,

$$\lim_{n \to +\infty} \langle x, e_i \rangle = \lim_{n \to +\infty} \alpha_i = 0.$$

i.e., $e_n \rightharpoonup 0$.

(ii) *****

iv