St. JOSEPH'S COLLEGE OF ENGINEERING, CHENNAI 119

St. JOSEPH'S INSTITUTE OF TECHNOLOGY, CHENNAI 119

MATHEMATICS I (MA6151) COMMON TO ALL

ASSIGNMENT III

UNIT – IV DIFFERENTIAL CALCULUS OF SEVERAL VARIABLES PART – A

1. If
$$u = \frac{y}{z} + \frac{z}{x}$$
, find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$

2. If
$$x^y + y^x = c$$
, find $\frac{dy}{dx}$

- 3. State any two properties of Jacobian
- 4. Find the Jacobian of the transformation $x = r \cos \theta$, $y = r \sin \theta$

5. If
$$u = \frac{y^2}{x}$$
, $v = \frac{x^2}{v}$, find $\frac{\partial(u,v)}{\partial(x,y)}$

- 6. Find Taylor's series expansion of $e^x \sin y$ near the point $\left(-1, \frac{\pi}{4}\right)$ up to first degree terms.
- 7. Write the sufficient conditions for f(x, y) to have a maximum value at (a, b)

8. Find the stationary points of
$$f(x, y) = x^2 - xy + y^2 - 2x + y$$

PART – B

1(a) If z = f(x, y) where $x = r \cos \theta$ and $y = r \sin \theta$, show that

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$$

(b) If
$$z = f(x, y)$$
, where $x = u^2 - v^2$, $y = 2uv$, prove that $\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} = 4(u^2 + v^2) \left(\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} \right)$

2(a) Find the Jacobian of
$$y_1, y_2, y_3$$
 with respect to x_1, x_2, x_3 if $y_1 = \frac{x_2 x_3}{x_1}$, $y_2 = \frac{x_1 x_3}{x_2}$, $y_3 = \frac{x_1 x_2}{x_3}$

- (b) If u = xy + yz + zx, $v = x^2 + y^2 + z^2$ and w = x + y + z, prove that they are functionally dependent and also determine the functional relationship between u, v, w
- 3(a) Expand $e^x \log(1+y)$ in powers of x and y up to third degree using Taylor's series.
- (b) Find the maximum and minimum values of $f(x, y) = x^3 + y^3 3x 12y + 20$
- 4(a) A rectangular box open at the top is to have a volume of 32 cc. Find the dimensions of the box, that requires the least material for its construction
- (b) Find the volume of the largest rectangular solid which can be inscribed in the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$