

Применение СПО для решения задач аэро- и газовой динамики

Семинар 5. Численные методы. Разностные схемы.

Преподаватель: Романова Дарья Игоревна

Институт системного программирования им. В.П. Иванникова РАН, Москва

2023

Уравнение переноса в OpenFOAM

scalarTransportFoam

Уравнение переноса реализованное в решателе scalarTransportFoam

$$\frac{\partial T}{\partial t} + \nabla \cdot (\boldsymbol{U}T) - \nabla^2(\mathcal{D}_T T) = 0,$$

где T — скаляр, ${\it U}$ — скорость среды, ${\cal D}_T$ — коэффициент диффузии (константа), отнесенный к плотности среды (константа).

В одномерном случае

При U = (U, 0, 0), U = const:

$$\frac{\partial T}{\partial t} + U \frac{\partial T}{\partial x} - \mathcal{D}_T \frac{\partial^2 T}{\partial x^2} = 0.$$

Оценка устойчивости разностной схемы методом гармоник

Рассмотрим частное решение вида гармоники (первый член разложения в ряд по пространственным гармоникам):

$$T_i^n = \rho^n e^{\iota i \varphi},$$

где ι — мнимая единица.

При использовании схемы неявный левый уголок, когда U>0, $\mathcal{D}_{\mathcal{T}}=0$ получаем разностную схему вида:

$$\frac{T_i^{n+1} - T_i^n}{dt} + U \frac{T_i^{n_1} - T_{i-1}^{n_1}}{dx} = 0.$$

Подставим выражение для гармоники в разностную схему:

$$\frac{\rho^{n+1}e^{\iota i\varphi}-\rho^ne^{\iota i\varphi}}{dt}+U\frac{\rho^{n+1}e^{\iota i\varphi}-\rho^{n+1}e^{\iota(i-1)\varphi}}{dx}=0.$$

Оценка устойчивости разностной схемы методом гармоник

Сократим на $ho^n e^{\iota i \varphi}$ и обозначим $r = \frac{U dt}{dx}$:

$$ho-1+\mathit{CFL}(
ho-
ho e^{-\iota arphi})=0.$$
 $ho=rac{1}{1+r(1-e^{-\iota arphi})}.$

Условие устойчивости по методу гармоник

Разностная схема считается устойчивой, если $|\rho| \le 1$.

$$\left| \frac{1}{1 + r(1 - e^{-\iota \varphi})} \right| \le 1$$

$$|1 + r - re^{-\iota \varphi}| > 1$$

Условие $|\rho| \le 1$ выполнено при любом r. То есть схема абсолютно устойчива.

Кейс для решения одномерного уравнения переноса

Keйc transport1D лежит на GitHub https://github.com/RomanovaDI/freeSoftwareTrainingCourse

Настройки разностной схемы. Файл system/fvSchemes

```
o ddtSchemes
1 {
       default
                         Euler:
2
3
4 gradSchemes
5
       default
                        Gauss linear;
6
  divSchemes
9
      default
10
                        none;
       div(phi,T)
                        Gauss linearUpwind grad(T);
11
12
  laplacianSchemes
14 {
       default
15
                        none;
       laplacian(DT,T) Gauss linear corrected;
16
17 }
```

```
18 interpolationSchemes
19 {
20     default     linear;
21 }
22 snGradSchemes
23 {
24     default     corrected;
25 }
```

fvSchemes

Файл fvSchemes содержит в себе подсловари для указания типа аппроксимации различных терминов.

Ключевое слово	Категория математических терминов
interpolationSchemes	Межточечная интерполяция значений
snGradSchemes	Компонент градиента по нормали к грани ячейки
gradSchemes	Градиент $ abla$
divSchemes	Дивергенция $oldsymbol{ abla}\cdot$
laplacianSchemes	Оператор Лапласа Δ
ddtSchemes	Первая производная по времени $\partial/\partial t$
d2dt2Schemes	Вторая производная по времени $\partial^2/\partial t^2$

fvSchemes

В примере мы видели, что файл fvSchemes содержит в себе подсловари для каждой категории математических терминов, в которых перечислены конкретные термины, а так же тип схемы по умолчанию (default).

Если задано значение по умолчанию, то можно не перечислять явно все термины, к отсутствующим терминам будет применена разностная схема указанная в default.

Можно указать default none;, в этом случае необходимо прописать разностную схему для всех терминов уравнения. В этом случае при отсутствии какого-либо термина будет ошибка.

Разностные схемы общего вида

Ключевое слово	Описание
linear	Linear interpolation (central differencing) which takes into account the distances between points
cubicCorrection	Cubic scheme $\varphi_{i+1,j,k} - \varphi_{i-1,j,k} = 1/4((\varphi_{i+1,j+1,k+1} - \varphi_{i-1,j+1,k+1}) + (\varphi_{i+1,j+1,k-1} - \varphi_{i-1,j+1,k-1}) + (\varphi_{i+1,j-1,k-1} - \varphi_{i-1,j-1,k-1}) + (\varphi_{i+1,j-1,k+1} - \varphi_{i-1,j-1,k+1}))$
${\tt midPoint}$	Linear interpolation with symmetric weighting

Разностные схемы для конвективных членов

Upwinded convection schemes

Ключевое слово	Описание	Схема (нумерация по потоку)
upwind	Upwind differencing	$\varphi_i - \varphi_{i-1}$
linearUpwind	Linear upwind differencing	$\begin{vmatrix} \varphi_i - \varphi_{i-1} + 0.5((\varphi_i - \varphi_{i-1}) + (\varphi_{i-1} - \varphi_{i-2})) \end{vmatrix}$
skewLinear	Linear with skewness correction	
filteredLinear2	Linear with filtering for high-frequency	

Разностные схемы для конвективных членов

Total variation diminishing (TVD) schemes (Схемы, ограничивающие общую вариацию)

Ключевое слово	Описание
limitedLinear	limited linear differencing
vanLeer	van Leer limiter
SuperBee	SuperBee limiter
MUSCL	MUSCL limiter
limitedCubic	Cubic limiter

Разностные схемы для конвективных членов

Normalised variable diminishing (NVD) schemes (Схемы ограничивающие нормализованную вариацию)

Ключевое слово	Описание
SFCD	Self-filtered central differencing
Gamma ψ	Gamma differencing

fvSchemes. interpolationSchemes

Подсловарь interpolationSchemes содержит термины, представляющие собой межточечные интерполяции значений, как правило, интерполяция в центрах граней по значениям в центрах ячеек.

Схемы для конвективных членов могут быть также быть использованы, но в силу того, что они вычисляют интерполяцию на основе потока скорости потока, необходимо указывать для этих схем имя поля потока, на котором будет основываться интерполяция. В большинстве солверов OpenFOAM это phi, имя, которое обычно используется для обозначения поля потока скорости φ .

```
o default upwind phi;
```

Для некоторых схем TVD/NVD требуется коэффициент ψ ограничивающий поток, $0 \le \psi \le 1$ (где $\psi = 1$ обычно обеспечивает наилучшую сходимость, а $\psi = 0$ — наилучшую точность. Обычно рекомендуется работать с $\psi = 1$ — дефолтное значение. Такие схемы ограничивают поток, который необходимо указывать.

```
o default limitedLinear phi 1.0;
```

fvSchemes. interpolationSchemes

Существуют расширенные версии некоторых ограничевающих схем для тех скаляров, которые должны быть строго ограничены. Для задания ограничения на скаляр имя схемы должно начинаться со слова limited, а за названием схемы следует нижний и верхний пределы для скаляра. Например, чтобы ограничить скаляр при схеме vanLeer строго между значениями -2 и 3, пользователь должен указать:

```
o default limitedVanLeer -2.0 3.0;
```

Существуют специализированные версии этих схем для скалярных полей, которые ограничены от 0 до 1. Они выбираются путем добавления 01 к имени схемы. Например, чтобы связать схему vanLeer строго между 0 и 1, пользователь должен указать:

```
o default vanLeer01;
```

Строго ограниченные версии доступны для следующих схем: limitedLinear, vanLeer, Gamma, limitedCubic, MUSCL и SuperBee.

fvSchemes. snGradSchemes

Подсловарь snGradSchemes содержит описание разностных схем для аппроксимации градиента вдоль нормали к поверхности. Градиента вдоль нормали к поверхности оценивается на поверхности ячейки, например, для аппроксимации оператора Лапласа с использованием интегрирования методом Гаусса. Список доступных схем:

Ключевое слово	Описание
corrected	Explicit non-orthogonal correction
uncorrected	No non-orthogonal correction
limited ψ	Limited non-orthogonal correction
bounded	Bounded correction for positive scalars
fourth	Fourth order

Схема limited требует задания коэффициента ψ , который:

$$\psi = \begin{cases} 0 & \text{corresponds to uncorrected,} \\ 0.333 & \text{non-orthogonal correction } \leq 0.5 \times \text{orthogonal part,} \\ 0.5 & \text{non-orthogonal correction } \leq \text{orthogonal part,} \\ 1 & \text{corresponds to uncorrected.} \end{cases}$$

16 / 24

fvSchemes. gradSchemes

Подсловарь gradSchemes содержит описание разностных схем для аппроксимации градиента. Список доступных схем:

Ключевое слово	Описание	
Gauss <	Second order, Gaussian integration	
interpolationScheme>		
leastSquares	Second order, least squares	
fourth ψ	Fourth order, least squares	
cellLimited <gradscheme></gradscheme>	Cell limited version of one of the above schemes	
faceLimited <gradscheme></gradscheme>	Face limited version of one of the above schemes	

Примеры:

```
grad(p) leastSquares;
grad(p) Gauss linear;
grad(p) cellLimited Gauss linear 1;
```

fvSchemes. laplacianSchemes

Подсловарь laplacianSchemes содержит описание разностных схем для аппроксимации оператора Лапласа.

Список доступных схем:

Ключевое слово	Описание
Gauss <interpolationscheme> <sngradscheme></sngradscheme></interpolationscheme>	Gaussian integration

Пример:

```
o laplacian(nu,U) Gauss linear corrected;
```

Синтакс записи аппроксимируемого члена обуславливается классическим видом оператора Лапласа в гидродинамике $\nabla \cdot (\nu \nabla \boldsymbol{U})$, который записывается как laplacian(nu, U).

fvSchemes, divSchemes

Подсловарь ${\tt divSchemes}$ содержит описание разностных схем для аппроксимации дивергенции. Список доступных схем:

Ключевое слово	Описание
Gauss <interpolationscheme></interpolationscheme>	Gaussian integration

Пример:

```
o div(phi,U) Gauss upwind;
```

Синтакс записи аппроксимируемого члена обуславливается классическим видом конвективного члена в гидродинамике $\nabla \cdot (\rho \textbf{\textit{U}}\textbf{\textit{U}})$, который записывается как $\operatorname{div}(\operatorname{phi}, \, \mathtt{U})$, где $\phi = \rho \textbf{\textit{U}}$. Синтаксис для указания схем аппроксимации для конвективных членов здесь не включает указание потока, поскольку он уже известен исходя из записи самого члена, т. е. для $\operatorname{div}(\operatorname{phi}, \, \mathtt{U})$ мы знаем, что поток равен phi , поэтому указание его в схеме интерполяции только вызовет вопросы.

fvSchemes. ddtSchemes

Подсловарь ddtSchemes содержит описание разностных схем для аппроксимации производной по времени. Список доступных схем:

Ключевое слово	Описание
Euler	First order, bounded, implicit
localEuler	Local-time step, first order, bounded, implicit
CrankNicholson ψ	Second order, bounded, implicit
backward	Second order, implicit
${\tt steadyState}$	Does not solve for time derivatives

Для схемы Кранка-Николсона задаётся коэффициент смешения ψ со схемой Эйлера. Значение коэффициента $\psi=1$ соответствует чистому Кранк-Николсону, а $\psi=0$ соответствует чистому Эйлеру. Коэффициент смешивания может помочь улучшить стабильность в случаях, когда чистый Крэнк-Николсон нестабилен. Примеры:

default Euler;

fvSchemes. d2dt2Schemes

Подсловарь d2dt2Schemes содержит описание разностных схем для аппроксимации второй производной по времени. Список доступных схем:

Ключевое слово	Описание
Euler	First order, bounded, implicit

Примеры:

o default Euler;

Задачи

- 1. Исследовать устойчивость разностной схемы неявный правый уголок для уравнения переноса.
- 2. Произвести расчёт задачи transport1D с использованием следующих схем аппроксимации для конвективного члена: SuperBee, linearUpwind, upwind. Нарисовать график вдоль оси Ox для оценки разницы.

СПАСИБО ЗА ВНИМАНИЕ!

Список литературы