Es04B: Circuiti lineari con Amplificatori Operazionali

Gruppo xxy

Luca Palumbo, Alessandro Costanzo Ciano [non dimenticate di inserire i vostri nomi...]

23 ottembre 2150 [... ed anche la data corretta]

Scopo dell' esperienza

Misurare le caratteristiche di circuiti lineari realizzati con un op-amp TL081 alimentato tra +5 V e -5 V.

A.Amplificatore non invertente

Abbiamo realizzato un amplificatore non invertente con resistenza $R_1 = 1 \text{ k}\Omega$ (nominale) e con un' amplificazione a centro-banda compresa tra 4 e 10 secondo lo schema mostrato in figura 1.

Figura 1: Schema dell'amplificatore non invertente

1 Guadagno in tensione

a.Misura delle resistenze

Le resistenze selezionate hanno i seguenti valori, misurati con il multimetro digitale, con il corrispondente valore atteso del guadagno in tensione dell' amplificatore.

```
\begin{array}{ll} R_1 = (0.982 \pm 0.009)\,\mathrm{k}\Omega, & R_2 = (1.96 \pm 0.01)\,\mathrm{k}\Omega & \Rightarrow A_{v,exp} = (2.99 \pm 0.02) & \text{(Luca Palumbo)} \\ R_1 = (5.08 \pm 0.06)\,\mathrm{k}\Omega, & R_2 = (0.991 \pm 0.003)\,\mathrm{k}\Omega & \Rightarrow A_{v,exp} = (1.195 \pm 0.002) & \text{(Alessandro C. Ciano)} \end{array}
```

b. Misura preliminare del guadagno

Abbiamo inviato all' ingresso dell' amplificatore un segnale sinusoidale di frequenza $f_{in} = (1.00 \pm 0.01)$ kHz ed ampiezza 200 mV. Ingresso ed uscita dell' amplificatore sono mostrati in Fig. 2. Per le misure di ampiezza delle tensioni si è utilizzata la funzione "measurements" di Waveforms; l'errore associato è dato dalla somma della prima cifra instabile nella lettura, dai limiti di risoluzione dell'ADC e dallo 0.3% del fondo scala. Otteniamo

$$\begin{array}{ll} V_{in} = (196 \pm 1) \text{ mV}, & V_{out} = (0.591 \pm 0.001) \text{ V} \Rightarrow \text{A}_{\text{v}} = (3.01 \pm 0.01) \\ V_{in} = (404 \pm 2) \text{ mV}, & V_{out} = (482 \pm 2) \text{ mV} \Rightarrow \text{A}_{\text{v}} = (1.193 \pm 0.006) \end{array} \quad \text{(Aluca Palumbo)}$$

Figura 2: Ingresso (primo canale) ed uscita (secondo canale) di un amplificatore non invertente con OpAmp per ampiezza di $V_{in} = 200$ mV, riferito al ciruito di Alessandro C. Ciano

$V_{in} (\mathrm{mV})$	V_{out} (V)	A_v
96 ± 1	0.292 ± 0.001	3.04 ± 0.03
196 ± 1	0.592 ± 0.002	3.02 ± 0.02
296 ± 1	0.892 ± 0.002	3.01 ± 0.01
307 ± 1	1.192 ± 0.002	3.00 ± 0.01

 1.492 ± 0.002

 3.00 ± 0.01

Tabella 1: Ampiezza di V_{out} in funzione di V_{in} e relativo rapporto.

c. Verifica della linearità e misura del guadagno

Variando l'ampiezza di V_{in} abbiamo misurato V_{out} e per ciascun valore ottenuto i guadagni $A_v = V_{out}/V_{in}$ riportati in tabella 1.

Si è considerato come intervallo di linearità l'intero set di misue, in quento tutti i guadagni risultano tra loro compatibili. Utilizzando i soli dati in questo intervallo abbiamo effettuato un' interpolazione di (V_{out}) oppure A_v , [scegliere quale]) in funzione di V_{in} ($V_{out} = AV_{in}$). Il risultato del fit è riportato nel grafico di Fig. 3, con sovrapposta la funzione di best-fit, insieme all' andamento degli scarti normalizzati. Determiniamo così la nostra migliore stima del guadagno mediante fit dei dati ottenuti:

$$A_{best} = 3.010 \pm 0.002$$
 , $\chi^2/\text{n.d.o.f.} = 13/4$.

Il valore del guadagno ottenuto dal best fit risulta in accordo con quello atteso dalle misure delle resistenze. Il χ^2 risulta ragionevole date le poche misure a disposizione.

2 Risposta in frequenza del circuito

Abbiamo misurato la risposta in frequenza dell' amplificatore utilizzando Network Analyzer ed ottenendo i plot di Bode mostrati in Fig. 4. Il guadagno di centro-banda risulta essere $A_M(dB)=(9.52\pm0.06)$ dB, o in unità naturali $A_M(dB)=(2.99\pm0.02)$, perfettamente in accordo con i risultati della regressione lineare precedente. La nostra migliore determinazione per la frequenza di taglio superiore è

$$f_L = (0.852 \pm 0.005) \text{ MHz}$$

determinata attraverso la riduzione del guadagno in tensione di 3dB rispetto a centro-banda.

Moltiplicando questa frequenza per il guadagno di centro-banda otteniamo la seguente stima del prodotto banda-guadagno

$$GBW = A_M f_L = (2.57 \pm 0.02) \text{ MHz}$$

da confrontarsi con un valore tipico di riportato dal data sheet dell'opamp [citare quello ottenuto dal costruttore nelle condizioni di test più vicine a quelle di misura].

Figura 3: Andamenti in funzione di V_{in} di: (sopra) V_{out} , con verifica della inearità dell' amplificatore, e (sotto) dei scarti normalizzati rispetto alla funzione di best-fit.

3 Misura dello slew-rate

Si misura direttamente lo slew-rate del TL081 dalla pendenza di V_{out} in corrispondenza dei fronti di sali-ta/discesa di un' onda quadra di frequenza di (1.00 ± 0.01) kHz ed ampiezza (2.039 ± 1) V inviata all' ingresso dell' amplificatore. Uno screenshot dei due segnali è visibile in figura 5. Si ottiene:

$$SR = (13.0 \pm 0.1) \text{ V/}\mu\text{s}$$
 valore tipico

contro un valore tipico di (13) V/ μ s quotato dal data-sheet, in accordo col precedente.

4 Circuito derivatore

a. Montaggio del circuito

Abbiamo realizzato un circuito derivatore reale con i seguenti valori dei componenti indicati:

$$R_1 = (0.993 \pm 0.09) \text{ k}\Omega$$

 $R_2 = (9.96 \pm 0.009) \text{ k}\Omega$
 $C_1 = (47.0 \pm 2.2) \text{ nF}$

b.Risposta in frequenza

Di nuovo utilizzando Network Analyzer abbiamo ottenuto i plot di Bode mostrati in Fig. 6. L' andamento a basse frequenze è quello tipico di un filtro passa-alto con frequenza di taglio

$$f_H = (3.37 + \pm 0.03) \text{ kHz}$$

anche in questo caso determinata attraverso la riduzione del guadagno in tensione di 3dB rispetto a centro-banda.

Figura 4: Plot di Bode in ampiezza (sopra) e fase (sotto) per l'amplificatore non invertente.

Figura 5: Fronti dei segnali per la misura dello slew-rate del TL081.

c.Risposta ad un' onda triangolare

Abbiamo inviato all' ingresso del circuito un' onda triangolare simmetrica di frequenza (100 ± 1) Hz ed ampiezza (497 ± 2) mV. Si riportano in Fig. 7 le forme d' onda acquisite all' oscillografo per l' ingresso e l' uscita. V_{out} risulta avere la formad di un'onda quadra, come atteso dal comportamento di un derivatore. Essendo il guadagno del circuito $A = -\frac{R_2}{R_1} \frac{j\omega R_1 C}{1+j\omega R_1 C}$, nel limite di basse frequenze $(\omega << \frac{1}{R_1 C})$ si ha $A \approx -j\omega R_2 C$, tipica di un derivatore. L' ampiezza di V_{out} - misurata con i cursori il valore centrale del massimo assunto, avendo cura di considerare anche un'incertezza dovuta al rumore - è $V_M = (368.56\pm12)$ mV.

d.Confronto con i valori attesi

Sulla base dei valori misurati dei componenti, il valore atteso per la frequenza di taglio del circuito è $f_{H,exp} = \frac{1}{2\pi R_1 C} = (3.4 \pm 0.2)$ kHz, in ottimo accordo con la misura.

Per l'ampiezza dell'onda quadra in uscita a 100 Hz ci aspettiamo perciò un valore di

$$V_M = \omega R_2 C V_{in} = (\pm) \text{ mV}$$

e.Dipendenza della risposta dalla frequenza

[Inserire commenti su quanto osservato, eventualmente servendosi di appositi screenshot dell'oscillografo]

Figura 6: Plot di Bode in ampiezza (sopra) e fase (sotto) per il circuito derivatore.

Figura 7: Ingresso (Ch1) ed uscita (Ch2) del circuito derivatore in risposta ad un' onda triangolare di frequenza 100 Hz.