שיעור 12 מטריצה המעבר מבסיס לבסיס וטנרספורמציות

משפט 12.1

נניח כע"ל יחיד של ניתן לרשום כע"ל עדה U מעל אדה על מ"ו מעל מ"ו בסיס מעל יחיד עניח נניח כי יחיד של יחיד על יחיד אז מעל יחיד של יחיד

 $u\in \mathrm{span}(\mathrm{v}_1,\dots,\mathrm{v}_n)$, $u\in V$ מכאן נובע שלכל span $(\mathrm{v}_1,\dots,\mathrm{v}_n)=V$ לכן $k_1,\dots,k_n\in\mathbb{F}$ בסיס של ז"א קיימים סקלירם ז"א קיימים סקלירם

$$u = k_1 \mathbf{v}_1 + \ldots + k_n \mathbf{v}_n \ .$$

נוכיח שהצ"ל הוא יחיד בדרך השלילה: נניח שקיים צ"ל אחר:

$$u = t_1 \mathbf{v}_1 + \ldots + t_n \mathbf{v}_n \ .$$

אש קיים $k_i \neq t_i$ כך ש $1 \leq i \leq n$ לכן

$$(k_1 - t_1)\mathbf{v}_1 + \ldots + (k_i - t_i)\mathbf{v}_i + \ldots + (k_n - t_n)\mathbf{v}_n = \bar{0}$$

ו סתירה. v_1,\ldots,v_n הייה ווקטורים v_1,\ldots,v_n ה"ל. $k_i-t_i \neq 0$ ו

הגדרה 12.1

אז $u \in V$ ו $\mathbb F$ מעל שדה V מעל מ"ו בסיס אז בסיס $\mathtt{v}_1, \dots, \mathtt{v}_n \in V$ אז

$$u = k_1 \mathbf{v}_1 + \ldots + k_n \mathbf{v}_n \ .$$

לווקטור

$$\begin{pmatrix} k_1 \\ \vdots \\ k_n \end{pmatrix} \in \mathbb{F}^n$$

 $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ לפי בסיס על ווקטור של ווקטות הקואורדינטות קוראים ווקטור סימון:

$$[u]_B = \begin{pmatrix} k_1 \\ \vdots \\ k_n \end{pmatrix} .$$

דוגמה 12.1

$$u=egin{pmatrix} 2 \ -1 \ 10 \end{pmatrix}$$
 , \mathbb{R}^3 של $E=\{e_1,e_2,e_3\}$

$$u = 2e_1 + (-1)e_2 + 10e_3$$

$$[u]_E = \begin{pmatrix} 2\\ -1\\ 10 \end{pmatrix}$$

דוגמה 12.2

אז $.p(x)=1+8x-5x^2$, $\mathbb{R}_2[x]$ אז $E=\{1,x,x^2\}$

$$p(x) = 1 \cdot 1 + 8x - 5x^2 = 1e_1 + 8e_2 - 5e_3$$

$$[p(x)]_E = \begin{pmatrix} 1\\8\\-5 \end{pmatrix}$$

דוגמה 12.3

הראו כי קבוצת הווקטורים

$$B=\left\{b_1=egin{pmatrix}1\\-2\\0\end{pmatrix},b_2=egin{pmatrix}1\\1\\1\end{pmatrix},b_3=egin{pmatrix}3\\0\\1\end{pmatrix}
ight\}$$
 מצאו את $[u]_B$ עבור ווקטור $[u]_B$

פתרון:

B נבדוק אם B בת"ל:

$$\begin{pmatrix} 1 & 1 & 3 \\ -2 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 3 \end{pmatrix}$$

כל העמודות מובילות, לכן b_3 , b_2 , b_1 בת"ל.

 \mathbb{R}^3 בסיס של של $B=\{b_1,b_2,b_3\}$ לכן, $\dim(\mathbb{R}^3)=3$

B נמצא את הקואורדינטות של ווקטור על הקואורדינטות נמצא את הקואורדינטות אח

$$u = k_1 u_1 + k_2 u_2 + k_3 u_3$$

$$\begin{pmatrix} 1 & 1 & 3 & 2 \\ -2 & 1 & 0 & -1 \\ 0 & 1 & 1 & 10 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 10 \\ 0 & 1 & 0 & 19 \\ 0 & 0 & 1 & -9 \end{pmatrix}$$
$$[u]_B = \begin{pmatrix} 10 \\ 19 \\ -9 \end{pmatrix}$$

דוגמה 12.4

 $[u]_C$ מהו $[u]_B$ נתונים שני בסיסים של מרחב א ו $B=\{b_1,\ldots,b_n\}$,V מהו של מרחב עני

פתרון:

B נרשום את עכצ"ל של בסיס u

$$u = x_1 b_1 + \ldots + x_n b_n \qquad \Rightarrow \qquad [u]_B = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

C כל ווקטור $(1 \leq i \leq n)$ הוא צ"ך של בסיס

$$b_1 = b_{11}c_1 + b_{21}c_2 + \dots + b_{n1}c_n$$

$$b_2 = b_{12}c_1 + b_{22}c_2 + \dots + b_{n2}c_n$$

$$\vdots$$

$$b_n = b_{1n}c_1 + b_{2n}c_2 + \dots + b_{nn}c_n$$

מכאן מקבלים

$$u = x_1(b_{11}c_1 + b_{21}c_2 + \dots + b_{n1}c_n) + x_2(b_{12}c_1 + b_{22}c_2 + \dots + b_{n2}c_n) + \dots + x_n(b_{1n}c_1 + b_{2n}c_2 + \dots + b_{nn}c_n)$$

$$= (x_1b_{11} + x_2b_{12} + \dots + x_nb_{1n})c_1 + (x_1b_{21} + x_2b_{22} + \dots + x_nb_{2n})c_2 + \dots + (x_1b_{n1} + x_2b_{n2} + \dots + x_nb_{nn})c_n$$

לפיכד

$$[u]_{C} = \begin{pmatrix} x_{1}b_{11} + x_{2}b_{12} + \ldots + x_{n}b_{1n} \\ x_{1}b_{21} + x_{2}b_{22} + \ldots + x_{n}b_{2n} \\ \vdots \\ x_{1}b_{n1} + x_{2}b_{n2} + \ldots + x_{n}b_{nn} \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} & \ldots & b_{1n} \\ b_{21} & b_{22} & \ldots & b_{2n} \\ \vdots & & \ldots & \\ b_{n1} & b_{n2} & \ldots & b_{nn} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} & \ldots & b_{1n} \\ b_{21} & b_{22} & \ldots & b_{2n} \\ \vdots & & \ldots & \\ b_{n1} & b_{n2} & \ldots & b_{nn} \end{pmatrix} \cdot [u]_{B}$$

למטריצה

$$P_{B\to C} = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & & \dots & \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix}$$

: איים מטריצה המעבר מבסיס B לבסיס מטריצה המעבר מבסיס קוראים

$$[u]_C = P_{B \to C}[u]_B$$

כאשר

$$P_{B\to C} = ([b_1]_C \dots [b_2]_C)$$

דוגמה 12.5

כאשר $C = \{c_1, c_2, c_3\}$, $B = \{b_1, b_2, b_3\}$, \mathbb{R}^3 כאשר בסיסים שני בסיסים שני

$$b_1 = \begin{pmatrix} 2 \\ -7 \\ 3 \end{pmatrix}, b_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, b_3 = \begin{pmatrix} -1 \\ -4 \\ -2 \end{pmatrix}$$

$$c_1 = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}, c_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, c_3 = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}.$$

$$[u]_C$$
 נתון $[u]_B = egin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix}$ נתון

פתרון:

נשתמש בנוסחה

$$[u]_C = P_{B \to C} \cdot [u]_B .$$

כדי למצוא את צריך צריך $P_{B o C}$ את המערכת:

$$C \cdot X = b_1$$

$$C \cdot X = b_2$$

$$C \cdot X = b_3$$

. מורכבת מווקטורים c_3, c_2, c_1 העומדים בעמודות מטריצה C

I היחידה היחידה למטירצה ניתן לכן בדירוג יחיד, לכן כיס, למערכת למטירצה בסיס, למערכת לכיס, לכון יחיד, לכן כיס, למערכת למטירצה בסיס, למערכת היחידה ליץ בתהליך למצבים:

$$(C|b_1) o \ldots o (I|P_{B o C}$$
 העמודה הראשונה של $(C|b_1) o \ldots o (I|P_{B o C})$ העמודה ה $(C|b_n) o \ldots o (I|P_{B o C})$

מכיוון שבדירוג מבצעים את אותן הפעולות האלמנטריות, אפשר לפתור את כל המעכות בבת אחת!

$$(C|B) \to \dots \to (I|P_{B\to C})$$

$$\begin{pmatrix} 1 & 1 & 3 & 2 & 1 & -1 \\ -2 & 1 & 0 & -7 & 1 & -4 \\ 0 & 1 & 1 & 3 & 2 & -2 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 0 & 7 & 1 & 1 \\ 0 & 1 & 0 & 7 & 3 & -2 \\ 0 & 0 & 1 & -4 & -1 & 0 \end{pmatrix}$$

$$P_{B\to C} = \begin{pmatrix} 7 & 1 & 1 \\ 7 & 3 & -2 \\ -4 & -1 & 0 \end{pmatrix}$$

$$[u]_C = P_{B\to C} \cdot [u]_B = \begin{pmatrix} 7 & 1 & 1 \\ 7 & 3 & -2 \\ -4 & -1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 19 \\ 24 \\ -12 \end{pmatrix}$$

דוגמה 12.6

נתון

$$B = \left\{ b_1 = \begin{pmatrix} -9\\1 \end{pmatrix}, \quad b_2 = \begin{pmatrix} -5\\-1 \end{pmatrix} \right\} \qquad C = \left\{ c_1 = \begin{pmatrix} 1\\-4 \end{pmatrix}, \quad c_2 = \begin{pmatrix} 3\\-5 \end{pmatrix} \right\}$$

 \mathbb{R}^2 שני בסיסים סדורים של

 ${\cal C}$ מצאו מטריצת מעבר מהבסיס מעבר מטריצת

$$(V)_C$$
 כך ש- $(V)_B = egin{pmatrix} 1 \\ 1 \end{pmatrix}$ כך ע- $V \in \mathbb{R}^2$ יהי יהי

B מצאו את מטריצת המעבר מהבסיס לבסיס מצאו את

n הגדרה 12.2 המרחב של פולינומים מסדר

המרחב של פולינומים מסדר n יסומן ויוגדר- הקבוצה או $\mathbb{R}_n[x]$ או $\mathbb{R}_n[x]$ או מסדר חלינומים מסדר הפולינומים המרחב של פולינומים מסדר היותר:

$$P_n[x] = \{a_0 + a_1x + \dots + a_nx^n | a_0, a_1, \dots, a_n \in \mathbb{R}\}\$$

דוגמה 12.7

$$1 + 2x \in P_1[x]$$
, $1 + 5x^2 \notin P_1[x]$.

$$1 + 2x \in P_3[x]$$
, $1 + 4x + 3x^2 \in P_3[x]$, $3 + 8x + 7x^3 \in P_3[x]$, $6x + 5x^4 \notin P_3[x]$.

$$1 - 3x^4 + 6x^7 \in P_7[x]$$
, $1 - 3x^4 + 6x^7 + 6x^8 - x^9 \notin P_7[x]$.

משפט 12.2 תלות לינארית של פולינומים

n קבוצת פולינומים מסדר

$$S = \{a_0 + a_1x + \dots + a_nx^n, b_0 + b_1x + \dots + b_nx^n \dots \}$$

בת"ל אם"ם קבוצת הווקטורים של המקדמים בת"ל, כלומר אם הקבוצה

$$\left\{ \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix}, \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_n \end{pmatrix}, \dots \right\}$$

בת"ל.

אם נגדיר המטריצה

$$A = \begin{pmatrix} a_0 & b_0 \\ a_1 & b_1 \\ \vdots & \vdots \\ a_n & b_n \end{pmatrix}$$

אז הפולינומים בת"ל אם"ם

$$\det\left(A^tA\right) \neq 0 \ .$$

משפט 12.3 בסיס הסטנדרטי של פולינומים

הקבוצה

$$E = \{e_1 = 1, e_2 = x, e_3 = x^2, \dots, e_{n+1} = x^n\}$$

 $P_n[x]$ הינה בסיס של המרחב ווקטורי של פולינומים מסדר ונקרא הבסיס הסטנדרטי של

משפט 12.4 הוורונסקיאן

נתון קבוצה

$$F = \{f_1(x), f_2(x), \dots, f_n(x)\}\$$

של R פונקציות במרחב V של כל הפונקציות מעל $\mathbb R$. נגדיר את הוורונסקיאן

$$W(x) = \begin{vmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f'_1(x) & f'_2(x) & \dots & f'_n(x) \\ \vdots & & & & \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \dots & f_n^{(n-1)}(x) \end{vmatrix}.$$

 $x_0 \in \mathbb{R}$ אם קיים

$$W(x_0) \neq 0$$

.אז F בת"ל

הוכחה: יהיו

$$F = \{f_1(x), f_2(x), \dots, f_n(x)\}\$$

קבוצה של הת"ל אם"ם הע"ל אם"ם הצ"ל של כל הפונקציות מעל N פונקציות במרחב של סל של פונקציות במרחב אם הע"ל אם"ם הצ"ל

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0$$

לכל את הצ"ל את את לכל . $i=1,2,\ldots,n$ לכל לכל הקיים רק אם מתקיים את לכל גוור לכל לכל הא $c_i=0$

$$c_1 f_1^{(i)}(x) + c_2 f_2^{(i)}(x) + \dots + c_n f_n^{(i)}(x) = 0$$

לכל מטריציאלית כמשוואה $x \in \mathbb{R}$

$$\begin{pmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f'_1(x) & f'_2(x) & \dots & f'_n(x) \\ \vdots & & & & \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \dots & f_n^{(n-1)}(x) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

הדטרמיננטה של המטריצה המקדמים נקראת הוורונסקיאן של הקבוצה $\{f_1(x),f_2(x),\dots,f_n(x)\}$ ומסומן הדטרמיננטה של המטריצה המקדמים נקראת בנקודה בנקודה $W(x_0)\neq 0$ כך ש $x_0\in\mathbb{R}$ אז המטריצה המקדמים איננה אפס בנקודה $x_0\in\mathbb{R}$ ולכן כל המקדמים כל המקדמים לכן, אם הוורונסקיאן אינו שווה אפס בנקודה $x_0\in\mathbb{R}$ בת"ל. $F=\{f_1(x),f_2(x),\dots,f_n(x)\}$

דוגמה 12.8

 $P_2[x]$ עבור המרחב

מצאו מטריצת מעבר מהבסיס הסדור

$$B = \{b_1 = 1 - 2x + x^2, b_2 = 3 - 5x + 4x^2, b_3 = 2x + 3x^2\}$$

לבסיס הסטנדרטי

$$E = \{e_1 = 1, e_2 = x, e_3 = x^2\}$$

.B ומצאו את הווקטור -1 + 2x ומצאו

פתרון:

 $:P_{B o E}$ נחשב את

$$(E|B) = \begin{pmatrix} 1 & 0 & 0 & 1 & 3 & 0 \\ 0 & 1 & 0 & -2 & -5 & 2 \\ 0 & 0 & 1 & 1 & 4 & 3 \end{pmatrix}$$

וסיימנו.

$$P_{B\to E} = \left(\begin{array}{ccc} 1 & 3 & 0 \\ -2 & -5 & 2 \\ 1 & 4 & 3 \end{array}\right)$$

$$[u]_B = P_{E \to B}[u]_E .$$

$$P_{E \to B} = P_{B \to E}^{-1}$$

$$\begin{pmatrix}
1 & 3 & 0 & 1 & 0 & 0 \\
-2 & -5 & 2 & 0 & 1 & 0 \\
1 & 4 & 3 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{R_2 \to R_2 + 2R_1}
\begin{pmatrix}
1 & 3 & 0 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0 \\
0 & 1 & 3 & -1 & 0 & 1
\end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - R_2}
\begin{pmatrix}
1 & 3 & 0 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0 \\
0 & 0 & 1 & -3 & -1 & 1
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - 2R_3}
\begin{pmatrix}
1 & 3 & 0 & 1 & 0 & 0 \\
0 & 1 & 3 & -1 & 0 & 1
\end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - 3R_2}
\begin{pmatrix}
1 & 0 & 0 & -23 & -9 & 6 \\
0 & 1 & 0 & 8 & 3 & -2 \\
0 & 0 & 1 & -3 & -1 & 1
\end{pmatrix}$$

$$.P_{E\rightarrow B} = \begin{pmatrix} -23 & -9 & 6 \\ 8 & 3 & -2 \\ -3 & -1 & 1 \end{pmatrix}$$
לכן
$$[u]_B = P_{E\rightarrow B}[u]_E = \begin{pmatrix} -23 & -9 & 6 \\ 8 & 3 & -2 \\ -3 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix}_B$$

בדיקה:

$$5b_1 - 2b_2 + 1b_3 = 5(1 - 2x + x^2) - 2(3 - 5x + 4x^2) + 1(2x + 3x^2)$$
$$= 5 - 6 - 10x + 10x + 2x + 5x^2 - 8x^2 + 3x^2$$
$$= -1 + 2x.$$