Exercice 1 1) $n_{23} = 8$, il y a 8 élèves de taille 170cm et de poids 68kg. $n_{32}=2$, il y a 2 élèves de taille 175cm et de poids 60kg.

- 2) Le nombre d'élèves qui ont un poids inférieur à 60 kg et une taille supérieure à $165cm \ est \ 4 + 7 = 11.$
- 3) Parmi les élèves qui ont une taille de 170cm, le pourcentage de ceux qui pèsent plus de 60kg est 8/50 soit 16%.
- 4) La distribution des fréquences partielles des couples (X,Y)

• /	v	1		(/ /
X (en c	m)/ Y (en kg)	$y_1 = 52$	$y_2 = 60$	$y_3 = 68$
а	$c_1 = 165$	$f_{11} = 10/50$	$f_{12}=11/50$	$f_{13} = 3/50$
а	$c_2 = 170$	$f_{21} = 4/50$	$f_{22} = 0$	$f_{23} = 8/50$
а	$c_3 = 175$	$f_{31} = 7/50$	$f_{32} = 2/50$	$f_{33} = 5/50$

5) Distribution marginale de X;

X	$x_1 = 165$	$x_2 = 170$	$x_3 = 175$
$f_{i.}$	24/50	12/50	14/50

$$\bar{x} = 165 * (24/50) + 170 * (12/50) + 175 * (14/50) = 169.$$

$$Var(X) = 165^2 * (24/50) + 170^2 * (12/50) + 175^2 * (14/50) - 169^2 = 18.$$

 $\sigma_x = 4.24.$

Distribution marginale de Y;

Y	$y_1 = 52$	$y_2 = 60$	$y_3 = 68$
$f_{.j}$	21/50	13/50	16/50

$$\overline{6}\overline{/y} = 52 * (21/50) + 60 * (13/50) + 68 * (16/50) = 59.2.$$

$$Var(Y) = 52^{2} * (21/50) + 60^{2} * (13/50) + 68^{2} * (16/50) - 59.2^{2} = 46.72.$$

$$\sigma_y = 6.84.$$

$$7)f_{3|2} = \frac{n_{32}}{n_2} = 8/12$$
, soit 66.67%.

$$8)Cov(X,Y) = 165 * (52 * 10/50 + 60 * 11/50 + 68 * 3/50) + 170 * (52 * 4/50 + 0 * 10/50) + 170 * (52 * 4/50) + 170 * (52$$

$$60 + 68 * 8/50) + 175 * (52 * 7/50 + 60 * 2/50 + 68 * 5/50) - 169 * 59.2$$

$$= 10008 - 10004.8 = 3.2.$$

$$9)r = \frac{3.2}{4.24*6.84} = 0.1103$$

Exercice 2 1) The scatter plot

Notice that there are two outliers 23,23 for exam2 (les valeurs aberrantes; des valeurs qui s'éloignent du nuage des points).

$$2)\bar{x} = 64.64, \ \bar{y} = 61.14.$$

3)
$$\sum x = 905$$
, $\sum y = 856$, $\sum xy = 57010$;

$$cov(Exam1, Exam2) = \frac{1}{14} \times 57010 - 64.64 \times 61.14 = 120.05.$$

$$cov(Exam1, Exam2) = \frac{1}{14} \times 57010 - 64.64 \times 61.14 = 120.05.$$

4) $\sum x^2 = 62097$, $\sum y^2 = 58484.Var(x) = \frac{62097}{14} - 64.64^2 = 257.17.$

$$Var(y) = \frac{58484}{14} - 61.14^2 = 439.329.$$

$$r = \frac{120.05}{\sqrt{257.17} \times \sqrt{439.329}} = 0.3571.$$
5) the equation $y = \frac{120.05}{257.17}x + (61.14 - \frac{120.05}{257.17} * 64.64) = 0.467x + 30.953$

Exercice 3 1) No data values have both x and y greater than their respective means or both less than them. Given that r is negative (negative correlation) x and y vary in opposite directions.

2)
$$R_x = 14 - 7.1 = 6.9$$
, $R_y = 10.5 - (-3) = 13.5$.

Exercice 4 1) The scatter plot

2) $y = ae^{bx} \Rightarrow \ln y = \ln a + bx$, let denote $z = \ln y$ and $\alpha = \ln a$, then we have $z = \alpha + bx$.

Values of z; 4.787, 5.298, 5.768, 6.215, 6.824.

 $\sum z = 28.892, \sum Time = 16, \sum Time^2 = 66, \sum Time \times z = 98.491.$ $b = \frac{(1/5)*98.491 - (1/5)^2*28.892*16}{(1/5)*66 - (1/5)^2*16^2} = 0.408.$ $\alpha = \frac{28.892}{5} - 0.408 * \frac{16}{5} = 4.473, \ \alpha = \exp \alpha = 87.619.$

3. The final equation of the model is $y = 87.619 \exp(0.408x)$.

4. $y_{5h} = 87.619 \exp(0.408 \times 5) = 673.8435$.

Exercice 5 1) Indep Variable X: Year, Depend Variable Y: Distance.

2) A strong positive relation ship, there is only a small amount of scatter in the plot.

3) $\sum (Year) = 48800$, $\sum (Year^2) = 95285440$, $\sum (Year * Distance) = 390239.3$,

 $\sum(Distance) = 199.67, \sum(Distance^2) = 1604.766.$

$$r = \frac{(390239.3/25) - (48800*199.67/25^2)}{\left(\left((95285440/25) - (48800/25)^2\right) * \left((1604.766/25) - (199.67/25)^2\right)\right)^{0.5}} = 0.9144.$$

4. To determine the linear equation y = a + bx;

$$b = \frac{(390239.3/25) - (48800 * 199.67/25^2)}{(95285440/25) - (48800/25)^2} = 0.0174.$$

$$a = 199.67/25 - 0.0174 * 48800/25 = -25.978, then;$$

$$y = -25.978 + 0.0174 * x;$$

5.
$$y_{2008} = 8.96m$$
,