Лекция 2: Неориентированные графы

Расстоянием $\rho(u,v)$ между вершинами u и v в графе будем называть длину кратчайшего пути между этими вершинами. Если вершины лежат в разных компонентах всязности удобно считать расстояние равным $+\infty$.

Замечание: для такого расстояния выполняются все аксиомы: неотрицательность, симметричностьЮ неравенство треугольника.

Диаметром связного графа называется максимальное расстояние между вершинами в этом графе.

Напоминание

Граф G'(V', E') является **подграфом** графа G(V, E), если $V' \subseteq V$ и $E' \subseteq E$. (То, что ребра E' соединяют только вершины V' мы получаем автоматически, сказав, что G' — граф.)

Деревья

Теорема Если граф имеет |V| вершин и |E| ребер, то в нем не меньше |V-E| связных компонент. В частности, если граф связен, то $|E| \ge |V| - 1$.

Утверждение Если в графе есть цикл, то есть и простой цикл.

Деревом называется связный граф без циклов.

Для дерева существуют различные эквиваленитные определения. Рассмотрим четыре из них:

Теорема: следующие четыре определения дерева эквивалентны между собой.

- 1. связный граф без циклов;
- между любыми двумя вершинами существует ровно один простой путь;
- 3. связный граф, где |E| = |V| 1;
- 4. граф без циклов, где |E| = |V| 1;

Илея доказательства:

• $(1 \Rightarrow 2)$ Из существования двух различных простых цепей следует существования цикла.

- $(2 \Rightarrow 3)$ Индукция по числу графа G. Для $n \ge 2$ в графе есть ребра. Возьмем две вершины, соединенные ребром, "удалим"это ребро и рассмотрим две полученные компоненты связности.
- $(3 \Rightarrow 4)$ От противного: предположим, что есть простой цикл u_1, \ldots, v_k . Рассмотрим все вершины v_1, \ldots, v_{n-k} , не принадлежащие данному циклу. Возьмем первые ребра кратчайших маршрутов, соединяющих v_1, \ldots, v_{n-k} с циклом. Первые ребра у всех различны. Получим оценку снизу на количество ребер: не меньше, чем количество вершин.
- $(4 \Rightarrow 1)$ Предположим, что в графе k компонент связности. Количество вершин в компонентах связности обозначим n_1, \ldots, n_k : $n_1+n_2+\ldots+n_k=|V|$. Рассмотрим i-ю компоненту связности. Это связный граф без циклов, а значит для нее выполнено утверждение (3) по доказанному. Но тогда количество ребер в исходном графе:

$$|V| - 1 = \sum_{i=1}^{k} n_i - 1 = |V| - k$$

Следовательно, k=1, что и требовалось доказать.

Остовное дерево связного графа G — подграф, содержащий все вершины исходного и являющийся деревом.

Пути и циклы в графе

Эйлеров путь — путь в графе, который проходит по всем ребрам ровно по одному разу.

Эйлеров цикл — цикл в графе, который проходит по всем ребрам ровно по одному разу.

Теорема Связный граф содержит эйлеров цикл тогда и только тогда, когда степени всех вершин четны.

Идея доказательств

• Предположим, в графе есть эйлеров цикл. Если вершина встретилась в этом цикле k раз, значит использовались k входящих и k исходящих ребер, то есть суммарно 2k. Ребер, не содержащихся в этом цикле в графе нет, а значит степерь вершины 2k.

• Все степени четны и граф связен, а значит есть и цикл. Выделим его и удалим принадлежащие ему компоненты связности. В каждой получившейся компоненте связности все степени четны. Повторим рассуждение с каждой компонентой связности и получим, что граф может быть разбит на множество циклов, не имеющих общих ребер. Далее осуществим индукцию по количеству циклов.

Утверждение Связный граф содержит эйлеров путь тогда и только тогда, когда в графе не более 2 вершин с нечетной степенью.

Гамильтонов цикл – это цикл, который проходит через каждую вершину ровно по одному разу. Аналогично определяется **гамильтонов путь**.

Замечание Задача поиска гамильтонова пути или цикла в графе является вычислительно сложной: NP-полной.

Двудольные графы

Граф называется **двудольным**, если его вершины можно разбить на два подмножества L (левая доля) и R (правая доля) таким образом, чтобы никакие две вершины, инцидентные одному и тому же ребру, не лежали в одной доле.

То есть все имеющиеся ребра двудольного графа соединяют вершины из L и R. Названия подмножеств не несут в себе глубокого смысла, но являются общепринятыми.

Паросочетанием называют двудольный граф, у которого степени всех вершин не больше 1.

Теорема Холла Вдвудольном графе существует паросочетание, включающее все вершины левой доли L тогда и только тогда, когда у любого подмножества вершин левой доли $V_L \subseteq L$ в совокупности не менее $|V_L|$ соседей в правой доле R.

Идея доказательства: Из существования паросочетания следует утверждение о количестве соседей из правой доли: для этого достаточно рассмотреть вершины правой доли, входящие в соответствующие пары. Для доказательства в обратную сторону используют индукцию по количеству вершин в L:

• **База:** |L|=1, у единственной вершины левой доли есть смежная вершина из правой доли, они и образуют паросочетание.

- **Переход:** Предположим, для любого |L| < n утверждение теоремы выполняется. Рассмотрим |L| = n и все $1 \le k < |L|$. Возможны два случая:
 - 1. Предположим, нашлось такое k и такое подмножество $V_L \subset L$ размера k что у V_L ровно $|V_L|$ соседей в правой доле. Рассмотрим любое подмножество $U \subseteq L \setminus V_L$. у $V_L \cup U$ не менее $|V_L \cup U|$ соседей в правой доле, а значит у U не менее U соседей. Далее к V_L и $L \setminus V_L$ применим предположение индукции.
 - 2. Такого множества не найдется. Это значит, что у любого подмножества $V_L \subset L$ не менее $|V_L|+1$ соседей в правой доле. Возьмем произвольное ребро. Добавим его в паросочетание, и удалим инцедентные ему вершины v_L b v_R из левой и правой доли соответственно. У оставшегося графа |L| < n и по-прежднему у каждого $V_L \subseteq L$ не менее $|V_L|$ соседей в правой доле, а значит по предположению индукции существует искомое паросочетание.

Можно представить себе двудольность графа как раскраску в два цвета: любые две вершины, соединенные ребром, имеют разные цвета.

Теорема Раскраска в два цвета указанного типа возможна тогда и только тогда, когда в графе нет циклов нечетной длины.

Идея доказательства: В одну сторону утверждение относительно очевидно: цикл нечетной длинны нельзя раскрасить в два цвета указанным образом.

Пусть теперь в графе нет циклов нечетной длины. Каждую компоненту связности раскрасим следующим образом:

- ullet Возьмем произвольную вершину v и раскрасим ее в красный цвет.
- Возьмем все вершины, соединенные с v путями четной дины и раскрасим их в красный.
- Возьмем все вершины, соединенные с v путями нечетной дины и раскрасим их в синий.

Никакая вершина не будет при этом покрашена одновременно в оба цвета, поскольку это бы означало наличие цикла нечетной длины.

Семинар 2: Неориентированные графы

- Граф является деревом тогда и только тогда, когда удаление любого ребра делает из него несвязный.
- В дереве существует лист. Какое минимальное количество листов возможно?
- * Предложить собственное определение дерева.
- Из лекции: связный граф содержит эйлеров путь тогда и только тогда, когда в графе не более 2 вершин с нечетной степенью.

Далее решение задач.

Стандартное домашнее задание: неделя 2

- 1. Дерево имеет 2022 вершины. Верно ли, что в нём найдется путь длины 3?
- 2. Докажите или опровергните следующие утверждения:
 - (а) если в графе есть замкнутый маршрут чётной длины, то в графе есть цикл чётной длины.
 - (b) если в графе есть замкнутый маршрут нечётной длины, то в графе есть цикл нечётной длины.
- 3. Имеется связный граф. Докажите, что в нём можно выбрать одну из вершин так, чтобы после её удаления вместе со всеми ведущими из неё рёбрами останется связный граф.
- 4. Докажите, что любое дерево 2-раскрашиваемо (существует правильная раскраска в 2 цвета). Сколько есть правильных 2-раскрасок у дерева?
- 5. Докажите, что если G содержит клику размера n, то его вершины нельзя раскрасить правильно в n-1 цветов.
- 6. Назовем не 2-раскрашиваемый граф минимальным, если после удаления любого ребра он становится 2-раскрашиваемым. Докажите, что в минимальном не 2-раскрашиваемом графе на 1000 вершинах есть хотя бы одна изолированная вершина (т. е. вершина степени 0).

- 7. * Докажите, что если размер максимальной клики в графе четный, то можно раскрасить вершины графа в два цвета так, что размеры максимальных клик в подграфах обоих цветов равны (подграфиндуцирован множеством вершин одного цвета).
- 8. . Верно ли, что если каждая вершина графа имеет степень 1 или 2 и в графе нет (простых) циклов нечётной длины, то в графе есть совершенное паросочетание?
- 9. * Дан двудольный граф $G(A \cup B, E)$. В G есть два паросочетания. Докажите, что есть третье, которое покрывает все вершины первого паросочетания из доли A и все вершины второго паросочетания из доли B.
- 10. Известно, что в неориентированном графе существует маршрут, проходящий по каждому ребру ровно два раза. Верно ли, что в графе есть замкнутый эйлеров маршрут?