

fastillov2

Application and Implementation in the H1Fitter

The fastNLO Collaboration

Daniel Britzger, Thomas Kluge, Klaus Rabbertz, Fred Stober, Markus Wobisch (DESY, Liverpool, KIT, KIT, Louisiana Tech University)

H1Fitter user's meeting 12. 12. 2011

FastNLO concept

- Jet cross sections are very slow to calculate
 Need of method for very fast repeated calculation of cross sections
- FastNLO factorizes the cross section calculation for an a-posteriori inclusion of pdf's and alpha_s for e.g. jet-production
- Introduce set of n discrete $x_{(i)}$'s with $x_n < ... < x_i < ... < x_0 = 1$
- Around each $x_{(i)}$ define **eigen function** $E^{(i)}(x)$ with: $E^{(i)}(x_i) = 1$, $E^{(i)}(x_j) = 0$ $(i \neq j)$, Σ_i $E^{(i)}(x) = 1$ for all x
- single pdf is replaced by a linear combination of eigenfunctions
- integrals are replaced by sums
- Better: Usage of bi-cubic interpolation and pdf reweighting

Example: Comparision of jet cross sections

fastNLO, arXiv:1109:1310v1, 2011

Comparision of jet data

- STAR @ RHIC
- H1 and ZEUS @ HERA
- CDF and D0 @ TeVatron
- CMS and ATLAS @ LHC
- Data/theory plot
- Compatible with NLO pQCD
- First measurements from LHC

Scales in FastNLO

- FastNLO tables come with 3 (4) simultaneous scale variations tables
 - e.g. 0.5, 1.0, 2.0 times the nominal scale
- A posteriori scale variation of the renormalizatoin scale allows study of asymetric scale variations
 - e.g. 6-points: (1/2,1/2), (1/2,1), (1,1/2), (1,2), (2,1), (2,2)
 - avoiding of rel. 'factor' 4.

• Improvements in v 2.0

- scales get own dimension
- bicubic interpolation of scale-value to scale nodes
- typically 6 scale nodes
- examples already for
 - CMS incl. jets
 - D0 3-jet mass
 - ...

New concept 'multidimensional scale table'

Improve FastNLO concept

- Store scale independent weights
- Store several 'scale' look-up tables, e.g.:
 - pt
 - Q
- When evaluating FastNLO cross section:
 - User can choose every scale composition from previously stored scales
 - e.g. $\mu_r^2 = (Q^2 + pt^2) / 2$
 - $\quad \mu_r^{\ 2} = Q^2$
 - **–** ...
- Also a-posteriori scale variation for μ_r and μ_f are thus **independently possible** through
 - $\mu_r^2 = c_r \times (Q^2 + pt^2) / 2$
 - $\quad \mu_r^2 = c_f \times Q^2$
 - **–** ...
- New possibilities for scans of scale dependence
- Examples exist for almost all DIS tables
 - accuracy > 0.005% compared to nlojet++ CS
- pp and ppbar concept proven
 - much larger tables

Cross section bin 15

More features of FastNLO v2.0

Technicals

- Automatic scan of smallest x-value
- flexible #x-nodes per bin
- scale gets own dimension
- Arbitrary number of dimensions for binning of observable

• Units

- publication units e.g. pb/GeV
- absolute units [pb]

Additional contributions

- Correction factors
 - non-perturbative corrections
 - with errors

Data

- including arb. no. of correlated and uncorrelated errors
- Correlation matrix
- Electroweak corrections (calculated?)
- New physics contributions
- Threshold corrections
 - tables are available
- Normalization options

• Converting tool for v1.4 tables

New concept of 'multidimensional scale table'

- store multiple scales
- user can **compose** scales a-posteriori from all included variables
- speed-up implemented for 'one-scales' (e.g. in pdf fits)
- automated equidistant x-binning in a function of x

Release of v2.0

- Release still this month !!!
- Easy installation
 - autotools
 - No further dependencies (exc. LHAPDF)
 - No ROOT
 - No CERNLIBS
- C++ and fortran reading tools
 - both 'universal' for all v2.0 tables

What's on today's door?

FastNLO in H1Fitter

FastNLO in H1Fitter

▼ **m** h1fitter-0.1.0

- tools
- theoryfiles
- src 📄
- output
- minuit image
- input_steering
- ▶ I HS
- FastNLO
- DY
- datafiles
- bin 📄 bin
- RT RT
- include
 - REFERENCES
 - README
 - configure.ac
 - Makefile.am
 - steering.txt
 - minuit.in.txt
 - ewparam.txt
 - doxvaen.cfa

FastNLO classes

- FastNLOReader.cc
- FastNLOBlockB.cc
- Alphas.cc

Wrapper

FastNLOInterface.cc

FastNLOInterface

- map<int, FastNLOReader*> gFastNLO_array;
- fastnloinit_(const char *s, const int *idataset, const char *thfile)
- fastnlocalc_(const int *idataset, double *xsec)

Data card

```
&Data
  Name = 'CMS inclusive jets'
  Reaction = 'FastNLO jets'
  NDATA = 176
  NColumn = 10
  ColumnType = 'Bin' , 'Bin', 'Bin', 'Bin', 'Bin', 'Bin', 'Bin'
,'Siqma'
                 , 'Error', 'Error'
  ColumnName = 'EtaBinNumber', 'pt' , 'ymin', 'ymax', 'pt1', 'pt2',
'NPCorr', 'Sigma', 'stat', 'uncor'
  NInfo = 1
  DataInfo = 7000.,
           = 'sqrt(S)'
  CInfo
  IndexDataset = 77
  TheoryInfoFile = 'theoryfiles/fnl2342b.tab'
  TheoryType
                 = 'FastNLO'
  Percent = True, True
&End
1 19.4 0 0.5 18 21 1.4 1.97e+07 0.6 12.85
```


h1fitter-0.1.0

theoryfiles

input_steering

tools

SEC

HS

DY

bin

RT

output

minuit

FastNLO

datafiles

include

README

REFERENCES

configure.ac

Makefile.am

steering.txt

minuit.in.txt

ewparam.txt doxygen.cfg

Technicals

FastNLOInterface

```
fnloreader = new FastNLOReader( thfile );
fnloreader->SetPDFInterface(FastNLOReader::kH1FITTER);
fnloreader->SetAlphasEvolution(FastNLOReader::kQCDNUMInternal);
fnloreader->SetScaleVariation(iscale);
// switching non-pert corr off
fnloreader->SetContributionON(FastNLOReader::kNonPerturbativeCorrection,0,false);
fnloreader->SetContributionON(FastNLOReader::kNonPerturbativeCorrection,1,false);
fnloreader->SetUnits(FastNLOReader:: kPublicationUnits);
gFastNLO_array.insert(pair<int, FastNLOReader*>(*idataset, fnloreader) );
```

Features

use consistent alpha_s evolution than QCDNUM (nf, th. matching, n-loop, MZ)

Necessary for input card

- Set scale information
- CS in publication units or absolute units???
 - H1Fitter rule??
- Threshold corrections ON/OFF

12. 12. 2011

Results HERAPDF1.0 vs. HERAPDF1.0 + CMS incl. jets

HeraPDF1.0 + CMS

HERAPDF1.0 Reference output.HERAPDF10.ref.NLO.bands

$$Q^2 = 4.00 \text{ GeV}^2$$

12. 12. 2011

Daniel Britzger - H1Fitter user's meeting

CMS jets impact on PDF experimental uncertainty

Experimental error decreased for high-x gluon

Including D0 incl. jets @ NNLO

• using D0 jets

• including threshold corrections O(nnlo)

D0, arXiv:0802.2400

HeraPDF1.0 + D0 (incl. th. corr)

"HERAPDF1.0 @ NNLO"

Q2 = 4 GeV2 Chi2/ndf = 752.9 / 692 Chi2/ndf (D0) = 75.0 / 110

Which x-region do we test with jet data?

- E.g. H1 dijets @ high Q^2
 - four bins:
 - low and high Q²
 - low and high <pt>
- Only three contributions in DIS
- Gluon, Delta, Sigma induced processes

- low Q² is mostly **gluon induced**
- High Q² is mostly **Delta induced**
- 'low' x-region only at low <pt> and low Q²

- CMS inclusive jets
- 176 bins
- 6 rapidity regions

 To which 'x'-regions and to which pdfs are we sensitive to???

- In FastNLO we replace x-integrations by sums over n_x -nodes
- Basically $13 \times 13 \times n_x \times n_x$ contributions to the cross section
 - reduced to $7(6) \times n_x \times n_x/2$ cont. in FastNLO
- Still
 - Cross section can be written for FastNLO like

$$\sigma_{Bin} = \Sigma_{f1} \Sigma_{f2} \Sigma_{x1} \Sigma_{x2} (pdf(f1,x1) \times pdf(f2,x2) \times A)$$

- with A(f1,f2,x1,x2, μ_r , μ_f) = $\sigma_{fnlo} \times \alpha_s$

- In FastNLO we replace x-integrations by sums over n_x -nodes
- Basically $13 \times 13 \times n_x \times n_x$ contributions to the cross section
 - reduced to $7(6) \times n_x \times n_x/2$ cont. in FastNLO
- Still
 - Cross section can be written for FastNLO like

$$\sigma_{Bin} = \Sigma_{f1} \Sigma_{f2} \Sigma_{x1} \Sigma_{x2}$$
 (pdf(f1,x1) × pdf(f2,x2) × A)

x-dependent contributions

CMS inclusive jets

Low pt region Central rapidity

- 'Integral' of all contributions is $2\sigma_{bin}$
- negative contributions from cancellations (?)
- This Bin
 - testing PDFs up to 10⁻³
 - no sensitivity to high x region
 - process mostly gluon dominated
 - but what kind of gluon process?

What kind of contributions?

Daniel Britzger - H1Fitter user's meeting

Central Rapidity - High pt Jets

Forward Region - High pt Jets

Conclusion

FastNLO

- v2.0 is (almost) released
- new v2.0 tables become available
- v1.4 tables are converted into 'new' table format
- new concept for multidimensional scale tables

• FastNLO + H1Fitter

- C++ version (pre-release) is implemented in H1Fitter
- universal interface to all FastNLO tables
 - pp, ppbar, DIS tables
- Alpha_s evolution is identical with QCDNUM
- NNLO fits with jet data (incl. thr. corr.) is principally possible

• Todo

- Some parameters should be implemented in steering
- Cross sections in pb or pb/[BinWidth] in H1Fitter ?

Open questions

- Which scales should be used?
- How to determine 'theory unc.' from scale variations
 - how to do it for multiple jet cross sections (DIS,pp,ppbar?)
- How to treat theory uncertainty?
 - Fit with +/- scale variation -> additional pair of pdf-error-set ?

Forward Region - Low pt Jets

