Death from the Skies!

Kristi Schneck

Stanford Splash

Fall 2012

The universe is trying to kill us!

Well, not actively...

BUT

- Near-Earth Asteroids
- Solar Flares and Coronal Mass Ejections
- Supernovae
- Gamma Ray Bursts
- Black Holes

Asteroids and Near-Earth Objects

Hollywood—Armageddon

Reality

- The earth is pummeled by 20-40 tons of material every day
- Chicxulub impact–extinction of dinosaurs
- 1908 Tunguska event (air burst of \sim 100 m asteroid above Siberia)

Reality—99942 Apophis

The Torino Scale

What can we do about this?

- Blow it up (this might create more problems...)
- Redirect it with rockets, large masses, or lasers

Figure 1. The Lagrange points are shown as L_n. PALS is placed at L₅ and a detection platform is placed at L₄. Note that nothing is to scale. The asteroid is successfully deflected over about a month of operation.

http://www.b612foundation.org/

Death by Sun

Hollywood—Knowing

Hollywood (again)—2012

The neutrinos have mutated!

http://www.youtube.com/watch?v=uXqUcuE8fNo

Reality

- Charged particles from CMEs mess with satellites and power grid
 - March 1989—major power outages in NJ and Canada
 - o Damage only increases as we use more power
- Depletion of ozone and production of NO₂ in atmosphere
- "Little Ice Age" in Europe (17th Century) correlated with very low sunspot activity

Supernovae—the death of a star

Death by supernova?

- ullet \sim 20 stars within 1000 ly could potentially become supernovae
- \bullet For 20 M_{\odot} star 10 ly away, 40 million tons of material would hit us
 - One ounce per square foot over Earth's surface
- Other stuff: neutrinos, X-rays, gammas
 - Earth-bound people are pretty safe safe, but astronauts?

Gamma Ray Bursts

- Discovered while looking for a different kind of destruction—Soviet nuclear tests on the moon
- Many of the same effects as SN, but more extreme
- At 100 ly, like one-megaton nuclear bomb per square mile of Earth

No possible GRB sources are anywhere near that close to us!

Eta Carinae

- Nearest GRB candidate—7500
 ly away
- Jets are pointed away from us
- But say it was a threat—what would happen?
 - Fried electronics
 - >35% depletion of ozone
 - \circ NO₂ production dims sun

The destructive power of black holes

Death by black hole

Death by black hole

Black holes, LHC and otherwise

- LHC (microscopic) black holes:
 - Could collisions in accelerators produce microscopic black holes?
- Astrophysical black holes:
 - Alter orbits of planets
 - Could eat Earth if it got close enough
 - · Radiation if black hole is active

Why LHC black holes will not destroy the universe

- The ultra-high energy cosmic ray argument:
 - Cosmic rays have been colliding with the atmosphere for billions of years
 - If it hasn't happened yet, it's probably not going to!
- The Hawking radiation argument:
 - According to theory black holes evaporate through Hawking radiation
 - The smaller the mass, the shorter the lifetime!

Inevitabilities we won't be around for

- Death of the sun
- Milky Way merging with Andromeda
- End of the universe (Big Crunch, Big Rip, Big Chill)

Don't worry—something else will get us first!

For more information

