AI25BTECH11020

1) T		phenomenon observed in	ann	ealed low carbon steels	is is	due to the presence
a)	silicon	b) chromium	c)	phosphorous	d)	carbon
2) In	n a tensile test of a du	actile material, necking s	tart	s at		(GATE MT 2008)
	lower yield stress upper yield stress			ultimate tensile streng just before fracture	ţth	
3) F	atigue resistance of a	steel is reduced by				(GATE MT 2008)
	decarburization polishing the surface	,		reducing the grain siz	æ	
4) T	The stress concentration	n factor K, for a circular	· hc	ole located at the cente	r o	(GATE MT 2008) f a plate is
a)	0	b) 1	c)	3	d)	tends to ∞
5) (Cassiterite is an impor-	tant source for				(GATE MT 2008)
a)	tin	b) titanium	c)	molybdenum	d)	thorium
6) H	ligh top pressure in the	ne blast furnace				(GATE MT 2008)
	and solid	of contact between gas		and solid increases fuel consum increases the rate of s	_	
7) F	or a closed system of	fixed internal energy and	d v	olume, at equilibrium		(GATE MT 2008)
	Gibb's free energy is entropy is maximum			Helmholtz's free ener enthalpy is maximum		is minimum
8) Iı	ntergranular corrosion	of 18-8 stainless steel ca	an	NOT be prevented by		(GATE MT 2008)
	0.05%	n content to less than igh temperature to pre-	c)	vent chromium carbid adding strong carbide increasing the carbon	fo	rming elements
9) R	tiser is NOT required	for the castings of				(GATE MT 2008) (GATE EE 2025)

MT 1/??

	a) grey	cast iron	b) white cast iron	c)	Al-4% Cu	d)	Al-12% Si
10)	The N	DT technique us	sed to detect deep lying of	defe	cts in a large size	d castii	(GATE MT 2008) ng is
		-			_		
	_	id penetrant insp gnetic particle in			ultrasonic inspect eddy current insp		
11)	The m	naximum number	of phases in a quaternal	ry s	ystem at atmosphe	eric pre	(GATE MT 2008) essure are
	a) 2		b) 3	c)	4	d)	5
12)			m, the solubility of Al ir n 1%. The Hume-Rother		_		
	a) size	factor		c)	structure		
	-	tro-negativity			valency		
13)	Manne	esmann process					(GATE MT 2008)
		_		`			
		-	thin walled seamless		uses parallel rolls is used for making tubes		ck walled seamless
14)	The in	ntensive thermod	ynamic variables among	the	following are		(GATE MT 2008)
	a) pres	ssure	b) volume	c)	temperature	d)	enthalpy
							(GATE MT 2008)
	a) P, Ç)	b) P, R	c)	R, S	d)	Q, R
15)	In a b	inary phase diag	ram, the activity of the s	olut	e in a two phase f	ield at	(GATE MT 2008) a given temperature
	b) deci		th the solute content ith the solute content	d)	is proportional t solute content	o the	square root of the
							(GATE MT 2008)
16)	In Jon	niny curves of st	eel A (Fe-0.4% C) and s	teel	B (Fe-0.4% C -1	.0% Ni	i),
	_	th of hardening teel B	in steel A is more than	c)	hardness at the q		ed end in steel A is
	b) dep		in steel B is more than	d)		uenche	ed end in steel B is
							(GATE MT 2008)
17)	Deterr	minant of $ \begin{pmatrix} 3 & 1 \\ 1 & 2 \\ 4 & 2 \end{pmatrix} $	2 1 3				(2222 221 2000)

2/??

MT

	a) -2	b) –	1		c) 1			d)	2
18)	$\int \frac{dx}{ax+b}$ is								(GATE MT 2008)
	$\int ax + b$ a) $\frac{1}{b} \ln(ax + b) + c$	b) ln	a(ax + b)	<i>p</i>) + <i>c</i>)	c) b ln	a(ax + b)) + c	d)	$\frac{1}{a}\ln(ax+b) + c$
19)	The value of dy/dx	for the fo	ollowing	data set a	at $x = 3.5$, comput	ed by o	entra	(GATE MT 2008) al difference method.
	is	X	1	2	3	4	5		
		у	0	3	8	15	24		
	a) 3.5	b) 7			c) 10.5	5		d)	14
20)	The velocity at which it, is known as	h particle	es from a	a fluidized	d bed are	carried a	way by	the 1	(GATE MT 2008) fluid passing through
	a) elutriation velocitb) terminal velocity	y			,	imum flu erficial v			elocity
21)	A metal with an ave has 500 MPa. The f			-	-	_	of 250	MPa	(GATE MT 2008) and that with 4 μ m
	a) 31.2	b) 62	2.5		c) 125			d)	250
201									(GATE MT 2008)
22)	The stacking sequen	ice of clo	se pack	ed planes	with a st	tacking f	ault is		
	a) <i>a b c a b c a b c</i>				c) <i>a b</i>	c a c a	b c a l)	
	b) a b a b a b a b a	ı b			d) <i>a b</i>	c a b a	c b a		
23)	The slip directions of	on a (111) plane	of a fcc	crystal are	e			(GATE MT 2008)
	a) [101] [011] [110	\ 1			a) [10	1] [110]	[011]		
	a) [101], [011], [110b) [101], [110], [101					1], [110] 1], [110]			
24)	The		- 41 C.	11					(GATE MT 2008)
	The correct stateme a) screw dislocations b) screw dislocations c) edge dislocations d) edge dislocations	s cannot s cannot cannot c	climb cross-sli limb	p	re				
	a) P, R	b) P,	S		c) Q, l	R		d)	Q, S
25)	A steel bar (elastic stress of 1 GPa and					_			

MT 3/??

	a) 0	b) 0.2	c) 0.5	d) 2.0
26)	The ASTM grain size magnification of 200X	e number of a material is	which shows 64 grains	(GATE MT 2008) s per square inch at a
	a) 5	b) 6	c) 7	d) 8
27)	_	of a brittle material ha	_	(GATE MT 2008) ratio 4:1. The ratio of
	a) 1:4	b) 1:2	c) 2:1	d) 4:1
	The structure-sensitive a) elastic modulus b) yield strength c) melting point d) fracture strength	properties are		(GATE MT 2008)
	a) P, S	b) Q, S	c) Q, R	d) P, R
		recrystallization of cold arrhenius kinetics, the act		_
	<i>a)</i> 30	<i>b)</i> 00	<i>c)</i> 100	
30)	Match the mechanical	behaviour in Group 1 wi	ith the terms in Group 2	(GATE MT 2008)
((Group 1 P) Low cycle fatigue Q) Creep R) Impact toughness S) Stretcher strain a) P-2, Q-4, R-1, S-5 b) P-2, Q-1, R-5, S-3		Group 2 (1) Charpy test (2) Portevin-LeChatelier (3) Coffin-Manson equat (4) Larson-Miller param (5) Jominy test c) P-3, Q-4, R-1, S-2 d) P-3, Q-1, R-4, S-5	tion
				(GATE MT 2008)
31)	Match the processes in	Group 1 with the physic	cal principles in Group 2	2
	Group 1 a) Floatation b) Jigging c) Tabling d) Heavy media separa		Group 2 (1) Differential initial ac (2) Differential lateral m (3) Difference in density (4) Modification of surfa	novement

MT 4/??

a)
$$P-4, Q-1, R-2, S-3$$

b)
$$P-4, Q-1, R-3, S-2$$

c)
$$P-2, Q-3, R-4, S-1$$

d)
$$P-1, Q-3, R-4, S-2$$

(GATE MT 2008)

32) Which of the following is the solution for $\frac{\partial z}{\partial t} = \frac{\partial^2 z}{\partial x^2}$

a)
$$z(x,t) = [Asinx]e^{-\lambda^2 t}$$

b)
$$z(x,t) = [A\sin(\lambda x)]e^{-\lambda^2 t}$$

c)
$$z(x,t) = \frac{A}{t}e^{-x^2t}$$

c)
$$z(x,t) = \frac{A}{t}e^{-x^2t}$$

d) $z(x,t) = [Acos(\lambda x)]\sqrt{t}$

(GATE MT 2008)

33) Match the unit processes in Group 1 with the objectives in Group 2

Group 1

- (P) Leaching
- (Q) Cementation
- (R) Roasting
- (S) Converting

a)
$$P-2, Q-1, R-3, S-5$$

b)
$$P-2, Q-1, R-4, S-3$$

Group 2

- (1) Precipitation of metal in aqueous solution
- (2) Selective dissolution of metal
- (3) Conversion of matte to metal
- (4) Conversion of sulphide to oxide
- (5) Separation of metal from slag

c)
$$P-3, Q-4, R-5, S-2$$

d)
$$P-4, Q-3, R-2, S-1$$

(GATE MT 2008)

34) Match the following metals in Group 1 with their production methods in Group 2

Group 1

- (P) Titanium
- (Q) Nickel
- (R) Magnesium
- (S) Zinc

- Group 2
- (1) Mond's process
- (2) Pidgeon's process
- (3) Imperial smelting
- (4) Kroll's process
- (5) Cyanidation

(A)
$$P-5$$
, $Q-2$, $R-3$, $S-4$

(B)
$$P-3, Q-5, R-4, S-2$$

(C)
$$P-4, Q-1, R-2, S-3$$

(D)
$$P-4, \tilde{Q}-1, R-5, S-3$$

(GATE MT 2008)

- 35) Manganese recovery in steelmaking is aided by
 - (P) oxidizing slag
 - (Q) reducing slag
 - (R) high temperature
 - (S) low temperature
 - (T) acidic slag
 - (A) P, Q
- (B) Q, S
- (C) Q, R
- (D) P, R

(GATE MT 2008)

- 36) A flotation plant treats 100 tons of chalcopyrite containing 2% Cu and produces 6 tons of concentrate. The concentrate has 25% Cu. The percentage Cu in the tailings is
 - (A) 0.35
- (B) 0.53
- (C) 0.86
- (D) 0.93

(GATE MT 2008)

MT

(GATE MT 2008) 44) Match the names in Group 1 with the invariant reactions in binary phase diagrams in Group 2

MT 6/??

Group 1

(A) Eutectic

(B) Eutectoid

(C) Peritectoid

(D) Monotectic

(A)
$$P-2, Q-1, R-3, S-4$$

(B)
$$P-2, Q-1, R-4, S-3$$

Group 2

(1) S1 = S2 + S3

(2)
$$L = S1 + S2$$

(3)
$$L1 = L2 + S$$

$$(4) S1 + S2 = S3$$

(C)
$$P-3, O-4, R-2, S-1$$

(D)
$$P-4, Q-3, R-1, S-2$$

(GATE MT 2008)

45) Match the properties in Group 1 with the units in Group 2

Group 1

(P) Thermal conductivity

(Q) Heat transfer coefficient

(R) Specific heat

(S) Diffusivity

(A)
$$P-1, Q-2, R-4, S-3$$

(B) P-2, Q-3, R-1, S-4

Group 2

(1) J m^{-2} s^{-1} K^{-1}

(2) $J m^{-1} s^{-1} K^{-1}$

(3) $m^3 s^{-1}$

 $(4) \text{ mol}^{-1} \text{ K}^{-1}$

(C)
$$P-2, Q-1, R-4, S-3$$

(D)
$$P-2, Q-4, R-3, S-1$$

(GATE MT 2008)

46) Match the heat treatment processes of steels in Group 1 with the microstructural features in Group 2

Group 1

(P) Quenching

(Q) Maraging

(R) Tempering

(S) Austempering

(A)
$$P-2, Q-3, R-1, S-4$$

(B) P-1, Q-3, R-2, S-4

Group 2

(1) Bainite

(2) Martensite

(3) Intermetallic precipitates

(4) Epsilon carbide

(C)
$$P-2, Q-3, R-4, S-1$$

(D)
$$P-3, Q-2, R-1, S-4$$

(GATE MT 2008)

47) Match the nonferrous alloys in Group 1 with their applications in Group 2

Group 1

(P) Ti alloy

(Q) Zr alloy

(R) Ni alloy

(S) Cu alloy

(A) P-3, Q-1, R-4, S-2

(B) P-2, Q-3, R-4, S-1

Group 2

(1) Nuclear reactors

(2) Bells

(3) Dental implants

(4) Gas turbines

(C) P-2, Q-1, R-3, S-4

(D) P-3, Q-4, R-1, S-2

(GATE MT 2008)

48) Match the materials in Group 1 with their functional applications in Group 2

Group 1

(P) Nb₃Sn

(Q) GaAs

(R) Fe-4%Si alloy

(S) SiO₂

Group 2

- (1) Dielectric
- (2) Soft magnet
- (A) P-3, Q-1, R-4, S-2
- (B) P-1, Q-4, R-2, S-3

- (3) Superconductor
- (4) Semiconductor
- (C) P-3, Q-2, R-4, S-1
- (D) P-3, Q-4, R-2, S-1

(GATE MT 2008)

49) An annealed hypoeutectoid steel has 10% of proeutectoid ferrite at room temperature. The eutectoid carbon content of the steel is 0.8%. The carbon content in the steel in percent is

- (A) 0.58
- (B) 0.68
- (C) 0.72
- (D) 0.78

(GATE MT 2008)

50) The melting point and latent heat of fusion of copper are 1356 K and 13 kJ mol⁻¹, respectively. Assume that the specific heats of solid and liquid are same. The free energy change for the liquid to solid transformation at 1250 K in kJ mol⁻¹ is

- (A) -4
- (B) -3
- (C) -2
- (D) -1

(GATE MT 2008)

- 51) According to the Clausius Clapeyron equation, the melting point of aluminium
 - (A) increases linearly with pressure
- (C) increases exponentially with pressure
- (B) decreases linearly with pressure
- (D) does not vary with pressure
- 52) Match the cast irons in Group 1 with the distinguishing microstructural features in Group 2

Group 1

- (P) Grey cast iron
- (Q) Ductile cast iron
- (R) Malleable cast iron

(A) P-3, Q-5, R-4, S-2

(B) P-1, Q-5, R-4, S-2

(S) White cast iron

- Group 2
- (1) Temper graphite
- (2) Pearlite
- (3) Graphite flakes
- (4) Massive cementite
- (C) P-2, Q-4, R-5, S-3
- (D) P-3, Q-5, R-1, S-4

(GATE MT 2008)

53) Match the casting defects in Group 1 with causes given in Group 2

Group 1

- (P) Hot tear
- (Q) Misrun
- (R) Blister
- (S) Rat tail
- (A) P-1, Q-2, R-3, S-4
- (B) P-3, Q-4, R-1, S-2

- Group 2
- (1) Insufficient melt super heat
- (2) High residual stresses
- (3) Improper venting
- (4) Expansion of sand
- (C) P-4, Q-3, R-2, S-1
- (D) P-2, Q-1, R-3, S-4

(GATE MT 2008)

54) The thickness of a plate is to be reduced from 60 to 30 mm by multipass rolling. The roll radius is 350 mm and coefficient of friction is 0.15. Assuming equal draft in each pass, the minimum number of passes required would be

MT 8/??

(A) 2

(B) 4

(C) 5

(D) 6

(GATE MT 2008)

55) Match the particle morphologies in Group 1 with the powder production methods in Group 2

Group 1

(P) Superalloy powder with rounded morphology

- (Q) Monosized spherical Ta powder
- (R) Fe powder with onion peel structure
- (S) Irregularly shaped W powder

(A)
$$P-2, Q-1, R-4, S-3$$

(B)
$$P-1, Q-4, R-3, S-2$$

Group 2

- (1) Carbonyl process
- (2) Gas atomization
- (3) Oxide reduction
- (4) Rotating electrode process

(C)
$$P-2, Q-4, R-1, S-3$$

(D)
$$P-4, Q-1, R-2, S-3$$

(GATE MT 2008)

56) One mole of monatomic ideal gas is reversibly and isothermally expanded at 1000 K to twice its original volume. The work done by the gas in Joules is

(A) 2430

(B) 2503

(C) 5006

(D) 5763

(GATE MT 2008)

57) In the Ellingham diagram C \rightarrow CO line intersects M \rightarrow MO line at temperature T_1 and N \rightarrow NO line at temperature T_2 . M and N are metals. T_2 is greater than T_1 . The correct statements among the following are:

- (P) carbon will reduce both MO and NO at temperatures $T_1 > T_2$
- (Q) carbon will reduce both MO and NO at temperatures between T_1 and T_2
- (R) carbon will reduce both MO and NO at temperatures $T_2 < T_1$
- (S) carbon will reduce MO but not NO at temperatures between T_1 and T_2
- (T) carbon will reduce NO but not MO at temperatures between T_1 and T_2

(A) P, S

(C) R, S

(B) Q, T

(D) P, T

(GATE MT 2008)

58) Match the forms of corrosion in Group 1 with the typical examples in Group 2

Group 1

- (P) Filiform corrosion
- (Q) Crevice corrosion
- (R) Galvanic corrosion
- (S) Stress corrosion cracking

Group 2

- (1) Austenitic stainless steel in chloride environment
- (2) Nut bolt with gasket
- (3) Painted food cans
- (4) Steel studs in copper plate

(A)
$$P-3, Q-2, R-4, S-1$$

(B)
$$P-1, Q-3, R-4, S-2$$

(C)
$$P-3, Q-4, R-2, S-1$$

(D)
$$P-2, Q-3, R-4, S-1$$

(GATE MT 2008)

59) Given the following assertion 'a' and the reason 'r', the correct option is **Assertion a:** Phosphorous removal in steelmaking is favoured by basic slag **Reason r:** Basic slag decreases the activity of P₂O₅ in the slag

MT 9/??

- (A) Both a and r are true and r is the correct (C) a is true but r is false reason for a
- (B) Both a and r are true

- (D) Both a and r are true but r is not the correct reason for a

(GATE MT 2008)

60) Given the following assertion 'a' and the reason 'r', the correct option is Assertion a: In Bayer's process high pressure is used to dissolve alumina from bauxite **Reason r:** Pressure increases the boiling point of water

- (A) Both a and r are correct, but r is not the (C) Both a and r are correct and r is the correct correct reason for a
- (B) Both a and r are false

- reason for a
- (D) a is true but r is false

(GATE MT 2008)

61) Match the alloys in Group 1 with the main precipitates responsible for hardening in Group 2

Group 1	Group 2
(P) Al-4.4%Cu-1.5%Mg-0.6%Mn	(1) Ni ₃ Mo
(Q) Fe-18.0%Ni-8.5%Co-3.5%Mo-0.2%Ti-	(2) Mg ₂ Si
0.1%Al	(3) CuAl ₂
(R) Al-1.0%Mg-0.6%Si-0.3%Cu-0.2%Cr	$(4) TiAl_3$

(A) P-3, Q-5, R-2, S-4

(C) P-4, Q-1, R-3, S-5

(B) P-1, Q-3, R-2, S-4

(D) P-3, Q-1, R-2, S-5

(GATE MT 2008)

- 62) Identify the attributes associated with dispersion hardened alloys
 - (P) dispersoids do not dissolve in the matrix even at high temperatures
 - (Q) dispersoids are coherent with the matrix

(S) Ni-15.0%Cr-2.7%Al-1.7%Ti-1.0%Fe

- (R) dispersoids impart creep resistance to the alloy
- (S) dispersoids improve the corrosion resistance of the alloy
- (A) P, S

(C) Q, S

(B) Q, R

(D) P, R

(GATE MT 2008)

- 63) In a gaseous mixture, CO, CO₂ and O₂ are in equilibrium at temperature T. For the reaction CO + $0.5O_2$ = CO_2 , ΔG° = -281,400 + 87.6T Joules. The correct statements among the following are:
 - (P) The reaction will shift to left on increasing T
 - (Q) The reaction will shift to right on increasing T
 - (R) The reaction will shift to left on increasing pressure
 - (S) The reaction will shift to right on increasing pressure

(A) P, S

(C) Q, R

(B) P, Q

(D) R, S

(GATE MT 2008)

64) The casting processes that require expendable moulds are

MT 10/??

	(P) investment casting		(R) shell moulding	5
	(Q) low-pressure casti	ng	(S) slush casting	
	(A) P, Q (B) Q, R		(C) R, S (D) P, R	
				(GATE MT 2008)
65)	-	s that do NOT con	tribute to densification duri	ng sintering are
	(P) surface diffusion(Q) grain boundary d	iffusion		
	(R) bulk diffusion	musion		
	(S) evaporation-conde	ensation		
	(T) viscous flow			
	(A) P, Q		(C) Q, T	
	(B) Q, S		(D) P, S	
				(GATE MT 2008)
66)		ng weldability amo	ong the following steels is	
	(P) Fe-0.6%C (Q) Fe-0.4%C			
	(R) HSLA			
	$(A) R \to Q \to P$		$(C) \ Q \to P \to R$	
	$(A) R \rightarrow Q \rightarrow I$ $(B) P \rightarrow Q \rightarrow R$		$(C) Q \to \Gamma \to R$ $(D) Q \to R \to P$	
			· · ·	(CATE MT 2000)
67)	Match the welding pro	ocesses in Group 1	with the sources of heat ir	(GATE MT 2008) a Group 2
	Group 1		Group 2	
	(P) Ultrasonic weldin	g	(1) Thermochemic	
	(Q) Spot welding (R) SMAW		(2) Electrical resis(3) Conversion of	
	(S) Thermit welding		(4) Friction	matte to metal
			(5) Electrical arc	
	(A) P-3, Q-2, R-1, S-4	4	(C) P-1, Q-3, R-4,	S-2
	(B) P-4, Q-3, R-2, S-		(D) P-3, Q-2, R-4,	
				(GATE MT 2008)
68)	A cup is to be made t	From a 2 mm thick	metal sheet by deep-drawin	ng. The height of the cup is
		diameter is 100 r	mm. For a drawing ratio of	1.25, the blank diameter in
	mm is			
	(A) 62.5	(B) 125	(C) 225	(D) 250
				(GATE MT 2008)
69)	The defects that are N	OT observed in e	xtruded products are	
	(P) chevron cracking(Q) fold			
	(R) piping			
	(S) surface cracking			
	(T) alligatoring			
MT				11/??

	(A) P, Q (B) R, T		(C) P, S (D) Q, T			
70)	Oil impregnated bronze	(GATE MT 2008)				
	(A) pressure die casting(B) centrifugal casting	Ţ	(C) solid-state sintering(D) liquid phase sintering			
71)	Common Data Question Common Data for Question The diffusivities of carb m ² s ⁻¹ , respectively. The activation energy for	10^{-12} and 1.94×10^{-11} (GATE MT 2008)				
	(A) 138	(B) 148	(C) 158	(D) 168		
72)	The diffusivity of carbo	on in γ -iron at 1373 K ir	$n m^2 s^{-1}$ is	(GATE MT 2008)		
	(A) 3.4×10^{-11}	(B) 4.4×10^{-11}	(C) 5.4×10^{-11}	(D) 6.4×10^{-11}		
(GATE No. 73) During the carburization of a steel, a case depth of d has been obtained in 40 hours at For achieving a case depth of d/2 at 1273 K, the time required in hours is						
	(A) 1	(B) 2	(C) 3	(D) 4		
74)	Common Data for Questions 74 and 75: A copper alloy powder has an apparent density of 3000 kg m ⁻³ and tap density of 4500 kg m ⁻ The powder is compacted in a cylindrical die at 300 MPa to a green density of 6000 kg m ⁻ Subsequently, the compact is sintered to a density of 7500 kg m ⁻³ . Th(GATE MT 2008) 4) If the powder is compressed to 10 mm height, the initial fill height in mm is					
	(A) 12	(B) 15	(C) 20	(D) 25		
75)	The densification param	neter of the sintered com	pact is	(GATE MT 2008)		
	(A) 0.50	(B) 0.67	(C) 0.75	(D) 0.83		
76)	Linked Answer Questions: Q.76 to Q.85 carry two marks each. Statement for Linked Answer Questions 76 and 77: A polyester-matrix composite is unidirectionally reinforced with 60 vol.% of E-glass fibers. The elastic moduli of the matrix and the fiber are 6.9 and 72.4 GPa, respectively. (GATE MT 2008) The elastic modulus of the composite parallel to the fiber direction in GPa is					
	(A) 15.1	(B) 23.1	(C) 43.4	(D) 46.2		
77)	If a load of 100 kg is a fibers in kg is	applied on the composit	e in the fiber direction,	(GATE MT 2008) the load carried by the		

12/??

MT

200	8			MAIN PAPER-MT
	(A) 6	(B) 47	(C) 94	(D) 100
				(GATE MT 2008)
	1000 kg of zinc of hearth furnace. Roand 2 vol.% SO ₃ .	oasting converts ZnS to	ion 78% ZnS and 22% inerts ZnO, SO_2 and SO_3 . The exit ga	-
78)	Composition of a 1 kg mol of gas of	s: Zn = 65, S = 32, O_2 ir (in vol.%) = 21% O_2 occupies 22.4 m ³ at 273 it gas (at 1 atm pressure	and 79% N_2 . K and 1 atm.	
	(A) 2129	(B) 2252	(C) 2628	(D) 2923
79)	Stoichiometric an	nount of air used (at 1 a	tm pressure and 273 K) in m ³	(GATE MT 2008) is
	(A) 1010	(B) 1394	(C) 1520	(D) 2020
				(GATE MT 2008)
80)	Density of $Al = 2$	inked Answer Question 2700 kg m ⁻³ , atomic we worth ratio for the oxidat	eight of Al = 27, density of Al	$_2O_3 = 3700 \text{ kg m}^{-3}.$
	(A) 0.57	(B) 0.74	(C) 1.38	(D) 3.12
				(GATE MT 2008)
81)	The oxidation law (A) parabolic	that governs the high t (B) linear	emperature oxidation of Al is (C) logarithmic	(D) paralinear
				(GATE MT 2008)
82)	In the diffraction	peak appears at 2θ of 5	as 82 and 83: obtained using CuK_{α} radiatio 58.4°. The lattice parameter of	

(A) 0.158

(B) 0.164

(C) 0.177

(D) 0.185

(GATE MT 2008)

83) The Miller indices of the reflecting plane are

(A) (111)

(B) (200)

(C) (220)

(D) (222)

(GATE MT 2008)

Statement for Linked Answer Questions 84 and 85:

Mg casting with a volume to surface area ratio (casting modulus) of 0.1 m is made by gravity die casting. Heat transfer coefficient at the metal-mould interface is 1.9 kJ m $^{-2}$ K $^{-1}$ s $^{-1}$. The density and melting point of Mg are 1700 kg m $^{-3}$ and 923 K, respectively. Assume ambient temperature to be 293 K.

84) If the solidification time is 50 s, the latent heat of fusion in kJ mol⁻¹ is

MT 13/??

(A) 300

(B) 352

(C) 472

(D) 532

(GATE MT 2008)

85) In a spiral channel of 10 mm diameter and with an entrance flow velocity of 300 mm $\rm s^{-1}$, the fluidity of the melt in mm is

(A) 75

(B) 175

(C) 275

(D) 375

(GATE MT 2008)

END OF THE QUESTION PAPER

MT 14/??