Support Vector Machines for Classification

Charles Nicholson

DSA/ISE 5103

Characteristics of Support Vector Machines

- Can be used for regression or classification
- Linear and non-linear relationships can be learned
- Computationally more taxing than other methods
- Requires the training data to be available (or at least some of it) to make predicts
- Can be VERY good classifier if TUNED well
- SVM has been used successfully in many real-world problems
 - text (and hypertext) categorization
 - image classification
 - bioinformatics (protein classification, cancer classification)
 - hand-written character recognition

$$\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p = 0$$

Linear Separators

Binary classification can be viewed as the task of separating classes in feature space

$$f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)$$

Linear Separators

Which of the linear separators is optimal?

Classification Margin

• Distance from example \mathbf{x}_i to the separator is

$$r = \frac{\mathbf{w}^T \mathbf{x}_i + b}{\|\mathbf{w}\|}$$

- Observations closest to hyperplane are support vectors
- *Margin* ρ of the separator is the distance between support vectors

Maximum Margin Classification

- Maximizing the margin is good according to intuition and probably approximately correct learning (PAC) theory
- Implies that only support vectors matter; other training examples are ignorable.

Linear SVM Mathematically

- Let training set $\{(\mathbf{x}_i, y_i)\}_{i=1..n}$, $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \{-1, 1\}$ be separated by hyperplane with margin ρ
- Then, for each training example (\mathbf{x}_i, y_i) :

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \leq -\rho/2 \quad \text{if } y_{i} = -1 \\ \mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \geq \rho/2 \quad \text{if } y_{i} = 1 \quad \Leftrightarrow \quad y_{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b) \geq \rho/2$$

- For every support vector \mathbf{x}_s the above inequality is an equality
- After rescaling **w** and b by $\rho/2$ in the equality, we obtain that distance between each \mathbf{x}_s and the hyperplane is

$$r = \frac{\mathbf{y}_{s}(\mathbf{w}^{T}\mathbf{x}_{s} + b)}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}$$

• The margin can be expressed through (rescaled) **w** and b as: $\rho = 2r = \frac{2}{\|\mathbf{w}\|}$

Linear SVMs Mathematically

Then we can formulate the quadratic optimization problem:

Find w and b such that

$$\rho = \frac{2}{\|\mathbf{w}\|}$$
 is maximized

$$\rho = \frac{2}{\|\mathbf{w}\|} \text{ is maximized}$$
and for all (\mathbf{x}_i, y_i) , $i=1..n$: $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$

Which can be reformulated as:

Find w and b such that

$$\Phi(w) = ||w||^2 = w^T w$$
 is minimized

$$\Phi(w) = ||w||^2 = w^T w \text{ is minimized}$$
and for all (x_i, y_i) , $i = 1..n$: $y_i (w^T x_i + b) \ge 1$

Solving the Optimization Problem

```
Find w and b such that \Phi(w) = w^T w is minimized and for all (x_i, y_i), i = 1...n: y_i (w^T x_i + b) \ge 1
```

- Need to optimize a quadratic function subject to linear constraints
- Quadratic optimization problems are a well-known class of mathematical programming problems for which several (non-trivial) algorithms exist
- The solution involves constructing a *dual problem* where a *Lagrange multiplier* α_i is associated with every inequality constraint in the primal (original) problem:

Find
$$\alpha_1...\alpha_n$$
 such that $\mathbf{Q}(\boldsymbol{\alpha}) = \Sigma \alpha_i - \frac{1}{2} \Sigma \Sigma \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$ is maximized and (1) $\Sigma \alpha_i y_i = 0$ (2) $\alpha_i \geq 0$ for all α_i

Optimization Problem Solution

• Given a solution $\alpha_1...\alpha_n$ to the dual problem, solution to the primal is:

$$\mathbf{w} = \Sigma \alpha_i y_i \mathbf{x}_i$$
 $b = y_k - \Sigma \alpha_i y_i \mathbf{x}_i^T \mathbf{x}_k$ for any $\alpha_k > 0$

- Each non-zero α_i indicates that corresponding \mathbf{x}_i is a support vector
- Then the classifying function is (note that we don't need w explicitly):

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

- Notice that it relies on an inner product between the test point x (new data) and the support vectors x;
- Also keep in mind that solving the optimization problem involved computing the inner products $\mathbf{x}_i^\mathsf{T}\mathbf{x}_i$ between all training points

Example from "Applied Predictive Modeling" (Ch.13)

Perfectly separable data

3 support vectors identified

Note: The actual numeric positions of the SV's were not provided in the textbook, but I've estimated them in such a way to reproduce the math.

Also, the intercept b_0 seems to be incorrect in the text; so we will say that $b_0 = -4.326$

Example from "Applied Predictive Modeling" (Ch.13)

Class 2

Perfectly separable data

3 support vectors identified

Note: The actual numeric positions of the SV's were not provided in the textbook, but I've estimated them in such a way to reproduce the math.

Also, the intercept b_0 seems to be incorrect in the text; so we will say that $b_0 = -4.326$

Example from "Applied Predictive Modeling"

Example from "Applied Predictive Modeling"

Soft Margin Classification

- What if the training set is not completely separable?
- Slack variables ξ_i can be added to allow misclassification of difficult or noisy examples, resulting in a so-called soft margin.

Soft Margin Classification Mathematically

The old formulation:

Find w and b such that
$$\Phi(w) = w^T w$$
 is minimized and for all (\mathbf{x}_i, y_i) , $i=1..n$: $y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1$

Modified formulation incorporates slack variables:

```
Find w and b such that \mathbf{\Phi}(\mathbf{w}) = \mathbf{w}^T \mathbf{w} + C \sum_i \xi_i is minimized and for all (\mathbf{x}_i, y_i), i=1..n: y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i, \xi_i \ge 0
```

- Parameter C helps control overfitting: it trades off the relative importance of maximizing the margin and fitting the data
- For large C, the optimization will choose a smaller-margin hyperplane if the improves accuracy.
- A small C will result in larger-margin separating hyperplane, even if that incurs misclassifications

Soft Margin Classification – Solution

Dual problem is identical to separable case

Find
$$\alpha_1...\alpha_N$$
 such that $\mathbf{Q}(\boldsymbol{\alpha}) = \Sigma \alpha_i - \frac{1}{2} \Sigma \Sigma \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$ is maximized and (1) $\Sigma \alpha_i y_i = 0$ (2) $0 \le \alpha_i \le C$ for all α_i

- Again, \mathbf{x}_i with non-zero α_i will be support vectors.
- Solution to the dual problem is:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i$$

$$b = y_k (1 - \xi_k) - \sum \alpha_i y_i \mathbf{x}_i^T \mathbf{x}_k \text{ for any } k \text{ s.t. } \alpha_k > 0$$

Again, we don't need to compute w explicitly for classification:

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^T \mathbf{x} + b$$

Linear SVMs: Overview

- The classifier is a separating hyperplane.
- Most "important" training points are support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points \mathbf{x}_i are support vectors with non-zero Lagrangian multipliers α_i .
- Both in the dual formulation of the problem and in the solution training points appear only inside inner products:

Find
$$\alpha_1...\alpha_N$$
 such that $\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_i \mathbf{x}_i^T \mathbf{x}_j$ is maximized and (1) $\sum \alpha_i y_i = 0$

(2)
$$0 \le \alpha_i \le C$$
 for all α_i

$$f(\mathbf{x}) = \sum \alpha_i y \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

Non-linear SVMs

• Datasets that are linearly separable with some noise work out great:

But what are we going to do if the dataset is just too hard?

• How about... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature spaces

General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

The "Kernel Trick"

• The linear classifier relies on inner product between vectors $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$

• If every datapoint is mapped into high-dimensional space via some transformation $\Phi: \mathbf{x} \to \varphi(\mathbf{x})$, the inner product becomes:

$$K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \varphi(\boldsymbol{x}_i)^T \varphi(\boldsymbol{x}_j)$$

A kernel function is a function that is equivalent to a dot product in some (most likely, higher-dimensional) feature space.

The "Kernel Trick"

Example:

Consider the 2-dimensional vectors $\mathbf{a} = [a_1 \ a_2]$ and $\mathbf{b} = [b_1 \ b_2]$ And let's examine the well known quadratic kernel:

$$K(\boldsymbol{a},\boldsymbol{b}) = (1 + \boldsymbol{a}^T \boldsymbol{b})^2$$

 $K(\boldsymbol{a},\boldsymbol{b})$ can be shown to be the result of a dot-product between a higher dimensional representation of \boldsymbol{a} and \boldsymbol{b}

Need to show that $K(\boldsymbol{a}, \boldsymbol{b}) = \varphi(\boldsymbol{a})^T \varphi(\boldsymbol{b})$

The "Kernel Trick"

$$K(\boldsymbol{a}, \boldsymbol{b}) = (1 + \boldsymbol{a}^T \boldsymbol{b})^2$$

= $1 + a_1^2 b_1^2 + a_2^2 b_2^2 + 2a_1 b_1 + 2a_2 b_2 + 2a_1 b_1 a_2 b_2$

This would be the result of the dot product of these two 6d vectors:

$$[1, a_1^2, a_2^2, \sqrt{2}a_1, \sqrt{2}a_2, \sqrt{2}a_1a_2]$$

 $[1, b_1^2, b_2^2, \sqrt{2}b_1, \sqrt{2}b_2, \sqrt{2}b_1b_2]$

So,
$$\varphi(\mathbf{x}) = \varphi(x_1, x_2) = (1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2)$$

And thus, $K(\boldsymbol{a}, \boldsymbol{b}) = (1 + \boldsymbol{a}^T \boldsymbol{b})^2 = \varphi(\boldsymbol{a})^T \varphi(\boldsymbol{b})$

Examples of Kernel Functions

A kernel function implicitly maps data to a high-dimensional space (without the need to compute each $\varphi(x)$ explicitly).

- Linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
 - Mapping Φ : $x \to \varphi(x)$, where $\varphi(x)$ is x itself
- Polynomial of power $p: K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^p$
- Gaussian (radial-basis function): $K(x_i, x_j) = \exp\left(\frac{\|x_i x_j\|^2}{2\sigma^2}\right)$
- Sigmoid: $K(\mathbf{x}_i, \mathbf{x}_i) = \tanh(\beta_0 \mathbf{x}_i^T \mathbf{x}_i + \beta_1)$

Non-linear SVMs Mathematically

Dual problem formulation:

Find
$$\alpha_1...\alpha_n$$
 such that $\mathbf{Q}(\boldsymbol{\alpha}) = \Sigma \alpha_i - \frac{1}{2} \Sigma \Sigma \alpha_i \alpha_j y_i y_j K(\boldsymbol{x}_i, \boldsymbol{x}_j)$ is maximized and (1) $\Sigma \alpha_i y_i = 0$ (2) $\alpha_i \geq 0$ for all α_i

• The solution is:

$$f(\mathbf{x}) = \sum \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}_j) + b$$

• Optimization techniques for finding α_i 's remain the same!

Non Linear SVMs: Overview

- SVM locates a separating hyperplane in the feature space and classify points in that space
- It does not need to represent the space explicitly, simply by defining a kernel function
- The kernel function plays the role of the dot product in the feature space.

Some Notes/Issues

Probably should scale data (e.g., z-score scaling) prior to training

- Choice of kernel
 - Gaussian (RBF) or polynomial kernel is default
 - if ineffective, more elaborate kernels are needed
- Choice of kernel parameters
 - e.g., σ in Gaussian kernel
 - In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters → You NEED to TUNE!

Packages in R

Top 20 R Machine Learning packages, by Downloads (000) from CRAN (2015)

For SVM:

- e1701
- kernlab
- LiblineaR

