Perry Hart
HoTT reading group
UMN
April 8, 2022

Abstract

This is a brief introduction to elementary toposes. These play a central role in categorical semantics of dependent type theory (along with other areas of categorical logic). We assume knowledge of basic category theory.

Let \mathscr{C} be a category with finite limits. For any object $A \in \text{ob}\,\mathscr{C}$, a power object of A is an object $\mathcal{P}(A)$ of \mathscr{C} together with a monomorphism $\in_A \to A \times \mathcal{P}(A)$ such that for every monomorphism $f: C \to A \times D$ in \mathscr{C} , there is a unique pullback square of the form

$$C \xrightarrow{J} \in A$$

$$f \downarrow \qquad \qquad \downarrow$$

$$A \times D \xrightarrow{\operatorname{id}_A \times \chi_f} A \times \mathcal{P}(A)$$

We call χ_f the classifying map of f. If A=1, then a power object of A is called a subobject classifier.

A category \mathcal{E} is an elementary topos if it

- has finite limits,
- is Cartesian closed, and
- has a subobject classifier true : $1 \to \Omega$.

In this case, any global element $1 \to \Omega$ is called a truth value.

Proposition 0.1. A category \mathscr{C} with finite limits is a topos if and only if every object of \mathscr{C} has a power object.

In particular, for any topos $\mathscr E$ and $A\in \operatorname{ob}\mathscr E$, the exponential object Ω^A is a power object of A. In this case, the power object functor $\Omega^{(-)}:\mathscr E^{\operatorname{op}}\to\mathscr E$ sends a map $X\xrightarrow{f}Y$ in $\mathscr E$ to the transpose of the composite

$$\Omega^Y \times X \xrightarrow{\mathrm{id}_{\Omega^B} \times f} \Omega^Y \times Y \xrightarrow{\mathrm{ev}_{Y,\Omega}} \Omega$$

under the adjunction $-\times X \vdash -^X$. We have a chain of natural isomorphisms

$$\mathscr{E}(X,\Omega^Y) \cong \mathscr{E}(X \times Y,\Omega) \cong \mathscr{E}(Y \times X,\Omega) \cong \mathscr{E}(Y,\Omega^X) \cong \mathscr{E}^{\mathrm{op}}(\Omega^X,Y),$$

which gives us an adjunction $(\Omega^{(-)})^{\text{op}} \vdash \Omega^{(-)}$. By an argument due to Paré, this adjunction is *monadic* in the sense that $\Omega^{(-)}$ reflects isomorphisms and preserves reflexive coequalizers, which implies that $\Omega^{(-)}$ creates limits. Since $\mathscr E$ has finite limits as a topos, it follows that $\mathscr E^{\text{op}}$ has finite limits, i.e., $\mathscr E$ has finite colimits.

Example 0.2.

- 1. The category **Set** is a *Boolean* topos, i.e., $\Omega \cong 1 \coprod 1$.
- 2. For any small category \mathscr{C} , the presheaf category $\widehat{\mathscr{C}} := [\mathscr{C}^{op}, \mathbf{Set}]$ is a topos where the functor Ω sends $U \in \text{ob}\,\mathscr{C}$ to the set $\mathtt{sieves}(U)$ of sieves on U, i.e., sets σ of morphisms over U such that for any morphisms $f: X \to Y$ and $g: Y \to U$ in \mathscr{C} ,

$$Y \xrightarrow{g} U \ \in \ \sigma \quad \Longrightarrow \quad X \xrightarrow{f} Y \xrightarrow{g} U \ \in \ \sigma.$$

The action of Ω on morphisms in \mathscr{C} is defined by

$$V \xrightarrow{h} U \mapsto \sigma \mapsto \{f : X \to V \mid h \circ f \in \sigma, X \in ob \mathscr{C}\}.$$

The sieve on U generated by id_U is the top element $\mathtt{sieve_{top}}(U)$ of $\mathtt{sieves}(U)$. We define $\mathtt{true}: 1 \to \Omega$ as the natural transformation with components

$$\mathtt{true}(U): \{*\} \to \mathtt{sieves}(U)$$

$$* \mapsto \mathtt{sieve}_{\mathtt{top}}(U).$$

For any monomorphism $\varphi: F \hookrightarrow G$ in $\widehat{\mathscr{C}}$, the classifying map of φ has components

$$\chi_{\varphi}(U): G(U) \to \Omega(U)$$

 $x \mapsto \{f: X \to U \mid G(f)(x) \in F(X), X \in \text{ob} \mathscr{C}\}.$

Note 0.3. Let \mathscr{C} be a small category.

- 1. The subobject $\Omega_{\mathsf{dec}} \hookrightarrow \Omega$ of decidable sieves classifies all monomorphisms $F \xrightarrow{\psi} G$ in $\widehat{\mathscr{C}}$ such that $\psi_A : F(A) \to G(A)$ has decidable image for every $A \in \mathsf{ob}\,\mathscr{C}$. Here, a subset $S \subset T$ is decidable if and only if for any $x \in T$, the disjunction $x \in S \lor x \notin S$ is provable. If our metatheory includes LEM, then $\Omega_{\mathsf{dec}} = \Omega$.
- 2. Let $\mathcal{Y}: \mathscr{C} \to \widehat{\mathscr{C}}$ denote the Yoneda embedding. Let $U \in \text{ob}\,\mathscr{C}$. For any sieve σ , define the subfunctor $F_{\sigma} \hookrightarrow \mathcal{Y}_U$ by

$$A \mapsto \mathcal{Y}_U(A) \cap \sigma$$

for all $A \in \text{ob } \mathscr{C}$. Conversely, for every subfunctor F of \mathcal{Y}_U , define the sieve

$$\sigma_F \equiv \coprod_{X \in \text{ob}\,\mathscr{C}} F(X)$$

on U. Then F_{-} : sieves $(U) \to \operatorname{Sub}(\mathcal{Y}_{U})$ is a bijection with inverse σ_{-} .

Definition 0.4 (Heyting algebra). Let L be a bounded lattice. We say that L is a *Heyting algebra* if it has a binary operation $\Rightarrow: L \times L \to L$, called *implication*, such that

$$\begin{split} p &\Rightarrow p = 1 \\ p \wedge (p \Rightarrow q) &= p \wedge q \\ q \wedge (p \Rightarrow q) &= q \\ p &\Rightarrow (q \wedge r) = (p \Rightarrow q) \wedge (p \Rightarrow r) \,. \end{split}$$

For any topos \mathscr{E} and $A \in \text{ob}\,\mathscr{E}$, the poset Sub(A) is a Heyting algebra. As a result, Sub(A) is a model of intuitionistic propositional calculus. For example, the meet \cap and join \cup operation for Sub(A) are precisely the binary product and binary coproduct in Sub(A), respectively.

Proposition 0.5. Let U_1 and U_2 be subobjects of A.

1. We have a pullback square

$$\begin{array}{ccc}
U_1 \cap U_2 & \longrightarrow & U_2 \\
\downarrow & & \downarrow \\
U_1 & \longrightarrow & A
\end{array}$$

in \mathcal{E} consisting of monomorphisms.

2. We have a pushout square

in \mathcal{E} where α is a monomorphism.

Let $\mathscr E$ be a topos and consider a map $\mathtt{E1}:\widehat U\to U$ in $\mathscr E$. We say that a map $f:X\to Y$ in $\mathscr E$ is U-small if there exists a pullback square (not necessarily unique) of the form

$$\begin{array}{ccc} X & \longrightarrow & \widehat{U} \\ f \downarrow & & \downarrow_{\text{El}} \\ Y & \longrightarrow & U \end{array}$$

Note that the class of U-small maps is closed under pullbacks.

We say that E1 is a *universe in* \mathscr{E} if the class of U-small maps

- (a) is closed under
 - products,
 - dependent sums,
 - dependent products, and
 - pullbacks of $1 \xrightarrow{\text{true}} \Omega$ and
- (b) contains the unique map $\Omega \to 1$.

Condition (b) expresses that U is *impredicative*. The subobject classifier is a *predicative* universe as long as $\Omega \neq 1$, and the Ω -small maps are precisely the monomorphisms.

Remark 0.6. Closure under dependent sums is sometimes used as an alternative definition of *impredicative*, in which case Ω is impredicative. Unfortunately, both definitions appear in the type theory literature.