UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Exatas e de Tecnologia Departamento de Computação

Computação Gráfica

Rascunho elaborado por Murillo Rodrigo Petrucelli Homem

Faremos de maneira sucinta alguns comentários sobre o *Observador Virtual* e as chamadas *Projeções Planares*. Este texto não substitui as referências da disciplina, servindo apenas como material de apoio.

1) O Observador Virtual

A determinação do Observador Virtual (OV) parte da construção de uma nova base, a qual estabelece um novo sistema de coordenadas, chamado Sistema de Coordenadas do Observador (SCO).

Em decorrência da tratabilidade matemática, assumiremos que o SCO será construído de maneira a ser ortonormal.

A princípio, considere um Sistema de Referência para o Universo (ou mundo), doravante denominado SRU3D, assumindo uma origem (estabelecida pelo usuário) e uma base canônica para o \mathbb{R}^3 .

Portanto,

$$B_{SRU3D} = {\vec{e_1}, \vec{e_2}, \vec{e_3}}$$
 , sendo $\vec{e_1} = (1,0,0)$, $\vec{e_2} = (0,1,0)$ e $\vec{e_3} = (0,0,1)$.

Agora, assumiremos uma base para o OV dada por

$$B_{OV} = {\vec{u}, \vec{v}, \vec{w}}$$
, sendo $\vec{u} = (u_1, u_2, u_3)$, $\vec{v} = (v_1, v_2, v_3)$ e $\vec{w} = (w_1, w_2, w_3)$.

Dado um ponto $p=(x,y,z)\in\mathbb{R}^3$ representado na base canônica, precisamos representá-lo na base do observador, isto é,

$$p = \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{B_{\text{BMJ3D}}} = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}_{B_{\text{OV}}}.$$

Os vetores da base do observador podem ser escritos em função da base canônica como

$$\vec{u} = u_1 \vec{e_1} + u_2 \vec{e_2} + u_3 \vec{e_3}$$
,

$$\vec{v} = v_1 \vec{e_1} + v_2 \vec{e_2} + v_3 \vec{e_3}$$
 e

$$\vec{w} = w_1 \vec{e_1} + w_2 \vec{e_2} + w_3 \vec{e_3}$$
.

Dessa forma, o ponto p=(x', y', z') pode ser escrito como

$$p = x'\vec{u} + y'\vec{v} + z'\vec{w} \Rightarrow$$

$$p = x'(u_1\vec{e_1} + u_2\vec{e_2} + u_3\vec{e_3}) + y'(v_1\vec{e_1} + v_2\vec{e_2} + v_3\vec{e_3}) + z'(w_1\vec{e_1} + w_2\vec{e_2} + w_3\vec{e_3})$$

ou

$$p = (x'u_1 + y'v_1 + z'w_1)\vec{e}_1 + (x'u_2 + y'v_2 + z'w_2)\vec{e}_2 + (x'u_3 + y'v_3 + z'w_3)\vec{e}_3.$$

Assim sendo, verificando a representação do ponto *p* em relação a base canônica, temos que

$$x = x'u_1 + y'v_1 + z'w_1$$

 $y = x'u_2 + y'v_2 + z'w_2$
 $z = x'u_3 + y'v_3 + z'w_3$

e dessa forma,

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} .$$

Lembrando que ambas as bases são ortonormais, um resultado da Álgebra Linear nos diz que

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} ,$$

ou seja, dado um ponto p, representado na base canônica, ou no SRU tridimensional, a sua representação, p, na base do observador é dada por

$$p' = R_{MB} \cdot p$$
 ,

e R_{MB} é a matriz mudança de base entre as bases $B_{\mathit{SRU}\, 3D}$ e B_{OV} , representada por

$$R_{MB} = \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix} .$$

Verifica-se, considerando que ambas as bases são ortonormais, que a matriz mudança de base é uma operação de rotação, sendo que a origem do sistema de coordenadas do OV permanece sobre a origem do sistema de coordenadas determinado pelo usuário.

Para mover o OV através do espaço 3D, considere uma matriz de translação, assumindo sua representação homogênea dada por

$$T_{OV} = \begin{pmatrix} 1 & 0 & 0 & -dx \\ 0 & 1 & 0 & -dy \\ 0 & 0 & 1 & -dz \\ 0 & 0 & 0 & 1 \end{pmatrix} ,$$

assumindo por simplicidade que o elemento homogêneo é igual a 1.

Da composição das matrizes T_{OV} e R_{MB} (na sua forma homogênea), temos que

$$M_{OV} = \begin{pmatrix} u_1 & u_2 & u_3 & -dx \\ v_1 & v_2 & v_3 & -dy \\ w_1 & w_2 & w_3 & -dz \\ 0 & 0 & 0 & 1 \end{pmatrix} .$$

Agora, falta determinar de fato os vetores da base $B_{\rm ov} = \{\vec{u}\,, \vec{v}\,, \vec{w}\}$. Assuma que o usuário forneça dois vetores, chamados, por conveniência, de vetor *normal* e *view-up*, respectivamente, e denotados por \vec{N} e \vec{V} .

O primeiro, \vec{N} , é um vetor que indica para onde o OV "está olhando". Definimos o vetor \vec{w} como sendo

$$\vec{w} = \frac{\vec{N}}{\|\vec{N}\|} .$$

Os outros dois vetores da base podem ser determinados como

$$\vec{u} = \frac{\vec{V} \times \vec{w}}{\|\vec{V} \times \vec{w}\|}$$
 e $\vec{v} = \vec{w} \times \vec{u}$.

O uso do produto vetorial permite facilmente achar os vetores \vec{u} e \vec{v} de maneira que a base resultante seja ortonormal.

Uma vez determinados os vetores da base do observador e uma transformação mudança de base que permite representar cada ponto do mundo em relação ao OV, passaremos ao próximo passo, as *projeções planares*.

2) Projeções Planares

Assuma agora um ponto p representado na base do observador virtual. Considere a ilustração da figura abaixo, sendo que o eixo representado pelo vetor \vec{v} está "saindo" da página formando um ângulo de 90° em relação a \vec{u} e \vec{w} , respectivamente.

O ponto $p_{cp} = (0,0,z_{cp})$ é chamado <u>centro de projeção</u>, colocado convenientemente sobre o eixo de profundidade, \vec{w} .

O vetor \vec{w} é normal ao plano formado pelos vetores \vec{u} e \vec{v} ou a qualquer outro plano paralelo a $\vec{u}\,O\vec{v}$.

Assuma, dessa forma, um outro plano, não necessariamente concorrente com o plano $\vec{u}\,O\vec{v}$ mas na posição z_{vp} sobre o eixo \vec{w} .

Esse plano chamaremos "plano de projeção" ou "plano de visualização" ou "plano de observação" e conterá a projeção planar dos pontos que formam os objetos tridimensionais.

Portanto, precisamos achar p' que é a projeção do ponto p sobre o plano de visualização na posição z_{vp} .

O segmento de reta que passa necessariamente por p e p_{cp} é chamado de *projetante* ou *raio projetor*.

Considere as equações paramétricas

$$\begin{array}{c} x\!=\!x\!-\!\lambda\,x \\ y\!=\!y\!-\!\lambda\,y \\ z\!=\!z\!-\!\lambda(z\!-\!z_{cp}) \ , \end{array} \label{eq:controller}$$

para $\lambda \in [0,1]$.

Quando λ =0 , verifica-se que o resultado nos fornece exatamente o ponto p que desejamos projetar.

Quando $\lambda=1$, temos x=0 , y=0 e $z=z_{cp}$, ou seja, o resultado é o ponto p_{cp} , ou o centro de projeção.

Sendo assim, variando λ no intervalo [0,1] o projetante percorre todos os pontos entre p e p_{cp} . Eventualmente, intercepta o plano de visualização na posição z_{vp} para algum $0 \le \lambda \le 1$.

A ideia é determinar λ que nos forneça as coordenadas de p sobre o plano em z_{vp} .

É trivial perceber que para um ponto sobre o plano de visualização (em z_{vp}), a terceira coordenada do ponto é $z'=z_{vp}$.

Portanto, $z' = z_{vp} = z - \lambda'(z - z_{cp})$, de onde extraímos

$$\lambda' = \frac{z - z_{vp}}{z - z_{cp}} .$$

Determinado λ' para o qual $z'=z_{vp}$, basta substituí-lo nas equações paramétricas para as outras duas coordenadas, obtendo

$$x' = \frac{z_{vp} - z_{cp}}{z - z_{cp}} \cdot x$$
 e $y' = \frac{z_{vp} - z_{cp}}{z - z_{cp}} \cdot y$.

A operação detalhada acima é conhecida como *Projeção Perspectiva* e o resultado depende da escolha adequada dos parâmetros z_{vp} e z_{cp} .

Quando o centro de projeção tende ao infinito os raios projetantes tendem a ficar paralelos ao eixo determinado pelo vetor \vec{w} . Ou, em outras palavras, os projetores tendem a formar ângulos de 90° com o plano de visualização.

De fato, quando os projetantes são paralelos ao vetor \vec{w} obtemos a chamada *Projeção Paralela*.

Retomando o desenvolvimento da projeção perspectiva, vamos descrever a matriz que determina a transformação linear desta operação.

Para isso, assumiremos que $x_h = x$ e $y_h = y$, considerando a componente homogênea dada por

$$h = \frac{z - z_{cp}}{z_{vp} - z_{cp}} .$$

Portanto, as coordenadas cartesianas x' e y' são dadas por

$$x' = \frac{x_h}{h} \quad \text{e} \quad y' = \frac{y_h}{h} \quad .$$

Agora, por construção, uma vez que sabemos que $z'=z_{vp}$, podemos assumir que

$$z' = z_{vp} = \frac{z_h}{h} = z_{vp} \cdot \frac{z - z_{cp}}{z - z_{cp}}$$
.

Concluímos que

$$z_h = \frac{z_{vp}}{z_{vp} - z_{cp}} \cdot z - \frac{z_{vp} \cdot z_{cp}}{z_{vp} - z_{cp}}$$
.

Das expressões acima para x_h , y_h , z_h e h, podemos escrever a expressão para a projeção perspectiva de um ponto p=(x,y,z,1) (considerando a componente homogênea igual a 1), na base do observador virtual, como uma transformação linear descrita por

$$\begin{vmatrix} x_h \\ y_h \\ z_h \\ h \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{z_{vp}}{z_{vp} - z_{cp}} & \frac{-z_{vp} \cdot z_{cp}}{z_{vp} - z_{cp}} \\ 0 & 0 & \frac{1}{z_{vp} - z_{cp}} & \frac{-z_{cp}}{z_{vp} - z_{cp}} \end{vmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} .$$