Machine Learning Model On Food Delivery Time Prediction

By - Rahul Nair

Objective Approach Model Summary Results Inference & Comments

Problem Statement

- Predict the time in minutes to deliver Swiggy orders from origin to destination
- Project is a regression problem that has input features about:
 - Rider
 - Delivery vehicle
 - Weather conditions
 - Traffic
 - Location of restaurant
 - Location of Delivery

Stakeholders

Swiggy

Delivery Agents / Riders

Restaurants

Customers

Business Use Case

Swiggy

- Improve Delivery Efficiency
- Enhance Customer Satisfaction
- Optimize Operational Costs

Rider

- Plan pickups and drops
- Can manage multiple orders
- Avoid Risky Driving

Restaurant

- Prioritization of Orders
- Can manage staff for in house orders vs home deliveries

Customer

- Experience of on-time delivery
- No anxiety of order arrival

Data Preparation

- Oclean the data for missing values, duplicates and other inconsistencies
- Conduct univariate analysis to identify the features which have the highest correlation with target variable

Train Baseline Model

- Build a baseline linear regression model to check for the performance
- Build a baseline random forest model to compare with the linear regression model

Further Models & Model Evaluation

- Build random forest, KNN, GB and LGBM models and evaluate the same
- Use Grid Search CV to identify the best hyperparameters and the best model
- Inference based on the best model

Base line Models with missing data filled

1 Datapoints

Description	Count
Data	45,593
Cleaned Data	45,502
Missing values	7,438
Train Data	36,401
Test Data	9,101

Preprocessing Steps

Data Cleaning and EDA

Data Cleaning

- Remove duplicate values
- Remove columns with data inconsistency

EDA

 Conduct Anova and Chi square test to identify the relationship between the variables

Machine Learning Models & Metrics

Models used

- Linear Regression
- Random Forest

Metrics used -

- Mean Absolute Error
- R2 score

Base line Models with missing data removed

Preprocessing Steps

1 Machine Learning Models & Metrics

Models used

- Linear Regression
- Random Forest

Metrics used -

- Mean Absolute Error
- R2 score

Ensemble Model with missing data removed

Preprocessing Steps

Parameters of Grid Search CV

- CV=5
- Scoring neg mean absolute error

6 Models used in Grid Search CV

Model Name	Hyperparameters in Grid Search CV				
Random Forest	1. n_estimators - 10, 100, 200 2. max_depth - 2, 20				
XGBoost	1. n_estimators - 10, 100, 200 2. max_depth - 2, 20 3. learning_rate - 0.1, 0.5				
LGBM	 n_estimators - 10, 100, 200 max_depth - 2, 20 3. learning_rate - 0.1, 0.5 				
KNN	1. n_neighbours - 1, 25 2. weights – 'uniform', 'distance'				
Averaging Ensemble Model	XGBoost – n_estimators – 100, max_depth – 20, learning rate – 0.1 LGBM - n_estimators – 200, max_depth – 20, learning rate – 0.1				

Objective Approach Model Summary Results Inference & Comments

Model Performance

	Madel News	MAE		R2 score	
	Model Name	Train	Test	Train	Test
Baseline Model	Linear Regression (Missing values dropped)	4.67 min	4.73 min	0.60	0.60
	Linear Regression (Missing values filled)	4.82 min	4.85 min	0.58	0.58
	Random Forest (Missing values dropped)	1.15 min	3.13 min	0.98	0.83
	Random Forest (Missing values filled)	1.22 min	3.28 min	0.97	0.80
Grid Search CV	Random Forest	1.29 min	3.12 min	0.97	0.83
	LGBM	2.82 min	3.06 min	0.86	0.84
	XGBoost	1.53 min	3.10 min	0.96	0.83
	KNN	0 min	4.26 min	1.00	0.66
Ensemble model	Averaging of XGBoost & LGBM	2.15 min	3.05 min	0.92	0.84

Hyperparameters of LGBM

- Learning_Rate 0.1
- Max_Depth 20
- N_Estimators 200

Hyperparameters of XGBoost

- Learning_Rate 0.1
- Max_Depth 20
- N_Estimators 100

Actual vs Predicted values

Shapley Summary Plot of Features

Feature Importance – Bar Plot

Impact on Features on Final Output for 1 instance

Original Values

E(f(x)) - 26.33 minutes

f(x) - 28.52 minutes

REFERENCES

1 Code & Dataset Link

https://github.com/rahulnair2402/IIT-Roorkee-Capstone-Project---Food-Delivery-Prediction/tree/Project-branch

- Dataset source
 https://www.kaggle.com/datasets/gauravmalik26/f
 ood-delivery-dataset?select=train.csv
- Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow Aurelien Geron
- Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794)
- 5 LightGBM: A Highly Efficient Gradient Boosting Decision Tree
- 6 Ensemble Methods: Foundations and Algorithms

COMMENTS ON NEXT STEPS

- Optuna for Hyperparameter Tuning:
 - Use Optuna to optimize the hyperparameter space more efficiently than Grid Search CV
 - Leverage techniques like Bayesian
 Optimization and early pruning of unpromising trials
- Deployment and Monitoring:
 - Use frameworks like Flask, FastAPI, or Django to expose the model as an API.
 - Implement monitoring tools to track prediction accuracy and latency after deployment