Psychometrics - HW 8 Solutions

a)

(b)
$$P_{14} = \lambda_{11} \cdot \lambda_{41} + \lambda_{12} \cdot \lambda_{42}$$

= $(.229)(0.771) + (.659)(.773)$
= 0.29

		Common verince	Unique Variance
(c)/	1.	. 487	.513
(1)	2.	. 408	. 592
	3.	.357	. 64.3
	4.	.624	. 376
	5.	. 565	. 435
	6.	. 378	. 622

#2

- a) 3 factors
- b) factor 1: items 1, 2, 3, 4

factor 2: itens 5, 6, 7, 8, 9

factor 3: items 10, 11, 12

c) Example: item I

6 common variance = $(0.007)^2 + (.608)^2 + (.024)^2$ = 0.370

Unique v= 1 - common variance = 1-0.370 = 0.630.

This is very close to JASP output of 0.628.

- (d) Factor 1 = 2, P = 0.630
- (c) when reducing to 2 factors, RMSEA charges to 0.100, which is beyond the "acceptable' threshold of 0.08.