Machine Learning HW7 Report

學號:R07943095 系級:電子所碩一 姓名:劉世棠

1. PCA of color faces:

a. 請畫出所有臉的平均。

b. 請畫出前五個 Eigenfaces,也就是對應到前五大 Eigenvalues 的 Eigenvectors。

這題我重建可能會與助教不同,因為 eigenvector 的可以有正反,所以會造成與助教重建有的有些不同(shuffle 過後用 pca 的方向可能會跟原本相反)。

c. 請從數據集中挑出任意五張圖片,並用前五大 Eigenfaces 進行 reconstruction,並畫出結果。

這題用助教的環境跑過跟同學測試相同。

d. 請寫出前五大 Eigenfaces 各自所佔的比重,請用百分比表示並四捨五入 到小數點後一位。

依照排序前五大 Eigenfaces 分別為: 4.1%、2.9%、2.4%、2.2%、2.1%

2. Image clustering:

a. 請實作兩種不同的方法,並比較其結果(reconstruction loss, accuracy)。 (不同的降維方法或不同的 cluster 方法都可以算是不同的方法) 這題我是實作 autoencoder + pca 和 autoencoder only 兩種做法,故我的 reconstruction loss(mae)都是一樣約為 0.03224,而有經過 PCA(有開啟 whiten)的準確率大幅提升(直接衝破 simple 和 strong),以下為圖表:

	public	private
Autoencoder only	51.063%	51.337%
Autoencoder+pca	97.281%	97.263%

b. 預測 visualization.npy 中的 label,在二維平面上視覺化 label 的分佈。 (用 PCA, t-SNE 等工具把你抽出來的 feature 投影到二維,或簡單的取前兩維 2 的 feature)

其中 visualization.npy 中前 2500 個 images 來自 dataset A,後 2500 個 images 來自 dataset B,比較和自己預測的 label 之間有何不同。

以上為我用 autoencoder+PCA 降成 64 維取前兩維的結果,可能是投影的時候並未取到重要的維度,所以看起來光靠前兩維並不能好好地分開資料,而後來我將 64 維的資料丟入 Kmeans,最後得到 98.64%的精準度。

c. 請介紹你的 model 架構(encoder, decoder, loss function...),並選出任意 32 張圖片,比較原圖片以及用 decoder reconstruct 的結果。

	•	***
Layer (type)	Output Shape	Param #
input_1 (InputLayer)	(None, 32, 32, 3)	Θ
conv2d_1 (Conv2D)	(None, 32, 32, 32)	896
max_pooling2d_1 (MaxPooling2	(None, 16, 16, 32)	Θ
conv2d_2 (Conv2D)	(None, 16, 16, 32)	9248
flatten_1 (Flatten)	(None, 8192)	Θ
dense_1 (Dense)	(None, 1024)	8389632
dense_2 (Dense)	(None, 4096)	4198400
reshape_1 (Reshape)	(None, 8, 8, 64)	Θ
up_sampling2d_1 (UpSampling2	(None, 16, 16, 64)	Θ
conv2d_3 (Conv2D)	(None, 16, 16, 32)	18464
up_sampling2d_2 (UpSampling2	(None, 32, 32, 32)	Θ
conv2d_4 (Conv2D)	(None, 32, 32, 16)	4624
conv2d_5 (Conv2D)	(None, 32, 32, 3)	435
Total params: 12,621,699 Trainable params: 12,621,699 Non-trainable params: 0		

介紹:

以上為我所使用的 autoencoder 架構, loss funcion 是 mae,除此之外我還會使用 PCA 降維至 96 維,經過這次作業發現 PCA 實在強大,經過 PCA 的降維 (whiten=true)後做 Kmeans, kaggle 上的成績直接從 51%變成 96%。

以下為 32~63 的圖片(上排是原圖,下排是 reconstruction)

Original:

Reconstruction:

Original:

Reconstruction:

Original:

Reconstruction:

Original:

Reconstruction:

