Tree Pruning

Tree pruning is a technique for dealing with model overfitting when growing trees. Fully grown trees have a high tendency to overfit with high variances when applied to unseen samples.

Pruning involves growing a large tree and then pruning or clipping it to create a sub-tree. By doing so, we can have a full picture of the tree performance and then select a sub-tree that results in a minimized error measure on the test dataset. The technique for selecting the best sub-tree is called the cost complexity pruning or the weakest link pruning.

Strengths and Weaknesses of CART

One of the significant advantages of CART models is that they perform well on linear and non-linear datasets. Moreover, CART models implicitly take care of feature selection and work well with high-dimensional datasets.

On the flip side, CART models can very easily overfit the dataset and fail to generalize to new examples. This downside is mitigated by aggregating a large number of decision trees in techniques like Random forests and boosting ensemble algorithms.

CART with Scikit-learn

In this section, we will implement a classification and regression decision tree classifier with Scikit-learn.

Classification Tree with Scikit-learn

In this code example, we will build a classification decision tree classifier to predict the species of flowers from the Iris dataset.

```
# import packages
from sklearn.tree import DecisionTreeClassifier
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy score
```