importing pandas

```
import pandas as pd

df=pd.read_csv('Mall_Customers.csv')
```

printing the dataframe

df

₹		CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)			
	0	1	Male	19	15	39	ıl.		
	1	2	Male	21	15	81	+//		
	2	3	Female	20	16	6			
	3	4	Female	23	16	77			
	4	5	Female	31	17	40			
	195	196	Female	35	120	79			
	196	197	Female	45	126	28			
	197	198	Male	32	126	74			
	198	199	Male	32	137	18			
	199	200	Male	30	137	83			
	200 rows × 5 columns								

printing the data types

df.dtypes $\overline{\Rightarrow}$ CustomerID int64 Genre object Age int64 Annual Income (k\$) int64 Spending Score (1-100) int64 dtype: object import numpy as np import matplotlib.pyplot as plt import seaborn as sns print(df.isnull().sum()) CustomerID Genre 0 Annual Income (k\$) 0 Spending Score (1-100) dtype: int64 df.head()

→	Cust	omerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)	
	0	1	Male	19	15	39	11.
	1	2	Male	21	15	81	
	2	3	Female	20	16	6	
	3	4	Female	23	16	77	
	4	5	Female	31	17	40	
Next	stens:	Genera	te code w	ith df	View recomm	nended plots New inter	ractive

df.drop(['CustomerID'],axis=1,inplace=True) df.head() __ Genre Age Annual Income (k\$) Spending Score (1-100) 0 Male 19 15 39 th 21 15 81 Male 16 6 2 Female 3 Female 23 16 77 **4** Female 31 17 40 View recommended plots Next steps: Generate code with df New interactive sheet

preprocessing

from sklearn.preprocessing import LabelEncoder

from sklearn import metrics

le = LabelEncoder()

df["Genre"] = le.fit_transform(df["Genre"])

df.head()

→		Genre	Age	Annual Income (k\$)	Spending Score (1-100)	
	0	1	19	15	39	ıl.
	1	1	21	15	81	
	2	0	20	16	6	
	3	0	23	16	77	
	4	0	31	17	40	

Next steps:

Generate code with df

View recommended plots

New interactive sheet

```
data = df.copy()
x = data.iloc[:,[2,3]]
from sklearn.cluster import KMeans
data
\rightarrow
           Genre Age Annual Income (k$) Spending Score (1-100)
                  19
                                       15
       0
               1
                                                                     ıl.
       1
                   21
                                       15
                                                               81
               1
       2
               0
                  20
                                       16
                                                                6
       3
               0
                   23
                                       16
                                                               77
                  31
                                       17
                                                               40
      195
               0
                   35
                                      120
                                                               79
      196
              Ω
                   45
                                      126
                                                               28
                   32
                                      126
                                                               74
      197
              1
      198
                   32
                                      137
                                                               18
      199
              1
                   30
                                      137
                                                               83
     200 rows × 4 columns
              Generate code with data
                                        View recommended plots
                                                                      New interactive sheet
 Next steps:
wcss = []
for i in range(1,11):
    kmeans = KMeans(n clusters=i,init='k-means++',random state=42)
    kmeans.fit(x)
    wcss.append(kmeans.inertia )
    print('k:',i,"->wcss:",kmeans.inertia_)
 🚁 /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n
       super()._check_params_vs_input(X, default_n_init=10)
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n
       super(). check params vs input(X, default n init=10)
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n
       super(). check params vs input(X, default n init=10)
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n
       super(). check params vs input(X, default n init=10)
     k: 1 ->wcss: 269981.28000000014
     k: 2 ->wcss: 181363.59595959607
     k: 3 ->wcss: 106348.37306211119
     k: 4 ->wcss: 73679.78903948837
     k: 5 ->wcss: 44448.45544793369
```

```
k: 6 ->wcss: 37233.81451071002
k: 7 ->wcss: 30241.34361793659
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:1416: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n
  super()._check_params_vs_input(X, default_n_init=10)
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:1416: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n
  super()._check_params_vs_input(X, default n init=10)
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:1416: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n
  super(). check params vs input(X, default n init=10)
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:1416: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n
  super(). check params vs input(X, default n init=10)
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:1416: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n
  super()._check_params_vs_input(X, default_n_init=10)
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n
  super(). check params vs input(X, default n init=10)
k: 8 ->wcss: 25036.417604033977
k: 9 ->wcss: 21916.79478984372
k: 10 ->wcss: 20072.070939404
```

plotting the graph

```
plt.figure(figsize=(8, 6))
plt.plot(range(1,11),wcss,marker='o')
plt.title('The Elbow Method')
plt.xlabel('Number of Clusters')
plt.ylabel('WCSS')
plt.show()
```


fitting of data

```
kmeans = KMeans(n_clusters=5)
kmeans.fit(data)
y=kmeans.predict(data)
data["label"] = y
```

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n super()._check_params_vs_input(X, default_n_init=10)

visualization of clusters

```
plt.close()
plt.figure(figsize=(10, 6))
```

```
sns.scatterplot(x='Annual Income (k$)', y='Spending Score (1-100)', hue='label', data=data, palette='viridis')
plt.title('Clusters of Customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.show()
```


