

41900 – Fundamentals of Security

Confidentiality and Integrity

Ashish Nanda@uts.edu.au

Confidentiality Policy

Goal: prevent the unauthorized disclosure of information

- Deals with information flow
- Integrity incidental

Multi-level security models are best-known examples

Bell-LaPadula Model basis for many, or most, of these

41900- Fundamentals of Security

Bell-LaPadula Model: Step 1

- Security levels arranged in linear ordering
 - Top Secret: highest
 - Secret
 - Confidential
 - Unclassified: lowest

- Levels consist of security clearance L(s)
 - Objects have security classification L(o)

Reading Information

Information flows up, not down

• "Reads Up" not-allowed, "Reads Down" allowed

Simple Security Condition (Step 1)

- Subject s can read object o iff L(o) ≤ L(s) and s has permission to read o
 - Combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no reads up" rule

41900- Fundamentals of Security

Writing Information

Information flows up, not down

• "Writes Up" allowed, "Writes Down" not-allowed

*-Property (Step 1)

- Subject s can write object o iff L(s) ≤ L(o) and s has permission to write o
 - Combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no writes down" rule

41900- Fundamentals of Security

Basic Security Theorem: Step 1

If a system is initially in a secure state, and every transition of the system satisfies

- The simple security condition, step 1 and
- The *-property, step 1
- Then every state of the system is secure.

Proof: induct on the number of transitions

Bell-LaPadula Model: Step 2

Expand notion of security level to include categories

Security level is (clearance, category set)

Examples

- (Top Secret, { NUC, EUR, ASI })
- (Confidential, {EUR, ASI})
- (Secret, { NUC, ASI })

Levels and Lattices

(A, C) dom (A', C') iff $A' \leq A$ and $C' \subseteq C$

Examples

- (Top Secret, {NUC, ASI}) dom (Secret, {NUC})
- (Secret, {NUC, EUR}) dom (Confidential,{NUC, EUR})
- (Top Secret, {NUC}) ¬dom (Confidential, {EUR})

Let **C** be set of classifications, **K** set of categories. Set of security levels $\mathbf{L} = \mathbf{C} \times \mathbf{K}$, dom form lattice

- lub(L) = (max(A), C)
- glb(L) = (min(A), \emptyset)

Security levels partially ordered

Any pair of security levels may (or may not) be related by dom

"dominates" serves the role of "greater than" in step 1

• "greater than" is a total ordering, though

Reading Information

Information flows up, not down

• "Reads Up" not-allowed, "Reads Down" allowed

Simple Security Condition (Step 2)

- Subject s can read object o iff L(s) dom L(o) and s has permission to read o
 - Combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no reads up" rule

Writing Information

Information flows up, not down

• "Writes Up" allowed, "Writes Down" not-allowed

*-Property (Step 2)

- Subject s can write object o iff L(o) dom L(s) and s has permission to write o
 - Combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no writes down" rule

Basic Security Theorem: Step 2

If a system is initially in a secure state, and every transition of the system satisfies

- The simple security condition, step 2 and
- The *-property, step 2

Then every state of the system is secure

Proof: induct on the number of transitions

In actual Basic Security Theorem, discretionary access control treated as third property, and simple security property and *-property phrased to eliminate discretionary part of the definitions - but simpler to express the way done here.

Colonel has (Secret, {NUC, EUR}) clearance Major has (Secret, {EUR}) clearance

Problem

Here:

- Major can talk to colonel ("write up" or "read down")
- Colonel cannot talk to major ("read up" or "write down")

Clearly absurd!

Solution

Define maximum, current levels for subjects

maxlevel(s) dom curlevel(s)

Example

- Treat Major as an object (Colonel is writing to him/her)
- Colonel has maxlevel (Secret, { NUC, EUR })
- Colonel sets curlevel to (Secret, { EUR })
- Now L(Major) dom curlevel(Colonel)
 - Colonel can write to Major without violating "no writes down"

Does L(s) mean curlevel(s) or maxlevel(s)?

Formally, we need a more precise notation

Requirements of Policies

- 1. Users will not write their own programs, but will use existing production programs and databases.
- 2. Programmers will develop and test programs on a non-production system; if they need access to actual data, they will be given production data via a special process, but will use it on their development system.
- 3. A special process must be followed to install a program from the development system onto the production system.
- 4. The special process in requirement 3 must be controlled and audited.
- **5. The managers and auditors must have access to both the system** state and the system logs that are generated.

Biba Integrity Model

Set of subjects S, objects O, integrity levels I, relation $\leq \subseteq I \times I$ holding when second dominates first

- min: $I \times I \rightarrow I$ returns lesser of integrity levels
- i: $S \cup O \rightarrow I$ gives integrity level of entity
- \mathbf{r} : $\mathbf{S} \times \mathbf{O}$ means $\mathbf{s} \in \mathbf{S}$ can read $\mathbf{o} \in \mathbf{O}$
- w, x defined similarly

Intuition for Integrity Levels

The higher the level, the more confidence

- That a program will execute correctly
- That data is accurate and/or reliable

Note relationship between integrity and trustworthiness

Important point: integrity levels are **not** security levels

Biba's Model

Similar to Bell-LaPadula model

- $s \in S$ can read $o \in O$ iff $i(s) \le i(o)$
- $s \in S$ can write to $o \in O$ iff $i(o) \le i(s)$
- $s_1 \in S$ can execute $s_2 \in S$ iff $i(s_2) \le i(s_1)$

Add compartments and discretionary controls to get full dual of Bell-LaPadula model

Actually the "strict integrity model" of Biba's set of models.

LOCUS and Biba

Goal: prevent untrusted software from altering data or other software

Approach: make levels of trust explicit

- Credibility rating based on estimate of software's trustworthiness (0 untrusted, n highly trusted)
- Trusted file systems contain software with a single credibility level
- Process has risk level or highest credibility level at which process can execute
- Must use run-untrusted command to run software at lower credibility level

Clark-Wilson Integrity Model

Integrity defined by a set of constraints

Data in a consistent or valid state when it satisfies these

Example: Bank

- D today's deposits, W withdrawals, YB yesterday's balance, TB today's balance
- Integrity constraint: D + YB –W

Well-formed transaction move system from one consistent state to another

Issue: who examines, certifies transactions done correctly?

Entities

CDIs: constrained data items

Data subject to integrity controls

UDIs: unconstrained data items

Data not subject to integrity controls

IVPs: integrity verification procedures

Procedures that test the CDIs conform to the integrity constraints

TPs: transaction procedures

Procedures that take the system from one valid state to another

Certification Rules 1 and 2

CR1 When any IVP is run, it must ensure all CDIs are in a valid state

- **CR2** For some associated set of CDIs, a TP must transform those CDIs in a valid state into a (possibly different) valid state
 - Defines relation certified that associates a set of CDIs with a particular
 TP
 - Example: TP balance, CDIs accounts, in bank example

Enforcement Rules 1 and 2

ER1 The system must maintain the certified relations and must ensure that only TPs certified to run on a CDI manipulate that CDI.

- **ER2** The system must associate a user with each TP and set of CDIs. The TP may access those CDIs on behalf of the associated user. The TP cannot access that CDI on behalf of a user not associated with that TP and CDI.
 - System must maintain, enforce certified relation
 - System must also restrict access based on user ID (allowed relation)

Users and Rules

CR3 The allowed relations must meet the requirements imposed by the principle of separation of duty.

ER3 The system must authenticate each user attempting to execute a TP

- Type of authentication undefined, and depends on the instantiation
- Authentication not required before use of the system, but is required before manipulation of CDIs (requires using TPs)

Logging

- **CR4** All TPs must append enough information to reconstruct the operation to an append-only CDI.
 - This CDI is the log
 - Auditor needs to be able to determine what happened during reviews of transactions

Handling Untrusted Input

- CR5 Any TP that takes as input a UDI may perform only valid transformations, or no transformations, for all possible values of the UDI. The transformation either rejects the UDI or transforms it into a CDI.
 - In bank, numbers entered at keyboard are UDIs, so cannot be input to TPs. TPs must validate numbers (to make them a CDI) before using them; if validation fails, TP rejects UDI

Separation of Duty in Model

- **ER4** Only the certifier of a TP may change the list of entities associated with that TP. No certifier of a TP, or of an entity associated with that TP, may ever have execute permission with respect to that entity.
 - Enforces separation of duty with respect to certified and allowed relations

Comparison to Biba

Biba

- No notion of certification rules; trusted subjects ensure actions obey rules
- Untrusted data examined before being made trusted

Clark-Wilson

- Explicit requirements that actions must meet
- Trusted entity must certify method to upgrade untrusted data (and not certify the data itself)

Key Points

- Confidentiality models restrict flow of information
- Bell-LaPadula models multilevel security
 - Cornerstone of much work in computer security
- Integrity policies deal with trust
 - As trust is hard to quantify, these policies are hard to evaluate completely
 - Look for assumptions and trusted users to find possible weak points in their implementation
- Biba based on multilevel integrity
- Clark-Wilson focuses on separation of duty and transactions

