Ayudantía 3

Lógica de Predicados

- 1. Para una interpretación \mathcal{I} y un elemento a de $\mathcal{I}(dom)$, decimos que a es definible en lógica de predicados si existe una fórmula $\alpha(x)$ en lógica de predicados tal que $\mathcal{I} \models \alpha(a)$ y $\mathcal{I} \not\models \alpha(b)$ para todo b en $\mathcal{I}(dom)$ con $a \neq b$.
 - (a) Para un N > 0 cualquiera y un símbolo de predicado <, sea \mathcal{I}_N tal que

$$\mathcal{I}_N(dom) := \{0, \dots, N\}$$
$$\mathcal{I}_N(<) := x < y$$

Demuestre que para todo $0 \le k \le N$ se tiene que k es definible en lógica de predicados.

(b) A partir del ítem anterior, demuestre que existen infinitas fórmulas $\alpha_0, \alpha_1, \ldots$ que solo usan el símbolo de predicado <, tales que $\alpha_i \not\equiv \alpha_j$ para todo $i \neq j$.

to formed . 200 . When a decrease on the substant of the control of the formulas $\alpha_0, \alpha_1, \ldots$ que solo usan el símbolo de predicado <, tales que $\alpha_i \not\equiv \alpha_j$ para todo $i \not\equiv j$.

$$B_{i} = \frac{1}{4} \sum_{\alpha \in \{c\} \in I} \frac{1}{A_{\alpha}} \left(\begin{array}{c} X_{1} < X_{c_{1}} \\ X_{2} < X_{c_{1}} \end{array} \right) \xrightarrow{\Phi} \left(\begin{array}{c} (X_{1} < X_{2}) \\ (X_{1} < X_{2}) & A_{1}(X_{2} < X_{3}) \end{array} \right)$$

$$\textcircled{2} \quad \left(\begin{array}{c} (X_{1} < X_{2}) & A_{2}(X_{2} < X_{3}) \\ (X_{2} < X_{3}) & A_{3}(X_{2} < X_{3}) \end{array} \right)$$

- 2. Sea < y = símbolos de predicado binario. Para cada una de las siguientes oraciones φ en lógica de predicados, demuestre que φ es satisfacible por una interpretación con dominio finito no vacío y que interpreta = como la igualdad de elementos, esto es, existe una interpretación \mathcal{I} tal que $\mathcal{I}(\text{dom})$ es finito no vacío, $\mathcal{I}(=)$ es la igualdad y $\mathcal{I} \models \varphi$.
 - (a) $\varphi_1 := (\forall x. \neg (x < x)) \land (\forall x. \exists y. x < y)$
 - $\text{(b)} \ \varphi_2 := \big(\forall x. \, \neg (x < x) \big) \ \land \ \big(\forall x. \, \exists y. \, x < y \, \big) \ \land \ \big(\forall x. \, \forall y. \, (x < y \rightarrow \neg (y < x)) \big)$
 - (c) $\varphi_3 := (\forall x. \ \neg(x < x)) \land (\forall x. \exists y. x < y) \land (\forall x. \forall y. (x < y \rightarrow \neg(y < x))) \land (\exists x. \forall y. ((\neg(x = y)) \rightarrow x < y))$

a)
$$\psi := (\forall x. 7(x < x)) \land (\forall x. \exists y. x < y)$$

Todas se relational to $\{a, b\}$ was interpretación de la forma : $x < y < a$

any to
$$Sa, b1$$
, and interpretation de la forma: $x < y \le 1$ (on An clarest O e.o.c. (b.a.) O e

 Para cada una de las siguientes afirmaciones, decida si son verdaderas o no. Demue
--

(a) $\forall x.[(\exists y.R(x,y)) \longrightarrow S(x)] \equiv \forall x. \forall y.[R(x,y) \longrightarrow S(x)]$

p > 9 = 1 p v q

- (b) $(\forall x.(P(x) \to Q(x))) \models (\forall x.(P(x) \land Q(x)))$
- (c) [Propuesto] $(\forall y. \exists x. (P(x) \rightarrow Q(y))) \models (\exists x. \forall y. (P(x) \rightarrow Q(y)))$
- a) Ver paulo