SHARP

仕 様 書

型名:FU-320-007C

(LQ315T3LZ44)

*バックライトの仕様については、別途不表の 専用バックライト FU-320-007C(TXV513)をご参照下さい。

RECORDS OF REVISION

MODEL No.: LQ315T3LZ44

SPEC No.: LD-18517A

BFEC N	o.:LD-18517	(A			
DATE	NO.	REVISED No.	PAGE	SUMMARY	NOTE
2006.05.25	LD-18517			_	1st Issue
2006.09.04	LD-18517A	▲A	2	Deleted "or equivalent" in Using connector	2nd Issue
				<u></u>	
sau em amune em em em em em em el esta esta esta esta esta esta esta esta	- A - B - B - B - A B - B - B - B - B -				
		proprietare de la casa describirado de la del			

			ļ		
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	arradorador do do Soladorado, de 180 do do 80 i sprinteiro				
y namana nan-aonan nan-adh-aonandh-adh-an-adh-adh-adh-adh-adh	******				an we, an

- 40 - 10 - 10 - 10 - 10 - 10 - 10 - 10		~			
, and an are an are also also also distribute the mode of so the distribute the second				***************************************	
***************************************		~~.~~~~			
· en en elle de me elle elle elle elle elle ell					
ngan ngan nghuning pagkangga sapa damandan kamanda dam damanda dam		and the state of t			
			1		
en e	*********				
· - · ·					
		†	1		+
constituent in the ancient per who say the sale with the disc					
	<u> </u>	<u> </u>			

1. Application

This specification applies to the color 31.5" Wide XGA TFT-LCD module LQ315T3LZ44.

- * These specification sheets are proprietary products of SHARP CORPORATION ("SHARP") and include materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.
- * In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.
- * Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.
- * SHARP assumes no responsibility for any damage resulting from the use of the device that does not comply with the instructions and the precautions specified in these specification sheets.
- * Contact and consult with a SHARP sales representative for any questions about this device.

2. Overview

This module is a color active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor). It is composed of a color TFT-LCD panel, driver ICs, control circuit, power supply circuit, inverter circuit and back light system etc. Graphics and texts can be displayed on a 1366×RGB×768 dots panel with 16,777,216 colors by using LVDS (Low Voltage Differential Signaling) to interface, +5V of DC supply voltages.

This module also includes the DC/AC inverter to drive the CCFT. (+24V of DC supply voltage)

And in order to improve the response time of LCD, this module applies the Over Shoot driving (O/S driving) technology for the control circuit. In the O/S driving technology, signals are being applied to the Liquid Crystal according to a pre-fixed process as an image signal of the present frame when a difference is found between image signal of the previous frame and that of the current frame after comparing them.

By using the captioned process, the image signals of this LCD module are being set so that image response can be completed within one frame, as a result, image blur can be improved and clear image performance can be realized.

3. Mechanical Specifications

Parameter	Specifications	Unit	
D'. 1	80.039 (Diagonal)	cm	
Display size	31.5 (Diagonal)	inch	
Active area	697.69 (H) x 392.26 (V)	mm	
Direct Comment	1366 (H) x 768 (V)	pixel	
Pixel Format	(1pixel = R + G + B dot)	pixei	
Pixel pitch	0.51075(H) x 0.51075 (V)	mm	
Pixel configuration	R,G, B vertical stripe		
Display mode	Normally black	<u> </u>	
Unit Outline Dimensions (*1)	760.0(W) x 450.0(H) x 48.0(D)	mm	
Mass	7.5±0.3	kg	
Surface treatment	Anti glare, low reflection coating Hard coating: 2H		

(*1) Outline dimensions are shown in Fig.1

4. Input Terminals

4-1. TFT panel driving

CN1 (Interface signals and +5V DC power supply) (Shown in Fig.1)

Using connector : FI-X30SSL-HF (Japan Aviation Electronics Ind., Ltd.) ▲A

Mating connector : FI-X30H/FI-X30HL, FI-X30C/FI-X30C2L

or FI-X30M (Japan Aviation Electronics Ind., Ltd.)

Mating LVDS transmitter: THC63LVDM83A or equivalent device

Pin No.	Symbol	Function	Remark
1	VCC	+5V Power Supply	
2	VCC	+5V Power Supply	
3	VCC	+5V Power Supply	
4	VCC	+5V Power Supply	
5	GND	GND	
6	GND	GND	
7	GND	GND	
8	GND	GND	
9	SELLVDS	Select LVDS data order [Note 1]	Pull up Default H:3.3V [Note 3]
10	NC		
11	GND	Ground	
12	RIN0-	Negative (-) LVDS differential data input	LVDS
13	RIN0+	Positive (+) LVDS differential data input	LVDS
14	GND	Ground	
15	RIN1-	Negative (-) LVDS differential data input	LVDS
16	RIN1+	Positive (+) LVDS differential data input	LVDS
17	GND	Ground	
18	RIN2-	Negative (-) LVDS differential data input	LVDS
19	RIN2+	Positive (+) LVDS differential data input	LVDS
20	GND	Ground	
21	CLKIN-	Clock Signal(-)	LVDS
22	CLKIN+	Clock Signal(+)	LVDS
23	GND	Ground	
24	RIN3-	Negative (-) LVDS differential data input	LVDS
25	RIN3+	Positive (+) LVDS differential data input	LVDS
26	GND	Ground	
27	R/L	Horizontal shift direction [Note 2]	Pull down Default L:GND [Note 4]
28	U/D	Vertical shift direction [Note 2]	Pull down Default L:GND [Note 4]
29	Reserved	Not Available	
30	Reserved	Not Available	

[note] GND of a liquid crystal panel drive part has connected with a module chassis.

[Note1] SELLVDS

Transmitter		SEI	LLVDS
Pin No	Data	=L(GND)	=H(3.3V) or Open
51	TA0	R0(LSB)	R2
52	TA1	R1	R3
54	TA2	R2	R4
55	TA3	R3	R5
56	TA4	R4	R6
3	TA5	R5	R7(MSB)
4	TA6	G0(LSB)	G2
6	TB0	G1	G3
7	TB1	G2	G4
11	TB2	G3	G5
12	TB3	G4	G6
14	TB4	G5	G7(MSB)
15	TB5	B0(LSB)	B2
19	TB6	B1	B3
20	TC0	B2	B4
22	TC1	B3	B5
23	TC2	B4	В6
24	TC3	B5	B7(MSB)
27	TC4	NA	NA
28	TC5	NA	NA
30	TC6	DE(*)	DE(*)
50	TD0	R6	R0(LSB)
2	TD1	R7(MSB)	R1
8	TD2	G6	G0(LSB)
10	TD3	G7(MSB)	G1
16	TD4	В6	B0(LSB)
18	TD5	B7(MSB)	B1
25	TD6	NA	NA

NA: Not Available

^(*) Since the display position is prescribed by the rise of DE (Display Enable) signal, please do not fix DE signal during operation at "High."

Normal (Default)

R/L:L (GND) U/D:L (GND)

Vertical reverse image

R/L:L (GND) U/D:H (3. 3V)

[Note 3] The equivalent circuit figure of the terminal

[Note 4] The equivalent circuit figure of the terminal

Horizontal reverse image

R/L: H (3. 3V) U/D: L (GND)

Horizontal and vertical reverse image

R/L:H(3.3V)U/D:H(3.3V)

· Interface block diagram

Corresponding Transmitter: THC63LVDM83R (THine) or equivalent device

· Block Diagram (LCD Module)

SELLVDS=Low(GND)

DE: Display Enable

NA: Not Available (Fixed Low)

CN2 (O/S control) (Shown Fig 1)

O/S Driving Pin No and function

Using connector : SM07B-SRSS-TB-A (JST)

Mating connector : SHR-07V-S or SHR-07V-S-B (JST)

Pin No.	Symbol	Function	Defa	Remark	
1	Frame	Frame frequency setting H:60Hz, L:50Hz	Pull up	H:3.3V	[Note 2]
2	O/S set	O/S operation setting H:O/S_ON, L:O/S_OFF	Pull up	H:3.3V	[Note 2]
			[Note	e 1]	
3	TEST	Fix to Low level usually.	Pull down	L:GND	[Note 3]
4	Temp3	Data3 of panel surface temperature	Pull up	H:3.3V	[Note 2]
5	Temp2	Data2 of panel surface temperature	Pull up	H:3.3V	[Note 2]
6	Temp1	Data1 of panel surface temperature	Pull up	H:3.3V	[Note 2]
7	GND	GND			

^{*}L: Low level voltage (GND) H: High level voltage(3.3V)

[Note 1] In case of O/S set setting "L"(O/S_OFF), it should be set the "Temp1~3" and "Frame" to "L".

[Note 2] The equivalent circuit figure of the terminal

[Note 3] The equivalent circuit figure of the terminal

According as the surface temperature of the panel, enter the optimum 3 bit signal into pin No.4,5,6. Measuring the correlation between detected temperature by the sensor on PWB in users side and actual surface temperature of panel at center, convert the temperature detected by the sensor to the surface temperature of panel to enter the 3 bit temperature data.

	Surface temperature of panel								
Pin no.	0-5°C	5-10℃	10-15℃	15-20℃	20-25℃	25-30℃	30-35℃	35℃ and	
		1						above	
4	L	L	L	L	Н	H	Н	H	
5	L	L	Н	Н	L	L	H	H	
6	Ĺ	Н	L	H	L	H	L	Н	

^{*}L: Low level voltage (GND) H: High level voltage(3.3V)

^{*}For overlapping temperatures (such as 5°C,10°C,15°C,20°C,25°C, 30°C,35°C) select the optimum parameter, judging from the actual picture image.

4-2. Backlight driving

CN3 (Inverter control)

Using connector: B14B-PH-SM3-TB(JST)

Mating connector: PHR-14 (JST)

Pin No.	Symbol	Function	Remark
1	V _{INV}	+24V	
2	V _{INV}	+24V	
3	V _{INV}	+24V	
4	V _{INV}	+24V	
5	V _{INV}	+24V	
6	GND	GND	
7	GND	GND	
8	GND	GND	
9	GND	GND	
10	GND	GND	
11	Reserved	NC	
12	Von	Inverter ON/OFF	[Note 1]
13	V _{BRT}	Brightness Control	[Note 2]
14	Reserved	NC	

[Note 1] Inverter ON/OFF

Input voltage	Function		
5V	Inverter: ON		
0V	Inverter: OFF		

[Note 2] Brightness Control

PWM Brightness Control is regulated by analog input voltage (0V to 3.3V).

Input voltage	Function
0V	Brightness Control: (Dark)
3.3V	Brightness Control : (Bright)

4-3. The back light system characteristics

The back light system is direct type with 16 CCFTs (Cold Cathode Fluorescent Tube).

The characteristics of the lamp are shown in the following table.

The value mentioned below is at the case of one CCFT.

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Life time	TL	60000	-	-	Hour	[Note]

- [Note] · Lamp life time is defined as the time when brightness becomes 50% of the original value in the continuous operation under the condition of Ta=25 $^{\circ}$ C and brightness control(V_{BRT}=3.3V).
 - This definition is valid with the condition that the module is placed horizontally. (The wide side of the module should be parallel to the ground.)

5. Absolute Maximum Ratings

Parameter	Symbol	Condition	Ratings	Unit	Remark
Input voltage (for Control)	Vı	Ta=25 ℃	-0.3 ~ 5.0	V	[Note 1]
5V supply voltage (for Control)	VCC	Ta=25 °C	0~+6	V	
Input voltage (for Inverter)	Vbrt Von	Ta=25 ℃	0~+6	V	
24V supply voltage (for Inverter)	V _{INV}	Ta=25 ℃	0~+29	V	
Storage temperature	Tstg	-	-25 ~ +60	℃	[NI.(. 2]
Operation temperature (Ambient)	Тора	-	0~+50	က	[Note 2]

[Note 1] SELLVDS, R/L, U/D, TEST, Frame, O/S set, Temp1, Temp2, Temp3

[Note 2] Humidity 95%RH Max.(Ta≤40°C)

Maximum wet-bulb temperature at 39 $^{\circ}$ C or less.(Ta>40 $^{\circ}$ C) No condensation.

6. Electrical Characteristics

6-1. Control circuit driving

Ta=25 °C

Para	Parameter		Symbol	Min.	Тур.	Max.	Uniit	Remark
	Supp	ly voltage	Vcc	+4.5	+5.0	+5.5	V	[Note 1]
+5V supply Current		urrent	Icc	_	800	1800	mA	[Note 2]
voltage	dis	sipation	I _{RUSH}	-	-	4000	mA	[Note 7]
			T _{RUSH}	-	-	1	ms	[Note 7]
1	Permissible input ripple voltage		Vrp	_	-	100	mV _{P-P}	Vcc = +5.0V
Differential i	nput	High	Vтн	-		100	mV	$V_{CM} = +1.2V$
threshold vol	tage	Low	Vtl	-100	-	-	mV	[Note 6]
Input L	ow vo	ltage	VIL		1	0.7	V	[Note 3]
Input H	igh vo	ltage	V⊪	2.6	3.3	3.6	V	[140fe 21
	·		Inlı	-	-	100	μA	V _I = 0V [Note 4]
Input leak	curren	it (Low)	III.2	-	-	400	μА	V _I = 0V [Note 5]
Input leak current (High)		Imı	_	-	100	μΑ	V _I =3.3V [Note 4]	
		Іпн2	-	-	400	μА	V _I =3.3V [Note 5]	
Terminal resistor			Rт	-	100	-	Ω	Differential input

[Note] Vcm: Common mode voltage of LVDS driver.

[Note 1]

Input voltage sequences

 $0 < t1 \le 10 \text{ms}$

 $10 \text{ms} \le t2 - 1 \le 20 \text{m}$

t2-2≧10ms

 $0 < t3 \le 1s$

t4≧1s

t5≧200ms

Dip conditions for supply voltage

a)
$$2.7V \le Vcc < 4.5V$$

td≦10ms

Dip conditions for supply voltage is based on input voltage sequence.

- Data1:CLKIN±,RIN0±,RIN1±,RIN2±,RIN3±
- X Data2:R/L,U/D,SELLVDS,Frame,O/Sset,Temp1,2,3
- About the relation between data input and back light lighting, please base on the above-mentioned input sequence.

When back light is switched on before panel operation or after a panel operation stop, it may not display normally. But this phenomenon is not based on change of an incoming signal, and does not give damage to a liquid crystal display.

[Note 2] Typical current situation: 256 gray-bar pattern (Vcc = +5.0V) The explanation of RGB gray scale is seen in section 8.

Vcc=5.0V CK=82.0MHz $Th=20.67 \mu s$

- [Note 3] R/L, U/D, SELLVDS, TEST, Frame, O/S set, Temp1, Temp2, Temp3
- [Note 4] R/L, U/D
- [Note 5] SELLVDS, TEST, Frame, O/S set, Temp1, Temp2, Temp3
- [Note 6] CLKIN+/CLKIN-, RIN0+/RIN0-, RIN1+/RIN1-, RIN2+/RIN2-, RIN3+/RIN3-,
- [Note 7] The Rush current corrugation at the time of power on

Input voltage conditions Vcc = 5V t1 = 10ms

6-2. Inverter driving for back light

The back light system is direct type with 16 CCFTs (Cold Cathode Fluorescent Tube).

Та	=25	$^{\circ}$ C
10		\cdot

	Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
+24V Current dissipation		Inv	-	4.2	4.6	A	$V_{INV} = 24V$ $V_{BRT} = 3.3V, V_{ON} = 5V$
T 24 V	Supply voltage	Vinv	22.5	24.0	25.5	v	[Note 1]
Permissible input ripple voltage		Vrf	-	-	1000	mV_{p-p}	$V_{INV} = 24V$
L	Input voltage (Low)		0	-	1.0	V	Von
Input voltage (High)				5.0	6.0	V	impedance=8.2k Ω
Brightness control voltage		V _{BRT}	0	\rightarrow	3.3	V	V_{BRT} impedance=100k Ω

[Note 1] 1)VINV-turn-on condition

2) Vinv-turn-off condition

7. Timing characteristics of input signals

7-1. Timing characteristics

Timing diagrams of input signal are shown in Fig.2

	Parameter		Symbol	Min.	Тур.	Max.	Unit	Remark
Clock	Frequency		1/Tc	80	82	85	MHz	[Note1]
	Horizontal period		TH	1686	1696	1940	clock	[Note1]
Data enable		time	THt	19.8	20.68	-	μs	[Note1]
signal	Horizontal period (H	THd	1366	1366	1366	clock		
Signai	Vertical period		TV	778	806	972	line	
	Vertical period (Hig	TVd	768	768	768	line		

[Note] When vertical period is very long, flicker and etc. may occur.

As for the acceptable value of vertical period, it should be discussed and determined between both parties.

Please turn off the module after it shows the black screen.

Please make sure that length of vertical period should become of an integral multiple of horizontal length of period. Otherwise, the screen may not display properly.

[Note1] Set up clock frequency and horizontal period to be less low than the min value of horizontal period time.

As for the your final setting of driving timing, we will conduct operation check test at our side, please inform your final setting.

Fig.2 Timing characteristics of input signals

7-2. Input data signal and display position on the screen

Display Position of Data (Y, H)

8. Input Signal, Basic Display Colors and Gray Scale of Each Color

			Data signal																							
İ	Colors &	Gray	R0	RI	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	В0	В1	В2	В3	В4	B5	В6	В7
	Gray scale	Scale																								
	Black		0_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
등	Green	_	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic Color	Cyan		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
asic	Red		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
m m	Magenta	_	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	_	1	1	1	i	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ļ	Black	GS0	0	0	0	0	0	0	0	0_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
٦	Û	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale of Red	Darker	GS2_	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0_	0	0	0	0	0
le o	បិ	→				•	¥							,	₽							`	V			
Sca	Û	₩				,	Ψ					_			↓							•	ν <u> </u>			
Gray	Brighter	GS253	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	û	GS254	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS255	1	1	1	1	1	1	. 1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0_	0	0	0	0	0_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
cu	Û	GS1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale of Green	Darker	GS2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e of	បិ	Ψ.	1				\downarrow								¥							•	¥			
Scal	Û	Ψ					Ψ								Ψ				_			•	<u> </u>			
ìray	Brighter	GS253	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Û	GS254	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Green	G\$255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>e</u>	Û	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
f.Blt	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0_	0	0	0	0
Gray Scale of Blue	បិ	→	Ψ					₩										\downarrow								
Sca	û	Ψ	Ψ							↓						_				Ψ_						
Gray	Brighter	GS253	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1
	û	GS254	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	Blue	GS255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	ı	ı

^{0:} Low level voltage,

Each basic color can be displayed in 256 gray scales from 8 bit data signals. According to the combination of total 24 bit data signals, the 16-million-color display can be achieved on the screen.

^{1:} High level voltage.

9. Optical characteristics

 $Ta=25^{\circ}C$, Vcc = +5V, Vinv = +24V

Parar	neter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark	
Viewing angle	Horizontal	θ 21 θ 22	 CR≧10	70	88	- Deg.		[Note1,4]	
range	Vertical	θ 11 θ 12	CR≗10	70	88	•	Deg.	[140:61,4]	
Contra	st ratio	CRn	$\theta = 0$ deg.	900	1200	-		[Note2,4] V _{BRT} =3.3V	
D		τd	0-0-1		6	-	******	[Note3,4,5]	
Kespon	Response time		θ =0 deg.	-	6	-	ms	$V_{BRT}=3.3V$	
<i>C</i> 1 (: 1		X		0.248	0.278	0.308	-		
Chromatic	ity of white	Y		0.255	0.285	0.315	-		
671		X		0.610	0.640	0.670	-		
Chromatic	city of red	Y		0.300	0.330	0.360	-	[Note 4]	
<u> </u>		X		0.250	0.280	0.310	-	$V_{BRT}=3.3V$	
Chromatic	ity of green	Y	- ,	0.570	0.600	0.630	-		
C1 .:				0.120	0.150	.150 0.180			
Chromaticity of blue		Y		0.030	0.060	0.090 -			
Luminance of white		Y_{L1}		400	500		cd/m ²	[Note 4] V _{BRT} =3.3V	
Luminance	uniformity	δw		-	_	1.25		[Note 6]	

Measurement condition : Set the value of V_{BRT} to maximum luminance of white.

[Note] The optical characteristics are measured using the following equipment.

Fig.3-1 Measurement of viewing angle range.

Fig.3-2 Measurement of Contrast, Luminance,
Chromaticity and Response time.
(Contrast, Luminance and Chromaticity: SR-3,
Response time: Photo Diode).

^{*}The measurement shall be executed 60 minutes after lighting at rating.

[Note 1] Definitions of viewing angle range:

[Note 2] Definition of contrast ratio:

The contrast ratio is defined as the following.

[Note 3] Definition of response time

The response time (τd and τr) is defined as the following figure and shall be measured by switching the input signal for "any level of gray (0%, 25%, 50%, 75% and 100%)" and "any level of gray (0%, 25%, 50%, 75% and 100%)".

	0%	25%	50%	75%	100%
0%		tr: 0%-25%	tr: 0%-50%	tr: 0%-75%	tr: 0%-100%
25%	td: 25%-0%		tr: 25%-50%	tr: 25%-75%	tr: 25%-100%
50%	td: 50%-0%	td: 50%-25%		tr: 50%-75%	tr: 50%-100%
75%	td: 75%-0%	td: 75%-25%	td: 75%-50%		tr: 75%-100%
100%	td: 100%-0%	td: 100%-25%	td: 100%-50%	td: 100%-75%	

t*:x-y...response time from level of gray(x) to level of gray(y)

$$\tau r = \Sigma (tr:x-y)/10$$
, $\tau d = \Sigma (td:x-y)/10$

[Note 4] This shall be measured at center of the screen.

[Note 5] This value is valid when O/S driving is used at typical input time value .

[Note 6] Definition of white uniformity;

White uniformity is defined as the following with five measurements. (A \sim E)

10. Handling Precautions of the module

- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) This product is using the parts (inverter, CCFT etc), which generate the high voltage. Therefore, during operating, please don't touch these parts.
- c) Brightness control voltage is switched for "ON" and "OFF", as shown in Fig.4. Voltage difference generated by this switching, ΔVINV, may affect a sound output, etc. when the power supply is shared between the inverter and its surrounding circuit. So, separate the power supply of the inverter circuit with the one of its surrounding circuit.

Fig.4 Brightness control voltage.

- d) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.
- e) Since the front polarizer is easily damaged, pay attention not to scratch it.
- f) Since long contact with water may cause discoloration or spots, wipe off water drop immediately.
- g) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- h) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- i) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.
- j) The module has some printed circuit boards (PCBs) on the back side, take care to keep them form any stress or pressure when handling or installing the module; otherwise some of electronic parts on the PCBs may be damaged.
- k) Observe all other precautionary requirements in handling components.
- When some pressure is added onto the module from rear side constantly, it causes display non-uniformity issue, functional defect, etc.. So, please avoid such design.
- m) When giving a touch to the panel at power on supply, it may cause some kinds of degradation. In that case, once turn off the power supply, and turn on after several seconds again, and that is disappear.
- n) When handling LCD modules and assembling them into cabinets, please be noted that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD modules.