Problem (Problem 1): For two ideals I, $J \subseteq R$, prove the following.

- (a) The intersection $I \cap J$ is an ideal of R.
- (b) The product $IJ \subseteq I \cap J$.
- (c) Let $f: R \to R/(IJ)$ be the canonical homomorphism. Then, for any $x \in I \cap J$, the image f(x) is nilpotent.
- (d) If I + J = R, then $IJ = I \cap J$.

Solution:

- (a) If $x, y \in I \cap J$, then $x y \in I \cap J$ since $x y \in I$ and $x y \in J$. Furthermore, if $r \in R$, then $rx \in I$ and $rx \in J$, so $rx \in I \cap J$, so $I \cap J$ is an ideal.
- (b) We observe that for any $q \in IJ$, we may express

$$q = \sum_{k=1}^{n} x_k y_k,$$

where $x_k \in I$ and $y_k \in J$. In particular, each $x_k y_k \in I \cap J$, so $q \in I \cap J$, meaning $IJ \subseteq I \cap J$.

- (c) Let $x \in I \cap J$. Then, following from the well-definedness of operations in the quotient ring, we see that $(x + IJ)^n = x^n + IJ$. In particular, if n = 2, then x^2 is a linear combination of an element of I multiplied by an element of J, so $x^2 \in IJ$, meaning that $(x + IJ)^2 = x^2 + IJ = IJ = 0 + IJ$, meaning that x is nilpotent.
- (d) We will show that if $q \in I \cap J$, then q can be written as a linear combination of elements of I multiplied by elements of J. In particular, we start by letting $i \in I$ and $j \in J$ be such that i + j = 1. Then, q(i + j) = q, meaning that qi + qj = q, and since $q \in I \cap J$, we have expressed q as a linear combination of elements of I multiplied by elements of J. Thus, $I \cap J \subseteq IJ$, meaning $IJ = I \cap J$.

Problem (Problem 3): Let $R = \mathbb{Z}[i]$ be the ring of Gaussian integers.

- (a) Show that every nonzero ideal $I \subseteq R$ contains a nonzero integer.
- (b) Identify the quotient R/I where I = (2 + i) is the principal ideal generated by 2 + i.

Solution:

(a) Let $I \subseteq R$ be a nonzero ideal, and let $a + ib \in I$ with $a, b \in \mathbb{Z} \setminus \{0\}$. Since multiplication by any element of R yields another element in I, we see that

$$(a+ib)(a-ib) = a^2 + b^2$$

$$\in R.$$

and since $a, b \neq 0$, so too is $a^2 + b^2$, so any nonzero ideal of R contains a nonzero integer.

(b) Consider the map $\phi \colon \mathbb{Z} \to R/I$ given by $z \mapsto z + I$. Since this is a composition of the inclusion map $\mathbb{Z} \hookrightarrow \mathbb{Z}[i]$ and the projection map $\pi \colon \mathbb{Z}[i] \to \mathbb{Z}[i]/(2+i)$, this is a ring homomorphism. We will show that this ring homomorphism is surjective.

Let $(a + bi) + I \in R/I$. We will show that there is some $k \in \mathbb{Z}$ such that $k - (a + bi) \in (2 + i)$. For this purpose, let

$$(x + yi)(2 + i) = (a - k) + bi,$$

so that

$$2x - y = (a - k)$$

$$2y + x = b$$
.

We thus get that

$$5x = 2a + b - 2k$$

$$5y = 2b - a + k.$$

Reducing modulo 5, we thus have that

$$0 \equiv 2a + b - 2k$$
$$\equiv 2b - a + k,$$

meaning that k = 3b + a (modulo 5). We thus have that

$$(3b + a) - (a + bi) = 3b - bi$$

= $b(3 - i)$
= $b(1 - i)(2 + i)$,

so $z \mapsto z + I$ is surjective. We observe furthermore that $5\mathbb{Z} \subseteq \ker(\varphi)$, and since 5 is prime, it is a subset of no other ideal, and since the homomorphism φ is nontrivial, we thus have that $\ker(\varphi) = 5\mathbb{Z}$, so by the first isomorphism theorem, $\mathbb{Z}[i]/(2+i) \cong \mathbb{Z}/5\mathbb{Z}$.

Problem (Problem 4): Let R_1 and R_2 be rings. We consider the Cartesian product $R = R_1 \times R_2$ and introduce the operations

$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$$

 $(a_1, a_2)(b_1, b_2) = (a_1 a_2, b_1 b_2).$

Show that R is a ring with these operations.

Solution: If $a_1, b_1 \in R_1$ and $a_2, b_2 \in R_2$, then since $a_1 - a_2 \in R_1$ and $b_1 - b_2 \in R_2$, it is clear that $R_1 \times R_2$ endowed with the + operation is an abelian group with additive identity (0,0) as we have endowed $R_1 \times R_2$ with coordinate-wise operations inherited from R_1 and R_2 .

Similarly, if $c_1 \in R_1$ and $c_2 \in R_2$, then since multiplication is associative in R_1 and R_2 , we have

$$(a_1, a_2) \cdot ((b_1, b_2) \cdot (c_1, c_2)) = (a_1 \cdot (b_1 \cdot c_1), a_2 \cdot (b_2 \cdot c_2))$$

= $((a_1 \cdot b_1) \cdot c_1, (a_2 \cdot b_2) \cdot c_2)$
= $((a_1, a_2) \cdot (b_1, b_2)) \cdot (c_1, c_2),$

so multiplication is associative in $R_1 \times R_2$. Finally, since multiplication distributes over addition in R_1 and in R_2 , we have that

$$(a_1, a_2) \cdot ((b_1, b_2) + (c_1, c_2)) = (a_1 \cdot (b_1 + c_1), a_2 \cdot (b_2 + c_2))$$

$$= (a_1 \cdot b_1 + a_1 \cdot c_1, a_2 \cdot b_2 + a_2 \cdot c_2)$$

$$= (a_1 \cdot b_1, a_2 \cdot b_2) + (a_1 \cdot c_1, a_2 \cdot c_2)$$

$$= (a_1, a_2) \cdot (b_1, b_2) + (a_1, a_2) \cdot (c_1, c_2),$$

meaning that multiplication distributes over addition in $R_1 \times R_2$.

Problem (Problem 7): Let I, J be ideals such that I + J = R and IJ = 0. Show that the map

$$f: R \to \mathbb{R}/I \times \mathbb{R}/J$$

given by $x \mapsto (x + I, x + J)$ is a ring isomorphism.

Solution: By the result from Problem 1, we know that since I + J = R and IJ = 0, then $I \cap J = \{0\}$. Therefore, since $r \in \ker(f)$ if and only if r + I = 0 + I and r + J = 0 + J, or that $r \in I$ and $r \in J$, we have that $\ker(f) = 0$.

Furthermore, for any $(r + I, s + J) \in R/I \times R/J$, we use the fact that $r + I \neq 0 + I$ if and only if $r \in J$, and $s + J \neq 0 + J$ if and only if $s \in I$, meaning that x = r + s satisfies x + I = r + I and x + J = r + J. Moreover, if r + I = 0 + I and $s + J \neq 0 + J$, then x = s satisfies the desired result, while if $r + I \neq 0$ and s + J = 0, then x = r satisfies the desired result. Thus, f is surjective, hence an isomorphism.