

Data-Driven Analytics for Power System Stability

Dr Yan Xu
Nanyang Assistant Professor
School of Electrical & Electronic Engineering
Nanyang Technological University
Singapore

Email: xuyan@ntu.edu.sg

OUTLINE

1 Background: what is the current status?

2 Motivation: why we need this research?

3 Problem Description: what are key research problems?

4 Methodology

- Feature selection
- Statistic error analysis
- Credibility evaluation
- Randomized learning
- Online assessment
- Real-time assessment
- Missing data
- Transfer learning

Motivation

Problem description

Methodology

Power System Stability

Definition

"The ability of an electric power system to regain a state of operating equilibrium after being subjected to a disturbance."

Higher operating

uncertainties

Complicated system

dynamics

Conventional power grid → "Smart Grid" → "Energy Internet (?)"

- Generation side: high-level intermittent renewable energy integration
- **Demand side:** demand response, electric vehicle, distributed energy storage, etc.
- **Device-grid interface:** power-electronics converters

Recent major blackout events

Motivation

Problem description

Methodology

- Classification for Power System Stability
- Rotor Angle Stability (large-disturbance and small-disturbance)
- Voltage Stability (short-term or long-term)
- Frequency Stability (short-term and long-term)

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{p}, \boldsymbol{\lambda}) \quad 0 = \mathbf{g}(\mathbf{x}, \mathbf{y}, \mathbf{p}, \boldsymbol{\lambda})$$

Classification for Stability Assessment and Control

Motivation

Problem description

Methodology

Conventional Methods (Model-based)

- Time-domain Simulation: to solve a large-scale differential-algebraic equation (DAE) set
- Data requirement: system model (static and dynamic), network topology, state-estimation, fault, etc.
- Outputs: system's time-varying trajectories
- Event-based control: lookup decision table, contingency indexing

"for a 14,000-bus system, one disturbance analysis could involve a set of 15,000 differential equations and 40,000 nonlinear algebraic equations for an simulation time duration of 10-20s; besides, the number of disturbances to be considered is also enormous, e.g., for the 14,000-bus system, the typical number of postulated disturbances is between 2000 and 3000."

PSS/E simulation costs 2.2s CPU time

Motivation

Problem description

Methodology

Data-Driven Method

Motivation

Problem description

Methodology

Key Research Problems (how to?)

- Generate a comprehensive stability database
- Improve the accuracy, speed, and reliability
- Extract interpretable knowledge to support stability control
- Mitigate abnormal situations, such as missing data, communication delay
- Extend to other applications, e.g., equipment fault diagnosis and health management

Working institutes

Select/extract significant features

• Develop effective data-analytics **algorithms**

Key Funders

2009-2011

2011-2016

NATIONAL RESEARCH FOUNDATION
PRIME MINISTER'S OFFICE
SINGAPORE

Z.Y. Dong, Y. Xu, P. Zhang, and K.P. Wong "Using intelligent system to assess an electric power system's real-time stability," *IEEE Intelligent Systems Magazine*, 2013.

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

Distance-based Feature Evaluation and Residual Analysis

• Evaluate the quality of features according to **how well their values distinguish among instances near each other**; Consider both the difference in features' values and classes, as well as the distance between the instances; Good features can cluster similar instances and separate dissimilar ones in the distance space.

$$\begin{cases} diff(X,R,R') = \frac{\left|value(X,R) - value(X,R')\right|}{\max(X) - \min(X)} \\ W[X]^{i+1} = W[X]^{i} - \sum_{j=1}^{k} diff(X,R_{i},H_{j})/(m \cdot k) + \\ \sum_{C \neq class(R_{i})}^{k} \left[\frac{P(C)}{1 - P(class(R_{i}))} \cdot \sum_{j=1}^{k} diff(X,R_{i},M_{j}(C))\right]/(m \cdot k) \end{cases}$$

• **Residual:** the difference between an event's observed (actual) occurrence probability and expected occurrence probability.

Y. Xu, et al, "Preventive dynamic security control of power systems based on pattern discovery technique," *IEEE Trans. Power Systems*, 2012.

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

Statistical Error Analysis

- The essence of **statistical learning** is to fit the historical distribution of a database, and assumes that the future unknown event follows this distribution.
- Prediction error may stem from 1) imperfect fitting and 2) variation of data distribution
- How to convert a **numeric** value to a **class** label?

If
$$\begin{cases} y > 0 \rightarrow y = 1 \text{ (stable)} \\ y \le 0 \rightarrow y = -1 \text{ (unstable)} \end{cases}$$

Y. Zhang, Y. Xu*, et al, "Intelligent early-warning of power system dynamic insecurity risk towards optimal accuracy-efficiency tradeoff," *IEEE Trans. Industrial Informatics*, 2017.

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

Credibility-Oriented Stability Assessment

If we are unable to avoid errors, can we identify them?

Ensemble Learning

- Combine a set of individual learners to make a plurality decision
- Single learners can compensate for each others, and the whole model can reduce aggregated variance

Randomly sampling Database (DB) DB 1 DB 2 DB 3 DB 6 For each single ELM, randomly select input features, hidden node number, and activation function Training E single ELMs (randomly select input weights and analytically determine the output weights)

Credible Evaluation

- Evaluate an individual decision's "credibility" based on the difference between the observable value and the expect value
- Evaluate the whole decision's "credibility" based on the consistence of the individual members
- Only implement "credible" stability results in practice

If
$$\begin{cases} y \in [lb_s, ub_s] \Rightarrow y = 1 \text{ (stable)} \\ y \in [lb_u, ub_u] \Rightarrow y = -1 \text{ (unstable)} \\ y \in (ub_u, lb_s) \text{or}(-\infty, lb_u) \text{or}(ub_s, +\infty) \Rightarrow y = 0 \\ \text{ (incredible output)} \end{cases}$$

For E single learning units, suppose m of them generating incredible outputs, s of them generating stable outputs, and u of them generating unstable outputs:

If
$$m/E \ge r \Rightarrow Y = 0$$
 (incredible ensemble result)

Else If
$$\begin{cases} s > u \Rightarrow Y = 1 \text{ (secure instance)} \\ s \le u \Rightarrow Y = -1 \text{ (risky instance)} \end{cases}$$

Y. Xu, et al, "A reliable intelligent system for real-time dynamic security assessment of power systems," *IEEE Trans. Power Systems*, 2012.

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

Randomized Algorithms for Ensemble Learning

Keys to Ensemble Learning

- **Diversity** (data, structure, and parameter)
- Learning and tuning speed

Problem based constraints Problem constraints Problem based constraints Problem based constraints Problem based constraints Problem based constraints Clustering Regression Classification Hidden nodes need not be tuned. A hidden node of ELM can be a subnetwork of several nodes.

Extreme Learning Machine (ELM)

$$f_{\tilde{N}}\left(\mathbf{x}_{j}\right) = \sum_{i=1}^{\tilde{N}} \beta_{i} \cdot \vartheta\left(\mathbf{w}_{i} \cdot \mathbf{x}_{j} + b_{i}\right) = \mathbf{t}_{j}, \quad j = 1, 2, \dots, N$$

- Randomly selecting the input weights and biases for hidden nodes w and b, and
- Analytically determining the output weights β

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

Pre-fault Online Stability Assessment/Contingency Filtering

IEEE 145-bus System Test Results (Transient Stability Assessment)

Contingency	Credibility	Accuracy
Fault at bus #1, tripping line 1-6	89.25%	100%
Fault at bus #2, tripping line 2-6	91.54%	100%
Fault at bus #6, tripping line 6-10	94.64%	100%
Fault at bus #89, tripping line 89-76	94.48%	100%
Average	92.48%	100%

China Southern Power Grid Equivalent System (CCT Estimation)

	Contingency	Credibility	MAE
	Fault at a 500kV corridor bus	96.82%	(0.0115s)
	The "credible" decis	sions are	
•	highly (100%) acc		

High accuracy can be obtained on the cost of credibility rate.

If combined with T-D simulation: with 100% accuracy, 16 times faster than pure T-D simulation

Y. Xu, et al, "A reliable intelligent system for real-time dynamic security assessment of power systems," *IEEE Trans. Power Systems*, 2012.

Motivation

Problem description

Methodology

Feature selection **Statistic error analysis Credibility evaluation Randomized learning Online** assessment **Real-time assessment** Missing data **Transfer learning**

Optimal Accuracy-Efficiency Trade-off

Multi-objective Optimization

- The parameters involved in the credible decision-making rule are user-defined. They can be further optimized.
- Optimally balance the tradeoff between stability assessment accuracy (A) and efficiency (C).

Objectives:
$$\min_{\mathbf{x}} \mathbf{q}(\mathbf{x}) = -\mathbf{p}(\mathbf{x})$$

where, $\mathbf{x} = [lb_U, ub_U, lb_S, ub_S, r];$ $\mathbf{p}(\mathbf{x}) = [C, A] = [p_1(\mathbf{x}), p_2(\mathbf{x})]$
Efficiency $\propto C = \frac{\text{no. of credible results}}{\text{no. of testing instances}} \times 100\%$
 $A = \frac{\text{no. of correctly classified instances}}{\text{no. of credible results}} \times 100\%$
subject to: $lb_U < U;$ $U < ub_U < \frac{U+S}{2}$
 $\frac{U+S}{2} < lb_S < S;$ $ub_S > S;$ $0 < r < 1$

88.66%

100%

-94 Credibility (%)

-99.2 -99.4

-99.6

-99.8 -99.9 -1

21.1 min

-98

21.2 min

Pareto Points	Testing Performance		Ave	rage Computation T		
1 arcto 1 omts	Credibility	Accuracy	ELM Ensemble T-D Simulation		Overall	
<u>A</u>	<u>92.82%</u>	<u>99.9%</u>		<u>11.7 min</u>	<u>11.8 min</u> -	15 times faster than
В	92.47%	99.95%		13.3 min	13.4 min	pure T-D simulation
C	92.02%	99.95%	<u>5.12 s</u>	15 min	15.1 min	pare i a cinicination
D	90.39%	100%		18.3 min	18.4 min	

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

Post-fault (Short-term Voltage) Online Stability Assessment

RVFL Ensemble Model

ELM Ensemble Model

(a) New England 39-bus test system

- The hybrid randomized ensemble model consists of multiple randomized learning algorithms to improve the learning diversity.
- Optimally balance the tradeoff between **stability assessment accuracy** (*A*) and **speed** (*S*).
- the proposed method can activate the emergency control actions at an earlier stage, which improves the control effectiveness and reduce the load shedding amount.

C. Ren, Y. Xu*, et al, "A Hybrid Randomized Learning System for Temporal-Adaptive Voltage Stability Assessment of Power Systems," IEEE Trans. Industrial Informatics, 2019.

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

Post-Fault Real-Time Stability Assessment

Response-based stability assessment and control

- More robust, accurate, and generalized
- **Decision speed**: the time-window length

- slower decision speed → more dynamic information → tends to be more accurate → less time for control
- **faster** decision speed → **less** dynamic information → tends to be **less accurate** → **more** time for control

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

Time-Adaptive Method for Generalized Time-Series Decision-Making Problems

- Adaptively (in time domain) make decisions based on the output credibility
- Provide an accurate decision at an appropriate earlier time
- Balance the assessment accuracy and the decision speed

R. Zhang, Y. Xu, et al "Post-disturbance transient stability assessment of power systems by a self-adaptive intelligent system," *IET Gen. Trans. & Dist.*, 2015. A. Khamis, Y. Xu, et al, "Faster detection of Microgrid islanding events using an adaptive ensemble classifier," *IEEE Trans. Smart Grid*, 2017.

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

Test Results

[1] Large power system stability assessment

Literature	Response time	Accuracy (%)
I. Kamwa, et al [10]	2 to 3s	
I. Kamwa, et al [11]	1 or 2s	
I. Kamwa, et al [12]	150 and 300ms	
S. Rovnyak, et al [9]	8 cycles	96%~99.9%
N. Amjady, et al [13]	6 cycles	
N. Amjady, et al [14]	5 cycles	
U.Annakkage, et al [16]	4 cycles	

Our method: average decision speed: 1.9 cycle; average accuracy 99.7%

[2] Microgrid islanding detection

Literature	Speed	Accuracy (%)
[18]	5 cycle	90.0
[19], [20]	0.125s	94.45
[21]	23.9ms	98
[10]	150ms	95.6
[22], [23]	0.23s	100

Our method: average decision speed: 1.1 cycle; average accuracy 99.3%

- [1]. R. Zhang, Y. Xu, et al "Post-disturbance transient stability assessment of power systems by a self-adaptive intelligent system," IET Gen. Trans. & Dist., 2015.
- [2]. A. Khamis, Y. Xu, et al, "Faster detection of Microgrid islanding events using an adaptive ensemble classifier," IEEE Trans. Smart Grid, 2017.

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

The Short-Term Voltage Stability (STVS) Problem

The STVS problem is concerned on:

- Fault-induced delayed voltage recovery (FIDVR) pose risk for wind turbine to ride through
- Sustained low voltage without recovery may lead to voltage collapse in the long-term
- Fast voltage collapse usually associated with rotor-angle instability

Y. Zhang, Y. Xu, et al "A hierarchical self-adaptive data-analytics method for real-time power system short-term voltage stability assessment," *IEEE Trans. Ind. Infor.*, 2018.

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

Short-Term Voltage Stability Indices

Index to evaluate voltage collapse:

• Transient Voltage Collapse Index (TVCI) – a binary index to decide whether or not the voltages are recovered

Indices to evaluate FIDVR severity:

- Transient Voltage Severity Index (TVSI)
 - a continuous index
 - an averaged index over all buses
 - the FIDVR severity is reflected by the magnitude and the duration time of voltage deviation
- Root-mean-squared Voltage Severity Index (RVSI)
 - a continuous index
 - adopt root-mean squared average instead of arithmetic mean
 - ability to emphasize the buses with more severe voltage deviation
 - the FIDVR severity is reflected by the area covered by voltage deviation

 $TVSI = \frac{\sum_{i=1}^{N} \sum_{t=T_c}^{I} TVDI_{i,t}}{N \times (T - T_c)}$

 $RVSI = \sqrt{\frac{\sum_{i=1}^{N} \left(\int_{T_c}^{T} TVDI_{i,t} dt \right)^2}{N}}$

Y. Zhang, Y. Xu, et al "A hierarchical self-adaptive data-analytics method for real-time power system short-term voltage stability assessment," IEEE Trans. Ind. Infor., 2018.

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

Hierarchical Time-Adaptive Method for Real-time STVS Assessment

Hierarchical

- voltage instability detection (higher hierarchy) & FIDVR severity prediction (lower hierarchy)
- improve comprehensiveness of STVS assessment

Time-Adaptive

- adaptively deliver assessment results based on progressively collected data
- provide an accurate result at the earliest opportunity
- optimally balance the assessment accuracy and speed

	HI	igher Hiei	rarchy	Lower Hierarchy			
$\mathbf{T_i}$	Voltage	Instabilit	y Detection	FIDVR	Severity	Prediction	
	$R_c(T_i)$	$S_c(T_i)$	$A_{c}(T_{i})$	$R_r(T_i)$	$S_r(T_i)$	$E_r(T_i)$	
1	1987	761	100%	276	0	N/A	
2	1226	348	99.82%	524	0	N/A	
3	878	204	99.85%	637	0	N/A	
4	674	125	99.86%	660	0	N/A	
5	549	199	99.70%	715	22	2.2%	
6	350	49	99.70%	729	185	2.1%	
7	301	24	99.71%	565	138	2.0%	
8	277	9	99.71%	436	288	2.0%	
9	268	11	99.71%	156	74	2.1%	
10	257	19	99.71%	97	25	2.0%	
•••							
20	66	66	99.09%	71	71	2.4%	

R_c, R_r	The number of available samples.
S_c, S_r	The number of successfully assessed samples.
$\mathbf{A_c}$	The accumulated accuracy.
$\mathbf{E_r}$	The accumulated MAPE.

Y. Zhang, Y. Xu, et al "A hierarchical self-adaptive data-analytics method for real-time power system short-term voltage stability assessment," *IEEE Trans. Ind. Infor.*, 2018.

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

Probabilistic Time-Adaptive Method for Real-time FIDVR Assessment

improve

Credibility-Oriented Time-Adaptive Method

- credibility is evaluated under a rule-ofthumb scheme (lack mathematical rigorousness)
- a large number of user-defined parameters to be tuned
- heavily impact robustness

- Probabilistic Time-Adaptive Method
 - predict FIDVR severity on a probabilistic basis with a certain confidence level
 - make confident/reliable assessment decision at the earliest opportunity
 - non-parametric in nature
 - more robust in practice

Time-adaptive Process

Y. Zhang, Y. Xu, et al "Real-time assessment of fault-induced delayed voltage recovery: a probabilistic self-adaptive data-driven method," *IEEE Trans. Smart Grid*, 2018.

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

Test Results

The composed CI shrinks over time, indicating the reduction of prediction error at a later decision cycle

FIDVR Assessment Accuracy and Speed

Time	No. of Assessed	Assessment	Time No. of Assessed		Assessment	
Points	Cases	Accuracy	Points Cases		Accuracy	
1	793	100%	11	13	100%	
2	88	100%	12	5	100%	
3	59	100%	13	8	100%	
4	39	100%	14 6		100%	
5	33	100%	15	3	100%	
6	19	100%	16 2		100%	
7	26	100%	17	1	100%	
8	11	100%	18	2	100%	
9	9	100%	19 0		N/A	
10	14	100%	20	31	87.10%	
Overall Accuracy		99.66%	Average Decision Time		0.14 s	

Comparative Study Results

Methods	Method	Assessment	Required	
Menious	Type	Accuracy	Assessment Time	
Our Method	self-adaptive	<u>99.66%</u>	<u>0.14 s</u>	
DT	fixed-time	99.05%	0.75 s	
SVM	fixed-time	99.66%	0.80 s	
BLR	self-adaptive	98.37%	0.33 s	

All 100% accuracy for early assessment, indicating the improved reliability in time-adaptive method.

Y. Zhang, Y. Xu, et al "Real-time assessment of fault-induced delayed voltage recovery: a probabilistic self-adaptive data-driven method," *IEEE Trans. Smart Grid*, 2018.

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

Data-Driven Method with Missing Data

The impacts of missing data:

- Incomplete input
- Fail to work
- Deterioration of assessment accuracy

Existing methods:

- Surrogate split for decision tree: T. Y. Guo, and J. V. Milanovic, "The effect of quality and availability of measurement signals on accuracy of on-line prediction of transient stability using decision tree method," *IEEE/PES ISGT Europe*, 2013.
- Random subspace-based decision tree ensemble: M. He, V. Vittal, "Online dynamic security assessment with missing PMU measurements: A data mining approach," *IEEE Trans. Power Syst.*, 2013.

Still suffer from low accuracy if the amount of missing data increases!

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

Observability-Oriented PMU Clustering

Observability: The grid region where the power system operating data can be measured.

Complete observability: The condition where the observability covers the whole power grid.

Incomplete observability: The condition where some of the operating data cannot be measured.

Under missing data events, the observability will become incomplete, but the change in observability can be complicated:

- The combined observability of multiple PMUs can be larger than just simply adding up their own observability.
- Loss of one PMU can impair the observability in an larger region than its own observability.

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

Analytical PMU clustering

- An **iterative** searching process over all the electric components.
- Search all the **non-redundant** PMU combinations that can observe each electric component.
- Maximize the grid observability under any PMU loss scenario rigorously proved
- Minimize the number of PMU clusters rigorously proved
- F1. The union of the observability of each complete cluster in **P** equals to the remaining observability of the grid.
- **F2.** Upon F1 is satisfied, the number of clusters is minimized.

F1 proof: F1 is equivalent to: $\mathbf{E}_1 = \mathbf{E}_2, \forall \mathbf{d} \in \mathbf{C}$ (1) where $\mathbf{E}_1 = \mathrm{O}(\mathbf{d}), \mathbf{E}_2 = \bigcup_{\mathbf{m}_k \in \mathbf{P}} \mathrm{O}(\mathrm{V}(\mathbf{m}_k \mid \mathbf{d}))$ (2)

where
$$V(\mathbf{m}_k \mid \mathbf{d}) = \begin{cases} \mathbf{m}_k \text{ if } \mathbf{m}_k \subseteq \mathbf{d} \\ \phi \text{ otherwise} \end{cases}$$
 (3)

In (1) - (3), O(·) is the function to map a set of PMUs to their observability; **d** is the set of available PMUs; **C** includes all PMU combinations; \mathbf{m}_k is a PMU cluster in **P** and the condition $\mathbf{m}_k \subseteq \mathbf{d}$ means \mathbf{m}_k remains complete with only **d** in the system.

 $\forall e_i \in \mathbf{E}_1 = \mathrm{O}(\mathbf{d}), \text{ at least one non-redundant subset } \mathbf{d}_s \subseteq \mathbf{d}$ satisfies $e_i \in \mathrm{O}(\mathrm{V}(\mathbf{d}_s \mid \mathbf{d}))$. Since \mathbf{R}_i includes all non-redundant PMU clusters for $e_i, \mathbf{d}_s \in \mathbf{R}_i \subseteq \mathbf{P}$, thus $e_i \in \mathbf{E}_2 \Rightarrow \mathbf{E}_1 \subseteq \mathbf{E}_2$. $\forall e_i \in \mathbf{E}_2$, at least a $\mathbf{m}_s \in \mathbf{P}$ satisfies $e_i \in \mathrm{O}(\mathbf{m}_s)$ and $\mathbf{m}_s \subseteq \mathbf{d}$, so $e_i \in \mathrm{O}(\mathbf{d}) = \mathbf{E}_1 \Rightarrow \mathbf{E}_2 \subseteq \mathbf{E}_1$. As $\mathbf{E}_1 \subseteq \mathbf{E}_2$ and $\mathbf{E}_2 \subseteq \mathbf{E}_1$, $\mathbf{E}_1 = \mathbf{E}_2 \Rightarrow \mathbf{F}_1$.

The grid.

Is minimized.

F2 proof: we make a hypothesis H: there is a PMU cluster \mathbf{m}_a that can be removed from \mathbf{P} and $\mathbf{P} \setminus \mathbf{m}_a$ still satisfies (1).

Let $\mathbf{d} = \mathbf{m}_a$, $e_b \in \mathbf{E}_1 = \mathrm{O}(\mathbf{m}_a)$, and $\mathbf{m}_a \in \mathbf{R}_b$. As the clusters in \mathbf{R}_b are non-redundant, all the clusters in $\mathbf{R}_b \setminus \mathbf{m}_a$ include at least one PMU that is not in \mathbf{m}_a , so $\mathbf{m}_{k1} \not\subset \mathbf{d}$, $\forall \mathbf{m}_{k1} \in \mathbf{R}_b \setminus \mathbf{m}_a$. As \mathbf{R}_b includes all clusters observing e_b , $\mathbf{P} \setminus \mathbf{R}_b$ cannot observe e_b , thus $\begin{cases} \mathrm{O}(\mathrm{V}(\mathbf{m}_{k1} \mid \mathbf{m}_a)) = \phi, \ \forall \mathbf{m}_{k1} \in \mathbf{R}_b \setminus \mathbf{m}_a \Rightarrow e_b \not\in \mathrm{O}(\mathrm{V}(\mathbf{m}_k \mid \mathbf{m}_a)), \\ e_b \not\in \mathrm{O}(\mathrm{V}(\mathbf{m}_{k2} \mid \mathbf{m}_a)), \ \forall \mathbf{m}_{k2} \in \mathbf{P} \setminus \mathbf{R}_b \end{cases} \Rightarrow e_b \not\in \mathrm{O}(\mathrm{V}(\mathbf{m}_k \mid \mathbf{m}_a)), \\ \forall \mathbf{m}_k \in \mathbf{P} \setminus \mathbf{m}_a \Rightarrow e_b \not\in \mathbf{E}_2 \Rightarrow \mathbf{E}_1 \not\in \mathbf{E}_2$. Thus, H fails \Rightarrow F2.

A set $\mathbf{B} = \{b_i, i = 1 \cdots$

 $N_{\rm B}$ } includes all buses

A sorted set $C = \{c_j, j = 1 \cdots 2^N - 1\}$ includes

all PMU combinations

Initialize a PMU cluster set $\mathbf{P} = \mathbf{\Phi}$

i = 1

Initialize a temporary PMU combination set $T_i = \Phi$

If any PMU combination in $\mathbf{T}_i = \mathbf{c}_j$? (Redundancy Check)

If \mathbf{c}_i can observe b_i ?

i = i + 1

j = j + 1

Y. Zhang, Y. Xu, et al "Robust ensemble data-analytics for incomplete PMU measurement-based power system stability assessment," IEEE Trans. Power Syst., 2017.

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

Robust Data-Driven Method against Missing Data

At Offline Stage:

- Use the observability of each PMU cluster to train each single learning unit.
- Aggregate the single learning units in an ensemble learning model.

At Online Stage:

• Only the available single learning units (i.e. complete input data) generate DSA decisions.

Advantages:

- The remaining observability is fully captured by the ensemble learning model.
- Sustain DSA accuracy under missing data conditions.
- Minimum number of single learning models to achieve the robustness (i.e. minimum offline training and online computation burden).

Analytical PMU clustering + Ensemble Learning → Robustness against missing data

Y. Zhang, Y. Xu, et al "Robust ensemble data-analytics for incomplete PMU measurement-based power system stability assessment," IEEE Trans. Power Syst., 2017.

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

Generative Adversarial Network (GAN)-based method

Advantages:

- GAN is implemented with two deep neural networks without the need to fit an existing explicit model, called generator and discriminator, which contest with each other in a zero-sum game framework.
- Generate the missing data without depending on PMU observability and network topologies.

Generative Adversarial Network + Hybrid Ensemble Learning → GAN against missing data

At Offline Stage:

- DSA model is the classifier based on hybrid ensemble learning model of ELM and RVFL.
- GAN model can collectively provide an accurate complete data set against missing data.

At Online Stage:

 Fill up the missing data by GAN model, the complete input data can generate DSA decisions by DSA model.

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

Test Results

• PMU Placement 1:

8 PMUs with ZIB effect resulting in 19 PMU clusters: {3},{8},{10},{16},{20},{23},{25},{29},{3,8},{3,16},{8,25},{16,20},{16,23},{3,8,10},{3,8,25},{3,10,16},{3,16,25},{3,16,29},{3,16,25,29}

PMU Placement 2:

13 PMUs without ZIB effect resulting in 36 PMU clusters: {2},{6},{9},{10},{11},{14},{17},{19},{20},{22},{23},{25},{29},{2,9},{2,14},{2,17},{2,29},{6,9},{6,14},{10,11},{11,14},{14,17},{14,19},{17,20},{17,22},{17,23},{17,25},{17,29},{19,22},{19,23},{2,6,14},{2,14,17},{2,17,29},{17,25,29},{14,17,19,22,23},{14,17,20,22,23}

CONTINGENCY SET

Contingency ID	1	2	3	4	5	6	7	8	9	10
Fault Setting	Fault bus 1, trip 1-39	Fault bus 39, trip 1- 39	Fault bus 3, trip 3-4	Fault bus 4, trip 3-4	Fault bus 14, trip 14-15	Fault bus 15, trip 14-15	Fault bus 15, trip 15-16	Fault bus 16, trip 15-16	Fault bus 16, trip 16-17	Fault bus 17, trip 16-17
No. of secure instances	3257	3075	3417	3326	3419	3462	3394	3437	3320	3282
No. of insecure instances	1786	1968	1626	1717	1624	1581	1649	1606	1723	1761

- Y. Zhang, Y. Xu, et al "Robust ensemble data-analytics for incomplete PMU measurement-based power system stability assessment," IEEE Trans. Power Syst., 2017.
- Y. Zhang, Y. Xu, et al "Robust classification model for PMU-based on-line power system dynamic security assessment with missing data," IET Gen. Trans. & Dist., 2017.
- C. Ren, Y. Xu "A Fully Data-Driven Method based on Generative Adversarial Networks for Power System Dynamic Security Assessment with Missing Data," IEEE Trans. Power Syst., 2019.

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

Test Results

ELM as the learning algorithm

Decision Tree as the learning algorithm

DTWS – decision tree with surrogate split RFSS – random forest with surrogate split

GAN as the learning algorithm

DTWS – decision tree with surrogate split

DTWS — Proposed Method - ★- · Robust RVFL

- Y. Zhang, Y. Xu, et al "Robust ensemble data-analytics for incomplete PMU measurement-based power system stability assessment," IEEE Trans. Power Syst., 2017.
- Y. Zhang, Y. Xu, et al "Robust classification model for PMU-based on-line power system dynamic security assessment with missing data," IET Gen. Trans. & Dist., 2017.
- C. Ren, Y. Xu "A Fully Data-Driven Method based on Generative Adversarial Networks for Power System Dynamic Security Assessment with Missing Data," IEEE Trans. Power Syst., 2019.

Motivation

Problem description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data
Transfer learning

Transfer Learning-Using One Model to Assess Many Unlearned Faults

At Offline Stage:

- DSA model is the classifier based on hybrid ensemble learning model.
- The *RELIEF-F* algorithm is used to select the critical features.

At Online Stage:

• Feature transformation and transfer learning via minimizing marginal distributions and conditional distribution differences between the unknown features and the known features

Advantages:

- Using One Model to Assess Many Unlearned Fault.
- The correlation between different faults can be revealed, thus different faults can be aggregated as one.

Online Testing Results

F1 F2 F3 F4 F5 F6 F7 F8

Mutual Transfer Accuracy

C. Ren, Y. Xu "Transfer Learning-Based Power System Online Dynamic Security Assessment: Using One Model to Assess Many Unlearned Faults," IEEE Trans. Power Syst., 2019.

Motivation

Problem description

Methodology

Publications

Selected Publications in data-driven stability assessment and control

- 1) C. Ren, Y. Xu*, "Transfer Learning-Based Power System Online Dynamic Security Assessment: Using One Model to Assess Many Unlearned Faults," *IEEE Trans. Power Systems*, 2019.
- 2) C. Ren, Y. Xu*, et al, "A Hybrid Randomized Learning System for Temporal-Adaptive Voltage Stability Assessment of Power Systems," *IEEE Trans. Industrial Informatics*, 2019.
- 3) C. Ren, Y. Xu*, "A Fully Data-Driven Method based on Generative Adversarial Networks for Power System Dynamic Security Assessment with Missing Data," *IEEE Trans. Power Systems*, 2019.
- 4) Y. Zhang, Y. Xu*, et al "Real-Time Assessment of Fault-Induced Delayed Voltage Recovery: A Probabilistic Self-Adaptive Data-driven Method," *IEEE Trans. Smart Grid*, 2018.
- 5) Y. Zhang, Y. Xu*, et al "A Hierarchical Self-Adaptive Data-Analytics Method for Power System Short-term Voltage Stability Assessment," *IEEE Trans. Industrial Informatics*, 2018.
- 6) Y. Zhang, Y. Xu*, et al "Ensemble data-analytics for incomplete PMU measurement-based power system stability assessment," *IEEE Trans. Power Systems*, 2018.
- 7) A. Khamis, Y. Xu*, et al, "Faster detection of microgrid islanding events using an adaptive ensemble classifier," *IEEE Trans. Smart Grid*, 2017.
- 8) Y. Zhang, Y. Xu*, et al, "Intelligent early-warning of power system dynamic insecurity risk towards optimal accuracy-efficiency tradeoff," *IEEE Trans. Industrial Informatics*, 2017.
- 9) Y. Zhang, Y. Xu*, et al "Robust classification model for PMU-based on-line power system dynamic security assessment with missing data," *IET Gen. Trans. & Dist.*, 2017.
- 10) Y. Xu*, et al, "Assessing short-term voltage stability of electric power systems by a hierarchical intelligent system," *IEEE Trans. Neural Net. & Learn. Syst.*, 2016.

Motivation

Problem description

Methodology

Publications

Selected Publications in data-driven stability assessment and control

- 11) R. Zhang, Y. Xu*, et al, "Post-disturbance transient stability assessment of power systems by a self-adaptive intelligent system," *IET Gen. Trans. & Dist.*, 2016.
- 12) Z.Y. Dong, Y. Xu*, et al, "Using intelligent system to assess an electric power system real-time stability," *IEEE Intelligent Systems Magazine*, 2013.
- 13) Y. Xu*, et al, "An intelligent dynamic security assessment framework for power systems with wind power," *IEEE Trans. Industrial Informatics*, 2012.
- 14) Y. Xu, et al, "A reliable intelligent system for real-time dynamic security assessment of power systems," *IEEE Trans. Power Systems*, 2012.
- 15) Y. Xu, et al, "Preventive dynamic security control of power systems based on pattern discovery technique," *IEEE Trans. Power Systems*, 2012.
- 16) Y. Dai, Y. Xu, et al, "Real-time prediction of event-driven load shedding for frequency stability enhancement of power systems," *IET Gen. Trans. & Dist.*, 2012.
- 17) Y. Xu, et al, "Real-time transient stability assessment model using extreme learning machine," *IET Gen. Trans. & Dist.*, 2011.

