Folland: Real Analysis, Chapter 3

Sébastien Picard

Problem 3.3

Let ν be a signed measure on (X, \mathcal{M}) .

- **a.** $L^1(\nu) = L^1(|\nu|)$.
- **b.** If $f \in L^1(\nu)$, $|\int f d\nu| \le \int |f| d|\nu|$.
- **c.** If $E \in \mathcal{M}$, $|\nu|(E) = \sup\{|\int_E f d\nu| : |f| \le 1\}$

Solution:

(a)

Let $f \in L^1(\nu)$. By definition, $f \in L^1(\nu^+) \cap L^1(\nu^-)$. Therefore $\int |f| d\nu^+ < \infty$ and $\int |f| d\nu^- < \infty$. Hence $\int |f|d|\nu| = \int |f|d\nu^+ + \int |f|d\nu^- < \infty$ and so $f \in L^1(|\nu|)$.

Consersely, suppose $f \in L^1(|\nu|)$. Then $\int |f|d|\nu| = \int |f|d\nu^+ + \int |f|d\nu^- < \infty$. Therefore $\int |f|d\nu^+ < \infty$ ∞ and $\int |f| d\nu^- < \infty$. Hence $f \in L^1(\nu^+) \cap L^1(\nu^-)$ and so $f \in L^1(\nu)$.

(b) Let $f \in L^1(\nu)$. Then

$$\left| \int f d\nu \right| = \left| \int f d\nu^{+} - \int f d\nu^{-} \right|$$

$$\leq \left| \int f d\nu^{+} \right| + \left| \int f d\nu^{-} \right|$$

$$\leq \int |f| d\nu^{+} + \int |f| d\nu^{-}$$

$$= \int |f| d|\nu|$$

(c) Let $E \in \mathcal{M}$. Then if f is a measurable function such that $|f| \leq 1$, we have

$$\left| \int_{E} f d\nu \right| \leq \int_{E} |f| d|\nu| \leq \int_{E} d|\nu| = |\nu|(E).$$

It follows that $\sup\{|\int_E f d\nu|: |f| \le 1\} \le |\nu|(E)$. On the other hand, let $X = P \cup N$ be a Hahn decomposition for ν . Since $\nu^+(E) = \nu(E \cap P)$ and $\nu^-(E) = -\nu(E \cap N)$, we can write

$$|\nu|(E) = \nu^{+}(E) + \nu^{-}(E)$$

$$= \nu(E \cap P) - \nu(E \cap N)$$

$$= \int_{E} \chi_{P} d\nu - \int_{E} \chi_{N} d\nu$$

$$= \int_{E} (\chi_{P} - \chi_{N}) d\nu$$

$$= \left| \int_{E} (\chi_{P} - \chi_{N}) d\nu \right|$$

Therefore $|\nu|(E) = |\int_E g d\nu|$ where $g = \chi_P - \chi_N$. Since $|g| \le 1$, we must have

$$|\nu|(E) \le \sup\{|\int_E f d\nu| : |f| \le 1\}.$$

Problem 3.7

Suppose that ν is a signed measure on (X, \mathcal{M}) and $E \in \mathcal{M}$.

- (a) $\nu^+(E) = \sup \{ \nu(F) : F \in \mathcal{M}, F \subset E \} \text{ and } \nu^-(E) = -\inf \{ \nu(F) : F \in \mathcal{M}, F \subset E \}$
- (b) $|\nu|(E) = \sup\{\sum_{1}^{n} |\nu(E_j)| : n \in \mathbb{N}, E_1, \dots, E_n \text{ are disjoint, and } \bigcup_{1}^{n} E_j = E\}$

Solution:

Let $X = P \cup N$ be a Hahn decomposition for ν . Then $\nu^+(E) = \nu(E \cap P)$ and $\nu^-(E) = -\nu(E \cap N)$.

(a) We prove the first statement. Let $F \in \mathcal{M}$, $F \subseteq E$. Then

$$\nu(F) = \nu^+(F) - \nu^-(F) \le \nu^+(F) \le \nu^+(E).$$

It follows that $\sup\{\nu(F): F \in \mathcal{M}, F \subseteq E\} \le \nu^+(E)$.

On the other hand, $\nu^+(E) = \nu(E \cap P)$, and $E \cap P \in \mathcal{M}$, $E \cap P \subseteq E$. So $\nu^+(E) \le \sup\{\nu(F) : F \in \mathcal{M}, F \subseteq E\}$. Therefore

$$\nu^+(E) = \sup \{ \nu(F) : F \in \mathcal{M}, \ F \subseteq E \}.$$

We now prove the second statement. Let $F \in \mathcal{M}$, $F \subseteq E$. Then

$$\nu(F) = \nu^{+}(F) - \nu^{-}(F) > -\nu^{-}(F) > -\nu^{-}(E).$$

Since $\nu^{-}(E) \geq -\nu(F)$ for all $F \in \mathcal{M}, F \subseteq E$, then

$$\nu^-(E) \ge \sup\{-\nu(F) : F \in \mathcal{M}, \ F \subseteq E\} = -\inf\{\nu(F) : F \in \mathcal{M}, \ F \subseteq E\}.$$

On the other hand, $\nu^-(E) = -\nu(E \cap N)$, and $E \cap N \in \mathcal{M}$, $E \cap N \subseteq E$. So

$$\nu^{-}(E) \le \sup\{-\nu(F) : F \in \mathcal{M}, F \subseteq E\} = -\inf\{\nu(F) : F \in \mathcal{M}, F \subseteq E\}.$$

Therefore

$$\nu^-(E) = -\inf\{\nu(F) : F \in \mathcal{M}, F \subseteq E\}.$$

(b) Let $n \in \mathbb{N}$, E_1, \ldots, E_n disjoint measurable sets and $\bigcup_{1}^{n} E_j = E$. Then

$$\sum_{j=1}^{n} |\nu(E_j)| = \sum_{j=1}^{n} |\nu^+(E_j) - \nu^-(E_j)|$$

$$\leq \sum_{j=1}^{n} |\nu^+(E_j) + \nu^-(E_j)|$$

$$= \sum_{j=1}^{n} |\nu|(E_j)$$

$$= |\nu|(E)$$

where the last step follows from the fact that $|\nu|$ is a measure. Therefore

$$\sup\{\sum_{1}^{n} |\nu(E_j)| : n \in \mathbb{N}, E_1, \dots, E_n \text{ are disjoint, and } \bigcup_{1}^{n} E_j = E\} \leq |\nu|(E).$$

On the other hand, we have

$$|\nu|(E) = \nu^+(E) + \nu^-(E) = |\nu(E \cap P)| + |\nu(E \cap N)|.$$

Since $E \cap P$ and $E \cap N$ are disjoint and their union is E, then

$$|\nu|(E) \le \sup\{\sum_{1}^{n} |\nu(E_j)| : n \in \mathbb{N}, E_1, \dots, E_n \text{ are disjoint, and } \bigcup_{1}^{n} E_j = E\}.$$

Problem 3.17

Let (X, \mathcal{M}, μ) be a σ -finite measure space, \mathcal{N} a sub- σ -algebra of \mathcal{M} , and $\nu = \mu | \mathcal{N}$. If $f \in L^1(\mu)$, there exists $g \in L^1(\nu)$ (thus g is \mathcal{N} -measurable) such that $\int_E f d\mu = \int_E g d\nu$ for all $E \in \mathcal{N}$; if g' is another such function then g = g' ν -a.e. (In probability theory, g is called the conditional expectation of f on \mathcal{N})

Solution:

Let (X, \mathcal{M}, μ) be a σ -finite measure space, \mathcal{N} a sub- σ -algebra of \mathcal{M} , $\nu = \mu | \mathcal{N}$, and $f \in L^1(\mu)$.

We define $\lambda(E) := \int_E f d\mu$ to be a signed measure on (X, \mathcal{N}) . The fact that λ is a signed measure is explained in the first paragraph on page 86, and follows from the fact that at least one of $f^+d\mu$ and $f^-d\mu$ are finite (indeed, both are finite since $f \in L^1(\mu)$).

Let $A \in \mathcal{N}$. If $\nu(A) = 0$, then $\mu(A) = \nu(A) = 0$, hence $\lambda(A) = 0$. It follows that $\lambda << \nu$.

By the Radon-Nikodym theorem, there exists an extended ν -measurable function g such that $\lambda(E) = \int_E g d\nu$ and any two such functions are equal ν -a.e.. It only remains to show that $g \in L^1(\nu)$. This is clear since

$$\left| \int g d\nu \right| = \left| \int f d\mu \right| \le \int |f| d\mu < \infty,$$

hence

$$\left| \int g d\nu \right| = \left| \int g^+ d\nu - \int g^- d\nu \right| < \infty.$$

Since g is an extended ν -measurable function, one of $\int g^+ d\nu$, $\int g^- d\nu$ is finite. Since their difference is finite, they must both be finite. Therefore

$$\int |g|d\nu = \int g^+ d\nu + \int g^- d\nu < \infty.$$

Problem 3.21

Let ν be a complex measure on (X, \mathcal{M}) . If $E \in \mathcal{M}$, define

$$\mu_1(E) = \sup\{\sum_{1}^{n} |\nu(E_j)| : n \in \mathbb{N}, E_1, \dots, E_n \text{ disjoint}, E = \bigcup_{1}^{n} E_j\}$$

$$\mu_2(E) = \sup\{\sum_{1}^{\infty} |\nu(E_j)| : n \in \mathbb{N}, E_1, \dots, E_n \text{ disjoint}, E = \bigcup_{1}^{\infty} E_j\}$$

$$\mu_3(E) = \sup\{\left|\int_E f d\nu\right| : |f| \le 1\}.$$

Then $\mu_1 = \mu_2 = \mu_3 = |\nu|$.

Solution: First, we show that $\mu_1 \leq \mu_2$. Let A_1, \ldots, A_n be disjoint sets such that $E = \bigcup_{1}^{n} A_j$. Define an infinite collection $\{F_i\}_{i=1}^{\infty}$ in the following way: for any $i \in \mathbb{N}$, let $F_i = A_i$ if $1 \leq i \leq n$, $F_i = \emptyset$ if i > n. Then F_1, F_2, \ldots are disjoint and $E = \bigcup_{1}^{\infty} F_j$, hence

$$\sum_{1}^{n} |\nu(A_{j})| = \sum_{1}^{\infty} |\nu(F_{j})| \le \sup\{\sum_{1}^{\infty} |\nu(E_{j})| : n \in \mathbb{N}, E_{1}, \dots, E_{n} \text{ disjoint}, E = \bigcup_{1}^{\infty} E_{j}\}.$$

It follows that $\mu_1 \leq \mu_2$.

Next, we show that $\mu_2 \leq \mu_3$. Let A_1, A_2, \ldots be disjoint sets such that $E = \bigcup A_j$. Then

$$\sum_{1}^{\infty} |\nu(A_{j})| \leq \sum_{1}^{\infty} |\nu|(A_{j}) \qquad \text{Proposition 3.13a}$$

$$= |\nu|(E)$$

$$= \int_{E} d|\nu|$$

$$= \int_{E} \left| \frac{d\nu}{d|\nu|} \right| d|\nu| \qquad \text{Proposition 3.13b}$$

$$= \int_{E} \frac{d\nu}{d|\nu|} \frac{d\nu}{d|\nu|} d|\nu|$$

$$= \int_{E} \frac{d\nu}{d|\nu|} d\nu \qquad \text{Proposition 3.9a}$$

$$\leq \sup\{ \left| \int_{E} f d\nu \right| : |f| \leq 1 \}$$

Hence $\mu_2 \leq \mu_3$.

Next, we show $\mu_3 \leq \mu_1$. Let f be a measurable function such that $|f| \leq 1$. By Theorem 2.10, there is a sequence $\{\phi_n\}$ of simple functions such that $0 \leq |\phi_1| \leq |\phi_2| \leq \cdots \leq 1$, $\phi_n \to f$ pointwise. Since ν is a complex measure, we know $\nu_r^+, \nu_r^-, \nu_i^+, \nu_i^-$ are finite positive measures, so $\int 1 d\nu_r^+ < \infty$, $\int 1 d\nu_r^+ < \infty$, and $\int 1 d\nu_i^- < \infty$. By the Dominated Convergence Theorem, for all $\epsilon > 0$ there exists a simple function $\phi_N = \sum_1^n a_i \chi_{A_i}$ where $|a_i| \leq 1$ and A_i disjoint such that

$$\begin{split} \left| \int_{E} f d\nu \right| &= \left| \int_{E} f d\nu_{r}^{+} - \int_{E} f d\nu_{r}^{-} + i \int_{E} f d\nu_{i}^{+} - i \int_{E} f d\nu_{i}^{-} \right| \\ &\leq \left| \int_{E} \phi_{N} d\nu_{r}^{+} + \epsilon - \int_{E} \phi_{N} d\nu_{r}^{-} + \epsilon + i \int_{E} \phi_{N} d\nu_{i}^{+} + i\epsilon + -i \int_{E} \phi_{N} d\nu_{i}^{-} + \epsilon i \right| \\ &\leq 4\epsilon + \left| \int_{E} \phi_{N} d\nu \right| \\ &= 4\epsilon + \left| \int_{E} \left(\sum_{i=1}^{n} a_{i} \chi_{A_{i}} \right) d\nu \right| \\ &= 4\epsilon + \left| \sum_{i=1}^{n} a_{i} \int_{E} \chi_{A_{i}} d\nu \right| \\ &= 4\epsilon + \left| \sum_{i=1}^{n} a_{i} \nu(A_{i} \cap E) \right| \\ &\leq 4\epsilon + \sum_{i=1}^{n} |\nu(A_{i} \cap E)| \leq 4\epsilon + |\nu(\bigcap_{i=1}^{n} A_{i}^{c} \cap E)| + \sum_{i=1}^{n} |\nu(A_{i} \cap E)|. \end{split}$$

Since $A_1 \cap E, \ldots, A_n \cap E, (\bigcap A_i^c \cap E)$ are disjoint and their union is equal to E, we have

$$\left| \int_{E} f d\nu \right| \leq \sup \left\{ \sum_{1}^{n} |\nu(E_{j})| : n \in \mathbb{N}, E_{1}, \dots, E_{n} \text{ disjoint}, E = \bigcup_{1}^{n} E_{j} \right\}.$$

This proves that $\mu_1 = \mu_2 = \mu_3$. To complete the proof we will show that $\mu_3 = |\nu|$. For any measurable function f such that $|f| \le 1$, we have

$$\left| \int_{E} f d\nu \right| \le \int_{E} |f| d|\nu| \le |\nu|(E).$$

Hence $\mu_3 \leq |\nu|$. On the other hand, if we let $f = d\nu/d|\nu|$, we can redefine f on a set of $|\nu|$ measure zero such that |f| = 1. Then

$$\Big|\int_E \bar{f} d\nu\Big| = \Big|\int_E \bar{f} \frac{d\nu}{d|\nu|} d|\nu|\Big| = \Big|\int_E d|\nu|\Big| = |\nu|(E).$$

Therefore

$$|\nu|(E) \le \sup\{\left|\int_E f d\nu\right| : |f| \le 1\}.$$

Hence $|\nu| = \mu_3$.

Problem 3.22

If $f \in L^1(\mathbb{R}^n)$, $f \neq 0$, there exist C, R > 0 such that $Hf(x) \geq C|x|^{-n}$ for |x| > R. Hence $m(\{x : Hf(x) > \alpha\}) \geq C'/\alpha$ when α is small, so the estimate in the maximal theorem is essentially sharp.

Solution:

Since $f \neq 0$, there exists a R > 1 such that

$$\int_{B(R,0)} |f| > c_1 > 0.$$

If x > |R|, then

$$Hf(x) \ge \frac{1}{m(B(2|x|,x))} \int_{B(2|x|,x)} |f(y)| dy \ge \frac{1}{m(B(2|x|,x))} \int_{B(R,0)} |f(y)| dy > \frac{c_1|x|^{-n}}{2^n m(B^n)} = C|x|^{-n},$$

where $B^n = \{x \in \mathbb{R}^n : |x| < 1\}$ and $C = \frac{c_1}{2^n m(B^n)}$.

If α is small enough such that $C/\alpha > R^n$, then for $R < |x| < (C/\alpha)^{1/n}$ we have $Hf(x) > \alpha$. Hence

$$m(\{x: Hf(x) > \alpha\}) \ge m(\{x: R < |x| < (C/\alpha)^{1/n}\}) = m(B^n)(\frac{C}{\alpha} - R^n) = \frac{C'}{\alpha},$$

where $C' = Cm(B^n)(1 - \frac{R^n \alpha}{C})$.

Problem 3.25

If E is a Borel set in \mathbb{R}^n , the density $D_E(x)$ of E at x is defined as

$$D_E(x) = \lim_{r \to 0} \frac{m(E \cap B(r, x))}{m(B(r, x))},$$

whenever the limit exists.

- **a.** Show that $D_E(x) = 1$ for a.e. $x \in E$ and $D_E(x) = 0$ for a.e. $x \in E^c$.
- **b.** Find examples of E and x such that $D_E(x)$ is a given number $\alpha \in (0,1)$, or such that $D_E(x)$ does not exist.

Solution:

(a) By Theorem 3.18, $\lim_{r\to 0} A_r \chi_E(x) = \chi_E(x)$ for a.e. $x \in \mathbb{R}^n$. By definition of A_r , this implies

$$\lim_{r \to 0} \frac{1}{m(B(r,x))} \int_{B(r,x)} \chi_E(y) dy = \lim_{r \to 0} \frac{m(E \cap B(r,x))}{m(B(r,x))} = \chi_E(x)$$

for a.e. $x \in \mathbb{R}^n$. Therefore $D_E(x) = 1$ for a.e. $x \in E$ and $D_E(x) = 0$ for a.e. $x \in E^c$.

(b) We will find examples in \mathbb{R}^2 . Let $\alpha \in (0,1)$. Then define

$$E_{\alpha} = \{ (r, \theta) \in \mathbb{R}^2 : 0 < r < 1, \ 0 < \theta < 2\pi\alpha \}.$$

Then when 0 < r < 1, we have $m(E_{\alpha} \cap B(r, 0)) = \int_{0}^{2\pi\alpha} \int_{0}^{r} s ds d\theta = \pi \alpha r^{2}$. Therefore

$$\frac{m(E \cap B(r,0))}{m(B(r,0))} = \frac{\pi \alpha r^2}{\pi r^2} = \alpha.$$

So for $E = E_{\alpha}$ and $x = (0, 0), D_E(x) = \alpha$.

Next, we construct an E such that $D_E(x)$ does not exist. Define

$$E_n = \left[\frac{1}{2^{n+1}}, \frac{1}{2^n}\right] \times \left[\frac{1}{2^{n+1}}, \frac{1}{2^n}\right]$$

and let $E = \bigcup_{0}^{\infty} E_n$. Define $r_n = 2^{-n}\sqrt{2}$, and notice $r_n \to 0$ as $n \to \infty$. Since r_n is at the top-right corner of a square, we can sum the area of the squares and compute

$$m(E \cap B(0, r_n)) = \sum_{k=n}^{\infty} \frac{1}{4^k} = \frac{4^{1-n}}{3}.$$

Therefore

$$\frac{m(E \cap B(0, r_n))}{m(B(0, r_n))} = \frac{4^{1-n}2^{2n}}{3(2\pi)} = \frac{2}{3\pi}.$$

Hence

$$\lim_{n \to \infty} \frac{m(E \cap B(0, r_n))}{m(B(0, r_n))} = \frac{2}{3\pi}.$$

However, if we let $\tilde{r}_n = 3 \cdot 2^{-n-1} \sqrt{2}$, then we also have $\tilde{r}_n \to 0$ as $n \to \infty$. Here, each \tilde{r}_n is in the center of a square, so we can get an upper bound on $m(E \cap B(0, \tilde{r}_n))$ by summing the area of all previous squares and adding half of the area of the square where \tilde{r}_n is centered.

$$m(E \cap B(0, \tilde{r}_n)) \le \frac{1}{4^n} \frac{1}{2} + \sum_{k=n+1}^{\infty} \frac{1}{4^k} = \frac{4^{-n}}{2} + \frac{4^{-n}}{3} = 4^{-n} \frac{5}{6}.$$

This gives an upper bound on the ratio

$$\frac{m(E \cap B(0, \tilde{r}_n))}{m(B(0, \tilde{r}_n))} \le 4^{-n} \frac{5}{6} \frac{2^{2(n+1)}}{\pi (3\sqrt{2})^2} = \frac{5}{27\pi}.$$

Therefore,

$$\lim_{n\to\infty} \frac{m(E\cap B(0,\tilde{r}_n))}{m(B(0,\tilde{r}_n))} < \lim_{n\to\infty} \frac{m(E\cap B(0,r_n))}{m(B(0,r_n))}.$$

These limits would be equal if $D_E(0)$ existed. Hence the limit as $r \to 0$ of ratio between $m(E \cap B(0,r))$ and m(B(0,r)) does not exist.

Problem 3.31

Let $F(x) = x^2 \sin(x^{-1})$ and $G(x) = x^2 \sin(x^{-2})$ for $x \neq 0$, and F(0) = G(0) = 0.

a. F and G are differentiable everywhere (including x = 0).

b. $F \in BV([-1,1])$, but $G \notin BV([-1,1])$.

Solution:

(a) It is clear that F and G are differentiable at $x \neq 0$ since they are the product and composition of differentiable functions. At x = 0 we can use the definition of the derivative:

$$|F'(0)| = \lim_{h \to 0} \left| \frac{F(0+h) - F(0)}{h - 0} \right| \le \lim_{h \to 0} \left| \frac{h^2 \sin(1/h)}{h} \right| \le \lim_{h \to 0} |h| = 0.$$

Hence F'(0) = 0, and by the same argument G'(0) = 0.

(b)

For $x \neq 0$, we have $F'(x) = 2x \sin(1/x) - \cos(1/x)$. Therefore, on [-1,1] we have $|F'(x)| \leq 2(1)(1) + 1 = 3$. For any subdivision $n \in \mathbb{N}, -1 = x_0 < \cdots < x_n = 1$, we can apply the Mean Value Theorem to conclude

$$\sum_{1}^{n} |F(x_j) - F(x_{j-1})| \le \sum_{1}^{n} 3|x_j - x_{j-1}| = 6.$$

Therefore $F \in BV([-1,1])$.

Next we show that $G \notin BV([-1,1])$. Define $x_k = (\pi k + \pi/2)^{-1/2}$ and let $k \in \mathbb{N}, k > 2$ and consider the following partition P_k of $[-1,1]: -1, -x_1, -x_2, \ldots, -x_k, 0, x_k, \ldots, x_2, x_1$. Then

$$\sum_{P_k} |G(x_i) - G(x_{i-1})| \ge \sum_{n=2}^k \left| \frac{1}{\pi n + \pi/2} \sin(\pi n + \pi/2) - \frac{1}{\pi (n-1) + \pi/2} \sin(\pi (n-1) + \pi/2) \right|$$

$$= \sum_{n=2}^k \left| \frac{1}{\pi n + \pi/2} + \frac{1}{\pi (n-1) + \pi/2} \right|$$

$$\ge \frac{1}{\pi} \sum_{n=2}^k \frac{1}{n+1/2}$$

Since the harmonic series diverges, if we refine P_k by increasing k, this sum can be made as large as we like. Hence $\sup\{\sum_{1}^{n}|G(x_j)-G(x_{j-1})|:n\in\mathbb{N},-1=x_0<\cdots< x_n=1\}=\infty$ and $G\notin BV([-1,1])$.

Problem 3.37

Suppose $F : \mathbb{R} \to \mathbb{C}$. There is a constant M such that $|F(x) - F(y)| \le M|x - y|$ for all $x, y \in \mathbb{R}$ (that is, F is Lipschitz continuous) iff F is absolutely continuous and $|F'| \le M$ a.e.

Solution:

Suppose F is Lipschitz continuous. Let $\epsilon > 0$, and $\delta = \epsilon/M$. Then for any finite set of disjoint intervals $(a_1, b_1), \ldots, (a_N, b_N)$ such that $\sum_{1}^{N} (b_j - a_j) < \delta$, we have

$$\sum_{1}^{N} |F(b_{j}) - F(a_{j})| \le \sum_{1}^{N} M|b_{j} - a_{j}| < \delta M = \epsilon.$$

Hence F is absolutely continuous. Also,

$$|F'(x)| = \lim_{y \to x} \frac{|F(x) - F(y)|}{|x - y|} \le M.$$

Conversely, suppose F is absolutely continuous and $|F'| \leq M$ a.e. If $x, y \in \mathbb{R}$ and x > y, by the Fundamental Theorem of Calculus for Lebesgue Integrals, we have

$$|F(x) - F(y)| = \left| \int_{y}^{x} F'(t)dt \right| \le \int_{y}^{x} |F'(t)|dt \le M(x - y).$$

It follows that $|F(x) - F(y)| \le M|x - y|$ for all $x, y \in \mathbb{R}$.