UNIT-6

Counter:

Asynchronous and Synchronous

What is Counter?

- A counter is a sequential circuit that goes through a prescribed sequence of states upon the application of input pulses.
- It is a cascade combination of multiple flip-flops to which the clock pulse is provided.
- Counters are generally used for the purpose of counting in digital circuits and total number of counts represent the number of clock pulses arrived.

- ■Two types of counters:
 - *asynchronous (ripple) counters
 - synchronous (clocked /parallel) counters

Ripple counters allow some flip-flop outputs to be used as a source of clock for other flip-flops.

Synchronous counters apply the same clock to all flip-flops.

Difference between synchronous and asynchronous counter

Synchronous	Asynchronous
All flip-flops are triggered simultaneously by the same clock.	Various flip-flops are activated with different clocks.
Operation speed is faster.	comparatively slower.
No propagation delay observed.	Subsequent propagation delay from one flip-flop to another.
Can be operated in any desired count sequence, as it could get manipulated by changing clock sequence.	•
Examples: Johnson and Ring counters.	Examples- Ripple UP counter and Ripple DOWN counter

MCQ

- Asynchronous counters are known as
- (A) Ripple counters
- (B) Multiple clock counters
- (c) Decade counters
 - (D) Modulus counter

Design Step for Asynchronous counter

- Step-1: Find the number of flip flops using $2n \ge N$, where N is the number of states and n is the number of flip flops.
- Step-2: Choose the type of flip flop.
- Step-3: Draw state diagram for the counter.
- Step-4: Draw the Truth Table for asynchronous counter.
- Step-5: Use K-map to derive the flip flop reset input functions

functions.

Step-6: Draw the logic circuit diagram.

Design Problem

Q. Design a BCD ripple counter (MOD 10) using JK flip flops.

		BCD C	Output of Reset		
Clock	Q _D	Q_c	Q _B	Q _A	Logic Y
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1

$$Y = \overline{Q}_{_D} + \overline{Q}_{_C} \overline{Q}_{_B}$$

Design Mode-12 Asynchronous Counter?

Asynchronous Counter

two-bit asynchronous binary counter

Asynchronous Counter (3- bit)

4-stage positive edge triggered ripple counter

Frequency at output
$$Q_A = \frac{F_{CLK}}{2}$$

Frequency at output $Q_B = \frac{Q_A}{2} = \frac{F_{CLK}}{4}$

Frequency at output $Q_C = \frac{Q_B}{2} = \frac{Q_A}{4} = \frac{F_{CLK}}{8}$

Frequency at output $Q_D = \frac{Q_C}{2} = \frac{Q_B}{4} = \frac{Q_A}{8} = \frac{F_{CLK}}{16}$

4-bit asynchronous down counter

Excitation Table

Q _N	Q _{N+1}	S	R	J	K	D	Т
0	0	0	Χ	0	Χ	0	0
0	1	1	0	1	Χ	1	1
1	0	0	1	Х	1	0	1
1	1	Χ	0	Х	0	1	0

Synchronous (clocked /parallel) counters Design Steps for Synchronous counter

Step 1: Find the number of flip flops.

Step 2: Choose the type of flip flop.

Step-3: Draw state diagram for the counter.

Step-4: Obtain excitation table for the counter.

Step 5: Derive the flip flop input functions (use K-Map)

Step-6: Draw the logic diagram of the counter.

Design Problem:

Q: Design 3-bit Synchronous counter.

Cl 1	Pre	sent St	ate	N	ext Sta	te	Flip flop Inputs					
Clock	Q _c	Q _B	Q _A	Q _{C+1}	Q_B+1	Q_{A+1}	J _c	K _c	J _B	K _B	JA	KA
1	0	0	0	0	0	1	0	х	0	x	1	x
2	0	0	1	0	1	0	0	x	1	x	X	1
3	0	1	0	0	1	1	0	х	х	0	1	х
4	0	1	1	1	0	0	1	x	х	1	X	1
5	1	0	0	1	0	1	x	0	0	х	1	х
6	1	0	1	1	1	0	х	0	1	х	х	1
7	1	1	0	1	1	1	х	0	х	0	1	X
8	1	1	1	0	0	0	x	1	x	1	х	1

A	00	01	11	10
0	x	x	1	0
1	х	x	1	0

Q _E Q _A	00	01	11	10
0	1	х	x	1
1	1	x	x	1

MCQ Which one is true for JK flip if present state 0 and next state 0.

(a)
$$J = X$$
 and $K = 0$

(b)
$$J=0$$
 and $K=X$

(c)
$$J= X$$
 and $K= 1$

(d)
$$J= 1$$
 and $K= X$

MCQ Which one is true for JK flip if present state 1 and next state 1.

(a)
$$J = X$$
 and $K = 0$

(b)
$$J=0$$
 and $K=X$

(c)
$$J = X$$
 and $K = 1$

(d)
$$J= 1$$
 and $K= X$

Q: Design Mode-6 Synchronous Counter?

Find number of flip-flops required to build the counter.

Flip-flops required are : $2^n \ge N$.

Here N = 6 : n = 3

i.e. Three flip-flops are required.

Determine the transition table.

Present state		esent state Next state			Flip-flop inputs						
QA	QB	Qc	Q _{A+1}	Q _{B+1}	Q _{C+1}	JA	KA	J _B	K _B	J _C	Kc
0	0	0	0	0	1	0	x	0	x	1	x
0	0	1	0	1	0	0	x	1	x	x	1
0	1	0	0	1	1	0	×	x	0	1	x
0	1	1	1	0	0	1	x	x	1	х	1
1	0	0	1	0	1	х	0	0	x	1	x
1	0	1	0	0	0	х	1	0	. X	x	1
1	1	0	x	х	х	x	x	x	x	x	x
1	1	1	x	x	x	х	×	x	×	X	x

Design of a Synchronous Mod-6 Counter using Clocked JK Flip-Flops

MCQ

What is the maximum possible range of bit-count specifically in n-bit binary counter consisting of 'n' number of flip-flops?

- a) 0 to 2ⁿ
- b) 0 to $2^n + 1$
- c) 0 to $2^{n} 1$
- d) 0 to $2^{n+1/2}$