Prof. Eurinardo

Aulas Passadas

Limite inferior para ordenação por comparação *O(n log n)*

Ordenação por contagem

Aula 10 Limite inferior para ordenação e algoritmos lineares

Projeto e Análise de Algoritmos

Professor Eurinardo Rodrigues Costa Universidade Federal do Ceará Campus Russas

2021.1

Limite inferior para ordenação por comparação *O(n log n)*

Ordenação por contagem

Aulas Passadas

Limite inferior para ordenação por comparação $O(n \log n)$

EDA - Aula 10

Prof. Eurinardo

Aulas Passadas

ordenação por comparação $O(n \log n)$

Limite inferior para ordenação por comparação *O(n log n)*

Ordenação por contagem

Algoritmos de Ordenação Por Comparação

Limite inferior para ordenação por comparação *O(n log n)*

Ordenação por contagem

► Algoritmos de Ordenação **Por Comparação** Insertion-Sort é *O*(*n*²)

Limite inferior para ordenação por comparação $O(n \log n)$

Ordenação por contagem

► Algoritmos de Ordenação Por Comparação Insertion-Sort é O(n²) Merge-Sort é O(n log n),

Limite inferior para ordenação por comparação *O*(*n* log *n*)

```
    Algoritmos de Ordenação Por Comparação
Insertion-Sort é O(n²)
    Merge-Sort é O(n log n),
    Heap-Sort é O(n log n) e
```

Algoritmos de Ordenação Por Comparação

Insertion-Sort é $O(n^2)$ Merge-Sort é $O(n \log n)$, Heap-Sort é $O(n \log n)$ e

Quick-Sort $\begin{cases} O(n^2) \text{ no pior caso} \end{cases}$

Limite inferior para ordenação por comparação $O(n \log n)$

Ordenação por contagem

Algoritmos de Ordenação Por Comparação

Insertion-Sort é $O(n^2)$ Merge-Sort é $O(n \log n)$, Heap-Sort é $O(n \log n)$ e

Quick-Sort $\begin{cases} O(n^2) \text{ no pior caso} \\ O(n \log n) \text{ no caso médio e melhor caso} \end{cases}$

```
Algoritmo 1: Insertion-Sort
```

```
Entrada: Vetor A[1 \cdots n] e inteiro n (tamanho de A) Saída: A ordenado
```

```
para j ← 2 até n faça
chave ← A[j]
%inserir A[j] na sequencia ordenada A[1···j − 1]
```

4

5

6 7

8

```
i \leftarrow j - 1

enquanto (A[i] > chave) e (i > 0) faça

A[i + 1] \leftarrow A[i]

i \leftarrow i - 1
```

 $A[i+1] \leftarrow \text{chave}$

Prof. Eurinardo

Aulas Passadas

Limite inferior para ordenação por comparação $O(n \log n)$

EDA - Aula 10

Prof. Eurinardo

Aulas Passadas

Limite inferior para ordenação por comparação $O(n \log n)$

Considere o vetor $[a_1, a_2, a_3]$

EDA - Aula 10

Prof. Eurinardo

Aulas Passadas

Limite inferior para ordenação por comparação $O(n \log n)$

Considere o vetor $[a_1, a_2, a_3]$

 $a_1:a$

EDA - Aula 10

Prof. Eurinardo

Aulas Passadas

Limite inferior para ordenação por comparação $O(n \log n)$

EDA - Aula 10

Prof. Eurinardo

Aulas Passadas

Limite inferior para ordenação por comparação $O(n \log n)$

Limite inferior para ordenação por comparação $O(n \log n)$

Ordenação por contagem

Prof. Eurinardo

Aulas Passadas

Limite inferior para ordenação por comparação $O(n \log n)$

Ordenação po: contagem

Limite inferior para ordenação por comparação $O(n \log n)$

Prof. Eurinardo

Aulas Passadas

Limite inferior para ordenação por comparação $O(n \log n)$

Limite inferior para ordenação por comparação O(n log n)

Limite inferior para ordenação por comparação $O(n \log n)$

Ordenação por contagem

Limite inferior para ordenação por comparação $O(n \log n)$

Ordenação por contagem

Limite inferior para ordenação por comparação $O(n \log n)$

Ordenação por contagem

Limite inferior para ordenação por comparação $O(n \log n)$

Ordenação por contagem

EDA - Aula 10

Prof. Eurinardo

Aulas Passadas

Limite inferior para ordenação por comparação $O(n \log n)$

Observações

EDA - Aula 10

Prof. Eurinardo

Aulas Passadas

Limite inferior para ordenação por comparação $O(n \log n)$

Limite inferior para ordenação por comparação O(n log n)

Ordenação por contagem

Observações

▶ Pior caso → altura da árvore de decisão

Prof. Eurinardo

Aulas Passadas

Limite inferior para ordenação por comparação *O(n log n)*

Ordenação por contagem

Observações

- ▶ Pior caso → altura da árvore de decisão
- Número de folhas da árvore de decisão é n!

Observações

- ▶ Pior caso → altura da árvore de decisão
- Número de folhas da árvore de decisão é n! (total de permutações dos elementos do vetor).

Algoritmo 2: Counting-Sort(A, B, k)

EDA - Aula 10

Prof. Eurinardo

Aulas Passadas

Limite inferior para ordenação por comparação $O(n \log n)$

Algoritmo 3: Counting-Sort(*A*, *B*, *k*)

Entrada: A: vetor com elementos em $\{0, \dots, k\}$

EDA - Aula 10

Prof. Eurinardo

Aulas Passadas

Limite inferior para ordenação por comparação $O(n \log n)$

Algoritmo 4: Counting-Sort(A, B, k)

Entrada: A: vetor com elementos em $\{0, \dots, k\}$

Saída: B: vetor ordenado com os elementos de A

EDA - Aula 10

Prof. Eurinardo

Aulas Passadas

Limite inferior para comparação

Algoritmo 5: Counting-Sort(*A*, *B*, *k*)

Entrada: *A*: vetor com elementos em $\{0, \dots, k\}$

Saída: B: vetor ordenado com os elementos de A

1 $n \leftarrow \text{tamanho de } A$

Algoritmo 6: Counting-Sort(*A*, *B*, *k*)

Entrada: A: vetor com elementos em $\{0, \dots, k\}$

Saída: B: vetor ordenado com os elementos de A

- 1 $n \leftarrow \text{tamanho de } A$
- 2 para $i \leftarrow 0$ até k faça
- $c[i] \leftarrow 0;$

Entrada: A: vetor com elementos em $\{0, \dots, k\}$

Saída: B: vetor ordenado com os elementos de A

- 1 $n \leftarrow \text{tamanho de } A$
- 2 para $i \leftarrow 0$ até k faça
- $c[i] \leftarrow 0;$
- 4 para $j \leftarrow 1$ até n faça
- 5 $c[A[j]] + +; % c[i] \leftarrow qtd de elementos i$

Aulas Passadas

Limite inferior para ordenação por comparação $O(n \log n)$

Algoritmo 8: Counting-Sort(A, B, k)

Entrada: *A*: vetor com elementos em $\{0, \dots, k\}$ **Saída:** *B*: vetor ordenado com os elementos de *A*

- 1 $n \leftarrow \text{tamanho de } A$
- 2 para $i \leftarrow 0$ até k faça
- $c[i] \leftarrow 0;$
- 4 para $j \leftarrow 1$ até n faça
- 5 $c[A[j]] + +; % c[i] \leftarrow qtd de elementos i$
- 6 para $i \leftarrow 0$ até k faça

7
$$[c[i] \leftarrow c[i] + c[i-1]; % c[i] \leftarrow \text{qtd de elem.} \le i$$

Prof. Eurinardo

Aulas Passadas

Limite inferior para ordenação por comparação $O(n \log n)$

```
Algoritmo 9: Counting-Sort(A, B, k)
```

Entrada: *A*: vetor com elementos em $\{0, \dots, k\}$ **Saída:** *B*: vetor ordenado com os elementos de *A*

- 1 $n \leftarrow \text{tamanho de } A$
- 2 para $i \leftarrow 0$ até k faça
- $c[i] \leftarrow 0;$
- 4 para $j \leftarrow 1$ até n faça
- 5 $[c[A[j]] + +; \% c[i] \leftarrow \text{qtd de elementos } i$
- 6 para $i \leftarrow 0$ até k faça
- 7 $[c[i] \leftarrow c[i] + c[i-1]; % c[i] \leftarrow qtd de elem. \le i$
- 8 para $j \leftarrow n$ até 1 faça
- $9 \quad \mid \quad B[c[A[j]]] \leftarrow A[j];$

```
Algoritmo 10: Counting-Sort(A, B, k)
```

Entrada: A: vetor com elementos em $\{0, \dots, k\}$ **Saída:** B: vetor ordenado com os elementos de A

- 1 $n \leftarrow \text{tamanho de } A$
- 2 para $i \leftarrow 0$ até k faça
- $c[i] \leftarrow 0;$
- 4 para $j \leftarrow 1$ até n faça
- 5 $[c[A[j]] + +; \% c[i] \leftarrow \text{qtd de elementos } i$
- 6 para $i \leftarrow 0$ até k faça
- 7 $[c[i] \leftarrow c[i] + c[i-1]; % c[i] \leftarrow qtd de elem. \le i$
- 8 para $j \leftarrow n$ até 1 faça
- 9 $B[c[A[j]]] \leftarrow A[j];$
- 10 C[A[j]] = -;

EDA - Aula 10

Prof. Eurinardo

Aulas Passadas

Limite inferior para ordenação por comparação $O(n \log n)$

Ordenação por contagem

Algoritmo 11: Radix-Sort(A, d)

Prof. Eurinardo

Aulas Passadas

EDA - Aula 10

Limite inferior para

ordenação por comparação $O(n \log n)$

Ordenação por contagem

Algoritmo 12: Radix-Sort(A, d)

Entrada: A: vetor com elementos com d dígitos

EDA - Aula 10

Prof. Eurinardo

Aulas Passadas

Limite inferior para ordenação por comparação $O(n \log n)$

Ordenação por contagem

Algoritmo 13: Radix-Sort(A, d)

Entrada: A: vetor com elementos com d dígitos

Saída: A: vetor ordenado

Limite inferior para ordenação por comparação $O(n \log n)$

Ordenação por contagem

```
Algoritmo 14: Radix-Sort(A, d)
```

Entrada: A: vetor com elementos com d dígitos

Saída: A: vetor ordenado

1 para $i \leftarrow 1$ até d faça

2

ordenar A com algoritmo estável considerando o dígito *i*;

Limite inferior para ordenação por comparação *O(n log n)*

Ordenação por contagem

LEISERSON, C.E., STEIN, C., RIVEST, R.L., CORMEN T.H.

Algoritmos: teoria e prática, 3ed. Editora Campus, ano 2012.

Limite inferior para ordenação por comparação *O(n log n)*

Ordenação por contagem

Obrigado!