Mergesort (cont.)

Informatica@SEFA 2018/2019 - Lezione 16

Massimo Lauria <massimo.lauria@uniroma1.it>*

Venerdì, 16 Novembre 2018

1 Mergesort

La comprensione della struttura dati pila ci permette di capire più agevolmente algoritmi ricorsivi. Ora vediamo il **mergesort** un algoritmo ricorsivo di ordinamento per confronto e che opera in tempo $O(n \log n)$ e quindi è ottimale rispetto agli algoritmi di ordinamento per confronto.

1.1 Un approccio divide-et-impera

Un algoritmo può cercare di risolvere un problema

- dividendo l'input in parti
- risolvendo il problema su ogni parte
- combinando le soluzioni parziali

Naturalmente per risolvere le parti più piccole si riutilizza lo stesso metodo, e quindi si genera una gerarchia di applicazioni del metodo, annidate le une dentro le altre, su parti di input sempre più piccole, fino ad arrivare a parti così piccole che possono essere elaborate direttamente.

Lo schema divide-et-impera viene utilizzato spesso nella progettazione di algoritmi. Questo schema si presta molto ad una implementazione ricorsiva.

^{*}http://massimolauria.net/courses/infosefa2018/

1.2 Schema principale del mergesort

- 1. dividere in due l'input
- 2. ordinare le due metà
- 3. fondere le due sequenze ordinate

Vediamo ad esempio come si comporta il mergesort sull'input

La sequenza ordinata viene ottenuta attraverso questa serie di fusioni.

1.3 Implementazione

Lo scheletro principale del mergesort è abbastanza semplice, e non è altro che la trasposizione in codice dello schema descritto in linguaggio naturale.

```
def mergesort(S, start=0, end=None):
    if end is None:
        end=len(S)-1
    if start>=end:
        return
    mid=(end+start)//2
    mergesort(S, start, mid)
    mergesort(S, mid+1, end)
    merge(S, start, mid, end)
1
1
2
2
3
4
4
7
8
9
```

1.4 Fusione dei segmenti ordinati

Dobbiamo fondere due sequenze ordinate, poste peraltro in due segmenti adiacenti della stessa lista. L'osservazione principale è che il minimo della sequenza fusa è il più piccolo tra i minimi delle due sequenze. Quindi si mantengono due indici che tengono conto degli elementi ancora da fondere e si fa progredire quello che indicizza l'elemento più piccolo. Quando una delle due sottosequenze è esaurita, allora si mette in coda la parte rimanente dell'altra. merge usa una **lista aggiuntiva temporanea** per fare la fusione. I dati sulla lista temporanea devono essere copiati sulla lista iniziale.

```
def merge(S,low,mid,high):
    a=low
                                                                                   2
   b=mid+1
   temp=[]
    # Parte 1 - Inserisci in testa il pi piccolo
    while a<=mid and b<=high:</pre>
       if S[a]<=S[b]:
            temp.append(S[a])
            a=a+1
        else:
            temp.append(S[b])
            b=b+1
    # Parte 2 - Esattamente UNA sequenza esaurita. Va aggiunta l'altra
   if a<=mid:</pre>
                                                                                   14
        residuo = range(a,mid+1)
                                                                                   15
       residuo = range(b,high+1)
                                                                                   17
    for i in residuo:
                                                                                   18
        temp.append(S[i])
                                                                                   19
    # Parte 3 - Va tutto copiato su S[start:end+1]
                                                                                   20
    for i,value in enumerate(temp,start=low):
                                                                                   21
        S[i] = value
                                                                                   22
```

Questo conclude l'algoritmo

```
dati=[5,2,4,6,1,3,2,6] 1
mergesort(dati) 2
print(dati) 3
```

```
[1, 2, 2, 3, 4, 5, 6, 6]
```

1.5 Running time

Per cominciare osserviamo che nelle prime due parti di merge un elemento viene inserito nella lista temporanea ad ogni passo, e poi questo elemento non viene più considerato. La terza parte ricopia tutti gli elementi passando solo una volta su ognuno di essi. Pertanto è chiaro che merge di due segmenti adiacenti di lunghezza n_1 e n_2 impiega $\Theta(n_1 + n_2)$ operazioni.

Definiamo come T(n) il numero di operazioni necessarie per ordinare una lista di n elementi con mergesort. Allora

$$T(n) = 2T(n/2) + \Theta(n) \tag{1}$$

quando n > 1, altrimenti $T(1) = \Theta(1)$ e dobbiamo risolvere **l'equazione di ricorrenza** rispetto a T. Prima di tutto per farlo fissiamo una costante c > 0 abbastanza grande per cui

$$T(n) \le 2T(n/2) + cn \qquad T(1) \le c . \tag{2}$$

Espandendo otteniamo

$$T(n) \le 2T(n/2) + cn \le 4T(n/4) + 2c(n/2) + cn = 4T(n/4) + 2cn \tag{3}$$

Si vede facilmente, ripetendo l'espansione, che

$$T(n) \le 2^t T(n/2^t) + tcn \tag{4}$$

fino a che si arriva al passo t^* per cui $n/2^{t^*} \le 1$, nel qual caso si ottiene $T(n) = c2^{t^*} + t^*cn \le c(t^*+1)n$.

Il più piccolo valore di t^* per cui $n/2^{t^*} \le 1$ è $O(\log n)$, e quindi il running time totale è $O(n \log n)$.

Poichè il mergesort è un ordinamento per confronto il running time è $\Omega(n \log n)$, ed in ogni caso questo si può vedere anche direttamente dall'equazione di ricorrenza. Quindi il running time è in effetti $\Theta(n \log n)$.

1.6 Confronto sperimentale con insertion sort e bubblesort

1.7 Una piccola osservazione sulla memoria utilizzata

Mentre bubblesort e insertionsort non utilizzano molta memoria aggiuntiva oltre all'input stesso, mergesort produce una lista temporanea di dimensioni pari alla somma di quelle da fondere. E oltretutto deve ricopiarne il contenuto nella lista iniziale.

Con piccole modifiche al codice, che non vedremo, è possibile controllare meglio la gestione di queste liste temporanee e rendere il codice ancora più efficiente, dimezzando il tempo per le copie e riducendo quello per l'allocazione della memoria. In generale se nessuna di queste liste viene liberata prima della fine dell'algoritmo, la quantità di memoria aggiuntiva è $\Theta(n \log n)$, tuttavia se la memoria viene liberata in maniera più aggressiva allora quella aggiuntiva è $\Theta(n)$.