SLAB: Signal and Learning Applied to Brain data

Alexandre Gramfort

CNRS - Télécom Paris Tech

Alexandre Gramfort

Contributions: Signal processing, optimization, statistical machine learning, numerical methods for brain imaging data

6 PhD co-supervisions ANR-NSF Grant 400 k€ managed as Pl

> 45 publications, 2840 citations - H-Index 18

Alexandre Gramfort

Contributions: Signal processing, optimization, statistical machine learning, numerical methods for brain imaging data

6 PhD co-supervisions ANR-NSF Grant 400 k€ managed as Pl

> 45 publications, 2840 citations - H-Index 18

Scikit-Learn JMLR 2011 > 1700 citations

OpenMEEG

State-of-the-art solver for EEG in leading academic packages

Neuroimage 2014 > 66 citations in 18 months

Impact of MNE software on neuroscience

[Gramfort et al. Neuroimage 2014]

http://martinos.org/mne/

Impact of MNE software on neuroscience

[Gramfort et al. Neuroimage 2014]

http://martinos.org/mne/

Impact of MNE software on neuroscience

[Gramfort et al. Neuroimage 2014]

http://martinos.org/mne/

Context: Functional Brain Signals

Clinical (sleep, epilepsy, stroke, autism) & Cognitive Neurosience, Neuroengineering (BCI)

Context: Functional Brain Signals

Clinical (sleep, epilepsy, stroke, autism) & Cognitive Neurosience, Neuroengineering (BCI)

Signal: non-linear, non-stationary, with oscillations continuously varying in frequency and amplitude & sharp local transient

Noise (biological & external): non-white and sensor dependent

Context: Functional Brain Signals

Multivariate Time-Series

Signal: non-linear, non-stationary, with oscillations continuously varying in frequency and amplitude & sharp local transient

Noise (biological & external): non-white and sensor dependent

Clinical (sleep, epilepsy, stroke, autism) & Cognitive Neurosience, Neuroengineering (BCI)

Among the most difficult time series you can ever try to model

Objective: high resolution imaging of the entire brain at 1 ms time scale

Data

Forward Model

[Gramfort et al. 2011]

Source localization

Linear Physical System:

$$Y = GX + E$$

Regression / Inverse problem: high dimensional, ill-posed, spatio-temporal

Objective: high resolution imaging of the entire brain at 1 ms time scale

Data

Forward Model

Source localization

Linear Physical System:

$$Y = GX + E$$

Regression / Inverse problem: high dimensional, ill-posed, spatio-temporal

Current method in brain imaging labs:

$$\hat{\mathbf{X}} = \underset{\mathbf{X} \in \mathbb{R}^{10^4 \times 500}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{G}\mathbf{X}\|_F^2 + \lambda \|\mathbf{X}\|_F^2$$

Limits of the current approach:

- neglects the temporal dynamics of the signal: oscillations and transients
- ignores the complex noise structure: colored and heteroscedastic

[Engemann & Gramfort, Neuroimage 2015]

Limits of the current approach:

- neglects the temporal dynamics of the signal: oscillations and transients
- ignores the complex noise structure: colored and heteroscedastic

[Engemann & Gramfort, Neuroimage 2015]

New model:

Time-Frequency domain

sparse (non-)convex regularization

Beyond $\|\cdot\|_F$ loss

$$\hat{\mathbf{Z}} = \underset{\mathbf{Z} \in \mathbb{C}^{10^4 \times 2000}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{G}\mathbf{Z}\mathbf{\Phi}\|_{\Sigma(f)}^2 + \lambda \phi(\mathbf{Z})$$

New solvers:

Coord. Descent for dense G & implicit TF operators, active set & (safe) screening rules

Preliminary result: Lasso Screening [ICML 2015] + [NIPS 2015]

Limits of the current approach:

- neglects the temporal dynamics of the signal: oscillations and transients
- ignores the complex noise structure: colored and heteroscedastic

[Engemann & Gramfort, Neuroimage 2015]

New model:

Time-Frequency domain

sparse (non-)convex regularization

Beyond $\|\cdot\|_F$ loss

$$\hat{\mathbf{Z}} = \underset{\mathbf{Z} \in \mathbb{C}^{10^4 \times 2000}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{G}\mathbf{Z}\mathbf{\Phi}\|_{\Sigma(f)}^2 + \lambda \phi(\mathbf{Z})$$

New solvers:

Coord. Descent for dense G & implicit TF operators, active set & (safe) screening rules

Preliminary result: Lasso Screening [ICML 2015] + INIPS 201

+ [NIPS 2015]

up to x10 speed up

Objective: boost statistical power by learning temporal representations

Problem: No equivalent of Maxwell's equations for temporal dynamics

Current situation: models too simple (splines, damped oscillator) or too complex (require unobserved quantities)

Idea: Directly learn models from empirical data!

Objective: boost statistical power by learning temporal representations

Problem: No equivalent of Maxwell's equations for temporal dynamics **Current situation:** models too simple (splines, damped oscillator) or too complex (require unobserved quantities)

Idea: Directly learn models from empirical data!

Example: Learning the temporal response of 10^5 fMRI voxels using low rank regression model

[Pedregosa, ..., Gramfort, Neuroimage 2015] Data from [Kay et al. Nature 2008]

Objective: boost statistical power by learning temporal representations

Problem: No equivalent of Maxwell's equations for temporal dynamics

Current situation: models too simple (splines, damped oscillator) or too complex (require unobserved quantities)

Idea: Directly learn models from empirical data!

Example: Learning the temporal response of 10^5 fMRI voxels using low rank regression model

[Pedregosa, ..., Gramfort, Neuroimage 2015] Data from [Kay et al. Nature 2008]

New approach:

Convolutional sparse coding (multivariate data, complex noise, known physics) Massive data pooling via MNE & large scale non-smooth optimization

Objective: signal models to capture non-stationary spectral interactions

Problem: The signature of active neurons is in the spectrum of the signals

SOTA: Parametric MVAR: stationary & non-parametric (Fourier): slow inference

Idea: Model the spectrum of a brain region as a function of a driving signal

How: Non-linear auto-regressive (AR) models

Objective: signal models to capture non-stationary spectral interactions

Problem: The signature of active neurons is in the spectrum of the signals

SOTA: Parametric MVAR: stationary & non-parametric (Fourier): slow inference

Idea: Model the spectrum of a brain region as a function of a driving signal

How: Non-linear auto-regressive (AR) models

Scenario I: Speech driven linear prediction of neural activations

Objective: Learn how speech is encoded in the spectra of M/EEG neural sources

Objective: signal models to capture non-stationary spectral interactions

Problem: The signature of active neurons is in the spectrum of the signals

SOTA: Parametric MVAR: stationary & non-parametric (Fourier): slow inference

Idea: Model the spectrum of a brain region as a function of a driving signal

How: Non-linear auto-regressive (AR) models

Scenario I: Speech driven linear prediction of neural activations

Objective: Learn how speech is encoded in the spectra of M/EEG neural sources

Scenario 2:

region I drives the spectrum of region 2

Objective: extract automatically such interactions & learn the driving signal

Why now?

Computational Reasons : Volume

- Standard MEG Study (25 subjects, I0 GB per subject)
- Human Connectome Project (18GB x 1000 subjects), USA with first MEG data released in March 2015 (100 subjects)

Human Brain Project, EU

Users and clinicians lack time & need interactive analysis

Why now?

Computational Reasons: Volume

- Standard MEG Study (25 subjects, I0 GB per subject)
- Human Connectome Project (18GB x 1000 subjects), USA with first MEG data released in March 2015 (100 subjects)

Human Brain Project, EU

Users and clinicians lack time & need interactive analysis

Statistical Reasons : Data variability

7000 fMRI pipelines lead to different neuroscience findings [Carp 2012]

Neuroscience needs automatic parameter tuning

SLAB:

Develop the next technology to extract knowledge from brain signals

New methods, theory and algorithms

- Statistical machine learning for spatiotemporal data
- High dimensional inference with complex noise and non-stationarities
- Fast algorithms for large scale non-smooth problems

SLAB:

Develop the next technology to extract knowledge from brain signals

New methods, theory and algorithms

- Statistical machine learning for spatiotemporal data
- High dimensional inference with complex noise and non-stationarities
- Fast algorithms for large scale non-smooth problems

New insights for clinical and cognitive neuroscience

- Functional brain imaging data with unprecedented spatiotemporal resolution and statistical power
- Investigate new hypotheses about the brain in healthy and pathological conditions
- Community driven software for reproducible research

Collab: Hôpital La Timone Marseille & Salpétrière Paris & CEA Saclay Neurospin