SUPSI

Real Time Object Identification – Computer Vision

Studente/i	Relatore	Correlatore	
Claudio Bonesana	Giacomo Poretti	Marco Bulani	
Corso di laurea	Modulo / Codice Progetto	Anno	
Ingegneria informatica	C08865	2013	

Committente

Data

Stouch SA

13 settembre 2013

Contenuti

- Introduzione
- Committente e partner
- Obiettivi
- Funzionamento
- Sviluppo
 - Hardware
 - Cross-compiler
 - Librerie
 - Architettura software
- Risultati
- Conclusioni

Introduzione

- Il marketing online diventa uno strumento sempre più importante e strategico a livello di promozione turistica
- Creare uno strumento di promozione turistica combinando ad ogni fotografia una sezione promozionale
- Con questo strumento la Città di Lugano si dota di una tecnologia innovativa dal potenziale unico e molto interessante

Committente e partner

- Committente: Stouch SA
- Partner: Città di Lugano
- Design: SUPSI DACD
- Sviluppo: SUPSI DTI

Obiettivi

- Sviluppare l'architettura software implementando su hardware a basso costo
- In particolare il dispositivo deve:
 - funzionare 24 ore su 24, 7 giorni su 7
 - acquisire immagini da una fotocamera
 - interagire con un dispositivo RFID
 - scambiare dati con un server remoto
 - interagire con l'utente
 - essere completamente autonomo

Funzionamento

Sviluppo: hardware

Sviluppo: Raspberry Pi modello B

Core	Broadcom BCM2835 SoC	
CPU	700 MHz ARM1176JZ-F	
GPU	Dual Core VideoCore IV	
RAM	512MB SDRAM	
Storage	SD, MMC, SDIO	
S.O.	Linux, Android	
Dimensioni	8.6cm x 5.4cm x 1.7cm	
Costo	55 CHF	

Fonte: www. raspberrypi.org

Sviluppo: sistema operativo

- Scelta del sistema
 - Android
 - Linux Raspbian OS
- Linguaggi e librerie
 - Java
 - C/C++
 - Qt 5.0
 - OpenCV

Sviluppo: cross-compiler

gcc-linaro-arm-linux-gnueabihf-raspbian 4.7.2

Compilatore capace di produrre codice eseguibile su architetture differenti da quella in cui viene eseguito

Vantaggi

- Tempi di compilazione minori
- Portabilità
- Debugging remoto

Svantaggi

- Necessità di un compilatore adatto
- Tutte le librerie da ricompilare

Sviluppo: RFID

CAEN SpA Quark R1230C

- Lettore RFID UHF
- Comunicazione via UART
- Protocollo easy2read®
- Librerie a disposizione solo per Windows (C, Java, C#)
- Porting da Java o C#

Fonte: www. Caenrfid.it

Librerie riscritte in C++

Sviluppo: RFID

CAEN SpA Quark R1230C

- Interazione tramite pulsante
- Lettura RFID

- Interferenze del corpo umano sui tag RFID
- Riduzione della portata del lettore

- Scansione continua
- Rinuncia ai pulsanti

Fonte: www.articolienews.com

Sviluppo: architettura software

- Struttura a due livelli
- Demone di controllo per
 - Hardware
 - Rete
- Software Applicativo
 - Interazione con l'utente
 - Interazione con il server

Sviluppo: demone di sistema

- Demone di sistema Unix
- Gestione di eventi hardware sui componenti
- Gestione dell'applicativo e il suo funzionamento
- Monitoraggio della rete

Fonte: www. dreamstime.com

Sviluppo: software applicativo

- Basato sulle librerie Qt 5.0
- Architettura modulare
 - Componenti interni
 - Software esterni (OpenCV)
- Scansione e validazione RFID
- Acquisizione, manipolazione e invio delle immagini al server

Risposta dell'utente al dispositivo

- Interesse e curiosità per il dispositivo
- Più di 600 cartoline generate in un mese di funzionamento
- Importanti feedback
 - Confusione con i suoni
 - Introduzione delle voci

Fonte: www.agendalugano.ch

Conclusioni

- Obiettivi raggiunti
 - funzionare 24 ore su 24, 7 giorni su 7

 - interagire con un dispositivo RFID
 - scambiare dati con un server remoto
 - interagire con l'utente
 - ✓ essere completamente autonomo
- Prototipo funzionante e pronto per il prossimo passo di ingegnerizzazione

Conclusioni

- Miglioramenti
 - Hardware
 - Riconoscimento facciale
 - Sviluppo ulteriore della voce
- Sviluppi futuri
 - Comunicazione diretta con altri dispositivi
 - Gestione remota del dispositivo
 - Altri scenari d'applicazione

Conclusioni

Con la partecipazione (involontaria) di Bigio Biaggi...

Grazie per l'attenzione

