Math 113 — Problem Set 3— William Guss

(P19.24) Compute $20.5 + 25 \cdot 19.3$.

Clearly 20.5 + 19.3 = 39.8 which is equivalent to $39.8 - 25 = 14.8 \mod 25$.

(P19.25) Compute $\frac{1}{2} +_1 \frac{7}{8}$.

Clearly 1/2 + 7/8 = 4/8 + 7/8 = 11/8 which is equivalent to $11/8 - 1 = 3/8 \mod 1$.

(P27.23) Let $H \subset M_2(\mathbb{R})$ consisting all matrices of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ for $a, b \in \mathbb{R}$. Is H closed under

- a) matrix addition? Yes.
- b) matrix multiplication? Yes.

Lemma 1. If H is defined as above, then $H \cong \mathbb{C}$.

Proof. Define the mapping $\phi: H \to \mathbb{C}$ such that $\phi(M) = a + ib$. It is obvious that this mapping is a bijection since $a, b \in \mathbb{R}$ implies that for any $x + iy \in \mathbb{C}$ there exist $a, b \in \mathbb{R}$ so that a + ib = x + iy.

Next we show that the mapping is a homomorphism under addition and multiplication. Take $Z,W\in H.$ Then

$$\phi(ZW) = \phi \left(\begin{bmatrix} z_1 w_1 - z_2 w_2 & -(z_2 w_1 + z_1 w_2) \\ z_2 w_1 + z_1 w_2 & z_1 w_1 - z_2 w_2 \end{bmatrix} \right)$$

$$= z_1 w_1 - z_2 w_2 + i(z_2 w_1 + z_1 w_2)$$

$$= (z_1 + i z_2)(w_1 + i w_2)$$

$$= \phi(Z)\phi(W) \in \mathbb{C}$$

Furthermore we consider the addition operation

$$\phi(Z+W) = \phi\left(\begin{bmatrix} z_1 + w_1 & -(z_2 + w_2) \\ z_2 + w_2 & z_1 + w_1 \end{bmatrix}\right)$$

$$= z_1 + w_1 + i(z_2 + w_2)$$

$$= (z_1 + iz_2) + (w_1 + iw_2)$$

$$= \phi(Z) + \phi(W) \in \mathbb{C}$$

Therefore H is isomorphic to \mathbb{C} under addition and multiplication.

Note I implicitly showed that H was closed in the proof by explicitly calculating Z + W, ZW and grouping the terms in the upper right hand corner of the tresult. I also take for granted that \mathbb{C} is closed under multiplication and addition.

Corollary 1. The set H is closed under multiplication and addition.

Proof. If H were not closed under these operations then H would not be isomorphic to \mathbb{C} .

(P27.24)

- a) False
- b) True
- c) False

1

- d) What? lol. False
- e) True
- f) True.

Proof. If $S = a, f : S \times S \to S$ then f must be the mapping $(a, a) \mapsto a$. This is obvious. Then f(a, a) = f(a, a) gives commutativity, and f(a, f(a, a)) = f(a, a) = f(f(a, a), a) gives associativity. \square

- g) True
- h) True
- j) False