Linear Algebra – Cheat Sheet

1. Rank of a Matrix

- The rank of a matrix is the maximum number of linearly independent rows or columns.
- Methods to find rank:

.

- Row Echelon Form (REF): Reduce the matrix to echelon form and count nonzero rows.
- **Determinant Method:** The rank is the order of the largest nonzero determinant of a square submatrix.
- Properties:

•

- Rank $\leq \text{leq} \leq \min(\text{rows, columns})$.
- Full rank: If rank = number of rows (row rank) or columns (column rank).

•

2. Systems of Linear Equations

General Form:

A system of equations:

Ax=bAx=bAx=b

where AAA is a coefficient matrix, xxx is a variable vector, and bbb is a constant vector.

Types of Solutions:

- Consistent System → At least one solution.
- **Inconsistent System** → No solution.
- Unique Solution \rightarrow If determinant $A \neq 0 |A| \setminus 0 = 0$.
- Infinite Solutions \rightarrow If rank of AAA = rank of augmented matrix but determinant = 0.

Solution Methods:

- Gaussian Elimination Converts to row echelon form.
- Cramer's Rule Uses determinants (only for square matrices).
- Matrix Inversion Method $x=A-1bx = A^{-1}bx=A-1b$, if AAA is invertible.

3. Characteristic Equation

- The characteristic equation of a square matrix AAA is given by: $A-\lambda I = 0 |A \lambda I| = 0$ where $\lambda \cdot I = 0$ are the eigenvalues of AAA.
- Steps to Find:

A B

B Compute $A-\lambda I \mid A - \lambda I \mid A - \lambda I$ (determinant).

Solve for λ\lambdaλ.

C D

4. Cayley-Hamilton Theorem

- Statement: Every square matrix satisfies its own characteristic equation.
- If the characteristic equation is: $f(A) = A \lambda I = 0$ $f(A) = |A \lambda I| = 0$ $f(A) = A \lambda I = 0$ then replacing AAA into f(A)f(A) results in **zero matrix**.

- Applications:
- •
- Used to compute powers of matrices.
- Simplifies matrix exponentiation problems.

•

5. Eigenvalues & Eigenvectors

Definitions:

- Eigenvalues ($\lambda \cdot \text{lambda}\lambda$): Roots of the characteristic equation $A \lambda I = 0 \mid A \lambda I = 0 \mid A \lambda I = 0$.
- **Eigenvectors (xxx)**: Nonzero vectors that satisfy: $(A-\lambda I)x=0(A-\lambda I)x=0$

Properties:

- Sum of eigenvalues = Trace(A) (sum of diagonal elements).
- Product of eigenvalues = **Det(A)**.
- If AAA is triangular or diagonal, eigenvalues are diagonal elements.

Steps to Find Eigenvalues and Eigenvectors:

1st Compute $A-\lambda I = 0|A - \lambda I| = 0$ A - $\lambda I = 0$ to get **eigenvalues**. 2ndSubstitute each eigenvalue into $(A-\lambda I)x=0(A - \lambda I)x=0$ to get **eigenvectors**.

6. Diagonalization of Matrices

- A matrix AAA is diagonalizable if it has nnn linearly independent eigenvectors.
- **Diagonalization Formula:** A=PDP-1A=PDP-1A=PDP-1 where:
- PPP is the matrix of **eigenvectors**.
- DDD is a **diagonal matrix** with eigenvalues on the diagonal.

_

Steps to Diagonalize a Matrix:

1st Find **eigenvalues** by solving $A-\lambda I = 0|A - \lambda I| = 0$ $A-\lambda I = 0$. 2ndFind **eigenvectors** for each eigenvalue. 3rdForm **PPP** using eigenvectors as columns. 4th Compute **D=P-1APD = P^{-1} A PD=P-1AP** (should be diagonal).

Quick Summary Table

Topic	Key Points
Rank of a Matrix	Max number of linearly independent rows/columns.
Systems of Linear Equations	Solve using Gaussian elimination, Cramer's rule, or matrix inversion.
Characteristic Equation	(
Cayley-Hamilton Theorem	A matrix satisfies its own characteristic equation.
Eigenvalues & Eigenvectors	Eigenvalues: roots of characteristic equation, Eigenvectors: solve $(A-\lambda I)x=0(A - \lambda I)x=0$.

Topic

Diagonalization

Key Points

 $A=PDP-1A=PDP^{-1}A=PDP-1$, where PPP is eigenvectors, and DDD is diagonal.