الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: 2017

امتحان بكالوريا التعليم الثانوي

الشعبة: آداب وفلسفة ، لغات أجنبية

اختبار في مادة: الرياضيات المدة: 20 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (06 نقاط)

c=1954 و b=1437 ، a=2016 و a=b و b , a=b و نعتبر الأعداد الطبيعية

- .5 عيّن باقي القسمة الإقليدية لكل من الأعداد b ، a و على (1
- ملى على 5. و $a imes b^4$ و a imes b imes c ، a + b + c : استنتج باقي القسمة الإقليدية لكل من الأعداد (2
 - $.b^{4n}\equiv 1$ [5] ، n عدد طبیعي أنه من أجل كل عدد (3
 - .5 يقبل القسمة على $b^{2016}-1$ يقبل القسمة على .5
 - .c = -1[5] أ) تحقّق أنّ: (4
 - . $c^{1438} + c^{2017} \equiv 0[5]$: بيّن أنّ

التمرين الثاني: (06 نقاط)

 $u_1=320$ و $u_1=20$ حيث $\mathbb N$ متتالية هندسية حدودها موجبة تماما ، معرّفة على $u_1=20$

- بيّن أنّ أساس المتتالية (u_n) هو 4 وحدها الأول هو 5. (1
- كتب عبارة الحد العام للمتتالية (u_n) بدلالة n ثم استنتج قيمة حدها السابع.
- $S = u_0 + u_1 + \dots + u_n$ شيء S حيث n المجموع n المجموع (أ (3 $S' = u_0 + u_1 + \dots + u_6$ حيث $S' = u_0 + u_1 + \dots + u_6$ استنتج قيمة المجموع n حيث n حيث n حيث n

التمرين الثالث: (08 نقاط)

$$f(x) = \frac{4x-3}{2x-2}$$
 نعتبر الدالة العددية f المعرّفة على $\mathbb{R} - \{1\}$ كما يلي:

 $(O; \vec{i}, \vec{j})$ التمثيل البياني للدالة f في المستوي المنسوب إلى المعلم المتعامد والمتجانس المستوي المستوي

- $f(x) = 2 + \frac{1}{2x 2}$ ، 1 نحقّق أنّ: من أجل كل عدد حقيقي x يختلف عن 1 (1
- $\lim_{x \to -1} f(x)$ و $\lim_{x \to -1} f(x)$ و $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ و (2) احسب النهايات التالية $\lim_{x \to -\infty} f(x)$ و (2) استنتج معادلتي المستقيمين المقاربين للمنحنى $\lim_{x \to -\infty} f(x)$ استنتج معادلتي المستقيمين المقاربين للمنحنى $\lim_{x \to -\infty} f(x)$
 - $f'(x) = \frac{-2}{(2x-2)^2}$ ،1 بيّن أنّ: من أجل كل عدد حقيقي x يختلف عن x عدد حقيقي (3
 - ب) استنتج اتجاه تغیر الدالهٔ f ثم شکل جدول تغیراتها.
 - 4 جد إحداثيات نقط تقاطع المنحنى (C_f) مع حاملي محوري الإحداثيات.
 - . 2 اكتب معادلة المماس (Δ) للمنحنى (C_f) عند النقطة ذات الفاصلة (5
 - (C_f) و (Δ) ارسم (Δ

الموضوع الثانى

التمرين الأول: (06 نقاط)

 $u_3 + u_7 = 50$ و $u_0 = -5$ و يا بحدّها الأوّل $u_0 = -5$ و المجموعة $u_0 = -5$

- (u_n) عيّن الأساس المتتالية (1
- $u_n = 6n 5$ ، n بیّن أنّ: من أجل كل عدد طبیعي (2
- (3) اثبت أنّ العدد 2017 حد من حدود المتتالية (u_n) ، ماهي رتبته
- $S=u_0+u_1+\cdots\cdots+u_n$ حيث S حيث n المجموع (4

التمرين الثاني: (06 نقاط)

c=2017 و b=1966 ، $a\equiv -5$ و b=1966 و b=1966 و b=1966 و

- من باقي القسمة الإقليدية لكل من الاعداد a و b ، a على c و d على d
 - .b = -1[7] تحقّق أنّ: (2
 - .7 يقبل القسمة على $b^{2017} + 3 \times c^{1438} 2$ يقبل القسمة على (3
- . $2^{3k+2} \equiv 4$ و $2^{3k+1} \equiv 2$ و $2^{3k+1} \equiv 2$ ثم استنتج أن $2^{3k} \equiv 1$ و $2^{3k+2} \equiv 4$ و $2^{3k+2} \equiv 4$ و $2^{3k+2} \equiv 4$
 - عيّن قيم العدد الطبيعي n حتى يكون 2^n+3 قابلا للقسمة على 7.

التمرين الثالث: (08 نقاط)

$$f(x) = \frac{1}{3}x^3 - 4x$$
 : ب المعرّفة على المعرّفة على بالمعرّفة المعرّفة على المعرّفة على المعرّفة المعرّفة على بالمعرّفة على المعرّفة على المعرّفة المعرّفة المعرّفة المعرّفة على المعرّفة ا

- $(O; \vec{i}, \vec{j})$ التمثيل البياني للدالة f في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f)
 - . $\lim_{x\to +\infty} f(x)$ ، $\lim_{x\to -\infty} f(x)$: احسب النهايتين التاليتين (1
 - f'(x) = (x-2)(x+2) ، x عدد حقیقی عدد الجل کل عدد (2 فرا الجل کا عدد الجل کا عدد الجل کا الجل کا عدد الجل کا عدد الجل کا الحق کا الجل کا الحق کا
 - . f استنتج اتجاه تغیّر الداله $oldsymbol{+}$
 - f شكّل جدول تغيرات الدالة (3
- . المعادلة f(x)=0 ، استنتج احداثيات نقط تقاطع (C_f) مع حاملي محوري الإحداثيات.
 - . يقبل نقطة انعطاف هي مبدأ المعلم (C_f) بيّن أن
 - .0 اكتب معادلة المماس (T) للمنحني المنحني النقطة ذات الفاصلة (C_f) اكتب معادلة المماس
 - (C_f) ارسم (T) ارسم (T

انتهى الموضوع الثاني

الإجابة النموذجية لموضوع اختبار مادة: الرياضيات /الشعبة: آداب وفلسفة، لغات/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
المجموع	مجزأة	
	•	الموضوع الأول
		التمرين الأول: (06 نقاط)
1.50	3×0.5	c = 4[5] b = 2[5] a = 1[5] (1
1.50	3×0.5	$b^4 \equiv 1[5]$, $a \times b \times c \equiv 3[5]$, $a + b + c \equiv 2[5]$ (2)
	0.75	$.b^{4n}\equiv 1$ رًا) التحقق أنّ $\left[5 ight]$ (3
1.50		ب) الاستنتاج:
	0.75	$b^{2016}-1$ \equiv 0 $\left[5 ight]$ معناه $b^{2016}-1$ \equiv $\left(b^{4 imes 504}-1\right)$ لدينا
1.50	0.50	$\cdot c \equiv -1$ را التحقق أن $c \equiv -1$ التحقق أن (4
1.50	01	$\cdot c^{1438} + c^{2017} \equiv 0$ بيان أن $: [5] :$
		التمرين الثاني: (06 نقاط)
	01	$\begin{cases} u_0 q = 20 \\ u_0 q^3 = 320 \end{cases} $ (1)
		$u_0 q^3 = 320^{-1}$
02	0.4	$\begin{cases} u_0 = 5 \\ a = 4 \end{cases}$
	01	q=4
	01	$u_n = 5 imes 4^n$ عبارة الحد العام: (2
02	01	$u_6 = 20480$
	01	$S = \frac{5}{3} [4^{n+1} - 1]$ المجموع (أ (3
02		
	01	ب) 8′ = 27305
	ı	التمرين الثالث: (08 نقاط)
0.50	0.50	$f(x) = 2 + \frac{1}{2x - 2}$ ، التحقّق أنّ: من أجل كل عدد حقيقي x يختلف عن 1 (1
• 50	4×0.5	$\lim_{x \to -1} f(x) = +\infty \lim_{x \to -1} f(x) = -\infty \cdot \lim_{x \to +\infty} f(x) = 2 \cdot \lim_{x \to -\infty} f(x) = 2 \text{ (i)} $
2.50	2×0.25	$x \longrightarrow 1$ ب $y = 2$, $x = 1$ معادلتي المقاربين
	0.50	$f'(x) = \frac{-2}{(2x-2)^2}$ ، بیان أنّ: من أجل كل عدد حقیقي x یختلف عن 1 (3
1.75	0.50	f استنتاج اتجاه تغير الدالة ϕ
		بما أن $f'(x){<}0$ فان f متناقصة تماما
	0.75	جدول التغيرات.

الإجابة النموذجية لموضوع اختبار مادة: الرياضيات /الشعبة: آداب وفلسفة، لغات/البكالوريا دورة: 2017

العلامة		عناصر الإجابة			
المجموع	مجزأة				
01	2×0.5	, $(C_f) \cap (yy') = \left\{ B(0; \frac{3}{2}) \right\}, (C_f) \cap (xx') = \left\{ A(\frac{3}{4}; 0) \right\}$ (4			
0.75	0.75	$y = -\frac{1}{4}x + 3:(\Delta)$ معادلة المماس (5			
	0.50	$.(C_f)$ و (Δ) رسم (δ			
1.50	01				
الموضوع الثاني					
		التمرين الأول: (06 نقاط)			
01	01	$r=6$: (u_n) الأساس r للمتتالية (1			
1.50	1.50	$u_n = 6n - 5$ ، n بيان أنّ: من أجل كل عدد طبيعي (2			
1.50	1.50	338 رتبته هي $2017 = u_{337}$ (3			
02	02	S = (n+1)(3n-5) Inapage (4			
1.50	3×0.5	التمرين الثاني: (06 نقاط) $c\equiv 1$ و $b\equiv 6$ و $b\equiv 6$ ($a\equiv 2$			
0.50	0.50	c=1ر $b=0$ ر $a=2$ ر $a=2$ ر $b=0$ ر التحقّق أنّ: $b=-1$ ر $b=-1$ ر (2			
01	0.30	$b^{2017} + 3 \times c^{1438} - 2 \equiv 0$ اثبات أنّ (3) (3			
	01	$2^{3k}\equiv 1$ ر k التحقق أنّ: من أجل كل عدد طبيعي k عدد طبيعي (4			
02	2×0.5	$2^{3k+2}\equiv 4\lceil 7 ceil$ استنتاج أن $2^{3k+1}\equiv 2\lceil 7 ceil$ و ر			
01	01	$n=3k+2$ $/$ $k\in\mathbb{R}$ معناه $2^n+3\equiv 0$ [7] (5			
		التمرين الثالث: (08 نقاط)			
01	2×0.5	$\lim_{x \to +\infty} f(x) = +\infty \cdot \lim_{x \to -\infty} f(x) = -\infty $ (1			
1.50	01	f'(x) = (x-2)(x+2) ، x عدد حقیقی عدد عقیقی $f'(x) = (x-2)(x+2)$			
	0.50	. f استنتاج اتجاه تغیّر الدالمة f .			

الصفحة 2 من 3

الإجابة النموذجية لموضوع اختبار مادة: الرياضيات /الشعبة: آداب وفلسفة، لغات/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
المجموع	مجزأة	
0.75	0.75	. f جدول تغیرات الداله (3
	0.75	$S = \{0; 2\sqrt{3}; -2\sqrt{3}\}$ (4
1.50	0.75	$(C_f) \cap (xx') = \{A(2\sqrt{3};0), O(0;0), B(-2\sqrt{3};0)\}$
1	1	بيان أن (C_f) يقبل نقطة انعطاف هي مبدأ المعلم.
0.75	0.75	(T): $y = -4x$ معادلة المماس (6
1.50	0.5	رسم (T) والمنحنى (C_{f})
1.50	01	