SC223 - Linear Algebra

Aditya Tatu

Lecture 14

August 28, 2023

Vector Spaces

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F)$, \times) and two binary operations, vector addition + and scalar multiplication + hat satisfy the following axioms:
- \blacktriangleright (V, +) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V.$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x.$
 - $\forall x \in V, \exists y \in V, x + y = y + x = \theta$. We will denote y by -x.
 - ▶ $\forall x, y, z \in V, (x + y) + z = x + (y + z).$
 - $\forall x, y \in V, x + y = y + x.$
- ▶ Closure with respect to Scalar multiplication: $\cdot : \mathbb{F} \times V \to V$.
- ▶ Scalar Multiplication identity: $\{1\} \in \mathbb{F}$ such that $1 \cdot v = v, \forall v \in V$.
- **▶ Distributivity:** $\forall a \in \mathbb{F}, \forall u, v \in V, a \cdot (u + v) = a \cdot u + a \cdot v$, and $\forall a, b \in \mathbb{F}, \forall u \in V, (a +_F b) \cdot u = a \cdot u + b \cdot u$.
- ► Compatibility of field and scalar multiplication:

$$\forall a, b \in \mathcal{F}, \forall u \in V, (a \otimes b) \cdot u = a \cdot (b \otimes u).$$

Definition:(Field). A field is a set \mathbb{F} with two binary operations, addition $+_F$ and multiplication \times that satisfy the following axioms:

- **Definition:**(Field). A field is a set \mathbb{F} with two binary operations, addition $+_F$ and multiplication \times that satisfy the following axioms:
- ightharpoonup ($\mathbb{F}, +_F$) is an **Abelian group**. The additive identity will be denoted by 0.

- **Definition:**(Field). A field is a set \mathbb{F} with two binary operations, addition $+_F$ and multiplication \times that satisfy the following axioms:
- ▶ $(\mathbb{F}, +_F)$ is an **Abelian group**. The additive identity will be denoted by 0.
- ▶ $(\mathbb{F} \{0\}, \times)$ is an **Abelian group**. The mutiplicative identity will be denoted by 1.

- **Definition:**(Field). A field is a set \mathbb{F} with two binary operations, addition $+_F$ and multiplication \times that satisfy the following axioms:
- ▶ $(\mathbb{F}, +_F)$ is an **Abelian group**. The additive identity will be denoted by 0.
- ▶ $(\mathbb{F} \{0\}, \times)$ is an **Abelian group**. The mutiplicative identity will be denoted by 1.
- ▶ Distributivity: $\forall a, b, c \in \mathbb{F}, (a +_F b) \times c = a \times c +_F b \times c$.

 \blacktriangleright $(\mathbb{Z}_2, +_2, \times)$

- \blacktriangleright $(\mathbb{Z}_2, +_2, \times)$
- $ightharpoonup (\mathbb{R},+,\times)$

$$ightharpoonup (\mathbb{Z}_2, +_2, \times)$$

$$ightharpoonup (\mathbb{R},+, imes)$$

$$(a+bi) \times (c+di) =$$

$$(ac-bd) + (bc+ad)i$$

$$(a+bi) \in (c-sos) = 0$$

$$(a+bi) \times 1 = a+bi \Rightarrow 1 \text{ is the }$$

$$(a+bi) \times (c+di) = 1$$

$$(a+bi) \times (c+di) = 1$$

- \blacktriangleright $(\mathbb{Z}_2, +_2, \times)$
- $ightharpoonup (\mathbb{R},+,\times)$
- \blacktriangleright ($\mathbb{C}, +, \times$)
- ightharpoonup ($\mathbb{Q}, +, \times$)

- $ightharpoonup (\mathbb{Z}_2, +_2, \times)$
- ightharpoonup ($\mathbb{R},+,\times$)
- ightharpoonup ($\mathbb{C},+,\times$)
- \blacktriangleright ($\mathbb{Q}, +, \times$)
- ▶ ($\mathbb{R}[x], +, \times$), where $\mathbb{R}[x]$ is the set of all rational polynomials of the form $\frac{p(x)}{q(x)}$, with $q \neq 0$, and p and q are polynomials in one variable with real coefficients.

$$\frac{P_{l}(\alpha)}{Q_{l}(\alpha)} + \frac{P_{2}(\alpha)}{Q_{2}(\alpha)}, \quad Q_{l} \neq 0, \quad Q_{2} \neq 0.$$

- ightharpoonup $(\mathbb{Z}_2, +_2, \times)$
- $ightharpoonup (\mathbb{R}, +, \times)$
- \blacktriangleright ($\mathbb{C},+,\times$)
- \blacktriangleright ($\mathbb{Q}, +, \times$)
- ▶ $(\mathbb{R}[x], +, \times)$, where $\mathbb{R}[x]$ is the set of all rational polynomials of the form $\frac{p(x)}{q(x)}$, with $q \neq 0$, and p and q are polynomials in one variable with real coefficients.
- ▶ If the 3-tuple $(V, +, \cdot)$ with field $(\mathbb{F}, +_F, \times)$ satisfies all vector space axioms, we say that $(V, +, \cdot)$ forms a vector space over \mathbb{F} .

- $ightharpoonup (\mathbb{Z}_2, +_2, \times)$
- $ightharpoonup (\mathbb{R}, +, \times)$
- ightharpoonup ($\mathbb{C},+,\times$)
- ightharpoonup ($\mathbb{Q}, +, \times$)
- ▶ $(\mathbb{R}[x], +, \times)$, where $\mathbb{R}[x]$ is the set of all rational polynomials of the form $\frac{p(x)}{q(x)}$, with $q \neq 0$, and p and q are polynomials in one variable with real coefficients.
- ▶ If the 3-tuple $(V, +, \cdot)$ with field $(\mathbb{F}, +_{\mathcal{F}}, \times)$ satisfies all vector space axioms, we say that $(V, +, \cdot)$ forms a vector space over \mathbb{F} .
- Any element of the vector space $(V, +, \cdot)$ will be referred to as a **vector**, and any element $a \in \mathbb{F}$ will be referred to as a **scalar**.

ullet $(\mathbb{R},+,\cdot)$ over $\overline{\mathbb{R}}.$

- \bullet ($\mathbb{R}, +, \cdot$) over \mathbb{R} .
- \bullet ($\mathbb{R}^n, +, \cdot$) over \mathbb{R} .

$$\forall u, w \in V,$$

$$V=\mathbb{R}^{n}$$
, $F=\mathbb{R}$.
 $V=\mathbb{R}^{n}$, $W=\mathbb{R}$.
 $V=\mathbb{R}^{n}$, $W=\mathbb{R}$.

- \bullet ($\mathbb{R}, +, \cdot$) over \mathbb{R} .
- $(\mathbb{R}^n, +, \cdot)$ ove<u>r</u> \mathbb{R} . $(\mathbb{C}^n, +, \cdot)$ over \mathbb{C} .

- \bullet ($\mathbb{R}, +, \cdot$) over \mathbb{R} .
- \bullet ($\mathbb{R}^n, +, \cdot$) over \mathbb{R} .
- $\bullet \ (\mathbb{C}^n,+,\cdot)$ over \mathbb{C} .
- $(\mathbb{F}^n, +, \cdot)$ over \mathbb{F} .

- \bullet ($\mathbb{R}, +, \cdot$) over \mathbb{R} .
- $(\mathbb{R}^n, +, \cdot)$ over \mathbb{R} .
- \bullet ($\mathbb{C}^n, +, \cdot$) over \mathbb{C} .
- $(\mathbb{F}^n, +, \cdot)$ over \mathbb{F} .
- \bullet $(\mathbb{R}^\infty,+,\cdot)$ over $\mathbb{R},$ where \mathbb{R}^∞ is the set of all doubly-infinite sequences.

- \bullet ($\mathbb{R}, +, \cdot$) over \mathbb{R} .
- $(\mathbb{R}^n, +, \cdot)$ over \mathbb{R} .
- \bullet ($\mathbb{C}^n, +, \cdot$) over \mathbb{C} .
- $(\mathbb{F}^n, +, \cdot)$ over \mathbb{F} .
- \bullet $(\mathbb{R}^\infty,+,\cdot)$ over $\mathbb{R},$ where \mathbb{R}^∞ is the set of all doubly-infinite sequences.
- ullet $(\mathcal{P}(\mathbb{R}),+,\cdot)$ over \mathbb{R} , where $\mathcal{P}(\mathbb{R})$ is the set of all polynomials of one variable with real coefficients.

- \bullet ($\mathbb{R}, +, \cdot$) over \mathbb{R} .
- \bullet ($\mathbb{R}^n, +, \cdot$) over \mathbb{R} .
- $(\mathbb{C}^n, +, \cdot)$ over \mathbb{C} .
- $(\mathbb{F}^n, +, \cdot)$ over \mathbb{F} .
- \bullet $\left(\mathbb{R}^\infty,+,\cdot\right)$ over $\mathbb{R},$ where \mathbb{R}^∞ is the set of all doubly-infinite sequences.
- ullet $(\mathcal{P}(\mathbb{R}), +, \cdot)$ over \mathbb{R} , where $\mathcal{P}(\mathbb{R})$ is the set of all polynomials of one variable with real coefficients.
- $(\mathbb{L}_2(\mathbb{R}), +, \cdot)$ over \mathbb{R} , where $\mathbb{L}_2(\mathbb{R})$ denotes the set of all square-integrable functions $f : \mathbb{R} \to \mathbb{R}$.

 $\forall f \in L_2(\mathbb{R}), \int_{-\infty}^{\infty} |f(t)|^2 dt < \infty$

• **Proposition 1:** Every Vector space has a unique additive identity.

- **Proposition 1:** Every Vector space has a unique additive identity.
- Proposition 2: Every vector in a vector space has a unique additive inverse.

- **Proposition 1:** Every Vector space has a unique additive identity.
- **Proposition 2:** Every vector in a vector space has a unique additive inverse.
- Proposition 3: $\forall v \in V, 0 \cdot v = \theta$

- **Proposition 1:** Every Vector space has a unique additive identity.
- **Proposition 2:** Every vector in a vector space has a unique additive inverse.
- Proposition 3: $\forall v \in V, 0 \cdot v = \theta$
- Proposition 4: $\forall a \in \mathbb{F}, a \cdot \theta = \theta$.

- **Proposition 1:** Every Vector space has a unique additive identity.
- **Proposition 2:** Every vector in a vector space has a unique additive inverse.
- Proposition 3: $\forall v \in V, 0 \cdot v = \theta$
- Proposition 4: $\forall a \in \mathbb{F}, a \cdot \theta = \theta$.
- Proposition 5: $\forall v \in V, (-1) \cdot v = -v$.