Assignment - Attrition

Step 1: Load the sheet/Data

dtype='object')

```
import pandas as pd
import matplotlib.pyplot as mplt
dataset = pd.read_csv("D:/AI_ML_Course/Day 7/general_data.csv")
dataset.columns
Out[3]:
Index(['Age', 'Attrition', 'BusinessTravel', 'Department', 'DistanceFromHome',
    'Education', 'EducationField', 'EmployeeCount', 'EmployeeID', 'Gender',
    'JobLevel', 'JobRole', 'MaritalStatus', 'MonthlyIncome',
    'NumCompaniesWorked', 'Over18', 'PercentSalaryHike', 'StandardHours',
    'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear',
    'YearsAtCompany', 'YearsSinceLastPromotion', 'YearsWithCurrManager'],
```

Step 2: Data Treatment

dataset.isnull()

Out[4]:

Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager

0	False	False	False	False
1	False	False	False	False
2	False	False	False	False
3	False	False	False	False
4	False	False	False	False

...

4405 False	False	False	False
4406 False	False	False	False
4407 False	False	False	False
4408 False	False	False	False
4409 False	False	False	False

[4410 rows x 24 columns]

dataset.duplicated()

Out[6]:

- 0 False
- 1 False
- 2 False
- 3 False
- 4 False

4405 False

4406 False

4407 False4408 False

4409 False

Length: 4410, dtype: bool

dataset.drop_duplicates()

Out[7]:

$\label{lem:AgeAttrition} \textbf{ ... YearsSinceLastPromotion YearsWithCurrManager}$

0	51	No		0	0
1	31	Yes		1	4
2	32	No		0	3
3	38	No		7	5
4	32	No		0	4
440	4405 42 No 0 2				

4406 29 2 No ... 0 4407 25 No ... 1 2 7 4408 42 No ... 8 4409 40 No ... 3 9

[4410 rows x 24 columns]

Step 3: Uni-Variate Analysis:

dataset1=dataset[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear',

'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].describe()

Dataset1

dataset1=dataset[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear',

'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].median()

dataset1=dataset[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear',

'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].mode()

dataset1=dataset[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].var()

dataset1 - Series

 $\label{lem:companiesWorked', bounds} dataset 1 = dataset [['Age', 'DistanceFromHome', 'Education', 'MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike', 'TotalWorkingYears', 'TrainingTimesLastYear', 'TotalWorkingYears', 'TrainingTimesLastYear', 'TotalWorkingYears', 'TrainingTimesLastYear', 'TotalWorkingYears', 'To$

'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].skew()

dataset1 - Series

Index	0
Age	0.413005
DistanceFromHome	0.957466
Education	-0.289484
MonthlyIncome	1.36888
NumCompaniesWorked	1.02677
PercentSalaryHike	0.820569
TotalWorkingYears	1.11683
TrainingTimesLastYear	0.552748
YearsAtCompany	1.76333
YearsSinceLastPromotion	1.98294
YearsWithCurrManager	0.832884

 $\label{lem:companiesWorked', bounds} dataset 1 = dataset [['Age', 'DistanceFromHome', 'Education', 'MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike', 'TotalWorkingYears', 'TrainingTimesLastYear', 'TotalWorkingYears', 'TrainingTimesLastYear', 'TotalWorkingYears', 'TrainingTimesLastYear', 'TotalWorkingYears', 'To$

'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].kurt()

dataset1 - Series

Index	0
Age	-0.405951
DistanceFromHome	-0.227045
Education	-0.560569
MonthlyIncome	1.00023
NumCompaniesWorked	0.00728748
PercentSalaryHike	-0.302638
TotalWorkingYears	0.912936
TrainingTimesLastYear	0.491149
YearsAtCompany	3.92386
YearsSinceLastPromotion	3.60176
Years With Curr Manager	0.167949

					Std			
	Mean	Median	Mode	Variance	Deviation	IQR	Skewness	Kurtosis
Age (Yrs)	36.9	36	35	83.41	9.13	13	0.41	-0.41
DistanceFromHome (Km)	9.19	7	2	65.69	8.1	12	0.96	-0.23
Monthly Income (Rs)	65029	49190	23420	2215480270	47068	54690	1.37	1
PercentSalaryHike (%)	15	14	11	13.39	3.66	6	0.82	-0.3
TotalWorkingYears (Yrs)	11.29	10	10	60.56	7.78	9	1.12	0.91
YearsAtCompany (Yrs)	7	5	5	37.52	6.12	6	1.76	3.92
YearsSinceLastPromotion								
(Yrs)	2	1	0	10.38	3.22	3	1.98	3.6
YearsWithCurrManager								
(Yrs)	4	3	2	12.73	3.57	5	0.83	0.17

Inference from the analysis:

- All the above variables show positive skewness.
- Years_At_Company & Years_Since_LastPromotion are Leptokurtic i.e. more than 3 and all other variables are Platykurtic.
- The Mean_Monthly_Income's IQR is at 54K suggesting companywide attrition across all income bands
- Mean age forms a near normal distribution with 13 years of IQR
- Mean Distance_From_Home is 12 Km which is higher.

Outliers:

There's no regression found while plotting Age, MonthlyIncome, TotalWorkingYears, YearsAtCompany, etc., on a scatter plot

box_plot=dataset.Age

mplt. boxplot(box plot)

Age is normally distributed without any Outliers

box_plot=dataset.MonthlyIncome

mplt.boxplot(box_plot)

Monthly Income is right skewed with several Outliers

box_plot=dataset.YearsAtCompany

mplt.boxplot(box_plot)

Years at company is also Right skewed with several Outliers