MSc. Research Methods – Statistikteil Lösungstext

- Übung 2.3N: Mehrfaktorielle ANOVA (naturwissenschaftlich) -

Methoden

Es wurden Tauchzeiten der beiden Unterarten *Phalacrocorax carbo carbo* (C) und *Phalacrocorax carbo sinensis* (S) in den vier Jahreszeiten (F = Frühling, S = Sommer, H = Herbst, W = Winter) mit je fünf Beobachtungen erhoben. Mittels einer zweifaktoriellen Varianzanalyse wurde anschliessend in R auf Unterschiede zwischen den Unterarten und Jahreszeiten getestet. Für die Auswertung der multiplen Vergleiche wurde das R-package *multcomp* verwendet. Da die visuelle Inspektion der Residualplots keine schwerwiegenden Verletzungen der Modellvoraussetzungen zeigte, wurde ein parametrisches Modell mit untransformierten Daten gerechnet.

Ergebnisse

Die Varianzanalyse des vollen Modells zeigte, dass es keine signifikante Interaktion zwischen den beiden Faktoren gab. Das minimal adäquate Modell für die Tauchzeit umfasst daher die Unterart (F = 39.0, p < 0.001) und die Jahreszeit (F = 91.9, p < 0.001). Dabei lagen die Tauchzeiten der Unterart *sinensis* im Mittel um 3.27 Einheiten niedriger als die der Unterart *carbo* (Abb. 1). Die Tauchzeiten stiegen vom Frühjahr mit 11.86 Einheiten kontinuierlich bis zum Winter mit 23.42 Einheiten an (Abb. 2).

Abb. 1: Box-Whisker-Plots der Tauchzeiten der Kormoran-Unterarten *carbo* (C) und *sinensis* (S), aggregiert über die Jahreszeiten. Die Kleinbuchstaben bezeichnen homogene Gruppen bei p < 0.05 nach Tukeys post-hoc-Test.

Abb. 2: Box-Whisker-Plots der Tauchzeiten von Kormoranen über die Jahreszeiten (F = Frühling, S = Sommer, H = Herbst, W = Winter), aggregiert über die beiden Unterarten. Die Kleinbuchstaben bezeichnen homogene Gruppen bei p < 0.05 nach Tukeys post-hoc-Test.