Guide de survie : Analyse

Remerciements: Réda Arab, Marion Favre D'Echallens, Santiago Gatillon, Eve Pachoud, Tristan Pham-Mariotti, Camille Raffin, Mehdi Tomas

1 Théorie de la mesure et construction de l'intégrale

1.1 Théorie de la mesure

Définition 1 (Tribu)

Une tribu \mathcal{T} sur un ensemble Ω est une famille non vide de 2 Lien entre Riemann et Lebesgue parties de Ω telle que :

- \bullet $\varnothing \in \mathcal{T}$
- $Si \ A \in \mathcal{T} \ alors \ \Omega \backslash A \in \mathcal{T}$
- $Si \ \forall n \in \mathbb{N} \ A_n \in \mathcal{T} \ alors \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{T}$

Définition 2 (Mesure sur une tribu)

Une mesure sur \mathcal{T} est une application $\mu: \mathcal{T} \to \mathbb{R}^+ \cup \{\infty\}$ telle que :

- Si $A_n \in \mathcal{T}$ disjoints alors $\mu(\bigcup_{n \in \mathbb{N}} A_n) = \sum_{n \in \mathbb{N}} \mu(A_n)$

Définition 3 (Application mesurable)

L'application $f:(\Omega,\mathcal{T})\to(\Omega',\mathcal{T}')$ est mesurable si

$$\forall B \in \mathcal{T}' \quad h^{-1}(B) \in \mathcal{T}$$

Propriétés 1 (Conservation de la mesurabilité) Dans $\mathcal{L}(\mathcal{T}) = \{app. mesurable de (\Omega, \mathcal{T}) dans (\mathbb{R}, \mathcal{B}(\mathbb{R}))\},\$

- Si f et g mesurables alors f + g et fg mesurables.
- Si (f_n) mesurable alors $sup(f_n)$, $inf(f_n)$, $lim(f_n)$ et $\sum f_n$ mesurables.
- Si f mesurable alors |f| mesurable

Théorème 1 (Approximation mesurables par étagées) Toute fonction bornée de $\mathcal{L}(\mathcal{T})$ est limite uniforme d'une suite de fonction étagées.

• Tout fonction de $\overline{\mathcal{L}}_+(\mathcal{T})$ est limite simple d'une suite croissante de fonctions étagées positives.

1.2 Construction d'une intégrale par rapport à une mesure

Soit μ une mesure sur \mathcal{T} . On va construire l'intégrale par rapport à μ pour un grand nombre de fonctions de $\mathcal{L}(\mathcal{T})$. On commence par des fonctions simples, puis par des arguments de limite notamment, on élargit notre définition pour d'autres

Etape 1: Pour $f = \sum_{i=1}^{n} \alpha_i 1_{A_i}$ (où $A_i \in \mathcal{T}$ et $\alpha_i \in \mathbb{R}$), on définit :

$$\int_{\Omega} f(x)\mu(dx) = \sum_{i=1}^{n} \alpha_{i}\mu(A_{i})$$

Etape 2 : Pour f \mathcal{T} -mesurable positive, on définit :

$$\int_{\Omega}f(x)\mu(dx)=\sup\{\int_{\Omega}\phi(x)\mu(dx);\phi\,\text{\'etag\'ee telle que}\,\phi\leq f\}$$

Etape 3 : Pour f \mathcal{T} -sommable, i.e. \mathcal{T} -mesurable et $\int_{\Omega} |f(x)| \mu(dx) < \infty$, on définit :

$$\int_{\Omega} f(x)\mu(dx) = \int_{\Omega} \max(f(x), 0)\mu(dx) - \int_{\Omega} \min(f(x), 0)\mu(dx) \qquad \int_{\Omega_1} \int_{\Omega_2} f(x, y)\lambda(dx)\lambda(dy) = \int_{\Omega_2} \int_{\Omega_1} f(x, y)\lambda(dy)\lambda(dx)$$

Remarque 1

Lors de l'étape 1 et 2, l'intégrale peut éventuellement pren $dre\ la\ valeur + \infty\ mais\ pas\ pour\ une\ fonction\ sommable\ dans$

L'intégrale par rapport à la mesure de Lebesgue $\lambda: \mathcal{B}(\mathbb{R}) \to$ \mathbb{R}_+ , vérifiant notamment $\lambda([a,b]) = b - a$, correspond dans certains cas à l'intégrale de Riemann.

Objectifs:

- Savoir quand est-ce qu'on peut passer de l'un à l'autre
- Savoir pourquoi passer de l'un à l'autre

2.1 2 théorèmes pour passer de l'un à l'autre

Théorème 2 (Sur un segment)

Si une fonction est Riemann-intégrable sur un segment [a,b], alors elle est Lebesgue-sommable sur ce segment et $\int_{a}^{b} f(x)dx = \int_{[a,b]} f(x)\lambda(dx).$

Théorème 3 (Sur un intervalle quelconque)

Si une fonction f est localement Riemann-intégrable sur [a, b] $où(a,b) \in \overline{\mathbb{R}}^2$, alors on a l'équivalence :

f Lebesgue-sommable $\Leftrightarrow f$ Riemann ACV

De plus on a alors $\int_a^b f(x)dx = \int_{[a,b]} f(x)\lambda(dx)$.

2.2 Raisons d'utiliser l'un ou l'autre

Raisons d'utiliser Riemann:

- Calcul par primitivation (cf. 1.a. ex 1 TD 2)
- Intégration par parties (cf. 2.b. ex 6 TD 2)

Raisons d'utiliser Lebesgue :

- Permuter les intégrales (intégrales multiples) (cf. 1. ex 4
- Facilité d'utilisation des théorèmes : convergence monotone, dominée, etc. (cf. 1.b. ex 1 TD 2)

3 Théorèmes de Tonelli-Fubini

3.1 Enoncé des théorèmes

Les énoncés rigoureux sont à lire dans le poly. Mais voici leur idée générale.

Théorème 4 (Tonelli 1)

Si f est mesurable et positive

Alors on peut intervertir les intégrales :

$$\int_{\Omega_1} \int_{\Omega_2} f(x, y) \lambda(dx) \lambda(dy) = \int_{\Omega_2} \int_{\Omega_1} f(x, y) \lambda(dy) \lambda(dx)$$

Théorème 5 (Tonelli 2)

 $Si\ f\ est\ mesurable$

Alors, si le calcul dans l'ordre qu'on veut de l'intégrale multiple de |f| est $< \infty$, f est sommable.

Théorème 6 (Fubini)

Si f est sommable

Alors on peut intervertir les intégrales :

$$\int_{\Omega_1} \int_{\Omega_2} f(x,y) \lambda(dx) \lambda(dy) = \int_{\Omega_2} \int_{\Omega_1} f(x,y) \lambda(dy) \lambda(dx)$$

3.2 Utilisation

Lorsqu'on veut permuter des intégrales :

- 1. On regarde si f est positive
- 2. Si oui, on applique Tonelli 1
- 3. Si non, on montre qu'elle est sommable avec Tonelli 2 puis on applique Fubini

3.3 Exemple

On veut calculer $I = \int_{\mathbb{R}^+} \int_{[a,b]} e^{-xy} \lambda(dy) \lambda(dx)$.

La fonction $(x,y) \to e^{-xy}$ est positive et mesurable (car continue) donc on peut appliquer Tonelli 1. On a:

$$I = \int_{[a,b]} \int_{\mathbb{R}^+} e^{-xy} \lambda(dx) \lambda(dy)$$

On passe ensuite à Riemann pour pouvoir calculer par primitivation. Cela est possible car on a l'absolue convergence de $x \to e^{-xy}$ sur \mathbb{R}^+ et la continuité de $y \to \int_0^\infty e^{-xy} dy = \frac{1}{y}$ sur

$$I = \int_{a}^{b} \int_{0}^{\infty} e^{-xy} dx dy = \int_{a}^{b} \left[\frac{e^{-xy}}{-y} \right]_{0}^{\infty} dy = \int_{a}^{b} \frac{1}{y} dy = \ln(\frac{b}{a})$$

4 Propriétés fondamentales de l'intégrale de Lebesgue

Objectifs

- Intervertir l'intégrale et un autre élément (limite, série...).
- Déterminer la sommabilité

Théorème 7 (Beppo-Levi ou convergence monotone)

• Si $(f_n)_{n\in\mathbb{N}}$ est une suite croissante de fonctions mesurables positives dans $\overline{\mathbb{R}}_+$, alors:

$$\lim \int f_n = \int \lim f_n$$

• Si $(f_n)_{n\in\mathbb{N}}$ est une suite croissante/décroissante de fonctions sommables, alors:

$$\lim \int f_n = \int \lim f_n$$

Exercice 2.1 - 1.b) : $\lim_{n\to\infty}\int_0^\pi \sin^n(t)\,\mathrm{d}t$ où $(\sin^n(t))_n$ suite décroissante sommable sur $[0,\pi]$.

Théorème 8 (Convergence dominée) Soit $(\Omega, \mathcal{F}, \mu)$. Si (f_n) vérifie:

- $\forall n \in \mathbb{N}, f_n \text{ est mesurable sur } \Omega.$
- La suite (f_n) converge μ -pp vers f mesurable sur Ω
- $\exists g \ sommable \ sur \ \Omega \ t.q. \ \forall n \in \mathbb{N} \ et \ \forall t \ de \ \Omega : |f_n(t)| \le$

alors f est sommable sur Ω et $(\int f_n d\mu)$ converge vers $\int f d\mu$

Exemple: Exercice 2.2 - 2)

$$u_n = \int_{]0,+\infty[} \frac{\sin(t^n)}{t^n(1+t)} \lambda(\mathrm{d}t).$$

Théorème 9 (Intégration terme à terme des séries) Si (f_n) est une suite de fonctions de $\mathcal{L}^1(\mathbb{R},\mathcal{B}(\mathbb{R}),\lambda)$ et si $\sum_{0}^{\infty} \int |f_n| d\lambda < \infty \ alors:$

- $\sum f_n A.C.V \lambda p.p$
- $\sum_{n=0}^{\infty} f_n$ est sommable
- $\int \sum_{n=0}^{\infty} f_n d\lambda = \sum \int f_n d\lambda$

5 Fonctions définies par des intégrales

Théorème 10 (Continuité sous le signe ∫ en un point)

- $\forall x \in]a,b[$ f(t,x) est sommable sur Ω
- $\forall t \ p.p \ de \ \Omega, \ f(t,x) \ est \ continue \ en \ x_0$
- \exists un voisinage]a',b'[de x_0 et g sommable telle que $\forall x \in]a', b'[\ et \ \forall t \in \Omega : |f(t, x)| \le g(t).$

alors la fonction $x \mapsto \int_{\Omega} f(t,x) d\mu(t)$ est continue en x_0

Théorème 11 (Dérivabilité sous le signe ∫)

- $\forall x \in]a,b[$ f(t,x) est sommable sur Ω
- $\exists N \ partie \ n\'egligeable \ dans \ \Omega \ t.q. \ \forall \ t \ de \ \Omega \backslash N \ f(t,x)$ est dérivable sur a, b.
- $\exists g \ sommable \ sur \ \Omega \ telle \ que \ \forall x \in]a,b[\ et \ \forall t \in \Omega \backslash N \ :$ $\left|\frac{\partial f(t,x)}{\partial x}\right| \le g(t).$

Alors

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{\Omega} f(t, x) \,\mathrm{d}\mu(t) = \int_{\Omega} \frac{\partial}{\partial x} f(t, x) \,\mathrm{d}\mu(t)$$

Exemple: Exercice 2.4 - 2)

6 Le changement de variable

Objectif:

• Se ramener à une forme connue, que l'on sait intégrer.

Définition 4 (Matrice Jacobienne)

Soit g une fonction de \mathbb{R}^d dans \mathbb{R}^d .

La matrice jacobienne J de g en x est la matrice as $soci\acute{e}e$ à $g=(g_{1},g_{2},...,g_{d})$ et à $x=(x_{1},...,x_{d})$:

$$J = \begin{pmatrix} \frac{\partial g_1}{\partial x_1}(x) & \frac{\partial g_1}{\partial x_2} & \dots \\ \frac{\partial g_2}{\partial x_1}(x) & \frac{\partial g_2}{\partial x_2} & \dots & \frac{\partial g_2}{\partial x_d} \\ \dots & \dots & \dots \\ \frac{\partial g_d}{\partial x_1}(x) & \dots & \dots \end{pmatrix}$$

Théorème 12 (Changement de variable)

Soit U et V deux ouverts de \mathbb{R}^d et Φ un C^1 difféomorphisme (bijective, C^1 et réciproque C^1) de V sur U et de jacobien J.

Soit f une fonction borélienne définie sur U. On a:

- f sommable $sur\ U$ $ssi\ f \circ \Phi.|J|$ $est\ sommable\ sur\ V$
- $\int_{U} f(y) d\mu(y) = \int_{V} f \circ \Phi(x) . |J(x)| d\mu(x)$

Exemples d'application:

- Exercice 3.1 question 2)
- Exercice 3.7 question 3)

Espaces L^p

Théorème 13 (Inégalité de Hölder)

Soit $1 \leq p \leq +\infty$ et $1 \leq q \leq +\infty$ deux entiers tels que $\frac{1}{p} + \frac{1}{q} = 1$.

 $Si \ f \in L^p \ et \ g \in L^q$

Alors $fg \in L^1$ et $\int |fg| \le (\int |f|^p)^{\frac{1}{p}} (\int |f|^q)^{\frac{1}{q}}$.

Définition 5 (Produit de convolution)

Soit $f \in L^1$ et $g \in L^p$.

Alors, pour presque tout $x \in \mathbb{R}^N$, la fonction $y \to f(x-y)g(y)$ est sommable et on définit :

$$(f * g)(x) = \int_{\mathbb{R}^N} f(x - y)g(y)\lambda(dy)$$

Théorème 14 (Densité des fonctions à support compact indéfiniment dérivables)

Pour Ω ouvert connexe de \mathbb{R}^N . Soit $p < \infty$.

 $\mathcal{D}(\Omega) = ensemble \ fonctions \ \grave{a} \ support \ compact \ indéfiniment$ $d\acute{e}rivables\ sur\ \Omega.$

$$\mathcal{D}(\Omega)$$
 dense dans $L^p(\Omega)$

Exemples d'application:

- Exercice 2.5 question 2)
- Exercice 3.6
- Problème séance 5 question 1)b)

Transformée de Fourier

8.1 Définition et propriétés dans L^1

Définition 6 (Transformée de Fourier)

La transformée de Fourier d'une fonction $f:\mathbb{R}\to\mathbb{C}$ sommable est la fonction $\mathcal{F}f$ définie par :

$$\mathcal{F}f(y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x)e^{-ixy} \lambda(dx)$$

Propriétés 2

 $f,g \ sommables.$

- Si $x \to xf(x)$ sommable alors $\mathcal{F}f$ est C^1 et $(\mathcal{F}f)' =$ $\mathcal{F}(-ixf(x))$.
- Si f C^1 et f' sommable alors $\mathcal{F}(f') = iy\mathcal{F}f$.
- $Si \mathcal{F} f$ sommable alors $f = \bar{\mathcal{F}} \mathcal{F} f$ p.p.
- $\mathcal{F}(f * g) = \sqrt{2\pi} \mathcal{F}(f) \mathcal{F}(g)$

8.2 Transformée de Fourier dans L^2

La transformée de Fourier définie sur $L^1 \cap L^2$ peut se prolonger à L^2 en une **isométrie** (i.e conserve la norme et le produit scalaire) que l'on définit comme étant la transformée de Fourier dans L^2 (de même pour $\bar{\mathcal{F}}$).

Théorème 15 (Théorème d'interversion) Si $f \in L^2$ alors $f = \bar{\mathcal{F}}\mathcal{F}f = \mathcal{F}\bar{\mathcal{F}}f$.

9 Analyse hilbertienne

9.1 Généralités

Définition 7 (Espace de Hilbert)

Un espace de Hilbert est un couple (H, ϕ) où $H \mathbb{C} - ev$ et ϕ produit scalaire hermitien i.e.:

- $\forall y \in H \quad x \to \phi(x,y) \ linéaire$
- $\bullet \ \, \forall x \ \in \ \, H \quad y \ \to \ \, \phi(x,\underline{y}) \ \, \text{anti-lin\'eaire} \ \, i.e. \quad \forall (x,y,z) \ \, \in$ H^3 $\phi(x, \lambda y + \mu z) = \overline{\lambda}\phi(x, y) + \overline{\mu}\phi(x, z)$
- ullet $\forall (x,y) \in H^2$ $\phi(x,y) = \overline{\phi(y,x)}$ (symétrique hermitienne)
- $\forall x \in H \quad \phi(x,x) \ge 0 \ (positive)$
- $\forall x \in H \quad \phi(x,x) = 0 \Longrightarrow x = 0 \ (définie)$

et H est complet pour $||x|| = \sqrt{\phi(x,x)}$.

Propriétés 3 (Egalités, inégalités)

Valables aussi dans un espace préhilbertien.

- $||x + y||^2 = ||x||^2 + ||y||^2 + 2Re(\langle x, y \rangle)$
- $Cauchy\text{-}Schwarz: | < x, y > | \le ||x|| ||y||$
- Identité du parallèlogramme : $||x+y||^2 + ||x-y||^2 = 2 ||x||^2 + 2 ||y||^2$

Théorème 16 (Exemples d'espaces de Hilbert)

 $\mathcal{L}^2(\mathbb{R})$ fonctions de carré sommable. $H^1(\Omega)$ espace de Sobolev.

- L'espace $\mathcal{L}^2(\mathbb{R})$ muni de $\langle f, g \rangle_{\mathcal{L}^2} = \int_{\mathbb{R}} \overline{f(t)} g(t) \lambda(dt)$ est un espace de Hilbert.
- L'espace $H^1(\Omega)$ muni de $\langle f, g \rangle_{H^1} = \langle f, g \rangle_{\mathcal{L}^2} + \langle g \rangle_{\mathcal{L}^2}$ $\nabla f, \nabla g >_{\mathcal{L}^2}$ est un espace de Hilbert.

9.2 Projection

Théorème 17 (Projection sur un convexe fermé) H Hilbert. C convexe fermé de H.

$$\forall x \in H \quad \exists ! c_0 \in C \ tq \quad ||x - c_0|| = \min_{c \in C} ||x - c|| = d(x, C)$$

 c_0 est appelé projeté de x sur C et noté $p_C(x)$.

Remarque 2

Un s.e.v. F est convexe (et même beaucoup plus que ça). De plus, si F est fermé alors le projeté de x sur F existe et est la projection orthogonale de x sur F.

Propriétés 4 (Propriétés de la projection)

H Hilbert. C convexe fermé de H.

- ullet c_0 projeté de x sur C si et seulement si $c_0 \in C$ et $\forall c \in C \, Re(\langle x - c_0, c - c_0 \rangle) \le 0$
- L'application p_C qui à tout x de H associe son projeté sur C est continue (et même 1-lipschitzienne)

9.3 Bases hilbertiennes

Définition 8 (Vocabulaire)

H Hilbert. $(e_n)_{n\in\mathbb{N}}$ famille d'éléments de H.

- Orthonormalité : $(e_n)_{n \in \mathbb{N}}$ famille orthonormale si $\forall (i,j) \in \mathbb{N}$ $\langle e_i, e_j \rangle = \delta_{i,j}$
- Totalité : $(e_n)_{n\in\mathbb{N}}$ famille totale si $\overline{Vect((e_n)_{n\in\mathbb{N}})} = H$ (i.e. tout élément de H peut être approché aussi près que souhaité par une combinaison linéaire des e_n)
- Base hilbertienne : $(e_n)_{n\in\mathbb{N}}$ base hilbertienne de H si famille orthonormale totale de H.

Théorème 18 (Egalités de Parseval) $(e_n)_{n\in\mathbb{N}}$ base Hilbertienne de H. Alors :

- $\forall x \in H$ $x = \sum_{n \in \mathbb{N}} \langle e_n, x \rangle e_n$
- $\forall x \in H$ $||x||^2 = \sum_{n \in \mathbb{N}} |\langle e_n, x \rangle|^2$
- $\forall (x,y) \in H \quad \langle x,y \rangle = \sum_{n \in \mathbb{N}} \overline{\langle e_n, x \rangle} \langle e_n, y \rangle$

10 Compléments ECP+R

10.1 Théorème de Carathéodory

Définition 9 (Pré-mesure)

 ${\mathcal C}$ collection de sous-ensembles de Ω contenant \varnothing .

Une fonction $\tau: \mathcal{C} \to \overline{\mathbb{R}}_+$ est une pré-mesure si $\tau(\varnothing) = 0$.

Définition 10 (Mesure extérieure)

Une fonction $\mu: \mathcal{P}(\Omega) \to \overline{\mathbb{R}}_+$ est une mesure extérieure si :

- $\mu(\varnothing) = 0$
- $Si\ E_1 \subset E_2\ alors\ \mu(E_1) \leq \mu(E_2)$
- $Si(E_i)_{i\in\mathbb{N}}$ suite de $\mathcal{P}(\Omega)$ alors $\mu(\bigcup_i E_i) \leq \sum_i E_i$

Remarque : Une mesure extérieure est définie sur l'ensembles des parties de Ω et non simplement sur une tribu.

Définition 11 (Ensemble mesurable)

Soit μ mesure extérieure. Un ensemble $E\subset \Omega$ est $\mu\text{-}$ mesurable si

 $\forall (A, B) \in \mathcal{P}(\Omega) \ tq \ A \subset E \ et \ B \subset \Omega \backslash E \ \mu(A \cup B) = \mu(A) + \mu(B)$

Théorème 19 (Construction d'une mesure extérieure)

Si au est une pré-mesure sur C alors

 $\mu: E \to \mu(E) = \inf_{\substack{C_i \in \mathcal{C} \\ E \subset \bigcup C_i}} \sum_{i=1}^{\infty} \tau(C_i) est \ une \ mesure \ extérieure.$

Théorème 20 (Extension d'une mesure - Théorème de Carathéodory)

Soit τ pré-mesure.

Soit λ^* mesure extérieure construite à partir de τ par la méthode précédente.

Alors la restriction de λ^* à la tribu des ensembles λ^* mesurables est une extension de τ .

10.2 Unicité d'une mesure

Définition 12 (π -système)

Un π -système est une collection \mathcal{C} de parties de Ω telle que $\forall (A,B) \in \mathcal{C}^2$ $A \cap B \in \mathcal{C}$

Définition 13 (Classe monotone)

Une collection $\mathcal C$ de sous-ensembles de Ω est une classe monotone si :

- $\Omega \in \mathcal{C}$
- Si $A_n \subset A_{n+1}$ alors $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{C}$ (stabilité par limite croissante)
- $Si\ A \subset B\ alors\ B \setminus A \in \mathcal{C}\ (stabilité\ par\ différence)$

Théorème 21 (Lemme des classes monotones)

 $Si \ C \ est \ un \ \pi$ -système

Alors la plus petite classe monotone qui contient C est la tribu engendrée par C.

Théorème 22 (Unicité d'une mesure)

Soit μ et ν deux mesures sur (Ω, \mathcal{T}) et \mathcal{C} classe d'éléments de \mathcal{T} contenant Ω . Si

- ullet μ et ν sont égales sur $\mathcal C$
- C est un π -système
- $\sigma(\mathcal{C}) = \mathcal{T}$

Alors $\mu = \nu \ sur \ \mathcal{T}$.

Exemple: Construction de la mesure de Borel

- On considère la pré-mesure τ définie sur l'ensemble \mathcal{C} des intervalles de \mathbb{R} telle que $\tau((a,b)) = b-a$ (où a<b).
- On définit la mesure extérieure λ^* par

$$\forall A \subset \mathbb{R} \quad \lambda^*(A) = \inf_{\substack{(a_n, b_n) \in \mathcal{C} \\ A \subset \bigcup_{n \in \mathbb{N}} (a_n, b_n)}} \sum_{n=0}^{\infty} (b_n - a_n)$$

• On appelle alors mesure de Borel la mesure λ qui est la restriction de λ^* à $\mathcal{B}(\mathbb{R})$ (et le prolongement de τ à $\mathcal{B}(\mathbb{R})$). Elle est unique.

10.3 Théorème de Lebesgue-Radon-Nikodym

Définition 14 (Absolue continuité)

Soit μ et ν 2 mesures sur \mathcal{T} .

 μ est absolument continue par rapport à ν , noté $\mu << \nu$, si pour tout A dans \mathcal{T} , $\nu(A)=0\Longrightarrow \mu(A)=0$.

Définition 15 (Mesure concentrée)

 μ concentrée sur A si $\forall E \in \mathcal{T} \ \mu(E) = \mu(E \cap A)$.

Définition 16 (Mesures étrangères)

 μ et ν sont étrangères si il existe $A,B \in \mathcal{T}$ tels que $A \cap B = \emptyset$, μ concentrée sur A et ν concentrée sur B. On note $\mu \perp \nu$.

Définition 17 (Mesure finie et mesure σ-finie) • μ est finie si $\int_{\Omega} d\mu < \infty$

• μ est σ -finie si $\Omega = \bigcup_{n \in \mathbb{N}} E_n$ et $\mu(E_n) < \infty$

Théorème 23 (Théorème de Lebesgue-Radon-Nikodym) Soit μ mesure σ -finie sur (Ω, \mathcal{T}) . Soit ν mesure finie sur (Ω, \mathcal{T}) . Alors:

- Il existe un unique couple (ν_a, ν_s) de mesures telles que $\nu = \nu_a + \nu_s$ avec $\nu_a << \mu$ et $\nu_s \perp \mu$. Cette décomposition est appelée décomposition de Lebesgue.
- Il existe une unique fonction $h \in L^1$ telle que $\forall A \in \mathcal{T}$ $\nu_a(A) = \int_E h d\mu$. h est appelée dérivée de Radon-Nikodym de ν_a par rapport à μ