Family Name:	
Given Name:	
Student ID:	

University of Alberta Faculty of Science

Fall 2000

CMPUT 291 – A1 File Structures and Data Management

Duration: 2 Hours No Aids Allowed

QUESTION	VALUE	SCORE
1	14	
2	27	
3	10	
4	17	
5	16	
6	16	
TOTAL	100	

Student ID:

Question 1

[14 marks in total] TRUE or FALSE: 2 marks for each correct answer; -2 marks for each incorrect answer; 0 mark if no choice is selected.

a) In an ER diagram, the relationship between an owner entity set and a weak entity set can only be one-to-many with the total participation of the weak entity set.

() TRUE () FALSE

b) Integrity constraints can be inferred for a given relational schema by examining its instances.

() TRUE () FALSE

c) The result of a SQL statement cannot have duplicates.

() TRUE () FALSE

d) The SQL query "SELECT name FROM customers WHERE city <> 'Ottawa'" will not list any customer whose city field is NULL.

() TRUE () FALSE

e) Armstrong axioms are complete meaning that for a given set F of FD's the axioms can only generate functional dependencies that are logically implied from F.

() TRUE () FALSE

f) Every BCNF relation is in 3NF.

() TRUE () FALSE

g) For equality queries, B+ trees are faster than hash-based indexes in the average case.

() TRUE () FALSE

CMPUT 291 / A1	Final Exam - Fall 2000	Page 3 of 8
Student name:	Student	ID.

Question 2

[27 marks in total] The following schema describes information about service histories of vehicles (for example in a garage). A tuple (v, t, s, d, c) in **services** means that the vehicle with VIN v of type t is serviced with service type s on day d and the service is charged c dollars and cents. The **vehicles** relation gives for each vehicle of type t, its make (e.g. Honda), model (e.g. Accord) and the year of the vehicle.

services (vin, vtype, srv-type, date, charge) vehicles (vtype, make, model, year)

a) [6 marks] Give a SQL statement that creates view **Service-History**(make, model, srv-freq, avg-charge) which contains for every make and model the number of services and the average service charge.

b) [5 marks] Using view Service-History, give a SQL statement that lists the make and the model of vehicles with the fewest number of services.

Student ID: _____

c) [5 marks] Using view Service-History, give a SQL statement that lists the number of services for every make of vehicles.

d) [5 marks] Give a SQL statement that lists service types that have never been charged over \$100.

e) [6 marks] Give a SQL statement that lists for every make and model of vehicles the most common service type.

CMP	UT	291	1	A 1
------------	----	-----	---	------------

Final Exam - Fall 2000

Page 5 of 8

Student name:

Student ID: _

Question 3

[10 marks in total] Using the schema given in Question 2, explain in plain English what the following relational algebra queries compute.

a) [5 marks] $\boldsymbol{p}_{srv-type}(\boldsymbol{s}_{date \ge 1/12/1999 \ \land \ date \le 31/12/1999} services)$

b) [5 marks] $\boldsymbol{p}_{make, \text{mod } el, year}(vehicles \triangleright \triangleleft (\boldsymbol{p}_{vtype}vehicles - \boldsymbol{p}_{vtype}(\boldsymbol{s}_{date \ge 1/1/2000} services))$

Question 4

[17 marks in total] Consider relation R with attributes ABCDE and functional dependencies $\{AB \rightarrow D, BC \rightarrow E\}$.

a) [3 marks] Show that ABC is a key.

Student ID:

Student name:

b) [3 marks] How many keys does the relation have? Justify.

c) [3 marks] Is the relation in BCNF? Explain.

d) [3 marks] Is the relation in 3NF? Explain.

e) [5 marks] Give a BCNF decomposition of the relation.

Student name:

Student ID: _

Question 5

[16 marks in total] Consider a B+ tree in which an internal node can hold up to 3 keys and a leaf can hold up to 2 records. Starting from an empty tree, perform the following operations in the given order (show the final tree in each part).

- a) [3 marks] Insert 33*, 44*.
- b) [3 marks] Insert 65*, 25*.

c) [3 marks] Insert 100*, 50*.

d) [3 marks] Insert 60*.

e) [4 marks] Delete 25*, 35*.

Student ID: _

Question 6

[**16 marks in total**] Starting from an empty extendible hash file, perform the following operations in the given order. Show the result including all indicators after each part. Assume a page can hold up to 3 records.

- a) [3 marks] Insert 10*, 18*, 25*.
- b) [3 marks] Insert 36*, 9*.

c) [3 marks] Insert 8*, 7*.

d) [3 marks] Insert 26*, 3*.

e) [4 marks] Delete 8*, 36*.