EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos

Duração da prova: 120 minutos Época Especial

2000

PROVA ESCRITA DE MATEMÁTICA

Primeira Parte

- As nove questões desta primeira parte são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas a letra correspondente à alternativa que seleccionar para cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- Não apresente cálculos.
- **1.** O conjunto dos zeros de uma função g, de domínio \mathbb{R} , é $\{1,2\}$. Seja h a função, de domínio \mathbb{R} , definida por h(x)=g(x). $(x-3)^2$ Quais são os zeros da função h?
 - (A) 1, 2 e 3

(B) 1, 4 e 9

(C) $1, \sqrt{3}$ e 4

- **(D)** $-\sqrt{3}$, 1, $\sqrt{3}$ e 2
- **2.** Indique o valor de $\lim_{x \to 0^+} \frac{\ln x}{\sin x}$
 - (A) $-\infty$
- **(B)** 0
- **(C)** 1
- (D) $+\infty$

- 3. Na figura estão representados, em referencial o. n. Oxyz:
 - ullet o ponto A, de coordenadas (0,0,4)
 - a superfície esférica de equação $x^2 + y^2 + z^2 = 9$
 - a circunferência que resulta da intersecção dessa superfície esférica com o plano $\,xOy\,$

PUm ponto percorre essa circunferência, dando uma completa.

Considere a função f que faz corresponder, à **abcissa** do ponto P, a **distância** de P a A.

Qual dos seguintes é o gráfico da função f?

(A)

(C)

(D)

4. Na figura junta está parte da representação gráfica de uma certa função g , de domínio \mathbb{R} .

> Em qual das figuras seguintes está parte da representação gráfica da função h, definida em $\mathbb R$ h(x) = -g(x) + 1?

(A)

(B)

(C)

(D)

5. Considere, num referencial o.n. xOy, uma elipse cujo eixo maior está contido no eixo Ox.

Qual das seguintes equações pode definir esta elipse?

(A)
$$\frac{x^2}{4} + (y-2)^2 = 1$$

(B)
$$\frac{(x-2)^2}{4} + y^2 = 1$$

(C)
$$x^2 + \frac{(y-2)^2}{4} = 1$$

(D)
$$(x-2)^2 + \frac{y^2}{4} = 1$$

6.	Num referencial o.n. $Oxyz$, considere os pontos $P(1,0,0)$, $Q(0,1,0)$ e $R(0,0,1)$. Qual das condições seguintes define uma recta perpendicular ao plano PQR ?					
	(A) $x = 1 \land y = 1 \land z = 1$					
	(B) $x = 1 \land y = 1$					
	(C) $x-1=y-2=z-3$					
	(D) $x + y + z = 1$					
7.	Num referencial o.n. $Oxyz$, a condição					
	$(x-1)^2 + (y-1)^2 + (z-1)^2 = 25 \land x = y$					
	define					

	defin	e							
	(A)	uma circunferênd	cia	(B)	um ponto				
	(C)	um segmento de	recta	(D)	o conjunto	o vazio			
8.	Um f	rigorífico tem cinc	o prateleiras.						
	Pretende-se guardar, nesse frigorífico, um iogurte, um chocolate e um queijo. De quantas maneiras diferentes se podem guardar os três produtos no frigorífic								
	sabendo que devem ficar em prateleiras distintas?								
	(A)	5C_3	(B) ${}^{5}A_{3}$	(C)	5^3	(D)	3^5		

Seja $\,a\,$ o maior número dessa linha. Qual é o valor de $\,a\,$?

No Triângulo de Pascal, existe uma linha com onze elementos.

9.

(A) $^{10}C_5$ (B) $^{10}C_6$ (C) $^{11}C_5$ (D) $^{11}C_6$

Segunda Parte

Nas questões desta segunda parte apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Atenção: quando não é indicada a aproximação que se pede para um resultado, pretende-se sempre o valor exacto.

1. Considere a função g, de domínio \mathbb{R} , definida por

$$g(x) = \begin{cases} \frac{x+1}{x} & \text{se } x < 0 \\ \frac{1}{2} & \text{se } x = 0 \\ \frac{-\sin x}{2x} & \text{se } x > 0 \end{cases}$$

- 1.1. Utilizando métodos exclusivamente analíticos, resolva as duas alíneas seguintes:
 - **1.1.1.** Estude a função g quanto à continuidade no ponto 0. (Deve indicar, justificando, se a função g é contínua nesse ponto, e no caso de não ser, se se verifica a continuidade à esquerda, ou à direita, nesse mesmo ponto.)
 - **1.1.2.** Considere a função h, de domínio $\mathbb{R}\setminus\{0\}$, definida por $h(x)=\frac{1}{3\,x}$ Mostre que, no intervalo $[-1\,,\,1000\,\pi]$, os gráficos de g e de h se intersectam em 1001 pontos.
- **1.2.** Dos 1001 pontos referidos na alínea anterior, seja A o que tem menor **abcissa positiva**. Utilizando a sua calculadora, determine as coordenadas desse ponto (apresente os valores na forma de dízima, com aproximação às décimas).

2. Em Malmequeres de Baixo, povoação com **cinco mil** habitantes, ocorreu um acidente, que foi testemunhado por algumas pessoas.

Admita que, t horas depois do acidente, o número (expresso em **milhares**) de habitantes de Malmequeres de Baixo que sabem do ocorrido é, aproximadamente,

$$f(t) = \frac{5}{1 + 124 e^{-0.3t}}, \quad t \ge 0$$

- **2.1.** Que percentagem da população de Malmequeres de Baixo testemunhou o acidente?
- **2.2.** Recorrendo exclusivamente a processos analíticos, estude a função f quanto à monotonia e quanto à existência de assimptotas ao seu gráfico. Interprete as conclusões a que chegou, no contexto do problema.
- **3.** O *AUTO-HEXÁGONO* é um stand de venda de automóveis. Num certo dia, este stand tem para exibição seis automóveis diferentes, de **três tipos** (dois utilitários, dois desportivos e dois comerciais).
 - **3.1.** Este stand, de forma hexagonal, tem uma montra que se situa num dos lados do hexágono (ver figura).

Pretende-se arrumar os seis automóveis, de tal forma que cada automóvel fique junto de um vértice do hexágono.

Supondo que se arrumam os seis automóveis ao acaso, qual é a probabilidade de os dois desportivos ficarem junto dos vértices que se encontram nas extremidades da montra? Apresente o resultado na forma de fracção irredutível.

3.2. O gerente do stand pretende oferecer dois automóveis a uma instituição. Supondo que os dois automóveis vão ser escolhidos ao acaso, de entre os seis automóveis em exibição, qual é a probabilidade de os dois automóveis seleccionados serem de **tipos diferentes**? Apresente o resultado na forma de fracção irredutível.

4. Num referencial o.n. Oxyz, considere um cone cuja base está contida no plano yOz e cujo vértice pertence ao semieixo positivo Ox.

A base tem raio 3 e centro em O, origem do referencial.

A recta r, de equação $(x,y,z)=(0,3,0)+k\,(3,\,-1,0),\,k\in\mathbb{R}$, contém uma geratriz do cone.

- **4.1.** Mostre que a altura do cone é 9.
- **4.2.** Determine uma equação do plano que contém o vértice do cone e é perpendicular à recta r.
- **4.3.** Determine a área do polígono que resulta da intersecção do cone com o plano de equação $\,z=0.\,$

FIM

COTAÇÕES

Primeira Parte	81
Cada resposta certa Cada resposta errada Cada questão não respondida ou anulada	- 3
Nota: Um total negativo nesta parte da prova vale 0 (zero) pontos.	
Segunda Parte	119
1. 24 1.1.1. 11 1.1.2. 13 1.2. 12	. 36
2.	. 25
3.	. 22
4. 12 4.2. 12 4.3. 12	. 36
TOTAL	200