NASA TECHNICAL NOTE

LOAN COPY: RETURN O AFWL (DOLUM KARTLAND AFE SERVICE S

A MONTE CARLO ERROR ANALYSIS
PROGRAM FOR NEAR-MARS, FINITE-BURN,
ORBITAL TRANSFER MANEUVERS

by Richard N. Green, Lawrence H. Hoffman, and George R. Young Langley Research Center Hampton, Va. 23365

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . FEBRUARY 1972

1. Report No. NASA TN D-6598	2. Government Accession	on No.	3. Recipient's Catalog				
			3. Recipient's Catalog	No.			
4. Title and Subtitle A MONTE CARLO ERROR AN	ALYSIS PROGRAM FOR		5. Report Date February 1972				
NEAR-MARS, FINITE-BURN, ORBITAL TRANSFER			6. Performing Organization Code				
MANEUVERS							
7. Author(s) Richard N. Green, Lawrence H. Hoffman, and George R. Young 9. Performing Organization Name and Address NASA Langley Research Center Hampton, Va. 23365 12. Sponsoring Agency Name and Address			8. Performing Organization Report No. L-7978				
			10. Work Unit No. 815-10-07-01 11. Contract or Grant No.				
						13. Type of Report and Period Covered Technical Note	
						National Aeronautics and Space Washington, D.C. 20546	
			5. Supplementary Notes				
tial orbit is targeted to the deby two covariance matrices of gram is to relate these error. The equations of motion vering with constant thrust arthrust vector is allowed to rejectory is characterized by sidefined, by the desired target. The program is applica	of state deviations is to the resulting of a for the transfer the distribution of the transfer that the distribution of the transfer that the distribution of the transfer that the transfer transfer that the transfer transfer that the transfer tra	and tracking errors errors in the final errajectory are those in the neighborhood ha constant pitch reers and the final or	s. The function orbit. e of a spacecraft d of a single body rate. The transfirbit is defined, o	of the pro- maneu- y. The er tra- or partially			
maneuver (ellipse to ellipse), (ellipse to hyperbola), and de	fly-by maneuver						
7. Key Words (Suggested by Author(s))	-	18. Distribution Statement					
Orbit transfer		Unclassified — Unlimited					
Trajectory optimization							

A MONTE CARLO ERROR ANALYSIS PROGRAM FOR NEAR-MARS, FINITE-BURN, ORBITAL TRANSFER MANEUVERS

By Richard N. Green, Lawrence H. Hoffman, and George R. Young Langley Research Center

SUMMARY

A computer program has been developed which performs an error analysis of a minimum-fuel, finite-thrust, transfer maneuver between two Keplerian orbits in the vicinity of Mars. The method of analysis is the Monte Carlo approach where each off-nominal initial orbit is targeted to the desired final orbit. The errors in the initial orbit are described by two covariance matrices of state deviations and tracking errors. The function of the program is to relate these errors to the resulting errors in the final orbit.

The equations of motion for the transfer trajectory are those of a spacecraft maneuvering with constant thrust and mass-flow rate in the neighborhood of a single body. The thrust vector is allowed to rotate in a plane with a constant pitch rate. The transfer trajectory is characterized by six control parameters and the final orbit is defined, or partially defined, by the desired target parameters.

The program is applicable to the deboost maneuver (hyperbola to ellipse), orbital trim maneuver (ellipse to ellipse), fly-by maneuver (hyperbola to hyperbola), escape maneuvers (ellipse to hyperbola), and deorbit maneuver.

INTRODUCTION

The effort of the United States to land an unmanned capsule on Mars is a very complex mission. The mission profile of Project Viking contains two or three midcourse maneuvers en route, a Mars orbit insertion maneuver, numerous orbital trim maneuvers for planetary photoreconnaissance and positioning of the spacecraft over the landing site, and finally a deorbit maneuver. The navigation and guidance problems are complicated further by the launch of a second spacecraft within a 50-day period.

For a mission of this complexity it is necessary to determine the sensitivity of the trajectory with respect to error sources which requires the establishment of the expected magnitude of the various maneuvers.

This paper deals with the error analysis of the near-Mars maneuvers (those within the sphere of influence of Mars). Of primary importance is the analysis of the Mars orbit insertion maneuver. This analysis is necessary in order to determine the orbit errors after the insertion maneuver, to calculate velocity budgets, and to determine the range of control variables for design purposes.

Several assumptions about planetary orbital insertion maneuvers have been adopted in the past to simplify the error analysis. They are as follows: (a) the maneuvers can be analyzed impulsively, (b) the encounter errors can be mapped through the maneuvers using linear propagation theory, and (c) the encounter errors can be sufficiently defined by using the impact plane and time-of-flight parameters. The validity of these assumptions is questionable for the Viking orbital insertion maneuver due to the long burn time required and the large approach errors caused by a long interplanetary trip time. Therefore, a computer program, VEAMCOP (Viking Error Analysis Monte Carlo Program), was developed to remove these assumptions from the analysis. The basic targeter for VEAMCOP is VITAP (Viking Targeting Analysis Program) given in reference 1. Although the mathematical structure of the program is quite general and therefore applicable to maneuvers near any planet, VEAMCOP was developed specifically for near-Mars maneuvers and mainly for the orbit insertion maneuver. The maneuvers considered in the analysis are minimum-fuel, finite-burn transfers between two conics. The guidance law allows for the targeting of the spacecraft to a final conic that is specified by certain constraints. In addition, the law includes an optimum maneuver in the sense that the fuel required for the transfer is a minimum.

The function of the program is to relate the errors in the initial orbit and errors in the thrusting maneuver to the resulting errors in the final orbit. The statistics of the errors in the final orbit are found by use of the Monte Carlo Method. First a sample estimate of the initial orbit is randomly generated from the statistics of the initial orbit. The random estimate is then targeted to the desired final orbit. However, due to the lack of knowledge of the actual initial orbit and due to maneuver execution errors, the final orbit will be in error. The Monte Carlo Method of repeatedly sampling the initial errors and calculating the final errors provides the statistics of the errors in the final orbit.

SYMBOLS

- a semimajor axis, kilometers
- a(t) magnitude of thrust acceleration at time t, kilometers/second²

B	vector from the center of the planet perpendicular to the incoming hyper- bolic asymptote, kilometers			
₿̂₽	targeting parameter (component of \vec{B} in the \hat{R} direction), kilometers			
₿ŶŤ	targeting parameter (component of $\stackrel{\rightarrow}{B}$ in the $\stackrel{\bf \hat{T}}{}$ direction), kilometers			
С	covariance matrix			
D	Cartesian covariance matrix of actual state deviations from the nominal state			
Ε(ξ)	expected value of ξ			
e	eccentricity			
F	point which defines the computed initial direction of thrust (see fig. 6(a))			
G	point which defines the actual initial direction of thrust (see fig. 6(a))			
i	inclination, degrees			
K	number of velocity counting accelerometer pulses before thrust is terminated			
M	dimension of vector			
m	mass, kilograms			
m(t)	mass of spacecraft at time t, kilograms			
N_S	number of samples			
N(c,d)	normal density function with mean c and variance d			
Ñ	unit vector in direction of ascending node			
î,î,ŵ	spacecraft coordinate system where $\hat{\mathbf{V}}$ points in direction of velocity, $\hat{\mathbf{W}}$ is perpendicular to the orbital plane in direction of angular momentum vector, and $\hat{\mathbf{N}}$ completes right-handed system			

n unit vector normal to plane of thrust

 \hat{P} , \hat{Q} , \hat{W} coordinate system (see fig. 6(b))

p,q,w coordinates in \hat{P},\hat{Q},\hat{W} -system

R random number from normal distribution with mean 0 and variance 1

 $\hat{\mathbf{R}} \equiv \hat{\mathbf{S}} \times \hat{\mathbf{T}}$

r radius from center of planet, kilometers

 ${\bf r}_a$ radius of apoapsis, kilometers

 r_{p} radius of periapsis, kilometers

\$ unit vector parallel to incoming hyperbolic asymptote

T Cartesian covariance matrix of tracking errors

T unit vector in planet equator perpendicular to \$\hat{S}\$

t time, seconds

t_b time duration of thrusting maneuver, seconds

U(f,g) uniform density function defined between f and g

u random number from uniform distribution defined on interval $\begin{bmatrix} 0,1 \end{bmatrix}$

V integral of acceleration due to thrust

V_a actual velocity gained, kilometers/second (see eq. (6))

V_b velocity counting accelerometer bias, meters/second

 V_{tbg} velocity-to-be-gained, kilometers/second (see eq. (5))

 V_{∞} hyperbolic excess velocity, kilometers/second

v velocity increment equivalent to one pulse of velocity counting accelerometer, meters/second

v_{cal} calibrated value of v, meters/second

 \hat{X},\hat{Y},\hat{Z} rectangular Cartesian base vectors

 \vec{X}_a actual Cartesian state of spacecraft

 $\vec{x}_d^R = \vec{x}_n + \Delta \vec{x}_d^R$

 \vec{x}_e estimate of \vec{x}_a

 \vec{X}_n nominal Cartesian state of spacecraft

x,y,z rectangular Cartesian coordinates, kilometers

 α,β,δ angles defining initial direction and plane of thrust, degrees (see fig. 1)

 γ, ρ, ψ random variables, degrees (see fig. 6(a))

 $\Delta \vec{x}_d \equiv \vec{x}_a - \vec{x}_n$

 $\Delta \vec{\mathbf{X}}_e \equiv \vec{\mathbf{X}}_e - \vec{\mathbf{X}}_n$

 $\Delta \overrightarrow{x}_t \equiv \vec{x}_e - \vec{x}_a$

 ϵ error in the calibration of the velocity counting accelerometer, meters/second

 $ec{\eta}^{ ext{R}}$ random vector in principal axis system

Θ rotation matrix

 θ, ϕ angles of rotation, degrees (see fig. 6(b))

 $\dot{\theta}$ thrusting pitch rate, degrees/second (see fig. 1)

λ eigenvalues

 μ gravitational constant of planet, kilometers 3 /second 2

true anomaly, degrees ν true anomaly at start of maneuver, degrees $\nu_{\rm o}$ arbitrary variable ξ azimuth angle, degrees Σ standard deviation of random variable (symbols of variables will be used σ as subscripts to refer to the deviations of specific parameters) magnitude of thrust, kN $\boldsymbol{\tau}$ Φ matrix of eigenvectors longitude of ascending node, degrees Ω argument of periapsis, degrees ω Subscripts: D-matrix D Т T-matrix i,j,k indicesf final n nominal initial condition o rectangular Cartesian coordinates x,y,zfirst, second, etc. 1,2,...Superscripts: j,k indices 6

→ vector

R random

→R random vector

— mean value

T matrix transpose

onit vector

differentiation with respect to time

* specific value

modified parameters

Notation:

distributed as

 $||\xi||$ denotes integer part of ξ

 $P_r[X]$ probability of X occurring

Δ increment

ANALYSIS

The problem considered in this paper is that of relating the statistics of the errors in the initial orbit and errors in the maneuver to the statistics of the errors in the final orbit where the final orbit results from a minimum fuel, finite burn, orbital transfer. First, the physics of the problem are formulated resulting in a set of three second-order differential equations which represent the equations of motion of the thrusting maneuver. Next, the targeting problem is considered which leads to the numerical values of the six control parameters that characterize the transfer from the initial orbit to the desired final orbit. The statistics of the initial orbit and the maneuver execution errors are then discussed. The Monte Carlo Method of analysis follows which consists of generating a

random sample of the initial orbit, targeting this sample to the desired final orbit, and computing the perturbed final orbit which results from errors in the initial orbit and execution errors. This sequence is repeated many times and the statistics of the errors in the final orbit are formulated.

Equations of Motion

The equations of motion for the transfer trajectory are those of a spacecraft maneuvering with constant thrust τ and mass-flow rate \dot{m} in the neighborhood of a single body. If the mass of the spacecraft at the start of the maneuver is m_0 , then the mass at time t is given by

$$m(t) = m_0 + \dot{m}t$$

and the magnitude of the acceleration due to thrust by

$$a(t) = \frac{\tau}{m_0 + \dot{m}t}$$

The thrust vector is allowed to rotate in a plane with a constant pitch rate $\dot{\theta}$ so that the transfer trajectory is characterized by six control parameters α , β , δ , $\dot{\theta}$, t_b , ν_0 (see fig. 1). The orientation of the plane of thrust relative to an inertial \hat{X},\hat{Y},\hat{Z} -coordinate

Figure 1.- Sketch of coordinate system and angles used in equations of motion.

system is defined by the two angles α and β . At the start of the maneuver the thrust vector is at an angle δ from the $\hat{\mathbf{X}},\hat{\mathbf{Y}}$ plane and rotates in the α,β plane at a rate $\hat{\boldsymbol{\theta}}$ until the burn is terminated at $t=t_b$. The direction cosines of the thrust vector at time t are therefore given by

$$\cos(\delta + \dot{\theta}t)\cos\alpha - \sin(\delta + \dot{\theta}t)\sin\alpha\cos\beta$$
$$\cos(\delta + \dot{\theta}t)\sin\alpha + \sin(\delta + \dot{\theta}t)\cos\alpha\cos\beta$$
$$\sin(\delta + \dot{\theta}t)\sin\beta$$

The assumed trajectory model is two-body motion plus an acceleration due to thrust and is defined by the equations of motion

$$\ddot{\mathbf{x}} = -\frac{\mu \mathbf{x}}{\mathbf{r}^3} + \mathbf{a}(\mathbf{t}) \left[\cos(\delta + \dot{\theta}\mathbf{t}) \cos \alpha - \sin(\delta + \dot{\theta}\mathbf{t}) \sin \alpha \cos \beta \right]$$

$$\ddot{\mathbf{y}} = -\frac{\mu \mathbf{y}}{\mathbf{r}^3} + \mathbf{a}(\mathbf{t}) \left[\cos(\delta + \dot{\theta}\mathbf{t}) \sin \alpha + \sin(\delta + \dot{\theta}\mathbf{t}) \cos \alpha \cos \beta \right]$$

$$\ddot{\mathbf{z}} = -\frac{\mu \mathbf{z}}{\mathbf{r}^3} + \mathbf{a}(\mathbf{t}) \left[\sin(\delta + \dot{\theta}\mathbf{t}) \sin \beta \right]$$

where

$$a(t) = \frac{\tau}{m_0 + \dot{m}t}$$

 $r = (x^2 + y^2 + z^2)^{1/2}$

The initial conditions for the equations of motion are derived from the knowledge of the initial orbit plus the control parameter ν_0 which denotes the true anomaly on the orbit at the start of the maneuver. To conserve computer time the equations of motion are "integrated" by a truncated power series expansion in time (see appendix of ref. 1).

Targeting Problem

The guidance law requires that the control parameters be determined such that the fuel is minimized subject to the requirement that the final orbit satisfies certain constraints. These constraints might consist of requiring the final orbit to have a specific orientation, period, and so forth. Actually, the constraints are chosen from a set of 20 possible target parameters (ref. 1). Since the maneuver is defined by up to six control parameters, at most six constraints can be satisfied. For the fuel to be minimized, the number of constraints must be less than the number of control parameters. The targeting problem, then, is to determine the set of control parameters which satisfy the

constraints imposed on the final orbit and minimize the fuel required for the transfer maneuver. Basically, the targeting involves the solution of a constrained minimization problem by use of constant Lagrange multipliers and the Newton-Raphson iteration technique. The targeter for VEAMCOP is VITAP (ref. 1).

Statistics of the Problem

The statistics of the errors in the initial orbit are defined by two covariance matrices. In the absence of all errors the spacecraft would proceed along the nominal trajectory. However, due to previous perturbations and error sources, the actual path of the spacecraft will not be the nominal trajectory but a neighboring trajectory. This deviation from the nominal trajectory is assumed Gaussian with mean 0 so that the statistics of the actual trajectory can be completely defined by a six-dimensional Cartesian covariance matrix D in position and velocity. For a single off-nominal trajectory, however, the actual state of the spacecraft will not be known. It is assumed that the spacecraft has been tracked and that a filtering process has been used to estimate or predict the actual state of the spacecraft at some time. By the very nature of an estimate it will be in error. Several factors affect the accuracy of the estimate, such as the observability of the spacecraft and the accuracy of the observations. Statistically, the error in the estimate can be defined by a six-dimensional Cartesian covariance matrix in position and velocity. In order to define the matrices T and D it is first necessary to define the various types of trajectory perturbations. The actual state deviation $\Delta \vec{X}_d$ and the estimate of this deviation $\Delta \vec{X}_e$ are related by (see fig. 2)

$$\Delta \vec{\mathbf{x}}_e = \Delta \vec{\mathbf{x}}_d + \Delta \vec{\mathbf{x}}_t \tag{1}$$

where

$$\Delta \vec{x}_e \equiv \vec{x}_e - \vec{x}_n$$

$$\Delta \vec{x}_d \equiv \vec{x}_a - \vec{x}_n$$

$$\Delta \vec{x}_t \equiv \vec{x}_e - \vec{x}_a$$

Here $\Delta \vec{X}_t$ is the error in obtaining the estimate of the trajectory. With these definitions the matrices D and T can now be defined. As stated earlier D is a six-dimensional covariance matrix describing the statistics of the actual deviations from the nominal or

$$\mathbf{D} = \mathbf{E} \left[\Delta \vec{\mathbf{x}}_d \ \Delta \vec{\mathbf{x}}_d^T \right] = \mathbf{E} \left[\left(\vec{\mathbf{x}}_a - \vec{\mathbf{x}}_n \right) \left(\vec{\mathbf{x}}_a - \vec{\mathbf{x}}_n \right)^T \right]$$

Figure 2.- Sketch of trajectories.

Likewise T is a six-dimensional matrix describing the statistics of the tracking errors, or

$$\mathbf{T} \equiv \mathbf{E} \left(\Delta \vec{\mathbf{X}}_t \ \Delta \vec{\mathbf{X}}_t^T \right) = \mathbf{E} \left[\left(\vec{\mathbf{X}}_e \ - \ \vec{\mathbf{X}}_a \right) \! \left(\vec{\mathbf{X}}_e \ - \ \vec{\mathbf{X}}_a \right)^T \right]$$

Since D is the covariance of $\Delta \vec{x}_d$ and T is the covariance of $\Delta \vec{x}_t$, a sample estimate of the state deviation $\Delta \vec{x}_e$ could be formed by adding a random sample from D to a random sample from T (see eq. (1)). However, this implies that $\Delta \vec{x}_d$ and $\Delta \vec{x}_t$ are uncorrelated which is not the case. It is shown in reference 2 (and used in ref. 3) that for an optimal estimate $E(\Delta \vec{x}_e \Delta \vec{x}_t^T) = O$ when $\Delta \vec{x}_e \equiv \Delta \vec{x}_d + \Delta \vec{x}_t$. That is, the error in the estimate is uncorrelated with the estimate, thus the covariance between $\Delta \vec{x}_d$ and $\Delta \vec{x}_t$ is

$$E\left(\Delta \vec{\mathbf{x}}_{d} \ \Delta \vec{\mathbf{x}}_{t}^{T}\right) = E\left[\left(\Delta \vec{\mathbf{x}}_{e} - \Delta \vec{\mathbf{x}}_{t}\right) \Delta \vec{\mathbf{x}}_{t}^{T}\right]$$

$$= E\left(\Delta \vec{\mathbf{x}}_{e} \ \Delta \vec{\mathbf{x}}_{t}^{T} - \Delta \vec{\mathbf{x}}_{t} \ \Delta \vec{\mathbf{x}}_{t}^{T}\right)$$

$$= -T \tag{2}$$

¹ The assumption that $\Delta \vec{x}_d$ and $\Delta \vec{x}_t$ are uncorrelated is commonly used in Monte Carlo analysis; however, the assumption is incorrect. To the authors' knowledge the correlation between $\Delta \vec{x}_d$ and $\Delta \vec{x}_t$ was first derived for an optimal estimate in 1962 by researchers at Ames Research Center (ref. 3).

An expression for the covariance of $\Delta \vec{x}_e$ can now be found. From equations (1) and (2)

$$E\left(\Delta \vec{\mathbf{x}}_{e} \ \Delta \vec{\mathbf{x}}_{e}^{T}\right) = E\left[\left(\Delta \vec{\mathbf{x}}_{d} + \Delta \vec{\mathbf{x}}_{t}\right)\left(\Delta \vec{\mathbf{x}}_{d} + \Delta \vec{\mathbf{x}}_{t}\right)^{T}\right]$$

$$= E\left(\Delta \vec{\mathbf{x}}_{d} \ \Delta \vec{\mathbf{x}}_{d}^{T} + \Delta \vec{\mathbf{x}}_{t} \ \Delta \vec{\mathbf{x}}_{d}^{T} + \Delta \vec{\mathbf{x}}_{d} \ \Delta \vec{\mathbf{x}}_{t}^{T} + \Delta \vec{\mathbf{x}}_{t} \ \Delta \vec{\mathbf{x}}_{t}^{T}\right)$$

$$= D - T \tag{3}$$

Therefore, a random sample of the estimate $\Delta \vec{X}_e^R$ can be generated from D-T. A random error in the estimate $\Delta \vec{X}_t^R$ can then be generated from T independent of the choice of $\Delta \vec{X}_e^R$ since $E(\Delta \vec{X}_e \Delta \vec{X}_t^T) = [0]$. The random state deviation vector is given by equation (1) as

$$\Delta \vec{x}_d^R = \Delta \vec{x}_e^R - \Delta \vec{x}_t^R$$

During the Monte Carlo process, the random estimate of the initial orbit is targeted to the final orbit which produces a new set of control parameters. These controls are then applied to the actual initial orbit $(\vec{x}_a^{\ R} = \vec{x}_n + \Delta \vec{x}_d^{\ R})$ to establish the final orbit. This final orbit, however, will be in error because the control parameters were calculated with the estimate and applied to the actual. In other words, the error in the estimate introduces errors into the final orbit.

Also contributing to the errors in the final orbit are execution errors and the uncertainty in the spacecraft parameters. The control parameters α , β , δ , $\dot{\theta}$, $t_{\rm b}$, $\nu_{\rm O}$ cannot be applied or executed exactly as computed because the direction of the thrust will be slightly different than desired, the thrust vector will rotate faster or slower than computed, and so forth. All of these variations will perturb the final orbit. Since the spacecraft will be alined to some arbitrary reference system such as a Sun-Canopus system, an attitude maneuver will be performed to establish the computed direction and plane of thrust which are defined by α , β , and δ . As mentioned, this maneuver will be in error resulting in improper alinement. Not knowing the actual attitude maneuver, it has been assumed that the variation in the direction of thrust is circularly distributed about the computed direction and that the error in the plane of thrust is normally distributed. Thus, the task of relating these error sources to the variation in α , β , and δ arises. This problem is addressed in the appendix. The errors in $\dot{\theta}$ and $\nu_{\rm O}$ have been assumed uncorrelated and normally distributed with mean 0 and variance σ^2 , that is

$$\Delta \dot{\theta} \sim N(0, \sigma_{\dot{\theta}}^2)$$

$$\Delta \nu_{\rm O} \sim N \left(0, \sigma_{\nu_{\rm O}}^2\right)$$

The uncertainties in the spacecraft parameters m_0 , \dot{m} , and τ , and the gravitational constant μ also affect the final orbit and must be considered statistically. These error sources are also assumed uncorrelated and normally distributed, that is

$$\Delta m_{o} \sim N(0, \sigma_{m_{o}}^{2})$$

$$\Delta \dot{m} \sim N(0, \sigma_{\dot{m}}^{2})$$

$$\Delta \tau \sim N(0, \sigma_{\tau}^{2})$$

$$\Delta \mu \sim N(0, \sigma_{\mu}^{2})$$

The error model for the total burn time t_b has been assumed representative of a closed loop system; that is, the thrust engine cutoff is triggered by a velocity counting accelerometer. The integrating accelerometer senses equivalent velocity pulses and signals the engine to cut off at the end of K pulses where each pulse represents v meters per second of velocity. There are three sources of error associated with this process. First, the calibrated value of v will be in error by a small amount ε where $\varepsilon \sim N\left(0,\sigma_{\varepsilon}^2\right)$. Therefore, the true value of $v = v_{cal} + \varepsilon$. Secondly, the accelerometer may be biased a small amount V_b where $V_b \sim N\left(0,\sigma_{V_b}^2\right)$. Finally, the accelerometer signals the cutoff on a whole number of counts. Since it goes to the next full count, the velocity added will always be greater than desired but not by more than v_{cal} meters per second. The integral of acceleration due to thrust V_b is defined as

$$V = \int_0^t a(t)dt = \int_0^t \frac{\tau}{m_O + \dot{m}t} dt = \frac{\tau}{\dot{m}} \ln \left(\frac{m_O + \dot{m}t}{m_O} \right)$$
 (4)

Thus, the velocity-to-be-gained is a function of the computed control parameters and is given by

$$V_{\text{tbg}} = \frac{\tau}{\dot{\mathbf{m}}} \ln \left(\frac{\mathbf{m}_{\text{O}} + \dot{\mathbf{m}} \mathbf{t}_{\text{b}}}{\mathbf{m}_{\text{O}}} \right) \tag{5}$$

The number of pulses is

$$K = \left| \left| \frac{1000V_{\text{tbg}}}{v_{\text{cal}}} \right| \right| + 1$$

where $||\xi||$ denotes the integer part of ξ . Now, since the accelerometer was assumed to be slightly biased and since the calibrated value of v is in error, the thrust engine will actually deliver a sensed velocity of

$$V_{a} = \left[K \left(v_{cal} + \epsilon \right) + V_{b} \right] \frac{1}{1000}$$
 (6)

In order to model this effect in the program the change in burn time Δt_b corresponding to V_a is determined from equation (4) as a function of the true values of the engine parameters. These true values are calculated by adding random increments from the respective distributions to the nominal values of τ , m_0 , and \dot{m} . Equation (4) would then take the form:

$$V_{a} = \frac{\tau + \Delta \tau}{\dot{m} + \Delta \dot{m}} \ln \left[\frac{\left(m_{O} + \Delta m_{O} \right) + \left(\dot{m} + \Delta \dot{m} \right) \left(t_{b} + \Delta t_{b} \right)}{m_{O} + \Delta m_{O}} \right]$$

where Δt_b is the addition in burn time to compensate for Δm_0 , $\Delta \dot{m}$, and $\Delta \tau$. Solving for Δt_b gives

$$\Delta t_{b} = \left(\frac{m_{o} + \Delta m_{o}}{\dot{m} + \Delta \dot{m}}\right) \left[e^{\left(\frac{\dot{m} + \Delta \dot{m}}{\tau + \Delta \tau}\right)} V_{a} - 1\right] - t_{b}$$
(7)

Monte Carlo Method

In general, the Monte Carlo approach to a statistical problem is to sample repeatedly the statistical distributions of the independent variables, evaluate the function of these variables with the random samples, and accumulate the statistics of the resulting dependent variables. For complicated functions the Monte Carlo method is often the only means by which the statistical nature of the dependent variables can be found.

The Monte Carlo method is very useful in the error analysis of an orbital transfer for the following reasons. The initial orbit is described by two statistical quantities, D and T. In addition, the actual control parameters are known only in the statistical sense. Hence, the final orbit as a function of these various statistical distributions must be described statistically. The problem, then, is to find the statistics of the final orbit and also to determine the statistics of the transfer maneuver and the variation in the fuel resulting from the errors in the initial orbit.

The implementation of the Monte Carlo method to the orbital-transfer error analysis is outlined in figure 3. The first step is to generate a random estimate of the state deviations from the covariance matrix $\begin{bmatrix} D - T \end{bmatrix}$ and a random error in the estimate from the covariance matrix T. Next, the actual state vector and the estimate of the state vector are formed. During the actual mission, the transfer maneuver will be based on the estimate of the initial orbit since the actual orbit will not be known. To simulate this condition the estimate of the vector state \overrightarrow{X}_e^R is targeted to the final orbit with VITAP (ref. 1). This results in a set of up to six control parameters which describe the transfer maneuver.

Figure 3.- Flow diagram of the Monte Carlo method as applied to the orbital transfer error analysis.

Since these control parameters cannot be executed exactly, they are perturbed by a random sample from their error distributions. The change in the burn time to correct for errors in m_0 , \dot{m} , and τ is then calculated from equation (7). These perturbed control parameters are then applied to the sampled, actual initial orbit to establish the final orbit. This entire process is then repeated and another final orbit is established. Finally, after many passes through the Monte Carlo loop, the final orbits are processed and the statistics of the variations in the final orbit are formed.

The accumulation of the statistics of the final orbit and the associated parameters is rather straightforward. If ξ is a dependent variable and the Monte Carlo process has generated N_S samples of ξ denoted by ξ_i ($i=1,2,\ldots,N_S$), then an estimate of the mean of ξ is

$$\bar{\xi} = \frac{1}{N_S} \sum_{i=1}^{i=N_S} \xi_i \tag{8}$$

and an estimate of the variance is

$$\sigma_{\xi}^{2} = \frac{1}{N_{s}} \sum_{i=1}^{i=N_{s}} \left(\xi_{i} - \bar{\xi}\right)^{2}$$

or

$$\sigma_{\xi}^{2} = \frac{1}{N_{S}} \sum_{i=1}^{i=N_{S}} \xi_{i}^{2} - (\bar{\xi})^{2}$$
(9)

If the dependent variable is an M-dimensional vector, say ξ^j , and the N_S samples are denoted by ξ_i^j (i = 1, 2, . . ., N_S ; j = 1, 2, . . ., M) then an estimate of the mean of ξ^j is

$$\overline{\xi^{j}} = \frac{1}{N_{S}} \sum_{i=1}^{i=N_{S}} \xi_{i}^{j}$$

$$\tag{10}$$

and the M by M covariance matrix Cik is

$$C_{jk} = \frac{1}{N_s} \sum_{i=1}^{i=N_s} \left(\xi_i^j - \overline{\xi^j} \right) \left(\xi_i^k - \overline{\xi^k} \right)$$

or

$$C_{jk} = \frac{1}{N_s} \sum_{i=1}^{i=N_s} \xi_i^j \xi_i^k - \overline{\xi^j} \overline{\xi^k}$$
 (11)

The mean and variance of a parameter are very useful quantities to describe the statistical nature of the parameter. A bar chart (see fig. 4) is another way of representing the statistical distribution. Here the range of the parameter is divided into small intervals and the number of samples that fall within each interval is counted. The resulting chart describes the statistical distribution and is called a histogram.

Figure 4.- Bar chart of statistical distribution.

The question still remains concerning the accuracy of the distribution of ξ after N_S samples. For example, how accurate is the estimate for the mean of ξ ? (See eq. (8).) It can be shown that as N_S , the number of Monte Carlo samples, increases the difference between the estimate and the true mean decreases. Nevertheless, for a given number of samples it would be desirable to put an interval around $\bar{\xi}$ and be very confident that the true mean was within this interval. If the parametric form of the distribution of ξ were known, the problem would be much easier; however, this is not the case. The problem, then, is to define a confidence interval around the estimate for a nonparametric distribution. These nonparametric confidence intervals of the "central type" are well established (refs. 4 and 5). Briefly, they involve solving the cumulative form of the binomial density for the upper and lower probability limits of the estimate. This probability interval is then mapped into the desired confidence interval about the estimate.

The Monte Carlo process requires the generation of random vectors from the 6 by 6 covariance matrices T and D-T. This is done in the following way. First

the covariance matrix T is diagonalized by transforming it to the principal axis system, that is

$$\operatorname{diag}(\lambda_1,\lambda_2,\ldots,\lambda_6) = \Phi^{\mathrm{T}} T \Phi$$

where the λ_i -terms are the eigenvalues of $\,T\,$ and the columns of the transformation matrix $\,\Phi\,$ contain the eigenvectors. The standard deviations in the principal axis system are the square roots of the λ_i -terms so that a random vector $\,\vec{\eta}^{\,R}\,$ is given by

$$\vec{\eta}^{R} = \left(R_{1}\lambda_{1}^{1/2}, R_{2}\lambda_{2}^{1/2}, \ldots, R_{6}\lambda_{6}^{1/2}\right)$$

where the R_i -terms are independent random numbers from a normal distribution with mean 0 and variance 1. The random vector $\vec{\eta}^R$ is then rotated back to the original coordinate system to form the desired random vector from T, that is

$$\Delta \vec{X}_t^R = \Phi \vec{\eta}^R$$

A random sample from the covariance matrix $\begin{bmatrix} D-T \end{bmatrix}$ which is a random sample of the estimate of state deviations $\Delta \vec{X}_e^R$ is found in a similar manner.

The random numbers R_i can be generated in several ways. For this analysis they are found by generating two random numbers u_1 and u_2 from a uniform distribution defined on the interval $\begin{bmatrix} 0 & 1 \end{bmatrix}$ and evaluating the expression (ref. 6)

$$R_i = [-2 \ln u_1]^{1/2} \cos(2\pi u_2)$$

Frequently in application the covariance matrices T and D - T are found to be indefinite instead of positive definite. This condition usually results from numerical problems in generating the matrices. When the determinant of these matrices is small or when the components of the vector are highly correlated, it is likely that numerical problems have been encountered in computing these matrices and that they are indefinite. If this is the case, then at least one of the eigenvalues is negative and the standard deviation $\sqrt[]{\lambda_i}$ is meaningless. This problem can be overcome in two ways; the covariance matrix can be forced to be positive definite or the negative eigenvalue can be set equal to 0. The latter was adopted.

COMPUTER PROGRAM VEAMCOP

Program Description

The computational algorithm for a Monte Carlo error analysis of a minimum-fuel, thrusting transfer between two Keplerian orbits has been combined with the computer program VITAP (ref. 1) to form the computer program VEAMCOP (Viking Error Analysis Monte Carlo Program). It contains a main program and seven subroutines in addition to VITAP and its 11 subroutines. The entire program is written in FORTRAN IV

computer language for the Control Data 6600 computer system and resulted in a field length of 73 0008. A copy of VEAMCOP can be obtained from COSMIC (Computer Soft-ware Management and Information Center), Barrow Hall, University of Georgia, Athens, Georgia.

Various options are available in VEAMCOP. The six control parameters α , β , δ , $\dot{\theta}$, $t_{\rm b}$, $\nu_{\rm O}$ may be varied in order to minimize the fuel or they may be fixed at specific values. If one or more of these parameters is fixed, then the minimization process varies the other controls to find the best transfer trajectory. The transfer trajectory is also required to satisfy a number of constraints which are outlined in table I and fully discussed in reference 1. The option is available to control such parameters in the final orbit as the six orbital elements, the radius of periapsis and apoapsis, and so forth. In addition, VEAMCOP will perform two modes of targeting. The first mode is the normal minimum-fuel transfer outlined previously. The second mode allows for the minimum-fuel transfer with the additional constraint that the inclination of the final orbit be between an upper and lower bound.

Several input options for the covariance matrices D and T have been incorporated in VEAMCOP and will be discussed with the definition of the program inputs.

Program Input

All input to program VEAMCOP is accomplished by means of a FORTRAN namelist CASE. Each of the namelist variables is defined in table II. Many of the inputs relate to the targeter VITAP and are discussed in reference 1. The remaining parameters are discussed here.

The statistics of the initial orbit T and D are input through the parameters TRACK and DEV, respectively. For convenience three options are available for the input of T and D. The desired option is selected by inputing a 0, 1, or 2 in KEY. KEY equal 0 implies that the input parameter XNOM contains the Cartesian state of the nominal orbit and that the parameters TRACK and DEV contain the full 6 by 6 Cartesian covariance matrices at XNOM. All three parameters, TRACK, DEV, AND XNOM are expressed in the areocentric coordinate system. An input of 1 in KEY implies that XNOM contains the Keplerian orbital elements of the nominal orbit in the areocentric coordinate system. For this option TRACK and DEV contain half of the covariance matrices at XNOM in the \hat{N} , \hat{V} , \hat{W} -coordinate system. Along the diagonals are input the standard

² The \hat{N},\hat{V},\hat{W} -coordinate system is defined as follows:

$$\hat{\mathbf{N}} = \frac{\vec{\mathbf{V}}}{\mid \vec{\mathbf{V}} \mid} \times \frac{\vec{\mathbf{R}} \times \vec{\mathbf{V}}}{\mid \vec{\mathbf{R}} \times \vec{\mathbf{V}} \mid} \qquad \qquad \hat{\mathbf{V}} = \frac{\vec{\mathbf{V}}}{\mid \vec{\mathbf{V}} \mid} \qquad \qquad \hat{\mathbf{W}} = \frac{\vec{\mathbf{R}} \times \vec{\mathbf{V}}}{\mid \vec{\mathbf{R}} \times \vec{\mathbf{V}} \mid}$$

where \vec{R} is the Cartesian position vector and \vec{V} is the Cartesian velocity vector.

deviations, and the correlation coefficients are defined in the right off-diagonal elements. If this option is exercised, VEAMCOP calculates the full covariance matrices and puts variances along the diagonals and covariances in the off-diagonal elements. It then rotates the covariance matrices from the N, V, W-coordinate system to the areocentric coordinate system. The remaining option, KEY = 2, implies that XNOM contains the Keplerian orbital elements of the nominal orbit in the areocentric coordinate system and that TRACK and DEV contain half-full matrices at XNOME in an arbitrary Mars-centered, inertial, Cartesian coordinate system. The Cartesian state, at which the covariance matrices are defined, XNOME, is expressed in the same coordinate system as TRACK and DEV. Unlike the second option, this option defines the covariance matrices by inputting variances along the diagonals and covariances in the right off-diagonals. When VEAMCOP encounters this option it first fills the left off-diagonal that was not input, rotates the covariance matrices to the $\hat{N}, \hat{V}, \hat{W}$ -coordinate system using the state defined in XNOME, and then transforms the covariance matrices to the areocentric coordinate system by using XNOM. These three options are the result of obtaining the covariance matrices from different computer programs and are included for the convenience of the user.

Most of the remaining inputs are either self-explanatory or well documented in reference 1. The standard deviations of the controls and the spacecraft parameters are input through the array CONT as defined in table II. The input parameter NMC defines the number of Monte Carlo cases or the number of final orbits which will be generated to form the desired statistics. The input quantity MCPRINT is an output option. For each Monte Carlo case a one-line summary of the case is automatically output. In addition, the option is available to output a more extensive summary for each case. If MCPRINT is greater than zero. VEAMCOP will output a block of data for each iteration in the targeting scheme. This output is similar to the VITAP printout and has been included in VEAMCOP as a diagnostic tool. Another automatic feature of VEAMCOP should be mentioned here. The input parameter MAXIT defines the maximum number of iterations allowed for targeting. If the targeter reaches this limit before the process has converged to the minimum fuel controls, then the iteration process is stopped and that particular Monte Carlo case is not considered in the final statistics. However, before proceeding to the next Monte Carlo case, VEAMCOP retargets this divergent case from the beginning and automatically outputs a full description of each iteration. If, however, the MCPRINT option was in effect during the bad case, then the detail output was accomplished during the targeting cycle and there is no need to retarget this case. Finally, the input parameter KOR has been included to control the correlation between $\Delta \vec{X}_d$ and $\Delta \vec{X}_t$. An input of 0 for KOR implies no correlation whereas an input of 1 implies correlation (see eq. (2)).

Many of the input options are more readily defined by their function in VEAMCOP. For this reason a detailed flow diagram of the main program is presented in figure 5.

Figure 5.- Flow diagram of main program.

Figure 5.- Continued.

Figure 5 .- Continued.

Figure 5 .- Concluded.

Program Output and Illustrative Example

A reproduction of a computer output from VEAMCOP is presented in table III. The illustrative example is an error analysis of the Mars orbital insertion maneuver. The spacecraft approaches the planet on a hyperbolic orbit. At an appropriate time, the engine is fired to establish an elliptical orbit. The analysis is concerned with establishing the errors in the ellipse due to variations in the approach hyperbola and in the burn maneuver. In addition, the fuel budget for this ensemble of hyperbolas is determined; that is, how much fuel should be allocated to the insertion maneuver to insure that a large percentage of the off-nominal hyperbolas can be retargeted to the desired ellipse.

The first output from VEAMCOP is a complete listing of all the parameters input through the namelist CASE (table III). For illustrative purposes the covariance matrix of tracking uncertainties, TRACK, and the covariance matrix of state deviations, DEV, are assumed spherical. The tracking uncertainties in position and velocity are 20 km and 20 m/sec (10), respectively, and the state deviations in position and velocity are 200 km

and 40 m/sec (10), respectively. The value of the input parameter KEY indicates that these matrices are half-full matrices with standard deviations on the diagonals and correlation coefficients in the right off-diagonals. However, since the matrices are spherical, the off-diagonal elements are 0. KEY also indicates that they are expressed in the \hat{N},\hat{V},\hat{W} -coordinate system at XNOM which is the array of Keplerian orbital elements of the nominal orbit in the areocentric coordinate system. The sixth entry in XNOM reveals that the covariance matrices are referenced to the point on the hyperbola that is 60° prior to periapsis passage. The input array, CONT, contains the standard deviations of the control parameters, the spacecraft parameters, and the velocity counting accelerometer. The guidance law is defined by the three input arrays: NOPT, KOPT, and AIN. The first six entries in NOPT indicate that four control parameters α , δ , t_b , and ν_0 are free to vary in the minimization scheme to find the optimum transfer maneuver. The remaining two controls, β and $\dot{\theta}$, are held constant at 90° and 0 deg/sec, respectively (see GS array). Therefore, the direction of thrust remains inertially fixed throughout the transfer maneuver at a right ascension of α and a declination of δ (see fig. 1). The next six entries in NOPT indicate that three constraints are imposed on the final orbit. The KOPT array and table I show that the three constraints are 1/a, i, and ω of the final orbit. These three parameters are constrained to the values in the AIN array. Thus, the guidance law consists of four controls to establish a final orbit with a = 20 455 km, $i = 35^{\circ}$, and $\omega = 65^{\circ}$. Since the number of constraints is less than the number of controls, the fuel required for the maneuver is minimized. Note from NOPT that the second, fifth, and sixth constraints were not imposed. KOPT and table I indicate that these parameters are the radius of periapsis rp, the longitude of the ascending node Ω , and the true anomaly ν in the final orbit at the end of the maneuver. Although these target parameters are not constraints, they are nevertheless included as statistical parameters of interest. Also, the namelist printout indicates that 100 Monte Carlo cases were generated (NMC = 100), the first case was output in full (MCPRINT = 1), and that the correlation between $\Delta \vec{X}_d$ and $\Delta \vec{X}_t$ was considered (KOR = 1).

The next section of output is a full description of the targeting of the nominal state, XNOM, to find the nominal controls and the Lagrange multipliers. These nominal values are useful as initial guesses in targeting the off-nominal trajectories. Each iteration of the minimization scheme is recorded by a selected set of output parameters. The control parameters for the first iteration which are the initial guesses input through the GS array are given in the first line of printout followed by the initial guesses at the Lagrange multipliers. These controls correspond to the velocity increment (eq. (4)) labeled "DELTA V." Presented next is the orbit which resulted from applying the initial controls to the nominal orbit. Since the initial guess at the control parameters was not the optimum set, the target parameters are not equal to the desired values. The errors in the target parameters are presented in the next line of output. These errors are then used to calculate

the corrections to the control parameters and the Lagrange multipliers which will improve the initial guesses. The second iteration follows the same format as the first. The new controls are the result of adding the corrections to the previous controls. This process continues until the control parameters converge to the optimum set. For the case considered here, 34 iterations were necessary to target the nominal trajectory.

In the data following the history of the minimization scheme the first line gives the eigenvalues for the second partial sufficiency check (ref. 1). If these values are all greater than 0, then the solution is indeed a local minimum. Negative eigenvalues denote that the solution obtained is not a minimum. For the example case, the minimization process possesses only one degree of freedom since four controls are varied to satisfy three constraints; and, hence, only one eigenvalue exists. Since its value is greater than 0, we are sure that the nominal solution is a minimum solution. This solution is presented on the next line of output followed by the Lagrange multiplier for the nominal case. Finally, the TRACK and DEV covariance matrices are output along with their sixdimensional eigenvalues. If the correlation between DEV and TRACK is considered, then the matrix DEV-TRACK is output instead of DEV.

After the nominal state is targeted, the Monte Carlo process begins. From the namelist printout we see that MCPRINT = 1. Therefore, a full description of the first Monte Carlo case is output. The first two lines of output data present the random sample of the actual state and the random estimate of this state. After seven iterations the estimate is retargeted to the desired target parameters. From the second partial check it can be seen that the solution is a minimum. This solution is output next. The actual initial conic is presented next followed by the actual controls. Notice that the "controls due to retargeting the estimate" and the actual controls differ. This is due to the errors associated with the execution of the computed controls. In other words, the actual controls are the result of adding random errors, described by the array CONT, to the computed or retargeted controls. The spacecraft parameters are also perturbed to simulate their uncertainty. The actual thrust and gravitational parameters are presented next. The "actual controls" are then applied to the "actual initial conic" to obtain the "actual target variables" and the "actual final conic." The next two lines of printout are the computed or commanded velocity increment (eq. (5)) and the actual or delivered velocity increment (eq. (6)).

The remaining Monte Carlo cases are summarized with a one-line printout. The first column is the number of the case and the second column is the number of iterations necessary to converge the off-nominal trajectory. The next six columns are the "actual controls" and the next six columns contain the "actual final orbit." The last two columns are the delivered velocity and the number of positive eigenvalues.

The next section of data presents the mean values and the standard deviations of the statistical parameters according to equations (8) to (11). The first row is the expected or mean values of the computed controls followed by the expected values of the actual initial conic. The expected values of the actual final conic and the actual target parameters are presented in the next two rows. The expected values of the commanded and delivered velocity increment are next. Following the expected values are the standard deviations of the same parameters. As a diagnostic aid the reconstructed TRACK and DEV matrices are output. Notice that the mean values of the random vectors generated from these covariance matrices are not 0. This is due to the finite number (NMC) of samples used to calculate these values.

The next section of output is devoted to the histograms of the orbital elements of the final orbit, the six target parameters named in array KOPT, and the orbital elements of the initial orbit. Also included is the histogram of the delivered velocity increment. These histograms give a much better indication of the distribution of the random variables than do the means and standard deviations alone. The plots can be read in the following manner. On the abscissa is plotted the standard deviation of the parameter considered. On the ordinate is plotted the number of Monte Carlo cases that fell between the various standard-deviation intervals. The strange symbols on the graphs can be interpreted in the following manner. If the symbols +--+ appear at the top of a column, the column represents the plotted value on the ordinate. If the symbols +--+ appear, the ordinate is the plotted value plus a number between 0.1 and 0.49 times the ordinate interval value. The symbol ++++ denotes the plotted value plus half of the interval value. The symbol +||+ corresponds to the plotted value plus a number between 0.51 and 0.99 times the ordinate interval value. This interpretation is shown in table IV for interval values of 2, 4, and 8.

After the histograms the cumulative density functions are presented. The first is the cumulative probability of the delivered velocity increment V_a . Here the 100 velocities have been ordered and associated with a probability. The second column is an estimate of the delivered velocity that corresponds to the probability in the first column. The 90-percent confidence interval about this estimate is given in the third and fourth columns. For example, the estimate of V_a that is equal to or greater than 95 percent of the velocities is 1.604 km/sec. This is only an estimate, however, of the true 95th-percentile point. Nevertheless, there is 90-percent confidence that the true 95th-percentile point is between 1.578 km/sec and 1.667 km/sec. To express this mathematically, we define V_a^* as

$$P_r[v_a \le v_a^*] \equiv 0.95$$

and state that

$$P_{r}[1.578 \le V_{a}^{*} \le 1.667] = 0.90$$

where the best estimate of V_a is 1.604 km/sec. The final set of data is the cumulative density functions of the six orbital elements of the final orbit and the six target parameters.

CONCLUDING REMARKS

A computer program has been developed which performs an error analysis of a minimum-fuel, finite-thrust, transfer maneuver between two Keplerian orbits. The method of analysis is the Monte Carlo approach where each off-nominal trajectory is targeted to a final conic. Basically, the targeting involves the solution of a constrained minimization problem by use of constant Lagrange multipliers and the Newton-Raphson iteration technique.

The accuracy of the error analysis, within the modeling assumptions, is limited only by the number of Monte Carlo samples generated. In an attempt to model the physical problem, the initial and final orbits have been modeled as Keplerian orbits and the statistics of the initial orbit have been assumed Gaussian. In addition, the errors in the control parameters and physical constants have been modeled as normal random variables. Within these modeling assumptions, the analysis can be performed as accurately as desired at the expense of computer time. As an indication of the accuracy 90-percent confidence intervals are output for some of the statistical quantities.

The program is applicable to the deboost maneuver (hyperbola to ellipse), orbital trim maneuvers (ellipse to ellipse), fly-by maneuvers (hyperbola to hyperbola), escape maneuvers (ellipse to hyperbola), and deorbit maneuvers.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., January 5, 1972.

APPENDIX

ERROR MODEL FOR THRUST ANGLES

The initial direction of thrust and the plane of thrust for a maneuvering spacecraft can be defined by three angles α , β , and δ . In order to formulate an accurate error model for these three angles it is necessary to know the history of the maneuvers which alined the spacecraft to the proper attitude. For example, there are four different two-axis maneuvers of pitch, roll, or yaw available to establish the proper direction of thrust. To establish the proper plane of thrust adds additional alternatives. At first it would seem that the maneuver sequence with the smallest sum of rotation angles would minimize the total execution error and thus be the desired sequence. However, the spacecraft attitude control system may be more accurate in one axis than another which would negate this choice. More than likely the maneuver sequence will be required to satisfy certain mission constraints such as antenna nulls, and so forth. Therefore, it is not possible to determine a priori which maneuver sequence will be followed. The only course of action is to assume an error model for the angles α , β , and δ which approximates the true situation.

In this appendix an approximate error model is formulated for both the constant-inertial thrust case and the constant-pitch-rate case. In the constant-inertial thrust case it is assumed that the spacecraft is initially alined to an arbitrary reference coordinate system and that it is rotated through a two-axis maneuver sequence to aline the thrust engine with the line O-F (see fig. 6(a)). It is further assumed that the execution of this maneuver is in error, resulting in the thrust engine being alined with the line O-G. As in the Gates error model (ref. 7) it is assumed that the engine alinement error is circularly distributed about the line O-F. This distribution is modeled by considering ψ as a random variable uniformly distributed between $0^{\rm O}$ and $360^{\rm O}$ and by taking ρ as a normal random variable, that is $\rho \sim {\rm N}\left(0,\sigma_{\rho}^2\right)$. The constant-pitch-rate case is similar with the addition of a final roll maneuver to aline the pitch axis perpendicular to the plane of thrust. This roll maneuver is assumed to be in error an amount $\gamma \sim {\rm N}\left(0,\sigma_{\gamma}^2\right)$. Thus, this appendix is concerned with mapping the above error sources into the thrust angles α , and δ .

Consider the geometry of figure 6(a). The point F defines the desired initial direction of thrust, and the desired plane of thrust is defined by α and β . Due to execution errors the thrust alinement coincides with point G which is related to point F through the random variables ψ and ρ . The plane of thrust through point G is defined by Σ , the desired azimuth angle, and the random variable γ . It is desired to determine the three angles α' , β' , and δ' which describe point G.

(a) Points F and G.

Figure 6.- Geometry of error model.

A useful coordinate system is defined by \hat{P},\hat{Q},\hat{W} (see fig. 6(b)) where \hat{P} is along the radial line to point F, \hat{Q} is perpendicular to \hat{P} and in the α,β plane, and \hat{W} completes the triad. The transformation from the \hat{P},\hat{Q},\hat{W} to the \hat{X},\hat{Y},\hat{Z} -coordinate system is given by (ref. 8)

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \Theta_{\underline{\mathbf{1}}} \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ \mathbf{q} \\ \mathbf{w} \end{bmatrix}$$
 (A1)

where

$$\Theta_1 = \begin{bmatrix} \cos \delta \cos \alpha & -\sin \delta \cos \alpha & \sin \beta \sin \alpha \\ -\cos \beta \sin \alpha & \sin \delta & -\cos \beta \sin \alpha \cos \delta \end{bmatrix}$$

$$\Theta_1 = \begin{bmatrix} \cos \delta \sin \alpha & -\sin \delta \sin \alpha & -\sin \beta \cos \alpha \\ +\cos \beta \cos \alpha & \sin \delta & +\cos \beta \cos \alpha \cos \delta \end{bmatrix}$$

$$\sin \beta \sin \delta & \sin \beta \cos \delta & \cos \beta \end{bmatrix}$$

(b) Point F.

Figure 6. - Continued.

The unit vector to point F in the $\hat{\mathbf{X}}, \hat{\mathbf{Y}}, \hat{\mathbf{Z}}\text{-coordinate system is therefore given by$

$$\begin{bmatrix} \mathbf{F}_{\mathbf{X}} \\ \mathbf{F}_{\mathbf{y}} \\ \mathbf{F}_{\mathbf{z}} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

 \mathbf{or}

$$\mathbf{F_{X}} = \cos \delta \cos \alpha - \cos \beta \sin \alpha \sin \delta$$

$$\mathbf{F_{y}} = \cos \delta \sin \alpha + \cos \beta \cos \alpha \sin \delta$$

$$\mathbf{F_{z}} = \sin \beta \sin \delta$$
(A2)

Similarly, the unit vector $\,\,\mathbf{\hat{Q}}\,\,$ is given by

$$\begin{bmatrix} \mathbf{Q}_{\mathbf{X}} \\ \mathbf{Q}_{\mathbf{y}} \\ \mathbf{Q}_{\mathbf{Z}} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \end{bmatrix}$$

or

$$Q_{x} = -\sin \delta \cos \alpha - \cos \beta \sin \alpha \cos \delta$$

$$Q_{y} = -\sin \delta \sin \alpha + \cos \beta \cos \alpha \cos \delta$$

$$Q_{z} = \sin \beta \cos \delta$$
(A3)

Now consider the $\hat{\mathbf{X}}', \hat{\mathbf{Y}}', \hat{\mathbf{Z}}'$ -coordinate system (see fig. 6(b)) where $\hat{\mathbf{X}}'$ is along the radial line to point \mathbf{F} , $\hat{\mathbf{Y}}'$ is perpendicular to $\hat{\mathbf{X}}'$ and in an easterly direction, and $\hat{\mathbf{Z}}'$ completes the triad. Note that $\hat{\mathbf{Z}}'$ is tangent to the meridian making Σ an azimuth angle. The transformation from the $\hat{\mathbf{X}}', \hat{\mathbf{Y}}', \hat{\mathbf{Z}}'$ to the $\hat{\mathbf{X}}, \hat{\mathbf{Y}}, \hat{\mathbf{Z}}$ -coordinate system can be considered a composite of two rotations. The first rotation is about the $\hat{\mathbf{Z}}$ -axis an amount θ , and the second rotation is about the new $\hat{\mathbf{Y}}$ -axis an amount $-\phi$. Thus the desired transformation is

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \phi & 0 & -\sin \phi \\ 0 & 1 & 0 \\ \sin \phi & 0 & \cos \phi \end{bmatrix} \begin{bmatrix} \mathbf{x}^{\dagger} \\ \mathbf{y}^{\dagger} \\ \mathbf{z}^{\dagger} \end{bmatrix}$$

or

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \Theta_2 \end{bmatrix} \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \end{bmatrix} \tag{A4}$$

where

$$\Theta_2 = \begin{bmatrix} \cos\theta\cos\phi & -\sin\theta & -\cos\theta\sin\phi \\ \sin\theta\cos\phi & \cos\theta & -\sin\theta\sin\phi \\ \sin\phi & 0 & \cos\phi \end{bmatrix}$$

and

$$\sin \theta = F_y \left(F_x^2 + F_y^2 \right)^{-1/2}$$

$$\cos \theta = F_x \left(F_x^2 + F_y^2 \right)^{-1/2}$$

$$\sin \phi = F_z$$

$$\cos \phi = \left(F_x^2 + F_y^2 \right)^{1/2}$$
(A5)

If $\hat{\mathbf{F}}$ is alined with the $\hat{\mathbf{Z}}$ -axis, then $\mathbf{F}_{\mathbf{X}}$ and $\mathbf{F}_{\mathbf{y}}$ are 0 and θ is undefined. In this case θ is set equal to α . The angle Σ (see fig. 6(b)) is the angle from the vector

 \hat{Z}' to the vector $\,\hat{Q}.\,\,$ The unit vector $\,\hat{Z}'\,\,$ can be expressed in the $\hat{X},\hat{Y},\hat{Z}\text{-coordinate}$ system as

$$\begin{bmatrix} \mathbf{Z}_{\mathbf{X}}^{\dagger} \\ \mathbf{Z}_{\mathbf{y}}^{\dagger} \\ \mathbf{Z}_{\mathbf{z}}^{\dagger} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix}$$

or

$$Z'_{X} = -\cos \theta \sin \phi$$

$$Z'_{Y} = -\sin \theta \sin \phi$$

$$Z'_{Z} = \cos \phi$$
(A6)

The angle Σ can now be determined by

$$\cos \Sigma = \hat{\mathbf{Q}} \cdot \hat{\mathbf{Z}}' = \mathbf{Q}_{\mathbf{X}} \mathbf{Z}_{\mathbf{X}}' + \mathbf{Q}_{\mathbf{Y}} \mathbf{Z}_{\mathbf{Y}}' + \mathbf{Q}_{\mathbf{Z}} \mathbf{Z}_{\mathbf{Z}}'$$
(A7a)

$$\sin \Sigma = (\hat{\mathbf{Q}} \times \hat{\mathbf{Z}}') \cdot \hat{\mathbf{F}}$$

$$= (\mathbf{Q}_{\mathbf{y}} \mathbf{Z}'_{\mathbf{z}} - \mathbf{Q}_{\mathbf{z}} \mathbf{Z}'_{\mathbf{y}}) \mathbf{F}_{\mathbf{x}} + (\mathbf{Q}_{\mathbf{z}} \mathbf{Z}'_{\mathbf{x}} - \mathbf{Q}_{\mathbf{x}} \mathbf{Z}'_{\mathbf{z}}) \mathbf{F}_{\mathbf{y}} + (\mathbf{Q}_{\mathbf{x}} \mathbf{Z}'_{\mathbf{y}} - \mathbf{Q}_{\mathbf{y}} \mathbf{Z}'_{\mathbf{x}}) \mathbf{F}_{\mathbf{z}}$$
(A7b)

where \hat{Q} , \hat{Z}' , and \hat{F} are given by equations (A3), (A6), and (A2), respectively.

It is now desired to determine the coordinates of point G. The angular displacement of G relative to point F is given by the angle ρ , and the azimuth of G is given by ψ . Therefore, the coordinates of \hat{G} in the $\hat{X}',\hat{Y}',\hat{Z}'$ -coordinate system are

$$G_{x'} = \cos \rho$$

$$G_{y'} = \sin \rho \sin \psi$$

$$G_{z'} = \sin \rho \cos \psi$$

which can be transformed to the \hat{X},\hat{Y},\hat{Z} -coordinate system by (eq. (A4))

$$\begin{bmatrix} G_{\mathbf{X}} \\ G_{\mathbf{y}} \\ G_{\mathbf{Z}} \end{bmatrix} = \begin{bmatrix} \Theta_{2} \end{bmatrix} \begin{bmatrix} G_{\mathbf{X}'} \\ G_{\mathbf{y}'} \\ G_{\mathbf{Z}'} \end{bmatrix}$$
(A8)

Now consider the $\hat{X}'', \hat{Y}'', \hat{Z}''$ -coordinate system (see fig. 6(c)) which is defined in the same manner as \hat{X}' , \hat{Y}' , \hat{Z}' . The transformation from the $\hat{X}'', \hat{Y}'', \hat{Z}''$ - to the $\hat{X}, \hat{Y}, \hat{Z}$ -coordinate system is given by equations (A4) and (A5) where the components of \hat{F} are

(c) Point G.

Figure 6.- Concluded.

replaced by the components of $\,\hat{G}\,$ (eq.(A8)). This transformation is defined by

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \Theta_2 \end{bmatrix} \begin{bmatrix} \mathbf{x}^{\dagger \dagger} \\ \mathbf{y}^{\dagger \dagger} \\ \mathbf{z}^{\dagger \dagger} \end{bmatrix}$$
 (A9)

Now define \hat{Q}' (see fig. 6(c)) which is the vector that establishes the new plane of thrust. Its components in the $\hat{X}'', \hat{Y}'', \hat{Z}''$ -coordinate system are given by

$$Q'_{x''} = 0$$

$$Q'_{y''} = \sin(\Sigma + \gamma)$$

$$Q'_{z''} = \cos(\Sigma + \gamma)$$

which can be transformed by equation (A9)

$$\begin{bmatrix} \mathbf{Q}_{\mathbf{X}}' \\ \mathbf{Q}_{\mathbf{y}}' \\ \mathbf{Q}_{\mathbf{Z}}' \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \sin(\Sigma + \gamma) \\ \cos(\Sigma + \gamma) \end{bmatrix}$$
(A10)

Both the unit vector to the point G (eq. (A8)) and the unit vector in the plane of thrust (eq. (A10)) have been expressed in the \hat{X},\hat{Y},\hat{Z} -coordinate system. It remains to determine α' , β' , and δ' . The vector normal to the plane of thrust \hat{n} is given by $\hat{n} = \hat{G} \times \hat{Q}'$ or

$$n_{X} = G_{y}Q_{Z}^{\dagger} - G_{Z}Q_{y}^{\dagger}$$

$$n_{y} = G_{Z}Q_{X}^{\dagger} - G_{X}Q_{Z}^{\dagger}$$

$$n_{Z} = G_{X}Q_{y}^{\dagger} - G_{y}Q_{X}^{\dagger}$$

Since the angle between \hat{n} and \hat{Z} is β' , we have

$$\cos \beta' = \hat{\mathbf{n}} \cdot \hat{\mathbf{Z}} = \mathbf{n}_{\mathbf{Z}}$$

$$\sin \beta' = \sqrt{1 - \cos^2 \beta'}$$

where $0^{\circ} \le \beta' \le 180^{\circ}$. The node (see fig. 6(c)) is given by

$$\hat{\mathbf{N}} = \frac{\hat{\mathbf{Z}} \times \hat{\mathbf{n}}}{|\hat{\mathbf{Z}} \times \hat{\mathbf{n}}|}$$

or

$$N_{X} = -\frac{n_{y}}{\sin \beta'}$$

$$N_y = \frac{n_x}{\sin \beta'}$$

$$N_z = 0$$

which yields the angle α' , that is

$$\sin \alpha' = N_y$$

$$\cos \alpha' = N_X$$

If $\sin \beta' = 0$, the node is undefined. In this case $\alpha' + \delta' = \theta'$ and it is assumed that $\alpha' = \alpha$ and $\delta' = \theta' - \alpha'$. If this is not the case, the angle δ' is obtained from

$$\cos \delta' = \hat{\mathbf{N}} \cdot \hat{\mathbf{G}} = \mathbf{N}_{\mathbf{X}} \mathbf{G}_{\mathbf{X}} + \mathbf{N}_{\mathbf{y}} \mathbf{G}_{\mathbf{y}}$$

$$\sin \delta' = (\hat{N} \times \hat{G}) \cdot \hat{n} = n_X N_y G_Z - n_y N_X G_Z + n_Z (N_X G_Y - N_y G_X)$$

Thus, given the three desired thrust angles α , β , and δ and the execution errors ψ , ρ , γ , the resulting thrust angles α' , β' , and δ' can be determined.

REFERENCES

- Hoffman, Lawrence H.; Green, Richard N.; and Young, George R.: Thrusting Trajectory Minimization Program for Orbital Transfer Maneuvers. NASA TN D-6120, 1971.
- 2. Kalman, R. E.: A New Approach to Linear Filtering and Prediction Problems. Trans. ASME, Ser. D: J. Basic Eng., vol. 82, no. 1, Mar. 1960, pp. 35-45.
- 3. McLean, John D.; Schmidt, Stanley F.; and McGee, Leonard A.: Optimal Filtering and Linear Prediction Applied to a Midcourse Navigation System for the Circumlunar Mission. NASA TN D-1208, 1962.
- 4. Mood, Alexander M.; and Graybill, Franklin A.: Introduction to the Theory of Statistics. Second ed., McGraw-Hill Book Co., Inc., c.1963.
- 5. Burlington, Richard Stevens; and May, Donald Curtis, Jr.: Handbook of Probability and Statistics With Tables. Handbook Publ., Inc., c.1953.
- 6. Box, G. E. P.; and Muller, Mervin E.: A Note on the Generation of Random Normal Deviates. Ann. Math. Statist., vol. 29, no. 2, June 1958, pp. 610-611.
- 7. Gates, C.R.: A Simplified Model of Midcourse Maneuver Execution Errors. Tech. Rep. No. 32-504 (Contract No. NAS 7-100), Jet Propulsion Lab., California Inst. Technol., Oct. 15, 1963.
- 8. Goldstein, Herbert: Classical Mechanics. Addison-Wesley Publ. Co., Inc., c.1950.

TABLE I.- TARGET PARAMETER REQUEST KEYS

Input		Input parameter										
value	KOPT (1)	KOPT (2)	КОРТ (3)	KOPT (4)	KOPT (5)	KOPT (6)						
1	a	e	i	ω	Ω	ν						
2	1/a	r _a	a Latitude at reference date	a Longitude at reference date	a Longitude at reference date	^a True anomaly at reference date						
3	r _a	$\mathbf{r}_{\mathbf{p}}$	₿·Î	a Latitude at reference date	^a Latitude at reference date	a Longitude at reference date						
4	Orbital period	₿·Ř		b Declination of \vec{S}	bRight ascension of S							
5	V _∞			^c Latitude of landing point	^d Sun angle at landing point							

^a The value of PERJD and REFJD must be input (see table II).

 $b\vec{S} \equiv \text{Incoming hyperbolic asymptote.}$

^c The value of PER must be input (see table II).

d The value of PER, SLAT, and SLON must be input (see table II).

TABLE II.- DEFINITION OF INPUT PARAMETERS FOR PROGRAM VEAMCOP

Program symbol	Mathematical symbol	Dimension	Units	Definition
TRACK	Т	(6, 6)	km and sec	Rectangular Cartesian covariance matrix of errors in the estimate of state (see KEY)
DEV	D	(6, 6)	km and sec	Rectangular Cartesian covariance matrix of state deviations (see KEY)
CONT	$ \begin{vmatrix} \sigma_{\rho}, & \sigma_{\gamma}, \text{ blank}, & \sigma_{\dot{\theta}} \\ \sigma_{\nu_{0}}, & \sigma_{m_{0}}, & \sigma_{\dot{m}}, & \sigma_{\tau} \\ \sigma_{\mu}, & \sigma_{\varepsilon}, & \sigma_{V_{b}} \end{vmatrix} $	11	deg, deg, deg/sec, deg, kg, kg/sec, kN, km ³ /sec ² , m/sec, m/sec	Standard deviations associated with control parameters and spacecraft parameter; the last two relate to velocity accelerometer (see eq. (6))
XNOM	$\vec{\mathbf{x}}_{\mathbf{n}}$	6	deg, km, and sec	Initial nominal orbit expressed in either Cartesian elements or Keplerian orbital elements (see KEY)
NOPT		12	None	Integer array denoting free control variables and selected target parameters, NOPT (1 to 6) corresponds to α , β , δ , $\dot{\theta}$, t_b , ν_0 ; NOPT(K) = 0 for Kth control fixed and NOPT(K) = 1 for Kth control free where $K = 1, 2, \ldots, 6$; NOPT (7 to 12) corresponds to constraints; NOPT(K+6) = 0 for Kth constraint omitted; NOPT(K+6) = 1 for Kth constraint considered
KOPT		6	None	Integer array denoting the specific target parameter chosen (see table I)
AIN		6	km, sec, and deg	Array of values for target parameters denoted by KOPT
GS		6	deg and sec	Initial values (guesses) of controls α , β , δ , $\dot{\theta}$, $t_{\rm b}$, $\nu_{\rm O}$ (see fig. 1); these values will vary or remain fixed depending on NOPT (1 to 6)
GL		6		Initial guesses on Lagrange multipliers; if not input, GL(1 to 6) = 1
HP		6	deg and sec	Increments of controls for numerical partial derivatives; if not input, HP(1 to 6) = 0.6, 0.6, 0.6, 0.006, 1, 0.6
V 1		6	rad, sec	Maximum allowable step size for controls during Newton-Raphson iteration; if not input V1(1 to 6) \approx 0.30, 0.30, 0.003, 50, 0.03
NSTEPS		1	None	Integer denoting number of segments used for power series solution to equation of motion; if not input, NSTEPS = 10
MASS	m _o	1	kg	Initial mass of spacecraft
DMASS	m	1	kg/sec	Mass-flow rate *
THR	τ	1	kN	Thrust of spacecraft propulsion system
PERJD		1	days	Julian date of periapsis passage on initial conic
REFJD		1	days	Reference Julian date for constraints of longitude, lati- tude, and true anomaly at a reference time; PERJD and REFJD need not be input if these constraints are not use

TABLE II.- DEFINITION OF INPUT PARAMETERS FOR PROGRAM VEAMCOP - Concluded

Program symbol	Mathematical symbol	Dimension	Units	Definition
PER		1	deg	Angular distance from periapsis to landing point
SLAT		1	deg	Declination of subsolar point in areocentric equatorial coor- dinate system
SLON		1	deg	Right ascension of subsolar point; input SLAT and SLON only if KOPT(5) = 5
ERR		1	None	Newton-Raphson convergence criteria; if not input, ERR = 10 ⁻⁶
MAXIT		1	None	Integer denoting maximum number of iterations allowed; if not input, MAXIT = 50
UMARS	μ	1	$\rm km^3/sec^2$	Mars gravitational constant; if not input, UMARS = 42828.4
MODE		1	None	Denotes program mode: 1 - normal forward targeting; 2 - forward targeting, inclination within bounds; 3 - not allowed in VEAMCOP
BOUND		2	deg	Bounds on inclination for MODE = 2; BOUND(1) is lower bound
NMC	Ng	1	None	Integer number of Monte Carlo cases considered
KEY		1	None	Integer denoting input options for TRACK, DEV, XNOM; KEY = 0 implies XNOM is the Cartesian state of nominal orbit and DEV and TRACK are full covariance matrices at XNOM; XNOM, DEV, and TRACK are in areocentric coordinate system; KEY = 1 implies XNOM is Keplerian orbital elements of nominal orbit in areocentric and DEV and TRACK are half-full matrices (standard deviations on diagonal, correlation coefficients in right off diagonal) in N,V,W-coordinate system at XNOM; KEY = 2 implies XNOM is Keplerian orbital elements of nominal orbit in areocentric and DEV and TRACK are half-full matrices (variances on diagonal, covariances in right off diagonal) in any Cartesian system at XNOME; DEV and TRACK may be full matrices
MCPRINT		1	None	Number of Monte Carlo cases for which iterations are output; MCPRINT ≧ 0
KOR		1	None	Integer denoting correlation; KOR = 0 implies no correlation between $\Delta \vec{x}_d$ and $\Delta \vec{x}_t$, that is $E(\Delta \vec{x}_e \ \Delta \vec{x}_e^T) = D + T$; KOR = 1 implies correlation between $\Delta \vec{x}_d$ and $\Delta \vec{x}_t$, that is $E(\Delta \vec{x}_e \ \Delta \vec{x}_e^T) = D - T$; KOR = 2 used only on case following KOR = 1 and implies correlation; this option implies that the desired covariance matrices have been established in the first case and used for the second case; DEV and TRACK are not input when KOR = 2
XNOME		6	km and sec	Cartesian state of XNOM in same coordinate as DEV and TRACK; XNOME input only when KEY = 2
VCAL	v _{cal}	1	m/sec	Calibrated value of velocity counting accelerometer

TABLE III. - SAMPLE OUTPUT

```
$CASE
      TRACK
         3.0, 0.0, 0.0, G.C, 0.2E-01,
      DEV
       ≈ 0.5E+C0, 0.0, 0.0, 0.0, 0.2E+00, 0.32069E+02, 0.477E-02, 0.1E-02, 0.14E+01, 0.1E-03, 0.28E+00,
CONT
MONX
      = -7.426E+04, 0.211E+01, 0.3689E+02, 0.6377E+02, 0.5195E+02,
        -0.6E+02,
NOPT
      = 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0,
      = 2, 3, 1, 1, 1, 1,
KOPT
      = 0.4888780249327E-04, 0.C, 0.35E+02, 0.65E+02, C.C, 0.0,
AIN
      = 0.28F+02, 0.9E+02, -0.15E+02, 0.0, 0.26E+04, -0.7E+02,
      = 0.1E+C1, 0.C, 0.1E+O1, J.1E+O1, 0.0, 0.0,
GI
      = 0.1E-01, 0.7E-01, C.1E-01, 0.1E-04, 0.1E+01, 0.1E-01,
HP
      = 0.35+00, 0.35+00, 0.3F+00, 0.3E-03, 0.5E+02, 0.3E+00,
V1
NSTEPS = 6,
MASS
      = 0.32C695E+C4,
DMASS
      = -0.4772E+00.
      = 0.13245E+C1.
THR
PERJD
      = I,
REFJD
      = 0.0,
PER
      = I,
SLAT
      = I.
SLON
      = I,
      = 0.1E-09,
ERR
MAXIT
     = 100.
UMARS
      = 0.428284E+05,
MODE
      = 1,
BOUND
      = I, I,
      = 100,
NMC
     = 1.
KEY
MCPRINT = 1,
KOR
      = 1,
XNOME
     = I, I, I, I, I, I,
VCAL
      = 0.3E-01,
```

SEND

TARGETING NOMINAL STATE TO FIND NOMINAL CONTROLS AND MULTIPLIERS

INITIAL C SMA -426	00 00 00 • 0	ECC 2.11	3C 00 C	INC	36.890000	PER	63.770000	NOD	51.950000	TAN 300	.00000	
ITERATION CONTROLS LGR MULT ORBIT ERRORS CORRECT	23.00000 1.000000 2+692.12 -9.3890614 -3.5	00000 00000 56063 906698 - 05	90.0000	26007	1.000 37.25	000000000 00000000 17975971		0000000 6287248 2872478	0.	0000000 2261015 •21	0.	000000000 537807809 0•
ITERATION CONTROLS LGR MULT ORBIT ERRORS CORRECT	2 13.77431 -4.6467.2 575/2.12 -3.1515267 2.4	13802 13294 C79048-U5	·915149	994540	37.00	32875187		4833450 8356004 3560043	0. 53.299	5414614	0. 57.25 0.	974861284 522071066 0•
ITERATION CONTROLS LGR MULT ORBIT ERRORS CORPECT	3	93951 41527 101845-05	.9159938	338563	36.92	89191317 59226106		31 03 563 1 30 3 84 3 30 3 84 2 6	0. 52.226 0.	0000000 0537405 6•64E-92	0. 54.92 0.	486963 8 98 28783 17 92 9•
ITERATION CONTROLS LGR MULT ORBIT ERRORS CORRECT	4	77666 97068 338155-33	C, ,916930:	5º2714		52182872 647457400		4321952 5791404 7914C42	0. 51.787 0.	2424336 -3•54E-02	0. 50.03	150191514 323209872 0•
ITERATION CONTROLS LGR MULT ORBLIT ERRORS CORRECT	3 74.15657 -336757.2 534176.07 -3.1375767	11959 37033 47335€-15	€. •919963:	22117	36.80 1.804	DELTA V 47940586 14330169 49510976 95109760 -6.3	59.615	0527593 2513203 5132026	0.	4306248	0.	548882749 697212269 0•
ITERATION CONTROLS EGR MULT ORBIT ERRORS CORRECT	5	5361(58477 57235 647785-07	90.00000 (. .9374+01	1000U0 193 7 00	20.76	75318168 552058468 21157004 11570038	4.8547	2196731 7372703 3727031	ე•	1630779	0.	322447153 896349320 0•
ITERATION CONTROLS LGR MULT DRBIT ERRORS CORRECT	7), FRT40 -100/874/ -213/40.5 -3, 11/9023	- 10 C.L.E - 10 C.L. - 10 C.L.E	45.000 (, 1.0000	339913	1.676 26.77 1.775	174488250 25485014	1.1715), -1.3267 70.668 5.563? -3.26E+0	2928359 2048696 0486965	0.	4846745	0.	717190758 994895493 9•

ITERATION	3		DELTA V	1.142008192		
CUNTROLS	[1.74]50 Fake	31.110000000	-22.0354239991)•	2250.00000000	-60.3695316234
LOW MILE	-1437476747681	(c	11,4599331144	,779273739795	223040000000	3.
13311		โ.ก อกลายสดสล	36.7452919074	70.7201569799	51.5334526009	39.9234679204
ERRIAS	-4. 39/ 3139546475-55		1.74525190736	5.72015.97985	2.	0.
CORRECT	, .	1.6	-50 -5.8	-1.39E+07 O.	-1.3 -2.0	0.
ITERATION	7		CELTA V	1,108953255		
CONTROLS	2+.1908262847	97 . 001930000	-2).290090041	0,	2000,0000000	-66-1856608568
LGR MULT	=03019767,5561	C.	10.2009837061	-1.19415312377	0.	0.
ORBIT	±1,2110,127736	(::3877324)	30.7121449153	70.8429593905	51.ef700836790	24.9481617939
EPRIPS	-5,17:0571031011-05		1.71214481527	5.84295939045	€.	9.
C()b35C1	1,4	F • 2 3•	7,00 -17	-1.799+39 C.	-1.335+02 -6.72E+02	
ITERATION	17		DäLTA V	1.112770422		
CONTERLS	23. FF3T03563	P1•03U0000000	-14-2397801808	2.	2707.76371777	-83.3743947107
LGR MULT	-1370g#3-#1 ₆ 79	Co	-123.086504509	-672.925594387	0.	0.
ORBIT	-7+493,4777667	1,00732158127	36.5985767575	67.1796571652	51.9589686461	321.278861313
ERR 1º S	-A,97117811403 6436	r.	1.59857635751	2,17965715527	2.	9•
CORPECT	1) 2	• 1 2	-50 2.7	-1.135+03 0.	-3 ⁶ 1,195+02	0.
ITERATION	;;		DELTA V	1,082955019		
CONTROLS	3.4. 142233324	an. Jakanagana	-14.1155539876),	2157.76371777	-89.6713325747
LGR MULT	-1930348734453	€.	-157,936312915	-553.597478535	0.	0.
∩93 ! T	-25374.6733454	1.19357379207	36.5594242850	56.9859839977	51.9054893918	331.794005995
ERRIPS	-A,7505470606706-65	C,	1.55942428685	1.98538396771	ე•	0.
CORRECT	, 31	- ¿ 4 2 0 •	-50 2.9	-2•04⊑+03 C•	65 2.005+02	0.
ITERATION	12		DELTA V	1.052475480		
CONTROLS	7 + 4 + 21 1 = 15 = 21	97.0000000000	-14,23C65A5895	^*	2107,76371777	-77.7357228413
LGR HULT	-: 147744554	۲,	-92.764903860-	-353.332185344	0,	0.
OR 4! T	= 1754 _{5 x} 27 55 6, 4	1.1.3:4436956	34. FT H1647757	65.7887457790	51.8305616529	342.728239762
FPK 1FS		ſ,	1.51816477585	1,73874577898	₹.	0.
COPRECT	1,770-07	-,42	-5¢ 2 ₆ +	-3-57F+C8 0.	2.938+02 3.07E+02	0. 0.
ITERATION	**		CELTA V	1,023324561		
CONTECLS	3+++593452627	9r6300ncee0	-14.6602401759	3.	2057.76371777	-74.3432606294
र्मारार वश्रु	- 250 660000,04	(•	200.353160790	-47.1301470344) •	ე•
ORBIT	-0911541331043	1 ∍7103712∠→	36.4733547317	65.5371813365	51.7201630909	354.423300554
546 JES	-3,30040000 E800-05	C n	1,47335413192	1,58318133651	`,	9•
CUBSEL1	-, ja `.		-5C 4* 4	-7.15c+C8 0.	9.375+02 4.38E+02	G• O•
ITERATION.	1,		CELTA V	• 9924 + 52522		
CONTROLS	14.1 574701412	90.0000000000	-15.6158649130	.)•	2007.76371777	-69.9171503818
LGR MULT	-3218371171.65	(,	1:37,62935341	441.190471897	?∙	0.
Cbril	- 33 3- 0x 50 x75 45	l. 15 3 3 3 7 7 3 C A	35.4214450447	ab. 3536481301	51.5320284449	7.95539858658
EBB 163	0x 07x 31716 1152 x 05		1,42344504465	1.35364913008	?∙	0•
CORRECT	-:,	-: , q %	-50 °-1	-2.55E+09 C.	5.01F+03 1.17E+03	o• ••
ITTRATION	15		CELTA V	.9629307650		
CONTROLS	92**70a577427	20 • 10 30 A 30C 1	-19.4661610160	3•	1957.76371777	-60.7976884238
EGR MIT	— ₹8६°30143 , C8	Ć.	6148,41940203	1615.37047057	n.	0.
118°C	-3-511,5000419	1.13752568134	35.3610581514	66.0415621715	50.9510362875	29.9965271838
EBB 182	7.79713-6565072-65	C	1.36105815136	1.04156217155	ه ر،	0.
CURPTOT	• + " •	-1.) C.	50 t. 5	-3,245+79).	1.155+04 5.72E+02	0.

	1,			•9924952522		
CONTRILS	13.1019179462	ุคา.งถาวายอกขอ	-19.4692438466)•	2007.76371777	-59.3065330289
LGR MULT	-7175254544.24	()	17642.3453238	2187.25733597	7.	0.
OPBIT	-4391941777771	1.11072413973	36.2738632956	65. 971 9326334	50.5458584494	35.4734357203
ERRIES	- 47, <u>3</u> 7036507766351 4 05		1.27386379564	,971032633369	,),	0.
CORRECT	• 76	-,³> C•	50 +•27	-2.93E+09 0.	1.51E+C4 1.05E+03	0.
ITERATION	17		DELTA V	1.022324551		
CONTROLS	73,24077,23007	97.0000.000000	-17.8313895919	0.	2057.76371777	-59.5766089522
LGR MULT	-120,706063345	C •	32771.6511800	3241.81590714	Ç.	0.
OKBIT	-5-775, 9-14674	1.06472405149	36,1847237774	65.8978290545	50.2623506264	37.3729737867
ERP 145	-4.71eCe70777776-(0		1.18472377742	.837909054548	1.	0.
CORRECT	775	21 0.	5065	-2.38E+09 C.	1.79E+C4 1.57E+03	
ITEDATIOS	. 12		DELTA V	1.052475480		
CONTROLS	34.c251133497	90.0003110000	-20.C41975643B	0.	2107.76371777	-60.2279063669
•			5065C+5190653	4815•9726563C		
LGR MULT	-149,376749767				0. 50.0144849 17 8	0. 38.5075228011
ORBIT	-732:4:74:00085	1.00319543506	36.0945816973	65.8251258681 825125868102		
ERRITES	-5.217070562916E+03		1.09458169726	•	3.)• 0
CORRECT	, ja	14 0.	50 -a PC	-2.84E+39 0.	1.97E+04 2.00E+03	0. 0.
1 TERATION	12		Drita V	1.082955019		
CONTROLS	35.9146771302	90 . 017505666	-20-1778211173	J•	2157.76371777	-61.0325132209
LGR MULT	-17742557498.6	(,	70305.5960831	6817.98542107	0.	7•
ORBIT	-120779.444261	1.03958250983	34.0042797674	65.7534915542	49.7900738988	39.2946274360
ERROPS	-5,72, 562 4518215-US		1.60427876737	.753491554214	7.	0.
CORRECT	.62 7.	-9.25E-32 C.	50 87	-2.81E+79 0.	2.C7F+04 2.33E+03	
			25174 11			
	27			1.113770422	3/25/557	
CONTROLS	35.9475617879	90.000000000	-20.27C3992575).	2207.76371777	-51.9011269808
LGR MULT	-20548363793,8	(,	90957,1595274	9146.38367519	0.	0.
ORBIT	-294875.175811	1.01613255629	35.9141740754	65.6829592345	49.5832495871	39.8924101790
ERRARS	-5,2279107459145-08		.914174075407	•682959204529	0.	0.
CORRECT	,55 %•	-6.69E-92 J.	5C -• 89	+2.78E+09 0.	2.11F+04 2.56E+C3	0. 0.
ITERATION	21		DELTA V	1.144929173		
CONTROLS	36.4945389550	90.000000000	-20.3364009613	9•	2257.76371777	-62.7907459550
LGR MULT	-23323629839.2	C •	112026.761224	11701.7177647	0.	0.
ORBIT	650877.065787	•992634728111	35.8244067211	65.6134656891	49.3900745743	40.3776294311
ERRORS	-4,7351414052876-05	· (•	.824406721148	•613465689C84	o.	0•
CORRECT	• + 9 °•	-4.93E-12 0.	5089	-2.75E+09 0.	2.11E+04 2.70E+03	0. 0.
ITEDATION	2?		TELTA V	1.176439009		
CONTROLS	35. 9832044943	93.300030000	-20.38572C5C31	0.	2307.76371777	-63.6788765732
LGR MULT	-26070984943.6	(.	133099-312976	14397.4998081	0.	0.
ORBIT	154741.037214	•969230601834	35.7350196194	65.5449248913	49.2076444201	40.7921998720
	-4.242539266326F-C5		•735C19619394	•544924891276	0.	0.
		,		**	2.08E+04 2.76E+03	
ERRORS	• • • • • • •	-3.88E-02 0.	5097			
CORRECT	.43 C.	-3.88E-02 O.	50 87	-2.72E+09 0.	20000104 20100103	0. 0.
CORRECT ITERATION	.43 C.		DELTA V	1.208307932		
CORRECT ITERATION CONTROLS	.43 C. 23		DELTA V -20.4245647C70	1.208307932	2357.76371777	-64.5533571893
CORRECT ITERATION CONTROLS LGR MULT	37.4123562437 -23792637667.5	90.0000000000 C.	DELTA V -20.4245647C70 15388C.098460	1.208307932 0. 17160.0590592	2357.76371777 0.	-64.5533571893
CORRECT ITERATION CONTROLS LGR MULT ORBIT	.43 C. 23	90.0000000000 C.	-7 DELTA V -20.4245647C70 15388C.098460 35.6460186410	1.208307932 0. 17160.0590592 65.4772582968	2357.76371777 0. 49.0337530736	-64.5533571893 0.41.1606415506
CORRECT ITERATION CONTROLS LGR MULT	37.4123562437 -23792637667.5	90.0000000000 C.	DELTA V -20.4245647C70 15388C.098460	1.208307932 0. 17160.0590592	2357.76371777 0.	-64.5533571893 0.41.1606415506

	_					
	2+			1.240544221		
CONTROLS LGR MULT		90.C000000000	-20.4569617279	0.	2407.76371777	-65.4075913255
ORBIT	-31490737900.8 51231.5789707	(• • 902013273454	174159.549427 35.5574024482	19927. 2691447	0.	0.
ERRORS	-3,2516467193978-65		• 557402448223	65.4104056169	48.8666992510	41.4980220169
CORRECT		-2,865-32 0.	50 +.83	•410405616360	1 045404 3 735403	0.
COKYECT	9.2.1	-2,005-32 0.	2.7	-2.68F+39 0.	1.945+C4 2.72E+C3	0. 0.
ITERATION	23		DELTA V	1.273156445		
CONTROLS	39.1179776557	90.0010000000	-20.4855306965	2.	2457.76371777	-66.2380968438
LGR MULT	-34147707657 6 2	(•	193787.115855	22646.7261799	?•	0.
ORBIT	45999, 3774217	. 398241131089	25.4691795947	65.3443293785	48.7051558760	41.8140001523
ERRIRS	-2.7504787069375-03	f.	•4691795E4723	.344329378489	^•	0.
CORRECT	→ 23	-2,662-72 C.	5C81	-2.66£+39 O.	1.89E+C4 2.63E+33	2. 0.
TESSATION	74		OFLIA W	1 20/152/75		
CONTROLS	25	90.00000000	-20.5122157952	1.306153475	2547 7/271777	(7.0421432252
LGR MULT	-16453741115	(*	212652.134732	0.	2507.76371777	-67.0431633253
TIBAC	33763.7575h74	974342543172	35.2813817763	25273.8738856 65.2790192932	0. 48.5483806518	0.
ERRORS	-1,261679187813(-03		. 381381776857	• 279019293165		42.1150567269
CORRECT		-2,596-12 3.	50 -,78). 1 005 104	ĵ .
C 3 K N E G T	1 - 1	-24976-72 34	50 -, 10	-2.64E+09 0.	1.80f+C4 2.50E+03	0•
ITERATION	27		CELTA V	1.339544501		
CONTROLS	394 f 3706 95 50¢	90.00001	-20.5380725364	ე•	2557.76371777	-67.8220668661
LGR MULT	-324-199757764	ر ا	230669.180483	27770.1366865	?•	0.
ORAIT	353,1000,000,000	, 933239339213	35.294C904E84	65.2145005569	48.3946581000	42.4058371046
ERRJSS	-1,764331/0/9705-63	Ĉ.	29408€48€393	,21450055687F	0.	0.
COPRECT	, 20	+2.79F-12 0.	50 -• 75	-2.62E+09 0.	1.715+C4 2.33E+03	0.
ITERATION	23		V ATJS9	1.372339045		
CONTROLS	78.6465753017	ar • 30 th 300 hod	-20.5639526130	3.	2607.76371777	-68.5745503177
LGR MULT	++2)e315,01362	(•	247764-658865	30100,7463196	3.	0.
DRBIT	2751760000937	.926(53858744	35.20741 78173	65,1508532300	48.2442706605	42.6901077250
ERRORS	-1,25 3557767070-(5		.207417817045	.150853199952	0.	0.
CORRECT	1.7	-2.945-02 0.	30 -• 73	-2.50E+09 0.	1.61E+04 2.13E+03	
********	2.2		20174 11			
	23			1.407546980		
CONTROLS	19,134329292	90.00000000	-20.5903487458	72721 1 (7266)	2557.76371777	-69-3003360194
LG⊇ MULT		ۥ •2°¹>45557550	263858.768259 35.1216342242	22231.1472988	0.	0.
OR 3 I T	24011#3458146 -7,6013737 79938-05		.121684224210	65.0882646869	48.0965130922	42.9717922562
ERROPS				8.9264686869485-02). 	0.
CIRRECT	,13 3,	-2.72E-00 (.	5070	-?.59E+C9 0.	1.50E+04 1.89E+03	0• 0•
ITERATION	31		DELTA V	1.442178544		
CONTROLS	33 , 1+67700775	97•00000000	-20.6176162533	2.	2707 .7 63 71777	-69.9981035375
LGP MULT	-4727-7731543.8	C •	278917.362059	34116.376523R	^•	0. •
ORBIT	01570:4799640	• 777708223461	35.C376)11184	55 . 0272355 7 83	47.9513419782	43.2574541195
ERRIJES	-3,53:4457476105-65	(•	3.76C1116368C0E=0	2 2.722557833C22E-02)•	0.
CUSAECI	4.174-07 3.	-1.395-75 C.	05 32	-1.275+09 0.	5. F36+03 7.375+02	0.
TTEPATION	3!		PELTA V	1,459430668		
CONTENLS	39,1814719952	27.00000000	-20.6315481658)•	2732.44170106	-70.3234344897
LGP MULT	-495. [EBarre]	·	285249.322725	34853.3679762	0,	7.
ORSTT	23+ F. 3-777e1	• 75→5399104F5	34.0053870040	54.9996315045	47.4921518837	43.422182208C
ERR IRS	-2,31 7667701,17-17			4 -3.984954564558E-C4	Y•	٦.
CORRICT	-7,51 -(3 0)	ê.213+35 O.	-2.715-02 2.23E-0		-1. CRE+C2 -24	0. 0.

TTRRATION 21	77.12	285240.94 34.666696 -4,9070062	60638 44036 cg579 59177E-08		7651 66455 026cE-07	2732.414 3. 47.98262 3. -3.416-C2	56659	-70.3212 0. 43.4265 0.	
TTERATION 33 CONTROLS 130,174575 LGR MULT ++854042+ DPRIT 20454,34 ERRORS 4,3845137 CORRECT 1,346-137	<pre>65653</pre>	285240.83 31644 35.00007 1.81898540	60552 39914 nnoci 035466+12	1.4574116 0. 34820.362 65.03030 1.12777343 -2.5	15735 00001 101986-10			-70.3212 0. 43.4265 0.	- · · · -
TTRATION 34	95653 90.00000 808.4 C. 700((.76463756 768648+13 C.	0000 -20.63146 295240.90 31646 25.00000	60f51 09933 00000	1.4594116 0. 34829.362 65.00000 -2.72948410 3.3	25773 00000 15319E-12	2737.414 7. 47.98262 3. -1.725-05	57868	-70.3212 0. 43.4265 0.	
EIGENVALUES FOR SECCI NOMINAL CENTROLS ALPHA 39.173960	PARTIAL CHECK 3.6	011735850+06 DELTA -27.67146:	4 ŤHD	DT 0.		FBURN: 2722	-4146	TAN -3	70 . 321 201
NOMINAL MULTIPLIERS ++8540424323.	2.	285240,309916	34829.3		0.		9.	, ,	321201
TRACK MATPIX	-1.1574874429926-13 410.00000000000 -1.0378034156036-12 0.	-5.595114032868F-13	0. 0. 4.000000 -2.706590	324535E-19	4.00000	3493724E-19)000C00E-04 6390061E-19	-1.353783	758620E-1	8
DEV-TRACK MATRIX 39610,000/000 -5,824507570553F-15 8,02778622344(E-11 0,0	-5.426577033799E-11 99500.0000000 -1,7)65638394335-10 0.0000000000000000000000000000000000	5.950440817734E-11 -1.4744383960625-10 39600.3000000	C. 0. 1.200000 -8.119770	9736055-19	1.20000	3048117E-18 3000000CE-C3 2917018E-18	-4.061351	305859E-1	. 9
EIGENVALUES OF TRACK	40]•00000000	400.00000000	4.000000	0000 00 E-04	4.030000	000000E+04	4.000000	000000E-0)4
BIGENVALUES OF DEV-TE	PACK 33500.1000000	39500.0000000	1.200000	000000E-03	1.20000	000000CE-03	1.200000	00000E=0)3

CASE 1

CASE 1												
ACTUAL X 4015	•7041	Y 57	o9•3798	Z	365.11756	XD -4.19	50086	YD -1.07	27570	ZD 2.00	21508	
ESTIMATE				_								
X 4035	• 3125	Y 57	45.1756	Z	360.97606	XD -4.20	56749	YD -1.04	34/84	ZD 2.00	31816	
ITERATION	1				C	ELTA V	1.459411	676				
CONTROLS	39.178959		90.00000		-20.6314		0.		2732.414	61792	-70.321	2009472
LGR MULT	-48540424		0•		285240•		34829.36		0.		0•	
ORBIT	24943.73		•8C95545				65.06665		46.91759		-	9983810
ERRORS			6 C•		•66C885				0.		0•	•
CORRECT	• 99	0.	14	0.	50	-1.0	1.92E+08	0.	2.186+04	6.59E+03	0.	0.
ITERATION	2				D	FITA V	1.494695	623				
CONTROLS	40.C7374	93568	90.00300				0.		2782.414	61792	-71.781	5389208
LGR MULT	-48348178		C•		307009	879594	41424.28	23889	0•		0.	
DRBIT	22777.50		• 7905972	10245			65.03946		46.64031	91395		19811832
ERRORS	-4.9348316			_	• 337452			78228E-02			0.	_
CORRECT	•67	0.●	 13	0.	50	-1.2	4.32E+07	0.	1.24E+04	4.51E+03	0•	0.
ITERATION	3				(FITA V	1.530430	1444				
CONTROLS			90.00000				0.	,	2832.414	61792	-72.984	45598329
LGR MULT	-48304937		C.		319364.		45936.43	34420	0.		0.	
ORBIT	23905.61		•7709468				65.00891		46.39683	21153		36153632
ERRORS			06 C•			912864E-02					0.	
CORRECT	3.198-02	∂ •	-3.11E-02	0.	12	19	-3.46E+07	0.	4.98E+02	3.61E+02	0.	0.
TTER AT TON	4				[ELTA V	1.533779	2224				
CONTROLS	43.82639		90.00000				0.		2844.004	50430	-73-177	79724210
LGR MULT	-48339569		C •		319862	257150	46297.6	191810	0.		0.	
ORBIT	20455.80		•7657572				65.00009		46.34537	46879	43.309	97770240
ERRORS			.9 C•			4C8002E-04					0.	_
CORRECT	-1.25F-C3	9•	6.56E-C5	0.	-9.98E-02	1.52E-03	-3.83E+04	0.	-24	-11	0.	0.
ITERATION	5				{	FITA V	1.53877	20 97				
CONTROLS	40.82515		90.00000				0.		2843.994	52803	-73-176	64505166
LGR MULT	-48339607	506.7	C.		319838	543064	46285.5	875866	0.		0.	
ORBIT	20455.00		•7657595	57682			64.9999		46.34548	69805		40621955
ERRORS	-3.1682191			•		153678E-09					0.	_
CORRECT	-6.65E-C7	U.	-1.96E-C7	0.	2.21E-0	-2.72E-07	-2.18E+03	0.	-1.23E-02	-4.40E-03	0•	0.
ITERATION	6				(ELTA V	1.53877	2113				
CONTROLS	4).82515		90.00000				0.		2843.994	55017	-73.176	64507883
LGR MULT	-49339609		C •		319838		46286•5		9•		0.	
ORBIT	20454.99		•765759	82583			65,0000		46.34548	370263		40618135
ERRORS	3.1571287					4C3546F-12					0.	_
CORRECT	1.595-10	0.	6-185-11	Ű.	-3.22E-0	6.15E-11	-4.8	0.	3.30E-05	6.04E-06	0•	0•
ITERATION	7				(DELTA V	1.53877	2113				
CONTROLS	43.82515		90.0000				0.		2843.994	55016	-73.17	64507882
LGR MULT	-48339609		C .		319838		46286.5		0.		0.	
ORBIT	20455.00		.7657599				65.0000		46.34548	37C263	43.31	40618137
ERRORS			13 (.		0.			0177295-13			0•	_
CORRECT	9.396-12	U ⊕	-1.59E-11	U.	-1.85E-1	1.79E-11	2.0	0.	-1.53E-05	-3.45E-06	0.	0•

EIGENVALUES FOR SECOND PARTIAL CHECK 5.38820071E+06

CONTROLS DUE TO RETARGETING ESTIMATE ALPHA 40.825151 BETA 90.000000 DELTA -20.933444 THDOT 0. TAN -73-176451 TBURN 2843.9946 ACTUAL INITIAL CONIC SMA -4044.8768 ECC 2.1533582 INC 37.571445 PER 64.470445 NOD 51.289223 TAN 300.40966 ACTUAL CENTROLS ALPHA 40.817443 BETA 90.00000 DELTA -20.891884 THDOT O. TBURN 2795.5240 TAN -73.500759 ACTUAL THRUST AND GRAVITATIONAL PARAMETERS MASS 3146.8506 DMASS -.47685832 THR 1.3331260 MU 42829.704 ACTUAL TARGET VARIABLES 4.992334489828E-05 4791.78453643 35.0111103246 66.0397161349 46.7689647178 39.4867025192 ACTUAL FINAL CONIC SMA 20030.709 ECC •76077809 INC 35.011110 PER 66.039716 NOD 46.768965 TAN 39.486703

COMMANDED DELTA V 1.53877211276

DELIVERED DELTA V 1.54036650642

			NING CASES											
NMC		AL PHA	BETA DELTA	THOOT	TBURN	TA	SMA	ECC	INC	ARGP	NODE	TA	D٧	NPE
2	7	32.56	90.00 -16.78	0.00000			20249.1	•77209	34.81	66•28	52.22	44.84	1.378	1
3	7	37.06	90.00 -17.46	0.0000			23463.9	.81106	34.64	64.42	50.81	51.68	1.393	1
4	8	50.31	90.00 -19.20	C.00000	28C8.7	-75.96	24572.0	.80454	35.46	63.39	42.05	40.94	1.500	1
5	6	37.46	90.00 -19.72	0.00000	2705.2	-71.69	18459.7	.75136	35.33	65.58	51.42	45.23	1.449	1
5	8	44.25	90.00 -21.87	0.00000			20923.3		35.46	63.45	44.27	38.24		ī
7	7	27.38	90.00 -19.49	C.00000			19117.8		35.18	65.59	55.16	34.38		ī
8	7	24.01	90.00 -15.93	C. 00000			20771.6		34.90	64.92	57.11	30.26		ī
9	7	27.73	90.00 -15.83	C.00000			18705.5		34.66	67.65	56.04	36.19		i
10	7	32.91	90.00 -20.19	0.00000			18573.1		34.96	66.99	51.05	42.85		i
11	8	23.78	90.00 -16.75	C.00000			20256.7		35.41	65.56	58.96	25.27		
12	7	30.09	90.00 -16.00	C.00000			19964.1							1
13	8	23.39	90.00 -13.90	(.00003	-				35.24	63.38	52.69	44.96		1
14	7						20325.4		35.18	64.47	59.13	31.01		1
_		41.72	90.00 -21.62	0.00000			20958-5		34.88	65.43	45.15	41.25		1
15	6 9	37.12	90.00 -17.18	C.00000			20291.7	-	35.77	66.33	48.94	50.47		1
16		50.71	90.00 -20.83	C.00003			20131.5		34.32	65.33	43.31	35.67		1
17	6	32.53	90.00 -20.37	C. C0000			22049.5		34.67	63.66	50.87	40.40		1
18	6	34.42	90.00 -21.46	C.00000			26466.9		35.04	61.80	47.81	41.37		1
19	7	31.53	90.00 -19.37	0.00000			21879.8	-	34.85	64.77	51.33	41.75		1
20	7	43.22	90.00 -19.49	C•C0000			20205.6		34.88	64.47	48.15	44.86	1.379	1
21	7	49.25	90.00 -21.57	c•00000	2838.7	-77.25	20947.0	•77279	35.18	65.67	43.39	37.17	1.547	1
22	6	33.90	90.00 -19.31	0.00000			20867.1	•76649	34.55	65.21	48.30	43.61	1.429	1
23	8	46.71	90.00 -20.34	C.00003	2877.0	-76.32	22620.1	.78661	34.77	64.09	43.96	39.35	1.589	1
24	6	38.57	90.00 -18.56	C.00000	2686.3	-70.31	25177.7	.81703	34.99	62.77	50.50	49.98	1.423	1
25	9	35.70	90.CO -15.01	0.00000	2518.3	-69.45	19482.1	•77470	34.47	55.40	52.47	49.67	1.320	1
25	5	38.65	90.00 -21.37	0.00000	2778 • 2	-71.13	21076.5	•77072	34.69	64.63	46.77	43.30	1.505	1
27	7	48.54	90.00 -20.14	C.00003	2732.9	-76.28	20634.7	.77314	34.70	65.51	44.90	37.76		ī
2 9	9	53.57	90.00 -17.83	C.00000	2913.0	-82.01	20458.2	.77992	34.93	64.78	41.29	42.51		ī
29	11	53.03	90.00 -18.22	C • 00000	3083.0	-80.64	21929.7	.77567	34.96	54.95	39.42	37.86		ĩ
30	7	32.01	90.00 -20.01	C. 00000			19598.2		34.81	66.10	50.34	35.96		ĩ
31	5	44.44	90.00 -19.99	0.00000			21481.5		34.75	65.22	45.40	41.63		ī
32	6	36.32	90.00 -20.68	C.00000			19975.7		34.46	64.76	48.52	41.76		ĩ
33	7	28.21	90.00 -17.59	C.00000			20609.5		34.54	64.55	54.86	34.50		
34		42.41	50.00 -20.40	C. 00000			21710.6		34.48	65.09	46.36	42.71		i
35		44.24	90.00 -19.22	C.00000			21410.0		34.60	64.69	45.71	46.35		i
36		47.13	90,00 -18.52	r.00000			19862.7		35.14	64.49	45.48			
37	5	42.33	90.00 -20.53	C.00000			2178C.4		35.41			47.66		-
38		43.75	90.00 -20.53	C.00003						65.56	47.59	43.30		
39	6	43.37	90.00 -20.60	0.00000			18814.7		35.33	64.88	44.81		1.440	
43		36.30	90.07 -18.73	C.00000			20392.4		34.99	64.91	45.74	43.03		_
41	7	28.65			_	-	22149.7		35.56	64.11	48.78		1.452	
			90.00 -18.83			-67.77	19389.5		35.66	64.68	55.06		1.440	
42		28.15	90.00 -13.01	C.00000			21841.7		34.50	65.20	54.76		1.449	
43		27.53	90.00 -14.06	C.00003			20973.9		35.01	66.02	56.44		1.409	_
44		30.94	90.00 -22.13	0.00000			20246.7		34.92	63.77	52.19		1.463	
45		41.01	90.00 -21.56	C.00000			18184.7		35.07	65.53	43.76		1.604	
45		36.37	90.07 -18.95	C.CO0077			21557.3		35.42	64.68	49.94		1.368	
4-		35.03	90.00 -27.04	c•recos			18813.4	•73649	35.32	65.63	50.41	41.44	1.498	1
4 3		43.51	or, oc -19.97	C•00000	2919.1	-75.89	21576.3	•76761	34.61	54.69	42.05	36.67	1.598	1
43		37, 76	90,10 -23.23	(, 2002)			21697.4	•77383	35.12	65.98	48.20	42.45	1.403	1
5)		42 • 41	90.01 -20.91	C.00000			17959.5	•72252	35.29	65.99	44.77		1.480	
£1	7	35.55	90.00 -19.24			-70.51	19465.6	•75005	35.11	66.39	48.33		1.554	
÷ ?	8	47.37	90.99 -19.47	(.0000	2811.2	-77.45	18141.8	•74655	34.68	65.11	43.82	42.46	1.516	1

```
53 6 35.17 90.00 -19.83 (.0000 2627.1 -68.69 21692.5 .78233 34.60 64.66 49.48 45.05 1.404
        24.35 90.00 -15.82 (.00000 2651.3 -71.23 19477.0 .75781 35.73 64.20 57.63 31.46 1.397
        40.70 90.00 -19.97 0.00000 2776.2 -70.18 19643.3 .75235 35.62 65.09 45.44 45.01 1.458
   10 48.47 90.00 -19.91 (.00000 3038.5 -79.65 20282.2 .76875 35.62 54.20 41.33 43.83 1.671
    10 45.38 90.00 -20.51 C.00000 2997.5 -75.66 18020.9 .71630 34.53 65.66 40.68 35.29 1.667
       39.63 99.03 -19.55 C.00000 2550.7 -71.27 19125.0 .77341 35.64 66.49 49.97 50.13 1.317
     6 37.79 90.00 -18.67 0.20000 2587.1 -70.33 20903.0 .78147 34.98 66.13 49.91 45.54 1.402
     8 30.06 90.00 -16.25 (.0000) 2545.6 -69.89 20443.4 .77363 35.51 64.15 55.38 37.72 1.370
     7 38,75 90,00 -23,44 (.0000) 2896.2 -57.80 24996.0 .78402 35.35 64.33 44.97 38.02 1.558
     8 37.57 90.00 -20.97 0.00000 2514.3 -68.75 19633.6 .76664 35.23 67.56 50.24 42.56 1.326
     8 42.33 90.00 -20.47 C.00000 2562.7 -72.62 22767.4 .80945
                                                              34.76 63.55 50.14 49.25 1.338
     7 39.82 99.30 -20.98 (.00000 2861.1 -72.63 19050.1 .74715 34.97 66.95 46.53 42.54 1.544
     8 52,48 90.00 -17.16 (,00000 2616.8 -76.22 24997.2 .82011 35.47 63.00 44.25 43.57 1.385
     7 31.33 90.00 -17.57 0.00000 2743.3 -70.40 19278.0 .75414 35.02 64.38 55.08 41.91 1.456
     7 29.36 90.00 -21.90 C.CCCCC 2744.7 -67.47 18651.6 .72914
                                                               35.03 65.37 52.00 36.02 1.442
     5 33.95 90.00 -21.15 0.00000 2652.9 -71.36 19931.2 .76788
                                                               34.83 66.57 49.48 42.62 1.417
                                                               34.59 66.36 51.14 43.09 1.482
       33.59
              90.03 -19.03 0.00000 2777.0 -70.53 18789.6 .74616
       31.77 90.00 -10.82 0.00000 2624.9 -68.60 20567.1 .77257
                                                               35.31 64.56 53.97 43.96 1.364
71
     5 41.39 90.00 -21.03 (.000) 2721.9 -70.57 21603.6 .77920
                                                               35.54 64.09 46.57 45.25 1.425
     6 43.50 70.00 -19.19 0.00000 2746.7 -72.83 19964.9 .76455
                                                               35.19 66.16 45.14 44.31 1.466
72
     7 29.10 00.00 -19.05 (.0000) 2695.9 -65.08 20116.7 .74018
73
                                                               35.46 64.03 54.31 34.39 1.445
     6 44.31 90.00 -22.73 (.00000 2832.0 -72.87 19804.9 .74931
                                                               34.81 64.34 45.04 38.26 1.520
     6 35.30 90.00 -22.62 0.00000 2733.1 -67.97 22399.1 .76929 35.57 65.00 48.40 35.23 1.494
75
     9 38.28 90.00 -15.70 0.30003 2462.0 -69.64 20342.6 .78793
                                                              35.46 64.38 51.35 5C.74 1.283
     9 23,29 90.00 -11.77 0.00000 2698.1 -74.37 20614.8 .77959 35.35 65.47 60.49 29.70 1.435
     8 32.48 90.00 -20.64 (.0000) 2609.7 -69.50 22361.6 .79359
                                                               35.44 63.26 53.62 43.67 1.352
     5 37.59 90.00 -13.92 0.00000 2822.7 -69.87 19747.7 .75461
                                                               34.86 65.43 46.96 47.37 1.488
     6 43.70 90.00 -20.65 (.00000 2749.8 -72.15 22732.4 .78789
                                                               35.21 64.52 45.83 42.29 1.470
     5 39.22 9C.00 -21.53 C.00000 2710.4 -69.74 19724.3 .74700
                                                               34.08 65.41 48.28 36.73 1.472
     8 25.55 9C.3C -17.84 C.CCCCC 2670.8 -68.14 19593.9 .74553
                                                               35.39 64.62 55.99 30.95 1.432
                                                               34.99 56.34 45.76 36.07 1.523
     6 39.37 40.11 -22.89 (.0000) 2822.2 -70.62 19130.2 .73386
     8 31.57 00.00 -20.08 0.00000 2512.3 -65.38 19182.2 .74001
                                                               35.54 65.02 50.97 34.30 1.363
     7 28,51 90.00 -20.82 0.00000 2816.7 -66.54 21238.0 .75258
                                                               35.25 64.98 49.65 36.51 1.503
     5 39.83 90.00 -20.35 C.00000 2790.0 -70.08 18589.7 .73157
                                                               35.03 55.87 45.60 40.63 1.494
     5 45.22 50.00 -19.21 0.00000 2695.4 -72.29 20738.3 .77311 35.08 65.04 45.65 44.09 1.439
     8 27.31 90.00 -10.33 0.00000 2756.4 -70.02 19444.3 .75394 33.72 63.90 56.61 39.62 1.414
     8 44.10 50.00 -17.33 0.0000) 2584.9 -70.71 22109.9 .79835 35.15 63.07 47.43 51.92 1.359
     6 39-16 90-90 -23-50 C-00000 2933-0 -70-32 20139-7 -73963 34-79 65-22 45-39 37-18 1-603
     7 49.25 90.00 -16.63 0.00000 2783.0 -76.24 22501.0 .79004 34.27 65.09 41.69 40.99 1.494
    6 32.78 90.00 -22.71 0.00000 2734.5 -69.30 21980.3 .77469 34.60 64.32 51.15 37.41 1.487
93 11 55.25 90.00 -19.94 0.00000 2953.3 -82.10 18657.3 .74414 35.11 65.99 39.95 33.59 1.620
     5 32.77 9C.0C -21.45 C.0CCC 2771.0 -65.53 22044.9 .76008 34.66 64.04 49.45 37.95 1.481
     9 31,12 90,00 -15,63 0,00000 2528.7 -70.11 18816.0 .75953 35.26 65.24 56.56 39.36 1.343
    10 36.14 90.00 -19.25 C.00000 2470.0 -67.36 18609.1 .75724 34.29 65.31 50.46 46.45 1.271
       29.19 50.00 -19.65 0.00000 2902.2 -67.62 21668.5 .75762 34.88 64.95 52.36 37.63 1.579
       37,04 90.00 -17,92 (.0000) 2700.5 -69.15 20627.5 .76817 34.49 64.60 52.92 42.83 1.464
     9 49.79 90.00 -20.17 0.00000 2989.4 -76.63 19079.4 .74001 34.99 65.09 42.15 39.01 1.640
10) 7 25.40 90.00 -15.75 (.0000) 2793.1 -74.72 19916.3 .77001 35.27 66.42 57.97 32.73 1.486
```

EXPECTED CONTROLS					
ALPHA 37.5238C7	OCC0000-00 ATES	DELTA -19:27635	9 THDOT 0.	TBURN 2745.2	2364 TAN -71.337526
EXPECTED ACTUAL INITIA	AL CONIC				
SMA -4292.1330	ECC 2.1016092	INC 36.712273	PER 63.561584	NOD 52.278343 1	TAN 299.93776
EXPECTED FINAL CONIC			DED (5 000/00	NOD 40 000143	71N
SMA 2C599.435	ECC •76535022	INC 35.011366	PER 65.009488	NOD 49.089143	TAN 40.702225
EXPECTED TARGET VARIA 4.883282027536E-05	BLES 4806•23951378	35.0113664277	65.0094876144	49.0891428478	40.7022246230
EXPECTED COMMANDED DE	LTA V 1.469700413	43			
EXPECTED DELIVERED DE	LTA V 1.469194554	68			
STANDARD DEVIATION FO	R CENTROLS				
ALPHA 7.7159245	BETA 0.	DELTA 2.143942	15 THDOT O.	TBURN 120.0	8024 TAN 3.5759588
STANDARD DEVIATION FO SMA 234.34169	R ACTUAL INITIAL CO ECC •10176G01	NIC INC 1.5878806	PER 2.6831534	NOD 2.4226739	TAN 2.7828447
STANDARD DEVIATION FO SMA 1634.7050	CR FINAL CCNIC ECC 2.C317C389E-)2	INC .35314470	PER 1.0133377	NOD 4.7674693	TAN 5.2362056
STANDARD DEVIATION FO 3.649916402086E-06	CR TARGET VARIABLES 231.229189452	•393144695122	1.01383768417	4.76746933388	5.23620558985
STANDARD DEVIATION OF	CCMMANDED VELCCITY	8.483972707831E-C	2		
STANDARD DEVIATION OF	DELIVERED VELOCITY	8.461163417308E-C	2		
MEANS OF ERRORS GENER	RATED FROM TRACK				
421910919754	-1.88332898924	-• 553759243777	-1.339424052054E-03	-1.C888C8800790E-04	-4.135369819293E-04
RECONSTRUCTED TRACK M	MATE IX				
525.158402345	-112.705625356	59.4418249092		1.041714394663E-02	
-112.705625356	474.637787465	27•1751308681 454•100899976		3 -8.177640752319E-02 3 7.762653643678E-02	
59.4418249392	27.1751338581			-7.253153607464E-06	
				3.502916311165E-04	
				-4.387006112452E-C5	
MEANS OF ERRORS GENEL	RATED FROM EEV				
-30 • 247343322	-22.5300903503	-18.6108414120	-3.081234822774E-03	3 - 657384269675E-03	-9.390269382167E-04
RECONSTRUCTED DEV MA	TRIX				•
39655•2890503	45+3-50909262	-4152.86162875	151974989407	-1.49380256752	-1.14644845597
4543.60939262	53179.2050534	-1730.69617108	.220292730906	7.233919251886E-02	778095754316
-4152.86162875	-1730.59617108	36461.4565829	-2.289210011510E-02		608500057705
151.974989407	.220292730306	-2.28921001151CE-C			-8.718423806883E-05
-1.49380266750	7.233919251986E-0		1.004327758003E-04		9.144122964360E-05
-1.1+64484559	778095754316	508500057705	-8.7184238068835-0		1.312832283470E-03

TOTAL N = 100

SEMI-MAJOR AXIS SINCO ONCO

MEAN 20579.4353698

STD 1634.70598354

TOTAL N = 100

ECCENTRICITY
SECOND CONIC

MEAN .76535)219756

STD 2.0317C3886C48E-02

TOTAL N = 100

INCLINATION SECOND CONIC

MEAN 35.0113564277

STD .393144695122

TOTAL N = 100

ARGUMENT OF PERIAPSIS SECOND CONIC

MEAN 65.3094876144

STD 1.C1383768417

TOTAL N = 100

LONGITUDE OF ASCENDING NODE SECOND CONIC

MEAN 49.3891428478

STD 4.76746933388

TOTAL N = 100

TRUE ANCMALY SECOND CONIC

NEAN 40.7022246230

STD 5.23620558585

TOTAL N = 100

TARGET PARAMETER 1

MEAN 4.3832820275365-05 STD 3.649916402086F-06

TOTAL N = 100

TARGET PARAMETER 2

∀EAN 4805-23951378

231.229189452 STD

TOTAL N = 100

TAPGET PARAMETER 3

MFAN 35.0113664277

STD .393144695122

TOTAL N = 100

TARGET PARAMETER 4

MEAN 65.0094876144

STD 1.01383768417

TOTAL N = 100

TARGET PARAMETER

MEAN 49. 1851428478

STD 4.76746933388

TOTAL N = 100

TARGET PARAMETER

MEAN 40.7023246230

STD 5.23620558985

TOTAL N = 100

SEMI-MAJOR AXIS INITIAL CONIC

MEAN -4292-13796042

STD 234.34168647C

TOTAL N = 100

ECCENTRICITY INITIAL CONIC

MEAN 2.10163917099

STD •1C176C0C5145

TOTAL N = 100

INCLINATION
INITIAL CONIC

MEAN 36.7122732125

STD 1.58788059304

TOTAL N = 100

ARGUMENT OF PERIAPSIS

MEAN 63.5615838946

STD 2.68315335493

TOTAL N = 100

LONGITUDE OF ASCENDING NODE INITIAL CONIC

MEAN 52.2783425755

STD 2.42267385815

TOTAL N = 100

TRUE ANCMALY INITIAL CONIC

MEAN 299.937764822

STD 2.78284472711

TOTAL N = 100

MEAN 1.46919456468

STD 8.461163417308E-02

CUMULATIVE PROBABILITY OF DELIVERED VELOCITY

PROBABILITY	VELOCITY	•	
1.00000000000CE-02	1.27137620491	0.	1.0000000000000+100
2.000000000000E-02	1.28250528350	.446641446712	1.33903513505
3.0000C000000CE-02	1.31722854155	1.04365184772	1.34810060397
4.0000000000CE-02	1.31998490723	1.27557561650	1.35885593988
5.0000000000C00CE-02	1.32630822293	1.28239789758	1.36284885340
6.00000000000E-03	1.33830965717	1.30489595068	1.36575117662
7.000000C3C300E-02	1.34280545126	1.31814115267	1.36912334027
8.00000000COCE-02	1.35208127127	1.32025562947	1.37759791523
9.00000000C00CE-C2	1.35944895499	1.32488931628	1.37973906722
1.00000000C00CE-C1	1.36261347282	1.33262433186	1.38791217929
.110000C3C00G	1.36365835024	1.33962431542	1.39497236692
•12000000C0C	1.36785674797	1.34347474696	1.40030451359
•1300000000C	1.36955511379	1.35081972788	1.40312501698
•14000000C30C	1.37783224535	1.35699358438	1.40429012735
·15000000000	1.37857910285	1.36096597506	1.40920488651
•1600000000C	1.38504038137	1.36292809119	1.41042831405
•17000000c00c	1.39276549130	1.36420917830	1.41357219305
•18000000COOC	1.39677603151	1.36772687910	1.41554921954
·19000000000	1.40169994270	1.36923954286	1.41989861506
• 2C000000C00C	1.40333425612	1.37506871218	1.42256645713
•21000000000C	1.40420347628	1.37822395235	1.42498118430
• 22000C00C00C	1.40918756014	1.38109185701	1.42378316314
• 23000000000C	1.40930029980	1.38704181390	1.43221204877
• 2400C000C00C	1.41330634333	1.39330596774	1.43248687652
• 25000000000	1.41396820297	1.39685333756	1.43386203514
260000000000	1.41704121815	1.40121579045	1.43505702988
• 2 700 G000 C00 C	1.42154643892	1.40299511768	1.43762701935
•2800C000C00C	1.42292420386	1.40393225468	1.43896457471
•29000000conc	1.42545279611	1.40713393194	1.43999153974
•30000000000	1.42914837215	1.40924306411	1.44103601687
•31000000000C	1.43226389398	1.41090637313	1.44245389895
•3200C000C00C	1.43240492194	1.41351391810	1.44402512374
•3300C0C1000C	1.43376451763	1.41467605891	1.44773697893
•340000000000	1.43450243051	1.41773652414	1.44883702000
•35000000000C	1.43728686953	1.42174283936	1.44893976555
•36000000000	1.43858748586	1.42293344126	1.44913658712
•37000C00CCC	1.43976822459	1.42528979156	1.45381556949
• 380000000 <i>0</i>	1.44036719212	1.42867173845	1.45460866579
390000000000	1.44195186036	1.43167214830	1.45713863088
•400000000000	1.44302651200	1.43237003171	1.45771575732
• 41000000000C	1.44499130278	1.43335471402	1.46113389614
42000000000000	1.44874190852	1.43424266584	1.46290925071
•430000000000	1.44890624271	1.43617513228	1.46386877967
• 4400C000nn 30C	1.+4836134606	1.43801108697	1.46580453615
45000000000000	1.44923762882	1.43919701695	1.46916078022
.460000cococ	1.45164086535	1.44005507913	1.47182671897
470000000000	1.45603534749	1.44107215718	1.47340218926
.48000000000	1.45763290311	1.44239683722	1.47381362744
•49000000000°	1.45775087315	1.44378591113	1.47768095555
•5000 G000C D00	1.46251019556	1.44634966492	1.48044287154

• 51 0000coc oc	1.46306764924	1.44879795718	1.48182530070
520000000000	1.46418413010	1.44892405129	1.48445340429
• 5300000000000	1.466447466C5	1.44904658899	1.48624471460
•540CC000C00C	1.47026344787	1.44995168567	1.48730667223
•55000000C00C	1.47248755124	1.45291069669	1.48869360772
•560000000000C	1.47381030535	1.45648915387	1.49140353371
•57CGGCGGGGGGC	1.47381521376	1.45766622379	1.49393518387
•58C00000C00C	1.47968186617	1.45910321810	1.49416550348
•590000000000	1.48097496510	1.46267139984	1.49564115393
.600000030330	1.48242400141	1.46339989455	1.49867974248
.610000030300	1.48538241715	1.46488438999	1.50048227000
.620000000000	1.48653504781	1.46768633503	1.50357709684
•630030030000	1.49001585118	1.47102722758	1.50538572821
• 6430CCC0C00C	1.48941683627	1.47297130681	1.50686897679
•6500CC00000C	1.49389972334	1.47381222767	1.51293088754
•66000000000000000000000000000000000000	1.49398853721	1.47628643160	1.51560279572
.67000000000	1.49449124487	1.48022422756	1.51930797355
000000000000000000000000000000000000000	1.49830627080	1.48163670849	1.52064710908
.690000000000	1.49981586092	1.48426676971	1.52149310233
•7000000000000	1.50332448310	1.48625959865	1.52248951573
•7100C000C00C	1.50528312196	1.48746375811	1.52754794185
•72000000cocc	1.50687479144	1.48896940803	1.53600323244
•730000000000	1.51342507061	1.49272731517	1.54048619482
•74000000000C	1.51599006383	1.49397084742	1.54123572681
• 753000000000	1.52030097312	1.49442481047	1.54387075817
• 7 6 300000000000	1.52080526775	1.49807630623	1.54649633697
• 7700000000000	1.52195340504	1.49987424769	1.54792415792
•780000000000	1.52300940574	1.50351804225	1.55169955121
• 7 90000000000	1.53402427423	1.50557598680	1.55568624486
•80000000000C	1.54035650642	1.50870872887	1.56022939964
•81000000000n	1.54394328666	1.51439856495	1.56671013745
 82000000000 	1.54391745296	1.51808308006	1.57295081408
• 8300C000000C	1.54689800856	1.52060270730	1.57524487589
 840000000000 	1.54828297771	1.52163011469	1.57781101291
.850G000C000C	1.55387378353	1.52284711455	1.58318712240
• 86000000000r	1.55768526719	1.53383277460	1.58770302128
.870C0000C00C	1.56530526584	1.54044035089	1.58984076881
300000000000	1.57286612034	1.54178616097	1.59714954377
.89000000000	1.57560409735	1.54525790146	1.60169612197
• 900000000000	1.57876182093	1.54776811753	1.60376158649
• 910002030200	1.58726195110	1.55287009122	1.60772957590
•9200000000000	1.588585444C1	1.55790099351	1.61901251365
•93000000000C	1.59781554028	1.56722745290	1.63296599211
•94000003000C	1.60329983805	1.57423926465	1.64921689543
• 9500000000000	1.60427455565	1.57805047740	1.66681280736
•96000000C00C	1.61967171707	1.58736847729	1.66924670492
.97000000000	1,63954631657	1.59254648922	1,67920987569
•980000000000	1.56677449666	1.60241484718	1.70140202717
• 99000000000C	1.67074487504	1.60960259948	1.71595968099
1.00000000000	1.71830680926	0.	1.000000000000+100

PRCB	SMA	ECC	I NC	ARGP	NODE	TA	1	2	3	4	5	6
•0100	17959.50	• 71 63	33.7206	61.8031	39.4157		3.778E-05	4.314E+03	3.372E+01	6.180E+01	3.942E+01	2.527E+01
.0200	18020.91	.7193	34.0783	62.7742	39.9463			4.333E+C3				
.0300	13141.82	.7225	34.2657	62.9996	40.6845	30.2555	4.000E-05	4.338E+03	3.427E+01	6.300E+01	4.068E+01	3.026E+01
.0400	18164.68	.7291	34.2851	63.0726	41.2947	30.9538	4.001E-05	4.389E+C3	3.429E+01	6.307E+01	4.129E+01	3.095E+01
•0500	18459.65	•7316	34.3170	63.2624	41.3274	31.0130	4.070E-05	4.405E+03	3.432E+01	6.326E+01	4.133E+01	3.101E+01
.0600	19573.10	• 7339	34.4521	63.3762	41.6851	31.4585	4.262E-05	4.433E+C3	3.4465+01	6.338E+01	4.169E+01	3.146E+01
.0700	18589.65	· 7365	34.4729	63.3917	42.0453	32.7321	4.392E-05	4.458E+03	3.447E+01	6.339E+01	4.205E+01	3.273E+01
0380	13609.15	• 7396	34.4767	63.4468	42.0468	33,5890	4.399E-05	4.497E+03	3.448E+01	6.345E+01	4.205E+01	3.359E+01
.0900	18651.58	•7400	34.4386	63.5518	42.1527	34.2980	4.421E-05	4.503E+03	3.449F+01	6.355E+01	4.215E+01	3.430E+01
.1000	13657.27	•7400	34.5007	63.6644	43.3115	34.3814	4.444E-05	4.518E+03	3.450E+01	6.356E+01	4.331E+01	3.438E+01
.1100	19705.50	•7402	34.5326	63.7747	43.3897	34.3823	4.464E-05	4.525E+03	3.453E+01	6.377E+01	4.339E+01	3.438E+01
•1200	18789.64	.7414	34.5375	63.9016	43.7581	34.5038	4.472E-05	4.528E+C3	3.454E+01	6.390E+01	4.376E+01	3.450E+01
•1300	13813.35	•7413	34.5549	64.0293	43.8224	35.2253	4.515E-05	4.544E+C3	3.455E+01	6.403E+01	4.382E+01	3.523E+01
.1400	18814.71	•7428	34.5943	64.C4C6	43.9604	35.2507	4.523E-05	4.567E+03	3.459E+01	6.404E+01	4.396E+01	3.525E+01
.1500	13975.98	• 7431	34.5965	64.0910	44.2549	35.2886	4.5355-05	4.581E+C3	3.460E+01	6.409E+01	4.425E+01	3.529E+01
.1600	19050.14	•7441	34.5994	64. C931	44.2747	35.3494	4.536E-05	4.581E+C3	3.460E+01	6.409E+01	4.427E+01	3.535E+01
.1700	19079.39	.7441	34.6001	64.1059	44.7738	35.6721	4.550E-05	4.582E+C3	3.460E+01	6.411E+01	4.477E+01	3.567E+01
.1800	191:7.82	.7455	34.5053	64.1466	44.8114	35.9644	4.560E-05	4.590E+C3	3.461E+01	6.415E+01	4.481E+01	3.596E+01
.1900	19125.04	.7462	34.5388	64.2013	44.9004	36.0192	4.570E-05	4.598E+C3	3.464E+01	6.420E+01	4.490E+01	3.602E+01
.2000	19130-22	• 7466	34.6573	64.2041	44.9747	36.0746	4.578E-05	4.6C7E+C3	3.466E+01	6.420E+01	4.497E+01	3.607E+01
.2100	13182.22	•7470	34.6527	64.3187	45.0437	36.1880	4.591E-05	4.615E+C3	3.466E+01	6.432E+01	4.504E+01	3.619E+01
• 2200	19277.96	.7471	34.6578	64.3326	45.1450	36.4011	4.606E-05	4.615E+C3	3.467E+01	6.433E+01	4.514E+C1	3.640E+01
.2300	19389.40	•7473	34.6822	64.3403	45.1467	36.4059	4.609E-05	4.6165+03	3.4695+01	6.434E+01	4.515E+01	3.641E+01
·2400	19444.33	.7493	34.6904	64.3773	45.3878	36.5147	4.610E-05	4.619E+03	3.469E+01	6.438E+01	4.539E+01	3.651E+01
•2530	19465.65	•7500	34.6981	64.3797	45.4015	36.6687	4.615E-05	4.626E+C3	3.470E+01	6.438F+01	4.540E+01	3.667E+01
·2600	19476-99	.7514	34.7512	64.4163	45.4401	36.7262	4.629E-05	4.628E+03	3.475E+01	6.442E+01	4.544E+01	3.673E+01
•2700	19482.10	• 7520	34.7554	64.4669	45.4814	37.1729	4.634E-05	4.64CE+03	3.476E+01	6.447E+01	4.548E+01	3.717E+01
.2800	19593.92	•7524	34.7586	64.4703	45.6044	37.1763	4.639E-05	4.677E+C3	3.477E+01	6.447E+01	4.560E+01	3.718E+01
• 2900	19598.24	7526	34.738 5	64.4879	45.6471	37.4084	4.655E-05	4.681E+C3	3.479E+01	6.449E+01	4.565E+01	3.741E+01
• 3000	19633.63	• 7539	34.8053	64.5250	45.7117	37.6298	4.671E-05	4.689E+C3	3.481E+01	6.452E+01	4.571E+01	3.763E+01
•3100	19643.34	• 7541	34.9383	64.5532	45.7422	37.7200	4.709E-05	4.690E+C3	3.481E+01	6.455E+01	4.574E+01	3.772E+01
.3200	19724.27	7546	34.8393	64.5622	45.7620			4.695E+C3				
• 3300	19747.73	• 7 572	34.8307	64.5977	45.8350		-	4.701E+C3				
• 3400	19804.92	• 75 76	34.9479	64.6169	46.3642			4.705E+03				
3500	19862.73	• 7578	34.8525	64.6267	46.5345			4.715E+03				
• 3600	19916.35	•7579	34.9762	64.6618	46.57C7			4.7175+03				
•37CO	19931.22	. 7581	34.8318	64.6829	46.7690			4.719E+03				
•38¢0	19964.14	•7592	34.8834	64.6849	46.7725			4.722F+03				
• 3900	19964.93	• 75 95	34.9302	64.6850	46.9569			4.724E+03				
•40CC	19975.65	• 7599	34.9215	64.6941	47.4345			4.729E+03				
•4100	23030.71	•7601	34.9317	64.7579	47.5944			4.74CE+03				
•4200	20116.71	• 7608	34.9508	64.7652	47.8111			4.759E+C3				
•43CC	20131-47	• 7621	34.9544	64.7785	48.1456			4.77CE+G3				
• 4400	23129.67	• 7645	34.9724	64.8794	48.1964			4.770E+03				
• 4500	20205-61	• 7656	34.9329	64.9054	48.2755			4.774E+C3				
• 460°	20246.63	• 7655	34.9893	64.9195	48.3018			4.782E+C3				
• 4700	20249.15	• 7666	34.9894	64.9495	48.3297			4.784E+C3				
• 4800	20256.74	• 7658	34.9904	64.9539	48.4048			4.788E+C3				
•4900	232F1•73	• 7676	34.9920	64.9805	48.5162			4.792E+03				
•500C	20282.16	• 7679	35.CC51	65.0048	48.7771	41.3566	4.920E-C5	4.794E+03	3.501E+C1	5.530E+01	4.878E+01	4.136E+01

•5100	20325-43	•7682	35.0111	65.02C7	48.9386			4.797E+C3				
•5200	20342.60	•7632	35.0239	65.0360	49.4465	41.4382	4.931E-05	4.802E+03	3.502F+01	6.504E+01	4.945E+01	4.144E+01
•5300	23372.36	. 7687	35.0285	65.C888	49.4754	41.6255	4. 937E-05	4.8C3E+C3	3.503E+C1	6.509E+01	4.948E+C1	4.163E+01
• 54CC	23443.42	• 7633	25.0309	65.C897	49.4781	41.7498	4.938E-05	4.8C5E+C3	3.503E+01	6.509E+01	4.948E+01	4.175E+01
•5500	20453.19	• 7693	35.0397	65.09C1	49.6502	41.7630	4.939E-05	4.817E+03	3.504E+01	6.509E+01	4.965E+01	4.176E+01
	23567.06	.7694	35.0568	65.0940	49.9076	41.9083	4.949E-05	4.827E+C3	3.507E+01	6.509E+01	4.991E+01	4-191E+01
•570C	23609.51	.7700	35.0767	65.1084	49.9366			4.827E+C3				
.58CC	20614.81	.77)3	35.1066	65.1998	49.9737			4.832E+C3				
•59CC	23627.54	7707	35.1094	65.2085	50.1443			4.846E+C3				
	20674.70	•7708	35.1222	65.2173	50.2390			4.858E+03				
•6100	23738.32	.7721	35.1353	65.2189	50.2370			4.859E+03				
		7726	35.1548	65.2395	5C-4117			4.865E+03				
	20771.64							4.865E+C3				
	23867•C7	•7728	35.1762	65.3074	50.4586							
	20902.99	•7730	35.1767	65.3285	50.4975			4.873E+C3				
• 6500	20923.34	• 7731	35.1778	65.3739	50.8142			4.875E+C3				
• 6600	20946.96	• 7731	35.1953	65.3787	50.8679			4.877E+C3				
• 6700	20958-46	• 7734	35.2379	65.41C3	5C.9720			4.9C7E+03				
6800	2)973.91	•7736	35.2281	65.4253	51.0506			4.909E+03				
6900	21076.49	•7738	35.2440	65•4308	51.1405			4.917E+03				
	21238.02	•7738	35•2489	£5•4665	51.1463			4.919E+03				
• 7100	21437.C4	•7740	35.2593	65.5145	51.3315			4.936E+C3				
•7200	21481.65	•7747	35.2694	65•53C5	51.3512	43.6085	5.102E-05	4.941E+C3	3.527E+01	6.553E+01	5.135E+01	4.361E+01
• 7300	21557.33	• 7 747	35.2887	65.5587	51.4234	43.6685	5.104E-05	4.952E+C3	3.529E+01	6.556E+01	5.142E+01	4.367E+01
• 7400	21578.27	•7757	35.3132	65.5637	51.9994	43.7537	5.133E-05	4.954E+03	3.531E+C1	6.556E+01	5.200E+01	4.375E+01
• 7500	21603.57	•7761	35.3242	65.5813	52.1941	43.8263	5.134E-05	4.957E+03	3.532E+01	6.558E+01	5.219E+01	4.383E+01
.7600	21668.47	• 7771	35.3276	65.5941	52.2220	43.9649	5.137E-05	4.960E+03	3.533E+01	6.559E+01	5.222E+01	4.356E+01
.7700	21692.47	.7774	35.3331	65.6293	52.3561	44.0916	5.143E-05	4.965E+03	3.533E+01	6.563E+01	5.236E+01	4.409E+01
•7800	21607.39	• 7792	35.3467	65.6567	52.4686	44.3143	5.157E-05	4.982E+C3	3.535E+01	6.566E+01	5.247E+01	4.431E+01
.7900	21710.64	7796	35.3472	65.6690	52.6924			4.983E+03				
.8000	21720.42	.7799	35.3735	65.8725	52.9177			4.986F+03				
	21841.73	7815	35.4078	65.9752	53.6217			4.987E+03				
	21379.81	.7823	35.4145	65.9875	53.9690			4.990E+C3				
	21929.67	.7828	35.4223	65.5889	54.3090			4.990E+03				
	21980.29	•7829	35.4377	66.0218	54.7639			5.014E+03				
	22044.85	.7834	35.4553	66.0397	54.8574			5.014E+03				
	22049.52	.7840	35.4576	66.1011	55.0630			5.015E+C3				
	22109.92	7840	35.4584	66.1259	55.C777			5.052E+03			-	
.880C		.7842	35.4596	66.1636	55.1636			5.052E+03				
	22149.74		-									
•890C	22361.64	•7856	35.4580	66.2794	55.3793			5.091E+03				
• 9000	22399.09	•7879	35.5066	66.3287	55.9927			5.105E+C3				
.9100	22501.01	.7879	35.5382	66.3354	56.0377			5.113E+03				
• 9200	22670.09	•7900	35.5440	66.3553	56.4434			5.116E+03		-		
• 9300	22732.44	• 7936	35.5510	66.3906	56.5616			5.168E+03			-	
•9400	22767.40	• 7958	35.5700	66.4176	56.6055			5.227E+03				
• 9500	23463.86	• 7984	35.6170	66.4886	57.1089			5.244E+03				
• 9630	24572.03	8€45	35.6237	66.5745	57.6279							5.013E+01
• 9700	24996.00	8094	35.6383	66.9452	57.9681	50.4681	5.499E-05	5.255E+03	3.564E+01	6.695E+01	5.797E+01	5.047E+01
• 9800	24997.24	.8111	3 5. 6588	66.9858	58.9622	50.7445	5.512E-05	5.289E+03	3.566E+01	6.699E+01	5.896E+01	5.074E+01
• 9900	25177.67	8170	35.7272	67.56C7	59.1320	51.6823	5.5498-05	5.379E+C3	3.573E+01	6.756E+01	5.913E+01	5.168E+01
1.0000	26466.95	.8201	35.7657	67.6548	60.4932	51.9226	5.568E-05	5.399E+03	3.577E+01	6.765E+01	6.049E+01	5.192E+01

TABLE IV.- HISTOGRAM SYMBOLS

Symbol	Interval value						
	2	4	8				
++	Add 0	Add 0	Add 0				
+ • • +		Add 1	Add 1, 2, or 3				
++++	Add 1	Add 2	Add 4				
+ +		Add 3	Add 5, 6, or 7				

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

FIRST CLASS MAIL

POSTAGE AND FEES PAID NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

008 001 C1 U 30 720204 S00903DS DEPT OF THE AIR FORCE AF WEAPONS LAB (AFSC) TECH LIBRARY/WLOL/ ATTN: E LOU BOWMAN, CHIEF KIRTLAND AFB NM 87117

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546