1 PHD

1.1 理论依据

$$H_1 = \Sigma_{XX}^{-1} \Sigma_{XXY} \Sigma_{XX}^{-1}$$
$$span(H_1) \subseteq S_{Y|X}$$

1.2 样本计算流程

- 1. 将 $X_1, ..., X_n$ 标准化为 $Z_1, ..., Z_n$
- 2. 计算 $\hat{\Sigma}_{ZZY}E_n(ZZ^TY)$, $\hat{\Sigma}_{XX}Var_n(X)$
- 3. 计算 $\hat{\Sigma}_{ZZY}$ 的前 q 个特征向量 u_1,\ldots,u_n ,则对 $S_{Y|X}$ 中向量的估计为 $v_k=\hat{\Sigma}_{XX}^{-1/2}u_k, k=1,\ldots,q$

2 SIR

2.1 理论依据

$$spanCov(E(X|Y)) \subseteq S_{Y|X}$$

将区间 $(-\infty, +\infty)$ 划分为 k 个区间 $I_i, i=1,\ldots,k$, 定义 $\widetilde{Y}=\sum_{i=1}^k iI\{Y\in I_i\}$,则有 $spanCov(E(X|\widetilde{Y}))\subseteq S_{Y|X}$

2.2 样本计算流程

- 1. 将 X_1, \ldots, X_n 标准化为 Z_1, \ldots, Z_n
- 2. 将 $[a,b] = [minY_{i=1}^n, maxY_{i=1}^n]$ 划分为 k 个区间,得到 \widetilde{Y}_i ; 由此计算 $\bar{\mu}_i = \frac{1}{\#\{I_i\}} \sum_{Y_i \in I_i} Z_j$
- 3. 计算协方差矩阵估计量 $\widetilde{M} = \sum_{i=1}^{k} E_n[I(Y \in I_i)] E_n(Z|\widetilde{Y} = i) E_n(Z|\widetilde{Y} = i)^T = \sum_{i=1}^{k} \frac{\#\{I_i\}}{n} \bar{\mu}_i \bar{\mu}_i T^T$
- 4. 计算 \widetilde{M} 的前 q 个特征向量 u_1,\ldots,u_n ,则对 $S_{Y|X}$ 中向量的估计为 $v_k=\hat{\Sigma}_X^{-1/2}u_k, k=1,\ldots,q$

3 SAVE

3.1 理论依据

$$span(E[I_p - Var(X|Y)]^2) \subseteq S_{Y|X}$$

3.2 样本计算流程

- 1. 将 $X_1, ..., X_n$ 标准化为 $Z_1, ..., Z_n$
- 2. 将 $[a,b] = [minY_{i=1}^n, maxY_{i=1}^n]$ 划分为 k 个区间,得到 \widetilde{Y}_i ; 由此计算 $\bar{\mu}_i = \frac{1}{\#\{I_i\}} \sum_{Y_j \in I_i} Z_j$ 3. 计算条件方差估计量 $\hat{\Sigma}_i = \sum_{i=1}^k \frac{1}{\#I_i} \sum_{Y_j \in I_i} (Z_j \hat{\mu}_i) (Z_j \hat{\mu}_i)^T$
- 4. 计算协方差矩阵估计量

$$\widetilde{M} = \sum_{i=1}^{k} E_n[I(Y \in I_i)][I_{p \times p} - Var(Z|\widetilde{Y} = i)]^2$$
$$= \sum_{i=1}^{k} \frac{\#\{I_i\}}{n} (I_{p \times p} - \hat{\Sigma}_i)^2$$

5. 计算 \widetilde{M} 的前 q 个特征向量 u_1,\ldots,u_n ,则对 $S_{Y|X}$ 中向量的估计为 $v_k=\hat{\Sigma}_X^{-1/2}u_k, k=1,\ldots,q$