2010 年全国硕士研究生入学统一考试

数学(一)试卷

一、选择题(1-8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)

(1)极限
$$\lim_{x \in \mathcal{X}} \stackrel{\acute{\mathbf{e}}}{\hat{\mathbf{e}}} \frac{x^2}{(x-a)(x+b)} \overset{\dot{\mathbf{u}}}{\hat{\mathbf{u}}} =$$

 $(\mathbf{A})\mathbf{1} \qquad (\mathbf{B})\mathbf{e}$

(C) e^{a-b} **(D)** e^{b-a}

(2)设函数 z = z(x, y) 由方程 $F(\frac{y}{x}, \frac{z}{x}) = 0$ 确定,其中 F 为可微函数,且

 $(\mathbf{A})x \tag{B} z$

 $(\mathbf{C}) - x \tag{D} - z$

(3)设m,n为正整数,则反常积分 $\partial^{1} \frac{\sqrt[m]{\ln^{2}(1-x)}}{\sqrt[n]{x}} dx$ 的收敛性

(A)仅与m取值有关

(B)仅与n取值有关

(C)与m,n 取值都有关

(D)与m,n取值都无关

(A)
$$\hat{\mathbf{Q}}^{1} dx \hat{\mathbf{Q}}^{x} \frac{1}{(1+x)(1+y^{2})} dy$$

(B)
$$\grave{\mathbf{Q}}^{1} dx \grave{\mathbf{Q}}^{x} \frac{1}{(1+x)(1+y)} dy$$

(C)
$$\partial_{\mathbf{q}}^{1} dx \partial_{\mathbf{q}}^{1} \frac{1}{(1+x)(1+y)} dy$$

(D)
$$\partial_{\mathbf{q}}^{1} dx \partial_{\mathbf{q}}^{1} \frac{1}{(1+x)(1+y^{2})} dy$$

(5)设A为m'n型矩阵,B为n'm型矩阵,若AB=E,则

$$(A)$$
秩 $(A) = m$, 秩 $(B) = m$

(B)秩(A) =
$$m$$
, 秩(B) = n

$$(C)$$
秩 $(A) = n$, 秩 $(B) = m$

(D)秩(A) =
$$n$$
, 秩(B) = n

(6)设A 为 4 阶对称矩阵,且 $A^2 + A = 0$, 若A 的秩为 3,则A 相似于

(7)设随机变量
$$X$$
 的分布函数 $F(x) = \frac{1}{2}$ 0 £ x £ 1, 则 $P\{X = 1\} = 1 - e^{-x}$ $x > 2$

(C)
$$\frac{1}{2}$$
 - e⁻¹ (D) 1 - e⁻¹

(8)设 $f_1(x)$ 为标准正态分布的概率密度, $f_2(x)$ 为 [- 1,3] 上均匀分布的概率密度,

$$f(x) = \begin{cases} af_1(x) & x \notin 0 \\ bf_2(x) & x > 0 \end{cases} (a > 0, b > 0)$$

为概率密度,则 a,b 应满足

(A)
$$2a + 3b = 4$$

(B)
$$3a + 2b = 4$$

(C)
$$a + b = 1$$

(D)
$$a + b = 2$$

二、填空题(9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.)

$$(10) \mathbf{Q}^{p^2} \sqrt{x} \cos \sqrt{x} dy = \underline{\qquad}$$

(11)已知曲线 L 的方程为 $y = 1 - |x| \{x \hat{1} [-1,1]\}$, 起点是 (-1,0), 终点是 (1,0),

则曲线积分 òxydx + x²dy =_____.

微信搜索:云私塾考研,学长学姐在线问答,10万份专业课真题随意下载

(13)设 $\alpha_1 = (1, 2, -1, 0)^T$, $\alpha_2 = (1, 1, 0, 2)^T$, $\alpha_3 = (2, 1, 1, a)^T$, 若由 $\alpha_1, \alpha_2, \alpha_3$ 形成的 向量空间的维数是 2,则a =______.

(14)设随机变量
$$X$$
 概率分布为 $P\{X = k\} = \frac{C}{k!}(k = 0,1,2,L)$,则 $EX^2 = \underline{\hspace{1cm}}$.

三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.)

(15)(本题满分 10 分)

(16)(本题满分 10 分)

求函数 $f(x) = \overset{x}{\mathbf{O}}(x^2 - t)e^{-t^2} dt$ 的单调区间与极值.

(17)(本题满分 10 分)

微信搜索:云私塾考研,学长学姐在线问答,10万份专业课真题随意下载

(1)比较 $\dot{\mathbf{Q}}^{l}|\ln t|[\ln(1+t)]^{n}dt$ 与 $\dot{\mathbf{Q}}^{t}t^{n}|\ln t|dt(n=1,2,L)$ 的大小,说明理由

$$\mathbf{i} \mathbf{l} u_n = \hat{\mathbf{Q}} |\ln t| [\ln(1+t)]^n dt (n=1,2,L), 求极限 \lim_{x \otimes \mathbf{Y}} u_n.$$

(18)(本题满分 10 分)

求幂级数 $\overset{*}{\overset{\circ}{a}} \frac{(-1)^{n-1}}{2n-1} x^{2n}$ 的收敛域及和函数.

(19)(本题满分 10 分)

设 P 为椭球面 $S: x^2 + y^2 + z^2 - yz = 1$ 上的动点,若 S 在点 P 的切平面与 xoy 面垂直,求 P 点的轨迹 C, 并计算曲面积分 I = 0 $\sqrt{(x+\sqrt{3})|y-2z|}$ dS, 其中 S 是椭球面 S 位于曲线 C 上方的部分.

(20)(本题满分 11 分)

的解.

(1)求 / ,a.

(2)求方程组 Ax = b 的通解.

(21)(本题满分 11 分)

设二次型 $f(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ 在正交变换 $x = \mathbf{Q} y$ 下的标准形为 $y_1^2 + y_2^2$, 且 \mathbf{Q} 的第三列为 $(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2})^T$.

- (1)求A.
- (2)证明A+E为正定矩阵,其中E为3阶单位矩阵.

(22)(本题满分 11 分)

设二维随机变量(X+Y)的概率密度为

 $f(x,y) = Ae^{-2x^2+2xy-y^2}$, -¥ < x < ¥, -¥ < y < ¥, 求常数及 A 条件概率密度 $f_{Y|X}(y|x)$.

(23)(本题满分 11 分)

设总体 X 的概率分布为

微信搜索:云私塾考研,学长学姐在线问答,10万份专业课真题随意下载

云私塾考研,学长学姐在线问答,10万份专业课真题随意下载					
	X	1	2	3	
1	P	1- <i>q</i>	q - q^2	q^2	上所

其中 $q^{\hat{1}}$ (0,1) 未知,以 N_i 来表示来自总体X 的简单随机样本(样本容量 为n)中等于i 的个数(i=1,2,3),试求常数 a_1,a_2,a_3 ,使 $T=\mathop{a}\limits_{i=1}^3 a_i N_i$ 为q 的无偏估计量,并求T 的方差. 偏估计量,并求 T 的方差.