#### **Continuous Random Variables**

#### James Heald<sup>1</sup>

<sup>1</sup>Gatsby Computational Neuroscience Unit University College London

Gatsby Bridging Programme 2023



### Table of Contents

1 The probability density function (PDF)

2 The cumulative distribution function (CDF)

3 Common distributions



# Objectives

- Introduce the concept and formal definition of a continuous random variable *X* and a probability density function.
- Learn how to find the probability that a continuous random variable falls in some interval [a, b].
- Learn that if X is continuous, the probability that X takes on any specific value is 0.
- Introduce the concept and formal definition of a cumulative distribution function of a continuous random variable.
- Learn how to find the cumulative distribution function of a continuous random variable *X* from the probability density function of *X*.



### Continuous random variables

#### Definition

A random variable (RV) X is continuous if:

- opossible values comprise either a single interval on the number line (i.e. for some a < b, any number x between a and b is a possible value) or a union of disjoint intervals, and
- 2 P(X = c) = 0 for any number c that is a possible value of X.

Unlike discrete RVs, which have a finite number of outcomes, continuous RVs can take on an infinite continuous range of possible values.

### Examples

- the voltage membrane potential of a cell
- the interspike interval of a neuron
- the force generated by a muscle
- the velocity of an eye movement

### Discrete probability distributions in the limit

Continuous random variables can be discretised into bins to form a probability mass function. As the bins become narrower, the probability mass function approaches a smooth curve.



# The probability density function (PDF)

#### Definition

A random variable X is continuous if there exists a nonnegative function f(x) defined on the interval  $(-\infty, \infty)$ , such that for any interval [a, b] we have

$$P(a \le X \le b) = \int_a^b f(x) dx.$$

A valid probability density function f(x) has the following properties:

$$f(x) \ge 0 \text{ for all } x$$
 (1)

$$\int_{-\infty}^{\infty} f(x)dx = 1. \tag{2}$$



## Probabilities as integrals

The probability that X takes on a value in the interval [a, b] is given by the area under the probability density function f(x).



$$P(a \le X \le b) = \int_a^b f(x) dx$$



### Density as probability per unit length

The probability of a small interval  $\delta$  is approximately the density  $\times$   $\delta$ :

$$P(x \le X \le x + \delta) = \int_{x}^{x+\delta} f(t)dt$$
$$\approx f(x) \times \delta$$

Thus density is probability per unit length (probability accumulation rate):

$$\frac{P(x \le X \le x + \delta)}{\delta} \approx f(x)$$



## Each possible value has zero probability

The probability that X takes on a particular value a is 0, as

$$P(X = a) = \int_{a}^{a} f(x)dx$$
$$= \lim_{\epsilon \to 0} \int_{a-\epsilon}^{a+\epsilon} f(x)dx$$
$$= 0.$$

This implies that probabilities don't depend on interval end points:

$$P(a \le X \le b) = P(a < X < b) = P(a < X \le b) = P(a \le X < b),$$

as 
$$P(X = a) = P(X = b) = 0$$
.



### Mean and variance

The expected value (mean) of a continuous random variable X is:

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f(x) \mathrm{d}x,$$

the expected value of a function g(x) of X is:

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx,$$

the variance of X is:

$$Var[X] = \mathbb{E}[(x - \mathbb{E}[X])^2]$$
$$= \int_{-\infty}^{\infty} (x - \mathbb{E}[X])^2 f(x) dx.$$



## Example: the uniform distribution

When *X* has a uniform distribution, the PDF is:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b \\ 0 & \text{otherwise,} \end{cases}$$

the expected value of X is:

$$\mathbb{E}[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{a+b}{2},$$

the variance of X is:

$$Var[X] = \int_{a}^{b} \left( x - \frac{a+b}{2} \right)^{2} \frac{1}{b-a} dx = \frac{(b-a)^{2}}{12}.$$



# The cumulative distribution function (CDF)

The cumulative distribution function F(x) is the area under the probability density function f(x) to the left of x.





# The cumulative distribution function (CDF)

#### **Definition**

Let X be a continuous random variable with probability density function f(x), then the cumulative distribution function is defined as

$$F(x) = P(X \le x)$$
$$= \int_{-\infty}^{x} f(t)dt.$$

The CDF is a monotonically-increasing continuous function  $F: \mathbb{R} \mapsto [0,1]$ satisfying  $\lim_{x \to -\infty} F(x) = 0$  and  $\lim_{x \to \infty} F(x) = 1$ .



# Computing probabilities using the CDF





## Obtaining the PDF from the CDF

At every x at which the derivative F'(x) exists, F'(x) = f(x).

### Examples

When X has a uniform distribution, for a < x < b:

$$F'(x) = \frac{d}{dx} \left( \frac{x - a}{b - a} \right) = \frac{1}{b - a} = f(x)$$



# Sampling using the CDF

The inverse transform sampling algorithm can be used to sample a continuous random variable using the inverse of its cumulative distribution function.

Recall that  $F: \mathbb{R} \mapsto [0,1]$ .

To draw a sample  $x \sim f(x)$ :

- Sample  $u \sim \mathrm{U}\left(0,1\right)$  (using a pseudo-random number generator)
- 2 Let  $x = F^{-1}(u)$



## Example: the exponential distribution

The PDF of the exponential distribution is:

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise,} \end{cases}$$

which implies that the CDF is:

$$F(x) = 1 - e^{-\lambda x} = u,$$

and the inverse of the CDF is:

$$F^{-1}(u) = -\frac{\log(1-u)}{\lambda} = x.$$

Hence, to sample  $x \sim f(x)$ :

- Sample  $u \sim U(0,1)$



# The normal (Gaussian) distribution

