22 秋- 概率论期中(回忆版)

何家兴 hejiaxing202411@163.com

December 7, 2024

Exercise 1.

袋子里装有编号 1-5 的 5 张卡片,随机抽取一张记录编号,放回后再抽一张并记录编号。求 两次编号之和为 k ($2 \le k \le 10$) 的概率

Exercise 2.

设 $(\Omega, \mathscr{F}, \mathbb{P})$ 为概率空间, $B \in \mathscr{F}$ 满足 $\mathbb{P}(B) > 0$ 。 $\forall A \in \mathscr{F}$,令 $\mathbb{P}_B(A) = \mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$,证明 \mathbb{P}_B 是 (Ω, \mathscr{F}) 上的概率测度。

Exercise 3.

随机向量 (ξ, η) 具有联合分布密度 p(x, y) = 6(1 - x - y), x, y > 0, x + y < 1。

- 1. 求 ξ 的边缘分布密度
- 2. 取定 $\xi = x$ 时, η 的条件分布密度

Exercise 4.

概率空间 $(\Omega, \mathcal{F}, \mathbb{P})$ 上的随机变量 ξ, η 满足

$$\mathbb{P}(\xi \geqslant a, \eta \in B) = \mathbb{P}(\xi \geqslant a)\mathbb{P}(\eta \in B), \ a \in \mathbb{R}, \ B \in \mathcal{B}$$

证明 ξ 与 η 相互独立。

Exercise 5.

设 $\{\xi_i\}$ 为一列独立同分布的可积随机变量, η 与 ξ_i 独立且服从 Poisson 分布 $P(\lambda)$,求随机变量 $\eta \sum_{i=1}^{\eta} \xi_i$ 的数学期望。(规定 $\sum_{i=1}^{0} = 0$)