Quiz 12

1. Let
$$f(x,y) = \begin{cases} (x+y)^2 \sin \frac{1}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$

- 1) Find $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$.
- 2) Determine the continuity of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the origin.
- 3) Determine the differentiability of f(x, y) at the origin.

2. Let
$$z = xf\left(\frac{y}{x}\right) + yg\left(x, \frac{x}{y}\right)$$
, f'', g'' both exist, try to find $\frac{\partial^2 z}{\partial x \partial y}$.

- 3. If $z^x = y^z$, try to find dz.
- 4. Assume $z = f(x, y), x = \varphi(y, z)$, and f, φ are differentiable. Please find $\frac{\mathrm{d} z}{\mathrm{d} x}$.
- 5. Find the directional derivative of $u={\rm e}^x\cos(yz)$ at (0,0,0) in the direction of $\vec l=\{2,1,-2\}$.
- 6. Please find the angle between the gradient of $u=x^2+y^2-z^2$ at A(a,0,0) and the gradient of $u=x^2+y^2-z^2$ at B(0,a,0).

7. Let
$$\begin{cases} z = x^2 + y^2 \\ x^2 + 2y^2 + 3z^2 = 20 \end{cases}$$
, please find $\frac{\mathrm{d}y}{\mathrm{d}x}$ and $\frac{\mathrm{d}z}{\mathrm{d}x}$.

- 8. Please find the equation of the tangent line and the equation of the normal plane of the curve $x = \sin^2 t$, $y = \sin t \cos t$, $z = \cos^2 t$ at $t = \frac{\pi}{4}$.
- 9. Find the equation of the tangent plane of the surface $ax^2 + by^2 + cz^2 = 1(abc \neq 0)$ at the point (x_0, y_0, z_0) .
- 10. Find the maximum and minimum values of $f(x,y)=x^2-y^2$, here $(x,y)\in\{(x,y)\,|\,x^2+y^2\leq 4\}$