Introduction to computing

Luslab Computing Seminars

Computational Data Driver Layers

Storage / Representation

Simple Arithmetic

Higher Order Calculation

Accuracy

Volume

What is Data?

From the latin *Datum* meaning "a piece of information"

Stone Age

- Modern anatomical humans appear 150,000 ya
- "behavioral modernity" ~50,000 ya
- Tool use, artifact diversity, art and elaborate graves all absent before this point
- Expansion from africa to europe

Stone Age Counting Systems

- Counting was probably first done using body parts
- Evidence in the etymology for some proto-numerals linking to body parts

Early Data Representation

Ability to count likely a selector for survival

- Time of year (when to sow crops)
- Numbers of items stored
- Trading / bartering

Stone Age Counting Systems

- Earliest stored counting system was tally marks
- Unary (1-based) number system
- First example of human data storage

Tally Clustering

- Parallel clustering systems developed to compress unary number system into symbols
- Very important step
- Earliest likely form of proto-writing

Proto-writing

Tally systems combined with early pictorial symbolism representing ownership

Increased in complexity towards bronze age

Clay tokens (4,000 BC)

- Tokens were marked with symbol for item
- Outside marked with symbol and tally
- Could be broken in a dispute

Bronze Age Cuneiform (4,000 BC - 600 BC)

- One of the earliest writing systems
- Lead development from pictorial to symbolic representation of data
- Numerical representation followed

Number Systems

- Sumarian base 60 system 5 hands of 12
- Many factors dividing by 60 soften gives easy fractions
- Day sunrise to sunset in 12 parts
- Combined day/night = 24 parts
- 60 mins, 360 degrees all came from this
- Babylonians turned it into a positional numbering system

7 1	∢7 11	∜7 21	447 31	₹ 7 41	44.7 51
?? 2	177 12	477 22	(((77 32	45/77 42	12 77 52
үүү з	1777 13	((7)7 23	((())) 33	43 777 43	11/17/ 53
77 4	(57 14	(1) 24	((() 34	44 5 44	12 3 54
77 5	(🏋 15	∜∑ 25	(((XXX) 35	12 77 45	12 5 55
777 6	16	** 26	*** 36	₹ ₩ 46	₹ ₩ 56
7	1 7	**** 27	₩₩ 37	45 47	12 57
8	18	₹₩ 28	₩₩ 38	₹ 48	12 58
# 9	1 9	(477 29	*** 39	49	*** 59
(10	√√ 20	*** 30	40	₩ 50	

The Abacus

 Probably the most important computational aid ever developed

Roman Numerals

- Based on tally sticks
- Semi-positional
- Not as advanced as previous systems

Hindu-Arabic numeral system

- Based on tally system
- Became 0 based and positional
- Developed by indian mathematicians, brought to baghdad and taken up by arabic scholars in 8th century
- Introduced to europe by Leonardo Fibonacci
- Replaced roman numerals by 15th century

European Medieval Onwards

1613 'R. B.' Yong Mans Gleanings 1, I have read the truest computer of Times, and the best Arithmetician that ever breathed, and he reduceth thy dayes into a short number.

- A melting pot of systems based on literacy level
- Navigation, astronomy and engineering with calculus more important
- High order calculation is now added as a driver
- Still done with same technology - with human "computers"

Modern Era

- STILL primarily done by humans
- WW2 pushed this forward -Electromechanical revolution
- Finally the electrical/digital revolution
- Primary driver becoming VOLUME

Switch to binary

- Base 10 needs enough voltage in between numbers to make a correct reading
- Base 2 is either on/off convenient
- The more possible states for one digit you have the more electronics you need to represent it
- Has the lowest base number system and so other number systems can be built on top
- Binary logic is easy to understand

Summary

- Reason to represent data
- We have several number systems and symbolic encodings to present the amount of an object or a relationship
- We can record data
- Perform arithmetic to create **information**
- We can tabulate to relate previous calculations to each other
- Forms the basis of all of our data today
- We have several drivers for better storage, accuracy and processing rate that created the first non-human computers