ERT Refleksjonsnotat 15 Uke 41

Navn: Lars André Roda Jansen

Dato: 09.10

Læringsutbytte:

Tre på topp ERT-15:

1. System med ulinæer oppførsel

Vi sier at en op-amp er et system med ulineært oppførsel fordi det er ikke garantert att for alle inngangsspenninger, så er det en direkte lineær sammenheng med utgangsspenningen.

2. Operasjonsforsterker

Det går ikke strøm inn i inngangene til en op-amp, fordi inngangene kobles til transistorer inne i op-ampen.

Utangen til en op-amp får tilført strøm med att op-ampen også kobles mot spenningskildene v+ og v-.

Utgangene til forsterkeren kan bli kontrollert ved bruk av en tilbakekobling med motstand fra v0 til v_x inngangen, og med en motstand mellom v_x til jord.

3. Dobbel spenningsforsyning

Jeg forestiller meg att spenningsforskjellen hadde vært like stor, men att likevektspunktet hvis man skrur opp og ned potensiometeret som en sinusbølge hadde blitt endret.

Bilder:

Bilder...

Hvor langt (hvilken oppgave) kom du i løpet av fredagen? Tekst...

Hva lurer jeg på?:

Alt 💀

ERT 15

Oppgave 1)

Hensikten med v+ og v- pinnene er for å koble den høyeste spenningen på v+ og den laveste spenningen (jord) på v-

Oppgave 2)

Hensikten med sirkelen er nok for å kunne vite hvordan å orientere dingsebomsen.

Oppgave 3)

v_+ [mV]	v [mV]	v_i [mV]	V_0 [mV]
685	0	685	600
592	0	592	1795
535	0	535	4800
512	0	512	7357
372	0	372	9297
80	0	80	9301
-118	0	-118	9300
-514	0	-514	9300

```
import numpy as np
import matplotlib.pyplot as plt

def main():
    v_i = np.array([685, 592, 535, 512, 372, 80, -118, -514])
    v_0 = np.array([600, 1795, 4800, 7357, 9297, 9301, 9300, 9300])

plt.plot(v_i, v_0)
    plt.grid()
    plt.xlabel("v_i")
    plt.ylabel("v_0")
    plt.show()
```


c) Den er ikke linær fordi målingene har ikke en lineær sammenheng

d) Man kunne ha kalt det en invers forsterker, fordi jo lavere inngangssignalet er, jo sterke utslag får man.

Oppgave 4)

V_+ [mV]	V [mV]	v_i [mV]	V_0 [mV]
4500	0	4500	5000
2970	0	2970	5000
2574	0	2574	5000
2475	0	2475	4950
2277	0	2277	4554
1089	0	1089	2178
396	0	396	792
99	0	99	198
0	0	0	0
-99	0	-99	-198
-396	0	-396	-792
-1089	0	-1089	-2178
-2277	0	-2277	-4554
-2475	0	-2475	-4950
-2574	0	-2574	-5000
-2970	0	-2970	-5000
-4455	0	-4455	-5000

Oppgave 5)

a)

```
import numpy as np
import matplotlib.pyplot as plt

def main():
    v_i = np.array([ 4500, 2970, 2574, 2475, 2277, 1089, 396, 99, 0, -99, -396, -1089, -2277, -2475, -2574, -2970, -4455])
    v_0 = np.array([ 5000, 5000, 5000, 4950, 4554, 2178, 792, 198, 0, -198, -792, -2178, -4554, -4950, -5000, -5000])

plt.plot(v_i, v_0)
    plt.grid()
    plt.xlabel("v_i")
    plt.ylabel("v_0")
    plt.show()
```


- Den er lineær innenfor ett viss intervall av v_i.
- d) Nå er det rimelig å kalle den en forsterker mellom grenseverdiene til v_o, fordi den øker inngangssignalet v_i med 2.
- e) Den største forskjellen er mengden målinger som ble utført for å kunne se hele oppførselen til systemet.

Oppgave 6)

a)

V_+ [mV]	V [mV]	v_i [mV]	V_0 [mV]
990	990	0	2970
792	792	0	2376
396	396	0	1188
198	198	0	594
99	99	0	297
0	0	0	0
-99	-99	0	-297
-198	-198	0	-594
-396	-396	0	-1188
-792	-792	0	-2375
-990	-990	0	-2970

b)

V_+ [mV]	V [mV]	v_i [mV]	V_0 [mV]
1485	1446	39	4339
1287	1287	0	3861
1089	1089	0	3267
990	990	0	2970
792	792	0	2376
396	396	0	1188
198	198	0	594
99	99	0	297
0	0	0	0
-99	-99	0	-297
-198	-198	0	-594
-396	-396	0	-1188
-792	-792	0	-2375
-990	-990	0	-2970
-1089	-1089	0	-3267
-1287	-1245	-42	-3736
-1485	-1250	-235	-3749

Oppgave 7)

a)

R_1 [ohm]	R_2 [ohm]	v_i [mV]	v_o [mV]
500	500	< -1000, 1000 >	< -2000, 2000 >
500	1000	< -1000, 1000 >	<-3000, 3000 >
500	2000	< -1000, 1000 >	< -5000, 5000 >
1000	500	< -1000, 1000 >	< -1500, 1500 >
1000	1000	< -1000, 1000 >	< -2000, 2000 >
1000	2000	< -1000, 1000 >	< -3000, 3000 >

- b) Her er det rimelig å kalle systemet en forsterker fordi det er en lineær sammenheng mellom v_i og V_o
- c) I følge simuleringen så går det ingen strøm gjennom v_i. Dette kan ha seg fordi det er ingen sted for strømmen å bli brukt inne i operasjonsforsterkeren.
- e) Null aning bror!

Oppgave 8)

a)

Hadde det bare vært én spenningsforsyning så hadde spenningen gått rett til jord og ikke til V_dd eller V_ss, og ikke bli jevnt fordelt

b)

Oppgave 9)

a)

Den var ikke i metning, men heller i det lineære området fordi det var en lineær sammenheng mellom v_o og v_i for alle v_i

b) Den var i metning når v_i ble veldig lav.

Oppgave 10)

c)

e) Stemmer godt overrens :)

Oppgave 11)

Det går ingen strøm inn i inngangene fordi inngangene er koblet inn i en kondensator. Etteresom at kondensatoren ikke sparer strøm men spenning, så vil det heller ikke gå noe strøm.