3^a Prova - FECD

Renato Assunção - DCC-UFMG

Setembro de 2021

1. **5 PONTOS** Suponha que o vetor aleatório $\mathbf{X} = (X_1, X_2)$ seja observado em vários indivíduos ou itens que compõem uma amostra. Existem duas classes de itens, classe 0 e classe 1. Em cada classe, a densidade de probabilidade de \mathbf{X} segue uma Gaussiana bivariada:

$$\left(\mathbf{X}|\in0\right)\sim N_{2}\left(\boldsymbol{\mu}_{0},\sum\nolimits_{0}\right)=N_{2}\left(\begin{bmatrix}0\\0\end{bmatrix},\begin{bmatrix}1&0\\0&4\end{bmatrix}\right)$$

and

$$\left(\mathbf{X}|\in1\right)\sim N_{2}\left(\boldsymbol{\mu}_{1},\sum\nolimits_{1}\right)=N_{2}\left(\begin{bmatrix}0\\0\end{bmatrix},\begin{bmatrix}4&0\\0&1\end{bmatrix}\right)$$

Suponha que as duas classes sãao igualmente frequentes na população. Isto é, que $\pi_0 = \mathbb{P}(\mathbf{X} \in 0)$ seja igual a $\pi_1 = \mathbb{P}(\mathbf{X} \in 1)$.

Suponha também que os custos c_0 e c_1 de má classificação sejam iguais onde c_0 é o custo de classificar como 0 um item da classe 1 e c_1 é o custo de classificar como 1 um item da classe 0.

Produza um código R ou python que desenhe algumas curvas de nível das densidades de X em cada classe e esboce a fronteira de decissão determinada pela regra ótima de Bayes. O resultado deverá ser uma imagem como a da Figura 1.

A seguir, refaça a figura assumindo que a classe 0 aparece 3 vezes mais frequentemente que a classe 1 (isto é, que $\pi_0 = 3\pi_1$). Faça uma terceira figura supondo adicionalmente que os custos também são diferentes, com $c_0 = 5c_1$.

2. **5 PONTOS** Considere a seguinte tabela de dados, representando uma amostra composta por quatro pontos amostrais, cada um dos pontos $\mathbf{X} = (X_1, X_2)$ com dois atributos ou features:

$$\begin{bmatrix} 4 & 1 \\ 2 & 3 \\ 5 & 4 \\ 1 & 0 \end{bmatrix}$$

Queremos representar os dados em apenas uma dimensão usando PCA.

Figura 1: Curvas de nível de \mathbf{X} em cada uma das classes e fronteira de decisão com custos iguais e probabiliades a priori iguais.

Figura 2: Quatro pontos amostrais.

- Obtenha as direções dos dois componentes principais (ambos com comprimento 1) e indique qual deles é o primeiro.
- O gráfico da esquerda na Figura 2 mostra os quatro pontos amostrais. Desenhe a direção do componente principal como uma linha e as projeções de todos os quatro pontos de amostra no componente principal principal. Pode fazer o desenho a mão, fotografar e colar na sua prova como figura. Rotule cada ponto projetado com seu valor de coordenada principal (onde a coordenada principal de origem é zero).
- O gráfico da direita na Figura 2 mostra os mesmos quatro pontos amostrais após sofrer uma rotação de 30 graus. Supondo que estes novos pontos constituem a amostra, como o PCA da primeira amostra relaciona-se com o PCA da segunda amostra? Justifique sua resposta.
- 3. **5 PONTOS** Suponha que os pontos da amostra venham de uma distribuição normal gaussiana multivariada p-dimensional com vetor esperado μ e com uma matriz de covariância $p \times p$ representada por Σ .
 - Mostre que, se Σ for uma matriz diagonal, a densidade conjunta será o produto de p densidades gaussianas univariadas. Pode assumir $\mu = 0$ para simplificar suas contas.
 - Suponha agora que Σ não é diagonal mas ainda é simétrica e definida positiva. Faşa a decomposição espectral de Σ e mostre que podemos escrever a densidade gaussiana multivariada como um produto de densidades gaussianas univariadas, cada uma delas associada com um dos autovetores de Σ .
- 4. **5 PONTOS** Suponha que você tenha uma distribuição normal multivariada com uma matriz de covariância definida positiva Σ . Considere uma segunda distribuição gaussiana multivariada com o mesmo valor esperado mas cuja matriz de covariância seja $\cos(\theta) \Sigma$. Isto é, a matriz anterior multiplicada por um escalar (um número real) positivo $\cos(\theta) > 0$ onde θ é um certo ângulo. Você aprendeu como as curvas de nível da desnidade de probabilidade estão associados com os autovetores da matriz de covariância.
 - Os autovetores da nova matriz de covariância são rotacionados pelo ângulo θ ? Justifique sua resposta.
 - Os autovalores da nova matriz de covariância são alterados? Justifique sua resposta.
 - Como serão alteradas as curvas de nível da segunda distribuição em comparação com aquelas da primeira distribuição?