1. Calcular limites:

a.
$$\lim_{x \to 0} \frac{\sqrt{25 + x} - 5}{\sqrt{1 + x} - 1}$$

b. $\lim_{x \to 0} \frac{2x^3 - 3x}{2\sin x}$

Solution:

(a) Para resolverlo, multiplicamos el numerador y el denominador por las expresiones conjugadas correspondientes:

$$\frac{\sqrt{25+x}-5}{\sqrt{1+x}-1} \cdot \frac{\sqrt{25+x}+5}{\sqrt{25+x}+5} \cdot \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1}$$

Esto nos da:

$$\frac{(\sqrt{25+x})^2 - 5^2}{(\sqrt{1+x})^2 - 1^2} = \frac{25+x-25}{1+x-1} = \frac{x}{x}$$

Entonces el límite es:

$$\lim_{x \to 0} \frac{x}{x} = 1.$$

(b) Primero, intentamos sustituir directamente x=0 en la expresión, pero obtenemos una forma indeterminada $\frac{0}{0}$, ya que $2x^3-3x=0$ y $\sin(0)=0$. Para resolverlo, podemos utilizar la expansión en serie de Taylor de $\sin x$ alrededor de x=0. Sabemos que:

$$\sin x = x - \frac{x^3}{6} + O(x^5)$$

Sustituyendo esta aproximación en la expresión original:

$$\frac{2x^3 - 3x}{2\sin x} = \frac{2x^3 - 3x}{2\left(x - \frac{x^3}{6} + O(x^5)\right)}$$

Factorizando el numerador:

$$= \frac{x(2x^2 - 3)}{2\left(x - \frac{x^3}{6} + O(x^5)\right)}$$

Ahora podemos simplificar x en el numerador y denominador:

$$= \frac{2x^2 - 3}{2\left(1 - \frac{x^2}{6} + O(x^4)\right)}$$

Cuando $x\to 0,$ el término x^2 en el denominador tiende a cero, por lo que la expresión se simplifica a:

$$\lim_{x \to 0} \frac{2x^2 - 3}{2} = \frac{-3}{2}.$$

Por lo tanto, el valor del límite es:

$$\lim_{x \to 0} \frac{2x^3 - 3x}{2\sin x} = -\frac{3}{2}.$$

2. Estudie continuidad de $f(x) = \frac{x^2 - 3}{x^2 + 2x - 8}$

Solution: Solución:

Estudiamos la continuidad de $f(x) = \frac{x^2-3}{x^2+2x-8}$.

1. Asíntotas verticales:

Factorizamos el denominador:

$$x^2 + 2x - 8 = (x - 2)(x + 4)$$

La función tiene potenciales discontinuidades en x=2 y x=-4. Evaluamos el numerador en estos puntos:

- Para x = 2, $x^2 3 = 1 \neq 0$.
- Para x = -4, $x^2 3 = 13 \neq 0$.

Dado que el numerador no se anula en estos puntos, no hay discontinuidades removibles. Por lo tanto, la función tiene discontinuidades no removibles en x = 2 y x = -4.

2. Conclusión: La función es continua en $\mathbb{R} \setminus \{2, -4\}$.

3. Determine las asintotas de la funcion $f(x) = \sqrt{4x^2 + 2x + 1}$:

Solution: Solución:

Estudiamos las asíntotas de $f(x) = \sqrt{4x^2 + 2x + 1}$.

1. Asíntotas verticales:

El radicando $4x^2 + 2x + 1$ es siempre positivo (discriminante negativo), por lo que no hay asíntotas verticales.

2. Asíntotas horizontales:

La función tiende a ∞ tanto para $x \to \infty$ como para $x \to -\infty$, por lo que no tiene asíntotas horizontales.

3. Asíntotas oblicuas:

- Para $x \to \infty$, $f(x) \sim 2x + \frac{1}{2}$. Para $x \to -\infty$, $f(x) \sim -2x \frac{1}{2}$.

Conclusión: La función tiene asíntotas oblicuas en $x\to\infty$ y $x\to-\infty$, pero no tiene asíntotas verticales ni horizontales.