Paleo superstatistics notebook

Getting the data

PBDB API

To obtain the PBDB data we make use of the API in script data/pbdb_data_get.R, which accesses the API and cleans the data by:

- removing poorly lithified specimens
- removing collections at the basin scale
- including only fine-scale stratigraphy (below the "group" level)
- resolving taxonomy to the genus or subgenus level where available (storing genus or subgenus as otu)
- combining multiple records of the same OTU per collection
- importing standardized timebins from fossilworks.org (timebins are scraped with script data/fossilworks_tbins_intervals.R)

The data gathering script data/pbdb_data_get.R is shown below:

```
setwd('~/Dropbox/Research/paleo_supStat/data')
# call to the API
show <- paste0(c('ident', 'phylo', 'lith', 'loc', 'time', 'geo', 'stratext',</pre>
                  'ecospace'),
                collapse = ',')
version <- '1.2'
base_name <- 'Animalia^Craniata'</pre>
min_ma <- 0
max_ma <- 560
timerule <- 'contain'
envtype <- 'marine'</pre>
# break-up backbone URI just so it can be nicely displayed
bbURI <- paste0('https://paleobiodb.org/data%s/occs/list.csv?',
                 'base_name=%s&show=%s&limit=all&min_ma=%s&max_ma=%s&',
                 'timerule=%s&envtype=%s')
# the actual call to the URI
uri <- sprintf(bbURI,</pre>
                version,
               base_name,
               show,
               min_ma,
               max_ma,
               timerule,
               envtype)
# get pbdb occurences
x <- read.csv(uri, as.is = TRUE)
# write out raw data
write.csv(x, 'pbdb_data_raw.csv', row.names = FALSE)
```

```
# clean up
# remove unnecceary columns
c2rm <- c('record_type', 'reid_no', 'flags', 'identified_name',</pre>
          'identified_rank', 'identified_no', 'difference', 'species_name',
          'species_reso', 'lithdescript', 'lithology1', 'minor_lithology1',
          'lithology2', 'lithification2', 'minor_lithology2', 'cc', 'state',
          'county', 'latlng_basis', 'geogcomments', 'geology_comments',
          'zone', 'localsection', 'localbed', 'localorder',
          'regionalsection', 'regionalbed', 'regionalorder',
          'stratcomments')
x \leftarrow x[, !(names(x) \%in\% c2rm)]
# only well lithified specimens
x <- x[x$lithification1 %in% c('', 'lithified'), ]
# no basin-scale collections
x <- x[x$geogscale != 'basin', ]</pre>
# fine scale stratigraphy only
x <- x[!(x$stratscale %in% c('group', 'supergroup')), ]</pre>
# resolve taxonomy to genus or subgenus where available
otu <- x$genus
otu[x$subgenus_name != ''] <- ifelse(x$subgenus_reso[x$subgenus_name != ''] == '',
                                       x$subgenus_name[x$subgenus_name != ''],
                                       otu[x$subgenus_name != ''])
otu[x$primary_reso != ''] <- ''</pre>
x$otu <- otu
x <- x[x$otu != '', ]
# combine multiple records of same otu per collection
x <- x[!duplicated(x[, c('collection_no', 'otu')]), ]</pre>
# standard time bins
stages <- read.csv('tbins_stages.csv', as.is = TRUE)</pre>
earlyTbin <- stages$tbin[match(x$early_interval, stages$name)]</pre>
lateTbin <- stages$tbin[match(x$late_interval, stages$name)]</pre>
lateTbin[is.na(lateTbin)] <- earlyTbin[is.na(lateTbin)]</pre>
earlyTbin[earlyTbin != lateTbin] <- NA</pre>
x$tbin <- earlyTbin
x \leftarrow x[!is.na(x$tbin),]
# write out fully processed data
write.csv(x, 'pbdb_data.csv', row.names = FALSE)
```

Scraping fossilworks

The script to pull Alory's time bins (data/fossilworks_tbins_intervals.R) is below:

```
options(stringsAsFactors = FALSE)
setwd('~/Dropbox/Research/paleo_supStat/data')
coreURI <- 'http://fossilworks.org/bridge.pl?a=displayInterval&interval_no='</pre>
tbinInfo <- lapply(1:1108, function(i) {</pre>
    print(i)
    linfo <- try(readLines(paste0(coreURI, i), n = 150))</pre>
    if('try-error' %in% class(linfo))
        linfo <- try(readLines(paste0(coreURI, i), n = 150))</pre>
    if('try-error' %in% class(linfo)) {
        thisTbin <- thisMax <- thisMin <- thisName <- NA
    } else {
        thisTbin <- gsub('^.*10 million year bin: |<br>.*$', '',
                          linfo[grep('10 million year bin', linfo)])
        thisMax <- as.numeric(gsub('^.*Lower boundary: equal to | Ma.*$|[^0-9\\.]', '',
                                    linfo[grep('Lower boundary: equal to', linfo)]))
        thisMin <- as.numeric(gsub('^.*Upper boundary: equal to | Ma.*$|[^0-9\\.]', '',
                                    linfo[grep('Upper boundary: equal to', linfo)]))
        thisName <- gsub('^.*<p class="pageTitle">|.*$', '',
                          linfo[grep('class="pageTitle"', linfo)])
    }
    return(data.frame(name = ifelse(length(thisName) == 0, NA, thisName),
                       tbin = ifelse(length(thisTbin) == 0, NA, thisTbin),
                       ma_min = ifelse(length(thisMin) == 0, NA, thisMin),
                      ma_max = ifelse(length(thisMax) == 0, NA, thisMax)))
})
tbinInfo <- do.call(rbind, tbinInfo)</pre>
## clean up
tbinInfo <- tbinInfo[!is.na(tbinInfo$name), ]</pre>
## remove 'stage' and equivilant from name
tbinInfo$name <- gsub(' [[:lower:]].*', '', tbinInfo$name)</pre>
## split up stages with a '/' into both names
temp <- tbinInfo[grep('/', tbinInfo$name), ]</pre>
tbinInfo$name <- gsub('.*/', '', tbinInfo$name)</pre>
temp$name <- gsub('/.*', '', temp$name)</pre>
tbinInfo <- rbind(tbinInfo, temp)</pre>
## fix random typo
tbinInfo$name[tbinInfo$name == 'Cazenovia'] <- 'Cazenovian'
```

```
## remove time periods that do not fall completely within a 10my bin
# tbinInfo <- tbinInfo[!is.na(tbinInfo$tbin), ]

## write out
write.csv(tbinInfo, 'tbins_stages.csv', row.names = FALSE)</pre>
```

Three timer and publication bias correction

Once the data have been downloaded and cleaned, we correct for incomplete and biased sampling with the script data/pbdb_3TPub_make.R which sources the function R/make3TPub.R to generate the main output: a matrix with time bins as rows, taxa (families in this case) as columns and bias-corrected richness as cells.

```
# source function to produce a matrix of time by taxon with cells
# of corrected diversity
source('R/make3TPub.R')
# load other needed funcitons
# source('code/sstat comp.R')
# source('code/sstat methods.R')
# source('code/Px_gam.R')
# load and prepare data
pbdbDat <- read.csv('data/pbdb_data.csv', as.is = TRUE)</pre>
# make column for midpoint ma
pbdbDat$ma_mid <- (pbdbDat$max_ma + pbdbDat$min_ma) / 2</pre>
# get rid of poor temporal resolution
pbdbDat <- pbdbDat[pbdbDat$tbin != '', ]</pre>
# get rid of bad taxonomy
pbdbDat <- pbdbDat[pbdbDat$family != '', ]</pre>
pbdbDat <- pbdbDat[pbdbDat$otu != '', ]</pre>
# get bin times
pbdbDat$mid_ma <- (pbdbDat$min_ma + pbdbDat$max_ma) / 2</pre>
pbdbTime <- sort(tapply(pbdbDat$mid_ma, pbdbDat$tbin, mean))</pre>
pbdbDat$tbin <- factor(pbdbDat$tbin, levels = names(pbdbTime))</pre>
# data.frame to hold publication, diversity and 3T stat
famTbinBias <- aggregate(list(div = pbdbDat$otu), list(fam = pbdbDat$family,</pre>
                                                          tbin = pbdbDat$tbin),
                          function(x) length(unique(x)))
# three timer stat and publication bias
```

```
# matrix to determine three timers and part timers (sensu alroy 2008)
mt <- matrix(0, nrow = nlevels(pbdbDat$tbin),</pre>
             ncol = nlevels(pbdbDat$tbin))
diag(mt) < -10
mt[abs(row(mt) - col(mt)) == 1] <- 1
# loop through and compute three timers and part timers
timers <- lapply(split(pbdbDat$tbin, pbdbDat$otu),</pre>
                 function(x) {
                      # browser()
                      tbins <- integer(nlevels(x))</pre>
                      tbins[as.integer(unique(x))] <- 1</pre>
                      t3 <- as.integer(mt %*% tbins == 2)
                      tp <- as.integer(mt ** tbins == -8)
                      return(cbind(t3, tp))
                 })
# compute 3 timer stat from 3 timers and part timers
timers <- array(unlist(timers), dim = c(nrow(timers[[1]]), 2, length(timers)))
t3stat <- 1 - rowSums(timers[, 1, ]) / (rowSums(timers[, 1, ]) + rowSums(timers[, 2, ]))
# add to data.frame holding all info to be saved
famTbinBias$T3Stat <- t3stat[match(famTbinBias$tbin,</pre>
                                        levels(pbdbDat$tbin))]
famTbinBias$T3Div <- famTbinBias$div / famTbinBias$T3Stat</pre>
# record pubs per tbin
tbinPub <- tapply(pbdbDat$reference_no, pbdbDat$tbin,</pre>
                    function(x) length(unique(x)))
famTbinBias$tbinPub <- tbinPub[famTbinBias$tbin]</pre>
# calculate corrected diversity
pdf('ms/figSupp_divByPub_foo.pdf', width = 4, height = 4)
pbdbFamDiv <- with(famTbinBias,</pre>
                    make3TPub(div, T3Stat, tbinPub, fam, tbin, pbdbTime,
                              minPub = 10, plotit = TRUE))
dev.off()
# write out corrected diversity
write.csv(pbdbFamDiv, 'data/pbdb_3TPub-corrected.csv')
# !!!!!!!!move to script with sstat analysis!!!!!!!!
# corrected flux
# pbdbFamFlux <- apply(pbdbFamDiv, 2, function(x) {</pre>
      flux \leftarrow diff(c(0, x))
      return(flux[flux != 0])
```

Here is the guts of the make3TPub function

```
#' @description function to produce a matrix of time by taxa with cells of corrected diversity
#' @param rawDiv the raw diversity of each taxon in each time interval
#' @param t3stat the 3 timer stat for each diversity record
```

```
#' @param pub the number of publications associated with each diversity record
#' Oparam taxa the taxon names for each diversity record
#' Oparam thin the time interval of each diversity record
#' @param tbinTime times associated with each `tbin`
#' @param minPub minimum number of publications for inclusion in regression analysis
#' @param plotit logical, should plot of taxon richness versus number of publications be made
#' Greturn a matrix with rows corresponding to time intervals and columns to the given taxa
#' each cell in the matrix represents corrected taxon richness
make3TPub <- function(rawDiv, t3stat, pub, taxa, tbin, tbinTime,</pre>
                      minPub = 10, plotit = FALSE) {
    # put data together so can be universally manipulated
    x <- data.frame(rawDiv = rawDiv, t3stat = t3stat, pub = pub, taxa = taxa, tbin = tbin)
    x$tbin <- as.character(x$tbin)
    x$taxa <- as.character(x$taxa)
    x \leftarrow x[!is.na(t3stat) \& pub >= minPub, ]
    tbinTime <- tbinTime[names(tbinTime) %in% x$tbin]</pre>
        3-timer correction
    t3cor <- x$rawDiv/x$t3stat
      publication correction
    logPub <- log(x$pub)</pre>
    pubLM <- lm(log(t3cor)~logPub)</pre>
    pbdbPubLM <<- pubLM # save regression to global env</pre>
    pubResid <- exp(pubLM$residuals)</pre>
        plot so you can verify cuttoff etc.
    if(plotit) {
        plot(log(x$pub), log(t3cor),
             xlab = 'log(Number of publications)',
             ylab = 'log(3T-corrected number of genera)')
        abline(pubLM, col = 'red')
    }
    tbinTaxa <- socorro::tidy2mat(x$tbin, x$taxa, pubResid)
    return(tbinTaxa[names(sort(tbinTime, decreasing = TRUE)), ])
}
```

To-do

- make the 3TPub script seapparate and have it save (made script, haven't tried running):
 - 1. the plot of diversity through time
- make a sepparate script for the plotting of the sstat analysis including:
 - 1. first it needs to make the corrected diversity fluctuations
 - 2. the main sstat style CDF
 - need to remove the raw data from the plot

- need to make sure 95% CI still works
- 3. the f(beta) plot
- 4. the $p_k(x)$ plot
- 5. example trajectories
- do KS analysis with Families
- run clean functions on sepkoski
- manuscript text
 - add more recent citations
 - $-\,$ add more thur ough explaination and justification of correction approach
 - respond to other reviewer comments