

Regularisation

Model complexity, capacity, expressibility, generalisability

Example:

$$y = f(x; \theta) = w_3 x^3 + w_2 x^2 + w_1 x + w_0$$

Overfitting and underfitting

Regularisation

Linear polynomial: $y = f(x; \mathbf{w}) = \sum_{m=0}^{M} w_m x^m$

Mean-square-error (MSE) as loss: $\ell_{\theta} = \frac{1}{N} \sum_{n=1}^{N} (y_n - t_n)^2$

L²-Norm (weight-decay): $\|\mathbf{w}\|^2 = \sum_{m=0}^M w_m^2 = w_0^2 + w_1^2 + w_2^2 + \cdots$

Hyperparameter: λ

Regularised loss: $\tilde{\ell}_{\theta} = \ell_{\theta} + \frac{\lambda}{2} ||\mathbf{w}||^2$

Least-square solution

Gradient-descent

Generalisability vs. dataset size

- Purpose of regularisation
- Approaches to regularising deep neural networks

Training strategies

Early stopping, curriculum learning, data resampling.

Data augmentation

Random data transformation, affinity and diversity

Invariance and normalisation

Spatial transformer networks, batch normalisation, reparameterization

Parameter constraints

Parameter norms, sparse representation, parameter sharing, multi-task, semi-supervised

Unsupervised learning

Autoencoder, generative adversarial network

Randomness

Noise, dropout

Model combining

Model averaging, ensemble, bagging/bootstrap aggregating, boosting

Regularisation | Training Strategies

Early stopping

Curriculum learning

- 1. Sorting example difficulty (e.g. task complexity, measured by number of classes)
- 2. Pacing the curriculum learning (e.g. data-resampling)

Data resampling

- Stochastic (minibatch) gradient descent, sampling without replacement
- Data resampling, e.g. up/down-sampling for imbalanced classes, similar to weighted loss $\ell_{\mathbf{w}}(\mathbf{y}_n,\mathbf{t}_n;\omega_n)=rac{1}{N}\sum_{n=1}^N\omega_nd(\mathbf{y}_n,\mathbf{t}_n)$

Empirical risk minimisation

- Data (generating) distribution: $\mathbb{E}_{(x,y)\sim p_{data}}[\ell(f(x,\theta),y)]$
- Training data distribution: $\mathbb{E}_{(x,y)\sim \hat{p}_{data}}[\ell(f(x,\theta),y)]$
- Empirical risk, e.g. minibatch: $\mathbb{E}_{(x,y)\sim \hat{p}_{data}(x,y)}[\ell(f(x,\theta),y)] = \frac{1}{M}\sum_{m=1}^{M}\ell(f(x^m,\theta),y^m)$ i.e. $\hat{p}_{data}(x,y) = \frac{1}{M}\sum_{m=1}^{M}\delta(x=x^m,y=y^m)$
- Approximate data distribution using vicinity distribution: $\hat{p}_v(x,y) = \frac{1}{M} \sum_{m=1}^M v(\widetilde{x},\widetilde{y}|x^m,y^m)$ e.g. $v(\widetilde{x},\widetilde{y}|x^m,y^m) = \mathcal{N}(\widetilde{x}-x^m)\delta(y=y^m)$
- Consider what the "target" test data distribution is

mixup

ERM

— "mixup"

$$\hat{p}_{data}(x, y) = \frac{1}{M} \sum_{m=1}^{M} \delta(x = x^m, y = y^m)$$

$$\hat{p}_v(x,y) = \frac{1}{M} \sum_{m=1}^M v(\widetilde{x},\widetilde{y}|x^m,y^m) = \frac{1}{M} \sum_{m=1}^M \mathcal{N}(\widetilde{x}-x^m) \delta(y=y^m)$$
 - adding Gaussian noise to data

$$\hat{p}_{\mu}(\mathbf{x}, \mathbf{y}) = \frac{1}{M} \sum_{m=1}^{M} \mu(\widetilde{\mathbf{x}}, \widetilde{\mathbf{y}} | \mathbf{x}^m, \mathbf{y}^m),$$

where
$$\mu(\widetilde{x},\widetilde{y}|x^m,y^m)=\frac{1}{N}\sum_{n=1}^N\mathbb{E}[\delta(\widetilde{x}=\lambda x^m+(1-\lambda)x^n,\widetilde{y}=\lambda y^m+(1-\lambda)y^n)]$$
 - minimising empirical vicinal risk, i.e. mixup

$$\widetilde{\mathbf{x}} = \lambda \mathbf{x}^m + (1 - \lambda)\mathbf{x}^n$$

$$\widetilde{\mathbf{y}} = \lambda \mathbf{y}^m + (1 - \lambda)\mathbf{y}^n$$

Image

[1.0, 0.0]

[0.0, 1.0]cat dog

[0.7, 0.3]cat dog

Data augmentation

Label

cat dog

Regularisation | Data Augmentation

Random data transformation

- Colour/intensity/contrast space
- Imaging-specific parameters
 - e.g. photometric transformation (luminance, illuminance, flux, intensity...),
 - bias field for MR,
 - perspective transformation
- Spatial transformation
 - Geometric: flipping, cropping, rotation
 - Affine
 - Nonlinear deformation
- (Unsupervised) generative models*

Affinity and diversity

• Affinity quantifies how much an augmentation shifts the training data distribution from that learned by a model. e.g. difference in validation accuracies due to augmentation

$$\mathcal{T}[a; m; D_{val}] = \mathcal{A}(m, D'_{val}) - \mathcal{A}(m, D_{val}).$$

• Diversity quantifies the complexity of the augmented data with respect to the model and learning procedure. e.g. expected training loss due to augmentation

$$\mathcal{D}[a; m; D_{train}] := \mathbb{E}_{D'_{train}}[L_{train}].$$

Other definitions*

Regularisation | Invariance and Normalisation

Spatial transformer networks

"Random transformation in training a model = encouraging the model invariant to the transformation"

Batch normalisation

- Normalise features to a standard Normal distribution within mini-batch
- Learnable parameters for linearly transforming maintaining expressibility
 - Makes bias redundant in previous network layers
 - Use population statistics during inference
- Benefits
 - Introduce both random additive and multiplicative noise during training
 - Reduce inter-layer dependency

- Batch/layer/instance/group normalization
- BN for CNN and LN for RNN?
- A form of re-parameterisation of layer activations

$$\hat{\mathbf{x}} = \frac{\mathbf{x} - \boldsymbol{\mu}}{\sigma}$$

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}$ $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}$ $\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}$ $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Weight normalisation

$$\mathbf{w} = \frac{g}{\|\mathbf{v}\|} \mathbf{v}$$

- Input normalisation
- Label normalisation data scaling
- Permutation invariance
- Translation invariance

. . .

Regularisation | Parameter Constraints

Parameter norms

Weight decay by penalising L2- and L1-norms

$$\ln p(\mathbf{w}|\mathbf{t}) = -\frac{\beta}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_n)\}^2 - \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} + \text{const.}$$

Difference between L2- and L1-norms

$$\Omega(\boldsymbol{\theta}) = ||\boldsymbol{w}||_1 = \sum_i |w_i|$$
 $\nabla_{\boldsymbol{w}} \tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \alpha \operatorname{sign}(\boldsymbol{w}) + \nabla_{\boldsymbol{w}} J(\boldsymbol{X}, \boldsymbol{y}; \boldsymbol{w})$

L2 norm gradient scales with w, therefore less likely to become zero, i.e. sparsity.

- Parameter sharing
- CNN
- RNN
- Tiring

$$\Omega(\boldsymbol{w}^{(A)}, \boldsymbol{w}^{(B)}) = \|\boldsymbol{w}^{(A)} - \boldsymbol{w}^{(B)}\|_{2}^{2}$$

- Multi-task learning*
- Semi-supervised learning*.

Multi-task learning

Multi-task learning

- Generalised forumaltion
 - Z_i : One-hot task index / indicator / descriptor
 - $f(Y|X) \rightarrow f(Y|X,Z_i)$

- Implementation
 - Shared and task specific parameters (negative transfer)
 - Concatenation/summation
 - Multiplication conditioning (gating/multi-head)

Regularisation | Unsupervised Learning and Generative Modelling

- Semi-supervised learning
- Supervised learning: labelled data = data + labels, f(Y|X)
- Semi-supervised learning: labelled data f(X,Y) + unlabelled data f(X)
- Pseudo labels and entropy minimization, consistency

- Semi-supervised learning
- Student-Teacher

Semi-supervised learning

Contrastive learning

Semi-supervised learning (for utilising unlabelled data)

Representation learning (for benefit other tasks)

e.g. SimCLR

Autoencoder

Autoencoder architecture: encoder - (low-dimension) "code" - decoder

Training loss: self-reconstructing difference, e.g. CE, MSE

Latent "code space"

Variational autoencoder

Reparameterisation of latent space

Self-supervised learning: Masked autoencoder

Generative adversarial networks

Generative adversarial networks

Regularisation | Randomness

Noise

- Gaussian
- Uniform with predefined range
- Bernoulli distribution, i.e. dropout
- Inputs, e.g. augmentation, invariant to noise
- Weights, e.g. RNN, at initialisation
- Output targets, e.g. label smoothing
- Edges / hidden units, e.g. dropout*
- Sampling from uncertainty
- Equivalent to penalty on weight norms

• • •

Dropout

- Drop as many as 80% of nodes
- Use all nodes at inference
- Dropout as model ensemble
- Dropout as random noise
- Dropout as Bayesian model sampling
- Uncertainty estimation using dropout
- Posterior estimation at inference
- With convolutional layers?

(a) Standard Neural Net

(b) After applying dropout.

Regularisation | Model Combining

Bagging = bootstrap aggregating ∈ model averaging = ensemble

- Independent errors are multiplicative
- Fully correlated errors does not accumulate
- Optimising multiple low-bias models "cancels" variance, i.e. more samples to estimate
- Bagging: the same kind of model, trained multiple times with bootstrapped datasets
 - Re-trained on the same dataset
 - Challenge winners!
- Committee: multiple models
 - e.g. dropout
- Boosting: multiple models in sequence (convert weak learners to a strong learning)
 e.g. Tree-based models*

Training strategies

Early stopping, curriculum learning, data resampling.

Data augmentation

Random data transformation, affinity and diversity

Invariance and normalisation

Spatial transformer networks, batch normalisation, reparameterization

Parameter constraints

Parameter norms, sparse representation, parameter sharing, multi-task, semi-supervised

Unsupervised learning

Autoencoder, generative adversarial network

Randomness

Noise, dropout

Model combining

Model averaging, ensemble, bagging/bootstrap aggregating, boosting

Sequence Modelling

Add two different regularization methods to the "image classification" tutorial and compare the results.