РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра информационных технологий

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 1

Дисциплина: Методы машинного обучения

Студент: Шалыгин Георгий

Группа: НФИ-20

Москва 2023

Вариант № 18

1. Загрузите заданный в индивидуальном задании набор данных из Tensorflow Datasets и оставьте в наборе данных признаки, принимающие непрерывные числовые значения, включая указанные в индивидуальном задании независимую и зависимую переменные. Вычислите матрицу корреляции признаков и определите пары признаков с наиболее низкой и наиболее высокой корреляцией. Набор данных: cherry_blossoms

Признаки с макимальной корреляцией 0.767866: temp, temp_upper

Признаки с минимальной корреляцией 0.030739: temp_lower, temp_upper

In [51]:

import tensorflow_datasets as tfds import pandas as pd import numpy as np import matplotlib.pyplot as plt

In [416]:

```
ds = tfds.load("cherry_blossoms", split='train')
df = tfds.as_dataframe(ds)
df.info()
```

Out[416]:

	temp	temp_lower	temp_upper	year
0	6.46	4.76	8.16	1300
1	5.63	4.90	6.37	1638
2	5.81	4.68	6.95	1347
3	5.70	4.87	6.53	1187
4	6.20	5.31	7.09	1617
1210	6.45	5.81	7.10	1577
1211	5.71	4.97	6.44	1640
1212	6.68	6.08	7.27	1925
1213	6.15	5.29	7.01	1624
1214	7.07	6.00	8.14	1393

1124 rows × 4 columns

In [109]

df.doy.unique() #признак, очевидно, дискретный (номер дняв году)

Out[109]:

```
array([ nan, 105., 109., 104., 107., 94., 97., 111., 108., 112., 100., 114., 103., 106., 98., 91., 110., 101., 96., 102., 93., 99., 113., 115., 92., 95., 122., 120., 88., 117., 118., 116., 119., 89., 124., 87., 90., 86.], dtype=float32)
```

In [110]:

```
df = df.drop('doy', axis=1)
```

In [111]:

```
#удалим с т роки с пропущенными значениями
print(df.shape)
nan_i = []
for i in range(df.shape[0]):
    if False in list((df.iloc[i]).notna()):
    nan_i.append(i)
df = df.drop(nan_i, axis=0)
print(df.shape)

(1215, 4)
```

In [112]:

(1124, 4)

df.corr()

Out[112]:

	temp	temp_lower	temp_upper	year
temp	1.000000	0.663891	0.767866	-0.066062
temp_lower	0.663891	1.000000	0.030739	0.479762
temp_upper	0.767866	0.030739	1.000000	-0.499087
year	-0.066062	0.479762	-0.499087	1.000000

- 1. Выполните визуализацию независимой и зависимой переменных в соответствии с индивидуальным заданием, подписывая оси и рисунок.
- Независимая переменная: temp_lower
- Зависимая переменная: year
- Визуализация для независимой переменной диаграмма размаха
- Визуализация для зависимой переменной эмпирическая функция распределения

In [113]:

df.temp_lower.plot.box(title='Диаграмма размаха признака temp_lower', ylabel='Значения temp_lower')

Out[113]:

<Axes: title={'center': 'Диаграмма размаха признака temp_lower'}, ylabel='Значения temp_lower'>

In [114]:

```
#получае тся гладкая, т.к. возможных значений достаточно много

def ECDF(data, x):
    counter = 0
    for v in data:
    if v <= x:
        counter += 1
    return counter / len(data)

samples = df['year'] # sepal length
    npoints = 500
    dx = (samples.min()+dx*i for i in range(npoints)]

ylist = [ECDF(samples, x) for x in xlist]

df_ECDF = pd.DataFrame(ylist, columns=['V0'],index=xlist)
    df_ECDF.plot.line(title='График эмпирической функции распределения признака year', xlabel='year', ylabel='ECDF(year)')
```

Out[114]:

<Axes: title={'center': 'График эмпирической функции распределения признака year'}, xlabel='year', ylabel='ECDF(year)'>

1. Постройте парную линейную регрессию для независимого и зависимого признаков при помощи точного подхода и при помощи нейронной сети с одним нейроном. Вычислите и сравните значения показателей качества R2 двух подходов.

Значения для точного и нейросети: (0.23017187719770082, 0.21792359666654715)

Точный подход, очевидно, оказывается лучше, но и нейросеть дает неплохой (сравнительно...) результат.

In [397]:

```
x = np.array(df.temp_lower)
y = np.array(df.year)
```

In [148]:

"------

```
#расчет коэффициент ов прямои
a = (x - x.mean()).dot(y - y.mean()) / (x - x.mean()).dot(x - x.mean())
b = y.mean() - a * x.mean()
y_predict_1 = a * x + b
```

In [125]:

```
plt.scatter(x, y, color='hotpink')
plt.plot(x, y_predict_1, color='#88c999')
```

Out[125]:

[<matplotlib.lines.Line2D at 0x7f03e426d6d0>]

In [139]:

from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense import tensorflow as tf

In [132]:

model = Sequential(Dense(1, input_shape=(1,)))
model.summary()

Model: "sequential_2"

Layer (type)	Output Shape	Param #	
dense_2 (Dense)	(None, 1)	2	_

Total params: 2 Trainable params: 2 Non-trainable params: 0

In []:

```
model.compile(loss=\mbox{'mse'}, optimizer=tf.keras.optimizers.Adam(learning\_rate=0.1)) \\ model.fit(x, y, epochs=300, verbose=0)
```

In [144]:

```
y\_predict\_2 = model.predict(x)
```

36/36 [=====] - 0s 1ms/step

In [149]:

```
plt.scatter(x, y, color='hotpink')
plt.plot(x, y_predict_2, color='#88c999')
plt.plot(x, y_predict_1, '--', color='grey')
```

Out[149]:

[<matplotlib.lines.Line2D at 0x7f03e240df40>]

In [155]:

```
y_predict_2 = [x[0] \text{ for } x \text{ in } y_predict_2]
```

In [326]:

```
r21 = 1 - np.sum((y - y_predict_1)**2) / len(y) / y.var()
r22 = 1 - np.sum((y-y_predict_2)**2)/y.shape[0]/y.var()
r21, r22
```

Out[326]:

 $(0.23017187719770082,\,0.21792359666654715)$

1. Постройте диаграмму рассеяния для независимого и зависимого признаков и изобразите линии двух построенных парных регрессий, подписывая оси и рисунок и создавая легенду.

In [398]:

```
plt.scatter(x, y, color='hotpink', label='Данные')
plt.plot(x, y_predict_2, color='#88c999', label='Точный подход')
plt.plot(x, y_predict_1, '--', color='grey', label='Нейросеть')
plt.xlabel('temp_lower')
plt.ylabel('year')
plt.title('Диаграмма рассеяния и линии регресии')
plt.legend()
```

Out[398]:

<matplotlib.legend.Legend at 0x7f03cd6f9160>

1. Разбейте набор признаков на обучающую и контрольную выборки. Создайте и адаптируйте нормализующий слой Tensorflow для всех признаков набора данных (за исключением зависимого признака).

In [241]:

```
ds_train, ds_test = tfds.load("cherry_blossoms", split=['train[:80%]', 'train[80%:]'])
```

In [242]:

```
df_train = tfds.as_dataframe(ds_train)
df_test = tfds.as_dataframe(ds_test)
```

In [243]:

```
df_train.drop('doy', axis=1, inplace=True)
df_test = df_test.drop('doy', axis=1)
```

In [249]:

df_test.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 228 entries, 0 to 242
Data columns (total 4 columns):
# Column Non-Null Count Dtype
--------
0 temp 228 non-null float32
1 temp_lower 228 non-null float32
2 temp_upper 228 non-null float32
3 year 228 non-null int32
```

In [246]:

dtypes: float32(3), int32(1) memory usage: 5.3 KB

```
#удаление пропущенных значений

nan_i = []

for i in range(df_train.shape[0]):

if False in list((df_train.iloc[i]).notna()):

nan_i.append(i)

df_train = df_train.drop(nan_i, axis=0)
```

In [247]:

```
nan_i = []
for i in range(df_test.shape[0]):
    if False in list((df_test.iloc[i]).notna()):
        nan_i.append(i)

df_test = df_test.drop(nan_i, axis=0)
```

In [250]:

```
# разделим выборку на признаки и зависимую переменную y_train = df_train.year
y_test = df_test.year
df_train.drop('year', axis=1, inplace=True)
df_test.drop('year', axis=1, inplace=True)
```

In [253]:

```
df_normalizer = tf.keras.layers.Normalization()
df_normalizer.adapt(df_train)
print(df_normalizer.mean.numpy())
print(df_normalizer.variance.numpy())
```

[[6.1558475 5.1097665 7.2022877]] [[0.44610217 0.725652 0.9871867]]

- 1. Используя созданный нормализующий слой, постройте регресоры на базе следующих моделей множественной регрессии:
 - линейной регрессии
 - гребневой регрессии (L2)
 - лассо регрессии (L1)

In [342]:

```
#линейная регресиия
df_normalizer0 = tf.keras.layers.Normalization()
df_normalizer0.adapt(df_train)
model0 = Sequential([
    df_normalizer0,
    Dense(units=1)
])
```

In [343]:

```
#гребневой регрессии (L2)
df_normalizer1 = tf.keras.layers.Normalization()
df_normalizer1.adapt(df_train)
model1 = Sequential([
df_normalizer1,
Dense(units=1, kernel_regularizer=tf.keras.regularizers.L1(I1=0.01))
])
```

In [344]:

```
#nacco perpeccuu (L1)

df_normalizer2 = tf.keras.layers.Normalization()

df_normalizer2.adapt(df_train)

model2 = Sequential([
    df_normalizer2,
    Dense(units=1, kernel_regularizer=tf.keras.regularizers.L2(l2=0.01))

])
```

In [345]:

```
model0.compile(loss='mse', optimizer=tf.optimizers.Adam(learning_rate=0.5))
model1.compile(loss='mse', optimizer=tf.optimizers.Adam(learning_rate=0.5))
model2.compile(loss='mse', optimizer=tf.optimizers.Adam(learning_rate=0.5))
```

In [346]:

```
%%time
history0 = model0.fit(
    df_train, y_train,
    epochs=300,
    # подавляем вывод
    verbose=0,
    # проверка (валидация) на 20% обучающих данных
    validation_split = 0.2)
```

CPU times: user 22.1 s, sys: 970 ms, total: 23.1 s Wall time: 22.6 s

In [347]:

```
%%time
history1 = model1.fit(
df_train, y_train,
epochs=300,
```

```
# подавляем вывод
verbose=0,
# проверка (валидация) на 20% обучающих данных
validation_split = 0.2)
```

CPU times: user 22.5 s, sys: 973 ms, total: 23.5 s Wall time: 41.4 s

In [348]:

```
%%time
history2 = model2.fit(
    df_train, y_train,
    epochs=300,
    # подавляем вывод
    verbose=0,
    # проверка (валидация) на 20% обучающих данных
    validation_split = 0.2)
```

CPU times: user 22.3 s, sys: 959 ms, total: 23.3 s Wall time: 22.8 s

1. Определите на контрольной выборке модель множественной регрессии с наиболее высоким качеством по показателю, указанному в индивидуальном задании, среди построенных моделей.

Показатель качества регрессии - R^2 (коэффициент детерминации)

Для трех моделей показатели равны: (0.8613192171635163, 0.8614748435558794, 0.8616035109231868). Строим историю для третей модели. Видно, что регуляризация и нормализация несильно улучшают качество модели. Однако от модели с 1м параметром она отличается значительно.

In [349]:

In [350]:

```
 \begin{split} &r0=1\text{ -np.sum}((y\_test-y\_pred0)^{**}2)/y\_train.shape[0]/y\_test.var()\\ &r1=1\text{ -np.sum}((y\_test-y\_pred1)^{**}2)/y\_train.shape[0]/y\_test.var()\\ &r2=1\text{ -np.sum}((y\_test-y\_pred2)^{**}2)/y\_train.shape[0]/y\_test.var()\\ &r0,\ r1,\ r2 \end{split}
```

Out[350]:

 $(0.8613192171635163,\, 0.8614748435558794,\, 0.8616035109231868)$

8/8 [======] - 0s 2ms/step

1. Для лучшего регрессора визуализируйте кривые обучения (в зависимости от эпохи обучения).

In [356]:

```
def plot_loss(history):
    plt.plot(history.history['loss'], label='loss')
    plt.plot(history.history['val_loss'], label='val_loss')
    plt.ylim([0, max(history.history['loss'])*0.5])
    plt.xlabel('Эпохи обучения')
    plt.ylabel('Ошибка')
    plt.legend()
    plt.grid(True)
```

In [358]:

```
plot_loss(history2)
```


1. Определите медианные значения признаков (кроме независимого и зависимого признаков) и для построенных медианных значений визуализируйте на плоскости с независимым признаком в качестве оси абсцисс и зависимым признаком в качестве оси ординат точки тестовой выборки и линии (графики) различных моделей множественной регрессии разными цветами. Подпишите оси и создайте легенду и заголовок для рисунка.

In [420]:

df_mean = df.median()
df_mean

Out[420]:

temp 6.100 temp_lower 5.145 temp_upper 7.040 year 1418.500 dtype: float64

In [421]:

x = np.linspace(df.temp_lower.min(), df.temp_lower.max(), 200)

 $X = [[df_mean.temp, x[i], df_mean.temp_upper]$ for i in range(len(x))]

X = pd.DataFrame(X)

In [422]:

Χ

Out[422]:

0 6.1 0.750000 7.04 1 6.1 0.785126 7.04 2 6.1 0.820251 7.04 4 6.1 0.890503 7.04 4 6.1 0.890503 7.04 195 6.1 7.599497 7.04 196 6.1 7.634623 7.04 197 6.1 7.669749 7.04 198 6.1 7.704874 7.04		0	1	2
2 6.1 0.820251 7.04 3 6.1 0.855377 7.04 4 6.1 0.890503 7.04 195 6.1 7.599497 7.04 196 6.1 7.634623 7.04 197 6.1 7.669749 7.04	0	6.1	0.750000	7.04
3 6.1 0.855377 7.04 4 6.1 0.890503 7.04 195 6.1 7.599497 7.04 196 6.1 7.634623 7.04 197 6.1 7.669749 7.04	1	6.1	0.785126	7.04
4 6.1 0.890503 7.04 195 6.1 7.634623 7.04 197 6.1 7.669749 7.04	2	6.1	0.820251	7.04
195 6.1 7.599497 7.04 196 6.1 7.634623 7.04 197 6.1 7.669749 7.04	3	6.1	0.855377	7.04
195 6.1 7.599497 7.04 196 6.1 7.634623 7.04 197 6.1 7.669749 7.04	4	6.1	0.890503	7.04
196 6.1 7.634623 7.04 197 6.1 7.669749 7.04				
197 6.1 7.669749 7.04	195	6.1	7.599497	7.04
	196	6.1	7.634623	7.04
198 6.1 7.704874 7.04	197	6.1	7.669749	7.04
	198	6.1	7.704874	7.04
199 6.1 7.740000 7.04	199	6.1	7.740000	7.04

In [423]:

```
y0 = model0.predict(X)
y1 = model1.predict(X)
y2 = model2.predict(X)
y0 = [x[0] for x in y0]
y1 = [x[0] for x in y1]
y2 = [x[0] for x in y2]
```

```
7/7 [======] - 0s 4ms/step
7/7 [======] - 0s 4ms/step
7/7 [======] - 0s 3ms/step
```

In [424]:

```
plt.scatter(df_train.temp_lower, y_train, color='b', label='train data')
plt.scatter(df_test.temp_lower, y_test, color='c', label='test data')
plt.plot(x, y0, color='grey', label='simple reg')
plt.plot(x, y1, color='#F08080', label='l1 reg')
plt.plot(x, y2, color='#98FB98', label='l2 reg')
plt.xlabel('temp_lower')
plt.ylabel('year')
plt.legend()
```

Out[424]:

<matplotlib.legend.Legend at 0x7f03d6767df0>

In [403]: