PySpark Hands-On

Mai H. Nguyen, Ph.D.

Overview

- Weather station measurements
- Data Exploration
 - Load into Spark DataFrame
 - Describe schema
 - Show summary statistics
 - Calculate correlation between features
- Cluster to identify different weather patterns
 - Spark k-means
 - Parallel plots

Get Latest from Github Repo

- Clone/Update repo on comet
- If haven't cloned Summer Institute repo
 - git clone <URL>
- If already cloned Summer Institute repo
 - git pull <URL>
- <URL>

https://github.com/sdsc/sdsc-summer-institute-2020

Server Setup

Set up server

- In terminal window: start_python_sparkr_cpu
- Should get something like this:

Your notebook is here:

https://unkind-illicitly-mutt.comet-user-content.sdsc.edu?token=6615bbdb1a8e0fbe3ad948fb52678133 Submitted batch job 35032027

Connect to jupyter notebook

In browser, paste URL of notebook from above step

Check queue

squeue –u \$USER

Data Setup

In terminal window, do the following:

Link to data files

```
cd <SI2020_dir>/datasci3_scalable_machine_learning/pyspark
In -s ~/ML-data/*_weather.csv .
cd ../sparkR
In -s ~/ML-data/wine*.csv .
```

Go to spark directory

cd <SI2020_dir>/datasci3_scalable_machine_learning/pyspark

Dataset Description

- Measurements from weather station on Mt. Woodson, San Diego
- Air temperature, humidity, wind speed, wind direction, etc.
- Three years of data: Sep. 2011 Sep. 2014
- minute_weather.csv
 - measurement every minute
- daily_weather.csv
 - aggregated measurements

Dataset Description

- Measurements from weather station on Mt. Woodson, San Diego
- Air temperature, humidity, wind speed, wind direction, etc.
- Three years of data: Sep. 2011 Sep. 2014
- - measurement every minute
- daily_weather.csv
 Data Exploration
 - aggregated measurements

Go to sparkR folder

Open Data Exploration Notebook

Load Data into Spark DataFrame

- Start the Spark session
- Read the daily weather data into a Spark DataFrame

```
# Load data into Spark dataframe
inputfile = <<FILL-IN>>
df = spark.read.load(inputfile, format="csv", inferSchema="true", header="true")
```

 Replace with data filename (with quotes): 'daily_weather.csv'

Examine Schema

df.printSchema()

```
root
|-- number: integer (nullable = true)
|-- air_pressure_9am: double (nullable = true)
|-- air_temp_9am: double (nullable = true)
|-- avg_wind_direction_9am: double (nullable = true)
|-- avg_wind_speed_9am: double (nullable = true)
|-- max_wind_direction_9am: double (nullable = true)
|-- max_wind_speed_9am: double (nullable = true)
|-- rain_accumulation_9am: double (nullable = true)
|-- relative_humidity_9am: double (nullable = true)
|-- relative_humidity_3pm: double (nullable = true)
```


Show Summary Statistics

df.describe().toPandas().transpose()

	0	1	2	3	4
summary	count	mean	stddev	min	max
number	1095	547.0	316.24357700987383	0	1094
air_pressure_9am	1092	918.8825513138094	3.184161180386833	907.9900000000024	929.3200000000012
air_temp_9am	1090	64.93300141287072	11.175514003175877	36.752000000000685	98.9059999999992
avg_wind_direction_9am	1091	142.2355107005759	69.13785928889189	15.500000000000046	343.4
avg_wind_speed_9am	1092	5.50828424225493	4.5528134655317185	0.69345139999974	23.554978199999763
max_wind_direction_9am	1092	148.95351796516923	67.23801294602953	28.8999999999991	312.1999999999993
max_wind_speed_9am	1091	7.019513529175272	5.598209170780958	1.1855782000000479	29.84077959999996
rain_accumulation_9am	1089	0.20307895225211126	1.5939521253574893	0.0	24.0199999999997
rain_duration_9am	1092	294.1080522756142	1598.0787786601481	0.0	17704.0
relative_humidity_9am	1095	34.24140205923536	25.472066802250055	6.09000000001012	92.6200000000002
relative_humidity_3pm	1095	35.34472714825898	22.524079453587273	5.300000000006855	92.2500000000003

Number of Rows

df.count()

1095

First Two Rows

df.show(2)

```
Inumber
air pressure 9am air temp 9am avg wind direction 9am avg wind speed 9am max wind
direction 9am|max wind speed 9am|rain accumulation 9am|rain duration 9am|relative hu
midity 9am|relative humidity 3pm|
   0|918.0600000000087|74.82200000000041|
                                                   271.1
2.080354199999768| 295.3999999999986|
2.863283199999908
                                       0.01
                                            42.42000000000046| 36.16000000000049
                            |0.0|
   1|917.3476881177097|71.40384263106537|
                                            101.93517935618371|2.4430092157340217|
 140.47154847112498|3.5333236016106238|
                                                  0.01
                                                             0.0 24.3286972918022
     19.4265967985621
only showing top 2 rows
```


Number and Names of Columns

df.columns

```
['number', 'air_pressure_9am', 'air_temp_9am', 'avg_wind_direction_9am', 'avg_wind_speed_9am', 'max_wind_direction_9am', 'max_wind_speed_9am', 'rain_accumulation_9am', 'rain_duration_9am', 'relative_humidity_9am', 'relative_humidity_3pm']
```

len(df.columns)

11

Correlation Between Air Temperature and Relative Humidity

df.stat.corr("air_temp_9am", "relative_humidity_9am")

-0.536670...

Show Plots in Notebook

%matplotlib inline

Scatter Plot of Air Temperature vs Humidity

Histogram of Air Temperature

df.select('air_temp_9am').toPandas().hist()

Stop Spark Session

Save and Exit Notebook

Jupyter data-exploration Last Checkpoint: a minute ago (autosaved)

Clustering to Identify Santa Ana Conditions

Strong, dry winds in Southern California

- wind speed > 30mph
- wind direction between 10 & 110 degrees (from east)
- relative humidity < 10%

Extreme fire danger

- May 2014, swarm of 14 wildfires in San Diego County
- 2008, Witch Fire, ~200,000 acres
- 2003, Cedar Fire, ~280,000 acres

Open Clustering Notebook

□ → M / pyspark
□
□ completed-notebooks
□
☐
□ □ daily_weather.csv
□ □ minute_weather.csv
□ □ utils.py

Import Modules & Start Spark Session

```
# Import modules
import pyspark
from pyspark.ml.clustering import KMeans
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.feature import StandardScaler
import utils
%matplotlib inline
```


Load Modules & Minute Weather Data

```
# Load minute weather data
inputfile = <<FILL-IN>>
df = spark.read.csv (inputfile, inferSchema=True, header=True).cache()
```

- Replace with data filename (with quotes):
 - 'minute_weather.csv'

Examine Schema

df.printSchema()

```
root
  -- rowID: integer (nullable = true)
  -- hpwren timestamp: timestamp (nullable = true)
  -- air pressure: double (nullable = true)
  -- air temp: double (nullable = true)
  -- avg wind direction: double (nullable = true)
  -- avg wind speed: double (nullable = true)
  -- max wind direction: double (nullable = true)
  -- max wind speed: double (nullable = true)
  -- min wind direction: double (nullable = true)
  -- min wind speed: double (nullable = true)
  -- rain accumulation: double (nullable = true)
  -- rain duration: double (nullable = true)
  -- relative humidity: double (nullable = true)
```

Count Rows and Filter Data

Count rows

df.count()

= 1587257

Filter data

filteredDF = df.filter((df.rowID % 100) == 0) filteredDF.count()

= 15873

Show Summary Statistics

filteredDF.describe().toPandas().transpose()

	0	1	2	3	4
summary	count	mean	stddev	min	max
rowID	15873	793600.0	458228.4746717515	0	1587200
air_pressure	15873	916.8291627291587	3.0517222151797943	905.1	929.4
air_temp	15873	61.854689094688936	11.83541379082148	32.36	96.44
avg_wind_direction	15870	161.2875236294896	95.3131612965649	0.0	359.0
avg_wind_speed	15870	2.7928040327662296	2.0705061984600173	0.1	20.1
max_wind_direction	15870	162.70094517958412	92.26960112663167	0.0	359.0
max_wind_speed	15870	3.41462507876495	2.428906406812135	0.1	20.9
min_wind_direction	15870	166.64429741650915	97.82483630682509	0.0	359.0
min_wind_speed	15870	2.1522684310018896	1.7581135042599596	0.0	19.5

Drop Samples with Null Values

workingDF = filteredDF.na.drop()
workingDF.count()

= 15869

Create Feature Vector

Scale Data

Generate Elbow Plot

```
# Use one-third data for elbow plot
scaledData = scaledData.select("features", "rowID")
elbowset = scaledData.filter((scaledData.rowID % 3) == 0).select("features")
elbowset.persist()
elbowset.count()
```

5289

Generate Clusters for Elbow Plot

```
clusters = range(5, 15)
wsseList = utils.elbow(elbowset, clusters)
```


Show Elbow Plot

utils.elbow_plot(wsseList, clusters)

Run KMeans for k = 9 and Extract Cluster Centers

```
# Run KMeans for k = 9
scaledDataFeat = scaledData.select("features")
scaledDataFeat.persist()
kmeans = KMeans(k=9, seed=1)
model = kmeans.fit(scaledDataFeat)
```

```
# Extract cluster centers
centers = model.clusterCenters()
centers
```


Cluster Capturing Humid Days

utils.parallel_plot(centersNamed[centersNamed['relative_humidity'] > 0.5], numClusters, colors=colors_used);

Cluster Capturing Hot Days

utils.parallel_plot(centersNamed[centersNamed[air_temp'] > 0.5],

Cluster Capturing Windy Days

utils.parallel_plot(centersNamed[centersNamed[avg_wind_speed'] > 0.5],

Stop Spark Session

spark.stop()

Clean Up

- Exit notebook
 - File -> Close and Halt
- Exit Jupyter Notebook
 - Click on 'Logout'

References

- Spark
 - https://spark.apache.org/
- MLlib
 - https://spark.apache.org/mllib/

Questions?

