Контрольная работа № 2. Вариант 1

- 1. Решите уравнение $x^5=0$ в \mathbb{F}_{3^5}
- 2. Найдите количество элементов в поле разложения $x^2 + 2x 4 \in \mathbb{F}_7[x]$
- 3. Найдите количество делителей нуля в кольце $\mathbb{F}_2[x]/((x^3+x+1)(x^2+x+1))$
- 4. Перечислите все идеалы \mathbb{F}_{53}
- 5. Найдите некоторое решение уравнения $(x-2)P(x) + (x^3 + x + 1)Q(x) = 1$ в $\mathbb{F}_5[x]$
- 6. Найдите $[x-2]^{-1}$ в $\mathbb{F}_5[x]/(x^3+x+1)$ воспользовавшись решением предыдущей задачи
- 7. Сколько есть неприводимых многочленов 4 степени в $\mathbb{F}_3[x]$?
- 8. В коммутативном кольце с единицей уравнение $x^2=2$ имеет ровно 3 различных решения. Докажите, что в нём есть делители нуля
- 9. Докажите, что $\mathbb{F}_3[x]/(x^4+x-1)$ поле

Контрольная работа № 2. Вариант 2

- 1. Решите уравнение $x^4 = 0$ в \mathbb{F}_{2^4}
- 2. Найдите количество элементов в поле разложения $x^2 + 3x 2 \in \mathbb{F}_7[x]$
- 3. Найдите количество делителей нуля в кольце $\mathbb{F}_2[x]/((x^3+x^2+1)(x^2+x+1))$
- 4. Перечислите все идеалы \mathbb{F}_{61}
- 5. Найдите некоторое решение уравнения $(x-3)P(x) + (x^3 + x^2 + 1)Q(x) = 1$ в $\mathbb{F}_5[x]$
- 6. Найдите $[x-3]^{-1}$ в $\mathbb{F}_5[x]/(x^3+x^2+1)$ воспользовавшись решением предыдущей задачи
- 7. Сколько есть неприводимых многочленов 3 степени в $\mathbb{F}_{5}[x]$?
- 8. В коммутативном кольце с единицей уравнение $x^2=3$ имеет ровно 3 различных решения. Докажите, что в нём есть делители нуля
- 9. Докажите, что $\mathbb{F}_3[x]/(x^4-x-1)$ поле