[M2, MVA]

Convex Optimization, Algorithms and Applications

Maha ELBAYAD maha.elbayad@student.ecp.fr

Homework 3

December 2, 2015

1 Second order methods for dual problem

1. The dual of Lasso

Let us consider the LASSO problem

$$\underset{w}{\text{minimize}} \frac{1}{2} \|Xw - y\|_2^2 + \lambda \|w\|_1$$
 (LASSO)

where $w \in \mathbb{R}^d, X \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^n$ abd $\lambda > 0$ the regularization parameter. We rewrite the problem as:

$$\underset{w}{\text{minimize}} \frac{1}{2} \|Xw - y\|_{2}^{2} + \lambda \|v\|_{1}, \text{ subject to } w = v.$$

For which Slater's condition is satisfied, thus the strong duality holds.

In fact if we consider $u = [w, v]^T$, $\bar{X} = [X, \mathbf{0}_{n,d}]$, $A = [\mathbf{0}_{d,d}, I_d]$ and $E = [I_d, -I_d]$ the problem can be transformed into the convex problem with affine equality contraint:

minimize
$$\frac{1}{2} \|\bar{X}u - y\|_2^2 + \lambda \|Au\|_1$$
, subject to $Eu = \mathbf{0}$.

We consider the Lagrange multiplier μ , the lagrangian is:

$$L(w, v, \mu) = \frac{1}{2} \|Xw - y\|_{2}^{2} + \lambda \|v\|_{1} + \mu^{T}(w - v)$$
$$= (\frac{1}{2} \|Xw - y\| + \mu^{T}w) + (\lambda \|v\|_{1} - \mu^{T}v)$$

We minimize L with respect to the two variables w, v:

$$\nabla_w(\frac{1}{2}||Xw - y|| + \mu^T w) = \mu + X^T X w - X^T y = \mathbf{0}$$

Thus,

$$\min_{w}(\frac{1}{2}\|Xw - y\| + \mu^{T}w) = -\frac{1}{2}y^{T}XH(X^{T}y - \mu) - \frac{1}{2}\mu^{T}H(X^{T}y - \mu) + \frac{1}{2}y^{T}y$$

where $H = (X^T X)^{-1} \in \mathbb{R}^d$, and:

$$\min_{v}(\lambda \|v\|_{1} - \mu^{T}v) = \begin{cases} 0 \text{ if } \|\mu\|_{\infty} \leq \lambda \\ -\infty \text{ otherwise} \end{cases}$$

The dual problem would be:

minimize
$$\frac{1}{2}\mu^T H \mu - (HX^T y)^T \mu$$

subject to $\lambda \le \mu_i \le \lambda, \ i = 1...m$ (1)

Which is a quadratic problem in the form:

$$\begin{array}{ll} \text{minimize} & v^T Q v + p^T v \\ \text{subject to} & A v \preceq b \end{array}$$
 (QP)

with
$$Q = H/2 \in \mathbf{S}_{++}^d$$
, $p = -HX^Ty$, $b = \lambda \mathbf{1}_{2d}$ and $A = [I_d, -I_d]^T \in \mathbb{R}^{2d \times d}$

2. Test

We test the impelmented log-barrier method on randomly generated samples, the results are shown in the figures below. In the current situation, the most appropriate choice of μ is 50 which, among the tested values $\{2, 15, 50, 100\}$, requires the fewest iterations.

2 First order methods for primal problem

1. The sub-gradient descent algorithm for LASSO

To implement the function subgrad we use the gradient of the least-squares $||Xw - y||_2^2$ with a subgradient of the l1-norm:

$$\partial l1(w) = \{g | \|g\|_{\infty} \le 1, \ g^T w = \|w\|_1 \}$$

We can simply take $g = sign(w) = \begin{cases} +1, & w > 0 \\ 0, & w = 0 \\ -1, & w < 0 \end{cases}$

For a randomly genetated sample (n=100, d=10; λ =10) we plot the loss function values at each iteration and $f_{best}^{(k)} - p^*$ the best value found yet at iteration k compared to the final best value.

At each iteration we update:

$$w^{(k+1)} = w^{(k)} - \alpha_k \cdot q^{(k)}$$

Constant step size: $\alpha_k = h$

Constant step length: $\alpha^{(k)} = h \|g^{(k)}\|_2$

Square summable but not summable $\alpha^{(k)} = \frac{h}{k}$

Nonsummable diminishing $\alpha^{(k)} = \frac{h}{\sqrt{k}}$

2. The coordinate descent algorithm for the LASSO dual

We iterates over the coordinates (i) and update:

$$\mu_i^{(k+1)} = \arg\min_{-\lambda \le \mu_i \le \lambda} \left[\frac{1}{2} \mu^T H \mu - (HX^T y)^T \mu \right]$$

$$\mu_j^{(k+1)} = \mu_j^{(k)}, \ j \ne i$$

We have

$$(\nabla_{\mu} f)_i = H_i^T \mu - (HX^T y)_i$$

Thus:

$$\mu_{i} = \frac{(HX^{T}y)_{i} - H_{-i}^{T}\mu_{-i}}{H_{ii}}$$

To satisfy the box constraint we truncate the computed μ_i

$$\mu_{i} = T_{\lambda} \left(\frac{(HX^{T}y)_{i} - H_{-i}^{T}\mu_{-i}}{H_{ii}} \right), T_{\lambda}(x) = \begin{cases} \lambda, & \text{if } x > \lambda \\ -\lambda, & \text{if } x < -\lambda \\ x, & \text{otherwise} \end{cases}$$

The convergence of the method is shown in the figure below.

We compare the CPU time/ Number of required iterations of the subgradient method and the coordinate descent at different precision levels for a sample (n = 100, d = 10).

precision ϵ	1×10^{-3}	1×10^{-6}	1×10^{-10}
Subgradient method($L2\L1$)	0.0009/13	0.0085/313	didn't converge
Coordinate descent	0.0121/8	0.0051/8	0.0038/8

The subgradient method seems more effective for low precision level whilst the coordinate method is more robust with very high precision.

3 Proximal methods for primal problem

1. For the LASSO problem with $A \in \mathbb{R}^{n \times d}$: $f(x) = \frac{1}{2} ||Ax - y||_2^2$ of hessian $\nabla^2 f(x) = A^T A$. f is strongly convex if there exists m > 0 such that $X^T X \succeq mI$ i.e $A^T A$ is positive-definite.

This means $\forall w \in \mathbb{R}^d$, $x^T A^T A x = \mathbf{0} \iff x = \mathbf{0}$ and since $x^T A^T A x = \mathbf{0}$ implies $Ax = \mathbf{0}$ we must have rank(A) = d and consequently $d \le n$.

If f is strongly convex then the maximum eigenvalue of $\nabla f^2(x)$ is a continuous bounded function of x which means

$$\exists M > 0, \ \forall x \in \mathbb{R}^d, \ \nabla^2 f(x) \leq MI$$

The tightest choice of m and M would be

$$\begin{cases} m = \lambda_{min}(A^T A) \\ M = \max \lambda_{max}(A^T A) \end{cases}$$

If $n \ll d$ then the hessian is sigular and f is not strongly convex.

2. For the indicator of a convex set I_C

$$prox_{I_C,P}(x) = \arg\min_{z} \frac{P}{2} ||z - x||_2^2 + I_C(z)$$

$$\min_{z} \frac{P}{2} \|z - x\|_{2}^{2} + I_{C}(z) = \frac{P}{2} \min_{z} \|z - x\|_{2}^{2}$$

Thus $\operatorname{prox}_{I_C,P}(x) = \frac{P}{2}.p_C(x) \propto$ the projection of x on the convex set C.

For $h(x) = ||x||_1$

$$\operatorname{prox}_{h,P}(x) = \arg\min_{z} \frac{P}{2} ||z - x||_{2}^{2} + ||z||_{1}$$

The optimality condition is:

$$\mathbf{0} \in P(z-x) + \partial(\|z\|_1)$$

h is separable so we can consider each element apart. for i, if $z_i \neq 0$ $\partial(|z_i|) = sign(z_i)$ therefore $z_i := x_i - \frac{1}{P}.sign(z_i)$

if $z_i < 0$ then $x_i < -\frac{1}{P} < 0$ and if $z_i > 0$ then $x_i > \frac{1}{P} > 0$ which means $sign(z_i) = sign(x_i)$ therefore $z_i = x_i - \frac{1}{P} sign(x_i)$ with $|x_i| > \frac{1}{P}$

if $z_i = 0$ the optimality condition becomes $\mathbf{0} \in -Px_i + [-1, 1]$ i.e $|x_i| < \frac{1}{P}$.

$$\operatorname{prox}_{h,P}(x)_{i} = \begin{cases} x_{i} - \frac{1}{P}, & \text{if } x_{i} > \frac{1}{P} \\ 0, & \text{if } |x_{i}| < \frac{1}{P} \\ x_{i} + \frac{1}{P}, & \text{if } x_{i} < -\frac{1}{P} \end{cases}$$

3. For $z, x \in \mathbb{R}^d$

$$f(z) = f(x) + \nabla f(x)^{T} (z - x) + \frac{1}{2} (z - x)^{T} \nabla^{2} f(y) (z - x)$$

for some y = tx + (1 - t)z, $t \in [0, 1]$.

Assuming the smoothness of f ($\exists M > 0 \nabla^2 f(x) \leq MI$) we would have:

$$f(z) \le f(x) + \nabla f(x)^T (z - x) + \frac{m}{2} ||z - x||_2^2$$

Therefore:

$$\phi(z) \le g_{x,M}(z)$$

holds for any $M > \lambda_{max}(\nabla^2 f(x))$.

The iteration scheme is:

$$x_{t+1} = \arg\min_{z} g_{x_{t},M}(z)$$

$$= \arg\min_{z} \nabla f(x)^{T} (z - x_{t}) + \frac{M}{2} ||z - x_{t}||_{2}^{2} + h(z)$$

$$= \arg\min_{z} \frac{M}{2} ||z - x_{t} + \frac{1}{M} \nabla f(x_{t})||_{2}^{2} + h(z)$$

$$= \operatorname{prox}_{h,M} (x_{t} - \frac{1}{M} \nabla f(x_{t}))$$

For h = 0 prox_{0,M} = Id thus $x_{t+1} = x_t - \frac{1}{M}\nabla f(x_t)$ which is the gradient descent update. For $h = I_C \ x_{t+1} = p_C(x_t - \frac{1}{M}\nabla f(x_t))$ the gradient projection update.

4. We implement the proximal method for the LASSO problem and track the CPU time needed to converge as well as the number of iterations.

precision ϵ	1×10^{-3}	1×10^{-6}	1×10^{-10}
Subgradient method($L2\L1$)	0.0009/13	0.0083/313	didn't converge
Coordinate descent	0.0121/80	0.0051/80	0.0038/80
Proximal	0.0158/114	0.0654/435	0.1311/869

The performance of the proximal method is illustrated on a random sample (n = 100, d = 10, eps = 1e - 5)

5. We rewrite the update as:

$$x_{t+1} = x_t - \frac{1}{M}F(x_t)$$

with

$$F(x_t) = M(x_t - prox_{h,M}(x_t - \frac{1}{M}\nabla f(x_t)))$$

From the definition of the proximal operator:

$$u = prox_{h,M}(x) \iff M(x-u) \in \partial h(u)$$

Therefore,

$$M(x_t - \frac{1}{M}\nabla f(x_t) - prox(x_t - \frac{1}{M}\nabla f(x_t))) \in \partial h(prox(x_t - \frac{1}{M}\nabla f(x_t)))$$

and

$$F(x_t) = M(x_t - prox(x_t - \frac{1}{M}\nabla f(x_t))) \in \nabla f(x_t) + \partial h(prox(x_t - \frac{1}{M}\nabla f(x_t)))$$
$$\in \nabla f(x_t) + \partial h(x_t - \frac{1}{M}F(x_t))$$

For this descent to be a point-fix algorithm we need to prove:

$$F(x^*) = 0 \iff x^* \text{ minimizes } \phi(x) = f(x) + h(x)$$

From the smoothness/strong convexity we get:

$$f(x_t - \frac{1}{M}F(x_t)) \le f(x_t) - \frac{1}{M}\nabla f(x)^T F(x_t) + \frac{1}{2M} ||F(x_t)||_2^2$$

Thus from $F(x_t) - \nabla f(x_t) \in \partial h(x_t - \frac{1}{M}F(x_t))$, for all z:

$$\phi(x_t - \frac{1}{M}F(x_t)) \le f(z) + \nabla f(x)^T (x - z) - \frac{1}{M}\nabla f(x_t)^T F(x_t) + \frac{1}{2M} \|F(x_t)\|_2^2$$
$$+ h(z) + (F(x_t) - \nabla f(x_t))^T (x - z - \frac{1}{M}F(x_t))$$
$$= \phi(z) + F(x_t)^T (x_t - z) - \frac{1}{2M} \|F(x_t)\|_2^2$$

In particular for $z = x_t$ and $z = x^* = \arg\min \phi(x)$

$$\phi(x_{t+1}) \le \phi(x_t) - \frac{1}{2M} \|F(x_t)\|_2^2$$

$$\phi(x_{t+1}) \le \phi(x^*) + F(x_t)^T (x_t - x^*) - \frac{1}{2M} \|F(x_t)\|_2^2$$

$$\le \phi(x^*) + \frac{M}{2} \left(\|x_t - x^*\|_2^2 - \|x_t - x^* - \frac{1}{M} F(x_t)\|_2^2 \right)$$

$$\phi(x_{t+1}) - \phi(x^*) \le \frac{M}{2} (\|x_t - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2)$$

Which means the sequence $(\phi(x_t))_t$ is non-increasing and we're getting closer to x^* . Then we sum over the n past iterations:

$$\sum_{t=1}^{n} (\phi(x_t) - \phi(x^*)) \le \sum_{t=1}^{n} \frac{M}{2} (\|x_{t-1} - x^*\|_2^2 - \|x_t - x^*\|_2^2)$$

$$\le \frac{M}{2} (\|x_0 - x^*\|_2^2 - \|x_n - x^*\|_2^2) \le \frac{M}{2} \|x_0 - x^*\|_2^2$$

And

$$\phi(x_n) - \phi(x^*) \le \frac{1}{n} \sum_{t=1}^n (\phi(x_t) - \phi(x^*)) \le \frac{M}{2n} ||x_0 - x^*||_2^2$$

Therefore the proximal gradient method is a point-fix algorithm that convergs in $\mathcal{O}(1/\epsilon)$.

6. We implement the accelerated proximal method for the LASSO problem and track the CPU time needed to converge as well as the number of iterations.

precision ϵ	1×10^{-3}	1×10^{-6}	1×10^{-10}
Subgradient method($L2\L1$)	0.0009/13	0.0083/313	didn't converge
Coordinate descent	0.0121/80	0.0051/80	0.0038/80
Proximal	0.0158/114	0.0654/435	0.1311/869
Proximal acc	0.0083/10	0.0061/10	0.0052/10

The fast convergence of the accelerated proximal method is shown in the figure below.

