第36届全国信息学奥林匹克竞赛

CCF NOI 2019

贵州•广西省队选拔赛

第二试

2019年4月14日8:00-12:00

题目名称	逼死强迫症	旅行者	旧词
目录	obsession	tourist	poetry
可执行文件名	obsession	tourist	poetry
输入文件名	obsession.in	tourist.in	poetry.in
输出文件名	obsession.out	tourist.out	poetry.out
每个测试点时限	1秒	5秒	1秒
内存限制	512MB	512MB	512MB
测试点数目	10	10	20
每个测试点分值	10	10	5
是否有部分分	否	否	否
题目类型	传统型	传统型	传统型

提交源程序须加后缀

对于 C 语言	obsession.c	tourist.c	poetry.c
对于 C++ 语言	obsession.cpp	tourist.cpp	poetry.cpp

编译命令附加选项

对于 C 语言	-O2
对于 C++ 语言	-O2

逼死强迫症

【问题描述】

ITX351 要铺一条 $2\times N$ 的路,为此他购买了 N 块 2×1 的方砖。可是其中一块砖在运送的过程中从中间裂开了,变成了两块 1×1 的砖块!

ITX351 由此产生了一个邪恶的想法: 他想要在这条路上故意把两块 1×1 的 砖块分开铺, <u>不让两块砖有相邻的边</u>, 其他砖块可以随意铺,直到整条路铺满。这样一定可以逼死自身强迫症 sea5!

也许下面的剧情你已经猜到了——他为此兴奋不已,以至于无法敲键盘。于 是,他请你帮忙计算一下,有多少种方案可以让自己的阴谋得逞。

【输入格式】

从文件 obsession.in 中读入数据。

每个测试点包含多组数据,输入文件的第一行是一个正整数 T,表示数据的组数。注意各组数据之间是独立无关的。

接下来T行,每行包含一个正整数N,代表一组数据中路的长度。

【输出格式】

输出到文件 obsession.out 中。

输出应包含 T 行,对于每组数据,输出一个正整数,表示满足条件的方案数。

由于答案可能非常的大,你只需要输出答案对 $1000000007 (10^9 + 7)$ 取模后的结果。

【样例输入】

- 3
- 1
- 2
- 4

【样例输出】

- 0
- 0
- 6

【样例说明】

样例中 N=4 的所有方案如下图。

【数据规模与约定】

所有测试数据的范围和特点如下表所示

测试点编号	N 的规模	T 的规模	约定
1	<i>N</i> ≤ 10	<i>T</i> ≤ 10	
2	$N \leq 10$	$I \leq 10$	
3			
4	$N \le 10^5$		
5		$T \le 50$	
6		$I \leq 50$	
7			
8	$N \le 2 * 10^9$		
9		T < 500	
10		$T \le 500$	

旅行者

【问题描述】

J 国有 n 座城市,这些城市之间通过 m 条单向道路相连,已知每条道路的长度。

一次,居住在 J 国的 Rainbow 邀请 Vani 来作客。不过,作为一名资深的旅行者,Vani 只对 J 国的 k 座历史悠久、自然风景独特的城市感兴趣。

为了提升旅行的体验, Vani 想要知道他感兴趣的城市之间"两两最短路"的最小值(即在他感兴趣的城市中,最近的一对的最短距离)。

也许下面的剧情你已经猜到了——Vani 这几天还要忙着去其他地方游山玩水,就请你帮他解决这个问题吧。

【输入格式】

从文件 tourist.in 中读入数据。

每个测试点包含多组数据,第一行是一个整数 T,表示数据组数。注意各组数据之间是互相独立的。

对于每组数据,第一行包含三个正整数 n,m,k,表示 J 国的 n 座城市(从 $1\sim n$ 编号),m 条道路,Vani 感兴趣的城市的个数 k。

接下来 m 行,每行包括 3 个正整数 x,y,z,表示从第 x 号城市到第 y 号城市有一条长度为 z 的单向道路。注意 x,y 可能相等,一对 x,y 也可能重复出现。

接下来一行包括 k 个正整数,表示 Vani 感兴趣的城市的编号。

【输出格式】

输出到文件 tourist.out 中。

输出文件应包含 T 行,对于每组数据,输出一个整数表示 k 座城市之间两两最短路的最小值。

【样例输入】

2

6 7 3

1 5 3

2 3 5

1 4 3

5 3 2

4 6 5

4 3 7

5 6 4

1 3 6

7 7 4

5 3 10

6 2 7

- 1 2 6
- 5 4 2
- 4 3 4
- 1 7 3
- 7 2 4
- 1 2 5 3

【样例输出】

5

6

【样例说明】

对于第一组数据,1 到 3 最短路为 5; 1 到 6 最短路为 7; 3,6 无法到达,所以最近的两点为 1,3,最近的距离为 5。

对于第二组数据,1到2最短路为6;5到3最短路为6;其余的点均无法互相达,所以最近的两点为1,2和5,3,最近的距离为6。

【数据规模与约定】

测试点编号	n 的规模	m 的规模	其他规模	约定
1	≤ 1,000	≤ 5,000		无
2	<u> </u>	<u> </u>	0.17.1	<i>)</i> L
3			$2 \le k \le n$	 保证数据为
4			1 < x u < n	有向无环图
5			$1 \le x, y \le n$	H IN YUNTE
6	≤ 100,000	≤ 500,000	$1 \le z \le 2 * 10^9$	
7	<u> </u>	<u> </u>	1 _ 2 1	
8			$T \leq 5$	无 无
9				
10				

旧词

【问题描述】

浮生有梦三千场 穷尽千里诗酒荒 徒把理想倾倒 不如早还乡

温一壶风尘的酒 独饮往事迢迢 举杯轻思量 泪如潮青丝留他方

一 乌糟兽/愚青《旧词》

你已经解决了五个问题,不妨在这大树之下,吟唱旧词一首抒怀。最后的问题就是关于这棵树的,它的描述很简单。

给定一棵 n 个点的有根树,节点标号 $1\sim n$,1号节点为根。

给定常数 k。

给定 Q 个询问,每次询问给定 x,y。

求:

$$\sum_{i \in x} depth(lca(i,y))^k$$

lca(x,y) 表示节点 x 与节点 y 在有根树上的最近公共祖先。

depth(x) 表示节点 x 的深度,根节点的深度为 1。

由于答案可能很大, 你只需要输出答案模 998244353 的结果。

【输入格式】

从文件 poetry.in 中读入数据。

输入包含 n+Q 行。

第 1 行,三个正整数 n, Q, k。

第 $i=2\sim n$ 行,每行有一个正整数 fa_i ($1\leq fa_i\leq n$),表示编号为 i 的节点的父亲节点的编号。

接下来 O 行,每行两个正整数 x,y ($1 \le x,y \le n$),表示一次询问。

【输出格式】

输出到文件 poetry.out 中。

输出包含 0 行,每行一个整数,表示答案模 998244353 的结果。

【样例输入】

5 5 2

1

4

1

2

4 3

5 4

2 5

1 2

3 2

【样例输出】

15

11

5

1

6

【样例说明】

输入的树:

1

| \

2 4 - 3

5

每个点的 depth 分别为 1, 2, 3, 2, 3。

第一个询问x=4, y=3,容易求出:

lca(1, 3) = 1

lca(2, 3) = 1

lca(3, 3) = 3

lca(4, 3) = 4.

于是 $depth(1)^2 + depth(1)^2 + depth(3)^2 + depth(4)^2 = 1 + 1 + 9 + 4 = 15$ 。

【数据规模与约定】

测试点编号	n 的规模	Q 的规模	k 的规模	约定
1	114/32/54	C 11 C 12		. ,,,
2		$Q \le 2,000$		无
3	$n \le 2,000$			
4				
5			1 - 1 - 109	
6		<i>Q</i> ≤ 50,000	$1 \le k \le 10^9$	存在某个点,其深
7	$n \le 50,000$			度为 n
8				
9		Q = n		对于第 i 个询问,
10		Q = n		有 $x = i$
11			k = 1	
12			κ – 1	
13			k = 2	
14			K — Z	
15		$Q \le 50,000$	k = 3	
16		Q <u>S</u> 30,000	$\kappa = 3$, ju
17			$1 \le k \le 10^9$	
18				
19				
20				