MATH 531 HOMEWORK 6 Quadratic forms and the multivariate normal February 20, 2025

Some background:

Let **z** be distributed $MN(0, I_m)$ then we know that $\mathbf{z}^T\mathbf{z} = \sum_{i=1}^m \mathbf{z}_i^2$ is distributed $\chi^2(m)$. – a sum of iid N(0,1) RVs. (We also know that $\chi^2(m)$ is a member of the gamma distribution family with shape 2m and scale 2.)

Problem 1

Let M be an $n \times n$ projection matrix and let k be the dimension of the subspace that M projects onto.

1(a) For the eigendecomposition $M = UDU^T$ show that the diagonal elements of D must be either 0 or 1.

This is provides an alternative proof that tr(M) = k.

- 1(b) Let U be an $n \times n$ orthonormal matrix and \mathbf{z} be distributed $MN(0, I_n)$. Show that $U^T\mathbf{z}$ is also distributed $MN(0, I_n)$.
- 1(c) Let **z** be distributed $MN(0, I_n)$ show that $\mathbf{z}^T M \mathbf{z}$ is distributed $\chi^2(k)$.

Problem 2

Let $\mathbf{W}_1 = \mathbf{z}^T M \mathbf{z}$ and let $\mathbf{W}_2 = \mathbf{z}^T (I_n - M) \mathbf{z}$ with \mathbf{z} be distributed $MN(0, I_n)$. Show that \mathbf{W}_1 and \mathbf{W}_2 are independent χ^2 RVs and explain why

$$F = \frac{\mathbf{W}_1/k}{\mathbf{W}_2/(n-k)}$$

has an F distribution with degrees of freedom (k, (n-k)).

This is a special case of the more general result: If $\mathbf{z} \sim MN(0, I_n)$ and AB = 0 then $\mathbf{z}^T A \mathbf{z}$ are $\mathbf{z}^T B \mathbf{z}$ are independent RVs. You can use this for 4(b).

Problem 3

Consider the linear model

$$\mathbf{y} = X\beta + \mathbf{e}$$

with $\mathbf{e} \sim MN(0, \sigma^2 I_n)$, X with full rank and M the projection matrix onto $\mathcal{W}_{\mathcal{X}}$. X has k columns.

The twist:

Partition the regression matrix as

$$X = [X_1 | X_2]$$

with X_1 having j columns $(X_2$ having k-j) and M_1 the projection matrix onto \mathcal{W}_{X_1} . Also partition $\beta = [\beta_1, \beta_2]$.

- 3(a) Explain why $M-M_1$ is also a projection matrix and identify its subspace.
- 3(b) Explain why $(1/\sigma^2)\mathbf{y}^T(I-M)\mathbf{y}$ is distributed $\chi^2(n-k)$
- 3(c) The classic ANOVA decomposition

Show that

$$\mathbf{y}^T \mathbf{y} = \mathbf{y}^T M_1 \mathbf{y} + \mathbf{y}^T (M - M_1) \mathbf{y} + \mathbf{y}^T (I - M) \mathbf{y}$$

or equivalently

$$\mathbf{y}^T (I - M_1) \mathbf{y} = \mathbf{y}^T (M - M_1) \mathbf{y} + \mathbf{y}^T (I - M) \mathbf{y}$$

Problem 4

4(a) Show that $(1/\sigma^2)\mathbf{y}^T(M-M_1)\mathbf{y}$ is $\chi^2(k-j)$ when $\beta_2=0$.

Hint: We know this is true for $(1/\sigma^2)\mathbf{e}^T(M-M_1)\mathbf{e}$ the main task is to show that the mean of \mathbf{y} is canceled by $M-M_1$.

4(b) Show that $\mathbf{y}^T(M - M_1)\mathbf{y}$ and $\mathbf{y}^T(I - M)\mathbf{y}$ are independent. Does this depend on the condition $\beta_2 = 0$?

This problem has the basic ingredients to justify the usual F test for testing whether a subset of parameters (β_2 in this case) is zero.