Lesson 3 Dynamical Systems

3-5: Ergodicity

Jan Reimann

Math 574, Topics in Logic Penn State, Spring 2014

Ergodic Systems

Irreducible Markov shifts: can reach any state from any other.

Cannot be ``broken up'' into smaller systems.

Ergodicity: measure-theoretic version of irreducibility.

Ergodic Systems

 (X, \mathcal{B}, μ, T) measure-theoretic dynamical system.

- $ightharpoonup A \subseteq X$ is *T*-invariant if $TA \subseteq A$.
- ▶ *X* is *T*-decomposable if there exist disjoint, *T*-invariant $B_1, B_2 \in \mathcal{B}$ of positive measure so that $X = B_1 \cup B_2$.

In this case we have $T^{-1}B_i = B_i$.

► *T* is ergodic if *X* is *T*-indecomposable.

Equivalent Formulations

The following are equivalent:

► T is ergodic

- For all $B \in \mathcal{B}$ with $T^{-1}B = B$, $\mu(B) = 0$ or $\mu(B) = 1$.
- $\blacktriangleright \mu(T^{-1}B\triangle B) = 0$ implies $\mu(B) = 0$ or $\mu(B) = 1$.
- ▶ If $\mu(B) > 0$, then $\mu(\bigcup_n T^{-n}B) = 1$.

The Operator Theoretic View

A measure preserving transformation T induces an isometry of $L^p(X)$.

Recall:

$$\mathit{L}^p(\mathit{X},\mathfrak{B},\mu) = \left\{f\colon \mathit{X} o \mathbb{C}\colon f ext{ measurable and } \int |f|^p d\mu < \infty
ight\}.$$

 $L^{0}(X)$ = measurable functions on X

Operator $U_T: L^p(X) \to L^p(X)$ defined by letting

$$U_T(f) = f \circ T$$

T measure preserving implies U_T is isometry with respect to the usual p-norm.

Ergodicity can then be expressed as: for all f measurable,

$$U_T(f) = f \mu$$
-a.e. implies f constant μ -a.e.

$$TA = A$$

$$f = \chi_A$$

$$f = \chi$$

Ergodicity of IID Processes

We call a stationary process (X_n) ergodic if the shift map is ergodic with respect to its Kolmogorov representation.

If (X_n) is i.i.d., then the corresponding dynamical system is not only ergodic, but (strongly) mixing:

$$\lim_{n} \mu(\underline{T}^{-n}A \cap B) = \mu(A)\mu(B) \quad (A, B \in \mathcal{B}).$$

$$\mu(\underline{T}^{-n}A \cap B) = \mu(A)\mu(B) \quad (A, B \in \mathcal{B}).$$

$$\mu(\underline{T}^{-n}A \cap B) = \mu(A)\mu(B) \quad (A, B \in \mathcal{B}).$$

Mixing implies ergodicity: Assume $T^{-1}B = B$ and consider the mixing condition with A = B.

$$= \frac{1}{2} \ln \left(\frac{1}{2} \ln \frac{1}{2} \right) = \frac{1}{2} \ln \left(\frac{1}{2} \ln \frac{1}{2} \right) = \ln \left(\frac{1}{2} \right)$$

Mixing for IID Processes

To establish mixing for all sets $A, B \in \mathcal{B}$, it suffices to show it for cylinder sets.

- ► Observe: $T^{-n}[\sigma] = [\sigma]_n = \{ x : x_n = \epsilon_0 \times_{n+1} = \epsilon_1 \dots \}$
- ▶ If $n > |\tau|$, then $[\sigma]_n$ fixes positions independently of τ .

Since μ is a product measure, it follows that $\mu([\sigma]_n \cap [\tau]) = \mu[\sigma]_n \mu[\tau].$

Ergodicity for Markov Chains

When is a Markov chain ergodic?

► For Markov chains, ergodicity can be thought of as a measure theoretic version of irreducibility.

Stochastic irreducibility: A stochastic matrix M is irreducible if for any pair i, j there exists n s.t.

Ergodicity for Markov Chains

THM: For a stationary Markov chain (\vec{p}, M) given by a stochastic matrix M and an initial distribution $\vec{p} = (p_1, \dots, p_n)$ with $p_i > 0$, the following are equivalent.

- (i) (\vec{p}, M) is ergodic,
- (ii) M is irreducible,
- (iii) 1 is a simple eigenvalue of M.

