LLM'S

EXPLORING LLAMA

Introduction LLM'S

Large Language Models (LLMs) have transformed AI, particularly in Natural Language Processing (NLP), by leveraging advanced architectures like transformers and attention mechanisms, driving innovation across multiple domains.

LLaMA

LLaMA (Large Language Model Meta AI) is Meta's open-source contribution to AI, designed to advance research and innovation. It enables customization for specific tasks and industries, offering a family of models ranging from 7B to 65B parameters.

LLaMA Models

- LLaMA: A strong foundation with LLaMA-13B outperforming GPT-3.
- LLaMA2: Enhanced with open-source availability, longer context handling, and Grouped-Query Attention (GQA).
- LLaMA3: Improved multilingual support, longer token handling, and faster processing.

Attention is all u need!

Transformers

Transformers

MULTI HEADED SELF ATTENTION

Architechture LLaMA 3

Llama 3.3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use SFT and RLHF to align with human preferences for helpfulness and safety.

- Input Embeddings
- Rotary Positional Encodings
- RMS Normalization
- Self-Attention (Grouped Multi-Query Attention with KV Cache)
- Feed Forward Network (SwigLU)
- RMS Normalization (Post-Attention)
- Layer Stacking (Nx Layers)
- Linear Transformation
- Softmax Output

	Training Data	Params	Input modalities	Output modalities	Context length	GQA	Token count	Knowledge cutoff
Llama 3.3 (text only)	A new mix of publicly available online data.	70B	Multilingual Text	Multilingual Text and code	128k	Yes	15T+	December 2023

	Training Data	Params	Context length	GQA	Token count	Knowledge cutoff
Llama	A new mix of publicly available	8B	8k	Yes	15T+	March, 2023
3 online	online data.	70B	8k	Yes		December, 2023

Fine Tuning Techniques

Supervised Fine-Tuning (SFT)

- Fine-tune LLaMA 3.3 on high-quality labeled datasets tailored to specific tasks or domains, such as QA pairs or summarization.
- Update model weights using supervised learning to ensure task-relevant and accurate responses.

Reinforcement Learning with Human Feedback (RLHF)

- Collects model output rankings from human annotators. Trains a reward model based on human preferences.
- Refines the model using Proximal Policy Optimization (PPO).

Instructive Tuning

- Fine-tune the model using datasets with diverse instruction-output pairs to enhance its ability to follow natural language commands.
- Aligns the model to respond accurately and effectively to human-like instructions.

Comparision with other Ilms

Category	Llama 3.3	GPT-40	Mistral 7B	
Model Size	70 billion parameters	1.76 trillion parameters	7 billion parameters	
Performance	Efficient, good for translation and chatbots	Advanced, better for complex tasks	Optimized for lightweight tasks, fast inference	
Customization	Open-source, highly customizable	Closed-source, limited customization	Open-source, highly customizable	
Scalability	Limited scalability, local hardware	Highly scalable, cloud-based	Limited scalability, optimized for small-scale tasks	

Comparision with other Ilms

Category	Llama 3.3	GPT-40	Mistral 7B
Multi-Modal Capabilities	No	Yes (text and image inputs)	No
Hardware Requirements	Runs on consumer-grade hardware	Requires powerful cloud infrastructure	Runs on consumer-grade hardware
Cost Efficiency	More cost- effective	More expensive due to cloud costs	Extremely cost-effective
Applications	Content creation, chatbots	coding, Q&A	Lightweight NLP tasks, summarization, coding

Lets look into a simple DEMO

Conclusion

- Significant improvements in natural language understanding and generation.
- Handles complex tasks with reduced computational requirements.
- Paves the way for innovation in Al-driven solutions.

Thank you

SHE LAW AI

Empowering Women Groups

Guide: Unnikrishnan Radhakrishnan, PhD