Домашнее задание 1

Дополнительные задачи. Решение

Задание 1. По условию конкурса чтецов два участника могут получить диплом первой степени, четыре человека могут оказаться призерами: соответственно двое получить диплом второй степени, двое оставшихся — диплом третьей степени. Сколькими способами члены жюри могут раздать дипломы соответствующим «парам» победителей и призеров, выбирая из шести потенциальных победителей и призеров?

Решение По условию задания «внутри» каждой пары победителей или призеров порядок не важен: так, два победителя — равнозначны, так же как и нет разницы между теми, кто получает диплом второй степени, то же самое справедливо и для получателей диплома третьей степени. Поэтому для расчета количества способов выбрать ту или иную пару победителей / призеров мы можем использовать формулу C_N^k . Первую пару мы выбираем из шести исходных человек, следующую пару — из оставшихся четырех, последнюю пару — из оставшихся двух человек (то есть, на последнем этапе выбора уже как такового нет, только один способ выбора)). Воспользуемся правилом умножения и получим: $C_6^2 \times C_4^2 \times C_2^2 = 90$

Задание 2. Ассортимент небольшого магазина включает в себя три сорта сыра, произведенных в Бургундии, один сорт сыра из провинции Овернь и один сорт сыра, произведенного в исторической провинции Франции Берри. Каждого сорта сыра — по одному кусочку. Сколько способов сделать покупку существует у посетителя данного магазина таких, чтобы он имел возможность отведать хотя бы один сорт сыра из каждого региона?

Решение Так как по условию нужно купить хотя бы один сорт сыра из каждого региона, то покупатель обязательно должен приобрести сыр из провинции Овернь и сыр из провинции Берри, а также хотя бы один сорт сыра из Бургундии (то есть, либо один, либо два, либо три сорта сыра из Бургундии). Всего получилось: три варианта совершить покупку. Вычислим общее количество способов, для этого учтем все три варианта (распишем для лучшего понимания подробно):

$$C_3^1 \times C_1^1 \times C_1^1 + C_3^2 \times C_1^1 \times C_1^1 + C_3^3 \times C_1^1 \times C_1^1 = 7$$

Из задачника Макарова А.А., Пашкевич А.В.:

- 1.10 (Цирк и вороны) В цирке шесть ученых ворон одна белая, остальные черные.
 - а) Сколько существует способов выбрать одну белую ворону и трех черных ворон?

Решение Стандартная задача на расчет количества способов из расслоенной совокупности. Одну белую ворону можно выбрать только одним способом, а вот для выбора трех ворон – есть варианты, при этом порядок отбора не важен. Запишем, воспользуясь правилом умножения: $C_5^3 \times C_1^1 = 10$

б) Сколько существует способов выбрать четырех черных ворон?

Решение Здесь совсем все просто. Черных ворон мы выбираем только из сокращенной совокупности без белой вороны. Получается $C_5^4=5$

в) Сколько существует способов выбрать четырех ворон?

Решение Порядок нам не важен, и про разный цвет ворон тоже можно забыть. Получается $C_6^4=15$

г) Как связаны ответы к заданиям а), б) и в)?

Решение Ответ в) – общее количество способов выбрать четырех ворон (цвет не важен) – представляет сумму ответов на [а)] – то есть, количества способов выбрать четырех ворон, среди которых одна – белая, и [б)] – то есть, количества способов выбрать четырех ворон, среди которых все черные.

• 1.13 (Карусель) На детской карусели семь одинаковых лошадок, стоящих по кругу. Сторож весной планирует покрасить этих лошадок так, чтобы не все они были одинаковые. У сторожа есть краски п разных цветов. Сколько существует разных способов покрасить карусель? (Указание: если раскраски совпадают при повороте карусели, они считаются одинаковыми.)

Решение Для решения задачи ответим последовательно на несколько вопросов:

1. Первый вопрос: сколько в целом существует способов раскрасить лошадок? Пока давайте абстрагируемся от условия запрета на одинаковые цвета и примечания про повороты карусели. Так как всего лошадок семь и мы не делаем никаких ограничений на раскраски, первую лошадку можно раскрасить п способами (так как п цветов всего в распоряжении у сторожа), вторую лошадку – тоже п способами, то же самое справедливо для всех остальных лошадок. Получается, что общее количество способов раскрасить лошадок без ограничений на одинаковые цвета и держа за скобками ограничение про повороты карусели = n^7 .

- 2. Второй вопрос: сколько существует вариантов раскрасок в одинаковые цвета (то есть, чтобы, к примеру, сторож покрасил всех лошадок в желтый цвет)? Так как всего цветов п, то и подобных раскрасок в одинаковые цвета тоже п. К примеру, есть три цвета: желтый, зеленый, фиолетовый. Всего три варианта получить одинаковых лошадок: либо все желтые, либо все зеленые, либо все фиолетовые.
- 3. Сделаем еще один промежуточный шаг. Рассчитаем количество способов раскрасить семь лошадок с поправкой на то, что запрещено красить всех лошадок в одинаковый цвет. Получается исходя из ответов на первые два вопроса: $n^7 n$
- 4. И последний вопрос Во сколько раз сократится количество способов покрасить карусель, если принимать во внимание последнее указание в задаче, что одну и ту же раскраску можно получить, повернув карусель? Давайте разберем это указание и представим семь пронумерованных лошадок. Условно, какая-то лошадка зафиксирована как первая, соседняя от нее, к примеру, по часовой стрелке – вторая и так далее. Пусть сторож покрасил лошадки в цвета радуги, присваивая первый красный цвет первой лошадке. Получилась последовательность: красный; оранжевый; желтый; зеленый; голубой; синий; фиолетовый (КОЖЗГСФ). Представим другой вариант: сторож использует все те же цвета, но начинает красить со второй лошадки (помним, что для простоты мы представили, что лошадки пронумерованные), в итоге получается следующая последовательность: ФКОЖЗГС. То есть, изначально первая лошадка оказалась последней при покраске и получила фиолетовый цвет. Можно ли рассматривать данную раскраску как равнозначную первой? Конечно, потому что поворотом карусели (то есть, начиная рассматривать карусель с красной лошадки по часовой стрелке) мы получим ту же последовательность (КОЖЗГСФ). Сколько существует таких способов у сторожа раскрасить лошадки в цвета радуги, но каждый раз начиная с разных лошадок? Последовательный поворот на одно место дает 7 способов –

НИУ ВШЭ, ОП «Психология» Математические и статистические методы в психологии, 2020

одинаковых раскрасок для «радуги». И так, по 7 способов, которые можно считать одинаковыми — на каждую раскраску. Таким образом, нам нужно сократить в 7 раз количество способов, рассчитанных на предыдущем промежуточном шаге. Итоговый ответ: $\frac{n^7-n}{7}$

• 2.23 (Белый импорт) Представители государственных инспекций классифицируют импорт на три вида — «белый» (полностью легальный, ввезенный с соблюдением законодательства в полной мере), «серый» (когда товар ввозится в страну по заниженным тарифным платежам, поскольку часть товара декларируется, а другая часть «умалчивается», минуя закон) и «черный» (абсолютный контрафакт, товар ввозится в страну без какого-либо декларирования). Предположим, что на склад малой фирмы поступила партия из 20 сотовых телефонов иностранного производства, причем 10 из них — «белый импорт», 6 — «серый импорт» и 4 — «черный импорт». Случайным образом выбрали для продажи 8 телефонов. Какова вероятность того, что среди них как минимум 7 полностью легально ввезенных («белого импорта»)?

Решение Перед нами в очередной раз расслоенная совокупность, при этом нас интересует только 2 группы: «белый импорт» и оставшаяся совокупность из сотовых телефонов «серого» и «черного» импорта. Условие «как минимум 7 легально ввезенных телефонов» означает, что из «белого импорта» мы можем выбрать либо 7, либо 8 телефонов. Распишем эти варианты и найдем вероятность (в знаменателе – общее количество способов выбрать 8 телефонов из 20):

$$\frac{C_{10}^7 \times C_{10}^1 + C_{10}^8 \times C_{10}^0}{C_{20}^8} = 0.0099$$