Adversarial Multi-Armed Bandits

Adversarial Multi-Armed Bandits

Given: set of arms $\mathcal{A} = \{1, ..., A\}$

For time t = 1, 2, ..., T:

Environment decides the reward vector $r_t = (r_t(1), ..., r_t(A))$ (not revealing)

Learner chooses an arm $a_t \in \mathcal{A}$

Learner observes $r_t(a_t)$

Regret =
$$\max_{a \in \mathcal{A}} \sum_{t=1}^{T} r_t(a) - \sum_{t=1}^{T} r_t(a_t)$$

Exponential Weight Updates for Bandits

$$p_{t+1}(a) = \frac{p_t(a) \exp(\eta r_t(a))}{\sum_{a' \in \mathcal{A}} p_t(a') \exp(\eta r_t(a'))}$$

Exponential Weight Updates for Bandits

$$p_{t+1}(a) = \frac{p_t(a) \exp(\eta r_t(a))}{\sum_{a' \in \mathcal{A}} p_t(a') \exp(\eta r_t(a'))}$$
No longer observable

Only update the arm that we choose?

Exponential Weight Updates for Bandits

$$p_{t+1}(a) = \frac{p_t(a) \exp(\eta \hat{r}_t(a))}{\sum_{a' \in \mathcal{A}} p_t(a') \exp(\eta \hat{r}_t(a'))}$$

- $\hat{r}_t(a)$ is an "estimator" for $r_t(a)$
- But we can only observe the reward of one arm!
- Furthermore, $r_t(a)$ is different in every round (If I did not sample arm a in round t, I'll never be able to estimate $r_t(a)$ in the future)

Unbiased Reward / Gradient Estimator

Inverse Propensity Weighting

$$\hat{r}_t(a) = \frac{r_t(a)}{p_t(a)} \mathbb{I}\{a_t = a\} = \begin{cases} \frac{r_t(a)}{p_t(a)} & \text{if } a_t = a\\ 0 & \text{otherwise} \end{cases}$$

Directly Applying Exponential Weights

 $p_1(a) = 1/A$ for all a

For t = 1, 2, ..., T:

Sample a_t from p_t , and observe $r_t(a_t)$

Define for all *a*:

$$\hat{r}_t(a) = \frac{r_t(a)}{p_t(a)} \mathbb{I}\{a_t = a\}$$

Update policy:

$$p_{t+1}(a) = \frac{p_t(a) \exp(\eta \hat{r}_t(a))}{\sum_{a' \in \mathcal{A}} p_t(a') \exp(\eta \hat{r}_t(a'))}$$

Simple Experiment

- A = 2, T = 1500, $\eta = 1/\sqrt{T}$
- For $t \le 500$, $r_t = [Bernoulli(0.2), Bernoulli(0.8)]$
- For $500 < t \le 1500$, $r_t = [Bernoulli(0.8), Bernoulli(0.2)]$

Applying the Theorem

Theorem.

Assume that $\eta \hat{r}_t(a) \leq 1$ for all t, a. Then EWU

$$p_{t+1}(a) = \frac{p_t(a) \exp(\eta \hat{r}_t(a))}{\sum_{a' \in \mathcal{A}} p_t(a') \exp(\eta \hat{r}_t(a'))}$$

ensures for any a^* ,

$$\sum_{t=1}^{T} (\hat{r}_t(a^*) - \langle p_t, \hat{r}_t \rangle) \le \frac{\ln A}{\eta} + \eta \sum_{t=1}^{T} \sum_{a=1}^{A} p_t(a) \hat{r}_t(a)^2$$

Several Issues / Questions

- The assumption $\eta \hat{r}_t(a) \leq 1$ may not be satisfied
- How are the left-hand side and the regret definition related?

$$\sum_{t=1}^{T} (\hat{r}_t(a^*) - \langle p_t, \hat{r}_t \rangle) \quad \text{vs.} \quad \sum_{t=1}^{T} (r_t(a^*) - r_t(a_t))$$

How to bound the term on the right hand side?

$$\eta \sum_{t=1}^{T} \sum_{a=1}^{A} p_t(a) \hat{r}_t(a)^2$$

How is the LHS related to the Regret?

How to bound the term on the right-hand side?

The assumption $\eta \hat{r}_t(a) \leq 1$ is not satisfied

Solution 1: Adding Extra Exploration

- Idea: use at least η probability to choose each arm
- Instead of sampling a_t according to p_t , use

$$p_t'(a) = (1 - A\eta)p_t(a) + \eta$$

Then the unbiased reward estimator becomes

$$\hat{r}_t(a) = \frac{r_t(a)}{p_t'(a)} \mathbb{I}\{a_t = a\} = \frac{r_t(a)}{(1 - A\eta)p_t(a) + \eta} \mathbb{I}\{a_t = a\}$$

Solution 1: Adding Extra Exploration

Solution 2: Construct a Different Reward Estimator

- Notice that the condition is only $\eta \hat{r}_t(a) \leq 1$. The reward estimator is allowed to be **very negative**! (Check our proof)
- Still sample a_t from p_t , but construct the reward estimator as

$$\hat{r}_t(a) = \frac{r_t(a) - 1}{p_t(a)} \mathbb{I}\{a_t = a\} + 1$$

• Why this resolves the issue?

Solution 2: Construct a Different Reward Estimator

