コンピュータアーキテクチャ レポート課題

17ec084 平田智剛

1. 講義資料 No.2: P.30~P.31(→P.25~P.26) 固定小数点の計算

(a)	Unsigned	Binary	Result ₍₂₎	Result ₍₁₀₎	CA	OV	isCorrect
Ex.	0.25-0.5	0001-0010	1111	3.75	1	0	False
(1)	3-2.5	1100-1010	0010	0.5	0	0	True
(2)	0.5-2.5	0010-1010	1000	2	1	1	False
(3)	3.75-3.25	1111-1101	0010	0.5	0	0	True
(4)	1-3.5	0100-1110	0110	1.5	1	0	False
(5)	1.25+3.25	0101 + 1101	0010	0.5	1	0	False
(6)	3.5-3.75	1110-1111	1111	3.75	1	0	False
(7)	1.75+0.75	0111+0011	1010	2.5	0	1	True
(8)	3+3.75	1100+1111	1011	2.75	1	0	False
(9)	0.75+2.75	0011+1011	1110	3.5	0	0	True
(10)	1.5+3.75	0110+1111	0101	1.25	1	0	False

(b)	Signed	Binary	Result ₍₂₎	Result ₍₁₀₎	CA	OV	isCorrect
Ex.	0.25-0.5	0001-0010	1111	-0.25	1	0	True
(1)	1.5+(-0.25)	0110+1111	0101	1.25	1	0	True
(2)	0.75+(-1.25)	0011+1011	1110	-0.5	0	0	True
(3)	-0.5+(-0.75)	1110+1101	1011	-1.25	1	0	True
(4)	1.75+0.75	0111+0011	1010	-1.5	0	1	False
(5)	-0.5-(-0.25)	1110-1111	1111	-0.25	1	0	True
(6)	-1.75+(-0.75)	1001+1101	0110	1.5	1	1	False
(7)	1-(-0.5)	0100-1110	0110	1.5	1	0	True
(8)	-0.25-(-0.75)	1111-1101	0010	0.5	0	0	True
(9)	0.5-(-1.5)	0010-1010	1000	-2	1	1	False
(10)	-1-(-1.5)	1100-1010	0010	0.5	0	0	True

2. 1の問題を、配布した電卓で動作確認すること、 (詳細が分かり次第再提出させてください)

3. 講義資料 No.2: P.40 浮動小数点数値の範囲を 16 進数と 10 進数(概数)で示すこと.

答え

- ・単精度浮動小数点数値の(特殊表現を除く)範囲は
- $-2.56 \times 10^{38} \sim 2.56 \times 10^{38}$ となる。

 $(0xFF7FFFFFF\sim 0x7F7FFFFFF)$

- より厳密にいうならば $-3.40282 \times 10^{38} \sim 3.40282 \times 10^{38}$ で、精度は6桁である。
- ・倍精度浮動小数点数値の(特殊表現を除く)範囲は
- $-1.6 \times 10^{307} \sim 1.6 \times 10^{307}$ となる。

- より厳密にいうならば $-1.79769313486232 \times 10^{307} \sim 1.79769313486232 \times 10^{307}$ で、精度は
- 15 桁である。
- ・半精度浮動小数点数値の(特殊表現を除く)範囲は
- -65536~65536となる。

 $(0x7BFF \sim 0xFBFF)$

より厳密にいうならば-6.55×10⁴~6.55×10⁴で、精度は3桁である。

単精度:符号 1bit、指数部 8bit、仮数部 23bit

指数部 11111111 は「特殊表現」となり、±∞または NaN を意味する。

したがって、最大となる指数部は 111111110 であり、127 を意味する。(111111110=254 であるが、ここから 127 を引き算する)

したがって、単精度浮動小数点数値の最大値を表現するものは

つまり

0111 1111 0111 1111 1111 1111 1111 1111

であり、16進数で表現すると

0x7F7FFFFF

となる。この数値はおよそ 2.56×10^{38} を意味する。

(証明)

$$\dot{=}\,+10_{(2)}\times10_{(2)}^{11111110-01111111_{(2)}}$$

 $=2 \times 2^{127}$

 $=2^{128}$

 $=(2^{10})^{12}\times 2^8$

 $=2.56 \times 10^{38}$

(証明終わり)

最小となるものについては、絶対値が同じまま(=指数部と仮数部をそのまま_{*1})符号だけ 入れ替えればよい。

したがって、単精度浮動小数点数値の最小値を表現するものは

であり、16進数で表現すると

0xFF7FFFFF

となる。この数値はおよそ -2.56×10^{38} を意味する。

したがって、単精度浮動小数点数値の(特殊表現を除く)範囲は

 $-2.56 \times 10^{38} \sim 2.56 \times 10^{38}$ となる。

 $(0xFF7FFFFFF\sim 0x7F7FFFFFF)$

より厳密にいうならば $-3.40282 \times 10^{38} \sim 3.40282 \times 10^{38}$ で、精度は6桁である $_{32}$

倍精度:符号 1bit、指数部 11bit、仮数部 52bit

最大値

 $=0111\ 1111\ 1110\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111$

$$\dot{=}\, + 10_{(2)} \times 10_{(2)}^{11111111110-01111111111_{(2)}}$$

- $=2 \times 2^{1023}$
- $=2^{1024}$
- $=(2^{10})^{102}\times 2^4$
- $=(10^3)^{102}\times 2^4$
- $=1.6 \times 10^{307}$

最小値

0xFFEFFFFFFFFFFFFF

 $=-1.6 \times 10^{307}$

したがって、倍精度浮動小数点数値の(特殊表現を除く)範囲は

 $-1.6 \times 10^{307} \sim 1.6 \times 10^{307}$ となる。

より厳密にいうならば $-1.79769313486232 \times 10^{307} \sim 1.79769313486232 \times 10^{307}$ で、精度は 15 桁である $_{*2}$

半精度:符号 1bit、指数部 5bit、仮数部 10bit

最大値

0 11110 1111111111

- =0111 1011 1111 1111
- =0x7BFF

$$\dot{=} \, \textcolor{red}{+} 10_{(2)} \times 10_{(2)}^{11110-01111_{(2)}}$$

- $=2\times 2^{15}$
- $=2^{16}$
- $=2^{10} \times 2^6$
- =65536
- 最小值
- 0xFBFF
- ≒-65536

したがって、半精度浮動小数点数値の(特殊表現を除く)範囲は

-65536~65536となる。

 $(0x7BFF \sim 0xFBFF)$

より厳密にいうならば $-6.55 \times 10^4 \sim 6.55 \times 10^4$ で、精度は3桁である $_{*2}$

※1:浮動小数点数値に関しては、符号ビットは「-1 を掛け算するか否か」の意味しか持たず、整数の場合のように基数の補数を考える必要がない。

※2:このことは、単精度については次のように求めることができる。

精度・・・

精度は有効桁数で決まるので、仮数部の精度そのものとなる。

Δ仮数部

- $= 1.00000000000000000000001_{(2)} 1.00000000000000000000000_{(2)}$
- $= 0.0000000000000000000000001_{(2)}$
- $=2^{-23}$

ここで、 2^{-23} における「23」の意味は「2 進数で小数第 23 位まで有効」ということなので、

 $2^{-23} = 10^{-n}$ とするなら、「10 進数で小数第 n 桁まで有効」とわかる。

両辺の常用対数をとると、

$$\log_{10} 2^{-23} = -n$$

 $n = 23 \log_{10} 2$

ここで $\log_{10} 2 = 0.30$ より、

n = 6.9

したがって、精度は6ケタとなる。

仮数・・・

 $=10_{(2)}-2^{-23}$

なので、 $(10_{(2)}-2^{-23}) \times 2^{127}$ を 6 ケタまで求めればよい。

しかし、 $2^{-23} (= 10^{-6.9}) < 10^{-6}$ なので、

2¹²⁸を6ケタまで求めるのでよいだろう。

まず $\log_{10} 2^{128} = 128 \times 0.30 = 38(.531839445)$ の小数部分は(0.531839445)なので、

(ここは電卓必要)

10^{0.531839445} ≒ 仮数部 といえる※3

よって、仮数部は3.40282

倍精度や半精度でも同様に求められる。

```
倍精度の場合
```

精度

$$2^{-52} = 10^{-n}$$

 $n = 52 \log_{10} 2 = 15.6$
よって、精度 15 ケタ

仮数

$$10^{(\log_{10}2^{1024})$$
の小数部分(=0.2547155599167439) \leftrightarrows 仮数部よって、仮数部は 1.79769313486232

半精度の場合

精度

$$2^{-10} = 10^{-n}$$

 $n = 10\log_{10} 2 = 3.01$
よって、精度 3 ケタ

仮数

$$10^{\left(\log_{10}\left((2-2^{-10})\times 2^{15}\right)\right)$$
の小数部分(=0.81626782098) ≒ 仮数部よって、仮数部は 6.55

※3:

仮数部×
$$10^{38} \le 2^{128} < (仮数部+1) × 10^{38}$$

$$(\log_{10} 仮数部) + 38 \le 38.531839445 < (\log_{10} (仮数部+1)) + 38$$

$$(\log_{10} 仮数部) = 0.531839445$$

4. 講義資料 No.2: P.42~P.44(→P.37~P.39)を解くこと.

問題[1]

(6bit).(6bit)という 12bit の固定小数点数値を考える。MSB は符号 bit とし、この bit が 1 の時は負数とし、その絶対値は 2 の補数により求められるものとする。このような固定小数点で表記できる最大値、最小値、最小絶対値を 2 進数及び 10 進数で求めよ。特殊表現除く。

答え

	2 進表記	10 進表記
最大値	011111111111	31.984375
最小値	100000000000	-32
最小絶対値	000000000001	0.015625

導出

011111.111111

=100000.000000 (unsigned) -000000.000001

 $=2^5-2^{-6}$

 $=32-(2^{-3})^2$

 $=32-(0.125)^2$

=32-0.015625

=31.984375

最小値は負数 100000000000000000000 である。基数 2 の補数をとれば絶対値が求められる。

筆算で表すと、

1000000000000

-100000000000

=======

100000000000

つまり 64-32=32

負号をつけて、-32となる。

最小絶対値については説明するまでもない。

問題[2]と答え

[1]と同じ固定小数点数値で、以下の2進数を10進数に、10進数を2進数に変換せよ。ただし、正確に当てはまらない場合は、一番近い数値を用いること。

(1) 010101001000

010101.001000

=16+4+1+0.125

=21.125

(2) 110100110000

まず、unsigned で考える。

110100.110000

=32+16+4+0.5+0.25

=52.75

実際は signed で、しかも負号 bit が 1 なので、基数 2 の補数をとって、負号を付ける。

-(64-52.75)

=-11.25

(3) 37.375

=32+4+1+0.25+0.125

=100101.011000

よって 100101011000

但し、今回は signed なので、MSB は符号 bit である。したがって、

37.375 は-(64-37.375)=-26.625 とみなされる。

(4) 0.3

=0.25+0.05

=000000.010000+0.05

=000000.010000+.00001+0.01875

=000000.010000+.00001+.000001+0.003125

≒000000.010011

よって 00000010011

(5) -1.41421356

これは unsigned で考えたときの

64-1.41421356=62.58578644 に等しい

- =111110.100000+0.08578644
- =111110.100000+.000100+0.02328644
- =111110.100000+.000100+.000001+0.00766144
- ≒111110.100101

よって 111110100101

問題[3]

符号 1bit、指数部は 4bit、仮数部は 7bit とし、その他は IEEE 754 の言うとおりにする 12bit 浮動小数点数値を考える。また非正規化数値は扱わないものとする。

この浮動小数点において、0の値、正の無限大、負の無限小はどのように表されるかを2進数で示せ。

答え

0 は X00000000000

∞は 011110000000

 $-\infty$ /\$\frac{1}{2} 1111100000000

但しXは0でも1でもよいという意味

問題[4]

[3]の浮動小数点で表すことのできる数値の範囲を 10 進数で、理由とともに示せ。

答え

-255~255

導出

最大值

0 1110 1111111

=0111 0111 1111

=0x77F

$$= +1.1111111_{(2)} \times 10^{1110-0111_{(2)}}_{(2)}$$

 $= \! 10 - 0.0000001_{(2)} \times 2^7$

 $=1.9921875 \times 128$ (または分配法則を適用して 2^8-2^0)

=255

最小值

符号を入れ替えて-255

問題[5]

[3]の浮動小数点で表すことのできる数値の 0 を除く絶対値の範囲を 2 進数で、理由とともに示せ。

答え

0000 1000 0000~0111 0111 1111

導出

最大値

0 1110 1111111

=0111 0111 1111

(絶対値は結局正で表すので符号 bit は 0、最大値なので指数部は最大である 1110、仮数部 も 1111111)

最小絶対値

0 0001 0000000

 $=0000\ 1000\ 0000$

(符号 bit は 0、最小値なので指数部は最小である 0001、仮数部も 0000000)

問題[6]と答え

[3]の固定小数点数値で、以下の2進数を10進数に、10進数を2進数に変換せよ。ただし、正確に当てはまらない場合は、0捨1入を用いること。

$(1) \ 010101001000$

$$= +1.1001000_{(2)} \times 10_{(2)}^{1010-0111_{(2)}}$$

$$=1.1001000_{(2)} \times 10_{(2)}^{3}$$

- $=1100.1000_{(2)}$
- =12.5

(2) 110100110000

$$=\!-1.0110000_{(2)}\times10_{(2)}^{1010-0111_{(2)}}$$

$$=-1.0110000_{(2)} \times 10_{(2)}^{3}$$

- $=-1011.0000_{(2)}$
- =-11

(3) 37.375

まず普通に2進数の小数点で表すと([2](3)より)

 $100101.011000_{(2)}$

これを変形すればいい。

 $= 1.00101011000_{(2)} \times 10_{(2)}^{5}$

$$= +1.001010111000_{(2)} \times 10_{(2)}^{1100-0111_{(2)}}$$

<mark>0 捨 1 入</mark>すると

= 011000010110

(4) 0.3

[2](4)より

000000.010011... (2)

- $= 1.0011 \dots_{(2)} \times 10^{-2}_{(2)}$
- = $1.0011 \dots_{(2)} \times 10^{0101-0111_{(2)}}_{(2)}$
- $= 1.0011 \dots_{(2)} \times 10_{(2)}^{0101-0111_{(2)}}$
- = 001010011XXX (X は不明な bit)
- つまり、後4ケタ必要。(0 捨1入するため 1bit 余分に)
- =000000.010011+0.003125
- =000000.010011 + .000000001 + 0.001171875
- $=\!000000.010011 + .000000001 + .0000000001 + 0.0001953125$
- =000000.0100110011 + 0.0001953125
- 0 捨 1 入すると
- =000000.010011010

よって

001010011010

(5) -1.41421356

浮動小数点では、負数の場合も基数の補数をとったりしない。 したがって、まず、1.41421356を普通の2進数で表す。

1.41421356

- = 1 + 0.41421356
- = 1 + .01 + 0.16421356
- = 1 + .01 + .001 + 0.03921356
- = 1 + .01 + .001 + .00001 + 0.00796356
- = 1 + .01 + .001 + .00001 + .0000001 + 0.00015106
- = 1 + .01 + .001 + .00001 + .0000001 + .00000000 + 0.00015106
- = 1.01101010 + 0.00015106
- 0 捨 1 入すると
- = 1.0110101

よって仮数部は 0110101

符号部は負数だから1

指数部は 2eeee-0111 が 20 になるように、0111 とする。

したがって 101110110101

5. π = 3.14159 を半精度浮動小数点で示し、誤差を求めよ

答え

0100001001001000 と表される。

誤差 0.000965 (浮動小数点に変換することで 0.000965 だけ小さくなった)

導出

半精度浮動小数点の精度は、3. で求めた通り、3 ケタ以上 4 ケタ未満。

だからまず 3.141 を普通の 2 進数の小数点で表す。仮数部は 10bit であり、先頭の 1 は決まっているので、実質的に 11bit を表現する。

整数部分 3 は 2bit であるから、小数部分を 9bit で表現すればよい(つまり小数第 10bit 目を 0 捨 1 入)。

3.141

- $=11_{(2)}+0.141$
- =11+.001+0.016
- =11+.001+.000001+0.000375
- =11+.001+.000001+.00000000001+0.00013085937
- 0 捨 1 入すると、
- =11.001001000(+0.000375)
- $=1.1001001000 \times 10_{(2)}^{1} (+0.000375)$

よって、仮数部は 1001001000 であり、指数部は $2^{\text{eeeee-01111}}$ = 2^{1} となるように 10000、符号部 は正なので 0

よって、0100001001001000 となる。

これは3.141より0.000375だけ小さいので

3.14159 より 0.000375+0.00059=0.000965 だけ小さい。