Heston Model Simulations with Poisson Conditioning Applied Stochastic Processes (FIN 514)

Jaehyuk CHOI¹ and Yue Kuen KWOK²

¹Peking University HSBC Business School (PHBS) ²Hong Kong University of Science and Technology (HKUST)

2022-23 Module 1 (Fall 2022)

Outline

- Introduction
- 2 Review of Current Methods
 - Time Discretization Schemes (e.g., Andersen, 2008)
 - Exact MC Simulation (Broadie and Kaya, 2006)
 - Gamma Expansion (Glasserman and Kim, 2011)
 - Inverse Gamma Approximation (Tse and Wan, 2013)
- 3 Enhanced Simulation Methods with Poisson Conditioning
- Mumerical Results

Introduction: Heston Stochastic Volatility Model

Price (S_t) and variance (V_t) dynamics:

$$\frac{dS_t}{S_t} = rdt + \sqrt{V_t} dW_t,$$

$$dV_t = \kappa(\theta - V_t)dt + \xi \sqrt{V_t} dZ_t,$$

where W_t and Z_t are the standard BMs correlated by ρ , κ is the mean reversion speed, ξ is the volatility of volatility, and θ is the long-term volatility.

- Variance V_t is driven by the Cox et al. (1985, CIR) process.
- One of the most popular stochastic volatility (SV) models.
- European option can be efficiently priced with inverse Fourier transform.
- Path-dependent derivatives require Monte-Carlo (MC) simulation.
- ullet Efficient MC schemes (i.e., simulating S_T) are critical but challenging.

Integrated Variance in the MC Simulation

Define the (conditional) integrated variance:

$$I_{0,T} = \int_0^T V_t dt \quad \text{or} \quad I_{0,T} = \left(\int_0^T V_t dt \;\middle|\; V_0, V_T\right)$$

• Integration of V_t :

$$dV_t = \kappa(\theta - V_t)dt + \xi \sqrt{V_t}dZ_t$$
$$\int_0^T \sqrt{V_t} dZ_t = \frac{1}{\xi} \Big(V_T - V_0 + \kappa(I_{0,T} - \theta T) \Big).$$

• Integration of S_t :

$$\begin{split} d \log S_t &= r dt + \sqrt{V_t} (\rho dZ_t + \rho_* dX_t) - \frac{1}{2} V_t dt \quad (\rho_* = \sqrt{1 - \rho^2}, \ dX_t dZ_t = 0) \\ \log \left(\frac{S_T}{S_0} \right) &= r T + \int_0^T \sqrt{V_t} (\rho dZ_t + \rho_* dX_t) - \frac{1}{2} \int_0^T V_t dt \\ &= r T + \frac{\rho}{\xi} \big(V_T - V_0 + \kappa (I_{0,T} - \theta T) \big) - \frac{I_{0,T}}{2} + \rho_* \sqrt{I_{0,T}} \, X_1 \quad (X_1 \sim N(0,1)). \end{split}$$

- Conditional on V_T and $I_{0,T}$, S_T is log-normal with volatility $\rho_* \sqrt{I_{0,T}/T}$.
- Any simulation scheme boils down to the simulation of $(V_T, I_{0,T})$ given V_0 .

Outline

- Introduction
- Review of Current Methods
 - Time Discretization Schemes (e.g., Andersen, 2008)
 - Exact MC Simulation (Broadie and Kaya, 2006)
 - Gamma Expansion (Glasserman and Kim, 2011)
 - Inverse Gamma Approximation (Tse and Wan, 2013)
- 3 Enhanced Simulation Methods with Poisson Conditioning
- Mumerical Results

Time Discretization: Quadratic Exponential Scheme

- In the CIR model, V_t can reach 0: the Feller condition $(2\kappa\theta>\xi^2)$ is violated in typical Heston parameters.
- ullet Euler/Milstein scheme (V_t floored above 0) introduces large bias.
- Quadratic Exponential (QE) scheme (Andersen, 2008)
 - If V_t is close to 0:

$$V_{t+h} = \begin{cases} 0 & \text{if} \quad 0 \leq U \leq p \\ \frac{1}{\beta} \log \left(\frac{1-p}{1-U}\right) & \text{if} \quad p < U \leq 1 \end{cases} \quad \text{for uniform RV} \quad U$$

• If V_t is away from 0:

$$V_{t+h} = a(b+Z)^2$$
 for $Z \sim N(0,1)$

• The coefficients $(a, b, \beta, and p)$ are determined to match:

$$E(V_{t+h}) = \theta + (V_t - \theta)e^{-\kappa h}, \quad \mathsf{Var}(V_{t+h}) = \frac{\xi^2}{\kappa}(1 - e^{-\kappa h})\left(V_0e^{-\kappa h} + \frac{\theta}{2}(1 - e^{-\kappa h})\right)$$

• Trapezoidal rule for the integrated variance:

$$I_{t,t+h} = (V_t + V_{t+h})\frac{h}{2} \Rightarrow I_{0,T} = (V_0 + 2V_h + \dots + 2V_{T-h} + V_T)\frac{h}{2}$$

Some notations and properties of random variables (RV)

• $\mathsf{POIS}(\lambda)$ denotes the Poisson RV (# of Poisson events in T=1) with rate λ . Poisson RVs are additive.

$$P(\mu = n) = \lambda^n e^{-\lambda}/n!$$
 and $POIS(\lambda_1) + POIS(\lambda_2) \sim POIS(\lambda_1 + \lambda_2).$

• $\Gamma(\alpha)$ denotes the Gamma RV with shape parameter α and unit scale $(\beta=1)$. Waiting time until α Poisson events.

$$f_{\Gamma}(x) = x^{\alpha - 1}e^{-x} / \Gamma(\alpha)$$

Gamma RVs are additive;

$$\Gamma(\alpha_1) + \Gamma(\alpha_2) \sim \Gamma(\alpha_1 + \alpha_2).$$

- The exponential RV with rate λ is equivalent to $\Gamma(1)/\lambda$.
- $\chi^2(\delta,\lambda)$ is the noncentral chi-squared RV with degree of freedom δ and noncentrality λ . The ordinary chi-square RV, $\chi^2(\delta,0)$, is a special case of Gamma RV:

$$\chi^2(\delta,0) \sim 2\Gamma(\delta/2).$$

• $X^{(j)}$ for $j=1,2,\cdots$ denote independent copies of a random variable X.

Exact MC scheme

- Broadie and Kaya (2006) pioneered the so-called exact MC scheme, followed by similar schemes for other SV models (Baldeaux, 2012; Cai et al., 2017).
- Possible to sample V_T and $I_{0,T}$ for any large time step T without bias.

Exact MC scheme: Sampling V_T

• The terminal variance V_T given V_0 is distributed by non-central chi-squared RV, $\chi^2(\delta,\lambda)$:

$$V_T \sim \frac{e^{-\frac{\kappa T}{2}}}{\phi_T(\kappa)} \chi^2 \left(\delta, \ V_0 e^{-\frac{\kappa T}{2}} \phi_T(\kappa) \right)$$

where degree of freedom, δ , and non-centrality, λ , are given by

$$\phi_T(\kappa) = \frac{2\kappa/\xi^2}{\sinh(\frac{\kappa T}{2})}$$
 and $\delta = \frac{4\kappa\theta}{\xi^2}$.

- The Feller condition is equivalent to $\delta > 2$.
- ullet It turns out that the exact sampling of $\chi^2(\delta,\lambda)$ with the standard numerical libraries (e.g., NumPy and Matlab) is as fast as Andersen (2008)'s QE step.

Exact MC Scheme: Conditional Laplace Transform of $I_{0,T}$

• The conditional Laplace transform of $I_{0,T}$ (Pitman and Yor, 1982):

$$E\left(e^{-\mathbf{u}I_{0,T}}\right) = \frac{\exp\left(-\frac{V_0 + V_T}{2}\cosh(\frac{\kappa_{\mathbf{u}}T}{2})\phi_T(\kappa_{\mathbf{u}})\right)}{\exp\left(-\frac{V_0 + V_T}{2}\cosh(\frac{\kappa_T}{2})\phi_T(\kappa)\right)} \frac{\phi_T(\kappa_{\mathbf{u}})}{\phi_T(\kappa)} \frac{I_{\nu}\left(\sqrt{V_0 V_T}\phi_T(\kappa_{\mathbf{u}})\right)}{I_{\nu}\left(\sqrt{V_0 V_T}\phi_T(\kappa)\right)}$$

where $\kappa_{\bf u} = \sqrt{\kappa^2 + 2\xi^2 {\bf u}}$, $\nu = \delta/2 - 1$, and $I_{\nu}(z)$ is the modified Bessel function of the first kind,

$$I_{\nu}(z) = \sum_{k=0}^{\infty} \frac{(z/2)^{\nu+2k}}{k! \Gamma(k+\nu+1)}.$$

- The CDF is computed by the numerical Laplace inversion (e.g., Abate-Whitt).
- Costly evaluation of $I_{\nu}(\cdot)$.
- To draw an RV of $X \sim I_{0,T}$, need to find the root of $U = \mathsf{CDF}(X)$ numerically.
- Overall, the algorithm is pioneering in theory, but is not practical (too slow).

Gamma Expansion

Glasserman and Kim (2011) significantly improve the efficiency by avoiding the numerical inverse Laplace transform. Using Pitman and Yor (1982), they decompose the conditional integrated variance to infinite series of Γ RVs:

$$I_{0,T} \sim X + Z_{\delta/2} + \sum_{j=1}^{\eta_{0,T}} Z_2^{(j)},$$

where

$$\begin{split} X \sim \sum_{k=1}^{\infty} \frac{1}{\gamma_k} \Gamma(n_k) \quad \text{for} \quad n_k \sim \text{POIS}((V_0 + V_T) \lambda_k) \\ \text{and} \quad Z_{\alpha} \sim \sum_{k=1}^{\infty} \frac{1}{\gamma_k} \Gamma(\alpha), \\ \lambda_k = \frac{16(k\pi)^2}{\xi^2 T((\kappa T)^2 + (2k\pi)^2)} \quad \text{and} \quad \gamma_k = \frac{(\kappa T)^2 + (2k\pi)^2}{2\xi^2 T^2}, \end{split}$$

Gamma Expansion: $\eta_{0,T}$

• $\eta_{0,T}\sim {\sf BES}(\nu,z=\sqrt{V_0\,V_T}\,\phi_T(\kappa))$ is a Bessel RV defined by the expansion terms of $I_{\nu}(z)$:

$$P(\eta_{0,T} = k) = \frac{(z/2)^{2k+\nu}}{\frac{I_{\nu}(z)\,k!\,\Gamma(k+\nu+1)}{}.$$

• The decomposition of the conditional Laplace transform:

$$E\left(e^{-uI_{0,T}}\right) = \frac{\exp\left(-\frac{V_0 + V_T}{2}\cosh(\frac{\kappa_u T}{2})\phi_T(\kappa_u)\right)}{\exp\left(-\frac{V_0 + V_T}{2}\cosh(\frac{\kappa T}{2})\phi_T(\kappa)\right)} \frac{\phi_T(\kappa_u)}{\phi_T(\kappa)} \frac{I_\nu\left(\sqrt{V_0 V_T}\phi_T(\kappa_u)\right)}{I_\nu\left(\sqrt{V_0 V_T}\phi_T(\kappa)\right)}$$

$$= \underbrace{\frac{\exp\left(-\frac{V_0 + V_T}{2}\cosh(\frac{\kappa_u T}{2})\phi_T(\kappa_u)\right)}{\exp\left(-\frac{V_0 + V_T}{2}\cosh(\frac{\kappa T}{2})\phi_T(\kappa)\right)}}_{X} \underbrace{\frac{\phi_T(\kappa_u)^{\delta/2}}{\phi_T(\kappa)^{\delta/2}}}_{Z_{\delta/2}} \sum_{k=0}^{\infty} \underbrace{P(\eta_{0,T} = k)\left(\frac{\phi^2(\kappa_u)}{\phi^2(\kappa)}\right)^k}_{\eta_{0,T} \text{ copies of } Z_2}$$

• Sampling $\eta_{0,T}$ requires costly evaluation of $I_{\nu}(\cdot)$.

Gamma Expansion: Truncation of Infinite Sums

- X depends on V_0 and V_T via n_k .
- ullet Z_{δ} and Z_{2} are independent from V_{0} and V_{T} . η depends on $V_{0}V_{T}$.
- Infinite sums must be truncated, and the truncated terms are approximated with one Gamma RV.

$$\begin{split} X \sim \sum_{k=1}^K \frac{1}{\gamma_k} \Gamma(n_k) + X^K \quad \text{and} \quad Z_\alpha \sim \sum_{k=1}^K \frac{1}{\gamma_k} \Gamma(\alpha) + Z_\alpha^K, \\ X^K \sim a \Gamma(b), \quad Z_\alpha^K \sim a' \Gamma(b') \end{split}$$

The scale (a, a') and shape (b, b') of X^K and Z_{α}^K are determined to match the mean and variance of the truncated Gamma RVs.

Gamma Expansion: Mean and Variance of X and Z_{α}

• The mean and variance of X and Z_{α} are analytically available:

$$\begin{split} E(X) &= (V_0 + V_T) \sum_{k=1}^\infty \frac{\lambda_k}{\gamma_k} = (V_0 + V_T) m_X T, \quad E(Z_\alpha) = \sum_{k=1}^\infty \frac{\alpha}{\gamma_k} = \alpha m_Z \xi^2 T^2, \\ m_X &= \frac{c_1 - a c_2}{2a} \quad \text{and} \quad m_Z = \frac{a c_1 - 1}{4a^2}, \\ \text{Var}(X) &= (V_0 + V_T) \sum_{k=1}^\infty \frac{2\lambda_k}{\gamma_k^2} = (V_0 + V_T) v_X \xi^2 T^3, \quad \text{Var}(Z_\alpha) = \sum_{k=1}^\infty \frac{\alpha}{\gamma_k^2} = \alpha v_Z \xi^4 T^4, \\ v_X &= \frac{c_1 + a c_2 - 2a^2 c_1 c_2}{8a^3} \quad \text{and} \quad v_Z = \frac{a c_1 + a^2 c_2 - 2}{16a^4}, \\ a &= \kappa T/2, \quad c_1 = 1/\tanh a, \quad \text{and} \quad c_2 = 1/\sinh^2 a \end{split}$$

- The coefficients, m_X , m_Z , v_X , and v_Z are the functions of κT .
- \bullet These results are used to compute the mean and variance of X^K and Z^K_α . For example,

$$E(X^K) = E(X) - (V_0 + V_T) \sum_{k=1}^{K} \frac{\lambda_k}{\gamma_k}, \quad E(Z_{\alpha}^K) = E(Z_{\alpha}) - \sum_{k=1}^{K} \frac{\alpha}{\gamma_k}$$

Inverse Gaussian (IG) Approximation

• Tse and Wan (2013) approximates $I_{0,T}$ with one IG RV:

$$f_{\rm IG}(x) = \sqrt{\frac{\lambda}{2\pi x^3}} \; \exp\left(-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right) \quad {\rm for} \quad \mu, \lambda > 0.$$

• Find μ and λ to match $E(I_{0,T})$ and $Var(I_{0,T})$:

$$\begin{split} E(I_{0,T}) &= E(X) + E(Z_{\delta/2}) + E(\eta_{0,T}) E(Z_2) \\ \text{Var}(I_{0,T}) &= \text{Var}(X) + \text{Var}(Z_{\delta/2}) + E(\eta_{0,T}) \text{Var}(Z_2) + \text{Var}(\eta_{0,T}) E(Z_2)^2, \\ \text{where} \quad E(\eta_{0,T}) &= \frac{z\,I_{\nu+1}(z)}{2I_{\nu}(z)}, \quad \text{Var}(\eta_{0,T}) = \frac{z^2\,I_{\nu+2}(z)}{4I_{\nu}(z)} + E(\eta_{0,T}) - E(\eta_{0,T})^2. \end{split}$$

- Once λ and μ are calibrated, trivial to draw IG RVs (Michael et al., 1976).
- While better than Γ RV in GE, it can not control the error (no K). It needs multiple steps for more accurate results.
- Requires 3 evaluations of $I_{\nu}(\cdot)$ per path. Otherwise, it needs caching $E(\eta_{0,T})$ and $\text{Var}(\eta_{0,T})$ for the grid of $z=\sqrt{V_0V_T}\phi_T(\kappa)$.

Relative Strength of the Current Methods

Each simulation method has strength in different monitoring frequencies in path-dependent derivatives.

Gamma series: infrequent monitoring (> year)

- Computation cost for one step is high
- Works well for any time step

IG Approximation: mid-frequency monitoring (quarterly)

- Computation cost for one step is intermediate.
- Accurate when the time step is reasonable.

QE: frequent monitoring (daily/weekly)

- Computation cost for one step is low
- Accurate when the time step is small

Outline

- Introduction
- Review of Current Methods
 - Time Discretization Schemes (e.g., Andersen, 2008)
 - Exact MC Simulation (Broadie and Kaya, 2006)
 - Gamma Expansion (Glasserman and Kim, 2011)
 - Inverse Gamma Approximation (Tse and Wan, 2013)
- 3 Enhanced Simulation Methods with Poisson Conditioning
- Mumerical Results

Key Observation: Poisson Conditioning

• $\chi^2(\delta,\lambda)$ is equivalently simulated as Poisson-mixture Gamma:

$$\chi^2(\delta,\lambda) \sim \chi^2(\delta + 2\mathsf{POIS}(\lambda/2),0) \sim 2\,\Gamma(\delta/2 + \mathsf{POIS}(\lambda/2)).$$

ullet V_T can be exactly sampled by Broadie and Kaya (2006); Glasserman and Kim (2011)

$$\mu_0 \sim \text{POIS}\left(\frac{V_0\,e^{-\frac{\kappa T}{2}}\,\phi_T(\kappa)}{2}\right), \quad \text{then} \quad V_T \sim \frac{2e^{-\kappa T/2}}{\phi_T(\kappa)}\Gamma\left(\frac{\delta}{2} + \mu_0\right).$$

• $\mu \sim {\sf BES}(\nu,z)$ is equivalent to the conditional Poisson RV (Pitman and Yor, 1982):

$$\mu \sim \mathsf{POIS}(\lambda) \mid \Gamma(\nu + 1 + \mu) = z^2/(4\lambda)$$
 for any $\lambda > 0$.

• By choosing $\lambda = V_0 \, e^{-\frac{\kappa T}{2}}/2$,

$$\eta_{0,T} \sim \text{POIS}\left(\frac{V_0\,e^{-\frac{\kappa T}{2}}\,\phi_T(\kappa)}{2}\right) \quad \Big| \quad \Gamma\left(\frac{\delta}{2} + \eta_{0,T}\right) = \frac{z^2}{2V_0\,e^{-\frac{\kappa T}{2}}} = \frac{V_T\phi_T(\kappa)}{2e^{-\kappa T/2}},$$

• $\eta_{0,T}$ is μ_0 conditional on V_T ! We can replace $\eta_{0,T}$ with μ_0 .

Poisson Gamma Expansion (POIS-GE)

$$\begin{split} I_{0,T}|\mu_0 \sim X + Z_{\delta/2} + \sum_{j=1}^{\eta_0} Z_2^{(j)} \sim \sum_{k=1}^{\infty} \frac{1}{\gamma_k} \Gamma(\delta/2 + 2\mu_0 + n_k) \\ \approx \sum_{k=1}^K \frac{1}{\gamma_k} \Gamma(\delta/2 + 2\mu_0 + n_k) + \mathrm{IG}(\lambda,\mu) \quad \text{for} \quad n_k \sim \mathrm{POIS}((V_0 + V_T)\lambda_k). \end{split}$$

- No longer generate $\eta_{0,T} \sim \mathsf{BES}(\nu,z)$. Just use μ_0 from the V_T simulation.
- ullet Merge the Γ RVs using the additive property.
- Adopt Tse and Wan (2013): use IG for approximating the truncated series.
- K=0 version is similar to Tse and Wan (2013), but no more $I_{\nu}(\cdot)$ evaluations because μ_0 is fixed.

$$\begin{split} E(I_{0,T} \,|\, \mu_0) &= E(X) + E(Z_{\delta/2}) + \mu_0 E(Z_2) \\ &= (V_0 + V_T) m_X T + \left(\frac{\delta}{2} + 2\mu_0\right) m_Z \xi^2 T^2 \\ \operatorname{Var}(I_{0,T} | \mu_0) &= \operatorname{Var}(X) + \operatorname{Var}(Z_{\delta/2}) + \mu_0 \operatorname{Var}(Z_2) \\ &= (V_0 + V_T) v_X \xi^2 T^3 + \left(\frac{\delta}{2} + 2\mu_0\right) v_Z \xi^4 T^4 \end{split}$$

Exact MC Scheme under Poisson Conditioning

• The conditional Laplace transform in Broadie and Kaya (2006) can be simplified. Under the joint condition on V_T and μ_0 ,

$$E\left(e^{-uI_{0,T}}\middle|\mu_{0}\right) = \frac{\exp\left(-\frac{V_{0}+V_{T}}{2}\cosh\left(\frac{\kappa_{u}T}{2}\right)\phi_{T}(\kappa_{u})\right)}{\exp\left(-\frac{V_{0}+V_{T}}{2}\cosh\left(\frac{\kappa T}{2}\right)\phi_{T}(\kappa)\right)} \left(\frac{\phi_{T}(\kappa_{u})}{\phi_{T}(\kappa)}\right)^{\delta/2+2\mu_{0}}$$
$$(\kappa_{u} = \sqrt{\kappa^{2}+2\xi^{2}u}, \ \nu = \delta/2 - 1).$$

- The evaluation of $I_{\nu}(\cdot)$ can be avoided.
- The original Laplace transform (unconditional on μ_0) can be reconstructed with the probability-weighted sum over μ_0 :

$$\begin{split} &\sum_{n=0}^{\infty} P(\eta=n) \left(\frac{\phi_T(\kappa_u)}{\phi_T(\kappa)}\right)^{\delta/2+2n} = \sum_{n=0}^{\infty} \frac{\left(\sqrt{V_0 V_T} \phi_T(\kappa)/2\right)^{\delta/2-1+2n}}{I_{\nu}(\sqrt{V_0 V_T} \phi_T(\kappa)) n! \, \Gamma(n+\nu+1)} \left(\frac{\phi_T(\kappa_u)}{\phi_T(\kappa)}\right)^{\delta/2+2n} \\ &= \sum_{n=0}^{\infty} \frac{\phi_T(\kappa_u)}{\phi_T(\kappa)} \frac{\left(\sqrt{V_0 V_T} \phi_T(\kappa_u)/2\right)^{\delta/2-1+2n}}{I_{\nu}(\sqrt{V_0 V_T} \phi_T(\kappa)) n! \, \Gamma(n+\nu+1)} = \frac{\phi_T(\kappa_u)}{\phi_T(\kappa)} \frac{I_{\nu}(\sqrt{V_0 V_T} \phi_T(\kappa_u))}{I_{\nu}(\sqrt{V_0 V_T} \phi_T(\kappa))} \end{split}$$

Time Discretization under Poisson Conditioning (POIS–Quad)

- Simulate V_{t+h} from V_t with η_t .
- Instead of the trapezoidal rule, use $E(I_{t,t+h}|V_t,V_{t+h},\eta_T)$:

$$\hat{I}_{t,t+h} = E(I_{t,t+h} \mid \mu_t) = (V_t + V_{t+h}) m_X h + \left(\frac{\delta}{2} + 2\mu_t\right) m_Z \xi^2 h^2,$$

$$\Rightarrow \hat{I}_{0,T} = (V_0 + 2V_1 + \dots + 2V_{T-h} + V_T) m_X h$$

$$+ \left(\frac{N\delta}{2} + 2(\mu_0 + \mu_h + \dots + \mu_{T-h})\right) m_Z \xi^2 h^2.$$

- Unlike the QE scheme, the mean of $I_{0,T}$ is preserved. It is also possible to estimate the missing variance (i.e., error) in $I_{0,T}$.
- After some algebra, the missing variance ratio is given by

$$\mathcal{E} \approx \frac{-(2v_X + 4v_Z)(\kappa h)^2 \left(\theta + (V_0 - \theta)(1 - e^{-\kappa T})/(\kappa T)\right)}{\theta - 2(V_0 - \theta)e^{-\kappa T} + \left(V_0 - \frac{5\theta}{2} + \left(V_0 - \frac{\theta}{2}\right)e^{-\kappa T}\right)(1 - e^{-\kappa T})/(\kappa T)}$$

Summary of Methods

Exact Simulation Methods (Infrequent Monitoring)

Gamma Expansion (GE)

- V_T : $\chi^2(\delta,\lambda)$, $\eta_{0,T}\sim \mathsf{BES}$
- $I_{0,T}$: 3 Gamma RV series
- Truncated terms: Gamma RV Each

IG-Approximation

• $I_{0,T}$: moment-matched IG

Poison-Gamma Expansion (POIS–GE)

- \bullet $\mu_0 \sim {\sf POIS}$
- ullet V_T : Poisson-mixture Gamma
- Truncated terms: 1 IG RV

Time-discretization Methods (Frequent Monitoring)

QE-Trapezoid

- ullet V_i : moment-matched ad-hoc rules
- $I_{i,i+1}$: $\frac{1}{2} + \frac{1}{2}$ weights

POIS-Quad

- V_i : Poisson-mixture Gamma.
- $I_{i,i+1}$: Mean-preserving weights

Outline

- Introduction
- Review of Current Methods
 - Time Discretization Schemes (e.g., Andersen, 2008)
 - Exact MC Simulation (Broadie and Kaya, 2006)
 - Gamma Expansion (Glasserman and Kim, 2011)
 - Inverse Gamma Approximation (Tse and Wan, 2013)
- 3 Enhanced Simulation Methods with Poisson Conditioning
- Numerical Results

Spot and European Options (Conditional MC)

• S_T is log-normal given V_T and $I_{0,T}$:

$$S_T = S_0 \exp\left(rT + \frac{\rho}{\xi} \left(V_T - V_0 + \kappa (I_{0,T} - \theta T)\right) - \frac{1}{2} I_{0,T} + \frac{\rho_* \sqrt{I_{0,T}} X_1}{2}\right).$$

ullet Instead of sampling S_T , we use the BS model with the conditional spot and volatility:

$$S_{\text{BS}} = S_0 \exp\left(\frac{\rho}{\xi} \left(V_T - V_0 + \kappa (I_{0,T} - \theta T)\right) - \frac{\rho^2}{2} I_{0,T}\right), \ \sigma_{\text{BS}} = \rho_* \sqrt{I_{0,T}/T}$$

European option price is the MC average of the BS prices:

$$C_{\text{HESTON}}(K, S_0, \cdots) = E_{\text{MC}}[C_{\text{BS}}(K, S_{\text{BS}}, \sigma_{\text{BS}})]$$

The so-called conditional MC (Willard, 1997) significantly reduces the MC variance (Broadie and Kaya, 2006; Cai et al., 2017).

• Additionally check the equality of the spot price:

$$S_0 = E_{MC}(S_{BS}) = E_{MC}(E(e^{-rT}S_T \mid V_T, I_{0,T}))$$

Variance Swap: $E(I_{0,T})$ and $Var(I_{0,T})$

Discretely monitored variance swap:

$$\text{Floating Leg (realized variance)} = \frac{A}{N} \sum_{i=1}^{N} R_i^2 \quad \text{for} \quad R_i = \log \left(\frac{S_i}{S_{i-1}} \right).$$

Typically daily return is used with the annualization factor A=252.

• Continuously monitored variance swap:

Floating Leg
$$=$$
 $ar{V}_T = rac{I_{0,T}}{T}.$

- ullet $E(\mathsf{Floating\ Leg})$ is the fair value of the fixed leg (fair strike).
- ullet We price continuously monitored variance swap with time-discretization methods because $E(ar{V}_T)$ and ${
 m Var}(ar{V}_T)$ are analytically available.

Test Cases

We test four cases:

Case	V_0	θ	ξ	ρ	κ	$\delta = 4\kappa\theta/\xi^2$	T	r	Exact Price
A1	0.04	0.04	1	-0.9	0.5	0.08	10	0	13.08467014
A2	0.04	0.04	0.9	-0.5	0.3	0.06	15	0	16.64922292
B1	0.010201	0.019	0.61	-0.7	6.21	1.27	1	0.0319	6.80611331
B2	0.09	0.09	1	-0.3	2	0.72	5	0.05	34.99975835

$$(S_0 = K = 100)$$

The parameter sets are previously used in the following literature:

- Case A1: Andersen (2008), Van Haastrecht and Pelsser (2010), Lord et al. (2010), Tse and Wan (2013)
- Case A2: Andersen (2008), Van Haastrecht and Pelsser (2010)
- Case B1: Broadie and Kaya (2006), Tse and Wan (2013)
- Case B2: Broadie and Kaya (2006), Lord et al. (2010), Tse and Wan (2013)

Case A1: European Option and Spot

Exact simulation methods:

\neg		GE (Truncat	ted Γ)	PO	IS-GE (Trui	ncated Γ)	PO	IS-GE (Trur	ncated IG)
	Time	Option	Spot		Option	Spot		Option	Spot
K	(sec)	Bias (SE)	Bias (SE)						
0									0.070 (7.7)
1	0.20	0.985 (2.2)	0.339 (7.8)	0.08	1.097 (2.2)	0.399 (7.9)	0.08	0.151 (2.0)	0.046 (7.4)
2	0.19	0.408 (2.1)	0.073 (7.5)	0.10	0.469 (2.1)	0.091 (7.7)	0.10	0.084 (1.9)	0.016 (7.4)
5	0.24	0.044 (1.9)	0.005 (7.3)	0.14	0.054 (1.9)	0.004 (7.4)	0.14	0.012(1.9)	-0.001 (7.6)
10	0.31	0.002 (1.9)	0.002 (7.6)	0.21	0.002 (1.9)	0.002 (7.5)	0.21	0.000(1.9)	0.000 (7.5)

Time discretization schemes:

		QE-Trap	ezoid		POIS-Trap	ezoid	POIS-Quad			
	Time Option Spot				Spot		Option	Spot		
			Bias (SE)							
1/2	0.63	0.33 (2.0)	0.09 (8.0)	0.47	0.09 (1.9)	0.06 (7.3)	0.51	-0.15 (1.8)	-0.08 (7.2)	
1/4	1.18	0.06 (1.9)	0.00 (7.9)	0.85	0.02 (1.9)	0.02 (7.4)	1.68	-0.04 (1.8)	-0.02 (7.4)	
1/8	2.09	0.00 (1.9)	-0.01 (7.7)	1.69	0.01 (2.0)	0.01 (7.8)	2.13	-0.01 (2.0)	0.00 (7.8)	

Note: The exact European option price is 16.64922292. The standard error (SE) is in the unit of 10^{-2} .

Case A2: European Option and Spot

Exact simulation methods:

		GE (Truncat	ted Γ)	PC	IS-GE (Trur	ncated Γ)	POIS-GE (Truncated IG)			
	Time	Option	Spot		Option	Spot		Option	Spot	
K	(sec)	Bias (SE)	Bias (SE)	Time	Bias (SE)	Bias (SE)	Time	Bias (SE)	Bias (SE)	
0								-0.108 (1.1)		
			0.092 (5.6)							
			0.018 (5.5)							
			0.002 (5.5)							
10	0.34	0.000 (1.0)	-0.001 (5.4)	0.22	0.000 (1.1)	0.002 (5.5)	0.22	-0.002 (1.1)	0.000 (5.6)	

Time discretization schemes:

		QE-Trape	zoid		POIS-Trap	ezoid	POIS-Quad			
	Time	ime Option Spot			Option			Option	Spot	
		Bias (SE)								
1/2	0.77	-0.11 (1.0)	0.00 (5.6)	0.83	-0.02 (1.1)	0.01 (5.7)	0.69	0.07 (1.0)	-0.01 (5.7)	
1/4	1.42	-0.01 (1.0)	0.00 (5.6)	1.23	-0.01 (1.0)	0.00 (5.4)	1.33	0.02 (1.0)	0.00 (5.4)	
1/8	2.81	0.01 (1.0)	0.00 (5.3)	2.34	0.00 (1.0)	0.00 (5.2)	2.69	0.00(1.0)	0.00 (5.2)	

Note: The exact European option price is 13.08467014.

The standard error (SE) is in the unit of 10^{-2} .

Case B1: European Option and Spot

Exact simulation methods:

\Box		GE (Trunca	ted Γ)	PC	IS-GE (Tru	ncated Γ)	POIS-GE (Truncated IG)			
	Time	Option	Spot		Option	Spot		Option	Spot	
K	(sec)	Bias (SE)	Bias (SE)	Time	Bias (SE)	Bias (SE)	Time	Bias (SE)	Bias (SE)	
0						0.004 (2.3)				
			0.000 (2.2)							
2	0.19	0.001 (1.0)	0.000 (2.1)	0.09	0.001 (1.0)	0.000 (2.2)	0.09	0.000 (1.0)	0.000 (2.3)	
5	0.25	0.000 (1.0)	0.000 (2.2)	0.14	0.000 (1.0)	0.000 (2.2)	0.15	0.000 (1.0)	0.000 (2.2)	
10	0.35	0.000 (1.0)	-0.001 (2.1)	0.23	0.000 (1.0)	-0.001 (2.2)	0.23	0.000 (1.0)	0.000 (2.3)	

Time discretization schemes:

		QE-T	rape	zoid		POIS-Trapezoid					POIS-Quad			
	Time Option Spot		ot		Option		Spot			Opti	ion	Spot		
														Bias (SE
1/2	0.09	1.11 (0.6)	0.91	(1.6)	0.08	1.02	(1.2)	0.91	(2.7)	0.09	-0.56 ((8.0)	-0.15 (1.8)
1/4	0.21	0.38 (1.0)	0.27	(2.4)	0.13	0.35	(1.1)	0.26	(2.4)	0.13	-0.19 (0.9)	-0.05 (2.1
1/8	0.31	0.10 (1.1)	0.07	(2.4)	0.20	0.10	(1.0)	0.07	(2.3)	0.29	-0.05 ((1.0)	-0.01 (2.2

Note: The exact European option price is 6.80611331. The standard error (SE) is in the unit of 10^{-2} .

Case B2: European Option and Spot

Exact simulation methods:

		GE (Truncat	ted Γ)	PO	IS-GE (Trui	ncated Γ)	PO	IS-GE (Trur	ncated IG)
	Time	Option	Spot		Option	Spot		Option	Spot
K	(sec)	Bias (SE)				Bias (SE)			
0						0.067 (4.9)			
			0.017 (4.6)						
2	0.19	0.023 (2.0)	0.004 (4.5)	0.10	0.027 (2.1)	0.007 (4.6)	0.12	0.007 (1.9)	0.004 (4.4)
			0.001 (4.6)						
10	0.35	0.001 (2.0)	0.002 (4.4)	0.24	0.000 (2.0)	0.000 (4.5)	0.26	0.000 (1.9)	0.000 (4.4)

Time discretization schemes:

		QE-T	rape	zoid			POIS-	-Trap	ezoid		POIS-Quad			
	Time	e Option Spot Option		ion	Spot			Opt	ion	Spot				
														Bias (SE)
1/2	0.25	0.18 (1.9)	0.14	(4.3)	0.24	0.13	(2.1)	0.13	(4.7)	0.25	-0.10	(2.0)	-0.11 (4.4)
1/4	0.52	0.04 (2.0)	0.04	(4.6)	0.45	0.03	(2.1)	0.03	(4.7)	0.48	-0.03	(2.0)	-0.03 (4.6)
1/8	1.00	0.01	(2.0)	0.01	(4.5)	0.86	0.01	(2.0)	0.01	(4.5)	1.05	-0.01	(2.0)	-0.01 (4.4)

Note: The exact European option price is 34.99975835. The standard error (SE) is in the unit of 10^{-2} .

Case B1/B2: Variance Swap

B1 ($\kappa = 6.21, T = 1$): relative error of mean and variance of $I_{0,T}$.

		rapezoid								
							Analytic Var			
1/2	-5.60%	41.51%	-5.61%	41.50%	0.00%	-46.99%	-41.12%			
		15.28%								
1/8	-0.40%	4.22%	-0.40%	4.20%	0.00%	-4.38%	-4.34%			

B2 ($\kappa = 2, T = 5$): relative error of mean and variance of $I_{0,T}$.

				Trapezoid		POIS-G	•
h	Mean	Variance	Mean	Variance	Mean	Variance	Analytic Var
				6.67%			
	0.00%	1.67%	0.00%	1.71%		-1.60%	
1/8	0.00%	0.42%	0.00%	0.41%	0.00%	-0.43%	-0.41%

- POIS-Quad preserves the mean of integrated variance.
- POIS-Quad underestimates the variance, but an error estimate is provided.
- Case **A1** ($\kappa=0.5$) **A2** ($\kappa=0.3$) not reported because the errors <0.1%.

Conclusion

- The MC simulation under the Heston model has been a widely studied topic.
- The methods are broken into two classes:
 - Time-discretization method for frequent monitoring: Andersen (2008)
 - Exact MC method for infrequent monitoring: Glasserman and Kim (2011)

We find that

- The representation for the integrated variance is simplified when conditioned by the Poisson RV used in simulating the variance process.
- Poisson conditioning enhances the Heston simulation methods both classes.
- For the exact MC schemes, Poisson conditioning resolves the bottleneck of costly $I_{\nu}(\cdot)$ evaluation.
- For the time-discretization schemes, Poisson conditioning formulates a new quadrature rule (replacing the trapezoidal rule) preserving the expected integrated variance.

PyFENG (More tomorrow)

Python implementation available online:

PyFENG

- PyPI package: PyFENG (Python Financial ENGineering)
- https://pypi.org/project/pyfeng/
- pip install pyfeng
- Source: https://github.com/PyFE/PyFENG/

PyFengForPapers

- https://github.com/PyFE/PyfengForPapers/
- A collection of Jupyter Notebook scripts reproducing quantitative finance papers (mostly in derivative pricing and stochastic volatility so far).
- Uses PyFENG.
- Inspired by PapersWithCode project.

References I

- Andersen L (2008) Simple and efficient simulation of the Heston stochastic volatility model. Journal of Computational Finance 11(3):1–42, doi:10.21314/JCF.2008.189
- Baldeaux J (2012) Exact simulation of the 3/2 model. International Journal of Theoretical and Applied Finance 15(05):1250032, doi:10.1142/S021902491250032X
- Broadie M, Kaya Ö (2006) Exact simulation of stochastic volatility and other affine jump diffusion processes. Operations Research 54(2):217–231, doi:10.1287/opre.1050.0247
- Cai N, Song Y, Chen N (2017) Exact simulation of the SABR model. Operations Research 65(4):931–951, doi:10.1287/opre.2017.1617
- Cox JC, Ingersoll JE Jr, Ross SA (1985) A theory of the term structure of interest rates. Econometrica 53(2):385-407, doi:10.2307/1911242
- Glasserman P, Kim KK (2011) Gamma expansion of the Heston stochastic volatility model. Finance and Stochastics 15(2):267–296, doi:10.1007/s00780-009-0115-y
- Lord R, Koekkoek R, Dijk DV (2010) A comparison of biased simulation schemes for stochastic volatility models. Quantitative Finance 10(2):177–194, doi:10.1080/14697680802392496
- Michael JR, Schucany WR, Haas RW (1976) Generating random variates using transformations with multiple roots. The American Statistician 30(2):88–90, doi:10.1080/00031305.1976.10479147
- Pitman J, Yor M (1982) A decomposition of Bessel Bridges. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 59(4):425–457, doi:10.1007/BF00532802
- Tse ST, Wan JWL (2013) Low-bias simulation scheme for the Heston model by Inverse Gaussian approximation. Quantitative Finance 13(6):919–937, doi:10.1080/14697688.2012.696678
- Van Haastrecht A, Pelsser A (2010) Efficient, almost exact simulation of the Heston stochastic volatility model. International Journal of Theoretical and Applied Finance 13(01):1–43, doi:10.1142/S0219024910005668
- Willard GA (1997) Calculating prices and sensitivities for path-independent derivatives securities in multifactor models. The Journal of Derivatives 5(1):45–61, doi:10.3905/jod.1997.407982