PC 4 – Convergence & Conditioning

Convergence

Exercise 1

Let $\{X_i\}_{i>0}$ be a sequence of i.i.d. Bernoulli variables with parameter θ .

- 1. Show that $\sqrt{n} \left(\bar{X}_n \theta \right) \xrightarrow{d} \mathcal{N}(0, \theta(1-\theta))$, where $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$.
- 2. Show that $\bar{X}_n (1 \bar{X}_n) \stackrel{P}{\longrightarrow} \theta (1 \theta)$.
- 3. Show that $\sqrt{n} \left(\bar{X}_n \theta \right)^2 \stackrel{P}{\longrightarrow} 0$.
- 4. Determine the limit distribution of $\sqrt{n} (\bar{X}_n (1 \bar{X}_n) \theta (1 \theta))$.

Exercise 2

Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. square-integrable random variables with mean m and variance $\sigma^2>0$. Denote $\bar{X}_n=\frac{1}{n}\sum_{i=1}^n X_i$ and $\hat{\sigma}_n^2=\frac{1}{n}\sum_{i=1}^n \left(X_i-\bar{X}_n\right)^2$.

- 1. Show that $\hat{\sigma}_n^2$ converges in probability to σ^2 as $n \to \infty$.
- 2. Determine the limit distribution of $\sqrt{n} (\bar{X}_n m) / \hat{\sigma}_n$.

Exercise 3

(Poisson model). Let (X_1, \dots, X_n) be an i.i.d. sample from the Poisson distribution with unknown parameter $\lambda > 0$. Denote $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

- 1. Show that \bar{X}_n is an unbiased estimator of λ , that is $\mathbb{E}\left[\bar{X}_n\right] = \lambda$.
- 2. Show that \bar{X}_n converges in probability to λ when n tends to infinity.
- 3. Determine the limit distribution of $\sqrt{n} \left(\bar{X}_n \lambda \right) / \sqrt{\bar{X}_n}$.
- 4. Find an appropriate function g such that $\sqrt{n}\left(g\left(\bar{X}_n\right) g(\lambda)\right) \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$.

Exercise 4

Define the random variable

$$Y = \mathbb{1}\{\theta > X\}$$

where $\theta \in \mathbb{R}$ and X is a random variable with standard normal distribution $\mathcal{N}(0,1)$. We observe a sample Y_1, \ldots, Y_n of i.i.d. realizations of Y and suppose that parameter θ is unknown. Denote by Φ the cumulative distribution function of the standard normal distribution $\mathcal{N}(0,1)$. An estimator $\hat{\theta}_n$ of θ is given by

$$\hat{\theta}_n = \Phi^{-1} \left(\bar{Y}_n \right)$$

where $\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$

- 1. Determine the distribution of Y.
- 2. Study the convergence in probability of $\hat{\theta}_n$ towards θ when n tends to infinity.
- 3. Study the limit distribution of $\sqrt{n} (\hat{\theta}_n \theta)$.

Conditionning

Exercise 5

Let (X,Y) be a couple of random variables admitting a density on \mathbb{R}^2 such that

- (i) X has Gamma distribution $\gamma(2,\lambda)$ (with density $f_X(x) = \lambda^2 x e^{-\lambda x} \mathbb{1}_{\{x>0\}}$),
- (ii) the conditional distribution of Y given X is the uniform distribution on the segment [0, X] (or, to put it differently, the conditional density of Y given X = x is $f_{Y|X=x}(y) = \frac{1}{x}\mathbb{1}_{\{0 \le y \le x\}}$).
 - 1. Determine the density of (X, Y) and the distribution of Y.
 - 2. Compute the conditional density of X given Y.
 - 3. Evaluate the following quantities:
 - (a) $\mathbb{E}[XY]$ (one may use that $\mathbb{E}[X^2] = \frac{6}{\lambda^2}$),
 - (b) $\mathbb{E}[Y \mid X]$,
 - (c) $\mathbb{E}[X \mid Y]$,
 - (d) $\mathbb{E}[X + XY \mid Y]$,
 - (e) $\mathbb{E}[\mathbb{E}[Y \mid X]]$

Exercise 6

We consider an electronic device. Denote by T the life time of the component, which is the amount of time in years such that it works properly until it breaks down. We assume that T is exponentially distributed with parameter 1/2.

- 1. What is the probability that the device breaks down during the first year?
- 2. We know that the electronic device has been used during two years without any problems. What is the probability that it breaks down during the third year?

Exercise 7

We set

$$f(x,y) = \frac{\alpha y^2}{r} \mathbf{1}_{0 < y < x < 1}.$$

- 1. Find α such that f is a probability density on \mathbb{R}^2 of some pair of random variables (X,Y) and compute the marginal laws of X and Y.
- 2. Prove that the conditional density of Y given X = x is given by

$$f_{Y|X=x}(y) = \frac{3y^2}{x^3}, 0 < y < x < 1$$

and deduce that $\mathbb{E}[Y \mid X] = \frac{3}{4}X$.