Jaypee Institute of Information and Technology Department of Mathematics

Course: Matrix Computations (16B1NMA533)

Tutorial Sheet 5 [C301-3.3]

(Topics covered: Vector Space and Subspace)

1.	Which of the following subsets of $R^4 = \{(x_1, x_2, x_3, x_4) \mid x_1, x_2, x_3, x_4 \in R\}$ are vector space			
	for coordinate-wise addition and scalar multiplication?			2
	a) $x_4 = 0$.	b) $x_1 = 1$.	$2x_1 + 3x_2 = 0.$	$x_1 + \frac{2}{3}x_2 - 3x_3 + x_4 = 1.$

Sol. a) Yes b) No c) Yes d) No

- 2. Which of the following subsets of P(t) are vector spaces? The set of all polynomials P such that
 - a) degree of $p \ge 4$. b) degree of $p \le 4$. c) p(2) = 0. Sol. a) No b) Yes c) Yes
- 3. Which of the following sets are subspaces of R^3 ?

 a) $\{(x_1, x_2, x_3) \mid x_1 x_2 = 0\}$ b) $\{(x_1, x_2, x_3) \mid x_1 = 2x_2 \text{ and } x_3 = 3x_2\}$

b)
$$\{(x_1, x_2, x_3) | x_1 = 2x_2 \text{ and } x_3 = 3x_2\}$$

 $\{(x_1, x_2, x_3) | \frac{x_2}{x_1} = \sqrt{2}\}$
c)

Sol. a) No b) Yes c) Yes

- 4. On R³ define two operations: $x \oplus y = x y$, $\alpha . x = \alpha x$, $\alpha \in R$; $x, y \in R^3$. The operations on the right are usual operations. Is R^3 , with respect to θ and defined above, a vector space? If not, which of the axioms are not satisfied? Sol. No, Properties 2,4,5,7
- 5. Determine whether $W = \{(a,b,c): a^2 + b^2 + c^2 \le 1\}$ is a subspace \mathbb{R}^3 . Sol. No