

EE290C - Fall 2018

Advanced Topics in Circuit Design VLSI Signal Processing

Lecture 3: Finite Wordlength
Effects
CORDIC

Announcements

- Assignment 1 due today
- Assignment 2 due on Thursday 9/6
 - Chisel bootcamp 2.3-2.5, 3.1-3.2

Projects

- OFDM software radio (LTE, WiFi)
- Bluetooth modem
- GPS receiver
- Smart NIC
- Wellness monitor

#students on project = #unique blocks

Reading

Numbers

 Markovic, Brodersen, DSP Architecture Design Essentials, 2012, (Ch. 5)

CORDIC

- Markovic, Brodersen, DSP Architecture Design Essentials, 2012, (Ch. 6)
- Any other book above

Advanced Topics in Circuit Design VLSI Signal Processing

Finite Wordlength Effects

Quantization Effects

Quantization

$$\Delta = \frac{2x_m}{2^{B+1}} = \frac{x_m}{2^B}$$

B = # bits of quantization

$$e[n] = \hat{x}[n] - x[n]$$

 $-\Delta/2 < e[n] \le \Delta/2$
(AWN process)

2's complement representation

Quantization: Rounding, Truncation

Feedback systems use rounding

Overflow Modes: Wrap Around

[3] A.V. Oppenheim, R.W. Schafer, with J.R. Buck, Discrete-Time Signal Processing, (2nd Ed), Prentice Hall, 1998.

Overflow Modes: Saturation

Feedback systems use saturation

Quantization Noise

$$\sigma_e^2 = \int_{-\Delta/2}^{\Delta/2} e^2 \frac{1}{\Delta} de = \frac{\Delta^2}{12}$$

$$\sigma_e^2 = \frac{2^{-2B} x_m^2}{12}$$

 x_m : full-scale signal B + 1 quantizer

$$SQNR = 10log_{10} \left(\frac{\sigma_x^2}{\sigma_e^2} \right) = 10log_{10} \left(\frac{12 \cdot 2^{2B} \cdot \sigma_x^2}{x_m^2} \right)$$

$$=6.02 \cdot B + 10.8 - 20 \log_{10} \left(\frac{X_m}{\sigma_x}\right)$$

Time-Multiplexed Architectures

Time-shared bus destroys signal correlations and increases switching activity

Number Representation

◆ Sign-extension activity is significantly reduced using sign-magnitude representation [5]

^[5] A. Chandrakasan, Low Power Digital CMOS Design, Ph.D. Thesis, University of California, Berkeley, 1994.

Reducing Activity by Reordering Inputs

30% reduction in switching energy

Advanced Topics in Circuit Design VLSI Signal Processing

CORDIC Algorithm and Implementation

Trigonometric Functions

- How to implement sine, cosine, etc?
- Lookup table:

Or CORDIC

CORDIC

To perform the following transformation

$$y(t) = y_R + j \cdot y_I \rightarrow |y| \cdot e^{j\varphi}$$

and the inverse, we use the CORDIC algorithm

CORDIC:

COordinate Rotation Digital Computer

CORDIC: Idea

Use rotations to implement a variety of functions

Examples:

$$x + j \cdot y \iff \sqrt{x^2 + y^2} | e^{j \cdot tan^{-1}(y/x)}$$

$$z = \sqrt{x^2 + y^2}$$
 $z = \cos(y/x)$ $z = \tan(y/x)$

$$z = x / y$$
 $z = \sin(y / x)$ $z = \sinh(y / x)$

$$z = tan^{-1}(y / x)$$
 $z = cos^{-1}(y)$

CORDIC: How to Do It?

 \rightarrow Start with general rotation by φ

$$\mathbf{x'} = \mathbf{x} \cdot \mathbf{cos}(\mathbf{\phi}) - \mathbf{y} \cdot \mathbf{sin}(\mathbf{\phi})$$
 $\mathbf{y'} = \mathbf{y} \cdot \mathbf{cos}(\mathbf{\phi}) + \mathbf{x} \cdot \mathbf{sin}(\mathbf{\phi})$
 $\mathbf{x'} = \mathbf{cos}(\mathbf{\phi}) \cdot [\mathbf{x} - \mathbf{y} \cdot \mathbf{tan}(\mathbf{\phi})]$
 $\mathbf{y'} = \mathbf{cos}(\mathbf{\phi}) \cdot [\mathbf{y} + \mathbf{x} \cdot \mathbf{tan}(\mathbf{\phi})]$

The key is to only do rotations by values of $tan(\varphi)$ which are powers of 2

CORDIC: An Iterative Process

To rotate to any arbitrary angle, we do a sequence of rotations to get to that value

Rotation Number

$oldsymbol{arphi}$	$tan(oldsymbol{arphi})$	k	i
45°	1	1	0
26.565°	2-1	2	1
14.036°	2-2	3	2
7.125°	2-3	4	3
3.576°	2-4	5	4
1.790°	2 ⁻⁵	6	5
0.895°	2 ⁻⁶	7	6

Basic CORDIC Iteration

$$K_i = cos(tan^{-1}(2^{-i})) = 1/(1 + 2^{-2i})^{0.5}$$

 $d_i = \pm 1 \text{ (rotate by } \pm \phi)$

- If we don't multiply by K_i we get a gain error which is independent of the direction of the rotation
 - The error converges to 0.61
 - May not need to compensate for it

Basic CORDIC Iteration

$$K_i = cos(tan^{-1}(2^{-i})) = 1/(1 + 2^{-2i})^{0.5}$$

 $d_i = \pm 1 \text{ (rotate by } \pm \phi)$

We can also accumulate the rotation angle:

$$z_{i+1} = z_i - d_i \cdot tan^{-1}(2^{-i})$$

Cartesian to Polar Conversion

Initial vector is described by x_0 and y_0 coordinates

$$\Rightarrow$$
 Find ϕ and $(x_0^2 + y_0^2)^{0.5}$

Step 1: Check the Angle / Sign of y₀

- If positive, rotate by -45°
- If negative, rotate by +45°

$$\mathbf{x}_1 = \mathbf{x}_0 + \mathbf{y}_0$$
$$\mathbf{y}_1 = \mathbf{y}_0 - \mathbf{x}_0$$

Step 2: Check the Sign of y₁

- If positive, rotate by -26.57°
- If negative, rotate by +26.57°

$$x_2 = x_1 + y_1/2$$

 $y_2 = y_1 - x_1/2$

Repeat Step 2 for Each Rotation k

• Until $y_n = 0$

$$y_n = 0$$

$$x_n = A_n \cdot (x_0^2 + y_0^2)^{0.5}$$

The Gain Factor

Gain accumulation (when you don't multiply by K_i)

$$G_0 = 1$$

 $G_0G_1 = 1.414$
 $G_0G_1G_2 = 1.581$
 $G_0G_1G_2G_3 = 1.630$
 $G_0G_1G_2G_3G_4 = 1.642$

So, start with x₀, y₀; end up with:

Shift & adds of
$$x_0$$
, y_0
 $z_4 = 71^{\circ}$
 $(x_0^2 + y_0^2)^{0.5} = 1.642$ (...)

• We did the Cartesian-to-polar coordinate conversion

Polar-to-Rectangular Conversion

CORDIC Algorithm

$$\mathbf{x_{i+1}} = \mathbf{x_i} - \mathbf{y_i} \cdot \mathbf{d_i} \cdot \mathbf{2^{-i}}$$
 $\mathbf{y_{i+1}} = \mathbf{y_i} + \mathbf{x_i} \cdot \mathbf{d_i} \cdot \mathbf{2^{-i}}$
 $\mathbf{z_{i+1}} = \mathbf{z_i} - \mathbf{d_i} \cdot \tan^{-1}(\mathbf{2^{-i}})$

$$\mathbf{d}_{i} = \begin{cases} -1, z_{i} < 0 \\ +1, z_{i} > 0 \end{cases}$$

$d_{i} = \begin{cases} -1, \, y_{i} > 0 \\ +1, \, y_{i} < 0 \end{cases}$

Rotation mode

(rotate by specified angle)

Minimize residual angle

$$x_n = A_n \cdot [x_0 \cdot \cos(z_0) - y_0 \cdot \sin(z_0)]$$

$$y_n = A_n \cdot [y_0 \cdot \cos(z_0) + x_0 \cdot \sin(z_0)]$$

$$z_n = 0$$

Vectoring mode

(align with the x-axis)

Minimize y component

$$x_n = A_n \cdot (x_0^2 + y_0^2)^{0.5}$$

 $y_n = 0$
 $z_n = z_0 + \tan^{-1}(y_0/x_0)$

$$A_n = \prod (1+2^{-2i}) \cdot 0.5 \rightarrow 1.647$$

Vectoring Example

Acc. Gain

$K_0 = 1$

$$K_1 = 1.414$$

$$K_2 = 1.581$$

$$K_3 = 1.630$$
 $\varphi = -2.47^{\circ}$

$$K_4 = 1.642$$

$$K_5 = 1.646$$

Etc.

Residual angle

$$\Phi = 30^{\circ}$$

$$\varphi = -15^{\circ}$$

$$\phi = 11.57^{\circ}$$

$$\phi = -2.47^{\circ}$$

$$\phi = 4.65^{\circ}$$

$$\phi = 1.08^{\circ}$$

Etc.

Vectoring: Best-Case Convergence

In the best case ($\varphi = 45^{\circ}$), we can converge in 1 iteration

Calculating Sine and Cosine

- > Start with $x_0 = 1/1.64$, $y_0 = 0$
- \rightarrow Rotate by φ

Functions

Rotation mode

sin/cos

$$z_0 = angle$$

 $y_0 = 0, x_0 = 1/A_n$
 $x_n = A_n \cdot x_0 \cdot cos(z_0)$
 $y_n = A_n \cdot x_0 \cdot sin(z_0)$
 $(=1)$

Polar → **Rectangular**

$$x_n = r \cdot \cos(\phi)$$

 $y_n = r \cdot \sin(\phi)$
 $x_0 = r$
 $z_0 = \phi$
 $y_0 = 0$

Vectoring mode

tan⁻¹

$$z_0 = 0$$

 $z_n = z_0 + \tan^{-1}(y_0/x_0)$

Vector/Magnitude

$$x_n = A_n \cdot (x_0^2 + y_0^2)^{0.5}$$

Rectangular → **Polar**

$$r = (x_0^2 + y_0^2)^{0.5}$$

 $\varphi = tan^{-1}(y_0/x_0)$

CORDIC Divider

To do a divide, change CORDIC rotations to a linear function calculator

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \mathbf{0} \cdot \mathbf{y}_i \cdot \mathbf{d}_i \cdot 2^{-i} = \mathbf{x}_i$$

$$y_{i+1} = y_i + x_i \cdot d_i \cdot 2^{-i}$$

$$z_{i+1} = z_i - d_i \cdot (2^{-i})$$

Generalized CORDIC

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \mathbf{m} \cdot \mathbf{y}_i \cdot \mathbf{d}_i \cdot 2^{-i}$$

$$y_{i+1} = y_i + x_i \cdot d_i \cdot 2^{-i}$$

$$z_{i+1} = z_i - d_i \cdot e_i$$

d _i			
Rotation	Vectoring		
$d_i = -1, z_i < 0$	$d_i = -1, y_i > 0$		
$d_i = +1, z_i > 0$	$d_i = +1, y_i < 0$		
sign(z _i)	-sign(y _i)		

Mode	m	e _i
Circular	+1	tan ⁻¹ (2 ⁻ⁱ)
Linear	0	2 - <i>i</i>
Hyperbolic	-1	tanh ⁻¹ (2 ⁻ⁱ)

An FPGA Implementation

R. Andraka, "A survey of CORDIC algorithms for FPGA based computers," in Proc. Int. Symp. FPGAs, Feb. 1998, pp. 191-200.

- Three difference equations directly mapped to hardware
- The decision d_i is driven by the sign of the y or z register
 - Vectoring: $d_i = -sign(y_i)$
 - Rotation: $d_i = sign(z_i)$
- The initial values loaded via muxes
- On each clock cycle
 - Register values are passed through shifters and add/sub and the values placed in registers
 - The shifters are modified on each iteration to cause the desired shift. (state machine)
 - Elementary angle stored in ROM

Last iteration: results read from reg

Unrolled CORDIC

Single-cycle loop - unroll

Next Lecture

Processor interfacing