FISEVIER

Contents lists available at ScienceDirect

## **Discrete Mathematics**

journal homepage: www.elsevier.com/locate/disc



Note

# Some notes on the (q, t)-Stirling numbers



#### Mircea Merca

Academy of Romanian Scientists, Splaiul Independentei 54, Bucharest, 050094, Romania

#### ARTICLE INFO

Article history:
Received 15 March 2018
Received in revised form 3 August 2018
Accepted 27 October 2018
Available online xxxx

Keywords: (q, t)-analogues Stirling numbers Recurrence relations

#### ABSTRACT

The orthogonality of the (q,t)-version of the Stirling numbers has recently been proved by Cai and Readdy using a bijective argument. In this paper, we introduce new recurrences for the (q,t)-Stirling numbers and provide a (q,t)-analogue for sums of powers. Specializations of these results are given in terms of Stirling numbers or q-Stirling numbers. © 2018 Elsevier B.V. All rights reserved.

#### 1. Introduction

The q-Stirling numbers of the first kind  $s_q[n, k]$  and the second kind  $S_q[n, k]$  are a natural extension of the classical Stirling numbers. Recall that the q-Stirling numbers are the coefficients in the expansions

$$(x)_{n,q} = \sum_{k=0}^{n} s_q[n,k] x^k \quad \text{and} \quad x^n = \sum_{k=0}^{n} S_q[n,k] (x)_{k,q},$$
 (1)

where

$$(x)_{n,q} = \prod_{k=0}^{n-1} (x - [k]_q)$$

is the *q*-analogue of the *n*th falling factorial of x (with  $(x)_{0,q} = 1$ ) and

$$[n]_q = 1 + q + \dots + q^{n-1} = \frac{1 - q^n}{1 - q}$$
 (2)

is q-number. There is a long history of studying q-Stirling numbers [1,3-5,7,13,16,17,20].

Combinatorial interpretations of the q-Stirling numbers have recently been given by Cai and Readdy in [2] using the more compact q-(1+q)-analogues. In addition, Cai and Readdy considered the following extension for (2)

$$[n]_{q,t} = \begin{cases} (q^{n-2} + q^{n-4} + \dots + 1) \cdot t, & \text{for } n \text{ even,} \\ q^{n-1} + (q^{n-3} + q^{n-5} + \dots + 1) \cdot t, & \text{for } n \text{ odd,} \end{cases}$$
(3)

where t = 1 + q and generalized (1) to (q, t)-polynomials. We remark the following identity.

E-mail address: mircea.merca@profinfo.edu.ro.

**Lemma 1.** For  $n \ge 2$ ,

$$[n]_{q,t} = q^2[n-2]_{q,t} + t,$$

with  $[1]_{a,t} = 1$ .

The (q, t)-Stirling numbers of the first kind  $s_{a,t}[n, k]$  and the second kind  $S_{a,t}[n, k]$  are the coefficients in the expansions

$$(x)_{n,q,t} = \sum_{k=0}^{n} s_{q,t}[n,k] x^{k} \quad \text{and} \quad x^{n} = \sum_{k=0}^{n} S_{q,t}[n,k](x)_{k,q,t},$$

$$(4)$$

where

$$(x)_{n,q,t} = \prod_{k=0}^{n-1} (x - [k]_{q,t})$$

is the (q, t)-analogue of the nth falling factorial of x, with  $(x)_{0,q,t} = 1$ . Because

$$[n]_q = [n]_{q,1+q}$$

it is clear that the q-Stirling numbers are specializations of the (q, t)-Stirling numbers.

According to Cai and Readdy [2, Corollary 9.2], the (q, t)-analogues of Stirling numbers of the first and second kinds satisfy the following recurrences

$$s_{a,t}[n, k] = s_{a,t}[n-1, k-1] - [n-1]_{a,t} \cdot s_{a,t}[n-1, k]$$

and

$$S_{q,t}[n, k] = S_{q,t}[n-1, k-1] + [k]_{q,t} \cdot S_{q,t}[n-1, k],$$

with boundary conditions

$$s_{a,t}[n, 0] = S_{a,t}[n, 0] = \delta_{n,0}$$
 and  $s_{a,t}[0, k] = S_{a,t}[0, k] = \delta_{0,k}$ 

where  $\delta_{i,j}$  is the usual Kronecker delta function. Moreover, Cai and Readdy [2, Theorem 9.4] give a bijective argument to show that the (q, t)-Stirling numbers of the first and second kinds are orthogonal:

$$\sum_{k=m}^{n} s_{q,t}[n,k] \cdot S_{q,t}[k,m] = \sum_{k=m}^{n} S_{q,t}[n,k] \cdot s_{q,t}[k,m] = \delta_{m,n}.$$

In this paper, motivated by these results, we shall provide other properties of the (q, t)-Stirling numbers that are similar to those of the classical Stirling numbers or the q-Stirling numbers.

#### 2. (q, t)-Stirling recurrences

The classical (signed) Stirling numbers of the first kind

$$s(n, k) = s_{1,2}[n, k]$$

and the Stirling number of the second kind

$$S(n, k) = S_{1,2}[n, k]$$

are specializations of the (q, t)-Stirling numbers. It is well known that the Stirling numbers satisfy the following recurrence relations [10, Eq. (2) p. 186]

$$s(n+1, k+1) = \sum_{j=k}^{n} (-1)^{j-k} {j \choose k} s(n, j)$$

and [10, Eq. (9) p. 187]

$$S(n+1, k+1) = \sum_{j=k}^{n} {n \choose j} S(j, k).$$

In this section, we shall prove a similar result for the (q, t)-version of the Stirling numbers.

**Theorem 1.** The (q, t)-Stirling numbers of the first and second kinds satisfy the following recurrences:

(i) 
$$s_{q,t}[n+2, k+2] = \sum_{i=k}^{n} (-1)^{i-k} t^{i-k-1} q^{2n-2i} \left(q + \frac{i+1}{k+1}\right) {i \choose k} s_{q,t}[n, i],$$

(ii) 
$$S_{q,t}[n+2, k+2] = S_{q,t}[n+1, k+2] + \sum_{i=k}^{n} t^{n-i} q^{2i-2k} {n \choose i} S_{q,t}[i, k].$$

**Proof.** Recall [12] that the kth elementary symmetric function  $e_k(x_1, x_2, ..., x_n)$  and the kth complete homogeneous symmetric function  $h_k(x_1, x_2, ..., x_n)$  are given, respectively, by

$$e_k(x_1, x_2, \dots, x_n) = \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} x_{i_1} x_{i_2} \dots x_{i_k},$$

$$h_k(x_1, x_2, \dots, x_n) = \sum_{1 \leq i_1 \leq i_2 \leq \dots \leq i_k \leq n} x_{i_1} x_{i_2} \dots x_{i_k},$$

for k = 1, 2, ..., n. We set  $e_0(x_1, ..., x_n) = 1$  and  $h_0(x_1, ..., x_n) = 1$  by convention. Taking into account (4) it is an easy exercise to show that the (q, t)-Stirling numbers are specializations of the elementary and complete homogeneous symmetric functions [12, Ch. I, S. 2, Example 11], i.e.,

$$s_{q,t}[n, n-k] = (-1)^k e_k \left( [1]_{q,t}, [2]_{q,t}, \dots, [n-1]_{q,t} \right)$$
(5)

and

$$S_{a,t}[n+k,n] = h_k([1]_{a,t},[2]_{a,t},\dots,[n]_{a,t}).$$
 (6)

To prove this theorem, we consider the relations

$$e_k(x_1+1,\ldots,x_n+1) = \sum_{i=0}^k \binom{n-i}{k-i} e_i(x_1,\ldots,x_n)$$
 (7)

and

$$h_k(x_1+1,\ldots,x_n+1) = \sum_{i=0}^k \binom{n-1+k}{k-i} h_i(x_1,\ldots,x_n), \tag{8}$$

which are special cases of the following Schur function formula [12, p. 47, Example 10]

$$s_{\lambda}(x_1+1,\ldots,x_n+1)=\sum_{\mu\subseteq\lambda}d_{\lambda\mu}s_{\mu}(x_1,\ldots,x_n),$$

where

$$d_{\lambda\mu} = \det\left(\binom{\lambda_i + n - i}{\mu_j + n - j}\right)_{1 \le i, j \le n}$$

is a determinant of a matrix of binomial coefficients built from the parts of the integer partitions  $\lambda$  and  $\mu$ . By (7) and (8), with  $x_i$  replaced by  $x_i/t$  ( $t \neq 0$ ), we obtained

$$e_k(x_1+t,\ldots,x_n+t) = \sum_{i=0}^k \binom{n-i}{k-i} e_i(x_1,\ldots,x_n) t^{k-i}$$
(9)

and

$$h_k(x_1+t,\ldots,x_n+t) = \sum_{i=0}^k \binom{n-1+k}{k-i} h_i(x_1,\ldots,x_n) t^{k-i}.$$
(10)

Considering Lemma 1 and the relation (9), we can write

$$\begin{aligned} e_k\left([1]_{q,t},[2]_{q,t},\ldots,[n+1]_{q,t}\right) \\ &= e_k\left([2]_{q,t},[3]_{q,t},\ldots,[n+1]_{q,t}\right) + e_{k-1}\left([2]_{q,t},[3]_{q,t},\ldots,[n+1]_{q,t}\right) \\ &= e_k\left(t,q^2[1]_{q,t}+t,\ldots,q^2[n-1]_{q,t}+t\right) \\ &+ e_{k-1}\left(t,q^2[1]_{q,t}+t,\ldots,q^2[n-1]_{q,t}+t\right) \\ &= \sum_{i=0}^k \binom{n-i}{k-i} e_i\left([1]_{q,t},\ldots,[n-1]_{q,t}\right) q^{2i} t^{k-i} \end{aligned}$$

$$+ \sum_{i=0}^{k-1} {n-i \choose k-1-i} e_i \left( [1]_{q,t}, \dots, [n-1]_{q,t} \right) q^{2i} t^{k-1-i}$$

$$= \sum_{i=0}^{k} \left[ t {n-i \choose k-i} + {n-i \choose k-1-i} \right] e_i \left( [1]_{q,t}, \dots, [n-1]_{q,t} \right) q^{2i} t^{k-1-i}.$$

In terms of the *q*-Stirling numbers of the first kind, this relation can be written as

$$s_{q,t}[n+2,n+2-k] = \sum_{i=0}^{k} (-1)^{k-i} \left[ t \binom{n-i}{k-i} + \binom{n-i}{k-1-i} \right] s_{q,t}[n,n-i] q^{2i} t^{k-1-i}.$$

By this identity, with k replaced by n - k, we obtain

$$\begin{split} s_{q,t}[n+2,k+2] &= \sum_{i=0}^{n-k} (-1)^{n-k-i} \left[ t \binom{n-i}{n-k-i} + \binom{n-i}{n-k-1-i} \right] s_{q,t}[n,n-i] q^{2i} t^{n-k-1-i} \\ &= \sum_{i=k}^{n} (-1)^{n-i} \left[ t \binom{n+k-i}{n-i} + \binom{n+k-i}{n-1-i} \right] s_{q,t}[n,n+k-i] q^{2i-2k} t^{n-1-i} \\ &= \sum_{i=k}^{n} (-1)^{i-k} \left[ t \binom{i}{k} + \binom{i}{k+1} \right] s_{q,t}[n,i] q^{2n-2i} t^{i-k-1}. \end{split}$$

The proof of the first identity follows easily.

The proof of the second identity is quite similar to the proof of the first identity. So considering Lemma 1 and the relation (10), we can write

$$\begin{split} h_k\left([1]_{q,t},[2]_{q,t},\ldots,[n+2]_{q,t}\right) \\ &= h_{k-1}\left([1]_{q,t},[2]_{q,t},\ldots,[n+2]_{q,t}\right) + h_k\left([2]_{q,t},[3]_{q,t},\ldots,[n+2]_{q,t}\right) \\ &= h_{k-1}\left([1]_{q,t},[2]_{q,t},\ldots,[n+2]_{q,t}\right) + h_k\left(t,q^2[1]_{q,t}+t,\ldots,q^2[n]_{q,t}+t\right) \\ &= h_{k-1}\left([1]_{q,t},[2]_{q,t},\ldots,[n+2]_{q,t}\right) + \sum_{i=0}^k \binom{n+k}{k-i} h_i\left([1]_{q,t},\ldots,[n]_{q,t}\right) q^{2i}t^{k-i}. \end{split}$$

This relation can be rewritten in terms of the (q, t)-Stirling numbers of the second kind as follows:

$$S_{q,t}[n+2+k,n+2] = S_{q,t}[n+1+k,n+2] + \sum_{i=0}^{k} {n+k \choose k-i} S_{q,t}[n+i,n] q^{2i} t^{k-i}.$$

Replacing n with n - k gives

$$S_{q,t}[n+2,n+2-k] = S_{q,t}[n+1,n+2-k] + \sum_{i=0}^{k} {n \choose k-i} S_{q,t}[n-k+i,n-k]q^{2i}t^{k-i}.$$

Replacing k with n - k gives

$$S_{q,t}[n+2, k+2] = S_{q,t}[n+1, k+2] + \sum_{i=0}^{n-k} {n \choose n-k-i} S_{q,t}[k+i, k] q^{2i} t^{n-k-i}$$

$$= S_{q,t}[n+1, k+2] + \sum_{i=0}^{n} {n \choose n-i} S_{q,t}[i, k] q^{2i-2k} t^{n-i}.$$

The second identity is proved.  $\Box$ 

New recurrence relations can be easily derived for Stirling numbers or q-Stirling numbers considering Theorem 1.

**Corollary 1.** The q-Stirling numbers of the first and second kinds satisfy the following recurrences:

(i) 
$$s_q[n+2, k+2] = \sum_{i=k}^n (-1-q)^{i-k-1} q^{2n-2i} \left(-q - \frac{i+1}{k+1}\right) {i \choose k} s_q[n, i],$$

(ii) 
$$S_q[n+2, k+2] = S_q[n+1, k+2] + \sum_{i=1}^n (1+q)^{n-i} q^{2i-2k} {n \choose i} S_q[i, k]$$

**Corollary 2.** The Stirling numbers of the first and second kinds satisfy the following recurrences:

(i) 
$$s(n+2, k+2) = \frac{1}{2(k+1)} \sum_{i=k}^{n} (-2)^{i-k} (k+i+2) {i \choose k} s(n, i)$$

(ii) 
$$S(n+2, k+2) = S(n+1, k+2) + \sum_{i=k}^{n} 2^{n-i} {n \choose i} S(i, k)$$
.

#### 3. A(q, t)-analogue for sums of powers

Faulhaber's formula [11], expresses the sum of the kth powers of the first n positive integers as a (k + 1)th-degree polynomial function of n as follows:

$$\sum_{j=1}^{n} j^{k} = \frac{1}{k+1} \sum_{j=0}^{k} (-1)^{j} {k+1 \choose j} B_{j}(0) n^{k+1-j}, \tag{11}$$

where  $B_n(x)$  are Bernoulli polynomials,

$$B_n(x) = \sum_{k=0}^n \sum_{j=0}^k (-1)^j \binom{k}{j} \frac{(x+j)^n}{k+1}.$$

The problem of q-analogues of the sums of powers has been approached by several authors [6,18,21]. They have found q-analogues of the Faulhaber formula (11) for k = 1, 2, ..., 5. A general formula was provided in 2005 by Guo and Zeng [9]:

$$S_{2k+1,n}(q) = \sum_{j=0}^{k} (-1)^{j} P_{k,j}(q) \frac{(1-q^{n})^{k+1-j} (1-q^{n+1})^{k+1-j} q^{jn}}{(1-q^{2})(1-q)^{2k-3j} \prod_{j=0}^{j} (1-q^{k+1-j})}$$

and

$$S_{2k,n}(q) = \sum_{j=0}^{k} (-1)^{j} Q_{k,j}(q^{\frac{1}{2}}) \frac{(1-q^{n+\frac{1}{2}})(1-q^{n})^{k-j}(1-q^{n+1})^{k-j}(1-q^{\frac{1}{2}})^{j} q^{jn}}{(1-q^{2})(1-q)^{2k-2j-1} \prod_{i=0}^{j} (1-q^{k-i+\frac{1}{2}})},$$

where

$$S_{k,n}(q) = \sum_{i=1}^{n} \frac{1 - q^{2j}}{1 - q^2} \left( \frac{1 - q^j}{1 - q} \right)^{k-1} q^{(n-j)(k+1)/2}.$$

The polynomials  $P_{k,j}(q)$  and  $Q_{k,j}(q)$  are given explicitly in [9, Theorems 1.1 and 1.2]. Very recently, Merca [15] introduced a q-analogue for sums of powers in terms of the q-Stirling numbers of both kinds, i.e.,

$$\sum_{j=1}^{n} \left( \frac{1-q^{j}}{1-q} \right)^{k} = -\sum_{j=1}^{k} j \cdot s_{q}[n+1, n+1-j] \cdot S_{q}[n+k-j, n].$$

In this section, motivated by these results, we shall provide a (q, t)-analogue for the sums of powers in terms of the (q, t)-Stirling numbers of both kinds. For what follows, let  $\eta$  be the characteristic function of the set of odd numbers, i.e.,

$$\eta(n) = \begin{cases} 1, & \text{for } n \text{ odd,} \\ 0, & \text{for } n \text{ even.} \end{cases}$$

**Theorem 2.** Let k and n be positive integers. Then

$$\sum_{i=1}^{n} (\eta(j) \cdot q^{j-1} + t \cdot \lceil \lfloor j/2 \rfloor \rceil_{q^2})^k = -\sum_{i=1}^{k} j \cdot s_{q,t}[n+1, n+1-j] \cdot S_{q,t}[n+k-j, n].$$

**Proof.** The proof is similar to the proof of Merca [15, Theorem 1.1].  $\Box$ 

#### 4. Two identities involving (q, t)-Stirling numbers

Recall that the *q*-analogues of the binomial coefficients are the *q*-binomial coefficients

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \begin{cases} \frac{[n]_q!}{[k]_q![n-k]_q!}, & \text{for } k \in \{0,\dots,n\}, \\ 0, & \text{otherwise,} \end{cases}$$

where

$$[n]_q! = [n]_q[n-1]_q \cdots [1]_q$$

is the q-factorial, with  $[0]_q! = 1$ . Guo and Yang obtained in [8] a q-analogue of some binomial coefficient identities of Sun [19] as follows:

$$\begin{split} \sum_{k=0}^{\lfloor n/2 \rfloor} \begin{bmatrix} m+k \\ k \end{bmatrix}_{q^2} \begin{bmatrix} m+1 \\ n-2k \end{bmatrix}_q q^{\binom{n-2k}{2}} &= \begin{bmatrix} m+n \\ n \end{bmatrix}_q, \\ \sum_{k=0}^{\lfloor n/4 \rfloor} \begin{bmatrix} m+k \\ k \end{bmatrix}_{q^4} \begin{bmatrix} m+1 \\ n-4k \end{bmatrix}_q q^{\binom{n-4k}{2}} &= \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \begin{bmatrix} m+k \\ k \end{bmatrix}_{q^2} \begin{bmatrix} m+n-2k \\ n-2k \end{bmatrix}_q. \end{split}$$

Merca provided in [14] generalizations of these identities and obtained new convolutions for the complete and elementary symmetric functions:

$$\sum_{\substack{i+j+k=n\\i+j \text{ even}}} (-1)^i h_i(x_1,\ldots,x_n) h_j(x_1,\ldots,x_n) e_k(x_1,\ldots,x_n) = h_n(x_1,\ldots,x_n)$$

and

$$\sum_{\substack{i+j+k=n\\i+j+m=n}} (-1)^i e_i(x_1,\ldots,x_n) e_j(x_1,\ldots,x_n) h_k(x_1,\ldots,x_n) = e_n(x_1,\ldots,x_n).$$

In this way, considering that the (q, t)-Stirling numbers are specializations of the elementary and complete homogeneous symmetric functions, we derive the following result.

**Theorem 3.** The (q, t)-Stirling numbers of the first and second kinds satisfy the following relations:

(i) 
$$\sum_{\substack{i+j+k=n\\i+j \text{ even}\\i+i+i \text{ even}}} (-1)^{i+k} S_{q,t}[n+i,n] S_{q,t}[n+j,n] s_{q,t}[n+1,n+1-k] = S_{q,t}[2n,n],$$
(ii) 
$$\sum_{\substack{i+j+k=n-1\\i+i \text{ even}\\i+i \text{ even}}} (-1)^{j} s_{q,t}[n,n-i] s_{q,t}[n,n-j] S_{q,t}[n-1+k,n-1] = s_{q,t}[n,1].$$

(ii) 
$$\sum_{\substack{i+j+k=n-1\\i \perp i \text{ oven}}} (-1)^{j} s_{q,t}[n,n-i] s_{q,t}[n,n-j] S_{q,t}[n-1+k,n-1] = s_{q,t}[n,1]$$

### 5. Concluding remarks

The complete and elementary symmetric functions have been used in this paper to discover and prove new identities involving the (q, t)-Stirling numbers. Specializations of these results can be given in terms of the Stirling numbers or the *q*-Stirling numbers.

The first identity of Theorem 1 can be rewritten in terms of the unsigned (q, t)-Stirling numbers

$$c_{a,t}[n,k] = (-1)^{n-k} s_{a,t}[n,k]$$

as follows

$$c_{q,t}[n+2, k+2] = \sum_{i=k}^{n} t^{i-k-1} q^{2n-2i} \left( q + \frac{i+1}{k+1} \right) {i \choose k} c_{q,t}[n, i].$$

This expression would very likely lend itself to a bijective proof using the bistatistic on the restricted staircase-shaped boards of Cai and Readdy as it no longer has negatives appearing in it.

## Acknowledgments

The author appreciates the anonymous referees for their comments on the original version of this paper.

## References

- [1] C. Bennett, K. Dempsey, B. Sagan, Partition lattice q-analogs related to q-Stirling numbers, J. Algebraic Combin. 3 (1994) 261–283.
- [2] Y. Cai, M. Readdy, q-Stirling numbers: A new view, Adv. Appl. Math. 86 (2017) 50-80.
- [3] L. Carlitz, On abelian fields, Trans. Amer. Math. Soc. 35 (1933) 122-136.
- [4] R. Ehrenborg, M. Readdy, Juggling and applications to q-analogues, Discrete Math. 157 (1996) 107–125.
- [5] T. Ernst, q-Stirling numbers, an umbral approach, Adv. Dyn. Syst. Appl. 3 (2) (2008) 251–282.
- [6] K.C. Garrett, K. Hummel, A combinatorial proof of the sum of q-cubes, Electron. J. Combin. 11 (2004) #R9.
- [7] H.W. Gould, The q-Stirling numbers of the first and second kinds, Duke Math. J. 28 (1961) 281–289.
- [8] V.J.W. Guo, D.-M. Yang, A q-analogue of some binomial coefficient identities of Y. Sun, Electron. J. Combin. 18 (2011) #P78.
- [9] V.J.W. Guo, J. Zeng, A q-analogue of Faulhaber's formula for sums of powers, Electron. J. Combin. 11 (2) (2005) #R19.

- [10] C. Jordan, Calculus of Finite Differences, second ed., Chelsea, New York, 1947.
- [11] D.E. Knuth, Johann Faulhaber and sums of power, Math. Comp. 61 (1993) 277–294.
- [12] I.G. Macdonald, Symmetric Functions and Hall Polynomials, second ed., Clarendon Press, Oxford, 1995.
- [13] M. Merca, A note on *q*-Stirling numbers, in: G.V. Milanović, M.Th. Rassias (Eds.), Analytic Number Theory, Approximation Theory, and Special Functions, Springer, New-York, 2014, pp. 239–244.
- [14] M. Merca, Generalizations of two identities of Guo and Yang, Quaest. Math. 41 (5) (2018) 643–652.
- [15] M. Merca, A *q*-analogue for sums of powers, Acta Arith. 183 (2018) 185–189.
- [16] S. Milne, A *q*-analog of restricted growth functions, Dobinski's equality, and Charlier polynomials, Trans. Amer. Math. Soc. 245 (1978) 89–118.
- [17] S. Park, P-partitions and q-Stirling numbers, J. Combin. Theory Ser. A 68 (1994) 33–52.
- [18] M. Schlosser, q-Analogues of the sums of consecutive integers, squares, cubes, quarts and quints, Electron. J. Combin. 11 (2004) #R71.
- [19] Y. Sun, A simple bijection between binary trees and colored ternary trees, Electron. J. Combin. 17 (2010) #N20.
- [20] M. Wachs, D. White, p, q-Stirling numbers and set partition statistics, J. Combin. Theory Ser. A 56 (1991) 27–46.
- [21] S.O. Warnaar, On the q-analogue of the sum of cubes, Electron. J. Combin. 11 (2004) #N13.