

Internship Project: Pairs Trading

Kai Wu August 24, 2020

Outline

- Overview
- The Strategy
- Programming
- Analysis
- Next Step

Overview

- Pairs trading is a statistical arbitrage strategy that profits from the temporary divergence of the prices of two or more securities that are correlated/sharing similar characteristics/affected by same factors.
- Pairs Trading is market neutral, and is evidenced to perform well in turbulent markets (Deutsche Bank, 2012 & 2015)

Overview

Exxon Mobil vs *Chevron*, Historic Stock Prices, Oct 2007 – Apr 2008

Overview

Exxon Mobil vs *Chevron*, Logarithm of Price Ratio, Oct 2007 – Apr 2008

- 1. Dow Jones Index added Chevron 3.61% in 4 days
- 2. Exxon Mobil and Venezuela were in dispute

Two stages: <u>Selection</u> and Trading

1. Pairs Selection

How to identify pair candidates

Following Deutsche Bank 2015 Report

- \triangleright Beta Neutral: difference of beta ≤ 0.3
- Industry Neutral: same GICS industry
- ➤ High Return Correlation
- > Strong Mean Reversion of Relative Price

Two stages: <u>Selection</u> and Trading

Stationary Time-series

Non-stationary Time-series

- Strong Mean Reversion of Relative Price
 - ADF Test
 - Test whether a time series is stationary
 - Cointegration Test
 - Test whether there exists a stationary linear combination of multiple time-series
 - Hurst Exponent:
 - Hurst Exponent < 0.5 indicates a mean-reverting time series
 - Half-life based on calibration of OU process
 - A shorter half life indicates a faster reversion to mean

• **Two stages**: Selection and <u>Trading</u>

Open

- 2 Std Cross-over & Cross-back
- Refresh candidate pool at each month end

2. Pair TradingHow to profit from identified pairs

Allocation

Dollar Neutral

Following Deutsche Bank 2015 Report

Close

Mean Reversion

Maximum Holding Period (9 months)

• Stop Loss (-60%)

Delisting

• Two stages: Selection and <u>Trading</u>

Trading Rule: an Example

Python Implementation:

class PairBacktesting

backtesting & analytics of the pairs trading strategy

class **PairFilter** flexible & efficient pair selection

class **Pair** backtesting of an arbitrary pair

class **DataLoader**

foundational data pipeline

Challenges:

- Pair selection process can be quite involved
 - A series of filtering conditions
 - Each condition has multiple tunable parameters
- Pair selection is computationally expensive
 - Statistical computations like cointegration tests are time-consuming
 - 80k~105k potential pairs cross-sectionally

Challenge 1: Pair selection process can be quite involved

Solution: specify the selection process in a chain before computation starts

```
DATA = DataLoader() # Initialize the data pipeline
pair_filter = PairFilter(DATA) # Create a PairFilter object
conditions = pf_filter.new_filter()
conditions.start()
conditions.same_industry(gics_level=3)
conditions.industry_subset(subset=40)
conditions.beta_diff().less_than(0.3)
conditions.correlation(corr_type='residual').top(quantile=0.2)

conditions.ADF(max_lag=4).pvalue(cutoff=0.05)

conditions.end()
```


Challenge 1: Pair selection process can be quite involved

Solution: specify the selection process in a chain before computation starts

```
DATA = DataLoader()

pair_filter = PairFilter(DATA)

conditions = pf_filter.new_filter()

conditions.start() # start composing conditions

conditions.same_industry(gics_level=3) # stocks should be of the same GICS level 3

conditions.industry_subset(subset=40) # only focus on the Financials sector (GICS code: 40)

conditions.beta_diff().less_than(0.3) # difference of beta should be less than 0.3

conditions.correlation(corr_type='residual').top(quantile=0.2)

# residual correlation should be among the top 20% percentile

conditions.ADF(max_lag=4).pvalue(cutoff=0.05)

# ADF test with a lag of 4 should meet the 0.05 significance level

conditions.end() # end composition
```

Pair_filter.filter_given_dates(dates=['2019-05-31', '2019-06-30'])

Challenge 2: Pair selection is computationally expensive **Solutions:**

- 1. Use vectorized computation other than for-loops whenever possible
- 2. Use Multi-processing to speed up time-consuming computations
 - Single CPU core: more than 24 hours
 - Multiple cores: under 4 hours
- 3. Save intermediate results to reduce redundant computation
 - Using different cutoffs/thresholds/percentiles requires no new computation

Example:

```
old: conditions.ADF(max_lag=4).pvalue(cutoff=0.05) new: conditions.ADF(max_lag=4).pvalue(cutoff=0.01)
```

 After expanding the backtesting interval, results corresponding to the older interval will be reused

Backtesting Results Summary

	(1)	(2)	(3)	(4)
Baseline Settings	Yes	Yes	Yes	Yes
Half-life Condition	/	Yes	Yes	Yes
Hurst Exponent	/	/	< 0.5	< 0.5
Johansen Cointegration Test	/	/	/	Top 5%
Num. of Pairs Traded per Month	218.70	134.67	125.06	43.24
Avg. Return	0.185%	0.455%	0.515%*	0.716%*
Med. Return	4.957%	4.703%***	4.659%***	4.447%***
Hit Rate	77.60%	81.37%***	81.64%***	83.06%***
Avg. Holding Period for Reverted Pairs	66.29	56.19***	55.82***	51.90***

 Introducing more Time-series statistics tends to improve the average return and the hit rate, and reduces the number of days it takes for a pair to close

Next Step

Next step:

- Incorporate fundamental information
 - Customer-client relationship
 - Industry exposure
- Eliminate negative impact of news/big corporate events
- Explore the driving factors behind pair performance
 - Machine learning is likely to help
- Form a portfolio

Q&A