Variable Elimination

Introduction to Graphical Models

Prof. Alexander Ihler

Inference tasks in CSPs

Consider a simple coloring CSP:

Check for a solution:

$$F^* = \max_{x} \prod_{\alpha} f_{\alpha}(x_{\alpha})$$

$$\hat{x} = \arg\max_{x} \prod_{\alpha} f_{\alpha}(x_{\alpha})$$

Or, count solutions:

$$Z = \sum_{x} \prod_{\alpha} f_{\alpha}(x_{\alpha})$$

Two strategies: conditioning vs. elimination

k "sparser" problems

Elimination (inference)

1 "denser" problem

Conditioning a cost function

A	В	f(A,B)
b	b	4
b	g	5
b	r	1
g	b	2
g	g	6
g	r	3
r	b	1
r	g	1
r	r	6

CSP Example

Condition (assign) X₄:

Combination of cost functions

A	В	f(A,B)
b	b	6
b	g	0
g	b	0
g	g	6

В	С	f(B,C)
b	b	6
b	g	0
g	b	0
g	g	6

A	В	C	f(A,B,C)
b	b	b	12
b	b	g	6
b	g	b	0
b	g	g	6
g	b	b	6
g	b	g	0
g	g	b	6
g	g	g	12

$$= 0 + 6$$

Elimination in a cost function

Variable Elimination

Variable Elimination

• Eliminate variables in sequence:

$$\mathbf{OPT} = \max_{a,e,d,c,b} f(a) + \underbrace{f(a,b)}_{c} + f(a,c) + f(a,d) + \underbrace{f(b,c)}_{c} + f(b,d) + f(b,e) + f(c,e)$$

$$\mathbf{Collect \& combine}$$

$$\max_{a} f(a) + \max_{e,d} f(a,d) + \max_{c} f(a,c) + f(c,e) + \max_{b} f(a,b) + f(b,c) + f(b,d) + f(b,e)$$

$$\lambda_{B}(a,d,c,e)$$

CSP Example

• Eliminate (maximize over) X₄:

Variable Elimination

Bucket elimination [Dechter 1996]

"Non-serial Dynamic Programming" [Bertele & Briochi 1973]

$$\begin{aligned} \text{OPT} = \max_{a,e,d,c,b} f(a) + f(a,b) + f(a,c) + f(a,d) + f(b,c) + f(b,d) + f(b,e) + f(c,e) \\ \max_{b} & \sum & \leftarrow \quad \text{Elimination/Combination operators} \end{aligned}$$

bucket B: $f(a,b) \ f(b,c) \ f(b,d) \ f(b,e)$ bucket C: $f(c,a) \ f(c,e) \ \lambda_{B\to C}(a,d,c,e)$

bucket D: f(a,d) $\lambda_{C \to D}(a,d,e)$

bucket E: $\lambda_{D \to E}(a, e)$ bucket A: f(a) $\lambda_{E \to A}(a)$

Generating the optimal assignment

Return: $(a^*, b^*, c^*, d^*, e^*)$

$$\mathbf{b}^{*} = \arg \max_{\mathbf{b}} f(a^{*}, b) + f(b, c^{*}) \\ + f(b, d^{*}) + f(b, e^{*}) \\ \mathbf{c}^{*} = \arg \max_{\mathbf{c}} f(c, a^{*}) + f(c, e^{*}) \\ + \lambda_{B \to C}(a^{*}, d^{*}, c, e^{*}) \\ \mathbf{d}^{*} = \arg \max_{\mathbf{d}} f(a^{*}, d) + \lambda_{C \to D}(a^{*}, d, e^{*}) \\ \mathbf{e}^{*} = \arg \max_{\mathbf{e}} \lambda_{D \to E}(a^{*}, e) \\ \mathbf{a}^{*} = \arg \max_{\mathbf{a}} f(a) + \lambda_{E \to A}(a) \\ \mathbf{A} : f(a) \lambda_{E \to A}(a) \\ \mathbf{A} : f(a) \lambda_{E \to A}(a)$$

B:
$$f(a,b)$$
 $f(b,c)$ $f(b,d)$ $f(b,e)$
C: $f(c,a)$ $f(c,e)$ $\lambda_{B\to C}(a,d,c,e)$

Complexity of variable elimination

Algorithm elim-opt [Dechter, 1996]

Non-serial Dynamic Programming [Bertele & Briochi, 1973]

$$\mathsf{OPT} = \max_{a,e,d,c,b} f(a) + f(a,b) + f(a,c) + f(a,d) + f(b,c) + f(b,d) + f(b,e) + f(c,e)$$

$$\mathsf{bucket} \ \mathsf{B}: \qquad \mathsf{Elimination/Combination} \ \mathsf{operators}$$

$$\mathsf{bucket} \ \mathsf{C}: \qquad f(a,b) \ f(b,c) \ f(b,d) \ f(b,e)$$

$$\mathsf{bucket} \ \mathsf{C}: \qquad f(c,a) \ f(c,e) \ \lambda_{B\to C}(a,d,c,e)$$

$$\mathsf{bucket} \ \mathsf{D}: \qquad f(a,d) \ \lambda_{C\to D}(a,d,e)$$

$$\mathsf{bucket} \ \mathsf{E}: \qquad \lambda_{D\to E}(a,e)$$

$$\mathsf{bucket} \ \mathsf{A}: \qquad f(a) \ \lambda_{E\to A}(a) \qquad \text{``induced width''} \qquad \mathsf{(max clique size)}$$

Complexity of Bucket Elimination

Bucket Elimination is time and space

$$O(r \exp(w^*(d)))$$

 $w^*(d)$: the induced width of the primal graph along ordering d

r = number of functions

The effect of the ordering:

constraint graph

 $w^*(d_1) = 4$ $w^*(d_2) = 2$

Finding the smallest induced width is hard!

Variable ordering heuristics

- What makes a good order?
 - Low induced width
 - Elimination creates a function over neighbors
- Finding the best order is hard
 - But we can do well with simple heuristics

Variable ordering heuristics

- Min (induced) width heuristic
 - 1. for i=1 to n (# of variables)
 - 2. Select a node Xi with smallest degree as next eliminated
 - 3. Connect Xi's neighbors:
 - 4. $E = E + \{ (Xj, Xk) : (Xi,Xj) \text{ and } (Xi,Xk) \text{ in } E \}$
 - 5. Remove Xi from the graph: $V = V \{Xi\}$
 - 6. end

("Weighted" version: weight edges by domain size)

Variable ordering heuristics

- Min fill heuristic
 - 1. for i=1 to n (# of variables)
 - 2. Select a node Xi with smallest "fill edges" as next eliminated
 - 3. Connect Xi's neighbors:
 - 4. $E = E + \{ (Xj, Xk) : (Xi,Xj) \text{ and } (Xi,Xk) \text{ in } E \}$
 - 5. Remove Xi from the graph: $V = V \{Xi\}$
 - 6. end

("Weighted" version: weight edges by domain size)

Tree-structured graphs

- If the graph is a tree, the best ordering is easy:
 - B, E have only one neighbor; no "fill"
 - Select one to eliminate; remove it
 - Now D or E have only one neighbor; no "fill"...

Order

- leaves to root
- never increases the size of the factors

