Отчёт по работе 3.4.5

Петля гистерезиса (динамический метод) Карташов Констанин Б04-005

I Анотация

Цель работы: Измерение петель гистерезиса различных ферромагнитных материалов в переменных полях.

Оборудование:

- ⊳ автотрансформатор,
- ⊳ понижающий трансформатор,
- ⊳ интегрирующая цепочка,
- ⊳ амперметр,
- ⊳ вольтметр,
- ⊳ электронный осциллограф,
- ⊳ делитель напряжения,
- ⊳ тороидальные образцы с двумя обмотками.

II Теоретическая часть

Интегрирующая цепочка. Ключевым элементов установки является интегрирующая цепочка, состоящая из резистора и конденсатора. Магнитную индукцию легко выразить через ЭДС в катушке N витками и площадью сечения S:

$$|B| = \frac{1}{SN} \int \mathcal{E} dx,$$

также известно, что в цепочке из резистора и конденсатора:

$$U_{\text{\tiny BMX}} = \frac{q}{C} = \frac{1}{C} \int_0^t I dt = \frac{1}{\tau} \int_0^t U_{\text{\tiny BX}} dt.$$

Из этого следует:

$$|B| = \frac{1}{SN} = \int U_{\text{bx}} dt = \frac{\tau}{SN} U_{\text{bhix}}.$$

Экспериментальная установка. Установка представлена на рисунке (1). На установку подаётся сетевое напряжение с помощью трансформаторного блока Тр. Установка состоит из исследуемого образца с намагничивающей обмоткой N_0 и измерительной обмоткой N_U , интегрирующей ячейки RC, электронного осциллографа ЭО и амперметра A.

Рис. 1: Схема экспериментальной установки.

III Экспериментальная часть

і Измерение петли гистерезиса.

Измерим петлю гистерезиса для трёх образцов. Физические характеристики образцов:

•	Ι	II	III
Образец	Феррит 1000нн	Пермаллой (Fe-	Кремнистое
		Ni HΠ50)	железо (Fe-Si)
N_0 , витков	35	40	35
N_U , витков	400	200	350
$S, \text{ cm}^2$	3.0	3.8	1.2
$2\pi R$, cm	25	24	10

Таблица 1: Физические характеристики образцов.

Пронаблюдаем петли гистерезиса для различных образцов. Наблюдения зафиксируем на рисунках (5, 6, 7).

Для наблюдаемых петель гистерезиса запишем коэффициенты усиления K_x , K_y , силу тока в намагничивающей обмотке $I_{\rm эфф}$, а также полную ширину и высоту предельной петли $2X_s$, $2Y_s$, и двойные амплитуды коэрцитивного поля $2X_c$ и остаточной индукции $2Y_r$.

Рис. 2: Петли гистерезиса для образца I

Рис. 3: Петли гистерезиса для образца II

Рис. 4: Петли гистерезиса для образца III

Образец	I	II	III
K_x , м B /дел	20	50	100
K_y , м $\mathrm{B}/\mathrm{дел}$	20	100	50
$I_{\rm max}$, мА	159	293	798
$2X_s$, дел	7.93	8.20	7.79
$2Y_s$, дел	4.19	3.76	6.74
$2X_c$, дел	1.67	2.34	1.23
$2Y_r$, дел	2.38	3.44	2.83

Таблица 2: Наблюдения петли гистерезиса.

іі Калибровка осциллографа

Чувствительность осциллографа по осям Ox и Oy рассчитаем по формулам:

$$m_x = \frac{2\sqrt{2}R_0I_{\vartheta\varphi\varphi}}{2x}, \ m_y = \frac{2\sqrt{2}U_{\vartheta\varphi\varphi}}{2y}.$$

Для этого измерим $I_{\ni \Phi \Phi}$ и 2x для различных значений чувствительности оси Ox и $U_{\ni \Phi \Phi}$ и 2y для различных значений чувствительности оси Oy. Подставим измеренные значения в формулы (чувствительность записана в круглых скобках):

$$m_x = rac{2\sqrt{2} \cdot 0.3 {
m Om} \cdot 0.89 {
m A}}{8} = 94.4 {
m mB/дел} \ (100 {
m mB}),$$
 $m_x = rac{2\sqrt{2} \cdot 0.3 {
m Om} \cdot 0.449 {
m A}}{8} = 47.6 {
m mB/дел} \ (50 {
m mB}),$
 $m_x = rac{2\sqrt{2} \cdot 0.3 {
m Om} \cdot 0.181 {
m A}}{8} = 19.2 {
m mB/дел} \ (20 {
m mB}),$
 $m_y = rac{2\sqrt{2} \cdot 0.137 {
m B}}{4} = 96.9 {
m mB/дел} \ (100 {
m mB}),$
 $m_y = rac{2\sqrt{2} \cdot 0.105 {
m B}}{6} = 49.5 {
m mB/дел} \ (50 {
m mB}),$
 $m_y = rac{2\sqrt{2} \cdot 0.0401 {
m B}}{8} = 18.9 {
m mB/дел} \ (20 {
m mB}).$

ііі Определение параметров RC-ячейки

Подадим на вход интегрирующей ячейки напряжение $U_{\rm BX}$ и измерим напряжение на выходе $U_{\rm BMX}$. Рассчитаем постоянную времени по формуле:

$$au_{\text{\tiny M}} pprox rac{U_{\text{\tiny BX}}}{\omega_0 U_{\text{\tiny BMY}}} = rac{6 ext{B}}{2 \pi \cdot 50 \Gamma_{\text{\tiny H}} \cdot 44 \text{\tiny MB}} pprox 0.43 ext{c}.$$

Рассчитаем постоянную времени по значениям указанных на ячейке:

$$\tau = RC = 20$$
κ O M · 20 Mκ $\Phi = 0.4$ c.

Видим, что рассчитанное значение близко к измеренному.

і Обработка результатов

Рассчитаем Коэффициенты отклонений по осям X-Y в напряжённость H и индукцию B пользуясь рассчитанными в п.п. іі данными для чувствительности и формулами:

$$H = \frac{IN_0}{2\pi R}, \ I = \sqrt{2}I_{\text{эфф}}, \ |B| = \frac{\tau_{\text{\tiny M}}}{SN_U}U, \ U = m_y \cdot Y.$$

Пользуясь данными из таблиц (1, 2) вычислим значения для:

$$H_{\text{max}} = \frac{N_0 I_{\text{max}} \sqrt{2}}{2\pi R}, \ B_s = \frac{\tau m_y 2Y_s}{2SN_U}, \ H_c = H_{\text{max}} \frac{2X_s}{2X_c}, \ B_r = B_s \frac{2Y_s}{2Y_r}.$$

Образец	I	II	III
$H_{\mathrm{max}},\mathrm{A/M}$	31.5	69.1	395.0
B_s , Тл	0.132	0.959	1.589
H_c , A/M	6.63	19.7	62.4
B_r , Тл	0.075	0.811	0.667

Таблица 3: Рассчитанные характеристики образцов.

Из вычислений восстановим предельную петлю гистерезиса и начальную кривую намагничивания. Проведём касательные к восстановленной кривой намагничивания в начальной точке, и точке с максимальным наклоном. По наклону касательной оценим начальное и максимальное значение дифференциальной магнитной проницаемости.

v Оценка погрешностей и полученных результатов.

На точность измерений влияет несколько факторов:

- Счёт данных через осциллограф экран осциллографа не всегда способен передать точные численные данные.
- Влияние измерительных устройств при высоких токах из-за переключения режима амперметра искажалась петля, видимая на экране осциллографа.
- Работа с восстановленным графиком восстановленный график может отличатся от действительного.

Образец	Ι	II	III
$\mu_{\text{нач}}, \Gamma_{\text{H}/M}$	$2.3 \cdot 10^{-3}$	$1.6 \cdot 10^{-3}$	$5.5 \cdot 10^{-3}$
$\mu_{\text{нач}}/\mu_0$	1800	1200	4400
$\mu_{ m max}, \Gamma_{ m H/M}$	$1.8 \cdot 10^{-2}$	0.19	$1.1 \cdot 10^{-2}$
$\mu_{\rm max}/\mu_0$	$1.4 \cdot 10^4$	$1.5 \cdot 10^5$	$8 \cdot 10^{3}$

Таблица 4: Значение дифференциальной магнитной проницаемости.

Рис. 5: Предельная петля гистерезиса и начальная кривая намагничивания для образца ${\rm I}$

Рис. 6: Предельная петля гистерезиса и начальная кривая намагничивания для образца II

Рис. 7: Предельная петля гистерезиса и начальная кривая намагничивания для образца III

Всё вышеперечисленное делает данные перечислены возможным расчёт значений лишь в пределах порядка.

IV Выводы

Нам удалось при помощи электронного осциллографа пронаблюдать явление гистерезиса, и качественно показать различия между свойствами ферромагнетиков, а именно изменение формы кривой гистерезиса.

При помощи наблюдаемых кривых мы смогли оценить величины коэрцитивного поля H_c , индукции насыщения B_S , магнитной проницаемости $\mu_{\text{нач}}$ и μ_{max} с точностью до порядка, чем показали, что данный метод можно применять с некоторой эффективностью.