Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index

Qian Xie (Cornell ORIE)

Joint work with Raul Astudillo, Peter Frazier, Ziv Scully, and Alexander Terenin

INFORMS'24 Data Mining Best General Paper Competition

Coauthors

Raul Astudillo

Peter Frazier

Ziv Scully

Alexander Terenin

World of Parameter Optimization

Hyperparameter tuning: Training parameters -Accuracy Control optimization: Control parameters Reward Plasma physics: Stability Reactor parameters

World of Parameter Optimization

World of Parameter Optimization

Goal: $\max_{x \in \mathcal{X}} f(x)$

Goal: $\max_{x \in \mathcal{X}} f(x)$

f~Stochastic Process

Goal: **max** $\mathbb{E} \max_{t=1,2,...,T} f(x_t)$

Goal: **max**
$$\mathbb{E} \max_{t=1,2,...,T} f(x_t)$$
f~Gaussian Process

Goal: **max**
$$\mathbb{E} \max_{t=1,2,...,T} f(x_t)$$

$$f \sim \text{Gaussian Process}$$

Goal: **max** $\mathbb{E} \max_{t=1,2,...,T} f(x_t)$ *f*~Gaussian Process

Goal:
$$\max_{t=1,2,...,T} f(x_t)$$

f~Gaussian Process

What to evaluate next?

Optimal policy?

Challenges of Bayesian optimization

Continuous search domain

Challenges of Bayesian optimization

Continuous search domain

Challenges of Bayesian Optimization

Correlation & continuity ⇒ Intractable MDP

Challenges of Bayesian Optimization

Intractable MDP \Longrightarrow Optimal policy unknown

Other improvement-based policy:

- Probability of Improvement
- Knowledge Gradient
- Multi-step Lookahead EI
- •

- Improvement-based:
 - Expected Improvement
 - Probability of Improvement
 - Knowledge Gradient
 - Multi-step Lookahead EI

- Improvement-based:
 - Expected Improvement
 - Probability of Improvement
 - Knowledge Gradient
 - Multi-step Lookahead EI
- Entropy-based:
 - Max-value Entropy Search
 - Predictive Entropy Search

- Improvement-based:
 - Expected Improvement
 - Probability of Improvement
 - Knowledge Gradient
 - Multi-step Lookahead EI
- Entropy-based:
 - Max-value Entropy Search
 - Predictive Entropy Search
- Upper Confidence Bound

- Improvement-based:
 - Expected Improvement
 - Probability of Improvement
 - Knowledge Gradient
 - Multi-step Lookahead EI
- Entropy-based:
 - Max-value Entropy Search
 - Predictive Entropy Search
- Upper Confidence Bound
- Thompson Sampling

- Improvement-based
- Entropy-based
- Upper Confidence Bound
- Thompson Sampling

- Improvement-based
- Entropy-based
- Upper Confidence Bound
- Thompson Sampling
- Our work: Gittins Index

- Improvement-based
- Entropy-based
- Upper Confidence Bound
- Thompson Sampling
- Our work: Gittins Index

Why another approach?

Challenge: Varying Evaluation Costs

Hyperparameter tuning: Training parameters Accuracy Control optimization: Control parameters Reward Plasma physics: Stability Reactor parameters

Challenge: Varying Evaluation Costs

Challenge: Varying Evaluation Costs

Goal:
$$\max_{t=1,2,...,T} f(x_t)$$

s.t. $\mathbb{E} \sum_{t=1}^{T} c(x_t) \leq B$

Cost-aware Bayesian Optimization

Goal:
$$\max_{t=1,2,...,T} f(x_t)$$

s.t. $\mathbb{E} \sum_{t=1}^{T} c(x_t) \leq B$

s.t.
$$\mathbb{E} \sum_{t=1}^{T} c(x_t) \leq B$$

[Lee, Perrone, Archambeau, Seeger'21]

[Astudillo, Jiang, Balandat, Bakshy, Frazier'21]

Cost-aware Bayesian Optimization

Uniform costs

Varying costs

Expected improvement

 $\max_{x} \mathrm{EI}_{f|D}(x; y_{\mathrm{best}})$

Cost-aware Bayesian Optimization

Uniform costs

Expected improvement

 $\max_{x} EI_{f|D}(x; y_{best})$

Varying costs

Expected improvement per cost

$$\max_{x} \operatorname{EI}_{f|D}(x; y_{\text{best}})/c(x)$$

Uniform costs

Expected improvement $\max_{x} \operatorname{EI}_{f|D}(x; y_{\text{best}})$

Varying costs
Expected improvement per cost

$$\max_{x} \operatorname{EI}_{f|D}(x; y_{\text{best}})/c(x)$$

Uniform costs

Expected improvement

 $\max_{x} \operatorname{EI}_{f|D}(x; y_{\operatorname{best}})$

Varying costs

Expected improvement per cost

 $\max_{x} EI_{f|D}(x; y_{best})/c(x)$

Why divide?

Our view: lack of a guidance to incorporate costs

Uniform costs

Expected improvement

 $\max_{x} \operatorname{EI}_{f|D}(x; y_{\mathrm{best}})$

Varying costs

Expected improvement per cost

 $\max_{x} EI_{f|D}(x; y_{best})/c(x)$

EI and EIPC policy can be arbitrarily bad under varying costs! [Astudillo, Jiang, Balandat, Bakshy, Frazier'21]

Uniform costs

Expected improvement

Multi-step Lookahead EI

Varying costs

Expected improvement per cost

Budgeted Multi-step Lookahead EI

Uniform costs

Expected improvement

Multi-step Lookahead EI

Upper Confidence Bound

Thompson Sampling

Varying costs

Expected improvement per cost

Budgeted Multi-step Lookahead EI

?

?

Uniform costs	Varying costs
Expected improvement	Expected improvement per cost
Multi-step Lookahead EI	Budgeted Multi-step Lookahead EI
Upper Confidence Bound	?
Thompson Sampling	?
• •	• •

New design principle: Gittins Index

Uniform costs

Expected improvement

Multi-step Lookahead EI

Upper Confidence Bound

Thompson Sampling

:

Varying costs

Expected improvement per cost

Budgeted Multi-step Lookahead EI

?

?

•

New design principle: Gittins Index

$$EI(x) = \mathbb{E}[\max(f(x) - y_{\text{best}}, 0) \mid D]$$
$$\max_{x} EI_{f|D}(x; y_{\text{best}})$$

 $EI(x) = \mathbb{E}[\max(f(x) - y_{\text{best}}, 0) \mid D]$ $\max_{x} EI_{f|D}(x; y_{\text{best}})$

Gittins Index

$$GI_{f|D}(x) = g \text{ s.t. } EI_{f|D}(x; g) = c(x)$$

$$\max_{x} GI_{f|D}(x)$$

 $EI(x) = \mathbb{E}[\max(f(x) - y_{\text{best}}, 0) \mid D]$ $\max_{x} EI_{f|D}(x; y_{\text{best}})$

One-step approximation to MDP

Gittins Index

$$GI_{f|D}(x) = g \text{ s.t. } EI_{f|D}(x;g) = c(x)$$

$$\max_{x} GI_{f|D}(x)$$

 $EI(x) = \mathbb{E}[\max(f(x) - y_{\text{best}}, 0) \mid D]$ $\max_{x} EI_{f|D}(x; y_{\text{best}})$

Temporal simplification to MDP

Gittins Index

$$GI_{f|D}(x) = g \text{ s.t. } EI_{f|D}(x;g) = c(x)$$

$$\max_{x} GI_{f|D}(x)$$

 $EI(x) = \mathbb{E}[\max(f(x) - y_{\text{best}}, 0) \mid D]$ $\max_{x} EI_{f|D}(x; y_{\text{best}})$

Temporal simplification to MDP

Gittins Index

$$GI_{f|D}(x) = g \text{ s.t. } EI_{f|D}(x;g) = c(x)$$

$$\max_{x} GI_{f|D}(x)$$

Spatial simplification to MDP

Bayesian Optimization

Continuous

Correlated

Bayesian Optimization

Continuous ⇒ Discrete

Correlated

Bayesian Optimization

Continuous \Rightarrow Discrete

Correlated ⇒ Independent

Intuition Behind Pandora's Box Gittins Index

How to translate Gittins index?

How to translate Gittins index?

Is Gittins good in Bayesian optimization?

Experiment Setup: Objective Functions

Samples from prior

Pest Control

Empirical

Figure from ChatGPT

Ackley function

Figure from OpenAI Gym 60

Experiment results

• Easy-to-compute?

• Easy-to-compute?

Yes, EI + bisection

- Easy-to-compute?

 Yes, EI + bisection
- Any theoretical results?

- Easy-to-compute?

 Yes, EI + bisection
- Any theoretical results?

 Yes, expected-budget-constrained ≅ cost-per-sample

Theoretical Result

max best observed under budget

Budgeted Pandora's Box

Expected budget constraint

Optimal policy?

max (best observed – costs)

Pandora's Box

Cost per sample

Optimal policy: Gittins index

Theoretical Result

max best observed under budget

max (best observed – scaled costs)

Budgeted Pandora's Box

Expected budget constraint

Pandora's Box

Cost per sample

Optimal policy: Gittins index

Optimal policy \checkmark

extension to [Aminian, Manshadi, Niazadeh'24]

Theoretical Result

budget-dependent

max best observed under budget

max (best observed – scaled costs)

Budgeted Pandora's Box

Expected budget constraint

Optimal policy

Pandora's Box

Cost per sample

Optimal policy: Gittins index

extension to [Aminian, Manshadi, Niazadeh'24]

- Easy-to-compute?

 Yes, EI + bisection
- Any theoretical results?

 Yes, expected-budget-constrained ≅ cost-per-sample
- Tuning parameters?

- Easy-to-compute?

 Yes, EI + bisection
- Any theoretical results?

 Yes, expected-budget-constrained ≅ cost-per-sample
- Tuning parameters?Yes, control unit conversion

New Design Principle: Gittins Index

- Problem
 - Bayesian optimization with varying costs
- Key idea
 - linked to Pandora's box and Gittins index theory
- Impact
 - competitive performance
- Future potential
 - multi-stage optimization with partial feedback