МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСТИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Інститут комп'ютерних наук та інформаційних технологій Кафедра програмного забезпечення

3BIT

до лабораторної роботи №3 **на тему:** «Моделювання та дослідження основних типів тригерів в системі Proteus» **з дисципліни:** «Архітектура комп'ютера»

Лектор:

доц. кафедри ПЗ Крук О. Г.

Виконав:

ст. гр. П3-22 Чаус О. М.

Прийняв:

доц. кафедри ПЗ

Крук О. Г.

« ____ » ____ 2022 p.

Σ=_____

Тема роботи: Синтез та моделювання шифраторів і дешифраторів та мультиплексорів і демультиплексорів в системі Proteus

Мета роботи: закріпити практичні навики моделювання логічних схем в середовищі системи програм Proteus; поглибити знання про будову та функціонування основних типів тригерів; ввести їх схеми та виконати моделювання в системі програм Proteus; дослідити на основі отриманих часових діаграм їх роботу.

Варіант 27 در ا تاک	
27	55
20	57

Теоретичні відомості

Тригер – це електронний вузол з двома стійкими станами, зміна яких відбувається під дією вхідних сигналів. Якщо прийняти один стан тригера за логічний нуль, а інший – за логічну одиницю, то виходить, що тригер є елементом пам'яті, який може зберігати один біт інформації. Тригер є найпростішим представником послідовних пристроїв і водночас обов'язковим елементом всіх функціонально закінчених вузлів і блоків.

У послідовних пристроях (цифрових автоматах з пам'яттю або скінченних автоматах) вихідні сигнали в кожний момент часу залежать не лише від поточних значень на входах, але й від внутрішнього стану, який є наслідком попередніх дій вхідних сигналів.

На основі тригерів будують типові функціональні вузли комп'ютерів – регістри, лічильники, накопичувальні суматори, а також мікропрограмні автомати.

Усі різновиди тригерів можна розглядати як елементарний автомат, що складається з власне елемента пам'яті (ЕП) та схеми керування (СхК), яка утворює вхідну логіку. Схема керування забезпечує записування, зчитування, стирання та індикацію двійкової інформації, яка зберігається в тригері.

Хід роботи
$$T = \frac{1}{f} = \frac{1}{55000} = 18.181 \cdot 10^{-6} \text{ c}$$

$$\tau = \frac{T}{10} = 1.818 \cdot 10^{-6} \text{ c}$$

$$\tau_2 = \frac{T}{64} = 1.30 \cdot 10^{-7} \text{ c}$$

1. Схема асинхронного RS-тригера на елементах АБО-НЕ

Генератори до схеми:

Графік схеми:

Порівнявши значення графіка та таблиці істинності для тригера дійшов до висновку, що схему побудовано правильно.

2. Схема асинхронного RS-тригера на елементах I-HE

Генератори до схеми:

Графік до схеми:

3. Схема синхронного RS-тригера на елементах I-HE

Генератори до схеми:

4. Схема синхронного D-тригера

Генератори до схеми:

Графік

Порівнявши значення графіка та таблиці істинності для тригера дійшов до висновку, що схему побудовано правильно.

Час затримки D – час між двома послідовними появами активного логічного рівня на вході C, зображений на графіку.

5. Схема тригера JKFF

Генератори до схеми

50.0u

100u

0.00

6. Схема тригера JKFF(2)

Генератори SET6 та RESET6

Отриманий графік

Порівнявши вихідні значення, зображені на графіку та значення в таблиці істинності до даного тригера, дійшов до висновку, що схему побудовано правильно.

7. Схема синхронного D-тригера на основі тригера JKFF

Генератори до схеми

Графік:

Час затримки D – час між двома послідовними появами активного логічного рівня на вході С, зображений на графіку.

8. Схема синхронного Т-тригера на основі ЈКFF тригера

Генератори до схеми Digital State Generator Properties

Графік

Період вихідного сигналу $T = 3.64 \cdot 10^{-5} c$

Висновки: під час виконання лабораторної роботи практично закріпив навички моделювання логічних схем в середовищі Proteus, поглибив знання про основні типи послідовнісних схем(RS-тригери, D-тригери, JK-тригери та T-тригери) а також навчився синтезувати їхні схеми.