Automatización y robótica

VadymFormanyuk vf13@alu.ua.es

22 de mayo de 2023

${\bf \acute{I}ndice}$

1.	1. Ejercicio 1	2
	1.1. Numerar los eslabones comenzando con 1 (primer eslabón móvil de la cadena) y acal n (último eslabón móvil). Se numerará como eslabón 0 a la base fija del robot	
	1.2. Numerar cada articulación comenzando por 1 (la correspondiente al primer grado de y acabando en n	e libertad)
	1.3. Localizar el eje de cada articulación. Si ésta es rotativa, el eje será su propio eje de prismática será el eje a lo largo del cual se produce el desplazamiento	giro. Si es
	1.4. Para el eje i, de 0 a n-1, situar el eje zi sobre el eje de la articulación i+1	
	1.5. Situar el origen del sistema de la base S0 en cualquier punto del eje z0. Los ejes situarán de modo que formen un sistema dextrógiro con z0	x0 e y0 se
	1.6. Para i de 1 a n-1, situar el origen del sistema Si en la intersección del eje zi con la líncomún a zi-1 y zi. Si ambos ejes se cortasen se situaría Si en el punto de corte. paralelos situaría Si se situaría en la articulación i+1	ea normal Si fuesen
	1.7. Situar xi en la línea normal común a zi-1 y zi.	4
	1.8. Situar yi de modo que forme un sistema dextrógiro con xi y zi	4
	1.9. Situar el sistema Sn en el extremo del robot de modo que zn coincida con la direcció	on de zn-1
	y xn sea normal a zn-1 y zn.	4
	1.10. Tabla:	5
2.	2. Ejercicio 2	6

1. Ejercicio 1

Se ha de resolver la cinemática directa del robot SCORBOT ER-IX. Se trata de un robot de 5 grados de libertad y que permite manejar cargas de hasta 2 kg. En la siguiente figura se observa el robot real y un esquema con las longitudes de cada uno de sus eslabones.

En concreto se habrán de dibujar los sistemas de coordenadas obtenidos siguiendo el algoritmo de Denavit-Hartenberg empleando el siguiente esquema. También se indicará la tabla de parámetros Denavit-Hartenberg obtenidos.

2

- 1.1. Numerar los eslabones comenzando con 1 (primer eslabón móvil de la cadena) y acabando con n (último eslabón móvil). Se numerará como eslabón 0 a la base fija del robot.
- 1.2. Numerar cada articulación comenzando por 1 (la correspondiente al primer grado de libertad) y acabando en n.
- 1.3. Localizar el eje de cada articulación. Si ésta es rotativa, el eje será su propio eje de giro. Si es prismática será el eje a lo largo del cual se produce el desplazamiento.
- 1.4. Para el eje i, de 0 a n-1, situar el eje zi sobre el eje de la articulación i+1
- 1.5. Situar el origen del sistema de la base S0 en cualquier punto del eje z0. Los ejes x0 e y0 se situarán de modo que formen un sistema dextrógiro con z0.

- 1.6. Para i de 1 a n-1, situar el origen del sistema Si en la intersección del eje zi con la línea normal común a zi-1 y zi. Si ambos ejes se cortasen se situaría Si en el punto de corte. Si fuesen paralelos situaría Si se situaría en la articulación i+1.
- 1.7. Situar xi en la línea normal común a zi-1 y zi.
- 1.8. Situar yi de modo que forme un sistema dextrógiro con xi y zi.
- 1.9. Situar el sistema Sn en el extremo del robot de modo que zn coincida con la dirección de zn-1 y xn sea normal a zn-1 y zn.

1.10. Tabla:

	$ heta_{ m i}$	$d_{\rm i}$	a_{i}	$\alpha_{ m i}$
1	q1	m	0	-90°
2	q°+90°	h	0	90°
3	q3	ı	0	0°
4	q4-90°	j	0	-90°
5	q5	k	0	0°

Ejercicios Teoría: Robótica

2. Ejercicio 2

Calcular la cinemática directa del siguiente robot SCARA por métodos geométricos.

El robot SCARA mostrado en la trasparencia tiene 4 articulaciones.

■ Rotaciones: q1,q2,q4

■ Prismática: q3

Mirando el robot desde 'arriba' en 2D se observa que usando trigonometría se puede obtener las posiciones X e Y del robot y la Z correspondiente a la longitud del brazo robótico. Con ello se observa que se necesita obtener el punte de interés P(x4,x4,z4).

$$X4 = 12 * \cos(q1) + 13*\cos(q1+q2)$$

•
$$Y4 = 12 * sen(q1) + 13*sen(q1+q2)$$

$$Z4 = 11-q3$$

Con esto se obtiene que el punto de interés es:

$$\bullet$$
 ($12 * \cos(q1) + 13*\cos(q1+q2)$, $12 * \sin(q1) + 13*\sin(q1+q2)$, $11-q3$)