Ch—02 Electrostatic Potential and Capacitance Daily Practice Problem 08

Q1. Find the equivalent capacitance between points A and B as shown in figure.

Q2. Find the equivalent capacitance of the infinite ladder shown in figure between the points A and B.

Q3. An infinite ladder is constructed by connecting several sections, of 2 μ F, 4 μ F capacitor combinations as shown in figure, It is terminated by a capacitor of capacitance C. What value should be chosen for C such that the equivalent capacitance of the ladder between A and B becomes independent of the number of sections in between?

Q4. In the given circuit, a charge of +80 μ C is given to the upper plate of the 4μ F capacitor. Then in the steady state, the charge on the upper plate of the 3 μ F capacitor is

- **a.** $+ 32\mu$ C
- **b.** $+40\mu$ C
- **c.** $+48\mu$ C
- **d.** $+ 80 \mu C$

Q5. Find the resultant capacitance between the points X and Y of the combination of capacitors shown in Fig.

Q6. Four capacitors of equal capacitances are connected in series with a battery of 10 V, as shown in Fig. The middle point B is connected to the earth. What will be the potentials of the points A and C?

Q7. For the network shown in Fig., find the potential difference between points A and B, and that between B and C in the steady state.

Q8. Three uncharged capacitors of capacitance C_1 , C_2 and C_3 are connected to one another as shown in figure. Find the potential at O.

Q9. Six plates of equal area A and plate separation as shown (figure) are arranged. The equivalent capacitance between A and B is

- **a.** $\frac{\epsilon_0 A}{d}$
- **b.** $\frac{2\epsilon_0 A}{d}$
- **c.** $\frac{3\epsilon_0 A}{d}$
- **d.** $\frac{\epsilon_0 A}{4d}$

Q10. If area of each plate is A and the successive separations are d, 2d, and 3d, then the equivalent capacitance across A and B is

- a. $\frac{\epsilon_0 A}{6d}$
- **b.** $\frac{\epsilon_0 A}{4d}$
- $\mathbf{C.} \ \frac{3\epsilon_0 A}{4d}$
- **d.** $\frac{\epsilon_0 A}{3d}$

Q11. A 2 μ F capacitor is charged as shown in the figure. The percentage of its stored energy dissipated after switch S is turned to position 2 is

- **a.** 0%
- **b.** 20%
- c. 75%
- **d.** 80%

ANSWERS

3.
$$C = 4 \mu F$$

5.
$$2.5 \mu C$$

6.
$$V_A = +5V$$
, $V_C = -5V$

7.
$$V_{AB} = 25V$$
, $V_{BC} = 75 V$

8.
$$V = \frac{49}{11}V$$