UMMUL QURA HIGH SCHOOL

AROWONA BUS-STOP, AMULOKO-AKANRAN ROAD, IBADAN. 2020/2021 SECOND TERM EXAMINATION

SUBJECT: MATHEMATICS DURATION : 3:00hrs

CLASS: SS 1 INSTRUCTION: Attempt section A and B

SECTION A: OBJECTIVES

- 1. Convert 101213 to base 10
 - A. 87
 - B. 82
 - C. 97
 - D. 88
- 2. Convert binary number 110011 to
 - base 10
 - A. 41
 - B. 57
 - C. 71
 - D. 31
- 3. Convert 3125 in base 4 to base 10
 - A. 515
 - B. 419
 - C. 525
 - D. 415
- 4. Fill in the blank space of $(12)_{16} = ($
 -)10
 - A. 18
 - B. 14
 - C. 16
 - D. 12
- 5. Convert 1.011₂ to base 10
 - A. 1.225₁₀
 - B. 1.755₁₀
 - C. 1.555₁₀
 - D. 1.375₁₀
- 6. Simplify $234_5 + 434_5$
 - A. 1223₅
 - B. 1333₅
 - C. 1232₅
 - D. 1222₅
- 7. Simplify 1111₂ 1011₂
 - A. 101₂

- B. 100₂
- C. 111₂
- D. 110₂
- 8. Simplify $1011_2 \times 11_2$
 - A. 100001₂
 - B. 110001₂
 - C. 111001₂
 - D. 111101₂
- 9. Simplify 3310₅ 1442₅
 - A. 1212₅
 - B. 1313₅
 - C. 1314₅
 - D. 1131₅
- 10. Given that $13x = 12_{10}$, find the value
 - of x
 - A. 9
 - B. 8
 - C. 7
 - D. 6
- 11. The integers of modulus 5 are
 - A. {0, 1, 2, 3, 4}
 - B. {0,1,2,3,4,5,6}
 - C. {0, 1,2,3}
 - D. {0,1,2,3,4,5,7}
- 12. Simplify 12(mod 5)
 - A. 2(mod 5)
 - B. 2(mod 6)
 - C. 2(mod 12)
 - D. 3(mod 5)
- 13.

_+	- 0	1	2
0		1	2
1 2	1	2	0
2			

In line addition table for modulo 3 above; the correct missing are

- A. 2, 0, 1
- B. 2, 0, 2
- C. 1, 0, 2
- D. 1, 0, 1
- 14. Express 560 in standard form
 - A. 5.6×10^3
 - B. 5.6×10^2
 - C. 5.6×10^4
 - D. 5.6×10^{1}
- 15. Simplify $a^5 \times a^2$
 - A. a^{10}
 - B. a^7
 - $C. a^5$
 - D. a^2
- 16. simplify n⁰
 - A. n
 - B. 1
 - C. 0
 - D. 2
- 17. Simplify $16^{\frac{1}{2}}$
 - A. 16
 - B. ½
 - C. 4
 - D. 8
- 18. Find the value of x in $7^x = 49$
 - A. 49
 - B. 7
 - C. 2
 - D. 9
- 19. Calculate the value of y of $3 \times 9^{1+y} =$
 - 27^{-y}
 - A. $\frac{-2}{5}$
 - B. $\frac{2}{5}$
 - C. $\frac{3}{5}$
 - D. $\frac{-3}{5}$
- 20. Simplify log₃81
 - A. 4

- B. 3
- C. 2
- D. 5
- 21. Members of a set are called
 - A. Elements
 - B. Set notation
 - C. Member
 - D. Set
- 22. The set of prime number include
 - A. 1, 2, 3
 - B. 2, 3, 5
 - C. 3, 5, 9
 - D. 1, 7, 9
- 23. Empty set otherwise known as
 - A. Void set
 - B. Cardinality of set
 - C. Element
 - D. Equal set
- 24. The following are examples of finite set except
 - A. Instruments in a mathematical set
 - B. A set of even number between 1 and 10
 - C. All counting of number
 - D. The set of prime number between 1 and 2
- 25. Write all possible subset of set {9,
 - 10, 11}
 - A. {9},{10},{11},{9,10},{10,11},{9,11},{Ø} and {9,10,11}
 - B. {9},{10},{11},{9,10},{10,11},{9,11},{Ø}
 - C. $\{9\},\{0\},\{9,10\},\{9,11\},\{\emptyset\}$
 - D. {9,10,11},{9},{10},{Ø}
- 26. If $A = \{3,4,5,6\}$ and B =

 $\{3,5,7,9,11\}$, Find A \cup B

- A. {3,4,5,6,7,9,11}
- B. {3,4,5,5,7,9,11}
- C. {3,4,5,6,7,8,9}
- D. {3,4,5,6,7,9,10}

- 27. Let $A = \{a,b,c,d,e,f\}$ and B = $\{a,e,i,o,u\}$. A \cap B is $\{a,b\}$
 - A. {a,e}
 - B. {i,o}
 - C. $\{a,i\}$
- 28. Given a universal set $N = \{X: 2 \le x\}$ < 5}, the member of N is
 - A. {2,3}
 - B. {2,3,4}
 - C. $\{-1,0,1,2\}$
 - D. {2,4}

Use the diagram above to answer question 29 and 30

- 29. P \cap Q \cap R is
 - A. 5
 - B. 1, 6
 - C. 2
 - D. 4
- 30. P \cap Q \cap R¹
 - A. 2
 - B. 4
 - C. 1, 6
 - D. 5
- 31. Let $\mu = \{a,b,c,d,e,f,g,h\}, A=$ $\{a,b,c,d\}, B = \{b,d,f,h\}$
 - $(A \cup B)^1$ is
 - A. $\{a,b,c,d,f,h\}$
 - B. $\{e,g\}$
 - C. $\{a,c,e,f,g,h\}$
 - D. $\{a,b,c,d\}$
- 32. In a class of 40 students, a student can study French or History or Both.

If 20 study French, 23 study History and 6 study neither, how many students study both subjects?

- A. 9
- B. 20
- C. 6
- D. 23
- 33. Make t the subject of the formular: r
 - A. $t = \frac{s}{rs 1}$
 - B. $t = \frac{t}{rs-1}$
 - C. $t = \frac{r}{rs-1}$
 - D. $t = \frac{1}{r_{s-1}}$
- 34. Make g the subject of the formula in the equation: $T = 2\pi \frac{h+k}{gh}$
 - A. $g = \frac{4\pi^2 (h^2 + k)}{h^2 T_2}$ B. $g = \frac{4(h^2 + k)}{h^2 T_2}$ C. $g = \frac{4\pi^2 (h^2 + k)}{h^2 T_2}$ D. $g = \frac{4h^2 (h^2 + k)}{h^2 T_2}$
- 35. If P varies directly as R, and R = 12when P is 10, find the relationship P and R
 - A. $P = \frac{5 R}{6}$

 - B. $\frac{6R}{5}$ C. $\frac{1R}{6}$ D. $\frac{12R}{6}$
- 36. Use the question 35 above to answer question 36. If P = 6, find the value of R

 - B. $5\frac{1}{4}$
 - C. $6\frac{1}{2}$
 - D. $7\frac{1}{2}$

- 37. If V varies inversely as W and V =120 when W = 6, Find V when W =
 - 9. V is

 - C. 70
 - D. 80
- 38. If m varies directly as n and inversely as the square of P. If m = 3when n = 2 and P = 1, find m in terms of n and p. m is ____

 - B. $\frac{3p}{3n^2}$ C. $\frac{3}{2p^2}$
 - D. $\frac{4}{2n^2}$
- 39. Which of the following expression is quadratic
 - A. $\frac{1}{2}x + 2$
 - B. r + 15
 - C. $\frac{1}{10}s \frac{2}{5}$
 - D. $r^2 r 4$
- 40. Factorise $x^2 + 9x + 14$
 - A. (X + 1)(X + 2)
 - B. (X+2)(X+7)
 - C. (X + 3)(X + 4)
 - D. (X + 7)(X + 7)
- 41. Factorise $V^2 6V 27$
 - A. (V + 3)(V 9)
 - B. (V + 6)(V 7)
 - C. (V 3)(V 6)
 - D. (X + 3)(V 3)
- 42. Factorise $16y^3 + 16y^2 + 4y$
 - A. 4y(2y + 1)(2y + 1)
 - B. 2y(2y + 1)(2y + 1)
 - C. Y(4y + 1)(2y + 1)
 - D. 5y(2y + 2)(2y + 1)
- 43. Factorise $12x^2y^2 11xy-1$

- A. (xy 1)(12xy + 1)
- B. $(x^2 1)(11y + 1)$
- C. (xy 2)(12xy + 1)
- D. (3xy 1)(11xy + 1)
- 44. Factorise $3Y^2 75$
 - A. 3(y-5)(y+5)
 - B. 2(y-5)(y+5)
 - C. 2(y-2)(y+5)
 - D. (y-5)(y+5)
- 45. Solve this quadratic equation $3t^2$ 12t = 0
 - A. t = 0 or 4
 - B. t = 1 or 3
 - C. t = 0 or 12
 - D. t = 0 or 3
- 46. Construct a quadratic equation whose roots are 5 and -8 respectively.
 - A. $Y^2 + 3Y 40 = 0$
 - B. $Y^2 + 2Y 20 = 0$
 - C. $Y^2 + Y 10 = 0$
 - D. $Y^2 2Y 40 = 0$
- 47. Find the roots of $2r^2 18 = 0$
 - A. (r-2)(r+3)
 - B. (r-3)(r+3)
 - C. (r+5)(r+4)
 - D. (r+2)(r-2)
- 48. Simplify log _{0.5}32
 - A. 5
 - B. -5
 - C. 0.5
 - D. 32
- 49. Evaluate $1\frac{1}{4} + 1\frac{1}{2}$ $5\frac{1}{8} 3\frac{3}{4}$
 - A. 1
 - B. 2
 - C. 3
 - D. 4
- 50. Find the value of $121^{\frac{1}{2}}$
 - A. 11

B. 121 D. 13

C. 12

SECTION B: THEORY PART INSTRUCTION: ANSWER FOUR QUESTIONS

- 1. In a survey of 290 newspaper readers, 181 of them read The **Daily Time**, 142 read The **Guardian**, 117 read **Punch** and each read at least one of the three papers. If 75 read The **Daily Time** and The **Guardian**, 60 read The **Daily Time** and **Punch** and 54 read The **Guardian** and **Punch**.
- (a). Draw a venn diagram to illustrate this information
- (b). How many readers read:
 - i. All three papers
 - ii. Exactly two of the papers
 - iii. Exactly one of the papers
 - iv. The Guardian only?
- 2. The cost of maintaining a school is partly constant and partly varies as the number of pupils. With 50 pupils, the cost is #15,705 and with 44 pupils, it is #13,305.
- (a). Find the cost when there are 40 pupils
- (b). If the fee per pupil is #360.00, what is the least number of pupils for which the school can run without loss
- 3(a). The area of a rectangular swimming pool is $35m^2$ while the perimeter is 24cm. find the length of the swimming pool.
- 3(b). Anu's age exceeds Sumbo's age by 15. The sum of the square of their ages is 725. What are their ages.
- 4(a). Copy and complete the table below for $Y = 3X^2 5X 7$

X	-3	-2	-1	0	1	2	3	4
Y	35			-7	-9		5	

(b). Using a scale of 1cm = 1unit on X – axis and 1cm = 5units on Y – axis, draw the graph of Y = $3X^2 - 5X - 7$

(c). From the graph, find the roots of the equation $3x^2 - 5x - 7 = 0$