

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Detailed Course on Group Theory For CSIR NET 2023

Gajendra Purohit

November 3

Enroll Now

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

Save up to 20% on your IIT JAM Subscriptions!*

Now available at the lowest prices!*

Plus

Duration	Current Price	Price Drop	What you Pay	What you save
3 Months	₹ 6,807	₹ 1,361	₹ 5,446	20%

Subscribe Now

Use code GPSIR Call 8585858585 for more details

^{*}T&C apply, as available on the platform.

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Function of several variable:

Definition of n-tuples: The Euclidean n-space R^n is the set of all n-tuples $(x_1, x_2, ..., x_n)$ of real numbers on which the two operation of vector addition and scalar multiplication are defined as follow:

(i) Vector addition of two n-tuples:

Let $(x_1, x_2, ..., x_n)$ & $(y_1, y_2,, y_n)$ are two vectors then

$$(x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) = (x_1 + y_1, x_2 + y_2, + x_n + y_n)$$

(ii) Scalar multiplication:

Let
$$(x_1, x_2,, x_n) \in R^n \& \alpha \in R$$
, then
$$\alpha(x_1, x_2,, x_n) = (\alpha x_1, \alpha x_2,, \alpha x_n)$$

Real valued function on n-variables:

Let $S \subseteq \mathbb{R}^n$, then a map $f: S \to \mathbb{R}$ is called real valued function on n variables.

Limit of function of two variable:

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function & $(a, b) \in \mathbb{R}^2$, $l \in \mathbb{R}$, then we usually denote limit by $\lim_{(x,y)\to(a,b)} f(x,y) = l$.

Important method:

Path method:

If f(x, y) gives same values 'l' along all paths $y = \phi(x)$ Then $\lim_{(x,y)\to(a,b)} f(x,y) = l$. passing through (a, b),

Then
$$\lim_{(x,y)\to(a,b)} f(x,y) = l$$
.

Convert function from cartisian form to polar form:

Let f(x, y) is a function of two variable in cartisian form, then put $x = r \cos \theta \& y = r \sin \theta$

Then f(x, y) convert into $f(r, \theta)$ which is called in polar form.

Bounded function:

A function of two variables f(x, y) is said to be bounded iff $\exists M > 0$ s.t. $|f(x, y)| \le M$; for all (x, y)

Results: If a function f(x, y) is bounded then limit of this function need not be exist.

Results: If limit of function exist then function need not be bounded.

Function from Rn to Rm:

Let
$$f: \mathbb{R}^n \to \mathbb{R}^m$$

Let
$$f: \mathbb{R}^n \to \mathbb{R}^m$$

s.t. $f(x_1, x_2,, x_n) = (\phi_1, \phi_2,, \phi_m)$, where $\phi_i: \mathbb{R}^n \to \mathbb{R}$

Limit of a function from $\mathbb{R}^n \to \mathbb{R}^m$:

Let
$$f: \mathbb{R}^n \to \mathbb{R}^m$$

s.t.
$$f(x_1, ..., x_n) = (\phi_1, ..., \phi_m)$$

f has a limit at point (a, b) iff all ϕ_i have limit at (a, b).

Q.1. Let
$$L = \lim_{(x,y)\to(2,-2)} \frac{\sqrt{x-y}-2}{(x-y)-4}$$
, then L is

IIT JAM 2016

(a) 1/2

(b) 1/4

(c) 1/8

(d) 1

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Q.3. Let
$$l = \lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2 + y^2}$$
 and consider the set $A = \{x \in R \mid e^x = l\}$. Then

$$A = \{x \in R \mid e^x = l\}$$
. Then

(a) $A = \phi$

- (b) A is singleton
- (c) A is countably infinite
- (d) A is uncountable

Q.3. Let
$$L = \lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4 + y^2}$$
, then L is

(a) 0

(b) 1

(c) 1/2

(d) does not exist

- For $t \in \mathbb{R}$, let [t] denote the greatest integer less than or equal to t. Define function
 - h: $R^2 \rightarrow R$ and g: $R \rightarrow R$ by $h(x,y) = \begin{cases} \frac{-1}{x^2 - y} & \text{if } x^2 \neq y \\ 0 & \text{if } x^2 = y \end{cases}$
 - and $g(x, y) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ then which of the
 - following is false IIT JAM 2022
 - (a) $\lim_{(x,y)\to(\sqrt{2},\pi)} \cos\left(\frac{x^2y}{x^2+1}\right) = \frac{-1}{2}$

 - (b) $\lim_{(x,y)\to(\sqrt{2},2)} e^{h(x,y)} = 0$ (c) $\lim_{(x,y)\to(e,e)} \log(x^{y-[y]}) \neq e-2$ (d) $\lim_{(x,y)\to(0,0)} e^{2y} g(x) = 1$

Q.5. Let S be the set of $(\alpha, \beta) \in \mathbb{R}^2$ s.t. $\frac{x^{\alpha}y^{\beta}}{\sqrt{x^2 + y^2}} \to 0$ as

 $(x, y) \rightarrow (0, 0)$, then S is

- (a) $\{(\alpha, \beta); \alpha > 0, \beta > 0\}$
- (b) $\{(\alpha, \beta); \alpha > 2, \beta > 2\}$
- (c) $\{(\alpha, \beta); \alpha + \beta > 1\}$
- (d) $\{(\alpha, \beta); \alpha + 4\beta > 1\}$

Q.6. Statement – 1:
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{(x^2+y^2)^2}$$
 exists.

Statement – 2:
$$\lim_{(y,y)\to(0,0)} \frac{x^3y^3}{(x^2+v^2)^{3/2}}$$
 exists.

Then

- (a) Statement 1 is true but statement 2 is not
- (b) Statement 2 is true but statement 1 is not
- (c) Both statements are true
- (d) Both statements are false

Q.7. For what value of $\alpha \& \beta$, $f(x,y) \to 0$ as $(x, y) \to (0, y)$

0). Where
$$f(x, y) = \frac{x^3 + v^3}{\sqrt{x^2 + v^3}}$$
.

(a) for
$$\alpha = 1$$
, $\beta = 1$

(c) for
$$\alpha \neq 3$$
, $\beta = 3$ (d) None of these

(b) for
$$\alpha = 2$$
, $\beta = 2$

Q.8. Let
$$f(x,y) = \frac{x \cdot y^2}{x^2 + y^4}$$
 Then $\lim_{(x,y) \to (0,0)} f(x,y)$.

- (a) is equal to 1/2 (b) is equal to 2/5
- (c) is equal to 3/5 (d) none of the above

Q.9. Let $R^2 \rightarrow R$ be defined by

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
. Then is equal to

- (a) 1/3 (b) 2/3
- (c) 4/3 (d) None of the above

Detailed Course on Group Theory For CSIR NET 2023

Gajendra Purohit

November 3

Enroll Now

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 • 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR