1

Matrix theory Assignment 19

Shivangi Parashar

Abstract—This document contains the concept of matrix diagonalization.

Download all python codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/tree/master/Assignment19/ Codes

Download latex-tikz codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/blob/master/Assignment19/ Assignment 19.tex

1 Problem

Let A be a 3×3 matrix with real entries. Identify the correct statements.

- 1.A is necessarily diagonalizable over **R**
- 2.If A has distinct real eigen values than it is diagonalizable over ${\bf R}$
- 3.If A has distinct eigen values than it is diagonalizable over C
- 4.If all eigen values are non zero than it is diagonalizable over C

2 Solution

Statement 1.	A is necessarily diagonalizable over R
False statement	matrix A is diagonalizable if and only if there is a basis of \mathbb{R}^3 consisting of eigenvectors of A.
Example:	Consider a matrix $ \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{pmatrix} $
	Eigen values are: $\begin{pmatrix} 1 - \lambda & 1 & 0 \\ 0 & 1 - \lambda & 1 \\ 0 & 0 & 4 - \lambda \end{pmatrix} = 0. \implies \lambda_1 = 1, \lambda_2 = 4$
	$\lambda_1 = 1$ has eigen vector $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ and $\lambda_2 = 4$ has eigen vector $\begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix}$
	We have found only two linearly independent eigenvectors for A,Hence not diagonalisable
Statement 2.	If A has distinct real eigen values than it is diagonalizable over R
True statement Proof	A has n linearly independent eigenvectors which implies it is diagonalizable. Suppose A is Diagonalizable . Than, $P^{-1}AP = D$ and hence, AP=PD where P is invertible matrix and D is a diagonal matrix.
	$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} \text{ and } P = (P_1 P_2 \cdots P_n)$
	Since AP=PA \Longrightarrow $(AP_1 \ AP_2 \ \cdots \ AP_n) = (\lambda_1 P_1 \ \cdots \ \lambda_n P_n)$
	So, $AP_i = \lambda_i P_i$ where $i = 1, \dots, n$
	Now,P is invertible .Hence, P_i is eigen vector of A for λ Also rank(P)=n.So it's columns $\begin{pmatrix} P_1 & P_2 & \cdots & P_n \end{pmatrix}$ are linearly independent
	Now, converse.
	If $(p_1 \ p_2 \ \cdots \ p_n)$ are n independent eigen vectors then, $AP_1 = \lambda P_1, \cdots, AP_n = \lambda P_n$
	$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \text{ and } P = \begin{pmatrix} P_1 & P_2 & \cdots & P_n \end{pmatrix}$
	Now, $AP_i = \lambda_i P_i \implies AP = PD$ so, $P^{-1}AP = D$ is a diagonal matrix.
Statement 3.	If all eigen values are non zero than it is diagonalizable over C
True statement	A has n linearly independent eigenvectors which implies it is diagonalizable.
Example:	$A = \begin{pmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{pmatrix} \implies \lambda_1 = 2, \lambda_2 = 3, \lambda_3 = 6$
	Eigen vectors are: $x_1 = \begin{pmatrix} -1\\1\\0 \end{pmatrix}, x_2 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, x_3 = \begin{pmatrix} -1\\-1\\2 \end{pmatrix}$ respectively
Statement 4.	If all eigen values are non zero than it is diagonalizable over C
False statement	counter example same as statement 1 ex. eigen values are non zero but not diagonalizable.