Homework 3

Due 3/29 11:59pm The homework must be uploaded to LMS (https://lms.dgist.ac.kr)

Problem 1

1-1.

Find the projection of *b* onto the column space of *A*:

$$A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -2 & 4 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 2 \\ 7 \end{bmatrix}$$

1-2.

Find the best straight-line fit (least square) to the measurements

$$(t, b) = (-2, 4), (-1, 3), (0, 1), (2, 0)$$

for C + Dt = b by using the projection of b = (4, 3, 1, 0) onto the column space of

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 2 \end{bmatrix}$$

Problem 2

2-1.

Apply the Gram-Schmidt process to

$$a = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad c = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

and write the result in the form A = QR where Q is the matrix whose column vectors are orthonormal basis and R is a upper-triangular matrix.

2-2.

Find an orthonormal set
$$q_1,q_2,q_3$$
 for which q_1,q_2 span the column space of
$$A=\begin{bmatrix}1&1\\2&-1\\-2&4\end{bmatrix}$$

and find the least-square solution of $Ax = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Problem 3

The **rank** of a matrix A if the number of pivots in the reduced row echelon form of A. It is also the dimension of the column space C(A), which is the dimension of the row space R(A). The fact that the dimension of C(A) and R(A) are equal is very important, and it is not at all obvious. We will discuss more detail throughout this problem.

3-1.

Let A be a $n \times m$ matrix and R be the reduced row echelon form of A. Let v_1, \dots, v_m be the column vectors of A and w_1, \dots, w_m be the column vectors of R.

$$A = \begin{bmatrix} v_1 & \cdots & v_m \end{bmatrix}, \quad R = \begin{bmatrix} w_1 & \cdots & w_m \end{bmatrix}$$

Show that a set of vectors v_{j_1}, \dots, v_{j_s} is linearly independent (with respectively, dependent) if and only if the set of vectors w_{j_1}, \dots, w_{j_s} is linear independent (or dependent).

Caution: The set v_{j_1}, \cdots, v_{j_s} is a subset of the set of column vectors v_1, \cdots, v_m ($s \le m$). Also, the indices of v_{j_1}, \cdots, v_{j_s} and w_{j_1}, \cdots, w_{j_s} coincide, and this is the main focus of the problem.

3-2.

Show that the dimension of R(A) is equal to the number of pivots in R.

Conclusion (read and think)

Let us show that $\dim C(A) = \dim R(A)$. Let R be the reduced row echelon form of A and r be the number of pivots in R.

Let us show that $r=\dim C(A)$. Let j_1,\cdots,j_r be the columns of pivots. By problem 3-1, the set of column vectors v_{j_1},\cdots,v_{j_r} is linearly independent. Moreover, we show that any column vector v_k of A is written as linear combination of v_{j_1},\cdots,v_{j_r} . If v_k is one of v_{j_1},\cdots,v_{j_r} , it is a linear combination of itself. If not, the set $v_k,v_{j_1},\cdots,v_{j_r}$ is linearly dependent because the corresponding set $w_k,w_{j_1},\cdots,w_{j_r}$ (column vectors in R) is linearly dependent. (The set w_{j_1},\cdots,w_{j_r} forms a canonical basis of C(W).) By problem 3-1, the set $v_k,v_{j_1},\cdots,v_{j_r}$ is also linearly dependent. That is, there are coefficients $c_k,c_{j_1},\cdots,c_{j_r}$, which are not all zero, satisfying

$$c_k v_k + c_{j_1} v_{j_1} + \dots + c_{j_r} v_{j_r} = 0.$$

Here, $c_k \neq 0$ because v_{j_1}, \cdots, v_{j_r} is linearly independent. Thus v_k can be written as linear combination of v_{j_1}, \cdots, v_{j_r} .

By problem 3-2, we know that $r = \dim R(A)$. Thus we can conclude that $\dim C(A) = \dim R(A)$.

Remark

Later, the **rank** plays crucial role in determine whether the matrix is nonsingular. If a $n \times n$ matrix A has rank less than n, then A is singular, that is A has no inverse. If the matrix A is of rank n, in other words *full rank*, then A has its inverse. Moreover, a full rank matrix has nonzero determinant, and vice versa.