EXERCICES D'ANALYSE FONCTIONNELLE – SÉANCE 14 TOPOLOGIE FAIBLE

Étudions les phénomènes qui empêchent la convergence forte mais autorisent la convergence faible.

Exercice 1. Fixons $g \in L^p(\Omega)$, $p \in [1, \infty)$. Montrez que les suites suivantes convergent faiblement mais pas en norme dans L^p . Aussi, étudiez la quantité

$$\underline{\lim_{n\to\infty}} \left(\|u_n\|_p - \|u\|_p \right)$$

et discutez la convergence ponctuelle.

(a)
$$\Omega = \mathbb{R}$$
, $u_n(x) = g(x+n)$

(b)
$$\Omega = (0, 1), u_n(x) = \sin(nx)$$

(c)
$$\Omega = \mathbb{R}, \ u_n(x) = n^{\frac{1}{p}}g(nx)$$

Idée de solution de l'exercice 1. In all cases, the goal is to evaluate for all $f \in L^{p'}$,

$$\lim_{n\to\infty} \int_{\Omega} f u_n \, \mathrm{d}x$$

- (a) On suppose g continue à support compact. Si elle ne l'est pas on procède par approximation en utilisant la densité. Après si g est à support compact on voit que u_n tend vers zéro de manière ponctuelle. Donc pour tout $f \in L^{p'}(\mathbb{R})$, fu_n is dominated by $|f|||g||_{\infty}$ and converges pointwise to zero.
- (b) Proposition 15.45.
- (c) By density, we assume g has compact support. And u_n converges poitwise to zero. By dominated convergence one concludes to proof.

Let us detail the density argument. We know that for all $g \in C_c(\Omega)$

$$\lim_{n \to \infty} \int_{\mathbb{R}} n^{\frac{1}{p}} g(nx) f(x) dx = \lim_{n \to \infty} n^{1/p-1} \int_{\mathbb{R}} f(x/n) g(x) dx$$

and

$$\left| n^{1/p-1} \int_{\mathbb{R}} f(x/n) (g(x) - h(x)) \, \mathrm{d}x \right| \le \|g - h\|_p \left((n^{1/p-1} f(x/n))^{p/(p-1)} \right)^{\frac{1}{p}}$$

$$= \|g - h\|_p \|f\|_{p'} \qquad \Box$$

Exercice 2. Considérons sur [0,1] la suite

$$u_n(x) = \begin{cases} n^{\alpha} & x \in [0, 1/n) \\ 0 & x \in [1/n, 1] \end{cases}$$

Date: Automne 2022.

Déterminez $\alpha \in [0, \infty)$ tel que u_n converge vers zéro en norme pour tout $0 \le \beta < \alpha$ et faiblement pour tout $0 \le \beta \le \alpha$.

Idée de solution de l'exercice 1. We see that

$$||u_n||_p = (n^{alphap}/n)^{\frac{1}{p}} = n^{\frac{\alpha p - 1}{p}}$$

goes to zero iff $\alpha p - 1 < 0$.

Concerning weak convergence,

$$n^{\alpha} \int_{[0,1/n]} f(x) \, \mathrm{d}x$$

goes to zero by Hölder.

Exercice 3. $Sur \Omega = (0,1)$, considérons

$$A_n = \bigcup_{k=1}^n \left[\frac{k}{n+1} - \frac{1}{2n^2}, \frac{k}{n+1} + \frac{1}{2n^2} \right].$$

Posons $v_n = \sqrt{n}\chi_{A_n}$.

- (a) Montrez que $v_n \to 0$ presque partout.
- (b) Montrez que $v_n \to 0$ dans $L^p(\Omega)$, $p \in [1, 2)$.
- (c) Montrez que $v_n \to 0$ faiblement dans $L^2(\Omega)$.
- (d) Montrez que v_n ne converge pas en norme dans $L^p(\Omega)$, $p \in [2, \infty)$.
- (e) Montrez que v_n ne converge pas faiblement dans $L^p(\Omega)$, $p \in [2, \infty)$.

Idée de solution de l'exercice 3. Fix $x \in (0,1)$ assume that for each n there exists k_n such that

$$\frac{n+1}{2n^2} \le x - k_n \le \frac{n+1}{2n^2}$$

Hence

$$x = \lim_{n \to \infty} k_n$$

exists and $x \in \{0,1\}$ since $(k_n)_n \subset \mathbb{N}$.

We see that $|A_n| = O(1/n)$ when $n \to \infty$. Therefore,

$$\int_{\Omega} (\sqrt{n}v_n)^p \, \mathrm{d}x = O(1/n^{1-p/2})$$

when $n \to \infty$.

We see that v_n is bounded in L^2 so by a proposition of the course it weakly converges to zeo.

Exercice 4. Fixons $a, b \in \mathbb{R}$ et $\lambda \in (0,1)$. Montrez que

$$u_k = \begin{cases} a & \frac{j}{k} \le x < \frac{j+\lambda}{k} \\ b & \frac{j+\lambda}{k} \le x < \frac{j+1}{k} \end{cases}$$

où j = 0, ..., k-1 converge faiblement vers $\lambda a + (1 - \lambda)b$ dans $L^2(0, 1)$. Étudiez la convergence presque partout et la convergence forte de la suite.

Idée de solution de l'exercice 4. Fix 0 < c < d < 1. We have that

$$\int_{(0,1)} \chi_{(c,d} u_k = \int_{(c,d)} v_k = a |\{x \in (c,d) : kx \in [j,j+\lambda]\}| + b |\{x \in (c,d) : kx \in [j+\lambda,j+1]\}|$$

we claim that

$$\lim_{k \to \infty} |\{x \in (c, d) : kx \in [j, j + \lambda]\}| = \lambda |d - c|.$$

We have

$$\lim_{k \to \infty} |\{x \in (0,1) : kx \in [j, j+\lambda]\}| = \lambda.$$

as

$$|\{x \in (0,1) : kx \in [j,j+\lambda]\}| = \frac{\lambda}{k}k = \lambda.$$

In general one considers

$$\{x \in (c,d) : kx \in [j,j+\lambda])\}$$

$$= \{x \in (c,d) : kx \in [j,j+\lambda] \subset (c,d))\}$$

$$\cup \{x \in (c,d) : kx \in [j,j+\lambda] \not\subset (c,d))\}$$

as a disjoint union of a set of cardinality between k and k-2 and a set of cardinality at most 2.

Exercice 5. Fixons $p \in (1, \infty]$ et $u \in L^p(0, 1)$ étendue par périodicité sur le droite réelle \mathbb{R} . Pour tout n on définit

$$u_n(x) = u(nx)$$
 et $\bar{u} = \int_{(0,1)} u$.

Alors, $u_n \to \bar{u}$ faiblement dans $L^p(0,1)$.

- (a) Si u est une fonction caractéristique d'un intervalle, l'affirmation est vraie.
- (b) Si u est une combinaison linéaire de fonctions caractérisitiques, l'affirmation est vraie.
- (c) Concluez.

Idée de solution de l'exercice 5. Fix 0 < c < d < 1.

$$\int_{(0,1)} \chi_{(c,d)} u_n = \frac{1}{n} \int_{(nc,nd)} u$$

One has

$$\left| \frac{1}{n} \int_{(nc,nd)} (u - \bar{u}) \right| = \frac{1}{n} \left[\int_{nc}^{\lfloor nc \rfloor + 1} + \int_{\lfloor nc \rfloor + 1}^{\lfloor nd \rfloor} + \int_{\lfloor nd \rfloor}^{nd} (u - \bar{u}) \right]$$

$$\leq \frac{1}{n} \left[\left(\lfloor nc \rfloor + 1 - nc \right) + \left(nd - \lfloor nd \rfloor \right) \right] \|u - \bar{u}\|_{1}$$

$$+ \frac{\lfloor nd \rfloor - \lfloor nc \rfloor + 1}{n} \left| \int_{0}^{1} u - \bar{u} \, \mathrm{d}x \right|$$

$$= \frac{4\|u\|_{1}}{n} + 0.$$

Exercice 6. Fixons $p \in (1, \infty)$. Si $u_n \to u$ faiblement dans $L^p(\mathbb{R}^d)$ et $v_n \to v$ en norme dans $L^{p'}(\mathbb{R}^d)$ alors le produit satisfait

$$\int_{\mathbb{R}^d} u_n v_n \phi \, \mathrm{d}x \xrightarrow[n \to \infty]{} \int_{\mathbb{R}^d} u v \phi \, \mathrm{d}x$$

pour tout $\phi \in L^{\infty}(\mathbb{R}^d)$.

Idée de solution de l'exercice 6. On a

$$\int u_n v_n \phi - \int u v \phi = \int (u_n - u)v \phi + \int u_n (v_n - v)\phi$$

si bien que

$$\left| \int u_n v_n \phi - \int u v \phi \right| \le \left| \int (u_n - u) v \phi \right| + \|u_n\|_p \|v_n - v\|_{p'} \|\phi\|_{L^{\infty}}.$$

Vu que $v\phi \in L^{p'}$, la convergence faible implique que le premier terme tend vers zéro, la convergence forte impliquant la convergence vers zéro du second.

Exercice 7. Soit $B \subset X$ un sous-ensemble borné d'espace vectoriel normé X. Expliquer pourquoi il borné pour la norme si et seulement s'il est borné faiblement i.e.

$$\sup_{x \in B} \|x\|_X < \infty \iff \forall f \in X' \sup_{x \in B} \langle f, x \rangle_X < \infty$$

Idée de solution de l'exercice 7. Dans un sens on voit que si $f \in X'$, alors pour tout $x \in B$.

$$|\left\langle f,x\right\rangle_X|\leq \|f\|_{X'}\sup_{x\in B}\|x\|_X<\infty.$$

Dans l'autre sens, on voit que la famille $\{j(x) \in X'\} (= X'')$ est ponctuellement bornée; on rappelle en effet que $\langle f, x \rangle = \langle j(x), f \rangle$. Par le principe de la borne uniforme elle est uniformément bornée dans X''. mais $j: X \to X''$ est isométrie.