P425/1

Pure Mathematics

3 hours

EOT UACE EXAMINATIONS 2024 Pure Mathematics Paper 1

Time: 3 Hours

INSTRUCTIONS:

• Answer **all** the **eight** questions in Section **A** and only **five** questions in Section **B**. Each number in section B should state on fresh page

SECTION A (40 MARKS)

Qn 1: Evaluate $\frac{dy}{dx}$ at x = 2, given that $y = In\left[\frac{1+x^2}{1-x^2}\right]^{\frac{1}{2}}$ [5marks]

Qn 2: Solve the inequality: |x-2| > 3|2x+1|. [5marks]

Qn 3: Differentiate $y = 4x^2 + 6x$ from first principles. [5marks]

Qn 4: Solve the equation $\sqrt{6x+1} - \sqrt{2x-4} = 3$ [5marks]

Qn 5: Solve for x, $\sin(x + 30^0) = \cos x$, where $0 \le x \le 2\pi$. [5marks]

Qn 6: Show that $\tan(\alpha + \beta) = 1$, if $\tan \alpha = \frac{a}{(a+1)}$ and $\tan \beta = \frac{1}{(2a+1)}$

[5marks]

Qn 7: Find the equation of the line which passes through the point (3, 2) and the point of intersection of the lines 3x - 4y - 6 = 0 and 2x + 3y - 1 = 0.

[5marks]

Qn 8: Express the function $f(x) = 1 - 6x - x^2$ in form of $a - (x + b)^2$, hence state the value of x at which it occurs [5marks]

SECTION B (60 MARKS)

Question 9:

(a). Solve the simultaneous equations

$$(x+3)(y+3) = 10$$
 and $(x+3)(x+y) = 2$ [05marks]

(b). Use a substitution $y = x + \frac{2}{x}$ to solve, $x^4 - 5x^3 + 10x^2 - 10x + 4 = 0$. [07marks]

Question 10:

- a) Express; $\sqrt{5}cosx + 2sinx$ in the form $Rcos(x \alpha)$ where R > 0 and $0 < \alpha < 90^{\circ}$. Hence state the maximum value and minimum value of $\sqrt{5}cosx + 2sinx + 10$. [06 marks]
- b) Given that $acos^2\theta + bsin^2\theta = c$, prove that $tan^2\theta = \frac{c-a}{b-c}$, hence solve for θ , in the equation $6cos^2\theta + 2sin^2\theta = 5$, where θ is acute. [06marks]

Question 11:

- (a). In an AP, the thirteenth term is 27, and the seventh term is three times the second term. Find the first term, common difference and the sum of the first ten terms. [06marks]
- (b). The first, second and third terms of geometric progression (G.P) are 2k + 6, 2k and k + 2 respectively, where k is a positive constant. Determine the;
- i) value of k and the common ratio
- ii) the sum to infinity of the progression

[06marks]

Question 12:

- (a). the polynomial $f(x) = ax^3 + 3x^2 + bx 3$ is exacyly divisible by (2x + 3) and leaves a remainder -3 when divided by (x + 2). Find the values of and b. [05marks]
- (b). The curve is given parametrically by the equations $x = \frac{t^2}{1+t^3}$, $y = \frac{t^3}{1+t^3}$, show that $\frac{dy}{dx} = \frac{3t}{2-t^3}$ and that $\frac{d^2y}{d^2x} = 48$ at a point $\left(\frac{1}{2}, \frac{1}{2}\right)$. [07marks]

Question 13:

- (a). Differentiate the following with respect to x.
 - (i). $(2x+1)^3 In \sqrt{(x-3)}$
 - (ii). $\frac{2x^2-3x}{(x+4)^2}$ [06marks]
- (b). Find the equation of the normal to the curve $xy^3 2x^2y^2 + x^4 1 = 0$ at the point (1,2) [06marks]

Question 14.

- a) Given that in the equation $ax^2 + bx + c = 0$ are roots of the equation 3 times the other show that $3b^2 = 16ac$. [04marks]
- b) Find the values of β for which $10x^2 + 4x = 1 = 2\beta x(2 x)$ has equal roots [05marks]
- c) Use synthetic approach to obtain the remainder when (x + 4) divides the polynomial $2x^4 + 6x^3 7x^2 + 9x + 11$ [03marks]

END