Lecture 7 Logic Simplification

Simplification Using Boolean Algebra

A simplified Boolean expression uses the fewest gates possible to implement a given expression.

Simplification Using Boolean Algebra

- \blacksquare AB+A(B+C)+B(B+C)
 - (distributive law)
 - AB+AB+AC+BB+BC
 - **■** (rule 7; BB=B)
 - \blacksquare AB+AB+AC+B+BC
 - (rule 5; AB+AB=AB)
 - **AB**+AC+B+BC
 - (rule 10; B+BC=B)
 - AB+AC+B
 - (rule 10; AB+B=B)
 - **■ B**+AC

Simplification Using Boolean Algebra

Assignment

$$[A\overline{B}(C+BD)+\overline{A}\overline{B}]C$$

$$\overline{A}BC+A\overline{B}\overline{C}+\overline{A}\overline{B}\overline{C}+A\overline{B}C+ABC$$

$$\overline{AB}+\overline{AC}+\overline{AB}C$$

Standard Forms of Boolean Expressions

- All Boolean expressions, regardless of their form, can be converted into either of two standard forms:
 - The sum-of-products (SOP) form
 - The product-of-sums (POS) form
- Standardization makes the evaluation, simplification, and implementation of Boolean expressions much more systematic and easier.

Sum-of-Products (SOP)

The Sum-of-Products (SOP) Form

- An SOP expression →
 when two or more
 product terms are
 summed by Boolean
 addition.
 - Examples:

$$AB + ABC$$

$$ABC + CDE + \overline{B}C\overline{D}$$

$$\overline{A}B + \overline{A}B\overline{C} + AC$$

Also: ___

$$A + \overline{A}\overline{B}C + BC\overline{D}$$

- In an SOP form, a single overbar cannot extend over more than one variable; however, more than one variable in a term can have an overbar:
 - example: $\overline{A}\overline{B}\overline{C}$ is OK!

But not: \overline{ABC}

Implementation of an SOP

$$X = AB + BCD + AC$$

AND/OR implementation

NAND/NAND implementation

General Expression → SOP

Any logic expression can be changed into SOP form by applying Boolean algebra techniques.

ex:

$$A(B+CD) = AB + ACD$$

$$AB + B(CD + EF) = AB + BCD + BEF$$

$$(A+B)(B+C+D) = AB + AC + AD + BB + BC + BD$$

$$\overline{(A+B)} + C = (\overline{A+B})\overline{C} = (A+B)\overline{C} = A\overline{C} + B\overline{C}$$

The Standard SOP Form

- A standard SOP expression is one in which all the variables in the domain appear in each product term in the expression.
 - Example:

$$A\overline{B}.CD + \overline{A}\overline{B}.C\overline{D} + AB\overline{C}\overline{D}$$

- Standard SOP expressions are important in:
 - Constructing truth tables
 - The Karnaugh map simplification method

Converting Product Terms to Standard SOP

- Step 1: Multiply each nonstandard product term by a term made up of the sum of a missing variable and its complement. This results in two product terms.
 - As you know, you can multiply anything by 1 without changing its value.
- Step 2: Repeat step 1 until all resulting product term contains all variables in the domain in either complemented or uncomplemented form. In converting a product term to standard form, the number of product terms is doubled for each missing variable.

Converting Product Terms to Standard SOP (example)

Convert the following Boolean expression into standard SOP form: $A\overline{R}C + \overline{A}\overline{R} + AB\overline{C}D$

$$A\overline{B}C + \overline{A}\overline{B} + AB\overline{C}D$$

$$A\overline{B}C = A\overline{B}C(D + \overline{D}) = \overline{A}\overline{B}CD + A\overline{B}C\overline{D}$$

$$\overline{A}\overline{B} = \overline{A}\overline{B}(C + \overline{C}) = \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C}$$

$$\overline{A}\overline{B}C(D + \overline{D}) + \overline{A}\overline{B}\overline{C}(D + \overline{D}) = \overline{A}\overline{B}CD + \overline{A}\overline{B}CD + \overline{A}\overline{B}CD$$

Binary Representation of a Standard Product Term

- A standard product term is equal to 1 for only one combination of variable values.
 - Example: $A\overline{B}C\overline{D}$ is equal to 1 when A=1, B=0, C=1, and D=0 as shown below

$$A\overline{B}C\overline{D} = 1 \bullet \overline{0} \bullet 1 \bullet \overline{0} = 1 \bullet 1 \bullet 1 \bullet 1 = 1$$

 And this term is 0 for all other combinations of values for the variables.

Product-of-Sums (POS)

The Product-of-Sums (POS) Form

- When two or more sum terms are multiplied, the result expression is a product-of-sums (POS):
 - Examples:

$$(\overline{A} + B)(A + \overline{B} + C)$$

$$(\overline{A} + \overline{B} + \overline{C})(C + \overline{D} + E)(\overline{B} + C + D)$$

$$(A + B)(A + \overline{B} + C)(\overline{A} + C)$$

Also:

$$\overline{A}(\overline{A} + \overline{B} + C)(B + C + \overline{D})$$

- In a POS form, a single overbar cannot extend over more than one variable; however, more than one variable in a term can have an overbar:
 - example: $\overline{A} + \overline{B} + \overline{C}$ is OK!
 - **But not:** $\overline{A+B+C}$

Implementation of a POS

OR/AND implementation

The Standard POS Form

- A standard POS expression is one in which all the variables in the domain appear in each sum term in the expression.
 - **Example:** $(\overline{A} + \overline{B} + \overline{C} + \overline{D})(A + \overline{B} + C + D)(A + B + \overline{C} + \overline{D})$
- Standard POS expressions are important in:
 - Constructing truth tables
 - The Karnaugh map simplification method

Converting a Sum Term to Standard POS

- Step 1: Add to each nonstandard product term a term made up of the product of the missing variable and its complement. This results in two sum terms.
 - As you know, you can add 0 to anything without changing its value.
- **Step 2:** Apply rule $12 \rightarrow A+BC=(A+B)(A+C)$.
- Step 3: Repeat step 1 until all resulting sum terms contain all variable in the domain in either complemented or uncomplemented form.

Converting a Sum Term to Standard POS (example)

Convert the following Boolean expression into standard POS form:

$$(A + \overline{B} + C)(\overline{B} + C + \overline{D})(A + \overline{B} + \overline{C} + D)$$

$$A + \overline{B} + C = A + \overline{B} + C + D\overline{D} = (A + \overline{B} + C + D)(A + \overline{B} + C + \overline{D})$$

$$\overline{B} + C + \overline{D} = \overline{B} + C + \overline{D} + A\overline{A} = (A + \overline{B} + C + \overline{D})(\overline{A} + \overline{B} + C + \overline{D})$$

$$(A+\overline{B}+C)(\overline{B}+C+\overline{D})(A+\overline{B}+\overline{C}+D)=$$

$$(A+\overline{B}+C+D)(A+\overline{B}+C+\overline{D})(A+\overline{B}+C+\overline{D})(\overline{A}+\overline{B}+C+\overline{D})(\overline{A}+\overline{B}+\overline{C}+D)$$

Binary Representation of a Standard Sum Term

- A standard sum term is equal to 0 for only one combination of variable values.
 - Example: $A + \overline{B} + C + \overline{D}$ is equal to 0 when A=0, B=1, C=0, and D=1 as shown below

$$A + \overline{B} + C + \overline{D} = 0 + \overline{1} + 0 + \overline{1} = 0 + 0 + 0 + 0 = 0$$

And this term is 1 for all other combinations of values for the variables.

SOP/POS

Converting Standard SOP to Standard POS

The Facts:

- The binary values of the product terms in a given standard SOP expression are not present in the equivalent standard POS expression.
- The binary values that <u>are not</u> represented in the SOP expression are present in the equivalent POS expression.

Converting Standard SOP to Standard POS

- What can you use the facts?
 - Convert from standard SOP to standard POS.
- How?
 - Step 1: Evaluate each product term in the SOP expression. That is, determine the binary numbers that represent the product terms.
 - **Step 2:** Determine all of the binary numbers not included in the evaluation in Step 1.
 - Step 3: Write the equivalent sum term for each binary number from Step 2 and express in POS form.

Converting Standard SOP to SKOP Standard POS (example)

Convert the SOP expression to an equivalent POS expression:

The evaluation is as follows:

$$000 + 010 + 011 + 101 + 111$$

There are 8 possible combinations. The SOP expression contains five of these, so the POS must contain the other 3 which are: 001, 100, and 110.

$$(\overline{A} + B + \overline{C})(\overline{A} + B + C)(\overline{A} + \overline{B} + C)$$

Boolean Expressions & Truth Tables

- All <u>standard Boolean expression</u> can be easily converted into truth table format using binary values for each term in the expression.
- Also, <u>standard SOP or POS</u> expression can be determined from the truth table.

Converting SOP Expressions to Truth Table Format

- Recall the fact:
 - An SOP expression is equal to 1 only if at least one of the product term is equal to 1.
- Constructing a truth table:
 - **Step 1:** List all possible combinations of binary values of the variables in the expression.
 - Step 2: Convert the SOP expression to standard form if it is not already.
 - Step 3: Place a 1 in the output column (X) for each binary value that makes the <u>standard SOP</u> expression a 1 and place 0 for all the remaining binary values.

Converting SOP Expressions to Truth Table Format (example)

Develop a truth table for the standard SOP expression

$$\overline{A}\overline{B}C + A\overline{B}\overline{C} + ABC$$

Inputs			Output	Product
A	В	U	X	Term
0	0	0	0	
0	0	1	1	$\overline{A}\overline{B}C$
0	1	0	0	
0	1	1	0	
1	0	0	1	$A\overline{B}\overline{C}$
1	0	1	0	
1	1	0	0	
1	1	1	1	ABC

Converting POS Expressions to Truth Table Format

- Recall the fact:
 - A POS expression is equal to 0 only if at least one of the product term is equal to 0.
- Constructing a truth table:
 - **Step 1:** List all possible combinations of binary values of the variables in the expression.
 - Step 2: Convert the POS expression to standard form if it is not already.
 - Step 3: Place a 0 in the output column (X) for each binary value that makes the <u>standard POS</u> expression a 0 and place 1 for all the remaining binary values.

Converting POS Expressions to Truth Table Format (example)

Develop a truth table for the standard SOP expression

$$(A+B+C)(A+\overline{B}+C)(A+\overline{B}+\overline{C})$$
$$(\overline{A}+B+\overline{C})(\overline{A}+\overline{B}+C)$$

Inputs			Output	Product
A	В	С	X	Term
0	0	0	0	(A+B+C)
0	0	1	1	
0	1	0	0	$(A+\overline{B}+C)$
0	1	1	0	$(A+\overline{B}+\overline{C})$
1	0	0	1	
1	0	1	0	$(\overline{A} + B + \overline{C})$
1	1	0	0	$(\overline{A} + \overline{B} + C)$
1	1	1	1	

POS ~ old is O for m

Determining Standard Expression from a Truth Table

- To determine the standard SOP expression represented by a truth table.
- Instructions:
 - **Step 1:** List the binary values of the input variables for which the output is 1.
 - Step 2: Convert each binary value to the corresponding product term by replacing:
 - each 1 with the corresponding variable, and
 - each 0 with the corresponding variable complement.
- Example: $1010 \rightarrow A\overline{B}C\overline{D}$

Determining Standard Expression from a Truth Table

- To determine the standard POS expression represented by a truth table.
- Instructions:
 - **Step 1:** List the binary values of the input variables for which the output is 0.
 - Step 2: Convert each binary value to the corresponding product term by replacing:
 - each 1 with the corresponding variable complement, and
 - each 0 with the corresponding variable.
- **Example:** 1001 $\rightarrow \overline{A} + B + C + \overline{D}$

Determining Standard Expression from a Truth Table (example)

		O/P		
	A	В	С	X
0	0	0	0	0.
1	0	0	1	0
Z	0	1	0	0
3	0	1	1	1
4	1	0	0	1
96	1	0	1	0
	1	1	0	1
₽\	1	1	1	1
- 1				

the output and the corresponding binary value are 011, 100, 110, and 111.

$$011 \rightarrow \overline{A}BC$$

$$100 \rightarrow A\overline{B}\overline{C}$$

$$110 \rightarrow AB\overline{C}$$

$$111 \rightarrow ABC$$

There are <u>four 1s</u> in There are <u>four 0s</u> in the output and the corresponding binary value are 000, 001, 010, and 101.

$$000 \rightarrow A + B + C$$

$$001 \rightarrow A + B + \overline{C}$$

$$010 \rightarrow A + \overline{B} + C$$

$$101 \rightarrow \overline{A} + B + \overline{C}$$

$$X = \overline{A}BC + A\overline{B}\overline{C} + AB\overline{C} + ABC$$

$$X = (A+B+C)(A+B+\overline{C})(A+\overline{B}+C)(\overline{A}+B+\overline{C})$$

Rules of Boolean Algebra

$$1.A + 0 = A$$

$$2.A + 1 = 1$$

$$3.A \bullet 0 = 0$$

$$4.A \bullet 1 = A$$

$$5.A + A = A$$

$$6.A + \overline{A} = 1$$

$$7.A \bullet A = A$$

$$8.A \bullet \overline{A} = 0$$

$$9.\overline{\overline{A}} = A$$

$$10.A + AB = A$$

$$11.A + \overline{A}B = A + B$$

$$12.(A+B)(A+C) = A+BC$$

Assignment - 7

What are the similarities and differences in SOP and POS.