Introduction

1/2565

Introduction 1/2565

กิจกรรม #1

•ในความคิดเห็นของนักศึกษา ระบบปฏิบัติการมี บทบาทหน้าที่หลักอะไรบ้าง

- ล่าลับ ความสำคัญ ก่อนนลังในพรฬาภาป - ประมาลผล
 - จัดกรเกี่ยวกับใฟล์
- 20 We rys Mont on ship sur long sur long
- จัดพร นน์นาความจำ
- จักพรเก็บากับโปรแกรมฝระนุกศ

- AงบุฎมMsทางานของคอมพื้อเพอร์
- ดือข้อมูลจาก storage
- run app

Roles of the Operating System

3 90 920

· Referre World & NTTUMS

· Resource allocation among users, applications TRANSWANKHOUL · Communication between users, applications · Illusiomist: un afromwaroam · Each application appears to have the entire machine to itself cool naon computer of & unlandows · Infinite number of processors, (near) infinite amount of money, reliable storage, reliable network transport สร้างกรัพชากรจำลอง เพื่อใช้ os/com ทำงาน และ back up ชองุราชช · Glue: กา (เรือมประสานอะไรบ้าง) - Library, user interface o 4/13 chorme n'il word/Notepad user to Hardware

Software in Hurdware

กิจกรรม #2

•ระบบปฏิบัติการคืออะไร?

Software ที่กาบกุม ดอม พิกษตอร์ หรือ Hardware
เป็นพักกวางระหว่าง ญัๆชั และ ฮาร็ด แอร์ เลือใพัสพารภใช้งาน Hardware ได้บ่านขึ้น
Hardware

What is an Operating System?

A set of software that manage computer's resources for its users and their applications

- may visible or invisible to the user
- 2 major kinds

 - · General purpose OS · Specific purpose OS

กิจกรรม #3

•หากนักศึกษาต้องประเมินระบบปฏิบัติการหนึ่ง นักศึกษาจะประเมินด้านใดบ้าง และแต่ละด้านจะ วัดอย่างไร

- 1. คลามปลอดภัย
- 2. ความสะดวกในการให้งาน
- 3. MANNIÉT

4

Operating System Evaluation วัลทางเอลาที่ พุ time,

Adoption
mold Application Pu plat form wing

Reliability And Availability msvamsbug
(ออกแบบอย่าวไร ทำอานใช้อย่างนั้น มีประสิทธิภาพใน พรทำงานต่องชื่อง)

- Security กรรณนอายุโปรแกรมพร้อม กันใต้ กลโกกรเด็บข้อมุลพื้นที่ของแรยาแพละบุ คดล ปัจงหันพรบุกรุกจาก user คนอื่น
- · Portability a.สามารถในการเรือมดอ Hardware ที่นลากนลาย / ค.สามารถใน พรทำงานใน Plat form of months - AVM, API, HAL
- · Performance ausstriss software, application

แบ่ง พรทำงานกับโปร่นทรมอื่น — Eairness, response time throughput อำณา พรทำงานโปรแทรม Response Time, จืดสรร Resause ได้
- เร่น กดเป็น คลัสเมาัส เก็น อำนา Per formace predict ก bility

Design Tradeoffs

- Must balance between the 5s
- · Examples

ENIAC เป็น computer สานาดใหญ่ใช้ เลงูจำนา 0 เครื่องแรกที่เป็นอิเล็ก พรอนิกลีล้วน ใช้แลอสสุญญา M ศ ประดิษฐ์

Computer Performance Over Time

	Esta I OS				
and or a viva		1981	1997	2014	Factor (2014/1981)
CPV	Uniprocessor speed (MIPS)	1	200	2500	2.5K
	CPUs per computer	1	1	10+	10+
	Processor MIPS/\$	\$100K	\$25	\$0.20	500K
	DRAM Capacity (MiB)/\$	0.002	2	1K	500K
	Disk Capacity (GiB)/\$	0.003	7	25K	10M
	Home Internet	300 bps	256 Kbps	20 Mbps	100K
	Machine room network	10 Mbps (shared)	100 Mbps (switched)	10 Gbps (switched)	1000
	Ratio of users to computers	100:1	1:1	1:several	100+

From Thomas Anderson and Michael Dahlin, Operating Systems Principles & Practice Volume I, 2nd edition, Recursive Books, 2015

PONGPIN

Early Operating Systems: Computers Very Expensive

- · One Application at a time (1 TUSINSW most somm)
 - -Had complete control of hardware
 - Users would stand in line to use the computer
 - Batch systems
 - Keep CPV busy by having a queue of jobs
 - Os would load next job while current one runs
 - Users would submit jobs, and wait, and wait, and

1980 เป็นตันมา Time-Sharing Operating Systems: Computers and People Expensive

- · Multiple users on computer at same time
 - · Multiprogramming: run multiple programs at same time
 - · Interactive performance: try to complete everyone's tasks quickly
 - · As computers became cheeper, more important to optimize for user time, not computer time

Today's Operating Systems: Computers Cheap

- · Smartphones
- · Embedded systems
- ·Laptops
 - ·Tablets
- · Virtual machines
- · Data center servers

Hardware

Tomorrow's Operating Systems

- o Giant-scale data centers (Clouds onog)

 a Increasing numbers of processors per computer
- Increasing numbers of computers per user
- · Very large scale storage (google Arive, One drive)