



Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

# Álgebra I Parcial VI

Los Del DGIIM, losdeldgiim.github.io José Juan Urrutia Milán

Granada, 2023-2024

Asignatura Álgebra I.

Curso Académico 2024-25.

Grado en Matemáticas.

Grupo Único.

Profesor María del Pilar Carrasco Carrasco.

Descripción Parcial I

Fecha 14 de noviembre de 2024.

Los puntos de los ejercicios se reparten de forma equitativa entre los apartados.

# Ejercicio 1 (3 puntos).

(a) Sean P, Q, R propiedades referidas a los elementos de un conjunto X. Supongamos que  $P \Longrightarrow \neg R$ . Demostrar la siguiente equivalencia:

$$(P \lor Q) \land \neg R \iff P \lor (Q \land \neg R)$$

- (b) Sean  $f: X \to Y$  y  $g: Y \to Z$  aplicaciones componibles. Demsotrar que si f y g son biyectivas entonces  $g \circ f: X \to Z$  es biyectiva. Demostrar que, en tal caso,  $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ .
- (c) Sea  $X = \{0, 2, 4\}$ . En el conjunto  $X \times X$  definimos la relación binaria  $\sim$ :

$$(a,b) \sim (c,d) \Longleftrightarrow a+d=b+c$$

Demostrar que  $\sim$  es una relación de equivalencia y calcular (describiendo todas las clases de equivalencia) el conjunto cociente  $X \times X / \sim$ .

(a) Sean  $X_P$ ,  $X_Q$  y  $X_R$  los subconjuntos de X conformados por los elementos que verifican la propiedad P, Q y R respectivamente. Puesto que  $P \Longrightarrow \neg R$ , se tiene que  $X_P \subseteq X_{\neg R} = c(X_R)$ . Se trata de demostrar que:

$$(X_P \cup X_Q) \cap c(X_R) = X_P \cup (X_Q \cap c(X_R))$$

aplicando la propiedad distributiva de la intersección:

$$(X_P \cup X_Q) \cap c(X_R) = (X_P \cap c(X_R)) \cup (X_Q \cap c(X_R)) \stackrel{(*)}{=} X_P \cup (X_Q \cap c(X_R))$$

Donde en (\*) aplicamos que  $X_P \subseteq c(X_R)$ .

(b) Partimos de que  $f: X \to Y$  y  $g: Y \to Z$  son biyectivas. Entonces:

$$\exists f^{-1}: Y \to X \text{ única tal que } f \circ f^{-1} = id_Y \wedge f^{-1} \circ f = id_X$$
  
$$\exists g^{-1}: Z \to Y \text{ única tal que } g \circ g^{-1} = id_Z \wedge g^{-1} \circ g = id_Y$$

Se trata de probar que  $g \circ f: X \to Z$  es biyectiva. Para ello, consideramos la composición  $f^{-1} \circ g^{-1}: Z \to X$ . Se tiene entonces que:

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) \stackrel{(*)}{=} g \circ (f \circ f^{-1}) \circ g^{-1} = g \circ (id_Y \circ g^{-1}) = g \circ g^{-1} = id_Z$$
$$(f^{-1} \circ g^{-1}) \circ (g \circ f) \stackrel{(*)}{=} f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ (id_Y \circ f) = f^{-1} \circ f = id_X$$

Donde en (\*) hemos aplicado la propiedad asociativa de la composición. Por tanto,  $g \circ f : X \to Z$  tiene inversa y por consiguiente es biyectiva.

Además, como la inversa de una aplicación biyectiva es única, será

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

# (c) Tenemos que:

$$X = \{0, 2, 4\}$$
  $X \times X = \{(a, b) \mid a, b \in X\}$   
 $(a, b) \sim (c, d) \iff a + d = b + c$ 

Para ver que  $\sim$  es una relación de equivalencia, hemos de ver:

## Propiedad reflexiva.

Puesto que a + b = b + a, entonces:

$$(a,b) \sim (a,b) \qquad \forall (a,b) \in X \times X$$

#### Propiedad simétrica.

Sean  $(a, b), (c, d) \in X \times X$ . Entonces:

$$(a,b) \sim (c,d) \iff a+d=b+c \iff d+a=c+b \iff (c,d) \sim (a,b)$$

### Propiedad transitiva.

Supongamos que  $(a, b), (c, d), (e, f) \in X \times X$  de forma que  $(a, b) \sim (c, d)$  y  $(c, d) \sim (e, f)$ . Entonces:

Demostrado que  $\sim$  es una relación de equivalencia, calculamos  $X \times X / \sim$ :

$$X \times X = \{(0,0), (0,2), (0,4), (2,0), (2,2), (2,4), (4,0), (4,2), (4,4)\}$$
  
 $X \times X / \sim = \{[(a,b)] \mid (a,b) \in X \times X\}$ 

Calculamos las diferentes clases:

$$[(0,0)] = \{(a,b) \in X \times X \mid (a,b) \sim (0,0)\} = \{(a,b) \in X \times X \mid a=b\}$$

$$= \{(0,0), (2,2), (4,4)\} = [(2,2)] = [(4,4)]$$

$$[(0,2)] = \{(a,b) \in X \times X \mid (a,b) \sim (0,2)\} = \{(a,b) \in X \times X \mid a+2=b\}$$

$$= \{(0,2), (2,4)\} = [(0,2)] = [(2,4)]$$

$$[(0,4)] = \{(a,b) \in X \times X \mid (a,b) \sim (0,4)\} = \{(a,b) \in X \times X \mid a+4=b\}$$

$$= \{(0,4)\}$$

$$[(2,0)] = \{(a,b) \in X \times X \mid (a,b) \sim (0,2)\} = \{(a,b) \in X \times X \mid a=b+2\}$$

$$= \{(2,0), (4,2)\} = [(4,2)]$$

$$[(4,0)] = \{(a,b) \in X \times X \mid (a,b) \sim (4,0)\} = \{(a,b) \in X \times X \mid a=b+4\}$$

$$= \{(4,0)\}$$

Con lo que:

$$X\times X/\sim =\{[(0,0)],[(0,2)],[(0,4)],[(2,0)],[(4,0)]\}$$

Ejercicio 2 (4 puntos). Efectuar los siguientes cálculos:

- (a) El resto de dividir  $18 \cdot 15 561 \cdot 15^2$  entre 13.
- (b)  $[2 \cdot (3^5 5^2)]^{-1}$  en  $\mathbb{Z}_7$ .
- (c)  $(2x^3 3x + 5)(3x 2)$  en  $\mathbb{Z}_6[x]$ .
- (d)  $(7-4\sqrt{3})^{-1}$  en  $\mathbb{Z}\left[\sqrt{3}\right]$ .
- (e)  $\left(\frac{2}{3} \frac{1}{9}\sqrt{3}\right)^{-1}$  en  $\mathbb{Q}\left[\sqrt{-3}\right]$ .
- (a) Puesto que la aplicación

$$R: \mathbb{Z} \longrightarrow \mathbb{Z}_{13}$$
  
 $a \longmapsto R(a) := Res(a; 13)$ 

Es un homomorfismo de anillos, será:

$$Res(18 \cdot 15 - 561 \cdot 15^2; 13) = Res(18; 13) \cdot Res(15; 13) - Res(561; 13) \cdot Res(15; 13)^2$$

$$\stackrel{(*)}{=} 5 \cdot 2 - 2 \cdot 2^2 = 10 - 8 = 2$$

Donde en (\*) hemos aplicado que  $561 = 13 \cdot 43 + 2$ 

- (b) Para ello, primero calcularemos  $2 \cdot (3^5 5^2)$  en  $\mathbb{Z}_7$ :
  - $3^5 = 5$  en  $\mathbb{Z}_7$  pues  $3^5 = 243 = 7 \cdot 34 + 5$
  - $5^2 = 5$  en  $\mathbb{Z}_7$  pues  $5^2 = 25 = 7 \cdot 3 + 4$

Entonces:

$$2(3^5 - 5^2) = 2(5 - 4) = 2$$

Y solo queda calcular el inverso de 2 en  $\mathbb{Z}_7$ :

$$[2 \cdot (3^5 - 5^2)]^{-1} = 2^{-1} = 4$$

Ya que  $2 \cdot 4 = 8 = 1$  en  $\mathbb{Z}_7$ .

(d) Puesto que

$$N(7-4\sqrt{3}) = (7-4\sqrt{3})(7+4\sqrt{3}) = 49-3 \cdot 16 = 49-48 = 1$$

Entonces tenemos que  $7 - 4\sqrt{3} \in U(\mathbb{Z}[\sqrt{3}])$  y:

$$(7 - 4\sqrt{3})^{-1} = 7 + 4\sqrt{3}$$

(e) Sabemos que si  $0 \neq \alpha \in \mathbb{Q}[\sqrt{-3}]$  entonces tenemos que  $N(\alpha) \neq 0$  y  $\alpha^{-1} = \frac{1}{N(\alpha)}\overline{\alpha}$ .

Para  $\alpha = \frac{2}{3} - \frac{1}{9}\sqrt{-3}$ , será:

$$N(\alpha) = \frac{4}{9} + \frac{3}{81} = \frac{13}{27}$$

y entonces:

$$\left(\frac{2}{3} - \frac{1}{9}\sqrt{-3}\right)^{-1} = \frac{27}{13}\left(\frac{2}{3} + \frac{1}{9}\sqrt{-3}\right) = \frac{18}{13} + \frac{3}{13}\sqrt{-3}$$

**Ejercicio 3** (3 puntos). Sea  $f:A\to B$  un homomorfismo de anillos. Demostrar:

- (a) Img(f) es un subanillo de B.
- (b)  $f(n \cdot a) = n \cdot f(a)$ , para todo  $n \in \mathbb{Z}$  y todo  $a \in A$ .
- (c)  $f(u^n) = f(u)^n$ , para todo  $n \in \mathbb{Z}$  y todo  $u \in U(A)$ .
- (a) Sabemos que  $Img(f) = \{f(a) \mid a \in A\} \subseteq B$ .

Para demostrar que es un subanillo de B hemos de ver que es cerrado para sumas, productos, opuestos y que contiene al 1 de B.

Sean  $b_1, b_2 \in Img(f)$ , entonces  $\exists a_1, a_2 \in A$  tales que:

$$b_1 = f(a_1)$$
  $b_2 = f(a_2)$ 

Entonces:

$$b_1 + b_2 = f(a_1) + f(a_2) = f(a_1 + a_2) \in Img(f)$$
  
$$b_1 \cdot b_2 = f(a_1)f(a_2) = f(a_1 \cdot a_2) \in Img(f)$$

por lo que Img(f) es cerrado para sumas y productos. Para ver que es cerrado para opuestos, utilizamos que todo homomorfismo verifica que f(-a) = -f(a)  $\forall a \in A$ . Entonces:

Si 
$$b \in Img(f) \Longrightarrow \exists a \in A \mid f(a) = b \Longrightarrow -b = -f(a) = f(-a) \in Img(f)$$

Finalmente, como  $f(1) = 1 \in Img(f)$ , tenemos que Img(f) es un subanillo de B.

- (b) Distinguimos casos:
  - Para  $n \ge 1$  y  $a \in A$ :  $n \cdot a = \underbrace{a + \ldots + a}^{n \text{ veces}}$ , con lo que:

$$f(n \cdot a) = f(\underbrace{a + \ldots + a}^{n \text{ veces}}) = \underbrace{f(a) + \ldots + f(a)}^{n \text{ veces}} = n \cdot f(a)$$

■ Para n = 0 y  $a \in A$ , tenemos que  $0 \cdot a = 0$ , con lo que:

$$f(0 \cdot a) = f(0) = 0 = 0 \cdot f(a)$$

■ Para n < 0 y  $a \in A$ , tenemos que  $n \cdot a = (-n)(-a)$ , con lo que:

$$f(n \cdot a) = f((-n)(-a)) \stackrel{(*)}{=} (-n)f(-a) = (-n)(-f(a)) = n \cdot f(a)$$

Donde en (\*) usamos que -n > 0, con lo que podemos aplicar el primer apartado.

- (c) Distinguimos casos:
  - Para  $n \ge 1$  y  $a \in A$ :  $a^n = \overbrace{a \cdot \ldots \cdot a}^{n \text{ veces}}$ , con lo que:

$$f(u^n) = f(\underbrace{u \cdot \dots \cdot u}^{n \text{ veces}}) = \underbrace{f(u) \cdot \dots \cdot f(u)}^{n \text{ veces}} = [f(u)]^n$$

• Para n = 0 y  $a \in A$ ,  $a^0 = 1$ , con lo que:

$$f(u^0) = f(1) = 1 = [f(u)]^0$$

■ Para n < 0 y  $u \in U(A)$ ,  $u^n = (u^{-1})^{-n}$ . Además, si  $u \in U(A) \Longrightarrow \exists u^{-1} \in A \mid uu^{-1} = 1$ . Entonces:

$$1 = f(1) = f(uu^{-1}) = f(u)f(u^{-1})$$

y por tanto  $f(u) \in U(B)$  y  $f(u)^{-1} = f(u^{-1})$ . Entonces:

$$f(u^n) = f((u^{-1})^{-n}) \stackrel{(*)}{=} [f(u^{-1})]^{-n} = [f(u)^{-1}]^{-n} = f(u)^n$$

Donde en (\*) hemos usado que -n > 0 y el primer apartado.