Quantitative Datenanalyse — Übung Quantitative Datenanalyse mit R —

erstellt von Professor*innen des ifes Stand WiSe 2017/18

Inhaltsverzeichnis

Kapitel 0: Erste Schritte in R	5
Hinweise	5
R als Taschenrechner	6
R zur Datenanalyse	6
Erste Analyse des tips Datensatzes	7
mosaic	8
Übung: Teaching Rating	10
Daten importieren	11
Literatur	11
Lizenz	12
Versionshinweise:	12
Kapitel 1: Einführung in Daten	13
Datensatz	13
Grafische Verfahren der Datenanalyse	13
Balkendiagramm	13
Histogramm	15
Boxplots	16
Scatterplot (Streudiagramme)	18
Mosaicplot	19
Korrelationsplot	20
Kennzahlen der Datenanalyse	21
Lagemaße	21
Streuungsmaße	24
Zusammenhangsmaße	25
Übung: Teaching Rating	26
Literatur	26
Lizenz	27
Versionshinweise:	27
Kapitel 2: Einf. Wahrscheinl., Inferenz	28
Zufall und Wahrscheinlichkeit	28
Hypothesentest, p-Wert und Konfidenzintervall	32

Rechnen mit der Normalverteilung		36
Random Walk		36
Übung: Achtsamkeit		40
Übung: Intelligenzquotient		41
Literatur		41
Lizenz		41
Versionshinweise:		41
Kapitel 3: Einführung Inferenz kategoriale Werte		42
Globaler Index der Religiösität und Atheismus		42
Inferenz eines Anteilswerts		43
Differenz zweier Anteilswerte		46
Chi-Quadrat Unabhängigkeitstest		49
Übung: Trinkgelddaten		51
Literatur		51
Lizenz		52
Versionshinweise:		52
Kapitel 4: Einführung Inferenz metrische Werte		53
t-Test für eine Stichprobe		53
t-Test für eine abhängige/gepaarte Stichprobe		59
t-Test für zwei unabhängige Stichprobe		61
Varianzanalyse (ANOVA)		65
Erweiterung: Mehrfaktorielle Varianzanalyse mit Wechs	selwirkung	72
Übung: Teaching Rating		74
Literatur		74
Lizenz		75
Versionshinweise:		75
Kapitel 5: Einführung Lineare Regression		7 6
Einfache Regression		76
Regression mit kategorialen Werten		82
Multivariate Regression		86
Inferenz in der linearen Regression		89
Erweiterungen		90
Modellwahl		90
Interaktionen		92
Weitere Modellierungsmöglichkeiten		94
Prognoseintervalle		94
Kreuzvalidierung		96
Übung: Teaching Rating		97
Literatur		98

Lizenz	. 98
Versionshinweise:	. 98
Kapitel 6: Einführung Zeitreihenanalyse	99
Euro Handelsdaten	. 99
Zeitreihenzerlegung	. 100
Gleitende Durchschnitte	. 104
Übung: Produktionsdaten	. 105
Literatur	. 105
Lizenz	. 105
Versionshinweise:	. 106
Anhang 1: R Kurzreferenz	107
Vorbemerkungen	. 107
Daten	. 107
Daten einlesen	. 108
Daten verarbeiten	. 108
Daten transformieren	. 108
Grafische Verfahren	. 109
Deskriptive Statistik	. 110
Inferenzstatistik	. 110
Randomisierung, Simulationen	. 110
Verteilungen	. 110
Testverfahren	. 111
Multivariate Verfahren	. 111
Versionshinweise:	. 111
Anhang 2: Datenjudo	113
Typische Probleme	. 114
Daten aufbereiten mit dplyr	. 115
Zeilen filtern mit filter	. 115
Aufgaben	. 116
Spalten wählen mit select	. 117
Zeilen sortieren mit arrange	. 119
Aufgaben	. 121
Datensatz gruppieren mit group_by	. 122
Aufgaben	. 123
Eine Spalte zusammenfassen mit summarise	. 123
Zeilen zählen mit n und count	. 126
Vertiefung	. 128
Die Pfeife	. 128
Werte umkodieren und "binnen"	. 129

Verwe	ise
Hinwe	is
Anhang	3: Daten visualisieren mit ggplot 134
Ein Bi	ild sagt mehr als 1000 Worte
Häufig	ge Arten von Diagrammen
H	Eine kontinuierliche Variable
7	Wwei kontinuierliche Variablen
H	Eine diskrete Variable
7	Wwei diskrete Variablen
7	Zusammenfassungen zeigen
Verwe	ise
Hinwe	is 156

Kapitel 0: Erste Schritte in R

Hinweise

R ist der Name eines Programms für Statistik und Datenanalyse, RStudio ist eine komfortable Entwicklungsumgebung für R.

Nach dem Start von RStudio erscheint folgender Bildschirm, wobei die Version neuer sein kann.

Links, in der *Console* werden die Befehle eingegeben. Rechts oben können Sie z. B. die Daten, aber auch andere Objekte, mit denen Sie arbeiten, betrachten, auch die Historie der Befehle wird dort angezeigt. Rechts unten können Sie u. a. Dateien und Abbildungen auswählen, aber auch Hilfeseiten und Tipps betrachten.

Wir werden zunächst in der Konsole arbeiten.

Ein paar Anmerkungen vorweg:

- R unterscheidet zwischen Groß- und Kleinbuchstaben, d. h., Oma und oma sind zwei verschiedene Dinge für R!
- R verwendet den Punkt . als Dezimaltrennzeichen,
- Fehlende Werte werden in R durch NA kodiert,
- Kommentare werden mit dem Rautezeichen # eingeleitet; der Rest der Zeile von von R dann ignoriert.
- R wendet Befehle direkt an.
- R ist objektorientiert, d. h., dieselbe Funktion hat evtl. je nach Funktionsargument unterschiedliche Rückgabewerte
- Hilfe zu einem Befehl erhält man über ein vorgestelltes Fragezeichen ?
- Zusätzliche Funktionalität kann über Zusatzpakete hinzugeladen werden. Diese müssen ggf. zunächst installiert werden,
- Mit der Pfeiltaste nach oben können Sie einen vorherigen Befehl wieder aufrufen,

• Sofern Sie das Skriptfenster verwenden: einzelne Befehle aus dem Skriptfenster in R Studio können Sie auch mit Str und Enter an die Console schicken,

R als Taschenrechner

Auch wenn Statistik nicht Mathe ist, so kann man mit R auch rechnen. Geben Sie zum Üben die Befehle in der R Konsole hinter der Eingabeaufforderung > ein und beenden Sie die Eingabe mit Return bzw. Enter.

```
4 + 2
```

[1] 6

Das Ergebnis wird direkt angezeigt. Bei

```
x < -4 + 2
```

erscheint zunächst kein Ergebnis. Über <- wird der Variable x der Wert 4+2 zugewiesen. Wenn Sie jetzt x

eingeben, wird das Ergebnis

```
## [1] 6
```

angezeigt. Sie können jetzt auch mit x weiterrechnen.

```
x/4
```

```
## [1] 1.5
```

Vielleicht fragen Sie sich was die [1] vor dem Ergebnis bedeutet. R arbeitet vektororientiert, und die [1] zeigt an, dass es sich um das erste (und hier auch letzte) Element des Vektors handelt.

R zur Datenanalyse

Wir wollen R aber als Tool zur Datenanalyse verwenden. Daher müssen wir zunächst Daten einlesen.

Zunächst laden wir die Daten als csv Datei herunter

```
download.file("https://goo.gl/whKjnl", destfile = "tips.csv")
```

Der Inhalt der Datei ist jetzt als Tabelle tips in R verfügbar.

Hier können Sie mehr über die Daten erfahren.

Das Einlesen von csv Dateien aus dem Arbeitsverzeichnis in R kann erfolgen über

```
tips <- read.csv2("tips.csv")
```

Wo das lokale Verzeichnis ("working directory") ist, können Sie über

getwd()

erfahren.

Der Datensatz tips taucht jetzt im Enviroment Fenster rechts oben in RStudio auf. Durch Klicken auf den Namen können Sie diese betrachten.

Alternativ können Sie Daten in RStudio komfortabel mit dem Button Import Dataset (im Fenster Environment oder über das Menü File) öffnen.

Erste Analyse des tips Datensatzes

Dieser Datensatz aus

Bryant, P. G. and Smith, M (1995) Practical Data Analysis: Case Studies in Business Statistics. Homewood, IL: Richard D. Irwin Publishing

enthält Trinkgelddaten. Diese sind in tabellarischer Form dargestellt, d. h. üblicherweise, dass die Beobachtungen zeilenweise untereinander stehen, die einzelnen Variablen spaltenweise nebeneinander. In R heißen solche Daten *data frame*. Um einen ersten Überblick über die verschiedenen Variablen zu erhalten geben wir den Befehl str() ein:

```
str(tips)
```

```
## $ size : int 2 3 3 2 4 4 2 4 2 2 ...
```

Dieser enthält also 244 Zeilen (Beobachtungen) und 7 Spalten (Variablen). Alternativ kann man diese Information auch über

```
dim(tips)
```

```
## [1] 244 7
```

erhalten.

Numerische (metrische) Variablen sind in R in der Regel vom Typ numeric (stetig) oder int (Ganze Zahlen), kategorielle (nominale, ordinale) Variablen vom Typ factor (bei ordinal: Option ordered = TRUE) oder character. str() und dim() sind erste Befehle, d. h., Funktionen in R, denen in der Klammer das jeweilige Funktionsargument übergeben wird.

```
head(tips) # Obere Zeilen
tail(tips) # Untere Zeilen
```

ermöglichen ebenfalls einen Einblick über die Daten. Der Befehl

```
names (tips)
```

gibt die Variablennamen zurück. Mit Hilfe des \$ Operators kann auf einzelne Variablen eines Dataframes zugegriffen werden. Mit

```
tips$sex
```

erhalten Sie bspw. das Geschlecht des Rechnungszahlers.

Übung: Lassen Sie sich die Variable Rechnungshöhe (total_bill) anzeigen.

mosaic

mosaic ist ein Zusatzpaket, welches die Analyse mit R erleichtert. Sofern noch nicht geschehen, muss es einmaliq über

```
install.packages("mosaic")
```

installiert werden.

Um es verwenden zu können, muss es – wie jedes Paket – für *jede* neue R-Sitzung über library (mosaic) geladen werden. Die angegebenen Hinweise sind keine Fehlermeldung!

```
library (mosaic)
```

Sollte beim Laden eines Paketes eine Meldung wie

library (xyz)

Error in library(xyz): there is no package called 'xyz' erscheinen, muss das Paket xyz zunächst installiert werden (siehe oben).

Der Grundgedanke von mosaic ist *Modellierung*. In R und insbesondere in mosaic wird dafür die Tilde ~ verwendet. y~x kann dabei gelesen werden wie "y ist eine Funktion von x". Um beispielsweise eine Abbildung (Scatterplot) des Trinkgeldes tip (auf der Y-Achse) und Rechnungshöhe total_bill (auf der X-Achse) zu erhalten, kann man in R folgenden Befehl eingeben:

Das Argument data=tips stellt klar, aus welchen Datensatz die Variablen kommen. Die Abbildung ist im RStudio jetzt rechts unten im Reiter *Plots* zu sehen.

Übung: Wie würden Sie den Trend beschreiben?

Wie oben erwähnt können wir R auch gut als Taschenrechner benutzen, sollten aber bedenken, dass R vektorweise arbeitet. D. h.

tips\$tip/tips\$total_bill

gibt für jede Beobachtung die relative Trinkgeldhöhe bezogen auf die Rechnungshöhe an. Über

```
(tips$tip/tips$total_bill) < 0.1</pre>
```

erhalten wir einen Vektor vom Typ logical. Dieser nimmt nur zwei Werte an, nämlich TRUE und FALSE, je nach dem, ob der jeweilige Wert kleiner als 0.10 ist oder nicht. Neben < und > bzw. <= und >= gibt es ja auch noch die Prüfung auf Gleichheit. Hierfür werden in R gleich zwei Gleichheitszeichen verwendet, also ==.

Übung: Was gibt folgender der Befehl zurück?

```
tips$sex == "Female"
```

Logische Vektoren können z. B. mit "und" & oder "oder" | verknüpft werden:

```
tips$sex == "Female" & tips$smoker == "Yes"
```

gibt die Tischgesellschaften als TRUE wieder, in denen die Rechnung von Frauen beglichen wurde und geraucht wurde,

```
tips$sex == "Female" | tips$smoker == "Yes"
```

gibt die Tischgesellschaften als TRUE wieder, in denen die Rechnung von Frauen beglichen wurde oder geraucht wurde.

Intern wird TRUE in R mit der Zahl 1 hinterlegt, FALSE mit 0. Mit dem Befehl sum () kann man daher die Elemente eines Vektor aufsummieren, also erfahren wir über

```
sum(tips$sex == "Female" & tips$smoker == "Yes")
```

dass bei 33 Tischgesellschaften bei denen geraucht wurde, eine Frau die Rechnung bezahlte. Im Verhältnis zu allen Tischgesellschaften, bei denen eine Frau zahlte, liegt der Raucheranteil also bei 0.3793103:

```
sum(tips$sex == "Female" & tips$smoker == "Yes")/sum(tips$sex ==
"Female")
```

Übung: Wurde bei den Tischgesellschaften, bei denen ein Mann zahlte, relativ häufiger geraucht als bei den Frauen?

Übung: Teaching Rating

Dieser Datensatz analysiert u. a. den Zusammenhang zwischen Schönheit und Evaluierungsergebnis:

Hamermesh, D.S., and Parker, A. (2005). Beauty in the Classroom: Instructors' Pulchritude and Putative Pedagogical Productivity. Economics of Education Review, 24, 369–376.

Sie können ihn von https://goo.gl/6Y3KoK herunterladen. Hier gibt es eine Beschreibung.

- 1. Lesen Sie den Datensatz in R ein.
- 2. Wie viele Zeilen, wie viele Spalten liegen vor?
- 3. Wie heißen die Variablen?
- 4. Betrachten Sie visuell den Zusammenhang von dem Evaluierungsergebnis eval und Schönheit beauty. Was können Sie erkennen?
- 5. Sind relativ mehr Frauen oder mehr Männer (gender) in einem unbefristeten Arbeitsverhältnis (*Tenure Track*, tenure)?

Daten importieren

Der Datenimport in R ist in vielen unterschiedlichen Dateiformaten möglich. Das csv Format eignet sich besonders zum Übertragen von Datendateien. Im deutschsprachigen Raum wird dabei als *Dezimaltrennzeichen* das Komma , und als *Datentrennzeichen* das Semikolon ; verwendet. In der ersten Zeile sollten die Variablennamen stehen. Das Einlesen in einen R Data-Frame (hier meineDaten) kann dann über

```
meineDaten <- read.csv2(file.choose()) # Datei auswählen</pre>
```

Der Befehl file.choose() öffnet dabei den Dateiordner. Bei "internationalen" csv Dateien ist das Datentrennzeichen i. d. R. ein Komma, das Dezimaltrennzeichen ein Punkt.. Hier funktioniert der Import in R dann über den Befehl read.csv.

In R Studio gibt es im Reiter Environment im Fenster Rechts oben einen Menüpunkt Import Dataset der mehr Einstellmöglichkeiten bietet.

Excel Dateien können unter anderem mit Hilfe des Zusatzpaketes readxl können eingelesen werden:

```
library(readxl) # Paket laden
meineDaten <- read_excel(file.choose()) # Datei auswählen und in R einlesen</pre>
```

Hier finden Sie eine Linksammlung zu verschiedenen Datenquellen.

Literatur

erfolgen.

- Nicholas J. Horton, Randall Pruim, Daniel T. Kaplan (2015): Project MOSAIC Little Books A Student's Guide to R https://github.com/ProjectMOSAIC/LittleBooks/raw/master/StudentGuide/ MOSAIC-StudentGuide.pdf, Kapitel 1, 2, 13
- Chester Ismay (2016): Getting used to R, RStudio, and R Markdown https://ismayc.github.io/ rbasics-book/
- Maike Luhmann (2015): R für Einsteiger, Kapitel 1-8
- Daniel Wollschläger (2014): Grundlagen der Datenanalyse mit R, Kapitel 1-4

Literatur

Lizenz

Diese Übung wurde von Karsten Lübke entwickelt und orientiert sich an der Übung zum Buch OpenIntro von Andrew Bray, Mine Çetinkaya-Rundel und Mark Hansen und steht wie diese unter der Lizenz Creative Commons Attribution-ShareAlike 3.0 Unported.

Versionshinweise:

 $\bullet~$ Datum erstellt: 2017-07-27

 \bullet R Version: 3.4.1

• mosaic Version: 0.14.4

Kapitel 1: Einführung in Daten

Datensatz

Wir werden jetzt den tips Datensatz aus Bryant, P. G. and Smith, M (1995) Practical Data Analysis: Case Studies in Business Statistics. Homewood, IL: Richard D. Irwin Publishing näher analysieren.

Sofern noch nicht geschehen, können Sie ihn z. B. hier als csv-Datei direkt nach R herunterladen:

```
download.file("https://goo.gl/whKjnl", destfile = "tips.csv")
```

Wenn sich die Daten auf Ihrem Computer gespeichert sind, können Sie sie laden:

```
tips <- read.csv2("tips.csv")
```

Achtung: read.csv geht vom amerikanischen Format aus. Wenn es sich um eine "deutsche CSV-Datei" handelt, verwenden Sie read.csv2.

Tipp: Wenn Sie nicht mehr wissen, wo die Daten liegen: statt tips.csv den Befehl file.choose() als Argument für die Funktion read.csv2 verwenden.

Inwieweit das Einlesen wie gewünscht geklappt hat, kann über

```
str(tips)
```

überprüft werden: Der Datensatz hat also 244 Zeilen (= Beobachtungen) und 7 Spalten (= Merkmale/Variablen).

Zur folgenden Analyse muss zunächst das Paket mosaic geladen werden:

```
library (mosaic)
```

Grafische Verfahren der Datenanalyse

Bevor evtl. wichtige Information in zusammenfassenden Kennzahlen verloren geht, versuchen wir einen Gesamtüberblick zu erhalten.

Balkendiagramm

Balkendiagramme eignen sich am besten um Häufigkeiten darzustellen, also für kategorielle Variablen (factor) oder für metrische Variablen (numeric) mit wenigen Merkmalsausprägungen.

Um einen Überblick über die Geschlechterverteilung sex zu bekommen kann die Funktion bargraph aus dem Paket mosaic verwendet werden:

```
bargraph(~sex, data = tips)
```


In mosaic wird (fast) immer die Formeldarstellung y $\sim x \mid z$ verwendet: y in Abhängigkeit von x (y wird modelliert durch x), gruppiert nach den Werten von z, wobei einzelne Teile fehlen können, so wie im Beispiel y und z. Aber um z. B. die Verteilung des Geschlechts des Zahlenden je Tageszeit time darzustellen muss hier eingegeben werden:

bargraph(~sex | time, data = tips)

Übung:

 Zeichnen Sie ein Balkendiagramm des Rauchverhaltens smoker je Wochentag day und interpretieren Sie das Ergebnis.

Histogramm

Histogramme werden für metrische Daten verwendet, der Befehl lautet histogram.

Übung:

2. Welche Abbildung wird über

 ${\it erzeugt?}$

Punktdiagramme sind eine Variante von Histogrammen, die besonders für metrische Variablen mit wenigen Merkmalsausprägungen geeignet sind.

dotPlot(~size, nint = 6, data = tips)

Hier wurde ein zusätzliche Parameter der Funktion dotPlot übergeben: nint=6. Dieser Parameter wurde wurde verwendet, um die Abbildung schöner zu machen. Welche Optionen es gibt und was diese bedeuten, kann man in R häufig einfach über die Hilfe, hier also ?dotPlot, erfahren.

Boxplots

Boxplots zeigen nicht nur den Median (50%-Quantil) sowie das obere (75%) und untere (25%) Quartil - und damit den Interquartilsabstand -, sondern geben auch Hinweise auf potentielle Ausreißer:

```
bwplot(total_bill ~ sex, data = tips)
```


und gruppiert nach Tageszeit:

Übung:

3. Zeichen Sie einen Boxplot für die Trinkgeldhöhe tip in Abhängigkeit davon, ob geraucht wurde (smoker). Gibt es Unterschiede in der Trinkgeldhöhe und, wenn ja, in welchem Bereich?

Scatterplot (Streudiagramme)

Streudiagramme sind besonders gut geeignet, um einen Überblick auf den Zusammenhang zweier metrischer Merkmale zu erhalten; beispielsweise um den Zusammenhang von tip und total_bill zu analysieren.

Wenig überraschend steigt die Trinkgeldhöhe mit der Rechnung. Wie sieht es relativ aus? Dazu müssen wir zunächst ein neues Merkmal im Datensatz erzeugen, z. B.:

Im Datensatz tips wird der (neuen) Variable tip_relativ der Quotient aus Trinkgeld und Rechnungshöhe zugewiesen.

Übung:

4. Erstellen Sie eine Abbildung, mit der Sie visuell gucken können, wie der Zusammenhang zwischen der relativen Trinkgeldhöhe (abhängige Variable) und der Rechnungshöhe (uanbhängige Variable) aussieht, und ob sich dieser je nach Geschlecht des Rechnungszahlers unterscheidet.

Mosaicplot

Mosaicplots eignen sich, um den Zusammenhang zwischen kategoriellen Variablen darzustellen. Zunächst müssen wir dazu eine Kreuztabelle erstellen. Das geht in mosaic über den Befehl tally. Dieser Befehl ist recht mächtig – dazu später mehr. Wir erzeugen eine solche Kreuztabelle zwischen Tageszeit und Rauchen über

```
tab_smoke_time <- tally(smoker ~ time, data = tips)</pre>
```

Dem (neuen) R Objekt tab_smoke_time wird also das Ergebnis des tally Befehls zugewiesen. Wie das Ergebnis aussieht, und welchen Typ es hat erfahren wir über

```
print (tab_smoke_time)
```

```
## time

## smoker Dinner Lunch

## No 106 45

## Yes 70 23
```

```
str(tab_smoke_time)
```

```
## 'table' int [1:2, 1:2] 106 70 45 23
## - attr(*, "dimnames")=List of 2
## ..$ smoker: chr [1:2] "No" "Yes"
## ..$ time : chr [1:2] "Dinner" "Lunch"
```

Es handelt sich also um eine Tabelle (table) der Dimension 2, 2, also 2 Zeilen, 2 Spalten.

Der Befehl für einen Mosaicplot lautet mosaicplot:

```
mosaicplot(tab_smoke_time)
```

tab_smoke_time

${\bf Korrelation splot}$

Mit Hilfe des Zusatzpakets corrplot lassen sich Korrelationen besonders einfach visualisieren. Das Paket muss wie jedes Paket einmalig über

```
install.packages("corrplot")
```

installiert werden – wiederum werden evt. weitere benötigte Pakete mit-installiert. Nach dem Laden des Pakets über

```
library(corrplot)
```

kann dies über

```
corrplot(cor(tips[, c("total_bill", "tip", "size")]))
```


gezeichnet werden. Je intensiver die Farbe, desto höher die Korrelation. Hier gibt es unzählige Einstellmöglichkeiten, siehe ?corrplot bzw. für Beispiele:

```
vignette("corrplot-intro")
```

Kennzahlen der Datenanalyse

Nachdem wir einen ersten visuellen Eindruck gewonnen haben, wollen wir uns jetzt Kennzahlen widmen.

${\bf Lagemaße}$

Das Minimum und Maximum von metrischen Daten kann einfach durch min bzw. max bestimmt werden, in mosaic auch "modelliert":

```
min(~total_bill | smoker, data = tips)
## No Yes
## 7.25 3.07
```

gibt also das Minimum der Rechnungshöhe, getrennt nach Raucher und Nichtrauchern an, d. h. das Minimum bei den Rauchern lag bei 3.07\$.

Übung:

5. Bestimmen Sie das Maximum der Trinkgeldhöhe je Wochentag (day)

Lagemaße sollen die zentrale Tendenz der Daten beschreiben. Gebräuchlich sind in der Regel der arithmetische Mittelwert mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

```
mean(~total_bill, data = tips)
```

[1] 19.78594

sowie der Median (Zentralwert) median:

```
median(~total_bill, data = tips)
```

[1] 17.795

Den jeweiligen Rang der Beonbachtungen erhalten Sie über

```
rank (tips$total_bill)
```

```
[1] 113.0 25.5 162.5 179.0 187.0 192.0 12.0 199.0 82.0 79.0
   [12] 229.0 86.0 136.0 80.0 166.0 23.5 100.0 112.0 156.0 126.5 151.5
         91.0 234.0 147.0 123.0 62.0 51.0 167.0 144.0 13.0 135.0
   [34] 157.5 122.0 182.0 101.0 111.0 138.0 217.0 97.0 118.0 70.0 15.0
   [45] 215.0 133.5 169.0 220.0 207.0 128.0 48.0
                                                 22.0 227.0 17.0 193.0
   [56] 143.0 231.0 196.0 34.0 242.0 151.5 68.5
                                                 32.0 133.5 121.0 148.0
   [67] 105.0
                1.0 149.0 81.0 41.0 114.0 198.0 191.0 78.0 27.0 126.5
   [78] 202.0 174.0 116.0 142.0 109.0 18.5 221.0 94.5 228.0
                                                             57.0 132.0
                                 2.0 102.0 173.0 235.0 203.0 42.0 162.5
   [89] 188.0 164.0 208.0 171.0
         46.0 35.0 85.0 239.0 170.0 161.0 84.0 154.0 190.0 130.0
  [100]
                3.5 232.0 180.0 194.0 117.0 212.0
                                                 30.0 45.0 183.0
  [111]
  [122]
         65.0
              74.0 93.0 47.0 210.0 10.0
                                           77.0
                                                 36.0 175.0 141.0 150.0
        33.0 44.0 131.0
                           9.0 23.5 73.0 96.0
                                                 59.0 119.0 224.0 237.0
## [133]
## [144] 200.0 104.0
                     8.0 137.0 40.0 16.0
                                             5.0
                                                 72.0 58.0 115.0 186.0
## [155] 145.0 211.0 241.0 189.0 63.0 107.0 165.0
                                                 50.0 98.0 68.5 120.0
## [166] 185.0 159.0 218.0 28.0 29.0 244.0 92.0
                                                  3.5 219.0 110.0 223.0
## [177] 125.0 76.0 14.0 225.0 226.0 178.0 240.0 177.0 236.0 157.5 160.0
## [188] 216.0 129.0 176.0 89.5 146.0 206.0 87.0 108.0
                                                        6.0 25.5 238.0
        55.5 67.0 139.0
                          52.0 55.5 103.0 155.0 106.0 197.0 233.0 184.0
        53.0 213.0 195.0 243.0 60.0 205.0 54.0 204.0
                                                       37.0
## [210]
## [221]
         43.0 65.0 11.0
                          94.5
                               65.0 99.0 20.0 153.0
                                                      61.0 168.0 181.0
         89.5 38.0 31.0 88.0 18.5 49.0 222.0 230.0 209.0 201.0 172.0
## [232]
## [243] 124.0 140.0
```

Diese unterscheiden sich:

```
meantb <- mean(~total_bill, data = tips) # Mittelwert
mediantb <- median(~total_bill, data = tips) # Median
histogram(~total_bill, v = c(meantb, mediantb), data = tips)</pre>
```


Über die Option v= werden vertikale Linien an den entsprechenden Stellen gezeichnet. Mit h= können horizontale Linien gezeichnet werden.

Übung:

6. Begründen Sie anhand des Histogramms, warum hier der Median kleiner als der arithmetische Mittelwert ist.

Auch Lagemaße zu berechnen in Abhängigkeit der Gruppenzugehörigkeit ist einfach. So können Sie den arithmetischen Mittelwert in Abhängigkeit von Geschlecht und Tageszeit berechnen:

```
mean(total_bill ~ sex + time, data = tips)

## Female.Dinner Male.Dinner Female.Lunch Male.Lunch
## 19.21308 21.46145 16.33914 18.04848
```

Übung:

7. Bestimmen Sie den Median der Trinkgeldhöhe anhand der Anzahl Personen in der Tischgesellschaft.

Für kategorielle Variablen können eigentlich zunächst nur die Häufigkeiten bestimmt werden:

```
tally(~day, data = tips)

## day

## Fri Sat Sun Thur
## 19 87 76 62
```

Relative Häufigkeiten werden bei mosaic mit der zusätzlichen Option format='proportion' angefordert:

```
## day
## Fri Sat Sun Thur
## 0.07786885 0.35655738 0.31147541 0.25409836
```

Streuungsmaße

Die Variation der Daten, die wir grafisch und auch in den (bedingten) Lagemaßen gesehen haben, ist eines der zentralen Themen der Statistik: Können wir die Variation vielleicht erklären? Variiert die Rechnungshöhe vielleicht mit der Anzahl Personen?

Zur Bestimmung der Streuung werden in der Regel der Interquartilsabstand IQR sowie Varianz var bzw. Standardabweichung sd

$$s = sd = \sqrt{s^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

herangezogen:

```
IQR(~total_bill, data = tips)

## [1] 10.78

var(~total_bill, data = tips)

## [1] 79.25294

sd(~total_bill, data = tips)

## [1] 8.902412
```

Um die Standardabweichung in Abhängigkeit der Gruppengröße zu berechnen genügt der Befehl:

```
## 1 2 3 4 5 6
## 3.010729 6.043729 9.407065 8.608603 7.340396 9.382000
```

Bei 4 Personen lag die Standardabweichung als bei 8.61\$.

Um jetzt z. B. den Variationskoeffizienten zu berechnen, wird

1 2 3 4 5 6 ## 0.4157031 0.3674443 0.4041247 0.3008579 0.2441265 0.2693655 gebildet.

Übung:

8. Zu welcher Tageszeit ist die Standardabweichung des Trinkgelds geringer? Zum Lunch oder zum Dinner?

Die *üblichen* deskriptiven Kennzahlen sind in mosaic übrigens in einer Funktion zusammengefasst: favstats.

```
favstats(tip ~ day, data = tips)
```

```
## day min Q1 median Q3 max mean sd n missing
## 1 Fri 1.00 1.9600 3.000 3.3650 4.73 2.734737 1.019577 19 0
## 2 Sat 1.00 2.0000 2.750 3.3700 10.00 2.993103 1.631014 87 0
## 3 Sun 1.01 2.0375 3.150 4.0000 6.50 3.255132 1.234880 76 0
## 4 Thur 1.25 2.0000 2.305 3.3625 6.70 2.771452 1.240223 62 0
```

Zusammenhangsmaße

Kennzahlen für den linearen Zusammenhang von metrischen Variablen sind Kovarianz cov

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

und der Korrelationskoeffizient cor

$$r = \frac{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}} = \frac{s_{xy}}{s_x s_y}$$

```
cov(tip ~ total_bill, data = tips)
## [1] 8.323502
cor(tip ~ total_bill, data = tips)
```

```
## [1] 0.6757341
```

Für kategorielle Variablen wird in diesen Abschnitt zunächst nur die Kreuztabelle verwendet:

```
tally(smoker ~ sex, format = "proportion", data = tips)

## sex
## smoker Female Male
## No 0.6206897 0.6178344
## Yes 0.3793103 0.3821656
```

Übung:

9. Zu welcher Tageszeit wurde relativ häufiger von einer Frau die Rechnung bezahlt?

Übung: Teaching Rating

Dieser Datensatz analysiert u. a. den Zusammenhang zwischen Schönheit und Evaluierungsergebnis von Dozenten:

Hamermesh, D.S., and Parker, A. (2005). Beauty in the Classroom: Instructors' Pulchritude and Putative Pedagogical Productivity. Economics of Education Review, 24, 369–376.

Sie können ihn von https://goo.gl/6Y3KoK herunterladen.

- 1. Erstellen Sie ein Balkendiagramm der Variable native gruppiert nach der Variable minority.
- 2. Erstellen Sie ein Histogramm der Variable beauty gruppiert nach der Variable gender.
- 3. Vergleichen Sie das Evaluationsergebnis eval in Abhängigkeit ob es sich um einen Single-Credit Kurs credits handelt mit Hilfe eines Boxplots.
- 4. Zeichnen Sie ein Scatterplot der Variable eval in Abhängigkeit der zu definierenden Variable "Evaluierungsquote": students/allstudents.
- 5. Berechnen Sie deskriptive Kennzahlen der Variable eval in Abhängigkeit ob es sich um einen Single-Credit Kurs credits handelt.

Literatur

- David M. Diez, Christopher D. Barr, Mine Çetinkaya-Rundel (2014): Introductory Statistics with Randomization and Simulation, https://www.openintro.org/stat/textbook.php?stat_book=isrs, Kapitel 1
- Nicholas J. Horton, Randall Pruim, Daniel T. Kaplan (2015): Project MOSAIC Little Books A
 Student's Guide to R, https://github.com/ProjectMOSAIC/LittleBooks/raw/master/StudentGuide/
 MOSAIC-StudentGuide.pdf, Kapitel 3.1, 3.2, 4.1, 5.1, 5.2, 6.1
- Chester Ismay, Albert Y. Kim (2017): ModernDive An Introduction to Statistical and Data Sciences via R, https://ismayc.github.io/moderndiver-book/

Literatur

• Maike Luhmann (2015): R für Einsteiger, Kapitel 9-11

• Andreas Quatember (2010): Statistik ohne Angst vor Formeln, Kapitel 1

• Daniel Wollschläger (2014): Grundlagen der Datenanalyse mit R, Kapitel 14

Lizenz

Diese Übung wurde von Karsten Lübke entwickelt und orientiert sich an der Übung zum Buch OpenIntro von Andrew Bray, Mine Çetinkaya-Rundel und Mark Hansen und steht wie diese unter der Lizenz Creative Commons Attribution-ShareAlike 3.0 Unported.

Versionshinweise:

 \bullet Datum erstellt: 2017-07-27

• R Version: 3.4.1

• mosaic Version: 0.14.4

Kapitel 2: Einf. Wahrscheinl., Inferenz

Zufall und Wahrscheinlichkeit

In dieser Übung werden wir ein wenig programmieren, daher bietet es sich an, die Befehle in einem Skript zu speichern. Gehen Sie dazu in RStudio in das Menü File und dort auf New File und wählen R Script aus. Dies können Sie dann am Ende über File und Save bzw. Safe as speichern – und über Open File später auch wieder öffnen. Um die Befehle an die Konsole zu übergeben klicken Sie entweder auf Run (nur ausgewählte Zeile, Tastenkürzel Strg+Enter) oder Source (ganzes Programm).

Zunächst laden wir wieder das Zusatzpaket mosaic, falls noch nicht geschehen:

```
library (mosaic)
```

Um den Zufall zu bändigen, setzen wir den Zufallszahlengenerator, z. B. auf 1896

```
set.seed(1896)
```

Dieser Befehl sorgt dafür, dass wir immer denselben "Zufall" haben.

Beim Roulette gibt es 37 Zahlen und 3 Farben: 0-36, wobei 18 Zahlen Schwarz, 18 Zahlen Rot und die 0 Grün ist – auf die Farbe Grün können Sie auch nicht setzen.

Angenommen Sie setzen auf Farbe. Dann beträgt Ihre Gewinnwahrscheinlichkeit $\frac{18}{37}$, da 18 von 37 Fächern "ihre" Farbe hat, die Wahrscheinlichkeit eines Verlustes liegt bei $\frac{19}{37} = 1 - \frac{18}{37}$.

Definieren wir in R einen factor-Vektor mit zwei Elementen für Gewinn und Verlust:

```
roulette <- factor(c("Gewinn", "Verlust"))</pre>
```

Mit diesem Vektor können wir jetzt virtuell und ganz ohne Risiko über den Befehl resample Roulette spielen

```
resample(roulette, size = 1, prob = c(18/37, 19/37))

## [1] Gewinn
## Levels: Gewinn Verlust

resample(roulette, size = 10, prob = c(18/37, 19/37))

## [1] Gewinn Gewinn Gewinn Gewinn Gewinn Verlust Gewinn
## [9] Verlust Gewinn
## Levels: Gewinn Verlust
```

Mit dem Argument size wird also eingestellt, wie oft Roulette gespielt wird, prob ist der Vektor der Wahrscheinlichkeiten für die einzelnen Elemente im Ereignisvektor, hier roulette.

Über

```
spiele <- resample(roulette, size = 100, prob = c(18/37, 19/37))</pre>
```

wird dem Vektor spiele das Ergebnis von 100 Roulettespielen zugewiesen. Die Häufigkeitsverteilung erhalten wir wie gewohnt über den Befehl tally:

```
tally(~spiele, format = "proportion")

## spiele
## Gewinn Verlust
## 0.51 0.49
```

Das **Gesetz der großen Zahl** sagt aus, dass sich auf *lange* Sicht die beobachtete relative Häufigkeit der theoretischen Wahrscheinlichkeit annähert:

```
tally(~resample(roulette, size = 10, prob = c(18/37, 19/37)),
    format = "proportion")
## resample(roulette, size = 10, prob = c(18/37, 19/37))
    Gewinn Verlust
       0.7
##
               0.3
tally(~resample(roulette, size = 100, prob = c(18/37, 19/37)),
    format = "proportion")
## resample(roulette, size = 100, prob = c(18/37, 19/37))
    Gewinn Verlust
      0.44
              0.56
tally(~resample(roulette, size = 1000, prob = c(18/37, 19/37)),
    format = "proportion")
## resample(roulette, size = 1000, prob = c(18/37, 19/37))
    Gewinn Verlust
     0.488
             0.512
##
tally(\simresample(roulette, size = 1e+06, prob = c(18/37, 19/37)),
    format = "proportion")
## resample(roulette, size = 1e+06, prob = c(18/37, 19/37))
     Gewinn Verlust
## 0.486433 0.513567
```

Die theoretische Wahrscheinlichkeit eines Gewinns liegt bei $\frac{18}{37} \approx 0.4865$: Achtung, das Gesetz der großen Zahl gilt für den Durchschnitt und auf lange Sicht, evtl. Ungleichgewichte, z. B. 5 Gewinne in Folge, werden im Laufe der Zeit abgeschwächt und nicht durch anschließende 5 Verluste ausgeglichen.

Bei bestimmten Spielstrategien, z. B. bei der sogenannten Martingale oder Verdoppelungsstrategie, ist man daran interessiert, wie wahrscheinlich es ist, z. B. 8-mal in Folge zu verlieren. Natürlich kann das mit Hilfe der *Binomialverteilung* ausgerechnet werden, wir können es aber auch simulieren: do () ist eine einfache Schleifenfunktion in mosaic. Um z. B. 1000-mal jeweils 8 Runden Roulette zu spielen - und das

Ergebnis zu speichern - genügt:

```
farbspiele <- do(1000) * tally(~resample(roulette, size = 8,
    prob = c(18/37, 19/37)), format = "proportion")</pre>
```

farbspiele ist jetzt ein Datensatz (data.frame) mit 1000 Zeilen (=Simulationen) und den relativen Häufigkeiten für Gewinn und Verlust in den 8 Spielen in den Spalten.

Das Balkendiagramm der relativen Verlusthäufigkeit zeigt, dass es zwar selten aber doch vorkommt, alle 8 Spiele zu verlieren.

```
bargraph(~Verlust, data = farbspiele)
```


Wir haben in 4 von 1000 Wiederholungen nur verloren, d. h. 8 von 8 Spielen.

Übung:

1. Wenn Sie statt auf Farbe auf eine Zahl setzen, beträgt Ihre Gewinnwahrscheinlichkeit $\frac{1}{37}$. Simulieren Sie 1000-mal 10 Spiele. Wie oft haben Sie mindestens 1-mal gewonnen?

Wenn wir uns die Verteilung der Daten der Übung anschauen

```
zahlspiele <- do(1000) * tally(~resample(roulette, size = 10,
    prob = c(1/37, 36/37)), format = "proportion")
bargraph(~Gewinn, data = zahlspiele)</pre>
```


stellen wir fest, dass diese Daten (leider) extrem rechtsschief sind, d. h., i. d. R. gewinnen wir in keiner der 10 Runden, Gewinn=0. Wenn wir size=10 durch size=10000 ersetzen (d. h., bei jeden der 1000 Simulationen 10000 Runden spielen), passiert folgendes (Darstellung jetzt als Histogramm, da es zu sehr viele mögliche Ausprägungen für die Anzahl Gewinne gibt):

```
zahlspiele2 <- do(1000) * tally(~resample(roulette, size = 10000,
    prob = c(1/37, 36/37)), format = "proportion")
histogram(~Gewinn, data = zahlspiele2)</pre>
```


Die Daten werden *normaler*, symmetrischer, d. h., die Verteilung des Gewinnanteilswertes nähert sich einer Normalverteilung an. Diese Phänomen ist der Hintergrund des **Zentralen Grenzwertsatzes**.

Übung:

2. Zurück zum Farbspiel (farbspiele): Wie hoch schätzen Sie die Wahrscheinlichkeit anhand der Simulation, dass Sie mindestens die Hälfte Ihrer 8 Spiele gewinnen?

Richtig: 0.585, das ist also anscheinend recht wahrscheinlich, während der relative Anteil der Spiele, in denen Sie maximal 1 der 8 Spiele gewinnen, recht klein ist:

```
anteil <- prop(farbspiele$Gewinn <= 1/8)
anteil</pre>
```

Das kommt also eher selten vor. Pech. Vielleicht würden Ihnen aber auch Zweifel kommen, ob der Tisch fair ist. In der Simulation liegt also die Wahrscheinlichkeit, bei einem fairen Tisch bei 8 Spielen höchstens einmal zu gewinnen bei 3.6.

Hypothesentest, p-Wert und Konfidenzintervall

Im Paper Hose, C., Lübke, K., Nolte, T., und Obermeier, T. (2012): Ratingprozess und Ratingergebnis: Ein Experiment bei qualitativen Ratingkriterien, Kredit & Rating Praxis (6), 12-14 wird folgendes Experiment

untersucht: Unterscheidet sich die Einschätzung (Rating) eines Unternehmens, je nach dem, ob die Person alleiniger Entscheider (Typ A) oder derjenige ist, der die Entscheidungsvorlage vorbereitet (Typ B). Im Rahmen des Experiments wurden die Studierenden zufällig den verschiedenen Typen A und B zugeordnet. Von 151 alleinigen Entscheidern (Typ A) beurteilten 79 das Beispielunternehmen überwiegend positiv (++, +), von 143 Entscheidungsvorlagenerstellern (Typ B) entschieden ebenfalls 79 überwiegend positiv.

Zeigt das unterschiedliche Verhältnis: Typ A: $\frac{79}{151} = 52.32$ zu Typ B: $\frac{79}{143} = 55.24$, dass alleinige Entscheider die Bonität kritischer einstufen, oder könnte das Ergebnis Zufall sein?

Das Chancenverhältnis, das **Odds Ratio** liegt bei $\frac{\frac{79}{151-79}}{\frac{79}{143-79}} = 0.89$, dass ein alleiniger Entscheider positiv einstuft – im Vergleich zum vorläufigen Entscheider.

Zunächst erzeugen wir einen Vektor der Länge 2 mit den Entscheidungstypen, aus dem wir simulieren können:

```
typ <- factor(c("A", "B"))
entscheider <- rep(typ, c(151, 143))
tally(~entscheider)</pre>
```

```
## entscheider
## A B
## 151 143
```

sowie einen Vektor der Entscheidungen:

```
## entscheidungen
## Nicht Positiv Positiv
## 136 158
```

Aus diesem Vektor ziehen wir eine zufällige Stichprobe von 151 Entscheidungen von Typ A.

```
simentscheidung <- sample(entscheidungen, size = 151)
tally(~simentscheidung)</pre>
```

```
## simentscheidung
## Nicht Positiv Positiv
## 71 80
```

Hier wären also zufällig 80 der 151 Entscheidungen des Typ A Positiv gewesen – wenn es keinen Zusammanhang zwischen Entscheidungstyp und Ratingentscheidung gibt.

Wir oft kommt also zufällig heraus, dass höchstens 79 der 151 Entscheidungen des Typs A (alleinige Entscheider) positiv zugeordnet werden? Simulieren wir das z. B. 1000-mal:

```
entsim <- do(1000) * tally(~sample(entscheidungen, size = 151))</pre>
prop(entsim$Positiv <= 79)</pre>
##
   TRUE
## 0.371
```

Unter der Nullhyothese, dass das Ergebnis zufällig war (d. h., es gibt keinen Zusammenhang zwischen Typ und Rating), wurden in der Simulation in 37.1 der Fälle höchstens 79 positive dem Typ A zufällig zugeordnet. Dieser p-Wert spricht also nicht wirklich gegen das Zufallsmodell. Hinweis: Wir werden in späteren Kapiteln bessere Methoden kennenlernen, insbesondere auch solche, die alle Informationen aus den Daten enthalten und sich nicht nur auf einen Anteilswert beziehen.

Über

```
typA <- rep (rating, c(79, 151 - 79))
```

erzeugen wir uns einen Vektor, der die 79 positiven und 151-79 nicht positiven Urteile von Typ A (alleinige Entscheidung) enthält.

```
tally(~typA)
```

```
## typA
## Nicht Positiv
                         Positiv
##
               72
                               79
```

Wenn wir jetzt diesen Vektor z. B. 1000-mal resampeln:

```
typAboot <- do(1000) * tally(~resample(typA), format = "proportion")
```

erhalten wir 1000 (resampelte) Stichproben, die jeweils einen zufälligen Stichprobenanteil haben:

```
# 79/151: Anteil der Originalstichprobe
histogram(~Positiv, data = typAboot, v = 79/151)
```


In 95 % der Fälle liegt dieser zufällige Stichprobenanteil hier zwischen

```
ki <- quantile(~Positiv, data = typAboot, probs = c(0.025, 0.975))
ki

## 2.5% 97.5%
## 0.4437086 0.6026490
histogram(~Positiv, data = typAboot, v = ki)</pre>
```


Dies ist das Nicht-parametrische Bootstrap-Konfidenzintervall.

Übung:

3. Bestimmen Sie das 90 % nicht-parametrische Bootstrap-Konfidenzintervall für eine nicht-Positive Einschätzung im Fall Entscheidungsvorlage (Typ B). Würde damit eine Nullyhpothese p=0.5 zum Signifikanzniveau 10 % verworfen?

Rechnen mit der Normalverteilung

Random Walk

Beim Glücksspiel ist es offensichtlich, aber auch an vielen, vielen anderen Stellen im Leben begegnen wir dem Zufall. Daten, Beobachtungen sind häufig Realisationen von sogenannten Zufallsvariablen. Das sind Variablen, deren Werte vom Zufall (und damit auch seinen Modellen und Gesetzen) abhängen. So werden Aktienkurse und -renditen häufig als Random Walk aufgefasst und modelliert - häufig unter der Annahme einer Normalverteilung.¹

Hier drei Kennzahlen der logarithmierten Tagesrenditen von Aktienunternehmen in 2015 in %.

¹Sowohl die Annahme einer Normalverteilung, als auch die Annahme, dass die Renditen unabhängig voneinander sind (d. h., dass keine *Autokorrelation* vorliegt) und einer identischen Verteilung folgen (hier gleiche Varianz) sind in der Praxis kritisch zu hinterfragen.

Anlage	AAPL	FB	GOOGL	
Mittelwert	-0.08	0.11	0.15	
Standardabweichung	1.69	1.62	1.77	

Unter der Annahme der unabhängig, identischen Normalverteilung der logarithmierten Renditen können wir jetzt die Wahrscheinlichkeit eines Tagesverlustes der Apple Aktie (AAPL) berechnen über

```
xpnorm(0, mean = -0.08, sd = 1.69)
```

```
##
## If X \sim N(-0.08, 1.69), then
##
## P(X \le 0) = P(Z \le 0.04733728) = 0.5188778
## P(X > 0) = P(Z > 0.04733728) = 0.4811222
```


[1] 0.5188778

Die mosaic Funktion xpnorm ist eine Erweiterung der normalen R Funktion pnorm, die den Wert der Verteilungsfunktion an einer gegebenen Stelle zurückgibt – für jede Verteilung wird hierfür der vorgestellte Buchstabe p verwendet.

Für Facebook (FB) lag die Wahrscheinlichkeit eines Gewinns demnach bei

xpnorm(0, mean = 0.11, sd = 1.62, lower.tail = FALSE)

```
##
## If X \sim N(0.11, 1.62), then
##
## P(X \le 0) = P(Z \le -0.06790123) = 0.4729321
## P(X > 0) = P(Z > -0.06790123) = 0.5270679
```


[1] 0.5270679

Übung:

4. Welche der drei Aktien hat die höchste Wahrscheinlichkeit eine Tagesrendite über $2.5\,\%$ zu erzielen?

Dabei wird hier immer auch die Z-Transformation, die Standardisierung, mit angegeben. Am 26.05.2015 (r = -2.23) betrug der z-Wert der Apple Aktie demnach bei

Die Tagesrendite von Apple war also 1.2721893 Standardabweichungen unter dem Mittelwert. Für Facebook lag die Tagesrendite bei -1.51, der z-Wert demnach bei:

```
(-1.51 - (0.11))/1.62
```

Der 26. Mai 2015 war also auch für Facebook-Anlegerinnen kein guter Tag, aber immer noch besser als bei Apple.

Übung:

5. Die Rendite von Google am 26.05.2015 betrug -1.33. Wie hoch ist der z-Wert? Interpretieren Sie die Aussage des Ergebnisses.

Wenn wir zu einen gegebenen Wert der Rendite den Wert der Verteilungsfunktion, d. h. den prozentualen Anteil kleiner oder gleich großer Werte suchen $(P(X \le x))$ verwenden wir pnorm bzw. xpnorm. Wenn die Überschreitungswahrscheinlichkeit (P(X > x)) gesucht ist, kann zusätzlich die Option lower.tail = TRUE gesetzt werden, oder 1-pnorm() gerechnet werden.

Um zu einem gegebenen Anteil (Prozentwert) den zugehörigen Wert der Rendite zu finden, wir also das Quantil suchen, dann wird p durch q ersetzt, also gnorm bzw. xqnorm.

Z. B. für die $5\,\%$ schlechtesten Tage der Appleaktie

```
xqnorm(0.05, mean = -0.08, sd = 1.69)
```

```
## P(X \le -2.85980262954799) = 0.05
## P(X > -2.85980262954799) = 0.95
```


[1] -2.859803

Die Wahrscheinlichkeit beträgt also 5, dass die Tagesrendite unter -2.86 liegt.

Für die Facebook Aktie gilt, dass Sie nur mit einer Wahrscheinlichkeit von 1 über 3.8786836 lag:

Übung:

6. Sie wollen Ihre Google-Aktien absichern. Wie groß ist bei einer maximalen Eintretenswahrscheinlichkeit von 1 der Tagesverlust mindestens?

Übung: Achtsamkeit

In einem Test zur Achtsamkeit Sauer S, Lemke J, Wittmann M, Kohls N, Mochty U, and Walach H. (2012) How long is now for mindfulness meditators? Personality and Individual Differences 52(6), 750–754 konnten 34 von 38 Studienteilnehmern der Kontrollgruppe nach einer Instruktion die Dauer der Fixierung des Necker Würfels (Link/Bild) steigern.

1. Kann diese Verbesserung bei fast 90 der Personen zufällig sein? Bestimmen Sie mit Hilfe einer Simulation die Wahrscheinlichkeit, dass zufällig mindestens 34 von 38 Personen eine Verbesserung erzielen.

KAPITEL 2: EINF. WAHRSCHEINL., INFERENZ

Übung: Intelligenzquotient

2. Bestimmen Sie ein nicht-paramatrisches Bootstrap-Konfidenzintervall, dass den Anteilswert der

Verbesserung in 95 der Fälle überdeckt.

Übung: Intelligenzquotient

Der IQ hat nach Konstruktion einen arithmetischen Mittelwert von 100 bei einer Standardabweichung

von 15.

1. Wie hoch ist der Anteil der Personen mit einem IQ von 130 oder größer?

2. Welchen IQ sollte eine Person mindestens haben, wenn Sie zu den 1 Personen mit dem höchsten IQ

gehören will?

Literatur

• David M. Diez, Christopher D. Barr, Mine Çetinkaya-Rundel (2014): Introductory Statistics with

Randomization and Simulation, https://www.openintro.org/stat/textbook.php?stat_book=isrs,

Kapitel 2

• Nicholas J. Horton, Randall Pruim, Daniel T. Kaplan (2015): Project MOSAIC Little Books A

Student's Guide to R, https://github.com/ProjectMOSAIC/LittleBooks/raw/master/StudentGuide/

MOSAIC-StudentGuide.pdf, Kapitel 3.5, 3.6

• Chester Ismay, Albert Y. Kim (2017): ModernDive – An Introduction to Statistical and Data

Sciences via R, https://ismayc.github.io/moderndiver-book/

• Maike Luhmann (2015): R für Einsteiger, Kapitel 12

• Andreas Quatember (2010): Statistik ohne Angst vor Formeln, Kapitel 2, 3.1-3.3, 3.13

• Daniel Wollschläger (2014): Grundlagen der Datenanalyse mit R, Kapitel 5, 11

Lizenz

Diese Übung wurde von Karsten Lübke entwickelt und orientiert sich an der Übung zum Buch OpenIntro

von Andrew Bray, Mine Çetinkaya-Rundel und Mark Hansen und steht wie diese unter der Lizenz Creative

Commons Attribution-ShareAlike 3.0 Unported.

Versionshinweise:

• Datum erstellt: 2017-07-27

• R Version: 3.4.1

• mosaic Version: 0.14.4

41

Kapitel 3: Einführung Inferenz kategoriale Werte

Globaler Index der Religiösität und Atheismus

Im Jahre 2012 führte das WIN/Gallup International Institut in 57 Ländern eine Untersuchung zur Religiosität durch. Die Pressemitteilung zur Studie finden Sie hier.

Dabei wurde die Frage gestellt: Unabhängig davon, ob Sie an Gottesdiensten teilnehmen oder nicht ("attend place of worship"), würden Sie sagen, dass Sie ein religiöser Mensch sind, eine nicht religiöse Person oder ein überzeugter Atheist?

Die Befragten hatten dabei drei Antwortmöglichkeiten: Religiöser Mensch ("A religious person"), Nicht religiöser Mensch ("Not a religious person"), und Atheist ("A convinced atheist"). Die Befragten klassifizierten sich, es wurden kategorielle (nominale) Daten (factor) erzeugt.

Übung:

- 1. Handelt es sich bei den im Bericht angegeben Kennzahlen um Stichprobenstatistiken oder um Populationsparameter?
- 2. Um die Ergebnisse der Studie zu verallgemeinern, also auf die Gesamtbevölkerung zu schließen, welche Annahmen müssen dafür erfüllt sein und klingen diese hier plausibel erfüllt?

Ein Teil der Daten kann direkt von OpenIntro als R Datensatz heruntergeladen werden, und anschließend in R eingelesen:

```
meine_url <- "http://www.openintro.org/stat/data/atheism.RData"
load(url(meine_url)) # Einlesen</pre>
```

Einen Überblick erhält man wie immer über:

4 Afghanistan non-atheist 2012
5 Afghanistan non-atheist 2012

6 Afghanistan non-atheist 2012

```
tail(atheism) # letzte Beobachtungen
##
         nationality
                        response year
## 88027
             Vietnam non-atheist 2005
## 88028
             Vietnam non-atheist 2005
## 88029
             Vietnam non-atheist 2005
## 88030
             Vietnam non-atheist 2005
## 88031
             Vietnam non-atheist 2005
## 88032
             Vietnam non-atheist 2005
```

Hinweis: Die drei Antwortmöglichkeiten wurden im verwendeten Datensatz zu zwei Leveln (atheist, non-atheist) zusammengefasst.

Zur Analyse wird wieder das Paket mosaic verwendet:

```
library (mosaic)
```

Inferenz eines Anteilswerts

In Tabelle 6 der Pressemitteilung wird der Anteil der Atheisten für Deutschland mit 15 % angegeben. Dies ist eine *Statistik* der Stichprobe, nicht der Parameter der *Population*. Es wird also die Frage beantwortet "Wie hoch ist der Anteil der Atheisten in der Stichprobe?". Um die Frage "Wie hoch ist der Anteil der Atheisten in der Population?" zu beantworten, muss von der Stichprobe auf die Population geschlossen werden, d. h., es wird z. B. der Anteilswert *geschätzt*.

Der folgende Befehl filtert den Datensatz auf das Ergebnis für Deutschland im Jahr 2012, d. h., es werden nur die gewünschten Zeilen im Datensatz belassen:

```
de12 <- filter(atheism, nationality == "Germany", year == "2012")</pre>
```

Die Punktschätzung des Anteilswertes der Atheisten für Deutschland im Jahr 2012 liegt dann bei

```
pdach <- tally(~response, data = de12, format = "proportion")["atheist"]
pdach</pre>
```

```
## atheist
## 0.1494024
also bei 15%.
```

Um jetzt ein 95% Konfidenzintervall für den Populationsparameter zu konstruieren (Bereichsschätzung) muss der Standardfehler se bestimmt werden, hier:

```
n <- nrow(de12) # Anzahl Beobachtungen
se <- sqrt(pdach * (1 - pdach)/n)
se</pre>
```

```
## atheist
## 0.01591069
```

Der Standardfehler, d. h., die Standardabweichung des Anteilswertes liegt hier also bei 1.59 %. Zusammen mit dem 2,5 % und 97,5 % Quantil der Standardnormalverteilung ergibt sich folgendes Konfidenzintervall:

```
pdach + qnorm(c(0.025, 0.975)) * se
```

```
## [1] 0.1182180 0.1805868
```

Da der Populationsparameter unbekannt aber nicht zufällig ist, werden die 95% auch als $\ddot{U}berdeckungs-wahrscheinlichkeit$ bezeichnet.

In mosaic besteht die Möglichkeit, Punkt- und Bereichsschätzungen mit dem Befehl prop. test durchzuführen. Sofern kein Wert für pangegeben wird lautet die Nullyhpothese $H_0: p=0.5$.

```
prop.test(~response, data = de12)
```

```
##
## 1-sample proportions test with continuity correction
##
## data: de12$response [with success = atheist]
## X-squared = 245.42, df = 1, p-value < 2.2e-16
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.1199815 0.1843172
## sample estimates:
## p
## 0.1494024</pre>
```

Beachte, dass das Konfidenzintervall, anders als bei der *Approximation* über die Normalverteilung hier nicht symmetrisch um den Punktschätzer ist.

Übung:

- 3. Bei annähernd gleicher Stichprobengröße liegt der Anteil der Atheisten in Saudi Arabien bei 5%. Wie verändert sich der Standardfehler und damit die Breite des Konfidenzintervalls?
- 4. Der Anteil der Atheisten in Südkorea liegt in etwa ebenfalls bei 15 %, allerdings liegen die Daten von 1523 Befragten vor. Wie verändert sich der Standardfehler und damit die Breite des Konfidenzintervalls?

Um für Deutschland die Nullhypothese "Der Anteil der Atheisten liegt nicht über 10%" gegen die Alternativhypothese (Forschungshypothese) "Der Anteil der Atheisten liegt über 10%" können entweder wieder Simulations- und Resamplingtechniken verwendet werden oder die Approximation durch die Normalverteilung:

```
se0 <- sqrt((0.1 * (1 - 0.1))/n)
z <- (pdach - 0.1)/se0
xpnorm(z, lower.tail = FALSE)</pre>
```

```
##
## If X \sim N(0, 1), then
##
## P(X \le 3.689594) = P(Z \le 3.689594) = 0.9998877
## P(X > 3.689594) = P(Z > 3.689594) = 0.0001123062
```



```
## atheist
## 0.0001123062
```

Der p-Wert liegt also bei 0.0112 %, die Nullhypothese wird also zum Signifikanzniveau von 5 % verworfen.

Auch hier direkt über prop.test:

```
prop.test(~response, p = 0.1, alternative = "greater", data = de12)

##

## 1-sample proportions test with continuity correction
##
```

```
## data: de12$response [with success = atheist]
## X-squared = 13.07, df = 1, p-value = 0.0001501
```

alternative hypothesis: true p is greater than 0.1

```
## 95 percent confidence interval:
## 0.1241944 1.0000000
## sample estimates:
## p
## 0.1494024
```

Je nach Alternativhypothese ergeben sich unterschiedliche Tests:

- alternative='two.sided': ungerichtet, d. h. zweiseitig: $H_0: p=0.1$ gegen $H_A: p\neq 0.1$
- alternative='less': gerichtet, d. h. einseitig: $H_0: p \ge 0.1$ gegen $H_A: p < 0.1$
- alternative='greater': gerichtet, d. h. einseitig: $H_0: p \leq 0.1$ gegen $H_A: p > 0.1$

Differenz zweier Anteilswerte

In den Daten liegen außerdem die Ergebnisse aus 2005 vor:

```
de05 <- filter(atheism, nationality == "Germany" & year == "2005")
```

Im Jahre 2005 lag der Anteil der Atheisten in Deutschland bei

```
tally(~response, data = de05, format = "proportion")

## response

## atheist non-atheist

## 0.09960159 0.90039841
```

Der Aneil lag also bei unter 10% – in der *Stichprobe!* Können wir daraus auf eine Erhöhung des Anteils von 2005 zu 2012 in der *Population* schließen?

```
# 2012
a12 <- tally(~response, data = de12)["atheist"] # Anzahl Atheisten 2012
n12 <- nrow(de12) # Anzahl Studienteilnehmer 2012
p12 <- a12/n12 # Anteil Atheisten 2012
# 2005
a05 <- tally(~response, data = de05)["atheist"] # Anzahl Atheisten 2005
n05 <- nrow(de05) # Anzahl Studienteilnehmer 2005
p05 <- a05/n05  # Anteil Atheisten 2005
# Punktschätzer Differenz Population
pdiff <- p12 - p05
pdiff
##
     atheist
## 0.0498008
# Pooling zur Berechnung Standardfehler unter H_0
ppool <- (a12 + a05)/(n12 + n05)
ppool
```

```
atheist
##
## 0.124502
# Standardfehler se
se0 \leftarrow sqrt((ppool * (1 - ppool)/n12) + (ppool * (1 - ppool)/n05))
se0
##
     atheist
## 0.0208391
# z-Wert z
z \leftarrow (pdiff - 0)/se0
# p-Wert
xpnorm(z, lower.tail = FALSE)
##
## If X \sim N(0, 1), then
    P(X \le 2.389777) = P(Z \le 2.389777) = 0.9915707
    P(X > 2.389777) = P(Z > 2.389777) = 0.008429297
```



```
## atheist
## 0.008429297
```

Der p-Wert ist klein und das Ergebnis damit statistisch signifikant. Die Wahrscheinlichkeit, zufällig eine solche Erhöhung der Anteilswerte zu beobachten, ist also gering – wenn die H_0 gilt! D. h., es wird auf

eine Veränderung des Anteilswertes in der Population geschlossen.

Auch dies kann direkt durch den Befehl prop. test gestestet werden. Dazu wird zunächst ein gemeinsamer Datensatz erzeugt:

```
de <- filter(atheism, nationality == "Germany")</pre>
```

```
und anschließend geteset:
prop.test(response ~ year, alternative = "less", data = de)
##
##
    2-sample test for equality of proportions with continuity
##
    correction
##
## data: tally(response ~ year)
\#\# X-squared = 5.2633, df = 1, p-value = 0.01089
## alternative hypothesis: less
## 95 percent confidence interval:
## -1.00000000 -0.01362913
## sample estimates:
##
       prop 1
                 prop 2
## 0.09960159 0.14940239
```

Hier wird die Alternativhypothese less verwendet: $H_0: p_1 \geq p_2$, gegen $H_A: p_1 < p_2$.

Exkurs: Mit dem Paket mosaic können Sie das auch einfach über Permutationen testen, indem das Erhebungsjahr zufällig gesampelt wird, wobei hier ungerichtet, d. h., zweiseitig getestet wird. Mit anderen Worten ist sowohl eine Erhöhung als auch ein Verringerung des Anteils in der Alternativhypothese möglich, daher werden die Absolutwerte der Differenz (abs ()) verwendet:

```
# Beobachtete Differenz
pdiff <- diff(tally(~response | year, data = de, format = "proportion")["atheist",</pre>
    ])
pdiff
        2012
## 0.0498008
# Zufallszahlengenerator setzen (Reproduzierbarkeit!)
set.seed(1896)
# 1000-mal das Jahr permutieren: Nullhypothese kein
# Unterschied
pdiff.null <- do(1000) * diff(tally(~response | shuffle(year),</pre>
    data = de, format = "proportion")["atheist", ])
# Histogramm
histogram(~X2012, data = pdiff.null, v = c(pdiff, -pdiff))
```



```
# p-Wert
prop(abs(pdiff.null$X2012) >= abs(pdiff))

## TRUE
## 0.02
```

Übung:

- 5. Überprüfen Sie für das Jahr 2012, ob es eine zum Niveau 5 % signifikante Differenz zwischen den Anteil der Atheisten in Deutschland und den Niederlanden (Netherlands) in der Population gibt.
- 6. Überprüfen Sie für das Jahr 2012, ob es eine zum Niveau 5 % signifikante Differenz zwischen den Anteil der Atheisten in Deutschland und Polen (Poland) in der Population gibt.

Chi-Quadrat Unabhängigkeitstest

Soll allgemein der Zusammenhang zwischen zwei kategoriellen (nominalen) Variablen untersucht werden, wird der Chi²-Unabhängigkeitstest verwendet. Diese testet die Nullhypothese der Unabhängigkeit gegen die Alternativhypothese des Zusammenhangs. Im vorliegenden Datensatz können wir z. B. testen, ob die Verteilung (Anteil) der Atheisten in den teilnehmenden G7 Ländern gleich ist:

```
G7 <- c("United States", "Canada", "Germany", "France", "Italy",

"Japan")

G7.12 <- filter(atheism, nationality %in% G7 & year == 2012)

G7.12 <- droplevels(G7.12)

G7atheist <- tally(response ~ nationality, data = G7.12)

G7atheist
```

```
##
                 nationality
## response
                  Canada France Germany Italy Japan United States
                                       75
                                             79
##
     atheist
                      90
                             485
                                                   372
                                                                   50
                     912
                            1203
                                      427
                                                   840
                                                                  952
##
     non-atheist
                                            908
```

(Der Befehl droplevels sorgt dafür, dass die nicht mehr benötigten Ausprägungen der kategoriellen Variablen (factor) gelöscht werden.)

Der Test selber erfolgt in mosaic über xchisq.test, d. h.:

xchisq.test(G7atheist)

```
##
##
   Pearson's Chi-squared test
##
## data: x
\#\# X-squared = 504.04, df = 5, p-value < 2.2e-16
##
       90
##
               485
                        75
                                  79
                                          372
## ( 180.40) ( 303.91) ( 90.38) ( 177.70) ( 218.21) ( 180.40)
## [ 45.30] [107.91] [ 2.62] [ 54.82] [108.39] [ 94.26]
## <-6.73> <10.39> <-1.62> <-7.40> <10.41> <-9.71>
##
      912
              1203
                        427
                                 908
                                          840
                                                   952
## ( 821.60) (1384.09) ( 411.62) ( 809.30) ( 993.79) ( 821.60)
## [ 9.95] [ 23.69] [ 0.57] [ 12.04] [ 23.80] [ 20.70]
## < 3.15> <-4.87> < 0.76> < 3.47> <-4.88> < 4.55>
##
## key:
## observed
##
   (expected)
##
   [contribution to X-squared]
   <Pearson residual>
```

Der Wert der Teststatistik Chi² liegt bei 504.04, die Anzahl der Freiheitsgrade ("degrees of freedom", df) bei 5, der p-Wert ist sehr klein, die Nullhypothese der Unabhängigkeit von Nationalität und Verteilung Atheismus wird für die *Population* verworfen.

Die Formel zur Berechnung der χ^2 Teststatistik lautet:

$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^m \frac{(h_{ij} - e_{ij})^2}{e_{ij}}$$

mit $e_{ij} = \frac{h_i \cdot h_{\cdot j}}{n}$ wobei für die Zeilensumme $h_{i\cdot} = \sum_{j=1}^m h_{ij}$ und für die Spaltensumme $h_{\cdot j} = \sum_{i=1}^k h_{ij}$ gilt.

Mit diesen Daten kann auch über den Befehl pchisq der p-Wert berechnet werden:

```
pchisq(504, 5, lower.tail = FALSE)
## [1] 1.093548e-106
```

Übung:

7. Gibt es einen Zusammenhang zwischen der Verteilung des Atheismus und der Nationalität im Jahr 2012 innerhalb der afrikanischen Länder c('Nigeria', 'Kenya', 'Tunisia', 'Ghana', 'Cameroon', 'South Sudan')?

Übung: Trinkgelddaten

Wir werden jetzt den tips Datensatz aus Bryant, P. G. and Smith, M (1995) Practical Data Analysis: Case Studies in Business Statistics. Homewood, IL: Richard D. Irwin Publishing weiter analysieren.

Sofern noch nicht geschehen, können Sie diesen als csv Datei herunterladen:

```
download.file("https://goo.gl/whKjnl", destfile = "tips.csv")
```

Das Einlesen erfolgt, sofern die Daten im aktuellen Verzeichnis liegen, über:

```
tips <- read.csv2("tips.csv")
```

Tipp: Wenn Sie nicht mehr wissen wo die Daten liegen: statt tips.csv den Befehl file.choose() als Argument für die Funktion read.csv2 verwenden.

- 1. Bestimmen Sie ein 90 % Konfidenzintervall für den Anteil der Raucher (smoker) in der Population.
- 2. Testen Sie zum Niveau 5 %, ob sich der Anteil der Raucher in der Population beim Lunch von dem beim Dinner (time) unterscheidet.
- 3. Gibt es einen Zusammenhang zwischen Rauchen und Wochentag (day)?

Literatur

 David M. Diez, Christopher D. Barr, Mine Çetinkaya-Rundel (2014): Introductory Statistics with Randomization and Simulation, https://www.openintro.org/stat/textbook.php?stat_book=isrs, Kapitel 3 Literatur

 Nicholas J. Horton, Randall Pruim, Daniel T. Kaplan (2015): Project MOSAIC Little Books A Student's Guide to R, https://github.com/ProjectMOSAIC/LittleBooks/raw/master/StudentGuide/ MOSAIC-StudentGuide.pdf, Kapitel 4.2, 4.3, 6.3

• Maike Luhmann (2015): R für Einsteiger, Kapitel 18.1

• Andreas Quatember (2010): Statistik ohne Angst vor Formeln, Kapitel 3.4, 3.6, 3.8

• Daniel Wollschläger (2014): Grundlagen der Datenanalyse mit R, Kapitel 10.2

Lizenz

Diese Übung wurde von Karsten Lübke entwickelt und orientiert sich an der Übung zum Buch OpenIntro von Andrew Bray, Mine Çetinkaya-Rundel und steht wie diese unter der Lizenz Creative Commons Attribution-ShareAlike 3.0 Unported.

Versionshinweise:

• Datum erstellt: 2017-07-27

• R Version: 3.4.1

• mosaic Version: 0.14.4

Kapitel 4: Einführung Inferenz metrische Werte

t-Test für eine Stichprobe

2

2.59

2.20 4.60

3.54

Der B3 Datensatz Heilemann, U. and Münch, H.J. (1996): West German Business Cycles 1963-1994: A Multivariate Discriminant Analysis. CIRET-Conference in Singapore, CIRET-Studien 50. enthält Quartalsweise Konjunkturdaten aus (West-)Deutschland von 1955-1994.

Er kann von https://goo.gl/0YCEHf heruntergeladen werden:

```
download.file("https://goo.gl/0YCEHf", destfile = "B3.csv")
```

Anschließend können die Daten in R eingelesen werden:

```
B3 <- read.csv2("B3.csv")
str(B3) # Datenstruktur
  'data.frame':
                    157 obs. of 14 variables:
                     2 2 3 3 3 3 3 3 3 3 ...
    $ PHASEN : int
                    10.53 10.6 9.21 5.17 4.93 ...
    $ BSP91JW : num
    $ CP91JW
              : num
                    9.31 12.66 6.55 7.87 8.6 ...
                     0.05 0.06 0.05 0.05 0.04 0.04 0.04 0.03 0.03 0 ...
    $ DEFRATE : num
                    5.7 5.2 4.8 3.3 2.1 3.2 2.5 2.7 3 0.3 ...
    $ EWAJW
              : num
    $ EXIMRATE: num
##
                    3.08 1.96 2.82 3.74 4.16 2.9 3.65 4.57 4.37 2.89 ...
                    11.15 11.03 10.04 8.33 7.69 ...
    $ GM1JW
              : num
    $ IAU91JW : num
                    23.56 12.72 11.52 0.85 -2.08 ...
                     14.69 24.95 14.9 7.55 3.23 ...
##
    $ IB91JW
              : num
                     3 2.36 3.39 5.3 6.91 1.03 3.73 6.2 4.12 7.94 ...
    $ LSTKJW
              : num
    $ PBSPJW
              : num
                     2.89 2.59 3.01 3.03 3.46 1.95 3.18 3.98 3.29 5.63 ...
    $ PCPJW
                     1.91 2.2 3.09 2.08 1.48 1.65 1.47 3.29 3.59 4.19 ...
              : num
    $ ZINSK
                     6.27 4.6 6.19 6.71 7.1 4.96 5.21 4.83 4.5 3.83 ...
              : num
                     3.21 3.54 3.22 3.37 3.14 4.95 3.82 3.09 3.91 1.47 ...
    $ ZINSLR
              : num
head (B3)
##
     PHASEN BSP91JW CP91JW DEFRATE EWAJW EXIMRATE GM1JW IAU91JW IB91JW LSTKJW
## 1
          2
              10.53
                      9.31
                              0.05
                                      5.7
                                              3.08 11.15
                                                           23.56
                                                                   14.69
                                                                           3.00
          2
                    12.66
              10.60
                              0.06
                                      5.2
                                              1.96 11.03
                                                           12.72
                                                                   24.95
                                                                           2.36
          3
               9.21
                      6.55
                              0.05
                                      4.8
                                              2.82 10.04
                                                           11.52
                                                                  14.90
                                                                           3.39
                                                                           5.30
          3
               5.17
                      7.87
                              0.05
                                      3.3
                                              3.74 8.33
                                                            0.85
                                                                    7.55
                      8.60
          3
               4.93
                              0.04
                                      2.1
                                              4.16 7.69
                                                           -2.08
                                                                    3.23
                                                                           6.91
          3
               8.39
                      5.62
                              0.04
                                      3.2
                                              2.90 6.62
                                                           -3.76 14.58
                                                                           1.03
     PBSPJW PCPJW ZINSK ZINSLR
       2.89
            1.91
                   6.27
                          3.21
```

```
## 3 3.01 3.09 6.19 3.22
## 4 3.03 2.08 6.71 3.37
## 5 3.46 1.48 7.10 3.14
## 6 1.95 1.65 4.96 4.95
```

tail (B3)

```
##
      PHASEN BSP91JW CP91JW DEFRATE EWAJW EXIMRATE GM1JW IAU91JW IB91JW
## 152
           3
               -1.27
                       1.29
                              -4.87 - 1.97
                                              6.03 9.79
                                                          -18.29
                                                                   1.73
## 153
           3
               -2.13 -0.57
                              -2.98 -2.05
                                              7.59 0.72
                                                          -15.82
                                                                  -3.23
## 154
           3
                1.39
                      2.33
                              -2.86 -1.84
                                              7.49 11.33 -10.59
                                                                   4.62
## 155
           4
                1.63
                      0.64
                              1.20 -1.58
                                              7.75 11.38
                                                           -4.90
                                                                   3.62
## 156
                1.40
                       0.57
                              -3.56 -1.34
                                              5.58 9.53
                                                           -0.76
                                                                   2.19
           1
## 157
                1.83 -0.08
                              -2.22 -0.93
                                              7.50 15.20
                                                            2.75
                                                                   6.12
           1
      LSTKJW PBSPJW PCPJW ZINSK ZINSLR
## 152
        1.08
               2.73 2.98 6.83
                                  3.55
## 153
        1.67
               2.67
                     3.31
                           6.35
                                  3.05
## 154
       -0.12
               2.66
                     2.94
                           5.88
                                  3.17
## 155 -1.81
               1.77
                     2.58
                           5.29
                                  4.82
## 156 -1.54
               1.85
                     2.60
                           5.01
                                  5.27
## 157 -0.92
               1.79
                     2.49 5.28
                                  5.62
```

Zur Analyse wird wieder das Paket mosaic verwendet:

library(mosaic)

Wie sah die (jährliche, quartalsweise) Entwicklung des Bruttosozialproduktes (BSP91JW) in dem Zeitraum (1955-1994) aus?

```
histogram(~BSP91JW, data = B3)
```


favstats(~BSP91JW, data = B3)

```
## min Q1 median Q3 max mean sd n missing
## -3.78 1.58 3.59 5.17 11.12 3.498662 2.974273 157 0
```

Liefern die Daten Belege für die Forschungsthese, dass der Mittelwert nicht zufällig >0% ist?

Zunöcht ein Konfidenzintervall für den unbekannten Wert μ :

```
BootBSP91JW <- do(1000) * mean(~BSP91JW, data = resample(B3))
histogram(~mean, data = BootBSP91JW)</pre>
```



```
quantile(~mean, data = BootBSP91JW, probs = c(0.025, 0.975))
## 2.5% 97.5%
## 3.035919 3.963293
```

Hier ist die 0 schon einmal nicht enthalten.

Unter der Annahme einer Normalverteilung kann (mit) der geschätzten Standardabweichung eine Stichprobe der gegebenen Länge unter $H_0: \mu=0$ erzeugt werden:

```
# Mittelwert
meandBSP <- mean(~BSP91JW, data = B3)
# Standardabweichung
sdBSP <- sd(~BSP91JW, data = B3)
# Anzahl Beobachtungen
n <- length(B3$BSP91JW)
# Zufallszahlengenerator setzen
set.seed(1896)

simBSP <- rnorm(n = n, mean = 0, sd = sdBSP)
histogram(~simBSP)</pre>
```


Für die Simulation der Verteilung unter H_0 wird dies jetzt z. B. 1000-mal wiederholt – und der Mittelwert berechnet:

```
SimBSP91JW <- do(1000) * mean(~rnorm(n = n, mean = 0, sd = sdBSP))
histogram(~mean, SimBSP91JW)
```


Der Anteil der unter H_0 simulierten Daten, die einen größeren Mittelwert als den beobachteten aufweisen ist sehr klein:

```
prop(mean(~mean, data = SimBSP91JW) >= meandBSP)
## TRUE
## 0
```

Der beobachtete Wert der Teststatistik ist also unter $H_0: \mu \leq 0$ sehr unwahrscheinlich, H_0 würde also verworfen.

Dieses Ergebnis liefert auch der t-Test:

```
t.test(~BSP91JW, data = B3, alternative = "greater")
```

3.498662

Oder eine Berechnung "per Hand":

```
# Standardfehler
se <- sdBSP/sqrt(n)
# p-Wert
xpnorm(meandBSP, mean = 0, sd = se, lower.tail = FALSE)

##
## If X ~ N(0, 0.2373728), then
##
## P(X <= 3.498662) = P(Z <= 14.7391) = 1
## P(X > 3.498662) = P(Z > 14.7391) = 0
```


[1] 1.807738e-49

t-Test für eine abhängige/gepaarte Stichprobe

Hier interessieren besonders die (Veränderung) der Investitionen in Ausrüstungsgüter (IAUJW91) und in Bauten (IB91JW). Die deskriptiven Kennzahlen zeigen,

```
## min Q1 median Q3 max mean sd n missing
## -19.95 -1.25 5.3 9.1 27.25 3.992675 8.864805 157 0
```

favstats(~IB91JW, data = B3)

```
## min Q1 median Q3 max mean sd n missing ## -21.59 -1.16 2.6 5.55 40.25 2.565096 7.481063 157 0
```

dass im betrachteten Zeitraum die Investitionen in Ausrüstungsgüter mit im arithmetischen Mittelwert von 3.99 im Mittel stärker gestiegen sind als die in Bauten mit 2.57. Da die Investitionen sicherlich in Zusammenhang mit der gesamten konjunkturellen Entwicklung stehen, ist davon auszugehen, dass es sich hier um vom jeweiligen Zeitpunkt abhängige Beobachtungen handelt. Daher wird hier die Differenz der Werte betrachtet: IB91JW – IAU91JW. Der R Befehl für einen t-Test lautet t.test:

```
t.test(~(IB91JW - IAU91JW), data = B3)
```

```
##
## One Sample t-test
##
## data: B3$(IB91JW - IAU91JW)
## t = -1.9612, df = 156, p-value = 0.05164
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -2.86544149 0.01028226
## sample estimates:
## mean of x
## -1.42758
```

Der (umfangreichen) Ausgabe können Sie neben dem z- bzw. t-Wert (-1.96) mit unter der Nullhypothese der Gleichheit des Lageparameters

$$H_0: \mu_{\text{IB91JW-IAU91JW}} = 0$$

insbesondere den p-Wert (0.0516) und das Konfidenzintervall (-2.87, 0.01) entnehmen. Zum Signifikanznvieau von 5% wird die Nullhypothese also gerade so *nicht* abgelehnt, da der p-Wert über 5% liegt sowie der Wert der Nullhypothese, $\mu = 0$, im Konfidenzintervall.

Übung:

1. Testen Sie, ob es einen nicht zufälligen mittleren Lageunterschied zwischen der Veränderung des Preisindex des Bruttosozialproduktes PBSPJW und dem des privaten Verbrauchs PCPJW gibt.

t-Test für zwei unabhängige Stichprobe

Untersuchen wir, ob sich makroökonomische Kennzahlen im Auf- und Abschwung unterscheiden. Zunächst stellen wir fest, dass die eigentlich kategorielle Variable PHASEN hier numerisch kodiert wurde, was aber schnell verwirren würde.

```
typeof(B3$PHASEN)
## [1] "integer"
```

Typänderung zu factor geht einfach:

```
B3$PHASEN <- as.factor(B3$PHASEN)
```

Wenn wir die einzelnen levels des Faktors als numerische Werte verwenden wollen, würden wir den Befehl as.numeric() verwenden. Aber sicherheitshalber vorher über levels() schauen, ob die Reihenfolge auch stimmt.

Um die Interpretation zu erleichtern können wir hier einfach die Faktorstufe umbenennen.

Jetzt ist keine Verwechselung von kategoriellen und metrischen Variablen mehr möglich.

Zunächst wird der Datensatz, der auch die konjunkturellen Wendepunkte enthält, nur auf Auf- und Abschwung eingeschränkt.

```
B3AufAb <- filter(B3, PHASEN %in% c("Aufschwung", "Abschwung"))
B3AufAb <- droplevels(B3AufAb)
```

In der politischen Diskussion werden immer niedrige Zinsen gefordert. Schauen wir mal, wie die Zinsen in den Konjunkturphasen in der Vergangenheit (1955-1994) verteilt waren:

```
bwplot(ZINSK ~ PHASEN, data = B3AufAb)
```


Anscheinend waren die Zinsen in Zeiten des Aufschwungs niedriger.

Was sagen die deskriptiven Kennzahlen:

Alle Lagemaße für die Zinskosten sind in der Aufschwungphase niedriger.

Der t-Test der Zinskosten für

$$H_0: \mu_{\text{Aufschwung}} = \mu_{\text{Abschwung}} \Leftrightarrow \mu_{\text{Aufschwung}} - \mu_{\text{Abschwung}} = 0$$

mit der Teststatistik

$$T = \frac{\bar{x}_A - \bar{x}_B}{\sqrt{\frac{sd_A^2}{n_A} + \frac{sd_B^2}{n_B}}}$$

hat dann den gleichen Aufbau des Syntax wie bwplot oder favstats: Teste die Zinskosten in Abhängigkeit der Konjunkturphase.

Die Berechnung der Teststatistik

```
t.test(ZINSK ~ PHASEN, data = B3AufAb)
```

##

```
## Welch Two Sample t-test
##
## data: ZINSK by PHASEN
## t = -6.3426, df = 57.766, p-value = 3.743e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.904085 -2.030852
## sample estimates:
## mean in group Aufschwung mean in group Abschwung
## 4.715085 7.682553
```

Der kleine p-Wert von 3.7430775×10^{-8} zeigt, dass die Nullhypothese der Gleichheit der Lageparameter verworfen werden kann. Wir können der Funktion auch eine spezielle Alternativhypothese übergeben:

```
t.test(ZINSK ~ PHASEN, data = B3AufAb, alternative = "less")
```

Jetzt haben wir die Nullhypothese "Das Lagemaß für die Zinskosten ist im Aufschwung *nicht* kleiner als im Abschwung" gegen die Alternativhypothese (Forschungshypothese) "Das Lagemaß für die Zinskosten ist im Aufschwung kleiner als im Abschwung" getestet:

$$H_0: \mu_{\text{Aufschwung}} \ge \mu_{\text{Abschwung}} \quad vs. \quad H_A: \mu_{\text{Aufschwung}} < \mu_{\text{Abschwung}}$$

bzw.

$$H_0: \mu_{\text{Aufschwung}} - \mu_{\text{Abschwung}} \ge 0 \quad vs. \quad H_A: \mu_{\text{Aufschwung}} - \mu_{\text{Abschwung}} < 0$$

Übung:

2. Untersuchen Sie, ob sich die mittlere Entwicklung des privaten Verbrauchs CP91JW zwischen den Konjunkturphasen unterscheidet.

Auch hier können wir, ohne eine Verteilungsannahme zu verwenden, permutieren.

```
mdiff <- diff(mean(ZINSK ~ PHASEN, data = B3AufAb))
mdiff

## Abschwung
## 2.967468

mdiff.null <- do(1000) * diff(mean(ZINSK ~ shuffle(PHASEN), data = B3AufAb))</pre>
```

Unter der Nullhypothese der Gleichheit der Lagemaße kommt eine gleich große oder größere Differenz also

```
prop (mdiff.null$Abschwung >= mdiff)
```

```
## TRUE
## 0
```

mal vor!

Da die statistische Signifikanz vom Standardfehler abhängt, welcher wiederum vom Stichprobenumfang abhängt, wurde von Cohen ein Maß für die Effektstärke, Cohen's d vorgeschlagen:

$$d = \frac{\bar{x}_A - \bar{x}_B}{sd_{\text{pool}}}$$

mit

$$sd_{\text{pool}} = \sqrt{\frac{1}{n_A + n_B - 2} \Big((n_1 - 1)sd_A^2 + (n_2 - 1)sd_B^2 \Big)}$$

```
# Kennzahlen 1. Stichprobe
m1 <- mean(B3$ZINSK[B3$PHASEN == "Aufschwung"])
sd1 <- sd(B3$ZINSK[B3$PHASEN == "Aufschwung"])
n1 <- length(B3$ZINSK[B3$PHASEN == "Aufschwung"])
# Kennzahlen 2. Stichprobe
m2 <- mean(B3$ZINSK[B3$PHASEN == "Abschwung"])
sd2 <- sd(B3$ZINSK[B3$PHASEN == "Abschwung"])
n2 <- length(B3$ZINSK[B3$PHASEN == "Abschwung"])
# Gepoolte Standardabweichung
sdpool <- sqrt(((n1 - 1) * sd1^2 + (n2 - 1) * sd2^2)/(n1 + n2 - 2))
# Cohen's d
d <- (m1 - m2)/sdpool
d</pre>
```

[1] -1.347291

Cohen's d ist ein Maß der Überlappung der Verteilungen:

Dichte bei Normalverteilung

Häufig werden Werte

- $|d| \le 0.2$ als kleine
- $|d| \le 0.5$ als mittlere
- $|d| \ge 0.8$ als große Effekte

bezeichnet.

Eine direkte Berechnung geht über das Paket 1sr:

```
# Einmalig installieren: install.packages('lsr')
library(lsr)
cohensD(ZINSK ~ PHASEN, data = B3AufAb)
```

Varianzanalyse (ANOVA)

[1] 1.347291

Bei mehr als zwei Gruppen funktionieren die Techniken des t-Tests nicht mehr. Um Lagemaßunterschiede zu testen, wird anstelle der Mittelwerte die Streuung verglichen: Ist die Streuung zwischen den Gruppen groß im Vergleich zur Streuung innerhalb der Gruppen?

```
xyplot(DEFRATE ~ PHASEN, data = B3)
```


Es gilt, dass sich die Gesamtstreung (SST) zusammensetzt aus der Streuung zwischen den Gruppen (SSG) und innerhalb der Gruppen (SSE), d. h.,

$$SST=SSG+SSE. \\$$

Unterscheidet sich der mittlere Anteil des Staatsdefizits DEFRATE nicht zufällig zwischen den Konjunkturphasen?

bwplot (DEFRATE ~ PHASEN, data = B3)

favstats(DEFRATE ~ PHASEN, data = B3)

##			PHASEN	min	Q1	median	Q3	max	mean	sd
##	1		Aufschwung	-4.38	-2.7650	-1.52	0.1650	2.12	-1.3394915	1.680638
##	2	Oberer	Wendepunkt	-11.02	-2.2475	0.02	0.4775	3.22	-0.8479167	2.836558
##	3		Abschwung	-6.12	-2.7850	0.00	0.5800	2.95	-0.8380851	2.287536
##	4	Unterer	Wendepunkt	-5.99	-3.4450	-0.37	0.0250	1.94	-1.6548148	2.364026
##	## n missing									
##	1	59	0							
##	2	24	0							
##	3	47	0							
##	4	2.7	0							

Vielleicht, vielleicht nicht.

Um eine Varianzanalyse (Analysis of Variance, ANOVA) mit

$$H_0: \mu_1 = \mu_2 = \ldots = \mu_k$$

gegen

 H_A : Mindestens ein μ ist verschieden.

durchzuführen kann in R $\mathbf{u}.$ a. der Befehl aov verwendet werden:

```
DEFaov <- aov(DEFRATE ~ PHASEN, data = B3)
summary(DEFaov)</pre>
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## PHASEN 3 15.7 5.236 1.09 0.355
## Residuals 153 734.9 4.803
```

Der p-Wert des F-Tests der Nullhypothese

$$H_0: \mu_{\text{Aufschwung}} = \mu_{\text{Oberer Wendepunt}} = \mu_{\text{Abschwung}} = \mu_{\text{Unterer Wendepunkt}}$$

der Gleichheit der Lage ist mit 0.3552 größer als 0.05, die Nullhypothese kann also für das Staatsdefizit nicht verworfen werden.

Bei k Gruppen ist die mittlere quadratische Varianz $MSG = \frac{1}{k-1} \sum_{i=1}^{k} n_i (\bar{x}_i - \bar{x})^2 = \underbrace{\frac{SSG}{k-1}}_{disc} (n_i)$ ist die

Anzahl Beobachtungen in Gruppe i, \bar{x}_i der Gruppenmittelwert und \bar{x} der Gesamtmittelwert.) Hier also MSG = 5.2361. Der mittlere Quadratische Fehler, MSE, ist dann $MSE = \frac{1}{n-k} \sum_{i=1}^{k} (n_i - 1)sd_i^2 = \underbrace{\frac{SSE}{n-k}}_{df_E}$,

mit sd_i der Standardabweichung in Gruppe i. Hier: MSE = 4.8032.

Der Wert der Teststatistik F ist dann

$$F = \frac{MSG}{MSE} = \frac{5.2361}{4.8032} = 1.0901.$$

Unterscheidet sich das Lagemaß der Veränderung der Lohnstückkosten LSTKJW nicht zufällig?

```
bwplot(LSTKJW ~ PHASEN, data = B3)
```



```
favstats(LSTKJW ~ PHASEN, data = B3)
##
                 PHASEN
                           min
                                  Q1 median
                                                 Q3
                                                      max
                                                              mean
                                                                          sd
             Aufschwung -1.54 0.625
                                       2.02 3.5250
                                                     6.09 2.111017 1.837423 59
##
  1
                                       4.22 5.2225 8.16 4.195833 2.074516 24
      Oberer Wendepunkt 0.32 2.840
              Abschwung -0.12 4.385
                                       5.71 8.0100 14.21 6.291064 3.122604 47
                                       3.46 8.0350 12.18 4.249630 4.449861 27
   4 Unterer Wendepunkt -2.53 1.270
##
     missing
## 1
           0
           0
  3
           0
##
## 4
           0
LSTKaov <- aov(LSTKJW ~ PHASEN, data = B3)
summary (LSTKaov)
##
                Df Sum Sq Mean Sq F value
                                              Pr(>F)
## PHASEN
                   459.5
                            153.15
                                     18.62 2.37e-10 ***
               153 1258.2
## Residuals
                              8.22
## ---
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

Die Nullhypothese der Gleichheit wird hier also verworfen. Interessanterweise unterscheiden sich insbesondere die Lagemaße von Auf- und Abschwung, die beiden Wendepunkte liegen dazwischen.

Im Paket effects gibt es übrigens eine schöne Plotfunktion für die Effekte:

```
# Einmalig installieren: install.packages('effects')
library(effects)
plot(allEffects(LSTKaov))
```

PHASEN effect plot

Neben dem arithmetischen Mittelwert (Punktschätzer) wird in der Standardeinstellung das 95% Konfidenzintervall eingezeichnet.

Um nach einer signifikanten Varianzanalyse sogenannte Post-Hoc Analysen durchzuführen (z. B. welche der paarweisen Vergleiche sind signifikant?) kann die Funktion TukeyHSD() (Tukey's "Honest Significant Difference") verwendet werden. Aufgrund des multiplen Testproblems (Kumulierung Fehler 1. Art) müssen die p-Werte angepasst werden.

```
LSTKposthoc <- TukeyHSD (LSTKaov)
LSTKposthoc
```

```
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = LSTKJW ~ PHASEN, data = B3)
##
## $PHASEN
## diff lwr upr
## Oberer Wendepunkt-Aufschwung 2.0848164 0.2814507 3.888182
```

```
## Abschwung-Aufschwung
                                          4.1800469
                                                     2.7237350
                                                                5.636359
                                                     0.4079289
## Unterer Wendepunkt-Aufschwung
                                          2.1386127
                                                                3.869296
## Abschwung-Oberer Wendepunkt
                                          2.0952305
                                                    0.2264813
                                                                3.963980
## Unterer Wendepunkt-Oberer Wendepunkt 0.0537963 -2.0358558
                                                               2.143448
## Unterer Wendepunkt-Abschwung
                                         -2.0414342 -3.8401454 -0.242723
##
                                             p adj
## Oberer Wendepunkt-Aufschwung
                                         0.0163388
## Abschwung-Aufschwung
                                         0.000000
## Unterer Wendepunkt-Aufschwung
                                         0.0087085
## Abschwung-Oberer Wendepunkt
                                         0.0212622
## Unterer Wendepunkt-Oberer Wendepunkt 0.9998923
## Unterer Wendepunkt-Abschwung
                                         0.0191825
```

plot (LSTKposthoc)

95% family-wise confidence level

Hinweis: Da die einzelnen Faktorstufen hier unbalanciert sind (d.h., unterschiedliche Stichprobenumfänge haben) ist das Ergebnis hier nicht exakt.

Übung:

3. Gibt es nicht zufällige Lageunterschiede bei der Änderung der Erwerbstätigen EWAJW zwischen den Konjunkturphasen?

Erweiterung: Mehrfaktorielle Varianzanalyse mit Wechselwirkung

Betrachten wir noch einmal den tips Datensatz aus Bryant, P. G. and Smith, M (1995) Practical Data Analysis: Case Studies in Business Statistics. Homewood, IL: Richard D. Irwin Publishing.

Sofern noch nicht geschehen, können Sie in hier als csv-Datei herunterladen:

```
download.file("https://goo.gl/whKjnl", destfile = "tips.csv")
```

Das Einlesen der Daten in R erfolgt, sofern die Daten im Arbeitsverzeichnis liegen, über:

```
tips <- read.csv2("tips.csv")
```

Um zu schauen, inwieweit das Trinkgeld vom Geschlecht und dem Rauchverhalten abhängt, kann folgende Analyse durchgeführt werden:

```
favstats(tip ~ sex + smoker, data = tips)
##
     sex.smoker min Q1 median
                                                               n missing
                                    Q3
                                        max
                                                mean
                                                           sd
                          2.68 3.4375
      Female.No 1.00 2
                                        5.2 2.773519 1.128425 54
                                                                        0
## 1
                          2.74 3.7100 9.0 3.113402 1.489559 97
## 2
        Male.No 1.25 2
                                                                        0
## 3 Female.Yes 1.00 2
                          2.88 3.5000 6.5 2.931515 1.219916 33
                                                                        0
       Male.Yes 1.00 2
                          3.00 3.8200 10.0 3.051167 1.500120 60
                                                                        0
tipaov <- aov(tip ~ sex + smoker, data = tips)
summary(tipaov)
##
                Df Sum Sq Mean Sq F value Pr(>F)
## sex
                      3.7
                             3.674
                                     1.918 0.167
## smoker
                 1
                                     0.008 0.930
                      0.0
                             0.015
## Residuals
               241
                    461.5
                            1.915
plot (allEffects (tipaov))
```


Beide Faktoren sind zum Signifikanzniveau 5% nicht signifikant, d. h., H_0 , dass sich die Mittelwerte in der Population nicht unterscheiden, wird nicht verworfen.

Allerdings beobachten wir etwas anderes: Während der Mittelwert des Trinkgeldes bei den Frauen bei den Rauchern größer ist, ist es bei den Männern umgekehrt. Hier könnte also eine Wechselwirkung, eine Interaktion vorliegen. Diese wird in R über ein : in der Formel eingefügt:

```
tipaovww <- aov(tip ~ sex + smoker + sex:smoker, data = tips)
summary(tipaovww)</pre>
```

```
##
                 Df Sum Sq Mean Sq F value Pr(>F)
   sex
                        3.7
                               3.674
                                       1.913
                                               0.168
                  1
                              0.015
                                       0.008
                                               0.930
   smoker
                        0.0
                  1
                                       0.333
                                               0.564
   sex:smoker
                        0.6
                              0.640
  Residuals
                240
                     460.9
                               1.920
```

plot (allEffects (tipaovww))

sex*smoker effect plot

Auch hier gilt: Mit einem p-Wert von 0.564 wird die Nullhypothese, dass in der Population keine Wechselwirkung von Geschlecht und Rauchverhalten für den Mittelwert vorliegt, nicht verworfen.

Übung: Teaching Rating

Dieser Datensatz analysiert u. a. den Zusammenhang zwischen Schönheit und Evaluierungsergebnis von Dozenten:

Hamermesh, D.S., and Parker, A. (2005). Beauty in the Classroom: Instructors' Pulchritude and Putative Pedagogical Productivity. Economics of Education Review, 24, 369–376.

Sie können ihn, sofern noch nicht geschehen, von https://goo.gl/6Y3KoK als csv herunterladen.

- 1. Ist das arithmetische Mittel der Evaluierung eval nicht zufällig größer als befriedigend (3)?
- 2. Gibt es einen nicht zufälligen Unterschied im Lagemaß der Evaluation eval zwischen männlichen und weiblichen Dozent/innen (gender)?

Literatur

 David M. Diez, Christopher D. Barr, Mine Çetinkaya-Rundel (2014): Introductory Statistics with Randomization and Simulation, https://www.openintro.org/stat/textbook.php?stat_book=isrs, Kapitel 4 Literatur

 Nicholas J. Horton, Randall Pruim, Daniel T. Kaplan (2015): Project MOSAIC Little Books A Student's Guide to R, https://github.com/ProjectMOSAIC/LittleBooks/raw/master/StudentGuide/ MOSAIC-StudentGuide.pdf, Kapitel 7, 10.1

• Maike Luhmann (2015): R für Einsteiger, Kapitel 13, 14

• Andreas Quatember (2010): Statistik ohne Angst vor Formeln, Kapitel 3.5, 3.7, 3.12

• Daniel Wollschläger (2014): Grundlagen der Datenanalyse mit R, Kapitel 7.2, 7.3, 7.5

Lizenz

Diese Übung wurde von Karsten Lübke entwickelt und orientiert sich an der Übung zum Buch OpenIntro von Andrew Bray, Mine Çetinkaya-Rundel und steht wie diese unter der Lizenz Creative Commons Attribution-ShareAlike 3.0 Unported.

Versionshinweise:

• Datum erstellt: 2017-07-27

• R Version: 3.4.1

• mosaic Version: 0.14.4

Kapitel 5: Einführung Lineare Regression

Einfache Regression

Wir werden weiter den tips Datensatz aus Bryant, P. G. and Smith, M (1995) Practical Data Analysis: Case Studies in Business Statistics. Homewood, IL: Richard D. Irwin Publishing analysieren.

Sofern noch nicht geschehen, können Sie in hier als csv-Datei herunterladen:

```
download.file("https://goo.gl/whKjnl", destfile = "tips.csv")
```

Das Einlesen erfolgt, sofern die Daten im Arbeitsverzeichnis liegen, über:

```
tips <- read.csv2("tips.csv")
```

Zur Unterstützung der Analyse wird (wieder) mosaic verwendet; außerdem laden wir ggplot2 für qplot:

```
library (mosaic)
```

Wie hängen Trinkgeldhöhe tip und Rechnungshöhe total_bill zusammen? Kann die Höhe des Trinkgeldes als *lineare* Funktion der Rechnungshöhe linear modelliert werden?

$$tip_i = \beta_0 + \beta_1 \cdot total_bill_i + \epsilon_i$$

Zunächst eine visuelle Analyse mi Hilfe eines Scatterplots.

```
xyplot(tip ~ total_bill, data = tips)
```


Es scheint einen positiven Zusammenhang zu geben. Modellieren wir die **abhängige** Variable tip (inhaltliche Entscheidung!) als lineare Funktion der **unabhängigen** Variable total_bill:

```
LinMod.1 <- lm(tip ~ total_bill, data = tips)</pre>
summary(LinMod.1)
##
## Call:
## lm(formula = tip ~ total_bill, data = tips)
## Residuals:
       Min
                1Q Median
                                3Q
                                       Max
## -3.1982 -0.5652 -0.0974 0.4863 3.7434
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.920270
                          0.159735
                                     5.761 2.53e-08 ***
## total_bill 0.105025
                          0.007365 14.260 < 2e-16 ***
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 1.022 on 242 degrees of freedom
## Multiple R-squared: 0.4566, Adjusted R-squared: 0.4544
```

```
## F-statistic: 203.4 on 1 and 242 DF, p-value: < 2.2e-16
```

Der Achsenabschnitt (intercept) wird mit 0.92 geschätzt, die Steigung in Richtung total_bill mit 0.11: steigt total_bill um einen Dollar, steigt im *Durchschnitt* tip um 0.11. Die (Punkt-)Prognose für tip lautet also

```
tip = 0.92 + 0.11 * total\_bill
```

Die Koeffzienten werden dabei so geschätzt, dass $\sum \epsilon_i^2$ minimiert wird. Dies wird auch als *Kleinste Quadrate (Ordinary Least Squares, OLS)* Kriterium bezeichnet. Eine robuste Regression ist z. B. mit der Funktion rlm() aus dem Paket MASS möglich.

In mosaic kann ein solches Modell einfach als neue Funktion definiert werden:

```
LinMod.1Fun <- makeFun (LinMod.1)
```

Die (Punkt-)Prognose für die Trinkgeldhöhe, bspw. für eine Rechnung von 30\$ kann dann berechnet werden

```
LinMod.1Fun(total_bill = 30)
```

1 ## 4.071005

also 4.07\$.

In mosaic kann die Modellgerade über

plotModel(LinMod.1)

betrachtet werden. Das Bestimmtheitsmaß, d. h. der Anteil der im Modell erklärten Varianz,

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

ist mit 0.46 "ok": 46-% der Variation des Trinkgeldes wird im Modell erklärt.

Aber wie sieht es mit den Annahmen aus?

- Die Linearität des Zusammenhangs haben wir zu Beginn mit Hilfe des Scatterplots "überprüft".
- Zur Überprüfung der Normalverteilung der Residuen zeichnen wir ein Histogramm. Die Residuen können über den Befehl resid() aus einem Linearen Modell extrahiert werden. Hier scheint es zu passen:

histogram(~resid(LinMod.1))

Konstante Varianz: Dies kann z. B. mit einem Scatterplot der Residuen auf der y-Achse und den angepassten Werten auf der x-Achse überprüft werden. Die angepassten Werte werden über den Befehl fitted() extrahiert. Diese Annahme scheint verletzt zu sein (siehe unten): je größer die Prognose des Trinkgeldes, desto größer wirkt die Streuung der Residuen. Dieses Phänomen ließ sich schon aus dem ursprünglichen Scatterplot xyplot (tip ~ total_bill, data=tips) erahnen. Das ist auch inhaltlich plausibel: je höher die Rechnung, desto höher die Varianz beim Trinkgeld. Die Verletzung dieser Annahme beeinflusst nicht die Schätzung der Steigung, sondern die Schätzung des Standardfehlers, also des p-Wertes des Hypothesentests, d. h., H₀: β₁ = 0.

xyplot(resid(LinMod.1) ~ fitted(LinMod.1))

• Extreme Ausreißer: Wie am Plot der Linearen Regression plotModel (LinMod.1) erkennbar, gibt es vereinzelt Ausreißer nach oben, allerdings ohne einen extremen Hebel.

Hängt die Rechnungshöhe von der Anzahl der Personen ab? Bestimmt, aber wie?

```
xyplot(total_bill ~ size, data = tips)
```


Da bei diskreten metrischen Variablen (hier size) Punkte übereinander liegen können, sollte man "jittern", d. h., eine (kleine) Zufallszahl addieren:

```
set.seed(1896) # Zufallszahlengenerater setzen
xyplot(total_bill ~ jitter(size), data = tips)
```


Übung:

- 1. Um wie viel Dollar steigt im Durchschnitt das Trinkgeld, wenn eine Person mehr am Tisch sitzt?
- 2. Für wie aussagekräftig halten Sie Ihr Ergebnis aus 1.?

Regression mit kategorialen Werten

Der Wochentag day ist eine kategoriale Variable. Wie sieht eine Regression des Trinkgeldes darauf aus? Zunächst grafisch:

Und als Lineares Modell:

```
LinMod.2 \leftarrow lm(tip \sim day, data = tips)
summary(LinMod.2)
##
## Call:
## lm(formula = tip ~ day, data = tips)
##
## Residuals:
       Min
                1Q Median
                                3Q
                                        Max
## -2.2451 -0.9931 -0.2347 0.5382
                                    7.0069
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.73474
                           0.31612 8.651 7.46e-16 ***
## daySat
                0.25837
                           0.34893
                                     0.740
                                               0.460
## daySun
                0.52039
                          0.35343
                                    1.472
                                               0.142
## dayThur
                0.03671
                           0.36132
                                     0.102
                                               0.919
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 1.378 on 240 degrees of freedom
```

```
## Multiple R-squared: 0.02048, Adjusted R-squared: 0.008232
## F-statistic: 1.672 on 3 and 240 DF, p-value: 0.1736
```

Die im Modell angegebenen Schätzwerte sind die Änderung der Trinkgeldprognose, wenn z. B. der Tag ein Samstag (daySat) im Vergleich zu einer Referenzkategorie. Dies ist in R das erste Element des Vektors der Faktorlevel. Welcher dies ist über den Befehl levels () zu erfahren

```
levels(tips$day)
```

```
## [1] "Fri" "Sat" "Sun" "Thur"
```

hier also Fri (aufgrund der standardmäßig aufsteigenden alphanumerischen Sortierung). Dies kann über relevel () geändert werden. Soll z. B. die Referenz der Donnerstag, Thur sein:

```
tips$day <- relevel(tips$day, ref = "Thur")
levels(tips$day)</pre>
```

```
## [1] "Thur" "Fri" "Sat" "Sun"
```

Das Modell ändert sich entsprechend:

```
LinMod.3 <- lm(tip ~ day, data = tips)
summary(LinMod.3)</pre>
```

```
##
## Call:
## lm(formula = tip ~ day, data = tips)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -2.2451 -0.9931 -0.2347 0.5382 7.0069
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.77145
                          0.17500 15.837
                                           <2e-16 ***
## dayFri
              -0.03671
                         0.36132 -0.102
                                           0.9191
## daySat
               0.22165
                          0.22902
                                    0.968
                                            0.3341
               0.48368
                          0.23581
## daySun
                                   2.051
                                            0.0413 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.378 on 240 degrees of freedom
## Multiple R-squared: 0.02048,
                                  Adjusted R-squared:
## F-statistic: 1.672 on 3 and 240 DF, p-value: 0.1736
```

sowie als Plot:

plotModel(LinMod.3)

Eine Alternative zu relevel () zur Bestimmung der Referenzkategorie ist es, innerhalb von factor () die Option levels= direkt in der gewünschten Sortierung zu setzen.

```
day <- factor(tips$day, levels = c("Thur", "Fri", "Sat", "Sun"))</pre>
```

Die (Punkt-)Prognose für die Trinkgeldhöhe, bspw. an einen Freitag kann dann berechnet werden

```
LinMod.3Fun <- makeFun(LinMod.3)

LinMod.3Fun(day = "Fri")

## 1

## 2.734737
```

Übung:

- 3. Wie verändert sich die Rechnungshöhe im Durchschnitt, wenn die Essenszeit Dinner statt Lunch ist?
- 4. Wie viel % der Variation der Rechnungshöhe können Sie durch die Essenszeit modellieren?

Multivariate Regression

Aber wie wirken sich die Einflussgrößen zusammen auf das Trinkgeld aus?

```
LinMod.4 <- lm(tip ~ total_bill + size + sex + smoker + day +
   time, data = tips)
summary(LinMod.4)
##
## Call:
## lm(formula = tip ~ total_bill + size + sex + smoker + day + time,
      data = tips)
##
## Residuals:
      Min
               10 Median
                              3Q
                                     Max
## -2.8475 -0.5729 -0.1026 0.4756 4.1076
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                        0.497586 1.289
## (Intercept) 0.641558
                                            0.1985
## total_bill 0.094487 0.009601 9.841
                                            <2e-16 ***
                                            0.0505 .
## size
              0.175992 0.089528 1.966
## sexMale
              -0.032441 0.141612 -0.229
                                            0.8190
## smokerYes
             -0.086408 0.146587 -0.589
                                            0.5561
## dayFri
              0.162259 0.393405 0.412
                                            0.6804
## daySat
              0.040801 0.470604 0.087
                                            0.9310
               0.136779 0.471696 0.290
## daySun
                                            0.7721
## timeLunch
               0.068129
                        0.444617
                                    0.153
                                            0.8783
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.024 on 235 degrees of freedom
## Multiple R-squared: 0.4701, Adjusted R-squared: 0.452
## F-statistic: 26.06 on 8 and 235 DF, p-value: < 2.2e-16
```

Interessant sind die negativen Vorzeichen vor den Schätzwerten für sexMale und smokerYes – anscheinend geben Männer und Raucher weniger Trinkgeld, wenn alle anderen Faktoren konstant bleiben. Bei einer rein univariaten Betrachtung wäre etwas anderes herausgekommen.

```
##
## Call:
## lm(formula = tip ~ sex, data = tips)
```

```
##
## Residuals:
              1Q Median
                               3Q
      Min
                                      Max
## -2.0896 -1.0896 -0.0896 0.6666 6.9104
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                2.8334
                           0.1481 19.137
                                           <2e-16 ***
              0.2562
## sexMale
                           0.1846
                                  1.388
                                             0.166
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.381 on 242 degrees of freedom
## Multiple R-squared: 0.007896, Adjusted R-squared: 0.003797
## F-statistic: 1.926 on 1 and 242 DF, p-value: 0.1665
summary(lm(tip ~ smoker, data = tips))
##
## Call:
## lm(formula = tip ~ smoker, data = tips)
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -2.0087 -0.9936 -0.1003 0.5580 6.9913
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.99185
                         0.11283 26.517 <2e-16 ***
## smokerYes
              0.01686
                         0.18276
                                  0.092
                                             0.927
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.386 on 242 degrees of freedom
## Multiple R-squared: 3.515e-05, Adjusted R-squared: -0.004097
\#\# F-statistic: 0.008506 on 1 and 242 DF, \, p-value: 0.9266
```

Diese Umkehrung des modellierten Effektes liegt daran, dass es auch einen positiven Zusammenhang zur Rechnungshöhe gibt:

```
summary(lm(total_bill ~ sex, data = tips))
```

##

```
## Call:
## lm(formula = total_bill ~ sex, data = tips)
##
## Residuals:
    Min 1Q Median 3Q Max
## -14.99 -6.02 -1.94 3.99 30.07
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18.0569
                         0.9463 19.081 <2e-16 ***
## sexMale
             2.6872
                          1.1797
                                 2.278
                                         0.0236 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 8.827 on 242 degrees of freedom
## Multiple R-squared: 0.02099, Adjusted R-squared: 0.01694
## F-statistic: 5.188 on 1 and 242 DF, p-value: 0.02361
summary(lm(total_bill ~ smoker, data = tips))
##
## Call:
## lm(formula = total_bill ~ smoker, data = tips)
##
## Residuals:
     Min
           1Q Median
                              3Q
                                    Max
## -17.686 -6.459 -1.888
                         4.583 30.054
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.1883
                         0.7233 26.529 <2e-16 ***
## smokerYes
               1.5681
                          1.1716 1.338
                                           0.182
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 8.888 on 242 degrees of freedom
## Multiple R-squared: 0.007348, Adjusted R-squared: 0.003246
## F-statistic: 1.791 on 1 and 242 DF, p-value: 0.182
```

Im vollem Modell LinMod. 4 sind alle unabhängigen Variablen berücksichtigt, die Koeffizienten beziehen sich dann immer auf: gegeben, die anderen Variablen bleiben konstant, d. h. ceteris paribus.

Vergleichen wir mal zwei Modelle:

```
LinMod.5a <- lm(tip ~ sex, data = tips)

coef(LinMod.5a) # Koeffizienten extrahieren

## (Intercept) sexMale

## 2.8334483 0.2561696

LinMod.5b <- lm(tip ~ sex + total_bill, data = tips)

coef(LinMod.5b) # Koeffizienten extrahieren

## (Intercept) sexMale total_bill

## 0.93327849 -0.02660871 0.10523236
```

Ohne die Berücksichtigung der Kovariable/Störvariable Rechnungshöhe geben Male ein um im Durchschnitt 0.26\$ höheres Trinkgeld, bei Kontrolle, d. h. gleicher Rechnungshöhe ein um 0.03\$ niedrigeres Trinkgeld als die Referenzklasse Female (levels (tips\$sex) [1]).

Inferenz in der linearen Regression

Kehren wir noch einmal zur multivariaten Regression (LinMod.4) zurück.

```
summary(LinMod.4)
##
## Call:
## lm(formula = tip ~ total_bill + size + sex + smoker + day + time,
##
      data = tips)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -2.8475 -0.5729 -0.1026 0.4756 4.1076
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.641558
                          0.497586
                                     1.289
                                             0.1985
## total_bill
              0.094487 0.009601 9.841
                                             <2e-16 ***
## size
               0.175992
                          0.089528 1.966
                                             0.0505 .
## sexMale
              -0.032441 0.141612 -0.229
                                             0.8190
## smokerYes
              -0.086408 0.146587 -0.589
                                             0.5561
               0.162259 0.393405 0.412
                                             0.6804
## dayFri
                                             0.9310
## daySat
               0.040801 0.470604
                                     0.087
## daySun
               0.136779 0.471696
                                     0.290
                                             0.7721
## timeLunch
               0.068129
                          0.444617
                                     0.153
                                             0.8783
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 1.024 on 235 degrees of freedom
## Multiple R-squared: 0.4701, Adjusted R-squared: 0.452
## F-statistic: 26.06 on 8 and 235 DF, p-value: < 2.2e-16</pre>
```

In der 4. Spalte der, mit Zeilennamen versehenen Tabelle Coefficients stehen die p-Werte der Nullhypothese, die unabhängige Variable hat, gegeben alle anderen Variablen im Modell, keinen linearen Einfluss auf die abhängige Variable: $H_0: \beta_i = 0$. Zur Bestimmung des p-Wertes wird der Schätzer (Estimate) durch den Standardfehler (Std. Error) dividiert. Der resultierende t-Wert (t value) wird dann, zusammen mit der Anzahl an Freiheitsgraden zur Berechnung des p-Wertes (Pr(>|t|)) verwendet. Ein einfacher t-Test!

Zur schnelleren Übersicht finden sich dahinter "Sternchen" und "Punkte", die die entsprechenden Signifikanzniveaus symbolisieren: *** bedeutet eine Irrtumswahrscheinlichkeit, Wahrscheinlichkeit für Fehler 1. Art, von unter 0.001, d. h. unter 0,1%. ** entsprechend 1%, * 5% und . 10%.

Zum Signifikanzniveau von 10% sind hier also zwei Faktoren und der Achsenabschnitt ((Intercept)) signifikant – nicht notwendigerweise relevant: Rechnungshöhe total_bill sowie Anzahl Personen size. Beides wirkt sich linear positiv auf die Trinkgeldhöhe aus: Mit jedem Dollar Rechnungshöhe steigt im Mittelwert die Trinkgeldhöhe um 0.09 Dollar, mit jeder Person um 0.18 Dollar – gegeben alle anderen Faktoren bleiben konstant. Das Bestimmtheitsmaß R² (Multiple R-squared:) liegt bei 0.47, also 47% der Variation des Trinkgeldes wird im Modell erklärt.

Außerdem wird getestet, ob alle Koeffizienten der unabhängigen Variablen gleich Null sind:

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$

Das Ergebnis des zugrundeliegenden F-Tests (vgl. Varianzanalyse) wird in der letzten Zeile angegeben (F-Statistic). Hier wird H_0 also verworfen.

Erweiterungen

Modellwahl

Das Modell mit allen Variablen des Datensatzes, d. h., mit 6 unabhängigen (LinMod.4) erklärt 47.01% der Variation, das Modell nur mit der Rechnungshöhe als erklärende Variable (LinMod.1) schon 45.66%, der Erklärungszuwachs liegt also gerade einmal bei 1.35 Prozentpunkten. In der Statistik ist die Wahl des richtigen Modells eine der größten Herausforderungen, auch deshalb, weil das wahre Modell in der Regel nicht bekannt ist und es schwer ist, die richtige Balance zwischen Einfachheit und Komplexität zu finden. Aufgrund des Zufalls kann es immer passieren, dass das Modell sich zu sehr an die zufälligen Daten anpasst (Stichwort: Overfitting). Es gibt unzählige Modellwahlmethoden, und leider garantiert keine, dass immer das beste Modell gefunden wird. Eine Möglichkeit ist die sogenannte Schrittweise-Rückwärtsselektion auf

Basis des Akaike-Informationskriteriums $(AIC)^2$. Diese ist nicht nur recht weit verbreitet - und liefert unter bestimmten Annahmen das "richtige" Modell - sondern in R durch den Befehl step () einfach umsetzbar:

```
step(LinMod.4)
```

```
## Start: AIC=20.51
## tip ~ total_bill + size + sex + smoker + day + time
##
                Df Sum of Sq
                                RSS
                                        AIC
                 3
## - day
                       0.609 247.14
                                    15.116
\#\# - time
                 1
                       0.025 246.55 18.538
## - sex
                 1
                       0.055 246.58 18.568
                 1
                       0.365 246.89 18.874
## - smoker
## <none>
                             246.53 20.513
## - size
                       4.054 250.58 22.493
                 1
## - total_bill
                1
                     101.595 348.12 102.713
## Step: AIC=15.12
## tip ~ total_bill + size + sex + smoker + time
##
##
                Df Sum of Sq
                                RSS
                                       AIC
\#\# - time
                 1
                       0.001 247.14 13.117
## - sex
                 1
                       0.042 247.18 13.157
## - smoker
                 1
                       0.380 247.52 13.490
                             247.14 15.116
## <none>
## - size
                 1
                       4.341 251.48 17.365
## - total_bill 1
                    101.726 348.86 97.232
##
## Step: AIC=13.12
## tip ~ total_bill + size + sex + smoker
##
                Df Sum of Sq
##
                                RSS
                                       AIC
                 1
                       0.041 247.18 11.157
## - sex
## - smoker
                 1
                       0.379 247.52 11.491
## <none>
                             247.14 13.117
## - size
                       4.342 251.48 15.366
                 1
## - total_bill 1
                   103.327 350.46 96.350
## Step: AIC=11.16
```

 $^{^2 {\}rm siehe}$ z. B. Rob J Hyndman & George Athanasopoulos, Forecasting: principles and practice, Kapitel 5.3: Selecting predictors, https://www.otexts.org/fpp/5/3

```
## tip ~ total_bill + size + smoker
##
##
                Df Sum of Sq
                                         AIC
                                  RSS
## - smoker
                  1
                        0.376 247.55
                                       9.528
## <none>
                              247.18 11.157
                        4.344 251.52 13.408
## - size
                  1
  - total bill
                 1
                      104.263 351.44 95.029
##
## Step: AIC=9.53
## tip ~ total_bill + size
##
##
                Df Sum of Sq
                                  RSS
                                         AIC
## <none>
                              247.55
                                       9.528
## - size
                 1
                        5.235 252.79 12.634
  - total_bill
                      106.281 353.83 94.685
                 1
##
## Call:
## lm(formula = tip ~ total_bill + size, data = tips)
## Coefficients:
  (Intercept)
                  total_bill
                                      size
       0.66894
                     0.09271
                                   0.19260
##
```

In den letzten Zeilen der Ausgabe steht das beste Modell, das diese Methode (schrittweise, rückwärts) mit diesem Kriterium (AIC) bei diesen Daten findet (Punktprognose, d. h. ohne Residuum):

```
tip = 0.66894 + 0.09271 * total_bill + 0.19260 * size
```

Der Ausgabe können Sie auch entnehmen, welche Variablen in welcher Reihenfolge entfernt wurden: Zunächst day, dann time, danach sex und schließlich smoker. Hier sind also dieselben Variablen noch im Modell, die auch in LinMod. 4 signifikant zum Niveau 10% waren, eine Auswahl der dort signifikanten Variablen hätte also dasselbe Modell ergeben. Das ist häufig so, aber nicht immer!

Interaktionen

Wir haben gesehen, dass es einen Zusammenhang zwischen der Trinkgeldhöhe und der Rechnungshöhe gibt. Vielleicht unterscheidet sich der Zusammenhang je nachdem, ob geraucht wurde, d. h., vielleicht gibt es eine Interaktion (Wechselwirkung). Die kann in 1m einfach durch ein * zwischen den unabhängigen Variablen modelliert werden (a*b entspricht in R Formeln a+b+a:b):

```
LinMod.6 <- lm(tip ~ smoker * total_bill, data = tips)
summary(LinMod.6)</pre>
```

```
##
## Call:
## lm(formula = tip ~ smoker * total_bill, data = tips)
## Residuals:
##
      Min
               1Q Median
                                3Q
                                      Max
## -2.6789 -0.5238 -0.1205 0.4749
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        0.360069
                                   0.202058 1.782 0.076012 .
                                   0.312263 3.856 0.000148 ***
## smokerYes
                         1.204203
## total_bill
                                   0.009678 14.172 < 2e-16 ***
                         0.137156
                                   0.014189 -4.762 3.32e-06 ***
## smokerYes:total_bill -0.067566
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9785 on 240 degrees of freedom
## Multiple R-squared: 0.506, Adjusted R-squared: 0.4998
## F-statistic: 81.95 on 3 and 240 DF, p-value: < 2.2e-16
```

Der Schätzwert für die Interaktion steht bei :. Hier also: Wenn geraucht wurde, ist die Steigung im Durchschnitt um 6,8 Cent geringer. Aber wenn geraucht wurde, ist die Rechnung im Achsenabschnitt erstmal um 1,20\$ höher (Effekt, ceteris paribus). Wer will, kann ausrechnen, ab welcher Rechnungshöhe Rauchertische im Mittelwert lukrativer sind...

Das gleiche Bild (höhere Achsenabschnitt, geringere Steigung) ergibt sich übrigens bei getrennten Regressionen:

```
lm(tip ~ total_bill, data = tips, subset = smoker == "Yes")

##
## Call:
## lm(formula = tip ~ total_bill, data = tips, subset = smoker ==
## "Yes")
##
## Coefficients:
## (Intercept) total_bill
## 1.56427 0.06959

lm(tip ~ total_bill, data = tips, subset = smoker == "No")

##
## Call:
```

```
## lm(formula = tip ~ total_bill, data = tips, subset = smoker ==
## "No")
##
## Coefficients:
## (Intercept) total_bill
## 0.3601 0.1372
```

Weitere Modellierungsmöglichkeiten

Über das Formelinterface y \sim x können auch direkt z. B. Polynome modelliert werden. Hier eine quadratische Funktion:

```
summary(lm(tip ~ I(total_bill^2) + total_bill, data = tips))
##
## Call:
\#\# \ lm(formula = tip \sim I(total\_bill^2) + total\_bill, data = tips)
## Residuals:
       Min
                1Q Median
                                3Q
                                       Max
## -3.2005 -0.5586 -0.0979 0.4838
                                    3.7762
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    0.8911170 0.3467554
                                         2.570 0.010776 *
## I(total_bill^2) -0.0000571 0.0006025 -0.095 0.924573
## total_bill
                    0.1078555
                              0.0307696
                                           3.505 0.000544 ***
## ---
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.024 on 241 degrees of freedom
## Multiple R-squared: 0.4566, Adjusted R-squared: 0.4521
## F-statistic: 101.3 on 2 and 241 DF, p-value: < 2.2e-16
```

D. h., die geschätzte Funktion ist eine "umgedrehte Parabel" (negatives Vorzeichen bei I (total_bill^2)), bzw. die Funktion ist konkav, die Steigung nimmt ab. Allerdings ist der Effekt nicht signifikant. **Hinweis:** Um zu "rechnen" und nicht beispielsweise Interaktion zu modellieren, geben Sie die Variablen in der Formel in der Funktion I () (As Is) ein.

Prognoseintervalle

Insgesamt haben wir viel "Unsicherheit" u. a. aufgrund von Variabilität in den Beobachtungen und in den Schätzungen. Wie wirken sich diese auf die Prognose aus?

Dazu können wir über die Funktion predict.lm Prognoseintervalle berechnen – hier für das einfache Modell LinMod.1:

```
newdat <- data.frame(total_bill = seq(0, 75))</pre>
preddat <- predict(LinMod.1, newdata = newdat, interval = "prediction")</pre>
head (preddat)
##
           fit
                      lwr
## 1 0.9202696 -1.1174151 2.957954
## 2 1.0252941 -1.0103977 3.060986
## 3 1.1303186 -0.9034818 3.164119
## 4 1.2353432 -0.7966677 3.267354
## 5 1.3403677 -0.6899557 3.370691
## 6 1.4453922 -0.5833461 3.474130
tail (preddat)
           fit
                    lwr
                              upr
## 71 8.271986 6.127124 10.41685
## 72 8.377010 6.227178 10.52684
## 73 8.482035 6.327145 10.63692
## 74 8.587059 6.427028 10.74709
## 75 8.692084 6.526825 10.85734
## 76 8.797108 6.626538 10.96768
matplot(newdat$total_bill, preddat, lty = c(1, 2, 2), type = "1")
```

points(x = tips\$total_bill, y = tips\$tip)

Sie sehen, dass 95% Prognoseintervall ist recht breit: über den gewählten Rechnungsbereich von 0-75\$ im Mittelwert bei 4.11\$.

```
favstats((preddat[, 3] - preddat[, 2]))

## min Q1 median Q3 max mean sd n

## 4.034738 4.044428 4.072224 4.171158 4.341141 4.115859 0.09042352 76

## missing
## 0
```

Zu den Rändern hin wird es breiter. Am schmalsten ist es übrigens beim Mittelwert der unabhängigen Beobachtungen, hier also bei 19.79\$.

Kreuzvalidierung

Je komplexer und flexibler ein Modell ist, desto besser kann es sich an die *vorhandenen*, sogenannte Traininingsdaten anpassen, **aber** für *neue*, sogenannte Testdaten wird es nicht immer besser – siehe z. B. Kapitel 2.2 aus James et. al (2013).

Allgemein können Modelle mit Hilfe des Mean Squared Error verglichen werden:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

Vorhandene Daten können aber genutzt werden um die Prognose für neue Daten (x_0, y_0) zu simulieren:

z. B. über Kreuzvalidierung. Im einfachen Fall einer Leave-One-Out Kreuzvalidierung werden alle Beobachtungen bis auf die i-te, $i=1,2,\ldots n$ zum Schätzen oder Lernen des Modells verwendet, das Testen des Modells erfolgt dann anhand der Prognosegüte für die i-te, $i=1,2,\ldots n$ Beobachtung. In R kann dies einfach über Schleifen durchgeführt werden:

```
n <- nrow(tips) # Anzahl Beobachtungen
y <- tips$tip # "Wahre" Werte
yprog <- numeric(n) # Vektor in dem die Prognosen geschrieben werden
### Modellanpassung
mod <- lm(tip ~ ., data=tips) # Modell mit allen Beobachtungen schätzen
yfit <- mod$fitted.values # "Vorhersagen" für Trainingsdaten
### Leave-One-Out Kreuzvalidierung
for (i in 1:n) # i nehme nacheinander die Werte von 1 bis n an
{
  modloo <- lm(tip ~ ., data=tips[-i,]) # Modell schätzen ohne i-te Beobachtung
  yprog[i] <- predict(modloo, newdata = tips[i,]) # Vorhsage von y_i anhand des Modells</pre>
### Vergleich:
MSEfit <- mean((y-yfit)^2)</pre>
MSEprog <- mean((y-yprog)^2)</pre>
cat("MSE Modellanpassung: ", MSEfit, "\n")
## MSE Modellanpassung: 1.010354
cat ("MSE Kreuzvalidierung: ", MSEprog, "\n")
```

MSE Kreuzvalidierung: 1.100501

Der Mean Squared Error ist also bei der Leave-One-Out Kreuzvalidierung um 9% schlechter als bei der Modellanpassung.

Übung: Teaching Rating

Dieser Datensatz analysiert u. a. den Zusammenhang zwischen Schönheit und Evaluierungsergebnis von Dozenten:

Hamermesh, D.S., and Parker, A. (2005). Beauty in the Classroom: Instructors' Pulchritude and Putative Pedagogical Productivity. Economics of Education Review, 24, 369–376.

KAPITEL 5: EINFÜHRUNG LINEARE REGRESSION

Literatur

Sie können ihn, sofern noch nicht geschehen, von https://goo.gl/6Y3KoK als csv herunterladen.

Versuchen Sie, das Evaluierungsergebnis als abhängige Variable anhand geeigneter Variablen des Datensatzes zu erklären. Wie groß ist der Einfluss der Schönheit? Sind die Modellannahmen erfüllt und wie

beurteilen Sie die Modellgüte?

Literatur

• David M. Diez, Christopher D. Barr, Mine Çetinkaya-Rundel (2014): Introductory Statistics with

Randomization and Simulation, https://www.openintro.org/stat/textbook.php?stat_book=isrs,

Kapitel 5, 6.1-6.3

• Nicholas J. Horton, Randall Pruim, Daniel T. Kaplan (2015): Project MOSAIC Little Books A

Student's Guide to R, https://github.com/ProjectMOSAIC/LittleBooks/raw/master/StudentGuide/

MOSAIC-StudentGuide.pdf, Kapitel 5.4, 10.2

• Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani (2013): An Introduction to

Statistical Learning - with Applications in R, http://www-bcf.usc.edu/~gareth/ISL/, Kapitel 3

• Maike Luhmann (2015): R für Einsteiger, Kapitel 16, 17.1-17.3

Andreas Quatember (2010): Statistik ohne Angst vor Formeln, Kapitel 3.11

• Daniel Wollschläger (2014): Grundlagen der Datenanalyse mit R, Kapitel 6

Lizenz

Diese Übung wurde von Karsten Lübke entwickelt und orientiert sich an der Übung zum Buch OpenIntro

von Andrew Bray, Mine Çetinkaya-Rundel und steht wie diese unter der Lizenz Creative Commons

98

Attribution-ShareAlike 3.0 Unported.

Versionshinweise:

• Datum erstellt: 2017-07-27

• R Version: 3.4.1

• mosaic Version: 0.14.4

Kapitel 6: Einführung Zeitreihenanalyse

Euro Handelsdaten

Eurostat stellt viele Konjunkturdaten zur Verfügung, u. a. auch Handelsdaten hier. Diese finden sich im Datensatz euretail des Paktes fpp:

```
# Einmalig installieren: install.packages('fpp')
library(fpp) # Paket laden
data(euretail) # Datensatz laden
euretail
##
         Qtr1
                Qtr2
                        Qtr3
                               Qtr4
## 1996
        89.13
               89.52
                      89.88
                              90.12
## 1997
        89.19
               89.78
                      90.03
                              90.38
## 1998
        90.27
               90.77
                      91.85
                              92.51
## 1999
        92.21 92.52
                      93.62
                              94.15
## 2000
        94.69 95.34
                      96.04
                              96.30
                      95.86
## 2001
        94.83 95.14
                              95.83
## 2002
        95.73 96.36
                      96.89
                              97.01
## 2003
        96.66 97.76
                      97.83
                              97.76
## 2004
        98.17 98.55
                      99.31
                              99.44
## 2005 99.43 99.84 100.32 100.40
## 2006 99.88 100.19 100.75 101.01
## 2007 100.84 101.34 101.94 102.10
## 2008 101.56 101.48 101.13 100.34
## 2009
        98.93 98.31
                      97.67
                              97.44
## 2010
        96.53 96.56
                      96.51
                              96.70
## 2011
         95.88
               95.84
                      95.79
                             95.97
```

Es handelt sich also um quartalsweise Daten von 1996, 1 bis 2011, 4.

```
class(euretail)
```

```
## [1] "ts"
```

ts steht dabei für ein Zeitreihenobjekt in R. Zeitreihen (d. h. eine Folge von Beobachtungen über die Zeit – der Wert variiert mit der Zeit) haben viele Besonderheiten, die zur Analyse genutzt werden können.

frequency(euretail) # Beobachtungen je Zeiteinheit

[1] 4

Eine Abbildung kann wie üblich einfach über plot () erzeugt werden.

plot (euretail)

Man erkennt einen Anstieg bis ca. 2008 (Finanzkrise!), dann einen Abschwung und ab 2010/11 eine evtl. Erholung – aber auch saisonale Schwankungen.

Zeitreihenzerlegung

Eine Zeitreihe (data) y_t kann in verschiedene Komponenten zerlegt werden:

- Trend (trend) M_t
- Saisonkomponenten (seasonal) S_t
- Rest-/ Fehlerkomponenten (remainder) E_t

Das additive Modell lautet dann:

$$Y_t = M_t + S_t + E_t$$

und das multiplikative Modell lautet:

$$Y_t = M_t \cdot S_t \cdot E_t.$$

Es gibt viele Möglichkeiten m_t, s_t, z_t zu schätzen, eine gute Umsetzung findet sich in der Funktion st1 ()

Hier muss die Option s.window= angegeben werden. (Eine Alternative ohne Option ist decompose ())

```
fit <- stl(euretail, s.window = 5)</pre>
fit
   Call:
##
   stl(x = euretail, s.window = 5)
##
## Components
              seasonal
                         trend
                                   remainder
## 1996 Q1 -0.419860564 89.57375 -0.023884485
## 1996 Q2 -0.123565509 89.62061 0.022953668
## 1996 Q3 0.193599124 89.66846 0.017942030
## 1996 Q4 0.346353935 89.71844 0.055205774
## 1997 Q1 -0.404246348 89.76781 -0.173568415
## 1997 Q2 -0.147484780 89.85132 0.076164034
## 1997 Q3 0.198861912
                        90.01958 -0.188446028
## 1997 Q4 0.343940521 90.28854 -0.252483392
## 1998 Q1 -0.349545254 90.65637 -0.036827055
## 1998 Q2 -0.238674319
                        91.11372 -0.105046188
## 1998 O3 0.181425885
                        91.58972 0.078850220
## 1998 Q4 0.259346327
                        92.04326 0.207394100
## 1999 Q1 -0.224911742 92.48849 -0.053577251
## 1999 Q2 -0.254337444 92.94870 -0.174367468
## 1999 Q3 0.257834148 93.48620 -0.124035417
## 1999 Q4 0.327828800 94.09390 -0.271730904
## 2000 Q1 -0.328353978 94.69217 0.326181855
## 2000 Q2 -0.212084922 95.18876 0.363325738
## 2000 Q3 0.312750693 95.47877 0.248480492
## 2000 Q4 0.305748312 95.56257 0.431679110
## 2001 Q1 -0.433336876 95.54969 -0.286348812
## 2001 Q2 -0.146007433 95.53430 -0.248289419
## 2001 Q3 0.327803754 95.60521 -0.073013319
## 2001 Q4 0.248705735
                        95.80201 -0.220715694
## 2002 Q1 -0.486645661
                        96.07108 0.145565611
## 2002 Q2 0.006765829 96.36030 -0.007064601
## 2002 Q3 0.244073433
                        96.64460 0.001328096
## 2002 Q4 0.006908463
                        96.91796 0.085127459
## 2003 Q1 -0.336360551
                        97.17382 -0.177457089
## 2003 Q2 0.126193370 97.42283 0.210975181
## 2003 Q3 0.219287384 97.69652 -0.085805046
## 2003 Q4 -0.040342793 97.98891 -0.188570292
```

plot(fit)

```
## 2004 Q1 -0.262077562 98.29783 0.134246361
## 2004 Q2 0.041691564 98.64520 -0.136893260
## 2004 Q3 0.242917421 99.00020 0.066885842
## 2004 Q4 0.040843937 99.32594 0.073218914
## 2005 Q1 -0.242801532 99.61905 0.053753440
## 2005 Q2 -0.110382191 99.85354 0.096838071
## 2005 Q3 0.243814592 100.02408 0.052105736
## 2005 Q4 0.169759140 100.15594 0.074303481
## 2006 Q1 -0.321367759 100.27835 -0.076982512
## 2006 Q2 -0.138668418 100.42200 -0.093331710
## 2006 Q3 0.212238735 100.61059 -0.072828685
## 2006 Q4 0.214652787 100.85157 -0.056225555
## 2007 Q1 -0.298954939 101.12212 0.016832862
## 2007 Q2 -0.094424225 101.38092 0.053508420
## 2007 Q3 0.224610074 101.57628 0.139108082
## 2007 Q4 0.230976137 101.64997 0.219053823
## 2008 Q1 -0.268359448 101.54732 0.281044136
## 2008 Q2 -0.054722279 101.23084 0.303880489
## 2008 Q3 0.159364563 100.70890 0.261731581
## 2008 Q4 0.243567144 100.02822 0.068210379
## 2009 Q1 -0.298935355 99.26496 -0.036022855
## 2009 Q2 -0.080976574 98.51702 -0.126046391
## 2009 Q3 0.048157395 97.86404 -0.242192872
## 2009 Q4 0.265446302 97.34591 -0.171352223
## 2010 Q1 -0.268951277 96.96784 -0.168889939
## 2010 Q2 -0.087960678 96.70317 -0.055204499
## 2010 Q3 0.025951837 96.49930 -0.015255811
## 2010 Q4 0.312708115 96.31911 0.068178307
## 2011 Q1 -0.259828801
                        96.14201 -0.002176461
## 2011 02 -0.089538120 95.96674 -0.037205570
## 2011 Q3 0.022179733 95.78986 -0.022036604
## 2011 Q4 0.328374330 95.61244 0.029189348
```


Es gibt eine klare Trendwende in 2008 sowie deutliche Saisoneffekte: der Handel ist am niedrigsten in Q1, am höchsten in Q4.

Eine solche Zerlegung kann übrigens auch als Basis einer Prognose verwendet werden – dabei werden sogar die Prognoseintervalle berechnet. Für Details zur Prognose siehe ?ets.

```
prog <- predict(fit)
plot(prog)</pre>
```


Gleitende Durchschnitte

Eine einfache Möglichkeit eine Zeitreihe zu glätten, sind gleitende Durchschnitte (moving-average, Funktion ma () aus dem Paket forecast). Dazu wird einfach der Mittelwert der q Beobachtungen vor und nach t, inkl. t, berechnet:

$$\hat{y}_{q,t} := \frac{1}{p} \sum_{j=-q}^{q} y_{t+j}$$

mit p = 2q + 1.

Je größer q (order) ist, desto glatter wird die Zeitreihe:

```
plot (euretail)
lines (ma(euretail, order = 3), col = "red")
lines (ma(euretail, order = 5), col = "blue")
lines (ma(euretail, order = 7), col = "green")
legend("topleft", legend = c("q=3", "q=5", "q=7"), text.col = c("red", "blue", "green"))
```


Übung: Produktionsdaten

Der Datensatz elecequip aus dem Paket fpp enthält monatliche Produktionsdaten von elektronischem Equipment (näheres siehe hier).

Wie würden Sie die Zeitreihe beschreiben?

Literatur

- Paul S. P. Cowpertwait, Andrew V. Metcalfe (2009): Introductory Time Series with R, Kapitel 1
- Rob J. Hyndman, George Athanasopoulos (2012): Forecasting: principles and practice, https://www.otexts.org/fpp, Kapitel 6
- Rainer Schlittgen (2012): Angewandte Zeitreihenanalyse mit R, Kapitel 2

Lizenz

Diese Übung wurde von Karsten Lübke entwickelt und steht unter der Lizenz Creative Commons Attribution-ShareAlike 3.0 Unported.

Versionshinweise:

 \bullet Datum erstellt: 2017-07-27

• R Version: 3.4.1

Anhang 1: R Kurzreferenz

Vorbemerkungen

Eine Übersicht von nützlichen R Funktionen innerhalb der Datenanalyse.

Diese Kurzreferenz beschreibt ein kleinen Teil der R Funktionen, wobei größtenteils auf das Zusatzpaket mosaic zurückgegriffen wird. Sie basiert größtenteils auf der Vignette Minimal R von Randall Pruim.

Weitere Hilfe und Beispiele finden Sie, wenn Sie

```
`?`(Befehl)
```

eingeben.

- R unterscheidet zwischen Groß- und Kleinbuchstaben
- R verwendet den Punkt . als Dezimaltrennzeichen
- Fehlende Werte werden in R durch NA kodiert
- Kommentare werden mit dem Rautezeichen # eingeleitet; der Rest der Zeile von von R dann ignoriert.
- R wendet Befehle direkt an
- R ist objektorientiert, d. h. dieselbe Funktion hat evtl. je nach Funktionsargument unterschiedliche Rückgabewerte
- Zusätzliche Funktionalität kann über Zusatzpakete hinzugeladen werden. Diese müssen ggf. zunächst installiert werden
- Mit der Pfeiltaste nach oben können Sie einen vorherigen Befehl in der Konsole wieder aufrufen
- Eine Ergebniszuweiseung erfolgt über <-

Innerhalb von mosaic:

```
analysiere(y ~ x | z, data = Daten)
```

d. h., modelliere y in Abhängigkeit von x getrennt bzw. bedingt für z aus dem Datensatz Daten. Dabei können Teile (z. B. y und/ oder z) fehlen.³

Zusatzpakete müssen vor der ersten Benutzung einmalig installiert und geladen werden:

```
install.packages("Paket") # Einmalig installieren
library(Paket) # Laden, einmalig in jeder Sitzung
```

Daten

Daten einlesen und Datenvorverarbeitung sind häufig der (zeitlich) aufwendigste Teil einer Datenanalyse. Da die Daten die Grundlage sind, sollte auch hier sorgfältig gearbeitet und überprüft werden.

 $^{^3}$ Beim Mac ist ~ die Tastenkombination alt+n, | die Tastenkombination alt+7

Daten einlesen

```
read.table() # Allgemeinen Datensatz einlesen. Achtung: Optionen anpassen
read.csv2() # csv Datensatz einlesen (aus deutschsprachigem Excel)
file.choose() # Datei auswählen
meineDaten <- read.csv2(file.choose())</pre>
```

U. a. mit Hilfe des Zusatzpaketes readxl können Excel Dateien eingelesen werden:

```
meineDaten <- read_excel(file.choose())</pre>
```

Daten verarbeiten

```
str() # Datenstruktur
head() # Obere Zeilen
tail() # Untere Zeilen
nrow()
ncol() # Anzahl Zeilen; Spalten
rownames()
colnames() # Zeilennamen, Spaltennamen
```

Daten transformieren

Einzelne Variablen eines Datensatzes können über \$ ausgewählt werden: Daten\$Variable. Allgemein kann über Daten[i,j] die i. Zeile und j. Spalte ausgewählt werden, wobei auch mehrere oder keine Zeile(n) bzw. Spalte(n) ausgewählt werden können. Über c() wird ein Vektor erzeugt.

```
as.factor()  # Daten als Faktoren definieren
relevel()  # Faktorstufen umordnen
droplevels()  # Ungenutzte Faktorstufen entfernen
recode()  # Umkodierung von Werten, Paket car
as.numeric()  # Faktorstufen als numerische Daten verwenden
cut()  # Aufteilung numerischer Werte in Intervalle

subset()  # Teilmenge der Daten auswählen
na.omit()  # Zeilen mit fehlenden Werten entfernen

log()  # Logarithmusfunktion
exp()  # Exponentialfunktion
sqrt()  # Quadratwurzelfunktion
abs()  # Betragsfunktion
```

```
rowSums() # Zeilensumme
rowMeans() # Zeilenmittelwert
```

Innerhalb des Paketes dplyr (wird mit mosaic geladen) gibt es u. a. folgende Funktionen:

```
filter() # Filtert Beobachtungen eines Datensatzes
select() # Wählt Variablen eines Datensatzes aus
mutate() # Erzeugt neue Variable bzw. verändert bestehende
rename() # Benennt Variablen um
arrange() # Sortiert Beobachtungen eines Datensatzes
%>% # Übergebe das Ergebnis der vorhergehenden Funktion an die folgende
```

Grafische Verfahren

Vor jeder mathematisch-statistischen Analyse sollte eine explorative, grafische Analyse erfolgen. Die folgenden Befehle sind aus dem Paket mosaic.

```
bargraph() # Balkendiagramm
histogram() # Histogramm
bwplot() # Boxplot
xyplot() # Streudiagrmm
```

Nicht aus dem Paket mosaic sind:

```
mosaicplot() # Mosaicplot
corrplot() # Korrelationsplot, Paket corrplot
ggpairs() # Matrixplot, Paket GGally
heatmap() # Heatmap
```

Deskriptive Statistik

Eine gute Zusammenfassung liefert der mosaic Befehl:

```
favstats()
```

Ansonsten (mosaic angepasst):

```
tally() # Tabellierung, Häufigkeiten
prop() # Anteile
mean() # Arithmetischer Mittelwert
median() # Median
quantile() # Quantile
sd() # Standardabweichung
var() # Varianz
IQR() # Interquartilsabstand
cov() # Kovarianz
cor() # Korrelationskoefizient
```

Inferenzstatistik

Randomisierung, Simulationen

Größtenteils mosaic:

```
set.seed() # Zufallszahlengenerator setzen
rflip() # Münzwurf
do() # Wiederholung (Schleife)
sample() # Stichprobe ohne Zurücklegen
resample() # Stichprobe mit Zurücklegen
shuffle() # Permutation
rnorm() # Normalverteilte Zufallszahlen
```

Verteilungen

Innerhalb der Funktionen müssen ggf. die Parameter, d. h. mean=, sd=, bzw. df= angepasst werden. (Das vorgestellte x steht für in mosaic angepasste Versionen.)

```
xpchisq() # Verteilungsfunktion Chi² Verteilung
xqchisq() # Quantilsfunktion Chi² Verteilung
xpnorm() # Verteilungsfunktion Normalverteilung
xqnorm() # Quantilsfunktion Normalverteilung
xpt() # Verteilungsfunktion t-Vverteilung
xqt() # Quantilsfunktion t-Vverteilung
```

Analoger Aufbau für weitere Verteilungen, z. B. _pniom(), _f().

Testverfahren

Einige der Testverfahren wurden von mosaic angepasst.

```
t.test() # t-Test
prop.test() # Binomialtest (approximativ)
xchisq.test() # Chi²-Test
aov() # Varianzanalyse
```

Der Nicht-parametrische Wilcoxon-Test wilcox.test() ist nicht im Paket mosaic, hat daher einen leicht anderen Funktionsaufruf. Einen Test auf Normalverteilung führt der Shapiro-Wilk Test durch: shapiro.test().

Multivariate Verfahren

```
lm() # Lineare Regression
glm(, family = "binomial") # Logistische Regression
plotModel() # Modell zeichnen
coef() # Koeffizienten extrahieren
residuals() # Residuen einer Regression
fitted() # Angepasste Werte einer Regression
predict() # Vorhersagen
```

In mosaic kann das Ergebnis einer solchen Regression über makeFun () in eine einfache mathematische Funktion überführt werden. plotFun () zeichnet das Ergebnis. step () führt eine Variablenselektion durch.

Weitere Verfahren - nicht mosaic:

```
prcomp() # Hauptkomponentenanalyse (PCA)
alpha() # Reliabilitätsanalys, Paket psych
dist() # Distanzen
hclust() # Hierachsiche Clusteranalyse
kmeans() # k-Means Clusterverfahren
rpart() # Klassifikations- und Regressionsbäume, Paket rpart
```

Versionshinweise:

Erstellt von Karsten Lübke unter der Lizenz Creative Commons Attribution-ShareAlike 3.0 Unported.

• Datum erstellt: 2017-07-27

• R Version: 3.4.1

 $\bullet \ \ \text{mosaic Version:} \ 0.14.4$

Anhang 2: Datenjudo

Abbildung 1: Daten aufbereiten

In diesem Kapitel benötigte Pakete:

```
library(tidyverse) # Datenjudo
## Loading tidyverse: tibble
## Loading tidyverse: tidyr
## Loading tidyverse: readr
## Loading tidyverse: purrr
## Conflicts with tidy packages -----
## count(): dplyr, mosaic
## do():
          dplyr, mosaic
## expand(): tidyr, Matrix
## filter(): dplyr, stats
           dplyr, stats
## lag():
## tally(): dplyr, mosaic
library(stringr) # Texte bearbeiten
library(car) # für 'recode'
##
## Attaching package: 'car'
## The following object is masked from 'package:purrr':
##
      some
## The following object is masked from 'package:effects':
```

```
##
##
## Prestige
## The following objects are masked from 'package:mosaic':
##
## deltaMethod, logit
## The following object is masked from 'package:dplyr':
##
## recode
```

Mit *Datenjudo* ist gemeint, die Daten für die eigentliche Analyse "aufzubereiten". Unter *Aufbereiten* ist hier das Umformen, Prüfen, Bereinigen, Gruppieren und Zusammenfassen von Daten gemeint. Die deskriptive Statistik fällt unter die Rubrik Aufbereiten. Kurz gesagt: Alles, wan tut, nachdem die Daten "da" sind und bevor man mit anspruchsvoller(er) Modellierung beginnt.

Ist das Aufbereiten von Daten auch nicht statistisch anspruchsvoll, so ist es trotzdem von großer Bedeutung und häufig recht zeitintensiv. Eine Anekdote zur Relevanz der Datenaufbereitung, die (so will es die Geschichte) mir an einer Bar nach einer einschlägigen Konferenz erzählt wurde (daher keine Quellenangebe, Sie verstehen...). Eine Computerwissenschaftlerin aus den USA (deutschen Ursprungs) hatte einen beeindruckenden "Track Record" an Siegen in Wettkämpfen der Datenanalyse. Tatsächlich hatte sie keine besonderen, raffinierten Modellierungstechniken eingesetzt; klassische Regression war ihre Methode der Wahl. Bei einem Wettkampf, bei dem es darum ging, Krebsfälle aus Krankendaten vorherzusagen (z.B. von Röntgenbildern) fand sie nach langem Datenjudo heraus, dass in die "ID-Variablen" Information gesickert war, die dort nicht hingehörte und die sie nutzen konnte für überraschend (aus Sicht der Mitstreiter) gute Vorhersagen zu Krebsfällen. Wie war das möglich? Die Daten stammten aus mehreren Kliniken, jede Klinik verwendete ein anderes System, um IDs für Patienten zu erstellen. Überall waren die IDs stark genug, um die Anonymität der Patienten sicherzustellen, aber gleich wohl konnte man (nach einigem Judo) unterscheiden, welche ID von welcher Klinik stammte. Was das bringt? Einige Kliniken waren reine Screening-Zentren, die die Normalbevölkerung versorgte. Dort sind wenig Krebsfälle zu erwarten. Andere Kliniken jedoch waren Onkologie-Zentren für bereits bekannte Patienten oder für Patienten mit besonderer Risikolage. Wenig überraschen, dass man dann höhere Krebsraten vorhersagen kann. Eigentlich ganz einfach; besondere Mathe steht hier (zumindest in dieser Geschichte) nicht dahinter. Und, wenn man den Trick kennt, ganz einfach. Aber wie so oft ist es nicht leicht, den Trick zu finden. Sorgfältiges Datenjudo hat hier den Schlüssel zum Erfolg gebracht.

Typische Probleme

Bevor man seine Statistik-Trickkiste so richtig schön aufmachen kann, muss man die Daten häufig erst noch in Form bringen. Das ist nicht schwierig in dem Sinne, dass es um komplizierte Mathe ginge. Allerdings braucht es mitunter recht viel Zeit und ein paar (oder viele) handwerkliche Tricks sind hilfreich. Hier soll das folgende Kapitel helfen.

Typische Probleme, die immer wieder auftreten, sind:

- Fehlende Werte: Irgend jemand hat auf eine meiner schönen Fragen in der Umfrage nicht geantwortet!
- Unerwartete Daten: Auf die Frage, wie viele Facebook-Freunde er oder sie habe, schrieb die Person "I like you a lot". Was tun???
- Daten müssen umgeformt werden: Für jede der beiden Gruppen seiner Studie hat Joachim einen Google-Forms-Fragebogen aufgesetzt. Jetzt hat er zwei Tabellen, die er "verheiraten" möchte. Geht das?
- Neue Variablen (Spalten) berechnen: Ein Student fragt nach der Anzahl der richtigen Aufgaben in der Statistik-Probeklausur. Wir wollen helfen und im entsprechenden Datensatz eine Spalte erzeugen, in der pro Person die Anzahl der richtig beantworteten Fragen steht.

Daten aufbereiten mit dplyr

Es gibt viele Möglichkeiten, Daten mit R aufzubereiten; dplyr ist ein populäres Paket dafür. Eine zentrale Idee von dplyr ist, dass es nur ein paar wenige Grundbausteine geben sollte, die sich gut kombinieren lassen. Sprich: Wenige grundlegende Funktionen mit eng umgrenzter Funktionalität. Der Autor, Hadley Wickham, sprach einmal in einem Forum (citation needed), dass diese Befehle wenig können, das Wenige aber gut. Ein Nachteil dieser Konzeption kann sein, dass man recht viele dieser Bausteine kombinieren muss, um zum gewünschten Ergebnis zu kommen. Außerdem muss man die Logik des Baukastens gut verstanden habe - die Lernkurve ist also erstmal steiler. Dafür ist man dann nicht darauf angewiesen, dass es irgendwo "Mrs Right" gibt, die genau das kann, was ich will. Außerdem braucht man sich auch nicht viele Funktionen merken. Es reicht einen kleinen Satz an Funktionen zu kennen (die praktischerweise konsistent in Syntax und Methodik sind).

Willkommen in der Welt von dyplr! dplyr hat seinen Namen, weil es sich ausschließlich um Dataframes bemüht; es erwartet einen Dataframe als Eingabe und gibt einen Dataframe zurück (zumindest bei den meisten Befehlen).

Diese Bausteine sind typische Tätigkeiten im Umgang mit Daten; nichts Überraschendes. Schauen wir uns diese Bausteine näher an.

Zeilen filtern mit filter

Häufig will man bestimmte Zeilen aus einer Tabelle filtern. Zum Beispiel man arbeitet für die Zigarettenindustrie und ist nur an den Rauchern interessiert (die im Übrigen unser Gesundheitssystem retten [@kraemer2011wir]), nicht an Nicht-Rauchern; es sollen die nur Umsatzzahlen des letzten Quartals untersucht werden, nicht die vorherigen Quartale; es sollen nur die Daten aus Labor X (nicht Labor Y) ausgewertet werden etc.

Ein Sinnbild:

Merke:

Die Funktion filter filtert Zeilen aus einem Dataframe.

ID	Name	Note1
1	Anna	1
2	? Anna	1
3	Berta	2
4	Carla	2
5	Carla	2

Abbildung 2: Zeilen filtern

Schauen wir uns einige Beispiel an; zuerst die Daten laden nicht vergessen. Achtung: "Wohnen" die Daten in einem Paket, muss dieses Paket installiert sein, damit man auf die Daten zugreifen kann.

```
data(profiles, package = "okcupiddata") # Das Paket muss installiert sein

df_frauen <- filter(profiles, sex == "f") # nur die Frauen

df_alt <- filter(profiles, age > 70) # nur die alten

df_alte_frauen <- filter(profiles, age > 70, sex == "f") # nur die alten Frauen, d.h. df_nosmoke_nodrinks <- filter(profiles, smokes == "no" | drinks == "not at all")

# liefert alle Personen, die Nicht-Raucher *oder*

# Nicht-Trinker sind</pre>
```

Gar nicht so schwer, oder? Allgemeiner gesprochen werden diejenigen Zeilen gefiltert (also behalten bzw. zurückgeliefert), für die das Filterkriterium TRUE ist.

Manche Befehle wie `filter` haben einen Allerweltsnamen; gut möglich, dass ein Befehl m

Aufgaben⁴

Richtig oder Falsch!?

- 1. `filter` filtert Spalten.
- 1. `filter` ist eine Funktion aus dem Paket `dplyr`.
- 1. `filter` erwartet als ersten Parameter das Filterkriterium.
- 1. `filter` lässt nur ein Filterkriterium zu.

⁴F, R, F, F, R

1. Möchte man aus dem Datensatz `profiles` (`okcupiddata`) die Frauen filtern, so ist fo

Vertiefung: Fortgeschrittene Beispiele für filter

Einige fortgeschrittene Beispiele für filter:

Man kann alle Elemente (Zeilen) filtern, die zu einer Menge gehören und zwar mit diesem Operator: %in%:

```
filter(profiles, body_type %in% c("a little extra", "average"))
```

Besonders Textdaten laden zu einigen Extra-Überlegungen ein; sagen wir, wir wollen alle Personen filtern, die Katzen bei den Haustieren erwähnen. Es soll reichen, wenn cat ein Teil des Textes ist; also likes dogs and likes cats wäre OK (soll gefiltert werden). Dazu nutzen wir ein Paket zur Bearbeitung von Strings (Textdaten):

```
filter(profiles, str_detect(pets, "cats"))
```

Ein häufiger Fall ist, Zeilen ohne fehlende Werte (NAs) zu filtern. Das geht einfach:

```
profiles_keine_nas <- na.omit(profiles)</pre>
```

Aber was ist, wenn wir nur bei bestimmten Spalten wegen fehlender Werte besorgt sind? Sagen wir bei income und bei sex:

```
filter(profiles, !is.na(income) | !is.na(sex))
```

Spalten wählen mit select

Das Gegenstück zu filter ist select; dieser Befehl liefert die gewählten Spalten zurück. Das ist häufig praktisch, wenn der Datensatz sehr "breit" ist, also viele Spalten enthält. Dann kann es übersichtlicher sein, sich nur die relevanten auszuwählen. Das Sinnbild für diesen Befehl:

Merke:

Die Funktion select wählt Spalten aus einem Dataframe aus.

Laden wir als ersten einen Datensatz.

```
stats_test <- read.csv("./data/test_inf_short.csv")</pre>
```

Dieser Datensatz beinhaltet Daten zu einer Statistikklausur.

Beachten Sie, dass diese Syntax davon ausgeht, dass sich die Daten in einem Unterordner mit dem Namen data befinden, welcher sich im Arbeitsverzeichnis befindet⁵.

⁵der angegebene Pfad ist also *relativ* zum aktuellen Verzeichnis.

vorher nachher **Name** ID **N1** Name N1 1 Anna 1 Anna 2 2 Berta 2 Berta 1 2 3 3 Carla 3 Carla 4

Abbildung 3: Spalten auswählen

```
select(stats_test, score) # Spalte `score` auswählen
select(stats_test, score, study_time) # Splaten `score` und `study_time` auswählen
select(stats_test, score:study_time) # dito
select(stats_test, 5:6) Spalten 5 bis 6 auswählen
```

Tatsächlich ist der Befehl select sehr flexibel; es gibt viele Möglichkeiten, Spalten auszuwählen. Im dplyr-Cheatsheet findet sich ein guter Überblick dazu.

[Aufgaben]Aufgaben⁶

Richtig oder Falsch!?

- `select` wählt *Zeilen* aus.
- 1. `select` ist eine Funktion aus dem Paket `knitr`.
- 1. Möchte man zwei Spalten auswählen, so ist folgende Syntax prinzipiell korrekt: `seled
- 1. Möchte man Spalten 1 bis 10 auswählen, so ist folgende Syntax prinzipiell korrekt: `s
- 1. Mit `select` können Spalten nur bei ihrem Namen, aber nicht bei ihrer Nummer aufgerui

⁶F, F, R, R, F

Zeilen sortieren mit arrange

Man kann zwei Arten des Umgangs mit R unterscheiden: Zum einen der "interaktive Gebrauch" und zum anderen "richtiges Programmieren". Im interaktiven Gebrauch geht es uns darum, die Fragen zum aktuell vorliegenden Datensatz (schnell) zu beantworten. Es geht nicht darum, eine allgemeine Lösung zu entwickeln, die wir in die Welt verschicken können und die dort ein bestimmtes Problem löst, ohne dass der Entwickler (wir) dabei Hilfestellung geben muss. "Richtige" Software, wie ein R-Paket oder Microsoft Powerpoint, muss diese Erwartung erfüllen; "richtiges Programmieren" ist dazu vonnöten. Natürlich sind in diesem Fall die Ansprüche an die Syntax (der "Code", hört sich cooler an) viel höher. In dem Fall muss man alle Eventualitäten voraussehen und sicherstellen, dass das Programm auch beim merkwürdigsten Nutzer brav seinen Dienst tut. Wir haben hier, beim interaktiven Gebrauch, niedrigere Ansprüche bzw. andere Ziele.

Beim interaktiven Gebrauch von R (oder beliebigen Analyseprogrammen) ist das Sortieren von Zeilen eine recht häufige Tätigkeit. Typisches Beispiel wäre der Lehrer, der eine Tabelle mit Noten hat und wissen will, welche Schüler die schlechtesten oder die besten sind in einem bestimmten Fach. Oder bei der Prüfung der Umsätze nach Filialen möchten wir die umsatzstärksten sowie -schwächsten Niederlassungen kennen.

Ein R-Befehl hierzu ist arrange; einige Beispiele zeigen die Funktionsweise am besten:

```
arrange(stats_test, score) # liefert die *schlechtesten* Noten zuerst zurück
arrange(stats_test, -score) # liefert die *besten* Noten zuerst zurück
arrange(stats_test, interest, score)

## X V_1 study_time self_eval interest score
```

##		X	V_1	study_time	self_eval	interest	score	
##	1 2	34 23.01.2017	7 18:13:15	3	1	1	17	
##	2	4 06.01.2017	7 09:58:05	2	3	2	18	
##	3 1	31 19.01.2017	7 18:03:45	2	3	4	18	
##	4 1	42 19.01.2017	7 19:02:12	3	4	1	18	
##	5	35 12.01.2017	7 19:04:43	1	2	3	19	
##	6	71 15.01.2017	7 15:03:29	3	3	3	20	
##	:	X	V_1 s	study_time s	self_eval :	interest s	score	
##	1	3 05.01.2017	23:33:47	5	10	6	40	
##	2	7 06.01.2017	14:25:49	NA	NA	NA	40	
##	3 2	9 12.01.2017	09:48:16	4	10	3	40	
##	4 4	1 13.01.2017	12:07:29	4	10	3	40	
##	5 5	8 14.01.2017	15:43:01	3	8	2	40	
##	6 8	3 16.01.2017	10:16:52	NA	NA	NA	40	
##		X	V_1	study_time	self_eval	interest	score	
##	1 2	34 23.01.2017	7 18:13:15	3	1	1	17	
##	2 1	42 19.01.2017	7 19:02:12	3	4	1	18	
##	3 2	21 23.01.2017	7 11:40:30	1	1	1	23	

Einige Anmerkungen. Die generelle Syntax lautet arrange (df, Spaltel, ...), wobei df den Dataframe bezeichnet und Spaltel die erste zu sortierende Spalte; die Punkte ... geben an, dass man weitere Parameter übergeben kann. Man kann sowohl numerische Spalten als auch Textspalten sortieren. Am wichtigsten ist hier, dass man weitere Spalten übergeben kann. Dazu gleich mehr.

Standardmäßig sortiert arrange aufsteigend (weil kleine Zahlen im Zahlenstrahl vor den großen Zahlen kommen). Möchte man diese Reihenfolge umdrehen (große Werte zuert, d.h. absteigend), so kann man ein Minuszeichen vor den Namen der Spalte setzen.

Gibt man zwei oder mehr Spalten an, so werden pro Wert von Spalte1 die Werte von Spalte2 sortiert etc; man betrachte den Output des Beispiels oben dazu.

Merke:

Die Funktion arrange sortiert die Zeilen eines Datafames.

Ein Sinnbild zur Verdeutlichung:

ID	Name	Note1		ID	Name	No	ote1
1	Anna	1		1	Anna		1
2	Anna	5		3	Berta		2
3	Berta	2	Gute	5	Carla		3
4	Carla	4	Noten zuerst!	4	Carla		4
5	Carla	3		2	Anna		5

Abbildung 4: Spalten sortieren

Ein ähnliches Ergebnis erhält mit man top_n(), welches die n größten Ränge widergibt:

##	3	29	12.01.2017	09:48:16	4	10	3	40
##	4	41	13.01.2017	12:07:29	4	10	3	40
##	5	58	14.01.2017	15:43:01	3	8	2	40
##	6	83	16.01.2017	10:16:52	NA	NA	NA	40
##	7	116	18.01.2017	23:07:32	4	8	5	40
##	8	119	19.01.2017	09:05:01	NA	NA	NA	40
##	9	132	19.01.2017	18:22:32	NA	NA	NA	40
##	10	175	20.01.2017	23:03:36	5	10	5	40
##	11	179	21.01.2017	07:40:05	5	9	1	40
##	12	185	21.01.2017	15:01:26	4	10	5	40
##	13	196	22.01.2017	13:38:56	4	10	5	40
##	14	197	22.01.2017	14:55:17	4	10	5	40
##	15	248	24.01.2017	16:29:45	2	10	2	40
##	16	249	24.01.2017	17:19:54	NA	NA	NA	40
##	17	257	25.01.2017	10:44:34	2	9	3	40
##	18	306	27.01.2017	11:29:48	4	9	3	40

top_n(stats_test, 3, interest)

#	#		Χ		V_1	study_time	self_eval	interest	score
#	#	1	3	05.01.2017	23:33:47	5	10	6	40
#	#	2	5	06.01.2017	14:13:08	4	8	6	34
#	#	3	43	13.01.2017	14:14:16	4	8	6	36
#	#	4	65	15.01.2017	12:41:27	3	6	6	22
#	#	5	110	18.01.2017	18:53:02	5	8	6	37
#	#	6	136	19.01.2017	18:22:57	3	1	6	39
#	#	7	172	20.01.2017	20:42:46	5	10	6	34
#	#	8	214	22.01.2017	21:57:36	2	6	6	31
#	#	9	301	27.01.2017	08:17:59	4	8	6	33

Gibt man keine Spalte an, so bezieht sich top_n auf die letzte Spalte im Datensatz.

Da sich hier mehrere Personen den größten Rang (Wert 40) teilen, bekommen wir nicht 3 Zeilen zurückgeliefert, sondern entsprechend mehr.

$Aufgaben^7$

Richtig oder Falsch!?

- 1. `arrange` arrangiert Spalten.
- 1. `arrange` sortiert im Standard absteigend.
- 1. `arrange` lässt nur ein Sortierkriterium zu.

⁷F, F, F, F, R

39

NA

- 1. `arrange` kann numerische Werte, aber nicht Zeichenketten sortieren.
- 1. `top_n(5)` liefert die fünf kleinsten Ränge.

Datensatz gruppieren mit group_by

Einen Datensatz zu gruppieren ist ebenfalls eine häufige Angelegenheit: Was ist der mittlere Umsatz in Region X im Vergleich zu Region Y? Ist die Reaktionszeit in der Experimentalgruppe kleiner als in der Kontrollgruppe? Können Männer schneller ausparken als Frauen? Man sieht, dass das Gruppieren v.a. in Verbindung mit Mittelwerten oder anderen Zusammenfassungen sinnvol ist; dazu im nächsten Abschnitt mehr.

Abbildung 5: Datensätze nach Subgruppen aufteilen

In der Abbildung wurde der Datensatz anhand der Spalte Fach in mehrere Gruppen geteilt. Wir könnten uns als nächstes z.B. Mittelwerte pro Fach - d.h. pro Gruppe (pro Ausprägung von Fach) - ausgeben lassen; in diesem Fall vier Gruppen (Fach A bis D).

```
test_gruppiert <- group_by(stats_test, interest)</pre>
test_gruppiert
   # A tibble: 306 x 6
   # Groups:
                interest [7]
##
           Χ
                               V_1 study_time self_eval interest score
      <int>
##
                                         <int>
                                                    <int>
                                                              <int> <int>
                                                                   5
           1 05.01.2017 13:57:01
                                              5
                                                                        29
                                                         7
           2 05.01.2017 21:07:56
                                              3
                                                                   3
                                                                        29
##
           3 05.01.2017 23:33:47
    3
                                              5
                                                        10
                                                                   6
                                                                        40
##
           4 06.01.2017 09:58:05
                                             2
                                                         3
                                                                   2
                                                                        18
           5 06.01.2017 14:13:08
    5
                                                         8
                                                                   6
                                              4
                                                                        34
```

NA

NA

6 06.01.2017 14:21:18

##	7	7 06.01.2017	14:25:49	NA	NA	NA	40
##	8	8 06.01.2017	17:24:53	2	5	3	24
##	9	9 07.01.2017	10:11:17	2	3	5	25
##	10	10 07.01.2017	18:10:05	4	5	5	33
##	#	with 296 more	rows				

Schaut man sich nun den Datensatz an, sieht man erstmal wenig Effekt der Gruppierung. R teilt uns lediglich mit Groups: interest [7], dass es die Gruppen gibt, aber es gibt keine extra Spalte oder sonstige Anzeichen der Gruppierung. Aber keine Sorge, wenn wir gleich einen Mittelwert ausrechnen, bekommen wir den Mittelwert pro Gruppe!

Ein paar Hinweise: Source: local data frame [306 x 6] will sagen, dass die Ausgabe sich auf einen tibble bezieht⁸, also eine bestimmte Art von Dataframe. Groups: interest [7] zeigt, dass der Tibble in 7 Gruppen - entsprechend der Werte von interest aufgeteilt ist.

group_by an sich ist nicht wirklich nützlich. Nützlich wird es erst, wenn man weitere Funktionen auf den gruppierten Datensatz anwendet - z.B. Mittelwerte ausrechnet (z.B mit summarise, s. unten). Die nachfolgenden Funktionen (wenn sie aus dplyr kommen), berücksichtigen nämlich die Gruppierung. So kann man einfach Mittelwerte pro Gruppe ausrechnen.

Aufgaben⁹

Richtig oder Falsch!?

- 1. Mit `group_by` gruppiert man einen Datensatz.
- 1. `group_by` lässt nur ein Gruppierungskriterium zu.
- 1. Die Gruppierung durch `group_by` wird nur von Funktionen aus `dplyr` erkannt.
- 1. `group_by` ist sinnvoll mit `summarise` zu kombinieren.

Merke:

Mit group_by teilt man einen Datensatz in Gruppen ein, entsprechend der Werte einer mehrerer Spalten.

Eine Spalte zusammenfassen mit summarise

Vielleicht die wichtigste oder häufigte Tätigkeit in der Analyse von Daten ist es, eine Spalte zu einem Wert zusammenzufassen. Anders gesagt: Einen Mittelwert berechnen, den größten (kleinsten) Wert heraussuchen, die Korrelation berechnen oder eine beliebige andere Statistik ausgeben lassen. Die Gemeinsamkeit dieser Operaitonen ist, dass sie eine Spalte zu einem Wert zusammenfassen, "aus Spalte mach Zahl", sozusagen. Daher ist der Name des Befehls summarise ganz passend. Genauer gesagt fasst dieser Befehl eine Spalte

 $^{^8 \}rm http://stackoverflow.com/questions/29084380/what-is-the-meaning-of-the-local-data-frame-message-from-dplyrprint-tbl-df <math display="inline">^9 \rm R, \ F, \ R, \ R$

zu einer Zahl zusammen *anhand* einer Funktion wie mean oder max. Hierbei ist jede Funktion erlaubt, die eine Spalte als Input verlangt und eine Zahl zurückgibt; andere Funktionen sind bei summarise nicht erlaubt.

Abbildung 6: Spalten zu einer Zahl zusammenfassen

```
summarise(stats_test, mean(score))

## mean(score)
## 1 31.12092
```

Man könnte diesen Befehl so ins Deutsche übersetzen: Fasse aus Tabelle stats_test die Spalte score anhand des Mittelwerts zusammen. Nicht vergessen, wenn die Spalte score fehlende Werte hat, wird der Befehl mean standardmäßig dies mit NA quittieren.

Jetzt können wir auch die Gruppierung nutzen:

29.9268332.51111

```
## 6 6 34.00000
## 7 NA 33.08824
```

Der Befehl summarise erkennt also, wenn eine (mit group_by) gruppierte Tabelle vorliegt. Jegliche Zusammenfassung, die wir anfordern, wird anhand der Gruppierungsinformation aufgeteilt werden. In dem Beispiel bekommen wir einen Mittelwert für jeden Wert von interest. Interessanterweise sehen wir, dass der Mittelwert tendenziell größer wird, je größer interest wird.

Alle diese dplyr-Befehle geben einen Dataframe zurück, was praktisch ist für weitere Verarbeitung. In diesem Fall heißen die Spalten interst und mean (score). Zweiter Name ist nicht so schön, daher ändern wir den wie folgt:

Jetzt können wir auch die Gruppierung nutzen:

##	<int></int>	<dbl></dbl>
## 1	1	28.26667
## 2	2	29.70213
## 3	3	30.80303
## 4	4	29.92683
## 5	5	32.51111
## 6	6	34.00000
## 7	NA	33.08824

Nun heißt die zweite Spalte mw_pro_Gruppe. na.rm = TRUE veranlasst, bei fehlenden Werten trotzdem einen Mittelwert zurückzuliefern (die Zeilen mit fehlenden Werten werden in dem Fall ignoriert).

Grundsätzlich ist die Philosophie der dplyr-Befehle: "Mach nur eine Sache, aber die dafür gut". Entsprechend kann summarise nur *Spalten* zusammenfassen, aber keine *Zeilen*.

Merke:

Mit summarise kann man eine Spalte eines Dataframes zu einem Wert zusammenfassen.

[Aufgaben]Aufgaben¹⁰

Richtig oder Falsch!?

- 1. Möchte man aus der Tabelle `stats_test` den Mittelwert für die Spalte `score` berecht
- 1. `summarise` liefert eine Tabelle, genauer: einen Tibble, zurück.
- 1. Die Tabelle, die diese Funktion zurückliefert: `summarise(stats_test, mean(score))`,
- 1. `summarise` lässt zu, dass die zu berechnende Spalte einen Namen vom Nutzer zugewiese

 $^{^{10}}$ R, R, R, R, R

1. `summarise` darf nur verwendet werden, wenn eine Spalte zu einem Wert zusammengefasst

Zeilen zählen mit n und count

Ebenfalls nützlich ist es, Zeilen zu zählen. Im Gegensatz zum Standardbefehl¹¹ nrow versteht der dyplr-Befehl nauch Gruppierungen. n darf nur innerhalb von summarise oder ähnlichen dplyr-Befehlen verwendet werden.

```
summarise(stats_test, n())
##
     n()
## 1 306
summarise(test_gruppiert, n())
## # A tibble: 7 x 2
     interest `n()`
##
##
         <int> <int>
             1
## 1
                   30
             2
                   47
             3
                   66
             4
                   41
             5
                   45
## 6
             6
                    9
## 7
            NA
                   68
nrow(stats_test)
```

```
## [1] 306
```

Außerhalb von gruppierten Datensätzen ist nrow meist praktischer.

Praktischer ist der Befehl count, der nichts anderes ist als die Hintereinanderschaltung von group_by und n. Mit count zählen wir die Häufigkeiten nach Gruppen; Gruppen sind hier zumeist die Werte einer auszuzählenden Variablen (oder mehrerer auszuzählender Variablen). Das macht count zu einem wichtigen Helfer bei der Analyse von Häufigkeitsdaten.

 $^{^{11}}$ Standardbefehl meint, dass die Funktion zum Standardrepertoire von R gehört, also nicht über ein Paket extra geladen werden muss

```
## 2
               2
                     47
               3
## 3
                     66
               4
                     41
## 5
               5
                     45
               6
                       9
## 6
## 7
             NA
                     68
```

dplyr::count(stats_test, study_time)

```
## # A tibble: 6 x 2
##
     study_time
           <int> <int>
##
## 1
                1
                      31
                2
## 2
                      49
## 3
                3
                      85
                4
##
                      56
## 5
                5
                      17
## 6
               NA
                      68
```

dplyr::count(stats_test, interest, study_time)

```
# A tibble: 29 x 3
##
       interest study_time
           <int>
##
                         <int> <int>
                              1
##
                1
                                    12
     1
                              2
                                     7
     2
                1
##
     3
                1
                              3
                                     8
     4
                1
                              4
                                     2
##
                              5
##
     5
                1
                                     1
##
                2
                              1
                                     9
     6
    7
                2
                              2
##
                                    15
                2
                              3
##
     8
                                    16
##
     9
                2
                              4
                                     6
                2
## 10
                              5
                                     1
## # ... with 19 more rows
```

Allgemeiner formuliert lautet die Syntax: count (df, Spaltel, ...), wobei df der Dataframe ist und Spaltel die erste (es können mehrere sein) auszuzählende Spalte. Gibt man z.B. zwei Spalten an, so wird pro Wert der 1. Spalte die Häufigkeiten der 2. Spalte ausgegeben.

Merke:

n und count zählen die Anzahl der Zeilen, d.h. die Anzahl der Fälle.

Abbildung 7: La trahison des images [Ceci n'est pas une pipe], René Magritte, 1929, © C. Herscovici, Brussels / Artists Rights Society (ARS), New York, http://collections.lacma.org/node/239578

[Aufgaben]Aufgaben¹²

Richtig oder Falsch!?

- 1. Mit `count` kann man Zeilen zählen.
- 1. `count` ist ähnlich (oder identisch) zu einer Kombination von `group_by` und `n()`.
- 1. Mit `count` kann man nur nur eine Gruppe beim Zählen berücksichtigen.
- 1. `count` darf nicht bei nominalskalierten Variablen verwendet werden.

Vertiefung

Die Pfeife

Die zweite Idee kann man salopp als "Durchpfeifen" bezeichnen; ikonographisch mit diesem Symbol dargestellt %>%. Der Begriff "Durchpfeifen" ist frei vom Englischen "to pipe" übernommen. Das berühmte Bild von René Magritte stand dabei Pate.

Hierbei ist gemeint, einen Datensatz sozusagen auf ein Fließband zu legen und an jedem Arbeitsplatz einen Arbeitsschritt auszuführen. Der springende Punkt ist, dass ein Dataframe als "Rohstoff" eingegeben wird und jeder Arbeitsschritt seinerseits wieder einen Datafram ausgiebt. Damit kann man sehr schön, einen "Flow" an Verarbeitung erreichen, außerdem spart man sich Tipparbeit und die Syntax wird lesbarer. Damit das Durchpfeifen funktioniert, benötigt man Befehle, die als Eingabe einen Dataframe erwarten und wieder einen Dataframe zurückliefern. Das Schaubild verdeutlich beispielhaft eine Abfolge des Durchpfeifens.

Die sog. "Pfeife" (pipe: %>%) in Anspielung an das berühmte Bild von René Magritte, verkettet Befehle hintereinander. Das ist praktisch, da es die Syntax vereinfacht. Vergleichen Sie mal diese Syntax

```
filter(summarise(group_by(filter(stats_test, !is.na(score)),
   interest), mw = mean(score)), mw > 30)
```

mit dieser

 $^{^{12}\}mathrm{R},\,\mathrm{R},\,\mathrm{F},\,\mathrm{F}$

Abbildung 8: Das 'Durchpeifen'

3 6 34.00000 ## 4 NA 33.08824

5 32.51111

Es ist hilfreich, diese "Pfeifen-Syntax" in deutschen Pseudo-Code zu übersetzen.

```
Nimm die Tabelle "stats_test" UND DANN filtere alle nicht-fehlenden Werte UND DANN gruppiere die verbleibenden Werte nach "interest" UND DANN bilde den Mittelwert (pro Gruppe) für "score" UND DANN liefere nur die Werte größer als 30 zurück.
```

Die Pfeife zerlegt die "russische Puppe", also ineinander verschachelteten Code, in sequenzielle Schritte und zwar in der richtigen Reihenfolge (entsprechend der Abarbeitung). Wir müssen den Code nicht mehr von innen nach außen lesen (wie das bei einer mathematischen Formel der Fall ist), sondern können wie bei einem Kochrezept "erstens ..., zweitens ..., drittens ..." lesen. Die Pfeife macht die Syntax einfacher. Natürlich hätten wir die verschachtelte Syntax in viele einzelne Befehle zerlegen können und jeweils eine Zwischenergebnis speichern mit dem Zuweisungspfeil <- und das Zwischenergebnis dann explizit an den nächsten Befehl weitergeben. Eigentlich macht die Pfeife genau das - nur mit weniger Tipparbeit. Und auch einfacher zu lesen. Flow!

Werte umkodieren und "binnen"

car::recode

Manchmal möchte man z.B. negativ gepolte Items umdrehen oder bei kategoriellen Variablen kryptische Bezeichnungen in sprechendere umwandeln (ein Klassiker ist 1 in maennlich bzw. 2 in weiblich oder umgekehrt, kann sich niemand merken). Hier gibt es eine Reihe praktischer Befehle, z.B. recode aus dem Paket car. Übrigens: Wenn man explizit angeben möchte, aus welchem Paket ein Befehl stammt (z.B. um Verwechslungen zu vermeiden), gibt man Paketnamen: Befehlnamen an. Schauen wir uns ein paar Beispiele zum Umkodieren an.

```
stats_test$score_fac <- car::recode(stats_test$study_time, "5 = 'sehr viel'; 2:4 = 'mitt
    as.factor.result = TRUE)

stats_test$score_fac <- car::recode(stats_test$study_time, "5 = 'sehr viel'; 2:4 = 'mitt
    as.factor.result = FALSE)

stats_test$study_time <- car::recode(stats_test$study_time, "5 = 'sehr viel'; 4 = 'wenig
    as.factor.result = TRUE)

head(stats_test$study_time)</pre>
```

```
## [1] sehr viel Hilfe sehr viel Hilfe wenig Hilfe
## Levels: Hilfe sehr viel wenig
```

Der Befehle recode ist wirklich sehr prkatisch; mit : kann man "von bis" ansprechen (das ginge mit c () übrigens auch); else für "ansonsten" ist möglich und mit as.factor.result kann man entweder einen Faktor oder eine Text-Variable zurückgeliefert bekommen. Der ganze "Wechselterm" steht in Anführungsstrichen ('). Einzelne Teile des Wechselterms sind mit einem Strichpunkt (;) voneinander getrennt.

Das klassiche Umkodieren von Items aus Fragebögen kann man so anstellen; sagen wir interest soll umkodiert werden:

```
stats_test$no_interest <- car::recode(stats_test$interest, "1 = 6; 2 = 5; 3 = 4; 4 = 3;
glimpse(stats_test$no_interest)</pre>
```

num [1:306] 2 4 1 5 1 NA NA 4 2 2 ...

Bei dem Wechselterm muss man aufpassen, nichts zu verwechseln; die Zahlen sehen alle ähnlich aus...

Testen kann man den Erfolg des Umpolens mit

```
dplyr::count(stats_test, interest)
```

```
## # A tibble: 7 x 2
##
     interest
         <int> <int>
## 1
             1
                   30
## 2
             2
                   47
## 3
             3
                   66
## 4
             4
                   41
```

```
## 5 5 45
## 6 6 9
## 7 NA 68
```

dplyr::count(stats_test, no_interest)

```
## # A tibble: 7 x 2
##
      no_interest
             <dbl> <int>
##
                  1
                         9
                  2
                        45
   3
                  3
                        41
                  4
                        66
   5
                  5
                        47
## 6
                  6
                        30
                 NA
                        68
```

Scheint zu passen. Noch praktischer ist, dass man so auch numerische Variablen in Bereiche aufteilen kann ("binnen"):

```
stats_test$Ergebnis <- car::recode(stats_test$score, "1:38 = 'durchgefallen'; else = 'be</pre>
```

Natürlich gibt es auch eine Pfeifen komptatible Version, um Variablen umzukodieren bzw. zu binnen: dplyr::recode¹³. Die Syntax ist allerdings etwas weniger komfortabel (da strenger), so dass wir an dieser Stelle bei car::recode bleiben.

Numerische Werte in Klassen gruppieren mit cut

Numerische Werte in Klassen zu gruppieren ("to bin", denglisch: "binnen") kann mit dem Befehl cut (and friends) besorgt werden.

Es lassen sich drei typische Anwendungsformen unterscheiden:

Eine numerische Variable ...

- 1. in k gleich große Klassen grupieren (gleichgroße Intervalle)
- 2. so in Klassen gruppieren, dass in jeder Klasse n Beobachtungen sind (gleiche Gruppengrößen)
- 3. in beliebige Klassen gruppieren

gleichgroße Intervalle

Nehmen wir an, wir möchten die numerische Variable "Körpergröße" in drei Gruppen einteilen: "klein", "mittel" und "groß". Der Range von Körpergröße soll gleichmäßig auf die drei Gruppen aufgeteilt werden, d.h. der Range (Interval) der drei Gruppen soll gleich groß sein. Dazu kann man cut_interval aus ggplot2 nehmen [^d.h. ggplot2 muss geladen sein; wenn man tidyverse lädt, wird ggplot2 automatisch auch geladen].

 $^{^{13}}$ https://blog.rstudio.org/2016/06/27/dplyr-0-5-0/

```
wo_men <- read_csv("./data/wo_men.csv")</pre>
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
##
     X1 = col_integer(),
     time = col_character(),
##
     sex = col_character(),
     height = col_double(),
##
##
     shoe_size = col_double()
## )
wo_men2 <- wo_men %>% filter(height > 150, height < 220)</pre>
temp <- cut_interval(x = wo_men2$height, n = 3)</pre>
levels (temp)
```

```
## [1] "[155,172]" "(172,189]" "(189,206]"
```

cut_interval liefert eine Variabel vom Typ factor zurück.

gleiche Gruppengrößen

```
temp <- cut_number(wo_men2$height, n = 2)
str(temp)</pre>
```

```
## Factor w/ 2 levels "[155,169]","(169,206]": 1 2 2 2 2 1 1 2 1 2 ...
```

Mit cut_number (aus ggplot2) kann man einen Vektor in n Gruppen mit (etwa) gleich viel Observationen einteilen.

Teilt man einen Vektor in zwei gleich große Gruppen, so entspricht das einer Aufteilung am Median (Median-Split).

In beliebige Klassen gruppieren

cut ist im Standard-R (Paket "base") enthalten. Mit breaks gibt man die Intervallgrenzen an. Zu beachten ist, dass man eine Unter- bzw. Obergrenze angeben muss. D.h. der kleinste Wert wird nicht automatisch als unterste Intervallgrenze herangezogen.

Verweise

• Eine schöne Demonstration der Mächtigkeit von dplyr findet sich hier¹⁴.

Hinweis

Der Anhang Datenjudo wurde von Sebastian Sauer erstellt.

¹⁴: http://bit.ly/2kX9lvC

Anhang 3: Daten visualisieren mit ggplot

In diesem Kapitel werden folgende Pakete benötigt::

```
library(tidyverse) # Zum Plotten
## Loading tidyverse: ggplot2
## Loading tidyverse: tibble
## Loading tidyverse: tidyr
## Loading tidyverse: readr
## Loading tidyverse: purrr
## Loading tidyverse: dplyr
## Conflicts with tidy packages ------
## filter(): dplyr, stats
## lag(): dplyr, stats
library(car) # Umkodieren
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
##
     recode
## The following object is masked from 'package:purrr':
##
      some
library(knitr) # HTML-Tabellen
```


Ein Bild sagt mehr als 1000 Worte

Ein Bild sagt bekanntlich mehr als 1000 Worte. Schauen wir uns zur Verdeutlichung das berühmte Beispiel von Anscombe¹⁵ an. Es geht hier um vier Datensätze mit zwei Variablen (Spalten; X und Y). Offenbar sind die Datensätze praktisch identisch: Alle X haben den gleichen Mittelwert und die gleiche Varianz; dasselbe gilt für die Y. Die Korrelation zwischen X und Y ist in allen vier Datensätzen gleich. Allerdings erzählt eine Visualisierung der vier Datensätze eine ganz andere Geschichte.

Offenbar "passieren" in den vier Datensätzen gänzlich unterschiedliche Dinge. Dies haben die Statistiken nicht aufgedeckt; erst die Visualisierung erhellte uns... Kurz: Die Visualisierung ist ein unverzichtbares Werkzeug, um zu verstehen, was in einem Datensatz (und damit in der zugrunde liegenden "Natur") passiert.

Es gibt viele Möglichkeiten, Daten zu visualisieren (in R). Wir werden uns hier auf einen Weg bzw. ein Paket konzentrieren, der komfortabel, aber mächtig ist und gut zum Prinzip des Durchpfeifens passt: ggplot2[^"gg" steht für "grammer of graphics" nach einem Buch von Wilkinson[-@wilkinson2006grammar]; "plot" steht für "to plot", also ein Diagramm erstellen ("plotten"); vgl. https://en.wikipedia.org/wiki/Ggplot2].

Laden wir dazu den Datensatz nycflights::flights.

¹⁵https://de.wikipedia.org/wiki/Anscombe-Quartett

Warning: Removed 9430 rows containing non-finite values (stat_boxplot).

Schauen wir uns den Befehl aplot etwas näher an. Wie ist er aufgebaut?

aplot: Erstelle schnell (q wie quick in aplot) mal einen Plot (engl. "plot": Diagramm).

x: Der X-Achse soll die Variable "carrier" zugeordnet werden.

y: Der Y-Achse soll die Variable "arr_dely" zugeorndet werden.

 $\verb"geom:" ("geometriches Objekt") Gemalt werden soll ein Boxplot, nicht etwa Punkte, Linien oder sonstiges.$

data: Als Datensatz bitte flights verwenden.

Offenbar gibt es viele Extremwerte, was die Verspätung betrifft. Das erscheint mir nicht unplausibel (Schneesturm im Winter, Flugzeug verschwunden...). Vor dem Hintergrund der Extremwerte erscheinen die mittleren Verspätungen (Mediane) in den Boxplots als ähnlich. Vielleicht ist der Unterschied zwischen den Monaten ausgeprägter?

```
qplot(x = factor(month), y = arr_delay, geom = "boxplot", data = flights)
```

Warning: Removed 9430 rows containing non-finite values (stat_boxplot).

Kaum Unterschied; das spricht gegen die Schneesturm-Idee als Grund für Verspätung. Aber schauen wir uns zuerst die Syntax von aplot näher an. "q" in aplot steht für "quick". Tatsächlich hat aplot einen großen Bruder, gaplot¹⁶, der deutlich mehr Funktionen aufweist - und daher auch die umfangreichere (=komplexere) Syntax. Fangen wir mit aplot an.

Diese Syntax des letzten Beispiels ist recht einfach, nämlich:

```
qplot(x = X_Achse, y = Y_Achse, data = mein_dataframe, geom = "ein_geom")
```

Wir definieren mit x, welche Variable der X-Achse des Diagramms zugewiesen werden soll, z.B. month; analog mit Y-Achse. Mit data sagen wir, in welchem Dataframe die Spalten "wohnen" und als "geom" ist die Art des statistischen "geometrischen Objects" gemeint, also Punkte, Linien, Boxplots, Balken...

Häufige Arten von Diagrammen

Unter den vielen Arten von Diagrammen und vielen Arten, diese zu klassifizieren greifen wir uns ein paar häufige Diagramme heraus und schauen uns diese der Reihe nach an.

Eine kontinuierliche Variable

Schauen wir uns die Verteilung der Schuhgrößen von Studierenden an.

¹⁶Achtung: Nicht qqplot, nicht ggplot2, nicht gplot...

```
wo_men <- read.csv("./data/wo_men.csv")

qplot(x = shoe_size, data = wo_men)</pre>
```

- ## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
- ## Warning: Removed 1 rows containing non-finite values (stat_bin).

Weisen wir nur der X-Achse (aber nicht der Y-Achse) eine kontinuierliche Variable zu, so wählt ggplot2 automatisch als Geom automatisch ein Histogramm; wir müssen daher nicht explizieren, dass wir ein Histogramm als Geom wünschen (aber wir könnten es hinzufügen). Alternativ wäre ein Dichtediagramm hier von Interesse:

```
# qplot(x = shoe_size, data = wo_men) wie oben

qplot(x = shoe_size, data = wo_men, geom = "density")
```

Warning: Removed 1 rows containing non-finite values (stat_density).

Was man sich merken muss, ist, dass hier nur das Geom mit Anführungsstrichen zu benennen ist, die übrigen Parameter ohne.

Vielleicht wäre es noch schön, beide Geome zu kombinieren in einem Diagramm. Das ist etwas komplizierter; wir müssen zum großen Bruder ggplot umsteigen, da aplot nicht diese Funktionen anbietet.

```
ggplot(data = wo_men) + aes(x = shoe_size) + geom_histogram(aes(y = ..density..),
    alpha = 0.7) + geom_density(color = "blue")

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

## Warning: Removed 1 rows containing non-finite values (stat_bin).

## Warning: Removed 1 rows containing non-finite values (stat_density).
```


Zuerst haben wir mit dem Parameter data den Dataframe benannt. aes definiert, welche Variablen welchen Achsen (oder auch z.B. Füllfarben) zugewiesen werden. Hier sagen wir, dass die Schuhgröße auf X-Achse stehen soll. Das +-Zeichen trennt die einzelnen Bestandteile des ggplot-Aufrufs voneinander. Als nächstes sagen wir, dass wir gerne ein Histogram hätten: geom_histogram. Dabei soll aber nicht wie gewöhnlich auf der X-Achse die Häufigkeit stehen, sondern die Dichte. ggplot berechnet selbständig die Dichte und nennt diese Variable ..density..; die vielen Punkte sollen wohl klar machen, dass es sich nicht um eine "normale" Variable aus dem eigenen Datenframe handelt, sondern um eine "interne" Variable von ggplot - die wir aber nichtsdestotrotz verwenden können. alpha bestimmt die "Durchsichtigkeit" eines Geoms; spielen Sie mal etwas damit herum. Schließlich malen wir noch ein blaues Dichtediagramm über das Histogramm.

Wünsche sind ein Fass ohne Boden... Wäre es nicht schön, ein Diagramm für Männer und eines für Frauen zu haben, um die Verteilungen vergleichen zu können?

```
qplot(x = shoe_size, data = wo_men, geom = "density", color = sex)
```

Warning: Removed 1 rows containing non-finite values (stat_density).

Warning: Removed 1 rows containing non-finite values (stat_density).

Hier sollten vielleicht noch die Extremwerte entfernt werden, um den Blick auf das Gros der Werte nicht zu verstellen:

Besser. Man kann das Durchpfeifen auch bis zu aplot weiterführen:

Die Pfeife versucht im Standard, das Endprodukt des letzten Arbeitsschritts an den ersten Parameter des nächsten Befehls weiterzugeben. Ein kurzer Blick in die Hilfe von qplot zeigt, dass der erste Parameter nicht data ist, sondern x. Daher müssen wir explizit sagen, an welchen Parameter wir das Endprodukt des letzen Arbeitsschritts geben wollen. Netterweise müssen wir dafür nicht viel tippen: Mit einem schlichten Punkt . können wir sagen "nimm den Dataframe, so wie er vom letzten Arbeitsschritt ausgegeben wurde".

Mit fill = sex sagen wir qplot, dass er für Männer und Frauen jeweils ein Dichtediagramm erzeugen soll; jedem Dichtediagramm wird dabei eine Farbe zugewiesen (die uns ggplot2 im Standard voraussucht). Mit anderen Worten: Die Werte von sex werden der Füllfarbe der Histogramme zugeordnet. Anstelle der Füllfarbe hätten wir auch die Linienfarbe verwenden können; die Syntax wäre dann: color = sex.

Zwei kontinuierliche Variablen

Ein Streudiagramm ist die klassische Art, zwei metrische Variablen darzustellen. Das ist mit aplot einfach:

Wir weisen wieder der X-Achse und der Y-Achse eine Variable zu; handelt es sich in beiden Fällen um Zahlen, so wählt ggplot2 automatisch ein Streudiagramm - d.h. Punkte als Geom (geom = 'point'). Wir sollten aber noch die Extremwerte herausnehmen:

Der Trend ist deutlich erkennbar: Je größer die Person, desto länger die Füß´. Zeichnen wir noch eine Trendgerade ein.

```
wo_men %>% filter(height > 150, height < 210, shoe_size < 55) %>%

qplot(x = height, y = shoe_size, data = .) + geom_smooth(method = "lm")
```


Synonym könnten wir auch schreiben:

```
wo_men %>% filter(height > 150, height < 210, shoe_size < 55) %>%

ggplot() + aes(x = height, y = shoe_size) + geom_point() +
geom_smooth(method = "lm")
```

Da ggplot als ersten Parameter die Daten erwartet, kann die Pfeife hier problemlos durchgereicht werden. Innerhalb eines ggplot-Aufrufs werden die einzelne Teile durch ein Pluszeichen + voneinander getrennt. Nachdem wir den Dataframe benannt haben, definieren wir die Zuweisung der Variablen zu den Achsen mit aes ("aes" wie "aesthetics", also das "Sichtbare" eines Diagramms, die Achsen etc., werden definiert). Ein "Smooth-Geom" ist eine Linie, die sich schön an die Punkte anschmiegt, in diesem Falls als Gerade (lineares Modell, lm).

Bei sehr großen Datensätze, sind Punkte unpraktisch, da sie sich überdecken ("overplotting"). Ein Abhilfe ist es, die Punkte nur "schwach" zu färben. Dazu stellt man die "Füllstärke" der Punkte über alpha ein: geom_point (alpha = 1/100). Um einen passablen Alpha-Wert zu finden, bedarf es häufig etwas Probierens. Zu beachten ist, dass es mitunter recht lange dauert, wenn ggplot viele (>100.000) Punkte malen soll.

Bei noch größeren Datenmengen bietet sich an, den Scatterplot als "Schachbrett" aufzufassen, und das Raster einzufärben, je nach Anzahl der Punkte pro Schachfeld; zwei Geome dafür sind geom_hex() und geom_bin2d().

```
data(flights, package = "nycflights13")
nrow(flights) # groß!

## [1] 336776

ggplot(flights) + aes(x = distance, y = air_time) + geom_hex()
```

Warning: Removed 9430 rows containing non-finite values (stat_binhex).

Wenn man dies verdaut hat, wächst der Hunger nach einer Aufteilung in Gruppen.

```
wo_men %>% filter(height > 150, height < 210, shoe_size < 55) %>%

qplot(x = height, y = shoe_size, color = sex, data = .)
```


Mit color = sex sagen wir, dass die Linienfarbe (der Punkte) entsprechend der Stufen von sex eingefärbt werden sollen. Die genaue Farbwahl übernimmt ggplot2 für uns.

Eine diskrete Variable

Bei diskreten Variablen, vor allem nominalen Variablen, geht es in der Regel darum, Häufigkeiten auszuzählen. Wie viele Männer und Frauen sind in dem Datensatz?

```
qplot(x = sex, data = wo_men)
```


Falls nur die X-Achse definiert ist und dort eine Faktorvariable oder eine Text-Variable steht, dann nimmt aplot automatisch ein Balkendiagramm als Geom.

Entfernen wir vorher noch die fehlenden Werte:

```
wo_men %>% na.omit() %>% qplot(x = sex, data = .)
```


Wir könnten uns jetzt die Frage stellen, wie viele kleine und viele große Menschen es bei Frauen und bei den Männern gibt. Dazu müssen wir zuerst eine Variable wie "Größe gruppiert" erstellen mit zwei Werten: "klein" und "groß". Nennen wir sie groesse_gruppe

In Worten sagt der recode-Befehl hier in etwa: "Kodiere wo_men\$height um, und zwar vom kleinsten (10) Wert bis 170 soll den Wert klein bekommen, ansonsten bekommt eine Größe den Wert gross".

Hier haben wir qplot gesagt, dass der die Balken entsprechend der Häufigkeit von groesse_gruppe füllen soll. Und bei den Frauen sind bei dieser Variablen die Werte klein häufig; bei den Männern hingegen die Werte gross.

Schön wäre noch, wenn die Balken Prozentwerte angeben würden. Das geht mit qplot (so) nicht; wir schwenken auf ggplot um¹⁷.

```
wo_men2 %>% ggplot() + aes(x = sex, fill = groesse_gruppe) +
geom_bar(position = "fill")
```

¹⁷Cleveland fände diese Idee nicht so gut.

Schauen wir uns die Struktur des Befehls ggplot näher an.

wo_men2: Hey R, nimm den Datensatz wo_men2

ggpplot (): Hey R, male ein Diagramm von Typ ggplot (mit dem Datensatz aus dem vorherigen Pfeifen-Schritt, d.h. aus der vorherigen Zeile, also wo_men2)!

+: Das Pluszeichen grenzt die Teile eines ggplot-Befehls voneinander ab.

aes: von "aethetics", also welche Variablen des Datensatzes den sichtbaren Aspekten (v.a. Achsen, Farben) zugeordnet werden.

x: Der X-Achse (Achtung, x wird klein geschrieben hier) wird die Variable sex zugeordnet.

y: gibt es nicht??? Wenn in einem ggplot-Diagramm keine Y-Achse definiert wird, wird ggplot automatisch ein Histogramm bzw. ein Balkendiagramm erstellen. Bei diesen Arten von Diagrammen steht auf der Y-Achse keine eigene Variable, sondern meist die Häufigkeit des entsprechenden X-Werts (oder eine Funktion der Häufigkeit, wie relative Häufigkeit).

fill Das Diagramm (die Balken) sollen so gefüllt werden, dass sich die Häufigkeit der Werte von groesse_gruppe darin widerspiegelt.

geom_XYZ: Als "Geom" soll ein Balken ("bar") gezeichnet werden.

Ein Geom ist in ggplot2 das zu zeichnende Objekt, also ein Boxplot, ein Balken, Punkte, Linien etc. Entsprechend wird gewünschte Geom mit geom_bar, geom_boxplot, geom_pointetc. gewählt.position = fill:position_fillwill sagen, dass die Balken alls eine Höhe von 100% (1) haben. Die Balken zeigen also nur die Anteile der Werte derfill'-Variablen.

Die einzige Änderung in den Parametern ist position = 'fill'. Dieser Parameter weist ggplot an, die Positionierung der Balken auf die Darstellung von Anteilen auszulegen. Damit haben alle Balken

die gleiche Höhe, nämlich 100% (1). Aber die "Füllung" der Balken schwankt je nach der Häufigkeit der Werte von groesse_gruppe pro Balken (d.h. pro Wert von sex).

Wir sehen, dass die Anteile von großen bzw. kleinen Menschen bei den beiden Gruppen (Frauen vs. Männer) unterschiedlich hoch ist. Dies spricht für einen Zusammenhang der beiden Variablen; man sagt, die Variablen sind abhängig (im statistischen Sinne).

Je unterschiedlicher die "Füllhöhe", desto stärker sind die Variablen (X-Achse vs. Füllfarbe) voneinander abhängig (bzw. desto stärker der Zusammenhang).

Zwei diskrete Variablen

Arbeitet man mit nominalen Variablen, so sind Kontingenztabellen Täglich Brot. Z.B.: Welche Produkte wurden wie häufig an welchem Standort verkauft? Wie ist die Verteilung von Alkoholkonsum und Körperform bei Menschen einer Single-Börse. Bleiben wir bei letztem Beispiel.

```
data(profiles, package = "okcupiddata")

profiles %>% count(drinks, body_type) %>% ggplot + aes(x = drinks,

y = body_type, fill = n) + geom_tile() + theme(axis.text.x = element_text(angle = 90))
```


Was haben wir gemacht? Also:

```
Nehme den Datensatz "profiles" UND DANN
Zähle die Kombinationen von "drinks" und "body_type" UND DANN
```

```
Erstelle ein ggplot-Plot UND DANN
Weise der X-Achse "drinks" zu,
der Y-Achse "body_type" und der Füllfarbe "n" UND DANN
Male Fliesen UND DANN
Passe das Thema so an, dass der Winkel für Text der X-Achse auf 90 Grad steht.
Was sofort ins Auge sticht, ist dass "soziales Trinken", nennen wir es mal so, am häufigsten ist, unabhängig
```

von der Körperform. Ansonsten scheinen die Zusammenhäng nicht sehr stark zu sein.

Zusammenfassungen zeigen

Manchmal möchten wir *nicht* die Rohwerte einer Variablen darstellen, sondern z.B. die Mittelwerte pro Gruppe. Mittelwerte sind eine bestimmte *Zusammenfassung* einer Spalte; also fassen wir zuerst die Körpergröße zum Mittelwert zusammen - gruppiert nach Geschlecht.

```
wo_men3 <- wo_men2 %>% group_by(sex) %>% summarise(Groesse_MW = mean(height))
wo_men3
```

Diese Tabelle schieben wir jetzt in ggplot2; natürlich hätten wir das gleich in einem Rutsch durchpfeifen können.

```
wo_men3 %>% qplot(x = sex, y = Groesse_MW, data = .)
```


Das Diagramm besticht nicht durch die Tiefe und Detaillierung. Wenn wir noch zusätzlich die Mittelwerte nach Groesse_Gruppe ausweisen, wird das noch überschaubar bleiben.

Verweise

- Edward Tufte gilt als Grand Seigneur der Datenvisualisierung; er hat mehrere lesenswerte Bücher zu dem Thema geschrieben [@1930824130; @1930824165; @1930824149].
- William Cleveland, ein amerikanischer Statistiker ist bekannt für seine grundlegenden, und weithin akzeptierten Ansätze für Diagramme, die die wesentliche Aussage schnörkellos transportieren [@Cleveland].
- Die Auswertung von Umfragedaten basiert häufig auf Likert-Skalen. Ob diese metrisches Niveau aufweisen, darf bezweifelt werden. Hier findet sich einige vertiefenden Überlegungen dazu und zur Frage, wie Likert-Daten ausgewertet werden könnten: https://bookdown.org/Rmadillo/likert/.

Hinweis

Der Anhang Daten visualisieren mit geplot wurde von Sebastian Sauer erstellt.