ARNOLD, WHITE & DURKEE

A PROFESSIONAL CORPORATION

Attorneys at Law

POST OFFICE BOX 4433

HOUSTON, TX 77210-4433

750 BERING DRIVE, SUITE 400 HOUSTON, TX 77057-2198

> TELEPHONE (713) 787-1400 FACSIMILE (713) 789-2679

> September 9, 1997

800 QUAKER TOWER 321 NORTH CLARK STREET CHICAGO, IL 60610-4714 TELEPHONE (312) 744-0090 FACSIMILE (312) 755-4489

2001 JEFFERSON DAVIS HIGHWAY SUITE 401 ARLINGTON, VA 22202-3604 TELEPHONE (703) 415-1720 FACSIMILE (703) 415-1728

INPA:035 FILE:

EXPRESS MAIL MAILING LABEL

ADDRESSEE" service under 37 C.F.R. 1.10 on the date indicated above and is addressed to: Assistant Commissioner for Patents, Washington

Signature

NUMBER E M 219701195 DATE OF DEPOSIT 9 SEPT9 I hereby certify that this paper or fee is being deposited with the United States Postal Service

"EXPRESS MAIL POST OFFICE TO

D.C. 20231.

TERRY D. MORGAN

900 ONE AMERICAN CENTER

6

600 CONGRESS AVENUE AUSTIN, TX 78701-3248

TELEPHONE (512) 418-3000

FACSIMILE (512) 474-7577

155 LINFIELD DRIVE MENLO PARK, CA 94025-3741 TELEPHONE (415) 614-4500

FACSIMILE (415) 614-4599

4850 FIRST BANK PLACE 601 SECOND AVE SOUTH

MINNEAPOLIS, MN 55402-4320 TELEPHONE (612) 321-2800 FACSIMILE (612) 321-9600

(713) 787-1575

BOX PATENT APPLICATION

Assistant Commissioner for Patents Washington, DC 20231

> U.S. Patent Application Entitled: METHOD AND APPARATUS FOR RE:

INTERFACING MIXED VOLTAGE SIGNALS

Inventor: Melik Isbara

Sir:

Transmitted herewith for filing are:

- (1) 15-page patent specification with 16 claims and an abstract (also Figure 1-3B on 2 sheets);
- (2) Declaration;
- (3) Assignment and Assignment Cover Sheet;
- (4) Our checks in the amount of \$850.00 and \$40.00 for the filing fee and assignment recordation fee.

H: 213723(4KWR01!.DOC)

ARNOLD, WHITE & DURKEE

Assistant Commissioner for Patents September 9, 1997 Page 2

Pursuant to 37 C.F.R. § 1.10 the Applicant requests the Patent and Trademark Office to accept this application and accord a serial number and filing date as of the date this application is deposited with the U.S. Postal Service for Express Mail.

If the check is inadvertently omitted, or should any additional fees under 37 C.F.R. §§ 1.16 to 1.21 be required for any reason relating to the enclosed materials, or should an overpayment be included herein, the Assistant Commissioner is authorized to deduct or credit said fees from or to Arnold, White & Durkee Deposit Account No. 01-2508/INPA:035/MOG.

Please date stamp and return the enclosed postcard to evidence receipt of these materials.

Respectfully submitted,

Terry D. Morgan
Reg. No. 31,181

TDM:csd Enclosures

at the second of the second se

Application for United States Letters Patent

for

METHOD AND APPARATUS FOR INTERFACING MIXED VOLTAGE SIGNALS

by

Melik Isbara

Express Mail Mailing Label: EM219701195

Date of Deposit: 9 SEPT 97

Pursuant to 37 C.F.R. § 1.10, I certify that I am personally depositing this paper or fee with the United States Postal Service's "Express Mail Post Office to Addressee" service on the above date in a sealed envelope (a) having the above numbered Express Mail label and sufficient postage affixed and (b) addressed to the Assistant Commissioner for Patents, Box Patent Application, Washington D.C. 20231.

Signature

METHOD AND APPARATUS FOR INTERFACING MIXED VOLTAGE SIGNALS

BACKGROUND OF THE INVENTION

5

Carry many Art.

15

1. FIELD OF THE INVENTION

This invention relates generally to interfacing electrical components, and, more particularly, to a method and apparatus for interfacing electrical components operating at different voltage levels.

2. DESCRIPTION OF THE RELATED ART

Over time, manufacturers of integrated circuits have been able to place more and more circuitry on less and less real estate of a semiconductor chip. The ability to place more circuitry on an integrated circuit chip is a function of at least the size of the components constructed on the chip and the spacing between components (i.e., density). Reductions in size and spacing have allowed the use of lower voltage levels to properly operate an integrated circuit.

Operating integrated circuit chips at reduced voltages has inherent advantages. For example, lowered operating voltages allow even densely packed integrated circuit chips to operate at relatively low temperatures, such that exotic cooling methods are not required.

Moreover, using lower voltages reduces power consumed by an integrated circuit chip, which is of particular significance in battery-operated devices, such as portable computers.

O the first of the condition of the cond

20

5

A disadvantage of operating an integrated circuit chip at a reduced voltage is that an integrated circuit chip is commonly required to interface with a variety of existing integrated circuit chips that operate at a higher voltage level. Thus, when a reduced voltage integrated circuit chip is used as part of a larger system, it will likely be required to receive interface signals at these higher voltage levels. Often, these interface signals are digital in form, and must be able to transition between their logically high and low states within a relatively short, preselected period of time. Heretofore, signal conditioning circuitry used to translate from these higher voltage levels to the lower voltage levels has adversely affected the transition time period, and thereby reduced the performance of lower voltage integrated circuit chips. A slower transition time means that a receiving circuit must wait longer to ensure that the signal has stabilized before the signal can be accessed. Thus, slower transition times translate to slower overall operating speed.

The present invention is directed to overcoming, or at least reducing the effects of, one or more of the problems set forth above.

SUMMARY OF THE INVENTION

In one aspect of the present invention, an apparatus is provided for converting signals of a first preselected voltage level to a second preselected voltage level. A pass gate transistor has a gate, source, and drain and is adapted to receive the signals of the first preselected voltage level,

and deliver the signals of the second preselected voltage level. A capacitor is coupled across said source and drain of the pass gate transistor. A resistive element is coupled between the gate of the pass gate transistor and a voltage supply.

In another aspect of the instant invention, a method is provided for converting an input signal of a first preselected voltage level to a second preselected voltage level. The method includes charging a gate of a pass gate transistor to a third preselected voltage level to enable the pass gate transistor to pass at least a portion of the voltage level of the input signal to an output node; charging the gate of the pass gate transistor to a fourth preselected level for a preselected period of time during a transition in the input signal from a logically low voltage level to a logically high voltage level, said fourth preselected level being greater than said third preselected level; and passing at least a portion of any AC component in said input signal to the output node.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:

Figure 1 is a block diagram of one embodiment of an interface circuit;

Figure 2 is an electrical schematic of one embodiment of an interface circuit; and

Figures 3A and B are wave form diagrams for various nodes of the schematic of Figure 2.

5

The transfer of the same and th

20

While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.

Turning now to the drawings, and in particular to Figure 1, a block diagram of a buffer circuit 10 useful in interfacing a higher voltage input terminal 12 to a lower voltage output terminal 14 is shown. A signal on the input terminal 12 is digital in nature and can vary, for example, between about 0 and 2.5 volts. The signal on the output terminal 14 is also digital in nature and can vary, for example, between the values of about 0 and 1.8 volts. A pass gate transistor 16 has its drain coupled to the input terminal 12 and its source coupled to a node A.

5

And the self of th

15

20

5

The gate of the pass gate transistor 16 is coupled through a node B and a resistive element (such as an active resistor) 18 to a voltage source V_{bias} , which can have a value, for example, of about 1.8 volts. The voltage V_{bias} operates to continuously turn the transistor 16 "on," passing at least a portion of the voltage present on the input terminal 12 to the node A. The resistor 18 enhances the transition time of the signal appearing at node A while providing electrostatic discharge protection. This enhanced transition time is accomplished through a pumping action of a parasitic capacitor 20 located between the drain and gate of the pass gate transistor 16. Generally, the presence of the resistor 18 and parasitic capacitor 20 operate to temporarily increase the voltage applied to the gate of the pass gate transistor 16 during a low-to-high transition at the input terminal 12. A detailed description of this pumping action is described below in conjunction with the circuit diagram of Figure 2 and the wave forms of Figure 3B.

An alternating current (AC) bypass capacitor 22 is coupled between the source and drain of the pass gate transistor 16 to further enhance the transition time of the voltage appearing at the node A in response to a corresponding transition in a signal applied to the input terminal 12. In particular, the AC bypass capacitor 22 enhances the switching speed of a low-to-high transition while not negatively impacting the switching speed in a high-to-low transition equally. The AC bypass capacitor 22 works in cooperation with a parasitic capacitor 24 located between the node A and system ground. Generally, the capacitor 22 operates to speed up the rising edge of a low-to-high transition at the node A by providing an additional AC path from the input terminal 12 to the node A. An analysis of the operation of the capacitors 22, 24 is provided below in conjunction with the schematic diagram of Figure 2 and the wave forms of Figures 3B.

5

The node A is coupled through a buffer circuit 25 to the output terminal 14. The buffer circuit 25 can take on a variety of forms, but in the illustrated embodiment is an inverter 26 operating from a supply voltage V_{cc} . The supply voltage V_{cc} is selected to have a reduced value, as compared to the voltage level of signals received at the input terminal 12. Thus, the signal at the output terminal 14 is digital in nature, but has a reduced maximum voltage compared to that of the signal at the input terminal 12, and is the digital complement of the signal applied to the input terminal 12.

A PMOS-type transistor 28 has its gate coupled to the output terminal 14, its drain coupled to the node A and its source coupled to the supply voltage V_{cc} , which can have a value, for example, of about 1.8 volts. When the input signal applied to the inverter 26 is at a logically high level, the corresponding output of the inverter 26 is forced to a logically low level, biasing the transistor 28 "on." With the transistor 28 biased "on," the node A is clamped to V_{cc} , thereby ensuring that the already logically high input to the inverter 26 is pulled to a voltage level sufficiently above the switching point of the inverter 26 to prevent any leakage current therethrough.

Turning now to Figure 2, a more detailed schematic of one embodiment of the buffer circuit 10 described in Figure 1 is shown. The pass gate transistor 16 is an NMOS-type transistor that has its substrate coupled to system ground. The resistor 18 is formed from a PMOS-type transistor 30 that has its gate coupled to system ground, its drain coupled through the node B to

5

the gate of the pass gate transistor 16, and its substrate and source coupled to the voltage V_{bias} . The AC bypass capacitor 22 is implemented using a PMOS-type transistor with its gate coupled to the node A and its source, drain, and substrate coupled to the input terminal 12.

The inverter 26 is constructed from a pair of transistors 32, 34 serially coupled together between the voltage V_{cc} and system ground. The transistor 32 is a PMOS-type transistor having its gate coupled to the node A, its source and substrate coupled to the voltage V_{cc} , and its drain coupled to the output terminal 14. The transistor 34 is a NMOS-type transistor having its gate coupled to the node A, its drain coupled to the output terminal 14, and its source and substrate coupled to system ground.

The transistor 28 is a PMOS-type transistor having its drain coupled to the node A, its gate coupled to the output terminal 14, and its source and substrate coupled to the voltage V_{cc} . Thus, when a logically high signal (e.g., about 2.5 volts in this embodiment) is present at the input terminal 12, the node A will charge toward a voltage level of about V_{bias} - V_{tn} , where V_{tn} is the threshold voltage of the pass gate transistor 16. The presence of the voltage V_{bias} - V_{tn} at the node A is sufficient to bias the transistor 34 "on" and the transistor 32 "off." With the transistor 34 biased "on," the output terminal 14 is pulled down to system ground through the transistor 34, producing a logically low output signal. The logically low signal on the output terminal 14 biases the transistor 28 "on," pulling the node A up to the voltage level V_{cc} . The presence of the voltage level V_{cc} on the node A biases the transistor 34 "on" hard and the transistor 32 "off" hard to prevent leakage current from flowing from the voltage V_{cc} to system ground through the

5

transistors 32, 34. Without the voltage level of the node A being pulled up by the transistor 28, then the voltage level V_{bias} - V_{tn} could be low enough to bias both of the transistors 32, 34 partially "on," and allow a small amount of leakage current to flow through the transistors 32, 34.

Conversely, when a logically low signal (e.g., about 0 volts in this embodiment) is present at the input terminal 12, the node A will be forced to a voltage level of about 0 volts. The presence of about 0 volts at the node A is sufficient to bias the transistor 32 "on" and the transistor 34 "off." With the transistor 32 biased "on," the output terminal 14 is pulled up to about V_{cc} through the transistor 32, producing a logically high output signal.

Referring now to Figures 2 and 3 jointly, the interaction of the pass gate transistor 16, the resistor 18, and the AC bypass capacitor 22 are discussed in greater detail. A voltage level V_{IN} at the input terminal 12 varies between a logically high level and a logically low level of, for example, about 2.5 and 0 volts in this embodiment. A transition in the voltage level V_{IN} from a logically low level to a logically high level is shown in Figure 3B. The input terminal 12 is coupled to the node B via the parasitic capacitor 20. Thus, a change in the voltage level V_{IN} from 0 to 2.5 volts results in the voltage at the node B, V_B being pumped up to a voltage higher than V_{bias} . The voltage at the node B, V_B is at about V_{bias} , prior to the transition from 0 - 2.5 volts in the voltage level V_{IN} . In this example, the voltage level V_{bias} is about the same as the voltage level V_{CC} , although the invention is not restricted in scope in this respect. Since the voltage across the capacitor 20 cannot change instantaneously with the change in the voltage level V_{IN} , the voltage level V_B is pumped up toward the voltage level V_{bias} + ∞V_{IN} (where ∞ < 1). With

5

the voltage level V_B temporarily pumped up above V_{bias} , the pass gate transistor 16 is biased "on" harder, causing the voltage level V_A at the node A to rise at a faster rate than would otherwise occur without the existence of the resistive element 18. At the same time, the AC bypass capacitor 22 also responds to the voltage level V_{IN} by passing the AC component of the voltage level V_{IN} to the node A. The AC component of the voltage level V_{IN} also acts to accelerate the change in the voltage level V_A . The capacitors 22, 24 form a voltage divider network to control the voltage level applied to the node A by the AC component of V_{IN} .

The voltage level V_A will continue to rise at its accelerated rate until it passes the level at which the transistor 34 is biased "on," and the transistor 32 is biased "off." At that time, as described above in conjunction with Figs. 1 and 2, the output terminal 14 is coupled to system ground through the transistor 34, turning "on" the transistor 28 and pulling the node V_A toward the voltage level V_{cc} . At about that time, the voltage level V_B will begin to decay, thereby reducing the rate at which the voltage level V_A approaches the voltage level V_{cc} . The resulting transition time for the voltage level V_{OUT} at the output terminal 14 is relatively short.

A transition in the voltage level V_{IN} from a logically high level to a logically low level is shown in Figure 3A. Prior to a transition of the voltage level V_{IN} from 2.5 volts to 0 volts, the voltage level V_B is at about V_{bias} , or about 1.8 volts in this example. Thus, the voltage level V_B is at about 0.7 volts below the voltage level V_{IN} . When the voltage level V_{IN} changes toward 0 volts, the voltage level across the capacitor 20 cannot change instantaneously, but attempts to maintain the 0.7 volt differential between the voltage levels V_{IN} and V_B , pulling the voltage level

 V_B toward - 0.7 V_{bias} volts. With the voltage level V_B temporarily pulled down below the voltage level V_{bias} , the pass gate transistor 16 remains biased "on," but not as hard as when the voltage level V_B is at about the voltage level V_{bias} or higher. This reduction in the voltage level V_B has the effect of reducing the rate at which the voltage level V_A is pulled towards 0 volts, increasing the transition time period for a high-to-low transition. The AC bypass capacitor 22 helps to reduce this affect by enabling the resistor value to be lower.

The voltage level V_A will continue to fall at its compromised rate influenced by the reduced voltage level V_B and the enhanced voltage level delivered through the capacitor 22 until it passes the level at which the transistor 32 is biased by "on," and the transistor 34 is biased "off." At that time, as described above in conjunction with Figures 1 and 2, the output terminal 14 is coupled to the voltage level V_{cc} through the transistor 32, turning "off" the transistor 28 and disconnecting the voltage level V_{cc} from the node A. Just before the output terminal 14 switches from its low to high state, the voltage level V_B begins to rise toward the voltage level V_{bias} as the capacitor 20 charges, thereby increasing the rate at which the voltage level V_A approaches the voltage level of about 0 volts. The resulting transition time for the voltage level V_{OUT} at the output terminal 14 is relatively short.

CLAIMS

- 1. An apparatus for converting signals of a first preselected voltage level to a second preselected voltage level, comprising:
 - a transistor having an enable terminal, an input terminal, and an an output terminaland being adapted to receive said signals of the first preselected voltage level, and deliver said signals of the second preselected voltage level;
 - a capacitor coupled across said input and output terminals of said transistor; and a resistive element having a first end portion coupled to the enable terminal of said transistor and a second end portion adapted to be coupled to a voltage supply.
- 2. An apparatus, as set forth in claim 1, including a buffer circuit having an input terminal coupled to receive said signals of the second preselected voltage.
- 3. An apparatus, as set forth in claim 2, wherein said buffer circuit includes an inverter.
- 4. An apparatus, as set forth in claim 3, including a pull-up transistor adapted to be coupled between the input of said inverter and a voltage supply, and having an enable terminal coupled to the output of said inverter.
- 5. An apparatus, as set forth in claim 4, wherein said pull-up transistor comprises a PMOS-type transistor.
- 6. An apparatus, as set forth in claim 1, wherein said resistive element comprises a resistor.
- 7. An apparatus, as set forth in claim 1, wherein said resistive element comprises an active transistor.

5

- 8. An apparatus for converting an input signal of a first preselected voltage level to a second preselected voltage level, comprising:
 - a pass gate transistor having a gate, source, and drain and being adapted to receive said signals of the first preselected voltage level, and deliver said signals of the second preselected voltage level, said gate being adapted to be coupled to a voltage supply having a third preselected voltage level;
 - a capacitor coupled across said source and drain of said pass gate transistor; and a pump coupled to the gate of said pass gate transistor, said pump being adapted to temporarily increase the voltage level applied to said gate.
- 9. An apparatus, as set forth in claim 8, wherein said pump includes a resistive element adapted to be coupled between the gate of said pass gate transistor and said voltage supply, and a capacitor coupled to the gate of said pass gate transistor and being adapted to receive said input signal.
- 10. An apparatus, as set forth in claim 9, wherein said capacitor coupled to the gate of said pass gate transistor is a parasitic capacitor.
- 11. An apparatus, as set forth in claim 9, wherein said resistive element is a resistor.
- 12. An apparatus, as set forth in claim 9, wherein said resistive element is an active transistor.
- 13. An apparatus for converting an input signal of a first preselected voltage level to a second preselected voltage level, comprising:
- a pass gate transistor having a gate, source, and drain and being adapted to receive said signals of the first preselected voltage level, and deliver said signals of the second

preselected voltage level, said gate being coupled to a voltage supply having a third preselected voltage level;

a capacitor coupled across said source and drain of said pass gate transistor; and means for temporarily increasing the voltage level applied to said gate.

- 14. An apparatus, as set forth in claim 13, wherein said means includes means for increasing the voltage level applied to said gate for a preselected period of time during a transition in said input signal from a logically low voltage level to a logically high voltage level.
- 15. A method for converting an input signal of a first preselected voltage level to a second preselected voltage level, comprising:
 - charging a gate of a pass gate transistor to a third preselected voltage level to enable the pass gate transistor to pass at least a portion of the voltage level of the input signal to an output node;
 - charging the gate of the pass gate transistor to a fourth preselected voltage level for a

 preselected period of time, said fourth preselected voltage level being greater than
 said third preselected level; and
 - passing at least a portion of any AC component in said input signal to said output node.
- 16. A method, as set forth in claim 15, wherein charging the gate of the pass gate transistor to a fourth preselected voltage level includes charging the gate of the pass gate transistor to a fourth preselected voltage level for a preselected period of time during a transition in said input signal from a logically low voltage level to a logically high voltage level.

ABSTRACT OF THE DISCLOSURE

A buffer circuit is used to convert signals of a first preselected voltage level to a second preselected voltage level. A pass gate transistor has a gate, source, and drain and is adapted to receive the signals of the first preselected voltage level, and deliver the signals of the second preselected voltage level. A capacitor is coupled across the source and drain of the pass gate transistor. A resistive element is coupled between the gate of the pass gate transistor and a voltage supply. The resistive element cooperates with a parasitic capacitance located between the gate and source of the pass gate transistor to form a pump that reacts to a low-to-high transition in the input signal to temporarily increase the voltage level applied to the gate of the pass gate transistor. This temporarily increased voltage level causes the voltage level output from the pass gate transition to track the transition in the input signal more closely.

+

FIG. 3A

+

FIG. 3A

DECLARATION

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor of the subject matter which is claimed and for which a patent is sought on the invention entitled **METHOD AND APPARATUS FOR INTERFACING MIXED VOLTAGE SIGNALS**, the Specification of which:

		, <u> </u>		
K_3	is attached hereto. was filed on	as Application Serial No.		
· · · · · · · · · · · · · · · · · · ·	y state that I have neluding the claim		d the contents of the above-ide	ntified
known to me t	o be material to p		and Trademark Office all informatter claimed in this applications, § 1.56.	
	•	•	phone calls be addressed to Ten, Texas 77210, (713) 787-1400	•
statements ma statements wer punishable by: Code and that patent issued the	de on information with the kase or imprisonm such willful false nereon.	n and belief are believed mowledge that willful fals ent, or both, under Section statements may jeopardize	own knowledge are true and t d to be true; and further that se statements and the like so ma n 1001 of Title 18 of the United e the validity of the application	these ade are States
Inventor's Full			Isbara	
Inventor's Sign	(First) nature: (L)	Pelèle la bor	(Last)	
Date:	9/	8/1997	-	
Country of Citi	izenship: Turke	у	_	
Residence Add		Escalon Avenue #J3076		
(include number, str city, state, and coun	Duning	vale, CA 94086		
Post Office Ad (if different from readdress)				