Report Outline

1 Abstract

- 1. A mechanical switch involving a spring can have many uses.
- 2. Depending on the desired use of the spring, an optimal spring will be different.
- 3. To find an optimal spring we need to have a set of constraints and objectives to optimize.
- 4. The constraints and objectives are subject to change depending on the use.
- 5. The objective of this project is to design a flexible optimization routine, that is, flexible in what constraints and objectives are considered.

2 Introduction

- 1. To be flexible in finding an optimum spring you must allow for constraints and objectives to be interchangeable.
- 2. There also exists constraints and objectives that are informed by real-world tolerances for design and fabrication.
- 3. In order to allow this flexibility we employ the use of object oriented programming techniques.
- 4. In addition, we must be able to find an optimal spring that is subject to constraints, and tolerances that are set by

5.

3 Helical Compression Springs

- 1. A helical compression spring has many attributes that are associated to it.
- 2. There are material attributes

4 Problem Formulation

- 1. The formulation is informed by many sources...
- 2. Multiple-Interconnected Dimensions, graph of interconnectedness
- 3. List the properties and a short description.

4.	Illustrate example of optimization, and explain our generalization.
5.	Relaxation and Creep
5	Approach to Problem
5.1	Software Design
1.	Flexibility integrated into existing optimization.
2.	Constraint vs. Objective
3.	
4.	
5.	
6	Workflow
6.1	Feasibility
1.	
6.2	Sensitivity Analysis
1.	
6.3	Optimization
1.	
7	Computational Experiments

2. Relaxation and Creep

2.

3.

1. Computational Inefficiencies

Summary and Future Work

- 4.
- 5.

9 References