```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

df = pd.read_csv('population.csv')
df.head()

	Country Name	Country Code	Indicator Name	Indicator Code	1960	1961	1962	19		
0	Aruba	ABW	Population density (people per sq. km of land	EN.POP.DNST	NaN	307.972222	312.366667	314.983		
1	Andorra	AND	Population density (people per sq. km of land	EN.POP.DNST	NaN	30.587234	32.714894	34.914		
2	Afghanistan	AFG	Population density (people per sq. km of land	EN.POP.DNST	NaN	14.038148	14.312061	14.599(
3	Angola	AGO	Population density (people per sq. km of land	EN.POP.DNST	NaN	4.305195	4.384299	4.464		
4	Albania	ALB	Population density (people per sq. km of land	EN.POP.DNST	NaN	60.576642	62.456898	64.329;		
5 rows × 62 columns										

 $\label{eq:df_final} \begin{tabular}{ll} $df_final = df.drop(['Country Code','Indicator Name','Indicator Code'],axis=1) \\ $df_final = df.drop(['Country Code','Indicator Name','Indicator Name','Indicator Code'],axis=1) \\ $df_final = df.drop(['Country Code','Indicator Name','Indicator Name'$

	Country Name	1960	1961	1962	1963	1964	1965		
0	Aruba	NaN	307.972222	312.366667	314.983333	316.827778	318.666667	320.€	
1	Andorra	NaN	30.587234	32.714894	34.914894	37.170213	39.470213	41.8	
2	Afghanistan	NaN	14.038148	14.312061	14.599692	14.901579	15.218206	15.ŧ	
3	Angola	NaN	4.305195	4.384299	4.464433	4.544558	4.624228	4.7	
4	Albania	NaN	60.576642	62.456898	64.329234	66.209307	68.058066	69.8	
259	Yemen, Rep.	NaN	9.946897	10.112857	10.283730	10.460234	10.642972	10.8	
260	South Africa	NaN	14.796892	15.216878	15.609838	15.984431	16.348334	16.7	
261	Congo, Dem. Rep.	NaN	6.897825	7.075824	7.261381	7.456342	7.661877	7.8	
262	Zambia	NaN	4.227724	4.359305	4.496824	4.639914	4.788452	4.9	
263	Zimbabwe	NaN	10.021037	10.356112	10.703901	11.062585	11.431128	11.8	
264 rows × 59 columns									

```
chosen_country = 'United States'

country_data = df_final[df_final['Country Name'] == chosen_country]

years = country_data.columns[2:]
population = country_data.iloc[:, 2:].values.flatten()
print(years)
print(population)
```

bi.tiir(bobntartoii)

```
'1962', '1963', '1964', '1965', '1971', '1972', '1973', '1974',
                                                                     '1966',
                                                                                 '1967',
                                                                                             '1968', '1969', '1977', '1978',
Index(['1961',
                                                                     '1975',
                                                                                 _
'1976',
                                                                                             '1977',
           '1970',
          '1970', '1971', '1972', '1973', '1974', '1975', '1976', '1977', '1978', '1979', '1980', '1981', '1982', '1983', '1984', '1985', '1986', '1987', '1988', '1989', '1991', '1992', '1993', '1994', '1995', '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015', '2016', 'Unnamed: 61'],
        dtype='object')
[20.05587971 20.36672286 20.66195289 20.9509595 21.21452654 21.4609519
 21.69591307 21.91362338 22.12882249 22.3881314 22.67298907 22.91701241
 23.13679719 23.34915755 23.58051569 23.80565042 24.0462891 24.30243172
 24.57211299 24.80903945 25.05371789 25.29370147 25.52604226 25.74801069
 25.97718518 26.21836977 26.45376768 26.69506145 26.94836532 27.25451361
 27.62114913 28.00689161 28.37865871 28.72880764 29.07295151 29.41316481
 29.76942797\  \  \, 30.11848507\  \  \, 30.46634116\  \  \, 30.79730133\  \  \, 31.10362839\  \  \, 31.39354993
 31.66453462 31.95894507 32.2548766 32.56739985 32.87861136 33.24368685
 33.53639923 33.81793588 34.07724331 34.33783766 34.59198277 34.86309812
```

```
plt.bar(years,population)
plt.xlabel('Year')
plt.ylabel('Population')
plt.title(f'Population of {chosen_country} Over the Years')
```

Text(0.5, 1.0, 'Population of United States Over the Years')

plt.hist(population, bins=15, color='skyblue', edgecolor='black')
plt.show()

