Internet Hardware

How the Internet is Made

What is the Internet?

The Internet is a **network** of **networks**!

The Internet is a **network** of **networks**!

The Internet is a **network** of **networks**!

The Internet is a **network** of **networks**!

The Internet is a **network** of **networks**!

The Internet is a **network** of **networks**!

Unfortunately, this solution is not very scalable!

Since there are billions of devices connected to the Internet, it isn't feasible to make every device have a direct connection to every other device!

The solution to this problem (at least at a small scale) is to connect each device to a central hub!

The solution to this problem (at least at a small scale) is to connect each device to a central hub!

The solution to this problem (at least at a small scale) is to connect each device to a central hub!

The solution to this problem (at least at a small scale) is to connect each device to a central hub!

The solution to this problem (at least at a small scale) is to connect each device to a central hub!

The solution to this problem (at least at a small scale) is to connect each device to a central hub!

Simple Networks

A single router is capable of connecting a good number of devices, provided that they're close enough together. Generally a small network like this will be able to encompass the devices in a single room or building.

SCHOOL

HOME

STARBUCKS

SCHOOL

HOME

STARBUCKS

SCHOOL

HOME

SCHOOL HOME STARBUCKS

Adding Complexity SCHOOL HOME STARBUCKS

The Internet

The Internet itself is actually just a huge network of routers!

The Internet

Not every router is connected to every other router - each one is connected to a few others, but they're all interconnected eventually!

The Internet

Individual networks can then connect to the Internet by connecting to a single router!

This connection is often facilitated by an Internet Service Provider, or ISP.

Sending Digital Information

We're not sending a physical smiley face from one computer to another - we're transmitting some binary code that translates to those characters!

Sending *Digital* Information

At a basic level, all we need to do is get digital information from one computer to the other.

Let's discuss different methods by which we can actually transmit those bits!

Internet Hardware

There are 3 primary ways that we transmit digital informations from one computer to another:

- 1. Electricity
- 2. Light
- 3. Radio

Sending Bits with Electricity

The most common cable used by modern computers for transmitting digital data via electricity is the **Ethernet** cable.

Pros:

Cheap

Cons:

Only covers medium distances

Sending Bits with Electricity

The most common cable used by modern computers for transmitting digital data via electricity is the **Ethernet** cable.

To send a 1 via electricity, we simply send a signal with a high voltage!

Sending Bits with Electricity

The most common cable used by modern computers for transmitting digital data via electricity is the **Ethernet** cable.

To send a 0 via electricity, we simply send a signal with a low voltage (or no voltage at all)!

Sending Bits with Light

When we want to send digital information via Light, we need to use Fiber Optic

cables.

Pros:

Can cover VERY long distance

Cons:

Expensive

Sending Bits with Light

When we want to send digital information via Light, we need to use Fiber Optic cables.

Similarly to when we sent a 1 via electricity, we send a bright light through the cable to transmit a 1 with light!

Sending Bits with Light

When we want to send digital information via Light, we need to use Fiber Optic cables.

To send a 0 with light, we shine a dim light, or turn the light off altogether!

Sending Bits with Radio Waves

When we want to send digital information via Radio waves, we don't need cables at all - we need a Wifi Router or Cell Tower!

Pros:

Wireless!

Cons:

Short Range

Sending Bits with Radio Waves

When we want to send digital information via Radio waves, we don't need cables at all - we need a Wifi Router or Cell Tower!

To send a signal of 1 via Radio Waves, we need to transmit a wave with High Frequency.

Sending Bits with Radio Waves

When we want to send digital information via Radio waves, we don't need cables at all - we need a Wifi Router or Cell Tower!

To send a signal of 0 via Radio Waves, we need to transmit a wave with Low Frequency.

1010

That worked perfectly!

10001

Now we have a disconnect - that's not what we want!

To solve this issue, we can use a **clock**, which will allow the computers to agree on how often to send/receive a bit.

Because of the clock, we have a matching message on both ends now!

This example where we transferred 1 bit every second is **incredibly** slow - fortunately, computers are much faster than that.

The amount of data that can be transferred by a single system is referred to as that system's **Bandwidth**. It is measured by **Bitrate**, which is the number of bits that can be sent or received by a system in 1 second.

Bandwidth

Bandwidth	Bitrate
excruciatingly LOW	1 bps
High	5 Mbps

Latency

One last thing to take into account is the idea of **Latency**, which is the time that it takes for a bit to get from the sender to the receiver.

If you have Low Latency, then that means that you have a fast connection.

Fiber Optic cable has the best latency - it can transmit data at the speed that light moves through glass (~5 microseconds / kilometer)

Ethernet cables have a latency of ~300 microseconds / kilometer, though Ethernet connections are typically shorter than a kilometer.

Recap

- The Internet
 - A Network connecting Networks
- Network
 - A group of 2 or more connected computers
 - Typically connected via Routers
- Ways to send digital information
 - Electricity (ethernet)
 - Light (fiber optic)
 - Radio Waves (WiFi, Cell)
- No matter what type of connection is being used, we're just sending bits - no more and no less!