1 几何最优传输映射

1.1 Monge-Ampére 方程

问题 1.1 (Brenier). 给定 (Ω, μ) 和 (\sum, ν) 以及成本函数 $c(x, y) = \frac{1}{2}|x - y|^2$,最优传输映射 $T: \Omega \to \sum$ 是满足 Monge-Ampére 方程的 Brenier 势 $u: \Omega \to \mathcal{R}$ 的梯度映射。

$$det\left(\frac{\partial^2 u(x)}{\partial x_i \partial x_j}\right) = \frac{f(x)}{g \circ \nabla u(x)}$$
(1)

问题 1.2 (Semi-discrete OT). 给定一个在 \mathcal{R}^d 上的紧凸域 Ω , 和 p_1, p_2, \cdots, p_k 以及质量 $w_1, w_2, \cdots, w_k > 0$,找到一个最优传输映射 $T: \Omega \to \{p_1, \cdots, p_k\}$,则 $vol(T^{-1}(p_i)) = w_i$,使 运输成本最小化

$$C(T) := \frac{1}{2} \int_{\Omega} |x - T(x)|^2 dx$$
 (2)

图 1: Brenier 图

根据 Brenier 定理,将有一个分段线性凸函数 $u:\Omega\to\mathbb{R}$ 、梯度映射给出了最佳运输映射。

定理 1.1 (Alexandrov 1950). 给定在 \mathbb{R}^n 上的紧凸域 Ω , 在 \mathbb{R}^n 上互不相同的 p_1, \dots, p_k , 当 $A_1, \dots, A_k > 0$,使得 $\sum A_i = Vol(\Omega)$,则存在 PL 凸函数

$$f(x) := \max\left\{ \langle x, p_i \rangle + h_i \mid i = 1, \cdots, k \right\} \tag{3}$$

唯一的传输使得

$$Vol(W_i) = Vol(\{x \mid \nabla f(x) = p_i\}) = A_i. \tag{4}$$

Alexandrov's证明是拓扑的,而不是变分。多年来人们一直开放寻找构造性的证明。

```
Algorithm: ConvexHull(P)
```

Input: A set P of points in the plane.

Output: A list \mathcal{L} containing the vertices of $\mathcal{CH}(P)$ in clockwise order.

Sort the points by x-coordinate, resulting in a sequence $p_1, ..., p_n$.

Put the points p_1 and p_2 in a list \mathcal{L}_{upper} , with p_1 as the first point.

```
for i \leftarrow 3 to n do
```

Append p_i to \mathcal{L}_{upper} .

while \mathcal{L}_{upper} contains more than 2 points and the last three points in \mathcal{L}_{upper} do not make a right turn do

Delete the middle of the last three points from \mathcal{L}_{upper} .

 \mathbf{end}

end

Put the points p_n and p_{n-1} in a list \mathcal{L}_{lower} , with p_n as the first point.

for $i \leftarrow n-2$ downto 1 do

Append p_i to \mathcal{L}_{lower} .

while \mathcal{L}_{lower} contains more than 2 points and the last three points in \mathcal{L}_{lower} do not make a right turn do

Delete the middle of the last three points from \mathcal{L}_{lower} .

 \mathbf{end}

$\quad \mathbf{end} \quad$

Remove the first and the last point from \mathcal{L}_{lower} to avoid duplication of the points where the upper and lower hull meet.

Append \mathcal{L}_{lower} to \mathcal{L}_{upper} , and call the resulting list \mathcal{L} .

return \mathcal{L}