ESTATÍSTICA

Michelle Hanne Soares de Andrade

michellehanne@cefetmg.br
1º. SEMESTRE 2018

Inferência Estatística

Inferência Estatística

- A inferência estatística tem por objetivo fazer generalizações sobre uma população com base em valores amostrais. A inferência pode ser feita estimando os parâmetros:
- A) Por Ponto e
- B) Por intervalo

Estimação por Ponto e Intervalo

A estimação por ponto é feita através de um único valor, enquanto que a estimação por intervalo fornece um intervalo de valores em torno do valor da estimativa pontual.

Inferência Estatística

Na estimação por ponto objetivo é utilizar a informação amostral e apriorística para se calcular um valor que seria, em certo sentindo, nossa melhor avaliação quanto ao valor, de fato, do parâmetro em questão.

Na estimativa por intervalo, usa-se a mesma informação com o propósito de se produzir um intervalo que contenha o valor verdadeiro do parâmetro com algum nível de probabilidade.

Inferência Estatística

Exemplo:

Uma amostra aleatória simples de 400 pessoas de uma cidade é extraída e 300 respondem que acham a administração municipal boa ou ótima. Então o valor p = 300/400 = 75% é uma estimativa por ponto do percentual de pessoas da cidade que acham a administração boa ou ótima. Esta mesma estimativa poderia ser enunciado como de: 70% a 80% das pessoas da cidade acham a administração boa ou ótima. Neste caso, teríamos uma estimativa por intervalo da proporção. Note-se que o centro do intervalo é o valor "75%" da estimativa pontual.

Estimação por Ponto

Estimação por ponto

- O problema é produzir uma estimativa que realmente represente a melhor avaliação do valor do parâmetro.
 - 1º Especificar o que se entende por "melhor avaliação"
 - 2º definir os estimadores que satisfaçam estas especificações
- O estimador é uma Variável aleatória cujo valor varia de amostra para amostra, suas propriedades são iguais as da distribuição amostral.

Estimação por ponto

- Exemplo: Estimar a média de uma população é possível considerar os seguintes estimadores potenciais:
 - A média aritmética simples da amostra
 - A média aritmética ponderada da amostra
 - A mediana da amostra
 - A média dos valores extremos da amostra
- Como escolher qual é a melhor? É necessário considerar as propriedades estatísticas dos estimadores e desenvolver algum critério para comparar estimadores.

Vai-se considerar uma variável aleatória X (população) cuja distribuição é caracterizada, entre outras coisas, por um parâmetro θ , que gostaríamos de estimar.

Um estimador do parâmetro θ , que é obtido através de uma fórmula dos valores amostrais: $X_1, \ X_2, \ ..., \ X_n$, é anotado por $\hat{\theta}$. As características básicas da distribuição de $\hat{\theta}$ são sua média $\mu_{\hat{\theta}} = E(\hat{\theta}) \text{ e sua variância } \sigma_{\hat{\theta}}^2 = Var(\hat{\theta}) = E(\hat{\theta} - \mu_{\hat{\theta}})^2 = E(\hat{\theta}^2) + \mu_{\hat{\theta}}^2.$

O desvio padrão de $\hat{\theta}$, representado por $\sigma_{\hat{\theta}} = \sqrt{Var(\hat{\theta})}$ é denominado de "erro padrão de $\hat{\theta}$ ".

- Definição: Uma estimativa pontual de algum parâmetro populacional θ é simplesmente um valor numérico obtido de uma função Ô dos dados. A função Ô é genericamente denominada um estimador pontual de θ.
- Exemplo: Suponha que X é uma v.a. normalmente distribuída com média desconhecida e variância $\sigma^2=$ 1. A média amostral $\hat{\mu}=\overline{X}$ é um estimador pontual da média populacional μ . Após a observação da amostra

$$X_1 = 25, X_2 = 30, X_3 = 29, X_4 = 31,$$

temos que

$$\overline{X} = \frac{25 + 30 + 29 + 31}{4} = 28,75$$

é uma estimativa pontual de μ .

- Alguns estimadores pontuais razoáveis para estas quantidades são:
 - 1. a média amostral $\hat{\mu} = \overline{X}$;
 - 2. a variância amostral $\hat{\sigma}^2 = s^2$;
 - 3. a proporção amostral $\hat{p} = x/n$, onde x é o número de itens na amostra, de tamanho n, os quais pertencem à classe de interrese;
 - 4. a diferença $\hat{\mu}_1 \hat{\mu}_2$ entre duas médias amostrais de populações independentes;
 - 5. a diferença $\hat{p}_1 \hat{p}_2$ entre duas proporções amostrais avaliadas em duas amostras independentes;
 - 6. etc.
- Para determinarmos qual o estimador pontual mais adequado, é necessário examinar as propriedades estatísticas de cada um e desenvolver critérios de comparação adequados.

- θ : parâmetro (valor numérico constante e desconheci do da população)
- θ : estimador pontual (estatístic a visando estimar o parâmetro)

Um estimador $\hat{\theta}$ é uma função dos valores amostrais que é usado para estimar o valor de um parâmetro desconheci do θ . O estimador é uma variável aleatória com uma distribuição de probabilidade. Quando uma amostra aleatória é selecionada de uma população e $\hat{\theta}$ é calculado a partir dos dados, o valor numérico obtido é chamado uma estimativa de da amostra considerada.

Alguns estimadores pontuais

Parâmetro da população (θ)	Estimador (🛱)
Média (μ)	Média amostral (x)
Proporçao (p)	Proporção amostral (p)
Desvio-padrão (σ)	Desvio-padrão amostral (S)

Além destes, os seguintes conceitos são de importância:

Erro amostral $\varepsilon = \hat{\theta} - \theta$, que é a diferença entre o valor do estimador $\hat{\theta}$ e o verdadeiro valor a ser estimado θ . O tamanho do erro amostral varia de amostra para amostra.

Viés ou tendenciosidade Viés $(\hat{\theta}) = E(\hat{\theta})$ - θ como sendo a diferença entre a média da distribuição amostral de $\hat{\theta}$ e o valor do parâmetro θ . Este valor é, para cada estimador, fixo, podendo ou não ser zero.

Erro quadrado (quadrático) médio EQM($\hat{\theta}$) = E = (ϵ) = E($\hat{\theta}$ - θ)² é uma variância que mede a dispersão do estimador em torno do verdadeiro parâmetro, ao invés de em torno de sua média.

Existe uma relação entre o EQM($\hat{\theta}$) e a Var($\hat{\theta}$), conforme, mostrado abaixo:

$$\begin{split} EQM(\hat{\theta}) &= E(\hat{\theta} - \theta)^2 = E(\hat{\theta} - E(\hat{\theta}) + E(\hat{\theta}) - \theta)^2 = E\{[\hat{\theta} - E(\hat{\theta})] + [E(\hat{\theta}) - \theta]\}^2 = E[\hat{\theta} - E(\hat{\theta})]^2 \\ &+ 2.[E(\hat{\theta} - E(\hat{\theta}))][E(\hat{\theta}) - \theta] + E[E(\hat{\theta}) - \theta]^2 = E[\hat{\theta} - E(\hat{\theta})]^2 + E[E(\hat{\theta}) - \theta] = E[\hat{\theta} - E(\hat{\theta})]^2 + [E(\hat{\theta}) - \theta]^2 \\ &= Var(\hat{\theta}) + Vi\acute{e}s(\hat{\theta})^2, pois \\ &2.[E(\hat{\theta} - E(\hat{\theta}))][E(\hat{\theta}) - \theta] = 2.[E(\hat{\theta}) - \hat{\theta}][E(\hat{\theta}) - E(\hat{\theta})] = 0. \end{split}$$

Desta forma:

 $EQM(\hat{\theta}) = Var(\hat{\theta}) + Viés(\hat{\theta})^2$, isto é, o EQM é a soma da variância do estimador com sua tendenciosidade elevada ao quadrado.

O erro quadrado médio (*mean square error*) é um critério importante para a comparação de dois estimadores.

• O erro quadrático médio de um estimador $\hat{\theta}$ para o parâmetro θ é definido como

$$EQM(\hat{\theta}) = E(\hat{\theta} - \theta)^2;$$

EQM – Vício e erro-padrão

$$EQM(\hat{\theta}) = Var(\hat{\theta}) + \left[Vicio(\hat{\theta})\right]^2;$$

 O EQM é um critério importante para comparar dois estimadores;

• O erro quadrático médio de um estimador $\hat{\theta}$ para o parâmetro θ é definido como

$$EQM(\hat{\theta}) = E(\hat{\theta} - \theta)^2;$$

EQM – Vício e erro-padrão

$$EQM(\hat{\theta}) = Var(\hat{\theta}) + \left[Vicio(\hat{\theta})\right]^2;$$

 O EQM é um critério importante para comparar dois estimadores;

- Estimadores tendenciosos podem ser preferíveis a estimadores não viciados se tiverem um menor EQM;
- Estimativa baseada em θ₁ estaria provavelmente mais próxima do valor verdadeiro do que a baseada em θ₂;

- Estimador ótimo para θ:
 - Tem EQM menor ou igual ao EQM de qualquer outro estimador, para todos os valores de θ no espaço paramétrico;

Estimadores ótimos raramente existem;

• No caso em que $\hat{\theta}$ é um estimador não viciado para um parâmetro θ , então

$$EQM(\hat{\theta}) = Var(\hat{\theta}).$$

 As propriedades desejáveis para um estimador são: nãotendenciosidade, precisão ou eficiência, validade ou acurácia e consistência.

Não Tendenciosidade

Um estimador $\hat{\theta}$ é dito não-tendencioso (Imparcial, justo, não-viciado, não-viezado, unbiased) de um parâmetro θ se $E(\hat{\theta}) = \theta$.

Se $E(\hat{\theta}) \neq \theta$, então $\hat{\theta}$ é dito "viciado" e $E(\hat{\theta})$ - θ é dito "viés" do estimador (bias of the estimate).

- Exemplo 1: A \overline{x} é um estimador não tendencioso de μ
- Prova

$$E(\overline{X}) = E\left(\frac{\sum X}{n}\right) = \frac{1}{n}E(\sum X) = \frac{1}{n}\sum E(X) = \frac{1}{n}\sum \mu = (n.\mu)/n = \mu.$$

■ Exemplo 2: $\hat{\sigma}^2 = \frac{\sum (x - \overline{x})^2}{n}$ É um estimador tendencioso para σ^2

Prova:

Considere a soma $\sum (\mathbf{x} - \overline{\mathbf{x}})^2$ e observe que ela poderá ser escrita da seguinte maneira:

$$\textstyle \sum \left(X - \overline{X}\right)^2 \, = \, \sum \left(X - \mu + \mu - \overline{X}\right)^2 \, = \, \sum \left(X - \mu\right)^2 + 2\sum (X - \mu)(\mu - \overline{X}) + \sum \left(\mu - \overline{X}\right)^2 \, .$$

Como μ - \overline{X} é constante e $\sum (X - \mu) = \sum X - n$. $\mu = n$. $\overline{X} - n$. $\mu = n$. $\overline{X} - \mu$, segue:

$$\Sigma (X - \overline{X})^2 = \Sigma (X - \mu)^2 - n \cdot (\overline{X} - \mu)^2$$
, pois

$$2\sum (X - \mu)(\mu - \overline{X}) = 2(\mu - \overline{X}) \cdot n(\overline{X} - \mu) = -2n(\mu - \overline{X}) e$$

$$2\mu - \overline{X}$$
) + $\sum (\mu - \overline{X})^2 = -2n(\mu - \overline{X})^2 + n(\mu - \overline{X})^2 = -n(\mu - \overline{X})^2$

■ Exemplo 2:
$$\hat{\sigma}^2 = \frac{\sum (x - \overline{x})^2}{n}$$
 É um estimador tendencioso para σ^2

Portanto:

$$\begin{split} E(\hat{\sigma}^2) &= E(\frac{\sum \left(X - \overline{X}\right)^2}{n}) &= \frac{1}{n} E(\sum \left(X - \overline{X}\right)^2) &= \frac{1}{n} E(\sum \left(X - \mu\right)^2 - n \cdot (\overline{X} - \mu)^2) &= \\ \frac{1}{n} \left\{ \sum E(X - \mu)^2 - n E(\overline{X} - \mu)^2 \right\} &= \\ &= \frac{1}{n} \left\{ \sum Var(X) - n Var(\overline{X}) \right\} &= \frac{1}{n} \left\{ n \, \sigma^2 - n \, \frac{\sigma^2}{n} \right\} &= \frac{1}{n} \left(n \sigma^2 - \sigma^2 \right) = \sigma^2 - \sigma^2 / n = (n \sigma^2 - \sigma^2) / n = (n - 1) \sigma^2 / n \end{split}$$

$$\tilde{\sigma}^2 = \frac{\sum (\mathbf{X} - \overline{\mathbf{X}})^2}{\mathbf{n}} \cdot \mathbf{\acute{E}} \text{ um estimador tendencioso de } \sigma^2, \text{ se a amostragem}$$

for realizada sem reposição de uma população finita.

Propriedades dos Estimadores - Vício

Vício de um estimador:

$$Vicio(\hat{\theta}) = E(\hat{\theta} - \theta) = E(\hat{\theta}) - \theta;$$

• Um estimador $\hat{\theta}$ é não viciado (não viesado, não tendencioso) para um parâmetro θ se

$$E(\hat{\theta}) = \theta;$$

 A esperança de um estimador está relacionada com sua exatidão

Propriedades dos Estimadores - Vício

Exemplos:

 A média amostral é não viciada para estimar a média populacional:

$$E(\overline{X}_n) = \mu_X$$

 X₁ (primeiro item coletado da amostra) é não viciado para estimar a média populacional:

$$E(X_1) = \mu_X$$

■ Exemplo 3: $S^2 = \frac{\sum (X - \overline{X})^2}{n-1}$ É um estimador não viciado para σ^2

Prova:

$$\mathrm{E}(\mathrm{S}^2) = \, \mathrm{E}\!\!\left(\frac{\boldsymbol{\Sigma}\!\left(\boldsymbol{X} - \overline{\boldsymbol{X}}\right)^2}{n-1}\right) = \frac{1}{n-1} \mathrm{E}\!\!\left[\boldsymbol{\Sigma}\!\left(\boldsymbol{X} - \overline{\boldsymbol{X}}\right)^2\right] = \frac{1}{n-1} \mathrm{E}\!\!\left[\boldsymbol{\Sigma}\!\left(\boldsymbol{X} - \!\boldsymbol{E}(\boldsymbol{X}) + \!\boldsymbol{E}(\boldsymbol{X}) - \!\overline{\boldsymbol{X}}\right)^2\right] = \frac{1}{n-1} \mathrm{E}\!\!\left[\boldsymbol{\Sigma}\!\left(\boldsymbol{X} - \!\boldsymbol{E}(\boldsymbol{X}) + \!\boldsymbol{E}(\boldsymbol{X}) - \!\boldsymbol{X}\right)^2\right] = \frac{1}{n-1} \mathrm{E}\!\!\left[\boldsymbol{\Sigma}\!\left(\boldsymbol{X} - \!\boldsymbol{E}(\boldsymbol{X}) + \!\boldsymbol{E}(\boldsymbol{X}) - \!\boldsymbol{X}\right)^2\right] = \frac{1}{n-1} \mathrm{E}\!\!\left[\boldsymbol{\Sigma}\!\left(\boldsymbol{X} - \!\boldsymbol{E}(\boldsymbol{X}) + \!\boldsymbol{E}(\boldsymbol{X}) - \!\boldsymbol{X}\right)^2\right] = \frac{1}{n-1} \mathrm{E}\!\!\left[\boldsymbol{\Sigma}\!\left(\boldsymbol{X} - \!\boldsymbol{E}(\boldsymbol{X}) + \!\boldsymbol{E}(\boldsymbol{X}) - \!\boldsymbol{X}\right)^2\right] = \frac{1}{n-1} \mathrm{E}\!\!\left[\boldsymbol{\Sigma}\!\left(\boldsymbol{X} - \!\boldsymbol{E}(\boldsymbol{X}) + \!\boldsymbol{E}(\boldsymbol{X}) - \!\boldsymbol{X}\right)^2\right] = \frac{1}{n-1} \mathrm{E}\!\!\left[\boldsymbol{\Sigma}\!\left(\boldsymbol{X} - \!\boldsymbol{E}(\boldsymbol{X}) + \!\boldsymbol{E}(\boldsymbol{X}) - \!\boldsymbol{X}\right)^2\right] = \frac{1}{n-1} \mathrm{E}\!\!\left[\boldsymbol{\Sigma}\!\left(\boldsymbol{X} - \boldsymbol{E}(\boldsymbol{X}) + \!\boldsymbol{E}(\boldsymbol{X}) - \!\boldsymbol{X}\right)^2\right] = \frac{1}{n-1} \mathrm{E}\!\!\left[\boldsymbol{\Sigma}\!\left(\boldsymbol{X} - \boldsymbol{E}(\boldsymbol{X}) + \!\boldsymbol{E}(\boldsymbol{X}) - \!\boldsymbol{X}\right)^2\right] = \frac{1}{n-1} \mathrm{E}\!\!\left[\boldsymbol{\Sigma}\!\left(\boldsymbol{X} - \boldsymbol{E}(\boldsymbol{X}) + \!\boldsymbol{E}(\boldsymbol{X}) - \boldsymbol{X}\right)^2\right] = \frac{1}{n-1} \mathrm{E}\!\!\left[\boldsymbol{\Sigma}\!\left(\boldsymbol{X} - \boldsymbol{E}(\boldsymbol{X}) + \boldsymbol{E}(\boldsymbol{X}) - \boldsymbol{X}\right)^2\right] = \frac{1}{n-1} \mathrm{E}\!\!\left[\boldsymbol{\Sigma}\!\left(\boldsymbol{X} - \boldsymbol{E}(\boldsymbol{X}) + \boldsymbol{E}(\boldsymbol{X}) - \boldsymbol{X}\right)^2\right] = \frac{1}{n-1} \mathrm{E}\!\!\left[\boldsymbol{\Sigma}\!\left(\boldsymbol{X} - \boldsymbol{E}(\boldsymbol{X}) + \boldsymbol{E}(\boldsymbol{X}) - \boldsymbol{X}\right)^2\right] = \frac{1}{n-1} \mathrm{E}\!\!\left[\boldsymbol{\Sigma}\!\left(\boldsymbol{X} - \boldsymbol{X}\right) - \boldsymbol{X}\right] = \frac{1}{n-1} \mathrm{E}\!\!\left[\boldsymbol{\Sigma}\!\left(\boldsymbol{\Sigma}\!\left(\boldsymbol{X} - \boldsymbol{X}\right) - \boldsymbol{X}\right) - \boldsymbol{X}\right] = \frac{1}{n-1} \mathrm{E}\!\!\left[\boldsymbol{\Sigma}\!\left(\boldsymbol{\Sigma}\!\left(\boldsymbol{X} - \boldsymbol{X}\right) - \boldsymbol{X}\right) - \boldsymbol{X}\right] = \frac{1}{n-1} \mathrm{E}\!\!\left[\boldsymbol{\Sigma}\!\left(\boldsymbol{\Sigma}\!\left(\boldsymbol{X} - \boldsymbol{X}\right) - \boldsymbol{X}\right] = \frac{1}{n-1} \mathrm{E}\!\!\left[\boldsymbol{\Sigma}\!\left(\boldsymbol{\Sigma}\!\left(\boldsymbol{\Sigma}\right) - \boldsymbol{X}\right) - \boldsymbol{X}\right] = \frac{1}{n-1} \mathrm{E}\!\!\left[\boldsymbol{\Sigma}\!\left(\boldsymbol{\Sigma}\!\left(\boldsymbol{\Sigma}\!\left(\boldsymbol{\Sigma$$

$$\frac{1}{n-1} \mathsf{E} \bigg[\Sigma \big(\mathsf{X} - \mathsf{E}(\mathsf{X}) \big)^2 - \mathsf{n} \big(\overline{\mathsf{X}} - \mathsf{E}(\mathsf{X}) \big)^2 \bigg] = \frac{1}{n-1} \bigg[\Sigma \Big(\mathsf{E} \big(\mathsf{X} - \mathsf{E}(\mathsf{X}) \big)^2 \Big) - \mathsf{n} \mathsf{E} \big(\overline{\mathsf{X}} - \mathsf{E}(\mathsf{X}) \big)^2 \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2 - \mathsf{n} . \frac{\sigma^2}{\mathsf{n}} \bigg] = \frac{1}{n-1} \bigg[\mathsf{n} \, \sigma^2$$

$$\frac{n \cdot \sigma^2 - \sigma^2}{n-1} = \frac{(n-1) \cdot \sigma^2}{n-1} = \sigma^2.$$

Exemplo 4:

 $T=n. \overline{X}$, total amostral, é um estimador tendencioso de $\tau=\sum X$, total populacional.

Prova:

$$E(T) = E(n.\overline{X}) = n. E(\overline{X}) = n.\mu \neq N.\mu = \tau.$$

Exemplo 5:

 $\overline{T} = N. \overline{X}$ é um estimador não-tendencioso de $\tau = \sum X$.

Prova:

$$E(\overline{T}) = E(N.\overline{X}) = N. E(\overline{X}) = N.\mu = N.\mu = \tau.$$

Exemplo 6:

$$\sigma_{\overline{X}}^2 = \frac{S^2}{n}$$
 é um estimador não-tendencioso de $\sigma_{\overline{X}}^2 = \frac{\sigma^2}{n}$

Prova:

$$E(\sigma_{\overline{X}}^2) = E(\frac{S^2}{n}) = \frac{E(S^2)}{n} = \sigma^2/n.$$

Se a amostragem for sem reposição de população finita então:

$$\hat{\sigma}_{\overline{X}}^2 = \frac{\hat{S}^2}{n} \frac{N-n}{N-1}$$
 é um estimador não tendencioso de $\hat{\sigma}_{\overline{X}}^2 = \frac{\sigma^2}{n} \frac{N-n}{N-1}$, onde $\hat{S}^2 = \frac{N-1}{N} \hat{S}^2$

A não tendenciosidade ou ausência de viés é uma qualidade desejável para os estimadores. Entretanto, essa qualidade é insuficiente como critério para selecionar um estimador. Exemplo: toda média ponderada dos valores amostrais é um estimador não tendencioso da média populacional.

Precisão ou Eficiência

- A precisão ou eficiência é a proximidade das observações (estimativas) do seu valor esperado.
- **Definição:** Dados dois estimadores não-tendenciosos $\hat{\theta}_1$ e $\hat{\theta}_2$ de um mesmo parâmetro θ , diremos que $\hat{\theta}_1$ é mais eficiente que $\hat{\theta}_2$ se $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$. A eficiência relativa de $\hat{\theta}_1$ em relação a $\hat{\theta}_2$ é definida como sendo $EQM(\hat{\theta}_1)/EQM(\hat{\theta}_2)$.

Precisão ou Eficiência - Exemplo

Exemplo 1:

Qual dos dois estimadores abaixo é mais eficiente para estimar a média da população?

$$\overline{X}_1 = 0.3X_1 + 0.7X_2$$
 ou $\overline{X}_2 = 0.2X_1 + 0.8X_2$

Solução

Como são ambos não-tendenciosos temos:

$$Var(\overline{\chi}_1) = Var(0,3X_1 + 0,7X_2) = 0,3^2 Var(X_1) + 0,7^2 Var(X_2) = (0,09 + 0,49)\sigma^2 = 0,58\sigma^2.$$

$$Var(\overline{\chi}_2) = Var(0,2X_1 + 0,8X_2) = 0,2^2 Var(X_1) + 0,8^2 Var(X_2) = (0,04 + 0,64)\sigma^2 = 0,68\sigma^2.$$

Portanto

 $\overline{\chi}_1$ é mais eficiente que $\overline{\chi}_2$

Precisão ou Eficiência - Exemplo

- Em igualdade de circunstâncias, é obvio, que um estimador não tendencioso é preferível a um estimador tendenciosos.
- Mas se tivermos que escolher entre um estimador tendencioso, cuja distribuição é concentrada na vizinhança do verdadeiro valor do parâmetro e um não tendenciosos com grande variância, o estimador tendencioso pode ser preferível, principalmente se é possível determinar a grandeza e a direção da tendenciosidade.

Precisão ou Eficiência - Exemplo

Exemplo 2:

Suponha que se deseje estimar a média μ de uma população, tendo uma amostra aleatória X_1 , X₂, ..., X_n desta população e que se quer comparar dois possíveis estimadores de μ: a média da amostra \overline{X} e uma única observação da amostra, por exemplo, X_i . Note-se que tanto \overline{X} quanto X_i são estimadores não tendenciosos da média da população e neste caso o erro quadrado média é igual a variância. Para a média da amostra, tem-se: $EQM(\overline{X}) = V(\overline{X}) = \frac{\sigma^2}{n}$, onde σ^2 é a variância da população. Para uma única observação, tem-se: $EQM(X_i) = V(X_i) = \sigma^2$. Então a eficiência relativa de $X_i \text{ comparada a } \overline{X} \text{ \'e: } \frac{EQM(\overline{X})}{EQM(X_i)} = \frac{\sigma^2/n}{\sigma^2} = \frac{1}{n}. \text{ Como } 1/n < 1 \text{ para amostras acima de 2, conclui-se}$

que a média da amostra é um estimador melhor da média da população do que uma única observação.

Acurácia/Validade

■ Dados dois estimadores $\hat{\theta}_1$ e $\hat{\theta}_2$ de um mesmo parâmetro θ , diremos que $\hat{\theta}_1$ é mais acurado que $\hat{\theta}_2$ se $EQM(\hat{\theta}_1) < EQM(\hat{\theta}_2)$. A eficiência relativa de $\hat{\theta}_1$ em relação a $\hat{\theta}_2$ é definida como sendo $EQM(\hat{\theta}_1)/EQM(\hat{\theta}_2)$.

Coerência ou Consistência

Um estimador é dito coerente (consistente) para qualquer quantidade muita pequena $\delta > 0$ se a probabilidade de que o desvio absoluto entre θ e θ seja menor que δ tende para 1 quando o número de observações "n" tende ao infinito, isto é:

$$P(|\hat{\theta} - \theta| < \delta) \rightarrow 1$$
, quando $n \rightarrow \infty$

A propriedade acima é equivalente a $\lim_{n\to\infty} \mathsf{EQM}(\hat{\theta}) = 0$ ou então, as duas seguintes,

$$consideradas \ em \ conjunto: \begin{cases} \lim_{n\to\infty} E(\hat{\theta}) = 0, & \text{a tendenciosidade tende a zero e} \\ \lim_{n\to\infty} Var(\hat{\theta}) = 0 \ , & \text{a variância tende a zero.} \end{cases}$$

- Seja $X_1, X_2, ..., X_n$ uma amostra aleatória de uma população de média μ e variância σ^2 .
- · Considere os seguintes estimadores de μ

$$\hat{\Theta}_1 = \frac{1}{n} \sum_{i=1}^n X_i$$
 e $\hat{\Theta}_2 = \frac{X_1 + X_n}{2}$.

Qual deles é mais adequado?

Ambos são não-viciados:

- · Seja $X_1, X_2, ..., X_n$ uma amostra aleatória de uma população de média μ e variância σ^2 .
- · Considere os seguintes estimadores de μ

• Considere os seguintes estimadores de
$$\mu$$

$$\hat{\Theta}_1 = \frac{1}{n} \sum_{i=1}^n X_i \quad \text{e } \hat{\Theta}_2 = \frac{X_1 + X_n}{2}.$$

Qual deles é mais adequado?

• Ambos são não-viciados:
$$E(\hat{\Theta}_1) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{1}{n} \sum_{i=1}^{n} \mu = \mu \quad \text{e} \quad E(\hat{\Theta}_2) = \frac{E(X_1) + E(X_2)}{2} = \frac{\mu + \mu}{2} = \mu.$$

· Contudo,
$$\text{Var}(\hat{\Theta}_1) = \frac{1}{n} \sum_{i=1}^n \text{Var}(X_i) = \frac{1}{n} \sum_{i=1}^n \sigma^2 = \frac{\sigma^2}{n},$$

$$\text{Var}(\hat{\Theta}_2) = \frac{\text{Var}(X_1) + \text{Var}(X_2)}{n} \frac{\sigma^2 + \sigma^2}{n} = \frac{\sigma^2}{n}.$$

 $\cdot \hat{\Theta}_1$ é um melhor estimador para μ .

- No caso de amostra proveniente de distribuição Normal.
 - Média amostral e mediana amostral são não viciadas para estimar a média populacional:

$$E(\overline{X}) = \mu e E(\widetilde{X}) = \mu;$$

• Qual é mais eficiente?

- No caso de amostra proveniente de distribuição Normal.
 - Média amostral e mediana amostral são não viciadas para estimar a média populacional:

$$E(\overline{X}) = \mu e E(\widetilde{X}) = \mu;$$

 Média amostral e mediàná amostral são consistentes para estimar a média verdadeira:

$$\operatorname{Var}(\overline{X}) = \frac{\sigma^2}{n} \operatorname{e} \operatorname{Var}(\widetilde{X}) = \frac{\pi}{2} \frac{\sigma^2}{n};$$

 A média amostral é mais eficiente que a mediana amostral para estimar a média populacional

$$\frac{\operatorname{Var}(\bar{X})}{\operatorname{Var}(\tilde{X})} = \frac{\sigma^2/n}{\frac{\pi}{2} \frac{\sigma^2}{n}} = \frac{2}{\pi} \approx 0,64 < 1$$