Решение задачи

Денисов Никита

18 февраля 2022 г.

Задача

Прибор для выявления брака на фабрике имеет вероятность ошибки 5% (и первого и второго рода), процент брака составляет 5% от всего объёма выпускаемой продукции.

- 1) Какая вероятность того, что мы выявили брак, если прибор выдал положительный результат - "продукция бракованная"?
- 2) Почему же в жизни все-таки используют такие приборы? Что можно было бы изменить в процедуре поиска брака, не меняя точности прибора, так, чтобы вероятность из первого вопроса Р(брак|"+") выросла?
- 3) Какое правило можно сформулировать для выбора точности прибора, зная процент бракованной продукции?

$$p=0.05$$
 — вероятность брака. $q_0=0.05$ — вероятность ложноположительного срабатывания прибора. $q_1=0.05$ — вероятность ложноотрицательно срабатывания прибора.

1. Хотим посчитать
$$P(\text{Брак} \mid +)$$
. Воспользуемся формулой Байеса: $P(\text{Брак} \mid +) = \frac{P(+ \mid \text{Брак}) \cdot P(\text{Брак})}{P(+)}$. $P(+)$ посчитаем по формуле полной вероятности:

$$P(+) = p(1 - q_1) + (1 - p)q_0 = 0.05 \cdot 0.95 + 0.95 \cdot 0.05$$

$$P(+ \mid \text{Брак}) = 1 - q_1 = 0.95$$

Итого, получаем:
$$P(\text{Брак}\mid +) = \frac{P(+\mid \text{Брак}) \cdot p}{P(+)} = \frac{0.95 \cdot 0.05}{2 \cdot 0.95 \cdot 0.05} = \frac{1}{2}$$

2. Такие приборы в жизни используют, чтобы отметать хотя бы какую-то часть бракованных изеделий. Но отвергаются также и изделия без брака. Это все равно лучше, чем допускать все изделия, ведь брак может привести к печальным последствиям.

Если точность прибора изменить нельзя, то можно попробовать запускать прибор несколько раз на каждой продукции. Если наша цель более точно определять бракованная ли деталь, то стоит k раз запускать прибор и в зависимости от количества положительных срабатываний определять бракованная ли деталь.

Пусть мы сделали k запусков на одной продукции и получили q положительных результатов. Определим положительный результат прибора, если $q \ge t(k)$. Тогда посмотрим:

$$P(\text{Брак} \mid +) = \frac{P(+ \mid \text{Брак}) \cdot p}{P(+)}$$

 $P(\mathrm{Брак}\mid +) = \frac{P(+\mid \mathrm{Брак}) \cdot p}{P(+)}$ $P(+) = p \cdot \sum_{q=t(k)}^k {k \choose q} (1-q_1)^q \cdot q_1^{k-q} + (1-p) \cdot \sum_{q=t(k)}^k {k \choose q} q_0^q (1-q_0)^{k-q}$ — формула полной вероятности и перебрали количество положительных срабатываний, которые нас устраивают.

$$P(+ \mid \text{Брак}) = \sum_{q=t(k)}^{k} {k \choose q} (1-q_1)^q \cdot q_1^{k-q}$$
 Хотим $P(\text{Брак} \mid +) = \frac{A}{A+B} \ge x > \frac{1}{2}$, где $A = p \cdot \sum_{q=t(k)}^{k} {k \choose q} (1-q_1)^q \cdot q_1^{k-q}$, $B = (1-p) \cdot \sum_{q=t(k)}^{k} {k \choose q} q_0^q (1-q_0)^{k-q}$

Написал скрипт на Python и проверил какие k,t(k) нам подходят. Перебрал k до 10 и t вплоть до k и подсчитал искомую величину: $\frac{A}{A+B}$

Скрипт выдал результат, что уже при k=2, t(k)=2 величина $\frac{A}{A+B}$ оказывается равна 0.95 — довольно-таки хорошо

Если нужна вероятность больше, то при k=4, t=4 вероятность оказывается равной: 0.99985, а при k=8, t=8: 0.999999998.

3. Теперь зная p определим какие q_0, q_1 нужны для прибора чтобы получить $P(\text{Брак} \mid +) \geq x$. Мы уже выяснили:

$$P(+) = p(1-q_1) + (1-p)q_0$$
 $P(\operatorname{Брак}|+) = \frac{P(+\mid \operatorname{Брак}) \cdot p}{P(+)} = \frac{p(1-q_1)}{p(1-q_1) + (1-p)q_0} \geq x$. Выразим q_0 и определим для него границу при фиксированном q_1 : $\frac{p(1-q_1)(1-x)}{(1-p)x} \geq q_0$ Можем и наоборот, выразить q_1 и определить границу для него при фиксированном q_1 :

Можем и наоборот, выразить q_1 и определить границу для него при фиксированном q_1 : $p-pq_1 \geq -xpq_1 + px + xq_0 - xpq_0 \Leftrightarrow -q_1p(1-x) \geq p(x-1) + q_0x(1-p) \Leftrightarrow -q_1 \geq \frac{p(x-1)+q_0x(1-p)}{p(1-x)} \Leftrightarrow q_1 \leq \frac{p(1-x)-q_0x(1-p)}{p(1-x)}$

Зная эти границы можно экспериментальным путем определить подходящие q_0, q_1 по заданному x, например, написав скрипт.