

**AMENDMENTS**  
**In the Claims**

**Current Status of Claims**

1    1.(original) A composition comprising brine solution including an effective amount of a divalent  
2    cation, at least one pollutant and having a salinity between about 3% and about 15%, where the  
3    effective amount of the divalent cation is sufficient to produce a divalent to monovalent cation mole  
4    ratio of at least 0.05 in the brine solution and where the brine solution is capable of supporting and  
5    sustaining growth of a microbial culture capable of degrading the at least one pollutant.

1    2.(original) The composition of claim 1, wherein the divalent cation is selected from the group  
2    consisting of Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, and mixtures or combinations thereof.

1    3.(original) The composition of claim 1, wherein the divalent cation is selected from the group  
2    consisting of Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, and mixtures or combinations thereof.

1    4.(original) The composition of claim 1, wherein the divalent cation is selected from the group  
2    consisting of Mg<sup>2+</sup>, Ca<sup>2+</sup>, and mixtures or combinations thereof.

1    5.(original) The composition of claim 1, wherein the divalent cation is Mg<sup>2+</sup>.

1    6.(original) A brine solution comprising a divalent to monovalent cation mole ratio of at least  
2    0.05 and having a salinity greater than or equal to about 3%, where the brine solution is capable of  
3    supporting and sustaining microbial growth.

1    7.(original) The composition of claim 6, wherein the divalent cation is selected from the group  
2    consisting of Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, and mixtures or combinations thereof.

1    8.(original) The composition of claim 6, wherein the divalent cation is selected from the group  
2    consisting of Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, and mixtures or combinations thereof.

1    9.(original) The composition of claim 6, wherein the divalent cation is selected from the group

2 consisting of Mg<sup>2+</sup>, Ca<sup>2+</sup>, and mixtures or combinations thereof.

1 10.(original) The composition of claim 6, wherein the divalent cation is Mg<sup>2+</sup>.

1 11.(original) The composition of claim 6, wherein the brine solution has a salinity between about  
2 3% and about 15%.

1 12.(original) The composition of claim 6, wherein the brine solution has a salinity between about  
2 3% and about 13%.

1 13.(original) The composition of claim 6, wherein the brine solution has a salinity between about  
2 3% and about 10%.

1 14.(original) A method comprising the steps of:

2 feeding a contaminated brine solution to a biological reactor containing a mixed bacterial  
3 culture capable of degrading at least one contaminant under anoxic/anacrobic conditions;  
4 adding an effective amount of a divalent cation precursor to the reactor, where the effective  
5 amount of the divalent precursor is sufficient to maintain a divalent to monovalent cation  
6 mole ratio at a numeric value greater than or equal to about 0.05,  
7 degrading the contaminant in the contaminated brine solution for a time and at a temperature  
8 sufficient to reduce a concentration of the contaminant at or below a desired concentration  
9 while maintaining a suitable nutrient environment in the reactor and while maintaining the  
10 ratio greater than or equal to about 0.05.

1 15.(original) The method of claim 14, wherein the reactor is sealed to reduce or eliminate oxygen  
2 from the reactor.

1 16.(original) The method of claim 14, further comprising the step of:

2 sparging or purging the reactor with an oxygen-free gas after feeding the brine solution and  
3 optionally during the degrading step.

1       17.(original) The method of claim 14, wherein the gas is selected from the group of nitrogen,  
2 argon, and mixtures and combinations thereof.

1       18.(original) The method of claim 14, wherein the divalent cation precursor is selected from the  
2 group consisting of a soluble Mg<sup>2+</sup> salt, a soluble Ca<sup>2+</sup> salt, a soluble Sr<sup>2+</sup>, a soluble Ba<sup>2+</sup> salt, and  
3 mixtures or combinations thereof.

1       19.(original) The method of claim 14, wherein the divalent cation precursor is selected from the  
2 group consisting of a soluble Mg<sup>2+</sup> salt, a soluble Ca<sup>2+</sup> salt, a soluble Sr<sup>2+</sup>, and mixtures or  
3 combinations thereof.

1       20.(original) The method of claim 14, wherein the divalent cation precursor is selected from the  
2 group consisting of a soluble Mg<sup>2+</sup> salt, a soluble Ca<sup>2+</sup> salt, and mixtures or combinations thereof.

1       21.(original) The method of claim 14, wherein the divalent cation precursor is a soluble Mg<sup>2+</sup> salt.

1       22.(original) The method of claim 14, wherein the contaminant is selected from the group  
2 consisting of perchlorate, nitrate and mixture or combinations thereof.

1       23.(original) The method of claim 22, wherein the nutrient environment comprises adding an  
2 inorganic energy source or an organic energy source in amounts greater than a stoichiometric amount  
3 of electrons required to reduce the perchlorate and/or nitrate present in the brine solution for  
4 sustained microbial growth during the degrading step.

1       24.(original) The method of claim 23, wherein the inorganic energy source is selected from the  
2 group consisting of H<sub>2</sub> gas, a hydrogen delivery chemical, and mixtures or combinations thereof.

1       25.(original) The method of claim 23, wherein the organic energy source is selected from the group  
2 consisting of acetate, ethanol, methanol, lactate, and mixtures or combinations thereof.

1       26.(original) The method of claim 14, wherein the contaminated brine solution is a perchlorate

and/or nitrate contaminated ion-exchange regenerate brine.

1 27.(original) A method comprising the steps of:

passing a waste water stream including at least one ion-exchangeable pollutant through an ion-exchange resin able of exchanging the pollutant ion for a non-pollutant ion for a predetermined time or until the resin is no longer to exchange the pollutant ion with the non-pollutant ion;

stopping the waste water stream from passing through the resin;

passing a brine solution through the resin for a time sufficient to exchange all or substantially all of the pollutant ion with the non-pollutant ion to form a pollutant contaminated brine solution;

adding an effective amount of a divalent cation to the pollutant contaminated brine solution to adjust a divalent to monovalent cation mole ratio to a numeric value greater than or equal to 0.05 to form a stabilized, pollutant contaminated brine solution;

contacting the stabilized, pollutant contaminated brine solution with an effective amount of a pollutant degrading culture under anaerobic/anoxic conditions for a time and at a temperature sufficient to degrade a concentration of the pollutant to or below a desired concentration to form a crude treated brine solution; and

filtering the crude treated brine solution to remove the culture and to form a treated brine solution.

1 28.(original) The method of claim 27, further comprising the step of:

repeating the step of claim 26, where the brine solution comprises the treated brine solution.

1 29.(original) A method comprising the steps of:

feeding a waste water stream including at least one ion-exchangeable pollutant with a first column including a first ion-exchange resin able of exchanging the pollutant ion for a non-pollutant ion for a predetermined time or until the resin is no longer to exchange the pollutant ion with the non-pollutant ion;

switching the waste water stream feeding from the first column to a second column including a second ion-exchange resin capable of exchanging the pollutant ion for a non-pollutant ion for a predetermined time or until the resin is no longer to exchange the pollutant ion with the non-pollutant ion;

passing a brine solution through the first column for a time sufficient to exchange all or substantially all of the pollutant ion with the non-pollutant ion to form a pollutant contaminated brine solution and to regenerate the first resin;

adding an effective amount of a divalent cation to the pollutant contaminated brine solution to adjust a divalent to monovalent cation mole ratio to a numeric value greater than or equal to 0.05 to form a stabilized, pollutant contaminated brine solution;

contacting the stabilized, pollutant contaminated brine solution with an effective amount of a pollutant degrading culture under anaerobic/anoxic conditions for a time and at a temperature sufficient to degrade a concentration of the pollutant to or below a desired concentration to form a crude treated brine solution;

filtering the crude treated brine solution to remove the culture and to form a treated brine solution:

switching the waste water stream feeding from the second column to first column; and repeating the above-identified steps.

30.(original) The method of claim 27, wherein the first and second ion-exchange resins are the same.