Formul?rio

May 15, 2019

1 Formulário Hidrologia

Clebson Farias

2 Balanço

$$\frac{\Delta S}{\Delta t} = P - Q \tag{1}$$

$$S = S_o + P - Q \tag{2}$$

Onde:

- *S* -> Armazenamento;
- *S*_o -> Armazenamento inicial;
- *P* -> Precipitação (Entrada);
- *Q* -> Vazão (Saída).

3 Água no Solo

3.1 Horton

3.1.1 Infiltração Acumulada

$$f_c(t) = f_1 + (f_0 - f_1)e^{-kt}$$
(3)

- f_c -> Infiltração acumulada;
- f_0 -> Taxa de infiltração inicial;
- *f*₁ -> Taxa de infiltração final;
- *k* -> Parâmetro de decaimento;
- *t* -> Tempo.

3.2 Infiltração - Gree-Ampt

3.2.1 Variação de Umidade

$$\Delta\theta = \theta_e (1 - s_e) \tag{4}$$

Onde:

- $\Delta\theta$ -> Variação de Umidade;
- *theta_e* -> Porosidade Efetiva;
- s_e -> Saturação efetiva inicial.

3.2.2 Infiltração Acumulada

$$F(t) = kt + \psi \Delta \theta \ln(1 + \frac{F(t)}{\psi \Delta \theta})$$
 (5)

Onde:

- F(t) -> Infiltração acumulada;
- *k* -> Condutividade Hidráulica;
- *t* -> Tempo;
- ψ -> Potencial Matricial;
- $\Delta\theta$ -> Variação de Umidade;

3.2.3 Taxa de infiltração

$$f = k(1 + \frac{\psi \Delta \theta}{F(t)}) \tag{6}$$

Onde:

- *f* -> Taxa de infiltração;
- *k* -> Condutividade Hidráulica;

3.2.4 Tempo de encharcamento

$$t_e = \frac{k\psi\Delta\theta}{i(i-k)}\tag{7}$$

Onde:

- *t_e* -> Taxa de infiltração;
- *i* -> Intensidade

4 Água na atmosfera

4.0.1 Tensão de Vapor saturado: e_s :

$$e_s = A * 10^{\frac{7.5T}{237.3+T}} \tag{8}$$

• *A* é o fator de conversão:

-
$$A = 4.58$$
, para mm_{Hg} ;

$$- A = 610.8$$
, para Pa

• *T* é a temperatura em *C*

4.0.2 Tensão de parcial de vapor: e_a :

$$e_a = U_r * e_s \tag{9}$$

Onde:

- U_r Umidade relativa do ar:
- e_s é a tensão de vapor saturado

4.0.3 Umidade específica: q:

$$q = \varepsilon * \frac{e_a}{P} \tag{10}$$

Onde:

- ε é o pesso do ar seco; 0.622
- e_a é a pressão de vapor parcial;
- P é a Pressão

4.0.4 Ponto de Orvalho

$$T = \frac{237.3 \ln(\frac{e}{A})}{7.5 - \ln(\frac{e}{A})} \tag{11}$$

Onde:

- *e* é a pressão de vapor parcial;
- *A* é o fator de conversão

5 Evaporação

5.0.1 Evaporação calculada pelo método do balanço de energia

$$E = \frac{\lambda_u}{\rho_{H_2O}I_u} \tag{12}$$

- *E ->* Evaporação (m/s)
- λ_u -> Radiação liquída (w/m^2);
- *I_u* -> Calor latente de vaporização (J/Kg);
- ρ_{H_2O} -> Densidade de água (kg/m^3) ;

Radiação liquída

$$I_u = 250110^3 - 2370T (13)$$

Onde:

- *I_u* -> Calor latente de vaporização (J/Kg);
- *T* -> Temperatura (řC)

5.0.2 Método Aerodinâmico

$$E = B(e_s e_a) \tag{14}$$

Onde:

- *E* -> E = Evaporação (mm/dia);
- *B* -> Parâmetro em que é introduzido o efeito do vento por expressões empíricas;
- e_s -> Pressão de vapor saturado;
- e_a -> Pressão de vapor do ar.

Parâmetro em que é introduzido o efeito do vento por expressões empíricas

$$B = \frac{0.102u}{[\ln(\frac{z_2}{z_1})]^2} \tag{15}$$

Onde:

- *B* -> Parâmetro em que é introduzido o efeito do vento por expressões empíricas;
- $u \rightarrow Velocidade do vento na altura <math>z_2$ (m/s);
- z₂ -> Altura da medição da velocidade do vento (geralmente é adotado 2 m a partir da superfície);
- z_1 -> Altura de rugosidade da superfície natural.

5.1 Evaporação (Equação de Penman)

5.1.1 Equação de Penman

$$E = \left[\left(\frac{\Delta}{\Delta + \gamma} \right) E_r + \left(\frac{\gamma}{\Delta + \gamma} \right) E_a \right] \tag{16}$$

- *E ->* Evaporação (mm/dia);
- E_r -> Evaporação calculada pelo método do balanço de energia (mm/dia);
- E_a -> Evaporação calculada pelo método aerodinâmico (mm/dia);
- Δ -> Gradiente da curva de pressão de saturação de vapor (Pa/řC);
- γ -> Constante psicrométrica (66,8 Pa/řC);

Gradiente da curva de pressão de saturação de vapor

$$\Delta = \frac{4098e_s}{(237, 3+T)2} \tag{17}$$

Onde:

- Δ -> Gradiente da curva de pressão de saturação de vapor (Pa/řC);
 T -> Temperatura (řC);
 e_s -> Pressao de vapor saturado (Pa);

[]: