

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE170701301

FCC REPORT

(BLE)

Applicant: Grand Electronics INC.

Address of Applicant: 18520 Office Park Dr., Mont. Village, MD 20886, USA

Equipment Under Test (EUT)

Product Name: Child Smart Bracelet

Model No.: CBB01

FCC ID: 2AGNK-CBB01

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 30 Jun., 2017

Date of Test: 30 Jun., to 10 Jul., 2017

Date of report issued: 11 Jul., 2017

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	11 Jul., 2017	Original

Tested by:

Zora Lee Date: 11 Jul., 2017

Test Engineer

Reviewed by: Date: 11 Jul., 2017

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER:	SION	2
3	CON	TENTS	3
4	TES	Г SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	7
	5.7	TEST INSTRUMENTS LIST	8
6	TEST	FRESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED OUTPUT POWER	10
	6.3	OCCUPY BANDWIDTH	12
	6.4	POWER SPECTRAL DENSITY	15
	6.5	BAND EDGE	
	6.5.1		
	6.5.2		
	6.6	Spurious Emission	
	6.6.1		
	6.6.2	Radiated Emission Method	27
7	TEST	T SETUP PHOTO	32
8	EUT	CONSTRUCTIONAL DETAILS	33

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	N/A
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Grand Electronics INC.
Address of Applicant:	18520 Office Park Dr., Mont. Village, MD 20886, USA
Manufacturer/Factory:	SHENZHEN SENCA TECH CO., LTD
Address of Manufacturer/Factory:	Room 202, Bld. F13, F518 Idea Land, Baoyuan Road, Bao'an District, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	Child Smart Bracelet
Model No.:	CBB01
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	PCB Antenna
Antenna gain:	2.71 dBi
Power supply:	DC 3V(CR2032) Batttery

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Report No: CCISE170701301

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Website: http://www.ccis-cb.com

Tel: +86-755-23118282 Fax:+86-755-23116366 Email: info@ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Rad	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018
10	Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
12	Coaxial Cable	N/A	N/A	CCIS0018	02-25-2017	02-24-2018
13	Coaxial Cable	N/A	N/A	CCIS0020	02-25-2017	02-24-2018

Con	Conducted Emission:					
Item	Test Equipment Man	Manufacturer	Model No.	Inventory	Cal. Date	Cal. Due date
iteiii	rest Equipment	Wallulacturei	Wodel No.	No.	(mm-dd-yy)	(mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2.71 dBi.

6.2 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 9.1.1	
Limit:	30dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data:

Test CH	Maximum PK Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-1.37		
Middle	-3.24	30.00	Pass
Highest	-4.82		

Test plot as follows:

Date: 3.JUL.2017 09:50:44

Lowest channel

Date: 3.JUL.2017 09:51:16

Middle channel

Date: 3.JUL.2017 09:51:39

Highest channel

6.3 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 8.1
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.732			
Middle	0.726	>500	Pass	
Highest	0.714			
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.302			
Middle	1.164	N/A	N/A	
Highest	1.098			

Test plot as follows:

Date: 3.JUL.2017 09:59:59

Lowest channel

Date: 3.JUL.2017 10:01:15

Middle channel

Date: 3.JUL.2017 10:02:05

Highest channel

Date: 3.JUL.2017 09:53:41

Lowest channel

Date: 3.JUL.2017 09:54:09

Middle channel

Date: 3.JUL.2017 09:54:31

Highest channel

6.4 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 10.2
Limit:	8 dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-1.82		
Middle	-3.62	8.00	Pass
Highest	-5.18		

Test plots as follow:

Date: 3.JUL.2017 09:53:05

Lowest channel

Date: 3.JUL.2017 09:52:35

Middle channel

Date: 3.JUL.2017 09:52:10

Highest channel

6.5 Band Edge

6.5.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer					
	Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Date: 3.JUL.2017 09:57:12

Lowest channel

Date: 3.JUL.2017 09:56:09

Highest channel

6.5.2 Radiated Emission Method

Test Method: ANSI C63.10: 2013 and KDB558074 D01 DTS Meas Guidance v04 section 12.1 Test Frequency Range: 2.3GHz to 2.5GHz Test site: Measurement Distance: 3m Frequency Detector RBW VBW Remark Above 1GHz RMS 1MHz 3MHz Peak Value RMS 1MHz 3MHz Average Value RMS 1MHz 3MHz Average Value RMS 1MHz 3MHz Average Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degree to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenn tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was turned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degree to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lower that the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quare peak or average method as specified and then reported in a data sheet.	Test Requirement:	FCC Part 15 C	Section 15	5.209	and 15.205			
Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Peak Value RMS 1MHz 3MHz Average Value Frequency Limit (dBuV/m @3m) Remark Above 1GHz 54.00 Average Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenn tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degree to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak value of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quas peak or average method as specified and then reported in a data sheet.	Test Method:							
Receiver setup: Frequency Detector RBW VBW Remark	Test Frequency Range:	2.3GHz to 2.5GHz						
Above 1GHz Peak 1MHz 3MHz Average Value	Test site:							
Above 1GHz Peak	Receiver setup:	Frequency	Detector	r	RBW	V	/BW	Remark
Limit: Frequency Limit (dBuV/m @3m) Remark			Peak		1MHz	3	MHz	Peak Value
Above 1GHz 54.00 Average Value 74.00 Peak Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degree to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lower thar the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quast peak or average method as specified and then reported in a data sheet.		Above IGHZ	RMS				MHz	Average Value
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degree to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lower thar the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quas peak or average method as specified and then reported in a data sheet.	Limit:	Frequen	су	Limi	_,	m)		
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was turned from 0 degrees to 360 degree to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lower that the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.		Above 10	SHz -					
Test setup:	Test Procedure:	the ground to determine to determine to determine to determine the EUT antenna, with tower. 3. The antenthe ground Both horize make the 4. For each search and to find the 5. The test-respecified 6. If the emission of the EUT have 10 depeak or an extension of the EUT have 10 depeak	d at a 3 me ine the positive was set 3 me which was in a height in	eter casition of meters mount is variation of the ent. The ent is table is tem of the ent ent. The ent is table is tem of the enter ent. The enter is table is tem of the enter ent.	he top of a rota amber. The take of the highest is a way from the top died from one maximum val polarizations as turned from the maximum to was turned from the maximum Hole of EUT in peake the could be tred. Otherwiss be re-tested of the take the top the top the tested of the take the top the top the top the top the take the top the take take the take	ole waradiane into of a neter value as of the was a heigh om 0 of the was a stopped the brief by	table 1.9 as rotate tion. erference variable to four r of the fiel arranged phts from degrees tect Funde. e was 10 ped and emissic y one us	5 meters above ed 360 degrees ce-receiving cheight antenna meters above eld strength. nna are set to d to its worst n 1 meter to 4 to 360 degrees action and 0 dB lower than the peak values ons that did not sing peak, quasi-
AE EUT Horn Antenna Tower Ground Reference Plane Test Receiver Angüer Controller	Test setup:	- 130cm			3m Ground Reference Plane			er W
Test Instruments: Refer to section 5.7 for details	Test Instruments:	Refer to sectio	n 5.7 for de	etails				
Test mode: Refer to section 5.3 for details	Test mode:	Refer to sectio	n 5.3 for de	etails				
Test results: Passed	Test results:	Passed						

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : Child Smart Bracelet

: CBB01 Model Test mode : BLE-L mode

Power Rating: DC 3V Environment: Temp:25.5°C Huni:55% 101KPa

Test Engineer: Zora REMARK :

LU	· :								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000	19.26	25.45	4.69	0.00	49.40	74.00	-24.60	Peak
	2390,000	7 37	25.45	4.69	0.00	37.51	54 00	-16.49	Average

Vertical:

Site Condition EUT

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : Child Smart Bracelet

Model : CBB01 Test mode : BLE-L mode Power Rating : DC 3V

Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Zora REMARK :

	Read	Antenna	Cable	Preamp		Limit	Over		
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
MHz	dBu∀	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	dB		
2390.000 2390.000					51.96 37.53				

Test channel: Highest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : Child Smart Bracelet Site Condition

EUT

Model : CBB01 : BLE-H mode Test mode

Power Rating: DC 3V
Environment: Temp:25.5°C Huni:55% 101KPa
Test Engineer: Zora
REMARK:

CEMAR		Antenna Factor			Limit	
3	rreq MHz	 		dBuV/m		
1 2	2483.500 2483.500			51.38 38.59		

Vertical:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : Child Smart Bracelet Condition

: Child Smart Bracelet

Model : CBB01
Test mode : BLE-H mode
Power Rating : DC 3V
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: Zora
REMARK :

шии		Read	Antenna	Cable	Preamo		Limit	Over		
	Freq		Factor						Remark	
-	MHz	dBu₹	dB/m	dB	<u>d</u> B	dBuV/m	dBu√/m	<u>dB</u>		
	2483.500 2483.500									

6.6 Spurious Emission

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 11					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

Date: 3.JUL.2017 10:04:21

30MHz~25GHz

Date: 3.JUL.2017 10:05:08

30MHz~25GHz

Date: 3.JUL.2017 10:02:55

30MHz~25GHz

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 1	5.209	and 15.205					
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9KHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	Detecto	or RBW VB\		W	Remark			
·	30MHz-1GHz	Quasi-pe	eak	120KHz	3001	ΚHz	Quasi-peak Value		
	Above 1GHz	Peak		1MHz	3MHz		Peak Value		
		RMS		1MHz	3M	Hz	Average Value		
Limit:	Frequency		Lin	nit (dBuV/m @	3m)		Remark		
	30MHz-88M			40.0			luasi-peak Value		
	88MHz-216M			43.5			luasi-peak Value		
	216MHz-960		46.0				luasi-peak Value		
	960MHz-1G	Hz	54.0			Quasi-peak Value			
	Above 1GF	lz –							
Test Procedure:	1 The FUT	was plac	-0d 0		f a rot	oting			
rest i rocedure.	Above 1GHz 54.0 Average Value 74.0 Peak Value 1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.								

Below 1GHz:

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) HORIZONTAL : Child Smart Bracelet : CBB01 Condition

EUT

. CDBU1
Test mode : BLE mode
Power Rating : DC 3V
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: Zora
REMARK :

MARK		Read	Antenna	Cable	Preamo		Limit	Over	
	Freq		Factor					Limit	Remark
_	MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	dBu√/m	dBuV/m	dB	
1	30.000	55.62	11.20	0.72	29.98	37.56	40.00	-2.44	QP
2	39.576	34.58	13.40	1.21	29.90	19.29	40.00	-20.71	QP
3	70.090	39.94	10.20	1.52	29.72	21.94	40.00	-18.06	QP
4	95.762	35.15	11.40	2.01	29.55	19.01	43.50	-24.49	QP
1 2 3 4 5	212.270	30.56	11.30	2.86	28.75	15.97	43.50	-27.53	QP
6	531, 964	32, 18	16, 82	3, 79	29, 05	23, 74	46,00	-22.26	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) VERTICAL Condition

EUT : Child Smart Bracelet

Model CBB01 Test mode : CDBUI Test mode : BLE mode Power Rating : DC 3V Environment : Temp:25.5°C Huni:55% 101KPa Test Engineer: Zora REMARK :

Freq						Limit Line	Over Limit	Remark
MHz	dBu∜	<u>dB</u> /π	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
30.424	55.67	11.20	0.78	29.98	37.67	40.00	-2.33	QP
53.131	41.67	13.76	1.32	29.81	26.94	40.00	-13.06	QP
71.832	42.89	9.86	1.56	29.71	24.60	40.00	-15.40	QP
95.762	43.90	11.40	2.01	29.55	27.76	43.50	-15.74	QP
119.018	39.78	10.64	2.16	29.40	23.18	43.50	-20.32	QP
142.824	41.51	8.34	2.43	29.26	23.02	43.50	-20.48	QP
	MHz 30.424 53.131 71.832 95.762 119.018	MHz dBuV 30.424 55.67 53.131 41.67 71.832 42.89 95.762 43.90	MHz dBuV dB/m 30.424 55.67 11.20 53.131 41.67 13.76 71.832 42.89 9.86 95.762 43.90 11.40 119.018 39.78 10.64	MHz dBuV dB/m dB 30.424 55.67 11.20 0.78 53.131 41.67 13.76 1.32 71.832 42.89 9.86 1.56 95.762 43.90 11.40 2.01 119.018 39.78 10.64 2.16	MHz dBuV dB/m dB dB 30.424 55.67 11.20 0.78 29.98 53.131 41.67 13.76 1.32 29.81 71.832 42.89 9.86 1.56 29.71 95.762 43.90 11.40 2.01 29.55 119.018 39.78 10.64 2.16 29.40	MHz dBuV dB/m dB dB dBuV/m 30.424 55.67 11.20 0.78 29.98 37.67 53.131 41.67 13.76 1.32 29.81 26.94 71.832 42.89 9.86 1.56 29.71 24.60 95.762 43.90 11.40 2.01 29.55 27.76 119.018 39.78 10.64 2.16 29.40 23.18	MHz dBuV dB/m dB dB dB uV/m dBuV/m dBuV/m 30.424 55.67 11.20 0.78 29.98 37.67 40.00 53.131 41.67 13.76 1.32 29.81 26.94 40.00 71.832 42.89 9.86 1.56 29.71 24.60 40.00 95.762 43.90 11.40 2.01 29.55 27.76 43.50 119.018 39.78 10.64 2.16 29.40 23.18 43.50	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 30.424 55.67 11.20 0.78 29.98 37.67 40.00 -2.33 53.131 41.67 13.76 1.32 29.81 26.94 40.00 -13.06 71.832 42.89 9.86 1.56 29.71 24.60 40.00 -15.40 95.762 43.90 11.40 2.01 29.55 27.76 43.50 -15.74 119.018 39.78 10.64 2.16 29.40 23.18 43.50 -20.32

Above 1GHz

Test channel:		Lowest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	55.04	35.99	6.80	41.81	56.02	74.00	-17.98	Vertical
4804.00	53.98	35.99	6.80	41.81	54.96	74.00	-19.04	Horizontal
Т	Test channel:		Lowest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	39.18	35.99	6.80	41.81	40.16	54.00	-13.84	Vertical
4804.00	38.75	35.99	6.80	41.81	39.73	54.00	-14.27	Horizontal

Test channel:			Middle		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	55.71	36.38	6.86	41.84	57.11	74.00	-16.89	Vertical	
4884.00	53.69	36.38	6.86	41.84	55.09	74.00	-18.91	Horizontal	
Т	Test channel:		Middle		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	39.89	36.38	6.86	41.84	41.29	54.00	-12.71	Vertical	
4884.00	38.63	36.38	6.86	41.84	40.03	54.00	-13.97	Horizontal	

Test channel:			Highest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	55.45	36.71	6.91	41.87	57.20	74.00	-16.80	Vertical	
4960.00	52.35	36.71	6.91	41.87	54.10	74.00	-19.90	Horizontal	
Т	Test channel:		Highest		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	40.26	36.71	6.91	41.87	42.01	54.00	-11.99	Vertical	
4960.00	38.42	36.71	6.91	41.87	40.17	54.00	-13.83	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.