

УНИВЕРСИТЕТ ИТМО

Эффект Мёссбауэра и его примениния

Работу выполнили

Плотников Антон Виралайнен Константин Группа?????

Санкт-Петербург, 2017

▶ Предположения Дж. У. Рэлея о существовани резонансного рассеяния в атомах (1870 – 1880 гг.).

Дж. У. Рэлей

- ▶ Предположения Дж. У. Рэлея о существовани резонансного рассеяния в атомах (1870 – 1880 гг.).
- Эксперементы Р. У. Вуда (1902 − 1904 гг.).

Дж. У. Рэлей

Р. У. Вуд

- ▶ Предположения Дж. У. Рэлея о существовани резонансного рассеяния в атомах (1870 – 1880 гг.).
- Эксперементы Р. У. Вуда (1902 1904 гг.).
- Объяснение явления флоурисценции теорией Н. Бора (1922 г.).

Дж. У. Рэлей

Р. У. Вуд

Н. Бор

▶ Идея о том, что энергетические уровни ядер подобны электронным уровням атомов в работах Ч. Д. Эллиса (1920-е гг.).

Ч. Д. Эллис

- Идея о том, что энергетические уровни ядер подобны электронным уровням атомов в работах Ч. Д. Эллиса (1920-е гг.).
- Различие атомной и ядерной флоуресценции В. Кун (1927 г.).

Ч. Д. Эллис

- Идея о том, что энергетические уровни ядер подобны электронным уровням атомов в работах Ч. Д. Эллиса (1920-е гг.).
- Различие атомной и ядерной флоуресценции В. Кун (1927 г.).
- Первый успешный эксперимент на ядрах золота-198 (1950 г.).

Ч. Д. Эллис

• Окончательно проблему решил Мёссбауэр

- Структура ядра:
 - "Оболочечная" модель атомного ядра;
 - Ядерная изометрия, открыатя О. Ганом (1921 г.).

- Структура ядра:
 - "Оболочечная" модель атомного ядра;
 - Ядерная изометрия, открыатя О. Ганом (1921 г.).
- Ключевую роль в формировании спектральных линий гамма-спектроскопии играет время жизни изомеров ядер.

- Структура ядра:
 - "Оболочечная" модель атомного ядра;
 - Ядерная изометрия, открыатя О. Ганом (1921 г.).
- Ключевую роль в формировании спектральных линий гамма-спектроскопии играет время жизни изомеров ядер.
- Узость спектральных линий причина неудач всех работ до Мёссбауэра.

- Структура ядра:
 - "Оболочечная" модель атомного ядра;
 - Ядерная изометрия, открыатя О. Ганом (1921 г.).
- Ключевую роль в формировании спектральных линий гамма-спектроскопии играет время жизни изомеров ядер.
- Узость спектральных линий причина неудач всех работ до Мёссбауэра.
- П. Б. Мун предложил компенсировать отдачу ядер при излучении путем механического перемещения источника при его движении навстречу ядрам приемника.

▶ П. Б. Мун предложил компенсировать отдачу ядер при излучении путем механического перемещения источника при его движении навстречу ядрам приемника.

ТУТ ТІКΖ БУДЕТ ПИКЧА

 Мёссбауэр нашел более простой способ, в котором потеря на отдачу предотвращалась с самого начала.

Мёссбауэр добился флуоресценции гамма-лучей, источник
 – атомы радио-активного изотопа метала иридия-191.

Рис.: Установка для измерения резонансного поглощения при низких температурах, использованная Мёссбауэром в его первых экспериментах.

Мёссбауэр добился флуоресценции гамма-лучей, источник

 атомы радио-активного изотопа метала иридия-191.

Рис.: Упрощенная схема Мёссбауэровского спектрометра.

Схема эксперимента

TODO: Пикча, луччше самому нарисовать

• Подтверждение принципа эквивалентности

- Подтверждение принципа эквивалентности
- Измерение магнитных полей в окрестности ядер

- Подтверждение принципа эквивалентности
- Измерение магнитных полей в окрестности ядер
- Исследование свойств кристаллов и ядер

- Подтверждение принципа эквивалентности
- Измерение магнитных полей в окрестности ядер
- Исследование свойств кристаллов и ядер
- Проверка закона сохранения четности

- Подтверждение принципа эквивалентности
- Измерение магнитных полей в окрестности ядер
- Исследование свойств кристаллов и ядер
- Проверка закона сохранения четности
- Химичиские применения:
 - Определение химической связи и строения химических соединений
 - Химическая кинетика
 - Радиационная химия

Применение в минералогии

Заключение

 Открытие эффекта Мёссбауэра, несомненно, явилось большим шагом не только в области физики, но и химии.

Заключение

- Открытие эффекта Мёссбауэра, несомненно, явилось большим шагом не только в области физики, но и химии.
- Метод мёсбауэсской спектроскопии актуален в сочетании с другими методами исследования, позволяет получать новую, ранее недоступную информацию.