Variant Annotation

M7 Bioinformatics
MSc Genomic Medicine
Tues 16th Feb 2016

Simon Topp
simon.topp@kcl.ac.uk
Basic & Clinical Neuroscience
Institute of Psychiatry, Psychology & Neuroscience

Overview

- Annotation Tools
- Transcript choice
- Variant Nomenclature
- Left vs Right alignment issues
- Population Databases
- Pathogenicity Predictors
- Non-coding Variants

Annotation Tools

http://omictools.com/variant-annotation-category

Annotation Tools

- 3 most popular tools:
 - wannovar

– http://wannovar.usc.edu/

- SNPeff

- http://snpeff.sourceforge.net/
- Variant Effect Predictor

– http://www.ensembl.org/Tools/VEP

Also recommended...

(command line only)

- VAT Variant Annotation Tool
 - http://vat.gersteinlab.org/index.php

- VAAST Variant Annotation, Analysis and Search Tool
 - http://www.yandell-lab.org/software/vaast.html

- SNPAAMapper A SNP Amino Acid Mapping tool
 - http://www.ccmb.med.umich.edu/ccdu/SNPAAMapper

Genome Version

- hg18 (NCBI36)
 Mar 2006
 - Deprecated, but used in many older publications and resources
 - If you can't find the variant they refer to, check the small print in the methods and the publication date!
- hg19 (GRCh37) Feb 2009
 - Most commonly used (still)
- hg38 (GRCh38) Dec 2013
 - Better for HLA and repeat-rich regions
 - Very little uptake by scientific community
 - Fewer annotations available mapped to it

Transcripts - Refseq

- Curated by the NCBI
- http://ncbi.nlm.nih.gov/gene
 - NM_nnnnn.n mRNA
 - NR_nnnnn.n non-coding
 - NP_nnnnn.n protein
 - XM_/XR_/XP_ predicted
- Manually curated, high quality, not comprehensive. Some issues in genome mapping have been reported (incorrect location of splice sites in 3% of transcripts)

GAPDH in Refseq

4 Alternately spliced isoforms

3 of them encode the same protein (splicing only affects the UTR)

NM 001256799.2 → NP 001243728.1 glyceraldehyde-3-phosphate dehydrogenase isoform 2

See identical proteins and their annotated locations for NP_001243728.1

Status: REVIEWED

Description Transcript Variant: This variant (2) differs in the 5' UTR and coding region compared to variant 1. These differences cause translation initiation at a downstream AUG and result in an isoform (2) with a shorter N-terminus compared to isoform 1.

Source sequence(s) AF261085, BE893087, HY000136

Consensus CDS CCDS58201.1
UniProtKB/Swiss-Prot P04406

Related ENSP00000380067, OTTHUMP00000174434, ENST00000396858, OTTHUMT00000268066

NM_001289745.1 → NP_001276674.1 glyceraldehyde-3-phosphate dehydrogenase isoform 1

See identical proteins and their annotated locations for NP 001276674.1

Status: REVIEWED

Description Transcript Variant: This variant (3) differs in the 5' UTR, compared to variant 1. Variants 1, 3, and 4 encode the same isoform (1).

Source sequence(s) BE893087, BM763361, HY046784, M33197

 Consensus CDS
 CCDS8549.1

 UniProtKB/Swiss-Prot
 P04406

 UniProtKB/TrEMBL
 V9HVZ4

Related ENSP00000380070, OTTHUMP00000174431, ENST00000396861, OTTHUMT00000268060

NM 001289746.1 → NP 001276675.1 glyceraldehyde-3-phosphate dehydrogenase isoform 1

See identical proteins and their annotated locations for NP 001276675.1

Status: REVIEWED

Description Transcript Variant: This variant (4) differs in the 5' UTR, compared to variant 1. Variants 1, 3, and 4 encode the same isoform (1)

Source sequence(s) BC023632, BE893087, HY004110, HY022295

Consensus CDS CCDS8549.1
UniProtKB/Swiss-Prot
UniProtKB/TrEMBL V9HVZ4

NM 002046.5 → NP 002037.2 glyceraldehyde-3-phosphate dehydrogenase isoform 1

See identical proteins and their annotated locations for NP 002037.2

Status: REVIEWED

Description | Transcript Variant: This variant (1) encodes the longer isoform (1).

Source sequence(s) BC009081, BE893087, HY046784

Transcripts - Ensembl

- Curated by the EBI (www.ensembl.org)
 - ENSTnnnnnnnnnn mRNA
 - ENSPnnnnnnnnnn protein

- Not manually curated. Usually one Ensembl transcript for every uniquely observed splicing pattern. Many are partial fragments of full length transcripts or pre-mRNA with unspliced introns (junk).
- Can result in annotation-overload.

GAPDH in Ensembl

11 Transcripts

Show All	entries			Show/hide col	umns (1 hidden)	Filter				
Name	Transcript ID	bp ♦	Protein	Biotype	CCDS ♦	UniProt ♦	RefSeq	Flags		
GAPDH-001	ENST00000229239	1875	<u>335aa</u>	Protein coding	CCDS8549 ₪	P04406@ V9HVZ4@	<u>NM_002046</u> & <u>NP_002037</u> &	TSL:1 GENCODE basic APPRIS P1		
GAPDH-002	ENST00000396861	1348	<u>335aa</u>	Protein coding	CCDS8549®	P04406@ V9HVZ4@	NM_001289745 & NP_001276674 &	TSL:5 GENCODE basic APPRIS P1		
GAPDH-008	ENST00000396858	1292	<u>293aa</u>	Protein coding	CCDS58201@	<u>P04406</u> 룝	NM_001256799 & NP_001243728 &	TSL:5 GENCODE basic		
GAPDH-003	ENST00000396859	1256	<u>335aa</u>	Protein coding	<u>CCDS8549</u> ₽	<u>P04406</u> & <u>V9HVZ4</u> &	NM_001289746 & NP_001276675 &	TSL:1 GENCODE basic APPRIS P1		
GAPDH-004	ENST00000396856	1266	<u>260aa</u>	Protein coding	-	E7EUT5 ₽	-	TSL:5 GENCODE basic		
GAPDH-201	ENST00000619601	1086	293aa	Protein coding	-	<u>P04406</u> ₽	-	TSL:5 GENCODE basic		
GAPDH-007	ENST00000466525	1720	No protein	Retained intron	-	-	-	TSL:5		
GAPDH-005	ENST00000466588	1363	No protein	Retained intron	-	-	-	TSL:5		
GAPDH-006	ENST00000474249	1333	No protein	Retained intron	-	-	-	TSL:5		
GAPDH-011	ENST00000492719	930	No protein	Retained intron	-	-	-	TSL:3		
GAPDH-010	ENST00000496049	390	No protein	Retained intron	-	-	-	TSL:2		

4 overlap with Refseq 5 have retained introns – probably unspliced pre-mRNA

LRG – Locus Reference Genomic

- "LRG sequences provide a stable genomic DNA framework for reporting mutations with a permanent ID and core content that never changes."
- "Only transcripts with good biological understanding and essential for reporting variants will be included."
- not in widespread use (yet). Not available for every gene (yet) - 1070 to date.
- http://www.lrg-sequence.org/

Canonical Transcripts

- Usually defined as the splice isoform with the longest Open Reading Frame (translated protein)
- Not always clear which isoform is canonical
- NOT necessarily the most abundant isoform
- NOR the one first discovered / most cited in the literature
- NOR the primary sequence in UniProt.
- May not be present in your tissue of interest or relevant to your disease
- Therefore variants must be mapped to all isoforms.

Popular Terminology

- **SNP** Single Nucleotide Polymorphism
- **SNV** Single Nucleotide Variant (preferred)
- **CNV** Copy Number Variant

Mutation – a variant likely to contribute to disease SNP – A (usually common) benign variant

Missense – a single amino acid change Nonsense – A truncated (or extended) protein sequence

HGVS Nomenclature

- Human Genome Variation Society (hgvs.org)
- Standardised naming system for genomic / transcript / protein variants
- Always cite the genome / transcript / protein unique identifier it refers to (with version numbers).
 - g.nnnnnn co-ordinate on chromosome
 - hg19:chr1:g.1234567
 - c.nnnn position in cDNA (A of ATG start codon = c.1)
 - NM_012345.1:c.128A>T / ENST00000012345:c.128A>T
 - p.nnn position in amino acid sequence
 - NP_012534.2:p.P20L / ENSP000000012354:p.P20L

HGVS cDNA variants

- Substitution (SNV only!)
 - c.123A>G
- deletion
 - c.123del
 - c.123delA
 - c.586 591del
 - c.586_591delTGGTCA
- duplication
 - c.123dup
 - c.123dupA
 - c.586_591dup
 - c.586 591dupTGGTCA
- insertion
 - c.123_124insC
 - !NOT! c.123insC
 - c.1086 1087insGCGTGA
- complex indel
 - c.123 136delinsAGT
 - c.123_125delTGAinsACC

- protein coding region
 - c.1637A>G
- in intron (5' half)
 - c.859+12T>C
- in intron (3' half)
 - c.2396-6G>A
- 5' of protein coding region (5' UTR)
 - c.-23C>G
- 3' of protein coding region (3' UTR)
 - c.*143A>T
- intron in 5' UTR (5' of ATG)
 - c.-89-12T>G
- intron in 3' UTR (3' of stop)
 - c.-649+79G>C

HGVS Amino Acid Variants

substitution

- p.Ala23Thr
- p.A23T

stop-gain

- p.Arg105*
- p.R105X * is preferred to X for stop codons

stop-lost

- p.*673R
- p.X673R

frameshift

- p.Arg83fs
- p.Arg83Serfs*15 frameshift changes Pro to Ser, and new stop codon introduced 15 residues downstream.

indel

- p.R123delinsKKK
- p.R123_K136delinsGGQQQQGG

Left vs Right Alignment

HGVS standard is to report variant at most 3' position, relative to transcript. For forward strand genes:

```
M K K K *

REF: CCCATGAAAAAAAA-TGACCC g.15dupA g.15_16insA

VAR: CCCATGAAAAAAAAATGACCC c.12dupA c.12_13insA

M K K K M T p.*5Mfs*?
```

But for most read aligners/variant callers (not all) the standard is to leftshift variants, relative to the genome reference forward strand.

```
M K K K *

REF: CCCATG-AAAAAAAATGACCC g.6_7insA

VAR: CCCATGAAAAAAAAATGACCC c.3_4insA

M K K K M T p.*5Mfs*?
```

Some annotation pipelines correct for this, some don't.

For reverse strand genes, This issue should cancel out

VCF Normalisation Examples

Right-Aligned

Left-Aligned

REF: ATCTTTTTCTA

VAR: ATCTTTT-CTA

VCF: 7 TT/T

ANNOVAR: 8 T/-

HGVS: c.8del

REF:ACTCTCTC--CA

VAR: ACTCTCTCTCA

VCF: 8 C/CTC

ANNOVAR: 9 - /TC

HGVS: c.8 9insTC

ATCTTTTTCTA

ATC-TTTTCTA

3 CT/C

4 T/-

c.4del

A--CTCTCTCCA

ACTCTCTCCA

1 A/ACT

1 -/CT

c.1 2insCT

Multi-allelic Loci

- VCFs have one row per locus
- Annotation output has one row per variant

eg

➤ VCF: A/G,ATC,ATCTC ATCTC/A,ATC,G

➤ ANNOVAR1: A/G A/G

➤ ANNOVAR2: -/TCTC TCTC/-

➤ ANNOVAR3: -/TC TC/-

Can't find your annotated variant in the original VCF? This is probably why.

Detecting False Positives

- Low Read depth (DP)
- Low GQ value (Genotype Quality)
 - Misaligned reads
 - Homopolymer runs (sequencing errors)
 - Left/right alignment
 - Polymorphic InDels microsatellites or longer repeats
 - Close paralogues wrong gene
 - Contamination wrong species

A real-world False Positive

From our exome capture cohort – after annotation and filtering I had the following NOVEL coding variants, giving a highly significant result to the gene in burden tests.

2x chr10:3208567 T / TGCACGCTAGGGAAGAGAGAG

2x chr10:3208567 T / TGCACGCTAGGGAAGAGAGAG

1x chr10:3208567 T / TGCACGCTAGGGAAGAGAGAGAGA

4x chr10:3208567 T / TGCACGCTAGGGAAGAGAGAGAA

However, in ExAC:

Variant: chr10:3208567 T / TGCACGCTAGGGAAGAGAGAGAATG

Population Frequencies

Population _	Allele Count	Allele Number \$	Number of Homozygotes	Allele Frequency			
African	524	3472	15	0.1509			
European (Non-Finnish)	375	16208	6	0.02314			
European (Finnish)	27	1184	0	0.0228			
Latino	44	3608	0	0.0122			
Other	1	276	0	0.003623			
South Asian	27	8630	0	0.003129			
East Asian	1	2538	0	0.000394			
Total	999	35916	21	0.02781			

Other alt alleles in ExAC:

Common polymorphic insertion

Overlapping Genes

Most annotation tools have a heirarchy of significance eg,

stop-lost > splicing > nonsynonymous > UTR > synonymous > intronic > intergenic

There isn't always a clear 'winner' if two genes share exons

Population Databases

dbSNP

- NCBI repository for all reported small variants.
- 87 million human variants in version 146
- dbSNP ids: rsnnnnn
- One entry can encompass multiple variants
- http://ncbi.nlm.nih.gov/snp

• **1000** genomes (1000g)

- Entire genome sequence and variants from ~2,500 people across 25 selected population groups.
- http://www.ncbi.nlm.nih.gov/variation/tools/1000genomes
- ESP/EVS (Exome Sequencing Project / Exome Variant Server)
 - Exome variants from 6,300 people (4,300 European-American & 2,000 African-American)
 - http://evs.gs.washington.edu/EVS

Population Databases

- ExAC (Exome Aggregation Consortium)
 - Exome variants from ~61,000 people. 50% Are Non-Finnish Europeans. Remainder divided between South Asian, East Asian, Finnish, African, Latino.
 - http://exac.broadinstitute.org

UK10K

- Exome variants from 3,700 UK individuals
- http://www.uk10k.org

Cosmic

- Somatic variants from cancer studies
- http://cancer.sanger.ac.uk

ClinVar

- Variants believed to be pathogenic
- http://www.ncbi.nlm.nih.gov/clinvar

dbNSFP

database for Nonsynonymous SNPs' Functional Predictions

Originally every competing annotation tool used its own derived databases for variant annotations.

Now most obtain them from a single 3rd party source – dbNSFP http://sites.google.com/site/jpopgen/dbNSFP

Pathogenicity Predictors

	ANNOVAR VEP		SNPEff	Data		
GERP++	Х	X	?	DNA Conservation		
LRT	X	X	?	DNA Conservation		
phastCons	X	X	?	DNA Conservation		
phyloP	X	X	?	DNA Conservation		
SIFT	X	X	?	DNA Conservation		
SiPhy	Х	X	?	DNA Conservation		
BLOSUM		X	?	AA Conservation		
FATHMM	Χ	X	?	AA Conservation		
MutationAssessor	X	X	?	AA Conservation		
PolyPhen	Х	X	?	AA Conservation		
Provean	X	X	?	AA Conservation		
CADD	Х	X	?	Meta		
ConDel		X	?	Meta		
RadialSVM	Х	X	?	Meta		
MetaLR	X	X	?	Meta		
VEST3	Χ	X	?	Meta		
DANN	X	X	?	Meta		
MutationTaster	Χ	X	?	AI classifier		
MaxEnt		X	?	Splicing		
ADA	X	?	?	Splicing		
RF	X	?	?	Splicing		
LoFtool		X	?	NMD		
miRNA	X	X	?	miRNA		

Prediction Assessment

- Independent benchmarking of 20 Annovar-derived prediction tools (Simon Topp, 2016).
- Percentage of variants classed as "Damaging", based on 950 validated pathogenic nonsynonymous mutations (True Damaging) vs ~40,000 private ExAC variants (Random).
- FATHMM did best, followed by several meta-analysis methods.
- PolyPhen and SIFT performed poorly.

	FATHMM	SVM	LR	VEST3	MutationAssessor	CADD	Provean	SIFT	MutationTaster	PP2_HDIV	LRT	PP2_HVAR	DANN	FATHMM_MKL	SIPHY	PHASTCONS7	PHASTCONS20	GERPrs	PHYLOP7	PHYLOP20
Optimised Threshold	<= -1.21	>= -0.12	>= 0.43	>= 0.73	>= 2.39	>= 24.8	>= -2.9	<= 0.014	A or D	>= 0.99	D	>= 0.78	>= 0.99	>= 0.84	>= 12.23	>= 0.83	>= 0.93	>= 3.84	>= 0.77	>= 0.84
True Damaging (%)	87.1	75.8	78.6	77.5	52.5	66.1	64.5	64.6	92.4	61.4	76.7	65.5	77.2	79.5	69.9	87.1	77.5	76.3	81.5	81.1
Random (%)	28.1	19.4	22.2	25.3	19.9	33.6	32.6	35.6	65.8	36.7	52.3	41.2	54.4	58.0	50.2	68.2	59.7	61.2	68.3	69.0
Difference (%)	59.0	56.4	56.4	52.2	32.6	32.5	31.9	29.0	26.6	24.7	24.4	24.3	22.8	21.5	19.7	18.9	17.8	15.1	13.2	12.1

Other benchmarks have shown DANN > CADD > FATHMM

http://www.enlis.com/blog/2015/03/17/the-best-variant-prediction-method-that-no-one-is-using

Also need to consider...

- Active Sites.
- Post Translational Modification Sites.
- Amyloidogenic / Aggregation-Prone Regions.
- Secondary structure elements (creation and destruction).
- Protease cleavage sites.
- Transmembrane regions.
- Subcellular targeting signals.
- Etc...

Splice Sites

Many tools only annotate "essential splice" or "near splice". Some incorporate more sophisticated predictions.

Splicing can also be affected by Exonic Splicing Enhancer (ESE) motifs or Exonic Splicing Suppressor (ESS) motifs, .

Splice Site Predictors

dbscSNV

assesses variants:

- ▶11-base region near the 5' ("donor") end of each intron
- ▶14-base region near the 3' ("acceptor") end of each intron
- "Essential" splice sites excluded

Al consensus of 6 splice site prediction tools (including **MaxEnt**) comparing reference vs variant derives 2 output scores:

RF (Random Forest AI)

ADA (AdaBoost AI)

Score > 0.6 implies probable alteration of a splice site

Splice Site variants

Impact depends heavily on reading frame (insertion/deletion, frameshift?)

Nonsense Mediated Decay

- Premature Termination Codons (PTC) are normally degraded by the NMD pathway.
- Complete knock-out of the gene from one allele.
- Cells can compensate via feedback loops, and increase expression of remaining allele.
- Hence Nonsense mutations are more likely to cause recessive rather than dominant disorders.
- Can bypass NMD if the PTC is in the last exon, possibly producing a misfolded or non functional protein.

Promoters

- Region upstream of (and often overlapping) the 5' exon of the gene.
- Binding sites for transcription factors, that control the expression of the gene.
- Some annotation tools attempt to map to these
 - Predicted, conserved across species.
 - Validated, ENCODE experimental results.
- Impact of a variant often uncertain and difficult to validate experimentally

3'UTR

- Most common variant of interest in 3' UTRs are those impacting micro RNA (miRNA) binding sites.
- miRNAs target transcript for degradation, lowering absolute expression levels.
- Some annotation tools attempt to map to these binding sites, but most are only predicted, and the impact of a variant uncertain.

Non-coding RNAs

- Many thousands discovered to date.
- Often within introns of coding genes.
- Very poorly understood.
- Can be spliced.
- Opposite strand to 'host' gene could have a regulatory function
- Very few have had pathogenic variants identified within them.