RStudio Project Report

Author: The Vinh (Vin) Ha

Study on Traffic dataset:

a) Correlation plot and matrix, comments on relationships of predictors and response:

```
traffic = read.csv('data/traffic.csv', header = TRUE)
pairs(traffic, panel = panel.smooth)
```


cor(traffic)

```
##
                            transport
                                                                        fuel
                     spi
                                              road
                                                        weather
              1.00000000 -0.472909967 -0.303836850
                                                    0.66672345 -0.138153417
## transport -0.47290997 1.000000000 -0.005714728 -0.16971072
                                                                 0.240947972
             -0.30383685 -0.005714728
## road
                                       1.000000000
                                                    0.12495993
                                                                 0.043675635
## weather
              0.66672345 -0.169710717
                                       0.124959926
                                                    1.00000000
                                                                 0.110531767
             -0.13815342  0.240947972  0.043675635  0.11053177
                                                                 1.000000000
## fuel
```

- The response variable spi has a strong negative relationship with the predictor transport; a weak negative relationship with the predictor road; a strong positive relationship with the predictor weather; and no obvious relationship with both the predictors fuel and wind.
- There does not seem to be a relationship between the predictors themselves.

b) Fit full model and estimate the impact of weather on spi with 95% CI:

```
M1 = lm(spi ~ ., data = traffic)
summary(M1)
##
## Call:
## lm(formula = spi ~ ., data = traffic)
##
## Residuals:
##
       Min
                  1Q
                     Median
                                    3Q
                                            Max
## -18.1596 -4.9415
                      0.1278
                               5.1686 21.7415
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 62.8071
                           7.4080
                                   8.478 1.27e-11 ***
                            0.4611 -4.717 1.63e-05 ***
## transport
               -2.1750
                           0.4365 -5.520 9.04e-07 ***
## road
               -2.4097
## weather
               4.2456
                            0.4473
                                   9.492 2.92e-13 ***
               -3.6145
                           2.2759 -1.588
                                             0.118
## fuel
               -0.1358
                           0.1764 -0.769
                                             0.445
## wind
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.913 on 56 degrees of freedom
## Multiple R-squared: 0.7405, Adjusted R-squared: 0.7174
## F-statistic: 31.96 on 5 and 56 DF, p-value: 3.039e-15
summary.M1 = summary(M1)
sqrt(diag(summary.M1$cov.unscaled * summary.M1$sigma^2))[4]
##
     weather
## 0.4472731
qt(1 - 0.05/2,56)
```

[1] 2.003241

The require CI is:

$$\hat{\beta}_{\text{weather}} \pm t_{n-p,1-\frac{\alpha}{2}} \operatorname{se}(\hat{\beta}_{\text{weather}}) = \hat{\beta}_{\text{weather}} \pm t_{56,0.975} \operatorname{se}(\hat{\beta}_{\text{weather}}) = 4.2456 \pm 2.003241 \times 0.4472731 = (3.349604, 5.141596)$$

That is, we are 95% confident that for every percentage increase in relative **weather**, the **spi** concentration will increase between 3.349604 and 5.141596 on average.

c) Conduct F-test for overall regression and examine relationship between predictors and response:

Theorical Model is:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i4} + \beta_5 X_{i5} + \epsilon_i, \quad i = 1, 2, \dots, n$$

- Y_i is the response variable spi
- X_{ij} is the are the predictors variables for the i-th observation:
 - $-X_{i1} = \text{annual mean } transport \text{ of test locations}$
 - $-X_{i2} = \text{annual mean } road \text{ of test locations}$
 - $-X_{i3} = \text{annual mean } weather \text{ of test locations}$
 - $-X_{i4} = \text{annual mean } fuel \text{ of test locations}$
 - $-X_{i5} = \text{annual mean } \boldsymbol{wind} \text{ of test locations}$
- $\epsilon \sim \mathcal{N}(0, \sigma^2)$ denotes the random variation with constant variance

Now we conduct the F-test:

- Hypotheses: $H_0: \beta_1 = \ldots = \beta_5 = 0$ vs $H_1:$ not all $\beta_i = 0$, for $i = 1, 2, \ldots, 5$
- Standard R output ANOVA table:

anova(M1)

```
## Analysis of Variance Table
##
## Response: spi
##
             Df Sum Sq Mean Sq F value
                                           Pr(>F)
              1 4742.6 4742.6 48.2656 4.228e-09 ***
## transport
                        1992.7 20.2800 3.441e-05 ***
## road
              1 1992.7
## weather
              1 8651.9
                        8651.9 88.0507 4.355e-13 ***
## fuel
                 258.1
                         258.1 2.6264
                                           0.1107
                  58.2
                          58.2
                                0.5921
                                           0.4449
## wind
## Residuals 56 5502.6
                          98.3
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

- Note the RegressionSS = 4742.6 + 1992.7 + 8651.9 + 258.1 + 58.2 = 15703.5
- Therefore the Mean Squared Reg = Reg SS / Reg df = 15703.5/5 = 3140.7
- Test statistics: $F_{obs} = MS_{Reg}/MS_{Res} = 3140.7/98.26094 = 31.96285$
- The null distribution for the test statistics is: $F_{5,56}$
- P-value: $P(F_{5.56} \ge 31.96285) = 0 = 3.0386681751212669e 15 < 0.05$
- As the P-value is small:

- (Statistical) There is enough evidence to reject H_0
- (Contextual) There is significant linear relationship between spi and at least one of the 4 predictor variables.

d) For the diagnostics:

```
par(mfrow = c(1,2))
plot(M1, which = 1:2)
```



```
par(mfrow = c(1,3))
plot(resid(M1) ~ transport, data = traffic, xlab = "transport", ylab = "Residuals")
abline(h = 0, lty = 2)
plot(resid(M1) ~ road, data = traffic, xlab = "road", ylab = "Residuals")
abline(h = 0, lty = 2)
plot(resid(M1) ~ weather, data = traffic, xlab = "weather", ylab = "Residuals")
abline(h = 0, lty = 2)
```



```
par(mfrow = c(1,2))
plot(resid(M1) ~ fuel, data = traffic, xlab = "fuel", ylab = "Residuals")
abline(h = 0, lty = 2)
plot(resid(M1) ~ wind, data = traffic, xlab = "wind", ylab = "Residuals")
abline(h = 0, lty = 2)
```


- The quantile plot of residuals look approximately linear, so the normality assumption for residuals is appropriate
- There is no obvious pattern in any of the residual plots so it appears the linearity and constant variance assumptions of the multiple linear model are

e) Find R2:

• Here $R^2 = 0.741 = 74.1\%$, which is a goodness of fit metric. It means 74,1% of the variation in spi is explained by the full linear regression model.

f) Find best regression model:

summary(M1)

```
##
## Call:
   lm(formula = spi ~ ., data = traffic)
##
##
   Residuals:
##
        {\tt Min}
                                        3Q
                    1Q
                         Median
                                                 Max
   -18.1596
              -4.9415
                         0.1278
                                   5.1686
                                            21.7415
##
##
## Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
                          7.4080
                                  8.478 1.27e-11 ***
## (Intercept) 62.8071
## transport
               -2.1750
                           0.4611 -4.717 1.63e-05 ***
               -2.4097
## road
                           0.4365 -5.520 9.04e-07 ***
## weather
               4.2456
                           0.4473
                                   9.492 2.92e-13 ***
               -3.6145
                           2.2759 -1.588
## fuel
                                            0.118
               -0.1358
                          0.1764 - 0.769
                                            0.445
## wind
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.913 on 56 degrees of freedom
## Multiple R-squared: 0.7405, Adjusted R-squared: 0.7174
## F-statistic: 31.96 on 5 and 56 DF, p-value: 3.039e-15
```

• wind has the highest P-value so remove it first

```
M2 = update(M1, ... - wind)
summary(M2)
##
## Call:
## lm(formula = spi ~ transport + road + weather + fuel, data = traffic)
## Residuals:
       \mathtt{Min}
                 1Q
                      Median
                                    ЗQ
## -18.9347 -4.2440
                     0.0528
                                5.0544 21.4515
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 61.1610
                           7.0669
                                    8.655 5.69e-12 ***
                            0.4550 -4.672 1.86e-05 ***
## transport
               -2.1257
## road
               -2.4372
                            0.4335 -5.622 5.92e-07 ***
## weather
                4.2565
                            0.4454
                                    9.555 1.94e-13 ***
## fuel
               -3.6853
                           2.2659 - 1.626
                                             0.109
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.877 on 57 degrees of freedom
## Multiple R-squared: 0.7378, Adjusted R-squared: 0.7194
## F-statistic: 40.09 on 4 and 57 DF, p-value: 5.959e-16
```

• fuel still has large P-value so remove it

```
M3 = update(M2, . ~ . - fuel)
summary(M3)

##
## Call:
## lm(formula = spi ~ transport + road + weather, data = traffic)
##
## Residuals:
## Min 1Q Median 3Q Max
```

```
## -21.672 -5.643
                     1.067
                             4.656 23.164
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
               51.7370
                            4.1027
                                    12.611 < 2e-16 ***
                                    -5.218 2.54e-06 ***
                -2.3216
                            0.4449
## transport
                                    -5.590 6.40e-07 ***
## road
                -2.4563
                            0.4394
## weather
                 4.1450
                            0.4463
                                     9.286 4.48e-13 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 10.02 on 58 degrees of freedom
## Multiple R-squared: 0.7256, Adjusted R-squared: 0.7114
## F-statistic: 51.12 on 3 and 58 DF, p-value: 2.724e-16
```

• In model M3 although all predictors are significant, the value of R^2 adjust decrease, which indicates that the recently removed predictor **fuel** has contribution to the model. Therefore, we will stop at the final model M2.

$$\hat{Y} = 61.16096 - 2.12565X_1 - 2.43721X_2 + 4.25645X_3 - 3.68533X_4$$

g) Explain R2 and R2 adjust:

• The R2 goodness of fit metric always decreases/increases when a predictor is removed/added from/into the model. The adjusted R2 has a penalty for the number of predictors in the model. So it will sometimes increase when a predictor is removed. In this case, from the full to final model, the R2 decreases from 74.1% to 73.8% but the adjusted R2 increases from 71.7% to 71.9%.

Study on Cake dataset:

- a) Balanced study checking and explain:
 - A study is balanced if there are equal number of replicates across all the levels factors in the study.
 - We can check replicates by:

```
cake = read.csv('data/cake.csv', header = TRUE, stringsAsFactors = TRUE)
table(cake[, c("Recipe", "Temp")])
```

```
##
          Temp
   Recipe 175C 185C 195C 205C 215C 225C
##
              14
                    14
                          14
                                14
                                      14
                                            14
##
         В
              14
                    14
                          14
                                14
                                      14
                                            14
         C
##
              14
                    14
                          14
                                14
                                      14
                                            14
```

• From the above we can see that the design is balanced with an equal number of replicates for each combination of levels of the two factors.

b) Preliminary graphs that investigate different features of the data:

with(cake, interaction.plot(Temp, Recipe, Angle))

- From the boxplot, we can see that the assumption of equal variance among levels seems approximately valid due to the similar box sizes.
- From the interaction plot we can see there is non-parallel lines for the means of each group at different levels of the independent variables, this indicates a significant interaction effect between the two independent variables.

c) Interaction model:

• The Two-Way ANOVA model with interaction is:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$$

- The parameters are:
 - Y_{ijk} : the reponse breaking angle of the cake
 - $-\alpha_i$: the **Recipe** effect, there are 3 levels: A, B, C
 - $-\beta_{j}$: the **Temp** effect, there are 6 levels: 175C, 185C, 195C, 205C, 215C, 225C
 - $-\gamma_{ij}$: the interaction effect between **Recipe** and **Temp**
 - $-\epsilon_{ijk} \sim \mathcal{N}(0, \sigma^2)$: the unexplained variation

d) Study the effect of Recipe and Temp on Angle:

• We will conduct a hypotheses test:

```
H_0: \gamma_{ij} = 0 for all i, jH_1: at least one \gamma_{ij} \neq 0
```

• Now we fit the interaction model:

```
cake.int = lm(Angle ~ Recipe * Temp, data = cake)
anova(cake.int)
## Analysis of Variance Table
##
## Response: Angle
##
                    Sum Sq Mean Sq F value
                                              Pr(>F)
                            422.38
                                     4.2762 0.014998 *
## Recipe
                     844.8
                 5
                                     5.1228 0.000177 ***
## Temp
                    2530.1
                             506.01
## Recipe:Temp
                10
                     635.6
                              63.56
                                     0.6435 0.775632
## Residuals
               234 23113.8
                              98.78
##
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

- Since the P-value is 0.775632 > 0.05. we do not have enough evidence to reject H_0 . We can see that the interaction term is insignificant. Therefore, this is not the final model yet.
- We should validate the interaction model with diagnostic plots:

```
par(mfrow = c(1:2))
plot(cake.int, which = 1:2)
```


• The residuals are close to linear in the QQ-plot, and so the normal assumption should be valid. The residual plot seems to show equal spread around the fitted values and so the constant variance assumption is also appropriate.

e) Repeat test analysis for the main effects:

• We will conduct hypotheses tests for main effects:

```
H_0: \alpha_i = 0 for all i against H_1: \alpha_i \neq 0 \\ H_0: \beta_j = 0 for all j against H_1: \beta_j \neq 0
```

• Now we refit the model without interaction term:

```
cake.main = lm(Angle ~ Recipe + Temp, data = cake)
anova(cake.main)
## Analysis of Variance Table
##
## Response: Angle
##
             Df
                 Sum Sq Mean Sq F value
                                            Pr(>F)
## Recipe
                   844.8 422.38 4.3396 0.0140636 *
## Temp
               5
                 2530.1
                         506.01 5.1988 0.0001489 ***
## Residuals 244 23749.4
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
par(mfrow = c(1,2))
plot(cake.main, which = 1:2)
```


- The result of ANOVA table shows that the P-values for both Recipe and Temp are smaller than 0.05, which help reject all H_0 above and indicates that the main effects are significant.
- Again, the residuals are close to linear in the QQ-plot, and so the normal assumption should be valid, and the residual plot seems to show equal spread around the fitted values and so the constant variance assumption is also appropriate.

f) Conclusion on effect:

- Overall, the effect of *Recipe* and *Temp* on the quality of cakes *Angle* are not depend on each other since the interaction term is insignificant. However, these effects separately have significant impact on the response *Angle*, that is, *Angle* seems to be higher with *Recipe* A and B, within the *Temp* ranges of 195C, 215C, 225C.
- We can interpret the main effects separately since there is no significant interaction effect them.