Correlation

- · describes to what extent two variables are related
- · does not immediately mean causality
 - e.g. correlation between shark attacks and ice cream sales
 - * shark attacks do not cause ice cream sales
 - * ice cream sales do not cause ice cream sales
 - * both are caused by third variable summer/heat

Pearson Correlation

• correlation between two quantitive variables

$$r_{XY} = rac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^n (X_i - \overline{X})^2} \sqrt{\sum_{i=1}^n (Y_i - \overline{Y})^2}}$$

- . \bar{X} , \bar{Y} = average of X,Y respectively
- correlation coefficient r
 - describes strength of relation ship between X and Y
 - r=-1:
 - * perfect descending linear relationship
 - * high X <==> low Y
 - 0:
- * variables not systematically related
- * high X <==> high or low Y
- 1:
- * perfect ascending linear relationship
- * high X <==> high Y
- · correlation threshold
 - threshold depends on domain
 - different for each use case
- · large population but small sample size
 - likelihood of correlation within subset
 - even though no correlation within whole population
 - null hypothesis
 - We want this likelihood to be small! Typical threshold values for "small enough" are p<0.05, p<0.01, p<0.005

Linear Regression

• approximates linear function between linearly correlated data

$$-y = a + bx$$

- underlying assumption
 - never know all data
 - we just have training data
 - keep part of data for testing afterwards
- optimisation criterion
 - method of least squares
 - see [[NRLA]] script

Optimisation criterion: Minimal least squares error –minimal sum of distances (in whichever direction) of points to line.

10**A**V

Regression line: y = a + bx

Slope
$$b = \frac{N \sum xy - \sum x \sum y}{N \sum x^2 - (\sum x)^2}$$

OR $b = r \left(\frac{s_y}{s_y}\right)$ with r the correlation coefficient

This method minimizes the sum of the squared errors.

Error = difference between the estimated y-value (y=a+bx) for a given x value, and the real/measured y-value in the sample data for the same x value.

- non-linear regression curve fitting
 - fitting non-linear function to data

Example graph of a logistic regression curve fitted to data. The curve shows the probability of passing an exam (binary dependent variable) versus hours studying (scalar independent variable). See § Example for worked details.

- logistic regression
 - fitting log function to continous independent data
 - and dichotomous (zweigeteilt) out come data
 - classification method

Prediction with Correlation and Regression

- estimate value y_i , given x_i using regression line
 - $-y_i$ dependent outcome variable
 - x_i independent input variable

[[Machine Learning]]