tb_cocotb_axi_lite.v

AUTHORS

JAY CONVERTINO

DATES

2025/04/01

INFORMATION

Brief

Test bench wrapper for cocotb

License MIT

Copyright 2025 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.BUS_WIDTH

tb_cocotb

```
module tb_cocotb #(
parameter
ADDRESS_WIDTH
=
32,
parameter
BUS_WIDTH
=
4,
parameter
CLOCK_SPEED
=
100000000,
parameter
```

```
BAUD_RATE

= 115200, parameter
PARITY_TYPE

= 0, parameter
STOP_BITS

= 1, parameter
DATA_BITS

= 8, parameter
RX_BAUD_DELAY

= 0, parameter
TX_BAUD_DELAY

= 0) ( input aclk, input arstn, input s_axi_awvalid, input [ADDRESS_WIDTH-1:0]
```

AXI Lite based uart device.

Parameters

ADDRESS_WIDTH Width of the axi address bus

parameter

BUS_WIDTH Number of bytes for the data bus.

parameter

CLOCK_SPEED This is the aclk frequency in Hz

parameter

BAUD_RATE Serial Baud, this can be any value including non-standard.

parameter

PARITY_TYPE Set the parity type, 0 = none, 1 = even, 2 = odd, 3 = mark, 4 = space.

parameter

STOP_BITS Number of stop bits, 0 to crazy non-standard amounts.

parameter

DATA_BITS Number of data bits, 1 to crazy non-standard amounts.

parameter

RX_BAUD_DELAY Delay in rx baud enable. This will delay when we sample a bit (default is midpoint

rameter when rx delay is 0).

TX_BAUD_DELAY Delay in tx baud enable. This will delay the time the bit output starts.

parameter

Ports

aclk Clock for all devices in the core

arstn Negative reset
s_axi_awvalid Axi Lite aw valid
s_axi_awaddr Axi Lite aw addr
s_axi_awprot Axi Lite aw prot
s_axi_awready
s_axi_wvalid Axi Lite w valid
s_axi_wdata Axi Lite w data

s_axi_wstrb Axi Lite w strb Axi Lite w ready s_axi_wready s_axi_bvalid Axi Lite b valid s_axi_bresp Axi Lite b resp s_axi_bready Axi Lite b ready s_axi_arvalid Axi Lite ar valid s_axi_araddr Axi Lite ar addr Axi Lite ar prot s_axi_arprot Axi Lite ar ready s_axi_arready s_axi_rvalid Axi Lite r valid s_axi_rdata Axi Lite r data Axi Lite r resp s_axi_rresp s_axi_rready Axi Lite r ready Interrupt when data is received irq

tx transmit for UART (output to RX)
rx receive for UART (input from TX)

INSTANTIATED MODULES

dut

```
axi_lite_uart_lite #(

ADDRESS_WIDTH(ADDRESS_WIDTH),

BUS_WIDTH(BUS_WIDTH),

CLOCK_SPEED(CLOCK_SPEED),

BAUD_RATE(BAUD_RATE),

PARITY_TYPE(PARITY_TYPE),

STOP_BITS(STOP_BITS),

DATA_BITS(DATA_BITS),

RX_BAUD_DELAY(RX_BAUD_DELAY),

TX_BAUD_DELAY(TX_BAUD_DELAY)
) dut ( .aclk(aclk), .arstn(arstn), .s_axi_awvalid(s_axi_awvalid), .s_axi_aw
```

Device under test, axi_lite_uart_lite