CMPE 257 Machine Learning Spring 2019

HW#3 Due April 8th, 11:59 PM, on Canvas

1. (15 points) Problem 8.2 from the textbook e-Chapters

Problem 8.2 Consider a data set with three data points in \mathbb{R}^2 :

$$X = \begin{bmatrix} 0 & 0 \\ 0 & -1 \\ -2 & 0 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \end{bmatrix}$$

Manually solve (8.4) to get the optimal hyperplane (b^*, \mathbf{w}^*) and its margin.

minimize:
$$\frac{1}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}$$
 (8.4) subject to: $y_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b) \ge 1$ $(n = 1, \dots, N)$.

2. (**15 points**) Problem 8.4 from the textbook e-Chapters

Problem 8.4 Set up the dual problem for the toy data set in Exercise 8.2. Then, solve the dual problem and compute α^* , the optimal Lagrange multipliers.

Exercise 8.2

Consider the data below and a 'hyperplane' (b,\mathbf{w}) that separates the data.

$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 1.2 \\ -3.2 \end{bmatrix} \quad b = -0.5$$

3. (45 points) Problem 8.5 from the textbook e-Chapters (a) (b) (c) (d). Submit ipynb files.

Problem 8.5 [Bias and Variance of the Optimal Hyperplane] In this problem, you are to investigate the bias and variance of the optimal hyperplane in a simple setting. The input is $(x_1, x_2) \in [-1, 1]^2$ and the target function is $f(\mathbf{x}) = \operatorname{sign}(x_2)$.

The hypothesis set \mathcal{H} contains horizontal linear separators $h(\mathbf{x}) = \mathrm{sign}(x_2 - a)$, where $-1 \leq a \leq 1$. Consider two algorithms:

Random: Pick a random separator from \mathcal{H} .

SVM: Pick the maximum margin separator from \mathcal{H} .

- (a) Generate 3 data point uniformly in the upper half of the input-space and 3 data points in the lower half, and obtain g_{Random} and g_{SVM} .
- (b) Create a plot of your data, and your two hypotheses.
- (c) Repeat part (a) for a million data sets to obtain one million Random and SVM hypotheses.
- (d) Give a histogram of the values of $a_{\sf Random}$ resulting from the random algorithm and another histogram of $a_{\sf SVM}$ resulting from the optimal separators. Compare the two histograms and explain the differences.

- **4.** (**45 points**) Problem 8.13 from the textbook e-Chapters (a) (b) (c), and
- (d) Use SVM to find the classifier and compare the results with (a) and (c). Submit ipynb files.

Problem 8.13 The data for Figure 8.6(b) are given below:

\ '	
$y_n = +1$	$y_n = -1$
	(0.491, 0.920)
(-0.494, 0.363)	(-0.892, -0.946)
(-0.311, -0.101)	(-0.721, -0.710)
(-0.0064, 0.374)	(0.519, -0.715)
(-0.0089, -0.173)	(-0.775, 0.551)
(0.0014, 0.138)	(-0.646, 0.773)
(-0.189, 0.718)	(-0.803, 0.878)
(0.085, 0.32208)	(0.944, 0.801)
(0.171, -0.302)	(0.724, -0.795)
(0.142, 0.568)	(-0.748, -0.853)
	(-0.635, -0.905)

Use the data on the left with the 2nd and 3rd order polynomial transforms Φ_2,Φ_3 and the pseudo-inverse algorithm for linear regression from Chapter 3 to get weights $\tilde{\mathbf{w}}$ for your final final hypothesis in \mathcal{Z} -space. The final hypothesis in \mathcal{X} -space is:

$$g(\mathbf{x}) = \operatorname{sign}(\tilde{\mathbf{w}}^{\mathsf{T}} \Phi(\mathbf{x}) + \tilde{b}).$$

(a) Plot the classification regions for your final hypothesis in \mathcal{X} -space. Your results should look something like:

- (b) Which of fits in part (a) appears to have overfitted?
- (c) Use the pseudo-inverse algorithm with regularization parameter $\lambda=1$ to address the overfitting you identified in part (c). Give a plot of the resulting classifier.

Submission instructions:

- Please read the submission instructions on Canvas for naming conventions. Please use meaningful names for variables and file names.
- Discussions are encouraged, but do not copy your answers from external sources or each other.
- Please cite all the sources you used in your submission.
- For questions on the textbook problems, you can check out the book forum: http://book.caltech.edu/bookforum/