Applications of De-Moivre's Theorem

ROOTS OF ALGEBRAIC EQUATIONS:

De Moivre's theorem can be used to find the roots of an algebraic equation.

General values of $\cos \theta = \cos(2k\pi + \theta)$ and $\sin \theta = \sin(2k\pi + \theta)$ where k is an integer.

To solve the equation of the type $z^n = \cos \theta + i \sin \theta$, we apply De Moivre's theorem

$$z = (\cos \theta + i \sin \theta)^{\frac{1}{n}} = \cos \frac{\theta}{n} + i \sin \frac{\theta}{n}$$

This shows that $\left(\cos\frac{\theta}{n} + i\sin\frac{\theta}{n}\right)$ is one of the n roots of $z^n = \cos\theta + i\sin\theta$.

The other roots are obtain by expressing the number in the general form

$$z = \left\{\cos(2k\pi + \theta) + i\sin(2k\pi + \theta)\right\}^{\frac{1}{n}} = \cos\left(\frac{2k\pi + \theta}{n}\right) + i\sin\left(\frac{2k\pi + \theta}{n}\right)$$

Taking $k = 0, 1, 2, \dots, (n - 1)$. We get n roots of the equation.

Note: (i) Complex roots always occur in conjugate pair if coefficients of different powers of x including constant terms in the equation are real.

(ii) Continued products mean products of all the roots of the equation.

SOME SOLVED EXAMPLES:

1. If ω is a cube root of unity, prove that $(1-\omega)^6=-27$

Solution: Consider $x^3 = 1$ $\therefore x = 1^{1/3}$

$$\therefore x = (\cos 0 + i \sin 0)^{1/3} = (\cos 2k\pi + i \sin 2k\pi)^{1/3} = \cos \frac{2k\pi}{3} + i \sin \frac{2k\pi}{3}$$

Putting k = 0, 1, 2, the cube roots of unity are

$$x_0 = 1$$
, $x_1 = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} = \omega$ (say)

And
$$x_2 = \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3} = \left[\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right]^2 = \omega^2$$

Now,
$$1 + \omega + \omega^2 = 1 + \left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) + \left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right)$$

$$= 1 + \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) + \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = 1 - 1 = 0$$

$$\therefore 1 + \omega^2 = -\omega$$

Now,
$$(1 - \omega)^6 = [(1 - \omega)^2]^3 = (1 - 2\omega + \omega^2)^3$$

= $(-\omega - 2\omega)^3 = (-3\omega)^3 - 27\omega^3 = -27$

2. Find all the values of
$$\sqrt[3]{(1+i)/\sqrt{2}} + \sqrt[3]{(1-i)/\sqrt{2}}$$

Solution:
$$\sqrt[3]{\frac{(1+i)}{\sqrt{2}}} = \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)^{1/3}$$

$$= \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^{1/3} = \left[\cos\left(2k\pi + \frac{\pi}{4}\right) + i\sin\left(2k\pi + \frac{\pi}{4}\right)\right]^{1/3}$$

$$= \left[\cos\left((8k+1)\frac{\pi}{4}\right) + i\sin\left((8k+1)\frac{\pi}{4}\right)\right]^{1/3}$$

$$\sqrt[3]{\frac{(1+i)}{\sqrt{2}}} = \cos\left((8k+1)\frac{\pi}{12}\right) + i\sin\left((8k+1)\frac{\pi}{12}\right)$$
Similarly,
$$\sqrt[3]{\frac{(1-i)}{\sqrt{2}}} = \cos\left((8k+1)\frac{\pi}{12}\right) - i\sin\left((8k+1)\frac{\pi}{12}\right)$$

Similarly,
$$\sqrt[3]{\frac{(1-i)}{\sqrt{2}}} = \cos\left((8k+1)\frac{\pi}{12}\right) - i\sin\left((8k+1)\frac{\pi}{12}\right)$$

$$\therefore \sqrt[3]{\frac{(1+i)}{\sqrt{2}}} + \sqrt[3]{\frac{(1-i)}{\sqrt{2}}} = 2\cos\left((8k+1)\frac{\pi}{12}\right)$$

Putting k = 0, 1, 2 we get the three roots as

$$2\cos\frac{\pi}{12}$$
, $2\cos\frac{9\pi}{12}$, $2\cos\frac{17\pi}{12}$ i.e., $2\cos\frac{r\pi}{12}$ where $r=1,9,17$

Find the cube roots of $(1 - \cos\theta - i \sin\theta)$.

Solution:
$$(1 - \cos \theta - i \sin \theta)^{1/3} = \left[2 \sin^2 \left(\frac{\theta}{2} \right) - i \sin \left(\frac{\theta}{2} \right) \cos \left(\frac{\theta}{2} \right) \right]^{1/3}$$

$$= \left[2 \sin \left(\frac{\theta}{2} \right) \left(2 \sin \left(\frac{\theta}{2} \right) - i \cos \left(\frac{\theta}{2} \right) \right) \right]^{1/3} = \left(2 \sin \left(\frac{\theta}{2} \right) \right)^{1/3} \left[\cos \left(\frac{\pi}{2} - \frac{\theta}{2} \right) - i \sin \left(\frac{\pi}{2} - \frac{\theta}{2} \right) \right]^{1/3}$$

$$= \left(2 \sin \left(\frac{\theta}{2} \right) \right)^{1/3} \left[\cos \left(2k\pi - \left(\frac{\pi}{2} - \frac{\theta}{2} \right) \right) + i \sin \left(2k\pi - \left(\frac{\pi}{2} - \frac{\theta}{2} \right) \right) \right]^{1/3}$$

$$= \left(2 \sin \left(\frac{\theta}{2} \right) \right)^{1/3} \left[\cos \left(\frac{(4k-1)+\theta}{6} \right) + i \sin \left(\frac{(4k-1)+\theta}{6} \right) \right]$$

Putting k = 0, 1, 2 we get the three roots

Find the continued product of all the value of $(-i)^{2/3}$

Solution:
$$(-i)^{2/3} = (0 + i(-1))^{2/3} = (\cos\frac{\pi}{2} - i\sin\frac{\pi}{2})^{2/3}$$

$$= \left[\cos\left(2k\pi + \frac{\pi}{2}\right) - i\sin\left(2k\pi + \frac{\pi}{2}\right)\right]^{2/3}$$

$$= \cos\left((4k+1)\frac{\pi}{3}\right) - i\sin\left((4k+1)\frac{\pi}{3}\right)$$

Putting k = 0, 1, 2 we get the three roots as

$$\left(\cos\frac{\pi}{3}-i\sin\frac{\pi}{3}\right)$$
, $\left(\cos\frac{5\pi}{3}-i\sin\frac{5\pi}{3}\right)$, $\left(\cos\frac{9\pi}{3}-i\sin\frac{9\pi}{3}\right)$

∴ Continued product

$$= \left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right) \left(\cos\frac{5\pi}{3} - i\sin\frac{5\pi}{3}\right) \left(\cos\frac{9\pi}{3} - i\sin\frac{9\pi}{3}\right)$$

$$= \cos\left(\frac{\pi}{3} + \frac{5\pi}{3} + \frac{9\pi}{3}\right) - i\sin\left(\frac{\pi}{3} + \frac{5\pi}{3} + \frac{9\pi}{3}\right)$$

$$= \cos 5\pi - i\sin 5\pi \qquad = -1 - i(0) = -1$$

5. Find all the values of $\left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)^{3/4}$ and show that their continued product is 1.

Solution:
$$\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{\frac{3}{4}} = \left\{ \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{3} \right\}^{1/4}$$

$$= (\cos\pi + i\sin\pi)^{1/4} = [\cos(2k+1)\pi + i\sin(2k+1)\pi]^{1/4}$$

$$= \cos(2k+1)\frac{\pi}{4} + i\sin(2k+1)\frac{\pi}{4}$$

Putting k = 0,1,2,3 we get the four roots as,

$$\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right), \left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right), \left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right), \left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)$$
$$\therefore \left(\cos\frac{r\pi}{4} + i\sin\frac{r\pi}{4}\right) \text{ where } r = 1,3,5,7$$

The required product =
$$cos\left(\frac{\pi}{4} + \frac{3\pi}{4} + \frac{5\pi}{4} + \frac{7\pi}{4}\right) + isin\left(\frac{\pi}{4} + \frac{3\pi}{4} + \frac{5\pi}{4} + \frac{7\pi}{4}\right)$$

= $cos4\pi + i sin 4\pi = 1$.

6. SOLVE:
$$x^7 + x^4 + x^3 + 1 = 0$$

Solution:
$$x^7 + x^4 + x^3 + 1 = 0$$
 $\therefore x^4(x^3 + 1) + (x^3 + 1) = 0$
 $\therefore (x^3 + 1)(x^4 + 1) = 0$ $\therefore x^3 = -1, x^4 = -1$
Consider $x^3 = -1$

Putting k = 0, 1, 2 we get the three roots

Similarly from $x^4 = -1$ we get the remaining four roots as

$$x = \cos(2k+1)\frac{\pi}{4} + i\sin(2k+1)\frac{\pi}{4}$$
 where $k = 0, 1, 2, 3$

7. SOLVE:
$$x^4 + x^3 + x^2 + x + 1 = 0$$

Solution:
$$x^4 + x^3 + x^2 + x + 1 = 0$$

Multiplying the given equation by x-1, we get $(x-1)(x^4+x^3+x^2+x+1)=0$

: We have
$$x^5 - 1 = 0$$
 : $x^5 = 1 = \cos 0 + i \sin 0$

$$\therefore x^5 = \cos(2k\pi) + i\sin(2k\pi)$$

$$\therefore x = (\cos 2k\pi + i \sin 2k\pi)^{1/5} = \cos \frac{2k\pi}{5} + i \sin \frac{2k\pi}{5}$$

Putting k = 0, 1, 2, 3, 4, we get the roots of the equation.

$$x_0 = \cos 0 + i \sin 0 = 1$$
,

$$x_1 = \cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}, \quad x_2 = \cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5},$$

$$x_3 = \cos\frac{6\pi}{5} + i\sin\frac{6\pi}{5}, \ x_4 = \cos\frac{8\pi}{5} + i\sin\frac{8\pi}{5}$$

It is clear that 1 is the roots of x - 1 = 0

and the remaining roots are the roots of $x^4 + x^3 + x^2 + x + 1 = 0$

i.e.,
$$cos\frac{2\pi}{5} \pm i sin\frac{2\pi}{5}$$
, $cos\frac{4\pi}{5} \pm i sin\frac{4\pi}{5}$

8. SOLVE: $x^4 - x^2 + 1 = 0$

Solution: $x^4 - x^2 + 1 = 0$

Multiplying the given equation by $(x^2 + 1)$, we get, $(x^2 + 1)(x^4 - x^2 + 1) = 0$

$$= [\cos(2k\pi + \pi) + i\sin(2k\pi + \pi)]^{1/6} = \cos(2k+1)\frac{\pi}{6} + i\sin(2k+1)\frac{\pi}{6}$$

Putting k = 0, 1, 2, 3, 4, 5 we get the six roots of equation

$$x_0 = \cos\frac{\pi}{6} + i\sin\frac{\pi}{6} \qquad x_1 = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} = 0 + i(1) = i$$

$$x_2 = \cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6} \qquad x_3 = \cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}$$

$$x_4 = \cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2} = 0 + i(-1) = -i$$
 $x_5 = \cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6}$

It is clear that i and -i are the roots of $x^2+1=0$ and the remaining roots

$$x_0, x_2, x_3, x_5$$
 are roots of $x^4 - x^2 + 1 = 0$

9. Find the roots common to $x^4 + 1 = 0$ and $x^6 - i = 0$.

Solution: Consider $x^4 + 1 = 0$ $\therefore x^4 = -1$

$$x = (-1+i0)^{1/4} = (\cos \pi + i \sin \pi)^{1/4} = [\cos(2k\pi + \pi) + i \sin(2k\pi + \pi)]^{1/4}$$
$$x = \cos\left((2k+1)\frac{\pi}{4}\right) + i \sin\left((2k+1)\frac{\pi}{4}\right)$$

Putting k = 0, 1, 2, 3 we get the three roots as

$$x_0 = \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} = 1 \qquad x_1 = \cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}$$
$$x_2 = \cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4} \qquad x_3 = \cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4} = -\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$

Now consider,
$$x^6 - i = 0$$
 $\therefore x^6 = i$

$$x = (0+1i)^{1/6} = \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)^{1/6} = \left[\cos\left(2k\pi + \frac{\pi}{2}\right) + i\sin\left(2k\pi + \frac{\pi}{2}\right)\right]^{1/6}$$

$$= \cos\left((4k+1)\frac{\pi}{12}\right) + i\sin\left((4k+1)\frac{\pi}{12}\right)$$
Putting $k = 0, 1, 2, 3, 4, 5$ we get the six roots as
$$x_0 = \cos\frac{\pi}{12} + i\sin\frac{\pi}{12} \qquad x_1 = \cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}$$

$$x_2 = \cos\frac{9\pi}{12} + i\sin\frac{9\pi}{12} = \cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}$$

$$x_3 = \cos\frac{13\pi}{12} + i\sin\frac{13\pi}{12}$$

$$x_4 = \cos\frac{17\pi}{12} + i\sin\frac{17\pi}{12}$$

$$x_5 = \cos\frac{21\pi}{12} + i\sin\frac{21\pi}{12} = -\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$

 \therefore common roots are $\pm \left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$

10. If $(1+x)^6 + x^6 = 0$

show that $x = -\frac{1}{2} - \frac{i}{2} \cot \frac{\theta}{2}$ where $\theta = (2n+1) \pi/6$, n = 0,1,2,3,4,5.

Solution:
$$(1+x)^6 + x^6 = 0$$
 $\therefore \frac{(1+x)^6}{x^6} = -1$

$$\frac{1+x}{x} = (-1)^{1/6} = (\cos \pi + i \sin \pi)^{1/6} = [\cos(2k+1)\pi + i \sin(2k+1)\pi]^{1/6}$$

$$= \cos\left((2k+1)\frac{\pi}{6}\right) + i \sin\left((2k+1)\frac{\pi}{6}\right)$$

$$\frac{x+1-x}{x} = \cos \theta + i \sin \theta - 1$$

$$\frac{1}{x} = (\cos \theta - 1) + i \sin \theta$$

$$x = \frac{1}{(\cos \theta - 1) + i \sin \theta} \times \frac{(\cos \theta - 1) - i \sin \theta}{(\cos \theta - 1) - i \sin \theta} = \frac{(\cos \theta - 1) - i \sin \theta}{(\cos \theta - 1)^2 + \sin^2 \theta} = \frac{(\cos \theta - 1) - i \sin \theta}{2(1 - \cos \theta)}$$

$$= \frac{-2 \sin^2(\theta/2) - i2 \sin(\theta/2) \cos(\theta/2)}{2(2 \sin^2(\theta/2))}$$

$$= -\frac{1}{2} - \frac{i}{2} \cot\left(\frac{\theta}{2}\right) \qquad \text{where } \theta = (2k+1)\frac{\pi}{6}$$

11. If one root of $x^4 - 6x^3 + 15x^2 - 18x + 10 = 0$ is 1 + i, find all other roots.

Solution: The given equation is $x^4 - 6x^3 + 15x^2 - 18x + 10 = 0$

Since one of the root is 1 + i

 \therefore other root must be 1-i (since roots always occurs as complex conjugate pairs)

 $\therefore x = 1 \pm i$ are the two roots

$$\therefore x - 1 = \pm i$$
 $\therefore (x - 1)^2 = (\pm i)^2$ $\therefore x^2 - 2x + 1 = -1$

$$\therefore x^2 - 2x + 2 = 0$$

Now we want to find other two remaining roots for that we divide

$$x^4 - 6x^3 + 15x^2 - 18x + 10$$
 by $x^2 - 2x + 2$ and we obtain

$$\therefore x^4 - 6x^3 + 15x^2 - 18x + 10 = (x^2 - 2x + 2)(x^2 - 4x + 5)$$

 \therefore the remaining two roots are the roots of equation $x^2 - 4x + 5 = 0$

$$\therefore \chi = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(5)}}{2(1)} = \frac{4 \pm \sqrt{16 - 20}}{2} = \frac{4 \pm 2i}{2} = 2 \pm i$$

 \therefore The required remaining roots of given equation are 1-i, $2\pm i$

12. If α , α^2 , α^3 , α^4 , are the roots of $x^5 - 1 = 0$, find them & show that

$$(1-\alpha)(1-\alpha^2)(1-\alpha^3)(1-\alpha^4) = 5.$$

Solution: We have $x^5 = 1 = \cos 0 + i \sin 0$ $\therefore x^5 = \cos(2k\pi) + i \sin(2k\pi)$

$$\therefore x = (\cos 2k\pi + i \sin 2k\pi)^{1/5} = \cos \frac{2k\pi}{5} + i \sin \frac{2k\pi}{5}$$

Putting k = 0, 1, 2, 3, 4, we get the five roots as

$$x_0 = \cos 0 + i \sin 0 = 1,$$
 $x_1 = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$

$$x_2 = \cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5}, \qquad x_3 = \cos\frac{6\pi}{5} + i\sin\frac{6\pi}{5}, \quad x_4 = \cos\frac{8\pi}{5} + i\sin\frac{8\pi}{5},$$

Putting $x_1=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5}=\alpha$, we see that $x_2=\alpha^2$, $x_3=\alpha^3$, $x_4=\alpha^4$

 \therefore the roots are 1, α , α^2 , α^3 , α^4 , and hence

$$x^5 - 1 = (x - 1)(x - \alpha)(x - \alpha^2)(x - \alpha^3)(x - \alpha^4)$$

$$\therefore (x - \alpha)(x - \alpha^{2})(x - \alpha^{3})(x - \alpha^{4}) = \frac{x^{5-1}}{x-1}$$

$$\therefore (x - \alpha)(x - \alpha^2)(x - \alpha^3)(x - \alpha^4) = x^4 + x^3 + x^2 + x + 1$$

Putting
$$x = 1$$
, we get $(1 - \alpha)(1 - \alpha^2)(1 - \alpha^3)(1 - \alpha^5) = 5$

13. Solve the equation $z^4 = i(z-1)^4$ and show that the real part of all the roots is 1/2.

Solution: We have $z^4 = i(z-1)^4$

$$\therefore \left(\frac{z}{z-1}\right)^4 = i = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} = \cos\left(2n\pi + \frac{\pi}{2}\right) + i\sin\left(2n\pi + \frac{\pi}{2}\right)$$

$$\therefore \frac{z}{z-1} = \cos \theta + i \sin \theta \qquad \text{where } \theta = (4n+1)\frac{\pi}{8}$$

$$\therefore \frac{z}{z-1-z} = \frac{z}{-1} = \frac{\cos\theta + i\sin\theta}{1-\cos\theta - i\sin\theta}$$
 Simplifying as in the above example, we get

$$\therefore \frac{z}{-1} = \frac{-\sin(\theta/2) + i\cos(\theta/2)}{2\sin(\theta/2)}$$

$$\therefore -z = -\frac{1}{2} + \frac{i}{2} \cot \frac{\theta}{2} \qquad \qquad \therefore z = \frac{1}{2} - \frac{i}{2} \cot \frac{\theta}{2}, \quad \text{where } \theta = (4n+1)\frac{\pi}{8}$$

For, n = 0, 1, 2, we get three roots, All these roots have the real part 1/2

14. If ω is a 7th root of unity, prove that

 $S=1+\omega^n+\omega^{2n}+\omega^{3n}+\omega^{4n}+\omega^{5n}+\omega^{6n}=7$ if n is a multiple of 7 and is equal to zero otherwise.

Solution: We have
$$x = 1^{\frac{1}{7}} = (\cos 2n\pi + i \sin 2n\pi)^{\frac{1}{7}}$$

$$= \cos \frac{2n\pi}{7} + i \sin \frac{2n\pi}{7}, \text{ where } n = 0, 1, 2, 3, 4, 5, 6$$
Let $\omega = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$

Let
$$\omega = \cos\frac{2\pi}{7} + i\sin\frac{2\pi}{7}$$

If n is not a multiple of 7, $\omega^n \neq 1$

Now,
$$S=1+\omega^n+\omega^{2n}+\omega^{3n}+\ldots +\omega^{6n}=\frac{1-\omega^{7n}}{1-\omega^n}$$
 sum of 7 terms of G.P
$$=\frac{1-1}{1-\omega^n}=\frac{0}{1-\omega^n}=0$$

If n is a multiple of 7, say n = 7k

Then,
$$S = 1 + \omega^n + \omega^{2n} + \omega^{3n} + \omega^{4n} + \omega^{5n} + \omega^{6n}$$

= $1 + (\omega^7)^k + (\omega^7)^{2k} + (\omega^7)^{3k} + (\omega^7)^{4k} + (\omega^7)^{5k} + (\omega^7)^{6k}$
= $1 + 1 + 1 + 1 + 1 + 1 + 1 = 7$

15. Prove that

$$\sqrt{1 + sec(\theta/2)} = (1 + e^{i\theta})^{-1/2} + (1 + e^{-i\theta})^{-1/2}$$

Solution: We have to show that $\sqrt{1 + sec(\theta/2)} = \frac{1}{\sqrt{1 + e^{i\theta}}} + \frac{1}{\sqrt{1 + e^{-i\theta}}}$

Squaring both sides, we get,
$$1+\sec\frac{\theta}{2}=\frac{1}{1+\mathrm{e}^{\mathrm{i}\theta}}+\frac{1}{1+\mathrm{e}^{-\mathrm{i}\theta}}+\frac{2}{\sqrt{(1+\mathrm{e}^{\mathrm{i}\theta})(1+\mathrm{e}^{-\mathrm{i}\theta})}}$$

We shall prove this result

Now,
$$r.h.s = \frac{1}{1+e^{i\theta}} + \frac{1}{1+e^{-i\theta}} + \frac{2}{\sqrt{(1+e^{i\theta})(1+e^{-i\theta})}}$$

$$= \frac{1}{1+e^{i\theta}} + \frac{e^{i\theta}}{1+e^{i\theta}} + \frac{2}{\sqrt{1+e^{-i\theta}+e^{i\theta}+1}}$$

$$= 1 + \frac{2}{\sqrt{2+(e^{i\theta}+e^{-i\theta})}} = 1 + \frac{2}{\sqrt{2+2\cos\theta}}$$

$$= 1 + \frac{2}{\sqrt{2(1+\cos\theta)}} = 1 + \frac{2}{\sqrt{4\cos^2(\theta/2)}}$$

$$= 1 + \frac{2}{2\cos(\theta/2)} = 1 + \sec\frac{\theta}{2} = l.h.s$$

SOME PRACTICE PROBLEMS

1. Find the cube roots of unity. If ω is a complex cube root of unity prove that

(i)
$$1 + \omega + \omega^2 = 0$$

(ii)
$$\frac{1}{1+2\omega} + \frac{1}{2+\omega} - \frac{1}{1+\omega} = 0$$

- **2.** Prove that the n nth roots of unity are in geometric progression.
- **3.** Show that the sum of the n nth roots of unity is zero.
- **4.** Prove that the product of n nth roots of unity is $(-1)^{n-1}$
- **5.** Find all the values of the following:

(i)
$$(-1)^{1/5}$$

(ii)
$$(-i)^{1/3}$$

(ix)
$$(1-i\sqrt{3})^{1/4}$$

- **6.** Find the continued product of all the values of $\left(\frac{1}{2} \frac{i\sqrt{3}}{2}\right)^{3/4}$
- 7. Find all the value of $(1+i)^{2/3}$ and find the continued product of these values.
- 8. Solve the equations

(i)
$$x^9 + 8x^6 + x^3 + 8 = 0$$

(ii)
$$x^4 - x^3 + x^2 - x + 1 = 0$$

(iii)
$$(x+1)^8 + x^8 = 0$$

- **9.** If $(x+1)^6 = x^6$, show that $x = -\frac{1}{2} i \cot \frac{\theta}{2}$ where $\theta = \frac{2k\pi}{6}$, k = 0,1,2,3,4,5.
- **10.** Show that the roots of $(x+1)^7=(x-1)^7$ are given by $\pm i \cot \frac{r\pi}{7}$, r=1,2,3.
- **11.** If α , α^2 , α^3 , ... α^6 are the roots of $x^7 1 = 0$, find them and prove that $(1 \alpha)(1 \alpha^2)$ $(1 \alpha^6) = 7$.
- **12.** Prove that $x^5 1 = (x 1)\left(x^2 + 2x\cos\frac{\pi}{5} + 1\right)\left(x^2 + 2x\cos\frac{3\pi}{5} + 1\right) = 0$.
- **13.** Solve the equation $z^n = (z+1)^n$ and show that the real part of all the roots is -1/2.
- **14.** If $a = e^{i 2\pi/7}$ and $b = a + a^2 + a^4$, $c = a^3 + a^5 + a^6$. then prove that b & c are roots of quadratic equation $x^2 + x + 2 = 0$.
- **15.** Prove that (i) $\sqrt{1 cosce(\theta/2)} = (1 e^{i\theta})^{-1/2} (1 e^{-i\theta})^{-1/2}$

(iv)
$$\sqrt{1-sce(\theta/2)} = (1+e^{i\theta})^{-1/2} - (1+e^{-i\theta})^{-1/2}$$

16. If 1+2i is a root of the equation $x^4-3x^3+8x^2-7x+5=0$, find all the other roots.

Answers:

5. (i)
$$-1$$
, $\cos\frac{\pi}{5} \pm i\sin\frac{\pi}{5}$, $\cos\frac{3\pi}{5} \pm i\sin\frac{3\pi}{5}$ (ii) i , $\pm\frac{\sqrt{3}}{2} - \frac{i}{2}$

(iii)
$$2^{1/4} \left[\cos \frac{(6k+5)\pi}{12} + i \sin \frac{(6k+5)\pi}{12} \right]$$
 where $k = 0, 1, 2, 3$.

6. 1

7.
$$2^{1/3} \left(\cos \frac{8\pi k + \pi}{6} + i \sin \frac{8\pi k + \pi}{6} \right)$$
, $k = 0, 1, 2$, $product = 2i$

- 8. (i) $\cos(2k+1)\pi/6 + i\sin(2k+1)\pi/6$, k = 0, 1, 2, 3, 4, 5 and $2[\cos(k+1)\pi/3 + i\sin(2k+1)\pi/3]$, k = 0,1,2
 - (ii) $\cos(2k+1)\pi/5 + i\sin(2k+1)\pi/5$, k = 0,1,2,3,4
 - (iii) $x = 1/[\cos(2k+1)\pi/8 + i\sin(2k+1)\pi/8 1]$ here k = 0,1,2,3,4,5,6,7
- **16.** 1-2i, $(1 \pm i\sqrt{3})/2$