DMATH FS 2020

Victor Fernández

Januar 2020

Inhaltsverzeichnis

L	Logik und Beweise
1	Logik
	1.1 Propositionen (Aussagen)
	1.2 Negation
	1.3 Wahrheitstabelle
	1.4 Konjunktion - UND-Verknüpfung
	1.5 Disjunktion - ODER-Verknüpfung
	1.6 Konjunktion und Disjunktion
	1.7 XOR-Verknüpfung (eXklusives OR, EXOR)
	1.8 Implikationen (Subjunktion)
	1.9 Bikonditional (Bijunktion)
	1.10 Priorität von Logischen Operatoren
1	Proportionale Äquivalenzen
	2.1 Tautologie
	2.2 Logische Äquivalenz

Teil I

Logik und Beweise

1 Logik

1.1 Propositionen (Aussagen)

Eine Proposition ist ein Satz, der entweder wahr (Wahrheitswert w) oder falsch (Wahrheitswert f) ist.

1.2 Negation

Ist p eine Propostion, dann ist die Proposition "Es ist nicht der Fall, dass p gilt" die Negation von p; man schreibt $\neg p$ und liest "nicht p".

1.3 Wahrheitstabelle

Die Wahrheitstabelle stellt die Beziehungen zwischen den Wahrheitswerten von Propositionen dar. Sie ist vor allem dann nützlich, wenn Propositionen aus einfachen Propositionen konstruiert werden.

p	$\neg p$
w	f
f	w

1.4 Konjunktion - UND-Verknüpfung

Die Propositionen $p \land q$ (gelesen "p und q") heisst Konjunktion der Propositionen p und q, falls diese genau dann wahr ist, wenn p und q wahr sind; andernfalls ist sie falsch.

1.5 Disjunktion - ODER-Verknüpfung

Die Propositionen $p \lor q$ (gelesen "p oder q") heisst Disjunktion der Propositionen p und q falls diese wahr ist, wenn mindestens eine der Propositionen p oder q wahr ist; andernfalls ist sie falsch.

1.6 Konjunktion und Disjunktion

UND- und ODER-Verknüpfung

p	q	$p \wedge q$	$p \lor q$
w	w	w	w
w	f	f	w
f	w	f	w
f	f	f	f

1.7 XOR-Verknüpfung (eXklusives OR, EXOR)

Die Propositionen $p \oplus q$ (gelesen "p exor q") heisst XOR-Verknüpfung der Propositionen p und q, falls diese genau dann wahr ist, wenn genau eine der Propositionen p oder q wahr ist (aber nicht beide gleichzeitig); ansonsten ist sie falsch.

p	q	$p \oplus q$
w	w	f
w	f	w
f	w	w
f	f	f

1.8 Implikationen (Subjunktion)

Die Implikationen $p \to q$ (gelesen "p impliziert q" oder "falls p, dann q") ist diejenige Proposition, die genau dann falsch ist, wenn p wahr und q falsch ist; andernfalls ist die Implikation wahr. p heisst auch **Hypothese**

und q Konklusion.

p	q	$p \rightarrow q$
W	W	W
w	f	f
f	w	w
f	f	w

1.9 Bikonditional (Bijunktion)

Das Bikonditional $p \leftrightarrow q$ (gelesen "p genau dann, wenn q") ist diejenige Proposition, die wahr ist, wenn p und q dieselben Wahrheitswerte haben und sons falsch.

Beispiel: Falls p = "Sie können den Flug nehmen" und q = "Sie kaufen ein Ticket" zwei Aussagen sind, dann gilt sicher $p \leftrightarrow q$ was lautet: "Sie können den Flug nehmen, genau dann, wenn Sie ein Ticket kaufen."

1.10 Priorität von Logischen Operatoren

Jeder Operator hat eine Priorität die entscheidet, wann der Operator angewandt wird.

Operator	Priorität
	1
^	2
V	2
\rightarrow	3
\leftrightarrow	3

2 Proportionale Äquivalenzen

2.1 Tautologie

Eine zusammengesetzte Aussage, die immer wahr (falsch) ist heisst Tautologie (Kontradiktion oder Widerspruch).

p	$\neg q$	$p \vee \neg q$	$p \land \neg q$
w	f	w	f
f	w	w	f

2.2 Logische Äquivalenz

Die Aussagen p
 und q heissen logisch äquivalent, falls $p \leftrightarrow q$ eine Tautologie ist. Man schreibt dan
n $p \Leftrightarrow q$ (oder auch $p \equiv q$ bzw.
 $p \sim q$)

TODO Logische Äquivalenzgesetze