(1.4)
$$|G| = 2n$$

 $G = \{g_1, ..., g_{2n}\}$ $T(e) = 1$ ha $i \in 2n$ $g_i = :g$
 $g \neq e$ $\exists g' \in G$ $gg' = e = gg'$
ha $g' = e$ $gg' = g \rightarrow g = e$ $G \rightarrow g' \neq e$
olyan element heresunh, ami nem e és inverse onmaga, as mores
typ inverse paroh lesgreb, any $2n-1$ rthan számia elem, igy

2025. 89, 17.

$$\frac{(2.1)/1}{g^m = e} \rightarrow \sigma(g)/m$$

$$ha \sigma(g)/m \rightarrow m = q \sigma(g) + \tau \tau \langle \sigma(g) \rangle$$

$$g^m = g^{q\sigma(g)} + g^{\tau} \rightarrow g^{\tau} = e + (\sigma(g)) + f - f a mintt)$$

/4.
$$(12)(13) = (123)$$

 $(12)(13)(14) = (1234)$ sit teljes indukció

$$(2,5)$$
/1 $\sigma(923)(4567)(89) = lhht/3,4,2) /3,5(123)(4567)(567) =
 $(2,5)$ /1 $(23)(4567)(89) = (13)(24) = (1246573) = 7$

Algebra 1 Gyak$$$$$