EE542 Lab 10 GDC Data

YONG WANG, YONGW@USC.EDU
YUHAO ZHANG, YUHAOZ@USC.EDU

Part 1: Data processing

- 1. Download files of all the disease types from GDC
- 2. Check integrity
- 3. Generate relationship between file_id and case_id
- 4. Retrieve file and case meta data from GDC repository
- 5. Generate relationship between miRNA and primary site (label)

Download miRNA files from GDC

Select all disease type in 'Cases'

Select miRNA-Seg in 'Files'

Download Manifest file

Download ISON file

Use gdc-client and manifest file to download all the files

Total 11486 files

Successfully downloaded: 11486

wy@instance-2:~/ee542lab10\$ ls

Check Integrity

Run check.py to check all downloaded files

```
wy@instance-2:~/ee542lab10/src$ python3 check.py
[2018-10-18 20:59:06,417 - GDC - INFO] ====start checking===
[2018-10-18 20:59:24,562 - GDC - INFO] successful downloads
[2018-10-18 20:59:24,563 - GDC - INFO] ====check finished====
wy@instance-2:~/ee542lab10/src$
```

Generate Relationship file_id and case_id

Run parse_file_case_id.py

This program use JSON file as input to generate relationship between file_id and case_id.

Retrieve file and case meta data

Run request_meta.py

This program generate files_meta.tsv, cases_meta.tsv

	A	В	С	
1	cases. 0. samples. 0. portions. 0. analytes. 0. aliquots. 0. aliquot_id	data_type 🔻	cases. 0. samples. 0. sample_type	▼ file_
2	4aaff894-0a42-4b20-9290-759a34e6f248	miRNA Expression Quantification	Primary Tumor	9a2
3	f4a61521-e301-4b9a-8958-e483136011d1	miRNA Expression Quantification	Primary Tumor	955
4	874c3ea2-4ea4-467d-8c31-49ec735bd4f2	miRNA Expression Quantification	Primary Tumor	805
5	ad9ebe65-3dce-4b52-909c-99b07343d814	miRNA Expression Quantification	Primary Tumor	7ae
6	4eededac-03b6-4072-b518-b6760da4e656	miRNA Expression Quantification	Primary Tumor	37b
7	e15c3854-997c-4197-877f-99ac7695cb3a	miRNA Expression Quantification	Primary Tumor	69c

DD	DE	DF	DG
demographic.updated_datetime 🔻	primary_site	exposures.0.years_smoked 🔻	submitter_aliquot_ids.46 🔻 s
9/6/2018 13:49	Breast		

Generate relationship between miRNA and primary site(label)

Run gen miRNA matrix.py to generate file case id miRNA.csv

wy@instance-2:~/ee542lab10/src\$ python3 gen_miRNA_matrix.py [2018-10-20 01:31:44,050 - GDC - INFO] 691 Normal samples, 10790 Tumor samples

BTI	BTJ	BTK
hsa-mir-99a 💌	hsa-mir-99b	label 💌
249	47138	14
5958	201866	22
996	77803	35
1241	42229	29
8	55894	11
1576	34120	1
8012	215998	31
1987	360036	13
697	59606	16
2075	58314	0
4519	80501	1

	А	В
1	primary_site	label 🔻
2	Normal	0
3	Breast	1
4	Bronchus and lung	2
5	Larynx	3
6	Retroperitoneum and peritoneum	4
7	Uterus, NOS	5
8	Connective, subcutaneous and other soft tis	6
9	Kidney	7
10	Cervix uteri	8
		_

Left plot shows miRNA and label

Right plot shows label and primary site

Part2 Apply sklearn to Data

- 1. Data Standardization
- 2. Split into training and test data (70%, 30%)
- 3. Feature selection
- 4. Turning hyper-parameters with Cross validation
- 5. Evaluation

Feature selection

- 1. Use SelectFromModel and LassoCV to select 20 features
- 2. Compare different models
- 3. Select the best model and increase selected features

```
[2018-10-20 05:05:10,798 - GDC - INFO] selected features are [10, 26, 78, 119, 195, 240, 306, 352, 497, 498, 515, 539, 588, 991, 1148, 1461, 1665, 1722, 1848, 1872]
```

Compare different models

Use 20 selected features

Tuning RandomForest Model

Increase number of selected feather to 190

Tuning n estimater to [100, 500] for RandomForestClassifier

Result:

```
[2018-10-20 08:44:32,622 - GDC - INFO] Percentage of tumor cases in training set is 0.9400199104031857

[2018-10-20 08:44:32,622 - GDC - INFO] Percentage of tumor cases in test set is 0.93933236574746

[2018-10-20 08:57:28,619 - GDC - INFO] selected features are [4, 5, 8, 10, 13, 26, 49, 72, 78, 88, 90, 92, 93, 119, 141, 175, 180, 191, 194, 195, 201, 203, 204, 229, 232, 233, 239, 240, 245, 248, 249, 255, 264, 266, 270, 272, 273, 286, 296, 299, 302, 304, 305, 306, 309, 325, 327, 329, 332, 339, 344, 352, 381, 387, 406, 426, 429, 448, 458, 464, 470, 477, 482, 483, 492, 493, 495, 496, 497, 498, 500, 503, 505, 513, 514, 515, 532, 539, 544, 566, 588, 593, 595, 615, 623, 633, 638, 645, 646, 676, 677, 680, 692, 710, 764, 777, 784, 810, 813, 814, 834, 836, 847, 860, 880, 884, 888, 894, 900, 907, 911, 950, 957, 958, 969, 991, 996, 1004, 1038, 1041, 1048, 1063, 1072, 1078, 1079, 1091, 1102, 1111, 1135, 1141, 1148, 1152, 1232, 1251, 1267, 1274, 1289, 1305, 1316, 1337, 1342, 1362, 1363, 1364, 1369, 1376, 1378, 1387, 1395, 1402, 1406, 1410, 1412, 1447, 1461, 1475, 1487, 1504, 1507, 1509, 1516, 1524, 1544, 1546, 1560, 1584, 1588, 1638, 1644, 1665, 1677, 1695, 1717, 1720, 1722, 1733, 1747, 1750, 1771, 1786, 1791, 1834, 1848, 1859, 1860, 1872, 1874, 1875, 1879]

[2018-10-20 19:05:41,541 - GDC - INFO] scores are {'RandomForestClassifier': [0.8737300435413643, 0.87373004354136441, 0.8737300435413643, 0.8947368421052632]}

{'n_estimators': 500}
```

Evaluation

190 selected features (total: 1881 features)

11481 records (70% train, 30% test)

55 classes

Model: RandomForestClassifier

Hyper-parameter: n_estimaters: 500

Precision: 0.87373 Accuracy: 0.87373

F1: 0.87373

Recall: 0.87373

Specificity: 0.89474

Code

https://github.com/uscwy/ee542lab10

Reference

The Pandas DataFrame – loading, editing, and viewing data in Python

Pandas manual

Numpy manual

Sklearn manual

Thanks