Chasing Quantum Supremacy

Doug Finke, Managing Editor
Quantum Computing Report
Where Qubits Entangle with Commerce

February 13, 2018

Chasing Quantum Supremacy Advantage

Doug Finke, Managing Editor
Quantum Computing Report
Where Qubits Entangle with Commerce

February 13, 2018

Taxonomy for Milestones in QC Performance

	Practical (Demonstration)	Foundational (Demonstration + Theoretical Proof)	
Any Problem (Includes made-up problems)	Weak Quantum Supremacy	Quantum Supremacy	
Valuable Problems (Generally measured in \$\$\$)	Quantum Advantage	Strong Quantum Advantage	

Source: Medium article posted by Will Zeng, 1/31/2019

Why are We Investing in QC in the First Place?

 Create computation machine based upon quantum mechanics that can solve problems that classical computers cannot.

Why do we think that QC Could Beat Classical

- Doubling the performance of a classical computer requires doubling the HW (e.g. 1TB \rightarrow 2TB of memory or 1024 cores \rightarrow 2048 cores)
- Doubling the performance of a quantum computer only requires adding one more qubit. (e.g. 50 qubits \rightarrow 51 qubits)

Runtimes of Classical and Quantum vs. Qubits

Classical Computing Improves Every Year Raising the Bar for Demonstrating Quantum Advantage

- Classical improvements driven by:
 - Moore's Law (although expected to end soon)
 - Ever larger supercomputer installations
 - Improved hardware architectures
 - GPU's and FPGA based architectures
 - Neuromorphic and Memory-Centric Computing
 - Improved classical algorithms
 - Quantum inspired algorithms

Software Simulators on Classical Computers

Project	Qubits	
Alibaba/Univ. of Michigan	144*	
Atos	41	
ETH Zurich	45	
Huawei – HiQ Cloud Service	42-169*	
IBM Research	56	
Intel – qHiPSTER	43	
Microsoft – PC	30	
Microsoft – Azure	40	
Rigetti – Forest	36	
University of Melbourne	60	
USTC/Origin QC	64	

Note: * denotes special conditions

- General consensus is that a quantum machine needs to exceed 50-64 qubits to be to have a shot at quantum supremacy.
- The qubits also need a certain quality level so the machine can complete the calculation before making an error.
- Otherwise a classical computer can solve the problem by using a quantum simulator to execute the quantum program.
- Classical computers have another key advantage: They don't make any errors!

Hardware Qubit Counts

Company	Туре	Technology	Now	Next Goal
Intel	Gate	Superconducting	49	TBD
Google	Gate	Superconducting	72	TBD
IBM	Gate	Superconducting	50	TBD
Rigetti	Gate	Superconducting	19	128
USTC (China)	Gate	Superconducting	10	20
IonQ	Gate	Ion Trap	11	79
IQOQI/Univ. Ulm/Univ. Innsbruck	Gate	Ion Trap	20	TBD
NSF STAQ Project	Gate	Ion Trap	N/A	≥64
Intel	Gate	Spin	26	TBD
Silicon Quantum Computing	Gate	Spin	N/A	10
CEA-Leti/INAC/Institut Néel	Gate	Spin	N/A	100
Univ. of Wisconsin	Gate	Neutral Atoms	49	TBD

Best candidates to have hardware in 2019 that can demonstrate quantum supremacy

- Google 72 qubits
- Rigetti 128 qubits
- IonQ 79 qubits

Having hardware is a necessary, but not a sufficient condition.

Google Project to Show Quantum Supremacy

- Task consists of sampling the output of a random quantum circuit
- Time increases exponentially on a classical computer as you add qubits
- Google will work with NASA Ames to compare results against the Pleiades petaflop supercomputer

FIG. 1. Example of a random quantum circuit in a 1D array of qubits. Vertical lines correspond to controlled-phase (CZ) gates (see Sec. IV).

Rigetti \$1 Million Quantum Advantage Prize

- Awarded to first team that can demonstrate Quantum Advantage on a real application.
- Key conditions:
 - Must be run on the Rigetti Quantum Cloud Service (QCS) platform
 - Have either a faster time to solution, better quality solution, or lower cost compared to the best classical solution
 - Must create real value
- All claims will be posted online for others to support or refute

Quantum Advantage Prize

Thank-You!

For more info, visit

https://quantumcomputingreport.com

Doug Finke dfinke@quantumcomputingreport.com

