1 Chapter 1

1.1 Complex Numbers

Verfication 1.1. commutativity

$$w+z=z+w$$
 and $wz=zw$ for all $w,z\in\mathbb{C}$

We know that $w = \alpha + \beta i$ and z = j + ki and so then

$$w + z = \alpha + \beta i + j + ki = (\alpha + j) + (\beta + k)i = (j + \alpha) + (k + \beta) = z + w$$

Verfication 1.2. associativity

$$(z_1+z_2)+z_3=z_1+(z_2+z_3)$$
 and $(z_1z_2)z_3=z_1(z_2z_3)$ for all $z_1,z_2,z_3\in\mathbb{C}$

We know $z_1 = \alpha + \beta i, z_2 = j + ki, z_3 = l + mi$ and thus

$$(z_1 + z_2) + z_3 = \alpha + j + (\beta + k) i + l + mi$$

= $(\alpha + j + l) + (\beta + k + m) i$
= $z_1 + (z_2 + z_3)$

Now we'll do multiplication, we know

$$(z_1 z_2) z_3 = (\alpha \cdot j - \beta \cdot k + (\alpha k + \beta j) i) (l + mi)$$

= $ajl - blk - (\alpha km + \beta jm) + (\alpha kl + \beta jl + ajm) i$

Now we also have

$$z_1(z_2z_3) = \alpha + \beta i (jl - km + (kl + jm) i)$$

= $ajl - akm - (\beta kl + \beta jm) + (\beta jl + akm + ajm) i$

And due to the associativity of \mathbb{R} then we can say $(z_1z_2)z_3=z_1(z_2z_3)$

Verfication 1.3. identities

$$z + 0 = z$$
 and $z1 = z$ for all $z \in \mathbb{C}$

We know that

$$z + 0 = \alpha + \beta i + 0 + 0i$$
$$= (\alpha + 0) + (\beta + 0) i$$
$$= \alpha + \beta i$$
$$= z$$

For multiplication we have

$$z1 = \alpha + \beta i (1 + 0i)$$

= $\alpha - \beta 0 + (\beta + 0\alpha)$
= $\alpha + \beta i$

Verfication 1.4. additive inverse

for every $z\in\mathbb{C}$ there is a unique $w\in\mathbb{C}$ such that z+w=0Let $z\in\mathbb{C}$ and so $z=\alpha+\beta i$ now we'll take $w=-\alpha+-\beta i$

$$z + w = \alpha + \beta i + -\alpha + -\beta i$$
$$= (\alpha - \alpha) + (\beta - \beta) i$$
$$= 0 + 0i$$
$$= 0$$

To show that our choice of w was unique assume there is another solution namely w=j+ki such that $j\neq\alpha,k\neq\beta$ but then their sum will yield x+yi, where $x,y\neq0$ and so we don't get 0 so we can say that our w is unique.

Verfication 1.5. multiplicative inverse Let $z \in \mathbb{C}$ so there exists some $\alpha, \beta \in \mathbb{R}$ so that $z = \alpha + \beta i$ let $w = \frac{\alpha}{\alpha^2 + \beta^2} + \frac{-\beta}{\alpha^2 + \beta^2} i$

$$zw = (\alpha + \beta i) \left(\frac{\alpha}{\alpha^2 + \beta^2} + \frac{-\beta}{\alpha^2 + \beta^2} \right) i$$

$$= \frac{\alpha^2}{\alpha^2 + \beta^2} + \frac{\beta^2}{\alpha^2 + \beta^2} + \left(\frac{\alpha^2}{\alpha^2 + \beta^2} - \frac{\beta^2}{\alpha^2 + \beta^2} \right)$$

$$= 1 + 0i$$

$$= 1$$

Verfication 1.6. distributive property

$$\lambda(w+z) = \lambda w + \lambda z \text{ for all } \lambda, w, z \in \mathbb{C}$$

$$\lambda(w+z) = \lambda(\alpha + \beta i + \delta + \varepsilon i)$$

$$= \lambda(\alpha + \delta + (\beta + \varepsilon) i)$$

$$= \lambda \alpha + \lambda \delta + (\lambda \beta + \lambda \varepsilon) i$$

$$= \lambda \alpha + \lambda \beta i + \lambda \delta + \lambda \varepsilon i$$

$$= \lambda(\alpha + \beta i) + \lambda(\delta + \varepsilon i)$$

$$= \lambda w + \lambda z$$