

From movie frames to the brain...

Florian David Neuro-X student Supervised by Michael Chan ... and back!

Literature survey

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/ynimg

Review

Encoding and decoding in fMRI

Thomas Naselaris a, Kendrick N. Kay b, Shinji Nishimoto a, Jack L. Gallant a,b,*

^a Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA

^b Department of Psychology, University of California, Berkeley, CA 94720, USA

Scientific aim(s)

2.

Build an **decoder** to validate the predicted brain activity

1.

Build an **encoder**to predict brain
activity while
someone is
watching a movie

3.

Merge both models into an end-to-end **encoderdecoder** to generate fMRI data on unseen movies

Preprocessing on all 14 movies:

- 112x112 pixels
- 32 frames per TR

1 TR = 32 frames

Train Set ~ 64%

Validation Set ~ 16%

Test Set ~ 20%

1 full movie in the Test Set: You Again (613TR)

Encoder 1.0

Encoder 2.0

Improvement of the Encoder

- 1 subject → average activity across 30 subjects
- batch size = 1 → batch size = 16
- other hyperparameters

Encoder 2.0

Global

Correlations over time

How well each voxel has been predicted

- → Mean correlations: **0.061**
- → Median correlations: 0.060

You Again

Correlations over time

How well each voxel has been predicted

- → Mean correlations: **0.056**
- → Median correlations: 0.037

Decoder

→ The decoder can be seen as a regularizer for the encoder

Encoder-Decoder

Model training

- End-to-end training: all the weights are updated at each iteration
- Objective:
 - minimize the encoder loss
 - minimize MSE
 - minimize cosine distance
- minimize the decoder loss
 - maximize perceptual similarity
 - maximize structural similarity
 - minimize total variation

Encoder-Decoder

Correlations over time

How well each voxel has been predicted

- → Mean correlations: **0.098**
- → Median correlations: 0.081

You Again

Correlations over time

How well each voxel has been predicted

- → Mean correlations: 0.112
- → Median correlations: 0.96

Encoder-Decoder

Significance – Permutation test 101

For each voxel:

- compute correlations between prediction and ground truth
- compute correlations between prediction and shuffled ground truth multiple times
- p-value: calculate the probability that the true correlation value is lower than the correlation with a shuffled label

→ get 1 p-value per voxel

Significance – Global

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

-0.1

0.0

[DETOUR] Significance – Localisation

Significance – You Again

Significance – Model comparison

<u>Global</u>

→ Means difference: 0.037

 \rightarrow p < 0.05

Scientific aim(s)

ML4Science results

→ Average correlations on the test set: 0.001

Can we improve it?

Build an encoder
to predict brain
activity while
someone is
watching a movie

 \rightarrow The encoder alone can predict brain activity on an $unseen\ movie$ with an average correlation of 0.056

2. Build an decoder to validate the predicted brain activity

→ The decoder alone can learn to reconstruct movie frames from brain activity

Merge both models into an end-to-end **encoder**-**decoder** to generate fMRI data on unseen movies

→ The end-to-end encoder-decoder can predict brain activity on an unseen movie with an average correlation of 0.112

Thank you for your attention!

Bonus: what went wrong...

Stimulus extent: 16°

Bonus: what went wrong...

RIGHT UP

LEFT DOWN

went wrong...

Gaussian blu

Delete Failed

send2trash f`1ailed: [Errno 28] No space left on device

Dismiss

Thank you for your attention!