# Lattice based approaches Learnable representations for languages

#### Alexander Clark

Department of Computer Science Royal Holloway, University of London

> August 2010 ESSLLI, 2010

### **Outline**

#### Introduction

#### Dual CFG model

Single context

Multiple contexts

#### Lattice approaches

Theory
Formal concept analysis

Syntactic Concept Lattice

Take basic congruence based approaches and fix them.

- Start by considering a different CF approach
- Move to a mildly context-sensitive formalism to fix some efficiency issues.

# $L = \{\lambda, aa, aba, baab, \dots\}$

## Inconvenient truth

 $u \equiv_L v \text{ implies } u = v$  $[u] = \{u\}$ 

#### Proof

Introduction

- Assume |u| ≤ |v|
- $uu^R \in L$ , so  $vu^R \in L$
- So v = uw, and w is palindrome.
- w' is w with a changed to b and vice versa
- $uw'u^R \in L$ , so  $uww'u^R \in L$ , so |w| = 0

### Problem 2

### CF language

$$L = \{a^n b^n | n \ge 0\} \cup \{a^n b^{2n} | n \ge 0\}$$

We need non-terminals that generate

- a<sup>n</sup>b<sup>n</sup>
- a<sup>n</sup>b<sup>2n</sup>
- ..

But aabb is not congruent to aaabbb!

## Strings

 $[u] = \{v | v \equiv_L u\}$ 

The smallest possible sets

Gives us a partition of  $\Sigma^{\ast}$ 

#### Contexts

 $I[I, r] = \{v | Ivr \in L\}$ 

These are the largest possible sets.

Overlap

## Representational primitives

## **Strings**

$$[u] = \{v | v \equiv_L u\}$$

The smallest possible sets Gives us a partition of  $\Sigma^*$ 

#### Contexts

$$I[I, r] = \{v | Ivr \in L\}$$

These are the largest possible sets.

Overlap

Later we will look at:

#### Intersections

Given a set of contexts F For every subset  $C \subseteq F$ 

$$C' = \{w | \forall (I,r) \in C, lwr \in L\}$$

$$\bigcap_{(I,r)\in\mathcal{C}}I[I,r]$$



# Congruence based models Primal

## A priori rules

$$[uv] \rightarrow [u][v]$$
$$[a] \rightarrow a$$

#### Certain rules

 $S \rightarrow [u]$ 

#### Defeasible rules

$$[u] \rightarrow [v] \text{ iff } u \equiv_L v$$

#### **Dual CFG model** Single context

Multiple contexts

Theory Formal concept analysis

## Crude approach

#### Single contexts

$$I[I,r] = \{v | Ivr \in L\}$$

• 
$$L = I[\lambda, \lambda]$$

Finite set of contexts F that contains  $(\lambda, \lambda)$ . Each context will be a non-terminal.

```
\{a^nb^n|n>0\}
I[a,b]=L
I[a,\lambda] = \{a^n b^{n+1} | n \ge 0\}
I[a,a]=\emptyset
I[a, abbb] = \{a\}
```

### Basic rules

#### Assume we have MQs

Lexical rules: certain

 $[l, r] \rightarrow a$ Valid if  $lar \in L$ 

The start symbol: a priori

 $[\lambda, \lambda]$ 

Branching rules: defeasible

 $[I_N, r_N] \to [I_P, r_P], [I_Q, r_Q]$ Valid only if  $I[I_P, r_P]/[I_Q, r_Q] \subseteq I[I_N, r_N]$ 

## Testing branching rules

Define a set of strings: *K*. Test whether:

$$(I[I_P, r_P] \cap K)(I[I_Q, r_q] \cap K) \subseteq I[I_N, r_N]$$

- Take every  $u, v \in K$  such that  $I_P ur_p, I_O vr_a \in L$
- Test whether I<sub>N</sub>uvr<sub>N</sub> ∈ L

As *K* increases, the test gets harder.

Suppose we have  $(\lambda, b), (a, \lambda), (\lambda, \lambda)$ .

- Consider  $ab = a \circ b$
- $ab \in I[\lambda, \lambda]$
- $a \in I[\lambda, b]$
- $b \in I[a, \lambda]$

$$L = \{a^n b^n | n \ge 0\}$$

Suppose we have  $(\lambda, b), (a, \lambda), (\lambda, \lambda)$ .

- Consider  $ab = a \circ b$
- $ab \in I[\lambda, \lambda]$
- $a \in I[\lambda, b]$
- $b \in I[a, \lambda]$
- So maybe we have a rule  $[\lambda, \lambda] \rightarrow [\lambda, b], [a, \lambda]$

$$L = \{a^n b^n | n \ge 0\}$$

Suppose we have  $(\lambda, b), (a, \lambda), (\lambda, \lambda)$ .

- Consider  $ab = a \circ b$
- $ab \in I[\lambda, \lambda]$
- $a \in I[\lambda, b]$
- $b \in I[a, \lambda]$
- So maybe we have a rule  $[\lambda, \lambda] \rightarrow [\lambda, b], [a, \lambda]$
- But consider aab ∘ abb

## Suppose we have $(\lambda, abb), (a, \lambda), (\lambda, \lambda)$ .

- Consider  $ab = a \circ b$
- $ab \in I[\lambda, \lambda]$
- $a \in I[\lambda, abb]$
- $b \in I[a, \lambda]$

$$L = \{a^n b^n | n \ge 0\}$$

Suppose we have  $(\lambda, abb), (a, \lambda), (\lambda, \lambda)$ .

- Consider  $ab = a \circ b$
- $ab \in I[\lambda, \lambda]$
- $a \in I[\lambda, abb]$
- $b \in I[a, \lambda]$
- So maybe we have a rule  $[\lambda, \lambda] \rightarrow [\lambda, abb], [a, \lambda]$

$$L = \{a^n b^n | n \ge 0\}$$

Suppose we have  $(\lambda, abb), (a, \lambda), (\lambda, \lambda)$ .

- Consider  $ab = a \circ b$
- $ab \in I[\lambda, \lambda]$
- $a \in I[\lambda, abb]$
- $b \in I[a, \lambda]$
- So maybe we have a rule  $[\lambda, \lambda] \rightarrow [\lambda, abb], [a, \lambda]$
- I[λ, abb] = {a} so valid.

## Not a partition

In congruence class methods, we have a partition, so there is a unique  $N, N \rightarrow P, Q$ . Multiple overlapping rules.

- $[\lambda, \lambda] \rightarrow [\lambda, abb], [a, \lambda]$
- $[\lambda, \lambda] \rightarrow [\lambda, abb], [aab, \lambda]$
- $[\lambda, \lambda] \rightarrow [\lambda, a], [aab, \lambda]$

## Not a partition

In congruence class methods, we have a partition, so there is a unique  $N,\,N\to P,\,Q.$ 

Multiple overlapping rules.

- $[\lambda, \lambda] \rightarrow [\lambda, abb], [a, \lambda]$
- $[\lambda, \lambda] \rightarrow [\lambda, abb], [aab, \lambda]$
- $[\lambda, \lambda] \rightarrow [\lambda, a], [aab, \lambda]$
- Unary rules:  $[\lambda, a] \rightarrow [\lambda, abb]$

## Algorithm idea

- Increase K as much as possible − Sub({w<sub>1</sub>,..., w<sub>n</sub>}).
- Eventually this will remove all incorrect rules
- When we undergenerate, increase F to get more rules
- $F = Con(\{w_1, \ldots, w_n\}).$

14 **until** *w* ;

## Algorithm

```
Data: Input alphabet \Sigma
    Result: A sequence of CFGs G_1, G_2, \ldots
 1 K \leftarrow \Sigma \cup \{\lambda\}, F \leftarrow \{(\lambda, \lambda)\}, E = \{\};
 2 G = Make(K, F):
 3 repeat
        E \leftarrow E \cup \{w\};
        K \leftarrow Sub(E);
 5
        if there is some w \in E that is not in L(G) then
 6
            F \leftarrow Con(E);
             G \leftarrow \text{Make}(K, F):
 8
        end
 9
        else
10
             G \leftarrow \text{Make}(K,F);
11
        end
12
        Output G;
13
```

 $L = \{a^n b^n | n \ge 0\}$ 

#### Start:

- $F = \{(\lambda, \lambda)\}$
- $K = \{a, b\lambda\}$

#### Grammar

- $[\lambda, \lambda] \rightarrow \lambda$
- $[\lambda, \lambda] \rightarrow [\lambda, \lambda], [\lambda, \lambda]$

$$L(G_0) = \{\lambda\}$$

$$L = \{a^n b^n | n \ge 0\}$$

Step 1: receive example ab, not in current L.

- $K = \{\lambda, a, b, ab\}$
- $F = \{(\lambda, \lambda), (a, \lambda), (\lambda, b), (a, b)\}$

#### Lexical rules

- $[\lambda, \lambda] \rightarrow \lambda$
- $[\lambda, b] \rightarrow a$  and  $[a, \lambda] \rightarrow b$

64 possible branching rules But [a, b] the same as  $[\lambda, \lambda]$  so 27

$$L = \{a^n b^n | n \ge 0\}$$

Step 1: receive example ab, not in current L.

- $K = \{\lambda, a, b, ab\}$
- $F = \{(\lambda, \lambda), (a, \lambda), (\lambda, b), (a, b)\}$
- $I[\lambda, \lambda] \cap K = \{\lambda, ab\}$
- $I[a, \lambda] \cap K = \{b\}$
- $I[\lambda, b] \cap K = \{a\}$
- $I[a, b] \cap K = \{\lambda, ab\}$

$$L = \{a^n b^n | n \ge 0\}$$

### Group 1

$$[\lambda, \lambda] \to X, Y.$$

$$\begin{array}{c|cccc} & [\lambda,\lambda] & [a,\lambda] & [\lambda,b] \\ \hline [\lambda,\lambda] & ab \circ ab & \lambda \circ b & \lambda \circ a \\ [a,\lambda] & b \circ \lambda & b \circ b & b \circ a \\ [\lambda,b] & a \circ \lambda & \text{YES?} & a \circ a \\ \end{array}$$

$$(I[\lambda, b] \cap K)(I[a, \lambda] \cap K) = \{a\}\{b\} = \{ab\} \subseteq I[\lambda, \lambda]$$

(Wrong!)

$$L = \{a^n b^n | n \ge 0\}$$

## Group 2

$$[a, \lambda] \rightarrow X, Y.$$

|                      | $[\lambda, \lambda]$    | $[\pmb{a},\lambda]$ | $[\lambda, b]$    |
|----------------------|-------------------------|---------------------|-------------------|
| $[\lambda, \lambda]$ | $\lambda \circ \lambda$ | YES?                | $\lambda \circ a$ |
| $[\pmb{a},\lambda]$  | b ∘ ab                  | $b \circ b$         | b∘a               |
| $[\lambda, b]$       | $a \circ \lambda$       | a∘b                 | a ∘ a             |

$$L = \{a^n b^n | n \ge 0\}$$

## Group 3

$$[\lambda, b] \rightarrow X, Y.$$

|                      | $[\lambda, \lambda]$    | $[\pmb{a},\lambda]$ | $[\lambda, 	extbf{\emph{b}}]$ |
|----------------------|-------------------------|---------------------|-------------------------------|
| $[\lambda, \lambda]$ | $\lambda \circ \lambda$ | $\lambda \circ b$   | ab ∘ a                        |
| $[\pmb{a},\lambda]$  | b ∘ ab                  | $b \circ b$         | b∘a                           |
| $[\lambda, b]$       | YES?                    | a∘b                 | a∘a                           |

$$L = \{a^n b^n | n \ge 0\}$$

#### Resulting grammar has rules:

- $[\lambda, \lambda] \rightarrow [\lambda, b], [a, \lambda]$
- $[a, \lambda] \rightarrow [\lambda, \lambda], [a, \lambda]$
- $[\lambda, b] \rightarrow [\lambda, b], [\lambda, \lambda]$

#### These are all incorrect.

#### Lexical rules:

- $[\lambda, \lambda] \rightarrow \lambda$
- $[\lambda, b] \rightarrow a$  and  $[a, \lambda] \rightarrow b$

$$L(G_1) = \{\lambda, ab, aabb, aababb...\}$$

$$L = \{a^n b^n | n \ge 0\}$$

- Next positive datum: aabb
- K includes aab and abb which knocks out these rules.
- Increase F to include  $(\lambda, abb), (aab, \lambda)$

## Example $L = \{a^n b^n | n \geq 0\}$

- Next positive datum: aabb
- K includes aab and abb which knocks out these rules.
- Increase F to include  $(\lambda, abb)$ ,  $(aab, \lambda)$
- Correct rules:
  - $[\lambda, \lambda] \rightarrow [\lambda, b][aab, \lambda]$
  - $[\lambda, \lambda] \rightarrow [\lambda, abb][aab, \lambda]$
  - $[\lambda, \lambda] \rightarrow [\lambda, abb][a, \lambda]$
  - $[\lambda, b] \rightarrow [\lambda, abb][\lambda, \lambda]$  etc.

$$L_{nd} = \{a^n b^n c^m | n, m \ge 0\} \cup \{a^m b^n c^n | n, m \ge 0\}$$

| L(G, N)                  | $F_N$               |
|--------------------------|---------------------|
| λ                        | (aaabb, bccc)       |
| а                        | $(\lambda, abbccc)$ |
| b                        | (aaab, bccc)        |
| С                        | $(aaabbc, \lambda)$ |
| <i>c</i> *               | $(c,\lambda)$       |
| $a^*$                    | $(\lambda, a)$      |
| $\{a^nb^n n\geq 0\}$     | (a,b)               |
| $\{a^nb^{n+1} n\geq 0\}$ | (aa, b)             |
| $\{b^nc^n n\geq 0\}$     | (b,c)               |
| $\{b^nc^{n+1} n\geq 0\}$ | (bb, c)             |
| L <sub>nd</sub>          | $(\lambda,\lambda)$ |

## Classes are too large

#### Intermediate model

Fix a constant f = 1, 2, ...

Consider all subsets of F of at most f contexts

Polynomial size  $|F|^f$ 

Very crude: doesn't really solve the problem.

## Special case f = 2

#### Palindrome language

- (λ, ba), (λ, aa) defines {a}
- $[(\lambda, \lambda)] \rightarrow [(\lambda, ba), (\lambda, aa)], [(a, \lambda)]$

#### $a^nb^n\cup a^nb^{2n}$

- $(\lambda, \lambda), (a, b)$  define  $a^n b^n$
- $(\lambda, \lambda), (a, bb)$  define  $a^n b^{2n}$

#### Outline

Multiple contexts

Lattice approaches Linguistic justification Theory Formal concept analysis

Lattice approaches

## Background

- We can try all possible generalisations defined by any possible set of features
- use lattice theory
- Mildly context-sensitive approach

## Sets of strings and contexts **Ambiguity**

Lattice approaches •0000

## Simplified example

Suppose  $N \stackrel{*}{\Rightarrow} u$ ,  $M \stackrel{*}{\Rightarrow} v$ And  $N \stackrel{*}{\Rightarrow} w M \stackrel{*}{\Rightarrow} w$ 

Then we might have  $C_l(w) = C_l(u) \cup C_l(v)$ .

## Motivation I

# "can" is ambiguous:

- A can of beans
- I can see that

## Motivation I

### "can" is ambiguous:

- A can of beans
- I can see that

Distribution of "can" will be (roughly) the **union** of the distribution of count nouns and distribution of auxiliary verbs.

## Motivation II

### "may" is ambiguous:

- I like to go to the beach in may
- I may go to the beach

## Motivation II

### "may" is ambiguous:

- I like to go to the beach in may
- I may go to the beach

Distribution of auxiliary verbs is (roughly) the **intersection** of the distribution of "may" and "can".

## **Rulon Wells**

## Immediate Constituents, Language 1947

It is easy to define a focus-class embracing a large variety of sequence classes but characterized by only a few environments; it is also easy to define one characterized by a great many environments in which all its members occur but on the other hand poor in the number of diverse sequence-classes that it embraces. What is difficult, but far more important than either of the easy tasks, is to define focus-classes rich both in the number of environments chracterizing them and at the same time in the diversity of sequence classes that they embrace.

- Concepts high up in the lattice have a few contexts, but lots of strings
- Concepts low down have a larger number of contexts, but only a few strings.



## Key points

Lattice approaches 0000

- We are dealing with sets of strings, sets of contexts
- These will overlap in very complex ways
- We may have words whose distributions are combinations of distributions of more primitive elements.
- The appropriate structure is a lattice.

## Partially ordered sets

### Definition

```
A set with a relation < that is
  transitive X \leq Y \leq Z means X \leq Z
   reflexive X < X
antisymmetric X \leq Y and Y \leq X means X = Y
```

### Examples

- numbers with normal partial order
- sets with X < Y iff X ⊂ Y</li>
- sets with X < Y iff Y ⊂ X</li>

### Lattice

Not all posets are lattices.

### Two operations:

- ∨, least upper bound, join
- A, greatest lower bound meet

## Basic axioms

$$X \wedge X = X \tag{1}$$

$$X \wedge Y = Y \wedge X \tag{2}$$

$$(X \wedge Y) \wedge Z = X \wedge (Y \wedge Z) \tag{3}$$

$$X \vee (X \wedge Y) = X \tag{4}$$

(5)

Complete lattice has  $\top$  and  $\bot$ , that are identities for the two operations.

# General theory

### Formal concept analysis:

- Set of strings
- Set of contexts

#### Maximal rectangles

|       |       |       |       |       | IVI   | aviille | 11 150 | andi  | 73    |          |
|-------|-------|-------|-------|-------|-------|---------|--------|-------|-------|----------|
|       | $f_1$ | $f_2$ | $f_3$ | $f_4$ | $f_5$ | $f_6$   | $f_7$  | $f_8$ | $f_9$ | $f_{10}$ |
| $k_8$ |       |       |       |       |       |         |        |       |       |          |
| $k_7$ |       |       |       |       |       |         |        |       |       |          |
| $k_6$ |       |       |       |       |       |         |        |       |       |          |
| $k_5$ |       |       |       |       |       |         |        |       |       |          |
| $k_4$ |       |       |       |       |       |         |        |       |       |          |
| $k_3$ |       |       |       |       |       |         |        |       |       |          |
| $k_2$ |       |       |       |       |       |         |        |       |       |          |
| k.    |       |       |       |       |       |         |        |       |       |          |

### Maximal rectangles

|       |       |       |       |       | IVI   | axiiiia | ai reci | langie | 35    |          |
|-------|-------|-------|-------|-------|-------|---------|---------|--------|-------|----------|
|       | $f_1$ | $f_2$ | $f_3$ | $f_4$ | $f_5$ | $f_6$   | $f_7$   | $f_8$  | $f_9$ | $f_{10}$ |
| $k_8$ |       |       |       |       |       |         |         |        |       |          |
| $k_7$ |       |       |       |       |       |         |         |        |       |          |
| $k_6$ |       |       |       |       |       |         |         |        |       |          |
| $k_5$ |       |       |       |       |       |         |         |        |       |          |
| $k_4$ |       |       |       |       |       |         |         |        |       |          |
| $k_3$ |       |       |       |       |       |         |         |        |       |          |
| $k_2$ |       |       |       |       |       |         |         |        |       |          |
| k1    |       |       |       |       |       |         |         |        |       | 4 0 1    |









|       |       |       |       |       | M     | axima | al rect | tangle | es    |          |
|-------|-------|-------|-------|-------|-------|-------|---------|--------|-------|----------|
|       | $f_1$ | $f_2$ | $f_3$ | $f_4$ | $f_5$ | $f_6$ | $f_7$   | $f_8$  | $f_9$ | $f_{10}$ |
| $k_8$ |       |       |       |       |       |       |         |        |       |          |
| $k_7$ |       |       |       |       |       |       |         |        |       |          |
| $k_6$ |       |       |       |       |       |       |         |        |       |          |
| $k_5$ |       |       |       |       |       |       |         |        |       |          |
| $k_4$ |       |       |       |       |       |       |         |        |       |          |
| $k_3$ |       |       |       |       |       |       |         |        |       |          |
| $k_2$ |       |       |       |       |       |       |         |        |       |          |
| 1     |       |       |       |       |       | -     |         | -      |       |          |



### Maximal rectangles

|       |       |       |       |       | IVI   | axiiiia | ai reci | langie | 35    |          |
|-------|-------|-------|-------|-------|-------|---------|---------|--------|-------|----------|
|       | $f_1$ | $f_2$ | $f_3$ | $f_4$ | $f_5$ | $f_6$   | $f_7$   | $f_8$  | $f_9$ | $f_{10}$ |
| $k_8$ |       |       |       |       |       |         |         |        |       |          |
| $k_7$ |       |       |       |       |       |         |         |        |       |          |
| $k_6$ |       |       |       |       |       |         |         |        |       |          |
| $k_5$ |       |       |       |       |       |         |         |        |       |          |
| $k_4$ |       |       |       |       |       |         |         |        |       |          |
| $k_3$ |       |       |       |       |       |         |         |        |       |          |
| $k_2$ |       |       |       |       |       |         |         |        |       |          |
| 1.    |       |       |       |       |       |         |         |        |       |          |

0 0•000





## Partial order





\_\_\_\_\_

# Top and bottom



Top and bottom

|       |       |       |       |       | 10    | u ai  | iu i  | יווטכוני | UIII  |          |
|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|----------|
|       | $f_1$ | $f_2$ | $f_3$ | $f_4$ | $f_5$ | $f_6$ | $f_7$ | $f_8$    | $f_9$ | $f_{10}$ |
| $k_8$ |       |       |       |       |       |       |       |          |       |          |
| $k_7$ |       |       |       |       |       |       |       |          |       |          |
| $k_6$ |       |       |       |       |       |       |       |          |       |          |
| $k_5$ |       |       |       |       |       |       |       |          |       |          |
| $k_4$ |       |       |       |       |       |       |       |          |       |          |
| $k_3$ |       |       |       |       |       |       |       |          |       |          |
| $k_2$ |       |       |       |       |       |       |       |          |       |          |
| $k_1$ |       |       |       |       |       |       |       |          |       |          |



000



# Polar maps

S is a set of strings, and C is a set of contexts.

## Polar maps

$$S' = \{(I, r) : \forall w \in S | wr \in L\}$$

$$C' = \{w : \forall (I, r) \in C | wr \in L\}$$

$$L = \{(\lambda, \lambda)\}'$$

## Concept

A syntactic concept is an ordered pair  $\langle S, C \rangle$ . where C' = S and S' = C. Equivalently a maximal pair such that  $C \odot S \subseteq L$ .

# Basic operations

### Basic

If  $S \subseteq T$ , then  $S' \supseteq T'$  $\mathcal{S} \subseteq \mathcal{S}''$ 

### Lemma

$$S''' = S', C''' = C'$$
  
Proof:  $S \subseteq S''$  so  $S' \supseteq S'''$   
 $(S') \subseteq (S')''$ 

## Closure operator

If S = S'' then S is closed.

If  $\langle S, C \rangle$  is a concept, then S and C are both closed.

We can consider it as the lattice of closed sets of strings, or the lattice of closed sets of contexts, or both together.

## Lattice

|    |                     | $(a, \lambda)$ | F              | Palindro $(aa, \lambda)$ | me la | nguage $(ba,\lambda)$ | e over | $(\lambda, a)$ |            |               |    |          |     |          |   |  |
|----|---------------------|----------------|----------------|--------------------------|-------|-----------------------|--------|----------------|------------|---------------|----|----------|-----|----------|---|--|
|    | $(\lambda,\lambda)$ |                | $(ab,\lambda)$ |                          |       |                       |        |                |            |               |    |          |     |          |   |  |
| ba |                     |                |                |                          |       |                       |        |                |            |               |    |          |     |          |   |  |
| bb |                     |                |                |                          |       |                       |        |                |            |               |    |          |     |          |   |  |
| ba |                     |                |                |                          |       |                       |        |                |            |               |    |          |     |          |   |  |
| ab |                     |                |                |                          |       |                       |        |                |            |               |    |          |     |          |   |  |
| a  |                     |                |                |                          |       |                       |        |                |            |               |    |          |     |          |   |  |
| b  |                     |                |                |                          |       |                       |        |                |            |               |    |          |     |          |   |  |
| a  |                     |                |                |                          |       |                       |        | <b>I</b>       | <b>4</b> 🗗 | <b>&gt;</b> 4 | 重→ | <b>•</b> | ( ∄ | <b>.</b> | = |  |

# Lattice

### Many rectangles



## Lattice



Dual CFG model

Lattice approaches 00000

Lattice



# Linguistic concepts



# Formally

## Polar maps

$$S' = \{(I, r) \in F : \forall w \in S | lwr \in L\}$$
  
$$C' = \{w \in K : \forall (I, r) \in C | lwr \in L\}$$

## Concept

Ordered pair  $\langle S, C \rangle$ 

- $S \subseteq K$  the set of strings
- C ⊆ F is a set of contexts

$$S' = C$$
 and  $C' = S$   
 $C(S) = \langle S'', S' \rangle$ 

## Relation to CFGs

### Define

Given a CFG G for each non-terminal N

- Yield:  $Y(N) = \{w | N \stackrel{*}{\Rightarrow} w\}$
- Contexts:  $C(N) = \{(I, r) | S \stackrel{*}{\Rightarrow} INr\}.$

Clearly  $C(N) \odot Y(N) \subseteq L$ 

Each non-terminal will be a rectangle – but not necessarily maximal.

### Technical detail

Lattice approaches

- These rectangles are "concepts" which form a complete lattice  $\mathfrak{B}(K, L, F)$
- We use a concatenation operation X ∘ Y and a lower bound  $X \wedge Y$ .

### Concatenation

$$\langle S_1, C_1 \rangle \circ \langle S_2, C_2 \rangle = \langle (S_1 S_2)'', (S_1 S_2)''' \rangle$$
  
Given two sets of strings  $S_x, S_y$   
Concatenate them  $S_x S_y$   
Find the shared set of contexts  $C_{xy}$   
Result is the concept defined by  $C'_{xy}$ 

# Dyck language

 $\lambda$ , ab, abab, aabb, abaabb...



• 
$$L = \langle \{\lambda, ab\}, (\lambda, \lambda) \rangle$$

• 
$$A = \langle \{a\}, (\lambda, b) \rangle$$

• 
$$B = \langle \{b\}, (a, \lambda) \rangle$$

# Dyck language

Lattice approaches

• 
$$L = \langle \{\lambda, ab\}, (\lambda, \lambda) \rangle$$

• 
$$A = \langle \{a\}, (\lambda, b) \rangle$$

• 
$$B = \langle \{b\}, (a, \lambda) \rangle$$

## Goal

Lattice approaches

### Predict which concept a string is in:

- Define function φ : Σ\* → 𝔻(K, L, F)
- A string w is in the language if  $\phi(w)$  has the context  $(\lambda, \lambda)$ .
- We want  $\phi(w) = \langle S, C \rangle$  to mean that  $C_I(w) \cap F = C$ .

### Recursive definition

- $\phi(a) = \mathcal{C}(a)$  (look it up)
- $\phi(ab) = \phi(a) \circ \phi(b)$
- $\phi(abc) = \phi(ab) \circ \phi(c)$ , OR  $\phi(a) \circ \phi(bc)$

## Goal

Lattice approaches

### Predict which concept a string is in:

- Define function φ : Σ\* → 𝔻(K, L, F)
- A string w is in the language if  $\phi(w)$  has the context  $(\lambda, \lambda)$ .
- We want  $\phi(w) = \langle S, C \rangle$  to mean that  $C_I(w) \cap F = C$ .

#### Recursive definition

- $\phi(a) = \mathcal{C}(a)$  (look it up)
- $\phi(ab) = \phi(a) \circ \phi(b)$
- $\phi(abc) = \phi(ab) \circ \phi(c)$ , OR  $\phi(a) \circ \phi(bc)$
- $\phi(abc) = \phi(ab) \circ \phi(c) \wedge \phi(a) \circ \phi(bc)$

# Distributional lattice grammars

Lattice approaches

Derivation: efficient  $\mathcal{O}(|w|^3)$  algorithm

#### Definition

A distributional lattice grammar (DLG) is a tuple  $\langle K, D, F \rangle$ 

- K is a finite subset of strings that includes Σ and λ
- F is a finite set of contexts that includes  $(\lambda, \lambda)$
- D is a finite subset of  $F \odot KK$

#### Definition

$$\phi: \Sigma^* \to \mathfrak{B}(K, D, F).$$

- for all  $a \in \Sigma$ ,  $\phi(a) = \mathcal{C}(a)$
- for all w with |w| > 1,

$$\phi(\mathbf{w}) = \bigwedge_{\mathbf{u}, \mathbf{v} \in \Sigma^+: \mathbf{u}\mathbf{v} = \mathbf{w}} \phi(\mathbf{u}) \circ \phi(\mathbf{v})$$

Lattice approaches

# Derivation example

## Dyck language

```
\{\lambda, ab, aabb, abab, aaababbb \dots\}
F = \{(\lambda, \lambda), (\lambda, b), (a, \lambda)\}
K = \{\lambda, a, b, ab\}
```

- $\top = \langle K, \emptyset \rangle$
- $\perp = \langle \emptyset, F \rangle$
- $\mathbf{L} = \langle \{\lambda, ab\}, \{(\lambda, \lambda)\} \rangle$
- $A = \langle \{a\}, \{(\lambda, b)\} \rangle$
- $B = \langle \{b\}, \{(a, \lambda)\} \rangle$

## Dyck language

$$\{\lambda, ab, aabb, abab, aaababbb...\}$$
  
 $F = \{(\lambda, \lambda), (\lambda, b), (a, \lambda)\}$   
 $K = \{\lambda, a, b, ab\}$ 

1. 
$$\phi(a) = A$$

2. 
$$\phi(ab) = \phi(a) \circ \phi(b) = \mathbf{L}$$
,  $\phi(aa) = \top \dots$ 

3. 
$$\phi(aab) = (\phi(a) \circ \phi(ab)) \wedge (\phi(aa) \circ \phi(b)) = A \wedge \top = A$$

5. 
$$\phi(aaababbb) = \phi(a) \circ \phi(aababbb) \wedge \cdots = \mathbf{L}$$

# Example

Lattice approaches

$$\begin{array}{c} L = \{a^nb^nc^m|n,m \geq 0\} \cup \{a^mb^nc^n|n,m \geq 0\} \\ (aaabb,bccc) \ (\lambda,abbccc) \ (aa,bbc) \ (abb,cc) \ (abb,cc) \ (abb,cc) \end{array}$$
 
$$(\lambda,\lambda) \ (aaabbc,\lambda) \ (aaab,bccc) \ (aa,bbc) \ (abbbc) \ (abbb,cc)$$

|      | ( / / | ( | , | / ( | , | / ( | , | , ( | , |
|------|-------|---|---|-----|---|-----|---|-----|---|
| bcc  |       |   |   |     |   |     |   |     |   |
| aab  |       |   |   |     |   |     |   |     |   |
| bbcc |       |   |   |     |   |     |   |     |   |
| bc   |       |   |   |     |   |     |   |     |   |
| abc  |       |   |   |     |   |     |   |     |   |
| aabb |       |   |   |     |   |     |   |     |   |
| ab   |       |   |   |     |   |     |   |     |   |
| c    |       |   |   |     |   |     |   |     |   |
| b    |       |   |   |     |   |     |   |     |   |
|      |       |   |   |     |   |     |   |     |   |

Lattice approaches

# Example

| (    | aa,bbc | $(\lambda,\lambda)$ | $L = \{aab, cc\}$ | a <sup>n</sup> b <sup>n</sup> c<br>aabb, ba<br>) (a | ecc) () aabbc, | $egin{array}{l} egin{array}{l} egin{array}$ | $\{ egin{array}{l} \cup \{ oldsymbol{a} \ aab, bcollabel{eq:abb} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | m <mark>b<sup>n</sup>c<sup>n</sup></mark><br>aa, bbbe | <b>n, m</b><br>e)<br>abbb, co | ≥ <b>0</b> } |
|------|--------|---------------------|-------------------|-----------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------|--------------|
| bcc  |        |                     |                   |                                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                       |                               |              |
| aab  |        |                     |                   |                                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                       |                               |              |
| abc  |        |                     |                   |                                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                       |                               |              |
| aabb |        |                     |                   |                                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                       |                               |              |
| ab   |        |                     |                   |                                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                       |                               |              |
| λ    |        |                     |                   |                                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                       |                               |              |
| bbcc |        |                     |                   |                                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                       |                               |              |
| bc   |        |                     |                   |                                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                       |                               |              |
| c    |        |                     |                   |                                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                       |                               |              |
| b    |        |                     |                   |                                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                       | . □                           | ▶ ∢ 🗗        |

## Example

$$(\lambda,\lambda) \stackrel{L}{=} \{a^nb^nc^m|n,m \ge 0\} \cup \{a^mb^nc^n|n,m \ge 0\}$$

$$(\lambda,\lambda) \stackrel{(\text{aa-abb}, bccc)}{(\text{aa-abb}, bcc)} (\lambda,\text{abbccc}) \stackrel{(\text{ab-bb}, c)}{(\text{aa-bb}, cc)} (\text{abb}, cc)$$

$$(ab,cc) \stackrel{(\text{aa-abb}, bccc)}{(\text{aa-abb}, bccc)} (\text{abbb}, cc)$$



## Example

$$(\lambda,\lambda) \stackrel{L=\{a^nb^nc^m|n,m\geq 0\}}{(\text{aaabb, bccc})} \cup \{a^mb^nc^n|n,m\geq 0\}$$

$$(aa,bbc) \quad (\text{abb, cc}) \quad (\text{aaabbc,}\lambda) \quad (\text{aaab, bccc}) \quad (\text{abb, cc})$$



# Learnability I

Lattice approaches

#### Search

Language is defined by choice of K and F How can we find suitable K and F?

#### Lemma 1

as we increase K the language defined by  $\langle K, L, F \rangle$  decreases monotonically

It will always converge to a subset of L in a finite time

#### Lemma 2

As we increase the set of contexts F the language monotonically increases.

Any sufficiently large set of contexts will do.

Lattice approaches

# Search problem is trivial

## Naive Algorithm

Start with  $F = \{(\lambda, \lambda)\}, K = \Sigma \cup \{\lambda\}$ 

- If we see a string that is not in our hypothesis, the hypothesis is too small, and we add contexts to F
- Add strings to K if it will change the lattice at all.

## Clark, (CoNLL, 2010)

DLGs can be learnt from positive data and MQs Polynomial update time

## Power of Representation

Lattice approaches

### Language class

Let  $\mathcal{L}$  be the set of all languages L such that there is a *finite* set of contexts F s.t.  $L = L(\mathfrak{B}(\Sigma^*, L, F))$ 

Learnable class includes

- All regular languages
- 2. Some but not all CFLs (all the examples so far)
- 3. Some non context free languages

## Not in DLG?



Lattice approaches

# Context sensitive example

## MIX language variant

Let  $M = \{(a, b, c)^*\}$ , we consider the language  $L = L_{abc} \cup L_{ab} \cup L_{ac}$  where

- $L_{ab} = \{ wd | w \in M, |w|_a = |w|_b \},$
- $L_{ac} = \{ we | w \in M, |w|_a = |w|_c \},$
- $L_{abc} = \{ wf | w \in M, |w|_a = |w|_b = |w|_c \}.$

$$F = \{(\lambda, \lambda), (\lambda, d), (\lambda, ad), (\lambda, bd), (\lambda, e), (\lambda, ae), (\lambda, ce), (\lambda, f), (ab, \lambda), (ac, \lambda)\}$$

This is a non-context-free language in the learnable class.

Lattice approaches

## Lattice



## Outline

Multiple contexts

Theory Formal concept analysis

## Syntactic Concept Lattice

# Syntactic concept lattice

#### Infinite limit

Let 
$$K \to \Sigma^*$$
 and  $F \to \Sigma^* \times \Sigma^*$   
 $\mathfrak{B}(K, L, F) \to \mathfrak{B}(L)$ 

- B(L) is the syntactic concept lattice
- Same construction as the Universal Automaton for regular languages
- $\mathfrak{B}(L)$  is finite iff L is regular

# Basic properties

#### Partial order

$$\langle S_1, C_1 \rangle \leq \langle S_2, C_2 \rangle$$
 iff  $S_1 \subseteq S_2$  iff  $C_1 \supseteq C_2$ 

#### Lattice

The set of concepts of a language form a complete lattice  $\langle S_{\mathsf{x}}, C_{\mathsf{x}} \rangle \wedge \langle S_{\mathsf{v}}, C_{\mathsf{v}} \rangle = \langle S_{\mathsf{x}} \cap S_{\mathsf{v}}, (S_{\mathsf{x}} \cap S_{\mathsf{v}})' \rangle$ Finite iff L is regular

## Typical concepts

- Language  $\langle L, \{(\lambda, \lambda)\}'' \rangle = \mathcal{C}(L) = \mathcal{C}((\lambda, \lambda))$
- Top  $\top = \langle \Sigma^*, \emptyset \rangle$
- Bottom  $\perp = \langle \emptyset, \Sigma^* \times \Sigma^* \rangle$
- Unit  $\mathbf{1} = \mathcal{C}(\lambda)$



## Concatenation is a monoid

## **Associativity**

$$(X \circ Y) \circ Z = X \circ (Y \circ Z)$$

Lattice ordered monoid: monotonicity of concatenation w.r.t. partial order:

$$X \leq Y$$
 then  $X \circ Z \leq Y \circ Z$  etc.

# Complete residuated lattice

- $X = \langle S_x, C_x \rangle$  and  $Y = \langle S_y, C_y \rangle$  are concepts.
- Then define the residual  $X/Y = \mathcal{C}(C_x \odot (\lambda, S_v))$
- $Y \setminus X = \mathcal{C}(C_X \odot (S_Y, \lambda))$

These are unique, and satisfy the following conditions:

#### Lemma

$$Y \leq X \setminus Z \text{ iff } X \circ Y \leq Z \text{ iff } X \leq Z/Y.$$

# Categorial grammar

#### Lambek calculus and CG

The Lambek calculus is based entirely on the theory of residuation.

#### **Maximisation**

• 
$$Y \circ Z < X$$

# Categorial grammar

#### Lambek calculus and CG

The Lambek calculus is based entirely on the theory of residuation.

#### **Maximisation**

- Y ∘ Z < X</li>
- $(X/Z) \circ Z \leq X$

# Categorial grammar

#### Lambek calculus and CG

The Lambek calculus is based entirely on the theory of residuation.

#### **Maximisation**

- $Y \circ Z < X$
- $(X/Z) \circ Z < X$
- $(X/Z) \circ (X/Z) \setminus X \leq X$
- Also have the opposite direction  $X/(Z\backslash X)\circ (Z\backslash X) < X$

# Structural descriptions from the lattice

## Congruence based approaches

Get parse trees, but they are not useful.

## Admissible structures for a string w

Each span has a concept  $\psi[i, j]$ 

- $\psi[i,j] > C(w[i:j])$
- $\psi[i,j] \geq \bigwedge_{k} \psi[i,k] \circ \psi[k,j]$
- $\psi[0, I] \leq C(L)$

#### Maximal structures

The set of maximal structures under the natural partial order can be viewed as the set of structural descriptions.

Discard  $\top$  symbols and construct a graph or DAG.

## Example

```
Dyck language with ambiguous symbol:
{ ab, aabb, abab, aaababbb . . . }
Add a symbol c which can be an a or a b
{ab, ac, cb, aabb, cccc, abab, aaacabbb...}
```



## Example

```
Dyck language with ambiguous symbol:
{ ab, aabb, abab, aaababbb . . . }
Add a symbol c which can be an a or a b
```

{ab, ac, cb, aabb, cccc, abab, aaacabbb...}



## Example

```
Dyck language with ambiguous symbol: { ab, aabb, abab, aaababbb . . . }
```

Add a symbol c which can be an a or a b

 $\{ab, ac, cb, aabb, cccc, abab, aaacabbb...\}$ 



## Example

```
Dyck language with ambiguous symbol: {ab, aabb, abab, aaababbb...}
```

Add a symbol c which can be an a or a b {ab, ac, cb, aabb, cccc, abab, aaacabbb...}



## Example

```
Dyck language with ambiguous symbol:
{ ab, aabb, abab, aaababbb . . . }
```

Add a symbol c which can be an a or a b

{ab, ac, cb, aabb, cccc, abab, aaacabbb...}



## Example

Dyck language with ambiguous symbol:

{ ab, aabb, abab, aaababbb . . . }

Add a symbol c which can be an a or a b {ab, ac, cb, aabb, cccc, abab, aaacabbb...}



## Example

Dyck language with ambiguous symbol:

{ ab, aabb, abab, aaababbb . . . }

Add a symbol c which can be an a or a b {ab, ac, cb, aabb, cccc, abab, aaacabbb...}



## Example

Dyck language with ambiguous symbol:

{ ab, aabb, abab, aaababbb . . . }

Add a symbol c which can be an a or a b {ab, ac, cb, aabb, cccc, abab, aaacabbb...}



## Example

Dyck language with ambiguous symbol:

{ ab, aabb, abab, aaababbb . . . }

Add a symbol c which can be an a or a b {ab, ac, cb, aabb, cccc, abab, aaacabbb...}



## Example

Dyck language with ambiguous symbol:

{ ab, aabb, abab, aaababbb . . . }

Add a symbol c which can be an a or a b {ab, ac, cb, aabb, cccc, abab, aaacabbb...}



## Tension between two notions of language 1950s

## Abstraction - Chomsky

 Rich abstract structure that you need to model ambiguity etc.

Requires representations like CFGs, TAGs etc.

## Learnability - Shannon

Observable properties that mean you can learn

*n*-gram models

## Tension between two notions of language 1950s

## Abstraction - Chomsky

 Rich abstract structure that you need to model ambiguity etc.

Requires representations like CFGs, TAGs etc.

## Learnability - Shannon

Observable properties that mean you can learn

*n*-gram models

## Not incompatible

There is a very rich abstract structure which is also observable and thus learnable.



## CFG from the lattice

### Alternatively we can stick with a CFG

- Just consider a polynomial number of elements of \$\mathfrak{B}(K, L, F)\$
- Fix f, and consider only concepts formed from  $F^{\leq f}$
- Rules
  - $X \rightarrow YZ$  if  $X \geq Y \circ Z$ .
  - $X \rightarrow Y$  if X > Y
  - $S = C((\lambda, \lambda))$
  - $X \rightarrow a$  if  $C(a) \leq X$

### Clark, ICGI, 2010

Polynomial learnability from positive data and MQs, for fixed f

### Conclusion

#### Richly learnable class:

- The class of languages is not obviously wrong.
- The learnability model is still too weak, but we would expect probabilistic results to be obtainable.
- Switch to a more efficient context-sensitive representation in order obtain efficient results.

However, the context-sensitivity may not be strong enough.