ÍNDICE

Índice	
ı	lase 2: Introducción a Autómatas Finitos
	. Autómatas Finitos: Definiciones Basicas, Computación, Operaciones y Clausura
	1.1. Ejemplos
	. Cómo opera un AF
	. Definición Formal de un Autómata Finito
	3.1. Ejemplo 1
	. Lenguaje asociado a un Autómata Finito
	. Definición Formal de Computación de un AF
	. Lenguaje Reconocido por un Autómata Finito
	. Clase de lenguajes regulares
	Propuestos
	. Algunas precisiones
	0. Operaciones sobre Lenguajes
	1. Clausura
	11.1. Motivación
	11.2. Definición
	11.3. Clausura en lenguajes regulares
	11.3.1. Complemento
	11.3.2. Unión
	11.3.3. Intersección

CLASE 2: INTRODUCCIÓN A AUTÓMATAS FINITOS

1 Autómatas Finitos: Definiciones Basicas, Computación, Operaciones y Clausura

1.1 Ejemplos

• M₁

Un poco de simbología.

Figura 1.1: Estado

Figura 1.2: Estado final

Flecha = Transición.

2 Cómo opera un AF

Autómata finito M al recibir una cadena w como entrada:

- Parte en estado inicial.
- Lee entrada de izquierda a derecha, un símbolo a la vez.
- Cambia de estado según transición tomada
- Al leer el último símbolo, ${\cal M}$ produce una salida que depende del estado:
 - si quedó en estado final, entonces entrega 'acepta'.
 - sino 'rechaza' (no acepta).

3 Definición Formal de un Autómata Finito

Definición 1.1: Autómata Finito

Un autómata finito es una 5-tupla (Q,Σ,δ,q_0,F) donde

- Q es un conjunto finito o conjunto de estados
- Σ es un conjunto finito o alfabeto
- $\delta:Q\times\Sigma\to Q$ es la función de transición
- $q_0 \in Q$ es el estado inicial, y
- $F \subseteq Q$ es el conjunto de estados finales

3.1 Ejemplo 1

$$M_1 = (Q, \Sigma, \delta, q_1, F)$$
 donde

- $Q = \{q_1, q_2\}$
- $\Sigma = \{0, 1\}$
- $\delta:Q\times\Sigma\to Q$ está definido por

$$\begin{array}{c|c|c|c} \delta & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ \hline q_2 & q_1 & q_2 \\ \end{array}$$

- q_1 es el estado inicial, y
- $F = \{q_2\}$

4 Lenguaje asociado a un Autómata Finito

Sea M un autómata finito. Informalmente, diremos que el lenguaje reconocido por M, y denotado $\mathcal{L}(M) = \emptyset$, es el conjunto de todas las palabras en Σ^* para las cuales M retorna 'acepta'.

Si M no acepta ninguna palabra, entonces $\mathcal{L}(M)=\varnothing$

- $\mathcal{L}(M_1) = \{w \in \{0,1\}^* \mid w \text{ termina en1}\}$
- $\mathcal{L}(M_2) = \{w \in \{a,b\}^* \mid w \text{ tiene como subcadena } \underline{ab}\}$

5 Definición Formal de Computación de un AF

Definición 1.2: Computación de un AF

Sea $M=(Q,\Sigma,\delta,q_0,F)$ un autómata finito y sea $\mathbf{w}=\mathbf{w}_1\dots\mathbf{w}_n$ una cadena sobre Σ . Decimos que M acepta \mathbf{w} si existe una secuencia de estados $r_0,r_1,\dots,r_n\in Q$ con las siguientes 3 condiciones

- **1)** $r_0 = q_0$
- 2) $\delta(r_i,w_{i+1})=r_{i+1}$ para todo $i=0,\dots,n-1$
- 3) $r_n \in F$

 $\+_iM_1$ acepta 01001? ¡Sí! $\+_i$ secuencia de estados $(r_0,\dots,r_5)=(q_1,q_1,q_2,q_1,q_2,q_2)$ tal que

- $r_0 = q_1$
- Cada r_{i+1} proviene de un r_i procesando el símbolo w_{i+1} , para i=0 hasta i=4:
 - **1)** $\delta(r_0, w_1) = \delta(q_1, 0) = q_1 = r_1$
 - **2)** $\delta(r_0, w_2) = \delta(q_1, 1) = q_2 = r_2$
 - 3) $\delta(r_0, w_3) = \delta(q_1, 0) = q_1 = r_3$
 - **4)** $\delta(r_0, w_4) = \delta(q_1, 1) = q_2 = r_4$
 - **5)** $\delta(r_0, w_5) = \delta(q_1, 1) = q_2 = r_5$
- $\bullet \quad r_5=q_2\in F$

6 Lenguaje Reconocido por un Autómata Finito

Definición 1.3: Lenguaje reconocido por un AF

Sea M un autómata finito. El **lenguaje reconocido por** M, denotado $\mathcal{L}(M)$, es el conjunto de todas las palabras en Σ^* para las cuales M retorna 'acepta'. Esto es

$$\mathcal{L}(M) = \{\mathbf{w} \in \Sigma^* \mid M(\mathbf{w}) = \texttt{'acepta'}\}$$

$$\mathcal{L}(M_1) = ?$$

(Propuesto)

7 Clase de lenguajes regulares

Definición 1.4: Lenguajes Regulares

Un lenguaje es regular si existe un AF que lo reconoce.

8 Propuestos

Demuestre que son regulares, donde $\Sigma = \{0, 1\}$.

- $L_1 = \emptyset$
- $L_2 = \{ \mathbf{w} \in \Sigma^* \mid \mathbf{w} \text{ contiene al menos } 3 \text{ unos} \}$
- $L_3 = \{ \mathbf{w} \in \Sigma^* \mid \mathbf{w} \text{ contiene un } 1 \text{ en la tercera posición} \}$
- $L_4 = \{ \mathbf{w} \in \Sigma^* \mid \mathbf{w} \text{ contiene } 00 \text{ como substring} \}$
- $L_5 = \{ \mathbf{w} \in \Sigma^* \mid \mathbf{w} \text{ contiene un } 1 \text{ en la tercera posición de atrás para adelante} \}$

9 Algunas precisiones

10 Operaciones sobre Lenguajes

Recuerdo. Unión, Intersección, Concatenación, Complemento, Estrella de Kleene.

11 Clausura

11.1 Motivación

Sabemos que ambos

$$A = \{ \mathbf{w} \in \{0, 1\}^* \mid \mathbf{w} \text{ comienza con un } 1 \}$$

Y

$$B = \{ w \in \{0, 1\}^* \mid w \text{ termina con un } 0 \}$$

son regulares. Entonces ¿debiera ser el lenguaje

$$C = \{ \mathbf{w} \in \{0,1\}^* \mid \mathbf{w} \text{ comienza con } 1 \text{ y termina con un } 0 \}$$

también regular?

Más generalmente: Si lo único que sabemos es que L_1 y L_2 son regulares, $\xi L_1 \cap L_2$ también lo es? y $L_1 \cup L_2$

11.2 Definición

Definición 1.5: Clausura

Una clase $\mathcal C$ de lenguajes es $\operatorname{cerrada}$ bajo la operación (binaria) \oplus si el lenguaje resultante de aplicar la operación \oplus sobre dos lenguajes $L_1, L_2 \in \mathcal C$ tambien está en $\mathcal C$, esto es, si

$$L_1,L_2\in\mathcal{C}$$
implica que $L_1\oplus L_2\in\mathcal{C}$

Similarmente, si \odot es operación unaria, entonces $\mathcal C$ es cerrada bajo \odot si para todo $L\in\mathcal C, \odot L\in\mathcal C$

11.3 Clausura en lenguajes regulares

Teorema 1.1: Clausura de lenguajes regulares

- 1) Complemento
- 2) Unión
- 3) Intersección
- 4) Concatenación
- 5) Estrella de Kleene

Dejaremos pendiente por ahora: Concatenación y Estrella de Kleene.

11.3.1 Complemento

 $\underline{\text{Dem}} \colon \text{Sea L un lenguaje regular cualquiera y } M = \{Q, \Sigma, \delta, q_0, F\} \text{ el autómate finito que lo reconoce } (\mathcal{L}(M) = L).$

Creamos M' = igual a M pero donde todo estado final se cambia por un estado no final y viceversa.

Luego
$$M' = M = \{Q, \Sigma, \delta, q_0, F'\}, F' = Q \setminus F$$

Demostraremos que $\mathcal{L}(M) = \mathcal{L}(M')^{\mathbb{C}} = L^{\mathbb{C}}$ por una doble inclusión.

- **1)** $\mathcal{L}(M) \subset \mathcal{L}(M')^{\mathbb{C}}$
 - Sea $w \in \Sigma^*$, tal que $w \in L = \mathcal{L}(M).$ $w \in w_1, \dots, w_n.$
 - Luego, $\exists r_0, r_1, \dots, r_n \in Q$ tales que $r_0 = q_0, r_{i+1} = \delta(r_i, w_{i+1}) \forall i = 0, \dots, n-1 r_n \in F$
 - Pero en M' trendremos que $r_n \in F, r_n \not \in F'$
 - $\Rightarrow w \notin \mathcal{L}(M')$ pues M' es determinista.

11.3.2 Unión

Dem: Pendiente

11.3.3 Intersección

Dem: Pendiente