Attila Fustos

Correo electrónico: attila@fustos.es
Página web: www.attila.fustos.es
Teléfono: ver página web/contacto

Año de nacimiento: 1978
Nacionalidad: Húngara
Sexo: masculino

EXPERIENCIA PROFESIONAL

3/2008-10/2010

Londres, Reino Unido – Oficina de Puentes, Ingeniero de puentes licenciado Responsabilidad extendida: Sistema de Calidad, de Protección del Medio Ambiente y de seguridad

Puentes del Río Pudding Mill, Proyecto Crossrail (Metro nuevo), Londres

Responsable del diseño de dos puentes para la línea nueva del metro

Puentes de Boulevard, Al Desarrollo de Raha Beach, Emiratos Árabes Unidos

2009

Puentes de Boulevard, Al Desarrollo de Raha Beach, Emiratos Árabes Unidos Revisión del diseño de 12 tramos de 80m de luz para un puente de arco

Puente de acceso en Belvedere, Londres 2008
Responsable del diseño del puente en el área marítima

Fomterv S.A. 7/2004-3/2008

Budapest, Hungría - División de Ingeniería de Puentes, Ingeniero de puentes

Construcción de la Linea de Metro No. 4, Budapest 2007

Responsable del diseño de las estaciones para la nueva línea de metro

Puente Pentele sobre el río Danubio en la ciudad de Dunaujvaros El mismo tiene **312m de luz, record mundial en su categoría**

Responsable del control de la prueba de carga del puente

Análisis del transporte de la estructura principal

Análisis de la conexión entre los arcos y viga cabezal

2005

ESTADO PROFESIONAL

Ingeniero Civil Colegiado en el Colegio de Ingenieros Británico (CEng, MICE)

FORMACIÓN

Universidad Politécnica de Budapest, MSC (Master en Ciencias) Departamento de Ingeniería Civil, Ingeniero estructural	1998-2005
Universidad de Ciencias Económicas Corvinus de Budapest, MSC Facultad de Administración de Negocios, Gestión Empresarial	2000–2006
Universidad Politécnica de Cracovia, Polonia, CEEPUS beca Instituto de Métodos de Computación en Ingeniería Civil	2001

IDIOMAS

Ingles: fluido, Español: nivel competente, Húngaro: lengua materna

CUALIFICACIÓNES PRINCIPALES

Mas de seis años de experiencia en el diseño y construcción de **grandes infraestructuras civiles y de transporte**, como por ejemplo: puentes, estaciones de metro, pasillos subterráneos, amplia experiencia obtenida en el diseño y construcción de puentes de arco y estructuras de acero. A dicha experiencia hay que añadir conocimientos adquiridos previamente que incluyen: **supervisión in situ de la fabricación** de estructuras de concreto reforzado, análisis de carga en puentes de gran envergadura así como también su proceso de transporte y colocación.

Dos años y medio de **experiencia trabajando en el Reino Unido** y en proyectos nacionales e internacionales, los cuales incluyeron el uso y aplicación de gran **variedad de diferentes códigos y normas de construcción** (por ej.: AASHTO).

ESTADO PROFESIONAL

Ingeniero Civil Colegiado, miembro de Institution of Civil Engineers (CEng, MICE)

Miembro colegiado de la Cámara de Ingenieros Húngaros

Miembro de la Federación Europea de Asociaciones de Ingenieros Nacionales (Eur Ing)

Miembro de la Asociación Internacional de Ingeniería de Puentes y de Estructuras (IABSE)

Certificado en Habilidad de Construcción, Licencia de Gerente de Obras

INGENIERÍA ESPECIALIZADA

Contribución en el diseño de estructuras: Desde el análisis de factibilidad, hasta el diseño estructural, pasando por el asesoramiento y refuerzo de estructuras existentes.

Tipos de estructura y procesos de construcción de: Puentes de arco, puentes integrales, puentes posttensados de hormigón, vigas pretensadas compuestas de hormigón, vigas compuestas.

Tipos de cargas: carreteras peatonales, camiones especiales, puentes ferroviarios y tranvías.

Experiencia especial en: Levantamiento y transporte de puentes, tubería con elementos estructurales prefabricados, cálculo para el levantamiento de puentes, sistema de construcción en serie de desplazamiento, sistemas de construcción subterráneo para transporte en centro de ciudad (método Milán), procedimiento del análisis de carga de puentes, sensores de tensión, cálculo de proceso de tensado de cables para puentes, cálculo de andamios y obra temporal para construcción de puentes.

Conocimiento de Método de Elementos Finitos (FEM): Análisis no linear (material y conexión de elementos no lineal) de modelos a gran escala, programación submodelado y condición del contorno.

Dirección de proyectos de ingeniería: Dirección de proyectos, de estructura y construcción general, realizar un documento de oferta, conocimiento del sistema de calidad Británico para los procesos de ingeniería.

Conocimientos de informática: Lusas, SAM-Leap, ANSYS, MSC Mark, STAAD-Pro, MathCAD, AxisVM, FEM-Design, AutoCAD, XSteel-Tekla Structure, Soficad, programación en C++ y otros lenguajes informáticos como por ejemplo Microsoft Office Visual Basic.

Códigos y normas de construcción: BS y BD (Códigos Británicos), AASHTO-LRFD (Códigos de EE.UU), Crossrail (Estándares especial para el metro nuevo en Londres), Eurocode (Código en Europa).

PUBLICACIÓN INTERNACIONAL

Nasztanovics F., Füstös A., Sapkás Á., Nagy Zs. and Horváth A.: **Análisis de la sensibilidad del Puente de Pentele, Journal article** (en húngaro), Építés-Építészettudomány, pp. 103-117, 2008, DOI: 10.1556/Ep-Tud.36.2008.1-2.5

Horváth A., Füstös A., Nagy Zs., Nasztanovics F., Sapkás Á.: **Transporte del Puente en Dunajvaros en el rió Danubio** (en inglés), IABSE Symposium on Responding to Tomorrow's Challenges in Structural Engineering, Budapest, 13-15 September 2006.

Nasztanovics F, Füstös A, Bojtár I: **Análisis de la resistencia del anaurisma cerebral** (en inglés), In: I. Hungarian Conference on Biomechanics, pp. 303-313, Budapest, 11-12 Jun 2004.

Füstös A., Nasztanovics F.: **Análisis de los implantes dentales bajo cargas dinámicas** (en inglés), Institute of Computer Methods in Civil Engineering - Seminar, Cracow, 8 November 2001.

EXPERIENCIA DETALLADA, PUESTOS Y RESPONSABILIDADES

12/2009-
12/2008- 11/2009
9/2009-
2-3/2009
2-4/2009 Serie de puentes postensados de 36m de luz construidos en 1970
 12 puentes independientes de 80 m de luz red de puentes. 8/2008- de arco y sus conexiones a las cubiertas de los puentes. 2/2009 Cada puente comprende cubiertas diferentes de 3 a 5 carr les, una vía ligera por encima del canal
5-8/2008 Puente de 7 tramos, con 115 m continuos de vigas en el área marítima para camiones pesados industriales
3-5/2008 Puente de acceso multi-luz de 120 metros, para peatones y trafico ferroviario, subestructura construida en el siglo XIX
8.2 millones de GBP, reconstrucción total de la unión de las vías de tranvía con diferentes niveles perpendiculares, conexión con la línea del metro y su estación, el paso 3/2008 subterráneo esta al lado del Puente histórico que lleva las tuberías de agua principales para Budapest
18m profundidad, 20m ancho y 130m largo estructura box 1-9/2007 subterránea, tipo de construcción: de arriba para abajo método Milán, situado bajo edificios altos y la línea de tranvía
9/2007 Estructura de techo ligero de acero en forma de medio cono
8-9/2007

Compañía	Proyecto	Fecha	Información básica del proyecto	Cargo desarrollado
.A.2 ,seineu9 eb si seineug 8002\£-40	Pentele Puente sobre el rió Danubio en Dunaujvaros, Hungría	8/2004-7/2007	132 millones GBP, luz principal: 312m, 50m altura, 43m ancho, 8600 tonelada, largo total: 1682 m Su luz principal es poseedora del Récord Mundial en su categoría, es el Puente de arco de tipo Nielsen –Lohse más largo del mundo. El transporte de luz principal del puente es una tarea única, El puente de acceso es un puente deslizante multi-luz en forma de caja	Trabaje en el diseño del Puente desde el diseño original hasta la inauguración del puente. Diseño detallado del transporte de la luz principal a través del rió, Análisis de la carga con barcazas para su posterior transporte con sensores de tensión. Análisis mecánico detallado y optimización de las diferentes partes de la estructura, Revisión independiente del proceso de tensado de los cables, Ensamblaje y construcción de las piesas Acero a través de un programa informático pionero en 3D. Calculo del incremento del deslizamiento horizontal, Director del proyecto de calculo para el análisis de carga
iero de	Puente ferroviario de Dunakeszi, Hungría	10/2007	26m de largo, luz individual, puente sobre una línea ferroviaria compuesto de vigas de acero y cubierta de hormigón la principal. 250 m. modelado en 30 elaborado para com-	Asesoramiento y cálculo refuerzo del puente Miembro del equino de Diseño en la fiabilidad de un quente fronte-
ıl əb nöizivi(İnəgnl	Puente sobre et rio que conecta la frontera Húngaro-Eslovaca Paso subterráneo de la torre Duna, Budapest, Hungría	9/2006	Luz principal: 20 m, modetado en 30 etaborado para competición de diseño, concepción de diseño campo verde 20m de largo, sección trapezoidal de 4m de alto, 6m de ancho, paso subterráneo de forma tubular con elementos estructurales prefabricados	Miembro del equipo de Liseno en la Habilidad de un puente fronte- rizo entre dos países Diseño conceptual del túnel
]	Puentes de la autopista M7	3/2006	3 puentes de 40 m de luz	Asesoramiento en el análisis del estado de los puentes
	Szolnok-Mezotur paso ferrovia- rio subterráneo, Hungría	3-5/2005	Paso subterráneo para la estación, 12m de luz 6m de pro- fundidad, proyecto de la Unión Europea	Diseño del túnel subterráneo implementado
	Puente de la Autopista M7, Hungría	7-9/2004	Puente de acceso de 40m de luz	Diseño y análisis CAD detallado en el puente.
Gedeon Richter S.L.	Renovación de una fabrica como un ingeniero cadete durante el verano	7-8/2003	4 pequeños proyectos, presupuesto: 50000 GBP	Estimación de costos, cálculo de oferta, representante sitio del director del proyectos para el contratista
thosut2 YnsgnuH A.2	Programación para la genera- ción en un elemento del cuadra- do (malla)	7-10/2002	Algoritmo especial para la formación de cuadrado utili- zando C++ para un elemento finito utilizando el programa (FEM)	Programé una parte especial para el software
	Análisis de la Resistencia de una aneurisma cerebral	2002-2004	Vinculados (flujo y fuerza mecánico) análisis 3D FEM	Miembro del equipo de investigación
isbiza Spins Spest	Becario CEEPUS, Cracovia, Polonia	10-11/2001	Trabajo de investigación en el instituto de Métodos Informá- ticos en el departamento de Ingeniería Civil	Miembro del equipo de investigación
litéo	Análisis de implantes dentales	2000-2002	Material y soporte análisis 3D, no-linear	Miembro del equipo de investigación
0Д	Distribución del esfuerzo a través de un agujero elíptico	1999-2000	Comparación de las soluciones por el método FEM y también Decidido Elemento Método (DEM)	Miembro del equipo de investigación