Homework 3.

- The file name of your homework (in PDF) should be in the format: "學號-作業編 號.pdf". For example: 00957999-hw3.pdf
- Please submit your homework to Tronclass before 23:59, December 8 (Sunday),

(可以用 word 檔寫完後轉成 pdf 檔上傳,或是手寫後拍照後存成 pdf 檔上傳)

- (21%) Find
- (a) $11^{644} \mod 645$
- (b) $3^{2003} \mod 99$
- (c) 123¹⁰⁰¹ mod 101
- (d) 7¹²¹ mod 13.
- (e) 23¹⁰⁰² mod 41
- (f) gcd(1529, 14039)
- (g) gcd(1111, 0)

- 2. (21%) Expansion conversion (a) Convert 97644 to a binary expansion.
 - (b) Convert (10 1011 0101)₂ to a decimal expansion.
 - (c) Convert (423)₈ to a binary expansion.
 - (d) Convert (1010 1010 1010)₂ to an octal expansion.
 - (e) Convert (135AB)₁₆ to an octal expansion.
 - (f) Convert (BADFACED)₁₆ to an octal expansion.
 - (g) Convert (1011 0111 1011)₂ to an octal expansion.

- (12%) Find the sum and the product of each of these pairs of numbers. Express your answers as the same base.
- (a) (100 0111)₂, (111 0111)₂
- (b) (112)₃, (210)₃
- (c) (763)₈, (147)₈
- (d) (1AE)₁₆, (BBC)₁₆

(6%) Suppose that a and b are integers, $a \equiv 4 \pmod{13}$, and $b \equiv 9 \pmod{13}$. Find

the integer c with $0 \le c \le 12$ such that

- (a) $c \equiv 11b \pmod{13}$.
- (b) $c \equiv 2a + 3b \pmod{13}$.
- (c) $c \equiv a^3 b^3 \pmod{13}$.

- (a) (177 mod 31 · 270 mod 31) mod 31
- (b) $(-133 \mod 23 + 261 \mod 23) \mod 23$
- (c) $(32^3 \mod 13)^2 \mod 11$
- (d) $(99^2 \mod 32)^3 \mod 15$
- 6.) (10%) Express the greatest common divisor of each of these pairs of integers as a linear combination of these integers.
 - (a) 117, 213
 - (b) 124, 323
 - 7) (12%) Find <u>all</u> solutions (寫出通式):

(a)
$$4x \equiv 5 \pmod{9}$$

- (b) $34x \equiv 77 \pmod{89}$
- (c) $15x^2 + 19x \equiv 5 \pmod{11}$ (Hint: Show the congruence is equivalent to the congruence $15x^2 + 19x + 6$ $\equiv 0 \pmod{11}$.)
- (d) Find all solutions, if any, to the system of congruences $x \equiv 5 \pmod{6}$, $x \equiv 3 \pmod{10}$, and $x \equiv 8 \pmod{15}$.

(10%)

(a) Show that for every positive integer n,

$$1 \cdot 2 + 2 \cdot 3 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$

(b) Find the flaw with the following "proof" that $a^n = 1$ for all nonnegative integers n, whenever a is a nonzero real number.

Basis Step: $a^0 = 1$ is true by the definition of a^0 .

Inductive Step: Assume that $a^j = 1$ for all nonnegative integers j with $j \le k$. Then we can get

$$a^{k+1} = \frac{a^k \cdot a^k}{a^{k-1}} = \frac{1 \cdot 1}{1} = 1$$