

Facultad de Ingeniería - Universidad Nacional de Cuyo				
PROGRAMA DE ASIGNATURA				
Asignatura:	Matemática Discreta			
Profesor Titular:	Sergio Salinas			
Carrera:	Licenciatura en Ciencias de la Computación			
Año: 2023	Semestre: 2°	Horas Semestre: 96	Horas Semana: 6	

OBJETIVOS DE LA ASIGNATURA

- Aplicar estructuras fundamentales de matemáticas discretas relacionadas con Ciencias de la Computación.
- Aplicar los principios de la Teoría de Conjuntos.
- Demostrar propiedades matemáticas de los números enteros.
- Aplicar distintas técnicas de conteo a problemas de Ciencias de la Computación.
- Aplicar conceptos de teoría de grafos y árboles a problemas de Ciencias de la Computación.
- Reconocer y clasificar estructuras algebraicas de diferente características.

CONTENIDOS

UNIDAD 1: TEORÍA DE CONJUNTOS

- 1.1 Definición de conjuntos y subconjuntos. Representación. Ejemplos.
- 1.2 Operaciones entre conjuntos y propiedades.
- 1.3 Relaciones. Operaciones. Propiedades. Clasificación de la relaciones.
- 1.4 Funciones: definición, operaciones y propiedades. Ejemplos.
- 1.5 Función inyectiva, suprayectiva, biyectiva e inversa. Ejemplos.

UNIDAD 2: TEORÍA DE NÚMEROS

- 2.1 Propiedades de los números enteros. Principio de Inducción.
- 2.2 Divisibilidad. Números primos. MCM y MCD.
- 2.3 Algoritmo de Euclides. Identidad de Bézout. Ecuaciones Diofánticas.
- 2.4 Aritmética modular. Congruencias lineales.
- 2.5 Representación de números enteros. Cambio de base numérica.
- 2.6 Definiciones recursivas. Ejemplos.

UNIDAD 3: TÉCNICAS DE CONTEO

- 3.1 Principios básicos.
- 3.2 Introducción. Permutaciones y combinaciones.
- 3.3 Algoritmos para generar permutaciones y combinaciones.
- 3.4 El principio del palomar.
- 3.5 El principio de inclusión-exclusión.

UNIDAD 4: TEORÍA DE GRAFOS

- 4.1 Definiciones, clasificación, propiedades, representación y ejemplos.
- 4.2 Caminos y ciclos. Grafos Eulerianos y Hamiltonianos.
- 4.3 Algoritmo de Dijkstra. Grafos bipartitos.
- 4.4 Subgrafos, complementos e isomorfismos de grafos. Grafos planos.
- 4.5 Definición de árboles. Propiedades. Tipos de árboles. Bosques.
- 4.6 Árboles con pesos y generadores.
- 4.7 Recorrido de un árbol. Búsquedas. Aplicaciones.

UNIDAD 5: ESTRUCTURAS ALGEBRAICAS

- 5.1 Definición de estructura algebraica. Propiedades. Ejemplos.
- 5.2 Semigrupos y monoides. Homomorfismo.
- 5.3 Grupos. Definiciones y propiedades. Ejemplos.
- 5.4 Anillos. Definiciones y propiedades. Ejemplos.
- 5.5 Campos. Definiciones y propiedades. Ejemplos.

METODOLOGÍA DE ENSEÑANAZA

Para cada semana se definen objetivos y actividades para realizar en casa que involucran la realización de trabajos prácticos, elaboración de mapas mentales y lectura de material relacionado con la materia.

Dependiendo del número de inscriptos, las actividades se pueden realizar en grupos de no más de cuatros integrantes y cada grupo debe presentar una copia de las actividades definidas. Los plazos de presentación son flexibles de acuerdo a la disponibilidad de recursos y tiempo de parte de los alumnos.

En todo momento el docente asiste y supervisa el desarrollo de las actividades a través de los encuentros semanales y foros de consultas disponibles en el aula abierta. En la plataforma se encuentra todo el material desarrollado en clases, videos complementarios y material de lectura.

Actividad	Carga horaria por semestre
Teoría y resolución de ejercicios simples	48
Formación práctica	
Formación Experimental – Laboratorio	48
Formación Experimental – Trabajo de campo	
Resolución de problemas de ingeniería	
Proyecto y diseño	
Total	96

Ámbito de formación práctica	Presencial	No presencial
Formación experimental		
Resolución de problemas del mundo real	40	
Actividades de proyectos y diseño de sistemas informáticos		
Instancias supervisadas de formación en la práctica profesional		
Otras actividades	8	
Carga horaria total	48	

BIBLIOGRAFÍA

Bibliografía básica

= 10.10 g. a.i.a. 10.00 a.				
Autor	Título	Editorial	Año	Ejemplares en biblioteca
		Pearson. Prentice Hall	2005	3
	Matemáticas discretas, 3ra. edición Serie Shaum	McGraw Hill	2009	1
Kiicanna Enn	Matemáticas discretas con aplicaciones	Cengage Learning	2012	2

Bibliografía complementaria

= ······ · · · · · · · · · · · · · · ·				
Autor	Título	Editorial	Año	Ejemplares en biblioteca
Espinosa Armenta, R	Matamaticae diectatae	Alfaomega Grupo Editor	2010	
Alberto, Malva	Matemática Discreta	Edutecne	2011	
TINGA MITHIIN	Matemáticas para la computación	Alfaomega Grupo Editor	2019	

EVALUACIONES

Los alumnos podrán obtener la regularidad de la materia según el siguiente esquema. Se realizarán dos evaluaciones parciales en el horario y fechas acordados con los alumnos. Cada evaluación tendrá un recuperatorio en caso de ser necesario.

La regularidad de la materia se obtiene mediante una nota mayor igual al 60% en cada uno de los dos parciales o sus respectivos recuperatorios. La inasistencia a cualquier instancia de evaluación tendrá como resultado la desaprobación del examen y no podrá repetirse la instancia de evaluación salvo certificado médico del Servicio Médico de la UNCuyo.

Examen Final

El examen final es de tipo integrador teórico práctico, de forma oral o escrita sobre cualquiera de los temas que se encuentran en el programa de la materia. Todos los temas evaluados deben conocerse en al menos un 60% del alcance desarrollado en la materia. Se evaluarán la totalidad de los temas comprendidos en el programa independientemente que se hayan tomado o no en las evaluaciones parciales.

Alumnos recursantes.

No hay régimen especial para alumnos recursantes.

Alumnos libres.

No hay régimen especial para alumnos que deseen rendir la materia libre sin haberla cursado y haber obtenido la regularidad de la misma.

FECHA, FIRMA Y ACLARACIÓN TITULAR DE CÁTEDRA

M Salinas Segio