Question 1 Marks $x^2 \tan^{-1} x$ Differentiate with respect to x2 a) Solve $\frac{2x+1}{x+3} < 1$ b) 2 Evaluate $\int_{0}^{\frac{\pi}{2}} \cos x e^{\sin x} dx$ c) 3 Prove that if the roots of $ax^2 - 2x + (1 - 2a) = 0$ are reciprocals, d) 3 then their sum is 6. Sketch the graph $y = \frac{|x|}{x}$ 2 e)

Question 2

a) Find
$$\int \frac{x}{\sqrt{1+x}} dx$$
 using the substitution $u = 1+x$

b) The lines
$$y = mx + 2$$
 and $y = 3x - 1$ intersect forming an angle whose tangent is $\frac{2}{3}$. Find 2 possible values for m.

c) If
$$\alpha = \tan^{-1}\left(\frac{1}{2}\right)$$
 and $\beta = \tan^{-1}\left(\frac{1}{3}\right)$, show that $\tan(\alpha + \beta) = 1$

d) Find the domain and range of
$$y = 3\cos^{-1}(2x + 3)$$

e) i) Show that
$$y = \sqrt{x^2 + x - 1}$$
 has a zero between 0 and 1.

Que	Question 3		
a)	Consider the curve $y = \frac{x^2}{1+x^2}$		
	i)	Find the coordinates of any stationary points and determine their nature. There is no need to find points of inflexion.	3
	ii)	State the equation of the horizontal asymptote	1
	iii)	Sketch the function indicating all important features.	1
b)	A bequest of \$20000 is invested at 6%p.a. to pay an annual prize of \$1500. The prize is removed each year after the interest has been paid. i) How much is in the account after the first prize is awarded?		
	ii)	Show that the amount remaining after n prizes A _n is given by	2
		$A_n = 25000 - 5000 \times 1.06^n$	
	iii)	Hence find the number of years the full prize can be awarded.	2
c)	Prove	$\frac{\sin 2A - \sin A}{\cos 2A - \cos A + 1} \equiv \tan A$	2
Ques	tion 4		
a)	Prove	by the process of Mathematical Induction	5
	that 1	$3^{2n} - 1$ is divisible by 8 for $n \ge 1$	
b)	Find the locus of the mid point of PS where P is the point $(2ap,ap^2)$ on the parabola $x^2 = 4ay$ and S is the focus.		
c)	The area enclosed between the curve $y = \sqrt{2} \cos x$ and the two axes is rotated about the x-axis. Find the volume so formed.		
Quest	tion 5		
a)	Expres	s $\sin t - \sqrt{3} \cos t$ in the form $A\sin(t - \alpha)$.	4
	Hence	solve $\sin t - \sqrt{3} \cos t = \sqrt{2}$ $0 \le t \le 2\pi$	

Que	uestion 5 continued		
b)	Show that $x = -1$ is the only real zero of $P(x) = x^3 + 2x^2 + 2x + 1$.		
c)	spac the	cyclist riding along a straight, flat road passes by three stop signs R,E, and D, aced 200m apart. From these three signs the respective angles of elevation to e top of a mobile phone tower are 30° , 45° and 45° . Let h be the height of c tower and T be the base of the tower.	
	i)	Draw a diagram representing the situation.	
	ii)	Find in terms of h , the distances RT, ET, and DT.	
	iii)	Let $\angle TED = \alpha$. Find two different expressions for $\cos \alpha$ in terms of h and hence by eliminating $\cos \alpha$ find the height of the tower.	
Que	stion 6		
a)	A particle moving in simple harmonic motion with centre the origin and amplitude 8m passes the origin at 6m/s.		
	i) ii) iii)	Find x and v as functions of time. Find the period of the motion. Find the acceleration at maximum amplitude.	3 1 1
b)	Consider the function $f(x) = \frac{e^x}{(1+e^x)}$		
	i)	State the domain of $f(x)$	1
	ii)	Show $f'(x) = \frac{e^x}{(1+e^x)^2}$	1
	iii) iv) v)	Hence explain why $f(x)$ is increasing for all x . Explain why $f(x)$ has an inverse function. Find the inverse function $f^{-1}(x)$.	1 1 1
c)	Skete	h the function $y = \cos^{-1}(x) + \cos^{-1}(-x)$.	2
Ques	tion7		

Q

Rain is falling into a conical rain gauge at a constant rate of 3π cm³/h. If the radius r of the cone is one third its height h, find the rate in cm/h at which the height is increasing when h = 6cm. a)

4

Question 7 continued

Marks

b) Copy the diagram below onto your answer sheet and then prove that if AN produced to X is a diameter of circle MAF,

4

c) The diagram below represents two roads AO and OC which meet at right angles at O. A hiker decides to walk from A through the bush and meet the road at B, and then continue along the road to C.

His walking speed through the bush is 3 km/h and along the road 6 km/h. OA = 8 km, OC = 12 km and let OB = x km.

Show that the time t hours taken for the journey is given by $t = \frac{2\sqrt{x^2 + 64} + 12 - x}{6}$

2

ii) Find the distance OB such that the time taken for the journey will be minimum.

2

END OF EXAMINATION