(17) Sun Fry dyda en 20 e kny dyda = Sexy dy] dx = Sur exseray dx $= (e-1) \int_{\ln 2}^{\ln 3} e^{x} dx$

5.2 More double integrals	
example: circle radius r y=5r2-x2	A=SIAA
	x ~ region x
$A = \int_{1}^{1} \int_{-r^{2}-x^{2}}^{\sqrt{r^{2}-x^{2}}} dy dx$	$\int_{x^2}^{x^2} 4x^2\theta + \cos^2\theta = 1$
$= \int_{-r}^{r} 2\sqrt{r^2 - x^2} dx \qquad tright$	$\int du = -2x dx$
$= 2 \int_{B}^{B/2} \frac{r \cos \theta}{1 \sin \theta} d\theta$	
$= r^{2} \int_{0}^{\pi/2} (1 + \cos 2\theta) d\theta$ $= \pi r^{2}$ $= \pi r^{2}$ $= \tan^{2} \frac{1}{2} + \cos^{2} \theta$ $= -\frac{1}{2} + \cos^{2} \theta$ $= -\frac{1}{2} + \cos^{2} \theta$ $= -\frac{1}{2} + \cos^{2} \theta$	educing: $\cos^2\theta = \frac{1}{2}(1 + \cos 2\theta)$ $0.00 = 0 -\frac{1}{10} \frac{1}{10} \frac{1}{10}$
observation: $2\sqrt{r^2 \times 2} dx = 1$	Tr2 Man -

 $Z = h - \frac{h}{R}r$ $Z = h - \frac{h}{R}\sqrt{\chi^2 + y^2}$ $V = \int_{-1}^{1} \int_{-1}^{1} \left(h - \frac{h}{R}\sqrt{\chi^2 + y^2}\right) dy dx$ $-\int_{-1}^{1} \int_{-1}^{1} \left(h - \frac{h}{R}\sqrt{\chi^2 + y^2}\right) dy dx$ $\Rightarrow wait for polar$

example: V= [f(x,y) dA Jy-x2 dx dy = S Ty dy = 芝(生了)

 $Z = \sqrt{y - x^2}$ $f(x,y) = \sqrt{y - x^2}$

 $\int \sqrt{r^2 - x^2} dx = \frac{\pi r^2}{2}$

example:

6x+3y+4z=12

2 y=4-2x fixx

formla: V= \frac{1}{3} Bh =\frac{1}{3}(4)(3) = 4

 $V = \int_{0}^{2} \int_{0}^{4-2x} f(x,y) dy \int_{0}^{4-2x} dx$ $= \int_{0}^{2} \int_{0}^{4-2x} (3-\frac{3}{2}x-\frac{3}{4}y) dy dx$

6x+3y+4z=12 Z=3-3x-3y

 $\sum_{0}^{2} \left[(3 - \frac{3}{2}x)y - \frac{3}{4}(\frac{1}{2}) \right]_{0}^{4-2x} dx$ $= \int_{0}^{2} \left[(3 - \frac{3}{2}x)(4 - 2x) - \frac{3}{8}(4 - 2x)^{2} \right] dx$ $= \int_{0}^{2} \left[12 - 12x + 3x^{2} - \frac{3}{8}(16 - 16x + 4x^{2}) \right] dx$ $\int_{0}^{2} \left[12 - 12x + 3x^{2} - 6 + 6x - \frac{3}{2}x^{2} \right]$

 $= \int_{0}^{2} (6-6x+\frac{2}{2}x^{2}) dx$ $= \left[6x-6x^{2}+\frac{2}{2}x^{3}\right]_{0}^{2}$ = 12-12+4 = 4