

第3回 デザインの技法

木村 朝子

第3回の内容

- ◆ デザインプロセスモデル
 - ◇ ウォーターフォールモデルとプロトタイピングモデル
- ◆ デザインの技法
 - ◇ユーザ中心設計
 - ◇プロトタイピング
- ◆ ユーザビリティテスト
 - ◇ユーザビリティテストの目的
 - ◇ユーザビリティテストの手法
 - ◇ ユーザビリティテストの流れ
 - ◇テスト環境の整備
- ◆プロトタイプ作成課題の発表

デザインプロセスモデル

デザインプロセスモデル

- ◆プロセスは多様
 - ◇設計対象の性質
 - ◇設計目標の設定方法

◆ 基本パターンがある(設計プロセスモデル)

◆ウォーターフォールモデル

◇概念設計から始まり、徐々に詳細を設計していく

◆プロトタイピングモデル

◇イメージに基づいてモデルを作り, 評価を行いながら 現実に適合したモデルに作り変えていく

ウォーターフォールモデル

対象

- ◇ 大規模で複雑なシステム
- ◇ 設計者が直感・経験で設計を行うことが難しい

◆ 方法

- ◇各工程ごとで成果物を検証
- ◇検証の結果承認されたもの だけが次の工程へ進む
- ◇ 原則この順序を飛び越したり、 逆戻りしたりしない
- ◇ 滝の水が流れ落ちる様子に例えて,ウォーターフォール・モデル

ウォーターフォールモデル

◆ 最も基本的で一般的な開発モデル

- ◆ 利点
 - ◇設計を組織的に管理することが容易
- ◆ 欠点
 - ◇比較的初期に起こる設計ミスなどの問題を見つけにくい

プロトタイピングモデル

◆ 対象

- ◇定型的な方法がまだ開発されていない
- ◇ 予測しにくい要素がインタフェースの性能に大きく影響する

◆ 方法

- ◇早い段階で、試作品(プロトタイプ) を作成
- ◇ユーザに試用してもらうことで 「ユーザの要求と合っているか?」 「使い勝手はどうか?」をチェック し、場合によってはプロトタイプを 修正しながら、要求仕様を確定

プロトタイピングモデル

◆ 利点

- ◇ 開発側とユーザ側の認識のズレを早期に解消
- ◇ 初期段階での誤りを発見⇒開発期間の短縮・コストの低減
- ◇ユーザ側にとっては、実際にモノを見ることができるので、 認識のズレをなくす非常に有効な方法

◆ 欠点

◇ 体系的に最適な設計解を求める努力を忘れる可能性

全体的にはウォーターフォールモデル 局所的にはプロトタイピングモデル

ユーザ中心設計

- ◆ ユーザの視点に立って設計する
- ◆ 基本プロセス
 - 1. ユーザの利用状況を把握する
 - 2. 利用状況から<u>ユーザニーズ</u>を探索する
 - 3. ユーザニーズを満たすような<u>解決策</u>を作る
 - 4. 解決案を<u>評価</u>する
 - 5. 評価結果をフィードバックして、解決案を<u>改善</u>する
 - 6. 評価と改善を<u>繰り返す</u>

プロトタイプ(試用品)の利用が効果的

プロトタイピング

プロトタイピングとは?

- ◆製品のモデルを早期に作成すること
 - ◇ユーザに試しに使ってもらい、そのデータを元により良い製品を作成
- ◆ 目的
 - ◇ ユーザインタフェースの...
 - ▼ブレインストーミング
 - ▼設計
 - ▼作成
 - ▼テスト
 - ▼情報交換

プロトタイピングの利点

- ◆ 早期に目に見える形で実現することで、 最終的にどんなシステムになるのか予想可能
- ◆ユーザと製作者の間の意見交換
- ◆ ユーザに対してより高度な製品を提供可能
- ◆ 容易に変更可能
- ◆ 開発費用が抑えられる
- ◆ システム開発が加速

プロトタイピングの進め方

- ◆ 分析段階
- ◆ 設計・試作段階
 - ◇ラフスケッチ段階
 - ◇詳細スケッチ段階
 - ◇手順デザイン段階
 - ◇ハードウェアとソフトウェアの統合段階
- ◆ 評価段階

分析段階

◆ ユーザの特定

◇年齢や性別、職業、習熟度などの特性を明確化

◇ その機器がなかった従来の生活場面での行動, そこに機器を導入することによる生活の変化などを検討

◆ 使用状況の特定

- ◇一種のシナリオを考える
- ◇類似機器が存在する場合, その問題点を徹底分析
- ◇モニタ調査によりユーザ意見を吸い上げる

ラフスケッチ段階(1)

- ◆ ラフスケッチ
 - ◇ 全体形状の特徴的な部分を強調し、 細部を省略した図面を作成

- ◇機器についてデザイン面から検討
 - ▼全体をどのようなメタファ(metaphor)で表現するか
 - ▽ メタファ:機能を何か別のものに例えて表現すること
 - ≫ 例:PCの「デスクトップ(机上)」「フォルダ」
 - ▼機能をどのように重点化して外観を表現するか
 - ▼大きさと形状はどうするか

ラフスケッチ段階(2)

- ◆ ハードウェアの場合
 - ◇ラフモックアップ(=3次元立体モデル)を作成
 - ◇ 携帯性や取り扱い性について大まかな検討を行う
 - ▼スチロール製ボードの組合せ
 - ▼キーボードの場所にキー配置図, 画面表示部にサンプルの図面を貼り付ける
 - ▼重量感や重心位置は内部に粘土を詰め込んで検討
 - ▼小型機器の場合は手の収まり具合も検討

クレイモデル

ラフスケッチ段階(3)

- ◆ ソフトウェアの場合
 - ◇画面のラフスケッチの作成
 - ▼情報機器の場合
 - ⇒ 起動画面、メインメニュー、主要作業画面など
 - ▼使用する画面部品(widget)も検討
 - ▽メニュー, アイコン, 対話ボックスなど

詳細スケッチ段階

- ◆ ハードウェアの場合
 - ◇ 詳細モックアップ (detailed mockup)の作成
 - ▼本物と同じ素材を使って模型作成
 - ▼コネクタや個々のスイッチなどの細部も 描き込む

- ◆ ソフトウェアの場合
 - ◇画面デザイン
 - ▼画面のピクセルサイズを考慮
 - ▼与えられたピクセルの中で, 何ドットを使って 形状が表現できるのか検討

Virtual Handcrafting

MAI Painting Expert (実物への描画)

手順デザイン段階

◆ ストーリーボードを構成して検討

当該機器の典型的な利用手順に関して, 全ての画面を作成しておき, それを手順通りに配置する

手順の複雑なところがないか、 自然な手順で操作できるかなどを検討

ストーリーボードの例

好字の独別、投票、ケンを変化し、4月1日は前ですください。

Bill O My May

947

. .

 12:12:

30000

IPRID 2 VA

VULT-14

保証したまま物じる

676.

はちょうさい学

** - 1

673 L T MC 2

45**4**-

印字を押す

スタンプ印字 を押す 先頭ページのみを押す

印字位置変更を押す

ハードウェアとソフトウェアの統合段階

◆ 機能モックアップ (function mockup)の作成

設計がある程度の段階に達してからは、 ハードウェアとソフトウェアを 組み合わせた上でインタフェースを検討

動作するモックアップ ⇒ 機能モックアップ

入力部: 本物のキースイッチをはめ込む

表示部:外部の制御用パソコンにつないだ

ディスプレイを埋め込んで代用

プロトタイプの4つの次元

◆「幅」

- ◇製品の全機能のうち、どの程度がプロトタイプに 組み込まれているか⇒ どんなプロトタイプでも課題をカバーするに足る幅が必要
- ◆「深さ」
 - ◇どの程度まで「実際に動作する機能」となっているか
- ◆「見栄え」
 - ◇ 目的の外観(フォント、色、グラフィックなど)を 正確に表現しているか
- ◆「インタラクション」
 - ◇入出力の手法がリアルにシミュレートされているか

プロトタイプによって優先順位が異なる

オズの魔法使いテスト

◆ オズの魔法使い

◇ 恐ろしい姿をした「オズの大王」の正体は、 実はカーテン裏で老人が操っている機械だった

ユーザとマシンの仲立ちとして人間を使う

- ◆ プロトタイピングでは...
 - ◇ユーザがコマンドをコンピュータ役の人間に伝えると、 コンピュータ役は言われた通り操作
 - ◇ プロトタイプではシミュレートできないことを ユーザに見せる場合,実験者がコンピュータに入力し, 得られた出力を示す

オズの魔法使いテスト

- ◆オズの魔法使い
 - ◇ 恐ろしい姿をした「オズの 実はカーテン裏で老人が

ユーザとマシンの作

- ◆ プロトタイピングでは...
 - ◇ ユーザがコマンドをコンピ コンピュータ役は言われた
 - ◇ プロトタイプではシミュレー ユーザに見せる場合,実 得られた出力を示す

オズの魔法使い

ユーザビリティテスト

ユーザビリティテスト

◆ プロトタイピングにおいてモデルを作成

ユーザに使用させ

ユーザビリティを確認

ユーザビリティテスト

◆ ユーザが実際に行なった行動や感想から、 ユーザビリティの改善を行なう

ユーザビリティテストの目的

- 1. 問題発見
 - ◇ 製品やシステムを利用した際に, ユーザビリティ上の問題がないか確認
- 2. 案の選択, 競合比較
 - ◇ 複数のUIデザイン案があった際に最も優れたものを判断
 - ◇ 競合他社の製品と比較し、長所・短所を具体化
- 3. 原因究明
 - ◇ 販売後の問い合わせ・クレームに対して、 効果的な改良をするために問題の原因を究明
- 4. 水準測定
 - ◇ 製品のユーザビリティ水準の測定

ユーザビリティテストの手法

- ◆ パフォーマンス(効率)評価
 - ◇「使いやすさ」(作業速度,エラー率)を評価
- ◆ 主観評価
 - ◇「印象」(安心して, 気分良く, 好感を持ってたか)を評価
- ◆ インタラクション評価
 - ◇「分かりやすさ」(つまずきが少なく, スムーズにできるかなど)を評価

パフォーマンス評価

- ◆ 時間計測, エラー数などの事象を計測
- ◆ 複数の評価対象において順位データを取得可能

◆ 利点

- ◇実施が容易
- ◇定量的な分析が可能

◆ 欠点

- ◇結果の適応範囲が小さい
- ◇問題点の指摘が困難
- ◇比較対象が必要

主観評価

◆ 主観的な印象, 感じなどの主観データを 質問紙などで採取

◆ 利点

- ◇幅広い評価が可能
- ◇ 多数のユーザの傾向を 把握するのに適切

◆ 欠点

- ◇ユーザの記憶に依存
- ◇問題点の指摘が困難

インタラクション評価

- ◆ タスクを実行している被験者の行動を観測
- ◆ 被験者は4~6人以上用意

◆ 利点

- ◇幅広い評価が可能
- ◇問題点の指摘が容易
- ◇結果が記憶に依存しない

◆ 欠点

- ◇ユーザ解析の工数が大きい
- ◇評価者のスキルに依存

ユーザビリティテストの流れ

テストに関わる人

- ◆ 評価者
 - ◇テストの内容を具体的に考える
- ◆ 進行者
 - ◇ テスト中に、被験者に指示を行うなどテストを進行させる
- ◆ 観察者
 - ◇ テスト中に、第3者としてテスト外から観察を行う
- ◆ 被験者
 - ◇ テスト中に、プロトタイプの操作を行う

テスト実施の流れ

- 1. 要求の発生
- 2. テスト企画
- 3. テスト企画の修正と合意
 - 4. テスト方法の検討
- 5. 被験者選定条件の決定
 - 6. 被験者の確保

- 7. テスト環境の準備
- 8. 観察記録シートの記録
- 9. セッティング・リハーサル
 - 10. テスト実施
 - 11. 問題抽出

1. 要求の発生

- ◆ 問題発見の要求
 - ◇開発段階で最大限に商品をよくしたい
- ◆ ユーザインタフェース案選択の要求
 - ◇どの案が一番良いか、部分的に他の案のどこを取り入れるべきか検証したい
- ◆ 問題の原因究明の要求
 - ◇何故問い合わせが生まれるのかなど,問題の原因を 正しくつかみ,的確な改良に結びつけたい

ユーザビリティテストの要求が生まれる

2. テスト企画

◆ テスト要求に基づき、基本的なユーザビリティ評価 の枠組みを決め、企画書に

- ◆目的(要求)
 - ◆評価対象
- ◆目標(テストで知りたいこと)
 - ◆テスト環境
 - ◆評価方法
 - ◆タスク
 - ◆被験者
- ◆スケジュール(被験者1人分)
 - ◆スケジュール(全体)

4. テスト方法の検討(1)

- 1 タスクの詳細決定
 - ◇テスト目標を達成するタスクの詳細を決定
 - ◇タスクの開始状態とゴールを具体的に設定
- 2. タスク順序の決定
- 3. タスク指示書の作成
 - ◇被験者によらない、公平なテスト結果を得るために タスクの指示内容を文書化

4. テスト方法の検討(2)

- 4. タスク時間配分の確認
 - ◇ タスクが一定の時間内に収まるよう時間を配分
- 5. 教示内容の決定
 - ◇タスク実施前に最小限の必要な知識を被験者に教示
 - ▼タスク関連情報:製品の機能,製品を使うことになった 経緯,環境条件
 - ▼テストの前提条件:協力してもらうための目的
- 6. 助言計画
 - ◇ つまずきそうな箇所でどのように助言するか

5. 被験者選定条件の決定

◆ テスト目的に合わせて被験者の選定条件を決める

MUST条件とWANT条件を決める

評価者

6. 被験者確保

「何日のどの時間帯に協力できるか」

複数の応募者からテスト目的に合わせて、 最適の組み合わせになるよう選定

被験者

7. テスト環境の準備

◆被験者が実際に使用する評価対象物の諸条件を 決めて調達,準備

- ◆使用するコンピュータ
 - ◇CPUの性能
 - \Diamond 0S
 - ◇メモリ容量
 - ◇ノート型/卓上型
 - ◇モニタの表示能力
 - ◇使用キーボード

- ◆通信の条件
- ◇通信回線の種類
- ◇スタンドアローン∕LAN接続
 - ◆テスト室の条件
 - ◇照明
 - **⇔BGM**
 - ◇使用するテーブル、椅子

8. 観察記録シートの準備

- ◆実験中の被験者の観察記録
 - ◇基本はビデオ撮影

ビデオだけではテスト後 の分析作業が大変

ビデオとは別に被験者の行動を記録

リアルタイムで記録しやすいように 観察記録シートを用意する

9. セッティング・リハーサル

◆ テスト室と観察室の条件をテスト当日とできる限り 同条件にし、リハーサルを行う

> 必要があれば テストの実施方法の一部を修正

10. テスト実施 - テストの準備 -

- ◆実験設備の最終確認
 - ◇撮影機材,マイク音声,ビデオテープなど確認
- ◆ 被験者への事前説明
 - ◇テストの趣旨
 - ▼何のためのテストか
 - ▼どのくらい時間がかかるか
 - ▼おおよそどのようなことをしてもらうのか
 - ◇個人データ保護
 - ▼実名, ビデオなど, 無断で外部に出さないことを確認
 - ◇開発中の製品を評価する場合
 - ▼テスト終了後,製品について口外しないよう伝える

10. テスト実施 - テスト -

- ◆ タスクを与え、テストを実施
 - ◇タスクは、予め用意した指示シートを提示
 - ▼説明のばらつき、誤解、評価への影響を防ぐ
 - ◇タスク終了の判断は被験者に
 - ▼操作の途中である可能性もある
 - ◇ 進行中は必要に応じて助言, 質問

観察メモへの記入

- ◆ タスクの開始時間,終了時間,各手順で起きたこと, 被験者の発言など
 - ◇観察メモだけから分析できるように

10. テスト実施 - テスト実施後 -

- ◆ 事後インタビュー
 - ◇全体の感想などを尋ねる

この商品は使ってみて どうでしたか

進行者

被験者

11. 問題抽出

- ◆ 記録から問題と思われる点を抽出
 - ◇どのタスクで発生したか
 - ◇どの工程で発生したか
 - ◇どの被験者で発生したか
 - ◇問題の重要度

抽出後

◆ 問題の整理統合, 重要度の決定

テスト環境の整備

-ザビリティラボの設備

テスティン

- ◆ 被験者
 - ◇被験者の操作,表

- ◇被験者の視界に入らない
- ◇被験者の様子が見え, つぶやき が聞こえる
- ◇被験者に自然に助言を行える位置

モニタルームの設備

- ◆ ハーフミラーの前にテーブルを配置
 - ◇観察中にメモをとる
- ◆ 被験者の映像をディスプレイで確認
- ◆ 防音

被験者に観察者が分からないように

事例

- ◆ 評価の目的
 - ◇ユーザが身体的に楽に掃除作業できるような ユーザビリティが求められる
 - ▼ 設計段階での仕様決定のために評価を行う

◆ 評価方法

◇数種類の仕様が異なるプロトタイプ(試作品)に対し、 身体的な使いやすさを評価

- ▼ 延長管とホースの太さ、ホースの長さ、ヘッド重量、 グリップ形状
- ◇ 筋電図, 主観評価, パフォーマンスを計測

- ◆ タスク: 4種類の作業を設定
 - ◇ a.床面ブラシ往復タスク
 - ▼ 通常の床面掃除を想定し、各仕様の相違が及ぼす影響を評価
 - ◇ b.ヘッド持ち上げタスク1
 - ▼階段の掃除を想定し、ヘッドの重さ、ホースの長さ、 グリップ形状が操作性に及ぼす影響を評価
 - ◇ c.ヘッド持ち上げタスク2
 - ▼ 天井に近い場所の掃除を想定し、ヘッドの重さ、ホースの長さ、 グリップ形状が操作性に及ぼす影響を評価
 - ◇ d.一定面積の掃除タスク
 - ▼ホースの長さが掃除作業に及ぼす影響を評価

長さ

- ◆ タスク: 4種類の作業を設定
 - ◇ a.床面ブラシ往復タスク
 - ▼ 通常の床面掃除を想定し、各仕様の相違が及ぼす影響を評価
 - Ohowitt+ Lithohi
 - ◆タスク (a)~(c) は筋電図計測及び主観評価
 - ◆タスク (d) はタスク達成悲観やストローク数を 計測するパフォーマンス評価
 - ◆ビデオ撮影を行い動作観察

グリップ形状が操作性に及ぼす影響を評価

- ◇ d.一定面積の掃除タスク
 - ▼ホースの長さが掃除作業に及ぼす影響を評価

- ◆ 評価結果
 - ◇ タスク (d) の結果
 - ▼ 平均10cm程度のストローク長の違いがホースの長さの違いによって 現れている

		ストローク長(cm)	
	ホース長	900mm	1200mm
被験者	Α	65	80
	В	80	100
	С	65	75
	D	55	55
	E	80	90
	F	55	65

- ◇ タスク(a)~(c) の筋電図と主観評価の結果
 - ▼ ヘッド重量, 延長管の太さがユーザビリティに影響を与えている

事例2 ATM

◆ 目的

◇ 高齢者対策は身体的特性に限られがちだが、認知的特性 についても検討する必要がある

◆ 被験者

- ◇60歳以上の高齢者
- ◇大学生
- ◇インスタント高齢者用装置を装着した大学生

◆ 評価方法

- → ユーザビリティテストの目的説明後, 課題実施▼ 現金引き出し, 残高照会, 振込みなど
- ◇終了後テストに関する事後質問調査を行い、 補足的にインタビューを実施

マタニティスーツ

事例2 ATM

◆ 装置

- ◇対象システム:一般的な銀行向けATM
- ◇ 記録用機器, ビデオカメラ, タイピン型マイク, 録音装置など

◆ 結果

- ◇テスト時間
 - ▼大学生:約30分
 - ▼インスタント高齢者用装置を装着した大学生:約1時間
 - ▼高齢者:約1時間半
- ◇高齢者は、悪いデザインの影響を受けやすい
- ◇ 一度エラーに陥ると抜け出しにくく、同じエラーを繰り返す

認知的高齢化の側面を検討していくことの重要性が示された