Fundamentos de Sistemas Operacionais

Professor: Cristiano Bonato Both

Sumário

- Ciclo de vida de um processo
 - Multiprogramação
 - Processo
- Relacionamento entre processos
 - Modelos
 - Processos suspensos
- Modos de operação
 - Mecanismo de interrupção
 - Chamada de sistema

Multiprogramação

- Tornar mais eficiente o aproveitamento dos recursos do computador
- Execução "simultânea" de vários processos
 - Diversos processo são mantidos na memória
 - Conceitos necessários de multiprogramação:
 - Processo
 - Interrupção
 - Proteção entre processos
- Próprio sistema operacional é um processo

Multiprogramação

Memória em um sistema com multiprogramação

Memória Principal	Endereços ¬ 00000 H
Sistema Operacional (256 Kbytes)	3FFFF H
Programa Usuário 1 (160 Kbytes)	40000 H 67FFF H
Programa Usuário 2 (64 Kbytes)	68000 H
Programa Usuário 3 (32 Kbytes)	78000 H

Fonte: OLIVEIRA, Rômulo; CARÍSSIMI, Alexandre; TOSCANI, Simão. Sistemas Operacionais.

Processo

- Diferenciação entre o programa e sua execução
- Programa
 - Entidade estática e permanente
 - Sequência de instruções
 - Passivo sob o ponto de vista do sistema operacional
- Processo
 - Entidade dinâmica e efêmera
 - Altera seu estado a medida que avança sua execução
 - Composto por programa (código), dados e contexto

Processo

- Abstração que representa um programa em execução
- Diferentes instâncias
 - Um programa pode ter várias instâncias em execução,
 i.e., diferentes processos
 - Mesmo código, porém dados e momentos de execução (contexto) diferentes
- Forma pela qual o sistema operacional "enxerga" um programa e possibilita sua execução
- Processos executam:
 - Programas de usuários
 - Programas do próprio sistema operacional (daemons)

- Visão simplificada:
 - Criação
 - Execução
 - Término

Criação

- Momento da execução
- Chamadas de sistemas
 - e.g., fork, system, exec, etc.
- Podem ser associados a uma sessão de trabalho
 - e.g., login de usuários:
 - login + senha -> shell (processo)
- Identificado por um número único (PID)

Execução

- Processos apresentam dois ciclos básicos de operação
 - Ciclo de processador
 - Tempo que ocupa a CPU
 - Ciclo de entrada e saída
 - Tempo em espera pela conclusão de um evento (e.g., E/S)
- Primeiro ciclo é sempre do processador
 - Trocas de ciclos por:
 - CPU -> E/S: chamada de sistema
 - E/S -> CPU: ocorrência de evento (interrupção)

- Execução
 - Processos
 - CPU bound
 - Ciclo de processador >> ciclo de E/S
 - I/O bound
 - Ciclo de E/S >> ciclo de processador
 - Sem quantificação exata
 - Situação ideal (depende do projeto)
 - Misturar processos CPU bound com I/O bound
 - Benefícios a nível de escalonamento

Término

- Final de execução (normal)
- Por erros
 - e.g., proteção, aritméticos, E/S, tentativa de execução de instruções inválidas, falta de memória, exceder tempo de limite
- Intervenção de outros processos (Kill)
- Log off de usuários

Relacionamento entre Processos

- Processos independentes
 - Não apresentam relacionamentos com outros processos
- Grupo de processos
 - Apresentam algum tipo de relacionamento
 - e.g., filiação
 - Podem compartilhar recursos
 - Definição de hierarquia

Relacionamento entre Processos

- Hierarquia de processos:
 - Processo criador => processo pai
 - Processo criado => processo filho
- Representação através de uma árvore
 - Evolução dinâmica
- Semântica associada:
 - O que fazer na destruição de um processo?
 - Toda a descendência "morre"?
 - A descendência é herdada pelo processo "vô"?
 - Postergar a destruição efetiva do processo pai até o final de todos processos filhos?

Modelo Simplificado de Dois Estados

- Manter uma fila de processos aptos a executar
 - Esperando pelo processador ficar livre
- Escalonador (dispatcher)
 - Atribui o processador a um processo da fila de aptos
 - Pode prevenir um único processo de monopolizar o processador

Limitação do Modelo Simplificado

- Causas para um processo não executar
 - Esperando pelo processador
 - Aptos para executar
 - Esperando pela ocorrência de eventos externos
 - Bloqueado
- Escalonador não pode selecionar um processo bloqueado, logo modelo com dois estados não é suficiente
 - Criação de novos estados

Modelo de Cinco Estados

 Executando (Running), Apto (Ready), Bloqueado (Blocked), Criação (New) e Destruição (Exit)

Processos Suspensos

- Processador é mais rápido que operações de E/S
 - Possibilidade de todos processos estarem bloqueados esperando por E/S
- Liberar memória ocupada por estes processos
 - Transferidos para o disco (swap)
- Estado bloqueado assume duas situações
 - Bloqueado com processo em memória
 - Bloqueado com processo no disco
- Necessidade de novos estados
 - Bloqueado, suspenso (Blocked, suspend)
 - Apto, suspenso (Ready, suspend)

Razões para Suspender um Processo

- Swapping
 - Sistema Operacional necessita liberar memória para executar um novo processo
- Solicitação do usuário
 - Comportamento típico de depuradores
- Temporização
 - Processo deve ter sua execução interrompida por um certo período de tempo
- Processo suspende outro processo
 - e.g., sincronização

Diagrama de Estados de Processos

Mecanismo de Interrupção

- Sinaliza a ocorrência de algum evento
- Provoca a execução de uma rotina especial
 - Tratador de interrupção
- Ciclo de execução de uma interrupção
 - Prepara a transferência de controle para o tratador (salvamento de contexto de execução)
 - Decisão de controle para tratador
 - Retorna execução (restaura contexto de execução)

Mecanismo de Interrupção

- Tipos de interrupção
 - Hardware: ocorrência de evento externo
 - Software: execução de uma instrução específica
 - Exceção: erros de execução de overflow, underflow, etc.
- Identificadas por um número
 - Vetor de interrupção
- Prioridades
- Instruções privilegiadas

Mecanismo de Interrupção

Ativação em cascata dos tratadores de interrupção

Fonte: OLIVEIRA, Rômulo; CARÍSSIMI, Alexandre; TOSCANI, Simão. Sistemas Operacionais.

Chamada de Sistema

- Método empregado para um processo usuário solicitar serviços ao sistema operacional
 - Normalmente, baseada em interrupções de software (traps)
 - Aciona a rotina de tratamento de interrupção
 - Identifica serviço requisitado
 - Verifica validade dos parâmetros
 - Executa o serviço
 - Retorna ao processo do usuário

Referências Bibliográficas

- SILBERSCHATZ, A.; GALVIN, Peter; GAGNE Greg, Operating System Concepts Essentials. John Wiley & Sons, Inc. 2th edition, 2013.
- TANENBAUM, Andrew S. Sistemas operacionais modernos.
 3a. ed. São Paulo: Pearson, 2009-2013. p. 653.
- OLIVEIRA, Rômulo; CARÍSSIMI, Alexandre; TOSCANI, Simão. Sistemas Operacionais. Porto Alegre: Bookman, 4a. ed. 2010.

