

Site Web: <u>www.cameroondeskacademy.com</u> Contact: (+237) 671 454 061 / 659 620 014

PREPA CONCOURS ANCIENNES ÉPREUVES ET CORRIGÉS

CONCOURS D'ENTRÉE EN PREMIÈRE ANNÉE DU CURSUS DES INGÉNIEURS À L'ENSP DE DOUALA, SESSION 2022

CONCOURS ENSPD Niveau 1, Cursus des Ingénieurs

Epreuve de Mathématiques

Session: 2022 Durée: 3h

EXERCICE 1: (5 points)

A- On considère l'équation différentielle (E) : $y' - 2y = 2(e^{2x} - 1)$

1- Montrer que la fonction h définie par : $h(x) = 2xe^{2x} + 1$ est une solution de (E).

2- Résoudre (E)

B- On considère la fonction définie sur \mathbb{R} par $g(x) = (2x-1)e^{2x} + 1$.

1- Déterminer le sens de variation de g. Présenter son tableau de variation et en déduire le signe de g sur \mathbb{R} .

2 a) Résoudre dans \mathbb{R} l'inéquation $1 - g(x) \ge 0$

b) Calculer l'intégrale $I = \int_0^{1/2} [1 - g(x)] dx$

c) Interpréter graphiquement les résultats des questions a et b.

EXERCICE 2: (5points)

Dans l'espace rapporté a un repère orthonormé $(o, \vec{\imath}, \vec{j}, \vec{k})$, on considère les points A(-5; 0; 1); B(-9; 4; -2) et C(3; 5; 7).

1- Démontrer que les points A,B,C déterminent un plan puis déterminer une équation cartésienne du plan (ABC)

2- Déterminer la nature et les éléments caractéristiques de l'ensemble (Γ) des points M(x; y; z) de l'espace tels que : $x^2 + y^2 + z^2 - 2x + 4y + 6z - 11 = 0$

3- Etudier la position relative du plan (ABC) et de l'ensemble (Γ)

- 4- Donner un système d'équations cartésiennes de la droite (Δ) perpendiculaire au plan (ABC) qui passe par le point $\Omega(1; -2; -3)$
- 5- Trouver les coordonnées des points M et N de (Γ) respectivement le plus proche et le plus éloigné de (ABC) en précisant les distances correspondantes (ces points sont sur la droite (Δ)).

EXERCICE 3: (5 points)

Lors d'une soirée, une chaine de télévision a retransmis un match. Cette chaine a ensuite proposé une émission d'analyse de ce match. On dispose les informations suivantes :

- 56% des téléspectateurs ont regardé le match
- Un quart des téléspectateurs ayant regardé le match on aussi regardé l'émission.
- 16,2% des téléspectateurs ont regardé l'émission

On interroge au hasard un téléspectateur. On note les évènements :

- M : le téléspectateur a regardé le match
- E : le téléspectateur a regardé l'émission

On note x, la probabilité qu'un téléspectateur a regardé l'mission sachant qu'il n'a pas regardé le match.

- 1. Construire un arbre pondéré illustrant la situation.
- 2. Déterminer la probabilité $M \cap E$
- 3. a. Vérifier que p(E) = 0.44x + 0.14
 - b. en déduire la valeur de x
- 4. Le téléspectateur interrogé n'a pas regardé l'émission. Quelle est la probabilité, arrondie à 10^{-2} qu'il ait regardé le match ?

EXERCICE 4: (5 points)

I. Première partie

On appelle f et g, deux fonctions définies sur l'intervalle $[0; +\infty[$ par :

$$f(x) = \ln(1+x) - x$$
 et $g(x) = \ln(1+x) - x + \frac{x^2}{2}$

- 1. Etudier les variations de f et de g sur $[0; +\infty[$
- 2. En déduire que pour tout $x \ge 0$; $x \frac{x^2}{2} \le \ln(1+x) \le x$

ADEM

II. Deuxième partie.

On se propose d'étudier la suite (U_n) de nombres réels définies par :

$$U_1 = \frac{3}{2}$$
 et $U_{n+1} = U_n \left(1 + \frac{1}{2^{n+1}} \right)$

- 1. Montrer par récurrence que $U_n>0$ pour tout entier naturel non nul ${\bf n}$.
- 2. Montrer par récurrence que pour tout entier naturel non nul n :

$$lnU_n = \sum\nolimits_{k = 1}^n {\ln (1 + \frac{1}{{2^k}})}$$

3. On pose : $S_n = \sum_{k=1}^n \frac{1}{2^k}$ et $T_n = \sum_{k=1}^n \frac{1}{2^{2k}}$

A l'aide de la première partie, montrer que $S_n - \frac{1}{2}T_n \le lnU_n \le S_n$

- 4. a. Calculer S_n et T_n en fonction de n.
 - b. En déduire la limite de S_n et celle de T_n
- 5. Etude de la convergence de la suite (U_n)
 - a. Montrer que la suite (U_n) est strictement croissante.
 - b. Montrer que la suite (U_n) est convergente. Soit l sa limite.
- 6. Donner un encadrement de l.

