Experiment 9:Holographic Image 電腦全像實驗

授課教師:林晃巖教授

實驗助教:台大光電所 莊智皓

E-mail:d05941010@ntu.edu.tw

預報,結報內容

全像術是什麼?

實驗架設

電腦全像術的限制

預報,結報內容

預習報告

- 1. 全像術原理(30%)
- 2. 電腦全像術與一般全像術差異?其各別有甚麼限制? (20%)
- 3. 實驗架構+實驗步驟(20%)
- 4. 為何設置空間濾波器(spatial filter)?(15%)
- 5. 為何要設置兩片偏振片?如何設置才能達到效果)?(15%)

結報

- 1. 描述一般相片與干涉方法得出之全像片,觀看上之差異。(10%)
- 2. 試問雷射光經由分光鏡時會有怎樣的變化?(畫圖表示) (10%)
- 3. 試說明電腦全像術視角過小的原因?以及可能解決的方法? (20%)
- 4. 傳統(光學式)全像術如何實現全彩紀錄?(15%)
- 5. 電腦全像術如何實現全彩顯示?(15%)
- 6. 影片中,湯川教授所展示的全像術是特效還是真的全像片? 為甚麼?(30%)

全像術是什麼?

全像術是甚麼?

Holography

→產生全部圖像(資訊)的技術。

全像術是甚麼?

- 一般底片僅記錄 "光強度" 資訊,顯示二維的圖像資訊
- 藉由干涉的方式同時記錄"光強度"與"相位"資訊("intensity" and "phase"),可得三維圖像資訊(實際位置)
- 藉由相同光源可重現原物立體影像

一般照相技術

全像技術

照相技術比較?

一般照相技術	全像照相技術	
以透鏡成像的光學系統。	藉由物體光合參考光的干涉,而不需要通過物 鏡成像。	
照相底片是記錄光強大小,而物體光的相位在 拍攝過程中損失了。	全像底片既記錄干涉條紋的光強和相位分佈,又記錄了物體光的振幅和相位等全部訊息。	
用非相干光照明。	用相干光照明。	
用一般方法觀察照片的圖像。	用相干光照明,才能使物體光波前再現。	
二維的平面圖像。	三維圖像,有明顯的立體感。	

全像術的分類

類型 	干涉條紋的產生	干涉條紋的記錄	繞射重建方式 ————————————————————————————————————
光學全像術 (Holography)	經光學干涉方式	感光底片 (DCG or PDLC)	已記錄干涉條像之感光 材質全像片
數位全像術 (Digital Holography)	經光學干涉方式	數位感光器 (CCD or CMOS)	空間光調變器 (Spatial Light Modulator)
電腦全像術 (Computer Generated Holography)	經電腦運算相位方式	微影或蝕刻	¹ 微影或蝕刻後的介質 繞射光學元件 ² 空間光調變器
3 1 37			

光學全像術因感光材料調配困難且繞射效率容易因時間長久而衰減。 近年來逐漸朝向數位全像術以及電腦產生全像術發展。

全像術流程

- (A)全相片顯影
- (B)全相片設置
- (C)快門控制與計時

(B)

全像術原理:干涉+繞射

•全像片的紀錄→干涉

全像紀錄介質紀錄干涉條紋

全像術原理:干涉+繞射

- •全像片的影像重建→繞射
- 拍攝好之全像片因複製了複雜的干涉條紋, 因此全像片本身形成
 - 一複雜的光柵,當光入射時便產生繞射

全像術原理:干涉+繞射

- ①干涉記錄波前 ─▶ 類似調製
- ② 繞射再現波前 ─▶ 類似解調

全像的拍攝分為兩個步驟,第一步拍攝全像照片,第二步物體光的波前再現。 全像拍攝的原理是利用同調光的干涉,同時記錄下自物體反射之光波振幅和相位,其中干涉條紋的對比記錄著振幅的大小,干涉條紋的分佈記錄著相位。經過干涉之後,記錄底片各點上依曝光量的不同而有不同的穿透率,再將此底片經過定影、顯影之後,就是一張全像片了。然而光有全像片是無法清楚地看見拍攝物的影像,必須還要再經過重建(Reconstruction)的過程才行。

實驗架設

Spatial filter (空間濾波器)

空間濾波器的原理:雷射光經透鏡後先是聚焦於焦點上,而後擴東放大。我們在透鏡的焦點上放置一個針孔,即可達到濾波的效果。所謂濾波,指的是對光場空間頻率過濾行為。而非過濾雷射之頻率。一道接近平行的光束,它的空間頻率很低,甚至是零,而它經透鏡後將聚焦於光軸焦點上,換句話說,它能很容易的通過置於焦點上的針孔。至於光束中混入的雜訊,通常它的空間頻率較高,因此經透鏡後將聚焦在離光軸焦點較遠的周圍,而無法通過置於焦點上的針孔。

Spatial filter (空間濾波器)

❤️৵ :空間高頻雜訊

電腦全像術(內容)

電腦全像術(光學系統)

電腦全像術

1.調整適當雷射強度

2.光源擴束

3.產生平面波

4.設置偏振片

5.調整光圈

6.啟動SLM

7.光源完整覆蓋

Lens

電腦全像術

電腦全像術

電腦全像術的限制

電腦全像的限制

- 輸入資訊龐大時需較多運算時間,較難實現動態性(dynamic)、即時性(real-time)。
- 尚無最適合的介質影像的體積性(volume)。
- 雷射光斑造成影像品質的降低。
- 全彩混光時產生的色彩過飽和。

References

- 1. Holography-virtual gallery http://www.holography.ru
- 2. Diesel's Holographic Fashion Show http://wechoosefun.com/en/item/52/Diesels-Holographic-Fashion-Show
- 3. 光電科技與干涉 http://140.134.32.129/eduteach/op2/op2-8/op2-8.htm
- 4. 國立成功大學 物理學系 近代光學實驗 http://www.phys.ncku.edu.tw/~optlab/modernoptics/hologram1/preindex.htm
- 5. 全相片的拍攝 http://www.phys.ncku.edu.tw/~optlab/modernoptics/hologram1/4.principle.htm
- 6. 中山大學 空間濾波器實驗 http://www2.nsysu.edu.tw/optics/funden/spatialf/spafil.htm
- 7. 台灣大學光電工程學研究所顯示光學實驗室 https://www.space.ntu.edu.tw/navigate/s/316F083BD60041259C9B5D412FE9454AQQY
- 8. 破案天才加利略2013第六集

感謝聆聽 Thanks for your time~

Chih-Hao Chuang

E: D05941010@ntu.edu.tw zx610438@gmail.com

