Aufgabe 3 - Zara Zackigs Zurueckkehr

Teilnahme-ID: 60302

Bearbeitet von Florian Bange

13. April 2022

Inhaltsverzeichnis

1	Definierung dex XORs	2		
2	Darstellung durch \mathbb{Z}_2 mit der Addition	2		
3	Eigenschaften des XORs	2		
4	XOR auf Bitfolgen	2		
5	Umformung der Aufgabe			
6	Loesung durch ein Gleichungssystem	3		
7	Loesen des Gleichungssystems7.1Loesen des Gleichungssystems in \mathbb{Z}_2 7.2Loesen der letzten Gleichung	4 4 5		
8	Implementierung	5		
9	Laufzeitanalyse	6		
10	Aufgabenteil c - Beispiele	6		
11	Aufgabenteil b	6		

1 Definierung dex XORs

XOR bzw. ⊕ sei zunaechst auf zwei Bits/Wahrheitswerte, wie folgt ueber die Gleichheit, definiert:

Sein a, b zwei Wahrheitswerte.

$$a \ XOR \ b \Longleftrightarrow a \oplus b = \neg(a \Longleftrightarrow b)$$

Die dazugehoerige Wahrheitstabelle sieht wie folgt aus:

a	b	$a \iff b$	$\neg(a \Longleftrightarrow b)$	a XOR b
0	0	1	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	0	0

Bzw. sieht die Verknuepfungstabelle des XORs so aus:

$$\begin{array}{c|c|c} \oplus & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

2 Darstellung durch \mathbb{Z}_2 mit der Addition

Die Menge $\mathbb{Z}_2 = \{0,1\}$ bilded zusammen mit der Addition eine abelsche Gruppe. Die dazugehoerige Verknuepfungstabelle sieht wie folgt aus:

$$\begin{array}{c|cccc}
+ & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & 0
\end{array}$$

Wie zu erkennen ist, ist diese Verknuepfungstabelle identisch zu der des XORs. Somit kann die Verknuepfung XOR mit der Addition in \mathbb{Z}_2 dargestellt werden.

3 Eigenschaften des XORs

Aufgrund dessen, dass das XOR mit der abelschen Gruppe (\mathbb{Z}_2 , +) dargestellt werden kann, gelten fuer das XOR die gleichen Eigenschaften, wie fuer die abelsche Gruppe (\mathbb{Z}_2 , +):

Sein a, b, c beliebige Wahrheitwerte (0, oder 1), bzw. $a, b, c \in \mathbb{Z}_2$.

- 1. Assoziativitaet: $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
- 2. Neutrales Element 0: a \oplus 0 = a
- 3. Selbstinvers: $a \oplus a = 0$
- 4. Kommutativitaet: $a \oplus b = b \oplus a$

Weiter kann man aus der Darstellung des XORs durch (\mathbb{Z}_2 , +) Folgende Erkenntniss machen:

Da \mathbb{Z}_2 equivalent zu den Restklassen modulo 2 ist, kann man das XOR ebenfalls in \mathbb{Z} darstellen, indem man die Bits normal addiert und dann Modulo 2 rechnet:

Fuer $a, b, c \in \mathbb{Z}_2$,

$$a \oplus b \oplus c = (a+b+c) \mod 2$$

4 XOR auf Bitfolgen

Wird das XOR auf mehrere aneinandergereite Bits, sprich Bitfolgen, benutzt, so wird das bereits eingefuehrte XOR elementweise wie folgt angewendet:

Fuer die Bits aller Bitfolgen an Stelle i, wird nacheinander das XOR angewendet. Dies wird fuer alle Stellen i der Bitfolgen durchgefuerht. Das jeweilige Ergebniss wird in der resultierenden Bitfolge an Stelle i notiert. Dafuer muessen alle mit dem XOR verbundenen Bitfolgen die gleiche Laenge haben.

Dies sieht allgemein wie folgt aus:

Fuer n Bitfolgen mit je m Bits, wobei $a_{i,1}$, ..., $a_{i,m}$ die Bits der i-ten Bitfolge sind.

$$a_{1,1} \oplus \cdots \oplus a_{n,1} = b_1$$
$$2/6$$

Teilnahme-ID: 60302

•

$$a_{1,m} \oplus \cdots \oplus a_{n,m} = b_m$$

 b_1 , ..., b_m sind die m Bits der resultierenden Bitfolge.

Beispiel:

Moechte man folgende Bitfolgen mit dem XOR verbinden, geht dies, wie anschlieszend in der Tabelle gezeigt.

	1	0	0	1
\oplus	1	1	0	0
\oplus	1	1	0	1
	1	0	0	0

Die zuvor beschriebene Vorgehensweise sieht fuer das Beispiel wie folgt aus:

$$1 \oplus 1 \oplus 1 = 1$$

$$0 \oplus 1 \oplus 1 = 0$$

$$0 \oplus 0 \oplus 0 = 0$$

$$1\oplus 0\oplus 1=0$$

Weiter sei angemerkt, dass fuer das XOR mit Bitfolgen die gleichen Eigenschaften gelten, wie bei einzelnen Bits, da das XOR fuer einzelene Bits elementweise angewendet wird.

5 Umformung der Aufgabe

Das Ziel der viertel Aufgabe des Bundeswettbewerbs Informatik 2022 laesst sich wie folgt formal definieren: Fuer n Bitfolgen der Laenge m sind gesucht k Bitfolgen s_1, \ldots, s_k , fuer welche eine weitere Bitfolge x exestiert, mit

$$s_1 \oplus \cdots \oplus s_k = x$$
.

Formt man die Gleichung um, indem man zu beiden Seiten $\oplus x$ hinzufuegt, erhaelt man

$$(s_1 \oplus \cdots \oplus s_k) \oplus x = x \oplus x.$$

Durch die Eigenschaft des Selbstinversen, erhaelt man

$$(s_1 \oplus \cdots \oplus s_k) \oplus x = 0,$$

wobei 0 fuer die Bitfolge bestehend aus m Nullen steht.

Weiter erhaelt man mit der Assoziativitaet

$$s_1 \oplus \cdots \oplus s_k \oplus x = 0.$$

Nun ist das Ziel also, die k+1 der n Bitfolgen $s_1, \ldots s_k$, s_{k+1} zu finden, bei welchen gilt

$$s_1 \oplus \cdots \oplus s_k \oplus s_{k+1} = 0.$$

Diese k + 1 Bitfolgen stellen eine valide Loesung dar.

6 Loesung durch ein Gleichungssystem

Fuer das zuvor beschriebene Problem werden nun n Entscheidungsvariablen eingefuehrt: x_1 , ..., x_n . Diese koennen entweder 0 oder 1 annehmen. Ist die Entscheidungsvariable x_i mit $1 \le i \le n$ 1, so ist die i-te Bitfolge Teil der Loesung, andernfalls nicht.

Fuer eine gueltige Loesung muss folgendes Gleichungssystem mit m Gleichungen in \mathbb{Z}_2 geloest werden:

$$a_{1,1} * x_1 + \dots + a_{n,1} * x_n = 0$$

• • •

$$a_{1,m} * x_1 + \dots + a_{n,m} * x_n = 0$$

Dabei stellen

$$a_{i,1}$$
, ..., $a_{i,m}$

Teilnahme-ID: 60302

die m Bits der i-ten Bitfolge dar.

Die Bits der gegebenen Bitfolgen werden also vertikal untereinander geschrieben und die Bitfolgen horizontal nebeneinander. Dabei erhaelt jede Spalte, also jede Bitfolge, eine Entscheidungsvariable.

Wodurch m - Anzahl der Bits - Reihen und n - Anzahl an Bitfolgen - Spalten entstehen.

Weiter muss

$$x_1 + \dots + x_n = k + 1$$

in \mathbb{Z} (nicht in \mathbb{Z}_2 !) gelten.

Dadurch ist gegeben, dass exakt die benoetigten Anzahl an k+1 Bitfolgen gewachlt werden.

Dass eine Loesung fuer die zuvor beschriebenen Gleichungen ebenfalls eine Loesung fuer das Grundlegene Problem ist, ist einfach zu zeigen:

Sein ohne Einschraenkung der Allgemeinheit x_1 , ..., x_{k+1} die k+1 Entscheidungsvariablen, welche 1 annehmen und die Gleichungen erfuellen.

Nun lassen sich die zuvor beschriebenen Gleichungen je auf k+1 Summanden reduzieren, welche zusammen 0 in \mathbb{Z}_2 ergeben.

Diese Gleichungen sehen nun wie folgt aus:

$$a_{1,1} + \dots + a_{k+1,1} = 0$$

 \dots
 $a_{1,m} + \dots + a_{k+1,m} = 0$

Jede Gleichung ist (wie in Punkt 2 beschrieben) equivalent zum XOR angewandt auf mehrere Bits:

$$a_{1,1} \oplus \cdots \oplus a_{k+1,1} = 0$$

$$\cdots$$

$$a_{1,m} \oplus \cdots \oplus a_{k+1,m} = 0$$

Wie in Punkt 4 beschrieben wurde ist dies wiederrum gleichwertig zum XOR auf Bitfolgen. Hier bei den Bitfolgen 1 bis k+1, welche zusammen die Bitfolge bestehend aus m Nullen ergeben.

Somit wurden k+1 Bitfolgen gefunden, welche, verknuepft durch das XOR, die Bitfolge bestehend aus m Nullen ergeben.

7 Loesen des Gleichungssystems

Nun ist die Aufgabe folgende Gleichungen in \mathbb{Z}_2 :

$$a_{1,1} * x_1 + \dots + a_{n,1} * x_n = 0$$
 \dots
 $a_{1,m} * x_1 + \dots + a_{n,m} * x_n = 0$
 $x_1 + \dots + x_n = k + 1$

zu loesen.

und diese Gleichung in \mathbb{Z} :

Mein Ansatz besteht daraus, zu naechst das Gleichungssystem in \mathbb{Z}_2 zu loesen und anschlieszend nach einer Loesung der Loesungsmenge zu suchen fuer welche die letzte Gleichung gilt.

7.1 Loesen des Gleichungssystems in \mathbb{Z}_2

Die zu loesende Gleichungen lassen sich wie folgt mit Matrix und Vektoren darstellen:

$$A * \vec{x} = \vec{0}$$

mit

$$A = \begin{bmatrix} a_{1,1} & \dots & a_{n,1} \\ \vdots & & \vdots \\ a_{1,m} & \dots & a_{n,m} \end{bmatrix}$$

$$4/6$$

 und

$$\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

Es ist also das homogene System zu A in \mathbb{Z}_2 zu loesen.

Aufgrund dessen, dass in \mathbb{Z}_2 ein Koerper ist, laesst sich zum loesen des Gleichungssystems in \mathbb{Z}_2 das Gausz-Verfahren verwenden.

Dadurch erhaelt man eine Loesungsmenge, welche wie folgt aussieht:

$$\left\{ \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \vec{v_1} * x_1 + \dots + \vec{v_n} * x_n \right\}$$

Falls x_i mit $1 \le i \le n$ keine freie Variable ist, ist $\vec{v_1} = \vec{0}$.

7.2 Loesen der letzten Gleichung

Zu letzt ist die Loesung der Loesungsmenge zu finden, welche die Gleichung

$$x_1 + \cdots + x_n = k+1$$

in \mathbb{Z}_2 erfuellt.

Diese Gleichung laesst sich mit der zuvor beschriebenen Loesungsmenge wie folgt umformen:

$$x_1 + \dots + x_n = k + 1$$

$$\Leftrightarrow [(v_{1,1}*x_1+\dots+v_{n,1}*x_n)\ mod\ 2]+\dots+[(v_{1,n}*x_1+\dots+v_{n,n}*x_n)\ mod\ 2]=k+1$$

$$\Leftrightarrow ([(v_{1,1}*x_1+\dots+v_{n,1}*x_n)\ mod\ 2]+\dots+[(v_{1,n}*x_1+\dots+v_{n,n}*x_n)\ mod\ 2])\ mod\ 2=(k+1)\ mod\ 2$$

$$\Leftrightarrow [(v_{1,1}*x_1+\dots+v_{n,1}*x_n)+\dots+(v_{1,n}*x_1+\dots+v_{n,n}*x_n)]\ mod\ 2=(k+1)\ mod\ 2$$

$$\Leftrightarrow [x_1*(v_{1,1}+\dots+v_{1,n})+\dots+x_n*(v_{n,1}+\dots+v_{n,n})]\ mod\ 2=(k+1)\ mod\ 2$$

$$\Leftrightarrow ([x_1*(v_{1,1}+\dots+v_{1,n})]\ mod\ 2+\dots+[x_n*(v_{n,1}+\dots+v_{n,n})]\ mod\ 2)\ mod\ 2=(k+1)\ mod\ 2$$

$$\Leftrightarrow ([x_1*((v_{1,1}+\dots+v_{1,n}))\ mod\ 2)]+\dots+[x_n*((v_{n,1}+\dots+v_{n,n}))\ mod\ 2)])\ mod\ 2=(k+1)\ mod\ 2$$

$$\Leftrightarrow [x_1*((v_{1,1}+\dots+v_{1,n}))\ mod\ 2)]+\dots+[x_n*((v_{n,1}+\dots+v_{n,n}))\ mod\ 2)]\ mod\ 2=(k+1)\ mod\ 2$$

$$\Leftrightarrow [x_1*((v_{1,1}+\dots+v_{1,n}))\ mod\ 2)]+\dots+[x_n*((v_{n,1}+\dots+v_{n,n}))\ mod\ 2)]\ mod\ 2=(k+1)\ mod\ 2$$

Dabei ist

$$\vec{v_i} = \begin{bmatrix} v_{i,1} \\ \vdots \\ v_{i,n} \end{bmatrix}.$$

Nun kann man fuer alle $\vec{v_i}$ (mit $1 \le i \le n$)

$$m_i = (v_{i,1} + \dots + v_{i,n}) \mod 2$$

berechnen.

Nun muss die Gleichung

$$\Leftrightarrow x_1 * m_1 + \dots + x_n * m_n \equiv_2 k + 1$$

geloest werden, bzw.

$$\begin{bmatrix} m_1 \\ \vdots \\ m_n \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = k+1$$

in \mathbb{Z}_2 .

8 Implementierung

Zum loesen des Gleichungssystem in \mathbb{Z}_2 wird XXXX benutzt. Zur finden der korrekten Loesung in der Loesungmenge wird XXXX verwendet.

9 Laufzeitanalyse

Die laufzeit des Programm besteht aus zwei Teilen.

- 1. Loesen des Gleichungssystem
- 2. Finden der korrekten Loesung in der Loesungsmenge

10 Aufgabenteil c - Beispiele

11 Aufgabenteil b

In Aufgabenteil c ist gefragt, wie man mithilfe der 11 gefundenen Karten am naechsten Wochenende das naechste Haus aufsperren kann, ohne dafuer mehr als zwei fehlversuche zu benoetigen.

Teilnahme-ID: 60302

Sein zunaechst w_1, \ldots, w_10 die Karten der in der Aufgabenstellung erwaehnten Codeworte und x das aus ihnen resulttierende XOR.

Weiter sein die gefundenen Karten k_1, \ldots, k_1 1. Diese Karten muessen offensichtlich aus den Karten w_1, \ldots, w_1 0 sowie x bestehen.

Leider ist es nicht moeglich zu wissen, welche der 11 gefundenen Karten das xor ist.

Allerdings kann man die