Mathematical Tools in Machine Learning

Fadoua Balabdaoui

Seminar für Statistik, ETH

28 novembre 2019

Lecture 8 (Week 11)

Convex Learning Problems (Chapter 12)

Stochastic Gradient Descent (Chapter 14)

Lecture 8

Convex Learning Problems (Chapter 12)

Stochastic Gradient Descent (Chapter 14)

Convexity, Lipschitzness and smoothness

- **Convexity** of the loss function, when it holds, makes learning **efficient**. Examples of convex learning problems include :
 - Linear regression with the quadratic loss $\ell_{sq}(h_w,(x,y)) = (h_w(x) y)^2$ with $h_w(x) = \langle w, x \rangle$
 - Logistic regression with the loss $\ell(h_w, (x, y)) = \log(1 + \exp(-y\langle w, x \rangle))$

Classification with the ℓ_{0-1} is an example of a non-convex learning problem.

Definition (convex set). A set C in a vector space is convex if for any two vectors $\mathbf{u}, \mathbf{v} \in C$, the line segment between u and v is contained in C: for any $\alpha \in [0,1], \ \alpha \mathbf{u} + (1-\alpha)\mathbf{v} \in C$.

Definition (convex function). Let C be a convex set. A function $f: C \mapsto \mathbb{R}$ is **convex** if \forall $\mathbf{u}, \mathbf{v} \in C$ and \forall $\alpha \in [0, 1]$, $f(\alpha \mathbf{u} + (1 - \alpha)\mathbf{v}) \leq \alpha f(\mathbf{u}) + (1 - \alpha)f(\mathbf{v})$.

• The following characterization can be shown : f is convex on C iff epigraph $(f) = \{(\mathbf{x}, \beta) \in C \times \mathbb{R} : f(\mathbf{x}) \leq \beta\}$ is a convex set of $C \times \mathbb{R}$

FIGURE – Left : examples for convex and non-convex 2-dimensional sets. Right : example of a non-convex function

Property 1. An important consequence of convexity of some function f is that a local minimizer of f is necessarily a **global minimizer** of f.

Proof. Let \mathbf{u} be a local minimum of f defined on C. Then, there exists r>0 such that for all $\mathbf{v}\in B(\mathbf{u},r)$ (the Euclidean ball of radius r and centered at \mathbf{u}) we have that

$$f(\mathbf{u}) \leq f(\mathbf{v}).$$

Let $\mathbf{w} \in \mathcal{C}$ (not necessarily in $B(\mathbf{u}, r)$). Then, we can find some small $\alpha > 0$ such that $\mathbf{u} + \alpha(\mathbf{w} - \mathbf{u}) \in B(\mathbf{u}, r)$. Therefore,

$$f(\mathbf{u}) \le f(\mathbf{u} + \alpha(\mathbf{w} - \mathbf{u})) = f((1 - \alpha)\mathbf{u} + \alpha\mathbf{w}).$$

If f is convex, the latter implies that $f(\mathbf{u}) \leq (1 - \alpha)f(\mathbf{u}) + \alpha f(\mathbf{w})$, which is equivalent to

 $f(\mathbf{u}) \leq f(\mathbf{w}) \iff \mathbf{u}$ is a global minimizer, since \mathbf{w} was arbitrarily chosen.

Property 2. Suppose that f is convex on a convex set $C \subset \mathbb{R}^d$ and is differentiable at $\mathbf{w} \in C$, that is

$$abla f(\mathbf{w}) = \left(\frac{\partial f(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial f(\mathbf{w})}{\partial w_d}\right)^T$$
 exists.

Then, the function f stays **above** the tangent at \mathbf{w} , that is

$$\forall \mathbf{u} \ f(\mathbf{u}) \geq f(\mathbf{w}) + \nabla f(\mathbf{w})^T (\mathbf{u} - \mathbf{w})$$

Lemma. Let $f : \mathbb{R} \to \mathbb{R}$ be a twice differential function. Then, the following assertions are equivalent :

- \bigcirc f' is nondecreasing.
- **3** f'' > 0.

• Examples. The functions $f(x) = x^2$ and $f(x) = \log(1 + \exp(x))$ are convex on \mathbb{R} since their respective derivatives f'(x) = 2x and $f'(x) = \exp(x)/(1 + \exp(x))$ are nondecreasing.

Result. Let $g: \mathbb{R} \to \mathbb{R}$ be convex. Then, the function $f(\mathbf{w}) = g(\langle \mathbf{w}, \mathbf{x} \rangle + y)$ for some fixed $\mathbf{x} \in \mathbb{R}^d$ and $y \in \mathbb{R}$ is **convex**.

Proof. For $\mathbf{w}_1, \mathbf{w}_2 \in \mathbb{R}^d$ and $\alpha \in [0, 1]$, we have that

$$f(\alpha \mathbf{w}_{1} + (1 - \alpha)\mathbf{w}_{2}) = g(\alpha \langle \mathbf{w}_{1}, \mathbf{x} \rangle + (1 - \alpha) \langle \mathbf{w}_{2}, \mathbf{x} \rangle + y)$$

$$= g(\alpha (\langle \mathbf{w}_{1}, \mathbf{x} \rangle + y) + (1 - \alpha)(\langle \mathbf{w}_{2}, \mathbf{x} \rangle + y))$$

$$\leq \alpha g(\langle \mathbf{w}_{1}, \mathbf{x} \rangle + y) + (1 - \alpha)g(\langle \mathbf{w}_{2}, \mathbf{x} \rangle + y)$$

$$= \alpha f(\mathbf{w}_{1}) + (1 - \alpha)f(\mathbf{w}_{2}). \quad \Box$$

- Examples. The previous result implies that
 - $f(\mathbf{w}) = (\langle \mathbf{w}, \mathbf{x} \rangle y)^2$ is convex on \mathbb{R}^d as the composition of $g(t) = t^2$ and the linear function $\mathbf{w} \mapsto \langle \mathbf{w}, \mathbf{x} \rangle y$
 - $f(\mathbf{w}) = \log \left(1 + \exp(-y\langle \mathbf{w}, \mathbf{x}\rangle)\right)$ is convex on \mathbb{R}^d (with $y \in \{-1, 1\}$) as the composition of the convex function $g(t) = \log(1 + \exp(t))$ or $g(t) = \log(1 + \exp(-t))$ and the linear function $\mathbf{w} \mapsto \langle \mathbf{w}, \mathbf{x} \rangle$.

Result. For $i \in \{1, ..., r\}$, let $f_i : \mathbb{R}^d \mapsto \mathbb{R}$ be a convex function. Then, the functions

- $g(x) = \max_{1 \le i \le r} f_i(\mathbf{x}),$
- $g(x) = \sum_{i=1}^{r} w_i f_i(\mathbf{x})$, for $w_i \geq 0, i = 1, \dots, r$

are also convex.

Still on Convexity... and Lipschitzness

Proof. We prove only the claim for the first function. We have that

$$\begin{split} g(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) &= \max_{1 \leq i \leq r} f_i(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \\ &\leq \max_{1 \leq i \leq r} \left[\alpha f_i(\mathbf{x}_1) + (1 - \alpha)f_i(\mathbf{x}_2) \right] \\ &\leq \alpha \max_{1 \leq i \leq r} f_i(\mathbf{x}_1) + (1 - \alpha) \max_{1 \leq i \leq r} f_i(\mathbf{x}_2) \\ &= \alpha g(\mathbf{x}_1) + (1 - \alpha)g(\mathbf{x}_2). \end{split}$$

Definition (Lipschitzness). Let $C \subset \mathbb{R}^d$. A function $f : \mathbb{R}^d \to \mathbb{R}^k$ is ρ -Lipschitz over C if \forall $\mathbf{w}_1, \mathbf{w}_2 \in C$ $||f(\mathbf{w}_2) - f(\mathbf{w}_1)|| \le \rho ||\mathbf{w}_2 - \mathbf{w}_1||$.

• **Remark.** Lipschitz functions cannot change too fast. If f is a differentiable real function, then ρ -Lipschitzness of f implies that $\sup_t |f'(t)| \leq \rho$ since $\lim_{x \to t} |(f(x) - f(t))/(x - t)| \leq \rho$.

Lipschitzness

• Remark (continued). The converse is true. Suppose that f satisfies $\sup_t |f'(t)| \le \rho$. For any x and y we have that

$$|f(x) - f(y)| = |f'(u^*)||x - y|, \text{ for some } u^* = \lambda^* x + (1 - \lambda^*)y$$

 $\leq \rho |x - y| \text{ if } \sup_{t} |f'(t)| \leq \rho.$

Examples:

- f(x) = |x| is 1-Lipschitz over \mathbb{R} using the well-known inequality $|x| |y| \le |x y|$.
- $f(x) = \log(1 + \exp(x))$ is also 1-Lipschitz since for all $x \in \mathbb{R}$ $|f'(x)| = f'(x) = \exp(x)/(1 + \exp(x)) \le 1$.
- $f(x) = x^2$ is not ρ -Lipschitz on $\mathbb R$ for any $\rho > 0$ since with $(x_1, x_2) = (0, 1 + \rho)$ we can check that $|f(x_2) f(x_1)| > \rho |x_2 x_1|$.

Liptschitzness

Examples (continued):

- However, $f(x) = x^2$ is ρ -Lipschitz on $C_{\rho} = [-\rho/2, \rho/2]$ on which $|f'(x)| = 2|x| \le \rho$.
- Consider $f(\mathbf{w}) = \langle \mathbf{v}, \mathbf{w} \rangle + b$ defined on \mathbb{R}^d to \mathbb{R} for some fixed $\mathbf{v} \in \mathbb{R}^d$. Then, $|f(\mathbf{w}_2) f(\mathbf{w}_1)| = |\langle \mathbf{v}, \mathbf{w}_2 \mathbf{w}_1 \rangle| \le ||\mathbf{v}|| \; ||\mathbf{w}_2 \mathbf{w}_1||$ by the Cauchy-Schwartz inequality, so that f is $||\mathbf{v}||$ -Lipschitz.

Result. Let $f(\mathbf{x}) = g_1(g_2(\mathbf{x}))$, where g_1 is ρ_1 -Lipschitz and g_2 is ρ_2 -Lipschitz. Then, f is $(\rho_1\rho_2)$ -Lipschitz. In particular, if $g_2(\mathbf{x}) = \langle \mathbf{v}, \mathbf{x} \rangle + b$ for some $\mathbf{v} \in \mathbb{R}^d$, $b \in \mathbb{R}$, then f is $(\rho_1 \|\mathbf{v}\|)$ -Lipschitz.

Proof. Write
$$|f(\mathbf{w}_2) - f(\mathbf{w}_1)| = |g_1(g_2(\mathbf{w}_2)) - g_1(g_2(\mathbf{w}_1))| \le \rho_1|g_2(\mathbf{w}_2) - g_2(\mathbf{w}_1)| \le \rho_1\rho_2 \|\mathbf{w}_2 - \mathbf{w}_1\|.$$

• Recall that if $f: \mathbb{R}^d \to \mathbb{R}$ is differentiable at some $\mathbf{w} \in \mathbb{R}$, then its gradient at \mathbf{w} is given by

$$\nabla f(\mathbf{w}) = \left(\frac{\partial f}{\partial w_1}, \dots, \frac{\partial f}{\partial w_d}\right)^T.$$

• **Definition.** A differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is β -smooth if its gradient is β -Lipschitz:

$$\|\nabla f(\mathbf{v}) - \nabla f(\mathbf{w})\| \le \beta \|\mathbf{v} - \mathbf{w}\|.$$

• **Result.** If $f : \mathbb{R} \to \mathbb{R}$ is β -smooth, then for all \mathbf{v}, \mathbf{w}

$$f(\mathbf{v}) \leq f(\mathbf{w}) + \langle \nabla f(\mathbf{w}), \mathbf{v} - \mathbf{w} \rangle + \frac{\beta}{2} \|\mathbf{v} - \mathbf{w}\|^2.$$

Proof. Define the function h on [0,1] by

$$h(t) = f(t\mathbf{v} + (1-t)\mathbf{w}) = f(\mathbf{w} + t(\mathbf{v} - \mathbf{w})).$$

Proof (continued). The function h is differentiable on (0,1) (as a composition of two differentiable functions) with derivative at $t \in (0,1)$ $h'(t) = \langle \nabla f(\mathbf{w} + t(\mathbf{v} - \mathbf{w})), \mathbf{v} - \mathbf{w} \rangle$. Hence,

$$f(\mathbf{v}) - f(\mathbf{w}) = h(1) - h(0) = \int_0^1 h'(t)dt$$
$$= \int_0^1 \langle \nabla f(\mathbf{w} + t(\mathbf{v} - \mathbf{w})), \mathbf{v} - \mathbf{w} \rangle dt.$$

It follows that

$$f(\mathbf{v}) - f(\mathbf{w}) - \langle \nabla f(\mathbf{w}), \mathbf{v} - \mathbf{w} \rangle$$

$$\int_{0}^{1} \left(\langle \nabla f(\mathbf{w} + t(\mathbf{v} - \mathbf{w})) - \nabla f(\mathbf{w}), \mathbf{v} - \mathbf{w} \rangle \right) dt$$

$$\leq \int_{0}^{1} \| \langle \nabla f(\mathbf{w} + t(\mathbf{v} - \mathbf{w})) - \nabla f(\mathbf{w}) \| \| \mathbf{v} - \mathbf{w} \| dt$$

by the Cauchy-Schwartz inequality.

Proof (continued). Now, by the β -smoothness of f we have that

$$\int_0^1 \|\langle \nabla f(\mathbf{w} + t(\mathbf{v} - \mathbf{w})) - \nabla f(\mathbf{w}) \| dt \le \beta \int_0^1 t \|\mathbf{w} - \mathbf{v}\| dt = \frac{\beta}{2} \|\mathbf{w} - \mathbf{v}\|$$

$$\text{yielding } f(\mathbf{v}) \le f(\mathbf{w}) + \langle \nabla f(\mathbf{w}), \mathbf{v} - \mathbf{w} \rangle + \beta \|\mathbf{w} - \mathbf{v}\|^2 / 2 \ (\star).$$

- Note that if f is both convex and β -smooth on \mathbb{R}^d , then for all \mathbf{v} , \mathbf{w} $f(\mathbf{w}) + \langle \nabla f(\mathbf{w}), \mathbf{v} \mathbf{w} \rangle \leq f(\mathbf{v}) \leq f(\mathbf{w}) + \langle \nabla f(\mathbf{w}), \mathbf{v} \mathbf{w} \rangle + \frac{\beta}{2} \|\mathbf{w} \mathbf{v}\|^2.$
- Consider the case $\mathbf{v} = \mathbf{w} \nabla f(\mathbf{w})/\beta$. Then, $\mathbf{v} \mathbf{w} = -\nabla f(\mathbf{w})/\beta$, and $\frac{1}{2\beta} \|\nabla f(\mathbf{w})\|^2 \le f(\mathbf{w}) f(\mathbf{v}), \quad \text{using the inequality in } (\star)$

• If $f \ge 0$ on \mathbb{R}^d , then β -smoothness of f implies that

$$\|\nabla f(\mathbf{w})\|^2 \le 2\beta f(\mathbf{w}), \quad \forall \ \mathbf{w} \in \mathbb{R}^d,$$

(we say that the function f is **self-bounded**).

Result. Let $g: \mathbb{R} \to \mathbb{R}$ be a β -smooth function and consider the function $f(\mathbf{w}) = g(\langle \mathbf{w}, \mathbf{x} \rangle + b)$ for some $\mathbf{x} \in \mathbb{R}^d$ and $b \in \mathbb{R}$. Then, f is $(\beta \|\mathbf{x}\|^2)$ -smooth.

Proof. By taking the derivative of the composition, we have that

$$\|\nabla f(\mathbf{w}) - \nabla f(\mathbf{v})\| = \left\| \left(g'(\langle \mathbf{w}, \mathbf{x} \rangle + b) - g'(\langle \mathbf{v}, \mathbf{x} \rangle + b) \right) \mathbf{x} \right\|$$

$$= \|\mathbf{x}\| \left| g'(\langle \mathbf{w}, \mathbf{x} \rangle + b) - g'(\langle \mathbf{v}, \mathbf{x} \rangle + b) \right|$$

$$\leq \|\mathbf{x}\| \beta |\langle \mathbf{w} - \mathbf{v}, \mathbf{x} \rangle| \leq \beta \|\mathbf{x}\|^2 \|\mathbf{w} - \mathbf{v}\|$$

by the Cauchy-Schwartz inequality.

• Examples.

- The function $x \mapsto x^2$ is 2-smooth and hence $f(\mathbf{w}) = (\langle \mathbf{w}, \mathbf{x} \rangle y)^2$ for some $\mathbf{x} \in \mathbb{R}^d$, $y \in \mathbb{R}$ is $(2\|\mathbf{x}\|^2)$ -smooth.
- Consider the function $g(x) = \log(1 + \exp(-yx))$, for some fixed $y \in \{-1, 1\}$. Then,

$$|g''(x)| = \frac{\exp(-xy)}{(1 + \exp(-xy))^2} = \frac{1}{(1 + \exp(-xy))(1 + \exp(xy))}$$

 $\leq \frac{1}{4}.$

Hence, $|g'(x) - g'(y)| \le |x - y|/4$ (g' is (1/4)-Lipschitz) and g is 1/4-smooth. Thus, the function

$$f(\mathbf{w}) = \log (1 + \exp(-y\langle \mathbf{w}, \mathbf{x} \rangle))$$

is $(\|\mathbf{x}\|^2/4)$ -smooth.

Convex Learning Problems

- Recall that a **learning problem** needs a hypothesis class \mathcal{H} , a domain $\mathcal{Z}(=\mathcal{X}\times\mathcal{Y})$, and a loss function $\ell:\mathcal{H}\times\mathcal{Z}\to[0,\infty)$.
- Up to now, the elements in \mathcal{H} were functions $h: \mathcal{X} \mapsto \mathcal{Y}$. Here, we will assume that each hypothesis function h can be identified with a real d-dimensional vector : $\mathbf{w} \in \mathbb{R}^d$.

Definition (Convex Learning Problem). A learning problem, $(\mathcal{H}, \mathcal{Z}, \ell)$ is called **convex** if \mathcal{H} is a **convex set** and for all $z \in \mathcal{Z}$, the function

$$f(\mathbf{w}) = \ell(\mathbf{w}, z)$$

is **convex**, for any fixed $z \in \mathcal{Z}$.

• Example. Consider a regression problem, where the hypothesis class \mathcal{H} can be identified with \mathbb{R}^d since $h(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$ for some $\mathbf{w} \in \mathbb{R}^d$, and the quadratic loss function

$$\ell(\mathbf{w}, (\mathbf{x}, y)) = (\langle \mathbf{w}, \mathbf{x} \rangle - y)^2.$$

Convex Learning Problems

Lemma. If ℓ is a convex loss function and \mathcal{H} is convex, then the ERM $_{\mathcal{H}}$ problem (of minimizing the empirical loss over \mathcal{H}), is a **convex optimization problem** (the problem of minimizing a convex function over a convex set).

Proof. Let $S = \{(\mathbf{x}_1, y_1), \dots, \mathbf{x}_m, y_m)\}$ be some training set. Then, when searching for the ERM_{\mathcal{H}} rule we aim at minimizing the function

$$\mathbf{w} \mapsto L_{\mathcal{S}}(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{w}, (\mathbf{x}_i, y_i))$$

which is a convex function (by a previous result with weights equal to $w_i = 1/m, i = 1, ..., m$).

Learnability of Convex Learning Problems. A counterexample

- Question : Is convexity enough for a problem to be learnable?
- Answer : **no**. It can be shown that even linear regression for d = 1 with
 - \bullet $\mathcal{H} = \mathbb{R}$
 - $\ell(w,(x,y)) = (wx y)^2, w \in \mathbb{R}, (x,y) \in \mathbb{R}^2$

is not agnostic PAC learnable: For any size $m \geq 1$ and any leaning algorithm $A: S \to \mathbb{R}$ we can find $\epsilon_0 \in (0,1)$ and $\delta_0 \in (0,1)$ and a distribution \mathcal{D} such that for

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left(L_{\mathcal{D}}(A(S)) > \min_{w \in \mathbb{R}} L_{\mathcal{D}}(w) + \epsilon_0 \right) \geq \delta_0.$$

Convex-Lipschitz/Smooth-Bounded Learning Problems

Definition (convex-Lipschitz-bounded Learning Problem). A learning problem, $(\mathcal{H}, \mathcal{Z}, \ell)$, is called **convex-Lipschitz-bounded**, with parameters ρ , \mathcal{B} if the following holds

- The class \mathcal{H} is a convex set and for all $\mathbf{w} \in \mathcal{H}$ we have $\|\mathbf{w}\| \leq B$,
- for all $z \in \mathcal{Z}$, $\mathbf{w} \mapsto \ell(\mathbf{w}, z)$ is convex and ρ -Lipschitz.
- **Example.** Consider the setting :
 - $\mathcal{X} = \{\mathbf{x} \in \mathbb{R}^d : \|\mathbf{x}\| \leq \rho\}$ and $\mathcal{Y} = \mathbb{R}$,
 - $\bullet \mathcal{H} = \{ \mathbf{w} \in \mathbb{R}^d : \|\mathbf{w}\| \leq B \},$
 - $\ell(\mathbf{w}, (\mathbf{x}, y)) = |\langle \mathbf{w}, \mathbf{x} \rangle y|$.

Since the functions $t \mapsto |t|$ and $\mathbf{w} \mapsto \langle \mathbf{w}, \mathbf{x} \rangle - y$ are 1- and ρ -Lipschitz, it follows that $\mathbf{w} \mapsto \ell(\mathbf{w}, (\mathbf{x}, y))$ is ρ -Lipschitz.

Convex-Lipschitz/Smooth-Bounded Learning Problems

Definition (convex-smooth-bounded Learning Problem. A learning problem, $(\mathcal{H}, \mathcal{Z}, \ell)$, is called **convex-smooth-bounded**, with parameters β , B if the following holds

- The class \mathcal{H} is a convex set and for all $\mathbf{w} \in \mathcal{H}$ we have $\|\mathbf{w}\| \leq B$.
- for all $z \in \mathcal{Z}$, $\mathbf{w} \mapsto \ell(\mathbf{w}, z)$ is convex and β -smooth.
- **Example.** Consider the setting :
 - $\mathcal{X} = \{ \mathbf{x} \in \mathbb{R}^d : ||\mathbf{x}|| \le \sqrt{\beta/2} \}$ and $\mathcal{Y} = \mathbb{R}$,
 - $\bullet \ \mathcal{H} = \{ \mathbf{w} \in \mathbb{R}^d : ||\mathbf{w}|| \le \underline{B} \},\$
 - $\ell(\mathbf{w}, (\mathbf{x}, y)) = (\langle \mathbf{w}, \mathbf{x} \rangle y)^2$.

We have seen that $\mathbf{w} \mapsto (\langle \mathbf{w}, \mathbf{x} \rangle - y)^2$ is $(2\|\mathbf{x}\|^2)$ -smooth, and $2\|\mathbf{x}\|^2 \leq \beta$. Then, it follows that the loss function β -smooth.

Surrogate loss functions

• Consider the classification problem with halfspaces with domain $\mathcal{Z} = \mathbb{R}^d \times \{-1,1\}$ and loss function

$$\ell_{0-1}(\mathbf{w}, (\mathbf{x}, y)) = \mathbb{1}_{[y \neq \operatorname{sign}(\langle \mathbf{w}, \mathbf{x} \rangle)]}$$

for $\mathbf{w} \in \mathbb{R}^d$.

- The function $\mathbf{w}\mapsto \ell_{0-1}(\mathbf{w},(\mathbf{x},y))$ is **not convex**. It can be shown that finding the ERM rule in the non-separable case (the case where we cannot find \mathbf{w}^* such that $y_i=\operatorname{sign}(\langle \mathbf{w}^*,\mathbf{x}_i\rangle))$ is NP-hard.
- To make the minimization problem easier, one solution is to upper bound the non-convex function (to be minimized) by a convex surrogate function. For example, consider

$$\ell^{\text{hinge}}(\mathbf{w}, (\mathbf{x}, y)) = \max(0, 1 - y\langle \mathbf{w}, \mathbf{x} \rangle).$$

Surrogate loss functions

• For all \mathbf{w} and (\mathbf{x}, y) we have that

$$\ell_{0-1}(\mathbf{w}, (\mathbf{x}, y)) \leq \ell^{\mathsf{hinge}}(\mathbf{w}, (\mathbf{x}, y))$$

Indeed, $y \neq \text{sign}(\langle \mathbf{w}, \mathbf{x} \rangle) \iff y \langle \mathbf{w}, \mathbf{x} \rangle < 0$, and hence,

$$\ell_{0-1}(\mathbf{w}, (\mathbf{x}, y)) = 1 \Longrightarrow \ell^{\text{hinge}}(\mathbf{w}, (\mathbf{x}, y)) = 1 - y \langle \mathbf{w}, \mathbf{x} \rangle \geq 1.$$

- Also, $\mathbf{w} \mapsto \ell^{\text{hinge}}(\mathbf{w}, (\mathbf{x}, y))$ is **convex** by convexity of the maximum of convex functions.
- \bullet Let A be a learning algorithm which can learn \mathbf{w} using the hinge loss. We

aim to achieve

$$L_{\mathcal{D}}^{\text{hinge}}(A(S)) \leq \min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{\text{hinge}}(\mathbf{w}) + \epsilon$$

for some small estimation error ϵ .

Surrogate loss functions

- Here, $L_{\mathcal{D}}^{\mathsf{hinge}}(\mathbf{w}) = \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}}[\mathsf{max}\left(0, 1 y \langle \mathbf{w}, \mathbf{x} \rangle\right)]$ for any $\mathbf{w} \in \mathbb{R}^d$.
- Thus, we have

$$\begin{array}{ll} \mathcal{L}^{0-1}_{\mathcal{D}}(\mathcal{A}(S)) & \leq & \mathcal{L}^{\mathsf{hinge}}_{\mathcal{D}}(\mathcal{A}(S)) \\ & \leq & \min_{\mathbf{w} \in \mathcal{H}} \mathcal{L}^{\mathsf{hinge}}_{\mathcal{D}}(\mathbf{w}) + \epsilon \\ \\ & = & \underbrace{\min_{\mathbf{w} \in \mathcal{H}} \mathcal{L}^{0-1}_{\mathcal{D}}(\mathbf{w})}_{\text{approximation error}} + \underbrace{\left(\min_{\mathbf{w} \in \mathcal{H}} \mathcal{L}^{\mathsf{hinge}}_{\mathcal{D}}(\mathbf{w}) - \min_{\mathbf{w} \in \mathcal{H}} \mathcal{L}^{0-1}_{\mathcal{D}}(\mathbf{w})\right)}_{\text{optimization error}} \end{array}$$

ullet The optimization error depends on the unknown distribution ${\mathcal D}$ (and also on our choice for the surrogate function).

Theory for Machine Learning

Stochastic Gradient Descent (Chapter 14)

Lecture 8

Convex Learning Problems (Chapter 12)

Stochastic Gradient Descent (Chapter 14)

What is the goal?

- We consider again the setting where
 - \mathcal{H} can be identified with some convex subset of vectors $\mathbf{w} \in \mathbb{R}^d$,
 - the loss function $\mathbf{w} \mapsto \ell(\mathbf{w}, z)$ is convex for any $z \in \mathcal{Z}$.
- Here, we will study the properties of a new learning method : Stochastic gradient descent (SGD) .
- We start with the simpler version called gradient descent and analyze its convergence.
- We will show how the SGD can be employed in learning problems.

Gradient descent

- **Idea**: If f is a differentiable function on \mathbb{R}^d with gradient $\nabla f(\mathbf{w})$, then $\nabla f(\mathbf{w})$ points in the direction of the greatest rate of increase of f around \mathbf{w} .
- If f admits a minimum at \mathbf{w}^* , then we "hunt" for this minimizer by iteratively updating the operation $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} \eta \nabla f(\mathbf{w}^{(t)})$.
- Starting from $\mathbf{w}^{(1)} = \mathbf{0}$, it can be shown that under some conditions, the output $\bar{\mathbf{w}} = 1/T \sum_{t=1}^T \mathbf{w}^{(t)}$ converges to \mathbf{w}^* for a large enough T.
- \bullet Suppose that f is convex. Then, the starting point is to write that

$$f(\bar{\mathbf{w}}) - f(\mathbf{w}^*) = f\left(\frac{1}{T}\sum_{t=1}^{T}\mathbf{w}^{(t)}\right) - f(\mathbf{w}^*) \leq \frac{1}{T}\sum_{t=1}^{T}f(\mathbf{w}^{(t)}) - f(\mathbf{w}^*)$$
$$= \frac{1}{T}\sum_{t=1}^{T}\left(f(\mathbf{w}^{(t)}) - f(\mathbf{w}^*)\right)$$

Gradient descent : Analysis

• Using convexity, we have that $f(\mathbf{w}^{(t)}) \leq f(\mathbf{w}^*) + \langle \mathbf{w}^{(t)} - \mathbf{w}^*, \nabla f(\mathbf{w}^{(t)}) \rangle$ and hence

$$f(\bar{\mathbf{w}}) - f(\mathbf{w}^*) \leq \frac{1}{T} \sum_{t=1}^{I} \langle \mathbf{w}^{(t)} - \mathbf{w}^*, \nabla f(\mathbf{w}^{(t)}) \rangle,$$

and the goal now is to upper bound the term on the right side :

Lemma. Let $\mathbf{v}_1,\dots,\mathbf{v}_T$ be an arbitrary sequence of vectors. Any algorithm with an **initialization** $\mathbf{w}^{(1)}=\mathbf{0}$ and an **update rule** of the form

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \mathbf{v}_t$$

for some $\eta > 0$ satisfies

$$\sum_{t=1}^{I} \langle \mathbf{w}^{(t)} - \mathbf{w}^*, \mathbf{v}_t \rangle \leq \frac{\|\mathbf{w}^*\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{I} \|\mathbf{v}_t\|^2.$$

Gradient descent : Analysis

Lemma (continued). In particular, for $\forall \ B>0, \rho>0$, if we have $\|\mathbf{v}_t\| \leq \rho$ and if $\eta=\sqrt{B^2/(\rho^2T)}$, then for any $\mathbf{w}^*: \|\mathbf{w}^*\| \leq B$ we have

$$\frac{1}{T} \sum_{t=1}^{T} \langle \mathbf{w}^{(t)} - \mathbf{w}^*, \nabla f(\mathbf{w}^{(t)}) \rangle \leq \frac{B\rho}{\sqrt{T}}.$$

Proof. We can write that

$$\langle \mathbf{w}^{(t)} - \mathbf{w}^*, \mathbf{v}_t \rangle = \frac{1}{\eta} \langle \mathbf{w}^{(t)} - \mathbf{w}^*, \eta \mathbf{v}_t \rangle$$

$$= \frac{1}{2\eta} \left(-\|\mathbf{w}^{(t)} - \mathbf{w}^* - \eta \mathbf{v}_t\|^2 + \|\mathbf{w}^{(t)} - \mathbf{w}^*\|^2 + \eta^2 \|\mathbf{v}_t\|^2 \right)$$

$$= \frac{1}{2\eta} \left(-\|\mathbf{w}^{(t+1)} - \mathbf{w}^*\|^2 + \|\mathbf{w}^{(t)} - \mathbf{w}^*\|^2 \right) + \frac{\eta}{2} \|\mathbf{v}_t\|^2$$

by definition of $\mathbf{w}^{(t+1)}$.

Stochastic Gradient Descent (Chapter 14)

Gradient descent : Analysis

Proof (continued). By summing over t, it follows that

$$\sum_{t=1}^{T} \langle \mathbf{w}^{(t)} - \mathbf{w}^*, \mathbf{v}_t \rangle = \frac{1}{2\eta} \left(-\|\mathbf{w}^{(T+1)} - \mathbf{w}^*\|^2 + \|\mathbf{w}^{(1)} - \mathbf{w}^*\|^2 \right) + \frac{\eta}{2} \sum_{t=1}^{T} \|\mathbf{v}_t\|^2 \\
\leq \frac{1}{2\eta} \|\mathbf{w}^{(1)} - \mathbf{w}^*\|^2 + \frac{\eta}{2} \sum_{t=1}^{T} \|\mathbf{v}_t\|^2$$

$$= \frac{1}{2\eta} \|\mathbf{w}^*\|^2 + \frac{\eta}{2} \sum_{t=1}^{T} \|\mathbf{v}_t\|^2, \text{ since } \mathbf{w}^{(1)} = \mathbf{0}.$$

If $\|\mathbf{w}^*\| \leq B$, $\|\mathbf{v}_t\| \leq \rho$ and $\eta = \sqrt{B^2/(\rho^2 T)}$, then we can further bound the right term /T by

$$\frac{1}{2T}\frac{\rho\sqrt{T}}{B}B^2 + \frac{B}{2\rho\sqrt{T}}\rho^2 = \frac{B\rho}{\sqrt{T}}.$$

Gradient descent : Analysis

Corollary. Let f be a convex, ρ -Lipschitz function and differentiable, and let $\mathbf{w}^* \in \operatorname{argmin}_{\mathbf{w}: \|\mathbf{w}\| \leq B} f(\mathbf{w})$. If the GD algorithm is run for T steps with $\eta = \sqrt{B^2/(\rho^2 T)}$, then

$$f(\mathbf{\bar{w}}) - f(\mathbf{w}^*) \leq \frac{B\rho}{\sqrt{T}}.$$

Thus, to have $f(\bar{\mathbf{w}}) - f(\mathbf{w}^*) \le \epsilon$ for some $\epsilon > 0$, it suffices to take $T \ge B^2 \rho^2 / \epsilon^2$.

Proof. Since f is ρ -Lipschitz and differentiable, we have that $\|\nabla f(\mathbf{w}^{(t)})\| \leq \rho$. Take

$$\mathbf{v}_t = \nabla f(\mathbf{w}^{(t)})$$

and apply the previous Lemma.

Subgradients

- We can generalize the GD algorithm to convex non-differentiable functions, using subgradients.
- ullet Recall that if f is a convex differentiable function, then for all $oldsymbol{u}$

$$f(\mathbf{u}) \geq f(\mathbf{w}) + \langle \mathbf{u} - \mathbf{w}, \nabla f(\mathbf{w}) \rangle.$$

This property can be strengthened through the following result :

Lemma. Let S be an open convex set. A function $f: S \to \mathbb{R}$ is convex iff $\forall \mathbf{w} \in S \exists \mathbf{v}: f(\mathbf{u}) \geq f(\mathbf{w}) + \langle \mathbf{u} - \mathbf{w}, \mathbf{v} \rangle$ for all $\mathbf{u} \in S$. (\star)

Definition (subgradients). A vector \mathbf{v} that satisfies (\star) is called a subgradient of f at \mathbf{w} . The set of all subgradients of f at \mathbf{w} is called the differential set and is denoted by $\partial f(\mathbf{w})$.

Subgradients : calculation and examples

- **Result.** If f is differentiable at \mathbf{w} , then $\partial f(\mathbf{w}) = {\nabla f(\mathbf{w})}$.
- **Example.** Consider f(x) = |x|. This function is differentiable on $(-\infty, 0) \cup (0, \infty)$ and hence $\partial f(x) = \{-1\}$ if x < 0 and $\partial f(x) = \{1\}$ if x > 0. For x = 0, note that

$$f(t) \ge f(0) + a(t-0) \iff |t| \ge at \iff a \le 1 \text{ or } a \ge -1.$$

Hence,

$$\partial f(x) = \begin{cases} \{1\}, & \text{if } x > 0 \\ \{-1\}, & \text{if } x < 0 \\ [-1, 1], & \text{if } x = 0. \end{cases}$$

• **Result.** Let g_1, \ldots, g_r be r convex differentiable functions and $g = \max_{1 \le i \le r} g_i$. For a given \mathbf{w} , let $j \in \{1, \ldots, r\}$ such that $g(\mathbf{w}) = g_j(\mathbf{w})$. Then,

$$\nabla g_j(\mathbf{w}) \in \partial g(\mathbf{w}).$$

Subgradients: calculation and examples

• **Proof.** Convexity of g_i implies that for all \mathbf{u}

$$g_j(\mathbf{u}) \geq g_j(\mathbf{w}) + \langle \mathbf{u} - \mathbf{w}, \nabla g_j(\mathbf{w}) \rangle.$$

Since $g(\mathbf{w}) = g_j(\mathbf{w})$ and $g(\mathbf{u}) \ge g_j(\mathbf{u})$, it follows that

$$g(\mathbf{u}) \geq g(\mathbf{w}) + \langle \mathbf{u} - \mathbf{w}, \nabla g_j(\mathbf{w}) \rangle.$$

As this is true for all \mathbf{u} , this means that $\nabla g_j(\mathbf{w}) \in \partial g(\mathbf{w})$.

• Example. Consider the hinge loss function $f(\mathbf{w}) = \max(0, 1 - y\langle \mathbf{w}, \mathbf{x} \rangle)$ for some vector $\mathbf{x} \in \mathbb{R}^d$ and $y \in \{-1, 1\}$. Then, for a given $\mathbf{w} \in \mathbb{R}^d$, the vector

$$\mathbf{v} = \begin{cases} \mathbf{0}, & \text{if } 1 - y \langle \mathbf{w}, \mathbf{x} \rangle \leq 0 \\ -y\mathbf{x}, & \text{if } 1 - y \langle \mathbf{w}, \mathbf{x} \rangle > 0 \end{cases}$$

is a subgradient of f at \mathbf{w} .

Subgradients of Lipschitz functions

• Recall that a function : $A \to \mathbb{R}$ is ρ -Lipschitz if for all $\mathbf{u}, \mathbf{v} \in A$, we have $|f(\mathbf{v}) - f(\mathbf{u})| \le \rho ||\mathbf{v} - \mathbf{u}||$.

Lemma. Let A be a convex open set and let $f: A \to \mathbb{R}$ be a convex function. Then,

f is ρ -Lipschitz over $A \iff \forall \mathbf{w} \in A, \mathbf{v} \in \partial f(\mathbf{w})$ we have that $\|\mathbf{v}\| \leq \rho$.

Proof. Suppose that any $\mathbf{v} \in \partial f(\mathbf{w})$ satisfies $\|\mathbf{v}\| \leq \rho$. By definition of $\partial f(\mathbf{w})$, we have that

$$f(\mathbf{w}) - f(\mathbf{u}) \leq \langle \mathbf{v}, \mathbf{w} - \mathbf{u} \rangle.$$

By the Cauchy-Schwartz inequality applied to the right term, the latter inequality implies that

$$f(\mathbf{w}) - f(\mathbf{u}) \le \|\mathbf{v}\| \|\mathbf{w} - \mathbf{u}\| \le \rho \|\mathbf{w} - \mathbf{u}\|$$

Subgradients of Lipschitz functions

Proof (continued). A similar argument can be applied to show that $f(\mathbf{u}) - f(\mathbf{w}) \leq \rho \|\mathbf{u} - \mathbf{w}\|$. Hence, f is ρ -Lipschitz.

Suppose now that f is ρ -Lipschitz, and let $\mathbf{w} \in A$ and $\mathbf{v} \in \partial f(\mathbf{w})$. If $\mathbf{v} = \mathbf{0}$, then we are done. Suppose now that $\mathbf{v} \neq \mathbf{0}$. Since A is open, we can find a small $\epsilon > 0$ such that $\mathbf{u} = \mathbf{w} + \epsilon \mathbf{v} / \|\mathbf{v}\| \in A$. Then,

$$\langle \mathbf{u} - \mathbf{w}, \mathbf{v} \rangle = \epsilon \|\mathbf{v}\|, \text{ and } \|\mathbf{u} - \mathbf{w}\| = \epsilon.$$

From the definition of the subgradient and ρ -Lipschitzness, we have that

$$\rho \epsilon = \rho \|\mathbf{u} - \mathbf{w}\| \ge f(\mathbf{u}) - f(\mathbf{w}) \ge \langle \mathbf{u} - \mathbf{w}, \mathbf{v} \rangle = \epsilon \|\mathbf{v}\|$$

implying that $||v|| \le \rho$.

Subgradient descent

- In case f is non-differentiable but convex and ρ -Lipschitz, we can construct a subgradient descent algorithm, where $\mathbf{v}_t \in \partial f(\mathbf{w}^{(t)})$:
 - Start with $\mathbf{w}^{(1)} = \mathbf{0}$.
 - For t = 1, ..., T, take $w^{(t+1)} = w^{(t)} \eta \mathbf{v}_t$ with $\mathbf{v}_t \in \partial f(w^{(t)})$.
 - Output $\bar{\mathbf{w}} = \sum_{t=1}^{T} \mathbf{w}^{(t)} / T$.
- If we again take $\eta = \sqrt{B^2/(\rho^2 T)}$, then $f(\bar{\mathbf{w}}) f(\mathbf{w}^*) \leq \frac{B\rho}{\sqrt{T}}$ under the assumption that the minimizer \mathbf{w}^* of f satisfies $\|\mathbf{w}^*\| \leq B$.
- Justification: the following two ingredients can be again used in the proof (as for GD)
 - any $\mathbf{v}_t \in \partial f(w^{(t)})$ satisfies $\|\mathbf{v}_t\| \leq \rho$ (by the ρ -Lipschitzness of f).
 - $f(\mathbf{w}^{(t)}) f(\mathbf{w}^*) \le \langle \mathbf{w}^{(t)} \mathbf{w}^*, \mathbf{v}_t \rangle$ (by the properties of subgradients).

Stochastic gradient descent

- **Idea**: The function f we want to minimize is unknown. Thus, the gradient or sub-gradient at any vector \mathbf{w} is also unknown. What should we do?
- At some iteration t, we can replace the unknown gradient or subgradient by a random vector \mathbf{v}_t such that

$$\mathbb{E}[\mathbf{v}_t|\mathbf{w}^{(t)}] \in \partial f(\mathbf{w}^{(t)})$$

- ullet This random step yields the stochastic gradient descent algorithm (SDG) : for some $\eta>0$ and T>0 an integer
 - Start with $\mathbf{w}^{(1)} = \mathbf{0}$
 - For t = 1, ..., T
 - generate \mathbf{v}_t from a distribution such that $\mathbb{E}[\mathbf{v}_t|\mathbf{w}^{(t)}] \in \partial f(\mathbf{w}^{(t)})$
 - update $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} n\mathbf{v}_t$
 - Output $\bar{\mathbf{w}} = \sum_{t=1}^{T} \mathbf{w}^{(t)} / T$