Gaussian Mixture Model

He He

CDS, NYU

April 27, 2021

Latent Variable Models

General Latent Variable Model

- Two sets of random variables: z and x.
- z consists of unobserved hidden variables.
- x consists of observed variables.
- Joint probability model parameterized by $\theta \in \Theta$:

$$p(x, z \mid \theta)$$

Definition

A latent variable model is a probability model for which certain variables are never observed.

e.g. The Gaussian mixture model is a latent variable model.

He He (CDS, NYU) DS-GA 1003 April 27, 2021 3/30

Complete and Incomplete Data

- Suppose we observe some data $(x_1, ..., x_n)$.
- To simplify notation, take x to represent the entire dataset

$$x = (x_1, \ldots, x_n)$$
,

and z to represent the corresponding unobserved variables

$$z = (z_1, \ldots, z_n)$$
.

- An observation of x is called an **incomplete data set**.
- An observation (x, z) is called a **complete data set**.

Our Objectives

• Learning problem: Given incomplete dataset x, find MLE

$$\hat{\theta} = \arg\max_{\theta} p(x \mid \theta).$$

• **Inference problem**: Given x, find conditional distribution over z:

$$p(z | x, \theta)$$
.

- For Gaussian mixture model, learning is hard, inference is easy.
- For more complicated models, inference can also be hard. (See DSGA-1005)

He He (CDS, NYU) DS-GA 1003 April 27, 2021 5/30

Log-Likelihood and Terminology

Note that

$$\arg\max_{\theta} p(x \mid \theta) = \arg\max_{\theta} [\log p(x \mid \theta)].$$

- Often easier to work with this "log-likelihood".
- We often call p(x) the marginal likelihood,
 - because it is p(x,z) with z "marginalized out":

$$p(x) = \sum_{z} p(x, z)$$

- We often call p(x,z) the **joint**. (for "joint distribution")
- Similarly, $\log p(x)$ is the marginal log-likelihood.

6/30

EM Algorithm

Intuition

Problem: marginal log-likelihood $\log p(x;\theta)$ is hard to optimize (observing only x)

Observation: complete data log-likelihood $\log p(x,z;\theta)$ is easy to optimize (observing both x and z)

Idea: guess a distribution of the latent variables q(z) (soft assignments)

Maximize the **expected complete data log-likelihood**:

$$\max_{\theta} \sum_{z \in \mathcal{Z}} q(z) \log p(x, z; \theta)$$

EM assumption: the expected complete data log-likelihood is easy to optimize

Why should this work?

He He (CDS, NYU) DS-GA 1003 April 27, 2021 8/30

Math Prerequisites

Jensen's Inequality

Theorem (Jensen's Inequality)

If $f : R \to R$ is a **convex** function, and x is a random variable, then

$$\mathbb{E}f(x) \geqslant f(\mathbb{E}x).$$

Moreover, if f is **strictly convex**, then equality implies that $x = \mathbb{E}x$ with probability 1 (i.e. x is a constant).

• e.g. $f(x) = x^2$ is convex. So $\mathbb{E}x^2 \geqslant (\mathbb{E}x)^2$. Thus

$$\operatorname{Var}(x) = \mathbb{E}x^2 - (\mathbb{E}x)^2 \geqslant 0.$$

10 / 30

Kullback-Leibler Divergence

- Let p(x) and q(x) be probability mass functions (PMFs) on \mathfrak{X} .
- How can we measure how "different" p and q are?
- The Kullback-Leibler or "KL" Divergence is defined by

$$\mathrm{KL}(p\|q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}.$$

(Assumes
$$q(x) = 0$$
 implies $p(x) = 0$.)

Can also write this as

$$\mathrm{KL}(p\|q) = \mathbb{E}_{x \sim p} \log \frac{p(x)}{q(x)}.$$

Gibbs Inequality ($\mathrm{KL}(p\|q)\geqslant 0$ and $\mathrm{KL}(p\|p)=0$)

Theorem (Gibbs Inequality)

Let p(x) and q(x) be PMFs on \mathfrak{X} . Then

$$KL(p||q) \geqslant 0$$
,

with equality iff p(x) = q(x) for all $x \in \mathcal{X}$.

- KL divergence measures the "distance" between distributions.
- Note:
 - KL divergence not a metric.
 - KL divergence is not symmetric.

Gibbs Inequality: Proof

$$\begin{aligned} \mathrm{KL}(\rho \| q) &=& \mathbb{E}_{p} \left[-\log \left(\frac{q(x)}{p(x)} \right) \right] \\ &\geqslant &-\log \left[\mathbb{E}_{p} \left(\frac{q(x)}{p(x)} \right) \right] \qquad \text{(Jensen's)} \\ &=& -\log \left[\sum_{\{x \mid p(x) > 0\}} p(x) \frac{q(x)}{p(x)} \right] \\ &=& -\log \left[\sum_{x \in \mathcal{X}} q(x) \right] \\ &=& -\log 1 = 0. \end{aligned}$$

• Since $-\log$ is strictly convex, we have strict equality iff q(x)/p(x) is a constant, which implies q=p.

He He (CDS, NYU) DS-GA 1003 April 27, 2021 13 / 30

The ELBO: Family of Lower Bounds on $\log p(x \mid \theta)$

He He (CDS, NYU)

Lower bound of the marginal log-likelihood

$$\log p(x;\theta) = \log \sum_{z \in \mathcal{Z}} p(x,z;\theta)$$

$$= \log \sum_{z \in \mathcal{Z}} q(z) \frac{p(x,z;\theta)}{q(z)}$$

$$\geqslant \sum_{z \in \mathcal{Z}} q(z) \log \frac{p(x,z;\theta)}{q(z)}$$

$$\stackrel{\text{def}}{=} \mathcal{L}(q,\theta)$$

- Evidence: $\log p(x; \theta)$
- Evidence lower bound (ELBO): $\mathcal{L}(q, \theta)$
- q: chosen to be a family of tractable distributions
- Idea: maximize the ELBO instead of $log p(x; \theta)$

He He (CDS, NYU) DS-GA 1003 April 27, 2021 16/30

MLE, EM, and the ELBO

• The MLE is defined as a maximum over θ :

$$\hat{\theta}_{\mathsf{MLE}} = \mathop{\arg\max}_{\theta} \left[\log p(x \mid \theta) \right].$$

• For any PMF q(z), we have a lower bound on the marginal log-likelihood

$$\log p(x \mid \theta) \geqslant \mathcal{L}(q, \theta).$$

• In EM algorithm, we maximize the lower bound (ELBO) over θ and q:

$$\hat{\theta}_{\mathsf{EM}} pprox rg \max_{\theta} \left[\max_{q} \mathcal{L}(q, \theta)
ight]$$

• In EM algorithm, q ranges over all distributions on z.

- Choose sequence of q's and θ 's by "coordinate ascent" on $\mathcal{L}(q,\theta)$.
- EM Algorithm (high level):
 - Choose initial θ^{old} .
 - 2 Let $q^* = \arg\max_{q} \mathcal{L}(q, \theta^{\text{old}})$
 - **3** Let $\theta^{\text{new}} = \arg\max_{\theta} \mathcal{L}(q^*, \theta^{\text{old}})$.
 - Go to step 2, until converged.
- Will show: $p(x \mid \theta^{new}) \geqslant p(x \mid \theta^{old})$
- ullet Get sequence of θ 's with monotonically increasing likelihood.

EM: Coordinate Ascent on Lower Bound

- Start at θ^{old} .
- ② Find q giving best lower bound at $\theta^{\text{old}} \Longrightarrow \mathcal{L}(q,\theta)$.

He He (CDS, NYU)

From Bishop's Pattern recognition and machine learning, Figure 9.14.

Justification for maximizing ELBO

$$\begin{split} \mathcal{L}(q,\theta) &= \sum_{z \in \mathcal{Z}} q(z) \log \frac{p(x,z;\theta)}{q(z)} \\ &= \sum_{z \in \mathcal{Z}} q(z) \log \frac{p(z \mid x;\theta) p(x;\theta)}{q(z)} \\ &= -\sum_{z \in \mathcal{Z}} q(z) \log \frac{q(z)}{p(z \mid x;\theta)} + \sum_{z \in \mathcal{Z}} q(z) \log p(x;\theta) \\ &= -\mathrm{KL}\left(q(z) \| p(z \mid x;\theta)\right) + \log p(x;\theta) \end{split}$$

- KL divergence: measures "distance" between two distributions (not symmetric!)
- $KL(q||p) \ge 0$ with equality iff q(z) = p(z|x).
- ELBO = evidence KL ≤ evidence

He He (CDS, NYU) DS-GA 1003 April 27, 2021 20 / 30

[discussion] Justification for maximizing ELBO

$$\mathcal{L}(q,\theta) = -\mathsf{KL}(q(z)||p(z|x;\theta)) + \log p(x;\theta)$$

Fix
$$\theta = \theta_0$$
 and $\max_q \mathcal{L}(q, \theta_0)$: $q^* = p(z \mid x; \theta_0)$

Let θ^* , q^* be the global optimzer of $\mathcal{L}(q,\theta)$, then θ^* is the global optimizer of $\log p(x;\theta)$. (Proof: exercise)

He He (CDS, NYU) DS-GA 1003 April 27, 2021 21/30

Marginal Log-Likelihood IS the Supremum over Lower Bounds

sup is over all distributions on z

Summary

Latent variable models: clustering, latent structure, missing lables etc.

Parameter estimation: maximum marginal log-likelihood

Challenge: directly maximize the evidence $\log p(x; \theta)$ is hard

Solution: maximize the evidence lower bound:

$$\mathsf{ELBO} = \mathcal{L}(q, \theta) = -\mathsf{KL}(q(z) || p(z \mid x; \theta)) + \log p(x; \theta)$$

Why does it work?

$$q^*(z) = p(z \mid x; \theta) \quad \forall \theta \in \Theta$$
$$\mathcal{L}(q^*, \theta^*) = \max_{\theta} \log p(x; \theta)$$

EM algorithm

Coordinate ascent on $\mathcal{L}(q,\theta)$

- **1** Random initialization: $\theta^{\text{old}} \leftarrow \theta_0$
- Repeat until convergence

Expectation (the E-step):
$$q^*(z) = p(z \mid x; \theta^{\text{old}})$$

 $J(\theta) = \mathcal{L}(q^*, \theta)$

EM Algorithm

- Expectation Step
 - Let $q^*(z) = p(z \mid x, \theta^{\text{old}})$. $[q^*]$ gives best lower bound at θ^{old}
 - Let

$$J(\theta) := \mathcal{L}(q^*, \theta) = \underbrace{\sum_{z} q^*(z) \log \left(\frac{p(x, z \mid \theta)}{q^*(z)} \right)}_{\text{expectation w.r.t. } z \sim q^*(z)}$$

Maximization Step

$$\theta^{\mathsf{new}} = \underset{\theta}{\mathsf{arg}} \max_{\theta} J(\theta).$$

[Equivalent to maximizing expected complete log-likelihood.]

EM puts no constraint on q in the E-step and assumes the M-step is easy. In general, both steps can be hard.

[discussion] Monotonically increasing likelihood

Exercise: prove that EM increases the marginal likelihood monotonically

$$\log p(x; \theta^{\mathsf{new}}) \geqslant \log p(x; \theta^{\mathsf{old}}) .$$

Does EM converge to a global maximum?

He He (CDS, NYU) DS-GA 1003 April 27, 2021 26/30

Variations on EM

27 / 30

EM Gives Us Two New Problems

• The "E" Step: Computing

$$J(\theta) := \mathcal{L}(q^*, \theta) = \sum_{z} q^*(z) \log \left(\frac{p(x, z \mid \theta)}{q^*(z)} \right)$$

The "M" Step: Computing

$$\theta^{\text{new}} = \underset{\theta}{\text{arg max}} J(\theta).$$

Either of these can be too hard to do in practice.

Generalized EM (GEM)

- Addresses the problem of a difficult "M" step.
- Rather than finding

$$\theta^{\text{new}} = \underset{\theta}{\text{arg max}} J(\theta),$$

find any θ^{new} for which

$$J(\theta^{\mathsf{new}}) > J(\theta^{\mathsf{old}}).$$

- Can use a standard nonlinear optimization strategy
 - e.g. take a gradient step on J.
- We still get monotonically increasing likelihood.

EM and More General Variational Methods

- Suppose "E" step is difficult:
 - Hard to take expectation w.r.t. $q^*(z) = p(z \mid x, \theta^{\text{old}})$.
- Solution: Restrict to distributions Q that are easy to work with.
- Lower bound now looser:

$$q^* = \underset{q \in \Omega}{\operatorname{arg\,min}\, \mathrm{KL}}[q(z), p(z \mid x, \theta^{\mathrm{old}})]$$

30 / 30