確率・統計 第8回 分散分析の補足

兵庫県立大学 社会情報科学部 川嶋宏彰

kawashima@sis.u-hyogo.ac.jp

今日のポイント

- ・第一種の過誤と第二種の過誤
- 分散分析の事後検定

- ・検定には二種類の誤りがある
 - 友人Aが約束の時間にこなかったとする
 - その理由はどちらか?
 - いつものようにゆっくりシャワーを 浴びていた (真実)
 - 緊急時だと思って友人Aの家に 駆けつけた (判断)
 - ・ 第一種の過誤 (type I error)
 - 2. 水道管が破裂して対処していた(真実)
 - 何事もないと思って友人Aを 待ち続けた (判断)
 - ・ 第二種の過誤 (type II error)

- ・検定には二種類の誤りがある
 - 何人かでくじを引いてみたとする
 - くじは公正か?
 - 1. 本当に公正だった(真実)
 - たまたま男ばっかり当たったのに 花子さんに「やっぱりイカサマだ!」 と決めつけられる(判断)
 - ・ 第一種の過誤 (type I error)
 - 2. 本当はイカサマがあった (真実)
 - 標本サイズ(サンプルサイズ)が小さくて,太郎君に 「そんなことはないって!」と言い逃れされる(判断)
 - ・ 第二種の過誤 (type II error)

- ・第一種過誤 (type-l error): この誤りが起きる確率 α
 - ・ 帰無仮説 H_0 が \underline{r} しいにもかかわらず \underline{x} 切してしまう誤り

$$\alpha = P(\text{reject } H_0 \mid \underline{H_0} = True)$$

- ・ α は危険率とも呼ばれる
 - ・ 有意水準 α の検定は第一種過誤が確率 α で起きる危険を冒しながら帰無仮説を棄却(対立仮説を採択)している
- ・第二種過誤 (type-II error):この誤りが起きる確率 eta
 - ・ 帰無仮説 H_0 が<u>正しくない</u>にもかかわらず<u>棄却しない</u>誤り $\beta = P(\text{do not reject } H_0 \mid H_0 = False)$
 - 1 β を検出力と呼ぶ
 - 正しくない帰無仮説を棄却できる確率

$$1 - \beta = P(\text{reject } H_0 \mid \underline{H_0} = False)$$

$$\exists \sharp$$

<u>ぼ</u>んやり者 の誤り

・表でまとめると以下のようになる(対角:正しい判断)

		真実				
		帰無仮説が正しい (本当に差がない)	帰無仮説が誤り (本当は差がある)			
本口体亡	帰無仮説を棄却 しない (保留)		第二種の過誤 $\beta = P(\text{not reject } H_0 \mid H_0 = False)$			
判断	帰無仮説を棄却 する (差がある)	第一種の過誤 $\alpha = P(\text{reject } H_0 \mid H_0 = True)$	検出力 $1 - \beta =$ $P(\text{reject } H_0 \mid H_0 = False)$			

- 第一種過誤 (type-I error):確率 α
 - ・ 帰無仮説が<u>正しい</u>にもかかわらず <u>棄却</u>してしまう誤り
 - α は危険率とも呼ばれる
- 第二種過誤 (type-II error):確率 β
 - 帰無仮説が<u>正しくない</u>にもかかわらず 棄却しない誤り
 - ・ $1-\beta$ を検出力 (正しくない帰無仮説を 棄却できる確率) とよぶ

あらかじめ定めた十分小さい有意水準 α に対して β をなるべく小さくしたい

今日のポイント

- ・第一種の過誤と第二種の過誤
- 分散分析の事後検定

分散分析と2群の検定

- ・群1と群2,群2と群3,群1と群3でt検定を3回すると?
 - ・ 実質的な有意水準が高くなってしまう

- 分散分析は,指定した有意水準で「母平均」 がすべて等しいか否かを検定できる
 - ・ 帰無仮説:すべての母平均は等しい
 - ・ 対立仮説:いずれかの母平均は異なる

- •一方,分散分析は…
 - 「どこに差があるか」は分からない

事後検定(post-hoc test)

- 分散分析によって帰無仮説「すべての母平均は等しい」が 棄却され「いずれかの群の母平均が異なる」と分かったら?
 - 「どの群が異質なのか知りたい!」 (事後検定)
 - 「でも,0.05のt検定を繰り返すのは危険そうだ・・・」

多重検定(多重比較)の問題

・ 有意水準5% のt検定を3回繰り返すと実質的に有意水準14%

第一種過誤が起きる確率: $1-0.95 \times 0.95 \times 0.95 = 0.1426$

各2群比較で誤って棄却しない確率

つまり、差が無いのに誤って差があるといってしまう確率が上がる

改良手法もある:Holm法・Shaffer法

多重比較法 (多重検定)

- ・多重検定の問題を考慮した方法
 - 複数の2群間の差の検定を同時に行っても、一つ以上の2群間の差が 有意となる確率をあらかじめ定めた有意水準以内にする検定方法
 - Bonferroni法(この講義ではこれだけ扱います)
 - 全体として有意水準が満たされるよう有意水準を下げて すべての群間でそれぞれ個別に検定 ______
 - Tukey法
 - 母平均について群間ですべての対比較を同時に検定
 - Dunnett法
 - ・1つの対照群と2つ以上の処理群があって、 母平均について対照群と処理群の対比較のみを同時に検定
 - 各処理群の母平均が対照群の母平均と比べ「異なるかどうか」だけでなく「小さいといえるか」または「大きいといえるか」を判定

Bonferroni修正法

・3群に対する多重検定 → 各群間に対してそれぞれ検定を行う

• 有意水準 $\frac{\alpha}{3}$ として個別に検定 $(\alpha=0.05\to p<0.0167$ ならば有意差あり)
• $1-(1-0.0167)^3=0.049$ とほぼ5%に $\left(1-\frac{\alpha}{3}\right)^3$ $\frac{--$ 次近似: α はのに近い \rightarrow 高次の項 α^2 , α^3 はのに近似できる

スイカの重さの測定結果 (kg)

群1	群2	群3	
9.5	10.1	11.3	
9.7	10.5	10.7	
10.1	9.6	10.2	
9.8	9.3	有意差	あり
9.3 <		>	

				\		\	57		,	2	
 	· -			Во	00	= 1	l – 3	$\frac{\alpha}{3}$ + 3	$3\left(\frac{\alpha}{2}\right)$	$\Big)^2$	$\left(\frac{\alpha}{2}\right)^3$
アイルホーム	挿入	ページ レイアウ	か 数式	データ	#			3	(3)	/	(3)
-0-	34/	/\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	71 50.24		ъ	≈ 1	$-\alpha$,			
N N	oto Sans CJK	CJP Medii + 1	11 - A	A = =	3			•	0		
的付け	3 / <u>U</u> -	- B	- A - 7	F E	=			1	$\alpha \setminus 3$		
· 🧇		_		1F 1F	. 1	•	1 —	11 —	_ 1	$\approx \alpha$	
リップボード 52		フォント		G 配置			_	1 -	3/	· · · · ·	
Q26	*	_							J /		
4 A	B N#b+ /CD	0	D	E ***/	F / / / / / / / / / / / / / / / / / / /	· + 2.55±	/- L Z 10C	. 100 75/	\#b+ /E=	1 + 2 = +	による松中
1 t-快疋: 寺?	が似を1反正	した2標本	による快ル	t-快疋: 寺2	が献を1反正	した2標本	による快ル	t-検定:等分	が 配を 仮正	した2標本	による快疋
2											
3	変数1	変数2			変数 1	変数3			変数∶2	変数 13	
4 平均	9.68	9.875		平均	9.68	10.7333		平均	9.875	10.7333	
5 分散	0.092	0.2825		分散	0.092	0.30333		分散	0.2825	0.30333	
6 観測数	5	4		観測数	5	3		観測数	4	3	
7 プールされ	0.17364			プールさオ	0.16244			プールされ	0.29083		
8 仮説平均と	0			仮説平均と	0			仮説平均と	0		
9 自由度	7			自由度	6			自由度	5		
10 t	-0.6976			t	-3.5786			t	-2.0839		
11 P(T<=t)片	0.25397			P(T<=t) 片	0.00583			P(T<=t) 片	0.0458		
12 t 境界値 片				t 境界値 片				t 境界値片			
3 P(T<=t)両				P(T<=t) 両				P(T<=t) 両			1
								t 境界値 両			,
。 It 境界值 d	2.36462			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.44691						
14 t 境界値 両 15	2.36462			t 境界値 両	2.44691			1. 現乔胆 叫	2.57058		

3群以上の標本に対する検定の流れ

- 1. 「等分散性」を調べる(Bartlett検定など.本講義では扱わない)
- 2. 分散分析 (ANOVA) で「全群の母平均が等しいのかどうか」を調べる
- 3. 帰無仮説「すべての母平均は等しい」が棄却され「いずれか群の母平 均が異なる」と分かったら、 補正を加味した事後検定 (post-hoc test)で「どの群間に差があるの か」を調べる(多重検定)

分散分析を行わず,はじめから(適切な)多重検定を行う場合もある

宿題

- 4群 (A, B, C, D) で5%有意水準のANOVAを行ったところ, 有意差が見られた。
 - 事後検定にて,全ペア間でt検定を行う場合にボンフェローニ法を利用したい.有意水準は何%に設定すればよいか?
- 2.5群の場合で同様にボンフェローニ法を利用する場合,有 意水準は何%にすればよいか?

(発展)繰り返しのない二元配置分散分析

- 母集団の平均に差があるか調べたい → 分散分析
 - 複数の要因を考えるときは?

肥料と設定温度によるトマトの重さの違い

	温度A	温度B	温度C	温度D
肥料1	8	5	7	10
肥料2	3	1	3	7
肥料3	6	3	2	5

肥料の違いだけでなく 設定温度の影響も知りたい

→ 二元配置分散分析

左の例は「繰り返しのない」 二元配置分散分析

実際には<u>各セルに複数の観測値</u>

→ 「繰り返しのある」二元配置分散分析

交互作用 (二つの因子が絡み合って起こす効果) を考えることができる (例:温度Dにしつつ肥料1を使うと効果が大きいなど)