TEL108 / TKT110 - Programming II

15 – Project

Konteks

- Sebuah perkebunan seluas 100ha ditanamkan nilam secara berbaris.
- Dimana jarak antar baris adalah 2m dan jarak antaran tanaman nilam dalam satu baris adalah 1.5m.
- Setiap tanaman akan dipasang 10 jenis sensor untuk memantau perkembangannya.
- Anda sebagai seorang programmer IoT diminta untuk mengembangkan sebuah software untuk menarik data dari tiap-tiap tanaman, menyimpannya, dan menampilkannya dalam berbagai format.

Tanaman

- Setiap tanaman akan diberikan identifier yang unique (=tidak ada duplikasi).
- Identifier ini bertipe integer dan diberi nama:
 id tree
- Setiap tanaman tidak akan otomatis masuk ke dalam sistem tetapi harus dimasukkan secara manual.
 - Dengan kata lain ada fitur untuk menambahkan tanaman ke dalam sistem.
 - Jika tidak ditambahkan tanaman tersebut ke dalam sistem maka datanya tidak tersimpan sehingga tidak bisa ditampilkan.

Sensor - 1/2

- Setiap tanaman akan ditempatkan 10 jenis sensor yang berbeda.
- Setiap jenis sensor dapat dibedakan dengan identifier: sensor type
- Karena setiap tanaman memiliki satu jenis sensor, maka setiap sensor yang ada dapat dibedakan dengan kombinasi dua identifier: id_tree dan sensor_type.
 - Dengan kata lain, identifier unique untuk setiap sensor adalah kombinasi dari kedua identifier tersebut.
- Bacaan dari setiap sensor adalah dalam Satuan Internasional (SI), e.g. suhu dalam Celcius, kelembaban dalam persentasi, dst.

Sensor - 2/2

- Jenis-jenis sensor yang akan terpasang adalah:
 - Air Temperature (Suhu udara) → sensor type=0
 - Air Humidity (Kelembabaan udara) → sensor_type=1
 - Rainfall (Curah hujan) → sensor_type=2
 - UV Level (Tingkat sinar UV) → sensor type=3
 - Soil Temperature (Suhu tanah) → sensor type=4
 - Soil Humidity (Kelembaban tanah) → sensor_type=5
 - Soil pH (pH tanah) → sensor type=6
 - N Level (Kadar N dalam tanah) → sensor type=7
 - P Level (Kadar P dalam tanah) → sensor_type=8
 - K Level (Kadar K dalam tanah) → sensor_type=9

API - 1/2

- Untuk mengambil data dari sensor telah ada Gateway IoT dengan API khusus.
 - Dengan kata lain, setiap aplikasi dapat membaca data setiap sensor yang ada dengan memanggil API yang ada.

URI API:

https://belajar-python-unsyiah.an.r.appspot.com

Format API

- [URL]/sensor/read?npm=...&id_tree=...&sensor_type=...
 - npm → NPM anda
 - id tree \rightarrow ID dari tanaman \rightarrow Harus integer
 - sensor type → Jenis sensor yang mau diambil datanya → Slide: Sensor

Contoh:

```
https://belajar-python-unsyiah.an.r.appspot.com/sensor/read?
npm=1404111010011&id_tree=1&sensor_type=2
```

- Perhatikan: semua satu baris
- Baca sensor curah hujan (sensor type=2) pada tanaman dengan id tree=1
- Yang meminta saya dengan NPM=1404111010011.

API - 2/2

- Perhatikan:
 - Pergunakan NPM masing-masing;
 - Gateway akan mencatat semua permintaan;
 - Jika NPM anda tidak ada atau minimal:
 - Berarti anda tidak membuat programnya
 - Otomatis Nol
 - Jika pola pembacaan dari NPM anda mencurigakan
 - Otomatis Nol

Aplikasi

- Ada dua aplikasi (dua program python)
 - 1) ambil data.py
 - Mengambil data dari gateway IoT untuk semua sensor dari semua tanaman yang telah ditambahkan setiap satu menit
 - Menyimpan data tersebut ke database → SQLite
 - 2) tampilan.py
 - GUI memakai menu untuk user berinterkasi dengan aplikasi
 - Aliran kerja
 - User jalankan aplikasi ini
 - Melalui menu: user menambah tanaman yang akan dicatat
 - Dicatat di database → SQLite
 - Memanggil ambil_data.py akan mulai mengambil data dari gateway IoT
 - Menampilkan grafik baris data semua sensor per tanaman
 - · Ada 10 garis
 - · Minta range waktu
 - Menampilkan grafik baris data semua sensor semua tanaman
 - Minta range waktu
 - Tampilkan nilai rata-rata per waktu per sensor → ada 10 garis

Fitur Minimum – 1/2

- Informasi tanaman minimal
 - id_tree
 - Koordinat lokasi tanaman: (lat, lon)
 - DII.
- Fungsionalitas tanaman
 - Tambah tanaman ke aplikasi
 - Otomatis data semua sensor akan dibaca dari Gateway IoT
 - Hapus tanaman dari aplikasi
 - Berhenti membaca dari Gateway IoT
 - Semua data sensor dari tanaman akan dihapus dari database
 - Daftar tanaman
 - Tampilkan daftar tanaman yang terdaftar di aplikasi
 - Tampilkan data semua sensor pada satu tanaman → Grafik baris
 - Minta range waktu → Jangan semua!!!
 - Tampilkan data rata-rata semua sensor semua tanaman → Grafik baris
 - Ada sepuluh garis → per masing-masing tipe sensor
 - Minta range waktu → Jangan semua!!!

Fitur Minimum – 2/2

- Pembacaan dari Gateway IoT
 - Setiap satu menit
 - Baca semua sensor dari semua tanaman yang telah dicatat
- Rancangan database
 - Memakai SQLite
 - Struktur bebas → Aspek penilaian
- Grafik baris
 - Bebas → Estetik dan kelengkapan aspek penilaian
- Struktur menu
 - Bebas → Aspek penilaian

Demo

- Demo dan presentasi di kelas
- Upload: https://bit.ly/2LzBSCs
 - Rekam presentasi anda
 - Upload ke Youtube
 - Cantumkan di penjesalan video
 - Siapa anda (tanpa NPM)
 - Darimana dengan link ke situs prodi (bantu Webometric USK)
 - Penjelasan singkat ini video apa
 - Manfaat: bukti project anda saat cari kerja nanti.
- Deadline: Jumat, 1 Juni 2024 @ 23:59pm

Q & A