										$R = \frac{mv}{aB}$	(119)
		· Potenziale scalare V		· Conduttori in equilibrio	·	Campo elettrico E generato	ਰ ਲ 	$d\mathbf{r} = \mathbf{J}(\mathbf{r}) \cdot \mathbf{E}(\mathbf{r}) d\tau \tag{95}$ Resistori		Periodo	
		$V(\mathbf{r}) = \frac{U(\mathbf{r})}{q_0}$	(28)	– il campo è nullo		$\mathbf{E} = \frac{qd \left(2\cos\left(\theta\right) \mathbf{u_r} + \sin\left(\theta\right) \mathbf{u_\theta}\right)}{4\pi\varepsilon r^3} \tag{71}$	П			$T = \frac{2\pi m}{aB}$	(120)
■ FONDAMENTALI		$V(B) - V(A) = -\int^B \mathbf{E} \cdot d\mathbf{r}$	(29)		(52)	Momento torcente	R	$R_{eq} = \sum_{i=1} R_i \tag{96}$		Angolo deflessione elica (v 2 dimensioni)	(insioni)
· Teorema (divergenza)			(30)	- il potenziale è costante		$\mathbf{M} = \mathbf{a} \times q \mathbf{E}(x, y, z) \tag{72}$	II I	In parallelo		g dBR	
$\int_{\Sigma} \mathbf{F} \cdot d\mathbf{\Sigma} = \int_{\tau} \nabla \cdot \mathbf{F} d\tau$	(1)	di E			(53)	Se E uniforme	R	$R_{eq} = \left(\sum_{i=1}^{n} \frac{1}{B_i}\right)^{-1}$ (97)		$\sin(\theta) = {mv}$	(121)
Teorema (Stokes)		$V({f r}) d au$	(31)	Le cariche si distribuiscono sempre s	ns	$\mathbf{M} = \mathbf{p} \times \mathbf{E} \tag{73}$		(t=1 **) Generatore reale	P	Passo elica	
$\oint \mathbf{F} \cdot d\mathbf{s} = \int \nabla \times \mathbf{F} d\Sigma$	(2)	3	(1)	superfici, mai all'interno	•	Lavoro per ruotarlo		$AV = V_0 - r : I \tag{98}$		$d = \frac{2\pi\pi}{\tan(\theta)}$	(122)
	·		(32)	rç	1	$W = \int_{\theta_i}^{\theta_f} M \mathrm{d}\theta \tag{74}$. L	chhoff		■ INDUZIONE	
· Teorema (Gradiente)		· Equazione di Poisson		$\mathbf{p} = \overline{\frac{1}{d\Sigma}} = \overline{\frac{1}{2\varepsilon_0}} \mathbf{u}_n = \overline{\frac{1}{2}\varepsilon_0} \mathbf{E}^2 $ (54)	(54)	Se E uniforme	<u> </u>	egge dei nodi		· Coefficienti mutua induzione	
$\phi_2 - \phi_1 = \int_{\gamma} \nabla \phi \cdot d\mathbf{s}$	(3)	$\nabla^2 V = -\frac{\rho}{\varepsilon_0}$	(33)	· Capacità		$W = pE[\cos(\theta_i) - \cos(\theta_f)] \tag{75}$	~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\sum_{k=0}^{N} I_k = 0 {99}$		$\Phi_{1,2} = MI_1$ $\Phi_{2,1} = MI_2$	(123)
Flusso di un campo		· E e V di particolari distribuzioni	ızioni	$C = \frac{Q}{\Lambda V} \tag{51}$	(55)	Frequenza dipolo oscillante	1	Legge delle maglie	Ŧ	· Flusso generato da 1 attraverso 2	so 2
$\Phi_{\Sigma}(\mathbf{E}) = \oint_{\Sigma} \mathbf{E} \cdot d\mathbf{\Sigma}$	(4)	Carica puntiforme $\mathbf{E} = \frac{q}{-\mathbf{n}}$	(34)	Il più delle volte c'è induzione con	-ii	e uniforme	~\\!	$\sum_{k=0}^{N} \Delta V_k = 0 \tag{100}$		$\Phi_{1,2} = NB_1\Sigma_2$	(124)
Equazioni di Maxwell		L r	(94)	pleta e C dipende dalla configurazione geometrica.	one	$\nu = \frac{1}{2\pi} \sqrt{\frac{\nu E}{I}} \tag{76}$		=0 A CHENCETATIOA	- II	Induttanza	
		$V = \frac{q}{4\pi\varepsilon_0 r}$	(32)	Condensatori	•	Energia del dipolo	• ·	MAGNETOSTATICA Forza di Lorentz	Φ	autoflusso	
	(2)	Sfera carica uniformemente				$U = -\mathbf{p} \cdot \mathbf{E} \tag{77}$	· [4	$\mathbf{F} = q\mathbf{v} \times \mathbf{B} \tag{101}$		$\Phi(\mathbf{B}) = IL$	(125)
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial \mathbf{B}}$	(9)	$\frac{Qr}{4\pi\varepsilon_0 R^3} = \frac{\rho r}{3\varepsilon_0} \text{se r} < R$		$C = \frac{c_0 a}{d} = O$ (50)	. (99)	Forza agente sul dipolo	<u>.</u>	ge di Laplace		Solenoide ideale	
	£		(36)	Sferico		$\mathbf{F} = \nabla (\mathbf{p} \cdot \mathbf{E}) \tag{78}$		$\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{\mu_0 I} \oint \frac{\mathrm{d}\mathbf{s} \times \mathbf{u}_r}{\mathbf{d}} $ (102)		$L = \mu_0 \frac{N^2}{L} \Sigma = \mu_0 n^2 L \Sigma$	(126)
$\nabla \times \mathbf{B} = u_0 \mathbf{J} + u_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial \mathbf{C}}$	8	(2)		$C = 4\pi\varepsilon_0 \frac{Rr}{R - r} \tag{5}$	(57)	Energia pot. tra due dipoli	1			Toroide	
Oint	<u> </u>	$\frac{7}{2}$ se r < R	(37)	Cilindrico		$H = [\mathbf{p}_1 \cdot \mathbf{p}_2 - 3(\mathbf{p}_1 \mathbf{u}_r)(\mathbf{p}_2 \cdot \mathbf{u}_r)] $ (70)	<u>ш</u>	$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{r} \cdot \mathbf{r}}{r^2} d\tau \qquad (103)$		$L = \frac{\mu_0 N^2 \pi a}{\ln \left(\frac{R+b}{n} \right)}$	(127)
$\oint_{\Sigma} \mathbf{E} \cdot d\mathbf{\Sigma} = \frac{\sqrt{\varepsilon_0}}{\varepsilon_0}$	(6)	$\begin{cases} \frac{Q}{4\pi\varepsilon_0 r} & \text{se r} \ge R \end{cases}$			(58)			$\mathbf{B}(\mathbf{r}) = \nabla_r \times \left(\frac{\mu_0}{4\pi} \int \frac{\mathbf{J}}{\tau} d\tau \right) $ (104)		2π $^{}(R)$	
$\oint_{\Gamma} \mathbf{E} \cdot d\mathbf{s} = -\frac{d\Phi(\mathbf{B})}{dt}$	(10)	Guscio sferico carico uniformemente	e			Forza tra dipoli Dinoli concordi $= \mathbb{F}$ repulsiva	· ·	Seconda legge di Laplace	·	· Fem autoindotta	
$\oint_{\Gamma} \mathbf{B} \cdot d\mathbf{\Sigma} = 0$	(11)	se r < R	(38)	In serie				$\mathbf{F} = \int I(\mathrm{d}\mathbf{s} \times \mathrm{d}\mathbf{B}) \tag{105}$		$\Phi = -L \frac{dI}{dt}$	(128)
$d\Phi_E$. 6	$E(r) = \begin{cases} \frac{\sqrt{\epsilon}}{4\pi\varepsilon_0 R^2} & \text{se } r \ge R \end{cases}$	(oe)	$C_{eq} = \left(\sum_{i=1}^{n} \frac{1}{C_i}\right)^{\frac{1}{2}} \tag{56}$	(29)	$\mathbf{r} = \frac{4\pi\varepsilon_0 r^4}{4\pi\varepsilon_0 r^4} \mathbf{u}_r \tag{80}$		Jiii (ATTENZIONE		· Fem indotta	
$\oint_{\Gamma} \mathbf{B} \cdot d\mathbf{s} = \mu_0 I_{conc} + \mu_0 \varepsilon_0 \frac{\pi}{dt}$ Nei mezzi:	(12)	se $r < R$		$(i=1 \circ i)$ In parallelo	•	■ DIELETTRICI	n 5 -5	B di corpi notevoli (AllENZIONE: viene indicata la direzione, il verso dipen- de dalla corrente I)		$\varepsilon = -\frac{\mathrm{d}\Phi(\mathbf{B})}{1-\epsilon} = -L\frac{\mathrm{d}I}{1-\epsilon}$	(129)
$\nabla \cdot \mathbf{D} = \rho_{libere}$	(13)	se $r \ge R$	(39)		. (09)	· Campo elettrico in un dielettrico	- A	sse di una spira		at at	
$\mathbf{G}_{\mathcal{C}} = \mathbf{H} - \mathbf{I}_{\mathcal{C}}$) E	caric			Ô	$\mathbf{E}_k = \frac{\mathbf{E}_0}{k} \tag{81}$	В	$\mathbf{B}(z) = \frac{\mu_0 I r^2}{2(z^2 + r^2)^{3/2}} \mathbf{u}_z $ (106)		Corrente indotta $arepsilon_{arepsilon_{arepsilon}} $	
n + 9t	(14)		(40)	00		Vettore P polarizzazione	<u> </u>	Filo indefinito	I	$I = \frac{c_t}{R} = -\frac{\operatorname{div}(\mathcal{Z})}{Rdt}$	(130)
$\oint_{\Sigma} \mathbf{D} \cdot d\mathbf{\Sigma} = Q_{int,lib}$	(12)		(OF)		(61)	$\mathbf{P} = \frac{dp}{}$ (82)	В	$\mathbf{B}(r) = \frac{\mu_0 I}{2} \mathbf{u}_{\phi} \tag{107}$		Energia dell'induttanza	,
$\oint_{\Gamma} \mathbf{H} \cdot d\mathbf{s} = I_{conc,tib} + \frac{d\Phi_D}{dt}$	(16)	$V(r) = \frac{\lambda}{2\pi\varepsilon} \ln\left(\frac{r_0}{r}\right)$	(41)	Energia interna del condensatore				2a		Autua (solo una volta ogni coppi	a):
Discontinuità dei campi		Piano Σ infinito con carica uniforme	e	$U = \frac{Q^2}{2C} = \frac{1}{2}CV = \frac{1}{2}QV \tag{6}$. (62)		: m	$\mathbf{B}(r) = \frac{\mu_0 I a}{1 - 1} \tag{108}$		$U_{1,2} = \frac{1}{2}MI_1I_2 + \frac{1}{2}MI_2I_1$	(131)
		$\mathbf{E} = \frac{\sigma}{\sigma_n} \mathbf{u}_n$	(42)	Differenziale circuito RC		$\mathbf{P} = \varepsilon_0 \chi_E \mathbf{E}_k = \varepsilon_0 (k-1) \mathbf{E}_k \tag{83}$				Interna	
	(11)				·	Dens. superficiale di q polarizzata	<u>~</u>	eale		$U_t = \frac{1}{-}LJ^2$	(132)
	(18)	$-(x-x_0)$	(43)	$\frac{1}{C} = \frac{1}{C}$	(69)	$\sigma_p = \mathbf{P} \cdot \mathbf{u}_n = \frac{k-1}{\iota} \sigma_l \tag{84}$		$\mathbf{B} = \mu_0 \frac{\Lambda}{L} I \tag{109}$		L - 2 - 1	(201)
	(19)	Anello con carica uniforme (sull'asse)	;e)			Dens. volumetrica di a polarizzata	<u> </u>			In un circuito (conta una volta ogni induttanza ed una ogni coppia)	ta ogni
	(.50)	$\mathbf{E}(x) = \frac{\lambda Rx}{2\varepsilon_0(x^2 + R^2)^{3/2}} \mathbf{u}_x$	(44)	$Q_0(1-e^{-RC})$	(64)	$a_n = -\nabla \cdot \mathbf{P}$ (85)	<u>ш</u>	$\mathbf{B}(r) = \frac{\mu_0 r_T}{2\pi r} \mathbf{u}_{\phi} \qquad (110)$		N S	
$\Delta H_{\parallel} = \mathbf{K}_c imes \mathbf{u}_n $ In instead of linearity	(21)		į		·	to elettmice		Piano infinito su xy, con K \mathbf{u}_x densità lineare di corrente		$U = -\sum_{i=1} (L_i I_i^2 + \sum_{j=1} M_{i,j} I_i I_j) i \neq j$	Ĵ
$D_1 \parallel D_2 \parallel$			(40)	$Q(t) = Q_0 e^{-\kappa c} \tag{0}$	(co)	$\mathbf{D} = \varepsilon_0 \mathbf{E}_t + \mathbf{P} = \varepsilon_0 k \mathbf{E}_t = \varepsilon_0 \mathbf{E}_0 $ (86)	В	$\mathbf{B} = \frac{\mu_0 \mathbf{K}}{2} \mathbf{u}_{\nu} \tag{111}$			(133)
	(22)	Disco carico uniformemente		· Condensatore pieno Condensatore riempito di materiale d	١		<u> </u>		•	Legge di Felici	
		$\mathbf{E}(x) = \frac{\sigma}{2\varepsilon_0} \left(1 - \frac{1}{\sqrt{1 + \frac{R^2}{\omega^2}}}\right) \mathbf{u}_x$	(46)	resistività ρ	•	i CORRENTI Lavoro del generatore	ન -	b spessore sonda, b // B, b \perp I, n car/vol		$Q(t) = \frac{\Phi(0) - \Phi(t)}{B}$	(134)
$k_1 E_{1,\perp} = k_2 E_{2,\perp}$	(23)		(47)	$RC = \varepsilon_0 \rho \tag{6}$	(99)	$W = \int^{t_2} W dx(t) = 9II. \tag{67}$	A .	$V_H = \frac{IB}{n q b} \tag{112}$		Sircuito RL in DC	
Rifrazione linee di B		$2\varepsilon_0$	<u> </u>	· Forza fra le armature		OE	<u> </u>	orza di Ampere	T	L si oppone alle variazioni di I smorzan-	norzan-
$\frac{\tan(\theta_2)}{\tan(\theta_1)} = \frac{\mu_2}{\mu_1}$	(24)	Disco carro uniconnemente $(x \wedge x)$	(1)	$F = \frac{Q^2}{2} \partial_x \left(\frac{1}{C} \right) \tag{6}$. (29)	Densità di corrente		Corr. equiversa = for. attrattiva	A	Appena inizia a circolare corrente	•
■ ELETTROSTATICA		ts.	(48)	Condensatore piano		$\mathbf{J} = nq\mathbf{v} = \frac{Nq\mathbf{v}}{\tau} \tag{88}$	F	$F = \frac{\mu_0}{2\pi} \frac{I_1 I_2 L}{d}$ (113)		$I(t) = \frac{V_0}{D} (1 - e^{-\frac{R}{L}t})$	(135)
· Forza di Coulomb			(49)			· Intensità di corrente	<u>.</u>	Potenziale vettore A	°	Quando il circuito viene aperto	
$\mathbf{F} = \frac{q_1 q_2}{\sqrt{1 + q_2}} \mathbf{u}_{1,2}$	(25)	uniformemente car	rico	$F = \frac{1}{2\epsilon_0} = \frac{1}{2\epsilon_0 \Sigma} \tag{68}$	(89)	$I = \frac{\mathrm{d}q(t)}{\mathrm{d}t} = \int_{\Sigma} \mathbf{J} \cdot \mathrm{d}\Sigma \tag{89}$		$\nabla \times \mathbf{A} = \mathbf{B} \tag{114}$		$I(t) = I_0 e^{-\frac{R}{L}t}$	(136)
ļ		0 se $r < R$		■ DIPOLO ELETTRICO		Lowi di Ohm		$\mathbf{A}(\mathbf{r}_1) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{j}(\mathbf{r}_2)}{r_{2,1}} d\tau_2 $ (115)		Circuiti con barra mobile (b lunghez-	unghez-
· Definizione campo elettrico		$\mathbf{E}(r) = \begin{cases} \frac{Q}{2\pi\varepsilon_0 hr} & \text{se } r \ge R \end{cases}$	(20)	· Momento di dipolo	•	$V = RI \tag{90}$	II			za barra) F.e.m. indotta	
	(26)	$\begin{pmatrix} 0 & \sec r < R \end{pmatrix}$		$\mathbf{p} = q\mathbf{a} \tag{69}$	(69)		Ψ	$\mathbf{A}' = \mathbf{A} + \nabla \Psi \tag{116}$		$\varepsilon(t) = -Bbv(t)$	(137)
· En. potenziale due cariche		$V(r) = \begin{cases} \frac{Q}{2\pi\varepsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \end{cases}$	(51)	· Potenziale del dipolo		$\mathbf{E} = \rho \mathbf{J}_{\Gamma} \Sigma^{\text{un}} \tag{92}$		Gauge di Coulomb		Corrente in un circuito chiuso	
9102											

re ohmico	· Moto ciclotrone Raggio	Lavoro fornito per muovere la barra	· Dens. LINEARE di corrente sulla SUPERFICIE	Ila
1	$R = \frac{mv}{\overline{z}} \tag{119}$	$W = \frac{(Bbv(t))^2}{R} \tag{139}$	$\mathbf{K_m} = \mathbf{M} \times \mathbf{u}_r \tag{159}$	(69
$\mathbf{J}(\mathbf{r}) \cdot \mathbf{E}(\mathbf{r}) d\tau$ (95)	$\frac{dD}{dD}$	Forza magnetica sulla barra	$\mathbf{M} = M\mathbf{u}_z \qquad \mathbf{K_m} = K_m \mathbf{u}_\phi$	
	$T = \frac{2\pi m}{aB} \tag{120}$	$F = m\frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{(Bb)^2 v(t)}{R} \tag{140}$	· Dens. SUPERFICIALE corrente	ıte
$\sum_{i=1}^{n} R_i \tag{96}$	Angolo deflessione elica (v 2 dimensioni)	ATTENZIONE: per tenere v costante è necessaria una F esterna: altrimenti		é
allelo	$\sin(\theta) - qBR \tag{191}$	essa è opposta a v e il moto è smorzato		()(
$\left(\sum_{i=1}^{n} \frac{1}{R_i}\right)^{-1} \tag{97}$		еъропециалнение	$\oint \mathbf{M} \cdot \mathbf{d} \mathbf{l} = I_{m,c} \tag{161}$	31)
ratore reale		· Disco di Barlow Campo elettrico	· Dens. SUPERFICIALE corrente LIBERA	ıte
$V_0 - r_i I \tag{98}$	$d = \frac{1}{\tan(\theta)} \tag{122}$	$\mathbf{F} = \frac{\mathbf{F}}{\mathbf{r}} = \mathbf{v} \times \mathbf{B} = n\pi \mathbf{B} \mathbf{n}. \tag{141}$	$\mathbf{j}_1 \neq \mu_0 \mathbf{j} \tag{162}$	32)
di Kirchhoff	■ INDUZIONE	- V > D - WeeD us	$\mathbf{j}_{\mathbf{l}} = \nabla \times \mathbf{H} \tag{163}$	33)
dei nodi	· Coefficienti mutua induzione	tta	$I_{l,c}$	34)
(66) 0 =	$\Phi_{1,2} = MI_1 \qquad \Phi_{2,1} = MI_2 \tag{123}$	$\varepsilon = \frac{1}{2}\omega Br^2 \tag{142}$	· Energia di B	
delle maglie	· Flusso generato da 1 attraverso 2	Corrente in un circuito chiuso	$U_{R} = \frac{1}{-1} \int \mathbf{B}^{2} \mathrm{d}\tau \tag{165}$	35
$k_k = 0$ (100)	$\Phi_{1,2} = NB_1\Sigma_2 \tag{124}$	$I = \frac{\omega B r^2}{2R} \tag{143}$		<u> </u>
NETOSTATICA	· Induttanza	Se nnon ci sono forze esterne il moto è	$U_B = \frac{1}{2} \int_{\mathbb{R}^3} \mathbf{j} \cdot \mathbf{A} d\tau \tag{166}$	(99
di Lorentz		Smorzaco Momento torcente frenante	liformi	
$r \times \mathbf{B}$ (101)	$\Phi(\mathbf{B}) = IL$ (125) Solenoide ideale	$\mathbf{M} = -\frac{\omega B r^4}{4R} \mathbf{u}_z \tag{144}$	$U_B = \frac{1}{2} \sum_{i=1}^{n} I_i \Phi_i $ (167)	37)
a legge di Laplace	215	Velocità angolare	CIRCUITI RLC	
$= \frac{\mu_0 I}{4\pi} \oint \frac{\mathbf{ds} \times \mathbf{u}_r}{r^2} $ (102) $= \frac{\mu_0}{I} \int \mathbf{J} \times \mathbf{u}_{r, \beta} $ (102)	$L = \mu_0 \frac{L}{L} L = \mu_0 n L L $ Toroide	$\omega(t) = \omega_0 e^{-\frac{t}{\tau}}$ $\tau = \frac{2mR}{B^2 r^2}$ (145)	· Impedenza La somma delle impedenze in serie e narallol seeme le recorde dei resisteri	9
	$L = \frac{\mu_0 N^2 \pi a}{1 + \frac{1}{2} \ln \left(\frac{R+b}{2}\right)} \tag{127}$	■ DIPOLO MAGNETICO	Pot and to be a constant of the constant of th	
$= \nabla_r \times \left(\frac{\mu_0}{4\pi} \int \frac{\mathbf{J}}{r} d\tau \right) \tag{104}$		· Momento di dipolo	$Z = R + i \left(\omega L + \frac{1}{\omega C} \right) \tag{168}$	(8)
nda legge di Laplace	indotta	$d\mathbf{m} = I d\Sigma \mathbf{u}_n \tag{146}$	[2]	
$I(\mathrm{d}\mathbf{s} \times \mathrm{d}\mathbf{B}) \tag{105}$	$\Phi = -L\frac{d}{dt} \tag{128}$	· Potenziale del dipolo	$ Z = \sqrt{R^2 + \left(\omega L + \frac{1}{\omega C}\right)} \tag{169}$	(69
corpi notevoli (ATTENZIONE:		$\mathbf{A} = \frac{\mu_0}{4\pi r^2} \left(\mathbf{m} \times \mathbf{u}_r \right) \tag{147}$	· RLC serie in DC smorzato Equazione differenziale	
mucata la unezione, n verso dipen- lla corrente I)	$\varepsilon = -\frac{\mathrm{d}\Phi(\mathbf{B})}{\mathrm{d}t} = -L\frac{\mathrm{d}I}{\mathrm{d}t} \tag{129}$	Campo magnetico B generato	$I''(t) + 2\gamma I'(t) + \omega_0 I(t) = 0$ (170)	(02
li una spira r 2	· Corre		R	
$= \frac{\mu_0 I r^2}{2(z^2 + r^2)^{3/2}} \mathbf{u}_z \tag{106}$	5	$\mathbf{B}(\mathbf{r}) = \frac{r \cdot \mathbf{v}}{4\pi r^3} [3\mathbf{u}_r(\mathbf{m} \cdot \mathbf{u}_r) - \mathbf{m}] $ (148)		
adefinito	$I = \frac{R}{R} = -\frac{RAt}{Rdt} \tag{130}$	· Momento torcente	$\omega = \sqrt{\omega_0^2 - \gamma^2} \qquad \tau = \frac{1}{\gamma}$	
$= \frac{\mu_0 I}{2\pi r} \mathbf{u}_{\phi} \tag{107}$	· Energia dell'induttanza Mutua (solo una volta osmi connia)·	$\mathbf{M} = \mathbf{m} \times \mathbf{B} \tag{149}$	\mathcal{E}_0^{Z}	í
îlo lungo 2a	m coppus)	· Forza agente sul dipolo	$I(t) = I_0 e^{-\gamma t} \sin(\omega t + \varphi \tag{171})$	(1)
$= \frac{\mu_0 I a}{2\pi \omega_0 \sqrt{\omega^2 + \omega^2}} \mathbf{u}_{\phi} \tag{108}$	$U_{1,2} = \frac{1}{2}MI_1I_2 + \frac{1}{2}MI_2I_1 \tag{131}$	$\mathbf{F} = \nabla (\mathbf{m} \cdot \mathbf{B}) \tag{150}$		í
a^2	Interna	dinolo	$I(t) = e^{-\gamma t} (Ae^{\omega} + Be^{-\omega}) \tag{172}$	(2)
$\frac{N}{N}$ (109)	$U_L = \frac{1}{2}LI^2 \tag{132}$. Energia del dipolo $II = -m \cdot B$	$\gamma^2 = \omega_0^2$	
	In un circuito (conta una volta ogni		$I(t) = e^{-\gamma t} (A + Bt) $ (173)	73)
$\frac{\mu_0 NI}{\mu_0 M} \mathbf{u}_{\phi} \tag{110}$	induttanza ed una ogni coppia)	dipoli	A, B e φ si ricavano impostando le condizioni iniziali	le
7	$U = \frac{1}{z} \sum_{i}^{N} (L_{i}I_{i}^{2} + \sum_{i}^{N} M_{i,i}I_{i}I_{i})$ $i \neq j$	$U = -\mathbf{m_1} \cdot \mathbf{B_2} = -\mathbf{m_2} \cdot \mathbf{B_1} \tag{152}$	· RLC serie in AC forzato	
rente		B è il campo magnetico generato dall'altro dipolo		
$\frac{{}_{0}\mathbf{K}}{2}\mathbf{u}_{y} \tag{111}$	I come di Polici	· Forza tra dipoli	$\varepsilon(t) = \varepsilon_0 \cos(\Omega t + \Phi)$ (174)	74)
	()	$\mathbf{F}(\mathbf{r}) = \frac{\partial \mu_0}{4\pi r^4} \left[(\mathbf{m_1} \cdot \mathbf{u}_r) \mathbf{m_2} + (\mathbf{m_2} \cdot \mathbf{u}_r) \mathbf{m_1} + \right.$	Equazione differenziale	
ssore sonda, b // B, b \perp I, n car/vol IB	$Q(t) = \frac{\sqrt{(s) - \sqrt{s}}}{R} \tag{134}$	$+ \big(\mathbf{m_1} \cdot \mathbf{m_2}\big) \mathbf{u_r} - 5 \big(\mathbf{m_1} \cdot \mathbf{u_r}\big) \big(\mathbf{m_2} \cdot \mathbf{u_r}\big) \mathbf{u_r}\big]$	$I''(t) + 2\gamma I'(t) + \omega_0 I(t) = -\frac{\Omega \varepsilon_0}{L} \sin(\Omega t + \Phi)$	Ф)
n q b (112)	· Circuito RL in DC	(153)	(175)	(5)
di Ampere	L SI OPPONE AND VALIAZIONI CH I SINOFZAN- dole	■ MAGNETISMO	Soluzione	
annanna	Appena inizia a circolare corrente	· Campo magnetico nella materia	$I(t) = I_0(\Omega)\cos(\Omega t) \tag{176}$	(9/
$\frac{1}{\pi} \frac{d}{d}$ (113)	$I(t) = \frac{V_0}{R} (1 - e^{-\frac{R}{L}t}) $ (135)	$\mathbf{B} = \mu_0(\mathbf{M} + \mathbf{H}) \tag{154}$	Corrente massima	
nziale vettore A	Quando il circuito viene aperto	$\mathbf{B} = k_m \mathbf{B}_0 = (1 + \chi_m) \mathbf{B}_0 \tag{155}$	$I_0(\Omega) = \frac{\varepsilon_0}{ Z } = \frac{\varepsilon_0}{\sqrt{E_2 + f_{c,f} f_{c,f}}} \tag{177}$	(77
$= \mathbf{B} \tag{114}$	$I(t) = I_0 e^{-\frac{R}{L}t}$ (136)	· Campo magnetizzazione M	$\sqrt{M^2 + (\omega L + \frac{\omega C}{\omega C})^2}$	
$1 = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J(r_2)}}{r_{2,1}} d\tau_2 $ (115)	· Circuiti con barra mobile (b lunghez-za barra)	$\mathbf{M} = n\mathbf{m} = \frac{d\mathbf{m}}{d\tau} \tag{156}$	Stasamento $L\Omega = \frac{1}{6C}$	
Gauge	F.e.m. indotta		$\tan \Phi(\Omega) = \frac{\sin \Phi(\Omega)}{R} \tag{178}$	(S)
$\mathbf{A} + \nabla \Psi$ (116) e di Coulomb	$\varepsilon(t) = -Bbv(t) \tag{137}$	$\mathbf{M} = \frac{(\chi_m + 1)\mu_0}{(\chi_m + 1)}$	NOTA: Lo sfasamento di I rispetto a ε è e $-\Phi$	(b)
= 0 (117)	Corrente in un circuito chiuso	н		
$= -\mu_0 \mathbf{j} \tag{118}$	$I(t) = \frac{Bbv(t)}{R} \tag{138}$	$\mathbf{H} = \frac{\mathbf{D}}{\mu_0} - \mathbf{M} = \frac{\mathbf{D}}{\mu} = \frac{\mathbf{D}}{k_m \mu_0} = \frac{\mathbf{M}}{\chi_m}$ (158)	$Im(Z) = 0 \rightarrow \omega_0 = \frac{1}{\sqrt{LC}}$ (179)	(62

•				•																																						
	(238)	,	(239)		(240)	(241)	a Police	(242)		(243)			(244)		(245)	(976)	(017)	(247)		(248)	(249)		ınterte- dei due	c	z (-	(250)		(251)		(252)		(253)		(254)	(271)	ĺ	(272)	(273)		(274)	x	(275)
$\begin{aligned} & \text{Massimi secondari} \\ & m \in \mathbb{Z} - \{kN, kN - 1 \text{ con } k \in \mathbb{Z}\} \end{aligned}$	$\delta = \frac{2m+1}{\cos x} \pi \to \sin \theta = \frac{2m+1}{\cos x} \frac{\lambda}{3}$	2N $2N$ d	$I_{SEC} = \frac{I_0}{\left(\sin\frac{\pi d\sin\theta}{\lambda}\right)^2}$	Minimi $m \in \mathbb{Z} - \{kN\}$	$\delta = \frac{2m}{N}\pi \to \sin\theta = \frac{m\lambda}{Nd}$	$I_{MIN} = 0$ Senarazione anerolare (distanza a		$\Delta heta pprox rac{1}{N} rac{\lambda}{d\cos heta}$	Potere risolutore	$\frac{\delta\lambda}{\lambda} = \frac{1}{Nn}$	· Diffrazione	Intensity $\left(\sin\left(\frac{\pi a \sin \theta}{\sqrt{1 - \lambda^2}}\right)\right)^2$	$I(\theta) = I_0 \left(\frac{\lambda}{\pi a \sin \theta} \right)$	Massimo pincipale in $\theta=0$	$I_{MAX} = I_0$ Massimi socondari $m \in \mathbb{Z} = J = 1 \mid 0 \mid$	$\sin \theta - \frac{2m+1\lambda}{3}$	$\frac{1}{2}$	$I_{SEC} = \frac{I_0}{\left(\frac{\pi(2m+1)}{\pi}\right)^2}$	Minimi $m \in \mathbb{Z} - \{0\}$	$\sin\theta = \frac{m\lambda}{s}$	$I_{MIN} = 0$	· Reticolo di diffrazione	Sovrapposizione di diffrazione e interfe- renza, l'intensità è il prodotto dei due effetti		$I(\theta) = I_0 \left(\frac{\sin(\frac{\pi a \sin \theta}{\lambda})}{\frac{\pi a \sin \theta}{\lambda}} \right) \frac{\sin(\frac{N\pi d \sin \theta}{\lambda})}{\sin(\frac{\pi d \sin \theta}{\lambda})} \right)^2$: :	Dispersione	$D = \frac{\mathrm{d}\theta}{\mathrm{d}\lambda} = \frac{m}{d\cos\theta_m}$	Fattore molt. di inclinazione	$f(\theta) = \frac{1 + \cos \theta}{2}$	· Filtro polarizzatore Luce NON polarizzata	$I = \frac{I_0}{2}$	Luce polarizzata (Legge di Malus)	$I = I_0 \cos^2(\theta)$	$\int \frac{1}{(x^2 + r^2)^{3/2}} \mathrm{d}x = \frac{x}{r^2 \sqrt{r^2 + x^2}}$	T. J.	$\int \frac{x}{\sqrt{x^2 + r^2}} dx = \sqrt{r^2 + x^2}$	$\int \frac{x}{(x^2 + r^2)^{3/2}} \mathrm{d}x = -\frac{1}{\sqrt{r^2 + x^2}}$	$(1+\sin x)$	$\int \frac{1}{\cos x} dx = \log \left(\frac{1 + \sin x}{\cos x} \right)$	$\int_{-\infty}^{\infty} \frac{3a\cos ax}{a} \cos 3ax$	$\int \sin \frac{axux}{a} = -\frac{1}{4a} \qquad 12$
	(220)		(221)		(222)	(223)		(224)		(225)	(226)		(227)			(228)		(229)			(230)	ttile	(231)		(232)		(233)		(234)		(235)		(236)	(237)		(267)	(:)1	(268)			(269)	(270)
· Interferenza generica Onda risultante	$f(\mathbf{r},t) = Ae^{i(kr_1-\omega t + \alpha)}$	Ampiezza	$A = \sqrt{A_1^2 + A_2^2 + 2A_1 A_2 \cos \delta}$	Diff. cammino ottico	$\delta = \alpha_2 - \alpha_1 = (\Phi_2 - \Phi_1 + k(r_2 - r_1)$ Intensità	$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \delta$	Fase risultante α	$\tan \alpha = \frac{A_1 \sin \alpha_1 + A_2 \sin \alpha_2}{A_1 \cos \alpha_1 + A_2 \cos \alpha_2}$	Massimi	$\delta = 2n\pi$ Winimi	$\delta = (2n+1)\pi$	· Condizione di Fraunhofer	$ heta = rac{\Delta y}{L}$	L grande tale che tan $\theta \approx \theta$	· Interferenza in fase Diff. cammino ottico	$\delta = k(r_2 - r_1) = \frac{2\pi}{\lambda} d\sin\theta$	Costruttiva	$r_2 - r_1 = n\lambda \to \sin\theta = n\frac{\lambda}{d} n \in \mathbb{Z}$	Distruttiva	$r_2 - r_1 = \frac{2n+1}{2}\lambda \to \sin\theta = \frac{2n+1}{2}\frac{\lambda}{d}$		Interf. riflessione su lastra sottile $(n \text{ indice rifr.}, t \text{ spessore lastra})$	Diff. cammino ottico $\delta = \frac{2\pi}{100} \frac{2nt}{100}$	$\lambda \cos \theta_t$ Massimi $m \in \mathbb{N}$	$t = \frac{2m+1}{4n}\lambda\cos\theta_t$	Minimi $m \in \mathbb{N}$	$t = \frac{m}{2n}\lambda\cos\theta_t$	· Interferenza N fenditure Diff. cammino ottico	$\delta = \frac{2\pi}{100} d\sin\theta$	λ Intensità	$I(\theta) = I_0 \left(\frac{\sin(N\frac{\delta}{2})}{\sin\frac{\delta}{2}} \right)^2$	Massimi principali $m \in \mathbb{Z}$	$\delta = 2m\pi \to \sin\theta = \frac{m\lambda}{d}$	$I_{MAX} = N^2 I_0$	· Attrito viscoso Equazione differenziale	$v' + \frac{v}{-} = K$	Soluzione	$v(t) = k\tau \left(1 - e^{-\frac{t}{\tau}}\right)$	■ ANALISI MATEMATICA	· Integrali ricorrenti	$\int \frac{1}{x^2 + r^2} dx = \frac{1}{r} \arctan \frac{x}{r}$	$\int \frac{1}{\sqrt{x^2 + r^2}} \mathrm{d}x = \ln \sqrt{x^2 + r^2} + x$
(106)	(198)		(199)		(200)	(201)		(202)	(203)	(204)		(205)	(206)	(207)	(806)	(100)	(204)	(GO1)	(210)	(211)	(212)	sso non	(213)	(914)	(215)		(010)	(216)	(217)		(218)	(219)) V	-0124	(Foc)	(261)	(262)	(263)	(264)		(265)	(266)
Indice di rifrazione $\frac{c}{c} = \frac{c}{\sqrt{b^2 b^2}}$	$n = - = \sqrt{\kappa_e \kappa_m}$	· Legge di Snell-Cartesio	$n_1 \sin \theta_1 = n_2 \sin \theta_2$	· Coefficienti di Fresnel Definizione	$r = \frac{E_r}{E_i} \qquad R = \frac{P_r}{P_i} = \frac{I_r}{I_i}$	$t = \frac{E_t}{E_i} \qquad T = \frac{P_t}{P_i} = \frac{I_t}{I_i}$	Raggio RIFLESSO polarizzato	$r_{\sigma} = \frac{\sin(\theta_t - \theta_i)}{\sin(\theta_t + \theta_i)}$	$r_{\pi} = \frac{\tan(\theta_t - \theta_i)}{\cot(\theta_t - \theta_i)}$	$\tan(\theta_t + \theta_i)$ $R_{\sigma} = r_{\sigma}^2 \qquad R_{\pi} = r_{\pi}^2$	Raggio TRASMESSO polarizzato	$t_{\sigma} = \frac{2N_t \cos \theta_t}{n_t \cos \theta_t + n_t \cos \theta_t}$	$t_p i = \frac{2n_i \cos \theta_i}{n_i \cos \theta_t + n_t \cos \theta_i}$	$T_{\sigma} = 1 - R_{\sigma} \qquad T_{\pi} = 1 - R_{\pi}$	Luce INOIN polarizzata $B = \frac{1}{L} \left(B + B \right) \left(T + T \right) (908)$	$10 = \frac{1}{2} \left(\frac{1}{10} + \frac{1}{10} \right) = \frac{1}{2} \left(\frac{1}{10} + \frac{1}{10} \right)$ Incidenza normale $\left(\cos \theta : \frac{2}{10} \cos \theta : \frac{1}{10} \right)$	$r = \frac{n_i - n_t}{n}$	$n_i + n_t$	$R = \left(\frac{n_i - n_t}{n_i + n_t}\right)^{\omega}$	$t = \frac{2n_i}{n_i + n_t}$	$T = \frac{4n_i n_t}{(n_1 + n_1)^2}$	Angolo di Brewster (il raggio riflesso non	na potat. pataneta) $\theta_i + \theta_t = \frac{\pi}{2} \to \theta_B = \theta_i = \arctan \frac{n_t}{2}$	$\frac{2}{2} \qquad n_i$ $R = \frac{1}{2} \cos^2(2\theta_i)$	T = 1 - R	· Pressione di radiazione	Superiore Association I_i	$p = \frac{-}{v}$ Superficie RIFLETTENTE	$n = \frac{I_t + I_t + I_T}{}$	v . Bannorto di nolarizzazione	$\beta_R = \frac{P_{\sigma}^{\alpha} - P_{\pi}^{\alpha}}{P_{\sigma}^{\alpha} + P_{\pi}^{\alpha}}$	$\beta_T = \frac{P_T^\sigma - P_T^\pi}{P_T^\sigma - P_T^\pi}$	$P_T^0 + P_T^0$ - INTEREDEDENTA C. DIEEDATO	NE	· Lavoro	$F = \nabla W = -\nabla U$ $M_{\text{obs}} = -\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=$. Moto circolare unif. accelerato $v = \omega r$	$a = \frac{v^2}{r} = \omega^2 r$	$\theta(t) = \theta(0) + \omega(0)t + \frac{1}{2}\alpha t^2$	· Moto armonico Equazione differenziale	$x'' + \omega^2 x = 0$	$x(t) = A\sin(\omega t + \varphi)$
į	(180)		(181)		(182)			(183)	(184)			(185)		(186)		(187)	a di Σ		(188)		(189)		(190)	(191)		(192)		(193)		(194)	(195)	(301)	(190)	(197)		(255)	(256)	(257)	(258)	(259)		(260)
. Effetto Joule	$\langle P_R \rangle = \frac{1}{2R}$	· Potenza media totale	$\langle P \rangle = \frac{V_0 I_0}{2} \cos(\phi)$	· V e I efficace	$V_{eff} = \frac{\sqrt{2}}{2}V_0 \qquad I_{eff} = \frac{\sqrt{2}}{2}I_0$	■ CAMPO EM e OTTICA	· Campi in un'onda EM (Nel vuoto $v = c$)	$E(x,t) = E_0 \cos(kx - \omega t)$	$B(x,t) = \frac{E_0}{v} \cos(kx - \omega t)$	$\omega = kv k = \frac{2\pi}{\lambda} \lambda = \frac{v}{\nu}$	· Vettore di Poynting	$\mathbf{S} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B}$	\cdot Intensità media onda	$I = \langle S \rangle = \langle E^2 \varepsilon v \rangle$	· Potenza	$P = I\Sigma$	L'intensità varia in base alla scelta di Σ	· Equazioni di continuita Teorema di Poynting	$\nabla \cdot \mathbf{S} + \mathbf{E} \cdot \mathbf{j} + \frac{\partial u}{\partial t} = 0$	Conservazione della carica	$\nabla \cdot \mathbf{j} + \frac{\partial \rho}{\partial t} = 0$	· Densità di en. campo EM	$u_{EM} = \frac{1}{2} (\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H})$	$U_{EM} = \int_{\mathbb{R}^3} u_{EM} \mathrm{d} au$	· Densità di quantità di moto	0.00 O.00	· Effetto Doppler	$\nu' = \nu \frac{v - v_{oss}}{v - v_{sorg}}$	· Oscillazione del dipolo	$I(r,\theta) = \frac{I_0}{r^2} \sin^2(\theta)$	$P = \int \int I(r,\theta) dr d\theta = \frac{8}{3}\pi I_0$. Velocità dell'onda $rac{1}{2}$	$v^{-} = \frac{k_e \in 0 k_m \mu_0}{1}$	$c^2 = \frac{1}{\varepsilon_0 \mu_0}$	■ UNITÀ DI MISURA	$H = \frac{Wb}{A} = Tm^2 = \frac{m^2 kg}{A^2 s^2}$	$\Omega = \frac{V}{A} = \frac{V^2}{W} = \frac{m^2 kg}{A^2 s^3}$	$T = \frac{N}{Am} = \frac{kg}{As^2}$	$V = \frac{J}{C} = \frac{W}{A} = \frac{m^2 kg}{s^3 A}$	$F = \frac{C}{V} = \frac{C^2}{J} = \frac{A^2 s^4}{m^2 kg}$	■ FISICA 1	. Momento torence $M=\mathbf{r} \times \mathbf{F} = I \alpha$

$\cos \alpha \sin \beta $ (288)	$\sin \alpha \sin \beta$ (289)	(290)	(291)	$\frac{\alpha}{\cos \alpha} \tag{292}$				
. Identità geometriche $\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta (288)$	$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta (289)$	$\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$	$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$	$\tan \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 + \cos \alpha}$				
• Ic (282)	(283) (284)	× B) (285)	(586)	(287)	Cilindriche	$\frac{\partial f}{\partial r}\mathbf{r} + \frac{1}{r}\frac{\partial f}{\partial \theta}\theta + \frac{\partial f}{\partial z}\mathbf{z}$	$\frac{1}{r}\frac{\partial F_r}{\partial r} + \frac{1}{r}\frac{\partial F_\theta}{\partial \theta} + \frac{\partial F_z}{\partial z}$	$ \begin{pmatrix} \frac{1}{r} \frac{\partial F_z}{\partial \phi} - \frac{\partial F_{\phi}}{\partial z} \\ \frac{\partial F_r}{\partial z} - \frac{\partial (rF_z)}{\partial r} \\ \frac{1}{r} \begin{pmatrix} \partial (rF_{\phi}) & \partial F_r \\ \partial r & \partial \phi \end{pmatrix} $
. Identità vettoriali $\nabla\cdot \left(\nabla\times \mathbf{A}\right)=0$	$\nabla \times (\nabla f) = 0$ $\nabla \cdot (f\mathbf{A} = f\nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla f$	$\nabla(\mathbf{A} \cdot \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$	$\nabla \times (\nabla \times \mathbf{A}) = \nabla(\nabla \cdot \mathbf{A}) - \nabla^{2} \mathbf{A}$	$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$	Sferiche	$\frac{\partial f}{\partial r} \mathbf{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \theta + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \phi$	$\frac{1}{r^2}\frac{\partial r^2F_r}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial F_\theta \sin\theta}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial F_\phi}{\partial \phi}$	$\frac{1}{\sin \theta} \left(\frac{\partial F_{\phi} \sin \theta}{\partial \theta} - \frac{\partial F_{\theta}}{\partial \phi} \right)$ $\frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial F_{r}}{\partial \phi} - \frac{\partial (rF_{\phi})}{\partial r} \right)$ $\frac{1}{r} \left(\frac{\partial (rF_{\theta})}{\partial r} - \frac{\partial F_{r}}{\partial \theta} \right)$
	(279)	(280)	$\operatorname{in}(\beta t)$ (281)					$\frac{1}{r \sin \theta} \left(\frac{1}{r \sin \theta} \right)$
ni 0	$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$ Se $\Delta = 0$	$y(t) = c_1 e^{\lambda_1 t} + t c_2 e^{\lambda_2 t}$ Se $\Delta < 0$	$y(t) = c_1 e^{\alpha t} \cos(\beta t) + c_2 e^{\alpha t} \sin(\beta t) (281)$	$\operatorname{con} \alpha = \operatorname{Re}(\lambda) \in \beta = \operatorname{Im}(\lambda)$	Cartesiane	$\frac{\partial f}{\partial x}\mathbf{x} + \frac{\partial f}{\partial y}\mathbf{y} + \frac{\partial f}{\partial z}\mathbf{z}$	$\frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$	$ \begin{pmatrix} \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \\ \frac{\partial F_x}{\partial x} - \frac{\partial F_z}{\partial x} \\ \frac{\partial z}{\partial x} - \frac{\partial F_z}{\partial x} \\ \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \end{pmatrix} $
	(276) $y(t) = c_1 \epsilon$ $Se \Delta = 0$ (277)		(278) y(t) = 0			Gradiente ($\nabla f =$)	Divergenza $(\nabla \cdot \mathbf{F} =)$	Rotore $(\nabla \times \mathbf{F} =)$
· Differenziale di primo ordine Forma generale	$y'(t) + a(t)y(t) = b(t)$ Soluzione $y'(t) = e^{-A(t)(c+\int b(t)e^{A(t)}dt)}$	Differenziale di secondo ordine omogeneo Forma generale	$y'' + ay' + by = 0 \qquad a, b \in \mathbb{R}$	$\lambda_{1,2} \in \mathbb{C}$ sono le soluzioni dell'equazione associata				

ll laplaciano di un campo scalare Φ , in qualunque coordinata, è $\nabla \cdot \nabla \Phi$