Date: October 9, 2022

Include proper citations including online resources as in [1, Chap.I, Theorem 1.1]. For other results, state these.

Problem 1. Solve a modification of I.2.2: consider

(1)
$$p(x) = p_1(x_1) + 5p_2(x_2), q(x) = \max(10p_1(x_1), p_2(x_2))$$

defined for $V = V_1 \times V_2 \ni x = (x_1, x_2)$. Are p(x), q(x) seminorms on V. If yes, which is stronger? (Provide appropriate scaling constants). Under what assumptions are they norms?

Solution:

First, we show that p(x) is a seminorm. Assume that p_1 and p_2 are seminorms on V. Then for any $x, y \in V$ we compute,

$$p(x+y) = p_1(x_1 + y_1) + 5p_2(x_2 + y_2)$$

$$\leq p_1(x_1) + p_1(y_1) + 5p_2(x_2) + 5p_2(y_2)$$

$$= p(x) + p(y)$$

and any scalar $\alpha \in \mathbb{R}$,

$$p(\alpha x) = p_1(\alpha x_1) + 5p_2(\alpha x_2) = \alpha p(x).$$

So, p has the triangle inequality and absolute homogeneity.

Next, observe that

(2)
$$10p_1(x_1) \le \max(10p_1(x_1), p_2(x_2))$$
 and $p_2(x_2) \le \max(10p_1(x_1), p_2(x_2))$, and similarly with $10p_1(y_1)$ and $p_2(y_2)$. Thus, for any $x, y \in V \times V$ we calculate

$$q(x+y) = \max(10p_1(x_1+y_1), p_2(x_2+y_2))$$

$$\leq \max(10p_1(x_1) + 10p_1(y_1), p_2(x_2) + p_2(y_2))$$

$$\leq \max(10p_1(x_1), p_2(x_2)) + \max(10p_1(y_1), p_2(y_2))$$

$$= q(x) + q(y)$$

which is obtained by adding the inequalities above in (2) and using the triangle inequality of seminorms p_i with i = 1, 2. Also, for any scalar α ,

$$q(\alpha x) = \max(10p_1(\alpha x_1), p_2(\alpha x_2)) = \max(|\alpha|10p_1(x_1), |\alpha|p_2(x_2)) = |\alpha|q(x).$$

Therefore, p and q are seminorms.

The above seminorms are equivalent. Observe,

$$q(x) = \max(10p_1(x_1), p_2(x_2)) \le 10p_1(x_1) + 50p_2(x_2) = 10p(x)$$

and

$$p(x) = p_1(x_1) + 5p_2(x_2) \le \max(p_1(x_1), p_2(x_2)) + \max(50p_1(x_1), 5p_2(x_2)) \le 6q(x).$$

If at least one of p_i is a norm, then q and p are both norms. However, it could also be true that if the kernel of p_1 is of the form $(0, x_2)$ and p_2 is of the form $(x_1, 0)$ then the only element sent to 0 is (0, 0) for which we can conclude that p and q are norms.

Problem 2. Solve I.4.3.

Solution:

 \implies Let $f \in V'$, then f is continuous and limits are preserved by continuity. By the reverse triangle inequality,

$$|||x_n|| - ||x||| \le ||x_n - x|| \to 0$$
, as $n \to \infty$

meaning that $\lim_{n\to\infty} ||x_n|| = ||x||$. Therefore, if $\lim x_n = x$ in V then $\lim ||x_n|| = ||x||$ and $\lim f(x_n) = f(x)$ for all f in the algebraic dual.

 \Leftarrow We want to show that $||x_n - x|| \to 0$, as $n \to \infty$ which is equivalent to showing that $\lim ||x_n - x||^2 = 0$. Let x_n be a sequence in V such that $\lim ||x_n|| = ||x||$ and $\lim f(x_n) = f(x)$ for all f in the algebraic dual. Then, $f(\cdot) = (\cdot, x)$ is a continuous linear functional and so, $f(x_n) = (x_n, x) \to (x, x) = ||x||^2$. Using this, we calculate

$$||x_n - x||^2 = (x_n - x, x_n - x)$$

$$= (x_n, x_n) - 2(x_n, x) + (x, x)$$

$$= ||x_n||^2 - 2f(x_n) + ||x||^2$$

$$\to ||x||^2 - 2||x||^2 + ||x||^2 = 0,$$

as $n \to \infty$. Therefore, $\lim x_n = x$ in V.

References

- [1] Ralph Showalter, Hilbert Space Methods in Partial Differentia; Leguations, Dover, (2010)
- [2] CTAN archive of the LaTeX package listings https://ctan.org/pkg/listings