Deep Reinforcement Learning

Reinforcement Learning involves...

- Sensing something of the environment
- Trial and error search
- A way to balance best predicted action (exploitation) vs. exploration
- Linking state -> action -> reward + new state
 - I was in state s. I took action a. I ended up in state s'. And I received reward r.
- Working out how to maximise long term rewards (*return*), sometimes at the cost of short term rewards
- Uncertainty in sensing and linking action to reward
 - Observations may be inaccurate
 - Action may not lead to the expected state
- Learning leads improved choice of actions (policy, π) over time

Elements of RL

- *Environment*: all observable and unobservable information relevant to us
- *Observation*: sensing the environment
- State: the perceived (or perceivable) environment
- *Agent*: senses environment, decides on action, receives and monitors rewards
- Action: may be discrete (e.g. turn left) or continuous (accelerator pedal)
- *Policy,* π (how to link state to action; often based on probabilities)
- **Reward** signal: aim is to accumulate maximum reward (*return*) over time
- *Memory*: A database of *state*, *action*, *reward*, *new state* for each action taken
- Value function of a state: prediction of likely/possible long-term reward from a particular state
- Q: prediction of likely/possible long-term *return* from performing a particular *action*. Frequently includes the idea of *discount*, such that future rewards have less value the further out they are in time. The discount rate is symbolised as gamma, γ .
- *Advantage*: the difference an action makes to long term reward compared with other possible actions.
- *Target*: the value we wish to update our network to predict (equivalent to observed value or label in normal supervised learning)

High level view

Collecting Experience:

I was in state s
I took action a
I landed in state s'
I received reward r
(I reached terminal state)

We store each step as:

[State, action, reward, next state, terminal]

For each state we are given a set (vector) of observations

Q, and Q learning

Q

 Q is the expected maximum long term reward from any particular action from a given state.

An example

- Imagine a game where I have to make three choices between two alternative options.
- With each choice I get a reward.
- Each choice leads me down an alternative path.
- We can represent all these choices and paths in a network graph.

A simple state, action, next state graph

A simple state, action, reward, next state graph

Use state(s), action (a), reward (r), next state (s') format. For example, taking action 1 from state s2: s,a,r,s' = [s2, a1, 3, s4]

Bellman equation

- $Q(s,a) = r + \gamma.maxQ(s',a')$
- The Q of any state and action is the immediate reward achieved + the discounted maximum Q value (the best action taken) of next best action, where gamma (%) is the discount rate.
- What is handy about the Bellman equation is that we can build up our knowledge of Q by only referring to the current step and the next step.

Q: $Q(s,a) = r + \gamma.maxQ(s',a')$

Bellman equation; The Q of any state and action is the immediate reward achieved + the discounted maximum Q value (the best action taken) of next best action, where gamma (γ) is the discount rate.

- Q is best thought through from the terminal state (T) backwards)
- S8 to S12 all go to the terminal state with a reward of 1. There is no possibility of further reward. So Q is simply the reward, 1.
- Taking action 1 from state S4, leads to sate S8, with a reward of 1.
 - We know state S8 has a Q of 1 (whichever action is taken. If we use a discount rate (γ) of 0.9, the Q of [S4, a1] is the immediate reward (1) + 0.9 * Q(S8) = 1.9
- Taking action 2 from state S4, leads to sate S9, with a reward of 2.
 - We know state S9 has a Q of 1 (whichever action is taken. If we use a discount rate (γ) of 0.9, the Q of [S4, a2] is the immediate reward (2) + 0.9 * Q(S9) = 2.9

Q: Q(s,a) = r + r.maxQ(s',a')

Bellman equation; The Q of any state and action is the immediate reward achieved + the discounted maximum Q value (the best action taken) of next best action, where γ is the discount rate.

- Now working back to S2, let's look at action 1 [S2, a1]:
 - Action 1 from state S2 leads to state S4.
 - State S4 has Q values of 1.9 and
 2.9 depending on the action taken in state S4
 - For the Bellman equations we take the best future Q of the next state, which is 2.9
 - So the Q of [S2, a1] = immediate reward + Υ * best Q available in the next state = 3 + (0.9 * 2.9) = 5.61

Can you work out all the Q values (for each state/action pair)?

Calculated Q values

Gamma State	0.9 Action	Reward	Next state	Best Q of next state	Q
2	1	S3	8.9	9.01	
S2	1	3	S4	2.9	5.61
	2	1	S5	8.9	9.01
S3	1	1	S6	8.9	9.01
	2	2	S7	2.9	4.61
S4	1	1	S8	1	1.9
	2	2	S9	1	2.9
S5	1	1	S9	1	1.9
	2	8	S10	1	8.9
S6	1	8	S10	1	8.9
	2	1	S11	1	1.9
S7	1	1	S11	1	1.9
	2	2	S12	1	2.9
S8	1	1	Т	0	1
	2	1	Т	0	1
S9	1	1	Т	0	1
	2	1	Т	0	1
S10	1	1	Т	0	1
	2	1	Т	0	1
S11	1	1	Т	0	1
	2	1	Т	0	1
S12	1	1	Т	0	1
	2	1	Т	0	1

If we follow the best Q:

 $S1 \rightarrow a1 \rightarrow S2$ (reward = 2) $S2 \rightarrow a2 \rightarrow S5$ (reward = 1) $S5 \rightarrow a2 \rightarrow S10$ (reward = 8) $S10 \rightarrow a1$ or $a2 \rightarrow T$ (reward = 1)

Total reward = 12

Note: At S2 we took an action with lower immediate reward.

This is an example of a *Q* table but in complex environments we cannot collect information on all states/actions (this is also impossible if the state contains continuous variables, such as velocity). Neural nets will often rely on *similarity* between a current state and one encountered before.

Updating Q in a network

- Updating Q in a network is performed by random sampling* from a memory of s/a/r/s'
- We update Q based on the reward and best Q of next step. We only need to look one step ahead and update based on that. This is temporal differential learning. Updates can happen while learning (no need to complete episodes).
- Early on the network will have a very incomplete understanding of Q.
 There may be limited knowledge of rewards, and some rewards will not have been sampled sufficiently to update network.
- The performance of the network is especially poor early on. During this stage it is usual to have a significant level of random exploration to help ensure a wider range of s/a/r/s' are experienced
- As more data (experience) is collected, and as more training iterations are performed, predicted Q will become closer to actual Q.

Example

- We start with no idea of Q (we will set al at zero to make it easier to see what is going on, but a neural net will start with all random numbers).
- The following technique is a *boot-strapping* technique. It has been said that one of the biggest surprises in RL is that it works!
- The network provides the target value for best Q of next step. So the network is updating itself based on its own predicted values!

Our first random sample is action 1 from state S4

S4, action 1 \rightarrow r=1, s'=s8 No knowledge of s8 so we set **Q of S4/a1 to = 1** (just the reward)

Our second random sample is action 1 from state S2

For S4 the max Q is 1 (S4, a1. We don't know about action 2 yet, so assume it is zero here)

S2, action 1: Q = reward + γ maxQ S4 = 3 + (0.95 * 1) = 3.95 (if γ = 0.95)

Carrying on....

- Repeat this bootstrapping
- Not surprisingly early on in the development of Q network the predictions of best action are not good!
- So, it is common to:
 - Perform a large number of random actions to store in memory before even starting to train the network.
 - Only gradually increase the proportion of actions that are selected by the network (rather than random choice) after training begins.

DQN Basic Method

- 1) Initiate parameters for Q(s,a) with random weight.
- 2) Perform a number of random actions before training starts
- 3) With reducing probability select a random action, or best current action, argmax Q(s,a)
- 4) Execute action a, and get reward r and observations of next state s'.
- 5) Store transition (s,a,r,s') in the memory
- 6) Sample random mini batch of transitions from the memory.
- 7) For every transition in the buffer, calculate a *target Q* using the network to predict best next Q (from state s')

$$target Q = r + \gamma(max Q)$$

- 8) Get network prediction of current Q(s,a), and update network by minimising the loss between predicted and target Q for s/a pair.
- 9) Repeat from (2)

Double DQN

- Double DQN contains two networks. This amendment is to decouple training of Q for current state and next state which are closely correlated when comparing input features.
- The *policy network* is used to select action (action with best predicted Q) when playing the game.
- When training, the predicted best action (best predicted Q) for S' is taken from the *policy network*, but the *policy network* is updated using the predicted Q value of the next state from the *target network* (which is updated from the *policy network* less frequently). So, when training, the action from S' is selected using Q values from the *policy network*, but the the *policy network* is updated to better predict the Q value of that action from the *target network*. The *policy network* is copied across to the *target network* every *n* steps (e.g. 1000).
- (It is called a target network because it provides the target for updating, just as the labels or observed values provide the target for a supervised learning neural network)

Train *policy network* every game step

Train *target network* every *n* game steps (e.g. every 1,000 steps)

Random sample from memory:

S = Initial state observations

A = Action taken

R = Reward

S' = new state observations

T = Is S' a terminal state?

(Use 1-10 samples per training step)

Use target network to get best Q for next state (S') in S/A/R/S'/T sampled from memory.

Calculate new Q for S/A from Bellman equation using reward from S/A/R/S'/T sampled from memory, and using best next Q from *target network*.

Target $Q(s,a) = r + \gamma.maxQ(S',a')$

Train policy network on new Target Q.

