

SAR TEST REPORT

No. I16Z40479-SEM01

For

TCL Communication Ltd.

HSUPA/HSDPA/UMTS 5 bands /GSM quad band mobile phone

Model Name: 5010S

With

Hardware Version: PIO

Software Version: v5E53

FCC ID: 2ACCJH052

Issued Date: 2016-4-20

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District, Beijing, P. R. China100191 Tel:+86(0)10-62304633-2512,Fax:+86(0)10-62304633-2504

Email: cttl terminals@catr.cn, website: www.chinattl.com

REPORT HISTORY

Report Number	Revision	Issue Date	Description
I16Z40479-SEM01	Rev.0	2016-4-20	Initial creation of test report

TABLE OF CONTENT

1 TEST LABORATORY	5
1.1 TESTING LOCATION	5
1.2 TESTING ENVIRONMENT	5
1.3 Project Data	5
1.4 Signature	5
2 STATEMENT OF COMPLIANCE	6
3 CLIENT INFORMATION	8
3.1 APPLICANT INFORMATION	8
3.2 Manufacturer Information	8
4 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	9
4.1 About EUT	9
4.2 Internal Identification of EUT used during the test	9
4.3 Internal Identification of AE used during the test	9
5 TEST METHODOLOGY	10
5.1 APPLICABLE LIMIT REGULATIONS	10
5.2 APPLICABLE MEASUREMENT STANDARDS	10
6 SPECIFIC ABSORPTION RATE (SAR)	11
6.1 Introduction	11
6.2 SAR Definition	11
7 TISSUE SIMULATING LIQUIDS	12
7.1 TARGETS FOR TISSUE SIMULATING LIQUID	12
7.2 DIELECTRIC PERFORMANCE	12
8 SYSTEM VERIFICATION	17
8.1 System Setup	17
8.2 System Verification	18
9 MEASUREMENT PROCEDURES	19
9.1 Tests to be performed	19
9.2 GENERAL MEASUREMENT PROCEDURE	20
9.3 WCDMA MEASUREMENT PROCEDURES FOR SAR	
9.4 BLUETOOTH &WI-FI MEASUREMENT PROCEDURES FOR SAR	
9.5 POWER DRIFT	22
10 AREA SCAN BASED 1-G SAR	23
10.1 REQUIREMENT OF KDB.	23
10.2 FAST SAR ALGORITHMS	23
11 CONDUCTED OUTPUT POWER	24

11.1 MANUFACTURING TOLERANCE	24
11.2 GSM Measurement result	27
11.3 WCDMA MEASUREMENT RESULT	28
11.4 WI-FI AND BT MEASUREMENT RESULT	29
12 SIMULTANEOUS TX SAR CONSIDERATIONS	30
12.1 Introduction	30
12.2 Transmit Antenna Separation Distances	30
12.3 SAR MEASUREMENT POSITIONS	31
12.4 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	31
13 EVALUATION OF SIMULTANEOUS	32
14 SAR TEST RESULT	33
14.1 The evaluation of multi-batteries	33
14.2 SAR RESULTS FOR FAST SAR	34
14.3 SAR RESULTS FOR STANDARD PROCEDURE	
14.4 WLAN EVALUATION	40
15 SAR MEASUREMENT VARIABILITY	42
16 MEASUREMENT UNCERTAINTY	43
16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)	43
16.2 MEASUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (3~6GHz)	44
16.3 MEASUREMENT UNCERTAINTY FOR FAST SAR TESTS (300MHz~3GHz)	
16.4 MEASUREMENT UNCERTAINTY FOR FAST SAR TESTS (3~6GHz)	46
17 MAIN TEST INSTRUMENTS	47
ANNEX A GRAPH RESULTS	48
ANNEX B SYSTEMVERIFICATION RESULTS	72
ANNEX C SAR MEASUREMENT SETUP	81
ANNEX D POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM .	87
ANNEX E EQUIVALENT MEDIA RECIPES	90
ANNEX F SYSTEM VALIDATION	91
ANNEX G PROBE CALIBRATION CERTIFICATE	92
ANNEX H DIPOLE CALIBRATION CERTIFICATE	103
ANNEX I ACCREDITATION CERTIFICATE	135

1 Test Laboratory

1.1 Testing Location

Company Name:	CTTL(Shouxiang)
Address:	No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District,
	Beijing, P. R. China100191

1.2 Testing Environment

Temperature:	18°C~25°C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω
Ambient noise & Reflection:	< 0.012 W/kg

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Lin Xiaojun
Testing Start Date:	March 21, 2016
Testing End Date:	April 14, 2016

1.4 Signature

Lin Xiaojun

(Prepared this test report)

Qi Dianyuan

(Reviewed this test report)

Xiao Li

Deputy Director of the laboratory (Approved this test report)

2 Statement of Compliance

This EUT is a variant product and the report of original sample is No.I16Z40419-SEM01. According to the client request, we quote the test results of original sample and add the result of UMTS Band4.

The maximum results of Specific Absorption Rate (SAR) found during testing for TCL Communication Ltd. HSUPA/HSDPA/UMTS 5 bands /GSM quad band mobile phone 5010S are as follows:

Table 2.1: Highest Reported SAR (1g)

		1 01	
Exposure Configuration	Technology Band	Highest Reported SAR 1g(W/Kg)	Equipment Class
		ig(vv/kg)	
	GSM 850	0.48	
	PCS 1900	0.19	
Head	UMTS FDD 5	0.36	PCE
(Separation Distance 0mm)	UMTS FDD 2	0.37	
	UMTS FDD 4	0.42	
	WLAN 2.4 GHz	0.07	DTS
	GSM 850	0.96	
	PCS 1900	0.85	
Body-worn	UMTS FDD 5	0.68	PCE
(Separation Distance 10mm)	UMTS FDD 2	0.51	
	UMTS FDD 4	0.77	
	WLAN 2.4 GHz	0.05	DTS

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 10 mm between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report.

The highest reported SAR value is obtained at the case of (Table 2.1), and the values are: 0.96 W/kg (1g).

Table 2.2: The sum of reported SAR values for main antenna and WiFi

	Position	Main antenna	WiFi	Sum
Highest reported	Left hand, Touch cheek	0.42	0.07	0.49
SAR value for Head	Right hand, Touch cheek	0.48	0.04	0.52
Highest reported	Rear	0.96	0.05	1.01
SAR value for Body				

Table 2.3: The sum of reported SAR values for main antenna and Bluetooth

	Position	Main antenna	BT*	Sum
Highest reported SAR value for Head	Right hand, Touch cheek	0.48	0.13	0.61
Highest reported SAR value for Body	Rear	0.96	0.07	1.03

BT* - Estimated SAR for Bluetooth (see the table 13.3)

According to the above tables, the highest sum of reported SAR values is **1.03 W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 13.

3 Client Information

3.1 Applicant Information

Company Name:	TCL Communication Ltd	
Address /Dest	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,	
Address /Post:	Pudong Area Shanghai, P.R. China. 201203	
City:	Shanghai	
Postal Code:	201203	
Country:	P.R.China	
Contact:	Gong Zhizhou	
Email:	zhizhou.gong@tcl.com	
Telephone:	0086-21-31363544	
Fax:	0086-21-61460602	

3.2 Manufacturer Information

Company Name:	TCL Communication Ltd	
Address /Dest	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,	
Address /Post:	Pudong Area Shanghai, P.R. China. 201203	
City:	Shanghai	
Postal Code:	201203	
Country:	P.R.China	
Contact:	Gong Zhizhou	
Email:	zhizhou.gong@tcl.com	
Telephone:	0086-21-31363544	
Fax:	0086-21-61460602	

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

HSUPA/HSDPA/UMTS 5 bands /GSM quad band mobile phone		
5010S		
GSM 850/900/1800/1900, WCDMA 850/900/1700/1900/2100, BT,		
Wi-Fi		
825 – 848.8 MHz (GSM 850)		
1850.2 – 1910 MHz (GSM 1900)		
826.4 – 846.6 MHz (WCDMA850 Band V)		
1852.4 – 1907.6 MHz (WCDMA1900 Band II)		
2412 – 2462 MHz (Wi-Fi 2.4G)		
1712.4 - 1752.6 MHz (WCDMA 1700 Band IV)		
12		
В		
Portable device		
Integrated antenna		
Headset		
Support		

4.2 Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
EUT1	014629000002238	PIO	v5E53
EUT2	014629000000877	PIO	v5E53
EUT3	014629000000794	PIO	v5E53
EUT4	014629000002212	PIO	v5E53
EUT5	014628000051450	PIO	v5E53
EUT6	014628000051575	PIO	v5E53

^{*}EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the EUT 1&2&5 and conducted power with the EUT 3&4&6.

4.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	CAB2000041C7(711700096011)	/	Veken
AE2	Battery	CAB2000010C1	/	BYD
AE3	Headset	CCB3160A15C1(711411000371)	/	JUWEI
AE4	Headset	CCB3160A15C4(711411000381)	/	MEIHAO
AE5	Headset	CCB3160A11C1(711411000441)	/	JUWEI
AE6	Headset	CCB3160A11C4(711411000451)	/	MEIHAO

^{*}AE ID: is used to identify the test sample in the lab internally.

Note: AE3 and AE5 are the same, so they can use the same results.

AE4 and AE6 are the same, so they can use the same results.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB447498 D01: General RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB648474 D04 Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets.

KDB941225 D01 SAR test for 3G devices v03r01: SAR Measurement Procedures for 3G Devices

KDB941225 D06 Hotspot Mode SAR v02r01: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities

KDB248227 D01 802.11 Wi-Fi SAR v02r02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS

KDB865664 D01SAR measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz.

KDB865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

	I			3	
Frequency	Liquid Type	Conductivity	± 5% Range	Permittivity	± 5% Range
(MHz)	Liquid Type	(σ)	± 5 % realige	(٤)	± 570 rearige
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3
1750	Head	1.37	1.30~1.44	40.08	38.1~42.1
1750	Body	1.49	1.42~1.56	53.4	50.7~56.1

7.2 Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid

Measurement Date	Tuno	Eroguenov	Permittivity	Drift	Conductivity	Drift
(yyyy-mm-dd)	Type	Frequency	3	(%)	σ (S/m)	(%)
2016-03-21	Head	835 MHz	41.22	-0.67	0.923	2.56
2016-03-21	Body	835 MHz	56.33	2.05	0.982	1.24
2016-03-22	Head	1900 MHz	39.88	-0.30	1.436	2.57
2010-03-22	Body	1900 MHz	54.15	1.59	1.573	3.49
2016 02 22	Head	2450 MHz	38.55	-1.66	1.834	1.89
2016-03-23	Body	2450 MHz	51.68	-1.94	1.982	1.64
2016-04-14	Head	1750 MHz	39.65	-1.07	1.351	-1.39
2010-04-14	Body	1750 MHz	52.78	-1.16	1.481	-0.60

Note: The liquid temperature is 22.0 $^{\circ}\mathrm{C}$

Picture 7-1: Liquid depth in the Head Phantom (835MHz)

Picture 7-2: Liquid depth in the Flat Phantom (835MHz)

Picture 7-3: Liquid depth in the Head Phantom (1900 MHz)

Picture 7-4 Liquid depth in the Flat Phantom (1900MHz)

Picture 7-5 Liquid depth in the Head Phantom (2450MHz)

Picture 7-6 Liquid depth in the Flat Phantom (2450MHz)

Picture 7-7 Liquid depth in the Head Phantom (1750 MHz)

Picture 7-8 Liquid depth in the Flat Phantom (1750MHz)

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B.

Table 8.1: System Verification of Head

Measurement		Target val	et value (W/kg) Measured value(W/kg)		Deviation		
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2016-03-21	835 MHz	5.86	9.01	5.92	9.20	1.02%	2.11%
2016-03-22	1900 MHz	21.5	40.7	21.52	41.60	0.09%	2.21%
2016-03-23	2450 MHz	24.5	52.5	24.16	52.80	-1.39%	0.57%
2016-04-14	1750 MHz	19.9	36.9	19.36	36.60	-2.71%	-0.81%

Table 8.2: System Verification of Body

Measurement	Measurement		ue (W/kg)	Measured value (W/kg) Deviation			ation
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2016-03-21	835 MHz	6.12	9.29	6.16	9.52	0.65%	2.48%
2016-03-22	1900 MHz	21.7	40.4	21.20	40.80	-2.30%	0.99%
2016-03-23	2450 MHz	24.4	52.1	23.76	50.80	-2.62%	-2.50%
2016-04-14	1750 MHz	20.3	37.4	19.96	36.56	-1.67%	-2.25%

9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:

- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1,perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 9.1Block diagram of the tests to be performed

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results

when all the measurement parameters in the following table are not satisfied.

			≤ 3 GHz	> 3 GHz
Maximum distance from (geometric center of pro		-	5 ± 1 mm	½-5-ln(2) ± 0.5 mm
	Maximum probe angle from probe axis to phantom surface normal at the measurement location			20° ± 1°
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension of t measurement plane orientation, measurement resolution must b dimension of the test device wi point on the test device.	is smaller than the above, the e the corresponding x or y
Maximum zoom scan sp	oatial resolut	ion: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
	uniform g	rid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
grid $\Delta z_{Zoom}(n>1)$: between subsequent points		≤ 1.5·Δz	z _{Zoom} (n-1)	
Minimum zoom scan volume	x, y, z	1	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

9.3 WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

For Release 5 HSDPA Data Devices:

Sub-test	$oldsymbol{eta}_c$	$oldsymbol{eta}_d$	β_d (SF)	$oldsymbol{eta}_c$ / $oldsymbol{eta}_d$	$oldsymbol{eta}_{hs}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1. 0
3	15/15	8/15	64	15/8	30/15	1. 5
4	15/15	4/15	64	15/4	30/15	1. 5

For Release 6 HSPA Data Devices

Sub-	$oldsymbol{eta_c}$	$oldsymbol{eta_d}$	β_d (SF)	$oldsymbol{eta_c}$ / $oldsymbol{eta_d}$	$oldsymbol{eta_{hs}}$	$oldsymbol{eta_{ec}}$	$oldsymbol{eta}_{ed}$	eta_{ed}	eta_{ed}	CM (dB)	MPR (dB)	AG Index	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	4. 5	4. 5	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	4. 5	4. 5	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed1} :47/15 eta_{ed2} :47/15	4	2	4. 5	4. 5	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	4. 5	4. 5	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	2. 0	2. 0	21	81

9.4 Bluetooth &Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.5 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in section 14 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Area Scan Based 1-g SAR

10.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-gSAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

10.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz)and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm mare 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

11 Conducted Output Power

11.1 Manufacturing tolerance

Table 11.1: GSM Speech

	GSM 850						
Channel	Channel 251	Channel 190	Channel 128				
Target (dBm)	31.6	31.6	31.6				
Tune-up(dBm)	32.6	32.6	32.6				
	GSN	И 1900					
Channel	Channel 810	Channel 661	Channel 512				
Target (dBm)	28.7	28.7	28.7				
Tune-up(dBm)	29.7	29.7	29.7				

Table 11.2: GPRS and EGPRS

	16	GSM 850 GPRS (GM		
	Channel	251	190	128
	Target (dBm)	31.6	31.6	31.6
1 Txslot	Tune-up(dBm)	32.6	32.6	32.6
0 T 1 t	Target (dBm)	30.5	30.5	30.5
2 Txslots	Tune-up(dBm)	31.5	31.5	31.5
0 T l . t .	Target (dBm)	29.5	29.5	29.5
3 Txslots	Tune-up(dBm)	30.5	30.5	30.5
4 Tyralada	Target (dBm)	26	26	26
4 Txslots	Tune-up(dBm)	27	27	27
		GSM 850 EGPRS (GN	MSK)	
	Channel	251	190	128
1 Txslot	Target (dBm)	31.6	31.6	31.6
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tune-up(dBm)	32.6	32.6	32.6
2 Txslots	Target (dBm)	30.5	30.5	30.5
2 1 8 5 10 15	Tune-up(dBm)	31.5	31.5	31.5
3 Txslots	Target (dBm)	29.5	29.5	29.5
3 1 X SIULS	Tune-up(dBm)	30.5	30.5	30.5
4 Txslots	Target (dBm)	26	26	26
4 1 / 51015	Tune-up(dBm)	27	27	27
		GSM 1900 GPRS (GN	MSK)	
	Channel	810	661	512
1 Txslot	Target (dBm)	28.7	28.7	28.7
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tune-up(dBm)	29.7	29.7	29.7
2 Txslots	Target (dBm)	28	28	28
2 1 / 31013	Tune-up(dBm)	29	29	29
3 Txslots	Target (dBm)	27	27	27
O I ASIOIS	Tune-up(dBm)	28	28	28
4 Txslots	Target (dBm)	24	24	24
T 1 ASIUIS	Tune-up(dBm)	25	25	25

	GSM 1900 EGPRS (GMSK)						
	Channel	661	512				
1 Txslot	Target (dBm)	28.7	28.7	28.7			
1 1 XSIOL	Tune-up(dBm)	29.7	29.7	29.7			
2 Txslots	Target (dBm)	28	28	28			
2 1 XSIOIS	Tune-up(dBm)	29	29	29			
3 Txslots	Target (dBm)	27	27	27			
3 1 XSIOIS	Tune-up(dBm)	28	28	28			
4 Tyoloto	Target (dBm)	24	24	24			
4 Txslots	Tune-up(dBm)	25	25	25			

Table 11.3: WCDMA

Table 11.3: WCDMA						
WCDMA 850 CS						
Channel	Channel 4233	Channel 4182	Channel 4132			
Target (dBm)	22.5	22.5	22.5			
Tune-up(dBm)	23.5	23.5	23.5			
	HSUPA (sub-test 1~2)					
Channel	Channel 4233	Channel 4182	Channel 4132			
Target (dBm)	19.5	19.5	19.5			
Tune-up(dBm)	20.5	20.5	20.5			
	HSUPA (sub-test 3)				
Channel	Channel 4233	Channel 4182	Channel 4132			
Target (dBm)	20.5	20.5	20.5			
Tune-up(dBm)	21.5	21.5	21.5			
	HSUPA (sub-test 4)				
Channel	Channel 4233	Channel 4182	Channel 4132			
Target (dBm)	19	19	19			
Tune-up(dBm)	20	20	20			
	HSUPA (sub-test 5)					
Channel	Channel 4233	Channel 4182	Channel 4132			
Target (dBm)	21.5	21.5	21.5			
Tune-up(dBm)	22.5	22.5	22.5			
	WCDMA 1900 CS					
Channel	Channel 9538	Channel 9400	Channel 9262			
Target (dBm)	22.5	22.5	22.5			
Tune-up(dBm)	23.5	23.5	23.5			
HSUPA (sub-test 1~2)						
Channel	Channel 9538	Channel 9400	Channel 9262			
Target (dBm)	19.5	19.5	19.5			
Tune-up(dBm)	20.5	20.5 20.5				
	HSUPA (sub-test 3)					
Channel	Channel 9538	Channel 9400	Channel 9262			
Target (dBm)	20.5	20.5	20.5			

©Copyright. All rights reserved by CTTL.

Tune-up(dBm)	ne-up(dBm) 21.5 21.5		21.5		
HSUPA (sub-test 4)					
Channel	Channel 9538	Channel 9400	Channel 9262		
Target (dBm)	19	19	19		
Tune-up(dBm)	20	20	20		
	HSUPA (sub-test 5)			
Channel	Channel 9538	Channel 9400	Channel 9262		
Target (dBm)	21.5	21.5	21.5		
Tune-up(dBm)	22.5	22.5	22.5		
	WCDMA	1700 CS	-		
Channel	Channel 1513	Channel 1412	Channel 1312		
Target (dBm)	22.5	22.5	22.5		
Tune-up (dBm)	23.5	23.5	23.5		
	HSUPA (s	ub-test 1/2)			
Channel	Channel 1513	Channel 1412	Channel 1312		
Target (dBm)	19.5	19.5	19.5		
Tune-up (dBm)	20.5	20.5			
	HSUPA (sub-test 3)				
Channel	Channel 1513	Channel 1412	Channel 1312		
Target (dBm)	20.5	20.5	20.5		
Tune-up (dBm)	21.5	21.5	21.5		
	HSUPA	(sub-test 4)			
Channel	Channel 1513	Channel 1412	Channel 1312		
Target (dBm)	19	19	19		
Tune-up (dBm)	20	20 20			
HSUPA (sub-test 5)					
Channel	Channel 1513	Channel 1412	Channel 1312		
Target (dBm)	21.5	21.5	21.5		
Tune-up (dBm)	22.5	22.5	22.5		

Table 11.4: Bluetooth

Mode	Target (dBm)	Tune-up(dBm)
GFSK	4	5
EDR2M-4_DQPSK	4	5
EDR3M-8DPSK	4	5

Table 11.5: WiFi

Mode	Target (dBm)	Tune-up(dBm)	
802.11b (2.4GHz)	16	17	
802.11g (2.4GHz)	12	13	
802.11n HT20 (2.4GHz)	11	12	
802.11n HT40 (2.4GHz)	11	12	

11.2 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Table 11.6: The conducted power measurement results for GSM850/1900

GSM — 850MHz —	Conducted Power (dBm)			
	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)	
	32.42	32.50	32.53	
GSM 1900MHz	Conducted Power(dBm)			
	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)	
	29.38	29.46	29.49	

Table 11.7: The conducted power measurement results for GPRS and EGPRS

GSM 850	Measured Power (dBm)			calculation	Averaged Power (dBm)		
GPRS (GMSK)	251	190	128		251	190	128
1 Txslot	32.08	32.03	31.94	-9.03	23.05	23.00	22.91
2 Txslots	31.28	31.24	31.18	-6.02	25.26	25.22	25.16
3 Txslots	29.50	29.46	29.40	-4.26	25.24	25.20	25.14
4 Txslots	26.40	26.39	26.34	-3.01	23.39	23.38	23.33
GSM 850	Measured Power (dBm)		calculation	Averaged Power (dBm)			
EGPRS (GMSK)	251	190	128		251	190	128
1 Txslot	32.06	32.01	31.92	-9.03	23.03	22.98	22.89
2 Txslots	31.26	31.21	31.16	-6.02	25.24	25.19	25.14
3 Txslots	29.47	29.42	29.37	-4.26	25.21	25.16	25.11
4 Txslots	26.38	26.36	26.30	-3.01	23.37	23.35	23.29
PCS1900	Measured Power (dBm)		calculation	Averaged Power (dBm)			
GPRS (GMSK)	810	661	512		810	661	512
1 Txslot	29.40	29.47	29.51	-9.03	20.37	20.44	20.48
2 Txslots	28.61	28.68	28.72	-6.02	22.59	22.66	22.70
3 Txslots	26.92	26.99	26.99	-4.26	22.66	22.73	22.73
4 Txslots	23.81	23.85	23.87	-3.01	20.80	20.84	20.86
PCS1900	Measured Power (dBm)		calculation	Averaged Power (dBm)			
EGPRS (GMSK)	810	661	512		810	661	512
1 Txslot	29.42	29.48	29.52	-9.03	20.39	20.45	20.49
2 Txslots	28.63	28.70	28.73	-6.02	22.61	22.68	22.71
3 Txslots	26.93	27.00	27.00	-4.26	22.67	22.74	22.74
4 Txslots	23.81	23.86	23.89	-3.01	20.80	20.85	20.88