

HARDWARE USER GUIDE

(DOC No. HX6539-A-HWUG(AIOT-NB-G3))

>HX6539-A(AIOT-NB-G3)

WE-I Plus

Preliminary version 01 September, 2021

^{>>}HX6539-A(AIOT-NB-G3)

Revision History

Version	Date	Description of changes	
01	2021/09/06	New setup.	

>>HX6539-A(AIOT-NB-G3)

WE-I Plus

List of Contents

3. HX6539-AAI 4. HX6539-AAI	OT-NB-G3 platform OT-NB-G3 platform	esetupstartup			
.4. 11/10000 / (/ ()	or No Copianonn	otartap		(10)>	
			$\langle (\%) \rangle$	\wedge	
		Δ. (0	$\langle d \rangle$	
			5 (0))))	
				5	
			>		
	1	(0)			
	SIP				
	90>				
40		1			

>>HX6539-A(AIOT-NB-G3)

List of Figures

Figure 2.1: AIOT-NB-G3 board block diagram	8
Figure 2.2: AIOT-NB-G3 board PCB dimension	8
Figure 2.3: AIOT-NB-G3 board placement	ç
Figure 2.4: AIOT-NB-G3 board FPC20 (J3) connector	10
Figure 2.5: AIOT-NB-G3 board jumper positions	12
Figure 2.6: AIOT-NB-G3 board LEDs location	13
Figure 2.7: Debug board	14
Figure 2.8: Debug board placement	14
Figure 2.9: ASHLING Opella-XDFigure 2.10: HX6539-A AIOT-NB-G3 platform setup	14
Figure 2.10: HX6539-A AIOT-NB-G3 platform setup	15
Figure 2.11: ASHLING JTAG ICE	15
Figure 2.12: Debug board connect to AIOT-NB-G3 board	16
Figure 2.13: Switch pin for flash image download	17
Figure 2.14: Flash image download by HMX-AIOT-NB-GX_GUI	17
Figure 2.15: Switch pin for Metaware download firmware	
Figure 2.16: I2C load script file by HMX-AIOT-NB-GX_GUI for Metaware load elf	
Figure 2.17: Metaware debug configuration I	
Figure 2.17: Metaware debug configuration I	
Figure 2.20: Metaware debug configuration III	
Figure 2.21: UART output message I	
Figure 2.22: UART output message II	
Figure 2.23: UART output message load script by HMX-AIOT-NB-GX_GUI Tool	23
Figure 2.24: AIOT-NB-G3 board reset	24

>>HX6539-A(AIOT-NB-G3)

WE-I Plus

List of Tables

Table 2.1: 4-layer PCB stack-up	9
Table 2.2: AIOT-NB-G3 board main component list	
Table 2.3: AIOT-NB-G3 board GPIO function	11 12
Table 2.5: AIOT-NB-G3 board LEDs function	13

>>HX6539-A(AIOT-NB-G3) WE-I Plus

Preliminary Version 01

September, 2021

1. Introduction

The HX6539-A AIOT-NB-G3 platform hardware kit enables rapid software development, code porting, software debugging, and profiling for HX6539-A applications. The hardware kit consists of an EVB hardware platform, including pre-installed EVB images of HX6539-A configurations with peripherals.

This document describes the HX6539-A AIOT-NB-G3 hardware kit and procedures to run the applications on the platform.

>> HX6539-A(AIOT-NB-G3)

WE-I Plus

HARDWARE USER GUIDE Preliminary V01

2. HX6539-A AIOT-NB-G3 Platform

2.1. HX6539-A AIOT-NB-G3 platform system requirement

- AIOT-NB-G3 board x 1pcs
- Debug board x 1pcs
- Connection cable
 - Micro USB cable: Debug Board (I2C/SPI/Flash Download) x 1pcs
 - JTAG probe: ASHLING Opella-XD for ARC™ (optional) x 1pcs
- Software tools
 - mw_devkit_arc_Q_2019_12_win_install.exe (MetaWare Toolset)
 - HMX-AIOT-NB-GX GUI (I2C/CLK/SPI/Flash Download)
 - teraterm-4.76 (UART terminal)
 - OPXDARCv1.2.6.EXE (ASHLING ICE Driver) (optional)

Note: Connect with Himax-AloT-NB-G3 and Debug mode simultaneously with USB cable in debug mode and Himax-AloT-NB-G3 with USB cable in normal operation mode.

Himax Confidential

2.2. HX6539-A AIOT-NB-G3 hardware

AIOT-NB-G3 board block diagram
 Please note that debug board is not included in the AIOT-NB-G3 board. Please contact Himax sales staff to support.

Figure 2.1: AIOT-NB-G3 board block diagram

PCB mechanical dimension, board size 40 x 40mm

Figure 2.2: AIOT-NB-G3 board PCB dimension

AIOT-NB-G3 board placement

Top View

Figure 2.3: AIOT-NB-G3 board placement

PCB stack-up

4-Layer: Signal (L1), GND (L2), VCC (L3), Signal (L4)

4L T=1.6mm						Single-End Impedance W	Reference Layers
Stack-up	Layer	Material	Type	Thickness	Unit	50Ω ± 10%	•
-	-	S/M	1-1	0.5	mils	-	-
-	L1	Cu	1/2oz+plating	1.2	mils	4 mil	L2
-		(U)P.P		3	mils	-	-
-	L2	Cu	1oz	1.4	mils	=	L1/L3
1.3mm 1/1 (including)	((-)	Core	FR4	50	mils	-	-
-	L3	Cu	1oz	1.4	mils	-	L2/L4
-	-	P.P	-	3	mils	-	-
-	L4	Cu	1/2oz+plating	1.2	mils	4 mil	L3
-	-	S/M	-	0.5	mils	-	-
-	-	Thickness	-	62.2	mils	-	-
-	-	-	-	1.58	mm	-	-

Table 2.1: 4-layer PCB stack-up

• FPC20 (J3) connector is used to link debug board.

Figure 2.4: AIOT-NB-G3 board FPC20 (J3) connector

Main Component List

The main components on the AIOT-NB-G3 board are listed here.

Reference	Part no.	Description
ANT	ANT-LTE-MON-SMA-L	Linx/ Cellular Antennas - GSM, NB-IoT, LTE.
	HM0360	Himax/ 1/6" 640x480 VGA 60FPS CMOS Image Sensor.
AoS	HM01B0	Himax/ 1/11" 320x320 QVGA 60FPS Ultra Low Power CMOS Image Sensor.
ANT1	SMA761/1-10.5/1.6	Lihyeu/ PCB edge mounting SMA connector.
CN1	105017-0001	Molex/ Micro USB Type B Connector.
J3	196033-20041	P-TWO/ FPC 20pin, 0.5pitch, 2.0H.
J4	OK-10F030-04	OCN/ Board to board connector.
MIC1, MIC2	SPH0641LM4H-1	Knowles/ Digital microphones, PDM.
SIM1	1042240820	MOLEX/ nano-SIM card connector.
SW1	TDA01H0SB1R	C&K/ 1.27mm DIP switch SPST.
SW4	B3U-1000P	Omron/ Switch tactile SPST-NO 0.05A 12V.
U1	LTC3130EUDC#PBF	Linear/ 2.4V to 25V, Buck-Boost Converter
U2, U3, U4	ADP5301ACBZ-2-R7	Analog Device/50 mA or 500 mA, Step-Down Regulator
U5	ADP5301ACBZ-3-R7	Analog Device/50 mA or 500 mA, Step-Down Regulator
U6	HX6539_LQFP128	Himax/ WE-I plus LQFP128 package.
U7	TS3A5223RSWR	TI/ IC 0.5ohm dual SPDT analog switch.
U8	EKMB1307113K	Panasonic/ PIR motion sensor 6µA.
U9	LSM9DS1	STM/3D accelerometer, 3D gyroscope, 3D magnetometer.
U10	Murata 1SC-DM	Murata/ LTE CAT-M1, Type 1SC-DM
Y1	ECS-240-10-36-CKM-TR	ECS/Crystal 24MHz 10ppm 10pF.

Table 2.2: AIOT-NB-G3 board main component list

GPIO Function

There are total 15 GPIOs on WE-I Plus IC.

GPIO no.	Direction	Description
PGPIO0	In O	To Murata Type 1SC-DM UART0_RTS
PGPIO1	(p	Digital PIR Sensor.
PGPIO2	Out	To Murata Type 1SC-DM UART0_CTS
PGPIO3	lì	Accelerometer and gyroscope interrupt 1 (INT1_A/G).
PGPIO4	In/Out	Himax debug board (FTDI_GPIO2).
PGPIO5	In/Out	Himax debug board (FTDI_GPIO3).
PGPIO6	In	WE-I Plus direct flash pin (SPI_SS).
PGPIO7	In	Accelerometer and gyroscope interrupt 2 (INT2_A/G).
PGPIO8	Out	WE-I plus status indication (LED_GREEN).
PGPIO9	Out	WE-I plus status indication (LED_BLUE).
PGPIO10	In	Magnetic sensor interrupt (INT_M).
PGPIO11	In	To Murata Type 1SC-DM HOST_WAKEUP
PGPIO12	In	To Murata Type 1SC-DM RST_INDICATOR
PGPIO13	Out	To Murata Type 1SC-DM PMU_WAKEUP
PGPIO14	Out	To Murata Type 1SC-DM PMU_RST

Table 2.3: AIOT-NB-G3 board GPIO function

Jumpers

There are twelve jumpers available for measuring current consumption.

Jumper no.	Operation voltage	Description
J1	3.4V ~ 6.5V	The system power is input to the Buck-Boost converter IC. Although the Buck-Boost converter IC can support 2.4V~25V, due to NB-IoT performance requirements, it is recommended to use 3.4V~6.5V.
J2	3.3V	Murata Type 1SC-DM power supply 3.3V input.
J5	1.8V	WE-I Plus PIF IO power (PIF_IOVDD).
J6	1.8V	WE-I Plus IC 1.8V power (POR, ADC, CLDO, SLDO, PLL, SIF, FLASH).
J7	3.3V	Including the following component. • Four buck regulator IC • WE-I Plus IC. • AoS (Always on Sensor), HM01B0 or HM0360.
J8	2.8V	AoS AVDD28 power supply.
J9	1.8V	AoS IOVDD18 power supply.
J10	1.2V / 1.5V	AoS DVDD power supply. HM0360 DVDD=1.2V, HM01B0 DVDD=1.5V
J11	1.8V	Microphone power supply.
J12	3.3V	Accelerometer & gyroscope & magnetometer power supply.
J13	3.3V	PIR motion sensor power supply.
J14	1.8V	Accelerometer & gyroscope & magnetometer IO power.

Table 2.4: AIOT-NB-G3 board jumper

• Jumper position

The twelve jumper positions are shown below.

Figure 2.5: AIOT-NB-G3 board jumper positions

AIOT-NB-G3 board LEDs function

It's recommended that there is no need to mount LED1 & LED4 since the sensitive power consumption. When the user wants to measure system power consumption, please de-solder R4 & R100 which is LED current limiting resistance. If the user wants the lowest power consumption, please program the firmware to turn off LED2 and LED3.

LED no.	Color	Description
LED1	Green	3.3V power supply indication LED.
LED2	Green	WE-I Plus status indication LED.
LED3	Blue	WE-I Plus status indication LED.
LED4	Red	Murata Type 1SC-DM power save mode status.

Table 2.5: AIOT-NB-G3 board LEDs function

Figure 2.6: AIOT-NB-G3 board LEDs location

in whole or in part without prior written permission of Himax.

-P 13-

Debug Board

Figure 2.7: Debug board

◆ Top View

Figure 2.8: Debug board placement

ASHLING Opella-XD for ARC™

Figure 2.9: ASHLING Opella-XD

2.3. HX6539-A AIOT-NB-G3 platform setup

Figure 2.10: HX6539-A AIOT-NB-G3 platform setup

- Item 1. Flex Cable (20 Pin)
- Item 2. USB Cable (I2C/SPI/Flash Download)
- Item 3. ASHLING JTAG ICE (refer to Figure 2.11)

Figure 2.11: ASHLING JTAG ICE

WE-I Plus

HARDWARE USER GUIDE Preliminary V01

2.4. HX6539-A AIOT-NB-G3 platform startup

Use the following procedure to startup the HX6539-A AIOT-NB-G3 platform.

- A. Power on EVB
- B. Flash image download
- C. Reset AIOT-NB-G3 board
- D. Check UART message output

A. Power on EVB

The debug board and AIOT-NB-G3 are connected to the PC through each USB cable.

Figure 2.12: Debug board connect to AIOT-NB-G3 board

- B. Flash image download
- a. Use HMX-AIOT-NB-GX_GUI Tool: after power on EVB
 - AIOT-NB-G3 board SW1 pin switch to "ON"
 - Debug board SW1 pin 1 switch to "OFF", pin 2 keep "ON"

Figure 2.13: Switch pin for flash image download

Use HMX-AIOT-NB-GX_GUI to download EVB image

Figure 2.14: Flash image download by HMX-AIOT-NB-GX_GUI

- Step 1: Open HMX-AIOT-NB-GX_GUI.exe and change to Flash download page
- Step 2: Read ID to check HW ready (ID info Show in blue box)
- Step 3: Select correct image file
- Step 4: Erase flash (optional)
- Step 5: Programming *.img data

Himax Confidential

- b. Download firmware use Metaware
 - AIOT-NB-G3 board SW1 pin switch to "OFF"
 - Debug board SW1 pin 1 switch to "ON"

Figure 2.15: Switch pin for Metaware download firmware

I2C Setting (load PLL_Script_24to400MHz_JTAG_B Script) before load elf.

Figure 2.16: I2C load script file by HMX-AIOT-NB-GX_GUI for Metaware load elf

Himax Confidential

>> HX6539-A(AIOT-NB-G3)

WE-I Plus

HARDWARE USER GUIDE Preliminary V01

• Open Metaware and Select **Run > Debug Configurations** and Select elf file that you want to download to HX6539-A.

Figure 2.17: Metaware debug configuration I

>> HX6539-A(AIOT-NB-G3)

WE-I Plus

HARDWARE USER GUIDE Preliminary V01

Set "Target Selection"

Figure 2.18: Metaware debug configuration II

Start Debug

Figure 2.19: Metaware debug configuration III

 Debugger connected to Device, when the MetaWare Debugger connected to Device, UART will output message as the following (Program still NOT run)

Figure 2.20: UART output message I

 When the MetaWare Debugger Start to "run" program, UART will output message as the following

Figure 2.21: UART output message II

 Please note that the UART output log message needs load script (JTAG switch_to UART1) by GUI tool, because UART and JTAG is share pin.

Figure 2.22: UART output message load script by HMX-AIOT-NB-GX_GUI Tool

Himax Confidential

C. Reset AIOT-NB-G3 board

The user can press the Reset button (SW4) to reset AIOT-NB-G3 board and restart the application program. Please note that SW1 should be in the "OFF" position.

Figure 2.23: AIOT-NB-G3 board reset

D. Check UART message output

The system will output the following message to the UART console. Please setup UART terminal tool setting as (115200/8/N/1).

(If the boot method is to load the ELF file into SRAM by JTAG, the SRAM data will be cleared after hardware reboot.)

Himax Confidential This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed

in whole or in part without prior written permission of Himax.