In re of Appln No. 09/554,734

Version with markings to show changes made

7	1. (Twice amended) A data transaction card having an interface for bi-directional		
. 2	contactless communication, the data transaction card comprising:		
3	a support [(20)] having a cavity [(12, 22)] for accommodating therein a		
4	chip carrier module [(10)] which comprises:		
5	a substrate [(11, 21)] having a first side [(45)] and a second side [(46)],		
6	an integrated circuit [(30)] mounted on the first side of the substrate for		
7	managing functions of the data transaction card, and		
8	a coil antenna [(40)] [electrically connected to] formed in the substrate		
9	around the integrated circuit and electrically connected via the substrate to the		
10	integrated circuit for inductive coupling with a remote antenna, connections to the		
11	coil antenna being accessible from the first side of the substrate;		
12	the chip carrier module being packaged into one discrete unit so as to be		
13	amenable to mechanical assembly of the data transaction card without requiring		
14	additional electrical connections between the coil antenna and the chip carrier		
15	module during or subsequent to assembly.		
1	2. (Amended) The data transaction card according to Claim 1, further comprising:		
2	an optical visual authentication mark [(16)] applied to the second side of		
3	the substrate, so as to remain visible after packaging into the chip carrier module		
4	and after assembly of the chip carrier module with the support.		
1	6. (Amended) The data transaction card according to Claim 1, wherein the		
2	substrate [(11)] further comprises:		
3	a contact field with separate contacts [(31)] applied on the second side of		
4	the substrate, for contact communication between the data transaction card and a		
5	card reader.		
1	8. (Amended) The data transaction card according to Claim 6, wherein		

In re of Appln No. 09/554,734

2	the	cavity [(22)] is spatially disposed relative to the support so that when	
3	the chip carrier module [(10)] is assembled on to the support [(20)], the contact		
4	field conforms to ISO 7816.		
1	10. (Ameno	led) The data transaction card according to Claim 1, wherein the coil	
2	antenna [(40)] is applied on the first side [(45)] of the substrate [(11)].	
1 .	11. (Amended) The data transaction card according to Claim 1, wherein the coil		
2	antenna [(40)] is applied on to the second side of the substrate [(22)], and is		
3	connected to the integrated circuit [(30)] by electrical interconnections [(26)]		
4	passing from the first side of the substrate to the second side thereof.		
5	12. (Amen	ded) The data transaction card according to Claim 10, further	
6	comprising:		
7	a second coil antenna [(41)] mounted on the second side of the substrate		
8	and being connected to the first coil antenna [(40)] and to the integrated circuit		
9	[(30)] by electrical interconnections [(43)] passing from the first side of the		
10	substrate to the second side thereof.		
1	18. (Twice amended) A method for manufacturing a data transaction card, said		
2	method including the steps of:		
3	(a)	providing a support having a cavity therein,	
4	(b)	independently producing a chip carrier module [having embedded	
5		therein an integrated circuit and a coil antenna electrically connected	
6		to said integrated without requiring additional electrical connections	
7		between the coil antenna and the chip carrier module during or	
8		subsequent to assembly circuit] including a substrate having a coil	
9		antenna formed therein around an integrated circuit mounted on the	
10		substrate and connected via the substrate to the coil antenna, and	
11	(c)	mounting the chip carrier module in the cavity of the support.	

