Rapport de stage

Clement Lotteau June 2020

Résumé

Table des matières

1	Introduction : réseaux de neurones	1	
	1.1 Concepts et vocabulaire	1	
	1.2 Fit d'une gaussienne	1	
2	Minimisation de l'énergie : méthode stochastique		
	2.1 Calcul de l'énergie à partir d'un fit	1	
	2.2 Utilisation de l'aléatoire	3	
3	Méthode Runge-Kutta d'ordre 4	6	

1 Introduction : réseaux de neurones

1.1 Concepts et vocabulaire

1.2 Fit d'une gaussienne

FIGURE 1: Loss a chaque epoch moyenné sur 30 runs. Barres d'erreur avec l'écart-type des loss pour chaque numéro d'epochs. N.N.: 200x200x200 neurones, 50 batchsize.

2 Minimisation de l'énergie : méthode stochastique

2.1 Calcul de l'énergie à partir d'un fit

$$\left[\frac{-\hbar^2}{2m}\frac{d^2}{dx^2} + \frac{1}{2}m\omega^2 x^2\right]\psi(x) = E\psi(x) \tag{1}$$

Je multiplie (1) à gauche par $\psi(x)$ et j'intègre par partie :

$$E = \frac{\frac{-\hbar^2}{2m} (\left[\psi \psi'\right]_a^b - \int_a^b |\psi'|^2 dx) + \frac{1}{2} m\omega^2 \int_a^b x^2 |\psi|^2 dx}{\int_a^b |\psi|^2 dx}$$
(2)

On obtient les solutions analytique en intégrant de $-\infty$ à $+\infty$:

$$E_c = \frac{\hbar\omega}{4}$$
 ; $E_p = \frac{\hbar\omega}{4}$; $E_{totale} = \frac{\hbar\omega}{2}$ (3)

FIGURE 2: Les barres noires sont des repères visuels de la fonction à fitter.

2.2 Utilisation de l'aléatoire

Le but ici est de se servir des erreurs de fit pour sélectionner une prédiction comme nouveau target si l'énergie de cette dernière est inférieure à la fonction à fitter. Le réseau "se fit lui-même".

(a) Sans condition, discrétisation sur 1000 (b) Avec les conditions, discrétisation sur points.

Figure 3

FIGURE 4: Orange : 500 paramètres; Bleu : 5000; Rose : 30600. Les courbes s'arrêtent lorsque le programme a effectué 10000 itérations, à l'exception de "1 couche - 30600 paramètres" qui est coupée à 5000 itérations pour des raisons de lisibilité (200 secondes au total)

FIGURE 5

3 Méthode Runge-Kutta d'ordre 4

Balayage en énergie et tracer des états liés d'un oscillateur harmonique par la méthode Runge-Kutta d'ordre 4.

État	Énergie
0	-2.71840
1	-2.15447
2	-1.58494
3	-0.993463
4	-0.348762

On observe que, contrairement à la théorie, l'écart entre les énergies n'est pas constant. La figure 6 montre aussi que les fonctions d'onde ne tendent pas vers 0 lorsque l'énergie augmente. Ces deux problèmes sont dus à la taille de la "boite" qui est trop petite... etc.

FIGURE 6: Balayage en énergie et tracer des états liés. Les fonctions d'onde sont alignées sur leurs énergies.