Escuela técnica superior

FACULTAD DE INGENIERÍA INFORMÁTICA

 2^{Σ^*}

Práctica 1

LATEX, GRAMÁTICA Y EXPRESIONES REGULARES

Ignacio Fernández Contreras 2º Informática D

1 Ejercicios

1.1 Ejercicio 1)

Encontrar la potencia R^3 de $R = \{(1,1), (1,2), (2,3), (3,4)\}$. Comprueba tu respuesta con el script **powerrelation.m** y escribe un documento latex con la solucion paso a paso.

Utilizando la definicion 1.1.12: Potencia de una relación : Dado $R \subseteq A \times A$,

$$R^{n} = \begin{cases} R & n = 1\\ \{(a,b)\exists x \in A, (a,x) \in R^{(n-1)} \land (x,b) \in R\} & n > 1 \end{cases}$$
 (1)

Dada la muestra $R = \{(1,1), (1,2)(2,3), (3,4)\}$, vamos a poder obtener R^2 , siguiendo la propiedad antes mencionada. Dada la estructura de ((a,b),(c,d)), ambos $\in R$, podemos generar R^2 si se cumple la condición de $(\mathbf{b}=\mathbf{c})$, dicho esto, calculamos la potencia de R^2 :

$$R^{2} = \{(1,1), (1,2), (1,3), (2,4)\}$$
(2)

Dado que el enunciado nos pide calcular R^3 , hay que volver a aplicar la condición:

$$R^{3} = \{(1,1), (1,2), (1,3), (1,4)\}$$
(3)

Si aplicamos esto mismo en el script powerrelation, obtenemos los siguiente resultados:

 $octave: 1 > powerrelation(\{['1','1'], ['1','2'], ['2','3'], ['3','4'] \}, 3)$

ans =
$$\{ \\ [1,1] = 11 \\ [1,2] = 12 \\ [1,3] = 13 \\ [1,4] = 14 \\ \}$$