(i) Proposition: |xy| = |x| * |y|

Proof.

We consider two cases. Let $x \ge 0$ and $y \ge 0$, or $x \le 0$ and $y \le 0$. Since $xy \ge 0$, it follows that |xy| = xy = |x| * |y|. Now let x > 0 and y < 0, WLOG. Since x = |x|, it follows that |xy| = x * |y| = |x| * |y|. Therefore |xy| = |x| * |y|.

(ii) Proposition: $\frac{1}{|x|} = \left|\frac{1}{x}\right|, x \neq 0$

Proof.

We consider two cases. Let x > 0. Since |x| = x, it follows that $\frac{1}{|x|} = \frac{1}{x} = \left|\frac{1}{x}\right|$. Now let x < 0. Since |x| = -x, it follows that $\frac{1}{|x|} = -\frac{1}{x} = \left|\frac{1}{x}\right|$. Therefore $\frac{1}{|x|} = \left|\frac{1}{x}\right|$.

(iii) Proposition: $\frac{|x|}{|y|} = \left|\frac{x}{y}\right|, y \neq 0.$

Proof.

Observe that $\left| \frac{x}{y} \right| = |x| * \left| \frac{1}{y} \right| = |x| * \frac{1}{|y|} = \frac{|x|}{|y|}$.

(iv) Proposition: $|x-y| \le |x| + |y|$

Proof. $|x - y| = |x + (-y)| \le |x| + |-y| = |x| + |y|$ by Theorem 1.

(v) Proposition: $|x| - |y| \le |x - y|$

Proof.

By Theorem 1, $|(x-y)+y| \le |x-y|+|y|$. Then

$$|(x-y) + y| \le |x-y| + |y| \Longrightarrow |x| \le |x-y| + |y|$$
$$\Longrightarrow |x| - |y| \le |x-y|.$$

(vi) **Proposition:** $|(|x| - |y|)| \le |x - y|$

Proof.

By Proposition (v), $|x| - |y| \le |x - y|$ and $|y| - |x| \le |y - x|$. Observe that

$$|y| - |x| \le |y - x|$$

 $-(|x| - |y|) \le |-(x - y)|$
 $-(|x| - |y|) \le |x - y|.$

Thus $\pm (|x| - |y|) = |(|x| - |y|)| \le |x - y|$.

(vii) Proposition: $|x+y+z| \le |x|+|y|+|z|$

Proof.

By Theorem 1, $|x+(y+z)| \le |x|+|y+z|$, WLOG. Since $|y+z| \le |y|+|z|$, it follows that $|x|+|y+z| \le |x|+|y|+|z|$. Therefore $|x+y+z| \le |x|+|y|+|z|$.

1