Appunti laboratorio di elettromagnetismo

Mirolo Manuele / Alessio Brusini

a.a. 2025/26

${\bf Contents}$

1	Lezione 22/09/2025 1.1 Richiami di elettromagnetismo	2
2	Lezione $25/09/2025$	3
3	Lezione 29/09/20253.1 Resistenze in serie e parallelo	4 4 5
4	Lezione 02/10/20254.1 Come misurare una resistenza4.2 La qualità di una pila	6 6
5	Lezione 09/10/2025 5.1 Misura della resistenza 5.2 Condensatori 5.3 1° Esperienza di laboratorio	7 7 8 8
6	6.1 Come fare la relazione	10 10 10 12
7	7.1 Diodo	12 12 13 14
8	8.1 Misura della costante di Farady in laboratorio (parte 2)	15 15 15 15 15
9	9.1 Tubo catodico parte 2	16 16 16 17 17

1 Lezione 22/09/2025

1.1 Richiami di elettromagnetismo

- La carica elettrica è quantizzata, ovvero esiste una carica elementare $1e = 1.6 \cdot 10^{-19}C$
- Legge di Coulomb, che descrive la forza repulsiva/attrattiva tra due cariche puntiformi:

$$\vec{F}_{1,2} = \frac{Q_1 Q_2}{4\pi\epsilon_0 r^2}$$

dove $\epsilon_0 = 8.85 \cdot 10^{-12} \frac{C^2}{N \cdot m^2}$ è la costante dielettrica del vuoto.

Possiamo notare che il campo elettrico è conservativo, per cui esiste un potenziale elettrico V:

$$V = \frac{Q}{4\pi\epsilon_0 r} \quad \vec{F} = -\vec{\nabla}V$$

• Definiamo **corrente elettrica** attraverso una superfice delimitante 2 regioni di spazio, la cui unità di misura è l'Ampere (A), tramite:

$$I = \frac{dQ}{dt}$$

Vale la legge sperimentale detta 1° legge di Ohm:

$$V = RI$$

dove R è la resistenza del conduttore, che dipende dalla sua natura e dalla sua geometria, da cui la 2° legge di Ohm:

$$R = \int_0^l \frac{d\rho(l')}{\Sigma(l')} dl'$$

dove ρ è la resistività del materiale e Σ è la sezione del conduttore.

La sua unità di misura è l'Ohm (Ω) :

$$1\Omega = 1\frac{V}{A}$$

• La resistività dipende dalla temperatura secondo la legge:

$$\rho(T) = \rho_{20}[1 + \alpha(T - 20^{\circ}C)]$$

• Definiamo potenza elettrica, effettuando un lavoro L per spostare una carica fra due punti, come:

$$W = \frac{dL}{dt} = VI = I^2R = \frac{V^2}{R}$$

- In un atomo unico il potenziale atomico tende a 0 all'avvicinarsi del nucleo, mentre in un solido la funzione potenziale è periodica a causa della sovrapposizione dei potenziali atomici.
- Definiamo circuito elettrico un campo elettrostatico \vec{F} conservativo, il lavoro lungo un percorso chiuso è nullo, introduciamo allora un potenziale U, con dU differenziale esatto.

Se la forza elettrica è originata da una distribuzione di carica \mathbf{Q} , definiamo il **campo elettrico** $\tilde{\mathbf{E}}(\tilde{\mathbf{r}})$ in ogni punto dello spazio. Tale \mathbf{Q} permette di spostare una carica di prova \mathbf{q} in \vec{r} con una forza $\vec{F_e}(\vec{r}) = q\vec{E}(\vec{r})$

Si definisce una funzione differenza di potenziale $\Delta U = q\Delta$ e $\vec{E} = -\vec{\nabla}V$

• In un sistema fisico isolato (es. maglia conduttrice), la carica totale si conserva, ovvero $\Delta V_{tot} = 0$, da cui la legge di Kirchhoff:

Teorema 1. La somma delle tensioni ai capi di una maglia è nulla.

$$\sum_{k=1}^{n} V_k = 0$$

2

2 Lezione 25/09/2025

A causa di Benjaming Franklin la corrente va dal polo positivo a quello negativo, in quanto si pensava che fossero cariche positive a spostarsi, non quelle **negative** come avviene nella realtà. La corrente all'interno di un circuito rimane costante, per la legge della conservazione della carica.

Nel momento in cui la corrente incontra un nodo, una biforcazione, trova due vie possibile da percorrere, per la conservazione avremmo: $I_{tot} = I_1 + I_2$

Finchè il circuito è un sistema isolato, le correnti prese con i loro segni seguono la seguente legge:

$$I_{tot} = \sum_{k=1}^{n} I_k \rightarrow \sum_{k=1}^{n} I_k - I_{tot} = \sum_{j=1}^{n+1} I_j = 0$$

Da cui la 2° legge di Kirchhoff:

se un circuito costituisce un sistema isolato, la somma delle correnti entranti in un suo nodo è uguale alla somma delle correnti uscenti dallo stesso nodo

Queste leggi valgono in corrente continua, ovvero quando la corrente non varia nel tempo.

• Definiamo la **forza elettromotrice** (f.e.m.) come la differenza di potenziale tra i due poli di un generatore, generata da fennomeni chimici quali le reazioni di ossido-riduzione. In realtà non si tratta di una forza, ma il potenziale elettrico:

$$V_{1i} = -k \frac{q_1 q_i}{r_{1i}} \to F_{1i} = -\nabla V_{1i}$$

Una d.d.p. può non essere in grado di mantenere una corrente costante, in quanto la resistenza del circuito può variare nel tempo (bastoncino caricato). Ma queste correnti non osccillanti lo possono diventare applicando lavoro.

N.B: non sempre un voltaggio di corrente è equivalente alla sua forza elettromotrice.

• La f.e.m. garantisce che la corrente scorra nel circuito, in quanto fornisce energia al sistema (che viene persa dagli elettroni che viaggiano nel cirucito e vengono deviati dagli urti). Per quest'ultimo motivo introduciamo la resistenza (R). Poichè l'elettrone fa "più fatica" se ci sono meno vie e possibile e se le "porte d'ingresso" sono più strette, si deve avere:

$$R \propto \frac{l}{\Sigma}$$

dove Σ è l'area della sezione retta del conduttore.

Tramite prove sperimentali si introduce la **legge di Ohm** (nell'ipotesi di materiale omogeneo e di sezione costante):

$$R = \rho \frac{l}{\Sigma}$$

dove $\rho(\theta)$ è la resistività del materiale, che dipende molto da T; inoltre $L \propto T$ e $\Sigma \propto T^2$, ma tali effetti si compensano. Da cui:

$$\rho(\theta) \simeq \rho_{\theta^*} (1 + \alpha(\theta - \theta^*))$$

dove θ^* è la temperatura di riferimento, che cambia per ingegneri e fisici (solitamente in rete è $\theta=20^\circ$). Da ciò deriva il fatto che $R \propto T$.

• Per l'intensità invece avremo

$$I = \frac{V}{R} \to V = RI$$

Tutte le leggi sono fenomenologiche, non derivano da principi primi.

La formula più realistica che rappresenta la resistenza di un tratto di circuito è la seguente:

$$R = \int_{l_1}^{l_2} \frac{\rho(l')}{\Sigma(l')} dl'$$

ovvero un integrale curvilineo

Siccome supponiamo che il circuito sia un sistema isolato, valgono

$$V_{tot} = V_{AB} + V_{BC}$$
 $I = VR_{eq} \rightarrow R_{eq} = R_1 + R_2$

3 Lezione 29/09/2025

3.1 Resistenze in serie e parallelo

Vediamo un altro tipo di circuito, che rappresenta un partitore di correnti

deve valore la legge di Kirchhoff (sistena isolato) e quella di Ohm:

$$I = I_1 + I_2$$

Poichè supponiamo che non ci siano altre resistenze (sistema ideale), la differenza di potenziale ai capi delle due resistenze deve essere la stessa (dalla legge di Ohm):

$$\frac{V}{R_{eq}} = \frac{V}{R_1} + \frac{V}{R_2} \rightarrow \frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{R_1 + R_2}{R_1 R_2}$$

Supponiamo di avere un solo alimentatore e dover far funzionare tre dispositivi, utilizziamo un **partitore di tensione**

ovvero un oggetto che permette di dividere la tensione in più parti, stabili nel tempo.

Chiamiamo corrente continua, quella che rimane costante per un perio abbastanza lungo di tempo.

3.2 Strumenti per misurare corrente e tensione

Uno strumento per misurare delle variabili fisiche dovrebbe sempre dare una risposta lineare. Indichiamo con:

- \vec{E} il campo elettrico,
- \vec{B} il campo magnetico,
- $\vec{F_L}$ la forza di Lorentz:

$$\vec{F_L} = q\vec{E} + q\vec{v} \times \vec{B}$$

La forza di Lorentz subita da una carica in un campo elettromagnetico è la somma della forza elettrica e della forza magnetica, l'una moltiplicata per la carica e l'altra per la velocità della carica.

Sono tutte quantità relativisticamente invarianti dunque la formula vale sia per la fisica classica che per quella relativistica.

Consideriamo ora il caso di una calamita con i poli avvicinati e presente uno spazio cilindrico tra di loro. Se inseriamo li un segmento cilindrico di ferro dolce (materiale che reagisce velocemente al campo magnetico in cui si trova), allora posso trovare dei segmentini di linee di campo (che ricordiamo essere ortogonali alla superfice equipotenziale della calamita)

Cilindro di ferro dolce

Se supponiamo di avvolgere tale cilindro con una spira e facciamo passare corrente elettrica, chiamati a e b i lati corto e lungo della spira e osservando il più classico degli elettroni di conduzione con velocità v, il tratto di spira a sarà ortogonale al campo magnetico

$$e^-v \times B = e^-vB$$

L'elettrone viene "spinto fuori dalla spira"

Contrariamente nel tratto b, l'elettrone non viene deviato, in quanto la velocità è parallela a B. Tornato nel tratto A, se I rimane costante avremo nuovamente $\vec{F_L}$, sempre diretta verso l'esterno.

Questa coppia di forze genera un momento torcente pari a: $\tau = e^- v B b$

Il flusso invece è dato dalla densità dei portatori di carica λ , dunque scrivendo la corrente come $v\lambda e = I = \frac{dq}{dt}$, da cui

$$\tau = nBIab$$

dove n è il numero di spire attorno al magnete. Bilanciamo questo momento con una forza elastica grazie a delle molle elicoidali controrotanti (in modo da bilanciare le imperfezioni), ricordando che (nell'approsimazione di $\theta < 4^{\circ}$):

$$\tau_{el} \approx k\theta = \tau_{mag} = BIb \rightarrow \theta = \frac{Bnab}{k}I$$

Dobbiamo dunque risaltare il nostro segnale, per questo la molla ha più spire (non più di 10 per evitare deformazioni), in tal modo inoltre, l'approsimazione angolare vale fino a $\theta < 40^{\circ}$ (max $\theta = 3600^{\circ}$).

Nel caso della realtà abbiamo il cosidetto *effetto Joule*, ovvero il riscaldamento del conduttore, quindi posso usare solo piccole correnti Lo strumento appena descritto è detto **Amperometro**, costruendo un circuito con una resistenza e un amperometro in parallelo, possiamo misurare la corrente che passa nel circuito. avremmo

$$I = I_A + I_S = \frac{V}{R_A} + \frac{V}{R_S}$$

costruiamo la resistenza in modo che $R_A << R_S$ (per esempio $\frac{R_A}{R_S} = \frac{1}{10}$), tali R_S sono dette **resistenze di shunt**. La precisione, dunque, diminuisce in modo direttamente proporzianale all'aumento del numero di resistenze

4 Lezione 02/10/2025

Chiediamoci quale sia la ΔV ai capi di una resistenza e consideriamo la resistenza Ohmica $V_{AB} = IR$

Per farlo utilizziamo un amperometro, ma in tal modo lo perturbiamo, avremo $R < R^*$, per rendere la situazione accettabile aggiungiamo una resisteza prima dell'amperometro, tale che $R_2 >> R$, potendo trascurare la corrente che passa nell'amperometro.

Dunque misuro la d.d.p. teorica rispetto a quella reale (con lo strumento di misura):

$$V_{AB} = IR \quad V_{AB}^* = I \frac{RR_A}{R + R_A}$$

$$\frac{V_{AB}-V_{AB}^*}{V_{AB}} = \text{errore dovuto all'amperometro}$$

Ponendo R_A come somma di R_2 e quella dovuta all'amperometro.

Posso anche utilizzare un voltimetro, che lavora fra due materiali conduttori di resistenza trascurabile; uno strumento è il voltimetro a fogli conduttori, che in base all'angolo di inclinazione delle mie mie piastre mi indichi la ΔV .

4.1 Come misurare una resistenza

Nell'ipotesi che tale resistenza sia ohmica, dunque $R = \frac{V}{I}$ (caso ideale, non reale), ottenendo così una scala iperbolica (essendo V costane e I variabile). A causa della degradazione della batteria dello strumento erogatore della forza elettromotrice, ottengo un errore di sottostima su R.

Un altro modo per misurare la resistenza è utilizzare un generatore regolabile, mettere in parallelo la resistenza con un voltimetro e in serie ai due un amperometro.

Posso disegnare un grafico V su I, successivamente cerco di ricavare la legge fisica, ciò che mi aspetto è un andamento lineare, dove $\frac{1}{m} = R$ Inoltre, a causa dell'effeto Joule si comincia a perdere la linearità, sostituita da un andamento logaritmico

4.2 La qualità di una pila

La bontà di una pila è data dal fatto che anch' essa ha una resistenza interna, tanto più è bassa, migliore è la pila. Quando la pila inizia a consumarsi, la resistenza interna della pila aumenta a causa di fenomeni di ossidazione o sbalzi termici.

Per misurare lo stato della pila creo un circuito con essa e:

- un amperometro in serie alla pila (prima)
- una resistenza incognita, devo creare la più grande resistenza con quelle a disposizione (le metto in serie) $(R_x = \sum_{i=1}^n R_i)$
- un voltimetro in parallelo alla pila

Creo un grafico V su I, aumentando la resistenza, ottengo un andamento iperbolico sul primo quadrante (grazie al cazzo). Nel momento in cui incontro un andamente lineare ("inversamete lineare") ho un comportamento ohmico, che facendo il fit lineare (sul sottoinsieme di dati ideale) posso ottenere il valore della resistenza interna della pila.

Estrapolando a I=0 ottengo il valore della ΔV della pila. Con una pila nuova dovrei ottenere una linea orizzontale ad un certo valore di V.

5 Lezione 09/10/2025

5.1 Misura della resistenza

Una tecnica molto utilizzata è la *misura di zero*, che sono le più precise che si possono fare, in questo caso chiameremno **misura a ponte di Wheatstone**

Le resistenze erano ottenute mettendo nelle loro posizioni dei reostati, per ottenere R^* si ottiene "giocando" con le resistenze fino ad azzerrare l'amperometro, infatti:

- se fra B e C non passa corrente vuol dire $\Delta V_{BC}=0$
- quindi fra A-B e A-C avremo la stessa ΔV , $\Delta V_{AB} = \Delta V_{AC}$, ma avremmo anche $\Delta V_{BD} = \Delta V_{CD}$ (Kirchhoff)
- $\bullet\,$ se la R^* obbedisce alla legge di Ohm (trascurando l'effetto Joule), avremmo

$$\Delta V_{AB} = IR \quad \Delta V_{AC} = I^*R^* \quad \Delta V_{BD} = I_2R_2 \quad \Delta V_{CD} = I_3R_3$$

ottenendo un sistema

$$\begin{cases} I_1 R_1 = I^* R^* \\ I_2 R_2 = I_3 R_3 \end{cases} \tag{1}$$

- se considdero la corrente $I_A=0$ allora avrò che le correnti sul stesso ramo della maglia sono uguali ($I_1=I_2$ $I_*=I_3$).
- facendo il rapporto membro a membro di (1) ottengo:

$$R^* = R^3 \frac{R_1}{R_2}$$

5.2 Condensatori

Lo assumiamo come un accomulatore di cariche elettriche che inserieamo nel circuito.

Supponiamo di avere un segnale elettrico ovvero una variazione di ΔV nel tempo t, se

- 1. la carica associata al segnale viene portata al condensatore (grazie ad uno *spinotto*), esso si carica in modo logaritmico;
- 2. si ferma il caricamento;
- 3. si fa partire un altro cirucito, che fa scaricare il più linearmente possibile il condensatore (l'amdamento sarà esonenziale decrescente approssimabile al prim'ordine a una retta).
- 4. se carico il condensatore con un diverso segnale allora avrò una retta con la stessa pendenza ma che incontra lo zero della carica del condensatore in un punto diverso.
- 5. iterando il procedimento posso contare il numero di volte in cui un clock ha segnato lo scaricamento parziale del condensatore
 - Il numero di segnali è direttamente proporzionale al t necessario per scaricare il condensatore
- 6. se inoltre il t di scarica è associato al segnale (a sua volta associata al tempo di carica), allora posso creare una relazione tra la carica e il tempo di carica ($\frac{C}{s} = A$)

Su questo procedimento si basa il funzionamento dell'amperometro

5.3 1° Esperienza di laboratorio

Utilizzeremo un circuito composto da

- una resistenza
- una lampadina a filamento, composta da:
 - un bulbo di vetro (da cui si può aspirare aria per sostituirla con qualche milli Bar di un gas nobile)
 - due filamenti collegati al circuito e ad un altro filamentino (acciaio tungstenato), tramite l'effetto Joule viene prodotta illuminazione
- in parallelo alla lampadina un voltmetro
- un amperometro

L'obbiettivo è quello di costruire una curva voltamperrometrica (I vs V), se la lampadina rispetta la legge di Ohm allora mi aspetto un andamento lineare.

L'andamento reale è più esponenziale (sotto la linea retta ideale) ($I \propto V^2$), questo accade perchè il sistema fisico non è isolato (non tutta la f.e.m. crea corrente), infatti nel metallo della lampadina si crea attrito (emissione nell'infrarosso), l'elettrone di conduzione si muove in modo erratico (a causa degli scontri con gli elettroni degli atomi del metallo). Si formano, incoerentemente, dei fotoni i quali creano delle differenze nel campo elettrico. Difatti, gli elttroni dell'atomo possono eccitarsi e cambiare orbitale. L'atomo eccitato ritorna allo stato fondamentale dopo circa $10^{-8}s$, l'energia liberata forma i fotoni con frequenze nel visibile:

$$E_{\gamma} = h\nu$$

Se uno degli e^- di conduzione riesce ad eccitare gli elettroni di un atomo della mia resistenza interna alla lampadina, allora dopo riesco a produrre una luminescenza (transiente, tranzione di fase). Abbiamo individuato un fenomeno a soglia (che si verifica solo quando un determinato parametro supera un valore critico preciso, in questo caso l'energia)

Supponiamo che a V^* inizia tale fenomeno, da qui in poi la conduzione nel circuito cambia (inizia il comportamento logaritmico), infatti l'energia che io fornisco sotto forma di f.e.m. verrà assorbita e poi dissipata.

La differenza fra la curva e la retta ideale continua ad aumentare fino al bruciare del filamento (il metallo bolle), ovvero un po' di metallo diventa gas dentro se stesso, il filamento si gonfia (aumenta la resistenza, sia perchè è più caldo, sia perchè è diminutia l'area della sezione retta in alcuni punti).

Al bruciare del filamento I=0, ma la zona subito prima precedenta da questa decaduta è di transione di fase (scioglimento e rottura). In realtà anche nella prima transizione di fase (inizio emissione fotoni), ci sono delle piccole oscillazioni che però non sono visibili.

N.B.: durante le transioni di fase ci sono delle fluttuazioni negli osservabili, nel nostro caso ciò è dovuto allo scambio energetico, che modifica la resistenza (osservabile) del filamento. In generale i fenomeni di transizione sono associati oscillazioni nelle osservabili. Sapendo che $R=\frac{1}{m}=\frac{\Delta V}{\Delta I}$, questi Δ sono dati dalle spezzate che collegano i nostri punti. Questa resistenza, detta resistenza dinamica, fluttua molto nel momento delle tranzioni di fase

La polarizzazzione risulta ininfluente per il nostro sistema fisico

6 Lezione 13/10/2025

6.1 Come fare la relazione

- titolo
- preambolo: breve descrizione dell'esperienza
- tabelle (brevi, 7 righe e 4 colonne e in allegato se molto lunghe)
- descrizione dell'apparato sperimentale se i dati dipendono fortemente dall'apparato
- grafici (che mostrano l'andamento fisico); stessa dimensione del carattere della relazione sugli assi; barre d'errore per ogni punto (se pochi punti), altrimento si inseriscono ogni 3/4 punti.
- commenti sui grafici (più quantitativi possibile)
- osservazioni sui risultati attesi e confronto con quelli ottenuti (citare le fonti d'errore)
- se i risultati sono in linea con le aspettative si può commentare questo fatto, aggiungendo dati numerici che verificano quest'ipotesi

6.2 Semiconduttori

La disposizione degli elettroni negli atomi di un conduttore presenta abbassamenti di potenziale all'avvicinarsi al nucleo dell'atomo contiguo. Dunque, la maggior parte degli elettroni si trova al di sopra di una certa soglia di energia. Alcuni elettroni si trovano 2/3~eV al di là di questa soglia, andando ad eccitare questi nuclei (es. scaldando gli elettroni) il materiale può diventare un conduttore, superando le buche di potenziale, questi materiali sono detti semiconduttori. Essendo la barriera energetica di pochi eV, allora una bassa differenza di temperatura produce una grande quantità di elettroni disponibili per la conduzione elettrica.

Alcuni materiali di questo tipo sono il silicio (Si) e il Germanio (Ge). Essi sono atomi *tetravalenti*, dunque formano strutture nei cristalli tetraedici (ognuno è legato con altri 4 atomi).

All'interno di questi materiali si possono già trovare degli elettroni liberi, circa $\frac{1e}{10^6 \text{atomi}}$, che aiutano la conduzione. Quanto un elettrone di conduzione si slega dalla sua nicchia, allora oltre alla carica negativa si crea anche una lacuna, che è l'equivalente di una carica positiva che ha modulo opposto a quello dellla carica negativa. la lacuna viene occupata da un elettrone vicino, che a sua volta lascia una lacuna, creando una corrente.

Si individuano così 2 tipi di conduzione:

- conduzione per elettroni liberi (fluttuazioni termiche)
- conduzione per lacune (passaggio in banda di conduzione)

La differenza energetica fra i campi elettrici dei materiali è peculiare per ognuno di essi, avvicinando i due si creano della possibilità di "travaso" degli elettroni. Si usa, per favorire ciò, il **drogaggio**, ovvero l'inserimento di atomi di un altro materiale con un diverso numero di valenza (tri/pentavalenti), così da creare una lacuna o un elettrone libero.

- L'assorbimento di questi materiali avviene per diffusione, creando un surplus di elettroni liberi o lacune
- Prima dell'inizio della diffusione i materiali sono intrisicamente neutri, solo successivamente si accumulano cariche
- La regione di contatto fra i materiali è detta giunzione
- La condizione d'equilibrio si raggiunge quando la quantità di cariche si stabilizza (ma lo scambio continua sempre ad esserci)
- Lo spazio sulla giunzione è detto **zona di svuotamento**, in cui non ci sono più cariche libere di muoversi (al meno di motivi termici), di cui valuteremo lo spessore.
- L'oggetto che si ottiene con questo processo si chiama diodo

Tutto ciò avviene in una decina di secondi.

Inserendo il diodo in un circuito possiamo creare

- una polarizzazione inversa con generatore la cui corrente passa in discordia alla carica nel diodo, tale processo:
 - aumenta la quantità di cariche da una parte e dall'altra
 - diminuisce la zona di svuotamento
 - vi è minor passaggio di corrente, e quella che passa lo fa a causa di movimenti termici
- una **polarizzazione diretta** se la corrente del generatore va nella stessa direzione della carica nel diodo, in questo caso la zona di svuotamento aumenta

Polarizzazzione inversa

Creando un circuito di questo tipo

mi aspetto che la corrente tenda ansotiticamente ad un certo I_0 per correnti negative, per correnti positive invece la corrente cresce esponenzialmente (le curve sono tipiche per un certo valore di temperatura). La formula che mi descrive questo andamento è (per un diodo idelae)

$$I(V) = I_0 e^{\left(\frac{qV}{\eta kT}\right)} - 1$$

dove η è un parametro adimensionale che dipende dal materiale.

Al crescere della temperatura la curva "aumenta la sua pendenza", mentre I_0 diminuisce (più grande in modulo). Ho l'andamento opposto se diminuisco la temperatura, in tal caso, infatti, la resistenza interna del diodo aumenta.

 $\bullet \ I_0$ dipende dalla temperatura:

$$I_0 \propto KT^{\alpha} e^{-\frac{qV_G}{kT}}$$

con $\alpha \in (1,2]$ e K costante i due segni all'argomento dell'esp<erziale si "cancellano"

- Anche se stiamo applicando una polarizzazione inversa (tensione negativa), poiché il comportamento è Ohmico, la curva caratteristica sarà completa e simmetrica. Potremo quindi ricostruire l'intero comportamento, inclusa la parte di polarizzazione diretta, semplicemente per simmetria.
- Mettendo il diodo in un bagno per mantenere la temperatura costante, posso rilevare sul grafico i punti di intersezione fra certi valori I^* e V^* . Con questi valori posso fare un altro grafico V vs T, da cui osservo che, al decrescere della temperatura la tensione aumenta, ed è ciò che si osserva in un diodo reale, tale oggetto dunque riesce a mettere in correlazione lineare la T con una variabile da me controllabile (V). Quindi è sufficente un sistema, che, fissata una corrente, mi fornisca la tensione del circuito per sapere la temperatura del diodo.
- Prendendo 3 valori di corrente, se il diodo è ideale, mi aspetto che aumentando I V aumenti linearmente, questo vale finchè non raggiungo temperature tali da cambiare la natura del materiale del diodo

6.3 Come fare il fit esponenziale

Poichè sappiamo fare un fit lineare possiamo linearizzare la nostra equazione, prendendo valori di V tale che l'argomento dell'esponente sia maggiore di 1 posso usare

$$I(V) \simeq I_0 e^{(\frac{qV}{\eta kT})} \to \log(I) = \log(I_0) + \frac{qV}{nkT}$$

dunque sto facendo un fit in scala semilogaritmica da cui

- ottengo il valore di $log(I_0)$
- conoscendo q k e T posso ottenere η (circa 2 per il silicio, 1 per il germanio)

7 Lezione 20/10/2025

7.1 Diodo

Nel caso si dia energia agli atomi presenti nella fascia di separazione del diodo, si possono osservare fenomeni di conduzione elettrica. Quando il diodo è polarizzato in avanti, gli elettroni possono attraversare la giunzione p-n, mentre in polarizzazione inversa, la giunzione si comporta come un isolante.

Prendiamo il caso di fornire un fotone di energia:

$$E = h\nu \quad \nu = \frac{c}{\lambda}$$

se l'energia del fotone è maggiore della banda proibita (ovvvero l'energia di ionizzazzione), allora l'elettrone può essere

eccitato nella banda di conduzione. In questo caso si creano due cariche:

- l'elettrone libero (carica negativa)
- la lacuna (carica positiva)

Possiamo avere due casi:

- Nel caso il diodo sia polarizzato da una tensione inversa, l'elettrone eccitato può attraversare la giunzione p-n, creando una corrente di *fotocorrente*. Dunque un diodo è in grado di trasformare l'energia luminosa in forza elettromotrice; un diodo è in certe situazioni un *generatore di corrente*.
- Nel caso di polazizzazione diretta (diminuzione della zona di svuotamento), la funzione d'onda dell'elettrone ha una probabilità maggiore di sovrapporsi con la funzione d'onda della lacuna, ("ricade nella lacuna").

Se il diodo è stato dograto in modo da emettere luce nel visibile, possiamo osservare questo fenomeno nelle parti più esterne del diodo, questo è quello che viene chiamato LED.

Osserviamo la tipica curva di un diodo LED, per un certo colore:

Nel caso la creazione di un fotone avvenga nelle zone più interne del diodo, ho una certa probabilità che il fotone venga riassorbito prima di uscire dal diodo. La luce viene emessa in un cono di angolo solido, dipendentemente dal materiale e dalla geometria del diodo.

La curva volt-amperometrica di un diodo LED è simile a quella di un diodo normale, ma con una soglia di tensione più alta (circa 2V per il rosso, 3V per il blu, mentre per quello normale è circa 0.7V). L'energia del fotone emesso è proporzionale alla tensione di soglia:

$$E = qV$$

allora logicamente, al variare del colore della luce emessa varia la tensione di soglia del diodo. Questo mi permette di calcolare la costante di Plank:

$$E_i = qV_i = \frac{hc}{\lambda_i} \to h = \frac{qV_i\lambda_i}{c}$$

7.2 Verifica dell'effetto fotoelettrico

Il nostro obbiettivo è quello di verificare che:

- da una certa ν , l'energia cinetica degli e^- emessi da un elettrodo illuminato aumenta al crescere della frequenza della luce incidente
- ullet da una certa u, aumentano gli e^- emessi da un elettrodo illuminato proporzionalmente a I della luce incidente

Questo avviene perché $I_{luce} \propto \frac{n_{fotoni}}{s}$ e maggiore sarà il numero di e^- emessi; inoltre $E_{fotone} = h\nu$, per estrarre un elettrone bisogna cedergli una energia minima $E_{estrazione} \propto E_{legame}$, quindi:

$$E_{fotone} = E_{estrazione} + E_{cinetica}$$

Creo un circuito con due LED che si guardano in una scatola isolata, entrambi collegati ad un circuito di misura volt-amperometrica. Così in base a quale accendo posso creare un LED emettitore e un fotodiodo ricevitore. La differenza di potenziale misurata sul fotodiodo dipende dalla frequenza della luce emessa dal LED emettitore e dalla tensione ai capi del LED.

Se allora alimento il fotodiodo con una tensione negativa (polarizzazione inversa) posso misurare la tensione di fotocorrente che dipende dalla frequenza della luce incidente.

7.3 Misura della costante di Faraday

La costante di Farady F è la carica di una mole di elettroni: $F = N_A e$, i quegli annni però Avogadro non aveva ancora misurato la sua famosa costante.

$$F = e \cdot N_A = 9.64853321233100184 \times 10^4 \frac{C}{mol}$$

Per misurate questa costante si usa:

• bacinella di acqua bidistillata con discolto del solfato di rame $(CuSO_4)$ Quando lo disciolgo in acqua allora di dissocia in ioni Cu^{2+} e SO_4^{2-} , che vengono circondati da molecole d'acqua (solvatazione). Se aggiungo ad un oggetto in maniera isotropa degli elementi che si possono sovrapporre, allora mi riconduco ad un una sfera (per esempio i miei ioni circondati da molecole d'acqua). Questo mi porta a studiare il mio sistema come se fosse delle sfere che si muovo in un fluido puro (acqua), allora entra in gioco la forza di Stokes:

$$F = 6\pi \eta r v$$
 con η viscosita del fluido

- inseriamo due elettrodi di rame collegati ad un generatore di tensione continua ed un amperometro in serie. Quando accendiamo il generatore sull'elettrodo negativo (catodo) si avvicinano gli ioni Cu^{2+} che catturando 2 elettroni poi si legano all'elettrodo stesso; processo simile avviene all'anodo con lo ione SO_4^{2-} che cedendo i due elettroni forma di nuovo il sale che si stacca dall'elettrodo e si dissolve nell'acqua.
- misurando allora gli elettrodi prima e dopo l'esperimento posso misurare la massa di rame di rame depositata sul catodo Δm , trovando dunque:

$$\frac{\Delta m}{M.A._{Cu}}N_{A}2e = Q = \sum_{i=1}^{n}I(t_{i})\Delta t$$

dove prendo degli intervalli di tempo abbastanza piccoli da considerare la corrente in quell'intervallo costante, l'errore maggiore è quello sulla massa.

• da queste considerazioni ottengo dunque (riscrivendo $F = N_A e$):

$$F = \frac{M.A._{Cu}}{2m} \sum_{i=1}^{n} I(t_i) \Delta t$$

se misuro circa gli stessi intervalli di tempo posso far uscire il mio Δt .

• a causa delle variazioni di temperatura della concentrazioni devo fare una soluzione sovrasatura e ciò ci aiuta anche a solvatare tutte le molecole d'acqua (per cui basta una saturazione);

soluzione elettrolitica

8 Lezione 23/10/2025

8.1 Misura della costante di Farady in laboratorio (parte 2)

La legge di Stokes vale nel caso in cui oggetti di grandi dimensioni si muovono in un fluido, ma nel nostro caso il solvente acqua è occupato a solvatare ioni, dunque dobbiamo considerare il caso in cui il composto è molto lontano dalla saturazione per misurare la dimensione dell'atomo.

Scioglieremo in 900ml di acqua circa 30g di rame (solubilità massima di $CuSO_4 \simeq 300 \frac{g}{I}$)

La corrente ionica che passa nel fluido utilizziamo una geometria semplice, due elettrodi planari e paralleli fra loro, immersi di un area Σ nella soluzione elettrolitica, separatati da una distanza d. In questo modo definisco uno spazio (d) entro la quale passa la mia corrente, essa la posso definire come un flussos (j) di corrente che posso considerare perpendicolare agli elettrodi poichè la forza più preponderante è quella elettrica, dunque il tempo necessario per attraversare d

$$j = 2ev[C_s]2 = 4e[C_s]v$$
 $I = \vec{j}\Sigma \cdot \hat{n} = 4e[C_s]\Sigma v$

dove C_s mi rappresenta il numero di molecole di soluto che ho disciolto nella soluzione rispetto al volume. Tutto il ragionamento è fatto per trovare la velocità media v_{infty} degli ioni che si muovono verso l'elettrodo.

$$v_{infty} = \frac{I}{4e[C_s]\Sigma}$$

Lo ione tende ad una velocità di deriva all'interno della soluzione, che è proporzionale al campo elettrico applicato e agli attriti viscosi. La velocità di deriva viene raggiunta in un tempo < 1ms nel caso del nostro caso. Dunque consideramo v = const, la sommatoria delle forze è nulla:

$$\frac{2eV}{d} - 6\pi\eta Rv_{\infty} = 0$$

essendo v la velocità di deriva, da qui posso ricavare il raggio della molecola composta da acqua e ione.

$$R = \frac{8e^2Vc_s\Sigma}{6\pi\eta Id} \quad R = {\rm raggio~molecola}$$

questo modello funziona solo se la resistenza della cella ha un comportamento Ohmnico, dunque ha una resistenza costante. Altrimenti se non fosse così troverei che in base al voltaggio che trovo la mia molecola ha raggi diversi. Dobbiamo allora misurare la **Resistenza della cella**, così da capire in che intervallo la cella è Ohmnica.

8.2 Diodi (parte 2)

Posso usare un diodo come rilevatore di particelle, perchè la giunzione pn è suscettivile all'energia che arriva sulla sua superficie. Nel diodo in polarizzazione inversa, se ho una grande differenza di potenziale ai capi del diodo vedo il fenomeno del *brakedown*, dunque un grande passaggio di corrente tra un attimo e l'altro.

Posso usare questo fenomeno per aumentare la zona di svuotamento fino al limite, così da avere degli atomi che volentieri cedono elettroni (essendo molto "stetchati"). Da questo effetto posso costruire un **rilevatore di raggi cosmici**. Per esempio per rilevare particelle cosmiche come i *muoni*, infatti questi attravversando il mio diodo svuotato questo urterà con le nubi elettroniche andando a volte a donare abbastanza energia per far uscire un elettrone dal suo guscio di valenza. Con questo fenomeno vado a creare sia un elettrone libero che una lacuna libera alla volta.

Essendo che il muone perde circa 10MeV, e per scalzare il mio elettrone mi servono circa 25eV, allora avrò una corrente significativa.

8.3 Positroni elettronici e cariche quantiche

Come possiamo utilizzare l'elettrone come strumento di misura? Oggi lo spieghiamo

8.4 Tubo catodico

È un cilindro di vetro con il vuoto all'interno, in grado di collimare gli elettroni tutti in un unico fascio (tramite un cannoncino elettronico) Che va a colpire uno schermo fluorescente, che si illumina quando viene colpito (il fenomeno della fluorescenza avviene in circa 10ns)

8.4.1 Produzione del cannoncino elettronico

Come sorgente di elettroni utilizziamo un filamento incandescente, tali elettroni avranno energia cinetica tale da superare quella di estrazione dal metallo

Inzialmente il cappuccio metallico è neutro, man mano che perde elettroni si carica positivamente, quindi devo collegarlo ad un *serbatoio di elettroni*, la Terra.

Ritorniamo alla vecchia distribuzione delle velocità di Maxwell-Boltzmann, che mi spiega anche la distribuzione degli elettroni emessi Al crescere dell'energia il numero degli elettroni diminuisce, la gran parte degli elettroni si troverà ad una certa E^*

All'uscita degli elettroni vi è una grande differenza di potenziale (1500V) posizionata su una piastra anodica posizionata davanti all'emettitore, se riesce ad uscire da un forellino esso si ritroverà a una certa E^{**} anche dopo l'uscita dal cannoncino. In questo modo ho creato un fascio di elettroni con una simile energia, di circa $E \simeq 1502 \ eV$.

9 Lezione 27/10/2025

9.1 Tubo catodico parte 2

9.1.1 Alcune precauzioni

- Bisogna stare molto attenti a dare la tensione giusta alla lampadina del tubo catodico, in quanto nel caso si bruci bisogna sostituire tutto il tubo catodico.
- La tensione di $\sim 1500V$, impostata a tale valore per:
 - non avere fenomeni di scarica,
 - fenomeni di emissione, infatti il metallo può essere soggetto ad fenomeni di vaporizzazione e emissione di raggi X. Essa è dovuto all'eccessiva energia degli elettroni che andando a collidere con il metallo vanno ad eccitare gli elettroni dei gusci più profondi, questi quando ritornando allo stato fondamentale emettono radiazioni nella banda dei raggi X.

9.1.2 Collimatore e griglia di controllo

All'uscita del cannoncino elettronico riesco ad ottenere un fascio di elettroni omocinetico (di energia $E \simeq 1 eV$) Per convogliarli tutti in un forellino si usa un elettrodo cilindrico, con una tensione di collimazione, ciò permette di avere il minimo di potenziale del campo sull' asse di simmetria, che è identico a quello del cilindro.

Mentre l'oscilloscopio funziona potrebbe essere utile fare delle operazioni di sistemazioni di tale fascio, poichè non posso semplicemente spegnere lo strumento, visto che i fenomeni d'interesse sono di pochi ms, viene aggiunta una griglia metallica (acciaio tungstennato), praticamente geometricamente trasparente (oscura meno dell'1% dell'area totale), ma molto fitta, infatti essa è composta da fili metallici di circa $10\mu m$ e distanziati di $10\mu m$ tra uno e l'altro. Dontandola di un potenziale negativo essa andrà a respingere gli elettroni prodotti, essa viene posizionata vicino al catodo che genera il fascio di elettroni, così che gli elettroni non abbiamo già acquistio un energia elevata. La sua funzione è quella di modulare il fascio di elettroni nell'intervallo di pochi ns.

9.1.3 Fase di misurazione

Questo strumento, in generale, viene utilizzato per misurare delle tensioni che variano nel tempo, attraverso il posizionamento di un condensatore piano collegato al generatore di tensione variabile (che genera il segnale da studiare) e posizionato con le due faccie sopra e sotto il fascio di elettroni.

Trascurando effetti di bordo (per esempio con elettrodi di guardia), posso affermare che quando l'elettrone passa tra le piastre del condensatore subirà una variazione della sua traiettoria dovuta al campo $E = \frac{V(t)}{d}$ generato dal condensatore.

Posso descrivere il mio elettrone attraverso la meccanica classica, perchè l'energia che fornisco è molto minore dall'energia di massa dell'elettrone ($\sim 0.511 MeV$), dunque:

$$\frac{1}{2}mv^2 = eV_{acc}$$

il mio elettrone dunque subirà una deviazione parabolica da parte del condensatore, e colpirà un punto diverso del mio schermo. Supponendo che le tensioni date siano in grado di far assumere una traiettoria coincidente alla forma superficiale dell'oscilloscopio, Essendo:

- L la lunghezza del cannoncino
- d la distanza delle due piastre
- D la distanza dal centro dello schermo
- l la lughezza della piastra del consensatore

posso mettere in relazione D con d tramite V(t), supponendo che il tutto in sia lineare (ovvero quando L >> l), posso approssimare \overline{LdD} ad un triangolo rettangolo (d << D)

La geometria della deviazione è la seguente: Dato J l'impulso dell'elettrone uscito dalla prima coppia di placche

$$p_{\perp} = m_e v_{\perp}$$

dove $v(\perp)$ è la velocità acquisita dopo le prime placche (prima aveva solo v_{\parallel}). Utilizzando il teorema dell'impulso:

$$dp_{\perp} = F_{elett}dt$$

dove $F_{elett} = eE = \frac{eV(t)}{d}$ e $dt = \frac{l}{v_{\parallel}}$, tempo nella quale l'elettrone attraversa il condensatore.

Il momento parallelo dell'elettrone, $p_{\parallel}=m_{e}v_{\parallel}$, posso invece collegarlo all'equazione dell'energia cinetica.

La distanza D dal centro dello schermo è data da:

$$D = L \tan(\theta)$$

dove

$$\tan(\theta) = \frac{p_{\perp}}{p_{\parallel}} = \frac{v_{\perp}}{v_{\parallel}}$$

Sviluppando i calcoli:

$$p_{\perp} = \frac{elV(t)}{dv_{||}}$$

$$\tan \theta = \frac{p_{\perp}}{p_{\parallel}} = \frac{elV(t)}{dmv_{\parallel}^2}$$

Sostituendo $v_{\parallel}^2 = \frac{2eV_a}{m}$:

$$\tan \theta = \frac{lV(t)}{2dV_a}$$

Infine:

$$D = L \tan \theta = \frac{Ll}{2dV_a} V(t)$$

Dunque $D \propto V(t)$.

Inserisco inoltre un altro condensatore verticale alimentato da tensione variabile a dente di sega.

Rampe lineari rappresentano il segnale di deflessione orizzontale. La caduta rapida riporta il fascio all'inizio del prossimo sweep.

Questo mi serve per spostare il fascio da sinistra a destra dello schermo v costante passando da una certa V_0 a $-V_0$ (all'inizio positiva perchè devo attarre gli e^-),

9.1.4 Limiti dello strumento

Pensando ad un segnale sinusoidale posso "riportarlo indietro", ma perdendo qualche ms, dunque vedrò il secondo segnale sfasato

Ora entra in gioco la griglia per schermare gli elettroni, che mi serve per evitare di avere fenomeni di sfasamento, infatti utilizzo un sistema di trigger: imposto l'oscilloscopio che trasmetta il segnale solo dopo un tempo di trigger $\Delta^*t > \Delta t$, (maggiore del tempo che ci metto a riportare il segnale a tensione iniziale) Inoltre impongo l'inizio della misurazione solo quando il segnale si trova al di sopra di una tensione di soglia V_T , per ogni ripetizione. Questo mi permette di vedere il segnale sempre in fase ed evitare l'errore dovuto a Δt .

Quando quando si ha una variazione di V(t) molto elevata, dunque ho un cambio repentino del potenziale, troppo elevato rispetto al tempo che in cui l' elettrone attraversa il condensatore $(dt = \frac{d}{v_{\parallel}})$. Se la mia frequenza di variazione $f_{V(t)} \simeq \frac{1}{dt}$, avrò degli errori molto elevati.

Altri errori si generano dalle capacità parassite del circuito, $RC = \tau$, che ha le dimensioni di un tempo. La frequenza alla quale ho molti errori dovute alle caratteristiche instrinseche dell'oscilloscopio è dato da:

$$\sqrt{{(\frac{1}{\Delta t})}^2+{(\frac{1}{\tau})}^2}$$

Il teorema di Nyquist-Shannon stabilisce che per campionare un segnale devo avere una frequenza di campionamento che è almeno il doppio della frequenza massima del segnale da studiare per una corretta ricostruzione.