Dimensionality Reduction Techniques in Time-Dependent Problems

Kyle Godbey

Google slides link with videos:

https://docs.google.com/presentation/d/1gecxfpX7yjzau2 v2dicd6F5nneVk2Xlraw4ht8wERGM/edit?usp=sharing

Dynamics Are More Than Reactions!

Dynamics Are More Than Reactions!

Reactions, resonant phenomena, decays, etc. are all governed by the dynamics of the quantum many-body problem

Explicit time evolution is a **very** powerful framework if you can afford it

Sensitivity to the intricacies in the nuclear structure

Explicit dynamics of shape evolution

Don't Forget Transfer and Equilibration

Perspectives for Time-Dependent Emulation

Two large classes: data-driven and model-driven

Model-driven:

The reduced basis method (and related approaches) are a natural first place to check.

In general, we need to inform our basis with information

across time for our system:

We take our snapshots across time and parameter space and generate our POD basis:

And, in the simplest RBM implementation, we can just propagate in time with our reduced Hamiltonian:

TDRBM Examples - Adding Nonlinearity

New term that depends on ϱ !

 q_Q with q < 0

 $q\varrho$ with q > 0

TDRBM Roundup

In general we need a bigger basis, but we get away with larger time steps thanks to the increased stability

This is for a periodic system, albeit a complicated one.

Ultimate goal of collision emulator is likely difficult for RBMs in this naive implementation

Perspectives for Time-Dependent Emulation

Data-driven:

Dynamic Mode Decomposition (DMD)

Fourier Neural Operators

Neural Implicit Flow (NIF)

+ a whole zoo...

"dimensionality reduction"

About 430,000 results (0.08 sec)

Dynamic Mode Decomposition

Sparse Identification of Nonlinear Dynamics

What if we could mine the form of the time dynamics directly from the data?

Sparse Identification of Nonlinear Dynamics

Also good candidate for model discovery even beyond time dynamics!

Even more data-driven: let's look at hypernetworks for learning dynamics

Student Aaron Philip making good headway for applications to TDDFT! First phase is wrapping up now.

UURAF 2023 Award Winner

Goldwater Scholarship 2024

Neural Implicit Flow (as an interpolator)

Deployable Emulators

Deployable Emulators - Perspectives for Experimental Design and Control?

R. Roussel et al, Phys. Rev. Lett. 130, 145001

Challenges?

Let's discuss! Each application domain has its own – as a community we should try to identify common issues and appropriate solutions

It's gonna be a long journey, so please share what you learn along the way!

https://dr.ascsn.net

https://forum.ascsn.net