Semigroups and Groups (半群与群)

Zhang Yanmei

ymzhang@bupt.edu.cn

College of Computer Science & Technology Beijing University of Posts & Telecommunications

Content

- Binary Operations and It's properties
- Free Semigroup (A*,.) (🏄 🛴
- An Abelian Group
- Theroems
- Finite Groups
- Group of order 1,2,and 3
- Group of order 4
- An Interesting Group:
- Permutation Group and Cyclic Group

Definition

- Given a set G and a binary operation * on G. For any element *a*,*b*,and *c* in G,
 - Closure: $a*b \in G$
 - Associative: (a*b)*c=a*(b*c)
 - Identity: a unique element $e \in G$, such that a*e=e*a=a
 - Inverse: an element $a' \in G$ of a, written as a^{-1} , such that $a*a^{-1} = a^{-1}*a = e$.
 - Commutative: a*b=b*a

Groupoid 广群

- A nonempty set G with a binary operation * is called Groupoid if for any element *a*,*b* in G,
 - Closure: $a*b \in G$

Semigroup 半群

- A nonempty set G with a binary operation *
 is called Semigroup if for any element a,b
 and c in G,
 - Closure: $a*b \in G$
 - Associative: (a*b)*c=a*(b*c)

Monoid 独异点/含幺半群

- A nonempty set G with a binary operation * is called Semigroup if for any element a,b and c in G,
 - Closure: $a*b \in G$
 - Associative: (a*b)*c=a*(b*c)
 - Identity: a unique element $e \in G$, such that a*e=e*a=a

Group 群

- A nonempty set G with a binary operation * is called Group if for any element a, b and c in G,
 - Closure: $a*b \in G$
 - Associative: (a*b)*c=a*(b*c)
 - Identity: a unique element $e \in G$, such that a*e=e*a=a
 - Inverse: an element $a' \in G$ of a, written as a^{-1} , such that $a*a^{-1} = a^{-1}*a = e$.

Abelian Groupoid

- A groupoid is called Abelian groupoid if for any element a,b in G, Commutative: a*b=b*a.
- A semigroup is called Abelian semigroup if for any element a,b in G, Commutative: a*b=b*a.
- A monoid is called Abelian monoid if for any element a,b in G, Commutative: a*b=b*a.
- A group is called Abelian group if for any element a,b in G, Commutative: a*b=b*a.

Theorem(Associativity)

- If $a_1, a_2,..., a_n, n \ge 3$, are arbitrary elements of a semigroup, then all products of the elements a_1 , $a_2,..., a_n$ that can be formed by inserting meaningful parentheses arbitrarily are equal.
 - Proof are omitted

Notice

- Theorem 1 shows that the products
 - $((a_1*a_2)*a_3)*a_4$
 - $a_1*(a_2*(a_3*a_4))$
 - $a_1*(a_2*a_3))*a_4$
 - are all equal.
- If $a_1, a_2,..., a_n$ are elements in a semigroup (S, *), then the product can be written as
 - $a_1 * a_2 * ... * a_n$

Examples

- **■** (Z, +)
 - Z: the set of all integers.
 - + : ordinary addtion.
- **■** (Z, −)
 - Z: the set of all integers.
 - : ordinary subtraction.
- \bullet $(P(S), \cup)$
 - \blacksquare P(S): the powerset of S.
 - \cup : union operation on sets

Example 5

- Let (L, \leq) be a lattice. Define a binary operation on L by
 - $a*b = a \lor b.$
- Then L is a semigroup. 356

Selmigroup

Free semigroup (A*,.)

- Let $A = \{a_1, a_2, ..., a_n\}$ be an alphabet.
 - Let A^* is the set of all finite sequences of elements of A.
 - α , β and γ be elements of A^* .
- The catenation is a binary operation \cdot on A^* .
 - if $\alpha = a_1 a_2 ... a_s$ and $\beta = b_1 b_2 ... b_t$
 - $\alpha \cdot \beta = a_1 a_2 \dots a_s b_1 b_2 \dots b_t$
 - if α , β , and γ are any elements of A^* ,
 - $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma.$

Theroem(Free semigroup)

- (A^*, \cdot) is a semigroup.
- called the free semigroup generated by $A(\pitchfork A \pm 成的自由半群)$.

An Abelian Group

- Example:
 - Let G be the set of all nonzero real numbers,
 and
 - a*b=ab/2
- Show (G, *) is an abelian group.

Proof (1)

- * is a binary operation
 - If a and b are elements of G,
 - then ab/2 is a nonzero real number and
 - hence is in G.
- associativity
 - (a*b)*c = (ab/2)*c = (ab)c/4
 - $a^*(b^*c) = a^*(bc/2) = a(bc)/4 = (ab)c/4.$
 - * is associative.

Proof(2)

- 2 is the identity.
 - a*2 = (a)(2)/2 = a = (2)(a)/2 = 2*a.
- a' = 4/a is an inverse of a
 - a*a' = a*4/a = a(4/a)/2 = 2 = (4/a)(a)/2 = (4/a)*a = a' *a.
- Abelian
 - a*b = ab/2 = ba/2 = b*a
- So, *G* is an Abelian group.

Theorem (Uniqueness of Inverse)

- Let G be a group. Each element a in G has only one inverse in G.
- Proof
 - Let
 - \bullet a' and a" be inverses of a.
 - Then
 - a' = a'e = a'(aa'') = (a'a)a'' = ea'' = a''.

Theorem(Left/Right Cancellation)

- Let
 - G be a group and
 - $\blacksquare a, b,$ and c be elements of G.
- Then
 - ab = ac implies that b = c
 - ba = ca implies that b = c

Proof

Left cancellation

- Suppose that ab = ac.
- $a^{-1}(ab) = a^{-1}(ac)$
- $(a^{-1}a)b = (a^{-1}a)c$ by associativity
- eb = ec by the definition of an inverse
- b = c by definition of an identity.
- Right cancellation
 - The proof is similar to above.

Theorem(Inverse of Inverse)

- Let
 - G be a group and
 - a and b be elements of G.
- Then

 - $(a^{-1})^{-1} = a.$ $(ab)^{-1} = b^{-1}a^{-1}$

Proof

$$a^{-1}a = aa^{-1} = e$$

- the inverse of an element is unique,
- \bullet So, $(a^{-1})^{-1} = a$
- $(ab)^{-1} = b^{-1}a^{-1}$
 - $(ab)(b^{-1}a^{-1}) = a(b(b^{-1}a^{-1})) = a((bb^{-1}) a^{-1}) = a(ea^{-1}) = aa^{-1} = e$
 - similarly, $(b^{-1}a^{-1})(ab) = e$
 - so $(ab)^{-1} = b^{-1}a^{-1}$

Theorem(Solution to Equation)

- Let
 - G be a group, and a and b be elements of G
- Then
 - The equation ax = b has a unique solution in G.
 - The equation ya = b has a unique solution in G.
- Proof is omitted

Finite group - 有限群

- If G is a group that has a finite number of elements, G is said to be a *finite group*, and the $order(\mathcal{M})$ of G is the number of elements |G| in G.
- A finite group can be represented in the form of the multiplication table.

Group of order 1, 2

- If G is a group of order 1, then
 - $G = \{e\}$, and ee = e.
- Let $G = \{e, a\}$ be a group of order 2.
 - The blank can be filled in by *e* or by *a*?

Tat	ole	9.1
	e	a
e	e	a
a	a	
-		

Ta	ble	9.2
	e	<u>a</u>
e	e	a
a	a	e

Nonisomorphic groups of order 3

Let $G = \{e, a, b\}$ be a group of order 3.

Ta	ble	9.3	
J	e	а	b
e	e	а	b
a	a		
b	b		
1	-		

la	ble	9.4	
	е	а	b
e	e	a	b
a	а	b	e
b	b	e	a

Groups of order 4

Let $G = \{e, a, b, c\}$ be a group of order 4

Table 9.5

_						
41	e	а	b	С		
e	e	a	b	С		
a	а	e	С	b		
b	b	C	e	a		
c	С	b	a	e		

Table 9.6

-						
	e	a	b	С		
e	e	a	Ь	C		
a	a	e	Ů.	b		
b	b	c	а	e		
c	С	b	e.	a		
		- A				

Table 9.7

1	e	a	b	с
e	e	a	b	c
a	a	b	C	e
b	b	C	e	a
С	С	e	a	b

Table 9.8

_				_
-	e	а	ь	c
e	e	a	b	С
a	a	c	e	b
b	b	e	C	а
C	С	b	а	e

<u>34</u> 35

Example 5

Let $B = \{0, 1\}$, and let + be the operation defined on B as follows:

 \blacksquare Then B is a group.

An interesting group

- Given the equilateral triangle with vertices 1, 2, and 3
- Consider it's symmetries.

Figure 9.3

Symmetries of the triangle

- There are counter-clockwise rotations f_2 , f_3 , f_1 of the triangle about O through 120^{60} , 240^{6} , 360^{6} (or 0^{6}) respectively.
- f_1, f_2, f_3 can be written as the permutations.

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

Symmetries of the triangle

- Three additional symmetries of the triangle are g_1 , g_2 , and g_3 , by reflecting about the lines l_1 , l_2 , and l_3 , respectively.
- Denote these reflections as the following permutations:

$$g_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, g_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

Group of symmetries of the triangle

Let $S_3 = \{f_1, f_2, f_3, g_1, g_2, g_3\}$ and the operation *, followed by, on the set S_3 is defined as follows:

*	f_1	${f}_2$	f_3	\boldsymbol{g}_{1}	g 2	g_3
f_1	f_1	f_2	f_3	g_{1}	g 2	g_3
f_2	f_2	f_3	f_1	g_3	\boldsymbol{g}_{1}	g_2
f_3	f_3	${f}_1$	${f}_2$	g_2	g 3	\boldsymbol{g}_1
g_1	g_{1}	g_2	g_3	f_1	f_2	f_3
g 2	g_2	g 3	\boldsymbol{g}_1	f_3	f_1	f_2
g_3	g_3	g_{1}	g 2	f_2	f_3	f_1

Compute $f_2^*g_2$ geometrically

We can compute f_2*g_2 geometrically by roating and flipping the triangle.

Given triangle

Triangle resulting after applying f_2

Triangle resulting after applying g₂ to the triangle at the left

Compute $f_2^*g_2$ algebraically

■ To compute f_2*g_2 algebraically, we compute $f_2°g_2$ (composition of functions).

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = g_1$$

• Therefore $f_2 * g_2 = g_1$.

Permutation Group

- The set of all permutations of *n* elements is a group of order *n*! under the operation of composition.
- This group is called the *symmetric group on n letters* (n次对称群) and is denoted by S_n .
- permutation group(置换群): a group with some permutations of n elements.

S4 Group of symmetries of the squre

$$f_1 = \begin{pmatrix} 1234 \\ 1234 \end{pmatrix} f_2 = \begin{pmatrix} 1234 \\ 2341 \end{pmatrix} f_3 = \begin{pmatrix} 1234 \\ 3412 \end{pmatrix}$$

$$f_4 = \begin{pmatrix} 1234 \\ 4123 \end{pmatrix} f_5 = \begin{pmatrix} 1234 \\ 2143 \end{pmatrix} f_6 = \begin{pmatrix} 1234 \\ 4321 \end{pmatrix}$$

$$f_7 = \begin{pmatrix} 1234 \\ 3214 \end{pmatrix} \quad f_8 = \begin{pmatrix} 1234 \\ 1432 \end{pmatrix}$$

S4 Group of symmetries of the squre

0	f_1	f_2	f_3	f ₄	f ₅	f_6	f7	f_8
f_1	f_1	f_2	f_3	f ₄ f ₁ f ₂ f ₃ f ₈ f ₇ f ₅ f ₆	f_5	f_6	fr	f_8
f_2	f_2	f_3	f_4	f_1	f_8	fr	f_5	\int_{6}
f_3	f_3	f_4	f_1	f_2	f_6	f_5	f_8	f_7
f_4	f_4	f_1	f_2	f_3	f_7	f_8	f_6	f_5
f_5	f5	f_7	f_6	f_8	f_1	f_3	f_2	f_4
f_6	f_6	f_8	f_5	f_7	f_3	f_1	f_4	f_2
f_7	f	f_6	f_8	f_5	f_4	f_2	f_1	f_3
f_8	f_8	f_5	f_7	f_6	f_2	f_4	f_3	f_1

Carley's Group Theroem

Every Finite Group of order *n* can be represented as a Permutation Group on n letters.

Homework

- 12,16 @348
- Ex1. Let G be a group. For $a,b \in G$, we say that b is conjugate to a, written by $b \sim a$, if there exist $g \in G$ such that $b = gag^{-1}$. show that is a equivalence relation on G. The equivalence classes of are called the conjugacy classes of G.
- Ex2. Let G be a group, and suppose that a and b are any elements of G. Show that if $(ab)^2 = a^2b^2$, then ba = ab.
- Ex3: Let $G = \{x \in R | x > 1\}$ be the set of all real numbers greater than 1. For $x, y \in G$, define x*y=xy-x-y+2. Show that (G,*) is a group.