DIESE PRÄSENTATION SOLL HELFEN SICH IN DIE BERECHNUNG VON **GLEITLAGERN BEI** HYDRODYNAMISCHER SCHMIERUNG **ZURECHTZUFINDEN UND SIE** SCHNELL ZU ERLERNEN.

Einfluss auf die Lagerbreite

So breit wie nötig, so schmal wie möglich.

(15-5) mittlerer Lagerdruck
$$p_L = \frac{F}{b \cdot d_L} < p_{Lzul}$$

b und dL aus TB 15-1a bis 1e

Erfahrungswerte PL zul TB 15-7

relatives Lagerspiel

$$\begin{array}{ll} \text{(15-8)} & \\ \text{relatives} & \\ \text{Lagerspiel} & \end{array} \psi = \frac{s}{d_L} = \frac{d_L - d_W}{d_L} \qquad = \quad \frac{d_L - d_W}{d_W}$$

Vorteile

geringe Reibung geringe Lagertemperatur geringe Verkantungsgefahr geringere Drücke hohe Lagertemperatur

Verkantungsempfindlichkeit

(15-5)

mittlerer Lagerdruck

$$p_{L} = \frac{F}{b \cdot d_{L}} < p_{Lzul}$$

N/mm²

b und dL aus TB 15-1a bis 1e und 15-2

Erfahrungswerte PL zul TB 15-7

Übung:

F= 3KN

Gleitlager DIN ISO 4379-1 Form F

dL = 16,00mm

b= 30mm

Ges.: PL,

PL zul für CU-Pb-Legierung TB 15-7

 $\begin{array}{c}
b \\
\hline
P_{l} \\
\hline
P_{max}
\end{array}$

Darf das Lager so verwendet werden?

(15-5)

mittlerer Lagerdruck

$$p_{L} = \frac{F}{b \cdot d_{L}} < p_{Lzul}$$

N/mm²

b und dL aus TB 15-1a bis 1e und 15-2

Erfahrungswerte PL zul TB 15-7

Übung:

F= 3KN Gleitlager DIN ISO 4379-1 Form F dL = 16,00mm b= 30mm

Ges.:

PL = 3000N/ 30mm*16,00mm = 6,25 N/mm²
PLzul für CU-Pb-Legierung TB 15-7= 7N/mm²

Darf das Lager so verwendet werden? Ja da PL<PLzul

Übung:

F=3KN

Gleitlager DIN ISO 4379-1 Form F

dL = 16,00

dw = 15,90

 $PL = 3000N/30mm*16,00mm = 6,25 N/mm^2$

RelativesLagerspiel

$$\begin{array}{ll} \text{relatives} & \psi = \frac{s}{d_L} = \frac{d_L - d_W}{d_L} & = & \frac{d_L - d_W}{d_W} \end{array}$$
 Lagerspiel

Bildquelle www.prezisa.de

15-8

Bitte rechnen sie Ψ (Psi)

Übung:

F= 3KN

Gleitlager DIN ISO 4379-1 Form F

dL = 16,00

dw = 15,90

 $PL = 3000N/30mm*16,00mm = 6,25 N/mm^2$

RelativesLagerspiel

relatives
$$\psi = \frac{s}{d_L} = \frac{d_L - d_W}{d_L} = \frac{d_L - d_W}{d_W}$$
 Lagerspiel

Bildquelle www.prezisa.de

15-8

$$\Psi_{\rm B} = \frac{\rm s}{\rm d_L} = \frac{\rm d_L - d_W}{\rm d_L} = \frac{{}^{16,00mm-15,90mm}}{{}^{16,00mm}} = 0,0062$$

× Sommerfeldzahl

* die Sommerfeldzahl ist die Kennzahl für den Lastbereich von Gleitlagern. Sie sagt aus, dass Lager mit gleicher S_o Zahl, sofern das Verhältnis tragende Lagerbreite b/Lagerinnendurchmesser d_L und die Ölzuführungselemente gleich sind, hydrodynamisch ähnlich sind, d.h. das Lager mit der gleichen Sommerfeldzahl im Betrieb das gleiche Verhalten aufzeigen.

(15-11) Sommerfeldzahl So =
$$\frac{p_L \times_W B}{\eta_{eff} \times_{\omega_{eff}}} = \frac{F \times_W B}{b \times_d L \times_{\eta_{eff}} \times_{\omega_{eff}}}$$
 Winkelgeschwindigkeit $\omega_{eff} = 2 \times_{\pi_{w}} \times_{\eta_{w}}$ [$\frac{1}{-}$] Siehe TB 15-9

× Sommerfeldzahl Übung:

Für ω_{eff} nw = 500 min $^{-1}$

```
Geg.: F=15KN ΨB=0,0016 b=100mm dL=125,02 θ_{eff}=40 °C So = \frac{F · Ψ_B^2}{b · d_L · η_{eff} · ω_{eff}} 15-11
```

Hinweis bei 15-11

Achtung Einheiten gut beachten.

× Sommerfeldzahl Übung:

Geg.:

F=15KN ΨB= 0,0016 b= 100mm dL= 125,02

$$So = \frac{F \cdot \psi_B^2}{b \cdot d_L \cdot \eta_{eff} \cdot \omega_{eff}}$$

15-11

Für
$$\eta_{eff}$$
 Schmierstoff = ISO VG 100 TB 15-9 ϑ_{eff} = 40 °C

 η eff = 90 m Pa s = 90 * 10⁻⁹ Ns / mm²

Für
$$\omega_{eff}$$
 nw = 500 min ⁻¹ Hinweis bei 15-11

$$\omega$$
eff = $2*\pi*nw = 2*\pi*500 \ 1/60s = 52,36 \ 1/s$

Sommerfeldzahl Übung

$$So = \frac{F \cdot \psi_B^2}{b \cdot d_L \cdot \eta_{eff} \cdot \omega_{eff}}$$

Eingabewerte:

Ergebnis:

So = 0,65

Aus der Sommerfeldzahl und dem Betriebskennwert (b/dL) ergibt sich die relative Exzentrizität (ϵ). Sie beschreibt Lage und Größe von h_0 .

β = Verlagerungswinkel (TB 15-15a)

b/dL = Richtwert (15-7)

× S_o≤1 und ε=0,6...0,95 störungsfreier Betrieb (Bereich B)

× S_o≤10 und ε 0,95...1 Verschleiß möglich (Bereich C)

 \star S_o<1 und ϵ <0,6 mögliche Instabilität der Wellenlage (Bereich A)

TB 15-13a u. b

- × S_0 ≤1 und ϵ =0,6...0,95 störungsfreier Betrieb (Bereich B)
- × S_o≤10 und ε 0,95...1 Verschleiß möglich (Bereich C)
- \times S_o<1 und ε <0,6 mögliche Instabilität der Wellenlage (Bereich A)

TB 15-13a u. b

- × Reibungsverhältnisse / Wärmebilanz
- * man benötigt die Reibungsverlustleistung (PR)

Wird mit So und b/dL aus TB 15-14a oder c abgelesen.

Reibungsverlustleistung Übungsaufgabe

Geg.:

F=15KN b/dL=0,799 $n_W = 500 \text{ min}^{-1}$ $\Psi B = 0.0016$ b= 100mm $S_0 = 0.65$ dL= 125,02 dw=124,82 Π eff = 90 m Pa s = 90 * 10⁻⁹ Ns / mm² $\omega_{eff} = 52,36 \, 1/s$ $P_R = \mu \cdot F \cdot u_w$ (15-14) μ = Reibungszahl Lagerkraft Wellenumfangsgeschwindigkeit $\mu = (\mu/\Psi B)*\Psi B$ $u_w = dw*\pi*nw$ (m/s)Wird mit So und b/dL aus dw = Durchmesser Welle (m) TB 15-14a oder c abgelesen. nw = Wellendrehzahl (1/s)

Reibungsverlustleistung Übungsaufgabe

Geg.:

$$b/dL=0,799$$

$$\Psi B = 0,0016$$

$$\Psi B = 0.0016$$
 nw = 500 min⁻¹

$$\omega$$
eff = 52,36 1/s

 $P_R = \mu \cdot F \cdot u_w$

≈ aus TB 15-14c

Eingabewerte:

 $\Psi_{B} = 0,0016$

Ergebnis:

 $P_{R} = 474,141 W$

Reibungsverhältnisse / Wärmebilanz

Allgemein gilt
$$P_R = Pa$$
 o. Pc (RM Seite558)

Fall 1: Natürliche Kühlung (15-17)

$$\begin{array}{l} \vartheta_{L} = \vartheta_{u} + \frac{P_{R}}{\alpha \cdot A_{G}} & (= Pa) \\ P_{\alpha} = \alpha \cdot A_{G} \cdot (\vartheta_{m} - \vartheta_{U}) & (15-15) \\ \vartheta_{L} - \vartheta_{O} & \leq 2^{\circ}C & \longrightarrow & \vartheta_{L} \approx \vartheta_{eff} < \vartheta_{L} zul \\ & \downarrow \text{Nein} \\ \vartheta_{O \ neu} = 0,5 \ (\vartheta_{O \ alt} + \vartheta_{m}) \end{array}$$

 \star das Lager stellt sich auf eine mittlere Temperatur ein $^{\vartheta_L}$, der den zulässigen Wert $\vartheta_{\text{L zul}}$ (TB 15-17) nicht überschreiten darf.

Reibungsverhältnisse / Wärmebilanz Übung

Richttemperatur von So = ϑ_o = ϑ_{eff} = 40° C

kleinste Schmierspalthöhe (h_o)

$$h_0 = 0.5 \cdot d_L \cdot \psi_B \cdot (1 - \epsilon) \cdot 10^3 \ge h_{0 \text{ zul}}$$

$$h_0 \ge h_{0 zul} \longrightarrow (TB 15-16)$$

h _{0 zul} nach DIN 31 652						
		Grenzrichtwerte h _{0 zul} in μm				
Wellen durchmesser d _w in mm		Wellengeschwindigkeit u _w in m/s				
		0 bis 1	über 1	über 3	über 10	über 30
über	bis		bis 3	bis 10	bis 30	bis 100
25 ¹⁾	63	3	4	5	7	10
63	160	4	5	7	9	12
160	400	6	7	9	11	14
400	1000	8	9	11	13	16
1000	2500	10	12	17	16	18