Week Three, Lecture One

Recap

Finite state languages are all languages accepted by a finite state machine.

• FSM = DFA or NFA

DFAs are a very concrete model of patterns. NFAs are a very abstract model. Is there something in between?

- Is there a "pure pattern" model?
- Yes, regular expressions.

Regular expressions are declarative, "pure patterns," not in any way imperative.

• They do not tell you *how* like a DFA

But in fact, regular expressions are exactly equivalent to both DFAs and NFAs (which are also equivalent).

$$RegEx = DFA = NFA$$

Regular Expressions 🔌:cat:🎇

With just three operations, you can represent everything you can with an FSM:

- 1. Union
- 2. Concatenation 55
- 3. Kleene star 💥

Syntax	Semantics
a	{a}
ε	{ε}
Ø	{}
$R \cup S$	"Set of strings denoted by R" ∪ "Set of string denoted by S"
$R \circ S$	"Set of strings denoted by R" o "Set of string denoted by S"
R*	(Set denoted by R)*

Suppose we have an alphabet $\{0,1\}$ a language $L = \{all even length strings\}$. How would we represent this with a RegEx?

$$((0 \cup 1) \circ (0 \cup 1))^{\setminus *}$$

Suppose we have another language $L = \{\text{no two 1's adjacent}\}\$.

$$0^{1}(100^{1})^{1} \circ (1 \cup \varepsilon)$$

We need the term " \circ (1 \cup ϵ)" to account for "01".

Context-Free Grammars

$$G := (V, \Sigma, R, S)$$

- V = finite set of variables
 - usually represented as capital letters
- Σ finite set of terminals/symbols
 - same thing as alphabet
- R = finite set of rewriting rules
 - \circ of the type $V \to (V \cup \Sigma)^*$
- S = start variable

In terms of operator precedence, Kleene-star > concatenation > union.

• This also corresponds to our intuition of concatenation as multiplication and union as addition (and kinda Kleene-star as exponentation?).