Case No.: Page No.: 21241P

Amendment to the Claims:

Listing of Claims:

1. (original) A compound represented by formula I:

$$R^{1}$$
 R^{3}
 R^{4}
 R^{5}
 $(CH_{2})_{n}(CR^{6}R^{7})_{m}Z$

or a pharmaceutically acceptable salt or solvate thereof, wherein:

R¹ represents H or is independently selected from the group consisting of:

a) OH, halo, CO₂R^a, C(O)NR^bR^c, NR^bR^c, CN or S(O)_pR^d;

b) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, OC_{1-10} alkyl, OC_{3-10} alkenyl and OC_{3-10} alkynyl, said groups being optionally substituted with: (1) 1-5 halo groups up to a perhaloalkyl group; (2) 1 oxo group; (3) 1-2 OH groups; (4) 1-2 C_{1-10} alkoxy groups, each optionally substituted with: up to five halo or a perhaloalkoxy, 1 OH or CO_2R^a group; (5) 1 CO_2R^a or $S(O)_pR^d$; (6)1-2 Aryl, Hetcy or HAR groups, each optionally substituted as follows: (a) 1-5 halo groups, (b) 1 OH, CO_2R^a , CN, $S(O)_pR^d$, NO_2 or $C(O)NR^bR^c$ group, (c) 1-2 C_{1-10} alkyl or alkoxy groups, each optionally substituted with: 1-5 halo, up to perhaloalkyl, and 1-2 OH or CO_2R^a groups; and (d) 1-2 phenyl rings, each of which is optionally substituted as follows: 1-5 halo groups up to perhalo, 1-3 C_{1-10} alkyl or alkoxy groups, each being further optionally substituted with 1-5 halo up to perhalo, or 1-2 hydroxy or CO_2R^a groups; (e) - NR^a -C(O)- NR^bR^c ; (f) - NR^a - CO_2R^c ; (g) - NR^a - $C(O)R^c$; (h) - NR^bR^c ; (i) - $NR^aSO_2R^c$; (j) - SO_2 - NR^bR^c ; (k) - $C(O)NR^bR^c$ and (l) -OC(O)- NR^bR^c ;

c) Aryl, HAR, Hetcy, -O-Aryl, -O-HAR and -O-Hetcy, each optionally substituted as set forth below: (1) 1-3 C_{1-10} alkyl, C_{2-10} alkenyl or C_{2-10} alkynyl groups optionally substituted with 1-5 halo groups; 1-2 OH groups; phenyl optionally substituted with 1-3 halo, C_{1-6} alkyl or C_{1-6} alkoxy groups, the alkyl and alkoxy groups being further optionally substituted with 1-3 halo groups; CO_2R^a ; CN or $S(O)_pR^d$ groups; and (2) 1-3 C_{1-10} alkoxy groups, the alkyl portion of which is optionally substituted with 1-5 halo groups, 1-2 OH; phenyl optionally substituted with 1-3 halo, C_{1-6} alkyl or C_{1-6} alkoxy groups, the alkyl and alkoxy groups being further optionally substituted with 1-3 halo groups; CO_2R^a ; CN or $S(O)_pR^d$ groups;

said Aryl, HAR, Hetcy -O-Aryl, -O-HAR and -O-Hetcy group c) being further optionally substituted on carbon by a group selected from the group consisting of: (3) 1-5 halo groups; (4) 1-2 OH

Case No.: Page No.: 21241P

groups; (5) $1 \text{ S(O)}_p R^d$, NO_2 or CN group; (6) $1\text{-}2 \text{ CO}_2 R^a$; (7) $-NR^a\text{-}C(O)\text{-}NR^bR^c$; (8) $-NR^a\text{-}CO_2 R^c$; (9) $-NR^a\text{-}C(O)R^c$; (10) $-NR^bR^c$; (11) $-NR^aSO_2R^c$; (12) $-SO_2\text{-}NR^bR^c$; and (13) $-C(O)NR^bR^c$; and when R^1 represents Hetcy containing a nitrogen atom, said nitrogen atom can be optionally substituted with a member selected from the group consisting of: (a) $-C(O)NR^bR^c$; (b) $-CO_2R^c$; (c) $-C(O)R^c$; and (d) $-SO_2R^c$;

each R² represents H or is independently selected from the group consisting of:

- a) OH, halo, CO₂R^a, C(O)NR^bR^c, NR^bR^c, CN or S(O)_pR^d;
- b) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, OC_{1-10} alkyl, OC_{3-10} alkenyl and OC_{3-10} alkynyl, said groups being optionally substituted with: (1) 1-5 halo groups up to a perhaloalkyl group; (2) 1 oxo group; (3) 1 OH group; (4) 1 C_{1-10} alkoxy group, each optionally substituted with: up to five halo or a perhaloalkoxy, 1 OH or CO_2R^a group; (5) 1 CO_2R^a or $S(O)_pR^d$; (6) 1 Aryl, Hetcy or HAR group, each optionally substituted as follows: (a) 1-5 halo groups, (b) 1 OH, CO_2R^a , CN, $S(O)_pR^d$, NO_2 or $C(O)NR^bR^c$ group, (c) 1-2 C_{1-10} alkyl or alkoxy groups, each optionally substituted with: 1-5 halo, up to perhaloalkyl, and 1-2 OH or CO_2R^a groups; and (d) 1-2 phenyl rings, each of which is optionally substituted as follows: 1-5 halo groups up to perhalo; 1-3 C_{1-10} alkyl or alkoxy groups, each being further optionally substituted with 1-5 halo up to perhalo; and 1-2 hydroxy or CO_2R^a groups;
- c) Aryl, HAR, Hetcy, -O-Aryl, -O-HAR and -O-Hetcy, each optionally substituted as set forth below: (1) 1-3 C_{1-10} alkyl, C_{2-10} alkenyl or C_{2-10} alkynyl groups optionally substituted with 1-5 halo groups, 1-2 OH, phenyl, CO_2R^a , CN or $S(O)_pR^d$ groups; (2) 1-3 C_{1-10} alkoxy groups, the alkyl portion of which is optionally substituted with 1-5 halo groups, 1-2 OH, phenyl, CO_2R^a , CN or $S(O)_pR^d$ groups;

said Aryl, HAR or Hetcy group c) being further optionally substituted on carbon by a group selected from the group consisting of; (3) 1-5 halo groups up to perhalo; (4) 1 OH group; (5) 1 $S(O)_nR^d$, NO_2 or CN group; (6) 1 CO_2R^a ;

 R^3 represents H or is selected from the group consisting of: a) C_{1-10} alkyl or C_{2-10} alkenyl, each optionally substituted with 1-5 halo groups up to perhalo; 1-2 OH, C_{1-3} alkoxy or halo C_{1-3} alkoxy groups; 1-2 NR^cR^d groups; and 1-2 Aryl, HAR or Hetcy groups, each optionally substituted with 1-3 halo groups and 1-2 groups selected from CN, NO₂, C_{1-3} alkyl, halo C_{1-3} alkyl, C_{1-3} alkoxy and halo C_{1-3} alkoxy groups; and b) Aryl, HAR or Hetcy, each optionally substituted with 1-3 halo groups and 1-2 groups selected from CN, NO₂, C_{1-3} alkyl, halo C_{1-3} alkyl, C_{1-3} alkoxy and halo C_{1-3} alkoxy groups;

R⁴ is independently selected from the group consisting of:

a) C_{1-14} alkyl, C_{2-10} alkenyl and C_{2-10} alkynyl, said groups being optionally substituted with: (1) 1-5 halo groups up to perhaloalkyl; (2) 1 oxo group; (3) 1-2 OH groups; (4) 1-2 C_{1-10} alkoxy groups, each optionally substituted with up to five halo or a perhaloalkoxy, 1 OH or CO_2R^a group; (5) 1 CO_2R^a or $S(O)_pR^d$; (6) 1-2 Aryl, Hetcy or HAR groups, each optionally substituted as follows: (i) 1-5 halo groups, (ii) 1 OH, CO_2R^a , CN, $S(O)_pR^d$, NO_2 or $C(O)NR^bR^c$ group, (iii) 1-2 C_{1-10} alkyl or alkoxy

Page No.:

groups, each optionally substituted with: 1-5 halo, up to perhaloalkyl, and 1-2 OH or CO_2R^a groups; and (iv) 1-2 phenyl rings, each of which is optionally substituted as follows: 1-5 halo groups up to perhalo; 1-3 C_{1-10} alkyl or alkoxy groups, each being further optionally substituted with 1-5 halo up to perhalo, or 1-2 hydroxy or CO_2R^a groups;

b) Aryl, HAR or Hetcy, each optionally substituted as follows: (1) 1-3 C₁₋₁₄alkyl, C₂. ₁₀alkenyl or C₂₋₁₀alkynyl groups optionally substituted with 1-5 halo groups, 1-2 OH, CO₂R^a, CN or S(O)_pR^d groups or phenyl optionally substituted as follows: 1-5 halo groups up to perhalo; 1-3 C₁₋₁₀alkyl or alkoxy groups, each being further optionally substituted with 1-5 halo up to perhalo, or 1-2 hydroxy or CO₂R^a groups; (2) 1-3 C₁₋₁₀alkoxy groups, the alkyl portion of which is optionally substituted with 1-5 halo groups, 1-2 OH, CO₂R^a, CN, S(O)_pR^d, and phenyl optionally substituted as follows: 1-5 halo groups up to perhalo; 1-3 C₁₋₁₀alkyl or alkoxy groups, each being further optionally substituted with 1-5 halo up to perhalo, or 1-2 hydroxy or CO₂R^a groups; (3) 1-2 Aryl, HAR or Hetcy, OAryl, OHAR or OHetcy groups, each optionally substituted as follows: (i) 1-3 halo groups; (ii) 1-2 C₁₋₁₀alkyl, C₂₋₁₀alkenyl or C₂₋₁₀alkynyl groups each optionally substituted with 1-5 halo groups, 1-2 OH, phenyl, CO₂R^a, CN or S(O)_pR^d groups; (iii) 1-2 C₁₋₁₀alkoxy groups the alkyl portion of which being optionally substituted with 1-5 halo groups, 1-2 OH, phenyl, CO₂R^a, CN, NR^bR^c, NO₂ or OH groups;

said Aryl, HAR or Hetcy group b) being further optionally substituted on carbon by a group selected from the group consisting of: (4) 1-5 halo groups; (5) 1-2 OH groups; (6) 1 $S(O)_pR^d$, NO_2 or CN group; (7) 1-2 CO_2R^a ; (8) -NR^a-C(O)-NR^bR^c; (9) -NR^a-CO₂R^c; (10) -NR^a-C(O)R^c; (11) -NR^bR^c; (12) -NR^aSO₂R^c; (13) -SO₂-NR^bR^c; (14) -C(O) NR^bR^c and -OC(O)-NR^bR^c;

and when R^4 represents Hetcy containing a nitrogen atom, said nitrogen atom can be optionally substituted with a member selected from the group consisting of: (a) -C(O) NR^bR^c ; (b) -CO₂ R^c ; (c) -C(O) R^c ; and (d) -SO₂ R^c ;

 R^5 represents H or C_{1-6} alkyl;

R⁶ is selected from the group consisting of H, OH, F or C₁₋₃alkyl;

R⁷ is H or F, or R⁶ and R⁷ are taken in combination and represent oxo;

 R^8 represents H or C_{1-6} alkyl, optionally substituted with OH and 1-5 halo groups up to perhalo; R^9 represents H, halo, OH, C ₁₋₆alkyl, optionally substituted with 1-5 halo groups up to perhalo, or C_{1-6} alkoxy, optionally substituted with 1-3 halo groups up to perhalo,

or when R^9 is ortho to the benzylic group, R^8 and R^9 can be taken together and represent a -(CH₂)₂₋₄- or a -O-(CH₂)₁₋₃- group;

 R^a is H or C_{1-10} alkyl, optionally substituted with phenyl, OH, OC₁₋₆alkyl, CO₂H, CO₂C₁. 6alkyl and 1-3 halo groups;

Page No.:

In : 6

R^b is H or C₁₋₁₀alkyl;

R^c is H or is independently selected from: (a) C₁₋₁₀alkyl, optionally substituted with OH, OC₁₋₆alkyl, CO₂H, CO₂C₁₋₆alkyl, and 1-3 halo groups; (b) Aryl or Ar-C₁₋₆alkyl, each optionally substituted with 1-5 halos and 1-3 members selected from the group consisting of: CN, OH, C₁₋₁₀alkyl and OC₁₋₁₀ alkyl, said alkyl and alkoxy being further optionally substituted with 1-5 halo groups up to perhalo; (c) Hetcy or Hetcy-C₁₋₆alkyl, optionally substituted with 1-5 halo groups and 1-3 groups selected from: oxo, C₁₋₁₀alkyl and OC₁₋₁₀ alkyl, said alkyl and alkoxy being further optionally substituted with 1-5 halo groups and 1-3 groups selected from: C₁₋₁₀alkyl and OC₁₋₁₀ alkyl, said alkyl and alkoxy being further optionally substituted with 1-5 halo groups up to perhalo;

 R^d is C_{1-10} alkyl, Aryl or Ar- C_{1-10} alkyl; m is an integer selected from 0, 1 and 2; n is an integer selected from 0 to 6; p is an integer selected from 0, 1 and 2, and

when at least one of m and n is other than 0, Z is selected from CO_2R^a , 5-tetrazolyl and 5-(2-oxo-1,3,4-oxadiazolyl), and when both m and n are 0, Z is selected from 5-tetrazolyl and 5-(2-oxo-1,3,4-oxadiazolyl).

- 2. (original) A compound in accordance with claim 1 wherein R¹ represents H.
- 3. (original) A compound in accordance with claim 1 wherein one R^2 represents H, halo or C_{1-6} alkyl, and the other is selected from the group consisting of: H, halo, OH, C_{1-6} alkyl optionally substituted with 1-3 halo groups, C_{1-6} alkoxy optionally substituted with 1-3 halo groups or 1 phenyl or heterocyclic ring, C_{2-4} alkenyl or OC_{2-4} alkenyl.
- 4. (original) A compound in accordance with claim 1 wherein R3 is selected from the group consisting of: H, C2-4alkenyl and C1-6alkyl optionally substituted as follows: a) up to 3 halo groups; b) NRcRd wherein Rc and Rd are H or C1-4 alkyl; c) OH; and d) Aryl optionally substituted with 1-3 halo groups, C1-3 alkyl, OC1-3alkyl, CN, NO2, haloC1-3alkyl or O-haloC1-3alkyl.
- 5. (original) A compound in accordance with claim 1 wherein R⁴ is independently selected from the group consisting of:
- (a) C_{1-14} alkyl, optionally substituted with: (1) 1-5 halo groups up to perhaloalkyl; (2) 1-2 C_{1-10} alkoxy groups, each optionally substituted with 1-5 halo groups up to perhaloalkoxy; (3) 1-2

Int. Appln. No.:PCT/US2004/013874

US Appln. No.: US Filing Date:

To Be Assigned Concurrently 21241P

Case No .:

Page No.:

Aryl groups, each optionally substituted as follows: (i) 1-5 halo groups, (ii) CN or NO₂, (iii) 1-2 C₁. 10alkyl or alkoxy groups, each optionally substituted with: 1-5 halo, up to perhaloalkyl; and

Aryl, HAR or Hetcy, each optionally substituted as follows: (1) 1-2 C₁₋₁₀alkyl (b) or C_{2.10}alkenyl groups, optionally substituted with 1-5 halo groups, phenyl or CO₂R^a groups; (2) 1-2 C₁. ₁₀alkoxy groups, the alkyl portion of which is optionally substituted with 1-5 halo groups; (3) 1-2 Aryl, HAR or Hetcy, OAryl, OHAR or OHetcy groups, each optionally substituted as follows: (i) 1-3 halo groups; (ii) 1-2 C₁₋₁₀alkyl or C₂₋₁₀alkenyl, each optionally substituted with 1-3 halo groups; (iii) 1-2 C₁₋ ₁₀alkoxy groups the alkyl portion of which being optionally substituted with 1-3 halo groups, and (iv) 1-2 CO₂R^a, S(O)_pR^d, CN, NR^bR^c, NO₂ or OH groups;

said Aryl, HAR or Hetcy group b) being further optionally substituted on carbon by a group selected from the group consisting of: (4) 1-5 halo groups; (5) 1-2 OH groups; (6) 1 S(O)_pR^d, NO_2 or CN group; (7) 1-2 CO_2R^a ; (8) $-NR^a-C(O)-NR^bR^c$; (9) $-NR^a-CO_2R^c$; (10) $-NR^a-C(O)R^c$; (11) $-NR^bR^c$; (12) $-NR^aSO_2R^c$; (13) $-SO_2-NR^bR^c$; (14) $-C(O) NR^bR^c$ and (15) $-OC(O)-NR^bR^c$;

and when R⁴ represents Hetcy containing a nitrogen atom, said nitrogen atom can be optionally substituted with a member selected from the group consisting of: (a) -C(O) NR^bR^c; (b) - CO_2R^c ; (c) $-C(O)R^c$; and (d) $-SO_2R^c$.

> 6. (original) A compound represented by formula I:

or a pharmaceutically acceptable salt or solvate thereof, wherein:

R¹ represents H;

one R² represents H, halo or C₁₋₆alkyl, and the other is selected from the group consisting of: H, halo, OH, C₁₋₆alkyl optionally substituted with 1-3 halo groups, C₁₋₆alkoxy optionally substituted with 1-3 halo groups or 1 phenyl or heterocyclic ring, C₂₋₄alkenyl or OC₂₋₄alkenyl;

R³ is selected from the group consisting of: H, C₂₋₄alkenyl and C₁₋₆alkyl optionally substituted as follows: a) up to 3 halo groups; b) NR^cR^d wherein R^c and R^d are H or C₁₋₄ alkyl; c) OH; and d) Aryl optionally substituted with 1-3 halo groups, C₁₋₃ alkyl, OC₁₋₃ alkyl, CN, NO₂, haloC₁₋₃ alkyl or O-haloC₁₋₃alkyl;

R⁴ is independently selected from the group consisting of:

(a) $C_{1.14}$ alkyl, optionally substituted with: (1) 1-5 halo groups up to perhaloalkyl; (2) 1-2 C_{1-10} alkoxy groups, each optionally substituted with 1-5 halo groups up to perhaloalkoxy; (3) 1-2

Aryl groups, each optionally substituted as follows: (i) 1-5 halo groups, (ii) CN or NO_2 , (iii) 1-2 $C_{1.0}$ alkyl or alkoxy groups, each optionally substituted with: 1-5 halo, up to perhaloalkyl; and

(b) Aryl, HAR or Hetcy, each optionally substituted as follows: (1) 1-2 C_{1-10} alkyl or C_{2-10} alkenyl, optionally substituted with 1-5 halo groups, phenyl or CO_2R^a groups; (2) 1-2 C_{1-10} alkoxy groups, the alkyl portion of which is optionally substituted with 1-5 halo groups; (3) 1-2 Aryl, HAR or Hetcy, OAryl, OHAR or OHetcy groups, each optionally substituted as follows: (i) 1-3 halo groups; (ii) 1-2 C_{1-10} alkenyl, each optionally substituted with 1-3 halo groups; (iii) 1-2 C_{1-10} alkoxy groups the alkyl portion of which being optionally substituted with 1-3 halo groups, and (iv) 1-2 CO_2R^a , $S(O)_pR^d$, CN, NR^bR^c , NO_2 or OH groups;

said Aryl, HAR or Hetcy group b) being further optionally substituted on carbon by a group selected from the group consisting of: (4) 1-5 halo groups; (5) 1-2 OH groups; (6) 1 S(O)_pR^d, NO₂ or CN group; (7) 1-2 CO₂R^a; (8) -NR^a-C(O)-NR^bR^c; (9) -NR^a-CO₂R^c; (10) -NR^a-C(O)R^c; (11) -NR^bR^c; (12) -NR^aSO₂R^c; (13) -SO₂-NR^bR^c; (14) -C(O) NR^bR^c and (15) -OC(O)-NR^bR^c;

and when R⁴ represents Hetcy containing a nitrogen atom, said nitrogen atom can be optionally substituted with a member selected from the group consisting of: -C(O) NR^bR^c; (b) -CO₂R^c; (c) -C(O)R^c; and (d) -SO₂R^c;

R⁸ represents H or C₁₋₆ alkyl;

R9 represents H or halo;

R⁵ represents H or C₁₋₆ alkyl;

 R^6 is selected from the group consisting of H, OH, F or C_{1-3} alkyl;

R⁷ is H or F, or R⁶ and R⁷ are taken in combination and represent oxo;

 $R^a \ is \ H \ or \ C_{1\text{--}10} alkyl, \ optionally \ substituted \ with \ phenyl, \ OH, \ OC_{1\text{--}6} alkyl, \ CO_2H, \ CO_2C_{1\text{--}6} alkyl \ and \ 1\text{--}3 \ halo \ groups;$

R^b is H or C₁₋₁₀alkyl;

R^c is H or is independently selected from: (a) C₁₋₁₀alkyl, optionally substituted with OH, OC₁₋₆alkyl, CO₂H, CO₂C₁₋₆alkyl, and 1-3 halo groups; (b) Aryl or Ar-C₁₋₆alkyl, each optionally substituted with 1-5 halos and 1-3 members selected from the group consisting of: CN, OH, C₁₋₁₀alkyl and OC₁₋₁₀ alkyl, said alkyl and alkoxy being further optionally substituted with 1-5 halo groups up to perhalo; (c) Hetcy or Hetcy-C₁₋₆alkyl, optionally substituted with 1-5 halo groups and 1-3 groups selected from: oxo, C₁₋₁₀alkyl and OC₁₋₁₀ alkyl, said alkyl and alkoxy being further optionally substituted with 1-5 halo groups up to perhalo; and (d) HAR or HAR-C₁₋₆alkyl, optionally substituted with 1-5 halo groups selected from: C₁₋₁₀alkyl and OC₁₋₁₀ alkyl, said alkyl and alkoxy being further optionally substituted with 1-5 halo groups up to perhalo;

R^d is C₁₋₁₀alkyl, Aryl or Ar-C₁₋₁₀alkyl; m is an integer selected from 0, 1 and 2;

Page No.:

n is an integer selected from 0 to 6;

p is an integer selected from 0, 1 and 2, and

when at least one of m and n is other than 0, Z is selected from CO_2R^a , 5-tetrazolyl and 5-(2-oxo-1,3,4-oxadiazolyl), and when both m and n are 0, Z is selected from 5-tetrazolyl and 5-(2-oxo-1,3,4-oxadiazolyl).

7. (original) A compound represented by formula I:

$$\begin{pmatrix} R^{1} & R^{3} & R^{4} & R^{5} \\ N & N & R^{4} & R^{9} & (CH_{2})_{n}(CR^{6}R^{7})_{m}Z \\ R^{2} \end{pmatrix}_{2}$$

or a pharmaceutically acceptable salt or solvate thereof, wherein:

R¹ represents H;

one R^2 represents H, halo or C_{1-6} alkyl, and the other is selected from the group consisting of: H, halo, OH, C_{1-6} alkyl optionally substituted with 1-3 halo groups, C_{1-6} alkoxy optionally substituted with 1-3 halo groups or 1 phenyl or heterocyclic ring, C_{2-4} alkenyl or OC_{2-4} alkenyl;

 R^3 is selected from the group consisting of: H, C_{2-4} alkenyl and C_{1-6} alkyl optionally substituted as follows: a) up to 3 halo groups; b) NR^cR^d wherein R^c and R^d are H or C_{1-4} alkyl; c) OH; and d) Aryl optionally substituted with 1-3 halo groups, C_{1-3} alkyl, OC_{1-3} alkyl, CN, NO_2 , halo C_{1-3} alkyl or O-halo C_{1-3} alkyl;

R⁴ is independently selected from the group consisting of:

- a) C_{1-14} alkyl, optionally substituted with: (1) 1-5 halo groups up to perhaloalkyl; (2) 1-2 C_{1-10} alkoxy groups, each optionally substituted with 1-5 halo groups up to perhaloalkoxy; (3) 1-2 Aryl groups, each optionally substituted as follows: (i) 1-5 halo groups, (ii) CN or NO_2 , and (iii) 1-2 C_1 . $_{10}$ alkyl or alkoxy groups, each optionally substituted with: 1-5 halo, up to perhaloalkyl; and
- b) Aryl, HAR or Hetcy, each optionally substituted as follows: (1) 1-2 C_{1-10} alkyl or C_{2-10} alkenyl, optionally substituted with 1-5 halo groups, phenyl or CO_2R^a groups; (2) 1-2 C_{1-10} alkoxy groups, the alkyl portion of which is optionally substituted with 1-5 halo groups; (3) 1-2 Aryl, HAR or Hetcy, OAryl, OHAR or OHetcy groups, each optionally substituted as follows: (a) 1-3 halo groups; (b) 1-2 C_{1-10} alkyl or C_{2-10} alkenyl, each optionally substituted with 1-3 halo groups;
- (c) $1-2 C_{1-10}$ alkoxy groups the alkyl portion of which being optionally substituted with 1-3 halo groups, and
 - (d) 1-2 CO₂R^a, S(O)_pR^d, CN, NR^bR^c, NO₂ or OH groups;

Page No.:

said Aryl, HAR or Hetcy group b) being further optionally substituted on carbon by a group selected from the group consisting of: (4) 1-5 halo groups; (5) 1-2 OH groups; (6) 1 S(O)_pR^d, NO₂ or CN group; (7) 1-2 CO₂R^a; (8) -NR^a-C(O)-NR^bR^c; (9) -NR^a-CO₂R^c; (10) -NR^a-C(O)R^c; (11) -NR^bR^c; (12) -NR^aSO₂R^c; (13) -SO₂-NR^bR^c; (14) -C(O) NR^bR^c and (15) -OC(O)-NR^bR^c;

and when R^4 represents Hetcy containing a nitrogen atom, said nitrogen atom can be optionally substituted with a member selected from the group consisting of: (a) -C(O) NR^bR^c ; (b) -CO₂ R^c ; (c) -C(O) R^c ; and (d) -SO₂ R^c ;

R⁸ and R⁹ are taken in combination and represent -(CH₂)₂₋₄-;

R⁵ represents H or C₁₋₆ alkyl;

R⁶ is selected from the group consisting of H, OH, F or C₁₋₃alkyl;

R⁷ is H or F, or R⁶ and R⁷ are taken in combination and represent oxo;

 R^a is H or C_{1-10} alkyl, optionally substituted with phenyl, OH, OC_{1-6} alkyl, CO_2H , CO_2C_1 . 6alkyl and 1-3 halo groups;

 R^b is H or C_{1-10} alkyl;

 R^c is H or is independently selected from: (a) C_{1-10} alkyl, optionally substituted with OH, OC_{1-6} alkyl, CO_2H , CO_2C_{1-6} alkyl, and 1-3 halo groups; (b) Aryl or Ar- C_{1-6} alkyl, each optionally substituted with 1-5 halos and 1-3 members selected from the group consisting of: CN, OH, C_{1-10} alkyl and OC_{1-10} alkyl, said alkyl and alkoxy being further optionally substituted with 1-5 halo groups up to perhalo; (c) Hetcy or Hetcy- C_{1-6} alkyl, optionally substituted with 1-5 halo groups and 1-3 groups selected from: oxo, C_{1-10} alkyl and OC_{1-10} alkyl, said alkyl and alkoxy being further optionally substituted with 1-5 halo groups up to perhalo; and (d) HAR or HAR- C_{1-6} alkyl, optionally substituted with 1-5 halo groups and 1-3 groups selected from: C_{1-10} alkyl and OC_{1-10} alkyl, said alkyl and alkoxy being further optionally substituted with 1-5 halo groups up to perhalo;

 R^d is C_{1-10} alkyl, Aryl or Ar- C_{1-10} alkyl;

m is an integer selected from 0, 1 and 2;

n is an integer selected from 0 to 6;

p is an integer selected from 0, 1 and 2, and

when at least one of m and n is other than 0, Z is selected from CO_2R^a , 5-tetrazolyl and 5-(2-oxo-1,3,4-oxadiazolyl), and when both m and n are 0, Z is selected from 5-tetrazolyl and 5-(2-oxo-1,3,4-oxadiazolyl).

8. (currently amended) A compound in accordance with claim 1 falling within table A below:

Page No.:

11

TABLE A Key to Compounds

$$(R^2)_{1-2} \xrightarrow{\qquad | 1 \qquad \qquad N \qquad$$

wherein R², R³ and R⁴ are in accordance with formula I and X is as shown below.

$$X = R^{8} R^{9} (C(O)N) R^{5} (CH_{2})_{n} (CR^{6}R^{7})_{m} Z$$

R4-122 = CI	X-70 = H N-N
R4-238 =	$X-85 =$ $-CH(CH_3)$ $-C(O)NH(CH_2)_2CO_2H$
R4-245 =	$X-86 =$ $-CH(CH_3)$ $-C(O)NHCH_2CH(OH)CO_2H$
R4-256 =	$X-226 =$ CH_2
R4-258 =	$X-227 =$ $-CH_2$ $C(O)NH(CH_2)_3CO_2H$
R4-260 = CF ₃	X-237 = H N-N I N-N I N-N
R4-261 =	X-238 = $C(O)NH-CH2CH2CO2H$

R4-262 =	X-239 = $C(O)NH-CH2CH(OH)CO2H$
R4-265 =	X-244 = H N-N N-N N-N
R4-266 = CI	R4-267 =
R4-269 =	R4-273 =
R4-275 =	R4-276 =
R4-277 =	R4-278 =

R4-282 =

-(CH₂)₂

R4-284 =

Int. Appln. No.:PCT/US2004/013874
US Appln. No.:
US Filing Date:
Case No.:
PCT/US2004/013874
Concurrently
21241P
Page No.:
14

TABLE A $(R^2)_{1-2} \xrightarrow{|I|} N \xrightarrow{N} N \xrightarrow{R^4} X$

wherein

$$X = R^{8} R^{9} C(O)N (CR^{6}R^{7})_{m}Z$$

Cpd No.	R ²	R ³	R ⁴	X
1	5-Me	Н	R4-1	X-1
2	5-Me	Н	R4-2	X-1
3	5-Me	Н	R4-1	X-3
4	5-Me	Н	R4-2	X-3
5	5-OCF ₃	Н	R4-1	X-1
6	5-OCF ₃	Н	R4-2	X-3
7	5-OCF ₃	Н	R4-2	X-1
8	6-Me	Me	R4-2	X-3
9	5-C1	Н	R4-2	X-3
10	5-Cl	Н	R4-1	X-3
11	6-Me	Me	R4-2	X-1
12	5-Cl	Н	R4-2	X-1
13	5-C1	Н	R4-1	X-1
14	5-Me	Me	R4-1	X-3
15	5-Me	Me	R4-1	X-1
16	H	Н	R4-2	X-3
17	H	Н	R4-2	X-1
18	Н	Me	R4-2	X-1
19	Н	Me	R4-2	X-19
20	Н	Me	R4-2	X-3
21	Н	Me	R4-2	X-21
22	6-Me	Me	R4-2	X-21
23	5-Me	Н	R4-2	X-21
24	H	Et	R4-2	X-3
25	Н	Et	R4-2	X-1
26	Н	Et	R4-2	X-21
27	Н	n-Pr	R4-2	X-3
28	Н	n-Pr	R4-2	X-1
29	Н	n-Pr	R4-2	X-29
30	Н	n-Pr	R4-2	X-21
31	5-Me	Н	R4-2	X-29
32	H	cPentyl	R4-2	X-3

	r			
33	H	cPentyl	R4-2	X-1
34	H	cPentyl	R4-2	X-21
35	Н	Et	R4-2	X-29
36	<u>H</u>	Benzyl	R4-2	X-3
37	H	Benzyl	R4-2	X-29
38	H	Benzyl	R4-2	X-1
39	H	Benzyl	R4-2	X-21
40	H	-CH ₂ CH(Me) ₂	R4-2	X-3
41	H	-CH ₂ CH(Me) ₂	R4-2	X-29
42	H	-CH ₂ CH(Me) ₂	R4-2	X-1
43	H	-CH ₂ CH(Me) ₂	R4-2	X-21
44	H	HH	R4-2	X-29
45	H	H	R4-2	X-21
46	Н	Me	R4-2	X-29
47	Н	CH₂CH₂F	R4-2	X-3
48	H	CH ₂ CH ₂ F	R4-2	X-1
49	Н	CH₂CH₂F	R4-2	X-21
50	Н	CH₂CH₂F	R4-2	X-29
51	H	CH ₂ CH=CH ₂	R4-2	X-3
52	Н	CH ₂ CH=CH ₂	R4-2	X-1
53	H	CH ₂ CH=CH ₂	R4-2	X-21
54	H	H	R4-54	X-3
55	H	H	R4-54	X-1
56	H	H	R4-54	X-21
57	H	Me	R4-54	X-3
58	H	Me	R4-54	X-1
59	H	Me	R4-54	X-21
60	5,6-di-Cl	H	R4-2	X-3
61	5,6-di-Cl	Н	R4-2	X-29
62	5,6-di-Cl	H	R4-2	X-1
63	5,6-di-Cl	Н	R4-2	X-21
64	5,6-di-Cl	Et	R4-2	X-3
65	5,6-di-Me	Н	R4-2	X-3
66	5,6-di-Me	H	R4-2	X-29
67	5,6-di-Me	H	R4-2	X-1
68	5,6-di-Me	H	R4-2	X-21
69	H	Me	R4-2	X-70
70	H	CH ₂ CH ₂ OH	R4-2	X-3
71	H	CH ₂ CH ₂ OH	R4-2	X-1
72	H	CH ₂ CH ₂ OH	R4-2	X-21
73	5,6-di-Me	Me	R4-2	X-3
74	5,6-di-Me	Me	R4-2	X-29
75	5,6-di-Me	Me	R4-2	X-1
76	5,6-di-Me	Me	R4-2	X-21
77	5,6-di-Cl	Me	R4-2	X-3
78	5,6-di-Cl	Me	R4-2	X-1
79	5,6-di-Cl	Me	R4-2	X-21
80	5,6-di-F	H	R4-2	x-3

0.1	5 (1; E	77	D4.2	1
81	5,6-di-F	H	R4-2	x-1
82	5,6-di-F	H	R4-2	x-29
83	5,6-di-F	Н	R4-2	x-21
84	H	Me	R4-2	x-85
85	Н	Me	R4-2	X-86
86	5,6-di-F	Me	R4-2	X-3
87	5,6-di-F	Me	R4-2	X-1
88	5,6-di-F	Me	R4-2	X-21
89	H	(CH ₂) ₃ OH	R4-2	X-3
90	H	(CH ₂) ₃ OH	R4-2	X-21
91	H	Me	R4-95	X-3
92	H	Me	R4-95	X-21
93	H	$(CH_2)_2NMe_2$	R4-2	X-3
94	Н	CH ₂ CF ₃	R4-2	X-3
95	Н	CH ₂	R4-2	X-21
96	Н	CH ₂	R4-2	X-1
97	Н	Phenyl	R4-2	X-3
98	Н	Phenyl	R4-2	X-29
99	Н	Phenyl	R4-2	X-1
100	Н	Phenyl	R4-2	X-21
101	6-allyloxy	Et	R4-2	X-3
102	6-allyloxy	Et	R4-2	X-1
103	6-allyloxy	Et	R4-2	X-21
104	6-allyloxy	Et	R4-2	X-29
105	5,6-di-F	Et	R4-2	X-3
106	Н	Me	R4-113	X-3
107	5,6-di-F	Et	R4-2	X-21
108	6-OH	Et	R4-2	X-3
109	6-OH	Et	R4-2	X-1
110	5,6-di-F	Et	R4-2	X-1
111	6-OH	Et	R4-2	X-21
112	6-OH	Et	R4-2	X-29
113	5-OMe	Me	R4-2	X-3
114	5-OMe	Me	R4-2	X-21
115	5-OMe	Me	R4-2	X-1
116	H	Н	R4-122	X-3
117	H	Н	R4-122	X-1
118	H	H	R4-122	X-21
119	H	H	R4-122	X-29
120	5-OH	Me	R4-2	X-3
121	5-OH	Me	R4-2	X-1
122	5-OH	Me	R4-2	X-1 X-21
123	5-allyloxy	Me	R4-2	X-21 X-3
124	5-allyloxy	Me	R4-2	X-3 X-1
125	5-benzyloxy	Me	R4-2	X-3
123	J JULIE JION J	1.10	12-7-2	2 x - J

X-1 X-3 X-1 X-21 X-29 X-3
X-1 X-21 X-29 X-3
X-21 X-29 X-3
X-29 X-3
X-3
X-3
X-3
X-21
X-21
X-21
X-1
X-1
X-1
X-3
X-1
X-21
X-29
X-3
X-29
X-1
X-21
X-3
X-29
X-1
X-21
X-3
X-1
X-21

155	5-OMe	Me	R4-2	X-29
156	5-cyclo-pentyloxy	Me	R4-2	X-3
157	5-cyclo-pentyloxy	Me	R4-2	X-29
158	5-OCH ₂ CH(Me) ₂	Me	R4-2	X-3
159	5-OCH ₂ CH(Me) ₂	Me	R4-2	X-29
160	6-benzyloxy	Me	R4-2	X-3
161	6-isopropyloxy	Me	R4-2	X-3
162	6-OMe	Me	R4-2	X-3
163	6-benzyloxy	Me	R4-2	X-1
164	6-isopropyloxy	Me	R4-2	X-1
165	6-OMe	Me	R4-2	X-1
166	6-benzyloxy	Me	R4-2	X-21
167	6-isopropyloxy	Me	R4-2	X-21
168	6-OMe	Me	R4-2	X-21
169	5-benzyloxy	Me	R4-2	X-21
170	5-cyclopentyloxy	Me	R4-2	X-1
171	5-cyclopentyloxy	Me	R4-2	X-21
172	5-isobutyloxy	Me	R4-2	X-1
173	5-isobutyloxy	Me	R4-2	X-21
174	6-allyloxy	Me	R4-113	X-21 X-3
175	6-allyloxy	Me	R4-113	X-3 X-1
176	H	CI	R4-113	X-1 X-3
		CI		
177	6-allyloxy	Me	R4-113	X-21
178	H	CN	R4-2	X-3
179	Н	CI	R4-2	X-21
180	Н	CN	R4-2	X-21
181	Н	CI	R4-2	X-1
182	Н	CN	R4-2	X-1
183	Н	NO ₂	R4-2	X-3
184	Н	NO ₂	R4-2	X-21
185	Н	NO ₂	R4-2	X-1
186	Н	OMe	R4-2	X-3

187	Н	OMe	R4-2	X-21
188	Н	ОМе	R4-2	X-1
189	Н	Me	R4-2	X-237
190	H	Me	R4-2	X-238
191	H	Me	R4-2	X-239
192	6-cyclopentyloxy	Me	R4-2	X-3
193	6-cyclopentyloxy	Me	R4-2	X-1
194	6-cyclopentyloxy	Me	R4-2	X-21
195	5-OMe	Me	R4-54	X-3
196	5-OMe	Me	R4-54	X-1
197	6-allyloxy	Me	R4-95	X-3
198	6-allyloxy	Me	R4-95	X-1
199	6-allyloxy	Me	R4-95	X-21
200	6-OH	Me	R4-95	X-3
201	5-OEt	Me	R4-2	X-3
202	5-cyclobutyloxy	Me	R4-2	X-3
203	5-cyclopropyl methoxy	Me	R4-2	X-3
204	5-cyclopropyl methoxy	Me	R4-2	X-1
205	5-cyclohexyl methoxy	Me	R4-2	X-3
206	5-cyclohexyl methoxy	Me	R4-2	X-1
207	5-OEt	Me	R4-2	X-1
208	5-cyclobutyloxy	Me	R4-2	X-1
209	5-OCH ₂ CHF ₂	Me	R4-2	X-3
210	5-OCH ₂ CHF ₂	Me	R4-2	X-1
211	5-cyclobutyl	Me	R4-2	X-3
	methoxy			
212	5-cyclobutyl methoxy	Me	R4-2	X-1
213	5-cyclopentyl methoxy	Me	R4-2	X-3
214	5-cyclopentyl methoxy	Ме	R4-2	X-1
215	6-n-propyloxy	Me	R4-95	X-3
216	5-CF ₃	Me	R4-93	X-3 X-3
217	6-benzyloxy	Me	R4-95	X-3 X-3
218	5-CF ₃	Me	R4-23	X-1
219	5-n-propyloxy	Me	R4-54	X-1 X-3
220	6-n-propyloxy	Me	R4-95	X-3 X-1
221	6-benzyloxy	Me	R4-95	X-1 X-1
222	6-OEt	Me	R4-2	X-3

			7.0	77.0
223	6-cyclopropyl methoxy	Me	R4-2	X-3
224	6-OCH ₂ CH(Me) ₂	Me	R4-2	X-3
225	6-OEt	Me	R4-2	X-1
226	6-cyclopropyl methoxy	Me	R4-2	X-1
227	6-OCH ₂ CH(Me) ₂	Me	R4-2	X-1
228	H	Me	R4-54	X-237
229	5-Br	Me	R4-2	X-3
230	5-Br	Me	R4-2	X-1
231	H	Et	R4-2	X-226
232	Н	Et	R4-2	X-227
233	6-OCH ₂ CHF ₂	Me	R4-2	X-3
234	6-OCH ₂ CHF ₂	Me	R4-2	X-1
235	5-OMe	Me	R4-2	X-244
236	Н	Me	R4-245	X-3
237	6-cyclohexyloxy	Me	R4-2	X-3
238	Н	Me	R4-122	X-3
249	5-n-propyloxy	Me	R4-2	X-237
240	5-cyclopentyloxy	Me	R4-54	X-3
241	5-cyclopentyloxy	Me	R4-54	X-1
242	5-n-propyloxy	Me	R4-54	X-1
243	6-cyclohexyl methoxy	Me	R4-2	X-3
244	6-cyclohexyloxy	Me	R4-2	X-1
245	6-cyclohexyl methoxy	Me	R4-2	X-1
246	Н	Me	R4-256	X-1
247	6- -OCH ₂ CH ₂ -N	Me	R4-2	X-3
248	5-OMe	Me	R4-258	X-3
249	5-cyclopentyloxy	Me	R4-2	X-244
250	Н	Me	R4-260	X-3
251	Н	Me	R4-261	X-3
252	Н	Me	R4-262	X-3
253	Н	Me	R4-262	. X-1
254	5-OMe	Me	R4-122	X-3
255	5-OMe	Me	R4-265	X-3
256	5-OMe	Me	R4-266	X-3
257	Н	Me	R4-267	X-1
258	Н	Me	R4-267	X-3
259	Н	Me	R4-269	X-1
260	Н	Me	R4-269	X-3
261	Н	Me	R4-238	X-3

262	H	MeMe	R4-238	X-1
263	H	Me	R4-273	X-3
264	H	Me	R4-273	X-1
265	H	Me	R4-275	X-3
266	Н	Me	R4-276	X-3
267	H	Me	R4-277	X-3
268	H	Me	R4-278	X-3
269	H	Me	R4-278	X-1
270	5-n-pentyloxy	Me	R4-122	X-3
271	5-n-propyloxy	Me	R4-122	X-3
272	Н	Me	R4-282	X-1
273	Н	Me	R4-282	X-3
274	Н	Me	R4-284	X-3
275	· H	Me	R4-284	X-1
276	5-OCF ₃	Me	R4-95	X-3
277	5-CF ₃	Me	R4-95	X-3
278	5-C1	Me	R4-95	X-3
279	5-OMe	Me	R4-95	X-3
278	5-OMe	Me	R4-95	X-1
281	5-n-propyloxy	Me	R4-95	X-3
282	5-cyclopentyloxy	Me	R4-95	X-3

or a pharmaceutically acceptable salt or solvate thereof.

9. (original) A pharmaceutical composition which is comprised of a compound in accordance with claim 1 in combination with a pharmaceutically acceptable carrier.

10. (original) A method of treating type 2 diabetes mellitus in a mammalian patient in need of such treatment, comprising administering to said patient a compound in accordance with claim 1 in an amount that is effective to treat type 2 diabetes mellitus.