Multislice Diffraction Functions

Erik Bigwood

7/23/17

Contents

1	Relativistic functions 1.1 lambda_from_eV	
2	Geometric functions 2.1 rotate_vec_array	I
3	Lattice functions 3.1 lattice_populate_single	II
4	Geometric Diffraction functions 4.1 phase_point	III III

1 Relativistic functions

1.1 lambda_from_eV

This function takes an energy in eV and returns the relativistic electron wavelength. The equation is shown below:

$$\lambda = \sqrt{\frac{h^2 c^2}{E^2 - m_0^2 c^2}} \tag{1}$$

1.2 mass_from_eV

Returns relativistic electron mass from kinetic energy in eV.

$$m = \sqrt{\frac{K^2 + 2Km_0c^2}{c^4} + m_0^2} \tag{2}$$

2 Geometric functions

2.1 rotate_vec_array

Iterates over each vector in the n x 3 array Λ and rotates them around \hat{x} , \hat{y} , then \hat{z} by tx, ty, and tz (rad) respectively. That is,

$$\left(\forall v \in \Lambda\right) \left(v \to R_z(\theta_z) \cdot R_y(\theta_y) \cdot R_x(\theta_x) \cdot v = \mathcal{R}(v - \vec{\mu}) + \vec{\mu}\right) \tag{3}$$

rotation_mat Returns a matrix corresponding to a rotation around \hat{x} , \hat{y} , then \hat{z} by tx, ty, and tz (rad) respectively. Note – rotates around the mean vector $\vec{\mu}$.

That is,

$$\mathcal{R} = R_z(\theta_z) \cdot R_y(\theta_y) \cdot R_x(\theta_x) \tag{4}$$

rotation_mat_x Returns the rotation matrix around \hat{x} by θ_x , $R_x(\theta_x)$.

rotation_mat_y Returns the rotation matrix around \hat{y} by θ_y , $R_y(\theta_y)$.

rotation_mat_z Returns the rotation matrix around \hat{z} by θ_z , $R_z(\theta_z)$.

translate_vec_array Translates each vector in a $n \times 3$ array of vectors \vec{l} by a vector \vec{t} .

$$\left(\forall \vec{v} \in \vec{l}\right) \left(\vec{v} \to \vec{v} + \vec{t}\right) \tag{5}$$

¹See rotation matrices.

mean_vector_array Returns the mean vector $\vec{\mu}$ of a $n \times 3$ array of vectors \vec{l} , by summing over each vector.

$$\vec{\mu} = \frac{1}{n} \sum_{i=0}^{n} \vec{l}_i \tag{6}$$

rotate_translate_array Returns the array of vectors \vec{l} rotated around its center by $\vec{\theta}$ and then translated by \vec{t} .

$$\left(\forall \vec{v} \in \vec{l}\right) \left(\vec{v} \to \text{rotate_vec_array}(\vec{v}) + \vec{t}\right)$$
 (7)

 $rand_vec_len$ Returns a random vector with length l.

3 Lattice functions

3.1 lattice_populate_single

Creates and populates a simple cubic lattice with side number n, lattice parameter clen, and centered at $latt_center$.

$$\left(\forall a_i, i \in [0, n]_{\mathbb{Z}}, [0, 2]_{\mathbb{Z}}\right) \left(\vec{l}_{a_0 n^2 + a_1 n + a_2} = clen\langle a_0 - n/2, a_1 - n/2, a_2 - n/2\rangle\right) \tag{8}$$

3.2 lattice_populate_fcc

Creates, populates, and prunes a spherical nanoparticle with radius r, lattice parameter c, and centered at $latt_center$. There is an internal overestimation parameter f, to ensure full population, currently set at 2.

$$n = \operatorname{int} \left(\operatorname{floor}(2rf) \right)$$

$$\left(\forall a_i, i \in [-n/2, n/2]_{\mathbb{Z}}, [0, 2]_{\mathbb{Z}} \right) \left(\vec{l}_{a_0 n^2 + a_1 n + a_2} = c \left((a_0) \vec{v}_0 + (a_1) \vec{v}_1 + (a_2) \vec{v}_2 \right) \right)$$

Where \vec{v}_i are the primitive vectors for a fcc lattice

$$\vec{v}_0 = \langle 0, 0.5, 0.5 \rangle$$

 $\vec{v}_1 = \langle 0.5, 0, 0.5 \rangle$
 $\vec{v}_2 = \langle 0.5, 0.5, 0 \rangle$

Then, mark vectors outside the radius:

$$\left(\forall \vec{v} \in \vec{l}\right) \left(||\vec{v} - latt_center|| > r^2 \implies \vec{v} \to \langle 0, 0, 0 \rangle\right) \tag{9}$$

Now remove all zero vectors from \vec{l} to prune the nanoparticle.

3.3 detector_populate

Creates and populates a square detector \vec{d} with width $w,\ n^2$ elements, and centered at \vec{t} .

$$\left(\forall a_i, i \in [0, n]_{\mathbb{Z}}, [0, 1]_{\mathbb{Z}}\right) \left(\vec{d}_{a_0 n + a_1} = w \langle (a_0 - n/2)/n, (a_1 - n/2)/n, 0 \rangle\right) + \vec{t} (10)$$

4 Geometric Diffraction functions

4.1 phase_point

Returns the geometric phase at \vec{p} from a lattice \vec{l} , with wavelength λ .

$$\phi(\vec{p}, \vec{l}) = \sum_{i} \cos \left(\frac{2\pi}{\lambda} \sqrt{\sum_{i} (\vec{l}e'_{i} - \vec{p}e'_{i})^{2}} \right)$$
(11)