

Course Objective

- Theory of Characteristic Modes (TCM) proposed in 1971 by Garbacz and Harrington
- Time finally come for widespread interest
 - Research activities exploding

 Major software vendors implemented characteristic mode analysis (CMA) due to strong customer interest

Course Objective

- This course designed to answer basic questions:
 - What is it? What's all the fuss about?
 - Can I use it in my work?
 - How do I get started?
 - How do I get involved?
 - What opportunities are there?
 - etc.
- This course to provide good foundation, NOT to treat fine details

Course Overview

Short, short course (2 hr)

- Course Objective
- Physical Insights
- Intro to CM Concepts
- Basic CM Analysis & Examples
- Specialized Example (Terminal antenna)
- Demo of CMA Tools
- Future Directions
- Concluding Remarks

Physical Insights of TCM

WHAT INSIGHTS, WHY ARE THEY USEFUL, HOW TO USE THEM?

5

Physical Insights to Abstract Problems

- Electromagnetic systems are complex (Maxwell's Equations!)
- In many problems, object's resonance is important
- Energy stored also important:
 - Capacitive vs. inductive
- So are these issues:
 - Feed locations, radiation pattern, coupling, etc.
- TCM gives physical insights on these aspects

LUND

6

Physical Insights to Abstract Problems

- TCM for electromagnetic analysis and design
 - Provide inherent resonant properties of a structure
 - Depends only on geometry and materials
 - Useful to solve scattering and antenna problems
 - For antenna design, visualize possible radiation modes supported by structure
- Still too abstract? Let's demonstrate CMA using a dipolelike PEC structure (width of 4 mm)

Physical Insights with CMA

- How does a dipole antenna radiate?
 - Calculate CMs for the thin strip using eigenvalue decomposition
 - Eigenvalues indicate resonance property

Expect resonance at 1.36 GHz if 130mm is half a wavelength ($\lambda/2$)

Eigenvalues @750MHz Mode 1: -12 Mode 2: -1455

:

Physical Insights with CMA

• Multiple resonant frequencies

 $-\lambda_1$ is resonant at 1.2 GHz

 $-\lambda_2$ is resonant at 2.4 GHz, etc.

Excitation of Modes

Resonant modes

- Non-resonant modes

Proper feed location(s)

Matching network

> Structural change

130 mm

• Modes are orthogonal in currents and far-fields

9

Physical Insights with CMA

• "Capacitive" Mode, $\lambda_n < 0$

- Stores electric energy $W_{\rm e}$ ($W_{\rm e} > W_{\rm m}$)

- Often excited with capacitive coupling element

• "Inductive" Mode, $\lambda_n > 0$

- Stores magnetic energy $W_{\rm m}$ ($W_{\rm m} > W_{\rm e}$),

Often excited with inductive coupling element

130 mm

Modal Attributes of Thin Wire

Modal Attributes of Thin Wire

Modal Attributes of Thin Wire

Currents and Far-Fields Orthogonal

Current Integrated Antenna Design

- Start from an system
 - Not a closed form solution
- Complex
 - Multiple ideas
- Time consuming
 - Abstract ideas/information
- Optimization intensive
 - Computationally complex
- No physical insights

CM Integrated Antenna Design

Understanding Customer Requirements • Start from an system Specification Generation • Obtain electromagnetic (EM) insights Characteristic Mode Analysis Resonant characteristics Antenna Topology and Feed Selection Utilize EM characteristics Development of Feeds Optimization

Modeling and Design • Traditional Optimization Computer Simulation - Less computationally complex Prototype Development • Full Understanding Testing, Results, and Trimming Allows for future adaptations Minor Product Adaptation

Basic CM concepts

UNDERLYING THEORY, COMMON METRICS AND MODE TRACKING

17

Underlying Theory

- Start from Electromagnetic Theory 101
- Current J(r') on surface of conductor S causes electric field E(r) at point r
- Solving Maxwell's Equations in time harmonic form, we obtain

$$\mathbf{E}(\mathbf{r}) = -\nabla \phi(\mathbf{J}) - j\omega \mathbf{A}(\mathbf{J})$$
where $\phi(\mathbf{J}) = -\frac{1}{j\omega\varepsilon} \oiint_{S} \nabla' \cdot \mathbf{J}(\mathbf{r}') \psi(\mathbf{r}, \mathbf{r}') ds'$

$$\mathbf{A}(\mathbf{J}) = \mu \oiint_{S} \mathbf{J}(\mathbf{r}') \psi(\mathbf{r}, \mathbf{r}') ds'$$

$$\psi(\mathbf{r}, \mathbf{r}') = \frac{e^{-jk|\mathbf{r} - \mathbf{r}'|}}{4\pi |\mathbf{r} - \mathbf{r}'|}$$

Underlying Theory

- $\bullet \; \mbox{But} \; J(r') \; \mbox{is from an impressed field} \; E^{\it i}(r')$
 - $\,$ antenna problem, known sources over S
 - $-\,$ scattering problem, known sources external to S (incident wave)
- Define operator $L(\mathbf{J}) = -\mathbf{E}(\mathbf{r})$, then at the conductor surface (boundary)

$$\left[L(\mathbf{J}) - \mathbf{E}^{i}(\mathbf{r})\right]_{tan} = 0$$

Tangential component

✓ of induced E-field

- Define impedance operator $Z(\mathbf{J}) = [L(\mathbf{J})]_{tan}, Z(\mathbf{J}) = R(\mathbf{J}) + jX(\mathbf{J})$
- To obtain CMs, perform generalized eigenvalue decomposition $Z(\mathbf{J}_n) = \nu_n W(\mathbf{J}_n)$

where $W(\mathbf{J}_n)$ is the weight operator

Underlying Theory

• Eigenfunctions \mathbf{J}_n are real-valued since $Z(\mathbf{J})$ is symmetric operator

18

- \mathbf{J}_n orthogonal by default, free to choose $W(\mathbf{J}_n)$
- Radiated power (of mode *n*) given by

$$P_n = \langle \mathbf{J}_n^*, R(\mathbf{J}_n) \rangle = \bigoplus_{s} \mathbf{J}_n^* \cdot R(\mathbf{J}_n) ds$$

• To obtain orthogonal far-fields for the modes, let $W(\mathbf{J}_n) = R(\mathbf{J}_n)$

$$\Rightarrow X(\mathbf{J}_n) = \lambda_n R(\mathbf{J}_n), \nu_n = 1 + j\lambda_n$$
 (CM eigenvalue equation)

- Eigenvalue λ_n relates to difference in stored energies ($W_m W_e$):
 - $-W_{\rm m} > W_{\rm e}$ (inductive)
 - $W_{\rm e}{>}$ $W_{\rm m}$ (capacitive)

Underlying Theory

- For computation, operator $Z(\mathbf{J})$ is discretized over surface S as impedance matrix $\mathbf{Z} = \mathbf{R} + j\mathbf{X}$ using method-of-moments (MoM)
- J(r') becomes scalar current vector I associated with Z
- Therefore, eigenvalue equation becomes

$$\mathbf{XI}_n = \lambda_n \mathbf{RI}_n$$

• Characteristic currents should be normalized such that radiated power is 1 for all modes:

$$\mathbf{I}_n^H \mathbf{R} \mathbf{I}_n = \mathbf{I}_n^T \mathbf{R} \mathbf{I}_n = 1$$

21

CM Metric: Modal Significance

- Recall that $\left[L(\mathbf{J}) \mathbf{E}^i\right]_{\mathrm{tan}} = 0$ and all currents can be written as $\mathbf{J} = \sum a_n \mathbf{J}_n$
- Taking inner product with \mathbf{J}_m : $\sum_{n} a_n \langle \mathbf{J}_m, \mathbf{Z} \mathbf{J}_n \rangle = \underbrace{\langle \mathbf{J}_m, [\mathbf{E}^i]_{\text{tan}} \rangle}_{\text{modal excitation coefficient}}$
- Using properties of CM, $a_n \left(1 + j \lambda_n \right) = \left\langle \mathbf{J}_n, \left[\mathbf{E}^i \right]_{\tan} \right\rangle \Rightarrow a_n = \frac{\left\langle \mathbf{J}_n, \left[\mathbf{E}^i \right]_{\tan} \right\rangle}{1 + j \lambda_n}$
- Modal significance (MS) is defined as:

$$MS = \left| \frac{1}{\left(1 + j\lambda_n \right)} \right|$$

LUND

(normalization for the characteristic current J_n)

22

CM Metric: Modal Bandwidth

• Bandwidth defined as:

$$BW = \frac{f_h(S_{11} = \gamma) - f_l(S_{11} = \gamma)}{f}$$
, typically $\gamma = -6$ or -10 dB

• Modal Significance can be used to define "bandwidth":

$$BW = \frac{f_H \left(MS = 1/\sqrt{2} \right) - f_L \left(MS = 1/\sqrt{2} \right)}{f_C \left(MS = 1 \right)}$$

• This was determined useful as it matches the modal Q

$$Q \approx \frac{1}{BW}$$

(Note: This does not relate well to excitable bandwidth)

CM Metric: Characteristic Angle

- \mathbf{J}_n is the orthogonal set of currents induced by \mathbf{E}^i
- \mathbf{J}_n releases the energy accepted from \mathbf{E}^i as $[\mathbf{E}_n]_{in}$
- $[\mathbf{E}_n]_{\mathrm{tan}}$ has an associated characteristic angle ("scattered" phase) α_n
- If no time lag, mode n acts like perfect scatterer, i.e. 180° shift
- Inductive modes store magnetic energy for a period of time
 - Time lag of magnetic energy, i.e. $90^{\circ} < \alpha_n < 180^{\circ}$
- Capacitive modes store electric energy for a period of time
 - Time lag of electric energy, i.e. 180° $\!<$ $\!\alpha_{\scriptscriptstyle n}$ $\!<$ $\!270^{\circ}$
- Characteristic angle is defined by:

$$\alpha_n = 180^{\circ} - \tan^{-1}\left(\lambda_n\right)$$
 e.g. Insight into Yagi-Uda antenna

Characteristic Mode Tracking

• Eigenvalues found by solving the equation (discrete form):

$$\mathbf{XI}_n = \lambda_n \mathbf{RI}_n$$

- Solution is frequency dependent
 - Every frequency has a different impedance matrix
 - At every frequency λ_n is found in a different order
- Eigenvalues are not sorted between frequencies
 - Eigenvalue tracking algorithms needed
- Orthogonal properties not guaranteed across frequency

Z. Miers and B. K. Lau, "Wide band characteristic mode tracking utilizing far-field patterns," *IEEE Antennas Wireless Propag. Lett.*, vol. 14, pp. 1658-1661, 2015.

E. Safin and D. Manteuffel, "Advanced eigenvalue tracking of characteristic modes," *IEEE Trans. Antennas Propag.*, in press. (Special Issue on Theory and Applications of Characteristic Modes)

Eigenvector Correlation Tracking

• Eigenvector correlation based on

$$\rho_{m,n} = \frac{\mathbf{I}_m^H \mathbf{I}_n}{|\mathbf{I}_m| |\mathbf{I}_n|}$$

- Easy to implement
- Widely implemented
- Based on orthogonal currents assumption
 - not rigorous since actually $\mathbf{I}_{m}^{H}\mathbf{R}\mathbf{I}_{n} = \mathbf{I}_{m}^{T}\mathbf{R}\mathbf{I}_{n} = 0, m \neq n$
 - Structure discretized, sensitive to errors
 - Orthogonality of currents not guaranteed across frequency

26

Surface Current Correlation Tracking

• Correlation of "surface current" (or "radiated power")

$$\rho_{m,n} = \langle \mathbf{J}_m, \mathbf{R}(\mathbf{J}_n) \rangle = \mathbf{I}_m^H \mathbf{R} \mathbf{I}_n$$

- For a given frequency: $\mathbf{I}_{m}^{H}\mathbf{R}\mathbf{I}_{n} = \mathbf{I}_{m}^{T}\mathbf{R}\mathbf{I}_{n} = 0, m \neq n$
- Total surface current is "more orthogonal"
 - $-\mathbf{R}(\mathbf{J}_n)$ does not vary quickly in frequency
 - Uses more characteristic information of structure
 - Usually better than eigenvector correlation
 - » Currents of individual discretized elements can vary more across frequency
 - Easy to implement

Hybrid Tracking

- Utilizes a mixture of different algorithms
 - Traditionally with mixed linear correlation functions
 - Tracking of eigenvalues using image processing techniques
 - Can utilize any other form of tracking
- Only as good as the algorithms used
 - Easy or hard to implement
 - Can be computationally efficient if used wisely

Far-Field Tracking

• Correlation of far-field pattern data

$$\begin{split} \rho_{m,n}^{CM} &\approx \frac{\left| \oint_{4\pi} \left[E_{\phi,n} \left(\Omega \right) E_{\phi,m}^* \left(\Omega \right) + E_{\theta,n} \left(\Omega \right) E_{\theta,m}^* \left(\Omega \right) \right] d\Omega \right|^2}{\left| \oint_{4\pi} G_n \left(\Omega \right) d\Omega \right| \left| \oint_{4\pi} G_m \left(\Omega \right) d\Omega \right|} \\ \text{where} \\ G_i \left(\Omega \right) &= |E_{\phi,i} \left(\Omega \right)|^2 + |E_{\theta,i} \left(\Omega \right)|^2 \quad d\Omega = sin\theta d\phi d\theta = (\phi,\theta) \end{split}$$

- Discretized data is orthogonal for same frequency
- Fields not always orthogonal across frequency, but more stable than currents
- Computationally more complex (need far-fields)
- Struggles with degenerated modes

29

Lund University Tracking Method

Z. Miers and B. K. Lau, "Wide band characteristic mode tracking utilizing farfield patterns," IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1658-1661, 2015.

Comparison of Tracking Methods

- Flat PEC chassis 60 mm × 120 mm, 2 mm wide rectangular metal ring 2 mm above the ground plane
- There exist modes with differences limited to high currents in small regions of the structure

Z. Miers and B. K. Lau, "Wide band characteristic mode tracking utilizing far-field patterns," IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1658-1661, 2015.

Comparison of Tracking Methods

Z. Miers and B. K. Lau, "Wide band characteristic mode tracking utilizing far-field patterns," IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1658-1661, 2015.

Basic CM Analysis

EIGENVALUES, CURRENTS, NEAR-FIELDS, AND FAR-FIELDS

33

Antenna Analysis – Eigenvalues

- Eigenvalues provide a "quick look" of antenna properties
 - Where are the resonances
 - How many modes can be excited by antenna(s)
- Further physical insights from quality factor Q
 - Approximate calculation is quick and easy (Q ≈ 1/bandwidth)
 - » Modal significance → modal bandwidth
 - » slope of eigenvalue $d\lambda_n/d\omega \rightarrow$ obtainable bandwidth
 - Can modal bandwidth meet the requirements?
- Characteristic angle for analyzing reflection of a mode

34

Antenna Analysis – Currents

- Insights into structural modifications
 - Areas of high current will impact the eigenmode
 - Areas of low current will have less impact on eigenmode
- Insights into current¹ and voltage feeds
 - Splitting structures in areas of high current
 - Impact of feed location on multi-mode excitation
- Correlation functions allow for other additional insights
 - For example, comparison of structures, feed locations, etc.

¹ Current feeds can only be implemented through voltage induced currents

Antenna Analysis – Near-fields

- 3D structural changes
 - Information beyond physical structure allowing insights into structural changes
- Feed analysis of "complete units"
 - Capacitive coupling elements
 - Inductive coupling elements
- Coupling analysis
 - Feeds, matching circuits, and element modifications
 - Impact of multiple feeds
- Correlation functions allow for other additional insights

Antenna Analysis – Far-fields

- Provides structure-to-structure analysis
 - Structural modifications
 - » Modal changes across structure adaptations
 - » Allows for specific mode optimization

Examples of CM Analysis

DIPOLE, WIDEBAND DIPOLE, SPIRAL

38

37

Thin Wire - Dipole Antenna

- Eigenvalue analysis
 - Resonance → 1.15GHz
 - BW \rightarrow 14%
- Currents analysis
 - Center feed with splitting
 - Will not couple to λ_2
 - Will couple to λ_3

Bow-Tie Antenna

- Resonance → 1.0GHz
- $BW \rightarrow 26\%$
- "single mode" contribution
- Currents analysis
 - Center fed with splitting
 - Constant over frequency
- Near-field analysis
 - Shift significantly over frequency

Current distribution along bow-tie for λ_1

Bow-Tie (Characteristic Near-fields)

• Near-field analysis (10 mm above bow-tie)

Bow-Tie Eigen Patterns vs FEM Simulation

Logarithmic Spiral Antenna

- Wideband antennas can be better understood
 - Analysis of orthogonal currents
 - Modal "hopping" becomes obvious
 - Far-field modal contribution
 - CMA vs excited structures

Single Eigenmode Contribution

• Solid lines contribute to >80% of "typical pattern" across resonance

Current Distribution of Dominant CM

• Single excitation of specific modes observed

TCM-Assisted Terminal Design

STANDARD FLAT CHASSIS, COMPONENT CHASSIS

Pattern Variation Across Frequency

• Different modes over frequency, pattern evolving/rotating

TCM for Terminal Antennas

- • Consider 130 mm \times 66 mm chassis of a "typical mobile"
- What modes are available, can they be adapted?

CMA for Structure Alteration

Mode adaptation (850 MHz)

- Mode 1 (λ₁)
 - Currents alternating along the length of the chassis
 - Modal pattern represents that of a dipole along length
 - Slightly capacitive, near resonance
- Mode 2 (λ_2)
 - Currents alternating along the width of the chassis
 - Modal pattern represents that of a dipole along width
 - Very capacitive, not near resonance
- Mode 3 (λ₃)
 - Currents rotating around structure
 - Modal pattern represents that of a resonant loop
 - Very inductive, not near resonance

50

CMA of Mode 1

Splitting of the chassis

Not often allowed

Utilization of near-field feeding

- Many typical antennas
- Top loading of structure
- Matching Circuits
- Not an interesting mode
 - Well-known and often utilized mode
 - Modal features used in MIMO

CMA of Mode 2

- Mode 2 is not resonant < 2 GHz
 - Must use structural adaptation
- Sectioning or splitting the chassis
 - Not often allowed, may not help
- Utilization of near-field Feeding
 - Must be near resonance for usefulness
 - Side loading of structure
 - Matching circuits do not help with excitation
- Very interesting mode for CMA
 - Modal features used in MIMO

CMA of Mode 2

- Modal Currents
 - Resemble that of dipole along width
 - Far-field verifies this assumption
- Closed form dipole modifications can now be used
 - Capacitive loading
 - Inductive loading
- Top-hat (capactive) loading method chosen

H. Li, Z. Miers, and B. K. Lau, "Design of orthogonal MIMO handset antennas based on characteristic mode manipulation at frequency bands below 1 GHz," IEEE Trans. Antennas Propag., vol. 62, no. 5, pp. 2756-2766, May 2014.

Z. Miers, H. Li, and B. K. Lau, "Design of bandwidth enhanced and multiband MIMO antennas using characteristic modes," IEEE Antennas Wireless Propag. Lett., vol. 12, pp 1696-1699, 2013. (Special Cluster on Terminal Antenna Systems for 4G and Beyond)

Mode 2 Modification

• Add top-hat type features to the chassis (shorted along length of structure – physically bigger and adds capacitance)

- Pushes resonance to 1.6 GHz
- Add structural series inductance
 - Forces currents through section of structure
 - Increases outer capacitance (voltage higher on strip)

54

Current distribution for low frequency mode

Resonant Mode 2, and New Mode

Feeding Analysis

- MIMO antenna feeding considerations
 - Low coupling required
 - Multiple antennas, multiple feeds

Physical Understanding – Easy Adaptation

- Mode resonances is based on:
 - Total capacitance
 - Location of inductance (shorting strip)
 - Amount of inductance (width of shorting strip)

Modal Tracking – Multiband Response

- High frequency resonances:
 - Tracking modes across frequency
 - Modal correlation in feed areas
 - Apply modal analysis on high frequency mode (force into resonance at desired frequency)

From TCM to Full Prototype

- TCM Design
- CST Model
 - Dielectrics
 - Feed matching
- Prototype

CMA of Mode 3

- Modal Currents
 - Resemble that of resonant loop
 - Far-field verifies this assumption
- Closed form loop modifications can now be used
 - Inline loops, not possible with structure
 - Secondary loop
- Apply and test theory

Z. Miers, H. Li, and B. K. Lau, "Design of bezel antennas for multiband MIMO terminals using characteristic modes," in *Proc. 8th Europ. Conf. Antennas Propag. (EuCAP'2014)*, The Hague, The Netherlands, Apr. 6-10, 2014, pp. 2556-2560.

Mode 3 Modification

- Add secondary loop features to the structure
 - Forces currents to outer edge, electrically larger
 - Pushes resonance to below 1 GHz
- Impacts fundamental mode
 - Forces only single resonances
 - Isolation of the loop
 - Allows for tuning and multiple modes

61

Dual Low Band Resonance (Bezel)

Utilize TCM for Feeding

Modal Tracking

- High frequency resonances:
 - Shows how feeds can excite higher order modes
 - Apply modal analysis on high frequency mode
 - Application of slot forces mode into resonance

From TCM to Full Prototype

Full Structure TCM

- How practical is TCM design approach? Will it still work with components integrated?
- Consider a "fully-equipped" mobile terminal

Z. Miers, A. Sekyere, J. A. Enohnyaket, M. Landaeus, and B. K. Lau, "Effects of internal components on designing MIMO terminal antennas using characteristic modes," in *Proc.* 10th Europ. Conf. Antennas Propag. (EuCAP'2016), Davos, Switzerland, Apr. 10-15, 2016.

66

TCM Design with Impact of Components

- Design approach identical to that of previous examples
 - Analyze modal currents
 - Utilize antenna theory for basic adaptation (capacitive/inductive loading)
 - Utilize structural loading to create or modify modes

Quick Demo of CMA Software

MATLAB-BASED, FEKO, CST, WIPL-D

Future Directions & Conclusions

REFINING THEORY AND NEW APPLICATIONS

69

TCM for Dielectric/Magnetic Materials

- Motivation: CM analysis and design for problems with non-PEC materials:
 - dielectric resonators/loading, body-worn antennas, etc.
- Basic theory exists from 1970's, but incomplete:

R. F. Harrington, J. R. Mautz, and Y. Chang, "Characteristic modes for dielectric and magnetic bodies," *IEEE Trans. Antennas Propag.*, vol. 20, no. 2, pp. 194-198, Mar. 1972.

Y. Chang and R. F. Harrington, "A surface formulation for characteristic modes of material bodies," *IEEE Trans. Antennas Propag.*, vol. 25, no. 6, pp. 789-795, Nov. 1977.

- Eigenvalue no longer give resonance
- Existing integral formulations complex (volume-based) or have internal resonances (surface-based)

Electrically Larger Problems

- Current emphasis on structures around 1λ
- Complex for larger structures: Numerical issues and many resonant modes
- Attracting more interest (W. C. Chew, UIUC, USA; WIPL-D)
 Q. Dai, et al. "Large-scale characteristic mode analysis with fast multipole algorithms," *IEEE Trans. Antennas Propag.*, in press. (Special Issue on Theory and Applications of Characteristic Modes)

70

TCM for Dielectric/Magnetic Materials

- Two research tracks:
 - New surface-based formulations to address shortcomings (Y. Chen, UESTC, China; C. F. Wang, NUS, Singapore)
 Y. Chen, "Alternative surface integral equation-based characteristic mode analysis of dielectric resonator antennas," *IET Microw. Antennas Propag.*, vol. 10, no. 2, pp. 193-201, 2016
 - Removing internal resonances in surface formulations
 (Z. Miers/B. K. Lau, LU, Sweden; McNamara, Uni Ottawa, Canada)
 Z. Miers and B. K. Lau, "Computational analysis and verifications of characteristic modes in real materials," *IEEE Trans. Antennas Propag.*, in press. (Special Issue on Theory and Applications of Characteristic Modes)
- More research needed!

71

Examples of New Applications

• Non-destructive testing of carbon nanotubes (CNT)

A. M. Hassan, et al., "Electromagnetic resonances of individual single-walled carbon nanotubes with realistic shapes: A characteristic modes approach," *IEEE Trans. Antennas Propag.*, in press. (Special Issue on Theory and Applications of Characteristic Modes)

• Design of radiative RF coil for ultrahigh-field (UHF) MRI

of different RF coil elements for 7-Tesla Magnetic Resonance Imaging based on characteristic mode analysis" in *Proc. IEEE MTT-S Int. Microw. Symp.*, Tampa, FL, Jun. 1-6, 2014

Z. Chen, et al., "Coupling Investigation

Analysis of coupling mechanism for different designs

73

Examples of New Applications

• Analysis of metamaterial structures

Patch antenna over reactive impedance surface (RIS)

Modal significance of mode 1 for different substrates

M. H. Rabbah, et al., "Analysis of miniature metamaterial and magneto-dielectric arbitrary-shaped patch antennas using characteristic modes: Evaluation of the Q factor" *IEEE Trans. Antennas Propag.*, in press. (Special Issue on Theory and Applications of Characteristic Modes)

74

Concluding Remarks

- TCM gives valuable physical insights into antenna and scattering problems, systematic design/analysis possible!
- Critical mass in applying TCM is reached!
- Basics of TCM and CMA explained
- Analysis and design demonstrated for common/specialized cases
- Proposed action points for all of you:
 - Get started: You will received Makarov-script based TCM software by email within a week (Note: use as is, no user support!), etc. Full video introduction to be made available
 - Get involved: Join the TCM community (Special Interest Group on TCM, see characteristicmodes.org for more information)
 - Find your niche, still many stones left unturned
 - Have fun!

