Heures (Hebdo)	4.0
Cours	2.0
Exercices	2.0
Pratique	0.0
Total	56.0

Langue	français
Semestre	Printemps
Mode d'évaluation	Examen écrit
Session	Juillet
Format de l'enseignment	Cours, exercices

Cursus	Туре	ECTS
Baccalauréat universitaire en mathématiques	N/A	6.0
Baccalauréat universitaire en mathématiques, informatique et sciences numériques	N/A	6.0
Maîtrise universitaire en mathématiques	N/A	6.0
Maîtrise universitaire en mathématiques, informatique et sciences numériques	N/A	6.0

Field theory for mathematicians

14M262 | Anton Alexeev

Objectifs

This course is an introduction into classical and quantum field theory for mathematicians.

Description

In the classical field theory part, we will cover the Lagrangian formalism, symplectic structures associated to field theories, symmetries and the Noether Theorem, and (if time permits) some field theory dualities.

In the quantum field theory part, we will introduce the calculus of Feynman diagrams and apply it in finite and infinite dimensional examples.