[Management des SI] Project 1: Reliability

Github: https://github.com/romainducrocg/Reliability DUCROCQ-Romain

Path to results: code/data/reliability result.mat

Introduction

The aim of this project was to implement reliability metrics presented in the paper "Network Reliability and Resilience of Rapid Transit Systems", apply them to a 100x100 adjacency matrix and discuss the results. These metrics are used to quantify the reliability of a graph and assess its tolerance to disruptions.

Here, we will study the simplest case, where no additional disruptions are introduced, also called status quo. We will measure Rod, Rnode, Rrange and Rsys, and discuss the resilience of the graph in light of these results.

Methodology

1. Rod Matrix

Rod measures the reliability for each possible path between two nodes, known as origin and destination. To compute all paths from one to the other, the article mentions the use of a k-shortest path algorithm. I have therefore used the Lawler-Yen K-shortest path algorithm, a modification of the original Yen algorithm, which does not explore duplicate paths rather than discarding them afterwards. This decreases the time complexity of the search by a factor n (number of nodes), from o(kn⁴) to o(kn³), and thus supposedly divides the computation time by a 100 times in our case. My algorithm has no fixed K, but loops until the first path with an infinity weight is found, and therefore finds all the k-shortest loopless paths. With this approach, I go through all the 100x100 pairs of origin-destination nodes in approximately 25 minutes of computation time.

The Rod value is based on the probabilities for disjoint events p(Dk) and the probabilities of available paths p(Ek), where the path Ek is composed of the set of links {ei, i = 1:m}, and p(Ek) defined as the product of all p(ei). However, p(ei) is described as the empirical reliability at link i, and we do not have empirical measures for our network. We therefore define p(ei) as "the probability that it is the ei link that is not 'cut' among all those that make up the path from origin to destination". This probability is (1 - (1 / m)), with (m = n - 1) for the path Ek. Thus, for a given path Ek, p(e1) = p(e2) = ... = p(em), and p(Ek) = (1 - (1 / m)) ** m.

The function RodMat(adjacency, name) in RodMat.m takes an adjacency matrix as input and computes the Rod for all pairs of origin-destination nodes. It then stores the 100x100 resulting matrix in a {name}_rod.mat file.

```
>> load data/adjacency.mat
>> RodMat(adjacency, "data/reliability")
```

Here, we load the adjacency matrix and store it's Rod matrix in data/reliability_rod.mat. It is not advised to replicate this as the computation takes around 25 minutes to complete. Instead, I have added two randomly generated 20x20 test matrices in the folder data/test. data/test/test.mat is dense (p=0.5), and data/test/test2.mat is sparse (p=0.1). Use as follow:

```
>> load data/test/test.mat >> load data/test/test2.mat >> RodMat(test, "data/test/test")
```

2. Reliability metrics

Rnode, Rrange and Rsys are based on Rod. They all take the Rod Matrix as an input and compute the metrics with it. This way, the measures are obtained very quickly once the Rod Matrix is done, since the Rods are never recomputed.

The function Reliability(name) in Reliability.mat loads the Rod Matrix from the {name}_rod.mat file and computes the metrics: Rnode and Rrange for each pair of origin-destination nodes, and Rsys for the matrix. It then stores the values in the file {name} result.mat. Use as follow:

```
Project: Tests:

>> Reliability("data/reliability") |
>> Reliability("data/test/test") |
>> Reliability("data/test/test2")
```

3. Display results

The function PrintResult(name, plots, sortMode) in PrintResult.m displays the results obtained at the previous step. It loads all the Rnodes, Rranges and the Rsys from the {name} result.mat file and displays them depending on the given inputs:

- [plots] 1: plot the Rnodes and Rranges, 0: don't plot (if gnu.plot not installed);
- [sortMode] 1: Rnodes ascending, 2: Rnodes descending, 0: don't sort.

Use as follow:

```
Project:
```

```
>> PrintResult("data/reliability", 1, 2)
```

```
Tests:
>> PrintResult("data/test/test", 1, 2)
>> PrintResult("data/test/test2", 1, 2)
```

NB: Complete instructions

	<u>Project</u>	Test 1	Test 2
Rod Matrix	>> load data/adjacency.mat >> RodMat(adjacency, "data/reliability") (~ 25 minutes)	>> load data/test/test.mat >> RodMat(test, "data/test/test")	>> load data/test/test2.mat >> RodMat(test2, "data/test/test2")
Rnodes, Rranges, Rsys	>> Reliability("data/reliability")	>> Reliability("data/test/test")	>> Reliability("data/test/test2")
Display	>> PrintResult("data/reliability", 1, 2)	>> PrintResult("data/test/test", 1, 2)	>> PrintResult("data/test/test2", 1, 2)

Results

1. Hypothesis

Before looking at the results, we should anticipate what kind of measures we can expect. By looking at the adjacency matrix, we observe that the graph is very sparse. When we compute the incidence matrix for our network, we find out that it contains only E = 761 edges. The density of a directed graph is given by (E / (n * (n - 1))), which here equals to D = (761 / 9900) = 0.07. Hence, we can safely assume the graph to be very sparse. In comparison, the graph in Test 1 has a density of D = 0.5, and the graph in Test 2 has a density of D = 0.09.

This first analysis indicates that we will probably have low reliability scores overall. In fact, a very low density indicates that there are on average very few alternative paths between a pair of origin-destination nodes. Any cut has therefore a significant probability to disjoint the given sub-graph.

To get an idea of the result, we can look at the test cases. Test 1, with a density of 0.5, has all its Rnodes equal to 0.99, Rranges lower than 0.001 and an Rsys of 0.99. It is very reliable, and will present a strong tolerance to disruptions. In practice, it would be almost impossible for it to collapse due to random events.

Test 2 has a density of 0.09 and much lower scores. The Rnodes vary from 0.58 to 0.25, and the Rranges have the same order of magnitude. Five nodes have an Rnode of 0, which means that they are disconnected. The Rsys is 0.3. This graph is much less reliable than the first one, and will have a weaker tolerance to disruptions.

Since the density of our 100x100 matrix, D = 0.07, is a bit less than the one in the second scenario, I would expect the results to look overall alike, with slightly inferior values. Thus, great variations in the Rnodes and Rranges, and an Rsys < 0.3.

2. Results

A. Rnode-Rrange pairs sorted by descending Rnode values

Node	99:	Rnode	=	0.530816	Rrange = 0.749714
Node	97:	Rnode	=	0.464188	Rrange = 0.749694
Node	96:	Rnode	=	0.458291	Rrange = 0.749696
Node	86:	Rnode	=	0.415525	Rrange = 0.749709
Node	84:	Rnode	=	0.393430	Rrange = 0.749678
Node	83:	Rnode	=	0.389753	Rrange = 0.749703
Node	98:	Rnode	=	0.389623	Rrange = 0.749706
Node	82:	Rnode	=	0.382644	Rrange = 0.749689
Node	85:	Rnode	=	0.339186	Rrange = 0.749683
Node	100:	Rnode	=	0.337487	Rrange = 0.749681
Node	92:	Rnode	=	0.337036	Rrange = 0.749698
Node	93:	Rnode	=	0.330271	Rrange = 0.749706
Node	75:	Rnode	=	0.325987	Rrange = 0.749671
Node	79:	Rnode	=	0.324707	Rrange = 0.749686
Node	66:	Rnode	=	0.317523	Rrange = 0.749683
Node	76:	Rnode	=	0.300048	Rrange = 0.749709
Node	63:	Rnode	=	0.291163	Rrange = 0.749660
Node	73:	Rnode	=	0.283901	Rrange = 0.749705
Node	90:	Rnode	=	0.280311	Rrange = 0.749683
Node	71:	Rnode	=	0.278981	Rrange = 0.749685
Node	89:	Rnode	=	0.278009	Rrange = 0.749675
Node	64:	Rnode	=	0.275745	Rrange = 0.749711
Node		Rnode	=	0.271209	Rrange = 0.749705
Node		Rnode	=	0.267224	Rrange = 0.749664
Node	61:	Rnode	=	0.264524	Rrange = 0.749675
Node	91:	Rnode	\equiv	0.263189	Rrange = 0.749542
Node	94:	Rnode	=	0.262463	Rrange = 0.749676
Node	78:	Rnode	=	0.252616	Rrange = 0.749687
Node				0.249750	Rrange = 0.749657
Node		Rnode	=	0.245515	Rrange = 0.749694
Node				0.242071	Rrange = 0.749678
Node				0.238818	Rrange = 0.749693
Node	4777 S			0.235334	Rrange = 0.749683
Node				0.234287	Rrange = 0.749693
Node				0.230522	Rrange = 0.749632
Node				0.224703	Rrange = 0.749660
Node				0.224114	Rrange = 0.749683
Node	35(7) B			0.221967	Rrange = 0.749676
Node				0.220582	Rrange = 0.749693
Node				0.219475	Rrange = 0.749693
Node				0.217840	Rrange = 0.749665
Node				0.215399	Rrange = 0.749676
Node				0.213307	Rrange = 0.749703
Node				0.211358	Rrange = 0.749674
Node				0.210186	Rrange = 0.749715
Node				0.210017	Rrange = 0.749675
Node				0.208639	Rrange = 0.749640
Node				0.205081	Rrange = 0.749687
Node				0.202568	Rrange = 0.749632
Node	60:	Rnode	\equiv	0.199735	Rrange = 0.749673

	Node 67:	Rnode = 0.199624	Rrange = 0.749664
	Node 68:	Rnode = 0.196607	Rrange = 0.749664
	Node 43:	Rnode = 0.195946	Rrange = 0.749694
	Node 74:	Rnode = 0.194115	Rrange = 0.749675
	Node 36:	Rnode = 0.193254	Rrange = 0.749676
	Node 44:	Rnode = 0.191936	Rrange = 0.749626
	Node 56:	Rnode = 0.190218	Rrange = 0.749670
	Node 40:	Rnode = 0.188811	Rrange = 0.749492
	Node 41:	Rnode = 0.187856	Rrange = 0.749691
	Node 37:	Rnode = 0.173346	Rrange = 0.749696
	Node 33:	Rnode = 0.173097	Rrange = 0.749662
	Node 38:	Rnode = 0.167706	Rrange = 0.749655
	Node 26:	Rnode = 0.165664	Rrange = 0.749501
	Node 58:	Rnode = 0.163714	Rrange = 0.749703
	Node 39:	Rnode = 0.163084	Rrange = 0.749532
	Node 27:	Rnode = 0.153900	Rrange = 0.749147
	Node 48:	Rnode = 0.150972	Rrange = 0.749670
	Node 35:	Rnode = 0.150035	Rrange = 0.749649
	Node 28:	Rnode = 0.146194	Rrange = 0.749495
	Node 29:	Rnode = 0.141388	Rrange = 0.562210
	Node 24:	Rnode = 0.139562	Rrange = 0.749564
	Node 20:	Rnode = 0.128959	Rrange = 0.749532
	Node 32:	Rnode = 0.128663	Rrange = 0.749649
	Node 25:	Rnode = 0.125878	Rrange = 0.749461
	Node 59:	Rnode = 0.116437	Rrange = 0.748933
	Node 34:	Rnode = 0.116064	Rrange = 0.749477
	Node 30:	Rnode = 0.114847	Rrange = 0.749626
	Node 19:	Rnode = 0.107038	Rrange = 0.749649
	Node 18:	Rnode = 0.106052	Rrange = 0.749626
	Node 22:	Rnode = 0.106011	Rrange = 0.749649
	Node 16:	Rnode = 0.101449	Rrange = 0.749615
	Node 23:	Rnode = 0.098189	Rrange = 0.749147
	Node 21:	Rnode = 0.097979	Rrange = 0.748773
	Node 17:	Rnode = 0.097867	Rrange = 0.749638
	Node 31:	Rnode = 0.094394	Rrange = 0.561700
	Node 14:	Rnode = 0.092038	Rrange = 0.749417
	Node 12:	Rnode = 0.091764	Rrange = 0.749147
	Node 15:	Rnode = 0.089342	Rrange = 0.024676
	Node 13:	Rnode = 0.089235	Rrange = 0.026384
	Node 11:	Rnode = 0.088884	Rrange = 0.035684
	Node 10:	Rnode = 0.088531	Rrange = 0.031350
	Node 7:	Rnode = 0.075987	Rrange = 0.072708
	Node 9:	Rnode = 0.074907	Rrange = 0.110249
	Node 8:	Rnode = 0.074476	Rrange = 0.077060
	Node 6:	Rnode = 0.074462	Rrange = 0.112502
	Node 2:	Rnode = 0.074408	Rrange = 0.072546
	Node 4:	Rnode = 0.074299	Rrange = 0.094677
	Node 3:	Rnode = 0.074114	Rrange = 0.098759
	Node 5:	Rnode = 0.071741	Rrange = 0.115773
	Node 1:	Rnode = 0.069248	Rrange = 0.055933
- 4	-		

B. Rnodes and Rranges plotted by ascending node index

C. Rsys

Rsys = 0.205574

3. Discussion

We observe that the results are in adequacy with our hypothesis formulated from the analysis of the density of the graph. The Rnodes vary greatly from a maximum of 0.53 to a minimum of 0.07. The Rranges also have wide disparities, lying between 0.74 and 0.02. And, as expected, the Rsys is low, at around 0.21, which indicates that the network has a low tolerance to disruptions.

Furthermore, some patterns emerge from the results.

First, we see that the Rnodes are progressively increasing with the node index, and do so very uniformly. All the nodes with an Rnode lower than 0.1 are in the first third of the matrix (node index <= 31), and all the nodes with an Rnode greater than 0.3 are in the last third of the matrix (node index >= 66). This indicates that the matrix happens to be mainly sorted by reliability, going from the least reliable nodes at the beginning towards the most reliable ones at the end. This pattern is also clearly visible in the plot, where the curve smoothly increases with the index.

Secondly, we notice that the Rranges are high for the 87 most reliable nodes. 85 of these have a value of 0.74, while the two others are at 0.56. These overly homogeneous results contrast strongly with the scores of the 13 least reliable nodes, which have low Rranges between 0.12 and 0.02. The curve shows indeed low and disparate Rranges in the first part of the plot, and a quick convergence towards 0.74. On behalf of these two observations and the paper, a correlation appears between Rnode and Rrange for assessing the reliability of a node. Indeed, nodes with a high Rnode will have a high Rrange, and nodes with a low Rrange will have a low Rnode. However, a low Rnode is not a consistent predictor of the value of Rrange.

If we consider our graph to be a transit system, we can interpret these results as stations in a transport network. While we only have topological information and are not interested in the length of the links nor their positions, we can geographically picture the network as a city, with the number of stations, their connections and the flow of passengers all decreasing with the distance to the center.

On one hand, the nodes with the best Rnodes are hubs and transfer stations in central areas, which offer the best connectivity. The nodes with intermediate Rnodes are mostly non-transfer stations in central areas. And nodes with low Rnodes will be more likely to be non-transfer peripheral stations on transit lines.

On the other hand, the nodes with higher Rranges are bridge stations, which serve as connections between lines and hubs, while nodes with lower Rranges are located at the ends of transit lines, far from the main connections.

We can therefore distinguish three main types of stations:

Station type	Description	Example in Paris
High Rnode & High Rrange	Major hub, transfer and bridge station in central areas.	Châtelet-Les-Halles Gare du Nord
Low Rnode & High Rrange	Non-transfer and bridge station in central areas.	Luxembourg Louvre-Rivoli
Low Rnode & Low Rrange	Non-transfer and non-bridge station in peripheral areas.	Noisy-Champs Melun

When applying this framework to our results, we understand that the 13 first nodes in the matrix, with both low Rnodes and low Rranges, are peripheral stations far from the central connections, which could be disconnected with a single cut.

The other 87 stations with high Rranges are central bridge stations. When we go through this subset of the matrix, we gain reliability and connectivity with the depth, as we have seen that the index corresponds approximately to the Rnode magnitude. At first, at low Rnodes, we will encounter non-transfer stations, which serve solely as gateways between transfer stations. These would be disconnected with only two cuts Then, at medium Rnodes, there are minor transfer stations, with low numbers of connections. These would require only a few cuts to be disconnected.

Finally, at the end, the high Rnodes represent the major hubs and transfer stations. These are highly connected, and a great number of cuts would be needed to disconnect them from the network.

Overall, the Rsys = 0.21 indicates that our graph has a low tolerance to disruption scenarios. However, this measure is not that meaningful at status quo alone, since the Rsys is just an average of all Rnodes. Hence, for homogeneous graphs, like randomly generated graphs, the Rsys would give a good approximation at any point, but it would not represent the inner disparities for heterogeneous structures.

The strength of the Rsys metric appears when introducing nodal disruptions in the system. Then, by comparing Rsys for different disruption events, we can determine the critical nodes for system reliability. In fact, the most reliable nodes are not necessarily the ones impacting the most the system in case of disruption.

Therefore, after our status quo analysis, we can assess the reliability of each individual node, have an idea of the structure of our network, and state that the system is relatively unresilient to disruptions. But we can absolutely not establish which critical nodes to protect from disruptions to maintain the level of reliability.