CAPITOLO 3: FUNZIONI REALI DI UNA VARIABILE (corrisponde al capitolo 2 del libro)

- Dominio, immagine e grafico.
- Funzione composta, funzioni invertibili e funzione inversa.
- Funzioni monotone
- Richiami sulle funzioni esponenziali, logaritmiche e trigonometriche.

Dominio, immagine e grafico

<u>Definizione</u>: si definisce **funzione** una relazione tra due insiemi (x= dominio; y=codominio) che associa ad ogni elemento del dominio un solo elemento del codominio (o ad ogni elemento di x associa un solo elemento di y) \rightarrow y = f(x)

X è il **dominio** e si scrive X = dom f e **Y** è il **codominio** Il grafico di f è l'insieme $\rightarrow \text{graf } f := \{(x, f(x)) : x \in X\} \subseteq X \times Y$

L'immagine di f è l'insieme dei valori della funzione \rightarrow im $f = f(X) := \{f(x)\} : x \in X\} \subseteq Y$

Per indicare una funzione da X in Y possiamo scrivere:

$$f: X \to Y$$
, $x \to y$ oppure $\begin{cases} f: X \to Y \\ f(x) = y \end{cases}$ oppure $f: X \ni x \to y$ oppure $f(x) = y \ \forall \ x \in X$

Se dal contesto è chiaro che si sta considerando una funzione di una sola variabile reale spesso non si specifica il dominio della funzione, questo viene definito **dominio naturale** \rightarrow la funzione $f(x) = x^2 + 1$ ha come dominio naturale R

Funzione razionale (funzione composta) è una funzione definita come quoziente di due polinomi \rightarrow il loro dominio sarà i punti dove si annulla il denominatore

Alcuni tipi di funzione:

- Dato un insieme X si dice identità di X in sé la funzione $\to I_x: X \to X$, $I_x(x) = x$
- $f: X \to Y \in A \subseteq X$. Si dice restrizione $\to f|_A: A \to Y$, $f|_A(x) = f(x)$
- Proiezione canonica di X xY su X (rispettivamente Y) $\rightarrow \begin{cases} f: X \times Y \to X \ (rispettivamente Y) \\ f(x,y) = x \end{cases}$ (rispettivamente y)
- Successione di una funzione il cui dominio è N (da N a R) \rightarrow $\begin{cases} f: N \rightarrow R \\ f(n) = a_n \end{cases}$

Funzione composta, funzioni invertibili e funzione inversa.

Siano A, B, C insiemi e f : A \rightarrow B e g: B \rightarrow C definiamo la **composizione** di f e g è la funzione g \circ f : A \rightarrow C definita ponendo ($\mathbf{g} \circ \mathbf{f}$) (\mathbf{a}) : $\stackrel{\text{def}}{=}$ \mathbf{g} ($\mathbf{f}(\mathbf{a})$) \rightarrow (il grafico che segue è la rappresentazione grafica)

(Aggiungi proprietà funzioni composte)

L'inversa di f e la funzione : $f^{-1}: B \to A$ definita da $f^{-1}: \stackrel{\text{def}}{=} \{(b, a) \in B \times A : (a, b) \in f\}$

 $f: X \to Y$ si dice invertibile in $A \subseteq X$ se la restrizione di f ad A, $f|_A: A \to Y$ è iniettiva.

Funzioni monotone

Y = f(x) di dominio $D \subseteq R$ è una funzione che nel suo dominio, o in un intervallo contenuto in esso, se si mantiene sempre crescente o sempre decrescente.

Crescente \rightarrow si ha $f(x_1) \ge f(x_2)$ Strettamente crescente \rightarrow si ha $f(x_1) > f(x_2)$ Decrescente \rightarrow si ha $f(x_1) \le f(x_2)$ Strettamente decrescente \rightarrow si ha $f(x_1) < f(x_2)$

Richiami sulle funzioni esponenziali, logaritmiche e trigonometriche.

- Una **funzione esponenziale** è una funzione data da una potenza in cui la base è costante e l'esponente è variabile.

- Una **funzione logaritmica** è una funzione data da un logaritmo in cui la base è una costante e l'argomento è variabile. Indicata con ln(x) o con log(x).

- Una funzione trigonometria sono la funzione seno, coseno e tangente

- ♦ Altre cose presenti nel capitolo del libro:
- Funzioni simmetriche, periodiche

Le funzioni pari \rightarrow si ha quando per ogni x appartenente al dominio $f(-x) = f(x) \rightarrow$ il suo grafico è simmetrico rispetto all'asse delle ordinate

Le funzioni dispari \rightarrow si ha quando per ogni x appartenente al dominio $f(-x) = -f(x) \rightarrow$ il suo grafico è simmetrico rispetto all'origine

f(x) si dice funzione periodica se vale che $f(x + T) = f(x) \rightarrow$ il grafico si ripete uguale per ogni periodo

Le funzioni sinx (seno) e cosx (coseno) ha periodo 2π Le funzioni tgx (tangente) e cotgx (cotangente) ha periodo π

• Funzione limitata, estremo superiore e inferiore, massimo e minimo

Avendo $f: X \to R$ si dice **limitata** in X se è limitata superiormente o inferiormente in X

- Quando è limitata superiormente avremo: $f(x) \le M$
- Quando è **limitata inferiormente** avremo: $f(x) \ge -M$

$$f: X \to R$$
 si dice { positiva se $f(x) > 0$ e non negativa se $f(x) \ge 0$ negativa se $f(x) < 0$ e non positiva se $f(x) \le 0$

 $sia f: X \to R con A (non vuoto) \subseteq X si definiscono estremo superiore e inferiore i seguenti...$

$$\sup f := \left\{ \sup_{+ \infty} f(A) \right\}$$

$$\inf f := \left\{ \begin{matrix} \inf f(A) \\ -\infty \end{matrix} \right.$$

Funzione iniettiva e suriettiva

INIETTIVA: si dice iniettiva quando la funzione associa elementi diversi del dominio con elementi diversi del codominio \rightarrow dati 2 insiemi A e B; f: A \rightarrow B si dice iniettiva se $\forall x_1, x_2 \in A$; $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$

SURIETTIVA: si dice suriettiva quando per ogni elemento del codominio esiste almeno un elemento del dominio \rightarrow dati 2 insiemi A e B; f: A \rightarrow B si dice suriettiva se $\forall b \in B \ \exists a \in A : b = f(a)$

Funzione arcoseno, arcocoseno, arcotangente

Arcoseno è la funzione **inversa del seno** \rightarrow arcsin inverso di sin \rightarrow sin $(\frac{\pi}{6}) = \frac{1}{2}$ invece arcsin $(\frac{1}{2}) = \frac{\pi}{6}$

Arcocoseno è la funzione **inversa del coseno** \rightarrow arcos inverso di $\cos \rightarrow \cos \left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$ invece arcos $\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6}$

Arcotangente è la funzione inversa della tangente \rightarrow arctg inverso di tg \rightarrow tg $(\frac{\pi}{6}) = \frac{\sqrt{3}}{3}$ invece arctg $(\frac{\sqrt{3}}{3})$ $= \frac{\pi}{6}$

- Invertibilità e monotonia (pag. 60)
- Operando con le funzioni (pag. 61-67)
- Equazioni e disequazioni: metodo grafico (pag. 68-70)