FCC CFR47 PART 15/ INDUSTRY CANADA RSS-210

Test Report

2.4 GHz Transceiver

Model Number: ZE10F

FCC ID: YRIPLF01 IC: 9041A - PLF01

Report Number: 10PRO018 REV1

Issue Date: 1 September 2010

Prepared for

Zelfy 4655 Old Ironsides Dr #200 Santa Clara, CA 95054

Prepared by
T.N. Cokenias Consulting
P.O. Box 1086
El Granada CA 94018

EMISSIONS TEST REPORT FOR A LOW POWER TRANSMITTER

I. GENERAL INFORMATION

Requirement: FCC, IC

Test Requirements: FCC Part 15, RSS-210, RSS-Gen

Applicant: Zelfy

4655 Old Ironsides Dr #200 Santa Clara, CA 95054

FCC ID: YRIPLF01 **IC:** 9041A - PLF01

Model No.: ZE10F

II. DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)

The Zelfy Node product contains a 2.4 GHz radio and is used as part of a system to control and program entertainment devices remotely via internet and cell phone.

III. TEST DATES AND TEST LOCATION

Testing was performed 11-12 August 2010. All tests were performed at

Compliance Certification Services 47173 Benicia Street Fremont, CA 94538

T.N. Cokenias EMC Consultant/Agent for Zelfy

J.M. Cohen

15 August 2010

15.203 Antenna connector requirement

The EUT uses a custom permanently attached internal monopole antenna

Antenna desc	cription	Mfr.	Model No.	Gain
Built-in mon	opole	Zelfy	n/a	0 dBi maximum

TEST PROCEDURES

All tests were performed in accordance with the applicable procedures called out in the following documents, unless otherwise noted:

FCC 47CFR15

RSS-210 Issue 7: Low power license exempt radio frequency devices (July 2007) RSS-212: Test Facilities and Test Methods for Radio Equipment

ANSI C63.4 – 2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

KDB Publication Number: 558074 DTS Measurement Procedures

For each radio, tests were performed at three frequencies:

Channel 11 (LOW) – 2405.8 MHz Channel 18 (MID) – 2440.8 MHz Channel 26 (HIGH) – 2480.9 MHz

Test Equipment

TEST EQUIPMENT LIST									
Description	Manufacturer	Model	Asset	Cal Date	Cal Due				
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	01/14/09	12/18/1				
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	03/31/09	12/19/1				
PSA Series Spectrum Analyzer	Agilent / HP	E4446A	C01069	01/05/10	04/05/11				
Power Meter	HP	438A	C01068	12/06/09	06/16/1				
Power sensor	HP	8482A	2349A08568	04/14/09	04/14/1				
Antenna, Horn, 18 GHz	EMCO	3115	C00945	04/22/09	12/18/10				
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	08/05/09	12/17/10				
		LISN-50/250-25-							
LISN, 30 MHz	FCC	2	N02625	10/29/09	10/29/10				
		8012-50-R-24-							
LISN, 10 kHz ~ 30 MHz	Solar	BNC	N02481	10/29/09	10/29/10				
EMI Receiver	R & S	ESHS 20	N02396	06/08/09	05/06/1				

Test Set-up Diagram

Support Equipment

Equipment	Mfr	Model	Asset No.
Laptop PC	HP	Pavillion	X11-45371
AC/DC adapter	HP	DC359A	Q031514
Ethernet switch	Netgear	FS105	1D5178937048A
Ethernet Switch AC/DC	Netgear	DSA-9R-05-AUS	

Test control software: ZELFY guiHubNodeTest-FCC

TEST RESULTS

Radiated Test Set-up, 30-25 GHz

Test Procedures

Radiated emissions generated by the transmitter portion of the EUT were measured.

- 1. The EUT was placed on a wooden table resting on a turntable on the test site. The search antenna was placed 3m from the EUT. The EUT antenna was mounted in the with the EUT TX antenna pointed directly to the search antenna.
- 2. The turntable was slowly rotated to locate the direction of maximum emission at each emission falling in the restricted bands of 15.205.
- 3. Emissions were investigated to the 10th harmonic of the fundamental.
 - 4. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data listed below.

Test Results: Worst-case results are presented. Refer to data sheets below. Restricted band emissions meet 54 dBuV/m. Other undesired emissions from the transmitter meet

the -20 dBc requirement in 15.247(d).

15.205 Restricted Frequency Bands

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505 (1)	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	
13.36 - 13.41	322 - 335.4		

15.209 General Field Strength Limits

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

FCC ID: YRIPLF01 IC: 9041A-PLF01

Industry Canada RSS-210 Restricted Bands and General Field Strength Limits

Table 1: Restricted Frequency Bands (Note)

T	1 т	
MHz		MHz
0.090-0.110		73-74.6
2.1735-2.1905		74.8-75.2
3.020-3.026		108-138
4.125-4.128		156.52475-156.52525
4.17725-4.17775		156.7-156.9
4.20725-4.20775		240-285
5.677-5.683		322-335.4
6.215-6.218		399.9-410
6.26775-6.26825		608-614
6.31175-6.31225		960-1427
8.291-8.294		1435-1626.5
8.362-8.366		1645.5-1646.5
8.37625-8.38675		1660-1710
8.41425-8.41475		1718.8-1722.2
12.29-12.293		2200-2300
12.51975-12.52025		2310-2390
12.57675-12.57725		2655-2900
13.36-13.41		3260-3267
16.42-16.423		3332-3339
16.69475-16.69525		3345.8-3358
16.80425-16.80475		3500-4400
25.5-25.67		4500-5150
37.5-38.25		5350-5460

MHz
7250-7750
8025-8500

GHz
9.0-9.2
9.3-9.5
10.6-12.7
13.25-13.4
14.47-14.5
15.35-16.2
17.7-21.4
22.01-23.12
23.6-24.0
31.2-31.8
36.43-36.5
Above 38.6

Note: Certain frequency bands listed in Table 1 and above 38.6 GHz are designated for low-power licence-exempt applications. These frequency bands and the requirements that apply to the devices are set out in this Standard as well as in RSS-310.

Table 2: General Field Strength Limits for Transmitters and Receivers at Frequencies Above 30 MHz (Note)

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)					
(MHz)	Transmitters	Receivers				
30-88	100 (3 nW)	100 (3 nW)				
88-216	150 (6.8 nW)	150 (6.8 nW)				
216-960	200 (12 nW)	200 (12 nW)				
Above 960	500 (75 nW)	500 (75 nW)				

Note: Transmitting devices are not permitted in Table 1 bands or in TV bands (54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz, and 614-806 MHz). Prohibition of operation in TV bands does not apply to momentary devices, or to medical telemetry devices in the band 174-216 MHz, and to perimeter protection systems in the bands 54-72 and 76-88 MHz. The perimeter protection devices are to meet Table 3 field strengths limits.

FCC ID: YRIPLF01 IC: 9041A-PLF01

Radiated Band edge Emissions in Restricted Bands

Low channel 11, Horizontal Polarity, Peak detector

Low channel 11, Vertical Polarity, Peak detector

Low channel 11, Horizontal Polarity, Average detector

Low channel 11, Vertical Polarity, Average detector

FCC ID: YRIPLF01 IC: 9041A-PLF01

High channel 26, Vertical Polarity, Peak detector

High channel 26, Horizontal Polarity, Peak detector

High channel 26, Vertical Polarity, Average detector

High channel 26, Horizontal Polarity, Average detector

1-25 GHz TX Radiated Spurious

FCC ID: YRIPLF01 IC: 9041A-PLF01

RX Emissions

TX and RX Radiated Emissions 30-1000 MHz

Note: No difference detected between TX and RX emissions below 1 GHz Vertical polarity, Worst-case emission (Channel 11)

Horizontal polarity, Worst-case emission (Channel 11)

FCC ID: YRIPLF01 IC: 9041A-PLF01

30-1000MHz Frequency Measurement Compliance Certification Services, Fremont 5m Chamber

Test Engr: Thanh Nguyen Date: 08/11/10 Project #: 10U13366 Company: Zelphy EUT Description: Node

EUT M/N: Test Target: Mode Oper:

Preamp Gain Measurement Frequency Amp Margin Margin vs. Limit

Dist Distance to Antenna D Corr Distance Correct to 3 meters Read Analyzer Reading Filter Filter Insert Loss AF Antenna Factor Calculated Field Strength Corr. CL Cable Loss Field Strength Limit Limit

f	Dist	Read	AF	CL	Amp	D Corr	Filter	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
MHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Worst case													
47.281	3.0	40.9	9.7	0.6	28.4	0.0	0.0	22.9	40.0	-17.1	V	P	
199.087	3.0	37.5	11.9	1.2	28.2	0.0	0.0	22.5	43.5	-21.0	V	P	
367.574	3.0	36.3	14.4	1.7	28.1	0.0	0.0	24.3	46.0	-21.7	V	P	
30.000	3.0	28.9	20.1	0.5	28.4	0.0	0.0	21.1	40.0	-18.9	Н	P	
214.808	3.0	36.5	11.9	1.3	28.2	0.0	0.0	21.5	43.5	-22.0	Н	P	
367.454	3.0	32.5	14.4	1.7	28.1	0.0	0.0	20.5	46.0	-25.5	Н	P	
817.712	3.0	29.6	21.1	2.7	27.5	0.0	0.0	25.8	46.0	-20.2	Н	P	

Rev. 1.27.09

Note: No other emissions were detected above the system noise floor.

6dB Bandwidth for DTS

Test Requirement: FCC: 15.247 (a) 2

IC: RSS-210 Sec. 6.2.2(o)(iv)

Test Set-up

Test Procedures

A modified EUT with a coaxial cable attached to the radio antenna port was configured on a test bench. The cable's SMA connector was connected to the spectrum analyzer. The EUT transmission was continuous at the LOW channel. While the transmitter broadcast a steady stream of digital data, the analyzer OCCUPIED BW function was activated to measure 6 dB BW and 99% BW.

Test was repeated for MID and HIGH channels.

Test Results. No non-compliance noted. Refer to data sheets below.

Minimum 6 dB BW: 1.617 MHz Minimum Required: 500 kHz

FCC ID: YRIPLF01 IC: 9041A-PLF01

6dB Bandwidth LOW Channel 18

6 dB BW, MID Channel 18

6 dB BW, HIGH Channel 26

FCC ID: YRIPLF01 IC: 9041A-PLF01

99% Bandwidth

Test Setup

Limit

None: for reporting purposes only.

Test Procedure

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal OCCUPIED BW function was utilized.

Test Results

Refer to spectrum analyzer charts below. 99% bandwidth is approximately 2.63 MHz.

Emission Designator: 2M63G1D

FCC ID: YRIPLF01 IC: 9041A-PLF01

99% Bandwidth LOW Channel 11

FCC ID: YRIPLF01 IC: 9041A-PLF01

99% Bandwidth MID Channel 18

FCC ID: YRIPLF01 IC: 9041A-PLF01

99% Bandwidth HIGH Channel 26

RF Power Output

Test Requirement: FCC: 15.247(b)

IC: RSS-210 Sec. 6.2.2(o)(iv)

Test Setup

Test Procedures

- 1. The EUT was configured on a test bench. RBW was set to a value higher than the 2.7 MHz 99% band width: RBW=3 MHz, VBW=5 MHz
- 2. The spectrum analyzer detector was set to PEAK and the highest value was recorded using the analyzer PEAK SEARCH function.

Test Results

Refer to spectrum analyzer graphs. Reference level offset corrects for external attenuation and cable loss.

Channel	Frequency, MHz	Output Power, dBm
Low	2405.8	3.58
Mid	2440.8	3.68
High	2480.9	3.73

Peak Output Power LOW Channel 11

Peak Output Power MID Channel 18

Peak Output Power HIGH Channel 26

FCC ID: YRIPLF01 IC: 9041A-PLF01

Spurious Emissions, Conducted

Test Requirement: FCC: 15.247(d)

IC: RSS-210 Sec. 6.2.2(o)(e1)

Test Setup

Test Procedure

1. The EUT was configured on a test bench. The cable was connected between the EUT antenna port and the spectrum analyzer input port.

Spectrum analyzer RES BW was set to 100 kHz. While the transmitter broadcast a steady stream of digital data, the analyzer MAX HOLD function was used to capture the envelope of the transmission.

Readings were taken out to 10fo.

Test Results

Refer to spectrum analyzer plots. Data shows out of band emissions are suppressed well below the -20 dBc minimum required by the Rules.

Lower band edge, -20 dBc, LOW Channel

TX Spurious Emissions LOW Channel

-20 dBc MID Channel Reference

TX Spurious, MID Channel

Upper band edge, -20 dBc HIGH Channel

TX Spurious, HIGH Channel

Power Spectral Density

Test Requirement: 15.247(e)

RSS-210 Sec. 6.2.2(o)(iv)

Test Setup

Test Procedure

- 1. Determine frequency at which maximum emission occurs during pre-scan.
- 2. Reduce SPAN to 300 kHz, while adjusting tuning frequency so that peak remains at center of screen.
- 3. Set RES BW = 3 kHz, VID BW = 10 kHz, SWEEP = 100 sec.
- 4. Record highest reading and compare to 8 dBm limit.

Test Results

Maximum PSD was -10.6 dBm. Refer to attached spectrum analyzer chart.

FCC ID: YRIPLF01 IC: 9041A-PLF01

Power Spectral Density LOW Channel

Power Spectral Density MID Channel

FCC ID: YRIPLF01 IC: 9041A-PLF01

Power Spectral Density HIGH Channel

RF Exposure (MPE) Calculations

Zelfy										
FCC ID: YHWP										
IC: 9041A - P	LF01									
Node Product			2.4 GHz			Calculate mW/cm2	here. Enter fr	equency in MHz:		
RF Hazard Dist	tance Calculati	on				Calculation of Limit	ts from 1.1310 T	able 1		
									Controlled	Uncontrolled
									Ave 6 min	Ave 30 min
mW/cm2 from	Table1:	1.00	(E: 61 V/m)			F(MHz)	Actual F, MHz		Occ, mW/c2	Gen, mW/cm2
			<u> </u>			0.3-3	0.5		100.0	100.0
Max RF Power	TX Antenna	MPE distance	S, mW/cm@	Comment		3.0 - 30.0	5		180.0	36.0
P, dBm	G, dBi	cm	at 20 cm			30.0-300	55		1.0	0.2
						300-1500	902		3.0	0.60
3.7	0.0	0.4	0.00			1500-100000	5555		5.0	1.0
						Enter P(mW)	Equivalent dBm	Enter dBm	Equivalent Watt	S
Basis of Calcu	ations:					64	18.1	18.1	64.6	
Duoio C. Guida								70	00	
E^2/3770 = S.	mW/cm2									
E, $V/m = (Pwa)$		5/d meters								
d = ((Pwatts*G			Pwatts*Ggain = 1	0^(PdBm-30+G	dBi)/10)					
S@20cm = 20			i watto ogaii – i	(Tubili 3010	GB1)7 10)					
			itters minimum se	naration distan	ce is for FCC	compliance is 20 cr				
			distance is less	paración distan		Jonnphanoc IS EO G	"			
Sveii	Juliouluuloi la									
<u> </u>		 								
		+	 							
		 								
			 							
<u> </u>										
		1	1			1	1			

POWERLINE CONDUCTED EMISSIONS

LIMIT: FCC 15.207(a), IC RSS-Gen 7.7.2

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted Limit (dBuV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56 °	56 to 46 *	
0.5-5	56	46	
5-30	60	50	

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

TEST NOT PERFORMED. EUT BATTERY OPERATED ONLY.

END OF REPORT

Report Revision History

Revision	Revision Description	Pages	Revised by	Date
No.		Revised		
-	Original Issue		T.	08/15/10
			Cokenias	
1 Sept	Correct grantee code references to YRI	All	T.	09/01/10
_	_		Cokenias	