EE2211 Lecture 8

Review of Biou-Variance Tradeoff

Test Error = Bias2 + Variance + Variance of Irreducible Error

MSE: mean squared error

Suppose $y=f(x)+\varepsilon$ f: deterministic $E:g., f(x)=w_0+w_1x+w_2x^2$

E: random. mea 0 le var 6²
= 3(xi, yi): i=1,..., m, >

Sample 3 training datasets D1, D2, D3 from p(D). Learn 3 regression functions fp, foz, foz

$$\hat{y}_{1} = \hat{f}_{D_{1}}(x) = \left[(\chi^{T} \chi)^{-1} \chi^{T} y \right]^{T} x$$

$$\hat{y}_2 = \hat{f}_{p_2}(\underline{x}) = [(\underline{x}_1 \underline{x})^{-1} \underline{x}_1 \underline{y}]^{T} \underline{x}$$

Given a new dotta point (x,y), y=f(x)+E

Average prediction: $forg(x) = \frac{1}{3}(\hat{f}_{D_1}(x) + \hat{f}_{D_2}(x) + \hat{f}_{D_3}(x))$

Bias =
$$favg(x) - f(x)$$

[Note that this is not y].
Bias² = $(favg(x) - f(x))^2$

Variance =
$$E[(f_D(x) - f_{avg}(x))^2]$$

= $\frac{1}{3}[(f_D(x) - f_{avg}(x))^2 + (f_D(x) - f_{avg}(x))^2$
+ $(f_D(x) - f_{avg}(x))^2]$

MSE=
$$E[(f_0(x)-y)^2]$$

= $\int_{0}^{\infty} [(f_0(x)-y)^2 + (f_0(x)-y)^2 + (f_0(x)-y)^2]$
[Note that this is subtracting y , and not $f(x)$].

Claim: MSE = Bias2 + Variance + 62 = Var of E, irr noise.

	Polynamial order 7 # of features 4
Sweet spot	# of features 4