Episode

Sorting Lower Bound

Sorting Algorithms

- \bullet $\Theta(n^2)$
 - Selection Sort
 - Bubble Sort
 - Insertion Sort
- $\Theta(n \log n)$
 - Quick Sort
 - Merge Sort
 - Balance Tree
- Guide Question
 - Can we do better?

Spaghetti Sort

O(n)

For each number, break a piece of spaghetti whose length is that number.

 Take all spaghetti and push them against the table!

 Keep touching and removing spaghetti from the top by your other hand.

Is it what we want?

- Need to think
 - What can we do?
 - What can not we do?

Is it what we want?

- Need to think
 - What can we do?
 - What can not we do?
 - What can computer do?
 - What can not computer do?
- A proper Computation Model!
 - Allowed Operations: Comparison
 - Not allowed Operations: Break spaghetti, push spaghetti, touch spaghetti.

Comparison-based Sorting

- Only allowed operation: comparison.
- Can do
 - Compare(a, b), answer a > b or $b \ge a$.
- Can not do
 - Ask what a is, what b is.
- Examples
 - Merge Sort
 - Insertion Sort
 - Quick Sort
 - **–**

Recall Merge Sort

- Plan
 - Maintain 2 pointers i = 1, j = 1
 - Repeat
 - Append $min\{a_i, b_j\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_j is smaller, then move j to j + 1.
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to C

How to prove lower bounds?

- Some Algorithm A want to say: A's time complexity is something better than $O(n \log n)$.
 - Prove: For all input σ with size n, $T_A(\sigma) \leq T(n) = O(g(n))$.
 - $-g(n) = o(n \log n)$, like g(n) = n.
- Disprove it!
- I want to say: For all Algorithm A, there is some input show that A can not do better than $O(n \log n)$!
 - Prove: Exists input σ with size n, $T_A(\sigma) \ge T(n) = \Omega(n \log n)$.
- Play as an adversary!

Play as An Adversary!

Comparison-based Sorting

The Algorithm make decision by the results of several comparisons.

a b c d a b d c ... d c a b d c b a

How many possible ordering?

Comparison-based Sorting

How many possible ordering? --- n!

Comparison-based Sorting: Time Complexity

- 1. Comparison-based Sorting forms a binary tree.
- 2. It should have at least n! leaves.
- Adversary: the **longest** path from root to leaves.
 - 4. Best deterministic algorithm make the tree shallowest.
 - 5. Shallowest tree is a balanced tree.
 - 6. Height: log(n!)

Last step!

- The lemma we have
 - Any deterministic comparison-based algorithms must take log(n!) steps to sort an array in the worst case.
- The theorem we want
 - Any deterministic algorithm comparison-based algorithms must take $\Omega(n \log n)$ time.

Proof
$$\log(n!) = \log 1 + \log 2 + \log 3 + \dots + \log n$$

$$\geq \log\left(\frac{n}{2} + 1\right) + \log\left(\frac{n}{2} + 2\right) + \dots + \log n$$

$$\geq \frac{n}{2}\log\frac{n}{2} = \frac{n}{2}\log n - \frac{n}{2}\log 2$$

$$= \Omega(n\log n)$$

Good News!

Merge Sort is the Optimal Deterministic Comparison-based Algorithm

What about random algorithms?

Before that.....

Average Case for Deterministic Algorithms

Input

- n integers.

Shuffle

- Uniformly random a permutation $\pi \in \Pi$.

Sort

- Run the deterministic algorithm on π .
- Average Comparisons
 - $E[T(n)] = \frac{1}{n!} \sum_{\pi \in \Pi} (T(\pi))$

Comparison-based Sorting

How many possible ordering? --- n!

How to relate the Comparisons to the tree?

- Worst Case Comparisons
 - Longest path from root to leaves.
 - Balanced tree: The **best** we can do.
- Average Comparisons
 - Average length of paths from root to leaves.
 - Balanced tree: Still the **best**?

Balanced tree: Still the best?

Unbalanced tree: What if we try to make it balanced?

Balanced tree is still the best!

Best Average Comparisons: $log n! = \Omega(n log n)$

The Input-ALG Game

- Two Players
 - One give Input Permutation.
 - One give ALG.

	ALG_1	ALG_2	ALG_3	ALG_4	
Input = π_1	$\log n!$	$\log n!$	1	$\log n!$	
Input = π_2	1	n^2	$\log n!$	$\log n!$	
Input = π_3	n^2	$\log n!$. 1	$\log n!$	
Input = π_4	$\log n!$	1	$\log n!$	$\log n!$	

Deterministic Lower Bound: Worst Case

- For Each ALG
 - A row has cost $\ge \log n!$

	ALG_1	ALG_2	ALG_3	ALG_4	
$nput = \pi_1 \qquad \qquad log n! \qquad \qquad log n!$		$\log n!$	1	$\log n!$	
Input = π_2	iput = π_2 1 n^2		$\log n!$	$\log n!$	
Input = π_3	n^2	$\log n!$. 1	log n!	
Input = π_4	$\log n!$	- 1	$\log n!$	$\log n!$	

Deterministic Lower Bound: Average Case

For Each ALG

- The row $(\frac{1}{4}\pi_1, \frac{1}{4}\pi_2, \frac{1}{4}\pi_3, \frac{1}{4}\pi_4)$ has cost $\geq \log n!$

	ALG_1	ALG_2	ALG_3	ALG_4
Input = π_1	$\log n!$	$\log n!$	1	log n!
Input = π_2	1	n^2	$\log n!$	$\log n!$
Input = π_3	n^2	$\log n!$	1	log n!
Input = π_4	$\log n!$	1	$\log n!$	log n!
Input = $(\frac{1}{4}\pi_1, \frac{1}{4}\pi_2, \frac{1}{4}\pi_3, \frac{1}{4}\pi_4)$	$\geq \log n!$	$\geq \log n!$	$\geq \log n!$	$\geq \log n!$

What is a randomized algorithm?

- Randomized is a distribution of all deterministic algorithms.
 - Randomized Algorithm is a deterministic algorithms with a random bit tape.
 - Fix a sample "s" of the random bit tape \rightarrow An original deterministic algorithm ALG_s .

What is a randomized algorithm?

Random *ALG*

 ALG_1 with 10%

ALG₂ with 30%

 ALG_3 with 30%

 ALG_4 with 30%

Expected Running Time

- Randomized is a distribution of all deterministic algorithms.
 - Randomized Algorithm is a deterministic algorithms with a random bit tape.
 - Fix a sample "s" of the random bit tape → An original deterministic algorithm ALG_s .
- The expected running time of Randomized Algorithms
 - Input π
 - $E_s[T_{ALG_s}(\pi)]$
 - Consider the worst case!

Randomized Lower Bound: Average Case

- For the column $(p_1ALG_1, p_2ALG_2, p_3ALG_3, p_4ALG_4)$
 - The row $(\frac{1}{4}\pi_1, \frac{1}{4}\pi_2, \frac{1}{4}\pi_3, \frac{1}{4}\pi_4)$ has cost $\geq \log n!$

	ALG_1	ALG_2	ALG_3	ALG_4	$(p_1A_1, p_2A_2, p_3A_3, p_4A_4)$
Input = π_1	$\log n!$	$\log n!$	1	$\log n!$	
Input = π_2	1	n^2	log n!	$\log n!$	
Input = π_3	n^2	log n!	1	$\log n!$	
Input = π_4	$\log n!$	1	log n!	log n!	
Input = $(\frac{1}{4}\pi_1, \frac{1}{4}\pi_2, \frac{1}{4}\pi_3, \frac{1}{4}\pi_4)$	$\geq \log n!$	$\geq \log n!$	$\geq \log n!$	$\geq \log n!$	

Randomized Lower Bound: Average Case

- For the column $(p_1ALG_1, p_2ALG_2, p_3ALG_3, p_4ALG_4)$
 - The row $(\frac{1}{4}\pi_1, \frac{1}{4}\pi_2, \frac{1}{4}\pi_3, \frac{1}{4}\pi_4)$ has cost $\geq \log n!$

	ALG_1	ALG_2	ALG_3	ALG_4	$(p_1A_1, p_2A_2, p_3A_3, p_4A_4)$
Input = π_1	$\log n!$	log n!	1	$\log n!$	
Input = π_2	1	n^2	$\log n!$	$\log n!$	
Input = π_3	n^2	log n!	1	log n!	
Input = π_4	$\log n!$	1	log n!	log n!	
Input = $(\frac{1}{4}\pi_1, \frac{1}{4}\pi_2, \frac{1}{4}\pi_3, \frac{1}{4}\pi_4)$	$\geq \log n!$				

Randomized Lower Bound: Average Case

- For the column $(p_1ALG_1, p_2ALG_2, p_3ALG_3, p_4ALG_4)$
 - The row $(\frac{1}{4}\pi_1, \frac{1}{4}\pi_2, \frac{1}{4}\pi_3, \frac{1}{4}\pi_4)$ has cost $\geq \log n!$

	ALG_1	ALG_2	ALG_3	ALG_4	$(p_1A_1, p_2A_2, p_3A_3, p_4A_4)$
Input = π_1	$\log n!$	log n!	1	$\log n!$	
Input = π_2	1	n^2	$\log n!$	$\log n!$	
Input = π_3	n^2	log n!	1	$\log n!$	$\geq \log n!$ (the worst one)
Input = π_4	$\log n!$	1	$\log n!$	$\log n!$	
Input = $(\frac{1}{4}\pi_1, \frac{1}{4}\pi_2, \frac{1}{4}\pi_3, \frac{1}{4}\pi_4)$	$\geq \log n!$				

Conclusion

• For any randomized algorithm, there is an input π , such that $E(T(\pi)) \ge \log n! = \Omega(n \log n)$

More Questions

- Do we have linear time sorting algorithms that is not comparison-based?
 - Yes! But with some restriction.