Discussion [0b10] [2] [0x2]

Limits

- (a) What is the biggest number that can be represented with two decimal digits?
- (b) What is the biggest number that can be represented with three binary digits?
- (c) What is the biggest number that can be represented with four hexadecimal digits?
- (d) How many different numbers can you represent using three binary digits?

Conversion

(a) Convert the following binary numbers into decimal.

11001 → _____ 1001001 →

(b) Convert the following decimal numbers into binary.

12 → _____ 64 → _____

127 →

(c) Convert the following binary numbers into hexadecimal.

10011001 → _____

11110111 → _____

110000001111111111111101110 → _____

(d) Fill in the blanks.

Decimal	Binary	Hexadecimal
12		С
5		5
11	1011	
25	11001	
	10001	11
	11011	1B
8		
	1110	
		1E
		49

Challenge Problems

- (a) The original Pokemon are numbered 1-150. We want to store a binary encoding for all original Pokemon where each Pokemon has a binary code equivalent to their decimal number. How many bits do we need to use?
- (b) What is the encoding for Pikachu (#25)?
- (c) Ternary utilizes base 3 instead of base 2. For example, 10 in ternary is equivalent to 3 in decimal. Imagine that we wanted to store a ternary encoding for all 150 Pokemon where each Pokemon has a ternary code equivalent to their decimal number. What is the ternary encoding for Pikachu (#25)?