Анализ вычислительной сложности

Данил Браун

2023

▶ Эффективность — ???

▶ Эффективность — время + память.

- ▶ Эффективность время + память.
- Как померять? (Для простоты: программа функция в Pyret.)

- Эффективность время + память.
- Как померять? (Для простоты: программа функция в Pyret.)
- ▶ Время работы функция $T: \mathbb{N} \to \mathbb{N}$.

- Эффективность время + память.
- Как померять? (Для простоты: программа функция в Pyret.)
- ▶ Время работы функция $T: \mathbb{N} \to \mathbb{N}$.
- У функции Т должно быть столько же параметров, сколько и у анализируемой функции!
 Для функции

```
append :: List<T>, List<T> -> List<T>  T_{\rm append}: \mathbb{N} \times \mathbb{N} \to \mathbb{N}.
```

Функция len

Функция len

```
1 len :: List<T> -> Number
2 fun len(lst):
3    cases (List) lst:
4    | empty => 0
5    | link(f, r) => 1 + len(r)
6    end
7 end
```

$$[k \mapsto 6k + 4]$$

Асимптотический анализ сложности

	5k + 4	5 <i>k</i>	k	k^2	k^3	2^k
k = 10	$54~\mathrm{ms}$	50 ms	10 ms	0.1 s	1 s	1 s
k = 100	0.5 s	0.5 s	0.1 s	10 s	16 m	40196936841331475186 y
k = 1000	5 s	5 s	1 s	16.5 m	11 d	очень долго
$k = 10\ 000$	50 s	50 s	10 s	27.7 h	31 y	очень долго
$k = 100\ 000$	0.13 h	0.13 h	0.03 h	115 d	31709 y	очень долго
$k = 1\ 000\ 000$	1.3 h	1.3 h	0.28 h	31 y	очень долго	очень долго

Оценка сверху

```
1 member([list: 2, 4, -12, ..., 95, 10], 2)
2 member([list: 2, 4, -12, ..., 95, 10], 10)
```

Сравнение функций

Упражнение 1

Если f — функция в Pyret со временем работы $T_{\rm f}$, а ${\rm g}$ — функция со временем $T_{\rm g}$, то как сказать в терминах $T_{\rm f}$ и $T_{\rm g}$, что ${\rm f}$ работает **не медленнее** ${\rm g}$?

Сравнение функций

Упражнение 1

Если ${\rm f}$ — функция в Pyret со временем работы $T_{\rm f}$, а ${\rm g}$ — функция со временем $T_{\rm g}$, то как сказать в терминах $T_{\rm f}$ и $T_{\rm g}$, что ${\rm f}$ работает не медленнее ${\rm g}$?

$$\forall k \in \mathbb{N} \ T_{\mathrm{f}}(k) \leqslant T_{\mathrm{g}}(k)$$

Определение 1

$$\textit{O}(\textit{T}_{g}) := \{\textit{T}_{f} \mid \forall \textit{k} \in \mathbb{N} \; \textit{T}_{f}(\textit{k}) \leqslant \textit{T}_{g}(\textit{k})\}$$

Определение 1

$$\textit{O}(\textit{T}_{g}) := \{\textit{T}_{f} \mid \forall \textit{k} \in \mathbb{N} \; \textit{T}_{f}(\textit{k}) \leqslant \textit{T}_{g}(\textit{k})\}$$

Упражнение 2

Пусть $T_{
m g}: \mathbf{k} \mapsto 2\mathbf{k}$. Тогда

$$O([k \mapsto 2k]) = \{ T_f \mid \forall k \in \mathbb{N} \ T_f(k) \leqslant 2k \}$$

Верно ли, что

- 1. $[k \mapsto k] \in O([k \mapsto 2k]);$
- 2. $[k \mapsto \frac{k}{2}] \in O([k \mapsto 2k]);$
- 3. $[k \mapsto 6k] \in O([k \mapsto 2k])$.

Определение 2

$$\textit{O}_{2}(\textit{T}_{g}) := \{\textit{T}_{f} \mid \exists \textit{c} \in \mathbb{N}_{>0} \ \forall \textit{k} \in \mathbb{N} \ \textit{T}_{f}(\textit{k}) \leqslant \textit{T}_{g}(\textit{k}) \cdot \textit{c} \}$$

Определение 2

$$\textit{O}_{2}(\textit{T}_{g}) := \{\textit{T}_{f} \mid \exists \textit{c} \in \mathbb{N}_{>0} \ \forall \textit{k} \in \mathbb{N} \ \textit{T}_{f}(\textit{k}) \leqslant \textit{T}_{g}(\textit{k}) \cdot \textit{c} \}$$

Упражнение 3

Верно ли теперь утверждение $[k\mapsto 6k]\in O_2([k\mapsto 2k])$? Почему?

Определение 2

$$\textit{O}_{2}(\textit{T}_{g}) := \{\textit{T}_{f} \mid \exists \textit{c} \in \mathbb{N}_{>0} \ \forall \textit{k} \in \mathbb{N} \ \textit{T}_{f}(\textit{k}) \leqslant \textit{T}_{g}(\textit{k}) \cdot \textit{c}\}$$

Упражнение 3

Верно ли теперь утверждение $[k\mapsto 6k]\in O_2([k\mapsto 2k])$? Почему?

Пусть c=4. Тогда $\forall k \in \mathbb{N} \ 6k \leqslant 2k \cdot 4 = 8k$.

Определение 2

$$\textit{O}_{2}(\textit{T}_{g}) := \{\textit{T}_{f} \mid \exists \textit{c} \in \mathbb{N}_{>0} \ \forall \textit{k} \in \mathbb{N} \ \textit{T}_{f}(\textit{k}) \leqslant \textit{T}_{g}(\textit{k}) \cdot \textit{c}\}$$

Упражнение 3

Верно ли теперь утверждение $[k\mapsto 6k]\in O_2([k\mapsto 2k])$? Почему?

Пусть c=4. Тогда $\forall k \in \mathbb{N} \ 6k \leqslant 2k \cdot 4 = 8k$.

Упражнение 4

$$[k\mapsto 6k+4]\in O_2([k\mapsto 2k])?$$

Определение 3

$$\textit{O}_{3}(\textit{T}_{g}) := \{\textit{T}_{f} \mid \exists \textit{c} \in \mathbb{N}_{>0} \; \exists \textit{N} \in \mathbb{N} \; \forall \textit{k} \geqslant \textit{N} \; \textit{T}_{f}(\textit{k}) \leqslant \textit{T}_{g}(\textit{k}) \cdot \textit{c} \}$$

Определение 3

$$\textit{O}_{3}(\textit{T}_{g}) := \{\textit{T}_{f} \mid \exists \textit{c} \in \mathbb{N}_{>0} \; \exists \textit{N} \in \mathbb{N} \; \forall \textit{k} \geqslant \textit{N} \; \textit{T}_{f}(\textit{k}) \leqslant \textit{T}_{g}(\textit{k}) \cdot \textit{c} \}$$

Упражнение 5

Верно ли теперь $[k\mapsto 6k+4]\in {\it O}_3([k\mapsto 2k])$? Почему?

Определение 3

$$\textit{O}_{3}(\textit{T}_{g}) := \{\textit{T}_{f} \mid \exists \textit{c} \in \mathbb{N}_{>0} \; \exists \textit{N} \in \mathbb{N} \; \forall \textit{k} \geqslant \textit{N} \; \textit{T}_{f}(\textit{k}) \leqslant \textit{T}_{g}(\textit{k}) \cdot \textit{c} \}$$

Упражнение 5

Верно ли теперь $[k\mapsto 6k+4]\in O_3([k\mapsto 2k])$? Почему? Пусть c=6, N=1. Тогда для всех $k\geqslant 1$ верно $6k+4\leqslant 2k\cdot 6$.

Замечание 1

Пользуясь O-нотацией, мы будем всегда записывать функции в «наиболее простой» форме. Например, вместо того, чтобы писать $O([k\mapsto 3k^3+2k^2+k+7])$, мы пишем $O([k\mapsto k^3])$, т. к. $[k\mapsto 3k^3+2k^2+k+7]\in O([k\mapsto k^3])$ (младшие члены и коэффициент при старшем члене отбрасываются).

Замечание 1

Пользуясь O-нотацией, мы будем всегда записывать функции в «наиболее простой» форме. Например, вместо того, чтобы писать $O([k\mapsto 3k^3+2k^2+k+7])$, мы пишем $O([k\mapsto k^3])$, т. к. $[k\mapsto 3k^3+2k^2+k+7]\in O([k\mapsto k^3])$ (младшие члены и коэффициент при старшем члене отбрасываются).

Замечание 2

Ясно, что если $T_{\mathrm{f}}\in O([k\mapsto k])$, то и $T_{\mathrm{f}}\in O([k\mapsto k^2])$, и $T_{\mathrm{f}}\in O([l\mapsto k^{100}])$, и $T_{\mathrm{f}}\in O([k\mapsto 2^k])$, и т. д. Но когда мы говорим об оценке T_{f} сверху, то имеем в виду именно $T_{\mathrm{f}}\in O([k\mapsto k])$, т. е. наименьшую из них.

Замечание 3

Многие авторы пишут $O(g(n))=\{f(n)\mid\ldots\}$, имея в виду $O(g)=\{f\mid\}$. Мы используем второй вариант, т. к. мы знаем, что f(n) и g(n) это **значения функций** f и g в n, а не **сами функции** f и g.

Замечание 3

Многие авторы пишут $O(g(n))=\{f(n)\mid\ldots\}$, имея в виду $O(g)=\{f\mid\}$. Мы используем второй вариант, т. к. мы знаем, что f(n) и g(n) это **значения функций** f и g в n, а не **сами функции** f и g.

Замечание 4

Вместо, например, $[k\mapsto 2k]\in O([k\mapsto k^2])$ можно часто видеть запись вида $2k=O(k^2)$. Это, что называется, «abuse of notation» (злоупотребление обозначениями). Если считать такую запись осмысленной, то тогда можно получить

$$2k = O(k^2) \wedge 2k = O(k^3) \implies O(k^2) = O(k^3)$$

что очевидно неверно.

Р Если функция f со временем $T_f \in O(T)$ выполняется некоторое (постоянное) количество раз, то общее время выполнения всех этих вызовов остаётся в O(T).

- Если функция f со временем $T_f \in O(T)$ выполняется некоторое (постоянное) количество раз, то общее время выполнения всех этих вызовов остаётся в O(T).
- ▶ Если f и g (со временем $T_{\rm f} \in O(T)$ и $T_{\rm g} \in O(T')$ соответственно) функции выполняющиеся друг за другом, то общее время выполнения лежит в O(T+T'). Например, если $T_{\rm f} \in O([k\mapsto k^2])$, а $T_{\rm g} \in O([k\mapsto k])$, то $T_{\rm h}$, которая определяется как время выполнения ${\rm f}$ и ${\rm g}$ вместе взятых, содержится в $O([k\mapsto k^2+k])$, что эквивалентно $O([k\mapsto k^2])$.

lacktriangle Если функция f со временем $T_f \in O(T)$ при каждом своём вызове вызывает другую функцию д со временем $T_{g} \in O(T')$, то общее время работы есть функция из $O(T \cdot T')$. Допустим, у нас есть два списка: а и b. Мы пишем функцию is-sublist, которая будет смотреть, содержится ли каждый элемент а также и в b. Для каждого из k элементов списка a мы вызываем функцию member на списке b (есть ли данный элемент а в списке b), A т. к. member выполняется за $O([k\mapsto k])$, и мы вызываем её k раз, то общее время выполнения лежит в $O([k \mapsto k \cdot k]) = O([k \mapsto k^2]).$

- ightharpoonup Вызов k раз одной функции умножение на константу
- ▶ Последовательное выполнение функций сумма
- ▶ Вызов одной функции из другой произведение

lacktriangle Константное — $[{\it k}\mapsto {\it C}]$ для некоторой константы ${\it C}>0$.

▶ Константное — $[k \mapsto C]$ для некоторой константы C > 0. Взять первый элемент у списка.

- ▶ Константное $[k \mapsto C]$ для некоторой константы C > 0. Взять первый элемент у списка.
- ▶ Логарифмическое $[k \mapsto \log k]$.

- ► Константное $[k \mapsto C]$ для некоторой константы C > 0. Взять первый элемент у списка.
- ▶ Логарифмическое $[k \mapsto \log k]$. Поиск элемента в бинарном дереве поиска.

- ► Константное $[k \mapsto C]$ для некоторой константы C > 0. Взять первый элемент у списка.
- ▶ Логарифмическое $[k \mapsto \log k]$. Поиск элемента в бинарном дереве поиска.
- ▶ Линейное $[k \mapsto k]$.

- ► Константное $[k \mapsto C]$ для некоторой константы C > 0. Взять первый элемент у списка.
- ▶ Логарифмическое $[k \mapsto \log k]$. Поиск элемента в бинарном дереве поиска.
- ▶ Линейное $[k \mapsto k]$. Вычисление длины списка.

- ► Константное $[k \mapsto C]$ для некоторой константы C > 0. Взять первый элемент у списка.
- ▶ Логарифмическое [$k \mapsto \log k$].
 Поиск элемента в бинарном дереве поиска.
- ▶ Линейное $[k \mapsto k]$. Вычисление длины списка.
- ▶ Квазилинейное $[k \mapsto k \cdot \log k]$.

- ▶ Константное $[k \mapsto C]$ для некоторой константы C > 0. Взять первый элемент у списка.
- ▶ Логарифмическое $[k \mapsto \log k]$. Поиск элемента в бинарном дереве поиска.
- ▶ Линейное $[k \mapsto k]$. Вычисление длины списка.
- Квазилинейное $[k \mapsto k \cdot \log k]$. Сортировка слиянием (merge sort), лучшее время для сортировок.

- ▶ Константное $[k \mapsto C]$ для некоторой константы C > 0. Взять первый элемент у списка.
- ▶ Логарифмическое $[k \mapsto \log k]$. Поиск элемента в бинарном дереве поиска.
- ▶ Линейное $[k \mapsto k]$. Вычисление длины списка.
- ▶ Квазилинейное $[k \mapsto k \cdot \log k]$. Сортировка слиянием (merge sort), лучшее время для сортировок.
- ► Квадратичное $[k \mapsto k^2]$.

- ▶ Константное $[k \mapsto C]$ для некоторой константы C > 0. Взять первый элемент у списка.
- ▶ Логарифмическое $[k \mapsto \log k]$. Поиск элемента в бинарном дереве поиска.
- ▶ Линейное $[k \mapsto k]$. Вычисление длины списка.
- ▶ Квазилинейное $[k \mapsto k \cdot \log k]$. Сортировка слиянием (merge sort), лучшее время для сортировок.
- ightharpoonup Квадратичное $[k\mapsto k^2]$. Сортировка вставкой (insertion sort).

- ► Константное $[k \mapsto C]$ для некоторой константы C > 0. Взять первый элемент у списка.
- ▶ Логарифмическое $[k \mapsto \log k]$. Поиск элемента в бинарном дереве поиска.
- ▶ Линейное $[k \mapsto k]$. Вычисление длины списка.
- ▶ Квазилинейное $[k \mapsto k \cdot \log k]$. Сортировка слиянием (merge sort), лучшее время для сортировок.
- ightharpoonup Квадратичное $[k\mapsto k^2]$. Сортировка вставкой (insertion sort).
- ightharpoonup Экспоненциальное $[k\mapsto \mathcal{C}^k]$, $\mathcal{C}>0$.

- ► Константное $[k \mapsto C]$ для некоторой константы C > 0. Взять первый элемент у списка.
- ▶ Логарифмическое $[k \mapsto \log k]$. Поиск элемента в бинарном дереве поиска.
- ▶ Линейное $[k \mapsto k]$. Вычисление длины списка.
- ▶ Квазилинейное $[k \mapsto k \cdot \log k]$. Сортировка слиянием (merge sort), лучшее время для сортировок.
- ightharpoonup Квадратичное $[k\mapsto k^2]$. Сортировка вставкой (insertion sort).
- ightharpoonup Экспоненциальное $[k\mapsto C^k],\ C>0$. Поиск всех подмножеств данного множества.

Дайте верхнюю оценку в терминах O-большого для каждой функции.

Упражнение б

Функция f вызывается с входными данными размера k. Для каждого из k элементов она вызывает другую функцию, g, со временем работы из $O([p\mapsto \log p])$, передавая ей данные размера k.

Упражнение 7

Следующая функция удаляет все элементы одного списка, которые содержатся в другом списке. Пусть k — размер to-delete, а m — размер lst.

```
fun delete(to-delete, lst):

cases (List) to-delete:
    | empty => lst
    | link(f, r) => delete(r, lst.remove(f))
end
end
```

Упражнение 8

Функция принимает два списка; размер первого — q, размер второго — p. Возвращает сумму длин этих двух списков.

Упражнение 8

Функция принимает два списка; размер первого — q, размер второго — p. Возвращает сумму длин этих двух списков.

Упражнение 9

Функция f вызывает функцию g времени $O([n\mapsto n])$ десять раз, а затем вызывает функцию h времени $O([m\mapsto m])$, передавая данные размера s каждой из них.

Определение 4

Рекуррентным соотношением называется рекурсивная функция на натуральных числах, т. е. $f \colon \mathbb{N} \to S$. Например:

$$T(n) = T(n-1) + 4$$

Определение 4

Рекуррентным соотношением называется рекурсивная функция на натуральных числах, т. е. $f: \mathbb{N} \to S$. Например:

$$T(n) = T(n-1) + 4$$

Замечание 5

В такой форме можно выражать время работы функции (программы).

Определение 5

Решить рекуррентное соотношение значит найти его **замкнутую форму**.

Пример 1

Проанализировав функцию length, мы получили:

$$\mathcal{T}_{ ext{length}}(\emph{n}) = egin{cases} 4, & ext{если } \emph{n} = 0 \ \mathcal{T}_{ ext{length}}(\emph{n} - 1) + 6, & ext{если } \emph{n} > 0 \end{cases}$$

Нахождение замкнутой формы:

$$T_{\text{length}}(n) = T_{\text{length}}(n-1) + 6$$

= $(T_{\text{length}}(n-2) + 6) + 6$
= $(\dots (T_{\text{length}}(n-n) + 6) + \dots + 6$
= $T_{\text{length}}(0) + 6n = 4 + 6n$

Замкнутая форма: T(n) = 6n + 4.

Упражнение 10

1.
$$T(k) = T(k-1) + c$$

2.
$$T(k) = T(k-1) + k$$

3.
$$T(k) = T(k/2) + c$$

4.
$$T(k) = T(k/2) + k$$

5.
$$T(k) = 2T(k/2) + k$$

6.
$$T(k) = 2T(k-1) + c$$