Images Numériques

Jean-luc Barat

Novembre 2014

- 1 Introduction
- 2 Codages
- 3 Images
- 4 Compression
- 5 Traitements graphiques
- 6 Quelques Outils

Plan

- Introduction Lumière Synthèse Représentation de la couleur
- 2 Codages
- 3 Images
- 4 Compression
- Traitements graphiques
- 6 Quelques Outils

Lumière

La lumière est une forme d'énergie.

La couleur de la lumière est caractérisée par sa fréquence.

Rayonnement monochromatique / polychromatique.

Spectre : ensemble des longueurs d'ondes d'un rayonnement polychromatique.

L'oeil humain a une vision globale des composantes d'un rayonnement.

Synthèse

Deux types de synthèse de couleur :

Synthèse additive Synthèse soustractive

Synthèse

- Additive :
 - ajout de composantes à l'émission;
 - rouge, verte, bleue;
 - blanc : somme;
 - noir : absences.
- Soustractive :
 - restitue à partir d'une source de lumière blanche;
 - soustraction grâce à des filtres;
 - filtres : cyan, magenta, jaune;
 - noir : superposition;
 - blanc : absence.

Représentation de la couleur

Problématique

Représentation fiable de la couleur, cohérence entre périphériques.

Espace de couleur

Représentation mathématique d'un ensemble de couleur.

Différents codages: RGB, TSL, CMJN, Cie/Lab

Représentation de la couleur I

gamut ou espace colorimétrique

Spectre de couleur d'un périphérique d'affichage.

Figure: Nuancier d'un logiciel graphique

Représentation de la couleur

Facteur gamma : caractère non linéaire de l'intensité lumineuse.

Gestion de la couleur : ensemble d'opérations garantissant la conservation des couleurs d'une image dans une chaîne numérique.

L'étalonnage profil ICC (international Color Consortium).

- 1 Introduction
- 2 Codages Cie/Lab RVB TSL CMJN
- 3 Images
- 4 Compression
- 5 Traitements graphiques
- **6** Quelques Outils

Codage Cie/Lab

Standards de la CIE.

Figure: Représentation graphique du modèle CIELab

Codage Cie/Lab

Trois modèles depuis 1931 dont le dernier Lab en 1976 :

```
L : luminance (pourcentage, 0 : noir)
```

- a : vert au rouge (valeurs +/-120)
- b : bleu au jaune (valeurs +/-120)
- Spectre visible, codages RGB et CMJN.
- Répandu dans l'industrie.
- Difficile à manipuler.
- Couleurs garanties.

Codage RVB

- Mis au point en 1931 par la CIE.
- Trois rayonnements monochromatiques.
- Représentation informatique.
- Composante codée sur un octet.

Figure: Représentation graphique du codage

Codage TSL I

- Albert H.Munsell.
- Représentation naturelle.
- Mis au point afin permettre un choix interactif.
- Non adapté à la description quantitative d'une composante.

Codage TSL II

Figure: Représentation graphique du modèle TSL

Teinte : perception de la couleur.

Saturation : pureté la couleur (vif ou terme)

Luminance : quantité de lumière de la couleur

Codage CMJN

- Décomposition de la lumière.
- Synthèse soustractive.
- Blanc : absence.
- Noir (partiel) : superposition.

Figure: Synthèse soustractive

+ noir (pur) \rightarrow quadrichromie / CMJN.

Plan

- 1 Introduction
- 3 Images

Codage des images Bitmap vs vectoriel Formats graphiques SVG **BMP GIF PNG** TIF

Codage des images

Image numérique

Ensemble de points (tableau 2D).

Pixel (PICture ELement)

Plus petit élément constitutif d'une image numérique.

Figure: Représentation de pixels

Définition et Résolution

Définition

Nombre de pixels constituant l'image.

Résolution

Nombre de pixels par unité de surface (PPP/DPI).

Codage de la couleur

Image représentée par un tableau à deux dimensions dont chaque case est un pixel.

Profondeur des couleurs

Nombre de bits représentant la couleur/intensité d'un pixel.

Palette de couleurs (colormap)

Ensemble de couleurs contenues dans l'image, nombre de couleurs possibles \rightarrow taille du codage de l'indice.

Quelques standards de codage :

- bitmap noir et blancs : 1 bit/px;
- bitmap 16 couleurs/gris: 4 bits/px;
- bitmap 256 couleurs/gris: 8 bits/px;
- image indexée : couleurs codées par palette.
- couleurs vraies (true color): trois composantes par pixel → 24bits, + transparence → 32bits.

Poids d'une image

Poids d'une image

Nombre de pixels \times taille de son codage.

Exemple:

Définition	Noir et blanc	256	True color
		couleurs	(24bits)
1024×768	96Ko	768Ko	2.3Mo

Transparence

Transparence

Niveau d'opacité des éléments d'une image.

Deux modes de transparence :

- simple : (indexée) une couleur transparente;
- couche alpha: ajout d'un octet / pixel. (Alpha Blending Process).

Bitmap vs vectoriel

Image bitmap (raster)

Image pixelisée.

Distorsion: perte d'information.

Pixellisation: apparition de "pixels".

Image Vectorielle

Représentation par formules mathématiques d'entités géométriques.

- Calcul des entités à chaque modification.
- Modifiable sans perte d'information.
- Fichier peu volumineux.
- Formes simples.
- Toutes images ne peut être transformées en image vectorielle (photographie).
- Technologie Macromédia Flash \rightarrow sites internet.

Formats graphiques

Codage affichage \neq codage stockage.

Compression \rightarrow gain de mémoire.

Modifications sans pixelisation \rightarrow stockage d'équations.

Fichier > processeur > carte graphique > moniteur.

		0 1 1	
Format	Compression	Dim. max.	Couleurs
SVG	textuel	2 ¹⁶ ×2 ¹⁶	2^{24}
BMP	aucune / RLE	2 ¹⁶ ×2 ¹⁶	224
GIF	LZW	2 ¹⁶ ×2 ¹⁶	28
PNG	RLE	2 ¹⁶ ×2 ¹⁶	>224
TIF	RLE/LZW/JPEG	2 ³² -1	>214

Le format SVG scalable Vector Graphics I

Figure: Image bitmap vs. vectorielle

- Format d'image graphique vectoriel.
- Conçu en 1999 basé sur XML et inspiré du VML (Microsoft) et PGML (Adobe).

Le format SVG scalable Vector Graphics II

- Spécifié par le W3C.
- Décrit des ensembles de graphiques vectoriels.
- Système de style pour couleurs et polices de caractères (CSS ou XSL).
- Formes géométriques de base.
- Chemins, courbes de Bézier.
- Dégradés et couleurs de motif (SVG quelconques).
- Transparence.

Le format BMP

Format d'image graphique simple (Microsoft/IBM).

- Pixels stockés sous forme de tableau de points.
- Couleurs vraies, palette indexée.
- Indépendant du périphérique d'affichage.
- Codage : suite de bits (bas gauche).

Exemples:

- image en 2 couleurs : 1bit/px → 8px/octet;
- image en 16 couleurs : 4bit/px → 2px/octet;
- couleurs réelles : 24bits/px.

GIF: Graphic Interchange Format

Format graphique bitmap (Compuserve).

- 2 à 256 couleurs dans sa palette.
- Fichier de taille très faible.
- Compression LZW (Unisys).
- GIF 87 :
 - entrelacement;
 - animation.
- GIF 89 :
 - une couleur transparente;
 - délai pour les animations.

PNG: Portable Network Graphic

- Mis au point en 1995.
- Alternative libre au format GIF.
- Codage :
 - noir et blanc (<16 bits/pixel);
 - couleurs réelles (<48 bits/pixel);
 - indexées (palette 256 couleurs).
- Transparence.
- Entrelacement.
- Compression sans perte.

TIF: Tagged Image File Format I

Balises caractérisant l'image (dimensions, nombre de couleurs, compression, ...).

- Mis au point en 1987 (Aldus).
- Codage :
 - noir et blanc;
 - couleur réelle (32 bits/pixel);
 - indexée de taille importante (4Go).
- Sans perte de qualité.
- Indépendamment des périphériques/plate-formes.
- Espaces de couleur possibles (RGB, CMJN, ...).

TIF: Tagged Image File Format II

- Programmation facile de logiciel permettant de manipuler le format.
- Multiples options non reconnues dans différents lecteurs (→ image illisible).

- 1 Introduction
- 2 Codages
- 3 Images
- 4 Compression
 RLE
 Huffman
 LZW
 JPEG
- Traitements graphiques
- 6 Quelques Outils

Compression

- Réduction de la taille des données.
- Augmentation rapidité de transmission).
- Algorithme pour la compression et la décompression.
- Dépendant du type de fichier.
- Taux de compression.

Types de compressions

- Physique et logique (données redondantes/substitution);
- symétrique et asymétrique : compression/décompression identique.
- avec pertes : meilleur taux de compression. irréversible;
- adaptif, semi-adaptif, non adaptif : algorithmes basés sur dictionnaires.

RLE: Run Length Encoding

Basé sur la répétition d'éléments consécutifs.

Codage par plage

principe : coder le nombre de répétition puis la valeur.

Exemple: AAAAABBBB -> 5A4B.

Plus complexe -> potentiel gaspillage.

Huffman

- Attribut un code binaire aux différents symboles.
- Codage préfixé à longueur variable.
- Création d'un arbre ordonné.
- Bon taux de compression.

Huffman

Figure: Arbre de Huffman

- Inventé en 1977 (A. Lempel et J. Ziv).
- Spécialisation compression d'image en 1978.
- Très rapide.
- Travail sur les bits. Dictionnaire.
- Basé sur la multiplicité des occurrences.
- LZW Breveté.
- PNG utilise LZ77.

JPEG: Joint Photographic Expert Group

- Réunion comité d'expert créé en 1986.
- Compression avec perte.
- Meilleur taux de compression.
- Très efficace sur des images photographiques.
- Utilise RLE et Huffman.
- Sans perte pour l'imagerie médicale.

- 1 Introduction
- 2 Codages
- 3 Images
- 4 Compression
- 5 Traitements graphiques
 Traitements graphiques
 Filtres
 Effets
- 6 Quelques Outils

Traitements graphiques

histogramme

Représentation de la distribution des intensités des pixels.

Figure: Histogramme

Traitements graphiques

Modification d'histogramme

But : correction du contraste et l'échelle des couleurs pour les images sur/sous-exposées.

Modification non altérante des informations de l'image.

Étirement d'histogramme

Consiste à répartir les fréquences d'apparition des pixels sur la largeur de l'histogramme -> pixels sombres plus sombres et clairs plus claires

Traitements graphiques : égalisation d'histogramme

Traitements graphiques

Seuillage

Met à zéro tous les pixels ayant une valeur inférieure à un seuil et à la valeur maximal ceux ayant une valeur supérieure.

Figure: Image après traitement seuil

Filtre

Transformation mathématique, produit de convolution. Représenté par une matrice. Modifie la valeur de chaque pixel en fonction de la valeur des ceux avoisinants affectées de coefficients. Image traitée : produit de la matrice image par le filtre.

Exemple d'un filtre 3x3 :

1	1	1
1	4	1
1	1	1

Passe-bas

Atténuation des fréquences hautes (pixels foncés).

Passe-haut

Composantes basse fréquence, accentuation des détails et contrastes.

Filtre directionel

Transformation selon une direction.

Bruit

Caractérise les parasites d'un signal, pixels à l'intensité très différente de celle des pixels avoisinants.

Provenance : acquisition.

Lissage

Opération visant à éliminer le bruit d'une image. Anticrénelage : atténuation de l'effet escalier en bordure d'une forme.

Accentuation

Inverse du lissage, accentuation des différences entre pixels voisins. Extraction de contours : limite entre zones homogènes de l'image.

Tramage

Technique alternant des motifs géométriques utilisant peu de couleurs pour simuler une couleur plus élaborée.

- 1 Introduction
- 2 Codages
- 3 Images
- 4 Compression
- **5** Traitements graphiques
- 6 Quelques Outils

Quelques Outils

Logiciels pour format vectoriel

- Adobe Flash / Fireworks / Illustrator
- Gill (logiciel libre)
- OpenOffice.org Draw (logiciel libre)

Logiciels pour format matriciel

- Adobe Photoshop
- Microsoft Paint
- GIMP