TD1: Estimation Ponctuelle

Master 1 Data Science et Intelligence Artificielle

Ibrahima SY

10/12/2021

Exercice 1:

Dans le cadre d'une étude sur la santé au travail, on a interrogé au hasard 500 salariés de différents secteurs et de différentes régions de France. 145 d'entre eux déclarent avoir déjà subi un harcèlement moral au travail.

- 1. Identifier la population, la variable, son type et son/ses paramètre(s).
- 2. Donner une estimation ponctuelle de la proportion de salariés ayant déjà subi un harcèlement moral au travail

Exercice 2:

En vue de réaliser un programme de rééducation, des chercheurs ont soumis un questionnaire de neuropsychologie cognitive à 150 enfants dyslexiques tirés au sort. Le questionnaire comporte 20 questions et les chercheurs ont recueilli pour chaque enfant dyslexique le nombre x_i de bonnes réponses. Les résultats ainsi récoltés sont tels que :

$$\sum_{1}^{n} x_i = 1502$$
; $\sum_{1}^{n} x_i^2 = 19486$

- 1. Identifier la population, la variable, son type et son/ses paramètre(s).
- 2. Donner une estimation ponctuelle du nombre moyen de bonnes réponses dans la population étudiée.
- 3. Donner une estimation ponctuelle de l'écart-type de la variable

Exercice 3:

On étudie la caractéristique X d'une population, qui suit une de bernouilli $\mathcal{B}(p)$. Afin d'estimer le paramètre de cette loi, on fait un sondage de taille n. Soit (X_1, X_2, \dots, X_n) l'échantillon aléatoire associé.

- 1. Monter que la statist que $\sum_{i=1}^{n} X_i$ est exhaustive pour p, puis interpreter
- 2. Déterminer l'estimateur du maximum de vraisemblance \mathcal{T}_n de p
- 3. Déterminer le score $S(X, \theta)$
- 4. Calculer l'information de Fisher apportée par un n-échantillon issu de X sur le paramètre p
- 5. Montrer T_n est un estimateur sans de p, puis determiner la variance de cette estimateur.
- 6. Calculer le risque quadratique de T_n .
- 7. T_n est-il convergent ?
- 8. Calculer la borne FDCR relative à ce paramètre?
- 9. Estimateur est-il efficace?

Exercice 4:

On étudie la caractéristique X d'une population, que l'on sait être de loi exponentielle $\mathcal{E}(\lambda)$. Afin d'estimer le paramètre λ de cette loi, on fait un sondage de taille n. Soit (X_1, X_2, \dots, X_n) l'échantillon aléatoire associé.

- 1. Monter que la statist que $\sum_{i=1}^{n} X_i$ est exhaustive pour λ , puis interpreter
- 2. Déterminer l'estimateur du maximum de vraisemblance T_n de λ
- 3. Déterminer le score $S(X, \theta)$
- 4. Calculer l'information de Fisher apportée par un n-échantillon issu de X sur le paramètre λ
- 5. Montrer T_n est un estimateur asymptotiquement sans bias λ , puis determiner la variance de cette estimateur.
- 6. Calculer le risque quadratique de T_n .
- 7. T_n est-il convergent ?
- 8. Calculer la borne FDCR relative à ce paramètre ?
- 9. Estimateur est-il efficace?

Rappel:

• densité de la loi gamma :

$$f(x; \alpha, \beta) = x^{\alpha - 1} \frac{\beta^{\alpha} e^{-\beta x}}{\Gamma(\alpha)} \text{ pour } x > 0$$

- Proprietés de la Fonction gamma :
- $\Gamma(\alpha) = \int_0^{+\infty} t^{\alpha-1} e^{-t} dt, \alpha > 0$
- $\Gamma(1) = 1$
- $\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$
- $\Gamma(n) = (n-1)!, n \in \mathbb{N}$

Exrecice 5:

On étudie la caractéristique X d'une population, que l'on sait être de loi normale $\mathcal{N}(\mu, \sigma^2)$. Afin d'estimer les paramètres de cette loi, on fait un sondage de taille n. Soit (X_1, X_2, \ldots, X_n) l'échantillon aléatoire associé.

- 1. On veut estimer le paramètre μ . Déterminer l'estimateur du maximum de vraisemblance T_n de μ et étudier ses propriétés. Le fait que σ soit ou non connu modifie-t-il le résultat?
- 2. On suppose μ connu et on veut estimer σ . Déterminer l'estimateur du maximum de vraisemblance T_n^2 de σ^2 et étudier ses propriétés. Calculer la borne FDCR relative à ce paramètre. Conclusion?
- 3. En déduire un estimateur $\hat{\sigma}_n$ de σ . Cet estimateur peut-il être sans biais?
- 4. Dans le cas où μ est inconnu, donner un estimateur S_n^2 de σ^2 et étudier ses propriétés.