ABSTRACT

The emerging edge computing paradigm promises to deliver superior user experience and enable a wide range of Internet of Things (IoT) applications. In this paper, we propose a new market-based framework for efficiently allocating resources of heterogeneous capacity-limited edge nodes (EN) to multiple competing services at the network edge. By properly pricing the geographically distributed ENs, the proposed framework generates a market equilibrium (ME) solution that not only maximizes the edge computing resource utilization but also allocates optimal resource bundles to the services given their budget constraints. When the utility of a service is defined as the maximum revenue that the service can achieve from its resource allotment, the equilibrium can be computed centrally by solving the Eisenberg-Gale (EG) convex program. We further show that the equilibrium allocation is Pareto-optimal and satisfies desired fairness properties including sharing incentive, proportionality, and envyfreeness. Also, two distributed algorithms, which efficiently converge to an ME, are introduced. When each service aims to maximize its net profit (i.e., revenue minus cost) instead of the revenue, we derive a novel convex optimization problem and rigorously prove that its solution is exactly an ME. Extensive numerical results are presented to validate the effectiveness of the proposed techniques.

TABLE OF CONTENTS

Sl. No	Title	Page No.
	Abstract	i
	Table of Contents	ii
	List of Figures	iv
	List of Tables	v
	Abbreviation	vi
1.	INTRODUCTION	1-3
	1.1 Introduction	1
	1.2 Existing System	2
	1.3 Proposed System	2
	1.4 Advantages of proposed system	3
2.	REQUIREMENT ANALYSIS	4
	2.1 Requirement Analysis	4
	2.2 Requirement Specification	4
	2.2.1 Functional Requirement	4
	2.3 Computational Resource requirements	4
	2.3.1 Hardware requirements	4
	2.3.2 Software requirements	4
3	DESIGN	5-9
	3.1 Introduction	5
	3.2 Use case Diagram	6
	3.3 Class Diagram	7
	3.4 Sequence Diagram	8
	3.5 State Chart Diagram	9
4	MODULES	10-11
	4.1 Modules	10
5	IMPLEMENTATION	12
	5.1 Sample Code	12
	5.2 Sample Database	13

PRICE BASED RESOURCE ALLOCATION FOR EDGE COMPUTING A MARKET EQUILIBRIUM APPROACH

	5.2.1 Auth Group	13
	5.2.2 Auth Permission	13
	5.2.3 Consumer Order	14
6	SCREENSHOTS	
	6.1 Screenshots	15
	6.1.1 Login Page	15
	6.1.2 Registration Page	16
	6.1.3 Home Page	17
	6.1.4 Add Product Page	18
7	TESTING	
	7.1 Overview of Testing	19
	7.2 Typing of Testing	19
	7.2.1 Unit Testing	19
	7.2.2 Integration Testing	19
	7.2.3 Functional Testing	20
	7.3 Unit Testing	20
	7.4 Integration Testing	21
	7.5 Acceptance Testing	21
8	CONCLUSION AND FUTURE WORK	22-23
	8.1 Conclusion	22
	8.2 Scope for future work	22
9	REFERENCES	24

LIST OF FIGURES

Sl No	Title	Page No.
3.1	Architecture	8
3.2	Use case Diagram	6
3.3	Class Diagram	7
3.4	Sequence Diagram	8
3.5	State chart Diagram	9
6.1	Login Page	15
6.2	Registration Page	16
6.3	Home Page	17
6.4	Add Product Page	18

LIST OF TABLES

Sl No	Title	Page No.
5.1	Auth Group	13
5.2	Auth Permission	13
5.3	Customer Order	14

ABBREVIATION

GUI	GRANPHICAL USER INTERFACE
PY	PYTHON
OPP	OBJECT ORIENTED PROGRAMMING
SQL	STRUTURAL QUERY LANGUAGE
DB	DATABASES
HTML	HUPER TEXT MARKUP LANGUAGE
CSS	CASCATING STYLE SHEET