

FCC PART 15.247 TEST REPORT

For

Autel Robotics Co., Ltd.

9th Floor, Bldg.B1, Zhiyuan, 1001 Xueyuan Rd., Xili, Nanshan, Shenzhen, China

FCC ID: 2AGNTEVORC582409A

Report Type: Product Type:
Original Report EVO series

Report Number: RSZ171110005-00A

Report Date: 2018-02-12

Candy Li

Reviewed By: RF Engineer

Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen)

6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone,

Candy, Li

Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*".

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	4
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
EUT Exercise Software	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	12
BLOCK DIAGRAM OF TEST SETUP	13
SUMMARY OF TEST RESULTS	14
TEST EQUIPMENT LIST	15
FCC §15.247 (i) & §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	16
APPLICABLE STANDARD	
Result	16
FCC §15.203 - ANTENNA REQUIREMENT	17
APPLICABLE STANDARD	
Antenna Connector Construction	17
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	18
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
TEST RESULTS SUMMARY	
Test Data	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	35
APPLICABLE STANDARD	35
Test Procedure	
TEST DATA	
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	64
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	
APPLICABLE STANDARD	
TEST PROCEDURE	66 66

FCC §15.24/(e) - POWER SPECTRAL DENSITY	83
APPLICABLE STANDARD	83
TEST PROCEDURE	
TEST DATA	83

FCC Part 15.247 Page 3 of 109

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Autel Robotics Co., Ltd.*'s product, model number: *EVO (FCC ID: 2AGNTEVORC582409A)* or the "EUT" in this report was a *EVO series*, which was measured approximately: 310 mm (L) \times 230 mm (W) \times 105 mm (H), rated with input voltage: DC 11.4 V powered by battery.

Report No.: RSZ171110005-00A

*All measurement and test data in this report was gathered from production sample serial number: 172482 (Assigned by BACL, shenzhen). The EUT supplied by the applicant was received on 2017-11-10.

Objective

This report is prepared on behalf of *Autel Robotics Co., Ltd.* in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

Submittal with the remote control unit of a system with FCC ID: 2AGNTEF7RC2409A.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		uncertainty
Occupied Char	nel Bandwidth	±5%
RF output pov	ver, conducted	±1.5dB
Unwanted Emission, conducted		±1.5dB
Emissions,	Below 1GHz	±4.70dB
radiated Above 1GHz		±4.80dB
Temperature		±1°C
Supply voltages		±0.4%

FCC Part 15.247 Page 4 of 109

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

Report No.: RSZ171110005-00A

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 382179, the FCC Designation No.: CN5001.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

FCC Part 15.247 Page 5 of 109

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For 2.4GHz: 3MHz, 5MHz, 10MHz mode, 65 channels are provided to testing

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2407.5	33	2439.5
2	2408.5		
3	2409.5		
		•••••	
		64	2470.5
32	2438.5	65	2471.5

Report No.: RSZ171110005-00A

CH1, CH33, CH65 was tested.

For 2.4GHz: 20MHz mode, 51 channels are provided to testing

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412.5	26	2437.5
2	2413.5		
3	2414.5		
•••••		•••••	•••••
•••••		•••••	•••••
		50	2461.5
25	2436.5	51	2462.5

CH1, CH26, CH51 was tested.

For 900MHz: 3MHz, 5MHz, 10MHz mode, 13 channels are provided to testing

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	909	8	916
2	910	9	917
3	911	10	918
4	912	11	919
5	913	12	920
6	914	13	921
7	915	/	/

CH1, CH7, CH13 was tested.

FCC Part 15.247 Page 6 of 109

For 900MHz: 20MHz mode, 3 channels are provided to testing

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	914	3	916
2	915	/	/

CH1, CH2, CH3 was tested.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

"secureCRT" software was used during test.

For 2.4GHz band:

Antenna 03 or Antenna 04: MISO mode

Itom	Data			
Item	rate	Low channel	Middle channel	High channel
3M Mode	10 Mbps	17	17	17
5M Mode	10 Mbps	17	17	17
10M Mode	10 Mbps	17	17	17
20M Mode	20 Mbps	17	17	17

For 900MHz band:

Antenna 01 or Antenna 02: MISO mode

Itam	Data		Power level	
Item	rate	Low channel	Middle channel	High channel
3M Mode	10 Mbps	18	18	18
5M Mode	10 Mbps	18	18	18
10M Mode	10 Mbps	18	18	18
20M Mode	20 Mbps	18	18	18

Duty cycle

For 900MHz Antenna 01 & 02:

Item	Duty Cycle (%)	T(ms)	1/T(kHz)	VBW Setting	10log(1/x)
3M Mode	79.48	3.974	0.25	1kHz	1.0
5M Mode	79.48	3.974	0.25	1kHz	1.0
10M Mode	80.12	4.006	0.25	1kHz	1.0
20M Mode	80.12	4.006	0.25	1kHz	1.0

FCC Part 15.247 Page 7 of 109

3M Mode

Date: 12.JAN.2018 20:49:35

5M Mode

Date: 12.JAN.2018 20:47:51

FCC Part 15.247 Page 8 of 109

10M Mode

Date: 12.JAN.2018 20:50:49

20M Mode

Date: 12.JAN.2018 20:43:03

FCC Part 15.247 Page 9 of 109

Item	Duty Cycle (%)	T(ms)	1/T(kHz)	VBW Setting	10log(1/x)
3M Mode	79.48	3.974	0.25	1kHz	1.0
5M Mode	80.25	4.038	0.25	1kHz	1.0
10M Mode	79.61	4.006	0.25	1kHz	1.0
20M Mode	80.12	4.006	0.25	1kHz	1.0

3M Mode

Date: 12.JAN.2018 17:30:24

FCC Part 15.247 Page 10 of 109

5M Mode

10M Mode

FCC Part 15.247 Page 11 of 109

20M Mode

Report No.: RSZ171110005-00A

Date: 12.JAN.2018 17:41:56

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	Load Terminal	/	/

External I/O Cable

Cable Description	Length (m)	From Port	То
/	/	/	/

FCC Part 15.247 Page 12 of 109

Block Diagram of Test Setup

For Spurious Emissions:

FCC Part 15.247 Page 13 of 109

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i) & §1.1307 (b) (1) & §2.1091	Maximum Permissible exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Not Applicable
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliance
§15.247(b)(3)	Maximum Conducted Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

Report No.: RSZ171110005-00A

Not Applicable: This device is powered by battery only.

FCC Part 15.247 Page 14 of 109

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	Radi	ated Emission T	est		
A.H.System	Horn Antenna	SAS-200/571	135	2015-08-18	2018-08-17
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2017-04-24	2018-04-24
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2017-05-21	2018-05-21
HP	Amplifier	HP8447E	1937A01046	2017-11-19	2018-05-21
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2017-12-17	2020-12-16
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2017-12-07	2018-12-07
Ducommun technologies	RF Cable	UFA210A-1- 4724-30050U	MFR64369 223410-001	2017-11-19	2018-05-21
Ducommun technologies	RF Cable	104PEA	218124002	2017-11-19	2018-05-21
Ducommun technologies	RF Cable	RG-214	1	2017-11-19	2018-05-21
Ducommun technologies	RF Cable	RG-214	2	2017-11-19	2018-05-21
Ducommun Technologies	Horn Antenna	ARH-4223- 02	1007726-04	2017-12-29	2020-12-28
Ducommun Technologies	Pre-amplifier	ALN- 22093530-01	991373-01	2017-08-03	2018-08-03
Sinoscite	Band Reject Filter	BSF2402- 2480MN- 0898-001	N/A	2017-05-21	2018-05-21
	RF	Conducted Tes	t	_	_
Rohde & Schwarz	SPECTRUM ANALYZER	FSU26	200120	2017-12-05	2018-12-05
Ducommun technologies	RF Cable	RG-214	3	2017-11-22	2018-05-22
Ducommun technologies	RF Cable	RG-214	4	2017-11-22	2018-05-22
WEINSCHEL	3dB Attenuator	N/A	N/A	2017-11-23	2018-05-22
WEINSCHEL	10dB Attenuator	5324	AU 3842	2017-11-22	2018-05-22

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.247 Page 15 of 109

FCC §15.247 (i) & §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE **EXPOSURE (MPE)**

Applicable Standard

According to subpart 15.247 (i) and subpart 1.1307 (b)(1), 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure

	Limits for General Population/Uncontrolled Exposure									
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (Minutes)						
0.3-1.34	614	1.63	*(100)	30						
1.34-30	824/f	2.19/f	$*(180/f^2)$	30						
30-300	27.5	0.073	0.2	30						
300-1500	/	/	f/1500	30						
1500-100,000	/	/	1.0	30						

f = frequency in MHz

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Frequency	Ante	nna Gain	Conduc	ted Power	Evaluation	Power	MPE Limit	
Range (MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance (cm)	Density (mW/cm ²)	(mW/cm^2)	
2407.5 - 2471.5	2	1.58	25	316.23	20	0.100	1.00	
2412.5 - 2462.5	2	1.58	24	251.19	20	0.079	1.00	
909 - 921	1	1.26	24	251.19	20	0.063	0.61	
914 - 916	1	1.26	25	316.23	20	0.079	0.61	

Note: The conducted power is the tune-up power of the Max Conducted Peak Output Power.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

FCC Part 15.247 Page 16 of 109

^{* =} Plane-wave equivalent power density

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RSZ171110005-00A

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has two internal PCB antennas arrangement for 2.4GHz and 900MHz, which were permanently attached and the antenna gain is 2.0dBi for 2.4GHz and 1.0dBi for 900MHz, fulfill the requirement of this section. Please refer to the EUT photos.

For the four antennas, one pair for 900MHz RF signal and the other pair for 2.4GHz RF signal. The two pairs of antennas do not work at the same time. And antennas use MISO mode in a pair of antennas, one antenna is used for transmitting signals and two antennas are used for receiving signals.

Result: Compliance.

FCC Part 15.247 Page 17 of 109

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

FCC Part 15.247 Page 18 of 109

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Report No.: RSZ171110005-00A

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1MHz	3 MHz	/	PK
Above 1 GHz	1MHz	10 Hz Note 1	/	Ave.
	1MHz	>1/T Note 2	/	Ave.

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

FCC Part 15.247 Page 19 of 109

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247</u>.

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_{\rm m} + U_{\rm (Lm)} \leq L_{\rm lim} + U_{\rm cispr}$$

Report No.: RSZ171110005-00A

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Vincent Zeng from 2018-01-15 to 2018-02-11.

EUT operation mode: Transmitting (Pre-scan with each antenna for 900MHz and 2.4GHz, and worst case as below)

FCC Part 15.247 Page 20 of 109

For 900MHz:

30 MHz~1 GHz: (worst case for 20M Mode, Low channel)

Report No.: RSZ171110005-00A

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
30.150187	22.65	119.0	V	24.0	0.2	40.00	17.35
215.894500	32.15	165.0	Н	104.0	-6.5	43.50	11.35
553.126375	27.44	123.0	Н	318.0	4.8	46.00	18.56
689.052625	28.56	275.0	Н	261.0	6.2	46.00	17.44
821.214750	31.26	275.0	V	230.0	9.0	46.00	14.74
919.136500	30.68	105.0	V	189.0	9.1	46.00	15.32

FCC Part 15.247 Page 21 of 109

1 GHz - 10 GHz:

Frequency	Re	eceiver	Turntable	Rx An	itenna		Corrected		C Part //205/209
(MHz)	Reading (dBµV)	PK/QP/Ave.		Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)		Margin (dB)
		L	ow Channe	el (909 N	⁄ИНz) 3N	M Mode			
909	93.23	QP	182	1.4	Н	9.4	102.63	/	/
909	92.26	QP	232	1.0	V	9.4	101.66	/	/
901.97	33.84	QP	204	2.2	Н	9.6	43.44	82.63	39.19
901.97	33.98	QP	131	1.8	V	9.6	43.58	81.66	38.08
1818	57.56	PK	346	2.3	Н	-4.87	52.69	74	21.31
1818	42.03	Ave.	346	2.3	Н	-4.87	37.16	54	16.84
1818	58.19	PK	281	2.1	V	-4.87	53.32	74	20.68
1818	42.15	Ave.	281	2.1	V	-4.87	37.28	54	16.72
2727	43.47	PK	75	1.8	Н	-0.01	43.46	74	30.54
2727	29.80	Ave.	75	1.8	Н	-0.01	29.79	54	24.21
	+	Mi	iddle Chanr	nel (915	MHz) 3	M Mode		•	
915	94.03	QP	149	1.8	Н	9.1	103.13	/	/
915	91.73	QP	189	2.1	V	9.1	100.83	/	/
1830	57.21	PK	49	2.2	Н	-4.87	52.34	74	21.66
1830	42.07	Ave.	49	2.2	Н	-4.87	37.20	54	16.80
1830	58.58	PK	109	2.1	V	-4.87	53.71	74	20.29
1830	43.10	Ave.	109	2.1	V	-4.87	38.23	54	15.77
		Н	igh Channe	el (921 N	MHz) 31	M Mode		T.	
921	93.28	QP	235	1.2	Н	8.9	97.33	/	/
921	90.26	QP	1	1.6	V	8.9	94.35	/	/
928.46	33.26	QP	155	1.8	Н	9.6	40.80	77.33	36.53
928.46	34.23	QP	131	2.2	V	9.6	41.90	74.35	32.45
1842	58.26	PK	351	2.1	Н	-4.87	53.39	74	20.61
1842	42.68	Ave.	351	2.1	Н	-4.87	37.81	54	16.19
1842	58.41	PK	59	1.5	V	-4.87	53.54	74	20.46
1842	43.21	Ave.	59	1.5	V	-4.87	38.34	54	15.66
		L	ow Channe	d (909 N	/Hz) 5N	M Mode		T.	
909	93.93	QP	182	1.4	Н	9.4	103.33	/	/
909	90.99	QP	232	1	V	9.4	100.39	/	/
901.97	33.83	QP	204	2.2	Н	9.6	43.43	83.33	39.90
901.97	35.07	QP	131	1.8	V	9.6	44.67	80.39	35.72
1818	61.89	PK	178	2.3	Н	-4.87	57.02	74	16.98
1818	45.74	Ave.	178	2.3	Н	-4.87	40.87	54	13.13
1818	61.97	PK	129	1.2	V	-4.87	57.10	74	16.90
1818	45.23	Ave.	129	1.2	V	-4.87	40.36	54	13.64

FCC Part 15.247 Page 22 of 109

Re	eceiver	Turntable	Rx An	tenna				C Part /205/209
Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	(dB/m)	(dBµV/m)	Limit (dBµV/m)	Margin (dB)
	M	iddle Chanr	nel (915	MHz) 5	M Mode			
94.17	QP	149	1.8	Н	9.1	103.27	/	/
94.64	QP	189	2.1	V	9.1	103.74	/	/
60.33	PK	190	1.7	Н	-4.87	55.46	74	18.54
44.25	Ave.	190	1.7	Н	-4.87	39.38	54	14.62
60.94	PK	155	1.8	V	-4.87	56.07	74	17.93
44.72	Ave.	155	1.8	V	-4.87	39.85	54	14.15
l .	Н	ligh Channe	el (921 N	ИHz) 51	M Mode		<u> </u>	
93.10	QP	236	1.2	Н	8.9	102.00	/	/
93.08	QP	10	1.6	V	8.9	101.98	/	/
34.77	QP	155	1.8	Н	9.6	40.80	77.33	36.53
33.47	QP	131	2.2	V	9.6	41.90	74.35	32.45
61.92	PK	249	1.7	Н	-4.87	57.05	74	16.95
45.26	Ave.	249	1.7	Н	-4.87	40.39	54	13.61
59.91	PK	164	2.3	V	-4.87	55.04	74	18.96
44.21	Ave.	164	2.3	V	-4.87	39.34	54	14.66
I.	L	ow Channel	(909 M	(Hz) 10	M Mode		<u>l</u>	
90.07	QP	182	1.4	Н	9.4	99.47	/	/
88.95	QP	232	1	V	9.4	98.35	/	/
52.92	QP	204	2.2	Н	9.6	62.52	79.47	16.95
52.56	QP	131	1.8	V	9.6	62.16	78.35	16.19
55.73	PK	261	1.8	Н	-4.87	50.86	74	23.14
38.69	Ave.	261	1.8	Н	-4.87	33.82	54	20.18
	PK			V		50.21	l	23.79
38.51	Ave.		l			33.64	54	20.36
		†	- `		†	20.41	, ,	
	,							/
	`							22.40
								22.49
								19.93
								20.40
	Reading (dBμV) 94.17 94.64 60.33 44.25 60.94 44.72 93.10 93.08 34.77 33.47 61.92 45.26 59.91 44.21 90.07 88.95 52.92 52.56 55.73	Min PK/QP/Ave. Min 94.17 QP 94.64 QP 60.33 PK 44.25 Ave. 60.94 PK 44.72 Ave. Hin PK PK Ave. Hin PK Ave. Hin PK PK Ave. Hin PK PK Ave. Hin PK PK Ave. Hin PK Ave. Hin PK PK Ave. Hin PK Ave. Hin PK PK Ave. Hin PK PK Ave. Hin PK PK Ave. Hin PK Ave. Hin PK PK Ave. Hin PK PK Ave. Hin PK Ave. Hin PK PK Ave. Hin PK Ave. Hin PK PK PK Ave. Hin PK PK PK PK PK PK PK P	Reading (dBμV) PK/QP/Ave. Purntable Degree 94.17 QP 149 94.64 QP 189 60.33 PK 190 44.25 Ave. 190 60.94 PK 155 44.72 Ave. 155 High Channe 93.10 QP 236 93.08 QP 10 34.77 QP 155 33.47 QP 131 61.92 PK 249 45.26 Ave. 249 59.91 PK 164 44.21 Ave. 164 Low Channe 90.07 QP 182 88.95 QP 232 52.92 QP 204 55.73 PK 261 38.69 Ave. 261 55.08 PK 8 38.51 Ave. 8 Middle Chann 90.11	Reading (dBμV) PK/QP/Ave. Turntable (m) 94.17 QP 149 1.8 94.64 QP 189 2.1 60.33 PK 190 1.7 44.25 Ave. 190 1.7 60.94 PK 155 1.8 44.72 Ave. 155 1.8 High Channel (921 Model) 93.10 QP 236 1.2 93.08 QP 10 1.6 34.77 QP 155 1.8 33.47 QP 131 2.2 99.1 PK 249 1.7 45.26 Ave. 249 1.7 59.91 PK 164 2.3 44.21 Ave. 164 2.3 48.95 QP 232 1 52.92 QP 204 2.2 52.56 QP 131 1.8 55.73 PK 261 1.8	Reading (dBμV) PK/QP/Ave. Degree (dBμV) Height (m) (H/V) Polar (H/V) 94.17 QP 149 1.8 H 94.64 QP 189 2.1 V 60.33 PK 190 1.7 H 44.25 Ave. 190 1.7 H 60.94 PK 155 1.8 V 44.72 Ave. 155 1.8 V 44.72 Ave. 155 1.8 V 93.10 QP 236 1.2 H 93.08 QP 10 1.6 V 34.77 QP 155 1.8 H 45.26 Ave. 249 1.7 H 45.26 Ave. 249 1.7 H 59.91 PK 164 2.3 V Low Channel (909 MHz) 10 90.07 QP 182 1.4 H 88.95 QP 232 1	PK/QP/Ave. Polar (m)	Name	Reading PK/QP/Ave. Pwint Degree Height Pholar (m) Pwint Pwint Pwint (m) Pwint Pwint (m) P

FCC Part 15.247 Page 23 of 109

Frequency	Re	eceiver	Turntable	Rx Ar	ntenna		Corrected		C Part /205/209		
(MHz)	Reading (dBµV)	PK/QP/Ave.		Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
	High Channel (921 MHz) 10M Mode										
921	90.46	QP	235	1.2	Н	8.9	97.33	/	/		
921	89.86	QP	1	1.6	V	8.9	94.35	/	/		
928.46	53.63	QP	155	1.8	Н	9.6	40.80	77.33	36.53		
928.46	54.12	QP	131	2.2	V	9.6	41.90	74.35	32.45		
1842	55.47	PK	273	1.7	Н	-4.87	50.60	74	23.40		
1842	38.15	Ave.	273	1.7	Н	-4.87	33.28	54	20.72		
1842	55.20	PK	357	1.8	V	-4.87	50.33	74	23.67		
1842	38.42	Ave.	357	1.8	V	-4.87	33.55	54	20.45		
		L	ow Channel	l (914 M	1Hz) 20	M Mode					
914	88.65	QP	240	1.2	Н	9.1	97.75	/	/		
914	87.42	QP	37	1.9	V	9.1	96.52	/	/		
901.88	51.57	QP	186	2.6	Н	9.6	61.17	77.75	16.58		
901.88	51.01	QP	184	2.4	V	9.6	60.61	76.52	15.91		
1828	50.92	PK	233	2.0	Н	-4.87	46.05	74	27.95		
1828	34.18	Ave.	233	2.0	Н	-4.87	29.31	54	24.69		
1828	51.78	PK	142	1.6	V	-4.87	46.91	74	27.09		
1828	33.95	Ave.	142	1.6	V	-4.87	29.08	54	24.92		
		Mi	ddle Chann	el (915)	MHz) 2	0M Mode					
915	87.91	QP	240	1.2	Н	9.1	97.01	/	/		
915	87.87	QP	37	1.9	V	9.1	96.97	/	/		
1830	50.90	PK	179	2.0	Н	-4.87	46.03	74	27.97		
1830	34.71	Ave.	179	2.0	Н	-4.87	29.84	54	24.16		
1830	51.73	PK	216	2.1	V	-4.87	46.86	74	27.14		
1830	33.95	Ave.	216	2.1	V	-4.87	29.08	54	24.92		
		l .	igh Channe	l (916 M	/Hz) 20	M Mode		<u>l</u>			
916	88.01	QP	240	1.2	Н	9.1	97.11	/	/		
916	87.64	QP	37	1.9	V	9.1	96.74	/	/		
901.88	52.01	QP	186	2.6	Н	9.6	61.61	77.11	15.50		
901.88	51.77	QP	184	2.4	V	9.6	61.37	76.74	15.37		
1832	50.89	PK	253	1.7	Н	-4.87	46.02	74	27.98		
1832	34.17	Ave.	253	1.7	Н	-4.87	29.30	54	24.70		
1832	51.67	PK	22	1.8	V	-4.87	46.80	74	27.20		
1832	33.94	Ave.	22	1.8	V	-4.87	29.07	54	24.93		

Note:

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Corrected Amplitude = Corrected Factor + Reading

Margin = Limit - Corrected. Amplitude

The other spurious emission which is 20dB to the limit was not recorded.

FCC Part 15.247 Page 24 of 109

Pre-scan with 3M Mode, Low channel for Peak

Horizontal

Vertical

FCC Part 15.247 Page 25 of 109

For 2.4GHz:

30 MHz~1 GHz: (worst case for 3M Mode, Middle channel)

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
215.932500	32.26	154.0	Н	114.0	-6.5	43.50	11.24
267.921875	26.39	100.0	Н	202.0	-4.0	46.00	19.61
380.073625	29.87	105.0	Н	99.0	-1.0	46.00	16.13
589.751375	27.24	112.0	V	122.0	3.8	46.00	18.76
681.737625	28.48	400.0	V	0.0	5.8	46.00	17.52
811.945375	31.10	122.0	Н	24.0	9.0	46.00	14.90

FCC Part 15.247 Page 26 of 109

1 GHz - 25 GHz:

Frequency (MHz)	Receiver		Turntable	Rx An	tenna		Corrected		C Part /205/209
	Reading	PK/QP/Ave.	Degree	Height		Factor (dB/m)	Amplitude (dBuV/m)	Limit (dBµV/m)	Margin
	(dBµV)			2M Ma	(H/V)	` ′	• /	(aBµV/m)	(dB)
3M Mode									
Low Channel (2407.5 MHz) 2407.50 78.69 PK 90 1.7 H 33.92 112.61 / /								/	
2407.50	57.10		90	1.7	Н	33.92	91.02	/	/
2407.50	83.94	Ave. PK	232	1.7	V	33.92	117.86	/	/
2407.50	63.01	Ave.	232	1.7	V	33.92	96.93	/	/
2379.69	27.68	PK	154	1.7	V	33.92	61.60	74	12.40
2379.69	14.24		154	1.1	V	33.92	48.16	54	5.84
2489.63	27.04	Ave. PK	241	1.1	V	34.08	61.12	74	12.88
2489.63	+		241		V	34.08		54	6.47
4815.00	13.45 46.25	Ave. PK	44	1.3	V	5.84	47.53 52.09	74	21.91
4815.00	31.69		44	2.3	V	5.84	37.53	54	16.47
7222.50	+	Ave.			V	ł			
	55.24	PK	30	1.8	V	14.00	69.24	74	4.76
7222.50	36.84	Ave.				14.00	50.84	54	3.16
2420.50	70.72	DV	Middle Cl	1		· ·	110.65	,	,
2439.50	78.73	PK	337	2.0	Н	33.92	112.65	/	/
2439.50	57.39	Ave.	337	2.0	H	33.92	91.31	/	/
2439.50	84.57	PK	228	1.2	V	33.92	118.49	/	/
2439.50	63.14	Ave.	228	1.2	V	33.92	97.06	7.4	20.76
4879.00	47.03	PK	355	2.0	V	6.21	53.24	74	20.76
4879.00	32.75	Ave.	355	2.0	V	6.21	38.96	54	15.04
7318.50	53.54	PK	65	2.3	V	13.60	67.14	74	6.86
7318.50	35.72	Ave.	65	2.3	V	13.60	49.32	54	4.68
		T	High Cha	· `				. 1	
2471.50	78.39	PK	0	2.1	Н	34.08	112.47	/	/
2471.50	57.76	Ave.	0	2.1	Н	34.08	91.84	/	/
2471.50	84.69	PK	354	1.6	V	34.08	118.77	/	/
2471.50	63.41	Ave.	354	1.6	V	34.08	97.49	/	/
2372.26	27.89	PK	132	2.0	Н	33.92	61.81	74	12.19
2372.26	14.21	Ave.	132	2.0	Н	33.92	48.13	54	5.87
2483.76	27.27	PK	357	2.1	Н	34.08	61.35	74	12.65
2483.76	13.58	Ave.	357	2.1	Н	34.08	47.66	54	6.34
4943.00	45.32	PK	186	2.1	V	6.21	51.53	74	22.47
4943.00	30.44	Ave.	186	2.1	V	6.21	36.65	54	17.35
7414.50	54.18	PK	136	1.9	V	13.02	67.20	74	6.80
7414.50	36.90	Ave.	136	1.9	V	13.02	49.92	54	4.08

FCC Part 15.247 Page 27 of 109

Frequency	Receiver		Turntable	Rx An	itenna		Corrected		C Part /205/209	
(MHz)	Reading (dBµV)	PK/QP/Ave.		Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBμV/m)		Margin (dB)	
	5M Mode									
Low Channel (2407.5 MHz)										
2407.50	78.64	PK	127	1.9	Н	33.92	112.56	/	/	
2407.50	57.12	Ave.	127	1.9	Н	33.92	91.04	/	/	
2407.50	86.31	PK	38	1.3	V	33.92	120.23	/	/	
2407.50	64.41	Ave.	38	1.3	V	33.92	98.33	/	/	
2372.00	29.31	PK	225	1.9	V	33.92	63.23	74	10.77	
2372.00	15.20	Ave.	225	1.9	V	33.92	49.12	54	4.88	
2484.41	28.02	PK	352	1.3	V	34.08	62.10	74	11.90	
2484.41	13.42	Ave.	352	1.3	V	34.08	47.50	54	6.50	
4815.00	47.08	PK	69	2.1	V	5.84	52.92	74	21.08	
4815.00	32.65	Ave.	69	2.1	V	5.84	38.49	54	15.51	
7222.50	56.24	PK	317	2.3	V	14.00	70.24	74	3.76	
7222.50	37.74	Ave.	317	2.3	V	14.00	51.74	54	2.26	
			Middle Cl	hannel (2439.5N	MHz)				
2439.50	79.26	PK	14	2.0	Н	33.92	113.18	/	/	
2439.50	58.10	Ave.	14	2.0	Н	33.92	92.02	/	/	
2439.50	85.97	PK	17	2.3	V	33.92	119.89	/	/	
2439.50	64.42	Ave.	17	2.3	V	33.92	98.34	/	/	
4879.00	47.06	PK	303	2.2	V	6.21	53.27	74	20.73	
4879.00	32.85	Ave.	303	2.2	V	6.21	39.06	54	14.94	
7318.50	56.62	PK	102	1.3	V	13.60	70.22	74	3.78	
7318.50	37.45	Ave.	102	1.3	V	13.60	51.05	54	2.95	
			High Cha	annel (2	471.5 M	IHz)				
2471.50	79.63	PK	92	1.3	Н	34.08	113.71	/	/	
2471.50	58.74	Ave.	92	1.3	Н	34.08	92.82	/	/	
2471.50	86.89	PK	292	1.2	V	34.08	120.97	/	/	
2471.50	64.32	Ave.	292	1.2	V	34.08	98.40	/	/	
2372.00	27.80	PK	220	2.0	V	33.92	61.72	74	12.28	
2372.00	14.09	Ave.	220	2.0	V	33.92	48.01	54	5.99	
2484.41	34.40	PK	317	1.5	V	34.08	68.48	74	5.52	
4943.00	46.96	PK	275	2.3	V	6.21	53.17	74	20.83	
4943.00	32.08	Ave.	275	2.3	V	6.21	38.29	54	15.71	
7414.50	56.70	PK	351	1.9	V	13.02	69.72	74	4.28	
7414.50	37.89	Ave.	351	1.9	V	13.02	50.91	54	3.09	

FCC Part 15.247 Page 28 of 109

Frequency	Receiver		Turntable	Rx An			Corrected		C Part /205/209
(MHz)	• •	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)		Margin (dB)		
10M Mode									
Low Channel (2407.5 MHz)									
2407.50	73.84	PK	1	1.5	Н	33.92	107.76	/	/
2407.50	51.70	Ave.	1	1.5	Н	33.92	85.62	/	/
2407.50	82.17	PK	237	1.0	V	33.92	116.09	/	/
2407.50	60.85	Ave.	237	1.0	V	33.92	94.77	/	/
2378.69	28.11	PK	226	1.1	V	33.92	62.03	74	11.97
2378.69	14.09	Ave.	226	1.1	V	33.92	48.01	54	5.99
2489.67	27.46	PK	128	1.7	V	34.08	61.54	74	12.46
2489.67	13.45	Ave.	128	1.7	V	34.08	47.53	54	6.47
4815.00	43.19	PK	89	2.2	V	5.84	49.03	74	24.97
4815.00	29.58	Ave.	89	2.2	V	5.84	35.42	54	18.58
7222.50	49.21	PK	142	1.7	V	14.00	63.21	74	10.79
7222.50	32.21	Ave.	142	1.7	V	14.00	46.21	54	7.79
			Middle Cl	hannel (2	2439.5N	MHz)			
2439.50	73.26	PK	210	1.9	Н	33.92	107.18	/	/
2439.50	51.20	Ave.	210	1.9	Н	33.92	85.12	/	/
2439.50	80.89	PK	33	1.9	V	33.92	114.81	/	/
2439.50	59.12	Ave.	33	1.9	V	33.92	93.04	/	/
4879.00	44.62	PK	355	1.5	V	6.21	50.83	74	23.17
4879.00	29.45	Ave.	355	1.5	V	6.21	35.66	54	18.34
7318.50	49.06	PK	75	1.3	V	13.60	62.66	74	11.34
7318.50	32.34	Ave.	75	1.3	V	13.60	45.94	54	8.06
			High Cha	annel (24	471.5 M	IHz)			
2471.50	75.01	PK	228	1.6	Н	34.08	109.09	/	/
2471.50	52.43	Ave.	228	1.6	Н	34.08	86.51	/	/
2471.50	81.80	PK	339	1.1	V	34.08	115.88	/	/
2471.50	59.71	Ave.	339	1.1	V	34.08	93.79	/	/
2360.03	27.84	PK	344	1.9	V	33.92	61.76	74	12.24
2360.03	14.12	Ave.	344	1.9	V	33.92	48.04	54	5.96
2489.67	36.59	PK	249	1.9	V	34.08	70.67	74	3.33
2489.67	17.39	Ave.	249	1.9	V	34.08	51.47	54	2.53
4943.00	44.27	PK	346	1.5	V	6.21	50.48	74	23.52
4943.00	29.46	Ave.	346	1.5	V	6.21	35.67	54	18.33
7414.50	48.47	PK	197	1.7	V	13.02	61.49	74	12.51
7414.50	32.18	Ave.	197	1.7	V	13.02	45.20	54	8.80

FCC Part 15.247 Page 29 of 109

Frequency	Receiver		Turntable	Rx An	itenna		Corrected	FCC Part 15.247/205/209	
(MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
20M Mode									
	Low Channel (2412.5 MHz)								
2412.50	71.54	PK	34	2.0	Н	33.92	105.46	/	/
2412.50	50.60	Ave.	34	2.0	Н	33.92	84.52	/	/
2412.50	78.75	PK	36	1.3	V	33.92	112.67	/	/
2412.50	57.09	Ave.	36	1.3	V	33.92	91.01	/	/
2388.47	36.36	PK	347	2.3	V	33.92	70.28	74	3.72
2388.47	17.03	Ave.	347	2.3	V	33.92	50.95	54	3.05
2489.69	27.69	PK	169	2.0	V	34.08	61.77	74	12.23
2489.69	13.46	Ave.	169	2.0	V	34.08	47.54	54	6.46
4825.00	43.38	PK	88	1.7	V	5.84	49.22	74	24.78
4825.00	29.69	Ave.	88	1.7	V	5.84	35.53	54	18.47
7237.50	46.35	PK	139	1.4	V	14.00	60.35	74	13.65
7237.50	31.85	Ave.	139	1.4	V	14.00	45.85	54	8.15
			Middle Cl	hannel (2437.5N	MHz)			
2437.50	74.10	PK	11	2.0	Н	33.92	108.02	/	/
2437.50	51.36	Ave.	11	2.0	Н	33.92	85.28	/	/
2437.50	79.63	PK	60	2.4	V	33.92	113.55	/	/
2437.50	56.63	Ave.	60	2.4	V	33.92	90.55	/	/
4875.00	43.97	PK	108	2.5	V	6.21	50.18	74	23.82
4875.00	29.37	Ave.	108	2.5	V	6.21	35.58	54	18.42
7312.50	48.63	PK	157	1.5	V	13.60	62.23	74	11.77
7312.50	32.14	Ave.	157	1.5	V	13.60	45.74	54	8.26
			High Cha	annel (2	462.5 M	ſHz)			
2462.50	73.40	PK	294	1.7	Н	34.08	107.48	/	/
2462.50	51.46	Ave.	294	1.7	Н	34.08	85.54	/	/
2462.50	79.12	PK	168	1.9	V	34.08	113.20	/	/
2462.50	56.39	Ave.	168	1.9	V	34.08	90.47	/	/
2374.62	28.02	PK	7	1.6	V	33.92	61.94	74	12.06
2374.62	14.21	Ave.	7	1.6	V	33.92	48.13	54	5.87
2484.32	35.70	PK	232	1.0	V	34.08	69.78	74	4.22
2484.32	17.33	Ave.	232	1.0	V	34.08	51.41	54	2.59
4925.00	43.96	PK	165	1.1	V	6.21	50.17	74	23.83
4925.00	29.85	Ave.	165	1.1	V	6.21	36.06	54	17.94
7387.50	48.16	PK	57	1.4	V	13.02	61.18	74	12.82
7387.50	32.86	Ave.	57	1.4	V	13.02	45.88	54	8.12

Note

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Corrected Amplitude = Corrected Factor + Reading

Margin = Limit - Corrected. Amplitude

The other spurious emission which is 20dB to the limit was not recorded.

And for the pre-scan is performed with the 2400-2483.5MHz band filter.

FCC Part 15.247 Page 30 of 109

Pre-scan with 3M Mode, Middle channel for Peak

Horizontal

FCC Part 15.247 Page 31 of 109

Vertical

FCC Part 15.247 Page 32 of 109

For Average

FCC Part 15.247 Page 33 of 109

Vertical

FCC Part 15.247 Page 34 of 109

FCC $\S15.247(a)$ (2) – 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: RSZ171110005-00A

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	24 ℃
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Vincent Zeng on 2018-01-12.

Test Result: Pass.

Please refer to the following table and plots.

EUT operation mode: Transmitting

FCC Part 15.247 Page 35 of 109

For 900MHz Antenna 01:

Channel	Frequency 6 dB Emission Bands (MHz) (MHz)		Limit (kHz)						
	3M Mode								
Low	909	2.716	≥500						
Middle	915	2.700	≥500						
High	921	2.724	≥500						
	51	M Mode							
Low	909	4.567	≥500						
Middle	915	4.535	≥500						
High	921	4.551	≥500						
	10	M Mode							
Low	909	9.071	≥500						
Middle	915	9.038	≥500						
High	921	9.071	≥500						
	20M Mode								
Low	914	18.141	≥500						
Middle	915	18.141	≥500						
High	916	18.141	≥500						

Report No.: RSZ171110005-00A

FCC Part 15.247 Page 36 of 109

3M Mode

Low Channel

Date: 12.JAN.2018 21:45:40

Middle Channel

Date: 12.JAN.2018 21:39:08

FCC Part 15.247 Page 37 of 109

High Channel

Date: 12.JAN.2018 21:49:23

5M Mode

Low Channel

Date: 12.JAN.2018 22:10:01

FCC Part 15.247 Page 38 of 109

Middle Channel

Date: 12.JAN.2018 22:12:19

High Channel

Date: 12.JAN.2018 22:16:04

FCC Part 15.247 Page 39 of 109

10M Mode

Low Channel

Date: 12.JAN.2018 21:09:14

Middle Channel

Date: 12.JAN.2018 20:57:06

FCC Part 15.247 Page 40 of 109

High Channel

Date: 12.JAN.2018 21:13:25

20M Mode

Low Channel

Date: 12.JAN.2018 19:50:13

FCC Part 15.247 Page 41 of 109

Middle Channel

Date: 12.JAN.2018 19:51:26

20M High Channel

Date: 12.JAN.2018 19:45:59

FCC Part 15.247 Page 42 of 109

For 900MHz Antenna 02:

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (kHz)	
3M Mode				
Low	909	2.716	≥500	
Middle	915	2.700	≥500	
High	921	2.724	≥500	
	51	M Mode		
Low	909	4.519	≥500	
Middle	915	4.535	≥500	
High	921	4.551	≥500	
10M Mode				
Low	909	9.038	≥500	
Middle	915	9.038	≥500	
High	921	9.071	≥500	
20M Mode				
Low	914	18.141	≥500	
Middle	915	18.141	≥500	
High	916	18.141	≥500	

Report No.: RSZ171110005-00A

FCC Part 15.247 Page 43 of 109

Low Channel

3M Mode

Date: 12.JAN.2018 21:48:19

Middle Channel

Date: 12.JAN.2018 21:40:46

FCC Part 15.247 Page 44 of 109

High Channel

Date: 12.JAN.2018 21:49:56

5M Mode

Low Channel

Date: 12.JAN.2018 22:11:02

FCC Part 15.247 Page 45 of 109

Middle Channel

Date: 12.JAN.2018 22:13:01

High Channel

Date: 12.JAN.2018 22:19:36

FCC Part 15.247 Page 46 of 109

10M Mode

Low Channel

Date: 12.JAN.2018 21:11:36

Middle Channel

Date: 12.JAN.2018 20:58:30

FCC Part 15.247 Page 47 of 109

High Channel

Date: 12.JAN.2018 21:16:57

20M Mode

Low Channel

Date: 12.JAN.2018 19:48:45

FCC Part 15.247 Page 48 of 109

Middle Channel

Date: 12.JAN.2018 19:54:41

High Channel

Date: 12.JAN.2018 19:47:31

FCC Part 15.247 Page 49 of 109

For 2.4GHz Antenna 03:

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (kHz)		
	3M Mode				
Low	2407.5	2.712	≥500		
Middle	2439.5	2.731	≥500		
High	2471.5	2.712	≥500		
	5M Mode				
Low	2407.5	4.535	≥500		
Middle	2439.5	4.519	≥500		
High	2471.5	4.535	≥500		
	10M Mode				
Low 2407.5 8.974		8.974	≥500		
Middle	2439.5	9.006	≥500		
High	2471.5	9.006	≥500		
20M Mode					
Low	2412.5	18.077	≥500		
Middle	2437.5	18.077	≥500		
High	2462.5	18.061	≥500		

FCC Part 15.247 Page 50 of 109

3M Mode

Low Channel

Date: 12.JAN.2018 17:16:52

Middle Channel

Date: 12.JAN.2018 17:19:11

FCC Part 15.247 Page 51 of 109

High Channel

Date: 12.JAN.2018 17:22:26

5M Mode

Low Channel

Date: 12.JAN.2018 17:07:17

FCC Part 15.247 Page 52 of 109

Middle Channel

Date: 12.JAN.2018 17:06:12

High Channel

Date: 12.JAN.2018 17:02:15

FCC Part 15.247 Page 53 of 109

10M Mode

Low Channel

Date: 12.JAN.2018 16:43:04

Middle Channel

Date: 12.JAN.2018 16:45:35

FCC Part 15.247 Page 54 of 109

High Channel

Date: 12.JAN.2018 16:37:30

20M Mode

Low Channel

Date: 12.JAN.2018 16:26:56

FCC Part 15.247 Page 55 of 109

Middle Channel

Date: 12.JAN.2018 16:23:13

High Channel

Date: 12.JAN.2018 16:20:30

FCC Part 15.247 Page 56 of 109

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (kHz)		
3M Mode					
Low	2407.5	2.712	≥500		
Middle	2439.5	2.712	≥500		
High	2471.5	2.731	≥500		
	5M Mode				
Low 2407.5		4.519	≥500		
Middle	2439.5	4.519	≥500		
High	2471.5	4.535	≥500		
10M Mode					
Low	2407.5	9.038	≥500		
Middle	2439.5	9.038	≥500		
High	2471.5	9.038	≥500		
20M Mode					
Low	2412.5	18.077	≥500		
Middle	2437.5	18.141	≥500		
High	2462.5	18.077	≥500		

FCC Part 15.247 Page 57 of 109

3M Mode

Low Channel

Date: 12.JAN.2018 17:14:14

Middle Channel

Date: 12.JAN.2018 17:20:39

FCC Part 15.247 Page 58 of 109

High Channel

Date: 12.JAN.2018 17:21:44

5M Mode

Low Channel

Date: 12.JAN.2018 17:08:01

FCC Part 15.247 Page 59 of 109

Middle Channel

Date: 12.JAN.2018 17:05:04

High Channel

Date: 12.JAN.2018 17:26:26

FCC Part 15.247 Page 60 of 109

5M Mode

Low Channel

Date: 12.JAN.2018 16:44:16

Middle Channel

Date: 12.JAN.2018 16:38:48

FCC Part 15.247 Page 61 of 109

High Channel

Date: 12.JAN.2018 16:36:05

20M Mode

Low Channel

Date: 12.JAN.2018 16:51:44

FCC Part 15.247 Page 62 of 109

Middle Channel

Date: 12.JAN.2018 16:53:10

High Channel

Date: 12.JAN.2018 16:55:23

FCC Part 15.247 Page 63 of 109

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: RSZ171110005-00A

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	54 %
ATM Pressure:	101.0 kPa

The testing was performed by Vincent Zeng on 2018-01-10.

EUT operation mode: Transmitting

FCC Part 15.247 Page 64 of 109

For 900MHz:

Channel	Frequency (MHz)	Max Conducted Peak Output Power Antenna 01 (dBm)	Max Conducted Peak Output Power Antenna 02 (dBm)	Limit (dBm)
		3M Mode		
Low	909	22.88	22.90	30
Middle	915	22.79	22.72	30
High	921	22.65	22.78	30
5M Mode				
Low	909	20.36	20.30	30
Middle	915	22.84	22.81	30
High	921	22.54	22.86	30
10M Mode				
Low	909	23.12	23.19	30
Middle	915	23.00	23.04	30
High	921	23.03	23.00	30
20M Mode				
Low	914	24.23	24.30	30
Middle	915	22.97	22.94	30
High	916	22.34	22.36	30

For 2.4GHz:

Channel	Frequency (MHz)	Max Conducted Peak Output Power Antenna 03 (dBm)	Max Conducted Peak Output Power Antenna 04 (dBm)	Limit (dBm)	
		3M Mode			
Low	2407.5	22.68	22.72	30	
Middle	2439.5	24.58	23.09	30	
High	2471.5	22.81	22.95	30	
	5M Mode				
Low	2407.5	22.54	22.71	30	
Middle	2439.5	23.20	23.12	30	
High	2471.5	22.78	22.89	30	
	10M Mode				
Low	2407.5	23.19	22.99	30	
Middle	2439.5	23.54	23.56	30	
High	2471.5	23.40	23.39	30	
20M Mode					
Low	2412.5	23.46	23.44	30	
Middle	2437.5	23.45	23.57	30	
High	2462.5	23.44	23.35	30	

FCC Part 15.247 Page 65 of 109

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Report No.: RSZ171110005-00A

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	54 %
ATM Pressure:	101.0 kPa

The testing was performed by Vincent Zeng from 2018-02-10 to 2018-02-12.

EUT operation mode: Transmitting

Test Result: Compliance

Please refer to the following plots.

FCC Part 15.247 Page 66 of 109

For 900MHz Antenna 01

3M Mode: Band Edge, Left Side

Report No.: RSZ171110005-00A

Date: 11.FEB.2018 13:55:41

3M Mode: Band Edge, Right Side

Date: 11.FEB.2018 13:22:40

FCC Part 15.247 Page 67 of 109

5M Mode: Band Edge, Left Side

Date: 11.FEB.2018 11:40:20

5M Mode: Band Edge, Right Side

Date: 11.FEB.2018 13:20:06

FCC Part 15.247 Page 68 of 109

Date: 11.FEB.2018 11:37:33

10M Mode: Band Edge, Right Side

Date: 11.FEB.2018 11:09:42

FCC Part 15.247 Page 69 of 109

20M Mode: Band Edge, Left Side

Date: 12.FEB.2018 17:09:02

20M Mode: Band Edge, Right Side

Date: 11.FEB.2018 11:07:11

FCC Part 15.247 Page 70 of 109

For 900MHz Antenna 02

3M Mode: Band Edge, Left Side

Report No.: RSZ171110005-00A

Date: 11.FEB.2018 13:49:53

3M Mode: Band Edge, Right Side

Date: 11.FEB.2018 13:24:57

FCC Part 15.247 Page 71 of 109

5M Mode: Band Edge, Left Side

Date: 11.FEB.2018 11:42:48

5M Mode: Band Edge, Right Side

Date: 11.FEB.2018 13:13:32

FCC Part 15.247 Page 72 of 109

10M Mode: Band Edge, Left Side

Date: 11.FEB.2018 11:34:16

10M Mode: Band Edge, Right Side

Date: 11.FEB.2018 11:13:08

FCC Part 15.247 Page 73 of 109

20M Mode: Band Edge, Left Side

Date: 12.FEB.2018 17:10:35

20M Mode: Band Edge, Right Side

Date: 11.FEB.2018 11:04:57

FCC Part 15.247 Page 74 of 109

For 2.4GHz Antenna 03

3M Mode: Band Edge, Left Side

Report No.: RSZ171110005-00A

Date: 10.FEB.2018 16:51:30

3M Mode: Band Edge, Right Side

Date: 10.FEB.2018 17:15:59

FCC Part 15.247 Page 75 of 109

Date: 10.FEB.2018 17:46:02

5M Mode: Band Edge, Right Side

Date: 10.FEB.2018 17:25:12

FCC Part 15.247 Page 76 of 109

10M Mode: Band Edge, Left Side

Date: 10.FEB.2018 17:47:47

10M Mode: Band Edge, Right Side

Date: 11.FEB.2018 09:26:14

FCC Part 15.247 Page 77 of 109

20M Mode: Band Edge, Left Side

Date: 11.FEB.2018 10:03:18

20M Mode: Band Edge, Right Side

Date: 11.FEB.2018 10:10:18

FCC Part 15.247 Page 78 of 109

For 2.4GHz Antenna 04

3M Mode: Band Edge, Left Side

Report No.: RSZ171110005-00A

Date: 10.FEB.2018 16:53:35

3M Mode: Band Edge, Right Side

Date: 10.FEB.2018 17:21:18

FCC Part 15.247 Page 79 of 109

5M Mode: Band Edge, Left Side

Date: 10.FEB.2018 17:43:47

5M Mode: Band Edge, Right Side

Date: 10.FEB.2018 17:23:49

FCC Part 15.247 Page 80 of 109

Date: 10.FEB.2018 17:50:02

10M Mode: Band Edge, Right Side

Date: 11.FEB.2018 09:31:40

FCC Part 15.247 Page 81 of 109

20M Mode: Band Edge, Left Side

Date: 11.FEB.2018 10:07:24

20M Mode: Band Edge, Right Side

Date: 11.FEB.2018 09:33:30

FCC Part 15.247 Page 82 of 109

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: RSZ171110005-00A

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: $3kHz \le RBW \le 100 \text{ kHz}$.
- 3. Set the VBW $> 3 \times RBW$.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

Environmental Conditions

Temperature:	24 ℃
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Vincent Zeng from 2018-02-10 to 2018-02-11.

EUT operation mode: Transmitting

Test Result: Pass

FCC Part 15.247 Page 83 of 109

For 900MHz:

Channel	Frequency (MHz)	Antenna 01 (dBm/3kHz)	Antenna 02 (dBm/3kHz)	Limit (dBm/3kHz)		
3M Mode						
Low	909	-1.94	-2.17	≤8		
Middle	915	-2.90	-2.80	≤8		
High	921	-2.47	-1.86	≤8		
5M Mode						
Low	909	2.80	-3.33	≤8		
Middle	915	-2.92	-2.53	≤8		
High	921	-2.70	-2.76	≤8		
10M Mode						
Low	909	-2.63	-3.46	≤8		
Middle	915	-3.60	-2.96	≤8		
High	921	-3.35	-3.63	≤8		
20M Mode						
Low	914	-3.73	-2.96	≤8		
Middle	915	-3.56	-3.35	≤8		
High	916	-2.97	-3.31	≤8		

Report No.: RSZ171110005-00A

FCC Part 15.247 Page 84 of 109

Antenna 01

Power Spectral Density, 3M Mode Low Channel

Date: 11.FEB.2018 13:44:32

Power Spectral Density, 3M Mode Middle Channel

Date: 11.FEB.2018 13:37:29

FCC Part 15.247 Page 85 of 109

Power Spectral Density, 3M Mode High Channel

Date: 11.FEB.2018 13:27:28

Power Spectral Density, 5M Mode Low Channel

Date: 11.FEB.2018 11:46:29

FCC Part 15.247 Page 86 of 109

Power Spectral Density, 5M Mode Middle Channel

Date: 11.FEB.2018 11:55:20

Power Spectral Density, 5M Mode High Channel

Date: 11.FEB.2018 13:08:47

FCC Part 15.247 Page 87 of 109

Power Spectral Density, 10M Mode Low Channel

Date: 11.FEB.2018 11:30:12

Power Spectral Density, 10M Mode Middle Channel

Date: 11.FEB.2018 11:24:06

FCC Part 15.247 Page 88 of 109

Power Spectral Density, 10M Mode High Channel

Date: 11.FEB.2018 11:16:19

Power Spectral Density, 20M Mode Low Channel

Date: 11.FEB.2018 10:43:06

FCC Part 15.247 Page 89 of 109

Power Spectral Density, 20M Mode Middle Channel

Date: 11.FEB.2018 10:41:28

Power Spectral Density, 20M High Channel

Date: 11.FEB.2018 11:00:53

FCC Part 15.247 Page 90 of 109

Antenna 02

Power Spectral Density, 3M Mode Low Channel

Date: 11.FEB.2018 13:41:28

Power Spectral Density, 3M Mode Middle Channel

Date: 11.FEB.2018 13:39:31

FCC Part 15.247 Page 91 of 109

Power Spectral Density, 3M Mode High Channel

Date: 11.FEB.2018 13:25:51

Power Spectral Density, 5M Mode Low Channel

Date: 11.FEB.2018 11:49:09

FCC Part 15.247 Page 92 of 109

Power Spectral Density, 5M Mode Middle Channel

Date: 11.FEB.2018 11:50:21

Power Spectral Density, 5M Mode High Channel

Date: 11.FEB.2018 13:12:05

FCC Part 15.247 Page 93 of 109

Power Spectral Density, 10M Mode Low Channel

Date: 11.FEB.2018 11:28:14

Power Spectral Density, 10M Mode Middle Channel

Date: 11.FEB.2018 11:26:54

FCC Part 15.247 Page 94 of 109

Power Spectral Density, 10M Mode High Channel

Date: 11.FEB.2018 11:13:53

Power Spectral Density, 20M Mode Low Channel

Date: 11.FEB.2018 10:47:43

FCC Part 15.247 Page 95 of 109

Power Spectral Density, 20M Mode Middle Channel

Date: 11.FEB.2018 10:34:27

Power Spectral Density, 20M Mode High Channel

Date: 11.FEB.2018 10:57:13

FCC Part 15.247 Page 96 of 109

Channel	Frequency (MHz)	Antenna 03 (dBm/3kHz)	Antenna 04 (dBm/3kHz)	Limit (dBm/3kHz)			
	3M Mode						
Low	2407.5	-0.68	-1.00	≤8			
Middle	2439.5	-0.57	-1.30	≤8			
High	2471.5	-0.86	-1.12	≤8			
5M Mode							
Low	2407.5	-0.97	-1.25	≤8			
Middle	2439.5	-1.71	-1.39	≤8			
High	2471.5	-1.66	-1.93	≤8			
10M Mode							
Low	2407.5	-1.64	-2.41	≤8			
Middle	2439.5	-1.70	-1.56	≤8			
High	2471.5	-1.36	-1.48	≤8			
20M Mode							
Low	2412.5	-1.61	-1.35	≤8			
Middle	2437.5	-1.52	-1.33	≤8			
High	2462.5	-1.80	-1.73	≤8			

FCC Part 15.247 Page 97 of 109

Antenna 03

Power Spectral Density, 3M Mode Low Channel

Date: 10.FEB.2018 16:43:09

Power Spectral Density, 3M Mode Middle Channel

Date: 10.FEB.2018 17:05:23

FCC Part 15.247 Page 98 of 109

Power Spectral Density, 3M Mode High Channel

Date: 10.FEB.2018 17:07:45

Power Spectral Density, 5M Mode Low Channel

Date: 10.FEB.2018 17:40:05

FCC Part 15.247 Page 99 of 109

Power Spectral Density, 5M Mode Middle Channel

Date: 10.FEB.2018 17:33:24

Power Spectral Density, 5M Mode High Channel

Date: 10.FEB.2018 17:28:09

FCC Part 15.247 Page 100 of 109

Power Spectral Density, 10M Mode Low Channel

Date: 10.FEB.2018 17:55:12

Power Spectral Density, 10M Mode Middle Channel

Date: 10.FEB.2018 17:57:36

FCC Part 15.247 Page 101 of 109

Power Spectral Density, 10M Mode High Channel

Date: 11.FEB.2018 09:23:35

Power Spectral Density, 20M Mode Low Channel

Date: 11.FEB.2018 09:55:51

FCC Part 15.247 Page 102 of 109

Power Spectral Density, 20M Mode Middle Channel

Date: 11.FEB.2018 09:54:10

Power Spectral Density, 20M Mode High Channel

Date: 11.FEB.2018 09:38:03

FCC Part 15.247 Page 103 of 109

Antenna 04

Power Spectral Density, 3M Mode Low Channel

Date: 10.FEB.2018 16:39:58

Power Spectral Density, 3M Mode Middle Channel

Date: 10.FEB.2018 17:00:54

FCC Part 15.247 Page 104 of 109

Power Spectral Density, 3M Mode High Channel

Date: 10.FEB.2018 17:09:43

Power Spectral Density, 5M Mode Low Channel

Date: 10.FEB.2018 17:37:22

FCC Part 15.247 Page 105 of 109

Power Spectral Density, 5M Mode Middle Channel

Date: 10.FEB.2018 17:35:50

Power Spectral Density, 5M Mode High Channel

Date: 10.FEB.2018 17:26:07

FCC Part 15.247 Page 106 of 109

Power Spectral Density, 10M Mode Low Channel

Date: 10.FEB.2018 17:52:51

Power Spectral Density, 10M Mode Middle Channel

Date: 10.FEB.2018 17:59:14

FCC Part 15.247 Page 107 of 109

Power Spectral Density, 10M Mode High Channel

Date: 11.FEB.2018 09:19:01

Power Spectral Density, 20M Mode Low Channel

Date: 11.FEB.2018 09:58:02

FCC Part 15.247 Page 108 of 109

Power Spectral Density, 20M Mode Middle Channel

Report No.: RSZ171110005-00A

Date: 11.FEB.2018 09:51:05

Power Spectral Density, 20M Mode High Channel

Date: 11.FEB.2018 09:41:05

***** END OF REPORT *****

FCC Part 15.247 Page 109 of 109