$Formels \underset{\text{http://www.fersch.de}}{\text{Homology}} \ Physik$

©Klemens Fersch

$31.\ \mathrm{M\ddot{a}rz}\ 2018$

Inhaltsverzeichnis

1	Med	chanik		2
	1.1	Grund	llagen Mechanik	2
		1.1.1	Gewichtskraft	2
		1.1.2	Kräfte	2
		1.1.3	Dichte	2
		1.1.4	Wichte	3
		1.1.5	Reibung	3
		1.1.6	Schiefe Ebene	3
		1.1.7	Hookesches Gesetz	4
		1.1.8	Drehmoment	$\overline{4}$
		1.1.9	Hebelgesetz	$\overline{4}$
		1.1.10	Druck	4
			Auftrieb in Flüssigkeiten	4
			Schweredruck	5
	1.2		natik	6
		1.2.1	Geradlinige Bewegung v=konst	6
		1.2.2	Beschleunigte Bewegung	6
		1.2.3	Beschleunigte Bewegung mit Anfangsgeschwindigkeit	6
		1.2.4	Durchschnittsgeschwindigkeit	6
		1.2.5	Durchschnittsbeschleunigung	7
		1.2.6	Freier Fall	7
		1.2.7	Senkrechter Wurf nach oben	7
		1.2.8	Waagrechter Wurf	8
		1.2.9	Schiefer Wurf	8
		_	Frequenz-Periodendauer	9
			Winkelgeschwindigkeit	9
			Bahngeschwindigkeit	9
			Zentralbeschleunigung	9
	1.3	Dynan		10
	1.0	1.3.1	Kraft	10
		1.3.2	Schiefe Ebene	10
		1.3.3	Zentralkraft	10
		1.3.4	Gravitationsgesetz	11
		1.3.5	Impuls	11
		1.3.6	Elastischer Stoß	11
		1.3.7	Unelastischer Stoß	11
		1.3.8	Mechanische Arbeit	12
		1.3.9	Hubarbeit - Potentielle Energie	
			Spannarbeit-Spannenergie	12
			Beschleunigungsarbeit - kinetische Energie	12
			Mechanische Leistung	12
			Wirkungsgrad	12
	1.4		ngungen/Wellen	13
	1.1	1.4.1	Lineares Kraftgesetz	13
		1.4.2	Periodendauer (harmonische Schwingung)	13
		1.4.3	Bewegungsgleichung (harmonische Schwingung)	13

2	Elel	strotec	chnik	14
-	2.1		izitätslehre	14
	2.1	2.1.1	Stromstärke	14
		2.1.1 $2.1.2$		14
			Ohmsches Gesetz	
		2.1.3	Reihenschaltung von Widerständen	14
		2.1.4	Parallelschaltung von Widerständen	15
		2.1.5	Widerstandsänderung - Temperatur	15
		2.1.6	Spezifischer Widerstand	15
		2.1.7	Spezifischer Leitwert	15
		2.1.8	Elektrische Leistung	16
		2.1.9	Elektrische Arbeit	16
	2.2	Elektr	isches Feld	17
		2.2.1	Elektrische Feldstärke	17
		2.2.2	Gesetz von Coulomb	17
		2.2.3	Kapazität eines Kondensators	17
		2.2.4	Reihenschaltung von Kondensatoren	17
		2.2.4 $2.2.5$	Parallelschaltung von Kondensatoren	18
				18
	0.0	2.2.6	Elektrische Energie des Kondensators	
	2.3	_	etisches Feld	19
		2.3.1	Flußdichte	19
		2.3.2	Feldstärke einer langgestreckten Spule	19
		2.3.3	Flußdichte - Feldstärke	19
		2.3.4	Magnetischer Fluß	19
		2.3.5	Induktivität einer langgestreckten Spule	19
		2.3.6	Reihenschaltung (Induktivität)	20
		2.3.7	Parallelschaltung (Induktivität)	20
	2.4	Wechs	elstrom	21
		2.4.1	Wechselspannung - Wechselstrom	21
		2.4.2	Scheitel - Effektiv	21
		2.4.3	Induktiver Widerstand	21
		2.4.4	Kapazitiver Widerstand	21
		2.4.5	Wirkleistung	21
	2.5	_	ischer Schwingkreis	22
	2.0	2.5.1	Eigenfrequenz (Ungedämpfte elektrische Schwingung)	22
		2.5.1 $2.5.2$	Eigenkreisfrequenz	22
	2.6		neine Elektrotechnik	23
	2.0	_		23 23
		2.6.1	Spannungsteiler	23
3	Wä	rmeleh	nre	24
Ü	3.1		ne eratur	24
	0.1	3.1.1	Termperatur - Umrechnungen	24
		3.1.1	•	
	2.0		Temperaturdifferenz	24
	3.2		hnung der Körper	25
		3.2.1	Längenausdehnung	25
		3.2.2	Flächenausdehnung	25
		3.2.3	Volumenausdehnung	25
	3.3	Energi		26
		3.3.1	Wärmeenergie	26
		3.3.2	Verbrennungsenergie	26
		3.3.3	Schmelzen und Erstarren	26
		3.3.4	Verdampfen und Kondensieren	26
	3.4		ndsänderungen der Gase	27
		3.4.1	Allgemeine Gasgleichung	27
		3.4.2	Thermische Zustandsgleichung	27
		J. 1.4		

2

4	Opt			2 8
	4.1	Reflex		28
		4.1.1		28
		4.1.2		28
	4.2	Linsen		29
		4.2.1	Brennweite	29
		4.2.2	Bildgröße - Gegenstandsgröße	29
5	Ast	ronom	ie	30
	5.1	Gravit	tation	30
		5.1.1	Gravitationsgesetz	30
		5.1.2	Gravitationsfeldstärke	30
6	Ato	$_{ m mphys}$		31
U		Atomb		31
	0.1			31
		6.1.1		
		6.1.2		31
		6.1.3		31
		6.1.4		31
		6.1.5		31
		6.1.6		31
	6.2		9	32
		6.2.1		32
		6.2.2		32
		6.2.3		32
		6.2.4	Photon	32
7	Phy	sikalis	sche Konstanten	33
8	Tab	ellen		34
	8.1	Umrec	chnungen	34
		8.1.1	· ·	34
		8.1.2	Flächen	34
		8.1.3		34
		8.1.4		35
		8.1.5		35
		8.1.6		36
		8.1.7		36
		8.1.8		36
		8.1.9	9	37
			\circ	37
				37
				38
			•	38
				38
		8.1.15	Widerstand	38

3

1 Mechanik

1.1 Grundlagen Mechanik

1.1.1 Gewichtskraft

$$F_G = m \cdot g$$

m Masse kg g Fallbeschleunigung $\frac{m}{s^2}$ 9,81 $\frac{m}{s^2}$ F_G Gewichtskraft N $\frac{kgm}{s^2}$ $m = \frac{F_G}{s^2}$ $q = \frac{F_G}{s^2}$

Interaktive Inhalte: $F_G = m \cdot g - m = \frac{F_G}{g} - g = \frac{F_G}{m}$

1.1.2 Kräfte

$$\vec{F}_{res} = \vec{F}_1 + \vec{F}_2$$

 $\begin{array}{llll} F_2 & \text{Einzelkraft} & N & \frac{kgm}{s^2} \\ F_1 & \text{Einzelkraft} & N & \frac{kgm}{s^2} \\ F_{res} & \text{Resultierende Kraft} & N & \frac{kgm}{s^2} \end{array}$

Interaktive Inhalte: $\vec{F}_{res} = \vec{F}_1 + \vec{F}_2$ -

1.1.3 Dichte

$$\rho = \frac{m}{V}$$

V Volumen m^3 m Masse kg ρ Dichte $\frac{kg}{m^3}$ $m = \rho \cdot V$ $V = \frac{m}{n}$

Interaktive Inhalte: $\rho = \frac{m}{V}$ - $m = \rho \cdot V$ - $V = \frac{m}{\rho}$ -

Mechanik Grundlagen Mechanik

1.1.4 Wichte

$$\gamma = \frac{F_G}{V}$$

 $\begin{array}{lll} V & \text{Volumen} & m^3 \\ F_G & \text{Gewichtskraft} & N & \frac{kgm}{s^2} \\ \gamma & \text{Wichte} & \frac{N}{m^3} \\ F_G = V \cdot \gamma & V = \frac{F_G}{\gamma} \end{array}$

Interaktive Inhalte: $\gamma = \frac{F_G}{V}$ - $F_G = V \cdot \gamma$ - $V = \frac{F_G}{\gamma}$ -

1.1.5 Reibung

$$F_R = \mu \cdot F_N$$

 $\begin{array}{lll} \mu & \text{Reibungszahl} \\ F_N & \text{Normalkraft} & N & \frac{kgm}{s^2} \\ F_R & \text{Reibungkraft} & N & \frac{kgm}{s^2} \\ F_N = \frac{F_R}{\mu} & \mu = \frac{F_R}{F_N} \end{array}$

Interaktive Inhalte: $F_R = \mu \cdot F_N - F_N = \frac{F_R}{\mu} - \mu = \frac{F_R}{F_N}$

1.1.6 Schiefe Ebene

$$F_H = \frac{F_G \cdot h}{l}$$

 $\begin{array}{cccc} h & \text{H\"ohe} & m \\ l & \text{L\"ange} & m \\ F_G & \text{Gewichtskraft} & N & \frac{kgm}{s^2} \\ F_H & \text{Hangabtriebskraft} & N \\ F_G = \frac{F_H \cdot l}{h} & h = \frac{F_H \cdot l}{F_G} & l = \frac{F_G \cdot h}{F_H} \end{array}$

Grundlagen Mechanik

$$F_N = \frac{F_G \cdot b}{l}$$

Länge

1.1.7 Hookesches Gesetz

$$F = D \cdot s$$

 $\begin{array}{ll} s & \text{Weg,Auslenkung} \\ D & \text{Federkonstante,Richtgröße} \\ F & \text{Kraft} \end{array}$

 $D = \frac{F}{s} \qquad s = \frac{F}{D}$

Interaktive Inhalte: $F = D \cdot s - D = \frac{F}{s} - s = \frac{F}{D}$

1.1.8 Drehmoment

 $M = F \cdot \overline{l}$

Hebelarm $\begin{array}{cccc} F & {\rm Kraft} & N & \frac{kgm}{s^2} \\ M & {\rm Drehmoment} & Nm & \frac{kgm^2}{c^2} \end{array}$

Interaktive Inhalte: $M = F \cdot l - F = \frac{M}{l} - l = \frac{M}{F}$

1.1.9 Hebelgesetz

 $F_1 \cdot l_1 = F_2 \cdot l_2$

Hebelarm

 $F_1 = \frac{F_2 \cdot l_2}{l_1}$ $l_1 = \frac{F_2 \cdot l_2}{F_1}$

Interaktive Inhalte: $F_1 \cdot l_1 = F_2 \cdot l_2 - F_1 = \frac{F_2 \cdot l_2}{l_1} - l_1 = \frac{F_2 \cdot l_2}{F_1}$

1.1.10 Druck

F Kraft N p Druck Pa $F = p \cdot A$ $A = \frac{F}{p}$

Interaktive Inhalte: $p = \frac{F}{A}$ - $F = p \cdot A$ - $A = \frac{F}{p}$ -

1.1.11 Auftrieb in Flüssigkeiten

 $F_A = \rho \cdot g \cdot V$

Volumen Fallbeschleunigung Dichte $9,81\frac{m}{s^2}$ F_A Auftriebskraft $\frac{kgm}{a^2}$

Interaktive Inhalte: $F_A = \rho \cdot g \cdot V$ - $\rho = \frac{F_A}{g \cdot V}$ - $V = \frac{F_A}{g \rho}$

Mechanik Grundlagen Mechanik

1.1.12 Schweredruck

 $p = \rho \cdot g \cdot h$

h Höhe der Flüssigkeitssäule

Fallbeschleunigung

Dichte

p Druck

 $\frac{m}{\frac{s^2}{ka}}$ 9,81 $\frac{m}{s^2}$

 $a \frac{N}{m^2}$

Interaktive Inhalte: $p = \rho \cdot g \cdot h$ - $\rho = \frac{p}{g \cdot h}$ - $h = \frac{p}{g \rho}$ -

Mechanik Kinematik

1.2 Kinematik

1.2.1 Geradlinige Bewegung v=konst.

 $s=v\cdot t$ $t \quad \text{Zeit} \quad s$ $v \quad \text{Geschwindigkeit} \quad \frac{m}{s}$ $s \quad \text{Weg,Auslenkung} \quad m$ $v=\frac{s}{t} \quad t=\frac{s}{v}$

Interaktive Inhalte: $s = v \cdot t - v = \frac{s}{t} - t = \frac{s}{v}$ -

1.2.2 Beschleunigte Bewegung

 $v = a \cdot t$ $t \quad \text{Zeit} \qquad s$ $a \quad \text{Beschleunigung} \qquad \frac{m}{s^2}$ $v \quad \text{Geschwindigkeit} \qquad \frac{m}{s}$ $a = \frac{v}{t} \quad t = \frac{v}{a}$ $t \quad \text{Zeit} \qquad s$ $a \quad \text{Beschleunigung} \qquad \frac{m}{s^2}$ $s \quad \text{Weg,Auslenkung} \qquad m$ $a = \frac{2 \cdot s}{t^2} \quad t = \sqrt{\frac{2 \cdot s}{a}}$

Interaktive Inhalte: $v=a\cdot t$ - $a=\frac{v}{t}$ - $t=\frac{v}{a}$ - $s=\frac{1}{2}\cdot a\cdot t^2$ - $a=\frac{2\cdot s}{t^2}$ - $t=\sqrt{\frac{2\cdot s}{a}}$ -

1.2.3 Beschleunigte Bewegung mit Anfangsgeschwindigkeit

 $v = v_0 + a \cdot t$ Anfangsgeschwindigkeit v_0 Beschleunigung Geschwindigkeit $v_0 = v - a \cdot t$ $t = \frac{v - v_0}{a}$ $a = \frac{v - v_0}{t}$ $s = s_0 + \overline{v_0 \cdot t + \frac{1}{2} \cdot a \cdot t^2}$ Anfangsweg Anfangsgeschwindigkeit Beschleunigung Weg, Auslenkung $a = \frac{2 \cdot (s - s_0 - v_0 \cdot t)}{t^2} \qquad \qquad t = \frac{-v_0 \pm \sqrt{v_0^2 - 4 \cdot 0, 5 \cdot a \cdot (s_0 - s)}}{a}$ $s_0 = s - v_0 \cdot t - \frac{1}{2} \cdot a \cdot t^2 \qquad v_0 = \frac{s - s_0 - 0, 5 \cdot a \cdot t^2}{t}$ $v^2 - v_0^2 = 2 \cdot a \cdot s$ Geschwindigkeit Anfangsgeschwindigkeit Beschleunigung Weg, Auslenkung $v = \sqrt{2 \cdot a \cdot s + v_0^2} \qquad v_0 = \sqrt{v^2 - 2 \cdot a \cdot s}$

Interaktive Inhalte: $v = v_0 + a \cdot t - v_0 = v - a \cdot t - t = \frac{v - v_0}{a} - a = \frac{v - v_0}{a} - s = s_0 + v_0 \cdot t + \frac{1}{2} \cdot a \cdot t^2 - a = \frac{2 \cdot (s - s_0 - v_0 \cdot t)}{t^2} - t = \frac{-v_0 \pm \sqrt{v_0^2 - 4 \cdot 0.5 \cdot a \cdot (s_0 - s)}}{t} - s_0 = s - v_0 \cdot t - \frac{1}{2} \cdot a \cdot t^2 - v_0 = \frac{s - s_0 - 0.5 \cdot a \cdot t^2}{t} - v^2 - v_0^2 = 2 \cdot a \cdot s - v = \sqrt{2 \cdot a \cdot s + v_0^2} - v_0 = \sqrt{v^2 - 2 \cdot a \cdot s} - v_0 = \sqrt{v^$

1.2.4 Durchschnittsgeschwindigkeit

 $v = \frac{x_1 - x_2}{t_1 - t_2}$ $t_2 \quad \text{aufeinanderfolgende Zeitpunkte} \quad s$ $t_1 \quad \text{aufeinanderfolgende Zeitpunkte} \quad s$ $x_2 \quad \text{zurückgelegter Weg} \quad m$ $x_1 \quad \text{zurückgelegter Weg} \quad m$ $v \quad \text{Bahngeschwindigkeit} \quad \frac{m}{s}$

Interaktive Inhalte: $v = \frac{x_1 - x_2}{t_1 - t_2}$ -

Mechanik Kinematik

 v_1

1.2.5 Durchschnittsbeschleunigung

 $a = \frac{v_1 - v_2}{t_1 - t_2}$

aufeinanderfolgende Zeitpunkte t_2 aufeinanderfolgende Zeitpunkte t_1 Geschwindigkeit v_2 $\frac{s}{m}$

Geschwindigkeit $\frac{s}{\frac{m}{s^2}}$ Durchschnittsbeschleunigung

Interaktive Inhalte: $a = \frac{v_1 - v_2}{t_1 - t_2}$ -

1.2.6 Freier Fall

 $h = \frac{1}{2} \cdot g \cdot t^2$

Zeit Fallbeschleunigung $9,81\frac{m}{s^2}$

h Fallhöhe

 $g = \frac{2 \cdot h}{t^2}$ $t = \sqrt{\frac{2 \cdot h}{g}}$

 $v = \sqrt{2 \cdot h \cdot g}$

g Fallbeschleunigung $9,81\frac{m}{s^2}$ v Geschwindigkeit

Interaktive Inhalte: $h=\frac{1}{2}\cdot g\cdot t^2$ - $g=\frac{2\cdot h}{t^2}$ - $t=\sqrt{\frac{2\cdot h}{g}}$ - $v=\sqrt{2\cdot h\cdot g}$ - $h=\frac{v^2}{2\cdot g}$ -

1.2.7 Senkrechter Wurf nach oben

 $h = h_0 + v_0 \cdot t - \frac{1}{2} \cdot g \cdot t^2$

Abwurfhöhe Anfangsgeschwindigkeit v_0

Fallbeschleunigung $9,81\frac{m}{s^2}$

Höhe

 $g = -\frac{2 \cdot (h - h_0 - v_0 \cdot t)}{t^2}$ $h_0 = h - v_0 \cdot t + \frac{1}{2} \cdot g \cdot t^2$

 $t = \frac{-v_0 \pm \sqrt{v_0^2 + 4 \cdot 0.5 \cdot g \cdot (h_0 - h)}}{-g}$

 $v = v_0 - g \cdot t$

Anfangsgeschwindigkeit

 $9,81\frac{m}{s^2}$ Fallbeschleunigung

Geschwindigkeit

 $v_0 = v + g \cdot t$ $t = \frac{v_0 - v}{g}$ $g = \frac{v_0 - v}{t}$

www.fersch.de

9

1.2.8 Waagrechter Wurf

Bewegung in x-Richtung:

 $x = v_x \cdot t$

Bewegung in y-Richtung:

 $y = -\frac{1}{2} \cdot g \cdot t^2$

 $v_y = g \cdot t$

Zeitfreie Darstellung:

 $y = -\frac{1}{2} \cdot g \cdot (\frac{x}{v_x})^2 = -\frac{g}{2 \cdot v_x^2} \cdot x^2$

Ge samt ge schwindigkeit:

 $v_{ges} = \sqrt{v_x^2 + v_y^2}$

Wurfzeit:

 $t = \sqrt{\frac{2 \cdot h_0}{g}}$

Wurfweite: $x = v_x \cdot \sqrt{\frac{2 \cdot h_0}{g}}$

Auftreffwinkel:

 $v = \sqrt{v_x^2 + v_y^2}$

 $\tan \alpha = \frac{v_y}{v_x}$

x-Richtung Meter m

y-Richtung Meter ym

 h_0 Anfangshöhe mMeter

 \underline{m} Anfangsgeschwindigkeit $v_0 = v_x$ $\frac{s}{m}$ Geschwindigkeit in y-Richtung

 m^{s} Wurfweite Meter x_w

Gesamtgeschwindigkeit v_{ges} Fallbeschleunigung $\frac{m}{s^2}$ $9,81\frac{m}{s^2}$

Interaktive Inhalte: $y=\frac{1}{2}\cdot g\cdot t^2$ - $t=\sqrt{\frac{2\cdot y}{g}}$ - $s=v\cdot t$ - $v=\frac{s}{t}$ -

1.2.9 Schiefer Wurf

 $x_w = \frac{v_0^2 \cdot sin(2 \cdot \alpha)}{}$ Fallbeschleunigung $9,81\frac{m}{s^2}$ gAbwurfwinkel

> Anfangsgeschwindigkeit v_0 Wurfweitem

 $t = \frac{v_0 \cdot sin\alpha}{}$

 $v_y = v \cdot sin\alpha - g \cdot t$ Fallbeschleunigung $9,81\frac{m}{s^2}$ g

Winkel Geschwindigkeitsvektor v - x-Achse

Betrag der Geschwindigkeit

 \underline{m}

 $\frac{s}{m}$

Geschwindigkeit in y-Richtung

 $v_x = v \cdot cos\alpha$ Winkel Geschwindigkeitsvektor v - x-Achse α Betrag der Geschwindigkeit v $\frac{s}{m}$

Geschwindigkeit in x-Richtung

Geschwindigkeit in x-Richtung v_x $\frac{s}{m}$ Geschwindigkeit in y-Richtung v_y

Betrag der Geschwindigkeit

 $v_x = \sqrt{v^2 - v_y^2}$

 $v_y = \sqrt{v^2 - v_x^2}$ \underline{m} Betrag der Geschwindigkeit

Geschwindigkeit in x-Richtung Geschwindigkeit in y-Richtung

 $v_y = tan\alpha \cdot v_x$ $tan\alpha = \frac{v_y}{v_x}$ $v_x = \frac{v_y}{tan\alpha}$

 $y = x \cdot tan\alpha - \frac{g \cdot x^2}{2 \cdot v_0^2 \cdot cos^2 \alpha}$ Anfangsgeschwindigkeit v_0 $9,81\frac{m}{2}$ Fallbeschleunigung gAbwurfwinkel α

in x-Richtung (Bahnkurve) in y-Richtung (Bahnkurve)

 $t = \frac{2 \cdot v_0 \cdot sin\alpha}{}$

Mechanik Kinematik

1.2.10 Frequenz-Periodendauer

 $f = \frac{1}{T}$

Periodendauer sf Frequenz

 $n \quad \text{Perioden-Umdrehungen}$

f Frequenz

 $t = \frac{n}{f}$ $n = f \cdot t$

Interaktive Inhalte: $f = \frac{1}{T} - T = \frac{1}{f} - f = \frac{n}{t} - t = \frac{n}{f} - n = f \cdot t$

1.2.11 Winkelgeschwindigkeit

 $\omega = 2 \cdot \pi \cdot f$

 π Kreiszahl 3, 1415927 $hz = \frac{1}{\epsilon}$

 $hz = \frac{1}{s}$

 $\begin{array}{ll} f & {\rm Frequenz} \\ \omega & {\rm Winkelgeschwindigkeit} \end{array}$

 $f = \frac{\omega}{2 \cdot \pi} \quad \omega = \frac{2 \cdot \pi}{T} \quad T = \frac{2 \cdot \pi}{\omega}$ Interaktive Inhalte: $\omega = 2 \cdot \pi \cdot f - f = \frac{\omega}{2 \cdot \pi} - \omega = \frac{2 \cdot \pi}{T} - T = \frac{2 \cdot \pi}{\omega}$

1.2.12 Bahngeschwindigkeit

 $v = \omega \cdot r$

Winkelgeschwindigkeit v Bahngeschwindigkeit

Interactive Inhalte: $v = \omega \cdot r - \omega = \frac{v}{r} - r = \frac{v}{\omega}$

1.2.13 Zentralbeschleunigung

 $a_z = \omega^2 \cdot r$

Radius

Winkelgeschwindigkeit

 a_z Zentralbeschleunigung

Interaktive Inhalte: $a_z = \omega^2 \cdot r$ - $\omega = \sqrt{\frac{a_z}{r}}$ - $r = \frac{a_z}{\omega}$

Mechanik Dynamik

Dynamik 1.3

1.3.1 Kraft

 $F = m \cdot a$

Masse Be schleunigungF Kraft $m = \frac{F}{a}$ $a = \frac{F}{m}$

Interaktive Inhalte: $F = m \cdot a - m = \frac{F}{a} - a = \frac{F}{m}$

1.3.2 Schiefe Ebene

 $F_H = F_G \cdot sin\alpha$

Neigungswinkel Gewichtskraft

 $\frac{kgm}{a^2}$

 F_H Hangabtriebskraft N

 $F_G = \frac{F_H}{sin\alpha}$ $sin\alpha = \frac{F_H}{F_G}$

 $F_N = F_G \cdot cos\alpha$

 $\begin{array}{ccc} \alpha & \text{Neigungswinkel} & ^{\circ} \\ F_G & \text{Gewichtskraft} & N \\ F_N & \text{Normalkraft} & N \end{array}$

 $F_G = \frac{F_N}{\cos \alpha}$ $\cos \alpha = \frac{F_N}{F_G}$

1.3.3 Zentralkraft

 $F_z = m \cdot \omega^2 \cdot r$

Radius Winkelgeschwindigkeit

Interaktive Inhalte: $F_z=m\cdot\omega^2\cdot r$ - $m=\frac{F_z}{\omega^2\cdot r}$ - $\omega=\sqrt{\frac{F_z}{m\cdot r}}$ - $r=\frac{F_z}{m\cdot\omega^2}$ -

Mechanik Dynamik

1.3.4 Gravitationsgesetz

$$F = G \cdot \frac{m_1 \cdot m_2}{r^2}$$

$$G \quad \text{Gravitationskonstante} \quad \frac{Nm^2}{kg^2} \quad 6,672041E - 11$$

$$r \quad \text{Abstand der Massen} \quad m$$

$$m_2 \quad \text{Massen} \quad kg$$

$$m_1 \quad \text{Massen} \quad kg$$

$$F \quad \text{Kraft} \quad N \quad \frac{kgm}{s^2}$$

$$r = \sqrt{\frac{G \cdot m_1 \cdot m_2}{F}} \quad m_1 = \frac{F \cdot r^2}{G \cdot m_2} \quad m_2 = \frac{F \cdot r^2}{G \cdot m_1}$$

Interaktive Inhalte: $F = G \cdot \frac{m_1 \cdot m_2}{r^2} - r = \sqrt{\frac{G \cdot m_1 \cdot m_2}{F}} - m_1 = \frac{F \cdot r^2}{G \cdot m_2} - m_2 = \frac{F \cdot r^2}{G \cdot m_1}$

1.3.5 Impuls

 m_1 Masse 1

Interaktive Inhalte: $p = m \cdot v - m = \frac{p}{v} - v = \frac{p}{m}$

1.3.6 Elastischer Stoß

Elastischer Stoß

Geschwindigkeit nach dem Stoß: Masse 1 kg m_1 $v_1' = \frac{v_1(m_1 - m_2) + 2m_2v_2}{v_1'}$ Masse 2 kg m_2 $v_1'=rac{m_1+m_2}{m_1+m_2}$ $v_2'=rac{v_2(m_2-m_1)+2m_1v_1}{m_1+m_2}$ Impulserhaltungssatz: Geschwindigkeit von m_1 vorher \underline{m} v_1 $\frac{s}{\underline{m}}$ Geschwindigkeit von m_2 vorher v_2 E_1 Kinetische Energie von m_1 vorher E_2 JKinetische Energie von m_2 vorher v_1' Geschwindigkeit von m_1 nachher $p_1 + p_2 = p_1' + p_2'$ $\frac{s}{m}$ v_2' Geschwindigkeit von m_2 nachher $m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$ J^s E_1' Kinetische Energie von m_1 nachher Kinetische Energie von m_2 nachher Energieerhaltungssatz:

$$\begin{split} E_{kin} &= E'_{kin} \\ E_1 + E_2 &= E'_1 + E'_2 \\ \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 &= \frac{1}{2}m_1v_1'^2 + \frac{1}{2}m_2v_2'^2 \end{split}$$

1.3.7 Unelastischer Stoß

Unelastischer Stoß

Geschwindigkeit nach dem Stoß: $v_1' = v_2' = v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$
$m_1 + m_2$ Impulserhaltungssatz:
$p_1 + p_2 = p_1' + p_2'$
$m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2'$
Energie:
$E_{kin} > E'_{kin}$
$\Delta E = E_1 + E_2 - (E_1' + E_2')$
$\Delta E = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 - (\frac{1}{2}m_1v'^2 + \frac{1}{2}m_2v'^2)$

1101	Widde 1	ng
m_2	Masse 2	kg
v_1	Geschwindigkeit von m_1 vorher	$\frac{m}{s}$
v_2	Geschwindigkeit von m_2 vorher	m
E_1	Kinetische Energie von m_1 vorher	$\overline{\overset{s}{J}}$
E_2	Kinetische Energie von m_2 vorher	J
v_1'	Geschwindigkeit von m_1 nachher	$\frac{m}{s}$
v_2'	Geschwindigkeit von m_2 nachher	$\frac{m}{s}$
E_1'	Kinetische Energie von m_1 nachher	\mathring{J}
E_2'	Kinetische Energie von m_2 nachher	J
_	9	

Mechanik Dynamik

1.3.8 Mechanische Arbeit

$$W = F \cdot s$$

 $\begin{array}{lll} s & \text{Weg,Auslenkung} & m \\ F & \text{Kraft} & N & \frac{kgm}{s^2} \\ W & \text{Arbeit} & J & Nm = Ws \\ F = \frac{W}{s} & s = \frac{W}{F} \end{array}$

Interaktive Inhalte: $W = F \cdot s - F = \frac{W}{s} - s = \frac{W}{F}$

1.3.9 Hubarbeit - Potentielle Energie

$$W = F_G \cdot h$$

 $\begin{array}{lll} h & \text{Hubh\"ohe} & m \\ F & \text{Kraft} & N & \frac{kgm}{s^2} \\ W & \text{Arbeit} & J & Nm = Ws \\ F_G = \frac{W}{h} & h = \frac{W}{F_G} \end{array}$

Interaktive Inhalte: $W = F_G \cdot h - F_G = \frac{W}{h} - h = \frac{W}{F_G}$

1.3.10 Spannarbeit-Spannenergie

$$W = \frac{1}{2} \cdot D \cdot s^2$$

 $\begin{array}{lll} s & \text{Weg,Auslenkung} & m \\ D & \text{Federkonstante,Richtgröße} & \frac{N}{m} & \frac{kg}{s^2} \\ W & \text{Arbeit} & J & Nm = Ws \\ s = \sqrt{\frac{2 \cdot W}{D}} & D = \frac{2 \cdot W}{s^2} \end{array}$

Interaktive Inhalte: $W = \frac{1}{2} \cdot D \cdot s^2 - s = \sqrt{\frac{2 \cdot W}{D}} - D = \frac{2 \cdot W}{s^2}$

1.3.11 Beschleunigungsarbeit - kinetische Energie

$$W = \frac{1}{2} \cdot m \cdot v^2$$

 $\begin{array}{lll} v & \text{Geschwindigkeit} & \frac{m}{s} \\ m & \text{Masse} & kg \\ W & \text{Arbeit} & J & Nm = Ws \\ m = \frac{2 \cdot W}{v^2} & v = \sqrt{\frac{2 \cdot W}{m}} \end{array}$

Interaktive Inhalte: $W = \frac{1}{2} \cdot m \cdot v^2 - m = \frac{2 \cdot W}{v^2} - v = \sqrt{\frac{2 \cdot W}{m}}$

1.3.12 Mechanische Leistung

$$P = \frac{W}{t}$$

14

Interaktive Inhalte: $P = \frac{W}{t}$ - $W = P \cdot t$ - $t = \frac{W}{P}$ -

1.3.13 Wirkungsgrad

$$\eta = \frac{P_2}{P_1}$$

www.fersch.de

 $\begin{array}{lll} P_2 & \text{abgegebene Leistung} & W & VA = \frac{J}{\S} \\ P_1 & \text{zugef\"{u}hrte Leistung} & W & VA = \frac{J}{\S} \\ \eta & \text{Wirkungsgrad} \\ P_1 = \frac{p_2}{n} & P_2 = \eta \cdot P_1 \end{array}$

Interaktive Inhalte: $\eta = \frac{P_2}{P_1}$ - $P_1 = \frac{p_2}{\eta}$ - $P_2 = \eta \cdot P_1$ -

Mechanik Schwingungen/Wellen

Schwingungen/Wellen

Lineares Kraftgesetz

$$F = -D \cdot y$$
 y Auslenkung, Elongation D Federkonstante, Richtgro

$$\begin{array}{cccc} D & \text{Federkonstante,Richtgr\"oße} & \frac{N}{m} & \frac{kg}{\S^2} \\ F & \text{Kraft} & N & \frac{kg}{\S^2} \end{array}$$

$$D = \frac{-F}{y} \qquad y = \frac{-F}{D}$$

Interaktive Inhalte: $F = -D \cdot y - D = \frac{-F}{y} - y = \frac{-F}{D}$

1.4.2 Periodendauer (harmonische Schwingung)

$$T=2\cdot\pi\cdot\sqrt{\frac{m}{D}}$$

$$\pi \quad \text{Kreiszahl} \qquad 3,1415927$$

$$D \quad \text{Federkonstante,Richtgröße} \quad \frac{N}{m} \quad \frac{kg}{s^2}$$

$$m \quad \text{Masse} \quad kg$$

$$T \quad \text{Periodendauer} \quad s$$

$$D=m\cdot\frac{(2\cdot\pi)^2}{T^2} \quad m=D\cdot\frac{T^2}{(2\cdot\pi)^2}$$

$$\text{Interaktive Inhalte:} \quad T=2\cdot\pi\cdot\sqrt{\frac{m}{D}} \quad -D=m\cdot\frac{(2\cdot\pi)^2}{T^2} \quad -m=D\cdot\frac{T^2}{(2\cdot\pi)^2} \quad -m$$

1.4.3 Bewegungsgleichung (harmonische Schwingung)

$$y = y_s \cdot \sin(\omega \cdot t + \phi_0)$$

$$t \quad \text{Zeit} \qquad s$$

$$\phi_0 \quad \text{Phase für t=0} \qquad rad$$

$$\omega \quad \text{Winkelgeschwindigkeit} \qquad \frac{1}{s}$$

$$y_s \quad \text{max. Auslenkung,Scheitelwert} \quad m$$

$$y \quad \text{Auslenkung,Elongation} \qquad m$$

$$y_s = \frac{y}{\sin(\omega \cdot t + \phi_0)} \quad t = \frac{\arcsin(y/y_s) - \phi_0}{\omega}$$

Interaktive Inhalte: $y = y_s \cdot sin(\omega \cdot t + \phi_0) - y_s = \frac{y}{sin(\omega \cdot t + \phi_0)} - t = \frac{arcsin(y/y_s) - \phi_0}{\omega}$

2 Elektrotechnik

2.1 Elektrizitätslehre

2.1.1 Stromstärke

$I = \frac{\Delta Q}{\Delta t}$	Δt Zeitänderung s ΔQ Ladungsänderung C As I Stromstärke A $\Delta Q = I \cdot \Delta t$ $\Delta t = \frac{\Delta Q}{I}$
---------------------------------	---

Interaktive Inhalte: $I=\frac{\Delta Q}{\Delta t}$ - $\Delta Q=I\cdot\Delta t$ - $\Delta t=\frac{\Delta Q}{I}$ -

2.1.2 Ohmsches Gesetz

$$R = \frac{U}{I}$$

$$I \quad \text{Stromstärke} \quad A$$

$$U \quad \text{Spannung} \quad V$$

$$R \quad \text{Widerstand} \quad \Omega \quad \frac{V}{A}$$

$$U = R \cdot I \quad I = \frac{U}{B}$$

Interaktive Inhalte: $R = \frac{U}{I}$ - $U = R \cdot I$ - $I = \frac{U}{R}$ -

2.1.3 Reihenschaltung von Widerständen

$$R_g = R_1 + R_2 + R_n$$

$$I = \text{konstant}$$

$$R_1 \quad \text{Einzelwiderstand} \quad \Omega \quad \frac{V_A}{V_A}$$

$$R_2 \quad \text{Gesamtwiderstand} \quad \Omega \quad \frac{V_A}{V_A}$$

$$R_3 \quad \text{Gesamtwiderstand} \quad \Omega \quad \frac{V_A}{V_A}$$

$$R_g = R_1 + R_2 \quad R_1 = R_g - R_2 \quad R_2 = R_g - R_1$$

$$U_g = U_1 + U_2 ... + U_n$$

$$U_g = U_1 + U_2 ... + U_n$$

$$U_g \quad \text{Einzelspannung} \quad V$$

$$U_1 \quad \text{Einzelspannung} \quad V$$

$$U_q \quad \text{Gesamtspannung} \quad V$$

$$U_q \quad \text{Gesamtspannung} \quad V$$

Interaktive Inhalte: $R_g = R_1 + R_2 \dots + R_n$ - $R_g = R_1 + R_2$ - $R_1 = R_g - R_2$ - $R_2 = R_g - R_1$ - $U_g = U_1 + U_2 \dots + U_n$ - $U_g = U_1 + U_2$ - $U_1 = U_g - U_2$ - $U_2 = U_g - U_1$ -

 $U_g = U_1 + U_2$ $U_1 = U_g - U_2$ $U_2 = U_g - U_1$

Elektrotechnik Elektrizitätslehre

2.1.4 Parallelschaltung von Widerständen

$$\frac{1}{R_g} = \frac{1}{R_1} + \frac{1}{R_2} ... + \frac{1}{R_n}$$

$$U = \text{konstant}$$

$$\begin{array}{lll} R_2 & \text{Einzelwiderstand} & \Omega & \frac{V}{A} \\ R_1 & \text{Einzelwiderstand} & \Omega & \frac{V}{A} \\ R_g & \text{Gesamtwiderstand} & \Omega & \frac{V}{A} \\ \\ R_g = \frac{R_1 \cdot R_2}{R_1 + R_2} & R_1 = \frac{R_2 \cdot R_g}{R_2 - R_g} & R_2 = \frac{R_1 \cdot R_g}{R_1 - R_g} \end{array}$$

$$I_g = I_1 + I_2 ... + I_n$$

 $\begin{array}{ll} I_2 & \text{Einzelstrom} \\ I_1 & \text{Einzelstrom} \\ I_g & \text{Gesamtstrom} \end{array}$

 $I_g = I_1 + I_2 \qquad I_1 = I_g - I_2 \qquad I_2 = I_g - I_1$ Interaktive Inhalte: $\frac{1}{R_g} = \frac{1}{R_1} + \frac{1}{R_2}... + \frac{1}{R_n} - R_g = \frac{R_1 \cdot R_2}{R_1 + R_2} - R_1 = \frac{R_2 \cdot R_g}{R_2 - R_g} - R_2 = \frac{R_1 \cdot R_g}{R_1 - R_g} - I_g = I_1 + I_2... + I_n - I_g = I_1 + I_2 - I_1 = I_g - I_2 - I_2 = I_g - I_1$

2.1.5 Widerstandsänderung - Temperatur

 $\Delta R = R \cdot \alpha \cdot \Delta T$

 $\begin{array}{cccc} & \text{Temperaturbeiwert} & \frac{1}{K} \\ \Delta T & \text{Temperaturänderung} & K \\ R & \text{Widerstand} & \Omega \\ \Delta R & \text{Widerstandsänderung} & \Omega \\ \end{array}$ Temperaturbeiwert

 $\Delta R = R \cdot \alpha \cdot \Delta T \quad \alpha = \frac{R}{\Delta R \cdot \Delta T} \quad \Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T}$ Interaktive Inhalte: $\Delta R = R \cdot \alpha \cdot \Delta T \quad - \Delta R = R \cdot \alpha \cdot \Delta T \quad - \alpha = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad - \Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad - \Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T}$

2.1.6 Spezifischer Widerstand

 $R = \frac{\rho \cdot l}{A}$

A Fläche Länge

 mm^2

 $\begin{array}{ccc} \rho & \text{Spezifischer Widerstand} \\ R & \text{Widerstand} \end{array}$

 Ωmm^2

 $l = \frac{R \cdot A}{\rho}$ $\rho = \frac{R \cdot A}{l}$ $A = \frac{R \cdot \rho}{A}$

Interaktive Inhalte: $R = \frac{\rho \cdot l}{A}$ - $l = \frac{R \cdot A}{\rho}$ - $\rho = \frac{R \cdot A}{l}$ - $A = \frac{R \cdot \rho}{A}$ -

2.1.7 Spezifischer Leitwert

 $R = \frac{l}{\kappa \cdot A}$

Fläche

 $\begin{array}{ll} l & \text{Länge} & m \\ \kappa & \text{Spezifischer Leitwert} & \frac{m}{\Omega mm^2} \\ R & \text{Widerstand} & \Omega \end{array}$

 $l = R \cdot \kappa \cdot A$ $A = \frac{l}{\kappa \cdot R}$ $\kappa = \frac{l}{R \cdot A}$

Interaktive Inhalte: $R=\frac{l}{\kappa\cdot A}$ - $l=R\cdot \kappa\cdot A$ - $A=\frac{l}{\kappa\cdot R}$ - $\kappa=\frac{l}{R\cdot A}$ -

ElektrotechnikElektrizitätslehre

2.1.8 Elektrische Leistung

$$P = U \cdot I$$

Stromstärke Spannung

P Leistung

 $W VA = \frac{J}{s}$

$$U = \frac{P}{I}$$
 $I = \frac{P}{U}$

Interaktive Inhalte: $P = U \cdot I - U = \frac{P}{I} - I = \frac{P}{U}$

2.1.9 Elektrische Arbeit

 $W = U \cdot I \cdot t$

Stromstärke

Spannung

W Arbeit $Ws \quad VAs = J$

 $U = \frac{W}{I \cdot t} \quad I = \frac{W}{U \cdot t} \quad t = \frac{P}{U \cdot t}$ Interaktive Inhalte: $W = U \cdot I \cdot t - U = \frac{W}{I \cdot t} - I = \frac{W}{U \cdot t} - t = \frac{P}{U \cdot I}$

Elektrischen Feld Elektrischen Feld

2.2 Elektrisches Feld

2.2.1 Elektrische Feldstärke

$E = \frac{F}{Q}$	$ \begin{array}{lll} F & {\rm Kraft} & N & \frac{kgm}{s^2} \\ Q & {\rm Ladung} & C & As \\ E & {\rm Elektrische\ Feldst\"{a}rke} & \frac{N}{C} & \frac{V}{m} \\ F = E \cdot Q & Q = \frac{F}{E} \end{array} $
$E = \frac{U}{d}$	$ \begin{array}{cccc} U & \text{Spannung} & V \\ d & \text{Plattenabstand} & m \\ E & \text{Elektrische Feldstärke} & \frac{N}{C} & \frac{V}{m} \end{array} $

 $U=E\cdot d \quad d=\frac{U}{E}$ Interaktive Inhalte: $E=\frac{F}{Q}$ - $F=E\cdot Q$ - $Q=\frac{F}{E}$ - $E=\frac{U}{d}$ - $U=E\cdot d$ - $d=\frac{U}{E}$ -

2.2.2 Gesetz von Coulomb

$$F = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q_1 \cdot Q_2}{r^2}$$

$$Q_2 \quad \text{Ladung 1} \quad C \quad As$$

$$Q_1 \quad \text{Ladung 1} \quad C \quad As$$

$$r \quad \text{Entfernung} \quad m$$

$$\pi \quad \text{Kreiszahl} \quad 3,1415927$$

$$\epsilon_0 \quad \text{Elekt. Feldkonstante} \quad \frac{As}{Vm}$$

$$F \quad \text{Kraft} \quad N \quad \frac{kgm}{s^2}$$

$$r = \sqrt{\frac{1}{4\pi\epsilon_0} \cdot \frac{Q_1 \cdot Q_2}{F}} \quad Q_1 = 4\pi\epsilon_0 \cdot \frac{F \cdot r^2}{Q_2}$$

Interaktive Inhalte: $F = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q_1 \cdot Q_2}{r^2} - r = \sqrt{\frac{1}{4\pi\epsilon_0} \cdot \frac{Q_1 \cdot Q_2}{F}} - Q_1 = 4\pi\epsilon_0 \cdot \frac{F \cdot r^2}{Q_2}$

2.2.3 Kapazität eines Kondensators

$C = \frac{Q}{U}$	$ \begin{array}{lll} U & \text{Spannung} & V \\ Q & \text{Ladung} & C & As \\ C & \text{Kapazität} & F & \frac{As}{V} \\ Q = C \cdot U & U = \frac{Q}{C} \end{array} $
$C = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{d}$	$\begin{array}{lll} d & \text{Plattenabstand} & m \\ A & \text{Fläche} & m^2 \\ \epsilon_0 & \text{Elekt. Feldkonstante} & \frac{As}{Vm} \\ \epsilon_r & \text{Dielektrizitätszahl} \\ C & \text{Kapazität} & F & \frac{As}{V} \\ A = \frac{C \cdot d}{\epsilon_0 \epsilon_r} & d = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{C} \end{array}$

2.2.4 Reihenschaltung von Kondensatoren

Elektrotechnik Elektrisches Feld

$\frac{1}{C_g} = \frac{1}{C_1} + \frac{1}{C_2} ... + \frac{1}{C_n}$

 $\begin{array}{ccccc} C_2 & \text{Kapazit"at 1} & F & \frac{As}{X_s} \\ C_1 & \text{Kapazit"at 1} & F & \frac{\overline{X}s}{V} \\ C_g & \text{Gesamtkapazit"at} & F & \frac{As}{V} \end{array}$

 $C_{g} = \frac{C_{1} \cdot C_{2}}{C_{1} + C_{2}} \qquad C_{1} = \frac{C_{2} \cdot C_{g}}{C_{2} - C_{g}} \qquad C_{2} = \frac{C_{1} \cdot C_{g}}{C_{1} - C_{g}}$

$$U_g = U_1 + U_2 ... + U_n$$

 U_2 Einzelspannung V

Einzelspannung

Gesamtspannung V

 $U_g = U_1 + U_2$ $U_1 = U_g - U_2$ $U_2 = U_g - U_1$

2.2.5 Parallelschaltung von Kondensatoren

$$C_g = C_1 + C_2 \dots + C_n$$

 C_1 Kapazität 1 F $\frac{As}{V}$ C_g Gesamtkapazität F $\frac{As}{V}$ C_g C_g

 $C_g = C_1 + C_2$ $C_1 = C_g - C_2$ $C_2 = C_g - C_1$

$$Q_g = Q_1 + Q_2 ... + Q_n$$

 $\begin{array}{cccc} Q_2 & \text{Ladung 2} & C & As \\ Q_1 & \text{Ladung 1} & C & As \\ Q_g & \text{Gesamtladung} & C & As \end{array}$

 $Q_g = Q_1 + Q_2 \qquad Q_1 = Q_g - Q_2 \qquad Q_2 = Q_g - Q_1$

 $Q_g = Q_1 + Q_2 - Q_1 = Q_g - Q_2 - Q_2 = Q_g - Q_1$

2.2.6 Elektrische Energie des Kondensators

$$W = \frac{1}{2} \cdot C \cdot U^2$$

Kapazität F

Spannung VArbeit Ws VAs = JW Arbeit

 $U = \sqrt{\frac{2 \cdot W}{C}}$ $C = \frac{2 \cdot W}{U^2}$

Interaktive Inhalte: $W=\frac{1}{2}\cdot C\cdot U^2$ - $U=\sqrt{\frac{2\cdot W}{C}}$ - $C=\frac{2\cdot W}{U^2}$ -

Elektrotechnik Magnetisches Feld

2.3 Magnetisches Feld

2.3.1 Flußdichte

 $B = \frac{F}{I \cdot l}$

Stromstärke Länge

Interaktive Inhalte: $B = \frac{F}{I \cdot l}$ - $F = B \cdot I \cdot l$ - $I = \frac{F}{B \cdot l}$ - $l = \frac{F}{I \cdot B}$ -

2.3.2 Feldstärke einer langgestreckten Spule

 $H = \frac{I \cdot N}{l}$

Länge der Spule

Anzahl der Windungen

Stromstärke

H Magnetische Feldstärke

 $I = \frac{H \cdot l}{N}$ $N = \frac{H \cdot l}{I}$ $l = \frac{I \cdot N}{H}$

Interaktive Inhalte: $H = \frac{I \cdot N}{l}$ - $I = \frac{H \cdot l}{N}$ - $N = \frac{H \cdot l}{I}$ - $l = \frac{I \cdot N}{H}$ -

2.3.3 Flußdichte - Feldstärke

 $B = \mu_r \cdot \mu_0 \cdot H$

Permeabilitätszahl

Magn. Feldkonstante

Interaktive Inhalte: $B = \mu_r \cdot \mu_0 \cdot H$ - $H = \frac{B}{\mu_r \cdot \mu_0}$ - $\mu_r = \frac{B}{\mu_0 \cdot H}$ - $\mu_0 = \frac{B}{\mu_r \cdot H}$ - $\mu_0 = \frac{B$

2.3.4 Magnetischer Fluß

 $\Phi = B \cdot A \cdot cos(\delta)$

Winkel Flächennormale-Flußdichte rad

 $B \quad \text{Magnetische Flußdichte} \qquad T$ $\Phi \quad \text{Magnetischer Fluß} \qquad Vs$ $A = \frac{\Phi}{B \cdot cos(\delta)} \quad B = \frac{\Phi}{A \cdot cos(\delta)} \quad \delta = \arccos(\frac{\Phi}{B \cdot A})$ $\text{Interaktive Inhalte:} \quad \Phi = B \cdot A \cdot \cos(\delta) \quad -A = \frac{\Phi}{B \cdot cos(\delta)} \quad -B = \frac{\Phi}{A \cdot cos(\delta)} \quad -\delta = \arccos(\frac{\Phi}{B \cdot A}) \quad -$

2.3.5 Induktivität einer langgestreckten Spule

 $L = \mu_0 \cdot \mu_r \cdot \frac{A \cdot N^2}{lSP}$

AFläche

Länge der Spule lSP

Anzahl der Windungen

Permeabilitätszahl

 $\begin{array}{lll} \mu_0 & \text{Magn. Feldkonstante} & \frac{Vs}{Am} \\ L & \text{Induktivität} & H & \frac{Vs}{A} \\ l_{SP} = \mu_0 \cdot \mu_r \cdot \frac{A \cdot N^2}{L} & A = \frac{L \cdot l}{\mu_0 \cdot \mu_r \cdot N^2} & N = \sqrt{\frac{L \cdot l}{\mu_0 \cdot \mu_r \cdot N^2}} \end{array}$ Interaktive Inhalte: $L = \mu_0 \cdot \mu_r \cdot \frac{A \cdot N^2}{lSP} - l_{SP} = \mu_0 \cdot \mu_r \cdot \frac{A \cdot N^2}{L} - A = \frac{L \cdot l}{\mu_0 \cdot \mu_r \cdot N^2} - N = \sqrt{\frac{L \cdot l}{\mu_0 \cdot \mu_r \cdot N^2}}$

Elektrotechnik Magnetisches Feld

2.3.6 Reihenschaltung (Induktivität)

$$L_g = L_1 + L_2 \dots + L_n$$

$$L_1 \quad \text{Induktivität } 2 \quad H \quad \frac{V_s}{A}$$

$$L_1 \quad \text{Induktivität } 1 \quad H \quad \frac{V_s}{V_s}$$

$$L_g \quad \text{Gesamtinduktivität} \quad H \quad \frac{V_s}{V_s}$$

$$L_g = L_1 + L_2 \quad L_1 = L_g - L_2 \quad L_2 = L_g - L_1$$

$$U_g = U_1 + U_2 \dots + U_n$$

$$U_1 \quad \text{Einzelspannung} \quad V$$

$$U_2 \quad \text{Gesamtspannung} \quad V$$

$$U_3 \quad \text{Gesamtspannung} \quad V$$

$$U_9 \quad \text{Gesamtspannung} \quad V$$

$$U_9 \quad \text{Gesamtspannung} \quad V$$

$$U_9 = U_1 + U_2 \quad U_1 = U_g - U_2 \quad U_2 = U_g - U_1$$

2.3.7 Parallelschaltung (Induktivität)

$$\frac{1}{L_g} = \frac{1}{L_1} + \frac{1}{L_2}... + \frac{1}{L_n}$$

$$L_2 \quad \text{Induktivität } 2 \quad H \quad \frac{V_s}{A}$$

$$L_1 \quad \text{Induktivität } 1 \quad H \quad \frac{V_s}{A}$$

$$L_2 \quad \text{Gesamtinduktivität } 1 \quad H \quad \frac{V_s}{A}$$

$$L_3 \quad \text{Gesamtinduktivität } 1 \quad H \quad \frac{V_s}{A}$$

$$L_4 \quad \text{Gesamtinduktivität } 1 \quad H \quad \frac{V_s}{A}$$

$$L_1 = \frac{L_2 \cdot L_g}{L_2 - L_g} \quad L_2 = \frac{L_1 \cdot L_g}{L_1 - L_g}$$

$$I_2 \quad \text{Einzelstrom} \quad A$$

$$I_1 \quad \text{Einzelstrom} \quad A$$

$$I_2 \quad \text{Gesamtstrom} \quad A$$

$$I_3 \quad \text{Gesamtstrom} \quad A$$

$$I_3 \quad \text{Gesamtstrom} \quad A$$

$$I_4 \quad \text{Induktivität } 1 \quad I_4 \quad I_4 \quad I_5 \quad I_6 \quad I_7 \quad I_8 \quad I_8$$

Interaktive Inhalte: $\frac{1}{L_g} = \frac{1}{L_1} + \frac{1}{L_2}... + \frac{1}{L_n}$ - hier klicken $L_1 = \frac{L_2 \cdot L_g}{L_2 - L_g}$ - $L_2 = \frac{L_1 \cdot L_g}{L_1 - L_g}$ - $I_g = I_1 + I_2... + I_n$ - $I_g = I_1 + I_2$ - $I_1 = I_g - I_2$ - $I_2 = I_g - I_1$ -

Elektrotechnik Wechselstrom

2.4 Wechselstrom

2.4.1 Wechselspannung - Wechselstrom

Interactive Inhalte: $U_t = U_{max} \cdot sin(\omega \cdot t) - I_t = I_{max} \cdot sin(\omega \cdot t)$

2.4.2 Scheitel - Effektiv

$$U_{eff} = \frac{U_{max}}{\sqrt{2}}$$

$$U_{max} \quad \text{Scheitel-, Spitzenspannung} \quad V$$

$$U_{eff} \quad \text{Effektivspannung} \quad V$$

$$I_{max} = \sqrt{2} \cdot I_{eff} \quad I_{eff} = \frac{I_{max}}{\sqrt{2}}$$

Interaktive Inhalte: hier klicken $U_{eff} = \frac{U_{max}}{\sqrt{2}}$ - $I_{max} = \sqrt{2} \cdot I_{eff}$ - $I_{eff} = \frac{I_{max}}{\sqrt{2}}$ -

2.4.3 Induktiver Widerstand

$X_L = \omega \cdot L$	$L \\ \omega \\ X_L$	Induktivität Eigenkreisfrequenz Induktiver Widerstand	$\frac{H}{\frac{1}{s}}$	$\frac{Vs}{A}$ $\frac{V}{A}$		
	$L = \frac{1}{2}$	$\frac{X_L}{\omega}$ $\omega = \frac{X_L}{L}$				

Interaktive Inhalte: $X_L = \omega \cdot L - L = \frac{X_L}{\omega} - \omega = \frac{X_L}{L}$

2.4.4 Kapazitiver Widerstand

$$X_C = \frac{1}{\omega \cdot C}$$

$$C \quad \text{Kapazit\"at} \quad F \quad \frac{As}{V}$$

$$\omega \quad \text{Eigenkreisfrequenz} \quad \frac{1}{s}$$

$$X_C \quad \text{Kapazitiver Widerstand} \quad \Omega \quad \frac{V}{A}$$

$$C = \frac{1}{X_C \cdot \omega} \quad \omega = \frac{1}{X_C \cdot C}$$

Interaktive Inhalte: $X_C = \frac{1}{\omega \cdot C} - C = \frac{1}{X_C \cdot \omega} - \omega = \frac{1}{X_C \cdot C}$

2.4.5 Wirkleistung

$P = U_{eff} \cdot I_{eff} \cdot cos(\phi)$ $\phi \qquad \text{Winkel phi} \qquad rad$ $I_{eff} \qquad \text{Effektivstromstärke} \qquad A$ $U_{eff} \qquad \text{Effektivspannung} \qquad V$ $P \qquad \text{Wirkleistung} \qquad W \qquad VA = \frac{J}{s}$

Interaktive Inhalte: $P = U_{eff} \cdot I_{eff} \cdot cos(\phi)$ -

Elektrischer Schwingkreis 2.5

Eigenfrequenz (Ungedämpfte elektrische Schwingung)

$$f = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$

$$C \quad \text{Kapazität} \quad F$$

$$L \quad \text{Induktivität} \quad H$$

$$f \quad \text{Eigenfrequenz} \quad hz = \frac{1}{s}$$

$$L = \frac{1}{(2 \cdot \pi \cdot f)^2 \cdot C} \quad C = \frac{1}{(2 \cdot \pi \cdot f)^2 \cdot L}$$

$$\text{Interaktive Inhalte:} \quad f = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}} \quad - L = \frac{1}{(2 \cdot \pi \cdot f)^2 \cdot C} \quad - C = \frac{1}{(2 \cdot \pi \cdot f)^2 \cdot L} \quad -$$

2.5.2 Eigenkreisfrequenz

$$\omega = \frac{1}{\sqrt{L \cdot C}}$$

 $\begin{array}{cccc} C & \text{Kapazit"at} & F & \frac{As}{Vs} \\ L & \text{Induktivit"at} & H & \frac{Vs}{A} \\ \omega & \text{Eigenkreisfrequenz} & \frac{1}{s} \\ L = \frac{1}{\omega^2 \cdot C} & C = \frac{1}{\omega^2 \cdot L} \end{array}$

Interaktive Inhalte: $\omega = \frac{1}{\sqrt{L \cdot C}} - L = \frac{1}{\omega^2 \cdot C} - C = \frac{1}{\omega^2 \cdot L}$

2.6 Allgemeine Elektrotechnik

2.6.1 Spannungsteiler

$U_1 = U_g \cdot \frac{R_1}{R_1 + R_2}$	R_2 R_1 U_g U_1	Teilwiderstand Teilwiderstand Gesamtspannung Teilspannung	$egin{array}{l} \Omega \ \Omega \ V \ V \end{array}$	$\frac{V}{A}$ $\frac{V}{A}$
---	-------------------------	--	--	-----------------------------

Interaktive Inhalte: $U_1 = U_g \cdot \frac{R_1}{R_1 + R_2}$ -

3 Wärmelehre

3.1 Temperatur

3.1.1 Termperatur - Umrechnungen

```
T = 273, 15 + \tau
T = 273, 15 + \tau
T = 273, 15 + \tau
T = -273, 15
T_F = \frac{9}{5} \cdot \tau + 32
T = -273, 15
```

Interaktive Inhalte: $T=273,15+\tau$ - $\tau=T-273,15$ - $T_F=\frac{9}{5}\cdot\tau+32$ - $\tau=\frac{5}{9}\cdot(T_F-32)$ - $T_R=\frac{9}{5}\cdot\tau+491,67$ - $\tau=\frac{5}{9}\cdot(T_R-491,67)$

3.1.2 Temperaturdifferenz

$$\Delta T = T_2 - T_1$$

$$T_2 \quad \text{absolute Temperatur} \quad K$$

$$T_1 \quad \text{absolute Temperatur} \quad K$$

$$\Delta T \quad \text{Temperatur differenz} \quad K$$

$$T_1 = T_2 - \Delta T \quad T_2 = \Delta T + T_1$$

Interaktive Inhalte: $\Delta T = T_2 - T_1 - T_1 = T_2 - \Delta T - T_2 = \Delta T + T_1 - T_2 = \Delta T - T_1 - T_2 = \Delta T + T_1 - T_2 = \Delta$

3.2 Ausdehnung der Körper

3.2.1 Längenausdehnung

$\Delta l = l_0 \cdot \alpha \cdot \Delta T$	$lpha$ Längenausdehnungskoeffizient $\frac{1}{K}$ ΔT Temperaturdifferenz K l_0 Anfangslänge m Δl Längenänderung m
$l_0 = \frac{\Delta l}{\alpha \cdot \Delta T}$	α Längenausdehnungskoeffizient $\frac{1}{K}$ ΔT Temperaturdifferenz K Δl Längenänderung m l_0 Anfangslänge m $\alpha = \frac{\Delta l}{l_0 \cdot \Delta T}$ $\Delta T = \frac{\Delta l}{l_0 \cdot \alpha}$

Interaktive Inhalte: $\Delta l = l_0 \cdot \alpha \cdot \Delta T - l_0 = \frac{\Delta l}{\alpha \cdot \Delta T} - \alpha = \frac{\Delta l}{l_0 \cdot \Delta T} - \Delta T = \frac{\Delta l}{l_0 \cdot \alpha}$

3.2.2 Flächenausdehnung

$\Delta A = A_0 \cdot 2 \cdot \alpha \cdot \Delta T$	$lpha$ Längenausdehnungskoeffizient $rac{1}{K}$ ΔT Temperaturdifferenz K A_0 Anfangsfläche m^2 ΔA Flächenänderung m^2
	$A_0 = \frac{\Delta A}{2 \cdot \alpha \cdot \Delta T}$ $\alpha = \frac{\Delta A}{A_0 \cdot \Delta T \cdot 2}$ $\Delta T = \frac{\Delta A}{A_0 \cdot 2 \cdot \alpha}$
Interaktive Inhalte: $\Delta A = A_0 \cdot 2 \cdot \alpha \cdot \Delta T - A_0 = \frac{\Delta}{2}$	$\frac{\Delta A}{\Delta A} = \alpha = \frac{\Delta A}{\Delta A} = \Delta T = \frac{\Delta A}{\Delta A} = 0$

Interaktive Inhalte: $\Delta A = A_0 \cdot 2 \cdot \alpha \cdot \Delta T - A_0 = \frac{\Delta A}{2 \cdot \alpha \cdot \Delta T} - \alpha = \frac{\Delta A}{A_0 \cdot \Delta T \cdot 2} - \Delta T = \frac{\Delta A}{A_0 \cdot 2 \cdot \alpha}$

3.2.3 Volumenausdehnung

$\Delta V = V_0 \cdot 3 \cdot \alpha \cdot \Delta T$	$lpha$ Längenausdehnungskoeffizient $\frac{1}{K}$ ΔT Temperaturdifferenz K V_0 Anfangsvolumen m^3 ΔV Volumenänderung m^3 $V_0 = \frac{\Delta V}{3 \cdot \alpha \cdot \Delta T}$ $\alpha = \frac{\Delta V}{V_0 \cdot \Delta T \cdot 3}$ $\Delta T = \frac{\Delta V}{V_0 \cdot 3 \cdot \alpha}$
--	---

Interaktive Inhalte: $\Delta V = V_0 \cdot 3 \cdot \alpha \cdot \Delta T$ - $V_0 = \frac{\Delta V}{3 \cdot \alpha \cdot \Delta T}$ - $\alpha = \frac{\Delta V}{V_0 \cdot \Delta T \cdot 3}$ - $\Delta T = \frac{\Delta V}{V_0 \cdot 3 \cdot \alpha}$ -

Wärmelehre Energie

Energie 3.3

3.3.1 Wärmeenergie

$$\Delta Q = c \cdot m \cdot \Delta T$$

Temperaturdifferenz ${\bf Spezifische\ W\"{a}rmekapazit\"{a}t}$ m

Masse Wärmeenergie Nm = Ws

 $m = \frac{\Delta Q}{c \cdot \Delta T} \quad c = \frac{\Delta Q}{m \cdot \Delta T}$ Interaktive Inhalte: $\Delta Q = c \cdot m \cdot \Delta T - m = \frac{\Delta Q}{c \cdot \Delta T} - c = \frac{\Delta Q}{m \cdot \Delta T} - \Delta T = \frac{\Delta Q}{c \cdot m}$

3.3.2 Verbrennungsenergie

$$Q = H_u \cdot m$$

Masse ${\rm Heizwert}$ Verbrennungsenergie

 $H_u = \frac{Q}{m}$ $m = \frac{Q}{H_u}$

Interaktive Inhalte: $Q = H_u \cdot m - H_u = \frac{Q}{m} - m = \frac{Q}{H_u}$

3.3.3 Schmelzen und Erstarren

$$Q = q_s \cdot m$$

Spezifische Schmelz-/Erstarrungswärme

 $Q \quad \hbox{ Energie zum Schmelzen/Erstarren}$

Interaktive Inhalte: $Q=q_s\cdot m$ - $m=rac{Q}{q_s}$ - $q_s=rac{Q}{m}$

3.3.4 Verdampfen und Kondensieren

$$Q = q_v \cdot m$$

Spezifische Verdampfungs-/Kondensationswärme

Energie zum Verdampfen/Kondensieren

Interaktive Inhalte: $Q = q_v \cdot m - m = \frac{Q}{q_v} - q_v = \frac{Q}{m}$

Zustandsänderungen der Gase

Allgemeine Gasgleichung

$$\frac{V_1 \cdot p_1}{T_1} = \frac{V_2 \cdot p_2}{T_2}$$

$$p_1 \quad \text{Druck 1} \quad Pa \quad \frac{N}{m^2}$$

$$T_1 \quad \text{absolute Temperatur} \quad K$$

$$T_2 \quad \text{absolute Temperatur} \quad K$$

$$p_2 \quad \text{Druck 2} \quad Pa \quad \frac{N}{m^2}$$

$$V_2 \quad \text{Volumen 2} \quad m^3$$

$$V_1 \quad \text{Volumen 1} \quad m^3$$

$$V_1 = \frac{V_2 \cdot p_2 \cdot T_1}{T_2 \cdot p_1} \quad p_1 = \frac{V_2 \cdot p_2 \cdot T_1}{T_2 \cdot V_1} \quad T_1 = \frac{V_1 \cdot p_1 \cdot T_2}{V_2 \cdot p_2}$$

$$\text{Interaktive Inhalte: } \frac{V_1 \cdot p_1}{T_1} = \frac{V_2 \cdot p_2}{T_2} \quad -V_1 = \frac{V_2 \cdot p \cdot T_1}{T_2 \cdot p_1} \quad -p_1 = \frac{V_2 \cdot p_2 \cdot T_1}{T_2 \cdot V_1} \quad -T_1 = \frac{V_1 \cdot p_1 \cdot T_2}{V_2 \cdot p_2} \quad -$$

3.4.2 Thermische Zustandsgleichung

$p \cdot V = \nu \cdot R_m \cdot T$	u Stoffmenge mol
	p Druck Pa $\frac{N}{m^2}$
	T Temperatur K
	V Volumen m^3
	R_m Allgemeine Gaskonstante $8,314 \frac{Ws}{mol \cdot K}$
	$p = \frac{\nu \cdot R_m \cdot T}{V}$ $V = \frac{\nu \cdot R_m \cdot T}{p}$ $T = \frac{p \cdot V}{\nu \cdot R_m}$

29

Interaktive Inhalte: $p \cdot V = \nu \cdot R_m \cdot T - p = \frac{\nu \cdot R_m \cdot T}{V} - V = \frac{\nu \cdot R_m \cdot T}{p} - T = \frac{p \cdot V}{\nu \cdot R_m}$

4 Optik

4.1 Reflexion und Brechung

4.1.1 Reflexion

```
lpha_1=lpha_2 lpha_2 Reflexionswinkel lpha_1 Einfallswinkel lpha_2
```

Interaktive Inhalte: $\alpha_1 = \alpha_2$ -

4.1.2 Brechung

```
n = \frac{\sin\alpha_1}{\sin\alpha_2}
\alpha_2 \quad \text{Brechungswinkel} \quad \circ
\alpha_1 \quad \text{Einfallswinkel} \quad \circ
n \quad \text{Brechzahlen}
\sin\alpha_1 = n \cdot \sin\alpha_2 \quad \sin\alpha_2 = \frac{\sin\alpha_1}{n}
```

Interaktive Inhalte: $n=\frac{\sin\alpha_1}{\sin\alpha_2}$ - $\sin\alpha_1=n\cdot\sin\alpha_2$ - $\sin\alpha_2=\frac{\sin\alpha_1}{n}$ -

Optik Linsen

4.2 Linsen

4.2.1 Brennweite

$$f = \frac{g \cdot b}{g + b}$$

Bildweite Gegenstandsweite

f Brennweite

$$b = \frac{f \cdot g}{g - f}$$
 $g = \frac{f \cdot b}{b - f}$

Interaktive Inhalte: $f = \frac{g \cdot b}{g + b}$ - $b = \frac{f \cdot g}{g - f}$ - $g = \frac{f \cdot b}{b - f}$ -

4.2.2 Bildgröße - Gegenstandsgröße

$$\frac{G}{B} = \frac{g}{b}$$

BBildgröße

Gegenstandsgröße Bildweite

 $g \quad \text{ Gegenstandsweite } \quad m$

 $G = \frac{g \cdot B}{b} \quad B = \frac{G \cdot b}{g} \quad g = \frac{G \cdot b}{B} \quad b = \frac{B \cdot g}{G}$ Interaktive Inhalte: $\frac{G}{B} = \frac{g}{b} \quad G = \frac{g \cdot B}{b} \quad B = \frac{G \cdot b}{g} \quad g = \frac{G \cdot b}{G}$

5 Astronomie

5.1 Gravitation

5.1.1 Gravitationsgesetz

$F = G \cdot \frac{m_1 \cdot m_2}{r^2}$	G Gravitationskonstante $\frac{Nm^2}{kg^2}$ 6,672041 $E-11$ r Abstand der Massen m
	m_2 Massen kg m_1 Massen kg F Kraft N
	$r = \sqrt{\frac{G \cdot m_1 \cdot m_2}{F}}$ $m_1 = \frac{F \cdot r^2}{G \cdot m_2}$ $m_2 = \frac{F \cdot r^2}{G \cdot m_1}$
$T_{-+} = -1 + \frac{1}{2} = T_{} = \frac{1}{2} = T_{} = \frac{1}{2} = $	$F \cdot r^2$ $F \cdot r^2$

Interaktive Inhalte: $F = G \cdot \frac{m_1 \cdot m_2}{r^2} - r = \sqrt{\frac{G \cdot m_1 \cdot m_2}{F}} - m_1 = \frac{F \cdot r^2}{G \cdot m_2} - m_2 = \frac{F \cdot r^2}{G \cdot m_1}$

5.1.2 Gravitationsfeldstärke

$$gr = \frac{G \cdot m}{r^2}$$

$$G \quad \text{Gravitationskonstante} \quad \frac{Nm^2}{kg^2} \quad 6,672041E - 11$$

$$r \quad \text{Abstand der Massen} \quad m$$

$$m \quad \text{Masse} \quad kg$$

$$gr \quad \text{Gravitationsfeldstärke} \quad \frac{N}{kg}$$

$$m = \frac{gr \cdot r^2}{G} \quad r = \sqrt{\frac{G \cdot m}{gr}}$$

Interaktive Inhalte: $gr = \frac{G \cdot m}{r^2} - m = \frac{gr \cdot r^2}{G} - r = \sqrt{\frac{G \cdot m}{gr}}$ -

Atomphysik 6

Atombau 6.1

Kernbausteine(Protonen, Neutronen, Massenzahl)

Z = A - N

Neutronenzahl

Nukleonen-, Massenzahl

Ordnung-,Protonenzahl

$$A = Z + N$$
 $N = A - Z$

Interaktive Inhalte: Z = A - N - A = Z + N - N = A - Z

6.1.2 Atommasse

 $m_a = A_r \cdot u$

atomare Masseneinheit

relative Atommasse Atommasse

kg

Interaktive Inhalte: $m_a = A_r \cdot u - m_a = A_r \cdot u - m_a = A_r \cdot u$

6.1.3 Masse des Atomkerns

 $m_k = m_a - Z \cdot m_e$

Masse des Elektrons m_e

Ordnung-,Protonenzahl Atommasse

Masse des Atomkerns

 $m_a = m_k + Z \cdot m_e$ $Z = \frac{m_a - m_k}{m_e}$ $m_e = \frac{m_a - m_k}{Z}$ Interaktive Inhalte: $m_k = m_a - Z \cdot m_e$ - $m_a = m_k + Z \cdot m_e$ - $Z = \frac{m_a - m_k}{m_e}$ - $m_e = \frac{m_a - m_k}{Z}$

6.1.4 Stoffmenge und Anzahl der Teilchen

 $\nu = \frac{N}{N_a}$

Avogadro-Konstante

 $6,022045E23\frac{1}{mol}$

Anzahl der Teilchen Stoffmenge

mol

 $N = N_a \cdot \nu$

Interaktive Inhalte: $\nu = \frac{N}{N_a}$ - $N = N_a \cdot \nu$ -

6.1.5 Molare Masse

 $M = \frac{m}{\nu}$

Stoffmenge

kg

Molare Masse

 $\nu = \frac{m}{M}$ $m = M \cdot \nu$

Interaktive Inhalte: $M = \frac{m}{\nu} - \nu = \frac{m}{M} - m = M \cdot \nu$

6.1.6 Masse - Energie

 $E = m \cdot c^2$

Lichtgeschwindigkeit

Masse Energie

kgNm = Ws

E

Interaktive Inhalte: $E = m \cdot c^2 - m = \frac{E}{c^2}$

Kernumwandlungen Atomphysik

Kernumwandlungen 6.2

6.2.1 Zerfallsgesetz

 $N(t) = N_0 \cdot e^{-\lambda t}$

Zerfallskonstante λ

 N_0 zerfallfähige Atome vor der Zeit
tN(t)zerfallfähige Atome nach der Zeit t

 $N_0 = \frac{N(t)}{e^{-\lambda t}} \quad \lambda = -ln\frac{Nt}{N_0} \cdot \frac{1}{t} \quad t = -ln\frac{Nt}{N_0} \cdot \frac{1}{\lambda}$ Interaktive Inhalte: $N(t) = N_0 \cdot e^{-\lambda t} - N_0 = \frac{N(t)}{e^{-\lambda t}} - \lambda = -ln\frac{Nt}{N_0} \cdot \frac{1}{t} - t = -ln\frac{Nt}{N_0} \cdot \frac{1}{\lambda}$

6.2.2 Halbwertszeit

 $T = \frac{\ln 2}{\lambda}$

 ${\bf Zerfallskonstante}$ THalbwertszeit

 $\lambda = \frac{\ln 2}{T}$

Interaktive Inhalte: $T = \frac{ln2}{\lambda}$ - $\lambda = \frac{ln2}{T}$ -

6.2.3 Aktivität

 $A = \lambda \cdot N(t)$

zerfallfähige Atome nach der Zeit t

Zerfallskonstante AAktivität

 $\stackrel{s}{B}q \quad Bq = \frac{1}{s}$

 $N(t) = \frac{A}{\lambda}$

Interaktive Inhalte: $A = \lambda \cdot N(t) - N(t) = \frac{A}{\lambda}$ - hier klicken

6.2.4 Photon

 $E = f \cdot h$

 $Plank sches\ Wirkung squantum$ Eigenfrequenz

Energie

 $hz = \frac{1}{s}$ Nm = Ws

 $f = \frac{E}{h}$

Interaktive Inhalte: $E = f \cdot h$ - $f = \frac{E}{h}$ -

7 Physikalische Konstanten

Name	Symbol	Zahlenwert	Einheit
Kreiszahl	π	3.14159265358979323846	
Eulersche zahl	e	2.71828182845904523536	
Elektronenladung Gravitationskonstante Lichtgeschwindigkeit Dielektrizitätskonstante Permeabilitätskonstante $(4\pi\varepsilon_0)^{-1}$	e G, κ c ε_0 μ_0	$1.60217733 \cdot 10^{-19}$ $6.67259 \cdot 10^{-11}$ $2.99792458 \cdot 10^{8}$ $8.854187 \cdot 10^{-12}$ $4\pi \cdot 10^{-7}$	C $m^3kg^{-1}s^{-2}$ m/s (def) F/m H/m
Planksches Wirkungsquantum	h	$6.6260755 \cdot 10^{-34}$	Js
Molare Gaskonstante	R	8.31441	$J \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$
Avogadro-Konstante	$N_{ m A}$	$6.0221367 \cdot 10^{23}$	mol^{-1}
Boltzmann-Konstante	$k = R/N_{\rm A}$	$1.380658 \cdot 10^{-23}$	J/K
Ruhemasse des Elektrons	$\mid m_{ m e}$	$9.1093897 \cdot 10^{-31}$	kg
Ruhemasse des Protons	$m_{\rm p}$	$1.6726231 \cdot 10^{-27}$	kg
Ruhemasse des Neutrons	$m_{\rm n}$	$1.674954 \cdot 10^{-27}$	kg
Ruhemasse α -Teilchens	$m_{\rm n}$	$6,6447 \cdot 10^{-27}$	kg
Atomare Masseneinheit	$m_{\rm u} = \frac{1}{12} m \binom{12}{6} C$	$1.6605656 \cdot 10^{-27}$	kg
Masse der Sonne	M_{\odot}	$1.989 \cdot 10^{30}$	kg
Radius der Erde	$R_{\rm A}$	$6.378 \cdot 10^6$	m
Masse der Erde	$M_{ m A}$	$5.976 \cdot 10^{24}$	kg
Umlaufdauer Erde-Sonne	Tropical year	365.24219879	Tage
Astronomische Einheit	AU	$1.4959787066 \cdot 10^{11}$	m
Lichtjahr	lj	$9.4605 \cdot 10^{15}$	m
Parsec	pc	$3.0857 \cdot 10^{16}$	m
Hubble Konstante	H	$\approx (75 \pm 25)$	$\mathrm{km}\cdot\mathrm{s}^{-1}\cdot\mathrm{Mpc}^{-1}$

Basiseinheiten

Name	Einheit	Symbol
Länge	Meter	m
Masse	Kilogramm	kg
Zeit	Sekunden	\mathbf{s}
Temperatur	Kelvin	\mathbf{K}
Stromstärke	Ampere	${f A}$
Lichtstärke	Candela	$\operatorname{\mathbf{cd}}$
Stoffmenge	mol	\mathbf{mol}

Abgeleitete Einheiten

Abgeleitete Emmerten				
Kraft F	Newton $N = \frac{mkg}{s^2} = \frac{VAs}{m}$			
Energie E	Joule $J = \frac{m^2 kg}{s^2} = VAs$			
Leistung P	Watt $\mathbf{W} = \frac{\mathbf{m}^2 \mathbf{k} \mathbf{g}}{\mathbf{s}^3} = \mathbf{V} \mathbf{A}$			
Ladung Q	Coulomb $C = As$			
Spannung V	$ ext{Volt } ext{V} = rac{ ext{m}^2 ext{kg}}{ ext{s}^3 ext{A}} = rac{ ext{W}}{ ext{A}}$			
Widerstand R	Ohm $\Omega = \frac{\mathbf{m}^2 \mathbf{k} \mathbf{g}}{\mathbf{s}^3 \mathbf{A}^2} = \frac{\mathbf{V}}{\mathbf{A}}$			
Leitwert Y	Siemens $S = \frac{s^3 A^2}{m^2 kg} = \frac{A}{V}$			
Kapazität C	$\mathbf{Farad} \mathbf{F} = rac{\mathbf{s}^4 \mathbf{A}^2}{\mathbf{m}^2 \mathbf{k} \mathbf{g}} = rac{\mathbf{C}}{\mathbf{V}}$			
Induktivität L	$Henry H = \frac{m^2 kg}{s^2 A^2} = \frac{Vs}{A}$			
magn. Fluß Φ	Weber Wb = $\frac{m^2 kg}{s^2 A} = Vs$			
Induktion B	Tesla $T = \frac{kg}{s^2A} = \frac{Vs}{m^2}$			
$\mathbf{Magnetfeld}\ H$	$\frac{A}{m}$			

8 Tabellen

8.1 Umrechnungen

8.1.1 Längen

	m	dm	cm	mm	μm	nm	pm	km
\overline{m}	1	10	100	1000	10^{6}	10^{9}	10^{12}	0,001
dm	0, 1	1	10	100	10^{5}	10^{8}	10^{11}	0,0001
cm	0,01	0, 1	1	10	10^{4}	10^{7}	10^{10}	10^{-5}
mm	0,001	0,01	0, 1	1	1000	10^{6}	10^{9}	10^{-6}
μm	10^{-6}	10^{-5}	0,0001	0,001	1	1000	10^{6}	10^{-9}
nm	10^{-9}	10^{-8}	10^{-7}	10^{-6}	0,001	1	1000	10^{-12}
pm	10^{-12}	10^{-11}	10^{-10}	10^{-9}	10^{-6}	0,001	1	10^{-15}
km	1000	10^{4}	10^{5}	10^{6}	10^{9}	10^{12}	10^{15}	1

m	Meter
dm	Dezimeter
cm	Zentimeter
mm	Millimeter
μm	Mikrometer
nm	Nanometer
pm	Pikometer
km	Kilometer

8.1.2 Flächen

	m^2	dm^2	cm^2	mm^2	a	ha	km^2
m^2	1	100	10^{4}	10^{6}	0,01	0,0001	10^{-6}
dm^2	0,01	1	100	10^{4}	0,0001	10^{-6}	10^{-8}
cm^2	0,0001	0,01	1	100	10^{-6}	10^{-8}	10^{-10}
mm^2	10^{-6}	0,0001	0,01	1	10^{-8}	10^{-10}	10^{-12}
a	100	10^{4}	10^{6}	10^{8}	1	0,01	0,0001
ha	10^{4}	10^{6}	10^{8}	10^{10}	100	1	0,01
km^2	10^{6}	10 ⁸	10^{10}	10^{12}	10^{4}	100	1

m^2	Quadratmeter
dm^2	Quadratdezimeter
cm^2	Quadratzentimeter
mm^2	Quadratmillimeter
a	Ar
ha	Hektar
km^2	Quadratkilometer

8.1.3 Volumen

	m^3	dm^3	cm^3	mm^3	l	hl	ml
m^3	1	1000	10^{6}	10^{9}	1000	10	10^{6}
dm^3	0,001	1	1000	10^{6}	1	0,01	1000
cm^3	10^{-6}	0,001	1	1000	0,001	10^{-5}	1
mm^3	10^{-9}	10^{-6}	0,001	1	10^{-6}	10^{-8}	0,001
l	0,001	1	1000	10^{6}	1	0,01	1000
hl	0, 1	100	10^{5}	10^{8}	100	1	10^{5}
ml	10^{-6}	0,001	1	1000	0,001	10^{-5}	1

m^3	Kubikmeter
dm^3	Kubikdezimeter
cm^3	Kubikzentimeter
mm^3	Kubikmillimeter
l	Liter
hl	Hektoliter
ml	Milliliter

8.1.4 Zeit

	s	min	h	ms	μs	ns	ps
s	1	0,01667	0,0002778	1000	10^{6}	10^{9}	10^{12}
min	60	1	0,01667	$6 \cdot 10^4$	$6 \cdot 10^7$	$6 \cdot 10^{10}$	$6 \cdot 10^{13}$
h	3600	60	1	$3, 6 \cdot 10^6$	$3,6 \cdot 10^9$	$3, 6 \cdot 10^{12}$	$3,6 \cdot 10^{15}$
ms	0,001	$1,667 \cdot 10^{-5}$	$2,778 \cdot 10^{-7}$	1	1000	10^{6}	109
μs	10^{-6}	$1,667 \cdot 10^{-8}$	$2,778 \cdot 10^{-10}$	0,001	1	1000	10^{6}
ns	10^{-9}	$1,667 \cdot 10^{-11}$	$2,778 \cdot 10^{-13}$	10^{-6}	0,001	1	1000
ps	10^{-12}	$1,667 \cdot 10^{-14}$	$2,778 \cdot 10^{-16}$	10^{-9}	10^{-6}	0,001	1

s	Sekunden
min	Minuten
h	Stunden
ms	Millisekunden
μs	Mikrosekunden
ns	Nanosekunden
ps	Pikosekunden

8.1.5 Vorsilben

		d	c	m	μ	n	p	f	a	da	h	k	M	G	T	P	E
	1	10	100	1000	106	109	10 ¹²	10^{15}	10 ¹⁸	0, 1	0,01	0,001	10-6		10^{-12}		
d	0, 1	1	10	100	10 ⁵	108	10 ¹¹	10^{14}	10 ¹⁷	0,01	0,001	0,0001	10-7		10^{-13}	10^{-16}	10-19
c	0,01	0, 1	1	10	10^{4}	107	10 ¹⁰	10 ¹³	10 ¹⁶	0,001	0,0001	10-5	10^{-8}	10-11	10^{-14}	10^{-17}	10^{-20}
m	0,001	0,01	0, 1	1	1000	10^{6}	109	10^{12}	10^{15}	0,0001	10-5	10-6	10-9	10^{-12}			
μ	10-6	$_{10}^{-5}$	0,0001	0,001	1	1000	10^{6}	109	10^{12}	10-7	10-8	10-9	10^{-12}	$_{10}^{-15}$	10-18		10^{-24}
n	10-9	$^{10}^{-8}$	$_{10}^{-7}$	10-6	0,001	1	1000	10^{6}	109	10-10	10-11	10^{-12}	$_{10}^{-15}$	10^{-18}	10-21	10^{-24}	10^{-27}
p	10-12	10-11	10-10	10-9	10-6	0,001	1	1000	10^{6}	$_{10}^{-13}$	$_{10}^{-14}$	10-15	10^{-18}	10^{-21}	10^{-24}	10^{-27}	10-30
f	$_{10}^{-15}$	$_{10}^{-14}$	$^{10}^{-13}$	$_{10}^{-12}$		$_{10}^{-6}$	0,001	1	1000	10^{-16}	10-17	10-18	10^{-21}	10^{-24}	10^{-27}	10-30	
a	10^{-18}	$_{10}^{-17}$	$_{10}^{-16}$	10-15	10^{-12}	10-9	10-6	0,001	1	10^{-19}	10-20	10-21	10^{-24}	10^{-27}	10-30	$_{10}^{-33}$	
da	10	100	1000	10^{4}	107	10^{10}	10^{13}	10^{16}	10 ¹⁹	1	0, 1	0,01	$_{10}^{-5}$	10-8	10-11	10^{-14}	10-17
h	100	1000	10^{4}	10 ⁵	108	10^{11}	10^{14}	10^{17}	1020	10	1	0, 1	0,0001	10-7	10-10		
k	1000	10^{4}	10 ⁵	10^{6}	109	10^{12}	10^{15}	10^{18}	10^{21}	100	10	1	0,001	10-6	10-9	10^{-12}	
M	10^{6}	107	108	109	10^{12}	10^{15}	10^{18}	10^{21}	10^{24}	10^{5}	10^{4}	1000	1	0,001	10-6	10-9	10^{-12}
G	109	10^{10}	10 ¹¹	10 ¹²	10^{15}	10 ¹⁸	10^{21}	10^{24}	10^{27}	108	107	106	1000	1	0,001	10-6	10-9
T	10^{12}	10^{13}	10^{14}	10 ¹⁵	10 ¹⁸	10^{21}	10^{24}	10^{27}	10 ³⁰	10 ¹¹	10 ¹⁰	109	10^{6}	1000	1	0,001	10-6
P	10^{15}	10^{16}	10^{17}	10 ¹⁸	10^{21}	10^{24}	10^{27}	10 ³⁰	1033	10^{14}	10^{13}	10^{12}	109	10^{6}	1000	1	0,001
E	10^{18}	10 ¹⁹	10^{20}	10^{21}	10^{24}	10^{27}	10 ³⁰	1033	1036	10^{17}	10^{16}	10^{15}	10^{12}	109	10^{6}	1000	1

	Bezugsgröße
d	Dezi
c	Zenti
m	Milli
μ	Mikro
n	Nano
p	Pico
f	Femto
a	Atto
da	Deka
h	Hekto
k	Kilo
M	Mega
G	\mathbf{Giga}
T	Tera
P	Peta
E	Exa
	·

8.1.6 Masse

	kg	g	mg	t	oz	lb	t
kg	1	1000	10^{6}	0,001	35, 28	2,205	0,0009843
g	0,001	1	1000	10^{-6}	0,03528	0,002205	$9,843 \cdot 10^{-7}$
mg	10^{-6}	0,001	1	10^{-9}	$3,528 \cdot 10^{-5}$	$2,205 \cdot 10^{-6}$	$9,843 \cdot 10^{-10}$
t	1000	10^{6}	10 ⁹	1	$3,528 \cdot 10^4$	2205	0,9843
oz	0,02835	28,35	$2,835 \cdot 10^4$	$2,835 \cdot 10^{-5}$	1	0,06249	$2,79 \cdot 10^{-5}$
lb	0,4536	453, 6	$4,536 \cdot 10^5$	0,0004536	16	1	0,0004464
t	1016	$1,016 \cdot 10^6$	$1,016 \cdot 10^9$	1,016	$3,584 \cdot 10^4$	2240	1

kg	Kilogramm
g	Gramm
mg	Milligramm
t	Tonne
oz	ounce
lb	pound
t	ton(UK)

8.1.7 Kraft

	N	cN	mN	kN	MN	kp	p	dyn	pdl	lbf
N	1	100	1000	0,001	10^{-6}	0, 102	102	10^{5}	7, 231	0,2248
cN	0,01	1	10	10^{-5}	10^{-8}	0,00102	1,02	1000	0,07231	0,002248
mN	0,001	0, 1	1	10^{-6}	10^{-9}	0,000102	0, 102	100	0,007231	0,0002248
kN	1000	10^{5}	10^{6}	1	0,001	102	$1,02 \cdot 10^5$	10 ⁸	7231	224, 8
MN	10^{6}	10 ⁸	10^{9}	1000	1	$1,02 \cdot 10^5$	$1,02 \cdot 10^{8}$	10 ¹¹	$7,231 \cdot 10^6$	$2,248 \cdot 10^5$
kp	9,807	980, 7	9807	0,009807	$9,807 \cdot 10^{-6}$	1	1000	$9,807 \cdot 10^5$	70,91	2,205
p	0,009807	0,9807	9,807	$9,807 \cdot 10^{-6}$	$9,807 \cdot 10^{-9}$	0,001	1	980, 7	0,07091	0,002205
dyn	10^{-5}	0,001	0,01	10^{-8}	10^{-11}	$1,02 \cdot 10^{-6}$	0,00102	1	$7,231 \cdot 10^{-5}$	$2,248 \cdot 10^{-6}$
pdl	0,1383	13,83	138, 3	0,0001383	$1,383 \cdot 10^{-7}$	0,0141	14, 1	$1,383 \cdot 10^4$	1	0,03109
lbf	4,448	444,8	4448	0,004448	$4,448 \cdot 10^{-6}$	0,4536	453, 6	$4,448 \cdot 10^5$	32, 16	1

/V	Newton
cN	Zentinewton
mN	Millinewton
kN	Kilonewton
MN	Meganewton
kp	Kilopond
p	Pond
dyn	Dyn
pdl	poundal
lbf	pound-force

8.1.8 Energie-Arbeit

	J	Nm	Ws	kWh	cal	Kcal	eV	BTU
J	1	1	1	$2,778 \cdot 10^{-7}$	0,2388	0,0002388	$6,242 \cdot 10^{18}$	0,0009478
Nm	1	1	1	$2,778 \cdot 10^{-7}$	0,2388	0,0002388	$6,242 \cdot 10^{18}$	0,0009478
Ws	1	1	1	$2,778 \cdot 10^{-7}$	0,2388	0,0002388	$6,242 \cdot 10^{18}$	0,0009478
kWh	$3,6 \cdot 10^{6}$	$3,6 \cdot 10^6$	$3, 6 \cdot 10^6$	1	$8,598 \cdot 10^5$	859, 8	$2,247 \cdot 10^{25}$	3412
cal	4, 187	4, 187	4, 187	$1,163\cdot 10^{-6}$	1	0,001	$2,613 \cdot 10^{19}$	0,003968
Kcal	4187	4187	4187	0,001163	1000	1	$2,613 \cdot 10^{22}$	3,968
eV	$1,602 \cdot 10^{-19}$	$1,602 \cdot 10^{-19}$	$1,602 \cdot 10^{-19}$	$4,45 \cdot 10^{-26}$	$3,827 \cdot 10^{-20}$			$1,518 \cdot 10^{-22}$
BTU	1055	1055	1055	0,0002931	252	0,252	$6,585 \cdot 10^{21}$	1

J	Joule
Nm	Newtonmeter
Ws	Wattsekunde
kWh	Kilowattstunde
cal	Kalorie
Kcal	Kilokalorie
eV	Elektronenvolt
BTU	British thermal unit

8.1.9 Leistung

	W	$\frac{J}{s}$	$\frac{Nm}{s}$	PS	KW	hp	BTU/s	BTU/h
W	1	1	1	0,00136	0,001	0,001341	0,0009478	3,412
$\frac{J}{s}$	1	1	1	0,00136	0,001	0,001341	0,0009478	3,412
$\frac{Nm}{s}$	1	1	1	0,00136	0,001	0,001341	0,0009478	3,412
PS	735, 5	735, 5	735, 5	1	0,7355	0,9863	0,6971	2510
KW	1000	1000	1000	1,36	1	1,341	0,9478	3412
hp	745, 7	745, 7	745, 7	1,014	0,7457	1	0,7068	2544
BTU/s	1055	1055	1055	1,434	1,055	1,415	1	3600
BTU/h	0,2931	0,2931	0,2931	0,0003985	0,0002931	0,000393	0,0002778	1

W	Watt
$\frac{J}{s}$	Joule pro Sekunde
$\frac{\frac{s}{Nm}}{s}$	Newtonmeter/Sekunde
$\stackrel{s}{PS}$	Pferdestärke
KW	Kilowatt
hp	horsepower
BTU/s	BTU/Sekunde
BTU/h	BTU/Stunde

8.1.10 Geschwindigkeit

	$\frac{m}{s}$	$\frac{km}{h}$	$\frac{ft}{s}$	$\frac{mi}{hr}$	$kn = \frac{sm}{h}$
$\frac{m}{s}$	1	3,6	3,281	2,237	1,944
$\frac{km}{h}$	0,2778	1	0,9113	0,6214	0,54
$\frac{ft}{s}$	0,3048	1,097	1	0,6818	0,5925
$\frac{mi}{hr}$	0,447	1,609	1,467	1	0,869
$kn = \frac{sm}{h}$	0,5144	1,852	1,688	1,151	1

$\frac{m}{s}$	Meter/Sekunde
$\frac{km}{h}$	Kilometer/Stunde
$\frac{ft}{s}$	Feet per sec
$\frac{mi}{hr}$	Miles per hour
$kn = \frac{sm}{h}$	Knoten

8.1.11 Druck

	Pa	$\frac{N}{m^2}$	bar	at	atm	Torr	mmHg	psf	psi	mbar
Pa	1	1	10^{-5}	$1,02 \cdot 10^{-5}$	$9,869 \cdot 10^{-6}$	0,007501	0,007501	0,02089	0,000145	0,01
$\frac{N}{m^2}$	1	1	10^{-5}	$1,02 \cdot 10^{-5}$	$9,869 \cdot 10^{-6}$	0,007501	0,007501	0,02089	0,000145	0,01
bar	10^{5}	10^{5}	1	1,02	0,9869	750, 1	750, 1	2089	14, 5	1000
at	$9,807 \cdot 10^4$	$9,807 \cdot 10^4$	0,9807	1	0,9678	735, 6	735, 6	2048	14, 22	980, 7
atm	$1,013 \cdot 10^5$	$1,013 \cdot 10^5$	1,013	1,033	1	760	760	2116	14, 7	1013
Torr	133, 3	133, 3	0,001333	0,00136	0,001316	1	1	2,785	0,01934	1,333
mmHg	133, 3	133, 3	0,001333	0,00136	0,001316	1	1	2,785	0,01934	1,333
psf	47,88	47, 88	0,0004788	0,0004882	0,0004725	0,3591	0,3591	1	0,006944	0,4788
psi	6895	6895	0,06895	0,07031	0,06805	51,72	51,72	144	1	68,95
mbar	100	100	0,001	0,00102	0,0009869	0,7501	0,7501	2,089	0,0145	1

	,
Pa	Pascal
$\frac{N}{m^2}$	Newton/Quadratmeter
bar	Bar
at	Tech. Atmosphäre
atm	Physikalische. Atmosphäre
Torr	Torr
mmHg	Millimeter Quecksilber
psf	pound per square foot
psi	pound per square inch
mbar	Millibar

8.1.12 Frequenz

	$Hz = \frac{1}{s}$	kHz	MHz	GHz
$Hz = \frac{1}{s}$	1	0,001	10^{-6}	10^{-12}
kHz	1000	1	0,001	10^{-9}
MHz	10^{6}	1000	1	10^{-6}
GHz	10^{12}	10^{9}	10^{6}	1

$Hz = \frac{1}{s}$	Hertz
kHz	Kilohertz
MHz	Megahertz
GHz	Gigahertz

8.1.13 Spannung

	V	mV	μV	kV	MV
V	1	1000	10^{6}	0,001	10^{-6}
mV	0,001	1	1000	10^{-6}	10^{-9}
μV	10^{-6}	0,001	1	10^{-9}	10^{-12}
kV	1000	10^{6}	10^{9}	1	0,001
MV	10^{6}	10^{9}	10^{12}	1000	1

V	Volt
mV	Millivolt
μV	Mikrovolt
kV	Kilovolt
MV	Megavolt

8.1.14 Strom

	A	mA	μA	kA	MA
A	1	1000	10^{6}	0,001	10^{-6}
mA	0,001	1	1000	10^{-6}	10^{-9}
μA	10^{-6}	0,001	1	10^{-9}	10^{-12}
kA	1000	10^{6}	10^{9}	1	0,001
MA	10^{6}	10^{9}	10^{12}	1000	1

A	Ampere
mA	Milliampere
μA	Mikroampere
kA	Kiloampere
MA	Megaampere

8.1.15 Widerstand

	Ω	$m\Omega$	$\mu\Omega$	$k\Omega$	M
Omega		,			,
Ω	1	1000	10^{6}	0,001	10^{-6}
$m\Omega$	0,001	1	1000	10^{-6}	10^{-9}
$\mu\Omega$	10^{-6}	0,001	1	10^{-9}	10^{-12}
$k\Omega$	1000	10^{6}	10^{9}	1	0,001
$M\Omega$	10^{6}	10^{9}	10^{12}	1000	1

Ω	Ohm
$m\Omega$	Milliohm
$\mu\Omega$	Mikroohm
$k\Omega$	Kiloohm
$M\Omega$	Megaohm

	H	mH	μH	nH	kH
H	1	1000	10^{6}	10^{9}	0,001
mH	0,001	1	1000	10^{6}	10^{-6}
μH	10^{-6}	0,001	1	1000	10^{-9}
nH	10^{-9}	10^{-6}	0,001	1	10^{-12}
kH	1000	10^{6}	10^{9}	10^{12}	1

H	Henry
mH	Millihenry
μH	Mikrohenry
nH	Nanohenry
kH	Kilohenry

	F	mF	μF	nF	pF	kF
\overline{F}	1	1000	10^{6}	10^{9}	10^{12}	0,001
mF	0,001	1	1000	10^{6}	10^{9}	10^{-6}
μF	10^{-6}	0,001	1	1000	10^{6}	10^{-9}
nF	10^{-9}	10^{-6}	0,001	1	1000	10^{-12}
pF	10^{-12}	10^{-9}	10^{-6}	0,001	1	10^{-15}
kF	1000	10^{6}	10^{9}	10^{12}	10^{15}	1

.,	
F	Farad
mF	Millifarad
μF	Mikrofarad
nF	Nanofarad
pF	Pikofarad
kF	Kilofarad