Analysis II - 2014.05.26

Erinnerung: Gauss

 $\int_X \operatorname{div} K \ d \operatorname{vol}_3 = \int_{\partial X} K \cdot n \ d \operatorname{vol}_2$

Beispiel: $K(x) = \frac{cx}{|x|^3}$, $X = \{x \in \mathbb{R}^3 | |x| \le R\}$, $\partial X = \{x \in \mathbb{R}^3 | |x| = R\}$ $n(x) = \frac{x}{|x|}$ für $x \in \partial X$

Rechte Seite: $= \int_{\partial X} \frac{cx}{|x|^3} \cdot \frac{x}{|x|} d \operatorname{vol}_2 = \int_{\partial X} \frac{cR^2}{R^4} d \operatorname{vol}_2 = \frac{c}{R^2} \underbrace{\operatorname{vol}_2(\partial X)}_{2} = 4\pi c$

 $\begin{array}{l} \operatorname{div} K = \sum \frac{\partial K_i}{\partial x_i} = \frac{3x}{|x|^3} - \frac{3c|x|^2}{|x|^5} = 0 \\ \frac{\partial}{\partial x_i} \left(\frac{cx_i}{|x|^3}\right) = \frac{c}{|x|^3} - \frac{3cx_i}{|x|^5} \end{array}$

Also K auf $\mathbb{R}^3 \setminus \{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \}$ divergenzfrei. Vorsicht: Gauss nicht anwendbar, weil $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \in X$ ist. Aber sei $Y \subset X$ mit $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \in Y^0 \Rightarrow$ Gauss anwendbar auf $X \setminus Y$. Dann folgt:

$$\int_{X \setminus Y} \underbrace{\operatorname{div} K}_{=0} d \operatorname{vol}_{3} = 0 = \underbrace{\int_{\partial X} K \cdot n \, d \operatorname{vol}_{-2} - \int_{\partial Y} K \cdot n \, d \operatorname{vol}_{2}}_{4\pi c} \Rightarrow \int_{\partial Y} K \cdot n \, d \operatorname{vol}_{2} = 4\pi c$$

für jedes kompakte $Y \subset \mathbb{R}^3$ mit $0 \in$

Satz von Stokes

Sei $B \subset \mathbb{R}^2$ kompakt mit stückweise C^1 -Rand, sei $\varphi : B \to F$ eine stückweise C^1 -parametrisierte Fläche, sei $\partial F := \varphi(\partial B)$.

Definition: Für K Vektorfeld auf $U \subset \mathbb{R}^3$ ist rot $K := \nabla \times K = \begin{pmatrix} \partial/\partial x_1 \\ \partial/\partial x_2 \\ \partial/\partial x_3 \end{pmatrix} \times \begin{pmatrix} K_1 \\ K_2 \\ K_3 \end{pmatrix} = \begin{pmatrix} \frac{\partial x_2}{\partial x_2} - \frac{\partial x_3}{\partial x_3} \\ \frac{\partial K_1}{\partial x_3} - \frac{\partial K_3}{\partial x_1} \\ \frac{\partial K_2}{\partial x_2} - \frac{\partial K_1}{\partial x_3} \end{pmatrix}$

Bemerkung: f C^2 -Skalarfeld \Rightarrow rot(grad f) = 0

Sei $U \subset \mathbb{R}^3$ offen mit $F \subset U$

Satz:

$$\int_{F} (\operatorname{rot} K) \cdot n \ d \operatorname{vol}_{2} = \int_{\partial F} K \cdot dx$$

Green: $\int_B ((\operatorname{rot} K) \circ \varphi) \cdot (\varphi_u \times \varphi_v) \ d \operatorname{vol}_2(v) = \int_{\partial B} (K \circ \varphi) \times \nabla \varphi \times d(v)$

Bedeutung: rot K misst die lokale Zirkulationsrate von K in jeder der drei Raumrichtungen.

Beispiel: $K(x) := \omega \times x$ in \mathbb{R}^3 . Geschwindigkeitsfeld einer gleichmässigen Drehung um $\omega \mathbb{R}$. $\operatorname{rot} K = \begin{pmatrix} \partial_1 \\ \partial_2 \\ \partial_2 \end{pmatrix} \times \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = [..] = \begin{pmatrix} 2\omega_1 \\ 2\omega_2 \\ 2\omega_2 \end{pmatrix} = 2\omega$

Beispiel: $F := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \middle| \begin{array}{c} x^2 + y^2 + z^2 = 1 \\ z \ge 0 \end{array} \right\}$ Orientierung von F: überall n von 0 weg.

Sei
$$K \begin{pmatrix} x \\ y \\ u \end{pmatrix} := \begin{pmatrix} y(z^2 - x^2) \\ x(y^2 - z^2) \\ z(x^2 - y^2) \end{pmatrix} \Rightarrow \operatorname{rot} K = \begin{pmatrix} \partial_1 \\ \partial_2 \\ d_3 \end{pmatrix} \times K = \begin{pmatrix} \partial_y(z(x^2 - y^2)) - \partial_z(x(y^2 - z^2)) \\ \vdots \\ x(y^2 - z^2) \end{pmatrix} = [..] = \begin{pmatrix} 2z(x - y) \\ 2x(y - z) \\ y^2 + x^2 - 2z^2 \end{pmatrix}$$
 Apparently this result might be wrong.

$$\int_{F} \operatorname{rot} K \cdot n \ d \operatorname{vol}_{2} = \int_{\partial F} K \cdot d \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Rechne rechte Seite. Für ∂F wähle Parametrisierung $\gamma:[0,2\pi]\to\partial F,\quad t\mapsto\begin{pmatrix}\cos t\\\sin t\\0\end{pmatrix}$

$$= \int_0^{2\pi} (K \circ \gamma)(t) \cdot \gamma'(t) \ dt = \int_0^{2\pi} \begin{pmatrix} -\sin t \cos^2 t \\ \cos t \sin^2 t \end{pmatrix} \cdot \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix} \ dt = \int_0^{2\pi} 2 \sin^2 t \cos^2 t \ dt$$

$$\int_0^{2\pi} 2^{\frac{1-\cos^2 t}{2} \frac{1+\cos^2 t}{2}} \ dt = \int_0^{2\pi} \frac{1}{2} (1-\cos^2 2t) \ dt = \int_0^{2\pi} \frac{1}{2} (1-\frac{1+\cos 4t}{2}) \ dt = \frac{1}{2} (1-\frac{1}{2}) 2\pi = \frac{\pi}{2}$$

Beispiel: $K(x) = \frac{\omega \times x}{|\omega \times x|^2}$ auf $\mathbb{R}^3_{\backslash \mathbb{R}\omega}$ rot $K = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ hat lokal, aber nicht global, ein Potential.

 $\mathit{Fakt} \colon \int_{\gamma} K \cdot dx = 2\pi k$ für jede geschlossene Kurve γ in $\mathbb{R}^3_{\backslash \mathbb{R}\omega}$

Seien zwei Kurven γ_1, γ_2 mit Windungszahl 1. Wähle F so dass $F \subset \mathbb{R}^3_{\backslash \mathbb{R}\omega}$ $\partial F = \gamma_1 - \gamma_2$.

Stokes
$$\Rightarrow \underbrace{\int_{F} \operatorname{rot} K \cdot n \ d \operatorname{vol}_{2}}_{=0} = \int_{\gamma_{1}} K \cdot dx - \int_{\gamma_{2}} K \cdot dx$$

Also $\int_{\gamma_{1}} K \cdot dx = \int_{\gamma_{2}} K \cdot dx$

 $Spezialfall: \partial F = \emptyset$. geschlossene Fläche. Wende Stokes auf Teilstücke an.

Satz: $\partial F = \emptyset \Rightarrow \int_F \operatorname{rot} K \cdot n \ d \operatorname{vol}_2 = 0$