Chap 1: Espaces vectoriels et applicatins linéaires

Pr. Ali KACHA

Université Ibn Tofail, Faculté des Sciences, Section SMAI, Kenitra, 2021-2022

Structure d'espace vectoriel

Définition 1.

On appelle espace vectoriel sur un corps \mathbb{K} , qui est soit \mathbb{R} soit \mathbb{C} ou encore un \mathbb{K} espace vectoriel, tout ensemble \mathcal{E} muni de deux lois:

- 1. Une loi interne appelée addition, notée " + " telle que (E,+) soit un groupe commuttif.
- 2. Une loi externe qui à tout couple $(\lambda, x) \in \mathbb{K} \times E$ fait correspondre un élément de E noté $\lambda.x$, cette loi véirifie les quatre propriétés suivantes:
 - $\forall x \in E, 1.x = x$
 - $\forall \lambda \in \mathbb{K}, \, \forall x, y \in E, \, \lambda.(x+y) = \lambda.x + \lambda.y$
 - $\forall \lambda, \mu \in \mathbb{K}, \forall x \in E, (\lambda + \mu).x = \lambda.x + \mu.x$
 - $\forall \lambda, \mu \in \mathbb{K}, \forall x \in E, (\lambda \mu).x = \lambda.(\mu.x)$

les éléments de E s'appellent des vecteurs et ceux de $\mathbb K$ sont des scalaires.

- \blacksquare ($\mathbb{R}^n, +, ...$) est un espace vectoriel sur \mathbb{R} , pour $n \ge 1$.
- \blacksquare $\mathbb C$ est un espace vectoriel sur $\mathbb R$. Mais, $\mathbb R$ n'est pas un espace vectoriel sur $\mathbb C$.
- \blacksquare \mathbb{R} est un espace vectoriel sur \mathbb{Q} . Mais, \mathbb{Q} n'est pas un espace vectoriel sur \mathbb{R} .
- L'ensemble $\mathcal{M}_n(\mathbb{K})$ est un \mathbb{K} -espace vectoriel.
- L'ensemble $\mathbb{K}[X]$ des polynômes à coefficients dans \mathbb{K} est un espace vectoriel sur \mathbb{K} .
- L'ensemble $\mathcal{F}(I,\mathbb{R})$ des fontions numériques définies sur une partie I de \mathbb{R} est un \mathbb{R} -espace vectoriel.

Sous-espace vectoriels

Définition 2.

Soit (E, +, .) un \mathbb{K} espace vectoriel sur \mathbb{K} , F une partie non vide de E. On dit que F est un sous-espace vectoriel (s.s.v) de E si (F, +, .) est aussi un \mathbb{K} - espace vectoriel sur \mathbb{K} .

Proposition 1. Soit F une partie de E, F est un sous-espace vectoriel de E si et seulement si

- $\blacksquare F \neq$
- $\forall \lambda, \mu \in \mathbb{K}, \, \forall x, y \in E, \, \lambda.x + \mu \in F.$

- Soit E un \mathbb{K} espace vectoriel, $\{0_E\}$ et E sont des sous-espace vectoriel de E.
- Soit $n \in \mathbb{N}$ *, $\mathbb{K}_n[X] = \{P \in \mathbb{K}[X], \deg P \leq n\}$ est un sous-espace vectoriel de $\mathbb{K}[X]$.
- \blacksquare Pour $n\in\mathbb{N}*,$ l'ensemble des polynômes de degré égal à n

Sous-espace vectoriels

- L'intersection quelconque d'une famille de s.e.v. d'un \mathbb{K} espace vectoriel E est un s.e.v. de E.
- La réunion de deux s.e.v F_1 et F_2 d'un espace vectoriel E n'est pas toujours un s.e.v de E.
- L'ensemble (C, \mathcal{I}) des fonctions continues sur $I \subset \mathbb{R}$ est un sous-espace vectoriel de $\mathcal{F}(I, \mathbb{R})$.

Sous-espace engendré par une partie

Définition 3.

Soit $(v_1,...,v_n)$ un système de vecteurs d'un $\mathbb{K}-$ espace vectoriel E. On dit qu'un vecteur v est combinaison linéaire des vecteurs $v_1,...,v_n$ s'il existe des scalaires $\lambda_1,...,\lambda_n$ tel que

$$v = \lambda_1 v_1 + \dots + \lambda_n v_n.$$

Les λ_i sont les facteurs de la combinaison linéaire.

- (i) Le vecteur nul 0_E est combinaison linéaire de toute famille finie de vecteurs de E.
- (ii) Dans $E=\mathbb{R}^2$, une combinaison linéaire des vecteurs $v_1=(1,2)$ et $v_2=(3-2)$ est de la forme

$$\lambda_1 v_1 + \lambda_2 v_2 = \lambda_1(1,2) + \lambda_2(3,-2) = (\lambda_1 + 3\lambda_2, 2\lambda_1 - 2\lambda_2), \ \lambda_1, \lambda_2 \in \mathbb{R}.$$

Sous-espace vectoriel engendré par une partie

Théorème 2.

Soit $(v_1, ..., v_n)$ un système de vecteurs d'un \mathbb{K} - espace vectoriel E. L'ensemble F des combinaisons linéaires finies des vecteurs $v_1, ..., v_n$ est un s.e.v. de E. C'est le plus petit (pour l'inclusion) s.e.v. de E contenant les vecteurs $v_1, ..., v_n$.

On dit aussi que F est le s.e.v. de E engendré par les vecteurs $v_1,...,v_n.$ On note,

$$F = \text{Vect}(v_1, ..., v_n) = \{\lambda_1 v_1 + ... + \lambda_n v_n, \lambda_j \in \mathbb{K}\}.$$

Preuve du théorème 2. (i) Soient $v = \lambda_1 v_1 + ... + \lambda_n v_n, v' = \delta v_1 + ... + \delta_n v_n \in F, \ \alpha, \beta \in \mathbb{K}$. Alors, $\alpha v + \beta v' = (\alpha \lambda_1 + \beta \delta_1) v_1 + ... + (\alpha \lambda_n + \beta \delta_n) v_n \in F$.

Famille génératrice d'un espace vectoriel

Preuve du théorème 2.

(ii) Justifions que F est le plus petit (pour l'inclusion) s.e.v. de E contenant les vecteurs $v_1, ..., v_n$. Soit G un s.e.v. de E qui contient $v_1, ..., v_n$, alors G contient la somme $\lambda_1 v_1 + ... + \lambda_n v_n$ pour tous $\lambda_1, ..., \lambda_n$ de \mathbb{K} . Par suite, G contient F.

Définition 4. Une famille de vecteurs $\{v_1, ..., v_n\}$ de E est dite famille génératrice ou système générateur de E si Vect $(v_1, ..., v_n) = E$. On dit aussi que les vecteurs $v_1, ..., v_n$ engendrent E.

C'est équivalent à ce que

$$\forall v \in E, \exists \alpha_1, ..., \alpha_n \in \mathbb{K}, v = \alpha_1 v_1 + ... + \alpha_n v_n.$$

Famille libre, famille liée

Définitions 4.

libre si

(1) On dit qu'un système fini de vecteurs $(v_1, ..., v_n)$ de E est

$$\forall \lambda_1, ..., \lambda_n \in \mathbb{K} \text{ tels que } \lambda_1 v_1 + ... + \lambda_n v_n = 0, \text{ alors } \lambda_1 = ... = \lambda_n = 0.$$

(2) On dit qu'un système fini $(v_1, ..., v_n)$ de vecteurs est lié s'il n'est pas libre. C'est à dire s'il existe des scalaires $\lambda_1, ..., \lambda_n$ non tous nuls tels que

$$\lambda_1 v_1 + \dots + \lambda_n v_n = 0.$$

Propriétés

- Tout vecteur non nul est libre.
- Toute sous-famille d'une famille libre est libre.
- Toute famille (ou système) de vecteurs qui contient le

Famille libre, famille liée

Proposition 2.

Soit E un \mathbb{K} espace vectoriel. Le système $(v_1, ..., v_n)$ est lié si et seulement si l'un au moins des vecteurs v_i s'exprime en combinaison linéaire des autres vecteurs.

- La famille $\{(v_1 = (1, 2, 4), v_2 = (3, 7, 0), v_3 = (-1/2, -1, -2)\}$ est liée.
- Justifier que la partie $1, X, X^2, ..., X^n, ...$ est une partie libre de $\mathbb{K}[X]$.
- La partie formée des applications f_n définies par $f_n(x) = e^{nx}, n \in \mathbb{N}$ est libre dans l'espace vectoriel $\mathcal{F}(\mathbb{R}, \mathbb{R})$. (récurrence sur n.)

Base et dimension d'un espace vectoriel

Définition 5.

- (i) Soit $B = (v_1, ..., v_n)$ un système de vecteurs de E. On dit que B est une base de E si la famille B est à la fois libre et génératrice.
- (ii) le cardinal d'une base d'un e.v E s'appelle la dimension de l'e.v E. Rappelons que dans un espace toutes les bases de E admettent un même cardinal.

Théorème 3.

Soit $B = (e_1, ..., e_n)$ un système de vecteurs de E. B est une base de E si et seulement si tout vecteur de E s'écrit d'une manière unique sous forme d'une combinaison linéaire des vecteurs $e_1, ..., e_n$.

Dans le \mathbb{K} -e,v \mathbb{K}^n , les vecteurs $e_1 = (1, 0, ..., 0), e_2 = (0, 1, ..., 0), ...$ et $e_n = (0, 0, ..., 1)$ forment une base de cet espace. Alors, $\dim_{\mathbb{K}} \mathbb{K}^n = n$.

Espace vectoriel de dimension finie

Définition.

- (i) On appelle espace vectoriel de dimension finie tout espace vectoriel engendré par une famille finie de vecteurs. Dans le cas contraire, on dit que l'espace vectoriel est de dimension infinie.
- (ii) Une famille $\{u_1, ..., u_n\}$ de vecteurs d'un \mathbb{K} -espace vectoriel \mathbb{E} est une base de \mathbb{E} si $\{u_1, ..., u_n\}$ est libre et génératrice.

Exemples

- Les polynômes $1, X, X^2, ..., X^n$ forment une base de l'e.v. $\mathbb{K}_n[X]$ des polynômes de degré inférieur ou égal à n.
- Si E et F sont deux K-espaces vectoriels de bases respectives $(e_1, ..., e_n)$ et $(f_1, ..., f_m)$ alors le K-espace vectoriel $E \times F$ admet pour base $(e_1, O_F), ..., (e_n, 0_F), (0_E, f_1), ..., (0_E, f_m)$.

Remarque. On va voir un lemme fondamental qui nous

Lemme fondamental.

Soit E un K-espace vectoriel engendré le système $(e_1, ..., e_n)$ et soit $(f_1, ..., f_m)$ un système de vecteurs de E. Si m > n, alors le système $(f_1, ..., f_n)$ est lié.

Preuve.

La preuve se fait par récurrence sur n. Soit m > n.

Pour n=1, E engendré par (e_1) , si (f_1,f_2) (m=2) est un système de E. Alors on a $f_1=\lambda_1e_1$ et $f_2=\lambda_2e_1$. Si l'un au moins des coefficients λ_i est nul, alors (f_1,f_2) est lié. Sinon, on aura

$$\lambda_2 f_1 - \lambda_1 f_2 = 0_E$$

et le système (f_1, f_2) est alors lié.

H. R. On suppose que la propriété est vraie pour n-1. Justifions la pour n.

Théorème 1.

- Tout K-espace vectoriel de dim finie admet au moins une base. Plus précisément tout système générateur fini de E contient au moins une base.
- Toutes les bases d'un \mathbb{K} -espace vectoriel ont le même nombre de vecteurs. Ce nombre de vecteurs s'appelle la dimension de \mathbb{E} , on note dimE.

Preuve: Existence d'une base.

- Soit $(e_1, ..., e_n)$ un système qui engendre E et s'il est est libre, alors il forme une base de E.
- Si $(e_1, ..., e_n)$ est lié, l'un des vecteurs, prenons par exemple e_n , est combinaison linéaire des autres vecteurs. Dans ce cas, on justifie que le système $(e_1, ..., e_{n-1})$ engendre E. On itère le procédé jusqu'à ce qu'on obtiene un système générateur libre. Ctte méthode est constructive.

Preuve du théorème 1.

Soient $(e_1,...,e_n)$ et $(f_1,...,f_m)$ deux bases de e. D'aprè le lemme fondamental, $(e_1,...,e_n)$ est générateur de E et $(f_1,...,f_m)$ est libre dans E, donc $m \leq n$. On a aussi $(e_1,...,e_n)$ libre et $(f_1,...,f_m)$ générateur d'où $n \leq m$. Par conséquent, on a m = n.

Théorème 2.

Soit E un \mathbb{K} -espace vectoriel de dimension finie n.

- 1 Tout système libre de E ayant n vecteurs est une base de E.
- 2 Tout système générateur de E ayant n vecteurs est une base de E.
- 3 Soit $F \subset E$ un s.e.v de E. Alors F est de dimension finie et on a $dimF \leq dimE$.

Remarque. Un autre moyen de former une base est d'utiliser le théorème de la base incomplète suivant.

Théorème 3 : théorème de la base incomplète

Soient E un \mathbb{K} -espace vectoriel de dimension finie n de base $(e_1,...,e_n)$ et soit $(f_1,...,f_m)$ une famille libre. Alors il existe n-m vecteurs parmi les vecteurs $e_1,...,e_n$ tels que le famille constituée de $(f_1,...,f_m)$ et de ces n-m vecteurs forme une base de E.

Exemple

 $E=\mathbb{R}^4$, muni de sa base canonique (e_1,e_2,e_3,e_4) . On veut compléter la famille libre $f_1=e_1+2e_e$ et $f_2=-e_1+e_2$ en une base de E. On a :

- \bullet (f_1, f_2, e_1) est liée.
- \bullet (f_1, f_2, e_2) est liée.
- (f_1, f_2, e_3) est libre. Ensuite, on complète (f_1, f_2, e_3) en une base de E.
- \bullet (f_1, f_2, e_3, e_1) est libre.

Rang d'un système fini de vecteurs

Définition 2.

E un e.v. de dim finie $n, S = (u_1, ..., u_p)$ un système de p vecteurs de E $(p \le n)$ On appelle rang du système $(u_1, ..., u_p)$ qu'on note par $\operatorname{rg}(S)$, la dimension de sous-espace vectoriel engendré par ce système.

$$rg(u_1, ..., u_p) = dim \ Vect\{u_1, ..., u_p\}.$$

Remarque. Le rang d'un système de vecteurs est le nombre maximum de vecteurs libres que l'on peut extraire de ce système.

Rang d'un système fini de vecteurs

Exemple

Dans \mathbb{R}^4 , on considère le système des trois vecteurs

$$u_1 = (1, 0, 0, 0), u_2 = (0, 1, 0, 0), u_3 = (1, 1, 0, 0).$$

On vérifie que (u_1, u_2, u_3) est lié car $u_3 = u_1 + u_2$. Deplus, (u_1, u_2) est libre, par conséquent,

$$rg(u_1, u_2, u_3) = \dim Vect\{u_1, u_2, u_p\}$$

$$= \dim(\operatorname{Vect}\{\mathbf{u}_1, u_2\}) = 2.$$

Somme de sous-espaces vectoriels

Définition 6.

Soit E un \mathbb{K} - e.v., de dimension finie ou non, F et G deux s.e.v. de E. On appelle somme de F et G l'ensemble, noté F+G, défini par

$$F + G = \{z = x + y, x \in F, y \in G\}.$$

Proposition 2.

La somme F + G de deux s.e.v d'un e.v. E est un s.e.v de E. Deplus, c'est le plus petit s.e.v de E (au sens de l'inclusion) contenant $F \cup G$.

On vérifie facilement que F+G est un s.e.v de E Le s.e.v F+G contient F et G, donc il contient $F\cup G$. D'autre part, soit H un s.e.v de E qui contient $F\cup G$, soient $x\in F$ et $y\in G$, alors H contient x et y donc il contient aussi x+y. Par suite, H contient F+G.

Somme de sous-espaces vectoriels

Remarque.

Si tout élément de F+G s'écrit d'une manière unique sous la forme x+y avec $x\in F$ et $y\in G$, on dit que la somme F+G est **directe** et on $F\oplus G$.

Proposition 3.

Soit E un \mathbb{K} -e.v, F et G deux s.e.v de E. Il y a équivalence entre:

- La somme F + G est directe.
- $F \cap G = \{0_E\}.$
- Pour tous $x \in E, y \in G$, si $x + y = 0_E$ alors $x = y = 0_E$.

Rang et somme vectorielle

Remarque

Soit E un K-e.v. de dim finie. Tout s.e.v F de E admet au moins un supplémentaire G.

Deplus, tous les supplémentaires G ont pour dimension $\dim E - \dim F$.

C'est le théorème de la base incomplète qui nous permet de justifier ceci.

Proposition.

Soient F et G deux s.e.v de dimensions finies d'un espace vectoriel E. Alors F+G est de dim finie et on a:

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G).$$

Applications linéaires

Définition 7.

Soient E et E' deux espaces vectoriels sur \mathbb{K} et f une application de E dans E'. On dit que f est une application linéaire si:

- $f(v+w) = f(v) + f(w), \forall v, w \in E.$
- $f(\lambda v) = \lambda f(v), \forall v \in E, \forall \lambda \in \mathbb{K}.$

Si deplus, f est bijective, on dit que f est un isomorphisme d'espaces vectoriels.

L'ensemble des application linéaire de E dans E' est noté $\mathcal{L}(E,E')$. Si E=E' toute application linéaire de E dans E' est appelée endomorphisme de E. L'ensemble des endomorphismes de E est noté $\mathcal{L}(E)$.

Remarque. Soit f une application linéaire de E dans E', 0_E et $O_{E'}$ les vecteurs nuls de E et E' respectivement. Alors, on a

$$f(0_E) = 0_{E'}.$$

Image et noyau d'une application linéaire

Définition 8.

Soit Soit f une application linéaire de E dans E', l'ensemble $f(E) = \{f(v), v \in E\} \subset E'$ est un sous-espace vectoriel de E' appelé image de f et il est noté Imf.

Proptiétés

- (a) Si F est un s.e.v de E, f une application linéaire de E dans E', alors f(F) est un s.e.v de E'. C'est à dire que l'image directe d'un s.e.v de E est un s.e.v de E'.
- (b) Si F' est un s.e.v de E', f une application linéaire de E dans E', alors l'image réciproque de F', $f^{-1}(F') = \{v \in E, f(v) \in F'\}$ est un s.e.v de E.

Image et noyau d'une application linéaire

Définition du noyau.

Soit $f \in \mathcal{L}(E, E')$, le noyau de f est un sous-espace vectoriel de E, il est noté Kerf.

$$\operatorname{Ker} f = \{ v \in E, f(v) = 0_{E'} \}.$$

C'est l'image réciproque de s.e. v $\{O_{E'}\}$.

Proposition.

Soit f une application linéaire de E dans E', alors on a

- f est injective si et seulement si ker f = 0_E .
- Si f est injective et le système $(v_1, ..., v_n)$ est libre dans E alors le système $(f(v_1), ..., f(v_n))$ est libre dans E'.
- Si f est surjective et le système $(v_1, ..., v_n)$ est générateur dans E alors le système $(f(v_1), ..., f(v_n))$ est générateur dans E'.

Théorème de la dimension

Définition et propriété

Soient E et E' deux \mathbb{K} -espaces vectoriels avec E de dim finie, f une application linéaire de E dans E'. Alors Im f est un s. e. v de E' de dimension finie. La dimension de Im f est appelée le rang de f. $\operatorname{rg} f = \operatorname{Im} f$.

En effet, si $(e_1, ..., e_n)$ est une base de E alors la famille $(f(e_1), ..., f(e_n))$ engendre Im f. donc Im f est de dim finie avec dim Im $f \leq n$.

Théorème de la dimension.

Soient E et E' deux K-espaces vectoriels de dimensions finies, $f \in \mathcal{L}(E,E')$. Alors, on a

$$\dim(E) = \dim(\text{Ker f}) + \dim(\text{Im f}).$$

