Sei AERnxn. Dann heißt DE Eigenwert von A, falls es ein VEC 1803 gibt mit AV = DV

·V heißt dann Eigenvektor zum Eigenwert)
Li v wird durch A nur skaliert/gespiegelt

· spec(A) ist die Menge aller EW von A

Es ist: λ EW von $A \iff \exists v \neq 0 : Av = \lambda v$

 $\Rightarrow \exists v \neq 0 : Av - \lambda v = 0$

<=> ∃v≠0:(A-λI)v=0

 \iff de+(A- λ I) = 0

Für $\lambda \in \text{Spec}(A)$ bezeichnen wir Kern $(A-\lambda I)$ als den Eigenraum von A zum EW λ Lie Eig (A,λ) ist also die Menge aller Vektoren x mit $Ax = \lambda x$ Theorem Willvektor.

Eigenvektoren zu Verschiedenen Eigenwerten sind linear unabhängig

Frage: Sind Summen und skalare Vielfache von EV wieder EV?

Seien $V, w \in Eig(A, \lambda) \setminus \{0\}$.

Dann ist $A(v+\omega) = Av + A\omega = \lambda v + \lambda \omega = \lambda(v+\omega)$

4 also v+w EV zum EW X?

Ja, ober nur, falls v+ w ≠ 0, da 0 nach Def. Kein EV ist

Analog für $\alpha \in \mathbb{R}$: $A(\alpha v) = \alpha A v = \alpha \lambda v = \lambda(\alpha v)$ La.v ist EV, falls $\alpha \neq 0$, da sonst $\alpha v = 0$.

Dies ist nicht überraschend, da ja Eig(A, λ) = Kern(A- λ I) ein UR ist! La wir müssen nur aufpassen, dass wir nicht zu O kombinieren.

Charakteristisches Polynom

· der Ausdruck $\mathcal{X}_A = \det(A - \mathcal{E} \cdot \mathbf{I})$ ist ein Polynom in \mathcal{E} von Grad n

La hat genau n (evtl. komplexe) Nullstellen

• nach obiger Überlegung ist $\lambda \in \text{Spec}(A) \iff \chi_A(\lambda) = 0$

Algebraische Vielfachheit a(X)

· Vielfachheit der Nullstelle λ von $\mathcal{X}_{\mathcal{A}}$

• ist $\chi_A(t) = \prod_{i=1}^{m} (\lambda_i - t)^{m_i}$ für $\lambda_i \neq \lambda_j$, dann ist m. die VFH der Nullstelle λ_i

Geometrische Vielfachheit des EW A

· Dimension des zugehörigen Eigenraums la dim(Eig(A, A))

Bemer Kunger	n: far	λ e spe	c(A)	ist im	mer .	1≤ dir	n (Eigl/	4, \lambda))	e a	(λ)						
	·da	x_A als	Polyno	m üb	er C	genau	n Nu	lls†ell	en l	oesi	+2+,					
	9:1+	n = \$	a(λ:)	für	λ ; ≠ λ	j unc	l spec (A) =	l							
		,-														
	·ist p	ein reelle	s Polyno	ım mit	P(y) = () , dani	n auch P	= (<u>X</u>)	0							
	~> eir	ne veelle	Matrix	mit	ungera	der D	limensio	n be	si+z	t in	mer	eine	n ve	eller	EW	
	Ls	Komple	xe EW	in 1	Comple	k- Konj	ugiertei	ı Pa	aren							

Beispiele zur Berechnung von EW und EV

$$A = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

 $A = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ • EW einer Diagonalmatrix stehen auf Diagonale $L_3 x_A(t) = (3-t)^2 \sim 3 \text{ ist EW mit } a(3) = 2$

$$L_{\lambda}$$
 $\chi_{A}(t) = (3-t)^{2} \sim 3$ ist EW mit $a(3) = 3$

 $d_{im}(Kern(A-3I)) = 2$

$$\begin{bmatrix} 1 & 1 & 1 \\ B = & 7 & 1 \\ & & 1 \end{bmatrix} \cdot \text{EW einer Drejecksmatrix stehen auf der Diagonale}$$

$$B = \begin{bmatrix} 1 & 1 & 1 \\ & 1 & 1 \\ & & 1 \end{bmatrix} \cdot \text{Weiter ist}$$

$$Weiter \text{ ist}$$

$$\text{Kern}(A-1\cdot I) = \text{Kern} \begin{bmatrix} 0 & 1 & 1 \\ & 0 & 1 \\ & & 0 \end{bmatrix} = \text{lin}(\{e_1\})$$

 $C = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \cdot \chi_A(t) = \det(C - tI) = (-t)^2 + 1 = t^2 + 1 = (i - t)(-i - t)$ $G = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \quad \text{is reelle Matrizen Können Komplexe EW haben!}$

$$C-iI = \begin{bmatrix} -i & -1 \\ 1 & -i \end{bmatrix} \xrightarrow{\text{II-iI}} \begin{bmatrix} -i & -1 \\ 0 & 0 \end{bmatrix} \text{ also } \text{Eig}(C,i) = \text{kern}(C-iI) = \text{lin}(\{(\frac{i}{2})\})$$

$$\text{und analog } \text{Eig}(C,-i) = \text{kern}(C+iI) = \text{lin}(\{(\frac{i}{2})\})$$

Zusammenhang: spec(A) und rg(A)/Kern(A)

ist $0 \in \text{spec}(A)$, dann $\exists v \neq 0 : Av = 0 \cdot v = 0$

4 Eig(A, 0) = Kern (A - O.I) = Kern (A) \$ {0}.

Ly dim (Eig(A,0)) = dim (Kern(A)) = n - rg(A)

 $0 \in \operatorname{Spec}(A) \iff \operatorname{Kevn}(A) \neq \{0\} \iff \operatorname{rg}(A) \leqslant n$ · es gilt also:

Bemerkung: Sei $A \in \mathbb{R}^{n \times n}$ regulär und $\lambda \in \text{Spec}(A)$, $v \in \text{Eig}(A, \lambda) \setminus \{0\}$. Dann gilt:

$$\cdot A^{z}v = A(Av) = \lambda Av = \lambda^{z}v$$

$$\cdot A v = \lambda v \iff v = \lambda A^{-1} v \iff A^{-1} v = \lambda^{-1} v$$

Diagonalisierung

 $A \in \mathbb{R}^{n \times n}$ ist diagonalisierbar $\iff \exists S \in \mathbb{R}^{n \times n}$ invertierbar und Diagonalmatrix D mit $A = S \cdot D \cdot S^{-1}$

Beobachtung: A = SDS-7 (=> AS = SD

·hat A die EW 2,... 2n, dann ist also A= SDS genau dann, wenn:

2) j-te Spalte von S ist EV zum EW λ;Ly Spalten linear unabhängig

Kriterien für die Diagonalisierbarkeit

Eine Matrix ist genau dann diagonalisierbar, wenn es eine Basis aus EV gibt

(=) Far alle λ ε spec (A) gilt: a(λ) = dim(Eig(A,λ))

(=)
$$\exists S \in \mathbb{R}^{n \times n}$$
 invertierbar mit $S^{-1}AS = diag(...)$ (= D)

Sind die oben betrachteten Matrizen diagonalisierbar?

$$A = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$
 • Ja, ist ja schon eine Diagonalmatrix is wähle z.B. $S = I$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \text{Nein, denn es ist } \dim(\text{Eig}(B,1)) = 1 < 3 = \alpha(1)$$

$$B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \cdot \exists a! \text{ Wegen } (\frac{1}{1}) \in \text{Eig}(C, i) \text{ und } (\frac{1}{1}) \in \text{Eig}(C, -i) \text{ ist z.B.}$$

$$\begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} i & i \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} i & i \\ -i \end{bmatrix} \cdot \begin{bmatrix} i & i \\ 1 & -1 \end{bmatrix}^{-1}$$

$$C \qquad S \qquad D \qquad S^{-1}$$

Bemerkungen: 1) hat Matrix An verschiedene EW, dann ist A diagonalisierbar

2) Reihenfolge der Ew in D muss zur Reihenfolge der Spalten von S passen (siehe oben)

Symmetrische relle Matrizen

Sei $A \in \mathbb{R}^{n \times n}$ mit $A^{\mathsf{T}} = A$. Dann gilt:

- 1) A hat nur reelle Eigenwerte
- 2) EV zu verschiedenen EW sind orthogonal zueinander
- \Rightarrow $\exists Q \in \mathbb{R}^{n \times n}$ orthogonal and $D = d : ag(\lambda_1 ... \lambda_n) \in \mathbb{R}^{n \times n}$ mit $A = QDQ^{-1} = QDQ^{-1}$
- => Symmetrische Matrizen sind orthogonal reell diagonalisierbar L> "reelle Eigenzerlegung"

Sei $A = Q D Q^T$. Muss A symmetrisch sein?

 $L_{A} A^{\mathsf{T}} = (Q D Q^{\mathsf{T}})^{\mathsf{T}} = Q^{\mathsf{T}^{\mathsf{T}}} D^{\mathsf{T}} Q^{\mathsf{T}} = Q D Q^{\mathsf{T}} = A$

Beispielanwendung: Kriterium für positive Definitheit (letzte Woche)

Se: A ∈ Rnxn symmetrisch. Dann gilt: A ist pd (=> alle EW von A sind positiv

Se: A pd. Dann gilt für alle x≠0: xTAx>0.

Ist v EV zum EW à von A, dann folgt O < vTAv = vT(\(\lambda\v)\) = \(\lambda\) ||v||2 and wegen $\|v\|_{2}^{2} > 0$ ist $\lambda > 0$.

Seien nun alle EW von A größer als Null.

Da A symmetrisch ist, existiert eine reelle Eigenzerlegung von A, also $A = Q D Q^T$. Ly D = diag(), ...) & Rnxn und Q orthogonal

Far $x \neq 0$ ist dann $x^TAx = x^TQDQ^Tx$

=
$$(Q^T x)^T D(Q^T x)$$
 set $ze y = Q^T x$

$$= \lambda_{\perp} D\lambda$$

=
$$y^T D y$$

= $\sum_{i=1}^{n} \lambda_i y_i^2 > 0$ da $\lambda_i > 0$ for alle $1 \le i \le n$

und y \$ 0, da x \$ 0 und Q invertierbar

Power Iteration

Se: A diagonalisierbar und $|\lambda_1| > |\lambda_2| \ge ... \ge |\lambda_n| \ge 0$. Ziel: Bestimme EV zum (betragsmäßig größten) EW λ_1 .

Algorithmus: (7) wähle Startvektor x(0)

(2) until converged:
$$x^{(k+1)} = Ax^{(k)} \cdot \frac{1}{\|Ax^{(k)}\|}$$

Was ist die Idee hinter dem Algorithmus ?

· A ist diag-bar => 3 Basis aus EV von A.

 $B = (v_1, ..., v_n)$, $V_i \in Eig(A, \lambda_i)$ also insb. $v_1 \in Eig(A, \lambda_n)$

· also ist x® = \sum_{i=1}^{\infty} \alpha_i \vi \ \ \text{und } \omega_i \vi \ \ \text{nehmen an, dass } \alpha_n ≠0 \ \ \ \text{gilt}

Wir beobachten: $Ax^{(0)} = A\left(\sum_{i=1}^{n} \alpha_i v_i\right) = \sum_{i=1}^{n} \lambda_i \alpha_i v_i = \lambda_1 \left(v_1 + \frac{\lambda_2}{\lambda_1} \cdot \alpha_2 v_2 + ... + \frac{\lambda_n}{\lambda_2} \cdot \alpha_n v_n\right)$

Also:
$$x^{(k)} = A^k \cdot x^{(0)} = \lambda_1^k \left(\alpha_1 v_1 + \left(\frac{\lambda_2}{\lambda_1} \right)^k \cdot \alpha_2 v_2 + \dots + \left(\frac{\lambda_n}{\lambda_n} \right)^k \cdot \alpha_n v_n \right)$$
 mit $\left| \frac{\lambda_i}{\lambda_1} \right| < 1$ für $i > 7$

Daraus folgt für unseren Algorithmus nun

$$\frac{x^{(k)}}{\|x^{(k)}\|} = \frac{A^k x^{(0)}}{\|A^k x^{(0)}\|} = \frac{\lambda_1^k \alpha_1}{|\lambda_1^k| \cdot |\alpha_1|} \cdot \frac{V_1 + \frac{1}{\alpha_1} r_k}{\|V_2 + \frac{1}{\alpha_1} r_k\|} \longrightarrow \frac{V_1}{\|V_1\|} \neq \bar{\alpha} r_k \times \infty, \quad d\alpha r_k \to 0.$$

Wann liefert der Algo Keinen EV zum EW 2,?

$$\cdot x^{(0)} = 0$$

 $\mathbf{x}^{(0)} = 0 \cdot \mathbf{v}_1 + \sum_{i=1}^{n} \alpha_i \mathbf{v}_i$, also "Kein Anteil" von \mathbf{v}_1 im Startvektor $\mathbf{x}^{(0)}$

Ly Dann auch x(k) = 0. v2 + ... für alle k>7

Ly Aber: aufgrund numerischer Fehler Konvergiert $x^{(k)}$ i.d.R. trotzdem gegen $v \in Eig(A, \lambda_2)$