同济大学 2013 年硕士研究生入学考试试卷

科目代码	科目名称:	材料力学	命题单位: () —满分分值:
答题要求:			
		上,做在试卷上无效。	
2 考试时间	1180 分钟。		

计算题 (共9题150分)

1.(16分) [本题得分____]

静不定结构如图。AB为刚体,①、②杆EA相同。(1)试列出求解两杆轴力 F_{N} 和 F_{N} 2的方程组;(2)若①、②两杆材料相同,试确定①、②两杆同时失效时的②号杆角度a。

(1) 平衡方程: $\sum M_{\Lambda}=0$, $3F-2F_{N_2}\cos\alpha -F_{N_1}=0$ 变形协调条件: $\Delta l_2/\cos\alpha = 2\Delta l_1$ $F_{N_2}l/\cos^2\alpha = 2F_{N_1}l$ $F_{N_2}=2F_{N_1}\cos^2\alpha$

(2) 若两杆要同时失效,则两杆的工作应力应同时达到它们的许用值。

3 本试卷不可带出考场,违反者作零分处理。

令: $F_{N2}/A = F_{N1}/A$, 即 $F_{N2} = F_{N1}$ 由变形协调条件得 $\cos^2 a = 1/2$

解得: a = 45°

2.(18分) [本题得分]

图示刚架,试绘出其内力图(M图,Es图,压图)。

3.(18分)[本题得分___]

由三根木条胶合而成的悬臂梁截面尺寸如图所示。跨度l=1 m。若胶合面上的许用应力 $[\tau]=0.34$ MPa,木材 $[\sigma]=10$ MPa, $[\tau]=1$ MPa。试求许可载荷[F]。

[计算题~第3题图]

 $I_z=2812.5 \text{ cm}^4$, $W_z=375 \text{ cm}^3$ 木(S) max=281.25 cm³, 胶S=250 cm⁵

- (1) $\sigma = M_{\text{max}}/W_z \leq [\sigma]$, 故 $F \leq 3.75 \text{ kN}$
- (2) 木板切应力 $\tau = F_s(S')_{max}/(I_zb) \leq [\tau], F \leq 10 \text{ kN}$
- (3) 胶缝 $T = F_s S / (I_z b) \le [\tau], F \le 3.825 \text{ kN}$ 故F取3.75 kN

抗弯刚度为EI的两端固定梁受载如图示,作梁的Fs、M图

5.(16分) [本题得分____]

直径 $d=20\,\mathrm{mm}$ 圆轴受力如图。已知 $E=200\,\mathrm{GPa}$ 。今测得轴向应变 $\epsilon_a=320\times 10^{-6}$,横向应变 $\epsilon_b=-96\times 10^{-6}$ 。 $O\,C$ 方向应变 $\epsilon_c=565\times 10^{-6}$ 。 计算轴向外力 F 及扭转力偶矩m。

[计算题-第5题图]

 $F = \sigma_{x}A = 20.1 \text{ kN}$ $\varepsilon_{45'} = \varepsilon_{c} = (\sigma_{45'} - \upsilon \sigma_{a}) / E$ $= [(32 - \tau_{xy}) \cdot - | \varepsilon_{b} / \varepsilon_{a} | \cdot (32 + \tau_{xy})] / E$ $\tau_{xy} = -69.7 \text{ MPa}$ $m = \tau_{xy} W_{l} = 109 \text{ N} \cdot \text{m}$

6.(16分) [本题得分____]

混凝土柱受力如图,已知 $F_1=100$ kN, $F_2=36$ kN,e=20 cm,柱宽b=18 cm,若要求柱子横截面内不出现拉应力,求h值。

[计算题-第6题图]

 $(\sigma_t)_{\max} = F_N / A + M_2 / W \le 0$ $h \ge 0.318 \text{ m}$

7.(16分) [本题得分

图示传动轴,B轮皮带张力沿铅垂方向,C轮皮带张力沿水平方向,B、C两轮直径为 $D=600\,\mathrm{mm}$ 。轴的 $[\sigma]=60\,\mathrm{MPa}$ 。试按第三强度理论确定轴径d。

[计算题-第7题图]

B截面为危险截面。

 $M = \sqrt{1.33^2 + 0.42^2} = 1.39 \text{ kN} \cdot \text{m}$ $\sigma_{r_3} = 32 \sqrt{1.39^2 + 0.6^2} \times 10^3 / (\pi d^3) < [\sigma]$ d = 63.6 mm

8.(16分)[本题得分___]

图示矩形截面钢梁,A端是固定铰支座,B端为弹簧支承。在该梁的中点 C处受到重量为 $F_{w}=40$ N的重物,自高度 h=60 mm处自由下落冲击到梁上。 设弹簧刚度 k=25.32N/mm,钢弹性模量 E=210 GPa。求梁内最大冲击应力(不计梁的自重)。

 $\delta_{si} = \lambda /2 + f_c = (F_w/(2 k)) (1/2) + F_w (800)^3 / (48 E I_z) = 1.004 mm$ $K_d = 1 + \sqrt{1 + 2h/\delta_{si}} = 12$ $\sigma_{si} = 12 \text{ MPa}$

 $\sigma_{d \max} = K_d \cdot \sigma_{st \max} = 144 \text{ MPa}$

9.(16分) [本题得分____]

某油缸活塞杆长 $I=700\,\mathrm{mm}$,直径 $d=40\,\mathrm{mm}$ 。当活塞杆受压力 F 作用时,油缸内压 $p=4\,\mathrm{MPa}$,油缸内径 $D=195\,\mathrm{mm}$,壁厚 $t=5\,\mathrm{mm}$,活塞杆与油缸材料相同, $E=200\,\mathrm{GPa}$, $\sigma_s=240\,\mathrm{MPa}$, $\sigma_p=200\,\mathrm{MPa}$,经验公式 $\sigma_{cr}=304\,\mathrm{--}1.12\,\lambda$ (MPa)。 试计算活塞杆的工作安全系数。并按第三强度理论计算油缸的工作安全系数。 (提示: 活塞杆两端可视为铰支)

[计算题-第9题图]

压杆: $\lambda = 70$, $57 < \lambda < 99.3$ $\sigma_{cr} = a - b\lambda = 225.6 \text{ MPa}$ $n = \sigma_{cr} / \sigma = 2.37$ 油缸: $\sigma = P(D - D) / (4t) = 0 \text{ MPa}$ $\sigma = P(D + t) / (2t) = 80 \text{ MPa}$ $\sigma = 80 \text{ MPa}$, $\sigma = 0$, $\sigma = 0$ $\sigma = 0$, $\sigma = 0$ $\sigma = 0$, $\sigma = 0$