

MOTIVATION AND SUMMARY

- Customer churn is one of the most important and challenging problems for businesses today
- Many businesses are utilizing customer churn metrics in order to try and predict churning and improve customer retention.

What factors may or may not be **associated with churning**?

QUESTIONS

What is the profile of someone who is likely to churn?

After determining the profile, which percent of existing customers are now at risk for churning?

DATA CLEANUP & EXPLORATION

- Data Source: BankChurners.csv via Kaggle.com
- Pandas was used to create a dataframe from the csv
- In terms of cleaned data, the most significant edit to the data was that we eliminated all customers with a utilization ratio of 0 (aka they never used the card)
- Keeping zero utilization customer data led to misleading representations
- Two extraneous columns were deleted as they did not contribute to the analysis

DATA ANALYSIS

 Each variable (or column in the datasheet) was investigated whether it did or did not have a statistically significant effect in predicting those at risk for churning via using Matplotlib to create various diversified plots

 After plots were created by using the independent t-test on all factors, we determined which factors were statistically significant and came up with a basic profile of a customer that we believe is at risk for churning

VARIABLES EXAMINED FOR INVESTIGATION

- Age
- Income
- Utilization Ratio
- Transaction Amount
- Transaction Count
- Months Inactive

- Gender
- Marital Status
- Dependents
- Monthly Credit Limit
- Months with the Company

QUANTITATIVE DATA

- Utilization Ratio
- Months Spent
- Monthly Credit Limit
- Total Revolving Balance

UTILIZATION RATIO

MONTHS SPENT

MONTHLY CREDIT LIMIT

TOTAL REVOLVING BALANCE

CATEGORICAL DATA

- Gender
- Education Level
- Marital Status
- Income_Category
- Dependent Count
- Card Category
- Customer Age

GENDER, EDUCATION LEVEL, MARITAL STATUS & INCOME

DEPENDENT COUNT, CARD CATEGORY & AGE

STATISTICALLY SIGNIFICANT AREAS

- Total Transaction Amount
- Total Transaction Count
- Months Inactive Out of 12 Months

TOTAL TRANSACTION AMOUNT

<u>Churners</u>

Mean= \$3,148.97 Median= \$2,361.00 Std = \$2,357

Existing

Mean = \$4,861.27 Median = \$4,081.00 Std = \$3611.78

P-value 9.9e-51

TRANSACTION AMOUNT (BY MONTH)

TOTAL TRANSACTION COUNT

Churners

Mean: 45

Median: 43

Standard Deviation: 14.38

Existing Customers

Mean: 68

Median: 70

Standard Deviation: 24

P-value

6.9e-212

TRANSACTION COUNT (BY MONTH)

MONTHS INACTIVE

Churners

Mean: 2.73

Median: 3

Standard Deviation: 0.9

Existing Customers

Mean: 2.27

Median: 2

Standard Deviation: 1.02

P-value

2.8e-35

PROFILE OF A CHURNER

Total Trans Count <= 51

Months Inactive >= 3

RISK OF EXISTING CUSTOMER CHURN

- Existing customers who meet both conditions - 1%

- Existing customers who meet one of the two conditions - 68%

LIMITATIONS

- The dataset is quite large, containing data from more than 10,000 credit card accounts with 19 variables
- Data may be skewed by card category (revolving balance cards vs monthly pay in full cards)
- The dataset is missing variables that would have been valuable in our analysis

ADDITIONAL AREAS WORTH EXPLORING

- Some important variables were not included in the dataset but would be worth exploring:
 - Customer credit score
 - Annual percentage rate per card
 - Time period of dataset collection
 - Geographic location of the customer
 - Special offer such as 0% or low APR for a particular time period

QUESTIONS?