CPSC-354 Report

Mitchell Toney Chapman University

September 14, 2025

Abstract

Contents

L	Introduction			
2	Week by Week			
	2.1 Week 1: HW1			
	2.2 Week 2: HW2			
	2.3 Week 3: HW3			
	2.3.1 Exercise 5			
	2.3.2 Semantic question			
3	Essay			
1	Evidence of Participation			
5	Conclusion			

1 Introduction

2 Week by Week

2.1 Week 1: HW1

The MU puzzle is a puzzle created by Douglas Hofstadter. It consists of four rules that can be applied to a string MI.

$$\begin{aligned} &1. \ xI \rightarrow xIU \\ &2. \ Mx \rightarrow Mxx \\ &3. \ xIIIy \rightarrow xUy \\ &4. \ xUUy \rightarrow xy \end{aligned}$$

When first approaching this puzzle, the first strategy that came to mind was to take advantage of rule number 2 to keep duplicating the I's until there is a multiple of three, then using rules 3 and 4 to get rid of the I's and leave a remaining U.

The issue with this is that $2^n \mod 3$ will never equal 0, it infinitely cycles between equaling 1 and 2, and without being able to get rid of all the I's, which would require them being a multiple of 3, you will never be able to get MU.

Thus, the puzzle is not solvable.

2.2 Week 2: HW2

$$1. \ \ A=\varnothing, \ R=\varnothing$$

2.
$$A = \{a\}, R = \emptyset$$

3.
$$A = \{a\}, R = \{(a, a)\}$$

 $\begin{array}{lll} 4. & A & = & \{a,b,c\}, & R & = & \{(a,b),(a,c)\} \end{array}$

5. $A = \{a, b\}, R = \{(a, a), (a, b)\}$

6.
$$A = \{a, b, c\}, R = \{(a, b), (b, b), (a, c)\}$$

7.
$$A = \{a, b, c\}, R = \{(a, b), (b, b), (a, c), (c, c)\}$$

#	Terminating	Confluent	Unique NFs
1	Yes	Yes	Yes
2	Yes	Yes	Yes
3	No	Yes	No
4	Yes	No	No
5	No	Yes	Yes
6	No	No	No
7	No	No	No

Confluent True, Terminating True, Unique NFs True

Confluent True, Terminating True, Unique NFs False

(no ARS exists)

$\begin{array}{c} \textbf{Confluent True, Terminating False,} \\ \textbf{Unique NFs True} \end{array}$

Confluent False, Terminating True, Unique NFs True

Confluent False, Terminating False, Unique NFs True

Confluent True, Terminating False, Unique NFs False

Confluent False, Terminating True, Unique NFs False

$\begin{array}{c} {\bf Confluent\ False,\ Terminating\ False,}\\ {\bf Unique\ NFs\ False} \end{array}$

$$A=\{a,b,c\},\ R=\{(a,b),(a,c),(b,b),(c,c)\}$$

2.3 Week 3: HW3

2.3.1 Exercise 5

Consider rewrite rules:

$$\begin{array}{c} ab \rightarrow ba \\ ba \rightarrow ab \\ aa \rightarrow \\ b \rightarrow \end{array}$$

Example Reductions

Reducing abba:

$$\begin{array}{ll} abba \to baba & \text{(using } ab \to ba) \\ baba \to bbaa & \text{(using } ba \to ab) \\ bbaa \to baa & \text{(using } b \to \varepsilon) \\ baa \to aba & \text{(using } ba \to ab) \\ aba \to baa & \text{(using } ab \to ba) \end{array}$$

There is an infinite loop between aba and baa.

Reducing bababa:

$$bababa o ababab$$
 (using $ba o ab$)
 $ababab o baabab$ (using $ab o ba$)
 $baabab o ababab$ (using $ba o ab$)

This is an infinite loop between ababab and baabab.

Why the ARS is not terminating The ARS is not terminating because the rules $ab \to ba$ and $ba \to ab$ create infinite cycles. These rules allow us to swap adjacent a and b characters indefinitely, leading to non-terminating reduction sequences.

Non-equivalent strings Two strings that are not equivalent: a and aa.

The string a cannot be reduced further, while as reduces to nothing using the rule $aa \rightarrow$. Since nothing $\neq a$, these strings are in different equivalence classes.

Equivalence classes The equivalence relation \leftrightarrow^* has infinitely many equivalence classes. Each equivalence class can be characterized by the number of a's modulo 2 and the number of b's modulo 1.

The equivalence classes are:

- $[\varepsilon]$: strings with even number of a's and no b's
- [a]: strings with odd number of a's and no b's
- [b]: strings with any number of a's and at least one b

The normal forms are: ε , a, and b.

Modifying the ARS to be terminating To make the ARS terminating without changing equivalence classes, we can remove the symmetric rules and keep only one direction:

$$ba \to ab$$

$$aa \to \varepsilon$$

$$b \to \varepsilon$$

This eliminates the infinite cycles while preserving the same equivalence relation.

2.3.2 Semantic question

Parity of a's: "Does this string contain an odd number of a's?" Answer: Yes if the normal form is a, No if the normal form is ε .

Exercise 5b

Consider rewrite rules:

$$\begin{array}{c} ab \rightarrow ba \\ ba \rightarrow ab \\ aa \rightarrow a \\ b \rightarrow \end{array}$$

Reducing abba:

$$abba o baba$$
 $baba o abba$

Reducing bababa:

$$bababa \rightarrow ababab$$

$$ababab \rightarrow bababa$$

Why not terminating. The symmetric swaps $ab \leftrightarrow ba$ allow infinite rewriting.

Non-equivalent strings. a and ε are not equivalent.

Equivalence classes. Exactly two: $[\varepsilon]$ (no a's; all b's delete) and [a] (at least one a; since $aa \sim a$). Normal forms (under a terminating orientation): ε and a.

Terminating variant.

$$\begin{array}{c} ba \rightarrow ab \\ aa \rightarrow a \\ b \rightarrow \end{array}$$

This gives a complete semantics to the ARS: it computes the invariant for any input string.

- 3 Essay
- 4 Evidence of Participation
- 5 Conclusion

References

[BLA] Author, Title, Publisher, Year.