s3	s2	s 1	s0
	0	0	0
	0	0	1
uth ta	ble for PC	Write	
s3	s2	s1	s0
0	0	0	0
0	0	1	1
ſruth ta	ble for Me	mRead	
s3	s2	s 1	s0
0	1	0	0
s3	ble for Me	s1	s0
0	1	1	0
	ole for ALU		
s3	s2	s 1	s0
0	0	0	0
0	0	0	1
Truth ta	able for AL	USrcB0	
s3	s2	s1	s0
30	32	1	1

FIGURE D.3.4 The truth tables are shown for the 16 datapath control signals that depend only on the current-state input bits, which are shown for each table. Each truth table row corresponds to 64 entries: one for each possible value of the six Op bits. Notice that some of the outputs are active under nearly the same circumstances. For example, in the case of PCWriteCond, PCSource0, and ALUOp0, these signals are active only in state 8 (see b, i, and k). These three signals could be replaced by one signal. There are otheropportunities for reducing the logic needed to implement the control function by taking advantage of further similarities in the truth tables.

p. Truth table for RegDst