Lista II

Tarefa de leitura:

- 1. GY capítulo 1 e seções 2.1 a 2.3.
- 2. Texto complementar/alternativo: Sakurai capítulo 1.
- 3. L. Ballentine, Quantum Mechanics, seções 2.2, 2.3 e 8.3.
- 4. Aeletta, Fortunato e Parisi, Quantum Mechanics, capítulo 5.

Problemas para entrega no dia 9 de abril

1. Considere que um sistema composto de duas partes s e R e cuja matriz densidade é ρ . Mostre que para o subsistema s estar num estado puro quando tomamos o traço sobre R ρ deve ser da forma $P_s \otimes \rho_R$, onde P_s é um operador de projeção no espaço de Hilbert associado ao sistema s.

Problemas adicionais

2. Suponha que tenhamos um sistema com momento angular total 1. Escolha uma base correspondente aos três autovetores da componente z do momento angular, J_z , com autovalores +1,0,-1, respectivamente. Seja um sistema descrito pela matriz densidade:

$$\rho = \frac{1}{4} \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right) .$$

- (a) ρ é uma matriz densidade admissível? Explique. Assuma para o resto do problema que sim. ρ descreve um estado puro ou uma mistura? Explique.
- (b) Dado o conjunto descrito por ρ , qual o valor médio de J_z ?
- (c) Qual o desvio padrão para uma medida de J_z ?
- 3. Considere uma variável angular $0 \le \varphi \le 2\pi$ e o operador $L_z = \frac{\hbar}{i} \frac{\partial}{\partial \varphi}$.

Primeiro Semestre – 2018

- (a) Sob que condição L_z é hermitiano.
- (b) Obtenha a relação de incerteza entre φ e L_z .
- (c) O erro máximo $\Delta \varphi = 2\pi$ devido a natureza angular da variável. Com isso a relação de incerteza do item (b) é violada para ΔL_z suficientemente pequeno! Explique esse fato.
- 4. Considere um aparelho que emita partículas idênticas de spin 1/2, duas de cada vez, com momentos opostos na direção dos observadores A e B. São realizados com esse aparelho dois experimentos. No primeiro experimento as partículas emitidas podem ser descritas pela matriz densidade

$$\rho_1 = \frac{1}{2} (|--\rangle\langle --|+|++\rangle\langle ++|).$$

No segundo experimento as partículas emitidas podem ser descritas pela matriz densidade

$$\rho_2 = \frac{1}{2} (|--\rangle + |++\rangle) (\langle --|+\langle ++|) .$$

O estado $|+-\rangle$ designa o estado em que a partícula 1 tem componente de spin +1/2 na direção \hat{z} e a partícula 2 componente de spin -1/2 na mesma direção.

- (a) As matrizes densidades ρ_1 e ρ_2 representam estados puros ou misturas? Demonstre.
- (b) Calcule o valor médio da projeção de spin na direção \hat{x} das partículas 1 observadas por B para cada um dos dois experimentos acima.
- 5. Mostre que a relação de incerteza $\Delta A \Delta B \geq \frac{1}{2} |\langle [A, B] \rangle|$ torna-se uma igualdade quando o estado $|\phi\rangle$ é tal que $(A \langle A \rangle)|\phi\rangle$ é proporcional a $(B \langle B \rangle)|\phi\rangle$.