

Macroeconomía I Guía 5

Profesor: Luis Felipe Céspedes Ayudantes: Álvaro Castillo y Alberto Undurraga

1. RBC con oferta laboral fija

Suponga que un planificador social elige una secuancia $\{C_t, K_t\}_{t=0}^{\infty}$ para maximizar

$$E_t \sum_{i=0}^{\infty} \beta^i U(C_{t+i}) = E_t \sum_{i=0}^{\infty} \beta^i \frac{C_{t+i}^{1-\gamma}}{1-\gamma},\tag{1}$$

donde E_t representa la esperanza condicional a la información disponible en t. Esta decisión está restringida a

$$C_t + K_t = (A_t N_t)^{\alpha} K_{t-1}^{1-\alpha} + (1-\delta)K_{t-1} = Y_t + (1-\delta)K_{t-1}.$$
 (2)

Auma que la oferta laboral está fija y es igual a $N_t = 1$.

- (a) Plantee el problema en su forma secuencial y encuentre la ecuación de Euler.
- (b) Plantee el problema en su forma recursiva y encuente la ecuación de Euler.
- (c) Encuentre una expresión para A_{t+1}/K_t . **Hint**: Encuentre el retorno al capital y llámelo R_t .

En estado estacionario la tecnología crece a una tasa $G \equiv A_{t+1}/A_t$, que asumimos exógeno. Además, defina \bar{Z} como el valor de una variable Z_t en estado estacionario, ln(G) = g y ln(R) = r

- (d) ¿Cuál es la tasa de crecimiento del consumo, producto y capital en estado estacionario?
- (e) Encuentre expresiones para \bar{A}/\bar{K} , \bar{Y}/\bar{K} y \bar{C}/\bar{Y} en función de g, r, α y δ .
- (f) ¿Qué valores para g, r, α y δ podrían ser razonables?¹ ¿Qué valores tendrían \bar{Y}/\bar{K} y \bar{C}/\bar{Y} con estos valores?

2. Un Modelo RBC

Considere la siguiente economía: un consumidor representativo cuyas preferencias están representadas por

$$E_{t} \left\{ \sum_{j \geq 0} \beta^{j} \left[\log \left(C_{t+j} \right) + \frac{1}{1 - \gamma_{n}} \left(1 - N_{t+j} \right)^{1 - \gamma_{n}} \right] \right\}$$

donde C_{t+j} es el consumo en el período t+j y $\gamma_n \geq 0$. La tecnología de producción está dada por

$$Y_t = A_t^{\alpha} N_t^{\alpha} K_t^{1-\alpha}$$

con $0 < \alpha < 1.Y_t$ es el producto, A_t es el parámetro exógeno de la productividad del trabajo, K_t representa el capital y N_t es el trabajo. El parámetro A_t evoluciona de acuerdo a:

$$\frac{A_{t+1}}{\bar{A}_{t+1}} = \left(\frac{A_t}{\bar{A}_t}\right)^{\theta} \exp\left(\varepsilon_t\right)$$

¹Asuma que estamos trabajando con datos trimestrales.

con $0 < \theta < 1, y$ donde ε_t es un shock i.i.d. \bar{A}_t evoluciona de acuerdo a:

$$\bar{A}_{t+1} = (1+g)\bar{A}_t$$

La restricción presupuestaria de esta economía es:

$$K_{t+1} = Y_t - C_t + (1 - \delta)K_t$$

donde $0 < \delta < 1$ es la tasa de depreciación del capital.

- (a). Derive las dos condiciones de optimalidad para el problema de un planificador central que decide sobre C_t, K_{t+1} y N_t cada período para maximizar la utilidad del consumidor, sujeto a la tecnología y la restricción presupuestaria.
- (b) Muestre que la solución obtenida en (a) será igual a la obtenida descentralizadamente en un equilibrio competitivo, donde un consumidor representativo decide sobre C_t , K_{t+1} y N_t para resolver

$$\max E_t \left\{ \sum_{j \ge 0} \beta^j \left[\log (C_{t+j}) + \frac{1}{1 - \gamma_n} (1 - N_{t+j})^{1 - \gamma_n} \right] \right\}$$
s.t $K_{t+1} = R_t K_t + W_t N_t - C_t$

Mientras que una firma representativa decide sobre $K_t y N_t$ para resolver

$$\max Y_t - (R_t - (1 - \delta)) K_t - W_t N_t$$

s.t $Y_t = A_t^{\alpha} N_t^{\alpha} K_t^{1-\alpha}$

donde R_t es la tasa de interés y W_t es el salario.

Hint: No es necesario que resuelva el problema en ambos casos, basta con mostrar que las condiciones que determinan el equilibrio son idénticas.

- (c) Encuentre expresiones para los valores de estado estacionario de $\frac{K}{Y}$, $\frac{C}{Y}$, R, $\frac{K}{AN}$, N.
- (d) Realice una aproximación log-lineal a las condiciones de optimalidad y las restricciones, y encuentre expresiones para k_{t+1} , c_t , n_t , y_t y r_t (donde las variables en minúscula representan el logaritmo de las variables originales, i.e. $x_t = \log X_t$)