Introduction to Bayesian statistics

Geogios Karagiannis (Durham University)

2 July 2018

Notation

Consider a probability triple $(\Omega, \mathcal{F}, \pi)$, and

... r.v.
$$x:\Omega\to\mathbb{R}^{d_x}$$
, with $x:=x(\omega)$, following a prob distr. π_x

$$\pi_{\mathsf{x}}(\mathsf{x} \in \mathsf{A}) = \pi(\{\omega \in \Omega \mid \mathsf{x}(\omega) \in \mathsf{A}\}).$$

Notation

Consider a probability triple $(\Omega, \mathcal{F}, \pi)$, and

... r.v. $x:\Omega\to\mathbb{R}^{d_x}$, with $x:=x(\omega)$, following a prob distr. π_x

$$\pi_{\mathsf{x}}(\mathsf{x} \in \mathsf{A}) = \pi(\{\omega \in \Omega \mid \mathsf{x}(\omega) \in \mathsf{A}\}).$$

• The expected value of a function h(x) w.r.t. π_x is

$$\begin{split} \mathsf{E}_{\pi_{\mathsf{x}}}(h(\mathsf{x})) &= \int_{\mathbb{R}^{d_{\mathsf{x}}}} h(\mathsf{x}) \mathsf{d}\pi_{\mathsf{x}}(\mathsf{x}) \ = \int_{\mathbb{R}^{d_{\mathsf{x}}}} h(\mathsf{x})\pi_{\mathsf{x}}(\mathsf{d}\mathsf{x}) \\ &= \begin{cases} \int_{\mathbb{R}^{d_{\mathsf{x}}}} h(\mathsf{x})\pi_{\mathsf{x}}(\mathsf{x}) \mathsf{d}\mathsf{x} & \text{if } \mathsf{x} \text{ is continuous} \\ \\ \sum_{\forall \mathsf{x} \in \mathbb{R}^{d_{\mathsf{x}}}} h(\mathsf{x})\pi_{\mathsf{x}}(\mathsf{x}) & \text{if } \mathsf{x} \text{ is discrete} \end{cases} \end{split}$$

The Bayes theorem (sets, events, etc...)

Consider a probability triple $(\Omega, \mathcal{F}, \pi)$,

The Bayes theorem (sets, events, etc...)

Consider a probability triple $(\Omega, \mathcal{F}, \pi)$,

• If $B \subseteq \Omega$, and $A \subseteq \Omega$, then it is

$$\pi(A|B) = \frac{\pi(B|A)\pi(A)}{\pi(B)}$$

given that $B \neq \emptyset$

The Bayes theorem (sets, events, etc...)

Consider a probability triple $(\Omega, \mathcal{F}, \pi)$,

• If $B \subseteq \Omega$, and $A \subseteq \Omega$, then it is

$$\pi(A|B) = \frac{\pi(B|A)\pi(A)}{\pi(B)}$$

given that $B \neq \emptyset$

• If , $B \subseteq \Omega$, and $\{A_1,...,A_k\}$ is a partition of Ω , then

$$\pi(A_j|B) = \frac{\pi(B|A_j)\pi(A_j)}{\sum_{j=1}^k \pi(B|A_j)\pi(A_j)}, \ \forall j = 1, ..., k$$

given that $B \neq \emptyset$

Consider r.v. $x \in \mathbb{R}^{d_x}$ and $y \in \mathbb{R}^{d_y}$

Consider r.v. $x \in \mathbb{R}^{d_x}$ and $y \in \mathbb{R}^{d_y}$

• the PDF, or PMF of r.v. x|y is

$$\pi_{x|y}(x|y) = \frac{\pi_{y|x}(y|x)\pi_x(x)}{\int_{\mathbb{R}^{dx}} \pi_{y|x}(y|x)\pi_x(dx)}$$

Consider r.v. $x \in \mathbb{R}^{d_x}$ and $y \in \mathbb{R}^{d_y}$

• the PDF, or PMF of r.v. x|y is

$$\pi_{x|y}(x|y) = \frac{\pi_{y|x}(y|x)\pi_x(x)}{\int_{\mathbb{R}^{dx}} \pi_{y|x}(y|x)\pi_x(dx)}$$

• for any $C \subseteq \mathbb{R}^{d_{\mathsf{x}}}$

$$\begin{split} \pi_{x|y}(x \in C|y) &= \int_C \pi_{x|y}(\mathrm{d}x|y) \\ &= \begin{cases} \int_C \frac{\pi_{y|x}(y|x)\pi_x(x)}{\int_{\mathbb{R}^{d_x}} \frac{\pi_{y|x}(y|x)\pi_x(x)\mathrm{d}x}{\pi_{y|x}(y|x)\pi_x(x)\mathrm{d}x}} & \mathrm{d}x & \text{, if } x \text{ is cont} \\ \sum_{x \in C} \frac{\pi_{y|x}(y|x)\pi_x(x)}{\sum_{x \in \mathbb{R}^{d_x}} \frac{\pi_{y|x}(y|x)\pi_x(x)}{\pi_{y|x}(y|x)\pi_x(x)}} & \text{, if } x \text{ is discr} \end{cases} \end{split}$$

Consider r.v. $x \in \mathbb{R}^{d_x}$ and $y \in \mathbb{R}^{d_y}$

• the PDF, or PMF of r.v. x|y is

$$\pi_{x|y}(x|y) = \frac{\pi_{y|x}(y|x)\pi_x(x)}{\int_{\mathbb{R}^{dx}} \pi_{y|x}(y|x)\pi_x(dx)}$$

• for any $C \subseteq \mathbb{R}^{d_{\chi}}$

$$\begin{split} \pi_{x|y}(x \in C|y) &= \int_C \pi_{x|y}(\mathrm{d}x|y) \\ &= \begin{cases} \int_C \frac{\pi_{y|x}(y|x)\pi_x(x)}{\int_{\mathbb{R}^{d_x}} \frac{\pi_{y|x}(y|x)\pi_x(x)\mathrm{d}x}{\pi_{y|x}(y|x)\pi_x(x)\mathrm{d}x}} & \mathrm{d}x & \text{, if } x \text{ is cont} \\ \sum_{x \in C} \frac{\pi_{y|x}(y|x)\pi_x(x)}{\sum_{x \in \mathbb{R}^{d_x}} \frac{\pi_{y|x}(y|x)\pi_x(x)}{\pi_{y|x}(y|x)\pi_x(x)}} & \text{, if } x \text{ is discr} \end{cases} \end{split}$$

• for any tiny set $dx \subseteq \mathbb{R}^{d_x}$

$$\pi_{x|y}(\mathrm{d}x|y) = \frac{\pi_{y|x}(y|x)\pi_x(\mathrm{d}x)}{\int_{\mathbb{R}^{d_x}} \pi_{y|x}(y|x)\pi_x(\mathrm{d}x)}$$

- Frequentist school
 - probability of an event is the limiting relative frequency of occurrence of the event in an infinite sequence of trials.

- Frequentist school
 - probability of an event is the limiting relative frequency of occurrence of the event in an infinite sequence of trials.
- Subjective Bayesian school
 - probabilities are subjective; they represent the investigator's degrees of belief.

- Frequentist school
 - probability of an event is the limiting relative frequency of occurrence of the event in an infinite sequence of trials.
- Subjective Bayesian school
 - probabilities are subjective; they represent the investigator's degrees of belief.
 - probability is the degree of belief in a proposition, based on all the available information.

- Frequentist school
 - probability of an event is the limiting relative frequency of occurrence of the event in an infinite sequence of trials.
- Subjective Bayesian school
 - probabilities are subjective; they represent the investigator's degrees of belief.
 - probability is the degree of belief in a proposition, based on all the available information.
 - ...aka, all probabilities are conditionals; e.g., $\pi(A|B)$, or $\pi(x|y)$

- Frequentist school
 - probability of an event is the limiting relative frequency of occurrence of the event in an infinite sequence of trials.
- Subjective Bayesian school
 - probabilities are subjective; they represent the investigator's degrees of belief.
 - probability is the degree of belief in a proposition, based on all the available information.
 - ...aka, all probabilities are conditionals; e.g., $\pi(A|B)$, or $\pi(x|y)$
 - Statistical analyses based on the same data, and performed by different researchers may be different.

Finite exchangeability

• The random quantities $\{x_1, ..., x_n\}$ are finitely exchangeable under a probability P if the implied joint distribution satisfies

$$P(x_1 \in A_1, ..., x_n \in A_n) = P(x_{\mathfrak{p}(1)} \in A_{\mathfrak{p}(1)}, ..., x_{\mathfrak{p}(n)} \in A_{\mathfrak{p}(n)})$$

for all permutations \mathfrak{p} defined on the set $\{1,...,n\}$.

• In terms of the corresponding PDF/PMF:

$$p(x_1,...,x_n) = p(x_{\mathfrak{p}(1)},...,x_{\mathfrak{p}(n)}).$$

Finite exchangeability

• The random quantities $\{x_1, ..., x_n\}$ are finitely exchangeable under a probability P if the implied joint distribution satisfies

$$P(x_1 \in A_1, ..., x_n \in A_n) = P(x_{\mathfrak{p}(1)} \in A_{\mathfrak{p}(1)}, ..., x_{\mathfrak{p}(n)} \in A_{\mathfrak{p}(n)})$$

for all permutations \mathfrak{p} defined on the set $\{1,...,n\}$.

In terms of the corresponding PDF/PMF:

$$p(x_1,...,x_n) = p(x_{\mathfrak{p}(1)},...,x_{\mathfrak{p}(n)}).$$

• The random quantities $x_1, x_2, ...$ are infinitely exchangeable under a probability P if every finite sub-sequence is exchangeable

Representation theorem for 0-1 r.v.

If $x_1, x_2, ...$ is an infinitely exchangeable sequence of 0-1 random quantities, there exists a distribution π such that the join $p(x_1, ..., x_n)$ for any $x_1, ..., x_n$ has the form

$$p(x_1,...,x_n) = \int_0^1 \prod_{i=1}^n f(x_i|\theta) \pi(d\theta)$$

where

$$f(x_i|\theta) = \theta^{x_i}(1-\theta)^{1-x_i}$$

and

$$\pi(\theta \leqslant t) = \lim_{n \to \infty} P(\frac{1}{n} \sum_{i=1}^{n} x_i \leqslant t)$$

and $\theta = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} x_i$ is the limiting relative frequency of 1s.

- $x_i | \theta \stackrel{\text{IID}}{\sim} \text{Br}(\theta)$, for all i = 1, ..., n
 - the x_i are considered to be independent Bernoulli random quantities, conditional on the random quantity θ .

- $x_i | \theta \stackrel{\text{IID}}{\sim} \text{Br}(\theta)$, for all i = 1, ..., n
 - the x_i are considered to be independent Bernoulli random quantities, conditional on the random quantity θ .
- θ is itself assigned a probability distribution $\pi(d\theta)$,

- $x_i | \theta \stackrel{\text{IID}}{\sim} Br(\theta)$, for all i = 1, ..., n
 - the x_i are considered to be independent Bernoulli random quantities, conditional on the random quantity θ .
- θ is itself assigned a probability distribution $\pi(d\theta)$,
- $\theta = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} x_i$, a.s. by the SLLN,
 - hence $\pi(d\cdot)$ are one's beliefs about the limiting relative frequency of 1's.

... predictions

Further results

• If $x_1, x_2,...$ is an infinitely exchangeable sequence of random quantities, then

$$p(x_{n+1}|x_{1:n}) = \int_{\Theta} f(x_{n+1}|\theta) \pi(d\theta|x_{1:n})$$

where

$$\pi(\mathsf{d}\theta|x_{1:n}) = \frac{\prod_{i=1}^{n} f(x_i|\theta)\pi(\mathsf{d}\theta)}{\int_{\Theta} \prod_{i=1}^{n} f(x_i|\theta)\pi(\mathsf{d}\theta)}$$

A parametric statistical model

• consists of the observation of a sequence of a r.v.

$$x_{1:n} = (x_1, ..., x_n),$$

A parametric statistical model

• consists of the observation of a sequence of a r.v.

$$x_{1:n} = (x_1, ..., x_n),$$

• distributed according to $f(d \cdot | \theta)$,

A parametric statistical model

• consists of the observation of a sequence of a r.v.

$$x_{1:n} = (x_1, ..., x_n),$$

- distributed according to $f(d \cdot | \theta)$,
 - where only the parameter $\theta \in \Theta$ is unknown.

A parametric statistical model

• consists of the observation of a sequence of a r.v.

$$x_{1:n} = (x_1, ..., x_n),$$

- distributed according to $f(d \cdot | \theta)$,
 - where only the parameter $\theta \in \Theta$ is unknown.
- denoted as

$$f(x_{1:n}|\theta)$$

A parametric statistical model

• consists of the observation of a sequence of a r.v.

$$x_{1:n} = (x_1, ..., x_n),$$

- distributed according to $f(d \cdot | \theta)$,
 - where only the parameter $\theta \in \Theta$ is unknown.
- denoted as

$$f(x_{1:n}|\theta)$$

A Bayesian model

• is made of a parametric statistical model, $f(x_{1:n}|\theta)$, and

A parametric statistical model

• consists of the observation of a sequence of a r.v.

$$x_{1:n} = (x_1, ..., x_n),$$

- distributed according to $f(d \cdot | \theta)$,
 - where only the parameter $\theta \in \Theta$ is unknown.
- denoted as

$$f(x_{1:n}|\theta)$$

A Bayesian model

- is made of a parametric statistical model, $f(x_{1:n}|\theta)$, and
 - a prior distr. $\pi(d\theta)$ on the unknown parameters θ .

A parametric statistical model

consists of the observation of a sequence of a r.v.

$$x_{1:n} = (x_1, ..., x_n),$$

- distributed according to $f(d \cdot | \theta)$,
 - where only the parameter $\theta \in \Theta$ is unknown.
- denoted as

$$f(x_{1:n}|\theta)$$

A Bayesian model

- is made of a parametric statistical model, $f(x_{1:n}|\theta)$, and
 - a prior distr. $\pi(d\theta)$ on the unknown parameters θ .
- denoted as

$$(f(x_{1:n}|\theta), \pi(d\theta))$$
 or
$$\begin{cases} x_{1:n}|\theta & \sim f(d \cdot |\theta) \\ \theta & \sim \pi(d\theta) \end{cases}$$

Quantities involved

The likelihood function of θ ginen the data $x_{1:n}$ denoted as $L(\theta; x_{1:n})$, defined as ,

$$L(\theta; x_{1:n}) = f(x_{1:n}|\theta)$$

Quantities involved

The likelihood function of θ ginen the data $x_{1:n}$ denoted as $L(\theta; x_{1:n})$, defined as ,

$$L(\theta; x_{1:n}) = f(x_{1:n}|\theta)$$

The posterior distribution of θ given the data $x_{1:n}$ has PDF/PMF

$$\pi(\theta|x_{1:n}) = \frac{f(x_{1:n}|\theta)\pi(\theta)}{\int_{\Theta} f(x_{1:n}|\theta)\pi(d\theta)} = \frac{L(\theta; x_{1:n})\pi(\theta)}{\int_{\Theta} L(\theta; x_{1:n})\pi(d\theta)}$$
$$\pi(\theta|x_{1:n}) \propto f(x_{1:n}|\theta)\pi(\theta)$$

Quantities involved

The likelihood function of θ ginen the data $x_{1:n}$ denoted as $L(\theta; x_{1:n})$, defined as ,

$$L(\theta; x_{1:n}) = f(x_{1:n}|\theta)$$

The posterior distribution of θ given the data $x_{1:n}$ has PDF/PMF

$$\pi(\theta|\mathbf{x}_{1:n}) = \frac{f(\mathbf{x}_{1:n}|\theta)\pi(\theta)}{\int_{\Theta} f(\mathbf{x}_{1:n}|\theta)\pi(\mathsf{d}\theta)} = \frac{L(\theta;\mathbf{x}_{1:n})\pi(\theta)}{\int_{\Theta} L(\theta;\mathbf{x}_{1:n})\pi(\mathsf{d}\theta)}$$
$$\pi(\theta|\mathbf{x}_{1:n}) \propto f(\mathbf{x}_{1:n}|\theta)\pi(\theta)$$

The predictive distribution of $y := x_{n+1}$ given the data $x_{1:n}$ has PDF/PMF

$$p(y|x_{1:n}) = \underbrace{\int_{\Theta} f(y|\theta)\pi(d\theta|x_{1:n})}_{=\mathsf{E}_{\pi_{\theta|x_{1:n}}}(f(y|\theta))}$$

Conjugate prior distr.

If $\mathcal{F} = \{f(\cdot|\theta); \forall \theta \in \Theta\}$ is a family of distributions (sampling distributions),

Conjugate prior distr.

If
$$\mathcal{F}=\{f(\cdot|\theta); \forall \theta\in\Theta\}$$
 is a family of distributions (sampling distributions),

and
$$\mathcal{P} = \{\pi(\cdot)\}$$
 is a family of prior distributions for θ ,

Conjugate prior distr.

If
$$\mathcal{F} = \{f(\cdot|\theta); \forall \theta \in \Theta\}$$
 is a family of distributions (sampling distributions),

and $\mathcal{P} = \{\pi(\cdot)\}$ is a family of prior distributions for θ ,

then the family $\ensuremath{\mathcal{P}}$ is conjugate for $\ensuremath{\mathcal{F}}$ if

$$\forall f(x_{1:n}|\theta) \in \mathcal{F} \text{ and } \pi(\theta) \in \mathcal{P} \implies \pi(\theta|x_{1:n}) \in \mathcal{P}$$

Sufficiency...

• The summary statistic $t_n := t_n(x_{1:n})$ is parametric sufficient for parameter θ for an exchangeable sequence of observables $x_1, ..., x_n$ if and only if

$$\pi(\mathsf{d}\theta|x_{1:n}) = \pi(\mathsf{d}\theta|t_n)$$

Sufficiency...

• The summary statistic $t_n := t_n(x_{1:n})$ is parametric sufficient for parameter θ for an exchangeable sequence of observables $x_1, ..., x_n$ if and only if

$$\pi(\mathsf{d}\theta|x_{1:n}) = \pi(\mathsf{d}\theta|t_n)$$

• Neyman factorization criterion: The summary statistic $t_n = t(x_{1:n})$ is parametric sufficient for $x_{1:n} = (x_1, ..., x_n)$ if and only if, the joint PDF/PMF $x_{1:n}|\theta$ is s.t.

$$f(x_1,...,x_n|\theta) = h(t_n,\theta)g(x_1,...,x_n),$$

for some functions $h \ge 0$, $g \ge 0$.

Exponential family of distributions- definition

A distribution with PDF/PMF $f(x|\theta)$, $\theta \in \Theta$, belongs to the k-parameter exponential family if

$$f(x|\theta) = u(x)g(\theta) \exp(\sum_{j=1}^{k} c_j \phi_j(\theta) h_j(x))$$

for $x \in \mathcal{X}$ where

$$g(\theta)^{-1} = \int_{\mathcal{X}} u(x) \exp(\sum_{j=1}^{k} c_j \phi_j(\theta) h_j(x)) dx < \infty$$

Exponential family of distributions- definition

A distribution with PDF/PMF $f(x|\theta)$, $\theta \in \Theta$, belongs to the k-parameter exponential family if

$$f(x|\theta) = u(x)g(\theta) \exp(\sum_{j=1}^{k} c_j \phi_j(\theta) h_j(x))$$

for $x \in \mathcal{X}$ where

$$g(\theta)^{-1} = \int_{\mathcal{X}} u(x) \exp(\sum_{j=1}^{k} c_j \phi_j(\theta) h_j(x)) dx < \infty$$

Here, $f(x|\theta)$ is denoted as $\text{Ef}_k(x|u,g,h,\phi,\theta,c)$

Exponential family of distributions- priors

[Applets: #1]

If $x_1, x_2, x_3, ...x_n$ such that $x_i \in \mathcal{X}$ are IID according to the given regular exponential family $\mathsf{Ef}_k(\cdot|\cdot)$, then :

Exponential family of distributions- priors

[Applets: #1]

If $x_1, x_2, x_3, ... x_n$ such that $x_i \in \mathcal{X}$ are IID according to the given regular exponential family $\mathsf{Ef}_k(\cdot|\cdot)$, then :

• Sufficient statistic is $t_n := (n, \sum_{i=1}^n h_1(x_i), ..., \sum_{i=1}^n h_k(x_i)).$

Exponential family of distributions- priors

[Applets: #1]

If $x_1, x_2, x_3, ...x_n$ such that $x_i \in \mathcal{X}$ are IID according to the given regular exponential family $\mathsf{Ef}_k(\cdot|\cdot)$, then :

- Sufficient statistic is $t_n := (n, \sum_{i=1}^n h_1(x_i), ..., \sum_{i=1}^n h_k(x_i)).$
- The conjugate prior distribution for $\theta \in \Theta$ has the form

$$\pi(\theta|\tau) \propto g(\theta)^{\tau_0} \exp(\sum_{j=1}^k c_j \phi_j(\theta) \tau_j)$$

If $x_1, x_2, x_3, ...x_n$ such that $x_i \in \mathcal{X}$ are IID according to the given regular exponential family $\mathsf{Ef}_k(\cdot|\cdot)$, then :

- Sufficient statistic is $t_n := (n, \sum_{i=1}^n h_1(x_i), ..., \sum_{i=1}^n h_k(x_i)).$
- The conjugate prior distribution for $\theta \in \Theta$ has the form

$$\pi(\theta|\tau) \propto g(\theta)^{\tau_0} \exp(\sum_{j=1}^k c_j \phi_j(\theta) \tau_j)$$

• The posterior distribution for $\theta \in \Theta$ has the form

$$\pi(\theta|x_{1:n}, \tau) \propto g(\theta)^{\tau_0^*} \exp(\sum_{j=1}^k c_j \phi_j(\theta) \tau_j^*)$$
 $\propto \pi(\theta|\tau^*)$

with $\tau^* = (\tau_0^*, \tau_1^*, ..., \tau_k^*)$, $\tau_0^* = \tau_0 + n$, and $\tau_j^* = \sum_{i=1}^n h_j(x_i) + \tau_j$

Bayes point estimator

 $\delta^{\pi} := \delta^{\pi}(x_{1:n})$: Bayes point estimator of θ , w.r.t.

the posterior distribution

$$\pi(\mathsf{d}\theta|x_{1:n})$$

• the loss function $\ell(\theta, \delta)$

$$\ell:\Theta\times\mathcal{D}\to[0,+\infty)$$

is the quantity δ^{π} s.t.

Bayes point estimator

 $\delta^{\pi} := \delta^{\pi}(x_{1:n})$: Bayes point estimator of θ , w.r.t.

the posterior distribution

$$\pi(\mathsf{d}\theta|x_{1:n})$$

• the loss function $\ell(\theta, \delta)$

$$\ell:\Theta\times\mathcal{D}\to[0,+\infty)$$

is the quantity δ^{π} s.t.

$$\begin{split} \delta^{\pi} &= \arg\min_{\forall \delta \in \mathcal{D}} \mathsf{E}_{\pi(\mathsf{d}\theta|\mathsf{x}_{1:n})}(\; \ell(\theta,\delta) \;) \\ &= \arg\min_{\forall \delta \in \mathcal{D}} \int_{\Theta} \ell(\theta,\delta) \pi(\mathsf{d}\theta|\mathsf{x}_{1:n}) \end{split}$$

Bayes estimator standard error (univariate case)

The standard error of δ^{π} of parameter $\theta \in \Theta$ with $\pi(d\theta|x_{1:n})$ is

$$Se(\delta|x_{1:n}) = \sqrt{E_{\pi(d\theta|x_{1:n})}(\theta - \delta)^2}$$

Bayes estimator standard error (univariate case)

The standard error of δ^{π} of parameter $\theta \in \Theta$ with $\pi(d\theta|x_{1:n})$ is

$$\mathsf{Se}(\delta|x_{1:n}) = \sqrt{\mathsf{E}_{\pi(\mathsf{d}\theta|x_{1:n})}(\theta - \delta)^2}$$

where

$$\underbrace{\mathsf{E}_{\pi(\mathsf{d}\theta|x_{1:n})}(\theta-\delta)^2}_{=\mathsf{post.}\ \mathsf{MSE}} = \underbrace{\mathsf{Var}_{\pi(\mathsf{d}\theta|x_{1:n})}(\theta)}_{=\mathsf{post.}\ \mathsf{var.}} + (\underbrace{\mathsf{E}_{\pi(\mathsf{d}\theta|x_{1:n})}(\theta)-\delta}_{=\mathsf{bias}})^2$$

is the mean squared error of δ .

The Bayes estimate δ^{π} of θ with respect to the :

• weighted quadratic loss function $\ell(\theta,\delta)=w(\theta)(\theta-\delta)^2$, $w(\theta)>0$ is

$$\delta^{\pi} = \frac{\mathsf{E}_{\pi(\mathsf{d}\theta|\mathsf{x}_{1:n})}(w(\theta)\theta)}{\mathsf{E}_{\pi(\mathsf{d}\theta|\mathsf{x}_{1:n})}(w(\theta))}.\tag{6.1}$$

The Bayes estimate δ^{π} of θ with respect to the :

• weighted quadratic loss function $\ell(\theta,\delta)=w(\theta)(\theta-\delta)^2$, $w(\theta)>0$ is

$$\delta^{\pi} = \frac{\mathsf{E}_{\pi(\mathsf{d}\theta|\mathsf{x}_{1:n})}(w(\theta)\theta)}{\mathsf{E}_{\pi(\mathsf{d}\theta|\mathsf{x}_{1:n})}(w(\theta))}.\tag{6.1}$$

• quadratic loss function $\ell(\theta, \delta) = (\theta - \delta)^2$, is

$$\delta^{\pi} = \mathsf{E}_{\pi(\theta|\mathsf{x}_{1:n})}(\theta) \tag{6.2}$$

The Bayes estimate δ^{π} of θ with respect to the :

• weighted quadratic loss function $\ell(\theta, \delta) = w(\theta)(\theta - \delta)^2$, $w(\theta) > 0$ is

$$\delta^{\pi} = \frac{\mathsf{E}_{\pi(\mathsf{d}\theta|\mathsf{x}_{1:n})}(w(\theta)\theta)}{\mathsf{E}_{\pi(\mathsf{d}\theta|\mathsf{x}_{1:n})}(w(\theta))}. \tag{6.1}$$

• quadratic loss function $\ell(\theta,\delta)=(\theta-\delta)^2$, is

$$\delta^{\pi} = \mathsf{E}_{\pi(\theta|\mathsf{x}_{1:n})}(\theta) \tag{6.2}$$

• linear loss function $\ell(\theta, \delta) = c_1(\delta - \theta)\mathbb{1}_{\theta \leqslant \delta}(\delta) + c_2(\theta - \delta)\mathbb{1}_{\theta > \delta}(\delta)$ is

is the
$$\frac{c_2}{c_1 + c_2}$$
-th posterior quantile

The Bayes estimate δ^{π} of θ with respect to the :

• weighted quadratic loss function $\ell(\theta, \delta) = w(\theta)(\theta - \delta)^2$, $w(\theta) > 0$ is

$$\delta^{\pi} = \frac{\mathsf{E}_{\pi(\mathsf{d}\theta|\mathsf{x}_{1:n})}(w(\theta)\theta)}{\mathsf{E}_{\pi(\mathsf{d}\theta|\mathsf{x}_{1:n})}(w(\theta))}. \tag{6.1}$$

• quadratic loss function $\ell(\theta, \delta) = (\theta - \delta)^2$, is

$$\delta^{\pi} = \mathsf{E}_{\pi(\theta|\mathsf{x}_{1:n})}(\theta) \tag{6.2}$$

• linear loss function $\ell(\theta, \delta) = c_1(\delta - \theta)\mathbbm{1}_{\theta \leqslant \delta}(\delta) + c_2(\theta - \delta)\mathbbm{1}_{\theta > \delta}(\delta)$ is

is the
$$\frac{c_2}{c_1 + c_2}$$
-th posterior quantile

• absolute loss function $\ell(\theta, \delta) = |\theta - \delta|$, is

$$\delta = \mathsf{median}_{\pi(\theta|\mathsf{x}_{1:n})}(\theta).$$

Standard predictive point estimators

The Bayes estimate δ^p of $y = x_{n+1}$ with respect to the :

• weighted quadratic loss function $\ell(y,\delta) = w(y)(y-\delta)^2$, w(y) > 0 is

$$\delta^{p} = \frac{\mathsf{E}_{p(\mathsf{d}|x_{1:n})}(w(y)y)}{\mathsf{E}_{p(\mathsf{d}y|x_{1:n})}(w(y))}.$$

• quadratic loss function $\ell(\theta, \delta) = (\theta - \delta)^2$, is

$$\delta^p = \mathsf{E}_{p(\mathsf{d}y|x_{1:n})}(y)$$

• linear loss function $\ell(y, \delta) = c_1(\delta - y) \mathbb{1}_{v \le \delta}(\delta) + c_2(y - \delta) \mathbb{1}_{v > \delta}(\delta)$ is

is the
$$\frac{c_2}{c_1 + c_2}$$
-th predictive quantile

• absolute loss function $\ell(y,\delta) = |y-\delta|$, is

$$\delta^p = \mathsf{median}_{p(\mathsf{d}y|x_{1:n})}(y).$$

Posterior credible set

[Applet: #1]

The 100(1-a)% credible set for $\theta \in \Theta$ w.r.t. the posterior $\pi(d\theta|x_{1:n})$

is any subset C_a of Θ

such that

$$\pi(\theta \in C_a|x_{1:n}) = \int_{C_a} \pi(\mathsf{d}\theta|x_{1:n}) \geqslant 1 - a$$

Posterior highest probability density (HPD) set

[Applet: #1]

The 100(1-a)% HPD set for $\theta \in \Theta$ w.r.t. the posterior $\pi(d\theta|x_{1:n})$

is the subset C_a of Θ

which is of the form

$$C_a = \{\theta \in \Theta : \pi(\theta|x_{1:n}) \geqslant k_a\}$$

such that k_a is the largest constant where

$$\pi(\theta \in C_a|x_{1:n}) = \int_{C_a} \pi(\mathsf{d}\theta|x_{1:n}) \geqslant 1 - a$$

Schematic of the (1-a) HPD

[Applet: #1]

Posterior (HPD) interval

[Applet: #1]

Assume $\theta \sim \pi(d\theta|x_{1:n})$ with unimodal density $\pi(\theta|x_{1:n})$.

If the interval $C_a = [L, U]$ satisfies

- ② $\pi(U|x_{1:n}) = \pi(L|x_{1:n}) > 0$, and
- **3** $\theta_{\text{mode}} \in (L, U)$, where θ_{mode} is the mode of $\pi(\theta|x_{1:n})$,

then $C_a = [L, U]$ is the HPD interval of θ w.r.t. $\pi(d\theta|x_{1:n})$.

There is interest to test the hypotheses

$$H_0:\theta\in\Theta_0\quad \text{vs.}\quad \ H_1:\theta\in\Theta_1$$

where
$$\Theta_0 \cap \Theta_1 = \varnothing$$

There is interest to test the hypotheses

$$H_0: \theta \in \Theta_0$$
 vs. $H_1: \theta \in \Theta_1$

where
$$\Theta_0 \cap \Theta_1 = \emptyset$$

Consider the (overall) Bayesian model

$$\begin{cases} x_i | \theta & \stackrel{\mathsf{IID}}{\sim} f(\mathsf{d} \cdot | \theta), \ \theta \in \Theta, \qquad i = 1, ..., n \\ \theta & \sim \pi(\mathsf{d}\theta) \end{cases}$$

where Θ is partitioned by $\{\Theta_0, \Theta_1\}$

There is interest to test the hypotheses

$$H_0: \theta \in \Theta_0 \quad \text{vs.} \quad H_1: \theta \in \Theta_1$$

The overall prior on $\theta \in \Theta$,

$$\pi(\mathsf{d}\theta) = \underbrace{\pi(\theta \in \Theta_0)}_{=\pi_0} \times \underbrace{\pi(\mathsf{d}\theta|\theta \in \Theta_0)}_{=\pi_0(\mathsf{d}\theta)} + \underbrace{\pi(\theta \in \Theta_1)}_{\pi_1} \underbrace{\pi(\mathsf{d}\theta|\theta \in \Theta_1)}_{=\pi_1(\mathsf{d}\theta)}$$

There is interest to test the hypotheses

$$H_0: \theta \in \Theta_0$$
 vs. $H_1: \theta \in \Theta_1$

The overall prior on $\theta \in \Theta$,

$$\pi(\mathsf{d}\theta) = \underbrace{\pi(\theta \in \Theta_0)}_{=\pi_0} \times \underbrace{\pi(\mathsf{d}\theta|\theta \in \Theta_0)}_{=\pi_0(\mathsf{d}\theta)} + \underbrace{\pi(\theta \in \Theta_1)}_{\pi_1} \underbrace{\pi(\mathsf{d}\theta|\theta \in \Theta_1)}_{=\pi_1(\mathsf{d}\theta)}$$

where

$$\begin{split} \pi_0 &= \int_{\Theta_0} \pi(\mathrm{d}\theta), & \pi_0(\theta) &= \frac{\pi(\theta) \mathbbm{1}_{\Theta_0}(\theta)}{\int_{\Theta_0} \pi(\mathrm{d}\theta)}, \\ \pi_1 &= \int_{\Theta_1} \pi(\mathrm{d}\theta), & \pi_1(\theta) &= \frac{\pi(\theta) \mathbbm{1}_{\Theta_1}(\theta)}{\int_{\Theta_1} \pi(\mathrm{d}\theta)}. \end{split}$$

There is interest to test the hypotheses

$$H_0: \theta \in \Theta_0$$
 vs. $H_1: \theta \in \Theta_1$

In Bayes paradigm, it becomes

$$\begin{cases} \mathsf{H}_{0} : & (f(x_{1:n}|\theta), \ \pi_{0}(\mathsf{d}\theta)) \\ \mathsf{H}_{1} : & (f(x_{1:n}|\theta), \ \pi_{1}(\mathsf{d}\theta)) \end{cases}$$

- $\pi_0(d\theta)$ gives $\pi_0(\theta) > 0$ at $\theta \in \Theta_0$ and $\pi_0(\theta) = 0$ at $\theta \in \Theta_1$
- $\pi_1(d\theta)$ gives $\pi_1(\theta) > 0$ at $\theta \in \Theta_1$ and $\pi_1(\theta) = 0$ at $\theta \in \Theta_0$

There is interest to test the hypotheses

$$H_0: \theta \in \Theta_0$$
 vs. $H_1: \theta \in \Theta_1$

In Bayes paradigm, it becomes

$$\begin{cases} \mathsf{H}_0: & x_{1:n} \sim p_0(x_{1:n}) = \int_{\Theta_0} \prod_{i=1}^n f(x_i|\theta) \pi_0(\mathsf{d}\theta) \\ \mathsf{H}_1: & x_{1:n} \sim p_1(x_{1:n}) = \int_{\Theta_1} \prod_{i=1}^n f(x_i|\theta) \pi_1(\mathsf{d}\theta) \end{cases}$$

- $\pi_0(d\theta)$ gives $\pi_0(\theta) > 0$ at $\theta \in \Theta_0$ and $\pi_0(\theta) = 0$ at $\theta \in \Theta_1$
- $\pi_1(d\theta)$ gives $\pi_1(\theta) > 0$ at $\theta \in \Theta_1$ and $\pi_1(\theta) = 0$ at $\theta \in \Theta_0$

Hypothesis test (as point estimation)

The Bayesian parametric point estimator δ^{π} of the indicator function

$$\mathbb{1}_{\Theta_1}(\theta) = \begin{cases} 0 & , \theta \in \Theta_0 \\ 1 & , \theta \in \Theta_1 \end{cases}$$

Hypothesis test (as point estimation)

The Bayesian parametric point estimator δ^{π} of the indicator function

$$\mathbb{1}_{\Theta_1}(\theta) = \begin{cases} 0 &, \theta \in \Theta_0 \\ 1 &, \theta \in \Theta_1 \end{cases}$$

w.r.t. the loss function $c_1 - c_{11}$ loss function

$$\ell(\theta, \delta) = \begin{cases} 0 & \text{, if } \theta \in \Theta_0, \, \delta = 0 \\ 0 & \text{, if } \theta \notin \Theta_0, \, \delta = 1 \\ c_{\text{II}} & \text{, if } \theta \notin \Theta_0, \, \delta = 0 \\ c_{\text{I}} & \text{, if } \theta \in \Theta_0, \, \delta = 1 \end{cases}$$

Hypothesis test (as point estimation)

The Bayesian parametric point estimator δ^{π} of the indicator function

$$\mathbb{1}_{\Theta_1}(\theta) = \begin{cases} 0 & , \ \theta \in \Theta_0 \\ 1 & , \ \theta \in \Theta_1 \end{cases}$$

w.r.t. the loss function $c_{\parallel} - c_{\parallel}$ loss function

$$\ell(\theta, \delta) = \begin{cases} 0 & \text{, if } \theta \in \Theta_0, \, \delta = 0 \\ 0 & \text{, if } \theta \notin \Theta_0, \, \delta = 1 \\ c_{\text{II}} & \text{, if } \theta \notin \Theta_0, \, \delta = 0 \\ c_{\text{I}} & \text{, if } \theta \in \Theta_0, \, \delta = 1 \end{cases}$$

is

$$\delta^{\pi} = \begin{cases} 0 & \text{, if } \pi(\theta \in \Theta_0 | x_{1:n}) > \frac{c_{II}}{c_{II} + c_{I}} \\ 1 & \text{, otherwise} \end{cases}$$

Bayes factor

For

$$H_0: \theta \in \Theta_0$$
 vs. $H_1: \theta \in \Theta_1$

The Bayes factor $B_{01}(x_{1:n})$ of H_0 over H_1 is

$$\mathsf{B}_{01}(x_{1:n}) = \frac{\pi(\theta \in \Theta_0|x_{1:n})/\pi(\theta \in \Theta_0)}{\pi(\theta \in \Theta_1|x_{1:n})/\pi(\theta \in \Theta_1)}$$

where

$$\begin{split} \pi(\theta \in \Theta_0) &= \int_{\Theta_0} \pi(\mathsf{d}\theta); \qquad \pi(\theta \in \Theta_0|x_{1:n}) = \int_{\Theta_0} \pi(\mathsf{d}\theta|x_{1:n}); \\ \pi(\theta \in \Theta_1) &= \int_{\Theta_1} \pi(\mathsf{d}\theta); \qquad \pi(\theta \in \Theta_1|x_{1:n}) = \int_{\Theta_1} \pi(\mathsf{d}\theta|x_{1:n}). \end{split}$$

For

$$H_0: \theta \in \Theta_0$$
 vs. $H_1: \theta \in \Theta_1$

$$\mathsf{B}_{01}(\mathsf{x}_{1:n}) = \frac{\pi(\theta \in \Theta_0 | \mathsf{x}_{1:n}) / \pi(\theta \in \Theta_0)}{\pi(\theta \in \Theta_1 | \mathsf{x}_{1:n}) / \pi(\theta \in \Theta_1)}$$

For

$$H_0: \theta \in \Theta_0$$
 vs. $H_1: \theta \in \Theta_1$

$$\begin{split} \mathsf{B}_{01}(x_{1:n}) &= \frac{\pi(\theta \in \Theta_0|x_{1:n})/\pi(\theta \in \Theta_0)}{\pi(\theta \in \Theta_1|x_{1:n})/\pi(\theta \in \Theta_1)} \\ &= \begin{cases} \frac{\int_{\Theta_0} f(x_{1:n}|\theta)\pi_0(\mathrm{d}\theta)}{\int_{\Theta_1} f(x_{1:n}|\theta)\pi_1(\mathrm{d}\theta)} & ; \ \mathsf{H}_0: \theta \in \Theta_0 \quad \text{vs} \quad \mathsf{H}_1: \theta \in \Theta_1 \end{cases} \end{split}$$

For

$$H_0: \theta \in \Theta_0$$
 vs. $H_1: \theta \in \Theta_1$

$$\mathsf{B}_{01}(\mathsf{x}_{1:n}) = \frac{\pi(\theta \in \Theta_0 | \mathsf{x}_{1:n}) / \pi(\theta \in \Theta_0)}{\pi(\theta \in \Theta_1 | \mathsf{x}_{1:n}) / \pi(\theta \in \Theta_1)}$$

$$= \begin{cases} \frac{\int_{\Theta_0} f(\mathbf{x}_{1:n}|\theta)\pi_0(\mathrm{d}\theta)}{\int_{\Theta_1} f(\mathbf{x}_{1:n}|\theta)\pi_1(\mathrm{d}\theta)} & ; \ H_0: \theta \in \Theta_0 \quad \text{vs} \quad H_1: \theta \in \Theta_1 \\ \frac{f(\mathbf{x}_{1:n}|\theta_0)}{\int_{\Theta_1} f(\mathbf{x}_{1:n}|\theta)\pi_1(\mathrm{d}\theta)} & ; \ H_0: \theta \in \{\theta_0\} \quad \text{vs} \quad H_1: \theta \in \Theta_1 \end{cases}$$

For

$$H_0: \theta \in \Theta_0$$
 vs. $H_1: \theta \in \Theta_1$

$$\mathsf{B}_{01}(x_{1:n}) = \frac{\pi(\theta \in \Theta_0 | x_{1:n}) / \pi(\theta \in \Theta_0)}{\pi(\theta \in \Theta_1 | x_{1:n}) / \pi(\theta \in \Theta_1)}$$

$$= \begin{cases} \frac{\int_{\Theta_0} f(\mathbf{x}_{1:n}|\theta)\pi_0(\mathrm{d}\theta)}{\int_{\Theta_1} f(\mathbf{x}_{1:n}|\theta)\pi_1(\mathrm{d}\theta)} &; \ H_0:\theta\in\Theta_0 \quad \text{vs} \quad H_1:\theta\in\Theta_1 \\ \frac{f(\mathbf{x}_{1:n}|\theta_0)}{\int_{\Theta_1} f(\mathbf{x}_{1:n}|\theta)\pi_1(\mathrm{d}\theta)} &; \ H_0:\theta\in\{\theta_0\} \quad \text{vs} \quad H_1:\theta\in\Theta_1 \\ \frac{f(\mathbf{x}_{1:n}|\theta_0)}{f(\mathbf{x}_{1:n}|\theta_1)} &; \ H_0:\theta\in\{\theta_0\} \quad \text{vs} \quad H_1:\theta\in\{\theta_1\} \end{cases}$$

Bayes factor: decision

For

$$H_0: \theta \in \Theta_0$$
 vs. $H_1: \theta \in \Theta_1$

The hypothesis H_0 is accepted when

$$B_{01}(x_{1:n}) > \frac{c_{II}}{c_{I}} \frac{\pi_1}{\pi_0}$$

under the loss function

$$\ell(\theta, \delta) = \begin{cases} 0 & \text{, if } \theta \in \Theta_0, \, \delta = 0 \\ 0 & \text{, if } \theta \notin \Theta_0, \, \delta = 1 \\ c_{\text{II}} & \text{, if } \theta \notin \Theta_0, \, \delta = 0 \\ c_{\text{I}} & \text{, if } \theta \in \Theta_0, \, \delta = 1 \end{cases}$$

→ □ ▷ → □ ▷ → □ ▷ → ○ ○ ○