Chapter 3: Processes

Process in Memory

Each process has a different address space.

- -> thanks to virtual memory
- -> here 0 and max are VMAs

Illustrate VMM and PMT PMMAP vs. Physical Memory

Diagram of Process State

Process State

- As a process executes, it changes state
 - **new**: The process is being created
 - running: Instructions are being executed
 - waiting: The process is waiting for some event to occur
 - **ready**: The process is waiting to be assigned to a processor
 - **terminated**: The process has finished execution

Process Control Block (PCB)

Information associated with each process

- Process state
- Program counter
- CPU registers
- CPU scheduling information
- Memory-management information
- Accounting information
- I/O status information
- For PCBs in linux look in the folder:~\$ls /proc

```
:~$ cat /proc/PID/status // gives the process status :~$ ls -l /proc/PID/fd // lists the associated files
```

Process Control Block (PCB)

Information associated with each process

- Process state: new/ready/.../exit
- Program counter: next instruction's address in the process
- CPU registers: PC, IR, Acc, GPR, etc.
- CPU scheduling information: process priority, address of scheduling queues,
- Memory-management information: base and limit memory, PMT, SMT (based on MMT)
- Accounting information: amount of CPU time used, real-time used, time limits,...
- I/O status information: I/O devices allocated, files
- For PCBs in linux look in the folder :~\$1s /proc

```
:~$ cat /proc/PID/status // gives the process status :~$ ls -l /proc/PID/fd // lists the associated files
```

Process Control Block (PCB)

Basis:

'proc' structure defined in proc.h

process state process number program counter registers memory limits list of open files

Diagram of Process State (repeated)

Process Scheduling

- Maximize CPU use, quickly switch processes onto CPU for time sharing
- Process scheduler selects among available processes for next execution on CPU
- Maintains scheduling queues of processes
 - Job queue set of all processes in the system
 - Ready queue set of all processes residing in main memory, ready and waiting to execute
 - Device queues set of processes waiting for an I/O device
 - Processes migrate among the various queues

Process Representation in Linux

Represented by the C structure task_struct

```
pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */
struct task struct *parent; /* this process's parent */
struct list head children; /* this process's children */
struct files struct *files; /* list of open files */
struct mm struct *mm; /* address space of this pro */
```

Diagram of Process State (repeated)

Representation of Process Scheduling

Ready Queue And Various I/O Device Queues

Schedulers

- **Long-term scheduler** (or job scheduler) selects which processes should be brought into the ready queue
- Short-term scheduler (or CPU scheduler) selects which process should be executed next and allocates CPU
 - Sometimes the only scheduler in a system

Schedulers (Cont.)

- Short-term scheduler is invoked very frequently (milliseconds) \Rightarrow (must be fast)
- Long-term scheduler is invoked very infrequently (seconds, minutes) \Rightarrow (may be slow)
- The long-term scheduler controls the *degree of multiprogramming*
- Processes can be described as either:
 - I/O-bound process spends more time doing I/O than computations, many short CPU bursts
 - CPU-bound process spends more time doing computations; few very long CPU bursts

Degree of multiprogramming: nr. of processes in the memory

CPU Switch From Process to Process

3.16

Context Switch

- When CPU switches to another process, the system must save the state of the old process and load the saved state for the new process via a context switch.
- Context of a process represented in the PCB
- Context-switch time is overhead; the system does no useful work while switching
 - The more complex the OS and the PCB -> longer the context switch
- Time dependent on hardware support
 - Some hardware provides multiple sets of registers per CPU -> multiple contexts loaded at once

Process Creation

- **Parent** process create **children** processes, which, in turn create other processes, forming a tree of processes
 - Run
 - :~\$pstree -p // with names and PIDs
 - :~\$pstree -np // arranged in ascending PID
 - To see the list of processes on your linux machine
- Generally, process identified and managed via a process identifier (pid)
- Resource sharing
 - Parent and children share all resources.
 - Children share subset of parent's resources
 - Parent and child share no resources
- Execution
 - Parent and children execute concurrently
 - Parent waits until children terminate

Process Creation (Cont.)

- Address space
 - Child duplicate of parent
 - Child has a program loaded into it
- UNIX examples
 - fork system call creates new process
 - exec system call used after a **fork** to replace the process' memory space with a new program

Process Creation

C Program Forking Separate Process

```
#include <sys/types.h>
#include <studio.h>
#include <unistd.h>
int main()
pid_t pid;
   /* fork another process */
    pid = fork();
   if (pid < 0) { /* error occurred */
       fprintf(stderr, "Fork Failed");
       return 1;
    }
    else if (pid == 0) { /* child process */
       execlp("/bin/ls", "ls", NULL);
    else { /* parent process */
       /* parent will wait for the child */
       wait (NULL);
       printf ("Child Complete");
    return 0;
```

A Tree of Processes on Solaris

Process Termination

- Process executes last statement and asks the operating system to delete it (exit)
 - Output data from child to parent (via wait)
 - Process' resources are deallocated by operating system
- Parent may terminate execution of children processes (abort)
 - Child has exceeded allocated resources.
 - Task assigned to child is no longer required
 - If parent is exiting
 - Some operating system do not allow child to continue if its parent terminates
 - All children terminated cascading termination

Interprocess Communication

- Processes within a system may be independent or cooperating
- Cooperating process can affect or be affected by other processes, including sharing data
- Reasons for cooperating processes:
 - Information sharing
 - Computation speedup
 - Modularity
 - Convenience
- Cooperating processes need interprocess communication (IPC)
- Two models of IPC
 - Shared memory
 - Message passing

Communications Models

Cooperating Processes

- Independent process cannot affect or be affected by the execution of another process
- **Cooperating** process can affect or be affected by the execution of another process
- Advantages of process cooperation
 - Information sharing
 - Computation speed-up
 - Modularity
 - Convenience

Producer-Consumer Problem

- Paradigm for cooperating processes, producer process produces information that is consumed by a consumer process
 - *unbounded-buffer* places no practical limit on the size of the buffer
 - bounded-buffer assumes that there is a fixed buffer size

Bounded-Buffer – Shared-Memory Solution

Shared data

```
#define BUFFER_SIZE 10
typedef struct {
    ...
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
```

Solution is correct, but can only use BUFFER_SIZE-1 elements

Bounded-Buffer – Producer

```
while (true) {
  /* Produce an item */
  while (((in = (in + 1) % BUFFER SIZE count) == out)
  ; /* do nothing if buffer is full */
  buffer[in] = item;
  in = (in + 1) % BUFFER SIZE;
}
```

Bounded Buffer – Consumer

```
while (true) {
   while (in == out)
        ; // do nothing when buffer empty--
         //nothing to consume
   // else remove an item from the buffer
   item = buffer[out];
   out = (out + 1) \% BUFFER SIZE;
return item;
```

Interprocess Communication – Message Passing

- Mechanism for processes to communicate and to synchronize their actions
- Message system processes communicate with each other without resorting to shared variables
- IPC facility provides two operations:
 - send(message) message size fixed or variable
 - receive(message)
- If P and Q wish to communicate, they need to:
 - establish a communication link between them
 - exchange messages via send/receive
- Implementation of communication link
 - physical (e.g., shared memory, hardware bus)
 - logical (e.g., logical properties)

Implementation Questions

- How are links established?
- Can a link be associated with more than two processes?
- How many links can there be between every pair of communicating processes?
- What is the capacity of a link?
- Is the size of a message that the link can accommodate fixed or variable?
- Is a link unidirectional or bi-directional?

Direct Communication

- Processes must name each other explicitly:
 - send (P, message) send a message to process P
 - receive(Q, message) receive a message from process Q
- Properties of communication link
 - Links are established automatically
 - A link is associated with exactly one pair of communicating processes
 - Between each pair there exists exactly one link
 - The link may be unidirectional, but is usually bi-directional

Indirect Communication

- Messages are directed and received from mailboxes (also referred to as ports)
 - Each mailbox has a unique id
 - Processes can communicate only if they share a mailbox
- Properties of communication link
 - Link established only if processes share a common mailbox
 - A link may be associated with many processes
 - Each pair of processes may share several communication links
 - Link may be unidirectional or bi-directional

Indirect Communication

- Operations
 - create a new mailbox
 - send and receive messages through mailbox
 - destroy a mailbox
- Primitives are defined as:

send(A, message) – send a message to mailbox Areceive(A, message) – receive a message from mailbox A

Indirect Communication

- Mailbox sharing
 - P_1 , P_2 , and P_3 share mailbox A
 - P_1 , sends; P_2 and P_3 receive
 - Who gets the message?

Solutions

- Allow a link to be associated with at most two processes
- Allow only one process at a time to execute a receive operation
- Allow the system to select arbitrarily the receiver. Sender is notified who the receiver was.

Synchronization

- Message passing may be either blocking or non-blocking
- Blocking is considered synchronous
 - Blocking send has the sender block until the message is received
 - Blocking receive has the receiver block until a message is available
- Non-blocking is considered asynchronous
 - Non-blocking send has the sender send the message and continue
 - Non-blocking receive has the receiver receive a valid message or null

Buffering

- Queue of messages attached to the link; implemented in one of three ways
 - Zero capacity 0 messages
 Sender must wait for receiver (rendezvous)
 - 2. Bounded capacity finite length of *n* messages Sender must wait if link full
 - 3. Unbounded capacity infinite length Sender never waits

Examples of IPC Systems - POSIX

- POSIX Shared Memory
 - Process first creates shared memory segment

```
segment id = shmget(IPC PRIVATE, size, S IRUSR | S IWUSR);
```

Process wanting access to that shared memory must attach to it

```
shared memory = (char *) shmat(id, NULL, 0);
```

- Now the process could write to the shared memory
- sprintf(shared memory, "Writing to shared memory");
- When done a process can detach the shared memory from its address space

```
shmdt(shared memory);
```

Examples of IPC Systems - Mach

- Mach communication is message based
 - Even system calls are messages
 - Each task gets two mailboxes at creation- Kernel and Notify
 - Only three system calls needed for message transfer

```
msg_send(), msg_receive(), msg_rpc()
```

Mailboxes needed for commuication, created via

```
port_allocate()
```

Examples of IPC Systems – Windows XP

- Message-passing centric via local procedure call (LPC) facility
 - Only works between processes on the same system
 - Uses ports (like mailboxes) to establish and maintain communication channels
 - Communication works as follows:
 - The client opens a handle to the subsystem's connection port object.
 - The client sends a connection request.
 - The server creates two private communication ports and returns the handle to one of them to the client.
 - The client and server use the corresponding port handle to send messages or callbacks and to listen for replies.

Local Procedure Calls in Windows XP

Communications in Client-Server Systems

- Sockets
- Remote Procedure Calls
- Pipes
- Remote Method Invocation (Java)

Sockets

- A socket is defined as an *endpoint for communication*
- Concatenation of IP address and port
- The socket **161.25.19.8:1625** refers to port **1625** on host **161.25.19.8**
- Communication consists between a pair of sockets

Socket Communication

Remote Procedure Calls

- Remote procedure call (RPC) abstracts procedure calls between processes on networked systems
- **Stubs** client-side proxy for the actual procedure on the server
- The client-side stub locates the server and *marshalls* the parameters
- The server-side stub receives this message, unpacks the marshalled parameters, and performs the procedure on the server

Execution of RPC

Pipes

Acts as a conduit allowing two processes to communicate

Issues

- Is communication unidirectional or bidirectional?
- In the case of two-way communication, is it half or full-duplex?
- Must there exist a relationship (i.e. parent-child) between the communicating processes?
- Can the pipes be used over a network?

Ordinary Pipes

- Ordinary Pipes allow communication in standard producer-consumer style
- Producer writes to one end (the write-end of the pipe)
- Consumer reads from the other end (the *read-end* of the pipe)
- Ordinary pipes are therefore unidirectional
- Require parent-child relationship between communicating processes

Ordinary Pipes

Named Pipes

- Named Pipes are more powerful than ordinary pipes
- Communication is bidirectional
- No parent-child relationship is necessary between the communicating processes
- Several processes can use the named pipe for communication
- Provided on both UNIX and Windows systems

End of Chapter 3