Variáveis Instrumentais e MQ2E

Capítulo 15 (Wooldridge, 2011)

Luiz Guilherme Scorzafave

USP-RP

Maio 2020

Introdução

Queremos enfrentar o problema da endogeneidade

Roteiro

- Variáveis omitidas motivação
 - Identificação
 - Inferência com o Estimador de VI
 - Problemas do Instrumento Pobre
- Estimação de VI no MRLM
- Mínimos Quadrados em dois Estágios
 - Hipóteses para que MQ2E tenha propriedades assintóticas
 - Multicolinearidade e MQ2E
- 4 Solução de VI para erros nas variáveis
- Teste de Endogeneidade e de Restrições Sobreidentificadoras
 - Teste de endogeneidade de Hausman
 - Teste de restrições sobreidentificadoras
- 6 Forma matricia

Variáveis omitidas - motivação

 Além do uso da variável proxy para resolver o problema da variável omitida, podemos usar o método de variáveis instrumentais

Exemplo

$$In(sal) = \beta_0 + \beta_1 educa + \beta_2$$
 aptidão + e

Se não houver proxy para aptidão, ela vai para o erro e:

$$ln(sal) = \beta_0 + \beta_1 educa + v$$

E se aptidão e educa forem correlacionados, EMQO será viesado e inconsistente.

• Genericamente, seja

$$y = \beta_0 + \beta_1 x + u$$
 , $cov(x, u) \neq 0$

• Para obter estimadores consistentes de β_0 e β_1 precisamos de informação adicional que virá por uma variável z, satisfazendo:

$$\begin{array}{ll} (15.4) & cov(z,u)=0 \\ (15.5) & cov(z,x)\neq 0 \end{array} \} \mbox{ z \'e variável instrumental de } x$$

• É difícil testar (15.4), mas pode-se testar (15.5):

$$x = \pi_0 + \pi_1 z + v$$
 logo: $\pi_1 = \frac{cov(z, x)}{var(z)}$

Então se $\pi_1 \neq 0$, vale (15.5)

- No nosso exemplo, a variável instrumental deve ser não correlacionada com aptidão, e correlacionada com educação.
- Por exemplo, a variável 'escolaridade da mãe' é correlacionada com a escolaridade dos filhos, mas pode também ser correlacionada com a aptidão dos filhos, logo cov(z,u)=0 pode não ser válida.

Exemplo 2

$$nota = \beta_0 + \beta_1 faltas + u$$

- u é a 'qualidade' do aluno (aptidão, motivação, etc), e então cov(u, faltas) ≠ 0
- Um instrumento factível é distância casa-campus (dist).
- Alunos pobres podem morar longe. Logo, se renda afeta desempenho, $cov(dist, u) \neq 0$
- Mas se incluirmos a renda na regressão, cov(dist, u) = 0

Identificação

- A identificação de um parâmetro significa que posso escrever β_1 em termos de momentos populacionais.
- Pode-se escrever:

$$cov(z, y) = \beta_1 cov(z, x) + cov(z, u)$$

• Logo:

$$\beta_1 = \frac{cov(z, y)}{cov(z, x)}$$

• Dado uma amostra aleatória, podemos obter o estimador de variáveis instrumentais (VI) de β_1 :

$$\hat{\beta}_{1_{VI}} = \frac{\sum_{i=1}^{n} (z_i - \overline{z})(y_i - \overline{y})}{\sum_{i=1}^{n} (z_i - \overline{z})(x_i - \overline{x})} \qquad e \qquad \hat{\beta}_{0_{VI}} = \overline{y} - \hat{\beta}_{1_{VI}} \overline{x}$$

Observações

- 1) Se z=x, então VI= MQO
- 2) $plim(\widehat{\beta_{1_{VI}}}) = \beta_1$, se cov(z,u) = 0 e $cov(z,x) \neq 0$

No entanto, o estimador sempre será viesado e o tamanho do viés pode ser grande em pequenas amostras

Inferência com o Estimador de VI

- O estimador de variáveis instrumentais (EVI) tem uma distribuição aproximadamente normal em grandes amostras (EVI ~^{ap} Normal)
- Para fazer inferência, é necessário homocedasticidade:

$$E(u^2 \mid z) = \sigma^2 = var(u)$$

• Pode ser mostrado, que¹ :

(15.12)
$$\operatorname{Avar}(\hat{\beta}_1) = \frac{\sigma^2}{n\sigma_x^2 \rho_{x,z}^2} \qquad \uparrow \operatorname{corr}(x,z), \downarrow \operatorname{var}(\hat{\beta}_1)$$

 Dada uma amostra aleatória podemos recuperar todos fatores de (15.12):

$$\sigma_x^2 o$$
 var. amostral de x (SQT_x); $\hat{\sigma^2} = \frac{1}{n-2}RSS$; $\rho_{x,z}^2 = R_{x,z}^2$

• Logo:

$$\widehat{\mathsf{Avar}(\hat{\beta}_1)} = \frac{\sigma^2}{\mathsf{SQT}_{\mathsf{x}}\mathsf{R}_{\mathsf{x},\mathsf{z}}^2}$$

¹Avar = Variância Assintótica

• Note que como $R^2 < 1, var(\widehat{\beta^{OLS}}) < var(\widehat{\beta^{VI}})$

Exemplo -Wooldridge 15.1

$$ln(sal) = \beta_0 + \beta_1 educa + u$$

	Estimativa β_0	Estimativa β_1
MQO	-0,185	0,109
	(0,185)	(0,014)
VI	-0,441	0,059
(educação pai como VI)	(0,446)	(0,035)

$$\widehat{educ} = 10,24+0,269$$
educp

Também podem ser usadas variáveis binárias como instrumentos.

Exemplo

Angrist (1990): efeito de ser veterano no Vietnã sobre ganhos

$$In(ganhos) = \beta_0 + \beta_1 veterano + u$$

- Pode existir problema de auto seleção: a decisão de alistar-se pode estar correlacionada com outras características que afetem os ganhos.
- Angrist (1991) diz que o sorteio militar é um experimento natural, criando, portanto, um instrumento.
- Os números do sorteio não são correlacionados com u, mas são correlacionado com o fato de ser veterano, portanto corr(sort, vet) ≠ 0 e corr(sort, u) = 0

Problemas do Instrumento Pobre (cov(z, x)) pequena)

$$plim(\widehat{\beta_{1VI}}) = \beta_1 + \frac{corr(z, u)}{corr(z, x)} \frac{\sigma_u}{\sigma_x}$$

- σ_u =Desvio Padrão de u na população
- σ_x =Desvio Padrão de x na população
- Note que mesmo se corr(z,u) seja pequena, a inconsistência pode ser grande se corr(z,x) for ainda menor. Do capítulo 5, temos:

$$plim(\widehat{\beta_{1MQO}}) = \beta_{1} + corr(x, u) \frac{\sigma_{u}}{\sigma_{x}}$$

• Assim, VI é preferível a MQO com relação a consistência quando:

$$\frac{corr(z,u)}{corr(z,x)} < corr(x,u)$$

• Não precisamos preocupar com R^2 com VI, pois o objetivo de VI não é este

Roteiro

- 🕕 Variáveis omitidas motivação
 - Identificação
 - Inferência com o Estimador de VI
 - Problemas do Instrumento Pobre
- 2 Estimação de VI no MRLM
- Mínimos Quadrados em dois Estágios
 - Hipóteses para que MQ2E tenha propriedades assintóticas
 - Multicolinearidade e MQ2E
- 4 Solução de VI para erros nas variáveis
- Teste de Endogeneidade e de Restrições Sobreidentificadoras
 - Teste de endogeneidade de Hausman
 - Teste de restrições sobreidentificadoras
- 6 Forma matricia

Estimação de VI no MRLM

O modelo é facilmente estendido para regressão múltipla:

Equação Estrutural

$$y_1 = \beta_0 + \beta_1 y_2 + \beta_2 z_1 + u_1 \qquad (15.22)$$

- $z_1 \rightarrow \text{variável exógena } (cov(z_1, u_1) = 0)$
- ullet $y_2
 ightarrow$ variável explicativa 'suspeita' de ser endógena
- $ullet y_1
 ightarrow ext{variável endógena}$

Exemplo

- $z_1 =$ experiência
- $y_1 = \text{salário}$
- y₂ = educação

• Precisamos de um instrumento para $y_2 \rightarrow$ vamos chamá-la de z_2 . Assim, assumimos:

$$E(u_1) = 0$$
 $cov(z_1, u_1) = 0$ $cov(z_2, u_1) = 0$

Podemos obter os correspondentes amostrais desta equação

$$\sum_{i=1}^{n} (y_{i1} - \hat{\beta}_0 - \hat{\beta}_1 y_{i2} - \hat{\beta}_2 z_{i1}) = 0$$

$$\sum_{i=1}^{n} z_{i1} (y_{i1} - \hat{\beta}_0 - \hat{\beta}_1 y_{i2} - \hat{\beta}_2 z_{i1}) = 0$$

$$\sum_{i=1}^{n} z_{i2} (y_{i1} - \hat{\beta}_0 - \hat{\beta}_1 y_{i2} - \hat{\beta}_2 z_{i1}) = 0$$

• OBS: Se y_2 é exógeno, e $z_2 = y_2$, VI=OLS

• Para definir a $corr(z_2, y_2)$, escrevemos a **forma reduzida** (variável endógena em função das exógenas):

$$y_2 = \pi_0 + \pi_1 z_1 + \pi_2 z_2 + v_2$$
 (15.26)

• $E(v_2) = cov(z_1, v_2) = cov(z_2, v_2) = 0$, $\pi_2 \neq 0$

Exemplo 15.4

Card (1995) usou dummy de proximidade de uma faculdade como instrumento para educação na equação de salário e obteve $\pi_2 \neq 0$

Roteiro

- 🕕 Variáveis omitidas motivação
 - Identificação
 - Inferência com o Estimador de VI
 - Problemas do Instrumento Pobre
- 2 Estimação de VI no MRLM
- Mínimos Quadrados em dois Estágios
 - Hipóteses para que MQ2E tenha propriedades assintóticas
 - Multicolinearidade e MQ2E
- 4 Solução de VI para erros nas variáveis
- 5 Teste de Endogeneidade e de Restrições Sobreidentificadoras
 - Teste de endogeneidade de Hausman
 - Teste de restrições sobreidentificadoras
- 6 Forma matricia

Mínimos Quadrados em dois Estágios

 Até agora, vimos os casos em que usamos um instrumento apenas para tratar de uma variável endógena. Quando há mais de um instrumento usamos o Mínimos Quadrados em dois Estágios (MQ2E)

$$y_1 = \beta_0 + \beta_1 y_2 + \beta_2 z_1 + u_1 \qquad (*)$$

- Suponha que temos duas variáveis exógenas excluídas: z_2 e z_3
- A ideia é que, a princípio, poderíamos usar z_2 ou z_3 como o instrumento para y_2 se eles fossem correlacionados com este último (e não com u_1).
- Entretanto, podemos fazer melhor: criar uma **combinação linear** de z_1, z_2 e z_3 que seja mais correlacionada com y_2

Forma reduzida:

$$y_2 = \pi_0 + \pi_1 z_1 + \pi_2 z_2 + \pi_3 z_3 + v_2 \qquad (15.26)$$

- $E(v_2) = cov(z_i, v_2) = 0, i = 1, 2, 3$
- A melhor VI de $y_1 \notin y_2^*$:

$$y_2^* = \pi_0 + \pi_1 z_1 + \pi_2 z_2 + \pi_3 z_3$$

$$\pi_2 \neq 0$$
 ou $\pi_3 \neq 0$

- y_2^* é a parte de y_2 não correlacionada com u
- v_2 é a parte de y_2 possivelmente correlacionada com uDeve-se estimar π_0 , π_1 , e π_2 :

$$\hat{y}_2 = \hat{\pi_0} + \hat{\pi_1}z_1 + \hat{\pi_2}z_2 + \hat{\pi_3}z_3 \qquad (+)$$

OBS: Teste F em z₂ e z₃

- Substitua $\hat{y_2}$ em y_2 em (*)
- MQ2E:
 - 1° estágio \rightarrow (+)
 - 2° estágio → (*)
- Quando só há um instrumento MQ2E=VI

Exemplo 15.5

$$ln(sal) = 0.048 + 0.061 \text{educ} + 0.044 \text{exper} - 0.0009 \text{exper}^2$$

(0,400) (0,031) (0,013) (0,0004)

$$educ = \pi_0 + \pi_1 exper + \pi_2 exper^2 + \pi_3 educmae + \pi_4 educpai$$

H0:
$$\pi_3 = \pi_4 = 0$$

H1: $\pi_3, \pi_4 \neq 0$ Teste F (est. F=55,40 p valor=0)

Hipóteses para que MQ2E tenha propriedades assintóticas

Seja

$$y_1 = \beta_0 + \beta_1 y_2 + \beta_2 z_1 + \dots \beta_k z_{k-1} + u_1$$
 (15.42)

- Para a consistência precisamos:
 - Cada variável instrumental é não correlacionada com u_1
 - Pelo menos uma variável exógena fora de (15.42) seja correlacionada com y_2
- Para que erros padrão e estatísticas t serem válidas, precisamos de homoscedasticidade

Multicolinearidade e MQ2E

• A variância assimptótica do estimador MQ2E de β_1 pode ser aproximada como:

$$var(\widehat{eta_{1_{MQ2E}}}) = rac{\sigma^2}{\widehat{[SQT_2(1-\hat{R}_2^2)]}}$$

- $\sigma^2 = var(u_1)$
- $\widehat{SQT_2}$ é a variação total em $\hat{y_2}$
- \hat{R}_2^2 é o R-quadrado de uma regressão de $\hat{y_2}$ sobre todas as outras variáveis exógenas que aparecem na equação estrutural.
- Por isso, uma amostra da tamanho grande ($\uparrow n$) é uma boa idéia para compensar um alto \hat{R}_2^2

Condições de identificação de uma equação

- Condições para identificação de uma equação:
 - Necessária (condição de ordem) : nº de variáveis endógenas da equação estrutural = nº de variáveis exógenas excluídas
 - **Suficiente** (condição de classificação ou de posto): quando há apenas 1 variável endógena implica que o coeficiente de uma exógena da forma reduzida deve ser $\neq 0$

Condição de posto: π_2 ou $\pi_3 \neq 0$ $y_1 = \beta_0 + \beta_1 y_2 + \beta_2 z_1 + u_1$

$$y_2 = \pi_0 + \pi_1 z_1 + \pi_2 z_2 + \pi_3 z_3$$

Roteiro

- 🕕 Variáveis omitidas motivação
 - Identificação
 - Inferência com o Estimador de VI
 - Problemas do Instrumento Pobre
- 2 Estimação de VI no MRLM
- Mínimos Quadrados em dois Estágios
 - Hipóteses para que MQ2E tenha propriedades assintóticas
 - Multicolinearidade e MQ2E
- Solução de VI para erros nas variáveis
- 5 Teste de Endogeneidade e de Restrições Sobreidentificadoras
 - Teste de endogeneidade de Hausman
 - Teste de restrições sobreidentificadoras
- 6 Forma matricia

Solução de VI para erros nas variáveis

Genericamente, seja

$$y = \beta_0 + \beta_1 x_1^* + \beta_2 x_2 + u$$
 y_2 e x_2 observados e x_1^* não observado

- ullet Seja e_1 o erro de medida. Temos que: $x_1=x_1^*+e_1$
- Logo, caso e₁ seja correlacionado com x₁, o MQO é viesado e inconsistente:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + (u - \beta_1 e_1)$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + (u - \beta_1 e_1)$$

- Em alguns casos, podemos usar VI para resolver o problema de erro de medida
- Hipótese: e_1 é correlacionado com x_1 e **não** é com x_2 e x_1^*
- Preciso de uma VI para x_1 (que seja correlacionada com x_1 e não com u)
- Possibilidade: obter nova estimação de x_1^* , por exemplo, z_1
 - $z_1 = x_1^* + a_1$ $corr(a_1, e_1) = 0$
 - Como é x_1^* que afeta y, é razoável supor que $cov(z_1,u)=0$
- Exemplo: Ashenfelter e Kruger (94): idade do irmão gêmeo

Roteiro

- 🕕 Variáveis omitidas motivação
 - Identificação
 - Inferência com o Estimador de VI
 - Problemas do Instrumento Pobre
- Estimação de VI no MRLM
- Mínimos Quadrados em dois Estágios
 - Hipóteses para que MQ2E tenha propriedades assintóticas
 - Multicolinearidade e MQ2E
- 4 Solução de VI para erros nas variáveis
- 5 Teste de Endogeneidade e de Restrições Sobreidentificadoras
 - Teste de endogeneidade de Hausman
 - Teste de restrições sobreidentificadoras
- 6 Forma matricia

Teste de endogeneidade de Hausman

- MQ2E é menos eficiente que MQO quando variáveis explicativas são exógenas. Assim, é útil realizar um teste de endogeneidade de uma variável explicativa para ver se MQ2E é necessário.
- Suponha que temos y_2 como suspeita de ser endógena:

$$y_1 = \beta_0 + \beta_1 y_2 + \beta_2 z_1 + \beta_3 z_2 + u_1$$
 (15.49)

- z₁ e z₂ são exógenas, e z₃ e z₄ também são exógenas mas não aparecem na regressão acima.
- Se y_2 é não correlacionado com u_1 , devemos estimar por MQO. Caso contrário, por VI.
- Hausman (78) sugeriu comparar MQO e MQ2E, e determinar se as diferenças são estatisticamente significantes, pois tanto MQO quanto MQ2E serão consistentes se todas as variáveis forem exógenas. Se MQO ≠ MQ2E, então y₂ deve ser endógeno.

Estimação na forma reduzida:

$$y_2 = \pi_0 + \pi_1 z_1 + \pi_2 z_2 + \pi_3 z_3 + \pi_4 z_4 + v_2$$
 (15.50)

- Como $cov(z_j, u_1) = 0$ (para todo j), então y_2 será não correlacionado com $u_1 \Leftrightarrow corr(v_2, u_1) = 0$. Queremos testar isso!
- Escreva: $u_1 = \delta_1 v_2 + e_1$
- $corr(u_1, v_2) \neq 0 \Leftrightarrow \delta_1 = 0$ (teste t)
- A maneira mais fácil para testar é incluir \hat{v}_2 de (15.50) como regressor em (15.49):

$$y_1 = \beta_0 + \beta_1 y_2 + \beta_2 z_1 + \beta_3 z_2 + \delta_1 \hat{v_2} + \text{erro}$$

- Teste t: H0 $\delta_1 = 0$ (robusta a heterocedasticidade)
- Se rejeita H0, y_2 é endógeno pois $cov(v_2, u_1) \neq 0$

Teste de restrições sobreidentificadoras

- Se tivermos mais de uma variável instrumental, podemos testar se alguma delas é não correlacionada com o erro da equação estrutural
- Suponha que :

$$y_1 = \beta_0 + \beta_1 y_2 + \beta_2 z_1 + \beta_3 z_2 + u_1$$

- Usamos somente z_3 como instrumento para y_2 e calculamos $\hat{u_1}$ (MQ2E).
- Verificamos se $cov(z_4, \hat{u_1}) \neq 0$. Se for, z_4 não é bom instrumento para y_2 , assumindo-se que $cov(z_3, u_1) = 0$

Passos:

- ullet 1) Estime modelo estrutural por MQ2E e obtenha os resíduos $(\hat{u_1})$
- 2) Regrida $\hat{u_1}$ em todas exógenas e obtenha o R_1^2
- 3) H0: Todas variáveis instrumentais não correlacionadas com u_1 , $nR_1^2 \sim^a \mathcal{X}_{(a)}^2$, onde q é o n° de VI fora do modelo n° endógenas
- 4) Se rejeita H0, conclui-se que pelo menos alguns instrumentos não são exógenos

Roteiro

- 🕕 Variáveis omitidas motivação
 - Identificação
 - Inferência com o Estimador de VI
 - Problemas do Instrumento Pobre
- 2 Estimação de VI no MRLM
- Mínimos Quadrados em dois Estágios
 - Hipóteses para que MQ2E tenha propriedades assintóticas
 - Multicolinearidade e MQ2E
- 4 Solução de VI para erros nas variáveis
- 5 Teste de Endogeneidade e de Restrições Sobreidentificadoras
 - Teste de endogeneidade de Hausman
 - Teste de restrições sobreidentificadoras
- 6 Forma matricial

Forma matricial

- Seja o modelo $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u}$, em que $\boldsymbol{E}(\mathbf{u} \mid \mathbf{X}) \neq \mathbf{0}$ com k-1 variáveis explicativas. \mathbf{X} é uma matriz (n x k), onde \boldsymbol{n} é o tamanho da amostra e \boldsymbol{k} o número de parâmetros a serem estimados. $\boldsymbol{\beta}$ é um vetor de dimensão (k x 1); \boldsymbol{y} e \boldsymbol{u} são vetores de dimensão (n x 1).
- Dispõe-se de *m* instrumentos, descrito pela matriz **Z**, de dimensão (n x m).
- Os instrumentos devem ser correlacionados com X e não correlacionados com u.
- Pode-se utilizar mais de um instrumento por regressor. Além disso, quando uma variável não precisa ser instrumentalizada, ela mesma será seu próprio instrumento de modo que $m \geq k$

 O primeiro estágio consiste em regredir as variáveis explicativas em seus instrumentos, isto é :

$$X = Z\gamma + v \qquad (**)$$

- Em que γ é uma matriz de parâmetros de dimensão (m x k) e ν representa o termo de erro. A estimação de (**) por MQO gera $\hat{\gamma} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{X}$, de onde se obtém os valores previstos $\hat{\mathbf{X}} = \mathbf{Z}\hat{\gamma} = \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{X}$.
- No segundo estágio, substituímos X por \hat{X} na equação estrutural e se estima essa última por MQO:

$$y = \hat{X}\beta + u$$

• Sendo que o estimador de MQ2E será dado por:

$$\hat{\beta}^{\mathsf{MQ2E}} = (\hat{\mathsf{X}}'\hat{\mathsf{X}})^{-1}\hat{\mathsf{X}}'\mathsf{y}$$

- Para chegar aos resultados abaixo, deve-se usar algumas regras de álgebra matricial:
- (A')' = A
- $(A')^{-1} = (A^{-1})'$
- (ABC)' = C'B'A'
- $A.A^{-1} = A^{-1}.A = I$
- A partir de onde é possível deduzir que:
- $[(Z'Z)^{-1}]' = [(Z'Z)']^{-1} = (Z'Z)^{-1}$
- $(Z(Z'Z)^{-1}Z'X)' = X'Z(Z'Z)^{-1}Z'$
- $(Z'Z)(Z'Z)^{-1} = (Z'Z)^{-1}(Z'Z) = I$

$$\hat{eta}^{\mathsf{MQ2E}} = (\hat{\mathbf{X}}'\hat{\mathbf{X}})^{-1}\hat{\mathbf{X}}'\mathbf{y}$$

• Note que:

$$\begin{split} \boldsymbol{\hat{X}}'\boldsymbol{\hat{X}} &= (\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{X})'(\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{X}) = \mathbf{X}'\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{X} \\ &= \mathbf{X}'\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{X} \end{split} \tag{3}$$

$$\mathbf{\hat{X}}'\mathbf{y} = (\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{X})'\mathbf{y} = \mathbf{X}'\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y}$$

• Chega-se ao formato final do estimador de MQ2E:

$$\beta^{MQ2E} = (X'Z(Z'Z)^{-1}Z'X)^{-1}(X'Z(Z'Z)^{-1}Z'y)$$

$$\beta^{MQ2E} = (X'Z(Z'Z)^{-1}Z'X)^{-1}(X'Z(Z'Z)^{-1}Z'y)$$

• Note que se $\dim(Z)=\dim(X)$ (ou k=m), ou seja, se tenho o mesmo número de variáveis explicativas endógenas e de instrumentos (caso exatamente identificado), as matrizes (X'Z) e (Z'X) são quadradas de dimensão $(n \times n)$ e, portanto, é verdade que:

$$(X'Z(Z'Z)^{-1}Z'X)^{-1} = (Z'X)^{-1}(Z'Z)(X'Z)^{-1}$$

• Resultado que decorre da propriedade $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$, fazendo A = X'Z, $B = (Z'Z)^{-1}$, C = (Z'X)

$$(X'Z(Z'Z)^{-1}Z'X)^{-1} = (Z'X)^{-1}(Z'Z)(X'Z)^{-1}$$

Substituindo a equação acima em:

$$\beta^{MQ2E} = (X'Z(Z'Z)^{-1}Z'X)^{-1}(X'Z(Z'Z)^{-1}Z'y)$$

Chega-se em:

$$\beta^{VI} = (Z'X)^{-1}(Z'Z)(X'Z)^{-1}(X'Z)(Z'Z)^{-1}Z'y$$

$$\beta^{VI} = (Z'X)^{-1}(Z'Z)(Z'Z)^{-1}Z'y$$

$$\beta^{VI} = (Z'X)^{-1}(Z'Y)$$

Esse é o estimador de variáveis instrumentais no caso exatamente identificado (m=k)

- Ao contrário de MQO, o estimador de VI é consistente quando há correlação entre regressores e erro.
- Contudo, não se garante não viés, de modo que tal estimador não apresenta bom desempenho em amostras pequenas.