The Inequality of Climate Change and Optimal Energy Policy

Thomas Bourany
The University of Chicago

Yiran Fan Memorial Conference

April 2024

➤ To fight climate change the preferred policy instrument of economists is the Pigouvian taxation of carbon and therefore, fossil fuel energy.

- ➤ To fight climate change the preferred policy instrument of economists is the Pigouvian taxation of carbon and therefore, fossil fuel energy.
- ► However, energy taxation and climate policy redistribute across countries through
 - (i) energy markets, between importer and exporters
 - (ii) change in climate, benefit from warming vs. catastrophic condition
 - (iii) reallocation of activity through trade, the leakage effect
 - (+) higher income countries not exposed as much as developing economies.

- ➤ To fight climate change the preferred policy instrument of economists is the Pigouvian taxation of carbon and therefore, fossil fuel energy.
- ► However, energy taxation and climate policy redistribute across countries through
 - (i) energy markets, between importer and exporters
 - (ii) change in climate, benefit from warming vs. catastrophic condition
 - (iii) reallocation of activity through trade, the leakage effect
 - (+) higher income countries not exposed as much as developing economies.
- As a result, different countries are affected differently by carbon taxation,
 - ⇒ What is the optimal carbon policy in the presence of climate externality and inequality?
 - Optimal taxation design depends crucially on redistribution instruments i.e. lump-sum transfers across countries

- ▶ What is the optimal carbon policy in the presence of climate externality and inequality?
- ► Study an Integrated Assessment Model (IAM) with heterogeneous countries to:
 - Evaluate the welfare costs of global warming (Social Cost of Carbon)
 - Solve for the optimal Ramsey policy for carbon taxation
 - Analyze the strategic implications of joining/designing climate agreements
 - o Provide a numerical methodology for this Het. Agents model

- ▶ What is the optimal carbon policy in the presence of climate externality and inequality?
- ► Study an Integrated Assessment Model (IAM) with heterogeneous countries to:
 - Evaluate the welfare costs of global warming (Social Cost of Carbon)
 - Solve for the optimal Ramsey policy for carbon taxation
 - Analyze the strategic implications of joining/designing climate agreements
 - Provide a numerical methodology for this Het. Agents model
- Preview of the results:
 - Social Cost of Carbon need to be adjusted for inequality level
 - Taxation of energy also account for supply and demand elasticity
 - Country-specific taxes: poorer countries will pay relatively lower taxes

Literature

- Climate change & optimal carbon taxation
 - RA model: Nordhaus DICE (1996-), Weitzman (2014), Golosov et al (2014)
 - HA model: Krusell Smith (2022), Kotlikoff, Kubler, Polbin, Scheidegger (2021)
 - Spatial models: Cruz, Rossi-Hansberg (2022, 2023) among others
 - ⇒ Optimal and constrained policy with heterogeneous countries & trade
- ▶ Unilateral vs. climate club policies:
 - Climate clubs: Nordhaus (2015), Non-cooperative taxation: Chari, Kehoe (1990), Suboptimal policy: Hassler, Krusell, Olovsson (2019)
 - Trade policy: Kortum, Weisbach (2023), Farrokhi, Lashkaripour (2021), Hsiao (2022), Costinot, Donalson, Vogel, Werning (2015), Adao, Costinot (2022), Antras, Fort, Gutierrez, Tintelnot (2022)
 - ⇒ Climate cooperation and optimal design of climate club
- Optimal policy in heterogeneous agents models
 - Policy with limited instruments: Diamond (1973), Davila, Walther (2022)
 - Bhandari et al (2021), Le Grand, Ragot (2022), Davila, Schaab (2022) ...
 - ⇒ Application to climate and carbon taxation policy

Model – Household & Firms

- ► Static deterministic Neoclassical economy (for today)
 - countries $i \in \mathbb{I}$, heterogeneous in productivity z_i , temperature T_i , energy extraction cost C_i

April 2024

5/21

- In each country, 3 agents:
 - (i) HtM household, (ii) homogeneous good firm, (iii) (fossil) energy producer

Model – Household & Firms

- ► Static deterministic Neoclassical economy (for today)
 - countries $i \in \mathbb{I}$, heterogeneous in productivity z_i , temperature T_i , energy extraction cost C_i
 - In each country, 3 agents:
 - (i) HtM household, (ii) homogeneous good firm, (iii) (fossil) energy producer
- ▶ Representative household problem in each country *i* (passive):

$$\mathcal{V}_i = u(c_i)$$
 $c_i = w_i \ell_i + \pi_i^f + \mathbf{t}_i^{ls}$

• Labor income $w_i \ell_i$ from final good firm (labor supply fixed to $\bar{\ell}_i$), profit π_i^f from fossil firm

Model – Household & Firms

- ► Static deterministic Neoclassical economy (for today)
 - countries $i \in \mathbb{I}$, heterogeneous in productivity z_i , temperature T_i , energy extraction cost C_i
 - In each country, 3 agents:
 - (i) HtM household, (ii) homogeneous good firm, (iii) (fossil) energy producer
- ► Representative household problem in each country *i* (passive):

$$\mathcal{V}_i = u(c_i)$$
 $c_i = w_i \ell_i + \pi_i^f + t_i^{ls}$

• Labor income $w_i \ell_i$ from final good firm (labor supply fixed to $\bar{\ell}_i$), profit π_i^f from fossil firm

April 2024

5/21

Competitive homogeneous good producer in country i

$$\max_{\boldsymbol{e}_{i}^{f}} \mathcal{D}(T_{i}) z_{i} f(\boldsymbol{e}_{i}^{f}, \ell_{i}) - w_{i} \ell_{i} - (q^{f} + \boldsymbol{t}_{i}^{f}) \boldsymbol{e}_{i}^{f}$$

- Fossil energy demand e_i^f emitting carbon subject to price q^f and tax/subsidy t^f .
- Climate externality: effect of temperature on damage/TFP, $\mathcal{D}(T) \in (0,1)$

Model – Energy markets & Emissions

- Competitive fossil fuels energy producer:
 - Supply fossil energy e_i^x by extraction at cost C_i^f

$$\pi_i^f = \max_{e_i^x} q^f e_i^x - \mathcal{C}_i^f(e_i^x)$$

Energy traded in international markets, at price q^f

$$E = \sum_{\mathbb{T}} e_i^f = \sum_{\mathbb{T}} e_i^x$$

Model – Energy markets & Emissions

- Competitive fossil fuels energy producer:
 - Supply fossil energy e_i^x by extraction at cost C_i^f

$$\pi_i^f = \max_{e_i^x} q^f e_i^x - \mathcal{C}_i^f(e_i^x)$$

Energy traded in international markets, at price q^f

$$E = \sum_{\scriptscriptstyle \mathrm{T}} {\color{red} e_i^f} = \sum_{\scriptscriptstyle \mathrm{T}} {\color{red} e_i^x}$$

- Climate system
 - Fossil energy e^f releases GHGs in the atmosphere

$$\mathcal{E} = \sum_{\scriptscriptstyle \mathrm{T}} e_i^f$$

• Country's local temperature:

$$T_i = \bar{T}_{i0} + \Delta_i \mathcal{E}$$

- Linear model + Climate sensitivity/pattern scaling factor Δ_i

Model – Equilibrium

► Equilibrium

- Given policies $\{t_i^f, t_i^{ls}\}_i$, a **competitive equilibrium** is a set of decisions $\{c_i, e_i^f, e_i^x\}_i$, states $\{T_i\}_i$ and prices $\{q^f, w_i\}_i$ such that:
- Households choose $\{c_i\}_i$ to max. utility s.t. budget constraint
- Firm choose policies $\{e_i^f\}_i$ to max. profit
- Fossil firms extract/produce $\{e_i^x\}_i$ to max. profit.
- Emissions \mathcal{E}_t affects climate $\{T_i\}_i$.
- Government budget clear $\sum_{i} t_{i}^{ls} = \sum_{i} t_{i}^{f} e_{i}^{f}$
- Prices q^f adjust to clear the markets for energy $\sum_{\mathbb{I}} e_i^x = \sum_{\mathbb{I}} e_i^f$ The good market clearing holds by Walras law

Model – Dynamics & extensions

- 1. Firm
 - Use capital as well to produce
 - Use an energy bundle of renewable and fossil energy
- 2. Energy market
 - Renewable energy firm in each country
 - Price of clean energy trending down
 - Fossil energy extraction/depleting reserves ⇒ Hotelling problem
- 3. Households
 - Consumption / saving in bonds / in capital ⇒ Keynes-Ramsey rule
 - International markets to borrow bonds (in zero net supply)
- 4. Climate system with inertia / closer to standard IAMs
- 5. Population growth dynamics (for each country)
- 6. (Exogenous) growth: TFP change and Energy-augmenting Directed TC.

8/21

Optimal world policy – Summary of results

- **Equilibrium 0:** Competitive equilibrium Details eq 0
 - Passive policies $t^f = 0$, and large cost of climate change
- ► Equilibrium 1: First-Best, with unlimited instruments Details eq 1
 - Welfare: $W = \max_{\{\mathbf{t}, \mathbf{c}, \mathbf{e}\}_i} \sum_{i \in \mathbb{I}} \omega_i \ u(c_i) = \sum_{\mathbb{I}} W_i$
 - Social Planner redistribute across countries with lump-sum transfers t_i^{ls}
 - Set the optimal Pigouvian carbon tax to $t^f = SCC$
- ► Equilibrium 2: Second-best Ramsey policy, with limited instruments Details eq 2
 - Optimal carbon tax accounts for (i) inequality and local climate damage, (ii) energy supply elasticities, (iv) energy demand distortions
- ► Equilibrium 3: Countries can exit climate agreements Details eq 3
 - All formulas corrected for participation constraints (multipliers affect distribution weights)
 - Optimal design of climate agreement ⇒ JMP

Quantification

- ► Quantification and calibration More details
 - Quadratic damage as in Nordhaus DICE

$$y_i = \mathcal{D}_i(T)\bar{y}$$
 with $\mathcal{D}_i(T) = e^{-\gamma_i(T-T_{i0})^2}$

Energy parameters to match production/reserves, Isoelastic cost function

$$C_i(e_i^x) = \bar{\nu}_i (e_i^x/\mathcal{R}_i)^{1+\nu} \mathcal{R}_i$$

- Cost $\bar{\nu}_i$ and Reserves \mathcal{R}_i to match BP data for production and reserve
- Production $\bar{y} = zf(\ell_i, k_i, e_i^f, e_i^r)$, labor, capital, fossil, renewable
 - Nested CES energy vs. labor-capital Cobb-Douglas bundle (elasticity $\sigma_y < 1$), and fossil/renewable $\sigma_e > 1$.
 - TFP, and DTC, z_i, z_i^e , calibrated to match GDP / energy shares data.
- Population, from WDI data

Competitive equilibrium

- ► Key objects:
 - Marginal value of wealth $\lambda_i^w = u'(c_i)$
 - Marginal value of carbon ψ_i^S for country i
 - "Local social cost of carbon" (LCC) for region *i*:

$$LCC_{i} := -\frac{\partial \mathcal{V}_{i}/\partial \mathcal{S}}{\partial \mathcal{V}_{i}/\partial c_{i}} = \frac{\psi_{i}^{\mathcal{S}}}{\lambda_{i}^{w}} = -\Delta_{i}\mathcal{D}'(T_{i})z_{i}f(e_{i}^{f}) > 0$$

Stationary equilibrium closed-form formula, analogous to GHKT (2014) Closed Form Solution Here

Thomas Bourany (UChicago) Inequality and Climate Policy April 2024

11/21

First-Best, Optimal policy with transfers

First-Best, Maximizing welfare of the Social Planner:

$$\mathcal{W} = \max_{\{\mathbf{t}, \mathbf{x}, \mathbf{c}, \mathbf{q}\}_i} \sum_{\mathbb{T}} \omega_i \ u(c_i) = \sum_{\mathbb{T}} \mathcal{W}_i$$

• Full set of instruments $\mathbf{t} = \{t_i^f, t_i^{ls}\}$, including transfers across countries

12/21

First-Best, Optimal policy with transfers

First-Best, Maximizing welfare of the Social Planner:

$$\mathcal{W} = \max_{\{\mathbf{t}, \mathbf{x}, \mathbf{c}, \mathbf{q}\}_i} \sum_{\mathbb{T}} \omega_i \ u(c_i) = \sum_{\mathbb{T}} \mathcal{W}_i$$

- Full set of instruments $\mathbf{t} = \{t_i^f, t_i^{ls}\}$, including transfers across countries
- Key objects: Local vs. Global Social Cost of Carbon,

$$SCC^{\bar{b}} := -\frac{\partial \mathcal{W}/\partial \mathcal{S}}{\partial \mathcal{W}/\partial \bar{c}} = \frac{\psi_t^S}{\lambda_t^w} = \frac{\sum_{\mathbb{I}} \psi_i^S}{\frac{1}{I} \sum_{\mathbb{I}} \lambda_i^w} \qquad \qquad LCC_i := \frac{\partial \mathcal{W}_i/\partial \mathcal{S}}{\partial \mathcal{W}_i/\partial c_i} = \frac{\psi_i^S}{\lambda_i^w}$$

First-Best, Optimal policy with transfers

► *Proposition 1:* Optimal carbon tax:

$$\mathbf{t}^f = SCC^{fb}$$

• Result as in Representative Agent economy, c.f. Nordhaus DICE (1996), GHKT (2014)

$$SCC^{fb} = \frac{\psi^{S}}{\lambda^{w}} = -\sum_{\mathbb{T}} \frac{\psi_{i}^{S}}{\lambda_{i}^{w}} = \sum_{\mathbb{T}} LCC_{i}$$

Lump-sum transfers redistribute across countries, s.t.

$$\omega_i u'(c_i) = \lambda_i^w = \bar{\lambda}^w = \lambda_i^w = \omega_j u'(c_j) \quad \forall i, j \in \mathbb{I}$$

• Imply cross-countries lump-sum transfers $\exists i \ s.t. \ t_i^{ls} \ge 0 \ \text{or} \ \exists j \ s.t. \ t_i^{ls} \le 0$

Ramsey policy with limited transfers

- \triangleright Second best without access to lump-sum transfers: choice of a carbon tax $\{t^f, t^r\}$
 - Tax receipts redistributed lump-sum: $t_i^{ls} = t^f e_i^f$
 - Inequality across regions:

$$\widehat{\lambda}_i^w = \frac{\omega_i \lambda_i^w}{\bar{\lambda}^w} = \frac{\omega_i u'(c_i)}{\frac{1}{I} \sum_{\mathbb{T}} \omega_j u'(c_j)} \leq 1$$

- \Rightarrow ceteris paribus, poorer countries have higher $\hat{\lambda}_i^w$
- Social Cost of Carbon integrates these inequalities:

$$SCC^{sb} = \sum_{\mathbb{I}} \widehat{\lambda}_{i}^{w} LCC_{i}$$
$$SCC^{sb} = \sum_{\mathbb{I}} LCC_{i} + \mathbb{C}ov_{i}(\widehat{\lambda}_{i}^{w}, LCC_{i})$$

Ramsey Problem – Optimal Carbon and Energy Policy

- ► Taxing fossil energy has additional redistributive effects:
 - 1. Through energy markets: distort supply, lowers eq. fossil price, benefit net importers
 - 2. Distort energy demand, of countries that need more or less energy

Supply Distortion^{sb} + Demand Distortion^{sb} =
$$C_{EE}^f \mathbb{C}ov_i(\widehat{\lambda}_i, e_i^f - e_i^x) - \mathbb{C}ov_i(\widehat{v}_i, \frac{q^f(1 - s_i^f)}{\sigma e_i})$$

 \circ Params: \mathcal{C}_{EF}^f agg. fossil supply elasticity, s_i^f energy cost share and σ energy demand elasticity

Thomas Bourany (UChicago) Inequality and Climate Policy April 2024 15 / 21

Ramsey Problem – Optimal Carbon and Energy Policy

- ► Taxing fossil energy has additional redistributive effects:
 - 1. Through energy markets: distort supply, lowers eq. fossil price, benefit net importers
 - 2. Distort energy demand, of countries that need more or less energy

Supply Distortion^{sb} + Demand Distortion^{sb} =
$$\underbrace{\mathcal{C}_{EE}^f}_{\text{agg. supply}}\underbrace{\mathbb{C}\text{ov}_i(\widehat{\lambda}_i, \boldsymbol{e}_i^f - \boldsymbol{e}_i^x)}_{\text{terms-of-trade redistribution}} - \underbrace{\mathbb{C}\text{ov}_i(\widehat{v}_i, \frac{q^f(1-s_i^f)}{\sigma e_i})}_{\text{demand distortion}}$$

- \circ Params: \mathcal{C}_{EE}^f agg. fossil supply elasticity, s_i^f energy cost share and σ energy demand elasticity
- ▶ *Proposition 2*: Optimal fossil energy tax:

$$\Rightarrow$$
 $t^f = SCC^{sb} + \text{Supply Distortion}^{sb} + \text{Demand Distortion}^{sb}$

- Social cost of carbon: $SCC^{sb} = \sum_{\mathbb{I}} \widehat{\lambda}_{i}^{w} LCC_{i}$

15/21

Step 2: Ramsey Problem – Country-specific energy tax

- ▶ Suppose the planner has access to a *distribution* of carbon price.
- ▶ *Proposition 3:* Optimal country-specific fossil energy tax:

$$\Rightarrow \quad \mathfrak{t}^f = \frac{1}{\widehat{\lambda}_i^w} \left[SCC^{sb} + \text{Supply Distortion}^{sb} \right]$$

- Social cost of carbon: $SCC^{sb} = \sum_{\mathbb{I}} \widehat{\lambda}_{i}^{w} LCC_{i}$
- ⇒ Reduce the tax burden for poorer/more "valuable" countries

Step 2: Ramsey Problem – Extensions

- ► Trade block à la Armington Details eq 2
 - Additional trade-off/distortion on goods important for the trade network
- Dynamic consideration (in the paper)
 - Valuation of reserves (Hotelling rent), carbon tax serves as an instrument for intertemporal substitution of fossil production
 - Heal, Schlenker (2019), Cruz, Rossi-Hansberg (2022)
 - Curb capital demand and distort consumption/saving decision, c.f. H.A. models

Thomas Bourany (UChicago) Inequality and Climate Policy April 2024 17/21

Local Cost of Carbon & Carbon Tax – First and Second Best

▶ Difference $LCC_i = \frac{\psi_i^S}{\lambda_i^w}$ vs. $\widehat{\lambda}_i^w LCC_i = \frac{\psi_i^S}{\lambda_i^w}$ since $SCC = \sum_{\mathbb{I}} \widehat{\lambda}_i^w LCC_i$

Thomas Bourany (UChicago) Inequality and Climate Policy April 2024 18 / 21

Comparison - Value of wealth vs. Social Cost of Carbon

Social Cost of Carbon can be decomposed:

$$SCC := -\frac{\partial \mathcal{W}/\partial \mathcal{S}}{\partial \mathcal{W}/\partial c} = \frac{\psi^{\mathcal{S}}}{\bar{\lambda}^{w}} = \frac{\sum_{\mathbb{I}} \psi_{i}^{\mathcal{S}}}{\frac{1}{I} \sum_{\mathbb{I}} \lambda_{i}^{w}}$$

► Here plot that decomposition:

$$\log(SCC_t) = \log(\psi^S) - \log(\lambda^w)$$

Thomas Bourany (UChicago) Inequality and Climate Policy April 2024 19 / 21

Local Cost of Fossil and Terms of Trade Adjustment

Social Cost of Fossil Energy:

$$SCF_{t} = \mathcal{C}_{EE}^{f} \sum_{i} \widehat{\lambda}_{it}^{w} \left(e_{it}^{f} - e_{it}^{x} \right)
\mathcal{C}_{EE}^{f-1} = \sum_{i} \mathcal{C}_{i,e^{x}e^{x}}^{f-1} = \nu \frac{q^{f}}{F}$$

► Here plotting local cost of fossil:

$$LCF_{it} = \widehat{\lambda}_{it}^{w} (e_{it}^{f} - e_{it}^{x})$$

Thomas Bourany (UChicago) Inequality and Climate Policy April 2024 20 / 21

Conclusion

- ▶ In this project, I solve for the optimal climate policy
 - Accounting for inequality as it depends on the availability of transfer mechanisms
 - Redistributing through GE effects on energy and good markets ⇒ terms-of-trade effects
 - Additional trade-related and dynamic motives co-funded in energy taxation
- ► Incentives and implementability
 - What if some countries deviate from apply the appropriate energy tax?
 - Game theoretical consideration due to participation constraints
 - Implementation of a "climate club": penalty tariffs for non-participants crucial for enforcing carbon policy
 - ⇒ Job Market Paper: "The Optimal Design of Climate Agreements"

Appendices

Step 0: Competitive equilibrium & Trade

- Each household in country i maximize utility and firms maximize profit
- Standard trade model results:
 - Consumption and trade:

$$s_{ij} = \frac{c_{ij}p_{ij}}{c_{i}\mathbb{P}_{i}} = a_{ij}\frac{(d_{ij}(1+t_{ij}^{b})p_{j})^{1-\theta}}{\sum_{k} a_{ik}(d_{ik}(1+t_{ik}^{b})p_{k})^{1-\theta}} \qquad \qquad \& \qquad \mathbb{P}_{i} = \left(\sum_{j} a_{ij}(d_{ij}p_{j})^{1-\theta}\right)^{\frac{1}{1-\theta}}$$

Energy consumption doesn't internalize climate damage:

$$p_iMPe_i=q^e$$

• Inequality, as measured in local welfare units:

$$\lambda_i = u'(c_i)$$

"Local Social Cost of Carbon", for region i

$$LCC_{i} = \frac{\partial \mathcal{W}_{i}/\partial \mathcal{E}}{\partial \mathcal{W}_{i}/\partial w_{i}} = \frac{\psi_{i}^{\mathcal{E}}}{\lambda_{i}} = -\Delta_{i}\mathcal{D}'(T_{i})z_{i}f(e_{i}^{f})\frac{\mathbf{p}_{i}}{\mathbb{P}_{i}}$$
 (> 0 if heat causes losses)

Thomas Bourany (UChicago)

Step 1: World First-best policy

► Maximizing welfare of the world Social Planner:

$$\mathcal{W} = \max_{\{\mathbf{t}, \mathbf{e}, \mathbf{q}\}_i} \sum_{i \in \mathbb{I}} \omega_i \ u(c_i) = \sum_{\mathbb{I}} \mathcal{W}_i$$

- Full array of instruments: cross-countries lump-sum transfers \mathbf{t}_i^{ls} , individual carbon taxes \mathbf{t}_i^f on energy e_i^f , bilateral tariffs \mathbf{t}_{ii}^b
- Budget constraint: $\sum_i t_i^{ls} = \sum_i t_i^f e_i^f + \sum_{i,j} t_{ij}^b c_{ij} d_{ij} p_j$
- ► Maximize welfare subject to
 - Market clearing for good $[\mu_i]$, market clearing for energy μ^e

back

Thomas Bourany (UChicago) Inequality and Climate Policy April 2024

3 / 15

Step 1: World First-best policy

- Social planner results:
 - Consumption:

$$\omega_i u'(c_i) = \left[\sum_j a_{ij} (d_{ij}\omega_j \mu_j)^{1-\theta}\right]^{\frac{1}{1-\theta}}$$

• Energy use:

$$\omega_i \mu_i MPe_i = \mu^e + SCC$$

Social cost of carbon:

$$SCC = -\frac{\sum_{j} \Delta_{j} \omega_{j} \mu_{j} \mathcal{D}'_{j}(T_{j}) \bar{y}_{j}}{\frac{1}{I} \sum_{j} \omega_{j} \mu_{j}}$$

back

Step 2: World optimal Ramsey policy

► Maximizing welfare of the world Social Planner:

$$\mathcal{W} = \max_{\{\mathbf{t}, \mathbf{e}, \mathbf{q}\}_i} \sum_{i \in \mathbb{I}} \omega_i \ u(c_i) = \sum_{\mathbb{I}} \mathcal{W}_i$$

- One single instrument: uniform carbon tax t^f on energy e_i^f
- Rebate tax lump-sum to HHs $t_i^{ls} = t^f e_i^f$
- ▶ Ramsey policy: Primal approach, maximize welfare subject to
 - Budget constraint $[\lambda_i]$, Market clearing for good $[\mu_i]$, market clearing for energy
 - Optimality (FOC) conditions for good demands $[\eta_{ij}]$, energy demand & supply, etc.
 - Trade-off faced by the planner:
 - (i) Correcting externality, (ii) Redistributive effect, (iii) Distort energy demand and supply

back

Step 2: World optimal Ramsey policy

- ► The planner takes into account
 - (i) the marginal value of wealth λ_i
 - (ii) the shadow value of good i, from market clearing, μ_i :

w/o trade
$$\omega_i u'(c_i) = \omega_i \lambda_i$$
 vs. w/ trade in goods:
$$\omega_i u'(c_i) = \Big(\sum_{i \in \mathbb{T}} a_{ij} (d_{ij} \mathbf{p}_j)^{1-\theta} \Big[\omega_i \lambda_i + \omega_j \mu_j + \eta_{ij} (1-s_{ij})\Big]^{1-\theta}\Big)^{\frac{1}{1-\theta}}$$

Relative welfare weights, representing inequality

w/o trade:
$$\widehat{\lambda}_i = \frac{\omega_i \lambda_i}{\overline{\lambda}} = \frac{\omega_i u'(c_i)}{\frac{1}{I} \sum_{\mathbb{I}} \omega_j u'(c_j)} \leq 1 \qquad \Rightarrow \qquad \text{ceteris paribus, poorer}$$
vs. w/ trade:
$$\widehat{\lambda}_i = \frac{\omega_i (\lambda_i + \mu_i)}{\frac{1}{I} \sum_{\mathbb{I}} \omega_i (\lambda_i + \mu_i)} \leq 1$$

Step 2: Optimal policy – Social Cost of Carbon

- ► Key objects: Local vs. Global Social Cost of Carbon:
 - Marginal cost of carbon $\psi_i^{\mathcal{E}}$ for country i
 - "Local social cost of carbon" (LCC) for region i:

$$LCC_i := \frac{\partial \mathcal{W}_i / \partial \mathcal{E}}{\partial \mathcal{W}_i / \partial w_i} = \frac{\psi_i^{\mathcal{E}}}{\lambda_i} = -\Delta_i \mathcal{D}'(T_i) z_i f(e_i^f) p_i \qquad (> 0 \text{ if heat causes losses})$$

Step 2: Optimal policy – Social Cost of Carbon

- ► Key objects: Local vs. Global Social Cost of Carbon:
 - Marginal cost of carbon $\psi_i^{\mathcal{E}}$ for country i
 - "Local social cost of carbon" (LCC) for region *i*:

$$LCC_i := \frac{\partial \mathcal{W}_i / \partial \mathcal{E}}{\partial \mathcal{W}_i / \partial w_i} = \frac{\psi_i^{\mathcal{E}}}{\lambda_i} = -\Delta_i \mathcal{D}'(T_i) z_i f(e_i^f) p_i \qquad (> 0 \text{ if heat causes losses})$$

Social Cost of Carbon for the planner:

$$SCC := \frac{\partial \mathcal{W}/\partial \mathcal{E}}{\partial \mathcal{W}/\partial w} = \frac{\sum_{\mathbb{I}} \omega_i \psi_i^{\mathcal{E}}}{\frac{1}{I} \sum_{\mathbb{I}} \omega_i (\lambda_i + \mu_i)}$$

• Social Cost of Carbon integrates these inequalities:

$$SCC = \sum_{\mathbb{T}} \widehat{\lambda}_i LCC_i = \sum_{\mathbb{T}} LCC_i + \mathbb{C}ov_i (\widehat{\lambda}_i, LCC_i)$$

Step 2: Optimal policy – Other motives

- ► Taxing fossil energy has additional redistributive effects:
 - 1. Through energy markets: distort supply, lowers eq. fossil price, benefit net importers
 - 2. Distort energy demand, of countries that need more or less energy
- ► New measure: Social Value of Fossil (SVF)

$$SVF := \frac{\partial \mathcal{W}/\partial E}{\partial \mathcal{W}/\partial w} = \mathcal{C}_{EE}^f \mathbb{C}ov_i \left(\widehat{\lambda}_i, \mathbf{e}_i^f - \mathbf{e}_i^x\right) - \mathbb{C}ov_i \left(\widehat{\lambda}_i, \frac{q^f (1 - s_i^f)}{\sigma}\right)$$

 \circ Params: \mathcal{C}_{EE}^f agg. fossil supply elasticity, s_i^f energy cost share and σ energy demand elasticity

Step 2: Optimal policy – Other motives

- ► Taxing fossil energy has additional redistributive effects:
 - 1. Through energy markets: distort supply, lowers eq. fossil price, benefit net importers
 - 2. Distort energy demand, of countries that need more or less energy
- ► New measure: Social Value of Fossil (SVF)

$$SVF := \frac{\partial \mathcal{W}/\partial E}{\partial \mathcal{W}/\partial w} = \underbrace{\mathcal{C}_{EE}^{f}}_{\substack{\text{agg. supply} \\ \text{distortion}}} \underbrace{\mathbb{C}\text{ov}_{i}\left(\widehat{\lambda}_{i}, \underline{e_{i}^{f}} - \underline{e_{i}^{x}}\right)}_{\substack{\text{terms-of-trade} \\ \text{redistribution}}} - \underbrace{\mathbb{C}\text{ov}_{i}\left(\widehat{\lambda}_{i}, \frac{q^{f}(1-s_{i}^{f})}{\sigma}\right)}_{\substack{\text{demand} \\ \text{distortion}}}$$

 \circ Params: \mathcal{C}_{EE}^f agg. fossil supply elasticity, s_i^f energy cost share and σ energy demand elasticity

8 / 15

Step 2: Optimal policy – Other motives

- ► Taxing fossil energy has additional redistributive effects:
 - 1. Through energy markets: distort supply, lowers eq. fossil price, benefit net importers
 - 2. Distort energy demand, of countries that need more or less energy
- ► New measure: Social Value of Fossil (SVF)

$$SVF := \frac{\partial W/\partial E}{\partial W/\partial w} = \mathcal{C}_{EE}^f \mathbb{C}ov_i \left(\widehat{\lambda}_i, \mathbf{e}_i^f - \mathbf{e}_i^x\right) - \mathbb{C}ov_i \left(\widehat{\lambda}_i, \frac{q^f (1 - s_i^f)}{\sigma}\right)$$

- \circ Params: \mathcal{C}_{EE}^f agg. fossil supply elasticity, s_i^f energy cost share and σ energy demand elasticity
- ▶ *Proposition 2:* Optimal fossil energy tax:

$$\Rightarrow$$
 $t^f = SCC + SVF$

– Social cost of carbon: $SCC = \sum_{\mathbb{I}} \widehat{\lambda}_i LCC_i$

Step 3: Ramsey Problem with participation constraints

- Consider that countries can "exit" climate agreement.
- ▶ For a climate "club" of $\mathbb{J} \subset \mathbb{I}$ countries:
 - Countries $i \in \mathbb{J}$ are subject to a carbon tax t^f
 - Countries $i \in \mathbb{J}$ can unilaterally leave, subject to retaliation tariff $t^{b,r}$ on goods and get consumption \tilde{c}_i
 - Countries $i \notin \mathbb{J}$ trade in goods subject to tariff t^b with club members and countries outside the club. They still trade with the club members in energy at price q^f

Step 3: Ramsey Problem with participation constraints

- ► Consider that countries can "exit" climate agreement.
- ▶ For a climate "club" of $\mathbb{J} \subset \mathbb{I}$ countries:
 - Countries $i \in \mathbb{J}$ are subject to a carbon tax t^f
 - Countries $i \in \mathbb{J}$ can unilaterally leave, subject to retaliation tariff $t^{b,r}$ on goods and get consumption \tilde{c}_i
 - Countries $i \notin \mathbb{J}$ trade in goods subject to tariff t^b with club members and countries outside the club. They still trade with the club members in energy at price q^f
- ► Participation constraints:

$$u(c_i) \geq u(\tilde{c}_i)$$
 $[\nu_i]$

Welfare:

$$\mathcal{W} = \max_{\{\mathbf{t}, \mathbf{e}, \mathbf{q}\}_i} \sum_{\mathbb{J}} \omega_i \ u(c_i) + \sum_{\mathbb{J}^c} \alpha \omega_i \ u(c_i)$$

Step 3: Ramsey Problem with participation constraints

► Participation constraints

$$u(c_i) \geq u(\tilde{c}_i)$$
 $[\nu_i]$

- ▶ Proposition 3.1: Second-Best social valuation with participation constraints
 - Participation incentives change our measure of inequality

w/ trade:
$$\omega_{i}(1+\nu_{i})u'(c_{i}) = \left(\sum_{j\in\mathbb{I}}a_{ij}(d_{ij}\mathbf{p}_{j})^{1-\theta}\left[\omega_{i}\widetilde{\lambda}_{i}+\omega_{j}\widetilde{\mu}_{j}+\widetilde{\eta}_{ij}(1-s_{ij})\right]^{1-\theta}\right)^{\frac{1}{1-\theta}}$$

$$\Rightarrow \qquad \widehat{\widehat{\lambda}}_{i} = \frac{\omega_{i}(\widetilde{\lambda}_{i}+\widetilde{\mu}_{i})}{\frac{1}{J}\sum_{\mathbb{J}}\omega_{i}(\widetilde{\lambda}_{i}+\widetilde{\mu}_{i})} \neq \widehat{\lambda}_{i}$$
vs. w/o trade
$$\widehat{\widehat{\lambda}}_{i} = \frac{\omega_{i}(1+\nu_{i})u'(c_{i})}{\frac{1}{J}\sum_{\mathbb{J}}\omega_{j}(1+\nu_{j})u'(c_{j})} \neq \widehat{\lambda}_{i}$$

• Similarly, the "effective Pareto weights" are $\alpha \omega_i$ for countries outside the club $i \notin \mathbb{J}$ and $\omega_i(\alpha - \nu_i)$ for retaliation policy on $i \in \mathbb{J}$

Step 3: Participation constraints & Optimal policy

- Proposition 3.2: Second-Best taxes:
 - Taxation with imperfect instruments:
 - Climate change & general equilibrium effects on fossil market affects all countries $i \in \mathbb{I}$
 - Need to adjust for the "outside" countries $i \notin \mathbb{J}$ not subject to the tax, which weight on the energy market as $\vartheta_{\mathbb{J}^c} \approx \frac{E_{\mathbb{J}^c}}{E_{\mathbb{I}}} \frac{\nu \sigma}{q^f(1-s^f)}$ with ν fossil supply elasticity, σ energy demand elasticity and s^f energy cost share.
 - Optimal fossil energy tax $t^f(\mathbb{J})$:

$$\Rightarrow \quad \mathbf{t}^{f}(\mathbb{J}) = SCC + \underline{SVF}$$

$$= \frac{1}{1 - \vartheta_{\mathbb{J}^{c}}} \sum_{i \in \mathbb{I}} \widetilde{\lambda}_{i} LCC_{i} + \frac{1}{1 - \vartheta_{\mathbb{J}^{c}}} \mathcal{C}_{EE}^{f} \sum_{i \in \mathbb{I}} \widetilde{\lambda}_{i} (\underline{e_{i}^{f}} - \underline{e_{i}^{x}}) - \sum_{i \in \mathbb{J}} \widetilde{\lambda}_{i} \frac{\underline{q^{f}(1 - \underline{s_{i}^{f}})}}{\sigma}$$

• Optimal tariffs/export taxes $t^{b,r}(\mathbb{J})$ and $t^b(\mathbb{J})$: In search for a closed-form expression As of now, only opaque system of equations (fixed point w/ demand/multipliers)

Sequential solution method

- ► Summary of the dynamic model:
 - ODEs for states $\{x\} = \{w_{it}, \tau_{it}, \mathcal{R}_{it}, \mathcal{S}_t\}_{it}$
 - Backward ODE for the costates $\{\lambda\} = \{\lambda_{it}^w, \lambda_{it}^\tau, \lambda_t^S, \lambda_{it}^R\}_{it}$
 - Non-linear equations (FOCs) for household controls $\{c_1\} = \{c_{it}, b_{it}, k_{it}\}_{it}$ and static demands for energy/capital $\{c_2\} = \{e_{it}^f, e_{it}^r, k_{it}\}_{it}$ and static supplies $\{c_3\} = \{e_{it}^x, \bar{e}_{it}^r\}_{it}$.
 - Market clearing as equation for prices $\{q\} = \{q_t^f, r_t^*\}_t$
 - Existence and Uniqueness, c.f. Mean Field Game theory (Carmona-Delarue)

Sequential solution method

- ► Summary of the dynamic model:
 - ODEs for states $\{x\} = \{w_{it}, \tau_{it}, \mathcal{R}_{it}, \mathcal{S}_t\}_{it}$
 - Backward ODE for the costates $\{\lambda\} = \{\lambda_{it}^w, \lambda_{it}^\tau, \lambda_t^S, \lambda_{it}^R\}_{it}$
 - Non-linear equations (FOCs) for household controls $\{c_1\} = \{c_{it}, b_{it}, k_{it}\}_{it}$ and static demands for energy/capital $\{c_2\} = \{e_{it}^f, e_{it}^r, k_{it}\}_{it}$ and static supplies $\{c_3\} = \{e_{it}^x, \bar{e}_{it}^r\}_{it}$.
 - Market clearing as equation for prices $\{q\} = \{q_t^f, r_t^*\}_t$
 - Existence and Uniqueness, c.f. Mean Field Game theory (Carmona-Delarue)
- Global Numerical solution:
 - Discretize agents (countries) space $i \in \mathbb{I}$ with M and time-space $t \in [t_0, t_T]$ with T periods
 - Express as a large vector $\mathbf{y} = \{x, \lambda, c, q\}$ in a large non-linear function

$$F(\mathbf{y}) = \mathbf{0}$$

• Solve for the large system with $N = (N_{ind,vars} \times M + N_{agg,vars}) \times T$ unknowns and N equations with gradient-descent – Newton-Raphson methods.

Impact of increase in temperature

Marginal values of the climate variables: λ_{it}^{s} and λ_{it}^{τ}

$$\dot{\lambda}_{it}^{\tau} = \lambda_{it}^{\tau}(\rho + \zeta) + \overbrace{\gamma_{i}(\tau_{it} - \tau_{i}^{\star})\mathcal{D}^{y}(\tau_{it})}^{-\partial_{\tau}\mathcal{D}^{y}(\tau_{it})} f(k_{it}, e_{it}) \lambda_{it}^{k} + \overbrace{\phi_{i}(\tau_{it} - \tau_{i}^{\star})\mathcal{D}^{u}(\tau_{it})^{1-\eta} c_{it}^{1-\eta}}^{\partial_{\tau}u(c,\tau)}$$

$$\dot{\lambda}_{it}^{S} = \lambda_{it}^{S}(\rho + \delta^{s}) - \zeta \chi \Delta_{i} \lambda_{it}^{\tau}$$

- Costate λ_{it}^S : marg. cost of 1Mt carbon in atmosphere, for country i. Increases with:
 - Temperature gaps $\tau_{it} \tau_i^*$ & damage sensitivity of TFP γ_i^y and utility γ_i^u
 - Development level $f(k_{it}, e_{it})$ and c_{it}
 - Climate params: χ climate sensitivity, Δ_i "catching up" of τ_i and ζ reaction speed

• back

Thomas Bourany (UChicago) Inequality and Climate Policy April 2024 13 / 15

Cost of carbon / Marginal value of temperature

► Solving for the cost of carbon and temperature ⇔ solving ODE

$$\dot{\lambda}_{it}^{\tau} = \lambda_{t}^{\tau}(\widetilde{\rho} + \Delta\zeta) + \gamma(\tau - \tau^{\star})\mathcal{D}^{y}(\tau)f(k, e)\lambda_{t}^{k} + \phi(\tau - \tau^{\star})\mathcal{D}^{u}(\tau)u(c)
\dot{\lambda}_{t}^{S} = \lambda_{t}^{S}(\widetilde{\rho} + \delta^{s}) - \int_{\mathbb{T}} \Delta_{i}\zeta\chi\lambda_{it}^{\tau}$$

Solving for λ_t^{τ} and $\lambda_t^{\mathcal{S}}$, in stationary equilibrium $\dot{\lambda}_t^{\mathcal{S}} = \dot{\lambda}_t^{\tau} = 0$

$$\begin{split} \lambda_{it}^{\tau} &= -\int_{t}^{\infty} e^{-\left(\widetilde{\rho} + \zeta\right) u} (\tau_{u} - \tau^{\star}) \Big(\gamma \mathcal{D}^{y}(\tau_{u}) y_{\tau} \lambda_{u}^{k} + \phi \mathcal{D}^{u}(\tau_{u}) u(c_{u}) \Big) du \\ \lambda_{it}^{\tau} &= -\frac{1}{\widetilde{\rho} + \Delta \zeta} (\tau_{\infty} - \tau^{\star}) \Big(\gamma \mathcal{D}^{y}(\tau_{\infty}) y_{\infty} \lambda_{\infty}^{k} + \phi \mathcal{D}^{u}(\tau_{\infty}) u(c_{\infty}) \Big) \\ \lambda_{t}^{S} &= -\int_{t}^{\infty} e^{-\left(\widetilde{\rho} + \delta^{S}\right) u} \zeta \chi \int_{\mathbb{I}} \Delta_{j} \lambda_{j,u}^{\tau} dj du \\ &= \frac{1}{\widetilde{\rho} + \delta^{S}} \zeta \chi \int_{\mathbb{I}} \Delta_{j} \lambda_{j,\infty}^{\tau} \\ &= -\frac{\chi}{\widetilde{\rho} + \delta^{S}} \frac{\zeta}{\widetilde{\rho} + \zeta} \int_{\mathbb{I}} \Delta_{j} (\tau_{j,\infty} - \tau^{\star}) \Big(\gamma \mathcal{D}^{y}(\tau_{j,\infty}) y_{\infty} \lambda_{j,\infty}^{k} + \phi \mathcal{D}^{u}(\tau_{j,\infty}) u(c_{j,\infty}) \Big) dj \\ \lambda_{t}^{S} \xrightarrow{\zeta \to \infty} -\frac{\chi}{\widetilde{\rho} + \delta^{S}} \int_{\mathbb{I}} \Delta_{j} (\tau_{j,\infty} - \tau^{\star}) \Big(\gamma \mathcal{D}^{y}(\tau_{j,\infty}) y_{j,\infty} \lambda_{j,\infty}^{k} + \mathcal{D}^{u}(\tau_{j,\infty}) u(c_{j,\infty}) \Big) dj \end{split}$$

Cost of carbon / Marginal value of temperature

► Proposition (Stationary LSCC):

When $t \to \infty$ and for a BGP with $\mathcal{E}_t = \delta_s \mathcal{E}_t$ and $\tau_t \to \tau_\infty$, the LSCC is *proportional* to climate sensitivity χ , marg. damage γ_i^y , γ_i^u , temperature, and output, consumption.

$$LSCC_{it} \equiv \frac{\Delta_i \chi}{\rho - n + \bar{g}(\eta - 1) + \delta^s} (\tau_{\infty} - \tau^{\star}) \Big(\gamma \mathcal{D}^y(\tau_{\infty}) y_{\infty} + \phi \mathcal{D}^u(\tau_{\infty}) c_{\infty} \Big)$$

- Stationary equilibrium: $\dot{\lambda}_t^S = \dot{\lambda}_t^T = 0$
- Fast temperature adjustment $\zeta \to \infty$
- Back