Indian Institute of Technology Patna Department of Electrical Engineering

EE101 - Electrical Sciences Autumn - 2014 End Sem Exam 26 November 2014

There are 5 problems. $(5 \times 10 = 50)$

- 1. Consider a two stage common emitter amplifier circuit shown in Figure 1. $V_{CC}=9$ V, $R_1=100$ k Ω , $R_2=47$ k Ω , $R_E=3.9$ k Ω , $R_C=6.8$ k Ω , $R_S=5$ k Ω , $R_L=2$ k Ω and $\beta=100$. Assume $V_{BE}=0.7$ V.
 - (a) Draw the small signal model of a complete circuit.

(5 points)

(b) Determine the gains $A_1 = \frac{v_{o1}}{v_i}$ and $A_2 = \frac{v_{o2}}{v_{o1}}$.

(4 points)

(c) What is the overall gain?

(1 point)

Figure 1

2. Consider the op-amp circuit shown in Figure 2. It consists of a resistor and a nonlinear element N whose i-v characteristics is

$$i_N = \begin{cases} K v_N^2; & v_N \ge 0 \\ 0; & v_N < 0 \end{cases}$$

where $K = \frac{1}{2}(\frac{\text{Amp}}{\text{Volt}^2})$. Assume the op-amp is ideal.

(a) Find v_O if $v_I = 4$ V.

(5 points)

(b) If $v_I = 4 + 0.001 \sin(\omega t)$ V, the output voltage v_O can be represented as $v_O = V_O + v_o$. Draw the small signal model.

(3 points)

(c) Find the small signal gain $A = \frac{v_o}{v_i}$.

(2 points)

Figure 2

- 3. Consider the op-amp circuit shown in Figure 3. Assume the circuit is in sinusoidal steady state and the op-amp is ideal. If $v_i(t) = V_I \sin(\omega t)$ is applied, the output $v_o(t)$ will be of the form $v_o(t) = V_O \sin(\omega t + \phi)$.

 (6 points)
 - (a) Determine V_O and ϕ in terms of V_I , R, C_1 , C_2 and ω .
 - (a) points)
 (b) Find $A = \left| \frac{V_O}{V_I} \right|$ and plot $A \vee S \omega$.
 - (c) Identify the type of filter. C_2 (1 point)

Figure 3

4. Given the truth table for the logic function F:

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

- (a) Write the sum of products (SOP) expression.
- (b) Find the minimum SOP expression.
- (c) Implement the minimum SOP using only NAND gates.
- 5. (a) Identify the mode of operation of BJT in the following circuit.

- (2 points)
- (4 points)
- (4 points)
- (5 points)

(b) Design a logic circuit to operate a lamp using two switches for the following condition. The lamp should not glow when both the switches are ON and OFF. Implement the circuit using only NOR gates.

(5 points)