DL + RL = Deep Reinforcement Learning

(Slides by Svetlana Lazebnik, B Ravindran, David Silver)

Function approximation

- So far, we've assumed a lookup table representation for utility function U(s) or actionutility function Q(s,a)
- This does not work if the state space is really large or continuous
- Alternative idea: approximate the utilities or Q values using parametric functions and automatically learn the parameters:

$$V(s) \approx \hat{V}(s; w)$$
 $Q(s, a) \approx \hat{Q}(s, a; w)$

Deep Q learning

Train a deep neural network to output Q values:

Source: D. Silver

Deep Q learning

Regular TD update: "nudge" Q(s,a) towards the target

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a) \right)$$

 Deep Q learning: encourage estimate to match the target by minimizing squared error:

$$L(w) = \left(R(s) + \gamma \max_{a'} Q(s', a'; w) - Q(s, a; w)\right)^{2}$$
target estimate

Deep Q learning

Regular TD update: "nudge" Q(s,a) towards the target

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a) \right)$$

 Deep Q learning: encourage estimate to match the target by minimizing squared error:

$$L(w) = \left(R(s) + \gamma \max_{a'} Q(s', a'; w) - Q(s, a; w)\right)^{2}$$
target estimate

Compare to supervised learning:

$$L(w) = (y - f(x; w))^{2}$$

– Key difference: the target in Q learning is also moving!

Online Q learning algorithm

- Observe experience (s,a,s', r)
- Compute target $y = r + \gamma \max_{a'} Q(s', a'; w)$
- Update weights to reduce the error

$$L = (y - Q(s, a; w))^{2}$$

- Gradient: $\nabla_{w} L = (Q(s, a; w) y) \nabla_{w} Q(s, a; w)$
- Weight update: $w \leftarrow w \alpha \nabla_w L$
- This is called stochastic gradient descent (SGD)

Dealing with training instability

Challenges

- Target values are not fixed
- Successive experiences are correlated and dependent on the policy
- Policy may change rapidly with slight changes to parameters, leading to drastic change in data distribution

Solutions

- Freeze target Q network
- Use experience replay

Experience replay

- At each time step:
 - Take action a_t according to epsilon-greedy policy
 - Store experience $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory buffer
 - Randomly sample *mini-batch* of experiences from the buffer

$$s_1, a_1, r_2, s_2$$
 s_2, a_2, r_3, s_3
 s_3, a_3, r_4, s_4
...
 $s_t, a_t, r_{t+1}, s_{t+1}$

$$s_t, a_t, r_{t+1}, s_{t+1} \rightarrow$$

Experience replay

- At each time step:
 - Take action a_t according to epsilon-greedy policy
 - Store experience $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory buffer
 - Randomly sample *mini-batch* of experiences from the buffer
 - Perform update to reduce objective function

$$\mathbf{E}_{s,a,s'} \left[\left(R(s) + \gamma \max_{a'} Q(s',a';w') - Q(s,a;w) \right)^2 \right]$$

Keep parameters of *target* network fixed, update every once in a while

Atari

- Learnt to play from video input
 - from scratch
- Used a complex neural network!
 - Considered one of the hardest learning problems solved by a computer.
- More importantly reproducible!!

- End-to-end learning of Q(s,a) from pixels s
- Output is Q(s,a) for 18 joystick/button configurations
- Reward is change in score for that step

- Input state s is stack of raw pixels from last 4 frames
- Network architecture and hyperparameters fixed for all games

Breakout demo

https://www.youtube.com/watch?v=TmPfTpjtdgg

Playing Go

- Go is a known (and deterministic)
 environment
- Therefore, learning to play Go involves solving a known MDP
- Key challenges: huge state and action space, long sequences, sparse rewards

Review: AlphaGo

- Policy network:

 initialized by
 supervised training on
 large amount of
 human games
- Value network: trained to predict outcome of game based on self-play
- Networks are used to guide Monte Carlo tree search (MCTS)

Summary

- Deep Learning Strengths
 - universal approximators: learn non-trivial fns
 - compositional models ~similar to human brain
 - universal representation across modalities
 - discover features automagically
 - in a task-specific manner
 - features not limited by human creativity
- Deep Learning Weaknesses
 - resource hungry (data/compute)
 - Uninterpretable
- Deep RL: replace value/policy tables by deep nets
 - Great success in Go, Atari.