DIGITAL LOGIC DESIGN LAB (EET1211)

LAB V: Design of combinational circuits using VHDL

Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar

Branch:	Section:	Subgroup No.:
Name	Registration No.	Signature

		Marks:	/10
Remarks•			

Teacher's Signature

I. Objective:

- 1. Design a 2 bit Comparator circuit.
- 2. Design a combinational circuit with four inputs and four outputs that converts a 4bit binary number into the equivalent 4bit Gray code
- 3. Design a combinational circuit with four input lines that represent a decimal digit in BCD and four output lines that generate the 9's complement of the input digit.

II. Pre-lab:

Obj. 1:

- a) Obtain the truth table.
- b) Derive the Minimized Boolean expression for each output of the circuit.
- c) Draw the logic diagram for the circuit.
- d) Write VHDL code.

Obj. 2:

- a) Obtain the truth table.
- b) Derive the Minimized Boolean expression for each output of the circuit.
- c) Draw the logic diagram for the circuit.
- d) Write VHDL code.

Obj. 3:

- a) Obtain the truth table.
- b) Derive the Minimized Boolean expression for each output of the circuit.
- c) Draw the logic diagram for the circuit.
- d) Write VHDL code.

III. LAB:

Software Required:

Observation:

(Attach screenshot of Source code, Test bench, Schematic diagram and waveform)

IV. CONCLUSION:

V. POST LAB:

- 1. Design a 3 bit majority circuit.
- 2. What is the advantage of Gray code?
- 3. Draw the logic circuit that converts a 4 bit Gray code to binary code.