Voting and Social Choice Theory (1)

ı

Recap

- The 'standard' economic model of market exchange assumes a completely decentralized form of social organization.
 - All individuals decide independently, taking prices as given.
- This system may be imperfect in the sense that not all potential Pareto improvements are realized.
 - Prices do not reflect 'external effects'
 - Individual incentives to 'free ride'
- Privately organized 'collective' action may solve some problems.
 - Coasian bargains between sovereign individuals.
 - Based on mutual (unanimous) agreement
- Private solutions may work well if transactions costs are low.
- In large groups, 'efficiency' might require 'the state' to 'choose' (in some sense) and to use coercion to enforce its decisions.

Social Choice Theory

- Question: How should a group of individuals make 'collective' choices (from some set of alternatives) when there is disagreement among its members as to which is best?
- Different opinions can arise for (at least) two reasons:
 - Different (factual) beliefs about the properties of the options.
 - Different *preferences* over the true characteristics of options.
- These reasons lead to two different 'functions' of collective choice mechanisms (decision rules / voting procedures)
 - information aggregation.
 - preference aggregation.
- We will begin our analysis by assuming that the group is choosing between two alternatives.

Marquis de Condorcet (1743-1794)

- Condorcet assumed that the purpose of voting is to identify which option is 'truly best' for the group.
- Differences of opinion are due to different beliefs about which is the objectively correct answer.

Examples

- Board members deciding whether to undertake an investment.
- Jury deciding whether the defendant is guilty of murder.

In these cases,

- There is an "objectively" correct answer
- Different opinions due to different information
- Voting is a method of information aggregation

Condorcet's Model (with 2 alternatives)

- 2 alternatives, a and b.
 - One alternative is 'truly' better
 - Both alternatives are equally likely to be better
- n individuals, each casts one vote (no abstention)
- Voters decide independently
 - probability of voting for the correct alternative: p
- Assumption: Voters are more likely to be right than to be wrong

$$p > \frac{1}{2}$$

The Law of Large Numbers: (Bernoulli 1713) Consider an 'experiment' that can result in exactly two outcomes ('success' or 'failure'). Let the *probability* of success be p, and suppose you repeat the experiment n times. Let \hat{p} be the *proportion* of those experiments that result in success. Then, the probability that \hat{p} is (arbitrarily) close to p approaches 1 as n becomes large.

Applied to Condorcet's model: As the number of voters, n, becomes large, it becomes increasingly likely that the fraction voting for the correct option is very close to p. When n approaches infinity, this probability approaches 1.

Implication (1)

- As the group gets larger, we can be more and more certain that the fraction of voters supporting the 'correct' option is close to p.
- Since $p > \frac{1}{2}$, this means that we can be increasingly certain that a *majority* will vote for the 'correct' option.

Example: p = 0.55

Probability that majority is correct given *n*

Implication (2)

 If the group is very large, the majority (however slight!) is almost certainly correct.

Example: p = 0.55, n = 100

Probability that option **A** is correct, given share voting for **A**.

Condorcet's 'Jury Theorem': (Condorcet 1785)

Let n voters (n odd) choose between two alternatives that have equal likelihood of being correct a priori. Assume that voters make their judgments independently and have the same probability of being correct, p > .5. Then the probability that the group makes a correct judgement using majority rule approaches 1 as n becomes large.

What about other q-majority rules?

- Consider rules of the form 'Option A is chosen if at least q people vote for A. Else B is chosen.'
- If A and B are equally likely ex ante, what's the best value for q?

Theorem: (Nitzan and Paroush 1982; Shapley and Grofman 1984): Let n voters (n odd) choose between two alternatives (... as above). Simple majority rule (i.e. $q = \frac{n+1}{2}$) maximizes the probability that the group judgement is correct.

Discussion

- (1) What assumptions are responsible for the main result?
- (2) (When) do these assumptions seem reasonable?
- (3) How does this approach differ from the perspective taken by Buchanan and Tullock?

Possible answers:

- (1) There is an objective truth, and all voters (no matter how many) receive *independent* signals. (Lots of information is being gathered!)
- (2) When "true" interests are aligned (e.g. electing a manager) and when each voter does his own original "research" (e.g. interviews the manager in a different way).
- (3) B&T assume that each binary decision concerns a change relative to a status quo, and that "true" preferences with respect to these changes differ.

When differences of opinion reflect different interests

- What if differences of opinion reflect genuinely different preferences?
 - Some like cheese, others prefer pudding.
 - Which do "we" prefer (as a group)?
- Is there a good way to derive a 'social preference' from individual tastes?
- For now, we continue to restrict attention to a choice between two alternatives.

Social preferences over two alternatives

- Set of alternatives: $X = \{x, y\}$
- *I* individuals, each with individual preference denoted $\alpha_i \in \{-1, 0, +1\}$

```
\alpha_i = +1 means that Mr. i prefers x to y \alpha_i = -1 means that Mr. i prefers y to x \alpha_i = 0 means that Mr. i is indifferent
```

• A *profile* of preferences is $\alpha = (\alpha_1, ..., \alpha_I) \in \{-1, 0, 1\}^I$, i.e. it is a list summarizing the individual preferences in the group.

Example: Movie night

- x = "Die Hard" y = "When Harry Met Sally"
- I = {Andrew, Jacob, Nicole}
- Andrew prefers "Die Hard": $\alpha_{Andrew} = +1$
- Jacob prefers "When Harry Met Sally": $\alpha_{Jacob} = -1$
- Nicole is indifferent: $\alpha_{Nicole} = 0$
- The preference profile for the group is $\alpha = (\alpha_{Andrew}, \alpha_{Jacob}, \alpha_{Nicole}) = (1, -1, 0)$

Definition: A social welfare functional (SWF) is a rule F that assigns a "social preference" $F(\alpha) \in \{-1,0,1\}$ to any possible profile of individual preferences $\alpha = (\alpha_1,...,\alpha_I) \in \{-1,0,1\}^I$.

Exercise:

- In our example, what does it mean to say that a SWF assigns a social preference to any possible profile of individual preferences?
- Would it be appropriate to view a SWF as a 'decision rule'?

Discuss:

- Suppose you had to define a 'good' SWF for N=3 people.
- What 'social preference' should the SWF produce for each of the cases below?

α	$F(\alpha)$	α	$F(\alpha)$	α	$F(\alpha)$
(0,0,0)		(0,0,1)		(0,0,-1)	
(0,1,0)		(0,1,1)		(0,1,-1)	
(0,-1,0)		(0,-1,1)		(0,-1,-1)	
(1,0,0)		(1,0,1)		(1,0,-1)	
(1,1,0)		(1,1,1)		(1,1,-1)	
(1,-1,0)		(1,-1,1)		(1,-1,-1)	
(-1,0,0)		(-1,0,1)		(-1,0,-1)	
(-1,1,0)		(-1,1,1)		(-1,1,-1)	
(-1,-1,0)		(-1,-1,1)		(-1,-1,-1)	

Discuss:

- What reasons did you have in mind as you filled out the table?
- Were you applying basic principles? What were they?
- Can you provide a justification for those principles?

Commonly cited principles:

- All individuals should be treated equally.
- Neither option should be favored by rule.
- Output should depend on preferences in a reasonable way, e.g.
 - If all $\alpha_i = 1$ then $F(\alpha) = 1$
 - ...

Axiomatic analysis:

- Basic principles (properties) are formulated as axioms.
- Each axiom divides the set of SWFs into two classes:
 - Those that satisfy the axiom.
 - Those that do not.
- Thus, each axiom restricts the set of SWFs
- Then we can ask: Which SWFs (if any) satisfy a given set of axioms?

Definition: A social welfare functional $F(\alpha)$ is **symmetric among** agents if, whenever α' is a permutation of $\alpha = (\alpha_1, ..., \alpha_I)$, then

$$F(\alpha') = F(\alpha).$$

Explanation: If *F* treats all agents the same, then reshuffling their opinions (or numbering them differently) should not affect the output.

Implications for the n = 3 case:

α	$F(\alpha)$	α	$F(\alpha)$	α	$F(\alpha)$
(0,0,0)		(0,0,1)	X	(0,0,-1)	Z
(0,1,0)	Χ	(0,1,1)	W	(0,1,-1)	Υ
(0,-1,0)	Z	(0,-1,1)	Υ	(0,-1,-1)	U
(1,0,0)	Χ	(1,0,1)	W	(1,0,-1)	Υ
(1,1,0)	W	(1,1,1)		(1,1,-1)	V
(1,-1,0)	Υ	(1,-1,1)	V	(1,-1,-1)	Τ
(-1,0,0)	Z	(-1,0,1)	Υ	(-1,0,-1)	U
(-1,1,0)	Υ	(-1,1,1)	V	(-1,1,-1)	Т
(-1,-1,0)	U	(-1,-1,1)	Т	(-1,-1,-1)	

Definition: A social welfare functional F is neutral between alternatives if, for any profile $\alpha = (\alpha_1, ..., \alpha_I)$,

$$F(-\alpha) = -F(\alpha).$$

Explanation: If neither option is favored by rule, then "flipping" their labels (*x* becomnes *y* and *y* becomes *x*) should "flip" the social preference too.

EXERCISE: Fill out the table to show what this axiom implies in our example.

α	$F(\alpha)$	α	$F(\alpha)$	α	$F(\alpha)$
(0,0,0)		(0,0,1)		(0,0,-1)	
(0,1,0)		(0,1,1)		(0,1,-1)	
(0,-1,0)		(0,-1,1)		(0,-1,-1)	
(1,0,0)		(1,0,1)		(1,0,-1)	
(1,1,0)		(1,1,1)		(1,1,-1)	
(1,-1,0)		(1,-1,1)		(1,-1,-1)	
(-1,0,0)		(-1,0,1)		(-1,0,-1)	
(-1,1,0)		(-1,1,1)		(-1,1,-1)	
(-1,-1,0)		(-1,-1,1)		(-1,-1,-1)	

Definition: A social welfare functional F is **positively responsive** if whenever $F(\alpha) \geq 0$ then for any $\alpha' \neq \alpha$ such that $(\alpha'_1,...,\alpha'_I) \geq (\alpha_1,...\alpha_I)$, we have $F(\alpha') = +1$.

Explanation: If "society" is indifferent according to the rule F, then after one or more people 'change their mind' to favor x, society should favor x as well.

Example: If F is positively responsive and F(1, -1, -1) = 0, then F(1, -1, 0) = 1.

EXERCISE (NOW): Identify all implications of this axiom in the table below. (Note that one social preference is given.)

α	$F(\alpha)$	α	$F(\alpha)$	α	$F(\alpha)$
(0,0,0)		(0,0,1)		(0,0,-1)	
(0,1,0)		(0,1,1)		(0,1,-1)	
(0,-1,0)		(0,-1,1)		(0,-1,-1)	
(1,0,0)		(1,0,1)		(1,0,-1)	
(1,1,0)		(1,1,1)		(1,1,-1)	
(1,-1,0)	1	(1,-1,1)		(1,-1,-1)	
(-1,0,0)		(-1,0,1)		(-1,0,-1)	
(-1,1,0)		(-1,1,1)		(-1,1,-1)	
(-1,-1,0)		(-1,-1,1)		(-1,-1,-1)	

Definition: The *majority voting social welfare functional* is

$$F(\alpha_1,...,\alpha_I) = sign\left(\sum_{i=1}^I \alpha_i\right),$$

where

$$sign(x) = \begin{cases} -1 & x < 0 \\ 0 & x = 0 \\ +1 & x > 0 \end{cases}$$

EXERCISE (NOW): Verify that majority voting satisfies symmetry among agents, neutrality between alternatives, and positive responsiveness.

α	$F(\alpha)$	α	$F(\alpha)$	α	$F(\alpha)$
(0,0,0)		(0,0,1)		(0,0,-1)	
(0,1,0)		(0,1,1)		(0,1,-1)	
(0,-1,0)		(0,-1,1)		(0,-1,-1)	
(1,0,0)		(1,0,1)		(1,0,-1)	
(1,1,0)		(1,1,1)		(1,1,-1)	
(1,-1,0)		(1,-1,1)		(1,-1,-1)	
(-1,0,0)		(-1,0,1)		(-1,0,-1)	
(-1,1,0)		(-1,1,1)		(-1,1,-1)	
(-1,-1,0)		(-1,-1,1)		(-1,-1,-1)	

Theorem (May's Theorem): Majority voting is the *only* social welfare functional which satisfies *symmetry among agents*, *neutrality between alternatives*, and *positive responsiveness*.

Proof logic:

- We have already seen that majority voting satisfies the 3 axioms. Thus
 the following statement is true: 'If F is the majority voting SWF, then F
 satisfies the axioms.'
- A mathematician would say that satisfaction of the axioms is necessary for the SWF to be majority voting.
- Now we want to show the converse, i.e. we want to prove the following statement:
 - 'If F satisfies the axioms, then F is the majority voting SWF.'
- A mathematician would say that we are trying to show that satisfaction of the axioms is sufficient for the SWF to be majority voting.

Proof (**sufficiency**): Suppose *F* satisfies *symmetry among agents, neutrality between alternatives,* and *positive responsiveness.* Then,

(1) Symmetry among agents implies that only the number of agents who prefer x to y or y to x matter.

Therefore it must be possible to write *F* as a function only of those numbers:

$$F(\alpha) = G(n^{+}(\alpha), n^{-}(\alpha))$$

where $n^+(\alpha)$ is the number of 1's and $n^-(\alpha)$ the number of -1's in α .

(2) Neutrality between alternatives implies that whenever $n^+(\alpha) = n^-(\alpha)$, we have

$$F(\alpha) = G(n^+(\alpha), n^-(\alpha)) = G(n^-(\alpha), n^+(\alpha))$$
$$= G(n^+(-\alpha), n^-(-\alpha)) = F(-\alpha) = -F(\alpha)$$

Thus $F(\alpha) = -F(\alpha)$, implying $F(\alpha) = 0$.

$$\Rightarrow$$
 If $n^+(\alpha) = n^-(\alpha)$, then $F(\alpha) = 0$.

(3) Consider any α such that $n^+(\alpha) > n^-(\alpha)$, and apply positive responsiveness: Imagine replacing +1 entries by 0's until you get to α' such that $n^+(\alpha') = n^-(\alpha')$. Then $F(\alpha') = 0$, $\alpha > \alpha'$, and $\alpha \neq \alpha'$, hence $F(\alpha) = +1$.

$$\Rightarrow$$
 If $n^+(\alpha) > n^-(\alpha)$, then $F(\alpha) = +1$

(4) Consider any α such that $n^+(\alpha) < n^-(\alpha)$, and apply *neutrality between alternatives*:

Clearly $n^+(-\alpha) > n^-(-\alpha)$ and hence $F(-\alpha) = 1$. Therefore $F(\alpha) = -F(-\alpha) = -1$.

$$\Rightarrow$$
 If $n^+(\alpha) < n^-(\alpha)$, then $F(\alpha) = -1$

Together, properties (2-4) exactly characterize simple majority rule.

Theorem (May's Theorem): Majority voting is the *only* social welfare functional which satisfies *symmetry among agents*, *neutrality between alternatives*, and *positive responsiveness*.

Comments

- This is a 'powerful' result: A set of only three axioms completely 'characterizes' a single SWF.
 - Any other way of socially ranking two alternatives will violate at least one
 of the three axioms.
 - What would happen if we add additional axioms? What could such an axiom be?

Summary (2 alternatives)

- Assuming that the group is choosing between two alternatives...
- Majority voting may be a good rule for aggregating information (Condorcet Jury Theorem)
 - Different opinions are due to different information.
 - Each vote provides evidence in favor of one alternative.
 - Alternative receiving most votes is (most) likely to be best.
- Majority voting may be a good rule for aggregating preferences (May's Theorem)
 - It satisfies intuitions about democratic principles.
 - It is the only rule that does so!

Discussion (2 alternatives)

- Recall Buchanan and Tullock's (1965) arguments concerning optimal decision rules.
- They also look at binary decisions (whether or not to undertake some collective action)
- However they do not conclude that simple majority rule is necessarily best.
- What explains this difference in their conclusions?