Forecasting Turnip Prices with the Bayesian network using Qiskit

mutQoin

2021.02.19

Teammate Jungyeon Lee @curieuxjy Juon Kim @rkfqns13 SeokMin Yun @alchemist3495 Jungu Cho @jojoon99 *all of the team in Flipped_14th_QMLQC in modulabs

Coach eyoung Kim @bluesein Soyoung Shin @Sophy Junye Huang @Junye Aeyoung Kim @bluesein Soyoung Shin @Sophy

Index

THE CONTENTS

- ✓ How turnips work in Animal Crossing
- Our solution : mutQoin
- ✓ Demo webpage
- Bayesian network
- mutQoin development
- Results
- Conclusion & Future work

How turnips work in Animal Crossing

RULES FOR TRANSACTIONS OF TURNIPS

- In every Sunday morning, you can buy turnips from Daisy Mae
- Sell turnips to Tommy in the other days except Sunday
 - 2 separate turnip prices a day(am/pm)
- If you don't sell the turnips by the next Sunday, they'll be worthless
- 4 Patterns of turnip prices provided by the official guide on a daily basis

Up-down-updown

Decreasing

Big Spike

Small Spike

Buy turnips!

Sell turnips!

Could we predict the turnip price?

Then, we can make the BEST profits!

Motivation

- There is no prediction model using quantum supremacy
 - The original prediction service in communities : mutCoin
 - "mu" is the korean name of a turnip
 - "mutCoin" pronunciation is similar to bitcoin
- The training data of turnip prices is very small

Our solution: mutQoin

- mutQoin
 - using Quantum computing : C → Q
- 2 process
 - predict the next price of turnips
 - predict the patterns up to next time

Forecasting Turnip Prices with Bayesian network using Qiskit

Demo Webpage

https://mqcalc.run.goorm.io/

Bayesian network

✓ Parents - two previous data / Child - predicted data

WHY PARENTS=2?

- The most basic model parameters of the Bayesian network
- 2 problems with increasing parents
 - limitation of the number of the qubit
 - Difficult to map changed Bayesian models to a set quantum circuit
- Also, parents=2 prediction accuracy is high!
- So, fixed "parents=2" and changed the simulator to improve the accuracy

Bayesian network mapped quantum circuit

)7.

Overview of mutQoin

New mutQoin model

08

✓ How to

Specify a price range comparing the quantum value with the highest value with the highest probability to the actual price

```
3/30 am & 3/30 pm -> 1000 (real:101)
                                                 0000 : below 20
3/30 pm & 3/31 am -> 1011 (real:157)
                                                 0001:21-40
3/31 am & 3/31 pm -> 1011 (real:158)
                                                 0010:41-60
3/31 pm & 4/1 am -> 1011 (real:156)
                                                 0011:61-80
4/1 am & 4/1 pm -> 0001 (real:48)
                                                 1000:81-100
                                   repetitive
4/1 pm & 4/2 am -> 0010 (real:43)
                                                 1001:101-120
4/2 am & 4/2 pm -> 0010 (real:38)
                                    training
                                                 1010: 121-140
4/2 pm & 4/3 am -> 0001 (real:34)
                                                 1011 : over 141
4/3 am & 4/3 pm -> 0001 (real:30)
```

4/3 pm & 4/4 am -> 0001 (real:26)

The next price is expected to be between 81 and 100.

Price prediction

successful!

New mutQoin pattern

09

✓ How to

Create a new pattern prediction rule by analyzing the four patterns

Pattern	Ratio of price forecast to previous price		
Up down up down	90%~140% -> 20%~90% -> 110%~180%		
	-> 20%~90% -> 110%~180%		
Big spike	85%~90% -> 100%~155% -> 160%~610%		
	-> -360%~100% -> -60%~50%		
Decreasing	85%~90%		
Small spike	40%~90% -> 100%~200% -> 100%~210%		
	-> -60%~50%		

Up-down-up-down

Big Spike

Decreasing

Small Spike

---> Up down up down pattern The price will increase in the future.

Pattern prediction successful!

Results

Comparison Between the original mutCoin and mutQoin

mutQoin	Existing predictors	
Predictable with less data	Cumulative data required to predict	
Calculate probabilities at once using superposition	Calculate probabilities one by one	

Results

Comparison between computing resources

qasm_simulator	ibmq_limq & quito	
High speed	Low speed	
Little noise	A lot of noise	

	original circuit	transpiled circuit	
		optimization level=1	optimization level=2
depth	20	136	128

Conclusion & Future work

EXPECTATION EFFECTIVENESS

- Using only the previous 2 data, both price and pattern can be predicted
- Available at high speeds
- Can be expanded from turnip price to predict stock price

WHAT WE LEARNED...

- Opportunity to better understand Qiskit
- Chance to get feedback and comments from good mentors
- Very intensive and impressive group working
- Make an interesting application using Quantum

IMPROVEMENT

- Increase accuracy
 - use more shots
 - o try different Bayesian network design
 - another matching price table(model parameters)
- Make the model robust to noise

Acknowledgement

SPECIAL THANKS TO

- Aeyoung Kim (Hanshin University, Professor, Persil in Flipped_14th <QC for QML> in modulab, @bluesein)
- Soyoung Shin (Seoul National University, IBM, Qiskit Advocate, @Sophy)
- Junye Huang (IBM, Developer, @Junye)

THANKS TO

- byskit (https://sebastianorbell.co.uk/byskit.html)
- Flipped_14th <QC for QML> in modulab (https://home.modulabs.co.kr/product/14th-introduction-to-qc-for-understanding-qml-part1/)
- Qiskit Hackathon Korea (https://www.hackerearth.com/challenges/hackathon/qiskit-hackathon-korea/)

TEAM MEMBERS

- Jungyeon Lee (Hongik University, Undergraduate student, @curieuxjy)
- Juon Kim (Ewha University, Undergraduate student @rkfqns13)
- SeokMin Yun (Hanshin University, Researcher, @alchemist3495)
- Jungu Cho (CJ olivenetworks Developer, @jojoon99)

If you want to see more details about our project, https://github.com/mutQoin/mutQoin