1993 NASA AEROSPACE BATTERY WORKSHOP

ENVIRONMENTAL SURVEY (MESUR) PATHFINDER BATTERY STUDY FOR THE MARS

디

S. DAWSON, B. OTZINGER, D. PERRONE, S. Di STEFANO, G. HALPERT **U.S. SPACE AND ROCKET CENTER NOVEMBER 16-18, 1993** HUNTSVILLE, AL

MESUR PATHFINDER - BATTERY WORKSHOP BATTERY STUDY OVERVIEW

- MESUR PATHFINDER INTRODUCTION
- POWER SUBSYSTEM CONCEPT
- BATTERY TECHNOLOGY SELECTION
- MISSION BATTERY PERFORMANCE
- CELL/BATTERY BASELINE DESIGN
 - CHARGE METHODOLOGY
- PROPOSED TESTING

MESUR PATHFINDER - BATTERY WORKSHOP LANDER Ag/Zn BATTERY Ag/Zn INTRODUCTION

PROVIDE AND STORE ELECTRICAL POWER FOR THE MESUR BATTERY MISSION PROFILE

LANDER DURING LAUNCH, CRUISE, ENTRY - DESCENT LANDING, AND MARS SURFACE OPERATION

TECHNOLOGY SELECTION

PERFORMANCE

SPECIFIC ENERGY DENSITY (0° C)

VOLUMETRIC ENERGY DENSITY

RATE CAPABILITY

CYCLE LIFE

~50 CYCLES

~75 Wh/Kg ~158 Wh/L ~C RATE

FLIGHT HERITAGE (GENERIC)

SURVEYOR, MARINER, PIONEER, TITAN, VIKING

CELL AND BATTERY DESIGN GENERIC

General Session

MESUR PATHFINDER - BATTERY WORKSHOP LANDER Ag/Zn BATTERY Ag/Zn HERITAGE

UNKNOWN	CLASSIFIED	YES	one			8	1.5	6 TO 20	50 (100)	100	12	,	0	SZHK30	6.48	097	3	1.6		1 WEBRIL	6 CELLOPHANE		1 VISKON
LARGE PROBE	PIONEER/VENUS	YES	19	13.4	33.3x19.3x14.4	\$	28.5	10 to 50	1 (25)	8	1 2	<u></u>	c	SZLR40	0.51	27.1	9	1.46		1 PELLON	6 CELLOPHANE		1 VISKON
MAR - 4333	LOCKHEED / SAT.	YES	16	62.7	50.8x34.3x20.3	300	24	9 TO 12	3200 (6700)	1 to 4	o	2	7	2599-3	2.951	1066	\$	1.04		1 PELLON	5 CELLOPHANE	1 PVA	1 VISKON
SAR -4265	APOLLO	YES	8	12.9	29.9x17.4x14.6	\$	8	25-35	6 (20)	80 (max)	12	7	1	1560-7	0.51	27.1	\$	1.9		1 PELLON	4 CELLOPHANE	1 PVA	1 VISKON
CELL	US ARMY	ΝΑ	one			2	5.1	10 TO 60	100 (200)	62.6	12	12	NA	BB-465/U	0.581	373	42	1.67		1 DYNEL	5 CELLOPHANE		1 DYNEL
MAR 4557-X	MESUR	YES	18	13.3	22.5x21x18.1	\$	7.7	-	8	80 (max)	15	2	∞	SZLR 40-3	0.677	278	\$	1.63		1 WEBRIL	5 CELLOPHANE		1 VISKON
ВАТТЕКУ	PROGRAM	FLIGHT EXPERIENCE	NUMBER OF CELLS	WEIGHT (Kg)	SIZE (cm)	CAPACITY (A-H)	VOLTAGE (NOMINAL)	RATE (AMPERES)	CYCLE LIFE (actual)	DEPTH-OF-DISCH. (%)	WET LIFE (MONTHS)	GROUND (MONTHS)	FLIGHT (MONTHS)	CELL PART No.	CELL WEIGHT (Kg)	CELL Vol. (cm^3)	ELECTRO. CONC. (%)	NEG. to POS. RATIO	SEPARATION SYSTEM	POS. ABSORBER*	MEMBRANE	MEMBRANE	NEG. ABSORBER

קל

MESUR PATHFINDER - BATTERY WORKSHOP LANDER Ag/Zn BATTERY BATTERY OVERVIEW

PERFORMANCE DRIVEN DESIGN

OPERATIONAL PARAMETERS WILL BE DETERMINED BY CELL AND BATTERY PERFORMANCE

DERIVED PERFORMANCE TARGETS

BATTERY VOLTAGE 22-36 VOLTS

LOAD 1-4 AMPERES

TWO MONTHS ACTIVE STORAGE 20°C (SHIP AND LAUNCH)

SEVEN MONTH CRUISE

30 CYCLES MARS SURFACE 20 Ah AT 10 TO -20°C

CAPACITY

40 AH AT RT AND BOL

20 Ah AT 0°C

VOLUME: 8.3 X 7.37 X 7.12 INCHES (ESTIMATE)

MASS: LESS THAN 14 KG

MESUR PATHFINDER - BATTERY WORKSHOP LANDER Ag/Zn BATTERY CELL DESIGN

• CELL BASELINE DESIGN

ELECTRODE	POSITIVE	NEGATIVE
MATERIAL	SINTERED Ag 4	Zn OXIDE BLEND 5
SURFACE AREA	124.5	
THEORETICAL	66.5 AH	101.4 AH
INITIAL EXPECTED	54.5 Ah	
SEPARATOR SYSTEM	5/6 LAYERS - CELLOPHANE	OPHANE
ELECTROLYTE	40 % KOH, 85 ml	
DIMENSION	6.61 X 3.54 X 0.725 INCHES	INCHES
WEIGHT	445 grams DRY (APPX)	PPX)

MESUR PATHFINDER - BATTERY WORKSHOP LANDER Ag/Zn BATTERY BATTERY DESIGN

BATTERY BASELINE DESIGN

BASED ON CURRENT 20 CELL, 3 CONNECTORS, TI HOSING

18 CELL CELL BATTERY

THREE CONNECTOR. MAIN POWER, INSTRUMENTATION, HEATER POWER

DIMENSIONS 8.30 X (8.87) X 7.12 INCHES

FOOTPRINT TBD (HOLE PATTERN) FLANGE 0.75 INCH

HEATER SET POINT APPX 80 F, POWER TBD, THERMOSTATS TBD

WEIGHT (ACTIVE BATTERY) ESTIMATES

18 CELLS	22.86	TOTAL = 29.25 lbs
HOUSING	3.22	13.28 KG
COMPOSITE	1.07	EXPECT WEIGHT GROWTH
CONNECTORS	0.28	
WIRING	0.40	
HEATER	0.03	
MISC	1.39	

MESUR PATHFINDER - BATTERY WORKSHOP LANDER Ag/Zn BATTERY DESIGN/PERFORMANCE ISSUES

DESIGN

DESIGN BASED ON EXISTING TECHNOLOGY

CELL 5 OR 6 LAYERS OF SEPARATOR

18 CELL BATTERY (CONCEPT BASED ON 20 CELL BATTERY)

OPERATIONAL

CHARGE

ENERGY BALANCE IS CRITICAL

20 Ah CHARGE IN 6 HOURS

CHARGE/DISCHARGE TEMPERATURE LIMITS (PREFER 20°C)

CHARGE METHODOLOGY (CP OR TAPER)

DISCHARGE

TEMPERATURE LIMIT FOR CAPACITY (NOMINAL 20Ah)

CRUISE

TEMPERATURE 0C PREFERRED WILL TEST AT 20°C

OCV OR 1.86 VOLT FLOAT

MESUR PATHFINDER - BATTERY WORKSHOP LANDER Ag/Zn BATTERY PROPOSED CHARGE METHODOLOGY

MESUR PATHFINDER - BATTERY WORKSHOP CELL CHARACTERIZATION TESTING LANDER Ag/Zn BATTERY

CHARGE DEFINITION

1993 NASA Aerospace Battery Workshop

CONSTANT POTENTIAL

V = 1.91 TO 1.94, I = 4.5 MAX TO 0.4, TEMP., 23 TO 10C

VIRTUAL RESISTANCE

 $V_{vo} = 1.91 \text{ TO } 1.94, VT_{os} = 1.91, TEMP. = -10 TO 10C$

CHARGE/STAND CYCLE LIFE

8 MONTH STAND, 0 AND 25C, OCV AND 1.86V FLOAT

DISCHARGE CHARACTERISTIC

TEMP. -40, -20, -10, 0, 10C, RATES 1.5, 4.35, 12.5, 1.5 AMPS

SYSTEM PERFORMANCE

FLIGHT - PRELAUNCH, CRUISE/TCM, EDL, MARS SURFACE OPERATION

CYCLE LIFE INITIAL

CHARGE/DISCHARGE CYCLE AT 0C TO 1.22V, TAPER TBD

<u>ה</u> הר

MESUR PATHFINDER - BATTERY WORKSHOP LANDER Ag/Zn BATTERY DESIGN OPTIONS DETERMINED BY TESTING

HARDWARE

18 OR 17 CELL BATTERY

5 OR 6 LAYERS OF SEPARATOR

OPERATION

CHARGE

LIMITED CHARGE MAY LEAD TO NEGATIVE ENERGY BALANCE

DURATION OF CHARGE PERIOD AND CHARGE ACCEPTANCE

CHARGE TEMPERATURE COMPENSATION REQUIRED

CHARGE METHODOLOGY

CRUISE

TEMPERATURE, OCV OR 1.86 VOLT FLOAT

MESUR PATHFINDER - BATTERY WORKSHOP

SUMMARY

SELECTION OF Ag/Zn BATTERY BASED ON DERIVED MISSION REQUIREMENTS. •CELL AND BATTERY DESIGNS ARE CONSISTENT WITH FLIGHT REQUIREMENTS.

CHARGE/DISCHARGE TEMPERATURE COMPENSATION **•CELL TESTING WILL PROVIDE DATA ON** CHARGE METHODOLOGY **CRUISE REQUIREMENTS** CYCLE LIFE

= -				
q				
: :				
4				