1. Graf będzie sprawdzany za pomocą DFS. Każdy z wierzchołków będzie oznaczony jednym z 3 stanów: szary – nieodwiedzony; czerwony/niebieski – odwiedzony, przeciwne, rozłączne zbiory.

Algorytm:

- 1. Odwiedzamy dowolny wierzchołek i nadajemy mu czerwony kolor.
- 2. Idziemy do jego kolejnego sąsiada i sprawdzamy, czy jest on pokolorowany:
 - a. Jeśli nie to nadajemy mu kolor przeciwny do wierzchołka poprzedniego
 - b. Jeśli tak, to gdy ma on ten sam kolor co wierzchołek poprzedni to ten graf nie jest dwudzielny i kończymy algorytm.
- 3. Jeśli wszystkie wierzchołki zostały pokolorowane to ten graf jest dwudzielny.
- 4. Jeśli sąsiedzi się skończą to cofamy się do poprzedniego wierzchołka.
- 5. Powtarzamy 2.
- 3. Drzewo to graf acykliczny, czyli: G jest drzewem $\Leftrightarrow \forall_{u,v \in G}$ zawiera dokładnie jedną ścieżkę u v.

Implikacja w prawo:

Załóżmy, że G jest drzewem i dwa dowolne wierzchołki $u, v \in G$. Wówczas, skoro G jest drzewem to wiemy, że z u do v istnieje dokładnie jedna ścieżka. Jeśli istniałoby ich więcej, to wtedy w grafie istniałby cykl, a to jest sprzeczne z założeniem.

Implikacja w lewo:

Załóżmy, że $\forall_{u,v\in G}$ w grafie istnieje dokładnie jedna ścieżka z u do v. Na podstawie tego wiemy, że jest to graf spójny (istnieje ścieżka $\forall_{u,v\in G}$) oraz graf acykliczny (istnieje tylko jedna ścieżka między u i v).

Implikacja zachodzi w obie strony, więc graf G jest drzewem.

6. Q_k – k-wymiarowa kostka

Podzielmy zbiór wierzchołków Q_k:

- P zbiór wierzchołków z parzystą liczba jedynek
- N zbiór wierzchołków z nieparzystą liczba jedynek

Wierzchołki, które sąsiadują różnią się jedną współrzędną, czyli taki wierzchołek różni się o jedną jedynkę od swojego sąsiada. Czyli wierzchołek ze zbioru P nie może sąsiadować z wierzchołkiem ze zbioru P, więc sąsiaduje z wierzchołkiem ze zbioru N. Analogicznie w zbiorze N. Więc:

 $\forall_{\{u,v\}\in O_k}u\in P \wedge v\in N,$ czyli Q
k jest grafem dwudzielnym.

8. Weźmy dwie najdłuższe ścieżki grafu spójnego D_1 i D_2 . Załóżmy nie wprost, że nie mają one wspólnego wierzchołka.

Weźmy dowolny wierzchołek na D_1 i nazwijmy go d_1 . Analogicznie zróbmy na D_2 i nazwijmy ten wierzchołek d_2 . Graf jest spójny, więc istnieje ścieżka z d_1 do d_2 długości przynajmniej 1. Weźmy teraz ten koniec ścieżki D_1 , którego odległość od wierzchołka d_1 jest większa/równa połowie długości tej ścieżki i nazwijmy go d_k , analogicznie na D_2 – d_1 . Wówczas:

$$d_k - d_1 \geq \left[\frac{k}{2}\right],$$

 $d_l - d_2 \ge \left[\frac{l}{2}\right]$, gdzie k i l to odpowiednio długości ścieżek D_1 i D_2 .

Wtedy jesteśmy w stanie poprowadzić ścieżkę z d_k do d_l , przechodzącą przez wierzchołki d_1 i d_2 , która będzie najdłuższą ścieżką długości przynajmniej: $\left\lceil \frac{k}{2} \right\rceil + \left\lceil \frac{l}{2} \right\rceil + 1 \ge \min(k,l)$. Jest to sprzeczne z założeniem, więc dwie najdłuższe ścieżki w grafie spójnym muszą mieć wspólny wierzchołek.

9. Mamy grafy G = (V, E) i $\bar{G} = (V, E')$, gdzie \bar{G} jest dopełnieniem G. Musimy wykazać, że przynajmniej jeden z tych grafów jest grafem spójnym.

Należy udowodnić:

Gnie jest grafem spójnym $\Longrightarrow \bar{G}$ jest grafem spójnym

D-d:

Załóżmy, że G nie jest grafem spójnym.

Z założenia wiemy, że G ma co najmniej dwie spójne składowe. \bar{G} jest dopełnieniem G, więc wiemy, że G i \bar{G} mają takie same zbiory wierzchołków (definicja dopełnienia grafu). Weźmy dowolne wierzchołki $u, v \in V$ i rozpatrzmy dwa przypadki.

1. u i v są w różnych spójnych składowych grafu G, więc: $\{u,v\} \notin E \Rightarrow \{u,v\} \in E'$, a to oznacza, że między dwoma wierzchołkami w grafie \bar{G} istnieje ścieżka, czyli \bar{G} jest spójny.

2. u i v są w tej samej spójnej składowej grafu G.

Wtedy wiemy, że istnieje jeszcze przynajmniej jedna spójna składowa z przynajmniej jednym wierzchołkiem. Weźmy taki wierzchołek i nazwijmy go p. Czyli $\{u,v\} \in E \Rightarrow \{u,v\} \notin E'$. Wiemy też, że $\{u,p\} \notin E$ i $\{p,v\} \notin E$, a z tego wiemy, że $\{u,p\} \in E'$ i $\{p,v\} \in E'$, a to oznacza, że dla dowolnych u i v w grafie \bar{G} istnieje ścieżka $\{u,p,v\}$, więc \bar{G} jest spójny.