CH1 进制转换与逻辑门

一、进制转换

1. 位置计数法

 5374_{10} 1101_2

$$(N)_R = (K_{n-1} K_{n-2} \cdots K_1 K_0. K_{-1} K_{-2} \cdots K_{-m})_R$$

2. 进制表示

十进制D (Decimal)

二进制B (Binary)

八进制O (Octal)

十六进制H (Hexadecimal)

3. 进制转换

• $\alpha \rightarrow 10$

• $10 \rightarrow \beta$

• $\alpha \rightarrow 10 \rightarrow \beta$

整数部分:基数除法

小数部分:基数乘法

 $(13.7)_{10} = (1101.1\dot{0}11\dot{0})$

 $0.7 \times 2 = 1.4 \rightarrow 0.4 \times 2 = 0.8 \rightarrow 0.8 \times 2 = 1.6 \rightarrow 0.6 \times 2 = 1.2 \rightarrow 0.2 \times 2 = 0.4 \cdots$

取分别取每一位的结果的个位:即10110,出现4,重复,即后面为无限循环小数。

4. 特殊情况

 $16 \leftrightarrow 2 \leftrightarrow 8$

只需写成2进制,每3(4)位隔开即可。

二、二进制加法

1. 原/补码

设数字为 $p_{n-1}p_{n-2}\cdots p_1p_0$

原码:
$$x=(-1)^{p_{n-1}}\sum\limits_{i=1}^{n-2}p_i imes 2^i$$

原码表示范围为: $[-(2^{N-1}-1), 2^{N-1}-1]$

补码:
$$x=-p_{n-1} imes 2^{n-1}+\sum\limits_{i=1}^{n-2}p_i imes 2^i$$

补码表示范围为: $[-(2^N-1), 2^{N-1}-1]$

2. 原码→补码

正数: x

负数: $\sim x + 1$, 符号位不变

3. 位扩展

零扩展、符号位扩展

三、逻辑门

非门、缓冲门

与门、或门、异或门

与非门、或非门、异或非门

多输入与门、多输入或门

四、逻辑电平

1. 逻辑电平

离散电压表示1和0

 $0 = ground(GND) \ or \ 0v$

 $1 = V_{DD} \ or \ 5v$

2. 噪声

Driver(5v)
ightarrow noise
ightarrow Receiver(4.5v)

3. 静态约束

对于有效的逻辑输入,所有的电路单元都必须产生有效的逻辑输出。

只能使用有限的电压范围来表示离散的数值1和0。

4. 噪声容限

 $[GND, V_{OL}]$ 逻辑低电平

 $[V_{OH}, V_{DD}]$ 逻辑高电平

 $V_{IH} = V_{OH} - NM_H$

 $V_{IL} = V_{OL} + NM_L$

噪声容限之后的逻辑高/低电平表示范围为:

 $[GND,V_{IL}]$ 0

 $[V_{IH},V_{DD}]$ 1

 $\left[V_{IL},V_{IH}
ight]$ z (Forbidden Zone)

5. 直流传输特性

理想情况: $NM_H = NM_L = (V_{DD} + GND)/2$

实际情况: $NM_H < NM_L < (V_{DD} + GND)/2$

五、CMOS晶体管

1. P型半导体与N型半导体

N型半导体: 硅/锗晶体中掺入5价磷(锑), 带正电(自由电子)

P型半导体: 硅/锗晶体中掺入3价硼(铟), 带负电(空穴)

2. PN结

在同一片半导体基片上,分别制造P型半导体和N型半导体,经过载流子的扩散,在他们的交界面处边便 形成了**PN结**

正向偏置:变薄,较大扩散电流

反向偏置:变厚,较小反向电流

3. MOS晶体管

pMOS: 能够很好地导通高电平1,源极接电源 V_{DD} (使用0触发)

nMOS: 能够很好地导通低电平0,源极接地GND (使用1触发)

4. CMOS晶体管

一个pMOS和一个nMOS组成CMOS。

一个非门需要一个CMOS。

一个与非门需要两个CMOS。

六、晶体管功耗

1. 动态功耗

$$P_d = \frac{1}{2}CV_{DD}^2 f$$

2. 静态功耗

$$P_s = I_{DD} V_{DD}$$

3. 功耗计算

$$P = P_d + P_s$$