МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Операционные системы»

Тема: Сопряжение стандартного и пользовательского обработчиков прерываний

Студент гр. 7383	 Сычевский Р.А
Преподаватель	 Ефремов М.А.

Санкт-Петербург 2019

Цель работы.

Исследование возможности встраивания пользовательского обработчика прерываний в стандартный обработчик от клавиатуры. Пользовательский обработчик прерывания получает управление по прерыванию (int 09h) при нажатии клавиши на клавиатуре. Он обрабатывает скан-код и осуществляет определенные действия, если скан-код совпадает с определенными кодами, которые он должен обрабатывать. Если скан-код не совпадает с этими кодами, то управление передается стандартному прерыванию.

Описание функций и структур данных.

Таблица 1 – структура данных управляющей программы.

Название функции	Назначение	
ROUT	Пользовательский обработчик	
	прерываний, печатающий при	
	нажатии на кнопку 'w'.	
PRINT	Вызывает функцию печати строки.	
CHECK_ROUT	Проверяет, установлен ли	
	пользовательский обработчик	
	прерывания, и если нет –	
	устанавливает его. В ином случае,	
	если хвост равен '/un',	
	восстанавливает стандартное.	
SET_ROUT	Устанавливает пользовательское	
	прерывание.	
DEL_ROUT	Удаляет пользовательское	
	прерывание.	
SAVE_STAND	сохраняет адрес стандартного	
	прерывания в KEEP_IP, KEEP_CS	

Ход работы.

1. Был написан программный модуль, который выполняет следующие действия:

- 1) Проверяет, установлено ли пользовательское прерывание, вектор которого 09h.
- 2) Устанавливает резидентную функцию для обработки прерывания и настраивает вектор прерываний, если прерывание не установлено, и осуществляется выход по функции 31h прерывания int 21h.
- 3) Если прерывание установлено, то выводится соответствующее сообщение и осуществляется выход по функции 4Ch прерывания int 21h.
- 4) Выгрузка прерывания по соответствующему значению параметра в командной строке «/un», восстановления стандартного вектора прерывания.
- **2.** Состояние памяти до запуска lab5.exe представлено на Рис.1:

```
C:\>lab3_1.com
Availible memory: 648912 B
Extended memory: 15360 KB
Address | MCB Type | PSP Address
                                             Size
                                                          SD \times SC
 016F
                             0008
 0171
                             0000
               4D
                                                64
 0176
               4D
                             0040
                                               256
 0187
               4D
                             0192
                                               144
 0191
               5A
                             0192
                                           648912
                                                             LAB3_1
```

Рисунок 1 – Результат работы программы lab3_1.com

3. Запуск программы lab5.exe представлен на Рис.2:

Рисунок 2 — Результат работы программы lab5.exe

4. Проверим загрузку пользовательского обработчика и его работу – при нажатии клавиши 'w' выводится сердечко:

Рисунок 3 – Результат ввода различных символов

5. Проверим размещение прерывания в памяти с помощью программы lab3.com, которая отображает карту памяти в виде списка блоков МСВ:

Extended m	.com memory: 6474 memory: 153 MCB Type 1 4D	60 KB	l Size 16	: SD/SC
0171	4D	0000	64	
0176	4D	0040	256	
0187	4D	0192	144	
0191	4D	0192	1296	LAB5
01E3	4D	01EE	1144	
01ED	5A	01EE	647440	LAB3_1

Рисунок 4 – Результат работы программы lab3_1.com после запуска lab5.exe

6. Запустим программу lab5.exe повторно:

```
C:\>lab5.exe
Interrupt is was installed!
```

Рисунок 5 – Результат повтороного запуска программы lab5.exe

7. Запустим программу lab5.exe с ключом выгрузки:

```
C:\>lab5.exe /un
Deletting the interrupt!
```

Рисунок 6 – Результат запуска программы lab5.exe с ключом /un

8. Убедимся, что память освобождена, используя программу lab3.com:

```
:\>lab3_1.com
vailible memory: 648912 B
xtended memory : 15360 KB
Address | MCB Type | PSP Address |
                                             Size
                                                            SD/SC
 016F
                              0008
 0171
               4D
                              0000
                                                 64
 0176
               4D
                              0040
                                                256
 0187
               4D
                              0192
                                                144
 0191
               5A
                                            648912
                                                              LAB3_1
                              0192
```

Рисунок 7 – Результат выполнения программы lab3_1.com

Вывод.

В процессе выполнения данной лабораторной работы была исследована возможность встраивания пользовательского обработчика прерываний в стандартный обработчик от клавиатуры.

Ответы на контрольные вопросы.

- 1) Какого типа прерывания использовались в работе?
- В работе использовались программные int 21h, int 16h, и аппаратные прерывания int 09h.
- 2) Чем отличается скан код от кода ASCII?

Скан код — это код, присвоенный каждой клавише, с помощью которого драйвер клавиатуры распознает, какая клавиша была нажата, а код ASCII — код символа в соответствии со стандартной кодировочной таблицей.