TERMS

Probability Model: a mathematical representation of a random event. Sample Space: a range of values of a random variable. Probability: a quantifiable amount for the likelihood of an event occurring. Independent: one event does not influence another. In conditional probability, this means $P(A \cap B) = P(A) \cdot P(B)$. Disjoint: the probability of two specific events occurring is 0. Neither (example): a person does not eat red meat & is vegetarian. Both (example): because you passed your driver's test, you have a driver's license. PMF: $P(X=x) \to \text{mapped}$ value. Case: elements in the collection and has one or more attributes. Collection (Population): $\forall \in S$ (S denotes set). Collection (Sample): $\subset \in S$. Parameter: any numerical quantity that characterizes a given population or some aspect of it (quantitative). Statistic: a characteristic of a sample (qualitative). Distribution (Variable): a description of the relative number of times each possible outcome will occur in a number of trails. Distribution (Sampling): a description of the given sample observed. Bias: the process to over-or-under estimate the value of a population. Biased Estimator: difference between expected value and the true value of the parameter being estimated. (residual?) BINS: Binary outcome, Independent trials, Number of trials is fixed, Same value of p for all trials. Explanatory variable: a type of independent variable (X value) Response variable: dependent variable (y-value) Observational study: not interacting with test subjects Experimental study: manipulate environmental variables that affect test subjects. Levels of a Factor: the number of variation of a given factor that were used in an experiment. Interacting variables: two variables that interact with each other to produce an interaction effect (internal agent). Confounding variables: a variable that influences both the dependent variable and independent variable, causing a spurious action (external agent). Placebo Effect: a beneficial effect produced by a placebo treatment, which cannot be attributed to the properties of the placebo itself. This is generally used in the control group. Control: a group that is placed in conditions that are seen as inert, not affecting the outcome of the study. Randomization: does not lead to bias Replication: the ability to do the study with other experimenters and get similar results Repetition: do something over and over by the same experimenter getting similar results. Random Design: anyone in the sample is likely to get a particular treatment and there are no predetermined groups. Block Design: the experimenter divides the groups into based on a criteria then those groups are given specific treatments. Matched Pairs: two subjects of similar characteristics are given two different treatments and the differences are compared. Single-Blind: information is concealed from the patients in the study Double-Blind: information is concealed from both experimenters and the patients in the study. Conditional Probability: an events outcome probability is dictated by previous events

FORMULAS

- $P(A^c) = 1 P(A)$ [compliment rule]
- $X \sim B(n, p)$ [number of successes given n amount of outcomes]
- $\mu_x = \Sigma x \cdot p(x)$ [expected value]
- $\mu_x = n \cdot p$ [mean of binomial random variable]
- $\sigma_x^2 = \Sigma[x^2 \cdot P(x)] \mu_x^2$ [variance]
- $\sigma^2 = n \cdot p(1-p)$ [variance of binomial random variable]
- $\hat{p} = \frac{x}{\pi}$ [estimated number of successes]
- $\sigma_x = \sqrt{\Sigma[x^2 \cdot P(x)] \mu_x^2}$ [standard devitation]
- $E(X \pm Y) = E(X) \pm E(Y)$ [expected value (transformation)]
- $Var(X \pm Y) = Var(X) \pm Var(Y)$ [variance (transformation)]
- $E(\hat{p}) = p$ [expected value (sample proportion)]
- $\sigma_{\hat{n}}^2 = \frac{p(1-p)}{n}$ [variance (sample proportion)]
- $E(X) = \mu_x = nP$ [expected value (BRV)]
- $Var(X) = n \cdot P \cdot (1 P)$ [variance (BRV)]
- 1β [power, at least 80%]
- $\chi^2 = \Sigma \frac{O-E}{\sqrt{E}}$ [O: observed value, E: expected value]

TWO WAY TABLE

Validity	Do not reject H_o	Reject H _o
H _o is true	Correct decision	Type I Error α
H _o is false	Type II Error β	Correct decision

- Type I Error: seeing a wolf when there is not a wolf
- Type II Error: not seeing a wolf when there is a wolf

DIAGNOSTIC TEST TABLE

	(+)	(-)	
+	TP	FN	Sensitivity
-	FP	TN	Specificity
	PPV	NPV	

- $PPV = \frac{TP}{TP + FP}$ $NPV = \frac{TN}{TN + FN}$

PMF TABLE (SAPLING EXAMPLE)

	x	P(X=x)	$x \cdot P(X = x)$	$(x - \mu)^2 \cdot P(X = x)$
	8 (GG)	(1-0.7)(1-0.4)	8(0.18)	$(8-9.8)^2 \cdot (0.18)$
ſ	9 (GR)	(1-0.7)(0.4)	9(0.12)	$(9-9.8)^2 \cdot (0.12)$
	10 (RG)	(0.7)(1-0.4)	10(0.42)	$(10-9.8)^2 \cdot (0.42)$
	11 (RR)	(0.7)(0.4)	11(0.28)	$(11 - 9.8)^2 \cdot (0.28)$
		p = 1	$\mu = 9.8$	$\sigma^2 = 1.08$

CONDITIONAL PROBABILITY

	Freshman	Not Freshman	Total
Dog	25	25	50
No Dog	85	15	100
Total	110	40	150

- $P(Freshman|Dog) = \frac{\frac{25}{150}}{\frac{25}{150} + \frac{25}{150}} = \frac{25}{50} = \frac{1}{2}$ $P(Dog|Freshman) = \frac{\frac{25}{100}}{\frac{110}{150}} = \frac{25}{110} = \frac{5}{22}$