DATA WAREHOUSE AND DATA MINING LAB ASSIGNMENT-1

NAME:HRITHIK HEM SUNDAR.B

REGNO:19MID0021

Exercise 1: Descriptive Statistics and Plots

Create an Employee Dataset in excel and store the file in .csv extension

		Nama	Dagiamatian	calamı	Eveneri and
1	Empid		Designation	20000	•
1	1	abc	Manager		7
2	2	def	Supervision	19000	8
	3	ghi	Clerk	10000	6
4	4	jkl	Labour	2000	2
5	5	mno	Supervisior	18000	6
6	6	pqr	Manager	25000	11
7	7	stu	Supervisior	18000	10
8	8	VWX	Manager	20000	7
9	9	yza	clerk	15000	5
10	10	bcd	clerk	15000	5
11	11	efg	Manager	23000	10
12	12	hij	clerk	12000	4
13	13	klm	Labour	4000	4
14	14	nop	Supervisior	20000	10
15	15	qrs	Manager	20000	7
16	16	tuv	Labour	2000	2
17	17	wxy	clerk	12000	4
18	18	zab	Manager	20000	7
19	19	cde	Labour	2000	1
20	20	fgh	Supervisior	21000	10
21	21	ijk	Manager	22000	8
22	22	1mn	Labour	2000	2
23	23	opq	Manager	23000	10
24	24	rst	Supervision	20000	7
25	25	u∨w	Labour	2000	2
26	26	xyz	clerk	17000	2 7
27	27	zyx	Labour	3000	3
28	28	w∨u	Supervisior	15000	3 5 2 3
29	29	tsr	Labour	3000	2
30	30	qpo	clerk	10000	3

SECTION-2

1. Get the dimensions, structure, attribute name, and attribute values of the dataset

2. Display

(A) First 5 Records

head(df,5)

(B) Last 5 Records

```
tail(df,5)
```

```
> tail(df,5)
  Empid Name Designation Salary Experience
     26 xyz
                  clerk 17000
27
     27 zyx
                  Labour
                          3000
                                        3
28
     28 wvu Supervisior
                        15000
    29 tsr
                 Labour
                          3000
                 clerk 10000
     30 qpo
```

(C) Name, Designation, Salary of First 10 records

```
first10<-df[1:10,c('Name','Designation','Salary')]
```

first10

```
> first10<-df[1:10,c('Name','Designation','Salary')]</pre>
> first10
   Name Designation Salary
    abc
            Manager
                     20000
    def Supervision
                     19000
3
    ghi
              clerk
                     10000
    jk1
             Labour
                       2000
5
    mno Supervisior
                     18000
6
            Manager
                     25000
    pqr
7
    stu Supervisior
                     18000
8
            Manager
                     20000
    VWX
9
              clerk 15000
    yza
10 bcd
              clerk 15000
```

(D) Name of all records

```
df[1:30,c('Name')]
```

> df[1:30,c('Name')]
[1] abc def ghi jkl mno pqr stu vwx yza bcd efg hij klm nop qrs tuv wxy zab cde fgh ijk lmn opq rst uvw xyz zyx wvu tsr
[30] qpo
30 Levels: abc bcd cde def efg fgh ghi hij ijk jkl klm lmn mno nop opq pqr qpo qrs rst stu tsr tuv uvw vwx wvu ... zyx
> 3c()

(E) All records

df<-read.csv("E:\\dataset.csv")

df

```
> df<-read.csv("E:\\dataset.csv")</pre>
  Empid Name Designation Salary Experience
1
      1 abc Manager 20000
                         19000
2
      2 def Supervisior
3
      3 ghi Clerk 10000
                                        6
4
      4 jkl
                  Labour 2000
                                        2
5
      5 mno Supervisior 18000
                                        6
6
      6 pqr Manager 25000
                                        11
7
     7 stu Supervisior 18000
                                       10
     8 vwx Manager 20000
9 yza Clerk 15000
10 bcd Clerk 15000
11 efg Manager 23000
12 hij Clerk 12000
13 klm Labour 4000
8
9
                                        5
10
                                        5
11
                                       10
12
                                       4
13
                                        4
14
     14 nop Supervisior 20000
                                        10
15
     15 qrs Manager 20000
                                       7
     16 tuv Labour 2000
17 wxy Clerk 12000
16
                                        2
17
     18 zab Manager 20000
19 cde Labour 2000
18
                                        7
19
                 Labour 2000
                                        1
20
     20 fgh Supervisior 21000
                                        10
21
     21 ijk Manager 22000
22
     22 1mn
                 Labour 2000
                                        2
     23 opq Manager 23000
23
                                        10
24
     24 rst Supervisior 20000
                                        7
25
    25 uvw Labour 2000
                                        7
26
     26 xyz
                  clerk 17000
     27 zyx Labour 3000
27
                                        3
                                        5
28
     28 wvu Supervisior 15000
29
     29 tsr Labour 3000
30 dbo
               clerk 10000
```

3. Display the following statistical measures of the dataset

a) mean, median, 3 quartile distribution of the variables

print(summary(df))

b) Frequency of designation

```
desig < -df[1:30,3]
y=table(desig)
x=as.data.frame(y)
print(x)
> desig<-df[1:30,3]
> y=table(desig)
> x=as.data.frame(y)
> print(x)
         desig Freq
1
         clerk
2
        Labour
                   8
3
                   8
      Manager
4 Supervisior
```

c) Variance and Covariance

```
var(df)
covv<-df[c('Salary', 'Experience')]
cov(covv)
 > var(df)
                  Empid Name Designation
                                           Salary Experience
              77.50000 NA NA -18879.31
 Empid
                                                    -8.120690
 Name
                     NA NA
                                    NA
                                               NA
                                                            NA
                     NA NA
 Designation
                                                            NA
                                    NA
                                               NA
 Salary -18879.31034
                                    NA 61454022.99 21350.574713
                         NA
            -8.12069 NA
 Experience
                                          21350.57 8.833333
                                    NA
 Warning message:
 In var(df): NAs introduced by coercion
 > covv<-df[c('Salary','Experience')]
 > cov(covv)
               Salary Experience
 Salary 61454022.99 21350.574713
              21350.57
                        8.833333
 Experience
```

d) Correlation of salary to experience

cor(covv)

4. Draw the following

A) Pie chart on designation

```
x<-c(7,6,3,4)
labels<-c("Clerk","Labour","Manager","Supervisior")
png(file="pie.png")
pie(x,labels)
dev.off()

> x<-c(7,6,3,4)
> labels<-c("Clerk","Labour","Manager","Supervisior")
> png(file="pie.png")
> pie(x,labels)
> dev.off()
RStudioGD
2
> 3c()
```


B) Histogram of Salary

```
x<-df$Salary
png(file="histogram.png")
hist(x,xlab="Salary",col="green",border="yellow")</pre>
```

dev.off()

```
> x<-df$salary
> png(file="histogram.png")
> hist(x,xlab="Salary",col="green",border="yellow")
> dev.off()
```


C) Scatter plot of Salary to Experience

Salary v Experience ω Experience ဖ Salary