Problemas del Tema 4. Programación Lineal Entera

INVESTIGACIÓN OPERATIVA I.

2° Grado en Estadística

- 4.1.- Resolver los siguientes problemas por el algoritmo de ramificación:
 - a) Max: $z = 2x_1 + x_2$ sujeto a: $5x_1 + 8x_2 \le 68$ $x_1 - x_2 \le 2$ $x_2 \le 6$

 $x_1, x_2 \ge 0$ enteras

b) Max: $z = 6x_1 + 3x_2$ sujeto a: $x_1 - x_2 \le 5$ $4x_1 + 3x_2 \le 10$

 $x_1, x_2 \ge 0$ enteras

- c) Max: $z = 3x_1 + 4x_2$ sujeto a: $2x_1 + x_2 \le 6$ $2x_1 + 3x_2 \le 9$ $x_1, x_2 \ge 0$ enteras
- **4.2.** Obtener la solución de los siguientes problemas de conociendo las variables básicas de la tabla óptima del problema relajado y encontrar la solución del problema entero usando el método de los planos de corte de Gomory.
 - a) Maximizar: $z = x_1 + 2x_2$ sujeto a: $4x_1 + 3x_2 \le 12$ $-x_1 + x_2 \le 2$ $x_1, x_2 \ge 0$ enteras VB: $[x_1, x_2]$
- b) Maximizar: $z = 2x_1 + x_2$ sujeto a: $x_1 - x_2 \le 5$ $4x_1 + 3x_2 \le 10$ $x_1, x_2 \ge 0$ enteras VB: $[s_1, x_1]$
- **4.3.-** Dado el siguiente problema de programación entera, y su tabla óptima para la relajación lineal, encontrar la solución del PE usando el algoritmo del plano de corte de Gomory:

1

Max
$$z = 8x_1 + 5x_2$$

sujeto a: $x_1 + x_2 \le 6$
 $9x_1 + 5x_2 \le 45$
 $x_1, x_2 \ge 0$ enteras

z	x_1	x_2	s_1	s_2	Ld	VB
1	0	0	1,25	0,75	41,25	z
0	0	1	2,25	-0,25	2,25	x_2
0	1	0	-1,25	$0,\!25$	3,75	x_1

4.4.- Dado los siguientes problemas de programación entera, y sus correspondientes tablas óptimas para la relajación lineal, encontrar la solución del PE usando el algoritmo del plano de corte de Gomory:

a) Max
$$z = 14x_1 + 18x_2$$

sujeto a: $-x_1 + 3x_2 \le 6$
 $7x_1 + x_2 \le 35$
 $x_1, x_2 \ge 0$ enteras

z	x_1	x_2	s_1	s_2	$\mid Ld$	VB
1	0	0	56/11	30/11	126	z
0	0	1	7/22	1/22		
0	1	0	-1/22	3/22	9/2	x_1

b) Max
$$z = 2x_1 + x_2$$

sujeto a: $2x_1 + 5x_2 \le 17$
 $3x_1 + 2x_2 \le 10$
 $x_1, x_2 \ge 0$ enteras

z	$ x_1 $	x_2	s_1	s_2	Ld	VB
1	0	1/3				
0	0	11/3	1	-2/3	31/3	s_1
0	1	2/3	0	1/3	10/3	x_1

c) Max
$$z=2x_1+x_2$$
 sujeto a: $8x_1+6x_2\leq 10$
$$x_1-x_2\leq 5$$

$$x_1,x_2\geq 0 \text{ enteras}$$

d) Min
$$z=4x_1+x_2+x_3$$

sujeto a: $2x_1+x_2+2x_3 \ge 4$
 $3x_1+3x_2+x_3 \ge 3$
 $x_1,x_2,x_3 \ge 0$ enteras

z	x_1	x_2	x_3	e_1	a_1	e_2	a_2	Ld	$\mid VB \mid$
1	-13/5	0	0	-2/5	2/5 - M	-1/5	1/5 - M	11/5	z
0	3/5	0	1	-3/5	3/5	1/5	-1/5	9/5	x_3
0	4/5	1	0	1/5	-1/5	-2/5	2/5	2/5	$ x_2 $