

(Over) Two Decades of European Incentives

for (Sustainable) Civil Aviation Research

- A Primer -

Aleksandar Joksimović ISAE-SUPAERO (DAEP), 31 August 2022

Background

2021-(...)

2016-21

2014-16

Research engineer:

Propulsive system integration, preliminary sizing, innovative architectures;

PhD candidate:

Complex systems, holistic approach to architectures and tradeoffs in early design;

AEGIS (SAFRAN Group):

Tradeoffs in optimization (e.g.):

EU FP projects ENOVAL & E-BREAK:

Variable turbofan engine cycles (fan, tuyère, etc.)

2012-14

'DNM AMA' (now MAE):

Aerodynamics/propulsion/advanced fluid dynamics

Tug of War

D.S. Lee, et al., The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018, Atmospheric Environment, Vol.244, 2021, https://doi.org/10.1016/j.atmosenv.2020.11783

Research Community (Europe)

1. INTRODUCTION

Aviation today represents 2% of anthropometric carbon dioxide (CO_2) emissions [1]. Objectives for Vision 2020 of the Advisory Council for Aeronautics Research in Europe (ACARE) target an 80% and 50% reduction in nitrous oxide (NO_x) and CO_2 respectively [2]. Even more ambitious goals outlined in Flightpath 2050 [3] by the European Commission (EC) for year 2050 is a 75% reduction in CO_2 -emissions per passenger kilometer

(PAX.km) relative to the capabilities of conventional aircraft of the year 2000. Furthermore, a 90% reduction of NO_x-emissions and a 65% perceived noise reduction is advocated. Finally, aircraft movements on the ground have to be emission-free when taxiing. The scope of the Flightpath 2050 assessment comprises total emissions between leaving the parking position at an origin airport (off-block) and the arrival at position at the final destination (on-block).

Targets for CO₂-emissions as originally defined in Vision 2020 and AGAPE 2020 [4] were categorised into Airframe, Propulsion and Power System (PPS), Air Traffic Management (ATM) and Airline Operations. As exemplified by FIG 1, the Strategic Research and Innovation Agenda (SRIA) goals [5] have been recalibrated to reflect the achievements assessed by the AGAPE 2020 report and a new medium-term goal for Entry-into-Service (EIS) year 2035, which is a significant point for aircraft fleet renewal. A further elaboration of the chronologically assigned CO₂-emissions targets is a breakdown that recommends aircraft energy levels (for flight including all on-board systems and services).

Goals and Key contributions	2000 (Reference)	2020 (Vision)	2020 (AGAPE)	2020 (SRIA)	2035 (SRIA)	2050 (SRIA)
CO ₂ objective vs 2000 ("HLG")		-50%**				-75%**
CO ₂ vs 2000 (kg/pass km)*		-50%	-38%	-43%	-60%	-75%
Airframe energy need (Efficiency)	1	0,75	0,85	0,8	0,7	0,32
Propulsion & Power energy need (Efficiency)	1	8,0	0,8	8,0	0,7	
ATM and Infrastructure	1	0,88	0,95	0,93	0,88	0,88
Non Infrastructure- related Airlines Ops	1	0.96	0.96	0.96	0,93	0,88

comparison with same transport capability aircraft and on a same mission in term on range and payload
 ACARE 2020 and ACARE 2050 High Level Goals for airframe, engine, systems and ATM/Operations

FIG 1 Chronologically defined CO₂-emissions reduction goals as recommended by ACARE in the SRIA document [5].

In order to realise a total 60% reduction in fuel burn and corresponding CO₂-emissions per PAX.km for target EIS 2035, SRIA 2035 stipulates contributions of 25% from

Challenging targets for aeronautical research and development were set by the Advisory Council for Aeronautics Research in Europe (ACARE) in the year 2001 [15]. Beside safety and economic ACARE's Strategic Research Agenda (SRA) involved ambitious environmental goals, i.e. reductions of 50% CO₂ and 80% NO_x, as well as the halving of perceived noise by 2020 relative to the state-of-the-art in the year 2000. Contributions to the aimed CO₂ goals were expected from air traffic management (5-10%), airframe technological enhancement (20-25%) and from engine technology (specific fuel consumption) improvement (15-20%) [15]. Beyond that, the environmental goals declared within the "Flightpath 2050" vision [36], published by the European Commission in 2011, include the carbon-neutral growth of air traffic beginning in 2020, and a 50% overall CO₂ emission reduction by 2050.

Seitz , A. "Advanced Methods for Propulsion System Integration in Aircraft Conceptual Design", PhD dissertation, TU Munchen, 2012.

A. T. Isikveren and M. Schmidt, Future Transport Aircraft Ultra-Low Emissions Technology Options, GARS Workshop 2014 'Vision 2020'

European Green Deal

Net-Zero

Carbon neutral

'Clean Sky'

'Flightpath 2050'

ACARE

Strategic Research (and Innovation) Agenda (SRIA)

Framework Programme

TRL

'History'

Selected Documents

2000 Aeron. for Europe

2001 Vision 2020

2002 SRA-1

2004 SRA-2

2008 SRA Addendum Flightpath 2050

2011

2012 SRIA

2017 SRIA Update

2020 Time for Change

2020 **CASRIA**

CLEAN AVIATION

2022

Glossary

ACARE (Advisory Council for Aeronautical Research in Europe):

- High-level group of experts, advisory body commissioned by EC.
- 'Vision' Documents (2020, 2050, Green Deal):
 - Projected scenarios by high-level group of experts that imagine (mid- and long-term) future scenarios for EU airline industry, to enable/guarantee European status as the global actor.
- SRIA (Strategic Research and Innovation Agenda):
 - Technical roadmap(s) enabling to evolve towards achievement of the *Visions (cf. above)*.
- Framework Programme:
 - Funding programmes by EU/EC to support and foster research in European Research Area.
- Joint Technology Initiative/Joint Undertaking:
 - Public-private partnerships at the European level, in the framework of the FP's.
- TRL (Technology Readiness Level):
 - Technology maturity metric (concept-EIS).

adapted from: Sieber (2015)

European Project Example (Extract)

Large Turbofan

image: EU FP7 project LEMCOTEC (2011-2017)

Vision Illustration

'Vision 2020' (2001)

Vision:

Aircraft and air transport system
that are responding to society's needs,
despite a three-fold increase in air transport [in 2020].

Strategy/Market (extract):

- Global leadership by Europe;
- World-class airline system.

Environment/emissions (extract):

• -50% CO2;

(year 2000 baseline)

- -80% NOx;
- Noise abatement goals
- Full understanding of the sector's contribution to the impacts.

SR(I)A Illustration

'SRA-2' (2004)

Scenarios:

- 1. Segmented Business Models,
- 2. Constrained Air Traffic Growth,
- 3. Bloc Building.

Economy,
Politics,
Society,
Ecology & Energy,
General Air Traffic,
Infrastructure,
Airlines.

SR(I)A Illustration

'SRA-2' (2004)

Challenges:

- 1. Quality and affordability;
 - a) Reducing cost, increasing choice, flying office, freight...
- 2. Environment;
 - a) (CO2, NOx...subsystems contributions)
- 3. Safety;
- 4. Efficiency of the air transport system;
 - a) Punctuality, airport time, 3x volume...
- 5. Security.

→ High Level Target Concepts

SR(I)A Illustration

'SRA-2' (2004)

High Level Target Concepts for the Air Transport System (ATS):

- 1. Highly Customer Oriented ATS,
- 2. Highly Time Efficient ATS,
- 3. Highly Cost Efficient ATS,
- 4. Ultra Green ATS,
- 5. Ultra Secure ATS.

Ultra Secure ATS

Ultra Green ATS

Challenge: Quality and affordability

Goals

- · Reducing travel charges
- · Increasing passenger choice
- · Transforming air freight services
- Creating a competitive supply chain able to halve timeto-market

Challenge: Environment

Goals

- To reduce fuel consumption and CO2 emissions by 50%
- To reduce perceived external noise by 50%
- To reduce NOx by 80%
- To make substantial progress in reducing the environmental impact of the manufacture, maintenance and disposal of aircraft and related products

Challenge: Safety

Goals

- . Reduction of the accident rate by 80%.
- · Reduction in human error and its consequences

Challenge: Air Transport System efficiency Goals

- To enable the Air Transport System to accommodate 3 times more aircraft movements by 2020 compared with 2000
- To reduce the time spent by passengers in airports to under 15 minutes for short-haul flights and to under 30 minutes for long-haul
- To enable 99% of flights to arrive and depart within 15 minutes of their advertised scheduled departure time, in all weather conditions

Challenge: Security

Goal

· Zero successful hijack.

Highly Customer Oriented ATS

Highly Time Efficient ATS

Highly Cost Efficient ATS

ion 004)

tem (ATS):

Evolution

Environmental/emissions goals (extract):

- -50% CO2;
- -80% NOX -90% NOX;
- Emission-free taxiing;
- Noise objectives;
- EU centre of excellence on alternative fuels (HC still in use);
- Full understanding of the sector's contribution to the impacts.

Hydracen from the control of the con

Evolution

Timeframe							
Short-term (<2030)	Medium-term (<2035)	Long-term (<2050)					
 By 2030, net CO₂ emissions from all intra-EU flights and those departing the EU are reduced by 55% compared to the 1990 baseline¹¹; By 2030, non-CO₂ climate effects are fully understood, managed, monitored and reduction targets are set inline with the latest scientific understanding and available mitigation solutions. 	 By 2035 new technologies, fuels and operational procedures in service result in a 30% reduction in non-CO₂ climate effects of all intra-EU flights and those departing the EU relative to the 1990 baseline. 	 By 2050, net-zero CO₂ emissions has been achieved for all intra-EU flights and those departing the EU; By 2050 new technologies and operational procedures in service result in a 90% reduction in NOx emissions from all intra-EU flights and those departing the EU relative to the year 2000¹²; By 2050 new technologies and operational procedures in service result in a 90% reduction in non-volatile particulate matter (nvPM) emissions from all intra-EU flights and those departing the EU relative to the year 2000; 					
		 By 2050 new technologies and operational procedures in service result in a 90% reduction in warming contrail cirrus relative to the 2000 baseline; By 2050 new technologies, fuels and operational procedures reduce the climate impact of CO₂ and non-CO₂ effects of all intra-EU flights and those departing the EU by 90% relative to the year 2000. 					

Summary

- It's a complicated (complex?) system and optimisation problem;
- Market-based incentives and strategies;
- Ever-stronger ambitions w.r.t. objective functions, (but...)
- ...complicated (complex?) tradeoffs (see illustration):

Thanks