Experiment 5 Tone Synthesizer

Mayur Ware, 19D070070

EE-214, WEL, IIT Bombay

March 25, 2021

Overview of the experiment

- The purpose of the experiment is to design a circuit which will generate the seven major notes in the Indian classical music named Sa, Re, Ga, Ma, Pa, Dha, Ni and Sa (upper octave) on the speaker.
- I used the 50MHz Master Clock (Krypton's On-board clock) to calculate the count value for each note by using the fomula $\frac{50MHz}{2*f}$ where 'f' is the required frequency and using the if elsif loops I implemented my logic.
- The report contains a handmade diagram which describes my approach, some important extracts of VHDL code, the output waveforms, Krypton Board Observations and Circuit Images.

Approach to the experiment

First, I calculated the counts for each Note using the formula given above. The counts for each Note are given in this table:

Note	Frequency (Hz)	Count Value
Sa	240	104168
Re	270	92593
Ga	300	83333
Ma	320	78125
Pa	360	69444
Dha	400	62500
Ni	450	55556
Sa (Upper Octave)	480	52083

Then, using if else, if elsif loops and this count values, I implemented the logic.

Design document and VHDL code if relevant

```
Main Entity:
entity toneGenerator is
port (toneOut : out std_logic;
                                        -this pin will give your notes output
clk: in std_logic;
LED : out std_logic_vector(7 downto 0);
switch : in std_logic_vector(7 downto 0));
end entity toneGenerator;
BCD_Adder:
if (count_sa1 = 104168) then
                                        -240Hz for "Sa"
count\_sa1 := 1;
sa1 := not sa1;
else
count\_sa1 := count\_sa1 + 1;
end if;
toneOut \leq sa1;
LED <= (0 => '1', others => '0');
elsif switch= "00000010" then
                                      -270Hz for "Re"
if (count\_sa2 = 92593) then
count_sa2 := 1;
sa1 := not sa1;
else
count_sa2 := count_sa2 + 1;
end if:
toneOut <= sa1;
LED <= (1 => '1', others => '0');
Similar for 'Ga', 'Ma', 'Pa', 'Dha', 'Ni' and 'Sa (Upper Octave)'
```

RTL View

DUT Input/Output Format

toneOut : out std_logic; clk : in std_logic;

LED : out std_logic_vector(7 downto 0);
switch : in std_logic_vector(7 downto 0));

RTL Simulation

Gate-level Simulation

Krypton board

Pin Planner

Observations

Some of the observations were :

Observation 1

Observation 2

Observation 1 : Switch 6 was ON. LED 6 was glowing and Musical Note 'Dha' was audible. **Observation 2 :** Switch 3 was ON. LED 3 was glowing and Musical Note 'Ga' was audible.

References

Clock Divider Tutorial by Teaching Assistant Mr. Sandesh Goyal Quartus 20.1 Lite Software EE214_Tone_Synthesizer.pdf for code snippets