

Figure 1: Figura para pregunta 2.

Termodinámica - Guía 4

- 1. Determinar la variación de entropía del sistema durante los siguientes procesos:
 - (a) 1 kg de hielo a 0°C y 1 atm de presión, funde a esta misma temperatura y presión. El calor latente de fusión es $3,34 \times 10^5$ J kg⁻¹.
 - (b) 1 kg de vapor de agua a 100° C y 1 atm se condensa a esta temperatura y presión. El calor latente de vaporización es $2,26\times10^{6}$ J kg $^{-1}$.

[Pista: el flujo de calor en cada proceso es igual al calor latente]

- 2. Un sistema recorre reversiblemente el ciclo a-b-c-d-a de la fig. 1. Las temperaturas t se expresan en grados Celsius. Suponer que las capacidades caloríficas son independientes de la temperatura y $C_V = 8$ J K⁻¹ y $C_P = 10$ J K⁻¹.
 - (a) Calcular la cantidad de calor $\int d'Q$ en el sistema en cada porción del ciclo. De acuerdo con el primer principio, ¿cuál es el significado de la suma de estas cantidades de calor?
 - (b) Si $V_1 = 9 \times 10^{-3} \text{ m}^3 \text{ y } V_2 = 20 \times 10^{-3} \text{ m}^3$, calcular la diferencia de presión $(P_2 P_1)$.
 - (c) Calcular el valor de $\int dQ/T$ a lo largo de cada porción del ciclo. Según el segundo principio, ¿cuál es el significado del valor de la suma de estas integrales?
 - (d) Supongamos una temperatura T' se define como la suma de la temperatura Celsius más un valor distinto a 273, 15. ¿Sería entonces cierto que $\oint dQ/T' = 0$? Razonar la respuesta.
- 3. Representar en un diagrama T-S las curvas correspondientes a los siguientes procesos reversibles de un gas ideal partiendo siempre del mismo estado inicial:
 - (a) una expansión isotérmica,
 - (b) una expansión adiabática,
 - (c) un proceso isócoro con absorción de calor (suponiendo que C_V es constante).

- 4. Demostrar que si un cuerpo a la temperatura T_1 se pone en contacto con una fuente calorífica a temperatura $T_2 < T_1$, la entropía del universo aumenta. Suponer que la capacidad calorífica del cuerpo es constante.
- 5. Demostrar que si el enunciado de Clausius del segundo principio no fuera cierto, sería posible violar el enunciado de Kelvin-Planck.