STANDARD REDUCTION POTENTIALS IN AQUEOUS SOLUTION AT 25° C

Half-reaction			$E^{\circ}(V)$
$F_2(g) + 2e^-$	\rightarrow	2 F ⁻	2.87
$Co^{3+} + e^{-}$	\rightarrow	Co^{2+}	1.82
$Au^{3+} + 3e^{-}$	\rightarrow	Au(s)	1.50
$\operatorname{Cl}_2(g) + 2e^-$	\rightarrow	2 C1 ⁻	1.36
$O_2(g) + 4 H^+ + 4 e^-$	\rightarrow	$2 H_2 O(l)$	1.23
$Br_2(l) + 2e^-$	\rightarrow	$2~\mathrm{Br}^-$	1.07
$2 \text{ Hg}^{2+} + 2 e^{-}$	\rightarrow	Hg_2^{2+}	0.92
$Hg^{2+} + 2e^{-}$	\rightarrow	Hg(l)	0.85
$Ag^+ + e^-$	\rightarrow	Ag(s)	0.80
$Hg_2^{2+} + 2e^-$	\rightarrow	$2 \operatorname{Hg}(l)$	0.79
$Fe^{3+} + e^{-}$	\rightarrow	Fe ²⁺	0.77
$I_2(s) + 2e^-$	\rightarrow	$2~\mathrm{I}^-$	0.53
$Cu^+ + e^-$	\rightarrow	Cu(s)	0.52
$Cu^{2+} + 2e^{-}$	\rightarrow	Cu(s)	0.34
$Cu^{2+} + e^{-}$	\rightarrow	Cu ⁺	0.15
$\mathrm{Sn}^{4+} + 2 e^{-}$	\rightarrow	Sn^{2+}	0.15
$S(s) + 2 H^{+} + 2 e^{-}$	\rightarrow	$H_2S(g)$	0.14
$2 \text{ H}^+ + 2 e^-$	\rightarrow	$H_2(g)$	0.00
$Pb^{2+} + 2e^{-}$	\rightarrow	Pb(s)	-0.13
$\mathrm{Sn}^{2+} + 2e^{-}$	\rightarrow	Sn(s)	-0.14
$Ni^{2+} + 2e^{-}$	\rightarrow	Ni(s)	-0.25
$\text{Co}^{2+} + 2 e^{-}$	\rightarrow	Co(s)	-0.28
$Cd^{2+} + 2e^{-}$	\rightarrow	Cd(s)	-0.40
$Cr^{3+} + e^{-}$	\rightarrow	Cr ²⁺	-0.41
$Fe^{2+} + 2e^{-}$	\rightarrow	Fe(s)	-0.44
$Cr^{3+} + 3e^{-}$	\rightarrow	Cr(s)	-0.74
$Zn^{2+} + 2e^{-}$	\rightarrow	Zn(s)	-0.76
$2 H_2 O(l) + 2 e^-$	\rightarrow	$H_2(g) + 2 OH^-$	-0.83
$Mn^{2+} + 2e^{-}$	\rightarrow	Mn(s)	-1.18
$A1^{3+} + 3e^{-}$	\rightarrow	Al(s)	-1.66
$Be^{2+} + 2e^{-}$	\rightarrow	Be(s)	-1.70
$Mg^{2+} + 2e^{-}$	\rightarrow	Mg(s)	-2.37
$Na^+ + e^-$	\rightarrow	Na(s)	-2.71
$Ca^{2+} + 2e^{-}$	\rightarrow	Ca(s)	-2.87
$Sr^{2+} + 2e^{-}$	\rightarrow	Sr(s)	-2.89
$Ba^{2+} + 2e^{-}$	\rightarrow	Ba(s)	-2.90
$Rb^+ + e^-$	\rightarrow	Rb(s)	-2.92
$K^+ + e^-$	\rightarrow	K(s)	-2.92
$Cs^+ + e^-$	\rightarrow	Cs(s)	-2.92
$Li^+ + e^-$	\rightarrow	Li(s)	-3.05