Глубокое обучение

Дмитрий Никулин

14 апреля 2021 г.

Лекция 4: 50 оттенков градиентного спуска

Agenda

- Разбираем способы улучшить SGD
- Экспериментируем с ними

50 оттенков градиентного спуска

Градиентный спуск (GD)

Проблема оптимизации:

$$L(w) = rac{1}{n} \cdot \sum_{i=1}^n L(w,x_i,y_i)
ightarrow \min_w \quad$$
 по датасету $\left\{(x_i,y_i)
ight\}_{i=1}^n$

Градиент указывает направление максимального роста

$$\nabla L(w) = \left(\frac{\partial L(w)}{\partial w_0}, \frac{\partial L(w)}{\partial w_2}, \dots, \frac{\partial L(w)}{\partial w_k}\right)$$

Идём в противоположную сторону:

$$w^1 = w^0 - \lambda \cdot \nabla L(w^0)$$
 скорость обучения

Градиентный спуск (GD)

Проблема оптимизации:

$$L(w) = \sum_{i=1}^n L(w,x_i,y_i) o \min_w \quad$$
 по датасету $\left\{(x_i,y_i)
ight\}_{i=1}^n$

Инициализация w_0 while True:

$$\begin{split} g_t &= \frac{1}{n} \sum_{i=1}^n \nabla L(w, x_i, y_i) \\ w_t &= w_{t-1} - \lambda_t \cdot g_t \\ \text{if } ||w_t - w_{t-1}|| < \varepsilon : \end{split}$$

break

(можно останавливаться и при превышении количества итераций / по метрикам на валидации / etc)

Стохастический градиентный спуск (SGD)

Проблема оптимизации:

$$L(w) = \sum_{i=1}^n L(w,x_i,y_i) o \min_w$$
 по датасету $\left\{(x_i,y_i)\right\}_{i=1}^n$

Инициализация w_0 while True:

```
рандомно выбрали b < n индексов B = \{i_1, \dots, i_b\} g_t = \frac{1}{b} \sum_{j \in B} \nabla L(w, x_j, y_j) w_t = w_{t-1} - \lambda_t \cdot g_t if ||w_t - w_{t-1}|| < \varepsilon: break
```

Momentum SGD

Мы считали на каждом шаге градиент по формуле

$$g_t = \frac{1}{b} \sum_{i=1}^{b} \nabla L(w_{t-1}, x_i, y_i).$$

После шага мы забывали его. Давайте запоминать направление:

$$\begin{split} m_t &= \alpha \cdot m_{t-1} + g_t \\ w_t &= w_{t-1} - \lambda \cdot m_t \end{split}$$

- Движение поддерживается в том же направлении, что и на предыдущем шаге
- Нет резких изменений направления движения.
- Обычно $\alpha \approx 0.9$.

Крутой интерактив для моментума: https://distill.pub/2017/momentum/

Momentum SGD

- Бежим с горки и всё больше ускоряемся в том направлении, в котором были направлены сразу несколько предыдущих градиентов, но при этом движемся медленно там, где градиент постоянно меняется
- Хотелось бы не просто бежать с горы, но и хотя бы на полшага смотреть себе под ноги, чтобы внезапно не споткнуться ⇒ давайте смотреть на градиент в будущей точке
- В Momentum SGD $lpha\cdot m_{t-1}$ точно будет использоваться при шаге, давайте искать $\nabla L(w_{t-1}-\lambda\cdot lpha\cdot m_{t-1}).$

Nesterov Momentum SGD

- Мы теперь сначала прыгаем в том же направлении, в каком шли до этого, потом корректируем его
- Иллюстрация из статьи Хинтона 2013 года:

 $Figure~1.~{\bf (Top)}~{\rm Classical~Momentum}~{\bf (Bottom)}~{\rm Nesterov~Accelerated~Gradient}$

http://www.cs.toronto.edu/~hinton/absps/momentum.pdf

Nesterov Momentum SGD

- Мы теперь сначала прыгаем в том же направлении, в каком шли до этого, потом корректируем его

$$\begin{split} m_t &= \alpha \cdot m_{t-1} + \nabla L(w_{t-1} - \alpha \cdot m_{t-1}) \\ w_t &= w_{t-1} - \lambda \cdot m_t \end{split}$$

Разная скорость обучения

- Может сложиться, что некоторые веса уже близки к своим локальным минимумам, по этим координатам надо двигаться медленнее, а по другим быстрее ⇒ адаптивные методы градиентного спуска
- Шаг изменения должен быть меньше у тех параметров, которые в большей степени варьируются в данных, и больше у тех, которые менее изменчивы

AdaGrad

$$\begin{aligned} v_0^j &= 0 \\ v_t^j &= v_{t-1}^j + g_{tj}^2 \\ w_t^j &= w_{t-1}^j - \frac{\lambda}{\sqrt{v_t^j} + \varepsilon} \cdot g_{tj} \end{aligned}$$

- g_{tj} градиент по j-ому параметру
- своя скорость обучения для каждого параметра
- обычно $\lambda = 0.01$, т.к. параметр не очень важен
- v_t^{\jmath} всегда увеличивается, из-за этого обучение может рано останавливаться \Rightarrow RMSprop

RMSprop

$$\begin{aligned} v_0^j &= 0 \\ v_t^j &= \alpha \cdot v_{t-1}^j + (1 - \alpha) \cdot g_{tj}^2 \\ w_t^j &= w_{t-1}^j - \frac{\lambda_t}{\sqrt{v_t^j} + \varepsilon} \cdot g_{tj} \end{aligned}$$

- Обычно $\alpha = 0.99$
- Скорость обучения адаптируется к последнему сделанному шагу, бесконтрольного роста v_t^j больше не происходит
- RMSprop нигде не был опубликован, Хинтон просто привёл его в своей лекции, сказав, что это норм тема

Adam (Adaptive Moment Estimation)

$$\begin{split} m_t^j &= \beta_1 \cdot m_{t-1}^j + (1 - \beta_1) \cdot g_{tj} \\ v_t^j &= \beta_2 \cdot v_{t-1}^j + (1 - \beta_2) \cdot g_{tj}^2 \\ \hat{m}_t^j &= \frac{m_t^j}{1 - \beta_1^t} \quad \hat{v}_t^j = \frac{v_t^j}{1 - \beta_2^t} \\ w_t^j &= w_{t-1}^j - \frac{\lambda_t}{\sqrt{\hat{v}_t^j} + \varepsilon} \cdot \hat{m}_t^j \end{split}$$

- Комбинируем Momentum и индивидуальные скорости обучения
- Фактически, \hat{m}_t и \hat{v}_t это оценки первого и второго моментов для стохастического градиента
- Деление на $1-\beta_i^t$ нужно, чтобы оценки были несмещёнными

Сравнение на MNIST (из статьи про Adam)

Лучший оптимизатор?..

... или нет?

A. List of optimizers and schedules considered

Table 2: List of optimizers we considered for our benchmark. Note, that this is far from being a complete list of all existing optimization methods applicable to deep learning, but only a subset, comprising of some of the most popular choices.

Name	Ref.	Name	Ret
AcceleGeal	(Levretal, 2010)	HyperAdam	(Wang et al., 2019)
ACICIIp	(Zhang et al., 2020)	K-BPCS/K-BPCS(L)	(Guidfarb et al., 2000)
AduAlter	(Nor et al., 2019)	KINC	Olanov & Gross, 2015
Addition	(Devarakenda et al., 2017)	KFLRKFRA	(Butter et al., 2017)
Adallayer/Adallaper-SS	(Airchinea, 2020)	L4Adam/L/Moracatura	(Robinsk & Martin, 2018)
Additelief	(Zhuang et al., 2020)	LAMB	(You et al., 2000)
Additions	(Yan et al., 2019)	LaProp	(Ziyin et al., 2000)
Adalleund	(Lao et al., 2019)	LARS	(You et al., 2017)
AdaComp	(Chen et al., 2018)	LookAhead	(Zhang et al., 2019)
Adadelta	(Zeiler, 2012)	M-SVAG	(Balles & Housig, 2018)
Adalactor	(Stutter & Stern, 2016)	MAS	(Landro et al., 2020)
AddFix AddFom	(Bar et al., 2019) (Chen et al., 2019)	MEKA MTAdam	(Ches et al., 2020) (Multiset & West, 2020)
AMPTRL	(Orabona & Pill, 2015)	MYRC-1/MYRC-2 Nature	(Chee & Zhou, 2000)
Adagrad ADAHESSIAN	(Duchi et al., 2011)	NAMESNAMSG	(Dosus, 2006)
Addition	(Yao et al., 2020) (Xier et al., 2020)	ND Adex	(Ches et al., 2019b)
			(Zhang et al., 2017)
Adalors Adam	(Taisains et al., 2019)	Notice Notes Adam/Notes K-PAC	(Nesserv, 1983)
Adam +	(Kingma & Ba, 2015) (Liu et al., 2020)	Non-Adam Non-Adam	(Zhang et al., 2008) (Hanne et al., 2009)
Adam Al.	(Tao et al., 2020)	Nonegrad	(Hang et al., 2009) (Gindang et al., 2009)
AdaMar.	(Kingma & Bu, 2015)	Padem	(Ches et al., 2020a)
Adams Adams A	(Kingsia & Ba, 2015) (Lie et al., 2020c)	PAGE PAGE	(Chos ot al., 2020a) (Li et al., 2020a)
AdambiC	(Red) et al., 2000	FAL	Obstable & Zell, 2000
AdsMed	(Ding et al., 2019)	Poly-Adam	(Drvieto et al., 2019)
Adamir		Polyskanin Polyskanin	
Adami	(Heo et al., 2020) (Zhou et al., 2020)	Forer\$GD@oner\$GDM	(Polyak, 1994) (Vagata et al., 2009)
AdamW	Goshchilov & Harter, 2017)	Probl-5	(Malmereci & Housig, 2017)
AdeaX	(Ton & Plong, 2019)	Piores	Dia 2000
ADAS	(Eliyaha, 2020)	QHAdanAQHM	(Ma & Yaran, 2019)
Addi	(Honoriei & Platanieris, 2020)	EAdon	(E.in et al., 2020a)
Addicale	(Johnson et al., 2000)	Ranger	(Wright, 2020b)
AMSCE	(Wang A Worn, 2020)	Fanger Larx	(Grankin, 2000)
Addition	(Zhou et al., 2029)	RMSProp	(Tieleman & History, 2012)
Addion	Oks et al., 2029)	RMSorrey	EChoi et al., 2009
Adabos	(Sun et al., 2022)	ANGD	(Sung et al., 2020)
AddX/AddX.W	d.i et al., 2000a	Address	(Wang et al., 2020b)
AEGD	G.in & Ton. 2020	Salan/SAMSGraf	(Teng et al., 2019)
ALLC	(Berrals et al., 2020)	546.8	(Yee et al., 2020)
AMSBoard	(Lao et al., 2019)	5C-Adapted/SC-RMSProp.	(Mokkarush & Hein, 2017)
AMSGrad	(Redd) et al., 2018)	SERVIN	Ods et al., 2017)
Amejol S	(Vaswani et al., 2029)	50D	(Bobbins & Monro, 1951)
ARSIG	4Chox et al., 201990	500-10	(Tan et al., 2006)
AvaCred	(Sunancer et al., 2079)	500-02	(Acod) & Turinici, 2000
DA.dom	(Sulas et al., 2019)	SCEM	(Liu & Luo, 2020)
DCAdem.	(Bol & 2hong, 2027)	SCEOP	(Heo et al., 2020)
ERMSPyrp	(Aitchison, 2020)	SCOR	(Loshchilov & Hotter, 2017)
RSGD	(Ho et al., 2020)	SHAdograd	(Hang et al., 2000)
C-ADAM	(Tataney et al., 2020)	Sharapoo	(Anil et al., 2020; Oupts et al., 2018)
CADA	(Chen et al., 2000c)	SignAdemore	(Wang et al., 2015u)
Cool Mornesture	(Boryscako & Byshkin, 2020)	SignSGD	(Bornstein et al., 2018)
CProp	(Preechalcal & Kipinikol, 2019)	530QN/94QN	(Yang et al., 2020)
Correball	(Henriques et al., 2019)	850	(Anil et al., 2019)
Disdom	(Naturi et al., 2019)	5MG	(Tran et al., 2020)
DeepMemory	(Wright, 2000to)	55034	(25so et al., 2020)
Difficult	(Dubey et al., 2020)	Soft-Main	(Fetterman et al., 2019)
EAdon	(Yann & Gao, 2020)	585GD	(Wang et al., 2820s)
EKEAC	(George et al., 2018)	SWATS	(Kedur & Soder, 2017)
Due	(Hayashi et al., 2019)	SWNTS	(Ches et al., 2019c)
Expectigrad	(Daley & Americ, 2020)	TMon	(Bloods et al., 2020)
FRSGD	(Wang & Yr. 2020)	TEKEAC	(One et al., 2000)
GADAM	(22 ang & Goura, 2018)	VAdam	(Khon et al., 2018)
Codom	(Grantiel et al., 2020)	VILSOD	(Shang et al., 2020)
GOLS-I	(Kofica & Wilia, 2019)	19GD-b/19GD-g/19GD-1	(School et al., 2013)
Orad-Avg	(Perkayantia & Perkayantia, 3333)	1900-14	(School & LeCon, 2013)
Oscrilos	(Kelterborn et al., 2020)	WNOrsd	(We et al., 2018)
Gravity HAdam	(Bahrami & Zadoh, 2021) (Bang et al., 2029)	YdiceFin	(Zhang & Millingkov, 2009) (Zishoer et al., 2008)

Резюме по методам градиентного спуска

- Momentum SGD сохраняет направление шага и позволяет добиваться более быстрой сходимости
- Адаптивные методы позволяют находить индивидуальную скорость обучения для каждого параметра
- Adam комбинирует в себе оба подхода
- Давайте посмотрим визуализацию 1 и визуализацию 2
- Но это же не все вызовы!

Боб чилит в локальном минимуме

https://hackernoon.com/life-is-gradient-descent-880c60ac1be8

Седловые точки

Визуализация потерь

https://arxiv.org/pdf/1712.09913.pdf https://github.com/tomgoldstein/loss-landscape

Переменный learning rate

- Когда качество на валидации перестаёт улучшаться, уменьшаем learning rate в несколько раз

Циклическая скорость обучения (CLR)

 Хочется, чтобы был шанс вылезти из локального минимума, а также шанс сползти с седла ⇒ давайте менять глобальную скорость обучения циклически

Циклическая скорость обучения (CLR)

Нестеров с CLR отработал быстрее и лучше Adam Нет одного правильного алгоритма на все случаи!

Всегда надо экспериментировать

https://arxiv.org/pdf/1506.01186.pdf https://openreview.net/pdf?id=BJYwwY9ll

А что люди сейчас делают с оптимизаторами?

- Нейросеть пытается сама от слоя к слою выстраивать новые, более сложные фичи
- Самостоятельно фичи больше придумывать не надо
- При этом оптимизаторы какие-то слишком олдскульные и ручные
- Круто было бы, если бы оптимизаторы тоже сами обучались
- Такие работы в последнее время активно появляются, но какого-то суперпрогресса пока нет

https://arxiv.org/pdf/2009.11243.pdf

Экспериментируем!

