Matemàtiques Primer Batxillerat

Artur Arroyo

curs 2009-2010

Matemàtiques primer batxillerat

- La circumferència
 - Equació de la circumferència
 - Posició relativa
 - Exercicis típics

Equació general

Definició

La circumferència és el lloc geomètric dels punts del pla que estan a la mateixa distància (anomenada radi) d'un punt fix anomenat centre. L'equació de la circumferència de centre (a,b) i radi R és

$$(x-a)^2 + (y-b)^2 = R^2$$

Si la desenvolupem

$$x^2 - 2ax + a^2 + y^2 - 2by + b^2 - R^2 = 0$$

que té la forma

$$x^2 + y^2 + mx + ny + p = 0$$

Si comparem l'expressió anterior amb la de partida podem fer les identificacions

$$\begin{cases}
 m = -2a \\
 n = -2b \\
 p = a^2 + b^2 - R^2
\end{cases}$$

especialment útils per trobar el centre i el radi d'una circumferència a partir de l'equació general.

Atenció!

No tota expressió de la forma

$$x^2 + y^2 + mx + ny + p = 0$$

descriu una circumferència.

Exemple

Donada l'equació $x^2 + y^2 - 6x + 4y + 4 = 0$, trobar el centre i radi. Escrivim:

$$\begin{cases}
-6 = -2a \\
4 = -2b \\
4 = a^2 + b^2 - R^2
\end{cases} \Rightarrow \begin{cases}
a = 3 \\
b = -2 \\
R^2 = a^2 + b^2 - 4 = 9 + 4 - 4 = 9
\end{cases}$$

$$\Rightarrow R = 3$$

Per tant el centre és el punt (3, -2) i el radi val 3.

Posició relativa de recta i circumferència

Una recta $r \equiv Ax + By + C = 0$ i una circumferència $C \equiv x^2 + y^2 + mx + ny + p = 0$ poden tallar-se en dos, un o cap punt. Tot dependrà del valor del discriminant de l'equació de segon grau obtinguda al resoldre el sistema format per la circumferència i la recta.

Exemple

Trobar la posició relativa de la recta y = 2x + 1 i la circumferència $x^2 + y^2 - 8x + 2y - 3 = 0$. Resolem:

$$\begin{cases} x^2 + y^2 - 8x + 2y - 3 = 0 \\ y = 2x + 1 \end{cases}$$

per obtenir

$$x^{2} + (2x + 1)^{2} - 8x + 2(2x + 1) - 3 = 0$$

Exemple (continuació)

equació que s'escriu

$$x^{2} + 4x^{2} + 4x + 1 - 8x + 4x + 2 - 3 = 0$$

és a dir

$$5x^2 = 0$$

obtenim dues solucions iguals $x=0\Rightarrow y=1$ de forma que la recta talla la circumferència en un sol punt (és tangent), el punt és el (0,1)

Posició relativa de dues circumferències

Eix radical de dues circumferències

Donades dues circumferències $\mathcal{C}_1 \equiv x^2 + y^2 + mx + ny + p = 0$, $\mathcal{C}_2 \equiv x^2 + y^2 + m'x + n'y + p' = 0$ Anomenem *eix radical* a la recta que està a la mateixa distància dels centres de les dues circumferències. Aquesta recta s'obté sense més que restar les equacions de les circumferències. En el cas que ens ocupa obtenim (m-m')x + (n-n')y + p - p' = 0.

Per trobar la posició relativa de dues circumferències $\mathcal{C}_1 \equiv x^2 + y^2 + mx + ny + p = 0$, $\mathcal{C}_2 \equiv x^2 + y^2 + m'x + n'y + p' = 0$ el que farem és obtenir a partir d'elles el seu eix radical, i després buscarem la posició relativa d'aquesta recta amb qualsevol de les dues circumferències.

Exercicis típics

• Trobeu l'equació d'una circumferència C sabent el seu centre, P = (2, -3) i que la recta $r \equiv x + y - 3 = 0$ és tangent a ella.

Resolució

Com que la recta és tangent a la circumferència, n'hi ha prou de calcular la distància del centre a la recta per trobar el radi de la circumferencia. Així

$$R = d(r, P) = \frac{|1 \cdot 2 + 1 \cdot (-3) - 3|}{\sqrt{1^2 + 1^2}} = \frac{|-4|}{\sqrt{2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2}$$
$$\Rightarrow \mathcal{C} \equiv (x - 2)^2 + (y + 3)^2 = (2\sqrt{2})^2$$

Exercicis típics

• Trobeu l'equació d'una circumferència \mathcal{C} sabent que passa per tres punts, $P=(3,0),\ Q=(1,2)$ i R=(5,-2).

Resolució

Farem servir la propietat que les mediatrius relatives als segments PQ i QR es tallen al centre de la circumferència. Així

$$med_{PQ} \equiv y = -x + 3$$
, $med_{QR} \equiv y = -\frac{3}{2}x + \frac{7}{2}$

$$med_{PQ} \cap med_{QR} = (1,2)$$

Un cop tenim el centre de la circumferència, C=(1,2) el radi el podem trobar calculant la distància del centre a qualsevol dels punts $P,\ Q,\ R.$ Llavors, $R=d(P,C)=|\overrightarrow{PC}|=2\sqrt{2}$