

will work like battery for a long time.

$$\overrightarrow{F} = q \overrightarrow{E} q > 0$$

$$E_o > E'$$

$$F = \frac{E_0}{k}$$
 $k > 1$

- 1) Change
- 2) Turn of battery
- 3) Insert Dielectric

$$U = \frac{1}{2} C A V^{\gamma}$$

Vold = k Unew Vold >> Unew

Previous: avold > avnew

Latest: Ovold = dVnew

$$\Rightarrow \frac{\sigma}{\varrho_o} = \frac{\sigma'}{\varrho_o k}$$

$$\Rightarrow \frac{Q}{A Q_0} = \frac{Q'}{A Q_0 K}$$

a new / Rold

Summery:

Avold > Avnew Cnew > Cold Uold > Unew Anew > Rold

$$=$$
 $\frac{a}{a'} = \frac{cold}{cnew}$

$$=$$
 $\frac{a}{ka} = \frac{\text{Cold}}{\text{Cnew}}$

$$\oint_{A} E_{o} \cdot dA = \frac{\varphi}{\varphi_{o}}$$

$$\Rightarrow \oint_{A} E_{o} dA = \frac{\varphi}{\varphi_{o}}$$

$$\Rightarrow F_{o} A = \frac{\varphi}{\varphi_{o}}$$

$$\Rightarrow E_0 A = \frac{9}{60}$$

+	- d'	
1	_ 4	
ナナナナナナナナナナナナナ	-	
ا نے ا	_	
T	1	
1	-	
+	-	
+	_	
+	_	
',	_	
7		
+	ָר <u>-</u>	
+		
 	1 1	
+	1 11	
1	_	
•		

$$\int_{A} \overrightarrow{E} \cdot d\overrightarrow{A} = \frac{q - q'}{\epsilon_{o}}$$

$$\Rightarrow E.A = \frac{q - q'}{\varepsilon_0}$$

$$\Rightarrow E = \frac{q - q'}{A \varepsilon_0}$$

$$E = \frac{E_o}{k}$$

$$\Rightarrow \frac{Q - Q'}{A \xi_0} = \frac{Q}{A \xi_0 k}$$

$$\oint_{A} \overrightarrow{E} \cdot d\overrightarrow{A} = \frac{q - q'}{\epsilon_{o}}$$