Projektarbeit

Anhand von Messdaten \widetilde{U} einer akustischen Welle im Fernfeld soll die unbekannte Position \mathbf{z}^* einer Quelle f bestimmt werden. Dazu betrachten wir die Helmholtzgleichung mit Sommerfeld-Randbedingung:

$$-\Delta u - k^2 u = f \quad \text{in } \Omega,$$

$$\frac{\partial u}{\partial n} = iku \quad \text{auf } \partial\Omega,$$
(1)

wobei $\Omega = (0,1)^2$ und k = 13 ist. Die Quelle entspricht einem um \mathbf{z}^* zentrierten Gausspuls

$$f(\mathbf{x}, \mathbf{z}^*) = 10 \exp\left(-\frac{\|\mathbf{x} - \mathbf{z}^*\|^2}{r^2}\right), \quad \mathbf{x} = (x_1, x_2), \quad \mathbf{z}^* = (z_1^*, z_2^*), \quad r = 0.05.$$

Die Messwerte \widetilde{U} der numerischen Lösung von (1) sind zwar am Rand bekannt, die Position \mathbf{z}^* der Quelle f ist jedoch unbekannt.

Das Ziel der Projektarbeit liegt in einer MATLAB-Implementation zur Berechnung der Koordinaten vom Punkt \mathbf{z}^* anhand der gegebenen Daten \widetilde{U} .

Numerische Vorgehensweise

- 1. Verwenden Sie stückweise lineare Finite-Elemente zur Diskretisierung von (1). Somit erhalten Sie das lineare Gleichungssystem $AU = F(\mathbf{z}^*)$, wobei $A = K k^2 M \in \mathbb{R}^{n \times n}$, $U \in \mathbb{R}^{n \times 1}$ und $F \in \mathbb{R}^{n \times 1}$ von der Position \mathbf{z}^* der Quelle abhängt. Hierbei bezeichnet K die Steifigkeitsmatrix, M die Massenmatrix und n die Anzahl Gitterpunkte.
- 2. Zur Bestimmung von \mathbf{z}^* betrachten Sie die Optimierungsaufgabe

$$\min_{\mathbf{z} \in \mathbb{R}^2} J(\mathbf{z}) = \frac{1}{2} \|CU(\mathbf{z}) - \widetilde{U}\|_{\mathbb{R}^m}^2 \tag{2}$$

unter der Gleichheitsnebenbedingung

$$AU(\mathbf{z}) = F(\mathbf{z}). \tag{3}$$

Hier bezeichnet m die Anzahl der Gitterpunkte auf dem Rand und $C \in \mathbb{R}^{m \times n}$ die punktweise Restriktion auf $\partial \Omega$. Leiten Sie die Optimalitätsbedingung $\nabla_{\mathbf{z}} J(\mathbf{z}^*) = 0$ her.

3. Verwenden Sie das Verfahren des steilsten Abstiegs zur Lösung der Optimierungsaufgabe (2). Dazu berechnen Sie in einem Punkt \mathbf{z}^{ℓ} den Gradienten $\nabla_{\mathbf{z}}J(\mathbf{z}^{\ell})$ und benutzen die entgegengesetzte Suchrichtung $\mathbf{d}^{\ell} := -\nabla_{\mathbf{z}}J(\mathbf{z}^{\ell})$. Mit gegebener Schrittweite α iterieren Sie $\mathbf{z}^{\ell+1} = \mathbf{z}^{\ell} + \alpha \mathbf{d}^{\ell}$. Das iterative Verfahren wird abgebrochen, sobald $\|\nabla_{\mathbf{z}}J(\mathbf{z}^{\ell})\| \leq tol$.

Führen Sie folgenden Schritte bei der Implementation durch.

- 1. Laden Sie die Daten der Triangulierung von Ω und der numerischen Lösung auf $\partial\Omega$ von der Webseite der Vorlesung herunter.
 - <u>Hinweis:</u> Jede Zeile der Liste uh b enthält die Nummer eines Randknotens und den entsprechenden Wert der numerischen Lösung.
- 2. Berechnen Sie die Elementssteifigkeitsmatrix und die Elementmassenmatrix für jedes Element. Assemblieren Sie die globale Steifigkeits- und Massenmatrix, wobei Sie die Randbedingung berücksichtigen.
- 3. Um den Elementlastvektor F und die Jacobi-Matrix $\nabla_{\mathbf{z}} F \in \mathbb{R}^{n \times 2}$ für ein Element und einen gegebenen Punkt \mathbf{z} zu berechnen, implementieren Sie die Funktion:

```
function [b_el, b_el_dz1, b_el_dz2] = Element_Vektor(t, p, el, z1, z2)
```

4. Um den globalen Lastvektor und die globale Jacobi-Matrix für einen gegebenen Punkt z aufzubauen, implementieren Sie die Funktion:

```
function [rhs, grad_rhs] = Assemb_RHS(t, p, z1, z2)
```

5. Wählen Sie $\alpha=2$, $tol=10^{-6}$ und $\mathbf{z}^0=(0.5,0.5)$ im Verfahren des steilsten Abstiegs. Nach jeder Iteration zeichnen Sie die Funktion $f(\mathbf{z}^\ell)$. Dadurch ensteht ein Matlab-Film, der es erlaubt, den Fortschritt des iterativen Verfahrens zu verfolgen. Erzeugen Sie eine Tabelle, die die Koordinaten vom Punkt \mathbf{z}^ℓ sowie die Norm $\|\nabla_{\mathbf{z}}J(\mathbf{z}^\ell)\|$ für jede Iteration ℓ enthält.

Bis zum Ende Juni 2011 erwarten wir einen Bericht (5-10 Seiten inkl. Bilder) zu Ihrem Projekt.