KOSHA GUIDE

E - 135 - 2013

저압 개폐장치 및 제어장치의 시험·점검에 관한 기술지침

2013. 8. 30.

한국산업안전보건공단

안전보건기술지침의 개요

- o 작성자: 한국전력기술인협회 남기범 처장
- o 제·개정경과
 - 2013년 7월 전기안전분야 제정위원회 심의(제정)

o 관련규격

- BS EN 60947-3:2009+A1:2012 Low-voltage switchgear and controlgear Part 3: Switches, disconnecters, switch-disconnecters and fuse-combination units
- IEC 60947 Standards for low-voltage switchgear and controlgear
- IEC 60950 Safety of information technology equipment
- 안전보건기술지침 (저압 개폐장치 및 제어장치-제1부: 일반규정)
- 안전보건기술지침 (전기 개폐장치의 관리에 관한 기술지침)
- 안전보건기술지침 (저압 개폐장치의 정비에 관한 기술지침)
- 안전보건기술지침 (저압 개폐장치 및 제어장치의 유지관리 등에 관한 기술지 침)
- o 관련법령·고시 등
 - 산업안전보건기준에 관한 규칙 제2편 제3장(전기로 인한 위험방지) 제1절 (전기기계·기구 등으로 인한 위험방지)
- o 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2013년 8월 30일

제 정 자 : 한국산업안전보건공단 이사장

저압 개폐장치 및 제어장치의 시험·점검에 관한 기술지침

1. 목적

이 기술지침은 스위치, 단로기, 퓨즈 결합장치, 단로기 퓨즈 등 저압 개폐장치 및 제 어장치의 시험·점검에 관하여 필요한 기술적 사항을 정함을 목적으로 한다.

2. 적용범위

- (1) 이 기술지침은 교류 1000 V 이하 또는 직류 1500 V 이하의 정격 전압에서 사용되는 스위치, 단로기, 퓨즈 결합장치, 단로기 퓨즈 등 저압 개폐장치 및 제어장치 등 관련제품에 적용한다.
- (2) 이 기술지침은 폭발위험장소에서의 전기기계 · 기구에는 적용하지 않는다.

3. 용어 정의

- (1) 이 지침에서 사용하는 용어의 뜻은 다음과 같다.
 - (가) "개폐장치(Switchgear)"라 함은 전력공급계통에서 전원을 연결하거나 차단하기 위한 개폐기구, 제어장치, 측정장치, 보호장치 등이 하나의 외함 또는 부속설비로 이루어 진 것을 말한다.
 - (나) "제어장치(Controlgear)"라 함은 전력계통에 연결된 전력설비의 제어를 위하여, 개폐장치, 측정장치, 보호장치 등이 하나의 외함 또는 부속설비로 이루어 진 것을 말한다.
 - (다) "단로기(Disconnector)"라 함은 송전선이나 변전소 등에서 무부하 상태에서 주 회로의 접속을 변경하기 위해 전기회로를 개폐하는 장치를 말한다.

- (라) "퓨즈 결합장치(Fuse-combination unit)"라 함은 기계식 개폐기와 퓨즈를 결합해 놓은 장치를 말한다.
- (마) "스위치 퓨즈(Switch-fuse)"라 함은 한 개 이상의 극을 가지고 있는 스위치를 말하며, 퓨즈링크의 한쪽 회로만 개방되는 "스위치 퓨즈 단일차단 (Switch-fuse single break)"과 퓨즈링크의 양쪽 회로가 개방되는 "스위치 퓨즈 이중차단(Switch-fuse double break)"으로 구분된다.
- (바) "단로기 퓨즈(Disconnector-fuse)"라 함은 한 개 이상의 전극에 복합 단위의 퓨즈가 있는 단로기를 말하며, 퓨즈링크가 한쪽 회로만 개방되는 "단로기 퓨즈 단일 차단(Disconnector-fuse single break)"과 퓨즈링크가 양쪽 회로 모두 개방되는 "단로기 퓨즈 이중 차단(Disconnector-fuse double break)"으로 구분된다.
- (사) "외함(Enclosure)"이라 함은 어떤 외부 영향에 대해서 규정된 기기의 보호등 급을 가지면서 통전부와 가동부에의 접근이나 접촉에 대한 규정된 보호등급을 갖는 부분을 말한다.
- (2) 그 밖에 용어의 뜻은 이 지침에서 특별히 규정하고 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업안전보건기준에 관한 규칙에서 정하는 바에 따른다.

4. 일반사항

4.1 시험·점검의 일반조건

- (1) 시험하는 기기는 모든 본질적인 세부사항에 있어서 그 기기가 나타내는 형식의 설계와 일치하여야 한다.
- (2) 관련제품규격에서 특별히 규정하고 있는 경우를 제외하고, 시험에 사용되는 기기는 새 제품으로 사용하여야 한다.
- (3) 시험은 기기가 사용되어질 상태와 같은 조건(전압, 주파수 등)에서 실시되어야

한다.

- (4) 시험을 더 불리한 조건에서 실시하는 경우(예를 들면, 시험기간을 줄이기 위해 더 높은 동작 빈도를 채택하는 경우 등)에는 제조자의 동의하에서만 실시할 수 있다.
- (5) 관련제품규격에서 규정된 요구사항에 부합되는지 여부를 검증하기 위한 시험이 실시되어야 한다.
- (6) 단독 외함 내에서만 사용되어질 기기는 제조자가 지정하는 외함 중 가장 작은 것으로 시험하여야 한다.
- (7) 모든 기기는 대기 중에서 시험하여야 한다.
- (8) 기기는 시험 시작 전에 무 부하로 동작되어도 무방하다.
- (9) 시험방법은 다음과 같으며, 관련제품규격의 요구사항에 따라 실시하여야 한다.
 - (가) 형식시험(Type test) : 설계가 특정기준을 충족시킨다는 것을 입증하기 위해 어떤 설계에 대해 수행되는 하나 또는 그 이상의 기기에 대한 시험
 - (나) 검수시험(Routine test): 개개의 기기가 특정기준에 적합한지를 확인하기 위해 제조 중 또는 제조 후에 수행되는 시험
 - (다) 발췌시험(Sampling test) : 일회 분 중에서 무작위로 추출된 몇 개의 기기에 대한 시험
 - (라) 특별시험(Special test): 형식시험과 검수시험에 추가되는 시험으로, 제조자 의 판단 또는 제조자와 사용자간의 협의에 따라 행해지는 시험
- (10) 시험은 제조자가 자체 시험장비 또는 외부의 전문 시험기관을 선택하여 실시할 수 있다.
- (11) 시험을 하는 때에는 관련제품규격의 시방서에 따라야 하며, 특별히 사용자와 제조자 사이에 정해진 시험기준이 있는 때에는 그 기준에 따라 실시할 수 있다.

4.2 시험의 일반사항

4.2.1 형식시험

- (1) 형식시험은 이 지침(적용할 수 있는 경우)과 관련제품규격에 의해 제작된 기기의 설계에 대한 적합성을 검증하기 위한 것이다.
- (2) 형식시험은 아래와 같은 항목의 검증으로 이루어진다.
 - (가) 구조에 관한 요구사항
 - (나) 온도상승
 - (다) 절연 특성
 - (라) 투입 및 차단 용량
 - (마) 단락 투입 및 차단 용량
 - (바) 동작한계
 - (사) 동작성능
 - (아) 폐쇄된 기기의 보호등급
- (3) 제품기기에 대한 형식시험방법, 시험결과, 시험품의 수량 등은 관련제품규격 에서 정하여야 한다.

4.2.2. 검수시험

- (1) 검수시험은 재료 및 제작상의 결함을 찾아내고 기기가 제대로 기능을 하는지 여부를 확인하기 위한 시험이며, 각각의 제품에 대하여 실시한다.
- (2) 검수시험은 다음과 같이 구분된다.
 - (가) 기능시험
 - (나) 절연시험
- (3) 검수시험의 세부 방법 및 절차 등 검수조건에 대하여는 관련제품규격에서 정하여야 한다.

KOSHA GUIDE

E - 135 - 2013

4.2.3 발췌시험

- (1) 기술적으로나 통계학적으로 검수시험이 필요하지 않다고 검증된 경우, 또는 관련제품규격에서 그렇게 규정되어 있다면 검수시험 대신에 발췌시험으로 대신할 수 있다.
- (2) 발췌시험은 다음 시험으로 이루어진다.
 - (가) 기능시험
 - (나) 절연시험
 - (3) 발췌시험은 제조자 스스로의 결정에 의하거나 제조자와 사용자 사이의 협의에 의해 기기의 특정 성능이나 특성을 검증하기 위해 실시된다.

5. 재료 시험

5.1 시험의 일반사항

- (1) 제조자가 특별히 언급하지 아니한 경우, 각 시험은 청결한 새 제품의 단자를 이용한다.
- (2) 시험에 원형 동 도체를 사용하는 경우, KS C IEC-60028에 따라야 한다.
- (3) 시험에 평각 동 도체를 사용하는 경우, 이 도체는 다음의 특성을 가져야 한다.
 - (가) 최저 순도 : 99.5 %
 - (나) 극한 인장 강도 : 200 ~ 280 N/m²
 - (다) 비커 경도: 40 ~ 65

5.2 비정상적인 열과 화재에 대한 내성시험

5.2.1 글로 와이어 시험(기기에 대한 시험)

- (1) 글로 와이어 시험은 KS C IEC-60695-2-10 및 KS C IEC-60695-2-11에 따라 실 시되어야 한다.
- (2) 이 시험의 목적상 보호도체는 전류 통전부로 간주되지 않는다.

주: 동일 시료상의 한 개소 이상에서 시험되어지는 경우에는 이전 시험에 의해 야기된 열화가 이후의 시험에 영행을 끼치지 않도록 주의하여야 한다.

5.2.2 가연성 시험, 열선 연소시험 및 아크 연소시험(재료 시험)

- (1) 적절한 재료의 시편을 이용하여 다음 시험을 실시한다.
 - (가) 가연성 시험
 - (나) 열선 연소시험
 - (다) 아크 연소시험
- (2) 위 (다)의 시험은 재료가 아크부 또는 접속이 느슨해지기 쉬운 충전부로부터 13 mm 이내에 위치하는 경우에만 필요하다.
- (3) 투입차단 시험이 실시되는 기기의 경우, 아크부로부터 13 mm 이내에 위치하는 재료에 대해서는 이 시험이 면제된다.

6. 단자의 기계적 특성시험

6.1 단자의 기계적 강도 시험

- (1) 시험은 최대 단면적을 갖는 적절한 형태의 도체를 이용해서 실시되어야 한다.
- (2) 도체는 5회 접속 및 분리되어야 한다.
- (3) 나사형 단자의 경우, 조임 토크는 <표 1>에 따른 토크나 제조자가 규정한 토크의 110 % 중 더 큰 것으로 한다.

- (4) 시험은 2개의 개별 클램핑 장치에 대해서 실시해야 한다.
- (5) 클램핑 나사 또는 너트가 풀릴 때마다 새로운 도체로 교환해서 조임 시험을 실시한다.

<표 1> 나사형 단자의 기계적인 강도를 검증하기 위한 조임 토크

나사산	의 지름 (mm)	조임 토크 (N·		m)
미터법 기준 값	지름의 범위	I	П	Ш
1.6	1.6 이하	0.05	0.1	0.1
2.0	1.6 초과 2.0 이하	0.1	0.2	0.2
2.5	2.0 초과 2.8 이하	0.2	0.4	0.4
3.0	2.8 초과 3.0 이하	0.25	0.5	0.5
-	3.0 초과 3.2 이하	0.3	0.6	0.6
3.5	3.2 초과 3.6 이하	0.4	0.8	0.8
4.0	3.6 초과 4.1 이하	0.7	1.2	1.2
4.5	4.1 초과 4.7 이하	0.8	1.8	1.8
5	4.7 초과 5.3 이하	0.8	2.0	2.0
6	5.3 초과 6.0 이하	1.2	2.5	3.0
8	6.0 초과 8.0 이하	2.5	3.5	6.0
10	8.0 초과 10.0 이하	_	4.0	10.0
12	10 초과 12 이하	_	_	14.0
14	12 초과 15 이하	_	_	19.0
16	15 초과 20 이하	_	_	25.0
20	20 초과 24 이하	_	_	36.0
24	24 초과	_	_	50.0

a) 조였을 때 구멍으로부터 돌출되지 않는 머리 없는 나사와, 나사의 홈 직경보다 큰 폭의 날을 갖는 나사드라이버로 조일 수 없는 나사에 적용한다.

6.2 도체의 손상 및 우발적인 풀림에 대한 시험(굴곡시험)

b) 나사드라이버로 조여지는 너트와 나사에 적용한다.

c) 나사드라이버가 아닌 다른 방법으로 조일 수 있는 너트와 나사에 적용한다.

- (1) 시험은 제조자가 지정한 도체의 수, 단면적 및 종류(연선 또는 단선)에 따라 원형의 동 도체를 접속하기 위한 단자에 적용한다.
- 주: 평각 동 도체에 대한 적절한 시험은 제조자와 사용자가 협의하여 실시할 수 있다.
- (2) 시험은 아래와 같은 조건에서 두 개 이상의 새로운 시료에 대해 실시되어야 한다.
 - (가) 최소 단면적의 도체를 최대 접속 수까지 접속한 상태
 - (나) 최대 단면적의 도체를 최대 접속 수까지 접속한 상태
 - (다) 최소 단면적의 도체와 최대 단면적의 도체를 최대 접속 수까지 접속한 상태
- (3) 연도체 또는 경도체(연선 또는 단선) 도체를 동시에 접속하기 위한 단자는 상기 (다)에 기술된 대로 시험되어야 한다.
- (4) 시험 도중, 도체가 단자에서 빠지거나 클램핑 장치 부근에서 끊어지지 않아야한다.
- (5) 클램핑 나사는 <표 1>에서 규정하는 토크 또는 제조사가 지정하는 토크로 조여야 한다.
- (6) 시험은 적합한 시험장치를 이용해서 실시하여야 하며, 시험용 도체의 길이는 <표 2>에서 규정한 높이 H보다 75 mm 정도 더 길어야 한다.
- (7) 굴곡시험 후, 각 도체는 6.3의 당김 시험에 대한 시험장치를 이용하여 시험되어야 한다.
- (8) 연선 또는 단선을 동시에 접속하기 위한 단자의 경우에도 위에서 기술된 대로 시험되어야 한다.

<표 2> 원형 동 도체에 대한 굴곡시험 및 당김 시험의 시험 값

도	도체 단면적		높이	질량	당기는 힘
(mm²)	AWG/kcmil	지름 ^{a) b)} (mm)	$H^{\mathrm{a})}$ (mm)	(kg)	(N)
0.2	24	6.5	260	0.2	10
0.34	22	6.5	260	0.2	15
0.5	20	6.5	260	0.3	20
0.75	18	6.5	260	0.4	30
1.0	_	6.5	260	0.4	35
1.5	16	6.5	260	0.4	40
2.5	14	9.5	280	0.7	50
4.0	12	9.5	280	0.9	60
6.0	10	9.5	280	1.4	80
10	8	9.5	280	2.0	90
16	6	13.0	300	2.9	100
25	4	13.0	300	4.5	135
_	3	14.5	320	5.9	156
35	2	14.5	320	6.8	190
_	1	15.9	343	8.6	236
50	0	15.9	343	9.5	236
70	00	19.1	368	10.4	285
95	000	19.1	368	14	351
_	0000	19.1	368	14	427
120	250 kcmil	22.2	406	14	427
150	300 kcmil	22.2	406	15	427
185	350 kcmil	25.4	432	16.8	503
_	400 kcmil	25.4	432	16.8	503
240	500 kcmil	28.6	464	20	578
300	600 kcmil	28.6	464	22.7	578

a) 허용 오차: 높이 H에 대해서는 ±15 mm, 부싱 구멍의 지름에 대해서는 ±2 mm
b) 부싱 구멍의 지름이 도체를 묶지 않고 통과시키기에 충분하지 못하다면, 다음 크기의 구멍 사이즈를 갖는 부싱을 사용해도 좋다.

6.3 당김 시험(Pull-out test)

6.3.1 원형 동 도체

- (1) 6.2에 따라 도체의 굴곡시험을 하는 경우, 적정한 길이의 도체가 단자에 고정되어야 하며 <표 3>에 따른 인장력을 도체 삽입 반대방향으로 급작스런 충격없이 1분간 가한다.
- (2) 시험 도중, 클램핑 나사를 다시 조여서는 안 된다.
- (3) 시험 도중, 도체가 단자에서 빠지거나 클램핑 장치 부근에서 끊어지지 않도록 하여야 한다.

<표 3> 평각 동 도체에 대한 당김 시험의 시험 집	<표 3>	> 평각 -	동 도체에	대한 당김	시험의	시험 값
-------------------------------	-------	--------	-------	-------	-----	------

평면 도체의 최대 폭 (㎜)	당기는 힘 (N)
12	100
14	120
16	160
20	180
25	220
30	280

6.3.2 평각 동 도체

- (1) 6.2에 따라 도체의 굴곡시험을 하는 경우, 적정한 길이의 도체가 단자에 고정되어야 하며 <표 3>에 따른 인장력을 도체 삽입 반대방향으로 급작스런 충격없이 1분간 가한다.
- (2) 시험 도중, 클램핑 나사를 다시 조여서는 안 된다.
- (3) 시험 도중, 도체가 단자에서 빠지거나 클램핑 장치 부근에서 끊어지지 않도록 하여야 한다.

6.4 최대 규정 단면적을 갖는 미처리 원형 동 도체의 삽입시험

6.4.1 시험 절차

- (1) 삽입시험은 <표 4>에서 규정하고 있는 적정한 게이지 A형 또는 B형을 사용해서 실시한다.
- (2) 게이지의 측정부는 단자의 틈새를 통해서 최대 깊이까지 쉽게 삽입할 수 있어야 한다.
- (3) 제조자가 제공한 제품 중에서 가장 큰 종류의 도체를 사용하여 도체 끝을 가지런히 한 후에 삽입해서 시험하여야 한다.
- (4) 도체의 벗겨진 끝 부분에 과도한 힘이 전달되지 않도록 조임장치의 틈으로 완전히 들어가도록 한다.

<표 4> 최대 도체 단면적과 그에 상응하는 게이지의 치수

도체 당	간면적	게이지 (그림 1 참조)						
	경도체	A 형			B 형		a와 b의	
연도체	(단선 또는	표시	지름	폭	표시	지름	허용 오차	
(mm²)	연선) (mm²)		a (mm)	b (mm)		a (mm)	(mm)	
1.5	1.5	A1	2.4	1.5	B1	1.9	0	
2.5	2.5	A2	2.8	2.0	В2	2.4	0	
2.5	4	A3	2.8	2.4	В3	2.7	-0.05	
4	6	A4	3.6	3.1	В4	3.5	0	
6	10	A5	4.3	4.0	В5	4.4	-0.06	
10	16	A6	5.4	5.1	В6	5.3		
16	25	A7	7.1	6.3	В7	6.9	0	
25	35	A8	8.3	7.8	В8	8.2		
35	50	A9	10.2	9.2	В9	10.0	-0.07	
50	70	A10	12.3	11.0	B10	12.0		
70	95	A11	14.2	13.1	B11	14.0	0	
95	120	A12	16.2	15.1	B12	16.0	0 -0.08	
120	150	A13	18.2	17.0	B13	18.0		
150	185	A14	20.2	19.0	B14	20.0		
185	240	A15	22.2	21.0	B15	22.0	0	
240	300	A16	26.5	24.0	B16	26.0	-0.09	

비 고) 이 표에 주어진 것 이외의 다른 모양의 단선 또는 연선의 표준도체의 도체 단면적에 있어서는 적절한 단면적을 갖는 미처리 도체를 게이지로서 사용해도 좋다. 단, 삽입력은 5N보다 크지 않아야 한다.

6.4.2 게이지의 구조

(1) 게이지의 구조는 <그림 1>과 같다.

<그림 1> A형 및 B형 게이지

- (2) 치수 a 및 b의 허용오차는 <표 4>와 같다.
- (3) 게이지의 측정부는 강 구조(Gauge steel)으로 만들어져야 한다.

6.5 온도 측정

6.5.1 주위 온도 측정

- (1) 주위온도는 기기의 약 절반 높이에서 기기로부터 약 1 m 떨어진 거리에 균등 한 거리로 배치된 적어도 두 개의 온도 측정장치, 예를 들면, 온도계 또는 열 전대에 의해 시험시간의 마지막 1/4의 시간동안 기록되어야 한다.
- (2) 온도측정 장치는 기류, 열방사 및 급속한 온도 변화로 인한 측정 오차에 대해 보호되어야 한다.
- (3) 시험 중의 주위온도는 +10 ℃와 +40 ℃사이에 있어야 하며, 10 K를 초과하는 변화가 있어서는 안 된다.
- (4) 그러나, 주위온도의 변화가 3 K를 초과하는 경우, 기기의 열시정수에 따라

적당한 보정계수가 측정된 온도에 적용되어야 할 것이다.

- (5) 개폐 동작 주기의 횟수는 400 A 이상의 열류의 장치를 제외하고 30 ± 10 s 의 시간 간격을 둬야 하며 시간 간격은 제조업자와 사용자 간에 협의하여 횟수를 높일 수도 있으며 그 결과를 보고서에 기록 한다.
- (6) 개폐 동작 중 장치는 닫힘 상태로 두어 스위치 동작을 완료하여 전류값을 설정하고 장치의 움직이는 부분은 정지 시킨다. 작동 후 복귀 전압은 최소 0.05 초로 유지한다.

6.5.2 부품의 온도 측정

- (1) 코일이외의 부품에 대해, 다른 부분의 온도는 최고온도에 도달할 것 같은 측정점에서 적당한 온도 측정장치에 의해 측정되어야 한다.
- (2) 오일에 함침된 기기의 오일온도는 오일의 최상부에서 측정되어야 한다. 이 때 측정은 온도계를 사용해도 좋다.
- (3) 온도측정장치가 온도상승에 영향을 주면 안 된다.
- (4) 온도측정 장치와 시험 중인 부품의 표면 사이에 양호한 열전도성이 확보되어 야 한다.
- (5) 전자석 코일의 경우, 일반적으로 저항변화에 의한 온도 측정법이 사용되어야한다. 다른 방법은 저항법을 사용할 수 없는 경우에만 허용된다.
- (6) 시험개시 전의 코일의 온도는 주위매체의 온도와 3K를 초과하는 차이가 있어서는 안 된다.
- (7) 동 도체의 경우, 가열온도 T_2 는 가열저항 R_2 의 냉각저항 R_1 에 대한 비의 함수로서, 다음 식에 따라 냉각온도 T_1 으로부터 구할 수 있다.

$$T_2 = \frac{R_2}{R_1} \left(T_1 + 234.5 \right) - 234.5$$

여기서, T_1 과 T_2 는 섭씨로 표현된다.

(8) 시험은 온도상승이 포화상태에 도달하는데 충분한 시간동안 실시되어야 한다. 단, 8 시간을 초과해서는 안 된다. 온도변화가 시간당 1 K를 초과하지 않는 상태를 포화상태로 간주한다.

7. 기기 시험

7.1 정격 임펄스 내전압 시험

7.1.1 내전압 시험을 위한 일반조건

- (1) 시험되는 기기는 제조자 및 시험의뢰자의 일반요구사항에 적합해야 한다.
- (2) 외함이 없는 기기를 시험하는 때에는 기기를 금속판위에 설치하고, 정상사용 상태에서 보호접지에 접속되어질 모든 노출 도전부(프레임 등)는 그 판에 접 속되어야 한다.
- (3) 기기 외함이 절연재료로 되어 있는 경우, 금속부품은 기기의 정상적인 설치 조건에 따라 모든 고정점에 위치되어야 하고 이러한 부품들은 기기의 프레임 의 일부로 간주되어야 한다.
- (4) 절연재료의 조작기 및 외함 없이 사용되는 기기의 일체형 비금속 외함은 금속제로 덮고 프레임이나 취부판에 접속되어야 한다.
- (5) 기기의 절연강도가 테이프나 특수 절연물의 사용에 의존하는 경우에는 그러한 테이핑이나 특수 절연물도 시험 중에 사용되어야 한다.

7.1.2 대기 중의 내전압 시험

(1) 일반사항

- (가) 정격 임펄스 내전압은 규정된 시험 하에서 기기가 절연파괴 없이 견딜 수 있는 규정된 파형 및 극성의 임펄스 파고값으로 공간거리와 관련된 값이며, 정격 임펄스 내전압별 최소 공간거리는 <표 5>와 같다.
- (나) 기기의 정격 임펄스 내전압은 기기가 설치된 회로에 발생하는 과전압에 대해 규정된 값 이상이어야 한다.

<표 5> 대기 중의 최소공간거리

			<u></u> 최소		리 (mm	1)			
정격임펄스내전압	A				В				
	불균일 전계 조건			이상적 균일전계 조건					
U_{imp} (kV)	오손등급		오손등급						
	1	2	3	4	1	2	3	4	
0.33	0.01				0.01				
0.5	0.04	0.2	0.2	0.0		0.04	0.2		
0.8	0.1		0.8	1.6	0.1		0.8	1.6	
1.5	0.5	0.5			0.3	0.3		1.0	
2.5	1.5	1.5	1.5		0.6	0.6			
4.0	3	3	3	3	1.2	1.2	1.2		
6.0	5.5	5.5	5.5	5.5	2	2	2	2	
8.0	8	8	8	8	3	3	3	3	
12	14	14	14	14	4.5	4.5	4.5	4.5	

주: 대기 중의 최소공간거리 값은 표고 2,000 m에서 통상의 대기압과 같은 80 kPa 의 기압에 있어서 1.2/50 μs 임펄스전압을 근거로 하고 있다.

(2) 시험 전압

(가) 절연의 검증은 정격 임펄스 내전압으로 시험에 의해 실시한다.

KOSHA GUIDE

E - 135 - 2013

- (나) 시험설비는 1.2/50 µs의 파형을 발생하도록 조정되어야 한다.
- (다) 출력단자는 시험되는 기기에 접속하고 각 극성에 대해 임펄스전압을 최소 1 초 간격으로 5회 인가한다.
- (라) 시험 중에 기기에 의해 시험파형이 영향을 받을 수 있나, 그 영향은 무시하여도 된다.
- (마) 과전압 억제장치를 내장한 기기의 경우, 시험전류의 에너지양은 과전압 억 제장치의 에너지 정격을 초과하지 않아야 한다.

(3) 시험전압의 인가

- (가) 기기를 취부하고 준비한 상태에서 시험전압을 다음과 같이 인가한다.
 - (a) 일괄 접속된 주회로(주회로에 접속된 제어 및 보조회로를 포함)의 모든 단 자와 외함 또는 취부판 사이의 접점은 통상의 모든 동작위치로 한다.
 - (b) 주회로의 각 극과 외함이나 취부판에 일괄 접속된 다른 극 사이의 접점은 통상의 모든 동작위치로 한다.
 - (c) 통상 주회로에 접속되지 않는 각 제어회로 및 보조회로와 다음 개소와의 사이는 일괄 접속하여도 좋다.
 - 주회로
 - 기타 회로
 - 노출 도전부
 - 외함 또는 취부판
 - (d) 이격에 적합한 기기의 경우, 주회로의 개방 접점 사이는 전원 단자끼리 일괄 접속하고, 부하 단자끼리 일괄 접속한다.
 - 접점이 개로위치에 있는 상태에서, 기기의 전원단자와 부하단자 사이에 시험전압을 인가한다.

KOSHA GUIDE

E - 135 - 2013

- 이격에 적합하지 않은 기기의 경우, 접점이 개로위치에 있는 상태에서의 시험에 대한 요구사항은 관련제품규격에 규정해야 한다.

(4) 판정 기준

- (가) 시험 중에 섬락, 절연파괴 등 파괴방전의 징후 또는 방전이 발생되지 않아야 하며, 과전압 억제장치 등에 의한 의도적인 파괴방전은 예외로 한다.
 - 주1: "파괴적 방전"이란 용어는 전기적 스트레스 하에서 절연의 파괴현상을 말하며, 여기서 방전은 시험대상의 절연물을 완전히 교략하여 전극 사이의 전압이 영이나 영에 가까운 값으로 떨어지는 것을 의미한다.
 - 주2: "불꽃방전"이라는 용어는 파괴방전이 가스나 액체의 유전체 중에서 일어날 때 사용된다.
 - 주3: "섬락"이라는 용어는 파괴방전이 가스나 액체 매개물 내의 유전체 표면을 통해서 일어날 때 사용된다.
 - 주4: 고체 유전체내에서의 파괴방전은 절연내력의 영구적인 상실을 유발하지만, 액체나 가스 유전체내에서의 파괴방전에 의한 절연내력의 상실은 단지 일 시적일 수 있다.

7.1.3 고체 절연물에 대한 상용주파 내전압 시험

(1) 일반사항

- (1) 이 시험은 고체 절연물의 일시적인 과전압에 견디는 능력을 검증하기 위해 실시된다.
- (2) 정격 절연전압에 상응하는 내전압 시험전압은 <표 6>과 같다.

<표 6> 정격 절연전압에 상응하는 내전압 시험전압

정격 절연전압 <i>U</i> _i (V)	교류 시험전압 (r.m.s.) (V)	직류 시험전압 ^{b), c)} (V)
$U_{\rm i} \leq 60$	1 000	1 415
$60 \langle U_i \leq 300 \rangle$	1 500	2 120
$300 \langle U_i \leq 690 \rangle$	1 890	2 670
$690 \langle U_{\rm i} \leq 800$	2 000	2 830
$800 \langle U_{\rm i} \leq 1 000$	2 200	3 110
$1\ 000\ \langle\ U_{\rm i}\ \leq\ 1\ 500^{\rm a)}$	_	3 820

a) 직류에만 적용

(2) 시험전압

- (가) 시험전압은 실질적인 정현파형으로 45 Hz에서 65 Hz사이의 주파수를 가져야 한다.
- (나) 시험에 사용되는 고전압 발생용 변압기는, 출력전압이 적절한 시험전압으로 조정된 상태에서 출력단자가 단락되었을 때, 그 출력전류는 최소한 200 mA 가 되도록 설계되어야 한다.
- (다) 과전류 릴레이는 100 mA 미만의 출력전류에서 동작하지 않아야 한다.
- (라) 시험전압의 값은 다음과 같다.
 - (a) 주회로 및 제어회로와 보조회로에 대해서는 <표 6>에 따른다. 시험전압의 측정 불확도는 ±3 %를 초과하지 않아야 한다.
 - (b) EMC 필터 부품 등으로 인해 교류 시험전압을 인가할 수 없는 경우, <표 6>의 제3열에 주어진 값의 직류 시험전압을 사용하여도 가능하다.

b) c) 직류 시험전압은 교류 시험전압을 인가할 수 없는 경우에만 사용될 수 있다.

(c) 인가되는 시험전압은 ±3 % 이내이어야 한다.

(3) 시험전압의 인가

- (가) 상간의 절연내력시험에 있어서는, 이들 상 사이의 모든 회로가 시험을 위해 분리되어도 좋다.
 - 주: 이 시험의 목적은 기초(basic) 및 추가(supplementary) 절연만을 확인하는 것이다.
- (나) 기기의 회로에 커패시터, 반도체 소자 등이 포함되어 있는 경우에는 그런 소자들을 분리한 후, 시험을 실시하여야 한다.
- (다) 상과 대지간의 절연내력시험에 있어서는 모든 회로가 접속되어야 한다.
- (라) 특별한 경우, 예를 들면, 기기가 2개 이상의 개로위치를 갖거나 반도체 기기 인 경우에는, 관련제품규격에서 세부적인 시험 요구사항을 규정해야 한다.

(4) 판정기준

- (가) 시험 중에는 섬락, 내부적(관통)이나 외부적(트래킹)인 절연파괴 또는 파괴 방전의 어떤 징후도 없어야 한다. 다만 글로우 방전은 무시하여도 된다.
- (나) 상과 대지 사이에 접속된 구성품은 시험 중에 손상될 수 있으나, 그러한 손 상으로 인해 어떤 위험한 상황을 유발할 수 있는 상태로 되어서는 안 된다.

7.2 누전점검

7.2.1 일반사항

(1) 누전점검은 정격 구동 전압 50 V 이상의 절연에 알맞은 장치에만 한다. 누전은 각 접지 간전극과 각 프레임의 터미널을 체크한다.

(2) 장치의 정격 구동 전압의 1.1 배에 달하는 점검 전압의 누전 값을 초과할 수 없다.

7.2.2 일반 시험조건

- (1) 투입 및 차단 용량의 검증을 위한 시험은 일반 시험조건에 따라야 한다.
- (2) 4극 기기에서 사용되지 않는 중성극은 프레임에 접속한다.
- (3) 모든 극이 동일하다면, 인접한 3극에 대한 한 번의 시험으로 충분하다. 그렇지 않은 경우에는, 중성극과 인접한 극 사이에 추가시험을 실시하여야 한다.
- (4) 통상의 부하 및 과부하 조건하에서의 차단용량 시험의 경우, 관련제품규격에 서 그 값을 규정해야 한다.

7.3 기기 작동 점검

- (1) 제조 과정 중 퓨즈 결합장치(fuse-combination unit), 개폐 단로기, 단로기, 스위치 작동과 기타 일반 점검은 위에서 일련 점검을 실시하고 동일한 조건을 적용하여 작동 횟수는 특정 횟수 미만으로 한다.
- (2) 점검은 5회 연속 여닫이 작동으로 기계가 올바르게 작동하고 있는지 확인한다.

8. 정격 단시간 내 전류의 통전능력에 대한 검증

- (1) 시험은 일반조건하에서, 기기를 폐로위치로 하고, 정격 단시간 내 전류와 같은 예상전류 및 상응하는 사용전압을 인가하여 실시한다.
- (2) 사용전압에서의 시험이 곤란한 시험실의 경우에는 임의의 낮은 전압에서 시험을 실시해도 좋으나, 이 경우에 실제 시험전류는 정격 단시간 내전류와 같아야 한다. 이것은 시험 성적서에 기술되어야 한다.
- (3) 시험 중 순간적인 접점 분리가 발생한다면, 정격 사용전압에서 시험을 다시

E - 135 - 2013

실시해야 한다.

(4) 이 시험에 있어서, 시험 도중에 동작하기 쉬운 과전류 릴리스가 있다면, 이것 은 동작하지 않도록 해야 한다.

8.1 교류의 경우

- (1) 시험은 기기의 정격주파수의 ±25 % 이내에서 실시되어야 한다.
- (2) 교정 중의 전류 값은 모든 상에서의 교류성분의 실효값의 평균이다.
- (3) 각 상의 전류는 정격 값의 ±5 % 내에 있어야 한다.
- (4) 정격사용전압에서 시험을 실시하는 경우, 교정전류는 예상전류이다.
- (5) 임의의 낮은 전압에서 시험을 실시하는 경우의 교정전류는 실제 시험전류이다.
- (6) 전류는 교류성분의 실효값이 일정하게 유지되는 규정된 시간동안 인가되어야 한다.
 - 주: 시험이 곤란한 시험실의 경우, 제조자의 동의하에, 각 상의 전류를 평균값의 $\pm 10\%$ 내로 할 수 있다.
- (7) 첫 사이클 동안의 전류의 최대 파고값은 정격 단시간 내 전류의 배 이상이어 야 한다.
- (8) 시험실의 특성에 따라 위의 요건을 충족시킬 수 없는 경우에는, 다음의 조건이 허용된다.

$$\int_{0}^{t_{ ext{test}}} i_{ ext{test}}^{2} dt \geq I^{2} \cdot t_{ ext{st}}$$

여기서,

- (a) t_{test} 는 시험의 지속시간
- (b) t_{st}는 단시간
- (c) i_{test} 는 교류 성분이 일정하지 않거나 I_{cw} 이상인 경우의 교정전류
- (d) I는 일정한 교류 성분을 갖는다고 추정되는 실제의 교정전류이다.

- (9) 시험실의 상태에 따라, 초기에 과다하게 큰 전류를 인가하지 않고서는 정격 시간 동안 정격 단시간 내 전류를 얻을 수 없는 경우에는, 전류의 실효값을 시 험 중 규정된 값 이하로 하고 그 지속시간을 적절히 증가시켜도 좋다. 단, 최 대파고전류의 값은 규정된 값 이상이어야 한다.
- (10) 필요한 파고전류를 얻기 위해, 전류의 실효값을 규정된 전류 이상으로 증가 시킨 경우에는, 시험의 지속시간을 그에 따라 감소시켜야 한다.

8.2 직류의 경우

- (1) 규정된 시간 동안 전류를 인가하고, 기록으로부터 구해진 그것의 평균값은 최소한 규정된 값과 같아야 한다.
- (2) 시험실의 상태에 따라, 초기에 과다하게 큰 전류를 인가하지 않고서는 정격 시간 동안 위의 조건을 얻을 수 없는 경우에는, 전류 값을 시험 중 규정된 값 이하로 하고 그 지속시간을 적절히 증가시켜도 좋다. 단, 전류의 최대값은 규정된 값 이상이어야 한다.
- (3) 직류시험을 할 수 없는 시험실의 경우, 제조자와 사용자 사이의 협의에 따라, 교류로 시험을 실시해도 좋다. 단, 전류의 파고값이 허용전류를 초과하지 않아야 하는 것과 같은 주의가 필요하다.

9. EMC 시험

- (1) 방사 및 내성시험은 형식시험으로, 제조자의 취부 설명서를 사용하여 사용 및 환경 모두를 대표하는 조건에서 실시되어야 한다.
- (2) 시험은 EMC 규격에 따라 실시되어야 한다.
- (3) 그러나, 제품의 성능기준을 검증하는데 필요한 특별한 시험조건(예를 들면, 외함의 사용)과 추가적인 방법(예를 들면, 지속시간의 적용)을 제품규격에서 규정해야 한다.

9.1 내성

9.1.1 전자회로가 없는 기기

시험이 필요하지 않다.

9.1.2 전자회로가 있는 기기

(1) 일반 사항

모든 구성품이 수동소자로 되어 있는 회로를 이용하는 기기는 시험되어질 필요가 없다

(2) 정전기 방전

제품규격에 다른 시험레벨이 주어져 있고 근거가 제시되어 있는 경우를 제외하고는, 시험은 KS C IEC-61000-4-2에 따라 실시하여야 하며, 펄스 사이의 최소시간 간격을 1초로 하여 각 측정점에서 10 회씩 반복 실시한다.

9.2 방사

9.2.1 전자회로가 없는 기기

시험이 필요하지 않다.

9.2.2 전자회로가 있는 기기

세부 시험방법이 제품규격에 규정되어야 한다.