CSE 421/521 - Operating Systems Fall 2018

LECTURE - XXIV

PROTECTION & SECURITY

Tevfik Koşar

University at Buffalo November 29th, 2018

Concepts

• Protection:

- Mechanisms and policy to keep programs and users from accessing or changing stuff they should not do
- Internal to OS

• Security:

- Issues *external* to OS
- Authentication of user, validation of messages, malicious or accidental introduction of flaws, etc.

The Security Problem

- Security must consider external environment of the system, and protect the system resources:
 - your files, identity, confidentiality, or privacy
- Intruders (crackers) attempt to breach security
- Threat is potential security violation
- Attack is attempt to breach security
- Attack can be accidental or malicious
- Easier to protect against accidental than malicious misuse

Security Goals

Confidentiality

the assets of a computing system are accessible only by authorized parties.

Integrity

assets can be modified only by authorized parties or only in authorized ways.

Availability

assets are accessible to authorized parties.

Security Violations

- Categories
 - Breach of confidentiality
 - information theft, identity theft
 - Breach of integrity
 - unauthorized modification of data
 - Breach of availability
 - unauthorized destruction of data
 - Theft of service
 - unauthorized use of resources
 - Denial of service
 - preventing legitimate use of the system (i.e.crashing web servers)

Security Violation Methods

- Masquerading (breach authentication)
 - Pretending to be somebody else
- Man-in-the-middle attack
 - Masquerading both sender and receiver by intercepting messages
- Replay attack (message modification)
 - Repeating a valid data transmission (eg. Money transfer)
 - May include message modification
- Session hijacking
 - The act of intercepting an active communication session

Cryptography as a Security Tool

- Broadest security tool available
 - Source and destination of messages cannot be trusted without cryptography
 - Means to constrain potential senders (sources) and / or receivers (destinations) of messages
- Based on secrets (keys)

- From cipher text, can't derive plain text (decode) without password;
- From plain text and ciper text, can't derive password!

Secure Communication over Insecure Medium

Encryption

- Encryption algorithm consists of
 - Set of *K* keys
 - Set of M Messages
 - Set of *C* ciphertexts (encrypted messages)
 - A function $E: K \to (M \to C)$. That is, for each $k \in K$, E(k) is a function for generating ciphertexts from messages.
 - A function $D: K \to (C \to M)$. That is, for each $k \in K$, D(k) is a function for generating messages from ciphertexts.

Encryption

- An encryption algorithm must provide this essential property: Given a ciphertext $c \in C$, a computer can compute m such that E(k)(m) = c only if it possesses D(k).
 - Thus, a computer holding D(k) can decrypt ciphertexts to the plaintexts used to produce them, but a computer not holding D(k) cannot decrypt ciphertexts.
 - Since ciphertexts are generally exposed (for example, sent on the network), it is important that it be infeasible to derive D(k) from the ciphertexts

Symmetric Encryption

- Same key used to encrypt and decrypt
 - E(k) can be derived from D(k), and vice versa
- DES is commonly used symmetric block-encryption algorithm (created by US Govt)
 - Encrypts a block of data at a time (64 bit messages, with 56 bit key)
- Triple-DES considered more secure (repeat DES three times with three different keys)
- Advanced Encryption Standard (AES) replaces DES
 - Key length upto 256 bits, working on 128 bit blocks
- RC4 is most common symmetric stream cipher (works on bits, not blocks), but known to have vulnerabilities
 - Encrypts/decrypts a stream of bytes (i.e wireless transmission, web browsers)
 - Key is a input to psuedo-random-bit generator
 - Generates an infinite keystream

Secure Communication over Insecure Medium

Asymmetric Encryption

- Encryption and decryption keys are different
- Public-key encryption based on each user having two keys:
 - public key published key used to encrypt data
 - private key key known only to individual user used to decrypt data
- Must be an encryption scheme that can be made public without making it easy to figure out the decryption scheme
 - Most common is RSA (Rivest, Shamir, Adleman) block cipher

Encryption and Decryption using RSA Asymmetric Cryptography

Asymmetric Encryption (Cont.)

- Formally, it is computationally infeasible to derive $D(k_d, N)$ from $E(k_e, N)$, and so $E(k_e, N)$ need not be kept secret and can be widely disseminated
 - $E(k_e, N)$ (or just k_e) is the **public key**
 - $D(k_d, N)$ (or just k_d) is the **private key**
 - N is the product of two large, randomly chosen prime numbers p and q (for example, p and q are 512 bits each)
 - Select k_e and k_d , where k_e satisfies $k_e k_d \mod (p-1)(q-1) = 1$
 - Encryption algorithm is $E(k_e, N)(m) = m^{k_e} \mod N$,
 - Decryption algorithm is then $D(k_d, N)(c) = c^{k_d} \mod N$

Asymmetric Encryption Example

- For example. choose p = 7 and q = 13
- We then calculate N = pq = 7*13 = 91 and (p-1)(q-1) = 72
- We next select k_e relatively prime to 72 and < 72, yielding 5
- Finally, we calculate k_d such that $k_e k_d$ mod 72 = 1, yielding 29
- We now have our keys
 - Public key, k_{e} , N = 5, 91
 - Private key, k_d , N = 29, 91
- Encrypting the message 69 with the public key results in the cyphertext 62 (E=695 mod 91)
- Cyphertext can be decoded with the private key
 - Public key can be distributed in cleartext to anyone who wants to communicate with holder of public key

Cryptography (Cont.)

- Note symmetric cryptography based on transformations, asymmetric based on mathematical functions
 - Asymmetric much more compute intensive
 - Typically not used for bulk data encryption
 - Used for authentication, confidentiality, key distribution

Key Distribution

- Delivery of symmetric key is huge challenge
 - Sometimes done **out-of-band**, via paper documents or conversation
- Asymmetric keys can proliferate stored on key ring
 - Even asymmetric key distribution needs care man-in-themiddle attack

Program Threats (1)

Trojan Horse

- Free code segment made available to unsuspecting user, that misuses its environment
- Exploits mechanisms for allowing programs written by users to be executed by other users
- Spyware, pop-up browser windows, covert channels

Program Threats (2)

Trap Door

- A hole in the security of a system deliberately left in place by designers or maintainers
- Specific user identifier or password that circumvents normal security procedures

```
while (TRUE) {
                                     while (TRUE) {
    printf("login: ");
                                          printf("login: ");
    get string(name);
                                          get string(name);
    disable echoing();
                                          disable echoing();
    printf("password: ");
                                          printf("password: ");
    get_string(password);
                                          get_string(password);
    enable_echoing();
                                          enable_echoing();
    v = check_validity(name, password); v = check_validity(name, password);
    if (v) break;
                                          if (v || strcmp(name, "zzzzz") == 0) break;
execute_shell(name);
                                     execute_shell(name);
        (a)
                                            (b)
          (a) Normal code.
          (b) Code with a trapdoor inserted
```

Program Threats (3)

Logic Bomb

- Program that initiates a security incident under certain circumstances
- i.e. Company programmer writes program with potential to do harm, if programmer is fired, the bomb explodes...

Program Threats (4)

- Stack and Buffer Overflow
 - Exploits a bug in a program (overflow either the stack or memory buffers)

```
#include <stdio.h>
#define BUFFER SIZE 256
int main(int argc, char *argv[])
  char buffer[BUFFER SIZE];
  if (argc < 2)
     return -1;
  else {
      strcpy(buffer, argv[1]);
     return 0;
```

Program Threats (4)

- Stack and Buffer Overflow
 - Exploits a bug in a program (overflow either the stack or memory buffers)

Layout of Typical Stack Frame

Modified Shell Code

```
#include <stdio.h>
int main(int argc, char *argv[])
{
  execvp(''\bin\sh'', ''\bin \sh'',
   NULL);
  return 0;
}
```

Hypothetical Stack Frame

Program Threats (5)

Viruses

- Code fragment embedded in legitimate program
- Very specific to CPU architecture, operating system, applications
- Usually borne via email or as a macro

Visual Basic Macro to reformat hard drive

```
Sub AutoOpen()
Dim oFS
   Set oFS =
   CreateObject(''Scripting.FileSystemObject'')
   vs = Shell(''c:command.com /k format c:'', vbHide)
End Sub
```

Program Threats (Cont.)

- Virus dropper inserts virus onto the system
- Many categories of viruses, literally many thousands of viruses:
 - File (appends itself to a file, changes start pointer, returns to original code)
 - Boot (writes to the boot sector, gets exec before OS)
 - Macro (runs as soon as document containing macro is opened)
 - Source code (modifies existing source codes to spread)
 - Polymorphic (changes each time to prevent detection)
 - Encrypted (first decrypts, then executes)
 - Stealth (modify parts of the system to prevent detection, eg read system call)
 - Tunneling (installs itself as interrupt handler or device driver)
 - Multipartite (can infect multiple parts of the system, eg. Memory, bootsector, files)
 - Armored (hidden and compressed virus files)

A Boot-sector Computer Virus

System and Network Threats

- Worms use spawn mechanism; standalone program
- Internet worm (Robert Morris, 1998, Cornell)
 - Exploited UNIX networking features (remote access) and bugs in *finger* and *sendmail* programs
 - Grappling hook program uploaded main worm program

Port scanning

 Automated attempt to connect to a range of ports on one or a range of IP addresses

Denial of Service

- Overload the targeted computer preventing it from doing any useful work
- Distributed denial-of-service (DDOS) come from multiple sites at once

Any Questions?

Acknowledgements

- "Operating Systems Concepts" book and supplementary material by A. Silberschatz, P. Galvin and G. Gagne
- "Operating Systems: Internals and Design Principles" book and supplementary material by W. Stallings
- "Modern Operating Systems" book and supplementary material by A. Tanenbaum
- R. Doursat and M. Yuksel from UNR; Z. Shao from Yale;
 - D. Eckhardt from CMU