МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА № 2

> Выполнил: Студент группы Р3118 Павлов Александр Сергеевич Преподаватель: Балакшин Павел Валерьевич

Оглавление 3адания: 3 Основные этапы вычисления: 3 Вывод: 7 Список литературы: 7

Задания:

Проверить двоичный код на ошибочность, если есть ошибки – исправить:

№43: 0000011 (классический код Хэмминга (7,4))

№75: 0101101 (классический код Хэмминга (7,4))

№107: 1001111 (классический код Хэмминга (7,4))

№27: 1110001 (классический код Хэмминга (7,4))

№58: 010001110100011 (классический код Хэмминга (15,11))

Сложить номера всех 5 вариантов заданий, умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.

Написать программу на любом языке программирования, которая на вход из командной строки получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Основные этапы вычисления:

№	r1	r2	i1	r3	i2	i3	i4	S
	0	0	0	0	0	1	1	
1	X		X		X		X	s1
2		X	X			X	X	s2
4				X	X	X	X	s3

Рисунок 1 – схема декодирования кода Хэмминга (7,4)

Первый синдром: $r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 0 \oplus 0 \oplus 0 \oplus 1 = 1$

Второй синдром: $r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$

Третий синдром: $r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$

Так как первый синдром показал ошибку, а остальные нет, то ошибка в бите с номером 1.

№	r1	r2	i1	r3	i2	i3	i4	S
	0	1	0	1	1	0	1	
1	X		X		X		X	s1
2		X	X			X	X	s2
4				X	X	X	X	s3

Рисунок 2 – схема декодирования кода Хэмминга (7,4)

Первый синдром: $r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$

Второй синдром: $r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 0 \oplus 1 = 0$

Третий синдром: $r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 0 \oplus 1 = 1$

Так как третий синдром показал ошибку, а остальные нет, то ошибка в бите с номером 4.

No	r1	r2	i1	r3	i2	i3	i4	S
	1	0	0	1	1	1	1	
1	X		X		X		X	s1
2		X	X			X	X	s2
4				X	X	X	X	s3

Рисунок 3 – схема декодирования кода Хэмминга (7,4)

Первый синдром: $r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$

Второй синдром: $r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$

Третий синдром: $r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 1 \oplus 1 = 0$

Так как первый синдром показал ошибку, а остальные нет, то ошибка в бите с номером 1.

No	r1	r2	i1	r3	i2	i3	i4	S
	1	1	1	0	0	0	1	
1	X		X		X		X	s1
2		X	X			X	X	s2
4				X	X	X	X	s3

Рисунок 4 – схема декодирования кода Хэмминга (7,4)

Первый синдром: $r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 1 \oplus 1 \oplus 0 \oplus 1 = 1$

Второй синдром: $r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 0 \oplus 1 = 1$

Третий синдром: $r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 0 \oplus 1 = 1$

Так как первый, второй и третий синдромы показали ошибку, то ошибка в бите с номером 1 + 2 + 4 = 7.

No॒	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	S
2 ^x	r1	r2	i1	r3	i2	i3	i4	r4	i6	i7	i8	i9	i10	i11	i12	
	0	1	0	0	0	1	1	1	0	1	0	0	0	1	1	
1	X		X		X		X		X		X		X		X	s1
2		X	X			X	X			X	X			X	X	s2
4				X	X	X	X					X	X	X	X	s3
8								X	X	X	X	X	X	X	X	s4

Рисунок 4 – схема декодирования кода Хэмминга (15,11)

Третий синдром: $r_3 \oplus i_2 \oplus i_3 \oplus i_4 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0$

Четвертый синдром : $r_4 \oplus i_5 \oplus i_6 \oplus i_7 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 0$

Так как ни первый, ни второй, ни третий, ни четвертый синдромы не оказались ошибочными, то код доставлен правильно (ошибок нет).

Сумма всех 5 вариантов заданий = 43 + 75 + 107 + 27 + 58 = 310Сумма, умноженная на 4 = 310 * 4 = 1240.

По формуле $2^r \ge r + i + 1$, где r – минимальное кол-во проверочных битов, i – кол-во информационных битов получаем:

 2^{r} – $r \ge 1241 = > r = 11$ – минимальное кол-во проверочных битов для 1240 информационных битов.

Коэффициент избыточности вычисляется по формуле $\frac{r}{r+i}$

Получаем коэффициент избыточности = $\frac{11}{1251} \sim 0,0088$.

Программа для анализа кода Хэмминга на языке Python:

$$flag = 0$$

```
if len(a) != 7:
  print('Длина набора не равна 7.')
  flag = 1
else:
  for i in a:
    if int(i) != 0 and int(i) != 1:
      print('Не двоичная запись числа')
      flag = 1
if flag == 0:
  k = 0
  r1 = a[0]
  r2 = a[1]
  r3 = a[3]
  modr1 = (a[2] + a[4] + a[6]).count('1') \% 2
  modr2 = (a[2] + a[5] + a[6]).count('1') \% 2
  modr3 = (a[4] + a[5] + a[6]).count('1') \% 2
  if r1 != str(modr1):
    k += 1
  if r2 != str(modr2):
    k += 2
  if r3 != str(modr3):
    k += 4
  if (k > 0):
    if k == 1:
      if a[k-1] == '0':
        a = '1' + a[k:]
      else:
        a = '0' + a[k:]
```

```
elif k == 7:

if a[k-1] == '0':

a = a[:k-1] + '1'

else:

a = a[:k-1] + '0'

elif a[k-1] == '0':

a = a[:k-1] + '1' + a[k:]

else:

a = a[:k-1] + '0' + a[k:]

print(f'Ошибка в бите N^{\circ}(k))

print('Правильное сообщение(только информационные биты) - ',a[2]+a[4]+a[5]+a[6])

else:

print('Ошибок нет, код доставлен верно')

print(a[2]+a[4]+a[5]+a[6])
```

Вывод:

В ходе выполнения данной лабораторной работы я познакомился с понятием помехоустойчивых кодов, в частности — с кодом Хэмминга. Научился декодировать и проверять на правильность такие коды. Алгоритм кодирования Хэмминга - очень популярен и позволяет значительно повысить надежность передачи и хранения информации.

Список литературы:

- 1. Презентация «Код Хэмминга» Балакшин П.В 2021 год [Электронный pecypc]. –URL: https://isu.ifmo.ru/pls/apex/f?p=2002:0:100380356337453:DWNLD_F:NO::FILE:240C9DC86073CEE69447B8F41E752787
- 2. Питерсон У., Уэлдон Э. Коды, исправляющие ошибки: Пер. с англ. М.: Мир 1976 год [Электронный ресурс]. URL: https://www.studmed.ru/view/piterson-u-ueldon-e-kody-ispravlyayuschie-oshibki 9657dd030d4.html