安徽大学 2022—2023 学年第一学期

《高等数学 A (一)》期中试卷

(闭卷,时间120分钟)

考场登记表序号

选择题(每小题3分,共15分)

- 1. 设数列 $\{x_n\}$ 有下列命题:
- ① $\{x_n\}$ 有界 $\Leftrightarrow \{x_n\}$ 收敛

- ① $\{x_n\}$ 有界 $\Leftrightarrow \{x_n\}$ 收敛 ② $\lim_{n\to\infty} x_n = a \Leftrightarrow \lim_{n\to\infty} x_{2n+1} = \lim_{n\to\infty} x_{2n} = a$ ③ $\lim_{n\to\infty} x_n = a \Leftrightarrow \lim_{n\to\infty} x_{3n+1} = \lim_{n\to\infty} x_{3n+2} = a$

则以上命题**正确**的个数为()

- A. 1 B. 2 C. 3 D. 4

- A. 无穷小 B. 无穷大 C. 有界但不是无穷小 D. 无界但不是无穷大

3. 已知
$$\lim_{x\to\infty} (\frac{x^2}{x+1} - ax - b) = 0$$
,其中 a,b 为常数,则()

- A. a=1,b=1 B. a=1,b=-1 C. b=1,a=-1 D. b=-1,a=-1

4. 若函数
$$f(x) = e^{-\frac{1}{x^2}} \arctan \frac{2}{x}$$
,则 $x = 0$ 是其()

A. 连续点

B. 无穷间断点

C. 跳跃间断点

D. 可去间断点

5. 设函数
$$f(x)$$
在 $x=0$ 处连续,则下列命题**错误**的是()

- A. 若 $\lim_{x \to 0} \frac{f(x)}{x}$ 存在,则 f(0) = 0 B. 若 $\lim_{x \to 0} \frac{f(x) + f(-x)}{x}$ 存在,则 f(0) = 0

C. 若
$$\lim_{x\to 0} \frac{f(x)}{x}$$
 存在,则 $f(x)$ 在 $x = 0$ 可导 D. 若 $\lim_{x\to 0} \frac{f(x) - f(-x)}{x}$ 存在,则 $f(x)$ 在 $x = 0$ 可导

二、填空题(每小题3分,共15分)

6.
$$\lim_{n\to\infty} \left(\frac{n+2022}{n+2021}\right)^n =$$

- 7. 当 $x \to 0$ 时, $(1+ax^2)^{\frac{1}{5}} 1$ 与 $\cos x 1$ 是等价无穷小,则常数 a =_______
- 8. 设 f(x) 在 x = 0 点连续,且 $\lim_{x \to 0} \frac{f(x)}{x} = 2$,则 f'(0) =______
- 9. 设 y(x) = x(x+1)(x+2)...(x+2023),则 $dy|_{x=-1} =$ _____
- 10. 极坐标曲线 $r = e^{\theta}$ 在点 $(r, \theta) = (e^{\frac{\pi}{2}}, \frac{\pi}{2})$ 处切线的直角坐标方程为______

三、计算题(每小题10分,共60分)

11. 计算极限
$$\lim_{n\to\infty} \left(\frac{1}{n^2+n+1} + \frac{2}{n^2+n+2} + \frac{3}{n^2+n+3} \dots + \frac{n}{n^2+n+n}\right)$$

12. 设 $a>0,\sigma>0,a_1=\frac{1}{2}(a+\frac{\sigma}{a}),a_{n+1}=\frac{1}{2}(a_n+\frac{\sigma}{a_n}),n=1,2,\dots$,讨论数列 $\left\{a_n\right\}$ 的收敛性,若收敛求出其极限

13. 计算极限
$$\lim_{x\to 0} \frac{\sqrt{1+x\sin x} - \sqrt{\cos x}}{\ln(1+\tan^2 x)}$$

- 14. 设 函数 $f(x) = \lim_{n \to \infty} \frac{1+x}{1+x^{2n}}$,讨论函数 f(x) 的连续性,若有间断点则判别其类型
- 15. 设 y = y(x) 是由 $xy + e^y = x + 1$ 确定的隐函数,计算 $\frac{d^2y}{dx^2}|_{x=0}$
- 16. 已知 f(x) 有任意阶导数,且 $f'(x) = (f(x))^3$,当 n 为正整数时,计算 f(x) 的 n 阶导数 $f^{(n)}(x)$

四、证明题(每小题5分,共10分)

17. 设 f 是定义在 R 上的函数,且对任何 $x_1, x_2 \in R$,都有 $f(x_1 + x_2) = f(x_1) \cdot f(x_2)$,若 f'(0) = 1,证明对任何 $x \in R$,都有 f'(x) = f(x)

18. 设函数 f(x) 在闭区间 [a,b] 上连续,且 f(a) = f(b) ,证明:存在 $\xi \in [a,b)$,使得 $f(\xi) = f(\xi + \frac{b-a}{2})$