

With actuators according to prior art, it is known that, in the inactive region, which is required for contact purposes, irregularities in expansion occur. These produce cracks in the piezoelectrically inactive electrode region, which may occur at regular intervals. As a result of the irregularities in expansion, the stresses accumulate in the passively expanded regions, up to a level at which they are relieved by crack formation.

10

15

5

It is therefore proposed according to the invention that the contact surfaces (17), and therefore the inactive regions (15) assigned to them, of one or a predetermined number of electrodes of the same polarity (11; 30 to 37; 39, 40), arranged above one another in the same direction, are arranged offset to one another by a predetermined angle (22) of the size α , opposite the contact surfaces (17), and therefore the inactive regions (15) assigned to them, of the preceding internal electrode or a predetermined number of preceding electrodes of the same alignment and the same polarity.

20 (Figure 5)

25