2 užsiėmimas. Tiesinės 2-osios eilės diferencialinės lygtys su pastoviais koeficientais

Homogeninė lygtis

$$y'' + py' + qy = 0$$

Sudarome kvadratinę lygtį, pakeisdami y'' į k^2 , y' – į k, y – į 1. Kvadratinė lygtis turės pavidalą

$$k^2 + pk + q = 0$$

Randame šios lygties sprendinius k_1 ir k_2 . Bendrąjį homogeninės lygties sprendinį galima užrašyti vienu iš šių būdų:

- 1) $y = C_1 e^{k_1 x} + C_2 e^{k_2 x}$, jeigu k_1 ir k_2 realiejį skaičiai, $k_1 \neq k_2$;
- 2) $y = (C_1 + C_2 x)e^{k_1 x}$, jeigu k_1 ir k_2 realiejį skaičiai, $k_1 = k_2$;
- 3) $y = e^{\alpha x} (C_1 \cos(\beta x) + C_2 \sin(\beta x))$, jeigu $k_1 = \alpha + \beta i$, $k_2 = \alpha \beta i$.

Pavyzdžiai

1.
$$y'' - 5y' + 6y = 0$$
.

Sudarome kvadratinę lygtį ir randame jos šaknis:

$$k^2 - 5k + 6 = 0$$
, $k_1 = 2$, $k_2 = 3$

Šaknys yra realiosios ir skirtingos (žr. 1 atvejį), todėl

$$y = C_1 e^{2x} + C_2 e^{3x}.$$

2.
$$y'' - 9y = 0$$
.

Sudarome kvadratinę lygtį ir randame jos šaknis:

$$k^2 - 9 = 0, \quad k_1 = 3, \quad k_2 = 3$$

Šaknys yra realiosios ir lygios (žr. (2 atvejį)), todėl

$$y = (C_1 + C_2 x)e^{3x}.$$

3.
$$y'' + y = 0$$

Sudarome kvadratinę lygtį ir randame jos šaknis:

$$k^2 + 1 = 0$$
, $k_1 = 0 + 1 \cdot i$, $k_2 = 0 - 1 \cdot i$

Šaknys yra kompleksinės (žr. 3 atvejį), todėl

$$y = C_1 \cos x + C_2 \sin x.$$

Nehomogeninė lygtis

$$y'' + py' + qy = f(x)$$

Bendrąjį sprendinį randame pavidalu $Y=y_0+y_a$, kur y_0 - homogeninės lygties sprendinys (homogeninę lygtį gauname, funkciją f(x) pakeitus nuliu), o y_a galima rasti tokiu būdu:

- **A.** Jeigu $f(x) = e^{ax} P_n(x)$, kur $P_n(x) n$ -osios eilės daugianaris ir
- 1. $a \neq k_1$, $a \neq k_2$, tai $y_a = e^{ax}Q_n(x)$, kur $Q_n(x) n$ -osios eilės daugianaris su nežinomais koeficientais;
- 2. $a = k_1 \text{ arba } a = k_2, \text{ tai } y_a = x \cdot e^{ax} Q_n(x);$
- 3. $a = k_1 = k_2$, tai $y_a = x^2 \cdot e^{ax} Q_n(x)$.
- **B.** Jeigu $f(x) = e^{ax} \left(P_n(x) \cos(bx) + Q_m(x) \sin(bx) \right)$, ir
- 1. $a \pm bi \neq \alpha \pm \beta i$, tai $y_a = e^{ax} \left(S_j(x) \cos(bx) + T_j(x) \sin(bx) \right)$, kur $j = \max(n,m)$, o $S_j(x)$ ir $T_j(x)$ j-osios eilės polinomai su nežinomais koeficientais;
- 2. $a \pm bi = \alpha \pm \beta i$, tai $y_a = x \cdot e^{ax} \left(S_i(x) \cos(bx) + T_i(x) \sin(bx) \right)$.

Pavyzdžiai

4.
$$y'' - 7y' + 12y = -e^{4x}$$

Sprendžiame homogeninę lygtį y'' - 7y' + 12y = 0.

$$k^2 - 7k + 12 = 0$$
, $k_1 = 4$, $k_2 = 3$, $y_0 = C_1 e^{4x} + C_2 e^{3x}$.

Sudarome y_a :

Kadangi $f(x) = -e^{4x}$, tai (žr. atvejį **A**) $a = k_1$, $P_n(x) = -1$ – konstanta, t.y. nulinės eilės polinomas ir $y_a = x \cdot Ae^{4x}$. Randame išvestines ir įstatome jas į diferencialinę lygtį:

$$y_a' = Ae^{4x} + 4Axe^{4x};$$

$$y_a'' = 8Ae^{4x} + 16Axe^{4x};$$
 ir

$$8Ae^{4x} + 16Axe^{4x} - 7(Ae^{4x} + 4Axe^{4x}) + 12(x \cdot Ae^{4x}) = -e^{4x};$$

$$Ae^{4x} = -e^{4x}, \quad A = -1;$$

$$y_a = -xe^{4x}.$$

$$Y = y_0 + y_a = C_1 e^{4x} + C_2 e^{3x} - x e^{4x}.$$

5. $y'' + 9y = e^{3x}.$

Pirmas žingsnis: $k^2 + 9 = 0$, $k_{1,2} = 0 \pm 3i$, $y_0 = C_1 \cos 3x + C_2 \sin 3x$.

Antras žingsnis: $y_a = Ae^{3x}$, $y'_a = 3Ae^{3x}$, $y''_a = 9Ae^{3x}$.

Tada
$$9Ae^{3x} + 9Ae^{3x} = e^{3x}$$
, $A = \frac{1}{18}$, $y_a = \frac{1}{18}e^{3x}$.

$$y = y_0 + y_a = C_1 \cos 3x + C_2 \sin 3x + \frac{1}{18}e^{3x}.$$

6.
$$y'' - 4y = 8x^3$$
.

Pirmas žingsnis: $k^2 - 4 = 0$, $k_{1,2} = 2$, $y_0 = (C_1 + C_2 x)e^{2x}$.

Antras žingsnis: $y_a = Ax^3 + Bx^2 + Cx + D$, $y'_a = 3Ax^2 + 2Bx + C$, $y''_a = 6Ax + 2B$.

Tada $6Ax + 2B - 4Ax^3 - 4Bx^2 - 4Cx - D = 8x^3$.

$$x^3$$
: $-4A = 8$, $A = -2$; x^2 : $-4B = 0$, $B = 0$; x : $6A - 4C = 0$, $C = -3$; const $2B - D = 0$, $D = 0$.

$$y = y_0 + y_a = (C_1 + C_2 x)e^{2x} - 4x^3 - 3x.$$

3.
$$y'' + 2y' + y = x + \sin x$$
.

Pirmas žingsnis: $k^2 + 2k + 1 = 0$, $k_{1,2} = -1$, $y_0 = (C_1 + C_2 x)e^{-x}$.

Antras žingsnis: $y_a = Ax + B + C \sin x + D \cos x$, $y_a' = A + C \cos x - D \sin x$, $y_a'' = -C \sin x - D \cos x$.

 $\begin{aligned} &\operatorname{Tada} - C\sin x - D\cos x + 2A + 2C\cos x - 2D\sin x + Ax + B + C\sin x + \\ &D\cos x = x + \sin x, \quad 2A + 2C\cos x - 2D\sin x + Ax + B = x + \sin x, \end{aligned}$

$$\begin{array}{c|cccc} \sin x: & -2D=1, & D=-\frac{1}{2}; \\ \cos x: & 2C=0, & C=0; \\ x: & A=1; \\ \text{const} & 2A+B=0, & B=-2. \end{array}$$

$$y = y_0 + y_a = (C_1 + C_2 x)e^{-x} + x - 2 - \frac{1}{2}\cos x.$$

Užduotys savarankiškam darbui

1)
$$y'' - y' = 0$$
;

2)
$$y'' - 2y' + 2y = 0$$
;

3)
$$y'' + 4y' + 13y = 0$$
;

4)
$$y'' + 2y' + y = 0$$
;

5)
$$y'' - 4y' + 2y = 0$$
;

6)
$$y = y'' + y'$$
;

7)
$$\frac{y'-y}{y''} = 3;$$

8)
$$y'' - 5y' + 4y = 0$$
, $y(0) = 5$, $y'(0) = 8$;

9)
$$y'' + 3y' + 2y = 0$$
, $y(0) = 1$, $y'(0) = -1$;

10)
$$y'' + 4y = 0$$
, $y(0) = 0$, $y'(0) = 2$;

11)
$$y'' - 2y' = x^2 - 1$$
;

12)
$$y'' - 2y' + y = 2e^x$$
;

13)
$$y'' - 2y' = e^{2x} + 5$$
;

14)
$$y'' - 2y' - 8y = e^x - 8\cos 2x;$$

15)
$$y'' + y' = 5x + 2e^x$$
;

16)
$$y'' - y' = 2x - 1 - 3e^x$$
;

17)
$$y'' + 2y' + y = e^x + e^{-x}$$
;

18)
$$y'' - 2y' + 10y = \sin 3x + e^x$$
;

19)
$$y'' - 4y' + 4y = 2e^{2x} + \frac{x}{2}$$
;

20)
$$y'' - 3y' = x + \cos x$$
;

21)
$$y'' - y = 2x \sin x$$
;

22)
$$y'' - 4y = e^{2x} \sin 2x$$
;

23)
$$y'' + 4y = 2\sin 2x - 3m\cos 2x + 1;$$

24)
$$y'' - 2y' + 2y = 4e^x \sin x$$
;

25)
$$y'' = xe^x + y$$
;

26)
$$y'' + 9y = 2x\sin x + xe^{3x}$$
;

27)
$$y'' - 2y' - 3y = x(1 + e^{3x});$$

28)
$$y'' - 2y' = 3x + 2xe^x$$
;

29)
$$y'' - 4y' + 4y = xe^{2x}$$
;

30)
$$y'' + 2y' - 3y = 2xe^{-3x} + (x+1)e^x$$
;

31)
$$y'' - 2y = 2xe^x(\cos x - \sin x)$$
.