Hybleland L9-Lesson 22 Polynomial II-Assignment

Practice 1.

What is the sum of the squares of the solutions of $x^3 - 2x^2 - 3x - 1 = 0$?

- (A)14

- (E)10

HYBLELAND

HYBLELAND

Practice 2.

If r, s, t are roots of the solutions of $x^3 - 2x^2 - 3x - 1 = 0$, determine the value of $\frac{1}{r^2} + \frac{1}{s^2} + \frac{1}{t^2}$. (B)8 (C)3 (D)5

- (A)14

Practice 3.

AMC10A 2010 / Problem 21

The polynomial $x^3-ax^2+bx-2010$ has three positive integer zeros. What is the smallest possible value of a?

A. 78 B. 88 C. 98 D. 108 E. 118

Practice 4.

What is the sum of the reciprocals of the solutions of $x^3 - 3x^2 - 13x + 15 = 0$?

- (A) 13/15
- (B)13/16
- (C)13/17
- (D)13/18
- (E)13/15

Practice 5.

(MA Θ 1990) Find the largest solution of $x^3 - 27x^2 + 242x - 720 = 0$ given that one root equals the average of the other two roots.

Practice 6.

(MA Θ 1992) If three roots of $x^4 + Ax^2 + Bx + C = 0$ are -1, 2, and 3, then what is the value of 2C - AB?

Practice 7.

The fourth degree polynomial equation $x^4 - 7x^3 + 4x^2 + 7x - 4 = 0$ has four real roots, a, b, c and d.

What is the value of the sum $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$? Express your answer as a common fraction. $(A) - \frac{7}{4}$ $(B)\frac{7}{4}$ (C) - 7 (D)7 (E)1

$$(A)-\frac{7}{4}$$

$$(B)\frac{7}{4}$$

语情情况

$$(D)^{r}$$

Practice 8.

How many distinct ordered triples (x, y, z) satisfy the equations?

$$\begin{cases} x + y + z = 6 \\ xy + yz + zx = 11 \\ xyz = 6 \end{cases}$$

- (A)none

- (D)4
- (E)6

Practice 9.

How many distinct ordered triples (x, y, z) satisfy the following equations?

$$\begin{cases} x + y + z = 9 \\ x^3 + y^3 + z^3 = 99 \\ xyz = 24 \end{cases}$$

- (A)none
- (B)1
- (C)2
- (D)4
- (E)6

Practice 10.

How many distinct ordered triples (x, y, z) satisfy the following system of equations?

$$\begin{cases} x + y + z = 1 \\ x^{2} + y^{2} + z^{2} = 2 \\ x^{3} + y^{3} + z^{3} = 55 \end{cases}$$

- (A)none
- (B)1
 - (C)2
- (D)4