2021/03/30

靜電量測異常機率分析

RYAN.CHOU

問題與目的

- * 說明:目前公司每人每日於作業前,皆會執行靜電量測,若量測結果高於1000 M與低於1M則判定為FAIL,需進行重測,直到量測結果落於區間內才可執行 生產作業。
- * 單位:阻值(歐姆)
- * 目的:找出量測機率較高的人員,並給於協助,例:更換靜電鞋,檢視人員穿著的服裝。

資料清理

- * 資料處理:
 - * 資料字串處理:
 - * 1K=1,000
 - * 1M=1,000,000
 - * 1G=1,000,000,000
 - *後續皆以1M作為一個單位
- * 定義左右腳
- * 清理後df:
 - * 216488*13 > 136045*14
- * 列入分析人員:
 - * 848人>350人

#日期處理
df['DATE']=df['DATE'].apply(lambda x:datetime.strptime(x, "%Y-%m-%d"))
#刪除測試值大於2000的資料(極端值)
df=df[df['DATA']<=2000]
#刪除測試次數小於30的人
df_valuesCounts=df['ID'].value_counts().reset_index()
df_valuesCounts.columns=['ID','TEST_QTY']
df=pd.merge(df,df_valuesCounts,how='left',on='ID')

資料分佈

- * 左圖顯示全公司的直方圖(上)與核密度函數曲線圖(下),並將資料依冬天、夏天、左腳、右腳進行區分。
- * 直方圖:
 - * import matplotlib.pyplot as plt
 - * plt.hist(df['DATA'],bins=1000)
- * 核密度函數曲線圖:
 - * import seaborn as sns
 - * sns.kdeplot(df['DATA'],kernel='gau',bw_a djust=0.5)

資料分佈

- * 因資料嚴重向左偏斜,因此我們透過 np.log1p()去除偏態,結果如右圖。
- * np.log1p(x)=ln(x+1)

機率

- * 透過以下式子,可得每個人的於KDE落於區間內的機率
- * scipy.stats.gaussian_kde(SR).integrate_box_1d(low=0.69314,high=6.908)
- * 合格區間:1~1000
 - 1n(1+1)=0.69314
 - 1n(1000+1)=6.908

機率散布圖

* X軸:右腳

* Y軸:左腳

* 落於紅線以外皆判定為異常機率過高人員

- * plt.scatter(df_prob['P_SR'],df_prob['P_SL'],color='darkorange',
 s=12)
- * plt.scatter(df_prob['P_WR'],df_prob['P_WL'],color='cornflower blue',s=12)

未合格人員

- * 冬天右腳、冬天左腳、夏天右腳、夏天左腳 任一異常機率大於0.025即判定為不合格。
- * df_probFail=df_prob[(df_prob['P_SR']>0.02
 5) | (df_prob['P_WR']>0.025) |
 (df_prob['P_SL']>0.025) |
 (df_prob['P_WL']>0.025)]

* 不合格人員為86人,比率為: 24.57%

