2. Parciális deriválás

Számítsuk ki az alábbi függvények parciális deriváltfüggvényeit!

12.
$$f(x,y) = x$$

$$20. \ f(x,y) = xy \ln(x+y)$$

13.
$$f(x,y) = x^2y$$

21.
$$f(x,y) = \frac{1}{x \sin \frac{1}{y}}$$

14.
$$f(x,y) = x^2 - 2xy + y^2 - x + 1$$

22.
$$f(x,y) = 2^{-\frac{x}{y}}$$

15.
$$f(x,y) = (x^3 - 2x^2y + y^2)^7$$

23.
$$f(x,y) = \frac{x^2 + 3xy - 1}{y^2 + 3xy - 1}$$

16.
$$f(x,y) = \sqrt{x^2y^2 - 1}$$

24.
$$f(x,y) = \sqrt{1-x^2} + \sqrt{1-x^2y^2}$$

17.
$$f(x,y) = \sin(x^2 + y^2)$$

25.
$$f(x,y) = \arctan \frac{y}{x}$$

18.
$$f(x,y) = xe^{-\sqrt{2x-y}}$$

26.
$$f(x,y) = \frac{x \arcsin y}{y \arccos x}$$

19.
$$f(x,y) = xy \cos x^2 y^2$$

27.
$$f(x,y) = x^y$$

Számítsuk ki az alábbi függvények első- és másodrendű parciális deriváltfüggvényeit!

28.
$$f(x,y) = x^3 - 3x^2y + xy^2 + y^3$$

31.
$$f(x,y) = \frac{1}{x^2 + y^2}$$

29.
$$f(x,y) = \frac{x-y}{x+y}$$

32.
$$f(x,y) = \ln \frac{x+y}{x-y}$$

30.
$$f(x,y) = \sin x \cos y$$

33.
$$f(x,y) = e^{-x-y}$$

Parciális derivált

I. Legyen $f: \mathbb{R}^2 \to \mathbb{R}$, $(a,b) \in \text{int } \mathcal{D}(f)$. Az f függvény x szerinti vagy első változó szerinti parciális deriváltja létezik (a,b)-ben, ha

$$\exists \lim_{x \to a} \frac{f(x,b) - f(a,b)}{x - a} = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h} \in \mathbb{R}.$$

Jelölés: $D_1 f(a,b)$ vagy $\frac{\partial f}{\partial x}(a,b)$ vagy $f'_x(a,b)$ stb. Itt tulajdonképpen az történik, hogy az (a,b) pont 2. koordinátáját lerögzítjük, és az így kapott $x \mapsto f(x,b)$ egyváltozós függvényt deriváljuk a-ban. II. Az f függvény g szerinti vagy második változó szerinti parciális deriváltja létezik (a,b)-ben, ha

$$\exists \lim_{y \to b} \frac{f(a,y) - f(a,b)}{y - b} = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h} \in \mathbb{R}.$$

Jelölés: $D_2f(a,b)$ vagy $\frac{\partial f}{\partial y}(a,b)$ vagy $f_y'(a,b)$ stb. Itt tulajdonképpen az történik, hogy az (a,b) pont 1. koordinátáját lerögzítjük, és az így kapott $y\mapsto f(a,y)$ egyváltozós függvényt deriváljuk b-ben. III. Az f függvény első ill. második parciális deriváltfüggvénye $D_1f:\mathbb{R}^2\to\mathbb{R}$ ill. $D_2f:\mathbb{R}^2\to\mathbb{R}$

$$\mathcal{D}(D_1 f) = \{(x, y) \in \text{int } \mathcal{D}(f) : \exists D_1 f(x, y) \}, \quad (D_1 f)(x, y) := D_1 f(x, y)$$
$$\mathcal{D}(D_2 f) = \{(x, y) \in \text{int } \mathcal{D}(f) : \exists D_2 f(x, y) \}, \quad (D_2 f)(x, y) := D_2 f(x, y)$$

IV. Az f másodrendű parciális deriváltjait az első ill. második parciális deriváltfüggvények további paricális deriváltjaiból nyerjük:

$$D_{11}f := D_1(D_1f), \ D_{12}f := D_1(D_2f), \ D_{21}f := D_2(D_1f), \ D_{22}f := D_2(D_2f)$$

3. Differenciálhatóság

(Ismétlés) Számítsuk ki az alábbi határértékeket (ha léteznek)!

34.
$$\lim_{(x,y)\to(0,0)} \frac{x\cdot y}{\sqrt{x^2+y^2}}$$

36.
$$\lim_{(x,y)\to(0,0)} \frac{x^2 \cdot y}{\sqrt{x^2 + y^2}}$$

38.
$$\lim_{(x,y)\to(0,0)} \frac{x^4+y^4}{x^2+y^2}$$

35.
$$\lim_{(x,y)\to(0,0)} \frac{x\cdot y}{x^2+y^2}$$

37.
$$\lim_{(x,y)\to(0,0)} \frac{x^2 \cdot y^2}{\sqrt{x^2 + y^2}}$$

39.
$$\lim_{(x,y)\to(0,0)} \frac{\sqrt[3]{x^3+y^3}}{\sqrt{x^2+y^2}}$$

Differenciálhatók-e a (0,0)-ban a következő függvények?

40.
$$f(x, y) = xy$$

43.
$$f(x,y) = x^2y^2$$

46.
$$f(x,y) = \sqrt[3]{x^3 + y^3}$$

41.
$$f(x,y) = \sqrt{xy}$$

44.
$$f(x,y) = \sqrt{x^2 + y^2}$$

47.
$$f(x,y) = \sqrt{x^6 + y^6}$$

42.
$$f(x,y) = x^2y$$

45.
$$f(x,y) = x^2 + y^2$$

48.
$$f(x,y) = \sqrt{x^4 + y^4}$$

Differenciálhatók-e a következő függvények az értelmezési tartományukon?

49.
$$f(x,y) = e^{\cos(x^2 + y^3)}$$

50.
$$f(x,y) = \ln \sqrt{x^2 + y^2}$$

50.
$$f(x,y) = \ln \sqrt{x^2 + y^2}$$
 51. $f(x,y) = \frac{x}{\sqrt{x^2 + y^2}}$

Határozzuk meg az alábbi iránymenti deriváltakat!

52.
$$f(x,y) = (x-y)^2$$
, $v = (\frac{1}{2}, \frac{\sqrt{3}}{2})$, $D_v f(0,0) = ?$

53.
$$f(x,y) = x^2 + y^2$$
, $v = (\frac{1}{\sqrt{10}}, \frac{-3}{\sqrt{10}})$, $D_v f(3,1) = ?$

54. Mely irány mentén 0 az $f(x,y)=x^3+y^3-3xy+\mathrm{e}^y$ függvény deriváltja a (2,0) pontban? Mely irány mentén maximális?

55.
$$f(x,y) = \frac{25x^2y}{x^2+y^3}$$
, v az $x + 3y = 5$ egyenes irányvektora, $D_v f(2,1) = ?$

Írjuk fel az alábbi függvények érintősíkjának egyenletét a megadott pontokban!

56.
$$f(x,y) = 4x^2 - 16x + y^2 + 6y + 18, P = (2,1)$$

57.
$$f(x,y) = x^2y + y^2 + 2y$$
, $P = (3,4)$

58.
$$f(x,y) = \arctan \frac{y}{x}, P = (1,1)$$

59.
$$f(x,y) = 2x^4y^3 + 3x^2y^2$$
, $P = (1,1)$

Differenciálhatóság. Egy $f: \mathbb{R}^2 \to \mathbb{R}$ függvény pontosan akkor differenciálható az $(a,b) \in \operatorname{int} \mathcal{D}(f)$ pontban, ha $\exists D_1 f(a,b), \exists D_2 f(a,b), \text{ továbbá}$

$$\lim_{(x,y)\to(a,b)} \frac{f(x,y) - f(a,b) - D_1 f(a,b) \cdot (x-a) - D_2 f(a,b) \cdot (y-b)}{\sqrt{(x-a)^2 + (y-b)^2}} = 0.$$

Állítás. Ha egy $f: \mathbb{R}^2 \to \mathbb{R}$ függvény parciális deriváltfüggvényei léteznek az $(a,b) \in \operatorname{int} \mathcal{D}(f)$ pont egy környezetében és folytonosak (a, b)-ben, akkor f differenciálható (a, b)-ben.

Iránymenti derivált. Ha egy $f: \mathbb{R}^2 \to \mathbb{R}$ függvény differenciálható az $(a, b) \in \operatorname{int} \mathcal{D}(f)$ pontban, akkor ebben a pontban létezik minden $v = (v_1, v_2), |v| = 1$ irány menti deriváltja $D_v f(a, b)$, továbbá

$$D_v f(a,b) = \langle (D_1 f(a,b), D_2 f(a,b)), (v_1, v_2) \rangle = D_1 f(a,b) \cdot v_1 + D_2 f(a,b) \cdot v_2$$

Érintősík. Ha egy $f: \mathbb{R}^2 \to \mathbb{R}$ függvény differenciálható az $(a,b) \in \text{int } \mathcal{D}(f)$ pontban, akkor az (a,b)pontbeli érintősíkjának egyenlete

$$z = f(a,b) + D_1 f(a,b) \cdot (x-a) + D_2 f(a,b) \cdot (y-b)$$

3. Differenciálhatóság, folytatás

Számítsuk ki a következő többszörös parciális deriváltakat!

60.
$$f(x,y) = x^3y$$
, $D_{12}f(x,y)$, $D_{21}f(x,y)$;

61.
$$f(x,y) = x \cdot \ln y$$
, $D_1^2 D_2 f(x,y)$;

62.
$$f(x, y, z) = e^{xyz}$$
, $D_1D_2D_3f(x, y, z)$;

63.
$$f(x,y) = e^x \cdot \sin y$$
, $D_1^m D_2^n f(x,y)$.

- 64. * Legyen $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) := \frac{1}{|x|^{n-2}}$, $x \neq 0$. Számítsuk ki a $\Delta f = \sum_{i=1}^n D_i^2 f$ értékét! (f Laplace-át)
- 65. Igazoljuk, hogy az alábbi függvényre nem teljesül a Young-tétel a (0,0) pontban!

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Írjuk fel az alábbi függvények érintősíkjának egyenletét a megadott pontokban, továbbá végezzük el a megadott feladatokat!

66.
$$f(x,y)=4x^2-16x+y^2+6y+18, P=(2,1)$$

Adjunk az érintősík segítségével közelítést $f(2,01;1,02)$ -re!
Írjuk fel a függvény P körüli 2. Taylor-polinomját is!

67.
$$f(x,y) = x^2y + y^2 + 2y$$
, $P = (3,4)$
Adjunk az érintősík segítségével közelítést $f(3,09;3,92)$ -re!
Írjuk fel a függvény P körüli 2. Taylor-polinomját is!

68.
$$f(x,y)=2x^4y^3+3x^2y^2, P=(1,1)$$

Írjuk fel a függvény P körüli 2. Taylor-polinomját!

Young-tétel. Ha az $f: \mathbb{R}^2 \to \mathbb{R}$ függvény $D_1 f$ és $D_2 f$ parciális deriváltfüggvényei értelmezve vannak az $(a,b) \in \operatorname{int} \mathcal{D}(f)$ pont egy környezetében és differenciálhatók az (a,b) pontban, akkor

$$D_{12}f(a,b) = D_{21}f(a,b).$$

Közelítés az érintősíkkal. A differenciálhatóság definíciója alapján

$$f(x,y) = f(a,b) + D_1 f(a,b) \cdot (x-a) + D_2 f(a,b) \cdot (y-b) + \varepsilon(x,y) \cdot |(x-a,y-b)|, \lim_{(x,y) \to (a,b)} \varepsilon(x,y) = 0,$$

ahol a jobb oldalon az érintősík egyenlete plusz egy 0-hoz tartó tag áll.

 $K\acute{e}tszer\ differenci\acute{a}lhat\acute{o}s\acute{a}g$. Legyen f differenci\acute{a}lhat\acute{o} az $(a,b)\in\mathbb{R}^2$ pont egy környezetében. Ha f parciális deriváltfüggvényei differenciálhatók az (a,b) pontban, akkor azt mondjuk, hogy f $k\acute{e}tszer\ differenci\acute{a}lhat\acute{o}$ az (a,b) pontban.

Taylor-polinom. Legyen az $f: \mathbb{R}^2 \to \mathbb{R}$ függvény kétszer differenciálható az $(a, b) \in \text{int } \mathcal{D}(f)$ pontban. Ekkor az f függvény (a, b) pontbeli 2. Taylor-polinomja

$$T_{2,(a,b)}^{f}(x,y) = f(a,b) + D_{1}f(a,b) \cdot (x-a) + D_{2}f(a,b) \cdot (y-b) +$$

$$+ \frac{1}{2!} \left(D_{11}f(a,b) \cdot (x-a)^{2} + 2D_{12}f(a,b) \cdot (x-a) \cdot (y-b) + D_{22}f(a,b) \cdot (y-b)^{2} \right)$$

4. Szélsőértékszámítás

Állapítsuk meg a következő függvényekről, hogy van-e lokális szélsőértékük, és ha igen, hol, és ezek mekkorák!

69.
$$f(x,y) = x^3 - 3xy + y^3$$
;

70.
$$f(x,y) = x^4 - 4xy + y^4$$
;

71.
$$f(x,y) = e^{2x+3y} \cdot (8x^2 - 6xy + 3y^2);$$

72.
$$f(x,y) = x^2 + xy + y^2 - 4 \ln x - 10 \ln y$$
;

73.
$$f(x,y) = (x^2 - 6x) \cdot (y^2 - 4y)$$

74.
$$f(x,y) = x^2 + 2y^2 - x - 2y - 1$$
;

75.
$$f(x,y) = (1-x)^2 + (2+y)^2 - 4;$$

76. $f(x,y) = x^3 - 3x^2 + 2xy + y^2 - 4;$

77.
$$f(x,y) = y^3 - x^2 - 4y^2 + 2xy;$$

78.
$$f(x,y) = x^2y - 3xy + 2y^4$$
;

79.
$$f(x,y) = x^3 + (y+1)^3 - 3x \cdot (y+1);$$

80.
$$f(x,y) = \frac{20}{x} + \frac{50}{y} + xy$$
;

81.
$$f(x,y) = \frac{x+y}{xy} + \frac{xy}{27}$$
;

82.
$$f(x,y) = e^{-(x^2 - 2xy + 2y^2)}$$
:

83.
$$f(x,y) = e^{-\frac{1}{2}(x^2+y^2-2x+1)}$$
:

84.
$$f(x,y) = (x^2 + y^2) \cdot e^{-(x^2 + y^2)}$$
;

85.
$$f(x,y) = (3 - 2x + y) \cdot e^{-y^2}$$
;

Szöveges feladatok szélsőértékszámításra (tartomány alatt itt mindig zárt halmazt értünk).

- 86. Határozzuk meg a $z=4-x^2-2y^2$ egyenletű felület $z\geq 0$ része és az xy-sík által határolt térrészbe írható maximális térfogatú téglatest oldalait, ha a téglatest oldalai párhuzamosak a koordinátasíkokkal!
- 87. Határozzuk meg az $f(x,y) = x^2 y^2$ függvény minimumát és maximumát az x és y tengelyek, valamint az $x^2 + y^2 = 1$ egyenletű görbe által határolt tartomány 1. síknegyedbe eső részén!
- 88. Határozzuk meg az $f(x,y,z)=\sin x\sin y\sin z$ függvény maximumát, ha x,y,z egy háromszög szögei!
- 89. Határozzuk meg az $f(x,y) = y \cdot (2x-3)$ függvény minimumát és maximumát az x-tengely, az x=2 és az $y=x^2$ görbék által határolt tartományon!
- 90. Határozzuk meg az $f(x,y)=(x^2-6x)\cdot(y^2-4y)$ függvény minimumát és maximumát a tengelyek és az x+y=6 egyenletű egyenes által határolt tartományon!

 2×2 -es mátrix definitsége. Legyen $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 2×2 -es mátrix. Ha det A > 0 és a > 0, akkor A pozitív definit, ha det A > 0 és a < 0, akkor A negatív definit. A b = c (szimmetrikus mátrix) esetben ha det A = 0, akkor A (pozitív vagy negatív) szemidefinit, ha det A < 0, akkor A indefinit. (Ebben az esetben a det A > 0, a = 0 nem fordulhat elő.)

Tétel lokális szélsőérték létezéséről. Legyen $f: \mathbb{R}^2 \to \mathbb{R}$ kétszer differenciálható az $(a, b) \in \text{int } \mathcal{D}(f)$ pontban, és tegyük fel, hogy $D_1 f(a, b) = D_2 f(a, b) = 0$. Ha a

$$\begin{pmatrix} D_{11}f(a,b) & D_{21}f(a,b) \\ D_{12}f(a,b) & D_{22}f(a,b) \end{pmatrix}$$

(a feltételek alapján szimmetrikus) mátrix pozitív/negatív definit, akkor f-nek szigorú lokális minimuma/maximuma van (a,b)-ben. Ha a mátrix indefinit, akkor f-nek nincs lokális szélsőértéke (a,b)-ben.

Tétel korlátos és zárt halmazon értelmezett folytonos függvény abszolút szélsőértékéről. Legyen f az A korlátos és zárt halmazon értelmezett folytonos függvény, és tegyük fel, hogy f-nek léteznek a parciális deriváltjai int A pontjaiban. Ekkor f a legkisebb és legnagyobb értékét vagy ∂A -n veszi fel, vagy int A egy olyan pontjában, ahol $D_1 f(a,b) = D_2 f(a,b) = 0$.

5. Összetett és implicit függvények differenciálása

- 91. Adjuk meg az $f: \mathbb{R}^3 \to \mathbb{R}^2$, $f(x, y, z) = (e^{xyz}, \sin x)$ függvény deriváltját a P = (1, 2, 3) pontban!
- 92. Adjuk meg az $f: \mathbb{R}^2 \to \mathbb{R}^3$, $f(x,y) = (x^2 2xy, ye^{y^2} + 3x, \sin x + \tan y)$ függvény deriváltját a P = (1,0) pontban!
- 93. Az alábbi feladatokban legyen $f: \mathbb{R} \to \mathbb{R}$ differenciálható függvény. Határozzuk meg az $u: \mathbb{R}^2 \to \mathbb{R}$ függvények deriváltjait!
 - (a) u(x,y) = f(x+y);

(c) $u(x,y) = f(\sqrt{x^2 + y^2});$

(b) $u(x,y) = f\left(\frac{x}{y}\right);$

- (d) $u(x, y, z) = f(x^2 + y^2 + z^2)$.
- 94. Az alábbi feladatokban legyen $f: \mathbb{R}^2 \to \mathbb{R}$ differenciálható függvény. Határozzuk meg az $u: \mathbb{R}^2 \to \mathbb{R}$ illetve $u: \mathbb{R}^3 \to \mathbb{R}$ függvények deriváltjait!
 - (a) u(x,y) = f(ax,by);

(d) u(x, y, z) = f(x + y, z);

(b) u(x,y) = f(x+y, x-y);

(e) $u(x, y, z) = f(x + y + z, x^2 + y^2 + z^2);$

(c) $u(x,y) = f\left(xy, \frac{x}{y}\right);$

- (f) $u(x, y, z) = f\left(\frac{x}{y}, \frac{y}{z}\right)$.
- 95. Legyen y a [-1,1]-en értelmezett olyan függvény, mely kielégíti az $x^2 + y^2 = 1$ egyenletet. Hány folytonos y megoldás van? Hány folytonos megoldás van, ha kikötjük, hogy y(0) = 1? És ha y(1) = 0?
- 96. Fejezzük ki az alábbi egyenletekkel meghatározott y függvények y' deriváltjait x és y segítségével!
 - (a) $x^2 + 2xy y^2 = 1$;
 - (b) $\ln \sqrt{x^2 + y^2} = \arctan \frac{y}{x}$;
 - (c) $y \frac{1}{2}\sin y = x$;
 - (d) $x^y = y^x, (x \neq y);$
 - (e) $y = 2x \arctan \frac{y}{x}$.
- 97. Legyen $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (e^x \cos y, e^x \sin y)$. Mely $(a,b) \in \mathbb{R}^2$ pontokban alkalmazható f-re az inverzfüggvénytétel?

Összetett függvény differenciálása. Legyen $g: \mathbb{R}^p \to \mathbb{R}^q$ differenciálható az $a \in \operatorname{int} \mathcal{D}(g)$ pontban, $f: \mathbb{R}^q \to \mathbb{R}^s$ differenciálható a $g(a) \in \operatorname{int} \mathcal{D}(f)$ pontban. Ekkor $a \in \operatorname{int} \mathcal{D}(f \circ g)$, $f \circ g$ differenciálható a-ban és

$$(f \circ g)'(a) = f'(g(a)) \cdot g'(a),$$

ahol a jobb oldalon a megfelelő $s \times q$ és $q \times p$ mátrixok szorzata áll.

Implicit függvény differenciálása. Legyen $f: \mathbb{R}^2 \to \mathbb{R}$, és tegyük fel, hogy van olyan $(a,b) \in \mathcal{D}(f)$ pont, hogy f(a,b)=0. Tegyük fel továbbá, hogy f folytonosan differenciálható (a,b)-ben (vagyis differenciálható (a,b) egy környezetében, és a parciális deriváltjai folytonosak (a,b)-ben), és $D_2 f \neq 0$ az (a,b) egy környezetében. Ekkor létezik a-nak ill. b-nek olyan $K(a) \subset \mathbb{R}$ ill. $K(b) \subset \mathbb{R}$ környezete, hogy

(i) Minden $x \in K(a)$ esetén $\exists ! y(x) \in K(b)$, melyre

$$f(x, y(x)) = 0.$$

(ii) y differenciálható az a pontban, és

$$y'(a) = -\frac{D_1 f(a, b)}{D_2 f(a, b)}$$

6

6. Feltételes szélsőérték

- 98. Oldjuk meg a 86. és 88. feladatokat feltételes szélsőérték-feladatokként!
- 99. Határozzuk meg az $f(x,y) = x^2 + 3y^2$ szélsőértékeit az x + y 1 = 0 egyenletű egyenesen!
- 100. Határozzuk meg az alábbi függvények szélsőértékeit a megadott K halmazokon!
 - (a) f(x,y) = x + 2y, $K = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 5\}$;
 - (b) f(x,y) = 2xy, $K = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$;
 - (c) f(x,y) = x + 8y, $K = \{(x,y) \in \mathbb{R}^2 : x^4 + y^4 = 17\}$;
 - (d) $f(x,y) = x^2 2y^2$, $K = \{(x,y) \in \mathbb{R}^2 : 4x^2 + y^2 \le 1\}$;
 - (e) f(x,y,z) = x + y + z, $K = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$;
 - (f) $f(x,y,z) = x^3 + y^3 + z^3$, $K = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$.

Lagrange-féle multiplikátor módszer feltételes szélsőérték-keresésre.

Legyenek $f, g_1, g_2, \ldots, g_q : \mathbb{R}^p \to \mathbb{R}$ folytonosan differenciálható függvények, p > q. Tegyük fel, hogy az $f : \mathbb{R}^p \to \mathbb{R}$ függvénynek a $g_1 = 0, g_2 = 0, \ldots, g_q = 0$ feltétel mellett feltételes szélsőértéke van az $a \in \mathcal{D}(f)$ pontban (vagyis $H := \{x \in \mathbb{R}^p \mid g_1(x) = g_2(x) = \ldots = g_q(x) = 0\} \subset \mathbb{R}^p$ jelöléssel $a \in H$ és f-nek lokális szélsőértéke van a $H \cap \mathcal{D}(f)$ halmazon). Tegyük fel továbbá, hogy

rang
$$\begin{pmatrix} D_1 g_1(a) & D_2 g_1(a) & \dots & D_p g_1(a) \\ \vdots & & & \vdots \\ D_1 g_q(a) & D_2 g_q(a) & \dots & D_p g_q(a) \end{pmatrix} = q.$$

Ekkor léteznek olyan $\lambda_1, \lambda_2, \dots, \lambda_q \in \mathbb{R}$ számok, hogy az

$$F := f + \lambda_1 q_1 + \lambda_2 q_2 + \ldots + \lambda_q q_q : \mathbb{R}^p \to \mathbb{R}$$

függvényre

$$F'(a) = 0_{\mathbb{R}^p}$$
.

Vagyis, F p darab paricális deriváltjára felírva

$$D_1 f(a) + \lambda_1 D_1 g_1(a) + \lambda_2 D_1 g_2(a) + \dots + \lambda_q D_1 g_q(a) = 0$$

$$D_2 f(a) + \lambda_1 D_2 g_1(a) + \lambda_2 D_2 g_2(a) + \dots + \lambda_q D_2 g_q(a) = 0$$

$$\vdots$$

$$D_p f(a) + \lambda_1 D_p g_1(a) + \lambda_2 D_p g_2(a) + \dots + \lambda_q D_p g_q(a) = 0$$