Calcul Matriciel

Exercices

4.1. Vrai ou faux

Vrai-Faux 4.1. Parmi les affirmations suivantes, lesquelles sont vraies pour toutes matrices A et B et pourquoi?

- 1. Si le produit AB est défini, alors le produit BA est défini.
- 2. Si la somme A + B est définie, alors le produit AB est défini.
- 3. Si le produit AB est défini, alors le produit tB tA est défini.
- 4. Si la somme A + B est définie, alors le produit $A^{t}B$ est défini.
- 5. Si les produits AB et BA sont définis, alors la somme A+B est définie.
- 6. Si les produits AB et BA sont définis, alors la somme $A + {}^t\!B$ est définie.
- 7. Si les produits AB et tBA sont définis, alors la somme $A + {}^tA$ est définie.
- 8. Si les produits AB et tBA sont définis, alors la somme $A + {}^tB$ est définie.
- 9. Si le produit AB est défini, alors la somme $A^{t}A + B^{t}B$ est définie.
- 10. Si le produit AB est défini, alors la somme ${}^{t}AA + B{}^{t}B$ est définie.

Vrai-Faux 4.2. Parmi les affirmations suivantes, lesquelles sont vraies pour toute matrice A et pourquoi?

- 1. Si A est inversible, alors $A^{t}A = {}^{t}A A$.
- 2. Si A est inversible, alors $A^{t}A$ est inversible.
- 3. Si A est inversible, alors $A + {}^{t}A$ est inversible.
- 4. Si A est inversible, alors A est équivalente à la matrice identité.
- 5. Si A est inversible, alors A est semblable à la matrice identité.

Vrai-Faux 4.3. Soit A une matrice carrée. On dit que A est diagonale si tous ses coefficients d'ordre (i, j) avec $i \neq j$, sont nuls. Parmi les affirmations suivantes, lesquelles sont vraies pour toute matrice carrée A et pourquoi?

1. Si A est diagonale, alors A est inversible.

- 2. Si A est diagonale, alors A est symétrique.
- 3. Si A est diagonale et si tous ses coefficients diagonaux sont non nuls, alors A est inversible.
- 4. Si A est diagonale, alors A est semblable à la matrice identité.
- 5. Si A est diagonale, alors A est équivalente à la matrice identité.

Vrai-Faux 4.4. Parmi les affirmations suivantes, lesquelles sont vraies et pourquoi?

- 1. Si une matrice est de rang r, alors elle est équivalente à la matrice I_r
- 2. Une matrice est de rang r si et seulement si la famille de ses vecteurs colonnes est de rang r.
- 3. Une matrice est de rang r si et seulement si la famille de ses vecteurs lignes est de rang r.
- 4. Si une matrice A est de rang r, alors toute matrice formée de r colonnes parmi les colonnes de A est de rang r.
- 5. Si une matrice formée de r colonnes parmi les colonnes de A est de rang r, alors A est de rang $\geqslant r$.
- 6. La matrice nulle est la seule matrice de rang 0.
- 7. Si deux lignes de A ne sont pas proportionnelles, alors le rang de A est au plus 2.
- 8. Si deux lignes de A sont proportionnelles, alors le rang de A est strictement inférieur à son nombre de colonnes.
- 9. Si une matrice carrée de \mathcal{M}_r , extraite de A est inversible, alors A est de rang $\geq r$.
- 10. Si A est de rang r, alors aucune matrice carrée de \mathcal{M}_{r+1} extraite de A n'est inversible.
- 11. Si toute matrice carrée de \mathcal{M}_r , extraite de A est de rang r, alors A est de rang r.

4.2. Exercices

Exercice 4.1. Pour chacune des application linéaires suivantes de \mathbb{R}^n dans \mathbb{R}^m , écrire sa matrice dans les bases usuelles des espaces de départ et d'arrivée.

$$f(x, y, z) = x + 2y + 3z f(x) = (x, -x, 2x)$$

$$f(x, y) = (x + y, x - y) f(x, y, z) = (x + 2y + 3z, x + y + z, x - y - z)$$

$$f(x, y, z) = (x - 2y, 3y) f(x, y, z, t) = (x + y - 2z + t, x + y + t)$$

Exercice 4.2. Rappelons que $\mathbf{R}[X]_{\leq d}$ désigne l'espace vectoriel des applications polynomiales de degré au plus d. Soit D l'application de $\mathbf{R}[X]_{\leq 3}$ dans lui-même définie par f(P) = P'.

- 1. Vérifier que D est linéaire.
- 2. Écrire la matrice de D dans la base $(1, X, X^2, X^3)$ de $\mathbb{R}[X]_{\leq 3}$.
- 3. Calculer M^4 . Que pensez-vous de votre résultat?
- 4. Trouver un analogue de la question précédente et le prouver si l'on change $\mathbf{R}[X]_{\leq 3}$ en $\mathbf{R}[X]_{\leq d}$ pour un entier d quelconque?

Exercice 4.3. On considère les matrices suivantes.

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 2 & 3 \\ 2 & 1 & -3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} -2 & 3 & -4 \\ 3 & 1 & -3 \\ 1 & -2 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} -1 & -2 & 0 \\ 2 & 1 & 0 \\ -2 & 0 & 1 \\ 0 & -1 & 2 \end{pmatrix}$$

- 1. Trouver m et n tels que chacune des matrices représente une application linéaire de \mathbf{R}^n dans \mathbf{R}^m dans les bases usuelles. Écrire ces applications en termes des coordonnées.
- 2. Ecrire la transposée de chacune de ces matrices.
- 3. Etant données deux matrices A, B appartenant à l'ensemble ci-dessus, calculer ceux des produits AB, ${}^t\!AB$, $A{}^t\!B$, ${}^t\!A{}^t\!B$ qui sont définis.

Exercice 4.4. On considère la matrice suivante.

$$A = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{array}\right) .$$

On note φ l'endomorphisme de \mathbf{R}^3 qui a pour matrice A dans la base canonique de \mathbf{R}^3 , notée $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

- 1. Démontrer que $\varphi \circ \varphi(\vec{e}_1) = \varphi(\vec{e}_2) = 0$. Démontrer que $\varphi \circ \varphi(\vec{e}_3) = \varphi(\vec{e}_3)$.
- 2. En déduire A^2 . Vérifier en effectuant le produit matriciel.

- 3. Démontrer que $A^3=A^2$ sans effectuer le produit matriciel, puis vérifier en l'effectuant.
- 4. Donner une base de $\ker(\varphi)$ et une base de $\operatorname{Im}(\varphi)$

Exercice 4.5. On considère la matrice suivante.

$$A = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right) .$$

On note φ l'endomorphisme de \mathbf{R}^3 qui a pour matrice A dans la base canonique de \mathbf{R}^3 , notée $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

- 1. Pour i = 1, 2, 3, déterminer $\varphi \circ \varphi(\vec{e_i})$, puis $\varphi \circ \varphi \circ \varphi(\vec{e_i})$.
- 2. En déduire que $A^2 = A^{-1}$. Vérifier en calculant le produit matriciel.

Exercice 4.6. On considère la matrice suivante.

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right) .$$

On note φ l'endomorphisme de \mathbf{R}^3 qui a pour matrice A dans la base canonique de \mathbf{R}^3 , notée $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

- 1. Pour i = 1, 2, 3, déterminer $\varphi \circ \varphi(\vec{e_i})$, puis $\varphi \circ \varphi \circ \varphi(\vec{e_i})$.
- 2. En déduire A^2 et A^3 .
- 3. Pour $k \in \mathbb{N}^*$, donner une expression de $(I_3 + A)^k$ en fonction de k. Vérifier votre expression pour k = 3 en effectuant le produit matriciel.
- 4. Reprendre la question précédente pour $(I_3 A)^k$, puis pour $(3I_3 2A)^k$.

Exercice 4.7. On considère la matrice suivante.

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right) .$$

On note φ l'endomorphisme de \mathbf{R}^3 qui a pour matrice A dans la base canonique de \mathbf{R}^3 , notée $(\vec{e_1}, \vec{e_2}, \vec{e_3})$.

- 1. Pour i = 1, 2, 3, déterminer $\varphi \circ \varphi(\vec{e_i})$, en déduire que $\varphi \circ \varphi = 3\varphi$.
- 2. Pour $k \in \mathbb{N}^*$, démontrer par récurrence que $\varphi^{\circ k} = 3^{k-1}\varphi$.
- 3. En déduire l'expression de A^k en fonction de k.

- 4. Pour $k \in \mathbb{N}^*$, donner une expression de $(I_3 + A)^k$ en fonction de k. Vérifier votre expression pour k = 3 en effectuant le produit matriciel.
- 5. Reprendre la question précédente pour $(I_3 A)^k$, puis pour $(3I_3 2A)^k$.

Exercice 4.8. On rappelle qu'une matrice carrée est symétrique si elle est égale à sa transposée. On note \mathscr{S}_n l'ensemble des matrices carrées symétriques. On dit qu'une matrice carrée est *antisymétrique* si elle est l'opposée de sa transposée : ${}^tA = -A$. On note \mathscr{A}_n l'ensemble des matrices carrées antisymétriques.

- 1. Démontrer que les éléments diagonaux d'une matrice antisymétrique sont nuls.
- 2. Démontrer que \mathscr{S}_n et \mathscr{A}_n sont des sous-espaces vectoriels de \mathscr{M}_n .
- 3. Soit A une matrice carrée quelconque. Démontrer que $A + {}^tA$ est symétrique et $A {}^tA$ est antisymétrique.
- 4. Soit A une matrice carrée. Démontrer qu'elle s'écrit d'une et d'une seule façon comme somme d'une matrice symétrique et d'une matrice antisymétrique.
- 5. Démontrer que le produit de deux matrices symétriques A et B est symétrique si et seulement si AB = BA (on dit que A et B « commutent »).
- 6. Démontrer que le produit de deux matrices antisymétriques A et B est antisymétrique si et seulement si AB = -BA.
- 7. Soit A une matrice inversible. Démontrer que tA est inversible et que son inverse est ${}^t(A^{-1})$.
- 8. Soit A une matrice symétrique et inversible. Démontrer que son inverse est symétrique.
- 9. Soit A une matrice antisymétrique et inversible. Démontrer que son inverse est antisymétrique.
- 10. Démontrer qu'aucune matrice de \mathcal{A}_3 n'est inversible.

Exercice 4.9. On appelle *trace* d'une matrice carrée la somme de ses éléments diagonaux. On note tr(A) la trace de $A \in \mathcal{M}_n$.

- 1. Soient A, B deux matrices de \mathcal{M}_n . Démontrer que $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
- 2. En déduire que deux matrices carrées semblables ont la même trace.
- 3. Soit A une matrice carrée non nulle. Démontrer que les traces de A^tA et tAA sont strictement positives.

Exercice 4.10. Déterminer le rang des matrices suivantes.

$$\begin{pmatrix}
2 & -3 & -4 \\
3 & 1 & 5 \\
-1 & 0 & -1 \\
0 & 2 & 4
\end{pmatrix}
\qquad
\begin{pmatrix}
0 & 1 & -2 \\
1 & -1 & 7 \\
-2 & 0 & -10 \\
1 & 3 & -1
\end{pmatrix}
\qquad
\begin{pmatrix}
1 & 1 & 2 & 1 \\
-1 & 2 & 1 & -1 \\
2 & 1 & 3 & 2 \\
0 & -1 & 0 & -1
\end{pmatrix}$$

Exercice 4.11. Vérifier que les matrices suivantes sont inversibles et calculer leurs inverses.

$$\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
-2 & 1 & 2
\end{pmatrix} \qquad
\begin{pmatrix}
0 & 2 & 2 \\
-1 & 3 & -1 \\
3 & -3 & 1
\end{pmatrix} \qquad
\begin{pmatrix}
2 & -1 & 1 \\
1 & 4 & -3 \\
1 & 1 & 0
\end{pmatrix} \qquad
\begin{pmatrix}
1 & 2 & 0 \\
3 & -1 & 1 \\
0 & 1 & 2
\end{pmatrix}$$

Exercice 4.12. Pour chacune des matrices A suivantes :

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix} \quad \begin{pmatrix} -5 & 6 \\ -3 & 4 \end{pmatrix} \quad \begin{pmatrix} 5 & 2 \\ 3 & 0 \end{pmatrix} \quad \begin{pmatrix} 5 & 2 \\ -3 & 0 \end{pmatrix} \quad \begin{pmatrix} 7 & 5 \\ -6 & -4 \end{pmatrix}$$

- 1. Déterminer selon les valeurs de λ le rang de la matrice $A \lambda I_2$.
- 2. On note λ_1 et λ_2 les deux réels tels que le rang de $A \lambda_i I_2$ est 1. Pour i = 1, 2, déterminer l'ensemble des solutions du système linéaire

$$(A - \lambda_i I_2) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

On note \vec{v}_i un vecteur non nul solution de ce système.

- 3. Démontrer que (\vec{v}_1, \vec{v}_2) est une base de \mathbb{R}^2 .
- 4. Soit P la matrice de passage de la base canonique de \mathbb{R}^2 à la base (\vec{v}_1, \vec{v}_2) . Calculer P^{-1} . Démontrer que

$$P^{-1}AP = \left(\begin{array}{cc} \lambda_1 & 0\\ 0 & \lambda_2 \end{array}\right) .$$

- 5. Démontrer que la matrice $(A-\lambda_1I_2)(A-\lambda_2I_2)$ est nulle. En déduire une expression de A^{-1} en fonction de A et I_2 .
- 6. En utilisant l'expression de la question précédente, vérifier que

$$P^{-1}A^{-1}P = \left(\begin{array}{cc} 1/\lambda_1 & 0\\ 0 & 1/\lambda_2 \end{array}\right) .$$

7. Pour $k \in \mathbb{N}^*$, donner une expression de A^k en fonction de k.

Exercice 4.13. Pour chacune des matrices A suivantes :

$$\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
-2 & 1 & 2
\end{pmatrix} \qquad
\begin{pmatrix}
0 & 2 & 2 \\
-1 & 3 & -1 \\
3 & -3 & 1
\end{pmatrix} \qquad
\begin{pmatrix}
2 & -1 & 1 \\
1 & 4 & -3 \\
1 & 1 & 0
\end{pmatrix}$$

- 1. Déterminer selon les valeurs de λ le rang de la matrice $A \lambda I_3$.
- 2. On note λ_1 , λ_2 et λ_3 les trois réels tels que le rang de $A \lambda_i I_3$ est 2. Pour i = 1, 2, 3, déterminer l'ensemble des solutions du système linéaire

$$(A - \lambda_i I_3) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} .$$

On note \vec{v}_i un vecteur non nul solution de ce système.

- 3. Démontrer que $(\vec{v}_1, \vec{v}_2, \vec{v}_3)$ est une base de \mathbb{R}^3 .
- 4. Soit P la matrice de passage de la base canonique de \mathbf{R}^3 à la base $(\vec{v}_1, \vec{v}_2, \vec{v}_3)$. Calculer P^{-1} . Démontrer que

$$P^{-1}AP = \left(\begin{array}{ccc} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{array} \right) .$$

- 5. Démontrer que la matrice $(A \lambda_1 I_3)(A \lambda_2 I_3)(A \lambda_3 I_3)$ est nulle. En déduire une expression de A^{-1} en fonction de A^2 , A et I_3 .
- 6. En utilisant l'expression de la question précédente, vérifier que

$$P^{-1}A^{-1}P = \begin{pmatrix} 1/\lambda_1 & 0 & 0\\ 0 & 1/\lambda_2 & 0\\ 0 & 0 & 1/\lambda_3 \end{pmatrix} .$$

7. Pour $k \in \mathbb{N}^*$, donner une expression de A^k en fonction de k.