JF PY1T10 Special Relativity

Lecture 13:

Special Relativity, Electricity and Magnetism

Electric Force

Coulomb's Law:

Force which as *stationary* charge q_1 exerts on a *stationary* charge q_2 :

Source charge

Force on q_2 :

$$F = k \frac{q_1 q_2}{r^2} \hat{r}$$

where
$$k = \frac{1}{4\pi\epsilon_0}$$
, $\epsilon_0 = 8.85 \times 10^{-12} \text{Fm}^{-1}$

Coulomb's law also holds when q_2 is moving, as long as q_1 is stationary.

Magnetic Field (\vec{B})

 \overline{B} -field is generated by a moving charge, e.g. a current in a wire

Charge moving with velocity \vec{u} in \vec{B} is subject to magnetic force:

$$\vec{F}_{mag} = q\vec{u} \times \vec{B}$$

This equation defines \overline{B} in terms of a force which is proportional to velocity and charge.

Maxwell's Equations (1864)

Defined relations between \overline{E} and \overline{B} for stationary and moving charges.

Developed before SR but still:

- Correct as $v \rightarrow c$
- Describes electromagnetic (e.m.) phenomena in *any* inertial frame

But \vec{E} and \vec{B} are <u>not</u> the same in different inertial frames.

Einstein's Insight

" What led me more or less directly to the special theory of relativity was the conviction that the electromotive force acting on a body moving in a magnetic field was nothing else than an electric field"

Both at rest:

 $q_1 igordam{\vec{F}_{elec}}{\vec{r}_{elec}}$ only

 $q_2 \bigcirc \vec{E}$ only

Both moving:

 $q_1 \longrightarrow \vec{F}_{elec} + \vec{F}_{mag}$

 $q_2 \longrightarrow \vec{E} \text{ and } \vec{B}$

What appears as \overrightarrow{B} in one frame is nothing else but \overline{E} when viewed from another frame.

Use S.R. to specify this link between \vec{E} and \vec{B}

Einstein's Insight

Consider frame in which source charge is at rest.

Coulomb's law tells us the force on test charge q_2 .

Now: Find force on q_2 in another frame using transformation of force.

Identify \overrightarrow{B} from component of force on q_2 which <u>depends</u> on velocity of q_2 Identify \overrightarrow{E} from component of force on q_2 which is <u>independent</u> of velocity of q_2

Invariance of charge: Charge not changed by motion of carrier

[Evidence: Take neutral atoms where $\sum q_i = 0$. Use heat to speed up the e^- . Still $\sum q_i = 0$. Atoms are neutral even though electrons in different orbits have different velocities.]

Force on a stationary test charge q_2 due to moving source q_1

Source q_1 with $v \mid\mid x$:

Shift to S', in which q_1 is now at rest:

In S', as source is at rest, we can apply Coulomb's Law:

$$F_y' = \frac{kq_1q_2}{y'^2}, F_y' = F_z' = 0$$

Force on a stationary test charge q_2 due to moving source q_1

Transform back to inertial frame *S*:

$$F_{y} = \frac{F_{y}'}{\gamma \left(1 + \frac{vu_{x}'}{c^{2}}\right)} = \frac{F_{y}'}{\gamma \left(1 - \frac{v^{2}}{c^{2}}\right)} = \gamma F_{y}'$$

$$F_x = F_z = 0$$
 (as $u' = u'_x$ and $F' = F'_y$, $\therefore \overline{F'}.\overline{u'} = 0$

Also, y' = y (by construction)

$$\Rightarrow F_{y} = \gamma \frac{kq_{1}q_{2}}{y^{2}}$$

This is Coulomb's law, now modified for moving source charge.

Note: This is for a specific case when the line from the moving source charge to the stationary test charge is \perp to direction of motion of the source charge. It can be generalized for any point.

Force on a moving test charge q_2 due to moving source q_1

Now assume both source q_1 and test q_2 are moving with velocity $v \mid\mid x$ at t=0

S frame:

S' frame: Both q_1 and q_2 are at rest.

In S', as source is at rest, we can apply Coulomb's Law:

$$F_y' = \frac{kq_1q_2}{y'^2}, F_y' = F_z' = 0, \overrightarrow{u'} = 0$$

Force on a moving test charge q_2 due to moving source q_1

Again, transform back into *S*:

$$F_{y} = \frac{F_{y}'}{\gamma \left(1 + \frac{vu_{x}'}{c^{2}}\right)} = \frac{1}{\gamma} F_{y}', \qquad F_{x} = F_{z} = 0$$

$$F_{y} = \frac{1}{\gamma} \frac{kq_{1}q_{2}}{y^{2}} \left(\operatorname{as} \overrightarrow{u'} = 0\right)$$

Compare with previous situation (where q_2 was stationary, and q_1 was moving. We had:

$$F_{y} = \gamma \frac{kq_1q_2}{y^2}$$

Magnetism

Therefore, we have an <u>extra</u> force on q_2 due to its velocity in S. This is the **magnetic force** on q_2 .

$$F_{mag} = \frac{kq_1q_2}{y^2} \left(\frac{1}{\gamma} - \gamma\right)$$

$$= -\frac{v^2}{c^2} \gamma \left(\frac{kq_1q_2}{y^2}\right)$$

$$F_{mag} = -\frac{v^2}{c^2} F_{elec}$$

$$F_{mag}$$
 is given by: $F_{mag} = q_2 \vec{v} \times \vec{B}$
If $\vec{v} \perp \vec{B}$: $F_{mag} = q_2 vB$

What direction is \vec{B} ?

Magnetism

If $\vec{B} \perp \vec{v}$ (as expected for the magnetic field due to current in direction of \vec{v} of q_1) then:

 F_{mag} is in the opposite direction to F_{elec}

This is consistent with $F_{mag} = -\frac{v^2}{c^2} F_{elec}$

$$|qvB| = \left| \frac{v^2}{c^2} \gamma \left(\frac{kq_1 q_2}{y^2} \right) \right|$$

But $F_{elec} = q_2 E$ where $E = \gamma \frac{kq_1}{v^2}$

$$\Rightarrow B = \frac{1}{c^2} vE$$

Also, the figure suggests \vec{B} is parallel to $\vec{v} \times \vec{E}$:

Thus we can write: $\vec{B} = \frac{1}{c^2} \vec{v} \times \vec{E}$, where $\vec{E} = \gamma \frac{kq_1}{y^2} \hat{n}$ and $k = \frac{1}{4\pi\epsilon_0}$

 \overline{B} depends on the velocity of q_1

$$\left| F_{mag} \right| = \frac{v^2}{c^2} \left| F_{elec} \right|$$

Usually $F_{elec} \gg F_{mag}$ so we cannot easily observe F_{mag} .

If we get rid of F_{elec} we should be able to observe F_{mag} . We can do this by neutralizing with positive charge.

Consider arrangement where $F_{elec}=0$, e.g. electron current in metal wire where the positive ions are at rest. Overall the wire is neutral – the positive and negative charges cancel.

$$e^{-} + e^{-} + e^{-} + e^{-} + e^{-} + e^{-}$$

 e^- move with drift velocity, v

Consider a moving test charge, outside the wire, with charge q_2 , and moving || to wire the same velocity, v:

The net \overline{E} at $q_2=0$ (the electric fields from the electrons and positive ions cancel).

If the test charge was stationary, it would therefore feel no force. As it is moving, it will feel a magnetic field due to the moving electrons.

Jump to a reference frame S' moving with velocity v w.r.t S. Now q_2 is stationary, the e^- are stationary, and the positive ions are moving with velocity -v.

In S', the distance between electrons will have increased [by factor $^{1}/_{\gamma}$], but the distance between ions will have decreased [by factor γ] (using Lorentz contraction).

They are no longer equal and opposite! Have a net charge density of $D' = D(\gamma - 1/\gamma)$.

In S', the test charge is stationary, and the force on it, F', depends only on the electric field of both positive and negative charges.

The net force on q_2 is:

$$F_y' = \frac{2kD'}{r}q_2 = \frac{2kD}{r}\left(\gamma - \frac{1}{\gamma}\right)q_2$$

Transform back to *S*:

$$F_{y} = \frac{F_{y}'}{\gamma} = \frac{2kD}{r} \left(1 - \frac{1}{\gamma^{2}} \right) q_{2} = \frac{v^{2}}{c^{2}} \left(\frac{2kD}{r} \right) q_{2} = \frac{v^{2}}{c^{2}} E q_{2}$$

Since there is no net electric force in S, this force F_y must be entirely the magnetic force.

So the magnetic field observed in S is related to the electric field observed in S.

The electric field in S' arises from Lorentz contraction effects!

In a typical copper wire, the drift velocity is:

$$v = 6 \times 10^{-2} \text{cm/sec} = 0.6 \text{mm/sec}$$

i.e.,
$$\frac{v}{c} = 2 \times 10^{-12}$$

The magnetic field can be ascribed to the effect of seemingly negligible relativistic contraction effects at low speeds!