DANIEL HAEHN

103 Holden Green Cambridge, MA 02138

+1.617.701.root haehn@seas.harvard.edu https://danielhaehn.com I am a biomedical imaging and visualization researcher who investigates how the study of brain connectivity and machine perception can help advance the understanding of biologically inspired artificial intelligence.

Education

2013–present PhD Candidate in Computer Science, Harvard University Cambridge, MA

Analyzing Brain Connectivity and Computing Machine Perception, expected graduation May 2019

Advisor: Hanspeter Pfister

Committee: Steven Gortler, Finale Doshi-Velez, Scott Kuindersma, Jeff W. Lichtman

2010 Diplom (MSc) in Medical Computer Science, University of Heidelberg Germany

Signal- and Image Processing

Thesis: Coronary Artery Centerline Extraction Advisors: Hartmut Dickhaus, Ron Kikinis

2007 Vordiplom (BSc) in Medical Computer Science, University of Heidelberg Germany

with Honors, rank #1 of class, all study fees waived

Experience

Summer 2017 Apple, Inc. Cupertino, CA

Research Intern in Data Science

Summer 2014 Mental Canvas New York City, NY

Research Intern in Computer Graphics

2011–2013 Boston Children's Hospital Boston, MA

Research Software Developer III, Fetal Neonatal Neuroimaging and Developmental Science Center

Advisors: Rudolph Pienaar, P. Ellen Grant

2010–2011 University of Pennsylvania Philadelphia, PA

Research Scholar, Section for Biomedical Image Analysis

Advisor: Kilian Pohl

2009 German Cancer Research Center (DKFZ) and BioQuant Center Heidelberg, Germany

Research Assistant, Biomedical Computer Vision and Experimental Radiology Research Groups

Advisors: Stefan Wörz, Hendrik von Tengg-Kobligk

2008–2009 Brigham and Women's Hospital Boston, MA

Fellow, Department of Radiology and the Surgical Planning Laboratory

Advisors: Ron Kikinis, Steve Pieper, Luca Antiga

Publications

2019	Brian Matejek, <u>Daniel Haehn</u> , Haidong Zhu, Donglai Wei, Toufiq Parag, and Hanspeter Pfister. Biologically-Constrained Graphs for Global Connectomics Reconstruction. <i>IEEE Computer Vision and Pattern Recognition (CVPR)</i> .
2018	<u>Daniel Haehn</u> , James Tompkin, and Hanspeter Pfister. Evaluating 'Graphical Perception' with CNNs . <i>IEEE Transactions on Visualization and Computer Graphics (IEEE VIS)</i> .
2018	<u>Daniel Haehn</u> , Verena Kaynig, James Tompkin, Jeff W. Lichtman, and Hanspeter Pfister. Guided Proofreading of Automatic Segmentations for Connectomics . <i>IEEE Computer Vision and Pattern Recognition (CVPR)</i> .
2017	<u>Daniel Haehn</u> , John Hoffer, Brian Matejek, Adi Suissa-Peleg, Ali K. Al-Awami, Lee Kamentsky, Felix Gonda, Eagon Meng, William Zhang, Richard Schalek, Alyssa Wilson, Toufiq Parag, Johanna Beyer, Verena Kaynig, Thouis R. Jones, James Tompkin, Markus Hadwiger, Jeff W. Lichtman, and Hanspeter Pfister. Scalable Interactive Visualization for Connectomics . <i>MDPI Informatics</i> .
2017	Brian Matejek, <u>Daniel Haehn</u> , Fritz Lekschas, Michael Mitzenmacher, and Hanspeter Pfister. Compresso: Efficient Compression of Segmentation Data For Connectomics. <i>Medical Image Computing and Computer-Assisted Intervention (MICCAI)</i> .
2017	Felix Gonda, Verena Kaynig, Thouis R. Jones, <u>Daniel Haehn</u> , Jeff W. Lichtman, Toufiq Parag, and Hanspeter Pfister. ICON: An Interactive Approach to train Deep Neural Networks for Segmentation of Neuronal Structures. <i>IEEE International Symposium on Biomedical Imaging (ISBI)</i> .
2017	Rudolph Pienaar, Ata Turk, Jorge Bernal-Rusiel, Nicolas Rannou, <u>Daniel Haehn</u> , P. Ellen Grant, and Orran Krieger. CHIPSA Service for Collecting, Organizing, Processing, and Sharing Medical Image Data in the Cloud. <i>VLDB Workshop on Data Management and Analytics for Medicine and Healthcare</i> .
2016	Adi Suissa-Peleg, <u>Daniel Haehn</u> , Seymour Knowles-Barley, Verena Kaynig, Thouis R. Jones, Alyssa Wilson, Richard Schalek, Jeff W. Lichtman, and Hanspeter Pfister. <u>Automatic Neural Reconstruction from Petavoxel of Electron Microscopy Data</u> . <u>Microscopy and Microanalysis</u> .
2016	Ali K. Al-Awami, Johanna Beyer, <u>Daniel Haehn</u> , Narayanan Kasthuri, Jeff W. Lichtman, Hanspeter Pfister, and Markus Hadwiger. <u>NeuroBlocksVisual Tracking of Segmentation and Proofreading for Large Connectomics Projects</u> . <i>IEEE Transactions on Visualization and Computer Graphics (IEEE VIS)</i> .
2016	Richard Schalek, Dong Lee, Narayanan Kasthuri, Adi Peleg, Thouis R. Jones, Verena Kaynig, <u>Daniel Haehn</u> , Hanspeter Pfister, David Cox, and Jeff W. Lichtman. Imaging a 1 mm ³ Volume of Rat Cortex using a MultiBeam SEM. <i>Microscopy and Microanalysis</i> .
2015	Kiho Im, Banu Ahtam, <u>Daniel Haehn</u> , Jurriaan M. Peters, Simon K. Warfield, Mustafa Sahin, and P. Ellen Grant. <u>Altered Structural Brain Networks in Tuberous Sclerosis Complex</u> . <i>Cerebral Cortex</i> .
2015	Rudolph Pienaar, Nicolas Rannou, Jorge Bernal, <u>Daniel Haehn</u> , and P. Ellen Grant. ChRISA webbased Neuroimaging and Informatics System for Collecting, Organizing, Processing, Visualizing and Sharing of Medical Data. <i>IEEE Engineering in Medicine and Biology Society (EMBC)</i> .

Publications (continued)

2014	<u>Daniel Haehn</u> , Seymour Knowles-Barley, Mike Roberts, Johanna Beyer, Narayanan Kasthuri, Jeff W. Lichtman, and Hanspeter Pfister. Design and Evaluation of Interactive Proofreading Tools for Connectomics . <i>IEEE Transactions on Visualization and Computer Graphics (IEEE VIS)</i> .
2013	<u>Daniel Haehn</u> , Nicolas Rannou, P. Ellen Grant, and Rudolph Pienaar. Slice:Drop Collaborative Medical Imaging in the Browser. <i>ACM SIGGRAPH Computer Animation Festival</i> .
2012	<u>Daniel Haehn</u> , Nicolas Rannou, Banu Ahtam, P. Ellen Grant, and Rudolph Pienaar. Neuroimaging in the Browser using the X Toolkit. <i>Frontiers in Neuroinformatics</i> .
2012	Myong-sun Choe, Silvia Ortiz-Mantilla, Nikos Makris, Matt Gregas, Janine Bacic, <u>Daniel Haehn</u> , David Kennedy, Rudolph Pienaar, Verne S. Caviness Jr, April A. Benasich, and P. Ellen Grant. Regional Infant Brain Development: an MRI-based Morphometric Analysis in 3 to 13 month olds. <i>Cerebral Cortex</i> .
2012	Arno Klein, Forrest S. Bao, Yrjö Häme, Eliezer Stavsky, Joachim Giard, <u>Daniel Haehn</u> , Nolan Nichols, and Satrajit S. Ghosh. Mindboggle: Automated Human Brain MRI Feature Extraction, Labeling, Morphometry, and Online Visualization. <i>Frontiers in Neuroinformatics</i> .
2012	Arno Klein, Nolan Nichols, and <u>Daniel Haehn</u> . Mindboggle 2 interface: Online Visualization of Extracted Brain Features with XTK. <i>Frontiers in Neuroinformatics</i> .

Mentoring

2018-present	Vincent Casser, Graduate student (MSc) at Harvard University
2018-present	Ian Svetkey, Intern at Harvard University
2016	Eagon Meng, Undergraduate student at Harvard University
2016	Omar Shaikh, Intern at Harvard University
2015-2017	John Hoffer, Undergraduate student at Harvard University
2015	William Zhang, Intern at Harvard University
2013	Jay Andrew Robinson, Intern at Boston Children's Hospital (co-mentored)
2013	Emily Seibring, Intern at Boston Children's Hospital (co-mentored)
2010-2011	Suares Tamekue, Intern at Brigham and Women's Hospital (co-mentored)

Teaching

2018-present	TEALS Volunteer for AP Computer Science at Cambridge Rindge and Latin School
2016	Technical Assistant for the Deep Learning mini-course at the Harvard IACS Compute Fest
2015	Teaching Fellow for the Harvard CS171 Visualization course
2008	Workshop for Advanced Microcontroller Programming, University of Bratislava, Slovakia
2008	Workshop for Microcontroller Programming at the University of Tbilisi, Georgia (Europe)
2004-2008	Teaching Assistant for the Microcontrollers in EXperiment and LEarning (MEXLE) educational plat-
	form, Heilbronn University, Germany

Awards

2015-2019	Winkler Scholarship
2013-2019	Harvard University Fellowship
2013	Real-Time Live! presentation of Slice:Drop at SIGGRAPH
2012	INCF Neuroinformatics Spotlight Award for XTK
2012	Mozilla Hacks WebGL Dev Derby Runner-up for Slice:Drop
2012	Visualizing.org VisWeek Challenge Winner with Slice:Drop
2010	1st Prize for End User Tutorial at the National Alliance of Medical Image Computing (NA-MIC)
2008-2009	Karl Steinbuch Foundation Scholarship
2007-2009	Thomas Gessmann Foundation Scholarship

Presentations

2019	Invited speaker at the MIT McGovern Institute: The Performance Gap between the Brain and AI
2018	Paper presentation at IEEE Visualization: Evaluating 'Graphical Perception' with CNNs
2018	Harvard Visual Computing Group meeting presentation: The 7 Levels of Open Science
2018	Invited speaker at Brown CS: Analyzing Brain Connectivity and Computing Machine Perception
2018	Invited speaker at IBM Research (AI Systems Day): Evaluating 'Graphical Perception' with CNNs
2017	Harvard Visual Computing Group meeting presentation: Guided Proofreading of Automatic Segmentations for Connectomics
2016	Invited speaker at the IEEE Visualization Doctoral Colloquium: Proofreading for Connectomics
2015	Harvard Lichtman Lab meeting presentation: Interactive Proofreading Tools for Connectomics
2014	Paper presentation at IEEE Visualization: Design and Evaluation of Interactive Proofreading Tools
	for Connectomics
2014	Harvard Visual Computing Group meeting presentation: Proofreading Tools for Connectomics
2014	Invited speaker at the MIT Computer Graphics Group: Web-based Visualization of Scientific Data
2014	Harvard Visual Computing Group meeting presentation: Interactive Proofreading with Dojo
2014	Harvard Lichtman Lab meeting presentation: Web-based Visualization and Proofreading for Con-
2012	nectomics
2013	Harvard Visual Computing Group meeting presentation: Web-based Scientific Visualization
2013	Invited speaker at Visualizing Biological Data (VIZBI): Physiology & Function
2012	Spotlight presentation at INCF Neuroinfomatics: Neuroimaging in the Browser using the XToolkit
2012	Invited speaker at WebGL Camp Orlando: WebGL for Baby Brains

Service and Outreach

2019-present	Voluntary Advisor for the AP Data Science Curriculum in Cambridge Public Schools
2018-present	Head Coach for Cambridge Youth Soccer
2018	Volunteer+Presentation Facilitator at the Cambridge 8th Grade Science & Engineering Showcase
2013-present	Social Media Coordinator at the Harvard Visual Computing Group

Service and Outreach (continued)

2018-present	Reviewer for Manning Publications
2016-present	Reviewer for Frontiers in Neuroinformatics, ISMRM, Neuroinformatics, Frontiers in Neural Circuits, ACM SIGCHI, IEEE CVPR
2013	Technical Reviewer for Matsuda and Lea: WebGL Programming Guide, Addison-Wesley
2014-present	Principal Investigator for multiple IRB approved research studies by the Harvard Human Research Protection Program
2007-2010	President of the Student Computer Club at Heilbronn University, StuWoNet e.V.
2007–2009	Voluntary Project Lead of RANDI2, a randomization software for clinical trials at the German Cancer Research Center (DKFZ), coordinating 15+ developers
1997–1999	Vice-President of The German Computer Freaks, a National Cyber Security Club

My Erdős Number is 3.