الموضوع:ظا لهرة إنكسار الضوء .

<u>1- قانوني الانعكاس - تذكير</u>

• ظاهرة انعكاس الضوء:

- انعكاس الضوء هو الظاهرة التي تتمثل في رجوع الضوء في نفس وسط انتشاره عندما يلاقي سطحا فاصلا بين هذا الوسط ووسط آخر، يسمى هذا السطح الفاصل بين الوسطين بالمرآة، و في الحالة التي يكون فيها هذا السطح مستويا يسمى عندها بمرآة مستوية.
- كأمثة عن مرايا مستوية نذكر: صفيحة معدنية مصقولة بشكل جيد ، ماء راكد ، صفيحة زجاجية أحد وجهيها يكون مفضفض
 - نمثل المرآة المستوية بقطعة مستقيمة ، يظلل وجهها غير العاكس ، كما موضح في الشكل التالي :

- إذا سلطنا حزمة ضوئية على مرآة مستوية نلاحظ أن هذه الحزمة تنعكس كما مبين في الشكل التالي:

- يسمى الشعاع الضوئي (SI) بـ شعاع ضوئي وارد .
- يسمى الشعاع الضوئي (IR) بشعاع ضوئي منعكس.
- م الزاوية \hat{i} بين الشعاع الوارد و الناظم (NI) بروية الودود .
- تسمى الزاوية \hat{r} ، بين الشعاع المنعكس و الناظم (NI) بـ زاوية الإنعكاس .

• قانوني الإنعكاس <u>:</u>

<u>القانون الأول :</u>

الشعاع الضوئي الوارد و الشعاع الضوئي المنعكس في ظاهرة الإنعكاس يقعان في مستوي واحد .

القانون الثاني <u>:</u>

 $\hat{i}=\hat{r}$: أي تكون مساوية الإنعكاس ، تكون مساوية الإنعكاس مهما كانت زاوية الورود ، أي

<u>2- قانوني الانكسار</u>

<u>• تعاریف :</u>

- انكسار الضوء هو ظاهرة فيزيائية يغير فيها الضوء فجأة اتجاهه ، بعد أن يجتاز السطح الفاصل بين وسطين شفافين (الشكل).

- يسمى السطح الفاصل بين وسطين شفافين بالكاسر ، و إذا كان هذا السطح مستويا ، نقول عنه كاسر مستوي .
 - كأمثلة عن الكاسر المستوي نذكر: السطح الحر للماء، صفيحة زجاجية شفافة.
 - يسمى الشعاع (SI) الشعاع الضوئي الوارد .
 - يسمى الشعاع (IR) الشعاع الضوئي المنكسر .
 - تسمى الزاوية أ بين الشعاع الوارد و الناظم (NI) بزاوية الورود .
 - تسمى الزاوية \hat{r} بين الشعاع المنكسر و الناظم (\hat{NI}) بزاوية الإنكسار

قانوني الإنكسار:

القانون الأول :

- الشعاع الضوئي الوارد و الشعاع الضوئي المنكسر في ظاهرة الانكسار يقعان في مستوي واحد .

القانون الثاني:

- تكون النسبة $\frac{\sin i}{\sin r}$ بالنسبة لوسطين شفافين متجانسين ثابتة مهما كانت زاوية الورود
 - يمكن أن نعبر عن هذا القانون كما يلى :

$$\frac{\sin i}{\sin r} = n$$

- الثابت n يدعى القرينة النسبية للوسط الثاني إلى قرينة انكسار الوسط الأول و نكتب:

$$n = \frac{n_2}{n_1}$$

حيث n_1 تدعى قرينة الإنكسار المطلقة للوسط الأول الذي حدث فيه الورود و n_2 قرينة الإنكسار المطلقة للوسط الثاني الذي حدث فيه الإنكسار ، و منه يمكن صيغة القانون الثاني للانكسار كما يلي :

$$n_1 \sin i = n_2 \sin r$$

- إذا كان الوسط الأول هو الهواء تكون قرينة انكساره $n_1=1$. و يكتب القانون الثاني في هذه الحالة كما يلي :

$$\sin i = n \sin r$$

حيث n قرينة انكسار الوسط الثاني .

قيم قرائن الإنكسار لبعض المواد:

قرينة الإنكسار n	المادة
1	الهواء
1.31	الجليد
1.33	الماء
1.36	الكحول الإيثيلي
1.38	الزجاج العادي
1.46	زجاج الكوارتز
1.52	زجاج الكروان
158	زجاج الفلينت الخفيف
2.42	الألماس

<u>التمرين (1) :</u>

يجتاز شعاع ضوئى ثلاث أوساط شفافة:

- وسط-1 قرينة أنكساره $n_1 = 1$ (الهواء)
 - $\hat{n}_2 = 1.5$ وسط-2 قرينة انكساره
- وسط-3 قرينة انكساره $n_3 = 1.2$ (الشكل) .

1-سير الأشعة في (الشكل-1) تحتوي على خطأ ، أعد رسم سير الأشعة بشكل صحيح في الشكل على ورقتك .

. $r_1 = 20^0$ هي الوسط-2 هي الانكسار في الوسط-2

أـ أحسب زاوية الورود i_1 في الوسطـ1 .

ب- استنتج زاوية الوورد i_2 في الوسط-2.

 r_2 أحسب زاوية الانكسار r_2 في الوسط r_2

<u>3- الانكسار الحدى و الانعكاس الكلي</u>

الإنكسار الحدي :

عندما تقترب زاوية الورود من القيمة 90 0 تنتهي زاوية الإنكسار نحو قيمة معينة ثابتة نعتبرها $_0$ ، تدعى هذه الزاوية **زاوية الإنكسار الحدي** . بعبارة أخرى تغير زاوية الورود i من 0 0 إلى 0 0 ، يقابلها تغير في زاوية الانكسار من 0 0 إلى قيمة حدية 0 0 . (الشكل) .

• عبارة القيمة الحدية للإنكسار:

تزداد زاوية الانكسار r كلما ازدادت زاوية الورود i و عندما تقترب زاوية الورود إلى القيمة $i=90^\circ$ تنتهي زاوية الإنكسار إلى زاوية ثابتة ندعو ها الزاوية الحدية للانكسار يرمز لها بـ ℓ .

- بتطبيق القانون الثاني للانكسار:

$$n_1 \sin i = n_2 \sin r$$

 $n_1 \sin 90^\circ = n_2 \sin \ell$
 $n_1 = n_2 \sin \ell$

إذن :

$$\sin \ell = \frac{n_1}{n_2}$$

<u>● الإنعكاس الكلي :</u>

- نعتبر شعاع ضوئي ينتقل من وسط شفاف (1) قرينة انكساره n_1 إلى وسط شفاف (2) قرينة انكساره n_2 حيث يكون $n_1 > n_2$ أي أن الوسط الشفاف (1) أكثر كسرا من الوسط الشفاف (2) .

في هذه الحالة نلاحظ أنه إذا تغيرت زاوية الورود من 0° إلى الزاوية الحدية ℓ ، فإن زاوية الانكسار تتغير من 0° إلى 0° كما مبين في الشكل التالي و عندما تكون زاوية الورود مساوية لمقدار القيمة الحدية ℓ) ، تكون زاوية الإنكسار مساوية للقيمة 0° (الشكل) .

الخرمة عند الورود أكبر من الزاوية الحدية $(i>\ell)$ ، فإنه لا تعود هناك حزيمة منكسرة ، حيث تنعكس الحزمة الواردة كليا (الشكل) ، و تدعى هذه الظاهرة بالإنعكاس الكلى .

ملاحظة:

 $\frac{r-r}{r}$ و منه r=0 ، هذا يعني أنه إذا كان الشعاع الوارد r=0 ، هذا يعني أنه إذا كان الشعاع الوارد ناظمي على الكاسر المستوي ، فإنه لا ينحرف عند دخوله الوسط (2) (الشكل) .

التمرين (2) :

 n_1 نعتبر شعاع ضوئي ، يخترق وسط- n_1 شفاف قرينة انكساره n_1 ، و عند خروجه منه يخترق وسط- n_2 شفاف قرينة انكساره n_2 .

أ- اذكر نص قانوني الإنكسار .

ب- بين برسم مسار الشعاع الضوئي ، داخل الوسط الثاني في الحالتين التاليتين : $n_2 < n_1$ ، $n_2 > n_1$. قارن بين $n_2 < n_1$ ، $n_2 > n_1$. قارن بين $n_2 < n_1$ ، داخل الوسط الثاني في الحالتين التاليتين $n_2 < n_1$ ، داخل الوسط الثاني في الحالتين التاليتين $n_2 < n_1$ ، داخل الوسط الثاني في الحالتين التاليتين التاليتين التاليتين $n_2 < n_1$ ، داخل الوسط الثاني في الحالتين التاليتين التاليتين

 $n_1=1$. $n_2=1$ عبارة عن زجاج عادي قرينة انكساره $n_1=1.5$ و الوسط-2 عبارة عن الهواء $n_2=1$. $i=20^0$ ، إذا كانت زاوية الورود $i=20^0$.

ب- أحسب زاوية الإنكسار r عندما تكون زاوية الورود $i=41.82^0$ ، ماذا تستنتج ؟

جــ ماذا يحدث لو تكون زاوية الورود أكبر من 41.82^0 . مثل برسم سير الشعاع الضوئي عبر الوسطين .

<u>4- انحراف الضوء في موشور</u>

• تعريف الموشور :

- الموشور هو كل وسط شفاف متجانس محدود بمستويين غير متوازيين ، يسمى كل من هذين المستويين وجهي الموشور ، و يسمى خط تقاطعهما بحرف الموشور ، كما تسمى الزاوية المحصورة بينهما بزاوية الموشور . (الشكل) .

- يسمى المستوي العمودي على الحرف بـ مستوي المقطع الرئيسي و سوف لن نأخذ بعين الإعتبار إلا الأشعة الموجودة في هذا المستوي .

● علاقات الموشور :

■ علاقة بين A ، r' ، r •

- من المثلث ('O'II') يكون:

$$r_1 + i_2 + (\pi - A) = \pi$$

(لأن مجموع زوايا المثلث مساوي 180° أي π راديان) .

ومنه:

$$r_1 + i_2 + \pi - A = \pi$$

إذن :

$$r_1 + i_2 = A$$

■ علاقة بين r ، i ، n : - بتطبيق قانون الانكسار الثاني عند دخول الشعاع الضوئي الوارد إلى الموشور :

 $n_0 \sin i_1 = n \sin r_1$

و حيث أن $n_0 = 1$ (قرينة انكسار الهواء) يصبح:

 $\sin i_1 = n \sin r_1$

■ علاقة بين n ': i' · r' · n :

 - بتطبيق قانون الانكسار الثاني عند خروج الشعاع الضوئي المنكسر من الموشور :

 $n \sin i_2 = n_0 \sin r_2$

و حيث أن $n_0 = 1$ (قرينة انكسار الهواء) يصبح:

 $n \sin i_2 = \sin r_2$

<u>4</u> علاقة بين A · r₂ · i₁ · D : 4 اعتمادا على الشكل الهندسي :

 $(r_1 + D_1)$ ، i_1 و حيث أن الزاويتين $\tilde{S}I$ عندما ينكسر في النقطة I يعاني انحراف I ، و حيث أن الزاويتين متقابلتين بالرأس يكون: $r_1 + D_1 = i_1 \rightarrow D_1 = i_1 - r_1$ ($r_2 - D_2$) ، i_2 عندما ينكسر في النقطة 'I يعاني انحراف D_2 ، وحيث أن الزاويتين D_2 عندما ينكسر في النقطة 'I يعاني انحراف و حيث أن الزاويتين عندما ينكس في النقطة 'I يعاني المراس يكون :

$$r' = i' - D_2$$

ومنه:

 $D_2 + i_2 = r_2 \rightarrow D_2 = r_2 - i_2$

- الإنحراف الكلى D الذي يعانيه الشعاع الضوئي الخارج من الموشور هو:

$$D = D_1 + D_2$$

و منه:

 $D = (i_1 - r_1) + (r_2 - i_2)$

$$D = i_1 - r_1 + r_2 - i_2$$

$$D = i_1 + r_2 - r_1 - i_2$$

$$D = i_1 + r_2 - (r_1 + i_2)$$

: يصبح لدينا يصبح ($r_1 + i_2 = A$) يصبح لدينا

$$D = i_1 + r_2 - A$$

نتيجة

في موشور قرينة انكساره n و زاويته A تتحقق العلاقات التالية:

 $\sin i_1 = n \sin r_1$ $n \sin i_2 = \sin r_2$ $r_1 + i_2 = A$ $D = i_1 + r_2 - A$

• شرطي بروز الشعاع الضوئي من الموشور :

<u>الشرط الأول :</u>

ما أن الشعاع الضوئي ينعكس كليا من أجل $i_2>\ell$ ، و بالتالي من المؤكد أنه لا يحدث له ذلك من أجل :

 $i_2 \le \ell$ (1)

- من جهة أخرى نعلم أنه يحدث انكسار على الوجه الأول عندما يكون:

 $r_1 < \ell$ (2)

من (1) و (2) يمكن كتابة العلاقة:

 $r_1 + i_2 \le 2\ell$

- من قوانين الموشور لدينا : $r_1 + i_2 = A$ و منه يمكن كتابة :

A < 2ℓ

و هو الشرط الأول لبروز الأشعة الضوئية من الموشور .

- حتى ببرز الشعاع الوارد من الموشور ، ينبغي أن يصل هذا الشعاع إلى الوجه الثاني للموشور ، بزاوية ورود أصغر أو تساوي الزاوية الحدية للإنكسار (٤) ، التي تميز مجموعة مادة الموشور و الهواء ، و عليه لا يمكن لأي شعاع وارد أن يخرج من موشور إلا إذا كانت زاوية هذا الموشور A أقل من ضعفي الزاوية $A > 2\ell$: أي الكرنكسار ، أي الحدية للإنكسار

الشرط الثاني : الشرط الثاني : $r' < \ell$ يحدث بروز الشعاع الضوئي من الموشور يجب أن يكون : ℓ .

و من قوانين الموشور لدينا:

$$r_1 + i_2 = A \rightarrow i_2 = A - r_1$$

يصبح لدينا:

$$A \text{-} r_1 \leq \ell \to A \text{-} \ell \leq r_1 \ \to \ r_1 \geq A \text{-} \ell$$

و من خواص الدالة sin يمكن كتابة:

 $\sin r_1 > \sin(A - \ell)$

- بضرب الطرفين في n نجد:

 $n \sin r_1 > n \sin (A - \ell)$

و حيث أن n sin r = sin i (حسب القانون الثاني للإنكسار) يصبح:

 $\sin i_1 > n \sin (A - \ell)$

من اجل $i = i_0$ يكون الشعاع البارز مماسيا للوجه الثاني للموشور و منه نجد :

$$\sin i_0 \geq \sin (A - \ell)$$

- القيم اللازم إعطائها لزاوية الورود حتى يكون هناك بروز بعد تحقق الشرط الأول ، هي القيم التي تحقق العلاقة التالبة :

$$\sin i_0 \ge \sin (A - \ell)$$

حيث i_0 هي أدنى قيمة لزاوية الورود على الوجه الأول للموشور .

الانعكاس الكلى في الموشور:

 $0 \leq i_1 \leq i_0$: يحدث انعكاس كلى للشعاع الضوئي الساقط على الوجه الثاني للموشور إذا تحقق $i_0 \leq i_1 \leq i_0$

<u>التمرين (3) :</u>

يرد شعاع ضوئي وحيد اللون من الهواء $(n_1=1)$ إلى موشور زاوية رأسه $A=60^\circ$ و قرينة انكساره $n_2=1.5$ ثم يخرج مرة ثانية من الموشور إلى الهواء (الشكل).

1- سير الأشعة في (الشكل) تحتوي على خطأ ، أعد رسم سير الأشعة بشكل صحيح في الشكل على ورقتك . $i_1=49^0$:

أ- أحسب الزاوية التي يخرج بها الشعاع الضوئي من الموشور r_2 .

ب- أوجد مقدار الإنحراف D .

5- تطبيقات الانكسار - الألياف البصرية

■ تعریف الألیاف البصریة :

- الألياف البصرية هي مجموعة من ألياف مصنوعة من الزجاج النقي طويلة ورفيعة لا يتعدى سمكها سمك الشعرة ، تجمع المئات أو الألاف من هذه الألياف ، و تصطف معا في حزمة واحدة لتكوِّن الحبل الضوئي الذي يُحمى بغطاء خارجي (الشكل) .

- تستخدم الألياف البصرية في نقل الإشارات الضوئية لمسافات بعيدة جداً تقدر بالمئات أو آلاف الكيلومترات ، وهي تستعمل بالخصوص في شبكات الاتصال .
 - الألياف البصرية هي إحدى التطبيقات العملية لظاهرة الانعكاس الكلي .

الأجوبة :

<u>التمرين (1) :</u>

1- الرسم الصحيح :

2- أ- حساب زاوية الورود i_1 في الوسط -1: بتطبيق القانون الثانى للانكسار:

$$\begin{aligned} &n_1 \sin i_1 = n_2 \sin r_1 \\ &\sin i_1 = \frac{n_2 \sin r_1}{n_1} & (n_1 = 1 \) \\ &\sin i_1 = \frac{1.5 \ . \ \sin 20^\circ}{1} = 0.51 \ \rightarrow \ i_1 \approx 31^\circ \end{aligned}$$

 $\frac{1}{12} = \frac{1}{12}$ بـ زاوية الورود $\frac{1}{12}$ في الوسط -2 : من الشكل و بالتبادل الداخلي يكون $\frac{1}{12}$ جــ زاوية الانكسار r₂ في الوسط - 3 : بتطبيق القانون الثاني للانكسار :

$$n_2 \sin i_2 = n_3 \sin r_2$$

 $\sin r_2 = \frac{n_2 \sin i_2}{n_3}$
 $\sin r_2 = \frac{1.5 \cdot \sin 20^\circ}{1.2} = 0.43 \rightarrow r_2 \approx 25^\circ$

<u>التمرين (2) :</u>

1- أ- قانوني الانكسار : القانون الأول : الشعاع الضوئي الوارد و الشعاع الضوئي المنكسر يقعان في نفس المستوي .

القانون الثاني :

 $\frac{\sin i}{\sin r} = \frac{\sin i}{\sin r}$: ثابت و زاوية الانكسار r ، تكون ثابتة مهما كانت زاوية الورود أي :

 $\frac{--m_{1}}{L}$ المنطقة $\frac{n_{2}>n_{1}}{L}$ المحالة الأولى $\frac{n_{2}>n_{1}}{L}$ الناظم . في هذه الحالة ينكسر الشعاع الضوئي الوارد مقتربا إلى الناظم .

في هذه الحالة يكون : r < i . الحالة الثانية $n_2 < n_1$: في هذه الحالة ينكسر الشعاع الضوئي الوار د مبتعدا عن الناظم .

فى هذه الحالة يكون: r > i

2- أ- زاوية الانكسار : بتطبيق القانون الثاني للانكسار :

 $n_1 \sin i = n_2 \sin r$

$$\sin r = \frac{n_1 \sin i}{n_2} \qquad (n_2 = 1)$$

$$\sin r = \frac{1.5 \cdot \sin 20^{\circ}}{1} = 0.51 \rightarrow r \approx 31^{\circ}$$

 $r = 41.82^{\circ}$ بيان الثاني الثاني أجل $r = 41.82^{\circ}$ بيطبيق القانون الثاني للانكسار و باتباع نفس الخظوات السابقة نجد :

 $n_1 \sin i = n_2 \sin r$

جـ إذا كانت زاوية الورود أكبر من °41.82 أي أكبر من الزاوية الحدية للانكسار يحدث انعكاس كلي :

<u>التمرين (3) :</u>

1- سير الأشعة :

ب- الزاوية التي يخرج بها الشعاع الضوئي من الموشور (r_2) : بتطبيق القانون الثاني للانكسار :

$$\begin{split} &n_1 \sin i_1 = n_2 \sin r_1 \quad (n_1 = 1) \\ &\sin r_1 = \frac{n_1 \sin i_1}{n_2} \\ &\sin r_1 = \frac{1 \cdot \sin 49^\circ}{1.5} = 0.5 \ \rightarrow \ r_1 \approx 30^\circ \end{split}$$

و حسب قوانين الموشور:

$$A = r_1 + i_2$$

 $i_2 = A - r_1 = 60 - 30^\circ = 30^\circ$

- بتطبيق القانون الثاني للانكسار:

$$n_2 \sin i_2 = n_1 \sin r_2$$

 $\sin r_2 = \frac{n_2 \sin i_2}{n_1}$
 $\sin r_2 = \frac{1.5 \cdot \sin 30^\circ}{1} = 0.75 \rightarrow r_2 \approx 49^\circ$

ب مقدار الانحراف:

حسب قوانين الموشور يكون :

$$D = i_1 + r_2 - A$$

$$D = 49 + 49 - 60 = 38^{\circ}$$

التمرين

نعتبر مكعبا من الزجاج قربنة انكساره $n_2 = 1,5$ موجود في الهواء قربنة انكساره $n_1 = 1$ ، وموضوع على مستوى أفقي كما يبينه الشكل. يسقط شعاعا ضوئيا (SI) أحادي اللون واردا على الوجه (AD) للمكعب فينكسر على هذا الوجه ثم يصل إلى الوجه في النقطة I.

- $.r_1$ الزاوية النكسار، أوجد قيمة الزاوية $.r_1$
 - 2. احسب زاية الانكسار الحدي.
- (AB) على الوجه ((AB)).
- 4. ماذا سيحدث للشعاع الضوئي في النقطة \bar{I} ؟ علل جوابك.
- 5. أتمم مسار الشعاع الضوئي على الشكل حتى بروزه من المكعب موضحا الزوايا وقيمته.

 $\sin 44.8^{\circ} = 0.704 \quad \sin 45^{\circ} = 0.707 \quad \sin 42^{\circ} = 0.67 \quad \sin 28^{\circ} = 0.47$