Intégration et Probabilités

ENS Paris, 2023/2024

Benoît Laslier laslier@dma.ens.fr

TD3: Intégration, théorèmes de convergence

Exercice 1. [Mise en jambes]

- 1. Soit (f_n) une suite de fonctions continues sur [0,1] telles que $0 \le f_n \le 1$, et telle que f_n converge simplement vers 0. Montrer que $\lim_{n\to+\infty} \int_0^1 f_n(x) dx = 0$.
- 2. Soit $f \in \mathcal{L}^1(E, \mathcal{E}, \mu)$, montrer que pour tout A > 0, on a $\mu(|f| \ge A) \le \frac{1}{A} \int_E |f| d\mu$.
- 3. Soit $f \in \mathcal{L}^1(E, \mathcal{E}, \mu)$, montrer que

$$\int |f| \mathrm{d}\mu = 0 \Rightarrow f = 0 \quad \mu\text{-p.p.} \quad \int |f| \mathrm{d}\mu < +\infty \Rightarrow |f| < +\infty \quad \mu\text{-p.p.}$$

Que dire des réciproques de ces propriétés?

4. Montrer qu'il existe une suite de fonctions mesurables (f_n) telle que

$$\liminf_{n \to +\infty} \int f_n(x) dx \le \int \liminf_{n \to +\infty} f_n(x) dx.$$

Solution de l'exercice 1.

- 1. C'est le théorème de convergence dominée. Pouvez-vous faire une démonstration en utilisant uniquement l'intégrale de Riemann, sans utiliser de résultat de la théorie de la mesure?
- 2. On intègre l'inégalité $A1_{\{|f| \ge A\}} \le |f|$ sur E.
- 3. Ce sont deux conséquences immédiates de l'inégalité de Markov ci-dessus. La première réciproque est trivialement vraie, la seconde est immédiatement fausse (par exemple $x \mapsto 1/x$ est non-intégrable...).
- 4. On prend des fonctions pouvant être négatives, par exemple $f_n = -1_{[n,n+1]}$ convient.

Exercice A. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction additive, i.e. telle que pour tout $x, y \in \mathbb{R}$, on a f(x+y) = f(x) + f(y). On montre que si f est mesurable, alors f est linéaire (i.e. il existe $a \in \mathbb{R}$ tel que f(x) = ax pour $tout \ x \in \mathbb{R}$).

- 1. Montrer que pour tout $x \in \mathbb{R}$ et $q \in \mathbb{Q}$, on a f(qx) = qf(x).
- 2. Montrer que si le graphe de f n'est pas dense dans le plan, alors f est linéaire.
- 3. Soit A un borélien de \mathbb{R} de mesure de Lebesgue $\lambda(A)>0$. Montrer que l'ensemble $A-A=\{x-y,x,y\in A\}$ contient un intervalle ouvert centré en 0.
- 4. Montrer que si f est mesurable, alors elle est bornée au voisinage de 0.
- 5. Conclure que si f est mesurable et additive, alors elle est linéaire.

Exercice 2. [Théorème fondamental de l'analyse] Soit f une fonction dérivable sur [0,1].

1. Montrer que f' est mesurable pour la tribu des boréliens de \mathbb{R} .

- 2. On suppose que f' est bornée. Montrer que $\int_0^1 f'(x)dx = f(1) f(0)$.
- 3. Trouver une fonction continue et presque partout dérivable sur [0,1] telle que

$$f(0) = 0$$
, $f(1) = 1$ et $\int_0^1 f'(x)dx = 0$.

Solution de l'exercice 2.

- 1. On pose $g_n(x) = n\mathbb{1}_{\{x \le 1-1/n\}}(f(x+1/n) f(x))$, on observe que g_n est mesurable, et que f' est la limite ponctuelle de la suite g_n . Donc f' est bien mesurable.
- 2. On note $M = \sup_{x \in [0,1]} |f'(x)|$, par théorème des accroissements finis, on a $|g_n(x)| \leq M$ pour tout $x \in [0,1]$. Par conséquent, en appliquant le théorème de convergence dominée, on a

$$\int_{0}^{1} f'(x) dx = \lim_{n \to +\infty} \int_{0}^{1} g_{n}(x) dx$$
$$= \lim_{n \to +\infty} n \left(\int_{1-1/n}^{1} f(x) dx - \int_{0}^{1/n} f(x) dx \right) = f(1) - f(0)$$

par continuité.

3. Un exemple est l'escalier du diable de Cantor, qui est une fonction continue croissante telle que f(0) = 0, f(1) = 1 et f'(x) = 0 pour tout x n'appartenant pas à l'ensemble de Cantor K_3 qui a une mesure de Lebesgue nulle. On peut le construire comme la limite uniforme de la suite de fonctions :

$$g_n(x) = (3/2)^n \int_0^x \mathbb{1}_{K_n}(y) dy,$$

où
$$K_n = [0,1] \setminus \bigcup_{k=0}^{n-1} \bigcup_{j=0}^{3^{n-1}} \left(\frac{3k+1}{3^{n+1}}, \frac{3k+2}{3^{n+1}} \right).$$

Exercice 3. Soit $f:]0,1[\to \mathbb{R}$ une fonction positive, monotone et intégrable. Déterminer la valeur de $\lim_{n \to +\infty} \int_{[0,1[} f(x^n) dx$.

Solution de l'exercice 3. La fonction f étant monotone, elle admet une limite à droite en 0 que l'on note $\alpha \in [0, +\infty]$. On pose $f_n(x) = f(x^n)$ et on raisonne par disjonction des cas.

— Si f est décroissante, alors la suite f_n est une suite croissante de fonctions positives convergeant vers α pour tout x de]0,1[, donc par théorème de convergence monotone, on a

$$\lim_{n \to +\infty} \int_0^1 f_n(x) dx = \int_0^1 \lim_{n \to +\infty} f_n(x) dx = \alpha.$$

— Si f est croissante, alors $\alpha = +\infty$ et (f_n) est une suite de fonctions décroissantes convergeant simplement vers la fonction α . De plus $0 \le f_n \le f_1$ et f_1 est intégrable, donc par théorème de convergence dominée, on a bien

$$\lim_{n \to +\infty} \int_0^1 f_n(x) dx = \int_0^1 \lim_{n \to +\infty} f_n(x) dx = \alpha.$$

On observe que $f_n: x \mapsto f(x^n)$ est une suite décroissant de fonctions positives, donc par théorème de convergence monotone, on a

$$\lim_{n \to +\infty} \int_{[0,1[} f(x^n) dx = f(0^+),$$

où $f(0^+) = \lim_{\substack{x \to 0 \\ x > 0}} f(x)$, qui existe par monotonie de f.

Exercice 4. [Un peu de calcul]

1. Calculer en fonction de $\alpha \in \mathbb{R}$ les limites quand $n \to +\infty$ de

$$\int_0^n (1 - x/n)^n x^{\alpha - 1} dx \text{ et de } \int_0^n (1 - x/n)^n e^{\alpha x} dx.$$

2. Soit (f_n) une suite de fonctions intégrables sur (E, \mathcal{E}, μ) , montrer que

$$\sum_{n>0} \int_{E} |f_n| d\mu < +\infty \text{ implique } \sum_{n>0} \int_{E} f_n d\mu = \int_{E} \left(\sum_{n>0} f_n \right) d\mu,$$

puis calculer $\int_0^1 \frac{\ln x}{1-x} dx$.

Solution de l'exercice 4.

1. Il s'agit d'applications classiques du théorème de convergence dominée. Grâce à la concavité de log, pour tout $x \in [0, n]$ on a

$$n\log(1 - x/n) \le -x,$$

donc $(1-x/n)^n x^{\alpha-1} \mathbb{1}_{[0,n]} \le x^{\alpha-1} e^{-x}$ qui est intégrable dès que $\alpha > 0$. On en déduit

$$\lim_{n \to +\infty} \int_0^n (1 - x/n)^n x^{\alpha - 1} dx = \Gamma(\alpha).$$

Avec la même méthode, on a pour tout $\alpha < 1$,

$$\lim_{n \to +\infty} \int_0^n (1 - x/n)^n e^{\alpha x} \mathrm{d}x = \frac{1}{1 - \alpha}.$$

2. On peut voir ce résultat comme le théorème de Fubini, ou comme une application du théorème de convergence dominée :

$$\lim_{N \to +\infty} \sum_{n=1}^{N} \int_{E} f_n d\mu = \int_{E} \lim_{N \to +\infty} \sum_{n=1}^{N} f_n d\mu,$$

en utilisant la majoration par la fonction intégrable $\sum_{n\geq 0} |f_n| d\mu$, (par théorème de convergence monotone). On écrit ensuite

$$\int_0^1 \frac{\ln x}{1-x} dx = \int_0^1 \sum_{n \ge 0} x^n \ln x dx = \sum_{n \ge 0} \int_0^1 x^n \ln x dx$$
$$= \sum_{n \ge 0} -\int_0^{+\infty} y e^{-(n+1)y} dy = -\sum_{n=0}^{+\infty} \frac{1}{(n+1)^2} = -\frac{\pi^2}{6}.$$

Pour aller plus loin

Exercice 5. Montrer que pour tout $\epsilon > 0$, il existe un ouvert O tel que $\mathbb{Q} \subset O$ mais la mesure de Lebesgue de O est plus petite qu' ϵ .

Solution de l'exercice 5. On prend par exemple $O = \bigcup_{p \in \mathbb{Z}, q \in \mathbb{N}} \left(\frac{p}{q} - \frac{\epsilon}{8^{|p|+q+1}}, \frac{p}{q} + \frac{\epsilon}{8^{|p|+q+1}} \right)$.

Exercice 6. [Uniforme continuité de l'intégrale] Soit (E, \mathcal{E}, μ) un espace mesuré et $f: E \to \mathbb{R}$ une fonction intégrable.

- 1. Montrer que $\lim_{n\to+\infty} \int |f| \mathbb{1}_{\{|f|>n\}} d\mu = 0$.
- 2. Montrer que $\forall \epsilon > 0, \, \exists \delta > 0, \, \forall A \in \mathcal{E}, \, \mu(A) < \delta \Rightarrow \int_A |f| \mathrm{d}\mu < \epsilon.$
- 3. En déduire si f est une fonction intégrable de $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, alors la fonction $F: u \mapsto \int_0^u f(x) dx$ est uniformément continue.

Solution de l'exercice 6.

- 1. On a $\lim_{n\to+\infty} \int |f| \mathbb{1}_{\{|f|>n\}} d\mu = \int |f| \mathbb{1}_{\{|f|=+\infty\}} d\mu$ par théorème de convergence dominée. Or si $\mu(|f|=+\infty)>0$, f ne peut pas être intégrable.
- 2. Soit $\epsilon > 0$, on choisit n assez grand tel que $\mu(|f| > n) < \epsilon/2$. Alors, pour $\delta < \epsilon/2n$, on a

$$\int_{A} |f| d\mu \le \int |f| \mathbb{1}_{\{|f| > n\}} + \int n \mathbb{1}_{\{|f| < n\}} \mathbb{1}_{A} \le \epsilon.$$

3. C'est une conséquence immédiate du résultat précédent, l'uniforme continuité de F s'écrit :

$$\forall \epsilon > 0, \exists \delta > 0 : \forall y > 0, \int_{[y,y+\delta]} |f| \le \epsilon.$$

Exercice 7. [Le retour de Borel-Cantelli]

- 1. Soit (E, \mathcal{E}, μ) un espace mesuré, on pose (A_n) une suite d'ensembles mesurables telle que $\sum_{n\geq 1} \mu(A_n) < +\infty$. Démontrer le Lemme de Borel-Cantelli en utilisant la suite de fonction $(\sum_{k=1}^n \mathbbm{1}_{A_k})_{n\in\mathbb{N}}$.
- 2. Soit $f:(\mathbb{R},\mathcal{B}(\mathbb{R})) \to (\mathbb{R},\mathcal{B}(\mathbb{R}))$ une fonction intégrable pour la mesure de Lebesgue et $\alpha > 0$. Montrer que pour presque tout $x \in \mathbb{R}$ on a $\lim_{n \to +\infty} n^{-\alpha} f(nx) = 0$.
- 3. Soit (α_n) une suite de réels strictement positifs telle que $\sum_{n=1}^{+\infty} \sqrt{\alpha_n} < +\infty$ et (a_n) une suite de réels. Montrer que pour presque tout $x \in \mathbb{R}$, on a $\sum_{n=1}^{+\infty} \frac{\alpha_n}{|x-a_n|} < +\infty$.
- 4. (*) Montrer qu'on a également $\sum_{n=1}^{+\infty} \sqrt{\frac{\alpha_n}{|x-a_n|}} < +\infty$ pour presque tout $x \in \mathbb{R}$.

Solution de l'exercice 7.

1. Posons $F = \sum_{k=1}^{+\infty} \mathbbm{1}_{A_k}$, on observe que $\int F \mathrm{d}\mu = \sum_{k=1}^{+\infty} \mu(A_k)$, par convergence monotone ou théorème de Fubini. Alors F est dans $\mathcal{L}^1(\mu)$, donc $|F| < +\infty$ μ -presque partout, par inégalité de Markov, ce qui prouve le résultat, puisque

$$x \in \limsup_{n \to +\infty} A_n \iff F(x) = +\infty.$$

2. Soit $0 < \beta < \alpha$, on s'intéresse à la suite d'ensembles définie par $A_n = \{x \in \mathbb{R} : f(nx) > n^{\beta}\}$, on a

$$\sum_{n \in \mathbb{N}} \lambda(A_n) = \sum_{n \in \mathbb{N}} \int_{\mathbb{R}} \mathbb{1}_{\left\{f(nx) > n^{\beta}\right\}} dx = \sum_{n \in \mathbb{N}} \int_{\mathbb{R}} \frac{1}{n} \mathbb{1}_{\left\{f(y) > n^{\beta}\right\}} dy$$
$$\leq \sum_{n \in \mathbb{N}} \frac{1}{n} \int_{\mathbb{R}} \frac{f(y)}{n^{\beta}} dy = \int_{\mathbb{R}} f(y) dy \sum_{n \in \mathbb{N}} \frac{1}{n^{1+\beta}} < +\infty.$$

On conclut par théorème de Borel-Cantelli.

3. On s'intéresse à la suite d'ensembles définie par $B_n = \{x \in \mathbb{R} : |x - a_n| < \sqrt{\alpha_n}\}$. On a

$$\sum_{n\in\mathbb{N}}\lambda(B_n)=\sum_{n\in\mathbb{N}}2\sqrt{\alpha_n}<+\infty,$$

et pour tout $x \in \liminf_{n \to +\infty} B_n^c$, on a $\frac{\alpha_n}{|x-a_n|} \leq \sqrt{\alpha_n}$ pour tout n assez grand, donc $\sum \frac{\alpha_n}{|x-a_n|}$ converge au point x.

4. Par théorème de Fubini-Tonelli, pour tout $x \in \mathbb{R}$ on a

$$\int_{x-1}^{x+1} \sum_{n \ge 1} \sqrt{\frac{\alpha_n}{|y - a_n|}} dy = \sum_{n \in \mathbb{N}} \sqrt{\alpha_n} \int_{x-1}^{x+1} \frac{1}{\sqrt{|y - a_n|}} dy$$

$$\le 4 \sum \sqrt{\alpha_n} < \infty.$$

Par conséquent, on en déduit que $\sum_{n=1}^{+\infty} \sqrt{\frac{\alpha_n}{|x-a_n|}} < +\infty$ pour presque tout $y \in [x-1, x+1]$. C'est donc également vrai pour presque tout $y \in \mathbb{R}$ par union dénombrable.

Exercice 8. [Une extension du théorème de convergence dominée] Soit (E, \mathcal{E}, μ) un espace mesuré, on suppose $\mu(E) < +\infty$. Une famille $(f_i)_{i \in I}$ de fonctions mesurables de E dans \mathbb{R} est dite uniformément intégrable si $\limsup_{c \to +\infty} \sup_{i \in I} \int_{|f_i| > c} |f_i| d\mu = 0$.

- 1. Montrer que toute famille finie de $\mathcal{L}^1(\mu)$ est uniformément intégrable.
- 2. Montrer que la famille $(f_i)_{i\in I}$ est uniformément intégrable si et seulement si les deux propriétés suivantes sont satisfaites :

$$\sup_{i \in I} \int |f_i| d\mu < +\infty \quad \text{ et } \quad \forall \epsilon > 0, \exists \delta > 0 : \forall A \in \mathcal{E}, \mu(A) \le \delta \Rightarrow \sup_{i \in I} \int_A |f_i| d\mu < \epsilon. \quad (\star)$$

- 3. Montrer que si $(f_i)_{i\in I}$ et $(g_i)_{i\in I}$ sont uniformément intégrables, alors il en est de même pour $(f_i+g_i)_{i\in I}$.
- 4. Soit (f_n) une suite de fonctions telle que $f_n(x) \to f(x)$ pour μ -presque tout $x \in E$. Montrer que $f \in \mathcal{L}^1(\mu)$ et $\lim_{n \to +\infty} \int_E |f_n f| d\mu = 0$ si et seulement si (f_n) est uniformément intégrable.
- 5. Montrer le critère de de la Vallée-Poussin : une famille $(f_i)_{i\in I}$ est uniformément intégrable si et seulement si il existe une fonction convexe $G: \mathbb{R}_+ \to \mathbb{R}_+$ convexe croissante telle que

$$\lim_{x \to +\infty} \frac{G(x)}{x} = +\infty \quad \text{ et } \quad \sup_{i \in I} \int G(|f_i|) d\mu < +\infty.$$

6. En déduire qu'une suite de fonctions bornée dans \mathcal{L}^p qui converge μ -p.p. vers f converge également vers f dans \mathcal{L}^1 .

Solution de l'exercice 8.

- 1. On a $\lim_{c\to +\infty} \int |f_i| d\mu = 0$ pour tout $i \in I$ par théorème de convergence dominée. C'est donc également vrai pour le supremum d'un nombre fini d'éléments.
- 2. Si $(f_i)_{i\in I}$ est uniformément intégrable, il existe c>0 tel que $\sup_{i\in I}\int_{|f_i|>c}|f_i|\mathrm{d}\mu\leq 1$. Dans ce cas, pour tout $i\in I$, on a $\int_E|f_i|\mathrm{d}\mu\leq\int_{|f_i|>c}|f_i|+c\mu(|f_i|\leq c)\leq 1+c\mu(E)$. Par conséquent $\sup_{i\in I}\int|f_i|\mathrm{d}\mu\leq 1+c\mu(E)$. De la même façon pour tout ensemble $A\in\mathcal{E}$, on a

$$\sup_{i \in I} \int_{A} |f_i| d\mu < c\mu(A) + \sup_{i \in I} \int_{|f_i| > c} |f_i| d\mu.$$

Par conséquent, pour tout $\epsilon > 0$, en choisissant c tel que $\sup_{i \in I} \int_{|f_i| > c} |f_i| d\mu < \epsilon/2$ et $\delta < \epsilon/2c$, on obtient également (\star) .

Réciproquement, supposons que $(f_i)_{i\in I}$ est une famille bornée dans \mathcal{L}^1 satisfaisant la propriété (\star) . Soit $\epsilon > 0$ on fixe $\delta > 0$ tel que $\int_A |f_i| \mathrm{d}\mu < \epsilon$ pour tout $i \in I$ et tout ensemble A de mesure inférieure à δ . On observe que pour tout c > 0, on a

$$\mu(|f_i| > c) \le \frac{1}{c} \int_E |f_i| d\mu \le \frac{1}{c} \sup_{j \in I} \int_E |f_j| d\mu.$$

En fixant $c = \sup_{i \in I} \int_E |f_j| d\mu/\delta$, pour tout $i \in I$ on a bien $\mu(|f_i| > c) \le \delta$, donc $\sup_{i \in I} \int_{|f_i| > c} |f_i| d\mu \le \epsilon$. On obtient donc

$$\limsup_{c \to +\infty} \sup_{j \in I} \int_{E} |f_{j}| \mathrm{d}\mu \le \epsilon,$$

par monotonie. Cette inégalité étant valable pour tout $\epsilon > 0$, on en déduit que la limite est nulle.

- 3. Si $(f_i)_{i\in I}$ et $(g_i)_{i\in I}$ sont deux familles uniformément intégrables (i.e. bornées dans \mathcal{L}^1 et satisfaisant (\star)), on en déduit que $(f_i + g_i)$ est bien bornée dans \mathcal{L}^1 et satisfait (\star) également, donc est uniformément intégrable.
- 4. Commençons par prouver le sens direct de cette propriété. On suppose que $f \in \mathcal{L}^1$ et que $\lim_{n \to +\infty} \int |f_n f| d\mu = 0$. Dans ce cas, la suite $(f_n f)_{n \in \mathbb{N}}$ est bornée dans \mathcal{L}^1 . De plus, pour tout $\epsilon > 0$ on a $\int_E |f_n f| d\mu < \epsilon$ pour tout $n \geq N_{\epsilon}$. En utilisant que la famille $(f_n f)_{n \leq \mathbb{N}_{\epsilon}}$ est uniformément intégrable, on détemine l'existence d'un $\delta > 0$ tel que (\star) est vérifiée. Les familles $(f_n f)_{n \in \mathbb{N}}$ et $(f)_{n \in \mathbb{N}}$ étant uniformément intégrables, c'est également le cas de $(f_n)_{n \in \mathbb{N}}$.

On montre ensuite le sens réciproque. Supposons que $(f_n)_{n\in\mathbb{N}}$ est uniformément intégrable. Par Lemme de Fatou, la suite (f_n) étant bornée dans \mathcal{L}^1 , on observe immédiatement que f est intégrable. De plus, par théorème de convergence dominée, pour tout c>0 on a $f_n \wedge c \to f \wedge c$ dans \mathcal{L}^1 . On a alors

$$\int |f_n - f| d\mu = \int_{|f_n| \le c} |f_n \wedge c - f \wedge c| d\mu + \int_{|f_n| > c} |f_n - f| d\mu$$

$$\int |f_n - f| d\mu \le \int_{|f_n| \le c} |f_n \wedge c - f \wedge c| d\mu + \int_{|f_n| \ge c} |f_n| d\mu + \int_{|f| \ge c} |f| d\mu.$$

Par conséquent, pour tout c > 0, on a

$$\limsup_{n \to +\infty} \int |f_n - f| d\mu \le \sup_{n \in \mathbb{N}} \int_{|f_n| > c} |f_n| d\mu + \int_{|f| > c} |f| d\mu.$$

On passe à la limite dans cette inégalité, on obtient bien la convergence de (f_n) vers f dans \mathcal{L}^1 .

5. Le sens direct est une application relativement directe de l'inégalité de Markov (Exercice 1 question 2). Soit M>0, soit C tel que pour tout $x\geq C$, $G(x)\geq Mx$. Pour tout i, on a $\int_{|f_i|>C}|f_i|\leq \int_{f_i>0}G(|f_i|)/M\leq \frac{1}{M}\sup_j\int G(|f_j|)$.

Pour la réciproque, on va construire la fonction G à partir des bornes sur $\sup_i \int_{|f_i|>C} |f_i|$. Soit $(C_n)_{n\in\mathbb{N}}$ increasing such that for all n,

$$\sup_{i} \int_{|f_i| > C_n} |f_i| \le \frac{1}{n^3}.$$

On pose $g(x) = \sum_{n} n 1_{C_n \leq x < C_{n-1}}$ et G sa primitive avec G(0) = 0, qui est clairement convexe croissante et satisfait $\lim_{x\to\infty} G(x)/x = +\infty$. Par ailleurs, on voit aussi clairement que pour $x \in [C_n, C_{n+1}]$, on a $G(x) \leq nx$.

Soit $i \in I$, on a

$$\int_{C_{n+1}>|f_i|\geq C_n} G(|f_i|) \leq n \int_{C_{n+1}>|f_i|\geq C_n} |f_i| \leq \frac{1}{n^2}$$

par construction et donc $\int G|f_i| \le \pi^2/6$ uniformément pour tout i.

6. Conséquence immédiate de la question précédente, la fonction $x\mapsto x^p$ est convexe et $\lim_{x\to\infty}x^{p-1}=\infty$.