A REPRESENTATION THEOREM FOR CAUSAL DECISION MAKING

Evan Piermont Royal Holloway, University of London

Theory Workshop

June 2024

The \longrightarrow of time

- Time appears to advance in a single direction, from earlier to later
- Causality is the influence of earlier events on later ones
- What exactly constitutes a causal relation is philosophically sticky
 - Taking the structure causality as given, identifying causal relations is still not straightforward

This paper

We represent causality via *structural equations*, and consider an agent's preference over *interventions*:

- Representation Theorem
 - How an agent's subjective causal model influence her decision making
- ♦ Identification Theorem
 - When can this model be recovered from observation

Causation and Counterfactuals

- Modern theories define causation through counterfactuals.
- \diamond Simplest form is 'but for' causality: α causes β
 - \diamond when α occurs so does β occur
 - \diamond had α not occurred, β would not occur
- ⋄ There are many subtitles here
- Requires evaluating worlds that do not exist

Causation in Economics

Reduced	Form
---------	------

- At the population level
- Understood via conditional dependence
- ♦ I.e., Smoking causes cancer

Structural Form

- ♦ At the individual level
- Understood via equations between variables
- I.e., agent's education level caused her earnings

Structural causality + uncertainty/hidden variables = reduced from causality

We	take	а	structural	aı	nn	roa	ch	а	la	Pearl	[200	0]	١.
VVC	tane	а	Structurat	a	νP	n Oa	CH	а	ιa	Cart	1200	U I	

- Equations relate the values of variables
- ⋄ These equations directly encode causal mechanisms
- Provide a succinct way of contemplating counterfactuals

Causal Models

A causal model M consists of:

- $\diamond \mathcal{U}$ and \mathcal{V} denote exogenous and endogenous variables, resp.
- $\diamond \ \mathcal{R}(Z) \subset \mathbb{R}$ is the range of $Z \in \mathcal{U} \cup \mathcal{V}$
- $\diamond \mathcal{F} = \{F_X\}_{X \in \mathcal{V}}$ is a set of **structural equations** where

$$F_{\mathbf{X}}: \prod_{Y \in \mathcal{U} \cup (\mathcal{V} - \{\mathbf{X}\})} \mathcal{R}(Y) \to \mathcal{R}(\mathbf{X}).$$

Causal Models

- ♦ Call **M** recursive if
 - ⋄ exists a partial order on V
 - \diamond F_X is independent of the variables succeeding X

Causal Models

- \diamond A *context* is a vector \vec{u} of values for all the exogenous variables \mathcal{U} .
 - \diamond Let $\mathtt{ctx} = \prod_{U \in \mathcal{U}} \mathcal{R}(U)$ collect all contexts
- \diamond A resolution is a vector \vec{a} of values for all variables $\mathcal{U} \cup \mathcal{V}$.
 - Let $res = \prod_{Y \in \mathcal{U}(1)} \mathcal{R}(Y)$ collect all resolutions
- \diamond Given a recursive model, each context \vec{u} uniquely determines a resolution \vec{a} .

The US Federal Reserve is contemplating the economy.

The relevant variables are: the growth rate (grow), the prior interest rate (prior), the current interest rate (rate), inflation (inf), employment rate (emp):

$$\mathcal{U} = egin{cases} U_{grow} \ U_{prior} \end{cases} \quad \mathcal{V} = egin{cases} Y_{rate} \ X_{emp} \ X_{inf} \end{cases}$$

Assume for simplicity that all variables take values in in $\{0,1\}$. The causal equations are

$$\begin{split} & \textbf{\textit{X}}_{inf} = 1 - \textbf{\textit{Y}}_{rate} & (F_{\textbf{\textit{X}}_{inf}}) \\ & \textbf{\textit{X}}_{emp} = 1 - (\textbf{\textit{Y}}_{rate} \times (1 - U_{grow})) & (F_{\textbf{\textit{X}}_{inf}}) \\ & \textbf{\textit{Y}}_{rate} = U_{prior} & (F_{\textbf{\textit{Y}}_{rate}}) \end{split}$$

Given the context:
$$ec{u} = egin{cases} U_{grow} = 0 \\ U_{prior} = 0 \end{cases}$$
 $oldsymbol{Y}_{rate} = U_{prior}$

$$X_{inf} = 1 - Y_{rate}$$

$$X_{emp} = 1 - (Y_{rate} \times (1 - U_{grow}))$$

Given the context:
$$ec{u} = \left\{ egin{align*} U_{grow} = 0 \\ U_{prior} = 0 \end{array}
ight.$$

$$Y_{rate} = 0$$
 $X_{inf} = 1 - Y_{rate}$
 $X_{emp} = 1 - (Y_{rate} \times (1 - 0))$

Given the context:
$$ec{u} = \left\{ egin{aligned} U_{grow} = 0 \ U_{prior} = 0 \end{aligned}
ight.$$

$$Y_{rate} = 0$$
 $X_{inf} = 1 - 0$
 $X_{emp} = 1 - (0 \times (1 - 0))$

Given the context:
$$ec{u} = \left\{ egin{align*} U_{grow} = 0 \\ U_{prior} = 0 \end{array}
ight.$$

$$Y_{rate} = 0$$
 $X_{inf} = 1$

$$X_{emp} = 0$$

If instead both were high:
$$ec{u} = \left\{ egin{align*} U_{grow} = 1 \\ U_{prior} = 1 \end{array}
ight.$$

$$egin{aligned} Y_{rate} &= U_{prior} \ X_{inf} &= 1 - Y_{rate} \ X_{emp} &= 1 - (Y_{rate} imes (1 - U_{arow})) \end{aligned}$$

If instead both were high:
$$ec{u} = \left\{ egin{align*} U_{grow} = 1 \\ U_{prior} = 1 \end{array}
ight.$$

$$Y_{rate} = 1$$
 $X_{inf} = 1 - Y_{rate}$
 $X_{emp} = 1 - (Y_{rate} \times (1 - 1))$

If instead both were high:
$$ec{u} = \left\{ egin{align*} U_{grow} = 1 \\ U_{prior} = 1 \end{array} \right.$$

$$egin{aligned} Y_{rate} &= 1 \ X_{inf} &= 1 - 1 \ X_{emp} &= 1 - (1 imes (1 - 1)) \end{aligned}$$

If instead both were high:
$$ec{u} = \left\{ egin{align*} U_{grow} = 1 \ U_{prior} = 1 \end{array}
ight.$$

$$Y_{rate} = 1$$
 $X_{inf} = 0$

$$X_{emp} = 1$$

Interventions & Actions

A intervention

$$\mathbf{do}[\mathbf{Y}_1 \leftarrow y_1, \dots, \mathbf{Y}_n \leftarrow y_n]$$

is a mediation that sets the values of $Y_1 \dots Y_n \in \mathcal{V}$:

- $\diamond y_i \in \mathcal{R}(Y_i)$
- \diamond abbreviated as $\mathbf{do}[\vec{Y} \leftarrow \vec{y}]$
- interventions only on endogenous variables.

Interventions & Actions

The intervention

$$\mathbf{do}[Y_1 \leftarrow y_1, \dots, Y_n \leftarrow y_n]$$

induces a counterfactual model, $\mathcal{F}_{\mathbf{do}[\stackrel{?}{\mathbf{Y}}\leftarrow \vec{\imath}]}$ where

 $F_{\mathbf{Y}_i}$ is replaced by the constant function $F'_{\mathbf{Y}_i} = y_i$

The action $\mathbf{do}[Y_{rate} \leftarrow 1]$ sets the current rate to 1:

Given the context:
$$ec{u} = \left\{ egin{align*} U_{grow} = 0 \\ U_{prior} = 0 \end{array}
ight.$$

$$Y_{rate} = 1$$
 $X_{inf} = 1 - Y_{rate}$
 $X_{emp} = 1 - (Y_{rate} \times (1 - U_{arow}))$

Given the context:
$$ec{u} = \left\{ egin{aligned} U_{grow} = 0 \ U_{prior} = 0 \end{aligned}
ight.$$

$$Y_{rate} = 1$$
 $X_{inf} = 1 - Y_{rate}$
 $X_{emp} = 1 - (Y_{rate} \times (1 - 0))$

Given the context:
$$ec{u} = \left\{ egin{aligned} U_{grow} = 0 \ U_{prior} = 0 \end{aligned}
ight.$$

$$Y_{rate} = 1$$

 $X_{inf} = 1 - 1$
 $X_{emp} = 1 - (1 \times (1 - 0))$

Given the context:
$$ec{u} = \left\{ egin{align*} U_{grow} = 0 \\ U_{prior} = 0 \end{array}
ight.$$

$$Y_{rate} = 1$$
 $X_{inf} = 0$

$$X_{emp} = 0$$

$$U_{grow} = 0$$

$$\begin{cases} Y_{rate} &= 1 \\ X_{inf} &= 0 \\ X_{emp} &= 0 \end{cases}$$

$$\begin{cases} Y_{rate} &= 1 \\ X_{inf} &= 1 \\ X_{emp} &= 1 \end{cases}$$

$U_{qrow} = 1$

Actions

An *action* is of the form:

if ϕ then A else B

- $\diamond \ \phi$ is a true/false valued question about the variable values
 - ♦ such as "the value of X is positive", etc
- \diamond A and B are actions
- These is constructed recursively starting with interventions
- \diamond **if** ϕ **then** A shorthand for when $B = \emptyset$

Actions

Given a (recursive) model M and action A, let

$$eta_A^{ extsf{M}}: \mathtt{ctx} o \mathtt{res}$$

transform contexts into resolutions in the obvious way:

- ♦ Each context determines which 'clause' of *A* will be in force, hence an intervention
- This intervention determines a (recursive) counterfactual model
- Along with context, this determines the resolution

Preference

The observable of the model is an agent's preference relation \succeq over actions

Representation

The agent's preferences are parameterized by

- ♦ **M** a recursive model capturing causal relationships
- \diamond **u** : res $\rightarrow \mathbb{R}$ value of a resolution of all uncertainty
- $\ \ \, \bullet \, \, \mathbf{p} \in \Delta(\mathtt{ctx}) \, \, \mathrm{belief} \, \mathrm{capturing} \, \mathrm{uncertainty} \, \mathrm{about} \, \mathrm{the} \, \mathrm{values} \, \mathrm{of} \, \\ \, \mathrm{exogenous} \, (\mathrm{hence} \, \mathrm{endogenous}) \, \mathrm{variables} \, \\$

Representation

Subjective Causal Utility

(M, p, u) is a subjective causal utility representation of \succeq :

$$A \succeq B$$

if and only if

$$\sum_{\vec{u} \in \mathtt{ctx}} \mathbf{u}(\beta_A^{\mathbf{M}}(\vec{u})) \mathbf{p}(\vec{u}) \geq \sum_{\vec{u} \in \mathtt{ctx}} \mathbf{u}(\beta_B^{\mathbf{M}}(\vec{u})) \mathbf{p}(\vec{u}).$$

The utility of the Federal Reserve is determined by the inflation rate and employment level, and is given by

$$\mathbf{u}(\vec{a}) = 2X_{emp} - X_{inf}.$$

$$U_{grow} = 0$$

$$\begin{cases} Y_{rate} = 1 \\ X_{inf} = 0 \\ X_{emp} = 0 \end{cases}$$

$$\begin{cases} Y_{rate} = 1 \\ X_{inf} = 1 \\ X_{emp} = 1 \end{cases}$$

 $U_{grow} = 1$

$$U_{grow} = 0$$

$$\mathbf{u} \circ \beta \xrightarrow{\mathbf{do}(\mathbf{Y}_{rate} \leftarrow 1)} 2 \times 0 - 0 = 0$$

$$\mathbf{u} \circ \beta \xrightarrow{\mathbf{do}(\mathbf{Y}_{rate} \leftarrow 0)} 2 \times 1 - 1 = 1$$

$$\mathbf{do}[\mathbf{\textit{Y}}_{rate} \leftarrow 0] \succsim \mathbf{do}[\mathbf{\textit{Y}}_{rate} \leftarrow 1]$$

$$U_{grow} = 1$$

$$\mathbf{do}[Y_{rate} \leftarrow 1] \succeq \mathbf{do}[Y_{rate} \leftarrow 0]$$

Example

- \diamond Preference between setting interest rate at 1 or 0 depends on belief about U_{qrow} .
- ⋄ The (conditional) action

$$\mathbf{if}\left(\mathit{U}_{grow} = 1\right)\mathbf{then}\,\mathbf{do}[\,\mathbf{\textit{Y}}_{rate} \leftarrow 1]\,\mathbf{else}\,\mathbf{do}[\,\mathbf{\textit{Y}}_{rate} \leftarrow 0]$$

dominates

Ax 1: Cancellation

Let $A_1 \dots A_n$ and $B_1 \dots B_n$ be actions such that, for all $\vec{u} \in \text{ctx}$ and interventions $do[Y \leftarrow y]$ we have

 $\#\{B_i \mid B_i \text{ induces } \mathbf{do}[Y \leftarrow y] \text{ given } \vec{u}\}$

$$\#\{A_i \mid A_i \text{ induces } \operatorname{do}[\begin{subarray}{c} Y \leftarrow y \end{subarray} \text{ given } \vec{u}\} \end{subarray}$$

then
$$A_i \succsim B_i$$
 for all $i < n$ implies $B_n \succsim A_n$.

- Adapted from Blume, Easley, Halpern (2021)
- Provides an (abstract) additive structure

Ax 2: Model Uniqueness

For each $\vec{u} \in \text{ctx}$, there is at most one $\vec{a} \in \text{res}$ such that $\vec{a}|_{\mathcal{U}} = \vec{u}$ and \vec{a} is non-null.

- ♦ Non-null: (if \vec{a} then A) \succ (if \vec{a} then B) for some A, B.
- $\diamond~$ The only uncertainty regards the context

For each $\vec{a} \in res$, write

$$\mathbf{do}[\vec{Y} \leftarrow \vec{y}] \sim \vec{a} (X = x)$$

as shorthand for the indifference relation

if
$$\vec{a}$$
 then $\mathbf{do}[\vec{Y} \leftarrow \vec{y}, X \leftarrow x] \sim \mathbf{if} \vec{a}$ then $\mathbf{do}[\vec{Y} \leftarrow \vec{y}]$.

- \diamond If setting \vec{Y} to \vec{y} yields $\vec{X} = x$, then the agent is indifferent from making such a further intervention on \vec{X} .
- ♦ However, definition allows for indifference between distinct values of *X*

Ax 3: Definiteness

Fix non-null $\vec{a} \in \mathbf{res}$, endogenous variables, \vec{Y} , and values $\vec{y} \in \mathcal{R}(\vec{Y})$. Then for variable X, there exists some $x \in \mathcal{R}(X)$ such that

$$\mathbf{do}[\vec{Y} \leftarrow \vec{y}] \sim \succ_{\vec{a}} (X = x)$$

- ♦ There is some value of *X* which is consistent with any intervention
- May not be unique (i.e., indifference between resolutions)
- \diamond Ax3*: if the value x is unique

Ax 4: Centeredness

For $\vec{a} \in {\tt res}$, vector of endogenous variables \vec{Y} , and endogenous variable $X \notin \vec{Y}$, we have

$$\mathbf{do}[\vec{Y} \leftarrow \vec{a}|_{\vec{Y}}] \sim \succ_{\vec{a}} (X = \vec{a}|_X)$$

 Trivial interventions (setting variables to their current value) has no consequence For $X, Y \in \mathcal{V}$, say that X is unaffected by Y if

$$\mathbf{do}[\vec{Z} \leftarrow \vec{z}] \sim \vec{a} (X = x)$$
 iff $\mathbf{do}[\vec{Z} \leftarrow \vec{z}, Y \leftarrow y] \sim \vec{a} (X = x)$

for all $\vec{a} \in \text{res}$, \vec{Z} and values for the variables.

- X is unaffected by Y if there is no intervention on Y that changes the decision maker's perception of X
- \diamond If this relation does not hold, then X is affected by Y, written $Y \rightsquigarrow X$.

Ax 5: Recursivity

→ is acyclic

⋄ There are no cycles of variable dependence

Theorem

 \gtrsim satisfies Ax1-5 if and only if there exists a subjective causal utility representation, (M, p, u).

Moreover, if Ax3* holds, then **M** is unique.

Each axiom helps discipline how counterfactuals are constructed:

Definiteness: There exists some counterfactual world

Model Uniqueness: It is unique

Centeredness: It is minimally different than the current world

Recursivity: Closeness is consistent across contexts

These properties suffice to prove the existence of a structural model.

