

Кубок ЛФИ 10.s02.e05

Знать путь и пройти его— не одно и то же. Матрица (1999)

Персефона

Введение

В Пятом туре Второго Сезона Кубка ЛФИ вам будет предложено исследовать различные оптические системы при помощи матриц 2×2 . Видео, где рассказывается про то, как работать с такими матрицами доступно по ссылке. Если у вас при решении будут возникать вопросы, связанные с тем, как правильно работать с матрицами, то вы можете их задавать Максиму.

Важно! Вопросы могут быть связаны только с тем, как правильно работать с матрицами. Вопросы, связанные с условием задачи нужно задавать в личку Кубку ЛФИ.

Общая теория

Будем называть оптическую систему *центрированной*, если центры кривизны всех сферических преломляющих и отражающих поверхностей расположены на одной прямой, которая называется *главной оптической осью*. В случае, если все распространяющиеся в ней пучки лучей находятся на небольшом расстоянии от оптической оси и образуют с ней малый угол, мы будем говорить, что корректно *параксиальное приближение*.

Замечание. В данной задаче, если не оговорено иное, мы будем считать, что параксиальное приближение корректно, а все оптические системы центрированы.

Введем декартову систему координат: ось Oz, которая совпадает с главной оптической осью; оси Ox и Oy перпендикулярные главной оптической оси, при этом ось Oy будет лежать в плоскости рисунка. Рассмотрим пучок лучей, распространяющийся в плоскости рисунка. В любой точке с известной координатой z луч можно однозначно определить, если известно его расстояние до оптической оси и угол θ , который образует этот луч с данной осью. Так, на рисунке

представлен луч, который проходит через точку, находящуюся на расстоянии y_1 от оптической оси, и образующий угол θ_1 с этой осью (см. рис. 1). Угол θ мы будем измерять в радианах и считать положительным, если он coomветствует вращению против часовой стрелки от положительного направления оси z к направлению, в котором свет распространяется вдоль луча.

Несмотря на то, что расстояние y и угол θ являются интуитивно понятными параметрами для того, чтобы задать положение и направление распространения луча, в литературе чаще используется два других параметра: расстояние y и оптический направляющий косинус $v = n \cdot \theta$, где n — показатель преломления среды в данной точке. В дальнейшем мы будем характеризовать луч именно этой парой чисел и будем говорить, что он однозначно характеризуется следующим вектором

$$\begin{pmatrix} y \\ n\theta \end{pmatrix} \equiv \begin{pmatrix} y \\ v \end{pmatrix}.$$

При распространении света в оптической системе с пучком может происходить три процесса: процесс распространения, преломления света на границе раздела двух сред, а также отражение света. Каждому процессу мы будем ставить в соответствие ABCD матрицу, на которую будем умножать вектор, задающий луч в данной плоскости z = const, в результате чего мы будем получать новый вектор, который отвечает новому расположению луча. В качестве примера рассмотрим процесс распространения луча в однородной среде.

Матрица распространения T

На рисунке выше показан процесс распространения луча в однородной среде с показателем преломления n. Рассмотрим две плоскости с координатами z_1 и z_2 . Ясно, что угол между лучом и главной оптической осью в обеих плоскостях одинаковый, т. е.

$$\theta_2 = \theta_1 \iff v_2 = v_1,$$

где $v_1 = n\theta_1$, а $v_2 = n\theta_2$.

С другой стороны, координату y_2 легко выразить через y_1 и θ_1 . Действительно:

$$y_2 = y_1 + \operatorname{tg} \theta_1(z_2 - z_1) \approx y_1 + \theta_1(z_2 - z_1) = y_1 + v_1 \frac{z_2 - z_1}{n}.$$

Из последних двух уравнений мы получаем, что уравнение распространения луча в однородной среде можно переписать в виде

$$\begin{pmatrix} y_2 \\ v_2 \end{pmatrix} = \begin{pmatrix} 1 & \frac{z_2 - z_1}{n} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ v_1 \end{pmatrix}.$$

Следовательно, АВСО матрица распространения имеет вид

$$T = \begin{pmatrix} 1 & \frac{z_2 - z_1}{n} \\ 0 & 1 \end{pmatrix}$$

Если луч участвует в нескольких процессах подряд, то с ним необходимо проделать несколько преобразований, равносильных перемножению матриц. Действительно, если луч находился на расстоянии y_1 от оптической оси и распространялся на расстояние l_1 вдоль нее, то

это равносильно умножению вектора с компонентами y_1 и v_1 на соответствующую матрицу распространения T_1

$$\begin{pmatrix} y_2 \\ v_2 \end{pmatrix} = \begin{pmatrix} 1 & \frac{l_1}{n} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ v_1 \end{pmatrix}.$$

Если луч и дальше распространялся в однородной среде на дополнительное расстояние l_2 , то это равносильно умножению вектора с компонентами y_2 и v_2 на матрицу T_2

$$\begin{pmatrix} y_3 \\ v_3 \end{pmatrix} = \begin{pmatrix} 1 & \frac{l_2}{n} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y_2 \\ v_2 \end{pmatrix} = \begin{pmatrix} 1 & \frac{l_2}{n} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{l_1}{n} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ v_1 \end{pmatrix} = T_2 T_1 \begin{pmatrix} y_1 \\ v_1 \end{pmatrix} = T \begin{pmatrix} y_1 \\ v_1 \end{pmatrix}.$$

T. е. можно утверждать, что итоговая матрица преобразования T равна произведению двух матриц распространения, записанных в **обратном** порядке. Здесь мы использовали тот факт, что при перемножении матриц и векторов выполняется свойство ассоциативности. T. е. верно следующее утверждение:

$$ABC = (AB)C = A(BC)$$

В качестве упражнения убедитесь, что матрица T имеет вид

$$\begin{pmatrix} 1 & \frac{l_1 + l_2}{n} \\ 0 & 1 \end{pmatrix}.$$

Заметим, что в данном случае верно соотношение $T_1T_2 = T_2T_1$. Другими словами матрицы коммутируют, что верно не всегда, в том числе и в тех примерах, которые будут рассмотрены в дальнейшем. Поэтому порядок записи матриц очень важен! И в нашем случае матрицы записывают в обратном порядке!

Матрица преломления P

Рассмотрим сферическую границу раздела двух сред с показателями преломления n_1 и n_2 . Будем считать, что радиус кривизны поверхности положительный, если угол между осью Oz и радиус-вектором соединяющим центр кривизны и сферическую поверхность тупой. Если же данный угол острый, то такой радиус кривизны считаем отрицательным (см. рис. 2).

Рис. 2

Рассмотрим преломление света на сферической поверхности и найдем матрицу преломления P. Пусть луч переходит из среды с показателем преломления n_1 в среду с показателем преломления n_2 (см. рис. 3). Ясно, что при переходе границы раздела двух сред координата y не изменяется, т. е.

$$y_2 = y_1$$
.

Рис. 3

Углы падения и преломления обозначим α_1 и α_2 соответственно. Углы между оптической осью и падающим и преломленным лучами обозначим как θ_1 и θ_2 . Из рисунка видно, что $\alpha_1 = \theta_1 + \varphi$, а $\alpha_2 = \theta_2 + \varphi$, где φ – угол между оптической осью и радиусом проведенным в точку, где преломляется луч. Запишем закон Снеллиуса $n_1\alpha_1 = n_2\alpha_2$ и воспользуемся тем фактом, что $\varphi = y/R$, тогда

$$n_1\left(\theta_1 + \frac{y}{R}\right) = n_2\left(\theta_2 + \frac{y}{R}\right).$$

Переписывая последнее уравнение через направляющие косинусы v_1 и v_2 получаем, что

$$v_2 = \frac{n_1 - n_2}{R} y_1 + v_1,$$

откуда находим

$$\begin{pmatrix} y_2 \\ v_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{n_2 - n_1}{R} & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ v_1 \end{pmatrix}.$$

В левом нижнем углу матрицы мы вынесли знак и выделили дробь, которая называется оптической силой поверхности P_1

$$P_1 = \frac{n_2 - n_1}{R}.$$

Таким образом получаем, что матрица преломления имеет вид

$$P = \begin{pmatrix} 1 & 0 \\ -P_1 & 1 \end{pmatrix}.$$

Упражнение 1. Покажите, что у тонкой двояковыпуклой линзы с радиусами кривизны $R_1>0$ и $R_2<0$ и показателем преломления n, помещенной в среду с показателем преломления n_0 , матрица преобразования оптических лучей имеет вид

$$\begin{pmatrix} 1 & 0 \\ -(P_1 + P_2) & 1 \end{pmatrix},$$

где
$$P_1 + P_2 = (n - n_0) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) = \frac{1}{F}.$$

Упражнение 2. Найдите оптическую силу тонкой двояковыпуклой линзы с радиусами кривизны $R_1>0$ и $R_2<0$ и с показателем преломления n, если она помещена между двумя средами с показателями преломления n_1 и n_2 .

Упражнение 3. Докажите, что оптические силы двух линз, расположенных вплотную друг к другу, складываются.

Задание

Часть 1

Пусть есть некоторая оптическая система, которая описывается некоторой ABCD матрицей, преобразующей луч выходящий из плоскости с координатой z_1 в луч входящий в плоскость z_2 . Параметры оптической системы были так подобраны, чтобы один из элементов матрицы стал равен нулю. Каким физическим свойством обладает система, если

- 1. A = 0:
- 2. B = 0:
- 3. C = 0;
- 4. D = 0;

Замечание. Каждый из пунктов оценивается в ноль баллов, но вы можете эти пункты прислать и они будут проверены по схеме СРІ, чтобы вы смогли сделать правильные выводы из своих рассуждений.

Часть 2

5. (0,5 балла) Известно, что луч выходит из рассеивающей линзы на расстоянии 0,5 см от главной оптической оси и образует с ней угол 0,1 рад. Под каким углом и на каком расстоянии от главной оптической оси луч падает на собирающую линзу (см. рис. 4)?

Рис. 4

Часть 3

6. (1 балл) Оба торца стеклянного цилиндрического стержня длины 2,8 см имеют сферическую форму радиусом 2,4 см. Показатель преломления стекла 1,6. Предмет в виде прямой линии длиной 0,5 см помещен на оси стержня в вакууме на расстоянии 8,0 см от левого торца стержня. Найдите положение и размер изображения предмета.

Рис. 5

Часть 4

Рассмотрим задачу с практического тура Всероссийской олимпиады школьников по физике 2021 года. В ней предлагалось исследовать цилиндр радиуса R и показателем преломления n_2 в котором была проделана цилиндрическая полость радиусом r, заполненная неизвестным материалом с показателем преломления n_3 (см. рис. 6). Оси цилиндров параллельны друг другу, находятся на расстоянии d друг от друга. Высота цилиндров одинакова. Считайте, что параметры установки следующие: R = 7,50 см, d = 3,50 см, r = 3,00 см, $n_1 = 1,00$, $n_2 = 1,50$.

В задаче предлагалось определить что больше n_3 или n_2 . Одним из самых популярных вариантов решения был следующий. Луч лазера попадает в цилиндр параллельно плоскости оснований цилиндров и параллельно оптической оси, проходящей через середины осей цилиндров. Считайте, что расстояние $y_{\rm in}$ достаточно мало, чтобы в задаче можно было пользоваться параксиальным приближением. ABCD-матрица этой системы находится из условия

 $\begin{pmatrix} y_{\text{out}} \\ \theta_{\text{out}} \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} y_{\text{in}} \\ 0 \end{pmatrix}.$

Здесь A, D — безразмерные величины, B имеет размерность см, C имеет размерность см $^{-1}$.

- 7. (0,5 балла) Найдите *ABCD*-матрицу для данной системы (численно). **Указание.** Рекомендуем использовать WolframAlpha для перемножения матриц.
- 8. $(1,5 \, \text{балла}) \, \text{Постройте график } \theta_{\text{out}}(n_3).$
- 9. (0.5 балла) При каких значениях $n_3 \theta_{\text{out}} = 0$?
- 10. (О баллов) Справедливо ли утверждение: «Если $\theta_{\text{out}} > 0$, то, очевидно, $n_3 < n_2$ »?

Часть 5

Известно, что при определённых параметрах системы линз объекты, находящиеся на периферии пространства между линзами, становятся невидимыми, а изображения объектов, находящихся снаружи оптической системы видны без искажения, т. е. так, как если бы оптической системы не было (см. рис. 7).

Замечание. Во всех пунктах этой задачи факт существования области невидимости **доказывать не надо**.

Рис. 7

11. (2 балла) Покажите, что система из трех тонких линз с фокусными расстояниями f_1 , f_2 и f_1 соответственно (см. рис. 8) удовлетворяет выше описанному условию только в том случае, если $f_1 \gg t$, где t — расстояние между линзами.

Рис. 8

12. $(4 \ banna)$ Найдите соотношение между фокусными расстояниями f_1 и f_2 для системы из четырех тонких линз с фокусными расстояниями f_1 , f_2 , f_2 и f_1 соответственно (см. рис. 9), при котором будет наблюдаться данное явление. Определите при каком отношении f_1/f_2 длина оптической системы достигает экстремума. Чему при этом равно отношение t_2/f_2 ? Считайте, что расстояние между первой и второй линзами равно расстоянию между третьей и четвертой линзами.

Замечание. Во всех пунктах расстояние между линзами и их фокусные расстояния не известны. Хроматической аберрацией можно пренебречь.

Первая подсказка — $31.05.2021\ 14:00\ (Hyyk)$ Вторая подсказка — $02.06.2021\ 14:00\ (Hyyk)$

Финал пятого тура — $04.06.2021\ 22:00\ (MCK)$