AIML430/COMP309: ML Tools and Techniques Lecture 7: Data Mining 2—CRISP-DM

Ali Knott School of Engineering and Computer Science, VUW

CRISP-DM

CRISP-DM is a widely used *process* for data mining.

- It stands for 'Cross Industry Standard Process for Data Mining'.
- It was developed in 1996, by a consortium of companies, including Daimler, NCR and Teradata (as part of an EU research project).

CRISP-DM is an open standard, which is a topic in itself.

- All industries have a range of bodies that set technical standards.
- For computing, some bodies are convened by governments (e.g. the ISO, the IEC, the EU's CENELEC), and others just represent 'communities' (e.g. the IEEE, the W3C).
- Standards are written documents: some of these have to be paid for, but open standards are free!

CRISP-DM is still widely used...

A poll earlier this year by the Data Science Process Alliance found CRISP-DM is still way out in front...

It's interesting that 'data mining' blends with 'data science', 'data analytics'.

So what is CRISP-DM??

It's a 'widely used, non-proprietary, and industry agnostic methodology and procedures for best practices in data mining'.

- Non-proprietary means 'open standard'
- Industry-agnostic means 'works in many domains'
- A methodology is just a well thought-out, explicit process.

So what is CRISP-DM??

It's a 'widely used, non-proprietary, and industry agnostic methodology and procedures for best practices in data mining'.

There are 6 steps—

- Business understanding
- Data understanding
- Data preparation
- Modelling
- Evaluation
- Deployment.

We'll look at those one-by-one!

1. Business understanding

You have to work out a few important things—

- Who should you talk to in the organisation?
 - Who's in charge? Who really knows things?
- What does the business want to achieve from data mining?
 - What do the directors want?
 - Is this sensible/possible? Should it be revised?
- What resources are available to you?
 - Where is the relevant data?
 - How much time/money do you have? Who can help?

When you have all that, you can make a project plan.

 This should be high-level, and non-technical, so the directors can understand it too.

An example

KiwiMart is a supermarket chain—they're having problems with their fruit sales, and want to improve, so they bring in a data analytics company.

After some meetings with management, they come up with a goal, and some subsidiary questions:

Primary goal: Inventory Optimization, to optimize the inventory management system, have the right amount of fresh fruits in stock to meet customer demand while minimizing wastage due to overstocking.

Related questions:

- How customer preferences and purchasing patterns vary across different stores?
- Which fruits have the highest and lowest sales volumes in different time periods?
- How do promotions and discounts affect sales volumes and customer purchasing behaviour for different fruits?

An example

The company meets with Kiwimart's database people, and devises two more specific goals, which they approve with management...

Business Goal: Inventory Optimization

Data Mining Goal: Demand Forecasting, Market basket analysis to discover association rules among products, Customer Segmentation, Develop personalized recommendation models

Business Goal: Sales Improvement

Data Mining Goal: Customer Profiling, Outlier Detection

They also define some success criteria—

- For Business Goal 1, forecasting accuracy of X%
- For Business Goal 2, sales improvements of X%

2. Data understanding

This phase involves three tasks:

- Collecting relevant data from a range of places
- Verifying the general quality of the data
- Exploring the data, to see what's there

Back to Kiwimart...

The data mining people find various data sources:

- > Sales Data: Transaction records containing information on customer purchases
- > Customer Data: Information from loyalty program registrations
- > Product Data: Details about each fruit

They do some general reality checks:

- Sales: verifies the integrity of the sales records, checks for consistency in data formats, and assesses the completeness of required fields.
- > Customer: examines the customer profiles for completeness and consistency
- Product: reviews the product information for accuracy and ensures that essential attributes are present for each fruit.

They run some prelimininary analyses, to understand what they have:

- > Sales trend: generates visualizations, to analyse sales trends over time and identify seasonal variations in fruit purchases.
- Customer: uses bar charts and histograms to understand the distribution of customer age groups and locations.

3. Data preparation

There are five subtasks here:

- Data Selection: pick the databases (and fields) that will be useful
- Data Cleaning:
 - Search for duplicate entries! A very common occurrence!
 - Find and fix missing data...also very common!
- Data integration:
 - That is, combine datasets
- Data Construction:
 - In particular, create new features, by processing existing ones
- Data formatting:
 - In particular, *split* assembled dataset into training, validation, and testing sets.

Back to Kiwimart

Some examples of all those things...

- > Data Selection: some fields of the product database aren't relevant...
- Data Cleaning: remove duplicate records and handle missing values in customer profiles and product information.
- Data Integration: combine sales data, customer data, and product data using common identifiers to create a single dataset for analysis.
- ➤ Data Transformation: use Feature Engineering to create some new features (variables) that may provide more meaningful insights. Normalise/scale numerical features to bring them into the same ranges.
- Data Spliting: Dividing the Data into Training and Testing Sets

Step 4: Modelling

Two initial steps:

- Select the modelling technique that's most suited to the original business goals.
- Create a ML experiment design that's appropriate for these goals.

The next two steps are the heartland of machine learning:

- Build your models:
 - Run the selected modelling tool on the prepared dataset to create one or more models.
 - Choose hyperparameter settings.
 - Identify the best models, and describe these.
- Assess your final models:
 - Evaluate the models on test sets, using appropriate metrics.
 - Evaluate the results, against your original business goals.

Once more with Kiwimart

The data mining team decide to build two models.

One is a demand forecasting model, to optimise the supermarket's fruit inventory:

➤ Time Series Forecasting: uses time series forecasting techniques, such as ARIMA (AutoRegressive Integrated Moving Average) or exponential smoothing methods, to predict future demand for specific fruits based on historical sales data

One is a customer segmentation model, that will be helpful for targeted marketing:

Clustering Algorithms: uses clustering algorithms, like k-means or hierarchical clustering, to segment customers based on their purchasing behaviour and preferences.

Evaluating the Kiwimart models

They evaluate their time series forecasting model with a Mean Absolute Error (MAE) metric, for predictions over 2 months.

- The 2 month timeframe was decided in consultation with people who know about suppliers.
- They used MAE because costs are in direct proportion to errors.

They evaluate their customer segmentation model with a sillhouette score:

- This combines a measure of cluster compactness with a measure of cluster separation.
- Remember, there's no objective way of assessing performance of a clustering algorithm!

Step 5: evaluation

The 'evaluation' step of CRISP-DM is a *business* evaluation step.

- How useful is the model produced from data mining for the business?
- This is quite separate from quantitative evaluation on the test set!

Once again with Kiwimart

The data mining team evaluate their time series forecasting model by running a 'ghost' fruit ordering scheme, alongside Kiwimart's actual inventory scheme.

 After 6 months, they can show their 'ghost' scheme would have saved the company \$1.5M.

They evaluate their customer segmentation model by running an A/B test, trialling Kiwimart's current marketing promotion alongside a targeted promotion, informed by the model.

- Two customer groups are randomly selected...one promotion scheme is used for each group.
- They show the targeted scheme leads to a boost in sales. (Which is statistically significant.)

Step 6: deployment

If the models evaluate well, they can be deployed.

Iterations in CRISP-DM

CRISP-DM contains various options for iteration.

- Modelling might cause you to rework your data...
- Evaluation might bring new business understanding...
- Deployment updates how the business runs, and may prompt new iterations of the whole process.

Next lecture...

I'll cover

- Some other examples of data mining
- Some tools for data mining.