

Ikhlaq Sidhu Chief Scientist & Founding Director, Sutardja Center for Entrepreneurship & Technology IEOR Emerging Area Professor Award, UC Berkeley

Decision Tree Illustration

Illustration Source: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-choice

Decision Tree Illustration

How Are Trees Created?

	Attribut	es			Target
	Hour	Weather	Accident	Stall	Commute
D1	8 AM	Sunny	No	No	Long
D2	8 AM	Cloudy	No	Yes	Long
D3	10 AM	Sunny	No	No	Short
D4	9 AM	Rainy	Yes	No	Long
D5	9 AM	Sunny	Yes	Yes	Long
D6	10 AM	Sunny	No	No	Short
D7	10 AM	Cloudy	No	No	Short
D8	9 AM	Rainy	No	No	Medium
D9	9 AM	Sunny	Yes	No	Long
D10	10 AM	Cloudy	Yes	Yes	Long
D11	10 AM	Rainy	No	No	Short
D12	8 AM	Cloudy	Yes	No	Long
D13	9 AM	Sunny	No	No	Medium

Example from Jeff Story, source Internet

How Are Trees Created?

	Attributes			Target	
	Hour	Weather	Accident	Stall	Commute
D1	8 AM	Sunny	No	No	Long
D2	8 AM	Cloudy	No	Yes	Long
D3	10 AM	Sunny	No	No	Short
D4	9 AM	Rainy	Yes	No	Long
D5	9 AM	Sunny	Yes	Yes	Long
D6	10 AM	Sunny	No	No	Short
D7	10 AM	Cloudy	No	No	Short
D8	9 AM	Rainy	No	No	Medium
D9	9 AM	Sunny	Yes	No	Long
D10	10 AM	Cloudy	Yes	Yes	Long
D11	10 AM	Rainy	No	No	Short
D12	8 AM	Cloudy	Yes	No	Long
D13	9 AM	Sunny	No	No	Medium

Prediction can be coded

All features might even be not be used (Occam's Razor)

```
if hour == 8am
    commute time = long
else if hour == 9am
    if accident == yes
        commute time = long
    else
        commute time = medium
else if hour == 10am
    if stall == yes
        commute time = long
    else
        commute time = short
```

Example from Jeff Story, source Internet

	Attributes			Target	
	Hour	Weather	Accident	Stall	Commute
D1	8 AM	Sunny	No	No	Long
D2	8 AM	Cloudy	No	Yes	Long
D3	10 AM	Sunny	No	No	Short
D4	9 AM	Rainy	Yes	No	Long
D5	9 AM	Sunny	Yes	Yes	Long
D6	10 AM	Sunny	No	No	Short
D7	10 AM	Cloudy	No	No	Short
D8	9 AM	Rainy	No	No	Medium
D9	9 AM	Sunny	Yes	No	Long
D10	10 AM	Cloudy	Yes	Yes	Long
D11	10 AM	Rainy	No	No	Short
D12	8 AM	Cloudy	Yes	No	Long
D13	9 AM	Sunny	No	No	Medium

How Are Trees Created?

But how do we choose the order of decisions in the tree?

Most Famous: ID3 Algorithm:

ID3 splits on attributes with the lowest entropy (highest information gained)

Example from Jeff Story, source Internet

What is Entropy?

$$H(x) = \sum_{x} p(x) \log \left(\frac{1}{p(x)} \right)$$

A Measure of a distribution P(X)

$$X = \begin{cases} 1 \text{ with prob 1} \\ 0 \text{ with prob 0} \end{cases}$$
Outcome / Reception
Suppose outcome = 1

$$X = \begin{cases} 1 \text{ with prob } 0.5 \\ 0 \text{ with prob } 0.5 \end{cases}$$
Outcome / Reception
Suppose outcome = 1

What is Entropy?

• Entropy = $\sum_{i} -p_{i} \log_{2} p_{i}$

 $\boldsymbol{p}_{\boldsymbol{i}}$ is the probability of class \boldsymbol{i}

Compute it as the proportion of class i in the set.

16/30 are green circles; 14/30 are pink crosses $log_2(16/30) = -.9$; $log_2(14/30) = -1.1$ Entropy = -(16/30)(-.9) - (14/30)(-1.1) = .99

Source Internet

2-Class Cases:

 What is the entropy of a group in which all examples belong to the same class?

$$-$$
 entropy = $-1 \log_2 1 = 0$

not a good training set for learning

 What is the entropy of a group with 50% in either class?

$$-$$
 entropy = $-0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$

good training set for learning

Maximum impurity

Source Internet

Calculating Information Gain

Information Gain = entropy(parent) – [average entropy(children)]

(Weighted) Average Entropy of Children =
$$\left(\frac{17}{30} \cdot 0.787\right) + \left(\frac{13}{30} \cdot 0.391\right) = 0.615$$

7

Information Gain = 0.996 - 0.615 = 0.38 for this split

Golf Example

Start with table of experiences

- Distribution: P(golf) = 9 yes, 5 no14 observations
- We calculate entropy of distribution: playing golf
- Need to calculate entropy of each next possible decision (Outlook, Temp, Humidity, and Windy)
- Information gained is E(Golf) E(Subset, Golf),
- We choose the next branch to be the decision with the highest information gained for the next branch

Golf Example

Predictors

Target

Top Level Play Golf Distribution

9/14	5/14

$E(G) = 9/14 \log_2 1/(9/14)$
+ 5/14 log ₂ 1/(5/14)
= 0.94

- Distribution: P(golf) = 9 yes, 5 no14 observations
- We calculate entropy of distribution: playing golf
- Need to calculate entropy of each next possible decision (Outlook, Temp, Humidity, and Windy)
- Information gained is E(Golf) E(Subset, Golf),
- We choose the next branch to be the decision with the highest information gained for the next branch

Ø

Entropy = $-0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$

Top Level Play Golf Distribution

$$H(G) = 9/14 \log_2 1/(9/14) + 5/14 \log_2 1/(5/14) = 0.94$$

Next Level: Play Golf with Outlook

H(G,OL) = P(Sunny) H(G,OL) + P(OV)H(G,OV) + P(Rainy) H(G,Rainy)

= 5/14* 0.971+4/14*0 + 5/14*.971 = 0.693

Info Gained = H(G) - H(G,OL) = 0.94 - 0.693 = 0.247

Do the same with Temp (.29), Windy(.048), and Humidity(.152): Choose next node to be the one with the most info gained

How Are Trees Constructed

Start with table of experiences

Train = construct a tree. Predict means use the tree

But how do we know which branch should go first, second, next?

Example Source Internet:

http://www.saedsayad.com/decision_tree.htm

Trees Can be Extended with Bagging

Explain bagging and Random Forrest

```
from sklearn.ensemble import RandomForestClassifier

random_forest =
RandomForestClassifier(n_estimators=1000)
random_forest.fit(X_train, Y_train)
Y_pred = random_forest.predict(X_test)
random_forest.score(X_train, Y_train)

# Error
acc_random_forest = round(random_forest.score(X_train, Y_train) * 100, 2)
acc_random_forest

# or compare Y_pred with Y_test
```


Random Forest – A type of bagging/ensemble approach

Advantages: One of most accurate Efficient prediction over large data

Disadvantages: Overfit and Training time

Our experiment with the Titanic Data Set

Model	Score
Random Forest	86.76
Decision Tree	86.76
KNN	84.74
Support Vector Machines	83.84
Logistic Regression	80.36
Linear SVC	79.01
Perceptron	78.00
Naive Bayes	72.28
Stochastic Gradient Decent	72.28

More Accuracy Generally more training time More risk of overfitting

Less Accuracy Generally less computation

Boosting as in AdaBoost

- Motivation a procedure that combines the outputs of many "weak" classifiers to produce a powerful "committee"
- A machine learning algorithm
- Perform supervised learning
- Increments improvement of learned function
- Forces the weak learner to generate new hypotheses that make less mistakes on "harder" parts.
- Freund & Schapire (1995) AdaBoost
 - strong practical advantages over previous boosting algorithms

General Concept of Boosting

- Train a set of weak hypotheses: h₁,, h_T.
- The combined hypothesis H is a **weighted** majority vote of the T weak hypotheses.
 - → Each hypothesis h, has a weight α,.

$$H(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

Boosting as in AdaBoost

Boosting

- Binary classification problem
- Training data:

$$(x_1, y_1), ..., (x_m, y_m), where x_i \in X, y_i \in Y = \{-1,1\}$$

- $D_t(i)$: the weight of x_i at round t. $D_1(i)=1/m$.
- A learner L that finds a weak hypothesis h_t: X → Y given the training set and D_t
- The error of a weak hypothesis h_t:

$$\varepsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i] = \sum_{i: h_t(x_i) \neq y_i} D_t(i)$$

AdaBoost Algorithm

- **Given** $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in X$, $y_i \in \{-1, +1\}$
- Initialise weights $D_1(i) = 1/m$
- **Iterate** *t*=1,...,*T*:
 - ☐ Train weak learner using distribution *Dt*
 - □ Get weak classifier $(h_t: X \to R)$
 - \Box Choose $\alpha_t \epsilon R$
 - Update: $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$
 - where Z_t is a normalization factor (chosen so that Dt+1 will be a distribution), and $\alpha_{t:}$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right) > 0$$

Output – the final classifier

$$H(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

AdaBoost Algorithm

Discrete AdaBoost - Algorithm

- **Given** $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in X$, $y_i \in \{-1, +1\}$
- Initialise weights $D_1(i) = 1/m$
- Iterate *t*=1,...,*T*:
 - \Box Find $h_t = \arg\min_{h_j} \epsilon_j$ where $\epsilon_j = \sum\limits_{i=1}^m D_t(i) \llbracket h_t(x_i) \neq y_i \rrbracket$ \Box Set
 - □ Set

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

- □ Update: $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z}$
- Output the final classifier

$$H(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

AdaBoost Algorithm

• the weights Dt(i) are updated and normalised on each round. The normalisation factor takes the form

$$Z_t = \sum_{i=1}^m D_t(i) e^{-\alpha_t y_i h_t(x_i)}$$

We set a new problem for which the previous weak classifier performs at chance again

ha atrana (non linear) alconifice is built on the south

AdaBoost – Pros and Contras

- Pros:
 - □ Very simple to implement
 - □ Fairly good generalization
 - □ The prior error need not be known ahead of time
- Contras:
 - □ Suboptimal solution
 - ☐ Can over fit in presence of noise

End of Section

