Transient State Analysis

2.Effect of ξ on nature of response:

(i) Time Response of the Second Order (2nd Order) System for Unit Step Input:

Consider the unit step signal as an input to the first order system.

So, r(t)=u(t) and therefore, R(s)=1/s

From 2nd order standard block diagram, we can write C(s) as,

$$C(s) = \left(\frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}\right) R(s) \dots (2)$$

$$C(s) = \left(\frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}\right) \left(\frac{1}{s}\right) = \frac{A}{s} + \frac{Bs + C}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

Do partial fraction of C(s).

$$C(s) = \frac{\omega_n^2}{s(s^2 + 2\xi\omega_n s + \omega^2)_n} = \frac{A}{s} + \frac{Bs + C}{s^2 + 2\xi\omega_n s + \omega^2_n}$$

$$\Rightarrow \frac{\omega_{n}^{2}}{s(s^{2}+2\xi\omega_{n}s+\omega_{n}^{2})} = \frac{A(s^{2}+2\xi\omega_{n}s+\omega_{n}^{2}) + (Bs+C)s}{s(s^{2}+2\xi\omega_{n}s+\omega_{n}^{2})}$$

$$\Rightarrow \omega_{n}^{2} = (A+B)s^{2} + (2A\xi\omega_{n}+C)s + A\omega_{n}^{2}$$

$$\Rightarrow \omega_{n}^{2} = (A+B)s^{2} + (2A\xi\omega_{n}+C)s + A\omega_{n}^{2}$$

$$\Rightarrow B=-1 \Rightarrow c=-2\xi\omega_{n} \Rightarrow A=1$$

$$\Rightarrow C(s) = \frac{1}{s} - \frac{s+2\xi\omega_{n}}{s^{2}+2\xi\omega_{n}s+\omega_{n}^{2}}$$

$$= \frac{1}{s} - \frac{s+2\xi\omega_{n}}{(s+\xi\omega_{n})^{2}+\omega_{n}^{2}}$$

$$= \frac{1}{s} - \frac{s+2\xi\omega_{n}}{(s+\xi\omega_{n})^{2}+\omega_{n}^{2}}$$

$$= \frac{1}{s} - \frac{s+2\xi\omega_{n}}{(s+\xi\omega_{n})^{2}+\omega_{n}^{2}}$$

$$= \frac{1}{s} - \frac{s+2\xi\omega_{n}}{(s+\xi\omega_{n})^{2}+\omega_{n}^{2}}$$

$$= \frac{1}{s} - \frac{s+\xi\omega_{n}}{(s+\xi\omega_{n})^{2}+\omega_{n}^{2}}$$

$$\Rightarrow C(s) = \frac{1}{s} - \frac{s+\xi\omega_{n}}{(s+\xi\omega_{n})^{2}+\omega_{n}^{2}} - \frac{\xi\omega_{n}}{(s+\xi\omega_{n})^{2}+\omega_{n}^{2}}$$

$$\Rightarrow C(s) = \frac{1}{s} - \frac{s+\xi\omega_{n}}{(s+\xi\omega_{n})^{2}+\omega_{n}^{2}} - \frac{\xi\omega_{n}}{(s+\xi\omega_{n})^{2}+\omega_{n}^{2}}$$

$$\Rightarrow C(s) = \frac{1}{s} - \frac{s+\xi\omega_{n}}{(s+\xi\omega_{n})^{2}+\omega_{n}^{2}} - \frac{\xi\omega_{n}}{(s+\xi\omega_{n})^{2}+\omega_{n}^{2}} - \frac{(s+\xi\omega_{n})^{2}+\omega_{n}^{2}}{(s+\xi\omega_{n})^{2}+\omega_{n}^{2}} - \frac{(s+\xi\omega_{n})^{2}+\omega_{n}^{2}}{(s+\xi\omega_{n})^{2}+$$

Taking Laplace inverse transform: -

$$c(t) = 1 - \frac{\epsilon}{\epsilon} \frac{\omega_n t}{\omega_n t} \cos \omega_n t - \frac{\epsilon}{\epsilon} \frac{\omega_n}{\omega_n t} \cdot \frac{\epsilon}{\epsilon} \cos \omega_n t + \frac{\epsilon}{\epsilon} \frac{\omega_n t}{\omega_n t} \cdot \frac{\epsilon}{\epsilon} \cos \omega_n t + \frac{\epsilon}{\epsilon} \frac{\omega_n t}{\epsilon} \cdot \frac{\epsilon}{\epsilon} \cos \omega_n t + \frac{\epsilon}{\epsilon} \frac{\omega_n t}{\epsilon} \cdot \frac{\epsilon}{\epsilon} \cos \omega_n t + \frac{\epsilon}{\epsilon} \frac{\omega_n t}{\epsilon} \cdot \frac{\epsilon}{\epsilon} \cos \omega_n t + \frac{\epsilon}{\epsilon} \frac{\omega_n t}{\epsilon} \cdot \frac{\epsilon}{\epsilon} \cos \omega_n t + \frac{\epsilon}{\epsilon} \frac{\omega_n t}{\epsilon} \cdot \frac{\epsilon}{\epsilon} \cos \omega_n t + \frac{\epsilon}{\epsilon} \frac{\omega_n t}{\epsilon} \cdot \frac{\epsilon}{\epsilon} \cos \omega_n t + \frac{\epsilon}{\epsilon} \frac{\omega_n t}{\epsilon} \cdot \frac{\omega_n t}{\epsilon} = \frac{\epsilon}{\epsilon} \frac{\omega_n t}{\epsilon} \cdot \frac{\omega_n t}{\epsilon$$

Now, Put the values of ξ and ω_d in the expression of c(t), we get

$$c(t) = 1 - \frac{e^{t\omega_n t}}{|T-\xi|} \sin\left(\omega_n |T-\xi|\right) t + t \sin\left(\frac{1}{t}\right)$$

$$t + t \cos(t) + t \cos(t)$$

$$t + t \cos(t)$$

the error signal for the system
$$e(t) = r(t) - c(t)$$

$$= x - x + \frac{e^{\omega_n t}}{\sqrt{1-\xi^2}} \sin(\omega_n \sqrt{1-\xi^2})t + te^{-1} \frac{\sqrt{1-\xi^2}}{\xi_n}$$

$$= \frac{e(t)}{\sqrt{1-\xi^2}} \cdot \sin(\omega_n \sqrt{1-\xi^2})t + te^{-1} \frac{\sqrt{1-\xi^2}}{\xi_n}$$

$$= \frac{e(t)}{\sqrt{1-\xi^2}} \cdot \sin(\omega_n \sqrt{1-\xi^2})t + te^{-1} \frac{\sqrt{1-\xi^2}}{\xi_n}$$
The steady state error is
$$= ess = \lim_{t \to \infty} e(t)$$

$$= ess = \lim_{t \to \infty} e(t)$$
therefore, at steady state there is no error between input and output.

Note:- As the time response of 2^{nd} order system is influenced by ξ , therefore, there are four possible cases for positively damped systems $(\xi > 0)$. (system will be stable or marginal stable system)

0< \$< 1: under damped \$=1: Critically damped \$>1: over damped \$=0: undamped

Also, there are three possible cases for negatively damped systems (ξ < 0). (system will be unstable)

(a) Case I: Underdamped Case $(0 < \xi < 1)$

In this case, the response is given below:

The response is oscillatory with oscillating frequency with but decreasing amplitude due to exponential term Elent.

This type of response is called underdamped response.

Steady state value = 1.

Percrott is given by, e(t) = \frac{\overline{e}}{\overline{11-\overline{e}^2}} \sin(\overline{\psi}) \tag{1+\overline{\psi}})

The constant is \(T = \frac{\overline{e}}{\overline{e}} \overline{\overline{e}}.

Note: > the damped frequency always less than the undamped frequency because of factor &c.

i.e., wax wn [: ad:wnJI-&i]

Note:> As & increased, the response becomes progressively less oscillatory till it becomes critically damped (just non-oscillatory) for &= 1 and becomes overdamped for &>1.

(b) Case II: Undamped Case $(\xi = 0)$

Note:- Since there is no time damping and therefore

- Oscillations never die out with time.
- ➤ Amplitude of oscillation = constant around steady-state.
- ➤ This response is known as undamped response.
- ➤ There is no loss of energy.

(c) Case III: Critically damped Case $(\xi = 1)$

The time response at
$$\varepsilon_{e}=1$$
 will be:

$$C(t) = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon_{e}\omega_{h}t}}{\sqrt{1-\varepsilon_{e}^{2}}} \right\} = \lim_{\varepsilon \to 1} \left\{ 1 - \frac{e^{-\varepsilon$$

→ fore &=1, oscillations in output response are just dissappearced. This type of response is called as <u>Critically</u> damped response.

-> charcacteristic eq?: s2+2EWns+Wn2=0

-> for &==1; The roots are - Wn, - Wh.

-> System is Absolute stable.

(d) Case IV: Overdamped Case $(\xi > 1)$

The time response is given by

$$C(s) = \frac{1}{s} \cdot \frac{\omega_0^2}{\omega_0^2}$$

$$C(s) = \frac{1}{s} \cdot \frac{\omega_0^2}{s^2 + 2\epsilon \omega_0 s + \omega_0^2} = \frac{1}{s} \cdot \frac{\omega_0^2}{(s + \epsilon \omega_0)^2 - \omega_0^2(\epsilon^2 - 1)}$$

$$\Rightarrow C(s) = \frac{1}{s} \cdot \frac{\omega_0^2}{(s + \epsilon \omega_0)^2 - \omega_0^2} = \frac{1}{s} + \frac{1}{s} \cdot \frac{1}{s} \cdot \frac{1}{s} \cdot \frac{1}{s}$$

$$\Rightarrow C(s) = \frac{\omega_0^2}{s} \cdot \frac{\omega_0^2}{(s + \epsilon \omega_0)^2 - \omega_0^2} = \frac{\omega_0^2}{(s + \epsilon \omega_0)^2 - \omega_0^2(\epsilon^2 - 1)} = \frac{1}{s} \cdot \frac{1}{s} \cdot$$

Since, here $\xi > 1$, then $T_1 \ll T_2$.

As a result the first exponential term decaying much faster than the other exponential term. So, for time response neglect the term having the pole at $-(\xi + \sqrt{\xi^2 - 1})\omega_n$.

- Finally, the step response for the four cases of damping discussed in the above section are superimposed in figure below.
- Notice that the critically damped caes is the division between the overdamped cases and the underdamped cases and is the fastest response without overshoot.

Ques 1:

Calculate time constant of the system whose pole zero diagram is given.

Solution: This is underdamped system because from the given diagram, it can be seen that both the poles are lying left half of s-plane and both are conjugate complex (2nd and 3rd quadrant)

$$\cos 60 = \xi \Rightarrow \xi = 0.5$$

$$2 = \omega_n \sqrt{1 - \xi^2}$$

$$\omega_n = 2 / \sqrt{0.75} = 4 / \sqrt{3}$$

$$\text{under damped system}$$

$$T = 1 / (\text{pole}) = 4 / \sqrt{3} / 2 = 0.866$$

$$\text{Re(pole)} = 4 / \sqrt{3} / 2 = 0.866$$

Ques 2: The transfer function of a system is given as $\frac{100}{s^2+20s+100}$, This system is

- (a) An over damped system
- (b) An under damped system
- (c) A critically damped system
- (d) An unstable system

$$8^2 + 2\xi \omega_n s + \omega_n^2 = 0$$

$$\omega_n^2 = 100$$

$$\omega_n = 10$$

$$2\xi \omega_n = 20$$

$$\xi = 1 : \text{Critically damped}$$

Ques 3:

A unity negative feedback system has an open loop transfer function $G(s) = \frac{K}{s(s+10)}$. The gain K for the system to have a damping ratio of 0.25 is _____.

Solution:

$$T(s) = \frac{K}{s^2 + \log + K}$$

$$\lambda^2 + 2 \delta \omega_n + \omega_n^2 = 0$$

$$k = \omega_n^2$$

$$2 \times 0.25 \times \omega_n = 10$$

$$\omega_n = 20$$

$$k = \omega_n^2 = 400$$

$$k = \omega_n^2$$

$$2 \delta \omega_n = 10$$

Ques 4:

The open loop transfer function of a unity feedback control system is given by $G(s) = \frac{K}{s(s+1)}$. If the system becomes critically damped, then the system gain 'K' tends to become

Solution:

$$T(s) = \frac{k}{s^2 + s + k}$$

$$s^2 + 2\xi \omega_n s + \omega_n^2 = 0$$

$$k = \omega_n^2$$

$$2\xi \omega_n = 1$$

$$2\omega_{n} = 1$$

$$\omega_{n} = 0.5$$

$$K = \omega_{n}^{2} = 0.25$$

Ques 5:

For the system shown in figure with a damping ratio ξ of 0.7 and an undamped natural frequency ω_n of 4 rad /sec, the values of K and a are

(A)
$$K = 4$$
, $a = 0.35$

(B)
$$K = 8$$
, $a = 0.455$

(C)
$$K = 16$$
, $a = 0.225$

(D)
$$K = 64$$
, $a = 0.9$

Solution: (C)

$$T(S) = \frac{s(s+2)}{s(s+2)}$$

$$\frac{1+\frac{K}{s(s+2)}(1+as)}{K}$$

$$\frac{-\frac{K}{s^2+2s+1c+Kas}}{K}$$

$$\frac{-\frac{K}{s^2+(2+Ka)s+kc}}{s^2+(2+Ka)s+kc}$$

$$2 = \omega_n = 2 + Ka - \omega_r$$
 $4 \omega_n^2 = K$
 $3 K = 4^2 = 16$
 $2 \times 0.7 \times 46 = 2 + 16a$

$$\frac{1}{100} = \frac{1.4 \times 4 - 2210}{100}$$

$$= \frac{5.6 - 2}{100}$$

$$= \frac{3.6}{100}$$

$$= \frac{3.6}{100}$$

$$= \frac{3.6}{100}$$

$$= \frac{3.6}{100}$$

Quest- for the unity feedback system having
$$G(S) = \frac{k}{S(ST+2)}$$
,

Find the fallowing.—

if the factor by which the gain k should be multiplied to increase the damping ratio from 0.15 to 0.6.

(ii) The factor by which the time constant 7 should be multiplied to reduce the damping ratio from 0.8 to 0.4.

Solowing there, $G(S) = \frac{k}{S(ST+2)}$ and $H(S) = 1$

$$\frac{c(S)}{R(S)} = \frac{G(S)}{1+G(S)\cdot H(S)} = \frac{k}{S^2T+2S+k} = \frac{k/T}{S^2+\frac{L}{T}\cdot S+k/T}$$

Now $a_n^2 = \frac{k}{T}$: $a_n = \sqrt{\frac{k}{T}}$

and $2 \xi a_n = \frac{2}{T}$: $\xi = \frac{2}{T\cdot 2}a_n = \frac{1}{TkT}$

i) Let $\xi_1 = \frac{1}{Tk_1T}$

if $\xi_2 = \frac{1}{Tk_2T}$ for $\xi_3 = 0.15$ and $\xi_4 = 0.6$ respectively

$$\frac{\xi_1}{\xi_2} = \frac{1}{Tk_2T} = \frac{1}{0.15} = \frac{1}{4}$$

$$\frac{k_2}{R_1} = \frac{1}{16} = \frac{1}{16}$$
 $\frac{k_2}{R_1} = \frac{1}{16} = \frac{1}{16}$

the gain must be multiplied by factor 1/16 to increase the damping ratio 0.15 to 0.6.

(ii) Let
$$\xi_1 = \frac{1}{\sqrt{T_1 K}}$$
 and $\xi_2 = \frac{1}{\sqrt{T_2 K}}$ for $\xi_1 = 0.8$ and $\xi_2 = 0.4$ respectively

$$\xi_1 = \sqrt{\frac{T_2 K}{T_1 K}} = \frac{0.8}{0.4} = 2$$

The time constant of must be multiplied by factor 4 to reduce the damping ratio from 0.8 to 0.4.

Assignment:

- 1. Time Response of the Second Order (2nd Order) System for unit Impulse Input.
- 2. Time Response of the Second Order (2nd Order) System for unit Ramp Input.