Name	Date

Significant Digits and Mass Density

PROPOSE:

A measuring device is designed to measure a certain physical property of an object with limited accuracy. In this lab, you will learn how to estimate the last digit in a measurement, determine the number of significant digits, measure the mass densities of two objects, and then calculate the percentage errors.

APPARATUS:

Large glass marble, acrylic cylinder, Vernier calipers, and digital scale from the lab kit.

PROCEDURE

A. Significant Figures: Following the instructions and write down the correct **measurements** and their units in the table below. Remember that the last digit is always an estimated number.

	A		b	
	Reading 1	Reading 2	Reading 1	Reading 2
a				
b				
c				
d				
e				
f				
g				
h				
i				
j				

A. Answer the Following Questions:

- 1. Four students gave these measurements for letter "e" in the b ruler marked by an arrow above: 40.36 cm, 40.34 cm, 40.37 cm, and 40.35 cm. Are all these measurements valid? Why?
- 2. Any valid measurement contains only significant digits. What are the number of significant digits in the "e" measurement?
- 3. Is it possible to calibrate a ruler so accurately that measuring uncertainty is eliminated? Explain.

B. Measure the Dimensions of Objects

A caliper is a widely utilized tool for measuring the dimensions of an object. It offers greater precision compared to the conventional rulers used in schools. When using a regular ruler, the accuracy of the last <u>estimated</u> digit is 1/10 of mm. A caliper offers enhanced confidence in the accuracy of this last digit's reading, it is to 1/100 of mm. To become familiar with the use of a caliper, you can watch the instructional video available at

https://amrita.olabs.edu.in/?sub=1&brch=5&sim=16&cnt=469.

Measure and record the dimensions and the masses of the objects using a caliper and a digital balance. Conduct three trials for each measurement and calculate the average. Record your measurements in Table 1.

Note (1): The caliper displays measurements in millimeters (mm). To convert to centimeters (cm), shift the decimal point one place to the left before recording the values in Table 1.

Note (2): To prepare the digital balance for use, install the batteries and press the right P/T key to zero the reading. Ensure the balance is set to measure in grams (g) by pressing the left "M" key repeatedly until "g" appears on the screen. A video tutorial on using the digital balance is available on the "Science Interactive" website.

Table 1 Size, Mass, and Mass Density of the Glass Sphere and the Acrylic Cylinder

Tueste T 2126, Triuse, unio Triuse 2 cinere							
Object	Measurement	Trial 1	Trial 2	Trial 3	Average	V(cm³) Volume	$\rho(\frac{g}{cm^3})$ Density
Glass	Diameter (cm)						
Sphere	Mass (g)						
A amylia	Diameter (cm)						
Acrylic Cylinder	Height (cm)						
	Mass (g)						

C. Calculate the Volumn and the Mass Density of the Objects

a. The volume of the sphere:

$$V = \frac{4}{3} \times \pi \times (\frac{d}{2})^3 =$$

b. The volume of the cylinder:

$$V = \pi \times (\frac{d}{2})^2 \times h =$$

c. The mass density of the glass sphere:

$$\rho = \frac{m}{V} =$$

d. The mass density of the acrylic cylinder:

$$\rho = \frac{m}{V} =$$

Copy these calculated numbers back to Table 1.

D. Mass density is a measure of the composition of a materail. The table on the right is provided by Science Interactive. Do your measurments match the values listed in bulk?

Material	Density (g/cm³)	
Acrylic	1.18	
Brass	8.55	
Copper	8.94	
Glass	2.70	
Lead	11.34	
Steel	8.05	
Wood, Oak	0.77	
Wood, Pine	0.48	

		,
	- 10 00	
1		
1		
1		