Analysis of Algorithms CS 477/677

Instructor: Monica Nicolescu Lecture 15

Dynamic Programming

- An algorithm design technique used for optimization problems
 - Find a solution with the **optimal value** (minimum or maximum)
 - A set of **choices** must be made to get an optimal solution
 - There may be multiple solutions that return the optimal value: we want to find one of them

Dynamic Programming

- Similar to divide and conquer, but with one key difference
 - Subproblems are **not independent:** subproblems share subsubproblems
- Divide and conquer
 - Partition the problem into independent subproblems
 - Solve the subproblems recursively
 - Combine the solutions to solve the original problem

Dynamic Programming

- Applicable when subproblems are not independent
 - Subproblems share subsubproblems

E.g.: Fibonacci numbers:

- Recurrence: F(n) = F(n-1) + F(n-2)
- Boundary conditions: F(1) = 0, F(2) = 1
- Compute: F(5) = 3, F(3) = 1, F(4) = 2
- A divide and conquer approach would repeatedly solve the common subproblems
- Dynamic programming solves every subproblem just once and stores the answer in a table

Dynamic Programming Algorithm

- Characterize the structure of an optimal solution
- 2. Recursively define the value of an optimal solution
- 3. Compute the value of an optimal solution in a bottom-up fashion
- 4. Construct an optimal solution from computed information

Elements of Dynamic Programming

Optimal Substructure

- An optimal solution to a problem contains within it an optimal solution to subproblems
- Optimal solution to the entire problem is built in a bottom-up manner from optimal solutions to subproblems

Overlapping Subproblems

 If a recursive algorithm revisits the same subproblems again and again ⇒ the problem has overlapping subproblems

Assembly Line Scheduling

- Automobile factory with two assembly lines
 - Each line has n stations: $S_{1,1}, \ldots, S_{1,n}$ and $S_{2,1}, \ldots, S_{2,n}$
 - Corresponding stations $S_{1,j}$ and $S_{2,j}$ perform the same function but can take different amounts of time $a_{1,j}$ and $a_{2,j}$
 - Times to enter are e_1 and e_2 and times to exit are x_1 and x_2

Assembly Line

- After going through a station, the car can either:
 - stay on same line at no cost, or
 - transfer to other line: cost after $S_{i,j}$ is $t_{i,j}$, i = 1, 2, j = 1, ..., n-1

Assembly Line Scheduling

Problem:

What stations should be chosen from line 1 and what from line 2 in order to minimize the total time through the factory for one car?

One Solution

Brute force

- Enumerate all possibilities of selecting stations
- Compute how long it takes in each case and choose the best one

- There are 2ⁿ possible ways to choose stations
- Infeasible when n is large

1. Structure of the Optimal Solution

 How do we compute the minimum time of going through the station?

1. Structure of the Optimal Solution

- Let's consider all possible ways to get from the starting point through station S_{1,i}
 - We have two choices of how to get to $S_{1,i}$:
 - Through $S_{1,i-1}$, then directly to $S_{1,i}$
 - Through $S_{2,i-1}$, then transfer over to $S_{1,i}$

1. Structure of the Optimal Solution

- Suppose that the fastest way through $S_{1,j-1}$ is through $S_{1,j-1}$
 - We must have taken the fastest way from entry through $S_{1,i-1}$
 - If there were a faster way through $S_{1,j-1}$, we would use it instead

Optimal Substructure

- **Generalization**: an optimal solution to the problem find the fastest way through $S_{1,j}$ contains within it an optimal solution to subproblems: find the fastest way through $S_{1,j}$ or $S_{2,j-1}$.
- This is referred to as the optimal substructure property
- We use this property to construct an optimal solution to a problem from optimal solutions to subproblems CS 477/677 - Lecture 15

- Define the value of an optimal solution in terms of the optimal solution to subproblems
- Assembly line subproblems
 - Finding the fastest way through each station j on each line i (i = 1,2, j = 1, 2, ..., n)

- f* = the fastest time to get through the entire factory
- f_i[j] = the fastest time to get from the starting point through station S_{i,i}

$$f* = min (f_1[n] + x_1, f_2[n] + x_2)$$

- f_i[j] = the fastest time to get from the starting point through station S_{i,j}
- j = 1 (getting through station 1)

$$f_1[1] = e_1 + a_{1,1}$$

 $f_2[1] = e_2 + a_{2,1}$

- Compute f_i[j] for j = 2, 3, ...,n, and i = 1, 2
- Fastest way through S_{1, i} is either:
 - the way through $S_{1,i-1}$ then directly through $S_{1,i}$ or

$$f_1[j-1] + a_{1,j}$$

– the way through $S_{2,j-1}$, transfer from line 2 to line 1, then through $S_{1,i}$

$$f_{2}[j-1] + t_{2,j-1} + a_{1,j}$$

$$f_{1}[j] = min(f_{1}[j-1] + a_{1,j}, f_{2}[j-1] + t_{2,j-1} + a_{1,j})$$

$$S_{1,j-1}$$

$$A_{1,j-1}$$

$$A_{1,j-1}$$

$$A_{2,j-1}$$

$$A_{2,j-1}$$

$$S_{2,i-1}$$

$$f_{1}[j] = \begin{cases} e_{1} + a_{1,1} & \text{if } j = 1 \\ \\ \min(f_{1}[j-1] + a_{1,j}, f_{2}[j-1] + t_{2,j-1} + a_{1,j}) & \text{if } j \geq 2 \end{cases}$$

$$f_{2}[j] = \begin{cases} e_{2} + a_{2,1} & \text{if } j = 1 \\ \\ \min(f_{2}[j-1] + a_{2,j}, f_{1}[j-1] + t_{1,j-1} + a_{2,j}) & \text{if } j \geq 2 \end{cases}$$

3. Computing the Optimal Value

$$f^* = \min (f_1[n] + x_1, f_2[n] + x_2)$$

 $f_1[j] = \min (f_1[j - 1] + a_{1,j}, f_2[j - 1] + t_{2,j-1} + a_{1,j})$

4 times 2 times

 Solving top-down would result in exponential running time

3. Computing the Optimal Value

- For $j \ge 2$, each value $f_i[j]$ depends only on the values of $f_1[j-1]$ and $f_2[j-1]$
- Compute the values of f_i[j]
 - in increasing order of j increasing j

ı					
	1	2	3	4	5
f ₁ [j]					
f ₂ [j]					

- Bottom-up approach
 - First find optimal solutions to subproblems
 - Find an optimal solution to the problem from the subproblems
 CS 477/677 Lecture 15

4. Construct the Optimal Solution

- We need the information about which line has been used at each station:
 - $I_i[j]$ the line number (1, 2) whose station (j 1) has been used to get in fastest time through $S_{i,j}$, j = 2, 3, ..., n
 - I* the line number (1, 2) whose station n has been used to get in fastest time through the exit point

FASTEST-WAY(a, t, e, x, n)

- 1. $f_1[1] \leftarrow e_1 + a_{1,1}$
- 2. $f_2[1] \leftarrow e_2 + a_{2,1}$

Compute initial values of f_1 and f_2

- 3. for $j \leftarrow 2$ to n
- **4. do if** $f_1[j-1] + a_{1,j} \le f_2[j-1] + t_{2,j-1} + a_{1,j}$
- 5. then $f_1[j] \leftarrow f_1[j-1] + a_{1,j}$
- 6. $I_1[j] \leftarrow 1$
- 7. else $f_1[j] \leftarrow f_2[j-1] + t_{2,j-1} + a_{1,j}$
- 8. $I_1[i] \leftarrow 2$
- 9. **if** $f_2[j-1] + a_{2,j} \le f_1[j-1] + t_{1,j-1} + a_{2,j}$
- **10.** then $f_2[j] \leftarrow f_2[j-1] + a_{2,j}$
- 11. $l_2[j] \leftarrow 2$
- **12.** else $f_2[j] \leftarrow f_1[j-1] + t_0 + a_0$

Compute the values of $f_1[j]$ and $I_1[j]$

Compute the values of $f_2[j]$ and $l_2[j]$

FASTEST-WAY(a, t, e, x, n) (cont.)

14. if
$$f_1[n] + x_1 \le f_2[n] + x_2$$

15. then
$$f^* = f_1[n] + x_1$$

17. else
$$f^* = f_2[n] + x_2$$

Compute the values of the fastest time through the entire factory

4. Construct an Optimal Solution

```
Alg.: PRINT-STATIONS(l, n)
i ← l*
print "line " i ", station " n
for j ← n downto 2
do i ← l<sub>i</sub>[j]
print "line " i ", station " j - 1
```

line 1, station 5

line 1, station 4

line 1, station 3

line 2, station 2

line 1, station 1

1	2	3	4	5	
9	18[1]	20[2]	-24 <mark>[1]</mark> ←	-32 <mark>[1]</mark>	
12	16[1]	22 ^[2]	25 ^[1]	30 ^[2]	* = 1

Readings

- For this lecture
 - Chapter 14
 - Coming next
 - Chapter 14