Chapter 1

Introduction

Uses of Computer Networks

- Business Applications
- Home Applications
- Mobile Users
- Social Issues

Business Applications of Networks

A network with two clients and one server.

Business Applications of Networks (2)

The client-server model involves requests and replies.

Home Network Applications

- Access to remote information
- Person-to-person communication
- Interactive entertainment
- Electronic commerce

Home Network Applications (2)

In peer-to-peer system there are no fixed clients and servers.

Home Network Applications (3)

Tag	Full name	Example
B2C	Business-to-consumer	Ordering books on-line
B2B	Business-to-business	Car manufacturer ordering tires from supplier
G2C	Government-to-consumer	Government distributing tax forms electronically
C2C	Consumer-to-consumer	Auctioning second-hand products on-line
P2P	Peer-to-peer	File sharing

Some forms of e-commerce.

Mobile Network Users

Wireless	Mobile	Applications
No	No	Desktop computers in offices
No	Yes	A notebook computer used in a hotel room
Yes	No	Networks in older, unwired buildings
Yes	Yes	Portable office; PDA for store inventory

Combinations of wireless networks and mobile computing.

Network Hardware

- Local Area Networks
- Metropolitan Area Networks
- Wide Area Networks
- Wireless Networks
- Home Networks
- Internetworks

Broadcast Networks

Types of transmission technology

- Broadcast links
- Point-to-point links

Broadcast Networks (2)

Interprocessor distance	Processors located in same	Example
1 m	Square meter	Personal area network
10 m	Room	
100 m	Building	
1 km	Campus	
10 km	City	Metropolitan area network
100 km	Country	
1000 km	Continent	├ ≻ Wide area network
10,000 km	Planet	The Internet

Classification of interconnected processors by scale.

Local Area Networks

Two broadcast networks

- (a) Bus
- (b) Ring

Metropolitan Area Networks

A metropolitan area network based on cable TV.

Wide Area Networks

Relation between hosts on LANs and the subnet.

Wide Area Networks (2)

A stream of packets from sender to receiver.

Wireless Networks

Categories of wireless networks:

- System interconnection
- Wireless LANs
- Wireless WANs

Wireless Networks (2)

- (a) Bluetooth configuration
- (b) Wireless LAN

Wireless Networks (3)

- (a) Individual mobile computers
- (b) A flying LAN

Home Network Categories

- Computers (desktop PC, PDA, shared peripherals
- Entertainment (TV, DVD, VCR, camera, stereo, MP3)
- Telecomm (telephone, cell phone, intercom, fax)
- Appliances (microwave, fridge, clock, furnace, airco)
- Telemetry (utility meter, burglar alarm, babycam).

Network Software

- Protocol Hierarchies
- Design Issues for the Layers
- Connection-Oriented and Connectionless Services
- Service Primitives
- The Relationship of Services to Protocols

Network Software Protocol Hierarchies

Layers, protocols, and interfaces.

Protocol Hierarchies (2)

The philosopher-translator-secretary architecture.

Protocol Hierarchies (3)

Example information flow supporting virtual communication in layer 5.

Design Issues for the Layers

- Addressing
- Error Control
- Flow Control
- Multiplexing
- Routing

Connection-Oriented and Connectionless Services

	Service	Example
Connection-	Reliable message stream	Sequence of pages
oriented	Reliable byte stream	Remote login
	Unreliable connection	Digitized voice
	Unreliable datagram	Electronic junk mail
Connection- Jess	Acknowledged datagram	Registered mail
	Request-reply	Database query

Six different types of service.

Service Primitives

Primitive	Meaning
LISTEN	Block waiting for an incoming connection
CONNECT	Establish a connection with a waiting peer
RECEIVE	Block waiting for an incoming message
SEND	Send a message to the peer
DISCONNECT	Terminate a connection

Five service primitives for implementing a simple connectionoriented service.

Service Primitives (2)

Packets sent in a simple client-server interaction on a connection-oriented network.

Services to Protocols Relationship

The relationship between a service and a protocol.

Reference Models

- The OSI Reference Model
- The TCP/IP Reference Model
- A Comparison of OSI and TCP/IP
- A Critique of the OSI Model and Protocols
- A Critique of the TCP/IP Reference Model

Reference Models

Reference Models (2)

The TCP/IP reference model.

Reference Models (3)

Protocols and networks in the TCP/IP model initially.

Comparing OSI and TCP/IP Models

Concepts central to the OSI model

- Services
- Interfaces
- Protocols

A Critique of the OSI Model and Protocols

Why OSI did not take over the world

- Bad timing
- Bad technology
- Bad implementations
- Bad politics

Bad Timing

The apocalypse of the two elephants.

A Critique of the TCP/IP Reference Model

Problems:

- Service, interface, and protocol not distinguished
- Not a general model
- Host-to-network "layer" not really a layer
- No mention of physical and data link layers
- Minor protocols deeply entrenched, hard to replace

Hybrid Model

5	Application layer
4	Transport layer
3	Network layer
2	Data link layer
1	Physical layer

The hybrid reference model to be used in this book.

Internet Usage

Traditional applications (1970 - 1990)

- E-mail
- News
- Remote login
- File transfer

Architecture of the Internet

Overview of the Internet.

Network Standardization

- Who's Who in the Telecommunications World
- Who's Who in the International Standards World
- Who's Who in the Internet Standards World

ITU

- Main sectors
 - Radiocommunications
 - Telecommunications Standardization
 - Development
- Classes of Members
 - National governments
 - Sector members
 - Associate members
 - Regulatory agencies

IEEE 802 Standards

Number	Topic
802.1	Overview and architecture of LANs
802.2 ↓	Logical link control
802.3 *	Ethernet
802.4 ↓	Token bus (was briefly used in manufacturing plants)
802.5	Token ring (IBM's entry into the LAN world)
802.6 ↓	Dual queue dual bus (early metropolitan area network)
802.7 ↓	Technical advisory group on broadband technologies
802.8 †	Technical advisory group on fiber optic technologies
802.9 ↓	Isochronous LANs (for real-time applications)
802.10↓	Virtual LANs and security
802.11 *	Wireless LANs
802.12↓	Demand priority (Hewlett-Packard's AnyLAN)
802.13	Unlucky number. Nobody wanted it
802.14↓	Cable modems (defunct: an industry consortium got there first)
802.15 *	Personal area networks (Bluetooth)
802.16 *	Broadband wireless
802.17	Resilient packet ring

The 802 working groups. The important ones are marked with *. The ones marked with ↓ are hibernating. The one marked with † gave up.