Magnificent Dummy (or indicator) Variable

Without loss of generality, consider a simple linear model $y = \beta_0 + \beta_1 x + \varepsilon$, where ε has zero expectation and constant variance σ^2 . Suppose that there are n statistically independent pairs of data, denoted by (y_i, x_i) , i = 1, ..., n.

Problem: Predict y value at a given value x_0 based on the model above.

From Slide #6 of Module 2 Lecture 2C, we know how to generate the predictor \hat{y}_0 . Let us create a y-value labeled as y_{n+1} and set it to zero. In addition, we create a dummy variable z as follows:

$$z_i = 0$$
, $i = 1, \dots, n$
 $z_{n+1} = -1$

and set $x_{n+1} = x_0$.

Now we have two regressors x and z, and (n+1) data values (y_i, x_i, z_i) , i=1,...,n+1. Let us fit the multiple linear regression model $y_i=\beta_0+\beta_1x_i+\gamma z_i+\varepsilon_i$ and obtain the OLS estimator of γ .

Amazingly, the OLS estimator of $\ \gamma$ is mathematically equal to the predictor \hat{y}_0 of $\ y$ at $\ x=x_0$. The indicator variable $\ z$ is truly magnificent.

Let us prove this amazing finding <u>mathematically</u>. Then derive the estimated variance of the OLS estimator of γ and prove that this estimated variance is equal to the estimated variance of \widehat{y}_0 .

Here is a proof.

Denote by y_0 the y value to be predicted at a given value x_0 , following the simple regression model $y=\beta_0+\beta_1x+\varepsilon$ with $E(\varepsilon)=0$ and $Var(\varepsilon)=\sigma^2$. That is,

$$y_0 = \beta_0 + \beta_1 x_0 + \varepsilon_0 \qquad , \tag{*}$$

where $\[arepsilon_0 \]$ is the random error for y_0 , $E(\varepsilon_0)=0$, $Var(\varepsilon_0)=\sigma^2$, and y_0 is statistically independent with y_1,\dots,y_n . Let us treat the unknown y_0 as a parameter. By moving it to the right of the equation (*), we have

$$0 = \beta_0 + \beta_1 x_0 - y_0 + \varepsilon_0 = \beta_0 + \beta_1 x_0 + y_0 \times (-1) + \varepsilon_0$$

For the n observations (y_i, x_i) , i = 1, ..., n, we have

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i = \beta_0 + \beta_1 x_i + y_0 \times 0 + \varepsilon_i$$

Now we can play the magnificent dummy and create the data matrix using the table below.

Observation	у	Intercept	x	z	Random
number		(for $oldsymbol{eta_0}$)	(for eta_1)	(for γ)	error
1	y ₁	1	X ₁	0	ε ₁
2	y ₂	1	X 2	0	ε ₂
			•		•
•			•		•
n	y n	1	Xn	0	ε _n
n+1 (appended to predict y ₀)	0	1	x ₀	-1	ε ₀

Now label each part of this matrix.

y 1	1	X 1	0	ε ₁
y ₂	1	X ₂	0	ε ₂
•	•	•		•
•	•	•		•
•	•	•		•
У п	1	Xn	0	ε _n
0	1	x ₀	-1	ε ₀

The new observation vector is $\mathbf{\textit{U}} = \begin{bmatrix} \mathbf{\textit{y}} \\ 0 \end{bmatrix}$ where $\mathbf{\textit{y}} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$.

The new design matrix is $\mathbf{\textit{D}} = \begin{bmatrix} \mathbf{\textit{X}} & \mathbf{\textit{0}} \\ \mathbf{\textit{W}} & -1 \end{bmatrix}$

where
$$\mathbf{X} = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}$$
 $\mathbf{0} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$ $\mathbf{W} = \begin{bmatrix} 1 & x_0 \end{bmatrix}$.

Thus,

$$D'D = \begin{bmatrix} X'X + W'W & W' \\ W & -1 \end{bmatrix}$$

The OLS estimator of $(\beta_0$, β_1 , $\gamma)$ from the multiple regression model $y_i=\beta_0+\beta_1x_i+\gamma z_i+\ \varepsilon_i$ is

$$\begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\gamma} \end{pmatrix} = (\mathbf{D}'\mathbf{D})^{-1}\mathbf{D}'\mathbf{U} .$$

We can prove:
$$(D'D)^{-1} = \begin{bmatrix} X'X + W'W & W' \\ W & -1 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} I & \mathbf{0} \\ -W & 1 \end{bmatrix} \begin{bmatrix} (X'X)^{-1} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} I & -W' \\ \mathbf{0} & 1 \end{bmatrix} ,$$

using the following matrix algebra:

For a symmetric positive definite matrix $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$,

$$A^{-1} = \begin{bmatrix} I & 0 \\ -A_{22}^{-1}A_{21} & I \end{bmatrix} \begin{bmatrix} (A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1} & 0 \\ 0 & A_{22}^{-1} \end{bmatrix} \begin{bmatrix} I & -A_{12}A_{22}^{-1} \\ 0 & I \end{bmatrix} \ .$$

Hence,
$$(D'D)^{-1} = \begin{bmatrix} X'X + W'W & W' \\ W & -1 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} I & \mathbf{0} \\ W & 1 \end{bmatrix} \begin{bmatrix} (X'X)^{-1} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} I & W' \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} (X'X)^{-1} & (X'X)^{-1}W' \\ W(X'X)^{-1} & W(X'X)^{-1}W' + 1 \end{bmatrix}$$

Next,

$$\mathbf{D}'\mathbf{U} = \begin{bmatrix} \mathbf{X}' & \mathbf{W}' \\ \mathbf{0} & -1 \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ 0 \end{bmatrix}$$

$$\begin{pmatrix}
\hat{\beta}_0 \\
\hat{\beta}_1 \\
\hat{\gamma}
\end{pmatrix} = (D'D)^{-1}D'U = \begin{bmatrix}
(X'X)^{-1} & (X'X)^{-1}W' \\
W(X'X)^{-1} & W(X'X)^{-1}W'
\end{bmatrix} \begin{bmatrix}
X'y \\
0
\end{bmatrix}$$

$$= \begin{bmatrix}
(X'X)^{-1}X'y \\
W(X'X)^{-1}X'y
\end{bmatrix}$$

Now we see the magnificent findings:

The OLE estimator of (β_0,β_1) from this multiple linear regression is exactly equal to the OLS estimator of (β_0,β_1) from that simple linear regression to start with; that is, it is $(X'X)^{-1}X'y$. Furthermore, the predictor of y_0 derived from this multiple linear regression is exactly equal to the predictor from that simple

linear regression; that is,
$$\hat{\gamma} = W(X'X)^{-1}X'y = \begin{bmatrix} 1 & x_0 \end{bmatrix} \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix} = \hat{\beta}_0 + \hat{\beta}_1x_0$$
.

Clearly, the variances of $\hat{\beta}$ and $\hat{\gamma}$

$$Var\begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\gamma} \end{pmatrix} = \sigma^2 (D'D)^{-1} = \sigma^2 \begin{bmatrix} (X'X)^{-1} & (X'X)^{-1}W' \\ W(X'X)^{-1} & 1 + W(X'X)^{-1}W' \end{bmatrix}.$$

Thus,

$$Var\begin{pmatrix} \widehat{\beta}_0 \\ \widehat{\beta}_1 \end{pmatrix} = \sigma^2 (X'X)^{-1} .$$

$$Var(\hat{\gamma}) = \sigma^2(1 + W(X'X)^{-1}W') = \sigma^2\{1 + \begin{bmatrix} 1 & x_0 \end{bmatrix}(X'X)^{-1}\begin{bmatrix} 1 \\ x_0 \end{bmatrix}\}.$$

As usual, the σ^2 is estimated by

$$\tilde{\sigma}^2 = \frac{\sum_{i=1}^{n+1} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i - \hat{\gamma} z_i)^2}{n+1-3} = \frac{\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2 + (0 - \hat{\beta}_0 - \hat{\beta}_1 x_0 + \hat{\gamma})^2}{n-2}$$

Note that $\hat{\gamma}=\hat{eta}_0+\hat{eta}_1x_0$; thus, the term $(0-\hat{eta}_0-\hat{eta}_1x_0+\hat{\gamma})^2=0$.

What does this mean? It means that adding the "Magnificent Dummy" does not change the estimator of $\,\sigma^2\,$. That is,

$$\widetilde{\sigma}^2 = \frac{\sum_{i=1}^{n+1} (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i - \widehat{\gamma} z_i)^2}{n+1-3} = \widehat{\sigma}^2$$
 which is the estimator of σ^2 from those n observations before prediction.

Lastly, the estimated variance of $\widehat{\gamma}$ is equal to the estimated variance of \widehat{y}_0 ; that is,

$$\widehat{\sigma}^2\{1+\begin{bmatrix}\mathbf{1} & x_0\end{bmatrix}(X'X)^{-1}\begin{bmatrix}\mathbf{1} \\ x_0\end{bmatrix}\}.$$

Exercise Problems:

- 1) Create a numerical example to confirm the results shown above.
- 2) Prove mathematically that the "Magnificent Dummy" method can generate an unbiased estimator of $E(y \mid x_0)$ and an unbiased estimator of the variance of the unbiased estimator of $E(y \mid x_0)$.