Kombinatorika a grafy

Tomáš Turek

November 30, 2023

Contents

Ι	Kombinatorika a grafy I	3
1	Odhady 1.1 Odhady faktoriálu	5 5
2	Vytvořující funkce 2.1 Řešení rekurentních rovnic 2.2 Aplikace vytvořujících funkcí 2.3 Aplikace - Catalanova čísla	7
3	Konečně projektivní roviny (KPR) 3.1 Eukleidovy axiomy 3.2 Dualita KPR 3.3 Existence KPR 3.4 Latinský čtverec 3.4.1 Ortogonalita	8 9 9 9 10
4	Toky v sítích 4.1 Fordův-Fulkersonův algoritmus 4.2 Königova-Egerváryho věta 4.3 Hallova věta 4.4 Rozšiřování latinských obdélníků	
5	Míra souvislosti grafu 5.1 2-souvislost podrobněji	14 15
6	Počítání dvěma způsoby6.1 Cayleyho vzorec6.2 Spernerova věta	
7	Úvod do Ramseyovy teorie 7.1 Aplikace - Erdösova-Szekeresova věta	17 18
8	Samoopravné kódy 8.1 Lineární kódy 8.1.1 Kódování lineární kódy 8.1.2 Dekódování lineárních kódů 8.1.3 Jak dekódovat 8.2 Hammingovy kódy	21
II	Kombinatorika a grafy II	24
9	Párování v grafech	25

10 Kontrakce a minory	30
11 Kreslení grafů na plochy	33
12 Barvení grafů 12.1 Perfektní grafy	36
13 Extremální kombinatorika	42
14 Vytvořující funkce 14.1 Operace s formálními mocninnými řadami	. 48
15 Akce grup a počítání orbit	52
III Kombinatorika a grafy III	54
16 Structural graph theory 16.1 Hadwiger's conjecture	
17 Tree decomposition 17.1 Basics 17.2 Tree width 17.3 Brumble 17.3.1 $n \times n$ grid 17.3.2 n -ladder	. 65 . 66
18 Polynoms for graph theory	71
19 VC - dimension	73

Part I Kombinatorika a grafy I

1. Odhady

1.1 Odhady faktoriálu

Faktoriál: $n \in \mathbb{N}$: n!. Poskládání n prvků.

Tvrzení 1. $\forall n \in \mathbb{N} : n^{n/2} \leq n! \leq n^n$

 $D\mathring{u}kaz$. Horní odhad se dá napsat jako: $n! = \prod_{i=1}^n i \leq \prod_{i=1}^n n = n^n$. Dolní odhad použijeme, že $i(n+1-i) \geq n$ (to platí pro i=1 a i=n). Potom pro $2 \leq i \leq \lceil \frac{n}{2} \rceil$ máme $i(n+1-i) \geq 2\frac{n}{2} = n$. Obdobný odhad je i pro $\lceil \frac{n}{2} \rceil \leq i \leq n$. Následně $(n!)^2 = n1 \cdot n2 \dots 2(n-1) \cdot 1n \geq n^n$. Potom platí, že $n! \geq n^{n/2}$.

Věta 2. $\forall n \in \mathbb{N} : e(\frac{n}{e})^n \leq n! \leq en(\frac{n}{e})^n$

Důkaz. Horní odhad: Pro n=1 platí $(1=1! \le e1 \left(\frac{1}{e}\right)^1=1)$. Nechť $n\ge 2$.

$$n! = n(n-1)! \le ne(n-1) \left(\frac{n-1}{e}\right)^{n-1} = en\left(\frac{n}{e}\right)^n e\left(\frac{n-1}{n}\right)^n - \left(\frac{n-1}{n}\right)^n = e\left(1 - \frac{1}{n}\right)^n \le e\left(e^{-\frac{1}{n}}\right)^n = 1$$

Dolní odhad: Pro n=1 platí $(1=\left(\frac{1}{n}\right)^1\leq 1!=1)$. Nechť $n\geq 2$.

$$n! = n(n-1)! \ge ne\left(\frac{n-1}{e}\right)^{n-1} = e\left(\frac{n}{e}\right)^n e\left(\frac{n-1}{n}\right)^{n-1} - \left(\frac{n-1}{n}\right)^{n-1} \ge 1$$

1

$$\frac{1}{e} \left(\frac{n}{n-1} \right)^{n-1} \le 1$$

$$\frac{1}{e} \left(\frac{n}{n-1} \right)^{n-1} = \frac{1}{e} \left(1 + \frac{1}{n-1} \right)^{n-1} \le \frac{1}{e} \left(e^{\frac{1}{n-1}} \right)^{n-1}$$

Lemma 3. $1 + x \le e^x$

 $D\mathring{u}kaz$. $f(x) := e^x - (x+1)$ chceme ukázat, že $f(x) \ge 0$ pro $\forall x \in \mathbb{R}$. $f'(x) = e^x - 1 \Rightarrow (f'(x) = 0 \Leftrightarrow x = 0)$. $f''(x) = e^x$. $f''(x) = 1 > 0 \Rightarrow$ v bodě x = 0 je globální minimum pro $f \Rightarrow f(x) \ge 0$ pro $\forall x \in \mathbb{R}$.

Věta 4 (Stirlingův vzorec). $n! \approx n\sqrt{2\pi n} (\frac{n}{e})^n \lim_{n\to\infty} \frac{n!}{\sqrt{2\pi n}(\frac{n}{e})^n} = 1$

1.2 Binomický koeficient

Počet k-prvkových podmnožin n-prvkových množin:

$$n,k \in \mathbb{N}: \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Pozorování. 1. $\forall n,k \in \mathbb{N} : (\frac{n}{k})^k \le {n \choose k} \le n^k$

2. největší prvek
$$\binom{n}{\lceil \frac{n}{2} \rceil} = \binom{n}{\lfloor \frac{n}{k} \rfloor}$$

Důkaz. Empty.

1.2.1 Binomická věta

$$\frac{2^{2m}}{2m+1} \le \binom{2m}{m} \le 2^{2m}$$

Věta 5. $\forall m \in \mathbb{N} : \frac{2^{2m}}{2\sqrt{m}} \le \binom{2m}{m} \le \frac{2^{2m}}{\sqrt{2m}}$

Užití Stirlingového vzorce: $\binom{2m}{m} \approx \frac{2^{2m}}{\sqrt{\pi m}}$. $\forall k, n \in \mathbb{N} : n > k, \binom{n}{k} \leq (\frac{en}{k})^k$.

Důkaz. Empty.

1.2.2 Aplikace (náhodné procházky)

n kroků a v každém bodě mám 50% že půjdu doprava anebo doleva. Střední hodnota počtu návratů do 0. X - počet návratů do 0. $A_{2n}=$ jev po 2n krocích se dostanu do 0. $X=\sum_{n=1}^{\infty}I_{A_{2n}}.$ $\Pr[A_{2n}]=\frac{\binom{2n}{n}}{2^2n}.$

$$\mathbb{E}[X] = \mathbb{E}[\sum_{n=1}^{\infty} I_{A_{2n}}] = \sum_{n=1}^{\infty} \mathbb{E}[I_{A_{2n}}] =$$

$$= \sum_{n=1}^{\infty} Pr[I_{A_{2n}}] = \sum_{n=1}^{\infty} \frac{\binom{2n}{n}}{2^2 n} \ge \sum_{n=1}^{\infty} \frac{1}{2\sqrt{n}} = \infty$$

2. Vytvořující funkce

Početní metoda, kde spojitými funkcemi vyjadřujeme posloupnosti.

Definice 1. Pro posloupnost $(a_i)_{i=0}^{\infty}$ je mocninnou řadou $a(x) = \sum_{i=0}^{\infty} a_i x^i$.

Posloupnost lze převést na funkci, ale při převodu nazpátek je třeba aby posloupnost nerostal moc rychle.

Příklad. 1. $a_i = 1$ pokud $0 \le i \le n$ jinak $a_i = 0$. Tedy $(a_i)_{i=0}^{\infty} = (1, \dots, 1, 0, 0, \dots)$. Potom funkce je $\frac{1-x^{n+1}}{1-x}$ z geometrické řady.

- 2. $\forall i: a_i = 1$ to je potom nekonečná geometrická řada, takže je to $\frac{1}{1-x}$.
- 3. $a_i = \binom{n}{i}$ potom funkce vychází z binomické věty, takže je $(1+x)^n$.

Tvrzení 6. Pokud pro $(a_i)_{i=0}^{\infty} \exists k \in (R)$ takové, že $\forall i : |a_i| \leq k^i$, pak pro všechna $x \in (\frac{-1}{k}, \frac{1}{k})$ řada $a(x) = \sum_{i=0}^{\infty} a_i x^i$ konverguje absolutně a na libovolném ϵ okolí 0 určuje i koeficienty_a, protože $i_a = \frac{a^{(i)}(0)}{i!}$.

Obecný postup:

- 1. kombinatorický objekt s neznámým počtem
- 2. vytvořující funkce
- 3. rozklad na vytvořující funkce se známými koeficienty
- 4. určení hodnoty

Operace	Posloupnosti	Funkce
Součet	(a_0+b_0,a_1+b_1,\dots)	$(a+b)(x) = \sum_{i=0}^{\infty} (a_i + b_i)x^i$
α -násobek	$(\alpha a_0, \alpha a_1, \dots)$	$\alpha a(x) = \sum_{i=0}^{\infty} (\alpha a_i) x^i$
Posun vpravo o n pozic	$(0,0,\ldots,a_0,a_1,\ldots)$	$x^n a(x) \sum_{i=0}^{\infty} a_i x^{i+n}$
Posun vlevo o n pozic	$(a_n, a_{n+1}, dots)$	$\sum_{i=0}^{\infty} (a_{i+n}x^{i}) = \frac{a(x) - \sum_{i=0}^{\infty} a_{i}x^{i}}{x^{n}}$
Dosazení αx	$(a_0, \alpha a_1, \alpha^2 a_2, \dots)$	$a(\alpha x) = \sum_{i=0}^{\infty} a_i + \alpha^i x^i$
Dosazení x^n	$(a_0,0,\ldots,0,a_1,0,\ldots)$	$a(x^n) = \sum_{i=0}^{\infty} a_i x^n i$
Derivace	$(a_1,2a_2,3a_3,\dots)$	$a'(x) = \sum_{i=1}^{\infty} i a_i x^{i-1}$
Integrál	$(0, a_0, \frac{a_1}{2}, \frac{a_2}{3}, \dots)$	$\int_0^x a(x) \mathrm{d}x = \sum_{i=0}^\infty \frac{a_i}{i+1} x^{i+1}$
Součin	(c_0,c_1,c_2,\dots)	$a(x)b(x) = \sum_{i=0}^{\infty} (c_i)x^i$

2.1 Řešení rekurentních rovnic

Ukázka na Fibonacciho čísle. Určíme F_n jako koeficient funkce $F(x) = \sum_{i=0}^{\infty} F_i x^i$. Máme $F_{n+2} = F_{n+1} + F_n, \forall n \geq 0$. **Vynásobíme rovnici** x^n : $F_{n+2}x^n = F_{n+1}x^n + F_nx^n$.**Sčítáme přes** $n \geq 0$: $\sum_{n \geq 0} F_{n+2}x^n = \sum_{n \geq 0} F_{n+1}x^n + \sum_{n \geq 0} F_nx^n$ to se rovná:

$$\frac{F(x) - F_0 - F_1}{x^2} = \frac{F(x) - F_0}{x} + F(x)$$

teď určíme

$$F(x) = \frac{x}{1 - x - x^2} = \frac{x}{(1 - \frac{1 + \sqrt{5}}{2}x)(1 - \frac{1 - \sqrt{5}}{2})} = \frac{\frac{1}{\sqrt{5}}}{1 - \frac{1 + \sqrt{5}}{2}x} - \frac{\frac{1}{\sqrt{5}}}{1 - \frac{1 - \sqrt{5}}{2}x}$$

to už lze převést

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right]$$

to je tzv. **Binetův vzorec**. Tento postup funguje pro všechny **Homogenní lineární** rekurence k-tého stupně s konstantními koeficienty, tedy typu:

$$a_{n+k} = \alpha_{k-1}a_{n+k-1} + \cdots + \alpha_0a_n, k \in \mathbb{N}, \alpha_{k-1}, \ldots, \alpha_0 \in \mathbb{R}$$

2.2 Aplikace vytvořujících funkcí

Nadefinujeme zobecněnou binomickou větu pro

$$n \in \mathbb{R}, r \in \mathbb{Z}_0^+ : \binom{n}{r} := \frac{n(n-1)(n-2)\dots(n-r+1)}{r!},$$

speciálně $\binom{n}{0} = 1$.

Věta 7 (Zobecněná binomická věta). $\forall r \in \mathbb{R} \ je \ (1+x)^r \ vytvořující funkcí posloupnosti <math>\binom{r}{0}, \binom{r}{1}, \binom{r}{2}, \ldots$ a řada $\sum_{i=0}^{\infty} \binom{r}{i} x^i$ konverguje pro $\forall x \in (-1,1)$.

Důkaz. Empty.

Důsledek. $\forall n \in \mathbb{N} \ \forall x \in (-1,1) \text{ platí } \frac{1}{(1-x)^n} = \sum_{i=0}^{\infty} \binom{n+i-1}{n-1} x^i$.

Důkaz. Empty.

2.3 Aplikace - Catalanova čísla

Zakořeněný binární strom - buď je prázdný, nebo obsahuje speciální vrchol zvaný kořen a pár zakořeněných stromů, které tvoří levý a pravý podstrom.

 b_n = počet bin. zak. stromů na $n \in \mathbb{N}_0$ vrcholech, potom $b(x) = \sum_{n=0}^{\infty} b_n x^n$ je příslušná vytvořující funkce.

Věta 8. Pro každé $n \in \mathbb{N}_0$ platí $b_n = \frac{1}{n+1} \binom{2n}{n}$. Kde se $\frac{1}{n+1} \binom{2n}{n}$ značí jako C_n a říká se mu n-té **Catalanovo** číslo.

Důkaz. Empty.

Catalanova čísla mají mnoho interpretací, například počet triviálních uzávorkování sn páry závorek anebo počet triangulací.

3. Konečně projektivní roviny (KPR)

Jistá nová struktura, která je velice symetrická a vzácná. Jedná se o množinový systém (**hypergraf** - zobecnění grafu, kde hrany mohou být k-tice. Využívá se v samoopravných kódech a přichází z geometrie.

3.1 Eukleidovy axiomy

- 1. každé 2 body určují přímku
- 2. každou úsečku lzze prodloužit na přímku
- 3. ze zadaného bodu lze opsat kružnici procházejícím druhým zadaným bodem
- 4. všechny pravé úhly jsou stejné
- 5. bodem lze k přímce vést právě 1 rovnoběžku

Definice 2 (KPR). Konečná množina \mathcal{X} a systém \mathcal{P} podmnožin \mathcal{X} tvoří KPR $(\mathcal{X}, \mathcal{P}) = (body, přímky)$ pokud splňuje tyto tři axiomy:

- 1. $\forall x,y \in \mathcal{X}, x \neq y, \exists ! P \in \mathcal{P} : \{x,y\} \subseteq P$
 - každé 2 body určují právě jednu přímku
- 2. $\forall P,Q \in \mathcal{P}, P \neq Q : |P \cap Q| = 1$
 - každé 2 přímky se protínají právě v 1 bodě
- 3. $\exists C \subseteq \mathcal{X}, |C| = 4, \forall P \in \mathcal{P} : |C \cap P| \leq 2$
 - existují 4 body v obecné poloze

Jako příklad je **Fanova rovina**, která má 7 přímek a 7 bodů. Jak lze vidět na obrázku 3.1.

Figure 3.1: Fanova rovina

Tvrzení 9. V KPR obsahuje každá přímka stejný počet bodů. $\forall P,Q \in \mathcal{P}|P| = |Q|$.

Důkaz. Empty.

Definice 3. *Řád projektivní roviny:* $(\mathcal{X}, \mathcal{P})$ *je* |P| - 1 *pro* $P \in \mathcal{P}$.

Tvrzení 10. Je-li $(\mathcal{X}, \mathcal{P})$ KPR řádu n, pak platí:

- 1. každým bodem prochází právě <math>n+1 přímek
- 2. $|\mathcal{X}| = n^2 + n + 1$
- 3. $|\mathcal{P}| = n^2 + n + 1$

Důkaz. Empty.

3.2 Dualita KPR

"Přechod z přímek na body a z bodů na přímky."

Definice 4. Duální množinový systém k množinovému systému $(\mathcal{X}, \mathcal{P})$ je $(\mathcal{P}, \{\{P \in \mathcal{P} : x \in P\} : x \in \mathcal{X}\})$, zkráceně duál

Tvrzení 11. Duálem KPR řádu n je KPR řádu n.

Důkaz. Empty.

3.3 Existence KPR

Kromě Fanovy roviny zatím neznáme žádné další příklady konečných projektivních rovin. Ale samozřejmě se ví o dalších které existují jmenovitě pro (2,3,4,5,7,8,9,11) a 12 už se neví. Domněnka je, že KPR řádu n existuje $\Leftrightarrow n$ je mocnina prvočísla. Nicméně je to pořád otevřené.

Věta 12. Pokud existuje algebraické těleso o n prvcích, potom existuje KPR řádu n.

Důkaz. Empty.

Konstrukce funguje nad každým tělesem a například nad $\mathbb R$ dává **reálnou projektivní rovinu**.

3.4 Latinský čtverec

Definice 5. Latinský čtverec řádu $n \in \mathbb{N}$ je tabulka $n \times n$ čísel z $\{1, \ldots, n\}$, ve které se žádné číslo neopakuje v žádném řádku ani sloupci.

3.4.1 Ortogonalita

Definice 6. Latinský čtverce L, L' stejného řádu jsou **ortogonální**, pokud pro každé $l, l' \in \{1, \ldots, n\}$ existují $i, j \in \{1, \ldots, n\}$, takové že $L_{ij} = l, L'_{ij} = l'$. Zapisuje se jako $L \perp L'$.

Pozorování. Pro ortogonální latinské čtverce L, L' řádu n a pár $(l,l') \in \{1,\ldots,n\} \times \{1,\ldots,n\}$ je pozice (l,l') s $L_{ij}=l,L'_{ij}=l'$ určena jednoznačně.

 $D\mathring{u}kaz$. Počet párů (l,l') je n^2 , stejně jako počet párů (i,j).

Pozorování. Je-li $L = (L_{ij})_{i,j=1}^n$ latinský čtverec a $\Pi : \{1, ..., n\} \rightarrow \{1, ..., n\}$ perm, tak potom $\Pi(L) := (\Pi(L_{ij})_{i,j=1}^n$ je latinský čtverec stejného řádu.

 $D\mathring{u}kaz. \ \Rightarrow$ BŮNO první řádek je vžzdy vzestupná řada. \Rightarrow Je-li $L\perp L',$ pak $\Pi(L)\perp L'.$

Důsledek. Počet navzájem ortogonálních nanejvýš čtverců řádu $n \in \mathbb{N}$ je n-1.

Důkaz. Empty.

Věta 13. Konečná projektivní rovina řádu $n \geq 2$ existuje \Leftrightarrow existuje n-1 navzájem ortogonálních latinských čtverců řádu n.

Důkaz. Empty.

4. Toky v sítích

Definice 7. Sít je čtveřice (G, z, s, c), kde G = (V, E) je orientovaný graf (tedy $V \subseteq V \times V$), $z \in V$ je **zdroj**, $s \in V$ je **stok** $(z \neq s)$ a $c : E \to \mathbb{R}_0^+$. Hodnotu c(e) nazýváme **kapacitou** hrany $e \in E$.

Definice 8. Tok v síti (G = (V, E), z, s, c) je $f : E \to \mathbb{R}^+_0$ splňující následující podmínky:

- 1. $\forall r \in E : 0 \le f(e) \le c(e)$ (velikost toku je omezená kapacitou)
- 2. Kirchhoffův zákon co přitéká do vrcholu, musí odtéct, neboli:

$$\forall u \in V \setminus \{z, s\} : \sum_{v:(u, v) \in E} f(u, v) - \sum_{v:(v, u) \in E} f(v, u) = 0$$

Definice 9. Velikost toku f je $w(f) = \sum_{v:(z,v)\in E} f(z,v) - \sum_{v:(v,z)\in E} f(v,z)$.

Tvrzení 14. Pro každou síť existuje maximální tok.

 $D\mathring{u}kaz$. [Náčrt] Z analýzy víme, že spojitá funkce na kompaktní množině nabývá maxima. Množina $\mathcal{F} \subseteq \mathbb{R}^{|E|}$ všech toků je kompaktní funkce $w : \mathcal{F} \to \mathbb{R}$ je spojitá.

Definice 10. Řez v síti (G, z, s, c) je $R \subseteq E$ taková, že každá orientovaná cesta ze zdroje z do stoku s používá aspoň jednu hranu z R.

Speciálně hrany vycházející ze z či hrany vycházející do s tvoří řez.

Definice 11. Kapacita řezu R je $c(R) = \sum_{e \in R} c(e)$.

Rezu je jen konečně mnoho ⇒ jistě existuje řez minimální kapacity.

Věta 15 (hlavní věta o tocích). Velikost maximálního toku = kapacita minimálního řezu, nebo-li, pro každou síť platí: $\max w(f) = \min c(R)$, kde f je tok a R řez.

Definice 12 (Elementární řez). Pro $A \subseteq V$, $kde \ z \in A$ a $s \notin A$, nazveme množinu $R_A = \{e = (u,v) \in E : u \in A, v \notin A\}$ elementárním řezem. Opravdu se jedná o řez, protože pokaždé su musí nějak opustit A.

Pozorování. Každý řez R obsahuje elementární řez.

 $D\mathring{u}kaz$. Zvolme A jako množinu vrcholů dosažitelných po orientované cestě ze zdroje v grafu $(V, E \setminus R)$. Potom $z \in A, s \notin A$, protože R je řez $\Rightarrow R_A$ existuje $(u,v) \in R_A \Leftrightarrow u \in A, v \notin A \Rightarrow (u,v) \in R$, tedy $R_A \subseteq R$.

Pozorování. Každý v inkluzi minimální řez R je elementární. Nebo-li $R \setminus \{e\}$ není řezem pro $\forall e \in R$.

 $D\mathring{u}kaz$. Z předchozího pozorování musí R obsahovat elementární řez $R_A \subseteq R$ a z minimality platí $R_A = R$.

Lemma 16. Je-li f tok a R_A elementární řez, pak platí:

$$w(f) = \sum_{u \in A, v \notin A, (u,v) \in E} f(u,v) - \sum_{u \in A, v \notin A, (v,u) \in E} f(v,u)$$

Důkaz. Empty.

Důkaz. (Věty) Empty.

4.1 Fordův-Fulkersonův algoritmus

- 1: Nastav f(e) = 0 pro $\forall e \in E$
- 2: while \exists zlepšující cesta P do
- 3: vylepšuj po ní tok o ϵ_P
- 4: end while
- 5: **return** Stávající tok f

Věta 17 (o celočíselnosti). Jsou-li kapacity celočíselné, pak F.F. najde max. tok po konečně mnoha krocáích a navíc má takový tok celočíselnou velikost.

 $D\mathring{u}kaz$. Tok se vždy zlepší o celé číslo $\epsilon_P > a \ w(f) < \infty$.

Existují sítě s iracionálními kapacitami, kde F.F nenajde maximální tok a nekonverguje k výsledku. V síti s celočíselnými kapacitami má F.F. alg. časovou složitost O(w(f)(|V| + |E|)), kde f je tok. Takže je to v čase O(|V| + |E|). Pokud bychom specifikovali výběr zlepšující cesty na nejkratší dostaneme **Edmondsův-Karpův algoritmus**, který má časovou složitost $O(|V| + |E|^2)$.

4.2 Königova-Egerváryho věta

Definice 13. V grafu G = (V,E) nazveme množinu $C \subseteq V$ vrcholovým pokrytím, pokud $C \cap e \neq \emptyset$ pro $\forall e \in E$.

Zjistit minimální velikost vrcholové pokrytí je NP-těžká úloha.

Definice 14. Párováním v G je podgraf tvořený disjunktními hranami.

Věta 18. (Königova-Egerváryho věta) V bipartitiním grafu je velikost min. vrcholového pokrytí rovna velikosti maximálního párování (do počtu hran).

Důkaz. Empty.

4.3 Hallova věta

Definice 15. Mějme konečné množiny X a I. Množinový systém \mathcal{M} je $(M_i: i \in I)$, $kde\ M_i \subseteq X$. Systém ruzných reprezentantů (SRR) pro \mathcal{M} je prosté zobrazení $f: I \to X$ takové, že $\forall i \in I: f(i) \in M_i$. Tedy f je výběr jednoho prvku z každé M_i takový, že žádný prvek nevybereme víckrát. Incidenční graf systému \mathcal{M} je bipartitní graf $G_{\mathcal{M}} = (I \cup X, E)$, $kde\ E = \{\{i,x\}: i \in I, x \in X, x \in M_i\}$. Pokud \mathcal{M} má $SSR \Leftrightarrow S_{\mathcal{M}}$ obsahuje párování velikosti |I|.

Věta 19 (Hallova věta). \mathcal{M} má $SSR \Leftrightarrow \forall J \subseteq I : |\cup_{j \in J} M_j| \geq |J|$. Pravé části se říká $Hallova\ podmínka$, také se věta označuje jako Hall's $marriage\ theorem$.

Definice 16. Empty.

S axiomem výběru by šlo dokázat variantu s konečnými M_i a nekonečnými I,X. S nekonečnými I,X to platit nemusí.

4.4 Rozšiřování latinských obdélníků

Důsledek. V každém bipartitním grafu $G = (A \cup B, E)$ s $E \neq \emptyset$ a $\deg_G(x) \geq \deg_G(y)$ pro každé $x \in A, y \in B$ existuje párování velikosti |A|.

Důkaz. Empty.

Latinský obdélník typu $k\times n$ pro $k\le n$ je tabulka s řádky s n sloupci vyplněnými symboly $1,\ldots,n$ tak, že se v žádném řádku ani sloupci žádný symbol neopakuje.

Věta 20. Každý latinský obdélník typu $k \times n$ lze doplnit na latinský čtverec řádu n.

Důkaz. Empty.

5. Míra souvislosti grafu

Definice 17. Graf je souvislý pokud jsou každé dva vrcholy spojené cestou, jinak je graf nesouvislý a je rozložen na aspoň dvě komponenty souvislosti.

Nyní budeme zkoumat jak moc je graf odolný proti rozpadnutí po odebrání hrany nebo vrcholu.

Definice 18. Hranovým řez v grafu G = (V,E) je množina hran $F \subseteq E$ taková, že graf $G - F = (V, E \setminus F)$ je nesouvislý. (Také se někdy nazývá jako **separátor**.)

Definice 19. Vrcholovým řezem v grafu G = (V,E) je množina vrcholů $A \subseteq V$ taková, že graf $G - A = (V \setminus A, E \cap \binom{V \setminus A}{2})$ je nesouvislý.

Definice 20. Hranová souvislost grafu G = (V,E) je

$$k_e(G) = \begin{cases} \min\{|F| : F \text{ je hranový řez } v \text{ } G\} \\ k_e(G) = 1 \text{ pokud } G \equiv K_1 \end{cases}$$

Definice 21. Vrcholová souvislost grafu G = (V,E) je

$$k_v(G) = \begin{cases} \min\{|A| : A \text{ je vrcholový řez } v \text{ } G\} \\ k_v(G) = 1 \text{ pokud } G \equiv K_1 \\ k_v(G) = n - 1 \text{ pokud } G \equiv K_n, n \geq 2 \end{cases}$$

Nesouvislé grafy mají vrcholovou i hranobvou souvislost 0.

Definice 22. Pro $r \in \mathbb{N}_0$ je graf **hranově** r-souvislý, pokud $k_e(G) \geq r$.

Definice 23. Pro $r \in \mathbb{N}_0$ je graf **vrcholově** r-**souvislý**, pokud $k_v(G) \geq r$.

Pozorování. $\forall G = (V,E), G \neq K_1 : k_e(G), k_v(G) \leq \min\{\deg_G(v), v \in V\}$

Lemma 21. $\forall G = (V,E) \forall e \in E : k_e(G) - 1 \leq k_e(G - e) \leq k_e(G)$ Po odebrání hrany klesne hranová souvislost maximálně o 1.

Důkaz. Empty.

Lemma 22. $\forall G = (V,E) \ \forall e \in E : k_v(G) - 1 \le k_v(G - e) \le k_v(G)$ Po odebrání hrany klesne vrcholová souvislost maximálně o 1.

Důkaz. Empty.

Důsledek. $\forall G = (V,E) : k_v(G) \leq k_e(G)$ Vrcholová souvislost je maximálně stejná jako hranová souvislost.

Důkaz. Empty.

Nerovnost může být ostrá. To lze vidět na příkaldu "motýlka". Lze vidět na obrázku ??.

Figure 5.1: Graf "motýlek".

Věta 23 (Ford-Fulkersonova věta). $\forall G \ \forall t \in \mathbb{N} : k_e \geq t \Leftrightarrow mezi \ každými 2 \ vrcholy \ grafu G \exists \geq t \ hranově \ disjunktních \ cest.$

Důkaz. Empty.

Varianat Fordovy-Fulkersonovy věty platí i pro vrcholovou souvislost. Tyto věty jsou známé také jako Mengerovy věty.

Věta 24 (Mengerova věta). $\forall G \ \forall t \in \mathbb{N} : k_e(G) \geq t \Leftrightarrow mezi každými 2 vrcholy grafu <math>G \exists \geq t \ vrcholově \ disjunktních \ cest \ (mimo \ u,v).$

Důkaz. Empty.

Jelikož lze zjistit tok maximální velikost v polynomiálním čase, tak máme algoritmus na zjištení $k_e(G), k_v(G)$ také v polynomiálním čase.

5.1 2-souvislost podrobněji

Definice 24. Hranový řez velikosti 1 se nazývá most a vrcholový řez velikosti 1 se nazývá artikulace.

Pro graf G=(V,E) s $e\in E$ označme $C\div e$ graf vzniklýz G operací **podrozdělení** hrany e na cestu délky 2.

Lemma 25. Pro každý graf G = (V,E) a pro každou hranu $e \in E$ platí: G je vrcholově 2-souvislý $\Leftrightarrow G \div e$ je vrcholově 2-souvislý.

Důkaz. Empty.

Věta 26 (Ušaté lemma). Graf G je vrcholově 2-souvislý $\Leftrightarrow G$ lze vytvořit z K_3 operacemi přidávání a podrozdělování hran. Proč "Ušaté lemma"? Přidání hrany a její podrozdělení odpovídám přidání cesty mezi 2 vrcholy (= "přiepení ucha").

Věta 27 (Alternativní znění). G je vrcholově 2-souvislý $\Leftrightarrow G$ lze vytvořit z cyklu přidávání uší, protože přidávání ucha lze symulovat přidáním hrany a jejím podrozdělení.

Důkaz. Empty.

6. Počítání dvěma způsoby

Metoda důkazů v kombinatorice. Určíme nějaký neznámý počet X vyjádřením počtu Z dvěma výrazy, z nichž jeden X obsahuje a druhý ne \Rightarrow máme vyjádření pro X.

6.1 Cayleyho vzorec

Kolika způsoby lze vytvořit strom na vrcholech $\{1,\ldots,n\}$? Nebo-li jaká je počet koster $\kappa(n)$ grafu K_n ?

Definice 25. Kostra grafu G = (V, E) je strom T = (V, E') s $E' \subseteq E$.

Věta 28 (Cayleyho vzorec). *Pro každé* $n \ge 1$ platí $\kappa(n) = n^{n-2}$.

Existuje řada důkazů s velmi odlišnými myšlenkami, ukážeme si nejjednodušší založený na počítání dvěma způsoby.

Důkaz. Empty.

Věta 29. Graf $K_n - e \ m\acute{a} \ (n-2)n^{n-3} \ koster \ pro \ n \ge 2$.

Důkaz. Empty.

Počet koster $\kappa(G)$ grafu $G = (\{1, \ldots, n\}, E)$ lze určit pomocí determinantu. Uvažme **Laplacián** L(G) grafu G, tedy matici $L(G) = (L_{ij})_{i,j=1}^{\infty}$, kde

$$L_{ij} = \begin{cases} \deg_G(i) \text{ pokud } i = j \\ -1 \text{ pokud } (i,j) \in E \\ 0 \text{ jinak} \end{cases}$$

Věta 30 (Kirchhoffova věta). $\forall G : \kappa(G) = \det(L(G)^{1,1}), kde(L(G)^{1,1})$ je Laplacián L(G) bez 1. řádků a 1. sloupce.

6.2 Spernerova věta

Definice 26. Systém $\mathcal{M} \subseteq 2^{\{1,\dots,n\}}$ podmnožin n-prvkové množiny $\{1,\dots,n\}$ je **nezávislý**, pokud platí: $\forall A, B \in \mathcal{M}, A \neq B : A \nsubseteq B \land A \nsupseteq B$.

Věta 31 (Spernerova věta). Každý nezávislý systém v $2^{\{1,\dots,n\}}$ obsahuje $\leq \binom{n}{\lceil \frac{n}{2} \rceil}$ množin a tento odhad je těsný. Ekvivalentně: Nejdelší antiřetězec v $(2^{\{1,\dots,n\}},\leq)$ má právě $\binom{n}{\lceil \frac{n}{2} \rceil}$ prvků.

Důkaz. Empty.

7. Úvod do Ramseyovy teorie

"Každý velký systém obsahuje homogenní podsystém" dané velikosti.

Definice 27. Obarvení množiny X r barvami (zkráceně r-obarvení) je libovolné zobrazení přiřazující každému prvku z X jednu z r barev.

Věta 32 (Dirichletův princip, Pigeonhole principle). $\forall r, n_1, \ldots, n_r \in \mathbb{N}$: obsarvíme-li prvky množiny X r barvami, pak je-li $|X| \geq 1 + \sum_{i=1}^{r} (n_i - 1)$, X obsahuje n_i prvků i-té barvy.

Důkaz. Triviální.

Co kdybychom chtěli obarvit dvojice?

Definice 28. Pro $k,l \in \mathbb{N}$ buď R(k,l) nejmenší $N \in \mathbb{N}$ takové, že každé 2-obarvení $(B\acute{U}NO: \check{c}erven\acute{e} \ a \ modr\acute{e} \ obarven\acute{e}) \ E(K_N)$ obsahuje $\check{c}erven\acute{e} \ K_k$ nebo modr $\acute{e} \ K_l$ jako podgraf.

Věta 33 (Ramseyova věta pro 2 barvy). $\forall k,l \in \mathbb{N} : R(k,l)$ je konečné. Dokonce $R(k,l) \leq {k+l-2 \choose k-1} = {k+l-2 \choose l-1}$.

Důkaz. Empty.

Určit Ramseyovská čísla R(k,l) přesně je velice obtížné (už pro malé případy). Známá čísla $R(3,3)=6,\ R(4,4)=18.$

Věta 34. $\forall k \geq 3 : R(k,k) > 2^{k/2}$

Důkaz. Empty.

Rozšíření Ramseyovy věty na více barev a také na barvení p-tic vrcholů.

Definice 29. Pro čísla $p,r,n_1,\ldots,n_r \in \mathbb{N}$ (p - velikost barevných množin, r - počet barev, n_i - velikost 1-barevných podstruktur, které chceme najít) definujeme **Ramseyovo číslo** $R_p(n_1,\ldots,n_n)$ jako nejmenší $N \in \mathbb{N}$ takové, že pro každou množinu X s $|X| \geq N$ a každé r-obarvení množiny $\binom{X}{p}$ existuje $i \in \{1,\ldots,n\}$ a $Y \subseteq X$ takové, že $|Y_i| = n_i$ a všechny p-tice $z\binom{Y}{p}$ mají i-tou barvu.

Věta 35 (Ramseyova věta pro p-tice). Pro každé p,r,n_1,\ldots,n_n je $R_p(n_1,\ldots,n_n)$ konečné.

Důkaz. Empty.

7.1 Aplikace - Erdösova-Szekeresova věta

Definice 30. $P = konečná množina bodů v rovině <math>\mathbb{R}^2$. P je v **obecné poloze**, pokud neobsahuje 3 body na přímce. P je v **konvexní poloze**, pokud tvoří množinu vrcholů konvexního mnohoúhelníku.

Lemma 36. Každá množina 5 bodů v \mathbb{R}^2 v obecné poloze obsahuje 4 body v konvexní poloze.

Důkaz. Empty.

Věta 37 (Erdösova-Szekeresova věta). Pro každé $r \in \mathbb{N}$ existuje nejmenší $ES(r) \in \mathbb{N}$ takové, že každá konečná množina $s \geq ES(r)$ body v \mathbb{R}^2 b obecné poloze obsahuje r bodů v konvexní poloze.

Důkaz. Empty.

Erdösova-Szekeresova domněnka je že $\forall r \geq 2: ES(r) = 2^{r-2} + 1$. Zatím se zná, že to je dolní odhad a horní jako $\leq 2^{r+o(r)}$.

Věta 38 (Nekonečná verze Ramseyovy věty). Pro každé $p,r \in \mathbb{N}$ a pro každé r-obarvení množiny $\binom{\mathbb{N}}{p}$ existuje nekonečná $A \subseteq \mathbb{N}$ taková, že všechny její p-tice mají v daném r-obarvení stejnou barvu.

Důkaz. Empty.

Nekonečná verze implikuje konečnou. Dá se dokázat sporem, my si ji ukážeme pro $n_1 = \cdots = n_n = n$.

Lemma 39 (Königovo lemma). V každém zakořeněném stromě, který má nekonečně mnoho vrcholů ale jen konečné stupně existuje nekonečná cest začínající v kořeni.

Důkaz. (implikace konečné věty) Empty.

8. Samoopravné kódy

Definice 31. Abeceda $\Sigma = konečná množina symbolů, slovo délky <math>n = posloupnost n$ symbolů, $\Sigma^n = množina všech slov délky <math>n$.

Definice 32. Hammingova vzdálenost: $x,y \in \Sigma^n : d(x,y) = |i \in \{1,\ldots,n\} : x_i \neq y_i|$, neboli počet pozic, kde se x a y liší. d je metrika a tedy (Σ^n, d) je metrický prostor.

Definice 33. (Blokový) kód je $C \subseteq \Sigma^n$ a prvky C jsou kódova slova. Pomocí C umíme opravit $\leq t$ chyb, pokud $\forall y \in \Sigma^n \exists nanejvys \ 1 \ slovox \in Ct.\check{z}.d(x,y) \leq t$.

Definice 34. Parametry kódu:

- 1. $d\acute{e}lka = n$,
- 2. velikost abecedy $q = |\Sigma|$,
- 3. dimense $k = \log_q |C|$,
- 4. $vzdálenost d = \min_{x,x' \in C, x \neq x'} d(x,x')$.

Kód s parametry n,k,d,q značíme $(n,k,d)_q$.

V kódu s parametry $(n,k,d)_q$ dokážeme opravit $\leq \lfloor \frac{d-1}{2} \rfloor$ chyb. Množiny slov ve vzdálenosti $\leq \lfloor \frac{d-1}{2} \rfloor$ od kódových slov jsou navzájem disjunktní. Pokud $d \leq n$, tak dokážeme opravit $\leq \lfloor \frac{n-1}{2} \rfloor$.

 $P\check{r}iklad$. 1. opakovací kód: každý symbol n-krát zopakujeme, paramtery: $(n,1,n)_q$

- 2. charakteristický vektory KPR
 - kódová slova P $\{0,1\}$ vektor, kde na pozici x je $1 \leftrightarrow x \in P$
 - (X, \mathcal{P}) KPR řádu n
 - parametry: $(n^2 + n + 1, \log_2(n^2 + n + 1), 2n)_2$
 - $|X| = n^2 + n + 1$ a $|C| = |\mathbb{P}| = n^2 + n + 1$
 - d=2n
 - 2 kódove slova sdílí jednu jedničku, na zbytku se liší na 2n pozicích
- 3. hadamardovy kódy
 - hadamardova matice řádu n je $H \in \{-1, 1\}$, kde $H \cdot H^T = n \cdot I_n$
 - každý 2 různy řádky se liší na n/2 pozicích
 - zvolme $C = \{\check{r} \acute{a} dky H\} \cup \{-\check{r} \acute{a} dky H\}$
 - parametry: $(n, 1 + \log_2(n), \frac{n}{2})_2$

$$H_1 = 1$$

$$H_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Sylvestrova konstrukce hadamardovy matice:

$$H_{n+1} = \begin{pmatrix} H_n & H_n \\ H_n & -H_n \end{pmatrix}$$

Hadamardova domněnka: pro $\forall k \in \mathbb{N} \exists$ hadamardova matice řádu 4kKódy C, C' jsou ekvivalentní, pokud se liší jen pořadím pozic. $\exists \Pi \in S_n : X = (x_1, \dots, x_n) \in C \leftrightarrow \Pi(X) = (X_{\Pi(1), \dots, X_{\Pi(n)} \in C})$. Pro jaké parametry existuje kód?

Definice 35. Kombinatorická koule je středem $X \in \Sigma^n$ a poloměrem t je $B(X,t) = \{y \in \Sigma^n : d(x,y) \leq t\}$.

Lemma 40. Je-li C kód se vzdáleností 2t+1, pak $\forall X, X' \in C : B(X,t) \cap B(X',t) = \emptyset$.

 $D\mathring{u}kaz$. Sporem - $\exists z \in B(x,t) \cap B(x',t) \implies d(x,x') \leq d(x,z) + d(x',z) \leq t+t=2t$, kde d(x,x') je $\geq 2t+1$, takze celkove je $2t+1 \leq 2t$.

Věta 41 (Hammingův odhad). $\forall \ k\acute{o}d \ C \ s \ parametrama \ (n,k,d)_q \ plati, \ \check{z}e \ |C| \leq \frac{q^n}{V(t)}.$

 $\begin{array}{ll} \textit{Důkaz.} & d = 2t+1 \implies \text{ koule okolo kódovych slov s poloměrem } t \text{ jsou disjunktní.} \\ \implies |C| \cdot |V(t)| \leq |\Sigma^n| \implies |C| \leq \frac{|\Sigma^n|}{|V(t)|} = \frac{|q^n|}{|V(t)|}. \end{array}$

Definice 36. Perfektní kód = kód s parametry $(n,k,2t+1)_q$ a s $|C| = \frac{q^n}{V(t)}$.

Opakovací kód s q=2 a lichou delkou.

Věta 42 (Gilbertův - Varshalův odhad). $\forall n,q,d \in \mathbb{N} : \exists \ k\acute{o}d \ C \ s \ parametry \ (n,k,d)_q, \ kde \ |C| \geq \frac{q^n}{V(d-1)}.$

 $D\mathring{u}kaz$. Stačí iterativně odebírat slova z Σ^n spolu se slovy v Hammingové vzdálenosti $\leq d-1$. Proces skončí po $\geq \frac{q^n}{V(d-1)}$ krocích, protože odebírané koule jsou nanejvýš disjunktní.

Definice 37. Linearní kódy - jako abecedu použít konečné těleso $\mathbb{K} = \Sigma^n$. Podprostor vektorového prostoru \mathbb{K}^n s parametry n,k,d,q značíme $[n,k,d]_q$.

 $P\check{r}iklad$. 1. opakovací kódy nad \mathbb{Z}_p [nejsou linearní]

- $2.\,$ charakteristický vektory KPR [nejsou linearní]
- 3. hadamardovy kódy [obecně ne, ze Sylvestrovy konstrukce ano]

8.1 Lineární kódy

Víme, že každé těleso \mathbb{K} odpovídá Galoisovu tělesu \mathbb{F}_q . $\forall x,y,z \in \mathbb{K}^n: d(x,y) = d(x+z,y+z) = d(x-y,0)$. \Rightarrow minimální vzdálenost d se rovná $\min_{x,y\in C,x\neq y} \{d(x-y,0) = \min_{x\in C,x\neq 0} \{d(x,0)\}\}$. \Rightarrow ke zjištění d není třeba zkoumat všechny dvojice, stačí počítat nenulové složky kódových slov. Výhodou lineárních kódů je úsporný popis, namísto všech q^r prvků kódu stačí uvést r prvků nějaké jeho báze.

Definice 38. Generující matice kódu $C = matice M \in \Sigma^{r \times n}$ jejíž řádky tvoří bázi kódu C. V prostoru \mathbb{F}_q^n definujeme **skalární součin** $\langle x,y \rangle = \sum_{i=1}^n x_i y_i$ pro $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{F}_q^n$. Nejedná se o klasický skalární součin podle klasické definice, protože neplatí $\langle x,x \rangle = 0 \Leftrightarrow x = 0$ (třeba x = (1,1,0,0) nad \mathbb{F}_2^4).

Definice 39. Duálním kódem k lineárnímu kódu C je jeho ortogonální doplněk.

$$C^{\perp} = \{x \in \mathbb{F}_q^n : \langle x,y \rangle = 0 \text{ pro každ\'e } y \in C\}$$

Z povahy našeho skalárního součinu nemusí platit $C \cap C^{\perp} = \{0\}$. Platí $\dim(C^{\perp}) + \dim(C) = n$ a $(C^{\perp})^{\perp} = C$. Generující matice M^{\perp} kódu C^{\perp} se nazývá **kontrolní matice**. Řádky kontrolní matice určují lineární rovnice, které musí každé slovo z C splňovat (a naopak každý vektor z \mathbb{F}_q^n , který je splňuje, je kódovým slovem v C). Nebo-li $C = \{x \in \mathbb{F}_q^n : M^{\perp}x = 0\}$.

Mějme lineární kód C s parametry $[n,r,d]_q$.

8.1.1 Kódování lineární kódy

Ze vstupního slova $z \in \mathbb{F}_q^n$ chceme vytvořit kódové slovo $x \in C \subseteq \mathbb{F}_q^n$. Nechť $M \in \mathbb{F}_q^{r \times n}$ je generující matice kódu C. Pro každý lineární kód existuje ekvivalentní kód, jehož generující matice má tvar:

$$\begin{pmatrix} Ir & B \end{pmatrix}$$

Kde výška je r a šířka n. Říká se jí **standardní forma**. Stačí generující matici upravit Gaussovou eliminací a popřípadě zpermutovat sloupce. \Rightarrow BŮNO: Matice M je ve standardní formě. Jako kódové slovo zvolíme $x = M^{\top}z \in C$. $\Rightarrow x$ má na prvních r souřadnicích slovo z (**indormační symboly**) a na zbylých n-r souřadnicích obsahuje **kontrolní symboly**.

$$\begin{pmatrix} I_r \\ B^\top \end{pmatrix} \quad \begin{pmatrix} z \\ z \\ . \end{pmatrix}$$

8.1.2 Dekódování lineárních kódů

Po odeslání $x \in C$ bylo přijato $y \in \mathbb{F}_q^n$. Příjemce zná pouze y a chce najít kódové slovo, které je mu nejblíž. Nechť M^{\perp} je kontrolní matice kódu C, pokud je matice Mve standardní formě pak:

$$M^{\perp} = \begin{pmatrix} -B \top & I_{n-r} \end{pmatrix}$$

kde šířka je r a výška n-r, protože pak $M^{\perp}M^{\top}=-B^{\top}I_r+I_{n-r}B^{\top}=0$. Jako **syndrom slova** $y\in\mathbb{F}_q^n$ nazveme součin $M^{\perp}y$, protože $C=\{x\in\mathbb{F}_q^n:M^{\perp}x=0\}$, tak máme určené lineární zobrazení $S:\mathbb{F}_q^n\to\mathbb{F}_q^{n-r}$ splňující C=Ker(S). Zobrazení S nazveme **syndrom**. Zobrazení S je na, protože platí $\dim(Ker(S))+\dim(Im(S))=\dim(\mathbb{F}_q^n)$, kde Im(S) je obraz S.

Lemma 43. Zobrazení S je prosté na B(0,t) kde $t = \lfloor \frac{d-1}{2} \rfloor$.

Důkaz. Empty.

Podle lemma tedy k $S \upharpoonright B(0,t)$ existuje inverzní zobrazení $S^{-1}: S(B(0,t)) \to B(0,t)$. S^{-1} není lineární, ale jde popsat tabulkou s q^{n-k} prvky zB(0,t) a v této tabulce je pro každý syndrom slova uloženo nějaké slovo s minimální vahou a s daným syndromem.

Co víme:

- 1. Pro $y \in B(x,t)$ máme S(y-x) = S(y) S(x) = S(y) (díky linearitě a toho že $x \in Ker(S)$). Neboli y a vzniklá chyba y-x mají stejný syndrom.
- 2. Pro $y \in B(x,t)$ máme $y-x \in B(0,t)$ a tedy $y-x = S^{-1}(S(y-x))$. Neboli vzniklou chybu jde vyjádřit pomocí S.
- 3. $x = y (y x) = y S^{-1}(S(y x)) = y S^{-1}(S(y))$ nezávisý na x, pro dané y pomocí syndromu S(y) dokážeme určit kódové slovo x, ze kterého vzniklo, nastalo-li $\leq t$ chyb.

8.1.3 Jak dekódovat

Pro přijaté slovo $y \in \mathbb{F}_q^n$ spočítat $x = y - S^{-1}(M^{\perp}y)$, kde M^{\perp} je kontrolní matice a zobrazení S^{-1} máme připravené jako tabulku. Nastane-li $\leq t$ chyb, je x kódové slovo, ze kterého y vzniklo.

Tvrzení 44. Vzdálenost d kódu $C = minimální počet lineárně závislých sloupců kontrolní matice <math>M^{\perp}$.

 $D\mathring{u}kaz$. Víme, že d= minimální počet nenulových symbolů v nenulovém slově x z C. $x\in C\Leftrightarrow M^\perp x=0$ tedy sliupce M^\perp vybrané nenulovými složkami x jsou lineárně závislé.

8.2 Hammingovy kódy

Příklad lineárních kódů, které jsou dokonce perfektní. Jejich nevýhodou je, že nedokáží opravit příliš mnoho chyb. Například nad tělesem \mathbb{F}_2 . Mějme parametr r=3. Generující matice:

$$M = \begin{pmatrix} & & - & l_1 & - \\ & I_{2^r - r - 1} & & - & l_2 & - \\ & & - & l_3 & - \end{pmatrix}$$

Kde l_i jsou všechny nenulové vektory z \mathbb{F}_2^r různé od vektorů kanonické báze. Kontrolní matice:

$$M^{\perp} = \begin{pmatrix} | & | & | \\ l_1 & l_2 & l_3 & I_r \\ | & | & | \end{pmatrix}$$

Parametry matic jsou r a 2^r-r-1 . Dva vektory z $\mathbb{F}_2^r \setminus \{0\}$ jsou lineárně závislé \Leftrightarrow jsou totožné \Rightarrow minimální počet lineárně závislých sloupců v M^{\perp} je 3 a podle tvrzení 13.2. je vzdálenost kódu 3. \Rightarrow jedná se o kód s parametry $[2^r, 2^r-r-1, 3]_2$, takže opraví ≤ 1 chybu

 $P\check{r}\hat{\imath}klad$. Pro r=3 dostaneme kód s parametry $[7,4,3]_2$. Jedná se o kód sestavený z Fanovy roviny přidáním počátku a doplňků.

Hommingovy kódy jsou perfektní: stačí ukázat, že Hammingův odhad $|C| \leq \frac{q^n}{V(t)}$ je těsný. $t = \lfloor \frac{d-1}{2} \rfloor = \lfloor \frac{3-1}{2} \rfloor = 1$. $V(t) = V(1) = \sum_{i=0}^t = (q-1) = 1 + (2^r-1) = 2^r$. $\frac{q^n}{V(1)} = \frac{2^{\otimes^r-1}}{2^r} = 2^{2^r-r-1}$. $|C| = 2^r = 2^{2^r-r-1}$ takže Hammingův je skutečně pro Hammingovy kódy těsný.

Lepší reprezentace funkce S^{-1} . Tabulka reprezentující S^{-1} má pouze $2^{n-r} = 2^{2^r-1-(2^r-r-1)} = 2^r = n+1$ prvků. Ve skutečnosti tabulku vůbec nepotřebujeme. Zpermutujeme-li sloupce a řádky M^{\perp} pak, aby i-tý sloupec byl binárním zápisem čísla i, pak S(y) určuje pozici na níž nastala chyba. \Rightarrow lze dékodovat tak, že pokud S(y) = 0, pak x = y, jinak je S(y) binárním zápisem čísla i a pak x = 1 slovo vzniklé z y výměnnou bitu, který je v y na pozici i.

Part II Kombinatorika a grafy II

9. Párování v grafech

Definice 40. Párování v grafu G = (V,E) je množina hran $M \subseteq E$ taková, že každý vrchol z G je obsažen v nejvýš jedné hraně v M. $\mu(G) := velikost$ největšího párování v grafu G.

Definice 41. Vrcholové pokrytí v grafu G = (V,E) je množina vrcholů $T \subseteq V$ t.ž. každá hrana obsahuje aspoň jeden vrchol z T. $\tau(G) := velikost$ nejmenšího vrcholového pokrytí v grafu G.

Cvičení. Nechť G = (V,E) je bipartitni graf s partitami $A,B,|A| \leq |B|$, souvislý. Jaké nerovnosti (nebo rovnosti) platí mezi $\mu(G), \tau(G), |A|$:

- $\mu(G) \leq |A|$
- $\mu(G) = \tau(G)$ (plyne z König-Egarvaryho vety)

Pozorování. $\mu(G) \leq \tau(G)$ v libovolném grafu G.

Cvičení. Dokažte:

- 1. $\exists G : \mu(G) \neq \tau(G)$
 - K4 s tím že uprostřed je vrchol (má $\mu(G) = 2$ a $\tau(G) = 3$)
- 2. $\forall G : \tau(G) \leq 2\mu(G)$
 - v nejhorším případě vezmu oba vrcholy všech hran z M

Definice 42. Volný vrchol: vrchol nesousedící s žádnou hranou z M. volná střídavá cesta: cesta spojující dva volné vrcholy na níž se střídají párovácí $(\in M)$ a nepárovácí $(\notin M)$ hrany.

Lemma 45. Nechť M je párování v G. Potom M je největší párování v $G \Leftrightarrow v$ G neexistuje volná střídající se cesta pro M.

 $D\mathring{u}kaz. \Rightarrow \text{Pokud v } G$ existuje VSC pak lze tyto hrany přehodit. Potom je to spor s tím, že je největší. \Leftarrow Necht M není největší potom existuje N větší párování než M. Uvažme graf s hranami $M \cup N$. Každá komponenta grafu je buď:

- 1. izolovaná hrana v $M \cap N$
- 2. kružnice sudé délky, kde se střídají M a N
- 3. cesta na níž se střídají M a N

Protože |N| > |M| v $M \cup N$ musí být komponenta K, která má víc hran z N než z M. K je cesta liché délky, která začíná a končí hranou z N, tedy K je VSC pro M.

Definice 43. Kytka v grafu G a párování M je podgraf tvořený stonkem S a květem K, kde S je cesta sudé délky mezi dvěma vrcholy x a y, kde x je volný a $y \in K$, navíc na S se střídají párovací a nepárovací hrany. K je lichá kružnice, která neobsahuje žádný vrchol z S a střídají se na ni párovací a nepárovací hrany (u y má dvě nepárovací hrany).

Může nastat že x = y a $S = \{x\}$.

Pozorování. Hrany z květu jsou nepárovací. Jinak by se nejednalo o párování.

Definice 44. Kontrakce květu K nahradí K jedním vrcholem y, smaže všechny hrany indukované K a každou hranu $\{u,v\}$, kde $u \in K$ a $v \notin K$ nahradí hranou $\{y,v\}$. Označme G.K graf vzniklý z G kontrakcí květu K, M.K pak párování vznikle z M odstraněním všech hran K.

Lemma 46. Nechť M je párování v grafu G obsahující kytku se stonkem S a květem K. Potom M je největší párování v $G \Leftrightarrow M.K$ je největší párování v G.K.

Nebo-li: M má VSC v $G \Leftrightarrow M.K$ má VSC v G.K. Navíc z VSC v M.K v G.K lze v polynomiálním čase najít VSC v M a G.

 $Proof. \Rightarrow (v \text{ alternativním znění}) \text{ Nechť } P \text{ je VSC } v M.K. \text{ Potom:}$

- 1. $y \in P \Rightarrow P$ je i VSC v M
- 2. y je vnitřní vrchol v P, potom lze nahradit obloukem z K (jsou dva oblouky, protože je tam celkově lichý počet hran, tak jedna cesta musí být lichá a druhá sudá, tudíž to lze spojit)
- 3. y je koncový vrchol v P, potom y musí být volný, tudíž x=y, poté prakticky stejný postup jako u 2.

 $\Leftarrow G$ má VSC $\Rightarrow G.K$ má VSC, pokud S má délku 0, to jest y je volný vrchol. Následně to pak už není cesta ale sled. Začnu tedy z konce cesty a poprvé co se dostanu do y tak skončím. $M \triangle S$: Párování v G vznikne tak, že se na S prohodí párovací a nepárovací hrany.

Pozorování: V $M \triangle S$ je květ K kytka se stonkem délky 0. Pozorování: $|M \triangle S| = |M|$. G má VSC $\Rightarrow G.K$ má VSC, navíc S má délku 0. (G,M) má VSC $\Leftrightarrow (G,M \triangle S)$ má VSC $\Rightarrow (G.K,(M \triangle S).K)$ má VSC $\Leftrightarrow (G.K,M.K)$ má VSC.

Lemma 47. Pokud NajdiVSCneboKytku napíše "M je největší", tak M je největší.

Proof. Pokud M není největší, tak obsahuje VSC $v_0v_1 \dots v_k \in V$, dokážeme indukci podle i, že každý z vrcholů $v_0 \dots v_k$ dostal přidělenou hladinu $h(v_i)$ splňující $h(v_i) \equiv i \mod 2$. Pro i = 0 v_0 je volný, tedy $h(v_0) = 0$. Hotovo. Pro i > 0, i liché, indukční předpoklad je $h(v_{i-1})$ je sudá: tak z algoritmu buď už v_i měla lichou $h(v_i)$ nebo ji dostala. (Kdyby sudá, tak vyhodí VSC nebo Kytku.) Pro i > 0 i je sudé, indukční předpoklad, že $h(v_{i-1})$ je lichá: tak obdobně bude $h(v_i)$ sudé. Jistě k je liché, tedy $h(v_k)$ je lichá, ale v_k je volný vrchol, tedy $h(v_k) = 0$ a to je spor.

Definice 45. Perfektní párování v grafu G je párování v němž každý vrchol sousedí s právě jednou párovací hranou.

Algorithm 1 NajdiVSCneboKytku

Require: Graf G = (V, E) párování M

Ensure: Buď VSC P pro (G,M), nebo kytka $S \cup K$ v (G,M), nebo "M je největší párování v G".

- 1: Používáme frontu vrcholů 'F', pro každý vrchol $x \in V$ máme hladinu $h(x) \in \mathbb{N}_0$ a rodiče $r(x) \in V$.
- 2: Na začátku 'F' = \emptyset , h(x) a r(x) jsou nedefinované.
- 3: for každý volný vrchol x do
- 4: Zařaď x do 'F', h(x) = 0.
- 5: end for
- 6: Dokud 'F' $\neq \emptyset$: odebereme x z 'F'.
- 7: if h(x) je lichá. Nechť y je vrchol spojený s x hranou M. then
- 8: Pokud h(y) není definovaná: h(y) = h(x) + 1, r(y) = x, zařaď y do 'F'.
- 9: Pokud h(y) je sudá: to nemůže nastat
- 10: **if** (1.3) Pokud h(y) je lichá: $Px = \text{cesta } x, r(x), r(r(x)), \ldots, Py$ je cesta $y, r(y), r(r(y)), \ldots$ obě cesty vedou až do volného vrcholu. **then**
- 11: Pokud $Px \cap Py = \emptyset$ tak potom $Px \cup Py \cup \{x,y\}$ je **VSC**, konec.
- 12: Pokud $Px \cap Py \neq \emptyset$ našli jsme **kytku** $Px \cap Py \cap \{x,y\}$, konec.
- 13: end if
- 14: **else** Pokud h(x) je sudá. Pro každý y t.z. $\{xy\} \notin M$:
- 15: Pokud h(y) není definovaná: h(y) = h(x) + 1, r(y) = x, vlož y do 'F'.
- 16: Pokud h(y) je lichá, tak nedělej nic.
- 17: Pokud h(y) je sudá: najdi VSC nebo kytku jako v 1.3,konec.
- 18: **end if**
- 19: Pokud dojdeme do stavu, že $F = \emptyset$, napiš "M je největší", konec.

Algorithm 2 Zvětši Párování

Require: G,M

Ensure: párování $M' \vee G$, |M'| > |M| nebo "M je největší"

- 1: Procedura NajdiVSCneboKytku(G,M)
- 2: M je největší, tak konec
- 3: VSC, invertuji a zvětši M, konec
- 4: if Kytka then
- 5: ZvětšiPárování(G.K,M.K)
- 6: M.K je největší, potom i M je největší
- 7: M' je větší párování v G.K než M.K: $M^* := M' \cup (\frac{|k|-1}{2}$ hran květu) tak aby to šlo.
- 8: end if

Algorithm 3 Algoritmus pro hledání největšího párování

Require: G

Ensure: největší párování v G

- 1: M := libovolné párování (buď prázdné, nebo hladově nějaké)
- 2: Opakuj ZvětšiPárování(G,M) dokud to jde. **return** Vypiš nalezéné párování.

Pozorování. Perfektní párování je největší párování.

Pozorování. Ne každý graf má perfektní párování (trojúhelník).

Definice 46. Lichá komponenta grafu G je komponenta s lichým počtem vrcholů. odd(G) := počet lichých komponent v <math>G. Pro graf G = (V,E) a množinu $S \subseteq V$: $G - S = (V \setminus S, E \cap \binom{V \setminus S}{2})$.

Věta 48 (Tutte). Pro každý G = (V,E) platí G má perfektní párování $\Leftrightarrow \forall S \subseteq V$: $odd(G-S) \leq |S|$. Druhá část se nazývá Tutteova podmínka.

 $D\mathring{u}kaz. \Rightarrow \operatorname{Necht} G$ má perfektní párování M. Pro spor, necht $\exists S \subseteq V : \operatorname{odd}(G-S) > |S|$. Potom ale z každé liché komponenty G-S vede aspoň jedna hrana z M do S, tudíž $\operatorname{odd}(G-S) \leq |S|$ a to je spor. $\Leftarrow \operatorname{Necht} G$ splňuje Tutteovu podmínku. Pozorování: $\operatorname{odd}(G) = 0$, jinak spor $S = \emptyset$. Chci dokázat, že G má perfektní párování a to pomocí indukce podle $|\binom{V}{2} \setminus E|$.

Pro $|\binom{V}{2}\setminus E|=0$: G je úplný graf, navíc odd(G)=0. Tudíž zjevně má perfektní párování. Pro $|\binom{V}{2}\setminus E|>0$: $S:=\{x\in V:\deg(x)=|V|-1\}$. Rozliším dva případy:

- 1. Každá komponenta G-S je úplný graf: G snadno najdu perfektní párování, díky tomu, že odd $(G-S) \leq |S|$.
- 2. Existuje komponenta Q grafu G-S, která není úplná. V Q lze najít dva nesousední vrcholy x,y, které mají společného souseda z Q. Protože $z \notin S$, $\exists w : w$ nesousedí se z. Označme $G_1 = (V, E \cup \{xy\}), G_2 = (V, E \cup \{zw\}).$

Pozorování G_1, G_2 splňují Tutteovu podmínku. Pak z indukčního předpokladu G_1 má perfektní párování M_1 a G_2 má M_2 . Pokud M_1 neobsahuje hranu $\{xy\}$, tak M_1 je perfektní párování v G. Tak je to hotové.

Pokud ale $\{xy\} \in M_1$ tak podobně předpokládám, že $\{zw\} \in M_2$. Uvažme graf $H = (V, M_1 \cup M_2)$: každá komponenta H je buď hrana patřící $M_1 \cap M_2$, nebo sudá kružnice na níž se střídají hrany z M_1 a M_2 . V každé komponentě H neobsahující hranu $\{xy\}$ můžu vrcholy spárovat pomocí hran M_1 . Necht C je komponenta H obsahující $\{xy\}$. Pokud C neobsahuje $\{zw\}$, vrcholy spáruji pomocí M_2 , hotovo. Ve zbylém případu v C použijeme jednu z hran $\{xy\}$, $\{zw\}$ a zbytek lze spárovat pomocí $M_1 \setminus \{xy\}$ a $M_2 \setminus \{zw\}$. Tedy G má perfektní párování.

Definice 47. Graf je d-regulární, pokud všechny jeho vrcholy mají stupeň d.

Definice 48. Graf je (vrcholově) k**-souvislý**, pokud má aspoň k+1 vrcholů a nemá vrcholový řez velikosti < k.

Lemma 49. Nechť G = (V,E) je graf, jehož každý vrchol má lichý stupeň, nechť $A \subseteq V$ je množina liché velikosti. Potom G obsahuje lichý počet hran z A do $V \setminus A$.

 $D\mathring{u}kaz$. S=2k+ ven je součet stupňů v A. Ten musí být lichý. 2k je pro každou hranu, která má oba vrcholy v A. Tudíž ven musí být liché.

Věta 50 (Petersen). Každý 3-regulární a 2-souvislý graf má perfektní párování.

 $D\mathring{u}kaz$. Nechť G=(V,E) je 3-regulární a 2-souvislý graf. Tvrdíme: $\forall S\subseteq V$: $\mathrm{odd}(G-S)\leq |S|$. Pro $S=\emptyset$ Tutteova podmínka platí: |V| je sudá (z principu sudosti grafů) a taky souvislý $\Rightarrow \mathrm{odd}(G)=0$. $S\neq\emptyset, l:=\mathrm{odd}(G-S)$ nechť Q_1,\ldots,Q_l jsou liché komponenty G-S. Nechť p je počet hran mezi S a $Q_1\cap\cdots\cap Q_l$. Pozorování: $p\leq 3|S|$ -plyne z toho, že je 3-regulární. Pozorování: z každé Q_i vedou aspoň 2 hrany do S to plyne z toho, že je G 2-souvislý, jinak by existovala artikulace. Pozorování: z každé Q_i vedou aspoň 3 hrany do S. To plyne z lemma. $\Rightarrow p\geq 3l \Rightarrow l\leq |S|$. A ještš použít Tutteovu větu.

10. Kontrakce a minory

Definice 49. Necht G = (V,E) je graf, $e = \{x,y\} \in E$ pak **kontrakce** hrany e je operace, která vrcholy x,y nahradí jedním vrcholem v_e a pro každý vrchol $z \in V \setminus \{x,y\}$ sousedící s x nebo y se hrany $\{xz\},\{yz\}$ nahradí $\{v_ez\}$. Výsledek se značí G.e.

Lemma 51 (o kontrahovatelné hraně). V každém 3-souvislém grafu G = (V,E), který není izomorfní K_4 existuje hrana $e \in E$ taková, že G.e je opět 3-souvislý graf.

Tvrzení 52. Pro každou hranu $e = \{xy\} \in E$ existuje vrchol $z \in V \setminus \{x,y\}$ takový, že $G - \{x,y,z\}$ je nesouvislý, navíc každý z vrcholů $\{x,y,z\}$ má aspoň jednoho souseda v každé komponentě $G - \{x,y,z\}$.

 $D\mathring{u}kaz$. Víme, že G.e není 3-souvislý, navíc $|V(G.e)| \geq 4$ jinak je to K_4 , tedy existuje v G.e vrcholový řez R velikosti nejvýše 2. Jistě $v_e \in R$ jinak by R byl řez v $G > R \neq \{v_e\}$ jinak by $\{x,y\}$ byl řez v G. Tedy $R = \{v_e,z\}$ a $\{x,y,z\}$ je řez v G. Kdyby např. x neměl žádného souseda v nějaké komponentě C grafu $G - \{x,y,z\}$, tak $G - \{y,z\}$ je nesouvislý, spor s tím, že G má být 3-souvislý.

 $D\mathring{u}kaz$. Pro spor nechť G=(V,E) je protipříklad. Volme $e=\{x,y\}\in E$ a vrchol $z\in V$, komponentu C grafu $G-\{x,y,z\}$ tak, aby C mělo co nejméně vrcholů. Nechť w je vrchol C sousedící se z. Pro hranu $f=\{z,w\}$ použiji pomocné tvrzení: $\exists v\in V\setminus\{z,w\}: G-\{z,w,v\}$ je nesouvislý a každá jeho komponenta obsahuje vrchol sousedící sw. Nechť D je komponenta $G-\{z,v,w\}$ neobsahující x ani y. Tedy $D\subseteq C\setminus\{w\}: D$ obsahuje souseda w, ten musí být uvnitř C, žádná cesta uvnitř D neobsahuje x,y,z,w tedy D je uvnitř jediné komponenty $G-\{x,y,z\}$, tedy D je uvnitř C, tedy i uvnitř $C\setminus\{w\}$. To je spor s minimalitou C.

Věta 53 (Tutteova charakterizace 3-souvislých grafů). Graf G = (V,E) je 3-souvislý $\Leftrightarrow \exists$ posloupnost grafů G_0, G_1, \ldots, G_k , kde:

1. $G_0 \cong K_4, G_k \cong G$.

2. $\forall i = 1, ..., k : G_i$ obsahuje hranu $e = \{x,y\}$ spojující dva vrcholy x,y stupně ≥ 3 , $\deg(x) = \deg(y) = 3$ a $G_{i-1} \cong G_i.e.$

Proof. "⇒" Opakovaná aplikace lemma o kontrahovatelné hraně.

" \Leftarrow " Necht G_0, \ldots, G_k splňuje podmínky na pravé straně. Dokážeme, že všechny grafy G_0, \ldots, G_k jsou 3-souvislé. Indukcí pdole i dokážeme, že G_i je 3-souvislý. $i = 0 : K_4$ je 3-souvislý. i > 0 předpokládáme, že G_{i-1} je 3-souvislý, pro spor necht G_i není 3-souvislý, $\exists u, v \in V(G_i) : G_i - \{u,v\}$ je nesouvislý, navíc $\exists e = \{x,y\} \in E(G_i) = G_i.e = G_{i-1}$. Případy:

- 1. $\{u,v\} \cap \{x,y\} = \emptyset$ G_{i-1} pak není 3-souvislý. Spor.
- 2. $\{u,v\} = \{x,y\}$ pak G_{i-1} je 1-souvislý. Spor.

3. $|\{u,v\} \cap \{x,y\}| = 1$ BŮNO: x = u: nelze, protože $\deg(y) \geq 3$, tedy komponenta $G_i - \{u,v\}$ obsahující y má aspoň 2 vrcholy, tedy $G_i \cdot e = G_{i-1}$ má řez $\{v,v_e\}$. Spor.

Definice 50. Graf H je **minor** rafu G pokud H lze vyrobit z G posloupností mazání hrany, kontrakce hrany, mazání vrcholu. Značení: $H \leq_m G$.

Definice 51. Graf F je **dělení** grafu H, pokud F vznikne z H tak, že se každá hrana $\{x,y\} \in E(H)$ nahradí cestou délky ≥ 1 .

Definice 52. Graf H je **topologický minor** grafu G, pokud G obsahuje nějaké dělení grafu H jako podgraf. Značení $H \leq_t G$.

Definice 53. Graf H je **indukovaný podgraf** grafu G, pokud je H podgraf grafu G a zároveň má všechny hrany původního grafu indukované vrcholům grafu H. Značení $H \subseteq G$. H je **podgraf** grafu G. Značení $H \subseteq G$.

Pozorování. Platí implikace $H \leq_i G \Rightarrow H \subseteq G \Rightarrow H \leq_t G \Rightarrow H \leq_m G$. Ale neplatí žádná opačná implikace.

Lemma 54. $H = (V_H, E_H)$ je graf, $V_H = \{x_1, x_2, \dots, x_k\}, G = (V_G, E_G)$ je graf. Potom $H \leq_m G$ iff G obsahuje k disjunktních souvislých neprázdných podgrafů B_1, B_2, \dots, B_k takových, že pokud $\{x_i, x_j\} \in E_H$, tak G obsahuje aspoň jednu hranu spojující vrchol B_I s vrcholem B_j .

 $D\mathring{u}kaz$. Danou vlastnost si označíme jako vlastnost p. " \Leftarrow " Zkontrahuji všechny hrany v B_i . Nadbytečné hrany a vrcholy odstraním. " \Rightarrow " Nechť $H \leq_M G$, tj. existuje posloupnost grafů G_0, G_1, \ldots, G_p , kde $H \cong G_0, G_p \cong G$ a pro $\forall i = 1, \ldots, p : G_{i-1}$ vznikne z G_i smazáním hrany nebo vrcholu anebo kontrakcí hrany. Dokážeme indukcí podle $i = 0, \ldots, p$, že G_i má vlastnost p. $i = 0 : \forall j = 1, \ldots, k : \{x_j\} = B_j$. i > 0 předpokládejme G_{i-1} splňuje vlastnost p. Pak přidáním vrcholu nebo hrany - nic neděláme, zůstávají stejné. Dekontrakce hrany. Pokud není v B_j tak hotovo (zůstane stejné). Pokud ale je v B_j tak oba nové vrcholy přidáme do B_j a ostatní stejné.

Definice 54. Pro uspořádání \leq a množinu grafů $F = \{F_1, F_2, ...\}$ označím $\mathcal{F}orb_{\leq}(F) := \{G \text{ graf}; \forall H \in F : H \nleq G\}$. (Plyne ze slova Forbidden, nebo-li zakázané.)

Definice 55. Třída grafů \mathcal{G} je **uzavřená** vůči uspořádání \leq pokud $\forall G \in \mathcal{G} \ \forall H \leq G$: $H \in \mathcal{G}$.

Pozorování. Třída \mathcal{G} se dá přepsat jako $\mathcal{F}orb_{\leq}(F)$ pro nějakou množinu F iff \mathcal{G} je uzavřená vůči \leq .

Fakt. Rovinné grafy jsou uzavřené vůči \subseteq , \leq_i , \leq_t , \leq_m .

Připomenutí: G=(V,E) rovinný, souvislý, má nakreslení mající f stěn, potom |V|-|E|+f=2. Pokud $|V|\geq 3$ tak $|E|\leq 3|V|-6$. Pokud $|V|\geq 4$ a G neobsahuje trojůhelník jako podgraf, tak $|E|\leq 2|V|-4$.

Věta 55 (Kuratowski, Wagner). Pro graf G = (V,E) je ekvivalentní:

- 1. G je rovinný,
- 2. $G \in \mathcal{F}orb_{<_t}(K_5, K_{3,3}),$
- 3. $G \in \mathcal{F}orb_{\leq_m}(K_5, K_{3,3})$.

Proof. $1 \Rightarrow 2 : G$ je rovinný \Rightarrow každý topologický minor je rovinný $\Rightarrow K_5 \not\leq_t G \land K_{3,3} \not\leq_t G \Rightarrow G \in \mathcal{F}orb_{<_t}(K_5, K_{3,3}).$

- $1 \Rightarrow 3$: Obdobně jako předchozí.
- $3 \Rightarrow 2: H \leq_t J \Rightarrow H \leq_m J$ a taky $H \nleq_m J \Rightarrow H \nleq_t J$. $J \in \mathcal{F}orb_{\leq_m}(H) \Rightarrow J \in \mathcal{F}orb_{\leq_t}(H)$ nebo-li $\mathcal{F}orb_{\leq_m}(H) \subseteq \mathcal{F}orb_{\leq_t}(H)$.
- $2 \Rightarrow 3$: Připomenutí: Pro graf H s maximálním stupněm ≤ 3 . $H \leq_t G \Leftrightarrow H \leq_m G$. A taky $K_5 \leq_m H \Rightarrow ((K_5 \leq_t H) \vee (K_{3,3} \leq_t H))$. Pak dokážeme obměnu $(\neg 3 \Rightarrow \neg 2)$ $K_5 \leq_m G \vee K_{3,3} \leq_m G \Rightarrow K_5 \leq_t G \vee K_{3,3} \leq_m G \Rightarrow G \notin \mathcal{F}orb(K_5,K_{3,3})$.
- $3 \Rightarrow 1$ Indukcí podle |V|. $|V| \le 4$: Jistě G ke rovinný. Předpoklad, že $|V| \ge 5$ a $G \in \mathcal{F}orb_{\leq_m}(K_5, K_{3,3})$. Nechť k je vrcholová souvislost. Rozlišíme případy:
 - 1. k=0: každá komponenta je dle indukčního předpokladu rovinná $\Rightarrow G$ je rovinný.
 - 2. k=1: Lze rozdělit graf G na dva grafy G_1, G_2 podle dané artikulace x. S tím, že oba grafy mají i daný vrchol x. Podle IP jsou oba grafy rovinné, navíc jdou nakreslit tak, že x bude vždy na vnější stěně (pomocí projekce na sféru), potom je můžeme "slepit" dohromady a máme stále rovinný graf.
 - 3. k=2 Obdobně rozdělím graf na G_1, G_2 a z nich vytvořím $G_1^+ := G_1 \cup \{xy\}$ a $G_2^+ := G_2 \cup \{xy\}$. Následně tvrdím: $G_1^+, G_2^+ \in \mathcal{F}orb_{\leq_m}(K_5, K_{3,3})$. G_1 i G_2 obsahuje cestu P_1 a P_2 z x do y (jinak by x nebo y obsahovalo řez).
 - $G_1^+ \leq_m G$ (dokonce $G_1^+ \leq_m G1 \cup P_2 \subseteq G$).
 - $G_1^+ \in \mathcal{F}orb_{\leq_m}(K_5, K_{3,3})$ kdyby např. $K_5 \leq_m G_1^+ \leq_m G$, tak $K_5 \leq_m G$ a to je spor. Dle IP G_1^+ i G_2^+ jsou rovinné, oba se dají nakreslit tak, že hrana $\{xy\}$ je na vnější stěně. Následně pak slepím G_1^+ a G_2^+ a popřípadě smažu hranu $\{xy\}$ a získám rovinný graf.
 - 4. $k \geq 3$: G je 3-souvislý: Fakt: v rovinném nakreslení 2-souvislého grafu je každá stěna ohraničená kružnicí. A taky lemma o kontrahovatenlné hraně: $\exists e = \{xy\} \in E$ taková, že G.e je 3-souvislý, tedy $G.e v_e$ je 2-souvislý.
 - Pozorování: $G.e v_e = G \{x,y\}$. Dle IP G.e je rovinný. Zvolme rovinné nakreslení G.e. V $G.e v_e$ je stěna, z níž byl smazán v_e ohraničená kružnicí C. Do stěny ohraničné C nakreslíme vrchol x. Každý soused v_e v grafu G.e leží na C, tedy každý soused x v grafu G různý od y leží na C. Označme $N_C(x)$: sousedé x na C a podobně $N_C(y)$. Teď rozdělme případy.
 - (a) $|N_C(x) \cap N_C(y)| \geq 3$: to nelze, $C \cup \{x,y\}$ indukují dělení K_5 .
 - (b) $\exists a_1, a_2 \in N_C(x), b_1, b_2 \in N_C(y) : |\{a_1, a_2, b_1, b_2\}| = 4$ leží na C v pořadí a_1, b_1, a_2, b_2 : to taky nelze, pak je tam $K_{3,3}$.
 - (c) Nenastane ani jedna z předchozích možností. Vrcholy $N_c(x)$ rozdělí C na cesty $P_1, P_2, \ldots, P_k, \exists j : N_C(y) \subseteq P_j$.

11. Kreslení grafů na plochy

Definice 56. Nechť $X \subseteq \mathbb{R}^n, Y \subseteq \mathbb{R}^m$. Zobrazení $f: X \to Y$ je **homeomorfismus** pokud f je pojitá bijekce X na Y a f^{-1} je spojitá bijekce Y na X.

Definice 57. X,Y jsou **homeomorfní**, pokud existuje homeomorfismus X na Y. Značím $X \cong Y$.

Fakt. Homeomorfismus zachovává kompaktnost, uzavřenost a otevřenost. Omezenst však ne.

Definice 58. Plocha je souvislá kompaktní 2-rozměrná varieta bez hranic.

 $P\check{r}iklad$. Příklady: sféra, torus. Nepříklady: \mathbb{R}^2 , otevřený kruh, dvě separátní sféry.

Definice 59 (operace s plochami). 1. Přidání ucha:

- "Odebrání dvou kruhů a přidáním válce mezi ně."
- Na diagramu se kreslí, že mají orientaci opačným směrem.
- 2. Přidání křižítka:
 - "Odebrání jednoho kruhu a přidání křižítka, tj. že se jeden bod propojí s přesně opačným bodem na druhé straně, ale nikdy se nepřekříží."

Definice 60. Orientovatelná plocha rodu g, značená $\Sigma_g(g \geq 0)$, je plocha vzniklá ze sféry přidáním g uší.

Definice 61. Neorientovatelná plocha rodu g, značená $\Pi_g(g \ge 1)$, je plocha vzniklá ze sféry přídáním g křižítek.

Fakt. Plocha vzniklá ze sféry přidáním $k \ge 1$ křižítek a $l \ge 0$ uší je Π_{k+2l} .

Fakt. Každá plocha je homeomorfní právě jedné ploše z posloupnosti $\Sigma_0, \Pi_1, \Sigma_1, \Pi_2, \ldots$

Definice 62. Známé plochy:

- Σ_0 je sféra.
- Σ_1 je torus.
- Σ_2 je dvojitý torus.
- Π_1 je projektivní rovina.
- Π_2 je kleinova láhev.

Definice 63. Nakreslení grafu G = (V,E) na plochu Γ je zobrazení \mathcal{G} , které:

- 1. $vrcholům \ x \in V \ přiřadí \ bod \ \bar{x} \in \Gamma$,
- 2. hraně $e = \{xy\} \in E$ přiřadí křivku $\bar{e} \subseteq \Gamma$ spojující \bar{x} a \bar{y} . ("Křivka" je homeomorfní kopie intervalu [0,1].)

Navíc platí:

- 1. $x,y \in V, x \neq y \Rightarrow \bar{x} \neq \bar{y}$,
- 2. pro $x \in V, e \in E : \bar{x} \in \bar{e} \Rightarrow x \in e$,
- 3. pro $e, f \in E, e \neq f : \bar{e} \cap \bar{f} \neq \emptyset \Rightarrow \bar{e} \cap \bar{f} = \{\bar{x}\}, kde \ e \cap f = \{x\}.$

Definice 64. Stěna je souvislá komponenta $\Gamma \setminus (\bigcup_{x \in V} \bar{x} \cup \bigcup_{e \in E} \bar{e})$.

Definice 65. Nakreslení je **buňkové** (2-cell), pokud každá jeho stěna je homeomorfní otevřenému kruhu.

Fakt. Nakreslení \mathcal{G} na Σ_0 je buňkové iff nakreslený graf je souvislý.

Definice 66. Eulerova chrakteristika plochy Γ značená $\chi(\Gamma)$, je:

$$\chi(\Gamma) = \begin{cases} 2 - 2g & pro \ \Gamma \cong \Sigma_g \\ 2 - g & pro \ \Gamma \cong \Pi_g \end{cases}$$

Věta 56 (Zobecněná Eulerova formule). Nechť \mathcal{G} je buňkové nakreslení grafu G = (V, E) na ploše Γ a označme $h(\mathcal{G}) = |V|, e(\mathcal{G}) = |E|, f(\mathcal{G}) = \# stěn \mathcal{G}$. Potom $h(\mathcal{G}) - e(\mathcal{G}) + f(\mathcal{G}) = \chi(\Gamma)$.

 $D\mathring{u}kaz$. Předpokládáme, že $\Gamma\cong\Sigma_g$ (případně $\Gamma\cong\Pi_g$ je podobný). Indukcí podle g. - g=0: Eulerova formule pro rovinné grafy. Hotovo. g>0: Zafixujeme si ucho reprezentované kružnicemi u,u'. Nechť e_1,e_2,\ldots,e_k jsou hrany křížící u,u' v pořadí daným orientací u,u' (e_1,e_2,\ldots,e_k nejsou nutně různé). Jistě $k\geq 1$, jinak by nakreslení nebylo buňkové. Označme $\mathrm{LS}(\mathcal{G})=n(\mathcal{G})-e(\mathcal{G})+f(\mathcal{G})$. Nechť \mathcal{G}_1 vznikne z \mathcal{G} tak, že se na každou e_i přidají dělící vrcholy x_i a y_i , těsně k u a u'. $\mathrm{LS}(\mathcal{G}_1)=\mathrm{LS}(\mathcal{G})$. Nechť \mathcal{G}_2 vznikne z \mathcal{G}_1 tak, že pro $\forall i=1,\ldots,k$ přidám cestu délky 3 z x_i do x_{i+1} a z y_i do y_{i+1} a x_k do x_i a y_k do y_i , cesty jsou těsně u u a u'. $\mathrm{LS}(\mathcal{G}_2)=\mathrm{LS}(\mathcal{G}_1)$. \mathcal{G}_3 nakreslení na Σ_{g-1} vzniklé z \mathcal{G}_2 odstraněním u,u' a všech hran, které ho kříží. $n(\mathcal{G}_2)=n(\mathcal{G}_3), e(\mathcal{G}_2)-k=e(\mathcal{G}_3), f(\mathcal{G}_2)=f(\mathcal{G}_3)-2+k$. $\mathrm{LS}(\mathcal{G}_2)=\mathrm{LS}(\mathcal{G}_3)-2=I^P$ $\chi(\Sigma_{g-1})-2=\chi(\Sigma_g)$.

Fakt. Pro nebuňkové nakreslení \mathcal{G} platí: $h(\mathcal{G}) - e(\mathcal{G}) + f(\mathcal{G}) > \chi(\Gamma)$.

Důsledek. Nechť G + (V,E) je graf, který má nakreslení \mathcal{G} na Γ , nechť $|V| \geq 3$. Potom:

- 1. $|E| \leq 3|V| 3\chi(\Gamma)$,
- 2. (průměrný stupeň $G = \frac{2|E|}{|V|}) \le 6 \frac{6\chi(\Gamma)}{|V|}$.

 $D\mathring{u}kaz$. BŮNO \mathcal{G} je buňkové, každá stěna je incidentní s aspoň 3mi hranami, každá hrana je incidentní s nejvýš dvěma stěnami. Tedy $3f(\mathcal{G}) \leq$ počet incidencí "hrana-stěna": $\leq 2e(\mathcal{G}) \Rightarrow f(\mathcal{G}) \leq \frac{2}{3}e(\mathcal{G})$. Tedy: $\chi(\Gamma) \leq |V| - \frac{1}{3}|E|$.

Definice 67. Pro plochu Γ označme:

$$H_{\Gamma} := \left| \frac{5 + \sqrt{49 - 24\chi(\Gamma)}}{2} \right|$$

Věta 57. Nechť Γ je plocha, $\Gamma \ncong \Sigma_0$. Potom každý graf, který má nakreslení na Γ obsahuje vrchol stupně $\leq H_{\Gamma}$.

 $D\mathring{u}kaz$. $\Gamma\cong\Pi_1$: průměrný stupeň nakreslení \mathcal{G} na Γ je $\leq 6-\frac{6}{n(\mathcal{G})}<6\Rightarrow\exists$ vrchol stupně $\leq 5=H_{\Pi_1}$. $\Gamma\cong\Pi_2$ nebo $\Gamma\cong\Sigma_1$: průměrný stupeň ≤ 6 . Hotovo. $\chi(\Gamma)<0$: Mějme nakreslení \mathcal{G} na Γ , uvažme pro minimální stupeň δ nakreslení \mathcal{G} dva odhady.

1.
$$\delta \leq 6 - \frac{6\chi(\Gamma)}{n(\mathcal{G})}$$

2.
$$\delta < n(\mathcal{G}) - 1$$

tedy $\delta \leq \min\{6 - \frac{6\chi(\Gamma)}{n(\mathcal{G})}, n(\mathcal{G}) - 1\}$. Budeme zkoumat $\max_{n \in \mathbb{N}} (\min\{6 - \frac{6\chi(\Gamma)}{n(\mathcal{G})}, n(\mathcal{G}) - 1\} \leq \lfloor \delta_0 \rfloor)$. Hledáme $n_0 : 6 - \frac{6\chi(\Gamma)}{n_0} = n_0 - 1 \Leftrightarrow 6n_0 - 6\chi(\Gamma) = n_0^2 - n_0 \Leftrightarrow n_0^2 - 7n_0 + 6\chi(\Gamma) = 0$. $n_0 = \frac{7 + \sqrt{49 - 24\chi(\Gamma)}}{2}. \quad \delta_0 = n_0 - 1 = \frac{5 + \sqrt{49 - 24\chi(\Gamma)}}{2}.$

Definice 68. Graf G = (V,E) je d**-degenerovaný**, pokud každý jeho podgraf obsahuje vrchol stupně $\leq d$.

Důsledek. Každý graf nakreslitelný na plochu $\Gamma \ncong \Sigma_0$ je H_{Γ} -degenerovaný.

Pozorování. Každý d-degenerovaný graf má barevnost $\leq d+1$.

Důsledek (Heawood). Každý graf nakreslitelný na $\Gamma \ncong \Sigma_0$ má barevnost $\leq H_{\Gamma} + 1$.

Fakt (Ringel-Youngs). Na každou plochu $\Gamma \ncong \Pi_2$ se dá nakreslit $K_{H_{\Gamma}+1}$.

12. Barvení grafů

Definice 69. Značení:

- $\Delta(G)$ největší stupeň v G
- $\delta(G)$ nejmenší stupeň v G
- $\chi(G)$ barevnost G
- d(G) degenerovanost G, nebo-li nejmenší $d \in \mathbb{N}_0$ takové, že G je d-degenerovaný.
- G je d-degenerovaný: každý jeho neprázdný podgraf má vrchol stupně $\leq d$.

Pozorování. $\delta(G) < d(G) < \Delta(G)$

Pozorování. $\chi(G) \leq d(G) + 1 \leq \Delta(G) + 1$

Lemma 58. Nechť G je souvislý graf, který má aspoň jeden vrchol stupně menšího než $\Delta(G)$. Potom $\chi(G) \leq \Delta(G)$.

Proof. Nechť $x \in V(G)$ je vrchol stupně $< \Delta(G)$. Tvrdím: $\delta(G) \le \Delta(G) - 1$. Zvolme libovolný podgraf H. Dva případy:

- 1. $x \in H$ tak hotovo, protože $\deg_H(x) \leq \deg_G(x) \leq \Delta(G) 1$.
- 2. $x \notin H$ Protože G je souvislý, tak existuje $y \in V(H)$, který má v G souseda, který nepatří do $H \deg_H(y) \leq \deg_G(y) 1 \leq \Delta(G) 1 \Rightarrow \chi(G) \leq d(G) + 1 \ leq \Delta(G)$.

Věta 59 (Brooks). Pro každý souvislý graf G, který není ani úplný graf ani lichá kružnice, platí $\chi(G) \leq \Delta(G)$.

 $D\mathring{u}kaz$. Nechť k je vrcholová souvislost G. Potom zavedeme $\Delta := \Delta(G)$.

Pokud k=1, tak existuje artikulace x. Graf G rozdělíme na G_1 a G_2 podle dané artikulace s tím, že x je v oubou grafech. Z toho pak plyne, že $\deg_{G_1}(x) < \Delta$ a $\deg_{G_2}(x) < \Delta$. Pak po použití lemma máme $\chi(G_1) \leq \Delta \wedge \chi(G_2) \leq \Delta$: obarvím G_1 obarvením f_1 pomocí Δ barev, stejně i pro G_2 s f_2 . BŮNO: $f_1(x) = f_2(x)$, jinak udělám permutaci barev. Pak mám obarvení celého G.

Pro k=2 udělám to stejné, akorát rozdělím grafy podle x,y, které jsou právě vrcholovým řezem grafu G. BŮNO: $\deg_{G_1}(x) \geq \deg_{G_2}(x)$. Poznámka: podgrafy G s $\Delta(G) \leq 2$ věta platí, předp. $\Delta(G) = \Delta \geq 3$. Nyní mám možnosti:

- 1. $\{xy\}$ patří do E(G) (i $E(G_1) \wedge E(G_2)$) pomocí lemma obarvíme G_1 i G_2 pomocí Δ barev, x má jinou barvu než y a dostanu i obarvení G.
- 2. $\deg_{G_1}(x) \leq \Delta 2$ nebo $\deg_{G_1}(y) \leq \Delta 2$, přidám $\{xy\}$ a pořád platí obarvení pomocí lemma.
- 3. $\deg_{G_1}(x)=\deg_{G_1}(y)=\Delta-1\Rightarrow \deg_{G_2}(x)=\deg_{G_2}(y)=1$, tak místo xy použiji $\{vy\}$, kde v je soused x z G_2 . dále viz 2).

 $k \geq 3$: G souvislý, není úplný $\Rightarrow G$ obsahuje 2 nesousedící vrcholy x a y, které mají společného souseda z. G-x-y je souvislý, tedy jeho vrcholy lze uspořádat do posloupnosti $v_1, v_2, \ldots, v_{n-2}$ tak, že $v_{n-2} = z$ a každý $v_i \in \{v_1, \ldots, v_{n-3}\}$ má aspoň jednoho souseda mezi v_{i+1}, \ldots, v_{n-2} . Vrcholy tedy uspořádám $x, y, v_1, v_2, \ldots, v_{n-2}$ a obarvím G hladově zleva doprava pomocí Δ barev.

Definice 70. Hranové obarvení grafu G = (V,E) je funkce $f : E \to \mathbb{Z}$ taková, že pro 2 různé hrany $e, e' \in E$ sdílející vrchol platí $f(e) \neq f(e')$. Hranová barevnost grafu G značená $\chi_e(G)$ je nejmenší k takové, že G má hranové obarvení používající k barev.

Definice 71. Line graph značen jako L(G) vznikne z grafu G.

$$L(G) = (E, \{ef\} \in \binom{E}{2}; e \cap f \neq \emptyset)$$

Pozorování. $\chi_e(G) = \chi(L(G)) \le \Delta(L(G)) + 1 \le 2\Delta(G) - 1$

Věta 60 (Vizing). $\forall G : \chi_e(G) \leq \Delta(G) + 1$

Proof. Mějme $G=(V,E), \Delta=\Delta(G)$. Nechť $H=(V,E_H)$ je co největší podgraf G, který lze hranově obarvit pomocí $\Delta+1$ barev, nechť f_H je takové hranové obarvení. Pokud H=G jsme hotovi. Pro spor nechť existuje $e_0=\{xy_0\}\in E\setminus E_H$. Řeknu, že barva $\beta\in\{1,2,\ldots,\Delta+1\}$ je *volná* u vrcholu w, pokud žádná hrana H incidentí s w nemá barvu β . Pozorování: Každý vrchol má ≥ 1 volnou barvu. Nechť e_0,e_1,e_2,\ldots,e_k je co nejdelší posloupnost různých hran, kde $e_i=\{xy_i\}$, pro každé $i=1,\ldots,k:f_H(e_1)$ je barva, která je volná u y_{i-1} . Nechť β je volná barva u y_k . Pak jsou případy:

- 1. β je volná u x
 - e_k obarvím β a pro $j = 0, \ldots, k-1$ hranu e_j obarvím $f_H(e_{j+1})$. To je ale spor s maximalitou H.
- 2. β je použitá na nějaké hraně \tilde{e} incidentní s x, nepatřící do $\{e_0, e_1, \dots, e_k\}$
 - $e_{k+1} := \tilde{e}$ Opět spor s maximalitou e_0, e_1, \dots, e_k .
- 3. β je použitá na nějaké hraně $e_j \in \{e_1, \dots, e_{k-1}\}$
 - Nechť α je volná barva u x. Dle předpokladu $\alpha \neq \beta$. Nechť P je co největší souvislý podgraf H na jehož hranách jsou jen barvy α a β a který obsahuje hranu e_j . P má maximální stupeň ≤ 2 , $\deg_P(x) = 1 \Rightarrow P$ je cesta, která má začátek v x.
 - Nechť z je druhý konec P. Uvažujeme obarvení $\tilde{f}_H: E_H \to \{1, \dots, \Delta+1\}$ vznikne z f_H tak, že na P prohodíme barvy α a β . 2 podpříklady:
 - (a) $z = y_{j-1}$: v f_H je β volná u x i u y_k . α je volná u y_{j-1} a použitá na $e_j \Rightarrow$ nastává případ 1) pro e_0, \ldots, e_k .
 - (b) $z \neq y_{j-1} : \mathbf{v} \ \tilde{f_H}$ je β volná u x i u $y_{j-1} \Rightarrow$ nastává případ 1 pro e_0, \dots, e_{j-1} .

12.1 Perfektní grafy

Definice 72. Značení:

- $\omega(G)$ klikovost G, nebo-li velikost největší kliky v G.
- $\alpha(G)$ nezávislost G, nebo-li velikost největší nezávislé množiny v G
- Doplněk grafu G = (V,E) je graf $\bar{G} = (V, \binom{V}{2} \setminus E)$.

Pozorování.

$$\omega(G) = \alpha(\bar{G}) \quad \omega(\bar{G}) = \alpha(G)$$

Pozorování. $\chi(G) \geq \omega(G)$

Pozorování. $\omega(C_{2k+1}) > 2$

Definice 73. Graf G = (V,E) je **perfektní**, pokud pro každý indukovaný podgraf H grafu G platí $\omega(H) = \chi(H)$.

Pozorování. G perfektní graf, $G' \leq_i G \Rightarrow G'$ je perfektní.

Důsledek. G obsahuje C_{2k+1} nebo $\overline{C_{2k+1}}$ jako indukovaný podgraf $\Rightarrow G$ není perfektní.

Věta 61 (Silná věta o perfektníc grafech). G je perfektní iff G neobsahuje C_{2k+1} ani C_{2k+1} (pro $k \geq 2$) jako indukovaný podgraf.

Definice 74. Nezávislá množina N v grafu G = (V,E) je **rozlehlá**, pokud každá klika G velikosti $\omega(G)$ obsahuje vrchol z N. Ekvivalentně: $\omega(G-N) = \omega(G) - 1$.

Lemma 62 (1). Pro graf G = (V,E) jsou následující tvrzení ekvivalentní:

- 1. G je perfektní,
- 2. $\forall H \leq_i G : H \text{ m\'a rozlehlou nez\'avislou mno\'zinu},$
- 3. $\forall H \leq_i G, \forall x \in V(H) : H \text{ má rolehlou nezávislou množinu obsahující } x.$

 $D\mathring{u}kaz$. $3 \Rightarrow 2$ triviálně.

 $2\Rightarrow 1$ Nechť $G'\leq_i G$ a chceme $\omega(G')=\chi(G')$. Obarvení G' pomocí $\omega(G')$ barev najdeme takto: N_1 je rozlehlá NzMna v G_1 a té dáme barvu 1. Následně $N_2:=$ NzMna v $G'-N_1$ barvu 2 a tak dále opakujeme dokud nemáme obarvené celé G'. $\omega(G'-N_1)=\omega(G')-1$, $\omega(G'-(N_1\cup N_2))=\omega(G')-2$ a tak dále. Proto použijeme právě $\omega(G')$ barev. Hotovo.

 $1 \Rightarrow 3$ Nechť G je perfektní graf, mějme $H \leq_i G, \forall x \in V(H)$. Víme $\omega(H) = \chi(H)$. Vrcholy H barvy f(x) jsou rozlehlá nezávislá množina. Každá největší klika musí mít právě jeden vrchol s danou barvou.

Definice 75. Nechť G = (V,E) je graf s vrcholem x. Nechť $k \in \mathbb{N}$. Potom k-násobné nafouknutí vrcholu x, která vytvoří G^+ takto:

1. Vrchol x se nahradí k-ticí nových vrcholů $x_1, \ldots x_k$ tvořící kliku.

2. Každý soused vrcholu x v G se spojí se všemi x_1, \ldots, x_k .

Lemma 63 (2). Pokud G je perfektní a G^+ je jeho nafouknutí, tak i G^+ je perfektní.

 $D\mathring{u}kaz$. Dokážeme, že $\forall H \leq_i G^+$ má rozlehlou nezávislou množinu. Pak ještě použijeme Lemma 1 a máme hotovo. Volme $H \leq_i G^+$: Pokud H obsahuje nejvýš jeden z x_1, \ldots, x_k tak $H \leq_i G$, takže H má rozlehlou NzMnu dle Lemma 1. Předpokládejme, že H obsahuje aspoň dva vrcholy z x_1, \ldots, x_k . Potom H je nfouknutí nějakého $H^- \leq_i G, x \in V(H^-)$. Dle Lemma 1, H^- obsahuje rozlehlou NzMnu N^- obsahující x. BÚNO: $x_1 \in V(H)$. Tvrdím: $N := (N^- \setminus \{x\}) \cup \{x_1\}$ je rozlehlá NzMna vH. Jistě N je nezávislá. Necht K je klika H velikosti $\omega(H)$. Pak jsou dvě možnosti:

- 1. $K \cap \{x_1, \dots, x_k\} = \emptyset$ v tom případě je K i největší v H^- , tedy $N^- \cap K \neq \emptyset$, dokonce $(N^- \setminus \{x\}) \cap K \neq \emptyset$, $N \cap K \neq \emptyset$.
- 2. $K \cap \{x_1, \ldots, x_k\} \neq \emptyset$ nutně K obsahuje všechny vrcholy z $\{x_1, x_2, \ldots, x_k\}$ patřící do H, tedy i $x_1 \in K$, tedy $K \cap N = \{x_1\} \neq \emptyset$.

Tedy N he rozlehlá NzMna H.

Definice 76. Značení: $H <_i G := H \leq_i G \ \mathcal{C} \ H \ncong G - H$ je vlastní indukovaný podgraf G.

Věta 64 (Slabá věta o perfektních grafech.). G je perfektní iff \bar{G} je perfektní.

Sporem: \exists perfektní graf G = (V,E), ale \bar{G} není perfektní. Volme G tak, že |V| je co nejmenší. Tedy $\forall H <_i G$ platí, že H i \bar{H} jsou perfektní. Jinak to je menší graf co do velikosti |V|. Protože \bar{G} není perfektní, tak dle Lemma 1 $\exists G' \leq_i \bar{G} : G'$ nemá rozlehlou NzMnu. Tvrdím, že $G' \cong \bar{G}$, kdyby $G' <_i \bar{G}$ tak G' není perfektní, ale $\bar{G}' <_i G$ tedy \bar{G}' je perfektní, spor s minimalitou G. Tedy \bar{G} nemá rozlehlou NzMnu. Tj. pro každou NzMnu N v G existuje v G klika velikosti $\omega(G)$ disjunktní s N. Tedy pro každou kliku K v G existuje v G NzMna velikosti $\alpha(G)$ disjunktní s K. Nechť Q_1,Q_2,\ldots,Q_t je seznam všech klik v G. Nechť N_i je NzMna G velikosti $\alpha(G)$ disjunktní s Q_i , pro $i=1,\ldots,t$. Pro každý vrcholy $x\in V$ nechť f(x) je počet indexů $i\in\{1,\ldots,t\}$ takových, že $x \in N_i$. G^+ vznikne z G tak, že se každý vrchol x nafoukne f(x)-krát. Vrcholy $x \in V$ s f(x) = 0 se smažou. Dle Lemma 2 G^+ je stále perfektní. $|V(G^+)| = t\alpha(G) = t\alpha(G^+)$. Víme: $\chi(G^+)\alpha(G^+) \geq |V(G^+)| = t\alpha(G^+)$. Tedy $\chi(G^+) \geq t - (1)$. Ale $\chi(G^+) = \omega(G^+)$ - (2). Necht Q^+ je největší klika v G^+ , ta musela vzniknout nafouknutím nějaké kliky $Q_j \vee G$. (3) $-|Q^+| = \sum_{x \in Q_j} f(x) = \sum_{x \in Q_j} \sum_{i=1}^t |N_i \cap \{x\}| = \sum_{i=1}^t \sum_{x \in Q_j} |N_i \cap \{x\}| = \sum_{i=1}^t \sum_{x \in Q_j} |N_i \cap \{x\}| = \sum_{i=1}^t |N_i \cap \{x\}|$ $\sum_{i=1}^{t} |Q_j \cap N_i| \le t-1$. Protože $Q_j \cap N_j = \emptyset$ dle definice N_j a dohromady (1), (2) a (3) je spor.

Definice 77 (Připomenutí). Cástečné uspořádaná množina (X, \leq) , $kde \leq je$ reflexivní, slabě antisymetrická a tranzitivní. **Řetězec:** podmnožina X, v níž každé dva prvky jsou porovnatelné. **Antiřetězec:** podmnožina X, v níž žádné dva prvky nejsou porovnatelné. Také je dobré znát **Hasseho diagram**.

Cvičení. Dokažte: Pokud každý řetězec v (X, \leq) má velikost $\leq k$, tak (X, \leq) se dá rodělit na $\leq k$, antiřetězců. – Indukcí dle k (postupně se mažou maximální prvky).

Definice 78. Pro částečně uspořádanou množinu (X, \leq) definuji graf **porovnatelnosti** $G_{\leq} = (X, E)$, kde $E = \{\{xy\} \in {X \choose 2} : x \leq y \lor y \leq x\}$.

Cvičení. Dokažte: G_{\leq} je perfektní. Klikovost = nejdelší řětězec. Barevnost = počet antiřetězců. Použití předchozího cvičení.

Věta 65 (Dilworth). Pokud v částečně uspořádané množině (X, \leq) má každý antiřetězec velikost l, tak (X, \leq) se dá rozdělit na $\leq l$ řetězců.

 $D\mathring{u}kaz.$ Každý G_{\leq} je perfektní $\Rightarrow \bar{G}_{\leq}$ je perfektní. $\omega(\bar{G}_{\leq}) \leq l \ \& \ \chi(\bar{G}_{\leq}) \leq l \Rightarrow l$ Nzmna $\rightarrow l$ klik \Rightarrow řetězce v $(X,\leq).$

Pozorování. Bipartitní grafy jsou perfektní.

Definice 79 (Značení). m(G) := velikost největšího párování v grafu <math>G a vp(G) := veliksot nejmenšího vrcholového pokrytí v grafu <math>G.

Pozorování. $m(G) \leq vp(G)$

Připomenutí: Konig-Egerváryho věta: G bipartitní: m(G) = vp(G).

Definice 80. Graf G = (V,E) je **chordální**, pokud neobsahuje kružnici délky ≥ 4 jako indukovaný podgraf.

Pozorování. Graf G je chordální a $H \leq_i G \Rightarrow H$ je chordální.

Definice 81. Nechť G = (V,E) je graf, nechť x a y jsou dva nesousední vrcholy v G. xy-řez je množina $R \subseteq V$, t. \check{z} . x a y jsou v různých komponentách G - R.

Lemma 66. Graf G = (V,E) je chordální iff pro každé dva nesousední vrcholy x,y existuje xy-řez, který je klika v G.

 $D\mathring{u}kaz$. " \Leftarrow " Necht G není chordální. Chceme dva nesousední vrcholy x,y, t.ž. žádný xy-řez není klika. Necht G obsahuje indukovanou kružnici C délky ≥ 4 , necht x,y jsou nesousedící vrcholy na C. Vždy musím odebrat aspoň 2 vrcholy z cyklu. Ale mezi nimi není hrana a tudíž nemůže se jednat o kliku. S tím, že odstraněné vrcholy musí přerušit dvě cesty P_1, P_2 . Kde P_1 a P_2 je rozdělení C dle x,y.

" \Rightarrow " Nechť G je chordální, nechť x,y jsou dva nesousedící vrcholy. Nechť R je xy-řez minimální vzhledem k inkluzi. Ukážeme, že R je klika v G. Sporem: nechť existují nesousedící vrcholy $u,v \in R$. Nechť G_x,G_y jsou komponenty G-R obsahující x respektive y. Pozorování: u i v má aspoň jednoho souseda v G_x i v G_y z minimality řezu. Nechť P_x je co nejkratší csta z u do v jejichž vnitřní vrcholy patří do G_x . Podobně P_y . $P_x \cup P_y$ je indukovaná kružnice délky ≥ 4 , spor.

Definice 82. Vrchol x grafu G je **simpliciální**, pokud sousedi x tvoří kliku v G.

Pozorování. Vrchol stupně ≤ 1 je simpliciální.

Lemma 67. Každý chordální graf (s aspoň jedním vrcholem) má simpliciální vrchol.

 $D\mathring{u}kaz$. Dokážeme: \forall chordální graf G=(V,E) je buď úplný nebo má dva nesousední simpliciální vrcholy. Indukcí dle |V|.

|V| = 1 G je úplný.

|V|>1 Pokud G není úplný (jinak triviálně platí). Volme x,y nesousedící vrcholy v G. Nechť R je xy-řez tvořící kliky v G (Lemma). G_x, G_y jsou komponenty G-R obsahující x popřípadě y. G_x^+, G_y^+ jsou podgrafy G indukované $G_x \cup R$ respektive $G_y \cup R$. IP: G_x^+ je buď úplný, nebo obsahuje dva nesousedící simpliciální vrcholy. V obou případech to znamená, že G_x^+ obsahuje simpliciální vrchol s_x nepatřící do R. Obdobně s_y je simpliciální vrchol v G_y^+ nepatřící do R. V G mají s_x i s_y stejné sousedy jako v G_x^+ resp. G_y^+ , tedy s_x a s_y jsou dva nesousedící simpliciální vrcholy v G.

Definice 83. Perfektní eliminační schéma (PES) grafu G je uspořádání vrcholů G do posloupnosti $v_1, v_2, v_3, \ldots, v_n$ takové, že $\forall i = 1, \ldots, n$ sousedi v_i mezi $\{v_1, \ldots, v_{i-1}\}$ tvoří kliky v G. (Ekvivalentně: v_i je simpliciální v indukovaném podgrafu G $\{v_1, \ldots, v_i\}$.)

Věta 68. Následující vlastnosti grafu G = (V,E) jsou ekvivalentní:

- 1. G je chordální,
- 2. $\forall H \leq_i G : H \text{ má simplic. } vrchol,$
- 3. G má PES.

 $D\mathring{u}kaz$. $1 \Rightarrow 2: \forall H \leq_i G$ je chordální \Rightarrow z Lemma H má simpliciální vrchol. $2 \Rightarrow 3:$ Vezmu simpliciální vrchol v G dám ho doprava v PES. Odeberu z G a takhle pořád opakuji. $3 \Rightarrow 1: G$ s PES, pak každá C s $|V| \geq 4$ musí mít chordu. Podívám se na poslední vrchol v PES. Pak z vlastnosti PES musí mít předchozí vrcholy chordu.

Důsledek. Důkaz $2 \Rightarrow 3$ říká, že v polynomiálním čase lze pro dané G najít PES nebo zjistit, že neexistuje.

Věta 69. Každý chordální graf je perfektní. Pro chordální graf G lze v polynomiálním čase zjistit $\omega(G) = \chi(G)$, spolu s nevětší klikou a optimálním obarvením.

 $D\mathring{u}kaz$. Už víme, že lze vytvořit PES. Pro každý vrchol v PES platí, že jeho předchozí sousedi tvoří kliku a s daným vrcholem tvoří kliku o jedna větší. Pak již stačí najít vrchol s největším počtem předchozích vrcholů (značeno k) a potom $\omega(G) = k+1$. Pro spor vezmu největší kliku z algoritmu. Kdyby nebyl největší, tak lze přidat další, ale ten musí být sousedem a tudíž ho algoritmus musel najít. Pro obarvení budu postupovat zleva a danému vrcholu dám nejmenší možnou barvu. Zaznačím si největší barvu a novou barvu přidám jakmile vrchol bude mít v předchozích vrcholech právě tolik sousedů. Tím pádem nikdy nepřekročím velikost maximální kliky a tedy $\chi(G) = \omega(G)$. Najdu tedy obarvení, které je rovno klice a tedy je i perfektní.

13. Extremální kombinatorika

Definice 84. Pro $n \in \mathbb{N}$ a graf F definujeme ex(n,F) := největší počet hran <math>v grafu na n vrcholech, který neobsahuje F jako podgraf. Nebo-li:

$$ex(n,F) = \max\{|E|; G = (V,E) : |V| = n, F \subseteq G\}$$

Definice 85. Turanův graf T(n,r) je úplný r-partitní graf na n vrcholech, jehož všechny partity mají velikost $\left|\frac{n}{r}\right|$ anebo $\left|\frac{n}{r}\right|$. Potom t(n,r) := počet hran <math>T(n,r).

Věta 70 (Turán). $\forall n,r \in \mathbb{N} : ex(n,K_{r+1}) = t(n,r)$

 $D\mathring{u}kaz$. Pozorování: T(n,r) neobsahuje K_{r+1} , tedy $\operatorname{ex}(n,K_{r+1}) \geq t(n,r)$. Stačí dokázat: $\operatorname{ex}(n,K_{r+1}) \leq t(n,r)$. Necht G = (V,E) je graf na n vrcholech, $K_{r+1} \not\subseteq G$ a |E| = $ex(n,K_{r+1})$. Tvrzení 1: Každé 2 nesousedící vrcholy x,y mají v G stejný stupeň. Sporem kdyby deg(x) > deg(y) tak y odstraním sousedy a přidám mu sousedy x. Ten má ale více hran a protože $\{x,y\} \notin E$ a s x nebyla klika, tak teď také žádná klika nevznikla s y. "Neboli y nahradím kopií x." Tvrzení 2: Definujeme relaci $R := \{(x,y) \in V \times V : \{x,y\} \notin E\}$. Potom R je ekvivalence. Jistě je R reflexivní, také symetrické. Pro spor předpokládejme, že R není tranzitivní: $\exists x,y,z:(x,y)\in R,(y,z)\in R\wedge(x,z)\notin R$. Dle Tvrzení 1: $\deg_G(x) = \deg_G(y) = \deg_G(z)$. Potom "nahradím x a z kopiemi y". A platí |E(G')| > |E|. A G' neobsahuje K_{r+1} obdobným argumentem jako u Tvrzení 1. Nyní nechť P_1, P_2, \ldots, P_k jsou třídy ekvivalence R. Tvrzení 3: k=r (pokud $n \geq r$). k>r: tak $K_{r+1} \subseteq G$ a to je spor. k < r: tak lze partitu s ≥ 2 vrcholy rozdělit na dvě menší partity a přidáme hrany mezi nimi a dostaneme G', který $K_{r+1} \nsubseteq G' \& |E(G')| > |E|$ opět spor. Tvrzení 4: BÚNO: $|P_1| \leq |P_2| \leq \cdots \leq |P_r|$. Tvrdíme, že $|P_1| \leq |P_r| + 1$. Kdyby nějaké dvě partity byly odlišné ≥ 2 . Potom vezmeme půlku přebytečných vrcholů a přehodíme je do předchozí partity. Následně spojíme hranami. Dostanu G' kde $K_{r+1} \nsubseteq G$ a |E(G')| > |E|. Poznámka: (l+2)l < (l+1)(l+1). Shrnutí: G je úplný r-partitní graf, kde všechny partity jsou skoro stejné $\Rightarrow G \cong T(n,r)$.

Definice 86. Hypergraf je dvojice (V,E), kde prvky E ("hyperhrany") jsou podmnožiny V.

Definice 87. Hypergraf je k**-uniformní**, pokud všechny jeho hyperhrany mají k vrcholů.

Definice 88. f(n,k) := max počet hyperhran v k-uniformním hypergrafu na n vrcholech, v němž žádné dvě hyperhrany nejsou disjunktní.

Pozorování. Pro n < k : f(n,k) = 0.

Pozorování. Pro $k \le n < 2k : f(n,k) = \binom{n}{k}$.

Pozorování. Pro $n \ge 2k$: $f(n,k) \ge \binom{n-1}{k-1}$. (Vybereme předem jeden vrchol.)

Definice 89. Označme $V = \{1,2,3,\ldots,n\}$, na V uvažujme sčítání modulo n. **Interval** je podmnožina V tvaru $\{i,i+1,i+2,\ldots,i+k\}$.

Pozorování. Pro $n \geq 2k$ máme na V přesně n intervalů.

Lemma 71. Nechť $V = \{1,2,3,\ldots,n\}, n \geq 2k \ a \ G = (V,E)$ je k-uniformní hypergraf jehož každá hyperhrana je interval a každé dvě hyperhrany se protínají. Potom $|E| \leq k$.

 $\begin{array}{l} \textit{Důkaz}. \quad \text{B\'UNO: } I = \{1, 2, 3, \dots, k\} \in E. \quad \text{Ozna\'cme } I_j^- := \{j, j-1, j-2, \dots, j-k+1\} \text{ a} \\ I_j^+ := \{j+1, j+2, \dots, j+k\}. \quad I \text{ je protnutí } I_1^-, I_2^-, \dots, I_{k-1}^- \ \& \ I_1^+, I_2^+, \dots, I_{k-1}^+. \quad \text{Nav\'c z} \\ \text{každ\'e dvojice } I_j^-, I_j^+ \text{ nejv\'y\'se jeden pat\'r\'i do } E, \text{ protože } I_j^- \cap I_j^+ = \emptyset. \quad \text{Tud\'i\'z} \ |E| \leq k. \end{array}$

Věta 72 (Erdös-Ko-Rado). *Pro libovolné* $k \in \mathbb{N}$ a $n \ge 2k$ platí $f(n,k) = \binom{n-1}{k-1}$.

 $D\mathring{u}kaz$. **Myšlenka:** G=(V,E) je k-uniformní hypergraf na n vrcholech, každé dvě hyperhrany se protínají $\to |E| \le \binom{n-1}{k-1}$. Ekvivalentně: $(\mathbf{1}) - \frac{|E|}{\binom{n}{k}} \le \frac{\binom{n-1}{k-1}}{\binom{n}{k}} = \frac{k}{n}$. Lemma: Když každá hyperhrana je interval $\frac{|E|}{n} \le \frac{k}{n} - (\mathbf{2})$. Tyto dva zlomky jsou vlastně pravděpodobnosti. Takže náhodně očíslujeme vrcholy a mám stejnou pravděpodobnost v obou případech. **Důkaz:** Mějme $n \ge 2k$. Nechť G=(V,E) je k-uniformní hypergraf v němž aždé 2 hyperhrany se protínají a |E| je co největší. Chceme dokázat $|E| \le \binom{n-1}{k-1}$. Nechť X je počet dvojic (e,π) t.ž. $e \in E$ a $\pi: V \to \{1,2,\ldots,n\}$ taková, že π zobrazí e na intervalu. Potom pomocí počítání dvěma způsoby:

- 1. $X \leq n! \cdot k$ (dle lemma)
- 2. $X = |E| \cdot n \cdot k! \cdot (n-k)!$

$$|E| \cdot n \cdot k! \cdot (n-k)! \le n! \cdot k \text{ a } |E| \le \frac{k}{n} \binom{n}{k} = \binom{n-1}{k-1}.$$

Definice 90. Slunečnice (nebo Δ -systém) se středem S a l lístky je l-tice $množin L_1, \ldots, L_l$ taková, že $\forall i \neq j : L_i \cap L_j = S$.

Definice 91. $s(k,l) := \sup\{|E|; G = (V,E) \text{ je } k\text{-uniformn\'i hypergraf neobsahuj\'ic\'i ž\'adnou slunečnici s } l \}.$

Věta 73 ("lemma o slunečnici", Erdös-Rado). $\forall k,l \in \mathbb{R} : s(k,l) < +\infty$

 $\begin{array}{lll} D\mathring{u}kaz. & \text{Indukc\'i} \text{ dle } k. \ k=1: s(k,l)=l-1. \ k>1: \text{Necht } G=(V,E) \text{ je } k\text{-uniformn\'i} \\ \text{hypergraf neobsahuj\'i\'c\'i slunečnici s} \ l \text{ l\'istky}. \text{ Necht } D\subseteq E \text{ je co největš\'i množina po dvou} \\ \text{disjunktn\'ich hyperhran v } G. & \text{Jistě } |D| \leq l-1, \text{ jinak máme slunečnici s} \ |D| \geq l \text{ l\'istky}. \\ \text{Označme } W:=\bigcup_{d\in D} d\subseteq V, |W|=k\cdot |D| \leq k\cdot (l-1). \text{ Jistě každ\'a } e\in E \text{ obsahuje aspo\'n jeden vrchol } W. & \text{Tedy existuje } x\in W, \text{ kter\'y je obsažen v aspoň } \frac{|E|}{|W|} = \frac{|E|}{k\cdot (l-1)} \text{ hyperhran\'ach z } E. & \text{Označme } E_x:=\{e\in E, x\in e\} \text{ pak } E_x^-:=\{e\setminus \{x\}, e\in E_x\} \text{ a } G_x^-:=(V,E_x^-). \ G_x^- \text{ je } (k-1)\text{-uniformn\'i hypergraf, který neobsahuje slunečnici s } l \text{ l\'istky: kdyby } e_1,e_2,\ldots,e_l \text{ byla slunečnice v } G_x^-, \text{ tak } e_1\cup \{x\},e_2\cup \{x\},\ldots,e_l\cup \{x\} \text{ je slunečnice v } G. & \text{Tedy dle IP: } |E_x^-|=s(k-1,l)<+\infty. & \text{Nav\'ic } |E_x^-|=|E_x|\geq \frac{|E|}{k\cdot (l-1)}, \text{ tedy } |E|\leq k\cdot (l-1)\cdot s(k-1,l). \\ & \text{Tedy } s(k,l)\leq k\cdot (l-1)\cdot s(k-1,l). \\ & \text{Tedy } s(k,l)\leq k\cdot (l-1)\cdot s(k-1,l). \\ \end{array}$

Poznámka. Důkaz nám dává odhad $s(k,l) \leq k!(l-1)^k$.

 $Hypot\'eza: (\forall l)(\exists c_l): s(k,l) \leq c_l^k.$

Definice 92. Hamiltonovská kružnice v grafu G = (V,E) je kružnice v G obsahující všechny vrcholy G.

Definice 93. Pro $n \geq 3$ označme $h(n) := \max\{d \in \mathbb{N}_0, \exists \text{ graf na } n \text{ vrcholech } s \text{ min } stupněm \geq d, který neobsahuje hamiltonovskou kružnici.}\}.$

Věta 74 (Bondy-Chvátal). Nechť G = (V,E) je graf s $n \geq 3$ vrcholy, nechť $x,y \in V$ jsou nesousedící vrcholy G takové, že $\deg_G(x) + \deg_G(y) \geq n$. Nechť $G^+ := (V,E \cup \{xy\})$. Potom G je hamiltonovský iff G^+ je hamiltonovský.

 $D\mathring{u}kaz$. " \Rightarrow " je triviální. " \Leftarrow " Označme $e_0 = \{xy\}$. Nechť G^+ obsahuje hamiltonovskou kružnici C. Pokud $e_0 \notin C$, tak C je hamiltonovská kružnice v G. Předpoklad $e_0 \in C$ jinak triviálně. Očíslujeme vrcholy a hrany C takto: $x = x_1, x_2, \ldots, x_{n-1}, x_n = y$ a $e_0, e_1, e_2, \ldots, e_n, e_0$. Cíl je najíť $i \in \{1, 2, 3, \ldots, n-1\}$ tak, že x sousedí s x_{i+1} a y sousedí s x_i v grafu G. Označme $S_x := \{i \in \{1, 2, 3, \ldots, n-1\}, \{xx_{i+1}\} \in E\}$ z toho plyne, že $|S_x| = \deg_G(x)$ a taky $S_y := \{i \in \{1, 2, 3, \ldots, n-1\}, \{yx_i\} \in E\}$ pak $|S_y| = \deg_G(y)$. Tedy $|S_x| + |S_y| \ge n, |S_x \cup S_y| \le |\{1, 2, 3, \ldots, n-1\}| \le n-1$, tudíž $\exists i \in S_x \cap S_y$. $(C \setminus \{e_0, e_i\}) \cup \{\{xx_{i+1}\}, \{yx_i\}\}$ je hamiltonovská kružnice v G.

 $D\mathring{u}sledek$ (Dirac). Každý graf na $n\geq 3$ vrcholech s min stupněm $\geq \frac{n}{2}$ je hamiltonovský. (Nebo $h(n)<\frac{n}{2}.)$

Důsledek. $\forall x \neq y \in V : \deg_G(x) + \deg_G(y) \geq n$. Pokud G je úplný, tak hotovo. Jinak můžeme postupně přidávat hrany a vytvořit úplný graf. Pak pomocí Bondy-Chvátalovy věty jsou všechny tyto grafy v posloupnosti hamiltonovské.

Definice 94. Multigraf je jako graf, ale můžu mít více hran mezi stejnou dvojicí vrcholů a můžu mít i smyčky. Formálně: Multigraf je dvojice množin (V,E) spolu s incidenční funkcí $f: E \to \binom{V}{2} \cup \binom{V}{1}$, kde V jsou vrcholy a E hrany.

Definice 95. Incidenční matice multigrafu G = (V,E) je matice $I_G \in \{0,1,2\}^{|V| \times |E|}$, kde v řádku odpovídajícímu vrcholu $x \in V$ a sloupci odpovídající hraně $e \in E$ je hodnota 2, pokud e je smyčka u x, 1 pokud x je jedna ze dvou konců e, 0 jinak.

Definice 96. Mějme multigraf G = (V,E) s maticí incidence I_G .

- 1. Označme: k(G) = k(V,E) počet komponent souvislosti G.
- 2. Označme: $r(G) = r(VE) \ hodnost \ I_G. \ (nad \ \mathbb{Z}_2)$
- 3. Označme: n(G) = n(V,E) dimenze jádra $Ker(I_G)$ matice I_G , $kde\ Ker(I_G) = \{x \in (\mathbb{Z}_2)^{|E|} : I_g x = 0\}$. Také se n(G) nazývá nulita G.

Pozorování. r(V,E) = |V| - k(V,E)

Pozorování. n(V,E) = |E| - r(V,E)

Definice 97. $Ker(I_G)$ prostor cyklů G = (V, E).

Definice 98. G = (V,E) multigraf $e \in E$. Pak:

- $G e := (V, E \setminus \{e\})$
- G/e (kontrakce hrany y) := G-e, pokud e je smyčka, jinak nový vrchol v_e všechny hrany se projeví na novém vrcholu (protože máme multigraf).

Pozorování. G - e i G/e má vždy o jednu hranu méně než G.

r(G)=|V|-k(G)=|F|,kde $F\subseteq E$ je největší podmnožina E neobsahující kružnici. n(G)=|E|-r(G)=|F|,kde $F\subseteq E$ je největší podmnožina E taková, že k(G-F)=k(G)

$$r(G - e) = \begin{cases} r(G) - 1 & e \text{ je most v } G \\ r(G) & \text{ jinak} \end{cases}$$

$$n(G - e) = \begin{cases} n(G) & e \text{ je most v } G \\ n(G) - 1 & \text{ jinak} \end{cases}$$

$$r(G/e) = \begin{cases} r(G) & e \text{ je smyčka v } G \\ r(G) - 1 & \text{ jinak} \end{cases}$$

$$n(G/e) = \begin{cases} r(G) - 1 & e \text{ je smyčka v } G \\ r(G) & \text{ jinak} \end{cases}$$

Definice 99. Tutteův polynom multigrafu G = (V,E), značený $T_G(x,y)$ je definován:

$$T_G = \sum_{F \subseteq E} (x-1)^{r(V,E)-r(V,F)} \cdot (y-1)^{n(V,F)}$$

 $Poznámka. x^0$ je konstantní funkce $\equiv 1$

Pozorování. $T_G(1,1) = \#$ počet koster v souvislém grafu G.

Tvrzení 75. Nechť $G_1 = (V_1, E_1)$ a $G_2 = (V_2, E_2)$ jsou multigrafy, kde $E_1 \cap E_2 = \emptyset$ a $|V_1 \cap V_2| \le 1$. Nechť $G = (V = V_1 \cup V_2, E = E_1 \cup E_2)$. Potom $T_G(x,y) = T_{G_1}(x,y)T_{G_2}(x,y)$.

 $D\mathring{u}kaz$. Nechť $V_1 \cap V_2 = \emptyset$ (situace $|V_1 \cap V_2| = 1$ je obdobná). $T_G(x,y) = \sum_{F_1 \subseteq E_1} \sum_{F_2 \subseteq E_2} (x-1)^{r(V,E)-r(V,F_1 \cup F_2)} \cdot (y-1)^{n(V,F_1 \cup F_2)} = (1)$. $r(V,F_1 \cup F_2) = r(V,F_1) + r(V,F_2)$ stejně tak i pro n(G).

$$(1) = \sum_{F_1 \subseteq E_1} \sum_{F_2} (x-1)^{r(E_1) + r(E_2) - (r(F_1) + r(F_2))} \cdot (y-1)^{n(F_1) + n(F_2)} =$$

$$\left(\sum_{F_1 \subseteq E_1} (x-1)^{r(E_1)-r(F_1)} \cdot (y-1)^{n(F_1)}\right) \left(\sum_{F_2 \subseteq E_2} (x-1)^{r(E_2)-r(F_2)} \cdot (y-1)^{n(F_2)}\right) =$$

$$= T_{G_1}(x,y) T_{G_2}(x,y)$$

Důsledek. e je most v G + (V,E), tak $T_{G-e}(x,y) = T_{G/e}(x,y)$.

Pozorování. e je smyčka v G, potom $T_{G-e}(x,y) = T_{G/e}(x,y)$, protože G - e = G/e.

Věta 76. Nechť G = (V,E) je multigraf. Potom:

- 1. pokud $E = \emptyset$, tak $T_G(x,y) = 1$
- 2. pokud $e \in E$, tak
 - (a) pokud e je smyčka, tak $T_G(x,y) = y \cdot T_{G-e}(x,y) = y \cdot T_{G/e}(x,y)$
 - (b) pokud e je most, tak $T_G(x,y) = x \cdot T_{G-e}(x,y) = x \cdot T_{G/e}(x,y)$
 - (c) $jinak T_G(x,y) = T_{G-e}(x,y) + T_{G/e}(x,y)$.

Důkaz. 1. Plyne z definice. 2. Volme $e \in E$ potom:

$$T_{G}(x,y) = \sum_{F \subseteq E; e \notin F} \dots + \sum_{F \subseteq E; e \in F} \dots = S_{1} + S_{2}$$

$$S_{1} = \sum_{F \subseteq E; e \notin F} (x-1)^{r(E \setminus \{e\}) - r(F)} \cdot (y-1)^{F}$$

$$S_{2} = \sum_{F \subseteq E; e \in F} (x-1)^{r(E \setminus \{e\}) - r(F)} \cdot (y-1)^{F}$$

$$T_{G-e}(x,y) = \sum_{F \subseteq E \setminus \{e\}} (x-1)^{r(E \setminus \{e\}) - r(F)} \cdot (y-1)^{F}$$

$$T_{G/e}(x,y) = \sum_{F \subseteq E \setminus \{e\}} (x-1)^{r(E \setminus \{e\}) - r(F)} \cdot (y-1)^{F}$$

Pokud e není most v G tak $r(E) = r(E \setminus \{e\})$, tedy $S_1 = T_{G-e}(x,y)$. Pokud e je most v G, tak $r(E) = r(E \setminus \{e\}) + 1$ a tedy $S_1 = (x-1) \cdot T_{G-e}(x,y)$. Pokud e je smyčka, tak $S_2 = (y-1) \cdot T_{G/e}(x,y)$. Pokud e není smyčka, tak $S_2 = T_{G/e}(x,y)$. Takže pak celkově podle toho co je e:

$$T_G(x,y) = S_1 + S_2 = \begin{cases} \text{most} & (x-1)T_{G-e} + T_{G/e} = x \cdot T_{G/e} = x \cdot T_{G-e} \\ \text{smyčka} & (y-1)T_{G/e} + T_{G-e} = y \cdot T_{G-e} = y \cdot T_{G/e} \\ \text{jinak} & T_{G-e} + T_{G/e} \end{cases}$$

Definice 100. Obarvení multigrafu G = (V,E) pomocí b barev je funkce $f : V \rightarrow \{1,2,3,\ldots,b\}$ taková, že žádná hrana $e \in E$ nemá oba konce zbarvené na stejnou barvu. Pokud G obsahuje smyčku, tak G nemá žádné obarvení.

Definice 101. Chromatický polynom G = (V,E) je funkce $\chi_G(z) : \mathbb{N}_0 \to \mathbb{N}_0$, kde $\chi_G(z)$ je počet obarvení G pomocí z barev.

Cvičení. $G = K_n \ tak \ \chi_G(z) = {z \choose n} n! = z \cdot (z-1) \cdot \cdots \cdot (z-n+1) \ a \ H = \overline{K_n} \ tak \ \chi_H(z) = z^n$.

Tvrzení 77. Nechť G = (V,E) je multigraf, $z \in \mathbb{N}_0$. Potom:

- 1. pokud $E = \emptyset$, tak $\chi_G(z) = z^{|V|}$
- 2. pokud $e \in E$, tak:
 - (a) pokud e je smyčka tak $\chi_G(z) = 0$
 - (b) $jinak \chi_G(z) = \chi_{G-e}(z) \chi_{G/e}(z)$.

 $D\mathring{u}kaz$. 1. Triviálně. 2. 1. Plyne z definice. 2. 2. jsou dvě možnosti: Více hran: pak musí být stejné obarvení a to také platí, protože $\chi_{G/e}(z)=0$ kvůli smyčce. Jen jedna hrana, tak musíme odebrat obarvení, které dají oboum vrcholům stejnou barvu a to je přesně $\chi_{G/e}(z)$.

Tvrzení 78. \forall multigraf G:

$$\chi_G(z) = (-1)^{|V| - k(G)} \cdot z^{k(G)} \cdot T_G(1 - z, 0)$$

 $D\mathring{u}kaz$. Druhou stranu výrazu si označíme jako $PS_G(z)$. Pak jsou dva možné postupy.

- 1. Opraví se $PS_G(z)$ a zjistí se, že $PS_G(z) = \sum_{F \subseteq E} (-1)^{|F|} \cdot z^{k(V,F)}$. Pak pomocí **principu inkluze a exkluze** (*PIE*) ze zdůvodnní, že ten výraz je roven $\chi_G(z)$.
- 2. Zkontroluje se, že $\chi_G(z)$ splní stejné podmínky rekurze jako $PS_G(z)$.

V tomto případě volíme první možnost. Označme $\bar{\chi_G}(z) := \sum_{F \subseteq E} (-1)^{|F|} \cdot z^{k(V,F)}$ (1). Pozorování: Pokud G obsahuje smyčku e, tak $\bar{\chi_G}(z) = 0$, protože:

$$\bar{\chi_G}(z) = \sum_{F \subseteq E \setminus \{e\}} ((-1)^{|F|} \cdot z^{k(V,F)} + (-1)^{|F \cup \{e\}} \cdot z^{k(V,F)})$$

(1) Předpokládejme, že G neobsahuje smyčku. Označme si $\mathcal{F} := \text{množina}$ všech funkcí $|V| \to \{1, 2, \dots, z\} \ |\mathcal{F}| = z^{|V|}$. Pro hranu $e = \{xy\} \in E$ označím $\hat{S}_e := \{f \in \mathcal{F}; f(x) = f(y)\}$.

$$\chi_G(z) = |\mathcal{F} \setminus \bigcup_{e \in E} \hat{S}_e| = |\mathcal{F}| - |\bigcup_{e \in E} \hat{S}_e| =^{\text{PIE}}$$

$$=^{\text{PIE}} |\mathcal{F}| - (\sum_{\emptyset \neq F \subseteq E} (-1)^{|F|} + 1 |\bigcap_{e \in E} \hat{S}_e|) = z^{|V|} + \sum_{\emptyset \neq F \subseteq E} (-1)^{|F|} |\bigcap_{e \in F} \hat{S}_e| = (1)$$

Obecně $|\bigcup_{e\in E} \hat{S}_e| = z^{k(V,E)}$, protože v komponentě musí být jedna barva.

$$(1) = \sum_{F \subseteq E} (-1)^F z^{k(V,F)} = \bar{\chi_G}(z)$$

14. Vytvořující funkce

$$(a_0, a_1, \dots) \subseteq \mathbb{R} \to A(x) = a_0 + xa_1 + x^2a_2 + \dots$$

Definice 102. Formální mocninná řada reprezentující posloupnost reálných čísel (a_0, a_1, a_2, \dots) je výraz tvaru $a_0 + a_1x + a_2x^2 + \dots = \sum_{n=0}^{\infty} a_nx^n$.

Definice 103 (Značení). [$|\mathbb{R}|$] je množina formálních mocninných řad (v proměnné x nad \mathbb{R}).

Pro $A(x) \in \mathbb{R}[|x|], A(x) = a_0 + a_1 x + a_2 x^2 + \dots$ je $[x^n]A(x)$ koeficient u x^n v A(x), tj. a_n .

14.1 Operace s formálními mocninnými řadami

Násobení:

$$\alpha \in \mathbb{R} : \alpha A(x) = (\alpha a_0) + (\alpha a_1)x + (\alpha a_2)x^2 + \dots$$

Sčítání:

$$A(x), B(x) \in \mathbb{R}[|x|], A(x) = a_0 + a_1 x + \dots, B(x) = b_0 + b_1 x + \dots$$

$$A(x) + B(x) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \dots$$

$$0 = 0 + 0x + 0x^2 + 0x^3 + \dots$$
 má vlastnost:

$$\forall A \in \mathbb{R}[|x|] : A+0 = 0+A = A$$

Násobení:

$$A(x) \cdot B(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots$$
, kde

$$c_n = \sum_{k=0}^n a_k b_{n-k}$$

$$1 = 1 + 0x + 0x^2 + 0x^3 + \dots$$
, má vlastnost:

$$\forall A \in \mathbb{R}[|x|] : A \cdot 1 = 1 \cdot A = A$$

 $\mathbf{Fakt.}\ (A+B)C = AC + BC\ a\ \mathbb{R}[|x|]\ je\ okruh\ (tj.\ komutativni\ okruh\ s\ jednotkou).$

Definice 104. Pro $A \in \mathbb{R}[|x|]$ označme A^{-1} (nebo $\frac{1}{A}$) mocninnou řadu $B \in \mathbb{R}[|x|]$ splňující $AB = 1 \in \mathbb{R}[|x|]$. A^{-1} je multiplikativní inverze (převrácená hodnota) A.

Poznámka. Ne všechny FMŘ mají inverzní prvky, například 0.

Tvrzení 79. Pokud $\mathbb{R}[|x|] \ni A(x) = a_0 + a_1x + a_2x^2 + \dots$ má $A^{-1}(x)$ v tom případě je $A^{-1}(x)$ jednoznačná.

 $D\mathring{u}kaz$. $a_0 = 0 \Rightarrow A^{-1}(x)$ neexistuje. Předpoklad $a_0 \neq 0$ hledejme $b_0, b_1, b_2, \dots \in \mathbb{R}$ tak, aby

$$(a_0 + a_1 x + a_2 x^2 + \dots)(b_0 + b_1 x + b_2 x^2 + \dots) = 1$$

$$\downarrow \\ a_0 b_0 = 1 \\ a_1 b_0 + a_0 b_1 = 0 \\ a_2 b_0 + a_1 b_1 + a_0 b_2 = 0$$

$$\vdots \\ b_0 = \frac{1}{a_0} \\ b_1 = -\frac{1}{a_0} \cdot a_1 b_0 \\ b_2 = -\frac{1}{a_0} (a_2 b_0 + a_1 b_1)$$

$$\vdots$$

Definice 105. Necht $A_1(x), A_2(x), \ldots$ je posloupnost FMR řeknu, že součet $A_1(x)$ + $A_2(x) + \dots$ je **konvergentní**, pokud $\forall n \in \mathbb{N}_0$ existuje jen konečně mnoho indexů $j \in \mathbb{N}_0$ takových, že $[x^n]A_j(x) \neq 0$. V takovém případě pak definuji $A_1(x) + A_2(x) + A_3(x) + \dots$ jako FMR $S(x) \in \mathbb{R}[|x|]$ splňující (jen konečně mnoho nenul):

$$\forall n \in \mathbb{N}_0 : [x^n]S(x) := [x^n]A_1(x) + [x^n]A_2(x) + [x^n]A_3(x) + \dots$$

Definice 106. $M\check{e}jme\ A(x) = a_0 + a_1x + a_2x^2 + \dots, B(x) = b_0 + b_1x + b_2x^2 + \dots \in \mathbb{R}[|x|],$ $necht b_0 = 0$. Potom:

$$A(B(x)) = a_0 + a_1 B(x) + a_2 B^2(x) + a_3 B^3(x) + \dots = \sum_{n=0}^{\infty} a_n B^n(x)$$

Poznámka. Pokud $b_0 = 0$, tak $B(x) = b_1 x + b_2 x^2 + b_3 x^3 + \dots = x(b_1 + b_2 x + b_3 x^2 + \dots)$ a tedy $B^n(x) = x^n(b_1 + b_2x + b_3x^2 + \dots)$ má nulové koeficienty stupňů $0,1,2,3,4,\dots,n-1$.

Součet $A(B(x)) = a_0 + a_1B(x) + a_2B^2(x) + \dots$, protože $\forall n \in \mathbb{N}_0$ pouze sčítance $a_0, a_1B(x, a_2B^2(x), \dots, a_nB^n(x))$ mohou mít nenulový koeficient u x^n .

Definice 107. Kombinatorická třída je množina A taková, že každý prvek $\alpha \in A$ má definovanou velikost $|\alpha| \in \mathbb{N}_0$ a pro každé $n \in \mathbb{N}_0$, \mathcal{A} má jen konečně mnoho prvků velikosti n. Značení: $A_n := \{ \alpha \in A; |\alpha| = n \}.$

Definice 108. Obyčejná vytvořující funkce kombinační třídy A, značená OVF(A) $je FM\check{R} \sum_{n=0}^{\infty} |\mathcal{A}_n| x^n$.

Pozorování. $OVF(A) = \sum_{\alpha \in A} x^{|\alpha|}$

Pozorování. Pokud \mathcal{A} a \mathcal{B} disjunktní kombinační třídy, tak $OVF(\mathcal{A} \cup \mathcal{B}) = OVF(\mathcal{A}) +$ $OVF(\mathcal{B})$.

Definice 109. Nechť \mathcal{A} , \mathcal{B} jsou kombinační třídy. Potom $\mathcal{A} \times \mathcal{B} := \{(\alpha, \beta); \alpha \in \mathcal{A}, \beta \in \mathcal{B}\}$, $kde \mid (\alpha, \beta) \mid = \mid \alpha \mid + \mid \beta \mid$.

Pozorování. $OVF(A \times B) = OVF(A) \cdot OVF(B)$

Důkaz.

$$OVF(\mathcal{A} \times \mathcal{B}) = \sum_{n=0}^{\infty} |(\mathcal{A} \times \mathcal{B})_n| x^n = \sum_{n=0}^{\infty} \left(\sum_{k=0}^n |\mathcal{A}_k| \cdot |\mathcal{B}_{n-k}| \right) x^n =$$
$$= \sum_{n=0}^{\infty} \sum_{k=0}^n |\mathcal{A}_k| x^k \cdot |\mathcal{B}_{n-k}| x^{n-k} = OVF(\mathcal{A}) \cdot OVF(\mathcal{B})$$

Pozorování.

$$\mathcal{A}^k = \mathcal{A} \times \mathcal{A} \times \cdots \times \mathcal{A}, OVF(\mathcal{A}^k) = OVF(\mathcal{A})^k$$

Definice 110. Nechť A je kombinační třída taková, že $A_0 = \emptyset$, potom:

$$Seq(\mathcal{A}) = \{\emptyset\} \cup \mathcal{A}^1 \cup \mathcal{A}^2 \cup \dots$$

tj. množina všech konečných posloupností prvků A.

Pozorování.

$$OVF(Seq(A)) = 1 + OVF(A) + OVF(A)^{2} + \dots = \frac{1}{1 - OVF(A)}$$

Definice 111. Labelovaná kombinatorická třída je množina A, jejíž každý prvek α má danou množinu vrcholů $V(\alpha)$, což je konečná množina \mathbb{N} , kde platí následující:

- 1. Označíme-li $A_V := \{ \alpha \in A : V(\alpha) = V \}$, pak pro každé $V \subseteq \mathbb{N}$ konečné platí $|A_V| < +\infty$.
- 2. Pro dvě konečné množiny vrcholů $V,W\subseteq\mathbb{N}$ takové, že |V|=|W|, platí $|\mathcal{A}_V|=|\mathcal{A}_W|$

Značení:
$$\mathcal{A}_n := \mathcal{A}_{\{1,2,3,\ldots,n\}} \ a \ \mathcal{A}_* := \mathcal{A}_0 \cup \mathcal{A}_1 \cup \mathcal{A}_2 \cup \ldots \ pro \ \alpha \in \mathcal{A} : |\alpha| := |V(\alpha)|.$$

Definice 112. Exponenciální vytvořující funkce labelované kombinatorické třídy A, značená EVF(A) je

$$\sum_{n=0}^{\infty} |\mathcal{A}_n| \frac{x^n}{n!} = \sum_{\alpha \in \mathcal{A}_*} \frac{x^{|\alpha|}}{|\alpha|!}$$

Pozorování. Pro labelované kombinatorické třídy A, B, které jsou disjunktní, platí

$$EVF(A \cup B) = EVF(A) + EVF(B).$$

Definice 113. Labelovaný součin $A \otimes B$ labelovaných kombinačních tříd A, B je labelovaná kombinační třída $\{(\alpha, \beta); \alpha \in A, \beta \in B, V(\alpha) \cap V(\beta) = \emptyset\}$, kde $V((\alpha, \beta)) := V(\alpha) \cup V(\beta)$.

Tvrzení 80. $EVF(A \otimes B) = EVF(A) \cdot EVF(B)$

 $D\mathring{u}kaz.$ Levou stranu si označím jako LS(x)a pravou jako PS(x). $\forall n\in\mathbb{N}_0:[x^n]LS$ jestli se rovná $[x^n]PS$

$$[x^n]LS = \frac{1}{n!}|(\mathcal{A} \otimes \mathcal{B})_n| = \frac{1}{n!} \sum_{V \subseteq \{1,2,3,\dots,n\}} |\mathcal{A}_V||\mathcal{B}_{\{1,\dots,n\}\setminus V}| =$$

$$= \frac{1}{n!} \sum_{k=0}^n \binom{n}{k} |\mathcal{A}_k||\mathcal{B}_{n-k}| = \sum_{k=0}^n \frac{|\mathcal{A}_k|}{k!} \frac{|\mathcal{B}_{n-k}|}{(n-k)!} =$$

$$= \sum_{k=0}^n [x^k] \text{EV}(\mathcal{A})[x^{n-k}] \text{EVF}(\mathcal{B}) = PS(x)$$

15. Akce grup a počítání orbit

Grupa Γ je multiplikativní: $\alpha, \beta \in \Gamma$ tak i $\alpha\beta \in \Gamma$ součin je v Γ . 1_{Γ} neutrální prvek v Γ ($\forall \alpha \in \Gamma : 1_{\Gamma}\alpha = \alpha 1_{\Gamma} = \alpha$) a α^{-1} inverzní prvek k $\alpha \in \Gamma$ ($\alpha\alpha^{-1} = \alpha^{-1}\alpha = 1_{\Gamma}$).

Definice 114. Akce grupy Γ na množině \mathcal{M} je binární operace $(_ \bullet _) : \Gamma \times \mathcal{M} \to \mathcal{M}$. Splňující:

- 1. $\forall p \in \mathcal{M} : 1_{\Gamma} \bullet p = p$,
- 2. $\forall \alpha, \beta \in \Gamma, \forall p \in \mathcal{M} : \alpha \bullet (\beta \bullet p) = (\alpha \beta) \bullet p$.

Pozorování. • je akce Γ na \mathcal{M} :

- 1. pokud pro $\alpha \in \Gamma, p \in \mathcal{M} : \alpha \bullet p = q \in \mathcal{M}, pak(\alpha^{-1}) \bullet q = p. Protože(\alpha^{-1}) \bullet q = (\alpha^{-1}\alpha) \bullet p1_{\Gamma}p = p$
- 2. pro pevné $\alpha \in \Gamma$, funkce $p \to \alpha p$ je bijekce $\mathcal{M} \to \mathcal{M}$

Definice 115. Mějme akci Γ na \mathcal{M} . Prvky $p,q \in \mathcal{M}$ jsou **ekvivalentní** (vůči \bullet) pokud $\exists \alpha \in \Gamma : \alpha \bullet p = q$. Značení $p \simeq q$.

Pozorování. \simeq je ekvivalence na množině \mathcal{M} :

- 1. $p \simeq p : 1_{\Gamma} \bullet p = p$
- 2. $p \simeq q \Rightarrow q \simeq p : \alpha \bullet p = q \Rightarrow (\alpha^{-1}) \bullet q = p$
- 3. $(p \simeq q \land q \simeq r) \Rightarrow p \simeq r : (\alpha \bullet p = q \land \beta \bullet q = r) \Rightarrow (\beta \alpha) \bullet p = r$

Definice 116. Třídy \simeq se nazývají **orbity**, orbitu obsahující $p \in \mathcal{M}$ značím [p] (nebo $[p]_{\mathcal{M},\bullet}$). Množinu orbit značím \mathcal{M}/Γ .

Definice 117. Stabilizátor prvku $p \in \mathcal{M}$, značený Stab(p), je $\{\alpha \in \Gamma : \alpha \bullet p = p\}$.

Pozorování. Stab(p) je podgrupa Γ .

Definice 118. *Množina pevných bodů* pro $\alpha \in \Gamma$, značená $Fix(\alpha)$, je $\{p \in \mathcal{M}, \alpha \bullet p = p\}$.

Lemma 81 (o orbitě a stabilizátoru). Nechť Γ je konečná grupa s akcí na \mathcal{M} . Potom

$$\forall p \in \mathcal{M} : |[p]| \cdot |Stab(p)| = |\Gamma|$$

Proof. Volme $p \in \mathcal{M}$, nechť $k := |[p]|, [p] = \{q_1, q_2, \dots, q_k\}$, kde $q_1 := p$. Označme $\Gamma_i := \{\alpha \in \Gamma : \alpha \bullet p = q_i\}, i = 1, 2, \dots, k$. Tedy $\Gamma_1 = \operatorname{Stab}(p)$. Zjevně $\Gamma_1, \Gamma_2, \dots, \Gamma_k$ jsou disjunktní a jejich sjednocení je Γ. Tvrdím, že $|\Gamma_1| = |\Gamma_2| = \dots = |\Gamma_k|$. Volme $i \geq 2$ a dokážeme $|\Gamma_1| = |\Gamma_i|$. Jistě Γ_i je neprázdná, protože jinak by $p \not\simeq q_i$ a $q_i \notin [p]$. Volme libovolné $\alpha_0 \in \Gamma_i$. Uvážím zobrazení $\Phi : \Gamma_1 \to \Gamma_i$ definované pro $\beta \in \Gamma_1 : \Phi(\beta) = \alpha_0 \beta$. Tvrdím, že Φ je bijekce $\Gamma_1 \to \Gamma_i$. Ověřme:

1. $\forall \beta \in \Gamma_1 : \Phi(\beta) \in \Gamma_i$

$$\Phi(\beta) \bullet p = (\alpha_0 \beta) \bullet p = \alpha_0 \bullet (\beta \bullet p) = q_i$$

- 2. Φ je prosté
 - Předpokládejme, že $\exists \beta_1, \beta_2 \in \Gamma_1 : \Phi(\beta_1) = \Phi(\beta_2)$, tj. $\alpha_0 \beta_1 = \alpha_0 \beta_2$, tj. $\beta_1 = \beta_2$.
- 3. Φ je na
 - Volme $\gamma \in \Gamma_i$ hledejme $\beta \in \Gamma_1$ t.ž.

$$\Phi(\beta) = \gamma \Leftrightarrow \alpha_0 \beta = \gamma \Leftrightarrow \beta = \alpha_0^{-1} \gamma \in \Gamma_1$$

Věta 82 ("Burnsideovo lemma", "Cauchy-Froheriova fromule"). Nechť Γ je koneřná grupa s akcí na množině \mathcal{M} . Potom:

- 1. (jednoduchá verze) pokud \mathcal{M} je konečná, tak $|\mathcal{M}/\Gamma| = \frac{1}{|\Gamma|} \sum_{\alpha \in \Gamma} |Fix(\alpha)|$. Nebo-li "počet orbit je průměrný počet bodů".
- 2. (obecná verze) Nechť má každá orbita $o \in \mathcal{M}/\Gamma$ přiřazenou váhu $||o|| \in \mathbb{N}_0$ tak, že pro každé $n \in \mathbb{N}_0$ existuje jen konečně mnoho orbit váhy n. Potom:

$$\sum_{o \in \mathcal{M}/\Gamma} x^{||o||} = \frac{1}{|\Gamma|} \sum_{\alpha \in \Gamma} \sum_{p \in Fix(\alpha)} x^{||[p]||}$$

 $D\mathring{u}kaz$. Levou stranu si označím LS(x) a pravou PS(x). $2 \Rightarrow 1$ Zvolme ||o|| = 0 pro každé $o \in \mathcal{M}/\Gamma$. Definujeme $\mathcal{D} := \{(\alpha,p) \in \Gamma \times \mathcal{M}; \alpha \bullet p = p\}$ a $S = \sum_{(\alpha,p) \in \mathcal{D}} x^{||[p]||}$. Pak počítáme dvěma způsoby.

$$(1)S = \sum_{\alpha \in \Gamma} \sum_{p \in \mathcal{M}; (\alpha, p) \in \mathcal{D}} x^{||[p]||} = \sum_{\alpha \in \Gamma} \sum_{p \in \operatorname{Fix}(\alpha)} x^{||[p]||} = |\Gamma| \cdot PS(x)$$

$$(2)S = \sum_{p \in \mathcal{M}} \sum_{\alpha \in \Gamma; (\alpha, p) \in \mathcal{D}} x^{||[p]||} = \sum_{p \in \mathcal{M}} |\operatorname{Stab}(p)| \cdot x^{||[p]||} =$$

$$= \sum_{p \in \mathcal{M}} \frac{|\Gamma|}{||[p]||} x^{||[p]||} = \sum_{o \in \mathcal{M}/\Gamma} \sum_{p \in o} \frac{|\Gamma|}{|o|} x^{||o||} = |\Gamma| \sum_{o \in \mathcal{M}/\Gamma} x^{||o||} = |\Gamma| \cdot LS(x)$$

Part III Kombinatorika a grafy III

16. Structural graph theory

Definition 1. $H \leq_t G$ means that subdivision of H is a subgraph of G, also known as **topological minor**.

Definition 2. $H \leq_m G$ means that H is a **minor** of G.

Definition 3. $H \subseteq G$ means that H is a **subgraph** of G.

Definition 4. $H \subseteq G$ means that H is a **induced subgraph** of G.

Theorem 1 (Kuratowski).

$$K_5, K_{3,3} \nleq_t G \Leftrightarrow G \ planar$$

$$K_5, K_{3,3} \nleq_m G \Leftrightarrow G \ planar$$

Definition 5. $\chi(G)$ means that G has a coloring of size $\chi(G)$.

Observation. $C_3, C_5, C_7, \dots \not\subseteq G \Leftrightarrow \chi(G) \leq 2$ which holds also for \sqsubseteq .

Observation. $C_3 \nleq_m G \Leftrightarrow G \text{ is a forest also holds for } \leq_t.$

Definition 6. $Forb_{leq}(\mathcal{F}) = \{G | (\forall F \in \mathcal{F})F \nleq G\}$

We will try to show $\mathcal{G} = Forb_{\leq_m}(\mathcal{F})$. If $G \in \mathcal{G}$ then all minors of G belong to \mathcal{G} .

Observation. If $\mathcal{G} = Forb_{\leq}(\mathcal{F})$ then \mathcal{G} is \leq -closed. Which means that $\forall G, G'$ if $G \in \mathcal{G}$ and $G' \leq G$ then $G' \in \mathcal{G}$.

Lemma 83. Let \leq be a partial ordering of graphs. If a class \mathcal{G} of graphs is \leq -closed, then there exist \mathcal{F} s.t. $\mathcal{G} = Forb_{\leq}(\mathcal{F})$.

Proof.
$$\mathcal{F} = \{F : F \nleq G\}.$$

Definition 7. F is minimal \leq -obstruction for \mathcal{G} if $F \notin \mathcal{G}$ but for every $F' \subsetneq F$ and $F' \in \mathcal{G}$.

Lemma 84. Let \leq be an ordering og graphs without infinite decreasing chains. If \mathcal{F} is \leq -closed, then $\mathcal{G} = Forb_{\leq}(\{F : F \text{ is a minimal } \leq \text{-obstruction for } \mathcal{G}\})$.

Proof. $G \notin \mathcal{G}$ is min \leq -obstruction or $\exists G' \lneq G : G \notin \mathcal{G} \Rightarrow G'$ is obstruction or we continue and because we don't have **without infinite decreasing chains** we will eventually end.

If \mathcal{G} is \leq_m -closed, then there exists a **finite** \mathcal{F} such that $\mathcal{G} = Forb_{\leq_m}(\mathcal{F})$.

Theorem 2 (Robertson-Seymor). For every F there exists an algorithm that for input graph G decides whether $F \leq_m G$ in time $O_F(|G|^3)$.

Definition 8. For graph G = (V,E) we define |G| = |V| and ||G|| = |E|. Also for some $U \subseteq V$ G[U] is a induced subgraph of G that has only vertices from U. Then $N_G(v)$ stands for the neighborhood of vertex v in graph G.

Figure 16.1: Example of G and G' as covers.

Definition 9. G' is a **cover** of G if $(\exists f : V(G') \to V(G)) \forall v \in V(G')$ for $N_{G'}(v)$ is a bijection with $N_G(f(v))$.

Example. We may see an example 16.1:

Contrary we take $\mathcal{G} = \{G : (\forall uv \in V(G)U \neq v, \deg(u) \geq 5, \deg(v) \geq 5) (\exists X \subseteq E(G) : |X| \leq 1)u$ and v are in different component of $G - X\}$ which is \leq_t -closed. But take these graphs:

Figure 16.2: Obstructions.

Where each one of them is an obstruction. And we could create much more of them. Now we take a look at some nice properties of graphs if we forbid some graphs as a minors.

Definition 10. Graph G can be obtained from G_1 and G_2 by **clique-sum** if the intersection that these graphs have in G form a clique. In other way it is that we bind together two graphs by identifying their vertices and edges in the same size clique. Sometimes we may denote it as $G_1 \oplus G_2 = G$.

Observation. If G is obtained from G_1 and G_2 by a clique-sum then:

$$K_m \leq_m G \Leftrightarrow K_m \leq_m G_1 \vee K_m \leq_m G_2$$

Lemma 85. If $K_k \leq_m G$ and G is the clique-sum of G_1 and G_2 then $K_k \leq_m G_1 \vee K_k \leq_m G_2$.

Lemma 86. If G is not 3-connected then there exist $G_1, G_2 \leq_m G$ s.t. G is a clique-sum of G_1 and G_2 .

Proof. If G is not connected then it is done since it is a clique sum on K_0 . If G is connected, but not 2-connected then it is a clique-sum on K_1 since there exist a articulation. If G is 2-connected then there must be two vertices which splits the graph. And these two vertices form a K_2 as a minor. That is because we split G to two parts where we leave the major one side and add a edge to these two vertices, which we can do because they need to have a path between them so we contract all the edges alongside the path. \square

Definition 11. $\delta(G)$ is a minimum degree of a graph G.

Theorem 3. If G is K_4 -minor-free then G is obtained from $K_{\leq 3}$'s by clique-sums.

Proof. By induction on |V(G)|.

- (a) If G is not 3-connected. G is a clique-sum of $G_1, G_2 \leq_m G$. Since $K_4 \nleq_m G_1$ and $K_4 \nleq_m G_2$ we use induction hypothesis and we are done.
- (b) If G is 3-connected. If $|V(G)| \leq 3$, then $G = K_{\leq 3}$, wlog $|V(G)| \geq 4$. $\delta(G) > 1 \Rightarrow G$ contains a cycle. Let C be a shortest cycle in G. C is induced in G 3-connected $\Rightarrow G \neq C$ so $\exists v \in V(G) \setminus V(C)$. By Merger's theorem there exists three paths from v to C intersecting only in v. That gives us K_4 as a minor of the graph. Which is contradiction.

 $K_5 \nleq_m G \iff G$ is obtained from planar graphs and W_8 by clique sums

Figure 16.3: W_8 graph.

Observation. If G is a clique-sum of G_1 and G_2 then

$$\chi(G) \leq \max(\chi(G_1), \chi(G_2))$$

Proof. We just need to match the coloring of the cliques. Other than that we don't have any problem. \Box

16.1 Hadwiger's conjecture

 K_t -minor-free graphs are (t-1) colorable.

$$K_1 \nleq_m G \quad \chi \leq 1 \quad \delta \leq 0$$

$$K_2 \nleq_m G \quad \chi \leq 2 \quad \delta \leq 1$$

$$K_3 \nleq_m G \quad \chi \leq 3 \quad \delta \leq 2$$

$$K_4 \nleq_m G \quad \chi \leq 4 \quad \delta \leq 5$$

$$K_5 \nleq_m G \quad \chi \leq 5$$

Theorem 4. $\exists f \ every \ K_t$ -minor-free graph $G \ has \ \delta(G) \leq f(t)$.

The function is somewhere near $f(t) = (1,6\cdots + O(1))t\sqrt{\log t}$. But we won't show this result. Instead we will show $f(t) = O(t^2)$. Before we continue it is better to remind ourselves **chordal graph** and **elimination ordering** (known as PES).

Definition 12 (Chordal decomposition of G). $V(G) = \mathcal{P}_1 \dot{\cup} \mathcal{P}_2 \dot{\cup} \dots \dot{\cup} \mathcal{P}_n \dot{\cup}$ and

- 1. $(\forall i)G[\mathcal{P}_i]$ is connected.
- 2. " \mathcal{P}_i 's form elimination ordering" Precisely: $(\forall i \in [n])(forall j_1, j_2 < i)$ if G has an edge between \mathcal{P}_i and \mathcal{P}_{j_1} and also between \mathcal{P}_i and \mathcal{P}_{j_2} then it also has an edge between \mathcal{P}_{j_1} and \mathcal{P}_{j_2} .

Definition 13. Chordal partition is **geodesic** if $(\forall i)(\exists v_i \in \mathcal{P}_i)$ s.t. if $v_1, \ldots, v_t < i$ are the indices s.t. G has an edge between \mathcal{P}_i and $\mathcal{P}_{j_1}, \mathcal{P}_{j_2}, \ldots, \mathcal{P}_{j_t}$ then $v_1, \ldots, v_t \in \mathcal{P}_i$ s.t. v_i has a neighbor in $\mathcal{P}_{j_1}, \mathcal{P}_{j_2}, \ldots, \mathcal{P}_{j_t}$ and $G - \bigcup_{j < i} \mathcal{P}_j$ contains shortest paths from v_i to v_1, \ldots, v_t which cover all vertices in \mathcal{P}_i .

Theorem 5. Every graph has a geodesic chordal partition.

Before we show us a proof we will take a look at a simple application. If G is K_k -minor-free last part has neighbours in $t \leq k-2$ parts (otherwise it will have K_k as a minor). Then we may take a look at a $\deg(v) \leq (k-2) + (k-2)(k-2)3 \leq 3k^2$. Thus getting the upper bound $\delta(G) \leq 3k^2$.

Definition 14. Part is called **terminal** if there is no edge from any vertex in that part going to some vertex in one of the parts on the right.

Proof. Let \mathcal{P} be a chordal decomposition of G into parts satisfying both properties of definition of chordal decomposition (i) abd (ii) and geodesity (iii) for all non-terminal parts.

This can be easily done by creating parts based on the components of connectivity. For them all properties hold, since they are all connected and "chordal" property is also satisfied since there are no edges. Also all of them are terminal (iii) doesn't have to be satisfied.

Now we proof by that by choosing \mathcal{P} with largest number of parts. Lets say that there is a part that does not satisfy (iii). This means that it is terminal part. Lets take vertex from the part and find the shortest paths to the vertices that are connected to some of the parts to the left. Now we put vertices to separate components and these components will make a new parts. We will also remove all these vertices from the origin part. Note that all properties are satisfied. (i) is trivial. (ii) If there are any vertices from the new parts to other parts then they are to the ones which are already connected to the origin part, which satisfied (ii) before so it is fine. Also (iii) is satisfied.

The thing is that we created \mathcal{P} with larger number of parts which is contradiction. \square

Observation. $H \leq_t G \Rightarrow H \leq_m G$

Observation. $\Delta(H) \leq 3: H \leq_m G \Rightarrow H \leq_t G$

Lets remind ourselves a table and add some new thinks.

Well technically $K_5 \nleq_t G \Rightarrow K_5 \nleq_m G$ but the other way around is what doesn't work $K_5 \nleq_m G \Rightarrow K_5 \nleq_t G$. For that we can see an example 16.4. We may see that $\mathcal{G} = \{G : G \text{ has } \leq 4 \text{ vertices of degree } \geq 4\}$ these graphs are so that $K_5 \nleq_t G$.

Figure 16.4: A counter example.

16.2 Hájos conjecture

If we remember Headwiger's conjecture then Hájos conjecture is the same only with topological minors. Thus it is that $K_t \leq_t G \Rightarrow \chi(G) \leq t-1$. This is actually true for t < 4 but it is false for $t \geq 7$ and 5,6 are open questions.

Theorem 6. $\exists f_m(k) = O(k\sqrt{\log k})$ Every K_k -minor-free graph G satisfies $\delta(k) \leq f_m(k)$.

We won't proof this, but we will proof something similiar, that is for topological minors.

Theorem 7. $\exists f_t(k) = O(k^2)$ Every G s.t. $K_k \leq_t G$ satisfies $\delta(G) \leq f_t(k)$.

The corollary to this is that χ) $G \le f_t(k) + 1$. We will proof this theorem, but to do that we need to do some steps beforehand.

Firstly imagine that the enemy gives you a graph and you need to prove that. But the enemy is kind enough to give you a graph H with connectivity $>> k^2$. We could apply Merger's theorem. Though this will only give certain number of vertex disjoint paths from one vertex to another. We would more likely have this many paths between more pairs of sources and targets.

Definition 15. Graph G is k-linked if $|V(G)| \ge 2k$ and $\forall s_1, s_2, \ldots, s_k, t_1, t_2, t_k$ distinct vertices of G. G contains pairwise vertex-disjoint paths P_1, P_2, \ldots, P_k . When P_i has ends s_i and t_i .

Figure 16.5: A counter example to 2-linked graphs.

We may see that there exist a graph that is 2-connected and yet not 2-linked. You may see this on the picture 16.5a. Also not even 3-connected graph has to be 2-linked. Which is also on the picture 16.5b (though we can change the vertex inside for any planar graph). We could continue and end up with that not even 5-connectivity forces 2-linked.

Observation. Every k-linked graph is (2k-1) connected.

Proof. That is simply because we put all the s_i, t_i for $i \in [k-1]$ to the edge cut and then choose s_k in the left part and t_k in the right part then we can see that it is indeed (2k-1)-connected.

Theorem 8. If G is 2k-connected, $K_{4k} \leq_m G$ then G is k-linked.

We won't prove this directly. Instead we will later on introduce another theorem that is actually pretty much the same and prove that.

Corollary. If G is $\max(2k, f_m(4k) + 1)$ -connected then G is K-linked.

Proof. We use the theorem to get that $\delta > f_m(4k)$ thus $K_{4k} \leq_m G$.

Also we can say $\exists f_l(k) = O(k\sqrt{\log k})$. If G is $f_l(k)$ -connected then G is k-linked. Corollary. If G is $f_l\left(\frac{k(k-1)}{2}\right)$ -connected then $K_k \leq_t G$.

Proof. To see this we choose k vertices and for every one of them k-1 neighbors. Then we give s_i and t_i to every single one of these vertex so that every neighborhood has pair with all others. Then we find such paths between them.

Lemma 87. If $\bar{d}(G) \geq 4d$ then G contains a (d+1)-connected subgraph H of minimum degree 2d+1.

Proof. Let H be a minimal subgraph of G s.t. $|V(H)| \ge 2d$ and |E(H)| > 2d(|V(H)| - d). We may see that |V(H)| > 2d that is if it has 2d vertices then

$$\frac{2d^2 - d}{2} = \binom{2d}{2} > |E(H)| > 2d^2$$

which is a contradiction.

Then we also have that $\delta(H) \geq 2d+1$. If we have $\delta(H) \leq 2d$ we may remove the certain vertex. But we need to show that given properties still hold. We will split the graph to two parts $|A|, |B| \geq 2d+2 > 2d$. Then

$$|E(G)| \leq |E(A)| + |E(B)|$$

$$(1) \leq 2d(|V(A)| - d) + 2d(|V(A)| - d)$$

$$= 2d(|V(A)| + |V(B)| - 2d)$$

$$= 2d(|V(H)| - |V(A \cap B)| - 2d)$$

$$|E(G)| > 2d(|V(H)| - d)$$

Where (1) is due to the minimality of H. The thing is with the last two lines we get that $|A \cap B| > d$.

Proof. This actually is enough for the theorem to be proven since the enemy doesn't have to be kind anymore. \Box

Definition 16. A model of K_m in G is $M_1, M_2, ..., M_m \subseteq V(G)$ pairwise distinct and $\forall i : G[M_i]$ is connected and $(\forall i \neq j) \exists uv \in E(G) : u \in M_i, v \in M_j$.

We may take a look at an example of model of K_4 which is in picture 16.6.

Figure 16.6: Example of K_4 model.

Observation. $K_m \leq_m G \Leftrightarrow there \ is \ a \ mode \ of \ K_m \ in \ G.$

Definition 17. Separation in G is (A,B) where $A,B \subseteq V(G), A \cup B = V(G)$, no edge between $A \setminus B$ and $B \setminus A$.

On picture 16.7 we may see an example of (A,B)-separation.

Figure 16.7: Example of separation.

Definition 18. The **order** of the separation is $|A \cap B|$.

Definition 19. S is well-linked to a model $M_1, M_2, ..., M_m$ if every separation (A,B) with $S \subseteq A_i$ $(\exists i)M_i \subseteq B \setminus A$ has order $\geq |S|$.

Theorem 9. $\forall G_i, S = \{s_1, s_2, \ldots, s_k, t_1, t_2, \ldots, t_k\} \subseteq V(G) \text{ and } M_1, \ldots, M_{4k} \text{ mdel of } K_{4m} \text{ in } G. \text{ If } S \text{ is well-linked to } M_1, M_2, \ldots, M_{4k} \text{ then } G \text{ contains distinct paths from } s_i \text{ to } t_i \text{ for all } i \in [k].$

We can see that this is somewhat refolmulation of theorem before (8). Thus if we prove this we will also prove the previous theorem. But we will introduce another similar theorem which will imply this theorem.

Definition 20. G, S subseteqV(G) and $M_1, M_2, ..., M_m \subseteq V(G)$ pairwise distinct is an S-relaxed model of K_m in G if

- 1. $(\forall i)G[M_i]$ is connected <u>or</u> every componnet of $G[M_i]$ intersects S.
- 2. $(\forall i \neq j) \exists uv \in E(G) \text{ s.t. } u \in M_i, v \in M_i \text{ or } M_i \cap S \neq \emptyset \neq M_i \cap S.$

Theorem 10 (Slightly changed). $\forall G_i, S = \{s_1, s_2, \ldots, s_k, t_1, t_2, \ldots, t_k\} \subseteq V(G)$ and M_1, \ldots, M_{4k} S-relaxed mdel of K_{4m} in G. If S is well-linked to M_1, M_2, \ldots, M_{4k} then G contains distinct paths from s_i to t_i for all $i \in [k]$.

Proof. We will prove this theorem by induction on |V(G)|. We will separate it to some distinct cases.

(1) Suppose there exisits a separation (A,B) of order 2k (which is = |S|) s.t. $S \subseteq A$ and $(\exists i)M_i \subseteq B \setminus A$. Then by Menger's theorem there exists 2k disjoint paths from S to $A \cap B$ (since S is well-linked to M_1, \ldots, M_{4k}). We want: G[B] disjoint paths from s'_i to t'_i for all $i \in [k]$, where s'_i and t'_i are the ends from the paths labeled same as the beginnings. We apply induction hypothesis on G[B] $S' = \{s'_i, t'_i | \forall i \in [k]\}$ $M_1 \cap B, M_2 \cap B, \ldots, M_{4k} \cap B$.

First we need to prove that the properties still holds. Such as that it is still S'-relaxed and S' is well-linked. Consider $M_i \cap S = \emptyset$ so $\forall j \neq i$ there is at least one vertex in B. Then $M_1 \cap B$ components do not intersect S' so it didn't intersect S. Therefore it had to be connected and thus still is. That is the first property and the second is left out as exercise. So S' is relaxed model.

We now take a look at if S' wouldn't be well-linked. Then there would be a separation with order < 2k. But this separation would be present even before so it cannot be there.

Now WLOG: Every separation (A,B) s.t. $S \subsetneq A, (\exists i)M_i \subseteq B \setminus A$ has order > 2k.

- (2) Suppose $\exists v \in V(G) \setminus (S \cup \bigcup_i^{4k} M_i)$ apply I.H. on G v. We need to show that it is well-linked. Suppose we have a separation with order < 2k. We put v in the intersection of the separation ("cut") and get a separation of G with order $\leq 2k$. That can't happen since we assumed the order is > 2k.
- (3) Suppose $(\exists i)\exists uv \in E(G[M_i])$ s.t. $v \notin S$. Apply I.H> to G/uv (contract the edge uv). We may see that S is relaxed model and well-linked with the similar arguments as in the point before.

With this induction we end up with $S \subseteq V(G)$ and M_1, M_2, \ldots, M_{4k} . We know $(\forall i)M_i \cap S = \emptyset \Rightarrow |M_i| = 1$ or $M_i \subseteq S$. Also all single M_i forms a clique. We would like to find if there exist a mathcing between S and $V(G) \setminus S$ covering S. For that we may recall Hall's theorem and thus we need $\forall X \subseteq S : |N(X)| \ge |X|$ where N(X) are the neighbours of X. Lets take a look at one $M_k = X$ and its N(X). There are not necessarily edges to M_1, \ldots, M_g . Lets put $A = S \cup N(X)$ and B = clique on $M_i \in S \cup N(X)$. By that we get that $X = A \setminus B$ and $V(G) \setminus (S \cup N(X)) = B \setminus A$. So $(S \setminus X) \cup N(X) = A \cap B$ which can't be smaller than 2k. So $|S \setminus X| + |N(X)| \ge 2k$ where $|S \setminus X| = |S| - |X|$ and |S| = 2k this means that $|N(x)| \ge |X|$.

Therefore we find the matching between S and clique. Thus we take for each i the edge in matching from s_i to s'_i , then path from clique from s'_i to t'_i and next from matching t'_i to t_i .

17. Tree decomposition

Firstly we may recall that: $K_5 \nleq_m G$ iff G is obtained from planar graphs and W_8 's by clique-sums. When we draw the graphs expanding by the clique sums we may notice a somewhat tree structure that they generate. Now we will define it and see it properly.

17.1 Basics

Definition 21. A tree decomposition (T,β) of graph G is when T is a tree and β : $V(T) \rightarrow 2^{V(G)}$ (called bags) such that

- (1) $(\forall uv \in E(G))(\exists x \in V(T)) : u,v \in \beta(x)$ or by words every edge is contained in a bag.
- (2) $\forall v \in V(G)$ the set $\{x \in V(T) : v \in \beta(x)\}$ induces a non-empty connected subtree of T.

Lemma 88. If (T, β) is a tree decomposition of G, $K \subseteq V(G)$ is a clique in G then $(\exists x \in V(T)) : K \subseteq \beta(x)$.

Proof. For contradiction suppose it is not true. Thus $(\forall x \in V(T))(\exists v_x \in K) : v_x \notin \beta(x)$. We define "arrows" for each vertex which points to the set $\{y : v_x \notin \beta(x)\}$. Thus there is |V(T)| of "arrows" but because it is a tree there is |E(T)| = |V(T)| - 1 < |V(T)|. So at least one edge must have two "arrows". Therefore there is no y inV(T) with $v_x, v_{x'} \in \beta(x)$ so K clique implies that v_x and $v_{x'}$ are adjacent. This is contradiction with (1) from definition.

Definition 22. (T, β) is tree decomposition of G and let $x \in V(T)$ then the **torso** of x. is $G[\beta(x)]+$ cliques on $\beta(x) \cap \beta(y)$ for every $xy \in E(T)$.

This definition may not be clear to everybody so lets take a look at an example. On picture 17.1 we may see the original graph 17.1a and on picture 17.1b we may see the tree decomposition. Now we set x to be BGE. Now for the torso itself we create a three vertices B, G and F where there is no induced edge. Then for the neighbors ABG we add a edge between B and G. For BED we add an edge between B and E and lastly for EGF we add E-G edge. And finally we get what is drawn on picture 17.2.

Figure 17.1: An example of torso.

Figure 17.2: Actual **torso** of x.

Lemma 89. Let \mathcal{G} be a class of graphs. G is obtained by clique-sums from graphs belonging to \mathcal{G} iff G has a tree decomposition whose torsos belongs to \mathcal{G} .

Proof. Firstly the " \Leftarrow " is easy since when taken the tree decomposition torso we may see that it is somewhat the same as clique-sum of the graphs.

Next we have " \Rightarrow " for them we will prove it by induction on the number of terms.

- (i) When we have one term than the whole $G \in \mathcal{G}$ and we take a tree decomposition with only one vertex having all vertices from G.
- (ii) Now we have $G = G_1 \bigoplus_K G_2$ thus there by induction hypothesis we have (T_1, β_1) and (T_2, β_2) tree decompositions of their respected graphs G_1 and G_2 . By lemma there exists a bag with clique K in both T_1 and T_2 . So we create T by adding edge between those bags in T_1 and T_2 . So $(T, \beta = \beta_1 \cup \beta_2)$ will be the tree decomposition. While it may seem easy it is necessary to show that all properties holds. Every edge is contained in at least one bag since we did not added no edge. Secondly all x induces a non-empty connected subtree.

Also we have to take a look at the torsos we are getting from this tree decomposition. For those bags not having new edge it is still the same as before and for bag $\beta(x)$ which $K \subseteq \beta(x)$ we see that its only intersection is K so it won't change any torso because it is a clique.

17.2 Tree width

So we introduced basic tree decomposition but now we take a deeper look at some special cases of them.

Definition 23. Width of (T, β) is $\max_{x \in V(T)}(|\beta(x)|) - 1$.

Definition 24. We denote $tw(G) = \min \ width \ of (T, \beta) \ for \ all \ (T, \beta) \ tree \ decompositions of G. It is called the$ **treewidth**.

We may recall and extend that for $k \leq 4$: $K_k \nleq_m G$ iff G is obtained by cliquesum from graphs with $\leq k-1$ vertices iff G having tree decomposition (T,β) such that $(\forall x \in V(T)) : |\beta(x)| \leq k-1$ which means that width $(T,\beta) \leq k-2$ iff $\operatorname{tw}(G) \leq k-2$. We would now need $\{G : \operatorname{tw}(G) \leq k\}$ is minor-closed.

Observation. $H \leq_m G \Rightarrow tw(H) \leq tw(G)$

Proof. We may see all possible operations. First deletion of vertex may only decrease the value. Second the deletion of edge may also only decrease the value. Lastly for contracting an edge uv we overwrite all these vertices to w and change the edges. This is easily seen that it will only decrease the value or it will stay the same.

From that we get that $\exists \mathcal{F}_k \text{ tw}(G) \leq k \text{ iff } (\forall F \in \mathcal{F}_k)F \nleq_m G$. Also for some simple values we know $\mathcal{F}_1 = \{K_3\}$ also $\mathcal{F}_2 = \{K_4\}$ and for $\mathcal{F}_3 = \{K_{5,...}\}$ where it is known but not that important.

17.3 Brumble

Definition 25. Brumble $\mathcal{B} \subseteq 2^{V(G)}$ such that

- (1) $(\forall B \in \mathcal{B})B \neq \emptyset$ and G[B] is connected.
- (2) $(\forall B_1, B_2 \in \mathcal{B})$ $G[B_1 \cup B_2]$ is connected.

As previously we will take a look at an example of a rumble so that a reader gets a better grasp of this definition. On picture 17.3 we may see a graph G where there is Rumble $\mathcal{B} = \{B_1, B_2, B_3, B_4\}$.

Figure 17.3: Rumble of a graph G.

Definition 26. Set X hits the Rumble \mathcal{B} if $(\forall B \in \mathcal{B})B \cap X \neq \emptyset$.

For the previous example a hit could be all these vertices highlighted on the picture 17.4.

Figure 17.4: Brumble of a graph G.

Lemma 90 (duality). If (T, β) is a tree decomposition of G and \mathcal{B} is a brumble then $(\exists x \in V(T))\beta(x)$ hits the brumble.

Observation. If (T, β) is a tree decomposition of G and $F \subseteq G$ connected, then $\{x \in V(T) : \beta(x) \cap V(F) \neq \emptyset\}$ induces a connected subtree of T.

Proof. By induction on |V(F)|.

- (i) |V(F)| = 1 is by the definition.
- (ii) |V(F)| > 1 consider $v \in V(F)$ such that F v is connected (we could take a leaf from a spanning tree of F) so we use an induction hypothesis F v. We take a subtree on V(F b) and $\{v\}$. By the definition $\exists y : u, v \in \beta(y)$.

Proof of lemma. For contradiction suppose it is false. So $(\forall x \in V(T))\beta(x)$ does not hit \mathcal{B} so we have $B_x \in \mathcal{B}$ disjoint from $\beta(x)$. By lemma B_x forms in (T,β) a connected subtree. Again we assign "arrows" to vertices pointing to x- B_x . Also there are more arrows than edges so at least one edge has two "arrows". We can find B_x and $B_{x'}$ not in the same bag so they are disjoint. This is a contradiction by the definition.

Note that on K clique the rumble is $\mathcal{B} = \{\{u\} : u \in K\}.$

Definition 27. Order of rumble $order(\mathcal{B}) = \min(|X|) : X \ hits \ \mathcal{B}.$

Corollary. $\operatorname{tw}(G) \geq \max(\operatorname{order}(\mathcal{B})) - 1$ for all \mathcal{B} rumble in G.

Remark. It can be proven so that there is equality not inequality. But we will not be showing this result since it is not so easy.

In other words we may rewrite the previous findings as a similar lemma.

Lemma 91. \forall tree decompositions (T,β) and \forall bramble \mathcal{B} in G it holds that

$$width(T, \beta) \ge order(\mathcal{B}) - 1$$

17.3.1 $n \times n$ grid

Now we will take a look at a simple example of a graph and its tree decomposition and bramble. This graph is an $n \times n$ grid where every neighbor is connected, one can be seen on picture 17.5.

Figure 17.5: $n \times n$ matrix example.

When we examine a tree decomposition we may easily find one such with tree width 2n. That is we take 2 rows that are adjacent. But much better tree decomposition is when we take it like it is visualized on picture 17.6. This gives us a tree decomposition with width n+1.

So we can say that $\operatorname{tw}(n \times n\operatorname{grid}) \leq n$. Can we construct some with even lower width? We can use the previous lemma and construct a bramble which can be seen on picture 17.7. So there are two special setts on the sides and then we have all the crosses in the rest of the grid. This will lead to bramble \mathcal{B} of order $\geq n+1$. We must select two points

Figure 17.6: First three bags of tree decomposition.

Figure 17.7: A bramble for $n \times n$ grid.

for two special sets and points on the diagonal for example. Therefore with the use of the lemma we also have that $tw(n \times ngrid) > n$ thus it has to be equal.

With that we can state that if $n \times n$ grid $\leq_m G$ then $\operatorname{tw}(G) \geq n$. Which also means that we can construct planar graph with any given tree width.

Theorem 11. $tw(G) \ge \Omega(n^{10})$ then $n \times n$ grid $\le_m G$.

This is quite recent discovery and long time it was only exponential. Now it is polynomial. We won't be proving this but instead we take a look at something in a way similiar.

17.3.2 *n*-ladder

n-ladder is graph that looks like a $2 \times n$ grid. Or just like it is on the picture 17.8.

Figure 17.8: First three bags of tree decomposition.

Theorem 12. $tw(G) \ge 2n^2 - 1 \Rightarrow n\text{-ladder} \le_m G$.

We won't be proving this straightforward. Instead we will prove something similiar which implies this theorem.

Theorem 13. If G contains a bramble \mathcal{B} of order $\geq 2n^2$ then n-ladder $\leq_m G$.

Firstly we will show some lemmas.

Lemma 92. If \mathcal{B} is a bramble in G, then there exists path $P \subseteq G$ such that

$$\forall B \in \mathcal{B} : B \cap V(P) \neq \emptyset$$

Proof. Lets take $B_1 \in \mathcal{B}$ and $x \in V(G)$ such that $x \in B_1$. If it is contained in all sets from bramble then we are done. Otherwise find such $B_2 \in \mathcal{B}$ that does not contain it. Then by the bramble properties we are able to find path from x to B_2 . If now the path is contained in all sets from bramble we are done. Otherwise we iterate.

Lemma 93. Suppose \mathcal{B} is a bramble, $\mathcal{B} = \mathcal{B}_1 \dot{\cup} \mathcal{B}_2$. Then \mathcal{B}_1 and \mathcal{B}_2 are also brambles and

$$order(\mathcal{B}) < order(\mathcal{B}_1) + order(\mathcal{B}_2)$$

Proof. This is straightforward from the definition of the bramble and some observations.

Proof of theorem. Let P be a path intersecting all sets in \mathcal{B} . let P_1 be a path segment.

$$\mathcal{B}_1 = \{ B \in \mathcal{B} : B \cap V(P_1 \neq \emptyset) \}$$

Choose P_1 shortest such that $\operatorname{order}(\mathcal{B}_1) \geq n^2$. We also claim there need to be equality since we are looking for the shortest path. Now let $\mathcal{B}_2 = \mathcal{B} \setminus \mathcal{B}_1$. By the lemma we know $\operatorname{order}(\mathcal{B}_2) \geq n^2$. Also we set P_2 to path intersecting all sets in \mathcal{B}_2 .

The claim is that G contains n^2 disjoint paths from P_1 to P_2 , By Merger's theorem if there is cut of such size there must as many disjoint paths. If we would remove $< n^2$ vertices there would exists in both paths such B_1 and B_2 respectively so the are not hit. By their properties they induce a connected subgraph. So there is a path. This proves the claim.

We also remind ourselves a theorem

Theorem 14 (Erdos-Szekeres). Every sequence of length n^2 contains a monotone subsequence of length n.

Thus if the sub-sequence is increasing we just find n paths thus an n-ladder. If it is decreasing we just flip one path and find the same result.

Now we will see an application of this theorem.

Theorem 15 (Erdos-Prosa). There exists f such that $\forall k \ \forall G$ either

- G contains more than k pairwise distinct cycles or
- $\exists X \subseteq V(G), |X| \leq f(X)$ such that G X does not contain cycle.

They proved it for $f(k) = O(k \log k)$, but we will show for other f that exploits our previous theorem.

Definition 28. $n_1, n_2, \ldots, n_m \in \mathbb{N}$ is k-bounded if $n_1, n_2, \ldots, n_m \leq k/2$ and $\sum_i n_i \leq k$.

Now we set our f to be: f(0) = 0 and

$$f(k) = 2(2k+2)^2 + \max_{I \text{ k-bounded}} \sum_{i \in I} f(i).$$

Proof. Suppose G contains $\leq k$ disjoint cycles. We will be proving this by induction on k.

$$\mathcal{B} = \{B \subseteq V(G) : G[B] \text{ is connected, contains } > k/2 \text{ disjoint cycles}\}$$

is a bramble. Any two B_1 and B_2 must intersect otherwise we have a contradiction with our assumption of not having k cycles. If $\operatorname{order}(\mathcal{B}) \geq 2(2k+2)^2$ then there is 2k+2-ladder as a minor of G. This means there would be k+1 pairwise distinct cycles which is a contradiction.

So $(\exists X: |X| < 2(2k+2)^2)X$ hits \mathcal{B} . Now take G-X and denote their components as K_1, K_2, \ldots let n_i be the number of pairwise distinct cycles in K_i . We may see that the sum $\sum n_i \leq k$ otherwise it is a contradiction with the assumption. And also $n_i \leq k/2$ for any i. Due to the bramble properties. Thus this sequence is k-bounded. Apply induction on components. We get $|X_i| \leq f(n_i)$ by induction hypothesis. Thus

$$G = (X \cup \bigcup_{i} X_{i})$$
 is a forest and
$$|G - (X \cup \bigcup_{i} X_{i})| \leq f(k)$$

18. Polynoms for graph theory

We will introduce polynomials representing the graphs. Then we will look at what properties these polynoms have. But firstly we will look at some basics. Let $p(x_1, \ldots, x_n)$ be a polynomial on n variables. One term $ax_i^{(l)}x_i^k\ldots$ is called a **monomial**.

Definition 29. The **total degree** of a monomial $x_1^{d_1}x_2^{d_2}\cdots x_n^{d_n}$ is the sum $d_1+d_2+\cdots+d_n$.

Definition 30. Total degree of polynomial is the maximal total degree of its monomials.

Also we will denote $[x_1^{d_1} \dots x_n^{d_n}]p$ the coefficients of $x_1^{d_1} \dots x_n^{d_n}$.

Theorem 16 (Chevalley-Warning). Let p a prime number and f_1, \ldots, f_k polynomials over \mathbb{Z}_p in n variables and $\sum_{i=1}^k total$ degree of $f_i < n$, then the number of $a_1, \ldots, a_n \in \mathbb{Z}_p$ such that for all i $f_i(a_1, \ldots, a_n) = 0$ is divisible by p.

Now lets see an example of this. Let $f_1 = x^2 + y^2 + z^2 + u = 0$ and $f_2 = x - y + z - u = 0$ over \mathbb{Z}_3 . The total degree of $f_1 + f_2 = 2 + 1 < 4$ which is the number of variables. So the solutions are x = y = z = u = 0 where the number of them has to be divisible by 3. Also we have a solution x = 1, z = 1, y = 2, u = 0.

Theorem 17 (Comb Nullstellensatz). Let f be a polynomial in variables x_1, \ldots, x_n , $f \neq 0$. Suppose $S_1, S_2, \ldots, S_n \subseteq \mathbb{R}$ such that $(\forall i)|S_i| > \deg_{x_i}(f)$. Then $\exists a_1 \in S_1, \ldots, a_n \in S_n$ such that $f(a_1, \ldots, a_n) \neq 0$.

Where $\deg_{x_i}(f)$ is the largest degree of x_i in f. Example of application would be to ask if 3-regular graphs as a subgraph of a given graph G, e.g. if it is true that $\delta(G) \geq 10^{10} \Rightarrow G$ has a 3-regular subgraph? Generally NO.

Theorem 18. Suppose $\delta(G) \geq 4, \Delta(G) \leq 5$, is not 4-regular. Then G has a 3-regular subgraph.

Proof. Over \mathbb{Z}_3 , for $v \in V(G)$ we define $f_v = \sum_{e \ni v} x_e^2$. For variables we know $|E(G)| = \frac{\sum_v \deg(f_v)}{2} > 2|V(G)|$. And $\sum_v \text{total degree}(f_v) = 2|V(G)|$. This implies that we can use the first theorem. Therefore $|a_e \in \mathbb{Z}_3 : e \in E(G)|$ such that $f_v(\overrightarrow{a}) = 0$ for all v in V(G) is divisible by 3. There exists at least one solution (since $x_e = 0$ for $e \in E(G)$) which means there exists a solution $\{a_e : e \in E(G)\}$ such that $\exists e : a_e \neq 0$.

Now we create a subgraph H as follows. $E(H) = \{e \in E(G) : a_e \neq 0\}$ and V(H) are all vertices indices to E(H). If we look at vertex v then $f_v(\overrightarrow{d}) = \sum_{e \ni_G v} a_e^2 \cdot \sum_{e \ni_H v} a_e^2$ which is equivalent to $\deg_H(V) \mod 3$. Also $f_v = 0$. So every vertex has a degree 3. \square

Now we will use polynomials for coloring, but not the usual one we may find. We will be talking about a coloring which is obtained by choosing one color from a list assigned to each vertex. Then it must have the same property as a normal coloring. This is called **list coloring**. When all vertices have the same size lists k, than it can be also called that it is k-choosable.

Definition 31. List chromatic number $\chi_l(G) = smallest \ k : G$ can be colored from any assignment of list of $size \geq k$.

We will be trying to obtain the result that every bipartite plane graph is 3 list colorable. But before we do so we will build another theory. For a graph G we define \overrightarrow{G} as an arbitrary orientation of G. And also we will define a polynomial:

$$P_{\overrightarrow{G}}(x_1,\ldots,x_n) = \prod_{(v_i,v_j)\in E(\overrightarrow{G})} x_i - x_j$$

To get a better understanding lets see a simple example of a graph G which can be seen on a picture 18.1. This the polynomial would be $P_{\overrightarrow{G}} = (x_2 - x_1)(x_3 - x_2)(x_1 - x_3) = x_1x_2x_3 - x_2x_3 - x_1x_2^2 + x_2^2x_3 - x_1^2x_3 + x_1x_3^2 + x_1^2x_2 - x_1x_2x_3$.

Figure 18.1: Example for a polynomial for a graph \overrightarrow{G} .

Now if we take $V(G) = \{v_1, \ldots, v_n\}$ which map each one of them $v_i \to x_i$. Then for a assignment \overrightarrow{c} as for each $i \ v_i \to c_i$ we know that G has a proper coloring iff $P_{\overrightarrow{G}}(\overrightarrow{c}) \neq 0$. That is if S_1, \ldots, S_n are lists of allowed colors for v_1, \ldots, v_n then G is colorable from S_1, \ldots, S_n iff $(\exists c_1 \in S_1, \ldots, c_n \in S_n) P_{\overrightarrow{G}}(c_1, \ldots, c_n) \neq 0$.

Second version is that f is polynomial in x_1, \ldots, x_n and $S_1, \ldots, S_n \subseteq \mathbb{R}$. If $(\exists d_1, \ldots, d_n)$ total degree $(f) \leq d_1 + \cdots + d_n$ and $[x_1^{d_1} \ldots x_n^{d_n}] f \neq 0$ and $(\forall i) |S_i| > d_i$. Then $\exists c_1 \in S_1, \ldots, c_n \in S_n : f(c_1, \ldots, c_n) \neq 0$. But why does it hold? We can $|S_i| = d_i + 1$ and set $S_i = \{a_1, \ldots, a_{d_i+1}\}$ if $x_i \in S$ then $(x_i - a_1)(x_i - a_2) \cdots (x_i - a_{d_i+1}) = 0$. Then $x_i^{d+1} - (a_1 + \cdots + a_{d+1})x_i^{d_i} + \ldots$ where we denote $b_{d_i} = (a_1 + \cdots + a_{d+1})$ so that leads to:

$$x_i^{d_i+1} = b_{d_i} x_i^{d_i} + \dots + b_1 x_1 + b_0$$

From the beginning of this chapter to this part I haven't been present on the lecture so it may be confusing or maybe wrong.

We have already shown this theorem.

Theorem 19. If $[x_1^{d_1} ... x_n^{d_n}]P \neq 0$, $d_1 + \cdots + d_n = total \ degree \ of \ P, \ S_1, ..., S_n, (\forall i)|S_i| > d_i \ then \Rightarrow (\exists c_1 \in S_1, ..., c_n \in S_n)P(c_1, ... c_n) \neq 0$.

Observation. $P_{\overrightarrow{G}}(c_1,\ldots,c_n) \neq 0 \Leftrightarrow c_1,\ldots,c_n \text{ is a proper coloring of } G.$

By combining these two results we may get a following corollary.

Corollary. If $[x_1^{d_1} \dots x_n^{d_n}]P_{\overrightarrow{G}} \neq 0$ and L is a list assignment such that $(\forall i)|L(v_i)| > d$ then G is L-colorable.

TODO: Complete this section.

19. VC - dimension

VC stands for the names Varnik–Cherrorenkis. We will be considering a set systems \mathcal{F} . And then for a set X we denote $X \cap \mathcal{F}$ as $\{X \cap A : A \in \mathcal{F}\}$.

Definition 32. \mathcal{F} breaks X if $X \cap \mathcal{F} = 2^X$.

TODO: Complete the beginning of VC-dimension.