1 Теоретическое решение дифференциального уравнения

1.1 Линейная задача

Решаем уравнение $u_t - \frac{u_x}{2} = 0$ с начальными условиями

$$u_0(x) = \begin{cases} 0 \text{ if } x \le 0\\ 4x \text{ if } 0 < x \le 0.25\\ 1 \text{ if } x > 0.25, \end{cases}$$

Запишем характеристическую систему уравнений:

$$\begin{cases} \dot{t} = 1\\ \dot{x} = -\frac{1}{2} \end{cases}$$

Следовательно, 2x+t=const -уравнение характеристик Общее решение уравнения: u=f(2x+t) Учитывая начальные условия, получим

$$u(t,x) = \begin{cases} 0 & \text{if } -1 \le x < -\frac{t}{2} \\ 4x & \text{if } -\frac{t}{2} \le x < \frac{1}{4} - \frac{t}{2} \\ 1 & \text{if } -\frac{t}{2} \le x < 1, \end{cases}$$

(см.Рис. 1).

Рис. 1

Нелинейная задача 1.2

Решаем уравнение $u_t - uu_x = 0$ с начальными условиями

$$u_0(x) = \begin{cases} 0 \text{ if } x \le 0\\ 4x \text{ if } 0 < x \le 0.25\\ 1 \text{ if } x > 0.25, \end{cases}$$

Запишем характеристическую систему уравнений:

$$\begin{cases} \dot{t} = 1\\ \dot{x} = -u\\ \dot{u} = 0 \end{cases}$$

Следовательно, $x = -u_0 t + x_0$. С учетом начальный условий при $x \in (0, 0.25]$ $x(t) = -4x_0t + x_0 = x_0(1-4t)$, то есть при t = 0.25 все траектории зануляются. Характеристики сталкиваются, а значит, имеем разрыв (См.Рис.2).

Рис. 2

Ищем разрыв
$$x(t)$$
:
$$\frac{dx(t)}{dt}\Big|_{t=t^*} = \frac{[F(u)]}{u} = \frac{F(u_+) - F(u_-)}{u_+ - u_-} = \frac{\frac{-u_+^2}{2} - \frac{u_-^2}{2}}{u_+ - u_-} = -\frac{u_+ + u_-}{2}$$
 Так как $u_+ = 1, u_- = 0, \frac{dx(t)}{dt} = -\frac{1}{2}.$

$$\begin{cases} \dot{x} = -\frac{1}{2} \\ x(0.25) = 0 \end{cases}$$

Следовательно, x(t)=-0.5(t-0.25). Также в области $0\leq x\leq 0.25, 0\leq t\leq 0.25$ решение имеет вид $\frac{4x}{1-4t}$. Итого, см.Рис.3.

Рис. 3

2 Линейная задача

Решаем $v_t - \frac{v_x}{2} = 0$ в области $Q_T = (t,x)|0 < t \le 1, -1 \le x \le 1 = (k_1\tau,k_2h), k_1in(0,N), k_2in(0,M_h).$ Начальные условия

$$v_0(x) = \begin{cases} 0 \text{ if } x \le 0\\ 4x \text{ if } 0 \le x \le 0.25\\ 1 \text{ if } x \ge 0.25, \end{cases}$$

Из теоретического решения следует, что граничные условия имеют вид: v(t,1)=1, v(t,-1)=0.

2.1 Явная схема

$$\frac{v_m^{n+1} - v_m^n}{\tau} - \frac{v_{m+1}^n - v_m^n}{2h} = 0$$

2.1.1 Аппроксимация

$$\begin{array}{l} v_m^{n+1} = v + \tau \dot{v} + \frac{\tau^2}{2} \ddot{v} + \frac{\tau^3}{6} \, \dddot{v} + O(\tau^4) \\ v_{m+1}^n = v + h v' + \frac{h^2}{2} v'' + \frac{h^3}{6} v''' + O(h^4) \\ \dot{v} + \frac{\tau}{2} \ddot{v} + \frac{\tau^2}{6} \, \dddot{v} - \frac{v'}{2} - \frac{h}{4} v'' - \frac{h^2}{12} v''' + O(\tau^3 + h^3) = 0 \\ \text{остаточный член аппроксимации: } O(\tau + h). \end{array}$$

2.1.2 Дифференциальное приближение

$$\begin{split} \dot{v} - \frac{v'}{2} &= -\frac{\tau}{2} \ddot{v} + \frac{\tau^2}{6} \, \dddot{v} + \frac{h}{4} v'' + \frac{h^2}{12} v''' + O(\tau^3 + h^3) \\ \ddot{v} - \frac{\dot{v'}}{2} &= -\frac{\tau}{2} \, \dddot{v} + \frac{h}{4} \dot{v}'' + O(\tau^2 + h^2) \\ \dot{v'} - \frac{v''}{2} &= -\frac{\tau}{2} \ddot{v'} + \frac{h}{4} v''' + O(\tau^2 + h^2) \end{split}$$

$$\begin{split} \ddot{v} - \frac{v''}{4} &= -\frac{\tau}{2} (\, \dddot{v} \, + \frac{1}{2}) + \frac{h}{4} (v \ddot{''} + \frac{v'''}{2}) + O(\tau^2 + h^2) \\ \ddot{v} &= \frac{v'''}{8} + O(\tau + h) \\ \ddot{v} &= \frac{v'''}{4} + O(\tau + h) \\ \dot{v} &= \frac{v'''}{2} + O(\tau + h) \\ \dot{v} - \frac{v'}{2} &= -\frac{\tau}{8} v'' - \frac{\tau^2}{12} v''' - \frac{\tau h}{8} v''' + \frac{h}{4} v''' + \frac{\tau^2}{8} v''' + \frac{h^2}{12} v''' + O(\tau^3 + h^3) \\ \dot{v} - \frac{v'}{2} &= -\frac{\tau}{8} v'' + \frac{h}{4} v'' + \frac{\tau^2}{24} v''' - \frac{\tau h}{8} v''' + \frac{h^2}{12} v''' + O(\tau^3 + h^3) \end{split}$$

2.1.3 Спектральная устойчивость

Заменяя $v_m^n = \lambda^n e^{im\phi}$ получим $\lambda = 1 + \frac{\tau}{2h}(e^{i\phi} - 1)$ - окружность с центром в $1-\frac{\tau}{2h}$ радиуса $\frac{\tau}{2h}$. Необходимое условие устойчивости - окружность лежит в единичном круге, т.е. $\frac{\tau}{2h} \le 1$.

2.1.4 Численное решение

Граничные условия примут вид: v(t,1)=1 перейдет в $v^n_{M_h}=1 \ \forall n\in \overline{0,N}, \ {\rm a} \ v(t,-1)=1$ 0 в $v_0^n = 0 \ \forall n \in \overline{0, N}$.

Тогда $\{v_m^{n+1}\}$ считается по $\{v_m^n\}$ согласно системе: $v_m^{n+1}=v_m^n- au\frac{v_{m+1}^n-v_m^n}{2h}, m\in\overline{1,M_h-1}.$ Результаты расчетов:

$$v_m^{n+1} = v_m^n - \tau \frac{v_{m+1}^n - v_m^n}{2h}, m \in \overline{1, M_h - 1}.$$

τ	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
0.100	0.100	2.034375e+00	4.489844e-01	2.034375e+00	3.161862e-01
0.010	0.100	2.026005e+00	4.796207e-01	2.026005e+00	3.380020e-01
0.001	0.100	2.025084e+00	4.822149e-01	2.025084e+00	3.398893e-01
0.100	0.010	9.312502e+06	6.973576e + 05	9.999999e-01	9.999994e-01
0.010	0.010	2.061181e+00	5.042041e-01	$2.061181\mathrm{e}{+00}$	3.653653e-01
0.001	0.010	2.090565e+00	5.080720e-01	2.090565e+00	3.681681e-01
0.100	0.001	$2.471298e{+}16$	$1.808764e{+14}$	1.000000e+00	1.000000e+00
0.010	0.001	2.142381e + 91	5.312280e + 89	1.000000e+00	1.0000000e+00
0.001	0.001	2.023275e+00	5.004748e-01	$2.023275\mathrm{e}{+00}$	3.638493e-01

Получены следующие графики:

Рис. 4. $\tau = 0.001, h = 0.1$

Рис. 5. $\tau = 0.001, h = 0.001$

Теперь рассмотрим случай равномерного дробления сетки, при исходных данных $\tau=0.1, h=0.1.$ Причем $\tau_k=\frac{\tau}{2^k}$ и $h_k=\frac{h}{2^k}$ $\Delta(v,v^k)_\alpha=||v-v^k||_\alpha, \delta(v,v^k)_\alpha=\frac{||v-v^k||_\alpha}{||v||_\alpha}:$

	$ au_k$	h_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v^1	0.050000	0.050000	9.514595e-01	5.266888e-01	9.514595e-01	3.709076e-01
v^2	0.025000	0.025000	9.995810e-01	5.799972e-01	9.995810e-01	4.084487e-01
v^3	0.012500	0.012500	9.996094e-01	5.800000e-01	9.996094e-01	4.084507e-01
v^4	0.006250	0.006250	9.996094e-01	5.800000e-01	9.996094e-01	4.084507e-01
u	00.100	0.100	$2.034375\mathrm{e}{+00}$	4.489844e-01	2.034375e+00	3.161862e-01

Для $\tau = 0.001, h = 0.01$:

	$ au_k$	h_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v^1	0.005000	0.005000	9.999996e-01	5.594117e-01	9.999996e-01	4.053708e-01
v^2	0.002500	0.002500	1.000000e+00	6.200000e-01	1.000000e+00	4.492754e-01
v^3	0.001250	0.001250	1.000000e+00	6.200000e-01	1.000000e+00	4.492754e-01
v^4	0.000625	0.000625	1.000000e+00	6.200000e-01	1.000000e+00	4.492754e-01
u	0.010	0.010	$2.061181\mathrm{e}{+00}$	5.042041e-01	$2.061181\mathrm{e}{+00}$	3.653653e-01

2.2 Неявная схема

$$\frac{v_{m+1}^{n+1} - v_{m}^{n}}{\tau} - \frac{v_{m+1}^{n+1} - v_{m-1}^{n+1}}{4h} = \frac{\omega h^{2}}{\tau} \frac{v_{m+1}^{n} - 2v_{m}^{n} + v_{m-1}^{n}}{h^{2}}$$

2.2.1 Аппроксимация

$$\begin{split} v_m^{n+1} &= v + \tau \dot{v} + \frac{\tau^2}{2} \ddot{v} + \frac{\tau^3}{6} \dddot{v} + O(\tau^4) \\ v_{m\pm 1}^n &= v \pm h v' + \frac{h^2}{2} v'' \pm \frac{h^3}{6} v''' + O(h^4) \\ v_{m\pm 1}^{n+1} &= v + \dot{v} \pm h v' + \frac{\tau^2}{2} \ddot{v} \pm \dot{v'} \tau h + \frac{h^2}{2} v'' + \frac{\tau^3}{6} \dddot{v} \pm \frac{\tau^2 h}{2} \ddot{v'} + \frac{\tau h^2}{2} \dot{v}'' \pm \frac{h^3}{6} v''' + O(h^4 + \tau^4) \\ \dot{v} + \frac{\tau}{2} \ddot{v} + \frac{\tau^2}{6} \dddot{v} - \frac{v'}{2} - \frac{\tau}{2} \dot{v'} + \frac{\tau^2}{4} \ddot{v'} - \frac{h^2}{12} v''' + O(\tau^3 + h^3) = \frac{\omega h^2}{\tau} (v'' + \frac{h^2}{12} v'''') + O(\tau^3 + h^3) \\ \text{остаточный член аппроксимации: } O(\tau + h^2 + \frac{h^2}{\tau}). \end{split}$$

2.2.2 Дифференциальное приближение

$$\begin{split} &\dot{v} - \frac{v'}{2} - \frac{\omega h^2}{\tau} v'' = -\frac{\tau}{2} (\ddot{v} - \dot{v'}) - \frac{\tau^2}{6} (\ddot{v} - \frac{3}{2} \ddot{v'}) - \frac{h^2}{12} v''' + O(\tau^3 + h^3 + \frac{h^4}{\tau}) \\ &\ddot{v} - \frac{v'}{2} = -\frac{\tau}{2} (\ddot{v} - \ddot{v'}) + O(\tau^2 + h^2 + \frac{h^2}{\tau}) \\ &\dot{v'} - \frac{v''}{2} = -\frac{\tau}{2} (\ddot{v'} - \dot{v''}) + O(\tau^2 + h^2 + \frac{h^2}{\tau}) \\ &\ddot{v} - \frac{v''}{4} = -\frac{\tau}{2} (\ddot{v} - \frac{\ddot{v'}}{2} - \frac{v''}{2}) + O(\tau^2 + h^2 + \frac{h^2}{\tau}) \\ &\ddot{v} = \frac{v'''}{8} + O(\tau + h^2 + \frac{h^2}{\tau}) \\ &\ddot{v'} = \frac{v'''}{4} + O(\tau + h^2 + \frac{h^2}{\tau}) \\ &\ddot{v} = \frac{v'''}{2} + O(\tau + h^2 + \frac{h^2}{\tau}) \\ &\ddot{v} = \frac{v'''}{4} + \frac{\tau v'''}{8} + O(\tau^2 + h^2 + \frac{h^2}{\tau}) \end{split}$$

$$\dot{v'} = \frac{v''}{2} + \frac{\tau v'''}{8} + O(\tau^2 + h^2 + \frac{h^2}{\tau})$$

$$\dot{v} - \frac{v'}{2} - \frac{\omega h^2}{\tau} v'' = \frac{\tau v''}{8} + \frac{\tau^2 v'''}{24} - \frac{h^2}{12} v''' O(\tau^3 + h^3 + \frac{h^4}{\tau})$$

2.2.3 Спектральная устойчивость

Заменяя $v_m^n=\lambda^n e^{im\phi}$ получим $\lambda=\frac{(2\omega(\cos\phi-1)+1)(1+\frac{\tau}{2h}\sin\phi i)}{1+\frac{\tau^2}{4h^2}\sin^2\phi}.$ Тогда $|\lambda|=\frac{|(2\omega(\cos\phi-1)+1)|}{\sqrt{1+\frac{\tau^2}{4h^2}\sin^2\phi}}.$ Числитель достигает своего максимума при $\phi=\frac{1}{2}$

 π . Тогда при $\omega \in [0, \frac{1}{2}]$ выполнен спектральный признак устойчивости. При других ω и $\phi=\pi$ числитель ≥ 1 , а знаменатель =1. То есть при $\omega=$ 0.1 выполняется необходимый признак устойчивости, а при $\omega=1$ - схема неустойчива.

2.2.4 Численное решение

Схему:
$$\frac{v_m^{n+1}-v_m^n}{\tau}-\frac{v_{m+1}^{n+1}-v_{m-1}^{n+1}}{4h}=\frac{\omega h^2}{\tau}\frac{v_{m+1}^n-2v_m^n+v_{m-1}^n}{h^2}$$
 перепишем в виде:
$$v_m^{n+1}-\tau\frac{v_{m+1}^{n+1}-v_{m-1}^{n+1}}{4h}=v_m^n+\omega h^2\frac{v_{m+1}^n-2v_m^n+v_{m-1}^n}{h^2}.$$
 Тогда $\left\{v_m^{n+1}\right\}$ считается по $\left\{v_m^n\right\}$ методом прогонки:

$$J = \begin{pmatrix} 1 & -\frac{\tau}{4h} & 0 & \cdots & 0 & 0\\ \frac{\tau}{4h} & 1 & -\frac{\tau}{4h} & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & \cdots & \frac{\tau}{4h} & 1 \end{pmatrix}$$

Результат работы программы для $\omega = 0.1$:

τ	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
0.100	0.100	2.005065e+00	4.699233e-01	2.004479e+00	3.312646e-01
0.010	0.100	2.070098e+00	6.257683e- 01	2.070098e+00	4.493436e-01
0.001	0.100	1.993598e+00	7.659560e-01	1.993598e+00	6.436190e-01
0.100	0.010	2.199165e+00	5.391047e-01	2.199159e+00	3.906928e-01
0.010	0.010	2.087273e+00	5.073378e-01	2.087273e+00	3.676361e-01
0.001	0.010	2.196476e+00	5.372321e-01	2.196476e+00	3.892991e-01
0.100	0.001	2.220413e+00	5.410673e-01	2.220413e+00	3.933963e-01
0.010	0.001	$2.078000\mathrm{e}{+00}$	5.046901e-01	$2.078000\mathrm{e}{+00}$	3.669139e-01
0.001	0.001	$2.031860\mathrm{e}{+00}$	5.008474e-01	$2.031860\mathrm{e}{+00}$	3.641202e-01

Получен график:

Рис. 6

Результат работы программы для $\omega=1$:

τ	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
0.100	0.100	7.154141e + 02	$5.207284\mathrm{e}{+02}$	9.986042e-01	$1.000346\mathrm{e}{+00}$
0.010	0.100	$2.004930\mathrm{e}{+45}$	$2.398875\mathrm{e}{+45}$	1.000000e+00	1.000000e+00
0.001	0.100	0.000000e+00	nan	0.000000e+00	nan
0.100	0.010	2.241434e + 01	$1.189522\mathrm{e}{+01}$	9.572911e-01	1.000258e+00
0.010	0.010	2.253432e+44	1.027449e+44	1.000000e+00	1.000000e+00
0.001	0.010	0.000000e+00	nan	0.000000e+00	nan
0.100	0.001	$2.220480\mathrm{e}{+00}$	6.069415 e-01	1.938022e+00	4.417546e-01
0.010	0.001	4.075498e + 42	1.016947e+42	1.000000e+00	1.000000e+00
0.001	0.001	0.000000e+00	nan	0.000000e+00	nan

Получен график:

Рис. 7

Теперь рассмотрим случай равномерного дробления сетки, при исходных данных $\tau=0.1,h=0.1.$ Причем $\tau_k=\frac{\tau}{2^k}$ и $h_k=\frac{h}{2^k}$ $\Delta(v,v^k)_\alpha=||v-v^k||_\alpha,\delta(v,v^k)_\alpha=\frac{||v-v^k||_\alpha}{||v||_\alpha}.$ Для $\omega=0.1$:

	$ au_k$	h_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v^1	0.050000	0.050000	9.471386e-02	4.538516e-02	9.468620 e-02	3.199351e-02
v^2	0.025000	0.025000	1.553445e-01	7.326469e-02	1.552992e-01	5.164672e-02
v^3	0.012500	0.012500	1.953264e-01	9.004536e-02	1.952694e-01	6.347598e-02
v^4	0.006250	0.006250	2.194344e-01	1.003608e-01	2.193703e-01	7.074769e-02
u	0.100	0.100	$2.005065\mathrm{e}{+00}$	4.699233e-01	2.004479e+00	3.312646e-01

Для $\tau = 0.001, h = 0.01$:

	$ au_k$	h_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v^1	0.005000	0.005000	3.119690e-02	8.662405 e-03	3.119690e-02	6.277105e-03
v^2	0.002500	0.002500	5.331166e-02	1.313692e-02	5.331166e-02	9.519509e-03
v^3	0.001250	0.001250	6.896876e-02	1.538371e-02	6.896876e-02	1.114762e-02
v^4	0.000625	0.000625	8.004693e-02	1.650793e-02	8.004693e-02	1.196227e-02
u	0.001	0.100	$1.993598\mathrm{e}{+00}$	7.659560e-01	1.993598e+00	6.436190e-01

Для $\omega=1$: для $\tau=0.1, h=0.1$:

	$ au_k$	h_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v_1	0.050000	0.050000	$2.765829\mathrm{e}{+07}$	$1.579034\mathrm{e}{+07}$	$3.860657\mathrm{e}{+04}$	$3.033404\mathrm{e}{+04}$
v_2	0.025000	0.025000	$1.580288\mathrm{e}{+16}$	$8.324864\mathrm{e}{+15}$	$2.205831\mathrm{e}{+13}$	$1.599249\mathrm{e}{+13}$
v_3	0.012500	0.012500	$8.133004 \mathrm{e}{+34}$	3.445142e + 34	$1.135238\mathrm{e}{+32}$	$6.618294\mathrm{e}{+31}$
v_4	0.006250	0.006250	4.490908e + 72	$1.547988e{+72}$	$6.268592\mathrm{e}{+69}$	$2.973765\mathrm{e}{+69}$
u	0.100	0.100	2.005065e+00	4.699233e-01	$2.004479\mathrm{e}{+00}$	3.312646e-01

Для $\tau = 0.001, h = 0.01$:

	$ au_k$	h_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v_1	0.005000	0.005000	$3.914752\mathrm{e}{+91}$	$1.242731\mathrm{e}{+91}$	$1.737240\mathrm{e}{+47}$	$1.209531\mathrm{e}{+47}$
v_2	0.002500	0.002500	$3.676728\mathrm{e}{+186}$	$8.740679e{+}185$	$1.631612e{+142}$	$8.507165\mathrm{e}{+141}$
v_3	0.001250	0.001250	0.000000e+00	nan	0.000000e+00	nan
v_4	0.000625	0.000625	0.0000000e+00	nan	0.000000e+00	nan
u	0.001	0.100	0.000000e+00	nan	0.000000e+00	nan

3 Нелинейная задача

Решаем $v_t - vv_x = 0$ в области $Q_T = (t,x)|0 < t \le 1, -1 \le x \le 1$ Начальные условия

$$v_0(x) = \begin{cases} 0 \text{ if } x \le 0\\ 4x \text{ if } 0 < x \le 0.25\\ 1 \text{ if } x > 0.25, \end{cases}$$

Из теоретического решения следует, что граничные условия имеют вид: v(t,1)=1, v(t,-1)=0.

3.1 Явная схема

$$\frac{v_m^{n+1} - v_m^n}{\tau} - \frac{v_{m+1}^{2n} - v_m^{2n}}{2h} = 0$$

3.1.1 Аппроксимация

$$\begin{split} v_m^{n+1} &= v + \tau \dot{v} + \frac{\tau^2}{2} \ddot{v} + \frac{\tau^3}{6} \dddot{v} + O(\tau^4) \\ v_{m+1}^n &= v + hv' + \frac{h^2}{2} v'' + \frac{h^3}{6} v''' + O(h^4) \\ \dot{v} + \frac{\tau}{2} \ddot{v} + \frac{\tau^2}{6} \dddot{v} - vv' - \frac{hv'^2}{2} - \frac{h}{2} v''v + O(\tau^2 + h^2) = 0 \\ \text{остаточный член аппроксимации: } O(\tau + h). \end{split}$$

3.1.2 Численное решение

Преобразуем нашу схему к виду $v_m^{n+1}=v_m^n- au \frac{v_{m+1}^{2n}-v_m^{2n}}{2h}$ Тогда $\left\{v_m^{n+1}\right\}$ считается по $\left\{v_m^n\right\}$ согласно системе. Результаты расчетов:

τ	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
0.100	0.100	1.000000e+00	7.200000e-01	1.000000e+00	5.070423e-01
0.010	0.100	1.000000e+00	7.200000e-01	1.000000e+00	5.070423e-01
0.001	0.100	1.000000e+00	7.200000e-01	1.000000e+00	5.070423e-01
0.100	0.010	1.215852e + 289	3.027468e + 287	1.000000e+00	1.000000e+00
0.010	0.010	1.000000e+00	7.500000e-01	1.000000e+00	5.434783e-01
0.001	0.010	1.000000e+00	7.500000e-01	1.000000e+00	5.434783e-01
0.100	0.001	inf	nan	nan	nan
0.010	0.001	inf	nan	nan	nan
0.001	0.001	1.000000e+00	7.505000e-01	1.000000e+00	5.456198e-01

Получены следующий график:

Рис. 8

Теперь рассмотрим случай равномерного дробления сетки, при исходных данных $\tau=0.1, h=0.1.$ Причем $\tau_k=\frac{\tau}{2^k}$ и $h_k=\frac{h}{2^k}$ $\Delta(v,v^k)_\alpha=||v-v^k||_\alpha, \delta(v,v^k)_\alpha=\frac{||v-v^k||_\alpha}{||v||_\alpha}:$

	$ au_k$	h_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v_1	0.050000	0.050000	1.221117e-01	1.792714e-02	1.221117e-01	1.262475e-02
v_2	0.025000	0.025000	2.470711e-01	3.042715e-02	2.470711e-01	2.142757e-02
v_3	0.012500	0.012500	2.560863e-01	3.132867e-02	2.560863e-01	2.206244e-02
v_4	0.006250	0.006250	2.560863e-01	3.132867e-02	2.560863e-01	2.206244e-02
u	0.100	0.100	1.000000e+00	7.200000e-01	1.000000e+00	5.070423e-01

Для
$$\tau = 0.001, h = 0.01$$
:

	$ au_k$	h_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v_1	0.005000	0.005000	1.249594e-01	2.500000e-03	1.249594e-01	1.811594e-03
v_2	0.002500	0.002500	1.339746e-01	2.680305 e-03	1.339746e-01	1.942250e-03
v_3	0.001250	0.001250	1.339746e-01	2.680305 e-03	1.339746e-01	1.942250e-03
v_4	0.000625	0.000625	1.339746e-01	2.680305e-03	1.339746e-01	1.942250e-03
u	0.001	0.100	1.000000e+00	7.200000e-01	1.000000e+00	5.070423e-01

3.2 Неявная схема

$$\frac{v_m^{n+1} - v_m^n}{\tau} - \frac{v_{m+1}^{2n+1} - v_{m-1}^{2n+1}}{4h} = \frac{\omega h^2}{\tau} \frac{v_{m+1}^n - 2v_m^n + v_{m-1}^n}{h^2}$$

3.2.1 Неявная схема. Аппроксимация

$$\begin{split} v_m^{n+1} &= v + \tau \dot{v} + \frac{\tau^2}{2} \ddot{v} \, \dddot{v} + O(\tau^3) \\ v_{m+1}^n &= v + h v' + \frac{h^2}{2} v'' + \frac{h^3}{6} v''' + O(h^4) \\ \dot{v} + \frac{\tau}{2} \ddot{v} + \frac{\tau^2}{6} \, \dddot{v} - v v' - \frac{h v'^2}{2} - \frac{h}{2} v'' v + O(\tau^2 + h^2) = 0 \end{split}$$

$$\begin{split} v^n_{m\pm 1} &= v \pm hv' + \frac{h^2}{2}v'' + O(h^3) \\ v^{n+1}_{m\pm 1} &= v + \dot{v} \pm hv' + \frac{\tau^2}{2}\ddot{v} \pm \dot{v'}\tau h + \frac{h^2}{2}v'' + O(h^3 + \tau^3) \\ \dot{v} + \frac{\tau}{2}\ddot{v} - 2vv' - 2\tau\dot{v}v' - \tau^2v'\ddot{v} - h^2v'v'' - 2\tau\dot{v'}v - 2\tau^2\dot{v'}\dot{v} - \frac{\omega h^2}{\tau}v'' + O(\tau^2 + h^3 + \frac{h^4}{\tau}) \\ \text{остаточный член аппроксимации: } O(\tau + h^2 + \frac{h^2}{\tau}). \end{split}$$

3.2.2 Численное решение

В случае неявной нелинейной схемы использую метод Ньютона для нахождения решения.

Результаты расчетов для $\omega = 0.1$:

au	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
0.100	0.001	2.170404e+00	5.282275e-01	2.041132e+00	3.839156e-01
0.100	0.000	2.170533e+00	5.022218e-01	$2.169146\mathrm{e}{+00}$	3.652379e-01
0.200	0.001	$2.086568\mathrm{e}{+00}$	5.139387e-01	$2.086566\mathrm{e}{+00}$	3.736378e-01
0.100	0.000	$2.170529\mathrm{e}{+00}$	5.030079e-01	$2.164996\mathrm{e}{+00}$	3.657932e-01
0.200	0.000	$2.086576\mathrm{e}{+00}$	5.140231e-01	$2.086576\mathrm{e}{+00}$	3.738214e-01
0.200	0.002	$2.086551\mathrm{e}{+00}$	5.138546e-01	$2.086538\mathrm{e}{+00}$	3.734410e-01

Получены следующий график:

Рис. 9

Результаты расчетов для $\omega = 1$:

au	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
0.001	0.010	nan	nan	nan	nan
0.100	0.000	nan	nan	nan	nan
0.200	0.001	nan	nan	nan	nan
0.100	0.000	nan	nan	nan	nan
0.200	0.000	nan	nan	nan	nan
0.200	0.002	nan	nan	nan	nan