

Circuitos Secuenciales

UNTDF

Modelo para el diseño de Cir. Secuenciales

En los sistemas secuenciales sincrónicos el valor de sus salidas depende de los valores lógicos de sus entradas y de la secuencia en que los valores pasados fueron aplicados

Existen dos enfoque de estudio según la característica del sistema secuencial:

- Modelo de Moore
- Modelo de Mealy

UNTDF

Modelo de Moore

Los valores lógicos presentes en las salidas dependen de los cambios en los estados internos del sistema

Modelo de Moore

Por ejemplo, un sistema SSS (sistema secuencial sincrónico) que cuente de 0 a 3 de forma ascendente con posibilidad de parar la cuenta podría describirse con el siguiente diagrama de E/T:

UNTDF

Modelo de Mealy

En éste modelo los valores presentes en las salidas dependen de dos factores, a) de los estados internos del sistema, b) de los cambios en las variables externas de entrada

UNTDF

Modelo de Mealy

Este modelo de análisis será usado cuando el valor en la variable externa sea relevante para el SSS. Por ejemplo, un SSS que detecte una secuencia de entrada y como respuesta active su salida a "1"

UNTDF

Etapas de Diseño de SSS

- 1) Diagrama E/T según especificaciones
- 2)Construir la tabla de estados
- 3)Codificar cada estado
- 4) Seleccionar los elementos de memoria (F-F JK, D..)
- 5)Obtener las tablas de excitación
- 6) Simplificación de las funciones de excitación (a partir de mapas de Karnaugh)
- 7) Implementación del circuito

UNTDF

Análisis de un contador sincrónico M4

UNTDF

Contadores

- Consistes en un circuito secuencial muy importante para el diseño de computadoras
- Funciona como un registro en módulo uno (1)
- Cuando alcanza el valor máximo codificable vuelve a comenzar de 0
- Pueden ser a) Sincrónicos o b) Asincrónicos
- Ejemplo: Contador de Programas

Capacidad: Módulo: $m = 2^n - 1$ $M = 2^n$

UNTDF

Caso de estudio

El ejemplo cuenta con una entrada de reloj y dos salidas que van tomando los valores 00, 01, 10, 11, 00, con cada pulso de reloj.

Además se agrega una entrada variable externa que al recibir un "1" pone a cero "0" las salidas del contador

UNTDF

Etapas de diseño – Paso 1) Diagrama de E/T

UNTDF

Etapa de Diseño – Paso 2) Construcción de la tabla de E/T

Est. Inic.	Vble ext (RESET)	Est. Fin.	Vble Salida
Α	0	В	01
А	1	Α	00
В	0	С	10
В	1	Α	00
С	0	D	11
С	1	Α	00
D	0	Α	00
D	1	Α	00

UNTDF

Codificación binaria de estados y Tabla de exitación del F-F elegido

Tabla de estados

Estado	Codificación
Α	00
В	01
С	10
D	11

Tabla de diseño F-F D

Estado inicial	Estado Final	Entrada
\mathbf{Q}_{t}	\mathbf{Q}_{t+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

UNTDF

Etapa de Diseño – Paso 3) y 4) Codificación binaria de estados y Tabla de exitación del F-F elegido

Tabla de estados

Estado	Codificación
Α	00
В	01
С	10
D	11

Tabla de diseño F-F D

Estado inicial	Estado Final	Entrada
\mathbf{Q}_{t}	\mathbf{Q}_{t+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

UNTDF

Etapa de Diseño – Paso 5) Reemplazo en tabla E/T

Est. Inic.	Vble ext (RESET)	Est. Fin.			Vble Salida
Q1 _t Q0 _t	X	Q1 _{t+1} Q0 _{t+1}	D1	D0	S1 S0
0 0	0	0 1	0	1	0 1
0 0	1	0 0	0	0	0 0
0 1	0	1 0	1	0	1 0
0 1	1	0 0	0	0	0 0
1 0	0	1 1	1	1	1 1
1 0	1	0 0	0	0	0 0
1 1	0	0 0	0	0	0 0
1 1	1	0 0	0	0	0 0

UNTDF

Etapa de Diseño – Paso 6) Mapas de Karnaught para D1, D0, S1 y S0

Mapa K \rightarrow D₁

Q_1/Q_0	00	01	11	10
0	0	0	0	1
1	1	0	0	0

Mapa K \rightarrow D₀

Q_1/Q_0	00	01	11	10
0	1	0	0	0
1	1	0	0	0

Mapa $K \rightarrow S_1$

$Q_1 / Q_0 X$	00	01	11	10
0	0	0	0	1
1	1	0	0	0

Mapa K \rightarrow S₀

ı	Q_1/Q_0	00	01	11	10
	X				
ĺ	0	1	0	0	0
	1	1	0	0	0

Etapa de Diseño – Paso 6) Mapas de Karnaught para D1, D0, S1 y S0

Ecuaciones de simplificación obtenidas de los mapas:

$$\begin{aligned} D_1 &= \overline{Q}_1 Q_0 \overline{X} &+ Q_1 \overline{Q}_0 \overline{X} \\ D_0 &= \overline{Q}_1 \overline{Q}_0 \overline{X} &+ Q_1 \overline{Q}_0 \overline{X} \\ S_1 &= \overline{Q}_1 Q_0 \overline{X} &+ Q_1 \overline{Q}_0 \overline{X} \\ S_0 &= \overline{Q}_1 \overline{Q}_0 \overline{X} &+ Q_1 \overline{Q}_0 \overline{X} \end{aligned}$$

Etapa de Diseño – Paso 7) Implementación del circuito digital

Tal como se observa en las funciones simplificadas D1 = S1 y D0 = S0 Por lo tanto se realimenta el circuito a la entrada del F-F en ambos casos

UNTDF

Análisis de un detector de secuencias

El SSS deberá censar su entrada almacenando los últimos ingresos para determinar si la secuencia ingresada coincide con el patrón "101", la misma puede llegar en forma consecutiva o de manera alternada entre otros bits. Cuando sea detectada la secuencia el sistema responderá con un "1" a su salida. En otro caso tendrá "0"

UNTDF

Etapas de diseño – Paso 1) Diagrama de E/T

UNTDF

Etapas de diseño – Paso 2) Tabla de E/T

Estado inicial	Vble externa X	Estado final	Vble de salida S
I ₀	0	l _o	0
I ₀	1	l ₁	0
I ₁	0	l ₂	0
I ₁	1	l _t	0
l ₂	0	l ₂	0
l ₂	1	l _o	1
l ₃	0	l _o	0
l ₃	1	l _o	0

UNTDF

Etapa de Diseño – Paso 3) y 4) Codificación binaria de estados y Tabla de exitación del F-F elegido

 $2^n = 4_{\text{estados}} \rightarrow n = 2$ – De la cantidad de estados inferimos los elementos de memoria que han de ser necesarios

En este caso se usará como elemento de memoria un F-F JK

Estado	Código binario	
l _o	00	
I ₁	01	
	10	
l ₃	11	

Tabla de estados

Estado inicial	Estado final	Entra das

Qı	<u>Q</u> ₁₊₁	٦	ĸ
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Tabla de diseño F-F JK

UNTDF

Etapa de Diseño – Paso 5) Reemplazo en tabla E/T

Estado	stado inicial		Estado final		F-F 1		F-F 0		
Q _{1 T}	Q _{0 T}	X	Q _{1 T+1}	Q _{0 T+1}	J₁	K ₁	Jo	K₀	S
0	0	0	0	0	0	X	0	X	0
0	0	1	0	1	0	X	1	X	0
0	1	0	1	0	1	X	X	1	0
0	1	1	0	1	0	X	X	0	0
1	0	0	1	0	X	0	0	Х	0
1	0	1	0	0	X	1	0	X	1
1	1	0	0	0	X	1	X	1	0
1	1	1	0	0	Χ	1	X	1	0

En la tabla de E/T que generamos inicialmente reemplazamos por la codificación de c/estado además de incorporar las entradas de la tabla de exitación del elemento de memoria usado

UNTDF

Etapa de Diseño – Paso 6) Mapas de Karnaught para J₁, K₁, J₀, K₀, S

J₁				
Q ₁ / Q ₀ X	00	01	11	10
0				1
1	X	X	X	X

J _o				
Q ₁ / Q ₀ X	00	01	11	10
0		1	X	X
1			X	X

K ₁				
Q ₁ / Q ₀ X	00	01	11	10
0	X	X	X	X
1		1	1	1

K _o				
Q₁ / Q₀ <u>X</u>	00	01	11	10
0	X	X		1
1	X	X	1	1

Las vbles más significativas van en las filas y las menos en las columnas

S				
Q₁ / Q₀ Xౖ	00	01	11	10
0				
1		1		

UNTDF

Etapa de Diseño – Paso 7) Implementación del circuito digital

Ecuaciones de simplificación obtenidas de los mapas:

$$J_1 = Q_0 X$$

$$K_1 = X + Q_0$$

$$J_0=\overline{Q}_1\,\underline{X}$$

$$K_0 = Q_1 + \overline{X}$$

$$S = Q_1 \overline{Q}_0 X$$

UNTDF

Etapa de Diseño – Paso 7) Implementación del circuito digital

