Forecasting Time Series Homework 7

Yoon Tae Park[yp2201], Yeong Koh[yk2678], Yoobin Cheong[yc5206]

Recall that $\{x_t\}$ is a martingale if $E[x_{n+h} | x_n, x_{n-1}, \cdots] = x_n$ for all n and for all lead times h > 0. Actually, to establish that $\{x_t\}$ is a martingale, one simply needs to prove the above formula for h=1 since it can be shown that if it holds for h=1 it must hold for all h>0.

- 1) Suppose $x_t = x_{t-1} + \varepsilon_t$ where $\varepsilon_t = e_t + \beta e_{t-1} e_{t-2}$, $\beta \neq 0$, and $\{e_t\}$ is strict white noise.
 - a) What is the best linear predictor of x_{n+1} based on x_n , x_{n-1} , \cdots ? Justify your answer.

Ans) 1-0) to = then + 60, where be = ex + Beyers, B=0, fext is strict white rose. -> Best linear predictor of Xapri based on In, Ihm, ...

- The best linear frecost fin is defined by two characteristics,
- (1) fun is a linear combination of Mn, Mnn, ...

 3) As we are foreconting by linear prediction, and are using curently available information, we meet this coordition.
- (1) The forecost error Norm thin is uncorrelated with all linear combinations of Kn, 164,
 - =) We can write Xan = Xan know, and say that Ener is unconcloted with all (near combination at Xn, 16m, ... Where Ex is uncombinted Zero mean white noise
- :- fun : In , and is the best possible (mean forecast.

- b) What is the best possible predictor of x_{n+1} based on x_n , x_{n-1} , \cdots ? Justify your answer.
 - (-b) Best possible predictor of x_{n+1} based on x_n, x_{n-1}, \dots ?

 The openal forecast, in terms of mean squared error, is the conditional expectation, E[x_{n+1} | x_n, x_{n-1}, \dots].

 As we have $f(x_n)$ model $x_{n+1} = x_n + f(x_n)$ ($x_n = x_n + f(x_n)$) conditional mean can be written as:

 E[x_{n+1} | x_n, x_{n-1}, \dots] = $x_n + f(x_n)$ | x_n, \dots]

 As $f(x_n) = f(x_n) = x_n + f(x_n)$ | $x_n = f(x_n) = f(x_n)$ |

 As $f(x_n) = f(x_n) = f(x_n) = f(x_n)$ | $f(x_n) = f(x_n) = f(x_n)$ | $f(x_n) = f(x_n) = f(x_n)$ | $f(x_n) = f(x_n) = f(x_n) = f(x_n)$ | $f(x_n) = f(x_n) =$

c) Compare your answers to a) and b) to decide whether $\{x_t\}$ is a martingale. (Keep in mind the discussion at the top of this handout).

1-c) {) (x) is not a mortingale.

fifth is a martingale if E[ilnen[iln,iln.,...] = ilnHowever, as shown in 1-b), the best possible predictor of X_{n+1} ; E[ilnen[iln,iln,...] = iln

Therefore, 1)(t) is not a martingale.

- 2) Suppose $x_t = \alpha x_{t-1} + e_t$ where $\{e_t\}$ is strict white noise.
 - a) If $|\alpha| < 1$, is $\{x_t\}$ a martingale? Justify your answer.

b) If $\alpha = 1$, is $\{x_t\}$ a martingale? Justify your answer.

If
$$\chi = 1$$
, using the same reasoning above,
$$E\left[\chi_{t} \mid \chi_{t+1}, \chi_{t-2}, \dots\right] = \chi_{t-1}$$

$$\Rightarrow \left\{\chi_{t}\right\} \text{ is a martingale.}$$

- 3) Suppose $\{\varepsilon_t\}$ are martingale differences. Suppose we "integrate" $\{\varepsilon_t\}$ to obtain a series $\{y_t\}$. Specifically, define $y_1 = \varepsilon_1$, $y_2 = \varepsilon_1 + \varepsilon_2$, etcetera.
 - a) Show that $y_t = y_{t-1} + \varepsilon_t$.

b) Use the results of a) to show that $\{y_t\}$ is a martingale. (Thus, integrating a martingale difference yields a martingale.)