## Assignment 1: Write a program to implementing and evaluating a Linear Regression model

```
# Import necessary libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model selection import train test split
from sklearn.metrics import mean squared error, r2 score
# Load the dataset from a CSV file
data = pd.read_csv('Data science II/advertising.csv')
# Check the first few rows of the dataset to understand its structure
print(data)
# Define the independent variable (feature) and dependent variable (target)
X = data[[TV']] # Independent variable (1D array, needs to be 2D for sklearn)
y = data['Sales'] # Dependent variable (target)
# Split the data into training and testing sets (80% train, 20% test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize and train the Linear Regression model
model = LinearRegression()
model.fit(X_train, y_train)
# Make predictions on the test set
y_pred = model.predict(X_test)
# Evaluate the model's performance
mse = mean_squared_error(y_test, y_pred)
r2 = r2\_score(y\_test, y\_pred)
# Output the evaluation metrics
print(f"Mean Squared Error (MSE): {mse}")
print(f"R-squared (R2) Score: {r2}")
# Visualize the results
plt.scatter(X_test, y_test, color='blue', label='True Values')
```

```
plt.plot(X_test, y_pred, color='red', label='Regression Line')
plt.xlabel('TV')
plt.ylabel('Sales')
plt.title('Linear Regression Model')
plt.legend()
plt.show()
```

Mean Squared Error (MSE): 6.101072906773964 R-squared (R2) Score: 0.802561303423698



Assignment 2: Write a program to implementing and evaluating a Logistic Regression model.

import numpy as np import pandas as pd from sklearn.model\_selection import train\_test\_split from sklearn.preprocessing import StandardScaler from sklearn.linear\_model import LogisticRegression

```
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
```

```
# Load dataset from CSV file
df = pd.read_csv('log.csv')
# Assuming the last column is the target variable
X = df.iloc[:, :-1]
y = df.iloc[:, -1]
# Split dataset into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Standardize features
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_{\text{test}} = \text{scaler.transform}(X_{\text{test}})
# Train Logistic Regression model
model = LogisticRegression()
model.fit(X_train, y_train)
# Make predictions
y_pred = model.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
report = classification_report(y_test, y_pred)
# Print evaluation results
print(f'Accuracy: {accuracy:.4f}')
print('Confusion Matrix:')
print(conf_matrix)
print('Classification Report:')
print(report)
```

```
Accuracy: 0.4650
Confusion Matrix:
[[46 50]
 [57 47]]
Classification Report:
             precision
                         recall f1-score
                                            support
                  0.45
                           0.48
                                     0.46
                                                 96
                  0.48
                           0.45
                                     0.47
                                                104
                                     0.47
   accuracy
                                                200
                  0.47
                           0.47
                                     0.46
                                                200
  macro avg
weighted avg
                  0.47
                           0.47
                                     0.47
                                                200
```

#### Assignment 3: Write a program to implementing and evaluating a Decision Tree classifier.

import numpy as np import pandas as pd import matplotlib.pyplot as plt

from sklearn.model\_selection import train\_test\_split from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier, plot\_tree from sklearn.metrics import accuracy\_score, classification\_report, confusion\_matrix

# Load dataset from CSV file df = pd.read\_csv('log.csv')

# Assuming the last column is the target variable

X = df.iloc[:, :-1] y = df.iloc[:, -1]

# Split dataset into train and test sets

X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size=0.2, random\_state=42)

# Standardize features (optional for Decision Tree, but can help with performance)

scaler = StandardScaler()

X\_train = scaler.fit\_transform(X\_train)

 $X_{test} = scaler.transform(X_{test})$ 

```
# Train Decision Tree model
model = DecisionTreeClassifier()
model.fit(X_train, y_train)
# Make predictions
y_pred = model.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
report = classification_report(y_test, y_pred)
# Print evaluation results
print(f'Accuracy: {accuracy:.4f}')
print('Confusion Matrix:')
print(conf_matrix)
print('Classification Report:')
print(report)
# Visualize the Decision Tree
plt.figure(figsize=(15, 10))
plot_tree(model, filled=True, feature_names=df.columns[:-1], class_names=str(np.unique(y)))
plt.show()
```

Accuracy: 0.4650
Confusion Matrix:
[[45 51]
[56 48]]
Classification Report:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.45      | 0.47   | 0.46     | 96      |
| 1            | 0.48      | 0.46   | 0.47     | 104     |
| accuracy     |           |        | 0.47     | 200     |
| macro avg    | 0.47      | 0.47   | 0.46     | 200     |
| weighted avg | 0.47      | 0.47   | 0.47     | 200     |



Assignment 4: Write a program to implementing Clustering using the K-means algorithm

import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import make\_blobs

```
# Step 1: Generate synthetic data (for demonstration)
# Generating 300 data points with 4 centers (clusters)
X, y = make_blobs(n_samples=300, centers=4, random_state=42)
```

# Step 2: Apply the K-means algorithm

# Set the number of clusters to 4 (since we generated data with 4 centers)

kmeans = KMeans(n\_clusters=4, random\_state=42)

kmeans.fit(X)

# Step 3: Get the centroids and labels for the clusters centroids = kmeans.cluster\_centers\_ labels = kmeans.labels\_

```
# Step 4: Visualize the clusters plt.figure(figsize=(8, 6))

# Scatter plot of data points wit plt.scatter(X[:, 0], X[:, 1], c=lal
```

# Scatter plot of data points with colors corresponding to cluster labels plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', marker='o', edgecolor='k')

# Mark the centroids with a red 'X' plt.scatter(centroids[:, 0], centroids[:, 1], marker='X', s=200, c='red', label='Centroids')

# Add titles and labels plt.title('K-means Clustering') plt.xlabel('Feature 1') plt.ylabel('Feature 2')

# Show the legend plt.legend()

# Display the plot plt.show()

#### **Output:**



#### Assignment 5: Write a program to implementing Dimensionality reduction using PCA.

```
# Import necessary libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train test split
# Load CSV file (replace 'your_dataset.csv' with your actual dataset file path)
df = pd.read csv('log.csv')
# Check the first few rows of the dataset
print(df.head())
# Step 1: Separate features (X) and target (y) if applicable
# Assuming the last column is the target variable
X = df.iloc[:, :-1].values # All rows, all columns except the last one
y = df.iloc[:, -1].values # Last column is the target
# Step 2: Standardize the dataset (important for PCA)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Step 3: Apply PCA to reduce to 2 dimensions for visualization
pca = PCA(n_components=2) # Reduce to 2 components for visualization
X pca = pca.fit transform(X scaled)
# Step 4: Explained variance ratio (how much variance is captured by each component)
print("Explained variance ratio:", pca.explained_variance_ratio_)
# Step 5: Plot the 2D PCA result
plt.figure(figsize=(8,6))
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y, cmap='viridis', edgecolor='k', s=100)
plt.title("PCA of Dataset")
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.colorbar(label='Target Class')
plt.show()
```

|       | feature_0                                      | feature_1                                     | feature_2                                        | feature_3                                      | feature_4        | feature_5 | \ |
|-------|------------------------------------------------|-----------------------------------------------|--------------------------------------------------|------------------------------------------------|------------------|-----------|---|
| 0     | 0.496714                                       | -0.138264                                     | 0.647689                                         | 1.523030                                       | -0.234153        | -0.234137 |   |
| 1     | -0.463418                                      | -0.465730                                     | 0.241962                                         | -1.913280                                      | -1.724918        | -0.562288 |   |
| 2     | 1.465649                                       | -0.225776                                     | 0.067528                                         | -1.424748                                      | -0.544383        | 0.110923  |   |
| 3     | -0.601707                                      | 1.852278                                      | -0.013497                                        | -1.057711                                      | 0.822545         | -1.220844 |   |
| 4     | 0.738467                                       | 0.171368                                      | -0.115648                                        | -0.301104                                      | -1.478522        | -0.719844 |   |
|       |                                                |                                               |                                                  |                                                |                  |           |   |
|       | feature_6                                      | feature_7                                     | feature_8                                        | feature_9                                      | target           |           |   |
| 0     | 1.579213                                       | 0.767435                                      | -0.469474                                        | 0.542560                                       | 1                |           |   |
| 1     | -1.012831                                      | 0.314247                                      | -0.908024                                        | -1.412304                                      | 1                |           |   |
| 2     | -1.150994                                      | 0.375698                                      | -0.600639                                        | -0.291694                                      | 0                |           |   |
| 3     | 0.208864                                       | -1.959670                                     | -1.328186                                        | 0.196861                                       | 0                |           |   |
| 4     | -0.460639                                      | 1 057122                                      | 0.343618                                         | -1.763040                                      | 0                |           |   |
| 1 2 3 | 1.579213<br>-1.012831<br>-1.150994<br>0.208864 | 0.767435<br>0.314247<br>0.375698<br>-1.959670 | -0.469474<br>-0.908024<br>-0.600639<br>-1.328186 | 0.542560<br>-1.412304<br>-0.291694<br>0.196861 | 1<br>1<br>0<br>0 |           |   |

Explained variance ratio: [0.11348263 0.10726962]



#### Assignment 6: Write a program to implementing Bagging using Random Forest.

```
# Import necessary libraries
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
# Load CSV file (replace 'your_dataset.csv' with your actual dataset file path)
df = pd.read csv('log.csv')
# Check the first few rows of the dataset
print(df.head())
# Step 1: Handle missing values (if any)
# Example: Drop rows with missing values (you can also fill with the mean or median)
df = df.dropna()
# Step 2: Separate features (X) and target (y)
# Assuming the last column is the target variable
X = df.iloc[:, :-1].values # All rows, all columns except the last one (features)
y = df.iloc[:, -1].values # Last column is the target
# Step 3: Encode the target variable if it's categorical
label_encoder = LabelEncoder()
y = label_encoder.fit_transform(y)
# Step 4: Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Step 5: Initialize and train the Random Forest Classifier
rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
rf_classifier.fit(X_train, y_train)
# Step 6: Make predictions on the test set
y_pred = rf_classifier.predict(X_test)
# Step 7: Evaluate the model's performance
accuracy = accuracy_score(y_test, y_pred)
```

print(f'Accuracy of Random Forest on test data: {accuracy \* 100:.2f}%')

#### **Output:**

```
feature_0 feature_1 feature_2 feature_3 feature_4 feature_5 \
  0.496714 -0.138264 0.647689 1.523030 -0.234153 -0.234137
1 -0.463418 -0.465730
                     0.241962 -1.913280 -1.724918 -0.562288
   1.465649 -0.225776
                    0.067528 -1.424748 -0.544383 0.110923
3 -0.601707 1.852278 -0.013497 -1.057711 0.822545 -1.220844
  feature 6 feature 7 feature 8 feature 9 target
  1.579213 0.767435 -0.469474 0.542560
1 -1.012831 0.314247 -0.908024 -1.412304
                                          1
2 -1.150994 0.375698 -0.600639 -0.291694
                                          0
  0.208864 -1.959670 -1.328186
3
                             0.196861
                                          0
4 -0.460639 1.057122 0.343618 -1.763040
                                          0
```

Accuracy of Random Forest on test data: 53.00%

#### Assignment 7: Write a program to implementing Boosting using AdaBoost

```
# Import necessary libraries
import pandas as pd
from sklearn.model selection import train test split
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
# Load CSV file (replace 'your_dataset.csv' with your actual dataset file path)
df = pd.read_csv('log.csv')
# Check the first few rows of the dataset
print(df.head())
# Step 1: Handle missing values (if any)
# Example: Drop rows with missing values (you can also fill with the mean or median)
df = df.dropna()
# Step 2: Separate features (X) and target (y)
# Assuming the last column is the target variable
```

```
X = df.iloc[:,:-1].values # All rows, all columns except the last one (features)
y = df.iloc[:, -1].values # Last column is the target
# Step 3: Encode the target variable if it's categorical
label encoder = LabelEncoder()
y = label_encoder.fit_transform(y)
# Step 4: Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Step 5: Initialize and train the AdaBoost classifier with a DecisionTree as the base estimator
# DecisionTreeClassifier with max depth=1 is used to create a weak learner (stump)
base_estimator = DecisionTreeClassifier(max_depth=1)
# Update: Use 'estimator' instead of 'base_estimator'
adaboost classifier = AdaBoostClassifier(estimator=base estimator, n estimators=50,
random state=42)
adaboost_classifier.fit(X_train, y_train)
# Step 6: Make predictions on the test set
y pred = adaboost classifier.predict(X test)
# Step 7: Evaluate the model's performance
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy of AdaBoost on test data: {accuracy * 100:.2f}%')
```

```
feature_0 feature_1 feature_2 feature_3 feature_4 feature_5 \
  0.496714 -0.138264 0.647689 1.523030 -0.234153 -0.234137
1 -0.463418 -0.465730 0.241962 -1.913280 -1.724918 -0.562288
2
  1.465649 -0.225776 0.067528 -1.424748 -0.544383
                                               0.110923
3 -0.601707 1.852278 -0.013497 -1.057711 0.822545 -1.220844
  feature_6 feature_7 feature_8 feature_9 target
                   -0.469474
  1.579213 0.767435
                             0.542560
                                          1
                                          1
1 -1.012831 0.314247 -0.908024 -1.412304
2 -1.150994 0.375698 -0.600639 -0.291694
                                          0
  0.208864 -1.959670 -1.328186
                             0.196861
                                          0
4 -0.460639
            1.057122
                     0.343618 -1.763040
                                          0
```

Accuracy of AdaBoost on test data: 49.00%

#### Assignment 8: Write a program to implementing SVM for classification tasks.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import accuracy score, classification report, confusion matrix
# Load dataset from CSV file (replace 'your dataset.csv' with your actual file path)
df = pd.read csv('pca.csv')
# Check the first few rows of the dataset
print(df.head())
# Assuming the last column is the target variable (classification labels)
X = df.iloc[:, :-1] # Select all rows and all columns except the last one for features
y = df.iloc[:, -1] # Select the last column for the target (labels)
# Step 1: Split the dataset into training and testing sets (80% training, 20% testing)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Step 2: Standardize features using StandardScaler (important for SVM)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train) # Fit on training data and transform it
                                   # Use the same scaler to transform test data
X_{\text{test}} = \text{scaler.transform}(X_{\text{test}})
# Step 3: Train the Support Vector Machine (SVM) model
svm_model = SVC(kernel='linear', random_state=42) # Using a linear kernel for simplicity
svm_model.fit(X_train, y_train) # Train the model on the training set
# Step 4: Make predictions using the trained SVM model
y_pred = svm_model.predict(X_test)
# Step 5: Evaluate the model's performance
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
report = classification_report(y_test, y_pred)
```

```
# Print evaluation results
print(f'Accuracy: {accuracy:.4f}')
print('Confusion Matrix:')
print(conf matrix)
print('Classification Report:')
print(report)
# Step 6: Optional - Visualize the decision boundaries (only works for 2D features)
# This is just a visualization example for datasets with two features
if X.shape[1] == 2: # Check if we have only two features for visualization
  # Create a mesh grid for plotting decision boundaries
  h = .02
  x_{min}, x_{max} = X_{train}[:, 0].min() - 1, X_{train}[:, 0].max() + 1
  y_{min}, y_{max} = X_{train}[:, 1].min() - 1, X_{train}[:, 1].max() + 1
  xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
  # Predict over the mesh grid
  Z = svm_model.predict(np.c_[xx.ravel(), yy.ravel()])
  Z = Z.reshape(xx.shape)
  # Plot decision boundary
  plt.contourf(xx, yy, Z, alpha=0.8)
  plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, edgecolors='k', marker='o',
cmap=plt.cm.Paired)
  plt.title('SVM Decision Boundary with Linear Kernel')
  plt.xlabel('Feature 1')
  plt.ylabel('Feature 2')
  plt.show()
```

|   | Feature1 | Feature2 | Target |
|---|----------|----------|--------|
| 0 | 2.5      | 3.1      | 0      |
| 1 | 1.2      | 2.3      | 0      |
| 2 | 3.4      | 4.2      | 1      |
| 3 | 2.1      | 3.0      | 1      |
| 4 | 3.0      | 3.5      | 1      |

```
Accuracy: 1.0000
Confusion Matrix:
[[1 0]
 [0 1]]
Classification Report:
               precision
                             recall
                                      f1-score
                                                  support
           0
                    1.00
                               1.00
                                          1.00
                                                        1
            1
                    1.00
                               1.00
                                          1.00
                                                        1
                                          1.00
                                                        2
    accuracy
   macro avg
                    1.00
                               1.00
                                          1.00
                                                        2
```

1.00

1.00

weighted avg

1.00

2



Assignment 9: Write a program to implementing a simple neural network using TensorFlow/Keras.

import pandas as pd import numpy as np import tensorflow as tf import tensorflow as tf from tensorflow.keras.models import Sequential

```
from tensorflow.keras.layers import Dense, Input
import matplotlib.pyplot as plt
df = pd.read csv('diabetes.csv')
df.head()
print ('Number of Rows :', df.shape[0])
print ('Number of Columns :', df.shape[1])
print ('Number of Patients with outcome 1:', df.Outcome.sum())
print ('Event Rate:', round(df.Outcome.mean()*100,2),'%')
df.describe()
from sklearn.model_selection import train_test_split
X = df.to_numpy()[:,0:8]
Y = df.to_numpy()[:,8]
seed = 42
X_{train}, X_{test}, y_{train}, y_{test} = train_test_split(X, Y, test_size = 0.25, random_state = seed)
print (f'Shape of Train Data : {X_train.shape}')
print (f'Shape of Test Data : {X_test.shape}')
model = Sequential([
  Input(shape=(8,)), # Define the input shape using the new `shape` argument
  Dense(24, activation='relu'),
  Dense(12, activation='relu'),
  Dense(1, activation='sigmoid'),
1)
# Compile the model (optional, but necessary for training)
model.compile(optimizer = 'adam', loss = 'binary crossentropy', metrics = ['accuracy'])
# Summary of the model
#model.summary()
model.summary()
history = model.fit(X_train, y_train, epochs=150, batch_size=32, verbose = 1)
# Plotting loss
plt.plot(history.history['loss'])
plt.title('Binary Cross Entropy Loss on Train dataset')
plt.ylabel('loss')
plt.xlabel('epoch')
```

plt.show()

# Plotting accuracy metric plt.plot(history.history['accuracy']) plt.title('Accuracy on the train dataset') plt.ylabel('accuracy') plt.xlabel('epoch') plt.show()

### **Output:**

|   | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | ВМІ  | DiabetesPedigreeFunction | Age | Outcome |
|---|-------------|---------|---------------|---------------|---------|------|--------------------------|-----|---------|
| 0 | 6           | 148     | 72            | 35            | 0       | 33.6 | 0.627                    | 50  | 1       |
| 1 | 1           | 85      | 66            | 29            | 0       | 26.6 | 0.351                    | 31  | 0       |
| 2 | 8           | 183     | 64            | 0             | 0       | 23.3 | 0.672                    | 32  | 1       |
| 3 | 1           | 89      | 66            | 23            | 94      | 28.1 | 0.167                    | 21  | 0       |
| 4 | 0           | 137     | 40            | 35            | 168     | 43.1 | 2.288                    | 33  | 1       |

Number of Rows : 768 Number of Columns : 9

Number of Patients with outcome 1 : 268

Event Rate : 34.9 %

Shape of Train Data : (576, 8) Shape of Test Data : (192, 8)

Model: "sequential\_6"

| Layer (type)     | Output Shape | Param # |
|------------------|--------------|---------|
| dense_18 (Dense) | (None, 24)   | 216     |
| dense_19 (Dense) | (None, 12)   | 300     |
| dense_20 (Dense) | (None, 1)    | 13      |

Total params: 529 (2.07 KB) Trainable params: 529 (2.07 KB) Non-trainable params: 0 (0.00 B)

**Epoch 1/150** 

18/18 — 1s 3ms/step - accuracy: 0.5895 - loss:

4.9180

**Epoch 2/150** 

| 18/18 —      | - 0s 3ms/step - accuracy: 0.5057 - loss: |
|--------------|------------------------------------------|
| 1.5014       | r used to the second                     |
| Epoch 3/150  |                                          |
| <del>-</del> | - 0s 3ms/step - accuracy: 0.6015 - loss: |
| 1.1479       | r used as years and                      |
| Epoch 4/150  |                                          |
| 18/18 —      | - 0s 3ms/step - accuracy: 0.6004 - loss: |
| 1.0280       |                                          |
| Epoch 5/150  |                                          |
| _            | - 0s 2ms/step - accuracy: 0.6393 - loss: |
| 0.8963       | -                                        |
| Epoch 6/150  |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.6242 - loss: |
| 0.8435       |                                          |
| Epoch 7/150  |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.6523 - loss: |
| 0.7196       |                                          |
| Epoch 8/150  |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.6367 - loss: |
| 0.7654       |                                          |
| Epoch 9/150  |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.6541 - loss: |
| 0.7686       |                                          |
| Epoch 10/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.6621 - loss: |
| 0.6817       |                                          |
| Epoch 11/150 |                                          |
| 18/18        | - 0s 5ms/step - accuracy: 0.6425 - loss: |
| 0.7043       |                                          |
| Epoch 12/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7117 - loss: |
| 0.6386       |                                          |
| Epoch 13/150 |                                          |
| 18/18        | - 0s 3ms/step - accuracy: 0.6487 - loss: |
| 0.6587       |                                          |
| Epoch 14/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.6393 - loss: |
| 0.6852       |                                          |
| Epoch 15/150 |                                          |

| 18/18 —      | - 0s 2ms/step - accuracy: 0.6932 - loss: |
|--------------|------------------------------------------|
| 0.6562       | •                                        |
| Epoch 16/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.6278 - loss: |
| 0.6890       | -                                        |
| Epoch 17/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.6813 - loss: |
| 0.6323       |                                          |
| Epoch 18/150 |                                          |
| 18/18        | - 0s 3ms/step - accuracy: 0.6853 - loss: |
| 0.6206       |                                          |
| Epoch 19/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7143 - loss: |
| 0.5713       |                                          |
| Epoch 20/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.6995 - loss: |
| 0.5817       |                                          |
| Epoch 21/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.6969 - loss: |
| 0.6234       |                                          |
| Epoch 22/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7152 - loss: |
| 0.5890       |                                          |
| Epoch 23/150 |                                          |
| 18/18 —      | - 0s 2ms/step - accuracy: 0.7173 - loss: |
| 0.5726       |                                          |
| Epoch 24/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.6975 - loss: |
| 0.5961       |                                          |
| Epoch 25/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.6997 - loss: |
| 0.6367       |                                          |
| Epoch 26/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7037 - loss: |
| 0.6078       |                                          |
| Epoch 27/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7107 - loss: |
| 0.5834       |                                          |
| Epoch 28/150 |                                          |

| 18/18 —      | - 0s 2ms/step - accuracy: 0.7045 - loss: |
|--------------|------------------------------------------|
| 0.5672       | •                                        |
| Epoch 29/150 |                                          |
| 18/18 —      | - 0s 2ms/step - accuracy: 0.7128 - loss: |
| 0.5608       |                                          |
| Epoch 30/150 |                                          |
| 18/18        | - 0s 3ms/step - accuracy: 0.7039 - loss: |
| 0.5908       |                                          |
| Epoch 31/150 |                                          |
| 18/18        | - 0s 3ms/step - accuracy: 0.7340 - loss: |
| 0.5645       |                                          |
| Epoch 32/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7118 - loss: |
| 0.5859       |                                          |
| Epoch 33/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7159 - loss: |
| 0.5662       |                                          |
| Epoch 34/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.6892 - loss: |
| 0.5822       |                                          |
| Epoch 35/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7272 - loss: |
| 0.5440       |                                          |
| Epoch 36/150 |                                          |
| 18/18        | - 0s 3ms/step - accuracy: 0.7180 - loss: |
| 0.5606       |                                          |
| Epoch 37/150 |                                          |
| 18/18 —      | - 0s 2ms/step - accuracy: 0.7144 - loss: |
| 0.5587       |                                          |
| Epoch 38/150 |                                          |
| 18/18 —      | - 0s 2ms/step - accuracy: 0.7395 - loss: |
| 0.5620       |                                          |
| Epoch 39/150 |                                          |
| 18/18 —      | - 0s 3ms/step - accuracy: 0.7001 - loss: |
| 0.5776       |                                          |
| Epoch 40/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.6902 - loss: |
| 0.5962       |                                          |
| Epoch 41/150 |                                          |

| 18/18 —      | - 0s 3ms/step - accuracy: 0.7072 - loss: |
|--------------|------------------------------------------|
| 0.5891       | •                                        |
| Epoch 42/150 |                                          |
| 18/18 —      | - 0s 3ms/step - accuracy: 0.7389 - loss: |
| 0.5666       |                                          |
| Epoch 43/150 |                                          |
| 18/18        | - 0s 3ms/step - accuracy: 0.6933 - loss: |
| 0.6019       |                                          |
| Epoch 44/150 |                                          |
| 18/18        | - 0s 3ms/step - accuracy: 0.7406 - loss: |
| 0.5502       |                                          |
| Epoch 45/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7194 - loss: |
| 0.5679       |                                          |
| Epoch 46/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7061 - loss: |
| 0.5431       |                                          |
| Epoch 47/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7438 - loss: |
| 0.5202       |                                          |
| Epoch 48/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7346 - loss: |
| 0.5445       |                                          |
| Epoch 49/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.6963 - loss: |
| 0.5831       |                                          |
| Epoch 50/150 |                                          |
| 18/18 —      | - 0s 2ms/step - accuracy: 0.7246 - loss: |
| 0.5752       |                                          |
| Epoch 51/150 |                                          |
| 18/18 —      | - 0s 2ms/step - accuracy: 0.7290 - loss: |
| 0.5586       |                                          |
| Epoch 52/150 |                                          |
| 18/18 —      | - 0s 2ms/step - accuracy: 0.6933 - loss: |
| 0.5897       |                                          |
| Epoch 53/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7588 - loss: |
| 0.5280       |                                          |
| Epoch 54/150 |                                          |

| 18/18 —      | - 0s 2ms/step - accuracy: 0.7153 - loss: |
|--------------|------------------------------------------|
| 0.5653       | -                                        |
| Epoch 55/150 |                                          |
| 18/18 —      | - 0s 2ms/step - accuracy: 0.7419 - loss: |
| 0.5464       | •                                        |
| Epoch 56/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7117 - loss: |
| 0.5628       |                                          |
| Epoch 57/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7576 - loss: |
| 0.5011       |                                          |
| Epoch 58/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7324 - loss: |
| 0.5320       |                                          |
| Epoch 59/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7703 - loss: |
| 0.4985       |                                          |
| Epoch 60/150 |                                          |
| 18/18        | - 0s 3ms/step - accuracy: 0.7558 - loss: |
| 0.5444       |                                          |
| Epoch 61/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7404 - loss: |
| 0.5359       |                                          |
| Epoch 62/150 |                                          |
| 18/18 —      | - 0s 2ms/step - accuracy: 0.7296 - loss: |
| 0.5656       |                                          |
| Epoch 63/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7643 - loss: |
| 0.5179       |                                          |
| Epoch 64/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7075 - loss: |
| 0.5770       |                                          |
| Epoch 65/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7425 - loss: |
| 0.5180       |                                          |
| Epoch 66/150 |                                          |
| 18/18        | - 0s 2ms/step - accuracy: 0.7389 - loss: |
| 0.5451       |                                          |
| Epoch 67/150 |                                          |

| 18/18 —      | —— 0s 2ms/step - accuracy: 0.7635 - loss:     |
|--------------|-----------------------------------------------|
| 0.5084       | •                                             |
| Epoch 68/150 |                                               |
| 18/18        | —— 0s 2ms/step - accuracy: 0.7268 - loss:     |
| 0.5460       |                                               |
| Epoch 69/150 |                                               |
| 18/18        | —— 0s 2ms/step - accuracy: 0.7467 - loss:     |
| 0.5410       | •                                             |
| Epoch 70/150 |                                               |
| 18/18        | —— 0s 2ms/step - accuracy: 0.7459 - loss:     |
| 0.5315       | •                                             |
| Epoch 71/150 |                                               |
| 18/18        | —— 0s 2ms/step - accuracy: 0.7889 - loss:     |
| 0.5101       | • •                                           |
| Epoch 72/150 |                                               |
| 18/18        | —— 0s 2ms/step - accuracy: 0.7333 - loss:     |
| 0.5205       |                                               |
| Epoch 73/150 |                                               |
| 18/18        | 0s 2ms/step - accuracy: 0.7744 - loss:        |
| 0.5036       |                                               |
| Epoch 74/150 |                                               |
| 18/18        | 0s 2ms/step - accuracy: 0.7172 - loss:        |
| 0.5641       |                                               |
| Epoch 75/150 |                                               |
| 18/18        | —— 0s 2ms/step - accuracy: 0.7345 - loss:     |
| 0.5297       |                                               |
| Epoch 76/150 |                                               |
| 18/18        | 0s 2ms/step - accuracy: 0.7540 - loss:        |
| 0.5003       |                                               |
| Epoch 77/150 |                                               |
| 18/18        | 0s 2ms/step - accuracy: 0.7523 - loss:        |
| 0.5178       |                                               |
| Epoch 78/150 |                                               |
| 18/18        | 0s 2ms/step - accuracy: 0.7509 - loss:        |
| 0.5055       |                                               |
| Epoch 79/150 |                                               |
| 18/18        | <b>Os 2ms/step - accuracy: 0.7389 - loss:</b> |
| 0.5510       |                                               |
| Epoch 80/150 |                                               |
|              |                                               |

| 18/18 —      | —— 0s 2ms/step - accuracy: 0.7464 - loss: |
|--------------|-------------------------------------------|
| 0.5330       | •                                         |
| Epoch 81/150 |                                           |
| 18/18        | —— 0s 4ms/step - accuracy: 0.7178 - loss: |
| 0.5377       | <b>1</b>                                  |
| Epoch 82/150 |                                           |
| 18/18        | —— 0s 2ms/step - accuracy: 0.7065 - loss: |
| 0.5838       | 1                                         |
| Epoch 83/150 |                                           |
| 18/18        | —— 0s 2ms/step - accuracy: 0.7326 - loss: |
| 0.5747       | •                                         |
| Epoch 84/150 |                                           |
| 18/18        | —— 0s 2ms/step - accuracy: 0.7411 - loss: |
| 0.5718       | 1                                         |
| Epoch 85/150 |                                           |
| 18/18        | —— 0s 2ms/step - accuracy: 0.7313 - loss: |
| 0.6302       |                                           |
| Epoch 86/150 |                                           |
| 18/18        | —— 0s 2ms/step - accuracy: 0.7352 - loss: |
| 0.5402       | • •                                       |
| Epoch 87/150 |                                           |
| 18/18        | 0s 2ms/step - accuracy: 0.7502 - loss:    |
| 0.5175       | -                                         |
| Epoch 88/150 |                                           |
| 18/18        | 0s 2ms/step - accuracy: 0.7232 - loss:    |
| 0.5524       |                                           |
| Epoch 89/150 |                                           |
| 18/18        | 0s 2ms/step - accuracy: 0.7249 - loss:    |
| 0.5583       |                                           |
| Epoch 90/150 |                                           |
| 18/18 —      | 0s 2ms/step - accuracy: 0.7564 - loss:    |
| 0.5251       |                                           |
| Epoch 91/150 |                                           |
| 18/18        | 0s 2ms/step - accuracy: 0.7525 - loss:    |
| 0.4848       |                                           |
| Epoch 92/150 |                                           |
| 18/18        | 0s 2ms/step - accuracy: 0.7200 - loss:    |
| 0.5333       |                                           |
| Epoch 93/150 |                                           |
|              |                                           |

| 18/18 —       | - 0s 2ms/step - accuracy: 0.7700 - loss: |
|---------------|------------------------------------------|
| 0.4992        |                                          |
| Epoch 94/150  |                                          |
| 18/18 —       | - 0s 2ms/step - accuracy: 0.7563 - loss: |
| 0.5124        |                                          |
| Epoch 95/150  |                                          |
| 18/18         | - 0s 5ms/step - accuracy: 0.7918 - loss: |
| 0.4565        |                                          |
| Epoch 96/150  |                                          |
| 18/18         | - 0s 2ms/step - accuracy: 0.7253 - loss: |
| 0.5327        |                                          |
| Epoch 97/150  |                                          |
| 18/18         | - 0s 2ms/step - accuracy: 0.7681 - loss: |
| 0.4731        |                                          |
| Epoch 98/150  |                                          |
| 18/18         | - 0s 2ms/step - accuracy: 0.7563 - loss: |
| 0.5068        |                                          |
| Epoch 99/150  |                                          |
| 18/18         | - 0s 2ms/step - accuracy: 0.7770 - loss: |
| 0.4929        |                                          |
| Epoch 100/150 |                                          |
| 18/18 —       | - 0s 2ms/step - accuracy: 0.7342 - loss: |
| 0.5462        |                                          |
| Epoch 101/150 |                                          |
| 18/18 —       | - 0s 2ms/step - accuracy: 0.7210 - loss: |
| 0.5485        |                                          |
| Epoch 102/150 |                                          |
| 18/18         | - 0s 2ms/step - accuracy: 0.7474 - loss: |
| 0.5126        |                                          |
| Epoch 103/150 |                                          |
| 18/18         | - 0s 2ms/step - accuracy: 0.7680 - loss: |
| 0.5199        |                                          |
| Epoch 104/150 |                                          |
| 18/18         | - 0s 2ms/step - accuracy: 0.7530 - loss: |
| 0.5064        |                                          |
| Epoch 105/150 |                                          |
| 18/18         | - 0s 2ms/step - accuracy: 0.7746 - loss: |
| 0.5026        |                                          |
| Epoch 106/150 |                                          |

| 18/18         | — 0s 2ms/step - accuracy: 0.7992 - loss: |
|---------------|------------------------------------------|
| 0.4694        |                                          |
| Epoch 107/150 |                                          |
| 18/18         | — 0s 2ms/step - accuracy: 0.7494 - loss: |
| 0.5140        |                                          |
| Epoch 108/150 |                                          |
| 18/18         | — 0s 2ms/step - accuracy: 0.7442 - loss: |
| 0.5407        |                                          |
| Epoch 109/150 |                                          |
| 18/18 —       | — 0s 2ms/step - accuracy: 0.7394 - loss: |
| 0.5266        | -                                        |
| Epoch 110/150 |                                          |
| 18/18         | — 0s 4ms/step - accuracy: 0.7719 - loss: |
| 0.4795        | -                                        |
| Epoch 111/150 |                                          |
| 18/18         | — 0s 2ms/step - accuracy: 0.7351 - loss: |
| 0.5200        |                                          |
| Epoch 112/150 |                                          |
| 18/18         | — 0s 2ms/step - accuracy: 0.7625 - loss: |
| 0.4970        |                                          |
| Epoch 113/150 |                                          |
| 18/18         | — 0s 2ms/step - accuracy: 0.7815 - loss: |
| 0.4912        |                                          |
| Epoch 114/150 |                                          |
| 18/18         | — 0s 2ms/step - accuracy: 0.7550 - loss: |
| 0.4981        |                                          |
| Epoch 115/150 |                                          |
| 18/18         | — 0s 2ms/step - accuracy: 0.7752 - loss: |
| 0.4759        |                                          |
| Epoch 116/150 |                                          |
| 18/18         | — 0s 2ms/step - accuracy: 0.7665 - loss: |
| 0.4901        |                                          |
| Epoch 117/150 |                                          |
| 18/18         | — 0s 2ms/step - accuracy: 0.7712 - loss: |
| 0.4704        |                                          |
| Epoch 118/150 |                                          |
| 18/18 —       | — 0s 2ms/step - accuracy: 0.7220 - loss: |
| 0.5439        |                                          |
| Epoch 119/150 |                                          |

| 18/18         | - 0s 2ms/step - accuracy: 0.7663 - loss:        |
|---------------|-------------------------------------------------|
| 0.4747        | •                                               |
| Epoch 120/150 |                                                 |
| 18/18         | - 0s 2ms/step - accuracy: 0.7419 - loss:        |
| 0.5171        | •                                               |
| Epoch 121/150 |                                                 |
| 18/18 —       | - 0s 2ms/step - accuracy: 0.7474 - loss:        |
| 0.5315        | ·                                               |
| Epoch 122/150 |                                                 |
| 18/18         | - 0s 2ms/step - accuracy: 0.7596 - loss:        |
| 0.5100        |                                                 |
| Epoch 123/150 |                                                 |
| 18/18         | <b>-</b> 0s 2ms/step - accuracy: 0.7611 - loss: |
| 0.4954        |                                                 |
| Epoch 124/150 |                                                 |
| 18/18 —       | <b>-</b> 0s 4ms/step - accuracy: 0.7780 - loss: |
| 0.4855        |                                                 |
| Epoch 125/150 |                                                 |
| 18/18         | <b>-</b> 0s 2ms/step - accuracy: 0.7708 - loss: |
| 0.4956        |                                                 |
| Epoch 126/150 |                                                 |
| 18/18         | <b>–</b> 0s 2ms/step - accuracy: 0.7892 - loss: |
| 0.4946        |                                                 |
| Epoch 127/150 |                                                 |
| 18/18 —       | <b>-</b> 0s 2ms/step - accuracy: 0.7564 - loss: |
| 0.4991        |                                                 |
| Epoch 128/150 |                                                 |
|               | <b>-</b> 0s 2ms/step - accuracy: 0.7740 - loss: |
| 0.5154        |                                                 |
| Epoch 129/150 |                                                 |
| 18/18         | - 0s 2ms/step - accuracy: 0.7924 - loss:        |
| 0.4877        |                                                 |
| Epoch 130/150 |                                                 |
| 18/18         | <b>—</b> 0s 2ms/step - accuracy: 0.7559 - loss: |
| 0.4971        |                                                 |
| Epoch 131/150 | 0.2                                             |
| 18/18         | - 0s 2ms/step - accuracy: 0.7745 - loss:        |
| 0.4818        |                                                 |
| Epoch 132/150 |                                                 |

| 18/18 —       | - 0s 2ms/step - accuracy: 0.7583 - loss: |
|---------------|------------------------------------------|
| 0.4932        |                                          |
| Epoch 133/150 |                                          |
| 18/18         | - 0s 2ms/step - accuracy: 0.7677 - loss: |
| 0.4927        | <b>,</b>                                 |
| Epoch 134/150 |                                          |
| 18/18         | - 0s 2ms/step - accuracy: 0.7872 - loss: |
| 0.4741        |                                          |
| Epoch 135/150 |                                          |
| 18/18         | - 0s 2ms/step - accuracy: 0.7663 - loss: |
| 0.4600        |                                          |
| Epoch 136/150 |                                          |
| 18/18         | - 0s 4ms/step - accuracy: 0.7785 - loss: |
| 0.4928        |                                          |
| Epoch 137/150 |                                          |
| 18/18         | - 0s 3ms/step - accuracy: 0.7636 - loss: |
| 0.5001        |                                          |
| Epoch 138/150 |                                          |
| 18/18         | - 0s 2ms/step - accuracy: 0.7424 - loss: |
| 0.5203        |                                          |
| Epoch 139/150 |                                          |
| 18/18         | - 0s 2ms/step - accuracy: 0.7641 - loss: |
| 0.4943        |                                          |
| Epoch 140/150 |                                          |
| 18/18 —       | - 0s 2ms/step - accuracy: 0.7559 - loss: |
| 0.4887        |                                          |
| Epoch 141/150 |                                          |
| 18/18         | - 0s 2ms/step - accuracy: 0.7780 - loss: |
| 0.4835        |                                          |
| Epoch 142/150 |                                          |
| 18/18 —       | - 0s 2ms/step - accuracy: 0.7715 - loss: |
| 0.5056        |                                          |
| Epoch 143/150 |                                          |
| 18/18 —       | - 0s 2ms/step - accuracy: 0.7542 - loss: |
| 0.5170        |                                          |
| Epoch 144/150 |                                          |
| 18/18         | - 0s 2ms/step - accuracy: 0.7890 - loss: |
| 0.4876        |                                          |
| Epoch 145/150 |                                          |

| 18/18         | — 0s 2ms/step - accuracy: 0.8027 - loss:  |
|---------------|-------------------------------------------|
| 0.4567        |                                           |
| Epoch 146/150 |                                           |
| 18/18         | —— 0s 2ms/step - accuracy: 0.7647 - loss: |
| 0.5335        |                                           |
| Epoch 147/150 |                                           |
| 18/18         | —— 0s 2ms/step - accuracy: 0.7290 - loss: |
| 0.5359        |                                           |
| Epoch 148/150 |                                           |
| 18/18         | —— 0s 3ms/step - accuracy: 0.7641 - loss: |
| 0.5116        |                                           |
| Epoch 149/150 |                                           |
| 18/18         | —— 0s 2ms/step - accuracy: 0.7540 - loss: |
| 0.5059        |                                           |
| Epoch 150/150 |                                           |
| 18/18         | — 0s 2ms/step - accuracy: 0.7521 - loss:  |
| 0.5285        |                                           |





Assignment 10: Write a program to implementing with big data concepts using sample datasets & Setting up a Hadoop environment.

#### # Install Java

!sudo apt update

!sudo apt install openidk-8-jdk

#### # Download and extract Hadoop

!wget http://apache.mirrors.lucidnetworks.net/hadoop/common/hadoop-3.3.1/hadoop-3.3.1.tar.gz !tar -xzvf hadoop-3.3.1.tar.gz

!mv hadoop-3.3.1 /usr/local/hadoop

#### # Sample dataset (you can imagine it as a text file with large data)

dataset = """

Hadoop is a framework for processing large datasets.

It is used for distributed storage and distributed computing.

Hadoop is part of the Big Data ecosystem.

Hadoop helps process Big Data.

,,,,,,

```
# Save dataset to a file (simulating a big text file)
with open('/content/dataset.txt', 'w') as f:
  f.write(dataset)
from pyspark.sql import SparkSession
# Initialize Spark session
spark = SparkSession.builder.appName('WordCount').getOrCreate()
# Load the dataset into an RDD (Resilient Distributed Dataset)
rdd = spark.sparkContext.textFile('/content/dataset.txt')
# Perform word count
word_counts = rdd.flatMap(lambda line: line.split()) \
          .map(lambda word: (word.lower(), 1)) \
          .reduceByKey(lambda x, y: x + y)
# Collect and print the results
for word, count in word counts.collect():
  print(f'{word}: {count}')
# Stop the Spark session
spark.stop()
```

```
hadoop: 3
framework: 1
for: 2
large: 1
it: 1
used: 1
distributed: 2
storage: 1
and: 1
part: 1
of: 1
big: 2
ecosystem.: 1
helps: 1
data.: 1
is: 3
a: 1
processing: 1
datasets.: 1
computing.: 1
the: 1
data: 1
process: 1
```

#### Assignment 11: Write a program to implementing CRUD operations in MongoDB

```
pip install pymongo
from pymongo import MongoClient
# Connect to MongoDB server (default localhost:27017)
client = MongoClient("mongodb://localhost:27017/")
# Use the 'mydatabase' database and 'users' collection
db = client['mydatabase']
collection = db['users']
# CREATE operation: Insert a document
user_data = {
  'name': 'John Doe',
  'age': 30,
  'email': 'john.doe@example.com'
}
result = collection.insert_one(user_data)
print(f"Document inserted with ID: {result.inserted_id}")
# READ operation: Find a single document by name
user = collection.find one({"name": "John Doe"})
print("Found user:", user)
# UPDATE operation: Update the user's age
update_result = collection.update_one(
  {"name": "John Doe"},
  {"$set": {"age": 31}}
)
print(f"Documents matched: {update_result.matched_count}, Documents modified:
{update_result.modified_count}")
# DELETE operation: Delete a user by name
delete_result = collection.delete_one({"name": "John Doe"})
print(f"Documents deleted: {delete_result.deleted_count}")
```

```
Collecting pymongo
   Downloading pymongo-4.11.2-cp312-cp312-win amd64.whl.metadata (22 kB)
 Collecting dnspython<3.0.0,>=1.16.0 (from pymongo)
   Downloading dnspython-2.7.0-py3-none-any.whl.metadata (5.8 kB)
 Downloading pymongo-4.11.2-cp312-cp312-win_amd64.whl (882 kB)
    ----- 0.0/882.2 kB ? eta -:--:-
    ----- 882.2/882.2 kB 19.4 MB/s eta 0:00:00
 Downloading dnspython-2.7.0-py3-none-any.whl (313 kB)
 Installing collected packages: dnspython, pymongo
 Successfully installed dnspython-2.7.0 pymongo-4.11.2
 Note: you may need to restart the kernel to use updated packages.
Document inserted with ID: 67d270cb7c6068e82f03a444
Found user: {'_id': ObjectId('67d270cb7c6068e82f03a444'), 'name': 'John Doe', 'age': 30, 'email':
'john.doe@example.com'}
Documents matched: 1, Documents modified: 1
Documents deleted: 1
```

# Assignment 12: Write a program to implementing with NLTK: Tokenization, stemming, and lemmatization

```
pip install nltk
import nltk

# Download the 'punkt' tokenizer
nltk.download('punkt')

import nltk

# Download the 'punkt_tab' resource, which is required for tokenization
nltk.download('punkt_tab')

# Download other necessary resources for lemmatization and stop words
nltk.download('wordnet')
nltk.download('stopwords')

from nltk.tokenize import word_tokenize
from nltk.stem import PorterStemmer
```

#### from nltk.stem import WordNetLemmatizer

# Sample text for demonstration

```
Lemmatization are important tasks."
# Tokenization: Split text into words
tokens = word_tokenize(text)
print("Tokens:", tokens)
# Stemming: Reduce words to their root form using Porter Stemmer
stemmer = PorterStemmer()
stemmed_words = [stemmer.stem(word) for word in tokens]
print("Stemmed words:", stemmed_words)
# Lemmatization: Reduce words to their base form using WordNet Lemmatizer
lemmatizer = WordNetLemmatizer()
lemmatized_words = [lemmatizer.lemmatize(word) for word in tokens]
print("Lemmatized words (default pos=noun):", lemmatized_words)
# Optional: Lemmatization with POS tagging (verbs, adjectives, etc.)
lemmatized verbs = [lemmatizer.lemmatize(word, pos='v') for word in tokens]
print("Lemmatized words (as verbs):", lemmatized_verbs)
Output:
Requirement already satisfied: nltk in c:\users\imrd\anaconda3\lib\site-packages (3.9.1)
Requirement already satisfied: click in c:\users\imrd\anaconda3\lib\site-packages (from nltk) (8.1.7)
Requirement already satisfied: joblib in c:\users\imrd\anaconda3\lib\site-packages (from nltk) (1.4.2)
Requirement already satisfied: regex>=2021.8.3 in c:\users\imrd\anaconda3\lib\site-packages (from nltk) (2024.9.11)
Requirement already satisfied: tqdm in c:\users\imrd\anaconda3\lib\site-packages (from nltk) (4.66.5)
Requirement already satisfied: colorama in c:\users\imrd\anaconda3\lib\site-packages (from click->nltk) (0.4.6)
Note: you may need to restart the kernel to use updated packages.
[nltk data] Downloading package punkt to
```

text = "NLTK is a great toolkit for Natural Language Processing. Tokenization, Stemming, and

True

[nltk\_data]

C:\Users\IMRD\AppData\Roaming\nltk data...

[nltk\_data] Package punkt is already up-to-date!

```
[nltk_data] Downloading package punkt_tab to
              C:\Users\IMRD\AppData\Roaming\nltk_data...
[nltk_data]
[nltk data] Unzipping tokenizers\punkt tab.zip.
[nltk_data] Downloading package wordnet to
[nltk_data]
              C:\Users\IMRD\AppData\Roaming\nltk_data...
[nltk_data] Package wordnet is already up-to-date!
[nltk_data] Downloading package stopwords to
              C:\Users\IMRD\AppData\Roaming\nltk_data...
[nltk_data]
[nltk_data] Package stopwords is already up-to-date!
Tokens: ['NLTK', 'is', 'a', 'great', 'toolkit', 'for', 'Natural', 'Language', 'Processing', '.',
'Tokenization', ',', 'Stemming', ',', 'and', 'Lemmatization', 'are', 'important', 'tasks', '.']
Stemmed words: ['nltk', 'is', 'a', 'great', 'toolkit', 'for', 'natur', 'languag', 'process', '.', 'token', ',',
'stem', ',', 'and', 'lemmat', 'are', 'import', 'task', '.']
Lemmatized words (default pos=noun): ['NLTK', 'is', 'a', 'great', 'toolkit', 'for', 'Natural',
'Language', 'Processing', '.', 'Tokenization', ',', 'Stemming', ',', 'and', 'Lemmatization', 'are',
'important', 'task', '.']
```

Lemmatized words (as verbs): ['NLTK', 'be', 'a', 'great', 'toolkit', 'for', 'Natural', 'Language',

'Processing', '.', 'Tokenization', ',', 'Stemming', ',', 'and', 'Lemmatization', 'be', 'important', 'task', '.']