School of Computer Science and Engineering Faculty of Engineering

- Site Home
- > Announcements (1)
- > User Guides

> My courses > U... > E... > C... > COMP9020-5184_00144 > General > Quiz 4 - Week 8 - due Thursday, 3 May, 11:59pm

Started on Monday, 30 April 2018, 4:10 PM

State Finished

Completed on Thursday, 3 May 2018, 12:03 PM

Time taken 2 days 19 hours

Grade 4.00 out of 4.00 (100%)

Question 1

Correct

Mark 0.50 out of 0.50

Let G be a graph obtained by adding two edges to C_4 . What is the clique number of G?

Answer: 4

 C_4 has 4 vertices and 4 edges, hence after adding 2 edges you obtain a graph with 4 vertices and 6 edges. The only such graph is K_4 , with a clique number of 4.

Refer to lecture 6, slides 20,29

Mark 0.50 out of 0.50	Select one or more: $K_{2,3}$ $K_{3,3}$ with one edge removed A tree with 3 vertices The graph on slide 16 (lecture 6)
	The graph on slide 16 (lecture 6)
	Not true. The graph has 4 vertices of odd degree, hence cannot have an Euler path.
	$K_{3,3}$ with one edge removed
	Not true. The resulting graph still has 4 vertices of degree 3, hence cannot have an Euler path.
	A tree with 3 vertices
	True. The graph has 2 vertices of degree 1 and 1 vertex of degree 2, hence must have an Euler path.
	$K_{2,3}$
	True. The graph has 2 vertices of degree 3 and 3 vertices of degree 2, hence must have an Euler path.
	Refer to lecture 6, slides 17,20
Question 3 Correct	What is the chromatic number of the graph on slide 16 (lecture 6)?

The graph has a 3-clique, hence 3 colours are necessary. It is easy to find such a 3colouring, hence $\chi(G) = 3$.

Refer to lecture 6, slides 20, 27-29

Answer: 3

Tick all graphs that have an Euler path.

Question 2

Mark 0.50 out of

0.50

Correct

Question 4

Correct

Mark 0.50 out of 0.50

Tick all graphs that have a Hamiltonian path.

Select one or more:

 $\supset K_{1,4,1}$

 \checkmark $K_{2,2,4}$

$K_{2,2,4}$

True. If you start with one of the 4 vertices in the largest partition, it is easy to find a path that visits all vertices.

 $K_{1,1,3}$

True. Start with one of the 3 vertices in the largest partition, then come back to this partition and finish with the two remaining vertices.

 $K_{2,3}$

True. Start with one of the 3 vertices in the larger partition.

 $K_{1,4,1}$

Not true. Even if you start with one of the 4 vertices in the largest partition, you can visit at most 3 of them before you have to revisit a vertex.

Refer to lecture 6, slides 20, 23-26

Question 5 Correct	Tick all statements that are true.
Mark 0.50 out of	Select one or more:
0.50	All graphs whose clique number is 2 are planar.
	✓ A forest is always planar. ✓
	All graphs whose chromatic number is 4 are planar.
	✓ All graphs with 6 nodes and 8 edges are planar. ✓
	A forest is always planar.
	True. Trees are acyclic, hence cannot contain a subdivison of K_5 or $K_{3,3}$ (both of which have cycles).
	All graphs with 6 nodes and 8 edges are planar.
	True. K_5 requires 10 edges and $K_{3,3}$ 9 edges, hence there can be no nonplanar graph with only 8 edges.
	All graphs whose clique number is 2 are planar.
	Not true. $K_{3,3}$ has no 3-cliques but is not planar.
	All graphs whose chromatic number is 4 are planar.
	Not true. $K_{3,3}$ has chromatic number 2 but is not planar.
	Refer to lecture 6, slides 35-40
Question 6	Let G be an undirected graph on 15 vertices with exactly two connected components.
Correct	What is the maximum possible number of edges in G?
Mark 0.50 out of	

Answer: 91

Let the two connected components have n and m vertices respectively, with n+m=15. The maximum number of edges is achieved by creating two complete graphs ${\it K}_n$ and K_m with n(n-1)/2+m(m-1)/2 edges overall. This number is maximal for n=14, m=1, which gives 91 edges.

Refer to lecture 6, slides 6-7, 20

Question 7

Correct

Mark 0.50 out of 0.50

We would like to prove that P(n) for all $n \ge 0$. Tick all conditions that imply this conclusion.

Select one or more:

- P(0) and P(1) and $\forall n \geq 1 (P(n) \Rightarrow P(n+2))$
- $varP(0) \text{ and } P(1) \text{ and } \forall n \ge 0 \left(P(n) \land P(n+1) \Rightarrow P(n+2) \right)$
- otag P(0) and P(1) and $\forall n \geq 1 \ (P(n) \Rightarrow P(2 \cdot n) \land P(2 \cdot n + 1))$
- $P(0) \text{ and } \forall n \ge 1 \left(P(n-1) \Rightarrow P(n+1) \land P(n+2) \right)$

$$P(0)$$
 and $P(1)$ and $\forall n \geq 1 (P(n) \Rightarrow P(2 \cdot n) \land P(2 \cdot n + 1))$

True. All cases $n \ge 0$ are covered.

$$P(0)$$
 and $P(1)$ and $\forall n \ge 0 (P(n) \land P(n+1) \Rightarrow P(n+2))$

True. All cases $n \ge 0$ are covered.

$$P(0)$$
 and $\forall n \geq 1 (P(n-1) \Rightarrow P(n+1) \land P(n+2))$

Not true. From P(0) it follows that P(2) and P(3), but the case n=1 is not covered.

$$P(0)$$
 and $P(1)$ and $\forall n \ge 1 (P(n) \Rightarrow P(n+2))$

Not true. The "first" instance of the implication is $P(1) \Rightarrow P(3)$, hence the case P(2) cannot be derived.

Refer to lecture 7, slides 17-28

Question 8

Correct

Mark 0.50 out of 0.50

Suppose $f, g : \{a, b\}^* \longrightarrow \{a, b\}^*$ are recursively defined as follows:

- $f(\lambda) = b$
- $g(\lambda) = a$
- $f(a\omega) = f(\omega)g(\omega)$
- $f(b\omega) = g(\omega)f(\omega)$
- $g(a\omega) = g(b\omega) = f(\omega)$

What is f(aab)?

Answer: abbab

 $f(aab) = f(ab)g(ab) = f(b)g(b)f(b) = g(\lambda)f(\lambda)f(\lambda)g(\lambda)f(\lambda) = abbab$

For the basic definition of the concatenation operation on words, refer to lecture 1, slide 38