Zero-Field Spectral Cosmology (ZFSC): Хроника исследовательского диалога человека и искусственного интеллекта

Евгений Монахов и ИИ-партнёр VOSCOM Research Initiative

Сентябрь 2025

Аннотация

Мы фиксируем геометрическое ядро ZFSC: дискретизация Calabi–Yau (CY), спектр графового лапласиана и узловые множества собственных функций как базовые строительные блоки. Физическая интерпретация строится снизу вверх: (i) 1D волна \rightarrow (ii) 0D осциллятор (сингулярность и вакуумная флуктуация) \rightarrow (iii) "предгеометрия" ниже 0D со спектром как первичной сущностью. На этом основании формулируются аксиомы ZFSC и мосты к поколениям, CKM/PMNS и инфляции.

1 Геометрическое ядро: от СҮ к графу и спектру

Пусть X — компактное СҮ-многообразие. Рассмотрим дискретизацию X и граф G = (V, E), построенный по узловым множеествам собственных функций лапласиана на X:

$$\Delta \phi_i = \lambda_i \phi_i, \quad \mathcal{N}(\phi_i) \equiv \{x \in X : \phi_i(x) = 0\}.$$

Выбирая характерные точки $\mathcal{N}(\phi_j)$ (пересечения, экстремальные гребни/спады) в качестве вершин V и локальные соседства как рёбра E, получаем графовый лапласиан L(G), спектр которого $\{\mu_n\}$ наследует геометрию X. /* место для твоей иллюстрации узловых множеств */

Ремарка. "Узлы волн как вершины графа" — это был мой ключевой образ: гребни/спады и их схема связности $eu\partial sm$ кривизну. Этот ход и стал мостом от геометрии к спектру.

Далее вводим матрицу связей/гамильтониан H, порождённый L(G) и структурными параметрами (аналог калибровочных/геометрических деформаций):

$$H = \alpha L(G) + \beta I + \sum_{a=1}^{m} \gamma_a \Pi_a,$$

где Π_a — проекторы на подсекторы (u,d, ℓ , ν и бозонный блок), а $(\alpha, \beta, \gamma_a)$ кодируют "луковичные" уровни/слои и деформации. Собственные значения $\lambda_n(H)$ интерпретируются как энергии/массы мод.

2 Прототип: 1D волна и редукция к 0D осциллятору

2.1 1D волна как генератор узлов

Для бесконечной струны:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, \qquad u(x,t) = A\cos(kx - \omega t), \quad \omega = ck.$$

Нули u(x,t) при фиксированном t задают узловой набор вдоль x с шагом π/k — дискретное "зерно" будущего графа.

2.2 0D предельный срез (сингулярность/вакуум)

Срез 1D до 0D даёт чистую временную динамику u(t) и гармонический осциллятор:

$$\ddot{u} + \omega^2 u = 0$$
, $E_{cl} = \frac{1}{2}m\dot{u}^2 + \frac{1}{2}m\omega^2 u^2 = \frac{1}{2}mA^2\omega^2$.

В квантовом виде:

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{u}^2, \qquad E_n = \hbar\omega(n + \frac{1}{2}), \ n = 0, 1, 2, \dots$$

Это модель локализованной энергии (флуктуации вакуума) в точке — прообраз сингулярности без геометрии, но со спектром.

Ремарка. "Точка без пространства, но не без жизни": амплитуда/энергия *хранит* след 1D возбуждения. Я увидел это как способ *включить время* из чистой флуктуации.

3 Ниже 0D: предгеометрический спектр

Если "заморозить" время, остаётся чистый спектр как первичная сущность:

$$E_n = \hbar\omega (n + \varepsilon), \quad \varepsilon \in [0, \frac{1}{2}],$$

где ω наследует шкалу от высших возбуждений (например, 1D), а ε играет роль регуляризованной нулевой точки. Здесь $cne\kappa mp$ предшествует геометрии; при разворачивании измерений он индуцирует моды H.

Ремарка. "Скрижали пустоты": сначала спектр, потом пространство-время. Луковица растёт из частот, а не наоборот.

4 ZFSC как следствие геометрического ядра

4.1 Аксиомы в геометрической редакции

- **(А1) Нулевой уровень энтропии.** Предгеометрическое состояние носит чистый спектральный характер (минимальная энтропия).
- **(А2) Матрица связей.** Реальность проявляется через H (графовый/спектральный Гамильтониан), собств. значения которого дают энергетические шкалы.

- (A3) Луковичность. *Н* имеет вложенную (многоуровневую) структуру блоков и деформаций, дающую иерархии.
- (A4) Инварианты спектра. Постоянные природы соответствуют спектральным инвариантам (зазоры, плотности, устойчивые плато).
- (A5) Узлы граф кривизна. Узловые множества собственных функций порожедают дискретную кривизну и, следовательно, физику.

5 Поколения как первые три положительные моды

Для секторов $f \in \{\nu, \ell, u, d\}$:

$$m_k^{(f)} \sim \lambda_k^{(f)}(H), \qquad k = 1, 2, 3,$$

где три устойчивые положительные моды объясняют существование трёх поколений. /* сюда вставим твои численные плато и коэффициенты c_{ν} , c_{ℓ} , c_{ℓ} , c_{d} */

6 CKM/PMNS из геометрических деформаций

Пусть U_f диагонализует H в секторе f. Тогда

$$CKM = U_u^{\dagger} U_d, \qquad PMNS = U_{\ell}^{\dagger} U_{\nu}.$$

Малые деформации между H_u и H_d дают СКМ $\approx I$ (малые углы), а сильнее различающиеся геометрии ℓ/ν порождают большие углы PMNS. /* место для твоих конкретных численных матриц */

7 Инфляция как раскалывание спектра

Переход от предгеометрии к 0D+1 и далее индуцируется флуктуацией ΔE :

$$\Delta E \, \Delta t \ \gtrsim \ \tfrac{\hbar}{2} \quad \Rightarrow \quad a(t) \ \propto \ \exp(\kappa \, \Delta E \, t) \, ,$$

где эффективное H-подобное скалярное поле берёт начало из мод H предгеометрического спектра, а раннее расширение читается как packanывanue (разрежение) низколежащего кластера собственных значений. /* место для твоей формулы e-folds и численной оценки */

8 Бозонный блок: нулевая и отрицательная мода

Нулевая мода в бозонном блоке H интерпретируется как безмассовый переносчик (кандидат на гравитон), отрицательная — как сигнал неустойчивости (тахион) и реструктуризации спектра/геометрии. /* место для твоих диаграмм плотности спектра */

9 Заключение

Геометрическая дорожка (СY \to узлы \to граф \to спектр \to H) объясняет основные феномены ZFSC — поколения, матрицы смешивания, инфляцию без явного поля и бозонный минимум — и естественно согласуется с аксиомой нулевой энтропии и луковичной структурой H.