PH 245 Homework 4: Principal Components Analysis and Factor Analysis

Kunal Mishra

Problem 1

Country	100m	200m	400m	800m	1500m	3000m	Marathon	_
ARG	11.57	22.94	52.50	2.05	4.25	9.19	150.32	_
AUS	11.12	22.23	48.63	1.98	4.02	8.63	143.51	
AUT	11.15	22.70	50.62	1.94	4.05	8.78	154.35	
BEL	11.14	22.48	51.45	1.97	4.08	8.82	143.05	
BER	11.46	23.05	53.30	2.07	4.29	9.81	174.18	
BRA	11.17	22.60	50.62	1.97	4.17	9.04	147.41	
Country	100m	200m	400m	800m	1500m	5000m	10000m	Marathon
Country Argentina			400m 46.18	800m	1500m 3.68	5000m 13.33	10000m 27.65	Marathon 129.57
Argentina	10.23	20.37	46.18	1.77	3.68	13.33	27.65	129.57
Argentina Australia	10.23 9.93	20.37	46.18 44.38	1.77 1.74	3.68 3.53	13.33 12.93	27.65 27.53	129.57 127.51
Argentina Australia Austria	10.23 9.93 10.15	20.37 20.06 20.45	46.18 44.38 45.80	1.77 1.74 1.77	3.68 3.53 3.58	13.33 12.93 13.26	27.65 27.53 27.72	129.57 127.51 132.22
Argentina Australia Austria Belgium	10.23 9.93 10.15 10.14	20.37 20.06 20.45 20.19	46.18 44.38 45.80 45.02	1.77 1.74 1.77 1.73	3.68 3.53 3.58 3.57	13.33 12.93 13.26 12.83	27.65 27.53 27.72 26.87	129.57 127.51 132.22 127.20

Problem 1A

```
In [234]:
          # Standardizing and Centering data
                  = function(lst) {lst - mean(lst)}
          standardize = function(lst) {center(lst) / sd(lst)}
          standardizedWomen = apply(women[,-1], 2, center)
          standardizedMen
                           = apply(men[,-1], 2, center)
          # Finding the correlations among all variables
          sampleCorrelationMatrix = cor(standardizedWomen)
          sampleCorrelationMatrix
```

	100m	200m	400m	800m	1500m	3000m	Marathon
100m	1.0000000	0.9410886	0.8707802	0.8091758	0.7815510	0.7278784	0.6689597
200m	0.9410886	1.0000000	0.9088096	0.8198258	0.8013282	0.7318546	0.6799537
400m	0.8707802	0.9088096	1.0000000	0.8057904	0.7197996	0.6737991	0.6769384
800m	0.8091758	0.8198258	0.8057904	1.0000000	0.9050509	0.8665732	0.8539900
1500m	0.7815510	0.8013282	0.7197996	0.9050509	1.0000000	0.9733801	0.7905565
3000m	0.7278784	0.7318546	0.6737991	0.8665732	0.9733801	1.0000000	0.7987302
Marathon	0.6689597	0.6799537	0.6769384	0.8539900	0.7905565	0.7987302	1.0000000

```
In [235]: # Finding the eigenvalues and vectors of the correlation matrix
          sampleEig = eigen(sampleCorrelationMatrix)
          sampleEig
```

\$values

5.80762446399961 0.628693422921518 0.279334571750058 0.124554715461547 0.0909717393558767

\$vectors

```
-0.3777657 -0.4071756 -0.1405803 0.58706293 -0.16706891 -0.53969730
                                                                      0.08893934
-0.3832103 -0.4136291 -0.1007833
                                 0.19407501
                                              0.09350016
                                                          0.74493139
                                                                      -0.26565662
-0.3680361 -0.4593531 0.2370255 -0.64543118
                                              0.32727328 -0.24009405
                                                                      0.12660435
-0.3947810 0.1612459 0.1475424
                                 -0.29520804
                                             -0.81905467
                                                          0.01650651
                                                                      -0.19521315
-0.3892610
           0.3090877 -0.4219855 -0.06669044
                                              0.02613100
                                                          0.18898771
                                                                      0.73076817
                                                                      -0.57150644
-0.3760945
           0.4231899 -0.4060627
                                 -0.08015699
                                              0.35169796 -0.24049968
-0.3552031
           0.3892153 0.7410610
                                 0.32107640
                                              0.24700821
                                                          0.04826992
                                                                      0.08208401
```

Problem 1B

```
# greatest proportion of the total variance of any two eigenvalues
           firstTwoPrincipalComponents = sampleEig$vectors[,1:2]
           rownames(firstTwoPrincipalComponents) = colnames(standardizedWomen)
           firstTwoPrincipalComponents
               100m -0.3777657 -0.4071756
               200m -0.3832103 -0.4136291
               400m -0.3680361 -0.4593531
               800m -0.3947810
                              0.1612459
              1500m -0.3892610
                              0.3090877
              3000m -0.3760945
                              0.4231899
            Marathon -0.3552031
                              0.3892153
In [237]:
           proportionOfTotalVariance = {
               sum(sampleEig$values[1:2]) / sum(sampleEig$values)
```

The first two eigenvalues are the largest and thus represent the

In [236]:

Problem 1C

0.919473983845877

```
In [238]: # Interpreting the two principal components
pcaFit = princomp(standardizedWomen)

# Examining the correlation between the original variables and PCs
cor(x=standardizedWomen, y=pcaFit$scores)[,1:2]
```

	Comp.1	Comp.2
100m	-0.6776554	-0.58409087
200m	-0.6892444	-0.62645840
400m	-0.6874604	-0.72416308
800m	-0.8587726	-0.30930106
1500m	-0.7950136	-0.26725024
3000m	-0.8021609	-0.19347819
Marathon	-0.9998947	0.01448035

proportionOfTotalVariance

In examining the results of the correlations between each Principal Component and the original variables, it's clear that PC1 correlates strongly with and thus likely *relies* on the Marathon variable. If Marathon time increases, it is likely that the times for the other race distances also increases.

In PC2, as expected, Marathon lacks almost any correlation at all. This makes sense because our principal components are orthagonal, so things that are highly correlated with one should (in theory) be similarly uncorrelated with the other principal components. With PC2, the strongest correlation is from the 400m race and this fulfills much of the same role as Marathon in PC1 -- as the 400m time increases, other variables correlated with PC2 are also likely to varying degrees to increase, based on the strength of that correlation.

When we look at pcaFit's loadings many of these suspicions are confirmed. In R, 'loadings' are different from 'correlational loadings' (check out this link if you're interested: https://stats.stackexchange.com/questions/104306/what-is-the-difference-between-loadings-and-correlation-loadings-in-pca-and

(https://stats.stackexchange.com/questions/104306/what-is-the-difference-between-loadings-and-correlation-loadings-in-pca-and)), which is why pcaFit's loadings don't necessarily represent the correlations between principal components and original variables

```
In [216]: pcaFit$loadings
```

```
Loadings:
        Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
100m
               -0.115 -0.173 0.292 0.933
200m
               -0.290 -0.387 0.795 -0.354
400m
        -0.108 -0.938 0.226 -0.238
800m
                                          0.377 - 0.925
1500m
                     -0.268
                                          0.883 0.370
3000m
                     -0.834 - 0.471
                                         -0.265
Marathon -0.992 0.119
              Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
              1.000 1.000 1.000 1.000 1.000 1.000 1.000
SS loadings
Proportion Var 0.143 0.143 0.143 0.143 0.143 0.143
Cumulative Var 0.143 0.286 0.429 0.571 0.714 0.857 1.000
```

Problem 1D

```
In [217]: # Adding country names back to scores
```

```
PCWomen = cbind(women[,1], as.data.frame(pcaFit$scores))
colnames(PCWomen)[1] = "Country"
head(PCWomen)
```

Comp.7	Comp.6	Comp.5	Comp.4	Comp.3	Comp.2	Comp.1	Country
0.0005619794	0.059231461	0.25592070	-0.28983107	-0.06070576	-0.8550659	3.2173904	ARG
-0.0240115435	0.009042302	0.11270809	0.14908698	-0.25585771	2.2790525	10.4529924	AUS
0.0385870352	-0.052436540	-0.03281219	0.09185523	0.20234078	1.5468370	-0.5440192	AUT
0.0150943480	0.003534003	0.03304306	-0.41590033	0.09198800	-0.5138938	10.5872958	BEL
-0.0062352914	-0.082132802	0.10460656	-0.48505882	0.28974010	1.1584461	-20.5753000	BER
0.0294356049	0.008477327	0.01147622	-0.18099578	-0.22250549	0.7240189	6.3348740	BRA

```
In [218]:
```

```
# Sorting countries based only on PC1
dimReducedWomen = PCWomen[,1:2]
head(dimReducedWomen)
dimReducedWomenOrdered = dimReducedWomen[order(-dimReducedWomen[,2]),]
head(dimReducedWomenOrdered)
```

Country	Comp.1
ARG	3.2173904
AUS	10.4529924
AUT	-0.5440192
BEL	10.5872958
BER	-20.5753000
BRA	6.3348740

	Country	Comp.1
19	GBR	18.58051
29	KEN	15.09708
9	CHN	14.45185
28	JPN	14.11345
54	USA	12.81715
18	GER	12.63928

In examining the results based on ordering countries by first principal component scores, we get countries that would intuitively be the best in the world at track.

Problem 1E

100m	200m	400m	800m	1500m	3000m	Marathon
8.643042	8.718396	7.619048	6.504065	5.882353	5.440696	4.678353
8.992806	8.996851	8.225375	6.734007	6.218905	5.793743	4.900355
8.968610	8.810573	7.902015	6.872852	6.172840	5.694761	4.556203
8.976661	8.896797	7.774538	6.768190	6.127451	5.668934	4.916113
8.726003	8.676790	7.504690	6.441224	5.827506	5.096840	4.037490
8.952551	8.849558	7.902015	6.768190	5.995204	5.530973	4.770708

100m	200m	400m	800m	1500m	3000m	Marathon
-0.1717296	0.05398771	-0.09301975	-0.1001494	-0.107334149	-0.10200509	0.05808862
0.1780338	0.33244299	0.51330791	0.1297923	0.229218382	0.25104126	0.28009115
0.1538379	0.14616458	0.18994764	0.2686378	0.183152416	0.15205932	-0.06406079
0.1618887	0.23238905	0.06247102	0.1639751	0.137763890	0.12623274	0.29584902
-0.0887685	0.01238148	-0.20737694	-0.1629906	-0.162181263	-0.44586154	-0.58277427
0.1377795	0.18514941	0.18994764	0.1639751	0.005516747	-0.01172805	0.15044333

```
In [246]:
```

Running PCA on the new dataset and comparing to the previous set of loadings
pcaFitWomenSpeeds = princomp(standardizedWomenSpeeds)

Examining the correlation between the original variables and PCs
cor(x=standardizedWomen, y=pcaFitWomenSpeeds\$scores)[,1:2]

pcaFitWomenSpeeds\$loadings
summary(pcaFitWomenSpeeds)

	Comp.1	Comp.2
100m	0.8919935	0.34956718
200m	0.9081678	0.36064894
400m	0.8779449	0.39229996
800m	0.9491733	-0.07404633
1500m	0.9410317	-0.19258749
3000m	0.9107122	-0.28356140
Marathon	0.8653738	-0.30107320

Loadings:

```
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
100m
                              0.585
                                            0.624 0.138
        -0.310 - 0.376
200m
        -0.357 - 0.434
                              0.323
                                           -0.689 - 0.311
        -0.379 -0.519 0.274 -0.667 0.187 0.124 0.132
400m
                             -0.128 -0.894 0.136 -0.265
800m
        -0.299
1500m
        -0.391 0.211 -0.435
                                    -0.127 -0.236 0.734
        -0.460 0.396 -0.427 -0.184 0.357 0.199 -0.499
3000m
Marathon -0.423 0.445 0.730 0.237 0.136
```

```
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Proportion Var 0.143 0.143 0.143 0.143 0.143 0.143 0.143 0.143 Cumulative Var 0.143 0.286 0.429 0.571 0.714 0.857 1.000
```

Importance of components:

```
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Standard deviation 0.8476961 0.29065087 0.18100245 0.12124349 0.09320466 Proportion of Variance 0.8285389 0.09740377 0.03777473 0.01694921 0.01001631 Cumulative Proportion 0.8285389 0.92594269 0.96371742 0.98066663 0.99068294 Comp.6 Comp.7
```

Standard deviation 0.077803348 0.045025448
Proportion of Variance 0.006979577 0.002337484
Cumulative Proportion 0.997662516 1.000000000

```
In [243]: # Adding country name back to scores
PCWomenSpeeds = cbind(women[,1], as.data.frame(pcaFitWomenSpeeds$scores))
colnames(PCWomenSpeeds)[1] = "Country"
head(PCWomenSpeeds)

# Sorting countries based only on PC1
dimReducedWomenSpeeds = PCWomenSpeeds[,1:2]
head(dimReducedWomenSpeeds)
dimReducedWomenSpeedsOrdered = {
    dimReducedWomenSpeeds[order(dimReducedWomenSpeeds[,2]),]
}
head(dimReducedWomenSpeedsOrdered)
```

Country	Comp.1	Comp.2	Comp.3	Comp.4	Comp.5	Comp.6	Comp.7
ARG	0.1635073	0.04692099	0.11381196	0.03027142	0.05102581	-0.16919941	-0.04848137
AUS	-0.7307601	-0.19835239	0.09838941	-0.13986402	0.09675452	-0.06346773	0.02394173
AUT	-0.3667764	-0.13521031	-0.15313758	-0.07710711	-0.17103151	0.04762582	-0.01799413
BEL	-0.4429985	0.02515002	0.09155928	0.14629341	-0.05270801	-0.06033366	-0.01897176
BER	0.6651627	-0.34274202	-0.22271265	0.06416636	-0.11470105	-0.11505330	0.04795862
BRA	-0.2903061	-0.15852299	0.14326748	0.03018820	-0.08357439	-0.01153138	-0.03272404

Country	Comp.1
ARG	0.1635073
AUS	-0.7307601
AUT	-0.3667764
BEL	-0.4429985
BER	0.6651627
BRA	-0.2903061

	Country	Comp.1
54	USA	-1.201996
9	CHN	-1.176150
45	RUS	-1.123772
18	GER	-1.122766
19	GBR	-0.985712
17	FRA	-0.857734

So... our results are a bit different, but not drastically so. One thing I'm somewhat uncertain about is whether I needed to standardize, rather than just center my data before running princomp on it -- in both cases, I just centered so at least I kept it consistent, but I think there's something to be said about the need for standardization here with different units (seconds vs minutes).

In terms of interpretation, the components are actually quite different, possibly due to our shift in units (essentially de facto standardization by switching everything to m/s). That said, we still acheived roughly the same results (still matching intuition) because the first two PCs account for roughly the same variation in the dataset, albeit in subtly different ways.

Problem 1F

```
In [248]:
```

```
# Running PCA on the new dataset
pcaFitMen = princomp(standardizedMen)
```

Examining the correlation between the original variables and PCs cor(x=standardizedMen, y=pcaFitMen\$scores)[,1:2]

	Comp.1	Comp.2
100m	-0.6863014	-0.48250693
200m	-0.7307341	-0.49239083
400m	-0.7257308	-0.68042774
800m	-0.8138640	-0.28621813
1500m	-0.8833311	-0.21656608
5000m	-0.9495998	-0.16363965
10000m	-0.9590991	-0.13293332
Marathon	-0.9997660	0.01998497

In [249]: # Examining loadings and proportions of variance pcaFitMen\$loadings summary(pcaFitMen)

Loadings:

```
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
                             -0.324 - 0.312 \ 0.883
100m
200m
                             -0.897 0.172 -0.292
                -0.253
400m
         -0.114 -0.916 0.253 0.288
800m
                                           -0.127 0.194 -0.971
1500m
                                    -0.206 -0.110 0.945 0.215
5000m
               -0.117 -0.377
                                    -0.826 -0.305 -0.246
10000m
        -0.175 -0.209 -0.873
                                     0.382 0.120
Marathon -0.974 0.167 0.155
```

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 SS loadings Proportion Var 0.125 0.125 0.125 0.125 0.125 0.125 0.125 Cumulative Var 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000

Importance of components:

Comp.1 Comp.2 Comp.3 Standard deviation 9.1072660 1.05839941 0.473844266 0.2812010715 Proportion of Variance 0.9828776 0.01327463 0.002660692 0.0009370383 Cumulative Proportion 0.9828776 0.99615224 0.998812929 0.9997499674 Comp.5 Comp.6 Comp.7

Standard deviation 0.1075227532 7.836237e-02 5.484458e-02 1.974378e-02 Proportion of Variance 0.0001370011 7.276768e-05 3.564436e-05 4.619384e-06 Cumulative Proportion 0.9998869686 9.999597e-01 9.999954e-01 1.000000e+00

```
In [251]: # Adding country name back to scores
PCMen = cbind(men[,1], as.data.frame(pcaFitMen$scores))
colnames(PCMen)[1] = "Country"
head(PCMen)

# Sorting countries based only on PC1
dimReducedMen = PCMen[,1:2]
head(dimReducedMen)
dimReducedMenOrdered = {
    dimReducedMen[order(-dimReducedMen[,2]),]
}
head(dimReducedMenOrdered)
```

Country	Comp.1	Comp.2	Comp.3	Comp.4	Comp.5	Comp.6	Comp.7	Comp.8
Argentina	3.949866	-0.71642187	0.3502378	0.19323708	-0.125843666	0.02828136	0.06972650	-0.004182508
Australia	6.233111	0.77309952	-0.1908892	0.04604324	0.215548144	-0.02797992	0.03255537	-0.010344625
Austria	1.405618	0.05992883	0.6388328	0.08182631	0.006978615	-0.01742626	-0.01887815	-0.021609773
Belgium	6.576032	0.22934014	0.5478972	0.03103714	0.003313427	0.06765641	0.05335714	-0.001526373
Bermuda	-12.899964	2.20666160	-0.2616143	0.19567169	-0.205917545	0.07198977	-0.10741879	-0.016413862
Brazil	7.522252	0.45693596	-1.1846968	0.12143605	-0.064657949	-0.01605633	-0.02046180	0.040151598

	Country	Comp.1		
_	Argentina	3.949866		
	Australia	6.233111		
	Austria	1.405618		
	Belgium	6.576032		
	Bermuda	-12.899964		
	Brazil	7.522252		

	Country	Comp.1
29	Kenya	9.325825
54	U.S.A.	8.528414
6	Brazil	7.522252
28	Japan	7.469135
17	France	7.340499
43	Portugal	7.201771

Yep, it looks like our results once again agree pretty closely (though not exactly) with our women's analysis. In this case, it is definitely very intuitive -- Kenya is known for its Olympic gold medal exploits and the fastest person in the world, so it's unsurprising when a component that accounts for so much of the variance in the data (98%+) can rank the countries with high accuracy.

The PC's relations to each of the original variables is actually fairly similar across genders so that is also something interesting of note.

Problem 2

```
In [254]:
       # Loading data
       airPollution = read.table(file="Data-HW4-pollution.dat",
                         header=FALSE,
                         quote="",
                         sep=""
       head(airPollution)
```

Wind	SolarRadiation	со	NO	NO2	О3	нс
8	98	7	2	12	8	2
7	107	4	3	9	5	3
7	103	4	3	5	6	3
10	88	5	2	8	15	4
6	91	4	2	8	10	3
8	90	5	2	12	12	4

Problem 2A

```
In [284]: # Generating the covariance matrix
          airPollutionCovariance = cor(airPollution)
```

Problem 2B

```
In [291]: # Obtaining principal component solution
          # 1. Performing spectral decomposition
          decomposition = eigen(airPollutionCovariance)
          decomposition
```

\$values

2.33678264275777 1.38600066762446 1.20406592509298 0.727086483934652 0.653476542788251 0.536688791847867 0.155898945954013

\$vectors

0.2368211	0.278445138	0.6434744	0.172719491	0.56053441	-0.223579220	-0.24146701
-0.2055665	-0.526613869	0.2244690	0.778136601	-0.15613432	-0.005700851	-0.01126548
-0.5510839	-0.006819502	-0.1136089	0.005301798	0.57342221	-0.109538907	0.58524622
-0.3776151	0.434674253	-0.4070978	0.290503052	-0.05669070	-0.450234781	-0.46088973
-0.4980161	0.199767367	0.1965567	-0.042428178	0.05021430	0.744968707	-0.33784371
-0.3245506	-0.566973655	0.1598465	-0.507915905	0.08024349	-0.330583071	-0.41707805
-0.3194032	0.307882771	0.5410484	-0.143082348	-0.56607057	-0.266469812	0.31391372

```
In [304]:
           # 2. Estimating Communality
           rootOfEigenvals = decomposition$values ** .5
           L1 = as.data.frame( decomposition$vectors[,1] * rootOfEigenvals[1] )
           L2 = as.data.frame( decomposition$vectors[,2] * rootOfEigenvals[2] )
           colnames(L1) = ''
           colnames(L2) = ''
           rownames(L1) = colnames(airPollution)
           rownames(L2) = colnames(airPollution)
           print("L1:")
           round(L1, 3)
           print("L2:")
           round(L2, 3)
           # For m=1
           communalityM1 = round(L1^2, 3)
           print("Communality - M=1:")
           communalityM1
           # For m=2
           communalityM2 = round(L1^2 + L2^2, 3)
           print("Communality - M=2:")
           communalityM2
           [1] "L1:"
                  Wind 0.362
           SolarRadiation -0.314
                    co -0.842
                    NO -0.577
                   NO2 -0.761
                    O3 -0.496
                    HC -0.488
           [1] "L2:"
                  Wind 0.328
           SolarRadiation -0.620
                    CO -0.008
                    NO 0.512
                   NO2 0.235
                    O3 -0.667
                    HC 0.362
           [1] "Communality - M=1:"
                  Wind 0.131
           SolarRadiation 0.099
                    CO 0.710
                    NO 0.333
                   NO2 0.580
```

O3 0.246

```
HC 0.238
           [1] "Communality - M=2:"
                   Wind 0.239
            SolarRadiation 0.483
                    CO 0.710
                    NO 0.595
                    NO2 0.635
                     O3 0.692
                    HC 0.370
In [305]: # 3. Estimating Specific Variation (psi)
           # For m=1
           specificVarianceM1 = round(1 - L1^2, 3)
           print("Specific Variance - M=1:")
           specificVarianceM1
           # For m=2
           specificVarianceM2 = round(1 - L1^2 - L2^2, 3)
           print("Specific Variance - M=2:")
           specificVarianceM2
           [1] "Specific Variance - M=1:"
                   Wind 0.869
            SolarRadiation 0.901
                    CO 0.290
                    NO 0.667
                    NO2 0.420
                     O3 0.754
                    HC 0.762
           [1] "Specific Variance - M=2:"
                   Wind 0.761
            SolarRadiation 0.517
                    CO 0.290
                    NO 0.405
                    NO2 0.365
                     O3 0.308
                    HC 0.630
```

As expected, our Specific Variance drops in almost all of the common variables with the addition of a second common factor. This is because the second common factor is accounting for more of the total variance and sicne it is zero-sum, the additional variance is being "taken" from specific variance and "given" to the second common factor.

Problem 2C

```
In [312]: # Finding proportion of variation for one-factor model - m=1
proportionalVarianceM1 = sum(L1^2) / length(L1[,1])
proportionalVarianceM1
```

0.333826091822538

```
In [313]: # Finding proportion of variation for two-factor model - m=2
proportionalVarianceM2 = {
    proportionalVarianceM1 + (sum(L2^2) / length(L2[,1]))
}
proportionalVarianceM2
```

0.531826187197461

Once again, as expected, our two-factor model accounts for more variation. This relates back to the end of 2B because as specific variation goes down, the total amount of variation being accounted for by our factors is going up.

Problem 2D

```
In [320]: # Performing varimax rotation
    rotation = varimax(x=as.matrix(cbind(L1, L2)), normalize=FALSE)
    rotation
    $loadings
```

```
Loadings:
               Var.1 Var.2
Wind
                0.160 0.461
SolarRadiation
                      -0.695
               -0.735 - 0.412
CO
               -0.752 0.171
NO
NO2
               -0.781 -0.160
03
               -0.114 - 0.824
HC
               -0.602
               Var.1 Var.2
SS loadings
               2.117 1.606
Proportion Var 0.302 0.229
Cumulative Var 0.302 0.532
$rotmat
           [,1]
[1,] 0.8768458 0.4807718
[2,] -0.4807718 0.8768458
```

In computing the varimax rotation, we've just scaled the loadings by dividing them by their corresponding communality and maximizing this quantity. We've done this in order to interpret our results more easily and as such, the proportion of our variance has remained constant, despite the rotation and changing factor values.

In Factor 1's loadings, HC, NO2, NO, and CO have fairly significant (>.5) values. This means Factor 1 is primarily a measure of these variables and as each of these variables increase, so do the other 3. Thus, we may use this information to understand what underlying common factor Factor 1 is picking up on and the real-life mechanisms that may cause those variables to be associated with each other (i.e. diesel exhaust or coal power plant burns). In Factor 2, the most important significant values (>.5) come from O3 and Solar Radiation which means Factor 2 is primarily a measure of these variables. These variables also thus are associated with each other and a second underlying common factor could be investigated regarding the relationship between Ozone and Solar Radiation. From domain knowledge, I know increased sunlight and UV radiation is responsible for the *creation of* ozone throughout the atmosphere, so them being associated makes a lot of sense.