

Exploring the multidimensional representation of unidimensional speech acoustic parameters extracted by deep unsupervised models

M. Jacquelin^{1,2}, M. Garnier¹, L. Girin¹, R. Vincent², O. Perrotin¹

GIPSA-Lab, Université Grenoble Alpes ² Vogo

Context & problematic

The work of [1] demonstrate that the fundamental frequency (f_0) and the frequency of the first three formants $(F_{1,2,3})$ are encoded in multiples dimensions in the latent space of unsupervised models. This raises the following questions:

- ➤ Why unsupervised models need multiple dimensions to encode acoustic parameters ?
- ► What type of information or acoustic variability is captured by each of these latent dimensions ?
- ➤ Can we control the latent space of our model to transform the variability of the acoustic parameters ?

Model used

The variational autoencoder architecture used in this work is similar to that used in [1]:

- ➤ The model was trained on 20 hours of VCTK on speakers not used for testing;
- ► The loss function is the weighted sum of the Itakura-Saito divergence;

Datas & analysis methods

Datasets:

- A natural speech test set called $D_{NS,x}^{test}$ was created by extracting 3 hours from VCTK [2];
- We have built a synthetic speech test set called $D_{SS,x}^{test}$ with Soundgen [3];
- ► Acoustic parameters $\mathcal{F} \in \{f_0, F_1, F_2, F_3\}$;

Methods:

- Principal Component Analysis (PCA) maximizes the variance of the projected data;
- Linear Regression (LR) estimate the relationship between variables that can be separated by classes (C);

Signal	Encoding	Latent	Analysis	Directions
$D^{ ext{test}}_{SS(\mathcal{F}),x}$	VAE	$D^{ ext{test}}_{SS(\mathcal{F}),z}$	PCA	$pca_\mathcal{F}$
$D_{NS,x}^{test}$	VAE	$D_{NS,z}^{test}$	$LR(\mathcal{F})$	$m_{\mathcal{F}}$
			$LR(\mathcal{F} \mathcal{C})$	$m_{\mathcal{F} \mathcal{C}}$

Results

► The variation of each acoustic parameter is encoded by multiple dimensions in the latent space.

Can we relate these dimensions to variations of acoustic parameters?

► The multidimensional representation of acoustic parameters is closely related to the multimodality of the parameter distribution.

- Projection of $D_{NS,z}^{test}$ on the according pca_F dimension

 Distribution of the acoustic parameters on $D_{NS,x}^{train}$ (normalised)
- ► The variation of acoustic parameter can be controlled directly from the encoded latent space.

Conclusion

- ✓ Identification of the directions that best explain the variation of selected acoustic features
- ✓ Highlighting the link between multimodality of parameter distribution and multidimensional representation
- ✓ Demonstrate the ability to control the variation of acoustic parameter with the encoded latent space

References

- [1] S. Sadok, S. Leglaive, L. Girin, X. Alameda-Pineda, R. Séguier, *Learning and controlling the source-filter representation of speech with a variational autoencoder*, in Speech Communication, 2023, vol. 148, pp. 53-65.
- [2] J. Yamagishi, C. Veaux, K. MacDonald, CSTR VCTK corpus: English multi-speaker corpus for CSTR voice cloning toolkit, 2019.
- [3] A. Anikin, Soundgen: an open-source tool for synthesizing non-verbal vocalizations, in Behavior research methods, 2019, vol. 51, pp. 778–792.

UMR CNRS 5216 - Grenoble Campus 38400 Saint Martin d'Hères - FRANCE

