Teoria Sygnałów w zadaniach

$$\begin{split} f(t) = A \cdot \Pi \left(\frac{t}{2 \cdot t_0} \right) \cdot \cos \left(\frac{2\pi}{t_0} \cdot t \right) & F(\jmath \omega) = A \cdot t_0 \cdot \left[\begin{array}{c} Sa \left(\omega \cdot t_0 + 2\pi \right) \\ -Sa \left(\omega \cdot t_0 - 2\pi \right) \end{array} \right] \end{split}$$

Tomasz Grajek, Krzysztof Wegner

POLITECHNIKA POZNAŃSKA Wydział Informatyki i Telekomunikacji Instytut Telekomunikacji Multimedialnej

pl. M. Skłodowskiej-Curie 5 60-965 Poznań

www.et.put.poznan.pl www.multimedia.edu.pl

Copyright © Krzysztof Wegner, 2019 Wszelkie prawa zastrzeżone ISBN 978-83-939620-1-3 Wydrukowano w Polsce

Podstawowe własności sygnałów

- 1.1 Podstawowe parametry i miary sygnałów ciągłych
- 1.1.1 Wartość średnia
- 1.1.2 Energia sygnału
- 1.1.3 Moc i wartość skuteczna sygnału

Analiza sygnałów okresowych za pomocą szeregów ortogonalnych

2.1 Trygonometryczny szereg Fouriera

2.2 Zespolony szerego Fouriera

Zadanie 1. Wyznacz współczynniki zespolonego szeregu Fouriera dla okresowego sygnału g(t) przedstawionego na rysunku. Wykorzystaj własności szeregu Fouriera oraz współczynniki zespolonego szeregu Fouriera wyznaczone w zadaniu ??

W pierwszej kolejności należy opisać sygnał za pomocą wzoru.

$$f(x) = \begin{cases} A \cdot \sin\left(\frac{12\pi}{T} \cdot t\right) & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (2.1)

Można zauważyć iż sygnał g(t) jest z modulowaną wersją sygnału f(t) z zadania ??

$$g(t) = f(t) \cdot \sin\left(\frac{12\pi}{T} \cdot t\right)$$

$$= \left\{ \sin(x) = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2 \cdot \jmath} \right\} =$$

$$= f(t) \cdot \frac{e^{\jmath \cdot \frac{12\pi}{T} \cdot t} - e^{-\jmath \cdot \frac{12\pi}{T} \cdot t}}{2 \cdot \jmath}$$

$$=\frac{1}{2\cdot \jmath}\left(f\left(t\right)\cdot e^{\jmath\cdot\frac{12\pi}{T}\cdot t}-f\left(t\right)\cdot e^{-\jmath\cdot\frac{12\pi}{T}\cdot t}\right)$$

Współczynniki zespolonego szeregu Fouriera F_k dla sygnału f(t) wyznaczone w zadaniu ?? wynoszą:

$$F_0 = \frac{A}{2}$$

$$F_k = j \cdot \frac{A}{k \cdot 2\pi} \cdot \left((-1)^k - 1 \right)$$

Korzystając z twierdzenia o modulacji można wyznaczyć współczynniki G_k na podstawie współczynników F_k sygnału f(t) jako:

$$g^{1}(t) = f(t) \cdot e^{j \cdot \frac{2\pi}{T} \cdot k_{0} \cdot t}$$
$$G_{k}^{1} = F_{k-k_{0}}$$

W przypadku analizowanego sygnału twierdzenie o modulacji należy zastosować dwa razy

$$\begin{split} g(t) &= \frac{1}{2 \cdot j} f(t) \cdot e^{j \cdot \frac{2\pi}{T} \cdot k_0^1 \cdot t} - \frac{1}{2 \cdot j} f(t) \cdot e^{j \cdot \frac{2\pi}{T} \cdot k_0^2 \cdot t} \\ g(t) &= g^1(t) - g^2(t) \\ G_k &= G_k^1 - G_k^2 \\ G_k &= \frac{1}{2 \cdot j} \left(F_{k-k_0^1} - F_{k-k_0^2} \right) \end{split}$$

W obu przypadkach funkcja f(t) mnożona jest przez czynnik $e^{j\cdot\frac{12\pi}{T}\cdot t}$ (z uwzględnieniem zmiany znaku). Z tego czynnika można wydzielić wartość k_0^1 i k_0^2 .

$$\begin{split} e^{\jmath \cdot \frac{12\pi}{T} \cdot t} &= e^{\jmath \cdot \frac{2 - cdot6\pi}{T} \cdot t} \\ &= e^{\jmath \cdot \frac{2\pi}{T} \cdot 6 \cdot t} \Rightarrow k_0^1 = 6 \end{split}$$

$$\begin{split} e^{-\jmath \cdot \frac{12\pi}{T} \cdot t} &= e^{-\jmath \cdot \frac{2 \ cdot6\pi}{T} \cdot t} \\ &= e^{-\jmath \cdot \frac{2\pi}{T} \cdot 6 \cdot t} \\ &= e^{\jmath \cdot \frac{2\pi}{T} \cdot (-6) \cdot t} \Rightarrow k_0^2 = -6 \end{split}$$

Wstawiając wartości współczynników F_k otrzymujemy

$$G_k = \frac{1}{2 \cdot j} \left(F_{k-k_0^1} - F_{k-k_0^2} \right) =$$

$$\begin{split} &= \frac{1}{2 \cdot j} \left(j \cdot \frac{A}{(k - k_0^1) \cdot 2\pi} \cdot \left((-1)^{k - k_0^1} - 1 \right) - j \cdot \frac{A}{(k - k_0^2) \cdot 2\pi} \cdot \left((-1)^{k - k_0^2} - 1 \right) \right) = \\ &= \left\{ \begin{array}{l} k_0^1 = 6 \quad k_0^2 = -6 \end{array} \right\} = \\ &= \frac{1}{2 \cdot j} \left(j \cdot \frac{A}{(k - 6) \cdot 2\pi} \cdot \left((-1)^{k - 6} - 1 \right) - j \cdot \frac{A}{(k - (-6)) \cdot 2\pi} \cdot \left((-1)^{k - (-6)} - 1 \right) \right) = \\ &= \frac{1}{2 \cdot j} \left(j \cdot \frac{A}{(k - 6) \cdot 2\pi} \cdot \left((-1)^{k - 6} - 1 \right) - j \cdot \frac{A}{(k + 6) \cdot 2\pi} \cdot \left((-1)^{k + 6} - 1 \right) \right) = \\ &= \frac{1}{2 \cdot j} \left(j \cdot \frac{A}{(k - 6) \cdot 2\pi} \cdot \left((-1)^k \cdot (-1)^{-6} - 1 \right) - j \cdot \frac{A}{(k + 6) \cdot 2\pi} \cdot \left((-1)^k \cdot (-1)^6 - 1 \right) \right) = \\ &= \frac{1}{2 \cdot j} \left(j \cdot \frac{A}{(k - 6) \cdot 2\pi} \cdot \left((-1)^k \cdot 1 - 1 \right) - j \cdot \frac{A}{(k + 6) \cdot 2\pi} \cdot \left((-1)^k \cdot 1 - 1 \right) \right) = \\ &= \frac{1}{2 \cdot j} \left(j \cdot \frac{A}{(k - 6) \cdot 2\pi} \cdot \left((-1)^k - 1 \right) - j \cdot \frac{A}{(k + 6) \cdot 2\pi} \cdot \left((-1)^k - 1 \right) \right) = \\ &= \frac{1}{2 \cdot j} \left(j \cdot \frac{A}{(k - 6) \cdot 2\pi} - j \cdot \frac{A}{(k + 6) \cdot 2\pi} \right) \cdot \left((-1)^k - 1 \right) = \\ &= \frac{1}{2 \cdot j} \cdot j \cdot \frac{A}{2\pi} \left(\frac{1}{k - 6} - \frac{1}{k + 6} \right) \cdot \left((-1)^k - 1 \right) = \\ &= \frac{A}{4\pi} \left(\frac{k + 6}{(k - 6) \cdot (k + 6)} - \frac{k - 6}{(k - 6) \cdot (k + 6)} \right) \cdot \left((-1)^k - 1 \right) = \\ &= \frac{A}{4\pi} \left(\frac{12}{k^2 - 36} \right) \cdot \left((-1)^k - 1 \right) = \\ &= \frac{A}{4\pi} \left(\frac{3}{k^2 - 36} \right) \cdot \left((-1)^k - 1 \right) = \\ &= \frac{3 \cdot A}{\pi \cdot (k^2 - 36)} \cdot \left((-1)^k - 1 \right) \end{aligned}$$

A wiec współczynniki G_k dla sygnału g(t) są równe $\frac{3 \cdot A}{\pi \cdot (k^2 - 36)} \cdot ((-1)^k - 1)$, dla $k \neq 6 \land k \neq -6$. Oznacza to iż współczynnik dla k = 6 i k = -6 musimy wyznaczyć jeszcze raz analizując dokładnie co podstawiamy. Zacznijmy od wyznaczenia G_6

$$G_{6} = \frac{1}{2 \cdot j} \left(F_{6-k_{0}^{1}} - F_{6-k_{0}^{2}} \right) =$$

$$= \left\{ k_{0}^{1} = 6 \quad k_{0}^{2} = -6 \right\} =$$

$$= \frac{1}{2 \cdot j} \left(F_{6-6} - F_{6-(-6)} \right) =$$

$$= \frac{1}{2 \cdot j} \left(F_{0} - F_{6+6} \right) =$$

$$= \frac{1}{2 \cdot j} \left(F_{0} - F_{12} \right)$$

A wiec musimy podstawić wartość współczynników F_0 oraz F_{12}

$$\begin{aligned} G_6 &= \frac{1}{2 \cdot \jmath} \left(F_0 - F_{12)} \right) = \\ &= \frac{1}{2 \cdot \jmath} \left(\frac{A}{2} - \jmath \cdot \frac{A}{12 \cdot 2\pi} \cdot \left((-1)^{12} - 1 \right) \right) = \end{aligned}$$

$$= \frac{1}{2 \cdot j} \cdot \frac{A}{2} - \frac{1}{2 \cdot j} \cdot j \cdot \frac{A}{12 \cdot 2\pi} \cdot \left((-1)^{12} - 1 \right) =$$

$$= \frac{A}{4 \cdot j} - \frac{A}{12 \cdot 4\pi} \cdot (1 - 1) =$$

$$= \frac{A}{4 \cdot j} - \frac{A}{12 \cdot 4\pi} \cdot (0) =$$

$$= \frac{A}{4 \cdot j} - \frac{A}{12 \cdot 4\pi} \cdot 0 =$$

$$= \frac{A}{4 \cdot j} - 0 =$$

$$= \frac{A}{4 \cdot j} - 0 =$$

Podobnie wyznaczymy współczynnik G_{-6}

$$G_{-6} = \frac{1}{2 \cdot j} \left(F_{-6-k_0^1} - F_{-6-k_0^2} \right) =$$

$$= \left\{ k_0^1 = 6 \quad k_0^2 = -6 \right\} =$$

$$= \frac{1}{2 \cdot j} \left(F_{-6-6} - F_{-6-(-6)} \right) =$$

$$= \frac{1}{2 \cdot j} \left(F_{-12} - F_{-6+6} \right) =$$

$$= \frac{1}{2 \cdot j} \left(F_{-12} - F_{0} \right)$$

A wiec musimy podstawić wartość współczynników F_{-12} oraz F_0

$$G_{6} = \frac{1}{2 \cdot \jmath} \left(F_{-12} - F_{0j} \right) =$$

$$= \frac{1}{2 \cdot \jmath} \left(\jmath \cdot \frac{A}{-12 \cdot 2\pi} \cdot \left((-1)^{-12} - 1 \right) - \frac{A}{2} \right) =$$

$$= \frac{1}{2 \cdot \jmath} \left(\jmath \cdot \frac{A}{12 \cdot 2\pi} \cdot (1 - 1) - \frac{A}{2} \right) =$$

$$= \frac{1}{2 \cdot \jmath} \left(\jmath \cdot \frac{A}{12 \cdot 2\pi} \cdot (0) - \frac{A}{2} \right) =$$

$$= \frac{1}{2 \cdot \jmath} \left(0 - \frac{A}{2} \right) =$$

$$= \frac{1}{2 \cdot \jmath} \left(-\frac{A}{2} \right) =$$

$$= -\frac{1}{2 \cdot \jmath} \cdot \frac{A}{2} =$$

$$= -\frac{A}{4 \cdot \jmath}$$

Można także zauważyć iż nie ma konieczności wyznaczania osobno wartości współczynnika dla k=0, ponieważ można go wyznaczyć z ogólnego wzoru na G_k .

Ostatecznie współczynniki zespolonego szeregu Fouriera dla funkcji przedstawionej na rysunku przyjmują wartości.

$$G_{-6} = -\frac{A}{4 \cdot 7}$$

$$G_6 = \frac{A}{4 \cdot j}$$

$$G_k = \frac{3 \cdot A}{\pi \cdot (k^2 - 36)} \cdot \left((-1)^k - 1 \right)$$

2.3 Obliczenia mocy sygnałów - twierdzenie Parsevala

Analiza sygnałów nieokresowych. Przekształcenie całkowe Fouriera

- 3.1 Wyznaczanie transformaty Fouriera z definicji
- 3.2 Wykorzystanie twierdzeń do obliczeń transformaty Fouriera
- 3.3 Obliczenia energii sygnału za pomocą transformaty Fouriera. Twierdzenie Parsevala

Transmisja sygnałów przez układy liniowe o stałych parametrach (LTI)

- 4.1 Obliczanie splotu ze wzoru
- 4.2 Filtry

