## What is the difference if we either

minimize sum\_i log(1-d(x\_i)) minimize sum\_i -log(d(x\_i))

## Compare the 2 losses on a small fake batch {x1,x2}

|    |      |      | sum_i sum_i                                         |
|----|------|------|-----------------------------------------------------|
| x1 | x2   |      | $log(\overline{1}-d(x_i)) - log(\overline{d}(x_i))$ |
|    | 0.5  | 0.8  | -1 0.39794                                          |
|    | 0.6  | 0.7  | -0.92081875 <b>0.3767507</b>                        |
|    | 0.01 | 0.99 | -2.00436481 2.0043648                               |
|    | 0.99 | 0.99 | -4 0.0087296                                        |
|    |      |      |                                                     |

## Observe:

Blue loves if any D(x\_i)~1 "GOOD" Red hates if any D(x\_i)~0 "BAD"





|          |          | 0.0        | 0.1     | 0.2         | 0.3       | 0.4       | 0.5      | 0.6       | 0.7       | 0.8      | 0.9      | 1.0      |
|----------|----------|------------|---------|-------------|-----------|-----------|----------|-----------|-----------|----------|----------|----------|
| minimize | log(1-d) | -4.343E-06 | -0.0458 | -0.09691001 | -0.154902 | -0.221849 | -0.30103 | -0.39794  | -0.522879 | -0.69897 | -1       | -7       |
| minimize | - log(d) | 5          | 1       | 0.69897     | 0.5228787 | 0.39794   | 0.30103  | 0.2218487 | 0.154902  | 0.09691  | 0.045757 | 4.34E-08 |