INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

ME 543 (COMPUTATIONAL FLUID DYNAMICS)

HOMEWORK ASSIGNMENT 2

LID DRIVEN SQUARE CAVITY PROBLEM

SUBJECT INSTRUCTOR- Prof A.K. Dass

PROGRAM –M.TECH (FTE)

SUBMITTED BY – SONU PRIYA

ROLL NO - 214103323

CONTENT

- A) C code
- B) Comparison with Ghia's data
- C) U- velocity plot
- D) V- velocity plot
- **E**) Contours of streamline plot
- **F**) Conclusions

A) C code

```
#include<stdio.h>
#include<math.h>
int main()
{
FILE *fp,*U,*V,u_centre,*v_centre;
fp=fopen("streamplot.plt","w");
U=fopen("u&v_velocityplot.plt","w");
u_centre=fopen("u_cent.txt","w");
v_centre=fopen("v_cent.txt","w");
Double
SUM,s,error,wold[129][129],siold[129][129],wnew[129][129],sinew[129][129],u[129][129],
v[129][129],sqrdelx,sqrdely,delx=0.0078125,dely=0.0078125,x;
int i,j,k,count=0;
sqrdelx=delx*delx;
sqrdely=sqrdelx;
for(j=0;j<129;j++)
{
for(i=0;i<129;i++)
siold[i][j]=0;
wold[i][j]=0;
}
for(i=1;i<128;i++)
wold[i][128]=0-(2*128);
```

```
for(j=0;j<129;j++)
    for(i=0;i<129;i++)
    {
    sinew[i][j]=siold[i][j];
    wnew[i][j]=wold[i][j];
    do
    //start:
    count++;
    for(k=0;k<10;k++)
    {
   for(j=1;j<128;j++)
    for(i=1;i<128;i++)
    1]+(sqrdelx*wnew[i][j]))/4.0;
   for(j=1;j<128;j++)
    wnew[0][j] \hspace{-0.05cm}=\hspace{-0.05cm} (0 \hspace{-0.05cm}-\hspace{-0.05cm} (2 \hspace{-0.05cm}+\hspace{-0.05cm} sinew[1][j]))/sqrdelx;
    wnew[128][j]=(0-(2*sinew[127][j]))/sqrdelx;
```

```
for(i=1;i<128;i++)
wnew[i][0]=(0-(2*sinew[i][1]))/sqrdely;
wnew[i][128]=(0-(2*(sinew[i][127]+dely)))/sqrdely;
 }
for(k=0;k<2;k++)
{
for(j=1;j<128;j++)
for(i=1;i<128;i++)
{
                             wnew[i][j]=(wnew[i+1][j]+wnew[i-1][j]+wnew[i][j+1]+wnew[i][j-1]-
(100.0*(wnew[i+1][j]-wnew[i-1][j])*(sinew[i][j+1]-sinew[i][j-1])) + (100.0*(wnew[i][j+1]-wnew[i-1][j])*(sinew[i][j+1]-sinew[i][j-1])) + (100.0*(wnew[i-1][j]-wnew[i-1][j])*(sinew[i][j+1]-sinew[i][j-1])) + (100.0*(wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]-wnew[i][j+1]
wnew[i][j-1])*(sinew[i+1][j]-sinew[i-1][j])))/4.0;
SUM=0;
s=0;
for(j=0;j<129;j++)
for(i=0;i<129;i++)
SUM=SUM+fabs(wnew[i][j]-wold[i][j]);
s=s+fabs(wnew[i][j]);
error=SUM/s;
```

```
printf("error=%lf\n",error);
for(j=0;j<129;j++)
for(i=0;i<129;i++)
{
siold[i][j]=sinew[i][j];
wold[i][j]=wnew[i][j];
while(error>0.000001);
for(j=0;j<129;j++)
for(i=0;i<129;i++)
fprintf(fp, "%d\t%d\t%lf\n", i+1, j+1, sinew[i][j]);
for(j=1;j<128;j++)
for(i=1;i<128;i++)
u[i][j] = (sinew[i][j+1] - sinew[i][j-1])/(2*dely);
v[i][j]=(0-1)*(sinew[i+1][j]-sinew[i-1][j])/(2*delx);
for(j=0;j<129;j++)
```

```
{
for(i=0;i<129;i++)
fprintf(U, "\%d \setminus t\%d \setminus t\%lf \setminus t\%lf \setminus n", i+1, j+1, u[i][j], v[i][j]);
}
 printf("\n\%d",count);
 fclose(fp);
for(j=1;j<=129;j++)
    fprintf(u\_centre,"\%lf\t\%d\n",u[65][j],j);
 }
 for(i=1;i<=129;i++)
 {
    fprintf(v\_centre, "%d\t%lf\n", i, v[i][65]);
 }
return 0;
}
```

B) Comparison with Ghia,s data

u-velocity along vertical line through geometric centre of the cavity.					v-velocity along the horizontal line through geometric centre of the cavity.				
i	j	Data found	Ghia's Data		i	j	Data found	Ghia's data	
65	129	1.00000	1.00000		129	65	0.00000	0.00000	
65	126	0.756820	0.75837		125	65	-0.122390	-0.12146	
65	124	0.615529	0.61756		124	65	-0.157657	-0.15663	
65	123	0.556777	0.55892		123	65	-0.193594	-0.19254	
65	110	0.288433	0.29093		122	65	-0.229472	-0.22847	
65	95	0.160382	0.16256		117	65	-0.382543	-0.23827	
65	80	0.019755	0.02135		111	65	-0.447675	-0.44993	
65	65	-0.116052	11477		104	65	-0.382538	-0.38598	
65	59	-0.172379	-0.17119		65	65	0.052614	0.05186	
65	37	-0.324515	-0.32726		31	65	0.298871	0.30174	
65	23	-0.237518	-0.24299		30	65	0.299111	0.30203	
65	14	-0.141689	-0.14612		21	65	0.278312	0.28124	
65	10	-0.099967	-0.10338		13	65	0.227009	0.22965	
65	9	-0.089550	-0.09266		11	65	0.206652	0.20920	
65	8	-0.079070	-0.08186		10	65	0.194654	0.19713	
65	4	-0.054300	-0.056200		9	65	0.181208	0.18360	
65	1	0.00000	0.00000		1	65	0.00000	0.00000	

c) <u>U-velocity plot</u>

D) V-velocity plot

E) Countours of streamline plot

F) Conclusion:

The above plot drawn is according to data found while executing and when we compare these plots with Ghia's data, we can find that the plot is approximately similar to the data which we get. So we can say that the plot which we get after simulation is correct and and we will get the same result according to the ghia's result for a lid driven square cavity with Re=400.