## Лабораторная работа № 3.3.4 "Эффект Холла в полупроводниках"

Петров Артём Антонович, группа 721

28 сентября 2018 г.

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

**В работе используются:** электромагнит с источником питания, амперметр, миллиамперметр, милливеберметр, реостат, цифровой вольтметр, источник питания (1.5B), образцы легированного германия.

## Экспериментальная установка:



Рис. 1: Схема установки для исследования эффекта Холла в полупроводниках.  $A_1, A_2$  - амперметры. Разъём  $K_1$  позволяет менять направление тока в обмотках электромагнита. Реостат  $R_2$  регулирует силу тока, текущего через образец при замыкании ключа  $K_2$ .

Следует помнить, что контакты выводов 3 и 4 могут быть припаяны не идеально напротив друг друга. Для учитывания возникающий из-за этого ошибки измерения Холловской ЭДС следует замерить дополнительно возникающую разность потенциалов и вычитать её из показаний вольтметра при измерениях.

Также следует откалибровать электромагнит (получить зависимость  $B(I_1)$  для последующего задания индуктивности магнитного поля) с помощью милливеберметра перед началом измерений.

Для вычисления проводимости образца можно воспользоваться следующей формулой:

$$\sigma = \frac{IL_{35}}{U_{35}al}$$

где a,l - ширина и толщина образца соответственно,  $L_{35}$  и  $U_{35}$  - расстояние и напряжение (в отсутствии магнитного поля) между контактами 3-5.

## Обработка результатов

Построим график зависимости  $B(I_{\scriptscriptstyle \rm M})$ , чтобы определять индукцию магнитного поля по току в катушке (рис. 3).

| Calibration |              |              |                      |       |           |  |
|-------------|--------------|--------------|----------------------|-------|-----------|--|
|             |              |              |                      |       |           |  |
| 0,005       | 0,05         | 0,05         | 0,07                 |       |           |  |
| Current, A  | Flux_0, mkWb | Flux_1, mkWb | Flux_effective, mkWb | B, mT | err_B, mT |  |
| 0,38        | 1,15         | 3,4          | 2,25                 | 300   | 10        |  |
| 0,5         | 0,6          | 3,4          | 2,8                  | 373   | 10        |  |
| 0,62        | 0,2          | 3,7          | 3,5                  | 467   | 10        |  |
| 0,74        | 3,2          | 7,3          | 4,1                  | 547   | 10        |  |
| 0,99        | 2            | 7,15         | 5,15                 | 687   | 10        |  |
| 1,2         | 1,25         | 7,2          | 5,95                 | 793   | 11        |  |
| 1,42        | 0,85         | 7,15         | 6,3                  | 840   | 11        |  |
| 1,64        | 0,5          | 7,15         | 6,65                 | 887   | 11        |  |
| 0           | 0            | 0            | 0                    | 0     | 0         |  |
| 0,73        | 3            | 7,1          | 4,1                  | 547   | 10        |  |
| 0,22        | 5,7          | 7            | 1,3                  | 173   | 9         |  |

Рис. 2: Зависимость  $B(I_{\scriptscriptstyle \mathrm{M}})$ 



Рис. 3: Зависимость  $B(I_{\scriptscriptstyle \mathrm{M}})$ 

Рассчитаем ЭДС Холла по формуле

$$\varepsilon_{\rm x} = U_{34} - U_0$$

и построим графики  $\varepsilon_{\mathbf{x}}(B)$  для различных  $I_0$  ( рис. 4). Для каждого графика посчитаем коэффициент наклона  $k(I_0) = \Delta \varepsilon / \Delta B$ . Построим график  $k = f(I_0)$  (рис. 6). Коэффициент его наклона:

$$K = 1.004 \pm 0.008 \; \mathrm{B/(T \pi \cdot A)}$$



Рис. 4: Зависимость  $\varepsilon_{\mathbf{x}}(B)$  для различных  $I_0$ 

|                    | k, mV/T | err_k, mV/T |
|--------------------|---------|-------------|
| 'I=0.255mA'        | 0,256   | 0,003       |
| 'I=0.39mA'         | 0,390   | 0,004       |
| 'I=0.52mA'         | 0,521   | 0,006       |
| 'I=0.64mA'         | 0,643   | 0,007       |
| 'I=0.76mA'         | 0,763   | 0,009       |
| 'I=0.88mA'         | 0,886   | 0,011       |
| 'I=1mA'            | 1,001   | 0,011       |
| 'reversed (I=1mA)' | -0,995  | 0,009       |

Рис. 5: Зависимость  $k(I_0) = \Delta \varepsilon / \Delta B$  для различных  $I_0$ 

Выражение для коэффициента Холла:

$$arepsilon_{
m x} = -R_{
m x} \cdot rac{I_0 B}{a}, \quad rac{arepsilon_{
m x}}{B} = -rac{R_{
m x}}{a} I_0, \quad k = K I_0, \quad K = -rac{R_{
m x}}{a}$$
 
$$R_{
m x} = -rac{K}{a}, \quad \sigma_{R_{
m x}} = rac{K}{a^2} \sigma_a$$
 
$$R_{
m x} = (-1.00 \pm 0.06) * 10^{-3} \quad {
m M}^3/{
m K}{
m J}$$

Результат не совпадает с таблицей, где порядок  $R_{\rm x}$  равен  $0.1~{\rm m}^3/{\rm Kn}$ . С другой стороны, непонятно, какие примеси были использованы в данном образце и поэтому значение  $R_{\rm x}$  может отличаться от табличного для примесей Sb и Sb+Si.

Концентрания носителей тока:

$$n = \frac{1}{R_x e}$$
 
$$n = (6.2 \pm 0.4) \cdot 10^{21} \ \mathrm{m}^{-3}$$

Здесь аналогичное расхождение с таблицей ( $\sim 10^{20}$ ).

Рассчитаем удельную проводимость  $\sigma$  по формуле:

$$\sigma = \frac{IL_{35}}{U_{35}al}$$
 
$$\sigma = (1.29 \pm 0.10) \; (\mathrm{O}_{\mathrm{M}\cdot\mathrm{M}})^{-1}$$



Рис. 6: Зависимость  $k(I_0) = \Delta \varepsilon / \Delta B$  для различных  $I_0$ 

Результата совпадает с табличными данными по порядку величины ( 1  $(1/O_{\text{M}\cdot\text{M}})$ ). Вычислим подвижность носителей тока:

$$b = \frac{\sigma}{en}$$
 
$$b = (12.4 \pm 1.3) \text{ cm}^2/(\text{B} \cdot \text{c})$$

**Вывод.** В ходе данной работы были получены значения постоянной Холла, удельной проводимости и подвижности носителей тока для легированного германия. Сравнение с таблицей выдало совпадение только в случае проводимости, что позволяет говорить о наличии некоторых нестандартных примесей. Также был определён тип проводимости (электронная).