Heroes Of Pymoli Data Analysis:

Below you will find a brief report that analyzes Heroes Of Pymoli purchasing data into relevant insights. Based on the purchase data collected, we have been able to find the following three observable trends:

- 1. The vast majority of the purchasers were men, accounting for 84% of the 576 players.
- 2. Almost two thirds of the players (63%) came from the 15-19 and 20-24 age groups, with the latter accounting for the largest share of the age group dempgraphics with approximately 45%.
- 3. Although men dominated purchases of the game, it is worthwhile highlighting the fact that the avgerage purchase price was higher for women (\$3.20) than for men (\$3.02), but that fact may regress to the mean with more purchases by women.

In [1]:

```
#Import dependencies
import pandas as pd
import numpy as np
```

In [2]:

```
# File to Load (Remember to Change These)
csv_path = "Resources/purchase_data.csv"

# Read Purchasing File and store into Pandas data frame
purchase_data_df = pd.read_csv(csv_path)
```

In [3]:

```
#Get a sense of the file
purchase_data_df.set_index('Purchase ID').head()
```

Item Name Price

Out[3]:

Purchase ID						
0	Lisim78	20	Male	108	Extraction, Quickblade Of Trembling Hands	3.53
1	Lisovynya38	40	Male	143	Frenzied Scimitar	1.56
2	Ithergue48	24	Male	92	Final Critic	4.88
3	Chamassasya86	24	Male	100	Blindscythe	3.27
4	Iskosia90	23	Male	131	Fury	1.44

SN Age Gender Item ID

In [4]:

```
# A.PLAYER COUNT
#a1. Total Number of Players
player_count = len(purchase_data_df['SN'].unique())
player_count
```

Out[4]:

576

In [5]:

```
#B. PURCHASING ANALYSIS(TOTAL)
```

In [6]:

```
# B1. Number of Unique Items
number_items = len(purchase_data_df["Item ID"].unique())
number_items
```

```
Out[6]:
183
In [7]:
#b2. Average Purchase Price
avg_price = round(purchase_data_df["Price"].mean(), 2)
avg_price
Out[7]:
3.05
In [8]:
#b3. Total Number of Purchase
total purchase = purchase data df["Purchase ID"].count()
total purchases
Out[8]:
780
In [9]:
#b4. Total Revenue
total_revenue = round(total_purchases * avg_price, 2)
total revenue
Out[9]:
2379.0
In [10]:
purchasing analysis total = pd.DataFrame({"Total Unique Items": [number items],
                                 "AVG. Purchase Price ": [avg price],
                                 "Total Purchases": [total_purchases],
                                 "Total Revenue": [total_revenue]})
print('Purchasing Analysis')
                                                                                   ')
print('_
print(purchasing_analysis_total)
Purchasing Analysis
   Total Unique Items AVG. Purchase Price Total Purchases Total Revenue
                 183
                                     3.05
In [11]:
#C. Gender Demographics
avg_total_male_df = purchase_data_df.loc[purchase_data_df["Gender"] == 'Male']
total_male_purchasers = len(avg_total_male_df.SN.unique())
male per = total male purchasers/player count
print('TOTAL PLAYERS BY GENDER')
print('
print('Total Male / Percentage Male(%)')
print('----')
print(total male purchasers)
print(round(male per*100,2))
#c2. Female
avg total female df = purchase data df.loc[purchase data df["Gender"] == 'Female']
total_female_purchasers = len(avg_total_female_df.SN.unique())
female_per = total_female_purchasers/player_count
print('----')
print('Total Female / Percentage Female(%)')
print(total female purchasers)
```

```
print(round(female_per *100,2))
#c3. Other
avg_total_other_df = purchase_data_df.loc[purchase_data_df["Gender"] == 'Other / Non-Disclosed']
total other purchasers = len(avg total other df.SN.unique())
other_per = total_other_purchasers/player_count
print('----')
print('Total Other/Non Disclosed / Percentage Other/Non-Disclosed(%)')
print(total_other_purchasers)
print(round(other_per *100,2))
TOTAL PLAYERS BY GENDER
Total Male / Percentage Male(%)
484
84.03
_____
Total Female / Percentage Female(%)
81
14.06
Total Other/Non_Disclosed / Percentage Other/Non-Disclosed(%)
11
1.91
In [12]:
#D. Purchasing Analysis (Gender)
#dl. Purchase Count per Gender
purchase_count = purchase_data_df['Gender'].value_counts()
purchase count
Out[12]:
                         652
Male
Female 113
Other / Non-Disclosed 15
Name: Gender, dtype: int64
In [13]:
#d2. Avg purchase price
grouped_gender_df = purchase_data_df.groupby("Gender")
grouped gender df.Price.mean()
Out[13]:
Gender
                        3.203009
Female
Male 3.017853
Other / Non-Disclosed 3.346000
Name: Price, dtype: float64
In [14]:
#d3. Total Purchase Value
grouped_gender_df.Price.sum()
Out[14]:
Gender
                         361.94
Female
Male 1967.64 Other / Non-Disclosed 50.19
Name: Price, dtype: float64
In [15]:
#d4. Average Purchase Total per Person by gender
#a. Male
print(round(1967.64/total male purchasers,2))
```

```
#b. Female
print(round(361.94/total female purchasers,2))
#c. Other
print(round(50.19/total other purchasers, 2))
4.07
4.47
4.56
In [16]:
#E.Age Demographics
In [17]:
# Find the range of Age for binnung
purchase_data_df.Age.max()
Out[17]:
45
In [18]:
purchase_data_df.Age.min()
Out[18]:
7
In [19]:
bins=(0,9,14,19,24,29,34,39,50)
group_labels = ["0 > 10", "10 to 14", "15 to 19", "20 to 24", "25 to 29", "30 to 34", "35 to 39", "40 to 50"]
pd.cut(purchase data df["Age"], bins, labels=group labels).head()
#purchase data['Age Range'] = pd.cut(purchase data['Age'], bins, labels=group names)
Out[19]:
   20 to 24
Ω
    40 to 50
    20 to 24
    20 to 24
3
    20 to 24
Name: Age, dtype: category
Categories (8, object): [0 > 10 < 10 to 14 < 15 to 19 < 20 to 24 < 25 to 29 < 30 to 34 < 35 to 39
< 40 to 50]
In [20]:
purchase data df["Age Group"] = pd.cut(purchase data df["Age"], bins, labels=group labels)
purchase_data_df
```

Out[20]:

	Purchase ID	SN	Age	Gender	Item ID	Item Name	Price	Age_Group
0	0	Lisim78	20	Male	108	Extraction, Quickblade Of Trembling Hands	3.53	20 to 24
1	1	Lisovynya38	40	Male	143	Frenzied Scimitar	1.56	40 to 50
2	2	Ithergue48	24	Male	92	Final Critic	4.88	20 to 24
3	3	Chamassasya86	24	Male	100	Blindscythe	3.27	20 to 24
4	4	Iskosia90	23	Male	131	Fury	1.44	20 to 24
775	775	Aethedru70	21	Female	60	Wolf	3.54	20 to 24

776	Purchase †12	Ira FN	Agę	Gender	ltem, ∯Q	Exiled beanhaige	Pries	Age ₂ 6/6/19
777	777	Yathecal72	20	Male	67	Celeste, Incarnation of the Corrupted	3.46	20 to 24
778	778	Sisur91	7	Male	101	Final Critic	4.19	0 > 10
779	779	Ennrian78	24	Male	50	Dawn	4.60	20 to 24

780 rows × 8 columns

In [36]:

```
#1. Purchase_count
age_purchase_count = purchase_data_df.groupby(["Age_Group"])["SN"].count()
age_purchase_count
```

Out[36]:

```
Age Group
0 > 10
            23
10 to 14
            28
15 to 19
            136
20 to 24
           365
25 to 29
          101
           73
30 to 34
35 to 39
            41
40 to 50
            13
Name: SN, dtype: int64
```

In [37]:

```
#2. Avg purchase price
age_purchase_price = purchase_data_df.groupby(["Age_Group"])["Price"].mean()
age_purchase_price
```

Out[37]:

```
Age_Group
0 > 10
           3.353478
10 to 14
           2.956429
15 to 19
          3.035956
20 to 24
          3.052219
25 to 29
          2.900990
30 to 34
           2.931507
35 to 39
           3.601707
40 to 50
           2.941538
Name: Price, dtype: float64
```

In [38]:

```
#3. Total Purchase Value
age_purchase_value = age_purchase_count * age_purchase_price
age_purchase_value
```

Out[38]:

```
Age_Group
            77.13
0 > 10
10 to 14
            82.78
15 to 19
            412.89
20 to 24
           1114.06
25 to 29
            293.00
30 to 34
            214.00
35 to 39
            147.67
40 to 50
             38.24
dtype: float64
```

In [39]:

```
#4. Avg Purchase total per person

age_pp = purchase_data_df.groupby(["Age_Group"])["SN"].nunique()

age_purchase_value/age_pp
```

```
Out[39]:
Age Group
          4.537059
0 > 10
10 to 14 3.762727
15 to 19 3.858785
        4.318062
20 to 24
25 to 29
          3.805195
30 to 34
          4.115385
35 to 39
         4.763548
40 to 50
         3.186667
dtype: float64
```

In [41]:

```
#Summary Table (Age Purchasing Analysis)
age_table = pd.concat([age_purchase_count, round(age_purchase_price,2), round(age_purchase_value,2)
, round(age_purchase_value/age_pp,2)], axis=1)
age_table.columns = ['Purchase Count', '($) AVG Purchase Price', '($) Total Purchase Value', '($)
AVG Total Purchase Per Person']
age_table
```

Out[41]:

	Purchase Count	(\$) AVG Purchase Price	(\$) Total Purchase Value	(\$) AVG Total Purchase Per Person
Age_Group				
0 > 10	23	3.35	77.13	4.54
10 to 14	28	2.96	82.78	3.76
15 to 19	136	3.04	412.89	3.86
20 to 24	365	3.05	1114.06	4.32
25 to 29	101	2.90	293.00	3.81
30 to 34	73	2.93	214.00	4.12
35 to 39	41	3.60	147.67	4.76
40 to 50	13	2.94	38.24	3.19

In [43]:

```
age_total_count = purchase_data_df.groupby(["Age_Group"])["SN"].nunique()
age_total_count
```

Out[43]:

```
Age_Group
0 > 10
            17
10 to 14
           22
15 to 19
          107
20 to 24
          258
           77
25 to 29
           52
30 to 34
35 to 39
            31
40 to 50
           12
Name: SN, dtype: int64
```

In [54]:

```
#Summary Table (Age Demograhics)
new_table = pd.concat([age_total_count, round(age_total_count/player_count*100,2)], axis=1)
new_table.columns = ['Total Count', '(%) Percentage of Players']
new_table
```

Out[54]:

(%) Percentage of	Total Count	Age_Group
Players 2.95	17	0 > 10
3.82	22	Age Group 10 to 14
18.58	107	15 to 19
44.79	258	20 to 24
13.37	77	25 to 29
9.03	52	30 to 34
5.38	31	35 to 39
2.08	12	40 to 50

In [26]:

```
#F. Top Spenders
purchase_data_df['Item ID'].nunique()
```

Out[26]:

183

In [27]:

```
#Groupby SN and break down relevant data
ts_spenders = purchase_data_df.groupby('SN')
ts_purchase_count = ts_spenders['Purchase ID'].nunique()
ts_average_purchase_price = ts_spenders['Price'].mean()
ts_total_purchase_value = ts_spenders['Price'].sum()
```

In [28]:

```
# create columns
ts_spender_table = pd.concat([ts_purchase_count, ts_average_purchase_price,
ts_total_purchase_value], axis=1)
ts_spender_table.columns = ['Purchase Count', 'Average Purchase Price', 'Total Purchase Value']
ts_spender_table.sort_values(['Total Purchase Value'], ascending = False, inplace=True)
```

In [29]:

```
#format table
ts_spender_table["Average Purchase Price"] = ts_spender_table["Average Purchase
Price"].map("${:.2f}".format)
ts_spender_table["Total Purchase Value"] = ts_spender_table["Total Purchase Value"].map("${:.2f}".f
ormat)
ts_spender_table.head()
```

Out[29]:

Purchase Count		Purchase Count	Average Purchase Price	Total Purchase Value		
	SN					
	Lisosia93	5	\$3.79	\$18.96		
	Idastidru52	4	\$3.86	\$15.45		
	Chamjask73	3	\$4.61	\$13.83		
	Iral74	4	\$3.40	\$13.62		
	Iskadarya95	3	\$4.37	\$13.10		

In [30]:

```
#H. MOST PROFITABLE ITEMS(note: changed order with G.)
#Groupby Item Name and break down
profitable_items = purchase_data_df.groupby('Item Name')
item_id = profitable_items['Item ID'].unique()
item_name = profitable_items['Item Name'].nunique()
item purchase count = profitable items['Purchase ID'].count()
```

```
item_price = profitable_items['Price'].mean()
item_purchase_value = profitable_items['Price'].sum()
```

In [31]:

```
#Create the table
item_table = pd.concat([item_id, item_purchase_count, item_price, item_purchase_value], axis=1)
item_table.columns = ['Item ID', 'Purchase Count', 'Item Price', 'Total Purchase Value']
item_table.sort_values(['Total Purchase Value'], ascending = False, inplace=True)
#item_table = item_table.drop_duplicates(subset='Item ID', keep='first')
```

In [32]:

```
#Format the table
item_table["Item Price"] = item_table["Item Price"].map("${:.2f}".format)
item_table["Total Purchase Value"] = item_table["Total Purchase Value"].map("${:.2f}".format)
item_table.head()
```

Out[32]:

	Item ID	Purchase Count	Item Price	Total Purchase Value
Item Name				
Final Critic	[92, 101]	13	\$4.61	\$59.99
Oathbreaker, Last Hope of the Breaking Storm	[178]	12	\$4.23	\$50.76
Nirvana	[82]	9	\$4.90	\$44.10
Fiery Glass Crusader	[145]	9	\$4.58	\$41.22
Singed Scalpel	[103]	8	\$4.35	\$34.80

In [33]:

```
#G. Most Popular Items
item_table.sort_values(['Purchase Count'], ascending = False, inplace=True)
item_table.head()
```

Out[33]:

	Item ID	Purchase Count	Item Price	Total Purchase Value
Item Name				
Final Critic	[92, 101]	13	\$4.61	\$59.99
Oathbreaker, Last Hope of the Breaking Storm	[178]	12	\$4.23	\$50.76
Nirvana	[82]	9	\$4.90	\$44.10
Fiery Glass Crusader	[145]	9	\$4.58	\$41.22
Extraction, Quickblade Of Trembling Hands	[108]	9	\$3.53	\$31.77