『Lesson 2. 원자 - (I)』

2-1. 원자를 구성하는 임자

실마리 찾기

- ◆ 기본 **입자**는 더 이상 분해되지 않는 입자로, ()와 ()이 있다.
- ◆ **잎자**는 **잎자핵**과 **전자**로 이루어져 있으며, 대부분의 짓량은 **잎자핵**이 차지한다.
- ◆ 원자 모형은 **공 모형**으로부터 **오비탈**까지 지속적으로 변화해 왔다.
- ◆ **잎자 번호**가 같지만 **질량(수)**가 다른 원소의 관계를 **동위 잎소**라 한다.
- ① 원자를 구성하는 입자를 공부해 보자.
- 원자는 원자핵과 전자로 이루어져 있다. 각각의 특징용 쓰면?
- 원자핵을 이루는 입자를 핵자라고 한다. 핵자의 종류와 이를 구성하는 쿼크(quark)를 쓰시오.
- 엎자 번호란 ()의 수를 나타낸 것이고, 질량수는 ()와 ()의 합 이다.
- 엎자는 전기적으로 중성이다. 이 사실로부터 엎자 번호가 Z, 질량수가 A인 중성 엎자를 구성하는 입자의 개수를 쓰시오.
- ② 기본 입자(basic particle)란 무엇인가? 기본 입자의 종류와 생성 시기는 어떻게 되는가?
- 쿼크 :
- 렙톤 :
- ④ 전자는 음극선 실험(cathode ray experiment)에 의해 밝혀졌다. 음극선 실험을 수행한 과학자와 실험의 세부 내용을 설명해 보자.

과학고/영재고 대비를 위한 특목 화학!

⑤ 양성자는 α -입자 산란 실험에 의해 밝혀졌다. α -입자 산란 실험을 수행한 과학자와 실험 내용을 설명해 보자.

실험 결과	익미
대부분의 알파 입자는 산란되지 않는다.	
일부 알파 입자는 뒤로 산란된다.	

실험 장치	이유
실험을 위해 금박을 사용했다.	
실험에 황화 아연(ZnS) 막을 사용했다.	

2-2. 원자와 분광학

실마리 찿기

- ◆ 입자를 **질량**에 따라 분리하기 위해서는 **질량 분석기(MS)**를 사용한다.
- ♦ 동위 원소(isotope)는 원자 번호는 같지만 질량이 다른 원소의 관계를 의미한다.
- ◆ **분광기**를 통해 얻을 수 있는 **스펙트럼**은 여러 물리적 특징을 제시한다.
- ② 질량 분석기(Mass spectrometer)의 원리를 설명하고 시료를 질량 분석기를 이용해 얻을 수 있는 질량 스펙트럼(mass spectrum)의 의미를 설명하시오.

과학고/영재고 대비를 위한 특목 화학!

- ④ 스펙트럼(spectrum)은 분광기(spectrophotometer)를 통해 얻을 수 있다. 분광기를 통해 얻을 수 있는 스펙트럼의 종류를 찾고 어떤 상황에서 활용하는지 설명하시오.

⑤ 시료의 분석에는 적외선 분광광도계(Intrared spectrophotometer)를 활용한다. IR의 원리와 IR를 통해 얻을 수 있는 스펙트럼의 의미를 설명하시오.

2-3. 현대 물리학의 기초

실마리 찾기

- ◆ **아인슈타인**은 빛의 **양자화**를 주장했으며, 빛은 작은 단위인 **광자**로 이루어져 있다고 보았다.
- ◆ 보어는 궤도 모형을 제창했으며, 전자는 엂자 내에서 허용된 궤도에만 존재하 수 있다고 주장했다.
- ◆ **드브로이**는 **물짓파 이론**을 주장했으며, 모든 입자는 **파동성**과 **입자성**을 모두 갖는 **이중성**을 갖는다.
- ① 빛의 양자화 $E=nh\nu$ 의 의미를 설명하시오.
- ② 드브로이가 주장한 물질파 이론 $\lambda = \frac{h}{p} = \frac{h}{mv}$ 을 설명하고 그 물리적 의미를 쓰시오.

③ 보어 모형의 <u>가정(hypothesis)</u>을 찾고 물리적 의미를 설명하시오. (단, 궤도에 대한 증명 은 생략해도 됨 — 3차시)

${}^{\mathbb{F}}$ Practice and Inquiry ${}_{\mathbb{J}}$

<♪ 원자 구성의 결정 >

예1> 다음 원소들의 양성자, 중성자, 그리고 전자 수를 구하여라.

 $^{35}_{17}\,\text{Cl} \quad ^{37}_{17}\text{Cl} \quad ^{63}_{29}\text{Cu} \quad ^{65}_{29}\,\text{Cu}$

예2> 어떤 중성 원자의 원자 번호를 Z라 할 때, 원자의 중성자 수는 3Z-10이고 질량수는 2Z+2이다. 이 원자의 전자 수는 얼마인가?

<♪ 평균 원자량 계산하기 >

예3> 마그네슘의 세 동위 원소의 존재 비와 질량을 질량 분석계로 측정한 결과는 다음 표와 같다. 이 결과를 이용하여 마그네슘의 평균 원자량(average atomic mass)을 계산하라.

원자 질량(amu)	% 존재 비
23.98504	78.99
24.98584	10.00
25.98259	11.01

<♪ 현대 물리학의 이해 >

예4> 수소의 방출 스펙트럼에서는 녹색 광선은 $4.86 \times 10^{-7} \mathrm{m}$ 의 파장을 갖는 녹색 광선이 관찰된다. 이 광자의 <u>에너지</u>를 구하여라.

예5> 149g의 야구공이 시간 당 41.3m/s의 속력으로 운동할 때 물질파를 구하라. 왜 야구공의 물질파는 관측하기 어려운가?