TP3: Interpolation polynomiale

Objectif : Approximer une fonction représentée par un nuage de point (x_i, y_i)

Méthode: Interpolation de Lagrange

Rappel:

Polynôme de Lagrange :

$$y(x) = \sum_{0 \le i \le n} L_i(x) y_i$$

Avec:

$$L_{i}(x) = \prod_{\substack{j=0\\i\neq j}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}$$

Exercice 1: interpolation d'un nuage de point

Х	Υ
-10	3.1623
-8	2.8284
-6	2.4495
-4	2.0000
-2	1.4142
0	0
2	1.4142
4	2.0000
6	2.4495
8	2.8284
10	3.1623

- 1. Définir les vecteurs lignes X et Y présentés dans le tableau
- 2. Définir la fonction *Lagrange* qui retourne la valeur des polynômes $L_i(x)$ en un point x donné :

$$L_i = Lagrange(X, x, i)$$

3. Définir la fonction *interpol* qui retourne la valeur z du polynôme de Lagrange en un point x :

$$z = interpol(X, Y, x)$$

4. Définir la fonction discretisation qui discrétise un intervalle [a, b] en n sous-intervalles avec un pas constant h = (b-a)/n

$$X = discr(a,b,n)$$

- 5. Tracer, dans l'intervalle [-10,10], les fonctions *interpol* et $\sqrt{|\mathbf{x}|}$ en fonction de X sur la même figure (choisissez différents pas de discrétisation).
- 6. Calculer l'erreur absolue de l'approximation :

$$e = \max |z_i - y_i|$$

7. Calculer l'erreur quadratique :

$$\boldsymbol{e} = \sum_{i=0}^{n} (\boldsymbol{z}_{i} - \boldsymbol{y}_{i})^{2}$$

Exercice 2 : Etude de convergence

Considérons la fonction
$$f(x) = \frac{1}{1 + 25x^2}$$

L'objectif de cette partie est l'étude de la convergence de l'approximation de Lagrange quand n tend vers l'infini.

- Discrétiser l'intervalle [-1 1] en faisant appel à la fonction discrétisation (n à choisir librement)
- Tracer l'interpolation de Lagrange de la fonction f pour n=4
- Varier *n* et tester graphiquement la convergence de l'interpolation
- Refaite la même étude en considérant le nuage de point $x_i = \frac{b-a}{2} \cos \left(\frac{2i+1}{2(n+1)} \pi \right) + \frac{b+a}{2}; i = 0, 1, 2, n$

n = nombre des points d'interpolation