Cellular automata are idealized models of complex systems

- Large network of simple components
- Limited communication among components
- No central control
- Complex dynamics from simple rules
- Capability of information processing / computation
- Can be evolved via GAs

Terminology:

- Singular: "cellular automaton" (CA)
- Plural: "cellular automata" (CAs)

Pronunciation:

- American: "cellular au**TO**mata"
- British: "cellular auto**MA**ta"

The Game of "Life": The world's most famous cellular automaton.

Not really a game.

Published in 1970 by British mathematician John Conway. via Martin Gardner's "Mathematical Games" column in *Scientific American*.

John Conway

"Life": Inspired by John von Neumann's models of life-like processes in cellular automata.

Simple system that exhibits *emergence* and *self-organization*

John von Neumann 1903-1957

Stanislaw Ulam 1909-1984

Cellular automata were invented in the 1940s by Stanislaw Ulam and John von Neumann to prove that self-reproduction is possible in machines (and to further link biology and computation).

Applications of CAs

• Computer Science: architecture for massively parallel computation, and for molecular scale computation

Complex Systems:

- Tool for modeling processes in physics, geology, chemistry, biology, economics, sociology, etc.
- Tool for studying abstract notions of self-organization and emergent computation in complex systems

CAs are among the most common modeling tools in complex systems science!

Elementary cellular automata

One-dimensional, two states (black and white)

Stephen Wolfram

To define an ECA, fill in right side of arrows with black and white boxes:

Wolfram numbering:

Wolfram numbering:

"The Rule 30 automaton is the most surprising thing I've ever seen in science....It took me several years to absorb how important this was.

But in the end, I realized that this one picture contains the clue to what's perhaps the most long-standing mystery in all of science: where, in the end, the complexity of the natural world comes from."

—Stephen Wolfram (Quoted in *Forbes*)

Wolfram patented Rule 30's use as a pseudo-random number generator!

Wolfram's Four Classes of CA Behavior

Class 1: Almost all initial configurations relax after a transient period to the same fixed configuration.

Class 2: Almost all initial configurations relax after a transient period to some fixed point or some periodic cycle of configurations, but which one depends on the initial configuration

Class 3: Almost all initial configurations relax after a transient period to chaotic behavior. (The term ``chaotic' here refers to apparently unpredictable space-time behavior.)

Class 4: Some initial configurations result in complex localized structures, sometimes long-lived.

Rule 110

Examples of complex, long-lived localized structures

CAs as dynamical systems

(Analogy with logistic map)

Logistic Map

Elementary Cellular Automata

$$x_{t+1} = f(x_t) = R x_t (1 - x_t)$$

 $lattice_{t+1} = f(lattice_t)$ [f = ECA rule)

Deterministic

Deterministic

Discrete time steps

Discrete time steps

Continuous "state" (value of *x* is a real number)

Discrete state (value of lattice is sequence of "black" and "white")

Dynamics:

Dynamics:

Fixed point --- periodic ---- chaos

Fixed point – periodic – chaos

Control parameter: R

Control parameter: ?

Langton's *Lambda* parameter as a proposed control parameter for CAs

Chris Langton

For two-state (black and white) CAs:

Lambda = fraction of black output states in CA rule table

For example:

Lambda = 5/8

Langton's hypothesis:

"Typical" CA behavior (after transients):

Lambda is a better predictor of behavior for neighborhood size > 3 cells

"Edge of Chaos" applet

http://math.hws.edu/xJava/CA/EdgeOfChaosCA.html

From N. Packard, "Adaptation Toward the Edge of Chaos" 1988

fixed point periodic chaotic periodic fixed-point

Summary

- CAs can be viewed as dynamical systems, with different attractors (fixed-point, periodic, chaotic, "edge of chaos")
- These correspond to Wolfram's four classes
- Langton's *Lambda* parameter is one "control parameter" that (roughly) indicates what type of attractor to expect
- The Game of Life is a Class 4 CA!
- Wolfram hypothesized that Class 4 CAs are capable of "universal computation"

Computation: Information is

- input
- stored
- transferred
- combined (or "processed")
- output

Computation: Information is

- input
- stored
- transferred
- combined (or "processed")
- output

Universal Computation (= Programmable Computers):

Only a small set of logical operations is needed to support universal computation!

John von Neumann's Self-Reproducing Automaton

http://en.wikipedia.org/wiki/ File:Nobili Pesavento 2reps.png

Two dimensional cellular automaton, 29 states. Universal replicator and computer.

The Game of Life as a Universal Computer

1970: Conway shows that *Life* can implement simple logic operations needed for universal computation, and sketches how a universal computer could be constructed.

1990s: Paul Rendall constructs universal computer in *Life*.

http://rendell-attic.org/gol/turing_js_r.gif

Computation in ECAs

Wolfram's hypothesis:

All class 4 CAs can support universal computation

This hypothesis is hard to evaluate:

- No formal definition of class 4 CAs
- Hard to prove that something is capable of universal computation

Rule 110 as a Universal Computer

Proved by Matthew Cook, 2002

• Described in

Transfer of information:moving particles

Integration of information from different spatial locations: particle collisions

"Useful computation" in CAs

- Universal computation in CAs, while interesting and surprising, is not very practical.
 - Too slow, too hard to program.
- CAs have been harnessed for more practical parallel computation (e.g. image processing).
- Next subunit evolving CAs with GAs to perform such computations.

Significance of CAs for Complex Systems

- Cellular automata can produce highly complex behavior from simple rules
- Natural complex systems can be modeled using cellular-automatalike architectures
- CAs give an framework for understanding how complex dynamics can produce collective information processing in a "life-like" system.

Evolving Cellular Automata with Genetic Algorithms: A Review of Recent Work

Melanie Mitchell Santa Fe Institute 1399 Hyde Park Road Santa Fe, NM 87501 mm@santafe.edu James P. Crutchfield¹
Santa Fe Institute
1399 Hyde Park Road
Santa Fe, NM 87501
jpc@santafe.edu

Rajarshi Das IBM Watson Research Ctr. P.O. Box 704 Yorktown Heights, NY 10598 rajarshi@watson.ibm.com

In Proceedings of the First International Conference on Evolutionary Computation and Its Applications (EvCA'96). Moscow, Russia: Russian Academy of Sciences, 1996.

A computational task for cellular automata

Design a cellular automaton to decide whether or not the initial pattern has a majority of black cells.

We used cellular automata with 6 neighbors for each cell:

Quiz

- how many neighborhoods?
- how many CAs

Naive Solution: Majority vote in each neighborhood

Results of local majority voting CA: It doesn't perform the task!

Evolving cellular automata with genetic algorithms

- Create a random population of candidate cellular automata rules.
- The "fitness" of each cellular automaton is how well it performs the task.
- The fittest cellular automata get to reproduce themselves, with mutations and crossovers.
- This process continues for many generations.

The "DNA" of a cellular automaton is an encoding of its rule table:

Create a random population of candidate cellular automata rules:

```
rule 1: 00100011000100101111000101001101111000...
```

rule 3: 111111000100101010100000001110001001011...

•

•

•

Calculating the Fitness of a Rule

- For each rule, create the corresponding cellular automaton. Run that cellular automaton on many initial configurations.
- Fitness of rule = fraction of correct classifications

For each cellular automaton rule in the population:

rule 1: 00100011000100101111000101001101111000...1

GA Population:

```
rule 1: 00100011000100101111100010101101111000... Fitness = 0.5
rule 2: 0001100110101111111111000011101001010... Fitness = 0.2
rule 3: 111110001001010100000001110001001011... Fitness = 0.4

...

rule 100:001011101000000111110000010101011111... Fitness = 0.0

Select fittest rules to reproduce themselves
```

```
rule 1: 0010001100010010111100010101101111000... Fitness = 0.5 rule 3: 1111100010010101010000000111000100101... Fitness = 0.4 etc.
```

Create new generation via crossover and mutation:

Parents:

```
rule 1: 0010001 10001001011111000101001101111000...
rule 3: 1111100 010010101010000000111000100101...
```

Children: Mutate:

0010001010010 1 01000000011100010010101...

111110010001001011111000101001101111000...

Create new generation via crossover and mutation:

Parents:

```
rule 1: 0010001 10001001011111000101001101111000...
rule 3: 1111100 010010101010000000111000100101...
```

Children:

001000101001000100000001110001001011...

111110010001001011111000101001101111000...

Continue this process until new generation is complete. Then start over with the new generation.

Keep iterating for many generations.

majority black

majority white

A cellular automaton evolved by the genetic algorithm

How do we describe information processing in complex systems?

Simple patterns filtered out

"particles"

Regular Domains			
$\Lambda^0 = 0^*$	$\Lambda^1 =$	= 1*	$\Lambda^2=(01)^*$
Particles (Velocities)			
$\alpha \sim \Lambda^0 \Lambda^1 (0)$		$\beta \sim \Lambda^1 01 \Lambda^0 (0)$	
$\gamma \sim \Lambda^0 \Lambda^2 \ (-1)$		$\delta \sim \Lambda^2 \Lambda^0 \ (-3)$	
$\eta \sim \Lambda^1 \Lambda^2 (3)$		$\mu \sim \Lambda^2 \Lambda^1 \ (1)$	
Interactions			
decay	$\alpha \rightarrow \gamma + \mu$		
react	$\beta + \gamma \rightarrow \eta, \ \mu + \beta \rightarrow \delta, \ \eta + \delta \rightarrow \beta$		
annihilate	$\eta + \mu \to \emptyset_1, \ \gamma + \delta \to \emptyset_0$		

laws of "particle physics"

"particles"

- Level of particles can explain:
 - Why one CA is fitter than another
 - What mistakes are made
 - How the GA produced the observed series of innovations
- Particles give an "information processing" description of the collective behavior

How the genetic algorithm evolved cellular automata

generation 8

generation 13

How the genetic algorithm evolved cellular automata

generation 17

generation 18