Machine Learning

Rodrigo Fernandes de Mello
Invited Professor at Télécom ParisTech
Associate Professor at Universidade de São Paulo, ICMC, Brazil
http://www.icmc.usp.br/~mello
mello@icmc.usp.br

TP using the R Statistical Software

- You are suggested to start studying R:
 - In French: https://cran.r-project.org/doc/contrib/Paradis-rdebuts_fr.pdf
 - In English: https://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf

- Employ K-Means to codify audio signals
 - 1) You start implementing the K-Means algorithm in R
 - Use a different implementation than the one provided during the class. That will be disconsidered
 - 2) Then you record some audio signal using any tool
 - We suggest Audacity (https://www.audacityteam.org/) given it is an open source platform
 - You must record using the following option:
 - Audacity option "Export Audio"
 - RAW / Unsigned 8-bit PCM
 - At least 8000 observations per second
 - This is the same as 8 kHz of sampling rate
 - 3) Use our C code to translate the binary audio signal to a file with textual integers

- Employ K-Means to codify audio signals
 - 4) Read the files with textual integers in R and apply K-Means
 - using k=25, 15, and 7
 - 5) For every resultant data clustering you should produce a series of values substituting the original observation by its prototype value
 - This makes values assume the central value for every prototype (a.k.a. cluster or group)
 - 6) Now you should round the series and save them into some textual integers file
 - 7) Use our C code to translate those 3 executions of K-Means to a binary file
 - 8) Play the files and listen to them
 - 9) Test the compression:
 - Compress the original and each file with the algorithm you prefer (Zip, GZip, BZip2, etc.) and see the resultant sizes

- Deliverables:
 - A link to a **folder** including:
 - Your R code
 - At least two audio files you recorded
 - The output files after processing each of your audio files for:
 - 5 clusters
 - 7 clusters
 - 15 clusters
 - 25 clusters
 - A separated text document in the same **folder** mentioning the compression tool you used (e.g. Bzip2, Gzip2, WinZip, etc) and the resulting compression rate of your audio files
 - For example, let's suppose the original audio file had 1 Mb and that after compression it has 512 Kb
 - Consider your audio file with 5, 7, 15, and 25 clusters have the following sizes after compression: 20 Kb, 50 Kb, 250 Kb and 350 Kb, so that the rates will be:

20Kb/512Kb, 50Kb/512Kb, 250Kb/512Kb, 350Kb/512Kb