Análise de Variância

Gilberto Pereira Sassi

Universidade Federal da Bahia Instituto de Matemática e Estatística Departamento de Estatística

Considere $N(\mu_1, \sigma^2)$ e $N(\mu_2, \sigma^2)$ conforme ilustrado na Figura 1a.

Figura 1: Comparação de médias

Queremos decidir entre as hipóteses:

$$H_0: \mu_1 = \mu_2$$
 e $H_1: \mu_1 \neq \mu_2$,

Figura 1b nos indica que rejeitaremos H_0 .

Considere $N(\mu_1, \sigma^2)$, $N(\mu_2, \sigma^2)$ e $N(\mu_3, \sigma^2)$ conforme ilustrado na Figura 2a.

Figura 2: Comparação de médias

Queremos decidir entre as hipóteses:

 $H_0: \mu_1 = \mu_2 = \mu_3$ e $H_1: \mu_i \neq \mu_j$, para menos um par $(i, j), i, j \in \{1, 2, 3\}, i \neq j$,

Figura 2b nos indica que rejeitaremos H_0 .

- Suponha que queremos testar $H_0: \mu_1 = \cdots = \mu_a$;
- \blacktriangleright Chamamos μ_1, \ldots, μ_a de tratamentos;
- Imagine que temos uma amostra de tamanho n para cada tratamento: $y_{i1}, \ldots, y_{in}, i = 1, \ldots, a$, conforme ilustrado na Tabela 1;

Tratamento	J	Obser	vações		Totais	Médias
1	<i>y</i> ₁₁	<i>y</i> ₁₂		<i>y</i> _{1<i>n</i>}	<i>y</i> ₁ .	$\bar{y}_{1.} = \frac{y_{1.}}{n}$
2	<i>y</i> ₂₁	<i>y</i> ₂₂		y _{2n}	<i>y</i> ₂ .	\bar{y}_2 . = $\frac{y_2^n}{n}$
	1 :	:		- :	:	1 :
n	y _{n1}	Уn2		<i>y</i> _{nn}	y _n .	$\bar{y}_{n\cdot} = \frac{y_{n\cdot}}{n}$
					y	$\bar{y}_{\cdot \cdot} = \frac{y_{\cdot \cdot}}{n \cdot a}$

Tabela 1: Dados de um estudo completamento aleatórios e balanceados com um fator.

Descrevemos os dados da Tabela 1 através de

$$y_{ij} = \mu + \tau_i + \epsilon_{ij}, \quad \epsilon_{ij} \sim N(0, \sigma^2);$$
 (1)

Queremos testar as seguintes hipóteses

$$H_0: \tau_1 = \tau_2 = \dots = \tau_a = 0,$$

 $H_1: \tau_i \neq 0$ para pelo menos um $i, i \in \{1, 2, \dots, a\}.$

Chamamos τ_i , $i = 1, \ldots, a$ de efeitos do tratamentos.

Soma dos quadrados.

Note que

$$SS_T = \sum_{j=1}^a \sum_{j=1}^n (y_{ij} - \bar{y}_{..})^2 = (N-1)s^2$$

Soma dos quadrados total

$$= \underbrace{\sum_{i=1}^{a} n(\bar{y}_{i.} - \bar{y}_{..})^{2}}_{} + \underbrace{\sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i.})^{2}}_{}$$

Soma dos Quadrados dos Tratamentos Soma dos Quadrados do Erro

$$=\underbrace{\sum_{i=1}^{a}n(\bar{y}_{i.}-\bar{y}_{..})^{2}}_{SQ_{Tratamentos}}+\underbrace{\sum_{i=1}^{a}(n-1)s_{i}^{2}}_{SQ_{E}}=SQ_{Tratamentos}+SQ_{E}.$$

em que

▶
$$s^2 = \frac{1}{N-1} \sum_{i=1}^a \sum_{j=1}^n (y_{ij} - \bar{y}_{..})^2$$
, em que $N = n \cdot a$ (variância total);

$$ightharpoonup s_i^2 = \frac{1}{n-1} \sum_{i=1}^n (y_{ii} - \bar{y}_{i\cdot})^2$$
 (variância do tratamento i).

Se
$$H_0: \tau_1 = \tau_2 = \cdots = \tau_a = 0$$
 é verdadeira, então $Y_{ij} \sim N(\mu, \sigma^2), \forall i, j$.

Quadrado médio.

Usando a equação (1), podemos provar que

$$E(SQ_{Tratamentos}) = (a-1)\sigma^2 + n \cdot \tau_1^2 + \cdots + n \cdot \tau_a^2;$$

$$E(SQ_E) = (N-a)\sigma^2;$$

▶ Quadrado Médio dos Tratamentos:
$$QM_{Tratamentos} = \frac{SQ_{Tratamentos}}{a-1}$$
;

• Quadrado Médio do Erro:
$$QM_E = \frac{SQ_E}{N-a}$$
;

$$ightharpoonup F_0 = rac{QM_{Tratamentos}}{QM_E}.$$

É possível provar que

$$E(QM_{Tratamentos}) = \sigma^2 + \frac{n \cdot \tau_1^2 + \dots + n \cdot \tau_a^2}{a - 1};$$

$$ightharpoonup$$
 E (QM_E) = σ^2 ;

Rejeitamos
$$H_0: \tau_1 = \tau_2 = \dots = \tau_a = 0$$
 se $F_0 = \frac{QM_{T_{ratamentos}}}{QM_E}$ for grande.

Se H_0 for verdadeiro, temos que $F_0 \sim F_{a-1,N-a}$, em que $F_{a-1,N-a}$ é a distribuição F. Teste ANOVA é robusto para tratamentos com variâncias ligeiramente diferentes.

Figura 3: Região crítica para ANOVA.

ANOVA: Checando as suposições do modelo.

Análise de resíduo

Depois decidir entre H_0 e H_1 , precisamos checar as suposições do modelo:

- (a) ϵ_{ij} , $j = 1, \ldots, n$, $i = 1, \ldots, a$ são independentes;
- (b) $\epsilon_{ij}, j = 1, \dots, n, i = 1, \dots, a$ tem distribuição normal;
- (c) ϵ_{ii} , $i = 1, \ldots, n$, $i = 1, \ldots, a$ tem variância constante.

 $\epsilon_{ij} = y_{ij} - \mu + \tau_i = y_{ij} - \mu_i, j = 1, \dots, n, i = 1, \dots, a$ não são observáveis pois não conhecemos as médias populacionais dentro de cada tratamento, mas podemos aproximar estas médias populacionais μ_i por \bar{y}_i , $i = 1, \dots, a$. Assim, podemos definimos os resíduos por

$$e_{ij} = y_{ij} - \bar{y}_{i.}, j = 1, \dots, n, i = 1, \dots, a.$$
 (2)

Usando a equação (2), podemos usar gráficos para checar (a), (b) e (c):

- (a) **Independência:** cada par $(i+j,e_{ij}), j=1,\ldots,n, i=1,\ldots,a,$ é representado por um ponto no plano cartesiano. Se não existe padrão ou tendência,então assumimos que ϵ_{ij} são independentes;
- (b) **Normalidade:** cada par $\left(q_{(i+j)}, \frac{e_{(i+j)} \bar{e}_{\cdots}}{s_e}\right), j=1,\dots,n, i=1,\dots,a$ é representado por um ponto no plano cartesiano, em que $\Phi(q_{(i+j)}) = \frac{i+j-0.5}{n}$ e s_e é o desvio padrão dos resíduos este gráfico é chamado de gráfico de probabilidade normal. Se os pontos estão próximos ou em cima da reta y=x, então c_{ij} tem distribuição normal;
- (c) Variância constante: cada par (ȳ_i., e_{ij}), j = 1,...,n, i = 1,...,a, é representando por um ponto no plano cartesiano. Se não existe padrão ou tendência, então assumimos que ε_{ij} tem variância constante.

Exemplo

Em um experimento que deseja analisar se a resistência à tração de um tecido está associada com a porcentagem da fibra de algodão. Cinco níveis de porcentagem da fibra de algodão e cinco observações em cada nível de porcentagem de fibra de algodão. Os dados estão na Tabela 2. Desenhe diagramas de caixa para cada nível de porcentagem de algodão. A porcentagem de algodão afeta a resistência à tração do tecido? Use $\alpha=5\%$. Calcule o valor-p.

Algodão		Observações				Total	Variância em cada tratamento		
15	7	7	15	11	9	49	11,20		
20	12	17	12	18	18	77	9,80		
25	14	18	18	19	19	88	4,30		
30	19	25	22	19	23	108	6,80		
35	7	10	11	15	11	54	8,20		
	Variância total = 26,54								

Tabela 2: Resistência à tração

Solução

Figura 4: Diagrama de caixa com nível de porcentagem de algodão.

Solução

As médias populacionais de resistência à tração com porcentagem de fibra algodão são: $\mu_{15} = \mu + \tau_{15}$.

$$\mu_{20} = \mu + \tau_{20}, \, \mu_{25} = \mu + \tau_{25}, \, \mu_{30} = \mu + \tau_{30} \, e \, \mu_{35} = \mu + \tau_{35}.$$

Passo 1) Queremos testar as hipóteses:
$$H_0: \tau_{15} = \tau_{20} = \tau_{25} = \tau_{30} = \tau_{35} = 0$$
 e

$$H_1: \tau_{15}^2 + \tau_{20}^2 + \tau_{25}^2 + \tau_{30}^2 + \tau_{35}^2 > 0;$$
 Passo 2) Nível de significância $\alpha = 5\%;$

Passo 3) Rejeitamos
$$H_0$$
 se $F_0 = \frac{QM_{Tratamentos}}{QM_E}$ for grande. Ou seja, $RC = \left\{ f_0 \mid f_0 > f_{1-\alpha;a-1,N-a} \right\}$, em que

$$N = a \cdot n = 5 \cdot 5 = 25 \text{ e } a = 5;$$

Passo 4) Vamos encontrar o valor crítico:

$$P(F_{a-1,N-a} \le f_{1-\alpha;a-1,N-a}) = P(F_{4,20} \le f_{0.95;4,20}) = 1 - \alpha = 0.95$$
, então $f_{0.95;4,20} = 2.8661$;

Passo 5) Na Tabela 3, mostramos a soma dos quadrados e os quadrados médios:

Fonte de variação	Graus de liberdade	Soma dos Quadrados	Quadrados Médios	F ₀
Tratamentos	a - 1 = 4	SQ _{Tratamentos} = 475, 76	QM _{Tratamentos} = 118, 94	$\frac{QM_{Tratamentos}}{QM_E} = 14,76$
Erro	N - a = 20	$SQ_E = 161, 20 = (n-1)s_1^2 + (n-1)s_2^2 + (n-1)s_3^2 + (n-1)s_4^2$	$QM_E = 8,06$	
Total	N - 1 = 24	$SQ_T = 636, 96 = (N-1)s^2$		1

Tabela 3: Tabela ANOVA

Como $F_0=14,76>f_{0.95,4,20}=2,8661$, rejeitamos H_0 , ou seja, ao nível de significância $\alpha=5\%$ as resistências médias não são iquais para os diferentes níveis de porcentagem de fibra de algodão.

Solução (valor-p)

O valor-p é dado por

$$p = P(F_0 > f_0 \mid H_0) = 1 - P(F_{a-1,N-a} < f_0).$$

Usando as informações da Tabela 3, temos que $\it f_0=14,76$. Então, o valor-p é dado por

$$p = 1 - P(F_{a-1,N-a} \le f_0)$$

= 1 - P(F_{4,20} \le 14,76) Calculei usando o R
= 1 - 1
= 0

Como $p = 0 < \alpha = 0,05$, rejeitamos H_0 . Então, as resistências médias não são iguais para os diferentes níveis (15, 20, 25, 30 e 35) de porcentagem de fibra de algodão.

Solução (Análise de resíduos)

Primeiro calculamos os resíduos e médias dentro de cada tratamento:

Algodão		F	Resíduo	S		Média em cada tratamento	Variância em cada tratamento
15	-2,8	-2,8	5,2	1,2	-0,8	9,80	11,20
20	-3,4	1,6	-3,4	2,6	2,6	15,40	9,80
25	-3,6	0,4	0,4	1,4	1,4	17,60	4,30
30	-2,6	3,4	0,4	-2,6	1,4	21,60	6,80
35	-3,8	-0,8	0,2	4,2	0,2	10,80	8,20
	Variância total = 26,54						

Tabela 4: Resistência à tração

- (a) Na Figura 5a, os pontos estão próximos perto da reta y=x e concluímos que ϵ_{ij} tem distribuição normal;
- (b) Na Figura 5b, não existe padrão ou tendência e concluímos que ϵ_{ij} são independentes;
- (c) Na Figura 5c, não existe padrão ou tendência e concluímos que ϵ_{ij} tem variância constante.

Análise de resíduo

Figura 5: Análise de resíduos.

Exemplo

Imagine que um pesquisador realizou um experimento completamente aleatório e balanceado para checar a tratamentos ou níveis de um fator. Algumas informações do experimento estão na Tabela 5. Complete a Tabela 5. As médias dos tratamentos são diferentes? Use $\alpha=5\%$. Calcule o valor-p.

Fonte de variação	Graus de liberdade	Soma dos Quadrados	Quadrados Médios	F ₀
Tratamentos Erro	a-1=3 N-a=?	$SO_{Tatamentos} = ?$ $SO_E = (n-1)s_1^2 + (n-1)s_2^2 + (n-1)s_3^2 + (n-1)s_4^2 = 396, 8$	Iralamentos	QM _{Tratamentos} =?
Total	N-1=19	$SQ_T = (N-1)s^2 = 514, 2$		

Tabela 5: Algumas informações do experimento.

Solução

Passo 1) Note que a = 4 e queremos testar as seguintes hipóteses:

$$H_0: \tau_1 = \tau_2 = \tau_3 = \tau_4 = 0 \text{ e } H_1: \tau_1^2 + \tau_2^2 + \tau_3^2 + \tau_4^2 > 0;$$

Passo 2) Nível de significância $\alpha = 5\%$;

Passo 3) Rejeitamos H_0 se $F_0 = \frac{QM_{Tratamentos}}{QM_F}$ for grande. Ou seja,

$$RC = \{f_0 \mid f_0 > f_{1-\alpha;a-1,N-a}\}.$$

Passo 4) Note que N-a=(N-1)-(a-1)=16. Vamos encontrar o valor crítico:

▶
$$P(F_{a-1,N-a} \le f_{1-\alpha;a-1,N-a}) = P(F_{3,16} \le f_{0,95;3,16}) = 1 - \alpha = 0,95$$
, então $f_{0,95;3,16} = 3,2389$.

Passo 5) Completamos as informações da Tabela 5 na Tabela 6.

	Graus de liberdade	Soma dos Quadrados	Quadrados Médios	F ₀
Tratamentos		SQ _{Tratamentos} = 514, 2 - 396, 8 = 117, 4	$QM_{Tratamentos} = \frac{117,4}{3} = 39,13$	$\frac{QM_{Totamortos}}{QMc} = \frac{39,13}{24.8} = 1,58$
Erro	N-a=19-3=16	$SQ_E = (n-1)s_1^2 + (n-1)s_2^2 + (n-1)s_3^2 + (n-1)s_4^2 = 396,8$	$QM_E = \frac{396.8}{16} = 24.8$	
Total	N - 1 = 19	$SQ_T = (N-1)s^2 = 514, 2$		

Tabela 6: Algumas informações do experimento.

Como $f_0=1,58 < f_{0,95;3,16}=3,2389$, não rejeitamos H_0 . Ou seja, ao nível de significância $\alpha=5\%$ não temos evidência as médias dos tratamentos são diferentes.

Solução (valor-p)

O valor-p é dado por

$$p = P(F_0 > f_0 \mid H_0) = 1 - P(F_{a-1,N-a} < f_0).$$

Usando as informações da Tabela 6, temos que $f_0=1,58$. Então, o valor-p é dado por

$$p = 1 - P(F_{a-1,N-a} \le f_0)$$

= 1 - $P(F_{3,16} \le 1,58)$ Calculei usando o R
= 1 - 0,7668
= 0,2332

Como $p=0,2332>\alpha=0,05$, não rejeitamos H_0 . Então, não temos evidência para afirmar que as médias dos tratamentos são diferentes ao nível de significância $\alpha=5\%$.

Poder do teste (estudos balanceados).

Imagine que

- ▶ Hipóteses: $H_0: \tau_1 = \cdots = \tau_a = 0$ e $H_1: \tau_1^2 + \cdots + \tau_a^2 > 0$;
- ▶ H_1 é verdade, então $\tau_1^2 + \cdots + \tau_a^2 > 0$. Chamamos $f = \sqrt{\frac{\tau_1^2 + \cdots + \tau_a^2}{a\sigma^2}}$ de *size* effect;
- ► $F_0 = \frac{QM_{Tratamentos}}{QM_E} \sim F_{a-1,N-a} \left(\Phi^2\right)$, em que $\Phi^2 = n \cdot f^2$ e n é o número de observações em cada tratamento;
- ▶ Ao nível de significância α , temos $RC = \{f_0 \mid f_0 > f_{1-\alpha;a-1,N-a}\}$.

Poder do teste é dado por

$$1-\beta=1-P\left(F_{0}\leq f_{1-\alpha;a-1,N-a}\mid H_{0}\right)=1-P\left(F_{a-1,N-a}\left(\Phi^{2}\right)\leq f_{1-\alpha;a-1,N-a}\right)$$

A Função Poder, dado o tamanho da amostra N, o número de tratamentos a e os tamanhos dos tratamentos são n, é $\pi:(0,\infty)\longrightarrow [0,1]$ dada por

$$\pi(f) = 1 - P\left(F_{a-1,N-a}\left(n \cdot f^2\right) \leq f_{1-\alpha;a-1,N-a}\right), \qquad f \in (0,\infty).$$

Alguns livros chamada a Função Poder de Curva de Característica Operacional.

Tamanho da amostra (estudos balanceados).

Imagine que

- ▶ Hipóteses: $H_0: \tau_1 = \cdots = \tau_a = 0$ e $H_1: \tau_1^2 + \cdots + \tau_a^2 > 0$;
- ▶ H_1 é verdade, então $\tau_1^2 + \cdots + \tau_a^2 > 0$. Chamamos $f = \sqrt{\frac{\tau_1^2 + \cdots + \tau_a^2}{a\sigma^2}}$ de *size* effect;
- ► $F_0 = \frac{QM_{Tratamentos}}{QM_E} \sim F_{a-1,N-a} (\Phi^2)$, em que $\Phi^2 = n \cdot f^2$ e n é o número de observações em cada tratamento;
- ▶ Ao nível de significância α , temos $RC = \{f_0 \mid f_0 > f_{1-\alpha;a-1,N-a}\}$.

Dado o número de tratamentos a, o poder do teste $1-\beta$, o nível de significância α e o size effect f. Suponha que todos os tratamentos tem o mesmo número de observações n, então o tamanho mínimo da amostra é $N=n\cdot a$ e n é solução de

$$1 - \beta = 1 - P\left(F_{a-1, n \cdot a-a}\left(n \cdot f^2\right) \le f_{1-\alpha; a-1, n \cdot a-a}\right)$$

Poder do teste (estudos balanceados).

Exemplo

Em um experimento que deseja analisar se a resistência à tração de um tecido está associada com a porcentagem da fibra de algodão. Cinco níveis de porcentagem da fibra de algodão e cinco observações em cada nível de porcentagem de fibra de algodão. Na Tabela 7, mostramos as médias populacionais para cada nível de porcentagem de fibra de algodão, e a média e a variância populacionais sem considerar os níveis de porcentagem de fibra de algodão são, respectivamente, $\mu=15$ e $\sigma^2=27$. Se coletarmos n=6 observações para cada nível de porcentagem de fibra de algodão, qual o poder do teste? Use $\alpha=5\%$.

Algodão	Médias populacionais
15	15
20	20
25	25
30	30
35	25

Tabela 7: Médias para cada nível de porcentagem de fibra de algodão.

Tamanho da amostra (estudos balanceados).

Solução

Passo 1) Queremos testar as hipóteses: $H_0: \tau_1 = \cdots = \tau_5 = 0$ e $H_1: \tau_1^2 + \cdots + \tau_r^2 > 0$: **Passo 2)** Nível de significância $\alpha = 5\%$:

Primeiro vamos calcular os efeitos dos tratamentos:

$$au_1 = \mu_1 - \mu = 15 - 15 = 0$$
 $au_2 = \mu_2 - \mu = 20 - 15 = 5$ $au_3 = \mu_3 - \mu = 25 - 15 = 10$ $au_4 = \mu_4 - \mu = 30 - 15 = 15$ $au_5 = \mu_5 - \mu = 35 - 15 = 20$

Primeiro vamos calcular o *size effect*: $f^2 = \frac{\tau_1^2 + \dots + \tau_5^2}{2} = \frac{0^2 + 5^2 + 10^2 + 15^2 + 20^2}{5 \cdot 3^2} = 5.56$. Pelo enunciado, sabemos que cada tratamento tem n=6 observações, então $N=5\cdot 6=30$ e a=5. O parâmetro de não-centralidade é dado por $\Phi^2 = n \cdot f^2 = 6 \cdot 5, 56 = 33, 33$.

Vamos encontrar o valor crítico:

P
$$(F_{a-1,N-a} \le f_{1-\alpha;a-1,N-a}) = P(F_{a-1,N-a} \le f_{0,95;4,25}) = 1 - \alpha = 0,95$$
, então $f_{0,95;4,25} = 2,7587$.

O poder do teste é dado por

$$1 - \beta = 1 - P\left(F_{a-1,N-a}\left(\Phi^2\right) \le f_{0,95;4,25}\right) = 1 - P\left(F_{4,25}\left(33,33\right) \le 2,7587\right) = 0,9943.$$

pwr anova balanced (group means = c(15, 20, 25, 30, 35), mean = 15, sigma = sqrt(27), pwr = NULL, n = 6, $sig_level = 0.05$)

Código 1: Código no R.

Tamanho da amostra (estudos balanceados).

Exemplo

Em um experimento que deseja analisar se a resistência à tração de um tecido está associada com a porcentagem da fibra de algodão. Cinco níveis de porcentagem da fibra de algodão e cinco observações em cada nível de porcentagem de fibra de algodão. Na Tabela 8, mostramos as médias populacionais para cada nível de porcentagem de fibra de algodão, e a média e a variância populacionais sem considerar os níveis de porcentagem de fibra de algodão são, respectivamente, $\mu=15$ e $\sigma^2=27$. Para termos um poder de teste de 1 $-\beta=99\%$, quantas observações precisam ser coletadas para cada nível de fibra de porcentagem de algodão? Use $\alpha=5\%$.

Algodão	Médias populacionais
15	15
20	20
25	25
30	30
35	35

Tabela 8: Médias para cada nível de porcentagem de fibra de algodão.

Tamanho da amostra (estudos balanceados).

Solução

Passo 1) Queremos testar as hipóteses: $H_0: \tau_1 = \cdots = \tau_5 = 0$ e $H_1: \tau_1^2 + \cdots + \tau_5^2 > 0$; **Passo 2)** Nível de significância $\alpha = 5\%$;

Primeiro vamos calcular os efeitos dos tratamentos:

$$au_1 = \mu_1 - \mu = 15 - 15 = 0$$
 $au_2 = \mu_2 - \mu = 20 - 15 = 5$ $au_3 = \mu_3 - \mu = 25 - 15 = 10$ $au_4 = \mu_4 - \mu = 30 - 15 = 15$ $au_5 = \mu_5 - \mu = 35 - 15 = 20$

Primeiro vamos calcular o size effect: $f^2 = \frac{\tau_1^2 + \dots + \tau_5^2}{a\sigma^2} = \frac{0^2 + 5^2 + 10^2 + 15^2 + 20^2}{5 \cdot 27} = 5,56$. O número de tratamentos é a = 5.

Então, o tamanho mínimo de amostra para cada tratamento é solução em *n* da seguinte equação:

$$1 - \beta = 0,99 = 1 - P\left(F_{a-1,n\cdot a-a}\left(n \cdot t^2\right) \le f_{1-\alpha;a-1,n\cdot a-a}\right)$$
$$= 1 - P\left(F_{4,n\cdot 5-5}\left(n \cdot 5,56\right) \le f_{0,95;4,n\cdot 5-5}\right)$$

Então, precisamos de n=5 observações para cada nível de porcentagem de fibra de tecido.

1 pwr_anova_balanced(group_means = c(15, 20, 25, 30, 35), mean = 15, sigma = sqrt(27),
2 pwr = 0.99, n = NULL, sig level = 0.05)

Código 2: Código no R.

Intervalo de confianca para médias

Intervalo de confiança para médias

Considere o modelo dado por

$$Y_{ij} = \mu + \tau_i + \epsilon_{ij}, \qquad \epsilon_{ij} \sim N(0, \sigma^2).$$

Neste contexto, a média para cada tratamento é μ_i e pode ser aproximada por $\bar{y}_i = \frac{y_{i1} + y_{i2} + \dots + y_{in}}{n}$. Pode-se provar que

$$T = \frac{\overline{Y}_{i.} - \mu_i}{\sqrt{\frac{QM_E}{n}}} \sim t_{N-a}.$$

em que $\mu_i=\mu+\tau_i, i=1,\ldots,a$ e $N=n\cdot a$. Lembre que E $[QM_E]=\sigma^2$. Dado o coeficiente de confiança $\gamma=1-alpha$, temos que

$$\gamma = P\left(t_{\frac{\alpha}{2};N-a} \leq \frac{\bar{Y}_{i.} - \mu_i}{\sqrt{\frac{QM_E}{n}}} \leq t_{1-\frac{\alpha}{2};N-a}\right),\,$$

e o intervalo de confiança para a média μ_i do tratamento i é dado

$$IC(\mu_i, \gamma) = \left(t_{\frac{\alpha}{2}; N-a} \sqrt{\frac{QM_E}{n}} + \bar{y}_{i.}; t_{1-\frac{\alpha}{2}; N-a} \sqrt{\frac{QM_E}{n}} + \bar{y}_{i.}\right).$$

Intervalo de confiança para médias

Intervalo de confiança para média

Exemplo

Em um experimento que deseja analisar se a resistência à tração de um tecido está associada com a porcentagem da fibra de algodão. Cinco níveis de porcentagem da fibra de algodão e cinco observações em cada nível de porcentagem de fibra de algodão. Os dados estão na Tabela 9. Calcule o intervalo de confiança para média de resistência de tração para cada nível de porcentagem de fibra de algodão. Use $\gamma=95\%.$

Porcentagem de fibra de algodão (tratamento)		Obs	servaç	ões		Total	Variância em cada tratamento	Média em cada tratamento
15	7	7	15	11	9	49	11,20	9,80
20	12	17	12	18	18	77	9,80	15,40
25	14	18	18	19	19	88	4,30	17,60
30	19	25	22	19	23	108	6,80	21,60
35	7	10	11	15	11	54	8,20	10,80

Tabela 9: Resistência à tração

Estudos completamente aleatórios e balanceados com um fator.

Intervalo de confiança para médias

Intervalo de confiança para média

Solução

Primeiro vamos calcular a tabela anova. Mostramos o resultado na Tabela 10.

Fonte de variação	Graus de liberdade	Somas de quadrado	Quadrados médios	F ₀	valor-p
Porcentagem de fibra de Algodão (Tratamento) Erro	4 20	475,76 161,20	118,94 8,06	14,76	0,00
Total	24	636,96			

Tabela 10: Tabela ANOVA.

Note que $\gamma=0,95=1-\alpha,$ $\alpha=0,05,$ a=5 e $N=a\cdot n=5\cdot 5=25.$ Vamos calcular os quantis da distribuição t-Student:

$$P\left(t_{N-a} \le t_{\frac{\alpha}{2},N-a}\right) = P\left(t_{20} \le t_{0,025;20}\right) = \frac{\alpha}{2} = 0,025, \text{ então } t_{0,025;20} = -2,086;$$

$$P\left(t_{N-a} \le t_{\frac{\alpha}{2},N-a}\right) = P\left(t_{20} \le t_{0,975;20}\right) = 1 - \frac{\alpha}{2} = 0,975, \text{ então } t_{0,975;20} = 2,086.$$

Então a média para cada nível de porcentagem de fibra de algodão é dado:

$$\begin{split} IC(\mu_1,\gamma) &= \left(\bar{y}_1. + t_{\frac{\alpha}{2}:N-a} \sqrt{\frac{QM_E}{n}}; \bar{y}_1. + t_{1-\frac{\alpha}{2}:N-a} \sqrt{\frac{QM_E}{n}}\right) = \left(9,80-2,086 \sqrt{\frac{8,06}{5}}; 9,80+2,086 \sqrt{\frac{8,06}{5}}\right) \\ &= (7,15;12,45) \,. \end{split}$$

Então, a resistência média à tração para fibras com 15% de fibra de algodão está entre 7, 15 e 12, 45.

Intervalo de confiança para médias

Intervalo de confiança para média

Solução

Então a média para cada nível de porcentagem de fibra de algodão é dado:

$$IC(\mu_2, \gamma) = \left(\bar{y}_{1\cdot} + t_{\frac{\alpha}{2}; N-a} \sqrt{\frac{OM_E}{n}}; \bar{y}_{1\cdot} + t_{1-\frac{\alpha}{2}; N-a} \sqrt{\frac{OM_E}{n}}\right) = \left(15, 40 - 2, 086 \sqrt{\frac{118, 94}{20}}; 15, 40 + 2, 086 \sqrt{\frac{118, 94}{20}}\right) = (12, 75; 18, 05)$$

$$IC(\mu_3, \gamma) = \left(\bar{y}_2. + t_{\frac{\alpha}{2}; N-a} \sqrt{\frac{QM_E}{n}}; \bar{y}_2. + t_{1-\frac{\alpha}{2}; N-a} \sqrt{\frac{QM_E}{n}}\right) = \left(17, 60 - 2, 086 \sqrt{\frac{118, 94}{20}}; 17, 60 + 2, 086 \sqrt{\frac{118, 94}{20}}\right) = (14, 95; 20, 25)$$

$$IC(\mu_4, \gamma) = \left(\bar{y}_{3.} + t_{\frac{\alpha}{2}; N-a} \sqrt{\frac{QM_E}{n}}; \bar{y}_{3.} + t_{1-\frac{\alpha}{2}; N-a} \sqrt{\frac{QM_E}{n}}\right) = \left(21, 60 - 2, 086 \sqrt{\frac{118, 94}{20}}; 21, 60 + 2, 086 \sqrt{\frac{118, 94}{20}}\right)$$

$$= (18, 95; 24, 25)$$

$$IC(\mu_5, \gamma) = \left(\bar{y}_4. + t_{\frac{\alpha}{2}; N-a} \sqrt{\frac{OM_E}{n}}; \bar{y}_4. + t_{1-\frac{\alpha}{2}; N-a} \sqrt{\frac{OM_E}{n}}\right) = \left(10, 80 - 2, 086 \sqrt{\frac{118, 94}{20}}; 10, 80 + 2, 086 \sqrt{\frac{118, 94}{20}}\right)$$

$$= (8, 15; 13, 45).$$

Intervalo de confiança para diferenças das médias

Considere o modelo dado por

$$Y_{ij} = \mu + \tau_i + \epsilon_{ij}, \qquad \epsilon_{ij} \sim N(0, \sigma^2).$$

Neste contexto, a média para cada tratamento é μ_i e pode ser aproximada por $\bar{y}_i = \frac{y_{i1} + y_{i2} + \dots + y_{in}}{n}$. Pode-se provar que

$$T = \frac{(\bar{Y}_{i\cdot} - \bar{Y}_{j\cdot}) - (\mu_i - \mu_j)}{\sqrt{\frac{2 \cdot QM_E}{n}}} \sim t_{N-a}.$$

em que $\mu_i=\mu+ au_i, i=1,\ldots,a$ e $N=n\cdot a$. Lembre que E $[QM_E]=\sigma^2$. Dado o coeficiente de confiança $\gamma=1-alpha$, temos que

$$\gamma = P\left(t_{\frac{\alpha}{2};N-a} \leq \frac{(\bar{Y}_{i\cdot} - \bar{Y}_{j\cdot}) - (\mu_i - \mu_j)}{\sqrt{\frac{2 \cdot QM_E}{n}}} \leq t_{1-\frac{\alpha}{2};N-a}\right),$$

e o intervalo de confiança para a média μ_i do tratamento i é dado

$$\textit{IC}(\mu_i - \mu_j, \gamma) = \left(t_{\frac{\alpha}{2}; N-a} \sqrt{\frac{2 \cdot \textit{QM}_E}{n}} + (\bar{y}_{i\cdot} - \bar{y}_{j\cdot}); t_{1-\frac{\alpha}{2}; N-a} \sqrt{\frac{2 \cdot \textit{QM}_E}{n}} + (\bar{y}_{i\cdot} - \bar{y}_{j\cdot})\right).$$

Intervalo de confiança para diferenças das médias

Exemplo

Em um experimento que deseja analisar se a resistência à tração de um tecido está associada com a porcentagem da fibra de algodão. Cinco níveis de porcentagem da fibra de algodão e cinco observações em cada nível de porcentagem de fibra de algodão. Os dados estão na Tabela 11. Calcule o intervalo de confiança para a diferença das médias de resistência de tração para cada níveis de porcentagens 20% e 25% e para a diferença das médias de resistência de tração para cada níveis de porcentagens 20% e 30% de fibra de algodão. Use $\gamma=95\%$.

Porcentagem de fibra de algodão (tratamento)		Obs	servaç	ões		Total	Variância em cada tratamento	Média em cada tratamento
15	7	7	15	11	9	49	11,20	9,80
20	12	17	12	18	18	77	9,80	15,40
25	14	18	18	19	19	88	4,30	17,60
30	19	25	22	19	23	108	6,80	21,60
35	7	10	11	15	11	54	8,20	10,80

Tabela 11: Resistência à tração

Intervalo de confiança para diferenças das médias

Solução

Primeiro vamos calcular a tabela anova. Mostramos o resultado na Tabela 12.

Fonte de variação	Graus de liberdade	Somas de quadrado	Quadrados médios	F ₀	valor-p
Porcentagem de fibra de Algodão (Tratamento) Erro	4 20	475,76 161,20	118,94 8,06	14,76	0,00
Total	24	636,96			

Tabela 12: Tabela ANOVA.

Note que $\gamma=0,95=1-\alpha,\,\alpha=0,05,\,a=5$ e $N=a\cdot n=5\cdot 5=25.$ Vamos calcular os quantis da distribuição t-Student:

- ▶ $P\left(t_{N-a} \le t_{\frac{\alpha}{2},N-a}\right) = P\left(t_{20} \le t_{0,025;20}\right) = \frac{\alpha}{2} = 0,025$, então $t_{0,025;20} = -2,086$;
- P $\left(t_{N-a} \le t_{\frac{\alpha}{2},N-a}\right) = P\left(t_{20} \le t_{0,975,20}\right) = 1 \frac{\alpha}{2} = 0,975$, então $t_{0,975,20} = 2,086$.

Solução

Então o intervalo para $\mu_2 - \mu_3$ é dado por

$$IC(\mu_2 - \mu_3; \gamma) = \left(t_{\frac{\alpha}{2}; N-a} \sqrt{\frac{QM_E}{n}} + (\bar{y}_2, -\bar{y}_3.); t_{1-\frac{\alpha}{2}; N-a} \sqrt{\frac{QM_E}{n}} + (\bar{y}_2, -\bar{y}_3.)\right)$$

$$IC(\mu_2 - \mu_3; 95\%) = \left(-2,086 \sqrt{\frac{8,06}{5}} + (15,40-17,60); 2,086 \sqrt{\frac{8,06}{5}} + (15,40-17,60)\right) = (-4,85; 0,45).$$

Ou seja, como $0 \in IC(\mu_2 - \mu_3; 95\%)$, as resistências médias à tração para os níveis 20% e 25% de fibra de algodão são iguais com coeficiente de confiança $\gamma = 95\%$. Então o intervalo para $\mu_2 - \mu_3$ é dado por

$$IC(\mu_2 - \mu_4; \gamma) = \left(t_{\frac{\alpha}{2}; N-a} \sqrt{\frac{QM_E}{n}} + (\bar{y}_2. - \bar{y}_4.); t_{1-\frac{\alpha}{2}; N-a} \sqrt{\frac{QM_E}{n}} + (\bar{y}_2. - \bar{y}_4.)\right)$$

$$IC(\mu_2 - \mu_4; 95\%) = \left(-2,086 \sqrt{\frac{8,06}{5}} + (15,40-21,60); 2,086 \sqrt{\frac{8,06}{5}} + (15,40-21,60)\right) = (-8,85; -3,55).$$

Ou seja, como $0 \in IC(\mu_2 - \mu_4; 95\%)$, a resistência média à tração do tecido com 20% de fibra de algodão é menor que a resistência média à tração do tecido com 30% de fibra de algodão.

- Suponha que queremos testar $H_0: \mu_1 = \cdots = \mu_a$;
- ▶ Chamamos μ_1, \ldots, μ_a de tratamentos;
- Imagine que temos uma amostra de tamanho n_i para cada tratamento: $y_{i1}, \ldots, y_{in_i}, i = 1, \ldots, a$,
- Descrevemos os dados através de

$$y_{ij} = \mu + \tau_i + \epsilon_{ij}, \quad \epsilon_{ij} \sim N(0, \sigma^2), \qquad j = 1, \dots, n_i, i = 1, \dots, a;$$
 (3)

Queremos testar as seguintes hipóteses

$$H_0: \tau_1 = \tau_2 = \dots = \tau_a = 0,$$

 $H_1: \tau_1^2 + \dots + \tau_a^2 > 0.$

Chamamos τ_i , i = 1, ..., a de efeitos do tratamentos.

Soma dos quadrados.

Se
$$H_0: \tau_1 = \tau_2 = \cdots = \tau_a = 0$$
 é verdadeira, então $Y_{ij} \sim N(\mu, \sigma^2), j = 1, \ldots, n_i, i = 1, \ldots, a$.

$$SS_T = \sum_{i=1}^a \sum_{j=1}^n (y_{ij} - \bar{y}_{\cdot \cdot})^2 = (N-1)s^2$$

$$Soma dos quadrados total$$

$$= \sum_{i=1}^a n_i (\bar{y}_{i\cdot} - \bar{y}_{\cdot \cdot})^2 + \sum_{i=1}^a \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i\cdot})^2$$

$$Soma dos Quadrados dos Tratamentos Soma dos Quadrados do Erro
$$= \sum_{i=1}^a n_i (\bar{y}_{i\cdot} - \bar{y}_{\cdot \cdot})^2 + \sum_{i=1}^a (n_i - 1)s_i^2 = SQ_{Tratamentos} + SQ_E.$$$$

em que

$$ightharpoonup s^2 = \frac{1}{N-1} \sum_{i=1}^{a} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2$$
, em que $N = \sum_{i=1}^{a} n_i$ (variância total);

$$ightharpoonup s_i^2 = \frac{1}{n_i-1} \sum_{i=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2$$
 (variância do tratamento *i*).

Quadrado médio.

Usando a equação (3), podemos provar que

$$E(SQ_{Tratamentos}) = (a-1)\sigma^2 + n_1\tau_1^2 + \cdots + n_a\tau_a^2;$$

$$\triangleright$$
 E $(SQ_E) = (N - a)\sigma^2$;

▶ Quadrado Médio dos Tratamentos:
$$QM_{Tratamentos} = \frac{SQ_{Tratamentos}}{a-1}$$
;

• Quadrado Médio do Erro:
$$QM_E = \frac{SQ_E}{N-a}$$
;

$$F_0 = \frac{QM_{Tratamentos}}{QM_E}.$$

em que
$$N = \sum_{i=1}^{a} n_i$$
.

É possível provar que

$$E(QM_{Tratamentos}) = \sigma^2 + \frac{n_1 \tau_1^2 + \dots + n_a \tau_a^2}{a - 1};$$

$$ightharpoonup$$
 E (QM_E) = σ^2 ;

Rejeitamos
$$H_0: \tau_1 = \tau_2 = \dots = \tau_a = 0$$
 se $F_0 = \frac{QM_{Tratamentos}}{QM_E}$ for grande.

Se H_0 for verdadeiro, temos que $F_0 \sim F_{a-1,N-a}$, em que $F_{a-1,N-a}$ é a distribuição F. Teste ANOVA é robusto para tratamentos com variâncias ligeiramente diferentes.

Figura 6: Região crítica para ANOVA.

ANOVA: Checando as suposições do modelo.

Análise de resíduo

Depois decidir entre H_0 e H_1 , precisamos checar as suposições do modelo:

- (a) $\epsilon_{ii}, j = 1, \ldots, n_i, i = 1, \ldots, a$ são independentes;
- (b) $\epsilon_{ij}, j = 1, \dots, n_i, i = 1, \dots, a$ tem distribuição normal;
- (c) $\epsilon_{ii}, j = 1, \dots, n_i, i = 1, \dots, a$ tem variância constante.

 $\epsilon_{ij}=y_{ij}-\mu+ au_i=y_{ij}-\mu+ au_i, j=1,\ldots,n_i, i=1,\ldots,a$ não são observáveis pois não conhecemos as médias populacionais dentro de cada tratamento, mas podemos aproximar estas médias populacionais μ_i por \bar{y}_i . $i=1,\ldots,a$. Assim, podemos definimos os resíduos por

$$e_{ij} = y_{ij} - \bar{y}_{i}, j = 1, \dots, n_i, i = 1, \dots, a.$$
 (4)

Usando a equação (4), podemos usar gráficos para checar (a), (b) e (c):

- (a) **Independência:** cada par $(i+j,e_{ij}), j=1,\ldots,n_i, i=1,\ldots,a$, é representado por um ponto no plano cartesiano. Se não existe padrão ou tendência,então assumimos que ϵ_{ij} são independentes;
- (b) **Normalidade:** cada par $\left(q_{(i+j)}, \frac{e_{(i+j)} \bar{e}_{-i}}{s_{\theta}}\right), j=1,\ldots,n_i, i=1,\ldots,a$ é representado por um ponto no plano cartesiano, em que $\Phi(q_{(i+j)}) = \frac{i+j-0.5}{n}$ e s_{θ} é o desvio padrão dos resíduos este gráfico é chamado de gráfico de probabilidade normal. Se os pontos estão próximos ou em cima da reta com ângulo 45 graus, então ϵ_{ij} tem distribuição normal;
- (c) Variância constante: cada par (ȳ_i, e_{ij}), j = 1,..., n_i, i = 1,..., a, é representando por um ponto no plano cartesiano. Se não existe padrão ou tendência, então assumimos que ε_{ij} tem variância constante.

Exemplo

Um experimento foi realizado para determinar se quatro temperaturas de queima específicas afetam a densidade de um certo tipo de tijolo. Os dados estão na Tabela 13.

Temperatura		Densidade					
40	21,8	21,9	21,7	21,6	21,7	21,5	21,8
50	21,7	21,4	21,5	21,5			
60	21,9	21,8	21,8	21,6	21,5		
70	21,8 21,7 21,9 21,9	21,7	21,8	21,7	21,6	21,8	

Tabela 13: Informações do experimento.

- (a) As temperaturas de queima específicas afetam a densidade de um certo tipo de tijolo? Use $\alpha=5\%$.
- (b) Calcule o valor-p.
- (c) Faça uma análise de resíduo.

Solução

Passo 1) Queremos testar as hipóteses: $H_0: \tau_1 = \tau_2 = \tau_3 = \tau_4 = 0$ e

 $H_1: \tau_1^2 + \tau_2^2 + \tau_3^2 + \tau_4^2 > 0;$

Passo 2) Nível de significância $\alpha = 5\%$;

Passo 3) Rejeitamos H_0 se $F_0 = \frac{QM_{Tratamentos}}{QM_F}$. Ou seja, $RC = \{f_0 \mid f_0 > f_{1-\alpha;a-1,N-a}\};$

Passo 4) Note que $n_1 + n_2 + n_3 + n_4 = 22$ e a = 4. Vamos encontrar o valor crítico:

P
$$(F_{a-1,N-a} \le f_{1-\alpha;a-1,N-a}) = P(F_{3,18} \le f_{0,95;3,18}) = 1 - \alpha = 0,95$$
, então $f_{0,95;3,18} = 3,1599$;

Passo 5) Usando os dados da Tabela 13, obtemos a Tabela ANOVA (mostrada na Tabela 14).

Fatores de variação	Graus de liberdade	Soma de quadrados	Quadrados médios	F ₀
Temperatura °C	3	$SQ_{Tratamento} = 0,139$	QM _{Tratamento} = 0,046	$\frac{QM_{Tratamentos}}{QM_{E}} = 2,556$
Erro	18	$SQ_E=0,319$	$QM_E=0,018$	****E
Total	21	$SQ_T=0,458$		

Tabela 14: Tabela Anova

Lembre que
$$SQ_E = (n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + (n_3 - 1)s_3^2 + (n_4 - 1)s_4^2$$
, $SQ_T = (N - 1)s^2$ e $N = n_1 + n_2 + n_3 + n_4$.

Como $f_0=2,556\leq 3,15990=f_{0,95;3,23}$, não rejeitamos H_0 . Ao nível de significância $\alpha=5\%$, não temos evidência estatística para afirmar que as densidades médias para temperaturas de queima específica são diferentes.

Solução (valor-p)

O valor-p é calculado através de

$$p = P(F_0 \mid f_0 \mid H_0) = 1 - P(F_{a-1,N-a} \le f_0),$$

em que $N = n_1 + \cdots + n_a$.

Usando a Tabela 14, temos que a = 4, N = 22 e $f_0 = 2,556$. Então, temos que

$$p = 1 - P(F_{a-1,N-a} \le f_0)$$

$$= 1 - P(F_{3,23} \le 2,556)$$

$$= 1 - 0,9199$$

$$= 0,0801.$$

Como $p=0,0801 \geq \alpha=0,05$, não rejeitamos H_0 . Ou seja, não temos evidência estatística para afirmar que as densidades médias são diferentes para as quatro temperaturas de queima específicas.

Solução (Análise de resíduo)

Primeiro calculamos os resíduos e a média dentro de cada tratamento, conforme mostrado na Tabela 15.

Temperatura				Resíduo				\bar{y}_{i} .	s _i ²
40	0,0857	0,1857	-0,0143	-0,1143	-0,0143	-0,2143	0,0857	21,7143	0,0181
50	0,175	-0,125	-0,025	-0,025				21,5250	0,0158
60	0,18	0,08	0,08	-0,12	-0,22			21,7200	0,0270
70	0,15	-0,05	0,05	-0,05	-0,15	0,05		21,7500	0,0110
									'

Tabela 15: Informações do experimento.

- (a) Na Figura 7a, notamos que os pontos estão próximos da reta e concluímos que ϵ_{ij} tem distribuição normal;
- (b) Na Figura 7b, não notamos qualquer padrão ou tendência e concluímos que as variáveis aleatórias ϵ_{ij} são independentes;
- (c) Na Figura 7c, não notamos qualquer padrão ou tendência e concluímos que a variância é constante para as variáveis aleatórias ϵ_{ij} .

Análise de resíduo

Figura 7: Análise de resíduos.

Poder do teste (estudos não-balanceados).

No contexto do modelo da equação (3), imagine que

- ▶ Hipóteses: $H_0: \tau_1 = \cdots = \tau_a = 0$ e $H_1: \tau_1^2 + \cdots + \tau_a^2 > 0$;
- ▶ H_1 é verdade, então $\tau_1^2 + \cdots + \tau_a^2 > 0$;
- ► $F_0 = \frac{QM_{Tratamentos}}{QM_E} \sim F_{a-1,N-a}(\Phi^2)$, em que $\Phi^2 = \frac{n_1\tau_1^2 + \dots + n_a\tau_a^2}{a\sigma^2}$, em que n_i é o número de observações do Tratamento $i, i = 1, \dots, a$;
- ▶ Ao nível de significância α , temos $RC = \{f_0 \mid f_0 > f_{1-\alpha;a-1,N-a}\}$.

Poder do teste é dado por

$$1 - \beta = 1 - P\left(F_0 \le f_{1-\alpha;a-1,N-a} \mid H_0\right) = 1 - P\left(F_{a-1,N-a}\left(\Phi^2\right) \le f_{1-\alpha;a-1,N-a}\right)$$

em que $N=n_1+\cdots+n_a$. A Função Poder, dado o tamanho da amostra N, o número de tratamentos a e os tamanhos dos tratamentos são n, é $\pi:(0,\infty)\longrightarrow [0,1]$ dada por

$$\pi(\Phi^2) = 1 - P\left(F_{a-1,N-a}\left(\Phi^2\right) \leq f_{1-\alpha;a-1,N-a}\right), \qquad \Phi^2 \in (0,\infty).$$

Alguns livros chamada a Função Poder de Curva de Característica Operacional.

Poder do teste

Poder do teste (estudos não-balanceados).

Exemplo

Um experimento foi realizado para determinar se quatro temperaturas de queima específicas afetam a densidade de um certo tipo de tijolo. Algumas informações estão na Tabela 16. Qual o poder do teste? Use $\alpha=5\%$.

Temperatura	n _i	μ_{i}	σ_i
40	4	21	2
50	5	14	2
60	6	15	2
70	4	25	2
		$\mu=$ 21	$\sigma^2 = 2$

Tabela 16: Informações do experimento.

Note que $\mu_i = \mu + \tau_i$ é a média de cada tratamento, σ_i^2 é a variância de cada tratamento, μ é a média total e σ^2 é a variância total.

Poder do teste (estudos não-balanceados).

Solução

Primeiro vamos calcular os efeitos dentro de cada tratamento:

$$au_1 = \mu_i - \mu = 21 - 21 = 0$$
 $au_2 = \mu_2 - \mu = 14 - 21 = -7$ $au_3 = \mu_i - \mu = 15 - 21 = -6$ $au_4 = \mu_4 - \mu = 25 - 21 = 4$

Então, o parâmetro de não-centralidade é dada por

$$\Phi^2 = \frac{n_1 \tau_1^2 + \dots + n_a \tau_a^2}{a \sigma^2} = \frac{4 \cdot 0^2 + 5 \cdot (-7)^2 + 6 \cdot (-6)^2 + 4 \cdot 4^2}{4 \cdot 2} = 65,625.$$

Vamos encontrar o quantil da distribuição F:

▶
$$P(F_{a-1,N-a} \le f_{1-\alpha;a-1,N-a}) = P(F_{3,15} \le f_{0,95;3,15}) = 1 - \alpha = 0,95$$
, então $f_{0,95;3,15} = 3,2874$.

Então o poder do teste é dado por

$$1 - \beta = 1 - P(F_{a-1,N-a}(\Phi^2) \le f_{1-\alpha;a-1,N-a}) = 1 - P(F_{3,15}(65,625) \le 3,2874)$$

= 1.

Intervalo de confiança para médias

Intervalo de confiança para médias

Considere o modelo dado por

$$Y_{ij} = \mu + \tau_i + \epsilon_{ij}, \qquad \epsilon_{ij} \sim N(0, \sigma^2), \qquad j = 1, \dots, n_i, i = 1, \dots, a.$$

Neste contexto, a média para cada tratamento é μ_i e pode ser aproximada por $\bar{y}_{i.}=rac{y_{i1}+y_{i2}+\cdots+y_{in_i}}{n_i}$. Pode-se provar que

$$T = rac{ar{Y}_{i.} - \mu_i}{\sqrt{rac{QM_E}{n_i}}} \sim t_{N-a}.$$

em que $\mu_i = \mu + \tau_i$, $i = 1, \ldots, a$ e $N = n_1 + \cdots + n_a$. Lembre que E $[QM_E] = \sigma^2$. Dado o coeficiente de confiança $\gamma = 1 - alpha$, temos que

$$\gamma = P\left(t_{\frac{\alpha}{2};N-a} \leq \frac{\bar{Y}_{i.} - \mu_{i}}{\sqrt{\frac{QM_{E}}{n_{i}}}} \leq t_{1-\frac{\alpha}{2};N-a}\right),\,$$

e o intervalo de confiança para a média μ_i do tratamento i é dado

$$IC(\mu_i, \gamma) = \left(t_{\frac{\alpha}{2}; N-a} \sqrt{\frac{QM_E}{n_i}} + \bar{y}_{i.}; t_{1-\frac{\alpha}{2}; N-a} \sqrt{\frac{QM_E}{n_i}} + \bar{y}_{i.}\right).$$

Intervalo de confiança para médias

Intervalo de confiança para as médias.

Exemplo

Um experimento foi realizado para determinar se quatro temperaturas de queima específicas afetam a densidade de um certo tipo de tijolo. Os dados estão na Tabela 17. Construa um intervalo de confiança para a densidade média do tijolo para temperatura de queima igual a 40. Use $\gamma=99\%$.

Temperatura		Densidade						\bar{y}_{i} .	$ s_i^2 $
40	21,8	21,9	21,7	21,6	21,7	21,5	21,8	21,7143	0,0181
50	21,7	21,4	21,5	21,5				21,5250	0,0158
60	21,9	21,8	21,8	21,6	21,5			21,7200	0,0270
70	21,9	21,7	21,8	21,7	21,6	21,8		21,7500	0,0110
								$\bar{y}_{\cdot \cdot} = 21,6909$	$s^2 = 0,0218$

Tabela 17: Informações do experimento.

Intervalo de confiança para médias

Intervalo de confiança para as médias.

Solução

Primeiro vamos calcular a tabela anova. Mostramos o resultado na Tabela 18.

Fatores de variação	Graus de liberdade	Soma de quadrados	Quadrados médios	F_0
Temperatura [○] C	3	SQ _{Tratamento} = 0, 139	QM _{Tratamento} = 0, 046	$\frac{QM_{Tratamentos}}{QM_E} = 2,556$
Erro	18	$SQ_{E} = 0,319$	$QM_E = 0,018$	E
Total	21	$SQ_T=0,458$		

Tabela 18: Tabela ANOVA.

Note que $\gamma=0, 99=1-\alpha, \alpha=0, 05, a=4, N-a=18$ e N=22. Vamos calcular os quantis da distribuição t-Student:

$$P\left(t_{N-a} \le t_{\frac{\alpha}{2},N-a}\right) = P\left(t_{18} \le t_{0,005;18}\right) = \frac{\alpha}{2} = 0,025, \text{ então } t_{0,005;18} = -2,878;$$

$$P\left(t_{N-a} \le t_{\frac{\alpha}{2},N-a}\right) = P\left(t_{18} \le t_{0,995;18}\right) = 1 - \frac{\alpha}{2} = 0,995, \text{ então } t_{0,995;20} = 2,878.$$

Então o intervalo de confiança é dado por

$$\begin{split} IC(\mu_1,\gamma) &= \left(\tilde{\mathbf{y}}_1. + t_{\frac{\alpha}{2};N-a} \sqrt{\frac{QM_E}{n_1}} ; \tilde{\mathbf{y}}_1. + t_{1-\frac{\alpha}{2};N-a} \sqrt{\frac{0M_E}{n_1}} \right) = \left(21,7143 - 2,878 \sqrt{\frac{0,018}{7}} ; 21,7143 + 2,878 \sqrt{\frac{0,018}{7}} \right) \\ &= (21,57;21,86) \,. \end{split}$$

Então, a densidade média população dos tijolos com temperatura de queima igual a 40 está entre 21, 57 e 21, 86.

Intervalo de confiança para diferenças das médias

Intervalo de confiança para diferenças das médias

Considere o modelo dado por

$$Y_{ii} = \mu + \tau_i + \epsilon_{ii}, \quad \epsilon_{ii} \sim N(0, \sigma^2), \quad j = 1, \dots, n_i, i = 1, \dots, a.$$

Neste contexto, a média para cada tratamento é μ_i e pode ser aproximada por $\bar{y}_{i.}=rac{y_{i1}+y_{i2}+\cdots+y_{in_i}}{n_i}$. Pode-se provar que

$$T = \frac{(Y_{i.} - Y_{j.}) - (\mu_i - \mu_j)}{\sqrt{QM_E\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}} \sim t_{N-a}.$$

em que $\mu_i=\mu+\tau_i, i=1,\ldots,a$ e $N=n_1+\cdots+n_a$. Lembre que E $[QM_E]=\sigma^2$. Dado o coeficiente de confiança $\gamma=1-\alpha$, temos que

$$\gamma = P\left(t_{\frac{\alpha}{2}; N-a} \leq \frac{(\bar{Y}_{i\cdot} - \bar{Y}_{j\cdot}) - (\mu_i - \mu_j)}{\sqrt{QM_E\left(\frac{1}{\eta_i} + \frac{1}{\eta_j}\right)}} \leq t_{1-\frac{\alpha}{2}; N-a}\right),$$

e o intervalo de confiança para a média μ_i do tratamento i é dado

$$IC(\mu_i - \mu_j, \gamma) = \left(t_{\frac{\alpha}{2}; N-a} \sqrt{QM_E\left(\frac{1}{n_i} + \frac{1}{n_j}\right)} + (\bar{y}_i. - \bar{y}_j.); t_{1-\frac{\alpha}{2}; N-a} \sqrt{QM_E\left(\frac{1}{n_i} + \frac{1}{n_j}\right)} + (\bar{y}_i. - \bar{y}_j.)\right).$$

Intervalo de confiança para diferenças das médias

Intervalo de confiança para diferenças das médias

Exemplo

Um experimento foi realizado para determinar se quatro temperaturas de queima específicas afetam a densidade de um certo tipo de tijolo. Os dados estão na Tabela 19. Construa um intervalo de confiança para a diferença das densidades médias do tijolo para temperaturas de queima igual a 40 e 60. Use $\gamma=99\%$.

Temperatura			D	ensidad	de			\bar{y}_{i} .	s _i ²
40	21,8	21,9	21,7	21,6	21,7	21,5	21,8	21,7143	0,0181
50	21,7	21,4	21,5	21,5				21,5250	0,0158
60	21,9	21,8	21,8	21,6	21,5			21,7200	0,0270
70	21,9	21,7	21,8	21,7	21,6	21,8		21,7500	0,0110
								$\bar{y}_{\cdot \cdot} = 21,6909$	$ s^2 = 0,0218$

Tabela 19: Informações do experimento.

Intervalo de confiança para diferenças das médias

Intervalo de confiança para diferenças das médias

Solução

Primeiro vamos calcular a tabela anova. Mostramos o resultado na Tabela 20.

Fatores de variação	Graus de liberdade	Soma de quadrados	Quadrados médios	F_0
Temperatura [○] C	3	SQ _{Tratamento} = 0, 139	QM _{Tratamento} = 0, 046	$\frac{QM_{Tratamentos}}{QM_{F}} = 2,556$
Erro	18	$SQ_{E} = 0,319$	$QM_{E} = 0,018$	E
Total	21	$SQ_T = 0,458$		

Tabela 20: Tabela ANOVA.

Note que $\gamma=0, 99=1-\alpha, \alpha=0, 05, a=4, N-a=18$ e N=22. Vamos calcular os quantis da distribuição t-Student:

$$P\left(t_{N-a} \le t_{\frac{\alpha}{2},N-a}\right) = P\left(t_{18} \le t_{0,005;18}\right) = \frac{\alpha}{2} = 0,025, \text{ então } t_{0,005;18} = -2,878;$$

$$P\left(t_{N-a} \le t_{\frac{\alpha}{2},N-a}\right) = P\left(t_{18} \le t_{0,995;18}\right) = 1 - \frac{\alpha}{2} = 0,995, \text{ então } t_{0,995;20} = 2,878.$$

Então o intervalo de confiança é dado por:

$$\begin{split} IC(\mu_1 - \mu_3, \gamma) &= \left((\bar{y}_1, -\bar{y}_3,) + t_{\frac{\alpha}{2}};_{N-a} \sqrt{QM_E\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}; (\bar{y}_1, -\bar{y}_3,) + t_{1-\frac{\alpha}{2}};_{N-a} \sqrt{QM_E\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \right) \\ &= \left((21, 7143 - 21, 72) - 2, 878\sqrt{0, 018\left(\frac{1}{7} + \frac{1}{5}\right)}; (21, 7143 - 21, 72) + 2, 878\sqrt{0, 018\left(\frac{1}{7} + \frac{1}{5}\right)} \right) = (-0, 23; 0, 22) \,. \end{split}$$

Então, como $0 \in IC(\mu_1 - \mu_3, 99\%)$, as densidades médias dos tijolos para temperaturas de queima iguais a 40 e 60 são iguais.