

Сверточные сети

Ушаков Роман

Зачем нужны сверточные сети?

Classification

Classification + Localization

Object Detection

Instance Segmentation

CAT

CAT

CAT, DOG, DUCK

CAT, DOG, DUCK

Single object

Multiple objects Dee

Зачем нужны сверточные сети?

Как классифицировать изображения?

How a computer sees an image. — source: http://cs231n.github.io/classification/

Как классифицировать изображения?

Для RGB картинки 128 * 128 – 49152 признака

Инвариантность к сдвигам

CNN

https://www.kdnuggets.com/2016/08/brohrer-convolutional-neural-networks-explanation.html

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

padding

1	6	5
7	10	9
7	10	8

stride

kernel size

Количество весов

- 1) 1D картинка, K фильтров, kernel size = K * kernel size
- 2) 3D картинка, K фильтров, kernel size = 3 * K * kernel size
- 3) nD тензор, K фильтров, kernel size = D * K * kernel size

Сверточные сети

Нужно сделать фильтры **обучаемыми** параметрами модели

Для этого:

- 1) Выбрать loss функцию
- 2) Уметь считать градиент loss функции по параметрам модели
- 3) Использовать обычный градиентный спуск для обучения

back prop

Forwardpass

Backwardpass

back prop

X ₁	1 X	12 X ₁	3
X ₂	1 X	22 X ₂	3
X ₃	1 X	32 X ₃	3

$$O_{11} = F_{11}X_{11} + F_{12}X_{12} + F_{21}X_{21} + F_{22}X_{22}$$

$$O_{12} = F_{11}X_{12} + F_{12}X_{13} + F_{21}X_{22} + F_{22}X_{23}$$

$$O_{21} = F_{11}X_{21} + F_{12}X_{22} + F_{21}X_{31} + F_{22}X_{32}$$

$$O_{22} = F_{11}X_{22} + F_{12}X_{23} + F_{21}X_{32} + F_{22}X_{33}$$

back prop

