

(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004 年2 月26 日 (26.02.2004)

PCT

(10) 国際公開番号 WO 2004/016693 A1

(51) 国際特許分類7:

(21) 国際出願番号:

PCT/JP2003/009306

C08L 77/00, C08K 9/04

(22) 国際出願日:

2003 年7 月23 日 (23.07.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-214446 2002年7月23日(23.07.2002) JP 特願 2002-301567

2002年10月16日(16.10.2002) JP

特願 2002-303843

2002年10月18日(18.10.2002) JP

特願2003-47358 2003 年2 月25 日 (25.02.2003)

(71) 出願人(米国を除く全ての指定国について): 鐘淵化学工業株式会社(KANEKA CORPORATION) [JP/JP]; 〒530-8288 大阪府 大阪市 北区中之島3 丁目2番4号 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 鈴木 紀之 (SUZUKI,Noriyuki) [JP/JP]; 〒 666-0115 兵庫県 川 西市 向陽台 1 丁目 2-5 4 Hyogo (JP). 原 和宏 (HARA,Kazuhiro) [JP/JP]; 〒 665-0812 兵庫県 宝塚 市口谷東 1 丁目 5 5-1-1 0 3 Hyogo (JP). 大野 良貴 (ONO,Yoshitaka) [JP/JP]; 〒 566-0072 大阪府 摂 津市 鳥飼西 5 丁目 5-3 5-5 0 9 Osaka (JP). 宮 野 淳司 (MIYANO,Atsushi) [JP/JP]; 〒569-0846 大阪府 高槻市 柱本新町 3 0-9 Osaka (JP). 目加田 哲雄 (MEKATA,Tetsuo) [JP/JP]; 〒669-1547 兵庫県 三田市富士が丘 6 丁目 1 4-8 Hyogo (JP).

- (74) 代理人: 安富康男, 外(YASUTOMI,Yasuo et al.); 〒 532-0011 大阪府 大阪市 淀川区西中島 5 丁目 4 番 2 0号 中央ビル Osaka (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国(広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: POLYAMIDE RESIN COMPOSITION AND PROCESS FOR PRODUCING THE SAME

(54)発明の名称:ポリアミド樹脂組成物及びその製造方法

(57) Abstract: A polyamide resin composition which is inhibited from warping after molding, gives a molded article having a satisfactory surface appearance, high mechanical properties, and high heat resistance, and has an excellent balance among material properties; and a process for producing the polyamide resin composition. The polyamide resin composition comprises a polyamide resin and a swellable mica treated with a polyether compound having a bisphenol structure. The process for producing a polyamide resin composition is characterized by melt-kneading a polyamide resin together with a polyether compound.

(57) 要約: 本発明は、成形後の反りが抑制され、成形品の表面外観が良好でかつ機械的特性や耐熱性が高く、各種物性のパランスに優れるポリアミド樹脂組成物及びその製造方法を提供することを目的とする。 本発明は、ポリアミド樹脂及びビスフェノール構造を有するポリエーテル化合物で処理された膨潤性雲母を含有するポリアミド樹脂組成物、及びポリアミド樹脂とポリエーテル化合物を溶融混練する事を特徴とするポリアミド樹脂組成物の製造方法である。

明細書

ポリアミド樹脂組成物及びその製造方法

技術分野

5 本発明は、ポリアミド樹脂、及び特定のポリエーテル化合物で処理された膨潤 性雲母を含有するポリアミド樹脂組成物に関する。

背景技術

15

20

ポリアミド樹脂は、耐熱性、耐薬品性、耐候性、機械的特性、電気的特性等に 10 優れる為、射出成形材料、繊維、フィルムとして多くの工業的用途に使用されて いる。

しかしながら、結晶性が高いために、肉厚が薄い成形体や肉厚が不均一で形状が複雑な成形体等を射出成形すると、反りが生じて成形体が変形する等の問題があった。その様な問題に対しては、一般的に様々な無機粒子の配合による改良が試みられてきたが、それによって製品の表面外観が損なわれたり、あるいは繊維状無機物が配向することによって異方性が生じ、やはり成形体が変形する問題があった。

こうした無機粒子の欠点は、一般に無機粒子の分散不良や分散粒子サイズが大きすぎることに起因するものと考えられており、無機粒子を微分散化する技術が 望まれていた。

無機粒子として、膨潤性粘土化合物をポリアミド樹脂に微分散させたポリアミド樹脂組成物が開示されている(特開昭62-74957号公報、特開平2-69562号公報、特開平6-80873号公報、特開平6-228435号公報、特開平11-349811号公報、特開平6-248176号公報、特開平8-283567号公報、特開平9-241505号公報、特開2001-2913号公報)。これらの技術は、ポリアミド樹脂の重合時にモンモリロナイト等の膨潤性粘土化合物を添加して得られるものである。しかしながら、粘土化合物によって重合物の溶融粘度が高まり、重合の攪拌不良が起こる。従って、重合法では数%程度の少量しか粘土化合物を用いることができないために、製品設計が制限

10

15

20

25

されていた。また、難燃剤や安定剤等の副原料をコンパウンディングするには、 工程を余分に設ける必要があったり、工程が煩雑になること等、改善が望まれて いた。

上記技術の別の問題としては、膨潤性粘土化合物の均一微分散化のために用いられる表面処理剤として、有機アンモニウム塩が採用されている点である。有機アンモニウム塩は、ポリアミド樹脂の加工温度で長時間滞留すると劣化を起こし、機械物性や靭性等の品質低下の原因となっていた。この点でも改善が望まれていた。

一方、押出によってポリアミド樹脂に膨潤性粘土化合物を微分散させたポリアミド樹脂組成物の開示もある(特開平8-319417号公報、特開2000-212432号公報、特開2000-290500号公報、特開2001-302845号公報、国際公開97-11998号公報等)。しかしながら、上記の発明では分散が不十分であるので、物性への改善効果が不十分であった。また、粘土化合物の表面処理剤として有機アンモニウム塩が採用されている為に、加工中に劣化を起こす可能性があり、機械物性や靭性等の品質低下の原因となっていた。さらに、上記発明の中で特開2000-212432号公報では末端が封止されたナイロンが必須であること、国際公開97-11998号公報ではビシクロ環を有する有機アンモニウム塩が必須であることから、工業的に不適であった。

上記の方法とは別に、膨潤性粘土化合物の層を劈開し易くして微分散化し易くする技術として、ポリビニルピロリドン等の高分子化合物(インターカラントポリマー)を層状ケイ酸塩の層間にインターカレートして層間化合物とする技術(特開平9-118518号公報)が開示されている。しかしながら、この発明では、層間化合物は開示されているものの、該層間化合物を劈開してポリアミド樹脂へ微分散化する技術は開示されておらず、ポリアミド樹脂中に膨潤性粘土化合物を微分散させる事は困難であった。

一方、熱可塑性樹脂中で膨潤性粘土化合物の層を劈開して微分散化するためには、膨潤性粘土化合物を水溶性化合物で処理して粘土層間化合物にする事が特に有効であるという技術がある(特開平10-259016号公報、特開平10-310420号公報)。該技術によって、表面外観の低下を生じることなく、弾

WO 2004/016693

10

15

20

25

性率や耐熱性を高めることができたが、各種物性をさらに高めることに加え、射 出成形時の反りを改善することへの強い要求があった。

以上のように、溶融混練等の簡便な方法によって、ポリアミド樹脂中に膨潤性 粘土化合物を均一微分散させること、それによって優れた特性を有するポリアミ ド樹脂組成物を得る技術は未だ見出されていないのが現状である。

また、上記のポリアミド樹脂の結晶性が高いために生じる、肉厚が薄い成形体や肉厚が不均一で形状が複雑な成形体等を射出成形すると反りが生じて成形体が変形する等の問題に対して、無機粒子の配合による改良以外に、ポリカーボネート系樹脂やスチレン系樹脂、ポリフェニレン系樹脂等の非晶性樹脂とのアロイ化が試みられてきた。しかしながら、それによって製品の表面性外観や耐熱性が損なわれたり、あるいは繊維状無機物が配向することによって異方性が生じ、やはり成形体が変形する問題があった。

なお、ポリアミド樹脂とスチレン系樹脂とをアロイ化する方法として、ABS 樹脂とのブレンド、即ち、ポリアミド/ABSアロイ(特公昭38-23476 号公報)が、また、ABS樹脂との相溶性を改良する方法として、不飽和カルボン酸をスチレン、アクリロニトリルと共に共重合してなる変性共重合体を配合する方法(特開昭63-179957号公報、特開昭64-158号公報)等が開示されている。さらに、無機充填剤及び特定スチレン系樹脂によるアロイ化による方法(特開平4-120167号公報、特開平4-332758号公報、特開平8-143768号公報、特開平9-217006号公報)、層状ケイ酸塩の共存下で重合したポリアミドとABSの組み合わせによる方法(特開平8-3439号公報)、微細分散した層状ケイ酸塩含有ポリアミドと特定なスチレン系化合物、タルクとの組み合わせによる方法(特開2000-212431号公報)、膨潤性フッ素雲母系鉱物を含有するポリアミドとスチレン系硬質ポリマー及び熱可塑性エラストマーとの組み合わせによる方法(特開平9-12873号公報)が開示されている。

しかしながら、いずれも表面外観(表面性、低ヒケ性)が得られなかったり、 吸水により機械的特性や熱特性に悪影響を及ぼしたり、優れた耐熱性が得られな い等、これら技術では優れた成形体の外観、変形、耐熱性、機械的特性を兼備す

10

20

25

ることができなかった。

上述のように種々の分野で利用されているポリアミド樹脂であるが、吸水性が 髙いが故に吸水後に物性が低下し易くなる傾向がある。吸水を抑制するために、 ポリオレフィン樹脂等、吸水し難い樹脂をポリマーブレンドする方法が一般に知 られている (特開平05-043794号公報;特開平06-136259号公 報;井出文雄、釜田和正、長谷川章、「高分子化学」、高分子学会、1968年 2月25日、第25巻、第274号、p. 107-115)。 しかしながら、ポ リマーブレンドによって耐熱性や剛性が損なわれる場合があった。剛性を保持す るために、繊維状強化材や無機充填材を加える方法が一般に知られている(特開 平06-200087号公報、特開平06-234896号公報、特開平07-108619号公報)。しかしながら、繊維状強化材を加えると異方性のために 成形品が反り若しくは変形したり、無機充填材のために表面性が損なわれる問題 がある。表面性を損なわない技術としては、アンモニウム塩で処理した膨潤性ケ イ酸塩を加える方法が開示されている(特開平10-279752号公報、特開 平11-181277号公報)。しかしながら、アンモニウム塩は耐熱性が高く ないので、ポリアミド樹脂の加工温度で長い時間熱履歴を受けると熱劣化を起こ し、着色等の不具合の原因になり得る問題があった。

以上のように、ポリアミド樹脂の溶融加工時に着色等の熱劣化を起こさずに、 表面性、低反り、剛性に優れ、吸水が抑制されたポリアミド樹脂系材料を得る技 術は未だ見出されていないのが現状である。

ところで、最近の電子技術の発展に伴い、静電記録シート、電子機器ハウジング、静電コンテナー、静電フィルム、クリーンルームの床材や壁材や間仕切り材、電子機器のカバー材、I C等のマガジンの需要が増加している。それらの材料には、寸法精度や低反り性、表面性、剛性、耐熱性が要求されている。一方、ポリアミド樹脂は耐熱性、機械的特性等に優れる為、射出成形材料、シート、フィルムとして多くの工業的用途に利用されているが、通常静電気を帯び易く、そのためフィルム、シート又は板でできた容器等は静電気の蓄積を嫌う用途にはそのままでは使用できない。そのため、合成樹脂に導電性を付与する技術が広く利用されており、一般に炭素繊維(特開平7-205310号公報、特開平10-23

7316号公報) やカーボンブラック (特開平11-310701号公報、特開 平7-331029号公報) 等が利用されている。

しかしながら、導電性を付与するために炭素繊維を用いた材料では、炭素繊維が成形品表面に浮き易いが、それがコンテナや搬送用トレイ等に用いられると、表面に浮いた炭素繊維がICやその他の電子部品を傷つける問題がある。また、その他の問題としては成形時に炭素繊維が流動方向に配向して異方性が生じるが、そのために成形品が反ってしまう別の問題もある。また、カーボンブラックを使う場合は剛性や耐熱性を付与するために無機充填材を用いるが、無機充填材が表

10 以上のように、耐熱性や剛性、表面性に優れ反りが少ない導電性ポリアミド樹 脂組成物を得る技術は未だ見出されていないのが現状である。

面性を損なったり、反りを生じさせたりする問題があった。

発明の要約

15

20

25

本発明の目的は、このような従来の問題を改善し、寸法安定性に優れ、機械的 物性や耐熱性を高めたポリアミド樹脂組成物を提供することにある。

また、本発明の目的は、上記目的に加えて、さらに表面外観(表面性、低ヒケ性)に優れた熱可塑性樹脂組成物;さらに吸水が抑制された熱可塑性樹脂組成物:又は、さらに帯電防止性を有する熱可塑性樹脂組成物を提供することにある。

本発明者らは、上記目的を達成する為に鋭意検討した結果、特定のポリエーテル化合物で処理した膨潤性雲母が、押出によってポリアミド樹脂中に均一微分散し、優れた特性を有するポリアミド樹脂組成物を完成させるに至った。

また、本発明者らは、特定のポリエーテル化合物で処理した膨潤性雲母が、押 出によってポリアミド樹脂とスチレン系樹脂とからなる樹脂組成物中に均一微分 散し、優れた特性を有する熱可塑性樹脂組成物を完成させるに至った。

さらに、本発明者らは、無水物含有オレフィン系共重合体を含有し、かつ特定 のポリエーテル化合物で処理された膨潤性雲母を含有するポリアミド樹脂組成物 が、優れた特性を有することを見出し、本発明を完成させるに至った。

また、本発明者らは、炭素化合物を含有し、かつ特定のポリエーテル化合物で 処理した膨潤性雲母を押出によってポリアミド樹脂中に均一微分散することによ

15

って、優れた特性を有するポリアミド樹脂組成物を完成させるに至った。

即ち、本発明は、ポリアミド樹脂、及び、ポリエーテル化合物で処理された膨 潤性雲母を含有し、かつ、前記ポリエーテル化合物が、下記一般式(1):

10 (式中、-A-は、-O-、-S-、-SO-、 $-SO_2-$ 、-CO-、炭素数 $1\sim 20$ のアルキレン基又は炭素数 $6\sim 20$ のアルキリデン基を示し、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、及び R^8 は、それぞれ同一であっても異なっていても良く、水素原子、ハロゲン原子又は炭素数 $1\sim 5$ の 1 価の炭化水素基を示す。)で表される構造を有することを特徴とする、ポリアミド樹脂組成物に関する。

また、本発明は、さらに、スチレン系樹脂、無水物含有オレフィン系共重合体、 及び、炭素化合物から選ばれる少なくとも一種を含有することを特徴とする、上 記ポリアミド樹脂組成物に関する。

また、本発明は、さらにスチレン系樹脂を含有することを特徴とする、上記ポリアミド樹脂組成物に関する。

20 また、本発明は、さらに無水物含有オレフィン系共重合体を含有することを特徴とする、上記ポリアミド樹脂組成物;無水物含有オレフィン系共重合体が、オレフィン又はオレフィン系共重合体に、シス型2重結合を環内に有する脂環式ジカルボン酸無水物又はα,β-不飽和ジカルボン酸無水物を、共重合又はグラフト付加して得られるものであることを特徴とする、上記ポリアミド樹脂組成物; ポリアミド樹脂組成物中の無水物含有オレフィン系共重合体の重量比が、1重量%以上、30重量%以下であることを特徴とする、上記ポリアミド樹脂組成物に関する。

また、本発明は、さらに炭素化合物を含有することを特徴とする、上記ポリアミド樹脂組成物;前記炭素化合物が粒状であることを特徴とする、上記ポリアミ

20

25

ド樹脂組成物;前記炭素化合物がフィブリル状であることを特徴とする、上記ポリアミド樹脂組成物に関する。

好ましい実施態様としては、前記ポリエーテル化合物が下記一般式 (2):

$$R^{11} - \left(OR^{9} \right)_{m} O = A - \left(A^{10}O \right)_{n} R^{12}$$

$$R^{3} - R^{4} - R^{7} - R^{8}$$

$$(2)$$

10 (式中、A、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、及び R^8 は、前記と同じであり、 R^9 、 R^{10} は、それぞれ同一であっても異なっていても良く、炭素数 $1\sim 5$ の 2 価の炭化水素基を示し、 R^{11} 、 R^{12} は、それぞれ同一であっても異なっていても良く、水素原子、炭素数 $1\sim 2$ の 0 1 価の炭化水素基を示し、m及び 1 はオキシアルキレン単位の繰り返し単位数を示し、 $2\leq m+n\leq 5$ 0 である。)

15 で表される構造を有することを特徴とする、上記ポリアミド樹脂組成物に関する。 より好ましい実施態様としては、ポリアミド樹脂組成物中の膨潤性雲母の等価 面積円直径 [D] が300nm以下である膨潤性雲母の比率が20%以上である、 上記ポリアミド樹脂組成物に関する。

さらに好ましい実施態様としては、前記ポリアミド樹脂組成物中で、膨潤性雲母の等価面積円直径 [D] の平均値が500nm以下である、上記ポリアミド樹脂組成物に関する。

さらに好ましい実施態様としては、前記ポリアミド樹脂組成物中で、膨潤性雲母の平均層厚が50nm以下である、上記ポリアミド樹脂組成物に関する。

さらに好ましい実施態様としては、前記ポリアミド樹脂組成物中で、膨潤性雲母の最大層厚が200nm以下である、上記ポリアミド樹脂組成物に関する。

さらに好ましい実施態様としては、前記ポリアミド樹脂組成物中で、膨潤性雲母の単位比率当たりの粒子数 [N] 値が30以上である、上記ポリアミド樹脂組成物に関する。

さらに好ましい実施態様としては、前記ポリアミド樹脂組成物中の膨潤性雲母

の平均アスペクト比(層長さ/層厚の比)が10~300である、上記ポリアミド樹脂組成物に関する。

さらに好ましい実施態様としては、ポリアミド樹脂組成物中の膨潤性雲母の重量比が、0.5重量%以上、30重量%以下である、上記ポリアミド樹脂組成物に関する。

さらに好ましい実施態様としては、前記各成分を混練することによって得られる、上記ポリアミド樹脂組成物に関する。

また、本発明は、上記ポリアミド樹脂組成物の各成分を溶融混練することを特徴とする、ポリアミド樹脂組成物の製造方法に関する。

10 また、本発明は、上記ポリアミド樹脂組成物により、全部又は一部を形成されていることを特徴とする樹脂成形体;自動車用の部品であることを特徴とする、 上記樹脂成形体に関する。

発明の詳細な開示

15 本発明で用いられるポリアミド樹脂とは、主鎖中にアミド結合 (-NHCO-) を含み加熱溶融できる重合体である。具体例としては、ポリカプロアミド(ナ イロン6)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチ レンアジパミド (ナイロン66)、ポリヘキサメチレンセバカミド (ナイロン6 10)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリウンデカメチ レンアジパミド (ナイロン116)、ポリウンデカンアミド (ナイロン11)、 20 ポリドデカンアミド (ナイロン12)、ポリトリメチルヘキサメチレンテレフタ ルアミド (ナイロンTMHT)、ポリヘキサメチレンイソフタルアミド (ナイロ ン6 I)、ポリヘキサメチレンテレフタル/イソフタルアミド(ナイロン6 T/ 6 I)、ポリノナメチレンテレフタルアミド(ナイロン9T)、ポリビス(4-アミノシクロヘキシル) メタンドデカミド (ナイロンPACM12) 、ポリビス 25 (3-メチル-4-アミノシクロヘキシル) メタンドデカミド (ナイロンジメチ ルPACM12)、ポリメタキシリレンアジパミド(ナイロンMXD6)、ポリ ウンデカメチレンテレフタルアミド (ナイロン11T) 、ポリウンデカメチレン ヘキサヒドロテレフタルアミド(ナイロン11T(H))、及びこれらの共重合

15

20

25

9

ポリアミド、混合ポリアミド等が挙げられる。

中でも、入手のし易さ、取扱性等の点から、ナイロン6、ナイロン46、ナイロン66、ナイロン11、ナイロン12、ナイロン9T、ナイロンMXD6、及びこれらの共重合ポリアミド、混合ポリアミドが好ましい。また、強度、弾性率、コスト等の点から、ナイロン6、ナイロン46、ナイロン66、ナイロンMXD6がより好ましい。

上記ポリアミド樹脂の分子量は、特に制限はないが、通常、25℃の濃硫酸中で測定した相対粘度が0.5~5.0の範囲のものが好ましく用いられる。

上記ポリアミド樹脂は、単独で、又は、組成あるいは成分の異なるもの及び/ 10 又は相対粘度の異なるものを2種以上組み合わせて使用し得る。

上記ポリアミド樹脂は、例えば、一般的なポリアミドの重合法等により製造することができる。

次に、本発明では、ポリエーテル処理した膨潤性雲母を用いるが、これにより、 膨潤性雲母はポリアミド樹脂組成物中で非常に細かく互いに独立した薄板状で分 散することができる。

本発明で用いられる膨潤性雲母は、タルクとナトリウム及び/又はリチウムの 珪フッ化物又はフッ化物を含む混合物を加熱処理することにより得る事ができる。 その具体的な方法としては、特開平2−149415号公報に開示された方法が ある。即ち、タルクにナトリウムイオン及び/又はリチウムイオンをインターカ レーションして膨潤性雲母を得る方法である。この方法ではタルクに珪フッ化物 及び/又はフッ化物を混合し、約700~1200℃で処理することによって得 られる。本発明で用いる膨潤性雲母は、純度、膨潤性の点から、この方法で製造 されたものが特に好ましい。膨潤性雲母を得るには、珪フッ化物又はフッ化物を 構成する金属を、ナトリウム又はリチウムとすることが必要である。これらは単 独で用いても2種以上を併用してもよい。

タルクと混合する珪フッ化物及び/又はフッ化物の量は、膨潤性雲母の生成率 の点から、混合物全体の10~35重量%が好ましい。

上記方法で製造された膨潤性雲母は、一般式として下式(3)で表される構造を有する。

25

(3) α (MF) $\cdot \beta$ (aMgF₂·bMgO) $\cdot \gamma$ S i O₂ (式中、Mはナトリウム又はリチウムを表し、 α , β , γ , a及び β は各々係数 を表し、 $0.1 \le \alpha \le 2$, $2 \le \beta \le 3.5$, $3 \le \gamma \le 4$, $0 \le a \le 1$, $0 \le b \le$

また、本発明で用いる膨潤性雲母を製造する工程において、アルミナ (A 1 2 O₃)を少量配合し、生成する膨潤性雲母の膨潤性を調整することも可能である。 当該膨潤性雲母は、水、水と任意の割合で相溶する極性溶媒、及び水と該極性 溶媒の混合溶媒中で膨潤する性質を有する物である。本発明でいう「膨潤性」と は、膨潤性雲母が上記極性分子を層間に吸収することにより層間距離が拡がり、 あるいはさらに膨潤することにより劈開する特性である。なお、水と任意の割合 10 で相溶する極性溶媒としては、後述の極性溶媒での例示と同じものが挙げられる。 当該膨潤性雲母としては、例えば、リチウム型テニオライト、ナトリウム型テ ニオライト、リチウム型四ケイ素雲母、ナトリウム型四ケイ素雲母等や、これら の置換体、誘導体、これらの混合物等が挙げられ、上記方法で製造することがで きる。 15

前記膨潤性雲母の初期の凝集状態、つまり膨潤前の膨潤性雲母における底面間 隔は、おおよそ1~1.7 n m であり、膨潤前の膨潤性雲母の平均粒径は約10 0~10000nmである。

本発明で用いられるポリエーテル化合物とは、ポリオキシエチレンやポリオキ シエチレンーポリオキシプロピレン共重合体等のようなポリオキシアルキレン化 20 合物の側鎖及び/又は主鎖中に、下記一般式(1):

(式中、-A-は、-O-、-S-、-SO-、-SO₂-、-CO-、炭素数 $1 \sim 20$ のアルキレン基又は炭素数 $6 \sim 20$ のアルキリデン基を示し、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、及び R^8 は、それぞれ同一であっても異なっていても良く、水素原子、ハロゲン原子又は炭素数 $1\sim 5$ の 1 価の炭化水素基を示す。)で表される構造を有するものである。

11

上記ポリエーテル化合物の中でも、下記一般式(2):

10

20

25

(式中、A、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、及び R^8 は、前記と同じであり、 R^9 、 R^{10} は、それぞれ同一であっても異なっていても良く、炭素数 $1\sim 5$ の 2 価の炭化水素基を示し、 R^{11} 、 R^{12} は、それぞれ同一であっても異なっていても良く、水素原子、炭素数 $1\sim 2$ の 0 1 価の炭化水素基を示し、m及び n はオキシアルキレン単位の繰り返し単位数を示し、 $2\leq m+n\leq 5$ 0 である。)

で表される構造を有するものが、熱安定性、膨潤性雲母の分散性、入手の容易さの点から特に好ましく用いられ得る。

上記Aで表される炭素数1~20のアルキレン基としては、例えば、メチレン、エチレン、プロピレン、フェニルメチレン、1ーメチルー1ーフェニルメチレン、シクロヘキシルメチレン等が挙げられ、好ましくは炭素数1~8のアルキレン基である。

上記Aで表される炭素数6~20のアルキリデン基としては、例えば、シクロヘキシリデン、メチルシクロヘキシリデン、ジメチルシクロヘキシリデン、トリメチルシクロヘキシリデン等が挙げられ、好ましくは炭素数6~9のアルキリデン基である。

上記 $R^1 \sim R^8$ で表されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。

上記 $R^1 \sim R^8$ で表される炭素数 $1 \sim 5$ の1価の炭化水素基としては、例えば、 炭素数 $1 \sim 5$ のアルキル基等が挙げられる。炭素数 $1 \sim 5$ のアルキル基としては、

例えば、メチル、エチル、プロピル、ブチル、ペンチル等が挙げられる。

上記 R^9 、 R^{10} で表される炭素数 $1\sim5$ の2価の炭化水素基としては、例えば、 炭素数 $1\sim5$ のアルキレン基等が挙げられる。炭素数 $1\sim5$ のアルキレン基とし ては、例えば、メチレン、エチレン、プロピレン、プチレン、ペンチレン等が挙 げられる。

上記R¹¹、R¹²で表される炭素数1~20の1価の炭化水素基としては、例えば、炭素数1~20のアルキル基等が挙げられる。炭素数1~20のアルキル基としては、例えば、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、オクチル、デシル、ドデシル、ヘキサデシル等が挙げられる。

10 また、式(2)において、m及びnはオキシアルキレン単位の繰り返し単位数を示し、m ≥ 1 、n ≥ 1 であり、 $2 \le m+n \le 5$ 0である。

前記ポリエーテル化合物としては、具体的には、2,2ービス(4-ヒドロキ シフェニル)プロパン(「ビスフェノールA」)の両末端に繰り返し単位数1~ 25のポリオキシエチレン鎖が付加したもの、2,2ービス(4ーヒドロキシフ 15 エニル)プロパン(「ビスフェノールA」)の両末端に繰り返し単位数1~25 のポリオキシプロピレン鎖が付加したもの、ビス(4ーヒドロキシフェニル)メ タンの両末端に繰り返し単位数1~25のポリオキシエチレン鎖が付加したもの、 ビス(4ーヒドロキシフェニル)メタンの両末端に繰り返し単位数1~25のポ リオキシプロピレン鎖が付加したもの、1, 1-ビス (4-ヒドロキシフェニル)エタンの両末端に繰り返し単位数1~25のポリオキシエチレン鎖が付加した 0 もの、1,1-ビス(4-ヒドロキシフェニル)エタンの両末端に繰り返し単位 数1~25のポリオキシプロピレン鎖が付加したもの、1,1-ビス(4-ヒド ロキシフェニル) -3, 3, 5-トリメチルシクロヘキサン (「ビスフェノール TMC」)の両末端に繰り返し単位数1~25のポリオキシエチレン鎖が付加し たもの、1、1ービス(4ーヒドロキシフェニル)-3、3、5ートリメチルシ クロヘキサン(「ビスフェノールTMC」)の両末端に繰り返し単位数1~25 のポリオキシプロピレン鎖が付加したもの、ビス(4ーヒドロキシフェニル)シ クロヘキシルメタンの両末端に繰り返し単位数1~25のポリオキシエチレン鎖 が付加したもの、ビス(4ーヒドロキシフェニル)シクロヘキシルメタンの両末

25

. 端に繰り返し単位数1~25のポリオキシプロピレン鎖が付加したもの、ビス(4-ヒドロキシー3, 5-ジメチルフェニル)メタンの両末端に繰り返し単位数 1~25のポリオキシエチレン鎖が付加したもの、ビス(4-ヒドロキシ-3, 5-ジメチルフェニル)メタンの両末端に繰り返し単位数1~25のポリオキシ プロピレン鎖が付加したもの、2,2ービス(4ーヒドロキシー3,5ージメチ ルフェニル)プロパンの両末端に繰り返し単位数1~25のポリオキシエチレン 鎖が付加したもの、2, 2ービス(4ーヒドロキシー3, 5ージメチルフェニル) プロパンの両末端に繰り返し単位数1~25のポリオキシプロピレン鎖が付加 したもの、ビス (4ーヒドロキシフェニル) スルフォンの両末端に繰り返し単位 数1~25のポリオキシエチレン鎖が付加したもの、ビス(4ーヒドロキシフェ 10 ニル)スルフォンの両末端に繰り返し単位数1~25のポリオキシプロピレン鎖 が付加したもの、ビス (4-ヒドロキシフェニル) スルフィドの両末端に繰り返 し単位数1~25のポリオキシエチレン鎖が付加したもの、及びビス (4-ヒド ロキシフェニル)スルフィドの両末端に繰り返し単位数1~25のポリオキシプ ロピレン鎖が付加したもの等が例示される。 15

中でも入手の容易さ、取扱性の点から、2,2ービス(4ーヒドロキシフェニル)プロパン(「ビスフェノールA」)の両末端にペンタエチレンオキシド鎖が付加したもの、2,2ービス(4ーヒドロキシフェニル)プロパン(「ビスフェノールA」)の両末端にノナエチレンオキシド鎖が付加したもの、2,2ービス(4ーヒドロキシフェニル)プロパン(「ビスフェノールA」)の両末端にデカプロピレンオキシド鎖が付加したもの、1,1ービス(4ーヒドロキシフェニル)ー3,3,5ートリメチルシクロヘキサン(「ビスフェノールTMC」)の両末端にノナエチレンオキシド鎖が付加したもの、ビス(4ーヒドロキシフェニル)メタンの両末端にノナエチレンオキシド鎖が付加したものが好ましく用いられ得る。

上記のポリエーテル化合物は、置換基を有していても良い。特に、R⁹、R¹⁰の 炭素数1~5の2価の炭化水素基が、さらに置換基を有していても良い。該置換 基の例としては、上記ポリアミド樹脂や膨潤性雲母に悪影響を与えない限り、特 に限定されないが、例えば、飽和又は不飽和の一価又は多価の脂肪族炭化水素基

10

15

(アルキル基、アルケニル基等)、エステル結合で結合している基(アルキルエステル基等)、エポキシ基、アミノ基、カルボキシル基、末端にカルボニル基を有する基、アミド基、メルカプト基、スルホニル結合で結合している基、スルフィニル結合で結合している基、ニトロ基、ニトロソ基、ニトリル基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)及び水酸基等が挙げられる。これらの内の1種で置換されていても良く、2種以上で置換されていても良い。

14

前記ポリエーテル化合物が水又は水を含有する極性溶媒に可溶であれば、ポリエーテル化合物中の置換基の組成比は特に制限されるものではない。具体的には、室温の水100gに対する前記ポリエーテル化合物の溶解度は、好ましくは1g以上、より好ましくは2g以上、さらに好ましくは5g以上、特に好ましくは10g以上、最も好ましくは20g以上である。

上記の極性溶媒としては、例えば、メタノール、エタノール、イソプロパノール等のアルコール類;エチレングリコール、プロピレングリコール、1,4ープタンジオール等のグリコール類;アセトン、メチルエチルケトン等のケトン類;ジエチルエーテル、テトラヒドロフラン等のエーテル類;N,Nージメチルホルムアミド、N,Nージメチルアセトアミド等のアミド化合物;炭酸ジメチル、炭酸ジエチル等の炭酸ジエステル;ピリジン、ジメチルスルホキシド、Nーメチルピロリドン等が挙げられる。これらの極性溶媒は、単独で用いても良く2種類以上組み合わせて用いても良い。

20 前記ポリエーテル化合物の使用量は、膨潤性雲母とポリアミド樹脂との親和性、ポリアミド樹脂組成物中での膨潤性雲母の分散性が十分に高まるように調整し得る。また、必要に応じて、異種の官能基を有する複数種のポリエーテル化合物を併用し得る。従って、前記ポリエーテル化合物の使用量は、一概に数値で限定されるものではないが、前記膨潤性雲母100重量部に対する前記ポリエーテル化合物の使用量の下限値は、膨潤性雲母の微分散化効果の点から、好ましくは1重量部、より好ましくは2重量部、さらに好ましくは5重量部である。また、前記膨潤性雲母100重量部に対する前記ポリエーテル化合物の使用量の上限値は、特に限定されないが、膨潤性雲母の微分散化効果の点から、好ましくは200重量部である。

10

15

本発明において、前記ポリエーテル化合物で前記膨潤性雲母を処理する方法としては、特に限定されないが、例えば以下に示す方法で行い得る。

まず、膨潤性雲母と分散媒を撹拌混合する。前記分散媒とは、水又は水を含有する極性溶媒を意図する。水を含有する極性溶媒としては、前述の極性溶媒での 例示と同じものが挙げられる。

膨潤性雲母と分散媒との攪拌の方法は特に限定されないが、例えば、従来公知の湿式撹拌機を用いて行われる。該湿式撹拌機としては、撹拌翼が高速回転して撹拌する高速撹拌機、高剪断速度がかかっているローターとステーター間の間隙で試料を湿式粉砕する湿式ミル類、硬質媒体を利用した機械的湿式粉砕機類、ジェットノズル等で試料を高速度で衝突させる湿式衝突粉砕機類、超音波を用いる湿式超音波粉砕機等が挙げられる。

より効率的に混合したい場合は、撹拌の回転数を1000rpm以上、好ましくは1500rpm以上、より好ましくは2000rpm以上にするか、あるいは、500(1/s)以上、好ましくは1000(1/s)以上、より好ましくは1500(1/s)以上の剪断速度を加える。回転数の上限値は約25000rpmであり、剪断速度の上限値は約50000(1/s)である。上限値よりも大きい値で撹拌を行ったり剪断を加えても、攪拌効果がそれ以上変わらない傾向があるため、上限値よりも大きい値で撹拌を行う必要はない。また、混合に要する時間は、好ましくは10分以上である。

次いで、ポリエーテル化合物を加えて、さらに撹拌を続け、十分に混合する。混合の方法は、従来公知の混練機を用いてもなし得る。混練機としてはバッチ式及び連続式があり、バッチ式混練機は、例えば、開放形のロール、密閉形のバンバリータイプ混練機、ニーダタイプ混練機等が挙げられ、連続式混練機は、例えば、単軸ロータ式混練機、2軸ロータ式混練機、単軸スクリュー混練機、2軸スクリュー混練機、9軸スクリュー混練機、2軸スクリュー混練機、9軸スクリュー混練機、2軸スクリュー混練機、6軸スクリュー混練機

膨潤性雲母に由来するポリアミド樹脂組成物の灰分率の下限値は、機械的特性、 反りの改善効果の点から、好ましくは0.5重量%、より好ましくは1.0重量 %となるように調製される。また、灰分率の上限値は、成形体の表面外観等の点 WO 2004/016693

10

15

20

25

から、好ましくは30重量%、より好ましくは25重量%、さらに好ましくは20重量%、特に好ましくは15重量%となるように調製される。また、当該灰分率は、JIS K 7052に従って測定することができる。

なお、上記膨潤性雲母に由来するポリアミド樹脂組成物の灰分率とは、ポリア 5 ミド樹脂組成物における前記膨潤性雲母の重量比(これを処理したポリエーテル 化合物の重量は含まない)に相当するものである。

本発明のポリアミド樹脂組成物中で分散している膨潤性雲母の構造は、使用前の膨潤性雲母が有していたような、層が多数積層したμmサイズの凝集構造とは全く異なる。即ち、膨潤性雲母をポリエーテル化合物で処理する事によって、層同士が劈開し、互いに独立して細分化する。その結果、膨潤性雲母はポリアミド樹脂組成物中で非常に細かく互いに独立した薄板状で分散し、その数は、使用前の膨潤性雲母に比べて著しく増大する。この様な薄板状の膨潤性雲母の分散状態は、以下に述べる等価面積円直径 [D]、分散粒子数、最大層厚、平均層厚、アスペクト比(層長さ/層厚の比)で表現され得る。

まず、等価面積円直径 [D] を、顕微鏡等で得られる像内で様々な形状で分散している個々の膨潤性雲母の該顕微鏡像上での面積と等しい面積を有する円の直径であると定義する。この場合、ポリアミド樹脂組成物中に分散した膨潤性雲母のうち、等価面積円直径 [D] が300nm以下である膨潤性雲母の数の比率は、ポリアミド樹脂組成物の機械的特性や反りの改良効果の点から、好ましくは20%以上、より好ましくは35%以上、さらに好ましくは50%以上、特に好ましくは65%以上である。当該比率の上限値は特に限定されないが、好ましくは100%である。

また、本発明のポリアミド樹脂組成物中で、膨潤性雲母の等価面積円直径 [D]の平均値は、ポリアミド樹脂組成物の機械的特性や反りの改良効果、成形品の表面外観の点から、好ましくは500nm以下、より好ましくは450nm以下、さらに好ましくは400nm以下、特に好ましくは350nm以下である。下限値は特に限定されないが、おおよそ10nm未満では効果はほとんど変わらなくなるので、10nm未満にする必要は特にない。

等価面積円直径 [D] の測定は、溶融混練物や射出成形品あるいは熱プレス品

10

15

20

25

を顕微鏡等を用いて撮影した像上で、100個以上の膨潤性雲母の層を含む任意の領域を選択し、画像処理装置等を用いて画像化して計算機処理することにより行うことが可能で、これにより定量化できる。

17

また、 [N] 値を、ポリアミド樹脂組成物の面積 $100\mu m^2$ 中に存在する、 膨潤性雲母の単位重量比率当たりの分散粒子数であると定義する。この場合、本 発明のポリアミド樹脂組成物における膨潤性雲母の [N] 値は、好ましくは30以上、より好ましくは45以上、さらに好ましくは60以上である。上限値は特 に限定されないが、 [N] 値が1000程度を越えると、それ以上効果は変わら なくなるので、1000より大きくする必要は特にない。

[N] 値は、例えば、次のようにして求められ得る。即ち、ポリアミド樹脂組成物を約 50μ m \sim 100 μ m厚の超薄切片に切り出し、該切片をTEM等で撮影した像上で、面積が 100μ m²の任意の領域に存在する膨潤性雲母の粒子数を、用いた膨潤性雲母の重量比率で除すことによって求められ得る。あるいは、TEM像上で、100個以上の粒子が存在する任意の領域(面積は測定しておく)を選んで該領域に存在する粒子数を、用いた膨潤性雲母の重量比率で除し、面積 100μ m²に換算した値を [N] 値としてもよい。従って、 [N] 値はポリアミド樹脂組成物のTEM写真等を用いることにより定量化できる。

また、平均層厚を、薄板状で分散した膨潤性雲母の層厚みの数平均値であると 定義する。この場合、本発明のポリアミド樹脂組成物中で、膨潤性雲母の平均層 厚の上限値は、ポリアミド樹脂組成物の機械的特性等の改良効果の点から、好ま しくは50nm以下、より好ましくは45nm以下、さらに好ましくは40nm 以下である。平均層厚の下限値は特に限定されないが、5nm以下にしてもそれ 以上は効果は変わらないので、5nm以下にする必要は特にない。

また、最大層厚を、本発明のポリアミド樹脂組成物中に薄板状に分散した膨潤性雲母の層厚みの最大値であると定義する。この場合、膨潤性雲母の最大層厚の上限値は、ポリアミド樹脂組成物の機械的特性、表面外観の点から、好ましくは200m以下、より好ましくは180nm以下、さらに好ましくは150nm以下である。膨潤性雲母の最大層厚の下限値は特に限定されないが、好ましくは10nm以上、より好ましくは15nm以上、さらに好ましくは20nm以上で

ある。

5

10

15

20

25

また、平均アスペクト比を、樹脂中に分散した膨潤性雲母の層長さ/層厚の比の数平均値であると定義する。この場合、本発明のポリアミド樹脂組成物中で、 膨潤性雲母の平均アスペクト比の下限値は、ポリアミド樹脂組成物の機械的特性 等の改善効果の点から、好ましくは10、より好ましくは20、さらに好ましく は30である。また、平均アスペクト比は300より大きくても効果はそれ以上 変わらないため、平均アスペクト比を300より大きくする必要は特にない。よって、平均アスペクト比の好ましい範囲は10~300である。

層厚及び層長さは、本発明のポリアミド樹脂組成物を加熱溶融した後に、熱プレス成形あるいは延伸成形して得られるフィルム、及び溶融樹脂を射出成形して得られる薄肉の成形品等を、顕微鏡等を用いて撮影される像から求めることができる。即ち、いま仮に、X-Y面上に上記の方法で調製したフィルムの、あるいは肉厚が約 $0.5\sim2$ mm程度の薄い平板状の射出成形した試験片を置いたと仮定する。上記のフィルム又は試験片を、X-Z面又はY-Z面と平行な面で約50 μ m \sim 100 μ m厚の超薄切片を切り出し、該切片を透過型電子顕微鏡等を用い、約 $4\sim$ 10万倍以上の高倍率で観察して求められ得る。測定は、上記の方法で得られた透過型電子顕微鏡の像上において、100個以上の膨潤性雲母を含む任意の領域を選択し、画像処理装置等で画像化し、計算機処理する事等によって行い、定量化できる。あるいは、定規等を用いて計測しても求めることもできる。ここで、本発明のポリアミド樹脂組成物は、上記ポリアミド樹脂及びポリエー

テル化合物で処理された膨潤性雲母以外に、さらに、スチレン系樹脂、無水物含有オレフィン系共重合体、及び、炭素化合物から選ばれる少なくとも一種を含有することができる。

まず、本発明のポリアミド樹脂組成物に、上記ポリアミド樹脂及びポリエーテル化合物で処理された膨潤性雲母以外に、さらにスチレン系樹脂を含有する場合について説明する。スチレン系樹脂を含有させることにより、特に表面外観(表面性、低ヒケ性)がより優れたものとなる。

本発明で用いられるスチレン系樹脂としては、特に限定されないが、例えばポリスチレン、ゴム変性ポリスチレン(HIPS樹脂)、スチレン・アクリロニト

WO 2004/016693

10

15

20

25

リル共重合体、スチレン・ゴム質重合体・アクリロニトリル共重合体等が挙げられる。また、スチレン・ゴム質重合体・アクリロニトリル共重合体としては、ABS (アクリロニトリループタジエンースチレン) 樹脂、AES (アクリロニトリルーエチレンープロピレンージエンースチレン) 樹脂、AAS (アクリロニトリルーアクリルスチレン) 樹脂、ACS (アクリロニトリルー塩素化ポリエチレンースチレン) 樹脂等が挙げられる。これらは単独で用いても2種以上を併用することもできる。

さらに、これらのスチレンの一部、及び/又はアクリロニトリルの一部又は全部が、α-メチルスチレン、p-メチルスチレン、p-t-ブチルスチレン;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n-ブチル等の(メタ)アクリル酸エステル化合物;マレイミド、N-メチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド等のマレイミド系単量体;アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸単量体等の、スチレンと共重合可能なビニル系単量体で置換されているものも含まれる。これらは、1種でも2種以上でも用いることができる。

好ましくは、ABS樹脂、ポリスチレン、HIPS樹脂、AES樹脂、AAS樹脂、ACS樹脂、MBS (メタクリレートーブタジエンースチレン)樹脂等であり、より好ましくは、スチレンの一部を不飽和カルボン酸単量体で置換した、ABS樹脂、ポリスチレンであり、さらに好ましくは、メタクリル酸で置換した、ABS樹脂、ポリスチレンである。

スチレン系樹脂の製造法としては、特に制限はなく、塊状重合法、懸濁重合法、 乳化重合法、塊状-懸濁重合法等の通常の方法を用いることができる。

本発明で用いられるスチレン系樹脂は、本発明の効果を損なわない限り特に制限されるものではないが、本発明で得られるポリアミド樹脂組成物の物性バランスとポリアミドとの相溶性、経済的観点から、特に好ましく用いられる不飽和カルボン酸変性ABS樹脂としての例は、芳香族ビニル化合物40~80重量%、シアン化ビニル化合物15~50重量%、不飽和カルボン酸化合物0.1~20重量%、他の共重合可能なビニル系化合物0~30重量%からなる不飽和カルボ

10

15

20

25

ン酸含有共重合体と、平均粒子径 $0.01\sim5.0\mu$ mのジエン系ゴム $30\sim9$ 5重量%の存在下に、グラフト共重合可能なビニル系化合物 $70\sim5$ 重量%をグラフト共重合して得られるグラフト共重合体とからなる不飽和カルボン酸変性ABS樹脂が挙げられる。

不飽和カルボン酸変性ABS樹脂に用いられる不飽和カルボン酸含有共重合体の芳香族ビニル化合物が80重量%を越えると、耐薬品性、耐衝撃性が低下する場合があり、40重量%未満では成形加工性が低下する場合がある。シアン化ビニル化合物が50重量%を越えると成形加工時の熱安定性が低下したり、あるいは加熱による着色がある場合があり、15重量%未満では耐薬品性、耐衝撃性が低下する場合がある。また不飽和カルボン酸化合物が20重量%を越えると成形加工時の熱安定性が低下したり、あるいは加熱による着色がある場合があり、0.1重量%未満ではポリアミドとの相溶性が得られにくくなり、成形品表面に層状剥離等を生ずる場合がある。他の共重合可能なビニル系化合物が30重量%を越えると、耐熱性と耐衝撃性とのバランスが不十分となる場合がある。

不飽和カルボン酸含有共重合体で使用される芳香族ビニル化合物としては、スチレン、αーメチルスチレン、クロルスチレン、メチルスチレン等が例示される。特に耐熱性を向上させる観点から、αーメチルスチレンの使用が好ましい。シアン化ビニル化合物としては、アクリロニトリル、メタアクリロニトリル等が例示される。不飽和カルボン酸化合物としてはアクリル酸、メタクリル酸等が挙げられる。他の共重合可能なビニル系化合物としては、メチルメタクリレート、エチルメタクリレート、メチルアクリレート、エチルアクリレート等のメタアクリル酸、アクリル酸のアルキルエステル;マレイミド、フェニルマレイミド等のマレイミド系化合物等が例示される。上記芳香族ビニル化合物、シアン化ビニル化合物、不飽和カルボン酸化合物、他の共重合可能なビニル系化合物は、それぞれ単独又は2種以上の組み合わせで用いられる。

不飽和カルボン酸含有共重合体は、例えば次のようにして製造することができる。即ち、 α ーメチルスチレンを水、乳化剤とともに先に仕込み、十分に乳化状態にしたのち、アクリロニトリル及びその他の単量体を極少量ずつ連続的に滴下し、重合系内では α ーメチルスチレンが常に80重量%以上、好ましくは90重

10

15

20

25

量%以上のαーメチルスチレン大過剰量にしておくことにより、目的とする共重合体を得ることができる。この場合、不飽和カルボン酸化合物は、αーメチルスチレンとともに先に仕込んでも、アクリロニトリルと混合して追加してもよい。また先仕込みした後、追加で分割して仕込むことも可能である。またαーメチルスチレンの一部を追加することもできる。この場合、先に仕込むαーメチルスチレンの量は、耐薬品性、耐衝撃性や耐熱変形性の観点から、全モノマー100重量%のうち50重量%以上、90重量%以下が好ましい。

グラフト共重合体は、平均粒子径 $0.01\sim5.0\mu$ mのジエン系ゴム $3.0\sim9.5$ 重量%の存在下に、グラフト共重合可能なビニル系化合物 $7.0\sim5$ 重量%をグラフト共重合して得られるグラフト共重合体が好ましく用いられる。

グラフト共重合可能なビニル系化合物としては、芳香族ビニル化合物、シアン化ビニル化合物、不飽和カルボン酸化合物、他の共重合可能なビニル系化合物を用いることができ、これらは、上記不飽和カルボン酸含有共重合体で用いられるものと同じものが例示される。これらは、いずれも単独又は2種以上の組み合わせで用いられる。

ジエン系ゴムが95重量%を越えると耐衝撃性、耐油性が低下する場合があり、30重量%未満では耐衝撃性が低下する場合がある。ジエン系ゴムとしては、例えば、ブタジエン等が挙げられる。

グラフト共重合体で使用されるジエン系ゴムには、ポリアミド樹脂組成物の耐衝撃性や成形体外観の観点から、平均粒子径0.01~5.0μmのものが好ましく用いられる。平均粒子径0.02~2.0μmのものが特に好ましい。さらに、衝撃強度を向上する目的で、小粒子ジエン系ゴムラテックスを凝集肥大化させたジエン系ゴムラテックスを使用することができる。小粒子ジエン系ゴムラテックスを凝集肥大化さる方法としては、従来公知の方法、例えば酸性物質を添加する方法(特公昭42-3112号公報、特公昭55-19246号公報、特公平2-9601号公報、特開昭63-117005号公報、特開昭63-132903号公報、特開平7-157501号公報、特開平8-259777号公報)、酸基含有ラテックスを添加する方法(特開昭56-166201号公報、特開昭59-93701号公報、特開平1-126301号公報、特開平8-59

15

20

25

704号公報、特開9-217005号公報)等を採用することができ、特に制限はない。

不飽和カルボン酸含有共重合体及びグラフト共重合体は、好ましくは乳化重合によって得られるが、必ずしも乳化重合に限定されない。例えば塊状重合、懸濁重合、溶液重合及びそれらの組合せ、即ち乳化一懸濁重合、乳化一塊状重合が挙げられる。乳化重合は通常の方法が適用可能である。即ち、前記化合物を水性媒体中、ラジカル開始剤の存在下に反応させればよい。その際、前記化合物を混合物として使用しても、また必要に応じ、分割して使用してもよい。さらに、前記化合物の添加方法としては一度に全量仕込んでも、また逐次添加してもよく、特に制限されるものではない。ラジカル開始剤としては、過硫酸カリ、過硫酸アンモニウム、キュメンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド等の水溶性又は油溶性の過酸化物を例示することができ、これらは単独又は2種以上組み合わせて用いられる。その他、重合促進剤、重合度調節剤、乳化剤も、公知の乳化重合法で使用されているものを適宜選択して使用してもよい。

得られたラテックスから乾燥樹脂を得る方法は公知の方法でよい。その際、不飽和カルボン酸含有共重合体及びグラフト共重合体のラテックスを混合した後、乾燥樹脂を得てもよく、別々に樹脂を得て粉末状態で混合してもよい。ラテックスから樹脂を得る方法としては、例えばラテックスに塩酸、硫酸、酢酸等の酸、塩化カルシウム、塩化マグネシウム、硫酸アルミニウム等の金属塩を加え、ラテックスを凝固したのち、脱水、乾燥する方法が用いられる。以上のようにして製造された不飽和カルボン酸含有共重合体とグラフト共重合体の混合樹脂はABS樹脂の特性を保持しながら、なおかつポリアミド樹脂との高い相溶性を発現できるものである。

本発明で用いられるポリアミド樹脂とスチレン系樹脂の構成割合(重量部)は、特に制限されるものではないが、耐熱性と耐衝撃性等の特性バランスの観点から、ポリアミド樹脂:スチレン系樹脂として、好ましくは95:5~5:95、より好ましくは90:10~30:70、さらに好ましくは85:15~45:55である。

本発明のポリアミド樹脂組成物中において、膨潤性雲母の分散状態は、ポリア

20

ミド樹脂とスチレン系樹脂の極性、膨潤性雲母の種類、ポリエーテル化合物の種 類によって異なる。膨潤性雲母の個数密度が、各樹脂相に均一である場合、スチ レン系樹脂相に比べポリアミド相に高密度で存在する場合、又は、ポリアミド相 に比べスチレン系樹脂相に高密度で存在する場合があるが、耐熱性及び機械的特 性のバランスから、膨潤性雲母がポリアミド樹脂組成物中のポリアミド樹脂相に 高密度で分散することが好ましい。

また、本発明のポリアミド樹脂組成物には、上記ポリアミド樹脂及びポリエー テル化合物で処理された膨潤性雲母以外に、さらに無水物含有オレフィン系共重 合体を含有することができる。これにより、ポリアミド樹脂の吸水を抑制するこ と等ができる。

上記無水物含有オレフィン系共重合体とは、オレフィン又はオレフィン系共重 合体に、シス型 2 重結合を環内に有する脂環式ジカルボン酸無水物又は α , β -不飽和ジカルボン酸無水物を、共重合又はグラフト付加して得られるものである。

上記オレフィン又はオレフィン系共重合体としては、例えば、ポリエチレン、 ポリプロピレン、ポリブテン等のオレフィン類の単独重合体;エチレンープロピ 15 レン共重合体、エチレンーブテン共重合体、プロピレンーブテン共重合体、エチ レンープロピレンージエン共重合体等の異種のオレフィン類の共重合体;オレフ ィン類と異種の単量体との共重合体等が挙げられる。

前記異種の単量体としては、例えば、メタクリル酸メチル、メタクリル酸エチ ル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸2-ヒドロキシエチル等のメタクリル酸エステル、アクリル酸エチル、アクリル酸ブ チル、アクリル酸2-エチルヘキシル、アクリル酸2-ヒドロキシエチル等のア クリル酸エステル等の α , β -不飽和カルボン酸エステル;スチレン、 α -メチ ルスチレン、ビニルトルエン等のスチレン系化合物;アクリロニトリル、メタク リロニトリル等の α , β -不飽和ニトリル; アクリル酸、メタクリル酸等の α , 25 β-不飽和カルボン酸;酢酸ビニル、ビニルエーテル;これらの混合物等が挙げ られる。これらも必要に応じて共重合することができる。

上記共重合体の様式は、ランダム共重合体、プロック共重合体、グラフト共重 合体、交互共重合体のいずれであってもよい。上記の中では特に、エチレンープ ロピレン共重合体、エチレンープテン共重合体、エチレンー酢酸ビニル共重合体、エチレンーアクリル酸エチル共重合体、エチレンーメタクリル酸メチル共重合体、エチレンープロピレンージエン共重合体が、靭性付与、コスト及び取り扱い性の点から好ましい。なお、上記のポリオレフィン類は2種以上混合して用いることができる。

上記のシス型2重結合を環内に有する脂環式ジカルボン酸無水物としては、例えば、シスー4ーシクロへキセンー1,2ージカルボン酸、エンドービシクロー(2,2,1)ー5ーヘプテンー2,3ージカルボン酸、メチルーエンドーシスービシクロー(2,2,1)ー5ーヘプテンー2,3ージカルボン酸、エンドービシクロー(2,2,1)ー1,2,3,4,7,7ーヘキサクロロー2ーヘプテンー5,6ージカルボン酸等の無水物が挙げられる。特に靭性付与の点から、エンドービシクロー(2,2,1)ー5ーヘプテンー2,3ージカルボン酸無水物が好ましい。また場合によっては、これらの誘導体、例えば、ジカルボン酸、ジカルボン酸金属塩、エステル化物、アミド化物、酸ハロゲン化物も用いることができる。

上記のα, β-不飽和ジカルボン酸無水物は、下記一般式(4):

20

25

15

5

10

(式中、Ra、Rbは、水素原子、アルキル基、アルケニル基、アルキニル基、 又は、ハロゲン原子を示す。また、RaとRbが隣り合う炭素原子と一緒になっ て環状の基を示してもよい。さらに、RaとRbがそれぞれ隣り合う炭素原子同 士の結合は二重結合ではなく単結合であってもよい。)で表される化合物である。 その具体例としては、無水マレイン酸、メチル無水マレイン酸、クロロ無水マレ イン酸、ブチニル無水コハク酸、テトラヒドロ無水フタル酸等が挙げられる。 本発明で用いられる無水物含有オレフィン系共重合体において、シス型2重結

本発明で用いられる無水物含有オレフィン系共単合体において、シス型2里結合を環内に有する脂環式ジカルボン酸無水物又はα,β-不飽和ジカルボン酸無水物を、共重合又はグラフト付加する比率の下限値は、靱性の付与効果の点から、

10

15

20

オレフィン又はオレフィン系共重合体100モル%に対して、好ましくは0.0 5モル%、より好ましくは0.1モル%、さらに好ましくは0.2モル%である。 また、共重合又はグラフト付加する比率の上限値は、加工性の点から、好ましく は80モル%、より好ましくは50モル%、さらに好ましくは30モル%である。

上記の無水物含有オレフィン系共重合体を製造する方法は、いわゆる公知のラジカル共重合法が用いられるほか、オレフィン単独重合体あるいはオレフィン系共重合体にラジカル発生剤を存在させ、上記の異種単量体の1種以上を、溶媒あるいは分散媒の存在下又は非存在下で、ラジカルグラフト反応させる方法を挙げる事ができる。中でも、溶融状態でグラフト反応させる場合は、押出機、ニーダー等の溶融混練機を用いることによって効率的に得ることができるため好ましい。ポリアミド樹脂100重量部に対する無水物含有オレフィン系共重合体の添加量の下限値は、吸水抑制効果の点から、好ましくは1重量部、より好ましくは2重量部、さらに好ましくは3重量部である。また、上限値は、成形加工性及び剛性の点から、好ましくは50重量部、より好ましくは30重量部、さらに好ましくは15重量部である。

また、ポリアミド樹脂組成物中の無水物含有オレフィン系共重合体の重量比は、1重量%以上、30重量%以下であることが好ましい。

ここで、本発明のポリアミド樹脂組成物には、上記ポリアミド樹脂及びポリエーテル化合物で処理された膨潤性雲母以外に、さらに炭素化合物を含有させることができる。これにより、帯電防止性を付与することができる。

本発明で用いられる炭素化合物としては、炭素繊維以外であれば特に限定されず市販のものが用いられ得るが、成形品の表面性や反り変形等の点から、粒状や微細なフィブリル状が好ましい。また、当該炭素化合物は、導電性であるものが好ましい。

25 粒状の炭素化合物としては、アセチレンブラックや各種ファーネス系の導電性 カーボンブラック等が挙げられ、市販の各種のものが使用できる。例えば、ケッ チェンプラックインターナショナル社製の商品名ケッチェンブラック等が挙げら れる。また、微細なフィブリル状の炭素化合物の例としては、直径が約3.5 n m~75 nmの微細糸状のフィブリル状炭素化合物であり、いわゆるカーボンナ WO 2004/016693

5

10

20

ノチューブと称させるものであり、市販の各種のものが使用できる。例えば、ハイピリオンカタリシスインターナショナル社製の商品名ハイペリオン等が挙げられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。

ポリアミド樹脂100重量部に対する炭素化合物の添加量の下限値は、導電性の点から、好ましくは0.5重量部、より好ましくは1.0重量部、さらに好ましくは1.5重量部である。また、炭素化合物の添加量の上限値は、樹脂組成物の押出ペレット化や機械的強度の点から、好ましくは12重量部、より好ましくは11重量部、さらに好ましくは10重量部である。

本発明のポリアミド樹脂組成物の製造方法は、特に制限されるものではなく、 例えば、ポリアミド樹脂と、ポリエーテル化合物で処理した膨潤性雲母とを、種 々の一般的な混練機を用いて溶融混練する方法を挙げることができる。さらに、 スチレン系樹脂、無水物含有オレフィン系共重合体及び炭素化合物から選ばれる 少なくとも一種を添加する場合にも、上記と同様に各成分を溶融混練して、ポリ アミド樹脂組成物を製造することができる。

15 溶融混練温度としては、特に限定されないが、好ましくは200~360℃、 より好ましくは200~300℃である。

混練機の例としては、一軸押出機、二軸押出機、ロール、バンバリーミキサー、ニーダー等が挙げられ、特に、剪断効率の高い混練機が好ましい。ポリアミド樹脂、ポリエーテル化合物で処理した膨潤性雲母、さらに必要に応じて添加した各成分は、上記の混練機に一括投入して溶融混練しても良いし、あるいは予め溶融状態にしたポリアミド樹脂に膨潤性雲母を添加して溶融混練しても良い。

本発明のポリアミド樹脂組成物には、必要に応じて、ポリブタジエン、ブタジエンースチレン共重合体、アクリルゴム、アイオノマー、エチレンープロピレン共重合体、エチレンープロピレンージエン共重合体、天然ゴム、塩素化プチルゴ ム、αーオレフィンの単独重合体、2種以上のαーオレフィンの共重合体(ランダム、ブロック、グラフト等、いずれの共重合体も含み、これらの混合物であっても良い)、オレフィン系エラストマー等の耐衝撃性改良剤を添加することができる。これらは無水マレイン酸等の酸化合物、又はグリシジルメタクリレート等のエポキシ化合物で変性されていても良い。

15

20

また、機械的特性等を損なわない範囲で、他の任意の熱可塑性樹脂あるいは熱硬化性樹脂、例えば、不飽和ポリエステル樹脂、ポリエステルカーボネート樹脂、液晶ポリエステル樹脂、ポリオレフィン樹脂、熱可塑性ポリエステル樹脂、ゴム質重合体強化スチレン系樹脂、ポリフェニレンスルフィド樹脂、ポリフェニレンエーテル樹脂、ポリアセタール樹脂、ポリサルフォン樹脂、ポリアリレート樹脂等を、単独又は2種以上組み合わせて使用し得る。

さらに、目的に応じて、顔料や染料、熱安定剤、酸化防止剤、紫外線吸収剤、 光安定剤、滑剤、可塑剤、難燃剤、帯電防止剤等の添加剤を添加することができ る。

10 本発明で得られるポリアミド樹脂組成物は、射出成形や熱プレス成形で成形しても良く、ブロー成形にも使用できる。得られる成形品は外観に優れ、機械的特性や耐熱変形性等に優れる為、例えば、自動車部品、家庭用電気製品部品、家庭日用品、包装資材、その他一般工業用資材に好適に用いられる。

なお、無水物含有オレフィン系共重合体を含有するポリアミド樹脂組成物は、 射出成形して得られる成形品としてより好ましく用いられ得る。該成形品は、熱 安定性や表面性、剛性に優れ、吸水による物性変化も抑制されるので、例えば自 動車のフロントフェンダー、リアフェンダー、フードバルジ、サイドガーニッシュ、リアガーニッシュ、バックドアパネル、ホイールキャップ等の自動車外装材 料に好適に利用され得る。前記自動車外装材料の中で、フロントフェンダー、リ アフェンダー、フードバルジ、サイドガーニッシュ、リアガーニッシュ、バック ドアパネルに用いる場合では、特に外観に関わる部位に好適に用いられ、また、 ホイールキャップ等では全部に用いる事が好ましいが、それらに限定されるもの ではない。

また、炭素化合物を含有するポリアミド樹脂組成物は、射出成形して得られる 25 成形品としてより好ましく用いられ得る。該成形品は、導電性や静電防止性を有 し、成形収縮の異方性が少ないので、複雑な形状の成形品を射出成形しても反り 変形が少ない。また、ポリアミド樹脂の表面性を損なわず、かつ剛性と耐熱性に 優れるので、静電記録シート、電子機器ハウジング、静電コンテナー、静電フィ ルム、クリーンルームの床材や壁材や間仕切り材、電子機器のカバー材、IC等

のマガジン、ヘッドジンバルアッセンブル、スライダ及びスライダアーム等のH DD内部品の搬送用静電防止トレイ、シーキングアームの格納部品等のHDD内 部品、及び他の電子部品の搬送用静電防止トレイ等に好適に利用され得る。

5 発明を実施するための最良の形態

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって何ら限定されるものではない。

実施例及び比較例で使用する主要原料を以下にまとめて示す。なお、特に断ら 10 ない場合は、原料の精製は行っていない。

(原料)

- ・ポリアミド樹脂A1 (ナイロン6):ユニチカナイロン6 A1030BRL(ユニチカ(株) 社製)
- ・ポリアミド樹脂A2 (ナイロン66):ユニチカナイロン66 A125N(15 ユニチカ(株)社製)
 - ・ポリアミド樹脂A3 (ナイロン46): Stanyl TS300 (DSM-JSR社製)
 - ・ポリアミド樹脂A4 (ナイロンMXD6): レニー6002 (旭化成(株)社製)
- 20 ・スチレン系樹脂B1(ABS樹脂):下記参考例1記載の方法で得られた樹脂
 - ・スチレン系樹脂 B 2 (スチレンーメタクリル酸共重合体): G-9001 (旭化成(株)社製)
 - ・ポリフェニレンエーテル樹脂(PPE): IUPIACE YPX-100L(三菱エンプラ(株)社製)
- 25 ・無水物含有オレフィン系共重合体C1:ボンダインAX8930(住友化学(株)社製)(無水マレイン酸が共重合したポリオレフィン)
 - ・無水物含有オレフィン系共重合体 C 2: タフマーMH 7 0 2 0 (三井化学 (株) 製) (無水マレイン酸が共重合したポリオレフィン)
 - ・無水物含有オレフィン系共重合体C3:タフテックM1943 (旭化成 (株)

製) (無水マレイン酸が共重合したポリオレフィン)

- ・膨潤性雲母E1:ソマシフME100(コープケミカル(株)社製)
- ・ポリエーテル化合物F1:ビスオール18EN(東邦化学(株)社製)
- ・ポリエーテル化合物F2:ビスオール20PN(東邦化学(株)社製)
- 5 ・炭素化合物G1:ケッチェンブラック(ケッチェンブラックインターナショナル (株) 社製)
 - ・炭素化合物G2:PA6にフィブリル状炭素化合物が20%濃度で分散されたマスターバッチペレット、商品名MB4020-00 (ハイピリオンカタリシスインターナショナル社製)
- ・炭素化合物G3:PA66にフィブリル状炭素化合物が20%濃度で分散されたマスターバッチペレット、商品名MB4620-00(ハイピリオンカタリシスインターナショナル社製)

実施例及び比較例における各物性の測定方法を以下に示す。

15 (分散状態の測定)

20

凍結切片法で得た厚み50~100μmの超薄切片を用いた。透過型電子顕微鏡 (日本電子JEM-1200EX)を用い、加速電圧80kVで倍率4万~100万倍で膨潤性雲母の分散状態を観察撮影した。TEM写真において、100個以上の分散粒子が存在する任意の領域を選択し、層厚、層長、粒子数([N]値)を、目盛り付きの定規を用いた手計測又はインタークエスト社の画像解析装置PIASIIIを用いて処理する事により測定した。

等価面積円直径 [D] はインタークエスト社の画像解析装置 PIASIIIを用いて処理する事により測定した。

[N] 値の測定は以下のようにして行った。まず、TEM像上で、選択した領域に存在する膨潤性雲母の粒子数を求めた。これとは別に、膨潤性雲母に由来する樹脂組成物の灰分率を測定した。上記粒子数を灰分率で除し、面積100μm²に換算した値を[N]値とした。平均層厚は個々の膨潤性雲母の層厚の数平均値、最大層厚は個々の膨潤性雲母の層厚の中で最大の値とした。分散粒子が大きく、TEMでの観察が不適当である場合は、光学顕微鏡(オリンパス光学(株)

製の光学顕微鏡BH-2)を用いて上記と同様の方法で [N] 値を求めた。ただし、必要に応じて、サンプルはLINKAM製のホットステージTHM600を用いて250~270℃で溶融させ、溶融状態のままで分散粒子の状態を測定した。平均アスペクト比は個々の膨潤性雲母の層長と層厚の比の数平均値とした。板状に分散しない分散粒子のアスペクト比は、長径/短径の値とした。ここで、長径とは、顕微鏡像等において、対象となる粒子の外接する長方形のうち面積が最小となる長方形を仮定すれば、その長方形の長辺を意図する。また、短径とは、上記最小となる長方形の短辺を意図する。

10 (曲げ特性)

本発明のポリアミド樹脂組成物を乾燥(90 $\mathbb C$ 、10 時間)した。型締圧75 t の射出成形機を用い、樹脂温度240 $\mathbb C$ 300 $\mathbb C$ (ナイロン6:240 $\mathbb C$ 、ナイロン66:260 $\mathbb C$ 、ナイロン0 $\mathbb C$ 0 $\mathbb C$ 0 で、寸法約 $10 \times 100 \times 6$ mmの試験片を射出成形した。ASTM D-7 $\mathbb C$ 0 に従い、得られた試験片の曲げ強度及び曲げ弾性率を測定した。

(荷重たわみ温度)

曲げ特性で用いた試験片と同じ試験片を用いた。ASTM D-648に従い、 得られた試験片について1.86MPaの荷重たわみ温度を測定した。

20

25

15

(反り)

本発明のポリアミド樹脂組成物を乾燥(90%、10時間)した後、樹脂温度 240%30%(ナイロン6:240%、ナイロン66:260%、ナイロン MXD6:280%、ナイロン46:300%)の条件で、寸法約 120×12 0×1mmの平板状試験片を射出成形した。平面上に上記の平板状試験片を置き、試験片の4隅の内、1カ所を押さえ、30、30、平面からの距離が最も大きい値をノギスで測定した。40、40、40、得られた反り値の平均値を求めた。

(成形収縮率)

5

本発明のポリアミド樹脂組成物を乾燥(90 $\mathbb C$ 、10 時間)した後、樹脂温度 $240\sim300$ $\mathbb C$ (ナイロン6:240 $\mathbb C$ 、ナイロン66:260 $\mathbb C$ 、ナイロン MXD6:280 $\mathbb C$ 、ナイロン46:300 $\mathbb C$)の条件で、寸法約 120×12 0×2 mmの平板状試験片を射出成形し、次式により成形収縮率を測定した。 収縮率(%)=(金型寸法一成形品実寸法)÷(金型寸法)×100 なお、下記表中、MDは樹脂の流れ方向を、TDは樹脂の流れと直角方向を示す。

(中心線平均粗さ)

10 上記成形収縮率で用いた試験片と同じものを用い、東京精密(株)製の表面粗さ計 s u r f c o m 1 5 0 0 A を用いて、中心線粗さを測定した。

(灰分率)

JIS K 7052に準じ、膨潤性雲母に由来するポリアミド樹脂組成物の15 灰分率を測定した。

(B法フロー)

本発明のポリアミド樹脂組成物を乾燥(90℃、10時間)した。島津製作所 (株) 製のフローテスターを用い、温度280℃、荷重100kgの条件で、5 20 分後及び15分後のB法フロー値を測定した。5分後と15分後のフロー値の変 化が少ないほど、溶融安定性に優れている。

(ヒケ評価)

本発明のポリアミド樹脂組成物を乾燥(90℃、10時間)した後、樹脂温度 25 240~280℃ (ナイロン6:240℃、ナイロン66:260℃、ナイロン MXD6:280℃) の条件で、寸法φ約100×2.5mm厚の円形板の片面に、厚み0.8、1.0、1.2、1.4、1.6、1.8×35×10mmのリブを円形板中心部より放射線状に6枚有する成形品を射出成形し、リブを有する面と反対側の平面にヒケが発生するかどうかを目視観察した。ヒケは成形体の

厚みの偏肉と成形時の樹脂収縮により表面凹部として生じるため成形品外観を損なう。評価は、ヒケが発生しないリブの厚みで表し、リブ部厚みが大きいほどヒケが発生しやすい。

5 (吸水率)

本発明のポリアミド樹脂組成物を乾燥(90 \mathbb{C} 、10 時間)した後、樹脂温度 240 \mathbb{C} 2 40 \mathbb{C} 0 (ナイロン6:240 \mathbb{C} 0、ナイロン66:260 \mathbb{C} 0、ナイロン \mathbb{C} 0 の条件で、ASTM 1号ダンベル試験片を得た。得られた試験片を、JIS K7209記載の方法に準じて、23 \mathbb{C} 蒸留水中に24時間浸水後、その吸水率を測定した。

(吸水時の反り変形)

本発明のポリアミド樹脂組成物を乾燥(90 $\mathbb C$ 、10 時間)した後、樹脂温度 240 $\mathbb C$ 0 $\mathbb C$ (ナイロン6:240 $\mathbb C$ 、ナイロン66:260 $\mathbb C$) の条件で、 寸法約120 $\mathbb C$ 120 $\mathbb C$ 120

20

15

10

(表面性)

3次元表面構造解析顕微鏡 (Zygo New View 5030、Zygo 社製)を用いて、上記試験片の表面粗さを測定した。

25 (溶融熱安定性)

本発明のポリアミド樹脂組成物を乾燥(90℃、10時間)した。島津製作所 (株) 製のフローテスターを用い、温度260℃、荷重100kgの条件で、5 分後及び15分後のB法フロー値を測定し、同時に着色を目視評価した。5分後、 15分後のフロー値の変化が少ないほど溶融熱安定性に優れているといえる。

(体積固有抵抗値)

アドバンテスト社製の抵抗値測定器R8340Aを用いた。試験片は、成形収縮率で用いたものと同じものを用い、25℃、50%RHで24時間経ってから測定した。

(製造例1)

表1に示した重量比で、イオン交換水、ポリエーテル化合物、膨潤性雲母を $15\sim30$ 分間混合した。その後、乾燥・粉体化して、ポリエーテル化合物で処理した膨潤性雲母(粘土 $J-1\sim J-6$)を得た。

表 1

10

	粘土J-1	粘土J-2	粘土J-3	粘土J-4	粘土J-5	粘土J-6
水	100	100	100	100	100	100
膨潤性雲母E		8	8	8	8	8
<u>1</u> ポリエーテ	4	1.6	0.8		0.8	
ル化合物F1				2. 5	1.6	4
ポリエーテ ル化合物F2				2.0		

数字の単位は重量部

(製造例2)

15 表2に示した重量比で、イオン交換水、膨潤性雲母、ポリビニルピロリドン(PVP)、メチルステアリルビス [PEG] アンモニウムクロライド (ライオン・アクゾ (株) 製のエソカード)、トリオクチルメチルアンモニウムクロライドを15~30分間混合した。その後、乾燥・粉体化した(粘土K-1~K-4)。

表 2

	粘土K-1	粘土K-2	粘土K-3	粘土K-4
水	100	100	100	100
膨潤性雲母E1	8	8	8	8
ポリビニルピロリドン	4			
メチルステアリルヒ [*] ス [PEG] アンモニウム クロライト [*]		8		
トリオクチルメチルアンモニウムクロライト・			4	6

数字の単位は重量部

(実施例1~2、比較例1~4)

- 表3に示す重量比のポリアミド樹脂A1、製造例1で得た膨潤性雲母、製造例2で得た膨潤性雲母、膨潤性雲母E1を、二軸押出機((株)日本製鋼所製、TEX44)を用いて、混練初期からダイスまでの温度を220℃~250℃に設定し、溶融混練することによりポリアミド樹脂組成物を得、各種物性を評価した。結果を表3に示す。
- 10 表3より、PVPやアンモニウム塩で処理した膨潤性雲母では補強効果は十分ではなく、反りや成形収縮の改善効果はほとんど無く、加工温度での劣化も激しかった。

(比較例5)

15 5000gのεーカプロラクタム、1100gの水、550gの膨潤性雲母を、加圧できる反応機に入れ、攪拌しながら250℃に昇温した。水蒸気を放出しながら反応機内の圧力を4kg/cm²~15kg/cm²にした。ついで、圧力を約2kg/cm²、温度を約260℃にした。以上の条件で重合法によって、膨潤性雲母を約10%含むポリアミド組成物の重合を試みた。ところが、重合の20 途中で反応機の攪拌機にかかるモーター負荷電流値が不安定になり、ついには過負荷で攪拌不能となったので、重合を中断した。即ち、ポリアミド組成物を重合で得ようと試みたが、溶融粘度が増加したために重合できなかった。

表 3

	表	3 - ,																									
			വ							=	10.1	* * *	* * *	× × ×	* * *	* * *	× × ×	* * *	* * *	* * *	** **	* * *	* * *	** **	* * *	* * *	軍小
5			4						18		10.2	2	1340	∞	3(*1)	約300(*2)	約1000(*3)	3200	8	79	7.8	1.42	1.59	200	78	*	洛融淀練
10	比較例	3					25			10.0	15	220	25	∞	28	225	3430	42	82	5.9	1.34	1.45	98.0	112	*	浴融泥練	
		2	100			18				10.2	9	1230	9	7	68	450	*	*	*	*	※	*	*	* *	*	溶融混練	
15			1							11	10.0	0	2420	က	1.5(*1)	約2000(*2)	約7万(*3)	3010	95	70	7.8	1.43	1.59	210	36	35	溶融涅練
		実施例	2			15					6.6	81	117	113	108	9.5	39	5100	130	139	1.6	0.47	0.53	4.0	35	31	溶融混練
20		実	-		13						9.6	06	104	135	140	8.5	33	5450	130	145	1.3	0.44	0.49	4.0	31	30	溶融混練
				重量部							wt%	*	Eu	個/wt%-100 µ m²	1	mu	E	MPa	MPa	ပွ	mm	*		EC.	× 10 ⁻² ml/sec		
25				ポリアミド樹脂A1	粘土リー2	粘土 2-4	*************************************	粘土K−2	** お 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	膨潤性雲母E1	灰分率	[D]≤300nmの比率	[D]のPA値	分散粒子数[N]	平均アスペクト比	平均層厚	最大層厚	曲げ弾性率	曲げ強度	荷重たわみ温度	反り	成形収縮率 MD		中心線平均組み	B法フロー値 5分後		舗券

上記表中の各記号の説明は以下のとおり。

※:溶融加工時の劣化が激しいため、測定に使用できる試験片は成形できなかった。

※※:劣化が激しいため、測定できなかった。

5 ※※※:溶融粘度が増加したので、反応機の撹拌モーターが過負荷になり、重合を中断した。

(*1):板状に分散しなかったので、分散粒子の長径/短径比とした。

(*2):板状に分散しなかったので、分散粒子の短径の数平均値とした。

(*3):板状に分散しなかったので、分散粒子の短径の最大値とした。

10

(比較例6~8)

表4に示す重量比のポリアミド樹脂A1、タルク、マイカ、ガラス繊維強化材を、実施例1と同様に溶融混練することによりポリアミド樹脂組成物を得、各種物性を評価した。結果を表4に示す。

15 表 4

4				
			比較例	
	Ī	6	7	8
ポリアミド樹脂A1	重量部		100	
タルク		11	1	
マイカ			11	
ガラス繊維				<u>11</u>
灰分率	wt%	10.0	9.9	9.9
[D]≦300nmの比率	%	0	0	測定せず
[D]の平均値	nm	2420	2580	測定せず
分散粒子数[N]	個/wt%-100μm²	5	2	測定せず
平均アスペクト比	_	1.5(*1)	1.5(*1)	測定せず
平均層厚	nm	約3000(*2)	約3000(*2)	測定せず
最大層厚	nm	約9万(*3)	約9万(*3)	測定せず
曲げ弾性率	MPa	3010	4250	5400
曲げ強度	MPa	95	120	130
荷重たわみ温度	°C	72	90	148
反り	mm	7.8	7.1	14.2
成形収縮率 MC	%	1.43	1.40	0.56
TE		1.59	1.55	1.78
中心線平均粗さ	nm	210	430	690

25

(*1):板状に分散しなかったので、分散粒子の長径/短径比とした。

(*2):板状に分散しなかったので、分散粒子の短径の数平均値とした。

(*3):板状に分散しなかったので、分散粒子の短径の最大値とした。

5 表4より、従来から用いられているタルクやマイカの補強効果は十分ではなく、 反りや成形収縮の改善効果はほとんど見られなかった。また表面性も損なわれた。 ガラス繊維を添加すれば補強効果は得られるが、反り、表面性が損なわれた。従 って、比較例6~8はバランスに優れるものは得られなかった。

10 (実施例3~6)

表5に示す重量比のポリアミド樹脂A1及び製造例1で得た膨潤性雲母を、二軸押出機((株)日本製鋼所製、TEX44)を用いて、実施例1と同様にして溶融混練することによりポリアミド樹脂組成物を得、各種物性を評価した。結果を表5に示す。

15 表 5

			実が	5例							
		3	4	5	6						
ポリアミド樹脂A1	重量部	100									
粘土J-2		5	7.8	20	30						
灰分率	wt%	4.0	6.0	13.9	19.2						
[D]≦300nmの比率	%	90	90	80	65						
[D]の平均値	nm	103	104	140	168						
分散粒子数[N]	個/wt%•100μm²	135	135	112	85						
平均アスペクト比	_	138	140	102	82						
平均層厚	nm	8.3	8.5	11	13						
最大層厚	nm	34	33	48	65						
曲げ弾性率	MPa	4010	4850	6650	8030						
曲げ強度	MPa	118	123	130	132						
荷重たわみ温度	°C	108	131	160	182						
反り	mm	2.5	1.9	1.0	0.6						
成形収縮率 MD	%	0.67	0.54	0.29	0.19						
TD		0.68	0.59	0.32	0.20						
中心線平均粗さ	nm	3.8	3.8	4.3	5.7						

25

表6に示す重量比のポリアミド樹脂A2及び製造例1で得た膨潤性雲母を、二 軸押出機 ((株)日本製鋼所製、TEX44)を用いて、混練初期からダイスま での温度を230℃~260℃に設定し、溶融混練することによりポリアミド樹 脂組成物を得、各種物性を評価した。結果を表6に示す。

表 6 5

					実施例		
			7	8	9	10	11
ポリアミド樹脂A2		重量部			100		
粘土J-1			16	İ			
粘土J-2				13	28		
粘土J-3						11	
粘土J-4							14
灰分率		wt%	9.3	9.5	18.1	9.1	9.4
[D]≦300nmの比率		%	92	80	70	69	35
[D]の平均値		nm	108	145	165	201	417
分散粒子数[N]		.個/wt%∙100μm²	140	100	92	80	. 46
平均アスペクト比			143	105	95	88	51
平均層厚		nm	7.8	10.5	12.5	14.5	34.5
最大層厚		nm	30	50	58	65	152
曲げ弾性率		MPa	5900	5600	7990	5550	485
曲げ強度		MPa	125	115	131	115	91
荷重たわみ温度		°C	148	140	178	138	123
反り		mm	1.0	1.0	0.5	1.2	3.7
成形収縮率	MD	%	0.25	0.30	0.16	0.36	0.67
	TD	· ·	0.27	0.33	0.17	0.40	0.70
中心線平均粗さ		nm	3.7	4.1	5.2	4.0	7.0

(比較例9~11) 20

表7に示す重量比のポリアミド樹脂A2、タルク、マイカ、ガラス繊維強化材 を、実施例7と同様に溶融混練することによりポリアミド樹脂組成物を得、各種 物性を評価した。結果を表7に示す。

5

10

15

			比較例	
		9	10	11
ポリアミド樹脂A2	重量部		100	
タルク		11		
マイカ			11	
ガラス繊維				11
灰分率	wt%	10.0	10.0	10.0
[D]≦300nmの比率	%	0	0	測定せず
[D]の平均値	nm	2420	2580	測定せず
分散粒子数[N]	個/wt%•100μm²	5	2	測定せず
平均アスペクト比	· -	1.5(*1)	1.5(*1)	測定せず
平均層厚	nm	約3000(*2)	約3000(*2)	測定せず
最大層厚	nm	約9万(*3)	約9万(*3)	測定せず
曲げ弾性率	MPa	3200	4500	5500
曲げ強度	MPa	108	123	135
荷重たわみ温度	°C	86	97	148
反り	mm	7.2	6.5	13.5
成形収縮率 M	D %	1.38	1.30	0.44
Т	D	1.49	1.41	1.56
中心線平均粗さ	nm	200	430	700

(*1):板状に分散しなかったので、分散粒子の長径/短径比とした。

(*2):板状に分散しなかったので、分散粒子の短径の数平均値とした。

(*3):板状に分散しなかったので、分散粒子の短径の最大値とした。

20 表 7 より、従来から用いられているタルクやマイカの補強効果は十分ではなく、 反りや成形収縮の改善効果はほとんど見られなかった。また表面性も損なわれた。 ガラス繊維を添加すれば補強効果は得られるが、反り、表面性が損なわれた。従 って、比較例 9 ~ 1 1 ではバランスに優れるものは得られなかった。

25 (実施例12、比較例12)

表8に示す重量比のポリアミド樹脂A3及び製造例1で得た膨潤性雲母あるいはタルクを、二軸押出機((株)日本製鋼所製、TEX44)を用いて、混練初期からダイスまでの温度を280℃~300℃に設定し、溶融混練することによりポリアミド樹脂組成物を得、各種物性を評価した。結果を表8に示す。

5

10

		実施例	上較例
		12	12
ポリアミド樹脂A3	重量部	10	0
粘土J-2		13	
タルク			11
灰分率	wt%	9.6	10.0
[D]≦300nmの比率	%	89	0
[D]の平均値	nm	102.5	2420
分散粒子数[N]	個/wt%•100 μ m ²	134	5
平均アスペクト比	_	140	1.5(*1)
平均層厚	nm	8.5	約3000(*2)
最大層厚	nm	34	約9万(*3)
曲げ弾性率	MPa	5080	5150
曲げ強度	MPa	145	135
荷重たわみ温度	°C	186	135
反り	mm	0.8	1.9
成形収縮率 M	D %	0.35	0.54
T	D	0.45	0.59
中心線平均粗さ	nm	3.8	210

15

(*1):板状に分散しなかったので、分散粒子の長径/短径比とした。

(*2):板状に分散しなかったので、分散粒子の短径の数平均値とした。

(*3):板状に分散しなかったので、分散粒子の短径の最大値とした。

20 表 8 より、従来から用いられているタルクの補強効果は十分ではなく、反りや 成形収縮の改善効果はほとんど見られなかった。また表面性も損なわれた。

(実施例13、比較例13)

表9に示す重量比のポリアミド樹脂A4及び製造例1で得た膨潤性雲母あるい 25 はタルクを、二軸押出機((株)日本製鋼所製、TEX44)を用いて、混練初 期からダイスまでの温度を250℃~290℃に設定し、溶融混練することによ りポリアミド樹脂組成物を得、各種物性を評価した。結果を表9に示す。

		実施例	比較例
		13	13
ポリアミド樹脂A4	重量部	10	00
粘土J-2		13	
タルク			11
灰分率	vvt%	9.5	10.0
[D]≦300nmの比率	%	102	0
[D]の平均値	nm	132	2450
分散粒子数[N]	個/wt%-100μm²	120	5
平均アスペクト比	_	125	1.5(*1)
平均層厚	nm	10	約3000(*2)
最大層厚	nm	41	約9万(*3)
曲げ弾性率	MPa	7000	4910
曲げ強度	MPa	167	135
荷重たわみ温度	°C	116	88
反り	mm	1.0	1.9
成形収縮率 ME	%	0.45	1.46
TE		0.54	1.53
中心線平均粗さ	nm	4.1	220

15

5

10

(*1):板状に分散しなかったので、分散粒子の長径/短径比とした。

(*2):板状に分散しなかったので、分散粒子の短径の数平均値とした。

(*3):板状に分散しなかったので、分散粒子の短径の最大値とした。

20 表 9 より、従来から用いられているタルクの補強効果は十分ではなく、反りや 成形収縮の改善効果はほとんど見られなかった。また表面性も損なわれた。

(参考例1)

攪拌機及び還流冷却器の設置された反応缶に、窒素気流中で下記の物質を仕込 25 んだ。水250部、ナトリウムホルムアルデヒドスルホキシレート0.4部、硫 酸第一鉄0.0025部、エチレンジアミン四酢酸二ナトリウム0.01部、ジ オクチルスルホコハク酸ナトリウム2.0部を60℃に加熱攪拌後、表10に示 す割合の単量体混合物を、開始剤のキュメンハイドロパーオキサイド、重合度調 節剤のtードデシルメルカプタンとともに6時間かけて連続的に滴下添加した。

滴下終了後、さらに60℃で1時間攪拌を続け、重合を終了させ、不飽和カルボン酸含有共重合体(い)を得た。

表10

		不飽和カルボン酸含有共重合体(い)					
ビニル系単量体	α-メチルスチレン	7 5					
(重量%)	アクリロニトリル	2 0					
	メタクリル酸	5					
キュメンハイドロ	コパーオキサイド(重量部)	0. 3					
tードデシルメノ	レカプタン(重量部)	0. 5					

次に、攪拌機及び還流冷却器の設置された反応缶に、窒素気流中で下記の物質を仕込んだ。水250部、過硫酸カリウム0.5部、ブタジエン100部、tードデシルメルカプタン0.3部、不均化ロジン酸ナトリウム3.0部を、重合温度60℃で重合し、ブタジエンの重合率が80%になった時点で重合を停止して未反応ブタジエンを除去し、ゴム状重合体であるポリブタジエンのラテックス(X)を得た。この時ポリブタジエンゴムの平均粒子径は0.30μmであった。

表11

		グラフト共重合体(ろ)				
ポリブタジエン(X)	(重量%)	7 0				
ビニル系単量体	スチレン	1 0				
(重量%)	メチルメタクリレート	2 0				
キュメンハイドロパー	オキサイド(重量部)	0. 3				
tードデシルメルカプ	tードデシルメルカプタン(重量部)					

)のラテックスを表12に示す割合で均一に混合し、フェノール系抗酸化剤を加え、塩化マグネシウム水溶液で凝固した後、水洗、脱水、乾燥し、ABS樹脂を得た。

表12

5

10

		スチレン系樹脂B1
不飽和カルボン酸含有共重合体(い)	(重量部)	6 4
グラフト共重合体 (ろ)	(重量部)	3 6

(実施例14~18、比較例14~17)

表13に示す重量比のポリアミド樹脂A1、スチレン系樹脂B1、B2、ポリフェニレンエーテル樹脂、製造例1で得た膨潤性雲母、製造例2で得た膨潤性雲母、、二軸押出機((株)日本製鋼所製、TEX44)を用いて、混練初期からダイスまでの温度を220~250℃に設定し、溶融混練することによりポリアミド樹脂組成物を得、各種物性を評価した。結果を表13に示す。

表13より、PVPやアンモニウム塩で処理した膨潤性雲母を用いると、補強効果は十分ではなく、反りの改善効果はほとんど無く、加工温度での劣化も激しかった。また、未処理の膨潤性雲母では、補強効果は十分ではなく、反りの改善効果はほとんど無く、表面性を著しく悪化させる。スチレン系樹脂を用いると、これを用いないものに比べると、ヒケ性や吸水率により優れる。スチレン系樹脂の代わりにポリフェニレンエーテル樹脂を用いたものは、優れた表面性が得られず、また、ポリフェニレンエーテル樹脂を用いないものの方が表面性に優れる。

表 1 3

[夜 -	1 -				1		1	<u></u>	\neg			Γ					 ج	୍ଡି										逐	
		17	22	42						10		6.1	က	1430	2	æ j	4(*1)	約300(*2)	約1000(*3)	2800	75	136	3.9	220	62	<u>**</u>	1.6	8.0	游戲波線	1
5	例	16	55	45					14			6.1	15	200	250	5 6	∞	26	240	2650	45	125	3.7	92	82	*	1.6	10	N.	The management of the
	比較例	15	55	45				5	2			9	٣	> 6	200	<u>-</u>	7	98	480	*	*	*	*	*	 *	: × : ×	*	*		H RULEST
10		41	55	45			· · · · ·			-	r.	-	; -	- S	2490	ო	1.5(*1)	% 12000(*2)	約7万(*3)	2800	87	130	4.2	190	5 5	i t	2 -	r. o	次配证据	A陸北京
		-82	55		Ų	€ €	φ					6.9	300	G .		142	129	8	39	4000	115	168	3 0	260	207	2 5	2 4	0.0	0.0	必 配
		17	8				œ					6	7:0	25	86	141	142	ά α	, E	7300	118	2 5	761	21	* 8	3 6	67	8.0		洛昭定森
15	完装鱼	16	55		45		ω					Ş	2.0	24	- 69	131	130	3 4	3. 6.	2000	441	111	BC	3	3.0	£ 5	97	9.		湖里洪徽
		15	55	45				6					6.3	8	124	110	7 :	- 0	0.5	1	0005	3	86	=	0.4	<u> </u>	20	1.6		溶配泥練
		7	22.	45			8						6.2	6	101	137	200	171	S. 6	2	3800	2	163	8.0	30	9	16	1.6	8.0	溶融混織
20			斯鲁·鲁										wt%	*	E0	TE / 100 11 - 12	個/wt%- 100 µ m	ı	Eu	Eu :	MPa	MPa	ပ္စ	шш	mu	× 10 ⁻² ml/sec		mm	*	
25			A 430 354 1 4 4 5 1 4 5	ボリアニア歯酒AI ユエンジを整B1	くとアノ光道語のイヤフン米極語B2	ポリレエーフンエードグ	粘土小-2	粘土 2-4	粘土K−1	器士K−2	粘土 K-3	膨潤性雲母E1	灰分率	[D] ≤300nmの比率	「ころはを海	フラトを高まれる。	少設粒十数[N]	中色アスペクトガ	本均層庫	最大層厚	由げ弾性率	曲げ強度	荷重たわみ温度	反り	中心線平均組さ	B法フロー値 5分後	15分後	アケ 評価	吸水率	備考

※:溶融加工時の劣化が激しいため、測定に使用できる試験片は成形できなかった。

※※:劣化が激しいため、測定できなかった。

(*1):板状に分散しなかったので、分散粒子の長径/短径比とした。

5 (*2):板状に分散しなかったので、分散粒子の短径の数平均値とした。

(*3):板状に分散しなかったので、分散粒子の短径の最大値とした。

(比較例19~21)

表14に示す重量比のポリアミド樹脂A1、スチレン系樹脂B1、タルク、マ 10 イカ、ガラス繊維強化材を、実施例14と同様に溶融混練することによりポリア ミド樹脂組成物を得、各種物性を評価した。結果を表14に示す。

表14

15

20

			比較例	
		19	20	21
ポリアミド樹脂A1	重量部	55	55	55
スチレン系樹脂B1		45	45	45
タルク		6.5		
マイカ			6.5	
ガラス繊維				6.5
灰分率	wt%	6.1	6.1	6.1
[D]≦300nmの比率	%	0	0	測定せず
- [D]の平均値	nm	2420	5200	測定せず
分散粒子数[N]	個/wt%-100μm²	5	1	測定せす
平均アスペクト比	_	1.5(*1)	2.0(*1)	測定せす
平均層厚	nm	約3000(*2)	約5000(*2)	測定せす
最大層厚	nm	約9万(*3)	約12万(*3)	測定せす
曲げ弾性率	MPa	2650	2800	3800
曲げ強度	MPa	95	102	115
荷重たわみ温度	°C	132	128	155
反り	mm	3.8	4.3	7.5
中心線平均粗さ	nm	230	410	650
ヒケ評価	mm	2	2 .	2
吸水率	%	0.8	0.9	0.8

(*1):板状に分散しなかったので、分散粒子の長径/短径比とした。

(*2):板状に分散しなかったので、分散粒子の短径の数平均値とした。

(*3):板状に分散しなかったので、分散粒子の短径の最大値とした。

5 表14より、従来から用いられているタルクやマイカの補強効果、耐熱性、反りの改善効果は十分でなく、表面性を著しく損なう。ガラス繊維を添加すれば耐熱性、補強効果は得られるが、反りの改善効果は十分でなく、表面性を著しく損なう。従って、比較例19~21ではバランスに優れるものは得られなかった。

10 (実施例19~22)

表15に示す重量比のポリアミド樹脂A1、スチレン系樹脂B1、製造例1で 得た膨潤性雲母を、二軸押出機 ((株)日本製鋼所製、TEX44)を用いて、 混練初期からダイスまでの温度を220~250℃に設定し、溶融混練すること によりポリアミド樹脂組成物を得、各種物性を評価した。結果を表15に示す。

15 表15

			実が	5例	
		19	20	21	22
ポリアミド樹脂A1	重量部	55	55	55	70
スチレン系樹脂B1		45	45	45	30
粘土J-2	1	5	12	17	12
灰分率	wt%	4.0	8.9	12.1	8.9
[D]≦300nmの比率	%	92	85	77	89
[D]の平均値	nm	100	121	142	101
分散粒子数[N]	個/wt%⋅100 μ m²	140	129	114	138
平均アスペクト比	_	138	140	112	142
平均層厚	nm	8.3	8.8	11.2	8.1
最大層厚	nm	34	33	48	33
曲げ弾性率	MPa	3200	4200	4800	4600
曲げ強度	MPa	102	119	123	120
荷重たわみ温度	°C	155	165	171	175
反り	mm	0.9	0.5	0.5	1.0
中心線平均粗さ	nm	2.5	3.2	4.3	2.0
ヒケ評価	mm	1.6	1.6	1.8	1.6
吸水率	%	0.8	0.8	0.7	1.2

25

表16に示す重量比のポリアミド樹脂A2、スチレン系樹脂B1、製造例1で得た膨潤性雲母を、二軸押出機 ((株)日本製鋼所製、TEX44)を用いて、混練初期からダイスまでの温度を230℃~260℃に設定し、溶融混練することによりポリアミド樹脂組成物を得、各種物性を評価した。結果を表16に示す。

47

5 表16

······································			実が	5例	
	Ì	23	24	25	26
ポリアミド樹脂A2	重量部	60	60	60	60
ポリスチレン系樹脂B1		40	40	40	40
粘土J-1	[10			
 粘土J-2			8		
 粘土J-3	}			7	
 粘土J-4					9
灰分率	wt%	6.1	6.2	5.9	6.3
[D]≦300nmの比率	%	90	81	72	40
- [D]の平均値	nm	110	143	193	388
分散粒子数[N]	個/wt%•100 μ m ²	141	100	80	49
平均アスペクト比		140	109	101	53
平均層厚	nm	8.2	10.5	13.9	31
最大層厚	nm	31	45	61	139
曲げ弾性率	MPa	4000	4000	3900	3800
曲げ強度	MPa	113	112	110	103
荷重たわみ温度	ိင	188	183	179	172
反り	mm	0.7	0.9	1.0	1.5
中心線平均粗さ	nm	3.5	4.0	4.0	6.0
ヒケ評価	mm	1.8	1.8	1.8	1.6
吸水率	%	0.5	0.5	0.5	0.5

20

10

15

(比較例22~24)

表17に示す重量比のポリアミド樹脂A2、スチレン系樹脂B1、タルク、マイカ、ガラス繊維強化材を、実施例23と同様に溶融混練することによりポリアミド樹脂組成物を得、各種物性を評価した。結果を表17に示す。

表17

			比較例	
		22	23	24
ポリアミド樹脂A2	重量部	60	60	60
ポリスチレン系樹脂B1		40	40	40
タルク		6.5		
マイカ			6.5	
ガラス繊維				6.5
灰分率	wt%	6.1	6.1	6.1
[D]≦300nmの比率	%	0	0	測定せず
[D]の平均値	nm	2450	5300	測定せず
分散粒子数[N]	個/wt%-100 μ m²	5	2	測定せず
平均アスペクト比	-	1.5(*1)	2.0(*1)	測定せず
平均層厚	nm	約3000(*2)	約5000(*2)	測定せず
最大層厚	nm	約9万(*3)	約11万(*3)	測定せず
曲げ弾性率	MPa	2700	3100	4000
曲げ強度	MPa	97	123	135
荷重たわみ温度	°C	148	147	167
反り	mm	3.9	4.2	8
中心線平均粗さ	nm	210	430	710
ヒケ評価	mm	1.60	1.60	1.60
吸水率	%	0.5	0.5	0.5

48

(*1):板状に分散しなかったので、分散粒子の長径/短径比とした。

(*2):板状に分散しなかったので、分散粒子の短径の数平均値とした。

(*3):板状に分散しなかったので、分散粒子の短径の最大値とした。

表17より、従来から用いられているタルクやマイカの補強効果、耐熱性、反りの改善効果は十分でなく、表面性を著しく損なう。ガラス繊維を添加すれば耐熱性、補強効果は得られるが、反りの改善効果は十分でなく、表面性を著しく損なう。従って、比較例22~24はバランスに優れるものは得られなかった。

(実施例27、比較例25)

表18に示す重量比のポリアミド樹脂A4、スチレン系樹脂B1、製造例1で 得た膨潤性雲母あるいはタルクを、二軸押出機((株)日本製鋼所製、TEX4 4)を用いて、混練初期からダイスまでの温度を280℃~300℃に設定し、

5

10

15

20

溶融混練することによりポリアミド樹脂組成物を得、各種物性を評価した。結果 を表18に示す。

表18

5

10

15

		実施例	比較例
		27	25
ポリアミド樹脂A4	重量部	55	55
スチレン系樹脂B1		45	45
粘土J-2		8	
タルク			6.5
灰分率	wt%	6.2	6.1
[D]≦300nmの比率	%	102	0
[D]の平均値	nm	132	2400
分散粒子数[N]	個/wt%•100 μ m²	120	5
平均アスペクト比	_	125	1.5(*1)
平均層厚	nm	10	約3000(*2)
最大層厚	nm	41	約9万(*3)
曲げ弾性率	MPa	5700	3900
曲げ強度	MPa	153	129
荷重たわみ温度	ဗ	171	139
反り	mm	0.6	4.5
中心線平均粗さ	nm	6	250
ヒケ評価	mm	1.60	1.40
吸水率	% .	0.3	0.3

(*1):板状に分散しなかったので、分散粒子の長径/短径比とした。

(*2):板状に分散しなかったので、分散粒子の短径の数平均値とした。

20 (*3):板状に分散しなかったので、分散粒子の短径の最大値とした。

表18より、従来から用いられているタルクの補強効果、反り改善の効果は十分ではなく、表面性が損なわれる。

25 (実施例28~31、比較例26~29)

表19に示す重量比のポリアミド樹脂A1、無水物含有オレフィン系共重合体 C2、エチレンープロピレンージエン共重合体(日本合成ゴム(株)製、EP9 6)、製造例1で得た膨潤性雲母、製造例2で得た膨潤性雲母、ガラス繊維、マ イカを、二軸押出機((株)日本製鋼所製、TEX44)を用いて、240℃で 溶融混練することによりポリアミド樹脂組成物を得、各種物性を評価した。結果 を表19に示す。

表	1 9)																		· · ·							
		29	82	5	,							10		>	2420	က	1.5(*1)	(0: /00007/	(2*)00025块	然7万(*3)	3360	5.7	230	376	0.70		着色なし
	比較例	28	82	ıc	,						9		4	米巡げ	米巡记	未遡定	米河市			未遡応	4780	24.3	650	2 7 6	34,0	35.2	着色なし
		27	81	Ľ	2					14				米巡紀	未測定	米巡守	计	と家子	米巡记	未測定	3620	3.4	Q R	3	38.9	68.3	黄色
		26	2	; .	6				4					米巡阳	米渕紀	光	1	大宮子	米巡加	未測定	3480		10.0	7.0	45.6	89.5	無色
		31	83.6	3		2		11.4						98	110	130	7 5	2	9.5	40	4150	78		0.0 	30.1	30.4	着色なし
	鱼		20	3		5	9							8	66	497	2 :	145	æ	. 53	4400	20	2 6	D.C	28.7	29.1	着色なし
	一种	29	3 60	85.0	S.			11.4						82	119	1 9	71	92	9.5	14	4210	2 4	2	დ დ	28.6	29.0	着色なし
		98	3 8	S	2		5							92	00	3	139	145	00	30	4450	2	 	4.4	27.3	27.9	善告在1.
)		L					<u> </u>		•					š		E	個/wt%-100 / m =	1		E	207	1 <u>7</u>	mm.	mu.	_	-	
-					共重合体C2	井軍合体																			70-値 5分後	15公然	ダングに回じて
5				リアミド樹脂A1	水物含有れび必系	ントゲージ・プログージョン	#J-2	<u>-</u>	201	1±K-2	1±K-4	ラス繊維	/ +	41000/1	O] N300nmの比中	0]の片め値	·散粒子数[N]	オークペクトド			大僧厚	性(曲げ弾性率)	な水時の反り変形	き 単位 (表面組さ)	1 智物化价	エーストミー	
		里施例 上下較例 上下較例 上下較例 上下較例 上下較例 上下較例 上下較例 上下較	実施例	実施例 上較例 28 29 30 31 26 27 28 29 67 67 67 81 81 85 85	実施例 実施例 上較例 28 29 30 31 26 27 28 重量部 85 83.6 85 85 85	重量部 85 85 85 85 85 85 85 85 85 85 有量的 5 5 5 5 5 5 5 5	実施例 上較例 28 29 30 31 26 27 28 29 30 31 26 27 28 29 30 85 83.6 81 81 85 85 30 5 5 5 5 5 5 40 5 5 5 5 5	上級 実施例 上較例 28 29 30 31 26 27 28 29 重量部 85 83.6 81 81 85 85 5 5 5 5 5 5 5 10 10 10 10 10 10 10	全権例 上検例 28 29 30 31 26 27 28 29 10 85 83.6 85 83.6 81 81 85 85 10 10 10 11.4<	全極例 出較例 28 29 30 31 26 27 28 29 10 85 83.6 81 81 85 85 85 5 5 5 5 5 5 5 5 10 10 10 11,4 11,4 11,4 11,4 14 14	重量都 実施例 上較例 10 11.4 11.4 14 <td>実施例 上較例 28 29 30 31 26 27 28 29 重量部 85 83.6 81 81 85 85 5 5 5 5 5 5 5 10 10 10 11.4 11.4 14 14</td> <td>重量部 実施例 上較例 28 29 30 31 26 27 28 29 5 83.6 85 83.6 81 81 85 85 5 5 5 5 5 5 5 10 10 10 11.4 11.4 14 14 10 10 10 10 10 10</td> <td>EMBIA1 実施例 上較例 28 29 30 31 26 27 28 29 合有オレア心系共重合体C2 5 5 5 5 5 5 5 5 2 10 10 10 11.4 11.4 14 14 10 3 10 11.4 14 14 10 10 4 4 10 10 10 10</td> <td>重量部 実施例 比較例 重量部 85 83.6 85 83.6 81 81 85 85 10 10 11.4 11.4 14 14 10 10 x 92 85 90 86 未測定 未測定 未測定 未測定 未測定 未測定</td> <td>実施例 実施例 上較例 学樹脂A1 重量部 85 83.6 85 83.6 81 81 85 85 含有木レブ心系共重合体C2 5 5 5 5 5 5 5 5 5 5 2 10 10 11.4 11.4 11.4 11.4 11.4 10 300nmの比率 % 92 85 90 86 未測定 未測定 未測定 未測定 未測定 未測定 2420</td> <td>実施例 実施例 上較例 学校問A1 重量部 85 836 81 81 85 85 含有化プルン水光葉宣合体C2 5 5 5 5 5 5 5 5 5 2 10 10 10 11.4 11.4 11.4 11.4 11.4 11.4 10 300nmの比率 nm 99 112 99 110 未測定 未測定 未測定 未測定 未測定 未測定 未測定</td> <td>実施例 実施例 上較例 28 29 30 31 26 27 28 29 5 有力/7公系共重合体 10 10 10 11/4 14 14 14 16 2 20 85 83.6 85 83.6 85 85 85 85 85 2 10 11.4 11.4 14 14 14 10 3 3 112 99 110 未測定 未測定 未測定 未測定 未測定 未測定 中分値 mm 99 112 137 120 未測定 未測定 未測定 未測定 未測定 未測定 未測定 子数[N] 個/wrsk-100 µm² 139 112 137 120 未測定 15(41)</td> <td> 1.5 1.</td> <td>実施例 上較例 実施例 上較例 28 29 30 31 26 27 28 29 合有小7心系共重合体C2 5 5 5 5 5 5 5 5 5 2 10 10 10 10 11.4 11.4 11.4 14 14 10 300mmの比率 % 92 85 90 86 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 元ペクト比 m 99 112 99 110 未測定 スペクト比 m 8 9.5 8 9.5 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定</td> <td> 上統例</td> <td> 14</td> <td> 14</td> <td> 1. </td> <td> 14</td> <td> 上級側 上級</td> <td> 1.4</td>	実施例 上較例 28 29 30 31 26 27 28 29 重量部 85 83.6 81 81 85 85 5 5 5 5 5 5 5 10 10 10 11.4 11.4 14 14	重量部 実施例 上較例 28 29 30 31 26 27 28 29 5 83.6 85 83.6 81 81 85 85 5 5 5 5 5 5 5 10 10 10 11.4 11.4 14 14 10 10 10 10 10 10	EMBIA1 実施例 上較例 28 29 30 31 26 27 28 29 合有オレア心系共重合体C2 5 5 5 5 5 5 5 5 2 10 10 10 11.4 11.4 14 14 10 3 10 11.4 14 14 10 10 4 4 10 10 10 10	重量部 実施例 比較例 重量部 85 83.6 85 83.6 81 81 85 85 10 10 11.4 11.4 14 14 10 10 x 92 85 90 86 未測定 未測定 未測定 未測定 未測定 未測定	実施例 実施例 上較例 学樹脂A1 重量部 85 83.6 85 83.6 81 81 85 85 含有木レブ心系共重合体C2 5 5 5 5 5 5 5 5 5 5 2 10 10 11.4 11.4 11.4 11.4 11.4 10 300nmの比率 % 92 85 90 86 未測定 未測定 未測定 未測定 未測定 未測定 2420	実施例 実施例 上較例 学校問A1 重量部 85 836 81 81 85 85 含有化プルン水光葉宣合体C2 5 5 5 5 5 5 5 5 5 2 10 10 10 11.4 11.4 11.4 11.4 11.4 11.4 10 300nmの比率 nm 99 112 99 110 未測定 未測定 未測定 未測定 未測定 未測定 未測定	実施例 実施例 上較例 28 29 30 31 26 27 28 29 5 有力/7公系共重合体 10 10 10 11/4 14 14 14 16 2 20 85 83.6 85 83.6 85 85 85 85 85 2 10 11.4 11.4 14 14 14 10 3 3 112 99 110 未測定 未測定 未測定 未測定 未測定 未測定 中分値 mm 99 112 137 120 未測定 未測定 未測定 未測定 未測定 未測定 未測定 子数[N] 個/wrsk-100 µm² 139 112 137 120 未測定 15(41)	1.5 1.	実施例 上較例 実施例 上較例 28 29 30 31 26 27 28 29 合有小7心系共重合体C2 5 5 5 5 5 5 5 5 5 2 10 10 10 10 11.4 11.4 11.4 14 14 10 300mmの比率 % 92 85 90 86 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 元ペクト比 m 99 112 99 110 未測定 スペクト比 m 8 9.5 8 9.5 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定	上統例	14	14	1.	14	上級側 上級	1.4

(*1):板状に分散しなかったので、分散粒子の長径/短径比とした。

(*2):板状に分散しなかったので、分散粒子の短径の数平均値とした。

(*3):板状に分散しなかったので、分散粒子の短径の最大値とした。

5 (実施例32~37)

表20に示す重量比のポリアミド樹脂A1、無水物含有オレフィン系共重合体 C2、製造例1で得た膨潤性雲母を、二軸押出機((株)日本製鋼所製、TEX 44)を用いて溶融混練することによりポリアミド樹脂組成物を得、各種物性を 評価した。結果を表20に示す。

表20

	AX 2 U				-т													
			37	65	5	30	9/	136	105	68	15	65	6780	0.8	0.9	18.3	23.1	着色なし
5			36	80	5	15	88	118	126	117	12.5	42	5120	.1.2	4.8	24.3	25.8	着色なし
		実施例	35	94.2	വ	0.8	95	84	160	176	ဖ	18	2950	3.6	9.0	36.2	36.3	着色なし
0		寒	34	09	30	10	85	103	128	129	9.5	41	2860	-	4.9	19.4	22.1	着色なし
5			33	80	10	10	68	86	136	140	8.8	35	4010	1.4	3.5	25.2	25.9	着色なし
			32	88	-	10	93	86	142	150	7.5	28	2370	1.8	3.0	29.1	29.3	着色なし
o.				重量部			*	mu .	個/wt%·100 µ m²	ì	wu	nm	MPa	mm	Eu.	×10 ⁻² ml/sec	$\times 10^{-2}$ ml/sec	
25					;共重合体C2											70-値 5分後	70-値 15分後	
				ポリアミド裕脂A1	無水物含有れ7亿系共重合体C2	** 11-2	[D]≤300nmの比率	[D]の 日 1 1 1 1 1 1 1 1 1 1 1 1 1	分散粒子数[N]	中均アスペクト比	平均層厚	最大層厚	剛性(曲げ弾性率)	吸水時の反り変形	表面性(表面組さ)	溶融熱安定性		に公然の毎年計能

(実施例38~41)

表21に示す重量比のポリアミド樹脂A1、無水物含有オレフィン系共重合体 C1、C3、製造例1で得た膨潤性雲母を、二軸押出機((株)日本製鋼所製、 TEX44)を用いて、240℃で溶融混練することによりポリアミド樹脂組成 5 物を得、各種物性を評価した。結果を表21に示す。

表21

10

15

20

				実施	5例	
			38	39	40	41
ポリアミド樹脂A1		10000000000000000000000000000000000000	86	83	86	83
無水物含有オレフィン系	共重合体C1		5	5	ı	
無水物含有オレフィン系	共重合体C3				5	5
————— 粘土J−3			9		9	
粘土J-6				12		12
[D]≦300nmの比率	-	%	85	80	84	79
[D]の平均値		nm	1.16	120	118	119
分散粒子数[N]	:	個/wt%•100 μ m²	118	105	120	110
平均アスペクト比		_	120	106	117	108
平均層厚		nm	9.6	11.5	10	11.8
最大層厚		nm	47	52	45	55
剛性(曲げ弾性率)		MPa	4210	3890	4160	3820
吸水時の反り変形		mm	1.8	2.2	1.9	2.3
表面性(表面粗さ)		nm	4.5	5.7	4.9	5.7
溶融熱安定性	フロー値 5分後	× 10 ⁻² ml/sec	32.1	30.6	34.6	33.1
	70-値 15分後	× 10 ⁻² ml/sec	33.4	31.2	35.7	33.4
15分後の着色状態			着色なし	着色なし	着色なし	着色な

(実施例42~43)

表22に示す重量比のポリアミド樹脂A2、無水物含有オレフィン系共重合体 C2、製造例1で得た膨潤性雲母を、二軸押出機((株)日本製鋼所製、TEX 25 44)を用いて、260℃で溶融混練することによりポリアミド樹脂組成物を得、 各種物性を評価した。結果を表22に示す。

表22

ſ				実施	例
				42	43
	ポリアミド樹脂A2		重量部	85	83.6
	無水物含有オレフィン系	共重合体C2		5	5
5	粘土J−2			10	
	粘土J-5				11.4
·	[D]≦300nmの比率		%	93	88
	[D]の平均値		nm	98	105
	分散粒子数[N]		個/wt%∙100 μ m²	140	122
	平均アスペクト比		_	145	107
	平均層厚		nm	8.5	9.5
10	最大層厚		nm	32	40
	剛性(曲げ弾性率)		MPa	4620	4330
	吸水時の反り変形		mm	1.2	1.4
	表面性(表面粗さ)	•	nm	4.3	5.5
	溶融熱安定性	フロー値 5分後	×10 ⁻² ml/sec	28.1	29.4
		70-値 15分後	×10 ⁻² ml/sec	28.7	29.6
15	15分後の着色状態			着色なし	着色なし

上記結果において、アンモニウム塩で処理された膨潤性雲母では溶融熱安定性が損なわれ、樹脂のフロー値が安定せず、着色した。ガラス繊維やマイカでは表面性が損なわれ反り変形した。また、無水物を含有しないオレフィン系共重合体では吸水反り変形が充分ではなかった。以上より、実施例で示したポリアミド樹脂組成物は優れた物性バランスを示すが、比較例では物性バランスに優れるものは得られなかった。

(実施例44~49)

20

25 表23に示す重量比のポリアミド樹脂A1、製造例1で得た膨潤性雲母、炭素化合物G1、G2を、二軸押出機((株)日本製鋼所製、TEX44)を用いて、 混練初期からダイスまでの温度を220℃~250℃に設定し、溶融混練することによりポリアミド樹脂組成物を得、各種物性を評価した。結果を表23に示す。

	表 2	3												<u></u>									
		49	91	13.6			ć	5 0	10.1	83	106	130	135	.5 .5	33	2400	128	143	2.1 × 10°	1.3	0.45	0.49	3.4
5		48	91	9.9	}			6	5.0	69	66	145	122	7.5	31.5	4060	104	129	4.2×10^6	1.6	99.0	0.69	2.0
10	(多)	47	9		9	<u>×</u> !	4.5		10.2	<u>8</u>	11.7	113	108	9.5	39	2100	130	139	7.5×10^{5}	1.6	0.47	0.53	4.0
10	実施例	46	100	13.6	2.2		5.5		9.9	06	104	135	140	8.5	33	5450	130	145	9.4×10^4	1.3	0.44	0.49	4.0
15		45	100	200	9		4.5		5.0	92	66	144	125	∞	31	4150	104	131	3.2×10^{5}	1.5	0.65	0.68	2.6
		44	100	3 5	o. o		3.5		5.0	93	86	146	125	œ	30	4200	105	130	1.9×10^{11}	1.6	0.67	0.69	2.5
20			田田田						wt%	%	E	個/w+%-100 u m ²		mu	щu	MPa	МРа	ပ္စ	Q.cm	mm	*		mu
25			19:1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	ポンゲートを 語を		およし-6	炭素化合物G1	炭素化合物G2	四个时	所式のmmの下例	[0]6 も徳	で な な な な な な に の に に に に に に に に に に に に に	おもアスペクトア	平均層厚	1.3/m/ 最大層	世 任 語 存 授	日に発売	描画たわみ温度	体指固有抵抗值	五 [5]	所 品 場 品 場 の の の の の の の の の の の の の の の の		中で線甲が組み

(*1):板状に分散しなかったので、分散粒子の長径/短径比とした。

(*2):板状に分散しなかったので、分散粒子の短径の数平均値とした。

(*3):板状に分散しなかったので、分散粒子の短径の最大値とした。

5 (比較例30~34)

表24に示す重量比のポリアミド樹脂A1、タルク、マイカ、ガラス繊維、炭素化合物G1を、実施例44と同様に溶融混練することによりポリアミド樹脂組成物を得、各種物性を評価した。結果を表24に示す。

表24

					比較例		
			30	31	32	33	34
ポリアミド樹脂A1		重量部	100	100	100	100	100
タルク		,			. 11		
マイカ						11	
ガラス繊維							11
炭素化合物G1				4.5	4.5	4.5	4.5
灰分率		vvt%	0.0	0.0	10.0	9.9	9.9
[D]≦300nmの比率		%	測定せず	測定せず	0	0	測定せず
[D]の平均値		nm	測定せず	測定せず	2420	2580	測定せず
分散粒子数[N]		個/wt%∙100 µ m²	測定せず	測定せず	5	2	測定せず
平均アスペクト比		_	測定せず	測定せず	1.5(*1)	1.5(*1)	測定せず
平均層厚		nm	測定せず	測定せず	約3000(*2)	約3000(*2)	測定せず
最大層厚		nm	測定せず	測定せず	約9万(*3)	約9万(*3)	測定せず
曲げ弾性率		MPa	2700	2730	3010	4250	5400
曲げ強度		MPa	96	96	95	120	130
荷重たわみ温度		္	69	70	72	90	148_
体積固有抵抗值		Ω •cm	7.0×10^{14}	9.5 × 10 ⁵	7.1 × 10 ⁵	4.4×10^{5}	2.1×10^{5}
反り		mm	8.1	8.0	7.8	7.1	16.2
成形収縮率	MD	%	1.59	1.60	1.43	1.01	0.56
	TD		1.70	1.72	1.59	1.21	1.78
中心線平均粗さ		nm	1.9	2.2	210	430	890

(*1):板状に分散しなかったので、分散粒子の長径/短径比とした。

25 (*2):板状に分散しなかったので、分散粒子の短径の数平均値とした。

(*3):板状に分散しなかったので、分散粒子の短径の最大値とした。

(実施例50~52)

表25に示す重量比のポリアミド樹脂A2、製造例1で得た膨潤性雲母、炭素

ポリアミド樹脂A2

炭素化合物G1

炭素化合物G3

[D]の平均値

平均層厚

最大層厚

曲げ強度

反り

曲げ弾性率

成形収縮率

分散粒子数[N]

平均アスペクト比

荷重たわみ温度

体積固有抵抗值

[D]≦300nmの比率

粘土J-2

粘土J-6

灰分率

52

91

13.6

9

10.1

80

141

103

106

10.5

50

5410

119

143

 1.7×10^{8}

1.4

0.44

0.50

3.5

実施例 51

100

18

4.5

9.8

36

283

45

50

36

165

4950

96

131

 5.9×10^{5}

3.6

0.68

0.72

7.3

化合物G1、G3を、二軸押出機((株)日本製鋼所製、TEX44)を用いて、 混練初期からダイスまでの温度を230℃~260℃に設定し、溶融混練するこ とによりポリアミド樹脂組成物を得、各種物性を評価した。結果を表25に示す。 表25

重量部

wt%

%

nm 個/wt%∙100μm²

nm

nm

MPa

MPa ℃

Ω •cm

mm

%

nm

MD

TD

50

100

13.6

4.5

9.9

81

142

99

106

10.5

51

5580

116

141

 3.7×10^{5}

1.0

0.30

0.32

4.5

5	

I	(`		

15

20

(比較例35~39)

中心線平均粗さ

表26に示す重量比のポリアミド樹脂A2、タルク、マイカ、ガラス繊維、炭素化合物G1を、実施例50と同様に溶融混練することによりポリアミド樹脂組成物を得、各種物性を評価した。結果を表26に示す。

5

10

					比較例		
			35	36	37	38	39
ポリアミド樹脂A2		重量部	100	100	100	100	100
タルク					11		
マイカ	l					11	
ガラス繊維							11
炭素化合物G1				4.5	4.5	4.5	4.5
灰分率		wt%	0.0	0.0	10.0	10.0	10.0
[D]≦300nmの比率		%	測定せず	測定せず	0	0	測定せず
[D]の平均値		nm	測定せず	測定せず	2420	2580	測定せず
分散粒子数[N]		個/wt%⋅100 μ m²	測定せず	測定せず	5	2	測定せず
平均アスペクト比		_	測定せず	測定せず	1.5(*1)	1.5(*1)	測定せず
平均層厚		nm	測定せず	測定せず	約3000(*2)	約3000(*2)	測定せず
最大層厚		nm	測定せず	測定せず	約9万(*3)	約9万(*3)	測定せず
曲げ弾性率		MPa	2900	2910	3200	4500	5500
曲げ強度		MPa	113	112	108	123	135
荷重たわみ温度		°C	80	81	86	97	148
体積固有抵抗値		Ω ·cm	6.4×10^{14}	8.9×10^{5}	7.4 × 10 ⁵	3.9×10^{5}	2.2×10^{5}
反り		mm	8.3	7.9	7.2	6.5	13.5
成形収縮率	MD	%	1.47	1.46	1.38	1.30	0.44
	TD		1.56	1.54	1.49	1.41	1.56
中心線平均粗さ		nm	2.0	2.2	200	430	700

15

(*1):板状に分散しなかったので、分散粒子の長径/短径比とした。

(*2):板状に分散しなかったので、分散粒子の短径の数平均値とした。

(*3):板状に分散しなかったので、分散粒子の短径の最大値とした。

20 (実施例53~55)

表27に示す重量比のポリアミド樹脂A3、製造例1で得た膨潤性雲母、炭素化合物G1、G3を、二軸押出機((株)日本製鋼所製、TEX44)を用いて、 混練初期からダイスまでの温度を280℃~300℃に設定し、溶融混練することによりポリアミド樹脂組成物を得、各種物性を評価した。結果を表27に示す。

表27

				実施例			
			53	54	55		
	ポリアミド樹脂A3	重量部	100	100	91		
	粘土J-2		13.6		13.6		
	粘土J-6			18			
5	炭素化合物G1		4.5	4.5			
	炭素化合物G3				9		
	灰分率	wt%	9.8	9.8	10.1		
	[D]≦300nmの比率	%	88	37	89		
	[D]の平均値	nm	103	280	99		
	分散粒子数[N]	個/wt%-100μr	n ² 130	50	136		
	平均アスペクト比	_	142	52	145		
10	平均層厚	nm	9	35	9.5		
	最大層厚	nm	35	165	36		
	曲げ弾性率	MPa	5090	4850	5180		
	曲げ強度	MPa	148	96	150		
	荷重たわみ温度	°C	188	123	190		
	体積固有抵抗値	Ω •cm	2.9×10^{5}	6.1×10^{5}	1.8×10^{8}		
15	反り	mm	8.0	3.8	1.3		
	成形収縮率	ID %	0.35	0.68	0.34		
		TD .	0.45	0.72	0.48		
	中心線平均粗さ	nm	4.0	7.3	3.5		

(比較例40~44)

20 表28に示す重量比のポリアミド樹脂A3、タルク、マイカ、ガラス繊維、炭素化合物G1を、実施例53と同様に溶融混練することによりポリアミド樹脂組成物を得、各種物性を評価した。結果を表28に示す。

				比較例		
		40	41	42	43	44
ポリアミド樹脂A3	重量部	100	100	100	100	100
タルク				11		
マイカ	ļ				11	
ガラス繊維						11
炭素化合物G1			4.5	4.5	4.5	4.5
灰分率	wt%	0.0	0.0	10.0	10.0	10.0
[D]≦300nmの比率	%	測定せず	測定せず	0	0	測定せず
[D]の平均値	nm	測定せず	測定せず	2420	2580	測定せず
分散粒子数[N]	個/wt%∙100 µ m²	測定せず	測定せず	5	2	測定せず
平均アスペクト比	_	測定せず	測定せず	1.5(*1)	1.5(*1)	測定せず
平均層厚	nm	測定せず	測定せず	約3000(*2)	約3000(*2)	測定せず
最大層厚	nm	測定せず	測定せず	約9万(*3)	約9万(*3)	測定せず
曲げ弾性率	MPa	3200	3200	5150	5400	5810
曲げ強度	MPa	150	150	135	137	140
荷重たわみ温度	°C	130	130	135	139	148
体積固有抵抗値	Ω·cm	3.3×10^{14}	9.8×10^{5}	8.3×10^{5}	3.9×10^{5}	2.4 × 10
<u> </u>	mm	4.5	4.5	1.9	2.5	14.7
成形収縮率 MD	%	1.01	1.01	0.54	0.45	0.32
TD		1.11	1.11	0.59	0.49	1.43
中心線平均粗さ	nm	1.9	1.9	210	430	790

15

5

10

(*1):板状に分散しなかったので、分散粒子の長径/短径比とした。

(*2):板状に分散しなかったので、分散粒子の短径の数平均値とした。

(*3):板状に分散しなかったので、分散粒子の短径の最大値とした。

20 (実施例56~58)

表29に示す重量比のポリアミド樹脂A4、製造例1で得た膨潤性雲母、炭素化合物G1、G3を、二軸押出機((株)日本製鋼所製、TEX44)を用いて、 混練初期からダイスまでの温度を280℃~300℃に設定し、溶融混練することによりポリアミド樹脂組成物を得、各種物性を評価した。結果を表29に示す。

表29

				実施例		
			Ī	56	57	58
ポリフ	アミド樹脂A4		重量部	100	100	91
粘土	J-2			13.6		13.6
粘土	J6				18	
炭素	化合物G1			4.5	4.5	
1	化合物G3					9
灰分			wt%	9.5	9.6	10.1
[D]	≦300nmの比 ^図	区	%	103	45	97
	の平均値	1	nm	133	226	129
	粒子数[N]		個/wt%∙100 μ m²	123	58	130
1	アスペクト比	1	`	120	59	133
平均	層厚	į	nm	10.5	33	9.5
1	層厚		nm	40.5	138	35.5
曲げ	弾性率		MPa	7200	5010	7290
曲げ	強度		MPa	168	113	170
	たわみ温度		°C	118	109	123
体程	固有抵抗値		Ω •cm	4.8×10^{5}	6.1×10^{5}	2.8×10^{8}
反り			mm	1.0	3.9	1.2
成形	収縮率	MD	%	0.45	0.68	0.34
		TD		0.54	0.73	0.45
中心	線平均粗さ		nm	4.2	6.4	3.0

(比較例45~49)

表30に示す重量比のポリアミド樹脂A4、タルク、マイカ、ガラス繊維、炭 20 - 素化合物G1を二軸押出機((株)日本製鋼所製、TEX44)を用いて、実施 例56と同様に溶融混練することによりポリアミド樹脂組成物を得、各種物性を 評価した。結果を表30に示す。

表30

5

10

15

					比較例		
		Ī	45	46	47	48	49
ポリアミド樹脂A4		重量部	100	100	100	100	100
タルク	\neg				11		
マイカ	1					11	
ガラス繊維	Ì						11
炭素化合物G1				4.5	4.5	4.5	4.5
灰分率		wt%	0.0	0.0	10.0	10.0	10.0
[D]≦300nmの比率		%	測定せず	測定せず	0	0	測定せず
 [D]の平均値		nm	測定せず	測定せず	2450	2500	測定せず
分散粒子数[N]		個/wt%∙100 µ m²	測定せず	測定せず	5	2	測定せず
平均アスペクト比			測定せず	測定せず	1.5(*1)	1.5(*1)	測定せず
平均層厚		nm	測定せず	測定せず	約3000(*2)	約3000(*2)	測定せず
最大層厚		nm	測定せず	測定せず	約9万(*3)	約9万(*3)	測定せず
曲げ弾性率		MPa	4500	4600	4910	5500	5900
曲げ強度		MPa	159	161	135	140	149
荷重たわみ温度		°C	84	85	88	100	121
体積固有抵抗値		Ω • cm	9.4×10^{14}	1.0×10^{5}	7.4×10^{5}	4.9×10^{5}	2.5×10
反り		mm	6.9	6.7	3.0	3.6	16.2
成形収縮率	MD	%	1.45	1.43	1.48	1.00	0.29
Tractic service 1	TD		1.53	1.54	1.55	1.09	1.45
中心線平均粗さ		nm	1.9	2.0	240	440	890

(*1):板状に分散しなかったので、分散粒子の長径/短径比とした。

(*2):板状に分散しなかったので、分散粒子の短径の数平均値とした。

(*3):板状に分散しなかったので、分散粒子の短径の最大値とした。

実施例及び比較例から、ポリアミド樹脂に炭素化合物を配合すれば抵抗値は下がるが、耐熱性や寸法安定性のバランスは良くない。また、耐熱性を付与するためにガラス繊維を配合すると、収縮の異方性が生じるために反りがおこり寸法安定性や表面性を損なう。導電性と寸法安定性を付与するために炭素化合物とタルクやマイカを組み合わせると、表面性が損なわれる。したがって、従来技術では、導電性と機械強度、耐熱性、成形品の表面性、成形収縮に異方性や反り等の寸法安定性がバランスがとれた導電性材料は得られないことが判る。

産業上の利用可能性

以上詳述したように、本発明におけるポリエーテル化合物で処理された膨潤性

雲母は、ポリアミド樹脂中で均一微分散するため、低反りで寸法安定性に優れ、 表面外観良好で、かつ機械的特性や耐熱性を高め、物性のバランスに優れるポリ アミド樹脂組成物が得られる。

また、さらにスチレン系樹脂を含有させることにより、上記効果に加えて、特に表面外観(表面性、低ヒケ性)がより優れたポリアミド樹脂組成物が;さらに無水物含有オレフィン系共重合体を含有させることにより、上記効果に加えて、特に吸水が抑制されたポリアミド樹脂組成物が;さらに炭素化合物を含有させることにより、上記効果に加えて、特に帯電防止性を有するポリアミド樹脂組成物がそれぞれ得られる。

請求の範囲

1. ポリアミド樹脂、及び、ポリエーテル化合物で処理された膨潤性雲母を含有し、かつ、前記ポリエーテル化合物が、下記一般式(1):

10

5

(式中、-A-は、-O-、-S-、-SO-、 $-SO_2-$ 、-CO-、炭素数 $1\sim 20$ のアルキレン基又は炭素数 $6\sim 20$ のアルキリデン基を示し、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、及び R^8 は、それぞれ同一であっても異なっていても良く、水素原子、ハロゲン原子又は炭素数 $1\sim 5$ の 1 価の炭化水素基を示す。)で表される構造を有することを特徴とする、ポリアミド樹脂組成物。

2. さらに、スチレン系樹脂、無水物含有オレフィン系共重合体、及び、炭素 化合物から選ばれる少なくとも一種を含有することを特徴とする、請求の範囲第 1項に記載のポリアミド樹脂組成物。

20

- 3. さらにスチレン系樹脂を含有することを特徴とする、請求の範囲第1項に 記載のポリアミド樹脂組成物。
- 4. さらに無水物含有オレフィン系共重合体を含有することを特徴とする、請 25 求の範囲第1項に記載のポリアミド樹脂組成物。
 - 5. 無水物含有オレフィン系共重合体が、オレフィン又はオレフィン系共重合体に、シス型 2 重結合を環内に有する脂環式ジカルボン酸無水物又は α , β -不飽和ジカルボン酸無水物を、共重合又はグラフト付加して得られるものであるこ

とを特徴とする、請求の範囲第4項に記載のポリアミド樹脂組成物。

6. ポリアミド樹脂組成物中の無水物含有オレフィン系共重合体の重量比が、 1重量%以上、30重量%以下であることを特徴とする、請求の範囲第4項に記載のポリアミド樹脂組成物。

66

- 7. さらに炭素化合物を含有することを特徴とする、請求の範囲第1項に記載のポリアミド樹脂組成物。
- 10 8. 前記炭素化合物が粒状であることを特徴とする、請求の範囲第7項に記載のポリアミド樹脂組成物。
 - 9. 前記炭素化合物がフィブリル状であることを特徴とする、請求の範囲第7項に記載のポリアミド樹脂組成物。

15

10. 前記ポリエーテル化合物が、下記一般式(2):

$$R^{11}$$
 OR^{9} OR^{1} OR^{1} OR^{10} OR^{10}

20

25

(式中、A、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、及び R^8 は、前記と同じであり、 R^9 、 R^{10} は、それぞれ同一であっても異なっていても良く、炭素数 $1\sim 5$ の 2 価の炭化水素基を示し、 R^{11} 、 R^{12} は、それぞれ同一であっても異なっていても良く、水素原子、炭素数 $1\sim 2$ の 1 価の炭化水素基を示し、m及びn はオキシアルキレン単位の繰り返し単位数を示し、 $2\leq m+n\leq 5$ 0 である。)で表される構造を有することを特徴とする、請求の範囲第 $1\sim 9$ 項のいずれかに記載のポリアミド樹脂組成物。

11. 前記ポリアミド樹脂組成物中の膨潤性雲母の等価面積円直径 [D] が3 00nm以下であるものの比率が20%以上であることを特徴とする、請求の範 囲第1~10項のいずれかに記載のポリアミド樹脂組成物。

5

- 12. 前記ポリアミド樹脂組成物中で、膨潤性雲母の等価面積円直径 [D] の 平均値が500nm以下であることを特徴とする、請求の範囲第1~11項のい ずれかに記載のポリアミド樹脂組成物。
- 10 13. 前記ポリアミド樹脂組成物中で、膨潤性雲母の平均層厚が50nm以下であることを特徴とする、請求の範囲第1~12項のいずれかに記載のポリアミド樹脂組成物。
- 14. 前記ポリアミド樹脂組成物中で、膨潤性雲母の最大層厚が200nm以 15 下であることを特徴とする、請求の範囲第1~13項のいずれかに記載のポリア ミド樹脂組成物。
- 15. 前記ポリアミド樹脂組成物中で、膨潤性雲母の単位比率当たりの粒子数 [N] 値が30以上であることを特徴とする、請求の範囲第1~14項のいずれ かに記載のポリアミド樹脂組成物。
 - 16. 前記ポリアミド樹脂組成物中で、膨潤性雲母の平均アスペクト比(層長さ/層厚の比)が $10\sim300$ であることを特徴とする、請求の範囲第 $1\sim15$ 項のいずれかに記載のポリアミド樹脂組成物。

25

17. ポリアミド樹脂組成物中の膨潤性雲母の重量比が、0.5重量%以上、30重量%以下であることを特徴とする、請求の範囲第1~16項のいずれかに記載のポリアミド樹脂組成物。

- 18. 前記各成分を混練することによって得られることを特徴とする、請求の範囲第1又は2項に記載のポリアミド樹脂組成物。
- 19. 請求の範囲第1又は2項に記載のポリアミド樹脂組成物の各成分を溶融 混練することを特徴とする、ポリアミド樹脂組成物の製造方法。
 - 20. 請求の範囲第1~18項のいずれかに記載のポリアミド樹脂組成物により、全部又は一部を形成されていることを特徴とする樹脂成形体。
- 10 21. 自動車用の部品であることを特徴とする、請求の範囲第20項に記載の 樹脂成形体。

	IFICATION OF SUBJECT MATTER C1 ⁷ C08L77/00, C08K9/04	<u> </u>				
	,					
	International Patent Classification (IPC) or to both nati	ional classification and IPC				
Minimum do	SEARCHED searched (classification system followed b	y classification symbols)				
Int.	Cl ⁷ C08L1/00-101/16, C08K9/04					
.Titen	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1926-1996 Toroku Jitsuyo Shinan Koho 1994-2003 Kokai Jitsuyo Shinan Koho 1971-2003 Jitsuyo Shinan Toroku Koho 1996-2003					
	ata base consulted during the international search (name	-				
Electionic da	ara base consumed during the memorial content (man)	,				
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.			
P,X	JP 2003-41051 A (Kaneka Corp 13 February, 2003 (13.02.03), Claims; Par. No. [0037] & WO 03/10245 A1	.),	1,10-21			
X Y	JP 2001-219150 A (Kaneka Corp 27 November, 2001 (27.11.01), Claims; Par. Nos. [0006], [00 to [0032], [0037] to [0038], & EP 1283245 Al & WO	21] to [0022], [0031]	1-6,10-21 7-9			
Y	JP 2001-302911 A (Asahi Kase 31 October, 2001 (31.10.01), Claims; Par. Nos. [0032] to [& EP 1125985 A1 & US	!	7-9			
Furth	er documents are listed in the continuation of Box C.	See patent family annex.				
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date and not in conflict with the application but cited understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family The provided the principle or theory underlying the invention document of particular relevance; the claimed invention cannot considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family						
17 N	Date of the actual completion of the international search 17 November, 2003 (17.11.03) Date of mailing of the international search report 02 December, 2003 (02.12.03)					
	Name and mailing address of the ISA/ Japanese Patent Office Authorized officer					
Facsimile N		Telephone No.				

A. 発明の風する分野の分類(国際特許分類(IPC)) Int. Cl ⁷ C08L77/00、C08K9/04			
B. 調査を行った分野 調査を行った最小限資料 (国際特許分類 (IPC)) Int. Cl ^r C08L1/00-101/16、C08L	X 9 / 0 4		
最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1926-1996年 日本国公開実用新案公報 1971-2003年 日本国登録実用新案公報 1994-2003年 日本国実用新案登録公報 1996-2003年			
国際調査で使用した電子データベース(データベースの名称、	調査に使用した用語)		
C. 関連すると認められる文献		田本ナス	
引用文献の カテゴリー* 引用文献名 及び一部の箇所が関連すると	ときけ その関連する簡所の表示	関連する 請求の範囲の番号	
PX JP 2003-41051 A PX 03.02.13,特許請求の範囲、 & WO 03/10245 A1	(鐘淵化学工業株式会社) 20	1,10-21	
X JP 2001-219150 A 001.11.27,特許請求の範疇 【0022】段落、【0031】~【0032】 落、【0051】~【0053】段落 & EP 1283245 A1 & WO 01/88035 A1	囲、【0006】段落、【0021】~	1-6, 10-21 7-9	
区欄の続きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。	
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「F」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献			
国際調査を完了した日 17.11.03	国際調査報告の発送日	2.12.03	
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号			

国際調査報告

国際出願番号 PCT/JP03/09306

0 ((4.2)	明キナット部ルトレッナサ	
C (続き). 引用文献の	関連すると認められる文献	関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
Y	JP 2001-302911 A (旭化成株式会社) 200 1.10.31,特許請求の範囲、【0032】~【0036】段落 & EP 1125985 A1 & US 2001/31831 A1	7-9

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

efects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☑ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.