ECSE 443 – ASSIGNMENT 3 MUHAMMAD TAHA – 260505597

Chapter 5

Exercises

5.3

a) As $\frac{df(x)}{x} = 2x$, the Newton iteration is given as follows, when f(x) = 0 needs to be solved.

$$x_{k+1} = x_k - \frac{x_k^2 - y}{2x_k}$$

b) Given an initial guess of 4-bit accuracy, to obtain 24-bit accuracy, the number of iterations required is $k = log_2\left(\frac{24}{4}\right) = 3$. For 53-bit accuracy $k = log_2\left(\frac{53}{4}\right) = 4$.

5.4

Let f(x) = x - 1 - y. Then, $\frac{df(x)}{dx} = -x - 2$. Hence, to solve f(x) = 0 the Newton iteration is as follows:

$$x_{k+1} = x_k - \frac{x_k^{-1} - y}{-x_k^{-2}} = x_k + x_k^2 (x_k^{-1} - y) = 2x_k - x_k^2 y$$

5.6

- a) As $g_1'(x) = 1 2x$ and $g_1'(\sqrt{3}) = |1 2\sqrt{3}| = 2.46 > 1$, the iterative scheme is not convergent.
- b) As $g_2'(x) = 1 \frac{2x}{y}$ and $g_1'(\sqrt{3}) = \left|1 \frac{2\sqrt{3}}{3}\right| = 0.155 < 1$, the iterative scheme is locally convergent.
- c) f'(x) = 2x, the fixed-point iteration function given by Newton's method is $g(x) = x \frac{x^2 y}{2x}$.

5.9

This first iteration given by Newton's method is $x_0 + s_0$, where s_0 can be found via:

$$J_f(x_0)s_0 = \begin{bmatrix} 2x_1 & -2x_2 \\ 2x_2 & 2x_1 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} -x_1^2 \\ 1 - 2x_1x_2 \end{bmatrix} = -f(x_0)$$

For $x_0 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$

$$J_f(x_0)s_0 = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} -2s_2 \\ 2s_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Hence $s_1 = 0.5$ and $s_2 = -0.5$.

Therefore, the first iteration is = x₀ + s₀ =
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0.5 \\ -0.5 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

If
$$x_k = x^*$$
, then $f(x_k) = f(x^*) = 0$

Hence,
$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} = x^* - 0 = x^*$$

If
$$x_{k-1} = x^*$$
, then $f(x_{k-1}) = f(x^*) = 0$

Therefore,

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}$$

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x^*}{f(x_k)}$$

$$x_{k+1} = x_k - (x_k - x^*)$$

$$x_{k+1} = x^*$$

Computer Problems

5.1

a)

•
$$|g_1'(x)| = \left|\frac{2x}{3}\right| = \left|\frac{4}{3}\right|$$

Therefore, the gradient is divergent.

•
$$|g_2'(x)| = \left| \frac{3}{2\sqrt{3x-2}} \right| = \left| \frac{3}{4} \right|$$

Therefore, the gradient is convergent at 0.75.

•
$$|g_3'(x)| = \left|\frac{2}{x^2}\right| = \left|\frac{1}{2}\right|$$

Therefore, the gradient is convergent at 0.5.

•
$$|g_4'(x)| = \left| \frac{-2(x^2 - 2)}{(2x - 3)^2} + \frac{2x}{2x - 3} \right| = |-4 + 4| = 0$$

Therefore, the gradient is quadratically convergent.

b) The MATLAB output for the functions above is given below:

The termination criteria used for each function was that the computation for each function was repeated a maximum of ten times per method and the tolerance of error was set as 10^{-10} .

The output obtained for each function with all 3 methods is shown below.

```
Secant method
bisection method
                    Newton method
iterationCnt =
                    iterationCnt =
                                             2.0946
                           3
                                         fx =
    2.0938
                                           -8.6926e-11
                    x =
fa =
                                         exitflag =
   -0.0089
                                             1
                          2.0946
b =
                                         output =
    2.0947
                    fx =
                                            intervaliterations: 0
                                                   iterations: 3
                                                    funcCount: 5
fb =
                       -8.8818e-16
                                                    algorithm: 'bisection, interpolation'
                                                     message: 'Zero found in the interval [2.09375, 2.09473]'
    0.0020
```

Figure 1: Part a

```
\begin{array}{ll} \mbox{bisection method} \\ \mbox{iterationCnt} = & \mbox{Newton method} & \\ \mbox{Secant method} \\ \mbox{$x = $} \end{array}
                       iterationCnt =
                                                   0.5671
                                3
a =
                                                fx =
   0.5664
                                                   1.1102e-16
                       x =
fa =
                                                exitflag =
   0.0012
                            0.5671
                                                  1
b =
                                                output =
   0.5674
                       fx =
                                                    intervaliterations: 0
                                                            iterations: 3
                                                             funcCount: 5
fb =
                            1.1102e-16
                                                            algorithm: 'bisection, interpolation'
  -3.7535e-04
                                                             message: 'Zero found in the interval [0.566406, 0.567383]'
```

<pre>bisection method iterationCnt =</pre>	Newton method	Secant method x =
10	iterationCnt =	1.1142
a =	3	fx =
1.1133		-2.2204e-16
fa =	х =	exitflag =
-0.0012	1.1142	1
b =		output =
1.1143	fx =	intervaliterations: 0 iterations: 3
fb =	-2.2204e-16	<pre>funcCount: 5 algorithm: 'bisection, interpolation'</pre>
1.3981e-04	1.110.11	message: 'Zero found in the interval [1.11328, 1.11426]'

Figure 3: Part c

Figure 2: Part b

```
Newton method Secant method
>> convergence
bisection method
                       iterationCnt =
                                             1.0000
   10
                            10
                                          fx =
a =
                                              0
   0.9992
                       x =
fa =
                                          exitflag =
 -4.7684e-10
                            1.0000
                                              1
                                          output =
   1.0001
                       fx =
                                             intervaliterations: 0
                                                    iterations: 14
fb =
                                                     funcCount: 16
                         -2.6645e-15
                                                     algorithm: 'bisection, interpolation'
  9.3126e-13
                                                      message: 'Zero found in the interval [0.999219, 1.0001]'
```

Figure 4: Part d

The following screenshots shows the result obtained by the implementation in MATLAB compared with the built-in MATLAB solver.

```
>> NewtonLinearEquationSolver
x =

    0.8780
    0.6768
    1.3309

iteration =

7
```

```
x =

0.8780
0.6768
1.3309

output =

iterations: 6
  funcCount: 28
  algorithm: 'trust-region-dogleg'
firstorderopt: 2.5674e-16
  message: 'Equation solved, inaccuracy possible....'
```

5.17 a)

$$R_{k+1} = I - AX_{k+1}$$

$$R_{k+1} = I - A(X_k + X_k(I - AX_k))$$

$$R_{k+1} = I - A(X_k + X_kR_k)$$

$$R_{k+1} = I - AX_k(I + R_k)$$

$$R_{k+1} = I - AX_k - AX_kR_k$$

$$R_{k+1} = R_k - AX_kR_k$$

$$R_{k+1} = R_k(I - AX_k)$$

$$R_{k+1} = R_k^2$$

$$E_{k+1} = A^{-1} - X_{k+1}$$

$$E_{k+1} = A^{-1} - X_k + X_k (I - AX_k)$$

$$E_{k+1} = A^{-1} - X_k + X_k - AX_k^2$$

$$E_{k+1} = A^{-1} - AX_k^2$$

$$A^{-1}E_{k+1} = A^{-1}A^{-1} - X_k X_k$$

$$A^{-1}E_{k+1} = E_k (A^{-1} - X_k)$$

$$E_{k+1} = E_k A(A^{-1} - X_k)$$

$$E_{k+1} = E_k AE_k$$

b)

A =

85 76 66 93 74 17 68 39 71

>> NewtonMatrixInverse(A)

X =

0.0015 0.0017 0.0012 0.0014 0.0013 0.0007 0.0012 0.0003 0.0013

Inverse calculated by MATLAB
ans =

-0.0394 0.0242 0.0308 0.0468 -0.0133 -0.0403 0.0121 -0.0159 0.0067

Chapter 6

Exercises

6.1

a)
$$f(x) = \frac{1}{2}(x_1^2 - x_2)^2 + \frac{1}{2}(1 - x_1)^2$$

$$\nabla f(x) = \begin{bmatrix} 2x_1^3 - 2x_1x_2 + x_1 - 1 \\ -x_1^2 + x_2 \end{bmatrix}$$

$$H_f(x) = \begin{bmatrix} 6x_1 - 2x_2 + 1 & -2x_1 \\ -2x_1 & 1 \end{bmatrix}$$

f has a minimum, critical point at $x^* = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ as $H_f(x)$ is positive definite at x^* .

b) The matrix inverse is given by:

$$H^{-1} = \frac{1}{5} \begin{bmatrix} 1 & 4 \\ 21 & 4 \end{bmatrix}$$

Hence,

$$\Delta x_2 = \begin{bmatrix} 1 & 4 \\ 21 & 4 \end{bmatrix} \begin{bmatrix} -9 \\ 2 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} -1 \\ 6 \end{bmatrix}$$

Therefore,

$$x_2 = \Delta x_2 + x_1 = \frac{1}{5} \begin{bmatrix} 9 \\ 16 \end{bmatrix}$$

c) The derivative is close to zero with this step as shown below

$$||f'(x_0)|| = ||f'(2,2)||^2 = ||(9,-2)|| = 9.2 \text{ and } ||f'(x_1)|| = ||f'(\frac{9}{5},\frac{16}{5})|| = 0.94$$

d) The new iteration deviates from the solution so the chosen step is not good

$$||x_0 - x^*|| = ||(1, 1)|| = 1.41$$

 $||x_1 - x^*|| = ||(\frac{6}{5}, \frac{4}{5})|| = 2.34$

6.2

a) When $Ax^* = b$:

$$\nabla f(x) = Ax - b$$
$$Hf(x) = A$$

The system for Newton's method step from an arbitrary x_0 is given below

$$H_f(x_0)s_0 = As_0 = b - Ax_0 = -\nabla f(x_0)$$

Which gives the result $x_1 = x_0 + s_0$. Hence, we get:

$$Ax_1 = A(x_0 + s_0) = Ax_0 + As_0 = (b - Ax_0) + As_0 = b$$

Implying that $x_1 = x^*$. Thus, it can be observed that Newton's method converges to the solution in one iteration from any x_0 .

b) For the steepest descent method, we need to find the minimum of $\alpha f(x_0 + \alpha s_0)$, where $s_0 = -\nabla f(x) = b - Ax$. The minimizing value for α is:

$$\alpha = s_k^T s_k / s_k^T A s_k$$

If, $x_0 - x^*$ is an eigenvector of A, then

$$\lambda(x_0 - x) = A(x_0 - x) = Ax_0 - Ax = Ax_0 - b.$$

The following equations proves that s_0 is A's eigenvector:

$$As_0 = \lambda A(x^* - x_0) = \lambda A(x^* - Ax) = \lambda (b - Ax_0) = \lambda s_0$$

Therefore, $\lambda = \frac{s_0^T A s_0}{s_0^T s_0}$

As $\alpha = \frac{1}{\lambda}$,

$$x_1 = x_0 - \alpha \nabla f(x_0)$$

$$x_1 = x_0 + \left(\frac{1}{\lambda}\right)(b - Ax_0)$$

$$x_1 = x_0 + \left(\frac{1}{\lambda}\right)(Ax^* - Ax_0)$$

$$x_1 = x_0 + \left(\frac{1}{\lambda}\right)(A(x^* - x_0))$$

$$x_1 = x_0 + \left(\frac{1}{\lambda}\right)(\lambda(x^* - x_0)) = x^*$$

Showing that the steepest method converges to the solution in one iteration from the starting point.

6.3

If y is a non-zero vector, then

$$\begin{bmatrix} 0 \\ y \end{bmatrix}^T \begin{bmatrix} B & J^T \\ J & O \end{bmatrix} \begin{bmatrix} 0 \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ y \end{bmatrix}^T \begin{bmatrix} J^T y \\ 0 \end{bmatrix} = 0$$

Hence, a 2x2 Hessian matrix of the Lagrange function for constrained optimization cannot be positive definite.

- a) The following vertices are contained in the feasible region: {(0,0), (0, 1.5), (0.857, 0.857), (1.09, 0.545), (1.2, 0)}
- b) The values of the objective function at each vertex are: 0, -3, -4.29, -4.37 and -3.6 respectively.

The lowest cost is found at: (1.09, 0.545)

Computer Problems

6.9 The plot of the path taken in plane by the solutions for each method is given below

Final solutions obtained from each method after a suitable number of iterations is provided below

Steepest descent x =	Newton method x =	dampened Newton method $x =$
0.9100 0.8277	0.9100 0.8277	0.9100 0.8277
iteration =	iteration =	iteration =
50	50	50

The following figures shows the solutions obtained from MATLAB

```
Newton method solution:
iteration =
     7
x =
   1.0e-11 *
   -0.1160
   -0.0104
    0.0045
Steepest descent solution:
iteration =
     2
x =
     0
     0
     0
solution:
iteration =
    20
x =
   0.0075
   -0.0000
   -0.0671
```

6.12

The solution below is obtained for the Fletcher Reeves algorithm.

The solution below is obtained for Polak Ribiere algorithm.

The tolerance was set as 10^{-5} and the function successfully converged to the solution in n steps for an arbitrary quadratic function of n variables.

6.13

a) The solution obtained from MATLAB is given below

```
x = 1.0000
1.9149
```

b) The solution obtained from MATLAB is given below

```
x =
-0.3148
0.7592
```

6.19 (a)

The solution obtained from MATLAB for all unknown x is shown below

x =

-0.2308
0.0769
0.0769
0.0769
1.0000
1.0000