Synchronizacja z pilotem w radiu FM

Tomasz Zieliński, KT AGH

W dokumencie "Radio_FM_Równania.doc" opisano podstawy wysyłania i odbioru sygnałów w analogowym radiu FM. Zgodnie z tym dokumentem, y(n) to odtworzony w odbiorniku sygnał hybrydowy radia FM. Składa się on z:

- sygnału mono (L+R),
- pilota 19 kHz,
- sygnału stereo (L-R) przesuniętego do częstotliwości 38 kHz ("podwojonego" pilota),
- sygnału RDS, przesuniętego do częstotliwości 57 kHz ("potrojonego" pilota).

Niech $y_p(n)$ oznacza wynik wąskopasmowej filtracji y(n) wokół 19 kHz:

$$y_{p}(n) = BP_{19kHz}(y(n)) = A\cos(\Omega n + \alpha(n)) + s(n) = A\cos(\theta'(n)) + s(n), \quad \Omega = 2\pi \frac{f_{pl}}{f_{pr}}.$$
 (1)

gdzie s(n) oznacza szum, f_{pl} – częstotliwość pilota 19 kHz, f_{pr} – częstotliwość próbkowania. Aby odzyskać z y(n) sygnały L-R i RDS, musimy odtworzyć kąt $\theta'(n)$ na podstawie sygnału $y_p(n)$. Robimy to za pomocą metody "strojonego modelu". Jej schemat funkcjonalny jest przedstawiony na rysunku 1. Na początku zakładamy, że pulsacja Ω jest dokładnie znana. Generujemy więc sygnał p(n) postaci:

$$p(n) = B\cos(\Omega n + \beta(n)) = B\cos(\theta(n)). \tag{2}$$

i chcemy iteracyjnie dostroić kat $\beta(n)$ do kata $\alpha(n)$ ($\theta(n) \to \theta'(n)$). Jak to zrobić?

Rys. 1. Układ synchronizacji z sygnałem pilota.

Niech ε oznacza wartość oczekiwaną kwadratu błędu pomiędzy sygnałami (1) i (2):

$$\varepsilon = E\left[\left(y_p(n) - p(n)\right)^2\right] \tag{3}$$

Podstawmy zależności (1) i (2) do (3). W celu uproszczenia analizy załóżmy, że amplitudy sygnałów są równe (A=B). Załóżmy także chwilowo, że ich przesunięcia fazowe α i β są stałe i niezmienne w czasie: $\alpha(n)$ =const, $\beta(n)$ =const, W przypadku kiedy w (1) szum s(n) jest gaussowski (E[s(n)]=0, $E[s^2(n)]=\sigma_s^2$), to otrzymujemy:

$$\varepsilon = \sigma_s^2 + A^2 \left(1 - \cos(\alpha - \beta) \right) - E \left[A^2 \cos(2\Omega n + \alpha + \beta) \left(1 - \cos(\alpha - \beta) \right) \right]$$
 (4)

Ponieważ ostatni składnik jest równy zero, kiedy wartość oczekiwana po zbiorze realizacji jest zastąpiona przez średnią czasową (wówczas średnia wartość z cos() równa się zero), otrzymujemy:

$$\varepsilon = \sigma_s^2 + A^2 \left(1 - \cos(\alpha - \beta) \right) \tag{5}$$

czyli wartość minimalną $\varepsilon_{\text{minimum}} = \sigma_s^2$ dla $\beta = \alpha$.

Wniosek. Uogólniając, wyciągamy wniosek, że należy adaptacyjnie zmieniać wartość kąta $\beta(n)$ w sygnale p(n) (który generuje cyfrowy syntezator częstotliwości) i poszukiwać minimum funkcji błędu (3). Dla tego minimum będzie zachodzić równość $\beta(n)=\alpha$.

Usuwając operator E[.] wartości oczekiwanej w równaniu (3) otrzymujemy zadanie optymalizacji, sprowadzające się do minimalizacji błędu chwilowego pomiędzy sygnałami (1)(2):

$$\hat{\varepsilon} = \left[y_{pl}(n) - p(n) \right]^2. \tag{6}$$

W teorii filtrów adaptacyjnych LMS (w metodzie stochastycznego gradientu) przyjmuje się następujące równanie przestrajania wartości parametru, u nas kąta $\beta(n)$:

$$\beta(n+1) = \beta(n) - \mu \frac{\partial \hat{\varepsilon}}{\partial \beta}. \tag{7}$$

czyli "idzie się" w kierunku przeciwnym (znak minus) do kierunku wzrostu funkcji (gradientu funkcji).

Obliczmy pochodną cząstkową funkcji błędu $\hat{\varepsilon}$ (6) względem $\beta(n)$:

$$\frac{\partial \hat{\varepsilon}}{\partial \beta} = 2A \sin(\Omega n + \beta(n)) \left[y_{pl}(n) - p(n) \right]. \tag{8}$$

i podstawmy wynik do (7):

$$\beta(n+1) = \beta(n) - 2\mu A \sin(\Omega n + \beta(n)) \cdot \left[y_{pl}(n) - p(n) \right]. \tag{9a}$$

$$\beta(n+1) = \beta(n) - 2\mu A \sin(\Omega n + \beta(n)) \cdot err(n). \tag{9b}$$

Czyli podczas adaptacji nowa wartość $\beta(n+1)$ powinna być równa poprzedniej wartości $\beta(n)$, do której dodaje się korektę proporcjonalną do błędu $e(n) = y_p(n) - p(n)$.

Dokonujemy dalszych przekształceń (8). Uwzględniamy (2), czyli że $p(n) = A \cdot \cos(\Omega n + \beta(n))$, i otrzymujemy:

$$\frac{\partial \hat{\varepsilon}}{\partial \beta} = 2A \sin(\Omega n + \beta(n)) y_{pl}(n) - 2A^2 \sin(\Omega n + \beta(n)) \cos(\Omega n + \beta(n))$$
(10)

Następnie wykorzystujemy zależności:

 $\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$, dla a = b mamy $\sin(2a) = 2\sin(a)\cos(a)$

$$2A^{2}\sin(\Omega n + \beta(n))\cos(\Omega n + \beta(n)) = A^{2}\sin(2\Omega n + 2\beta(n))$$
(11)

Teraz uwzględniamy (11) w (10):

skad:

$$\frac{\partial \hat{\varepsilon}}{\partial \beta} = 2A \sin(\Omega n + \beta(n)) y_{pl}(n) - A^2 \sin(2\Omega n + 2\beta(n)). \tag{12}$$

Ponieważ wartość średnia drugiego wyrażenia jest równa zero, to nie ma ono wpływu na zbieżność algorytmu adaptacji. Dlatego zaniedbujemy je:

$$\frac{\partial \hat{\varepsilon}}{\partial \beta} \approx 2A \sin(\Omega n + \beta(n)) y_{pl}(n). \tag{13}$$

Wynik podstawiamy do algorytmu adaptacji (7):

$$\beta(n+1) = \beta(n) - 2A\mu \sin(\Omega n + \beta(n)) \cdot y_{pl}(n). \tag{14a}$$

$$\beta(n+1) = \beta(n) - 2A\mu\sin(\Omega n + \beta(n)) \cdot error(n). \tag{14b}$$

Równanie (14) możemy wykorzystać do uszczegółowienia układu synchronizacji z pilotem 19 kHZ, przedstawionym na rysunku 1.

Rys. 2. Schemat blokowy adaptacyjnej pętli, służącej do odzyskiwania (śledzenia) kąta fazowego $\alpha(n)$ sygnału wejściowego $y_p(n)$. Kąt $\beta(n)$ stara się zrównać z $\alpha(n)$: $\beta(n) \rightarrow \alpha(n)$. Przesunięcie fazowe ψ jest wprowadzane przez filtr BP. s(n) oznacza szum.

Stosując oznaczenie:

$$\theta(n) = \Omega n + \beta(n), \quad \Omega = 2\pi (f_{nl} / f_s) \tag{15}$$

z (14) otrzymujemy:

$$\frac{\theta(n+1) = \theta(n) + \Omega - 2A\mu\sin(\theta(n)) \cdot error(n)}{\theta(n) \cdot error(n)}.$$
 (16)

Powyżej założyliśmy **znajomość** pulsacji Ω i jej **niezmienność**. Dlatego estymacja (oszacowanie) wartości kąta $\theta(n)$ sprowadziła się do dostrajania wartości kąta $\beta(n)$ (2) do kąta $\alpha(n)$ (1). Teraz "rozluźnijmy" nasze założenia i uwzględnijmy fakt, że wartość $\Omega_{\rm osc}$, przyjętego w oscylatorze cyfrowym może się różnić od Ω sygnału odebranego $y_p(n)$. tzn. oscylator używa wartości $\Omega+\Delta\Omega$. Z (16) mamy:

$$\frac{\theta(n+1) = \theta(n) + (\Omega + \Delta\Omega) - 2A\mu\sin(\theta(n)) \cdot error(n)}{\Omega_{OSC}}.$$
(17)

Dlatego błąd pomiędzy całkowitym kątem $\theta(n)$ sygnału p(n) oscylatora, wyliczony z (17), a całkowitym kątem $\theta'(n)$ sygnału $y_p(n)$ może liniowo maleć lub narastać w zależności od $\Delta\Omega$. Ale błąd ten także będzie wpływał na błąd (6) chwilowego niedopasowania syntezowanego cyfrowo sygnału p(n) do analizowanego sygnału $y_p(n)$. Dlatego wartość $\Omega_{\rm osc}$ możemy także przestrajać proporcjonalnie do błędu error(n) oraz wartości $\sin(\theta(n))$. Końcowe równania zapisujemy w sposób następujący:

$$\frac{\theta(n+1) = \theta(n) + \Omega_n - 2A\mu_1 \sin(\theta(n)) \cdot errror(n)}{(17a)}$$

$$\Omega_{n+1} = \Omega_n - 2A\mu_2 \sin(\theta(n)) \cdot error(n). \tag{17b}$$

Odpowiada im algorytm przedstawiony poniżej na rysunku 3.

Rys. 3. Schemat blokowy adaptacyjnej pętli synchronizacyjnej, służącej do jednoczesnego odzyskiwania (śledzenia) sumarycznego kąta $\theta'(n) = \Omega n + \alpha(n)$ sygnału wejściowego. Przesunięcie fazowe ψ jest wprowadzane przez filtr BP. s(n) oznacza szum. $y_p(n) = A \cdot \cos(\theta'(n) + \psi) + s(n)$

Końcowy algorytm programowej pętli synchronizacyjnej

W związku z powyższym algorytm programowej pętli adaptacyjnej, stosowanej w zadaniu odtworzenia sygnału pilota w radiu FM, ma następującą postać:

1. Wybór wartości μ₁ i μ₂.

2. Inicjalizacja: $\Omega(1) = 2\pi (f_{pl} / f_s), \quad \theta(1) = 0$.

3. For n=1,2,3,...:

$$err(n) = \sin(\theta(n)) y_{pl}(n),$$

$$\theta(n+1) = \theta(n) + \Omega(n) - \mu_1 \cdot err(n).$$

$$\Omega(n+1) = \Omega(n) - \mu_2 \cdot err(n).$$

Odpowiada temu poniższy kod Matlaba, stanowiący część programu **fm_dekoder_stereo _RDS_pilot_norma.m**. Dodatkowo przykładowy kod Matlaba opisanej metody synchronizacji z pilotem jest w programie **fm_dekoder_PLL.m** jako metoda=1, w wersji 1.

Kod Matlaba programowej pętli synchronizacyjnej z pilotem (metoda=1, ver=1)

% Odseparowanie sygnalu pilota 19 kHz (filtracja pasmowoprzepustowa)

```
% Odseparowanie sygnalu pilota 19 kHz (filtracja pasmowoprzepustowa)
  yp = filter(hBP19,1,y); Ny=length(yp);
% Petla synchronizacyjna do odtworzenia czestotliwosci i fazy pilota
% i na tej podstawie sygnalow: c19, c38 i c57
  mil = 1e-2; mi2 = mi1^2/4;
  freq = 2*pi*fpilot/fs; theta = zeros(1,Ny);
  for n = 1 : Ny-1
        pherr = sin(theta(n))*yp(n);
        theta(n+1) = theta(n) + freq - mil*pherr;
        freq = freq - mi2*pherr;
end
```

```
c19 = cos( theta(1:end));
c38 = cos(2*theta(1:end));
c57 = cos(3*theta(1:end));
```

Wersja alternatywna programowej pętli synchronizacyjnej

Teraz postarajmy się przeprowadzić alternatywne wyprowadzenie dla przypadku, kiedy pulsacje Ω i Ω_{osc} są różne:

$$y_n(n) = BP_{19kHz}(y(n)) = A\cos(\Omega n + \alpha(n)) + s(n), \tag{18}$$

$$p(n) = A\cos\left(\Omega_{osc}n + \beta(n)\right). \tag{19}$$

W takim przypadku (3) jest równe:

$$\varepsilon = E\Big[\Big(y_{p}(n) - p(n)\Big)^{2}\Big] =$$

$$= E\Big[\Big(A\cos(\Omega n + \alpha(n)) + s(n)\Big)^{2} + \Big(A\cos(\Omega_{osc}n + \beta(n))\Big)^{2} + \dots$$

$$\dots - 2\Big(A\cos(\Omega n + \alpha(n)) + s(n)\Big)\Big(A\cos(\Omega_{osc}n + \beta(n))\Big)\Big] =$$

$$= E\Big[\Big(A^{2}\cos^{2}(\Omega n + \alpha(n)) + A\cos(\Omega n + \alpha(n))s(n) + s^{2}(n)\Big) + \dots$$

$$\dots + \Big(A\cos(\Omega_{osc}n + \beta(n))\Big)^{2} - 2\Big(A\cos(\Omega n + \alpha(n)) + s(n)\Big)\Big(A\cos(\Omega_{osc}n + \beta(n))\Big)\Big] =$$

$$= \sigma_{s}^{2} + E\Big[A^{2}\cos^{2}(\Omega n + \alpha(n)) + A^{2}\cos^{2}(\Omega_{osc}n + \beta(n)) + \dots$$

$$\dots - 2A^{2}\cos(\Omega n + \alpha(n))\cos(\Omega_{osc}n + \beta(n))\Big] =$$

$$= \sigma_{s}^{2} + A^{2}E\Big[\cos^{2}(\Omega n + \alpha(n)) + \cos^{2}(\Omega_{osc}n + \beta(n)) + \dots$$

$$\dots - \cos((\Omega + \Omega_{osc})n + \alpha(n) + \beta(n)) - \cos((\Omega - \Omega_{osc})n + \alpha(n) - \beta(n))\Big] =$$

$$= \sigma_{s}^{2} + A^{2}\Big(1 - E\Big[\cos((\Omega - \Omega_{osc})n + \alpha(n) - \beta(n))\Big]. \tag{20}$$

Poprzednio mieliśmy (5):

$$\varepsilon = \sigma_s^2 + A^2 \left(1 - \cos(\alpha - \beta) \right)$$

i minimum funkcji kosztu dla $\beta = \alpha$. $\beta(n)$ dostrajało się do $\alpha(n)$ i śledziło wolnozmienne $\alpha(n)$. Teraz $\beta(n)$ będzie dostrajało się do:

$$\beta(n) \to (\Omega - \Omega_{osc})n + \alpha(n) \tag{21}$$

Składnik (Ω – Ω _{osc})n narasta (lub maleje liniowo). Jednym z rozwiązań problemu jest zastosowanie drugiej pętli adaptacyjnej. Kąt $\beta_1(n)$ pierwszej pętli zbiega się do (21), a kąt $\beta_1(n)$ drugiej pętli – do $\alpha(n)$. Z (14) mamy:

$$\beta_{1}(n+1) = \beta_{1}(n) - 2A\mu_{1}\sin(\Omega_{osc}n + \beta_{1}(n)) \cdot y_{pl}(n),$$

$$\beta_{2}(n+1) = \beta_{2}(n) - 2A\mu_{1}\sin(\Omega_{osc}n + \beta_{1}(n) + \beta_{2}(n)) \cdot y_{pl}(n)$$
(22)

$$= \beta_2(n) - 2A\mu_1 \sin\left(\Omega_{osc}n + \left(\Omega - \Omega_{osc}\right)n + \alpha(n) + \beta_2(n)\right) \cdot y_{pl}(n)$$

$$= \beta_2(n) - 2A\mu_1 \sin\left(\Omega n + \alpha(n) + \beta_2(n)\right) \cdot y_{pl}(n)$$
(23)

W konsekwencji odtwarzamy i śledzimy całkowity kąt analizowanego sygnału $y_p(n)$. Schemat blokowy układu, opisanego wyżej, jest przedstawiony na rysunku 4.

Rys. 4. Schemat blokowy alternatywnego układu synchronizacji z pilotem (dwie pętle adaptacyjne), mogącego jednocześnie śledzić wartość kąta fazowego α nośnej Ω jak i sam dryft częstotliwości nośnej Ω . $\Omega_{\rm osc} = 2\pi (f_{osc}/f_{pr})$. Kąt ψ wprowadza filtr BP.

Alternatywnemu układowi synchronizacji z pilotem, opisanemu powyżej, odpowiada poniższy kod Matlaba. Stanowi on część programu **fm dekoder PLL.m** jako metoda=1, w wersji 2.

Kod Matlaba programowej pętli synchronizacyjnej z pilotem (metoda=1, ver=2)

```
% Odseparowanie sygnalu pilota 19 kHz (filtracja pasmowoprzepustowa)
 yp = filter(hBP19,1,y); Ny=length(yp);
% Petla synchronizacyjna do odtworzenia czestotliwości i fazy pilota
% i na tej podstawie sygnałów: c19, c38 i c57
 f0 = fpilot-5;
                                            % częstotliwość osc. w odbiorniku
 Om = 2*pi*f0/fs;
                                            % omega
                                           % wsp. szybkości adaptacji
 mu1 = 0.01; mu2 = 0.005;
 beta1 = zeros(1,Ny); beta1(1) = 0;
                                           % inicjalizacja kata beta1
 beta2 = zeros(1,Ny); beta2(1) = 0;
                                           % inicjalizacja kata beta2
 theta = zeros(1,Ny); theta(1) = 0;
                                            % inicjalizacja theta
  for n=1:Ny-1
                                            % podwójna pętla PLL
      theta(n) = Om*(n-1) + beta1(n) + beta2(n);
                                                     % kat całkowity
      err1 = yp(n) *sin(Om*(n-1)+beta1(n));
                                                      % błąd 1
      err2 = yp(n) *sin(Om*(n-1) + beta1(n) + beta2(n)); % bład 2
      beta1(n+1) = beta1(n) - mu1*err1;
                                                      % uaktualnienie 1
      beta2(n+1) = beta2(n) - mu2*err2;
                                                      % uaktualnienie 2
 end
 c19 = cos(theta(1:end-1));
 c38 = cos(2*theta(1:end-1));
 c57 = cos(3*theta(1:end-1));
```