MATH 131 Homework 6

Jesse Cai

304634445

- 1. **Prove** $\forall x \in \mathbb{R} : x \in A = \left(\forall k \in \mathbb{N} : a_k := \left\{ n \in \mathbb{N} : |a_n x| < \frac{1}{k+1} \right\} \right)$
- 2. Prove $b, c \in A$.

We will prove this via contradiction. We know from Theorem 11.8 in the book that $\sup A = \limsup a_n = b$ and likewise $\inf A = \liminf a_n = c$

3. Prove (s_n) is Cauchy and hence convergent.

 (s_n) is Cauchy if $\forall \epsilon > 0, \exists N, \forall m, n > N : |s_m - s_n| < \epsilon$

WLOG assume m > n.

Then $|s_m - s_n| = |s_m - s_{m-1} + s_{m-1} - s_{m-2} + \dots + s_{n+1} - s_n|$. So by triangle inequality $|s_m - s_n| \le |s_m - s_{m-1}| + |s_{m-1} - s_{m-2}| + \dots + |s_{n+1} - s_n|$

But we know $\forall n \in \mathbb{N} : |s_{n+1} - s_n| < 2^{-n}$ so

 $|s_m - s_n| \le 2^{-m+1} + 2^{-m+2} + \dots + 2^{-n} = 2^{-m+1}$

So for any ϵ choose $N = \text{so } (s_n)$ is Cauchy and hence convergent.

Is this true if $|s_{n+1} - s_n| < \frac{1}{n}$

No, take $(s_n) = \sum_{i=1}^n n_i 1$. Then $|s_{n+1} - s_n| = \frac{1}{n+1} < \frac{1}{n}$ but (s_n) is not Cauchy.

Fix $\epsilon > 0$. For any N we pick, $\exists m, n > N$, such that /abs

4. Consider the following sequences

$$a_n = (-1)^n, b_n = \frac{1}{n}, c_n = n^2, d_n = \frac{6n+4}{7n-3}$$

Monotone subsequences: $(a_{2n}), (b_n), (c_n), (d_n)$.

Set of subsequential limits: $\{-1,1\},\{0\},\{\infty\},\{\frac{6}{7}\}$

 \limsup and \liminf : $1,-1;0,0;\infty,\infty$; $\frac{6}{7},\frac{6}{7}$

 a_n does not converge, while c_n diverges to ∞ . b_n, d_n both converge.

 a_n, b_n, d_n are all bounded, while c_n is unbounded.

5. Consider the following sequences

$$w_n = (-2)^n, x_n = 5^{(-1)^n}, y_n = 1 + (-1)^n, z_n = n\cos\left(\frac{n\pi}{4}\right)$$

Monotone subsequences: $(w_{2n}), (x_{2n}), (y_{2n}), (z_{4n-2}).$

Set of subsequential limits: $\{-\infty,\infty\},\{\frac{1}{5},5\},\{0,2\},\{-\infty,0,\infty\}$

 \limsup and $\liminf: -\infty, \infty; \frac{1}{5}, 5; 0, 2; -\infty, \infty$

None of these 4 sequences converge

 w_n, z_n are bounded, while x_n, y_n are unbounded.

6. Prove $\liminf s_n = -\limsup(-s_n)$

We know from Theorem 10.6 $\liminf s_n = \lim_{N \to \infty} \inf \{ s_n : n > N \}$

But from Exercise 5.6 we know that $\inf\{s_n : n > N\} = -\sup\{-s_n : n > N\}$ so long as S is a nonempty subseto of \mathbb{R} , but this is exactly what $\{s_n : n > N\}$ is.

So $\liminf s_n = \lim_{N \to \infty} -\sup\{-s_n : n > N\} = -\limsup(-s_n)$.

7. Determine which of the following series converge.

 $\sum \frac{n-1}{n^2}$ Note that $n > 10 \implies fracn - 1n^2 > \frac{1}{2n}$, a divergent harmonic series, so this sum diverges by the comparison test.

 $\sum (-1)^n$ Note that $a_n = (-1)^n$ so $\lim a_n \neq 0 \implies$ divergence.

 $\sum \frac{3n}{n^3} = 3 \sum \frac{1}{n^2}$ but this is a convergent harmonic series, so this sequence also converges.

 $\sum \frac{n^3}{3^n}$. By the Ratio test, $\lim \left|\frac{(n+1)^3}{3n^3}\right| = \frac{1}{3} < 1$. so this series converges.

 $\sum \frac{n^2}{n!}$. By the Ratio test, $\lim |\frac{1}{n} + \frac{1}{n^2}| = 0 < 1$ so this series converges.

 $\sum \frac{1}{n^n}$. By the Root test, $\lim |a_n|^{\frac{1}{n}} = \lim |\frac{1}{n^n}|^{\frac{1}{n}} = \lim \frac{1}{n} = 0 < 1$ so this series converges.

 $\sum \frac{n}{2^n}$. By the Ratio test, $\lim \left|\frac{n+1}{2n}\right| = \frac{1}{2} < 1$ so this series converges.

8. Prove that if $\sum |a_n|$ converges and (b_n) is bounded then $\sum a_n b_n$ converges.

We just need to show that $\sum a_n b_n$ is Cauchy to show that it converges.

9. Predicate Calculus

Let $m|n = \exists k \in \mathbb{N} : (k)(n) = m$

- (a) $\forall n \in \mathbb{N} : (n|3) \land (n|2) \implies (n|7)$
- (b) $\forall n \in \mathbb{N} : (n|3) \land (n|2) \implies (n|7)$
- (c) $\forall n \in \mathbb{N} : (n|6) \land (n|5) \implies (n|20)$
- (d) $\forall n \in \mathbb{N} : (n|3) \land (n|2) \implies (n|7)$
- (e) $\forall n \in \mathbb{N} : (n|3) \land (n|2) \implies (n|7)$