Unit5HW

May 19, 2020

1 Unit5作业

3

```
[18]: from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = 'all'
import scipy.stats as stats
import numpy as np
import statsmodels.stats.proportion as proportion
import statsmodels.formula.api as smf
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
sns.set_style('darkgrid')
```

HW-U5-1: 对于Diabetes.csv数据,请利用协方差和pearson 相关系数分析Glucose与Blood-Pressure的关系 (0.5分),并画出血糖-血压散点图 (0.5分)

```
[19]: diabetes=pd.read csv('Diabetes.csv')
     diabetes.head(5)
[19]:
        Pregnancies Glucose BloodPressure SkinThickness
                                                          Insulin
                                                                    BMI \
     0
                  6
                        148
                                        72
                                                      35
                                                                0 33.6
     1
                  1
                         85
                                        66
                                                      29
                                                                0 26.6
                  8
                        183
                                                                0 23.3
     2
                                        64
                                                      0
```

66

40

23

35

94 28.1

168 43.1

	DiabetesPedigreeFunction	Age	Outcome
0	0.627	50	1
1	0.351	31	0
2	0.672	32	1
3	0.167	21	0
4	2.288	33	1

89

137

1

0

```
[20]: diabetes=diabetes[diabetes['Glucose']!=0]
    diabetes=diabetes[diabetes['BloodPressure']!=0]
    glu=diabetes['Glucose']
    bp=diabetes['BloodPressure']
```

plt.scatter(glu,bp)

[20]: <matplotlib.collections.PathCollection at 0x1f489300508>


```
[21]: np.cov(glu,bp) stats.pearsonr(glu,bp)
```

[21]: (0.223191778249542, 1.138581203805524e-09)

pearson's r = 0.22, $p = 1.14 \times 10^{-9}$.该结果显示Glucose与BloodPressure之间没有明显的相关关系。

HW-5-2: 对于Titantic.csv数据(参见前面单元作业),请用分别用pearson r, spearman rho, kendall's tau分别计算乘客年龄与买的票的等级的相关系数 (1分)

```
[22]: titantic=pd.read_csv('Titanic.csv')
    titantic.head(5)
    titantic=titantic.dropna()
```

```
[22]:
                                                                         Sex \
                                                  Name PClass
                                                                 Age
      0
                          Allen, Miss Elisabeth Walton
                                                               29.00
                                                                      female
      1
                           Allison, Miss Helen Loraine
                                                          1st
                                                                2.00
                                                                      female
      2
                   Allison, Mr Hudson Joshua Creighton
                                                          1st 30.00
                                                                        male
      3 Allison, Mrs Hudson JC (Bessie Waldo Daniels)
                                                          1st 25.00 female
```

```
4
                       Allison, Master Hudson Trevor
                                                     1st
                                                           0.92
                                                                  male
        Survived
     0
     1
              0
     2
              0
     3
              0
     4
              1
[23]: age=titantic['Age']
     pclass=titantic['PClass']
     pclass=pclass.replace(['1st','2nd','3rd'],[1,2,3])
[24]: stats.pearsonr(age,pclass)
     stats.spearmanr(age,pclass)
     stats.kendalltau(age,pclass)
[24]: (-0.4141214595264922, 1.0969903610990536e-32)
[24]: SpearmanrResult(correlation=-0.39366216507025165, pvalue=1.9756955531661058e-29)
[24]: KendalltauResult(correlation=-0.3103724477828569, pvalue=8.600565143832718e-28)
    以上三个结果的p-value均很小,均反映了Age与PClass之间没有显著的相关关系.
    HW-5-3:针对汽车数据mtcars.csv
     (1) 画出wt~ mpg散点图; 用简单线性回归分析mpg (因变量) , 和wt(自变量) 的关系, 并
    根据回归结果中的截距和斜率及其显著性水平 (p值),对结果进行解释;并解释Rsquare. (1.5分)
[25]: df=pd.read_csv('mtcars.csv')
     df.head(5)
[25]:
              Unnamed: 0
                          mpg cyl
                                     disp
                                           hp drat
                                                       wt
                                                            qsec
                                                                         gear
                                                                 ٧s
                                                                     am
     0
               Mazda RX4 21.0
                                 6
                                   160.0 110
                                               3.90 2.620
                                                           16.46
                                                                  0
                                                                      1
                                                                            4
                                 6 160.0 110 3.90 2.875
     1
           Mazda RX4 Wag 21.0
                                                           17.02
                                                                  0
                                                                      1
                                                                            4
     2
              Datsun 710 22.8
                                 4 108.0
                                          93 3.85 2.320
                                                                            4
                                                           18.61
                                                                  1
                                                                      1
           Hornet 4 Drive 21.4
                                                                            3
     3
                                 6
                                    258.0 110 3.08 3.215
                                                           19.44
                                                                      0
                                                                            3
        Hornet Sportabout 18.7
                                    360.0 175 3.15 3.440
                                                           17.02
                                                                  0
                                                                      0
        carb
     0
           4
     1
           4
     2
           1
     3
           1
```

2

```
[26]: sns.scatterplot(x='wt',y='mpg',data=df)
```

[26]: <matplotlib.axes._subplots.AxesSubplot at 0x1f489864948>


```
[27]: result1=smf.ols('mpg~wt',data=df).fit()
result1.summary()
```

[27]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

=======================================				 	:=======	========
Dep. Variable:		mpg	R-squa	red:		0.753
Model:		OLS	Adj. R	-squared:		0.745
Method:		Least Squares	F-stat	istic:		91.38
Date:	Tue	, 19 May 2020	Prob (F-statistic)	:	1.29e-10
Time:		20:04:26 Log-Likelihood:			-80.015	
No. Observations:		32	AIC:			164.0
Df Residuals:		30	BIC:			167.0
Df Model:		1				
Covariance Type:		nonrobust				
	===== oef	std err	======= t	======== P> t	[0.025	0.975]

	=========		
Omnibus:	2.988	Durbin-Watson:	1.252
Prob(Omnibus):	0.225	Jarque-Bera (JB):	2.399
Skew:	0.668	Prob(JB):	0.301
Kurtosis:	2.877	Cond. No.	12.7

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

回归结果mpg = -5.3445wt + 37.2851,截距和斜率的p值均很小,说明截距和斜率均有显著意义. $R^2 = 0.753$ 说明mpg与wt之间有比较强的线性关系(strong).

(2) 用多元线性回归分析mpg (因变量) , 和wt(自变量) 、hp(自变量) 的关系,并根据回归结果中的各个自变量的系数及其显著性水平 (p值), 对回归结果进行解释; 并解释R-square (1.5分)

[28]: result2=smf.ols('mpg~wt+hp',data=df).fit() result2.summary()

[28]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

=======================================	=======================================		=======================================
Dep. Variable:	mpg	R-squared:	0.827
Model:	OLS	Adj. R-squared:	0.815
Method:	Least Squares	F-statistic:	69.21
Date:	Tue, 19 May 2020	Prob (F-statistic):	9.11e-12
Time:	20:04:26	Log-Likelihood:	-74.326
No. Observations:	32	AIC:	154.7
Df Residuals:	29	BIC:	159.0
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]		
Intercept wt	37.2273 -3.8778	1.599 0.633	23.285 -6.129	0.000	33.957 -5.172	40.497 -2.584		
hp	-0.0318	0.009	-3.519	0.001	-0.050	-0.013		
=========		========			========			
Omnibus:	5	.303 Durb	in-Watson:		1.362			
<pre>Prob(Omnibus):</pre>		0	.071 Jarq	ue-Bera (JB)	:	4.046		
Skew:		0	.855 Prob	(JB):		0.132		
Kurtosis:			.332 Cond	. No.		588.		
========								

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

回归结果mpg = -3.8778wt - 0.0318hp + 37.2273,三个系数的p值均小于0.05,说明结果具有显著意义。mpg与wt和hp都成负相关,但且wt对mpg的影响要高于hp。

 $R^2 = 0.827$, 说明mpg与wt和hp之间有很强的二元线性关系。相比单变量回归, R^2 值提高了,结合 $Adj = R^2$,也没有出现明显的过拟合现象,因此模型较单变量效果更好。

HW-5-4: mtcars.csv 数据), 汽车的离合 (am: 手动 (1) /自动 (0)) 与汽车的油耗 (mpg), 马力 (hp)是很相关的,请:

(1)基于全部数据用mpg,hp作为自变量,am作为因变量,建立对应的逻辑回归模型 ,并作出解释 (1.0分)

[29]: log_res=smf.logit('am~mpg+hp',data=df).fit() log_res.summary()

Optimization terminated successfully.

Current function value: 0.300509

Iterations 9

[29]: <class 'statsmodels.iolib.summary.Summary'>

Logit Regression Results

Dep. Variab	le:		am No.	Observations	3:	32		
Model: Logit			git Df R	Df Residuals: 29				
Method:			MLE Df M	odel:		2		
Date:	Τι	ıe, 19 May 2	020 Pseu	Pseudo R-squ.:		0.5551		
Time:		20:04	:26 Log-	Log-Likelihood:		-9.6163		
converged:		T	rue LL-N	LL-Null:		-21.615		
Covariance	Type:	nonrob	ust LLR	p-value:		6.153e-06		
=======================================								
	coef	std err	z	P> z	[0.025	0.975]		
Intercept	-33.6052	15.077	-2.229	0.026	-63.156	-4.055		
mpg	1.2596	0.567	2.220	0.026	0.147	2.372		
hp	0.0550	0.027	2.045	0.041	0.002	0.108		
========	========		=======	========				

Possibly complete quasi-separation: A fraction 0.12 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

mpg和hp的p值均小于0.05,说明这两者与am均有关联,且mpg在其中占的比重更大。

附加题: (2) 将前20条记录作为训练数据,重新建立上面的逻辑回归模型,然后用后12条记录作为测试数据,再对该模型进行测试,并对结果作出解释。

```
[34]: from sklearn.model_selection import train_test_split
    train, test = train_test_split(df, test_size=12/32)
    ###Normalization

# Assuming same lines from your example
    cols_to_norm = "mpg", "hp"
    train[cols_to_norm] = train[cols_to_norm].apply(lambda x: (x - x.mean()) / (x.
    →std()))

test[cols_to_norm] = test[cols_to_norm].apply(lambda x: (x - x.mean()) / (x.
    →std()))
```

```
[31]: model=smf.logit('am~mpg+hp',data=train).fit()
model.summary()
```

Optimization terminated successfully.

Current function value: 0.210510 Iterations 10

[31]: <class 'statsmodels.iolib.summary.Summary'>

Logit Regression Results

Dep. Variable:		am	No. Ob	servations:		20		
Model: Logit			Df Res	Df Residuals: 17				
Method:		MLE	Df Mod	Df Model:				
Date:	Tue, 19	May 2020	Pseudo	Pseudo R-squ.:				
Time:		20:04:26	Log-Li	Log-Likelihood:				
converged: True		LL-Nul	LL-Null:					
Covariance Type: nonrobust			LLR p-	value:		7.102e-05		
C	coef std	err	z	P> z	[0.025	0.975]		
	 3711 1	.363	1.373	0.170	-0.800	4.542		
mpg 11.8	3868 6	.970	1.705	0.088	-1.774	25.547		
hp 5.6	3484 3	.435	1.644	0.100	-1.084	12.381		

Possibly complete quasi-separation: A fraction 0.30 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

```
[32]: trainingRes=pd.DataFrame(model.pred_table())
trainingRes.columns=["Predicted Outcome 0", "Predicted Outcome 1"]
```

```
trainingRes=trainingRes.rename(index={0:"Actual Outcome 0", 1:"Actually Outcome

→1"})

trainingRes

print("The accuracy for the train data is :",(trainingRes.iloc[1,1]+trainingRes.

→iloc[0,0])/20)
```

[32]: Predicted Outcome 0 Predicted Outcome 1
Actual Outcome 0 8.0 1.0
Actually Outcome 1 1.0 10.0

The accuracy for the train data is : 0.9

```
[33]: pred_values = model.predict(test)
bins=np.array([0,0.5,1])
cm = np.histogram2d(test['am'], pred_values, bins=bins)[0]
accuracy = (cm[0,0]+cm[1,1])/cm.sum()
print("The prediction accuracy for the test data is :", accuracy)

testRes=pd.DataFrame(cm)
testRes.columns=["Predicted Outcome 0", "Predicted Outcome 1"]
testRes=testRes.rename(index={0:"Actual Outcome 0", 1:"Actually Outcome 1"})
testRes
```

[33]: Predicted Outcome 0 Predicted Outcome 1
Actual Outcome 0 6.0 4.0
Actually Outcome 1 0.0 2.0

从拟合的模型来看,由于训练集较之前规模减小(32->20),因此模型精确度有所下降,三个p值均较大,可能存在一定的欠拟合情况。但从结果来看模型效果还不错,训练集的正确率为0.8,测试集的准确率有0.917。