

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

Clase 10 Cobertura en base a lógica

IIC3745 – Testing

Rodrigo Saffie

rasaffie@uc.cl

- 1. Anuncios curso
- 2. Cobertura en base a lógica

Anuncios curso

- Calendario tentativo de actividades
 - Actividad 2: 29 de septiembre
- Notas Actividad 1
- Entrega 1 proyecto semestral
 - Entrega 2: 14 de octubre
- Encuesta de coevaluación E1

- 1. Anuncios curso
- 2. Cobertura en base a lógica

Cláusulas y predicados

- Cláusula (clause): unidad atómica que se evalúa a un booleano
 - Puede ser de la forma:
 - Variable booleana
 - Expresión con operador relacional
 - >, <, =, ≥, ≤, ≠
 - Llamada a función booleana
- **Predicado** (*predicate*): combinación de cláusulas a través de operadores lógicos
 - negación: ¬
 - conjunción: ∧
 - disyunción: V
 - implicancia: →
 - exclusión: ⊕
 - equivalencia: ↔

Definiciones

- **P** es el conjunto de predicados
- p es un predicado tal que $p \in P$
- C es el conjunto de cláusulas en P
- C_p es el conjunto de cláusulas en el predicado p
- c, c_i, c_i son cláusulas contenidas en C

Cobertura de predicados y cláusulas

Cobertura de predicados (PC): Por cada $p \in P$, TR contiene dos requisitos: p se evalúa como verdadero y p se evalúa como falso.

Equivalente a la cobertura de aristas basada en grafos.

Cobertura de cláusulas (CC): Por cada $c \in C$, TR contiene dos requisitos: c se evalúa como verdadero y c se evalúa como falso.

Problemas con *PC* y *CC*

- PC no depende de todos los átomos, en especial cuando hay evaluación con corto circuito.
- PC no asegura CC ni viceversa

{2 , 3} satisface CC pero no PC	$a \lor b$ T	Т	Т	1
	T	F	T	2
{2 , 4} satisface PC pero no CC	T	F T	F	3
{2,4} Salislace PC pero no CC	F	F	F	4

CoC: Cobertura combinatorial (Combinatorial Coverage)

Por cada $p \in P$, TR contiene requisitos para las cláusulas en C_p de modo de evaluar cada combinación posible de valores de verdad

- Esto es simple, completo pero muy caro...
 - **2**ⁿ casos de prueba, con **n** número de cláusulas
 - Impracticable para predicados complejos

Posible mejora: probar cada cláusula activa

Cláusula activa

No todas las cláusulas impactan al valor del predicado

Determinación: Una cláusula c_i en un predicado p determina a p si y sólo si los valores de las demás cláusulas c_j son tales que al cambiar c_i se cambia el valor de p.

c_i es la cláusula mayorc_i son las cláusulas menores

Por cada $p \in P$ y cada cláusula mayor $c_i \in C_p$, escoja las cláusulas menores c_j con $i \neq j$ de modo que c_i determina p. TR contiene dos requisitos por cada c_i : c_i se evalúa como verdadero y c_i se evalúa como falso.

$$p = a \lor b$$

$$c_i = a \quad \mathbf{T} \quad \mathbf{f}$$

$$\mathbf{F} \quad \mathbf{f}$$

$$\mathbf{f} \quad \mathbf{T}$$

ACC: Ambigüedad

¿Es obligatorio que las cláusulas menores tengan los mismos valores cuando se evalúa el átomo mayor?

$$p = a \lor (b \land c)$$
 $c_i = a$
 t_1 : {a=true, b=false, c=true}
 t_2 : {a=false, b=false, c=false}

GACC: Cobertura de cláusula activa general (General active clause coverage)

Por cada $p \in P$ y cada cláusula mayor $c_i \in C_p$, escoja las cláusulas menores c_j con $i \neq j$ de modo que c_i determina p. TR contiene dos requisitos por cada c_i : c_i se evalúa como verdadero y c_i se evalúa como falso. Los valores escogidos para los átomos menores c_j no necesitan ser el mismo cuando c_i es verdadero y cuando c_i es falso.

GACC: Cobertura de cláusula activa general (General active clause coverage)

$$p = a \leftrightarrow b$$
 t_1 : { a =true, b =true} $\rightarrow p$ = true
 t_2 : { a =false, b =false} $\rightarrow p$ = true

- Se satisface GACC pero p nunca fue false
 GACC no implica PC
- No es un buen criterio para realizar pruebas

RACC: Cobertura de cláusula activa restrictiva (Restrictive active clause coverage)

Por cada $p \in P$ y cada cláusula mayor $c_i \in C_p$, escoja las cláusulas menores c_j con $i \neq j$ de modo que c_i determina p. TR contiene dos requisitos por cada c_i : c_i se evalúa como verdadero y c_i se evalúa como falso. Los valores escogidos para los átomos menores c_j deben ser el mismo cuando c_i es verdadero y cuando c_i es falso.

RACC: Cobertura de cláusula activa restrictiva (Restrictive active clause coverage)

$$p = a \land (b \lor c)$$

 $c_i = a$

	a	b	c	$a \wedge (b \vee c)$
1	T	T	T	T
5	F	T	T	F
2	T	T	F	T
6	F	T	F	F
3	T	F	Т	T
7	F	F	T	F

• 3 opciones para set de pruebas

CACC: Cobertura de cláusula activa correlacionada (Correlated active clause coverage)

Por cada $p \in P$ y cada cláusula mayor $c_i \in C_p$, escoja las cláusulas menores c_j con $i \neq j$ de modo que c_i determina p. TR contiene dos requisitos por cada c_i : c_i se evalúa como verdadero y c_i se evalúa como falso. Los valores escogidos para las cláusulas menores c_j deben causar que p sea verdadero para un valor de c_i y falso para el otro valor de c_i .

CACC: Cobertura de cláusula activa correlacionada (Correlated active clause coverage)

$$p = a \land (b \lor c)$$
 $c_i = a$

	a	b	c	$a \wedge (b \vee c)$
1	Т	Т	Т	T
2	T	T	F	T
3	T	F	Т	T
5	F	Т	T	F
6	F	T	F	F
7	F	F	T	F

• 9 opciones para *set* de pruebas

- Los criterios de cobertura de cláusula activa aseguran que las cláusulas mayores tienen efecto sobre los predicados.
- La cobertura de cláusulas inactivas usa el enfoque opuesto: las cláusulas mayores no afectan a los predicados.
- Sirve para demostrar que una determinada acción no puede iniciar una acción.
 - Por ejemplo, si un avión vuela en modo seguro no es posible apagar los motores.

Por cada $p \in P$ y cada cláusula mayor $c_i \in C_p$, escoja las cláusulas menores c_j con $i \neq j$ de modo que c_i no determina p. TR contiene cuatro requisitos por cada c_i :

- 1. **c**, se evalúa como verdadero con **p** verdadero
- 2. **c**, se evalúa como falso con **p** verdadero
- 3. c_i se evalúa como verdadero con p falso
- 4. c_i se evalúa como falso con p falso

Estos cuatro requisitos permiten demostrar que c_i no tiene incidencia alguna sobre p.

	a	b	c	$a \wedge (b \vee c)$
1	Т	Т	T	T
2	T	T	F	T
3	T	F	T	T
4	Т	F	F	F
5	F	T	T	F
6	F	T	F	F
7	F	F	T	F
8	F	F	F	F

- Al contrario de la cobertura de cláusulas activas, la noción de correlación no es relevante.
 - c_i no determina a p de modo que no se pueden correlacionar
- La cobertura de predicados está siempre garantizada.

GICC: Cobertura de cláusula inactiva general (General Inactive Clause Coverage)

Por cada $p \in P$ y cada cláusula mayor $c_i \in C_p$, escoja las cláusulas menores c_j con $i \neq j$ de modo que c_i no determina p. TR contiene cuatro requisitos por cada c_i :

- 1. **c**, se evalúa como verdadero con **p** verdadero
- 2. c_i se evalúa como falso con p verdadero
- 3. **c**, se evalúa como verdadero con **p** falso
- 4. c_i se evalúa como falso con p falso

Los valores de las cláusulas menores c_j no necesitan ser los mismos cuando c_i es verdadero y cuando c_i es falso.

RICC: Cobertura de cláusula inactiva restrictiva (Restrictive Inactive Clause Coverage)

Por cada $p \in P$ y cada cláusula mayor $c_i \in C_p$, escoja las cláusulas menores c_j con $i \neq j$ de modo que c_i no determina p. TR contiene cuatro requisitos por cada c_i :

- 1. **c**, se evalúa como verdadero con **p** verdadero
- 2. c_i se evalúa como falso con p verdadero
- 3. c_i se evalúa como verdadero con p falso
- 4. c_i se evalúa como falso con p falso

Los valores de las cláusulas menores c_j deben ser los mismos para (1) y (2) / (3) y (4).

Subsumición cobertura lógica

Infactibilidad

- En la práctica existen varias complicaciones para aplicar estos criterios.
- Generalmente aparecen combinaciones de valores imposibles dado que las cláusulas están relacionadas.

```
while (i < n && a[i] != 0) {do something to a[i]}
```

- Por esta razón se busca satisfacer únicamente los requisitos de pruebas factibles.
- Además, se priorizan criterios con la mayor cantidad de opciones posibles (CACC sobre RACC).

Infactibilidad

$$(a > b \land b > c) \lor c > a$$

- No es factible que:
 - a > b = true
 - b > c = true
 - c > a = true
- Los requisitos de pruebas que no son factibles deben ser identificados e ignorados.

Definición cláusulas activas

- En predicados simples es fácil encontrar valores para cláusulas menores.
- Para encontrar los valores de cláusulas menores que definen una cláusula mayor se debe resolver:

$$p_c = p_{c=true} \oplus p_{c=false}$$

- Luego de simplificar p_c describe exactamente los valores necesarios para que c determine a p.
- Asimismo, ¬p describe los valores necesarios para que c no determine a p.

Evaluación disyunción exclusiva

$$= (p \lor q) \land \neg (p \land q)$$

$$= (p \land \neg q) \lor (\neg p \land q)$$

Ejemplos

$$p = a \lor b$$

$$p = a \land b$$

$$p_{a} = p_{a=true} \oplus p_{a=false}$$

$$= (true \lor b) \oplus (false \lor b)$$

$$= true \oplus b$$

$$= -b$$

$$p = a \lor b$$

$$p_{a} = p_{a=true} \oplus p_{a=false}$$

$$= b \oplus false$$

$$= b$$

$$p = a \lor (b \land c)$$

$$= true \oplus (b \land c)$$

$$= -(b \land c)$$

$$= -b \lor -c$$

Variables repetidas

$$(a \wedge b) \vee (b \wedge c) \vee (a \wedge c)$$

- Si bien hay 6 cláusulas, solamente son 3 únicas
- Existen 8 pruebas posibles (no 64)

- Conviene probar predicados simples
 - Se evitan casos de pruebas redundantes

Variables repetidas

$$p = a \wedge b \vee a \wedge \neg b$$

$$p_a = p_{a=true} \oplus p_{a=false}$$

$$= true \land b \lor true \land \neg b \oplus false \land b \lor false \land \neg b$$

- = b ∨ ¬b ⊕ false
- = true ⊕ false
- = true

$$p_b = p_{b=true} \oplus p_{b=false}$$

$$= a \wedge true \vee a \wedge \neg true \oplus a \wedge false \vee a \wedge \neg false$$

$$= a \vee false \oplus false \vee a$$

$$= false$$

Variables repetidas

$$p = a \wedge b \vee a \wedge \neg b$$

- a siempre determina a p
- **b** nunca determina a **p**

$$p = a$$

 Error conceptual que se debe detectar al momento de diseñar pruebas

Aplicación en artefactos de software

Código fuente

Especificación de requisitos

Máquinas de estados

Forma Normal Disyuntiva (*DNF*)

Código fuente

```
if (a)
                                           if (b)
if (a && b)
                                              S1;
  S1;
                                           else
else
                                              S2;
  S2;
                                         else
                                           S2;
```

Código fuente

```
if ((a && b) || c)
S1;
else
S2;
```



```
if (a)
  if (b)
     S1;
  else
    if (c)
       S1;
     else
       S2;
else
  if (c)
     S1;
  else
     S2;
```


Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

Clase 10 Cobertura en base a lógica

IIC3745 – Testing

Rodrigo Saffie

rasaffie@uc.cl