# Dalla macchina alla rete: reti LLC Level (input) Level (output) Clocked

#### Dalla macchina alla rete

- Per realizzare una macchina sequenziale è necessario
  - Codificare gli insiemi I,S,O con variabili di commutazione
  - Realizzare le funzioni  $\delta$  ed  $\omega$  con reti combinatorie
- Ipotizzare il comportamento temporale delle variabili di ingresso/uscita
  - Ogni circuito digitale risponde ai nuovi valori di ingresso producendo la nuova uscita in modo stabile solo un tempo di ritardo d durante il quale sono esauriti tutti i transitori
  - Considereremo solo la realizzazione di reti di tipo LLC (Level Level Clocked)

#### Classificazione variabili di ingresso



X<sub>0</sub> a livello rispetto a X<sub>1</sub> X<sub>1</sub> a livello rispetto a X<sub>0</sub>

X<sub>0</sub> impulsiva rispetto a X<sub>2</sub> X<sub>2</sub> a livello rispetto a X<sub>0</sub>

X<sub>0</sub> a livello rispetto a X<sub>3</sub> X<sub>3</sub> impulsiva rispetto a X<sub>0</sub>

Si cerca di evitare il comportamento come quello presente tra  $X_1$  e  $X_2$  che commutano "contemporaneamente"

(possibilità di alee-corse, si studiano a Reti Logiche) Le alee si verificano spesso se i segnali vengono generati da fenomeni naturali (non controllabili dall'uomo), p.e. nei contatori Geiger, interferenze....

#### Dalla macchina alla rete LLC

- $x_1, x_2, ..., x_n$  variabili di ingresso a livelli
  - $-2^{n} \ge |I|$
- $z_1, x_2, ..., z_m$  variabili di uscita a livelli
  - $-2^{m} \ge |O|$
- $y_1, y_2, ..., y_k$  variabili di stato
  - $-2^{k} \ge |5|$
- Variabile impulsiva, ck, che ha lo scopo di far commutare lo stato
  - $ck=0 \Rightarrow (x_1, x_2, ..., x_n) = i_0$  (carattere "spazio",  $i_0 \notin I$ )
  - $ck=1 \Rightarrow (x_1, x_2, ..., x_n) = i \in I$

#### Reti LLC

- · La rete sequenziale lavora con le seguenti ipotesi:
  - Variabili d'ingresso di tipo a livello (ossia il valori in ingresso rimangono fissi per un periodo T sufficientemente lungo per far assumere all'uscita il nuovo valore di regime, ossia T>d)
  - Variabili di uscita a livello
  - Segnale di abilitazione "positive or negative edge trigger", o a livello (in quest'ultimo caso la variabile di commutazione deve essere pari ad 1 per un periodo di tempo sufficiente per far commutare i flip-flop, ma inferiore al minimo tempo di commutazione dei circuiti combinatori che calcolano lo stato successivo, altrimenti si potrebbero avere più commutazioni)

#### Dal modello strutturale al circuito



Moore

notare che l'uscita dipende solo dallo stato, in questo caso si può anche usare un'unica rete combinatoria purchè l'uscita dipenda solo dallo stato

 $\omega$ 

## Esempio contatore UP-DOWN modulo 4



ingresso Stato U

| , , |   |   |        |
|-----|---|---|--------|
|     | U | D | uscita |
| 0   | 1 | 3 | 0      |
| 1   | 2 | 0 | 1      |
| 2   | 3 | 1 | 2      |
| 3   | 0 | 2 | 3      |

uscita = stato

#### Codifica simboli

| I | X      |
|---|--------|
| D | 0<br>1 |

| S | <b>y</b> <sub>2</sub> <b>y</b> <sub>1</sub> |
|---|---------------------------------------------|
| 0 | 00                                          |
| 1 | 01                                          |
| 2 | 10                                          |
| 3 | 1 1                                         |





#### Rete LLC per macchine sequenziali

(nel caso di Moore l'uscita dipende solo dallo stato)



#### Sintesi funzioni $\delta$ e $\omega$

 In questo semplice esempio, l'uscita è uguale allo stato

**STατο**
- 
$$ω(y_2y_1)=y_2y_1$$
 cioè  $z_2=y_2$  e  $z_1=y_1$ 



## Realizzazione mediante rete combinatoria



#### Realizzazione mediante ROM



### Sintesi della macchina riconoscitrice della sequenza ANNA

prima tramite porte logiche e poi con ROM

usando sia una macchina di Mealy che una macchina di Moore

INFINE

fare esercizi di esame di Calcolatori Elettronici