	CSL 630 lecture 5, Aug 7
	Array based data structure that
•	supports (1) search
	E insurlin
	For any given n, we
	For any given n, we represent the n elements using set 7 aways A; where
<u>a</u>	set 7 aways Ai where
	$ A_i ^2 = 2^i$ such that $\leq A_i ^2 = n$
Fw	eg. n = 11 then we have
	A_3 A_1 , A_0
Ţ	A3 11A, 1A
T	he elements in Ai are sorted
(\(\mathcal{V}\)	A have no relation with Aj jti
=iben	n any n, we can determine A;'s m the linary rep of n, similar & Bonomes Leafs
· J·	Left
n =	12 A ₂

Search: foi a joven key x, we will do binary searches in each of the arrays Time: in Ai we take: O(i)

Haron. time: \(\sigma \) i \(\le \) O(logn)

i=1 Insertion: n -> n+1 Ai, Aiz. Air Aj, Ajz. Ajz M=15
A3 'Az A, Ao +X

N=16
A4

Time to merge
two sorted analys

S, Sz with

(1)

(1)

(2)

(4)

(4)

(4)

(5)

(4)

(5)

(6)

(7) O(8) merge $|S,1=n, |S_2|=n_2$ $= ()(\gamma_1 + \gamma_2)$ O(16) Meyese < c. (n, + n2) , 0(16)

In general, if we have done this over j stages, then cost will be $O(2J^{+1})$ "Worst case": n = 2d

Coul anays were replaced) Total cost in O(n) How often will this happen? How often will Ai be rebrilt? Once every 2ⁱ inscribens Cost of rebuildy $A_i : O(2^i)$ Twinserby n elements, # rebuilds: nTo tal cost of inserting on elements in all-the arrays: $\leq \frac{n}{2} \times O(2^i)$ ≤ O (n·logn) Average cost: O(logn)

	Stacks: 0 merhon, push 0(1)
	0 deletion pop O(1)
	3 Empty stack O (#elements) pops all elements
	pops all elements
(Consider a segrence of Jush, pops and Empty Stack operations: n Jellem
	hat is the total cost? $\Rightarrow O(n^2)$
	Consider a function
	$\phi: D \rightarrow Z$ potential
	Ø: D → Z potential data structure data structure
A	mortised cost of an operation 0, relevant to D = actual cost +
	change in potential
E	g: Suppose for - the stack, we define
•	$\phi(S) = (\# \text{ elements in } S)^2$ $\phi(S) = (\# \text{ elements in } S)^2$
Am	ostised cost of POP: 1 (actual cost) + 102-112 if Is Land 10 elements

Example: For The case of let us define stacks Ø(S): #7 elements in stack $\oint \left(\frac{\text{empty}}{\text{stack}} \right) = 0$ $\oint_{k} - \oint_{0} > 0$ $A \left(\text{push} \right) : 1 + 1 = 2$ A (pop) = 1 + (-1) = 0 A (enply stack) = K - (K) = 0The mann amortised cost of any opn = 2, so total amostised cost of n operations $\leq 2n$

h.w.: Try to come up with an appropriate potential function for the array based search data structure

	Problem: Given n strings over some finte alphabel &, we
	con byte alphabet 5
	3000 71mc 3 protoc 2, we
	want 6 avrange - Chem in
	want ti arrange - them in de xicographic order.
	Shing &, , sz, sn . herve lengths L, , Lz, ln
	2
	$\sum_{i=1}^{\infty} L_i = H$
_	pl cax: all li's are equal Run radix sort
	Pun radix sort
	Koero II