Φ_{yin} = In buildings with floors modelled as rigid diaphragms, horizontal component of n'th mode shape in the y direction at i'th storey of building

 $\Phi_{\theta in}$ = In buildings with floors modelled as rigid diaphragms, rotational component of n'th mode shape around the vertical axis at i'th storey of building

 ϕ_y = Yield curvature corresponding to nominal plastic moment

 ϕ'_{y} = Curvature corresponding to first-yield

 Γ_{xn} = Participation Factor of n'th mode for x direction earthquake

 γ_{ov} = Material overstrength factor

 $\gamma_{\rm pb}$ = Factor applied to design value $N_{\rm pl,Rd}$ of yield resistance in tension of the compression brace in a V bracing

 $\overline{\lambda}$ = Non-dimensional slenderness of a member as defined in EN 1993-1-1:2004

 μ_{0} = Curvature ductility factor

 $v_{\rm d}$ = Axial force in seismic design situation, normalised to $A_{\rm c} f_{\rm cd}$

 Ω = Value of $(R_{di}/E_{di}) \le q/I$ of the element *i* of the structure which has the highest influence on the effect E_F under consideration

 $\omega_{\rm w}$ = Mechanical ratio of vertical web reinforcement ($\omega_{\rm v} = \rho_{\rm v} f_{\rm yd,v} / f_{\rm cd}$)

 ω_{wd} = Mechanical volumetric ratio of confining reinforcement

 ρ = Tension reinforcement ratio

 ρ' = Compression reinforcement ratio

 ρ_{max} = Maximum tension reinforcement ratio allowed in the critical region of a primary beam

 ρ_{min} = Minimum tension reinforcement ratio to be provided along a beam

 θ_i = Second Order Effect Indicator defined at i'th storey of building

 $\theta_{\rm p}$ = Rotation capacity of the plastic hinge region

 $\sum M_{\rm Rb}$ = Sum of design values of moment resistances of beams framing in a joint in the direction considered

 $\sum M_{\rm Rc}$ = Sum of design values of moment resistances of columns framing in a joint in the direction considered

1.1.3. Reference Standards

1.1.3.1 – The following standards are acceptable reference standards to be utilized in combination with this standard:

EN 1990: Eurocode – Basis of structural design

EN 1992-1-1: Eurocode 2 – Design of concrete structures – Part 1-1: General - Common rules for building and civil engineering structures

EN 1993-1-1: Eurocode 3 – Design of steel structures – Part 1-1: General - General rules

EN 1993-1-1: Eurocode 4 – Design of composite steel and concrete structures – Part 1-1: General rules and rules for buildings

EN 1997-1: Eurocode 7 – Geotechnical design – Part 1: General rules

EN 1998-5: Eurocode 8 – Design of structures for earthquake resistance – Part 5: Foundations, retaining structures and geotechnical aspects

1.1.3.2 – Regarding the utilization of the above-referenced Eurocodes, National Application Documents of the United Kingdom may be applied.