Southern University of Science & Technology

Department of Electrical and Electronic Engineering

Communication Principles

Assignment No. 2

- 1. The message signal $m(t) = 3\cos(2\pi 70t) + 4\sin(2\pi 70t)$ is input to the system shown below to generate a DSBSC-AM signal x(t). Assume that $v_0(t) = a v_1(t) + b v_1^2(t)$ where a and b are constants, and the carrier frequency $f_c >> 70$ Hz.
 - (a) Sketch the amplitude spectrum of the filter input
 - (b) Determine the center frequency and bandwidth of the filter in this modulator
 - (c) Determine the minimum value of f_c permitted for this modulator

- 2. A suppressed-carrier AM signal $x_1(t)$ is generated by modulating $s_1(t) = rect\left(\frac{t}{4}\right) + 2rect\left(\frac{t-4}{4}\right)$ with $\sin(1000 \pi t)$. Sketch the time waveform of $x_1(t)$.
- 3. A DSBSC-AM signal is

$$x(t) = 3 \sin 180\pi t + 3 \sin 220\pi t$$

- (a) Sketch the amplitude spectrum of x(t) to deduce the carrier frequency in x(t)
- (b) Given that x(t) was generated using a sine carrier signal with phase 0, demodulate x(t).