Théorie des graphes

11
$$|A=6|$$
 $|M=6|$
 $|$

$$8 > \omega = > 8 > 3$$

 $8 > \frac{m}{\lambda} = > 8 > \frac{6}{3} = 2$
 $8 > \frac{m}{M-dmin} = > 8 > \frac{6}{4} = \frac{3}{2}$
 $8 > \frac{m2}{M^2 - 2m} = > 8 > \frac{36}{36 - 18} = 2$

$$\frac{1}{1} - 8 \le n + 1 - d = 3 \times 6 + 1 - 3 \times 24$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 \le 4 + 1 = 3 \times 5 + 1$$

$$\frac{1}{1} - 8 = 3 \times 5 + 1$$

3 Problème Eulénien. Four le graphe, il y a plus de 2 sommets de legré impeur => Graphe non Eulénien => Impossible.

=x12. rechorene du plus cour memure Algo. de Dijkstro.

E	A	2)	\sim	1 D	1 F	G	S	Sommets traite
5/	5 _E	3 _E	2€	00	∞	00	00	E
		3c	12€/	Y	40	Sc		EC
	Min (5e, 48)	34						E,C,B
	14/3			6 _A		Min (5c, 6A) 5c		EC,BA Court
	1			\ \	min(4c196	BEI		E,C,B,A,G
	,		<u></u>	Min (6 ₄ ,5 ₁) 5=	/4/2/		10 _F	E, C, B, A, G
				9P/			12g) 12g) 10g	11/12
-							10F	F, D, S.

l_10 Chemin ECFS.

Crapho One-16
Sti Non Symetrique Non Thurst 3730 245-1420 5 3430 0,0,0 3 4 1 200 - 5 h 4315

connexes (CFC). Methode de Malgnange: immet liste des Descendants/Liste des Ascendants 1,7,8,5,6,3,2,4 1,2-4,3,5-6,8-7 Sommet CFC= 11,2,3,4,5,6,78 => le graphe est F.C. Etude de la penodicité. desc D1 P=5 2,4 5,6 -7,8 Kepresentation en sous-classes