

Token-Specific Watermarking with Enhanced Detectability and Semantic Coherence for Large Language Models

Mingjia Huo* Sai Ashish Somayajula* Youwei Liang Ruisi Zhang Farinaz Koushanfar Pengtao Xie

Department of Electrical and Computer Engineering, University of California, San Diego

Motivation

Detect between human and machine generated texts

Academic dishonesty
Spam content
Misleading content
Training degeneration

Prior Method

Distribution shift-based methods – KGW

Generation

- Randomly split vocabulary into red-green list with splitting ratio γ
- Bias towards green list words by adding watermark logit $\delta > 0$

Detection

- Count number of green tokens, $|s|_G$, in test sample of length T
- Estimate the Z-score = $\frac{|s|_G T\gamma}{\sqrt{T\gamma(1-\gamma)}}$; Z-score > $\tau \Rightarrow$ watermarked

Z-score > τ (say 3)

Limitations

- Cannot simultaneously optimize semantics and detectability
- Lack adaptive mechanism to adjust γ and δ appropriately
 - Sun rises in the ___ -> 'east'
 - High δ and low γ might affect semantics

Proposed Method

Propose learning token-specific splitting ratio and watermark logit, i.e., γ_t and δ_t

Determine γ_t and δ_t based on the embeddings of previous token

Split the vocabulary (V) into red-green list

- For each token $v \in V$, sample $y_v^{(t)} \sim B(\gamma_t)$, Bernoulli distribution parameterized by γ_t
- If $y_v^{(t)} = 1$, then v belongs to green list else red list
- Gumbel softmax trick makes sampling process differentiable

Bias green list tokens

• Given logits $l_v^{(t)}$, modified logits for token v are: $\hat{\pmb{l}}_v^{(t)} = l_v^{(t)} + y_v^{(t)} * \delta_t$

Training objectives

- Detection loss
 - Modified Z-score = $\frac{|s|_G \sum_{t=1}^T \gamma_t}{\sqrt{\sum_{t=1}^T \gamma_t (1-\gamma_t)}}$ to account for varying γ_t
 - Improve detectability by maximizing this objective
 - $|s|_G$, count of green tokens, is non-differentiable w.r.t γ_t and δ_t
 - Propose differentiable surrogate $\hat{z} = \frac{\sum_{t=1}^{T} p_{gr}^{(t)} \sum_{t=1}^{T} \gamma_t}{\sqrt{\sum_{t=1}^{T} \gamma_t (1-\gamma_t)}}$, where $p_{gr}^{(t)}$ is the probability of selecting a green token.
 - Maximize \hat{z} or minimize detection loss, $L_D = -\hat{z}$
- Semantic loss
 - Generate sentence embeddings of texts before and after watermarking, i.e., s and s_w using the SimCSE model f_θ
 - Maximize the cosine similarity between them, $\cos_{sim}(f_{\theta}(s), f_{\theta}(s_w))$
 - Thus, minimize semantic loss, $L_S = -\cos_{sim}(f_{\theta}(s), f_{\theta}(s_w))$

Multi-objective optimization

- Optimizing for two competing loss functions L_D and L_S min $L_D(G_V, G_{\delta})$ and min $L_S(G_V, G_{\delta})$
 - G_{γ},G_{δ} G_{γ},G_{δ} G_{γ},G_{δ}
- Estimate pareto optimal solutions using multiple-gradient descent algorithm (MGDA)

Experimental Results

1. Trade-off curves for our method and other baselines applied to OPT-1.3B.

				Method	Generation (s)	Detection (s)
Method	TPR @ 0%	TPR @ 1%	SimCSE	No Watermark	3.220	<u> </u>
EXP-edit	0.922	0.996	0.655	KGW	3.827	0.067
EXP-edit (Top- k =50)	0.968	0.996	0.677	SWEET	4.030	0.127
`				EXP-edit	24.693	155.045
Ours (Top- k =50)	1.000	1.000	0.713	SIR	8.420	0.337
				MultiBit	6.500	0.610
2 Comparison of our method with				Ours	3.946	0.166

2. Comparison of our method with indistinguishable method - EXP-edit

4. Performance of our model (trained on OPT-1.3B) and KGW when applied to LLAMA2-13B and 70B. Please refer to the paper for LLAMA2 7B results

a. Dipper paraphrase attack

a. LLAMA2-13B

b. Copy-paste-3 attack

5. Comparison of our method with KGW under dipper paraphrase attack (left) and copy-paste-3 attack (right). Please refer to the paper for other attack results.

6. Distribution of δ (left y-axis) and γ (right y-axis) across different part-of-speech categories of the preceding token.