Homework Questions

- 1. A call option has a strike price of \$60 and expires in 10 months. The profit of the call option when the spot price at expiration is \$64 is \$2.12. What is the profit of the call option if the spot price at expiration is \$56? [-1.88]
- 2. For a 2-year put option priced with a 4 period binomial tree you are given that $P_{d^4} = 31.12$, $P_{ud^3} = 15.87$, $P_{u^2d^2} = 3.91$ and $P_{u^3d} = P_{u^4} = 0$. The risk free interest rate is r = 0.04 and p = 0.7143. What is the premium of the put option? [2.07]
- 3. Determine the price of a 1-year 22-strike European call option using Black Scholes for a stock with an initial stock price of 25 and a volatility of $\sigma = 0.10$. The risk free interest rate is r = 0.04. [3.91]
- 4. How would you delta hedge your position if you purchased the option in Problem 3? [Short sell 0.958 shares of stock]
- 5. Determine the price of a 3 month 40-strike European put option using Black Scholes for a stock with an initial stock price of 38 and a volatility of $\sigma = 0.15$. The risk free interest rate is r = 0.06.
- 6. How would you delta hedge your position if you purchased the option in Problem 5?
- 7. The volatility for a stock is unknown and r=0.04. The initial stock price is \$110. If a 108-strike 8 month call option has a premium of \$10.36 under a Black Scholes framework and it is known that $d_1=0.34$. What is the volatility of the stock? [22%]
- 8. The following is a stock price tree for a particular stock using h = 4/12

The probability of moving up is p = 0.4. The interest rate is r = 0.05. Using this stock price tree, determine the price of a 1 year European call option with a strike price of 147.

9. Suppose instead you wish to purchase an 8-month call option with strike price of 147. Using the tree in problem 8, what would the price be?

Review Questions

Below are the summaries for each accident, including the accident year, policy year, payments made, and case reserves by year.

Accident 1

Date of Accident: June 15, 2011Policy Written: January 10, 2011

Year	Payments Made (\$)	Case Reserves (\$)
2011	5,000	7,000
2012	4,500	3,000
2013	2,000	1,500

Accident 2

Date of Accident: March 22, 2012Policy Written: December 5, 2011

Year	Payments Made (\$)	Case Reserves (\$)	
2012	4,000	5,000	
2013	3,000	3,500	

Accident 3

• Date of Accident: November 8, 2012

• Policy Written: July 15, 2012

Year	Payments Made (\$)	Case Reserves (\$)	
2012 2013	1,500 $2,500$	2,000 2,000	

Accident 4

 $\bullet\,$ Date of Accident: July 4, 2013

• Policy Written: February 20, 2013

Year	Payments Made (\$)	Case Reserves (\$)
2013	4,000	2,000

Accident 5

• Date of Accident: December 15, 2013

• Policy Written: May 30, 2013

Year	Payments Made (\$)	Case Reserves (\$)
2013	3,500	4,500

10. Determine the following:

(a) Calendar year 2013 losses [18,500]

- (b) Accident year 2012 losses as of Dec 1, 2013 [16,500]
- (c) Policy year 2011 losses as of Dec 1, 2013 [23,500]
- 11. Construct a cumulative claims triangle for incurred losses based on only these claims.

Accident Year	Dev Year 0	Dev Year 1	Dev Year 2
2011	12,000	12,500	13,000
2012	$12,\!500$	$16,\!500$	-
2013	14,000	-	-

- 12. Find loss development factors for this claims triangle using simple averages. [1/0: 1.18; 2/1: 1.04]
- 13. Assume a tail factor of 1.01. Determine ultimate losses for the years 2012 and 2013 using the claims triangle method. [2012: 17160; 2013: 17192.93]
- 14. Based on this results, what is IBNR for accident year 2013? [3192.93]
- 15. Based on this results, what are total reserves for accident year 2013? [9692.93]
- 16. Now assume that we have a trend for losses of $\delta = 0.02$. Based on these losses, if we were to use a weighted average of 80% of 2013 ultimate losses and 20% of 2012 ultimate losses, what would losses be when trended to policy year 2015? [18140.39]
- 17. Suppose we have total fixed expenses of 100 and 4 exposure units. If the permissible loss ratio is 80%, what would the rate be for the 2015 policy using the loss cost method? [5700.12]