Select one:

10.00 P Flag question

- Marked out of

Determine one possible Jordan Canonical Forms J that similar to $A \in \mathcal{M}_4(\mathbb{R})$ whose minimal polynomial is $m_A(\lambda) = (\lambda+1)(\lambda+5)^3$.

Not yet answered

Marked out of

 $e^{3yt} = 2e^t + t^2 + C$

 $0 ext{ d. } e^{2y} = 2e^t + t^2 + C$

Clear my choice

 $0 \text{ e. } 4te^y = 2e^{-t} + t^4 + C$

 $0 \text{ c. } (y+t)(1+e^{y-t})=ce^y$

Solve the differential equation $\frac{dy}{dt} = e^{2t-y} + t^3 e^{-y}$.

Solve the differential equation $t rac{dy}{dt} + y = y^2 \ln t$

$$\bigcirc$$
 a. $\frac{1}{y} = Ct + \ln t + 1$

$$0$$
 b. $\frac{1}{u^2} = Cyt + \ln t + 1$

$$y^2$$
O c. $\frac{1}{y} = Cyt + \ln t + 1$

$$\bigcirc$$
 d. $y=Ct+\ln t+1$

Question 4 Not yet answered	There are 10000 people living in a certain city. Suppose that the rate of population growth in the city is proportional to the number of inhabitants. Suppose that 10% of the original amount increase in 20 years, how much will the population in the city after 60 years?
Marked out of 10.00 Flag question	Select one:

answered Marked out of 10.00

Not yet

P Flag question

 \bigcirc d. $p(\lambda) = -(\lambda - 5)^3$

 \bigcirc c. $p(\lambda) = -(\lambda - 5)^2(\lambda - 1)$

 \bigcirc b. $p(\lambda) = -(\lambda - 5)(\lambda + 1)^2$

 \bigcirc a. $p(\lambda) = -(\lambda - 1)^2(\lambda + 2)$

Select one:

polynomial of A.

Let $A \in \mathcal{M}_3(\mathbb{R})$ with $\operatorname{tr}(A) = 0$. Suppose that $\lambda = 1$ is an eigenvalue of A and E_1 spanned by (1,0,1) and (-1,2,3). Find $p(\lambda)$, the characteristic