import pandas as pd
from sklearn.preprocessing import LabelEncoder, StandardScaler

df = pd.read_csv('hcvdat0.csv')
df.head()

	Id	Category	Age	Sex	ALB	ALP	ALT	AST	BIL	CHE	CHOL	CREA	GGT	PROT
0	1	0	32	m	38.5	52.5	7.7	22.1	7.5	6.93	3.23	106.0	12.1	69.0
1	2	0	32	m	38.5	70.3	18.0	24.7	3.9	11.17	4.80	74.0	15.6	76.5
2	3	0	32	m	46.9	74.7	36.2	52.6	6.1	8.84	5.20	86.0	33.2	79.3
3	4	0	32	m	43.2	52.0	30.6	22.6	18.9	7.33	4.74	80.0	33.8	75.7
4	5	0	32	m	39.2	74.1	32.6	24.8	9.6	9.15	4.32	76.0	29.9	68.7

df.shape

(564, 14)

df.drop(['Id'], axis=1, inplace=True)

df.head()

	Category	Age	Sex	ALB	ALP	ALT	AST	BIL	CHE	CHOL	CREA	GGT	PROT
0	0	32	m	38.5	52.5	7.7	22.1	7.5	6.93	3.23	106.0	12.1	69.0
1	0	32	m	38.5	70.3	18.0	24.7	3.9	11.17	4.80	74.0	15.6	76.5
2	0	32	m	46.9	74.7	36.2	52.6	6.1	8.84	5.20	86.0	33.2	79.3
3	0	32	m	43.2	52.0	30.6	22.6	18.9	7.33	4.74	80.0	33.8	75.7
4	0	32	m	39.2	74.1	32.6	24.8	9.6	9.15	4.32	76.0	29.9	68.7

df['Sex'].value_counts()

m 344 f 220

Name: Sex, dtype: int64

le = LabelEncoder()

df['Sex'] = le.fit_transform(df['Sex'])

df['Sex'].value_counts()

- 1 344
- 0 220

Name: Sex, dtype: int64

```
df.isnull().any()
```

Catego	⁻y	False
Age		False
Sex		False
ALB		False
ALP		True
ALT		True
AST		False
BIL		False
CHE		False
CHOL		True
CREA		False
GGT		False
PROT		False
<pre>dtype:</pre>	bool	

df.dropna(inplace=True)

df.isnull().any()

Category	False
Age	False
Sex	False
ALB	False
ALP	False
ALT	False
AST	False
BIL	False
CHE	False
CHOL	False
CREA	False
GGT	False
PROT	False
الممط بمصريات	

dtype: bool

```
X = df.drop('Category', axis=1) #X=df.iloc[:, 1:].values
y = df.Category #y=df.iloc[:,0].values
```

print(X)

	Age	Sex	ALB	ALP	ALT	AST	BIL	CHE	CHOL	CREA	GGT	PROT
0	32	1	38.5	52.5	7.7	22.1	7.5	6.93	3.23	106.0	12.1	69.0
1	32	1	38.5	70.3	18.0	24.7	3.9	11.17	4.80	74.0	15.6	76.5
2	32	1	46.9	74.7	36.2	52.6	6.1	8.84	5.20	86.0	33.2	79.3
3	32	1	43.2	52.0	30.6	22.6	18.9	7.33	4.74	80.0	33.8	75.7
4	32	1	39.2	74.1	32.6	24.8	9.6	9.15	4.32	76.0	29.9	68.7
559	58	1	43.0	99.1	12.2	63.2	13.0	5.95	6.15	147.3	491.0	65.6
560	33	0	43.0	29.6	3.8	16.7	6.0	6.88	5.72	58.8	11.5	78.2
561	41	0	37.0	31.2	8.2	38.3	7.0	7.08	5.30	60.8	24.7	82.4
562	50	0	40.0	32.7	9.0	46.0	10.0	7.51	4.67	56.6	22.3	70.1
563	61	0	50.0	34.4	27.4	114.4	22.0	9.48	4.62	61.9	169.8	86.0

```
[553 rows x 12 columns]
sc = StandardScaler()
X = sc.fit_transform(X)
print(X)
     [[-1.53376900e+00 7.94524031e-01 -6.43325979e-01 ... 1.72915294e+00
       -5.15811167e-01 -5.72383248e-01]
      [-1.53376900e+00 7.94524031e-01 -6.43325979e-01 ... -3.00247071e-01
       -4.30720437e-01 8.83408450e-01]
      [-1.53376900e+00 7.94524031e-01 8.94538285e-01 ... 4.60777933e-01
       -2.83562494e-03 1.42690402e+00]
      [-6.17814078e-01 -1.25861517e+00 -9.17944598e-01 ... -1.13737458e+00
       -2.09484540e-01 2.02863125e+00]
      [ 2.98140842e-01 -1.25861517e+00 -3.68707360e-01 ... -1.40373333e+00
       -2.67832469e-01 -3.58867132e-01]
      [ 1.41764130e+00 -1.25861517e+00 1.46208343e+00 ... -1.06761395e+00
        3.31813400e+00 2.72741127e+00]]
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state =
print(X train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
     (442, 12)
     (111, 12)
     (442,)
     (111,)
from keras.models import Sequential
from keras.layers import Dense
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
model = Sequential()
model.add(Dense(12, activation='relu', input_dim=12)) # Hidden Layer 1
model.add(Dense(15, activation='relu')) # Hidden Layer 2
model.add(Dense(1, activation='sigmoid')) # Output Layer
model.summary()
     Model: "sequential 3"
```

Layer (type)	Output Shape	Param #
dense_9 (Dense)	(None, 12)	156
dense_10 (Dense)	(None, 15)	195
dense_11 (Dense)	(None, 1)	16

Total params: 367
Trainable params: 367
Non-trainable params: 0

model.compile(optimizer='adam', metrics=['accuracy'], loss='binary_crossentropy')

history = model.fit(X_train, y_train, validation_split=0.2, epochs=30)
np.save('history.npy', history.history)6y

```
Epoch 1/30
12/12 [============= ] - 1s 29ms/step - loss: 0.7493 - accuracy:
Epoch 2/30
Epoch 3/30
Epoch 4/30
Epoch 5/30
Epoch 6/30
Epoch 7/30
Epoch 8/30
Epoch 9/30
Epoch 10/30
Epoch 11/30
Epoch 12/30
Epoch 13/30
Epoch 14/30
Epoch 15/30
Epoch 16/30
Epoch 17/30
Epoch 18/30
Epoch 19/30
```

```
Epoch 20/30
Epoch 22/30
Epoch 23/30
Epoch 24/30
12/12 [============== ] - 0s 8ms/step - loss: 0.1171 - accuracy: 0
Epoch 25/30
Epoch 26/30
Epoch 27/30
12/12 [============= ] - 0s 8ms/step - loss: 0.1016 - accuracy: 0
Epoch 28/30
Enach 20/20
```

```
model.evaluate(X_test, y_test)
```

```
y_predict = model.predict(X_test)
classes = np.argmax(y_predict, axis=1)
print(classes)
```

```
[[1.64979100e-02]
[2.78153121e-02]
[1.36108994e-02]
[6.45458102e-02]
[2.65879333e-02]
[8.36057663e-02]
[5.18247426e-01]
[1.12000704e-02]
[7.71045804e-01]
[8.25917721e-03]
[6.00565076e-02]
[2.01325417e-02]
[1.18838549e-01]
[1.45123005e-02]
[2.00536847e-03]
[1.97711289e-02]
[1.05224431e-01]
[8.77333879e-02]
[3.77695858e-02]
[2.53579021e-03]
[5.15030026e-02]
 [2.95187831e-02]
[7.54981637e-02]
[6.19610548e-02]
[1.77247226e-02]
[5.44127524e-02]
[2.44077742e-02]
```

[5.73926568e-02]

- [5.38637340e-02]
- [7.23284483e-03]
- [2.15710998e-02]
- [3.94894183e-02]
- [6.85346231e-06]
- [3.43999863e-02]
- [1.65128708e-02]
- [6.02293015e-03]
- [4.20926511e-02]
- [3.61141860e-02]
- 50 001001
- [2.88188457e-04]
- [8.85488689e-02]
- [2.27972865e-02]
- [8.41523111e-02]
- [7.08445907e-03]
- [1.88476145e-02]
- [6.40061796e-02]
- [1.76147819e-02]
- [1.06801033e-01]
- [1.70432925e-02]
- [1.764323236-62
- [2.36445963e-02]
- [2.19001114e-01]
- [1.26354396e-02]
- [2.43576765e-02]
- [6.09049201e-02]
- [8.61006975e-03]
- [4.70441580e-02]
- [1.59436464e-02]
- [4.60806489e-03]
- [1 17(22020 02]