基礎数值解析

Fundamental Numeric Analysis

第4回講義資料

Lecture notes 4

数値積分の応用

Application of Numerical Integration

豊橋技術科学大学

Toyohashi University of Technology

電気•電子情報工学系

Department of Electrical and Electronic Information Engineering

准教授 ショウシュン

Associate Professor Xun Shao

アクティブラーニング4(Active Learning 4)

MSE(0.1)を数値的に計算せよ。

Compute MSE(0.1) numerically.

MSE(v) =
$$1 - \int_{-\infty}^{\infty} \tanh^2 \left(\frac{x}{\sqrt{v}} + \frac{1}{v} \right) \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$
.

被積分関数(Integrand)

```
double func(double x,double v)
{
  double t;

  t = tanh(x/sqrt(v) + 1.0/v);
  return t*t*exp(-x*x/2.0)/sqrt(2.0*M_PI);
}
```

議論(Discussion)

積分区間をどのように有限区間で近似すべきか?

How should we approximate the infinite interval in integration with a finite interval?

積分区間(Interval in Integration)

上界式(Upper bound)

$$\int_{-a}^{a} \tanh^{2} \left(\frac{x}{\sqrt{v}} + \frac{1}{v} \right) \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx \le \int_{-a}^{a} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx = 2 \int_{0}^{a} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$$

aの決め方(How to determine a)

以下を満たすような最小のa > 0を選ぶ。

Select the minimum of *a* such that the following holds:

$$2\int_a^\infty \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \ll$$
 シンプソン法による誤差 Errors caused by Simpson's rule

