Основы глубинного обучения

Лекция 2

Обратное распространение ошибки. Свёрточные сети.

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2024

Опрос

Что из этого — формула для шага в градиентном спуске?

- 1. $w^t = w^{t-1} + \eta \nabla Q(w^t)$
- 2. $w^t = w^{t-1} \eta \nabla Q(w^{t-1})$
- 3. $w^t = w^{t-1} \eta \nabla Q(w^t)$
- 4. $w^t = w^{t-1} + \eta \nabla Q(w^0)$

Градиентный спуск

• Повторять до сходимости:

Сходимость

• Останавливаем процесс, если

$$||w^t - w^{t-1}|| < \varepsilon$$

• Другой вариант:

$$\|\nabla Q(w^t)\| < \varepsilon$$

• Обычно в глубинном обучении: останавливаемся, когда ошибка на тестовой выборке перестаёт убывать

• Все слои обычно дифференцируемы, поэтому можно посчитать производные по всем параметрам

$$\begin{bmatrix} x \end{bmatrix} \longrightarrow \begin{bmatrix} FC_1 \end{bmatrix} \longrightarrow \begin{bmatrix} f \end{bmatrix} \longrightarrow \begin{bmatrix} FC_2 \end{bmatrix} \longrightarrow \begin{bmatrix} a(x) \end{bmatrix} \longrightarrow \underbrace{L(y, a(x))}$$

$$\bullet \ a(x) = FC_2 \left(f(FC_1(x)) \right)$$

• Где здесь параметры?

• Все слои обычно дифференцируемы, поэтому можно посчитать производные по всем параметрам

• Где здесь параметры?

• Все слои обычно дифференцируемы, поэтому можно посчитать производные по всем параметрам

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a(x_i)) \to \min_{a}$$

• Для градиентного спуска нужны производные ошибки по параметрам:

$$\frac{\partial}{\partial w_j} L(y_i, a(x_i, w))$$

• Для градиентного спуска нужны производные ошибки по параметрам:

$$\frac{\partial}{\partial w_i}(a(x_i, w) - y_i)^2$$

• Для градиентного спуска нужны производные ошибки по параметрам:

$$\frac{\partial}{\partial w_j}(a(x_i, w) - y_i)^2 = 2(a(x_i, w) - y_i)\frac{\partial}{\partial w_j}a(x_i, w)$$

как сильно изменится ошибка, если пошевелить w_i ?

как сильно изменится ошибка, если пошевелить $a(x_i, w)$, если $a(x_i, w)$?

как сильно изменится пошевелить w_i ?

$$\frac{\partial}{\partial w_j}(a(x_i, w) - y_i)^2 = 2(a(x_i, w) - y_i)\frac{\partial}{\partial w_j}a(x_i, w)$$

как сильно изменится ошибка, если пошевелить w_i ?

как сильно изменится ошибка, если пошевелить

как сильно изменится $a(x_i, w)$, если $a(x_i, w)$? пошевелить w_i ?

•
$$a(x_i, w) = 10, y_i = 9.99$$
:

$$2 * 0.01 * \frac{\partial}{\partial w_j} a(x_i, w)$$

•
$$a(x_i, w) = 10, y_i = 1$$
:

$$2*9*\frac{\partial}{\partial w_j}a(x_i,w)$$

• Для градиентного спуска нужны производные ошибки по параметрам:

$$\frac{\partial}{\partial w_j} L(y_i, a(x_i, w)) = \frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a(x_i, w)} \frac{\partial}{\partial w_j} a(x_i, w)$$

как сильно изменится ошибка, если пошевелить w_i ?

как сильно изменится ошибка, если пошевелить $a(x_i, w)$?

как сильно изменится $a(x_i, w)$, если пошевелить w_i ?

• Следующая задача — научиться вычислять $\frac{\partial}{\partial w_j} a(x_i, w)$

$$a(x) = p_{11}h_1(x) + p_{21}h_2(x)$$

$$\frac{\partial a}{\partial p_{11}} = ?$$

$$a(x) = p_{11}h_1(x) + p_{21}h_2(x)$$

$$\frac{\partial a}{\partial p_{11}} = h_1(x)$$

• Чем больше $h_1(x)$, тем сильнее p_{11} влияет на a

$$a(x) = p_{11}f(v_{11}z_1(x) + v_{21}z_2(x)) + p_{21}h_2(x)$$

$$\frac{\partial a}{\partial v_{11}} = 2$$

$$a(x) = p_{11}f(v_{11}z_1(x) + v_{21}z_2(x)) + p_{21}h_2(x)$$

$$\frac{\partial a}{\partial v_{11}} = \frac{\partial a}{\partial h_1} \frac{\partial h_1}{\partial v_{11}}$$

$$\frac{\partial a}{\partial w_{11}} = ?$$

• Показывает, как сильно изменится a при изменении w_{11}

- Как сильно изменится a при изменении w_{11} ?
- Влияет ли на это v_{11} ?

- Как сильно изменится a при изменении w_{11} ?
- Влияет ли на это v_{12} ?

- Как сильно изменится a при изменении w_{11} ?
- Влияет ли на это p_{11} ?

- Как сильно изменится a при изменении w_{11} ?
- Влияет ли на это w_{22} ?

- Как сильно изменится a при изменении w_{11} ?
- Влияет ли на это v_{22} ?

$$\frac{\partial a}{\partial w_{11}} = \frac{\partial a}{\partial h_1} \frac{\partial h_1}{\partial z_1} \frac{\partial z_1}{\partial w_{11}} + \frac{\partial a}{\partial h_2} \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial w_{11}}$$

- Мы как бы идём в обратную сторону по графу и считаем производные
- Метод обратного распространения ошибки (backpropagation)

3:
$$\frac{\partial p}{\partial h_1}$$
 $\frac{\partial p}{\partial h_2}$

2:
$$\frac{\partial p}{\partial z_1} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_1} \qquad \qquad \frac{\partial p}{\partial z_2} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2}$$

$$\frac{\partial p}{\partial x_1} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} \frac{\partial z_2}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

1:
$$\frac{\partial p}{\partial x_2} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_1} \frac{\partial z_1}{\partial x_2} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_2} + \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} \frac{\partial z_2}{\partial x_2} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_2}$$

Backprop

- Во многие формулы входят одни и те же производные
- В backprop каждая частная производная вычисляется один раз вычисление производных по слою N сводится к перемножению матрицы производных по слою N+1 и некоторых векторов

Полносвязные сети для изображений

3 3 3 3 3 3 3 3 3 3 3 3 3 9

- Изображения 28 х 28
- Изображения центрированы
- 60.000 объектов в обучающей выборке

• Что может выучить полносвязная сеть?

https://mmlind.github.io/Simple 3-Layer Neural Network for MNIST Handwriting Recognition/

• Каждый нейрон может детектировать заполненность конкретного набора пикселей

• Если немного сдвинуть цифру, то нейрон уже не будет на неё реагировать

Число параметров

- 784 входа
- Полносвязный слой: 1000 нейронов
- Выходной слой: 10 нейронов (по одному на каждый класс)
- Весов между входным и полносвязным слоями:

$$(784 + 1)*1000 = 785.000$$

• Весов между полносвязным и выходным слоями:

$$(1000 + 1) * 10 = 10.010$$

Число параметров

- Можно добиться хорошего качества полносвязными сетями (с аугментацией)
- https://arxiv.org/abs/1003.0358

Table 1: Error rates on MNIST test set.

ID	architecture	test error for	best test	simulation	weights
	(number of neurons in each layer)	best validation [%]	error [%]	time [h]	[milions]
1	1000, 500, 10	0.49	0.44	23.4	1.34
2	1500, 1000, 500, 10	0.46	0.40	44.2	3.26
3	2000, 1500, 1000, 500, 10	0.41	0.39	66.7	6.69
4	2500, 2000, 1500, 1000, 500, 10	0.35	0.32	114.5	12.11
5	9 × 1000, 10	0.44	0.43	107.7	8.86

Полносвязные слои для изображений

- Очень много параметров
- Легко могут переобучиться
- Не учитывают специфику изображений (сдвиги, небольшие изменения формы и т.д.)
- Один из лучших способов борьбы с переобучением снижение числа параметров

Свёртки

Эксперименты со зрительной корой

1	1	*	1	0		
0	1	*	0	1	=	2

1	1	*	1	0	_	2
1	1	*	0	1	=	2

1	2	ماه	1	0		
3	0	*	0	1	=	1

3	0	4	1	0	_ [
0	3	*	0	1	=	6

5	0	_	1	0		4.0
0	5	*	0	1	=	10

- Операция свёртки выявляет наличие на изображении паттерна, который задаётся фильтром
- Чем сильнее на участке изображения представлен паттерн, тем больше будет значение свёртки

Максимум свёртки инвариантен к сдвигам

Свёртки в компьютерном зрении

Свёртки в компьютерном зрении

Свёртки в компьютерном зрении

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$Im^{out}(x,y) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} (K(i,j) Im^{in}(x+i,y+j) + b)$$

$$Im^{out}(x,y) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} (K(i,j) Im^{in}(x+i,y+j) + b)$$

- Пиксель в результирующем изображении зависит только от небольшого участка исходного изображения (local connectivity)
- Веса одни и те же для всех пикселей результирующего изображения (shared weights)

- Обычно исходное изображение цветное!
- Это означает, что в нём несколько каналов (R, G, B)
- Учтём в формуле:

$$\operatorname{Im}^{out}(x,y) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} \sum_{c=1}^{C} \left(K(i,j,c) \operatorname{Im}^{in}(x+i,y+j,c) + b \right)$$

- Одна свёртка выделяет конкретный паттерн на изображении
- Нам интересно искать много паттернов
- Сделаем результат трёхмерным:

$$\operatorname{Im}^{out}(x, y, t) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} \sum_{c=1}^{C} \left(K_t(i, j, c) \operatorname{Im}^{in}(x+i, y+j, c) + b_t \right)$$

Число параметров

$$\operatorname{Im}^{out}(x, y, t) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} \sum_{c=1}^{C} \left(K_{t}(i, j, c) \operatorname{Im}^{in}(x + i, y + j, c) + b_{t} \right)$$

- Обучается только фильтр
- $((2d+1)^2 * C + 1) * T$ параметров