Zestaw 4

Zadanie 1. Niech τ , τ_1 i τ_2 będą momentami stopu. Udowodnij

- \mathcal{F}_{τ} jest σ ciałem,
- jeśli $\tau \equiv t$, to $\mathcal{F}_{\tau} = \mathcal{F}_{t}$, $A \in \mathcal{F}_{\tau}$ wtedy i tylko wtedy, $gdy \ A \in \mathcal{F}$ i $\{\tau = t\} \cap A \in \mathcal{F}_{t}$ dla dowolnego
- $je\acute{s}li \ \tau_1 \leq \tau_2, \ to \ \mathcal{F}_{\tau_1} \subset \mathcal{F}_{\tau_2}.$

Zadanie 2. Niech $T = [0, \infty)$ oraz niech τ będzie momentem stopu. Czy momentem stopu jest

- $-\tau^2$,
- $-\tau-1$,
- $-\tau + 1$.
- $-\tau + c, \ c > 0,$
- $-\tau c, \ c > 0.$

Zadanie 3. Niech T, S będą momentami stopu. Czy momentem stopu jest zmienna losowa T + S lub T - S?

Zadanie 4. Niech będzie dana przestrzeń probabilistyczna $(\Omega, \mathcal{F}, \mathbb{P})$ z filtracją zupełną $\{\mathcal{F}_n\}$. Niech τ, σ będą dwoma momentami Markowa o skończonych wartościach takimi, że istnieje $t_0 \geq 0$, takie, że $\mathbb{P}(\tau \geq t_0) = \mathbb{P}(\sigma \geq t_0) = 1$. Niech $A \in \mathcal{F}_{t_0}$. Sprawdź, czy momentem stopu jest zmienna losowa

$$U = \tau \cdot \mathbf{1}_A + \sigma \cdot \mathbf{1}_{A'}$$

względem podanej filtracji.

Zadanie 5. Niech τ , σ będą momentami stopu. Udowodnij, że $\tau \wedge \sigma$ i $\tau \vee \sigma$ są $momentami\ stopu.$

Zadanie 6. Niech S, T będą momentami stopu. Udowodnij, że zachodzi $\mathcal{F}_{\min\{T,S\}} =$ $\mathcal{F}_T \cap \mathcal{F}_S$.

Zadanie 7. Niech (X_i) bedzie ciągiem niezależnych zmiennych losowych o tym samym rozkładzie U[0,1]. Niech $\tau = \inf\{n: X_1 + X_2 + \cdots + X_n \geq 1\}$. Wyznacz

Zadanie 8. Niech (X_n) będzie ciągiem Bernoulliego, zaś $\tau = \inf\{n \colon S_n = 1\}$. $Wyka\dot{z}, \dot{z}e \mathbb{E}\tau = \infty.$

Zadanie 9. Niech X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi o tym samym rozkładzie ze skończonym drugim momentem i nich au będzie całkowalnym momentem stopu. Udowodnij zmodyfikowaną tożsamość Wald'a postaci $\mathbb{E}(S_n - \tau \mathbb{E}X_1)^2 = \mathbb{E}\tau Var X_1.$

Zadanie 10. Niech τ będzie zmienną losową, a (X_n, \mathcal{F}_n) martyngałem. Kiedy $(X_{n\wedge\tau},\mathcal{F}_n)$ jest martyngałem?

Zadanie 11. Niech $0 < T_1 < T_2 < \cdots < T_n < \dots$ będzie rosnącym do nieskończoności ciągiem momentów stopu o skończonych wartościach. Niech $N_t =$ $\sum_{i=1}^{\infty} \mathbf{1}_{\{i \geq T_i\}}$. Niech ponadto $\{U_i\}_{i \in \mathbb{N}}$ bedzie ciągiem niezależnych zmiennych losowych takim, że jest on niezależny od procesu N. Załóżmy, że $\sup_i \mathbb{E}|U_i| < \infty$ oraz $\mathbb{E}U_i = 0$ dla dowolnego i. Udowodnij, że wtedy proces

$$Z_t = \sum_{i=1}^{\infty} U_i \mathbf{1}_{\{t \ge T_i\}}$$

jest martyngałem.

Zadanie 12. Niech X będzie symetrycznym błądzeniem losowym z czasem dyskretnym postaci $X_n = \sum_{i=1}^n Y_i$ i niech filtracja $\{\mathcal{F}_n\}$ będzie genereowana przez zmienne Y_i . Weźmy dowolne $K \in \mathbb{N}$ i określmy $T = \inf\{n \colon |X_n| = K\}$. Udowdnij:

- T jest momentem stopu,
- proces $Z_n = (-1)^n \cos(\pi \cdot (X_n + K))$ jest martyngalem,
- proces Z spełnia założenia twierdzenia o opcjonalnym stopowaniu,
- $-znajdz \mathbb{E}(-1)^T$.

Zadanie 13. Niech X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi o tym samym rozkładzie i niech ϕ oznacza funkcję generującą momenty dla X_i . Niech ponadto T będzie ograniczonym momentem stopu. Oznaczmy przez $S_T = \sum_{i=1}^T X_i$. Udowodnij, że

 $\mathbb{E}\left(\frac{\exp\left(\theta S_{T}\right)}{\phi(\theta)^{T}}\right) = 1.$

Zadanie 14. Niech proces X będzie martyngałem i niech τ będzie momentem stopu.

- Niech σ będzie momentem stopu takim, że $\sigma \leq \tau$ i niech τ , σ będą ograniczone. Udowodnij, że $\mathbb{E}(X_{\tau}|\mathcal{F}_{\sigma}) = X_{\sigma}$ prawie na pewno.
- Przypuśćmy, że istnieje całkowalna zmienna losowa Y taka, że dla dowolnego t, $|X_t| \leq Y$ i niech τ będzie momentem stopu skończonym prawie wszędzie. Udowodnij, że $\mathbb{E}X_{\tau} = \mathbb{E}X_0$.
- Niech X będzie procesem takim, że istnieje stała M taka, że $|X_{n-1}-X_n| \leq M$ dla dowolnego n i niech τ będzie momentem stopu takim, że $\mathbb{E}\tau < \infty$. Udowodnij, że wtedy $\mathbb{E}X_{\tau} = \mathbb{E}X_0$.

Zadanie 15. Niech $(X_k)_{k=1}^n$ będzie podmartyngałem oraz niech $\lambda > 0$. Udowodnij, że zachodzi wtedy

$$\lambda \mathbb{P}(\min_{k \le n} X_k \le -r) \le \mathbb{E}(X_n \mathbf{1}_{\{\min_{k \le n} X_k \ge -r\}}) - \mathbb{E}X_0 \le \mathbb{E}X_n^+ - \mathbb{E}X_0 \le \mathbb{E}|X_n| - \mathbb{E}X_0.$$

Zadanie 16 (Nierówność Doob'a w L^p). Niech $(X_k)_{k=1}^n$ będzie odpowiednio całkowalnym podmartyngałem i niech p > 1. Udowodnij, że zachodzi wtedy

$$\mathbb{E} \sup_{k \le n} |X_k|^p \le \left(\frac{p}{p-1}\right)^p \mathbb{E} |X_n|^p.$$