TD n°3 - Réductions et Theorème de Rice

1 Exercice 1 : Réductions

Soit $A = \{x, \ \forall y \ [x|y] \downarrow \}.$

- 1. En utilisant avec soin le théorème de Rice, montrez que A n'est pas récursif.
- 2. Montrez que $\mathbb{K} \prec A$.
- 3. Montrez que $\mathbb{K} \prec \bar{A}$ (où \bar{A} est le complémentaire de A).
- 4. Montrez que ni A ni A ne sont énumérables.

1.1 Question n°1 : A non récursif par le théorème de Rice

- > On a A l'ensemble des (codes de) programmes qui convergent pour chaque entrée y.
- > On utilise donc le théorème de Rice, tel que $\mathcal{C} = \forall y \ [x|y] \downarrow$ soit une propriété de la fonction $c: z \mapsto [x|z]$, tel que $dom(c) = \mathbb{N}$.
- > D'après le théorème de Rice, on cherche à montrer que A est non trivial. Alors, on doit trouver un programme qui est dans A $(A \neq \emptyset)$ et un programme qui n'est pas dans A $(A \neq \mathbb{N})$:
 - 1. Soit Id un programme tel que : $Id: x \mapsto x$ et $Id \in A$.
 - 2. Soit bot un programme tel que : $bot : x \mapsto \bot$ et $bot \notin A$
- > On doit maintenant prouver que ces deux programmes respectent la propriété $\mathcal C$ ou non :
 - 1. Id converge sur toutes entrées alors $dom(Id) = \mathbb{N}$, on en déduit que $Id \in A$ donc $A \neq \emptyset$.
 - 2. bot diverge sur toutes entrées alors $dom(bot) = \emptyset$ soit $dom(bot) \neq \mathbb{N}$, on en déduit que $bot \notin A$ donc $A \neq \mathbb{N}$.
- > On vient de prouver que A n'est pas trivial alors par le theorème de Rice, A n'est pas récursif.

1.2 Question $n^2 : \mathbb{K} \prec A$

- > On doit trouver une fonction de réduction calculable totale telle que $x \in \mathbb{K} \Rightarrow f(x) \in A$.
- > Soit le programme suivant :

$$a < x, z >: si [x|x] \downarrow alors return z$$

(z doit être indépendant de l'ensemble $\mathbb K$ car $dom(c)=\mathbb N$ avec c vu à la question 1)

La fonction de réduction est donc :

$$f: x \mapsto S^1_1 < a, x >: z \mapsto si \ [x|x] \downarrow alors \ return \ z$$

- > f est calculable totale car on associe à f le code d'un programme pour toute entrée. Cependant, cela ne veut pas dire que ce dernier est totale.
- > F est bien la fonction de réduction car :

1.
$$x \in \mathbb{K} \Rightarrow [x|x] \downarrow \Rightarrow [f|x] = z \Rightarrow f(x) \in A$$

2.
$$x \notin \mathbb{K} \Rightarrow [x|x] \uparrow \Rightarrow [f|x] = \bot \Rightarrow f(x) \notin A$$

> On vient donc de montrer que $\mathbb{K} \prec A$

1.3 Question n°3 : $\mathbb{K} \prec \bar{A}$

- > On doit trouver une fonction de réduction calculable totale tel que $x \in \mathbb{K} \Rightarrow f(x) \in \bar{A}$ (avec $\bar{A} = x, x$ programme qui converge des fois.
- > Soit le programme suivant :

$$b < x, z >: si \ step < x, x, z >= 0 \ alors \ return \ z$$

(step = 0, on teste si le programme diverge)

La fonction de réduction est donc :

$$f: x \mapsto S_1^1 < b, x >: z \mapsto si \ step < x, x, z >= 0 \ alors \ return \ 0 \ sinon \ \bot$$

- > f est calculable totale car on associe à f le code d'un programme pour toute entrée. Cependant, cela ne veut pas dire que ce dernier est total.
- > F est bien la fonction de réduction car :

1.
$$x \in \mathbb{K} \Rightarrow [x|x] \downarrow \Rightarrow [f|x] = \bot \Rightarrow f(x) \notin A \Rightarrow f(x) \in \bar{A}$$

2.
$$x \notin \mathbb{K} \Rightarrow [x|x] \uparrow \Rightarrow [f|x] = 0 \Rightarrow f(x) \in A \Rightarrow f(x) \notin \bar{A}$$

> On vient donc de montrer que $\mathbb{K} \prec \bar{A}$.

1.4 Question $n^{\circ}4$: A et \bar{A} ne sont pas énumérables.

- > On sait que $K \prec A$, donc $\bar{K} \prec \bar{A}$ et on sait que $K \prec \bar{A}$, donc $\bar{K} \prec A$.
- > On sait également que K est énumérable alors \bar{K} n'est pas énumérable.
- > Alors, \bar{A} n'est pas énumérable et A n'est pas non plus énumérable.

2 Exercice 2: classique

Soit $B = \{x, \lceil x \mid 0 \rceil \downarrow et \lceil x \mid 1 \rceil \uparrow \}.$

- 1. En utilisant avec soin le théorème de Rice, montrez que B n'est pas récursif.
- 2. B et son complémentaire \bar{B} sont-ils énumérables?

2.1 Question n°1 : B non récursif par théorème de Rice

- > On a B l'ensemble des (codes de) programmes qui convergent pour l'entrée 0 et diverge pour l'entrée 1.
- > On utilise donc le théorème de Rice, tel que $\mathcal{C} = \{[x|0] \downarrow \&\& [x|1] \uparrow\}$ soit une propriété de la fonction $c: z \mapsto [x|z]$, tel que $0 \in dom(c)$ et $1 \notin dom(c)$.
- > D'après le théorème de Rice, on cherche à montrer que B est non trivial. Alors, on doit trouver un programme qui est dans B (B $\neq \emptyset$) et un programme qui n'est pas dans B (B $\neq \mathbb{N}$) :
 - 1. Soit zero un programme tel que : zero : $x \mapsto if \ x = 0 \ return \ 0$ et zero $\in B$.
 - 2. Soit un un programme tel que : $un : x \mapsto return \ 1$ et $un \notin B$
- > On doit maintenant prouver que ces deux programmes respectent la propriété $\mathcal C$ ou non :
 - 1. zero converge sur l'entrée 0 et diverge sur toutes les autres entrées dont 1, alors $0 \in dom(zero)$ et $1 \notin dom(zero)$, on en déduit que $zero \in B$ donc $B \neq \emptyset$.
 - 2. un converge sur toutes entrées dont l'entrée 1, alors $dom(un) = \mathbb{N}$ soit $0 \notin dom(un)$, on en déduit que $un \notin B$ donc $B \neq \mathbb{N}$.
- > On vient de prouver que B n'est pas trivial alors par le théorème de Rice, B n'est pas récursif.

2.2 Question n^2 : B et \bar{B} non énumérables

- > On doit procéder comme l'exercice précédent : 1. Prouver $\mathbb{K} \prec B$, et $\mathbb{K} \prec \bar{B}$.
- $> \mathbb{K} \prec B$:
 - On doit trouver une fonction de réduction calculable totale tel que $x \in \mathbb{K} \Rightarrow f(x) \in B$.
 - Soit le programme suivant :

$$b < x, z >: si [x|x] \downarrow \&\& z = 0 alors return z$$

(z doit être indépendant de l'ensemble \mathbb{K} car $dom(c) = \mathbb{N}$ avec c vu à la question 1)

La focntion de réduction est donc :

$$f: x \mapsto S_1^1 < b, x >: z \mapsto si \ [x|x] \downarrow \&\& z = 0 \ alors \ return \ z$$

- f est calculable totale car on associe à f le code d'un programme pour toute entrée. Cependant, cela ne veut pas dire que ce dernier est totale.
- F est bien la fonction de réduction car :

1.
$$x \in \mathbb{K} \Rightarrow [x|x] \downarrow \Rightarrow [f|x] = z = 0 \Rightarrow f(x) \in B$$

2.
$$x \notin \mathbb{K} \Rightarrow [x|x] \uparrow \Rightarrow [f|x] = \bot \Rightarrow f(x) \notin B$$

- On vient donc de montrer que $\mathbb{K} \prec B$
- > On fait de même avec $\mathbb{K} \prec \bar{B}$:
 - On doit trouver une fonction de réduction calculable totale tel que $x \in \mathbb{K} \Rightarrow f(x) \in \bar{B}$ (avec \bar{B} , le programme qui converge sur 1 mais qui diverge sur 0.
 - Soit le programme suivant :

$$b < x, y, z >: si \ step < x, x, y >= 0 \&\& z = 0 \ alors \ return \ z \ sinon \bot$$

(on a 3 variables car y est le temps et z une variable independante)

La foontion de réduction est donc :

$$f: x \mapsto S_1^2 < b, x >: y, z \mapsto si \ step < x, x, y >= 0 \ \&\& \ z = 0 \ alors \ return \ z \ sinon \bot$$

- f est calculable totale car on associe à f le code d'un programme pour toute entrée. Cependant, cela ne veut pas dire que ce dernier est totale.
- f est bien la fonction de réduction car :

1.
$$x \in \mathbb{K} \Rightarrow [x|x] \downarrow \Rightarrow [f|x] = \bot \Rightarrow f(x) \in \bar{B} \Rightarrow f(x) \notin B$$

2.
$$x \notin \mathbb{K} \Rightarrow ([x|x] \uparrow \Rightarrow [f|x] = z = 0 \Rightarrow f(x) \notin \bar{B} \Rightarrow f(x) \in B$$

- On vient donc de montrer que $\mathbb{K} \prec \bar{B}$
- > Maintenant, prouvons que B et \bar{B} ne sont pas énumérable :
 - On sait que $K \prec B$, donc $\bar{K} \prec \bar{B}$ et on sait que $K \prec \bar{B}$, donc $\bar{K} \prec B$.
 - On sait également que K est énumérable alors \bar{K} n'est pas énumérable.
 - Alors, \bar{B} n'est pas énumérable et B n'est pas non plus énumérable.