Lecture 15

niceguy

March 9, 2023

1 Normal Operators

We take V as a finite dimensional complex inner product space in today's lecture.

Proposition 1.1. $T \in \mathcal{L}(V)$ is normal iff $||Tv|| = ||T^*v|| \forall v \in V$

Proof. We assume Lemma 1.1. Then

$$T \text{ normal} \Leftrightarrow TT^* = T^*T$$

$$\Leftrightarrow TT^* - T^*T = 0$$

$$\Leftrightarrow \langle v, (TT^* - T^*T)v \rangle = 0 \forall v \in V$$

$$\Leftrightarrow \langle T^*v, T^*v \rangle - \langle Tv, Tv \rangle = 0 \forall v \in V$$

$$\Leftrightarrow ||T^*v||^2 = ||Tv||^2 \forall v \in V$$

Where the backwards implication for the third \Leftrightarrow makes use of the lemma.

Lemma 1.1. If $S \in \mathcal{L}(V)$ is self adjoint, then S = 0 iff $\langle Sv, v \rangle = 0 \forall v \in V$.

Proof. The "only if" part is trivial. For the "if" part, note that for S to be self adjoint, it has a basis of eigenvectors. This implies all eigenvalues are 0, so S=0.

Lemma 1.2. If $S, T \in \mathcal{L}(V)$ with ST = TS, there exists a joint eigenvector $v \neq 0 \in V, Tv = \lambda v, Sv = \mu v$.

Proof. Pick any eigenvalue λ for T. If v is one of its corresponding eigenvectors, then

$$T(Sv) = STv = \lambda(Sv)$$

So Sv is also an eigenvector. Then the eigenspace for λ is S invariant, and picking any eigenvector w for S restricted to this eigenspace completes the proof.

Lemma 1.3. For $T \in \mathcal{L}(V)$, if $W \subseteq V$ is T-invariant then $W^{\perp} \subseteq V$ is T^* -invariant. In particular, if W is T-invariant and T^* -invariant, the same is true for W^{\perp} .

Proof. Suppose $T(W) \subseteq W$. Let $v \in W^{\perp}$. We want to show that $T^*v \in W^{\perp}$. For all $w \in W$, we have

$$\langle T^*v, w \rangle = \langle v, Tw \rangle = 0$$

Hence $T^*v \in W^{\perp}$.

Theorem 1.1 (Spectrial Theorem for Normal Operators). For $T \in \mathcal{L}(V)$, the following are equivalent:

- T is normal
- V admits an orthonormal basis consisting of eigenvectors of T

Proof. Assume T is normal. Let $v_1 \in V$ be a joint unit eigenvector for T, T^* by lemma 1.2. Then span $\{v_1\}^{\perp}$ is invariant under T, T^* . Then T is still normal in span $\{v_1\}^{\perp}$, and the process is repeated to build a basis. Suppose v_1, \ldots, v_n is an orthonormal basis with $Tv_i = \lambda_i v_i$. Then

$$\langle v_i, T^*v_j \rangle = \langle Tv_i, v_j \rangle = \langle \lambda_i v_i, v_j \rangle = \langle v_i, \overline{\lambda_i} v_j \rangle$$

For $i \neq j$ we see T^*v_j has no v_i component. Taking i=j, we get $T^*v_j=\overline{\lambda}_jv_j.$ Now

$$T^*Tv_i = \lambda_i T^*v_i = \lambda_i \overline{\lambda}_i v_i = T(\overline{\lambda}_i v_i) = TT^*v_i$$

This holds for all basis vectors, so $TT^* = T^*T$.

As a consequence, if T is normal, then the matrix of T has a basis consisting of eigenvectors is diagonal. Moreover, for eigenvalues $\lambda \neq \mu$, their eigenspaces are orthogonal.

2 Spectral Resolution

Suppose $T \in \mathcal{L}(V)$ is normal, let $P_{\lambda} \in \mathcal{L}(V)$ be the orthogonal projection to the eigenspace $E(\lambda, T)$. Then

$$P_{\lambda}P_{\mu} = \begin{cases} 0 & \lambda \neq \mu \\ P_{\lambda} & \lambda = \mu \end{cases}$$

Now

$$\sum_{\lambda} P_{\lambda} = I$$

Hence

$$T = \sum_{\lambda} \lambda P_{\lambda}$$

Then

$$T^* = \sum \lambda \overline{\lambda} P_{\lambda}$$