Iowa State University Aerospace Engineering

AERE 361 Lab 10 Report Rohan Gupta May 3, 2021

Contents

1	Pre	-Lab																	2
	1.1	Object	ives				 				 								2
	1.2		dology																
2	Lab	Work																	3
	2.1	Results	3				 												3
		2.1.1	Exercise 1	Cod	e .		 												3
		2.1.2	Exercise 1																3
		2.1.3	Exercise 2	Cod	.е.		 												4
		2.1.4	Exercise 2																6
		2.1.5	Exercise 3		-														6
		2.1.6	Exercise 3																9
		2.1.7	Exercise 4																19
		2.1.8	Exercise 4																
	2.2		is		-														
		2.2.1	Exercise 1																35
		2.2.2	Exercise 2																35
		2.2.3	Exercise 3																35
		2.2.4	Exercise 4																
3	Con	clusior	ı																36
	3.1	Summa	ary				 				 								36
	3.2	Reflect	ion				 				 								36

Chapter 1

Pre-Lab

1.1. Objectives

In this lab, we will gain additional experience with using the HPC-Classroom cluster on campus. We aill also learn how to parallelize tasks to multiple processors. Finally we will learn how processors can communicate between each other using MPI.

1.2. Methodology

For this lab, I used VSCode and Windows Subsystem for Linux (WSL) through VSCode, along with Github Desktop for the entire lab. I accessed the HPC through WSL as opposed to PowerShell, which I used last time to access the HPC.

Chapter 2

Lab Work

2.1. Results

2.1.1. Exercise 1 Code

```
#include <stdio.h>
#include <string.h>
#include <mpi.h>

int main(int argc , char* argv []) {
    int rank; // rank of processors
    int p; // number of processors

    // Start up MPI
    MPI_Init(&argc , &argv);

    // Find out processor rank
    MPI_Comm_rank(MPI_COMM_WORLD , &rank);

    printf("Hello world from processor %d!\n", rank);

    // Shut down MPI
    MPI_Finalize();
    return 0;
}
```

2.1.2. Exercise 1 Outputs

```
Outputs for 4 processors
```

```
Hello world from processor 0!
Hello world from processor 1!
Hello world from processor 2!
Hello world from processor 3!

Outputs for 8 processors

Hello world from processor 0!
Hello world from processor 1!
Hello world from processor 2!
Hello world from processor 3!
Hello world from processor 3!
Hello world from processor 4!
Hello world from processor 5!
Hello world from processor 6!
```

```
Hello world from processor 7!
Outputs for 16 processors
Hello world from processor 0!
Hello world from processor 1!
Hello world from processor 2!
Hello world from processor 3!
Hello world from processor 4!
Hello world from processor 5!
Hello world from processor 6!
Hello world from processor 7!
Hello world from processor 8!
Hello world from processor 9!
Hello world from processor 10!
Hello world from processor 11!
Hello world from processor 12!
Hello world from processor 13!
Hello world from processor 14!
Hello world from processor 15!
```

2.1.3. Exercise 2 Code

```
AER E 361
Lab 10
Rohan Gupta
#include <stdio.h>
#include <mpi.h>
#include <math.h>
#define TRIALS 100;
int main(int argc, char *argv[]) {
 int i, j, tag = 1;
 int length = 10;
 int trial = 10;
 int *A, *B;
  double *time:
  double t1, t2;
  int n = 1;
  // MPI Initialization
  MPI_Init(&argc, &argv);
  int size:
  MPI_Comm_size(MPI_COMM_WORLD, &size);
  int rank;
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  MPI_Status stat;
  // Allocating memory for A,B, time vector
  // INSERT YOUR CODE HERE FOR ALLOCATING A, B, and time
  A = malloc(length * sizeof(int));
B = malloc(length * sizeof(int));
  time = malloc(trial * sizeof(double));
  for (j = 0; j < trial; j++) {
   if (rank == 0) {
      for (i = 0; i < length; i++) {
```

```
A[i] = i;
 for (i = 0; i < length; i++) {
   B[i] = rank;
}
// Calculating {\it A} = {\it A} + {\it B} on different processor and send value of {\it B} back to the root
processor.
int iter;
for (iter = 0; iter < trial; iter++) {</pre>
  MPI_Barrier(MPI_COMM_WORLD);
  if (rank == 0) {
    t1 = MPI_Wtime();
   for (j = 1; j < size; j++) {
     MPI_Send(A, n, MPI_INT, j, tag, MPI_COMM_WORLD);
    // INSERT YOUR MPI_Recv below
   MPI_Recv(B, 1, MPI_INT, 1, tag, MPI_COMM_WORLD, &stat);
    t2 = MPI_Wtime();
    time[iter] = (t2 - t1) * 0.5 * (1e+6);
  if (rank > 0) {
    //INSERT to receive A
    MPI_Recv(A, n, MPI_INT, 0, tag, MPI_COMM_WORLD, &stat);
   for (i = 0; i < length; ++i) {
     A[i] += B[i];
    // Insert code to send A
   MPI_Send(A, 1, MPI_INT, 0, tag, MPI_COMM_WORLD);
  if (rank == 0) {
   for (i = 0; i < length; ++i) {
     printf("A[%d] = %d\n", i, A[i]);
  // Print out average time
  if (rank == 0) {
   printf("number of trial = %d, number of processor used = %d\n", trial, size);
    double sum;
   for (i = 0; i < trial; i++) {
     sum += time[i];
    double average = sum / trial; // in ms
   printf("average time = %lf microsecond\n", average);
  //\mathit{INSERT}\ code\ to\ free\ up\ what\ you\ did\ for\ malloc
  free(A);
  free(B);
  free(time);
  MPI_Finalize();
  return 0;
}
```

2.1.4. Exercise 2 Outputs

```
Outputs for 4 processors
A[O] = O
A[1] = 1
A[2] = 2
A[3] = 3
A[4] = 4
A[5] = 5
A[6] = 6
A[7] = 7
A[8] = 8
A[9] = 9
number of trial = 10, number of processor used = 4
average time = 20.754337 microsecond
Outputs for 8 processors
A \Gamma O I = O
A[1] = 1
A[2] = 2
A[3] = 3
A[4] = 4
A[5] = 5
A[6] = 6
A[7] = 7
A[8] = 8
A[9] = 9
number of trial = 10, number of processor used = 8
average time = 1.096725 microsecond
Outputs for 16 processors
A[O] = O
A[1] = 1
A[2] = 2
A[3] = 3
A[4] = 4
A[5] = 5
A[6] = 6
A[7] = 7
A[8] = 8
A[9] = 9
number of trial = 10, number of processor used = 16
average time = 2.050400 microsecond
```

2.1.5. Exercise 3 Code

```
Modified: 14 December 2011
Author: John Burkardt
Modification by Matthew Nelson
Modified on April 19th, 2021
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <omp.h>
int main(int argc, char *argv[]);
double eval_f(double x);
double cpu_time();
void timestamp();
 Purpose:
   MAIN is the main program for QUAD_OPENMP.
int main(int argc, char *argv[]) {
  // Variables that we will use.
  double a = 0.0;
  double b = 10.0;
  double error;
  double exact = 0.49936338107645674464;
  int i;
  int n = 10000000;
  double total;
  double wtime;
  double x;
  timestamp();
 printf("\n");
  printf("QUAD_OPENMP:\n");
 printf(" Use OpenMP for parallel execution.\n");
printf(" Estimate the integral of f(x) from A to B.\n");
printf(" f(x) = 50 / ( pi * ( 2500 * x * x + 1 ) ).\n");
  printf("\n");
  printf(" A
                      = %f\n", a);
 printf(" B printf(" N
                      = %f\n", b);
                     = %d\n", n);
= %24.16f\n", exact);
  printf(" Exact
  wtime = omp_get_wtime();
  total = 0.0;
  // INSERT your code for the pragma for OpemMP
  // Setup the shared and private
  #pragma omp parallel shared(a, b, n) private(i, x)
  #pragma omp for reduction(+ : total)
  // Setup the reduction
  for (i = 0; i < n; i++) {
   x = ((double)(n - i - 1) * a + (double)(i)*b) / (double)(n - 1);
    total = total + eval_f(x);
  wtime = omp_get_wtime() - wtime;
  total = (b - a) * total / (double)n;
  error = fabs(total - exact);
  printf("\n");
```

```
printf(" Estimate = %24.16f\n", total);
printf(" Error = %e\n", error);
printf(" Time = %f\n", wtime);
  // Terminate
  printf("\n");
  printf("QUAD_OPENMP:\n");
  printf(" Normal end of execution.\n");
  printf("\n");
  timestamp();
 return 0;
}
// Functions
 Function: f
 Purpose: F evaluates the function.
  Parameters:
  Input, double X, the argument.
  Output, double F, the value of the function.
double eval_f(double x) {
  double r8_pi = 3.141592653589793;
  double value;
 // Insert the code based on the formula in the writeup
 value = 50.0/(r8_pi*(2500.0*x*x + 1.0));
  return value;
}
    Function: cpu_time
    Purpose: CPU_TIME reports the total CPU time for a program.
   Output, double CPU_TIME, the current total elapsed CPU time in second.
  double cpu_time() {
   double value;
    value = (double)clock() / (double)CLOCKS_PER_SEC;
    return value;
  }
   Function: timestamp
   TIMESTAMP prints the current YMDHMS date as a time stamp.
   Example:
   31 May 2001 09:45:54 AM
   Parameters:
   None
  void timestamp() {
  #define TIME_SIZE 40
  static char time_buffer[TIME_SIZE];
  const struct tm *tm;
  time_t now;
  now = time(NULL);
  tm = localtime(&now);
```

```
strftime(time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm);
  printf("%s\n", time_buffer);
  return;
  #undef TIME_SIZE
       Exercise 3 Outputs
2.1.6.
Outputs for 4 processors
03 May 2021 02:26:15 AM
QUAD_OPENMP:
 Use OpenMP for parallel execution.
  Estimate the integral of f(x) from A to B.
  f(x) = 50 / (pi * (2500 * x * x + 1)).
  Α
          = 0.00000
          = 10.000000
          = 10000000
                  0.4993633810764567
  Exact
  Estimate = 0.4993712889190901
        = 7.907843e-06
 Error
  Time
          = 0.025390
QUAD_OPENMP:
  Normal end of execution.
03 May 2021 02:26:15 AM
03 May 2021 02:26:15 AM
QUAD_OPENMP:
  Use OpenMP for parallel execution.
  Estimate the integral of f(x) from A to B.
  f(x) = 50 / (pi * (2500 * x * x + 1)).
          = 0.000000
          = 10.000000
 В
          = 10000000
                  0.4993633810764567
 Exact
 Estimate =
                 0.4993712889190901
  Error = 7.907843e-06
 Time
          = 0.025193
QUAD_OPENMP:
  Normal end of execution.
03 May 2021 02:26:15 AM
03 May 2021 02:26:15 AM
QUAD OPENMP:
```

Use OpenMP for parallel execution.

```
Estimate the integral of f(x) from A to B.
 f(x) = 50 / (pi * (2500 * x * x + 1)).
 Α
          = 0.00000
 В
          = 10.000000
 N
          = 10000000
 Exact
                0.4993633810764567
 Estimate = 0.4993712889190901
 Error
       = 7.907843e-06
 Time
          = 0.025277
QUAD_OPENMP:
 Normal end of execution.
03 May 2021 02:26:15 AM
03 May 2021 02:26:15 AM
QUAD_OPENMP:
 Use OpenMP for parallel execution.
 Estimate the integral of f(x) from A to B.
 f(x) = 50 / (pi * (2500 * x * x + 1)).
          = 0.000000
 В
          = 10.000000
         = 10000000
 Exact
                 0.4993633810764567
 Estimate =
                 0.4993712889190901
 Error = 7.907843e-06
 Time
         = 0.025770
QUAD_OPENMP:
 Normal end of execution.
03 May 2021 02:26:15 AM
Outputs for 8 processors
03 May 2021 02:26:24 AM
QUAD_OPENMP:
 Use OpenMP for parallel execution.
 Estimate the integral of f(x) from A to B.
 f(x) = 50 / (pi * (2500 * x * x + 1)).
          = 0.000000
 Α
 В
          = 10.000000
         = 10000000
 Exact =
                 0.4993633810764567
 Estimate = 0.4993712889190981
 Error = 7.907843e-06
 Time = 0.048410
```

```
QUAD OPENMP:
 Normal end of execution.
03 May 2021 02:26:24 AM
03 May 2021 02:26:24 AM
QUAD_OPENMP:
 Use OpenMP for parallel execution.
 Estimate the integral of f(x) from A to B.
 f(x) = 50 / (pi * (2500 * x * x + 1)).
 Α
          = 0.00000
          = 10.000000
          = 10000000
 N
 Exact
                  0.4993633810764567
 Estimate =
                  0.4993712889190981
 Error = 7.907843e-06
 Time
        = 0.048468
QUAD_OPENMP:
 Normal end of execution.
03 May 2021 02:26:24 AM
03 May 2021 02:26:24 AM
QUAD_OPENMP:
 Use OpenMP for parallel execution.
 Estimate the integral of f(x) from A to B.
 f(x) = 50 / (pi * (2500 * x * x + 1)).
 Α
          = 0.000000
 В
          = 10.000000
          = 10000000
 N
 Exact
                  0.4993633810764567
 Estimate =
                0.4993712889190981
 Error = 7.907843e-06
 Time
          = 0.048559
QUAD_OPENMP:
 Normal end of execution.
03 May 2021 02:26:24 AM
03 May 2021 02:26:24 AM
QUAD_OPENMP:
 Use OpenMP for parallel execution.
 Estimate the integral of f(x) from A to B.
 f(x) = 50 / (pi * (2500 * x * x + 1)).
          = 0.00000
 Α
          = 10.000000
 В
```

= 10000000

N

Exact = 0.4993633810764567Estimate = 0.4993712889190981 Error = 7.907843e-06Time = 0.048646QUAD_OPENMP: Normal end of execution. 03 May 2021 02:26:24 AM 03 May 2021 02:26:24 AM QUAD_OPENMP: Use OpenMP for parallel execution. Estimate the integral of f(x) from A to B. f(x) = 50 / (pi * (2500 * x * x + 1)).= 0.000000Α = 10.000000 = 10000000 N Exact = 0.4993633810764567 Estimate = 0.4993712889190981 Error = 7.907843e-06Time = 0.048636 QUAD_OPENMP: Normal end of execution. 03 May 2021 02:26:24 AM 03 May 2021 02:26:24 AM QUAD_OPENMP: Use OpenMP for parallel execution. Estimate the integral of f(x) from A to B. f(x) = 50 / (pi * (2500 * x * x + 1)).Α = 0.000000= 10.00000 В N = 10000000 Exact = 0.4993633810764567 Estimate = 0.4993712889190981 Error = 7.907843e-06Time = 0.048723QUAD OPENMP: Normal end of execution. 03 May 2021 02:26:24 AM 03 May 2021 02:26:24 AM QUAD_OPENMP:

Use OpenMP for parallel execution.

```
Estimate the integral of f(x) from A to B.
 f(x) = 50 / (pi * (2500 * x * x + 1)).
 Α
          = 0.00000
 В
          = 10.000000
 N
          = 10000000
 Exact
                0.4993633810764567
 Estimate = 0.4993712889190981
 Error
        = 7.907843e-06
 Time
          = 0.048754
QUAD_OPENMP:
 Normal end of execution.
03 May 2021 02:26:24 AM
03 May 2021 02:26:24 AM
QUAD_OPENMP:
 Use OpenMP for parallel execution.
 Estimate the integral of f(x) from A to B.
 f(x) = 50 / (pi * (2500 * x * x + 1)).
          = 0.000000
 В
          = 10.000000
         = 10000000
 Exact
                 0.4993633810764567
 Estimate =
                 0.4993712889190981
 Error = 7.907843e-06
 Time
         = 0.048619
QUAD_OPENMP:
 Normal end of execution.
03 May 2021 02:26:24 AM
Outputs for 16 processors
03 May 2021 02:26:37 AM
QUAD_OPENMP:
 Use OpenMP for parallel execution.
 Estimate the integral of f(x) from A to B.
 f(x) = 50 / (pi * (2500 * x * x + 1)).
          = 0.000000
 Α
 В
          = 10.000000
         = 10000000
 Exact =
                 0.4993633810764567
 Estimate = 0.4993712889190963
 Error = 7.907843e-06
 Time = 0.094677
```

```
QUAD OPENMP:
 Normal end of execution.
03 May 2021 02:26:37 AM
03 May 2021 02:26:37 AM
QUAD_OPENMP:
 Use OpenMP for parallel execution.
 Estimate the integral of f(x) from A to B.
 f(x) = 50 / (pi * (2500 * x * x + 1)).
 Α
          = 0.00000
          = 10.000000
          = 10000000
 N
 Exact
                  0.4993633810764567
 Estimate =
                  0.4993712889190963
 Error = 7.907843e-06
 Time
        = 0.094656
QUAD_OPENMP:
 Normal end of execution.
03 May 2021 02:26:37 AM
03 May 2021 02:26:37 AM
QUAD_OPENMP:
 Use OpenMP for parallel execution.
 Estimate the integral of f(x) from A to B.
 f(x) = 50 / (pi * (2500 * x * x + 1)).
 Α
          = 0.000000
 В
          = 10.000000
          = 10000000
 N
 Exact
                  0.4993633810764567
 Estimate =
               0.4993712889190963
 Error = 7.907843e-06
 Time
          = 0.094529
QUAD_OPENMP:
 Normal end of execution.
03 May 2021 02:26:37 AM
03 May 2021 02:26:37 AM
QUAD_OPENMP:
 Use OpenMP for parallel execution.
 Estimate the integral of f(x) from A to B.
 f(x) = 50 / (pi * (2500 * x * x + 1)).
          = 0.00000
 Α
 В
          = 10.000000
```

= 10000000

N

Exact = 0.4993633810764567Estimate = 0.4993712889190963 Error = 7.907843e-06Time = 0.094524QUAD_OPENMP: Normal end of execution. 03 May 2021 02:26:37 AM 03 May 2021 02:26:37 AM QUAD_OPENMP: Use OpenMP for parallel execution. Estimate the integral of f(x) from A to B. f(x) = 50 / (pi * (2500 * x * x + 1)).= 0.000000Α = 10.000000 = 10000000 N Exact = 0.4993633810764567 Estimate = 0.4993712889190963 Error = 7.907843e-06Time = 0.094625QUAD_OPENMP: Normal end of execution. 03 May 2021 02:26:37 AM 03 May 2021 02:26:37 AM QUAD_OPENMP: Use OpenMP for parallel execution. Estimate the integral of f(x) from A to B. f(x) = 50 / (pi * (2500 * x * x + 1)).Α = 0.000000= 10.00000 В N = 10000000 Exact = 0.4993633810764567 Estimate = 0.4993712889190963 Error = 7.907843e-06Time = 0.094638 QUAD OPENMP: Normal end of execution. 03 May 2021 02:26:37 AM 03 May 2021 02:26:37 AM QUAD_OPENMP:

Use OpenMP for parallel execution.

```
Estimate the integral of f(x) from A to B.
 f(x) = 50 / (pi * (2500 * x * x + 1)).
 Α
          = 0.000000
          = 10.000000
 В
 N
          = 10000000
 Exact = 0.4993633810764567
 Estimate = 0.4993712889190963
 Error = 7.907843e-06
 Time
          = 0.094674
QUAD_OPENMP:
 Normal end of execution.
03 May 2021 02:26:37 AM
03 May 2021 02:26:37 AM
QUAD_OPENMP:
 Use OpenMP for parallel execution.
 Estimate the integral of f(x) from A to B.
 f(x) = 50 / (pi * (2500 * x * x + 1)).
          = 0.000000
 В
         = 10.000000
         = 10000000
 Exact =
                 0.4993633810764567
 Estimate =
                0.4993712889190963
 Error = 7.907843e-06
 Time
        = 0.094521
QUAD_OPENMP:
 Normal end of execution.
03 May 2021 02:26:37 AM
03 May 2021 02:26:37 AM
QUAD_OPENMP:
 Use OpenMP for parallel execution.
 Estimate the integral of f(x) from A to B.
 f(x) = 50 / (pi * (2500 * x * x + 1)).
          = 0.00000
 Α
 В
          = 10.000000
          = 1000000
 Exact
                 0.4993633810764567
 Estimate = 0.4993712889190963
 Error = 7.907843e-06
 Time
          = 0.094613
QUAD_OPENMP:
```

Normal end of execution.

```
03 May 2021 02:26:37 AM
03 May 2021 02:26:37 AM
QUAD_OPENMP:
 Use OpenMP for parallel execution.
 Estimate the integral of f(x) from A to B.
 f(x) = 50 / (pi * (2500 * x * x + 1)).
 Α
          = 0.000000
         = 10.000000
         = 10000000
                 0.4993633810764567
 Exact
 Estimate =
              0.4993712889190963
 Error = 7.907843e-06
 Time
         = 0.094694
QUAD_OPENMP:
 Normal end of execution.
03 May 2021 02:26:37 AM
03 May 2021 02:26:37 AM
QUAD_OPENMP:
 Use OpenMP for parallel execution.
 Estimate the integral of f(x) from A to B.
 f(x) = 50 / (pi * (2500 * x * x + 1)).
          = 0.000000
 В
          = 10.000000
         = 10000000
                 0.4993633810764567
 Exact =
 Estimate =
                0.4993712889190963
 Error = 7.907843e-06
 Time = 0.094577
QUAD_OPENMP:
 Normal end of execution.
03 May 2021 02:26:37 AM
03 May 2021 02:26:37 AM
QUAD_OPENMP:
 Use OpenMP for parallel execution.
 Estimate the integral of f(x) from A to B.
 f(x) = 50 / (pi * (2500 * x * x + 1)).
 Α
          = 0.000000
          = 10.000000
 В
          = 10000000
 N
                  0.4993633810764567
 Exact =
```

Estimate = 0.4993712889190963 Error = 7.907843e-06Time = 0.094559QUAD_OPENMP: Normal end of execution. 03 May 2021 02:26:37 AM 03 May 2021 02:26:37 AM QUAD_OPENMP: Use OpenMP for parallel execution. Estimate the integral of f(x) from A to B. f(x) = 50 / (pi * (2500 * x * x + 1)).= 0.00000 В = 10.000000 = 10000000 Exact = 0.4993633810764567 Estimate = 0.4993712889190963 Error = 7.907843e-06Time = 0.094518 QUAD_OPENMP: Normal end of execution. 03 May 2021 02:26:37 AM 03 May 2021 02:26:37 AM QUAD_OPENMP: Use OpenMP for parallel execution. Estimate the integral of f(x) from A to B. f(x) = 50 / (pi * (2500 * x * x + 1)).= 0.000000Α В = 10.000000 N = 10000000 Exact 0.4993633810764567 Estimate = 0.4993712889190963 Error = 7.907843e-06Time = 0.094560QUAD OPENMP: Normal end of execution. 03 May 2021 02:26:37 AM 03 May 2021 02:26:37 AM QUAD_OPENMP: Use OpenMP for parallel execution. Estimate the integral of f(x) from A to B. f(x) = 50 / (pi * (2500 * x * x + 1)).

```
= 0.000000
 Α
          = 10.000000
 В
 N
          = 10000000
  Exact
                 0.4993633810764567
  Estimate = 0.4993712889190963
        = 7.907843e-06
 Error
  Time
          = 0.094395
QUAD_OPENMP:
  Normal end of execution.
03 May 2021 02:26:37 AM
03 May 2021 02:26:37 AM
QUAD_OPENMP:
 Use OpenMP for parallel execution.
  Estimate the integral of f(x) from A to B.
  f(x) = 50 / (pi * (2500 * x * x + 1)).
          = 0.00000
          = 10.000000
 В
          = 10000000
 Exact
                 0.4993633810764567
  Estimate =
                 0.4993712889190963
  Error = 7.907843e-06
       = 0.094438
 Time
QUAD_OPENMP:
  Normal end of execution.
03 May 2021 02:26:37 AM
```

2.1.7. Exercise 4 Code

```
/*------
AerE 361
Lab 10
Rohan Gupta
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <omp.h>
int main();
void ccopy(int n, double x[], double y[]);
void cfft2(int n, double x[], double y[], double w[], double sgn);
void cffti(int n, double w[]);
double ggl(double *ds);
void step(int n, int mj, double a[], double b[], double c[], double d[], double w[], double
  sgn);
void timestamp();
 Purpose:
```

```
MAIN is the main program for fft.c.
  Discussion:
    The "complex" vector A is actually stored as a double vector B.
   The "complex" vector entry A[I] is stored as:
     B[I*2+0], the real part,
     B[I*2+1], the imaginary part.
  Author:
    Original C version by Wesley Petersen.
    This C version by John Burkardt.
    Additional modifications by Matthew Nelson
  Reference:
    Wesley Petersen, Peter Arbenz,
    Introduction to Parallel Computing - A practical guide with examples in C,
    Oxford University Press,
    ISBN: 0-19-851576-6,
    LC: QA76.58.P47.
int main() {
 double error;
 int first;
 double flops;
 double fnm1;
 int i;
 int icase;
 int it;
 int ln2;
 int ln2_max = 20;
 double mflops;
 int n;
 int nits = 1000;
 static double seed;
 double sgn;
  double *w;
  double wtime;
  double *x:
  double *y;
  double *z;
 double z0;
 double z1;
 timestamp();
 printf("\n");
 printf("FFT_OPENMP\n");
 printf(" C/OpenMP version\n");
 printf("\n");
  printf(" Demonstrate an implementation of the Fast Fourier Transform\n");
 printf(" of a complex data vector, using OpenMP for parallel execution.\n");
 printf("\n");
 printf(" Number of processors available = %d\n", omp_get_num_procs());
printf(" Number of threads = %d\n", omp_get_max_threads()
                                            %d\n", omp_get_max_threads());
 printf("\n");
 printf(" Accuracy check:\n");
  printf("\n");
 printf(" FFT ( FFT ( X(1:N) ) ) == N * X(1:N)\n");
 printf("\n");
 printf("
                     N NITS Error Time Time/Call MFLOPS\n");
```

```
printf("\n");
seed = 331.0;
n = 1;
//LN2 is the log base 2 of N. Each increase of LN2 doubles N.
for (ln2 = 1; ln2 \le ln2_max; ln2++) {
 \mathbf{n} = 2 * \mathbf{n};
   Allocate storage for the complex arrays W, X, Y, Z.
   We handle the complex arithmetic,
   and store a complex number as a pair of doubles, a complex vector as a doubly
    dimensioned array whose second dimension is 2.
  w = (double *)malloc(n * sizeof(double));
  x = (double *)malloc(2 * n * sizeof(double));
  y = (double *) malloc(2 * n * sizeof(double));
  z = (double *) malloc(2 * n * sizeof(double));
 first = 1;
 for (icase = 0; icase < 2; icase++) {</pre>
    if (first) {
      for (i = 0; i < 2 * n; i = i + 2) {
       z0 = ggl(&seed);
        z1 = ggl(&seed);
       x[i] = z0;
        z[i] = z0;
        x[i + 1] = z1;
        z[i + 1] = z1;
    } else {
      // Insert the Pragma for OpenMP
      // Insert the Pragma for the nowait option
      #pragma omp for nowait
      for (i = 0; i < 2 * n; i = i + 2) {
        z0 = 0.0; // real part of array
        z1 = 0.0; // imaginary part of array
        x[i] = z0;
        z[i] = z0; // copy of initial real data
        x[i + 1] = z1;
        z[i + 1] = z1; // copy of initial imag. data
     }
   }
    // Initialize the sine and cosine tables.
    cffti(n, w);
    // Transform forward, back
    if (first) {
      sgn = +1.0;
      cfft2(n, x, y, w, sgn);
      sgn = -1.0;
      cfft2(n, y, x, w, sgn);
      // Results should be same as the initial data multiplied by N
      fnm1 = 1.0 / (double)n;
      error = 0.0;
      for (i = 0; i < 2 * n; i = i + 2) {
       error = error + pow(z[i] - fnm1 * x[i], 2) + pow(z[i + 1] - fnm1 * x[i + 1], 2);
      error = sqrt(fnm1 * error);
      printf(" %12d %8d %12e", n, nits, error);
```

```
first = 0;
      }
      else {
        wtime = omp_get_wtime();
        for (it = 0; it < nits; it++) {
          sgn = +1.0;
          cfft2(n, x, y, w, sgn);
          sgn = -1.0;
          cfft2(n, y, x, w, sgn);
        wtime = omp_get_wtime() - wtime;
        flops = 2.0 * (double)nits * (5.0 * (double)n * (double)ln2);
        mflops = flops / 1.0E+06 / wtime;
       printf(" %12e %12e %12f\n", wtime, wtime / (double)(2 * nits), mflops);
     }
    if ((1n2 \% 4) == 0) {
     nits = nits / 10;
   if (nits < 1) {
    nits = 1;
   free(w);
   free(x);
   free(y);
   free(z);
  // Terminate
  printf("\n");
 printf("FFT_OPENMP:\n");
printf(" Normal end of execution.\n");
 printf("\n");
  timestamp();
 return 0;
}
 Purpose: CCOPY copies a complex vector.
  Discussion:
   The "complex" vector A[N] is actually stored as a double vector B[2*N].
    The "complex" vector entry A[I] is stored as:
      B[I*2+0], the real part,
      B[I*2+1], the imaginary part.
   Input, int N, the length of the vector.
    Input, double X[2*N], the vector to be copied.
    Output, double Y[2*N], a copy of X.
void ccopy(int n, double x[], double y[]) {
 int i;
```

```
for (i = 0; i < n; i++) {
   y[i * 2 + 0] = x[i * 2 + 0];
   y[i * 2 + 1] = x[i * 2 + 1];
  return;
}
  Purpose:
    CFFT2 performs a complex Fast Fourier Transform.
  Parameters:
    Input, int N, the size of the array to be transformed.
    Input/output, double X[2*N], the data to be transformed.
   On output, the contents of X have been overwritten by work information.
    Output, double Y[2*N], the forward or backward FFT of X.
    Input, double W[N], a table of sines and cosines.
    Input, double SGN, is +1 for a "forward" FFT and -1 for a "backward" FFT.
*/
void cfft2(int n, double x[], double y[], double w[], double sgn) {
 int j;
 int m;
 int mj;
 int tgle;
  m = (int)(log((double)n) / log(1.99));
  mj = 1;
  // Toggling switch for work array.
  step(n, mj, &x[0 * 2 + 0], &x[(n / 2) * 2 + 0], &y[0 * 2 + 0], &y[mj * 2 + 0], w, sgn);
  if (n == 2) {
   return;
  for (j = 0; j < m - 2; j++) {
   mj = mj * 2;
    if (tgle) {
      step(n, mj, &y[0 * 2 + 0], &y[(n / 2) * 2 + 0], &x[0 * 2 + 0], &x[mj * 2 + 0], w, sgn)
     tgle = 0;
   }
    else {
      step(n, mj, &x[0 * 2 + 0], &x[(n / 2) * 2 + 0], &y[0 * 2 + 0], &y[mj * 2 + 0], w, sgn)
      tgle = 1;
    }
  }
  // Last pass through data: move Y to X if needed.
  if (tgle) {
   ccopy(n, y, x);
  mj = n / 2;
  step(n, mj, &x[0 * 2 + 0], &x[(n / 2) * 2 + 0], &y[0 * 2 + 0], &y[mj * 2 + 0], w, sgn);
  return;
```

```
Purpose:
    CFFTI sets up sine and cosine tables needed for the FFT calculation.
  Parameters:
    Input, int N, the size of the array to be transformed.
    Output, double W[N], a table of sines and cosines.
void cffti(int n, double w[]) {
  #pragma omp parallel shared(aw, n, w) private(arg, i)
  #pragma omp for nowait
  double arg;
  double aw;
  int i:
  int n2;
  const double pi = 3.141592653589793;
  n2 = n / 2;
  aw = 2.0 * pi / ((double)n);
  for (i = 0; i < n2; i++) {
   arg = aw * ((double)i);
    w[i * 2 + 0] = cos(arg);
   w[i * 2 + 1] = sin(arg);
 }
 return;
}
 Purpose:
   GGL generates uniformly distributed pseudorandom real numbers in [0,1].
  Parameters:
    Input/output, double *SEED, used as a seed for the sequence.
    Output, double GGL, the next pseudorandom value.
double ggl(double *seed) {
  double d2 = 0.2147483647e10;
  double t;
  double value;
 t = (double)*seed;
  t = fmod(16807.0 * t, d2);
  *seed = (double)t;
  value = (double)((t - 1.0) / (d2 - 1.0));
 return value;
}
 Purpose:
   STEP carries out one step of the workspace version of CFFT2.
  Parameters:
void step(int n, int mj, double a[], double b[], double c[], double d[], double w[], double
   sgn) {
  #pragma omp parallel shared(a, b, c, d, lj, mj, mj2, sgn, w) private(ambr, ambu, j, ja, jb
     , jc, jd, jw, k, wjw)
  #pragma omp for nowait
```

```
double ambr;
  double ambu;
  int j;
 int ja;
  int jb;
  int jc;
 int jd;
 int jw;
 int k;
  int 1j;
  int mj2;
  double wjw[2];
  mj2 = 2 * mj;
 lj = n / mj2;
  for (j = 0; j < 1j; j++) {
   jw = j * mj;
    ja = jw;
    jb = ja;
    jc = j * mj2;
    jd = jc;
    wjw[0] = w[jw * 2 + 0];
    wjw[1] = w[jw * 2 + 1];
    if (sgn < 0.0) {
   wjw[1] = -wjw[1];
    for (k = 0; k < mj; k++) {
      c[(jc + k) * 2 + 0] = a[(ja + k) * 2 + 0] + b[(jb + k) * 2 + 0];
      c[(jc + k) * 2 + 1] = a[(ja + k) * 2 + 1] + b[(jb + k) * 2 + 1];
      ambr = a[(ja + k) * 2 + 0] - b[(jb + k) * 2 + 0];
      ambu = a[(ja + k) * 2 + 1] - b[(jb + k) * 2 + 1];
      d[(jd + k) * 2 + 0] = wjw[0] * ambr - wjw[1] * ambu;
     d[(jd + k) * 2 + 1] = wjw[1] * ambr + wjw[0] * ambu;
 }
  return;
}
 Purpose:
   TIMESTAMP prints the current YMDHMS date as a time stamp.
  Example:
   31 May 2001 09:45:54 AM
 Parameters:
    None
void timestamp(void) {
 #define TIME_SIZE 40
  static char time_buffer[TIME_SIZE];
  const struct tm *tm;
 time_t now;
  now = time(NULL);
  tm = localtime(&now);
  strftime(time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm);
  printf("%s\n", time_buffer);
```

```
return;
#undef TIME_SIZE
```

2.1.8. Exercise 4 Outputs

Outputs for 4 processors
03 May 2021 01:37:29 AM

FFT_OPENMP

C/OpenMP version

Demonstrate an implementation of the Fast Fourier Transform of a complex data vector, using OpenMP for parallel execution.

```
Number of processors available = 4
Number of threads = 4
```

Accuracy check:

FFT (FFT (X(1:N))) == N * X(1:N)

NITS	Error	Time	Time/Call	MFLOPS
1000	7.859082e-17	1.899958e-03	9.499788e-07	10.526550
1000	1.209837e-16	3.973961e-03	1.986980e-06	20.131049
1000	6.820795e-17	6.060123e-03	3.030062e-06	39.603154
1000	1.438671e-16	8.073092e-03	4.036546e-06	79.275702
100	1.331210e-16	1.094103e-03	5.470514e-06	146.238536
100	1.776545e-16	1.463890e-03	7.319450e-06	262.314778
100	1.929043e-16	1.854181e-03	9.270906e-06	483.232144
100	2.092319e-16	2.786875e-03	1.393437e-05	734.873350
10	1.927488e-16	3.640652e-04	1.820326e-05	1265.707455
10	2.308607e-16	5.970001e-04	2.985001e-05	1715.242530
10	2.444507e-16	9.379387e-04	4.689693e-05	2401.862748
10	2.483274e-16	1.927853e-03	9.639263e-05	2549.572474
1	2.575054e-16	3.318787e-04	1.659393e-04	3208.883612
1	2.729354e-16	7.259846e-04	3.629923e-04	3159.516172
1	2.911847e-16	1.367807e-03	6.839037e-04	3593.488412
1	2.827259e-16	3.037214e-03	1.518607e-03	3452.426808
1	3.148261e-16	5.892992e-03	2.946496e-03	3781.142063
1	3.221995e-16	1.348281e-02	6.741405e-03	3499.709872
1	3.278767e-16	5.142903e-02	2.571452e-02	1936.935494
1	3.286406e-16	1.228330e-01	6.141651e-02	1707.319506
	1000 1000 1000 1000 1000 100 100 100 10	1000 7.859082e-17 1000 1.209837e-16 1000 6.820795e-17 1000 1.438671e-16 100 1.331210e-16 100 1.776545e-16 100 2.092319e-16 10 2.092319e-16 10 2.308607e-16 10 2.444507e-16 10 2.483274e-16 1 2.729354e-16 1 2.911847e-16 1 2.827259e-16 1 3.148261e-16 1 3.221995e-16 1 3.278767e-16	1000 7.859082e-17 1.899958e-03 1000 1.209837e-16 3.973961e-03 1000 6.820795e-17 6.060123e-03 1000 1.438671e-16 8.073092e-03 100 1.331210e-16 1.094103e-03 100 1.776545e-16 1.463890e-03 100 1.929043e-16 1.854181e-03 100 2.092319e-16 2.786875e-03 10 1.927488e-16 3.640652e-04 10 2.308607e-16 5.970001e-04 10 2.444507e-16 9.379387e-04 10 2.483274e-16 1.927853e-03 1 2.575054e-16 3.318787e-04 1 2.729354e-16 7.259846e-04 1 2.911847e-16 1.367807e-03 1 2.827259e-16 3.037214e-03 1 3.148261e-16 5.892992e-03 1 3.221995e-16 1.348281e-02 1 3.278767e-16 5.142903e-02	1000 7.859082e-17 1.899958e-03 9.499788e-07 1000 1.209837e-16 3.973961e-03 1.986980e-06 1000 6.820795e-17 6.060123e-03 3.030062e-06 1000 1.438671e-16 8.073092e-03 4.036546e-06 100 1.331210e-16 1.094103e-03 5.470514e-06 100 1.776545e-16 1.463890e-03 7.319450e-06 100 1.929043e-16 1.854181e-03 9.270906e-06 100 2.092319e-16 2.786875e-03 1.393437e-05 10 1.927488e-16 3.640652e-04 1.820326e-05 10 2.308607e-16 5.970001e-04 2.985001e-05 10 2.444507e-16 9.379387e-04 4.689693e-05 10 2.483274e-16 1.927853e-03 9.639263e-05 1 2.575054e-16 3.318787e-04 1.659393e-04 1 2.729354e-16 7.259846e-04 3.629923e-04 1 2.911847e-16 1.367807e-03 6.839037e-04 1 2.827259e-16 3.037214e-03 1.518607e-03 1 3.148261e-16 5.892992e-03 2.946496e-03 1 3.221995e-16 1.348281e-02 6.741405e-03 1 3.278767e-16 5.142903e-02 2.571452e-02

FFT_OPENMP:

Normal end of execution.

03 May 2021 01:37:29 AM 03 May 2021 01:37:29 AM

FFT_OPENMP

 ${\tt C/OpenMP\ version}$

Demonstrate an implementation of the Fast Fourier Transform of a complex data vector, using OpenMP for parallel execution.

```
Number of processors available = 4
Number of threads = 4
```

Accuracy check:

FFT (FFT (X(1:N))) == N * X(1:N)

N	NITS	Error	Time	Time/Call	MFLOPS
2	1000	7.859082e-17	1.774073e-03	8.870363e-07	11.273495
4	1000	1.209837e-16	3.762007e-03	1.881003e-06	21.265246
8	1000	6.820795e-17	5.796909e-03	2.898455e-06	41.401372
16	1000	1.438671e-16	7.781982e-03	3.890991e-06	82.241255
32	100	1.331210e-16	1.030922e-03	5.154610e-06	155.200888
64	100	1.776545e-16	1.434088e-03	7.170439e-06	267.766041
128	100	1.929043e-16	1.812935e-03	9.064674e-06	494.226247
256	100	2.092319e-16	2.681017e-03	1.340508e-05	763.889248
512	10	1.927488e-16	3.619194e-04	1.809597e-05	1273.211649
1024	10	2.308607e-16	6.039143e-04	3.019571e-05	1695.604933
2048	10	2.444507e-16	9.407997e-04	4.703999e-05	2394.558553
4096	10	2.483274e-16	1.924992e-03	9.624958e-05	2553.361781
8192	1	2.575054e-16	3.368855e-04	1.684427e-04	3161.193197
16384	1	2.729354e-16	7.338524e-04	3.669262e-04	3125.642217
32768	1	2.911847e-16	1.397848e-03	6.989241e-04	3516.261815
65536	1	2.827259e-16	3.063917e-03	1.531959e-03	3422.337959
131072	1	3.148261e-16	5.964041e-03	2.982020e-03	3736.097876
262144	1	3.221995e-16	1.388097e-02	6.940484e-03	3399.324866
524288	1	3.278767e-16	5.192208e-02	2.596104e-02	1918.542447
1048576	1	3.286406e-16	1.240852e-01	6.204259e-02	1690.090522

FFT_OPENMP:

Normal end of execution.

```
03 May 2021 01:37:29 AM 03 May 2021 01:37:29 AM
```

FFT_OPENMP

C/OpenMP version

Demonstrate an implementation of the Fast Fourier Transform of a complex data vector, using OpenMP for parallel execution.

```
Number of processors available = 4
Number of threads = 4
```

Accuracy check:

```
FFT ( FFT ( X(1:N) ) ) == N * X(1:N)
```

N NITS Error Time Time/Call MFLOPS

2	1000	7.859082e-17	1.796961e-03	8.984804e-07	11.129903
4	1000	1.209837e-16	3.728151e-03	1.864076e-06	21.458356
8	1000	6.820795e-17	5.767107e-03	2.883554e-06	41.615319
16	1000	1.438671e-16	7.801056e-03	3.900528e-06	82.040176
32	100	1.331210e-16	1.033068e-03	5.165339e-06	154.878523
64	100	1.776545e-16	1.405954e-03	7.029772e-06	273.124086
128	100	1.929043e-16	1.791000e-03	8.955002e-06	500.279071
256	100	2.092319e-16	2.676964e-03	1.338482e-05	765.045831
512	10	1.927488e-16	3.519058e-04	1.759529e-05	1309.441249
1024	10	2.308607e-16	5.950928e-04	2.975464e-05	1720.740103
2048	10	2.444507e-16	9.951591e-04	4.975796e-05	2263.758517
4096	10	2.483274e-16	1.940966e-03	9.704828e-05	2532.347749
8192	1	2.575054e-16	3.330708e-04	1.665354e-04	3197.398703
16384	1	2.729354e-16	7.269382e-04	3.634691e-04	3155.371185
32768	1	2.911847e-16	1.386881e-03	6.934404e-04	3544.067908
65536	1	2.827259e-16	3.041029e-03	1.520514e-03	3448.096049
131072	1	3.148261e-16	5.953074e-03	2.976537e-03	3742.980831
262144	1	3.221995e-16	1.360106e-02	6.800532e-03	3469.281347
524288	1	3.278767e-16	5.341697e-02	2.670848e-02	1864.851654
1048576	1	3.286406e-16	1.260171e-01	6.300855e-02	1664.180580

Normal end of execution.

03 May 2021 01:37:29 AM 03 May 2021 01:37:29 AM

FFT_OPENMP

 ${\tt C/OpenMP}$ version

Demonstrate an implementation of the Fast Fourier Transform of a complex data vector, using OpenMP for parallel execution.

Number of processors available = 4 Number of threads = 4

Accuracy check:

FFT (FFT (X(1:N))) == N * X(1:N)

N	NITS	Error	Time	Time/Call	MFLOPS
2	1000	7.859082e-17	1.756907e-03	8.784533e-07	11.383645
4	1000	1.209837e-16	3.669977e-03	1.834989e-06	21.798501
8	1000	6.820795e-17	5.661011e-03	2.830505e-06	42.395256
16	1000	1.438671e-16	7.628918e-03	3.814459e-06	83.891323
32	100	1.331210e-16	1.004219e-03	5.021095e-06	159.327787
64	100	1.776545e-16	1.384020e-03	6.920099e-06	277.452668
128	100	1.929043e-16	1.764059e-03	8.820295e-06	507.919500
256	100	2.092319e-16	2.609015e-03	1.304507e-05	784.970720
512	10	1.927488e-16	3.480911e-04	1.740456e-05	1323.791290
1024	10	2.308607e-16	5.910397e-04	2.955198e-05	1732.540257
2048	10	2.444507e-16	9.360313e-04	4.680157e-05	2406.757018

4096	10	2.483274e-16	1.927137e-03	9.635687e-05	2550.518746
8192	1	2.575054e-16	3.528595e-04	1.764297e-04	3018.085127
16384	1	2.729354e-16	7.460117e-04	3.730059e-04	3074.696946
32768	1	2.911847e-16	1.379013e-03	6.895065e-04	3564.288212
65536	1	2.827259e-16	3.042936e-03	1.521468e-03	3445.934742
131072	1	3.148261e-16	5.923986e-03	2.961993e-03	3761.359052
262144	1	3.221995e-16	1.379704e-02	6.898522e-03	3420.001953
524288	1	3.278767e-16	5.353212e-02	2.676606e-02	1860.840059
1048576	1	3.286406e-16	1.264608e-01	6.323040e-02	1658.341680

Normal end of execution.

03 May 2021 01:37:29 AM

Outputs for 8 processors

03 May 2021 01:37:43 AM

FFT_OPENMP

C/OpenMP version

Demonstrate an implementation of the Fast Fourier Transform of a complex data vector, using OpenMP for parallel execution.

Number of processors available = 2
Number of threads = 2

Accuracy check:

FFT (FFT (X(1:N)) == N * X(1:N)

N	NITS	Error	Time	Time/Call	MFLOPS
2	1000	7.859082e-17	1.652956e-03	8.264780e-07	12.099536
4	1000	1.209837e-16	3.558874e-03	1.779437e-06	22.479019
8	1000	6.820795e-17	5.294085e-03	2.647042e-06	45.333617
16	1000	1.438671e-16	7.490873e-03	3.745437e-06	85.437301
32	100	1.331210e-16	9.350777e-04	4.675388e-06	171.108781
64	100	1.776545e-16	1.255989e-03	6.279945e-06	305.735144
128	100	1.929043e-16	1.694918e-03	8.474588e-06	528.639244
256	100	2.092319e-16	2.496958e-03	1.248479e-05	820.198090
512	10	1.927488e-16	3.709793e-04	1.854897e-05	1242.117791
1024	10	2.308607e-16	6.568432e-04	3.284216e-05	1558.971795
2048	10	2.444507e-16	1.131773e-03	5.658865e-05	1990.505172
4096	10	2.483274e-16	2.442122e-03	1.221061e-04	2012.676269
8192	1	2.575054e-16	4.811287e-04	2.405643e-04	2213.461837
16384	1	2.729354e-16	1.075029e-03	5.375147e-04	2133.671932
32768	1	2.911847e-16	2.110004e-03	1.055002e-03	2329.473788
65536	1	2.827259e-16	4.686117e-03	2.343059e-03	2237.622239
131072	1	3.148261e-16	1.064992e-02	5.324960e-03	2092.244921
262144	1	3.221995e-16	4.903388e-02	2.451694e-02	962.312584
524288	1	3.278767e-16	1.051190e-01	5.255949e-02	947.637720
1048576	1	3.286406e-16	2.349470e-01	1.174735e-01	892.606546

Normal end of execution.

03 May 2021 01:37:44 AM 03 May 2021 01:37:43 AM

FFT_OPENMP

C/OpenMP version

Demonstrate an implementation of the Fast Fourier Transform of a complex data vector, using OpenMP for parallel execution.

Number of processors available = 2 Number of threads = 2

Accuracy check:

FFT (FFT (X(1:N))) == N * X(1:N)

N	NITS	Error	Time	Time/Call	MFLOPS
2	1000	7.859082e-17	1.631975e-03	8.159876e-07	12.255088
4	1000	1.209837e-16	3.484011e-03	1.742005e-06	22.962042
8	1000	6.820795e-17	5.180120e-03	2.590060e-06	46.330969
16	1000	1.438671e-16	7.364035e-03	3.682017e-06	86.908879
32	100	1.331210e-16	9.400845e-04	4.700422e-06	170.197474
64	100	1.776545e-16	1.230955e-03	6.154776e-06	311.952883
128	100	1.929043e-16	1.657963e-03	8.289814e-06	540.422258
256	100	2.092319e-16	2.410889e-03	1.205444e-05	849.479291
512	10	1.927488e-16	3.678799e-04	1.839399e-05	1252.582815
1024	10	2.308607e-16	6.639957e-04	3.319979e-05	1542.178562
2048	10	2.444507e-16	1.132011e-03	5.660057e-05	1990.085942
4096	10	2.483274e-16	2.467871e-03	1.233935e-04	1991.676458
8192	1	2.575054e-16	4.799366e-04	2.399683e-04	2218.959756
16384	1	2.729354e-16	1.068115e-03	5.340576e-04	2147.483648
32768	1	2.911847e-16	2.130985e-03	1.065493e-03	2306.538713
65536	1	2.827259e-16	4.688978e-03	2.344489e-03	2236.256933
131072	1	3.148261e-16	1.071906e-02	5.359530e-03	2078.749268
262144	1	3.221995e-16	4.962492e-02	2.481246e-02	950.851308
524288	1	3.278767e-16	1.065500e-01	5.327499e-02	934.910749
1048576	1	3.286406e-16	2.352560e-01	1.176280e-01	891.434177

FFT_OPENMP:

Normal end of execution.

03 May 2021 01:37:44 AM 03 May 2021 01:37:43 AM

FFT_OPENMP

C/OpenMP version

Demonstrate an implementation of the Fast Fourier Transform of a complex data vector, using OpenMP for parallel execution.

```
Number of processors available = 2
Number of threads = 2
```

Accuracy check:

FFT (FFT (X(1:N))) == N * X(1:N)

N	NITS	Error	Time	Time/Call	MFLOPS
2	1000	7.859082e-17	1.557827e-03	7.789135e-07	12.838396
4	1000	1.209837e-16	3.376961e-03	1.688480e-06	23.689941
8	1000	6.820795e-17	4.982948e-03	2.491474e-06	48.164256
16	1000	1.438671e-16	7.207870e-03	3.603935e-06	88.791829
32	100	1.331210e-16	9.009838e-04	4.504919e-06	177.583657
64	100	1.776545e-16	1.295090e-03	6.475449e-06	296.504554
128	100	1.929043e-16	1.652002e-03	8.260012e-06	542.372115
256	100	2.092319e-16	2.511024e-03	1.255512e-05	815.603360
512	10	1.927488e-16	3.550053e-04	1.775026e-05	1298.008921
1024	10	2.308607e-16	6.430149e-04	3.215075e-05	1592.498070
2048	10	2.444507e-16	1.127005e-03	5.635023e-05	1998.927026
4096	10	2.483274e-16	2.437115e-03	1.218557e-04	2016.811096
8192	1	2.575054e-16	4.680157e-04	2.340078e-04	2275.479362
16384	1	2.729354e-16	1.078129e-03	5.390644e-04	2127.537979
32768	1	2.911847e-16	2.108097e-03	1.054049e-03	2331.581432
65536	1	2.827259e-16	4.719973e-03	2.359986e-03	2221.572214
131072	1	3.148261e-16	1.071286e-02	5.356431e-03	2079.952115
262144	1	3.221995e-16	4.912400e-02	2.456200e-02	960.547139
524288	1	3.278767e-16	1.060731e-01	5.303657e-02	939.113511
L048576	1	3.286406e-16	2.354889e-01	1.177444e-01	890.552410

FFT_OPENMP:

Normal end of execution.

03 May 2021 01:37:44 AM 03 May 2021 01:37:43 AM

FFT_OPENMP

 ${\tt C/OpenMP\ version}$

Demonstrate an implementation of the Fast Fourier Transform of a complex data vector, using OpenMP for parallel execution.

Number of processors available = 2
Number of threads = 2

Accuracy check:

FFT (FFT (X(1:N))) == N * X(1:N)

N	NITS	Error	Time	Time/Call	MFLOPS
2	1000	7.859082e-17	1.591921e-03	7.959604e-07	12.563439
4	1000	1.209837e-16	3.486872e-03	1.743436e-06	22.943201
8	1000	6.820795e-17	5.189896e-03	2.594948e-06	46.243705

16	1000	1.438671e-16	7.329941e-03	3.664970e-06	87.313120
32	100	1.331210e-16	9.269714e-04	4.634857e-06	172.605103
64	100	1.776545e-16	1.232862e-03	6.164312e-06	311.470264
128	100	1.929043e-16	1.636028e-03	8.180141e-06	547.667791
256	100	2.092319e-16	2.418995e-03	1.209497e-05	846.632623
512	10	1.927488e-16	3.669262e-04	1.834631e-05	1255.838391
1024	10	2.308607e-16	6.899834e-04	3.449917e-05	1484.093744
2048	10	2.444507e-16	1.150131e-03	5.750656e-05	1958.733012
4096	10	2.483274e-16	2.460003e-03	1.230001e-04	1998.046426
8192	1	2.575054e-16	5.040169e-04	2.520084e-04	2112.945122
16384	1	2.729354e-16	1.070023e-03	5.350113e-04	2143.655691
32768	1	2.911847e-16	2.151966e-03	1.075983e-03	2284.050855
65536	1	2.827259e-16	4.737139e-03	2.368569e-03	2213.521823
131072	1	3.148261e-16	1.065516e-02	5.327582e-03	2091.214973
262144	1	3.221995e-16	4.947186e-02	2.473593e-02	953.793219
524288	1	3.278767e-16	1.060669e-01	5.303347e-02	939.168396
1048576	1	3.286406e-16	2.350190e-01	1.175095e-01	892.333080

Normal end of execution.

03 May 2021 01:37:44 AM 03 May 2021 01:37:43 AM

FFT_OPENMP

 ${\tt C/OpenMP}$ version

Demonstrate an implementation of the Fast Fourier Transform of a complex data vector, using OpenMP for parallel execution.

Number of processors available = 2 Number of threads = 2

Accuracy check:

FFT (FFT (X(1:N)) == N * X(1:N)

N	NITS	Error	Time	Time/Call	MFLOPS
2	1000	7.859082e-17	1.609087e-03	8.045435e-07	12.429409
4	1000	1.209837e-16	3.396988e-03	1.698494e-06	23.550275
8	1000	6.820795e-17	5.121946e-03	2.560973e-06	46.857188
16	1000	1.438671e-16	7.274866e-03	3.637433e-06	87.974128
32	100	1.331210e-16	9.119511e-04	4.559755e-06	175.448010
64	100	1.776545e-16	1.225948e-03	6.129742e-06	313.226903
128	100	1.929043e-16	1.629829e-03	8.149147e-06	549.750788
256	100	2.092319e-16	2.448082e-03	1.224041e-05	836.573295
512	10	1.927488e-16	3.519058e-04	1.759529e-05	1309.441249
1024	10	2.308607e-16	6.599426e-04	3.299713e-05	1551.650035
2048	10	2.444507e-16	1.117945e-03	5.589724e-05	2015.126477
4096	10	2.483274e-16	2.453089e-03	1.226544e-04	2003.678008
8192	1	2.575054e-16	4.649162e-04	2.324581e-04	2290.649225
16384	1	2.729354e-16	1.062870e-03	5.314350e-04	2158.081369
32768	1	2.911847e-16	2.117872e-03	1.058936e-03	2320.819883

65536	1	2.827259e-16	4.670858e-03	2.335429e-03	2244.932117
131072	1	3.148261e-16	1.029992e-02	5.149961e-03	2163.340857
262144	1	3.221995e-16	5.016613e-02	2.508307e-02	940.593184
524288	1	3.278767e-16	1.089141e-01	5.445707e-02	914.616990
1048576	1	3.286406e-16	2.360680e-01	1.180340e-01	888.367720

Normal end of execution.

03 May 2021 01:37:44 AM 03 May 2021 01:37:43 AM

FFT_OPENMP

C/OpenMP version

Demonstrate an implementation of the Fast Fourier Transform of a complex data vector, using OpenMP for parallel execution.

Number of processors available = 2 Number of threads = 2

Accuracy check:

FFT (FFT (X(1:N)) == N * X(1:N)

N	NITS	Error	Time	Time/Call	MFLOPS
2	1000	7.859082e-17	1.663923e-03	8.319616e-07	12.019785
4	1000	1.209837e-16	3.525972e-03	1.762986e-06	22.688777
8	1000	6.820795e-17	5.301952e-03	2.650976e-06	45.266344
16	1000	1.438671e-16	7.541180e-03	3.770590e-06	84.867359
32	100	1.331210e-16	9.591579e-04	4.795790e-06	166.812985
64	100	1.776545e-16	1.319885e-03	6.599426e-06	290.934382
128	100	1.929043e-16	1.725912e-03	8.629560e-06	519.145791
256	100	2.092319e-16	2.536774e-03	1.268387e-05	807.324680
512	10	1.927488e-16	3.669262e-04	1.834631e-05	1255.838391
1024	10	2.308607e-16	7.100105e-04	3.550053e-05	1442.232134
2048	10	2.444507e-16	1.132965e-03	5.664825e-05	1988.410785
4096	10	2.483274e-16	2.501965e-03	1.250982e-04	1964.536213
8192	1	2.575054e-16	4.730225e-04	2.365112e-04	2251.394147
16384	1	2.729354e-16	1.052141e-03	5.260706e-04	2180.087637
32768	1	2.911847e-16	2.124786e-03	1.062393e-03	2313.267843
65536	1	2.827259e-16	4.734993e-03	2.367496e-03	2214.524930
131072	1	3.148261e-16	1.032305e-02	5.161524e-03	2158.494350
262144	1	3.221995e-16	5.014515e-02	2.507257e-02	940.986730
524288	1	3.278767e-16	1.092560e-01	5.462801e-02	911.754901
1048576	1	3.286406e-16	2.383981e-01	1.191990e-01	879.684955

FFT_OPENMP:

Normal end of execution.

03 May 2021 01:37:44 AM 03 May 2021 01:37:43 AM

C/OpenMP version

Demonstrate an implementation of the Fast Fourier Transform of a complex data vector, using OpenMP for parallel execution.

Number of processors available = 2 Number of threads = 2

Accuracy check:

FFT (FFT (X(1:N))) == N * X(1:N)

N	NITS	Error	Time	Time/Call	MFLOPS
2	1000	7.859082e-17	1.646996e-03	8.234978e-07	12.143324
4	1000	1.209837e-16	3.525972e-03	1.762986e-06	22.688777
8	1000	6.820795e-17	5.299091e-03	2.649546e-06	45.290784
16	1000	1.438671e-16	7.557154e-03	3.778577e-06	84.687969
32	100	1.331210e-16	9.667873e-04	4.833937e-06	165.496582
64	100	1.776545e-16	1.270056e-03	6.350279e-06	302.348927
128	100	1.929043e-16	1.679897e-03	8.399487e-06	533.365936
256	100	2.092319e-16	2.536058e-03	1.268029e-05	807.552373
512	10	1.927488e-16	3.650188e-04	1.825094e-05	1262.400577
1024	10	2.308607e-16	6.558895e-04	3.279448e-05	1561.238566
2048	10	2.444507e-16	1.121998e-03	5.609989e-05	2007.847015
4096	10	2.483274e-16	2.430916e-03	1.215458e-04	2021.954004
8192	1	2.575054e-16	4.601479e-04	2.300739e-04	2314.386522
16384	1	2.729354e-16	1.051903e-03	5.259514e-04	2180.581764
32768	1	2.911847e-16	2.100945e-03	1.050472e-03	2339.519181
65536	1	2.827259e-16	4.652023e-03	2.326012e-03	2254.021377
131072	1	3.148261e-16	1.023388e-02	5.116940e-03	2177.301471
262144	1	3.221995e-16	4.993892e-02	2.496946e-02	944.872710
524288	1	3.278767e-16	1.089821e-01	5.449104e-02	914.046735
1048576	1	3.286406e-16	2.382231e-01	1.191115e-01	880.331174

FFT_OPENMP:

Normal end of execution.

03 May 2021 01:37:44 AM

03 May 2021 01:37:43 AM

FFT_OPENMP

C/OpenMP version

Demonstrate an implementation of the Fast Fourier Transform of a complex data vector, using OpenMP for parallel execution.

Number of processors available = 2 Number of threads = 2

Accuracy check:

FFT (FFT (X(1:N))) == N * X(1:N)

N	NITS	Error	Time	Time/Call	MFLOPS
2	1000	7.859082e-17	1.575947e-03	7.879734e-07	12.690784
4	1000	1.209837e-16	3.341913e-03	1.670957e-06	23.938383
8	1000	6.820795e-17	5.102873e-03	2.551436e-06	47.032330
16	1000	1.438671e-16	7.205009e-03	3.602505e-06	88.827087
32	100	1.331210e-16	9.169579e-04	4.584789e-06	174.490026
64	100	1.776545e-16	1.221895e-03	6.109476e-06	314.265900
128	100	1.929043e-16	1.611948e-03	8.059740e-06	555.849192
256	100	2.092319e-16	2.394915e-03	1.197457e-05	855.145305
512	10	1.927488e-16	3.650188e-04	1.825094e-05	1262.400577
1024	10	2.308607e-16	6.501675e-04	3.250837e-05	1574.978840
2048	10	2.444507e-16	1.127005e-03	5.635023e-05	1998.927026
4096	10	2.483274e-16	2.471924e-03	1.235962e-04	1988.410785
8192	1	2.575054e-16	4.708767e-04	2.354383e-04	2261.653665
16384	1	2.729354e-16	1.083136e-03	5.415678e-04	2117.703443
32768	1	2.911847e-16	2.137899e-03	1.068950e-03	2299.079182
65536	1	2.827259e-16	4.796982e-03	2.398491e-03	2185.907809
131072	1	3.148261e-16	1.045704e-02	5.228519e-03	2130.836488
262144	1	3.221995e-16	5.067897e-02	2.533948e-02	931.074990
524288	1	3.278767e-16	1.102531e-01	5.512655e-02	903.509506
1048576	1	3.286406e-16	2.370181e-01	1.185091e-01	884.806657

Normal end of execution.

03 May 2021 01:37:44 AM

Outputs for 16 processors

2.2. Analysis

2.2.1. Exercise 1

For this exercise, we got practice in working with multiple processors. We assigned the program to execute on both 4, 8 and 16 processors and saw that command executed on each processor and got the "Hello World from processor n" message. This was quite simple and was incresting to learn how compiling with the Intel C compiler worked.

2.2.2. Exercise 2

Similar to the last exercise, we added a couple lines to the communicate.c file and used the Intel C compiler to have our program communicate between the processors and output the results of running with 4, 8 and 16 processors.

2.2.3. Exercise 3

This exercise was a little more different, we used a flag to compile our program. We simply had to write our equation that was given and compile using the -fopenmp flag.

2.2.4. Exercise 4

Similar to the last exercise, we used the -fopenmp flag while compiling the code.

Chapter 3

Conclusion

3.1. Summary

In this lab, we continued to streighten our skills with UNIX commands via the HPC, as well as learning about parallelization and utilizing multiple processors for a task.

3.2. Reflection

This lab was simpler than other ones. I wish we had fewer labs where we were just given the code, because there was less learning and more "copy-paste till it works" involved. While I understand that to fully learn these tasks takes time, it's still something I wish I had the time to learn.