PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

FACULTAD DE MATEMATICAS

DEPARTAMENTO DE MATEMATICA

Primer Semestre 2015

MAT1610 – Cálculo 1 Interrogación 2

1. a) Sea f función derivable en $[0, \infty)$ tal que $\forall x \in [0, \infty)(f(2x) = 2f(x))$. Demuestre que:

$$\forall x \in (0, \infty) \,\exists c > 0 \, \Big(f'(c) \, = \, \frac{f(x)}{x} \Big).$$

Solución 1

La función f es derivable en el intervalo [x, 2x] para $x \ge 0$ por lo tanto, en ese intervalo cumple con las hipótesis del TVM, es decir:

(1 pto)

$$\exists c \in (x, 2x) \Big(f'(c) = \frac{f(2x) - f(x)}{2x - x} = \frac{2f(x) - f(x)}{x} \Big)$$

Por lo tanto,

$$\forall x \in (0, \infty) \exists c > 0 \left(f'(c) = \frac{f(x)}{x} \right)$$

(2 pts)

Solución 2

Como
$$f(0) = f(2 \cdot 0) = 2f(0)$$
 entonces $f(0) = 0$. (0.5 pts)

Sea x > 0 entonces por hipótesis f es derivable en [0, x] y por lo tanto cumple con las hipótesis del TVM,

(1 pto)

luego

$$\exists c \in (0, x) \Big(f'(c) = \frac{f(x) - f(0)}{x - 0} = \frac{f(x)}{x} \Big).$$

Es decir

$$\forall x \in (0, \infty) \,\exists c > 0 \, \Big(f'(c) = \frac{f(x)}{x} \Big).$$

b) Si f es función dos veces derivable en [a,b] y tal que f(a)=f(b)=0 y f(c)>0 con a< c< b, demuestre que

$$\exists \alpha \in (a, b) (f''(\alpha) < 0).$$

Solución

Como f es función dos veces derivable en [a, b] y a < c < b, entonces f cumple con las hipótesis del TVM en ([a, c] y en [c, b] a saber:

(1 pto)

• $\exists \alpha_1 \in (a, c) \left(f'(\alpha_1) = \frac{f(c) - f(a)}{c - a} \right) = \frac{f(c)}{c - a} > 0.(*)$

• $\exists \alpha_2 \in (c, b) \left(f'(\alpha_2) = \frac{f(b) - f(c)}{b - c} \right) = -\frac{f(c)}{b - c} < 0.(**)$

(1 pto)

Como f' es derivable en [a, b], se cumplen las hipótesis del TVM para f' tenemos que:

$$\exists \alpha \in (\alpha_1, \alpha_2) \subset (a, b) \left(f'(\alpha) = \frac{f'(\alpha_2) - f'(\alpha_1)}{\alpha_2 - \alpha_1} \right) < 0$$

En el último paso utilizamos (*) y (**). (1 pto)

2. Determine el punto de la parábola $y = 1 - x^2$, que está ubicado en el primer cuadrante, de modo que la tangente en dicho punto, forme un triángulo de área mínima con los ejes coordenados.

Solución

La ecuación de la recta tangente en el pto. (x_0, y_0) de la parábola con $x_0, y_0 > 0$, es:

$$y - (1 - x_0^2) = -2x_0(x - x_0).$$

(1 pto)

Para deteerminar el

area del triángulo, debemos intersectar la recta tangente con el eje Y para obtener la altura y luego con el eje X para obtener la base.

- \bullet Intersección con el eje $Y:x\,=\,0$ nos dá el punto $A:(0,1+x_0^2\,).$
- Intersección con el eje X: y = 0 nos dá el punto $B: (\frac{1+x_0^2}{2x_0}, 0)$.

(1 pto)

Usando la distancia de A al origen, tenemos la altura del triángulo y usando la distancia de B al origen tenemos la base del triángulo, luego:

$$A(x_0) = \frac{(1+x_0^2)^2}{4x_0}, x > 0$$

(1 pto)

Luego para determinar los puntos críticos debemos derivar la función área:

$$A'(x_0) = \frac{(x_0^2 + 1)(3x_0^2 - 1)}{4x_0^2}$$

(1 pto)

Los puntos críticos son $0, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}$ sin embargo se descartan $-\frac{1}{\sqrt{3}}$ porque el punto tiene que estar en el primer cuadrante y también 0 porque no está en el dominio de la función área.

(1 pto)

Podemos ver que si

- Si $x_0 \in \left(0, \frac{1}{\sqrt{3}}, \right) A'(x_0) < 0$, lo que significa que la función decrece antes de llegar a $x_0 = \frac{1}{\sqrt{3}}$.
- Si $x_0 \in \left(\frac{1}{\sqrt{3}}, \infty\right)$, $A'(x_0) > 0$, lo que significa que la función crece después del $x_0 = \frac{1}{\sqrt{3}}$.

Por lo tanto, en $x_0 = \frac{1}{\sqrt{3}}$ se tiene el área mínima. Luego el punto buscado es:

$$\left(\frac{1}{\sqrt{3}}, \frac{2}{3}\right).$$

(1 pto)

3. Calcule

a)
$$\lim_{x \to 0} \frac{(\arcsin(x))^2}{1 - \cos(3x)}$$

Solución

Este es un límite de la forma indeterminada $\frac{0}{0}$, luego si es que este límite existe, por L'Hospital, debe ser igual a:

$$\lim_{x \to 0} \frac{2 \arcsin(x)}{3\sqrt{1 - x^2} \sin(3x)}$$

(1.5 pts)

Nuevamente estamos en la situación de $\frac{0}{0}$ por lo tanto, por L'Hospital nuevamente, si el límite original existe, entonces es igual a:

$$\lim_{x \to 0} \frac{\frac{2}{\sqrt{1 - x^2}}}{-3x \sin(3x)(1 - x^2)^{-1/2} + 9\sqrt{1 - x^2}\cos(3x)} = \frac{2}{9}$$

(1.5 pto)

Por lo tanto:

$$\lim_{x \to 0} \frac{(\arcsin(x))^2}{1 - \cos(3x)} = \frac{2}{9}$$

b)
$$\lim_{x \to 0^+} x^{\frac{1}{\ln(e^x - 1)}}$$

Solución

Sea
$$y = x^{\frac{1}{\ln(e^x - 1)}}$$

Entonces
$$ln(y) = \frac{ln(x)}{ln(e^x - 1)}$$

Luego: $\lim_{x\to 0^+}\ln(y)=\lim_{x\to 0^+}\frac{\ln(x)}{\ln(e^x-1)}$ que es un límite de la forma: $\frac{\infty}{\infty}$. (1 **pto**)

Luego, si ese límite existe, por L'Hospital, debe ser igual a:

$$\lim_{x \to 0^+} \frac{e^x - 1}{xe^x},$$

el que es de la forma $\frac{0}{0}$, luego aplicando nuevamente L'Hospital, el límite que estamos calculando, de existir, debe ser igual a:

$$\lim_{x \to 0^+} \frac{e^x}{e^x + xe^x} = \lim_{x \to 0^+} \frac{1}{1+x} = 1$$

(1 pto)

Por lo tanto, utilizando la continuidad de la función ln(x), tenemos:

$$\lim_{x \to 0^+} \ln(y) \, = \, \ln(\lim_{x \to 0^+} y \, = \, 1$$

(0.5 pts)

Por lo tanto, aplicando exponencial a cada lado, obtenemos:

$$\lim_{x \to 0^+} x^{\frac{1}{\ln(e^x - 1)}} = e^1 = e.$$

(0.5 pts)

4. Grafique la curva $y = 4\arctan(x) - \frac{x^3}{3} - x$ indicando:

dominio, asíntotas horizontales y verticales, intervalos de crecimiento y de decrecimiento, máximos y mínimos, sentido de concavidad y puntos de inflexión.

Solución

El dominio de la función es $]-\infty,\infty[$.

(0.5 pts)

Para encontrar asintotas horizontales se debe calcular

$$\lim_{x\to\infty} 4\arctan(x) - \frac{x^3}{3} - x = -\infty \quad \text{y} \quad \lim_{x\to-\infty} 4\arctan(x) - \frac{x^3}{3} - x = \infty$$

luego no posee asintotas horizontales. Esta función no posee asintotas verticales porque su dominio es todo \mathbb{R} .

(0.5 pts)

Para encontrar los valores críticos, se realiza

$$f'(x) = 4\frac{1}{1+x^2} - x^2 - 1 = 0 \to \frac{-(x^2+3)(x^2-1)}{1+x^2} = 0 \to x = -1 \lor x = 1$$

(1 pto)

Para analizar los intervalos de crecimiento analizamos el signo de la primera derivada: La derivada es negativa en $(-\infty, -1) \cup (1, \infty)$ por lo cual la función es decreciente en estos intervalos.

La derivada es positiva en (-1,1) por lo cual la función es creciente en este intervalo.

(1 pto)

Y así en el punto $(-1, -\pi + \frac{4}{3})$ se encuentra un mínimo local y en el punto $(1, \pi - \frac{4}{3})$ se encuentra un máximo local.

(0.5 pts)

Para encontrar los puntos de inflexión realizamos

$$f''(x) = \frac{-2x(x^4 + 2x^2 + 5)}{(1+x^2)^2} = 0 \to x = 0$$

Luego en el punto (0,0) se encuentra un punto de inflexión y la segunda derivada es positiva en el intervalo $(-\infty,0)$ luego en este intervalo la función es concava hacia arriba y es negativa en el intervalo $(0,\infty)$ luego en este intervalo la función es concava hacia abajo. (1 pto)

Así la gráfica esta dada por

Duración: 2 horas. Sin uso de calculadoras. Recuerde escribir sólo con tinta indeleble y no usar corrector.