Library	Pros	Cons
PyOD	- Wide range of anomaly detection algorithms.	- Requires understanding of various algorithms.
	- Good documentation and community support.	- Might require tuning for specific datasets.
ADTK	- Simple API for quick anomaly detection tasks.	- Limited range of algorithms compared to PyOD.
	- Designed for easy integration with time series data.	- Less flexible for complex anomaly patterns.
Prophet	- Automatic detection of seasonal patterns.	- Focuses more on forecasting than anomaly detection.
	- Robust to missing data and shifts in trend.	- Limited to time series data.
Luminol	- Open-source with scalable anomaly detection algorithms.	- Requires significant setup and configuration.
	- Integrates well with existing data pipelines.	- Steeper learning curve compared to simpler libraries.
Skyline	- Built-in anomaly detection with anomaly scoring.	- Limited customization compared to other libraries.
	- Designed for real-time anomaly detection.	- May require more resources for larger datasets.
Elastic	- Integrated with Elasticsearch for scalable data handling.	- Steeper learning curve if not familiar with Elastic.
	- Offers powerful querying and visualization capabilities.	- Requires infrastructure setup (Elasticsearch stack).
Kats	- Facebook's library with built-in anomaly detection models.	- Focuses primarily on time series forecasting.
	- Includes state-of-the-art models like F NN.	- Limited anomaly detection algorithms compared to PyOD.

- Elastic : good for anomaly detection, but suitable with opensearch setup. (paid)
- Kats focused more on time series forecasting, though also provides some built in anomaly detection.
- prophet primary focus on forecasting, though handles data well.
- Skyline setup is difficult, plus for large scale systems, requires more resources.
- luminol both historical and real time. good for anomaly (main focus)
- ADTK, PyOD: both good as offers multiple algos for anomaly detection.
- PyOD: Widest range of anomaly detection algorithms and strong community support.

- ADTK: Simple API designed for quick anomaly detection tasks, particularly suitable for time series data.
- PyOD, ADTK, Luminol: python based, so suitable with prometheus and grafana setup.

So overall, **PyOD**, **ADTK**, **Luminol** are best options with prometheus, grafana setup.

And **Elastic** with opensearch setup.