ASSIGNED: Apr. 04, 2013. **READ:** Sects. 10.3 & 11.1-11.4.

DUE DATE: Apr. 11, 2013. **TOPICS:** FIR and IIR filter design.

Please box your answers. Show your work. Turn in all Matlab plots and Matlab code.

[20] 1. IIR filter design of a digital integrator. Let $H_a(s) = \frac{1}{s}$ and T=2.

- [5] (a) Compute $H_a(j\Omega)$ of the analog integrator $H_a(s)$. Compute $|H_a(j0)|$ and $|H_a(j\infty)|$.
- [5] (b) Use bilinear transform to design a digital integrator H(z) & its difference equation.
- [5] (c) Compute $H(e^{j\omega})$ of the digital integrator H(z). Compute $|H(e^{j0})|$ and $|H(e^{j\pi})|$. Express $H(e^{j\omega})$ in terms of $\sin(\omega/2)$ and $\cos(\omega/2)$ by factoring out $\frac{e^{j\omega/2}}{e^{j\omega/2}}$.
- [5] (d) Compare your answers to (a) and (c) for small ω and small Ω .

[25] 2. IIR filter design of a 1-pole filter. Let $H_a(s) = \frac{a}{s+a}$ and T=2.

- [5] (a) Compute $H_a(j\Omega)$ of the analog 1-pole filter $H_a(s)$. Compute $|H_a(j0)|$ and $|H_a(j\infty)|$.
- [5] (b) Use bilinear transform to design a digital 1-pole filter H(z) (it will have a zero).
- [5] (c) Compute $H(e^{j\omega})$ of the digital 1-pole filter. Compute $|H(e^{j0})|$ and $|H(e^{j\pi})|$. Express $H(e^{j\omega})$ in terms of $\sin(\omega/2)$ and $\cos(\omega/2)$ by factoring out $\frac{e^{j\omega/2}}{e^{j\omega/2}}$.
- [5] (d) Compare your answers to (a) and (c) for small ω and small Ω .
- [5] (e) Let $H_a(s) = \frac{b}{s+b}$ and T=2. Choose b so that H(z) has its pole at -a.

[15] 3. FIR filter design of a digital differentiator. Let $H_a(s)=s$.

- [5] (a) Using MATLAB, plot the gain $|H(e^{j\omega})|$ of a digital differentiator of length=21 designed using the (Hamming) window method. For $h_{\text{IDEAL}}[n]$, see lecture.
- [5] (b) Using MATLAB, plot the gain $|H(e^{j\omega})|$ of a digital differentiator of length=21 designed using frequency sampling with $|H(e^{j\omega})| = |\omega|$ for $\omega = 2\pi \frac{k}{21}$ for $|k| \le 10$.
- [5] (c) Compare (a) and (b) to the gain of the ideal differentiator $|H_a(j\overline{\omega})| = |j\omega| = |\omega|$. Plot both gains $|H(e^{j\omega})|$ for $0 \le \omega < 2\pi$ (i.e., don't use MATLAB's fftshift).

[5] 4. FIR filter design of a digital differentiator.

Use firpm to design a digital differentiator of length=60.

Specs: Passband: $0 \le \omega \le 0.2\pi$. Stopband: $0.3\pi \le \omega \le \pi$.

Hint: Your answer should agree with page 654 of the 1997 ed of your text.

Note: Your answer should consist of *just a single MATLAB command*.

[15] 5. Download p9.mat. In MATLAB, type >>load p9.mat to get the sampled signal Y.

- [5] (a) Plot Y and its spectrum. There should be some spikes in the latter.
- [5] (b) Y came from Y=filter([1],[1 zeros(1,N) 0.99],X); From the location of the spikes in the spectrum, determine N.
- [5] (c) Recover X from Y using X=filter([1 zeros(1,N) 0.99],[1],Y); **Hint:** $|x[n]| \le 1$ everywhere. We will analyze X in #6 below.

Put the 2 plots from #3 and the 2 from #5 in a (2×2) array using subplot.

[20] 6. Segment X into 8 segments of length 128 each (X(1:128),x(129:256) etc.)

Compute the DFT of each segment using a Hamming window. Plot the 1st 64 points.

Describe what the signal is in terms of how its spectrum changes over time.

Put the 8 plots for this problem in a (3×3) array using subplot.

[&]quot;An elephant is a mouse built to government specifications."