Progetto d'esame

Elaborazione delle Immagini

2017-2018

Modalità

- Svolgimento del progetto
 - Gruppi di max 2 persone
 - Matlab / C / C++ / Java / …
 - Presentazione PPT e discussione del progetto
 - (Eventuale) test del progetto su dati nuovi

Obiettivo

- Riconoscimento degli schemi del gioco degli Scacchi
 - Idea: una applicazione che, fatta una foto allo schema, è in grado di riconoscere la distribuzione dei pezzi e risolve lo schema in automatico

Preliminari

- Usate alcune delle immagini che vi sono state date per creare l'algoritmo
 - Gli schemi sono stati fotografati con diversi smartphone
 - Ci sono diverse condizioni di acquisizione
 - Potete crearne anche di vostre
- Di ogni immagine dovete preventivamente creare un file di testo che contiene lo schema raffigurato. Questi file saranno la vostra groundtruth.
 - Il file deve avere lo stesso nome dell'immagine. Il contenuto deve essere una riga di testo scritta nel formato FEN (Forsyth–Edwards Notation, https://it.wikipedia.org/wiki/Notazione_Forsyth-Edwards). Esempio:

rnbqkbnr/pp1ppppp/8/2p5/4P3/8/PPPP1PPP/RNBQKBNRU-U0U1

 — □ è uno spazio. Considerate la codifica corrispondente ad una posizione iniziale di gioco (i caratteri in rosso sono costanti in tutte le stringhe)

Requisiti (1)

- Sviluppare una pipeline di elaborazione per localizzare lo schema nell'immagine
 - Deve essere evidenziata sull'immagine la regione
 - Deve essere sufficientemente robusta rispetto alle possibili diverse caratteristiche delle acquisizioni (ombre, luci, prospettiva, rumore, ...)
- Sviluppare una pipeline di elaborazione per localizzare le singole cifre e gli spazi nelle celle
 - Potrebbe essere necessario "raddrizzare" lo schema
- Sviluppare un riconoscitore/classificatore dei singoli pezzi
 - Se vi servono dei template dei pezzi, cercate le <u>forme giuste</u> nel sito <u>http://www.enpassant.dk/chess/fonteng.htm</u>
 - Stampare a console la stringa che codifica lo schema nel formato della groundtruth

Requisiti (2)

- Usate la groundtruth per valutare la bontà dell'approccio utilizzato
- Deve essere chiaro quanto/quando l'approccio funziona e quanto/quando sbaglia
 - Utilizzate se necessario la matrice di confusione come strumento per valutare i singoli errori
 - I risultati devono essere riportati sia per singola immagine che per l'intero dataset
- L'analisi dei risultati è una parte importante della presentazione da allegare insieme al progetto

Requisiti (3)

 Una volta che avete ottenuto la stringa FEN dello schema, provate ad utilizzare uno dei tanti solutori che trovate online. Ad esempio: https://chesssuggest.com/ https://lichess.org/editor http://analysis.cpuchess.com/

Importate la vostra stringa FEN e guardate come si svolge la partita!

Implemetazione

- Potete (dovete) documentarvi in qualunque modo su come si può risolvere il problema
 - Evitando di plagiare soluzioni complete...
- Potete sviluppare il codice da zero oppure potete appoggiarvi a codice già esistente
 - In entrambi i casi DOVETE SAPERE ESATTAMENTE come funziona il codice utilizzato e perchè
 - Evitando di plagiare soluzioni complete...
- Usate la groundtruth per valutare la bontà dell'approccio utilizzato

Consegna (1)

- Dovete consegnare un file zip (con nome dei membri del gruppo) contenente:
 - Il codice sviluppato
 - Una presentazione che illustra la logica dell'approccio usato
 - Il dataset con le relative groundtruth, anche quello eventualmente acquisito da voi
- Appoggiatevi a siti di condivisione file (es. Dropbox) per mandarci via mail il link da dove scaricare il file del progetto
- La consegna del materiale deve avvenire almeno una settimana prima della discussione del progetto

Consegna (2)

- La presentazione (<u>per una discussione di 15 minuti max</u>) deve contenere
 - Nomi dei membri del gruppo
 - Descrizione dell'approccio seguito
 - Risultati
 - Analisi dei risultati
 - Una slide con dettagliato il contributo di ciascun membro del gruppo (e relativa percentuale sull'intero progetto)
- Dalla presentazione si deve evincere:
 - Come sono fatte le pipeline di elaborazione (usate diagrammi di flusso e mettete le immagini esplicative dei risultati intermedi)
 - Le tecniche usate e i perchè delle tecniche usate
 - Come sono state trovate le varie soglie e/o I parametri degli algoritmi
 - Analisi critica dei risultati

Valutazione

- Dopo la presentazioni ci saranno domande ai singoli membri del gruppo sulle scelte effettuate.
 - 5-10 minuti di domande.
 - Le domande servono per verificare l'effettivo coinvolgimento nel progetto (tutti devono poter rispondere su tutto) e il ragionamento che ha guidato le scelte.
 - Quindi cose del tipo, perché avete scelto il metodo a e non b. In cosa differiscono i metodi....
- Sul progetto, i voti dei membri del gruppo possono differire.