Disclaimer

organizations with which the authors are employed/affiliated. reflecting the position of the regulatory agency/agencies or may not be understood or quoted as being made on behalf of or The views expressed here are the personal views of the authors and

two-stage meta-analysis **IPD-MA of RCTs:**

- Valentijn de Jong^{1,2}, PhD

 1. Julius Center for Health Sciences and Primary Care
 2. Data Analytics and Methods Task Force, European Medicines Agency I

Guidance paper

Received 21 November 2014,	Tutorial
Revised 15 May 2015,	
Accepted 16 May 2015	
Published online in Wiley Online Library	Research Synthesis Methods

(wileyonlinelibrary.com) DOI: 10.1002/jrsm.1160

Get real in individual participant data (IPD) meta-analysis: a review of the methodology

Thomas P. A. Debray, a.b.* Karel G. M. Moons, a.b Gert van Valkenhoef, Corestis Efthimiou, Noemi Hummel, Rolf H. H. Groenwold, Johannes B. Reitsmaa.b and on behalf of the GetReal methods review group

Remainder of this lecture

Overview of statistical methods

- Summarizing treatment effect(s)
- Investigating subgroups
- Exploring treatment effect modifiers

Two-stage IPD-MA

Part I: Introduction

Approaches for IPD-MA

Two alternate approaches exist to summarize the evidence from multiple studies:

Two-stage meta-analysis

Analyze each study separately and pool the resulting estimates using standard meta-analytic techniques

One-stage meta-analysis

a statistical model that accounts for clustering among Analyze IPD from all studies simultaneously by adopting

Generating aggregate data

- Continuous outcomes
- Mean treatment difference (linear regression)
- Binary outcomes
- Odds ratio (logistic regression)
- Relative risk (loglinear regression)
- Time-to-event data
- Hazard ratio (Cox regression)

The procedure

Step 1: Analyze each trial individually to reduce the IPD to relevant summary data (aggregate data; AD)

- Estimates of relative treatment effect
- Estimates of treatment-covariate interaction

with corresponding estimates of precision

meta-analysis methods Step 2: Summarize the generated AD using traditional

- Fixed effect
- Random effects

Clinical example

Meta-analysis of antidepressant trials

- 5 randomized trials
- Patients diagnosed with major depressive disorder
- Tricyclic antidepressant (TCA) versus Placebo (Plac)
- Outcome measurements
- Hamilton Depression (HAMD) score, ranging from 0 to 54
- Measured at baseline and after 6 weeks

Generating aggregate data in RCTs

Treatment effect estimates should be adjusted for a priori specified covariates.

- Randomization does not ensure balance for any particular covariate
- Covariate adjustment results in greater efficiency for testing treatment effect

Refs:

https://doi.org/10.2307/1403444 https://doi.org/10.1016/j.jclinepi.2003.09.014 https://doi.org/10.1002/jrsm.1384

Clinical example

Clinical example

How would you analyze the IPD from the antidepressant trials?

Patient	Study	Treatment	HAMD0	HAMD6
1	1	Placebo	26	15
2	₽	TCA	24	18
ω	1	Placebo	29	19
:				
439	5	TCA	21	22
440	Л	placebo	24	15

Clinical example

Mean treatment difference of HAMD score after 6 weeks

ъ	4	ω	2	1	Trial
16	63	78	53	51	z
-0.97	-3.34	-4.67	3.40	-6.90	δ
2.16	1.75	1.57	1.03	2.05	SE(δ)

What are possible reasons for differences in estimated treatment effects?

Fixed effect meta-analysis

Clinical example

Summarizing the aggregate data

If the primary interest is to obtain summary estimates of comparative treatment effect, we have 2 options to summarize estimates of δ :

Fixed effect meta-analysis

treatment effect Assumes that all trials estimate the same underlying

Random effects meta-analysis

Assumes that there is a distinct treatment effect in each trial due to the presence of between-study heterogeneity.

Fixed effect meta-analysis

effect is the same. The only source of variation is estimation error (ϵ) due to limited sample size. It is assumed that for all trials, the underlying treatment

Fixed effect meta-analysis

effect is the same It is assumed that for all trials, the underlying treatment

Fixed effect meta-analysis

We can derive the fixed effect summary \widehat{D}_F as follows:

$$\widehat{D}_F = \frac{\sum_{k=1}^K \widehat{\delta}_k w_k}{\sum_{k=1}^K w_k} \quad \text{and} \quad \text{var}(\widehat{D}_F) = \frac{1}{\sum_{k=1}^K w_k}$$

with $w_k = \frac{1}{V(\widehat{\delta}_k)}$ and K the total number of trials.

Fixed effect meta-analysis

treatment effects, weighted by their precision: The pooled estimate is an average of all comparative

$$\hat{\delta}_k \sim N\left(D_F, V(\hat{\delta}_k)\right)$$

Where δ_k represents the estimated treatment effect of study k, with error variance $V(\delta_k)$. The pooled treatment effect is given by D_F .

Solution

$$\widehat{D}_F = \frac{\left(\frac{-6.42}{1.35^2} + \frac{1.24}{1.22^2} + \frac{-6.88}{1.04^2} + \frac{-3.22}{1.50^2} + \frac{-0.90}{3.09^2}\right)}{\left(1.35^{-2} + 1.22^{-2} + 1.04^{-2} + 1.50^{-2} + 3.09^{-2}\right)} = -3.92$$

$$SE(\hat{D}_F) = \sqrt{\frac{1}{(1.35^{-2} + 1.22^{-2} + 1.04^{-2} + 1.50^{-2} + 3.09^{-2})}} = 0.61$$

Random effects meta-analysis

Clinical example

Example

Trial

SE(δ)1.35

Do you think there is evidence of between-study heterogeneity?

How to perform a fixed effect meta-analysis on the comparative treatment effects of TCA versus Placebo?

63 16

-3.22 -6.88 1.24 -6.42

1.50 3.09 1.04 1.22

51 53 78

Random effects meta-analysis

effects. We are interested in estimating the mean and variance of this distribution It is assumed that for all trials, there is a distribution of true

Recall: fixed effect meta-analysis

effect is the same It is assumed that for all trials, the underlying treatment

Random effects meta-analysis

We now have:

$$\frac{\hat{\theta}_k \sim N\left(\delta_k, V(\hat{\theta}_k)\right)}{\delta_k \sim N(D, \tau^2)}$$

- $V(\theta_k)$ the within-study error variance
- $V(D) = \tau^2$ the between-study variance

Random effects meta-analysis

The meta-analysis accounts for 2 sources of variation:

- Estimation error within studies (ε)
- True variation in effect sizes between studies (ζ)

Clinical example

Mean treatment difference of HAMD score after 6 weeks

Random effects	Fixed effects	Meta-analysis
-3.44	-3.92	\widehat{D}
1.60	0.61	SE(D)
11.05	0	$\hat{ au}^2$

Do you still think there is evidence of relative efficacy?

Random effects meta-analysis

We can derive the summary treatment effect as follows:

$$\widehat{D}_R = rac{\sum_{k=1}^K \widehat{\delta}_k w_k^*}{\sum_{k=1}^K w_k^*}$$
 and $\operatorname{var}(\widehat{D}_R) = rac{1}{\sum_{k=1}^K w_k^*}$

with
$$w_k^* = \frac{1}{V(\hat{\delta}_k) + \hat{\tau}^2}$$

In the DerSimonian and Laird approach, τ^2 is estimated from the fixed effect meta-analysis model: $\hat{\tau}^2 = \frac{Q-df}{c}$, $Q = \sum_{k=1}^K \frac{\left(\delta_k - \mathcal{D}_F\right)^2}{V(\delta_k)}$, df = K-1 and $c = \sum_{k=1}^K w_k - \left(\sum_{k=1}^K w_k^2 \int_{k=1}^K w_k\right)$

Prediction interval

We can derive an approximate 95% prediction interval, which provides a range for the *true* treatment effect in a new study population:

$$\widehat{D}_R \pm t_{K-2} \sqrt{\widehat{\tau}^2 + \operatorname{var}(\widehat{D}_R)}$$

 t_{K-2} is the $100(1-\alpha/2)$ percentile of the t distribution with K-2 degrees of freedom, where K is the number of studies in the meta-analysis and $\alpha/2$ is usually chosen as 0.05/2, to give a 5% significance level and thus 95% prediction interval.

Note that the prediction interval can be calculated more accurately within a Bayesian framework (as it allows for estimation error of $\hat{\tau}^2$)

Random effects meta-analysis

Is it sufficient to simply estimate \hat{D}_R and its standard error?

 Usually not: the summary estimate (and its confidence interval) does not give any indication about the possible impact of between-study heterogeneity

Solution

Mean treatment difference of HAMD score after 6 weeks

Random effects	Fixed effects	Meta-analysis
-3.44	-3.92	D
1.60	0.61	$SE(\widehat{D})$
11.05	0	$\hat{ au}^2$

$$-3.44 \pm t_3^{0.05/2} \sqrt{11.05 + 1.60^2} = [-15.19; 8.30]$$

Example

Mean treatment difference of HAMD score after 6 weeks

Random effects	Fixed effect	Meta-analysis
5	5	K
-2.67	-1.47	D
1.58	0.69	$SE(\widehat{D})$
9.5	0	$\hat{ au}^2$

Calculate the 95% prediction interval for the relative treatment effect of TCA.

Note

What if we pool trials with slightly different interventions, and the estimated effect is statistically significant?

- $-H_0$ = For each of the pooled trials, the treatment is equal to control.
- $-\ H_{\rm a}$ = At least one of the pooled interventions is different from control. (Not all of them!)
- Senn S, Schmitz S, Schritz A, Araujo A. A note regarding alternative explanations for heterogeneity in meta-analysis. Statistic in Medicine. 2022;41(22):4501-9. https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.9403
- Senn SJ. Overstating the evidence: double counting in meta-analysis and related problems. BMC Med Res Methodol.

Possible causes of heterogeneity

- Publication bias
- Variation in study protocols
- Variation in study quality
- Differences in interventions received (e.g. dose)
- Differences in follow-up length
- Treatment-covariate interaction

Treatment-covariate interaction

The relative treatment effect varies according to the level of a covariate

- Trial-level interaction: interaction between treatment and a study-level
- Patient-level interaction: interaction between treatment and a patient-level covariate (<u>effect modification</u>)

Other causes of heterogeneity

Non-collapsibility: Odds ratios (and hazard ratios) differ depending on the choice of covariate adjustment, levels of the exposure compared, and population over which the comparison is made.

Ref: https://doi.org/10.1080/03610926.2015.1006778

Meta-regression

- Step 1: reduce the IPD to aggregate data
- Estimate relative treatment effect
- Extract study characteristics (e.g. level of blinding)
- Calculate summarized subject-level characteristic (e.g. mean age)
- Step 2: meta-analyze the aggregate data using traditional meta-analysis models that adjust for covariates.

Investigating heterogeneity

2 approaches possible in two-stage meta-analysis

- Meta-regression
- Pooling of within-trial covariate interactions

Meta-regression

The relationship between the log risk ratio for postoperative nausea and vomiting from nitrous oxide (InRR PONV_{oco)} and duration of exposure to nitrous oxide (N₂O), as a bubble plot. The meta-regression line of best fit (linear prediction) and upper and lower 95% CIs are shown. Bubble size is inversely proportional to the standard error of the log risk ratio in each study.

Ref. Nitrous Oxide-related Postoperative Nausea and Yomiting Depends on Duration of Exposure Anesthesiology. 2014;120(5):1137-1145.

Meta-regression

The meta-analysis model is extended with a (usually centered) study-level covariate S_k :

$$\hat{\delta}_{k} \sim N\left(\mu_{k}, V(\hat{\delta}_{k})\right)
\mu_{k} = m_{k} + \beta S_{k}
m_{k} \sim N(M, \tau^{2})$$

The summary estimate M is now dependent on the value of S

Ecological bias

Fig 3 |An example of ecological bias within an aggregate data meta-analysis

Meta-regression

Characteristics

- Investigates heterogeneity due to trial-level interaction (modif. of treatment effect by a specific <u>study-level covariate</u>)
- Low statistical power for identifying effect modifiers
- May lead to ecological (aggregation) bias
- Associations between aggregated values may not be representative for individual subjects

Pooling of within-trial covariate interactions

Step 1: In each trial, estimate the following model:

$$HAMD6_i = \alpha + \delta TREAT_i + \gamma HAMD0_i + \theta TREAT_i HAMD0_i + \varepsilon_i$$

• Meta-analysis of $\hat{\delta}$ using traditional meta-analysis methods.

Pooling of within-trial covariate interactions

It is generally recommended to use IPD and investigate the presence of <u>subject-level</u> interaction

• Step 1:

- Estimate relative treatment effect, adjusted for interaction effect with modifier of interest
- Step 2:
- Meta-analyze estimates of relative treatment effect (and interaction effect) using traditional meta-analysis methods.

Fixed effect versus random effect

Arguments against the use of fixed effect

 It is often unrealistic to assume that all studies estimate the same treatment effect

Recommendations

Fixed effect versus random effects

a random effects meta-analysis We need advanced estimation methods for performing

- Heterogeneity
- Confidence intervals

anything, it is most likely that you are using obsolete !! For most software packages, if you didn't specify methods

Recommendations

<u>#</u>1

Identify studies through systematic review

Fixed effect versus random effects

Arguments against the use of random effects

 Interpretation of summary estimate Potential presence of publication bias Down-weighting of larger studies

It turns out many options already exist!!

Estimating heterogeneity

- DerSimonian & Laird (DL)
- Maximum Likelihood (ML)
- Restricted Maximum Likelihood (REML)
- Paule & Mandel (PM)
- Hartung & Makambi (HM)
- Sidik & Jonkman (SJ)
- Bayesian model

Recommendations

#2

If heterogeneity is present

- The random-effects estimate should be interpreted differently from the fixed effect estimate
- Focusing on the mean is insufficient, and the effect of (e.g. prediction intervals) heterogeneity should be quantified
- Explore possible causes of heterogeneity (more about this later!)

Recommendations

#4

When calculating confidence intervals

- Adjust the standard error of the summary estimate using the method proposed by Hartung-Knapp-Sidik-Jonkman
- Use a Student T distribution (instead of a Normal distribution)

IntHout et al. The Hartung-Knapp Sidik-Jonkman method for random effects meta-analysis is striaightforward and considerably outperforms the standard DerSimonian-Laird method. *BMC Med Res Meth* 2014

Recommendations

#2

Allow for heterogeneity

Recommendations

#3

- Adopt the REML or Paule–Mandel method for estimating the heterogeneity variance τ^2
- Use this variance to estimate the summary effect

Recommendations

#5

Forget about #3 and #4, and implement a Bayesian metaanalysis model instead

