Klasyfikacja szeregów czasowych dla małych danych

Gabriela Bocheńska, Aleksandra Stachniak

1 Wstęp

Celem projektu jest analiza i klasyfikacja szeregów czasowych o małej liczbie próbek, związanych z diagnostyką zaburzeń neurologicznych i psychicznych, takich jak depresja, schizofrenia i ADHD. Analiza opiera się na trzech dostępnych zbiorach danych, które zawierają jednowymiarowe szeregi czasowe przedstawiające aktywność dobową pacjentów. Dane te, zbierane za pomocą urządzeń monitorujących, mają niewielką liczbę próbek.

Każdy z analizowanych zbiorów danych charakteryzuje się określoną liczbą pacjentów oraz różnym rozkładem klas:

- Schizofrenia: Zbiór obejmuje 54 pacjentów, z czego 22 to osoby chore, a 32 to osoby zdrowe.
- Depresja: Zbiór zawiera dane 55 pacjentów, w tym 23 osoby chore oraz 32 osoby zdrowe.
- ADHD: Zbiór danych obejmuje 85 pacjentów, z czego 45 osób jest chorych, a 40 zdrowych.

Niewielka liczba próbek w poszczególnych zbiorach oraz nierównomierny rozkład klas stanowiły kluczowe wyzwania w procesie budowy modeli klasyfikacyjnych i ewaluacji ich zdolności do generalizacji. Proces analizy obejmuje następujące etapy:

- Ekstrakcja cech: Wykorzystano technikę automatyczną z wykorzystaniem biblioteki TSFRESH, która umożliwia wydobycie kluczowych cech z szeregów czasowych. Ekstrakcję cech przeprowadzono w dwóch wariantach:
 - Minimalne ustawienia, które obejmowały standardowy zestaw cech,
 - Efektywne ustawienia dla n=10, gdzie liczba cech została ograniczona do najbardziej istotnych.
- Klasyfikacja: Modele klasyfikacyjne trenowano zarówno na danych dotyczących całej aktywności dobowej, jak i na segmentach wyodrębnionych w oparciu o pojedyncze dni lub noce. Zastosowano również podejście *Multiple Instance Learning* (MIL), w którym poszczególne dni traktowane były jako odrębne instancje z klasą odpowiadającą klasie pacjenta. Predykcje dzienne zostały następnie agregowane w celu uzyskania diagnozy pacjenta. Klasyfikację przeprowadzono dla trzech różnych modeli:
 - Regresja logistyczna (Logistic Regression),
 - Las losowy (Random Forest),
 - XGBoost.

Dodatkowo, dla każdego modelu zastosowano procedurę *GridSearch*, która umożliwiła optymalizację hiperparametrów i dobranie najlepszych ustawień dla poszczególnych algorytmów.

• Ewaluacja: Użyto procedury walidacji krzyżowej zagnieżdżonej (nested cross-validation) z podziałem na 5 foldów. Takie podejście pozwoliło na uzyskanie rzetelnych wyników oceny zdolności generalizacyjnych modeli. Ewaluację przeprowadzono na poziomie pacjentów, aby uniknąć błędów w interpretacji wyników i zapewnić wiarygodną ocenę efektywności klasyfikacji.

2 Dni/noce w porównaniu do danych całodobowych

W projekcie porównano klasyfikację na podstawie całodobowych danych z klasyfikacją opartą na fragmentach dotyczących dni i nocy. Celem było sprawdzenie, czy analiza aktywności w określonych porach dnia daje lepsze wyniki niż wykorzystanie pełnych, całodobowych szeregów czasowych.

2.1 Schizofrenia

W tabelach 1, 2 i 3 zaprezentowano wyniki klasyfikacji z ekstrakcją cech uzyskaną przy zastosowaniu ustawień minimalnych.

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	$\boldsymbol{0.84 \pm 0.09}$	$\boldsymbol{0.82 \pm 0.10}$	0.78 ± 0.12	$\boldsymbol{0.87 \pm 0.11}$	0.81 ± 0.12	0.74 ± 0.09	$\boldsymbol{0.67 \pm 0.18}$
LL	0.77 ± 0.08	0.73 ± 0.09	0.76 ± 0.16	0.73 ± 0.07	0.82 ± 0.14	0.77 ± 0.08	0.56 ± 0.17
XGB	0.81 ± 0.10	0.77 ± 0.12	$\boldsymbol{0.85 \pm 0.20}$	0.73 ± 0.07	0.88 ± 0.17	0.81 ± 0.10	0.64 ± 0.22

Tabela 1: Wyniki dla danych całodobowych

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	0.90 ± 0.08	$\boldsymbol{0.87 \pm 0.09}$	0.86 ± 0.13	$\boldsymbol{0.92 \pm 0.16}$	0.88 ± 0.11	0.90 ± 0.07	0.80 ± 0.11
LL	0.88 ± 0.08	0.85 ± 0.10	$\boldsymbol{0.87 \pm 0.17}$	0.88 ± 0.16	0.89 ± 0.17	0.88 ± 0.08	0.78 ± 0.15
XGB	0.88 ± 0.05	0.84 ± 0.06	0.86 ± 0.13	0.87 ± 0.17	0.88 ± 0.11	0.88 ± 0.05	0.76 ± 0.07

Tabela 2: Wyniki dla danych obejmujących tylko noce

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	$\boldsymbol{0.80 \pm 0.04}$	$\boldsymbol{0.77 \pm 0.03}$	0.73 ± 0.05	$\boldsymbol{0.82 \pm 0.09}$	0.78 ± 0.08	$\boldsymbol{0.80 \pm 0.04}$	$\boldsymbol{0.60 \pm 0.07}$
LL	0.77 ± 0.08	0.73 ± 0.09	$\boldsymbol{0.76 \pm 0.16}$	0.73 ± 0.07	$\boldsymbol{0.82 \pm 0.14}$	0.77 ± 0.08	0.56 ± 0.17
XGB	0.71 ± 0.09	0.65 ± 0.11	0.72 ± 0.23	0.65 ± 0.14	0.76 ± 0.20	0.71 ± 0.09	0.44 ± 0.20

Tabela 3: Wyniki dla danych obejmujących tylko dni

Wyniki zaprezentowane w tabelach 1, 2 i 3 pokazują, że analiza danych nocnych przynosi najlepsze rezultaty w klasyfikacji pacjentów ze schizofrenią. Model regresji logistycznej osiąga najwyższą dokładność (0.90 ± 0.08) , miarę F1 (0.87 ± 0.09) czułość (0.92 ± 0.16) , AUC (0.90 ± 0.07) oraz MCC (0.80 ± 0.11) dla danych nocnych, przewyższając zarówno dane całodobowe, jak i dzienne. Dane dzienne dają najgorsze wyniki, co wskazuje na ograniczoną przydatność tego okresu w diagnozie. Model regresji logistycznej okazuje się najskuteczniejszym modelem, podczas gdy XGBoost wypada najsłabiej w większości przypadków. Wyższa skuteczność analizy nocnej może wynikać z charakterystycznych zaburzeń snu i aktywności pacjentów ze schizofrenią, które są bardziej wyraźne w tym okresie.

Tabele 4, 5 i 6 przedstawiają wyniki klasyfikacji uzyskane po ekstrakcji cech z wykorzystaniem ustawień efektywnych.

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	0.87 ± 0.07	0.84 ± 0.08	0.79 ± 0.12	$\boldsymbol{0.92 \pm 0.10}$	0.82 ± 0.11	0.87 ± 0.07	0.73 ± 0.14
LL	0.80 ± 0.06	0.77 ± 0.07	0.75 ± 0.14	0.82 ± 0.09	0.79 ± 0.12	0.80 ± 0.06	0.60 ± 0.13
XGB	0.91 ± 0.06	$\boldsymbol{0.89 \pm 0.07}$	$\boldsymbol{0.88 \pm 0.10}$	0.91 ± 0.11	$\boldsymbol{0.91 \pm 0.07}$	0.91 ± 0.06	$\textbf{0.81} \pm \textbf{0.12}$

Tabela 4: Wyniki dla danych całodobowych

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	0.90 ± 0.08	$\boldsymbol{0.87 \pm 0.10}$	$\boldsymbol{0.87 \pm 0.16}$	$\boldsymbol{0.92 \pm 0.16}$	0.89 ± 0.14	$\boldsymbol{0.90 \pm 0.08}$	$\boldsymbol{0.81 \pm 0.16}$
LL	0.88 ± 0.11	0.84 ± 0.13	0.85 ± 0.18	0.87 ± 0.17	0.89 ± 0.14	0.88 ± 0.11	0.76 ± 0.21
XGB	0.80 ± 0.14	0.74 ± 0.19	0.83 ± 0.21	0.68 ± 0.19	0.91 ± 0.11	0.80 ± 0.14	0.62 ± 0.29

Tabela 5: Wyniki dla danych obejmujących tylko noce

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	0.83 ± 0.13	0.80 ± 0.14	0.78 ± 0.13	0.82 ± 0.16	0.84 ± 0.11	0.83 ± 0.13	0.66 ± 0.25
LL	0.86 ± 0.05	0.84 ± 0.05	0.87 ± 0.11	0.82 ± 0.09	0.91 ± 0.07	0.86 ± 0.05	0.74 ± 0.10
XGB	0.91 ± 0.06	0.89 ± 0.07	$\boldsymbol{0.88 \pm 0.10}$	$\boldsymbol{0.91 \pm 0.11}$	0.91 ± 0.07	0.91 ± 0.06	$\boldsymbol{0.82 \pm 0.11}$

Tabela 6: Wyniki dla danych obejmujących tylko dni

Wyniki dla ustawień efektywnych (tabele 4, 5 i 6) pokazują poprawę skuteczności klasyfikacji w porównaniu do ustawień minimalnych, szczególnie dla modeli regresji logistycznej i XGBoost. Dane nocne nadal przynoszą najlepsze rezultaty, z wyróżniającym się modelem regresji logistycznej osiągającym najwyższą dokładność. Dla danych całodobowych model XGBoost wyróżnia się największą poprawą, osiągając dokładność (0.91 \pm 0.06) i AUC (0.91 \pm 0.06). Natomiast wyniki dla danych dziennych, mimo że najsłabsze, uległy wyraźnej poprawie, zwłaszcza dla modelu XGBoost. Wprowadzenie efektywnej selekcji cech pozwoliło na lepsze wykorzystanie informacji w danych, przy czym okres nocny pozostaje najbardziej diagnostyczny, prawdopodobnie z uwagi na charakterystyczne zaburzenia snu w schizofrenii.

2.2 Depresja

W tabelach 7, 8 i 9 aprezentowano wyniki klasyfikacji z ekstrakcją cech uzyskaną przy zastosowaniu ustawień minimalnych.

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	0.71 ± 0.08	0.66 ± 0.10	0.71 ± 0.17	0.64 ± 0.14	0.78 ± 0.13	0.71 ± 0.08	0.44 ± 0.17
LL	0.74 ± 0.01	0.70 ± 0.03	$\boldsymbol{0.82 \pm 0.15}$	0.64 ± 0.14	0.83 ± 0.15	0.74 ± 0.01	0.52 ± 0.08
XGB	0.75 ± 0.10	$\boldsymbol{0.71 \pm 0.13}$	0.73 ± 0.17	$\boldsymbol{0.76 \pm 0.22}$	0.74 ± 0.17	0.75 ± 0.10	$\boldsymbol{0.54 \pm 0.20}$

Tabela 7: Wyniki dla danych całodobowych

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	0.76 ± 0.08	$\boldsymbol{0.71 \pm 0.12}$	0.80 ± 0.19	$\boldsymbol{0.68 \pm 0.19}$	0.84 ± 0.14	0.76 ± 0.08	$\boldsymbol{0.57 \pm 0.18}$
LL	0.73 ± 0.07	0.65 ± 0.15	$\boldsymbol{0.83 \pm 0.15}$	0.59 ± 0.21	$\boldsymbol{0.87 \pm 0.12}$	0.73 ± 0.07	0.52 ± 0.12
XGB	0.70 ± 0.10	0.65 ± 0.11	0.73 ± 0.17	0.60 ± 0.11	0.81 ± 0.17	0.70 ± 0.10	0.44 ± 0.21

Tabela 8: Wyniki dla danych obejmujących tylko noce

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	0.64 ± 0.08	0.50 ± 0.25	0.73 ± 0.15	0.48 ± 0.26	0.81 ± 0.17	0.64 ± 0.08	0.31 ± 0.16
LL	0.73 ± 0.09	$\boldsymbol{0.68 \pm 0.13}$	$\boldsymbol{0.73 \pm 0.13}$	$\boldsymbol{0.65 \pm 0.17}$	0.80 ± 0.13	0.73 ± 0.09	$\boldsymbol{0.48 \pm 0.18}$
XGB	0.71 ± 0.04	0.66 ± 0.06	0.72 ± 0.14	0.64 ± 0.14	0.77 ± 0.14	0.71 ± 0.04	0.44 ± 0.12

Tabela 9: Wyniki dla danych obejmujących tylko dni

Wyniki dla depresji (tabele 7, 8 i 9) pokazują zróżnicowaną skuteczność klasyfikacji w zależności od analizowanego okresu. Najlepsze rezultaty uzyskano dla danych całodobowych (Tabela 7), gdzie model XGBoost osiągnął najwyższą dokładność (0.75 ± 0.10). Dla danych nocnych można zaobserwować najlepsze wyniki dla modelu regresji logistycznej. W przypadku depresji najlepsze wyniki dla danych całodobowych mogą wynikać z tego, że objawy tej choroby, takie jak zmęczenie, zmiany aktywności czy problemy ze snem, są równomiernie rozłożone w ciągu całego dnia i nocy.

Tabele 10, 11 i 12 przedstawiają wyniki klasyfikacji uzyskane po ekstrakcji cech z wykorzystaniem ustawień efektywnych.

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	0.68 ± 0.11	0.57 ± 0.16	0.75 ± 0.22	0.47 ± 0.13	0.87 ± 0.12	0.67 ± 0.11	0.39 ± 0.25
LL	0.71 ± 0.08	0.61 ± 0.15	$\boldsymbol{0.83 \pm 0.21}$	0.51 ± 0.19	0.90 ± 0.13	0.71 ± 0.08	$\boldsymbol{0.48 \pm 0.19}$
XGB	0.70 ± 0.10	$\boldsymbol{0.63 \pm 0.12}$	0.75 ± 0.24	$\boldsymbol{0.60 \pm 0.17}$	0.78 ± 0.21	0.69 ± 0.10	0.43 ± 0.21

Tabela 10: Wyniki dla danych całodobowych

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	0.70 ± 0.09	0.61 ± 0.16	0.68 ± 0.09	0.59 ± 0.24	0.81 ± 0.07	0.70 ± 0.09	0.42 ± 0.18
LL	$\boldsymbol{0.71 \pm 0.09}$	$\boldsymbol{0.67 \pm 0.12}$	$\boldsymbol{0.74 \pm 0.23}$	$\boldsymbol{0.68 \pm 0.19}$	0.75 ± 0.22	$\boldsymbol{0.71 \pm 0.09}$	$\boldsymbol{0.48 \pm 0.22}$
XGB	0.59 ± 0.07	0.53 ± 0.13	0.53 ± 0.12	0.59 ± 0.24	0.59 ± 0.25	0.59 ± 0.07	0.20 ± 0.14

Tabela 11: Wyniki dla danych obejmujących tylko noce

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	$\boldsymbol{0.64 \pm 0.05}$	0.55 ± 0.11	$\boldsymbol{0.62 \pm 0.08}$	0.51 ± 0.14	$\boldsymbol{0.78 \pm 0.09}$	$\boldsymbol{0.64 \pm 0.05}$	0.30 ± 0.11
LL	0.61 ± 0.05	0.51 ± 0.09	0.59 ± 0.07	0.47 ± 0.13	0.74 ± 0.14	0.61 ± 0.05	0.23 ± 0.10
XGB	$\boldsymbol{0.64 \pm 0.05}$	0.59 ± 0.04	0.60 ± 0.06	0.60 ± 0.11	0.68 ± 0.16	$\boldsymbol{0.64 \pm 0.05}$	0.29 ± 0.11

Tabela 12: Wyniki dla danych obejmujących tylko dni

Wyniki dla depresji (tabele 10, 11 i 12) z ekstrakcją cech przy ustawieniach efektywnych wykazują niewielkie zmiany względem ustawień minimalnych. Dla danych całodobowych model lasu losowego osiągnął najwyższą dokładność (0.71 ± 0.08) , przy poprawie precyzji i specyficzności, co zmniejszyło liczbę fałszywie pozytywnych klasyfikacji. Dla danych nocnychl las losowy ponownie osiągnął najlepsze wyniki (dokładność 0.71 ± 0.09), podczas gdy model XGB znacząco stracił skuteczność (dokładność 0.59 ± 0.07). W danych dziennych XGBoost i regresja logistyczna osiągnęły podobną dokładność (0.64 ± 0.05) , jednak XGBoost przewyższył pod względem miary F1 i czułości. Ogólnie, ustawienia efektywne poprawiły precyzję i specyficzność. Najlepsze wyniki uzyskano dla danych całodobowych, wskazując, że objawy depresji są najlepiej uchwytne w pełnym zakresie dobowym.

2.3 ADHD

W tabelach 13, 14 i 15 aprezentowano wyniki klasyfikacji z ekstrakcją cech uzyskaną przy zastosowaniu ustawień minimalnych.

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	0.72 ± 0.03	$\boldsymbol{0.87 \pm 0.03}$	0.75 ± 0.03	$\boldsymbol{0.89 \pm 0.14}$	0.55 ± 0.20	0.72 ± 0.03	0.44 ± 0.07
LL	0.75 ± 0.08	0.80 ± 0.06	0.77 ± 0.08	0.65 ± 0.15	0.65 ± 0.15	0.74 ± 0.08	$\boldsymbol{0.50 \pm 0.16}$
XGB	0.76 ± 0.10	0.81 ± 0.07	$\boldsymbol{0.79 \pm 0.10}$	0.84 ± 0.04	0.68 ± 0.17	0.76 ± 0.10	0.42 ± 0.20

Tabela 13: Wyniki dla danych całodobowych

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	0.63 ± 0.09	0.75 ± 0.17	0.66 ± 0.09	$\boldsymbol{0.93 \pm 0.33}$	0.52 ± 0.16	0.63 ± 0.09	$\boldsymbol{0.44 \pm 0.18}$
LL	0.64 ± 0.04	0.67 ± 0.12	0.67 ± 0.05	0.69 ± 0.18	0.60 ± 0.12	0.64 ± 0.04	0.41 ± 0.08
XGB	0.71 ± 0.08	0.89 ± 0.06	$\boldsymbol{0.84 \pm 0.07}$	0.84 ± 0.08	0.78 ± 0.13	0.81 ± 0.08	0.42 ± 0.16

Tabela 14: Wyniki dla danych obejmujących tylko noce

Mode	el Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	$\boldsymbol{0.86 \pm 0.05}$	$\boldsymbol{0.87 \pm 0.07}$	0.90 ± 0.04	0.89 ± 0.16	$\boldsymbol{0.63 \pm 0.12}$	0.86 ± 0.05	0.49 ± 0.10
LL	0.86 ± 0.07	0.75 ± 0.05	0.70 ± 0.05	0.80 ± 0.05	0.53 ± 0.13	0.66 ± 0.07	0.48 ± 0.14
XGE	0.70 ± 0.10	0.77 ± 0.09	0.73 ± 0.09	0.82 ± 0.11	0.58 ± 0.14	0.70 ± 0.10	0.40 ± 0.21

Tabela 15: Wyniki dla danych obejmujących tylko dni

Wyniki klasyfikacji ADHD przy ekstrakcji cech z ustawieniami minimalnymi wskazują na zróżnicowaną skuteczność modeli w zależności od analizowanego okresu. Dla danych całodobowych najlepsze wyniki osiągnął model XGBoost, uzyskując najwyższą dokładność (0.76 ± 0.10) . W przypadku danych nocnych XGBoost ponownie przodował. Dla danych dziennych najlepszy okazał się model regresji logistycznej z najwyższą dokładnością (0.86 ± 0.05) , co potwierdza, że objawy ADHD, takie jak nadmierna aktywność i trudności w skupieniu, są szczególnie widoczne w ciągu dnia. Analiza różnych okresów pokazuje, że dane dzienne są najbardziej reprezentatywne dla diagnozowania ADHD, choć dane nocne mogą również dostarczać istotnych informacji diagnostycznych.

Tabele 16, 17 i 18 przedstawiają wyniki klasyfikacji uzyskane po ekstrakcji cech z wykorzystaniem ustawień efektywnych.

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	0.75 ± 0.08	0.76 ± 0.08	$\boldsymbol{0.81 \pm 0.12}$	0.73 ± 0.11	$\boldsymbol{0.78 \pm 0.20}$	0.75 ± 0.08	0.41 ± 0.18
LL	0.77 ± 0.09	0.82 ± 0.08	0.79 ± 0.08	0.87 ± 0.10	0.68 ± 0.12	0.77 ± 0.09	0.45 ± 0.19
XGB	$\boldsymbol{0.77 \pm 0.06}$	0.83 ± 0.09	0.78 ± 0.05	$\boldsymbol{0.91 \pm 0.19}$	0.63 ± 0.13	0.77 ± 0.06	$\boldsymbol{0.47 \pm 0.17}$

Tabela 16: Wyniki dla danych całodobowych

Mod	el Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	0.69 ± 0.03	0.79 ± 0.06	0.73 ± 0.02	$\boldsymbol{0.89 \pm 0.16}$	0.50 ± 0.17	0.69 ± 0.03	0.41 ± 0.06
LL	0.74 ± 0.11	0.77 ± 0.10	$\boldsymbol{0.77 \pm 0.10}$	0.78 ± 0.11	$\boldsymbol{0.70 \pm 0.14}$	$\boldsymbol{0.74 \pm 0.11}$	$\boldsymbol{0.48 \pm 0.23}$
XG	$3 0.71 \pm 0.10$	0.77 ± 0.12	0.73 ± 0.09	0.72 ± 0.17	0.60 ± 0.09	0.71 ± 0.10	0.43 ± 0.20

Tabela 17: Wyniki dla danych obejmujących tylko noce

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	0.72 ± 0.09	0.78 ± 0.07	$\boldsymbol{0.76 \pm 0.07}$	0.82 ± 0.11	$\boldsymbol{0.63 \pm 0.20}$	0.72 ± 0.09	0.44 ± 0.19
LL	0.71 ± 0.12	0.78 ± 0.10	0.74 ± 0.09	0.84 ± 0.13	0.58 ± 0.18	0.71 ± 0.12	0.42 ± 0.24
XGB	0.73 ± 0.09	0.80 ± 0.09	0.76 ± 0.08	$\boldsymbol{0.89 \pm 0.19}$	0.58 ± 0.22	0.73 ± 0.09	$\boldsymbol{0.49 \pm 0.22}$

Tabela 18: Wyniki dla danych obejmujących tylko dni

Dla danych całodobowych (Tabela 16) zastosowanie ustawień efektywnych poprawiło wyniki klasyfikacji, zwiększając miarę F1, precyzję i czułość, szczególnie w modelu XGBoost. Dane całodobowe okazały się najbardziej zrównoważone, skutecznie identyfikując zarówno pacjentów chorych, jak i zdrowych. Dla danych nocnych (Tabela 17) zauważono poprawę wyników klasyfikacji, zwłaszcza w zakresie czułości, co sugeruje, że aktywność pacjentów w nocy odgrywa istotną rolę w wykrywaniu zaburzeń, takich jak ADHD. Natomiast dla danych dziennych (Tabela 18) widoczny jest spadek wyników klasyfikacji w porównaniu do ustawień minimalnych. Podsumowując, dane całodobowe okazały się najlepsze, zapewniając najbardziej zrównoważoną klasyfikację.

3 Całość szeregu w porównaniu do poszczególnych dni

W ramach tej części projektu przeprowadzono porównanie wyników klasyfikacji na poziomie całego szeregu czasowego oraz dla poszczególnych dni przy zastosowaniu podejścia *Multiple Instance Learning* (MIL). Porównanie zostało dokonane dla wszystkich zbiorów danych, obejmujących pacjentów z diagnozą schizofrenii, depresji oraz ADHD. Analizowano efektywność klasyfikacji, uwzględniając ekstrakcję cech z ustawieniami efektywnymi, w celu określenia, która strategia zapewnia lepsze wyniki w kontekście diagnozowanych zaburzeń.

3.1 Schizofrenia

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	0.87 ± 0.07	0.84 ± 0.08	0.79 ± 0.12	$\boldsymbol{0.92 \pm 0.10}$	0.82 ± 0.11	0.87 ± 0.07	0.73 ± 0.14
LL	0.80 ± 0.06	0.77 ± 0.07	0.75 ± 0.14	0.82 ± 0.09	0.79 ± 0.12	0.80 ± 0.06	0.60 ± 0.13
XGB	0.91 ± 0.06	0.89 ± 0.07	0.88 ± 0.10	0.91 ± 0.11	0.91 ± 0.07	0.91 ± 0.06	$\boldsymbol{0.81 \pm 0.12}$

Tabela 19: Wyniki dla całości szeregu

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	\mathbf{AUC}	MCC
RL	0.79 ± 0.14	0.76 ± 0.16	0.73 ± 0.16	0.81 ± 0.19	0.77 ± 0.14	0.79 ± 0.14	$\boldsymbol{0.58 \pm 0.27}$
LL	0.75 ± 0.15	0.69 ± 0.22	0.73 ± 0.17	0.67 ± 0.26	0.84 ± 0.11	0.75 ± 0.15	0.52 ± 0.30
XGB	0.67 ± 0.19	0.57 ± 0.27	0.63 ± 0.22	0.54 ± 0.31	0.80 ± 0.13	0.67 ± 0.19	0.35 ± 0.37

Tabela 20: Wyniki dla poszczególnych dni - (MIL)

Wyniki klasyfikacji dla schizofrenii (Tabela 19 i 20) pokazują, że podejście oparte na całości szeregu czasowego jest bardziej efektywne niż klasyfikacja poszczególnych dni za pomocą MIL. Podejście MIL, mimo że może w niektórych przypadkach zaoferować większą elastyczność, w tej konkretnej analizie nie wykazuje znaczącej poprawy w porównaniu do klasyfikacji na poziomie całego szeregu. Wydaje się, że analiza całego szeregu czasowego pozwala na lepsze uchwycenie kontekstu i dynamiki danych.

3.2 Depresja

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	0.68 ± 0.11	0.57 ± 0.16	0.75 ± 0.22	0.47 ± 0.13	0.87 ± 0.12	0.67 ± 0.11	0.39 ± 0.25
LL	0.71 ± 0.08	0.61 ± 0.15	$\boldsymbol{0.83 \pm 0.21}$	0.51 ± 0.19	0.90 ± 0.13	0.71 ± 0.08	$\boldsymbol{0.48 \pm 0.19}$
XGB	0.70 ± 0.10	$\boldsymbol{0.63 \pm 0.12}$	0.75 ± 0.24	$\boldsymbol{0.60 \pm 0.17}$	0.78 ± 0.21	0.69 ± 0.10	0.43 ± 0.21

Tabela 21: Wyniki dla całości szeregu

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	0.71 ± 0.06	0.67 ± 0.05	0.65 ± 0.08	0.70 ± 0.08	0.71 ± 0.13	0.71 ± 0.06	0.42 ± 0.12
LL	0.76 ± 0.04	$\boldsymbol{0.72 \pm 0.05}$	0.73 ± 0.15	$\boldsymbol{0.74 \pm 0.07}$	0.79 ± 0.12	$\boldsymbol{0.76 \pm 0.04}$	0.53 ± 0.10
XGB	0.74 ± 0.07	0.69 ± 0.10	$\boldsymbol{0.79 \pm 0.19}$	0.64 ± 0.14	$\boldsymbol{0.84 \pm 0.14}$	0.74 ± 0.07	0.52 ± 0.17

Tabela 22: Wyniki dla poszczególnych dni - (MIL)

Wyniki klasyfikacji dla depresji (Tabela 21 i 22) wskazują, że podejście MIL wykazuje pewną poprawę w porównaniu do klasyfikacji całego szeregu czasowego. Warto zaznaczyć, że sytuacja ta dotyczy wszystkich rozpatrywanych modeli. Podejście MIL może lepiej uchwycić specyficzne wzorce w danych dziennych, co poprawia wykrywanie stanów depresyjnych w porównaniu do analizy całości szeregu czasowego. Wydaje się, że w przypadku depresji klasyfikacja poszczególnych dni może dostarczyć bardziej precyzyjnych informacji na temat stanu pacjenta.

3.3 ADHD

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	0.75 ± 0.08	0.76 ± 0.08	$\boldsymbol{0.81 \pm 0.12}$	0.73 ± 0.11	$\boldsymbol{0.78 \pm 0.20}$	0.75 ± 0.08	0.41 ± 0.18
LL	0.77 ± 0.09	0.82 ± 0.08	0.79 ± 0.08	0.87 ± 0.10	0.68 ± 0.12	0.77 ± 0.09	0.45 ± 0.19
XGB	0.77 ± 0.06	$\boldsymbol{0.83 \pm 0.09}$	0.78 ± 0.05	$\textbf{0.91} \pm \textbf{0.19}$	0.63 ± 0.13	$\boldsymbol{0.77 \pm 0.06}$	$\boldsymbol{0.47 \pm 0.17}$

Tabela 23: Wyniki dla całości szeregu

Model	Dokładność	Miara F1	Precyzja	Czułość	Specyficzność	AUC	MCC
RL	$\boldsymbol{0.77 \pm 0.07}$	0.76 ± 0.07	0.77 ± 0.07	0.76 ± 0.09	0.78 ± 0.10	0.77 ± 0.07	0.44 ± 0.14
LL	0.74 ± 0.04	0.74 ± 0.06	0.73 ± 0.04	0.76 ± 0.08	0.72 ± 0.03	0.74 ± 0.04	0.48 ± 0.18
XGB	0.74 ± 0.02	$\boldsymbol{0.76 \pm 0.04}$	0.73 ± 0.02	0.71 ± 0.08	0.77 ± 0.07	0.74 ± 0.02	$\boldsymbol{0.48 \pm 0.05}$

Tabela 24: Wyniki dla poszczególnych dni - (MIL)

Wyniki klasyfikacji dla ADHD (Tabela 23 i 24) wskazują na niewielką różnicę między podejściem MIL a klasyfikacją całości szeregu czasowego. W przypadku wszystkich rozpatrywanych modeli, wyniki na poziomie poszczególnych dni w podejściu MIL są zbliżone do tych uzyskanych przy klasyfikacji całości szeregu, a różnice w metrykach są minimalne. Dla modelu regresji logistycznej można dostrzec poprawę w przypadku większości metryk, podczas gdy dla lasu losowego i XGBoost widoczny jest spadek metryk. Ogólnie rzecz biorąc, w przypadku ADHD analiza całości szeregu czasowego oraz klasyfikacja poszczególnych dni oferują podobne wyniki. Wydaje się, że w tym przypadku podejście MIL nie wnosi istotnej przewagi, a klasyfikacja całego szeregu czasowego jest równie skuteczna w identyfikacji pacjentów z ADHD.

4 Wnioski

Projekt analizował klasyfikację szeregów czasowych o małej liczbie próbek, dotyczących diagnozy depresji, schizofrenii i ADHD, z wykorzystaniem różnych podejść klasyfikacyjnych. Wykazano, że zarówno analiza okresów dziennych i nocnych, jak i zastosowanie podejścia *Multiple Instance Learning* (MIL), mogą poprawić skuteczność klasyfikacji zaburzeń neurologicznych i psychicznych.

Podsumowując, projekt pokazał, że zarówno analiza okresów dziennych i nocnych, jak i zastosowanie podejścia MIL, mogą dostarczyć istotnych informacji, które poprawiają klasyfikację zaburzeń neurologicznych i psychicznych. Różnorodność wyników w zależności od typu zaburzenia podkreśla znaczenie dobrania odpowiedniego podejścia klasyfikacyjnego w zależności od charakterystyki danych oraz samej choroby.