Permit Number 2699A, PSDTX36, PSDTX96, PSDTX653M1, PSDTX831

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission	Source	Air Contaminant Name (3)	Emission Rates	
Point No. (1)	Name (2)		lbs/hour	TPY (4)
742	Tank No. 1	VOC	2.42	4.75
743	Tank 2	VOC	0.54	0.88
744	Tank No. 3	VOC	2.36	4.62
745	Tank No. 4	VOC	1.32	2.43
746	Tank No. 5	VOC	3.44	11.79
749	Tank No. 13	VOC	0.94	0.51
750	Tank No. 14	VOC	1.15	1.25
751	Tank No. 20	VOC	0.93	0.67
752	Tank 21	VOC	0.64	0.85
753	Tank 22	VOC	0.64	0.85
757	Tank 33	VOC	0.59	0.63
758	Tank 34	VOC	0.59	0.63
759	Tank No. 40	VOC	0.68	0.90
760	Tank No. 41	VOC	0.78	1.11
761	Tank No. 42	VOC	0.78	1.11
762	Tank 43	VOC	0.54	0.58
763	Tank 44	VOC	0.54	0.58
764	Tank 45	VOC	0.47	0.52
765	Tank No. 50	VOC	0.84	0.32
769	Storage Tank 60	VOC	0.11	0.01
770	Storage Tank 61	VOC	0.11	0.01
771	Storage Tank 62	VOC	0.85	0.01
772	Storage Tank 63	VOC	0.96	0.01
773	Storage	VOC	19.50	5.50

Emission Sources - Maximum Allowable Emission Rates

	Tank 81			
776	Tank 91	VOC	0.63	0.86
777	Tank 92	VOC	0.63	0.86
778	Tank 93	VOC	0.63	0.86
712	Tank 225 (8)	VOC	2.42	3.06
713	Tank 226 (8)	VOC	2.42	3.06
657	Storage Tank 620	VOC	18.42	0.18
658	Storage Tank 621	VOC	18.42	0.18
714	Storage Tank 804	VOC	3.91	2.77
638	Tank 925	VOC	1.99	4.66
639	Tank 926	VOC	1.99	4.66
629	Tank 927 (9)	Xylene	0.62	0.47
630	Tank 928 (9)	Xylene	0.62	0.48
640	Tank No. 929	VOC	1.27	0.40
641	Tank No. 930	VOC	0.97	0.41
662	Storage Tank 1001	VOC	7.98	0.09
664	Storage Tank 1003	VOC	19.50	3.69
670	Storage Tank 1009	voc	1.11	1.47
666	Storage Tank 1015	VOC	28.45	1.67
676	Storage Tank 1017	VOC	4.79	0.04
722	Storage Tank 1018	VOC	0.71	0.55
723	Storage Tank 1019	VOC	0.71	0.55
665A	Storage Tank 1020	VOC	28.45	1.67
724	Tank 1022	VOC	4.66	14.68

725	Tank No. 1023	VOC	5.99	20.95
726	Tank 1024	VOC	3.76	9.70
727	Storage Tank 1025	VOC	31.93	8.12
728	Storage Tank 1026	VOC	31.93	7.37
729	Tank No. 1027	VOC	1.06	1.71
677	Storage Tank 1028	VOC	9.12	7.24
718	Tank 1040	VOC	0.77	0.43
719	Tank 1041	VOC	0.70	0.34
720	Tank 1042	VOC	1.08	1.51
732	Tank 2001	VOC	5.09	1.67
733	Tank 2002	VOC	2.89	6.41
734	Tank 2003	VOC	8.80	0.93
736	Tank 2005	VOC	8.80	2.21
737	Tank 2006	VOC	8.80	2.21
739	Storage Tank 3101	VOC	10.65	0.66
740	Storage Tank 3102	VOC	10.65	0.66
433	Sour Water Tank	H ₂ S	0.12	0.38
	I ank	NH ₃	0.01	0.01
		VOC	0.46	1.51
087	Catalyst	СО	0.22	0.97
	Regenerator – Vent	HCI	0.024	0.11
		Cl ₂	0.17	0.72
CPICAS	CPI Carbon Canister	VOC	0.01	0.05
6100	Utility Boiler E	NO _x	25.60	112.13
		CO	23.84	104.43
		VOC	1.76	7.71

Emission Sources - Maximum Allowable Emission Rates

		SO ₂	9.08	39.77
		PM ₁₀	2.43	10.65
292 (6)	Combined Stack for the	СО	21.77	82.63
	Crude	NO _x	52.87	200.67
	Heater (11-H-1) and the	PM	4.63	17.59
	Vacuum Heater	PM ₁₀	4.63	17.59
	(11-H-2)	PM _{2.5}	4.63	17.59
		SO ₂	19.44	35.44
		VOC	3.35	12.73
312	Unibon Heater 21-H-	СО	4.44	17.66
	1A	NO _x	3.17	12.61
		PM	0.40	1.60
		PM ₁₀	0.40	1.60
		PM _{2.5}	0.40	1.60
		SO ₂	1.42	5.65
		VOC	0.29	1.16
313	Unibon Heater 21-H-	СО	4.44	17.66
	1B	NO _x	3.17	12.61
		PM	0.40	1.60
		PM ₁₀	0.40	1.60
		PM _{2.5}	0.40	1.60
		SO ₂	1.42	5.65
		VOC	0.29	1.16
362	Absorber Reboiler	СО	0.35	0.80
	Heater	NO _x	2.25	9.86
	41-H1 (7)	PM	0.42	1.84
		PM ₁₀	0.42	1.84
		PM _{2.5}	0.42	1.84
		SO ₂	2.03	4.35

Emission Sources - Maximum Allowable Emission Rates

		VOC	0.30	1.33
362	Debutanizer Reboiler	СО	0.22	0.47
	Heater 41-H2 (7)	NO _x	1.42	6.22
	41-02 (7)	PM	0.26	1.16
		PM ₁₀	0.26	1.16
		PM _{2.5}	0.26	1.16
		SO ₂	1.05	1.73
		VOC	0.19	0.84
262	Alky Heater 83-H-1	VOC	0.74	2.93
	03111	NO _x	25.43	101.26
		SO ₂	3.60	14.33
		PM	1.02	4.05
		PM ₁₀	1.02	4.05
		PM _{2.5}	1.02	4.05
		СО	11.24	44.77
86	Aromatic Splitter	VOC	0.28	1.13
	Heater 29H5	СО	4.35	17.31
		NO _x	5.18	20.61
		PM	0.39	1.57
		PM ₁₀	0.39	1.57
		PM _{2.5}	0.39	1.57
		SO ₂	1.61	3.20
202	ADP Heater 17H1	VOC	0.18	0.81
	1///1	СО	1.03	4.51
		NO _X	3.09	13.52
		PM	0.26	1.12
		PM ₁₀	0.26	1.12
		PM _{2.5}	0.26	1.12
		SO ₂	1.04	2.29

Emission Sources - Maximum Allowable Emission Rates

356	Process Heater 14-H-	VOC	0.85	3.73
	1	NO_x	15.76	69.05
		СО	13.01	57.00
		PM	1.18	5.16
		PM ₁₀	1.18	5.16
		PM _{2.5}	1.18	5.16
		SO ₂	4.16	18.22
222	Heater 19-H-	СО	0.86	3.75
	1	NO _x	1.02	4.46
		PM	0.08	0.34
		PM ₁₀	0.08	0.34
		PM _{2.5}	0.08	0.34
		SO ₂	0.28	0.45
		VOC	0.06	0.25
223	Heater 19-H-	СО	0.33	1.46
	2	NO _x	0.40	1.74
		PM	0.03	0.13
		PM ₁₀	0.03	0.13
		PM _{2.5}	0.03	0.13
		SO ₂	0.11	0.18
		VOC	0.02	0.10
102	Unifier Reactor	VOC	0.21	0.91
	Heater	NO _x	3.78	16.60
		SO ₂	1.04	4.56
		PM ₁₀	0.29	1.26
		СО	3.17	13.90
103	Unifier	VOC	0.08	0.35
	Stripper Heater	NO _x	1.46	6.41
		SO ₂	0.40	1.76

		PM ₁₀	0.11	0.49
		СО	1.23	5.39
82, 83, 84	Platformer	VOC	1.39	6.10
	Reactor Heaters 1A,	NO _x	11.36	49.76
	1B, 1C, 1D	SO ₂	6.98	30.41
		PM ₁₀	1.91	8.41
		СО	21.23	92.93
85	Platformer Stabilizer	VOC	0.12	0.51
	Heater	NO _x	2.10	9.20
		SO ₂	0.58	2.53
		PM_{10}	0.16	0.70
		СО	1.76	7.72
207-H-1	GHT Charge Heater	NO _x	1.93	8.44
		SO ₂	1.24	5.44
		VOC	0.29	1.25
		СО	3.93	17.22
		PM	0.41	1.80
		PM_{10}	0.41	1.80
		PM _{2.5}	0.41	1.80
412	SRU Incinerator	СО	0.20	0.85
	Stack	NO _x	1.37	6.00
		PM ₁₀	0.11	0.50
		VOC	0.03	0.15
		cos	0.50	-
		CS ₂	0.63	-
		H₂S	0.56	-
		SO ₂	26.44	-

412A	SRU	СО	1.26	2.14
	Incinerator Stack	NO _x	1.20	2.03
		PM ₁₀	0.11	0.19
		VOC	0.08	0.14
		COS	0.50	-
		CS ₂	0.63	-
		H ₂ S	0.56	-
		SO ₂	26.44	-
412/412A	Annual SRU	COS		2.19
	Incinerator Cap	CS ₂		2.76
		H₂S		2.46
		SO ₂		115.81
417	Cooling Tower (5)	PM_{10}	1.54	6.76
		VOC	0.18	0.77
СТ	Cooling Tower	PM	0.32	1.38
	Tower	PM ₁₀	0.32	1.38
		PM _{2.5}	0.32	1.38
		VOC	0.59	2.58
F069	No. 5 Cooling	PM	2.80	12.26
	Tower (5)	PM ₁₀	2.80	12.26
		PM _{2.5}	2.80	12.26
		VOC	0.32	1.38
F110	Cooling Tower 7	VOC	0.71	3.10
F089	Cooling Tower 9 (5)	VOC	0.15	0.67

F208	Cooling Tower 10	VOC	0.34	1.47
	Tower 10	PM	2.88	12.62
		PM ₁₀	1.22	5.37
		PM _{2.5}	0.01	0.03
F3700	Cooling Tower 12	VOC	0.63	2.76
	Tower 12	PM	5.51	24.13
		PM ₁₀	5.51	24.13
		PM _{2.5}	5.51	24.13
F297	Cooling Tower 81	VOC	1.26	5.52
	Tower or	PM	0.68	2.96
		PM ₁₀	0.68	2.96
		PM _{2.5}	< 0.01	< 0.01
F264	Alky Cooling Tower	VOC (5)	1.01	4.42
		PM	0.54	2.37
		PM ₁₀	0.54	2.37
		PM _{2.5}	0.54	2.37
207-CT001	GHT Cooling Tower	VOC	0.12	0.50
	Tower	PM	0.05	0.20
		PM ₁₀	0.05	0.20
		PM _{2.5}	0.05	0.20
F442	Fluor Flare	СО	0.10	0.46
		NO _x	0.01	0.06
		SO ₂	0.01	0.01
		VOC	0.01	0.01

MEC7	Dock 7 MEC	VOC (10)	55.18	11.98
		Benzene	3.41	0.34
		NO _X	15.69	22.61
		СО	11.77	16.96
		SO ₂	0.01	0.06
		PM	0.55	0.79
		PM ₁₀	0.55	0.79
		PM _{2.5}	0.55	0.79
591	Dock 7	VOC (10)	159.78	29.35
	Loading - Fugitives	Benzene	0.87	0.13
SULFURLOAD	Molten Sulfur Truck/Railcar Loading (5)	H₂S (10)	0.18	0.26
415	Sulfur Pit	H2S	0.44	1.93
F290	Fugitives (5)	VOC	34.80	152.42
F311	Unibon Process Fugitives (5)	voc	21.17	92.73
F321	Jet/Kerosene Fugitives (5)	VOC	0.08	0.33
		H ₂ S	< 0.01	< 0.01
		NaOH	< 0.01	< 0.01
F331	FCC Gasoline Merox Unit Fugitives (5)	VOC	0.28	1.23
F361	Saturates Gas Plant	VOC	9.10	39.85
	Process Fugitives (5)	H₂S	< 0.01	0.02
F371	No. 42 Fuel Gas	VOC	1.05	4.59
	Treatment Fugitives (5)	Ammonia	< 0.01	0.02
	i ugilives (3)	H₂S	0.02	0.09

F381	Saturated	VOC	1.49	6.54
	LPG Merox Fugitives (5)	H ₂ S	0.01	0.04
		NaOH	< 0.01	< 0.01
F391	Unsaturates	VOC	1.35	5.92
	LPG Merox Fugitives (5)	H₂S	< 0.01	0.01
		NaOH	< 0.01	< 0.01
F244	Mole Sieve Unit Process Fugitives (5)	VOC	0.40	1.74
F261	Alky Fugitives (5)	VOC	11.93	52.58
	rugilives (5)	HF	0.08	0.34
F411	SRU Process	H₂S	2.63	11.53
	Fugitives (5)	NH ₃	0.41	1.82
		VOC	5.99	26.24
F416	SRU Process	H₂S	0.20	0.85
	Fugitives (5)	NH ₃	0.01	0.01
		VOC	0.12	0.50
F211	Process Fugitives (5)	VOC	4.39	19.21
	rugilives (3)	H ₂ S	< 0.01	< 0.01
F355	Fugitives (5)	VOC	3.06	13.68
		Benzene	0.84	3.68
F942	Mixed C3 Terminal Fugitives (5)	VOC	7.93	34.73
F441	Fluor Flare Fugitives (5)	VOC	0.26	1.14
F221	Hydrar Fugitives (5)	VOC	1.30	5.68
	r ugilives (3)	H₂S	0.01	0.01
F3720	C4SHP Fugitives (5)	VOC	2.34	10.25
F3200	DeC5 Process Fugitives (5)	VOC	1.70	7.45
F4600	MTBE Process	VOC	1.14	5.01

	Fugitives (5)			
F4710	C5 Merox	VOC	0.91	3.96
	Unit Fugitives (5)	NaOH	< 0.01	< 0.01
F271	Utility Boiler E Fugitives (5)	VOC	0.38	1.66
F1002	Dock 7 Piping Fugitives (5)	VOC	0.37	1.61
F281 (5)	No.2 Oil and Salt Drier Area Fugitives	VOC	0.04	0.16
F821 (5)	Tank Farm & Pump House	VOC	15.58	68.25
	Area Fugitives (5)	Benzene	0.49	2.13
F890	Butane Storage Fugitives (5)	VOC	0.26	1.13
F081	Platformer 4 Fugitives (5)	VOC	22.52	98.62
FUG-GHT	GHT Fugitives (5)	VOC	1.50	6.56
	i agilives (5)	H₂S	< 0.01	0.04
		NH₃	0.01	0.01

(1) Emission point identification - either specific equipment designation or emission point number from plot plan.

(2) Specific point source name. For fugitive sources, use area name or fugitive source name.

(3) Exempt Solvent - Those carbon compounds or mixtures of carbon compounds used as solvents which have been excluded from the definition of volatile organic compound.

VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

HRVOC - highly reactive volatile organic compounds as defined in 30 TAC § 115.10

IOC-U - inorganic compounds (unspeciated)

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as

represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide

 $\begin{array}{lll} NH_3 & - \mbox{ ammonia} \\ CS_2 & - \mbox{ carbon disulfide} \\ COS & - \mbox{ carbonyl disulfide} \\ H_2S & - \mbox{ hydrogen sulfide} \\ HCI & - \mbox{ hydrogen chloride} \end{array}$

Cl₂ - chlorine

NaOH - sodium hydroxide HF - hydrogen fluoride

Permit Number 2699A, PSDTX36, PSDTX96, PSDTX653M1, PSDTX831 Page

Emission Sources - Maximum Allowable Emission Rates

H₂SO₄ - sulfuric acid PM collected in balk-half of PM test collection device

 HAP - hazardous air pollutant as listed in § 112(b) of the Federal Clean Air Act or Title 40 Code of Federal Regulations Part 63, Subpart C

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Fugitive emissions are an estimate only and should not be considered as a maximum allowable emission rate. Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) These emission rate limits become effective upon completion of the project identified in the Company's March 2013 permit amendment application.
- (7) Each heater vents through a common stack.
- (8) Permit by Rule (PBR) Number 78195 authorizes the change in service to the tanks in this permit and a tank in another permit. PBR 78195 cannot be voided, retains authorization, and is fully incorporated by reference into this table.
- (9) PBR Number 90292 superseded the authorizations for EPNs 629 and 630 contained in PBR 78195 and is fully incorporated into this permit and voided.
- (10) VOC emission rates are total VOC emission rates and include the benzene emission rates.

Date:	January 28, 2021