共享单车租用频次分析

周世祥

2020/5/23

案例简介

从 2016 年开始,国内共享单车突然火爆。摩拜, ofo, 至少 25 个新的共享单车品牌入驻很多大城市, Kaggle 中有一个关于共享单车的数据集。

美国华盛顿共享单车的租赁量。数据集变量少,简单易懂。

变量介绍

knitr包美化表格

使用knitr包kable()函数,表格输出结果并不会随着屏幕大小而出现原始表格的情况。

library(knitr)
kable(data)

变量名	变量含义		
datatime	日期时间		
season	季节		
holiday	是否为假期		
workingday	是否为工作日		
weather	天气		
temp	温度		
humidity	湿度		
windspeed	风速		
count	频次		

数据准备

做好数据清洗,时间格式,分析汇总,绘图等常用的程序包。

1、导入分析所需程序包

```
library(Rmisc) # multiplot()
## Warning: package 'Rmisc' was built under R version 4.0.5
## Loading required package: lattice
## Loading required package: plyr
## Warning: package 'plyr' was built under R version 4.0.5
library(tidyverse) # ggplot()
## Warning: package 'tidyverse' was built under R version 4.0.5
## Registered S3 methods overwritten by 'tibble':
##
    method
               from
    format.tbl pillar
##
    print.tbl pillar
##
## -- Attaching packages ------ tidyverse 1.3.1 --
## v ggplot2 3.3.3 v purrr
                              0.3.4
## v tibble 3.0.3
                    v dplyr 1.0.6
## v tidyr 1.1.3
                    v stringr 1.4.0
## v readr 1.4.0
                     v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.0.5
## Warning: package 'tidyr' was built under R version 4.0.5
## Warning: package 'readr' was built under R version 4.0.5
## Warning: package 'dplyr' was built under R version 4.0.5
## Warning: package 'forcats' was built under R version 4.0.5
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::arrange()
                    masks plyr::arrange()
## x purrr::compact()
                    masks plyr::compact()
## x dplyr::count()
                      masks plyr::count()
## x dplyr::failwith() masks plyr::failwith()
## x dplyr::filter()
                      masks stats::filter()
## x dplyr::id()
                      masks plyr::id()
## x dplyr::lag()
                      masks stats::lag()
## x dplyr::mutate()
                      masks plyr::mutate()
```

```
## x dplyr::rename()
                       masks plyr::rename()
## x dplyr::summarise() masks plyr::summarise()
## x dplyr::summarize() masks plyr::summarize()
library(data.table)
## Warning: package 'data.table' was built under R version 4.0.3
##
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
## The following object is masked from 'package:purrr':
##
##
       transpose
library(corrplot)#corrplot.mixed()
## Warning: package 'corrplot' was built under R version 4.0.5
## corrplot 0.88 loaded
options(scipen=20)# 避免绘图时使用科学计数法表示某个数值
```

查看数据集的基本结构

根据 str 对导入的数据集结构进行简单探索。除了租用时间点是因子型,其他都是数值型。对 datetime 变量进行差分重塑,对 weather/season 两个变量进行数据的重编码。

```
bike <- fread("./train.csv") #data.table 包中的函数
str(bike)
## Classes 'data.table' and 'data.frame':
                                       10886 obs. of 12 variables:
## $ datetime : chr "2011/1/1 0:00" "2011/1/1 1:00" "2011/1/1 2:00" "2011/1/1 3:00" ...
## $ season
              : int 1 1 1 1 1 1 1 1 1 ...
## $ holiday
              : int 0000000000...
## $ workingday: int 0 0 0 0 0 0 0 0 0 ...
## $ weather
              : int
                    1 1 1 1 1 2 1 1 1 1 ...
               : num 9.84 9.02 9.02 9.84 9.84 ...
## $ temp
## $ atemp
              : num 14.4 13.6 13.6 14.4 14.4 ...
```

\$ humidity : int 81 80 80 75 75 75 80 86 75 76 ...

```
## $ windspeed : num 0 0 0 0 0 ...
## $ casual : int 3 8 5 3 0 0 2 1 1 8 ...
## $ registered: int 13 32 27 10 1 1 0 2 7 6 ...
## $ count : int 16 40 32 13 1 1 2 3 8 14 ...
## - attr(*, ".internal.selfref")=<externalptr>
```

查看到各个变量的最小数,最大数,中位数,均值,分位数等。发现最小的租赁次数是1次。

summary(bike)

##	datetime	season	holiday	workingday
##	Length:10886	Min. :1.000	Min. :0.00000	Min. :0.0000
##	Class :characte	er 1st Qu.:2.000	1st Qu.:0.00000	1st Qu.:0.0000
##	Mode :characte	er Median :3.000	Median :0.00000	Median :1.0000
##		Mean :2.507	Mean :0.02857	Mean :0.6809
##		3rd Qu.:4.000	3rd Qu.:0.00000	3rd Qu.:1.0000
##		Max. :4.000	Max. :1.00000	Max. :1.0000
##	weather	temp	atemp	humidity
##	Min. :1.000	Min. : 0.82	Min. : 0.76 Min	. : 0.00
##	1st Qu.:1.000	1st Qu.:13.94	1st Qu.:16.66 1st	Qu.: 47.00
##	Median :1.000	Median :20.50	Median:24.24 Med	lian : 62.00
##	Mean :1.418	Mean :20.23	Mean :23.66 Mea	ın : 61.89
##	3rd Qu.:2.000	3rd Qu.:26.24	3rd Qu.:31.06 3rd	l Qu.: 77.00
##	Max. :4.000	Max. :41.00	Max. :45.45 Max	:. :100.00
##	windspeed	casual	registered	count
##	Min. : 0.000	Min. : 0.00	Min. : 0.0 M	Iin. : 1.0
##	1st Qu.: 7.002	1st Qu.: 4.00	1st Qu.: 36.0 1	st Qu.: 42.0
##	Median :12.998	Median : 17.00	Median:118.0 M	ledian :145.0
##	Mean :12.799	Mean : 36.02	Mean :155.6 M	lean :191.6
##	3rd Qu.:16.998	3rd Qu.: 49.00	3rd Qu.:222.0 3	3rd Qu.:284.0
##	Max. :56.997	Max. :367.00	Max. :886.0 M	lax. :977.0

数据重塑

查看 season 的取值

```
table(bike$season)
```

##

```
## 1 2 3 4
```

2686 2733 2733 2734

```
table(bike$weather)
##
##
      1
           2
                3
                     4
## 7192 2834 859
                     1
修正取值
bike$season <- factor(bike$season, labels = c("Spring", "Summer", "Fall", "Winter"))</pre>
bike$weather <- factor(bike$weather, labels = c("Good", "Normal", "Bad", "Very Bad"))
table(bike$season)
##
## Spring Summer
                  Fall Winter
##
     2686
           2733
                   2733
                         2734
table(bike$weather)
##
##
       Good
                         Bad Very Bad
              Normal
       7192
                2834
                         859
##
将变量日期时间转换为时间日期对象,之后再使用 hour 函数将日期时间中的小时数提取出来。
library(lubridate)
## Warning: package 'lubridate' was built under R version 4.0.5
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:data.table':
##
##
       hour, isoweek, mday, minute, month, quarter, second, wday, week,
##
       yday, year
## The following objects are masked from 'package:base':
##
       date, intersect, setdiff, union
bike$hour <- lubridate::hour(ymd_hm(bike$datetime))</pre>
```

剔除 casual 和 registered 两列。

```
bike <- bike[,-c(10, 11)]
head(bike)</pre>
```

```
##
          datetime season holiday workingday weather temp atemp humidity
                                0
## 1: 2011/1/1 0:00 Spring
                                           0
                                                Good 9.84 14.395
                                                                       81
## 2: 2011/1/1 1:00 Spring
                                0
                                           0
                                                Good 9.02 13.635
                                                                       80
## 3: 2011/1/1 2:00 Spring
                                                Good 9.02 13.635
                                                                       80
## 4: 2011/1/1 3:00 Spring
                                           0
                                                Good 9.84 14.395
                                                                       75
                                                Good 9.84 14.395
## 5: 2011/1/1 4:00 Spring
                                0
                                           0
                                                                       75
                                           0 Normal 9.84 12.880
## 6: 2011/1/1 5:00 Spring
                                0
                                                                       75
     windspeed count hour
##
## 1:
        0.0000
## 2:
        0.0000
                  40
                        1
        0.0000
## 3:
                  32
                        2
## 4:
        0.0000 13
                        3
## 5: 0.0000
                  1
                        4
## 6:
        6.0032
                   1
                        5
```

柱状图在数据分析中的简单应用

分析 24 小时,哪些时段处于单车租赁的高峰,低谷,运用 dplyr 包汇总分析函数结合 ggplot2 包的绘图函数,画条形图。

```
bike %>%
  group_by(hour) %>%
  summarise(mcount = mean(count)) %>%
  ggplot(aes(x = hour, y = mcount, fill = hour)) +
  geom_bar(stat = 'identity') +
  guides(fill = 'none') +
  theme_minimal()
```

看到上午8到9点,下午17到19点是高峰期,上下班,说明上班族共享的租赁数多。

再探索假期和工作日的评价租车频次。

```
p8 <- bike %>%
group_by(holiday) %>%
summarise(mcount = mean(count)) %>%
ggplot(aes(x = factor(holiday), y = mcount, fill = factor(holiday))) +
geom_bar(stat = 'identity') +
guides(fill = 'none') +
```

```
labs(x = 'holiday') +
theme_minimal()

# 探索是否工作目的平均租车频次
p9 <- bike %>%
group_by(workingday) %>%
summarise(mcount = mean(count)) %>%
ggplot(aes(x = factor(workingday), y = mcount, fill = factor(workingday))) +
geom_bar(stat = 'identity') +
guides(fill = 'none') +
labs(x = 'workingday') +
theme_minimal()

multiplot(p8, p9, cols = 2)
```

差距不大。

柱状和扇形图在数据分析中的应用

探索共享单车数据集可通过 season 变量内不同季节每小时租车次数的对比,来寻求不同季节租赁共享 单车的每小时租车次数差异。

```
p2 <- bike %>%
  group_by(season) %>%
  summarise(mcount = mean(count)) %>%
  ggplot(aes(x = reorder(season, mcount), y = mcount, fill = season)) +
  geom_bar(stat = 'identity') +
  labs(x = 'senson', y = 'mcount') +
  guides(fill = 'none') +
  theme_minimal()
p3 <- bike %>%
  group_by(season) %>%
  summarise(mcount = mean(count)) %>%
  ggplot(aes(x = reorder(season, mcount), y = mcount, fill = season)) +
  geom_bar(stat = 'identity', width = 1) +
  coord_polar(theta = "y") +
  labs(x = 'senson', y = 'mcount') +
  guides(fill = 'none') +
  theme minimal()
```

```
multiplot(p2, p3, cols = 2)
```

两种方式传达的意义是一样的。春天最少,秋天最多。

将可视化变量更改为天气情况,使用条形图和极坐标图。

```
p5 <- bike %>%
  group_by(weather) %>%
  summarise(mcount = mean(count)) %>%
  ggplot(aes(x = reorder(weather, mcount), y = mcount, fill = weather)) +
  geom_bar(stat = 'identity') +
  labs(x = 'weather') +
  guides(fill = 'none') +
  theme minimal()
p6 <- bike %>%
  group_by(weather) %>%
  summarise(mcount = mean(count)) %>%
  ggplot(aes(x = reorder(weather, mcount), y = mcount, fill = weather)) +
  geom_bar(stat = 'identity', width = 1) +
  coord_polar(theta = "y") +
  labs(x = 'senson', y = 'mcount') +
  guides(fill = 'none') +
  theme_minimal()
multiplot(p5, p6, cols = 2)
```

折线图在数据分析中的应用

观察数据趋势,查看不同时段各个季节的租赁次数的趋势。

```
bike %>%
  group_by(season, hour) %>%
  summarise(mcount = mean(count)) %>%
  ggplot(aes(x = hour, y = mcount, group = season, shape= season, linetype = season)) +
  geom_line() +
  theme_bw() +
  geom_point()
```

`summarise()` has grouped output by 'season'. You can override using the `.groups` argument.

将变量改为天气情况,以相同的折线图可视化该变量。

```
bike %>%
  group_by(weather, hour) %>%
  summarise(mcount = mean(count)) %>%
  ggplot(aes(x = hour, y = mcount, group = weather, shape= weather,linetype = weather)) +
  geom_line(aes(group = weather)) +
  theme_bw() +
  geom_point()
```

`summarise()` has grouped output by 'weather'. You can override using the `.groups` argument. 探索不同工作日不同时间段的平均租车频次。

```
bike %>%
  group_by(holiday, hour) %>%
  summarise(mcount = mean(count)) %>%
  mutate(Holiday = as.factor(holiday)) %>%
  ggplot(aes(x = hour, y = mcount, group = Holiday, shape = Holiday)) +
  geom_line(aes(group = factor(holiday))) +
  geom_point() +
  theme_bw()
```

`summarise()` has grouped output by 'holiday'. You can override using the `.groups` argument. 可见高峰期在 13 点左右和 18 点左右,8 点左右的租车频次降低了很多。非假期 0 时租车高峰期就是 8 点左右和 18 点左右,即上班族的上下班高峰期。

相关系数图综合分析

变量之间的相关性,帮助用户确认下一步的分析方向。

用 baseR 包中的 cor 函数,可视化用 corrplot.mixed。

```
cor(bike[,c(6:9, 10)]) %>%
corrplot.mixed()
```

发现 temp 和 atemp 的相关系数到达惊人的 0.98. 最后一行发现,频次与温度呈弱的正相关,与湿度 humidity 呈较弱的负相关。与风速几乎不相关。温度,湿度,风速不会对租车频次产生较大的影响。

参考文献

刘健等, R 数据科学实战工具详解与案例分析, 机械工业出版社, 2019 年 7 月