1ère année Master Informatique (ISII)

Matière : Analyse de données

TD1

Année: 2023/2024

Corrigé type de la série 1 d'exercices

Exercice 1:

Dans une petite localité, on a relevé une série de nombre de pièces par appartement

Nombre de pièces	1	2	3	4	5	6	7
Nombre d'appartements	48	72	96	64	39	25	3

1) Définir la population, la variable (le caractère) étudiée et quelle est sa nature.

- La population représente la localité.
- La variable étudiée est le nombre de pièces, de nature quantitative discrète.
- 2) Calculer les paramètres de tendance centrale et les paramètres de dispersion, sachant que l'effectif total de l'échantillon est 347.

Les paramètres de tendance centrale : moyenne, médiane et le mode.

Les paramètres de dispersion : variance, écart type, coefficient de variation, étendue, coefficient d'asymétrie, coefficient d'aplatissement, quantiles et écart inter-quantile.

Sachant que : x_i est le nombre de pièces et n_i est le nombre d'appartements.

- Calculer la moyenne de pièces par appartement :

$$moy = \frac{1102}{347} \approx 3.18$$

- Calculer le mode : 3 (avec un effectif maximal de 96)
- Calculer la médiane : 4
- Calculer l'étendue de la série : E= 7-1= 6
- Calculer la variance : $var = \frac{746}{347} \approx 2.15$
- Calculer l'écart type : $\sigma = \sqrt{var} \approx 1.47$
- Calculer le coefficient de variation : $CV = \frac{\sigma}{|moy|} = \frac{1.47}{|3.18|} \approx 0.46$
- Calculer le coefficient d'asymétrie :

$$\mu_3 = \frac{383}{347} \approx 1.10$$
, $\sigma^3 = 1.47^3 = 3.18$
$$\gamma_1 = \frac{\mu_3}{\sigma^3} = \frac{1.10}{3.18} \approx 0.35$$

- Calculer le coefficient d'aplatissement :

$$\mu_4 = \frac{_{3901}}{_{347}} \, pprox \, 11.24$$
 , $\sigma^4 = 1.47^4 = 4.67$

$$\gamma_2 = \frac{\mu_4}{\sigma^4} = \frac{11.24}{4.67} \approx 2.41$$

x_i	n_i	$n_i * x_i$	$(x_i - \overline{X})$	$n_i(x_i-\overline{X})^2$	$n_i(x_i-\overline{X})^3$	$n_i(x_i-\overline{X})^4$	Pourcentage	Pourcentage
							(%)	cumulé
1	40	40	2.10	220	407	1004	10.00	10.00
1	48	48	-2,18	228	- 497	1084	13.83	13.83
2	72	144	-1,18	100	- 118	140	20.75	34 .58
3	96	288	-0 ,18	3	- 0.56	0.1	27.67	62.25
4	64	256	0,82	43	35	29	18.44	80.69
5	39	195	1,82	129	235	428	11 .24	91.93
6	25	150	2,82	199	560.5	1581	7.20	99.13
7	3	21	3,82	44	167	639	0.87	100
Total	347	1102		746	382.94	3901	100	
					≈ 383			

- Calculer les quantiles :

$$\begin{array}{l} Q_1=2\ (25\%), Q_2=3\ (50\%), Q_3=4\ (75\%)\\ D_1=1\ , D_2=2\ , D_3=2, D_4=3, D_5=3, D_6=3, D_7=4,\ D_8=4, D_9=5\\ C_1,\ldots,C_{13}=1,\ C_{14}\ldots,C_{34}=2,\ C_{35}\ldots,C_{62}=3,\ C_{63}\ldots,C_{80}=4,\ C_{81}\ldots,C_{91}=5,\\ C_{92},\ldots,C_{99}=6 \end{array}$$

- Calculer les écarts interquartiles :

$$E = Q_3 - Q_1 = 2$$
, $E = D_9 - D_1 = 4$, $E = C_{99} - C_1 = 5$

3) Représenter graphiquement dans la boite à moustache correspondante la médiane (Me) et les quartiles (Q_1 et Q_3).

4) Représenter graphiquement cette série par les graphiques correspondants.

✓ Histogramme

✓ Courbe Cumulative

✓ Boite à moustache

Nombre pièces

✓ Histogramme Quantile-Quantile

-Distribution normale $(0, 1^2)$

D_1	D_2	D_3	D ₄	D_5	D_6	\mathbf{D}_7
1	2	2	3	3	3	4

- Entrées : le pourcentage de quantiles et l'endroit du décile (gauche, bilatérale, à droite)

$$D_1, D_2, D_3, D_4, D_5,$$
 D_6, D_7 à gauche bilatérale à droite

Calculer le score Z_1 telle que :

$$P(Z < Z_1) = 0.1 \ (D_1)$$
; Probabilité d'obtenir $Z_1 \le 0.1$

$$P(Z < Z_1)=0.2 (D_2), P(Z < Z_1)=0.3 (D_3), P(Z < Z_1)=0.4 (D_4),$$

$$P(Z < Z_1) = 0.5 \ (D_5), \, P(Z < Z_1) = 0.6 \ (D_6), \, P(Z < Z_1) = 0.7 \ (D_7)$$

Ī	-1.28	-0.84	-0.52	-0.25	0.67	0.25	0.52
Ī	1	2	2	3	3	3	4

Les données ne sont pas à la distribution normale (car on a 3 points sur 7 qui ne sont pas alignés).

Exercice 2:

- La population : Œufs

- Variable : Masse des Œufs (variable continu : intervalle)

Masse x_i	Nomb re des	C_i	Effectif Cumulé	Fréquence cumulé	$(C_i - \overline{X})^2 * n_i$	Pourcenta- ge	Pourcentage cumulé
	Œufs		N _i	cumure		(%)	(%)
100 001	n_i	22	4	0.011	(07 (2*4	1 1 4	1 1 4
[28-38[4	33	4	0.011	607.62*4	1.14	1.14
[38-48[55	43	59	0.16	214.62* 55	15.71	16.85
[48-58[78	53	137	0.39	21.62*78	22.29	$39.14 (Q_1)$
[58-62[112	60	249	0.71	5.52*112	32	71.14 (Q ₂)
[62-72[95	67	344	0.98	87,42*95	27.14	98.28 (Q_3, C_{85})
[72-38[6	77	350	1	374.42*6	1.72	100
Total	350						

- Calculer l'étendue : E=82-28= 54, $E_1 = 4, E_4 = 10$

$$\bar{X} = \frac{4*33+55*43+78*53+112*60+95*67+6*77+132+2365+4134+6720+6365+462}{350} = 57,65$$

- Médiane (Me)

$$\frac{N}{2} = 175$$

Chercher la première classe médiane qui a un effectif cumulatif qui dépasse 175 : [58-62]

$$Me = 58 + 4 * \frac{(175 - 137)}{112} = 59,36 \in [58,62]$$

- Mode (Mo)

Chercher la première classe modale ayant un effectif maximal: [58-62[

$$Mo = 58 + 4 * \frac{34}{34 + 17} = 60,66 \in [58,62]$$

- C₈₅

Chercher la première classe centile qui un pourcentage cumulé qui dépasse 85%: [62-72[

$$C_{85} = 62 + 10 * \frac{\left(\frac{85}{100} * 350 - 249\right)}{95} = 62 + 10 * \frac{297.5 - 249}{95} = 67.10$$

- $-Q_1(25\%)=51.65 \rightarrow [48-58]$
- $-Q_3(75\%) \rightarrow [62-72]$

$$Q_3 = 62 + 10 * \frac{\left(\frac{3}{4} * 350 - 249\right)}{95} = 63.42$$

 $-Q_{25}$

Chercher la première classe quantile contenant 25% de données (qui un pourcentage cumulé qui dépasse 25%): → [48 − 58[

$$Q_{25} = 48 + 10 * \frac{\left(\frac{25}{100} * 350 - 59\right)}{78} = 51.65$$

Interprétation : 25% des œufs ayant une masse moins de 51.65

- Ecart interquartile : $Q_3 Q_1 = 11.77$
- Ecart interdécile : $D_9 D_1 = 68.94 43.63 = 25.31$
- Calculer la variance : $var = \frac{27091}{350} \approx 77.40$
- Calculer l'écart type : $\sigma = \sqrt{var} \approx 8.79$

On a un intervalle qui a une longueur 2, on doit corriger son effectif. a $_{base}=10$, $a_i=4$, $n_{corr}=\frac{10}{4}*112=280$ de l'intervalle [58-62[

✓ Courbe Cumulative

Exercice 3:

Série 1 (variable quantitative continue) : [18-20 [, [20-22 [, [22-24 [

Série 1 (variable quantitative discrète): 1, 2, 3, 4, 5

-Calculer la moyenne et l'écart type de chaque série

	[18-20[[20-22[[22-24[$n_{j.}$	$n_{j.}y_{j}$	$(y_j - \overline{y})^2$	$n_{j.}(y_j-\overline{y})^2$
y							
1	19	56	11	86	86	5.06	435.37
2	71	182	23	276	552	1.56	431.25
3	149	391	57	597	1791	0.0625	37.31
4	36	187	51	274	1096	0.5625	154.125
5	24	181	79	284	1420	3.062	869.60
$n_{.i}$	299	997	221	1517			1926.75

Moyenne marginale de y :

$$\bar{y} = \sum_{i=1}^{n} \frac{n_{j.} y_{j}}{N}$$

$$\bar{y} = \frac{86 + 552 + 1791 + 1096 + 1420}{1517} = 3.25$$

Variance de y :

$$var_y = \sum_{i=1}^{n} \frac{n_{j.}(y_j - \overline{y})^2}{N} = 1.27$$

$$\sigma_y = 1.12$$

Age (x)	$n_{.i}$	c_i	$n_{.i}$	$(c_i - \overline{x})^2$	$n_{i}(c_i-\overline{x})^2$
[18-20[299	19	5681	3.53	1079.32
[20-22[997	21	20937	0.0529	9.97
[22-24[221	23	5083	4.97	974.61

Moyenne marginale de x :

$$\bar{x} = \frac{5681 + 20937 + 5083}{1509} = 20.9$$

$$var_{x} = \sum_{i=1}^{n} \frac{n_{.i}(y_{j} - \overline{y})^{2}}{N} = 1.36$$

$$\sigma_x = 1.16$$

-Calculer le point moyen du nuage de point

$$\bar{x} = \frac{19 + 21 + 23}{3} = 21$$

$$\bar{y} = \frac{1+2+3+4+5}{5} = 3$$

Le point moyen du nuage M(21,3)

Exercice 4:

X	Y	$(x_i-\overline{x})$	$(y_i - \overline{y})$	$(x_i - \overline{x})^2$	$(y_i - \overline{y})^2$
4	510	0	-642.22	0	412446.52
3	590	- 1	-562,22	1	316091.328
2	900	-2	-252.22	4	63614.92
1	1420	-3	267.78	9	71796.13
0	2000	-4	847.78	16	718730.93
5	600	1	-552.22	1	304946.93
6	850	2	-302.22	4	91336.93
7	1300	3	147.78	9	21838.93
8	2200	4	1047.78	16	1097842.9
Total				60	3098645.53

$$\bar{x} = 4$$
, $var_x = \frac{60}{9} = 6.66$

$$\sigma_x = 2.21$$

$$\bar{y} = 1152.22 \text{ , } var_y = \frac{3098645.53}{9} = 3498645.53$$

$$\sigma_y = 586.8$$

$$Cov(x, y) = \frac{1}{9}(4 * 510 + 3 * 590 + \dots + 8 * 2200) - 4 * 1152 = \frac{1}{9}(41830) - 4 * 1152 = 38.9$$

$$r_{x,y} = \frac{38.9}{2.58*586.8} = 0.02 \Rightarrow \text{Pas de corrélation entre le nombre d'enfants et le salaire.}$$

Exercice 5:

- Calculer les moyennes marginales \bar{X} et \bar{Y} et les écarts-types marginaux σ_x et σ_y .

у	[1-3[[3-11[[11-19[[19-31[[31-59[n _{i.}
x						
[5-7[0	0	2	9	29	40
[7-9[0	3	8	26	15	52
[9-11[2	12	35	22	6	77
[11-15[36	26	16	3	0	81
п. ј	38	41	61	60	50	250

Xi	n _i .	c_i	$n_{i.}c_{i}$	$(c_i - \overline{x})$	$(c_i - \overline{x})^2$	$n_{i.}(c_i-\overline{x})^2$
[5-7[40	6	240	-3.92	15.37	614.8
[7-9[52	8	416	-1.92	3.69	191.88
[9-11[77	10	770	0.08	0.0064	0.4928
[11-15[81	13	1053	3.08	9.49	768.69
Total	250		2479			1575.86

y i	$n_{.j}$	c_{j}	$n_{.j}c_j$	$(c_j-\overline{y})$	$(c_j - \overline{y})^2$	$n_{.j}(c_i-\overline{x})^2$
[1-3[38	2	76	-18.11	327.97	12462.86
[3-11[41	7	287	-13.11	171.87	7046.67
[11-19[61	15	915	-5.11	26.11	1592.71
[19-31[60	25	1500	4.89	23.91	1436.6
[31-59[50	45	2250	24.89	619.51	30975.5
Total			5028		1169.37	53514.34

-Déterminer la covariance et le coefficient de corrélation linéaire.

$$r_{x,y} = \frac{cov(x,y)}{\sigma_x \sigma_y}$$

$$Cov(x,y) = \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{n_{ij} (c_i - \overline{x})(c_j - \overline{y})}{N} = \left(\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} c_i c_j n_{ij}\right) - \overline{x} \overline{y}$$

$$\bar{x} = \sum_{i=1}^{n} \frac{n_i(c_i)}{N} = \frac{2479}{250} = 9.92$$

$$var_{x} = \sum_{i=1}^{n} \frac{n_{i.}(c_{i} - \overline{x})^{2}}{N} = 6.30$$

$$\sigma_x = 2.51$$

$$\bar{y} = \frac{5028}{250} = 20,11$$

$$var_y = \sum_{i=1}^{n} \frac{n_{.i} (c_i - \overline{y})^2}{N} = 214.05$$

$$\sigma_{\nu} = 14.63$$

$$Cov(x,y) = \frac{1}{250}(6*2*0+6*7*0+\cdots+13*45*0) - 9.92*20.11$$
$$= \frac{1}{250}(42815) - 9.92*20.11 = 173.54 - 199.49 = -28.23$$

c_i	c_{j}	n_{ij}	$c_i c_j n_{ij}$
6	2	0	0
6	7	0	0
6	15	2	180
6	25	9	1350
6	45	29	7830
8	2	0	0
8	7	3	168
8	15	8	960
8	25	26	5200
8	45	15	5400
10	2	2	40
10	7	12	840
10	15	35	5250
10	25	22	5500
10	45	6	2700
13	2	36	936
13	7	26	2360
13	15	16	3120
13	25	3	975

13	45	0	0

$$r_{x,y} = \frac{-28.23}{2.51 * 14.63} = -0.76$$