# Homework 7

# 萃英学院 2022级 王一鑫

# 2025年4月21日

#### Problem 1.

A topological space is **totally disconnected** if all of its components are singletons.

- (1) The subset  $\mathbb{Q}$  of all rational numbers is a subspace of one-dimensional Euclidean space  $\mathbb{R}^1$ . Prove that  $\mathbb{Q}$  is totally disconnected.
- (2) Is  $\mathbb{Q}$  discrete?
- (3) Prove that the Cantor set is totally disconnected.

#### SOLUTION.

- (1) if  $C \subseteq \mathbb{Q}$  and  $q_1 < q_2$  exist in C, we can find an irrational s in between and then  $\{(-\infty, s) \cap \mathbb{Q}, (s, \infty) \cap \mathbb{Q}\}$  disconnects  $\mathbb{Q}$  and C. So any subset of  $\mathbb{Q}$  with two or more points is disconnected.
- (2) In the subspace topology, a singleton  $\{q\}$  in  $\mathbb{Q}$  would need to be the intersection of an open set in  $\mathbb{R}$  with  $\mathbb{Q}$ .

Any open set in  $\mathbb{R}$  containing q must contain an interval around q, which includes infinitely many rational numbers. Hence, singletons in  $\mathbb{Q}$  are not open. Since  $\mathbb{Q}$  has no isolated points, it is not discrete.

(3) Consider two distinct points x and y in the Cantor set C. Their ternary expansions differ at some position n.

At the n-th stage of the Cantor set construction, the interval containing x and y is split, and the middle third is removed, placing x and y in different intervals.

These intervals are clopen in C, allowing x and y to be separated by clopen sets. Thus, the connected component of x cannot contain y, showing all components are singletons. Hence, C is totally disconnected.

#### Problem 2. (Exercise 4.18)

Let  $M_1$  and  $M_2$  be n-manifolds. For i=1,2, let  $B_i \subseteq M_i$  be regular coordinate balls, and let  $M_i' = M_i \setminus B_i$ . Choose a homeomorphism  $f: \partial M_2' \to \partial M_1'$  (such a homeomorphism exists by Problem 4-17). Let  $M_1 \# M_2$  (called a **connected sum of**  $M_1$  **and**  $M_2$ ) be the adjunction space  $M_1' \cup_f M_2'$  (Fig. 1).

- (a) Show that  $M_1 \# M_2$  is an *n*-manifold (without boundary).
- (b) Show that if  $M_1$  and  $M_2$  are connected and n > 1, then  $M_1 \# M_2$  is connected.
- (c) Show that if  $M_1$  and  $M_2$  are compact, then  $M_1 \# M_2$  is compact.



#### SOLUTION.

(a) For points in the interior of  $M_1'$  or  $M_2'$ , neighborhoods remain homeomorphic to  $\mathbb{R}^n$ .

For points on the glued boundary, consider collar neighborhoods around  $\partial M'_1$  and  $\partial M'_2$ . These collars, homeomorphic to  $S^{n-1} \times [0,1]$  and  $S^{n-1} \times (-1,0]$ , merge to form  $S^{n-1} \times (-1,1)$ . Using the radial extension of the homeomorphism f, this merged neighborhood is homeomorphic to  $\mathbb{R}^n$ . Thus, every point in  $M_1 \# M_2$  has a neighborhood homeomorphic to  $\mathbb{R}^n$ , making it an n-manifold without boundary.

(b) A theorem from the book furnishes topological embeddings

$$e_i: M_i' \to M_1 \# M_2$$
 such that:

$$e_1(M_1') \cup e_2(M_2') = M_1 \# M_2$$

$$e_1(M_1') \cap e_2(M_2') = e_1(\partial M_1') = e_2(\partial M_2')$$

Since the  $M'_i$  have nonempty boundary,  $e_1(M'_1) \cap e_2(M'_2) \neq \emptyset$ . Now,  $e_i(M'_i)$  being a topological embedding, it is connected if and only if  $M'_i$  is connected, which is true if  $M_i$  is connected.

So assuming that  $M_1$  and  $M_2$  are connected, this shows that  $M_1 \# M_2$  is the union of nonempty connected sets with nonempty intersection, which implies that it is connected.

(c)  $M_1'$  and  $M_2'$  are compact as they are closed subsets of compact manifolds. The adjunction space  $M_1' \cup_f M_2'$  is a quotient of the compact space  $M_1' \cup M_2'$ , hence compact.

#### PROBLEM 3. (Exercise 6.1)

Show that a connected sum of one or more projective planes contains a subspace that is homeomorphic to the Möbius band.

SOLUTION. By Fig 2 from Wikipedia we know that the right diagram is the subset of the left diagram.



图 2: Projective planes vs Möbius band

#### PROBLEM 4. (Exercise 6.2)

Note that both a disk and a Möbius band are manifolds with boundary, and both boundaries are homeomorphic to  $\mathbb{S}^1$ . Show that it is possible to obtain a space homeomorphic to a projective plane by attaching a disk to a Möbius band along their boundaries.

#### SOLUTION.

To see that  $P^2$  minus a disk is a Mobius band, see Fig 3. In the upper left is  $P^2$ , drawn as a fundamental polygon with sides identified. In the upper right, we've removed a disk. The boundary of the now-missing disk is drawn at the lower left as a dashed line. In the lower right we obtain the required Möbius band.



图 3: Construction

# PROBLEM 5. (Exercise 6.3)

Show that the Klein bottle is homeomorphic to a quotient obtained by attaching two Möbius bands together along their boundaries.

# SOLUTION. See Fig 4.



图 4: Construction