NURBS (Redbook ch12)

31 March 2009 CMPT370 Dr. Sean Ho Trinity Western University

IBiblio e-notes

Cambridge notes

Review last time: cubic curves

- Polynomial curves and surfaces
- Cubic polynomial curves:
 - Interpolating
 - Hermite
 - Bezier
- Solving for the geometry matrix to get coefficients
- Blending functions
- Types of continuity

Bezier curves

- Widely used, provided in OpenGL
- Use control points to indicate tangent vectors
 - Does not interpolate middle control points!

•
$$p'(0) = 3(p_1-p_0), p'(1) = 3(p_3-p_2)$$

- p₀, p₃ specify start+end position
- start+end velocity derived from control points
- Use Hermite form
- C⁰ but not C¹

$$\begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix}$$

Bezier blending functions

Blending functions are smooth polynomials

•
$$b_0(u) = (1-u)^3$$

•
$$b_1(u) = 3u(1-u)^2$$

$$\bullet b_2(u) = 3u^2(1-u)$$

$$b_3(u) = 3u^3$$

Convex hull property

Why the factor of 3 in the definition of Bezier curves?

•
$$p'(0) = 3(p_1 - p_0)$$

•
$$p'(1) = 3(p_3 - p_2)$$

Ensures that the curve is contained within the convex hull of the four control points

Bezier evaluators in OpenGL

- Specify array (1D or 2D) of control points:
 - ◆ GLfloat ctrlpoints[4][3] = { {-4.0, -4.0, 0.0}, ...
- Create a Bezier evaluator: (type=GL_MAP1_VERTEX_3)
 - ◆ glMap1f(type, u_{min}, u_{max}, stride, order, points);
- Enable the evaluator:
 - glEnable(type);
- Evaluate the Bezier at a particular u/v:
 - glEvalCoord1f((GLfloat) u);
 - Use this instead of glVertex(), e.g., within glBegin(GL_LINE_STRIP)

How OpenGL computes Beziers

- de Casteljau's algorithm: opengl/bezierdemo/
- 4 control points:
 - Plot a point u of the way from p₀ to p₁
 - Similarly between (p₁, p₂), and (p₂, p₃)
 - Get 3 points (q₀, q₁, q₂)
- Plot points u of the way between (q_0, q_1) , (q_1, q_2)
 - Get 2 points (r₀, r₁)
- Plot a point u of the way between (r_0, r_1)
- This is our point on the Bezier curve

Splines

- Draftsman's tool for drawing smooth curves:
 - Flexible wood/plastic strip
 - Bent to pass through knots (control points)
- A spline is any sort of smooth curve that has a series of control points
 - Interpolating splines
 - Interpolating cubic spline
 - Interpolating Catmull-Rom spline
 - Cubic Bezier is a spline
 - B-splines: basis splines

Cubic B-splines

- n+3 deBoor control points $p_0, ..., p_{n+2}$.
- Make n Bezier curve segments
 - Want C² at the joins; sacrifice interpolation
 - Derive Bezier control points (v₀, v₁, v₂, v₃)
 from deBoor points (p₀, p₁, p₂, p₃):
 - V_1 is (1/3)-way btw p_1 and p_2
 - v_0 is halfway between v_1 and $(1/3)p_0 + (2/3)p_1$
- Cubic B-spline: order == 4

Knot spacing

- Region of influence for each deBoor control point p_i is 4 Bezier segments
- Nots $(u_0, ..., u_{n+4})$ specify where the joins are in parameter space: e.g., $\{.0, .25, .50, .75, 1.0\}$
 - # knots == n+5
- Open-spacing: duplicate end knots to get interpolation:
 - ◆ {.0, .0, .0, .25, .50, .75, 1.0, 1.0, 1.0} (4 Beziers)
 - Some systems require extra duplicate @start/end
- Uniform B-spline: uniform spacing of knots

NURBS

- Spline:
 - Smoothish curve defined by control points
- B-spline:
 - Joined Bezier curves with C² continuity
- Non-uniform B-spline:
 - Non-uniform spacing of knots (e.g., can use multiplicity to get interpolation of endpoints)
- Rational B-spline:
 - Add weights to each control point
 - Leverages perspective division hardware

Properties of NURBS

- More computationally expensive than Bezier curves/patches
- C² continuity makes shading look much better
- Local control: moving a control point only affects 4 Bezier segments
- Convex hull property: each point on the spline is within the convex hull of the four control points it's affected by
- Affine-invariant (including perspective):
 - Transforming control points == transforming the curve

Using NURBS with GLU

- See Redbook example: surface.c
- Create pointer to new NURBS object:
 - #include <GL/glu.h>
 - GLUnurbsObj *n = gluNewNurbsRenderer();
- Enable auto-generation of normals:
 - glEnable(GL AUTO NORMAL);
- Set rendering options and register for errors:
 - gluNurbsProperty(n, GLU_SAMPLING_TOLERANCE, 25.0);
 - gluNurbsProperty(n, GLU_DISPLAY_MODE, GLU_FILL);

• gluNurbsCallback(n, GLU_ERROR, nurbsError);

GLU NURBS, cont.

- In the display() callback: start a curve/surface:
 - gluBeginSurface(n);
- Specify the NURBS:
 - gluNurbsSurface(n, ...);
 - # knots and list of knots in each dim u,v
 - array of control pts (give stride in u,v)
 - polynomial order (cubic=4) in u,v
 - surface type: GL_MAP2_VERTEX_3 for pts,
 GL_MAP2_TEXTURE_COORD_2 for texcoords
- Finish with gluEndSurface(n);

Trimming NURBS surfaces

- You can trim a NURBS surface by cutting out part of the parameter space ((0,1) in u,v)
- Specify trimming curves before gluEndSurface:
 - gluBeginTrim(n) / gluEndTrim(n);
- Piecewise linear trim: gluPwlCurve()
- Use a NURBS to trim: gluNurbsCurve()
- Orientation matters: include left side, exclude right side
- Can cut out islands
- See Redbook trim.c

