

Chapter 4: Types of Windows — Choosing the Right Edge Fader

4.1 Why Different Windows Exist

- FFT assumes repeating signals.
- Abrupt edges → spectral leakage.
- Different windows shape the edges differently, trading off:
 - i. Leakage reduction (clean FFT peak)
 - ii. Main lobe width (frequency resolution)
 - iii. Side lobe amplitude (spurious frequencies)

Think of each window as a different "fade-in/fade-out curve".

4.2 Common Window Types

Window	Shape / Behavior	When to Use / Intuition
Rectangular	Flat (no fade)	Best frequency resolution, poor leakage; like no ramp .
Hanning / Hann	Smooth, symmetric $0 \rightarrow 1 \rightarrow 0$	Most commonly used; balances leakage and resolution.
Hamming	Similar to Hanning, slightly higher edges	Reduces side-lobes more; good for audio signals.
Blackman	Very smooth edges, wider main lobe	Best leakage reduction; slightly worse frequency resolution.
Bartlett / Triangular	Linear ramp up and down	Simple, good for quick experiments; moderate leakage.

Window	Shape / Behavior	When to Use / Intuition
Kaiser	Adjustable shape via parameter β	Flexible control: trade-off leakage vs resolution.

4.3 Headfirst Intuition

- Edges define leakage: higher fade → less leakage.
- Middle defines amplitude preservation: flatter middle → better energy retention.
- Trade-off: Narrow main lobe → better frequency resolution; wider main lobe → less leakage.
- Windows are applied sample-by-sample: same principle as Hanning.

Think of it like **choosing a slope for a ramp**: shallow slope = smooth transition (less leakage), steep slope = abrupt (more leakage).

4.4 Choosing a Window: Simple Rules

- 1. **Hanning:** default, general-purpose, audio/FFT.
- 2. Hamming: if you want slightly lower side-lobes.
- 3. **Blackman:** if spectral leakage is critical (e.g., measuring small signals near strong tones).
- 4. **Rectangular:** only if edges naturally align with zero or you want maximum frequency resolution.
- 5. **Kaiser:** when you want **custom control** over trade-offs.

4.5 Practical Example in Python

```
import numpy as np

N = 16
windows = {
    "Rectangular": np.ones(N),
    "Hanning": np.hanning(N),
    "Hamming": np.hamming(N),
    "Blackman": np.blackman(N)
}

for name, w in windows.items():
    print(f"{name} window: {np.round(w, 2)}")
```

Observation:

- Rectangular \rightarrow all ones \rightarrow no fade.
- Hanning / Hamming \rightarrow smooth fade $0 \rightarrow 1 \rightarrow 0$.
- Blackman → even smoother edges, lower side-lobes.

4.6 Key Takeaways

- 1. Window = edge shaping tool; different windows shape differently.
- 2. **Trade-offs**: leakage vs resolution vs side-lobe amplitude.
- 3. **Default:** Hanning \rightarrow safe and general-purpose.
- 4. **Remember:** Behavior matters more than internal formula.