Implementação da função de Rede DNS Firewall

Germano Soboroza¹, Yuri Oliveira Alves², Luhan Bavaresco³

¹Engenharia de Computação – Universidade Federal de Santa Maria (UFSM)

Abstract. This work proposes to present an implementation of DNS Firewall network function, describing its operation, including a performance analysis on network packets.

Resumo. Este trabalho propõe apresentar a implementação da função de rede DNS Firewall, visando demonstrar seu funcionamento, incluindo uma análise de desempenho sobre os pacotes da rede.

1. Introdução

O Domain Name System (DNS) Firewall é uma função de rede responsável principalmente pela segurança e controle de acesso de sites, além destas, ele também visa aumentar o desempenho, segurança e confiabilidade de um servidor, visto que pacotes indesejáveis são barrados.

Com a finalidade de demonstrar a implementação dessa função de rede, foi montado um cenário de testes, onde é simulada sua implementação. Para se aproximar de um cenário real, foi utilizada a ferramenta *packet sender*, responsável pela manipulação de pacotes de rede, o *software Wireshark* foi utilizado para análise do desempenho da função.

2. Domain Name System (DNS) Firewall

Um DNS firewall é uma solução de segurança de rede que impede que usuários e sistemas de rede se conectem a algum host indesejável, redirecionando as requisições do cliente. Ele funciona empregando políticas de bloqueio definidas pelo administrador do sistema, também pode fornecer informações sobre ameaças, ajudando a isolar dispositivos infectados até que uma ação seja tomada.

Um exemplo da aplicabilidade do emprego desta função, é evitar ataques, como por exemplo na figura 1, onde existe uma Botnet, que tenta realizar diversas requisições a um servidor, este que por possuir políticas de proteção a este tipo de ataque, os bloqueia, e alerta o administrador do sistema, para que sejam tomadas as devidas ações.

Figura 1. Visão conceitual - DNS Firewall.

3. Cenário de Testes

O cenário de testes é composto basicamente por três agentes, o cliente (VM 1), atacante (VM 2) e o roteador (Router), abaixo, nas figuras 2 e 3, respectivamente, são apresentadas as configurações de *hardware* das máquinas virtuais.

```
-(germano® germano2)-[~]
Architecture:
                                  x86_64
                                 32-bit, 64-bit
CPU op-mode(s):
Byte Order:
                                 Little Endian
                                 39 bits physical, 48 bits virtual
Address sizes:
CPU(s):
On-line CPU(s) list:
                                 0,1
Thread(s) per core:
Core(s) per socket:
Socket(s):
NUMA node(s):
Vendor ID:
                                 GenuineIntel
CPU family:
Model:
                                 142
Model name:
                                  Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz
Stepping:
                                  10
CPU MHz:
                                  1992.000
BogoMIPS:
                                  3984.00
Hypervisor vendor:
                                  KVM
```

Figura 2. Configuração VM 1.

```
-(germano® germano1)-[~]
_s lscpu
Architecture:
                                 x86_64
CPU op-mode(s):
                                 32-bit, 64-bit
Byte Order:
                                 Little Endian
                                 39 bits physical, 48 bits virtual
Address sizes:
CPU(s):
On-line CPU(s) list:
                                 0,1
Thread(s) per core:
Core(s) per socket:
                                  2
Socket(s):
NUMA node(s):
                                  1
Vendor ID:
                                  GenuineIntel
CPU family:
Model:
                                  142
Model name:
                                  Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz
Stepping:
                                  10
                                  1992.000
CPU MHz:
BogoMIPS:
                                  3984.00
Hypervisor vendor:
                                  KVM
```

Figura 3. Configuração VM 2.

Com os respectivos endereços de IP 192.168.0.123, 192.168.0.124, as figuras 4 e 5, apresentam as configurações de IP das máquinas virtuais do cliente e do atacante.

```
(germano® germano2)-[~]

$ ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 192.168.0.123    netmask 255.255.255.0    broadcast 192.168.0.255
    inet6 fe80::a00:27ff:fee4:e696    prefixlen 64    scopeid 0×20<link>
    ether 08:00:27:e4:e6:96    txqueuelen 1000    (Ethernet)
    RX packets 64874    bytes 29385908 (28.0 MiB)
    RX errors 0    dropped 0    overruns 0    frame 0
    TX packets 16765    bytes 3005662 (2.8 MiB)
    TX errors 0    dropped 0    overruns 0    carrier 0    collisions 0
```

Figura 4. Interface e IP da máquina do cliente.

```
(germano@germano1)-[~]
$ ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 192.168.0.124 netmask 255.255.255.0 broadcast 192.168.0.255
    inet6 fe80::a00:27ff:fefb:e8b7 prefixlen 64 scopeid 0×20<link>
    ether 08:00:27:fb:e8:b7 txqueuelen 1000 (Ethernet)
    RX packets 82 bytes 8142 (7.9 KiB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 15 bytes 1396 (1.3 KiB)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Figura 5. Interface e IP da máquina do atacante.

Já a figura 6, representa a configuração do arquivo **resolv.conf** da máquina do cliente (VM 1), para forçar que essa máquina sempre tenha como servidor de DNS primário o IP do atacante (VM 2), que em nosso cenário de testes é 192.168.0.123.

```
Arquivo Ações Editar Exibir Ajuda

GNU nano 5.3

# Dynamic resolv.conf(5) file for glibc resolver(3) generated by resolvconf(8)

# DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTEN

# 127.0.0.53 is the systemd-resolved stub resolver.

# run "resolvectl status" to see details about the actual nameservers.

#nameserver 192.168.0.1

nameserver 192.168.0.124
```

Figura 6. Configuração do servidor DNS na máquina do cliente.

Desta forma, sempre que o cliente se conectar a rede, seu servidor DNS primário, será o endereco que se encontra no arquivo resolv.conf.

Como o ataque é do tipo man-in-the-middle, a topologia de rede adotada é do tipo estrela, pois obrigatoriamente, os pacotes devem passar por uma estação centralizadora, que no nosso cenário é a máquina do atacante (VM 2), abaixo, na figura 7, segue a representação do ambiente de testes.

Figura 7. Esquema Man in The Middle.

Então com o ambiente montado e devidamente configurado, foi iniciado o processo de testes, a Figura 8 demonstra o *script* rodando na máquina do atacante, enquanto nenhum pacote UDP da máquina do cliente foi enviado. Perceba que, para este caso, os domínios bloqueados são *globo.com*, *facebook.com* e *uol.com.br*, como é apresentado na linha spoof domains.

Figura 8. Script esperando por pacotes.

Para o envio de pacotes pela máquina do cliente, utilizou-se o *software Packet Sender*, no qual é possível criar pacotes do tipo UDP e TCP e enviá-los através de uma porta específica, além de definir um *delay* para reenvio do mesmo pacote criado.

Através da Figura 9 é possível notar que, quando um domínio não é bloqueado, a máquina do atacante repassa a requisição ao roteador e retorna a resposta à máquina do cliente.

			Capturing from	eth0 (udp port 5:	3)		
<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>G</u> o	<u>Capture</u> <u>Analyze</u> <u>S</u>	tatistics Telephon <u>y W</u> i	reless <u>T</u> ools	<u>H</u> elp		
1			9 🗢 📦 🖀 春		■ ⊕ ⊖		
			• • • •			~ III	
A	pply a display filter .	<ctrl-></ctrl->					- · ·
0.	Time	Source	Destination	Protocol	Length Info		
	1 0.000000000	192.168.0.123	192.168.0.124	DNS	70 Standard	query 0>	e8ef A google.com
	2 0.000000100	192.168.0.123	192.168.0.124	DNS	70 Standard	query 0x	48ec AAAA google.com
	3 0.000593746	192.168.0.123	192.168.0.124	DNS	70 Standard	query 0x	e8ef A google.com
	4 0.000593830	192.168.0.123	192.168.0.124	DNS	70 Standard	query 0x	48ec AAAA google.com
	5 0.004154045	192.168.0.124	192.168.0.1	DNS	70 Standard	query 0x	5aa3 A google.com
		400 400 0 4	192,168,0,124	DNS	86 Standard	query re	sponse 0x5aa3 A google.com A 216.5
	6 0.047382277	192.168.0.1					
-):	6 0.047382277 7 0.089496170	192.168.0.1	192.168.0.123	DNS			sponse 0xe8ef A google.com A 216.5
					96 Standard	query re	

Figura 9. Forward de um pacote não bloqueado.

Já a Figura 10, demonstra o envio de um pacote definido pelo domínio *uol.com.br*.

File	Tools M	Packet Send fulticast Help	der - IPs: 192.168	.0.123, fe80::a00:27ff:	fee4:e696%eth0			_ = ;
N	ame PORT	AL UOL						
AS	ASCII	representation						
Н	EX HEX rep	oresentation						oad File
Ac	dress Inva	alid Address / DN Port 5	3 @	Resend Delay 0	a	■ UDP ∨	Send	Save
Sear	ch Saved Pa	ackets				Delete Saved F	Packet Pers	istent TCP
	Send	Name	Resend	To Address	To Port	Method	AS	CII
6	⇔ Send	Globo	1	globo.com	53	TCP		
7	■ Send	Google	50	google.com	53	TCP		
8	■ Send	NTP query	1	pool.ntp.org	53	UDP	\e3\00\03\fa\0	0\01\00\
9	■ Send	PORTAL UOL	0		53	UDP		
10	■ Send	Telnet RPG	0	avalon-rpg.com	53	ТСР		I
11	■ Send	UDP IPv4 localhost macro	1	127.0.0.1	53	UDP	{{TIME}} {{RAN	NDOM}}
12	■ Send	UDP IPv6 localhost macro	1	::1	53	UDP	{{TIME}} {{RAN	NDOM}}
Cle	ar Log			Log Traffic	Save Log	Save Traffic Pa	cket Copy to	Clipboard
Т	ime ^	From IP From Port	To Addres	ss To Port	Method	Error	ASCII	Hex

Figura 10. Envio do pacote na máquina do cliente.

No momento em que o pacote é enviado, o *script* em execução na máquina do atacante, apresenta um aviso que a requisição para o determinado domínio foi bloqueada, como visto na Figura 11.

Figura 11 - Script Reconhece domínio bloqueado.

Através da Figura 12 é possível perceber que a máquina do atacante não envia a requisição da máquina do cliente ao roteador, redirecionando apenas a resolução para caso dos domínios bloqueados.

	*eth0 (udp port 53) X						
<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>G</u> o	<u>C</u> apture <u>A</u> nalyze	Statistics Telep	hon <u>y W</u> i	ireless <u>T</u> ools <u>H</u> elp		
			9 👄 🤿				
A	apply a display filter	<ctrl-></ctrl->			+		
No.	Time	▼ Source	Destination	Protocol	Length Info		
т*	1 0.000000000		192.168.0.124	DNS	70 Standard query 0x5ca2 A uol.com.br		
	2 0.000000159	192.168.0.123	192.168.0.124	DNS	70 Standard query 0x6da7 AAAA uol.com.br		
1	3 0.001060878	192.168.0.123	192.168.0.124	DNS	70 Standard query 0x5ca2 A uol.com.br		
1	4 0.001061044	192.168.0.123	192.168.0.124	DNS	70 Standard query 0x6da7 AAAA uol.com.br		
+	5 0.065260978	192.168.0.124	192.168.0.123	DNS	96 Standard query response 0x5ca2 A uol.com.br A 172.217.29.228		
L	6 0.091525353	192.168.0.124	192.168.0.123	DNS	96 Standard query response 0x6da7 AAAA uol.com.br A 172.217.29.228		
	7 0.119803716	192.168.0.124	192.168.0.123	DNS	96 Standard query response 0x5ca2 A uol.com.br A 172.217.29.228		
	8 0.158864894	192.168.0.124	192.168.0.123	DNS	96 Standard query response 0x6da7 AAAA uol.com.br A 172.217.29.228		

Figura 12. Demonstração do forward.

Ao realizarmos a tentativa de acesso ao domínio *uol.com.br* através de um navegador *web*, é possível observar pela Figura 13 que ocorre um aviso de possíveis danos de segurança ao usuário.

Figura 13. Página de bloqueio.

4. Análise de Desempenho

Novamente, através do *software Packet Sender*, foram gerados cerca de 2500 pacotes do protocolo UDP em um período de aproximadamente 250 segundos. Cada um destes pacotes continha um domínio, bloqueável ou não, e era enviado novamente de acordo com o *delay* estipulado na Tabela 1.

Tabela 1. Domínios enviados pelo Packet Sender.

Domínio	Delay para reenvio	Bloqueado	
facebook.com	0.09	Sim	
globo.com	0.7	Sim	
google.com	0.01	Não	
uol.com.br	0.4	Sim	
ufsm.br	0.1	Não	
youtube.com	0.05	Não	

O início do envio de cada um dos pacotes é realizada de forma manual no *software*, logo, nos primeiros segundos do gráfico 1 é possível observar um menor número de pacotes por segundo. No mesmo gráfico se observa a distribuição dos pacotes bloqueados, em vermelho, e os não bloqueados, em azul.

Gráfico 1. Pacotes gerados e sua distribuição.

Com os pacotes já gerados, foi possível calcular a média de bytes por segundo, onde o valor médio ficou igual a 5.788 bytes/s e 46.304 mil bits/s, o gráfico 2, apresenta a relação de bytes por segundo com relação ao tempo da análise.

Gráfico 2. Bytes por segundo.

Através do *software Wireshark* ainda foi possível verificar o tempo médio de *delay* entre a primeira requisição da máquina do cliente e a resposta da máquina do atacante, o gráfico 3 mostra a variação do *delay* médio ao longo do tempo, com picos no início do e no fim do cenário de testes, mas mantendo um valor médio de *40 ms*.

Gráfico 3. Média do delay até a resposta.

Observe através do Gráfico 4 a média dos *delays* entre a requisição e a resposta em um cenário semelhante ao anterior, porém sem o *forwarder*. O tempo *delay* do sistema se mostrou cerca 70% menor para o melhor caso e 80% para o pior caso.

Gráfico 4. Delay médio sem o forwarder.

Já o gráfico 4 demonstra o delay médio dividido por domínios bloqueados e não bloqueados.

Gráfico 5. Delay médio dividido por domínios bloqueados e não bloqueados.

Número de erros

No cenário de testes implementado, com o envio de cerca de 2500 pacotes com requisições de domínios bloqueados e não bloqueados, o sistema não apresentou nem um erro. Através da ferramenta *Wireshark* se comprovou a eficácia neste panorama, como mostrado na Figura 14

Dropped packets 0 (0.0%)

Figura 14. Pacotes descartados.

Referências

Andrew Tanenbaum. 2002. Redes de Computadores (5^a ed.).

Kurose, J. F. e Ross, K. 2014. Redes de Computadores e a Internet (6ª ed.).

Robert heaton (2018) "How to build a tcp-proxy", https://robertheaton.com/2018/08

/31/how-to-build-a-tcp-proxy-2/. Acessado em, 2021, Fevereiro, 13.

Duke University Department of Computer Science (2016) "DNS Primer Notes",https://www2.cs.duke.edu/courses/fall16/compsci356/DNS/DNS-primer.pdf. Acessado em, 2021, Fevereiro, 13.