

Lecture 01: Discrete Time Signals

Outlines

Digital Signal Processing

2. Operations on signals

3. Classes of sequences

1. What is signal?

Information-bearing function

Signal processing

- Modify a signal to extract/enhance/ rearrange the information
- Origin in analog electronics e.g. radar
- Examples...
 - Noise reduction
 - Data compression
 - Representation for recognition/ classification...

Continuous and digital-time signals

- Continuous-time signals = analog signals
- Discrete-time signals = discrete values at discrete time
- Digital signals = both time and amplitude are discrete

Notations and Examples

Notations

- Continuous-time (CT) signal x(t): independent variable t takes continuous values
- Discrete-time (DT) signal x[n]: independent variable n takes only integer values
- Note: x(t) is used to denote both the "signal" and "the signal value at time t"

Examples

- Electrical signals: Voltages and currents in a circuit.
- Acoustic signals: Audio and speech signals.

- Biological signals: ECG, EEG, medical images.
- Financial signals: Dow Jones indices.

DSP vs. analog SP

Conventional signal processing:

Digital SP system:

DSP: An Example

Digital processing of an analog signal

Digital processing of an analog signal

Historical review:

- 17th century: several numerical methods were developed to solve physical problem involving continuous variables and functions
- 1950s: availability of large digital computers
- 1960s: Researchers began to consider digital signal processing as a separate filed of itself.

Digital vs. Analog

Advantages:

- Many ...
- A digital circuit is less sensitive to tolerances of component values and is fairly independent of temperature, aging, and most other external parameters.
- A digital circuit can be reproduced easily and does not require any adjustment.
- It is amenable to full integration, and with the recent advantages in VLSI circuits, it is possible to integrate highly complex digital signal processing system on a single chip.

Disadvantages:

- System complexity & power consumption: the need for additional pre- and post-processing devises such as A/D and D/A converters
- Limited range of frequencies available for processing

2. Operations on signals

 Discrete time signal often obtained by sampling a continuous-time signal

- Sequence $\{x[n]\} = x_a(nT), n = ... -1, 0, 1, 2...$
- \blacksquare T= samp. period; 1/T= samp. frequency

Sequences

Can write a sequence by listing values:

$$\{x[n]\} = \{\dots, -0.2, 2.2, 1.1, 0.2, -3.7, 2.9, \dots\}$$

- Arrow indicates where n=0
- Thus, x[-1] = -0.2, x[0] = 2.2, x[1] = 1.1,

Left- and right-sided

- x[n] may be defined only for certain n:
 - $N_1 \le n \le N_2$: Finite length (length = ...)
 - $N_1 \le n$: Right-sided (Causal if $N_1 \ge 0$)
 - $n \le N_2$: Left-sided (Anticausal)
- Can always extend with zero-padding

Sequence Operations

Addition operation:

• Adder $x[n] \longrightarrow y[n]$ w[n]y[n] = x[n] + w[n]

Multiplication operation

• Multiplier x[n] y[n] $y[n] = A \times x[n]$

More operations

Product (modulation) operation:

Modulator

$$x[n] \xrightarrow{y[n]} y[n]$$

$$w[n] \qquad y[n] = x[n] \times w[n]$$

E.g. Windowing:
 Multiplying an infinite-length sequence
 by a finite-length window sequence
 to extract a region

Time shifting

- **Time-shifting** operation: y[n] = x[n-N] where *N* is an integer
- If N > 0, it is delaying operation
 - Unit delay $x[n] \longrightarrow z^{-1} \longrightarrow y[n]$

$$y[n] = x[n-1]$$

- If N < 0, it is an advance operation</p>
 - Unit advance

$$x[n] \longrightarrow z \longrightarrow y[n] \quad y[n] = x[n+1]$$

Combination of basic operations

Example

$$y[n] = \alpha_1 x[n] + \alpha_2 x[n-1] + \alpha_3 x[n-2] + \alpha_4 x[n-3]$$

Up- and down-sampling

- Certain operations change the effective sampling rate of sequences by adding or removing samples
- Up-sampling = adding more samples = interpolation
- Down-sampling = discarding samples= decimation

Down-sampling

In down-sampling by an integer factor M > 1, every M-th sample of the input sequence is kept and M - 1 in-between samples are removed:

$$x_d[n] = x[nM]$$

$$x[n] \longrightarrow M \longrightarrow x_d[n]$$

Down-sampling

An example of down-sampling

Up-sampling

Up-sampling is the converse of downsampling: L-1 zero values are inserted between each pair of original values.

$$x_u[n] = \begin{cases} x[n/L] & n = 0, \pm L, 2L, \dots \\ 0 & \text{otherwise} \end{cases}$$

$$x[n] \longrightarrow \uparrow L \longrightarrow x_u[n]$$

Up-sampling

An example of up-sampling

not inverse of downsampling!

Complex numbers

- .. a mathematical convenience that lead to simple expressions
- $\hfill\Box$ A second "imaginary" dimension ($j=\sqrt{-1}$) is added to all values.
- Rectangular form: $x=x_{\rm Re}+jx_{\rm Im}$ where magnitude $|x|=\sqrt{x_{\rm R}^2+x_{\rm Im}^2}$ and phase $\theta=\tan^{-1}\left(\frac{x_{\rm Im}}{x_{\rm Re}}\right)$
- □ Polar form: $x = |x|e^{j\theta} = |x|\cos\theta + j|x|\sin\theta$

Complex math

- When adding, real and imaginary parts add: (a+jb) + (c+jd)= (a+c) + j(b+d)
- When multiplying, magnitudes multiply and phases add:

$$rej^{\theta} \cdot sej^{\varphi} = rsej^{(\theta + \varphi)}$$

Phases modulo 2π

Complex conjugate

- Flips imaginary part / negates phase: Conjugate $x^* = x_{re} - \mathbf{j} \cdot x_{im} = |x| e^{\mathbf{j}(-\theta)}$
- Useful in resolving to real quantities:

$$x + x^* = x_{re} + \mathbf{j} \cdot x_{im} + x_{re} - \mathbf{j} \cdot x_{im} = 2x_{re}$$

 $x \cdot x^* = |x| e^{\mathbf{j}(\theta)} |x| e^{\mathbf{j}(-\theta)} = |x|^2$

3. Classes of sequences

Useful to define broad categories...

Finite/infinite (extent in n)

Real/complex:

$$x[n] = x_{re}[n] + \mathbf{j} \cdot x_{im}[n]$$

Classification by symmetry

Conjugate symmetric sequence:

if
$$x[n] = x_{re}[n] + j \cdot x_{im}[n]$$

then $x_{cs}[n] = x_{cs} * [-n]$
 $= x_{re}[-n] - j \cdot x_{im}[-n]$

Conjugate antisymmetric:

$$x_{ca}[n] = -x_{ca}^*[-n] = -x_{re}[-n] + j \cdot x_{im}[-n]$$

Conjugate symmetric decomposition

 Any sequence can be expressed as conjugate symmetric (CS) / antisymmetric (CA) parts:

$$x[n] = x_{cs}[n] + x_{ca}[n]$$

where:

$$x_{cs}[n] = \frac{1}{2}(x[n] + x^*[-n]) = x_{cs}^*[-n]$$

 $x_{ca}[n] = \frac{1}{2}(x[n] - x^*[-n]) = -x_{ca}^*[-n]$

When signals are real,

CS
$$\rightarrow$$
 Even $(x_{re}[n] = x_{re}[-n])$, CA \rightarrow Odd

Basic sequences

Unit sample sequence:

$$\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

Shift in time:

$$\delta[n-k]$$

• Can express any sequence with δ :

$$\{\alpha_0,\alpha_1,\alpha_2...\} = \alpha_0\delta[n] + \alpha_1\delta[n-1] + \alpha_2\delta[n-2]...$$

More basic sequences

• Unit step sequence: $\mu[n] = \begin{cases} 1, & n \geq 0 \\ 0, & n < 0 \end{cases}$

Relate to unit sample:

$$\delta[n] = \mu[n] - \mu[n-1]$$
$$\mu[n] = \sum_{k=-\infty}^{n} \delta[k]$$

Exponential sequences

- Exponential sequences are eigenfunctions of LTI systems
- General form: $x[n] = A \cdot \alpha^n$

If A and α are real (and positive):

Complex exponentials

$$x[n] = A \cdot \alpha^n$$

• Constants A, α can be complex :

Complex exponentials

 Complex exponential sequence can 'project down' onto real & imaginary axes to give sinusoidal sequences

$$x[n] = \exp\left\{\left(-\frac{1}{12} + j\frac{\pi}{6}\right)n\right\} \qquad e^{j\theta} = \cos\theta + j\sin\theta$$

$$x_{re}[n] \qquad 0.5 \qquad x_{im}[n] \qquad x_{im}[n] \qquad x_{im}[n] \qquad x_{re}[n] = e^{-n/12}\cos(\pi n/6) \qquad x_{im}[n] = e^{-n/12}\sin(\pi n/6)$$

Periodic sequences

A sequence \$\tilde{x}[n]\$ satisfying \$\tilde{x}[n] = \tilde{x}[n + kN]\$, is called a **periodic sequence** with a **period** \$N\$ where \$N\$ is a positive integer and \$k\$ is any integer.

Smallest value of N satisfying $\tilde{x}[n] = \tilde{x}[n + kN]$ is called the **fundamental period**

Periodic exponentials

- Sinusoidal sequence $A\cos(\omega_o n + \phi)$ and complex exponential sequence $B\exp(j\omega_o n)$ are periodic sequences of period N only if $\omega_o N = 2\pi r$ with N & r positive integers
- Smallest value of N satisfying $\omega_o N = 2\pi r$ is the **fundamental period** of the sequence
- r = 1 → one sinusoid cycle per N samples r > 1 → r cycles per N samples

Symmetry of periodic sequences

• An N-point finite-length sequence $x_f[n]$ defines a periodic sequence:

$$x[n] = x_f[\langle n \rangle_N]$$
 " $n \mod N$ " $\langle n \rangle_N = n + rN$
s.t. $0 \le \langle n \rangle_N < N, r \in \mathbb{Z}$

- Symmetry of $x_f[n]$ is not defined because $x_f[n]$ is undefined for n < 0
- Define Periodic Conjugate Symmetric:

$$x_{pcs}[n] = 1/2 (x[n] + x^*[\langle -n \rangle_N])$$

$$= 1/2 (x_f[n] + x_f^*[N - n]) \quad 1 \le n < N_-$$

Sampling sinusoids

Sampling a sinusoid is ambiguous:

Aliasing

- E.g. for $cos(\omega n)$, $\omega = 2\pi r \pm \omega_0$ all (integer) r appear the same after sampling
- We say that a larger ω appears aliased to a lower frequency
- Principal value for discrete-time frequency: $0 \le \omega_0 \le \pi$
 - (i.e. less than 1/2 cycle per sample)