DATA SCIENCE LAB MANUAL

1. Consider the following data of three cricket players in 10 innings T20 Match

Player	1	2	3	4	5	6	7	8	9	10
Cricketer1	25	10	55	45	55	78	55	0	49	10
Cricketer2	47	62	78	45	100	20	100	0	80	10
Cricketer3	80	17	7	10	45	79	75	75	80	42

- a) Find Whose average is better.
- b) What is the middlemost value of each player?
- c) Whose most frequent value is good.
- d) Draw a simple plot to show performance of players.

Solution:

```
#Cricket Player Performance Analysis
import statistics as st
import matplotlib.pyplot as pt
import tabulate
Matches=[1,2,3,4,5,6,7,8,9,10]
Player1=[25,10,55,45,55,78,55,0,49,10]
Player2=[47,62,78,45,100,20,100,0,80,10]
Player3=[80,17,7,10,45,79,75,75,80,42]
#Player1 Summary
print("Player1 Mean = ",st.mean(Player1))
print("Player1 Median = ",st.median(Player1))
print("Player1 Mode = ",st.mode(Player1))
#Player2 Summary
print("Player2 Mean = ",st.mean(Player2))
print("Player2 Median = ",st.median(Player2))
print("Player2 Mode = ",st.mode(Player2))
#Player3 Summary
print("Player3 Mean = ",st.mean(Player3))
print("Player3 Median = ".st.median(Player3))
print("Player3 Mode = ",st.mode(Player3))
#Performance plot
pt.plot(Matches, Player1)
pt.plot(Matches, Player2)
pt.plot(Matches, Player3)
pt.title("Cricket Player Performance")
```

```
pt.xlabel("Matches")
pt.ylabel("Scores")
pt.legend(["Player1","Player2","Player3"])
pt.show()
```

OUTPUT:

Player1 Mean = 38.2

Player1 Median = 47.0

Player1 Mode = 55

Player2 Mean = 54.2

Player2 Median = 54.5

Player2 Mode = 100

Player3 Mean = 51

Player3 Median = 60.0

Player3 Mode = 80

Analysis

- a) Player 2 average is better.
- b) Player1 Median = 47.0, Player2 Median = 54.5, Player3 Median = 60.0
- c) Player2
- d) Draw a simple plot to show performance of players.

- 2. Consider Insurance Dataset and analyze following
 - a) Count Number of Male and Female
 - b) What is average age of peoples.
 - c) Display simple bar plot Gender wise

Solution:

```
import pandas as pd
import openpyxl
import statistics as st
import matplotlib.pyplot as pt
data = pd.read_csv("E:\Data Science with
Python\DataSet\insurance.csv")
print(data)
ls=data['sex'].tolist()
y1=ls.count('female')
y2=ls.count('male')
print("female Count = ",y1)
print("male Count = ",y2)
avgage=data['age'].tolist()
print("Average Age= %.2f " % st.mean(avgage))
#Display Histogram genderwise
x=["FEMALE","MALE"]
y = [y1, y2]
pt.bar(x,y)
pt.title("Genderwise Insurance Data")
pt.xlabel("Gender")
pt.ylabel("Count")
pt.show()
```

Analysis:

```
female Count = 662
male Count = 676
b) Average Age= 39.21
```


3. Consider Insurance Dataset and analyze data region wise. Also display simple bar chart region wise.

Solution:

```
import pandas as pd
import openpyx1
import matplotlib.pyplot as pt
data = pd.read_csv("E:\Data Science with
Python\DataSet\insurance.csv")
print(data)
region=data['region'].tolist()
output=[]
for x in region:
  if x not in output:
     output.append(x)
print(output)
y1=region.count('southwest')
y2=region.count('southeast')
y3=region.count('northwest')
y4=region.count('northeast')
print("Southwest count= ",y1)
print("southeast count= ",y2)
print("northwest count= ",y3)
print("northeast count= ",y4)
pt.title("Regionwise Count")
pt.xlabel("Region")
pt.ylabel("Count")
y=[y1,y2,y3,y4]
pt.bar(output,y)
pt.show()
```

Analysis:

Southwest count= 325 southeast count= 364 northwest count= 325 northeast count= 324

4. Consider temperature dataset and analyze average of minimum and maximum temperature, minimum temperature, maximum temperature month wise.

Solution:

Analysis:

•				
Avg_o	f_Max_Temp	Max_temp	Avg_of_Min_Temp	Min_temp
Year Month				
2022 January	29.290323	33	14.838710	11
February	32.535714	35	16.928571	14
March	35.451613	39	20.322581	17
April	36.666667	39	22.300000	19
May	33.838710	38	21.612903	19
June	31.533333	36	21.033333	20
July	28.225806	33	20.451613	19
August	28.419355	32	20.258065	19
September	29.533333	32	19.833333	18
October	29.741935	32	18.677419	14
November	30.433333	32	16.433333	11
December	29.870968	33	17.967742	14

5. Consider following data and calculate Descriptive statistics using formules.

22,26,14,30,18,1135,41,12,32

Solution:

```
import numpy as np
import pandas as pd
data=[22,26,14,30,18,11,35,41,12,32]
print("Mean = %.2f"% np.mean(data))
print("Median = ",np.median(data))
print("Max = ",np.max(data))
print("Min = ",np.min(data))
print("First Quartile = ",np.quantile(data,0.25))
print("Second Quartile = ",np.quantile(data,0.50))
print("Third Quartile = ",np.quantile(data,0.75))
print("20 th Percentilee = ",np.percentile(data,20))
print("99 th Percentilee = ",np.percentile(data,99))
print("Standard deviation = %.2f" % np.std(data))
print("Variance = ",np.var(data))
```

OUTPUT:

Mean = 24.10

Median = 24.0

Max = 41

Min = 11

First Quartile = 15.0

Second Quartile = 24.0

Third Quartile = 31.5

20 th Percentilee = 13.6

99 th Percentilee = 40.46

Standard deviation = 9.83

Variance = 96.69

6. Find the Quartiles for the following Students Score data and visualize graphically.

50,50,47,97,49,3,53,42,26,74,82,62,37,15,70,27,36,35,48,52,63,64. Solution:

```
import numpy as np
import matplotlib.pyplot as pt
import numpy as np
import pandas as pd
data=[50,50,47,97,49,3,53,42,26,74,82,62,37,15,70,27,36,35,48,52,63,64]
print(data)
print("Quartile 1 = %.2f"%np.quantile(data,0.25))
print("Quartile 2 = %.2f"%np.quantile(data,0.50))
print("Quartile 3 = \%.2f"%np.quantile(data,0.75))
pt.figure(figsize=(8,4))
pt.hist(data)
# Vertical lines for each percentile of interest
pt.axvline(np.quantile(data, 0.25), linestyle='--', color='red')
pt.text(np.quantile(data, 0.25), 4, 'Q1', color='r', ha='right', va='top',
rotation=60)
pt.axvline(np.quantile(data, 0.50), linestyle='-', color='red')
pt.text(np.quantile(data, 0.50), 4, 'Q2', color='r', ha='right', va='top',
rotation=60)
pt.axvline(np.quantile(data, 0.75), linestyle='--', color='red')
pt.text(np.quantile(data, 0.75), 4, 'Q3', color='r', ha='right', va='top',
rotation=60)
pt.show()
```

OUTPUT:

Quartile 1 = 36.25

Ouartile 2 = 49.50

Quartile 3 = 62.75

7. Calculate the skewness for the following data also conclude skewness 85,96,76,108,84,100,86,70,95,84

Solution

```
import matplotlib.pyplot as pt
import statistics as st
import seaborn as sns
# Creating a dataset
dataset = [85,96,76,108,84,100,86,70,95,84]
meandata=st.mean(dataset)
print("Mean = %.2f"%meandata)
modedata=st.mode(dataset)
print("Mode = %.2f"%modedata)
meddata=st.median(dataset)
print("Median = %.2f"% meddata)
# Calculate the skewness
stddata=st.stdev(dataset)
print("Standard Deviation =%.2f" % stddata)
sk=(meandata-modedata)/stddata
print("Skewness= %.2f" % sk)
sns.distplot(dataset)
pt.show()
```

OUTPUT:

Mean = 88.40

Mode = 84.00

Median = 85.50

Analysis: Distribution is Positively Skewed.

8. Consider Student Performance dataset and find skewness for all subjects.

```
import pandas as pd
import matplotlib.pyplot as plt
import openpyxl
data =pd.read csv("E:\Data Science with
print(data)
%.2f"%data['Cloud Computing'].skew())
print("Skew of Data Science: %.2f"%data['Data
Science'].skew())
%.2f"%data['Computer Network'].skew())
plt.figure(figsize = (12,6))
plt.subplot(1, 3, 1)
plt.hist(data['Cloud Computing'])
plt.title('Cloud Computing ')
plt.subplot(1, 3, 2)
plt.hist(data['Data Science'])
plt.title('Data Science ')
plt.subplot(1,3,3)
plt.hist(data['Computer Network'])
plt.show()
```

OUTPUT:

Skew of Cloud Computing score: -0.28

Skew of Data Science: -0.26

Skew of Computer Networks: -0.29

Analysis: All subjects Distribution is negatively skewed. Maximum students score between 60-100.

9. Consider Student Performance dataset find basic statistics of data science subject using pandas describe function, calculate skewness also visualize distribution.

Solution:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import skew, skewtest, norm
import openpyxl
data =pd.read_csv("E:\Data Science with
Python\DataSet\StudentsPerformance.csv")
print(data)
print(data['Data Science'].describe())
print("Skewness= %.2f"%data['Data Science'].skew())
sns.distplot(data['Data Science'], fit=norm, color="r")
plt.show()
```

OUTPUT:

1000.000000 count 69.169000 mean std 14.600192 min 17.000000 25% 59.000000 50% 70.000000 75% 79.000000 100.000000 max

Name: Data Science, dtype: float64

Skewness=-0.26

10.Draw Regression Line for the following data. Conclude your analysis.

No. of chimpanzees	1	2	3	4	5	6	7	8
No. of hunting	30	45	51	57	60	65	70	71

```
# Import packages
import numpy as np
import matplotlib.pyplot as plt
x = np.array([1,2,3,4,5,6,7,8])
# Dependent Variable - percent of successful hunts
y = np.array([30,45,51,57,60,65,70,71])
n = np.size(x)
x_mean = np.mean(x)
y_mean = np.mean(y)
b1=n * np.sum(x*y)-np.sum(x)*np.sum(y)
b2=(n * sum(x*x) - (np.sum(x)*np.sum(x)))
b = (b1/b2)
a= y_mean-b*x_mean
print("Line Slope is : %.4f"%b)
print("Line Intercept is: %.4f"%a)
y_pred=b*x+a
plt.scatter(x, y, color = 'red')
plt.plot(x, y_pred, color = 'green', label = 'y = 5.4405*x + 31.6429')
plt.xlabel('Number of Chimpanzees')
plt.ylabel('Number of Hunts')
plt.title("Number of chimpanzees Vs Number of Hunts")
plt.legend()
plt.show()
```

OUTPUT:

Line Slope is: 5.4405 Line Intercept is: 31.6429

Number of chimpanzees Vs Number of Hunts

Analysis: Positive Correlation exist between number of chipanzees and number of hunts.

11. Consider Salary data and draw regression line using polyfit function and visualize graph. Conclude your analysis.

```
import pandas as pd
import matplotlib.pyplot as plt
import openpyxl
import numpy as np
data =pd.read_csv("E:\Data Science with
Python\DataSet\Salary_Data.csv")
print(data)
x=data['YearsExperience']
y=data['Salary']
plt.plot(x, y, 'o')
print("Correlation Coefficient = ",np.corrcoef(x,y))
#obtain m (slope) and b(intercept) of linear regression line
b, a = \text{np.polyfit}(x, y, 1)
print("Slope= %.2f"%b,"Intercept = %.2f"%a)
#add linear regression line to scatterplot
plt.plot(x, b*x+a,color='red',label='y=9449.96x+25792.20')
plt.legend()
plt.title("Relation Between Number of Experience and salary")
plt.legend()
plt.show()
```

```
Slope= 9449.96 Intercept = 25792.20
Correlation Coefficient = [[1. 0.97824162]
[0.97824162 1. ]]
```

Relation Between Number of Experience and salary

12. Display performance of two students in different subjects using bar graph. Also Comment on analysis.

Student	CC	DS	ENG	CN	FE
Student1	85	87	80	84	96
Student2	65	64	55	54	60

```
import matplotlib.pyplot as plt
import numpy as np
Stud1=[85,87,80,84,96]
Stud2=[65,64,55,54,60]
# create plot
bar_width = 0.35
X = np.arange(5)
p1 = plt.bar(X, Stud1, bar_width, color='b',label='Student1')
# The bar of second plot starts where the first bar ends
p2 = plt.bar(X + bar_width, Stud2,
bar_width,color='g',label='Student2')
plt.xlabel('Subject')
plt.ylabel('Scores')
plt.title('Student1 and Student2 Comparision ')
plt.xticks(X + (bar_width/2), ("CC", "DS", "CN", "ENG", "FE"))
plt.legend()
plt.tight_layout()
plt.show()
```

OUTPUT:

Student1 performance is good compare to student2.

13.Draw Pie chart for following data with explode, Shadow parameter.

cars	AUDI	BMW	FORD	TESLA	JAGUAR	MERCEDES
data	23	17	35	29	12	41

14. Consider the following Marks data of students and draw color bar for percentage. Also analyze data. Given marks is out of 30.40% and above Passing percentage.

marks= [30,28,22,18,15,5,0,19,22,23]

```
import matplotlib.pyplot as plt
rollno=
["Amita", "Roopa", "Sonali", "Santosh", "Manali", "Mohan", "Pramveer",
"Hema","Gita","Sohan"]
marks= [30,28,22,18,15,5,0,19,22,23]
perls=[]
for i in marks:
  per="\%.2f"\%(i/30*100)
  perls.append(float(per))
plt.figure(figsize=(10, 5))
plt.scatter(x=rollno, y=marks, c=perls, cmap="cool")
plt.colorbar(label="Percentage", orientation="horizontal")
plt.title("Student Performance in DS Subject")
plt.xlabel("Students")
plt.ylabel("Marks")
plt.show()
```

OUTPUT:

Analysis:

Mohan and pramveer is failed because their percentage is between to 20. Remaining 6 students Passed DS exam.

15.Draw subplot 2 by 2 for the following data of student deepali in for different subjects. Comment your analysis.

Test	T1	T2	T3	T4	T5	T6
CC	20	23	25	26	28	30
DS	30	28	25	29	30	28
CN	29	28	25	22	21	19
ENG	15	19	20	15	22	23

```
import matplotlib.pyplot as plt
Test=['T1','T2','T3','T4','T5','T6']
CC=[20,23,25,26,28,30]
DS=[30,28,25,29,30,28]
CN=[29,28,25,22,21,19]
ENG=[15,19,20,15,22,23]
plt.figure(figsize=(10,6))
fig. ax = plt.subplots(2,2)
ax[0,0].plot(Test,CC,'r-.',label='CC')
ax[0,0].legend()
ax[0,1].plot(Test,DS,'g--',label='DS')
ax[0,1].legend()
ax[1,0].plot(Test,CN,'y.-.',label='CN')
ax[1,0].legend()
ax[1,1].plot(Test,ENG,'b--',label='ENG')
ax[1,1].legend()
ax[0, 0].set_title("Cloud Computing")
ax[0, 1].set_title("Data Science")
ax[1, 0].set_title("Computer Network")
ax[1, 1].set_title("English")
# set spacing
fig.tight_layout()
plt.show()
```


Analysis: Cloud Computing performance increased whereas Computer network decreased.

16.Draw text Annotation for following data.

Color	red	black	green	yellow	blue
Likes	50	80	30	60	70

```
import matplotlib.pyplot as plt
import numpy as np
color=['red','black','green','yellow','blue']
likes=[50,80,30,60,70]
f, ax = plt.subplots()
ax.bar(color,likes,color=color)
ax.annotate(50, xy=(0.1, 50), xytext=(0.3, 51.5),
shrink=0.05,connectionstyle="angle3"))
ax.annotate(80, xy=(1, 80), xytext=(1.2, 80.5),
       arrowprops=dict(facecolor='cyan', shrink=0.1))
ax.annotate(30, xy=(2, 30), xytext=(2.2, 30.5),
       arrowprops=dict(facecolor='cyan', shrink=0.1))
ax.annotate(60, xy=(3, 60), xytext=(3.2, 60.5),
       arrowprops=dict(facecolor='cyan', shrink=0.1))
ax.annotate(70, xy=(4, 70), xytext=(4.2, 70.5),
       arrowprops=dict(facecolor='cyan', shrink=0.1))
plt.title("Color Likes Count")
plt.xlabel("Colors")
plt.ylabel("Likes")
plt.show()
```


17. Display Histogram comparison for following data. Also comment your analysis.

```
# importing libraries
import matplotlib.pyplot as plt
# giving two age groups data
age_g1 = [1, 3, 5, 10, 15, 17, 18, 16, 19,
      21, 23, 28, 30, 31, 33, 38, 32,
      40, 45, 43, 49, 55, 53, 63, 66,
      85, 80, 57, 75, 93, 95]
age_g2 = [6, 4, 15, 17, 19, 21, 28, 23, 31,
      36, 39, 32, 50, 56, 59, 74, 79, 34,
      98, 97, 95, 67, 69, 92, 45, 55, 77,
      76, 85]
plt.hist(age_g1, label='Age group1', bins=5, alpha=.7, edgecolor='red')
# plotting second histogram
plt.hist(age_g2, label="Age group2", bins=5, alpha=.7,
plt.legend()
# Showing the plot using plt.show()
plt.show()
```


In Age group1 0-20 years' people are more where as in age group2 60-80 peoples are more.

18. Display 2D ndarray basic operation accessing, inserting, deleting, updating elements operations also show additional functions of numpy array.

```
import numpy as np
#Create 2 D Array
arr=np.array([[1,2,3],[4,5,6],[7,8,9]])
arr1=np.array([[10,11,12],[13,14,15],[16,17,18]])
#print array
print("Array = ",arr)
#Display Dimesion of array
print("Dimesion of array = ",arr.ndim)
#Display Shape of Array
print("Dimesion of array = ",arr.shape)
# Access element 5
print("Accessed Element= ",arr[1,1])
#Insert new value at position 1 rowwise
arr=np.insert(arr,1,[9,4,7],axis=0)
print("After Insertion = ",arr)
#Modification 8 with 88
arr[3,1]=88
print("After Modification = ",arr)
#Deleting elemnts
print(arr)
arr = np.delete(arr, 1, axis=0)
print("After Deletion = ",arr)
#Addtional numpy array functions
print("Transpose of matrix= ",np.transpose(arr))
print("After Concatnation Columnwise of arr and arr1= ",
np.concatenate((arr,arr1),axis=1))
print("After Vetical stack operation on arr and arr1=
',np.vstack((arr,arr1)))
print("After Horizontal stack operation on arr and arr1=
".np.hstack((arr.arr1)))
```

```
Array = [[1 2 3]

[4 5 6]

[7 8 9]]

Dimesion of array = 2

Dimesion of array = (3, 3)

Accessed Element= 5

After Insertion = [[1 2 3]
```

```
[9 4 7]
[456]
[7 8 9]]
After Modification = [[ 1 2 3]
[9 4 7]
[456]
[788 9]]
[[1 2 3]
[9 4 7]
[4 5 6]
[788 9]]
After Deletion = [[ 1 2 3]
[456]
[788 9]]
Transpose of matrix= [[ 1 4 7]
[2 5 88]
[3 6 9]]
After Concatnation Columnwise of arr and arr1= [[ 1 2 3 10 11 12]
[4 5 6 13 14 15]
[788 9 16 17 18]]
After Vetical stack operation on arr and arr1= [[ 1 2 3]
[456]
[788 9]
[10 11 12]
[13 14 15]
[16 17 18]]
After Horizontal stack operation on arr and arr1= [[ 1 2 3 10 11 12]
[4 5 6 13 14 15]
[788 9161718]]
```

19. Display 3D ndarray basic operation accessing, inserting, deleting, updating elements.

```
import numpy as np
arr=np.array([[[1,2,3],[4,5,6]],
        [[7,8,9],[10,11,12]],
        [[13,14,15],[16,17,18]]])
arr1=np.array([[[19,20,21],[22,23,24]],
        [[25,26,27],[28,29,30]],
        [[31,32,33],[34,35,36]]])
#Print Dimnsion and shape
print("Dimension= ",arr.ndim, "Shape = ",arr.shape)
#Access 5
print("Accessing Element 5 =",arr[0,1,1])
#Access 10,11,12
print("Accessing Element [10,11,12] = ",arr[1,1,:])
#Insert new row [[19,20,21],[22,23,24]]
arr=np.insert(arr,3,[[19,20,21],[22,23,24]],axis=0)
print("After Insertion",arr)
#Modify 8 to 18
arr[1.0.1]=18
print("After Modifying 8 to 18 = ",arr)
#Delete row 2
arr=np.delete(arr,2,axis=0)
print("After deleting 2 row = ".arr)
#Addtional Functions
print("Transpose of matrix= ",np.transpose(arr))
print("After Concatnation Columnwise of arr and arr1= ",
np.concatenate((arr,arr1),axis=1))
print("After Vetical stack operation on arr and arr1=
',np.vstack((arr,arr1)))
print("After Horizontal stack operation on arr and arr1=
",np.hstack((arr,arr1)))
```

```
Dimension= 3 Shape = (3, 2, 3)
Accessing Element 5 = 5
Accessing Element [10,11,12] = [10 11 12]
After Insertion [[[ 1 2 3]
 [ 4 5 6]]
 [[ 7 8 9]
 [10 11 12]]
```

```
[[13 14 15]
 [16 17 18]]
[[19 20 21]
 [22 23 24]]]
After Modifying 8 to 18 = [[[1 \ 2 \ 3]]]
 [4 5 6]]
[[7189]
 [10 11 12]]
[[13 14 15]
 [16 17 18]]
[[19 20 21]
 [22 23 24]]]
After deleting 2 \text{ row} = [[[1 \ 2 \ 3]]]
 [4 5 6]]
[[7189]
 [10 11 12]]
[[19 20 21]
 [22 23 24]]]
Transpose of matrix= [[[ 1 7 19]
 [ 4 10 22]]
[[ 2 18 20]
 [51123]]
[[ 3 9 21]
 [ 6 12 24]]]
After Concatnation Columnwise of arr and arr1= [[[ 1 2 3]
 [4 5 6]
 [19 20 21]
 [22 23 24]]
[[7189]
 [10 11 12]
```

```
[25 26 27]
 [28 29 30]]
[[19 20 21]
 [22 23 24]
 [31 32 33]
 [34 35 36]]]
After Vetical stack operation on arr and arr1= [[[ 1 2 3]
 [4 5 6]]
[[ 7 18 9]
 [10 11 12]]
[[19 20 21]
 [22 23 24]]
[[19 20 21]
 [22 23 24]]
[[25 26 27]
 [28 29 30]]
[[31 32 33]
 [34 35 36]]]
After Horizontal stack operation on arr and arr1= [[[ 1 2 3]
 [4 5 6]
 [19 20 21]
 [22 23 24]]
[[7 18 9]
 [10 11 12]
 [25 26 27]
 [28 29 30]]
[[19 20 21]
 [22 23 24]
 [31 32 33]
 [34 35 36]]]
```

20. For bodyfat dataset calculate Correlation and Visualize Using Hitmap.

```
import matplotlib.pyplot as plt
import pandas as pd
import openpyx1
import numpy as np
import seaborn as sns
data=pd.read_csv("E:\\Data Science with
Python\\DataSet\\bodyfat.csv")
print(data)
corr=data.corr()
print(corr)
fig .ax=plt.subplots()
plt.title("Body Fat Correlation")
im= ax.imshow(corr.values)
# set labels
ax.set_xticks(np.arange(len(corr.columns)))
ax.set_yticks(np.arange(len(corr.columns)))
ax.set_xticklabels(corr.columns)
ax.set_yticklabels(corr.columns)
#Adding values
for i in range(len(corr.columns)):
  for j in range(len(corr.columns)):
     text = ax.text(j, i, np.around(corr.iloc[i, j], decimals=2),
plt.show()
```


21. Create dataframe in python for IPL Data and apply some basic operation on dataframe.

Team	MI	CSK	Devils	MI	CSK	RCB	CSK	CSK	KKR	KKR	KKR
Year	2014	2015	2014	2015	2014	2015	2016	2017	2016	2014	2015
Points	876	789	863	673	741	812	756	788	694	701	804

```
import pandas as pd
df=pd.DataFrame({"Team":["MI","CSK","Devils","MI","CSK","RCB","
CSK".
               "CSK", "KKR", "KKR", "KKR"],
          "Rank":[1,2,2,3,3,4,1,1,2,4,1],
          "Year":[2014,2015,2014,2015,2014,2015,2016,2017,
               2016,2014,2015],
          "Points":[876,789,863,673,741,812,756,788,694,
                701,804]}.
         index=["R1","R2","R3","R4","R5","R6","R7","R8",
              "R9","R10","R11"])
print("DataFrame = ")
print(df)
#Access Rows 2,4,6,8 using index and using labels
print("After Accessing Rows 2,4,6,8 Using Labels = ")
print(df.loc[["R2","R4","R6","R8"]])
print("After Accessing Rows 2,4,6,8 Using Index = ")
print(df.iloc[1:8:2])
#Access top 3 Rows and also bottom 3 rowa
print(df.head(3))
print("Bottom 3 Rows= ")
print(df.tail(3))
#Access columns team and points
print("After Accessing 2 Columns Team and Points= ")
print(df[['Team', 'Points']])
#Access Row 3 and column 1,3,4 using index
print("After Accessing row 3 and Columns 1,3,4 using index= ")
print(df.iloc[2,[0,2,3]])
#Access Row 3 and column 1,3,4 using labels
print(df.loc["R3",['Team','Year','Points']])
#Update last record with values 'RCB',3,2016,800
df.iloc[10]=['RCB',3,2016,800]
print("After Updating Last Row = ")
```

```
print(df)
#Insert new record in dataframe
df.loc[len(df.index)] = ['MI',2,2017,800]
print("After Inserting Last Row= ")
print(df)
#Delete row from dataframe
df=df.drop([11])
print("After Deleting Last Row = ")
print(df)
   OUTPUT: DataFrame =
       Team Rank Year Points
   R1
         MI
               1 2014
                        876
        CSK
   R2
               2 2015
                         789
   R3 Devils
               2 2014
                        863
   R4
         MI
              3 2015
                        673
   R5
               3 2014
        CSK
                         741
   R6
        RCB
               4 2015
                         812
        CSK
   R7
               1 2016
                         756
   R8
        CSK
               1 2017
                         788
                2 2016
   R9
        KKR
                         694
   R10
         KKR
                4 2014
                         701
   R11
         KKR
                1 2015
                         804
   After Accessing Rows 2,4,6,8 Using Labels =
    Team Rank Year Points
   R2 CSK
             2 2015
                      789
   R4 MI
            3 2015
                     673
            4 2015
   R6 RCB
                       812
   R8 CSK
             1 2017
                      788
   After Accessing Rows 2,4,6,8 Using Index =
    Team Rank Year Points
   R2 CSK
             2 2015
                      789
   R4 MI
            3 2015
                     673
   R6 RCB
             4 2015
                       812
   R8 CSK
             1 2017
                      788
   Top 3 Rows =
      Team Rank Year Points
              1 2014
   R1
        MI
                       876
   R2
        CSK
               2 2015
                        789
               2 2014
   R3 Devils
                        863
```

```
Bottom 3 Rows=
```

Team Rank Year Points

R9 KKR 2 2016 694

R10 KKR 4 2014 701

R11 KKR 1 2015 804

After Accessing 2 Columns Team and Points=

Team Points

- R1 MI 876
- R2 CSK 789
- R3 Devils 863
- R4 MI 673
- R5 CSK 741
- R6 RCB 812
- R7 CSK 756
- R8 CSK 788
- R9 KKR 694
- R10 KKR 701
- R11 KKR 804

After Accessing row 3 and Columns 1,3,4 using index=

Team Devils

Year 2014

Points 863

Name: R3, dtype: object

After Accessing row 3 and Columns 1,3,4 using labels=

Team Devils

Year 2014

Points 863

Name: R3, dtype: object

After Updating Last Row =

Team Rank Year Points

- R1 MI 1 2014 876
- R2 CSK 2 2015 789
- R3 Devils 2 2014 863
- R4 MI 3 2015 673
- R5 CSK 3 2014 741
- R6 RCB 4 2015 812
- R7 CSK 1 2016 756
- R8 CSK 1 2017 788
- R9 KKR 2 2016 694
- R10 KKR 4 2014 701

R11 RCB 3 2016 800

After Inserting Last Roe=

Team Rank Year Points

- R1 MI 1 2014 876
- R2 CSK 2 2015 789
- R3 Devils 2 2014 863
- R4 MI 3 2015 673
- R5 CSK 3 2014 741
- R6 RCB 4 2015 812
- R7 CSK 1 2016 756
- R8 CSK 1 2017 788
- R9 KKR 2 2016 694
- R10 KKR 4 2014 701
- R11 RCB 3 2016 800
- 11 MI 2 2017 800

After Deleting Last Row =

Team Rank Year Points

- R1 MI 1 2014 876
- R2 CSK 2 2015 789
- R3 Devils 2 2014 863
- R4 MI 3 2015 673
- R5 CSK 3 2014 741
- R6 RCB 4 2015 812
- R7 CSK 1 2016 756
- R8 CSK 1 2017 788
- R9 KKR 2 2016 694
- R10 KKR 4 2014 701
- R11 RCB 3 2016 800