Corrections

Corrections

 For accurate results the following corrections are also incorporated

- 1 Fuse wire correction
- 2 Acid correction
- **Cooling correction**

Module – 6 Fuels and Combustion

1. Fuse wire correction

Fuse wire correction:

Heat liberated during sparking should be subtracted from calorific value

Fuse wire correction:

- 1) As Mg wire is used for ignition, the heat generated by burning of Mg wire is also included in the gross calorific value.
- 2) Hence, this amount of heat has to be subtracted from the total value.

2. Acid correction

Acid correction:

Fuels containing Sulphur and Nitrogen if oxidized, the heats of formation of H₂SO₄ and HNO₃ should be subtracted (as the acid formations are exothermic reactions)

Acid correction:

During combustion, sulphur and nitrogen present in the fuel are oxidized to their corresponding acids under high pressure and temperature condition.

$$S + O_2$$

$$\rightarrow$$
 SO₂

$$2SO_2 + O_2 + 2H_2O$$

$$\rightarrow$$
 2H₂SO₄

$$\Delta H = -144,000 \text{ cal}$$

$$2N_2 + 5O_2 + 2H_2O$$

$$\rightarrow$$
 4HNO₃

$$\Delta H = -57,160,000 \text{ cal}$$

2. Acid correction (Cont.)

- The corrections must be made for the heat liberated in the 'bomb calorimeter' by the formation of H₂SO₄ and HNO₃.
- The amount of H₂SO₄ and HNO₃ is analyzed by washings of the calorimeter.
 - For each mL of 0.1 N H_2SO_4 formed, 3.6 calories should be subtracted.
 - For each mL of 0.01N HNO₃ formed, 1.43 calories should be subtracted.

3. Cooling correction:

Cooling correction:

The rate of cooling of the calorimeter from maximum temperature to room temperature is noted. From this rate of cooling [i.e. dt (°C/min)] and the actual time taken for cooling (X min) then correction (dt \times X) is called cooling correction and is added to the (t₂ - t₁) term.

If the time taken for the water in the calorimeter = "X" minutes to cool down from the maximum temperature attained to the room temperature

Rate of cooling = dt (°C/min)

Cooling correction = $X \times dt$

This should be added to the observed rise in temperature

Calculation after correction

HCV - Before corrections

$$HCV = \frac{(W+w)(t_2-t_1)}{m} cal/g$$

HCV – After corrections

$$HCV = \frac{(W+w)[(t_2-t_1) + Cooling correction] - (Acid correction + Fuse correction)}{m}$$
 cal

cal/g

Numerical - Problem

A sample of coal contains C = 93%; H = 6% and ash = 1%. The following data were obtained when the above coal was tested in bomb calorimeter.

Weight of coal burnt = 0.92 g

Weight of water taken = 550 g

Water equivalent of calorimeter = 2,200 g

Rise in temperature = 2.42 °C

Fuse wire correction = 10.0 cal

Acid correction = 50.0 cal

Calculate gross and net calorific value of the coal, assuming the latent heat of condensation of steam as 580 cal/g.

Numerical - Solution

Weight of coal burnt	=	m	=	$0.92\mathrm{g}$

Weight of water taken =
$$W = 550 g$$

Rise in temperature =
$$(t_2-t_1)$$
 = 2.42 °C

Numerical – Solution (Cont.)

GCV =
$$\frac{(W+w)(t_2-t1) - (Acid correction + Fuse correction)}{m}$$
 c

$$=\frac{(550+2,200)\times(2.42)-(50+10)}{0.92} cal/g$$

= 7,168.5 cal/g

NCV =
$$[GCV - 0.09 \times H \times latent heat steam]$$

= $(7168.5 - 0.09 \times 6 \times 580)$ cal/g
= 6855.3 cal/g

Boy's Calorimeter - Principle

It is used for measuring the calorific value of gaseous (or) liquid fuels.

Principle

- A known volume of gaseous fuel sample is burnt in the combustion chamber of a Boy's calorimeter.
- The released heat is quantitatively absorbed by cooling water, circulated through copper coils surrounding the combustion chamber.
- The mass of cooling water and its rise in temperature are noted.
- The mass of water produced by condensation of steam is calculated.
- The calorific value of the fuel sample is then calculated from these data.

Boy's Calorimeter

Boy's gas calorimeter

Boy's Calorimeter - Construction

Construction

Boy's calorimeter consists of a combustion chamber surrounded by water tube with two thermometers T_1 and T_2 attached. There is a burner in the chamber, which is connected to a gas tube.

Working

- A known volume of water is passed through the tubes.
- The initial temperature is noted when the two thermometers show the same constant temperature.
- A known volume of the gas (measured using a meter) is passed through the tube and burnt in the combustion chamber.
- The heat liberated is absorbed by the water in the tubes.
- The final temperature of water is noted.
- The gaseous products are cooled and condensed into a measuring jar.

Boy's Calorimeter - Calculation

HCV (or) GCV = W × S ×
$$\frac{(T_2 T1)}{V}$$

LCV (or) NCV =
$$\left[\frac{m \times 587}{V} \right]$$

V = Volume of the gas burns at STP in certain time (t)

W = Mass of the cooling water used in time (t)

 T_1 = Temperature of inlet water

T₂ = Temperature of outgoing water

m = Amount of water collected from condensation in time (t)

S = Specific heat of water Specific heat of water = 1 cal/g °C

Determination of calorific value

Determination of calorific value

- Experimental methods
 - 1. Bomb calorimeter
 - 2. Boy's calorimeter
- Theoretical method
 - Dulong's formula (or)
 - > I.A. Davies formula

 The calorific value of fuels (e.g. Coal) is determined theoretically by Dulong's formula or I.A. Davies formula

Module – 6 Fuels and Combustion 3

Dulong's Formula

- The approximate calorific value of a fuel can be determined by knowing the amount of constituents present:
- Gross or higher calorific value (HCV) from elemental constituents of a fuel.

$$H = 34500 \text{ kcal/kg}$$
; $C = 8080 \text{ kcal/kg}$; $S = 2240 \text{ kcal/kg}$

Oxygen present in the fuel is assumed to be present as water (fixed hydrogen).

Dulong's formula for calorific value from the chemical composition of fuel is,

$$HCV = \frac{1}{100} \left[8080 \text{ C} + 34500 \left(\text{H} - \frac{\text{O}}{8} \right) + 2240 \text{ S} \right] \text{ kcal/kg}$$

Combustion

Combustion of Fuel

Combustion

• **Combustion** is a process in which oxygen from the air reacts with the elements or compounds to give heat.

Module – 6 Fuels and Combustion

Combustion

- As the elements or compounds combine in definite proportions with oxygen, we need to calculate what is *minimum oxygen or air required* for the complete combustion of compounds.
- The commonly involved combustion reactions are;

```
CO,
                   + 0,
          2H_2 + O_2 \rightarrow
ii)
                                          2H<sub>2</sub>O
          S + O_2 \rightarrow
iii)
                                          SO,
                                  \rightarrow
          2CO + O_2
                                          2CO,
iv)
                                  \rightarrow
v)
          CH<sub>4</sub>
                   + 20<sub>2</sub>
                                          CO_{2} + 2H_{2}O
          2C_2H_6 + 70_2
                                  \rightarrow
vi)
                                          4CO_{2} + 6H_{2}O_{3}
          2C_{2}H_{2} + 5O_{2}
                                          4CO_{2} + 2H_{2}O
vii)
```

Combustion - Calculation of air quantities

✓ Substances always combine in definite proportions.

C (s) +
$$O_2$$
 (g) \rightarrow CO_2 (g)
12 32 44

- ✓ Air contains 21% of oxygen by volume & 23% of oxygen by mass.
 - 1 kg of oxygen is supplied by $\frac{1 \times 100}{23}$ = 4.35 kg of air
 - 1 m^3 of oxygen is supplied by $\frac{1 \times 100}{21}$ = 4.76 m^3 of air
- ✓ 28.94 g/mol is taken as the molecular mass of air
 - Since air has 23% by weight or 21% by volume of oxygen
 - Minimum weight of air needed for complete combustion = Net O_2 x 100/23 g
 - Minimum volume of air needed for complete combustion = Net O₂ x 100/21 g

Combustion calculation procedure

		Combustic	on eq	uation	Wt. of Oxygen needed	Vol. Of Oxygen needed	
С	+	O ₂	\rightarrow	CO ₂	$\mathbf{x} \times 1 \times \frac{32}{12}$	x × 1	
"x" g c	or m³				12		
H ₂	+	0.5 O ₂	\rightarrow	H ₂ O	$\mathbf{y} \times 0.5 \times \frac{32}{2}$	y × 0.5	
"y" g c	or m³				2		
СО	+	0.5 O ₂	\rightarrow	CO ₂	$z \times 0.5 \times \frac{32}{28}$	z × 0.5	
"z" g c	or m³				28		
S	+	02	\rightarrow	SO ₂	$\mathbf{p} \times 1 \times \frac{32}{32}$	p × 1	
"p" g d	or m³				32		
CH ₄	+	2 O ₂	\rightarrow	CO ₂ + 2H ₂ O	$q \times 2 \times \frac{32}{16}$	q×2	
"q" g or m ³							
C ₂ H ₆	+	3.5 O ₂	\rightarrow	2CO ₂ + 3H ₂ O	$r \times 3.5 \times \frac{32}{30}$	r × 3.5	
"r" g c	or m³				30		

Combustion-Numerical problem

Question: How much air is required to burn 1 kg of pure carbon?

Solution: M. Wt. of $O_2 = 32$

This reacts with C, M. Wt. = 12

C (s) +
$$O_2$$
 (g) \rightarrow CO_2 (g)
12 32 44
 $x = 1000 \text{ g}$ $m_{Oxygen} = ?$

Wt. of Oxygen needed =
$$m_{Oxygen}$$
 = $x \times 1 \times \frac{32}{12}$
 m_{Oxygen} = $1000 \times 1 \times \frac{32}{12}$
= 2667 g (or) 2.667 kg of O₂

But, air contains only 23% of O₂ by weight

Mass of air required to burn 1 kg of pure carbon =
$$\frac{100 \times 2.667}{23}$$
 = 11.59 kg