Software Testing

(Theory)

Course Code	16CS72	Credits	03
Course type	PC	CIE Marks	50 Marks
Hours/week: L-T-P	3 - 0 - 0	SEE Marks	50 Marks
Total Hours:	40	SEE Duration	3 Hours

Course learning objectives

- 1. To introduce the terminology, testing, test-case, pseudo-codes / algorithms / flowcharts of Triangle, NextDate & Commission programs.
- 2. To develop the skill of analyzing the Triangle, NextDate & Commission programs, with the perspective of Boundary Value Analysis, Equivalence Class & Decision Table Testing paradigms.
- 3. To practice quality assurance related processes / methods / standards.

Pre-requisites:

- Software Engineering
- Graph Theory

Unit – I 8 Hours

A Perspective on Testing:

Basic definitions, Test cases, Insights from a Venn diagram, Identifying test cases, Error and fault taxonomies, Levels of testing.

Examples: Generalized pseudocode, The triangle problem, The NextDate function, The commission problem.

Unit – II 8 Hours

The SATM (Simple Automatic Teller Machine) problem, The currency converter, Saturn windshield wiper.

Boundary value analysis Equivalence Class Testing, Decision Table-Based Testing:

Boundary value analysis, Robustness testing, Worst-case testing, Special value testing, Examples, Random testing, Guidelines for Boundary Value Testing.

Unit – III 8 Hours

Equivalence Class Testing:

Equivalence classes, Equivalence test cases for the triangle problem, NextDate function, and the commission problem, Guidelines and observations.

Decision Table-Based Testing:

Decision tables, Test cases for the triangle problem. Decision tables for NextDate function, and the commission problem, Guidelines and observations.

Unit – IV 8 Hours

Path Testing, Data Flow Testing:

DD paths, Test coverage metrics, Basis path testing, guidelines and observations. Definition-Use testing. Slice-based testing, Guidelines and observations.

Unit – V 8 Hours

Data Flow Testing:

Define/Use Testing, Slice-Based Testing, Program Slicing Tools, Examples, Guidelines and observations.

Text Book:

1. Paul C. Jorgensen: Software Testing, A Craftsman's Approach, 3rd Edition, Auerbach Publications, 2008.

Reference Book:

- 1. Aditya P. Mathur: Foundations of Software Testing, Pearson Education, 2008.
- 2. Srinivasan Desikan, Gopalaswamy Ramesh: Software testing Principles and Practices, 2nd Edition, Pearson Education, 2007.

Course Outcome (COs):

	,	Blooms Level
1.	Define the test-case, testing, error taxonomy	L1
2.	Illustrate test-cases for Triangle, NextDate & Commission programs, for boundary value analysis.	L2
3.	Design test-cases for Triangle, NextDate & Commission programs, for equivalence class testing, decision table testing.	L3
4.	Demonstrate the importance of verification & validation in improving the process of software development.	L3
5.	Examine the testing, verification and validation for an application.	L4
	Program Outcome of this course (POs)	PO No.
1.	Engineering knowledge: Apply the knowledge of mathematics, science engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	
2.	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	

- 3. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 5
- 4. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

9

Course delivery methods

Assessment methods

- 1. Lecture & Board
- 2. Power-point Presentation
- 3. Online Videos / Learning
- 4. NPTEL / EDUSAT
- 5. Class Room Exercises

- 1. Assignments
- 2. Quizzes
- 3. Internal Assessment Tests
- 4. Course Seminar
- 5. Course Project (Mini project)

Scheme of Continuous Internal Evaluation (CIE):

Components	Average of best two IA tests out of three		Quiz	Class participation	Total Marks
Maximum Marks: 50	25	10	5	10	50

> Writing two IA test is compulsory.

➤ Minimum marks required to qualify for SEE: 20

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):

- 1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
- 2. Minimum marks required in SEE to pass: 40 (out of 100)
- 3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.