PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4:

C03C 13/00, 13/02, 25/06

(11) International Publication Number:

WO 89/12032

A2

(43) International Publication Date:

14 December 1989 (14.12.89)

(21) International Application Number:

PCT/US89/02288

(22) International Filing Date:

25 May 1989 (25.05.89)

(30) Priority data:

201,513

1 June 1988 (01.06.88)

US

(71) Applicant: MANVILLE SALES CORPORATION [US/ US]; Manville Plaza, 5th Floor, P.O. Box 5108, Denver,

CO 80217 (US).

(72) Inventors: OLDS, Leonard, Elmo; 977 South Lake Gulch Road, Castle Rock, CO 80104 (US). KIELMEYER, William, Henry; 3374 West Chenango Avenue, Englewood,

CO 80110 (US).

(74) Agent: SCHRAMM, William, J.; Brooks & Kushman, 2000 Town Center, Suite 2000, Southfield, MI 48075 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), BR, CH (European patent), DE (European patent), DK, FI, FR (European patent), GB (European patent), IT (European patent), JP, KP, KR, LU (European patent), IT (Eu pean patent), NL (European patent), NO, SE (European patent).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: PROCESS FOR DECOMPOSING AN INORGANIC FIBER

(57) Abstract

Inorganic fibers which have a silicon extraction of greater than 0.02 wt% Si/day in physiological saline solutions. The fiber contains SiO₂, MgO, CaO, and at least one of Al₂O₃, ZrO₂, TiO₂, B₂O₃, iron oxides, or mixtures thereof. Also disclosed are inorganic fibers which have diameters of less than 3.5 microns and which pass the ASTM E-119 two hour fire test when processed into a fiber blanket having a bulk density in the range of about 1.5 to 3 pcf.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FI	Finland	ML	Mali
ΑU	Australia	FR	France	MR	Mauritania
BB	Barbados	GA	Gabon	MW	Malawi
BE	Belgium	GB	United Kingdom	NL	Netherlands
BF	Burkina Fasso	HU	Hungary	NO	Norway
BG	Bulgaria	ıπ	italy	RO	Romania
BJ	Benin	JP	Japan	SD	Sudan
BR	Brazil	KP	Democratic People's Republic	SE	Sweden
CF	Central African Republic		of Korea	SN	Senegal
CG	Congo	KR	Republic of Korea	SU	Soviet Union
CH	Switzerland	ü	Liechtenstein	TD	Chad
CM	Cameroon	LK	Sri Lanka	TG	Togo
DE	Germany, Federal Republic of	ш	Luxembourg	us	United States of America
DK	Denmark	MC	Monaco		
ES	Spain	MG	Madagascar		

FIELD OF INVENTION

This invention relates to inorganic fiber compositions and more particularly it relates to inorganic fiber compositions which can contain silica, magnesia, calcium oxide, alumina, and other oxides. Some of the inventive fibers have excellent fire ratings, some have especially low durabilities in physiological saline solutions, and some have combinations of these foregoing properties.

5

10

15

20

25

30

BACKGROUND OF THE INVENTION

For many years, inorganic fibers generically referred to in the industry as "mineral wool fibers", made from slag, rock, fly ash, and other by-product raw materials have been manufactured. These fibers have been typically manufactured by melting the slag, rock, etc., containing such oxides as silica, alumina, iron oxide (ferrous and ferric), calcium oxide, and magnesia; allowing the molten material to be blown by gas or steam or to impinge on rotors at high speeds; and causing the resulting blown or spun fibers to be accumulated on a collecting surface. These fibers are then used in bulk or in the form of mates, blankets, and the like as both low and high temperature insulation. U.S. Patent No. 2,576,312 discloses a conventional mineral wool composition and method for making the same.

In the past, the industry has well recognized the standard drawbacks associated with conventional mineral wool fibers. Conventional mineral wool fibers may have high contents of undesired oxides which often

detract from their refractory properties. The conventional mineral wools are coarse, i.e. they have average fiber diameters of 4 to 5 microns (measured microscopically) and have high shot contents in the range of 30 to 50 weight percent. The coarseness of the fiber reduces the insulating value of the fiber and makes conventional mineral wool unpleasant to handle and unfriendly to the For example, because of their coarse fiber touch. diameters, conventional mineral wool blankets must have bulk densities of from 4 to 8 pcf and even higher in order to pass the ASTM E-119 two hour fire test. On the other hand, fiber glass blankets are often made with bulk densities of 2 pcf or lower. While the fiber glass blankets are friendly because of their low bulk densities and relatively fine fiber diameter, they do not have sufficient fire resistance so as to pass even the one hour ASTM E-119 fire test.

5

10

15

20

25

30

Recently, another potential problem with traditional mineral wool and other types of fiber has been recognized. It is well known that inhalation of certain types of fiber can lead to elevated incidence of respiratory disease, including cancers of the lung and surrounding body tissue. Several occurrences are welldocumented in humans for several types of asbestos Although for other varieties of natural and fiber. manmade mineral fiber direct and unequivocal evidence for respiratory disease is lacking, the potential for such occurrence has been inferred from results of tests on laboratory animals. In the absence or insufficiency of direct human epidemiological data, results from fiber inhalation or implantation studies on animals provides the best "baseline information" from which to extrapolate disease potential.

Chronic toxicological studies on animals have, however, been able to statistically demonstrate the importance of three key factors that relate directly to the potential for respiratory disease and especially carcinoma: (a) dose of fiber received (including time of exposure); (b) dimension of the inhaled fiber; and (c) persistence of the fiber within the lung. of dose and dimension have been well-characterized from such studies and as a result are fairly well known in regard to human disease potential. The dose is obviously a product of the environment in which the fiber is used and the manner in which it is used. The dimension and persistence of the fiber within the lung, on the other hand, are functions of the manner in which the fiber is formed and of its chemical composition. general, the smaller the fiber the more likely that it will become embedded in lung tissue when inhaled, thus increasing the danger of respiratory disease.

5

10

15

20

25

30

Although less is known about the link between persistence of the fiber within the lung and respiratory disease, increasing attention is being focused on this aspect of the health issue. Biological persistence refers to the length of time a fiber endures as an entity within the body. The physiochemical concept that most closely relates to persistence and is perhaps more easily quantified is that of "durability" - specifically, the chemical solubility (or resistance to solubility) of fibers in body fluids and the tendency of such fibers to maintain physical integrity within such an In general, the less durable a fiber is, environment. the less will be the potential health risk associated with the inhalation of that fiber. One method of measuring the chemical durability of a fiber in body fluids is to measure its durability in physiological

saline solutions. This can be done by quantifying the rate of extraction of a chemical component of the fiber such as silicon into the physiological saline solution over a certain period of time.

Thus, as can be easily concluded from the 5 foregoing discussion, conventional mineral wool fibers have several serious drawbacks. However, even the alternatives to mineral wools have problems. For example, as mentioned earlier glass fibers have a fire resistance problem and whereas the refractory ceramic 10 . fibers have been gaining increasing use in recent years as an alternative to mineral wool fibers because of their ultra-high temperature resistance and superior ability to pass all fire rating tests, their use is 15 limited by the fact that they are relatively expensive and have a relatively high chemical durability in physiological saline solutions as well.

In conclusion, there is a great need in the industry for low cost, friendly feeling low bulk density inorganic fibers which have good fire resistance properties as measured by their ability to pass the ASTM E-119 two hour fire test. Additionally, there is a tremendous demand for fibers which have especially low durabilities in physiological saline solutions. What would be particularly advantageous to the industry would be fibers with combinations of the above mentioned sought after properties. Also, advantageous would be fibers which also have excellent refractory properties as well, e.g. high continuous service temperatures.

SUMMARY OF THE INVENTION

In one embodiment of the present invention, there are provided inorganic fibers having a silicon extraction of greater than about 0.02 wt% Si/day in physiological saline solutions and a composition consisting essentially of about 0-10 wt% of either Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides, or mixtures thereof; 35-70 wt% SiO_2 ; 0-50 wt% MgO; and CaO.

5

30

In another embodiment of the present invention, there are provided inorganic fibers which have a
5 hour silicon extraction in physiological saline
solutions of at least about 10 ppm. These fibers can
broadly have compositions consisting essentially of the
following ingredients at the indicated weight percentage
levels:

0-1.5 wt% of either Al_3O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides, or mixtures thereof; 40-70 wt% SiO_2 ; 0-50 wt% MgO; and CaO

1.5-3 wt% of either Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides, or mixtures thereof; 40-66 wt% SiO_2 ; 0-50 wt% MgO; and CaO

3-4 wt% of either Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides, or mixtures thereof; 40-64 wt% SiO_2 ; 0-50 wt% MgO; and CaO

4-6 wt% of either Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides, or mixtures thereof; 40-59 wt% SiO_2 ; 0-25 wt% MgO; and CaO

6-8 wt% of either Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides, or mixtures thereof; 35-54 wt% SiO_2 ; 0-25 wt% MgO; and CaO

8-10 wt% of either Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides, or mixtures thereof; 35-45 wt% SiO_2 ; 0-20 wt% MgO; and CaO

In a preferred embodiment, inventive fibers with 5 hour silicon extractions of greater than about 20 ppm and most preferably greater than about 50 ppm are provided.

In another embodiment of the present invention 5 there are provided inorganic fibers having a diameter of less than 3.5 microns and which pass the ASTM E-119 two hour fire test when processed into a fiber blanket having a bulk density in the range of about 1.5 to 3 pcf and having a composition consisting essentially of 10 0-10 wt% of either Al₂O₃, ZrO₂, TiO₂, B₂O₃, iron oxides, or mixtures thereof; 58-70 wt% SiO2; 0-21 wt% MgO; 0-2 wt% alkali metal oxides; and CaO and wherein the amount of alumina + zirconia is less than 6 wt% and the amount of iron oxides or alumina + iron oxides is 15 less than 2 wt%. Preferably, the inventive fibers in this embodiment may have compositions consisting essentially of about:

0-1.5 wt% of either Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides, or mixtures thereof; 58.5-70 wt% SiO_2 ; 0-21 wt% MgO; 0-2 wt% alkali metal oxides; and CaO

20

25

greater than 1.5 wt% up to and including 3 wt% of either Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides, or mixtures thereof; 58.5-66 wt% SiO_2 ; 0-21 wt% MgO; 0-2 wt% alkali metal oxides; and CaO

greater than 3 wt% up to and including 4 wt% of either Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides, or mixtures thereof; 58-63 wt% SiO_2 ; 0-8 wt% MgO; 0-2 wt% alkali metal oxides; and CaO

greater than 4 wt% up to and including 6 wt% of either Al₂O₃, ZrO₂, TiO₂, B₂O₃, iron oxides, or mixtures thereof; 58-59 wt% SiO₂; 0-7 wt% MgO; 0-2% alkali metal oxides; and CaO.

As discussed herein earlier, there has been a demand in the industry for inorganic fibers with an excellent fire rating at low bulk densities and fibers with especially low chemical durabilities in physiological saline solutions. Therefore, each category of inventive fibers should fulfill a real need in the industry and should be available for applications where heretofore low cost, mineral wool type fibers have not been available. What is particularly advantageous about the present invention is the fact that fibers are provided where a special demand exists, i.e. applications in the industry where fibers with both an excellent fire rating and an especially low durability in physiological saline solutions are in demand.

5

10

Other features and aspects, as well as the various benefits and advantages, of the present invention will be made clear in the more detailed description which follows.

DETAILED DESCRIPTION OF THE INVENTION

The inventive fiber compositions of the present invention can be made from either pure metal oxides or less pure raw materials which contain the desired metal oxides. Table 1 herein gives an analysis of some of the various raw materials which can be used to make inventive fiber compositions. Physical variables of the raw materials such as particle size may be chosen on the basis of cost, handleability, and similar considerations.

Except for melting, the inventive fibers are formed in conventional inorganic fiber forming equipment

and by using standard inorganic fiber forming techniques as known to those skilled in the art. Preferably, production will entail electric furnace melting rather than cupola melting since electric melting keeps molten oxides of either pure or less pure raw materials more fully oxidized thereby producing longer fibers and stronger products. The various pure oxides or less pure raw materials are granulated to a size commonly used for electric melting or they may be purchased already so granulated.

5

10

15

The granulated raw materials are then mixed together and fed to an electric furnace where they are melted by electric resistance melting with electrodes preferably positioned according to the teachings of U.S. Patent No. 4,351,054. Melt formation can be either continuous or batchwise although the former is preferred. The molten mixture of oxides is then fiberized as disclosed in U.S. Patent No. 4,238,213.

While the fiberization techniques taught in U.S. 4,238,213 are preferred for making the inventive fibers, other conventional methods may be employed such as sol-gel processes and extrusion through holes in precious metal alloy baskets.

The fibers so formed will have lengths in the range of from about 0.5 to 20 cm and diameters in the range of from about 0.05 to 10 microns with the average fiber diameter being in the range of about 1.5 to 3.5 microns. Table 2 shows the average fiber diameter (measured microscopically) and the unfiberized shot content of various inventive fibers. As may be seen, the average microscopic fiber diameter was 2.3 microns and the average unfiberized shot content was 27%.

For purposes of comparison, conventional mineral wool fibers were also tested with the results being given in Table 2 as numbers 226 and 229. These conventional fibers averaged 4.7 microns (measured microscopically) in diameter and had an average 40 wt% shot content. The continuous service temperature ranged from 1370°F to 1490°F, averaging 1420°F.

5

10

15

20

25

30

Table 3 contains an extensive chemical analysis of a number of inventive fibers. Because of the large number of fiber samples containing alumina additives made to the base calcium oxide/magnesia/silica system, only the average analysis of the minor constituent of these fibers are given in Table 3. The silica, alumina, magnesia, and calcium oxide contents for these fibers are given in Table 4.

As used herein, the "service temperature" of an inorganic fiber is determined by two parameters. The first is the obvious condition that the fiber must not soften or sinter at the temperature specified. this criterion which precludes the use of glass fibers at temperatures about 800°F to 1000°F (425° to 540°C). Additionally, a felt or blanket made from the fibers must not have excessive shrinkage when soaking at its service temperature. "Excess shrinkage" is usually defined to be a maximum of 5% linear or bulk shrinkage after prolonged exposure (usually for 24 hours) at the service temperature. Shrinkage of mats or blankets used as furnace liners and the like is of course a critical feature, for when the mats or blankets shrink they open fissures between them through which the heat can flow, thus defeating the purpose of the insulation. fiber rated as a "1500°F (815°C) fiber" would be defined

as one which does not soften or sinter and which has acceptable shrinkage at that temperature, but which begins to suffer in one or more of the standard parameters at temperatures above 1500°F (815°C).

The service temperatures for a representative 5 number of fibers in the inventive compositional range are listed in Table 2. The continuous service temperature for constant silica/magnesia/calcium oxide ratios are given in Table 6. As may be seen in all cases, the lower the alumina content of the fiber, the higher the 10 service temperature will be, with the highest service temperature being at zero percent alumina for alumina contents less than 30%. Thus to attain the most desired properties of the inventive fiber it is not possible to 15. accept any of the alumina contents resulting from melting the traditional mineral wool raw materials. Rather, various amounts of sufficiently pure oxides will be required to dilute the alumina contents to the desired low levels. To attain fibers of the highest service temperatures, only pure raw materials with 20 essentially no significant amounts of alumina must be used.

A series of inventive fibers were also tested for their silicon extraction in a saline solution according to the following procedure:

A buffered model physiological saline solution was prepared by adding to 6 liters of distilled water the following ingredients at the indicated concentrations:

30	<u>Ingredient</u>	Concentration, g/1
	$MgCl_26H_2O$	0.160
•	NaC1	6.171

25

KC1	0.311
Na ₂ HPO ₄	0.149
Na ₂ SO ₄	0.079
CaCl ₂ 2H ₂ O	0.060
NaHCO ₃	1.942
NaC ₂ H ₂ O ₂	1,066

5

25

Before testing, this solution was buffered to a pH of 7.6 by bubbling with a gaseous mixture of 5% $CO_2/95\%N_2$.

10 One half (1/2) gram of each sample of fiber listed in Table 3 was then placed into separate closed, plastic bottles along with 50 cc of the prepared physiological saline solution and put into an ultrasonic bath for 5 hours. The ultrasonic vibration application was 15 adjusted to give a temperature of 104°F at the end of the 5 hour period. At the end of the test period, the saline solution was filtered and the solution chemically analyzed for silicon content. The silicon concentration in the saline solution was taken to be a measure of the amount of fiber which solubilized during the 5 hour test 20 period. The CaO and MgO contents of the fiber were similarly solubilized.

One of the inventive fibers was tested for silicon extraction in a physiological saline solution for periods of up to 6 months. Results were as follows:

		Steady State	Total	Comments On
	Silicon	Silicon Extraction	Amphoteric	Fiber Residue
Fiber	Extraction	Rate For $0.20 \text{ m}^2/\text{g}$	Oxides in	After 6
Number	in 6 Months	Surface Area, % Si/day	Fiber	Months
29 (inventive)	%96	0.16%	1.0%	carbonate hydroxyl
				apatite fiber,
				disintegrated into
				small particles
137 (non-	ധ %	0.013%	8.9%	slight fine grained
inventive)				fibers with
		-		uniform corrosion
235 (non-	4 %	0.012%	25.6%	no fiber
inventive)				corrosion;
	-			some surface
				deposition

Categorization of oxides melts according to scales of acidity or basicity has been well known for (See "A Scale of Acidity and Basicity in many years. Glass," Glass Industry, February 1948, pp 73-74.) have now found that by strictly controlling the composi-5 tions of the oxide melts according to the acidic or basicity behavior of the respective oxides, fibers can be made which are surprisingly soluble in saline solu-Increasing the content of silica, alumina, and 10 the amphoteric oxides in the fiber increases the acid ratio of the fiber composition. This tends to stabilize the system against silicon extraction by weak solutions as a result of relative changes in the interatomic bonding forces and extension of the silica network. Other amphoteric oxides besides alumina will have an 15 alumina equivalency with respect to extraction by saline solutions. The amphoteric oxides zirconia and titania appear to have an alumina equivalency of close to 1 to We have found that in general for desired high saline solubility the amount of total amphoteric oxides 20 must be kept below about 10% depending upon the amount of silica present. On the other hand, with the exception of iron and manganese oxides, the basic oxides can vary widely since their alumina equivalency is small. 25 However, while iron and manganese oxides are generally considered to be basic in nature, their behavior with respect to saline solubility more closely relate to the amphoteric oxides, thus the amounts of iron and manganese oxides must be similarly limited.

Many of the fibers were tested for their fire resistance according to the following simulated fire rating test procedure:

For screening test purposes, a small furnace was constructed using an electrically heated flat-plate element at the back of the heat source. A 6 inch x 6 inch x 2 inch thick sample of 1 3/4 to 6 1/2 pcf density of each formulated fiber was mounted parallel with the element and 1 inch from it. Thermocouples were then positioned at the center of the fiber sample surfaces. A computer was used to control power via a simple on-off relay system to the heating element. The position of the relay was based on the reading of the thermocouple on the sample surface nearest the element and the programmed fire test heat-up schedule.

5

10

15

The furnace was heated so as to follow a standard ASTM E-119 time/temperature curve for the 2-hour test period. In the test utilized herein, failure of the fiber is considered to occur when the furnace is unable to maintain the standard temperature per ASTM E-119 because the fiber insulation has sintered sufficiently to allow heat to escape through the fiber layer.

20 The results of the testing of the fibers for saline solubility and the two hour ASTM E-119 fire test are given in Table 4 for the fibers made with alumina addition and in Table 5 for the remaining fibers to which other oxidic constituents were added. 25 additions included: B_2O_3 , P_2O_5 , TiO_2 , ZrO_2 , Fe_2O_3 + MnO, La_2O_3 , Cr_2O_3 , and Na_2O . For glass fibers within the scope of the invention to function in an ASTM E-119 fire test, i.e. to withstand the rising temperatures of a simulated fire which can reach 1850°F in two hours, it is necessary that they convert from an amorphous condition to a 30 beneficial pseudo crystalline state during heat-up. inventive fibers do this but can be assisted in this function by the inclusion of suitable crystal nucleating agents. Such agents may include TiO_2 , ZrO_2 , platinum, Cr_2O_3 , P_2O_5 , and others. Such additions are within the scope of this invention.

TABLE 1 RAW MATERIALS USED

			Pure Raw Materials	als	
	Silica	Quick Lime	Calcined <u>Dolomite</u>	Aluminum Oxide	Magnesium Oxide
ACIDIC OXIDES					
Si02	0.66	0.34	0.50	0.02	0.4
AMPHOTERIC OXIDES	DES				
\mathtt{TiO}_2	nil	nil	niı	0.002	nil
$A1_2O_3$	0.30	0.26	0.50	98.8	0.1
BASIC OXIDES					
Fe_2O_3	0.30	0.05	0.15	0.02	0.7
Mno	1	!	!	ţ ;	1
MgO	0.02	0.14	40.0	nil	96.3
Cao	0.03	97.75	57.0	0.01	2.0
Na2O	0.04	0.02	0.01	0.30	0.02
K_2O	0.01	0.01	nil	0.01	0.01
MISCELLANEOUS					
SO ₃	1 1	!	0.4	!	l I
	!	!	1 1		į
O	!	i i	ì	I F	ł
TOI	0.2	0.7	3.0	0.20	1.8
TOTAL	06.66	99.27	101.56	96.96	. 101.33

TABLE 1
RAW MATERIALS USED (continued)

		Less Pure Raw Materials	ials	
		Blast		
	<u>Kaolin</u>	Furnace Slag	Nepheline Syenite	Talc
IDIC OXIDES				
sio ₂	50.5	35.16	61.3	61.2
IPHOTERIC OXIDES				
\mathtt{Tio}_2	1.61	0.62	0.003	nil
A1203	43.6	12.88	23.4	0.7
ISIC OXIDES				
Fe ₂ 0 ₃	0.80	0.20	0.07	0.85
Mno	1	0.62	į	!
Mgo	0.01	16.06	0.05	31.7
CaO	0.04	32.94	0.58	0.19
Na_2O	90.0	0.45	09.6	!
K20	0.02	0.25	4.50	i
SCELLANEOUS				
so ₃	!	0.28	i	i
N II	i	1.03	!	1
υ	!	0.30	;	!
비	2.90	1	0.62	5.0
TAL	99.54	100.79	100.12	0.66

Quick Lime: Mississippi Lime - Pulverized Quick Lime Silica Sand: Ottawa Silica - Sil-co-Sil Grade 295

Calcined Dolomite: Ohio Lime NO. 16 Burnt Dolomitic Lime

Aluminum Oxide: Reynolds Calcined Alumina, RC-23 Magnesium Oxide: Baymag 56 Feed Grade

Kaolin: American Cyanamide Andersonville Kaolin

Blast Furnace Slag: Calumite Morrisville Slag

Nepheline Syenite: Indusmin Grad A400

Talc: Pfizer Grade MP4426

Additives:

Soda Ash: 58.3% Na₂O

Boric Acid: 55.5% B₂0₃

Magnetite Iron Concentrates: 98.5% Iron Oxides

Zircon: 66.2% ZrO₂

Manganese Oxide: 99% MnO₂

Titanium Dioxide: 99% ${
m TiO}_2$ Chromium Oxide: 99.5% ${
m Cr}_2{
m O}_3$

Lanthanum Carbonate: Moly Corp.

TABLE 3 COMPOSITION OF FIBERS

		ACIDIC OXIDES	IDES		e.	AMPHOTERIC OXIDES	ES.	
TEST NO.	B ₂ 0 ₃	$\frac{\text{SiO}}{2}$	P205	SUB	$\frac{\text{TiO}_2}{2}$	<u>A1</u> 203	Zr0 ₂	SUB
Composition of	ion of F	ibers with	Al203 addit	Fibers with ${\tt Al}_{2}{\tt O}_{3}$ additions (minor constituents only)	constituen	its only)		
1 to	00.00	ļ	00.00	!	0.01	i	0.01	0.02
	i j	!	1	;	ļ	-	i i	!
Composition of		Fibers with B,03	B,0, additions	ions				
164	0.32	64.8	, ¦	65.12	ļ	90.0	ł	90.0
165	0.52	63.9	1	64.42	l i	1.20	;	1.20
166	0.64	64.6		65.24	i	90.0	!	90.0
167	0.82	64.5	1	65.32	i i	0.06	!	90°0
168	1.33	64.1	i	65.43	i	90.0	ł	90.0
169	1.37	64.1	!	65.47		90.0	!	90.0
170	2.22	63.6	!	65.82	i	90.0	!	90.0
171	8.41	59.6	į	68.01	i	0.06	į	90.0
Composition of		Fibers with 1	P,Og_additions	ions				
7	i	49.6	6.05	55.65	90.0	0.38	0.04	0.48
Composition of		Fibers with	TiO, additions	ions				
173	i i	48.6	a !	48.6	10.0	41.4	;	51.4
Composition	of	Fibers with Zro2	ZrO2 additions	lons				
174	ł	63.5	1 1 1	63.5	.01	0.88	0.21	1.10
175	‡ I	59.2	!	59.2	1	0.33	0.40	0.73
176	!	59.5	!	59.5	1	0.31	0.42	0.73

TABLE 3
COMPOSITION OF FIBERS (continued)

{ ; ;					BASI	BASIC OXIDES	S					
NO.	FeO ₃	Mno	<u>La 203</u>	$\frac{Cr}{2}$ 03	MgO	<u>Li20</u>	<u>Ca0</u>	Bao	$\frac{Na}{2}$	$\underline{K}_2\underline{0}$	TOTAL	
Compos	ition	Composition of Fibers	1 .	with $\mathrm{Al}_{2}\mathrm{O}_{3}$ additions (minor constituents only)	dditio	ns (min	or con	stitue	nts onl	A		
1 to	0.06	0.02	00.00	0.02	i i	00.0	l l	0.04	0.04	0.01	.19	
	i	!	ı	!	1	1	I I	1 .	!	i		
Composition		of Fibers	ers with	B ₂ O ₃ additions	ditions	rni						
164	 	l I	I I		8.7	!	26.6	1	!	l l	35.3	
165	i	I I	İ	i i	8.6	I I	26.2	!	!	i I	34.8	
166	[ł	ŀ	ŀ	8.7	!	26.5	i i	1	ļ	35,2	
167	1	t 1	1	ŗ	8.7	I.	26.5	!	!	!	35.2	
168	I	1	·	ŀ	8.6	l l	26.3	1	ŀ	I I	34.9	
169	!	ł	1.	i	9.8	l I	26.3	! !	!	1	34.9	
170	:	1	I	I I	8 .	!	26.1	1	1	!	34.6	
171	i	i	i i	i	8.0	Į,	24.0	[[Į į	l: L	32.0	
Compos	ition	Composition of Fibers	ers with	P205 add	additions	roi						
7	0.21	00.00	!	0.68	11.15	00.00	31,45	0.00	0.05	0.04	43.58	
Compos	ition	Composition of Fibers	ers with	TiO2 additions	litions	to!						
173	!	I I	Į I	1	ŀ	į.	1	!	i	!	!	
Composition		of Fibe	ers with	of Fibers with ZrO2 additions	litions	ro!						
174	!	I I	1	1	0.33	i i	35.55	ŀ	.03	.01	35.92	
175	1	i i	!	!	0.41	!	39.1	{ 	<u> </u>	i I	39.51	
176	!	!	1	1	0.42	1	39.1	l	l i	I I	39.52	

TABLE 3
COMPOSITION OF FIBERS (continued)

	-		MISCELLANEOUS	
TEST NO.	<u>50</u> 3	Misc.	SUB TOTAL	TOTAL
Composition of	Fibers	with Al ₂ O ₃ additions (minor constituents only)	constituents only)	
1 to	.05/	.02	.07/	.14
	.20	i	.22	.44
Composition of Fibers		with B203 additions		
164	•	1	1	100.48
165	I I	! !	1	100.42
166	!	;	1	100.5
167	1	!	1	100.58
168	•	I i	1	100.39
169	!	1	1	100.43
170	Į į	į	!	100.48
171	!	!	!	100.07
Composition of	Fibers	with Poor additions		
2	i i	0.02	0.02	99.73
Composition of	Fibers	with TiO, additions		
173	i I	1 1	i	100.0
Composition of	Fibers	with ZrO ₂ additions		
174	1	•	1	100.52
175	1 1	1 1	i	99.44
176	1	**	!	99.75

TABLE 3 COMPOSITION OF FIBERS

		ACIDIC OXIDES	Sa		AM	AMPHOTERIC OXIDES	S	
TEST NO.	B ₂ O ₃	<u>si0</u> 2	2 ⁰ 5	SUB	$\overline{\text{rio}}_2$	<u>A1</u> 293	$\frac{2r0}{2}$	SUB
Composit	ion of Fib	Composition of Fibers with \mathtt{ZrO}_2	2 additic	additions (Cont.)				
177	[59.7	· I	59.7	!	0.34	0.50	0.84
ω	ł	0.09		0.09	ľ	0.36	0.54	0.90
179	i	59.2	I I	59.2	l i	0.35	0.58	0.93
180	1 f	54.3	I I	54.3	.01	1.29	0.58	1,88
181	!	59.2	-1	59.2	ŀ	0.32	0.83	1,15
182	!	46.85	!	46.85	.02	2.03	0.84	2.89
182 (a)		59.4	Į.	59.4		0.38	2,31	2.69
183	1	59.05	[]	59.05	l I	0.30	2,65	2.95
184	1	57.96	1	57.96	1	0.42	3.11	3.53
185	i	57.8	1	57.80	1	0.56	3.12	3,68
186	!	59.05	!	59.05	i	0.38	3.27	3.65
187	ł	56.88	ţ,	56.88	i	0.32	3.30	3.62
188	i	57.7	i i	57.7	1	0.20	3.30	3.50
189	:	58.19	ŀ	58.19	1	0.39	3.36	3,75
190	!	57.86	î i	57.86	1	0.36	3.37	3.73
191	i	58.6	!!	58.6	!	0.58	3.67	4.25
192	-	58.4	1 [58.4	i i	0.65	3.69	4.34
193	!	56.65	!	56.65	.02	3.35	4.50	7.87

TABLE 3
COMPOSITION OF FIBERS (continued)

					BASIC	BASIC OXIDES	ເດ					
TEST NO.	<u>FeO</u> 3	FeO ₃ MnO	<u>La</u> 203	<u>Cr203</u>	MgO	<u>Li₂0</u>	CaO	Ba0	<u>Na</u> 20	K20	SUB	
Compos	ition	of Fib	Composition of Fibers with Zr	ZrO, ad	ZrO, additions (Cont	(Cont	ન					
177	;	1	!	, !	0.46	1 1	38.7	!	;	i	39.16	
8	ļ	!	!	1	0.48	1	38.3	!	;	1	38.78	
179	1	1	!	1	0.98	}	37.0	!	;	i	37.98	
180	60.	.01	!] 	10.20	;	32.75	.01	.04	. 02	43.12	
181	!	ŀ	!	!	1.13	1	36.6	1	!	}	37.73	
182	.08	.01	1	l I	20.6	!	29.5	.03	.05	.01	49.98	
182(a)	1	l	1	;	2.06	1	34.9	1	1	ļ	36.96	
183	90.	00.	:	.05	3.08	1	34.84	00.	.03	.01	38.07	
184	ł	1	!	ŀ	3.55	1	35.17	1	;	!	38.72	
185	ľ	! \$!	¦	3.74	1	34.4	1	!	;	38.14	
186	-	!	1	ļ	2.57	ł	36.94	1	1	!	39.51	
187	:	1	¦	}	4.00	!	36.45	!	1 1	!	40.45	
188	l l	1	!	!	3.00	1	36.0	;	!	!	39.0	
189	!	!	!	ì	3.26	1	35.39	ļ	1	1	38.65	
190	ŀ	1	ļ	i	3.22	!	35.66	!	ļ	i	38.88	
191	Į.	!	i	;	2.72	i	33.5	ł	!	1	36.22	
192	1	1	1	ļ	2.59	1	33.2	i	!	!	35.79	
193	.05	00.	;	00.	3.35	ŀ	31.9	00.	.05	.01	35.36	

TABLE 3
COMPOSITION OF FIBERS (continued)

		MIS	MISCELLANEOUS	
TEST NO.	<u>so</u> 3	Misc.	SUB TOTAL	TOTAL
Composition	of Fibers with Zro	Composition of Fibers with ZrO2 additions (Cont.)		
177	. !	1 1		99.70
.	1	<u> </u>	!!	89.66
179	!	[98,11
180	į.	.01	.01	99,31
181	1 1	Į,	!	98.08
182	Ť.	.02	.02	99.74
182 (a)		Į.	!	99.05
183	!	.02	.02	100.09
184	!	-	!	100.21
185	ŧ	Į.	!	99.62
186	!	!	1	102.21
187	1	1		100.95
188	!	•	ł	100.20
189	!	!	!	100.59
190	Į.	1		100.47
191	!	!	ł	99.07
192	!	i	1	98.53
193	I I	.01	.01	99.89

TABLE 3
COMPOSITION OF FIBERS

		ACIDIC OXIDES	DES			AMPHOTERIC OXIDES	S	
TEST NO.	B203	<u>sio</u> 2	P ₂ 0 ₅	SUB	$\frac{\text{rio}_2}{2}$	<u>A1₂0₃</u>	<u>Zr0</u> 2	SUB
Composi	Composition of Fib	Fibers with FeO3	eO3 and MnO	O additions				
194	!	64.9	. !	64.9	;	90.0	1	90.0
195	!	49.8	ŀ	49.8	.01	18.0	.01	18.02
196	;	50.4	i	50.4	.03	7.45	.01	7.49
197	;	64.34	i	64.34	ļ	90.0	!	90.0
198	!	63.70	ł	63.70	:	1.20	1	1.20
199	:	63.54	! I	63.54	i	1.20	1	1.20
200	!	38.9	! !	38.9	.01	6.70	.01	6.72
201	:	64.3	!	64.3	;	90.0	;	90.0
. 202	i	44.6	;	44.6	.01	0.92	.01	0.94
203	i	63.3	ł	63.3	!	1.15	[[1.15
204	!	63.6	;	63.6	!	90.0	ļ	90.0
205	l I	43.8	ł	43.8	.01	15.26	.01	15.28
206	1	62.3	:	62.3	i	1.20	i	1.20
207	i i	63.3	i	63.3	ļ	90.0	1	90.0
208	I I	43.9	1	43.9	.01	14.3	.01	14.32
209	ļ	62.0	ţ	62.0	!	90.0	!	90.0
210	!	0.09	;	0.09	1	2.0	i	2.0
211	:	0.09	!	0.09	1	;	;	i i

TABLE 3
COMPOSITION OF FIBERS (continued)

					BAS1	BASIC OXIDES	Si				
TEST NO.	FeO ₃	MnO	<u>La₂03</u>	$\frac{\mathrm{Cr}_2 \Omega_3}{2}$	MgO	<u>Li.20</u>	CaO	Ba0	Na ₂ 0	K20	SUB
Compos	ition	of Fib	Composition of Fibers with	FeO3 and MnO		additions	<u>suc</u>		r		
194	0.06	[Į i	!	8.72	1	26.6	i	Į Į:		35.38
195	.22	İ	1		0.2	!	31.5	I I	1	l I	31.92
196	.48	.04	ŀ	i i	15.2	į	26.2	t 1	.07	.05	42.04
197	.50	ŀ	- <u>I</u> -	1	7.80	-	26.4	I	ļ	I I	34.7
198	. 69		1	!	7.73	!	25.30	1	1	1	33.72
199	.72	}	i i	i i	7.70	-	25.04	!		1	33.46
200	.80	!	ł	ŀ	16.1	+	37.5	!	1	!	54.40
201	96.	!	1	!	8.6	;	26.4	1	I	i i	35.96
202	1.02	ŀ	į.	! !	18.1	Ė	32.8	I F	1	i i	51.92
203	1.61		t	Ţ	7.98	!	25.4	!	1	!	34.99
204	1.92	1	1	ŀ	8.6	! 1	26.1	!	1	1	36.62
205	2.90	.04	1	.14	22.7	!	15,05	Í	01.	.01	40.94
206	3.05	!	i i	į	8.0	!	25.0	!	Į Į	1	36.05
207	3.45	1	l i	i	8.0	ł	25.5	!	ļ	[36.95
208	3.50	1	!	ľ	24.4	+	13.7	!	:	!	41.6
209	4.81	ļ	i i	I	8.0	;	25.5	ľ	i i	1	38.31
210	! !	8.0	[ŀ	30.0	!	1	!	!	!!!	38.0
211	!	20.0	;	: !	20.0	1	I I	!	!	1	40.0

TABLE 3
COMPOSITION OF FIBERS (continued)

		MISC	MISCELLANEOUS	
TEST NO.	<u>SO</u> 3	Misc.	SUB TOTAL	TOTAL
Composition of	Fibers with FeO	th FeO ₃ and MnO additions	SC	
194	!		!!	100.34
195	.05	.02	.07	99.81
196	.05	.02	.07	100.00
197	;	i	!!	99.1
198	!	i i		98.62
199	!	!	1	98.20
200	.05	.02	.07	100.09
201	1	! !	1	100.32
202	;	1 t	!	97.46
203	;	į,	1 1	99.44
204	1	;	;	100.28
205	.05	.08	.13	100.15
206	1	;	! !	99.55
207	1	!	!	100.31
208	! .	Į.	!	99.82
209	i i	!	!	100.37
210	;	***	1	100.0
211	i t	. !	!	100.0

TABLE 3 COMPOSITION OF FIBERS

		ACIDIC OXIDES	DES		AM	AMPHOTERIC OXIDES	Si	
TEST NO.	B203	<u>\$10</u> 2	P205	SUB	<u>rio</u> 2	<u>A1</u> 203	Zro ₂	SUB
Composit	ion of F	Composition of Fibers with La ₂ O ₃ additions	a ₂ 0 ₃ addi	tions				
l i	f I	58.1	1 1	58.1	1	90.0	i i	90.0
213	I t	57.8	1	57.8	Į Į	90.0	Į. Į	90.0
214	ľ	57.5		57.5	į I	90.0	ŀ	90.0
215	Į.	56.9	!	56.9	1	90.0	!	90.0
Composition of	ion of Fi	Fibers with Cr ₂ 03 additions	z ₂₀₃ addit	ions				
216	I I	62,6) 	62.6	0.01	0.49	0.01	0.51
AComposition of F	ion of Fi	Fibers with Na ₂ O additions	a additi	ons				
منده 17	ŀ	64.7	1	64.7	ŀ	90.0	I I	90.0
1218		64.5	1	64.5	:	90.0		90.0
612	;	64.4	i i	64.4	1	90.0	1	90.0
220	į	63.5	į	63.5	1	1.20	:	1.20
1221	!	64.3	1	64.3	!	90.0	1	90.0
222	!	64.2	!	64.2	!	90.0	1	90.0
223	:	64.0	!	64.0	!	90.0	!	90.0
224	!	63.0	1	63.0	1 1	90.0	ł	90.0
225	ľ	60.3	! !	60.3	1	90.0	ŀ	90.0

TABLE 3
COMPOSITION OF FIBERS (continued)

					BASI	BASIC OXIDES	S				
TEST NO.	FeO ₃	Mno	<u>La 203</u>	$\frac{\mathrm{Cr}_2 0_3}{2}$	MgO	<u>Li20</u>	CaO	Bao	Na ₂ O	K20	SUB
Compos	ition	of Fibe	ers with	Composition of Fibers with La ₂ 03 additions	dditio	us					
!	0.16	!	00.00	1	4.60	1	36.71	!	ŀ	1	41.47
213	0.15	1	0.56	i	4.58	!	36.53	<u> </u>	!	2	41.82
214	0.15	1	0.72	;	4.55	i	36.3	1	!	1	41.72
215	0.15	1	0.92	<u> </u>	4.51	ŀ	36.0	ł	ł	1	41.58
Compos	ition	Composition of Fibers	ers with	Cr,0, additions	dditio	su					
216	0.08	00.	I I	60.0	2.30	1	34.10	00.00	0.03	0.01	36.61
Compos	ition	of Fibe	ers with	Composition of Fibers with Na ₂ O additions	dition	ស្ស					
17	1	!	1	1	8.7	ł	26.6	;	0.28	!	35.58
218	1	i	!	!	8.7	1	26.5	ŀ	0.45	1	35.65
219	1	-	ŀ	!	8.6	1	26.5	;	0.71	!	35.80
220	ļ	1	!	!	8.5	!	26.1	ł	0.87	!	35.70
221	i i	-	:	;	8.5	;	26.2	1	0.93	!	35.63
222	!	1	ŀ	!	8.6	!	26.4	ľ	1.11	1	36.11
223	ì	1	!	1	8.6	:	26.3	;	1.40	;	36.3
224	1	1	i	!	8.5	!	25.9	ł	2.60	;	37.0
225	!	i	\$ 1	; 1	8.1	1	24.8	!	6.84	ł	39.74

TABLE 3
COMPOSITION OF FIBERS (continued)

1		MISCE	MISCELLANEOUS	
TEST NO.	<u>50</u> 3	Misc.	SOB	TOTAL
Composition of Fibers	Fibers with La2	with La ₂ O ₃ additions		
!			1 1	99.63
213	t i	-	ľ	89.68
214	1	1	·	99.28
215	!	Į.	1	98.54
Composition of Fibers	3	ith Cr ₂ 0 ₃ additions		
216	:	1 1		99.72
Composition of Fibers	3	ith Na ₂ O additions	*	
17	!	!	1	100.34
218	1	!	1	100.21
219	1		1 1	100.26
220	:	!	1 1	100.40
221	1	•	!!	66.66
222	Į.	<u> </u>	!	100.37
223	!	!	•	100.36
224	!	i	1	100.06
225	!	!	ľ	100.1

TABLE 3
COMPOSITION OF FIBERS

		ACIDIC OXIDES	DES		AM	AMPHOTERIC OXIDES	OXIDES	:
rest				SUB				SUB
<u>0</u>	B_2O_3	$\frac{\text{SiO}_2}{2}$	<u>P</u> 205	TOTAL	$\frac{\text{TiO}_2}{2}$	$\frac{A1}{20}$	$\frac{2r0}{}$	TOTAL
Composition	- 1	of Conventional	Mineral	Wools	1))	1	
326	I	40.0	i	40.0	0.37	9.1	0.03	9.50
	ı	39.9	0.02	39.92	1.11	12.85	0.03	13.99
328	ı	37.65	0.84	38.49	2.35	9.85	0.04	12.24
329	ı	41.75	0.12	41.87	1.07	16.0	0.03	17.10
	•	•						
Sodwor	1clon or	composition of Kerractory Fibers	- 1	(Fibers with less than 25%	& Basic Oxides	xides)		
;31	1	31.0	٦,	31.0	1	47.5	0.02	47.52
132	1	37.1	i	37.1	ı	59.2	1	59.2
133	ı	50.0	i	50.0		40.0	ı	40.0
:34	ı	54.0	ì	54.0	i	46.0	ı	46.0
135	1	58.47	1.15	59.62	86.0	24.54	0.03	25.55
136	1	52.1	ı	52.1	1.76	44.4	. 23	46.39
137	1	52.0	t	52.0	1.71	42.2	2.93	46.84
38	ı	49.8	ı	49.8	1.60	38.3	9.32	49.22
:39	1	48.6	3	48.6	1.55	36.2	12.3	50.05
40	1	47.8	ι	47.8	1.50	34.4	15.1	51.00
41	1	46.2	ı	46.2	1.40	31.0	20.7	53.10
42	ı	28	ı	28	19	50	Э	72
43	ı	64.5	ı	64.5	ı	27.4	ı	27.4

TABLE 3 (cont'd.)
COMPOSITION OF FIBERS

			G		BASIC	SIC OXIDES	SS						MISC	MISCELLANEOUS	SOC
TEST											SUB			SUB	
NO.	FeO ₃	Mno	<u>La₂03</u>	$\frac{CE_2O_3}{}$	MgO	L_{2}^{1}	Ca0	Bao	Na20	<u>K</u> 20	TOTAL	<u>50</u> 3	Misc.	TOTAL	TOTAL
Comp	ositio	n of C	Convent	Composition of Conventional Mineral	ineral	Wools									
226	0.47	0.64	ı	0.02	11.2	0.01	36.5	0.04	0.54	0.55	49.97	0.1	0.59	0.69	100.16
	0.35	0.24	ı	00.00	6.05	0.01	38,55	0.12	0.23	0.27	45.82	0.67	0.07	0.74	100.47
228	6.7	0.22	ı	0.04	12.95	0.01	23.55	0.07	2.01	0.80	49.35	0.42	0.19	0.61	100.69
229	3.75	0.23	ſ	0.02	6.45	0.63	27.75	0.03	2.04	0.63	41.53	0.56	0.08	0.64	101.14
Comp	Composition	of	efracti	Refractory Fibers	٦	Fibers with less than	rith le	ss th	an 25%	- 1	Basic Oxides	88			
231	ı	l	ı	1	1	1	1.2	1	20.5	ı	21.4	ı	1	ı	99.92
232		f	1	1.	Γ	I	0.2	1	3.1	1	3,3	1 .	i	ı	9.66
233	i	ı	1		1	ı	5.6	1	4.4	ŀ	10.0	1	1	ı	100
234	ı	t	1	ľ	ı	ı	1	ı	ſ	ľ	ı	ı	i	ŀ	100
235	3.70	0.02	1	00.00	1.44	0.02	5.78	0.54	1.55	1.18	14.23	0.47	0.24	0.71	100.11
236	.83	ı	ı	ı	0.07	ŀ	0.12	ı	.05	90.	1.13	ı	ı	ı	99.65
237	.77	1	1	i	0.07	ı	0.12	ı	.05	90.	1.07	ı	ı	ı	99.91
238	.72	i	ı	ı	0.07	ı	0.12	ı	.05	90.	1.02	1	ı	ı	100.04
339	.70	1.	ı	ı	0.07	ľ	0.12	ı	.05	90.	1.00	ı	1	1	99.62
340	. 68	i	ı	1	0.07	i	0.12	ı	.05	90.	96.	ı	ı	ŧ	99.78
:41	.63	ı	ı	1	0.07	i	0.12	i	.05	90.	0.93	ı	1	i	100.23
142	ı	1	ı	1	i	ı	ı	ı	1	i	ı	i	1	i	100
:43	t	1	ı	1	ı	8.4	ı	ı	ı	i	8.4	ı	ı	ı	100.3

TABLE 4

TEST RESULTS ON FIBERS MADE WITH ALUMINA ADDITIONS

								2000		
		COMI	COMPOSITION,	%LM				5 Hour		
	Acidic	Amphoteric	teric					Saline	E-119 Fire Test	Test
	Oxides	OX	Oxides	Basi	ic Oxides	des	Total	Extraction	Thickness	2 Hour
NO.	S10 ₂	A_20_3	Total	CaO	MgO	Total	Analytical	ppm. Si	Density	Test**
0 to	0 1 1/2%	- 1	Amphoteric Oxides	jes						
7	32	0.2	0.22	39	29	68.1	100.37	*	*	*
8	31.3	0.2	0.22	33.3	35.5	68.8	100.47	*	*	*
က	41.9	0.28	0.30	57.5	0.1	57.7	99.95	80	ı	ı
4	43.5	0.33	0.35	46.0	10.4	56.5	100.40	58	1	i
2	43.7	0.25	0.27	39.8	16.6	56.5	100.52	46	2.0/1.27	ĹΉ
9	45.0	0.50	0.52	54.4	0.1	54.6	100.17	75		1
7	46.5	0.20	0.22	9.2	45.1	54.4	101.17	*	*	*
&	48.2	0.20	0.22	5.0	47.6	52.7	101.17	*	*	*
6	47.9	0.22	0.24	19.3	33.5	52.9	101.09	50	1	t
10	48.5	0.56	0.58	8 8	43.0	51.9	101.03	51	1	1
11	48.6	0.56	0.58	13.3	38.3	51.7	100.93	46	1	ı
12	49.2	0.42	0.44	28.0	22.9	51.0	100.69	29	ı	I
13	49.2	0.17	0.19	3.4	48.3	51.8	101.24	*	*	*
14	50.0	0.10	0.12	7.0	43.0	50.1	100.27	56	ı	ı
15	50.7	0.10	0.12	15.7	33.7	49.5	100.37	09	ı	ŧ
91	51.1	0.45	0.47	29.8	19.0	48.9	100.52	65	i	i
17	51.2	0.33	0.35	39.7	0.6	48.8	100.40	51	2.0/2.59	Ŀι
8	53.2	0.64	99.0	2.8	44.3	47.2	101.11	56	1	Į.,
و	53.4	0.28	0.30	45.6	0.1	45.8	99.55	77	2.0/1.97	ᄕᅺ
II 	Not Fibe	Fiberizable	<i>a</i> :	# #	= Pass,	[T-1	Failed			

EXPERIMENTAL DATA

	Test	2 Hour	Test**		ĽΉ	i	1	ᄄ	ᄄ	Ħ	ı	1	ſ	Ē	ᄕ	Ē	Ľτι	ርዣ	Έų	д	ĒΨ	д	ı	
	E-119 Fire Test	Thickness	Density		2.0/1.97	ı	ı	2.0/1.94	2.0/2.12	2.0/1.87	1	!	i	1.88/2.20	2.0 /1.97	2.0 /1.91	2.0 /1.91	2.0 /1.91	2.0 /1.91	2.0 /1.94	2.0 /1.91	2.0 /2.01	i	
5 Hour	Saline	Extraction	ppm. Si		83	68	30	51	69	70	47	46	40	56	Î	59	80	49	61	74	58	59	56	
		Total	<u>Analytical</u>		100.20	100.47	69.67	09.66	100.57	99.39	99.97	100.30	100.10	99.56	99.85	99.53	99.94	99.61	100.54	99.22	99.39	99.32	100.98	Failed
-		des	Tota1		46.0	46.1	44:1	43.55	44.1	8.25 42.75	42.59	42.2	41.94	41.1	41.05	41.33	40.59	41.21	41.7	40.46	0.27 40.57	40.1	41.7	 1
		Basic Oxides	MgO		10.8	20.5	36.5	0.45	17.0	8.25	7.39	17.6	6.84	3.95	6.2	4.53	4.79	0.31	26.3	5.36	0.27	5.6	6.2	· Poor,
WT%		Bas	CaO	les	35.1	25.5	7.5	43.0	27.0	34.4	35.1	24.5	35.0	36.95	34.75	36.7	35.7	40.8	15.3	35.0	40.2	34.4	35.4	** P
COMPOSITION, WT%	Amphoteric	Oxides	Total	Amphoteric Oxides	0.35	0.42	1.02	0.10	0.42	0.24	0.93	1.05	1.11	0.94	0.78	0.05	1.10	0.05	0.39	0.11	0.07	0.53	0.43	G)
CON	Ampho	Š)	A1203		0.33	0.40	1.00	0.08	0.40	0.20	0,91	1.03	1.09	0.92	0.75	0.03	1.08	0.03	0.37	0.09	0.05	0.49	0.41	rizable
	Acidic	Oxides	S10 ₂	0 to 1 1/2%	53.8	53.9	54.5	55.9	56.0	56.35	56.4	57.0	57.0	57.25	57.8	58.1	58.2	58.3	58.4	58.6	58.7	58.5	58.8	Not Fiberizable
			NO.	0 tc	20	21	22	23	24	25	36	3.7	8	6;	0	11	2	ü	4.	വ	9	7	8	11

		COM	COMPOSITION	, WT%				5 Hour		
	Acidic	Amphoteric	teric					Saline	E-119 Fire Test	Test
	Oxides	OX	Oxides	Bas	Basic Oxides	les	Total	Extraction	Thickness	2 Hour
NO.	$\frac{\text{SiO}_2}{2}$	A1203	Total	CaO	MgO	Total	Analytical	ppm. Si	Density	Test**
0 to	1 1/2%		Amphoteric Oxides	les						
39	58.9	0.08	0.10	34.2	6.10	40.4	99.45	29	2.0/1.86	Д
40	59.0	0.24	0.26	35.9	3.8	39.9	99.21	49	2.0/1.97	Ф
4.1	59.1	0.09	0.11	40.3	0.43	40.83	100.09	89	2.0/1.90	Ъ
42	59.2	0.24	0.26	4.7	36.8	41.60	101.11	47	2.5/1.4	Ľ٦
43	59.15	0.32	0.34	35.55	4.75	40.40	99.94	09	2.0/1.95	Ъ
14	59.4	0.04	90.0	29.8	10.7	40.60	100.11	61	2.0/1.92	д
45	59.5	0.02	0.04	34.2	5.98	40.28	99.87	77	2.0/1.90	Д
‡ 6	59.5	0.02	0.04	32.1	8.16	40.36	99.95	73	2.0/1.89	Ēų
17	59.6	1.43	1.45	22.5	16.8	39.6	100.8	51	2.0/1.88	단
18	59.6	0.03	0.05	28.7	11.4	40.2	6.66	70	2.0/1.91	Сı
20	59.8	0.28	0.30	40.5	0.11	40.71	100.86	30	2.0/2.01	Д
31	59.9	1.48	1.50	25.8	12.9	39.0	100.55	47	2.0/1.98	Ф
32	59.9	1.31	1.33	28.1	11.0	39.4	100.78	45	2.0/1.95	Ъ
33	0.09	1.41	1.43	22.3	16.4	39.0	100.58	41	2.0/1.91	Ф
54	60.3	0.17	0.19	32.3	6.36	38.76	99.30	59	2.0/1.89	д
55	60.4	1.05	1.07	28.5	9.85	38.45	99.97	45	2.0/1.95	Ъ
99	60.5	1.11	1.13	27.9	10.7	38.9	100.68	36	2.0/1.94	দ
1.7	60.7	0.93	0.95	28.7	9.47	38.27	99.97	51	2.0/1.93	Д
8;	8.09	0.2	0.22	36.	3.	39.10	100.17	56	į	
II 	Not Fib	Not Fiberizable	A ll	** P ==	· Poor,	F = Failed	iled			I

	Test	2 Hour	Test**			Ъ	Ъ	മു	Д	Д	Д	д	д	д	Д	Ф	ſĽ.	Ф	ı	ъ	മ	ſΈι	
	E-119 Fire Test	Thickness	Density		2.0/1.97	2.0/1.88	2.0/1.92	2.0/1.82	2.0/1.95	2.0/1.96	2.0/1.91	2.0/2.01	2.0/1.88	2.0/1.88	2.0/1.99	2.0/1.91	2.0/1.88	2.0/2.00	ı	2.0/1.87	2.0/1.91	2.0/1.88	
5 Hour	Saline	Extraction	ppm. Si		65	76	99	64	46	19	12	52	17	7	49	37	46	35	44	30	25	46	
		Total	Analytical		89.66	99.81	99.63	06.66	69.67	99.92	100.06	99.29	86.66	69.07	99.17	99.58	99.94	89.66	99.80	08,66	99.78	99.84	F = Failed
		Oxic	MgO Total		5.19 37.89	15.5 37.3	6.64 37.04	7.70 37.30	5.28 36.48	10.2 35.5	10.9 35.0	5.79 34.29	11.8 34.7	2.60 33.67	4.83 33.53	6.68 34.18	30.1 33.32	6.50 34.0	5.21 33.91	11.8 33.8	7.88 33.78	30.1 33.23	** P = Poor, I
WT%		Basic	CaO	les	32.6	21.7	30.3	29.5	31.1	25.2	24.0	28.4	22.8	30.97	28.6	27.4	3.12	27.4	28.6	21.9	25.8	3.12	
COMPOSITION	Amphoteric	Oxides	Total	Amphoteric Oxides	0.04	90.0	0.04	0.05	0.04	1.27	1.51	1,15	1.43	1.25	1.49	0.05	1.17	0.03	0.04	0.05	0.05	1.17	a i
COM	Ampho	XO		- 1	0.02	0.04	0.02	0.03	0.02	1.25	1.49	1.13	1.41	1.23	1.47	0.03	1.15	0.01	0.02	0.03	0.03	1.15	Fiberizable
	Acidic	Oxides	Si	1 1/2%	61.7	62.4	62.5	62.5	63.1	63.1	63.5	63.8	63.8	64.1	64.1	65.3	65.4	9.59	65.8	62.9	62.9	65.4	Not Fibe
			NO.	0 to	29	90	51	52	53	54	. 22	99	37	89	69	o'	Ĺ	.73	'n	4	വ	9	11

DAT	
	Ì
Н	
EXPERIMENTAL	
E	
Ž	
短	ı
X	ı
E.J	ı

		E-119 Fire Test	<u>Thickness</u> 2 Hour	Density Test**			2.0/1.89 F	.0/2.03 F		2.0/2.00 P		2.0/2.00 P	ı			*		2.U/1.89 F		2.0/1.99 P					2.0/1.98 P
		1	¤	ppm. Si De	Ç		•		c				18		ı										
WING THE		H + + + + + + + + + + + + + + + + + + +	TOTAL	Analytical	88.00	100,18	100-06	100.25	99,11	100.45	0 00	•	100.05		100.17	100.27	99,58	68.66	100.71	99.33	99.40	99.24	16.66	99,85	led
		200	To+of	TOTAL	33.02	33.03	32,77	31.8			30.9		31.0		48.1	45.6	41.0	41.8	40.43	38.1	37.4	37.1	37.5	38.0	F = Failed
		Basic Oxides	MGO	ont.)	2 28.7				1.09	21.3	12.7	c	23.8		43.0	41.7	10.6	17.3		1.4	1.0	2.1	10.0	6.6	Pass,
WT%	1	Ba	CaO	des (Co	4.02	6.43	8.67	1.6	29.0	10.2	18.1	,	7.	des	5.0	3.8	30.3	24.4	3.83	36.6	36.3	34.9	27.4	28.0	∥ ⊶ *
COMPOSITION	Amphoteric	Oxides	Total	Amphoteric Oxides (Cont.)	0.61	i	0.04	ı	0.27	ı	0.05			3% Amphoteric Oxides	2.02	2.02	2.43	1.84	2.03	2.28	2.95	2.69	2.56	1.70	
COM	Ampho	XO.	A1,0,		0.59	ŧ	0.02	1	0.25	i	0.03			% Amphot	2.00	2.00	2.41	1.82	2.01	2.26	2.93	0.38	2.54	1.68	rizable
	Acidic	Oxides	Sio	1 1/2%	66.1	67.1	67.2	68.4	9.89	68.8	68.8	0.69		/2% to 3%	50.0	52.6	56.1	56.2	58.1	58.9	59.0	59.4	59.8	60.1	Not Fiberizable
			NO.	0 to	77	78	42	80	81	88	m F	£3.4 ₹4	ਨਾ ⊳	1 1/	82	86	87	88	88	90	91	32	93	34	ا ا د

											_	_										
	a Test	2 Hour	Test**		ᅀ	Д	ф	ፈ	ď	Q	д	Сı	д	д	д		ር		ı	<u></u>	, д	
	E-119 Fire Test	Thickness	Density		2.0/2.04	2.0/1.87	2,0/1.91	2.0/1.93	2.0/1.90	2.0/1.91	2.0/1.96	2.0/1.87	2.0/1.94	2.0/1.95		2.0/1.91	2.0/1.90		. 1	2.0/1.96	2.0/2.06	
5 Hour	Saline	Extraction	ppm. Si		. 20	18	61	51	55	13	18	37	38	12	17	33	2		33	19	33	
		Total	Analytical		100.18	100.04	100.03	99.01	99.28	99.02	99.66	99,05	99.11	100.4	100.57	99.73	99.47		99.65	69.66	100.93	Failed
		des	Tota1		37.7	36.4	36.9	34.3	34.4	34.1	35.1	33.4	33,3	34.3	33.15	32.5	30.9		46.18	45.74	41.89	[H
		ic Oxides	MgO	ont.)	4.9	10.1	6.9	0.2	0.2	0.2	9.4	0.2	2.5	16.3	23.1	29.7	0.1		40.9	0.64		Pass,
WT%	•	Basic	<u>CaO</u>	des (C	32.7	26.2	29.9	34.0	34.1	33.8	25.6	33.1	30.7	17.7	9.74	2.7	30.7		4.98	45.0	7.89	# **
COMPOSITION,	Amphoteric	Oxides	<u>Total</u>	3% Amphoteric Oxides (Cont.)	2.23	2.19	. 1.68	2.86	2.83	2.77	1.81	2.56	1.86	1,85	2.17	1.58	1.82	Oxides	3.52	3.60	3.79	a)
COI	Ampho	60	A1203	% Ampho	2.21	2.17	1.66	2.84	2.81	2,75	1.79	2.54	1.84	1.83	2.15	1.56	1.80	oteric	3.5	3.58	3.77	Fiberizable
	Acidic	Oxides		1/2% to 3	60.2	61.4	61.4	61.8	62.0	62.1	62.7	63.0	63.9	64.1	65.1	65.6	66.7	to 4% Amphoteric Oxides	49.8	50.3	55.1	Not Fibe
			NO.	1.1/	92	96	26	86	66	100	101	102	103	104	105	106	107	3 to	108	109	110	 *

inc	ine E-119 Fire Test	ction <u>Thickness</u> 2 Hour	Density		2.0/2.12 F	2.0/1.99 F	2.0/1.89 F	2.0/4.02 F	1	2.0/1.93 F	2.0/1.9 F	2.0/2.0 F	2.0/1.97 F	2.0/1.94 P		1	2.0/1.88 F	2.0/1.99 F	
5 Hour	Saline	Extraction	ppm. Si		ı	1	19	40	51	9	20	38	28	18		37	7	4	32
		Total	Analytical		101.16	100.98	100.09	100.11	101.02	99.41	99.72	99.19	99.67	99.38		99.91	100.47	99.91	99.45
		des	Total		41.85	40.78	39.8	40.28	4.00 40.45	38.55	38.5	37.17	37.04	34.34		46.1	39.4	37.55	37.7
		Basic Oxides	MgO		4.65	4.17	16.2	16.6	4.00	0.75	12.8	0.67	0.24	0.24		19.6	9.5	5.65	15.6
WT%		Bas	CaO	(Cont.)	37.1	36.51	23.5	23.4	36.45	37.7	25.6	36.4	36.7	34.0		26.4	30.1	31.8	22.0
COMPOSITION,	teric	Oxides	<u>Total</u>	3% to 4% Amphoteric Oxides	3.66	3.65	3.54	3.08	3.64	3.31	3.07	3.77	3.78	3.79	Oxides	4.06	.5.22	5.41	4.70
СОМ	Amphoteric	OX	$\frac{A1}{203}$	photeric	0.24	0.35	3.52	3.06	0.32	3.29	3.05	3.75	3.76	3.77	4 to 6% Amphoteric Oxides	4.04	5.20	5.40	4.68
	Acidic	Oxides	S10 ₂	0 4% Am	55.6	56.5	56.7	26.7	56.88	57.5	58.1	58.2	58.80	61.2	6% Amp	49.7	55.8	56.85	57.0
	•	- •	NO:	3% t	111	112	113	114	115	115a	116	117	119	120	4 to	121	122	123	124

											•	•											
	e Test	2 Hour	Test**			Ē	Ē	Ē	Ēι	ૃ દિવ	·	मि	ſΞ			ī	ı	1	ı	ᄕ	ı	Į.	
	E-119 Fire Test	Thickness	Density		ı	2.0/1.97	2.0/2.0	2.0/3.17	2.0/1.98	2.0/2.04	ı	2.0/2.01	2.0/2.04	•		ı	1	i	i	2.0/1.99	ı	2.0/2.05	
5 Hour	Saline	Extraction	ppm. Si		37	9	19	18	7	4	7		7			12	13	က	1.2	1.0	1.7	1.2	
		Total	Analytical		98.72	99.83	99.57	99.43	69.67	100.11	100.27	99.93	6.66			100.17	98.69	99.45	101.02	100.05	101.37	100.37	Failed
		des	Tota1		52.6	45.2	43.8	41.5	37.3	37.6	35.6	35.2	33.1			52.2	46.76	46.12	40.0	37.81	38.9	34.5	F = Fai
		Basic Oxides	MgO		14.0	0.3	18.4	15.2	6.5	6.9	29.7	4.0	5.1	-		13.7	9.6	0.52	16.2	4.21	16.3	10.9	· Pass,
MT%		Bas	CaO		38.5	44.8	25.3	26.2	30.7	30.6	5.9	31.2	27.9			38.4	36.7	45.5	23.7	33.5	22.5	23.5	** •*
COMPOSITION,	Amphoteric	Oxides	Total	Oxides	6.92	7.68	6.42	7.48	7.62	6.36	6.72	6.18	7.10		to 10% Amphoteric Oxides	9.32	9.13	8.78	8.92	69.6	8,72	9.22	
CON	Ampho	XO	A1203	Amphoteric	06.9	7.66	6.40	7.45	7.60	6.34	6.7	6.16	7.08		photeric	9.3	8.8	8.76	8.9	6.67	8.7	9.5	rizable
	Acidic	Oxides	S10 ₂	%	39.2	46.9	49.3	50.4	54.7	56.1	57.9	58.5	59.7		10% Amk	38.6	42.8	44.5	52.1	52.5	53.7	9.99	Not Fiberizable
			NO.	6 to	125	126	127	128	129	130	131	132	133		8 to	134	135	136	137	138	139	140	N *

ATA	
긤	
됢	
S	
回	
밁	

	-	COM	COMPOSITION,	WT%				5 Hour		
	Acidic	Amphoteric	teric					Saline	E-119 Fire mest	Toat
	Oxides	0%	Oxides	Basic	ic Oxides	des	Total	Extraction	Thickness	2 Hour
NO.	$\frac{\text{SiO}_2}{2}$	$A1_20_3$	Total	CaO	MgO	MgO Total	Analytical	ppm. Si	Density	Test
10	10 to 12% A	<u>Imphoteri</u>	Amphoteric Oxides	د						
141	41.0	10.05	10.01	48.25	0.3	48.70	99.87	9	2.0/2.00	Ţ
142	51.3	10.9	10.92	37.2	0.2	37.5	99.77	0.8	2.0/2.04	4 E
143	52.4	10.7	10.72	23.1	16.1	39.3	102.42	0.7	2.0/2.00	, fz.
144	52.7	10.2	10.22	22.1	16.0	38.2	101.12	0.5		. 1
32 t	3 2 to 20% A	mphoteri	Amphoteric Oxides							
145	41.5	13.0	13.02	44.2	0.5	44.8	99.37	1.2	ı	1
146	49.8	18.0	18.02	31.5	0.2	32.02	99.89	0.5	. 1	ı
147	55.6	12.9	12.92	13.2	18.4	31.7	100.27	1.8	2.0/2.54	ĮΞ
20 t	20 to 30% A	mphoteri	Amphoteric Oxides							
148	36.5	28.4	28.42	34.4	0.3	34.8	77.66	9.0	ı	1
149	40.3	21.5	21.52	37.5	0.3	37.9	99.77	8.0		1
150	42.6	25.7	25.72	31.2	0.3	31.6	99.97	0.6	1	ı
151	48.4	22.4	22.42	16.5	12.6	29.2	100.07	0.5	2.0/2.01	Γz4
152	59.9	22.8	22.82	3.1	14.0	17.2	76.66	0.7	2.0/2.01	ᄕ
30 t	30 to 40% A	mphoteri	Amphoteric Oxides							
153	45.9	31.3	31.32	5.9	16.7	22.7	76.66	2.3	ı	1

** P = Pass, F = Failed

* = Not Fiberizable

TABLE 5

FIBERS MADE WITH VARIOUS ADDITIVE CONSTITUENTS

			ANALYSES				2 Hour		
							Saline	E-119 Fire Test	re Test
	Acidic	Amphoteric	Basic			% Additive	e Extraction	Thickness	2 Hour
NO.	No. Oxides	Oxides	Oxides	Misc.		Total (Incl.Total)	1) ppm. Si	Density	Test
Fib	ers with	Fibers with ${\tt B_2O_3}$ Additions				-			
164	65.12	90.0	35.3	ı	100.48	0.32% B ₂ O ₃	0, 53	2.0/1.94	ሲ
165	64.42	1,20	34.8	1	100.42	0.52%	20	2.0/1.88	Ъ
166	65.24	90.0	35.2	1	100.5	0.64%	11 43	2.0/1.89	ч
167	65.32	90.0	35.2	ı	100.58	0.82%	45	2.0/2.00	ርፈ
168	65.43	90.0	34.9	i	100.39	1.33%	1 47	2.0/1.95	д
169	65.47	90.0	34.9	ı	100.43	1.37%	45	2.0/ -	ď
170	65.82	90.0	34.6	1	100.48	2.22%	1 46	2.0/2.02	д
171	68.01	90.0	32.0	ı	100.07	8.41%	1 52	2.0/6.45	ሲ
Fibe 172	ers with 55.65	Fibers with P ₂ O ₅ addition 172 55.65 0.48	43.58	0.02	7.66	6.06% P ₂ O ₅) ₅ 71	2.0/1.94	Íτι
Fibe 173	ers with 48.6	Fibers with TiO ₂ addition 173 48.6 51.4	ı	t	100.	10% TiO2	. 0.4	2.01/1.94	д

	اب	ur	1																						
	e Tes	2 Hour	Test		Д	Ъ	1	1	1	д	Ĺτι	д	ſΞĄ	գ	Ъ	ഥ	뚀	д	1	Ъ	1	ഥ	д	Ъ	ĹΤι
	E-119 Fire Test	Thickness	Density		2.0/2.01	2.0/2.00	1	1	ı	2.0/2.02	2.0/2.00	2.0/2.03	2.0/2.17	2.0/2.00	2.0/2.20	2.0/2.37	2.0/2.03	2.1/2.11	. 1	2.0/2.06	1	2.0/2.00	2.0/2.00	2.0/2.00	2.0/2.07
5 Hour	Saline	Extraction	ppm. Si		25	48	ខ្	32	40	46	29	57	44	25	38	25	10	15	21	13	12	i	7	ന	1.3
		Additive	otal)		$2r0_2$	=	=	=	=	=	=	=		=	=	=	=	=	=	=	=	=	=	=	=
		% Addi	(Incl.Total)		0.21%	0.40%	0.42%	0.50%	0.54%	0.58%	0.58%	0.83%	0.84%	2.31%	2.65%	3.11%	3.12%	3.27%	3.30%	3.30%	3.36%	3.37%	3.67%	3.69%	4.50%
			Total		100.52	99.44	99.75	99.70	99.68	98.11	99.31	98.08	99.74	99.05	100.09	100.21	99.65	102.21	100.95	100.20	100.59	100.47	99.07	98.53	99.89
			Misc.		1	ı	1	i	t	ı	.01	ı	.02	.02	t	t	1	1	ı	1	1	ı	ı	ı	.01
ANALYSES		Basic	Oxides	rnl	35.92	39.51	39.52	39.16	38.78	37.98	43.12	37.73	49.98	36.96	38.07	38.72	38.14	39.51	40.45	39.0	38.65	38.88	36.22	35.79	35.36
		Amphoteric	Oxides	ZrO ₂ additions	1.10	0.73	0.73	0.84	06.0	0.93	1.88	1.15	2.89	2.69	2.95	3.53	3.68	3.65	3.62	3.50	3.75	3.73	4.25	4.34	7.87
		Acidic	Oxides	Fibers with	63.5	59.2	59.5	59.7	0.09	59.2	54.3	59.2	46.85	59.4	59.05	57.96	57.80	59.05	56.88	57.7	58.19	57.86	58.6	58.4	58.65
			NO.	Fibe	174	175	176	177	178	179	180	181	182	182a	183	184	185	186	187	188	189	190	191	192	193

		-	ANALYSES	Si				L)	5 Hour		
								Ø	Saline	E-119 Fire Test	Test
Test	Test Acidic	Amphoteric	Basic			% Additive	itive	Extr	Extraction	Thickness	2 Hour
No.	Oxides	Oxides	Oxides	Misc.	Total		(Incl.Total)	1	ppm. Si	Density	Test
3											
Fiber	s with	Fibers with FeO ₃ additions	ns								
194	64.9	90.0	35.38	1	100.34	0.06%	FeO3 & Mno	lno	56	2.01/1.88	д
195	49.8	18.02	31.92	0.07	99,81	0.22%) =	=	0.5	1	· 1
196	50.4	7.49	42.04	0.07	100.00	0.52%	=	=	18	t	i
197	64.34	90.0	34.7	1	99.1	0.50%	=	=	51	2.0/1.91	
198	63.70	1.20	33.02	ı	98.62	0.69%	=	=	24	2.0/1.88	ᄕ
199	63.54	1.20	33.46	ı	98.20	0.72%	=	=	35	2.0/2.00	വ
200	38.9	6.72	54.40	0.07	100.09	0.80%	=	=	17	1	1
201	64.3	90.0	35.96	ı	100.32	0.96%	=	=	45	2.0/1.88	Д
202	44.6	0.94	51.92	1	97.46	1.02%	=	= .	49		ı
203	63.3	1.15	34.99	ı	99.44	1.61%	=	=	12	2.0/1.95	ᄄ
204	63.6	90.0	36.62	ı	100.15	1.92%	=	=	31	2.0/1.91	Ъ
202	43.8	15.28	40.94	0.13	100.02	2.94%	=	=	1.3	ı	ı
206	62.3	1.20	36.05	1	99.55	3.05%	=	=	7	2.0/1.98	Ēτ
207	63.3	90.0	36.95	1	100.31	3.45%	=	=	18	2.0/1.88	ĒΨ
208	43.9	14.32	41.6	1	99.82	3.50%	=	-	7	1	ı
209	62.0	90.0	38.31	ı	100.37	4.81%	=		13	2.0/1.98	똬
210	0.09	2.0	38.0	ı	100.0	8.0%	=	=	6.0	2.0/2.00	দ
211	0.09	1	40.0	ı	100.0	20.0%	=	=	0.7	2.0/2.00	۲

									-45-	-										
	a Test	Test		ഥ	ſΞŧ	দৈ	দ	•	đ		Д	ሳ	Ъ	д	ሷ	Д	Д	Ţ	Ľι	
	E-119 Fire Test	Density		2.0/1.97	2.0/1.97	2.0/1.98	2.0/1.98		2.0/2.16		2.0/1.91	2.0/1.97	2.0/1.97	2.0/1.90	2.0/1.90	2.0/1.99	2.0/1.99	2.0/2.16	2.0/1.87	
5 Hour	Saline	ppm. Si		92	69	78	70		28		45	57	54	30	51	57	43	50	70	
1	% Additive	(Incl.Total)		0.00% La203	0.56% "	0.72% "	0.92% "		0.09% Cr ₂ 03		0.28% Na ₂ 0	0.45% "	0.71% "	0.87% "	0.93% "	1.11% "	1.40% "	2.60% "	6.84% "	
	%			0	0	0	0		0		0	0		0	0	1	1.,	2.6	9.9	
		Total		99.63	99.68	99.28	99.54		99.72		100.34	100.21	100.26	100.40	99.99	100.37	100.36	100.06	100.1	
S		Misc.		1	ı	i	ſ		ı		ı	ŧ	ı	i	1	1	1	1	1	
ANALYSES	Basic	Oxides	Suo	41.47	41.82	41.72	41.58	suc	36.61	S	35.58	35.68	35.80	35.70	35.63	36.11	36.3	37.0	39.74	
	Amphoteric		 ribers with La ₂ U ₃ additions	90.0	90.0	90.0	90.0	Fibers with Cr ₂ O ₃ additions	0.51	Fibers with Na ₂ O additions	90.0	90.0	90.0	1.20	90.0	90.0	90.0	90.0	90.0	
	Test Acidic	Oxides	 SWILL	58.1	57.8	57.5	56.9	s with (62.6	s with h	64.7	64.5	64.4	63.5	64.3	64.2	64.0	63.0	60.3	
	Test	No.	riner	212	213	214	215	Fiber	216	Fiber	217	218	219	220	221	222	223	224	225	

•. .

.

.

•

	1	٠,	ſ							•	-46	-										
	e Test	2 Hour	Test		ĹΉ	Ĕŧ	Ħ	뇬		ſΞŧ	ĮŦł	ሷ	д	ሷ	ŀ	ı	ı	ı	ı	ı	ı	ᄕ
	E-119 Fire Test	Thickness	Density		2.0/3.50	2.0/5.23	2.0/3.42	2.0/3.86		2.0/2.10	2.0/5.38	2.0/2.00	2.0/2.00	2.0/2.00	1	ı	ı	i	i	ı	1	2.0/1.85
5 Hour	Saline	Extraction	ppm. Si		7	1.2	9.0	1.0		N	9.0	8.0	0.3	e.0	1.0	0.4	0.3	0.4	0.3	0.4	0.5	8.0
		% Additive	(Incl.Total)		ł	ı	ť	ī	Basic Oxides)		f	i	ŧ	i	ŀ	i	ı	ı	ı	ľ		ı
			Total		100.16	100.47	100.69	101.14		L A	99.6	100	100	100.11	99.65	99.91	100.04	99.62	99.78	100.23	100	100.3
ES			Misc.		0.69	0.74	0.61	0.64	less than 25%	ı	ı	ı	ı	0.7	ı	ı	ı	ı	ī	ı	ı	ı
ANALYSES		Basic	Oxides	Wool Fibers	49.97	45.82	49.35	41.53	(Fibers with		3.3	10.0	ı	14.23	1.13	1.07	1.02	1.00	0.98	0.93	1	8.4
		Amphoteric	Oxides	Mineral Woo	9.50	13.99	12.24	17.10	i	. 25	59.2	40.0	46.0	25.55	46.39	46.84	49.22	50.05	51.00	53,10	72	27.4
		Test Acidic	Oxides	Conventional	40.0	39.92	38.49	41.87	Refractory Fibers	31.0	37,1	50.0	54.0	59.62	52.1	52.0	49.8	48.6	47.8	46.2	28	64.5
		Test	No.	Conve	226	227	228	229	Refra	231	232	233	234	235	236	237	238	239	240	241	242	243

TABLE 6

CONTINUOUS SERVICE TEMPERATURE

FOR	FOR CONSTANT SiO ₂ /CaO/Mgo RATIOS	io ₂ /cao/M	go RATIOS		
SiO ₂ /CaO/MqO Ratio	0 Continuous	5 Service	10 Temperature	20 for max	Continuous Service Temperature for max 5% shrinkage
			ন		
50/50/0	1480	1480	1470	1420	1550
50/40/10	1440	1430	1420	1400	1520
50/30/10	1400	1380	1370	1350	1480
60/40/0	1500	1460	1460	1460	1600
60/30/10	1430	1420	1400	1410	1520
60/20/20	1380	1370	1360	1350	1500

Reasonable modifications and variations are possible from the foregoing disclosure without departing from either the spirit or scope of the invention as defined in the claims.

CLAIMS

- 1. A process for decomposing a silicacontaining fiber comprising the steps of:
- pared from a composition consisting essentially of:

10

15

20

- (a) 0.06-10 wt% of a material selected from the group consisting of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;
 - (b) 35-70 wt% SiO₂;
 - (c) 0-50 wt% MgO; and
- (d) the remainder consisting essentially of CaO, the total being 100% by weight;
- 2. subjecting the silica-containing fiber to a physiological saline fluid; and
- 3. extracting the silica at a rate of at least 5 parts per million (ppm) of silicon in 5 hours, thereby decomposing the silicacontaining fiber.
- 2. The process of Claim 1 wherein the composition of subsection 1(a) ranges from 0.06-5 wt% of material selected from the group consisting of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof.
- 3. The process of Claim 1 wherein the composition of subsection 1(c) ranges from 0.25-50 wt% MgO.
- 4. The process of Claim 1 wherein the composition consists essentially of:

	(a)	0.06-1.5	wt%	of	Al ₂ C), ZrO,,
TiO_2 ,	-	iron				
there	of;					
	(b) 4	10-70 wt%	Sio.:			

- (c) 0-50 wt% MgO; and
- (d) the remainder consisting essentially of CaO, the total being 100% by weight.
- 5. The process of Claim 4 wherein the composition in subsection 1(c) ranges from 0.25-50 wt% 10 MgO.

5

15

- The process of Claim 1 wherein the 6. composition consists essentially of:
 - 1.5-3 wt% of Al_2O_3 , ZrO_2 , TiO_2 , (a) B_2O_3 , iron oxides and mixtures thereof;
 - (b) 40-66 wt% SiO₂;
 - (C) 0-50 wt% MgO; and
 - (d) the remainder consisting essentially of CaO, the total being 100% by weight.
- 7. The process of Claim 1 wherein the composition of subsection 1(c) ranges from 0.25-50 wt% MqO.
- .8. The process of Claim 1 wherein the composition consists essentially of: 25
 - 3-4 wt% of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;
 - 40-63 wt% SiO2; (b)
 - (C) 0-50 wt% MgO; and

(d)	t	he re	main	der cor	nsistin	g ess	en-
tially o	of	CaO,	the	total	being	100%	bу
weight.							

9. The process of Claim 8 wherein the composition of subsection 1(c) ranges from 0.25-50 wt% MgO.

10

- 10. The process of Claim 1 wherein the composition consists essentially of:
 - (a) 4-6 wt% of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;
 - (b) 40-60 wt% SiO₂;
 - (c) 0-25 wt% MgO; and
 - (d) the remainder consisting essentially of CaO, the total being 100% by weight.
- 11. The process of Claim 10 wherein the composition of subsection 1(c) ranges from 0.25-25 wt% MgO.
- 12. The process of Claim 1 wherein the composition consists essentially of:
 - (a) 6-8 wt% of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;
 - (b) 35-54 wt% SiO,;
 - (c) 0-25 wt% MgO; and
- 25 (d) the remainder consisting essentially of CaO, the total being 100% by weight.
- 13. The process of Claim 12 wherein the composition of subsection 1(c) ranges from 0.25-25 wt% 30 MgO.

- 14. The process of Claim 1 wherein the composition consists essentially of:
 - (a) 8-10 wt% of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;
 - (b) 35-54 wt% SiO₂;
 - (c) 0-20 wt% MgO; and
 - (d) the remainder consisting essentially of CaO, the total being 100% by weight.
- 15. The process of Claim 14 wherein the composition of subsection 1(c) ranges from 0.25-20 wt% MgO.

- 16. The process of Claim 1 wherein the fiber has a diameter of less than 3.5 microns.
- 17. The process of Claim 1 wherein the silicon extraction rate is at least 20 ppm, the Al_2O_3 content is about 0.06-7 wt%, and the SiO_2 content is about 40-66 wt%.
- 18. The process of Claim 1 wherein the silicon extraction rate is at least about 50 ppm, the Al_2O_3 content is about 0.06-3 wt%, and the SiO_2 content is about 40-60 wt%.
- 19. The process of Claim 1 wherein the silicon extraction rate is at least about 50 ppm, the A1₂O₃ content is about 0.06-0.75 wt%, and the SiO₂ content is about 40-60 wt%.
 - 20. A process of protecting a structural wall from fire comprising the steps of:

	 providing a fiber blanket having a
	bulk density in the range of about 1.5 to
	about 3 lbs. per cubic foot (pcf); wherein the
	fiber blanket has the ability to pass ASTM
5	E-119 two-hour fire test; the fibers in the
	blanket have a diameter less than about 3.5
	microns; and the fiber is an inorganic fiber
·	prepared from a composition consisting essen-
	tially of:
10	(a) 0-7 wt% of Al_2O_3 , ZrO_2 , TiO_2 ,
	B_2O_3 , iron oxides and mixtures thereof;
	(b) $58-70 \text{ wt} \% \text{ SiO}_2$
	(c) 0-21 wt% MgO;
	(d) 0-2 wt% alkali metal oxide; and
15	(e) the remainder consisting essen-
	tially of CaO, the total being 100% by
	weight; and

- 2. placing the blanket next to the wall, and thereby protecting the wall from fire.
- 21. The process of Claim 20 wherein the composition of subsection 1(a) ranges from 0.06-7 wt% of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof.
- 22. The process of Claim 20 wherein the composition of subsection 1(c) ranges from 0.25-21 wt% MgO.

- 23. The process of Claim 20 wherein the composition consists essentially of:
- (a) 0.06-3.0 wt% of Al_2O_3 , ZrO_2 , 30 TiO₂, B_2O_3 , iron oxides and mixtures thereof;
 - (b) 58.5-70 wt% SiO₂;

(c)	0-21 wt	MgO;			
· (d)	0-2 wt%	alkali m	etal ox	ide;	and
(e)	the remai	inder co	nsistin	g ess	en-
tially of	f Cạo, th	e total	being	100%	by

and

5

The process of Claim 20 wherein the composition of subsection 1(c) ranges from 0.25-21 wt% MgO.

The process of Claim 20 wherein the 25. composition consists essentially of: 10

weight.

- from about 3 wt% up to and (a) including 4 wt% of Al2O3, ZrO2, TiO2, B2O3, iron oxides and mixtures thereof;
 - 58-63 wt% SiO2; (b)

15

- (c) 0-8 wt% MgO;
- (d) 0-2 wt% alkali metal oxide; and
- (e) the remainder consisting essentially of CaO, the total being 100% by weight.

20

The process of Claim 25 wherein the 26. composition in subsection 1(c) ranges from 0.25-8 wt% MgO.

The process of Claim 25 wherein the 27. composition consists essentially of:

25

- from about 4 wt% up to and (a) including 6 wt% of Al2O3, ZrO2, TiO2, B2O3, iron oxides and mixtures thereof;
 - (b) 58-61 wt% Sio,;
 - 0-7 wt% MgO; (c)

30

0-2 wt% alkali metal oxide; and

(6	s) .	the re	main	der cor	nsistin	g ess	∍n-
tially	of	Cao,	the	total	being	100%	by
weight.	•						

- 28. The process of Claim 25 wherein the composition of subsection 1(c) ranges from 0.25-7 wt% MgO.
 - 29. An inorganic fiber having an average fiber diameter of less than about 3.5 microns, a silicon extraction rate greater than about 0.02 wt% Si/day in a physiological saline solution and having a composition consisting essentially of about:

10

15

25

- (a) 0.06-5.0 wt% of material selected from the group consisting of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;
 - (b) 35-70 wt% SiO₂;
 - (c) 0-50 wt% MgO; and
- (d) the remainder consisting essentially of Cao, the total being 100 wt%.
- 20 30. An inorganic fiber having a silicon extraction of at least about 10 ppm over a 5 hour period in physiological saline solution and having a composition consisting essentially of about:
 - (a) 0.06-1.5 wt% of material selected from the group consisting of Al₂O₃, ZrO₂, TiO₂, B₂O₃, iron oxides and mixtures thereof;
 - (b) 40-70 wt% Sio;
 - (c) 0-50 wt% MgO; and
- (d) the remainder consisting essentially of CaO, the total being 100 wt%.

SUBSTITUTE QUEET

- 31. An inorganic fiber according to Claim 30 having a silicon extraction of at least about 20 ppm, an average fiber diameter of less than about 3.5 microns, and having an SiO_2 content of about 40-66 wt%.
- 32. An inorganic fiber according to Claim 30 having a silicon extraction of at least about 50 ppm and having an SiO₂ content of about 40-60 wt% and a MgO content of about 0.25-25 wt%.
- 33. An inorganic fiber having a silicon extraction of at least about 10 ppm over a 5 hour period in physiological saline solutions and having a composition consisting essentially of about:

15

- (a) 1.5-3 wt% of material selected from the group consisting of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;
 - (b) 40-66 wt% SiO₂;
 - (c) 0-50 wt% MgO; and
- (d) the remainder consisting essentially of CaO, the total being 100 wt%.
- 34. An inorganic fiber according to Claim 33 having a silicon extraction of at least about 20 ppm, an average fiber diameter of less than about 3.5 microns, and an MgO content of from about .25-50 wt%.
- 25 35. An inorganic fiber according to Claim 33 having a silicon extraction of at least about 50 ppm, an SiO₂ content of from about 40-54 wt%, and an MgO content of from about 0.25-18 wt%.
- 36. An inorganic fiber having a silicon extraction of at least about 10 ppm over a 5 hour period

in physiological saline solutions and having a composition consisting essentially of about:

- 3-4 wt% of material selected from the group consisting of Al₂O₃, ZrO₂, TiO2, B2O3, iron oxides and mixtures thereof:
 - (b) 40-63 wt% Sio,;
 - (c) 0-50 wt% MgO; and
- (d) the remainder consisting essentially of CaO, the total being 100 wt%.
- An inorganic fiber according to Claim 36 37. having a silicon extraction of at least about 20 ppm, an average fiber diameter of less than about 3.5 microns, and a SiO₂ content from about 40-58 wt%.
- 15 An inorganic fiber according to Claim 37 having a silicon extraction of at least about 50 ppm and an SiO_2 content of from about 40-52 wt% and a MgO content of from about .25-18 wt%.
 - An inorganic fiber having a silicon extraction of at least about 10 ppm over a 5 hour time period in a physiological saline solution and having a composition consisting essentially of about:
 - (a) 4-6 wt% of material selected from the group consisting of Al₂O₃, ZrO₂, TiO2, B2O3, iron oxides and mixtures thereof:
 - (b) 40-59 wt% Sio,;
 - 0-46 wt% MgO; and
 - (d) the remainder consisting essentially of CaO, the total being 100 wt%.

5

10

20

25

	40.	An inor	ganic fi	iber ac	cording	g to	Claim	39
having a	silico	on extra	ction of	at lea	st abo	ut 2	0 ppm,	ar
average.	fiber	diamete	of les	s than	about	3.5	micror	ıs,
and an S	iO ₂ con	tent fr	om about	40-58	wt%.			

41. An inorganic fiber having a diameter of less than about 3.5 microns and which passes the ASTM E119 two hour fire test when processed into a fiber blanket having a bulk density in the range of about 1.5 to 3 pcf, said inorganic fiber having a composition consisting essentially of:

(a) .06-7 wt% of material selected from the group consisting of Al₂O₃, ZrO₂, TiO₂, B₂O₃, iron oxides and mixtures thereof;

15

- (b) 58-70 wt% SiO₂;
- (c) 0-21 wt% MgO;
- (d) 0.1-2 wt% alkali metal oxide; and

(e) the remainder consisting essen
tially of CaO, the total being 100 wt%;

wherein the amount of alumina + zirconia is

less than 6 wt% and the amount of iron oxides or alumina

+ iron oxides is less than 2 wt%.

42. An inorganic fiber according to Claim 41 25 having a composition consisting essentially of about:

- (a) .06-1.5 wt% of material selected from the group consisting of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof; and
- 30 (b) 58.5-70 wt% SiO₂.

		43.	An	inorg	anic :	fibe	er ac	ccordin	ng to C	lai	m 42
having	a	sili	.con	extra	ction	of	at	least	about	10	ppm
over a	5	hour	peri	lod in	physi	iolo	gica	al sali	ne sol	utio	ons.

44. An inorganic fiber according to Claim 41 having a composition consisting essentially of about:

5

10

20

25

(a) greater than 1.5 wt% up to and including 3 wt% of material selected from the group consisting of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof; and

(b) 58.5-66 wt% SiO₂.

- 45. An inorganic fiber according to Claim 44 having a silicon extraction of at least about 10 ppm over a 5 hour period in a physiological saline solution.
- 46. An inorganic fiber according to Claim 41 having a composition consisting essentially of about:
 - (a) greater than 3 wt% up to and including 4 wt% material selected from the group consisting of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;
 - (b) 58-63 wt% SiO,;
 - (c) .25-8 wt% MgO;
 - (d) .1-2 wt% alkali metal oxide; and
 - (e) the remainder consisting essentially of CaO, the total being 100 wt%.
 - 47. An inorganic fiber according to Claim 46 having a silicon extraction of at least about 10 ppm over a 5 hour period in physiological saline solutions.

	48. An inorganic fiber according to Claim 41
	having a composition consisting essentially of about:
	(a) greater than 4 wt% up to and
	including 6 wt% of material selected from
5	the group consisting of Al_2O_3 , ZrO_2 , TiO_2 ,
	B ₂ O ₃ , iron oxides and mixtures thereof;
	(b) 58-59 wt% SiO ₂ ;
	(c) .25-7 wt% MgO;
	<pre>(d) .1-2 wt% alkali metal oxide;</pre>
10	and
	(e) the remainder consisting essen-
	tially of CaO, the total being 100 wt%.
	49. An inorganic fiber according to Claim 48
15	having a silicon extraction of at least about 10 ppm
1.5	over a 5 hour period in physiological saline solutions.
	50. An inorganic fiber having a silicon
	extraction of greater than about 0.02 wt% Si/day in a
	physiological saline solution, a continuous service
20	temperature above about 1450°F and having a composition
	consisting essentially of about:
	(a) .06-5 wt% of material selected
	from the group consisting of Al ₂ O ₃ , ZrO ₂ ,
	TiO ₂ , B ₂ O ₃ , iron oxides and mixtures
25	thereof;
	(b) 40-70 wt% SiO ₂ ;
	(c) 0-6 wt% MgO; and
	(d) the remainder comprising essen-

51. The fiber of Claim 50 wherein the composition of subsection (c) has an amount of 0.25-6 wt% MgO.

tially of CaO, the total being 100 wt%.

- 52. An inorganic fiber having a silicon extraction of greater than about 0.02 wt% Si/day in a physiological saline solution, having a continuous service temperature above about 1500°F and having a composition consisting essentially of about:
 - (a) .06-1.5 wt% of material selected from the group consisting of Al_2O_3 , ZrO_2 , TiO_2 , B_2O_3 , iron oxides and mixtures thereof;

10

5

- (b) 60-70 wt% Sio,;
- (c) 0-1 wt% MgO; and
- (d) the remainder consisting essentially of CaO, the total being 100 wt%.
- 53. The fiber of Claim 52 wherein the composition of subsection (c) has an amount 0.25-1 wt% MgO.
 - 54. An inorganic fiber according to Claims 1 or 29 made from pure oxidic raw materials.
- 55. An inorganic fiber according to Claim 1 or 29 or 41 in which at least a portion of the raw materials is selected from a group consisting of talc, metallurgical slags, siliceous rocks, kaolin, and mixtures thereof.
 - 56. An inorganic fiber having a composition consisting essentially of about:
 - (a) 8.0-9.3 wt% Al₂O₃;
 - (b) 39-52 wt% Sio;
 - (c) 22-38 wt% CaO; and
 - (d) 7-14 wt% MgO, the total being 100 wt% and having a silica extraction in a saline solution of at least about 5 ppm over a 5 hour period.

SUBSTITUTE SHFFT

25

57. An inorganic fiber composition having a composition consisting essentially of about:

- (a) 49-61 wt% SiO₂;
- (b) 10-36 wt% CaO; and
- (c) 3-23 wt% MgO, the total being 100 wt% and having a SiO_2 extraction in a saline solution of between about 24-67 ppm over a 5 hour period.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4: (11) International Publication Number: WO 89/12032
C03C 13/00, 13/02, 25/06
A3 (43) International Publication Date: 14 December 1989 (14.12.89)

(21) International Application Number: PCT/US89/02288 (81) Designated States: AT (European patent), AU, BE (European patent), BR, CH (European patent), DE (European patent), DK, FI, FR (European patent), GB (European patent), IT (European patent), JP, KP, KR, LU (European patent), NL (European patent), NO, SE (European patent),

US

(30) Priority data: 201,513 1 June 1988 (01.06.88)

(71) Applicant: MANVILLE SALES CORPORATION [US/US]; Manville Plaza, 5th Floor, P.O. Box 5108, Denver, CO 80217 (US).

(72) Inventors: OLDS, Leonard, Elmo; 977 South Lake Gulch Road, Castle Rock, CO 80104 (US). KIELMEYER, William, Henry; 3374 West Chenango Avenue, Englewood, CO 80110 (US).

(74) Agent: SCHRAMM, William, J.; Brooks & Kushman, 2000 Town Center, Suite 2000, Southfield, MI 48075 (US).

Published

patent).

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report: 5 April 1990 (05.04.90)

(54) Title: PROCESS FOR DECOMPOSING AN INORGANIC FIBER

(57) Abstract

Inorganic fibers which have a silicon extraction of greater than 0.02 wt% Si/day in physiological saline solutions. The fiber contains SiO₂, MgO, CaO, and at least one of Al₂O₃, ZrO₂, TiO₂, B₂O₃, iron oxides, or mixtures thereof. Also disclosed are inorganic fibers which have diameters of less than 3.5 microns and which pass the ASTM E-119 two hour fire test when processed into a fiber blanket having a bulk density in the range of about 1.5 to 3 pcf.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

TA	Austria	ES	Spain	MG	Madagascar
AU	Australia	FI	Finland	ML	Mali
BB	Barbados	. FR	France	MR	Mauritania
BE	Belgirm	GA	Gabon	MW	Malawi
BF	Burkina Fasso	GB	United Kingdom	NL	Netherlands
BG	Bulgaria	HU	Hungary	NO	Norway
en En	Benin	IT	Italy	RO	Romania
		JР	Japan	S 0	Sudan
BR	Brazil	KP	Democratic People's Republic	SE	Sweden
CA	Canada	Ar	of Korea	SN	Senegal
CF	Central African Republic	***		SÚ	Soviet Union
CG	Congo	, KR	Republic of Korea	π	Chad
CH	Switzerland	Ц	Liechtenstein		
CM	Cameroon	I.K	Sri Lanka	TG	Togo
DΕ	Germany, Federal Republic of	w	Luxembourg	us	United States of Americ
DK	Denmark	MC	Monaco		•

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 89/02288

		·	International Application No	PCT/US 89/02288
		F SUBJECT MATTER (if several classif		
		Patent Classification (IPC) or to both Nati		•
IPC4:	C 03 C	13/00, C 03 C 13/02	2, C 03 C 25/06	
	SEARCHED			
		Minimum Documen	station Searched 7	
Classificati	on System		Classification Symbols	
IPC ⁴	i			
IPC -	•	C 03 C	•	
	<u> </u>			
		Documentation Searched other t to the Extent that such Documents	han Minimum Documentation are included in the Fields Searched	
			•	
			•	
	· · · · · ·			
III. DOCU		SIDERED TO BE RELEVANT® of Document, 11 with Indication, where app	rongists of the relevant measures 12	Relevant to Claim No. 12
-alegory	Citation	or Document, with indication, where app	TOPHELE, OF the relevant passages is	1
Х	WO,	A, 87/05007 (MANVIL	LE CORP.)	1-19
		27 August 1987		
		see claim 10; examp lines 11-14	le III; page 5,	
		ines 11-14		
Α ·	FR,	A, 1165275 (PILKING	TON BROTHERS LTD)	1-15,17-19
-		21 October 1958		
		see claim 1		
Α	ďВ	A, 2083017 (NIPPON	SHEET GLASS CO.)	1-15,17-
A	GD,	17 March 1982	SHEET GEADS CO. /	19
		see claims 1,2; pag		
		samples 9,14; page	2, lines 11.64	·
A	G.B.	A, 1446910 (JAPANA	TNODGANIC MATERIA	L 1-3,6-15,
· ·	GD,	CO.) 18 August 1976		17,18
		see page 1, lines 2		
				1 2 12 15
A	US,	A, 4366251 (RAPP) 28 December 1982		1,3,12-15,
	-	see claim 1		
			,	·
		•	/•	
* Specia	i categories of	cited documents: 10	"T" later document published aft	er the international filing date
"A" doc	ument defining	the general state of the art which is not if particular relevance	or priority date and not in co	onflict with the application but ciple or theory underlying the
"E" ear	lier document b	ut published on or after the international	invention "X" document of particular rele	vance; the claimed invention
"L" doc	ig date :ument which n	nay throw doubts on priority claim(s) or		or cannot be considered to
Cita	cn is cited to dition or other s	establish the publication date of another pecial reason (as specified)	"Y" document of particular rele cannot be considered to invo	vance; the claimed invention live an inventive step when the
"O" dod	ument referring er means	to an oral disclosure, use, exhibition or	document is combined with a ments, such combination bei	one or more other such docu- ng obvious to a person skilled
"P" dod	ument published than the prior	d prior to the international filing date but ity date claimed	in the art. "A" document member of the sai	ne patent family
	IFICATION			
Date of the	Actual Comp	etion of the International Search	Date of Mailing of this Internations	Search Report
1st	Februa	ry 1990	2 7 FEV.	1990
Internation	al Searching A	uthority	Signature of Authorized Officer	
	-			TIV VANILACE
	BURUPEA	N PATENT OFFICE	<u> </u>	T.K. WILLIS

	CITATION OF DOCUMENT, WITH INDICATION, WHERE SPONDINGS OF THE SECOND SHEET	Relevant to Claim No
ategory *	Citation of Document, with indication, where appropriate	
A :	Chemical Abstracts, volume 81, no. 22, 27 November 1978, (Columbus, Ohio, US) see page 285, abstract 184615w, & JP, A, 7856207 (NIPPON SHEET GLASS CO., LTD) 22 May 1978	1,3,12-15
x	WO, A, 87/05007 (MANVILLE CORP.) 27 August 1987 see claims 1-10; examples I,II,III; page 5, lines 1-14; page 4, lines 13-21	20-29,50- 53
Y		29,41,44- 49
Α .		42,43
x :	GB, A, 1446910 (JAPAN INORGANIC MATERIAL CO.) 18 August 1976 see page 1, lines 22-34; page 1, line 58 - page 2, line 32	50,51
¥ .	Time 30 - page 2, Land	29,41,44- 49
A		20-28,42,
X	US, A, 2051279 (THORNDYKE) 21 March 1934 see claims 1-4; page 2, right-hand column, lines 16-49; page 2, left- hand column, lines 28-36	50,51
Y		29
A		20-28,41· 49,52,53
A	US, A, 4366251 (RAPP) 28 December 1982 see claim 1	20-22,41
Α .	GB, A, 2083017 (NIPPON SHEET GLASS CO.) 17 March 1982 see claims 1,2; page 5, table 1, samples 9,14; page 2, lines 11-64	20-29,41 49,50-53
A :	FR, A, 1165275 (PILKINGTON BROTHERS LTD) 21 October 1958 see claims 1,4	20-29,41 49,50-53
A	Chemical Abstracts, volume 81, no. 22, 2 December 1974, (Columbus, Ohio, US),	20-22,41

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET
see page 241, abstract 140076b, & SU, A, 409981 (STATE SCIENTIFIC- RESEARCH INSTITUTE OF CONSTRUCTION MATERIALS AND PRODUCTS) 5 January 1974
V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE '
This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:
1. Claim numbers because they relate to subject matter not required to be searched by this Authority, namely:
2. Claim numbers
Claim numbersbecause they are dependent claims and are not drafted in accordance with the second and third sentences of PCT Rule 6.4(a).
VI OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING 2
This international Searching Authority found multiple inventions in this international application as follows:
See Form PCT/ISA/206 dated 29th September 1989.
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claim of the international application.
2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers on
those claims of the international application for which fees were paid, specifically claims: 1-19,54,55;20-28;29,50-53;41-49
3. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted the invention first mentioned in the claims; it is covered by claim numbers:
4. As all esarchable claims could be searched without effort justifying an additional fee, the International Searching Authority did n Invite payment of any additional fee. Remark on Protest
X The additional search fees were accompanied by applicant's protest.
No protest accompanied the payment of additional search fees.

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

US 8902288 29321 SA

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 21/02/90

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document Publication cited in search report date		Patent family member(s)		Publication date	
WO-A- 8705007	27-08-87	AU-A- EP-A- JP-T-	6948887 0257092 63502746	09-09-87 02-03-88 13-10-88	
FR-A- 1165275	. <u> </u>	CH-A- GB-A-	360770 810773		
GB-A- 2083017	17-03-82	JP-A- US-A-	57047741 4443550	18-03-82 17-04-84	
GB-A- 1446910	18-08-76	JP-A- AU-A- CA-A- US-A-	50014820 5892673 1022195 4038089	17-02-75 06-02-75 06-12-77 26-07-77	
US-A- 4366251	28-12-82	None			
WO-A- 8705007	27-08-87	AU-A- EP-A- JP-T-	6948887 0257092 63502746	09-09-87 02-03-88 13-10-88	
GB-A- 1446910	18-08-76	JP-A- AU-A- CA-A- US-A-	50014820 5892673 1022195 4038089	17-02-75 06-02-75 06-12-77 26-07-77	
US-A- 2051279		None			
US-A- 4366251	28-12-82	None			
GB-A- 2083017	17-03-82	JP-A- US-A-	57047741 4443550	18-03-82 17-04-84	
FR-A- 1165275		CH-A- GB-A-	360770 810773		

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4:

١.,

(11) International Publication Number:

WO 89/12032

C03C 13/00, 13/02, 25/06

A3

(43) International Publication Date:

14 December 1989 (14.12.89)

(21) International Application Number:

PCT/US89/02288

(22) International Filing Date:

25 May 1989 (25.05.89)

(30) Priority data:

201,513

1 June 1988 (01.06.88)

US

(71) Applicant: MANVILLE SALES CORPORATION [US/US]; Manville Plaza, 5th Floor, P.O. Box 5108, Denver, CO 80217 (US)

CO 80217 (US).

(72) Inventors: OLDS, Leonard, Elmo; 977 South Lake Gulch Road, Castle Rock, CO 80104 (US). KIELMEYER, William, Henry; 3374 West Chenango Avenue, Englewood, CO 80110 (US).

(74) Agent: SCHRAMM, William, J.; Brooks & Kushman, 2000 Town Center, Suite 2000, Southfield, MI 48075 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), BR, CH (European patent), DE (European patent), DK, FI, FR (European patent), GB (European patent), IT (European patent), JP, KP, KR, LU (European patent), NL (European patent), NO, SE (European patent).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report: 5 April 1990 (05.04.90)

(54) Title: PROCESS FOR DECOMPOSING AN INORGANIC FIBER

(57) Abstract

Inorganic fibers which have a silicon extraction of greater than 0.02 wt% Si/day in physiological saline solutions. The fiber contains SiO₂, MgO, CaO, and at least one of Al₂O₃, ZrO₂, TiO₂, B₂O₃, iron oxides, or mixtures thereof. Also disclosed are inorganic fibers which have diameters of less than 3.5 microns and which pass the ASTM E-119 two hour fire test when processed into a fiber blanket having a bulk density in the range of about 1.5 to 3 pcf.

S

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

CF CG	Central African Republic Congo	KR LI	of Korea Republic of Korea Liechtenstein	SN SU TD	Soviet Union Chad
BJ BR	Benin Brazil	JP KP	Japan Democratic People's Republic	SD SE SN	Sweden Senegal
BE BF BG	Belgium Burkina Fasso Bulgaria	GB HU IT	United Kingdom Hungary Italy	NL NO RO	Netherlands Norway Romania Sudan
AT AU BB	Austria Australia Barbados	FI FR GA	Finland France Gabon	ML MR MW	Mali Mauritania Malawi

International Application No

PCT/US 89/02288

I. CLASS	SIFICATION	OF SUBJECT MATTER (if several class	international Application No P(T/US 89/0228
According	to Internation	al Patent Classification (IPC) or to both Na	tional Classification and IPC	
		C 13/00, C 03 C 13/0		
II. FIELDS	S SEARCHE		•	
Classificati	an Sustan I	Minimum Docume	entation Searched 7	
Classification	on System		Classification Symbols	
IPC ⁴	: !	C 03 C		
		Documentation Searched other to the Extent that such Document	than Minimum Documentation s are included in the Fields Searched ⁶	
		SIDERED TO BE RELEVANT	·	
Category •	Citation	of Document, 11 with Indication, where ap	propriate, of the relevant passages 12	Relevant to Claim No. 13
Х	WO,	A, 87/05007 (MANVII 27 August 1987 see claim 10; examp lines 11-14		1-19
A	FR,	A, 1165275 (PILKING 21 October 1958 see claim 1	STON BROTHERS LTD)	1-15,17-19
A	GB,	A, 2083017 (NIPPON 17 March 1982 see claims 1,2; pag samples 9,14; page	ge 5, table 1,	1-15,17- 19
A	GB,	A, 1446910 (JAPANA CO.) 18 August 1976 see page 1, lines 2		1-3,6-15, 17,18
A	US,	A, 4366251 (RAPP) 28 December 1982 see claim 1	,	1,3,12-15 17
<u> </u>		•	/•	
"E" earli filing "L" docu which cutat "O" docu othe	ument defining sidered to be o er document b g date ument which m ch is cited to e ion or other sp ument referring or means ument publishe	cited documents: 10 the general state of the art which is not if particular relevance ut published on or after the international tay throw doubts on priority claim(s) or establish the publication date of another sectal reason (as specified) to an oral disclosure, use, exhibition or d prior to the international filing date but tty date claimed	"T" later document published after to or priority date and not in conflicted to understand the principle invention. "X" document of particular relevant cannot be considered novel or involve an inventive step document of particular relevant cannot be considered to involve document is combined with one ments, such combination being on the art.	ct with the application but e or theory underlying the te; the claimed invention cannot be considered to te; the claimed invention an inventive step when the or more other such docu- phylous to a person skilled
	FICATION			
Date of the	Actual Compl	etion of the international Search	Date of Mailing of this International Se	arch Report
	Februar		2 7 FEV. 19	90
internations	si Searching A	•	Signature of Authorized Officer	
	EUROPEAL	N PATENT OFFICE		T.K. WILLIS

III. DOC	IMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET	n
Category *	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
A	Chemical Abstracts, volume 81, no. 22, 27 November 1978, (Columbus, Ohio, US) see page 285, abstract 184615w, & JP, A, 7856207 (NIPPON SHEET GLASS CO., LTD) 22 May 1978	1,3,12-15
Х	WO, A, 87/05007 (MANVILLE CORP.) 27 August 1987 see claims 1-10; examples I,II,III; page 5, lines 1-14; page 4, lines 13-21	20-29,50- 53
Y		29,41,44- 49
A	· •	42,43
Х	GB, A, 1446910 (JAPAN INORGANIC MATERIAL CO.) 18 August 1976 see page 1, lines 22-34; page 1, line 58 - page 2, line 32	50,51
Y		29,41,44- 49
A	·	20-28,42, 43,52,53
x	US, A, 2051279 (THORNDYKE) 21 March 1934 see claims 1-4; page 2, right-hand column, lines 16-49; page 2, left- hand column, lines 28-36	50,51
Y		29
A		20-28,41- 49,52,53
A	US, A, 4366251 (RAPP) 28 December 1982 see claim 1	20-22,41
Α	GB, A, 2083017 (NIPPON SHEET GLASS CO.) 17 March 1982 see claims 1,2; page 5, table 1, samples 9,14; page 2, lines 11-64	20-29,41- 49,50-53
A	FR, A, 1165275 (PILKINGTON BROTHERS LTD) 21 October 1958 see claims 1,4	20-29,41- 49,50-53
A	Chemical Abstracts, volume 81, no. 22, 2 December 1974, (Columbus, Ohio, US), ./	20-22,41

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET
see page 241, abstract 140076b, & SU, A, 409981 (STATE SCIENTIFIC- RESEARCH INSTITUTE OF CONSTRUCTION MATERIALS AND PRODUCTS) 5 January 1974
V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE!
This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons: 1. Claim numbers
2. Claim numbers
3. Claim numbers, because they are dependent claims and are not drafted in accordance with the second and third sentences of PCT Rule 6.4(a).
VIL OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING 2
This international Searching Authority found multiple inventions in this international application as follows:
See Form PCT/ISA/206 dated 29th September 1989.
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application. 2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the International application for which fees were paid, specifically claims: 1-19,54,55;20-28;29,50-53;41-49
3. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:
4. As all searchable claims could be searched without effort justifying an additional fee, the international Searching Authority did not invite payment of any additional fee. Remark on Protest
The additional search fees were accompanied by applicant's protest. No protest accompanied the payment of additional search fees.

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

US 8902288

SA 29321

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 21/02/90

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Publication date			Publication date
27-08-87	AU-A- EP-A- JP-T-	6948887 0257092 63502746	09-09-87 02-03-88 13-10-88
	CH-A- GB-A-	360770 810773	
17-03-82	JP-A- US-A-	57047741 4443550	18-03-82 17-04-84
18-08-76	JP-A- AU-A- CA-A- US-A-	50014820 5892673 1022195 4038089	17-02-75 06-02-75 06-12-77 26-07-77
28-12-82	None		
27-08-87	AU-A- EP-A- JP-T-	6948887 0257092 63502746	09-09-87 02-03-88 13-10-88
18-08-76	JP-A- AU-A- CA-A- US-A-	50014820 5892673 1022195 4038089	17-02-75 06-02-75 06-12-77 26-07-77
	None		
28-12-82	None		
17-03-82	JP-A- US-A-	57047741 4443550	18-03-82 17-04-84
	CH-A- GB-A-	360770 810773	
	27-08-87 17-03-82 18-08-76 28-12-82 27-08-87 18-08-76	27-08-87 AU-A-EP-A-JP-T- CH-A-GB-A- 17-03-82 JP-A-US-A- 18-08-76 JP-A-A-CA-A-US-A- 28-12-82 None 27-08-87 AU-A-EP-A-JP-T- 18-08-76 JP-A-AU-A-CA-A-US-A- None 28-12-82 None 28-12-82 None 17-03-82 JP-A-US-A- CH-A-CH-A-CH-A-CH-A-CH-A-CH-A-CH-A-C	Au

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потить

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.