Optical Flow: 2D point correspondences

Optical Flow: 2D point correspondences

Optical Flow: 2D point correspondences

 $\mathbf{I}(\mathbf{x})$

t = 0

 $\mathbf{J}(\mathbf{x})$

t = 1

$$\mathbf{I}(\mathbf{x})$$
 $\mathbf{J}(\mathbf{x})$
 $\mathbf{I}(\mathbf{x}) = \mathbf{J}(\mathbf{x} + \mathbf{d})$

$$\min_{\mathbf{d}} E(\mathbf{d}) = ||\mathbf{J}(\mathbf{x} + \mathbf{d}) - \mathbf{I}(\mathbf{x})||^2$$

When d=0

E(d=0)

Three steps for solving this problem

1: Solve for
$$\left. \frac{\delta E}{\delta \mathbf{d}} \right|_{\mathbf{d}^*} = 0$$

2: Taylor expansion on $\mathbf{J}(\mathbf{x} + \mathbf{d})$

Step 1: Solve for
$$\left. \frac{\delta E}{\delta \mathbf{d}} \right|_{d^*} = 0$$

$$E(\mathbf{d}) = ||\mathbf{J}(\mathbf{x} + \mathbf{d}) - \mathbf{I}(\mathbf{x})||^2$$

$$\mathbf{E}(\mathbf{d}^* = \mathbf{0})$$

Step 1: Solve for
$$\left. \frac{\delta E}{\delta \mathbf{d}} \right|_{d^*} = 0$$

$$E(\mathbf{d}) = ||\mathbf{J}(\mathbf{x} + \mathbf{d}) - \mathbf{I}(\mathbf{x})||^2$$

$$\left. \frac{\delta E}{\delta \mathbf{d}} \right|_{d^*} = 2 \frac{\delta \mathbf{J}(\mathbf{x} + \mathbf{d})}{\delta \mathbf{d}}^T (\mathbf{J}(\mathbf{x} + \mathbf{d}) - \mathbf{I}(\mathbf{x})) = 0$$

$$\mathbf{E}(\mathbf{d}^* = \mathbf{0})$$

Step 1: Solve for
$$\left. \frac{\delta E}{\delta \mathbf{d}} \right|_{d^*} = 0$$

$$E(\mathbf{d}) = ||\mathbf{J}(\mathbf{x} + \mathbf{d}) - \mathbf{I}(\mathbf{x})||^2$$

$$\left. \frac{\delta E}{\delta \mathbf{d}} \right|_{J^*} = 2 \frac{\delta \mathbf{J}(\mathbf{x} + \mathbf{d})}{\delta \mathbf{d}}^T (\mathbf{J}(\mathbf{x} + \mathbf{d}) - \mathbf{I}(\mathbf{x})) = 0$$

$$\frac{\delta E}{\delta \mathbf{d}}\Big|_{J_{\mathbf{x}}} = 2 \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T (\mathbf{J}(\mathbf{x} + \mathbf{d}) - \mathbf{I}(\mathbf{x})) = 0$$

$$\mathbf{E}(\mathbf{d}^* = \mathbf{0})$$

$$\frac{\delta E}{\delta \mathbf{d}} \Big|_{d^*} = 2 \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T (\mathbf{J}(\mathbf{x} + \mathbf{d}) - \mathbf{I}(\mathbf{x})) = 0$$

$$\frac{\delta \mathbf{J}(\mathbf{x})}{\delta x} =$$

$$\frac{\delta \mathbf{J}(\mathbf{x})}{\delta y} =$$

$$\mathbf{E}(\mathbf{d}^* = \mathbf{0})$$

Step 2: Taylor expansion $\mathbf{J}(\mathbf{x} + \mathbf{d})$

$$\mathbf{J}(\mathbf{x} + \mathbf{d}) = \mathbf{J}(\mathbf{x}) + \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}} \mathbf{d}$$

$$+ \mathbf{d}_{\mathbf{x}} * \mathbf{0} + \mathbf{d}_{\mathbf{y}} * \mathbf{0}$$

Putting all together

$$\frac{\delta E}{\delta \mathbf{d}}\Big|_{d^*} = 2 \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T (\mathbf{J}(\mathbf{x} + \mathbf{d}) - \mathbf{I}(\mathbf{x})) = 0$$

$$\mathbf{J}(\mathbf{x} + \mathbf{d}) = \mathbf{J}(\mathbf{x}) + \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}} \mathbf{d}$$

$$rac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T rac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}} \mathbf{d} = rac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T (\mathbf{I}(\mathbf{x}) - \mathbf{J}(\mathbf{x}))$$

$$rac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T rac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}} \mathbf{d} = rac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T (\mathbf{I}(\mathbf{x}) - \mathbf{J}(\mathbf{x}))$$

2D unknowns flow vector per pixel 2 equations

$$\frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}} \mathbf{d} = \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T (\mathbf{I}(\mathbf{x}) - \mathbf{J}(\mathbf{x}))$$

Also known as second moment matrix

$$\frac{\delta \mathbf{J}(\mathbf{x})}{\delta x}^2 \qquad \frac{\delta \mathbf{J}(\mathbf{x})}{\delta x} \frac{\delta \mathbf{J}(\mathbf{x})}{\delta y}$$

$$\frac{\delta \mathbf{J}(\mathbf{x})}{\delta x} \frac{\delta \mathbf{J}(\mathbf{x})}{\delta y} \qquad \frac{\delta \mathbf{J}(\mathbf{x})}{\delta y}^2$$

$$\frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}} \mathbf{d} = \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T (\mathbf{I}(\mathbf{x}) - \mathbf{J}(\mathbf{x}))$$

$$\frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}} \mathbf{d} = \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T (\mathbf{I}(\mathbf{x}) - \mathbf{J}(\mathbf{x}))$$

$$\frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}} \mathbf{d} = \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T (\mathbf{I}(\mathbf{x}) - \mathbf{J}(\mathbf{x}))$$

$$\frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}} \mathbf{d} = \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T (\mathbf{I}(\mathbf{x}) - \mathbf{J}(\mathbf{x}))$$

$$\min_{\mathbf{d}} E(\mathbf{d}) = \sum_{\mathbf{d}} ||\mathbf{J}(\mathbf{x} + \mathbf{d}) - \mathbf{I}(\mathbf{x})||^2$$

$$\min_{\mathbf{d}} E(\mathbf{d}) = \sum ||\mathbf{J}(\mathbf{x} + \mathbf{d}) - \mathbf{I}(\mathbf{x})||^2$$

X

$$\sum_{\mathbf{x}} \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}} \mathbf{d} = \sum_{\mathbf{x}} \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T (\mathbf{I}(\mathbf{x}) - \mathbf{J}(\mathbf{x}))$$

Summing over pixels

Summing over pixels

$$\sum_{\mathbf{x}} \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}} \mathbf{d} = \sum_{\mathbf{x}} \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T (\mathbf{I}(\mathbf{x}) - \mathbf{J}(\mathbf{x}))$$

$$\mathbf{d_x}$$
 $+\mathbf{d_y}$ $=$

 $\mathbf{I}(\mathbf{x})$

t = 0

 $\mathbf{J}(\mathbf{x})$

t = 1

$$\frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}} \mathbf{d} = \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T (\mathbf{I}(\mathbf{x}) - \mathbf{J}(\mathbf{x}))$$

$$rac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T rac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}} \mathbf{d} = rac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T (\mathbf{I}(\mathbf{x}) - \mathbf{J}(\mathbf{x}))$$

$$\frac{\delta \mathbf{J}(\mathbf{x})}{\delta x} =$$

$$\frac{\delta \mathbf{J}(\mathbf{x})}{\delta y} =$$

$$\frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}} \mathbf{d} = \frac{\delta \mathbf{J}(\mathbf{x})}{\delta \mathbf{x}}^T (\mathbf{I}(\mathbf{x}) - \mathbf{J}(\mathbf{x}))$$

Error

