COL759: CRYPTOGRAPHY AND COMPUTER SECURITY

2022-23 (SEMESTER 1)

LECTURE 28 PART 1: REVIEW (MAC, UHF, CRHF, AUTH. ENC)

REVIEW: MESSAGE AUTH. CODES

Weak Unforgeability

Adversary cannot produce sig. on **new** message, even after seeing many signtures.

Strong Unforgeability

Adversary cannot produce **new** sig, even after seeing many signtures.

Ver. queries useless

REVIEW: MESSAGE AUTH. CODES

- PRF based construction: bounded message space
- To support unbounded message space: ECBC-MAC, randomised counter-based MAC. Both based on PRF security
- Hash-and-sign: based on security of hash function

REVIEW: HASH FUNCTIONS

Hard to find two different inputs that map to same output (a.k.a. 'collision')

REVIEW: HASH FUNCTIONS

Hard to find two different inputs that map to same output (a.k.a. 'collision')

Universal Hash Functions

Adversary cannot produce collision, does not receive any information about hash key

Constructions:

polynomial based inf. theoretic construction
 PRF/MAC based construction

Collision Resistant Hash Functions

Adversary cannot produce collision, even after seeing hash key

Constructions ??
- Practical hash functions: SHA

CRHF CONSTRUCTION: ATTEMPT

p = 2q + 1: safe prime

g: generator of \mathbb{Z}_p^*

Hash key: $x, y \in \mathbb{Z}_p^*$

 $H_k: \mathbb{Z}_p^* \times \mathbb{Z}_p^* \to \mathbb{Z}_p^*$

$$H_{(x,y)}(a,b) = x^a \cdot y^b \mod p$$

$$x^2 = 1$$
 or $y^2 = 1$

Many collisions

$$x^q = 1, y^q \neq 1$$

$$(q,b)$$
 and $(2q,b)$

$$x^q \neq 1, y^q \neq 1$$

$$(q,q)$$
 and $(2q,2q)$

AUTHENTICATED ENCRYPTION: SEMANTIC SECURITY + CIPHERTEXT INTEGRITY

After seeing many ct, adversary should not be able to produce a new ciphertext that decrypts to valid msg.

Ciphertext integrity is needed because msg. integrity does not prevent

After seeing many ct, adversary should not be able to produce encryption of a new msg

'chosen ciphertext attacks'

SECURITY AGAINST CHOSEN CIPHERTEXT ATTACKS

Not part of syllabus

weaker than CCA security

Post-chall. queries

Not part of syllabus

Guess

Chall.		Adv.	
Chooses key k, bit b			Setup
	weaker than CCA security		Pre-chall. queries
$ct^* \leftarrow Enc(m_b^* , k)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Chall.
$ct_i \leftarrow Enc(m_i \ , \ k)$ $y_i = Dec(ct_i^{'}, k)$	Encrypt m_i ct_i $Decrypt ct'_i (\neq ct^*)$ y_i		Post-chall. queries

Not part of syllabus

Not part of syllabus

AUTHENTICATED ENCRYPTION: SEMANTIC SECURITY + CIPHERTEXT INTEGRITY

Semantic sec. + ciphertext integrity prevents 'chosen ciphertext attacks'

After seeing many ct, adversary should not be able to produce a new ciphertext that decrypts to valid msg.

ENCRYPT-THEN-MAC

Semantic sec. + ciphertext integrity

AUTHENTICATED ENCRYPTION: PRACTICE QUESTION

(Enc, Dec): CCA secure encryption scheme with msg space $\{0,1\}$

Want: CCA secure encryption scheme with message space $\{0,1\}^n$

Candidate scheme

$$\operatorname{Enc}(m = (m_1, m_2, ..., m_n), k) = \left(\operatorname{Enc}(m_1, k), \operatorname{Enc}(m_2, k), ..., \operatorname{Enc}(m_n, k)\right)$$

What if we use different key for each position?

How to make this CCA secure?

Alice and Bob can securely communicate!