1 What is curry-howard correspondence?

In programming language theory and proof theory, the Curry-Howard correspondence (also known as the Curry-Howard isomorphism or equivalence, or the proofs-as-programs and propositions- or formulae-as-types interpretation) is the direct relationship between computer programs and mathematical proofs.

type constructions in FP 1.1

But before getting into that let's see type constructions in functional programming Here I'll use SML as an example

```
• Tuple type (int, string)
 Creating: val x : int*string = (4 , ''Hello'')
  Using: val y: int = \#1 x
• Function type int -> string
 Creating: fun f (x:int) :string = ''the value of x is', ^ toString(x)
 Using: val y: string = f 45
• Disjunction type datatype X = Left of int | Right of string
 Creating: val x:X = Left 4
 Creating: val y:X = Right ''Hello''
 Using: fun f (x:X):bool = case x of
                       Left y = (y > 0)
                       Right _ = false
 the above given is a function that takes an argument of type X and returns
```

a value of type bool

```
• Unit type type t = unit
 Creating: val x:unit = ()
```

1.2From types to propositions

But how does the types defined just translate themselves into propositions? consider the sml code val x:t = now what does this mean? If this code manages to compile without error then there the type t exists in the system. Let's denote this proposition by CH(t) which means that code has a value of type t or the type t exists in the system.

But that was just for a type t what about all the other things that we have discussed above?

Type	Proposition	Short Notation
t	CH(t)	t
(a,b)	CH(a) and CH(b)	$A \wedge B ; A \times B$
left a right b	CH(a) or CH(b)	$A \vee B ; A + B$
$a \rightarrow b$	CH(a) implies CH(b)	$A \Longrightarrow B$
unit	true	1

- $\bullet\,$ type parameter ''a can be considered as $\forall a$
- consider the function fun f (x: 'a) : 'a * 'a = (x,x) this is logically equivalent to $\forall a \ a \Longrightarrow a \wedge a$