

This Page Is Inserted by IFW Operations  
and is not a part of the Official Record

## BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,  
please do not report the images to the  
Image Problems Mailbox.**

## SUPPLEMENTAL COPY OF APPLICATION

## A New Method Of Digital FM Demodulator

## BACKGROUND OF THE INVENTION

## 1.F The invention

present invention relates to a new method of digital frequency-modulation demodulator and more particularly, to a digital frequency-modulation demodulator that using the structure of time-to-digital converter and the concept of delta-sigma analog-to-digital converter.

## 2.F Prior Art

Frequency modulation (FM) is one of important and common method in communication system that its receiver end contains the FM detection circuit which often using analog design circuit and the traditional analog style FM demodulation circuit including detector circuit and local oscillator loop circuit. If bring the detector into integrated circuit then it need large chip area, and if implement PLL into integrated circuit then an external oscillator is necessary outside this chip.

If the modulated signal need the digital signal process after detection? then the above two circuit need analog-to-digital converter to convert the demodulated analog signal into digital signal. meanwhile, this digital signal is easy to be interfered by noise signal. However, the digital FM detector will first convert the modulation intermediate-frequency (IF) signal

int signal by way of analog-to-digital converter, then using digital signal  
pr demodulate this modulation signal. The analog-to-digital converter  
ai signal processor used in digital FM demodulator must have fast  
sp demodulate the modulation signal in real time. It also could use  
re clock with multiple-fold frequency of modulation signal for sampling  
t modulation signal to detect its phase change then demodulate, but  
s topology need a high frequency reference clock.  
conventional methods of digital RF communication system always need  
t convert the analog signal into digital signal in the receiver end with  
c that increasing the circuit complexity. Thus, the demodulation circuit  
c the detector circuit or PLL with analog-to-digital circuit could simply  
t! design also will be one of major objectives today.

## SUMMARY OF THE INVENTION

before a primary objective of the present invention to provide a new  
f digital FM demodulator will be applicable in radio communication  
nsides, the modulation-demodulation section in receiver end also  
pplicable in BB call, cellular phone, GPS system, and DECT system.

ext objective of the present invention is to provide a digital FM  
tor with two function of modulation-demodulation and analog-to-digital

com  
de  
si  
to  
The input intermediate-frequency signal pass through this invention  
will generate a digital signal including high-frequency quantized  
by way of a low-pass filter to filter out above quantized noise signal  
baseband signal.

er objective of the present invention is to provide a digital FM  
r which adopt the PLL structure and utilize the concept of delta-  
og-to-digital converter which without connect external component  
quency reference clock so that easy for integration.

vention with advantages that not only use delay lines as the timing  
but also adopt the concept of delta-sigma analog-to-digital converter  
the time-to-digital conversion for digital FM demodulator. This digital  
ulator including delay lines, m-to-1 multiplexer, phase  
arge pump circuit, quantizer and digital integrator. The modulation  
intermediate frequency segment pass through the delay lines with the  
around one cycle time and this delayed signal compare its phase  
al signal. This compared pulse will go through charge pump circuit  
nt into a voltage level stored in capacitor. This quantized voltage is  
ed by the digital integrator, then sample another output signal of  
; and compare phase with input signal. This system is similar to PLL,  
ack system. The quantized digital signal will feed through low-pass

filter out high frequency noise and get the original modulation signal, the modulation signal is a digital signal.

#### BRIEF DESCRIPTION OF THE DRAWINGS

The drawings disclose an illustrative embodiment of the present invention which may be embodied in various forms. It is intended to exemplify the various advantages and objects hereof, and are not to be construed as limiting the scope of the invention.

a. FIG.

F. FIG. A circuit block diagram of digital FM demodulator according to the present invention.

b. FIG.

F. FIG. B A circuit waveform of digital FM demodulator according to the present invention.

c. FIG.

F. FIG. C A system structure of digital FM demodulator according to the present invention.

#### TAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Refer to Fig.1 that relates to the circuit block diagram of digital FM demodulator. The modulation signal  $A_i(t)$  is fed into reference delay lines 111 and coarse delay lines-11 including coarse delay line 111 and fine delay line 112. The total delay time of delay lines 111 and 112 is controlled separately by  $A_{id}(t)$ . The fine delay lines 112 has multiple output signals  $A_{i1}(t), A_{i2}(t), \dots, A_{ij}(t)$  which could be expressed as follow:

$$A_{id}(t) = T_c + j \cdot T_f \quad (1)$$

$T_c$ : fixed delay time of coarse delay lines  
 $T_f$ : delay time of fine delay lines

The phase detector compares the phase difference between  $A_{id}$  and  $A_i$ , then generate up and down signal. The m-to-1 multiplexer will select one of output signals  $A_{i1}(t), A_{i2}(t), \dots, A_{ij}(t)$  from fine delay lines 112 and name it as  $A_{id}$ . If the rising edge of  $A_{id}$  signal lead the  $A_i$  signal, up signal will generate an effective pulse and its pulse width is just same as the time difference between the rising edges of  $A_i$  and  $A_{id}$ , but down signal do not generate any pulse. The total delay time of  $A_i$  signal pass through delay lines is  $T_c + d \cdot T_f$  and the pulse width will equal to " $T - T_c - d \cdot T_f$ " when " $T_c + d \cdot T_f$ " smaller than  $T$  of  $A_i$  signal.

In the same way, if the rising edge of  $A_{id}$  signal lag the  $A_i$  signal, down signal will generate an effective pulse and its pulse width is also just same as the time difference of  $A_{id}$  and  $A_i$  signal, and the pulse width will equal to " $T_c + d \cdot T_f - T$ ".

positive when Aid lead the Ai signal, on the contrary, its value is negative when Aid lag Ai signal. Both effective pulse of up and down signal will charge pump circuit 14 for charging and discharging to capacitor Cc to generate a voltage difference, Vf, and its voltage level is proportional to difference or phase difference of Aid and Ai signal.

of input modulated signal will generate a Vf which is accumulated in capacitor Cc and this stored voltage will be quantized to generate a bit signal  $y(k)$ ,  $y(k)$  is the output digital sequence of total system.

15 is a analog-to-digital converter which could be one bit or converter. One bit converter is the comparator. The quantizer 15 in adopt one bit voltage comparator.

egrator 16 accumulate output digital signal  $y(k)$ , actually, it is simply counter due to quantizer 15 is one bit analog-digital converter. The output signal will select one output Aid signal from the fine delay lines multiplexer and compare its phase with Ai signal. Consequently, the Aid signal is controlled by output signal  $y(k)$  it will delay one more unit if  $y(k)=1$ . On the contrary, the delay of Aid decrease one unit delay if  $y(k)=0$ , this whole system is similar to PLL structure.  $Y(K)$  is feedback to aid delay time and make the next rising edge of Ai signal arrive at the detector with rising edge of Aid signal simultaneously, so the Aid signal delayed one cycle than Ai signal when the system is locked.

In Fig.2, this is the circuit waveform of digital FM demodulator in the present invention.  $T(k)$  is the kth cycle time of input modulation signal.  $\Delta T(k)$  is the time difference of Aid rising edge with next Ai cycle. The up signal means  $P(k)$  is positive value, but the down signal is negative. That is because the maximum frequency shift of input signal is much smaller than carrier frequency. The change of  $T(k)$  is relative to carrier cycle  $T_c$ .

The effective pulse of up signal and down signal only happen at the falling edge of Aid and Ai signal and this effective pulse has been transferred to the capacitor Cc by way of charge pump circuit before arriving of Vcc. This falling edge could be the trigger clock of the quantizer and

As this system do not need external reference clock. As shown in the diagram, a formula as follows :

$$T(k) = T(k-1) + y(k) * \tau \quad \text{--- (2)}$$

$$T(k-1) \quad \text{--- (3)}$$

we could get;

$$\Delta T(k) = y(k) * \tau \quad \text{--- (4)}$$

From the capacitor voltage at kth cycle based on Fig.2, we could calculate the signal is generated by  $V(k-1)$  and Ic signal to charge/discharge Cc

during signal effective pulse period and  $I_b$  charge/discharge  $C_c$  duration, i.e. the voltage is determined by these three parameters.

The  $C_c$  for  $I_c$  at kth cycle is :

$$\Delta V = V(k) - V(0) \quad (5)$$

If clock is the input modulation signal  $A_i$ , then the  $C_c$  voltage level formula when charge-discharge is at kth cycle.

$$V(k) = C_c * [T(k) + T(k+1)] / 2 \quad (6)$$

T:

$$\Delta T = V_f_b \quad (7)$$

$$V(k) = V(0) + \{y(k) * (I_b/C_c) * [T(k) + T(k+1)] / 2\} + \{I_c/C_c * P(k)\} \quad (8)$$

The maximum frequency shift is much smaller than carrier frequency, so  $T(k)$  is around equal to carrier cycle  $T_c$ .

$$V(k) = V(0) + \{y(k) * (I_b/C_c) * T_c\} + \{I_c/C_c * P(k)\} \quad (9)$$

A:

B:

C:

D:

E:

F:

G:

H:

I:

the next formula :

$$A * P(k+1) + B * y(k)$$

into above formula, then get

$$V(k) = [P(k) + \Delta T(k) + y(k)^* T] + B^* y(k)$$

The output of  $V(k)$  is the total system output.

In Fig.3, is the system structure of digital FM demodulator in the present invention. This diagram is a two level delta-sigma input is  $\Delta T(k)$  that also is the signal difference of  $T(k)$  and  $T(k-1)$ . The output of the output signal  $y(k)$  in present invention is similar to analog-digital converter output signal. the quantized noise signal of high frequency segment. So, the output digital signal  $y(k)$  is first then filter out quantized noise by the digital filter to get the signal.

This technology is similar to conventional delta-sigma analog-to-digital converter. Based on above deduction, the output digital signal is the signal of original modulation signal. In brief,  $y(k)$  signal filter out the noise by way of low-pass digital filter before signal accumulation.

This invention provide a FM digital demodulator which with more advantages than conventional technology as follow:

1. b  
grid circuit in present invention will be applicable in radio system, besides, the modulation-demodulation section in also could be applicable in BB call, cellular phone, GPS system, system.
2. b  
invention to provide a digital modulation demodulator which structure and utilize the concept of delta-sigma analog-to-digital converter which without connect external component and high reference clock so that easy for integration.
3.  
invention to provide a digital modulation demodulator with two demodulation and analog-to-digital conversion. The input of high-frequency signal pass through this invention demodulator will digital signal including high-frequency quantized signal, then by pass filter to filter out above quantized noise signal to get the signal.

various changes and modifications in the above described embodiment of the invention may be made without departing from the spirit of course, be carried out without departing from the scope accordingly, to promote the progress in science and the useful arts, the enclosed and is intended to be limited only by the scope of the claims.