Лабораторная работа №5

Модель эпидемии (SIR)

Городянский Фёдор Николаевич

Содержание

Цель работы	
Задание	5
Выполнение лабораторной работы	6
Реализация модели в xcos	6
Реализация модели с помощью блока Modelica в xcos	10
Упражнение	14
Задание для самостоятельного выполнения	16
Выводы	27

Список иллюстраций

0.1	Задание переменных окружения в xcos		7
0.2	Модель SIR в xcos	. 8	3
0.3	Задание начальных значений в блоках интегрирования	. 8	3
0.4	Задание начальных значений в блоках интегрирования		9
0.5	Задание конечного времени интегрирования в хсоз		9
0.6	Эпидемический порог модели SIR при $eta=1, u=0.3$. 10)
0.7	Модель SIR в xcos с применением блока Modelica	. 1	1
0.8	Параметры блока Modelica для модели SIR	. 12	2
0.9	Параметры блока Modelica для модели SIR	1.	3
0.10	Эпидемический порог модели SIR при $\beta=1, \nu=0.3$. 14	1
0.11	Установка симуляции в OpenModelica	1.	5
0.12	Эпидемический порог модели SIR при $\beta=1, \nu=0.3$. 16	5
0.13	Модель SIR с учетом демографических процессов в xcos	1	7
0.14	График модели SIR с учетом демографических процессов .	1	7
0.15	Модель SIR с учетом демографических процессов в xcos c		
	применением блока Modelica	. 18	3
0.16	Параметры блока Modelica для модели SIR с учетом демо-		
	графических процессов	. 19)
0.17	Параметры блока Modelica для модели SIR с учетом демо-		
	графических процессов	. 20	
0.18	График модели SIR с учетом демографических процессов .		
0.19	График модели SIR с учетом демографических процессов .	22	2
0.20	График модели SIR с учетом демографических процессов .	23	3
	График модели SIR с учетом демографических процессов .		3
	График модели SIR с учетом демографических процессов .		_
0.23	График модели SIR с учетом демографических процессов .		
	График модели SIR с учетом демографических процессов .	2.	5
0.25	График модели SIR с учетом демографических процессов .	. 26	ó

Цель работы

Построить модель SIR в xcos и OpenModelica.

Задание

- 1. Реализовать модель SIR в в *хсоs*;
- 2. Реализовать модель SIR с помощью блока Modelica в в xcos;
- 3. Реализовать модель SIR в OpenModelica;
- 4. Реализовать модель SIR с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica;
- 5. Построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр μ);
- 6. Сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

Выполнение лабораторной работы

Задача о распространении эпидемии описывается системой дифференциальных уравнений:

$$\begin{cases} \dot{s} = -\beta s(t)i(t); \\ \dot{i} = \beta s(t)i(t) - \nu i(t); \\ \dot{r} = \nu i(t), \end{cases}$$

где β – скорость заражения, ν – скорость выздоровления.

Реализация модели в хсоѕ

Зафиксируем начальные данные: $\beta=1,\, \nu=0,3,s(0)=0,999,\, i(0)=0,001,\, r(0)=0.$

В меню Моделирование, Установить контекст зададим значения переменных β и ν (рис. [-@fig:001]).

Рис. 0.1: Задание переменных окружения в хсоѕ

Для реализации модели (рис. [-@fig:002]) потребуются следующие блоки xcos:

- CLOCK_c запуск часов модельного времени;
- CSCOPE регистрирующее устройство для построения графика;
- TEXT f задаёт текст примечаний;
- MUX мультиплексер, позволяющий в данном случае вывести на графике сразу несколько кривых;
- INTEGRAL_m блок интегрирования;
- GAINBLK_f в данном случае позволяет задать значения коэффициентов β и ν ;
- SUMMATION блок суммирования;
- PROD_f поэлементное произведение двух векторов на входе блока.

Рис. 0.2: Модель SIR в хсоѕ

В параметрах верхнего и среднего блока интегрирования необходимо задать начальные значения s(0)=0,999 и i(0)=0,001 (рис. [-@fig:003],[-@fig:004]).

Рис. 0.3: Задание начальных значений в блоках интегрирования

Рис. 0.4: Задание начальных значений в блоках интегрирования

В меню Моделирование, Установка зададим конечное время интегрирования, равным времени моделирования, в данном случае 30 (рис. [-@fig:005]).

Рис. 0.5: Задание конечного времени интегрирования в хсоѕ

Результат моделирования представлен на рис. [-@fig:006], где черной линией обозначен график s(t) (динамика численности уязвимых к болезни особей), красная линия определяет r(t) — динамику численности выздоровевших особей, наконец, зеленая линия определяет i(t) — динамику численности заражённых особей. Пересечение трёх линий определяет порог эпидемии.

Рис. 0.6: Эпидемический порог модели SIR при $\beta=1, \nu=0.3$

Реализация модели с помощью блока Modelica в xcos

Готовая модель SIR представлена на рис. [-@fig:007].

Для реализации модели SIR с помощью языка Modelica помимо блоков CLOCK_c, CSCOPE, TEXT_f и MUX требуются блоки CONST_m — задаёт константу; MBLOCK (Modelica generic) — блок реализации кода на языке Modelica. Задаём значения переменных β и ν (рис. [-@fig:001]).

Рис. 0.7: Модель SIR в xcos с применением блока Modelica

Параметры блока Modelica представлены на рис. [-@fig:008],[-@fig:009]. Переменные на входе ("beta", "nu") и выходе ("s", "i", "r") блока заданы как внешние ("E").

Рис. 0.8: Параметры блока Modelica для модели SIR

Рис. 0.9: Параметры блока Modelica для модели SIR

В результате получаем график (рис. [-@fig:010]), построенный с помощью блока Modelica идентичный графику (рис. [-@fig:006]), построенному без них.

Рис. 0.10: Эпидемический порог модели SIR при $\beta=1, \nu=0.3$

Упражнение

В качестве упражнения нам надо построить модель SIR на OpenModelica. Синтаксис почти такой же как и на Modelica. Нужно задать параметры, начальные значения и систему дифференциальных уравнений.

```
parameter Real I_0 = 0.001;
parameter Real R_0 = 0;
parameter Real S_0 = 0.999;
parameter Real beta = 1;
parameter Real nu = 0.3;
parameter Real mu = 0.5;
Real s(start=S_0);
```

```
Real i(start=I_0);
Real r(start=R_0);

equation
  der(s)=-beta*s*i;
  der(i)=beta*s*i-nu*i;
  der(r)=nu*i;
```

Теперь выполним симуляции, задав конечное время 30 с (рис. [-@fig:011]).

Рис. 0.11: Установка симуляции в OpenModelica

В результате получаем следующий график (рис. [-@fig:012]). Он идентичен предыдущим графикам выполненным в *xcos*.

Рис. 0.12: Эпидемический порог модели SIR при $\beta=1, \nu=0.3$

Задание для самостоятельного выполнения

Предположим, что в модели SIR учитываются демографические процессы, в частности, что смертность в популяции полностью уравновешивает рождаемость, а все рожденные индивидуумы появляются на свет абсолютно здоровыми. Тогда получим следующую систему уравнений:

$$\begin{cases} \dot{s} = -\beta s(t)i(t) + \mu(N-s(t)); \\ \dot{i} = \beta s(t)i(t) - \nu i(t) - \mu i(t); \\ \dot{r} = \nu i(t) - \mu r(t), \end{cases}$$

где μ — константа, которая равна коэффициенту смертности и рождаемости.

Реализуем эту модель в *хсоs*. Тут нам понадобятся три блока суммирования и 4 блока констант (добавляется константа ν).

Рис. 0.13: Модель SIR с учетом демографических процессов в хсоз

В результате получаем следующий график (рис. [-@fig:014]).

Рис. 0.14: График модели SIR с учетом демографических процессов

Теперь реализуем модель SIR с учетом демографических процессов в *xcos* с помощью блоков Modelica (рис. [-@fig:015]).

Рис. 0.15: Модель SIR с учетом демографических процессов в хсоs с применением блока Modelica

Параметры блока Modelica представлены на рис. [-@fig:016],[-@fig:017]. Переменные на входе ("beta", "nu", "mu") и выходе ("s", "i", "r") блока заданы как внешние ("E").

Рис. 0.16: Параметры блока Modelica для модели SIR с учетом демографических процессов

Рис. 0.17: Параметры блока Modelica для модели SIR с учетом демографических процессов

В результате получаем следующий график (рис. [-@fig:018]).

Рис. 0.18: График модели SIR с учетом демографических процессов

Реализуем модель SIR с учетом демографических процессов на OpenModelica.

```
parameter Real I_0 = 0.001;
parameter Real R_0 = 0;
parameter Real S_0 = 0.999;
parameter Real N = 1;
parameter Real beta = 1;
parameter Real nu = 0.3;
parameter Real mu = 0.5;

Real s(start=S_0);
Real i(start=I_0);
Real r(start=R_0);
```

equation

```
der(s)=-beta*s*i + mu*i + mu*r;
der(i)=beta*s*i-nu*i - mu*i;
der(r)=nu*i - mu*r;
```

Выполнив симуляцию, получим следующий график (рис. [-@fig:019]).

Рис. 0.19: График модели SIR с учетом демографических процессов

Теперь построим графики при разных значениях параметров.

1)
$$\beta = 1, \nu = 0.3$$

•
$$\mu = 0.1$$

Рис. 0.20: График модели SIR с учетом демографических процессов

•
$$\mu = 0.3$$

Рис. 0.21: График модели SIR с учетом демографических процессов

•
$$\mu = 0.9$$

Рис. 0.22: График модели SIR с учетом демографических процессов

2)
$$\beta = 1$$
, $\nu = 0.1$

•
$$\mu = 0.1$$

Рис. 0.23: График модели SIR с учетом демографических процессов

•
$$\mu = 0.9$$

Рис. 0.24: График модели SIR с учетом демографических процессов

3)
$$\beta = 4$$
, $\nu = 0.3$, $\mu = 0.2$

Рис. 0.25: График модели SIR с учетом демографических процессов

Исходя из анализа графиков, можно сделать вывод, что чем выше значение любого из параметров, тем быстрее система достигает стационарного состояния. При высоком коэффициенте заражения β система быстро проходит через пик развития эпидемии и достигает стационарного состояния.

Выводы

В процессе выполнения данной лабораторной работы была построена модель SIR в *xcos* и OpenModelica.