Ch 1

Ex 1.8

Suppose towards a contradiction that $F = y^2 + x - x^3$ was reducible via F = GH with $\deg(G), \deg(H) > 0$. Then $\deg(F) = \deg(G) + \deg(H)$ and as neither of these are constant a unit, we can assume $\deg(G) = 2, \deg(H) = 1$. Thus we can write

$$G = x^2 + a_1 xy + a_2 y^2 + a_3 x + a_4 y + a_5, \ H = x + b_1 y + b_2,$$

and by multiplying the two together and comparing to the coefficients of ${\cal F}$ we get

$$b_1 + a_1 = 0$$

$$a_1b_1 + a_2 = 0,$$

$$a_2b_1 = 0,$$

so either a_2 or b_1 is zero. If it's a_2 we need $a_1b_1=0$ by the second equation, whence $b_1=a_1=0$ by the first equation. If it's b_1 , we get $a_1=0$ by the first equation and $a_2=0$ by the second equation. Hence $a_1=a_2=b_1=0$ and

$$G = x^2 + a_3x + a_4y + a_5, H = x + b_2.$$

But then GH can't possibly be F, since GH doesn't contain the term y^2 , a contradiction.

Ex 1.16

(a)

We have that L=y-tx-t and F intersect at the points where $0=(tx+t)^2+x^2-1$ which after moving things around gives

$$x^{2} + \frac{2t^{2}}{t^{2} + 1}x + \frac{t^{2} - 1}{t^{2} + 1} = 0$$

This quadratic has the solutions

$$x_1 = \frac{-t^2}{t^2 + 1} + \sqrt{\frac{t^4}{(t^2 + 1)^2} + \frac{1 - t^2}{t^2 + 1}} = \frac{-t^2}{t^2 + 1} + \sqrt{\frac{1}{(t^2 + 1)^2}} = \frac{1 - t^2}{t^2 + 1}$$

and

$$x_2 = -\frac{1+t^2}{t^2+1} = -1$$

Solving for y = tx + t gives

$$y_1 = \frac{t - t^3}{t^2 + 1} + t = \frac{t - t^3 + t^3 + t}{t^2 + 1} = \frac{2t}{t^2 + 1},$$

and $y_2 = 0$. As t goes from $-\infty$ to ∞ , it sweeps the circle, and we see that all points on the circle lie in the set

$$V(F) = \{0, 1\} \cup \left\{ \left(\frac{1 - t^2}{t^2 + 1}, \frac{2t}{t^2 + 1}, \right) : t \in K, 1 + t^2 \neq 0 \right\}$$

(b)

(a,b,c) is a Pythagorean triple exactly when $(a/c,b/c) \in F$ where $K=\mathbb{Q}$. We can write t=u/v with $u,v\in\mathbb{Z}$ whence

$$V(F) = \{0, 1\} \cup \left\{ \left(\frac{1 - (u/v)^2}{(u/v)^2 + 1}, \frac{2(u/v)}{(u/v)^2 + 1}, \right) : u, v \in \mathbb{Z} \right\}$$
$$= \{0, 1\} \cup \left\{ \left(\frac{u^2 - u^2}{u^2 + v^2}, \frac{2uv}{u^2 + v^2}, \right) : u, v \in \mathbb{Z} \right\}$$

and the statement follows.

Ex 2.6

(a)

By Prop 1.12 (a), we have some $\hat{p}(x) \in (F, G)$, which since both F, G vanish at the origin, we can write $\hat{p}(x) = x^{n_x} p(x)$ for some $n_x \ge 1$ and $p(0) \ne 0$. Then in \mathcal{O}_0 ,

$$x^{n_x} = \frac{x^{n_x} p(x)}{p(x)} = \frac{\hat{p}(x)}{p(x)} \in (F, G)\mathcal{O}_0,$$

and it follows that $x^{n_x} = 0 \in \mathcal{O}_0/(F, G)$. Picking $n = \text{lcm}(n_x, n_y)$ yields $x^n = y^n = 0$.

(b)

Let

$$\frac{1}{\hat{q}} \in \mathcal{O}_0(F, G),$$

and write $g=1-\frac{\hat{g}}{\hat{g}(0)}$. Note that $\hat{g}(0)\neq 0$ by the definition of our local ring. Then g doesn't have a constant term, and therefore, $g^{2n}=0$, since all terms in g^{2n} has degree at least 2n, and must contain either x^n or y^n which are equal to 0 by part (a) Let $k\in\mathbb{N}$ be the smallest natural number such that $g^{k+1}=0$. Then

$$\frac{1}{1 - \hat{g}(0)g} \sum_{i=0}^{k} (\hat{g}(0)g)^{k} = 1,$$

and

$$\left(\frac{1}{\hat{g}}\right)^{-1} = \left(\frac{1}{1 - \hat{g}(0)g}\right) = \sum_{i=0}^{k} \left(\hat{g}(0)g\right)^{k}$$

is a polynomial representative.

(c)

By (a) and (b), every element in $\mathcal{O}_{(0,0)}/(F,G)$ is a linear combination of terms x^iy^j with $i,j \leq n$. This is a finite set and it follows that $\mu_0(F,G) \in \mathbb{N}$.

Ex 2.7

(a)

Suppose towards a contradiction that the powers F^i are linearly dependent (over \mathbb{K}) in $\mathcal{O}_0/(G)$. Then let $\pi: \mathcal{O}_0/(G) \to \mathcal{O}_0/(F,G)$ be the canonical projection. Then $\ker(\pi) = (F)\mathcal{O}_0/(G)$ is generated by the powers F^i as a \mathbb{K} -vector space, hence finite dimensional by hypothesis. The Nullity-Rank Theorem now yields

$$\dim \left(\mathcal{O}_0/(G)\right) = \dim \left((F)\mathcal{O}_0/(G)\right) + \dim \left(\mathcal{O}_0/(F,G)\right),$$

but the two terms on the RHS are finite, whilst $\mathcal{O}_0/(G)$ is infinite dimensional by the following lemma.

Lemma 0.1. Let F be a curve. Then dim $(\mathcal{O}_0/(F)) = \infty$

Proof. We have either $(F) \cap \mathbb{K}[x] = \emptyset$ or $(F) \cap \mathbb{K}[y] = \emptyset$ since $\mathbb{K} \in \mathbb{K}[x] \cap \mathbb{K}[y]$ and $\mathbb{K} \cap (F) = \emptyset$. Assume $(F) \cap \mathbb{K}[y] = \emptyset$. Then the powers of y are linearly independent in $\mathbb{K}[x,y]/(G)$. Indeed, a linear combination of powers in y over \mathbb{K} is the same thing as a polynomial $p(y) \in \mathbb{K}[y]$, and no such polynomial lies in (G). Moreover, if $a(x,y) \in \mathbb{K}[x,y]$ is such that $a(x,y)p(y) \in (G)$, then G|ap, but G and p are coprime, so G|a and a(x,y) = 0 in $\mathbb{K}[x,y]/(G)$. Hence p gets sent to a non-zero element when localizing at 0 by bullet point 2) in the text after Prop 3.1 in Atiyah-Macdonald, and the powers y remain linearly independent in $\mathcal{O}_0/(G)$.

(b)

Let H be the common component. Then $(F,G)\subseteq (H)$, so

$$\dim \left(\mathcal{O}_0/(H) \right) \le \dim \left(\mathcal{O}_0/(F,G) \right),$$

and we showed in part (a) that $\mathcal{O}_0/(H)$ is infinite-dimensional for any curve H.