學號:R06946009 系級: 資料科學碩一 姓名:林庭宇

1. (1%)請比較有無 normalize(rating)的差別。並說明如何 normalize. (collaborator:)

每次實驗的 epoch 值都是 EarlyStopping 前,val_loss 最小的那次為準,並取其 epoch 值來重新訓練 Normalize 的方法:rating 減掉平均,除以標準差

	無 normalize	有 normalize
loss	0.5152	0.3624
val_loss	0.7317	0.5891
kaggle score	0.85414	0.85674

做完 normalize 後整體 loss 都下降,但是 kaggle 的結果並沒有比較好

2. (1%)比較不同的 latent dimension 的結果。 (collaborator:)

每次實驗的 epoch 值都是 EarlyStopping 前,val_loss 最小的那次為準,並取其 epoch 值來重新訓練

latent dimension	64	128	256	512
loss	0.5771	0.5626	0.5152	0.5090
val_loss	0.7373	0.7341	0.7317	0.7340
kaggle score	0.85797	0.85526	0.85414	0.85462

latent dimension 越大時 loss 與 val_loss 會越小,在 latent dimension=256 時表現最好,之後再繼續增加 latent dimension 會使 val_loss 變差

3. (1%)比較有無 bias 的結果。 (collaborator:)

每次實驗的 epoch 值都是 EarlyStopping 前,val_loss 最小的那次為準,並取其 epoch 值來重新訓練

	無 bias	有 bias
loss	0.4867	0.5152
val_loss	0.7358	0.7317
kaggle score	0.85605	0.85414

有加 bias 時,val_loss 比較低,結果比較好

4. (1%)請試著用 DNN 來解決這個問題,並且說明實做的方法(方法不限)。並比較 MF 和 NN 的結果,討論結果的差異。

DNN 參數設定:

Dropout=0.5, latent dimension=256

epochs=25 , batch_size=512 , validation_split=0.05

DNN 實作結構:

Layer (type)	Output Shape	Param #	Connected to
input_1 (InputLayer)	(None, 1)	0	
input_2 (InputLayer)	(None, 1)	0	
embedding_1 (Embedding)	(None, 1, 256)	1546240	input_1[0][0]
embedding_2 (Embedding)	(None, 1, 256)	1011712	input_2[0][0]
flatten_1 (Flatten)	(None, 256)	0	embedding_1[0][0]
flatten_2 (Flatten)	(None, 256)	0	embedding_2[0][0]
concatenate_1 (Concatenate)	(None, 512)	0	flatten_1[0][0] flatten_2[0][0]
dense_1 (Dense)	(None, 256)	131328	concatenate_1[0][0]
dropout_1 (Dropout)	(None, 256)	0	dense_1[0][0]
dense_2 (Dense)	(None, 1)	257	dropout_1[0][0]

Total params: 2,689,537 Trainable params: 2,689,537 Non-trainable params: 0

Train on 854879 samples, validate on 44994 samples

	DNN	MF
loss	0.6190	0.5152
val_loss	0.7473	0.7317
kaggle score	0.86334	0.85414

實驗得到的 DNN 結果沒有比 MF 好,但是依然有辦法突破 Strong Baseline,有嘗試多加幾層網路,但是結果反而越來越差,其中 DNN 結果比較差的原因,個人猜測可能是 DNN 把兩個 embedding layers 給 Concatenate 在一起了,每個值都單獨丟進神經網路中訓練,不像 MF 有 User 與 Movie 兩個矩陣相乘的對應關係

5. (1%)請試著將 movie 的 embedding 用 tsne 降維後,將 movie category 當作 label 來作圖。

將 18 類電影重新分成 7 類後作圖

分類如下:

0: Animation . Children's . Comedy

1: Action . Adventure

2: Romance

3: Crime \ Film-Noir \ Horror \ Thriller

4: Drama · Musical

5: Documentary \ War

6: Fantasy \ Mystery \ Sci-Fi

7: Western

6. (BONUS)(1%)試著使用除了 rating 以外的 feature, 並說明你的作法和結果,結果好壞不會影響評分。

(collaborator:)

取 users.csv 中的 Gender、Age、Occupation 這三個比較有鑑別度的屬性當作特徵,各用一個輸出為 1 神經元的 Dense 接入,在 MF 加 Bias 時,一起把這三個特徵當作 Bias 加起來,最後得到 loss: 0.5645 - val_loss: 0.7915 的結果,但是 kaggle 分數只有 1.07127,結果並不理想