Supporting Information for: Bayesian Multilevel Modeling of Retention Data Informed by Structural Similarity of Analytes

Paweł Wiczling*1

¹Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland

2025-07-30

Table of contents

1	Table S1. Summary of the MCMC simulations of the marginal posterior distributions of population-level model parameters.	2					
2	Figure S1. Raw data.	3					
3	Figure S2. Functional group effects	4					
4	Figure S3. Goodness of fit plots (GOF)	5					
5	Figure S4. Individual parameters, R_i	6					
6	Figure S5. Individual parameters, $\mathrm{eta}_{\mathrm{R,i}}$	7					
Li	Licenses						
Oı	Original Computing Environment						

1 Table S1. Summary of the MCMC simulations of the marginal posterior distributions of population-level model parameters.

Mean denotes sample mean, MCSE denotes Monte Carlo Standard Error, Std-Dev denotes sample standard deviation, 5%, 50%, 95% denote corresponding quantiles, N_Eff denotes effective sample size, R_Hat denotes a measure of chain equilibrium must be within 0.05 of 1.0.

variable	mean	${\tt median}$	sd	\mathtt{mad}	q5	q95	rhat	ess_bulk	ess_tail
logkwHat	3.05	3.05	0.19	0.19	2.74	3.36	1.00	2926	3497
S1Hat	3.67	3.67	0.16	0.16	3.40	3.94	1.00	2598	3029
${\tt dlogkwHat}$	-0.35	-0.35	0.12	0.12	-0.55	-0.15	1.00	4163	3537
dS1Hat	0.30	0.30	0.09	0.09	0.16	0.45	1.00	3403	3506
beta[1]	0.86	0.86	0.05	0.06	0.77	0.95	1.00	3235	3620
beta[2]	0.62	0.62	0.05	0.05	0.54	0.70	1.00	3131	3035
S2Hat	2.90	2.90	0.03	0.03	2.85	2.95	1.02	430	935
omega[1]	1.41	1.41	0.04	0.04	1.35	1.47	1.00	2650	2471
omega[2]	1.13	1.13	0.03	0.03	1.08	1.18	1.00	2317	3017
rho[1,2]	0.88	0.88	0.01	0.01	0.87	0.90	1.00	1933	2928
sigma	0.05	0.05	0.00	0.00	0.05	0.05	1.00	1880	2927
alpha	0.71	0.71	0.04	0.04	0.64	0.77	1.00	5245	3475
sdpi[1]	0.15	0.14	0.02	0.02	0.11	0.18	1.01	655	1162
sdpi[2]	0.13	0.13	0.02	0.02	0.10	0.17	1.01	641	1372
sdpi[3]	0.34	0.33	0.06	0.06	0.23	0.44	1.00	2816	3270
sdpi[4]	0.19	0.18	0.07	0.07	0.08	0.30	1.01	939	779

2 Figure S1. Raw data.

The relationship between logk and organic modifier content. $\,$

3 Figure S2. Functional group effects

A summary of the marginal posterior distributions of the functional group effects. Red represents the effect of dissociated functional groups, and green represents the effect of non-dissociated functional groups. The lest common functional groups (≤ 10 across all analytes) are presented. The plot for the remaining functional groups is presented in Figure 2.

4 Figure S3. Goodness of fit plots (GOF)

5 Figure S4. Individual parameters, R_i

6 Figure S5. Individual parameters, $eta_{R,i}$

 $\rm eta_{R,i}$ represents the deviation of an individual analyte's parameter from its expected (population-level) value.

Licenses

- Code & copy; 2023, Paweł Wiczling, licensed under BSD-3.
- Text & copy; 2023, Paweł Wiczling, licensed under CC-BY-NC 4.0.

Original Computing Environment

R version 4.3.1 (2023-06-16 ucrt) Platform: x86_64-w64-mingw32/x64 (64-bit) Running under: Windows 10 x64 (build 19045) Matrix products: default locale: [1] LC_COLLATE=Polish_Poland.utf8 LC_CTYPE=Polish_Poland.utf8 [3] LC_MONETARY=Polish_Poland.utf8 LC_NUMERIC=C [5] LC_TIME=Polish_Poland.utf8 time zone: Europe/Warsaw tzcode source: internal attached base packages: [1] stats graphics grDevices utils datasets methods base other attached packages: [1] cmdstanr_0.8.0.9000 kableExtra_1.4.0 dplyr_1.1.4 loaded via a namespace (and not attached): [1] jsonlite_1.8.8 compiler_4.3.1 tidyselect_1.2.1 [4] xml2_1.3.6 stringr_1.5.1 systemfonts_1.1.0 [7] scales_1.3.0 textshaping_0.4.0 yam1_2.3.8 R6_2.5.1 [10] fastmap_1.2.0 generics_0.1.3 [13] distributional_0.4.0 knitr_1.46 backports_1.5.0 [16] checkmate_2.3.1 tibble_3.2.1 munsell_0.5.1 [19] svglite_2.1.3 pillar_1.9.0 posterior_1.6.0 [22] rlang_1.1.3 utf8_1.2.4 stringi_1.8.4 [25] xfun_0.44 viridisLite_0.4.2 cli_3.6.2 [28] withr 3.0.2 magrittr 2.0.3 ps 1.7.6 [31] processx_3.8.4 digest_0.6.35 rstudioapi_0.16.0 [34] lifecycle_1.0.4 vctrs_0.6.5 data.table_1.15.4 [37] tensorA_0.36.2.1 glue_1.7.0 evaluate_1.0.3 ragg_1.3.2 [40] codetools_0.2-19 abind_1.4-8 [43] fansi_1.0.6 colorspace_2.1-0 rmarkdown_2.27 pkgconfig_2.0.3 [46] matrixStats_1.3.0 tools_4.3.1

[49] htmltools_0.5.8.1