

MATHEMATICS FOR COMPUTING & ELEMENTS OF COMPUTING

Page rank algorithm and Google Search Engine

Group - 13

Team Members

Adhwaidh K - CB.SC.U4AIE24003

Adith S - CB.SC.U4AIE24004

Chaitanya Varma - CB.SC.U4AIE24017

Introduction

- PageRank is a crucial algorithm for ranking web pages based on their importance using linear algebra.
- It has applications in search engines, social network analysis, academic citations.
- This study explores and compares algebraic (Gauss elimination, matrix multiplication) and iterative (power iteration) methods for PageRank computation.

- Challenges like handling dangling nodes, computational complexity, and slow convergence are addressed.
- The objective is to provide efficient PageRank computations, visualize results, and analyze performance across different methods.

Objectives

- Develop a comprehensive understanding and implementation of PageRank using Gauss elimination, matrix multiplication, and power iteration methods.
- Visualize PageRank distributions for web graphs and explore its applications using NetworkX.
- Implement custom crawling and PageRank computations for real-world data.
- Compare computational methods and analyze performance trade-offs.

Literature Review

S. No.	Title	Advantages	Limitations
1.	The Anatomy of a Large-Scale Hypertextual Web Search Engine	Introduced a scalable method for ranking web pages.High accuracy for determining page importance.	- Computationally expensive for large datasets
2.	Google's PageRank and Beyond	 - Provided mathematical rigor for PageRank and iterative methods - Focus on matrix algebra optimizations 	- Heavy computational burden for extremely large matrices

Literature Review

S. No.	Title	Advantages	Limitations
3.	Network Analysis in Python	- Easy implementation of PageRank with built-in functions	- Limited customization for complex variations of PageRank
		- Visualization features for better interpretation	- Performance issues with very large graphs

Research Gaps

- Limited comparison of matrix algebra and power iteration methods for real-world web data.
- Lack of visualization and user-friendly insights from PageRank outputs.
- Minimal exploration of custom web-crawled datasets in PageRank studies.

Problem Statement

Web Growth:

Efficient page ranking is needed for large, interconnected networks.

• Algorithm Efficiency:

Current ranking methods face scalability issues.

• Computational Complexity:

Matrix methods are computationally expensive.

• Convergence Issues:

Iterative methods are slow for dense networks.

• Visualization:

Limited tools for interpreting ranking results.

• Comparative Study:

Need for evaluating different page ranking approaches.

Methodology

Data Collection:

Crawl web pages using Python's requests and BeautifulSoup.

Matrix-based Methods:

Implement Gauss elimination and matrix inversion for PageRank computation.

• Iterative Approach:

Power iteration with convergence checks.

Network Analysis:

Visualize PageRanks using matplotlib and NetworkX.

• Performance Analysis:

Compare the accuracy and efficiency of each method.

Timeline

- **Week 1:** Literature review and problem formulation
- **Week 2-3:** Implement algebraic methods and power iteration
- **Week 4:** Integrate web crawling and custom graph creation
- **Week 5:** Visualization and performance comparison
- **Week 6:** Documentation and report preparation

Thank You!