(CMPSEGS)

Segurança de Sistemas

Tecnologia em Análise e Desenvolvimento de Sistemas

INSTITUTO FEDERAL São Paulo Campus Campinas

Confidencialidade: princípios e práticas Cifragem simétrica

Prof. Me. Leonardo Arruda

leonardo.arruda@ifsp.edu.br

Princípios da segurança de informação

SÊMOLA, Marcos. Gestão da segurança da informação: uma visão executiva. 2. ed. Rio de Janeiro: Elsevier, 2014.

Confidencialidade: conceito

A **confidencialidade** é o princípio de segurança que visa manter a informação secreta e protegida, assegurando que seu acesso e uso sejam restritos apenas às pessoas ou sistemas a quem ela é destinada.

Isso se aplica a todos os momentos do ciclo de vida dos dados: durante o armazenamento, a transmissão ou a utilização.

Privacidade: assegura que os indivíduos controlem ou influenciem quais informações relacionadas a eles podem ser obtidas e armazenadas, da mesma forma que como, por quem e para quem essas informações são passíveis de ser reveladas.

Confidencialidade: conceito

A proteção é implementada de acordo com o grau de sigilo do conteúdo e é sustentada por três pilares:

- Métodos Técnicos: Como a criptografia (que transforma dados em código) e sistemas robustos de autenticação (para verificar a identidade do usuário).
- Métodos Administrativos: Incluem a criação de políticas internas, o estabelecimento de regras de acesso e a segregação de funções para prevenir conflitos de interesses.
- Métodos Físicos: Envolvem o controle de acesso a documentos físicos e a ambientes restritos.

O objetivo final é prevenir vazamentos e uso indevido de informações.

Como garantir a Confidencialidade?

Controle de Acesso e Autorização:

 Define e impõe quem pode acessar o quê. Baseia-se no principio do privilégio mínimo e da "necessidade de conhecer", garantindo que usuários e sistemas tenham acesso apenas aos recursos estritamente necessários para desempenhar suas funções.

Autenticação Robusta:

• É o portão de entrada. Verifica a identidade de um usuário ou sistema antes de conceder qualquer acesso. Vai além do login e senha, incorporando fatores múltiplos como: *Algo que você sabe* (senha, PIN); *Algo que você tem* (token físico, aplicativo autenticator, etc.); e *Algo que você é* (biometria).

Como garantir a Confidencialidade?

Ofuscação de Tráfego (Traffic Padding):

 Técnica de segurança de redes que insere dados fictícios e aleatórios no fluxo de comunicação. Isso mascara o volume real, o tempo e os padrões de tráfego, dificultando que um interceptador identifique quando e quais dados sensíveis estão sendo transmitidos.

Criptografia:

• A espinhal dorsal da confidencialidade. Transforma dados legíveis em texto cifrado ilegível, protegendo informações **em repouso** (armazenadas em discos, bancos de dados), **em transito** (trafegando pela rede) e, em caso avançados, **em uso** (sendo processados na memória RAM). Somente portadores da chave correta podem reverter o processo e acessar a informação original.

Confidencialidade

- Prevenção do vazamento de informações

Confidencialidade

- Prevenção do vazamento de informações

1) Disfarçar os dados: esteganografia

Gregos e egípcios usavam esta técnica para esconder mensagens importantes

Referência: Esteganografia e Ofuscação

1) Disfarçar os dados: esteganografia

1) Disfarçar os dados: esteganografia

Caso Juan Carlos Abadia (2008):

Para agência dos EUA, Abadía traficou no Brasil

Traficante enviaria e-mails com ordens escondidas em imagens da Hello Kitty

Eventual comprovação de que colombiano comandou tráfico a partir do Brasil poderá fazer que pedido de extradição seja negado

MARIO CESAR CARVALHO

DA REPORTAGEM LOCAL

https://www1.folha.uol.com.br/fsp/cotidian/ff1003200801.htm

https://sbseg2016.ic.uff.br/pt/files/minicursos.pdf?utm_source - pág. 46

Bit Menos Significativo (LSB):

- Alteração dos pixels da imagem;
- Um dos métodos mais utilizados na área da esteganografia;

Azul (B)

01010100

Bit Menos Significativo (LSB):

- Alteração dos pixels da imagem;
- Um dos métodos mais utilizados na área da esteganografia;
- Capacidade: segredo/cobertura <= 1/8

Bit Menos Significativo (LSB):

- Alteração dos pixels da imagem;
- Um dos métodos mais utilizados na área da esteganografia;
- Capacidade: segredo/cobertura <= 1/8

Em uma imagem de 8k é possível esconder 1k de informação sem distorcer (8bits = 1 bit de informação)

Bit Menos Significativo (LSB):

- Alteração dos pixels da imagem;
- Um dos métodos mais utilizados na área da esteganografia;
- Capacidade: segredo/cobertura <= 1/8;
- Não é utilizado na prática porque precisa de uma imagem de cobertura muito grande para conseguir colocar a informação dentro da imagem;

Duas abordagens possíveis: cifras

2) Embaralhar os dados: cifras

Duas abordagens possíveis: cifras

2) Embaralhar os dados: cifras

Duas abordagens possíveis: cifras

2) Embaralhar os dados: cifras

Intrusos não identificam o que está sendo enviado pela rede

Exemplo prático: HTTP vs. HTTPS

HTTP: dados passam em aberto na rede

Exemplo prático: HTTP vs. HTTPS

HTTPS: dados cifrados (túnel TLS)

723	☑ (Untitled) - Wireshark								
Ele				re <u>Analyze</u>	Statistics Hel	p			
No		Time		Source		Destination	Protocol	Info	
	27 33	3.7837 3.9217 4.1016	06 39	172.20.5 172.20.5 172.20.5	105	143.107.111.22 143.107.111.22 143.107.111.22	TLSV1 TLSV1 HTTP	Application Data Application Data GET /src/webmail.php HTTP/1.1	
	40 45	4.2408 4.2564 4.2624	1.2 3.4	172.20.5 172.20.5 172.20.5 172.20.5	105	143.107.111.22 143.107.111.22 143.107.111.22 143.107.111.22	TLSV1 TLSV1 SSL TLSV1	Application Data Application Data Client Hello Change Cipher Spec, Encrypted Handshake Message,	
(#) (#)	Ethern Intern Transm Secura E TLSO Co Ve Le	net II, net Pro mission e Socke v1 Reco ontent ersion: ength:	Src: tocol, Contr t Layerd Lay Type: TLS 1	Intel_f5 Src: 17 Tol Proto er yer: Appl Applicat L.0 (0x03	:c4:49 (00 2.20.5.105 col, src P 1cation Da 1on Data (01)	(172.20.5.105), Dst: ort: 11172 (11172), D ta Protocol: http 23)	143.107.113 St Port: ht	86:10:db (00:14:f6:86:10:db) 1.22 (143.107.111.22) tps (443), Seq: 1419, Ack: 3513, Len: 597	
	E	ncrypte	d App	l1cat1on	Data: 2FE8	B7CD4A39E5B2C6F3359D6	59DD90C8463	5559F1E357BD	

Dados enviados durante login em webmail

Transformação matemática reversível: cifração e decifração

- Os dois processo dependem de uma **mesma informação secreta: a chave K**
- Se K for descoberta, então a confidencialidade é perdida;

Transformação matemática reversível: cifração e decifração

- Os dois processo dependem de uma **mesma informação secreta: a chave K**
- Se K for descoberta, então a confidencialidade é perdida;

Transformação matemática reversível: cifração e decifração

- Os dois processo dependem de uma **mesma informação secreta: a chave K**
- Se K for descoberta, então a confidencialidade é perdida;

Transformação matemática reversível: cifração e decifração

- Os dois processo dependem de uma **mesma informação secreta: a chave K**
- Se K for descoberta, então a confidencialidade é perdida;

Usando algoritmos de cifração ou encriptação que transforma M em C (mensagem embaralhada)

Transformação matemática reversível: cifração e decifração

- Os dois processo dependem de uma **mesma informação secreta: a chave K**
- Se K for descoberta, então a confidencialidade é perdida;

K – Garante a confidencialidade

Cifragem simétrica: exemplo

Cifragem de César: deslocar cada letra da mensagem de k posições no alfabeto latino (i.e., somar k posições);

- Decifrar equivale a subtrair a mesma chave k.
- Técnica usada por Júlio César para troca de mensagens com seus generais, com k = 3.

Cifragem simétrica: exemplo

Cifragem de César: deslocar cada letra da mensagem de k posições no alfabeto latino (i.e., somar k posições);

- Decifrar equivale a subtrair a mesma chave k.
- Técnica usada por Júlio César para troca de mensagens com seus generais, com k = 3.

Cifragem simétrica: exemplo

Cifragem de César: deslocar cada letra da mensagem de k posições no alfabeto latino (i.e., somar k posições);

- Decifrar equivale a subtrair a mesma chave k.
- Técnica usada por Júlio César para troca de mensagens com seus generais,
 com k = 3.

Cifragem de César: deslocar cada letra da mensagem de k posições no alfabeto latino (i.e., somar k posições);

- Decifrar equivale a subtrair a mesma chave k.
- Técnica usada por Júlio César para troca de mensagens com seus generais,
 com k = 3.

Exercício:

- Decifrar a seguinte mensagem e identificar o valor de k usado
- Dica: k pode ter qualquer valor entre 1 e 25

Exercício:

- Decifrar a seguinte mensagem e identificar o valor de k usado
- Dica: k pode ter qualquer valor entre 1 e 25

Máx. de chaves

Exercício:

- Decifrar a seguinte mensagem e identificar o valor de k usado
- Dica: k pode ter qualquer valor entre 1 e 25
- Qualquer computador pode quebrar Máx. de chaves

Exercício:

- Decifrar a seguinte mensagem e identificar o valor de k usado
- Dica: k pode ter qualquer valor entre 1 e 25

Máx. de chaves

Resposta:

- Alguns facilitadores:
 - Conhecer a língua é importante;

Resposta:

- Alguns facilitadores:
 - Conhecer os padrões da língua

N<mark>BB</mark>N ENAVNUQX MN VNDB XUQXB ENV MX ENAMN MJ WJCDANIJ

Resposta:

- Alguns facilitadores:
 - A letra que mais aparece no português é o A

N<mark>BB</mark>N ENAVNUQX MN VNDB XUQXB ENV MX ENAMN MJ WJCDANIJ

Resposta: 9

- Alguns facilitadores:
 - A letra que mais aparece no português é o A

N<mark>BB</mark>N ENAVNUQX MN VNDB XUQXB ENV MX ENAMN M WJCDANIJ

"Esse vermelho de meus olhos vem do verde da natureza."

Cifração moderna: AES e modos de operação

Cifras: algoritmos principais

DES (Data Encryption Standard):

Absoluto desde 2004 (chaves de 56 bits: muito curtas)

3DES (DES Triplo): aplicação tripla do DES

Legado: reaproveita implementação do DES simples

RCA (ArcFour):

Chave: tamanho variável (múltiplo de 8 bits, até 2048 bits);

 Legado: uso seguro requer truques (descartar dados iniciais: RCA_drop[n]); não recomendado para aplicação futuras

AES (Advanced Encryption Standard):

- Padrão atual (desde 2001): vencedor de concurso público iniciado em 1997
- Chaves de 128/192/256 bits.

Cifras: algoritmos principais

DES (Data Encryption Standard):

- Absoluto desde 2004 (chaves de 56 bits: muito curtas)

3DES (DES Triplo): aplicação tripla do DES

Legado: reaproveita implementação do DES simples

- Chaves: 3*56 = 168 bits (mas segurança é de ~112 bits)

RCA (*ArcFour*):

- Chave: tamanho variável (múltiplo de 8 bits, até 2048 bits);
- Legado: uso seguro requer truques (descartar dados iniciais: RCA_drop[n]); não recomendado para aplicação futuras

AES (Advanced Encryption Standard):

- Padrão atual (desde 2001): vencedor de concurso público iniciado em 1997
- Chaves de 128/192/256 bits.

Cifras: algoritmos principais

AES (Advanced Encryption Standard):

- Padrão atual (desde 2001): vencedor de concurso público iniciado em 1997
- Chaves de 128/192/256 bits.
- Mais rápida entre os modelos apresentados anteriormente;
- Evita os problemas de analise estatísticas, letras próximas umas das outras, usando os princípios de **difusão e confusão**

Princípios básicos, definidos por Claude Shannon, para o projeto de cifras seguras.

- **Difusão**: cada caractere da mensagem cifrada deve depender do **maior número possível** de caracteres da mensagem às claras e da chave.

Cifra de César: baixa difusão

Princípios básicos, definidos por Claude Shannon, para o projeto de cifras seguras.

- Difusão: cada caractere da mensagem cifrada deve depender do maior número possível de caracteres da mensagem às claras e da chave.

Cifra de César: baixa difusão

Princípios básicos, definidos por Claude Shannon, para o projeto de cifras seguras.

Difusão: cada caractere da mensagem cifrada deve depender do maior número possível de caracteres da mensagem às claras e da chave.

Cifra de César: baixa difusão

Princípios básicos, definidos por Claude Shannon, para o projeto de cifras seguras.

- Difusão: cada caractere da mensagem cifrada deve depender do maior número possível de caracteres da mensagem às claras e da chave.

Cifra de César: baixa difusão

Princípios básicos, definidos por Claude Shannon, para o projeto de cifras seguras.

Difusão: cada caractere da mensagem cifrada deve depender do maior número possível de caracteres da mensagem às claras e da chave.

Cifra de César: baixa difusão

Princípios básicos, definidos por Claude Shannon, para o projeto de cifras seguras.

Difusão: cada caractere da mensagem cifrada deve depender do **maior número possível** de caracteres da mensagem às claras e da chave.

Cifra de César: baixa difusão

Princípios básicos, definidos por Claude Shannon, para o projeto de cifras seguras.

Cifras modernas: alta confusão

Princípios básicos, definidos por Claude Shannon, para o projeto de cifras seguras.

Cifras modernas: alta confusão

Princípios básicos, definidos por Claude Shannon, para o projeto de cifras seguras.

Cifras modernas: alta confusão

Princípios básicos, definidos por Claude Shannon, para o projeto de cifras seguras.

Cifra de César: baixa difusão

Cifras modernas: alta confusão

Princípios básicos, definidos por Claude Shannon, para o projeto de cifras seguras.

Cifra de César: baixa difusão

Cifras modernas: alta confusão

Princípios básicos, definidos por Claude Shannon, para o projeto de cifras seguras.

Cifra de César: baixa difusão

Cifras modernas: alta confusão

Princípios básicos, definidos por Claude Shannon, para o projeto de cifras seguras.

Cifra de César: baixa difusão

Cifras modernas: alta confusão

Princípios básicos, definidos por Claude Shannon, para o projeto de cifras seguras.

Cifra de César: baixa difusão

Cifras modernas: alta confusão

Princípios básicos, definidos por Claude Shannon, para o projeto de cifras seguras.

Cifra de César: baixa difusão

Cifras modernas: alta confusão

Princípios básicos, definidos por Claude Shannon, para o projeto de cifras seguras.

 Não dá para ter uma relação clara entre mudanças das mensagens às claras com mudanças semelhantes a cifra moderna.

Cifra de César: baixa difusão

Cifras modernas: alta confusão

- "Efeitos de avalanche": pequenas mudanças levam a grandes impactos.
- Cifras modernas conseguem isso aplicando operações simples de forma iterativa, o que garante a difusão e confusão.

Exemplo: AES

- Opera em mensagens de 128 bits ("bloco");
- Rodadas: 10, 12 ou 14 para chaves de 128, 192 ou 256 bits;
- 4 operações por rodada: ByteSub, ShiftRows, MixColumns e AddRoundKey

ByteSub: substituição de bytes com tabela fixa ("S-Box"), independente da chave.

8bits	a _{0,0}	$a_{0,1}$	$a_{0,2}$	$a_{0,3}$
	$a_{1,0}$	a _{1,1}	a _{1,2}	$a_{1,3}$
	a _{2,0}	a _{2,1}	$a_{2,2}$	$a_{2,3}$
	$a_{3,0}$	a _{3,1}	a _{3,2}	$a_{3,3}$

128 bits

$b_{0,0}$	$b_{0,1}$	$b_{0,2}$	$b_{0,3}$
$b_{1,0}$	$b_{1,1}$	$b_{1,2}$	$b_{1,3}$
$b_{2,0}$	$b_{2,1}$	$b_{2,2}$	$b_{2,3}$
$b_{3,0}$	$b_{3,1}$	$b_{3,2}$	$b_{3,3}$

128 bits

ByteSub: substituição de bytes com tabela fixa ("S-Box"), independente da chave.

Operações:

- Pega um bit e passa pela caixa de substituição e transforma um 1 em 17, 19 em 54, 4 em 98, entre outros;
- Tabela é pública e de fácil acesso;
- Documentação: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

ByteSub: substituição de bytes com tabela fixa ("S-Box"), independente da chave.

Operações:

- Pega um bit e passa pela caixa de substituição e transforma um 1 em 17, 19 em 54, 4 em 98, entre outros;
- Tabela é pública e de fácil acesso;
- Documentação: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

ShiftRows: troca a posição de alguns bytes, rotacionando linhas (deslocamento é fixo) e não há tabela

deslocamento

a _{0,0}	a _{0,1}	$a_{0,2}$	$a_{0,3}$
a _{1,0}	a _{1,1}	$a_{1,2}$	$a_{1,3}$
a _{2,0}	$a_{2,1}$	$a_{2,2}$	$a_{2,3}$
a _{3,0}	$a_{3,1}$	$a_{3,2}$	$a_{3,3}$

128 bits

ShiftRows: troca a posição de alguns bytes, rotacionando linhas (deslocamento é fixo) e não há tabela

deslocamento

	a _{0,0}	a _{0,1}	$a_{0,2}$	$a_{0,3}$
rot. esq.	$\left(a_{10}\right)$	a _{1,1}	$a_{1,2}$	$a_{1,3}$
	a _{2,0}	$a_{2,1}$	$a_{2,2}$	$a_{2,3}$
	a _{3,0}	$a_{3,1}$	$a_{3,2}$	$a_{3,3}$

128 bits

MixColumns: multiplicação por matriz, coluna a coluna.

AddRoundKey: aplicação da chave

- Operação de "ou-exclusivo"

a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}
a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}

k _{0,0}	k _{0,1}	k _{0,2}	k _{0,3}
k _{1,0}	k _{1,1}	k _{1,2}	k _{1,3}
k _{2,0}	k _{2,1}	k _{2,2}	k _{2,3}
k _{3,0}	k _{3,1}	k _{3,2}	k _{3,3}

a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}
a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}

AddRoundKey: aplicação da chave

- Operação de "ou-exclusivo"

a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}
a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}

k _{0,0}	k _{0,1}	k _{0,2}	k _{0,3}
k _{1,0}	k _{1,1}	k _{1,2}	k _{1,3}
k _{2,0}	k _{2,1}	k _{2,2}	k _{2,3}
k _{3,0}	k _{3,1}	k _{3,2}	k _{3,3}

a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}
a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}

Usa a chave como máscaras para cada um byte

AddRoundKey: aplicação da chave

- Operação de "ou-exclusivo"

a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}
a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}

k _{0,0}	k _{0,1}	k _{0,2}	k _{0,3}
k _{1,0}	k _{1,1}	k _{1,2}	k _{1,3}
k _{2,0}	k _{2,1}	k _{2,2}	k _{2,3}
k _{3,0}	k _{3,1}	k _{3,2}	k _{3,3}

a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}
a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}

Detalhes: Cap. 2 - Técnicas básicas de encriptação.

STALLINGS, William. Criptografia e segurança de redes: princípios e práticas. Tradução de Daniel Vieira; revisão técnica de Paulo Sérgio Licciardi Messeder Barreto e Rafael Misoczki. 6. ed. São Paulo: Pearson Education do Brasil, 2015. ISBN 978-85-430-1450-0.

- Cifras de bloco apenas operam sobre mensagens de tamanho fixo (no AES: 128 bits).
- Modo de operação: permite cifração de mensagens com tamanho diferente do bloco.

- Alguns exemplos:
 - ECB, CBC, CFB, OFB, CTR (confidencialidade);
 - LRW, XEX, EME (cifração setorial para disco);
 - OCB, CCM, EAX, GCM (confidencialidade, integridade e também autenticidade)

- Cifras de bloco apenas operam sobre mensagens de tamanho fixo (no AES: 128 bits).
- Modo de operação: permite cifração de mensagens com tamanho diferente do bloco.

- Alguns exemplos:
 - ECB, CBC, CFB, OFB, CTR (confidencialidade);
 - LRW, XEX, EME (cifração setorial para disco);
 - OCB, CCM, EAX, GCM (confidencialidade, integridade e também autenticidade)

- Cifras de bloco apenas operam sobre mensagens de tamanho fixo (no AES: 128 bits).
- Modo de operação: permite cifração de mensagens com tamanho diferente do bloco.
 - Basicamente, adiciona alguns bits extras nas mensagens com menos de 128 bits.

- Alguns exemplos:
 - ECB, CBC, CFB, OFB, CTR (confidencialidade);
 - LRW, XEX, EME (cifração setorial para disco);
 - OCB, CCM, EAX, GCM (confidencialidade, integridade e também autenticidade)

Quadro 6.1 Modos de operação de cifra de bloco.

Modo	Descrição	Aplicação típica
Electronic codebook (ECB)	Cada bloco de bits de texto claro é codi- ficado independentemente usando a mesma chave.	 Transmissão segura de valores isolados (por exemplo, uma chave de encriptação)
Cipher block chaining (CBC)	A entrada do algoritmo de encriptação é o XOR dos próximos 64 bits de texto claro e os 64 bits anteriores de texto cifrado.	Transmissão de uso geral orientada a blocoAutenticação
Cipher feedback (CFB)	A entrada é processada s bits de cada vez. O texto cifrado anterior é usado como entrada para o algoritmo de encriptação a fim de produzir saída pseudoaleatória, que é aplicada a um XOR com o texto claro para criar a próxima unidade de texto cifrado.	 Transmissão de uso geral orientada a fluxo Autenticação
Output feedback (OFB)	Semelhante ao CFB, exceto que a entrada do algoritmo de encriptação é a saída DES anterior, e são usados blocos completos.	 Transmissão orientada a fluxo por canal com ruído (por exemplo, comunicação por satélite)
Counter (CTR)	Cada bloco de texto claro é aplicado a um XOR com um contador encriptado. O contador é incrementado para cada bloco subsequente.	 Transmissão orientada a bloco de uso geral Útil para requisitos de alta velocidade

Detalhes: Cap. 6 - Operação de cifra de bloco

STALLINGS, William. Criptografia e segurança de redes: princípios e práticas. Tradução de Daniel Vieira; revisão técnica de Paulo Sérgio Licciardi Messeder Barreto e Rafael Misoczki. 6. ed. São Paulo: Pearson Education do Brasil, 2015. ISBN 978-85-430-1450-0.

É importante conhecer o modo operação para evitar problema de segurança, como o seguinte...

É importante conhecer o modo operação para evitar problema de segurança, como o seguinte...

Imagem cifrada usando: CTR CBC

É importante conhecer o modo operação para evitar problema de segurança, como o seguinte...

Modo operando:

ECB

Imagem cifrada usando:

CTR

CBC

É importante conhecer o modo operação para evitar problema de segurança, como o seguinte...

Modo operando: ECB

Imagem cifrada usando: CTR CBC

É importante conhecer o modo operação para evitar problema de segurança, como o seguinte...

Modo operando:

ECB

- Ele não protege tão bem as várias mensagens. O problema é que blocos iguais de entrada levam blocos iguais de saída. Pixels não alteram tanto, assim permite ver silhueta.

Imagem cifrada usando:

CTR

CBC

É importante conhecer o modo operação para evitar problema de segurança, como o seguinte...

Modo operando:

ECB

- Ele não protege tão bem as várias mensagens. O problema é que blocos iguais de entrada levam blocos iguais de saída. Pixels não alteram tanto, assim permite ver silhueta.

Imagem cifrada usando:

CTR

CBC

Considerações práticas

- Há pacotes de algoritmos para as mais diversas linguagens de programação.
 - Java:
 - Java.Security
 - BouncyCastle
 - Java Cryptography Architecture (JCA) / Java Cryptography Extension (JCE);
 - Apache Shiro;
 - Jasypt (Java Simplified Encryption);
 - Python:
 - PyCryptodome;
 - Cryptography;
 - M2Crypto;
 - CyberChef: https://gchq.github.io/CyberChef/

Considerações práticas

- Uso de cifras também em várias aplicações:
 - Cifração de disco: TrueCrypt, Veracrypt, CipherShed, BitLocker e afins;
 - Servidores Web: HTTPS (usa TLS);
 - Envio de e-mails seguros: extensões S/MIME;
 - Conexão remota: aplicativos de SSH;
 - Roteamento seguro: túnel IPSec, rede Tor;
 - Proteção de rede sem fio (WiFi): WPA2;

Considerações práticas

MENEZES, Alfred J.; VAN OORSCHOT, Paul C.; VANSTONE, Scott A. *Handbook of applied cryptography*. 1. ed. Boca Raton: CRC Press, 2001.

Link: https://cacr.uwaterloo.ca/hac/

Dúvidas?

Referências Bibliográficas

SÊMOLA, Marcos. *Gestão da segurança da informação: uma visão executiva*. 2. ed., 8. tiragem. Rio de Janeiro: [s.n.], 2018.

SILVA, Pedro Tavares; CARVALHO, Hugo; TORRES, Catarina Botelho. Segurança dos sistemas de informação: gestão estratégica da segurança empresarial. 1. ed. Lisboa; V. N. Famalicão: Centro Atlântico, 2003. ISBN 972-8426-66-6.

STALLINGS, William; BROWN, Lawrie. Segurança de computadores: princípios e práticas. 2. ed. Tradução Arlete Simille Marques. Rio de Janeiro: Elsevier, 2014. ISBN 978-85-352-6449-4.

STALLINGS, William. Criptografia e segurança de redes: princípios e práticas. Tradução de Daniel Vieira; revisão técnica de Paulo Sérgio Licciardi Messeder Barreto e Rafael Misoczki. 6. ed. São Paulo: Pearson Education do Brasil, 2015. ISBN 978-85-430-1450-0.