MOwNiT – Układy równań liniowych - metody iteracyjne

Przygotował: Szymon Budziak

Dany jest układ równań liniowych **Ax=b**. Elementy macierzy A są zadane wzorem (m,k - parametry zadania podane indywidualnie):

$$\begin{cases} a_{i,i} = k \\ a_{i,j} = \frac{m}{n - i - j + 0.5} & dla \ i \neq j \end{cases}$$

parametry zadania: k = 8, m = 3.

Przyjmij wektor x jako dowolną n-elementową permutację ze zbioru { 1, -1 } i oblicz wektor **b**.

Problem 1:

Metodą Jacobiego rozwiąż układ równań liniowych Ax=b (przyjmując jako niewiadomą wektor x), przyjmując kolejno kryterium stopu:

1.
$$||x|^{(i+1)} - x^{(i)}|| < \rho$$

2. $||Ax^{(i)} - b|| < \rho$

Obliczenia wykonaj dla różnych rozmiarów układu n, dla różnych wektorów początkowych, a także różnych wartości **p** w kryteriach stopu. (Podaj, jak liczono normę.) Wyznacz liczbę iteracji oraz sprawdź różnicę w czasie obliczeń dla obu kryteriów stopu. Sprawdź dokładność obliczeń.

$$A = D + (L + U) \begin{cases} M = I - D^{-1}A \\ W = D^{-1}b \end{cases}$$

gdzie: L – poddiagonalna; U – naddiagonalna; D = B - diagonalna, z diagonalnych elementów macierzy A.

$$Ax = (D + (L + U))x = b \implies Dx = -(L + U)x + b$$

Korzystając z zależności

$$Dx^{(t+1)} = -(L+U)x^{(t)} + b$$

otrzymujemy wzór roboczy:

$$x_i^{(t+1)} = \frac{1}{a_{ii}} [b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(t)}] \; ; \; a_{ii} \neq 0, \forall i \in 1, ..., n$$

Rozmiary układu, które zostały przetestowane w tym zadaniu to: 3, 4, 5, 7, 10, 12, 15, 20, 30, 50, 70, 100, 150, 200, 300. Typ dla którego zostały wykonane obliczenia to float128 z biblioteki numpy.

Wyniki z problemu pierwszego

n	1st condition iters	2nd condition iters	1st condition time [s]	2nd condition time [s]	1st condition norm	2nd condition norm
3	40	52	0.000575	0.000593	4.763e ⁻⁰⁴	6.306e ⁻⁰⁵
4	2000	2000	0.021704	0.020694	1.494e ⁺¹⁷⁴	1.494e ⁺¹⁷⁴
5	2000	2000	0.017166	0.019737	4.184e ⁺¹⁷⁶	4.184e ⁺¹⁷⁶
7	2000	2000	0.017790	0.019931	5.859e ⁺¹⁸²	5.859e ⁺¹⁸²
10	2000	2000	0.018894	0.020406	8.543e ⁺¹⁸⁵	8.543e ⁺¹⁸⁵
12	2000	2000	0.018387	0.021878	1.778e ⁺¹⁸⁷	1.778e ⁺¹⁸⁷
15	2000	2000	0.018524	0.024469	1.476e ⁺¹⁸⁹	1.476e ⁺¹⁸⁹
20	2000	2000	0.020515	0.026933	1.035e ⁺¹⁹⁰	1.035e ⁺¹⁹⁰
30	2000	2000	0.024941	0.033163	2.445e ⁺¹⁹¹	2.445e ⁺¹⁹¹
50	2000	2000	0.034908	0.054496	2.803e ⁺¹⁹²	2.803e ⁺¹⁹²
70	2000	2000	0.052847	0.087299	7.774e ⁺¹⁹²	7.774e ⁺¹⁹²
100	2000	2000	0.087609	0.161552	1.658e ⁺¹⁹³	1.658e ⁺¹⁹³
150	2000	2000	0.168230	0.314478	2.938e ⁺¹⁹³	2.938e ⁺¹⁹³
200	2000	2000	0.279087	0.547227	3.933e ⁺¹⁹³	3.933e ⁺¹⁹³
300	2000	2000	0.600455	1.246455	5.226e ⁺¹⁹³	5.226e ⁺¹⁹³

Tabela 1: Błędy otrzymane w problemie pierwszym dla różnych wartości rozmiarów układów oraz różnych wektorów początkowych oraz dla epsilon 0.001

n	1st condition iters	2nd condition iters	1st condition time [s]	2nd condition time [s]	1st condition norm	2nd condition norm
3	53	66	0.000804	0.001056	5.329e ⁻⁰⁵	5.969e ⁻⁰⁶
4	2000	2000	0.025071	0.024974	1.494e ⁺¹⁷⁴	1.494e ⁺¹⁷⁴
5	2000	2000	0.018147	0.020184	4.184e ⁺¹⁷⁶	4.184e ⁺¹⁷⁶
7	2000	2000	0.017775	0.019789	5.859e ⁺¹⁸²	5.859e ⁺¹⁸²
10	2000	2000	0.018203	0.021215	8.543e ⁺¹⁸⁵	8.543e ⁺¹⁸⁵
12	2000	2000	0.018488	0.021833	1.778e ⁺¹⁸⁷	1.778e ⁺¹⁸⁷
15	2000	2000	0.020829	0.023294	1.476e ⁺¹⁸⁹	1.476e ⁺¹⁸⁹
20	2000	2000	0.020935	0.025683	1.035e ⁺¹⁹⁰	1.035e ⁺¹⁹⁰
30	2000	2000	0.024437	0.032995	2.445e ⁺¹⁹¹	2.445e ⁺¹⁹¹
50	2000	2000	0.035752	0.055910	2.803e ⁺¹⁹²	2.803e ⁺¹⁹²
70	2000	2000	0.052548	0.087668	7.774e ⁺¹⁹²	7.774e ⁺¹⁹²
100	2000	2000	0.087870	0.155721	1.658e ⁺¹⁹³	1.658e ⁺¹⁹³
150	2000	2000	0.170660	0.319692	2.938e ⁺¹⁹³	2.938e ⁺¹⁹³
200	2000	2000	0.280881	0.547057	3.933e ⁺¹⁹³	3.933e ⁺¹⁹³
300	2000	2000	0.603831	1.242740	5.226e ⁺¹⁹³	5.226e ⁺¹⁹³

Tabela 2: Błędy otrzymane w problemie pierwszym dla różnych wartości rozmiarów układów oraz różnych wektorów początkowych oraz dla epsilon 0.0001

n	1st condition iters	2nd condition iters	1st condition time [s]	2nd condition time [s]	1st condition norm	2nd condition norm
3	67	79	0.000856	0.001021	5.044e ⁻⁰⁶	6.687e ⁻⁰⁷
4	2000	2000	0.031109	0.024247	1.494e ⁺¹⁷⁴	1.494e ⁺¹⁷⁴
5	2000	2000	0.017991	0.020845	4.184e ⁺¹⁷⁶	4.184e ⁺¹⁷⁶
7	2000	2000	0.017567	0.020053	5.859e ⁺¹⁸²	5.859e ⁺¹⁸²
10	2000	2000	0.017468	0.021236	8.543e ⁺¹⁸⁵	8.543e ⁺¹⁸⁵
12	2000	2000	0.017783	0.021732	1.778e ⁺¹⁸⁷	1.778e ⁺¹⁸⁷
15	2000	2000	0.020179	0.022893	1.476e ⁺¹⁸⁹	1.476e ⁺¹⁸⁹
20	2000	2000	0.021055	0.025920	1.035e ⁺¹⁹⁰	1.035e ⁺¹⁹⁰
30	2000	2000	0.023774	0.032545	2.445e ⁺¹⁹¹	2.445e ⁺¹⁹¹
50	2000	2000	0.035492	0.054577	2.803e ⁺¹⁹²	2.803e ⁺¹⁹²
70	2000	2000	0.053219	0.086926	7.774e ⁺¹⁹²	7.774e ⁺¹⁹²
100	2000	2000	0.086811	0.155564	1.658e ⁺¹⁹³	1.658e ⁺¹⁹³
150	2000	2000	0.168075	0.314512	2.938e ⁺¹⁹³	2.938e ⁺¹⁹³
200	2000	2000	0.279010	0.556357	3.933e ⁺¹⁹³	3.933e ⁺¹⁹³
300	2000	2000	0.611762	1.280206	5.226e ⁺¹⁹³	5.226e ⁺¹⁹³

Tabela 3: Błędy otrzymane w problemie pierwszym dla różnych wartości rozmiarów układów oraz różnych wektorów początkowych oraz dla epsilon 0.00001

Wnioski

Możemy zauważyć, że w tym przypadku jedynym sensownym rozwiązaniem błędu dla każdej z wartości epsilon jest dla rozmiaru układu równego 3. Reszta błędów przy maksymalnej iteracji równej 2000 zwraca bardzo duże wyniki, w których cecha ma wartości od 174. Wyniki te wydają się być wynikami błędnymi.

Problem 2:

Dowolną metodą znajdź promień spektralny **macierzy iteracji** (dla różnych rozmiarów układu – takich, dla których znajdowane były rozwiązania układu). Sprawdź, czy spełnione są założenia o zbieżności metody dla zadanego układu. Opisz metodę znajdowania promienia spektralnego.

Twierdzenie: Zbieżność procesu iteracyjnego

Teza:

Ciąg (\star) z dowolnym wektorem startowym $x^{(0)}$ jest zbieżny do jedynego granicznego $x^{(\inf)}$ wtedy i tylko wtedy, gdy *promień spektralny (spectral radius)* macierzy iteracji jest mniejszy od 1

$$\rho(M) < 1$$

Promień spektralny macierzy - wartość własna o maksymalnej wartości bezwzględnej.

Rozmiary układu, które zostały przetestowane w tym zadaniu to: 3, 4, 5, 7, 10, 12, 15, 20, 30, 50, 70, 100, 150, 200, 300.

Promień spektralny to maksymalna wartość spośród wartości bezwzględnych wartości własnych macierzy. Wartościami własnymi macierzy nazywamy pierwiastki wielomianu charakterystycznego dla tej macierzy.

$$w_{A}(\lambda) = det(A) - \lambda I$$

gdzie *I* to macierz jednostkowa. Do obliczania wartości własnych wielomianu została użyta funkcja z biblioteki numpy linalg.eigvals.

Wartości promienia spektralnego

n	spectral radius	condition	
3	0.845024	True	
4	1.222999	False	
5	1.226308	False	
7	1.235106	False	
10	1.239509	False	
12	1.241462	False	
15	1.244205	False	
20	1.245401	False	
30	1.247352	False	
50	1.248878	False	
70	1.249516	False	
100	1.249986	False	
150	1.250347	False	
200	1.250525	False	
300	1.250703	False	

Tabela 4: Wyniki promieni spektralnych macierzy iteracji oraz sprawdzenie czy są spełnione założenia o zbieżności metody dla zadanego układu

Wnioski

Możemy zauważyć, że dla wartości rozmiaru układu większej od 3 twierdzenie o zbieżności procesu iteracyjnego nie zachodzi. Dla rozmiaru układu 3 wartość ta wynosi 0.845024. Dla pozostałych rozmiarów przekracza ona 1. Możemy również zauważyć to po pierwszym zadaniu w którym otrzymane błędy były sensowny tylko dla n=3, dla reszty były one absurdalnie duże.

Literatura

- Wykład nr 9 dr Rycerz z przedmiotu MOwNiT
- Wikipedia na temat metody Jacobiego oraz promienia spektralnego