AULA 2

MEDIDA ELEMENTAR, MEDIDA DE JORDAN

1. MEDIDA ELEMENTAR (CONTINUAÇÃO)

Lembramos que um conjunto $E \subset \mathbb{R}^d$ é dito elementar se pode ser escrito como união finita de caixas $E = B_1 \cup \ldots \cup B_n$. Além disso, sempre é possível tomar caixas de forma que esta união seja disjunta. Considere o conjunto $\mathcal{E} := \{E \subset \mathbb{R}^d : E \text{ elementar }\}$ e vamos definir a medida elementar como sendo a função m: $\mathcal{E}(\mathbb{R}^d) \to \mathbb{R}$, m $(E) := |B_1| + \cdots + |B_n|$.

Teorema 1. (Propriedades básicas da medida elementar) Sejam $E, F \in \mathcal{E}(\mathbb{R}^d)$ e m a medida elementar definida acima. São válidas:

- (1) (positividade) $m(E) \ge 0$, para todo $E \in m(\emptyset) = 0$.
- (2) (aditividade finita) Se $E \cap F = \emptyset$ então $m(E \cup F) = m(E) + m(F)$. Por indução, $m(E_1 \sqcup \ldots \sqcup E_k) = m(E_1) + \ldots + m(E_k)$.
- (3) Se E é uma caixa então m(E) = |E|.
- (4) Se $E \subset F$ então $m(F \setminus E) = m(F) m(E)$.
- (5) (monotonicidade) Se $E \subset F$ então m(E) < m(F).
- (6) (subaditividade finita) $m(E \cup F) \le m(E) + m(F)$.
- (7) (invariância à translação) m(E+a) = m(E) para todo $a \in \mathbb{R}^d$.

Demonstração. (1), (2), (3), (7) são evidentes e (5), (6) estão na Lista 1.

Vamos provar (4): Como $E \subset F$ então $F = E \sqcup (F \setminus E)$, em que $E \in F \setminus E$ são conjuntos elementares. Assim, segue por (2) que

$$m(F) = m(E) + m(F \setminus E)$$

Portanto, $m(F \setminus E) = m(F) - m(E)$

Teorema 2. (Unicidade da medida elementar) Suponha que $\lambda \colon \mathcal{E}(\mathbb{R}^d) \to \mathbb{R}$ seja uma função que satisfaz as seguintes propriedades:

- (1) $\lambda(E) \geq 0$ para todo $E \in \mathcal{E}(\mathbb{R}^d)$;
- (2) $\lambda(E \sqcup F) = \lambda(E) + \lambda(F)$, para todo $E, F \in \mathcal{E}(\mathbb{R}^d)$;
- (3) $\lambda(E+a) = \lambda(E)$, para todo $a \in \mathbb{R}^d$ $e E \in \mathcal{E}(\mathbb{R}^d)$;
- (4) $\lambda([0,1)^d) = 1$.

 $Ent\tilde{a}o, \lambda \equiv m.$

Demonstração. (em dimensão 1)

É fácil verificar que a aditividade e a positividade da função λ implicam sua monotonicidade. De fato, se $E \subset F$ então podemos escrever $F = E \sqcup (F \setminus E)$. Assim, pela aditividade de λ segue que $\lambda(F) = \lambda(E) + \lambda(F \setminus E)$ e como $\lambda(F \setminus E) \geq 0$ concluímos que $\lambda(E) \leq \lambda(F)$.

Passo 1. Provaremos que $\lambda([0,x]) = x$ para todo $x \in \mathbb{R}, x \ge 0$. Temos que $\left[\frac{1}{2},1\right) = \left[0,\frac{1}{2}\right) + \frac{1}{2}$, logo $\lambda\left[\frac{1}{2},1\right) = \lambda\left[0,\frac{1}{2}\right)$. Como $[0,1) = \left[0,\frac{1}{2}\right) \sqcup \left[\frac{1}{2},1\right)$, segue que

$$1 = \lambda[0, 1) = \lambda\left[0, \frac{1}{2}\right) + \lambda\left[\frac{1}{2}, 1\right) = 2\lambda\left[0, \frac{1}{2}\right).$$

Portanto $\lambda\left[0,\frac{1}{2}\right) = \frac{1}{2}$.

Mais geralmente, para todo $n \ge 1$ e para todo $0 \le k < n$, $\left[\frac{k}{n}, \frac{k+1}{n}\right) = \left[0, \frac{1}{n}\right) + \frac{k}{n}$, então $\lambda\left[\frac{k}{n}, \frac{k+1}{n}\right) = \lambda\left[0, \frac{1}{n}\right)$.

Note que $[0,1) = \bigcup_{k=0}^{n-1} \left[\frac{k}{n}, \frac{k+1}{n} \right]$. Logo

$$1 = \lambda[0, 1) = \sum_{k=0}^{n-1} \lambda \left[\frac{k}{n}, \frac{k+1}{n} \right) = n \, \lambda \left[0, \frac{1}{n} \right),$$

mostrando que $\lambda\left[0,\frac{1}{n}\right] = \frac{1}{n}$. Além disso,

$$\lambda\left[0,\frac{k}{n}\right) = \lambda\left[0,\frac{1}{n}\right) + \lambda\left[\frac{1}{n},\frac{2}{n}\right) + \ldots + \lambda\left[\frac{k-1}{n},\frac{k}{n}\right) = \frac{k}{n}.$$

Seja x>0 e note que para todo $n\geq 1$ existe $k_n\in\mathbb{N}$ tal que $\frac{k_n}{n}\leq x<\frac{k_n+1}{n},$ então, em particular, $\frac{k_n}{n}\to x$ quando $n\to\infty$. Logo, temos que $\left[0,\frac{k_1}{n}\right)\subset\left[0,x\right)\subset\left[0,\frac{k_1+1}{n}\right)$. Pela monotonicidade da função λ ,

$$\left[0, \frac{k_n}{n}\right) \le \lambda[0, x) \le \lambda\left[0, \frac{k_n + 1}{n}\right),$$

ou seja,

$$\frac{k_n}{n} \le \lambda \left[0, x \right) \le \frac{k_n}{n} + \frac{1}{n}.$$

Como $\frac{k_n}{n} \to x$ quando $n \to \infty$, concluímos que $\lambda[0, x) = x$.

Passo 2. Seja $[a, b) \subset \mathbb{R}$ com a < b. Como [a, b) = [0, b - a) + a,

$$\lambda [a, b) = \lambda [0, b - a) = b - a.$$

Observe que para todo $n \ge 1$ temos $\{0\} \subset \left[0, \frac{1}{n}\right)$ e pela monotonicidade de λ segue que

$$0 \le \lambda\{0\} \le \lambda\left[0, \frac{1}{n}\right] = \frac{1}{n} \to 0$$
 quando $n \to \infty$.

Logo, $\lambda\{0\} = 0$ e como $\{x\} = \{0\} + x$ segue que $\lambda\{x\} = 0$ para todo $x \in \mathbb{R}$. Desta forma, concluímos que para todo intervalo limitado I, $\lambda(I) = |I|$.

Passo 3. Seja $E \in \mathcal{E}(\mathbb{R}), E = I_1 \sqcup \ldots \sqcup I_n$. Como λ é aditiva concluímos que

$$\lambda(E) = \lambda(I_1) + \ldots + \lambda(I_n) = |I_1| + \ldots + |I_n| = m(E).$$

2. A MEDIDA DE JORDAN

Os conjuntos abaixo e o conjunto de Cantor (em \mathbb{R}) não são elementares.

Estederemos o conceito de medida a uma família maior de conjuntos, que contém esses exemplos.

Definição 1. Seja $E \subset \mathbb{R}^d$ um conjunto limitado. Definimos a

 \blacksquare medida interior de Jordan de E por

$$m_{*,J}(E) := \sup \{ m(A) : A \subset E, A \text{ elementar} \};$$

lacktriangle medida exterior de Jordan de E por

$$\mathbf{m}^{*,J}(E) := \inf \{ \mathbf{m}(B) \colon E \subset B, B \text{ elementar} \}.$$

Observe que $0 \le m_{*,J}\left(E\right) \le m^{*,J}\left(E\right) < \infty$, para qualquer $E \subset \mathbb{R}^d$ limitado.

Definição 2. Se $m_{*,J}(E) = m^{*,J}(E) =: m(E)$, então dizemos que E é um conjunto Jordan mensurável. Neste caso, m(E) é a medida de Jordan de E.

Observação 1. (1) Se E é um conjunto elementar, então E é Jordan mensurável.

(2) Se $m^{*,J}(E) = 0$ então E é Jordan mensurável e m(E) = 0.

Teorema 3. Seja $E \subset \mathbb{R}^d$ limitado. As seguintes afirmações são equivalentes:

- (i) E é Jordan mensurável;
- (ii) Para todo $\epsilon > 0$, existem conjuntos elementares A e B tais que

$$A \subset E \subset B \ e \ m(B \setminus A) < \epsilon;$$

(iii) Para todo $\epsilon > 0$, existe A conjunto elementar tal que $m^{*,J}(A\Delta E) < \epsilon$.

Demonstração. A equivalência $(ii) \Leftrightarrow (iii)$ está na Lista 1.

Vamos mostrar $(i) \Leftrightarrow (ii)$: Inicialmente suponha que E é Jordan mensurável, logo pela definição $\mathrm{m}_{*,J}(E)\,\mathrm{m}^{*,J}(E) = \mathrm{m}(E)$. Fixe $\epsilon>0$ e veja que

$$m(E) = m^{*,J}(E) = \inf\{m(B) : B \supset E \text{ elementar}\}.$$

Portanto, existe $B \supset E$ conjunto elementar de modo que

(1)
$$m(B) < m(E) + \frac{\epsilon}{2}.$$

Além disso, temos também pela definição que

$$\mathrm{m}(E) = \mathrm{m}_{*,J}(E) = \sup \{ \mathrm{m}(A) \colon A \subset E \text{ elementar} \}.$$

Ou seja, existe $A \subset E$ conjunto elementar de modo que

(2)
$$m(A) > m(E) - \frac{\epsilon}{2}.$$

Desta forma, temos que $A \subset E \subset B$ em que A e B são conjuntos elementares e por (1) e (2) segue que

$$\begin{split} \mathbf{m}\left(B \setminus A\right) &= \mathbf{m}(B) - \mathbf{m}(A) \\ &\leq \mathbf{m}(E) + \frac{\epsilon}{2} - \mathbf{m}(E) + \frac{\epsilon}{2} = \epsilon. \end{split}$$

Por outro lado, fixe $\epsilon > 0$ e suponha que existam A e B conjuntos elementares de modo que $A \subset E \subset B$ e m(B) – m(A) = m $(B \setminus A)$ < ϵ . Então, pelas definições das medidas exterior e interior de Jordan,

$$0 \le \mathbf{m}^{*,J}(E) - \mathbf{m}_{*,J}(E) \le \mathbf{m}(B) - \mathbf{m}(A) < \epsilon.$$

Como isso vale para todo $\epsilon > 0$, concluímos que $\mathrm{m}^{*,J}(E) - \mathrm{m}_{*,J}(E) = 0$, ou seja, E é Jordan mensurável.

Um truque comum em Análise.

■ Para provar que a = 0 (onde $a \ge 0$) é suficiente mostrar que

$$a < \epsilon, \quad \forall \, \epsilon > 0.$$

■ Para provar que x = y é suficiente mostrar que |y - x| = 0, ou seja,

$$|y - x| < \epsilon, \quad \forall \epsilon > 0.$$

 \blacksquare Alternativamente, para provar que x=y é suficiente mostrar que $x\leq y$ e $y\leq x$, ou seja, que

$$x < y + \epsilon \quad \forall \epsilon > 0 \quad e \quad y < x + \epsilon \quad \forall \epsilon > 0.$$

Exercício 1. Prove que a região delimitada por um triângulo é Jordan mensurável e também prove a fórmula da área (ou seja, a medida de Jordan) de um triângulo.