霍尔效应

学号: PB22511902 姓名: 王冬雪

实验目的

了解霍尔效应原理以及有关霍尔器件对材料要求的知识。学习用"对称测量法"消除副效应影响。根据霍尔电压判断霍尔元件载流子类型。计算载流子的浓度和迁移速度。

实验原理

半导体薄片在垂直于它的磁场中,加载电流后定向移动的载流子(设平均速率为 u)受到洛伦兹力 $F_B=quB$ 的作用,发生偏移,产生电荷积累,形成电场。随着电荷逐渐积累,电场力 $F_E=F_B$,即 $q\frac{V_{BB'}}{b}=quB$, $V_{BB'}$ 称为霍尔电压。另一方面,设载流子浓度为 n,薄片厚度为 d,则电流强度 I 与 u 的关系为I=bdnqu。于是, $V_{BB'}=\frac{1}{nq}\frac{IB}{d}$,令 $R=\frac{1}{nq}$,则 $V_{BB'}=R\frac{IB}{d}$,R称为霍尔系数。在应用中, $V_{BB'}=K_HIB$, $K_H=\frac{R}{d}=\frac{1}{nqd}$ 称为霍尔元件灵敏度,I称为控制电流。霍尔效应建立所需时间很短,因此霍尔元件使用交流电或者直流电都可。指示交流电时,得到的霍尔电压也是交变的,I和 $V_{BB'}$ 应理解为有效值。

在实际应用中,伴随霍尔效应经常存在其他效应。爱廷豪森效应:实际中载流子迁移速率 u 服从统计分布规律,速度小的载流子受到的洛伦兹力小于霍尔电场作用力,向霍尔电场作用力方向偏转,速度大的载流子受到磁场作用力大于霍尔电场作用力,向洛伦兹力方向偏转。这样使得一侧高速载流子较多,相当于温度较高,而另一侧低速载流子较多,相当于温度较低。这种横向温差就是温差电动势 V_E ,这种效应建立需要一定时间,如果采用交流电,可以减小测量误差。此外,在使用霍尔元件时还存在不等位电动势引起的误差,一般可以忽略,也可以用一个电位器加以平衡。我们可以通过改变 I_S 和磁场B的方向消除大多数副效应。具体说在规定电流和磁场正反方向后分别测量下列四组不同方向的 I_S 和B组合的 $V_{BB'}$,然后得到霍尔电压平均值,这样虽然不能消除所有的副效应,但其引入的误差不大,可以忽略不计。

设沿电流方向两点距离为L,样品横截面积为S=bd,流经样品电流为 I_S ,在零磁场下,测得两点间电压为 $V_{BB'}$,根据欧姆定律可算出电导率。

电导率与载流子浓度、迁移率之间有关系: $\sigma = ne\mu$ 。

实验仪器

恒流源,电磁铁,霍尔样品和样品架,锑化铟片,换向开关和接线柱,数字万用表,小磁针。

测量记录

线圈参数: 3500Gs/A

用六脚霍尔片接好线路,尺寸: d=0.5mm, b=4.0mm, L=3.0mm

1. 保持I_M=0. 45A 不变

表 1 $V_H - I_S$								
I_S/mA	$V_H/{\sf mV}$	V _H /mV	V _H /mV	V_H/mV	$\overline{ V_H }/mV$			
_	+B, +I _S	-B, + <i>I</i> _S	-B, -I _S	+B, -I _S	_			
1.00	-1.6126	2.0559	-2. 0509	1.6193	1. 8347			
1.50	-2. 4809	3. 1587	-3. 1541	2.4884	2. 8205			
2.00	-3. 3459	4. 2561	-4. 2506	3. 3504	3.8008			
2. 50	-4. 2107	5. 3559	-5. 3496	4. 2181	4. 7836			
3.00	-5. 0431	6.4133	-6. 4061	5.0505	5. 7283			
3. 50	-5. 9091	7.5126	-7. 5055	5.9146	6.7105			
4.00	-6. 7746	8.6131	-8. 6063	6.7834	7. 6944			
4. 50	-7. 6413	9. 7171	-9. 7088	7. 6516	8. 6797			

2. 保持I_S=4. 50mA 不变

表 2 $V_H - I_M$								
I_M/A	$V_H/{\sf mV}$	V _H /mV	V _H /mV	V _H /mV	$\overline{ V_H }/mV$			
_	+B, +I _S	-B, + <i>I</i> _S	-В, - <i>I_S</i>	+B, -I _S	_			
0. 100	-0.8285	2.9225	-2. 9142	0.8341	1. 8748			
0. 150	-1.7683	3.8613	-3. 8533	1.7718	2. 8137			
0. 200	-2. 7349	4.8262	-4. 8181	2.7382	3. 7794			
0. 250	-3. 7082	5. 7858	-5. 7750	3.7038	4. 7432			

中国科学技术大学		霍尔	效应	2023 年 9 月 18			
0.300	-4. 6938	6. 7791	-6. 7710	4. 6864	5. 7326		
0.350	-5. 6894	7.7602	-7. 7532	5. 6752	6. 7195		
0.400	-6. 6474	8.7404	-8. 7307	6. 6557	7. 6936		

-9.7147

7.6473

8.6766

9.7220

3. 在零磁场下,取 I_S =1. 00mA

-7.6224

0.450

表 3 V _{B'A'}						
I_S	_					
$V_{B'A'}/mV$	55. 8939	-55.8098				

4. 确定样品导电类型

图 0 霍尔片示意图

5.取 I_S =4.50mA

表 4 四角碲化铟片的 $V_H - I_M$										
I_M/A	0.04	0.08	0. 12	0.16	0.20	0.24	0. 28	0. 32	0.36	0.40
V _H /V	0. 1997	0. 3244	0. 4437	0. 5591	0.6596	0. 7340	0.7805	0.8178	0.8506	0. 8789
I_M/A	0.44	0.48	0. 52	0.56	0.60	0.64	0.68	0.72	0.76	0.80
V _H /V	0.9056	0.9330	0.9630	0. 9923	1.0206	1.0494	1.0788	1.1094	1.1392	1. 1702
V _H /V	0. 1997	0.3244	0. 4437	0. 5591	0.6596	0. 7340	0.7805	0.8178	0.8506	0. 8789
I_M/A	0.44	0. 48	0. 52	0. 56	0.60	0.64	0.68	0.72	0.76	0.80
V _H /V	0.9056	0. 9330	0.9630	0. 9923	1.0206	1.0494	1.0788	1.1094	1.1392	1. 1702

分析与讨论

根据表 1,绘制 $V_H - I_S$ 曲线如下图:

由图1,得

$$V_H = 1.951 \Omega \cdot T/m \times I_S - 0.1098 mV$$
由于 $I_M = 0.45 A$,所以 $B = I_M \times 3500 Gs/A = 0.1575 T$,所以 $R_H = \frac{1.951 \Omega \cdot T/m \times d}{B} = 6.194 \times 10^{-3} m^3/C$

根据表 2, 绘制 $V_H - I_M$ 曲线如下图:

由图 2,得

$$V_H = 19.48 m\Omega \cdot T/m \times I_M - 0.1032 mV$$

所以,

$$R_{H} = \frac{19.48 m \Omega \cdot T/m \times d}{3500 Gs/A \times I_{S}} = 6.184 \times 10^{-3} m^{3}/C$$

由表 3, $\overline{V_{B'A'}} = 55.85185 mV$ 。

由图 0, 电流由 1 流向 2, 3 电势大于 4 电势, 磁场垂直纸面向下, 知载流子为电子, 样品导电类型为 n 型。

由上述数据, $\overline{R_H}=6.189\times 10^{-3}m^3/C$ 。

载流子浓度

$$n = \frac{1}{q\overline{R_H}} = 1.010 \times 10^{21} m^{-3}$$

电导率为

$$\sigma = \frac{I_S L}{\overline{V_{B'A'}}bd} = 120.86(\Omega \cdot \mathrm{m})^{-1}$$

迁移率为

$$\mu = \frac{\sigma}{ne} = 0.74m^2/(V \cdot s)$$

由表 4, 绘制 $V_H - I_M$ 曲线如下图:

由图 3 可看出四角碲化铟片的 $V_H - I_M$ 曲线在磁场为 1000Gs 附近霍尔系数发生改变。