





#### **SAE AEROTHON 2023**

#### **PHASE-1 PRESENTATION**

Team Name : Team WRise

Team Number :

College Name : UPES, Dehradun

Team Member:







# Conceptual Design

- Airframe (Cross type): S500
  - ➤ Larger diagonal wheelbase
  - Enhanced stability and payload capacity
- Fully electrical propulsion system
- Vertical thrust and balanced performance using motors at rear ends
- 10 inch propeller used

- Flight controller: Pixhawk 2.4.8
- Communication
  - > Receiver: FlySky FS-iA10B
  - ➤ Telemetry Link: Holybro Sik Telemetry Radio V3
  - ➤ Transmitter: 100mW 433MHz
- Camera Module: **Arducam 16MP**
- Focusing on area search domain







# **Preliminary Weight Estimation**

| Sr. No. | Components          | Weight (g)   |
|---------|---------------------|--------------|
| 1.      | Battery             | 650          |
| 2.      | Motor (x4)          | (55x4) = 220 |
| 3.      | Airframe            | 500          |
| 4.      | Raspberry Pi        | 80           |
| 5.      | Raspberry HQ camera | 53           |
| 6.      | Propeller (x4)      | (20x4) = 80  |
|         | Total               | 1583         |







# **Thrust Required Estimation**

- Maximum weight of the drone (assumed): 2 Kilogram
- Total thrust required by the drone (estimated): 4 Kilogram
- Thrust per motor must be a minimum of 1 kilogram
- Kv=RPM/Voltage, a range of Kv rating
- This range was 1000Kv-1400Kv producing thrust between a range of 1Kg-1.6Kg.









#### Final results are shown below:

| Motor                | Power (W) | Weight per<br>motor (g) | Temperature (°C) | Thrust-<br>Weight ratio | Specific<br>thrust | Flight Time (min) | Kv ratings |
|----------------------|-----------|-------------------------|------------------|-------------------------|--------------------|-------------------|------------|
| DYS BE2814           | 382       | 100                     | 44               | 3.5                     | 6.74               | 19.7              | 1400       |
| EMAX XA2212          | 344       | 39                      | 65               | 2.5                     | 5.55               | 13.8              | 1400       |
| EMAX ECO II-<br>2807 | 343       | 50                      | 65               | 2.8                     | 6.11               | 15.7              | 1300       |
| EMAX GTII-<br>2212   | 345       | 52                      | 56               | 2.7                     | 5.75               | 14.7              | 1400       |
| T-motor F90          | 322       | 47                      | 81               | 2.7                     | 5.91               | 16.1              | 1300       |
| T-motor F100         | 288       | 67                      | 55               | 2.4                     | 6                  | 14.8              | 1100       |

E-calc was used for the calculations and weight estimations.







# **UAV Sizing (Rotor Arm)**

• The **propeller diameter** = *Dprop*= **10-inch or 25.4 cm**, Minimum arm length can be calculated by,

$$L_{arm} \ge \frac{\frac{D_{prop}}{2}}{\sin\left(\frac{\pi}{n_{arm}}\right)}$$

Hence, 
$$L_{arm} \ge \frac{\frac{10}{2}}{\sin(\frac{180}{4})}$$

or 
$$L_{arm} \ge 7.07$$
-inch = 17.96cm







# **UAV Sizing (Wheelbase)**

The min radius of the wheelbase by the following relation,

$$R \ge \frac{\sigma}{\sin\left(\frac{\alpha}{2}\right)} \times r_p$$

where,

 $\sigma$  denotes the safety factor. For Aerospace application, we assume  $\sigma = 1.5$ .

r<sub>p</sub> denotes the radius of propeller.

 $\alpha$  denotes the angle with adjacent rotor arms, given by  $\alpha = \frac{2\pi}{n_{arm}}$ .

Hence, 
$$R \ge \frac{1.5}{\sin(\frac{180}{4})} \times 5$$
 or  $R \ge 10.60$ -inch = 26.94cm









#### **UAV Sizing (Propeller Clearance)**

• For a propeller with a 10-inch diameter, the minimum propeller clearance necessary is,

$$PC_{min} = R - D_{prop}$$
  
 $PC_{min} = 53.88 - 25.4$   
 $PC_{min} = 28.48 cm$ 







# **UAV Sizing (Landing Gear)**

| Positioning / Parameter                     | Under-Hub                | Middle-arm                  | End-of-Arm                    |
|---------------------------------------------|--------------------------|-----------------------------|-------------------------------|
| Image                                       |                          |                             |                               |
| Camera View                                 | Unobstructed camera view | Obstructed camera view      | Unobstructed camera view      |
| Ground clearance Increased ground clearance |                          | Comparatively low clearance | Ample ground clearance        |
| Stability and Performance                   | Can toggle               | Additional weight and drag  | Increased drag                |
| Spacing                                     | Limited space at hub     | Efficient use of space      | Limited space at ends of arms |









#### **UAV Performance (Power required estimation)**



•The required power from eCalc analysis came out to be 340 Watts.







### **UAV Performance (Power System Selection)**

- The initial battery selection-Orange 3s 4200mAh 35/70C (found to be insufficient)
- Selected the Lemon 4s 6200mAh 45/90C battery to aim for optimal performance and efficiency.
- Thus, the power capacity calculated using P=VI at the battery's total current of 6.2 Amps and voltage of 14.8 V came out to be 367.04 Watts.







#### **UAV Performance (Endurance Estimation)**

- The endurance of the drone system increased by examining and optimizing number of elements, such as weight calculations, battery selection, and motor performance characteristics.
- Considerations taken into account-availability, cost, endurance, and weight while evaluating the performance of the EMAX ECOII-2807(1300kV) motor in conjunction with the chosen battery, which provided a flight time of more than 15 minutes at maximum speed.









# **Material Selection**

• Comparison on different pre-manufactured airframes:

| Model/ Parameter                 | F450 Quadcopter Frame            | S500 Multirotor PCB<br>Airframe  | F330 Mini Quadcopter<br>Frame    |
|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Image                            |                                  |                                  |                                  |
| Material                         | Glass Fiber + Polyamide<br>Nylon | Glass Fiber + Polyamide<br>Nylon | Glass Fiber + Polyamide<br>Nylon |
| Wheelbase (mm)                   | 450                              | 500                              | 330                              |
| Weight (gm)                      | 330                              | 405                              | 160                              |
| Arm Size (mm)                    | 220 x 40                         | 220 x 40                         | 155 x 34                         |
| Motor Mounting<br>Hole Dia. (mm) | 3                                | 3                                | 3                                |









# **Motor Specifications**

| Test item               | kV1300                    |
|-------------------------|---------------------------|
| <b>Motor Dimensions</b> | φ33.9*34mm                |
| Bearing Shaft           | 4mm                       |
| Weight                  | 47.6g (W/O Silicone wire) |
| Idle Current (10V)      | 1.3A                      |
| Internal Resistance     | $58\mathrm{m}\Omega$      |
| Peak Current (6S)       | 52A                       |
| Max. Power (6S)         | 1310W                     |

#### **Battery Specifications**

| Model No.             | 6200mAh 4S 45C           |
|-----------------------|--------------------------|
| Nominal Capacity(mAh) | 6200mAh @ 0.2C Discharge |
| Minimum Capacity      | 5978mAh @ 0.2C Discharge |
| Nominal Voltage (V)   | 14.8                     |
| Internal Impedance    | ≤8.1mΩ                   |











#### Communication System Control and Navigation System

| Components      | Options                           | Selection             | Reason                                                                                                                                                                                                                   |
|-----------------|-----------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Holybro Sik Telemetry<br>Radio V3 | Holybro Sik Telemetry | Compatible with Pixhawk 2.4.8 Flight Controller                                                                                                                                                                          |
| Telemetery Link | Generic Telemetry<br>Radio        | Radio V3              | <ul> <li>433 MHz Frequency</li> <li>Lightweight Suitable for drone</li> </ul>                                                                                                                                            |
|                 | Radiomaster TX16S                 |                       | <ul><li>Channels: 16</li><li>Protocols: Supports various RF modules and</li></ul>                                                                                                                                        |
| Transmitter     | Flysky FS-i6                      | Radiomaster TX16S     | <ul> <li>protocols like FrSky, Flysky, Futaba, and more.</li> <li>Programming Options: Custom mixes, logical switches, flight modes.</li> <li>Ergonomics: Comfortable ergonomic design, high-quality gimbals.</li> </ul> |
|                 | FlySky FS-iA10                    |                       | <ul><li>Channels: 10</li><li>Transmission Range: Extended range for reliable</li></ul>                                                                                                                                   |
| Receiver        | FlySky FS-A8S                     | FlySky FS-iA10        | <ul> <li>signal communication.</li> <li>Compatibility: Supports FlySky AFHDS 2A protocol.</li> <li>Telemetry: Built-in telemetry for monitoring flight data.</li> </ul>                                                  |
|                 |                                   |                       | A SEFIA                                                                                                                                                                                                                  |



#### Communication System Control and Navigation System

| Components     | Selection       | Reason                                                                                                                                                                                                                                                        |  |
|----------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Flight Control | Pixhawk 2.4.8   | <ul> <li>Cost and Availability: Pixhawk 2.4.8 (affordable, widely available)</li> <li>Community Support: Pixhawk 2.4.8 (extensive documentation, large user community)</li> <li>Proven Reliability: Pixhawk 2.4.8 (trusted, reliable track record)</li> </ul> |  |
| CPU            | Raspberry Pi 4B | <ul> <li>High Graphical Processing Speed</li> <li>Optimum for 16MP camera</li> </ul>                                                                                                                                                                          |  |
| Camera         | Arducam 16 MP   | <ul> <li>Better quality at Low Cost</li> <li>Compatible with Raspberry Pi 4B</li> <li>Autofocus</li> <li>No Lens Required</li> <li>Light Weight (3gms)</li> </ul>                                                                                             |  |
| GPS            | Ublox Neo M8N   | <ul> <li>Compatible with Pixhawk 2.4.8</li> <li>Accurate (0.6m)</li> <li>High Upload Speed (10Hz)</li> <li>Lightweight</li> </ul>                                                                                                                             |  |





# Optimized Final Design (Summary of Design Changes/Optimizations including the Final CAD model and 2D











# Detailed Weight Breakdown

| Sr. No.      | Component                  | Units | Weight | Total weight |
|--------------|----------------------------|-------|--------|--------------|
| 1            | Battery                    | 1     | 540g   | 540g         |
| 2            | Motors                     | 4     | 50g    | 200g         |
| 3            | ESC                        | 4     | 34g    | 136g         |
| 4            | GPS module                 | 1     | 23g    | 23g          |
| 5            | Camera                     | 1     | 3g     | 3g           |
| 6            | Altimeter                  | 1     | 3g     | 3g           |
| 7            | Receiver                   | 1     | 15g    | 15g          |
| 8            | Raspberry Pi4              | 1     | 46g    | 46g          |
| 9            | Pixhawk 2.4.8              | 1     | 40g    | 40g          |
| 10           | Memory card                | 1     | 2g     | 2g           |
| 11           | Telemetry antenna          | 1     | 127g   | 127g         |
| 12           | S500 frame                 | 1     | 405g   | 405g         |
| 13           | Payload                    | 1     | 200g   | 200g         |
| 14           | Wires                      | 1     | 75g    | 75g          |
| 15           | Payload dropping mechanism | 1     | 30g    | 30g          |
| Total weight |                            |       |        | 1845g        |









# UAV Performance Recalculation (T/W, Power Required for the mission & Endurance calculation)

• The motor which we selected is EMAX ECOII-2807(1300Kv). The flight performance calculated at a max speed of 82 km/h (22.7m/s) are:

| Battery            |          |
|--------------------|----------|
| Load:              | 21.20 C  |
| Voltage:           | 10.54 V  |
| Rated Voltage:     | 14.80 V  |
| Energy:            | 91.76 Wh |
| Total Capacity:    | 6200 mAh |
| Used Capacity:     | 5270 mAh |
| min. Flight Time:  | 2.4 min  |
| Mixed Flight Time: | 10.0 min |
| Hover Flight Time: | 15.0 min |
| Weight:            | 540 g    |
|                    | 19 oz    |
|                    |          |
|                    |          |
|                    |          |
|                    |          |
| share              |          |

| Motor @ Optimum Efficiency |           |  |  |  |  |
|----------------------------|-----------|--|--|--|--|
| Current:                   | 17.08 A   |  |  |  |  |
| Voltage:                   | 12.48 V   |  |  |  |  |
| Revolutions*:              | 14831 rpm |  |  |  |  |
| electric Power:            | 213.2 W   |  |  |  |  |
| mech. Power:               | 177.8 W   |  |  |  |  |
| Efficiency:                | 83.4 %    |  |  |  |  |
|                            |           |  |  |  |  |

| Motor @ Maximum    |            |
|--------------------|------------|
| Current:           | 32.87 A    |
| Voltage:           | 10.34 V    |
| Revolutions*:      | 10755 rpm  |
| electric Power:    | 339.9 W    |
| mech. Power:       | 262.6 W    |
| Power-Weight:      | 781.5 W/kg |
|                    | 354.5 W/lb |
| Efficiency:        | 77.2 %     |
| est. Temperature:  | 75 °C      |
|                    | 167 °F     |
|                    |            |
| Wattmeter readings |            |
| Current:           | 131.48 A   |
| Voltage:           | 10.54 V    |
| Power:             | 1385.8 W   |
|                    |            |

| lotor @ Hover     |            |
|-------------------|------------|
| Current:          | 5.26 A     |
| /oltage:          | 14.08 V    |
| Revolutions*:     | 5817 rpm   |
| hrottle (log):    | 35 %       |
| hrottle (linear): | 38 %       |
| electric Power:   | 74.0 W     |
| nech. Power:      | 58.1 W     |
| ower-Weight:      | 178.9 W/kg |
|                   | 81.1 W/lb  |
| Efficiency:       | 78.5 %     |
| st. Temperature:  | 35 °C      |
|                   | 95 °F      |
| pecific Thrust:   | 5.88 g/W   |
|                   | 0.21 oz/W  |
|                   |            |
|                   |            |

| Total Drive         |          | Multicopter         |                        |
|---------------------|----------|---------------------|------------------------|
| Drive Weight:       | 1021 g   | All-up Weight:      | 1740 g                 |
|                     | 36 oz    |                     | 61.4 oz                |
| Thrust-Weight:      | 2.7 : 1  | add. Payload:       | 2278 g                 |
| Current @ Hover:    | 21.03 A  |                     | 80.4 oz                |
| P(in) @ Hover:      | 311.2 W  | max Tilt:           | 64 °                   |
| P(out) @ Hover:     | 232.4 W  | max. Speed:         | 83 km/h                |
| Efficiency @ Hover: | 74.7 %   |                     | 51.6 mph               |
| Current @ max:      | 131.47 A | est. Range:         | 4440 m                 |
| P(in) @ max:        | 1945.7 W |                     | 2.76 mi                |
| P(out) @ max:       | 1050.4 W | est. rate of climb: | 11.4 m/s               |
| Efficiency @ max:   | 54.0 %   |                     | 2244 ft/min            |
|                     |          | Total Disc Area:    | 20.27 dm <sup>2</sup>  |
|                     |          |                     | 314.19 in <sup>2</sup> |
|                     |          | with Rotor fail:    | X                      |

Source:eCalc





Download .csv (0)







Source:eCalc

**Speed of the drone** 







# Final UAV Specification

- Camera Specifications:
  - > FPS determines optimal drone speed
  - > Higher FPS enables efficient picture-taking
- Relationship between Speed and Endurance:
  - > Optimal speed < max. Speed
  - > Higher speed leads to increased endurance
- Arducam 16MP Camera:
  - > FPS: 0.5 FPS
  - > Capture length: 33m
  - > Speed for non-overlapping image capture: 16.5 m/s

- Optimal Drone Speed:
  - > Optimal calculated speed: 16.5 m/s
  - > Optimal operating speed: 10m/s
- Additional Considerations:
  - > Thrust-Weight ratio: 2.8
  - > Other parameters require physical experimentation for calculation









# Bill

| Sr. No. | Component                                                            | Units | Cost       |
|---------|----------------------------------------------------------------------|-------|------------|
| 1       | Battery: Lemon 6200mAh<br>4S 45C/90C Lithium<br>Polymer Battery Pack | 1     | ₹ 7,999.00 |
| 2       | Motors: EMAX ECO II-<br>2807                                         | 4     | ₹ 7,360    |
| 3       | ESC: ReadytoSky 40A 2-<br>4S ESC                                     | 4     | ₹2,980     |
| 4       | GPS module: Ublox Neo<br>M8N GPS module                              | 1     | ₹2,299     |
| 5       | Camera: Arducam 16MP                                                 | 1     | ₹3,199     |
| 6       | Altimeter: BME280                                                    | 1     | ₹453       |
| 7       | Receiver: FlySky FS-<br>iA10B                                        | 1     | ₹1,325     |

| Sr. No. | Component                                                              | Units | Cost    |
|---------|------------------------------------------------------------------------|-------|---------|
| 8       | Raspberry Pi4                                                          | 1     | ₹5,049  |
| 9       | Pixhawk 2.4.8                                                          | 1     | ₹11,559 |
| 10      | Memory card: SanDisk<br>Ultra 32GB Class 10<br>SDHC UHS                | 1     | ₹419    |
| 11      | Telemetry antenna:<br>Holybro Sik Telemetry<br>radio V3-100 mW 433 Mhz | 1     | ₹6,500  |
| 12      | S500 frame                                                             | 1     | ₹1,699  |
| 13      | Radiomaster TX16S<br>transmitter with battery                          | 1     | ₹26,000 |

Total cost ₹76,841









# Methodology for Autonomous Operation









# Autonomous Flight/Path Strategy

- Blue Triangle Field of View:
  - Field of view from 30m height (Arducam 16MP camera)
- Path 1 Strategy:
  - > Stick to one side and run full length
  - Take a U-turn and return to the other side
  - > Suitable if hotspot and payload drop zone are distinguishable
  - Detects all 4 hotspots
- Path 2 Strategy:
  - > Better deployment strategy
  - No need to return to drop zone
- ➤ Ideal for indistinguishable hotspot and drop zone images
- ➤ Low risk, drone reaches drop zone during final search stage
- ➤ Detects all 4 hotspots





Path - 1

Path - 2









- 1. Autonomous Identification of Target
- 2. Autonomous Payload Drop











- 1. Autonomous Identification of Target
- 2. Autonomous Payload Drop











- 1. Autonomous Identification of Target
- 2. Autonomous Payload Drop





















#### **Computational Analysis of 10x4.5in Propeller**







**Velocity Contour** 



**Pressure Chart** 



**Velocity Chart** 









#### **Computational Analysis of Toroidal Propeller**





**Pressure Contour** 

**Velocity Contour** 

**Pressure Chart** 

**Velocity Chart** 



