學號:r05921033 系級: 電機所碩一 姓名:余政穎

## 1. 請簡明扼要地闡述你如何抽取模型的輸入特徵(feature)

答:

在 hw1. sh 之中,我用的 features 抽取方式與助教相同,便是將每個月的 18 項 features 串起來,形成一個較大的矩陣,故每個月便有 471 筆訓練資料可以使用,12 個月共有 5652 筆訓練資料;Features 處理上,則是將連續九小時的 features 形成一筆訓練資料,並拉成直的,成為(指標數×9)維度的 features,最後將每一筆資料依序排列,使其成為一個矩陣,最後再使用 linear regression。(使用 gradient descent, eta=0.03 跑 10000 iterations) 在 hw1\_best. sh 中,我抽取的 features 方法如下:

- (1) 先將 training data 讀入,除了直接使用每一個 feature 的值,亦將每一項的值平方與 立方,並暫存入一個暫存矩陣之中,此時還沒有將每九個小時的 features 取出,只單 純看某項指標的一次、二次、三次方,將可選擇的指標變為3倍。
- (2)接著,將上述指標與PM2.5的一次方比較正相關性(或者說是相似性,這邊用 cos similarity),只選擇正相關性夠高的指標,將其連續九個小時的 features 取出,使一筆資料的維度為(所選指標的總數)×9,加上總共有5652筆資料,可形成一個矩陣。
- (3)用上述矩陣去進行 linear regression。(直接以向量微分算出 w 最佳解)

## 2. 請作圖比較不同訓練資料量對於 PM2. 5 預測準確率的影響 答:

此題主要是藉由改變不同訓練資料量,去比較預測準確率的結果,此部分的實驗是分別將三個月、六個月、九個月及全部 training set 放入模型訓練,選擇 hwl\_best. sh 中所採用的 features,正規化的參數 $\lambda$ 設為 0,並上傳至 Kaggle,觀測上傳之後的 public set 之 root mean square error (RMSE)之結果:



可以觀察到隨著 training set 的數量減少,預測的結果會越來越不準,甚至當資料只剩下原本的 1/4 時,RMSE 升高至超過 100,linear regresstion 的預測已經完全不準確。

## 3. 請比較不同複雜度的模型對於 PM2. 5 預測準確率的影響 答:

本題比較分別將訓練資料的最高次方設定為一次方、二次方、三次方後,所得到的結果; 第一種為將所有 features 丟下去 train,第二種則是利用第一題中抽取 features 的方法, 將挑選過的 features 丟下去 train,同時以 Kaggle 上的 Public data 之 RMSE(使用全部資料)與自己切一個 validation set 之 RMSE 為衡量標準,validation set 是取每個月的最後 31 筆資料集合而成,故放入模型訓練的 training set 資料量為 5280 筆,validation set 資料量為 372 筆,正規化參數皆設為 0,所得到的結果如下表:

|                          | 一次方      | 二次方      | 三次方      |
|--------------------------|----------|----------|----------|
| 第一種(Kaggle public RMSE)  | 5. 95828 | 5. 99185 | 6. 20186 |
| 第一種(validation set RMSE) | 5. 02747 | 5. 04367 | 5. 31840 |
| 第二種(Kaggle public RMSE)  | 5. 92334 | 5. 81294 | 5. 69882 |
| 第二種(validation set RMSE) | 5. 20195 | 5. 12687 | 5. 32656 |

可以觀察到,再使用第一種設定,較簡單的 model 效果較好,可能是因為沒有特別挑選 features,所以有些高次方的指標反而預測的較不準確;然而,若有用計算相關性的方式,挑選適合的 features,因為較複雜的模型可挑選的比較多,則能得到較佳的預測結果。

## 4. 請討論正規化(regularization)對於 PM2.5 預測準確率的影響 答:

答:

本題比較設定不同的正規化之參數 $\lambda$ ,對於預測結果之影響;這題選擇 hwl\_best. sh 中所採用的 features,使用資料的方式與第三題的設定相同:

|                     | $\lambda = 0$ | $\lambda = 0.05$ | $\lambda = 0.1$ | $\lambda = 0.15$ | $\lambda = 0.2$ | $\lambda = 0.25$ |
|---------------------|---------------|------------------|-----------------|------------------|-----------------|------------------|
| Kaggle public RMSE  | 5. 69882      | 5. 70668         | 5. 71309        | 5. 71844         | 5. 72300        | 5. 72695         |
| validation set RMSE | 5. 32656      | 5. 31591         | 5. 31379        | 5. 31237         | 5. 31109        | 5. 30986         |

可以觀察到,加上正規化的模型,其預測準確率有些影響,然而有趣的是,在 Kaggle 上與我自己的 validation set 所得的結果剛好相反,前者正規化越多準確率越差,後者正規化越多準確率越好,這可能是跟餵入的訓練資料之分布有關,Kaggle 上的 public set 的資料與training set 較為相似,故做正規化反而看起來不準確,validation set 則相反。

5. 在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵(feature)為一向量  $x^n$ ,其標註(label)為一存量  $y^n$ ,模型參數為一向量 W (此處忽略偏權值 b),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^N (y^n-wx^n)^2$ 。若將所有訓練資料的特徵值以矩陣  $X=[x^1x^2\dots x^n]$  表示,所有訓練資料的標註以向量  $y=[y^1y^2\dots y^n]^T$ 表示,請以 X 和 y 表示可以最小化損失函數的向量 W。

The target is to minimize  $E_{in}(w) = \frac{1}{N} \sum_{n=1}^{N} (y^n - wx^n)^2$ 

$$= \frac{1}{N} \sum_{n=1}^{N} (y^n - (x^n)^T w)^2 = \frac{1}{N} \begin{bmatrix} y^1 - (x^1)^T w \\ y^2 - (x^2)^T w \\ \dots \\ y^N - (x^N)^T w \end{bmatrix}^2 = \frac{1}{N} ||Xw - y||^2 \quad (N \gg \# \text{ of features})$$

$$\nabla E_{in}(w) = \frac{1}{N} (2X^T X w - 2X^T y) = 0 \Rightarrow w = (X^T X)^{-1} X^T y$$

In addition,  $w_{reg} = (X^TX + \lambda I)^{-1}X^Ty$  where  $\lambda$  is the regularization parameter