

Organizers

Image Processing Group

UNIVERSITAT POLITÈCNICA DE CATALUNYA

+ info: TelecomBCN.DeepLearning.Barcelona

[course site]

Day 4 Lecture 1 Speaker ID II

Javier Hernando

Goal:

Training a discriminative model for each target speaker

What We Have?

- One i-vector (single session) or a couple of i-vectors (multi session) per each target speaker
- A large number of background i-vectors (impostors)

Problems:

- Unbalanced data → Bias towards the majority class
- Few data → Overfitting

Target i-Vector

Impostor i-Vectors

O. Ghahabi, J. Hernando, Deep Learning Backend for Single and Multi-Session i-Vector Speaker Recognition, to be appear in IEEE Trans. Audio, Speech and Language Processing

Decoder

Step 1 : Balanced Training

Problem:

A large number of impostor data (negative samples) Very few number of target data (positive samples)

Solutions:

Global Impostor Selection
Clustering using K-means
Equally distributing positive and negative
samples among minibatches

Step 2: Adaptation

- Universal DBN (Unsupervised learning using background i-vectors)
- Unsupervised Adaptation
 - ✓ Initialize networks by the UDBN parameters
 - ✓ Unsupervised learning using balanced data with few iterations

Step 3: Fine-Tuning

 Supervised learning given impostor and target labels, adapted DBN, and balanced data

	Labeled Background Data	riog set		Eval Set				
		EER	minDCF	EER	minDCF			
[1] Cosine	No	4.78	386	4.46	378	\leftarrow	←	1
[2] PLDA (Estimated Labels)	No	3.85	300	3.46	284		23%	١,
[3] DNN-3L	No	4.36	297	3.93	291			3
Fusion [2] & [3]	No	2.95	259	2.64	238		<	
[4] PLDA (Actual Labels)	Yes	2.23	226	2.01	207		<	1
Fusion [2] & [4]	Yes	2.04	220	1.85	204		6%	36
Fusion [3] & [4]	Yes	2.10	219	1.98	194	\angle		1
Fusion [2] & [3] & [4]	Yes	1.90	203	1.72	184	2	<	

NIST SRE 2014 i-Vector Challenge

(more than 100 participants)

- Top 20 in the 1st Phase (unlabeled background data)
- 2nd rank in the 2nd Phase (labeled background data)

Credit S. H. Yella,

Speaker Verification

Speaker Identification

P. Safari, O. Ghahabi, J. Hernando, "Restricted Boltzmann Machines for speaker vector extraction and feature classification", Proc. URSI 2016

DL i-vector Extraction

DL i-vector Extraction

DL 'speaker-vectors'

RBM vectors

RBM vectors

RBM supervectors

- Mean-normalization
- PCA whitening with dimension reduction
- PCA trained based on all background RBM supervectors
- The output of the whitening stage is called RBM-vector

RBM vectors

CDBN vectors

CDBN vectors

randomly selected first-layer CDBN bases

Unsupervised feature learning for audio classification using convolutional deep belifer networks, H. Lee et al., Advances in Neural Information Processing Systems, 22:1096–1104, 2009

DL 'supervector like' estimation

Figure 3: (Left) five spectrogram samples of "ae" phoneme from female (top)/male (bottom) speakers. (Middle) Visualization of the five first-layer bases that most differentially activate for female/male speakers. (Right) Visualization of the five second-layer bases that most differentially activate for female/male speakers.

Tasks

SoA Speaker Diarization

DL in Speaker Diarization

Speaker Clustering: Speaker Comparison

Harsha et al. "Artificial Neural Network Features for Speaker Diarization". IEEE Spoken Language Technology Workshop. (2014) 402-406

Train	Test	MFCC	ANN + MFCC	Rel. change
AMI	AMI	25.1	21.5	-14.3%
AMI	ICSI	20.6	18.4	-10.7%
ICSI	ICSI	20.6	15.1	-26.7%

Speaker errors obtained on AMI and ICSI datasets for matched and mismatched training conditions. MFCC corresponds to baseline clustering using BIC. ANN+MFCC is referred to the ANN shown in right figure.

Shallow Speaker Comparison

DL 'speaker-vectors'

Speaker Embeddings

Mickael Rouvier et al. "Speaker Diarization trough Speaker Embeddings". 23rd European Signal Processing Conference. (2015)

Speaker Embeddings

2D projection of four Speaker Embeddings using PCA.

500 size Speaker Embeddings rearranged in 10x50. Representation of two utterances from each speaker.

Layer/Dim	300	400	500	600	700
Layer_1	22.11	22.38	20.80	. 20.10	21.78
Layer_2	21.26	21.08	20.15	20.52	20.79
Layer_3	23.97	19.58	21.44	21.73	21.78

$$DER = \frac{\#Spk + \#Miss + \#FA}{\#Total}$$

DL 'speaker-vectors'

CNN BN Feature

Five Speaker representations in 2 dimensions. Left figure show the output vector of the softmax layer L8. Right figure correspond to the same output vector of L5 dense layer. Differents colors are assigned to different speakers.

Yanik Lukic et al. "Speaker Identification and Clustering using Convolutional Neural Networks". In 2016 IEEE International workshop on machine learning for signal processing. (2016)

CNN BN Features

- L5 and L7 size depend proportionally to the number of speakers.
- L5 and L7 outperforms the softmax layer L8, where L7 is better than L5.
- trainning data (speaker ammount) must be above 10 * (# speakers) for a good performance.

	20 speake	ers	40 speakers			
Layer	MR 100	MR 590	MR 100	MR 590		
L5: dense	0.100	0.100	0.300	0.125		
L7: dense	0.100	0.100	0.325	0.050		
L8: softmax	0.450	0.250	0.700	0.450		

$$MR = \frac{1}{N} \sum_{j=1}^{N_s} e_j.$$