2025 Cloud and Environment

Himawari 8/9 satellite: introduction & data processing

Peng Jen Chen & Shao Yu Tseng

Outline

- Introduction of Himawari satellite
- Introduction of ael-satellite-tools module
 - Himawari data download and pre-processing
- Week 3: Introduction of True Color image
 & RGB composite product
 - RGB processing & plotting
- Week 4: Application of Himawari data processing by AEL-satellite-tools

Himawari-8/9 data information

AHI Observation Modes

standby

MTSAT-2

Himawari-8

Himawari-9

operation

standby

Geostationary postiton: ~140.7E

Imaging sensor: Advanced Himawari Imager

(AHI)

Original observation domain: 85E – 205E, 60N – 60S

Temporal resolution: typically 10min

- except the routine maintain of the satellite
 - 02:40 and 14:40UTC, for monitor satellite status
 - Orbit control: every two weeks
 - Radiometer solar calibration: every two weeks
- Automatic sun avoidance function during spring and autumn eclipse periods
 - Stary light (band1~9)

Himawari-8/9 data information

CEReS gridd Bands and N		JMA's Himawari8/9 Bands	
EXT _{.5km}	01	Band 03 (0.64 μm)	
	01	Band 01 (0.47 μm)	
VIS 1km	02	Band 02 (0.51 μm)	
	03	Band 04 (0.86 μm)	
SIR 2km	01	Band 05 (1.6 μm)	
	02	Band 06 (2.3 μm)	
	01	Band 13 (10.4 μm)	
	02	Band 14 (11.2 μm)	
	03	Band 15 (12.4 μm)	
	04	Band 16 (13.3 μm)	
TIR	05	Band 07 (3.9 μm)	
HIN	06	Band 08 (6.2 μm)	
	07	Band 09 (6.9 μm)	
	08	Band 10 (7.3 μm)	
	09	Band 11 (8.6 μm)	
2km	10	Band 12 (9.6 μm)	

Provide data Spectral: 16 bands VIS(3), NIR(3), and IR(10)

Spatial resolution: 0.5km/1km (VIS) ~ 2km (IR)

Unit: **Albedo**

Unit:
Brightness
temperature

Himawari-8/9 data information

CEReS gridded data Bands and Numbers		JMA's Himawari8/9 Bands	
EXT 01		Band 03 (0.64 μm)	
	01	Band 01 (0.47 μm)	
VIS	02	Band 02 (0.51 μm)	
	03	Band 04 (0.86 μm)	
SIR	01	Band 05 (1.6 μm)	
SIK	02	Band 06 (2.3 μm)	
	01	Band 13 (10.4 μm)	
	02	Band 14 (11.2 μm)	
	03	Band 15 (12.4 μm)	
	04	Band 16 (13.3 μm)	
TIR	05	Band 07 (3.9 μm)	
IIK	06	Band 08 (6.2 μm)	
	07	Band 09 (6.9 μm)	
	08	Band 10 (7.3 μm)	
	09	Band 11 (8.6 μm)	
	10	Band 12 (9.6 μm)	

Himawari-8/9 Imager (AHI)

	Band	Spatial Resolution	Central Wavelength	Physical Properties
1	ı.	1 km	0.47μm	vegetation, aerosol
2 Visible	1 KM	0.51μm	vegetation, aerosol	
3		0.5 km	0.64µm	Vegetation, low cloud, fog
4	Near Infrared 2 km	1 km	0.86μm	vegetation, aerosol
5		2 1000	1.6 µm	cloud phase
6		Z KM	2.3 µm	particle size
7			3.9 µm	low cloud, fog, forest fire
8			6.2 µm	mid- and upper-level moisture
9			6.9 µm	mid-level moisture
10			7.3 µm	mid- and lower-level moisture
11	Infrared	2 km	8.6 µm	cloud phase, SO ₂
12	Illirared	Z KIII	9.6 µm	Ozone content
13			10.4 μm	cloud imagery, information of cloud top
14			11.2 μm	cloud imagery, sea surface temperature
15			12.4 μm	cloud imagery, sea surface temperature
16			13.3 μm	cloud top height

3 Visible Bands

Addition of NIR Bands

Increase of WV Bands

Increase of TIR Bands

Theoretical Basis of Satellite Remote Sensing of the Atmosphere

[Masunaga, 2022]

Geometrical Optics: Surface emissivity/reflectivity

- 可見光 (VIS, 0.4-0.7 um)
 - 雲(凝結的水量越多、雲滴粒子越小,反射越強)
 - 地面(反照率越強,反射越強,冰雪>沙土>森林>海洋...)
 - 氣膠(氣膠量越多、粒子越小,背向散射散射越強)

Simulated spectrum from VIS to Near-IR with a layer of low cloud

- (a) The vertical profile of low-cloud LWC for three different values of $\tau_{c,0.65}$.
- (b) Simulated radiance spectra with low clouds having different LWCs as well as the clear-sky case (black curve). The Spectral Response Functions (SRFs) of Advanced Himawari Imager (AHI) Bands 1–6 are plotted together (Green Curve)

• 熱紅外線 (Thermal IR, 3-100 μm): 雲、水氣

Simulated Tb spectra with a layer of low cloud or of high cloud

Model atmospheric profiles of temperature (dashed) and LWC/IWC (shaded) in the left. Simulated Tb spectra for the low-cloud and high-cloud cases as well as the clear-sky case (black curve).

Himawari-8/9 application product

- RGB image
 - True color
 - RGB composite product
- Level 3 data
 - Sea surface temp.
 - Sea surface wind
 - Aerosol optical depth
 - Cloud optical depth
 - Cloud type

•

In this section, you will learn...

- How to download Himawari data (VIS + IR, 16 bands & geometries data)
 - VIS: 0.5km or 1km; IR: 2km; geo: 4km
- Process original Himawari data into easy-accessing format

Work flow: 1. Download 2. Decompress 3. Convert binary to Albedo or TBB 4. Extract sub domain 5. Output .nc file compressed_data/ yyyymmddhhmm.ext.01.fld.geoss.bz2 yyyymmddhhmm.geo.fld.4km.bin.bz2 sub_domain_data/ yyyymmddhhmm_band_03.nc yyyymmddhhmm_band_03.nc yyyymmddhhmm_4km_geo.nc

Original shell script for download and convert data:

- /data/C.jerryjerry9/hima_download/cldenv_shell_script
- 1. Copy all files in the cldenv_shell_script folder; 2. set date and band; 3.then run download.sh
- Only generate converted full disk data (.dat) and geo data (.bin)

- pip install ael_satellite_tools
- from ael_satellite_tools.preprocess import Himawari
- lat = [-10, 50]
- lon = [90, 180]

Course demo

- /data/cloud2025/homework_data/
- https://github.com/jerryjerry9/cldenv_2025
- data_path = '/data/cloud2025/[Your_path]/[himawari_data_folder]'
- himawari = Himawari(data_path=data_path, lat_range=lat, lon_range=lon)

0. Generate data list

- himawari.generate_list()
 - According to selected time period and band data generate file list for downloading
 - Would not access FTP server
- himawari.check_exist_sub_domain_file()
 - Check whether the sub domain nc files have been processed and if the data spatial coverage fits our target region

1. Download

- himawari.download()
 - Would access FTP server
 - Create compressed_data folder under data_path
 - Check whether the bz2 files have been downloaded
 - No data on FTP or download failed would write message to "no_file.txt"

2. Decompress

- himawari.unzip()
 - Decompressed data temporary store in the machine memory

3. Convert binary to Albedo or TBB

- himawari.read_binary()
 - Use band (ext, vis...) and data (geoss, bin...) name as reference to read binary data into np.array
 - Ouput array shape would be (24000),(24000) in ext, (12000),(12000) in vis, (3000),(3000) in 4km
 - 4km datasets can be directly used after processed by this function
- himawari.convert()
 - Use LUTs to convert digits into albedo or TBB
 - Valid range of albedo: 0 ~ 120%
 - Valid range of TBB: 69 ~ 330K (typical range: 180~320K)
- himawari.generate_binary()
 - Experimental function for output binary data at the data_path folder
 - Converted band data also can ben output (must change the file extension into .dat)

4. Extract sub domain

- himawari.sub_domain_extract()
 - Follow the initial setting of lat, lon range to extract sub domain data
 - Three output: sub_domain_data, sub_domain_lon, and sub_domain_lat

5. Output .nc file

- himawari.generate_nc()
 - .nc file naming rule will shift to AHI band number (band_01 ~ band_16)
 - Variable detail (ex. long name, unit, missing value...) can be seem in the .nc file

HW2

Download and process with satellite module

- Plot at least one band data over your target domain
- recommend setting:
 - Albedo: 0 ~ 100%
 - TBB: 190K ~ 300K
 - Color map: 'gray' or 'binary'

Online resource

- Near-real time image
 - https://himawari8.nict.go.jp/
- JMA Himawari home page
 - https://www.data.jma.go.jp/mscweb/en/index.html
- JAXA Himawari Monitor
 - https://www.eorc.jaxa.jp/ptree/index.html
- CHIBA Univ. gridded full-disk(FD) data page
 - http://www.cr.chiba-u.jp/databases/GEO/H8_9/FD/index.html
- CWA 衛星產品整合系統
 - https://satimage.cwa.gov.tw/SPD/home
- RGB composite product
 - https://www.jma.go.jp/jma/jma-eng/satellite/RGB_TL.html
- CWA True color description page
 - https://www.cwa.gov.tw/V8/C/W/OBS Sat Description.html
- Satellite Measurements of Clouds and Precipitation
 - https://doi.org/10.1007/978-981-19-2243-5