Reducibility

Sipser 5.1 (pages 187-198)

Reducibility

Image credit: Masha Lifshits (Fall 2019)

What it boils down to...

Driving directions

Cambridge

Western Mass

Driving directions

Boston

Driving directions

CS 311

Mount Holyoke College

Boston

If you can't drive to London...

then you can't drive to Paris!

because... chunnel...

If something's impossible...

• Theorem 4.11:

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$ is undecidable.

If something's impossible...

Theorem 4.11:

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$ is undecidable.

· Define:

$$HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$$

• Is $HALT_{TM}$ decidable?

The Halting Problem (again!)

• Theorem 5.1: $HALT_{TM}$ is undecidable.

- Proof Idea:
 - We know A_{TM} is undecidable.
 - We need to reduce one of $HALT_{TM}$ or A_{TM} to the other.
 - Which way to go?

$HALT_{TM}$ is undecidable.

Proof:

Suppose R decides $HALT_{TM}$. Define S = "On input < M, w>, where M is a TM and w a string:

- 1. Run TM R on input $\langle M, w \rangle$.
- 2. If R rejects, then reject.
- 3. If R accepts, simulate M on input w until it halts.
- 4. If *M* enters its accept state, *accept*; if *M* enters its reject state, *reject*."

What about emptiness?

 $\cdot E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$

• Theorem 5.2: E_{TM} is undecidable.

A step along the way

- Given an input $\langle M, w \rangle$, define a machine M_w as follows.
- $M_w =$ "On input x:
 - 1. If $x \neq w$, reject.
 - 2. If x = w, run M on input w and accept if M does."

$$E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$$

Proof:

Suppose TM R decides E_{TM} . Define a TM to decide A_{TM}

S = "On input < M, w>:

- 1. Use the description of M and w to construct M_w .
- 2. Run R on input $\langle M_w \rangle$.
- 3. If R accepts, reject; if R rejects, accept."

With power comes uncertainty

	M accepts w	$L(M) = \emptyset$	$L(M_1) = L(M_2)$
Turing machines	X	X	X
PDA			X
Finite automata			

Is there anything that can be done?

· Rice's Theorem:

Testing any nontrivial property of the languages recognized by Turing machines is undecidable!

We can't even tell when something's regular!

• $REGULAR_{TM} =$ { $< M > | M \text{ is a TM and } L(M) \text{ is regular}}$

• Theorem 5.3: $REGULAR_{TM}$ is undecidable.

$REGULAR_{TM}$ is undecidable

Proof:

Assume R is a TM that decides $REGULAR_{TM}$.

Define S = "On input < M, w>:

1. Construct TM

 M_2 = "On input x:

- 1. If x has the form $0^n 1^n$, accept.
- 2. Otherwise, run *M* on input *w* and *accept* if *M* accepts *w*."
- 2. Run R on input $\langle M_2 \rangle$.
- 3. If R accepts, accept; if R rejects, reject."