# GAZE DETECTION

Achinthya Sreedhar, Aryan Sehgal, Barrett Ratzlaff, Neha Shastri













#### Gaze Detection has utility in many spaces





















Each application has a different range of interest for a user's gaze

For the scope of our project, we chose a binary label classification: Is the user looking directly at the camera, or not?











#### Example:

Our dataset comes from Columbia University, in which there are 5,880 headshot photos of 56 diverse subjects taken at various angles.



Our dataset has a significant <u>class</u> imbalance, with ~720 photos of subjects looking at the camera, and the remaining 5,000 photos in the null class based on our initial standard.















After layers to resize abnormal images to a standard size, our initial model had three convolutional layers, increasing in filters with each layer.

Between each Conv2D layer was a MaxPooling layer.

```
inputs = Input(shape=(None, None, 3))
resized = Resizing(200, 300)(inputs) # making sure model is applicable beyond init:
rescaled = Rescaling(1./255) (resized) # scaling pixel values from 0 to 1
first layer = Conv2D(filters=16, kernel size=(2,2), activation='relu')(rescaled) #
first pool = MaxPooling2D(pool size=2)(first layer) # 2x2 pixel pool. This could be
third_layer = Conv2D(filters=32, kernel_size=(2,2), activation='relu')(first_pool)
third_pool = MaxPooling2D(pool_size=2)(third_layer)
fifth layer = Conv2D(filters=128, kernel size=(2,2), activation='relu')(third pool)
fifth pool = MaxPooling2D(pool size=2)(fifth layer)
flatten_out = Flatten()(fifth_pool)
hidden_layer = Dense(128, activation='relu')(flatten_out)
outputs = Dense(1, activation = 'sigmoid')(hidden layer)
model = Model(inputs=inputs, outputs=outputs)
```













After training, we found that our model had ~87% accuracy on the validation set! However...

While our model was
learning on the training
set, it was invariably
predicting the null class
on any validation/test set.















- · 1 of 728 positive class photos
- Part of the trouble is the extra details in the photo.















To reduce the noise any one photo introduces to our model, we implemented <a href="Mediapipe">Mediapipe</a> to crop the photos before prediction:





To improve performance, we added <u>MobileNet</u> on top of our base architecture.

















### Overfitting!











| RELEVANCE                                                 | FIRST MODEL                          | PROGRESS/FIXES      | FINAL MODEL      | CONCLUSIONS |  |  |  |  |
|-----------------------------------------------------------|--------------------------------------|---------------------|------------------|-------------|--|--|--|--|
| After testing 8 different adjustments individually to     |                                      |                     |                  |             |  |  |  |  |
| see how the model addressed <b>overfitting</b> , we found |                                      |                     |                  |             |  |  |  |  |
|                                                           | that:                                |                     |                  |             |  |  |  |  |
|                                                           | Improving Data                       | <u>I</u>            | mproving Model   |             |  |  |  |  |
| -                                                         | Data Augmentation                    | - 1                 | Drop-out Layers  |             |  |  |  |  |
| -                                                         | Gaussian Noise - L2 Regularization   |                     |                  |             |  |  |  |  |
| -                                                         | Class Weights - Threshold Adjustment |                     |                  |             |  |  |  |  |
|                                                           | All resulted in m                    | narginal improvemen |                  | to          |  |  |  |  |
| predict the positive class.                               |                                      |                     |                  |             |  |  |  |  |
| <b>1991</b>                                               | jej jej                              |                     | ĵ <del>o</del> ĵ | jej jej     |  |  |  |  |





The highlighted area includes both eyes and the nose bridge, suggesting the model may have learned that eye alignment and facial symmetry are important cues for gaze detection.













| RELEVANCE FIRST            |           | r MODEL PROGRES |                                  | S/FIXES         | F                  | INAL MODEL | CONCLUSIONS |           |                 |
|----------------------------|-----------|-----------------|----------------------------------|-----------------|--------------------|------------|-------------|-----------|-----------------|
| Base                       | Predi     | cted -          | Predicte                         | redicted + Prog |                    | oaressi    | on Made     |           |                 |
| Actual - 773               |           | 00              |                                  |                 |                    |            | - y         |           |                 |
| Actual +                   | ual + 110 |                 | 00                               |                 |                    |            |             |           |                 |
| + Mediapipe<br>+ MobileNet |           | Interm          | ediate                           | Predi           | cted - Predicted + |            |             |           |                 |
|                            |           | Actual          | - 430                            |                 |                    | 343        |             |           |                 |
|                            |           | Actual          | +                                | 36              | 74                 |            |             |           |                 |
|                            |           |                 |                                  |                 |                    |            | Final       | Predicted | l - Predicted + |
| +                          |           |                 | Deeper Model<br>Fine Tuning Actu |                 | Actual -           | 268        | 496         |           |                 |
|                            |           |                 | . I The Tuning                   |                 |                    | Actual +   | 28          | 152       |                 |
| Ĵ                          |           |                 |                                  |                 |                    |            |             |           | jei             |

## Failures & Learnings

Face/ Eye detection Models Pre-Trained Models Tested Tested

- Haar Cascades
- Mediapipe (Iris Detection)
- Face Alignment
- Dlib
- Insightface

- DenseNet
- EfficientNet
- ResNet

Additional Techniques Tested

- Random blur
- Random blackout
- Label smoothening
- Other loss functions
- Oversampling Minority Class













## Say Cheese!

















| RELEVANCE                                                                                                                                 | FIRST MODEL | PROGRESS/FIXES                                                          | FINAL MODEL                                                                                                                                                                                                                         | CONCLUSIONS |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| Res                                                                                                                                       | ults        |                                                                         | Next steps                                                                                                                                                                                                                          |             |  |  |
| Compared several cropping methods, backbone architectures and regularization strategies to arrive at a model balancing speed and accuracy |             | gaze prediction gaze prediction gaze gaze gaze gaze gaze gaze gaze gaze | Real-time face detection works reliably but gaze prediction lags in the live demo. By allocating more computational power and increased development time, we can fine tune the model to perform even better on webcam quality data. |             |  |  |
| िंग                                                                                                                                       | ) jej       | ĴŌĨ                                                                     | ાં                                                                                                                                                                                                                                  | jei         |  |  |

Thank You! Questions?