TA101

0,042 A entspricht

Lösung:

 $42 \cdot 10^{-3} \text{ A}$

0,042 A

A = Ampere (Stromstärke)

Größenordnung:

C)	,	Milli			Mikro			Nano			Piko		
C)	,	0	4	2									
				4	2									
0)	,	0	4	2	0	0	0						
C)	,	0	4	2	0	0	0	0	0	0			
C)	,	0	4	2	0	0	0	0	0	0	0	0	0

Es geht hier nur darum: An welcher Nachkomma-Stelle endet der gefragte Wert und 0,042 A hat 3 Stellen nach dem Komma = 42 • 10⁻³

Die Zahl aus der Frage wurde eingeschrieben:

Das sind 42 Milliampere = $42 \cdot 10^{-3}$

Oder auch 42 000 μ A = **42** • **10**⁻⁶ (3. Zeile)

Oder auch 42 000 000 nA = $42 \cdot 10^{-9}$

Oder auch 42 000 000 000 pA = $42 \cdot 10^{-12}$ (5. Zeile)

Die Lesart ist verschieden, aber es bleibt immer das Gleiche.

Üben Sie es mit Ihrem Taschenrechner: Gelb unterlegt sind Display-Zwischen- und Endergebnis - alles andere ist einzugeben.

42

EXP

4200

3

42⁰³

+/_

42-03

0.042 A.

(2. Zeile)

(4. Zeile)

0.042