#### 1

# FPGA ASSIGNMENT

# **BOLLA VAMSIKRISHNA**

bollavamsi04@gmail.com

IITH - Future Wireless Communications (FWC)

#### **CONTENTS**

#### 

# IV PROCEDURE

# V CONCLUSION

# I. QUESTION

The output expression for the Karnaugh map shown below is.



Fig. 1. KARNAUGH MAP

# II. COMPONENTS

| Component   | Values  | Quantity |
|-------------|---------|----------|
| vaman       | LC      | 1        |
| JumperWires | M-F     | 10       |
| Breadboard  |         | 1        |
| LED         |         | 1        |
| Resistor    | 220ohms | 1        |

Table.COMPONENTS

### III. TRUTH TABLE

| Q | R | !R | S | Q&!R S |
|---|---|----|---|--------|
| 0 | 0 | 1  | 0 | 0      |
| 0 | 0 | 1  | 1 | 1      |
| 0 | 1 | 0  | 0 | 0      |
| 0 | 1 | 0  | 1 | 1      |
| 1 | 0 | 1  | 0 | 1      |
| 1 | 0 | 1  | 1 | 1      |
| 1 | 1 | 0  | 0 | 0      |
| 1 | 1 | 0  | 1 | 1      |

Fig. 2. TRUTH TABLE

# 1 A. LOGIC

From the Karnaugh map we get

$$output = Q.\overline{R} + S \tag{1}$$

# IV. PROCEDURE

- 1) Connect the anode (longer leg) of the LED to PYGMY pin 4 on the VAMAN board.
- 2) Connect the cathode (shorter leg) of the LED to a current-limiting resistor (e.g., 220 ohms).
- 3) Connect the other end of the current-limiting resistor to the GND (ground) pin on the VAMAN.
- 4) Use PYGMY pin 1,2,3 on the VAMAN board to give the input manually.

# V. CONCLUSION

Hence we have found the output from Karnaugh map given which represents  $Q\overline{R}+S$ . Execute the circuit using below code.

https://github.com/Vamsichowdary04/Future WirelessCommunicationFWC/blob/ main/FPGAVAMAN/codes/helloworldfpga.v