Laboratorium z "Inteligencji obliczeniowej"

Ćwiczenie 2: Metody redukcji wymiarowości – nieujemna faktoryzacja macierzy i dekompozycje tensorów

Zadania:

- 1. Wygnerować faktory: $\mathbf{A} = [a_{ij}] \in \mathbb{R}_+^{IxJ}$ i $\mathbf{X} = [x_{jt}] \in \mathbb{R}_+^{JxT}$, gdzie $a_{ij} = \max(0, \check{a}_{ij})$ i $x_{jt} = \max(0, \check{x}_{jt})$ oraz $\check{a}_{ij}, \check{x}_{jt} \sim N(0,1)$ (rozkład normalny). Wygeneruj syntetyczne obserwacje **Y=AX** dla I = 100, T = 1000, J = 10. Stosując wybrane algorytmy NMF (ALS, MUE, HALS) wyznacz estymowane faktory $\widehat{\mathbf{A}}$ i $\widehat{\mathbf{X}}$ oraz unormowany błąd residualny w funkcji iteracji naprzemiennych. Oceń jakość estymacji stosując miary MSE (ang. *Mean-Squared Error*) lub SIR (ang. *Signal-to-Interference Ratio*).
- 2. Wygnerować faktory: $\boldsymbol{U}^{(1)} = [u_{i_1j}^{(1)}] \in \mathbb{R}_+^{I_1xJ}$, $\boldsymbol{U}^{(2)} = [u_{i_2j}^{(2)}] \in \mathbb{R}_+^{I_2xJ}$, $\boldsymbol{U}^{(3)} = [u_{i_3j}^{(3)}] \in \mathbb{R}_+^{I_3xJ}$, gdzie $u_{i_1j}^{(1)} = \max(0, \widecheck{u}_{i_1j}^{(1)})$, $u_{i_2j}^{(2)} = \max(0, \widecheck{u}_{i_2j}^{(2)})$, $u_{i_3j}^{(3)} = \max(0, \widecheck{u}_{i_3j}^{(3)})$ oraz $\widecheck{u}_{i_1j}^{(1)}, \widecheck{u}_{i_2j}^{(2)}, \widecheck{u}_{i_3j}^{(3)} \sim N(0,1)$ (rozkład normalny). Wygeneruj syntetyczne obserwacje \mathbf{Y} dla \mathbf{I}_1 = 10, \mathbf{I}_2 = 20, \mathbf{I}_3 = 30, \mathbf{J} = 5. Stosując wybrane algorytmy NTF (np. ALS) wyznacz estymowane faktory $\widehat{\mathbf{U}}^{(1)}$, $\widehat{\mathbf{U}}^{(2)}$ i $\widehat{\mathbf{U}}^{(3)}$ oraz unormowany błąd residualny w funkcji iteracji naprzemiennych. Oceń jakość estymacji stosując miary MSE (ang. *Mean-Squared Error*) lub SIR (ang. *Signal-to-Interference Ratio*).
- 3. Obrazy twarzy z bazy ORL (lub podobnej) przedstaw za pomocą tensora $Y \in \mathbb{R}^{I_1xI_2xI_3}$, gdzie I_3 jest liczbą obrazów. Rozdziel obrazy na zbiory trenujący i testujący według odpowiedniej zasady, np. 5-folds CV i utwórz odpowiednie tensory trenujący Y_r i testujący Y_t . Tensor trenujący poddaj dekompozycji CP (np. algorytmem ALS) oraz HOSVD dla J=4, 10, 20, 30. Pogrupować obrazy stosując metodę k-średnich do faktora $\widehat{\boldsymbol{U}}^{(3)}$. Badania przeprowadzić dla różnej liczby grup. Porównać dokładność grupowania z metodą PCA (z poprzedniego ćwiczenia). Następnie dokonaj projekcji obrazów z tensora Y_t na podprzestrzeń cech generowaną faktorami otrzymanymi z Y_r . Dokonaj klasyfikacji obrazów w przestrzeni cech w $\widehat{\boldsymbol{U}}^{(3)}$ za pomocą klasyfikatora k-NN. Porównać efekty klasyfikacji różnymi metodami (np. PCA, CP, HOSVD).