# Performances des mécanismes de sécurité du framework 6TiSCH

Défense de mémoire

Rémy Decocq

Faculté des Sciences Université de Mons





## Outline

- Introduction
  - Les réseaux IIoT (WSNs)
  - 6TiSCH
- État de l'art de la pile 6TiSCH
  - Principes fondamentaux de TSCH
  - La joining phase
- Méthode NPEB et expérimentations
  - Principes de la méthode NPEB
  - Évaluation de l'impact de sécurité sur la joining phase
  - Évaluation des performances de la méthode NPEB
- Conclusion

### Contexte

#### Équipements de l'Industrial IoT :

- Limités en ressources : mémoire, CPU, stockage, radio
- Limités en capacité énergétique (batteries)

#### Caractéristiques des Wireless Sensors Networks :

- Multipath fading et interférences
- Forte densité de noeuds déployés de façon imprécise
- Transmissions multi-hops
- Changements dans la topologie
- Phénomène de *clock drifting* entre horloges



FIGURE 1 – Architecture type d'un WSN où 6TiSCH est déployable

## 6TiSCH

Groupe de travail IETF IPv6 over the TSCH mode of IEEE802.15.4e

Méthode NPEB et expérimentations

Standardisation de la pile 6TiSCH complète pour :

- $\blacksquare$  Communications IPv6  $\rightarrow$  interopérabilité avec Internet
- Intégration du mode TSCH décrit par l'amendement IEEE802.15.4e
- Encadrer sécurité du réseau et joining phase

### Outline

- 1 Introduction
  - Les réseaux IIoT (WSNs)
  - 6TiSCH
- État de l'art de la pile 6TiSCH
  - Principes fondamentaux de TSCH
  - La joining phase
- 3 Méthode NPEB et expérimentations
  - Principes de la méthode NPEB
  - Évaluation de l'impact de sécurité sur la joining phase
  - Évaluation des performances de la méthode NPEB
- 4 Conclusion



FIGURE 2 – Pile réseau 6TiSCH

H

FIGURE 3 – Pile réseau 6TiSCH

Principes fondamentaux de TSCH

# Combinaison de :

- **1** TDMA  $\rightarrow$  multiplexage en temps (timeslot)
- **2** FDMA  $\rightarrow$  multiplexage en fréquences (*channelOffset*)

Une communication entre noeuds voisins est caractérisée par un couple (timeslot, channelOffset) où

- 1 timeslot donne le moment de la communication
- 2 channelOffset donne la fréquence à laquelle elle a lieu

Les noeuds communiquant possèdent et partagent cette information

ightarrow communications déterministes sur base d'un *schedule* 



Méthode NPEB et expérimentations



FIGURE 4 – Matrice des communications



FIGURE 5 – Noeuds communiquant

$$f_{eff} = HoppSeq[f \mod n_{ch}]$$
 où  $f = ASN + channelOffset$ 



FIGURE 6 – Effet de sauts de fréquence d'un cycle à l'autre de slotframe

# La joining phase

Réseau 6TiSCH de noeuds déjà raccordés protégé au niveau L2 par les mécanismes de protection IEEE802.15.4. et **clés** distribuées par l'autorité du réseau (*JRC*).

Un noeud qui veut rejoindre (pledge) n'a pas ces clés.

Un noeud déjà raccordé fait office de *Join Proxy* intermédiaire entre le pledge et l'autorité du réseau.

- ightarrow émission de frame spéciales (EBs) par les noeuds déjà raccordés
- ightarrow joining phase pour se synchroniser + obtenir les clés

Le pledge possède un contexte de sécurité pré-établi (PSK) partagé avec le JRC.

 $\rightarrow$  échanges pledge  $\leftrightarrow$  JRC (*Join Exchange CoJP*) protégés au niveau applicatif par un contexte partagé (*OSCORE*)



FIGURE 7 – Join Exchange CoJP opéré lors de la joining phase d'un pledge

Méthode NPEB et expérimentations

#### Outline

- 1 Introduction
  - Les réseaux IIoT (WSNs)
  - 6TiSCH
- État de l'art de la pile 6TiSCH
  - Principes fondamentaux de TSCH
  - La joining phase
- 3 Méthode NPEB et expérimentations
  - Principes de la méthode NPEB
  - Évaluation de l'impact de sécurité sur la joining phase
  - Évaluation des performances de la méthode NPEB
- 4 Conclusion

Introduction

# Principes de la méthode NPEB

NPEB : Neighbors propositions EB, augmentation des EBs standards

Principe: un noeud annonce certains de ses voisins, proposés aux pledges qui évitent une écoute active naïve (processus itératif d'écoute de proposition en proposition).

**=** 

Détermination du "meilleur voisin" basée sur ≠ critères

Maintien d'une NPtable par pledge et noeuds émettant EBs

| nœud voisin       | Join Metric | Cell émission NPEB | Cycle courant | # de cycles | RSSI      |
|-------------------|-------------|--------------------|---------------|-------------|-----------|
| 80-97-DF-48-00-01 | 0           | (1, 0)             | 0             | 2           | None      |
| 57-5F-CC-B1-00-02 | 14          | (1, 2)             | 5             | 5           | 0         |
| 18-14-DA-48-00-03 | 7           | (2, 11)            | 3             | 7           | -83 (dBm) |

FIGURE 8 – Exemple de NPtable et statuts d'écoute possibles (None/0/RSSI)

**=** 



FIGURE 9 – [Cycle t] État initial du réseau où les NPtables des nœuds sont déjà alimentées

田

Conclusion





FIGURE 10 – [Cycle t+1] Une itération de slotframe écoulée, deux NPEBs programmés pour ce nouveau cycle





FIGURE 11 – [Cycle t+2] sommeil du pledge jusqu'à la cell d'annonce indiquée par N1





FIGURE 12 – [Cycle t+4] sommeil du pledge jusqu'à la cell d'annonce indiquée par root et lancement de la suite du processus de join avec celui-ci

# Impact de sécurité sur la joining phase

#### Expérimentations dans le simulateur 6TiSCH :

- disposition des noeuds aléatoires
- $\forall$  noeud, min. 3 voisins avec PDR > 50%
- configuration de la pile 6TiSCH conforme aux standards
- même seed pour runs parallèles

Expérimentations : avec/sans joining phase sécurisée (i.e. Join Exchange CoJP), réseau de 10 noeuds, 20 runs



FIGURE 13 – Temps de convergence avec/sans sécurité (Join Exchange CoJP)



FIGURE 14 - Temps de join pour chaque noeud individuellement



FIGURE 15 – Tentatives nécessaires pour chaque partie du Join Exchange CoJP

#### Performances de la méthode NPEB

Intuitivement, la méthode NPEB a pour objectif de

accélerer et optimiser en terme d'énergie (du point de vue du pledge) le processus de join

Méthode NPEB et expérimentations

- permettre au pledge de sélectionner le meilleur voisin possible avec lequel initier le processus de join
- $\rightarrow$  division de l'analyse en fonction des étapes du processus de join, comparaison avec/sans NPEB
- $\geq$  aucune amélioration significative, non présenté ici

Expérimentations : avec/sans méthode NPEB implémentée, réseau de 30 noeuds, 10 runs et résultats agrégés



FIGURE 16 – [EBs] Temps requis pour  $\neq$  étapes tous noeuds et runs confondus

FIGURE 17 – [NPEBs] Temps requis pour  $\neq$  étapes tous noeuds et runs confondus

Time (s)



FIGURE 18 – [EBs] Charge consommée aux  $\neq$  étapes tous noeuds et runs confondus



FIGURE 19 – [NPEBs] Charge consommée aux  $\neq$  étapes tous noeuds et runs confondus

Charge (mC)

- État de l'art
  - Revue de la pile dans son entièreté, conforme aux standards dans leur état actuel (standardisation toujours en cours)
  - Détail de la sécurité de la joining phase fait dans aucun papier publié excepté les standards qui la décrivent eux-mêmes
- Expérimentations sur la joining phase
  - Première quantification de l'impact de la sécurité dans la Joining Phase
  - Élaboration de la méthode NPEB pour gagner en performances, un objectif non atteint significativement (sélection meilleur voisin)
    - $\rightarrow$  améliorations possibles par paramètres et processus décisionnels

# Performances des mécanismes de sécurité du framework 6TiSCH

Q&A