Diagonalisierung und polynomielle Hierarchie

Corvin Paul Matthias Schimek

13.05.2015

Gliederung

- Einleitung
 - Erster Unterabschnittstitel
 - Zweiter Unterabschnittstitel

Gliederung

- Einleitung
 - Erster Unterabschnittstitel
 - 7weiter Unterahschnittstitel

Überschriften müssen informativ sein. Korrekte Groß-/Kleinschreibung beachten. Untertitel sind optional.

- Viel itemize benutzen.
- Sehr kurze Sätze oder Satzglieder verwenden.

- mit dem pause-Befehl:
 - Erster Punkt.
 - Zweiter Punkt.
- mittels Overlay-Spezifikationen:
 - Erster Punkt.
 - Zweiter Punkt
- mit dem allgemeinen uncover-Befehl:
 - Erster Punkt
 - Zweiter Punkt.

- mit dem pause-Befehl:
 - Erster Punkt.
 - Zweiter Punkt.
- mittels Overlay-Spezifikationen:
 - Erster Punkt.
 - Zweiter Punkt.
- mit dem allgemeinen uncover-Befehl:
 - Erster Punkt.
 - Zweiter Punkt.

- mit dem pause-Befehl:
 - Erster Punkt.
 - Zweiter Punkt.
- mittels Overlay-Spezifikationen:
 - Erster Punkt.
 - Zweiter Punkt.
- mit dem allgemeinen uncover-Befehl:
 - Erster Punkt.
 - Zweiter Punkt.

- mit dem pause-Befehl:
 - Erster Punkt.
 - Zweiter Punkt.
- mittels Overlay-Spezifikationen:
 - Erster Punkt.
 - Zweiter Punkt.
- mit dem allgemeinen uncover-Befehl:
 - Erster Punkt.
 - Zweiter Punkt.

- mit dem pause-Befehl:
 - Erster Punkt.
 - Zweiter Punkt.
- mittels Overlay-Spezifikationen:
 - Erster Punkt.
 - Zweiter Punkt.
- mit dem allgemeinen uncover-Befehl:
 - Erster Punkt.
 - Zweiter Punkt.

- mit dem pause-Befehl:
 - Erster Punkt.
 - Zweiter Punkt.
- mittels Overlay-Spezifikationen:
 - Erster Punkt.
 - Zweiter Punkt.
- mit dem allgemeinen uncover-Befehl:
 - Erster Punkt.
 - Zweiter Punkt.

Wiederholung:

- Für $i \in \mathbb{N}$ beschreibt i die TM M_i
- Jede TM wird von unendlich vielen $i \in \mathbb{N}$ beschrieben
- Es existiert eine universelle TM U, die jede TM mit logarithmischem Overhead simulieren kann

Wiederholung:

- Für $i \in \mathbb{N}$ beschreibt i die TM M_i
- Jede TM wird von unendlich vielen $i \in \mathbb{N}$ beschrieben
- Es existiert eine universelle TM U, die jede TM mit logarithmischem Overhead simulieren kann

Wiederholung:

- Für $i \in \mathbb{N}$ beschreibt i die TM M_i
- Jede TM wird von unendlich vielen $i \in \mathbb{N}$ beschrieben
- Es existiert eine universelle TM U, die jede TM mit logarithmischem Overhead simulieren kann

Beispiel (Universelle TM)

TM M_i läuft bei Eingabe x in $O(f(n)) \Rightarrow TM U$ läuft bei Eingabe i, x in O(f(n)log(fn))

Definition (time-constructible functions)

Wir nennen eine Funktion f time-constructible, falls gilt : f(n) ist in O(f(n)) berechenbar.

Definition

 $\textbf{DTIME}(f(n)) = \{ \ L \ | \exists \ deterministische Turingmaschine , die L in <math display="inline">O(f(n))$ entscheidet $\}$

Definition (time-constructible functions)

Wir nennen eine Funktion f time-constructible, falls gilt : f(n) ist in O(f(n)) berechenbar.

Definition

 $\textbf{DTIME}(f(n)) = \{ \ L \ | \exists \ deterministische Turingmaschine , die L in <math display="inline">O(f(n))$ entscheidet $\}$

Deterministische Time Hierarchy

Satz (Time Hierarchy Theorem, 65)

Wenn f,g time-constructible Funktionen sind die $f(n)\log(f(n))=o(g(n))$ erfüllen, dann gilt $\mathbf{DTIME}(f(n)) \subseteq \mathbf{DTIME}(g(n))$

Frage: Warum brauchen wir den Faktor log(f(n))?

Deterministische Time Hierarchy

Satz (Time Hierarchy Theorem, 65)

Wenn f,g time-constructible Funktionen sind die $f(n)\log(f(n))=o(g(n))$ erfüllen, dann gilt $\mathbf{DTIME}(f(n)) \subsetneq \mathbf{DTIME}(g(n))$

Frage: Warum brauchen wir den Faktor log(f(n))?

Gliederung

- Einleitung
 - Erster Unterabschnittstitel
 - Zweiter Unterabschnittstitel

Zusammenfassung

- Die erste Hauptbotschaft des Vortrags in ein bis zwei Zeilen.
- Die zweite Hauptbotschaft des Vortrags in ein bis zwei Zeilen.
- Eventuell noch eine dritte Botschaft, aber nicht noch mehr.
- Ausblick
 - Etwas, was wir noch nicht lösen konnten.
 - Nochwas, das wir noch nicht lösen konnten.