

Computability and Complexity

Exercises

Decidability

Exercise 1: 0-1 sequences.

Prove that $\{0,1\}^{\mathbb{N}}$, the set of all infinite sequences over $\{0,1\}$, is uncountable.

Exercise 2: A whole language.

Prove that $L = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \Sigma^* \}$ is decidable.

Exercise 3: Regexps.

Consider the problem of deciding whether a DFA A and a regular expression E verify L(A) = L(E). Express this problem as a language and prove that it is decidable.

Exercise 4: Towards the infinity.

Prove that $L = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is infinite} \}$ is decidable.

Hint: Think about the pumping lemma!

Exercise 5: Accepting palindromes.

Prove that $L = \{ \langle A \rangle \mid A \text{ is a DFA and } A \text{ accepts some palindrome} \}$ is decidable.

<u>Hint:</u> Think about a CFG that generates a palindrome, and prove that the intersection between a regular language and a context-free language is context-free.