

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

7 5 2 6 3 0 5 0 9 5

CO-ORDINATED SCIENCES

0654/31

Paper 3 Theory (Core)

May/June 2021

2 hours

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 120.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 (a) Fig. 1.1 is a diagram of the human gas exchange system.

Fig. 1.1

(i)	Identify the parts labelled A and B in Fig. 1.1.	
	A	
	В	
		[2]
ii)	List three structures inspired air passes through on its way to the alveoli.	
	1	
	2	
	3	
		[3]

(iii) Place a tick (✓) in the box to show the blood vessel that brings blood to the lungs.

aorta	
pulmonary artery	
pulmonary vein	
vena cava	

[1]

			3			
(b)	Ехр	ired air contains a h	nigher percentage of ca	arbon dioxide	e than inspired a	ir.
	(i)	State one other wa	ay that the composition	of expired a	air is different fro	m inspired air.
						[1]
	(ii)	State the test for ca	arbon dioxide gas and	give the obs	servation for a po	ositive result.
		test				
		observation				[2]
(c)	A st	udent records their	breathing rate while w	alking and w	hile running.	
	The	results are shown i	n Fig. 1.2.			
		breathing rate / breaths per minute	35 30 25 20 15 10 5 walking	activity	running	
			Fig. 1.2	1		
	(i)	State the breathing	g rate of the student wh	nile walking.		
						aths per minute [1]
	(ii)	•	ts the investigation and		_	
		to running.	cted changes to the pa	attern of brea	athing while at re	est when compared

2 (a) Table 2.1 shows information about three Group VII elements.

Table 2.1

element	formula	colour	physical state at 20°C
chlorine	Cl ₂		gas
bromine		orange	
iodine	I ₂	grey	

	(i)	Complete Table 2.1.	[3]
	(ii)	State the name given to the Group VII elements in the Periodic Table.	
			[1]
(b)	Broi	mine reacts with hydrogen to make hydrogen bromide.	
	Con	nstruct the word equation for this reaction.	
		+	[1]
(c)	Aqu	leous bromine is orange.	
	Pre	dict the colour change, if any, when aqueous bromine is mixed with ethene gas.	
	Ехр	lain your answer.	
	colo	our change	
	exp	lanation	
			 [2]
(d)	Λn	aqueous solution is tested to see if bromide ions are present.	[4]
(u)			
		te the test for aqueous bromide ions and give the observation for a positive result.	
	obs	ervation	 [2]

(e) Fig. 2.1 shows the electrolysis of molten lead(II) bromide using inert electrodes.

Fig. 2.1

Identify the substances formed at the cathode and the anode.
at cathode
at anode

[Total: 11]

[2]

3 (a) A cyclist starts from rest and accelerates for 20 s.

The cyclist then travels at a constant speed of 5 m/s for 90 s.

Finally the cyclist slows down and stops after a further 5 s.

(i) On the grid in Fig. 3.1 draw a speed-time graph for the cyclist's journey.

Fig. 3.1 [3]

(ii) Calculate the distance travelled when the cyclist is travelling at constant speed.

11. 4		
distance =	m	121

- (b) Energy from the Sun heats the black saddle of the bicycle.
 - (i) State the method of energy transfer between the Sun and the Earth.

.....[1]

(ii) Name the part of the Sun's electromagnetic spectrum that is responsible for heating the saddle.

.....[1]

(iii) The Sun also heats up the air in the bicycle tyres. This causes the pressure of the air in the tyres to increase.

Describe, in terms of the motion of the air molecules, why the pressure of the air in the tyres increases as the temperature of the air increases.

.....[2

(c) Fig. 3.2 shows a metal nut on the bicycle which is difficult to unscrew.

Fig. 3.2

Fig. 3.3 shows two spanners **A** and **B**.

Fig. 3.3

	Explain why it is easier to use spanner B to unscrew the nut rather than spanner A .	
		[2]
(d)	The cyclist uses a plane mirror placed on his bicycle to see behind him.	
	State two characteristics of an image seen in a plane mirror.	
	1	
	2	
		[2]

[Total: 13]

4	(a)	rig	. 4.1 snows some information about feeding relationships in a national park.	
			Lions are the top predator. Lions eat jackals.	
			Goats eat grass.	
			Goats are eaten by jackals.	
			Fig. 4.1	
		(i)	Use the information in Fig. 4.1 to construct a food chain containing all the organisms	
				[2]
		(ii)	Use the information in Fig. 4.1 to identify the:	
			producer	
			secondary consumer.	
				[2]

© UCLES 2021 0654/31/M/J/21

(b) State the principal source of energy for all food chains.

(c) Table 4.1 shows the number and types of teeth for goats and humans.

Table 4.1

type of teeth	number in goats	number in humans
incisors	8	8
canines	0	4
premolars	12	8
molars	12	12

1		I		
	molars	12	12	
(i)	Goats have a greater to	otal number of premolar ar	nd molar teeth than hu	mans.
	Describe two other diffhumans.	ferences between the typ	es and number of te	eth in g
	1			
	2			
(ii)	Goats are herbivores. In plants.	Humans are able to gain t	neir energy by eating l	ooth an
	Suggest reasons why than humans.	goats have a greater tota	I number of premolar	and m
iii)	Circle the top two laye	rs in a human tooth.		
	cement	dentine	enamel	
	gum	pulp	nerve	

[Total: 11]

5 (a) Table 5.1 shows information about four metallic elements.

Table 5.1

metal	reaction of metal with water
copper	does not react with water
iron	reacts very slowly with water
lithium	reacts rapidly with water
sodium	reacts very rapidly with water

	(i)	State the names of the two metals in Table 5.1 that are transition elements.	
		and	[1]
	(ii)	Suggest the name of the gas produced when an alkali metal reacts with water.	
			[1]
	(iii)	Place the four metals in order of reactivity from the most reactive to the least reactive) <u>.</u>
		most reactive	
		least reactive	[2]
(b)	Cop	oper is extracted by heating copper oxide with carbon.	
	The	word equation for the reaction is shown.	
		copper oxide + carbon $ ightarrow$ copper + carbon dioxide	
	(i)	Balance the symbol equation for this reaction.	
		CuO + C \rightarrow Cu + CO $_2$	[1]
	(ii)	Identify which substance is reduced during this reaction.	
		Explain your answer.	
		substance reduced	
		explanation	
			[2]

(c)	Dur	ring the extraction of copper, carbon dioxide is released into the air.	
	Car	rbon dioxide is found in small quantities in clean air.	
	(i)	State the names of the two gases which are found in large quantities in clean air.	
		and	[1]
	(ii)	Carbon dioxide is a greenhouse gas.	
		State the name of one other greenhouse gas.	
			[1]
	(iii)	Carbon dioxide is released into the air during the combustion of fossil fuels.	
		State the names of two fossil fuels.	
		and	[1]
		[Total:	10]

6	(a)		ar has two identical headlamps. The lamps are connected in parallel across a 12V battery. ngle switch is used to turn on both lamps.
		(i)	Draw a circuit diagram for this circuit using standard electrical symbols.
			[3]
		(ii)	The resistance of each lamp is 3.0Ω .
		` ,	Calculate the current in each lamp when lit.
			current =A [2]
		(iii)	State one reason why the lamps are connected in parallel and not in series.
			[1]
	(b)	A la	amp consists of a glass bulb, which contains a thin metal filament attached to a metal e.
		The	glass bulb is filled with nitrogen gas.
		Wh	en electricity passes through the lamp, the filament is at a very high temperature.
		Fig.	6.1 shows a lamp.

Fig. 6.1

© UCLES 2021

Thermal energy is transferred from the hot filament through the nitrogen gas and through the glass bulb.

State the method by which thermal energy is transferred:

	(i)	by the nitrogen gas t	o the glass bulb		
					[1]
	(ii)	through the glass bu	lb.		
					[1]
(c)	On	a journey, a car becor	nes electrostatically cha	ged.	
	Des	scribe what happens to	cause the car to becom	ne charged.	
					[2]
(d)	Fia.	6.2 shows how dama	age to a steel door of the		
()			d over and cannot be se		ou man a placae imen
	pair	nt layer		plastic filler	paint layer
	S	teel / normal	steel gap damaged	repaired	′ `steel d
		bodywork	bodywork	bodywoi	
			Fig. 6.2		
	Sug	gest how the owner o	f the car uses a magnet	to detect the repair to	the bodywork.
					[1]
					[Total: 11]

7 (a) Table 7.1 shows some of the functions of the main components of blood.

Complete Table 7.1 with the name of the component of blood for each function.

Table 7.1

name of component	function of component
	blood clotting
	oxygen transport
	phagocytosis and antibody production
	used for transport of hormones

[4]

(b) Some of the substances transported by the blood need to be excreted.

The boxes contain the beginnings and the endings of some sentences.

Join **one** sentence beginning to **one** sentence ending to define the term excretion.

beginning	ending
Excretion is the absorption and assimilation of	non-toxic materials only.
Excretion is the digestion of	substances in excess of requirements only.
Excretion is the removal from organisms of	toxic materials and substances in excess of requirements.
Excretion is the taking in to organisms of	toxic materials and substances required by the body.

[2]

(c) Excretion, respiration and nutrition are three characteristics of living organisms.

Name two other characteristics of living organisms.

1

2[2]

[Total: 8]

8 (a) Fig. 8.1 shows three molecules A, B and C.

Fig. 8.1

	State the formula of the substance that reacts with molecule C to make molecule A .	
		[1]
(b)	Molecule ${\bf B},{\rm CH_4},$ is methane which is a compound. Methane contains the elements can and hydrogen.	bon
	Use this information to explain the difference between an element and a compound.	
		[2]
(c)	State the two products made when methane undergoes complete combustion in oxygen.	
	1	
	2	[2]
(d)	The combustion of methane is an exothermic reaction.	
	State what is meant by exothermic.	
		[1]

(e) An atom of carbon has a nucleon number (mass number) of 12 and a proton number (atomic number) of 6.

An atom of hydrogen has a nucleon number (mass number) of 1 and a proton number (atomic number) of 1.

	(i)	State the number	of electrons in a	an atom of carbon	and in an ator	n of hydrogen
--	-----	------------------	-------------------	-------------------	----------------	---------------

carbon	
hydrogen	[1]

(ii) State the number of neutrons in this atom of hydrogen.

.....[1]

(f) Complete the dot-and-cross diagram in Fig. 8.2 to show the bonding in a methane, $\mathrm{CH_4}$, molecule.

Fig. 8.2 [2]

[Total: 10]

9 (a) A school orchestra is practising.

Table 9.1 shows the highest and lowest sound frequencies of some of the musical instruments in the orchestra.

Table 9.1

instrument	highest frequency/Hz	lowest frequency/Hz
flute	2600	260
guitar	1200	70
piano	4200	30
violin	3500	200

(i)	State what is meant by the <i>frequency</i> of a wave.	
(ii)	State which instrument in Table 9.1 produces the sound with the lowest pitch.	
		[1]
(iii)	State which instrument in Table 9.1 produces sound with the widest range of frequence	ies.
		[1]
(iv)	State the normal audible frequency range for a healthy human ear.	
	fromHz toHz	[1]

(b)	A flu	ute is made from a nickel alloy. The volu	ume of the alloy used to make the flute is 90 cm ³ .
	The	e mass of the flute is 801 g.	
	(i)	Calculate the density of the alloy.	
		State the unit of your answer.	
			density = unit [3]
	(ii)	Calculate the weight of the flute.	
		The gravitational field strength g is 10	N/kg.
			weight = N [2]
			[Total: 9]

10 (a) Plants use different tissues to transport substances around the plant.

Circle **two** parts of a plant that are adapted for transport.

capillaries	chloroplasts		fatty tissue	guard cells	
	phloem	vena cava	xylem		[2]
					LZ.

(b) Fig. 10.1 is a diagram of a plant cell.

Fig. 10.1

(i)	Name the cell shown in Fig. 10.1 and state its function.	
	name	
	function	
		[2]
(ii)	Identify the parts labelled X and Y in Fig. 10.1.	
	X	
	Υ	
		[2]

(c) A scientist investigates the conditions needed for the germination of seeds.

She sets up four experiments **A–D** with different conditions.

Table 10.1 shows the conditions for each experiment.

Place a tick (\checkmark) in Table 10.1 to identify the experiment where the seeds will germinate.

Table 10.1

experiment	temperature/°C	moisture	oxygen	do seeds germinate? (✓)
Α	-20	damp	present	
В	-20	dry	absent	
С	20	damp	present	
D	20	dry	absent	

[1]

(d) Germination is an enzyme-controlled reaction.

The investigation is repeated with boiled seeds.

Describe the effect of boiling on the germination of seeds.

Give one reason for your answer.

effect		 	• • • • • • • • • • • • • • • • • • • •	
reason		 		
	•••••	 		 [2]

[Total: 9]

11 (a) Fig. 11.1 shows iron rusting.

Fig. 11.1

	(1)	iron rusts when two other substances are present.	
		State the names of these two substances.	
		and	[2]
	(ii)	Describe and explain one method used to prevent the rusting of iron.	
			[2]
(b)	Stai	inless steel is an alloy of iron.	
	Stat	te one use for stainless steel.	
			[1]
(c)	Soli	d iron melts at 1538 °C to become liquid (molten) iron.	
	Des	scribe one difference in the properties of a solid compared to a liquid.	
			[1]

(d) Melting is one of the processes involved when a substance changes state.

Fig. 11.2 shows other processes involved when substances change state.

Fig. 11.2

Identify processes A, B and C.

Α	
В	
С	
	[3]

[Total: 9]

12	(a)		Describe how to show that a radioactive isotope is releasing γ -rays but not α -particles o β -particles.						
			[2]						
	(b)	In a	nuclear reactor the fission of uranium-235 takes place.						
		(i)	Describe what happens to the nucleus of a uranium-235 atom during nuclear fission. [1]						
		(ii)	The half-life of uranium-235 is 704 million years.						
			A sample of uranium-235 has a mass of 0.1 g.						
			Calculate how many grams of uranium-235 will remain in the sample after 704 million years.						
			mass of uranium-235 remaining =g [1]						
		(iii)	Uranium-235 and uranium-238 are two isotopes of uranium.						
			Explain what is meant by isotope.						
			[1]						
	(c)	A n	uclear power station generates electricity. One use of electricity is to power an electric for.						
		In a	d.c. electric motor, a current-carrying coil in a magnetic field experiences a turning effect.						
		Sta	te two factors that can be changed to increase the turning effect in a d.c. motor.						
		1							
		2							
			[2]						

[Total: 7]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

■	2 He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon			
=>			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	B	bromine 80	53	Н	iodine 127	85	Αt	astatine -			
>			8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ро	polonium –	116	^	livermorium —
>			7	Z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Ξ	bismuth 209			
≥			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium —
=			2	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
									30	Zu	zinc 65	48	පි	cadmium 112	80	Hg	mercury 201	112	S	copernicium —
									29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
									28	Z	nickel 59	46	Pd	palladium 106	78	五	platinum 195	110	Ds	darmstadtium -
									27	ဝိ	cobalt 59	45	R	rhodium 103	77	'n	iridium 192	109	¥	meitnerium —
	- エ	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	9/	Os	osmium 190	108	Hs	hassium —
									25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
				pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
		Key	atomic number	mic sym	name ative atomic ma				23	>	vanadium 51	41	g	niobium 93	73	<u>a</u>	tantalum 181	105		dubnium —
				atc	rek				22	j	titanium 48	40	Zr	zirconium 91	72	茔	hafnium 178	104	꿆	rutherfordium —
									21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	99	Ba	barium 137	88	Ra	radium —
_			3	:=	lithium 7	1	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Ŧ	francium —
				Key III IV V VII atomic number 5 6 7 8 9	II	II	Key F 4 atomic number atomic mass F F F F B F B F B F B F B F B F B F B F B F B F B F B B F B B B B B B B B B B B C N O F B B B B C N D C F B <	II	III	III	III	III	II	II	1 1 1 1 1 1 1 1 1 1	II	1 1 1 1 1 1 1 1 1 1	The color of the	III IV V VI VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII	1

71 Lu	lutetium 175	103	۲	lawrencium -
δ Yb	ytterbium 173	102	8	nobelium
°9 Tm	thulium 169	101	Md	mendelevium -
。 回	erbium 167	100	Fm	fermium -
67 HO	holmium 165	66	Es	einsteinium
°6 Dy	dysprosium 163	86	ర్	californium -
65 Tb	terbium 159	6	番	berkelium -
² Gd	gadolinium 157	96	CB	curium
e3 Eu	europium 152	92	Am	americium -
Sm	samarium 150	94	Pu	plutonium -
Pm	promethium	93	ď	neptunium -
9 P N	neodymium 144	92	\supset	uranium 238
59 Pr	praseodymium 141	91	Ъа	protactinium 231
Se Se	cerium 140	06	모	thorium 232
57 La	lanthanum 139	89	Ac	actinium -

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).