COMP 4432 Machine Learning

Lesson 8: Unsupervised Learning

Agenda

- Unsupervised Learning
 - Intro and comparison
- Outlier Detection
- Clustering
 - Importance of EDA
 - Methods
 - Evaluation

Unsupervised vs. Supervised

- Supervised models include targets
 - Continuous values in regression
 - Price of house, Diabetes progression, Count of bike rentals
 - Group labels in classification
 - Survival aboard Titanic

Unsupervised vs. Supervised

- Evaluation of model quality
 - Supervised
 - RMSE, R2
 - Log-Loss, Confusion Matrix, AUC
 - Unsupervised
 - ?

- Unsupervised method used for outlier detection
 - Effective with high dimensional data

- Unsupervised method used for outlier detection
 - Effective with high dimensional data
- Constructs if-then-else logic, but completely random
 - Randomly select a feature/dimension/axis
 - Randomly select a cut point between the minimum and maximum values of selected feature
 - Iterates until all instances are isolated

- Unsupervised method used for outlier detection
 - Effective with high dimensional data
- Constructs if-then-else logic, but completely random
 - Randomly select a feature/dimension/axis
 - Randomly select a cut point between the minimum and maximum values of selected feature
 - Iterates until all instances are isolated
- Outliers are far from other data, so on average, they get isolated in fewer iterations (shorter path length)

- SciKit Documentation
- Contamination
 - "the proportion of outliers in the data set"
 - Not necessary known beforehand

Depth = 2

Clustering

- Partition n instances of data into k groups
 - k is less than or equal to n
- The correct answer isn't know beforehand
- Multiple algorithms
 - K-Means
 - DBScan
 - Hierarchal

Algorithm workflow

- Algorithm workflow
 - Selection of initial centroids
 - Random versus KMeans++

- Algorithm workflow
 - Selection of initial centroids
 - Random versus KMeans++
 - Update
 - Data points are assigned to nearest centroid

- Algorithm workflow
 - Selection of initial centroids
 - Random versus KMeans++
 - Update
 - Data points are assigned to nearest centroid
 - Average position amongst each group is calculated

- Algorithm workflow
 - Selection of initial centroids
 - Random versus KMeans++
 - Update
 - Data points are assigned to nearest centroid
 - Average position amongst each group is calculated
 - Each centroid is updated to the group's average value
 - Update again... and again...
- SciKit KMeans Documentation

Inertia

From SciKit documentation:

Sum of squared distances of samples to their closest cluster center

$$J = SSE = \sum_{k} \sum_{i \in k} ||x_i^{(k)} - c_k||^2$$

Inertia

$$J = SSE = \sum_{k} \sum_{i \in k} ||x_i^{(k)} - c_k||^2$$

Number of Clusters?

Identifying the optimal value of *k* is the hyperparameter tuning of K-Means

SciKit KMeans Documentation

$$J = SSE = \sum_{k} \sum_{i \in k} ||x_i^{(k)} - c_k||^2$$

Cannot simply minimize the SSE cost function for k. k = n is most optimal solution.

$$J = SSE = \sum_{k} \sum_{i \in k} ||x_i^{(k)} - c_k||^2$$

At what value of *k* does the observed incremental decrease in the SSE curve decrease? Subjective methodology

A little EDA can go a long way...

A little EDA can go a long way...

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

$$b(i) - a(i) \approx b(i)$$

$$\frac{b(i) - a(i)}{\max\{a(i), b(i)\}} \approx \frac{b(i)}{b(i)} = 1$$

$$b(i) - a(i) \approx -a(i)$$

$$\frac{b(i) - a(i)}{\max\{a(i), b(i)\}} \approx \frac{-a(i)}{a(i)} = -1$$

$$a(i) \approx b(i)$$

$$b(i) - a(i) \approx 0$$

$$\frac{b(i) - a(i)}{\max\{a(i), b(i)\}} \approx 0$$

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

Can be helpful in estimating the number of clusters.

A clustering method has been trained with *k* number of clusters.

The silhouette coefficient is calculated for every sample *i* in the data.

The average value of these coefficients is the Silhouette Score.

The coefficients are sorted and plotted per cluster.

Returning to the earlier discussion

The Silhouette pilot for k = 6 shows:

- The clusters are approximately the same height, implying the clusters have similar sizes.
- All clusters are above the average value (Silhouette Score).

Evaluation Metrics

- Adjusted Rand Score
 - SciKit Documentation
 - Requires ground truth labels (???)
- Davies-Bouldin Index
 - SciKit Documentation
 - Assesses the separation and compactness of clusters. Good clusters are those that have low intra-cluster variation and high inter-cluster separation.
 - The smaller the DBI (always greater than zero), the better the clustering quality.

$$S_k = \frac{1}{||C_k||} \sum_{i \in C_k}^{||C_k||} (||x_i - C_k||^q)^{1/q} \qquad M_{k_i, k_j} = ||C_{k_i}, C_{k_j}||$$

$$R_{k_i,k_j} = \frac{S_{k_i} + S_{k_j}}{M_{k_i,k_j}}$$
 $DBI = \frac{1}{K} \sum_{K} \max_{i} (R_{k_i,k_j})$

Evaluation Metrics

- Adjusted Rand Score
 - SciKit Documentation
 - Requires ground truth labels (???)
 - X = [1, 1, 0, 0, 0, 0]
 - Y = [0, 0, 0, 1, 0, 1]

	Y0	Y1	Row Sum
X1	2	0	a1 =2
X0	2	2	a2 =4
Col Sum	b1= 4	b2=2	

$$ARI = \frac{\sum_{ij} \binom{n_{ij}}{2} - \left[\sum_{i} \binom{a_i}{2} \sum_{j} \binom{b_j}{2}\right] / \binom{n}{2}}{\frac{1}{2} \left[\sum_{i} \binom{a_i}{2} + \sum_{j} \binom{b_j}{2}\right] - \left[\sum_{i} \binom{a_i}{2} \sum_{j} \binom{b_j}{2}\right] / \binom{n}{2}}$$