

RSA

João Veloso 49475 Luís Grilo 48235

Criptografia

Contexto histórico

1960

A criptografia era baseada apenas em chaves simétricas.

Desvantagens das chaves simétricas

Necessidade de possuir uma chave, distinta, para cada um dos seus clientes

As chaves tem de ser mantidas seguras durante a distribuição e no serviço As chaves necessitam ser mudadas frequentemente

Numa população de n pessoas, um total de $\frac{n \ (n-1)}{2}$

chaves são necessárias

Contexto histórico

1960

A criptografia era baseada apenas em chaves simétricas.

1970

Em 1970 James Ellis, engenheiro britânico trabalhou num conceito para recorrer ao uso de uma encriptação com chave pública.

Criptografia de chave pública

Vantagens da Criptografia de chave pública

Não é compartilhada a chave secreta

Possibilidade de validar assinatura com a chave privada através da chave pública

É escalável em comparação com a criptografia de chaves privadas Permite o não-repúdio, pois é possível verificar as chaves

Desvantagens da Criptografia de chave pública

Função Totiente de Euler

Função Totiente de Euler

Duas propriedades que são úteis para a utilização desta função no algoritmo RSA:

Sendo P um número primo então Φ (P) = P – 1

$$\Phi(A * B) = \Phi(A) * \Phi(B) \text{ se mdc}(A, B) = 1$$

Contexto histórico

Cliffor Cocks, um matemático Inglês desenvolveu um sistema equivalente

O RSA é publicado

1973

1978

1977

Ron Rivest, Adi Shamir e Leonard Adleman, foram os "primeiros" a descrever o algoritmo

1997

A agência de inteligência britânica (GCHQ) revela ter desenvolvido um algoritmo equivalente

RSA

Ronald Rivest

Adi Shamir

Leonard Adleman

Ronald Rivest

- Nasceu a 6 de Maio de 1947 em New York
- Professor no MIT
- Prémio Turing (2002)
- Prémio Marconi (2007)

Adi Shamir

- Nasceu a 6 de julho de 1952 em Tel Aviv, Israel
- Matemático, criptólogo e cientista da computação
- Prêmio Turing (2002)
- Professor Instituto de Tecnologia de Massachusetts

Leonard Adleman

- Nasceu a 31 de dezembro de 1945 em São Francisco
- Informático e Biólogo Molecular
- Professor na Universidade do Sul da Califórnia
- Professor no Instituto de Tecnologia de Massachusetts
- Prêmio Turing (2002)

Geração das chaves

Encriptação

Escolher p ,q ambos primos e diferentes

Calcular n = p * q

Calcular Φ (n) = (p - 1)(q - 1)

Escolher inteiro e $gcd(\Phi(n), e) = 1, 1 < e < \Phi(n)$

Calcular d

de mod Φ (n) = 1

Chave Publica

 $KU = \{ e, n \}$

Chave Privada

 $KR = \{d, n\}$

Plaintext:

Ciphertext:

M < n

 $C = M^e \pmod{n}$

Desencriptação

Ciphertext:

Plaintext:

C

 $M = c^d \pmod{n}$

Requisitos do Algoritmo

É possível encontrar valores e,d,n tal que M^{e*d} mod n = M para todo M < n É relativamente fácil calcular M e C para todos os valores de M < n

É inviável determinar d dado E e N

Exemplo RSA

Escolher dois números primos p = 17 e q = 11

Calcular n = p * q 17 * 11 = 187

 $\Phi(n) = (p - 1)(q - 1)$ = 16 * 10
= 160

Escolher e tal que seja relativamente primo a $\Phi(n)$ e menor que $\Phi(n)$ Escolhemos e = 7

Determindar d tal que mod 160 = 1 e d < 160 Assim obtemos d = 23 pois, 23 * 7 = 161 = (1 * 160) + 1

Resultado do Exemplo

O resultado anterior são as chave pública PU = {7, 187} e a chave privada PR = {23, 187}

Ataques

RSA é um sistema muito utilizado por isso vem tendo vulnerabilidades ao longo dos anos.

Existe uma lista completa de todos os ataques que se conhecem num artigo de um professor, Dan Boneh.

Ataques matemáticos

- Factorização de n nos números primos iniciais o que permite o cálculo de Φ (n) = (p 1) * (q 1) o que por sua vez permite determinar $d \equiv e^{-1}(mod\phi(n))$.
- Determinar Φ (n) diretamente sem necessidade de determinar per e q o que permite determinar $d \equiv e^{-1}(mod\phi(n))$.
- Determinar d directamente sem primeiro determinar Φ (n).

Força Bruta

A defesa para ataques de forma bruta é a mesma para outros sistemas criptográficos,nomeadamente usar uma chave grande.

Assim um maior d é mais seguro porém a desencriptação e encriptação fica mais complexa tornando o sistema mais lento.

Expoente Público pequeno

Tal como o expoente privado pequeno, pode-se cair na tentação de escolher um expoente público pequeno e na tentativa de acelerar processo de encriptação.

Ao contrário do ataque anterior, este não leva à ruptura da segurança do RSA, mas o objectivo é desencriptar uma mensagem sem precisar de descobrir a chave privada.

Ciphertext:

 $C = M^e \pmod{n}$

Expoente Privado pequeno

Isto acontece quando, na tentativa de tornar o processo de desencriptação mais rápido, podemos acabar por escolher um expoente privado "pequeno".

Isto pode levar à ruptura total da segurança do RSA, ou seja, consegue-se determinar o expoente privado d e consequentemente a factorização de n.

Number of Decimal Digits	Approximate Number of Bits	Date Achieved	MIPS-Years
100	332	April 1991	7
110	365	April 1992	75
120	398	June 1993	830
129	428	April 1994	5000
130	431	April 1996	1000
140	465	February 1999	2000
155	512	August 1999	8000
160	530	April 2003	_
174	576	December 2003	-
200	663	May 2005	-

Conclusão

- Rivest, Shamir e Adleman são os principais responsáveis pelo algoritmo RSA.
- Até hoje, é considerado a mais bem sucedida implementação de sistemas de chaves assimétricas.
- 103 Funciona com um par de chaves, uma pública e privada.
- Hoje em dia está presente em locais como emails, compras na internet, etc

Bibliografia

- W. Stallings, Network Security Essentials Applications and Services, Pearson, 6/E, 2017
- W. Stallings, L. Brown, Computer Security: Principles and Practice, Pearson 4/E, 2014
- W. Stallings, Cryptography and Network Security Principles and Practice, Pearson 7/E, 2017
- D. Gollmann, Computer Security, 3rd Ed, Wiley, 2011
- B. Schneier, Applied Cryptography, 1996, Wiley
- A. Zúquete, Segurança em Redes Informáticas, 5ª Ed., 2018, Ed. FCA
- M. Correia, P. Sousa, Segurança no Software, 2ª Ed., 2017 Ed. FCA

https://pt.wikipedia.org/wiki/RSA

https://www.youtube.com/watch?v=wXB-V_Keiu8

http://citeseerx.ist.psu.edu/viewdoc/download?doi=1 0.1.1.182.9999&rep=rep1&type=pdf

Obrigado

Questões ?