Série 16

1. Pour chacune des courbes définies ci-dessous, rechercher les éléments de symétrie déductibles de la parité des fonctions coordonnées.

a)
$$\begin{cases} x(t) = 3t - t^3 \\ y(t) = \sqrt[3]{t} \end{cases}$$
 c)
$$\begin{cases} x(t) = e^{-t} \cos t \\ y(t) = e^{-t} \sin t \end{cases}$$

d)
$$\begin{cases} x(t) = \frac{2t^2(t^2-1)}{(t^2+1)^2} \\ y(t) = \frac{4t^3}{(t^2+1)^2} \end{cases}$$

- b) $\begin{cases} x(t) = \sin t \\ y(t) = \frac{\cos^2 t}{2-\cos t} \end{cases}$
- 2. Pour les courbes paramétrées suivantes, déterminer :
 - a) le point stationnaire et la tangente en ce point:

$$\begin{cases} x(t) = \frac{t^2}{1-2t} \\ y(t) = \frac{t^3}{1-2t} \end{cases}$$

b) les asymptotes, les tangentes horizontales et verticales:

$$\begin{cases} x(t) = \frac{t^2}{1-2t} \\ y(t) = \frac{t^3}{1-2t} \end{cases} \qquad \begin{cases} x(t) = t^2 + \frac{4}{t-1} \\ y(t) = 2t^2 - \frac{16}{t-1} \end{cases}$$

3. Déterminer les paramètres réels a et b pour que la droite d: 9x + 3y + 4 = 0soit une asymptote oblique de la courbe Γ :

$$\Gamma: \begin{cases} x(t) = \frac{t^2}{(t-a)(t-b)} \\ y(t) = \frac{t^2}{t-b} \end{cases}$$

- **4.** On considère dans le plan, la courbe Γ définie par Γ : $\begin{cases} x(t) = \frac{2t^3}{t-1} \\ y(t) = \frac{t^4}{t-1} \end{cases}$
 - a) Etudier les branches infinies de la courbe Γ .
 - b) Déterminer le point stationnaire de Γ et sa tangente. Faire l'esquisse locale de la courbe Γ au voisinage de ce point. En quoi ce point est-il remarquable?
- 5. On considère dans le plan la courbe paramétrée Γ définie par

$$\Gamma: \quad \left\{ \begin{array}{l} x(t) = 2t + t^2 \\ y(t) = 2t^2 + a \, t - \frac{1}{t^2} \end{array} \right. \quad a \in \mathbb{R} \, .$$

a) Pour quelle valeur de $a \in \mathbb{R}$, la courbe paramétrée Γ possède-t-elle un point stationnaire?

Déterminer alors l'équation cartésienne de la tangente en ce point.

b) On pose a=4. Etudier les branches infinies de Γ .

Réponses de la série 16

- a) La courbe est symétrique par rapport à O. 1.
 - b) La courbe est symétrique par rapport à Oy.
 - c) La courbe ne possède pas de symétrie déductible de la parité des fonctions coordonnées.
 - d) La courbe est symétrique par rapport à Ox.
- 2. a) Point stationnaire P(0; 0) de tangente y = 0.
 - b) Asymptotes obliques a: y = 2x et a': y = -4x + 6. Tangente horizontale en (-1, 10). Tangente verticale en (8, -8).
- **3.** Deux solutions :
 - a = 5 et b = 2,
 - b = -2. • a = 1 et
- 4. a) Branches infinies de la courbe Γ .
 - Branches paraboliques de direction de pente $m = \frac{1}{2}$.
 - Asymptote verticale d'équation x = 1.
 - Asymptote oblique d'équation $y = \frac{1}{4}(x+1)$.
 - b) Le point stationnaire de Γ est l'origine ; c'est un maximum à tangente horizontale.
- **5**. a) Γ admet un point stationnaire si et seulement si a=6. Equation de la tangente à Γ au point stationnaire : x + y + 6 = 0.
 - b) La courbe Γ admet une asymptote verticale d'équation x=0 et une asymptote oblique d'équation y = 2x.