

In the Danger Zone: U-Net Driven Quantile Regression can Predict High-risk SARS-CoV-2 Regions via Pollutant Particulate Matter and Satellite Imagery

THE HONG KONG
POLYTECHNIC UNIVERSITY
香港理工大學

Jacquelyn A. Shelton¹, Przemyslaw Polewski^{1,2}, and Wei Yao¹

¹Hong Kong Polytechnic University ²TomTom Location Technology Germany

Motivation and Highlight

- Since COVID-19 outbreak policy makers have been relying upon non-pharmacological interventions to control the outbreak
- Pollution linked to COVID-19:
- (1) lethality rate strongly correlated to particulate matter ≤ 2.5 microns in diameter, $PM_{2.5} \rightarrow 1 \frac{\mu g}{m^3}$ increase in $PM_{2.5} \dots 8\%$ increase fatality rate [1] (2) pollution-to-human evidence that $PM_{2.5}$ a transmission vector [2] \Rightarrow Pollution needs to be included in intervention strategies
- Goal: use U-net driven quantile regression to predict $PM_{2.5}$ air pollution concentrations based on easily obtainable satellite imagery
- Results: network can predict reasonable $PM_{2.5}$ values with their spatial distribution even for locations where pollution data unavailable
- Aim: $PM_{2.5}$ predictions aid planning efficacious COVID-19 strategies \rightarrow e.g. understand impacts of social segregation policy on subpops allocate medical funds to the most vulnerable populaces
- → control of COVID-19 hotspots must pred. its spread and intensity
 Understanding an NPI's effectiveness requires understanding main
- Understanding an NPI's effectiveness requires understanding main transmission vectors → vital to learn how strength of air pollution affects transmission s.t. understand and design NPIs efficiently.

U-net model for pollutant particulate matter

- Network structure: U-net [3] arch. with additional 2 parallel branches at top level of upsampling path for predicting confidence interval
- Loss function: weighted sum of 3 quantile losses corresponding to upper, lower bound and median prediction:

$$L_{aggr}(\theta) = \gamma_I L_{q_I}(\theta) + L_{0.5}(\theta) + \gamma_U L_{q_U}(\theta)$$

Quantile loss: each partial loss is of the form:

$$L_q(\theta) = \frac{1}{|S|} \sum_{(x,y) \in S} \rho_q(y - f(x|\theta))$$
$$\rho_q(r) = r[r \ge 0] - (1 - q)r$$

Smooth approximation: ρ_q (Eq.2) is not differentiable everywhere; we approximate it with the (smooth) asymmetric Huber loss:

$$H(r|\delta_{I},\delta_{u}) = r^{2} - (r - \delta_{I})_{+}^{2} - (-r - \delta_{u})_{+}^{2}$$

 $\rho_{q} \approx R_{q}^{\alpha}(r) = \alpha H(r|q/2\alpha, (1 - q)/2\alpha)$

Data: Satellite imagery and pollutant concentrations

Satellite images of US cities for training and testing & $PM_{2.5}$ concentrations from 2018 shown in background color map

Satellite data:

- Landsat 8 multispectral imagery [4], publicly available from USGS
- Using 9 bands from violet (0.435 μ m) to thermal infrared (12.5 μ m)
- \blacksquare Revisit period 16 days \rightarrow 2 images per month, mission start 2013
- Ground sampling distance 30-100 m depending on spectral band

Pollution data:

- Pollutant Particulate Matter 2.5 ($PM_{2.5}$) → only available 2001-2018 monthly, overlap with Landsat 8: 2013-2018
- Fusion of ground sensor, sat. imagery data and chem. model [5]
- Resolution of 0.01×0.01 degrees, $\approx 1.1 \times 1$ km (USA)

Preprocessing:

- Reproject and resample Landsat imagery to *PM*_{2.5} resolution
- Mask out clouds to remove occlusions (band 9)
- Average sat images by month to follow GT temporal cycle Experimental details
- Data: N = 133 sat imgs from Mar 2013–Apr 2018 of 24 US cities \rightarrow 80:20% random split, training/testing set \Rightarrow 106:27 images
- Network parameters: dropout ratio = 0.5, learning rate = 0.00005, regression quantiles $q_l = 0.1$, $q_r = 0.9$, Huber loss (3) aggregate contributions (2) set equal, function shape $\alpha = 2$

Experiments

Convergence verification and generalizability with ground-truth

- Goal: assess generalizability of model to temporally unseen data
- Data: train = 106 & test = 26 imgs w. spatial overlap (same cities) but diff times
- Shown: U-net converges to GT $PM_{2.5}$ values w. min error & successfully reconstructs $PM_{2.5}$ concentrations and structure per pixel (dense)

Before and after SARS-CoV-2-induced lock-down

- Goal: predict $PM_{2.5}$ concentrations around LA lock-down w. no $PM_{2.5}$ GT
- Data: satellite images of Los Angeles from 2018, 2019, and 2020 only
- Shown: $PM_{2.5}$ concentrations distributions .9-th quantile shift from 13.2 to 9.7 $PM_{2.5}$ between Oct & Apr (\mathbf{A}), matching $PM_{2.5}$ map visualizations (\mathbf{B}) and drastic decrease where most densely populated

- Shown: $PM_{2.5}$ predictions from Oct 2019 vs. Apr 2020 (**D**) \rightarrow greatest $PM_{2.5}$ drop in counties with largest population (red and blue points below x = y)
- \Rightarrow make **meaningful** $PM_{2.5}$ **predictions**, both values and structure, where **no** $PM_{2.5}$ **data available** \rightarrow can inform of COVID-19 DANGER ZONES