CS F364 Design & Analysis of Algorithms

ALGORITHMS - COMPLEXITY

Complexity Classes

- NP-Completeness Via Reductions
 - Examples: CNF-SAT

PROBLEM: CNF-SAT

O CNF-SAT:

- Given a Boolean expression F in CNF (i.e. Conjunctive Normal Form)
 - o find whether there is an input assignment such that the F is satisfied.

• Question:

- Can you design an algorithm to solve CNF-SAT ?
 - o Can you design a polynomial time algorithm to solve CNF-SAT?
 - Points to ponder:
 - Verifying <u>validity of a formula in CNF</u> can be done in polynomial time.
 - (Dual): Verifying <u>satisfiability of a formula in DNF</u> can be done in polynomial time.
- But we argued that SAT is NP-complete:
 - o Is there an implication on converting a SAT instance to equivalent CNF (or DNF)?

NP-Completeness Via Reductions: CNF-SAT

- O CNF-SAT:
 - Given a Boolean expression F in CNF
 - o find whether there is an input assignment such that the F is satisfied.
- o CNF-SAT is №P-complete
 - 1. CNF-SAT is in \mathbb{NP} .

Proof:

Given an assignment of values (as a certificate) verification can be done in linear time.

2. CNF-SAT is NP-hard

i.e. SAT ≾ CNF-SAT

(see following slides for a reduction).

NP-Completeness Via Reductions: CNF-SAT [2]

- SAT ≾ CNF-SAT
 - Is there an algorithm to convert a Boolean expression
 F to its equivalent CNF?
 - o What is the time complexity of the algorithm?
 - We want a mapping

g: I(SAT) --> I(CNF-SAT)

that ONLY needs to preserve satisfiability!

SAT ≾ CNF-SAT

- Mapping: g(F) = F' where F' is in CNF.
 - Construct the parse tree of the given expression F.
 - Label each edge with a variable (including the one incoming edge to the root)
 - Label each leaf with the input variable
 - Construct formula F' as r₀ AND (AND_i v_i)
 - owhere each $\mathbf{v_i}$ corresponds to a vertex of the tree and is of the form:
 - $oe_o <--> e_{i1} op e_{i2}$ if op is binary
 - $oe_o <--> ope_i$ if op is unary
 - for output edge $\mathbf{e_o}$ and input edges $\mathbf{e_{i1}}$ and $\mathbf{e_{i2}}$

• Claims (A and B):

- A. The mapping **g** can be computed in polynomial time:
 - Time taken for constructing a parse tree, given a formula of length n
 - Time taken for parsing: O(n³)
 refer to CYK algorithm (Dynamic Programming)
 - Time taken for construction of tree: O(n)
 - Time taken for constructing the formula from the tree:
 - Time taken for traversing the tree: O(n)
 - Time taken for writing the formula: **O(k*n)** where k is the (constant) length of each clause
- B. g(F) is satisfiable iff F is satisfiable.