A quick guide to LATEX

What is LATEX?

LATEX (usually pronounced "LAY teck," sometimes "LAH teck," and never "LAY tex") is a mathematics typesetting program that is the standard for most professional mathematics writing. It is based on the typesetting program TeX created by Donald Knuth of Stanford University (his first version appeared in 1978). Leslie Lamport was responsible for creating LATEX a more user friendly version of TeX. A team of LATEX programmers created the current version, LATEX 2ε .

Math vs. text vs. functions

In properly typeset mathematics variables appear in italics (e.g., $f(x) = x^2 + 2x - 3$). The exception to this rule is predefined functions (e.g., $\sin(x)$). Thus it is important to always treat text, variables, and functions correctly. See the difference between x and x, -1 and -1, and $\sin(x)$ and $\sin(x)$. There are two ways to present a mathematical expression—inline or as an equation.

Inline mathematical expressions

Inline expressions occur in the middle of a sentence. To produce an inline expression, place the math expression between dollar signs (\$). For example, typing \$90^{circ}\$ is the same as $\frac{\pi}{2}$ radians yields 90° is the same as $\frac{\pi}{2}$ radians.

Equations

Equations are mathematical expressions that are given their own line and are centered on the page. These are usually used for important equations that deserve to be showcased on their own line or for large equations that cannot fit inline. To produce an inline expression, place the mathematical expression between the symbols \[and \]. Typing \[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\] yields

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Displaystyle

To get full-sized inline mathematical expressions use \displaystyle. Use this sparingly. Typing I want this $\star \star \$ not this $\star \$ infty\\frac{1}{n}\$, not this $\star \$ infty\\frac{1}{n}\$. yields

I want this
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
, not this $\sum_{n=1}^{\infty} \frac{1}{n}$.

Images

You can put images (pdf, png, jpg, or gif) in your document. They need to be in the same location as your .tex file when you compile the document. Omit [width=.5in] if you want the image to be full-sized.

\begin{figure}[ht]
\includegraphics[width=.5in]{imagename.jpg}
\caption{The (optional) caption goes here.}
\end{figure}

Text decorations

Your text can be *italics* (\textit{italics}), **boldface** (\textbf{boldface}), or <u>underlined</u> (\underline{underlined}).

Your math can contain boldface, \mathbf{R} (\mathbf{R}), or blackboard bold, \mathbb{R} (\mathbf{R}). You may want to used these to express the sets of real numbers (\mathbb{R} or \mathbf{R}), integers (\mathbb{Z} or \mathbf{Z}), rational numbers (\mathbb{Q} or \mathbf{Q}), and natural numbers (\mathbb{N} or \mathbf{N}). To have text appear in a math expression use \text. (0,1]=\{x\in\mathbf{R}\:x>0\\text{ and }x\le 1\} yields (0,1] = $\{x \in \mathbb{R} : x>0 \text{ and } x \leq 1\}$. (Without the \text command it treats "and" as three variables: $(0,1]=\{x \in \mathbb{R} : x>0 \text{ and } x \leq 1\}$.)

Spaces and new lines

LATEX ignores extra spaces and new lines. For example,

This sentence will look fine after it is compiled.

This sentence will look fine after it is compiled.

Leave one full empty line between two paragraphs. Place \\ at the end of a line to create a new line (but not create a new paragraph).

This compiles

like\\
this.
This compiles like

Use \noindent to prevent a paragraph from indenting.

Comments

Use % to create a comment. Nothing on the line after the % will be typeset. $f(x)=\sin(x)$ %this is the sine function yields $f(x)=\sin(x)$

Delimiters

description	command	outpu
parentheses	(x)	(x)
brackets	[x]	$[\mathbf{x}]$
curly braces	\{x\}	{x}

To make your delimiters large enough to fit the content, use them together with \right and \left. For example, \left\{\sin\left(\frac{1}{n}\right)\right\}_{n}^{{\infty}} produces

$$\left\{\sin\left(\frac{1}{n}\right)\right\}_n^{\infty}$$

Curly braces are non-printing characters that are used to gather text that has more than one character. Observe the differences between the four expressions x^2 , x^2 .

Lists

You can produce ordered and unordered lists. descriptioncommandoutput\begin{itemize} \item Thing 1 • Thing 1 unordered list \item • Thing 2 Thing 2 \end{itemize} \begin{enumerate} \item Thing 1 1. Thing 1 ordered list \item 2. Thing 2 Thing 2 \end{enumerate}

Symbols (in math mode)

The basics

life basics		
description	command	output
addition	+	+
subtraction	-	_
plus or minus	\pm	±
multiplication (times)	\times	×
multiplication (dot)	\cdot	•
division symbol	\div	÷
division (slash)	/	/
circle plus	\oplus	\oplus
circle times	\otimes	\otimes
equal	=	=
not equal	\ne	\neq
less than	<	<
greater than	>	>
less than or equal to	\le	\leq
greater than or equal to	\ge	= ≠ < > > < ≥ ≥ ≈
approximately equal to	\approx	≈
infinity	\infty	∞
dots	1,2,3,\ldots	$1, 2, 3, \dots$
dots	1+2+3+\cdots	$1+2+3+\cdots$
fraction	$frac{a}{b}$	$\frac{a}{b}$
square root	\sqrt{x}	\sqrt{x}
nth root	$\sqrt[n]{x}$	$\sqrt[n]{x}$
exponentiation	a^b	$a^{\dot{b}}$
subscript	a_b	a_b
absolute value	x	x
natural log	$\ln(x)$	ln(x)
logarithms	$\log_{a}b$	$\log_a b$
exponential function	$e^x=\exp(x)$	$e^x = \exp(x)$
degree	\deg(f)	$\deg(f)$

Functions					Calculus				
description	comman	d out	tput		description		command		output
maps to	\to	\rightarrow			derivative		\frac{df}{dx}		$\frac{df}{df}$
composition piecewise	\circ x =	0			derivative		\f'		dx
function	x & x\g		$=\begin{cases} x \end{cases}$	$x \ge 0$	partial derivat		\frac{\partial f {\partial x}	}	$\frac{df}{dx} \\ f' \\ \frac{\partial f}{\partial x} \\ f$
	-x & x<	0	(-x)	x < 0	integral		\int		Ĩ
	ca				-		(222)		J_{ff}
Greek and I					double integra	al	\iint		//
command	output	command	output		triple integral	ı	\iiint		ĬĬĬ
\alpha \beta	$\frac{lpha}{eta}$	\tau \theta	au heta		-				JJJ
\chi	,	\upsilon	v		limits		\lim_{x\to \infty]	}	$\lim_{\substack{x \to \infty \\ \infty}}$
\delta	$\frac{\chi}{\delta}$	\xi	ξ				٠ (- 4) ٥ (١ : ٤٠-	.1	\sum_{∞}
\epsilon	ϵ	\zeta	ζ		summation		$\sum_{n=1}^{\int \int \int d^n d^n d^n d^n d^n d^n d^n d^n d^n d^n$	ysa_n	$\sum_{n=1}^{\infty} a_n$
\varepsilon	ε	\Delta	$\overset{\mathtt{s}}{\Delta}$						$\stackrel{n=1}{\underline{\infty}}$
\eta	η	\Gamma	Γ		$\operatorname{product}$		$\displaystyle \frac{n=1}^{\int n}$	ty}a_n	$\prod a_n$
\gamma	$\dot{\gamma}$	\Lambda	Λ						n=1
\iota	ι	\Omega	Ω		Logic				
\kappa	κ	\Phi	Φ		_			4 4	
\lambda	λ	\Pi	П		description		command	output	,
\mu	μ	\Psi	Ψ		not		\sim	~	
\nu	ν	\Sigma	\sum_{-}		and		\land \lor	\ V	
\omega	ω	\Theta	Θ		$_{ m or}$ ifthen		\to	$\stackrel{\vee}{ o}$	
\phi	ϕ	\Upsilon	Υ		if and only if		\leftrightarrow	\rightarrow \leftrightarrow	
\varphi	φ	\Xi	Ξ		logical equival	lence	\equiv	≡	
\pi	π	\aleph	×		therefore	ience	\therefore	<i>-</i> ∴	
\psi	ψ	\beth	בַ		there exists		\exists	∃	
\rho	ρ	\daleth	٦		for all		\forall	A	
\sigma	σ	\gimel	ן		implies		\Rightarrow	\Rightarrow	
Set theory					equivalent		\Leftrightarrow	\Leftrightarrow	
description		nmand		output	Timoon almal	hna			
set brackets		1,2,3\}		$\{1, 2, 3\}$	Linear alge	bra			
element of	\ii			€,	description	comr	nand	outpu	t
not an element		ot\in		∉	vector	\vec		$ec{v}$	
subset of	-	ıbset			vector		nbf{v}	v	
subset of not a subset of		ibseteq		∩	norm		ec{v}	$ \vec{v} $	
	-	ot\subset		<u> </u>			ft[
contains contains		ıpset ıpseteq		7			gin{array}{ccc}	г.	
union	\si			=			2 & 3 \\	1	$\begin{bmatrix} 2 & 3 \\ 5 & a \end{bmatrix}$
intersection	\c:	-		n	matrix		5 & 6\\	4	5 6
mersection	100	ap		10			8 & 0	[7	8 0]
big union	\b:	igcup_{n=1}	`{10}A_n	$\bigcup A_n$			d{array} ght]		
				n=1		(11	giro]		
1:	. \1.		. [40] 4	10		\le	ftl		
big intersection	n \b:	$igcap_{n=1}$	{10}A_n	$\bigcap_{n} A_n$			gin{array}{ccc}		
empty set	_	nptyset		$ \stackrel{n=1}{\emptyset} $			2 & 3 \\	1	2 3
power set		athcal{P}		\mathcal{P}	determinant		5 & 6 \\		5 6
minimum	\m:			min			8 & 0		8 0
maximum	\ma			max			d{array}	1	1
supremum	\m.\ \s1			sup			ght		
infimum	\iı	-		inf	determinant	\det	•	$\det(A$)
	,,_,				4	\		+(À)	

 \limsup

lim inf \overline{A}

trace

dimension

\operatorname{tr}(A)

 $\dim(V)$

tr(A)

 $\dim(V)$

closure

limit superior

limit inferior

\limsup

\liminf

\overline{A}

Number theory

description	command	output
divides	1	
does not divide	\not	΄,
div	\operatorname{div}	div
mod	\mod	mod
greatest common divisor	\gcd	gcd
ceiling	\lceil x \rceil	$\lceil x \rceil$
floor	\lfloor x \rfloor	x

Geometry and trigonometry

description	command	output
angle	\angle ABC	$\angle ABC$
degree	90^{\circ}	90°
triangle	\triangle ABC	$\triangle ABC$
segment	\overline{AB}	\overline{AB}
sine	\sin	\sin
cosine	\cos	cos
tangent	\tan	tan
cotangent	\cot	\cot
secant	\sec	sec
cosecant	\csc	csc
inverse sine	\arcsin	arcsin
inverse cosine	\arccos	arccos
inverse tangent	\arctan	arctan

Symbols (in *text* mode)

The followign symbols do not have to be surrounded by dollar

signs.		
description	command	output
dollar sign	\\$	\$
percent	\%	%
ampersand	\&	&
pound	\#	#
backslash	\textbackslash	\
left quote marks	"	"
right quote marks	, ,	"
single left quote	·	•
single right quote	,	,
hyphen	X-ray	X-ray
en-dash	pp. 515	pp. 5–15
em-dash	Yesor no?	Yes—or no?

Resources

TUG: The TEX Users Group

CTAN: The Comprehensive TEX Archive Network

Handwriting-to-IATEX sites: Detexify, WebEquation

The Comprehensive LATEX Symbol List The Not So Short Introduction to LATEX 2ε

Software that generates LATEX code: Mathematica, Maple, GeoGebra

LATEX for the Mac: MacTeX

LATEX for the PC: TEXnicCenter and MiKTEX

LATEX online: ShareLaTeX, Overleaf, Sage

LATEX integration with Microsoft Office, Apple iWork, etc: MathType, LATEXiT

Dave Richeson, Dickinson College, http://divisbyzero.com/