Tutorat mathématiques : TD2

Université François Rabelais

Département informatique de Blois

Mathématiques générales

* *

Problème 1

- 1. Soient les nombres complexes $z = 1 + i\sqrt{3}$ et z' = 1 i
 - (a) Calculer zz' sous forme algébrique et sous forme exponentielle.
 - (b) En déduire les valeurs de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.
 - (c) Démontrer la question précédente sans utiliser les nombres complexes.
- 2. Soit $\Delta = 1 + i$.
 - (a) Mettre Δ sous forme exponentielle et calculer ses racines.
 - (b) En déduire les valeurs de $\cos\left(\frac{\pi}{8}\right)$ et $\sin\left(\frac{\pi}{8}\right)$.

Problème 2

Soit le polynôme $P(X) = X^4 - 6X^3 + (8 - i)X^2 + (6 + 6i)X - 9 - 9i$

- 1. Montrer que 3 est racine de P et déterminer son ordre de mutiplicité.
- 2. Factoriser P dans \mathbb{C} . On donnera les racines sous forme exponentielle et algébrique.

Problème 3

Soit $a \in \mathbb{N}$. On définit le polynôme P_a sur \mathbb{R} tel que :

$$\forall X \in \mathbb{R}, P_a(X) = X^3 - X(a^2 + 2a) + 2$$

Notre but ici est de trouver a tel que P_a possède trois racines appartement à \mathbb{Z} . On suppose qu'un tel a existe. Soient X_1, X_2, X_3 , les trois racines de P_a avec $X_1 \leq X_2 \leq X_3$.

- 1. Que valent $X_1 + X_2 + X_3$ et $X_1X_2X_3$?
- 2. Calculer $P_a(0)$ et en déduire que $X_1 < 0$.
- 3. Déduire de (a) et (b) que $X_1 \leq 0 \leq X_2 \leq X_3 \leq -X_1$ puis trouver les valeurs de X_1, X_2 et X_3 .
- 4. Montrer que $P'_a(t_2) = 0$ et en déduire la valeur de a.

Problème 4 [Partiel 2015]

En utilisant la formule d'Euler :

$$\forall x \in \mathbb{R}, \cos(x) = \frac{e^{ix} + e^{-ix}}{2}$$

Linéariser $\cos^3(x)$.

Problème 5

Démontrer que tout nombre complexe $z \neq 0$ admet un unique inverse z' noté $\frac{1}{z}$ tel que :

$$\frac{1}{z} = \frac{1}{|z|^2} \overline{z}$$

Problème 6

Les énoncés sont indépendants :

- 1. Soit $z \in \mathbb{C} \setminus \{1\}$ tel que |z| = 1. Pour quelle(s) valeur(s) de n a-t-on le complexe $\left(\frac{1+z}{1-z}\right)^n$ qui est un réel pur?
- 2. Calculer pour toute valeur de $\theta \in \mathbb{R}$, $S_n = \sum_{k=0}^n \binom{n}{k} \sin(k\theta)$.
- 3. Factoriser dans $\mathbb{R}[X]$ puis $\mathbb{C}[X]$ les polynômes suivants :
 - (a) $P(X) = X^3 1$
 - (b) $P(X) = X^6 + 1$
 - (c) $P(X) = X^9 X^6 + X^3 1$
- 4. Donner la division selon les puissances croissantes à l'ordre 4 (c'est à dire tel que le reste soit divisible par X^{k+1}) de $A = 1 + X^3 2X^4 + X^6$ par $B = 1 + X^2 + X^3$.

Problème 7

On considère l'équation (E) suivante avec $z \in \mathbb{C}$.

$$(1+iz)^5 = (1-iz)^5$$
 (E)

- 1. Soit $\theta \in \mathbb{R}$ non congru à $\frac{\pi}{2}$ modulo π . Montrer que $\frac{e^{2i\theta}-1}{e^{2i\theta}+1}=i\tan(\theta)$
- 2. Déterminer les solutions complexes de (E) à l'aide des racines cinquièmes de l'unité. On exprimera les solutions à l'aide de la fonction tan.
- 3. Développer $(1+iz)^5$ et $(1-iz)^5$ à l'aide de la formule du binôme de Newton. En déduire les solutions de (E) sous une autre forme.