Ocalan Rudy Note: 10/20 (score total : 10/20)

Nom et prénom, lisibles :

+169/1/46+

Identifiant (de haut en bas) :

QCM THLR 4

	$\bigcirc CALAN$ $\bigcirc \Box 0 \Box 1 $
	OCALAN
2/2	Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « X » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est <i>nul</i> , <i>non nul</i> , <i>positif</i> , ou <i>négatif</i> , cocher <i>nul</i>). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. I'ai lu les instructions et mon sujet est complet: les 2 entêtes sont +169/1/xx+···+169/2/xx+.
	Q.2 Le langage $\{\bigotimes^{2n} \forall n \in \mathbb{N}\}$ est
2/2	rationnel non reconnaissable par automate fini vide fini
	Q.3 Le langage $\{a^n b^m \mid \forall n, m \in \mathbb{N}\}$ est
2/2	☐ non reconnaissable par automate ☐ fini ☐ vide 🔯 rationnel
0/2	 Q.4 A propos du lemme de pompage ☐ Si un langage le vérifie, alors il est rationnel ☑ Si un langage ne le vérifie pas, alors il n'est pas rationnel ☐ Si un langage ne le vérifie pas, alors il n'est pas forcement rationnel Q.5 Un automate fini qui a des transitions spontanées
2/2	\blacksquare n'est pas déterministe \square est déterministe \square n'accepte pas ε \square accepte ε
	Q.6 Si un automate de n états accepte a^n , alors il accepte
2/2	$a^p(a^q)^*$ avec $p \in \mathbb{N}, q \in \mathbb{N}^* : p + q \le n$ \square $(a^n)^m$ avec $m \in \mathbb{N}^*$ \square a^{n+1} \square $a^n a^m$ avec $m \in \mathbb{N}^*$
	Q.7 Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si:
-1/2	L_1 est rationnel L_1 est rationnel L_1 , L_2 sont rationnels et $L_2 \subseteq L_1$ L_1 , L_2 sont rationnels
	Q.8 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):
0/2	$\frac{n(n+1)(n+2)(n+3)}{4}$ \boxtimes 2^n \square 4^n \square Il n'existe pas.
	Q.9 Déterminiser cet automate: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$

-1/2

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

2/2

 \Box $T(Det(T(Det(T(\mathscr{A})))))$

 \square $Det(T(Det(T(Det(\mathscr{A}))))) \times \square$ $T(Det(T(Det(\mathscr{A})))) \vee$ \bigcirc Det(T(Det(T(\mathcal{A}))))

Fin de l'épreuve.