УДК 539.4 ISSN 1729-4428

О.І. Уколов, В.О. Надточій, М.К. Нечволод

Дифузійно-дислокаційна мікропластичність монокристалів Ge нижче температурної межі крихкого руйнування

Інститут фізики напівпровідників ім. В.Є. Лашкарьова НАН України, пр. Науки 41, м. Київ, e-mail: <u>hnativ@isp.kiev.ua</u>

В роботі на основі структурних досліджень і теоретичних розрахунків показано, що при низькотемпературному деформуванні монокристалічного Ge з одночасним УЗ опроміненням можна створювати дефектні смуги, у яких генеруються вакансійні кластери або міжвузловинні дислокаційні петлі. Зроблена теоретична оцінка енергії міграції вакансій у приповерхневих шарах з урахуванням наявності поверхні, механічних напружень та УЗ опромінення.

Ключові слова: мікропластичність, дислокація, дифузія, ультразвук, мікроскопія

Стаття поступила до редакції 10.09.2009; прийнята до друку 15.06.2010.

Вступ

Отримані у роботах [1-3] результати дозволили пояснити фізичну природу низькотемпературної (нижче за $0.35~T_{\text{пл}}$) мікропластичності монокристалів Ge і Si в інтервалі малих і середніх величин напружень (≤ 400 МПа) з позиції дифузійнодислокаційного механізму деформації. Це виключає необхідність обов'язкового залучення до пояснення отриманих результатів атермічних, або яких-небудь інших специфічних механізмів, які вимагають для своєї реалізації високого рівня напружень для подолання високих потенціальних бар'єрів Пайєрлса [4].

Експериментально показано [3], що в умовах одновісного навантаження Ge (однократного, циклічного або програмованого, у тому числі з ультразвуковим (УЗ) опроміненням) за короткий (протягом декількох хвилин) проміжок часу низькотемпературного деформування типом дефектів, що зароджуються, є вакансійнодомішкові кластери, які істотно змінюють фізичні властивості кристалів у приповерхневому шарі ~ 100 мікрометрів. При тривалих випробуваннях (кілька годин або діб) у кристалах генеруються точкові дефекти (ТД) і дислокації, причому перший тип дефектів за часом передує зародженню дислокацій, а тому в значній мірі визначає їх особливість руху, густину і глибину залягання у приповерхневому шарі. У даній роботі належало з'ясувати фізичний механізм впливу ростових і деформаційних ТД на процес зародження і розподілу дислокацій у приповерхневих шарах під

низькотемпературного деформування, використовуючи можливості оптичної і електронної мікроскопії.

I. Зразки та методика експерименту

У дослідах використовували монокристалічний германій марки ГЕ-45г3. Зразки мали форму прямокутних паралелепіпедів розмірами $3 \times 4 \times 10$ мм³. Після вирізання проводили їх хімікомеханічне і хімічне полірування і тим самим видаляли дефектний поверхневий шар товщиною 150 мкм. Зразки встановлювалися наконечнику УЗ випромінювача і деформувались одновісним стисканням із швидкістю $\dot{\varepsilon} = 3.10^{-6} \text{ c}^{-1}$ уздовж напряму [110] (більшого виміру зразка) циклами стискання - розвантаження на спеціальній установці [5]. Максимальне напруження у циклі стискання становило 10 кгс/мм², тривалість циклів 12. Одночасно з циклічною деформацією зразок опромінювали ультразвуком на частоті 22,5 кГц при потужності ~ 5Вт. Інтенсивність УЗ коливань вимірювали п'єзоелектричним приймачем типу СПЩ, а розрахунки потужності виконували за Температура методикою [6]. зразка деформуванні не перевищувала 310 К.

Після вибіркового хімічного травлення у хромовому травнику [7] дефекти структури досліджувались за допомогою оптичного мікроскопа МИМ—7. Об'єкти для просвічувальної електронної мікроскопії з деформованого зразка Ge готувались у вигляді шайб діаметром 3,5 мм, товщиною 0,2 мм. У центрі об'єкту містилась відмічена маркером

необхідна для спостереження ділянка з деформаційними дефектами. Зтоншення об'єкту до необхідної товщини $1000-2000~{\rm \AA}$ здійснювали електрополіруванням у водному розчині NaOH з протилежної сторони об'єкта.

II. Основна частина

Низькотемпературне деформування кристала Ge циклами одновісного стискання – розвантаження супроводжується виключно мікропластичністю його приповерхневих шарів і тому при наявності сил тертя на торцях створюється неоднорідний розподіл напружень [8]: максимальні біля торців та бічних ребер зразка і зменшуються у напрямі до середини бічних поверхонь. Концентрація напружень стискання може створюватись також поблизу ростових мікродефектів (МД) [9], на нерівностях поверхні та інш. Створені таким чином градієнти напружень стимулюють спрямований рух вакансій, головним чинником яких € УЗ опромінення. Результати експериментів [1 - 3] і теоретичні розрахунки [10] вказують на те, що вакансії енергетично вигідно мікрооб'ємах збільш високим рівнем напруження стискання, у той час як енергія утворення міжвузловинного атома зменшується при його переміщенні в область меншого стискання. Крім утворення спрямованнях потоків вакансій уздовж поверхні при циклічному деформуванні кристала реалізується дифузійне напомпування вакансій з вільної поверхні кристала і подальша їх конденсація на внутрішніх стоках, що веде до утворення кластерів і неконсервативного руху (переповзання) ростових і деформаційних дислокацій[3, 11 - 15].

У першій серії експериментів виконувались структурні дослідження на зразках Ge, одноразово деформованих одновісним стисканням із швидкістю $\dot{\epsilon} = 3\cdot 10^{-6}~\text{c}^{-1}$ до напруження $\sigma = 12 \text{кгс/мм}^2$ і наступної витримки під навантаженням 12 год. при УЗ опроміненні з потужністю 5 Вт. Утворена дефектна структура після такої дії на кристал показана на рис.1. На ній видно темну смугу, справа від якої до

Рис. 1. Структура на бічній поверхні (111) зразка Ge, знята біля бічного ребра після деформування з УЗ опроміненням. Скануюча електронна мікроскопія, мікроскоп JEOL JXA-5A, режим вторинних електронів.

бічного ребра спостерігаються білі плями з дефектів структури.

Утворення таких дефектів можна пояснити тим, що висока концентрація напружень стискання і УЗ опромінення сприяють притоку вакансій до бічного ребра і одночасній міграції атомів гратки у зворотному напрямі. Це призвело до утворення їх скупчень, що виявилось у вигляді темної смуги при скануванні електронним пучком (рис.1). Концентрація вакансій С залежить від локального напруження σ [11] ,як

$$C = C_0 \cdot exp(\pm s v_a / kT) \tag{1}$$

де C_0 — відносна рівноважна концентрація вакансій при σ =0, v_a — атомний об'єм. У формулі (1) слід брати ($-\sigma$) для напруження стискання , а ($+\sigma$) для напруження розтягу.

час під Під витримки навантаженням пересичення вакансій може зменшуватись за рахунок їх міграції до стоків: на поверхню, до ростових При цьому кластерів з точкових дефектів. міжвузловинні кластери під дією напруження стискання можуть розчинятись і зменшуватись у розмірах, а вакансійні за рахунок асоціації збільшуватись до утворення мікропор, спостерігається біля бічного ребра (рис.1) узгоджується з теоретичними розрахунками [12].

Після багаторазового деформування циклами стискання— розвантаження з одночасним УЗ опроміненням вибірковим хімічним травленням виявляється багатосмугова дефектна структура (рис.2), створена у результаті дифузії точкових дефектів від бічного ребра зразка (концентратора напружень).

Рис. 2. Оптичний знімок на бічній поверхні (111) зразка Ge, циклічно деформованого у режимі стискання — розвантаження з одночасним УЗ опроміненням. Максимальне напруження у циклі стискання 12 кгс/мм2, тривалість деформування в одному циклі 0,5 год. Кількість циклів 10.

Після кожного циклу стискання з'являється нова дефектна смуга і система смуг переміщується від ребра до середини бічної поверхні у вказаному стрілкою напрямі. Механізм утворення такої рельєфної структури можна пояснити різною швидкістю хімічного травлення поверхні, яка залежить від залишкових напружень розтягу і стискання у приповерхневому шарі, створених дифузійним перерозподілом міжвузловинних атомів і

Рис. 3. Електронно – мікроскопічний знімок з ділянки, позначеної рамкою на рис. 2.

вакансій. Експеримент показав також, що більш канавки глибокі після травлення поверхні утворюються від скупчень міжвузловинних атомів.

Більш детальна інформація шоло дефектоутворення у періодичний структурі була одержана за допомогою електронної просвічувальної мікроскопії (рис. 3). У смузі стискання, вказаній стрілкою, створюється пересичення вакансій, а їх рівноважна концентрація визначається рівнем напруженням згідно (1), яке спочатку спадає по обидві сторони від смуги, а затим змінює знак на протилежний, де слід чикати пересичення міжвузловинами атомами.

Різним напруженням відповідає своя рівноважна концентрація вакансій, а тому змінюються і розміри кластерів у вигляді пор, позначених (1) на рис. З. У роботі [16] також було встановлено, що при локальному пересиченні вакансіями в Ge і Si, незалежно чим воно створено, вакансії об'єднуються саме в пори. Домішки кисню і вуглецю у вирощених монокристалах Ge приймають участь в процесі дефектоутворення у якості центрів зародження. Використовуючи структурні результати рис. 2, знайдемо енергію міграції вакансій Е_т приповерхневому шарі Ge при дії деформації і УЗ опромінення за формулою [14]

$$E_m = -kT \ln \frac{x^2}{2D_0 t} \,, \tag{2}$$

де х – відстань пробігу вакансій у першій смузі 96,8 мкм, D_0 – передекспоненційний множник 10^{-4} см²/с [14], т – тривалість деформування зразка в одному циклі 0,5 год., kT=0,0258eB. 3 розрахунку згідно (2) одержимо Е_т=0,213еВ. Можна оцінити окремо внесок у зменшення Е_т дії ультразвуку і деформації стискання. Під дією УЗ коливань відбувається стимульована дифузія вакансій за рахунок зменшення потенціального бар'єру на величину E_{us}, яка згідно [15] дорівнює

$$E_{us} = V_{us} s_{us}, \tag{3}$$

 $E_{us} = V_{us} s_{us}, \tag{3}$ де V_{us} – ефективний об'єм акустодефектної взаємодії, який дорівнює $1,728\cdot 10^{-27}$ м³; $\sigma_{us} = (2\rho v I)^{1/2} = 17\cdot 10^6$ н/м² — механічне напруження в УЗ полі, $\rho = 5,323\cdot ^{103}$ кг/м³ — густина Ge, $v = 5,41\cdot 10^3$ м/с — швидкість поширення УЗ хвилі, $I=5\cdot10^6$ Bт/м² – інтенсивність У3 опромінення. Знайдена величина $E_{us} = 0,1836eB$.

Ще більше прискорюється дифузія при наявності градієнта хімічного потенціалу вакансій у полі прикладених механічних напружень. При цьому потенціальний бар'єр зменшується на величину ЕД

$$E_D = S_D n_a \tag{4}$$

 $E_D = \mathbf{S}_D \mathbf{n}_{\rm a}$ (4) У формулі (4) $\sigma_{\rm D} = 117, 6 \cdot 10^6 \; {\rm H/M}^2, \; v_{\rm a} - 0, 181 \cdot 10^{-27}$ ${\rm M}^3$ – атомний об'єм, ${\rm E}_{\rm D}$ =0,133eB. Енергію вакансій у приповерхневому шарі кристала Ge при 310 К без урахування деформування і УЗ опромінення можна знайти як $E_{m0}=E_{m}+E_{us}+E_{D}=0{,}53$ еВ, що співпадає з [17]

Коефіцієнт дифузії вакансій у приповерхневому шарі кристала для визначених умов експерименту $D_S = D_0 \exp(-E_m/kT) = 10^{-4} \exp(-0.213/0.0258) = 2.62 \cdot 10^{-1}$ 8 см 2 /с. Отримане значення D_{s} узгоджується із результатами досліджень [14]. Зміна напруження стискання поперек смуги вакансійних скупчень впливає на їх розміри (рис. 3), середнє значення яких можна прийняти біля 3 мкм. Якщо скупчення у приповерхневому шарі прийняти V вакансійного диска, то його радіус можна оцінити за формулою [14]

$$r = \sqrt{\frac{8 \cdot C_{\nu}}{p \cdot a} (D_S t)^{\frac{3}{2}}} \tag{5}$$

У формулі (5) $C_v = C_0 - C = 1, 2 \cdot 10^{-8}$ – вакансійне пересичення, $a = 0.565 \cdot 10^{-9}$ м – міжатомна відстань, а знайдений за формулою (5) r = 4 мкм узгоджується із структурою на рис. 3.

У зонах недосичення вакансіями і пересичення міжвізловинними атомами (верхня і нижня частина рис.3) створюються умови для зародження і росту призматичних міжвузловинних петель дислокацій, a також існуючих вже після вирощування кристалу(позначено 2). На відміну від вакансійнних кластерів, місця виходу на поверхню від кожної дислокаційної петлі мають більш високий контраст і одинакові розміри зображень біля 1мкм. Глибина зародження таких петель не перевищує 5мкм. Якщо пересичення точкових дефектів С незначне, то «осмотична сила», яка перешкоджає скороченню дислокації, пропорційна відношенню С_І/С. Тому швидкість зміни радіуса міжвузловинної дислокаційної петлі dR/dt дорівнює швидкості переповзання і пропорційна наступній величині [11]:

$$\frac{dR}{dt} \sim \frac{C_I D_I}{b} \left(\frac{C_I}{C} - A \frac{v_a G}{kT} \frac{b}{R} \right), \tag{6}$$

де D_I — коефіцієнт дифузії міжвузловінних атомів, b — модуль вектора Бюргерса, $C_I = C_0$ — C пересичення міжвузловинних атомів, C і C_0 рівноважні відносні концентрації міжвузловинних атомів при напруженні σ і σ =0 відповідно, A — множник порядку одиниці, G — модуль зсуву, R— радіус петлі дислокації. При G = $5,7\cdot10^{10}$ н/м², b=4,01·10⁻¹⁰м, R = 2 мкм, і при C_I /C= σv_a /kT = 5,30 отримаємо dR/dt > 0, а тому дислокаційні петлі зможуть зростати, що спостерігається на рис.3.

Зародження дислокаційних петель на включеннях детально вивчалось у роботах [18-20]. У монокристалічному Ge ймовірними центрами зародження (концентраторами напружень) можуть бути включення диоксиду германію GeO2 Було показано [20], що утворення певного типу петлі залежить від співвідношення модулів об'ємного стискання включення K_p , і матриці K_{Ge} . Якщо $K_p < K_{Ge}$, то у зоні розтягу повинні зароджуватись призматичні петлі міжвузловинного (а не

вакансійного) типу. Для преципітанта GeO_2 $K_p = E / 3(1-2\cdot \nu)$, де E- модуль Юнга, $\nu-$ коефіцієнт Пуассона. При $E=6,8\cdot 10^{10}\Pi$ а, $\nu=0,24$ знайдене $K_p=4,36\cdot 10^{10}\Pi$ а, а для Ge- $K_{Ge}=7,6\cdot 10^{10}\Pi$ а [21], тобто $K_p < K_{Ge}$ для генерації петель міжвузловинного типу.

Звертає на себе увагу той факт, що у смузі з пересиченням вакансій дислокаційні петлі не спостерігаються, тобто нові деформаційні на включеннях не генеруються, а ростові, як це було показано і в дослідженнях [3] розчиняються. Тому УЗ обробка кристалів з метою зменшення густини ростових мікродефектів у вигляді дислокаційних петель може бути використана у технологіях виробництва напівпровідникових приладів.

Висновки

- В результаті проведення експериментальних досліджень та теоретичних розрахунків було вивчено механізм утворення вакансійних кластерів і дислокацій під дією низькотемпературної деформації Ge з одночасним УЗ опроміненням.
- 3 експерименту встановлено, що під дією циклічної деформації стисканням у приповерхневому шарі кристала Ge утворюється багатосмугова дефектна структура із скупчень вакансій і дислокаційних петель міжвузловинного типу. Розрахована енергія міграції вакансій з урахуванням наявності вільної поверхні, дії напруження стискання у приповерхневих шарах і УЗ опромінення.

Зроблена оцінка радіуса скупчень точкових дефектів у вигляді вакансійнних дисків, який узгоджується з результатами структурних спостережень. Обгрунтовано гетерогенний механізм зародження призматичних петель міжвузловинного типу на включеннях типу GeO₂.

- [1] V.Nadtochy, J.Zhikharev, M.Golodenko, M.Nechvolod. Structure changes by the stress gradient in subsurface layers of germanium single crystals // *Solid State Phenomena*, **94**, cc. 253–256 (2003).
- [2] В.О. Надточій, М.М. Голоденко, М.К. Нечволод і інш. Рух дислокацій у напівпровідниках, спричинений градієнтом напружень // Фіз. і хім. твердого тіла, **4**(1), сс. 76–79 (2003).
- [3] В.О.Надточій. Мікропластичність алмазоподібних кристалів (Si, Ge, GaAs, InAs,)// Автореф. дис. докт. фіз-мат. наук, Харків,ХНУ ім. В.Н. Каразіна, 36 с. (2006).
- [4] В. И. Никитенко, М. М. Мышляев, В. Г. Еременко. Образование и движение дислокаций в кремнии в области хрупкого разрушения // Динамика дислокаций. Харьков, ФТИНТ. сс. 139–150 (1968).
- [5] В.А.Надточий, Н.К.Нечволод, Д.С.Москаль. Установка для исследования микропластичности полупроводниковых кристаллов // Физ. и техн. высоких давлений, **14**(2), сс. 117–121 (2004).
- [6] Д.А. Гершгал, В. М. Фридман. Ультразвукова аппаратура. ГЕИ, М.-Л., 248 с. (1961).
- [7] Готра З. Ю. Технология микроелектронних устройств. Радио и связь, М., 528 с.(1991).
- [8] В.А.Надточий, Н.К.Нечволод, И.В. Жихарев, и др.. Генерация дислокаций на сферических включениях в кристаллах под действием одноосного напряжения сжатия// Вісник Донецького ун-ту, серія А природничі науки, (2), сс. 197–200 (2000).
- [9] В.И. Таланин, И.Е. Таланин. Особенности гетерогенного механизма образования и трансформации ростовых микродефектов в бездислокационных монокристаллах кремния // Матер. электронной техники, (2), сс. 14–24 (2004).
- [10] В.В. Кирсанов, С.Б. Кислицин, Е.М. Кислицина. Влияние неоднородных полей напряжений на процессы миграции точечных дефектов // ЖТФ, **58**(7), сс. 1440–1442 (1988).

- [11] А. М. Косевич. Как течет кристалл // УФН,114(3), сс. 509-532 (1974).
- [12] Ю.Н. Степанов, К.П. Гуров. Влияние циклических нагрузок на дислокационные петли в монокристаллах // Физ. и хим. обработки материалов, (5), сс. 107-111(1993).
- [13] Ю.Н.Степанов, В.П. Алехин, К.П. Гуров. Релаксационные процессы при циклическом нагружении образца и наличии объемных источников и стоков вакансий // ФММ, (5), сс. 200-203 (1991).
- [14] В.П. Алехин. *Физика прочности и пластичности поверхностных слоев материалов*. Наука, М. 280 с. (1983).
- [15] О.Я. Олих, И.В.Островский. Увеличение длины диффузии электронов в кристаллах р-кремния под действием ультразвука // ΦTT , **44**(7), сс. 1198-1202 (2002).
- [16] В.В.Воронков. Образование вакансионных пор при охлаждении Ge и Si // Кристаллография, **19**(2), сс. 228-236(1974).
- [17] В.В.Емцев, Т.В. Машовец. Примеси и точечные дефекты в полупроводниках // Под ред. профессора С.М. Рывкина. Радио и связь, М. 248 с. (1981).
- [18] W.J. Taylor, U.Gösele, T.Y. Tan. SiO₂ precipitate strain relief in Czochralski Si: self-interstitial emission versus prismatic dislocation loop punching // J. Appl. Phys. **72**(6), pp. 2192-2196 (1992).
- [19] M.F. Ashby, L. Johnson. On the generation of dislocaions at misfittig particles in a ductile matrix // *Philos. Mag.* **20**, pp. 1009-1022 (1969).
- [20] А.Н. Ефременко, В.В. Слезов, В.В. Яновский. Генерация дислокационных петель в нагруженных материалах частицами второй фазы // Металлофизика, 12(1), сс. 91-100,(1990).
- [21] П.И. Баранский, В.П. Клочков, И.В. Потыкевич. Полупроводниковая электроника. Справочник // Наукова думка, Киев. с.7 (1975).

A.I. Ukolov, V.A. Nadtochy, M.K. Nechvolod

Diffusion-Dislocation Microplastic Ge Single Crystal Below Temperature Border of Frail Destruction

Slavyansk State Pedagogical University, 19, General Batuk Str., Slavyansk, Ukraine, 84116, 8-0626-65-06-84 E-mail: ukolov_aleksei@mail.ru

The structural investigations of deformed at low temperatures monocrystalline Ge with simultaneous ultrasonic treatment are made. It is shown that the defective bands are created near a surface as a result of repeated loading of a crystal. The vacancy clusters and dislocation loops are generated in these bands. The calculations of the vacancy migration energy allowing for a surface, mechanical stress and ultrasonic treatment are made. The heterogeneous formation of dislocation is grounded.