National University of Sciences & Technology School of Electrical Engineering and Computer Science Department of Basic Sciences

MATH-243: Vector Calculus (3+0): BEE-2k20-C Fall 2021

Quiz - 5: Partial Differential Equations	
CLO-3: Develop analytical solutions of partial differential equations.	
Maximum Marks: 10	Instructor: Dr. Naila Amir
Date: 24 - 12 - 2021	Duration: 10 Minutes
Name: Master Solution	CMS ID:

Question:

Classify the following partial differential equations in terms of:

- (a) Order & Degree.
- (b) linearity (linear/quasi-linear/non-linear).
- (c) homogeneity (homogeneous/non-homogeneous)
- (d) Furthermore, if it is a linear/ quasi-linear 2nd order partial differential equation, classify it as parabolic, elliptic, or hyperbolic.

1.
$$u_{yy} + u_{xy} + 2u_{xz} = (u^2 e^{u_x})^{2/3}$$
.

(C) Order = 2

Degree = 3

(b) Non-Linears

(c) Homogeneous

(c) Homogeneous

(d) A= y+ $\frac{x}{2}$, $B = x + 2y$, $C = y + \frac{x}{2}$

(d) Not applicable

because PDE is

 $C = (x + 2y)^2 - u_{xy} + (x + 2y)u_{xy} + (y + \frac{x}{2})u_{yy} + xy^2 = 0$.

2. $(y + \frac{x}{2})u_{xx} + (x + 2y)u_{xy} + (y + \frac{x}{2})u_{yy} + xy^2 = 0$.

(c) Proposition of the end of the series of the end of the end of the series of the end of the e