Construir un triángulo ABC conocidos r_b, r_c y k = b + c, siendo r_b y r_c los radios de las circunferencias exinscritas correspondientes a los ángulos B y C, respectivamente.

SOLUCIÓN:

Problema propuesto en el Laboratorio virtual de triángulos con Cabri (TriangulosCabri), con el número 813. http://www.personal.us.es/rbarroso/trianguloscabri/index.htm

Con el siguiente enunciado:

CConstruir el triángulo cuyos datos son Rb, Rc, (b+c). (Rb y Rc los radios de la exinscritas de los ángulos B y C)

Santamaría, J. (2017)

Hoja dinámica GeoGebra

Vamos a discutir la solución analíticamente, para lo cual tomamos un sistema de coordenadas cartesianas rectangular en el que fijamos la circunferencia $I_b(r_b)$, con centro $I_b(0, r_b)$, y tal que los vértices A y B, del triángulo a construir, queden en el eje de abscisas.

Tomemos un punto variable L(t,0), con t>0. Deberemos hallar el valor de t para que L sea el vértice A del triángulo pedido.

La ecuación de $I_b(r_b)$ es $x^2 + y^2 - 2r_by = 0$, y la tangente desde L (distinta del eje de abscisas) es

$$t_L : -2r_b tx + (r_b^2 - t^2)y + 2r_b t^2 = 0.$$

El centro de la circunferencia exinscrita $I_c(r_c)$, intersección de la recta AI_b con $y = -r_b$, será

$$\left(\frac{t(r_b+r_c)}{r_b}, -r_c\right).$$

El centro de homotecia exterior de las circunferencias $I_b(r_b)$ y $I_c(r_c)$ es:

$$H_e\left(\frac{(r_b+r_c)t}{r_b-r_c}, -\frac{2r_br_c}{r_b-r_c}\right).$$

La ecuación conjunta de las tangentes a las circunferencias $I_b(r_b)$ y $I_c(r_c)$, desde H_e viene por:

$$4r_b^3r_cx^2 - (r_b^2 - r_br_c - r_bt - r_ct)(r_b^2 - r_br_c + r_bt + r_ct)y^2 + 2r_b(r_b + r_c)^2txy$$
$$-4r_b^2r_c(r_b + r_c)tx - 2r_b(2r_b^3r_c - 2r_b^2r_c^2 + r_b^2t^2 + 2r_br_ct^2 + r_c^2t^2)y - 4r_b^4r_c^2 = 0.$$

La tangente que corta a los ejes coordenadas en puntos de coordenadas positivas, corta al eje de abscisas en M y a la tangente t_L en N.

La circunferencia de centro M y radio LN corta al eje de abscisas en dos puntos P(p,0) y Q(q,0), con p < q. Verificándose que $\overline{LQ} = b + c = k$.

Según los cálculos realizados con ayuda de Mathematica las coordenadas del vértice A son:

$$\left(\frac{r_b\sqrt{k^2-4r_br_c}}{r_b+r_c},0\right),\,$$

por lo que puede ser construida con regla y compás (siempre que $k^2 - 4r_br_c > 0$), y el triángulo ABC pedido, puede ser construido siguiendo el proceso descrito. En resumen:

- Se traza una circunferencia, $I_b(r_b)$, de radio r_b .
- Sobre una tangente t a $I_b(r_b)$ en un punto T_b , se toma el punto A a una distancia $\frac{r_b\sqrt{k^2-4r_br_c}}{r_b+r_c}$ $(r_c>r_b)$ del punto de tangencia.
 - Se traza la otra tangente t' desde A a $I_b(r_b)$.
- El centro I_c de la otra circunferencia exinscrita, $I_c(r_c)$, es el punto de intersección de la recta AI_b con la paralela a una distancia r_c a la tangente t, en el semiplano opuesto al que está $I_b(r_b)$.
- Para construir el centro de homotecia exterior H_e de las circunferencias $I_b(r_b)$ y $I_c(r_c)$, sea T_b' el punto antipodal de T_b y T_c el punto de tangencia de $I_c(r_c)$ con t. H_e es la intersección de las rectas I_bI_c y $T_b'T_c$.
- Se traza, desde H_e , una de las tangentes comunes a las circunferencia exinscritas $I_b(r_b)$ y $I_c(r_c)$, que corta a t y a t' en B y C, respectivamente.

http://webpages.ull.es/users/amontes/pdf/trresolu.pdf http://webpages.ull.es/users/amontes/pdf/ejct2554.pdf