Прогноз качества воздуха Лучшая производительность набора данных Abalone с NN

Ильда Алушай Данил Кириленко

Методы искусственного интеллекта в анализе данных

16 декабря 2020

Прогноз качества воздуха

2 Предсказание возраста морских ушек (часть 2)

- Dataset 1 : https://archive.ics.uci.edu/ml/datasets/Air+Quality
- Dataset 2 : https://archive.ics.uci.edu/ml/datasets/Abalone
- Данные получены из репозитория машинного обучения UCI. Он был зарегистрирован 5 химическими датчиками оксидов металлов, расположенными в сильно загрязненном районе итальянского города, и мы решили проанализировать один из них, СО (поскольку это задача многомерного временного ряда). Набор данных содержит 9538 объектов с марта 2004 г. по февраль 2005 г.

Предварительная обработка данных

∖<u>мфти</u>

- В этих наблюдениях отсутствуют значения, помеченные как «-200», которые мы преобразовали как NaN для последующей предварительной обработки.
- Мы создали новые переменные из целевых переменных и заменили значение NaN их средним значением.
- Чтобы получить индекс datetime, мы объединили столбцы «Date» и «Time», преобразовав тип данных из строки в datetime и сохранили новый «Datetime» в списке

Анализ данных

<u>МФТИ</u>,

- Строим графики временных рядов всех целевых элементов.
- Мы посмотрели на графики за более короткий период: «2004-10-05» «2004-10-08», S1-S5 и заметили, что шаблон постоянно повторяется в течение определенного периода времени.

Проверка стационарности временных рядов

∖<u>мфти</u>

- Временной ряд является стационарным, если его статистические свойства, такие как среднее значение, дисперсия, остаются постоянными во времени и автоковариация, которая не зависит от времени.
- Мы использовали график скользящей статистики вместе с тестом Дики-Фуллера
- Сборка test stationary также для S2, S3, S4, S5.
- Мы попытались сделать серию стационарной, используя логарифмическое преобразование.

С постоянным скользящим средним и скользящей дисперсией, а также с р-значением теста Дики-Фуллера, близким к 0, мы можем сказать, что S1 является слабым и стационарным.

Скользящая средняя

∖<u>мфти</u>

- В этом подходе мы берем среднее значение «k» последовательных значений в зависимости от частоты временных рядов. Здесь мы можем взять среднее значение за последний год, т.е. за последние 12 значений. В Pandas есть определенные функции для определения скользящей статистики.
- Мы берем «взвешенное скользящее среднее», где более поздним значениям присваивается больший вес. Эта TS имеет еще меньшие вариации в среднем и стандартном отклонении по величине. Кроме того, статистика теста меньше критического значения 1%, что лучше, чем в предыдущем случае..

Скользящая средняя S1 за последний год.

<u> ∫мфти</u>

Устранение тренда и сезонности

<u>МФТИ</u>

- Два метода:
 - 1. Разница (снятие разницы с определенным временным лагом)
 - 2. 2. Декомпозиция (моделирование тренда и сезонности и удаление их из модели)
- Мы использовали оба этих метода для нашего ряда S1, и наш временной ряд, наконец, очень близок к стационарному.

Прогнозирование временного ряда

<u>МФТИ</u>,

- Использование модели ARIMA / SARIMAX для прогнозирования будущих значений временного ряда S1
- Мы создали графики АСF и PACF. На этом графике две пунктирные линии по обе стороны от 0 представляют собой доверительные интервалы. Их можно использовать для определения значений «р» и «q».

Модель AR и ee RSS (Residual Sum of Squares)

∖<u>мфти</u>

После этого мы создали модель ARIMA, сочетающую модели AR и MA. Здесь мы видим, что модели AR и MA имеют почти одинаковый RSS, но их сочетание значительно лучше

Модель MA и ee RSS (Residual Sum of squares)

∖<u>мфти</u>,

Комбинированная модель ARIMA:

/\<u>МФТИ</u>,

Рис.: Здесь мы видим, что модели AR и MA имеют почти одинаковый RSS, но их сочетание значительно лучше.

Рис.: С помощью прогнозов мы видим, что эта модель не так хороша, как должна быть, и среднеквадратичная ошибка также очень высока..

Другой метод -SARIMAX

<u>МФТИ</u>,

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	0.8702	0.006	152.905	0.000	0.859	0.881
ma.L1	0.2064	0.010	21.554	0.000	0.188	0.225
ar.S.L12	-0.1714	0.010	-17.111	0.000	-0.191	-0.152
ma.S.L12	-0.9370	0.003	-275.473	0.000	-0.944	-0.930
sigma2	0.0051	5.75e-05	89.050	0.000	0.005	0.005

Рис.: Столбец соеf показывает вес (то есть важность) каждой функции и то, как каждая из них влияет на временной ряд. P > |z| Столбец информирует нас о важности каждого веса функции. Здесь каждый вес имеет p-значение ниже 0.05, поэтому разумно сохранить их все в нашей модели.

Выбор параметров для модели временных рядов SARIMAX

/<u>\МФТИ</u>

Рис.: Генерация диагностики модели и поиск необычного поведения

Комментарий к рисунку

<u>МФТИ</u>.

- 1.На правом верхнем графике мы видим, что красная линия KDE близко следует за линией N (0,1) (где N (0,1) - стандартное обозначение для нормального распределения со средним 0 и стандартным отклонением 1). Это хороший показатель того, что остатки распределены нормально.
- 2. Q-Q график в нижнем левом углу показывает, что упорядоченное распределение остатков (синие точки) следует линейному тренду выборок, взятых из стандартного нормального распределения с N (0, 1). Опять же, это явный признак того, что остатки распределены нормально.
- 3. Невязки во времени (верхний левый график) не показывают явной сезонности и выглядят как белый шум. Это подтверждается графиком автокорреляции (то есть коррелограммой) в правом нижнем углу, который показывает, что остатки временных рядов имеют низкую корреляцию с запаздывающими версиями самих себя.

Проверка прогнозов

<u>\мфти</u>_

Полученные результаты

/<u>\мфти</u>

```
Mean Squared Error of forecast : 0.005
Mean Absolute Percentage Error: 0.76%
The Root Mean Squared Error of our prediction is 0.07
```

Имея низкий уровень ошибки, мы заключаем, что этот прогноз точен.

Предсказание возраста морских ушек

∖<u>мфти</u>

 Из набора данных из предыдущей задачи были выделены два самых часто встречающихся класса (9 и 10), которые между собой сбалансированы (689 и 634 образца). В качестве baseline была использована простая логистическая регрессия (sklearn.linearmodel.LogisticRegression), эта модель показала следующие результаты:

	precision	recall	f1-score	support
9.0	0.57	0.76	0.65	153
10.0	0.71	0.49	0.58	178
accuracy			0.62	331
macro avg	0.64	0.63	0.62	331
weighted avg	0.64	0.62	0.61	331

Roc-auc score: 0.6295439524124256

Wall time: 9 ms

 Для улучшения полученных результатов искалась подходящая архитектура полносвязной нейронной сети, среди различных вариантов лучше всего себя показала следующая модель:

Layer (type)	Output Shape	Param #
Linear-1	[-1, 10]	110
Linear-2	[-1, 80]	880
Linear-3	[-1, 50]	4,050
Linear-4	[-1, 1]	51
Trainable params: 5,091 Non-trainable params: 0		
Input size (MB): 0.00 Forward/backward pass size (MB): Params size (MB): 0.02 Estimated Total Size (MB): 0.02	0.00	

 Кроме этого использовался Dropout с вероятностью 0,1. Во время обучения при получении лучшего результата на валидации веса модели сохранялись, в итоге, при оценке использовалась та модель, которая лучше все себя показала на валидационном множестве за все время обучения, ниже графики обучения и итоговые результаты обученной модели.

		precision	recall	f1-score	support
	0.0	0.57	0.78	0.66	153
	1.0	0.72	0.49	0.58	178
accur	acy			0.63	331
macro	avg	0.65	0.64	0.62	331
weighted	avg	0.65	0.63	0.62	331

Roc-auc score: 0.6867885731071455

Спасибо за внимание!

∧<u>мфти</u>_

alushaj.i@phystech.edu kirilenko.de@phystech.edu

Github Repository link: https://github.com/ildaalushaj/Task-2--MIIAD