

Diseño e implementación del software de vuelo para un nano-satélite tipo cubesat

Carlos González Cortés

Miembros de la comisión

Dr. Marcos Díaz Quezada Dr. Claudio Estévez Montero Ing. Alex Díaz Becerra

Universidad de Chile

- 1 Introducción
- 2 Marco teórico
 - Sistemas embebidos
 - Sistemas operativos
 - Patrones de diseño
- 3 Diseño
 - Requerimientos operacionales
 - Arquitectura de software
 - Arquitectura aplicación
- 4 Implementación
 - Clientes
 - Comandos
 - Procesador de comandos
 - Ejecutor de comandos
- 5 Resultados
 - Control centra
 - Energía

- 1 Introducción
- 2 Marco teórico
 - Sistemas embebidos
 - Sistemas operativos
 - Patrones de diseño
- 3 Diseño
 - Requerimientos operacionales
 - Arquitectura de software
 - Arquitectura aplicación
- 4 Implementación
 - Clientes
 - Comandos
 - Procesador de comandos
 - Ejecutor de comandos
- 5 Resultados
 - Control central
 - Energía

- 1 Introducción
- 2 Marco teórico
 - Sistemas embebidos
 - Sistemas operativos
 - Patrones de diseño
- 3 Diseño
 - Requerimientos operacionales
 - Arquitectura de software
 - Arquitectura aplicación
- 4 Implementación
 - Clientes
 - Comandos
 - Procesador de comandos
 - Ejecutor de comandos
- 5 Resultados
 - Control central
 - Energía

- 1 Introducción
- 2 Marco teórico
 - Sistemas embebidos
 - Sistemas operativos
 - Patrones de diseño
- 3 Diseño
 - Requerimientos operacionales
 - Arquitectura de software
 - Arquitectura aplicación
- 4 Implementación
 - Clientes
 - Comandos
 - Procesador de comandos
 - Ejecutor de comandos
- 5 Resultados
 - Control central
 - Energía

- 1 Introducción
- 2 Marco teórico
 - Sistemas embebidos
 - Sistemas operativos
 - Patrones de diseño
- 3 Diseño
 - Requerimientos operacionales
 - Arquitectura de software
 - Arquitectura aplicación
- 4 Implementación
 - Clientes
 - Comandos
 - Procesador de comandos
 - Ejecutor de comandos
- 5 Resultados
 - Control central
 - Energía

- 1 Introducción
- 2 Marco teórico
 - Sistemas embebidos
 - Sistemas operativos
 - Patrones de diseño
- 3 Diseño
 - Requerimientos operacionales
 - Arquitectura de software
 - Arquitectura aplicación
- 4 Implementación
 - Clientes
 - Comandos
 - Procesador de comandos
 - Ejecutor de comandos
- 5 Resultados
 - Control central
 - Energía

- 1 Introducción
- 2 Marco teórico
 - Sistemas embebidos
 - Sistemas operativos
 - Patrones de diseño
- 3 Diseño
 - Requerimientos operacionales
 - Arquitectura de software
 - Arquitectura aplicación
- 4 Implementación
 - Clientes
 - Comandos
 - Procesador de comandos
 - Ejecutor de comandos
- 5 Resultados
 - Control central
 - Energía

- 1 Introducción
- 2 Marco teórico
 - Sistemas embebidos
 - Sistemas operativos
 - Patrones de diseño
- 3 Diseño
 - Requerimientos operacionales
 - Arquitectura de software
 - Arquitectura aplicación
- 4 Implementación
 - Clientes
 - Comandos
 - Procesador de comandos
 - Ejecutor de comandos
- 5 Resultados
 - Control central
 - Energía

Introducción

Proyecto SUCHAI

Diseño, construcción, lanzamiento y operación de un nano-satélite, con fines educacionales y científicos.

Es el primer proyecto satelital desarrollado por estudiantes en el país.

(a) Estandar Cubesat

(b) Cubesat SUCHAI

Computador a bordo

Controla todas las operaciones del satélite e integra los diferentes subsistemas. Principales características:

- Microcontrolador PIC24F
- CPU @ 32 MHz
- Memoria RAM de 16 kB
- Memoria FLASH de 256 kB

Objetivos generales

Diseñar e implementar el software que controla las operaciones del satélite una vez en órbita

Marco teórico Sistemas embebidos

Sistemas computacionales diseñados para cumplir funciones específicas, en aplicaciones de tiempo real. Integran en un mismo chip un microcontrolador y una serie de periféricos.

Carlos González Cortés Trabajo de título 6 /

Los sistemas operativos de tiempo real (RTOS) se caracterizan por:

- Ser una capa de abstracción entre la aplicación y el hardware
- Funcionar bajo requerimientos de timing estrictos.
- Ser deterministas en la ejecución de tareas.
- Funcionamiento basado en eventos y prioridades.

Patrones de diseño

Carlos González Cortés Trabajo de título 8 / 27

Área de control central

- Inicialización.
- Estado del sistema.
- Plan de vuelo.
- Tolerancia a fallos.

Área de comunicaciones

- Configuración del TRX.
- Despliegue de antenas.
- Generar y enviar beacon.
- Telecomandos y telemetría.

Diseño II

Requerimientos operacionales

Area de energía

- Estimar nivel de carga de baterías
- Operar según un presupuesto de energía.

Area de payloads

- Integrar diferentes payloads
- Ejecutar acciones de *payloads*

Aplicación

Sistema Operativo

Controladores MCU Periféricos Payloads

Clientes

Clientes

Inicialización Reinicios

Puerto UART

Consola serial Comunicaciones Plan de vuelo Radio UHF

GPS/RTC

Ctrl. Interno Tiempo interno

- Implementan la inteligencia del sistema
- Tareas de FreeRTOS, concurrentes y de igual prioridad.
- Ejecución periódica, hard-realtime o soft-realtime

Requerimientos

Origen ID Parámetro Procesador de comandos Procesador Parámetro Estructura comando *Función Parámetro

```
int funcion_comando(void *param)
{
    printf("Ejecutar comando");
    return EXIT_OK;
}
```


Implementación

Ejecutor de comandos

Hardware in the loop simulation

Sistema embebido Simulación Respuesta del sistema Estimulos simulados

■ Montaje de la prueba

Resultados I

- Inicio del sistema
- Plan de vuelo
- Variables de estado
- Tolerancia a fallos

Control central

Resultados I Energía

- Estado de carga de baterías
- Presupuesto de energía

Carlos González Cortés Trabajo de título 20 / 27

Resultados II Energía

- Estado de carga de baterías
- Presupuesto de energía

Hora	Comando	SysReq	SOC	Resultado
20:18:10	0x8006	1	4	Ejecutado
20:18:19	0x5000	1	4	Ejecutado
20:18:33	0x300C	4	4	Ejecutado
20:19:10	0x8000	10	4	Rechazado
20:19:13	0x8000	10	4	Rechazado
20:19:19	0x8002	10	4	Rechazado
20:19:19	0x5000	1	4	Ejecutado
20:19:45	0x8003	10	4	Rechazado
20:20:03	0x8003	10	4	Rechazado

Carlos González Cortés Trabajo de título 21 /

Despliegue de antenas.

(e) Previo al despliegue

(f) Antenas desplegadas

Resultados II

Comunicaciones

- Generación, transmisión y recepción de beacons.
 - TX: SUCHAIATINGDOTUCHILEDOTCL-11000017H30761940780001
 - **RX:** 00V000000XHX0200000000000000GBW0000000DK000024

- Comunicaciones
 - Transmisión y recepción de telemetría.
 - Transmisión y recepción de telecomandos.
 - Pruebas insatisfactorias

Conclusiones

- Uso generalizado de patrones de diseño, adaptados a lenguaje de programación procedural.
 - Arquitectura de tres capas: divide el problema convenientemente.
 - Procesador de comandos: permite cumplir con requerimientos operacionales y no operacionales.
- FreeRTOS: una solución bien probada y robusta.
- Verificación de requerimientos.
 - Se cumplen los requerimientos operacionales del área de control central, energía y payloads
 - No se cumplen los requerimientos del área de comunicaciones debido a fallas en el equipo.
- Desarrollo de un proyecto de ingeniería, inter-disciplinario, como parte del proceso de formación profesional.

Trabajos futuros

- Mejoras en el área de tolerancia a fallos.
- Agregar múltiples ejecutores de comandos.
- Portar el software a diferentes plataformas.
- Integrar y probar un nuevo *transceiver*.

Muchas gracias por su atención ¿Consultas?

