FICHE DE COURS 14

FILTRAGE LINÉAIRE

Ce que je dois être capable de faire après avoir appris mon cours

	Décomposer une chaîne de traitement linéaire d'un signal en une série de quadripôles
	Connaître la modélisation conventionnelle d'un quadripôle quelconque
	Établir l'expression de l'impédance d'entrée d'un quadripôle par association d'impédances
⊐	Établir l'expression de l'impédance de sortie d'un quadripôle par application des lois de Kirchhoff
	Connaître les conditions permettant de considérer une chaine de quadripôles comme idéale
	Expliquer le rôle d'isolation d'un suiveur dans un montage d'électronique
_	Reconnaître la nature du filtrage réalisé par un quadripôle à partir d'une étude asymptotique à basses et hautes fréquences de son circuit
_	Établir dans les quelques cas usuels la fonction de transfert d'un quadripôle idéal à l'aide de diviseurs de tension ou des lois de Kirchhoff
⊐	Passer de l'étude fréquentielle à l'équation différentielle d'évolution
	Déduire de la fonction de transfert d'un filtre son ordre
⊐	Exprimer le gain et la phase d'un filtre à partir de la fonction de transfert associée
⊐	Analyser un diagramme de Bode pour déterminer les valeurs du gain à basses ou à hautes fréquences, des pulsations de coupure, et éventuellement de la pulsation propre et du facteur de qualité
	Décrire les circuits, et leurs propriétés, associés aux fonctions de moyenneur, d'intégrateur et de dérivateur.
\Box	Proposer une chaîne de quadripôles idéale simple à partir du gabarit souhaité d'un filtre à réaliser

Les relations sur lesquelles je m'appuie pour développer mes calculs

$\hfill \square$ Quadripôle :

 \star Fonction de transert :

$$\underline{H}(x) = \frac{\underline{u}_s}{\underline{u}_e}$$

 \star Impédances d'entrée et de sortie :

$$\underline{Z}_e = \frac{\underline{u}_e}{\underline{i}_e}$$
 et $\underline{\underline{u}}_s = \underline{\underline{E}}_s(\underline{u}_e) - \underline{Z}_s \ \underline{i}_s$

* Chaine idéale commandée en tension :

$$|\underline{Z}_{s,k}| \ll |\underline{Z}_{e,(k+1)}|$$

 \square Passe-bas d'ordre 1:

$$\underline{H}(x) = \frac{H_0}{1+jx} \qquad ; \quad G(x) = \frac{H_0}{\sqrt{1+x^2}} \quad ; \quad \varphi = -\arctan(x)$$

 \square Passe-haut d'ordre 1 :

$$\boxed{ \underline{\underline{H}}(x) = \frac{H_0}{1 + \frac{1}{jx}} } \quad ; \quad G(x) = \frac{H_0}{\sqrt{1 + \frac{1}{x^2}}} \quad ; \quad \varphi = \arctan\left(\frac{1}{x}\right)$$

 \square Passe-bas d'ordre 2 :

$$\frac{\underline{H}(x) = \frac{H_0}{(1 - x^2) + \frac{jx}{Q}} \quad ; \quad G(x) = \frac{H_0}{\sqrt{(1 - x^2)^2 + \frac{x^2}{Q^2}}} \quad ; \quad \varphi = \arctan\left[\frac{Q(1 - x^2)}{x}\right] - \frac{\pi}{2}$$

 \square Passe-haut d'ordre 2 :

$$\underline{H}(x) = \frac{H_0}{\left(1 - \frac{1}{x^2}\right) + \frac{1}{jxQ}} \quad ; \quad G(x) = \frac{H_0}{\sqrt{\left(1 - \frac{1}{x^2}\right)^2 + \frac{1}{x^2Q^2}}} \quad ; \quad \varphi = \frac{\pi}{2} - \arctan\left[xQ\left(1 - \frac{1}{x^2}\right)\right]$$

 \square Passe-bande d'ordre 2:

$$\underline{H}(x) = \frac{H_0}{1 + jQ\left(x - \frac{1}{x}\right)} \quad ; \quad G(x) = \frac{H_0}{\sqrt{1 + Q^2\left(x - \frac{1}{x}\right)^2}} \quad ; \quad \varphi = -\arctan\left[Q\left(x - \frac{1}{x}\right)\right]$$