Strong convexity and Lipschitz continuity of gradients

Stephen Becker Applied Math, U. Colorado Boulder stephen.becker@colorado.edu

January 12, 2021

Firmly non-expansive operators

Let T be an operator (like a gradient) that is necessarily single-valued. Then it is **firmly non-expansive** if (Defn 4.1 [BC11])

$$||Tx - Ty||^2 + ||(I - T)x - (I - T)y||^2 \le ||x - y||^2$$
(1)

Proposition 1 (Prop 4.2 [BC11]). The following are equivalent:

- 1. T is firmly non-expansive
- 2. I-T is firmly non-expansive
- 3. 2T I is non-expansive
- 4. $||Tx Ty||^2 \le \langle x y, Tx Ty \rangle$
- 5. $0 \le \langle Tx Ty, (I T)x (I T)y \rangle$

We say T is β **cocoercive** (or β -inverse **strongly monotone**) if βT is firmly nonexpansive (Defn 4.4). N.B. This is an unusual use of β : you might think β^{-1} is more natural, so do not confuse it!

Exercise 4.12 [BC11]: if T_1 and T_2 are both firmly nonexpansive, then $T_1 - T_2$ is nonexpansive. N.B. while nonexpansiveness is closed under composition, firm nonexpansiveness is not!

Fact: the projector onto a closed convex set is firmly nonexpansive (Prop 4.8 [BC11]). More generally, all proximity operators are firmly nonexpansive (Prop 12.27 [BC11]). Even more generally, all resolvents $T = (A+I)^{-1}$ are firmly nonexpansive iff A is monotone, and T has full domain iff A is maximally monotone.

Fact (corollary 16.16 [BC11], Baillon-Haddad theorem). Let f be Frechet differentiable convex. Then ∇f is β -Lipschitz continuous if and only if ∇f is β^{-1} cocoercive; in particular, ∇f is nonexpansive iff it is firmly nonexpansive.

Monotone Operators

A set-valued operator A is **monotone** if $\langle x-y, Ax-Ay \rangle \geq 0$ (note: I use Ax to denote an arbitrary element of the set Ax), and **strongly monotone** if $A-\beta I$ is monotone, i.e., $\langle x-y, Ax-Ay \rangle \geq \beta \|x-y\|^2$. See defn. 22.1 [BC11]. These notions can be localized to a subset C. Obvious fact: if f is **strongly convex** with constant β , then ∂f is strongly monotone with β . Vandenberghe's notes use "strongly monotone" (with $A = \nabla f$) and "coercive" interchangeable.

Let T be a single-valued operator and $A = T^{-1}$. Then T is β -cocoercive iff A is strongly monotone with constant β .

Defn 11.10 [BC11], coercive: f is coercive of $\lim_{\|x\|\to+\infty} f(x) = +\infty$ and supercoercive if $f(x)/\|x\|\to+\infty$ as well.

References

- [BC11] H. H. Bauschke and P. L. Combettes, *Convex analysis and monotone operator theory in Hilbert spaces*, 1st edition, Springer, 2011.
- [BC17] H. H. Bauschke and P. L. Combettes, *Convex analysis and monotone operator theory in Hilbert spaces*, 2nd edition, Springer, 2017.
- [Bec17] A. Beck, First-Order Methods in Optimization, SIAM, 2017.
- [BV04] S. Boyd and L. Vandenberghe. *Convex Optimization*. Cambridge University Press, 2004.
- [Nes04] Yu. Nesterov. *Introductory Lectures on Convex Optimization: A Basic Course*, volume 87 of *Applied Optimization*. Kluwer, Boston, 2004.
- [Nes18] Yu. Nesterov. Lectures on Convex Optimization. Springer International Publishing, 2018.