CprE 530

Lecture 6

Topics

- Lower Layer Security
- Physical Layer Overview
- Common attack methods
- Ethernet

Physical Network Layer

Common Attack Methods

- Spoofing
- Sniffing
- Physical Attacks

Hardware Addressing

Hardware Address Spoofing

Network Sniffing

Physical Attacks

- Bad network cable
- Network cable loop (both ends plugged into the same device)
- Bad network controller
- Two network controllers with the same hardware address

Wired Network Protocols

- Many protocols
- Local Area Networks (LAN)
 - Ethernet is the most common
- Wide Area Networks (WAN)

Ethernet

- Developed in 1973 by Xerox
- Speeds
 - 10 Mbps
 - 100 Mbps
 - 1000 Mbps (gigabit)
 - 10 Gigabit

Ethernet Transmission media

Name	Cable type	Speed	Maximum Distance between devices
10Base2	Coax	10 Mbps	185 meters
10BaseF	Fiber	10 Mbps	500 meters
10BaseT	Twisted Pair	10 Mbps	100 meters
100BaseT	Twisted Pair	100 Mbps	100 meters
100BaseFX	Fiber	100 Mbps	1000 meters
1000Base-X	Fiber or coax	1000 Mbps	Depends on cable type

Coaxial Ethernet

Ethernet Access Method

• CSMA/CD

- Listen
- Talk if no one else is talking
- Back off if more than one talks at a time
- Minimum packet length is used to guarantee that a collision can be seen by all machines. This also puts a limit on the length of the cable

Figure 5.5 CSMA/CD Ethernet Protocol

Ethernet Collision Domain

- The range that is effected when a collision occurs.
- 10Mbps Ethernet it is 2500 Meters
- This can be changed by using switches and routers (more later)

Connecting Devices

- Repeater (physical layer only)
- Hub (multi port repeater)
- Bridge (layer 2 only)
- Router (layer 3)
- Layer 2 switch
- Layer 3 switch

Ethernet switches

- Collisions can slow the network down
- Switches create multiple collision domains
- Typically one machine per leg of the switch
- Switches only pass traffic to the leg of the switch where the destination is located
- Switches reduce the traffic on each leg
 - Problem with network monitoring

Ethernet Switch

Port table, switch 2

Port	HW Address
P1	Uplink
P2	C2
Р3	Multiple

Port table, switch 4

Port	HW Address
P1	Uplink
P2	C5
Р3	C6
P4	C7

Ethernet Tap Points

Ethernet - Frame

Preamble (on wire only)	7 bytes
Start Frame Delimiter	1 bytes
Destination Address	6 Bytes
Source Address	6 Bytes
Type or Length	2 Bytes
Data	46-1500 Bytes
FCS	4 Bytes

Ethernet Addresses

- Goal is to have all addresses globally unique
- 6 bytes
 - Upper 3 bytes vendor code
 - Lower 3 bytes independent
- All 1's = broadcast address

Ethernet Type/length

 If value < 0x800 then it is a length field otherwise it is a protocol type field. Some common types are:

Hex

• 0800 DoD Internet Protocol (IP)

• 0805 X.25 level 3

0806 Address Resolution Protocol (ARP)

6003 DECNET Phase IV

• 6004 Dec LAT

• 809B EtherTalk

80F3 AppleTalk ARP

Attacks and vulnerabilities

- Header-based
- Protocol-based
- Authentication-based
- Traffic-based

Header-Based

- Attacks
 - Setting the destination address as a broadcast address can cause traffic problems
 - Setting the source can cause switches to get confused
- Mitigation
 - Very difficult to mitigate

Protocol-Based

Protocol is simple and is in hardware

Authentication-Based

- You can set the hardware address
- Hardware address is used to authenticate in switches
- Hardware addresses can be used to authenticate devices in a network

Authentication-Based

- Destination address spoofing
- Destination address is obtained dynamically via a protocol
- Trick a device into thinking you are the destination (ARP Poisoning)
- No good mitigation method

ARP Poisoning

Authentication-Based

- Source Address Spoofing
- Source address if not used for authentication by default
- New security and network management methods are starting to use the source address to authenticate the device. (Network Access Control [NAC])
- More on NAC as a general countermeasure later

Traffic-Based

- Attack
 - Ethernet controllers can be set in promiscuous mode which enables them to sniff traffic
- Mitigation
 - Encryption, VLAN (more later)
- Broadcast traffic can cause flooding, hard to flood unless directly connected to the LAN
- No good mitigation for flooding