Analysis I (Marciniak-Czochra)

Robin Heinemann

October 23, 2016

Contents

1	Ein	leitung	3	2
2	Mengen und Zahlen			2
	2.1	Logisc	che Regeln und Zeichen	2
		2.1.1		2
		2.1.2		2
		2.1.3	Beweistypen	2
		2.1.4	Summenzeichen und Produktzeichen	3
	2.2	Menge	en	3
		2.2.1	Definition	3
		2.2.2	Mengenrelationen	4
		2.2.3	Potenzmenge	4
		2.2.4	Familien von Mengen	5
		2.2.5	Rechenregeln	5
		2.2.6	geordneter Tupel	6
		2.2.7	Kartesisches Produkt	6
		2.2.8	Äquivalenzrelation	6
	2.3		ionen und Abbildungen	7
	2.0	2.3.1	Relationen	•
		2.3.1 $2.3.2$	Graph der Abbildung	7
		2.3.2 $2.3.3$		-
			Umkehrabbildung	
		2.3.4	Komposition	
		2.3.5	Identitäts Abbildung	8

1 Einleitung

Webseite www.biostruct.uni-heidelberg.de/Analysis1.php Klausurzulassung: 50% Klausur 18.2.2017 9-12Uhr

2 Mengen und Zahlen

2.1 Logische Regeln und Zeichen

2.1.1 Quantoren

 $\forall x$ für alle x $\exists x$ es gibt (mindestens) ein x

 $\exists ! x$ es gibt genau ein x

2.1.2 Hinreichend und Notwendig

- $A \Rightarrow B$: wenn A gilt, gilt auch B, A ist **hinreichend** für B, daraus folgt: B ist **notwendig** für A, Ungültigkeit von B impliziert die Ungültigkeit von A ($\neg B \Rightarrow \neg A$)
- $A \Leftrightarrow B$: A gilt, genau dann, wenn B gilt

2.1.3 Beweistypen

- 1. Direkter Schluss $A \Rightarrow B$
 - (a) Beispiel m gerade Zahl $\Rightarrow m^2$ gerade Zahl
 - i. Beweis m gerade $\Rightarrow \exists n \in \mathbb{N}$ sodass $m=2n \Rightarrow m^2=4n^2=2k$, wobei $k=2n^2 \in \mathbb{N}\square$
- 2. Beweis der Transponerten (der Kontraposition) Zum Beweis $A \Rightarrow B$ zeigt man $\neg B \Rightarrow \neg A \ (A \Rightarrow B) \Leftrightarrow (\neg B) \Rightarrow (\neg A)$
 - (a) Beispiel Sei $m \in \mathbb{N}$, dann gilt m^2 gerade $\Rightarrow m$ gerade
 - i. Beweis Wir zeigen: m ist ungerade $\Rightarrow m^2$ ungerade

$$\exists n \in \mathbb{N}: \ m = 2n+1 \Rightarrow m^2 = (2n+1)^2 = 2k+1, k = 2n^2+2n \in \mathbb{N} \Rightarrow m^2 \text{ ungerade} \square$$

3. Indirekter Schluss (Beweis durch Wiederspruch) Man nimmt an, dass $A \Rightarrow B$ nicht gilt, das heißt $A \land \neg B$ und zeigt, dass dann für eine Aussage C gelten muss $C \Rightarrow \neg C$, also ein Wiederspruch

- (a) Beispiel $\not\exists q \in \mathbb{Q} : a^2 = 2$
 - i. Beweis Wir nehmen an, dass $\exists a \in \mathbb{Q}: a^2 = 2$ Dann folgt: $\exists b,c \in \mathbb{Z}$ teilfremd (ohne Einschränkung, denn sonst kürzen soweit wie möglich) mit $a = \frac{b}{c}$ Falls

$$a^2=2\Rightarrow (\frac{b}{c})^2=2=\frac{b^2}{c^2}=2\Rightarrow b^2=2c^2\Rightarrow b^2$$
 gerade $\Rightarrow b$ ist gerade (schon gezeight) =

Außerdem $b^2=2c^2\Rightarrow 2c^2=4d^2\Rightarrow c^2=2d^2\Rightarrow c$ ist auch gerade. Also müssen b und c beide gerade sein, also nicht teilerfremd, damit haben wir einen Widerspruch hergeleitet \square

2.1.4 Summenzeichen und Produktzeichen

1. Summenzeichen Wir definieren für m > 0

$$\sum_{k=m}^{m} a_k := a_m + \ldots + a_n$$

falls $n \ge m$

$$\sum_{k=m}^{n} a_k := 0$$

falls n < m (sogennante leere Summe)

2. Produktzeichen

$$\prod_{k=m}^n a_k := \begin{cases} a_m \cdot \ldots \cdot a_n & \text{falls } n \geq m \\ 1 & \text{falls } n < m \text{ (sog. leeres Produkt)} \end{cases}$$

2.2 Mengen

2.2.1 Definition

(Georg cantor 1885) Unger einer <u>Menge</u> verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten (welche die Elemente von M genannt werden), zu einem Ganzen M dadurch ist charakterisiert, dass von jedem vorliegendem Objekt x feststeht, ab gilt

- $x \in M$ (x Element von M)
- $x \neg \in M$ (x kein Element von M)

$$M = \{x_1, x_2, \dots, x_n\}$$

 $M = \{x \mid A(x)\} \rightarrow \text{ eine Menge } M \text{ für die } x \in M \Leftrightarrow A(x)$

2.2.2 Mengenrelationen

• Mengeninklusion $A \subseteq M$ (A ist eine Teilmenge von M)

$$\forall x : (x \in A \Rightarrow x \in M)$$

, zum Beispiel $\mathbb{N}\subseteq\mathbb{Z}$

•

$$A = B \Leftrightarrow \forall x : (x \in A \Leftrightarrow x \in B)$$

•

$$A \subset M$$
 (strikte Teilmenge) $\Leftrightarrow A \subset M \land A \neq M$

•

$$\emptyset$$
: leere Menge $\not\exists x : x \in \emptyset$

. Wir setzen fest, dass \emptyset eine Teilmenge jeder Menge ist. Zum Beipsiel

$${x \in \mathbb{R} : x^2 + 1 = 0}$$

• Durchschnitt

$$A \cup B := \{x \mid x \in A \land x \in B\}$$

• Vereinigung

$$A \cap B := \{x \mid x \in A \lor x \in B\}$$

• Differenz (auch Komplement von B in A)

$$A \setminus B := \{x \mid x \in A \land x \notin B\} := C_a B \text{ (auch } B^c)$$

2.2.3 Potenzmenge

Potenzmenge A

$$\mathcal{P}(A) := \{ B \mid B \subseteq A \}$$

Alle Teilmengen von A

1. Beispiel

$$\mathcal{P}(\{1,2\}) = \{1\}, \{2\}, \{1,2\}, \emptyset$$

2.2.4 Familien von Mengen

Sei I eine Indexmenge, $I \subseteq \mathbb{N}, (A_i)_{i \in I}$ eine Familie von Mengen A

1. Durchschnitt von A

$$\cap_{i \in I} = \{x \mid \forall_{i \in I} \ x \in A_i\}$$

2. Vereinigung

$$\cup_{i \in I} = \{x \mid \exists i \in I : x \in A_i\}$$

2.2.5 Rechenregeln

A, B, C, D seien Mengen

- $\emptyset \subseteq A$
- $A \subseteq A$

• $A \subseteq B, B \subseteq C \Rightarrow A \subseteq C$

Reflexivität

Transitivität

• $A \cap B = B \cap A$ $A \cup B = B \cup A$

Kommutativität

• $(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cup B) \cup C = A \cup (B \cup C)$

Assoziativität

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- Eigenschaften der Komplementbildung: Seien $A, B \subseteq D(C_D A) := D \setminus A$, dann gilt

$$C_D(C_D A) = A$$

$$C_D(A \cap B) = C_D A \cup C_D B$$

$$C_D(A \cup B) = C_D A \cap C_D B$$

- Beweis:

$$x \in C_D(A \cap B) \Leftrightarrow x \in D \land (x \notin (A \cap B)) \Leftrightarrow x \in D \land (x \notin A \lor x \notin B) \Leftrightarrow (c \in D \land x \notin A) \cup x \in D \land (A \cup B) \square$$
$$\Leftrightarrow x \in D \land A \cup x \in D \land B \Leftrightarrow x \in D \land (A \cup B) \square$$

- Bemerkung: Komplement kann man auch mit A^c bezeichnen

2.2.6 geordneter Tupel

Sei x_1, x_2, \ldots, x_n (nicht notwendig verschiedene) Objekte. Ein geordneter n-Tupel

$$(x_1, x_2, \dots, x_n) = (y_1, \dots, y_n) \Leftrightarrow x_1 = y_1, \dots, x_n = y_n$$

Beachte:

$$\{x_1, \dots, x_n\} = \{y_i, \dots, y_n\} \not\implies x_1 = y_1, \dots, x_n = y_n$$

2.2.7 Kartesisches Produkt

Seien

$$A_1 \times A_2 \times \ldots \times A_n = \{(x_1, x_2, \ldots, x_n) \mid x_j \in A_j j \in \mathbb{N}, j \leq n\}$$

1. Beispiel

•

$$\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$$

- \mathbb{R}^n m-dimensionaler Raum von reellen Zahlen

2.2.8 Äquivalenzrelation

Eine Äquivalenzrelation auf eine Menge A ist eine Beziehung zwischen ihren Elementen (Bezeichnung: $a\tilde{b}$), sodass

- Für jede zwei $a,b\in A$ gilt entweder $a\tilde{b}\vee a$ $\tilde{\not b}$

• $a\tilde{a}$ Reflexivität

• $a\tilde{b}\Rightarrow b\tilde{a}$ Symmetrie

• $a \sim b$, $b \sim c \Rightarrow a \sim c$

Mit Hilfe einer Äquivalenzrelation lassen sich die Elemente einer Menge in sogenannte Äquivalenzklassen einordnen: $[a]:\{b\in A\mid b\tilde{a}\}$

2.3 Relationen und Abbildungen

2.3.1 Relationen

Unter einer **Relation** verstehen wir eine Teilmenge $R \subseteq X \times Y$ wobei X, Y Mengen sind. Für $x \in X$ definieren wir, das **Bild** von x unter R

$$R(X) := \{ y \in Y | mid(x, y) \in R \}$$

und *Definitionsbereiche von R (bezüglich X)

$$D(R) := \{ x \in X \mid R(x) \neq \emptyset \}$$

2.3.2 Graph der Abbildung

 $R \subseteq X \times Y$ heißt Graph der Abbildung (Funktion)

$$f: X \to Y \Leftrightarrow D(R) = X, \forall \, x \in X: R(x) = \{f(x)\}$$

also enthält R(X) genau ein Element.

X heißt Definitionsbereich von f

Y heißt Werte- oder Bildbereich von f (Bild)

 $x \in X$ heißt Argument

 $f(x) \in Y$ heißt Wert von f an der Stelle x

- 1. Beispiel $f:\mathbb{R}\to\mathbb{R}, x\to x^2$ dann ist der Graph von $f=\{(x,y)\in\mathbb{R}^{\nvDash}, y=x^2\}$
 - (a) Bemerkung

$$M^*(x) = \{(x, y) \in \mathbb{R}^2; x = y^2\} = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y = \sqrt{x} \lor y = -\sqrt{x}\}$$

Ist kein Graph einer Funktion $\mathbb{R} \to \mathbb{R}$, denn $M^*(x) = \{\sqrt{x}, -\sqrt{x}, x \ge 0\}$ f heißt

- surjektiv, wenn gilt f(X) = Y
- injectiv, $\forall x_1, x_2 \in X : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
- bijektiv, wenn f surjektiv und injectiv ist

2.3.3 Umkehrabbildung

Sei die Abbildung $f:X\to Y$ bijektiv. Dann definieren wir die Umkehrabbildung $f^{-1}:Y\to X$ durch $y\to x\in X$, eindeutig bestimmt durch y=f(x)

1. Bemerkung

$$(x,y) \in \text{Graph } f \Leftrightarrow (y,x) \in \text{Graph } f^{-1}$$

2.3.4 Komposition

Seien $f:X\to Y,g:Y\to Z$ Abbildungen. Die Komposition von g und f

$$g \circ f: X \to Z$$
 ist durch $x \to g(f(x))$ definiert

2.3.5 Identitäts Abbildung

Für jede Menge X definieren wir dei identische Abbildung

$$I_d(A) = I_A : A \to A$$
, durch $x \to x$

1. Beispiel

•

$$\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} = S^1$$

$$S^{n-1} := \{(x_1 \dots x_n) \in \mathbb{R}^n; \sum_{i=1}^n x_i^2 = 1\}$$

(n-1) dimensionale sphere in \mathbb{R}^n

• Seien X,Y Mengen, $M\subseteq X\times Y, f:M\to X$ f heißt Projektion, f surjektiv

$$f(M) = \{x \mid \exists y \in Y : (x, y) \in M\} = X$$