SETS CONCEPTS (PRIMARY FIVE)

TERM 1: WEEK 1(Lesson 1 Review of P.4 work on sets)

Definition of a set: A set is a collection of well-defined elements.

Kinds/types of Sets

- a) Equal set
- b) Equivalent set
- c) Joint and disjoint sets
- d) Intersection sets
- e) Union sets
- f) Universal sets
- g) Subsets

WEEK 1: Lesson 2.

Equal sets

Equal sets are sets with exactly the same members and the same number of elements. The set symbol for equal sets is

" =" Examples of equal sets

- 1. Set $A = \{1, 2, 3, 4\}$ and set $B = \{3, 1, 4, 2\}$
- 2. Set $C = \{u, o, i, a, e\}$ and Set $D = \{a, e, i, o, u\}$
- 3. Set $M = \{A, B, C, D, E\}$ and set $N = \{D, E, B, A, C\}$

Equivalent sets: These are sets with same number of members but different number. The symbol is " \leftrightarrow "

[Type here]

Examples of equivalent sets

- 1. Set $A = \{1, 2, 3, 4, 5\}$ and set $B = \{a, e, i, o, u\}$
- 2. Set $M=\{A, B, C, D\}$ and set $N=\{p, u, t, k\}$
- 3. Set $G=\{1, 4, 9\}$ and set $H=\{a, e, i\}$

Evaluation activity

State the relationship between sets below using equal or equivalent sets.

- 1. $A = \{q, e, t, w\}$ and $B = \{1, 2, 3, 4\}$ ______
- 2. B= $\{1, 3, 5, 7\}$ and C= $\{5, 7, 1, 3\}$
- 3. $D = \{A, D, G, 4, H\}$ and $K = \{a, e, i, o, u\}$
- 4. $E= \{MAP, S\} \text{ and } H= \{map, s\}$
- 5. P= { M, A, R, K} and L= {m, a, r, k}
- 6. $R = \{1, 2, 3, 5, 6\}$ and $P = \{5, 6, 1, 3, 2\}$

Ref: MK Pupils` book 5 page 3

WEEK I: Lesson 3

Joint and Disjoint sets

Joint sets are sets with common member(s).

Examples of Joint sets

1. R= {1, 3, 5, 8, 9} and P= {5, 7, 1, 3, 2} i.e. 1, 3, and 5 are common in both sets.

2. D= {A, D, G, 4, H} and K= {a, A, E, u, D} i.e. A and D are common in both sets.

<u>Disjoint sets</u> are sets with no common member.

Examples of disjoint sets

- 1. $D = \{A, D, G, 4, H\}$ and $K = \{a, e, i, o, u\}$
- 2. $E=\{MAP, S\}$ and $H=\{map, s\}$

Evaluation activity

State the relationship between sets below using joint or disjoint sets.

1.
$$G = \{q, e, t, w\}$$
 and $D = \{1, 2, 3, 4\}$ ______

3. R=
$$\{A, D, G, 4, H\}$$
 and K= $\{a, e, i, o, u\}$ ______

4.
$$B = \{MAP, S\}$$
 and $C = \{map, s\}$

WEEK 1: Lesson 4

Intersection sets. These are sets which form common members. The set symbol for intersection of sets is " \cap "

Listing members of intersection of sets

Examples:

1. Given that set $K = \{1, 2, 3, 4\}$ and set $R = \{3, 4, 5, 6, 8\}$,

$$K \cap R = \{3, 4\}$$

2. Given that set
$$A = \{ a, \textcircled{e} I, \textcircled{o} u \}$$
 and set $B = \{ 1, 4, \textcircled{e} \textcircled{o} \}$, $A \cap B = \{ e, o \}$

Union set: This is a set of all members without repeating the common members.

<u>Listing the Union sets.</u>

Examples:

- 1. Given that set $G = \{ (q)(e) + (w) \}$ and $D = \{ (e)(w) + (q)(e) \}$, $G \cup D = \{ q, e, +, w, y, o \}$
- 2. Given that set D= $\{2, 4, 6, 8\}$ and set E= $\{1, 2, 3, 4\}$, D \cup E = $\{2, 4, 6, 8, 1, 3\}$

- 1. Set $G = \{q, e, t, w\}$ and set $D = \{a, e, i. o, u\}$ Find; a) $G \cap D$ b) $G \cup D$
- 2. Set W= $\{1, 3, 0, 5, 7\}$ and set F= $\{5, 7, 9, 3\}$ Find; a) W \cap F b) W \cup F
- 3. Set R= $\{A, D, G, 4, H\}$ and set K= $\{G, W, 2, 4, 5\}$ Find; a) R \cap K b) R \cup K
- 4. Set B= $\{1, 3, 5, 7\}$ and set $C = \{2, 3, 5, 8, 9\}$ Find; a) B $\cap C$ b) B $\cup C$

WEEK 1: Lesson 5

SUBSETS

A subset is a small set got from a big set.

The bigger set from which a subset is got is called a Universal set or Super set.

The symbol for is a subset of is \subseteq

The symbol for is not a subset of is $\underline{\sigma}$. The symbol for Universal set is ξ .

Draw a Venn diagram to show that all goats (G) are
 Animals (A)

3. Given that set $Q = \{a, b, c\}$. List down all the subsets in set Q.

$$\{\}, \{a, b, c\} \implies 8 \text{ Subsets}$$

N.B The empty set and the set itself (universal) are subsets of every set.

List the subsets for each of the following sets:

- 1. $B = \{p, q\}$
- 2. $C = \{x, y, z\}$
- 3. D= { t }
- 4. $E=\{p, q, r, s\}$
- 5. { }
- 6. Draw a venn diagram to show that;
 - a) All dogs (D) are animals (A)
 - b) All girls (G) are female (F)
 - c) All boys (B) are male (M)

WEEK 1: Lesson 6

By calculating,

To find the number of subsets in set i.e. $Z = \{7, 5, 3\}$,

No. of subsets = 2^n where n represents the number of elements in the given set.

- .. Set Z has 3 elements
- \therefore No. of subsets = 2^n

$$= 2^3$$

$$=2\times2\times2$$

$$=4\times2$$

= 8 subsets

NB: Adequate examples can be given before the activity

How many subsets are in each of the sets below?

- 1. Set K= {a, e}
- 2. Set M= {1, 2, 3}
- 3. Set H= {w, y, z, u}
- 4. Set N= {1, 4, 9, 16, 25}
- 5. Set $P = \{a, e, I, o, u\}$

WEEK 2: Lesson 1

Drawing venn diagrams to show the intersection and Union of sets.

Examples

1. Set $A = \{0, 1, 2, 3, 4, 5\}$ and $B = \{0, 2, 4, 6, 8\}$. Draw a Venn diagram to show, i) $A \cap B$ ii) $A \cup B$

- i) $A \cap B = \{0, 2, 4\}$
- ii) $A \cup B = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$
- 2. Set $P = \{ @(e), I, o, u \}$ and $Q = \{ @, b, c, d, e \}$. Draw a venn diagram to show; i) $P \cap Q$ ii) $P \cup Q$

i)
$$P \cap Q = \{a, e\}$$

ii)
$$P \cup Q = \{o, u, I, a, e, b, d, c, f\}$$

Draw venn diagrams and show the intersection and the union in each of the following sets

1. Set
$$G = \{q, u, k, e, t, w\}$$
 and set $D = \{a, e, i, o, u\}$

Find; a)
$$G \cap D$$
 b) $G \cup D$

2. Set
$$W = \{1, 3, 0, 5, 7\}$$
 and set $F = \{5, 2, 7, 9, 3\}$

Find; a)
$$W \cap F$$
 b) $W \cup F$

3. Set
$$R = \{A, D, G, 4, H\}$$
 and set $K = \{G, W, 2, 4, 5\}$

Find; a)
$$R \cap K$$
 b) $R \cup K$

4. Set B=
$$\{1, 3, 5, 4, 7\}$$
 and set $C = \{2, 3, 5, 8, 9\}$

Find; a)
$$B \cap C$$
 b) $B \cup C$

WEEK 2: Lesson 2

Difference of sets

Examples:

1. Study the Venn diagrams below and answer the questions that follow.

[Type here]

a) Find
$$n(A - B)$$

$$A-B=\{e,a\}$$

$$n(A-B)=2$$

$$b)n(B - A)$$

$$B-A = \{f, g\}$$

$$n(B-A)=2$$

2. Given that $X = \{0, 1, 2, 3, 4\}$ and $Y = \{1, 3, 6, 9, 12\}$

a) Find n(X-Y)

$$X-Y = \{0, 2, 4\}$$

$$n(X-Y)=3$$

b)
$$n(Y-X)$$

$$Y-X = \{12, 6, 9\}$$

$$n(Y-X)=3$$

Evaluation activity

Study the venn diagrams below and answer the questions that follow.

- a) Find n(A B)
- b) Find n(B-A)
- 2. $\begin{array}{c} X & Y \\ A & D & G \\ B & E & H \end{array}$
 - a) Find n(X-Y)
 - b) Find n(Y-X)
- 3. $A \qquad B$ $\begin{pmatrix} e & o & h \\ a & u & g & k \end{pmatrix}$
 - a) Find n(A-B)
 - b) Find n(B-X)

WEEK 2: Lesson 3

Complement of sets.

Complement of a set means a set of members not in the given set.

OR

Elements in the universal set but not in the given set.

Example

1. Given that; $P = \{4, 3, 6, 7, 9\}$ and $Q = \{1, 2, 3, 5, 7\}$

- a) Write down members in P' (Complement of set P) $P' = \{1, 2, 3\}$
- b) Write down members in Q' (Complement of set Q)
 Q' = {4, 6, 9}
- 2. Given that; $A = \{a, e, i, o, u\}$ and $B = \{a, b, c, d, e\}$

a) Write down members in A' (Complement of set A) $A' = \{b, c, d\}$

c) Write down members in B' (Complement of set B)

B' = {u, o, i}

Evaluation activity

Use the venn diagrams below to answer the questions that follow

- a) Write down members in A' (Complement of set A)
- b) Write down members in B' (Complement of set B)

- a) Write down members in X' (Complement of set X)
- b) Write down members in Y' (Complement of set Y)

3.

- a) Write down members in A' (Complement of set A)
- b) Write down members in B' (Complement of set B)

WEEK 2: Lesson 4

Shading regions of venn diagrams

1. Shade set A

3. Shade $(A \cap B)$

4. Shade $(A \cap B)'$

6. Shade (A-B)

2. Shade set B

4. Shade $(A \cap B)'$

5. Shade $A \cup B$

7. Shades (B-A)

Describe the shaded parts of each of the venn diagrams below

1.

3.

4.

5.

6

WEEK 2: Lesson 5

Listing and finding number of number of elements from venn diagrams:

[Type here]

Examples

Given that $X = \{ 0, (1), 2, (3), 4 \}$ and $Y = \{ (1), (3), 6, 9, 12 \}$

a) Represent the two sets on the Venn diagram

b) Find n(X-Y)

$$X-Y = \{2, 4, 0\}$$

$$n(X-Y) = 3$$

c) Find n(Y-X)

$$Y-X = \{12, 9, 6\}$$

$$n(Y-X) = 3$$

d) Find $n(X \cap Y)$

$$X \cap Y = \{1, 3\}$$

$$n(X \cap Y) = 2$$

e) Find $n(X \cup Y)$

$$X \cup Y = \{2, 4, 0, 1, 3, 12, 9, 6\}$$

$$n(X \cup Y) = 8$$

- 1. Given that set $P=\{3, 4, 6, 7, 9\}$ and set $Q=\{1, 2, 3, 5, 7\}$
 - a) Represent the two sets on the Venn diagram

- b) Find n(P-Q)
- c) Find n(Q-P)
- d) Find $n(P \cap Q)$
- e) Find $n(P \cup Q)$
- 2. Given that set $M=\{a, e, I, o, u\}$ and set $N=\{a, b, c, d, e\}$.
 - a) Represent the two sets on the Venn diagram

- a) Find n(M)'
- b) Find n(N)'
- c) Find $n(M \cap N)$
- d) Find $n(M \cup N)$
- e) Find n(M)
- f) Find n(N)
- g) Find n(M-N)
- h) Find n(N-M)

WEEK 2: Lesson 6

APPLICATION OF SETS

In a group of swimmers, 15 do free style (F) 10 do backstroke (B) and 6 do both

$$n(F) = 15$$

$$n(B) = 10$$

$$n(F \cap B) = 6$$

a) Represent the above information on a Venn diagram.

b) How many swimmers swim only back stroke?

4 swimmers

c) How many do only free style?

19 swimmers

d) How many swimmers are in that group?

$$(10+6)+6+(15-6)$$

4 + 6+ 9

$$10 + 9$$

= 19 swimmers

e) How many swim only one style?

Backstroke only + free style

$$(10 - 6) + 15 - 6$$

$$4 + 9$$

= 13 swimmers

- 1. Given that n(A) = 15 n(B) = 25 $n(A \cap B) = 5$
- a) Represent the above information on a Venn diagram
- b) Find $n(A \cup B)$
- c) Find $n(A \cap B)'$
- d) Find n(A-B)
- 2. In a class, 30 pupils like Mathematics (M) 20 like Science (S) and 5 pupils like both subjects
 - a) Represent the above information on a Venn diagram
 - b) How many pupils do not like Science?
 - c) How many pupils do not like Mathematics?
 - d) How many pupils are in the class altogether?
 - e) How many pupils like only one subject?

WEEK 3: Lesson 1

PROBABILITY: This refers to the likelihood for an event to happen. Probability is also known as chance.

Probability =
$$\frac{No.of\ total\ chances}{No.of\ desired\ chances}$$

Tossing a coin

A coin has 2 faces ahead and a tail. When it is tossed, the probability of a head or a tail showing up is a half.

Example: A coin is tossed once, what is the probability that a head will show up?

Total chances = 2 i.e. a head and a tail

Desired chances = 1 i.e. a head

Probability =
$$\frac{1}{2}$$

Tossing a dice

A dice has 6 faces i.e. {1, 2, 3, 4, 5, 6}. The probability of getting one of the faces showing up is a sixth.

Example: A die is tossed once, what is the chance that an even number will show on top?

Total chances = 6 i.e. {1, 2, 3, 4, 5, 6}

Desired chances = 3 i.e. {2, 4, 6}

Probability =
$$\frac{3}{6}$$

[Type here]

- 1. A coin is tossed once, what is the probability that;
 - a) A head will show up?
 - b) A tail will show up?
- 2. A die is tossed once, what is the probability that;
 - a) An odd number will show up?
 - b) A number less than 3 will show up?
 - c) A multiple of 3 will show up?
 - d) A prime number will show up?
 - e) A number greater than 4 will show up?

WEEK 3: Lesson 2

More about probability

Example.

1) What is the probability of picking a ripe mango, if there are 4 ripe mangoes and 6 rotten mangoes in a basket?

Desired chances = 4 i.e. 4 ripe mangoes

Probability =
$$\frac{4}{10}$$

2) We shall go on a tour next week. What is the probability that we shall go on a day that begins with letter "T"?

Total chances = 7 i.e. {Mon, Tue, Wed, Thurs., Fri, Sat, Sun}

Sun}

Desired chances = 2 i.e. {Tue, Thurs}

Probability = $\frac{2}{7}$

3) Our school will play a football match with Kampala Parents` School. What is the probability that our school will win the match?

Total chances = 3 i.e. {win, lose, draw}

Desired chances = 1 i.e. {win}

Probability =
$$\frac{1}{3}$$

- 1. What is the probability of picking a ripe mango, if there are 4 ripe mangoes and 5 raw mangoes in a basket?
- 2. We shall go for a wedding party next week. What is the probability that we shall go on a day that begins with letter "5"?
- 3. In a bag, there are 3 red pens, 5 black pens, 7 green pens and 4 blue pens. Find the chance of picking;
 - a) A back pen. b) a red pen. c) a blue and red pen.