Inteligência Artificial para Robótica Móvel

Redes Neurais Convolucionais

Professor: Marcos Maximo

Roteiro

- Motivação;
- Aplicações de CNNs;
- Convolução;
- Pooling;
- Estudos de Casos;
- Inception Network;
- ResNets;
- Transfer Learning.

Motivação

Motivação

- Inglês: Convolutional Neural Networks (CNN).
- Arquitetura inspirada no córtex visual do cérebro humano.
- Nome vem da operação matemática de "convolução".
- Desempenho excepcional em tarefas de visão computacional.
- Algumas redes chegam a ter dezenas ou centenas de camadas.
- Algumas redes possuem milhões de parâmetros.

Visão Clássica x CNN

Traditional Computer Vison

Deep learning

Fonte: https://blog.esciencecenter.nl/mcfly-time-series-classification-made-easy-e47de8d29838

Visão Geral de uma CNN

• Redes neurais convolucionais: uso de mascaras de convolução.

Fonte: https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

ImageNet

- CNN popularizada com a rede AlexNet (2012).
- Vencedores das últimas edições da competição ImageNet tem sido sempre CNNs, cada vez mais profundas.

ImageNet

ImageNet Challenge

- 1,000 object classes (categories).
- Images:
 - o 1.2 M train
 - 100k test.

O que uma CNN aprende?

Fonte: http://vision03.csail.mit.edu/cnn art/index.html

Aplicações de CNNs

Classificação

Fonte: https://guide.freecodecamp.org/machine-learning/deep-learning/

Detecção (e Localização) de Objetos

Neural Style Transfer

Fonte: http://kvfrans.com/neural-style-explained/

Generative Adversarial Networks

Fonte: https://www.zdnet.com/article/nvidia-looks-to-reduce-ai-training-material-through-imagination/

Generative Adversional Networks

Fonte: https://motherboard.vice.com/en_us/article/8qeyyb/build-your-own-terrifying-cat-blob-with-machine-learning

Convolução

- Camadas convolucionais representam o principal tipo de camada em uma CNN.
- Aplica-se uma máscara (filtro/kernel) de convolução à imagem.
- Já vimos essa ideia na aula de Visão Clássica.
- Vamos motivar com um exemplo de detecção de borda.

Imagem de entrada I

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

Máscara de convolução C $(f \times f)$

Image de saída O

0	30	30	0	
0	30	30	0	
0	30	30	0	
0	30	30	0	

*

*

Outras Máscaras

1	1	1
0	0	0
-1	-1	-1

Bordas Horizontais

1	0	-1
2	0	-2
1	0	-1

Sobel

3	0	-3
10	0	-10
3	0	-3

Schaar

?		٠.	?
٠.	٠٠	٠-	٠٠.
	٠.		?
	٠٠	٠-	٠.

• Ideia: que tal aprender o filtro?

Camada de Convolução

• Filtros aprendidos nas primeiras camadas de uma CNN.

Nota Técnica sobre Convolução

- Na verdade, na MAT, a operação de convolução reflete o kernel horizontalmente e verticalmente antes da operação.
- A rigor, o nome correto da operação mostrada é correlação cruzada (cross-correlation).
- Apesar disso, na Literatura de DL, as pessoas chamam convolução mesmo.
- No caso em que se aprende os pesos, refletir o *kernel* seria apenas adicionar mais operações.

Camada de Convolução

- Aplica um filtro aprendido na saída da camada anterior.
- Número de pesos é muito menor que em camada totalmente conectada.
- Operação muito boa para GPU: mesma conta para cada pixel.
- Observação: tamanho do filtro f em geral é ímpar.

Padding

- Na convolução, perde-se informação das bordas da imagem.
- Solução: completar com zeros (padding). Exemplo com p=1.

0	0	0	0	0	0	0	0
0							0
0							0
0							0
0							0
0							0
0							0
0	0	0	0	0	0	0	0

- Pode-se dar saltos maiores no deslocamento da janela da convolução.
- Vamos mostrar exemplo com stride s=2 e padding p=0 (sem padding).

10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0

1	0	-1
1	0	-1
1	0	-1

=

0	30	0
0	30	0
0	30	0

10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0

1	0	-1
1	0	-1
1	0	-1

0	30	0
0	30	0
0	30	0

10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0

=

0	30	0
0	30	0
0	30	0

10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0

Tamanho da Saída

- Imagem de entrada: $n_H \times n_W$.
- Stride $s \times s$.
- Padding p.
- Filtro $f \times f$.
- Imagem de saída: $\left[\frac{n_H + 2p f}{s} + 1\right] \times \left[\frac{n_W + 2p f}{s} + 1\right]$.

Convolução em Volume

• Imagem como um tensor:

- n_H : altura.
- n_W : largura.
- n_c : número de canais de cor.
- Imagem é um *array* 3D de dimensão $n_H \times n_W \times n_c$.

Convolução em Volume

Convolução em Volume

Camada de Convolução

• Incluindo bias e função de ativação.

Camada de Convolução

```
f^{[l]}: tamanho do filtro.
p^{[l]}: padding.
s^{[l]}: stride.
n_c^{[l]}: número de filtros.
Número de pesos: f^{[l]}f^{[l]}n_c^{[l-1]}n_c^{[l]}
Número de biases: n_c^{[l]}
Número de parâmetros: f^{[l]}f^{[l]}n_c^{[l-1]}n_c^{[l]}+n_c^{[l]}
```

Exemplo CNN Simples

Pooling

Tipos de Camadas de uma CNN

- Convolucional (CONV).
- Pooling (POOL).
- Fully Connected (FC): camada comum de rede feedforward.

Pooling

- Também aplica uma operação numa janela da imagem.
- Operação não envolve convolução.
- Janela de tamanho $f \times f$ é deslocada com certo stride s, assim como numa camada convolucional.
- Tipicamente, faz downsample na imagem.
- Tipicamente, não envolve parâmetros a serem ajustados.

1	3	2	1			
2	9	1	1		9	2
1	3	2	3	•	6	3
5	6	1	2			

1	3	2	1	3
2	9	1	1	5
1	3	2	3	2
8	3	5	1	0
5	6	1	2	9

1	3	2	1	3
2	9	1	1	5
1	3	2	3	2
8	3	5	1	0
5	6	1	2	9

1	3	2	1	3
2	9	1	1	5
1	3	2	3	2
8	3	5	1	0
5	6	1	2	9

1	3	2	1	3
2	9	1	1	5
1	3	2	3	2
8	3	5	1	0
5	6	1	2	9

Average Pooling

1	3	2	1			
2	9	1	1		3,75	1
1	3	2	3	•	4	
5	6	1	2			

Pooling

```
• f^{[l]}: tamanho do filtro.
• s^{[l]}: stride.
```

• Operação (max, average etc.).

Estudos de Casos

- CNN famosa.
- Detecção de caracteres.
- Desenvolvida por Yan LeCun, Yoshua Bengio et al.

Fonte: https://engmrk.com/lenet-5-a-classic-cnn-architecture/

	Layer	Feature Map	Size	Kernel Size	Stride	Activation	
Input	Image	1	32x32	y .	-	-	
1	Convolution	6	28x28	5x5	1	tanh	
2	Average Pooling	6	14x14	2x2	2	tanh	
3	Convolution	16	10x10	5x5	1	tanh	
4	Average Pooling	16	5x5	2x2	2	tanh	
5	Convolution	120	1x1	5x5	1	tanh	
6	FC	₹-	84	9 .5 1	-	tanh	
Output	FC	u	10	: * :	¥	softmax	

AlexNet

Função de ativação: ReLU

Fonte: https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-convolutional-neural-networks/

VGG

Fonte: https://neurohive.io/en/popular-networks/vgg16/

Convolução 1x1

 Escolhemos tipo e tamanho do filtro na "mão". Por que não deixar a rede decidir?

- Isso tem o problema do aumento do custo computacional.
- Em especial, filtros 5x5 introduzem muitos parâmetros.
- Solução: fazer CONV 1x1 para reduzir número de filtros antes de aplicar filtro mais "largo".

• Módulo *Inception*:

Full Inception module

GoogLeNet (Inception v1)

- Erro de 6,7% no ImageNet (vencedora de 2015).
- Inception: "rede dentro da rede" (referência ao filme).

ResNets

Residual Networks

- À medida que as redes vão ficando muito profundas, fica mais difícil treiná-las por conta do problema de vanishing/exploding gradients.
- ResNets ajudam a mitigar esse problema.

Residual Block

ResNet-152

- 152 camadas.
- Uso de ResNet.
- Erro de 3,57% no ImageNet (vencedora de 2015).
- Desempenho super-humano.

152 layers

Transfer Learning

Transfer Learning

- Treinar CNNs profundas como as apresentadas exigem *hardware* computacional que apenas grandes empresas (e.g. Google) e centros de pesquisa tem acesso.
- Como treiná-las para nossos problemas?
- Já vimos que as camadas iniciais tendem a aprender filtros básicos de visão computacional...
- Ideia: reaproveitar camadas iniciais e treinar apenas camadas finais.
- Camadas inicias "congeladas" durante o treinamento.

Para Saber Mais

- Especialização de *Deep Learning* do Andrew Ng no Cousera (curso de *Convolutional Neural Networks*).
- Capítulos 9 do livro: GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. *Deep Learning*. The MIT Press, 2016.

Laboratório 9

Laboratório 9

- Implementar a rede LeNet-5 usando Keras e Tensorflow.
- Treinar a rede LeNet-5 no problema de identificação de caracteres.