Spacetime algebra

Define:

- The spacetime basis vectors $\gamma_0^2=-\gamma_i^2=\pm 1$ for $i\in\{1,2,3\}$ and $\gamma_i\gamma_j=-\gamma_i\gamma_j$ for $i\neq j$.
- $\gamma^{\mu} = \pm \gamma_{\mu}$ such that $\gamma^{\mu} \gamma_{\mu} = 1$ for each of $\mu \in \{0, 1, 2, 3\}$.
- The relative vectors $\vec{\sigma}_i \coloneqq \gamma_i \gamma^0$ and $\vec{\sigma}^i \coloneqq \gamma_0 \gamma^i$.
- The pseudoscalar $\mathbb{I} := \gamma_0 \gamma_1 \gamma_2 \gamma_3$.

Note:

- The relative vectors $\vec{\sigma}_i$ for $i \in \{1,2,3\}$ form a basis for the geometric algebra of 3d space.
- $\vec{\sigma}_i^2 = (\vec{\sigma}^i)^2 = 1$ for each $i \in \{1, 2, 3\}$.
- $\mathbb{I}=\gamma_0\gamma_1\gamma_2\gamma_3=\vec{\sigma}_1\vec{\sigma}_2\vec{\sigma}_3$ and $-\mathbb{I}=\gamma^0\gamma^1\gamma^2\gamma^3=\vec{\sigma}^1\vec{\sigma}^2\vec{\sigma}^3$

Define:

$$\partial \coloneqq \gamma^\mu \partial_\mu \equiv \sum_{\mu=0}^3 \gamma^\mu \frac{\partial}{\partial x_\mu}$$

$$\vec{\nabla} \coloneqq \vec{\sigma}^i \partial_i = \sum_{i=1}^3 \vec{\sigma}^i \frac{\partial}{\partial x_i}$$

Note:

$$\gamma_0 \partial = \partial_0 + \vec{\nabla} = \frac{1}{c} \frac{\partial}{\partial t} + \vec{\nabla}$$

$$\partial \gamma_0 = \partial_0 - \vec{\nabla} = \frac{1}{c} \frac{\partial}{\partial t} - \vec{\nabla}$$

Maxwell's equations

Define:

- The Faraday bivector $F = \vec{E} + c \mathbb{I} \vec{B}$ where $\vec{E} = E^i \vec{\sigma}_i$ and $\vec{B} = B^i \vec{\sigma}_i$.
- The 4-current $J=J_{\mu}\gamma^{\mu}$ where $J_0=rac{
 ho}{arepsilon_0}$ and $J_i \vec{\sigma}^i=-c\mu_0 \vec{j}$.
- Maxwell's equation $\partial F = J$.

Derive:

Perform a spacetime split by left-multiplying by γ_0 .

$$\begin{split} \gamma_0 \partial F &= \gamma_0 J \\ &= \bigg(\frac{1}{c}\frac{\partial}{\partial t} + \vec{\nabla}\bigg) \Big(\vec{E} + c \mathbb{I} \vec{B}\Big) = J_0 + \vec{\sigma}^i J_i \\ &= \frac{1}{c}\frac{\partial \vec{E}}{\partial t} + \vec{\nabla} \vec{E} + \mathbb{I} \frac{\partial \vec{B}}{\partial t} + c \vec{\nabla} \mathbb{I} \vec{B} = \frac{\rho}{\varepsilon_0} - c \mu_0 \vec{j} \end{split}$$

Using \cdot and \wedge in the sense of the 3d algebra, note that $\vec{\nabla} \vec{E} = \underbrace{\vec{\nabla} \cdot \vec{E}}_{(0)} + \underbrace{\vec{\nabla} \wedge \vec{E}}_{(2)}$ and

$$\vec{\nabla} \vec{\mathbb{I}} \vec{B} = \underbrace{\vec{\nabla} \cdot \vec{\mathbb{I}} \vec{B}}_{(1)} + \underbrace{\vec{\nabla} \wedge \vec{\mathbb{I}} \vec{B}}_{(3)}$$

$$= \langle \vec{\mathbb{I}} \vec{\nabla} \vec{B} \rangle_1 + \langle \vec{\mathbb{I}} \vec{\nabla} \vec{B} \rangle_3$$

$$= \vec{\mathbb{I}} \langle \vec{\nabla} \vec{B} \rangle_2 + \vec{\mathbb{I}} \langle \vec{\nabla} \vec{B} \rangle_0$$

$$= \underbrace{\vec{\mathbb{I}} \vec{\nabla} \wedge \vec{B}}_{(1)} + \underbrace{\vec{\mathbb{I}} \vec{\nabla} \cdot \vec{B}}_{(3)}$$

Separate the spacetime split Maxwell equation into grades:

Grade	Projection
0	$ec{ abla}\cdotec{E}=rac{ ho}{arepsilon_0}$
1	$\label{eq:continuity} \frac{_{1}}{^{c}}\frac{\partial\vec{E}}{\partialt}+c\mathbb{I}\vec{\nabla}\wedge\vec{B}=-c\mu_{0}\vec{j}$
2	$ec{ abla} \wedge ec{E} + \mathbb{I} rac{\partial ec{B}}{\partial t} = 0$
3	$\mathbb{I}\vec{\nabla}\cdot\vec{B}=0$

Using the relation $\vec{u} \wedge \vec{v} = \mathbb{I}(\vec{u} \times \vec{b})$ with the vector cross product, these take the traditional form:

Gauß's law
$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$
 Ampère's law
$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} = \mu_0 \left(\vec{j} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \right)$$
 Faraday's law
$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

Summary:

If \vec{E} and \vec{B} are the electric and magnetic fields, ρ is charge density, and \vec{j} is current density,

- + $F = \vec{E} + c \mathbb{I} \vec{B}$ is the Faraday bivector, and
- $J=rac{
 ho}{arepsilon_0}\gamma^0-c\mu_0j_i\gamma^i$ is the charge 4-current,

then Maxwell's equations are $\partial F = J$.

Electromagnetic plane waves

This vanishes if and only if $k = \frac{\omega}{c}$.

A solution to $\partial F = 0$ is

$$F = A\sin(\omega t - kx)\big(\vec{\sigma}_y + \mathbb{I}\vec{\sigma}_z\big)$$

which is a plane wave moving in the +x direction, with \vec{E} oscillating along +y and \vec{B} along +z.

 $\partial F = \begin{cases} (3) & 0 \\ (2) & 0 \\ (1) & \vec{\nabla} \\ (2) & 1 \ \partial \end{cases} A \sin(\omega t - kx) \begin{cases} (3) & 0 \\ (2) & \vec{\mathbb{I}}\vec{\sigma}_z \\ (1) & \vec{\sigma}_y \\ (0) & 0 \end{cases}$ $=A\sin(\omega t - kx) \begin{cases} 3 & 0 \\ (2) & 0 \\ (1) & -k\vec{\sigma}_x \end{cases} \begin{cases} 3 & 0 \\ (2) & \mathbb{I}\vec{\sigma}_z \\ (1) & \vec{\sigma}_y \end{cases}$ $=A\sin(\omega t-kx)\left\{ \begin{array}{ll} (3) & -k\sigma_x\wedge\mathbb{I}\dot{\sigma}_z\\ (2) & \frac{\omega}{c}\mathbb{I}\dot{\sigma}_z-k\dot{\sigma}_x\wedge\dot{\sigma}_y\\ (1) & \frac{\omega}{c}\dot{\sigma}_y-k\dot{\sigma}_x\cdot(\mathbb{I}\dot{\sigma}_z)\\ \end{array} \right\}$ $=A\sin(\omega t-kx)\left\{ \begin{array}{ll} (3) & \mathrm{U} \\ (2) & \left(\frac{\omega}{c}-k\right)\vec{\sigma}_x\vec{\sigma}_y \\ (1) & \left(\frac{\omega}{c}-k\right)\vec{\sigma}_y \end{array} \right\}$