Title: Computational Thermal Engineering

Brief:

- Understand the governing equations, discretizations, and their implementations
- Study of the conduction and convection algorithms
- Gain skill in Octave and understand C++ to code in OpenFOAM
- Simulate and validate real world problems with practical learning examples in OpenFOAM
- Group and individual Projects using Octave and OpenFOAM

Instructor: Mr. Kumaresh Selvakumar

• Google scholar: https://scholar.google.com/citations?user=AghOa44AAAAJ&hl=en

Grading distribution:

• All exercises (equal weight): 20%

Project-I: 10%, Project-II: 10%, Project-III: 20%, Project-IV: 40%

Duration: 15 weeks, 1 session (3 hrs)/week, Total 45 hours

References:

- 1) Patankar, S. (1980). Numerical Heat Transfer and Fluid Flow (1st ed.). CRC Press.
- 2) Versteeg, H. K. and Malalasekera, W. (1995) An Introduction to Computational Fluid Dynamics the Finite Volume Method. Longman Scientific and Technical.

Course curriculum

Weeks	Topic(s)	Brief
Week 1	Ch. 1 Introduction – Computational	1. Discussing syllabus and projects related to Computational
	Thermal Engineering	Thermal Engineering subject
	* CFD with OpenFOAM an overview	2. A brief introduction showing the capabilities of OpenFOAM.
	* Setting up the system (<u>Exercise 1</u>)	3. Configuring the system to use OpenFOAM and Octave to
		develop CFD algorithms.
	Ch. 2 Mathematical description of	1. Introduction to conservation laws.
Week 2	physical phenomena	2. Governing equations, derivations, and their significance.
	Ch. 3 Discretization methods	Numerical discretization (FDM and FVM)
	* Introduction to programming in	2. Presenting Taylor series expansion
Week 3	Octave	3. Stability analysis in numerical methods
	* Exercises 2 and 3 (Octave)	4. Sample test case OpenFOAM (steady flow)
	* Introduction to C++ for OpenFOAM	
	* Introduction to C++ for OpenFOAM	1. Stability analysis in numerical methods (contd.)
Week 4	(contd.)	2. Rate of convergence
Week 4	* Exercise 4 (Octave)	3. Truncation error analysis
		4. Sample test case OpenFOAM (steady flow)
Week 5	Ch. 4 Heat Conduction	1. Introducing finite difference method using heat equation.
	* FDM using diffusion equation	2. A template code will be provided to help students fill in
	* Introduction to C++ for OpenFOAM	required parts to finish this assignment.
	(contd.)	3. Solving Diffusion in Octave (steady flow)
	* Exercise 5 (Octave)	
Week 6	* FVM using diffusion equation	1. Introducing finite volume method using heat equation.

	* Introduction to C++ for OpenFOAM	2. A template code will be provided to help students fill in
	(contd.)	required parts to finish this assignment.
	* Exercise 6 (Octave, OpenFOAM)	3. Solving Diffusion in Octave and OpenFOAM (steady flow)
	* <u>Project – I</u> (in C++)	
	Ch. 5 Convection and Diffusion	1. Introducing finite difference method using advection
Week 7	* FDM using convection equation	equation.
	* Introduction to C++ for OpenFOAM	2. A template code will be provided to help students fill in
	(contd.)	required parts to finish this assignment.
	* Exercise 7 (Octave)	3. Solving convection in Octave (steady flow)
Week 8	* FVM using advection equation	1. Introducing finite volume method using advection equation.
	* Introduction to C++ for OpenFOAM	2. A template code will be provided to help students fill in
	(contd.)	required parts to finish this assignment.
	* Exercise 8 (Octave, OpenFOAM)	3. Solving convection in Octave and OpenFOAM (steady flow)
	* FVM convection-diffusion equation	1. Introducing students to OpenFOAM discretization
Week 9	* Introduction to C++ for OpenFOAM	2. A template code will be provided to help students fill in
	(contd.)	required parts to finish this assignment.
	* Exercise 9 (Octave, OpenFOAM)	3. Solving convection-diffusion in Octave and OpenFOAM
	* Project – II (in C++)	(unsteady flow)
Week 10	* Programming in OpenFOAM	Working with OpenFOAM.
	* Explanation of Project – III (Group	
	project)	
Week 11	Ch. 6 Calculation of the flow field	1. Unsteady flow with demonstration on boundary conditions
	* Numerical algorithms to solve	2. Working with OpenFOAM
	pressure-velocity equations- I, II	
	* Review of Project – III (Group	
	project)	
Week 12	* Staggered and collocated grid	1. Unsteady flow with demonstration on boundary conditions
	explanation	2. Working with OpenFOAM
	* SIMPLE and SIMPLER algorithm	
	* Review of Project – III (Group	
	project)	
Week 13	* Explanation of Final Project – IV	OpenFOAM simulations
	(Group project)	
Week 14	* Review of CFD	1. OpenFOAM simulations and project reviews
	* Review of Final Project - IV	2. Course review and project queries
	(Group-project)	3. Final project presentations
	* Presentations of Final Project – IV	
	(Group project)	
Week 15	* Review of CFD	1. OpenFOAM simulations and project reviews
	* Review of Final Project - IV	2. Course review and project queries
	(Group-project)	3. Final project presentations
	* Presentations of Final Project – IV	
	(Group project)	