

Design Considerations for USB type C Power Delivery Brian King

What will I get out of this session?

- Purpose:
 - 1. Learn more about USB-C Power Delivery (PD) requirements.
 - 2. Understand architecture of USB-C PD, AC/DC power sources.

- Part numbers mentioned:
 - UCC28740, UCC24636
 - TPS40303, TPS25740
- Reference designs mentioned:
 - PMP11451
 - PMP11372, PMP20172
- Relevant End Equipments:
 - USB Chargers

The USB Connectors

C-to-C, C-to-A and C-to-B cables are defined. C-to-DisplayPort are also available.

Type-C

Priority of Power Modes

Precedence	Mode of Operation	Nominal Voltage	Maximum Current
Highest	USB PD	Up to 20 V	3A 5 A w/ active cable
1	USB Type-C current @ 3A	5 V	3 A
	USB Type-C current @ 1.5A	5 V	1.5 A
	USB BC1.2	5 V	Up to 1.5 A
	USB 3.1	5V	900 mA
Lowest	USB 2.0	5V	500 mA

Focus on Source-Only Application

- There are many different applications that require different silicon solutions under the USB Type-C umbrella.
 - o Laptops, docking station, monitors, tablets, etc.
- One benefit of the wide-spread adoption of this open standard is a realistic path to a universal charger and e-waste reduction.
 - One connector instead of the proliferation of different adaptors for different devices
 - 300,000 tons of e-waste goes to landfills every year (according to UN)

Monotonic Incremental Power Rule

- USB PD enforces voltage profiles as a function of max power.
- e.g., if the power advertised on a port > 27W; 5V, 9V, and 15V shall be offered.
- Other voltages may be offered, but must not exceed highest required voltage rail

Typical PD Flow

USB Type-C DFP PD Systems

5V Only
Single Port

PD Single Port

5V Output Voltage Requirements

- Follow USB2.0 and 3.1 spec
- Range includes all of these error sources:
 - DC regulation accuracy
 - Line load regulation
 - Ripple
- Load Transients:
 - Stay within same range for 5V outputs
 - Test in 25% load step increments from:
 - Min load to max load
 - Max load to min load
 - Must pass this at receptacle

	Max 5.5V
4.75V	

AC/DC 5V Only – Single Port

- Not much different from Type A adaptors
- More power than Type A (15W vs. 10W)
 - Requires synchronous rectifier in most cases
- Requires a port controller to advertise power and control disconnect switch
 - TPS25810 (integrated 30mΩ FET)
 - TUSB321 + external PFET
- Possible with PSR (Primary-Side Regulation)
 - No optocoupler for reduced cost

AC/DC Single Port – 5V Only: Design Example Type C Port, **Port Controller On Daughter Card** CSD18503Q5A **40V SR FET** UCC28740 UCC24636 SR Controller **Primary Side Flyback Controller** w/ Diode Emulation w/ Opto Feedback

AC/DC Single Port – 5V Only: Design Example

Daughter Card

AC/DC 5V Only – Multi-Port

- Can be a mixture of Type A and Type C ports
- Each Type C port needs a port controller
- Total power level >15W
 - Definitely needs SR
- Secondary-side regulation recommended
 - Difficult to maintain regulation on all ports

AC/DC Multi-Port – 5V Only : Design Example

PD Regulation Requirements

- Range includes all of these error sources:
 - DC regulation accuracy
 - line load regulation
 - Ripple
- Must pass this at receptacle
- NV = new voltage
- If NV = 5V: Follow USB2.0 and 3.1 spec

NV	vSrcNew Min	vSrcNew Max
5 V	4.75 V	5.5 V
9 V	8.55 V	9.45 V
15 V	14.25 V	15.75 V
20 V	19.0 V	21.0 V

PD Voltage Transition Requirements

- If NV > 5V
 - vSrcNew = +/- 5% of NV
 - vSrcValid =VSrcNew +/- 0.5V
- vSrcSlewPos < 30mV/us
- tSrcSettle = 275ms
- tSrcReady = 285ms

PD Load Transient Requirements

- Stay within vSrcValid
- Return to vSrcNew within 5ms
- Test in 25% load steps from:
 - min load to max load
 - max load to min load
- Must pass at receptacle

AC/DC PD – Single Port

- Flyback is the best topology choice:
 - Tolerant of wide output voltage variations
 - Simple and low cost
 - Good efficiency and low standby power
- Secondary-side regulation is required to adjust output voltage
- Aux winding voltage is proportional to output voltage
 - VDD to the primary controller may need to be clamped

AC/DC Single Port – PD : Design Example

AC/DC Single Port – PD : Design Example

AC/DC Single-Port – PD: Design Example

- PMP11451, <u>www.ti.com/tool/PMP11451</u>
- UCC28740, UCC24636, TPS25740 Flyback with SR and PD Control
- 5V/12V/20V 60W, 92% Efficiency

AC/DC PD — Multi-Port

- Complicated because...
 - Must support multiple voltages simultaneously
- But, luckily...
 - Power/voltage contracts can be renegotiated at any time
- Possible architectures:
 - Generate multiple voltage rails and mux to ports
 - Generate intermediate bus and post regulate each port
- Power path management
 - Simple two port systems can be designed using built-in features of TPS25740
 - 3+ port systems require a microprocessor

5V/9V/15V PD with Multiple Ports - Muxing

- + Good efficiency
- Poor regulation
- Complicated AC/DC design
- Difficult to control voltage slew rates
- Poor ultilization of AC/DC power capabilities

5V/9V/15V PD with Multiple Ports – Intermediate Bus

5V/9V/15V PD with Multiple Ports – Port Power Management

AC/DC Multi-Port – PD: Design Example

- PMP11372, <u>www.ti.com/tool/PMP11372</u>
- UCC28740, UCC24636, Flyback with SR
- 17V/36W, 93% Efficiency

- PMP20172, <u>www.ti.com/tool/PMP20172</u>
- TPS40303, TPS25740, Sync Buck & PD Control
- 5V/9V/15V 36W, >98% Efficiency

Conclusions

- Understand the Type-C and PD rules before designing
- 5V only systems are fairly straight forward
- Single port PD solutions require:
 - Clamping circuit on VDD
 - Port controller
 - Disconnect FET
- Multiple port PD solutions benefit from:
 - Two stage approach
 - Smart port power management
 - High efficiency
 - High power density