COMPUTER SCIENCE 20, SPRING 2015

Module #6 (Propositional Logic)

Author: Keenan Monks Reviewer: Hannah Blumberg Last modified: February 6, 2015

Executive Summary

- 1. A proposition is a statement that is either True or False. For brevity, we label propositions with letters (p : "Gold is a metal"). In this case we can also say that p is a propositional (Boolean) variable.
- 2. Logical operators combine propositions into compound propositions . List of the most common logical operators:

Symbol	Operation	Note
Λ	AND (Conjunction)	$p \wedge q$ is true when both p and q are true.
V	OR (Disjunction)	$p \lor q$ is true when at least one of p and q is true.
	Negation	Another symbol is the horizontal bar: $\neg(p \land q) \equiv \overline{p \land q}$
\oplus	Exclusive OR.	Like OR but it's false when both p and q are true.
\rightarrow	Implication	Important equivalence: $p \to q \equiv \neg p \lor q$
\leftrightarrow	IFF	Important equivalence: $p \leftrightarrow q \equiv (p \to q) \land (q \to p)$

Check-in problems

- 1. Define the propositions p="The soccer game will take place", q="It is raining". Which of the following compound propositions is equivalent to "The soccer game is canceled whenever it is raining"
 - (a) $\neg p \to q$
 - (b) $\neg q \to p$
 - (c) $\neg p \land q$
 - (d) $q \to \neg p$
 - (e) $p \to q$

In-class problems

1. Prove by truth table the first of the two distributive laws:

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

- 2. (a) Using the propositions p="I study", q="I will pass the course", r="The professor accepts bribes", translate the following into statements of propositional logic:
 - i. If I do not study, then I will not pass the course unless the professor accepts bribes.
 - ii. If the professor accepts bribes, then I will pass the course without studying.
 - iii. The professor does not accept bribes, but I study and will pass the course.
 - (b) Using the propositions p="The night hunting is successful", q="The moon is full", r="The sky is cloudless", translate the following into statements of propositional logic:
 - i. For successful night hunting it is necessary that the moon is full and the sky is cloudless.
 - ii. The sky being cloudy is both necessary and sufficient for the night hunting to be successful.
 - iii. If the sky is cloudy, then the night hunting will not be successful unless the moon is full.
- 3. In the mini-lecture you saw how to add two boolean variables using logic operators. In this problem we will show how to subtract two boolean variables.

Consider the boolean variables a, b, c each representing a single bit. Write a propositional formula for the result of the boolean subtraction a-b and for the "borrow bit" c, indicating whether a bit must be borrowed from an imaginary bit to the left of a (the case when a=0 and b=1) to ensure that the result of the subtraction is always positive. Start by creating a "truth" table for a-b and the borrow bit c. The borrow bit c is always 1 initially, and is set to 0 only if borrowing was necessary.

- 4. Using a truth table, find which of the following compound propositions are always true, regardless of the values of p and q:
 - (a) $p \to (p \lor q)$
 - (b) $\neg (p \to (p \lor q))$
 - (c) $p \to (p \to q)$