Properties of Materials

Metals Processing

Processing Metals

Dr Matthew Peel
matthew.peel@bristol.ac.uk
2.7 Queens Building

Preview

Intended Learning Outcomes	
Understanding	That many processes interact in complex ways in modern metals.
Skills	Able to combine phase, TTT and CCT diagrams to predict/diagnose problems.
Values	Acknowledge the limitations of such diagrams in the face of the real complexity.

- Predictions for steel and common forms of steel sections/components
 - Using TTT and CCT diagrams
- Chaining treatments together
 - Hot work, recrystallisation, heat treatment, cooling, quenching, tempering

Reading Steel TTT

"Rules"

All quenches are instantaneous (vertical lines)

All quenches happen at t=0 (restart reaction)

0% transformed if t < Ps/Bs

100 % transformed if t > Pf/Bf

$$\% \approx 100 \times \frac{\log(t) - \log(t_s)}{\log(t_f) - \log(t_s)}$$

if
$$Bs/Ps < t < Pf/Bf$$

(but don't bother with equation)

Reading Steel TTT

Steel at 900°C Quench to 400 ° C Hold for 2000s Quench to ambient (20 ° C).

What is the microstructure?

Quench 1:

Miss pearlite so 0% pearlite

Hold:

Pass bainite start and finish so 100% bainite

Quench 2:

Restart at t=0 and drop

No austenite to change to martensite

1

Install the app from pollev.com/app

2

Start the presentation

1

Install the app from pollev.com/app

2

Start the presentation

1

Install the app from pollev.com/app

2

Start the presentation

Martemper/Austemper

- Get thermal equilibrium before transformation
 - Reduce thermal
 misfit between
 surface and inside
 - Minimise chances of distortion

CCT

Some ferrite/pearlite but not finished

Critical Cooling Rate (CCR) very important – fast enough to produce 100% martensite

1

Install the app from pollev.com/app

2

Start the presentation

1

Install the app from pollev.com/app

2

Start the presentation

Forging and Recrystallisation

Forging and Recrystallisation

Forging

Steel

Normalising (produce ferrite/pearlite)

Fast as feasible to reduce grain size, pearlite separation (better strength, toughness, ductility)

Tempering

1

Install the app from pollev.com/app

2

Start the presentation

1

Install the app from pollev.com/app

2

Start the presentation

1

Install the app from pollev.com/app

2

Start the presentation

Polls

The steel was not heated to a high enough T during the final heat treatment.

The quench was too fast.

The quench was not fast enough.

The tempering stage was not long/hot enough.

Usually means no austenite, so no martensite (softer than expected)

Get martensite if CCR exceeded. No change if faster. Might cause thermal stresses (cracking, distortion)

Slow cooling allows ferrite/pearlite to form instead

Tempering allows strong/brittle martensite to 'relax' but needs time and T. Too little = hard/brittle

Treatments can chain up

1

Install the app from pollev.com/app

2

Start the presentation

Preview

Intended Learning Outcomes	
Understanding	That many processes interact in complex ways in modern metals.
Skills	Able to combine phase, TTT and CCT diagrams to predict/diagnose problems.
Values	Acknowledge the limitations of such diagrams in the face of the real complexity.

• TRY QUESTIONS 13-17 BY NEXT LECTURE