

Workshop Week

E-Lands MVS

Martha Hoffmann Session 5 RLI, 19.09.2019

Oemof

Introducing words

Getting to know the Multi-Vector Simulator (MVS)

All workshop contents at: https://github.com/smartie2076/oemof workshop

MVS in the context of E-Land Use cases (WP3.1) Requirements (WP3.2) **MVS** development **Current status of development of the MVS**

Outlook: Next steps of the tool development

MVS in the context of E-Land Use cases (WP3.1) Requirements (WP3.2) **MVS** development **Current status of development of the MVS Outlook: Next steps of the tool development**

Challenges addressed by E-Land

- Sector-coupling of electricity, gas and heat
 - ▶ ...can improve overall system efficiency
 - ...can provide flexibility and storage
 - ▶ ...can increase system autonomy
- Energy sectors should be analyzed, planned and operated in an integrated manner
- ► Integrated perspective from business, societal, systems, operations and planning perspective

The E-Land Toolbox

- ► Framework, which can couple and co-optimize sectorcoupled systems
- ► Multiple layers with different focusses:
 - Community engagement
 - Business models
 - ▶ Technical layer, including decision-making support tools
 - → Layers integrated over the Enterprise Service Bus ESB)

The E-Land Toolbox

MVS in the context of E-Land

Use cases (WP3.1)

Requirements (WP3.2)

MVS development

Current status of development of the MVS

Outlook: Next steps of the tool development

Use case definition (WP3.1)

- ► High-Level Use Case (HLUC)
 - Generic concepts describing involved actors but not processes
- ► Primary Use Case (PUC)
 - ▶ UC defined with clear boundaries
 - Necessary to fullfill to adress HLUC
- ► Secondary Use Case (SUC)
 - More granular, less abstract description of core functionalities

High-Level Use Cases

- ► "Energy Management System (EMS) integration with DER and BMS":
 - Integration of various systems
 - Modelling interoperability of ES
- ► Optimization of operation of LES
 - Optimal (day-to-day) operation
- Optimal sizing of a Local Energy System
 - New investments into assets (energy production, storage)

Primary Use Cases (PUCs) and the pilots

#	Name	ES	RO	NO	India
1	Provide commercial functionality to a multi-vector LES	✓			\checkmark
2	Shift Building loads using Demand Side Management	✓	✓	✓	✓
3	Shift Harbor loads using Demand Side Management			✓	
4	Optimal scheduling of thermal and electrical storage		\checkmark	\checkmark	✓
5	Optimal scheduling of electrical storage and hydrogen storage	✓			✓
6	Storing excess generation in thermal network		✓	✓	
7	Optimal management of EV and FCEVs in a LES	✓			✓
8	Multi-vector Optimization of assets' sizing in a LES	√	√	√	
9	Optimal sizing of electric parts of a LES	√	√	√	√

Walqa Technology Park, Spain

UVTgv University Campus, Romania

Port of Borg, Norway

MVS in the context of E-Land

Use cases (WP3.1)

Requirements (WP3.2)

MVS development

Current status of development of the MVS

Outlook: Next steps of the tool development

Functional requirements

- WP 3.2 described in detail the tasks the MVS has to perform
 - ▶ Automatic generation of LES
 - ► Solving LES
 - Manual set-up of LES (custom components)
 - Optimization results
 - ▶ Integrated assets of production/conversion
 - Setting the optimization goal
 - ▶ Specific energy cost models
 - Load profiles
 - ▶ Data processing for asset parameters
 - ▶ Introducable constraints

Non-Functional requirements

- ► Additional requirements set for MVS in WP 3.2
 - ▶ Preprocessing of model input
 - ▶ Postprocessing of model results
 - ▶ Communication between MVS/ESB
 - ▶ Time-step lenghts
 - ▶ Interface for technical parameter setting
 - ▶ Interface for economic parameter setting

MVS in the context of E-Land Use cases (WP3.1) Requirements (WP3.2) **MVS** development **Current status of development of the MVS Outlook: Next steps of the tool development**

General MVS modular structure

Modular structure of the MVS

- mvs_eland_tool
 - A_initialization
 - ▶B0_data_input
 - ▶C0_data_processing
 - ▶ D0_modelling_and_optimization
 - ▶E0_evaluation
 - ▶F0_output
- ► Tool still under development. Can be found in: https://github.com/smartie2076/mvs_eland

Possible components of the MVS

- ▶ PV Generation
- Wind Generation
- Electricity Storage Systems
- ► Gas Boilers
- ► HVAC Systems
- Solar Thermal Generation
- ► Hot Water Thermal Storage
- Hydrogen-based Storage Systems

- ▶ Geothermal Conversion
- ► LNG Storage Systems
- ► Electrolyser
- Additionally: External energy providers, project data, general economic data

A lot of information to input and process

User input: Excel file

- As an intermediary, an Microsoft Excel file is used for user input:
 - All project parameters
 - ▶ Information concerning energy sectors
 - ▶ Technical and economic parameters of assets
 - ▶ Demand profiles (via .csv-files)
- Excel Template: https://github.com/smartie2076/mvs_eland/blob/master/inputs/test_input_file_v1.xlsx

- ► E-Land collegues ICOM from Greece develop interactive web-application
 - ▶ Data input
 - Execution of MVS (stored on server)
 - ▶ Postprocessing and vizualization
- Data exchange format with MVS: JSON
- Standalone usage of the MVS from the toolbox will be continued
- ▶ This process has just kicked-off

Modular structure of the MVS

- mvs_eland_tool
 - A_initialization
 - ▶B0_data_input
 - ▶C0_data_processing
 - ▶ D0_modelling_and_optimization
 - ▶E0_evaluation
 - ▶F0_output
- ► Tool still under development. Can be found in: https://github.com/smartie2076/mvs_eland

MVS in the context of E-Land Use cases (WP3.1) Requirements (WP3.2) **MVS** development **Current status of development of the MVS Outlook: Next steps of the tool development**

Development status of the MVS

- ► Adapted to simulate BIKS (1st step)
- Sole electricity system model
- Optimization goal: Decrease peak demand pricing costs by installing PV and storage

BIKS: Current intermediate output

MVS in the context of E-Land Use cases (WP3.1) Requirements (WP3.2) **MVS** development **Current status of development of the MVS**

Outlook: Next steps of the tool development

Next extensions

- ► Implement multiple transformer stations to mirror peak demand pricing of BIKS
- Add post-processing
 - ▶ Graphs
 - Scalar output
 - Key performance indicators (KPI)
- Change input-format to json
- Restructure/clean automatized generation of energy system models
- Clean project parameter dictionary
- ► Reach out to other pilots and integrate their needs

THANK YOU FOR YOUR ATTENTION!

How to follow Oemof's activities?

Website: https://oemof.org/

Github: https://github.com/oemof

Or join our mailing list!

License

Except where otherwise noted, this work and its content (texts and illustrations) are licensed under the Attribution 4.0 International (CC BY 4.0)

See license text for further information.

Tel: +49 (0)30 1208 434 0

E-Mail: sarah.berendes@rl-

institut.de

Web: http://www.rl-institut.de

Twitter: @rl_institut

Please quote as: "PRESENTATION TITLE" © Reiner Lemoine Institut | CC BY 4.0