- ●谐振动的表示法
- 1. 解析法

$$x = A\cos(\omega t + \varphi)$$

2. 振动曲线法

3. 旋转矢量法

旋转矢量的末端在X轴上的投影:

$$x = A\cos(\omega t + \varphi)$$

即:投影点的运动是一谐振动。

- ●旋转矢量与位相
- 2) 位相差 设两频率相等的谐振动:

$$x_1 = A_1 \cos(\omega t + \varphi_1)$$
 $x_2 = A_2 \cos(\omega t + \varphi_2)$

它们的位相差:
$$\Delta \phi = \phi_2 - \phi_1 = \varphi_2 - \varphi_1 = \Delta \varphi$$

由 $\Delta\phi$ 可以比较两振动的步调:

$$(1) \Delta \phi = 2k\pi \qquad ----$$

则称 x_2 比 x_1 超前 $\Delta \phi$ 的位相 (或 x_1 比 x_2 落后 $\Delta \phi$ 的位相)

(4)不同物理量也可比较振动的步调

例:右图为一作谐振动的物体的速度--时间曲线.若用余弦函数表示简谐振动,则振动的初位相是多少?

解:
$$x = Acos(\omega t + \varphi)$$

$$v = -A\omega \sin(\omega t + \varphi)$$
$$= -v_m \sin(\omega t + \varphi)$$

$$t=0 \exists \forall, v=\frac{v_m}{2}$$

$$\therefore \frac{v_m}{2} = -v_m \sin \varphi$$

$$\sin\varphi = -\frac{1}{2}$$

例. 将天平盘子挂在一个刚度系数为k的弹簧下端,有一质量为m的物体,从离盘高为h处自由下落至盘中后不再跳离盘子,因此盘子和物体一起开始运动(盘和弹簧的质量忽略)。问(1)是否为谐振动?

解: 盘、弹簧、物体构成的一个系统 设物体 m 落入盘中后,系统运动至o处 所受合力为零(o为平衡位置)。

建立坐标如左图,则

$$mg - kx_0 = 0 \implies mg = kx_0$$

系统在任一时刻所受的合力为:

$$\sum F = mg - f = kx_0 - k(x_0 + x)$$

即
$$\sum F = -kx$$
 是谐振动!

$$\frac{d^2x}{dt^2} + \omega^2 x = 0$$

求振动时的周期 T振幅 A 位相 φ 及振动方程。

解: 根据

$$\begin{cases}
\sum F = -kx \\
\sum F = ma
\end{cases}$$

$$-kx = ma$$

$$\begin{array}{c|c}
h \\
\uparrow & \uparrow & \downarrow t = 0 \\
x_0 & \downarrow & \downarrow \\
\end{array}$$

$$\frac{d^2x}{dt^2} = -\frac{k}{m}x \text{ [II]} \quad \omega = \sqrt{\frac{k}{m}}$$

即

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$$

$$x_0 = -\frac{mg}{k} \qquad v_0 = \sqrt{2gh}$$

$$A = \sqrt{X_0^2 + \left(\frac{V_0}{\omega}\right)^2} = \frac{mg}{k} \sqrt{1 + \frac{2kh}{mg}}$$

$$\varphi = tg^{-1} \left(-\frac{V_0}{X_o \omega} \right)$$

$$= tg^{-1} \left(\frac{2kh}{mg} \right)$$

$$\varphi = tg^{-1} \left(\sqrt{\frac{2kh}{mg}} \right) \pm \pi$$

$$A = \frac{mg}{k} \sqrt{1 + \frac{2kh}{mg}} \qquad \omega = \sqrt{\frac{k}{m}}$$

$$x = \frac{mg}{k} \sqrt{1 + \frac{2kh}{mg}} \cos \left[\sqrt{\frac{k}{m}} t + \left(tg^{-1} \sqrt{\frac{2kh}{mg}} \pm \pi \right) \right]$$

例:如图所示,有两个质量各为 m_1 , m_2 并有轻弹簧连系着的小球放在水平光滑桌面上,弹簧的强度是:当 m_1 固定时 m_2 能够每秒振动n次。试求(1)当 m_2 固定时, m_1 每秒振动的次数;(2)当 m_1 , m_2 均自由时,它们每秒振动的次数N。(设每次振动的方向均沿弹簧的直线方向)

解: (1)
$$\omega_2 = 2\pi n = \sqrt{\frac{k}{m_2}}$$

$$\omega_1=2\pi n'=\sqrt{\frac{k}{m_1}}$$

$$\therefore n' = n \sqrt{\frac{m_2}{m_1}}$$

$$\omega = \sqrt{\frac{k}{m}}$$

9

例:如图所示,有两个质量各为 m_1, m_2 并有轻弹簧连系着的小球放 在水平光滑桌面上,弹簧的强度是: 当 m_1 固定时 m_2 能够每秒振动 m_2 次。试求(1)当 m_2 固定时, m_1 每秒振动的次数; (2)当 m_1 , m_2 均自由时, (设每次振动的方向均沿弹簧的直线方向) 它们每秒振动的次数N。

解: (2) 设弹簧原长为1

$$m_{1} \frac{d^{2}x_{1}}{dt^{2}} = -k[(x_{1} - x_{2}) - l]$$

$$m_{2} \frac{d^{2}x_{2}}{dt^{2}} = k[(x_{1} - x_{2}) - l]$$

$$\Rightarrow x = x_1 - x_2 - l, \frac{1}{m} = \frac{1}{m_1} + \frac{1}{m_2}$$

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\frac{k}{m}x = -\omega^2 x$$

$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{k}{m_1} + \frac{k}{m_2}}$$

$$m_{1} \frac{d^{2}x_{1}}{dt^{2}} = -k[(x_{1} - x_{2}) - l]$$

$$m_{2} \frac{d^{2}x_{2}}{dt^{2}} = k[(x_{1} - x_{2}) - l]$$

$$\frac{d^{2}x_{1}}{dt^{2}} - \frac{d^{2}x_{2}}{dt^{2}} = -k(\frac{1}{m_{1}} + \frac{1}{m_{2}})[(x_{1} - x_{2}) - l]$$

$$\omega = 2\pi N = \sqrt{\frac{k}{m}} = \sqrt{\frac{k}{m_1} + \frac{k}{m_2}}$$

$$\omega_2 = 2\pi n = \sqrt{\frac{k}{m_2}}$$

$$\therefore N = n \sqrt{\frac{k}{m_1} + \frac{k}{m_2}} \cdot \sqrt{\frac{m_2}{k}} = n \sqrt{\frac{m_2 + m_1}{m_1}}$$

简谐振动的能量

 $x = A\cos(\omega t + \varphi)$ $v = -\omega A \sin(\omega t + \varphi)$

简谐振动系统的能量

水平弹簧振子

$$\omega^2 = \frac{k}{m}$$

$$\omega^2 = \frac{k}{m}$$
 $f_{\text{#}\text{th}} = -kx = -\frac{dE_p}{dx}$

対能
$$E_k = \frac{1}{2}mv^2 = \frac{1}{2}kA^2 sin^2(\omega t + \varphi)$$

対能 $E_p = \frac{1}{2}kx^2 = \frac{1}{2}kA^2 cos^2(\omega t + \varphi)$
随时间变化

$$E_p = \frac{1}{2}kx^2 = \frac{1}{2}kA^2\cos^2(\omega t + \varphi)$$

$$E = E_k + E_p$$

$$= \frac{1}{2}kA^2 \left[\sin^2(\omega t + \varphi) + \cos^2(\omega t + \varphi)\right] = \frac{1}{2}kA^2$$

$$E = E_k + E_p = \frac{1}{2}kA^2$$
 — 常量

$$\theta = \Theta \cos(\omega t + \varphi)$$

$$v = l \frac{d\theta}{dt} = -l\omega \Theta \sin(\omega t + \varphi)$$

动能
$$E_k = \frac{1}{2}mv^2 = \frac{1}{2}ml^2\omega^2\Theta^2\sin^2(\omega t + \varphi)$$
 随时

 $E_p = mgh = mgl(1 - cos\theta)$

$$\omega^2 = \frac{g}{l} = \frac{1}{2} m l^2 \omega^2 \Theta^2 \cos^2(\omega t + \varphi)$$

机械能

当
$$\theta$$
很小时 $\cos\theta \approx 1 - \frac{\theta^2}{2}$

$$E_{\mathbb{R}} = E_k + E_p = \frac{1}{2}ml^2\omega^2\Theta^2 = \frac{1}{2}mgl\Theta^2$$

简谐振动系统机械能守恒

- 2. 谐振动系统能量的特点
- 1) E_K 、 E_p 各自随时间作周期性变化

$$E_k = \frac{1}{2}kA^2\sin^2(\omega t + \varphi)$$

$$E_k = \frac{1}{2}kA^2\sin^2(\omega t + \varphi) \quad E_p = \frac{1}{2}kA^2\cos^2(\omega t + \varphi)$$

 E_k , E_p 总是 此涨彼消

可见: 谐振动的过程是动能与势能相互转换的过程。

- 2) E_点=常量
- 3) 动能与势能的时间平均值:

) 対能与势能的时间平均值:
$$\overline{E_p} = \overline{E_k} = \frac{1}{2} E_{k}^{-1}$$

$$\overline{E_k} = \frac{1}{T} \int_0^T \frac{1}{2} k A^2 \sin^2(\omega_0 t + \varphi_0) dt = \frac{kA^2}{2T\omega_0} \int_{\varphi_0}^{2\pi + \varphi_0} \sin^2 x \cdot dx = \frac{1}{4} k A^2$$

$$\overline{E_P} = \frac{1}{T} \int_0^T \frac{1}{2} k A^2 \cos^2(\omega_0 t + \varphi_0) dt = \frac{kA^2}{2T\omega_0} \int_{\varphi_0}^{2\pi + \varphi_0} \cos^2 x \cdot dx = \frac{1}{4} k A^2$$

$$E_{k} = \frac{1}{2}kA^{2}\sin^{2}(\omega t + \varphi) \longrightarrow E_{k} = \frac{1}{2}k(A^{2} - x^{2})$$

$$E_{p} = \frac{1}{2}kA^{2}\cos^{2}(\omega t + \varphi) \longrightarrow E_{p} = \frac{1}{2}kx^{2}$$

$$E_{k}$$

4) E_{A} 正比于振幅的平方 A^{2}

可见:

- a. 弹簧振子的动能和势能的平均值相等, 均为总机械能的一半。
- b. 谐振动的总能量与振幅的平方成正比 $E_{eta} \propto A^2$
- c. 振幅不仅给出谐振动运动的范围,而且还 反映了振动系统总能量的大小及振动的强度。

这些结论适用于任何谐振动。

第2节、简谐振动的合成与分解

一、同方向简谐振动的合成

1. 两个同方向、同频率的简谐振动的合成

分振动: $x_1 = A_1 \cos(\omega t + \varphi_1)$

 $x_2 = A_2 \cos(\omega t + \varphi_2)$

合振动: $x = x_1 + x_2$

 $x = A_1 \cos(\omega t + \varphi_1) + A_2 \cos(\omega t + \varphi_2)$ $= A \cos(\omega t + \varphi)$

合振动是简谐振动,其频率仍为 ω

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)} \quad tg \varphi = \frac{A_1\sin\varphi_1 + A_2\sin\varphi_2}{A_1\cos\varphi_1 + A_2\cos\varphi_2}$$

同振动方向、同频率的两个谐振动的合成:

$$x = x_1 + x_2 = A_1 cos(\omega t + \varphi_1) + A_2 cos(\omega t + \varphi_2)$$

$$= A_{1} cos\omega t cos \varphi_{1} - A_{1} sin\omega t sin \varphi_{1} + A_{2} cos\omega t cos \varphi_{2} - A_{2} sin\omega t sin \varphi_{2}$$

$$= (A_1 \cos \varphi_1 + A_2 \cos \varphi_2) \cos \omega t - (A_1 \sin \varphi_1 + A_2 \sin \varphi_2) \sin \omega t$$

$$= \mathbf{B}_{1} \boldsymbol{cos\omega t} - \mathbf{B}_{2} \boldsymbol{sin\omega t}$$

$$= \sqrt{B_1^2 + B_2^2} \left(\frac{B_1}{\sqrt{B_1^2 + B_2^2}} cos\omega t - \frac{B_2}{\sqrt{B_1^2 + B_2^2}} sin\omega t \right)$$

$$= \underline{A}(\cos\varphi\cos\omega t - \sin\varphi\sin\omega t) = A\cos(\omega t + \varphi)$$

$$\therefore x = A\cos(\omega t + \varphi)$$

$$A = \sqrt{B_1^2 + B_2^2} = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)}$$

$$tg\varphi = \frac{B_2}{B_1} = \frac{A_1 sin\varphi_1 + A_2 sin\varphi_2}{A_1 cos\varphi_1 + A_2 cos\varphi_2}$$

用旋转矢量法: $\vec{A}_1 + \vec{A}_2 = \vec{A}$

A在x轴的投影: $x=Acos(\omega t+\varphi)$

由几何关系得: $x = x_1 + x_2$

 x_1 、 x_2 的合振动就是x

$$x=x_1+x_2=Acos(\omega t+\varphi)$$

其中:
$$A^2 = (x_1 + x_2)^2 + (y_1 + y_2)^2$$

$$tg \varphi = (y_1 + y_2)/(x_1 + x_2)$$

合振动的振幅为A: $A^2 = A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)$

合振动的初位相 φ : $tg\varphi = \frac{A_1 \sin \varphi_1 + A_2 \sin \varphi_2}{A_1 \cos \varphi_1 + A_2 \cos \varphi_2}$

- 结论: (1)合振动仍是同频率的简谐振动。
 - (2)合振幅不仅与分振幅有关还与△φ有关。
 - (3)合振幅的大小不随时间变化

两个重要的特例 (同方向同频率的合成)

$$A^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos(\varphi_{2} - \varphi_{1})$$

(1) 两分振动同相: $\varphi_2 - \varphi_1 = 2k\pi$

$$(k=0,\pm 1,\pm 2...)$$

 $\vec{A}_1 \vec{A}_2$ 重合,合振幅为:

$$A = A_1 + A_2$$

合振动初位相: $\varphi = \varphi_1 = \varphi_2$

合振动方程:

$$x=x_1+x_2=Acos(\omega t+\varphi)$$

$$= (A_1 + A_2)\cos(\omega t + \varphi_1)$$

合振动的振幅最大

使振动加强

两振动的合成效果:

$$A^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos(\varphi_{2} - \varphi_{1})$$

(2) 两分振动反相: $\varphi_2 - \varphi_1 = (2k+1)\pi$

 \vec{A}_1 与 \vec{A}_2 方向相反,合振幅为:

$$A = |A_1 - A_2|$$

合振动初位相:

两振动合成的振幅最小

两振动的合成效果 ——使振动减弱

(3) 两分振动的位相差: $\varphi_2 - \varphi_1 \neq k\pi$

合成振动的振幅:

$$|A_1 - A_2| < A < A_1 + A_2$$

*同方向的 N 个同频率谐振动的合成

若它们的振幅相等,初相位依次相差一个恒量。 其表达式为:

$$x_{1} = a\cos(\omega t)$$

$$x_{2} = a\cos(\omega t + \delta)$$

$$x_{3} = a\cos(\omega t + 2\delta)$$

$$\vdots$$

$$\vdots$$

$$x_{N} = a\cos[\omega t + (N-1)\delta]$$

用矢量合成法或解析法均可得合成振动:

$$x = a \frac{\sin(N\delta/2)}{\sin(\delta/2)} \cos \left[\omega t + \frac{(N-1)\delta}{2} \right]$$

2. 同方向不同频率的简谐振动的合成

振幅相同 初相位相同

分振动
$$x_1=A_1cos(\omega_1t+\varphi)$$
 $x_2=A_1cos(\omega_2t+\varphi)$

合振动
$$x = x_1 + x_2$$

合振动不是简谐振动

$$x = 2A_1 \cos(\frac{\omega_2 - \omega_1}{2}t) \cos(\frac{\omega_2 + \omega_1}{2}t + \varphi)$$

当
$$\omega_2 \approx \omega_1$$
时 $\omega_2 - \omega_1 << \omega_2 + \omega_1$

合振动的 振幅

$$x = A(t) cos(\omega t + \varphi)$$

$$A(t) = 2A_1 \cos(\frac{\omega_2 - \omega_1}{2})t$$
 随 t 缓变

$$cos(\overline{\omega}t + \varphi) = cos(\overline{\omega_2 + \omega_1}t + \varphi)$$
 随 t 快变

合振动可看作振幅缓变的简谐振动

振幅A按余弦函数变化,变化范围: $0 \le A \le 2A_1$ 合振动忽强忽弱 A是变化的振幅

这种振幅出现加强和减弱现象称为——拍(beat)。

在声振动、电振动、波动、激光等问题中常遇到。

拍频 (beat frequency): 单位时间内强弱变化的次数 $v = |v_2 - v_1|$ ——合振幅变化频率

$x = 2A_1 \cos(\frac{\omega_2 - \omega_1}{2}t)\cos(\frac{\omega_2 + \omega_1}{2}t + \varphi)$

合振动方程

振幅A按余弦函数变化,变化范围: $0 \le A \le 2A$

可见
$$\frac{\omega_2-\omega_1}{2}t$$
改变 π 时,

A就重复出现一次变化

这种振幅出现加强 和减弱现象称为——拍。

拍的周期T: $\frac{\omega_2 - \omega_1}{2}T = \pi$ $T = \frac{\pi}{\alpha}$

拍的频率
$$\mathbf{v}: \mathbf{v} = \frac{1}{T} = \frac{\omega_2 - \omega_1}{2\pi} = v_2 - v_1$$

$$\cos(\frac{\omega_2 + \omega_1}{2}t + \varphi)$$

- 注: (1)拍现象只在两分振动的频率相差不太大时才显出来。即: $\omega_1 + \omega_2 >> |\omega_1 \omega_2|$ 现象才明显
 - (2)与合振动位移变化的频率是完全不同的

$$\omega_x = \frac{\omega_2 + \omega_1}{2}$$

$$v_x = \frac{\omega_x}{2\pi} = \frac{v_1 + v_2}{2} \neq v$$

第2节、简谐振动的合成与分解

振幅相同

一、同方向简谐振动的合成

1. 同方向同频率的简谐振动的合成

分振动
$$x_1 = A_1 \cos(\omega t + \varphi_1)$$

 $x_2 = A_2 \cos(\omega t + \varphi_2)$
合振动 $x = A \cos(\omega t + \varphi)$

分振动
$$x_1 = A_1 \cos(\omega t + \varphi_1)$$
 $A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)}$ 合振动 $x_2 = A_2 \cos(\omega t + \varphi_2)$
$$tg \varphi = \frac{A_1 \sin\varphi_1 + A_2 \sin\varphi_2}{A_1 \cos\varphi_1 + A_2 \cos\varphi_2}$$

2. 同方向不同频率的简谐振动的合成 初相位相同

分振动
$$x_1 = A_1 cos(\omega_1 t + \varphi)$$
 $x_2 = A_1 cos(\omega_2 t + \varphi)$

合振动
$$x = 2A_1 \cos(\frac{\omega_2 - \omega_1}{2}t)\cos(\frac{\omega_2 + \omega_1}{2}t + \varphi)$$

特别: 当
$$\omega_2 \approx \omega_1$$
时 $\omega_2 - \omega_1 << \omega_2 + \omega_1$

合振动可看作振幅缓变的简谐振动

二、方向垂直的简谐振动的合成

1. 方向垂直, 同频率简谐振动的合成

两分振动
$$x=A_1\cos(\omega t+\varphi_1)$$
 $y=A_2\cos(\omega t+\varphi_2)$

合运动(消去t):

$$\frac{x^{2}}{A_{1}^{2}} + \frac{y^{2}}{A_{2}^{2}} - 2\frac{x}{A_{1}}\frac{y}{A_{2}}cos(\varphi_{2} - \varphi_{1}) = sin^{2}(\varphi_{2} - \varphi_{1})$$

特点:

- (1) 合运动一般是在 $2A_1(x向)$ 、 $2A_2(y向)$ 范围内的一个椭圆
- (2) 椭圆的性质 (方位、长短轴、左右旋) 在 A_1 、 A_2 确定之后,主要决定于 $\Delta \varphi = \varphi_2 \varphi_1$

$$\frac{x^{2}}{A_{1}^{2}} + \frac{y^{2}}{A_{2}^{2}} - \frac{2xy}{A_{1}A_{2}}\cos(\varphi_{2} - \varphi_{1}) = \sin^{2}(\varphi_{2} - \varphi_{1})$$

几种特殊情况:

1)
$$\Delta \varphi = \varphi_2 - \varphi_1 = 0$$
 $\left(\frac{x}{A_1} - \frac{y}{A_2}\right)^2 = 0$
 $y = \frac{A_2}{A_1}x$ $\Rightarrow x : tg\theta = \frac{A_2}{A_1}$ $\varphi_2 = \varphi_1 = \varphi$

距原点的位移: $S = \pm \sqrt{x^2 + y^2} = \sqrt{A_1^2 + A_2^2} \cos(\omega_0 t + \varphi)$

2)
$$\Delta \varphi = \varphi_2 - \varphi_1 = \pi$$
 $\left(\frac{x}{A_1} + \frac{y}{A_2}\right)^2 = 0$
 $y = -\frac{A_2}{A_1}x$ $\Rightarrow x$ $tg \theta = -\frac{A_2}{A_1}$

位移、频率、振幅同上,质点沿 $y=-\frac{A_2}{A_1}x$ 直线振动

$$\frac{x^{2}}{A_{1}^{2}} + \frac{y^{2}}{A_{2}^{2}} - \frac{2xy}{A_{1}A_{2}} \cos(\varphi_{2} - \varphi_{1}) = \sin^{2}(\varphi_{2} - \varphi_{1})$$
3) $\Delta \varphi = \varphi_{2} - \varphi_{1} = \frac{\pi}{2}$ 则有: $\frac{x^{2}}{A_{1}^{2}} + \frac{y^{2}}{A_{2}^{2}} = 1$ 轨迹为一正椭圆长短轴分别为 $2A_{1}$ 、 $2A_{2}$ 若 $A_{1} = A_{2}$,就是一个圆。 因 $\Delta \varphi = \varphi_{2} - \varphi_{1} = \frac{\pi}{2}$ 问题: 运动方向? 右旋椭圆则 x 轴方向的振动落后于 y 方向的振动 $\frac{\pi}{2}$, 运动为顺时针方向(右旋) 4) $\Delta \varphi = \varphi_{2} - \varphi_{1} = -\frac{\pi}{2}$ 同理: $\frac{x^{2}}{A_{1}^{2}} + \frac{y^{2}}{A_{2}^{2}} = 1$ 因 $\Delta \varphi = \varphi_{2} - \varphi_{1} = -\frac{\pi}{2}$

则
$$y$$
 轴方向的振动落后于 x 方向的振动 $\frac{\pi}{2}$, **左旋椭圆** 运动为逆时针方向(左旋)

$$\frac{x^{2}}{A_{1}^{2}} + \frac{y^{2}}{A_{2}^{2}} - \frac{2xy}{A_{1}A_{2}}\cos(\varphi_{2} - \varphi_{1}) = \sin^{2}(\varphi_{2} - \varphi_{1})$$

5) $\Delta \varphi = \varphi_2 - \varphi_1 = \varphi$ φ 为其它任意值,

轨迹是任意一个斜椭圆,其倾斜角度 取决于位相差的取值。 左旋或右旋?

为便于讨论:
$$\phi \varphi_1 = 0$$
, 则 $\begin{cases} x = A_1 \cos \omega t \\ y = A_2 \cos(\omega t + \varphi) \end{cases}$

x 轴方向的振动落后于y 方向的振动 φ ,

当
$$0 < \varphi < \pi$$
, $t=0$ 时:

$$x = A_1$$
 $y = A_2 \cos \varphi$

当 $\pi < \varphi < 2\pi$,或 $-\pi < \varphi < 0$

左旋椭圆

右旋椭圆

结论

$$\frac{x^{2}}{A_{1}^{2}} + \frac{y^{2}}{A_{2}^{2}} - \frac{2xy}{A_{1}A_{2}}\cos(\varphi_{2} - \varphi_{1}) = \sin^{2}(\varphi_{2} - \varphi_{1})$$

4φ 为任意值时, 合振动的

例. 已知两分振动为

$$x = A_1 \cos \omega t$$
 $y = A_2 \cos(\omega t + \frac{\pi}{4}) \Rightarrow \Delta \varphi = \frac{\pi}{4}$

- 求(1) 合振动的轨迹。
 - (2) 若已知A 、 ω 、 φ 、m ,求质点在任一位置所受的力。

解: (1) 几何作图法

$$x = A_1 \cos \omega t$$

$$x = A_1 \cos \omega t$$

$$y = A_2 \cos(\omega t + \frac{\pi}{4})$$

(2) 求质点在任一位置所受的力

$$\vec{F} = m\vec{a}$$

$$= m\left(\frac{d^2x}{dt^2}\vec{i} + \frac{d^2y}{dt^2}\vec{j}\right)$$

$$\vec{F} = m \left\{ \left[-A_{1}\omega^{2} \cos \omega t \right] \vec{i} + \left[-A_{2}\omega^{2} \cos \left(\omega t + \frac{\pi}{4} \right) \right] \vec{j} \right\}$$

$$= -m\omega^{2} \left\{ A_{1} \cos \omega t \vec{i} + A_{2} \cos \left(\omega t + \frac{\pi}{4} \right) \vec{j} \right\}$$

$$= -m\omega^{2} (x \vec{i} + y \vec{j})$$

$$=-m\omega^2 \overrightarrow{r}$$