Zestaw 3 Informatyka, rok 1

1. Punkt materialny porusza się po trajektorii $\mathbf{r} = (t^3-3t)\mathbf{i} + 2(t-t^2)\mathbf{j}$. Policzyć wektor prędkości i przyspieszenia. Dla jakiego czasu t_1 styczna do trajektorii będzie równoległa do osi Y? Wskazówka: jaki znany wektor jest styczny do trajektorii ruchu?

- 2. W chwili, gdy zapala się zielone światło, samochód osobowy rusza z miejsca ze stałym przyspieszeniem a równym 2.2 m/s². W tej samej chwili wyprzedza go ciężarówka, jadąca ze stałą prędkością 20 m/s.
 - a) W jakiej odległości od sygnalizatora samochód osobowy dogoni ciężarówkę?
 - b) Ile wynosić będzie wówczas jego prędkość (podaj także w km/h)?
- 3. Elektron porusza się wzdłuż osi x, a jego położenie jest dane wzorem $x = 16te^{-t}$ [m], gdzie t wyrażono w sekundach. W jakiej odległości od początku osi elektron znajduje się przez chwilę w bezruchu?
- **4.** Ciało wyrzucono pod kątem α do poziomu z prędkością początkową v₀. Zaniedbując opór powietrza i przyjmując wartość przyspieszenia ziemskiego *g*, obliczyć:
 - a) współrzędne wektora położenia ciała w funkcji czasu,
 - b) kształt toru ruchu ciała,
 - c) odległość jaką przebędzie ciało w kierunku poziomym tj. zasięg rzutu,
 - d) maksymalną wysokość na jaka wzniesie się ciało.
- **5.** Po uwięzieniu kamienia na sznurku chłopiec zatacza nim poziomy okrąg o promieniu 1.5 m na wysokości 2 m. Sznurek pęka, kamień spada na ziemię po przebyciu odległości 10m. Jaka była wartość jego przyspieszenia dośrodkowego tuż przed rozerwaniem się sznurka?
- **6.** Pod jakim kątem trzeba rzucić ciało, aby zasięg rzutu równał się największej wysokości na jaką ciało się wzniesie?
- 7. Winda wznosi się z przyspieszeniem 1 m/s². W momencie gdy jej prędkość wynosi 2 m/s, obluzowana śruba odpada z sufitu windy. Winda ma wysokość 2.5 m. Obliczyć czas po jakim śruba spadnie z sufitu na podłogę i odległość którą śruba pokona względem ścian budynku podczas spadania.
- **8.** Punkt materialny porusza się po prostej z przyspieszeniem a określonym wzorem $a = -\alpha v$, gdzie α jest dodatnim współczynnikiem. Dla t=0 prędkość $v=v_0$. Jaką drogę przebędzie punkt do momentu zatrzymania się? W jakim czasie t_1 przebędzie on drogę s_1 ?