Data Modelling and Analysis

Lecture 6: Data Analysis and Visualsiation Excercise

Dr Mercedes Torres Torres

Contents

1	Data Set	1
2	Data Analysis and Visualisation	2
3	Data Pre-processing	2

1 Data Set

The data set for this exercise is a slightly modified version of a reference data set available from the UCI Machine Learning Repository 1 . The data concerns the modelling of wine quality based on physicochemical tests 2 .

Each record consists of over 10 attribute (input) columns, and one class (output) column corresponding to the quality of wine, rated on a ten-point scale. The attributes record various physical and chemical properties of the wine. The entire data set consists of over 1,600 instances.

Here is are the first 10 rows:

Table 1: The first 10 rows of the modified wine dataset

sample	fixed.acidity	volatile.acidity	citric.acid	residual.sugar	chlorides	${\it free.sulfur.dioxide}$	total. sulfur. dioxide	density	pН	sulphates	residual.alcohol	alcohol	region.of.origin	quality
1	8.5	0.28	0.56	1.8	0.092	35	103	0.9969	3.30	0.75	0.06	10.5	5	7
2	8.1	0.56	0.28	1.7	0.368	16	56	0.9968	3.11	NA	0.03	9.3	4	5
3	7.4	0.59	0.08	4.4	0.086	6	29	NA	3.38	0.50	0.06	9.0	4	4
4	7.9	0.32	0.51	1.8	NA	17	56	0.9969	3.04	1.08	0.06	9.2	3	6
5	8.9	0.22	0.48	1.8	0.077	29	60	0.9968	3.39	0.53	0.09	9.4	3	6
6	7.6	0.39	0.31	2.3	0.082	23	71	0.9982	3.52	0.65	0.07	9.7	3	5
7	7.9	0.43	0.21	1.6	0.106	10	37	0.9966	3.17	0.91	0.09	9.5	1	5
8	8.5	0.49	0.11	2.3	0.084	9	67	0.9968	3.17	0.53	0.02	9.4	1	5
9	6.9	0.40	0.14	2.4	0.085	21	40	0.9968	3.43	NA	0.08	9.7	2	6
10	6.3	0.39	0.16	1.4	0.080	11	23	NA	3.34	0.56	0.09	9.3	4	5

¹http://archive.ics.uci.edu/ml

²http://archive.ics.uci.edu/ml/datasets/Wine+Quality

2 Data Analysis and Visualisation

1. Explore the data

- i. Provide a table for all the appropriate attributes of the dataset including type, measures of centrality, dispersion. Provide evidence of duplicates in the data and how many missing values each attribute has.
- ii. Produce the same table is in the first exercise, but grouping according to quality.
- iii. Produce relevant visualisations to study the distributions of the appropriate attributes within the data. You may also use additional statistics to help you characterise the shape of the distribution.
- 2. Explore the relationships between the attributes, and between the class and the attributes
 - i. Calculate the correlations and produce scatterplots for the following three pairs of variables: free sulfur dioxide and volatile acidity, pH and fixed acidity, and density and fixed acidity (three correlations, three scatterplots). What do these tell you about the relationships between these variables?
 - ii. What are the highest correlated attributes? And the lowest correlated attributes?
 - iii. Produce boxplots for all of the appropriate attributes in the dataset. Group each variable according to the class attribute.

3 Data Pre-processing

- 1. Dealing with missing values in R: Replace missing values in the dataset using two strategies: replacement with 0 and median and contrast these approaches and its effects on the data.
- 2. Attribute transformation: Using the datasets generated previously, explore the use of mean centering and normalisation to scale the attributes. Contrast these approaches and its effects on the data.
- 3. Attribute / instance selection:
 - i. Starting again from the raw data, consider attribute and instance deletion strategies to deal with missing values. Choose a number of missing values per instance or per attribute and delete instances or attributes accordingly. Explain your choices and its effects on the dataset.
 - ii. Starting from an appropriate version of the dataset, use Principal Component Analysis to create a data set with 8 attributes. Explain the process and the result obtained.