Week 5 - Autoregressive & Moving Average Models

Jonathan Thong

2023-03-24

Simulating and Estimating AR and MA Models

Let's start by simulating an AR series using the **arima.sim()** function. To do this, we will need to input a set of AR coefficients. To ensure that our coefficients are such that our model is stationary, we will use the **generateAR()** function in the **DREGAR** package

```
rm(list=ls())
if("DREGAR" %in% rownames(installed.packages()) == FALSE) install.packages("DREGAR")
library(DREGAR)
```

Let's suppose that we want to simulate from an AR(5). We first generate a set of stationary coefficients which we store in the object $\mathbf{ar.coef}$:

```
ar.order <- 5
ar.coef <- generateAR(n = ar.order)

## please wait ...
ar.coef
## [1] 0.53020433 0.16202103 0.12355394 0.09399246 0.07397852</pre>
```

Then, we can use these coefficients as inputs into our arima.sim() function. Let's simulate 1000 observations:

```
T = 1000
ar.sim <- arima.sim(n = T, list(ar = ar.coef))
plot(ar.sim,
    main = "Plot of Simulated AR Process",
    col = "blue4")</pre>
```

Plot of Simulated AR Process

Now let's have a look at the sample autocorrelations and partial autocorrelations.

```
ar.acf <- acf(ar.sim, plot = FALSE)
ar.pacf <- pacf(ar.sim, plot = FALSE)

plot(ar.acf[1:20], main = "Sample Autocorrelations of Simulated AR Series")</pre>
```

Sample Autocorrelations of Simulated AR Series

plot(ar.pacf[1:20], main = "Sample Partial Autocorrelations of Simulated AR Series")

Sample Partial Autocorrelations of Simulated AR Series

Let's now fit an AR(5) model to our data using the **Arima()** function from the **forecast** package. To do this, we need to specify the order of model in the argument of the function via the inputs $\mathbf{c}(\mathbf{p}, \mathbf{d}, \mathbf{q})$ where \mathbf{p} denotes the order of the AR component, \mathbf{d} denotes the order of integration (we will discuss this in a later

lecture) and \mathbf{q} denotes the order of the MA component.

```
library(forecast)
## Registered S3 method overwritten by 'quantmod':
     method
##
                       from
##
     as.zoo.data.frame zoo
ar.mod1 <- Arima(ar.sim, order = c(5,0,0), include.mean = FALSE)
summary(ar.mod1)
## Series: ar.sim
## ARIMA(5,0,0) with zero mean
##
## Coefficients:
            ar1
                    ar2
                             ar3
                                     ar4
                                             ar5
         0.5200 0.1714 0.1164 0.0998 0.0801
##
## s.e. 0.0315 0.0354 0.0356 0.0354 0.0316
## sigma^2 = 1.005: log likelihood = -1420.45
## AIC=2852.89
                 AICc=2852.97
                                 BIC=2882.34
##
## Training set error measures:
##
                        ME
                                 RMSE
                                            MAE
                                                       MPE
                                                               MAPE
                                                                        MASE
## Training set 0.03754006 0.9998436 0.7821971 -11.35022 94.47374 0.889629
##
                        ACF1
## Training set -0.001189451
Let's compare our the true model coefficients with the estimates:
coef.compare1 <- data.frame(true = ar.coef, estimate = ar.mod1$coef)</pre>
coef.compare1
##
             true
                    estimate
## ar1 0.53020433 0.51995227
## ar2 0.16202103 0.17136690
## ar3 0.12355394 0.11643306
## ar4 0.09399246 0.09979314
## ar5 0.07397852 0.08013919
Let's have a look at the residuals from our estimated model:
plot(ar.mod1$residuals,
    main = "Plot of Residuals from Correct AR Model",
     col = "red")
```

Plot of Residuals from Correct AR Model


```
ar.res.acf1 <- acf(ar.mod1$residuals, plot = FALSE)
ar.res.pacf1 <- pacf(ar.mod1$residuals, plot = FALSE)
plot(ar.res.acf1[1:20], main = "Sample Autocorrelations of Residuals from Correct AR Model")</pre>
```

Sample Autocorrelations of Residuals from Correct AR Model

Sample Partial Autocorrelations of Residuals from Correct AR Mode

We can perform our portmanteau tests to confirm that the residuals have no dependence structure:

```
m = sqrt(T)
Box.test(ar.mod1$residuals, lag = m, type = "Box-Pierce")
##
##
    Box-Pierce test
##
## data: ar.mod1$residuals
## X-squared = 14.034, df = 31.623, p-value = 0.9971
Box.test(ar.mod1$residuals, lag = m, type = "Ljung-Box")
##
##
    Box-Ljung test
##
## data: ar.mod1$residuals
## X-squared = 14.34, df = 31.623, p-value = 0.9964
Now let's suppose that we fit an incorrectly specified model to our data. Let's say that we try to fit an AR(2)
model:
ar.mod2 <- Arima(ar.sim, order = c(2,0,0), include.mean = FALSE)
summary(ar.mod2)
## Series: ar.sim
## ARIMA(2,0,0) with zero mean
##
## Coefficients:
```

```
##
                    ar2
            ar1
##
         0.6345
                 0.3463
##
         0.0296
                 0.0296
##
## sigma^2 = 1.077: log likelihood = -1456.59
                 AICc=2919.21
                                 BIC=2933.91
## AIC=2919.19
##
## Training set error measures:
##
                        ME
                                RMSE
                                           MAE
                                                      MPE
                                                              MAPE
                                                                        MASE
## Training set 0.05460815 1.036763 0.8145056 -14.95612 117.9202 0.9263751
## Training set -0.07543683
```

The first thing that we notice is that the AIC from our wrongly specified model is larger than the correctly specified one.

```
ar.mod1$aic
```

```
## [1] 2852.89
```

```
ar.mod2$aic
```

[1] 2919.188

If we have a look at the residuals from the incorrect model and their associated sample autocorrelations and partial autocorrelations we can clearly see that there exists some dependence:

```
plot(ar.mod2$residuals,
    main = "Plot of Residuals from Incorrect AR Model",
    col = "red")
```

Plot of Residuals from Incorrect AR Model


```
ar.res.acf2 <- acf(ar.mod2$residuals, plot = FALSE)
ar.res.pacf2 <- pacf(ar.mod2$residuals, plot = FALSE)</pre>
```

Sample Autocorrelations of Residuals from Incorrect AR Model

prot(ar.res.pacrz[1.20], main - bampre rartiar Autocorrelations of Residuals from incorrect AR No.

Sample Partial Autocorrelations of Residuals from Incorrect AR Mod

We can verify our visual impression using our portmanteau tests:

```
Box.test(ar.mod2$residuals, lag = m, type = "Box-Pierce")

##

## Box-Pierce test

##

## data: ar.mod2$residuals

## X-squared = 78.4, df = 31.623, p-value = 7.56e-06

Box.test(ar.mod2$residuals, lag = m, type = "Ljung-Box")

##

## Box-Ljung test

##

## data: ar.mod2$residuals

## X-squared = 79.084, df = 31.623, p-value = 6.079e-06
```

Yule-Walker Equations

Let's see how we can compute AR coefficient estimates using Yule-Walker equations. Let's start by simulating some observations from an AR(4):

```
z <- arima.sim(n = T, list(ar=c(0.2, -0.3, -0.3, 0.4)))
z.acf <- acf(z, plot = FALSE)
z.pacf <- pacf(z, plot = FALSE)
plot(z.acf[1:20], main = "Sample Autocorrelations of Simulated AR Series")</pre>
```

Sample Autocorrelations of Simulated AR Series

Sample Partial Autocorrelations of Simulated AR Series

want to create the following vectors and matrices:

$$\rho = \begin{bmatrix} \rho_1 \\ \rho_2 \\ \vdots \\ \rho_p \end{bmatrix}, \qquad P = \begin{bmatrix} \rho_0 & \rho_1 & \dots & \rho_{p-1} \\ \rho_1 & \rho_0 & \dots & \rho_{p-2} \\ \vdots & \ddots & \ddots & \vdots \\ \rho_{p-1} & \rho_{p-2} & \dots & \rho_0 \end{bmatrix}$$

We

First we define the matrices P and rho. To create P we will need to use the **VecRot()** function in the **DescTools** package:

if("DescTools" %in% rownames(installed.packages()) == FALSE) install.packages("DescTools")
library(DescTools)

```
##
## Attaching package: 'DescTools'
## The following object is masked from 'package:forecast':
##
## BoxCox
p <- 4 #Order of the AR
Rho <- z.acf$acf[1:(p+1)]

P <- matrix(0,p,p)
for(i in 1:p){
   P[i,] = VecRot(Rho[1:p],k=(i-1))
}</pre>
```

```
P[lower.tri(P)] <- 0
P <- P + t(P) - diag(p)
rho <- Rho[2:(p+1)]</pre>
```

Then, we compute

$$\Phi = P^{-1}\rho$$

```
Pinv <- solve(P)
Phi <- Pinv %*% rho</pre>
```

Let's now compare these estimates with the ones produced by the **Arima()** function:

```
ar.mod3 <- Arima(z, order = c(4,0,0), include.mean = FALSE)

coef.compare2 <- data.frame(true = c(0.2,-0.2,-0.2,0.4),yulewalker = Phi, arma = ar.mod3$coef)

coef.compare2</pre>
```

```
## true yulewalker arma
## ar1 0.2 0.2110482 0.2156473
## ar2 -0.2 -0.2783801 -0.2762637
## ar3 -0.2 -0.3048806 -0.3041951
## ar4 0.4 0.4306292 0.4366286
```