University of Warsaw

Faculty of Mathematics, Informatics and Mechanics

Adam Starak

Student no. 361021

Title in English

> Supervisor: dr Michał Pilipczuk Instytut Informatyki

Supe	rvisor'	s sta	tement
Dupe	1 4 12 01	o ota	$c_{CIIICII}$

Hereby I confirm that the presented thesis was prepared under my supervision and that it fulfils the requirements for the degree of Master of Computer Science.

Date Supervisor's signature

Author's statement

Hereby I declare that the presented thesis was prepared by me and none of its contents was obtained by means that are against the law.

The thesis has never before been a subject of any procedure of obtaining an academic degree.

Moreover, I declare that the present version of the thesis is identical to the attached electronic version.

Date Author's signature

Abstract

W pracy przedstawiono prototypową implementację blabalizatora różnicowego bazującą na teorii fetorów σ - ρ profesora Fifaka. Wykorzystanie teorii Fifaka daje wreszcie możliwość efektywnego wykonania blabalizy numerycznej. Fakt ten stanowi przełom technologiczny, którego konsekwencje trudno z góry przewidzieć.

Keywords

parameterized algorithm

Thesis domain (Socrates-Erasmus subject area codes)

11.3 Informatyka

Subject classification

D. SoftwareD.127. BlabalgorithmsD.127.6. Numerical blabalysis

Tytuł pracy w języku polskim

Tytuł po polsku

Contents

_	Basic definitions
	1.1. Structures
	1.2. Parameterized complexity
	1.3. Graph decomposition
	Spanning Star Forest Problem
	2.1. Obtaining a solution
	2.2. Spanning Star Forest parameterized by the number of stars

Introduction

Blabalizator różnicowy jest podstawowym narzędziem blabalii fetorycznej. Dlatego naukowcy z całego świata prześcigają się w próbach efektywnej implementacji. Opracowana przez prof. Fifaka teoria fetorów σ - ρ otwiera w tej dziedzinie nowe możliwości. Wykorzystujemy je w niniejszej pracy.

Chapter 1

Basic definitions

1.1. Structures

A simple graph G is a pair (V, E) where V denotes a set of vertices and E denotes a set of undirected edges. Let $deg_G(v)$ denote a degree of vertex v in graph G. Let $G \setminus \{v\}$ be the abbreviation for $G' = (V(G) \setminus \{v\}, E(G) \setminus \{(u, v) : u \in V(G)\})$. A tree T is a graph where two vertices are connected by excatly one path. A spanning tree T of a graph G is a graph which includes all of the vertices of G, with minimum possible number of edges. A star S is a tree of size at least 2 for which at most 1 vertex has a degree greater than 1. A vertex in a star that has the greatest degree is called a center while the others are called rays.

1.2. Parameterized complexity

Definition 1.1. Parameterized problem

Definition 1.2. FPT algorithm

Definition 1.3. Kernel

Definition 1.4. Kernelization algorithm

1.3. Graph decomposition

Definition 1.5. Path decomposition and pathwidth

Definition 1.6. Tree decomposition and treewidth

Definition 1.7. Nice tree decomposition

Chapter 2

Spanning Star Forest Problem

For a given graph G, we say that S is a $Spanning\ Star\ Forest$ if every connected component C is a star. In the $Spanning\ Star\ Forest\ Problem$ given a graph G, the objective is to determine whether there exists a $Spanning\ Star\ Forest$.

It turns out that the problem formulated in such a way is relatively simple. Although, various parametrizations described in this paper make it more complex. The following lemma easily clarifies all the concerns about it's hardness.

Lemma 2.1. A graph G has a Spanning Star Forest if and only if it does not contain any isolated vertices.

Proof. If G has a Spanning Star Forest S, then trivially for all $v \in V(G)$ $1 \leq deg_S(v) \leq deg_G(v)$. Thus, none of the vertices is isolated.

For the opposite direction, we prove the lemma by induction on |V(G)|. Assume |V(G)| = 2. The statement trivially holds because a graph representing an edge is a correct Spanning Star Forest. Let |V(G)| > 2. Suppose that there does not exist a vertex v such that $G \setminus \{v\}$ has no isolated vertices. Then, it holds that for all $v \in V(G)$ $deg_G(v) = 1$ so G itself is a correct Spanning Star Forest. Now, suppose that v is a vertex such that $G \setminus \{v\}$ has no isolated vertices. From the inductive assumption, let S be a Spanning Star Forest of a graph $G \setminus \{v\}$, u be a vertex such that $(u, v) \in E(G)$ and w be a vertex such that $w \in N_S(u)$. Consider the 3 following cases:

- 1. $deg_S(u) > 1$. Then, $S' = (V(S) \cup \{v\}, E(S) \cup \{(u,v)\})$ is a correct solution for graph G.
- 2. $deg_S(u) = deg_S(w) = 1$. Then, $S' = (V(S) \cup v, E(S) \cup (u, v))$ is a correct solution for graph G.
- 3. $deg_S(w) > 1$. Then, $S' = (V(S) \cup \{v\}, (E(S) \cup \{(u,v)\}) \setminus \{(u,w)\})$ is a correct solution for graph G.

Observe that in graph G there are no isolated vertices. Thus, one can always extend a solution inductively.

Application of Lemma 2.1 yields the following result for Spanning Star Forest Problem.

Theorem 2.1. Decision version of Spanning Star Forest Problem can be solved in linear time.

Proof. Given an input G = (V, E) the answer is YES if for all $v \in V(G)$ $deg_G(v) \neq 0$ and NO otherwise.

2.1. Obtaining a solution

In this section we focus on obtaining an arbitrary solution for a given instance of *Spanning Star Forest Problem*. Firstly, let us introduce 2 claims in order to normalize the instance and make the algorithm look more clear.

Claim 2.1. Family of disjoint Spanning Star Forests is a Spanning Star Forest.

Claim 2.2. G has a Spanning Star Forest if and only if it's spanning tree T has.

The first claim can be trivially proven by the definition of *Spanning Star Forest Problem* while the second one follows directly from Lemma 2.1. Equipped with this information, all that is left to do, is to design an algorithm which solves *Spanning Star Forest Problem* for trees.

Lemma 2.2. Algorithm 1 is correct.

Proof. Assume contrary, that the algorithm yields an incorrect solution S. Consider the first case: a path (u, v), (v, w), (w, z) exists in S where u is v's child, v is w's child and w is z's child. But, if u is w's grandchild and $(u, v), (v, w) \in S$, then it means that w is a root. Contradiction because w cannot be z's child. Now, suppose the alternative relationship: u is v's child, v and z are w's children. Provided that vertices were visited in postorder, edge (v, w) should not have been added because v was introduced by u and v was introduced by v.

Theorem 2.2. A solution for Spanning Star Forest Problem can be found in linear time.

Proof. Spanning tree of any graph can be found in linear time. The main loop has n iterations (every vertex is visited once), each of which takes constant time. Thus, the total runtime is linear.

2.2. Spanning Star Forest parameterized by the number of stars

In Spanning Star Forest Problem parameterized by the number of stars, given a graph G and a natural number k, the objective is to determine whether there exists a Spanning Star Forest S such that the number of connected components is less than k.

It is natural to ask whether one can find a solution that minimizes the number of connected components. The problem formulated in that way looks slightly different than the previous one. From the other hand, the problem resembles *Dominating Set Problem*, which is defined as follows:

Definition 2.1. Dominating Set Problem: Given a graph G and a positive integer k find a set D such that $|D| \leq k$ and every vertex from the graph is adjacent to one of the vertices from D.

It turns out, that the second comparison is true and *Spanning Star Forest Problem* parameterized by the number of stars is NP-Complete. The following theorem proves the statement:

Theorem 2.3. Spanning Star Forest Parameterized by the number of stars is NP-Complete.

Proof. Membership in NP: given an oracle (O, k), we check whether the number of components in O is less than k and whether every connected component forms a star. The task can be easily done in polynomial time.

We show hardness by a reduction from *Dominating Set Problem* that completes the proof. Let (G, k) be an instance of it. We create a graph G' as follows: for every isolated vertex $v \in V(G)$ introduce a vertex v' and an edge (v, v'). Now, we claim that (G, k) is a YES-instance for *Dominating Set Problem* if and only if (G'.k) is a YES-instance for *Spanning Star Forest Problem* parameterized by the number of stars.

The backward implication is simple. Suppose S is a solution for (G',k). We claim that a set D representing centers of stars is a correct dominating set. Obviously $|D| \leq k$ because there are at most k connected components. Every vertex from G' is adjacent to one of the centers. If there exists a vertex $v' \in D$ such that $v' \notin V(G)$ we transform the solution as follows: $D := (D \setminus \{v'\}) \cup \{v\}$.

To prove the forward implication, let D be a solution for (G, k). Without a loss of generality, assume that D is an optimal solution. That is, the size of set D is minimal. To create a correct solution S for a $Spanning\ Star\ Forest$ instance, apply exhaustively the following rules in order:

- 1. Suppose $v \in D$ and $deg_S(v) = 0$. If $N_{G'}(v) = \{u\}$, then add edge (v, u) to the solution and remove u from G'.
- 2. Suppose $v \in D$ and $deg_S(v) = 0$. Add a random edge (v, u) where $u \notin D$ to the solution and remove u from G'.
- 3. Add a random edge (v, u) where $v \in D$ and $u \notin D$ and remove u from G'.

To prove the correctness of the rules, assume contrary, that S is not a valid $Spanning\ Star\ Forest$ of size at most k. Firstly, let us focus on the number of components. Obviously, S has |D| connected components because only edges (v,u) where $v\in D$ and $u\notin D$ were introduced and $deg_S(u)=1$ for every $u\notin D$ because the vertices were deleted right after introduction of an edge. Additionally, we can infer that S does not contain a path of length 4 which would prove the contrary.

So, assume that there exists $v \in V(S) \setminus D$ such that $deg_S(v) = 0$. Contradiction, one can apply rule 3 because v must have been dominated by a vertex in G. Now, assume that $v \in D$. Consider the following cases:

1. There exists $u \in N(v)$ such that $u \in D$. Contradiction, D was said to be the optimal dominating set whereas $D \setminus \{u\}$ is a valid, smaller solution for a graph G.

2. Suppose $u \in N_{G'}(v)$ and $w \in N_S(u)$. If $deg_S(w) > 1$, then rule 1 should have been applied to the edge (v, u). Otherwise, if $deg_S(w) = 1$, it is not an optimal solution for a dominating set because $((D \setminus \{v, w\}) \cup u)$ is a valid, smaller solution for a graph G.

Lemma 2.3. There exists a reduction from Spanning Star Forest parameterized by the number of stars to Dominating Set.

Proof. Let (G, k) be an instance of Spanning Star Forest Problem. We create an instance (G', k') for Dominating Set Problem as follows: let G' = G and if G contains an isolated vertex, then k' = 0. Otherwise, the value remains the same. Now, we claim that (G, k) is a YES-instance for Spanning Star Forest Problem if and only if (G', k') is a YES-instance for Dominating Set Problem.

To prove the following reduction one can use the method which was described in Theorem 2.3 with a little remark: if an instance (G, k) contains an isolated vertex, then obviously it is a NO-instance for *Spanning Star Forest Problem* and so is (G', k') for *Dominating Set Problem* because G' is not an empty graph.

Bibliography

- [Bea65] Juliusz Beaman, Morbidity of the Jolly function, Mathematica Absurdica, 117 (1965) 338-9.
- [Blar16] Elizjusz Blarbarucki, O pewnych aspektach pewnych aspektów, Astrolog Polski, Zeszyt 16, Warszawa 1916.
- [Fif00] Filigran Fifak, Gizbert Gryzogrzechotalski, O blabalii fetorycznej, Materiały Konferencji Euroblabal 2000.
- [Fif01] Filigran Fifak, O fetorach σ - ρ , Acta Fetorica, 2001.
- [Głomb04] Gryzybór Głombaski, Parazytonikacja blabiczna fetorów nowa teoria wszystkiego, Warszawa 1904.
- [Hopp96] Claude Hopper, On some Π -hedral surfaces in quasi-quasi space, Omnius University Press, 1996.
- [Leuk00] Lechoslav Leukocyt, Oval mappings ab ovo, Materiały Białostockiej Konferencji Hodowców Drobiu, 2000.
- [Rozk93] Josip A. Rozkosza, *O pewnych własnościach pewnych funkcji*, Północnopomorski Dziennik Matematyczny 63491 (1993).
- [Spy59] Mrowclaw Spyrpt, A matrix is a matrix is a matrix, Mat. Zburp., 91 (1959) 28–35.
- [Sri64] Rajagopalachari Sriniswamiramanathan, Some expansions on the Flausgloten Theorem on locally congested lutches, J. Math. Soc., North Bombay, 13 (1964) 72–6.
- [Whi25] Alfred N. Whitehead, Bertrand Russell, *Principia Mathematica*, Cambridge University Press, 1925.
- [Zen69] Zenon Zenon, Użyteczne heurystyki w blabalizie, Młody Technik, nr 11, 1969.