Практика 9.

Шахматов Андрей, Б02-304

3 апреля 2024 г.

Содержание

1	1.1	1
2	1.2	1
3	1.3	2
4	1.4	2
5	2.1	2
6	2.2	2

1 1.1

Если $x \in A \triangle C$, то он принадлежит либо в $A \setminus C$, либо в $C \setminus A$. Тогда без ограничения общности $x \in A$ и $x \notin C$. Тогда если $x \in B$, то он принадлежит $B \triangle C \implies x \in (A \triangle B) \cup (B \triangle C)$, иначе $x \in (A \triangle B)$.

2 1.2

Так как мера множества равна нулю, то существует покрытие элементарными $X \in A = \bigcup_{k=1}^{\infty} A_k$, такое, что:

$$\sum_{k=1}^{\infty} m(A_k) < \varepsilon$$

Возьмём множество A_1 :

$$\mu^*(X \triangle A_1) \le \mu(A_1 \triangle A) + \mu(A \triangle X) < 2\varepsilon$$

3 1.3

Если мера Лебега равна 0, то его внешняя мера Лебега тоже равна 0, тогда по субаддитивности верхней меры лебега:

$$\mu^*(X_1 \subset X) \le \mu^*(X) = 0$$

Тогда по предыдущей задаче X_1 - измеримо.

4 1.4

$$|\mu(A) - \mu(B)| \le \mu(A \triangle B) = 0$$

Тогда $\mu(A) = \mu(B)$. А дальше как...

5 2.1

а) Данное множество соответствует графику функции y(x) = 1 - x на множестве [0,1]. Тогда так как такая функция равномерно непрерывна, то для всякого $\varepsilon > 0$ найдётся $\delta > 0$, такая, что $|f(x_1) - f(x_2)| < \varepsilon$, $|x_1 - x_2| < \delta$. Разобъём множество [0,1] на дельта промежутки $[x_k, x_{k+1}], x_{k+1} - x_k < \delta$, тогда весь график покрывается $[x_k, x_{k+1}] \times [f(x_k), f(x_{k+1})]$, причём верхняя мера Жордана такого покрытия:

$$\mu^* X \le \sum_{k=1}^n [x_k, x_{k+1}] \cdot \varepsilon = \varepsilon$$

Тогда так как верхняя мера сколь угодно мала, то мера множества равна 0. Значит множество измеримо по Жорадну и по Лебегу. б) Граница такого множества - весь квадрат, его мера не равна 0, значит множество не измеримо по Жордану. Представленное множество можно представить как счётное объединение множеств:

$$X = \bigcup_{q \in \mathbb{Q}} \{ y = q - x \mid (x, y) \in [0, 1]^2 \}$$

Каждое из таких множеств представляет двумерную прямую, то есть имеет Лебегову меру 0. А значит по суббаддитивности верхней меры Лебега множество X имеет меру 0, а значит множество измеримо по Лебегу c мерой 0.

$6 \quad 2.2$

Построим такое множество, разделим отрезок на 10 частей и выбросим из него 3 часть, тогда в полученном множестве F_1 не будет чисел с 4 в первом разряде. Далее из каждой из 9 оставшихся частей проведём аналогичную операцию - в полученном множестве F_2 не будет чисел с 4 в первом и втором разряде. Тогда множество:

$$F = \bigcap_{n=1}^{\infty} F_n$$

не будет иметь 4 в своей десятичной записи. Такое множество измеримо по Лебегу, так как является пересечением измеримых множеств. При этом мера $\mu F_n = \frac{9}{10} \mu F_{n-1}$, тогда $\mu F_n = \left(\frac{9}{10}\right)^n \to 0, n \to \infty$, тогда из непрерывности меры Лебега $\mu F = 0$. Так как множество нигде не плотно, то его внутренность пустая, тогда мера Лебега его границы равна 0. Так как такая граница компактна, то она также имеет нулевую меру Жордана. А значит измеримо по Жордану.