Preliminary work on a domain decomposition method for Poisson's equation (2D)

Scott Aiton
Donna Calhoun
Grady Wright

Problem

$$\begin{cases} \nabla^2 u = f & \text{on } \Omega = \left\{ (x,y) \middle| 0 \leq x \leq 1, \ 0 \leq y \leq 1 \right\} \\ u = 0 & \text{on } \partial \Omega \quad \text{(Non-homogeneous also possible with the code)} \end{cases}$$

 Ω

Decompose the domain

$$\begin{cases} \nabla^2 u = f & \text{on } \Omega = \left\{ (x,y) \middle| 0 \le x \le 1, \ 0 \le y \le 1 \right\} \\ u = 0 & \text{on } \partial \Omega \quad \text{(Non-homogeneous also possible with the code)} \end{cases}$$

m-by-m decomposition, $M = m^2$

Ω_7	Ω_8	Ω_9
Ω_4	Ω_5	Ω_6
Ω_1	Ω_2	Ω_3

Solve:

$$\begin{cases} \nabla^2 u_i = f_i & \text{on } \Omega_i \\ u_i = \gamma_i & \text{on } \Gamma_i \end{cases}$$

Issues:

- 1. γ_i are not known
- 2. u_i should be smooth across domains

$$\Omega = \bigcup_{i=1}^{M} \Omega_i \quad \Gamma_i = \text{Boundary of } \Omega_i$$

Discretize the domain

$$\begin{cases} \nabla^2 u = f & \text{on } \Omega = \left\{ (x,y) \middle| 0 \le x \le 1, \ 0 \le y \le 1 \right\} \\ u = 0 & \text{on } \partial \Omega \quad \text{(Non-homogeneous also possible with the code)} \end{cases}$$

 $n \times n$ grid on each Ω_i

Solve:

$$\begin{cases} \nabla^2 u_i = f_i & \text{on } \Omega_i \\ u_i = \gamma_i & \text{on } \Gamma_i \end{cases}$$

Interior to Ω_i :

$$-2(u_i)_{j,k} + (u_i)_{j-1,k} + (u_i)_{j+1,k}$$
$$-2(u_i)_{j,k} + (u_i)_{j,k-1} + (u_i)_{j,k+1} = h^2(f_i)_{j,k}$$

- Unknown u_i values (total m^2n^2)
- Unknown γ_i values (total 2m(m-1)n)

Discretize the domains

$$\begin{cases} \nabla^2 u = f & \text{on } \Omega = \left\{ (x,y) \middle| 0 \le x \le 1, \ 0 \le y \le 1 \right\} \\ u = 0 & \text{on } \partial\Omega \quad \text{(Non-homogeneous also possible with the code)} \end{cases}$$

Solve:

$$\begin{cases} \nabla^2 u_i = f_i & \text{on } \Omega_i \\ u_i = \gamma_i & \text{on } \Gamma_i \end{cases}$$

Equation for γ_i :

- Unknown u_i values (total m^2n^2)
- Unknown γ_i values (total 2m(m-1)n)

$$\frac{(u_i)_{j,n} + (u_{i+1})_{j,1}}{2} - (\gamma_i)_{j,n+\frac{1}{2}} = 0$$

Discretize the domains

$$\begin{cases} \nabla^2 u = f & \text{on } \Omega = \left\{ (x,y) \middle| 0 \le x \le 1, \ 0 \le y \le 1 \right\} \\ u = 0 & \text{on } \partial \Omega \quad \text{(Non-homogeneous also possible with the code)} \end{cases}$$

Solve:

$$\begin{cases} \nabla^2 u_i = f_i & \text{on } \Omega_i \\ u_i = \gamma_i & \text{on } \Gamma_i \end{cases}$$

Next to boundary of Ω_i :

- Unknown u_i values
- o Unknown γ_i values
- $-2(u_i)_{j,n} + (u_i)_{j-1,n} + (u_i)_{j+1,n}$
- $-3(u_i)_{j,n} + (u_i)_{j,n-1} + 2(\gamma_i)_{j,n+\frac{1}{2}} = h^2(f_i)_{j,n}$

Linear system

$\begin{bmatrix} A_{11} & & & & \\ & A_{22} & & & \\ & & \ddots & & \\ & & & A_{MM} & & \end{bmatrix}$	$egin{array}{c} A_{1\Gamma} \ A_{2\Gamma} \ dots \ A_{M\Gamma} \ \end{array}$	$\begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_{3-1} \end{bmatrix}$	$\begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$
$A_{\Gamma 1} \ A_{\Gamma 2} \ dots \ A_{\Gamma 1}$	$A_{\Gamma\Gamma}$	$\frac{u_M}{\gamma}$	f_M

 A_{ii} = Discretization of the Laplacian on Ω_i $A_{i\Gamma}$ = Stencils involving γ_i near the boundary $A_{\Gamma i}$ = Averaging operators for determining γ_i

Schur Complement

$$\begin{bmatrix} A_{11} & & & & A_{1\Gamma} \\ & A_{22} & & & & A_{2\Gamma} \\ & & \ddots & & \vdots \\ & & & A_{MM} & A_{M\Gamma} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ & \vdots \\ u_M \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_M \end{bmatrix}$$

$$A_{\Gamma 1} \\ A_{\Gamma 2} \\ \vdots \\ A_{\Gamma 1} \end{bmatrix} A_{\Gamma \Gamma} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_M \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_M \end{bmatrix}$$

We can compute γ by solving

$$S\gamma = b$$

where

$$S = A_{\Gamma\Gamma} - \sum_{i=1}^{M} A_{\Gamma i} A_{ii}^{-1} A_{i\Gamma} \text{ and } b = -\sum_{i=1}^{M} A_{\Gamma i} A_{ii}^{-1} f_i$$

Once γ is known we can solve for all u_i (in parallel).

Solving the Schur complement system

Basic idea: Suppose we knew the exact solution to the boundary value problem $\nabla^2 \mathbf{u} = \mathbf{f}$. And, suppose we know the Dirichlet conditions γ for each block boundary. Then for each interface value γ_j , we could satisfy

$$\frac{u_{L_j} + u_{R_j}}{2} - \gamma_j = 0$$

We write this expression as a function $d = F(\gamma)$ and solve $F(\gamma) = 0$ to get γ .


```
% Construct Schur complement system
g = zeros(number of interface values,1);
b = F(g); % Inhomogeneous part
for j = 1:number of interface values
     q(i) = 1;
     S(:,j) = F(q) - b;
     q(j) = 0;
end
g = -S \setminus b \qquad % Solve Sg + b = 0
function \mathbf{d} = \mathbf{F}(\mathbf{g}) % \mathbf{F}(\mathbf{g}) = \mathbf{Sg} + \mathbf{b}
for k = 1:number of blocks
     Solve Au k = f k + b_k g
end
% Get difference
for j = 1:number of interface values
     d(j) = (u left(j) + u right(j))/2 - g(j)
end
end
```


Software Used

Serial version:

- Eigen for matrix and vector classes, and iterative solvers
- fftw for fast direct solve on each subdomain
- boost for the graph coloring algorithm

Parallel version:

- Epetra from Trilinos, matrix and vector data structures
- Belos2 from Trilinos, iterative solvers (PCG specifically)
- fftw for fast direct solve on each subdomain

Numerical results

Exact solution: $u(x, y) = \sin(\pi x)\cos(2\pi y)$

Error

CELLS \ DOMAINS	1	2	4	8	16
16	1.45e-02	3.63e-03	9.14e-04	2.28e-04	5.71e-05
32	3.65e-03	9.14e-04	2.28e-04	5.71e-05	1.42e-05
64	9.14e-04	2.28e-04	5.71e-05	1.42e-05	3.56e-06
128	2.28e-04	5.71e-05	1.42e-05	3.56e-06	8.92e-07

Residual

CELLS \ DOMAINS	1	2	4	8	16
16	1.98e-17	1.29e-17	6.73e-18	3.38e-18	1.68e-18
32	8.87e-18	6.29e-18	3.28e-18	1.67e-18	8.41e-19
64	5.92e-18	3.24e-18	1.68e-18	8.73e-19	4.32e-19
128	2.71e-18	1.69e-18	8.97e-19	4.45e-19	2.20e-19

Numerical results

Exact solution: $u(x, y) = \sin(\pi x)\cos(2\pi y)$

Conjugate Gradient Iterations

CELLS \ DOMAINS	2	4	8	16
16	15	27	41	64
32	23	40	60	91
64	35	58	85	130
128	51	84	121	185

With Preconditoner

CELLS \ DOMAINS	2	4	8	16	
16	9	14	22	39	
32	10	15	25	43	
64	11	17	28	48	
128	12	19	31	52	

Condition number of Schur complement

CELLS \ DOMAINS	2	4	8	16
16	5.37e01	1.97e02	7.74e02	3.08e03
32	1.09e02	3.96e02	1.55e03	6.16e03
64	2.19e02	7.95e02	3.10e03	1.23e04
128	4.39e02	1.59e03	6.20e03	2.46e04

What's next?

- Neumann boundary conditions
- Non-rectangular domains (still polygonal->rectilinear curves)
- Adaptively refined mesh
- Parallel performance on Kestrel
- How do we solve the Schur complement system in Parallel
- Look at a better preconditioner and different iterative solvers
- Extend to 3D
- Cut cell domains?