From Policy Gradient to Actor-Critic methods Soft Actor Critic

Olivier Sigaud with the help of Thomas Pierrot

Sorbonne Université http://people.isir.upmc.fr/sigaud

Soft Actor Critic: The best of two worlds

- ightharpoonup TRPO and PPO: π_{θ} stochastic, on-policy, low sample efficiency, stable
- ightharpoonup DDPG and TD3: π_{θ} deterministic, replay buffer, better sample efficiency, unstable
- SAC: "Soft" means "entropy regularized", π_{θ} stochastic, replay buffer
- ▶ Adds entropy regularization to favor exploration (follow-up of several papers)
- Attempt to be stable and sample efficient
- Three successive versions

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A. Abbeel, P. et al. (2018) Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018) Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290

Soft Actor-Critic

SAC learns a **stochastic** policy π^* maximizing both rewards and entropy:

$$\pi^* = \arg\max_{\pi_{\boldsymbol{\theta}}} \sum_t \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi_{\boldsymbol{\theta}}}} \left[r(\mathbf{s}_t, \mathbf{a}_t) + \alpha \mathcal{H}(\pi_{\boldsymbol{\theta}}(.|\mathbf{s}_t)) \right]$$

- ▶ The entropy is defined as: $\mathcal{H}(\pi_{\theta}(.|\mathbf{s}_t)) = \mathbb{E}_{\mathbf{a}_t \sim \pi_{\theta}(.|\mathbf{s}_t)} \left[-\log \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t) \right]$
- SAC changes the traditional MDP objective
- Thus, it converges toward different solutions
- Consequently, it introduces a new value function, the soft value function
- lacktriangle As usual, we consider a policy $\pi_{ heta}$ and a soft action-value function $\hat{Q}_{\phi}^{\pi_{ heta}}$

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. (2016) Asynchronous methods for deep reinforcement learning. arXiv preprint arXiv:1602.01783

Soft policy evaluation

- $\blacktriangleright \text{ Usually, we define } \hat{V}_{\phi}^{\pi_{\theta}}(\mathbf{s}_t) = \mathbb{E}_{\mathbf{a}_t \sim \pi_{\theta}(.|\mathbf{s}_t)} \left[\hat{Q}_{\phi}^{\pi_{\theta}}(\mathbf{s}_t, \mathbf{a}_t) \right]$
- In soft updates, we rather use:

$$\hat{V}_{\phi}^{\pi\theta}(\mathbf{s}_{t}) = \mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\theta}(.|\mathbf{s}_{t})} \left[\hat{Q}_{\phi}^{\pi\theta}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] + \alpha \mathcal{H}(\pi_{\theta}(.|\mathbf{s}_{t}))$$

$$= \mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\theta}(.|\mathbf{s}_{t})} \left[\hat{Q}_{\phi}^{\pi\theta}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] + \alpha \mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\theta}(.|\mathbf{s}_{t})} \left[-\log \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t}) \right]$$

$$= \mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\theta}(.|\mathbf{s}_{t})} \left[\hat{Q}_{\phi}^{\pi\theta}(\mathbf{s}_{t}, \mathbf{a}_{t}) - \alpha \log \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t}) \right]$$

Critic updates

We define a standard Bellman operator:

$$\mathcal{T}^{\pi} \hat{Q}_{\phi}^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) = r(\mathbf{s}_{t}, \mathbf{a}_{t}) + \gamma V_{\phi}^{\pi_{\theta}}(\mathbf{s}_{t+1})$$

$$= r(\mathbf{s}_{t}, \mathbf{a}_{t}) + \gamma \mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\theta}(.|\mathbf{s}_{t+1})} \left[\hat{Q}_{\phi}^{\pi_{\theta}}(\mathbf{s}_{t+1}, \mathbf{a}_{t}) - \alpha \log \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t+1}) \right]$$

Critic parameters can be learned by minimizing:

$$J_Q(\boldsymbol{\theta}) = \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1}) \sim \mathcal{D}} \left[\left(r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \hat{V}_{\phi}^{\pi_{\boldsymbol{\theta}}}(\mathbf{s}_{t+1}) - \hat{Q}_{\phi}^{\pi_{\boldsymbol{\theta}}}(\mathbf{s}_t, \mathbf{a}_t) \right)^2 \right]$$

where
$$V_{\phi}^{\pi_{\theta}}(\mathbf{s}_{t+1}) = \mathbb{E}_{\mathbf{a} \sim \pi_{\theta}(\cdot|\mathbf{s}_{t+1})} \left[\hat{Q}_{\phi}^{\pi_{\theta}}(\mathbf{s}_{t+1}, \mathbf{a}) - \alpha \log \pi_{\theta}(\mathbf{a}|\mathbf{s}_{t+1}) \right]$$

► Similar to DDPG update, but with entropy

Actor updates

- Update policy such as to become greedy w.r.t to the soft Q-value
- Choice: update the policy towards the exponential of the soft Q-value

$$J_{\pi}(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}}[KL(\pi_{\boldsymbol{\theta}}(.|\mathbf{s}_{t}))||\frac{\exp(\frac{1}{\alpha}\ddot{Q}_{\boldsymbol{\phi}}^{\pi_{\boldsymbol{\theta}}}(\mathbf{s}_{t},.))}{Z_{\boldsymbol{\theta}}(\mathbf{s}_{t})}].$$

- $ightharpoonup Z_{m{ heta}}(\mathbf{s}_t)$ is just a normalizing term to have a distribution
- ightharpoonup SAC does not minimize directly this expression but a surrogate one that has the same gradient w.r.t heta

The policy parameters can be learned by minimizing:

$$J_{\pi}(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}} \left[\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\boldsymbol{\theta}}(.|\mathbf{s}_{t})} \left[\alpha \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t}|\mathbf{s}_{t}) - \hat{Q}_{\phi}^{\pi_{\boldsymbol{\theta}}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right]$$

Continuous vs discrete actions setting

- SAC works in both the discrete action and the continuous action setting
- Discrete action setting:
 - The critic takes a state and returns a Q-value per action
 - The actor takes a state and returns probabilities over actions
- Continuous action setting:
 - ► The critic takes a state and an action vector and returns a scalar Q-value
 - Need to choose a distribution function for the actor
 - lacktriangleq SAC uses a squashed Gaussian: ${f a}=\tanh(n)$ where $n\sim\mathcal{N}(\mu_\phi,\sigma_\phi)$

Continuous vs discrete actions setting

- $\qquad \qquad \mathbf{In} \ J_{\pi}(\theta) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}} \left[\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\theta}(.|\mathbf{s}_{t})} \left[\alpha \log \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t}) \hat{Q}_{\phi}^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right]$
- SAC updates require to estimate an expectation over actions sampled from the actor,
- ► That is $\mathbb{E}_{\mathbf{a}_t \sim \pi_{\boldsymbol{\theta}}(.|s|)}[F(\mathbf{s}_t, \mathbf{a}_t)]$ where F is a scalar function.
- ▶ In the discrete action setting, $\pi_{\theta}(.|\mathbf{s}_t)$ is a vector of probabilities

$$\mathbb{E}_{\mathbf{a}_t \sim \pi_{\boldsymbol{\theta}}(.|\mathbf{s}_t)} \left[F(\mathbf{s}_t, \mathbf{a}_t) \right] = \pi_{\boldsymbol{\theta}}(.|\mathbf{s}_t)^T F(\mathbf{s}_t, .)$$

- ▶ In the continuous action setting:
 - ► The actor returns $μ_θ$ and $σ_θ$
 - ▶ Re-parameterization trick: $\mathbf{a}_t = \tanh(\mu_{\theta} + \epsilon.\sigma_{\theta})$ where $\epsilon \sim \mathcal{N}(0,1)$
 - Thus, $\mathbb{E}_{\mathbf{a}_t \sim \pi_{\boldsymbol{\theta}}(.|\mathbf{s}_t)} [F(\mathbf{s}_t, \mathbf{a}_t)] = \mathbb{E}_{\epsilon \sim \mathcal{N}(0,1)} [F(\mathbf{s}_t, \tanh(\mu_{\boldsymbol{\theta}} + \epsilon \sigma_{\boldsymbol{\theta}}))]$
 - ▶ This trick reduces the variance of the expectation estimate
 - lacktriangle And allows to backprop through the expectation w.r.t $oldsymbol{ heta}$

Critic update improvements (from TD3)

- lacktriangle As in TD3, SAC uses two critics $\hat{Q}_{\phi_1}^{\pi_{m{ heta}}}$ and $\hat{Q}_{\phi_2}^{\pi_{m{ heta}}}$
- ► The TD-target becomes:

$$y_t = r + \gamma \mathbb{E}_{\mathbf{a}_{t+1} \sim \pi_{\boldsymbol{\theta}}(.|\mathbf{s}_{t+1})} \left[\min_{i=1,2} \hat{Q}_{\bar{\phi}_i}^{\pi_{\boldsymbol{\theta}}}(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) - \alpha \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t+1}|\mathbf{s}_{t+1}) \right]$$

And the losses:

$$\begin{cases} J(\boldsymbol{\theta}) = \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1}) \sim \mathcal{D}} \left[\left(\hat{Q}_{\phi_1}^{\pi_{\boldsymbol{\theta}}}(\mathbf{s}_t, \mathbf{a}_t) - y_t \right)^2 + \left(\hat{Q}_{\phi_2}^{\pi_{\boldsymbol{\theta}}}(\mathbf{s}_t, \mathbf{a}_t) - y_t \right)^2 \right] \\ J(\boldsymbol{\theta}) = \mathbb{E}_{s \sim \mathcal{D}} \left[\mathbb{E}_{\mathbf{a}_t \sim \pi_{\boldsymbol{\theta}}(.|\mathbf{s}_t)} \left[\alpha \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t|\mathbf{s}_t) - \min_{i=1,2} \hat{Q}_{\bar{\phi}_i}^{\pi_{\boldsymbol{\theta}}}(\mathbf{s}_t, \mathbf{a}_t) \right] \right] \end{cases}$$

Fujimoto, S., van Hoof, H., & Meger, D. (2018) Addressing function approximation error in actor-critic methods. arXiv preprint arXiv:1802.09477

Automatic Entropy Adjustment

- ightharpoonup The temperature α needs to be tuned for each task
- ightharpoonup Finding a good α is non trivial
- ▶ Instead of tuning α , tune a lower bound \mathcal{H}_0 for the policy entropy
- ► And change the optimization problem into a constrained one

$$\left\{ \begin{array}{l} \pi^* = \mathop{\rm argmax}_{\pi} \sum_{t} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi_{\boldsymbol{\theta}}}} \left[r(\mathbf{s}_t, \mathbf{a}_t) \right] \\ \text{s.t. } \forall t \ \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi_{\boldsymbol{\theta}}}} \left[-\log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) \right] \geq \mathcal{H}_0, \end{array} \right.$$

▶ Use heuristic to compute \mathcal{H}_0 from the action space size

lpha can be learned to satisfy this constraint by minimizing:

$$J(\alpha) = \mathbb{E}_{\mathbf{s}_t \sim \mathcal{D}} \left[\mathbb{E}_{\mathbf{a}_t \sim \pi_{\boldsymbol{\theta}}(.|\mathbf{s}_t)} \left[-\alpha \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t|\mathbf{s}_t) - \alpha \mathcal{H}_0 \right] \right]$$

Practical algorithm

- lnitialize neural networks $\pi_{m{ heta}}$ and $\hat{Q}_{\phi}^{\pi_{m{ heta}}}$ weights
- Play k steps in the environment by sampling actions with π_{θ}
- ► Store the collected transitions in a replay buffer
- ► Sample *k* batches of transitions in the replay buffer
- ightharpoonup Update the temperature α , the actor and the critic using SGD
- ► Repeat this cycle until convergence

Truncated Quantile Critics

- Using a distribution of estimates is more stable than a single estimate
- ▶ To fight overestimation bias, TD3 and SAC take the min over two critics
- ► Truncating the higher quantiles is another option
- No need for two critics
- ► Better performance than SAC

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling overestimation bias with truncated mixture of continuous distributional quantile critics. In *International Conference on Machine Learning*, pp. 5556–5566. PMLR 2020

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

Scott Fujimoto, Herke van Hoof, and Dave Meger.

Addressing function approximation error in actor-critic methods.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine.

Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al.

Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905, 2018b.

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov.

Controlling overestimation bias with truncated mixture of continuous distributional quantile critics.

In International Conference on Machine Learning, pp. 5556-5566. PMLR, 2020.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.

Asynchronous methods for deep reinforcement learning.

arXiv preprint arXiv:1602.01783, 2016.

Practical implementation of neural critics

- $\hat{V}_{\phi}^{\pi\theta}$ is smaller, but not necessarily easier to estimate
- ▶ Given the implicit max in $\hat{V}^{\pi}_{\phi}(s)$, approx. may be less stable than $\hat{Q}^{\pi_{\theta}}_{\phi}(s)$ (?)
- Note: a critic network provides a value even in unseen states

