

Tutorial: Dynamic causal modelling for fMRI

Samuel Harrison, Jakob Heinzle Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering University and ETH Zürich

CP Course 2019, Zürich, Switzerland

Our plan for today

- Introduction
- Inverting our own DCM
 - Extracting the data
 - Setting up the model
 - Inversion
 - Model comparison
 - Looking at the results (parameters)
- Looking at group data
 - Setting up a group analysis in SPM (PEB)
 - Looking at parameters across groups.

four questions

Specialisation vs. Integration

Functional Specialisation

«Where, in the brain, did my experimental manipulation have an effect?»

Functional Integration

«How did my experimental manipulation propagate through the network?»

The experiment

Fixation

Press right

Press left

Top right wedge Wedge2

Modeling the design

Visual responses

Motor responses

Left > Right

 $\mathsf{SPM}\{\mathsf{T}_{130}^{}\}$

Right > Left

 $\mathsf{SPM}\{\mathsf{T}_{130}^{}\}$

Neuronal state equations

$$A \quad C \quad B$$

$$\frac{dx}{dt} = f(x, u) \approx f(x_0, 0) + \frac{\partial f}{\partial x} x + \frac{\partial f}{\partial u} u + \frac{\partial^2 f}{\partial x \partial u} u x + \frac{\partial^2 f}{\partial x^2} \frac{x^2}{2} + \cdots$$

Our plan for today

- Introduction
- Inverting our own DCM
 - Extracting the data
 - Setting up the model
 - Inversion
 - Model comparison
 - Looking at the results (parameters)
- Looking at group data
 - Setting up a group analysis in SPM (PEB)
 - Looking at parameters across groups.

four questions