ESKÉ VYSOKÉ U ENÍ TECHNICKÉ V PRAZE FAKULTA INFORMA NÍCH TECHNOLOGIÍ

ZADÁNÍ DIPLOMOVÉ PRÁCE

Název: Asymetrický šifrovací algoritmus McEliece

Student: Bc. Vojt ch Myslivec

Vedoucí: prof. Ing. Róbert Lórencz, CSc.

Studijní program: Informatika

Studijní obor:Po íta ová bezpe nostKatedra:Katedra po íta ových systémPlatnost zadání:Do konce letního semestru 2016/17

Pokyny pro vypracování

Prostudujte asymetrický šifrovací algoritmus McEliece založený na binárních Goppa kódech. Prove te rešerši existujících kryptoanalýz algoritmu McEliece a jeho variant. Zvažte metody zabývající se zkrácením velikosti klí . Implementujte šifrovací a dešifrovací algoritmy a zm te jejich výpo etní asovou a prostorovou náro nost v závislosti na velikosti klí e.

Seznam odborné literatury

Dodá vedoucí práce.

L.S.

prof. Ing. Róbert Lórencz, CSc. vedoucí katedry

prof. Ing. Pavel Tvrdík, CSc. d kan

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA INFORMAČNÍCH TECHNOLOGIÍ KATEDRA POČÍTAČOVÝCH SYSTÉMŮ

Diplomová práce

Asymetrický šifrovací algoritmus McEliece $Bc.\ Vojtěch\ Myslivec$

Vedoucí práce: prof. Ing. Róbert Lórencz, CSc.

Prohlášení

Prohlašuji, že jsem předloženou práci vypracoval(a) samostatně a že jsem uvedl(a) veškeré použité informační zdroje v souladu s Metodickým pokynem o etické přípravě vysokoškolských závěrečných prací.

Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorského zákona, ve znění pozdějších předpisů. V souladu s ust. § 46 odst. 6 tohoto zákona tímto uděluji nevýhradní oprávnění (licenci) k užití této mojí práce, a to včetně všech počítačových programů, jež jsou její součástí či přílohou, a veškeré jejich dokumentace (dále souhrnně jen "Dílo"), a to všem osobám, které si přejí Dílo užít. Tyto osoby jsou oprávněny Dílo užít jakýmkoli způsobem, který nesnižuje hodnotu Díla, a za jakýmkoli účelem (včetně užití k výdělečným účelům). Toto oprávnění je časově, teritoriálně i množstevně neomezené. Každá osoba, která využije výše uvedenou licenci, se však zavazuje udělit ke každému dílu, které vznikne (byť jen zčásti) na základě Díla, úpravou Díla, spojením Díla s jiným dílem, zařazením Díla do díla souborného či zpracováním Díla (včetně překladu), licenci alespoň ve výše uvedeném rozsahu a zároveň zpřístupnit zdrojový kód takového díla alespoň srovnatelným způsobem a ve srovnatelném rozsahu, jako je zpřístupněn zdrojový kód Díla.

České vysoké učení technické v Praze Fakulta informačních technologií

© 2016 Vojtěch Myslivec. Všechna práva vyhrazena.

Tato práce vznikla jako školní dílo na Českém vysokém učení technickém v Praze, Fakultě informačních technologií. Práce je chráněna právními předpisy a mezinárodními úmluvami o právu autorském a právech souvisejících s právem autorským. K jejímu užití, s výjimkou bezúplatných zákonných licencí, je nezbytný souhlas autora.

Odkaz na tuto práci

Myslivec, Vojtěch. Asymetrický šifrovací algoritmus McEliece. Diplomová práce. Praha: České vysoké učení technické v Praze, Fakulta informačních technologií, 2016.

Abstrakt

V několika větách shrňte obsah a přínos této práce v češtině. Po přečtení abstraktu by se čtenář měl mít čtenář dost informací pro rozhodnutí, zda chce Vaši práci číst.

Klíčová slova McEliece, asymetrická kryptografie, postkvantová kryptografie, binární Goppa kódy, konečná tělesa, polynomy, Wolfram Mathematica

Abstract

Sem doplňte ekvivalent abstraktu Vaší práce v angličtině.

Keywords McEliece, public-key cryptography, post-quantum cryptography, binary Goppa codes, finite fields, polynomy, Wolfram Mathematica

Obsah

U	od	1
1	Obecná algebra 1.1 Základní termíny 1.2 Reprezentace prvků 1.3 Operace v tělese $GF(p^n)$	3 3 4 4
2	Lineární kódy 2.1 Kódování	7 7 7
3	Kryptosystém McEliece 3.1 Asymetrické šifrování McEliece	9 9 9
4	Implementace 4.1 Binární konečná tělesa 4.2 Ireducibilní binární Goppa kódy 4.3 McEliece 4.4 Měření	11 11 11 11 11
	věr eratura	13 15
\mathbf{A} \mathbf{B}	Seznam použitých zkratek Obsah přiloženého CD	17 19

Seznam obrázků

Úvod

Tato práce se zabývá asymetrickým kryptosystémem *McEliece*. Mezi největší přednosti tohoto systému patří jeho odolnost vůči kvantovým počítačům a je tak jedním z vhodných kandidátů pro asymetrickou kryptografii pro postkvantovou dobu.

V prvních kapitolách této práce jsou popsány nezbytné primitivy z oblasti matematiky a teorie kódování, které jsou potřeba pro pochopení a použití kryptosystému McEliece. Jedná se především o počítání s konečnými tělesy a polynomy (kapitola 1) a binární Goppa kódy (kapitola 2).

Kryptosystému McEliece se věnuje kapitola 3. Kromě základního popisu generování klíčů a algoritmů pro šifrování a dešifrování je probráno i Nie-derreiterovo schéma – "úprava" kryptosystému McEliece pro získání digitál-ního podpisu. Jsou ukázány slabiny, nevýhody i možné útoky na kryptosystém McEliece a též zmíněna praktická varianta systému odolná vůči těmto aspektům.

V poslední části práce je probrána implementace kryptosystému *McEliece* v softwaru *Wolfram Mathematica* včetně změřených časových složitostí (kapitola 4),.

Obecná algebra

V kapitole jsou probrány definice a algoritmy nutné pro práci s konečnými tělesy a polynomy nad konečným tělesem. V práci se předpokládá základních znalostí z oblasti algebry. Pro tato témata je doporučena literatura [4, 5, 6, 7, 2] (kde lze též najít většinu důkazů následujících vět).

1.1 Základní termíny

Pro ujasnění je uvedena definice tělesa:

Definice 1 (Těleso) Nechť M je neprázdná množina $a + a \cdot binární operace¹. Struktura <math>T = (M, +, \cdot)$ se nazývá těleso, pokud platí

- 1. (M, +) je komutativní grupa (nazývána aditivní)
- 2. $(M \setminus \{0\}, \cdot)^2$ je grupa (nazývána multiplikativní)
- 3. Platí (levý i pravý) distributivní zákon:

$$\forall a, b, c \in M : (a(b+c) = ab + ac) \land ((b+c)a = ba + ca)$$

Těleso, které má konečný počet prvků, se nazývá konečné těleso.

Věta 1 Nechť T je konečné těleso, pak jeho počet prvků (řád) je p^n , kde p je prvočíslo a $n \in \mathbb{N} \land n \ge 1$.

Číslo p se nazývá charakteristika. Navíc platí, že všechna konečná tělesa se stejným počtem prvků jsou navzájem izomorfní. Konečné těleso řádu p^n je tedy dále označováno jako $GF(p^n)$ (z anglického Gallois field, dle francouzského matematika Évariste Galois).

 $^{^1}$ Pro zjednodušení zápisu je \cdot často vynecháváno.

² Prvek 0 je nulový (neutrální) prvek aditivní grupy.

1.2 Reprezentace prvků

Jak bude ukázáno dále, je vhodné prvky tělesa $GF(p^n)$ reprezentovat jako polynomy s koeficienty z množiny $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$, tedy prvek $a \in GF(p^n)$ lze zapsat:

$$A(x) = \sum_{i=0}^{n-1} a_i x^i, a_i \in \mathbb{Z}_p$$

O takovém polynomu říkáme, že je to polynom nad tělesem GF(p) (řádu maximálně n-1). Na prvek a je též možné se dívat jako na vektor či n-tici koeficientů a_i :

$$A(x) \cong a \cong (a_{n-1}a_{n-2}\dots a_0) \cong a_{n-1}a_{n-2}\dots a_0$$

V této práci se mezi těmito reprezentacemi prvků nadále volně přechází, jak bude v daném kontextu potřeba potřeba³.

1.3 Operace v tělese $GF(p^n)$

V následujících sekcích jsou probrány operace potřebné pro počítání s tělesy $GF(p^n)$. Konkrétní zvolené algoritmy a jejich implementace je detailně popsána v kapitole 4.

1.3.1 Sčítání

Sčítání v tělese $GF(p^n)$ je definováno stejně jako sčítání polynomů, s tím, že sčítání jednotlivých koeficientů je prováděno $modulo\ p$ (v tělese GF(p):

$$A(x) + B(x) = \sum a_i x^i + \sum b_i x^i = \sum |a_i + b_i|_p x^i$$

1.3.2 Násobení

Násobení v tělese $GF(p^n)$ nelze provádět "po složkách", jako je tomu u sčítání. U takto definované operace by většina prvků neměla (multiplikativní) *inverzi* a nejednalo by se tak o těleso.

Při násobení prvků se opět využije jejich reprezentace pomocí polynomů. Výsledkem násobení pak je:

$$A(x) \cdot B(x) = \sum_{i=0}^{n-1} a_i x^i \cdot \sum_{i=0}^{n-1} b_i x^i = \sum_{i=0}^{2n-2} \left| \sum_{j+k=i} a_j \cdot b_k \right|_p x^i$$

Jak je naznačeno, násobení i sčítání koeficientů se provádí $modulo\ p$ (v tělese GF(p).

³ V některých materiálech se používá i obráceného zápisu $(a_0a_1 \dots a_p - 1)$.

Kvůli uzavřenosti násobení v tělese je nutné zavést operaci $A(x) \mod P(x)$, neboli zbytek po dělení polynomu A(x) polynomem P(x). Dále je třeba pro určení tělesa $GF(p^n)$ určit ireducibilni polynom, který bude použitý při operaci násobení.

Definice 2 Polynom P(x) nad tělesem GF(p) je ireducibilní právě tehdy, když pro každé dva polynomy A(x) a B(x) nad GF(p) platí:

$$A(x) \cdot B(x) = P(x) \Rightarrow (deg(A(x)) = 0) \lor (deg(B(x)) = 0)$$

Neboli pro ireducibilni polynom platí, že neexistuje rozklad na polynomy nad GF(p) stupně alespoň 1.

Příklad: Polynom $x^3 + x + 1$ je nad tělesem GF(2) ireducibilní, protože neexistuje jeho rozklad na polynomy stupně alespoň 1. Polynom $x^2 + 1$ není nad tělesem GF(2) ireducibilní, protože:

$$(x+1) \cdot (x+1) = x^2 + |1+1|_2 x + 1 = x^2 + 1$$

Nyní je možné zavést operaci násobení dvou prvků tělesa jako násobení dvou polynomů modulo zadaný ireducibilní polynom:

$$A(x) \cdot B(x) = \sum a_i x^i \cdot \sum b_i x^i = \sum \left| \sum_{j+k=i} a_j \cdot b_k \right|_p x^i \mod P(x)$$

Poznámka Pokud by zvolený P(x) nebyl *ireducibilní*, jednalo by se o *okruh*, nikoliv o *těleso*, protože by neexistovala *multiplikativní inverze* pro některé prvky a navíc by i existovaly tzv. *dělitelé nuly*.

1.3.3 Umocňování

Pro rozšíření operací o opakované násobení je vhodné zavést operaci umocňování.

Definice 3 Pro prvek a tělesa T a číslo $n \in \mathbb{N}$ je operace umocňování definována následovně:

$$a^{0} = 1$$

$$a^{n} = \underbrace{a \cdot a \cdot \dots \cdot a}_{n \cdot kr\acute{a}t}$$

$$a^{-n} = \left(a^{-1}\right)^{n}$$

Pro efektivní výpočet mocniny prvku je vhodné použít algoritmus Square-and-Multiply, kde se dílčí operace "square" a "multiply" provádí operací · v
daném tělese $GF(p^n)$.

1.3.4 Inverze

Inverzi v grupě lze obecně definovat následovně:

Definice 4 (Inverze) Nechť a je prvkem a \mathbb{O} neutrálním prvkem grupy $G = (M, \circ)$. Prvek \bar{a} je inverzí prvku a, pokud platí následující rovnice:

$$a \circ \bar{a} = \mathbb{O}$$

1.3.4.1 Aditivní inverze

Inverze v aditivni grupě je značena znaménkem minus "—" a je z definice velmi triviální:

$$|A(x) + (-A(x))|_p = 0 \Rightarrow -A(x) = \sum |-a_i|_p x^i$$

Neboli je to aditivní inverze jednotlivých koeficientů $modulo\ p$ (v tělese GF(p)).

1.3.4.2 Multiplikativní inverze

Inverze v multiplikativni grupě je značena záporným exponentem " $^{-1}$ " či symbolem dělení.

$$\left| A(x) \cdot A(x)^{-1} \right|_p = \left| \frac{A(x)}{A(x)} \right|_p = 1$$

Tuto multiplikativn'i inverzi je třeba počítat rozšířeným Euklidovým algoritmem pro polynomy (EEA), či případně jinými algoritmy, jako je např. algoritmus Itoh-Teechai-Tsujii (ITT) [7, 3].

Rozšířený Euklidův algoritmus pro polynomy, stejně jako v modulární aritmetice (neboli pro tělesa GF(p)), stojí na nalezení $B\'{e}zoutovy$ rovnosti. Pro výpočet EEA je třeba výpočtu dělení polynomů se zbytkem⁴.

⁴ Někdy uváděno jako dlouhé dělení.

Lineární kódy

- 2.1 Kódování
- 2.2 Lineární kódy
- 2.2.1 Hammingovy kódy
- 2.3 Goppa kódy

Ireducibilní binární Goppa kódy

Kryptosystém McEliece

- 3.1 Asymetrické šifrování McEliece
- 3.2 Niederreiterovo schéma
- 3.3 Bezpečnost algoritmů
- 3.3.1 Typy útoků
- 3.3.2 Slabiny systému
- 3.3.3 Existující útoky
- 3.3.4 Praktická varianta

CCA2-odolná varianta

KAPITOLA 4

Implementace

- 4.1 Binární konečná tělesa
- 4.2 Ireducibilní binární Goppa kódy
- 4.3 McEliece
- 4.4 Měření

Závěr

Literatura

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

PŘÍLOHA **A**

Seznam použitých zkratek

GF Gallois field

PŘÍLOHA **B**

Obsah přiloženého CD

	readme.txtstručný popis obsahu CD
_	exe adresář se spustitelnou formou implementace
	src
	<u>impl</u> zdrojové kódy implementace
	implzdrojové kódy implementace thesiszdrojová forma práce ve formátu LATEX
	$text \ldots \ldots text \ pr$ ice
	thesis.pdftext práce ve formátu PDF
	thesis.pstext práce ve formátu PS