ETH zürich

Computational Models of Motion

Contact Mechanics

Slides adapted from David Hahn

Overview

ETH zürich

Contact constraints

Coulomb friction

• Hard vs. soft constraints

Soft body simulation

Contact Constraints

ETH zürich

• 1D point mass (x, m)

$$m\ddot{x} = f$$

Gravity

$$f_{\rm ext} = -9.81m$$

• Obstacle (floor)

$$x \ge 0$$

Contact force

$$f_{\text{floor}} = \lambda$$

Contact Constraints

• 1D point mass (x, m)

$$m\ddot{x} = -9.81m + \lambda$$
$$x \ge 0$$

Contact force must never pull

$$\lambda \ge 0$$

No contact force without contact

$$x \lambda = 0$$

Complementarity Formulation

• Complementarity problem: find $z \in \mathbb{R}^n$ such that

$$0 \le z \perp f(z) \ge 0 \qquad (1)$$

where $f(z): \mathbb{R}^n \to \mathbb{R}^n$ is a continuous function

• The complementarity condition (1) is short for

$$z \ge 0$$
, $f(z) \ge 0$ and $z_i f_i(z) = 0 \quad \forall i$

- Complementarity conditions avoid discontinuous functions
 - Modeling $\lambda = \lambda(x)$ would require $\lambda \to \infty$
 - Using λ and x as independent variables with complementarity conditions avoids these problems

Linear Complementarity Problems

ETH zürich

• Linear Complementarity problem (LCP): find $z \in \mathbb{R}^n$ such that

$$0 \le z \perp f(z) \ge 0$$
 where $f(z) = Mz + q : \mathbb{R}^n \to \mathbb{R}^n$ is an affine function

Remarks

- LCP are truly nonlinear problems
- Useful for numerical modeling of contact mechanics problems

Contact constraints

all zürich

• 1D point mass (x, m)

$$m\ddot{x} = -9.81m + \lambda$$
$$0 \le \lambda \perp x \ge 0$$

- What happens on impact?
 - Stay on the floor or
 - Bounce back?
 - If so, how fast?

Contact constraints

TH zürich

• Real world: no perfectly rigid objects

• What happens on impact?

• Rigid model: no deformation allowed

ETH zürich

• Real world: no perfectly rigid objects

aı zürich

• Real world: no perfectly rigid objects

- Hertz theory of elastic contact
 - Moving down, surface in contact
 - Upward force causes compressive wave

- Hertz theory of elastic contact
 - Shock wave reflects on the free surface
 - Maximal compression

Contact Constraints

- Hertz theory of elastic contact
 - Moving back up, contact breaks

• Real world: no perfectly rigid objects

Bridging Rigidity and Elasticity

• Real world: no perfectly rigid objects

$$m\ddot{x} = -9.81m + \lambda$$
$$0 \le \lambda \perp x \ge 0$$

Rigid model: no deformation allowed

Impact Law

- Perfectly elastic contact
 - → velocity reflection

$$x = 0 \land \dot{x}^- < 0$$
:

$$\dot{x}^+ = -\dot{x}^-$$

Contact with Impact Law

ETH zürich

• 1D point mass (x, m)

$$x > 0:$$

$$m\ddot{x} = -9.81m$$

$$x = 0 \land \dot{x}^{-} < 0$$
:

$$m\ddot{x} = -9.81m + \lambda$$

$$0 \le \lambda \perp (\dot{x}^+ + \dot{x}^-) \ge 0$$

Free flight

In contact

Time Discretization

• BDF1 (aka. implicit Euler)

init:
$$\hat{v} = 0$$

 $\mathbf{S} = dr / d\hat{v}$
 $\Delta_v = -\mathbf{S}^{-1}r(\hat{v})$
 $\hat{v} \leftarrow \hat{v} + \Delta_v$
loop while $||r(\hat{v})|| > \varepsilon$

$$\underbrace{mv_{i+1} - mv_{i} - \Delta_{t} f(x_{i} + \Delta_{t} v_{i+1})}_{r(v_{i+1})} = 0$$

• How to include constraints?

Time Discretization

- BDF1 (aka. implicit Euler)
- How to include constraints?

$$\underbrace{mv_{i+1} - mv_{i} - \Delta_{t} f(x_{i} + \Delta_{t} v_{i+1})}_{r(v_{i+1})} = 0$$

• BDF1 with contact constraints

$$r(v_{i+1}) = \lambda$$
$$0 \le \lambda \perp (x_i + \Delta_t v_{i+1}) \ge 0$$

$$r(\hat{v} + \Delta_v) \approx r(\hat{v}) + \frac{dr}{d\hat{v}} \Delta_v$$

• Leads to LCP for the unknown Δ_{ν}

$$\frac{dr}{d\hat{v}}\Delta_v = \lambda - r(\hat{v})$$
$$0 \le \lambda \perp (x_i + \Delta_t(\hat{v} + \Delta_v)) \ge 0$$

• Leads to LCP for the unknown Δ_v

$$\frac{dr}{d\hat{v}}\Delta_{v} = \lambda - r(\hat{v})$$

$$0 \le \lambda \perp (x_{i} + \Delta_{t}(\hat{v} + \Delta_{v})) \ge 0$$

• Formulate as Quadratic Program (QP)

$$\min \frac{1}{2} \Delta_v^t \frac{dr}{d\hat{v}} \Delta_v + \Delta_v^t r(\hat{v})$$

s.t.
$$\Delta_v \ge -(\hat{v} + \frac{1}{\Delta_t} x_i)$$

• Note: λ and complementarity conditions are implicit

Reminder: Inequality Constrained Problems

Lagrangian

$$\mathcal{L}(x,\lambda) = f(x) + \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i c_i(x)$$

First-order optimality (KKT) conditions

$$\nabla_{x} \mathcal{L}(x^{*}, \lambda^{*}) = 0,$$

$$c_{i}(x^{*}) = 0, \quad \text{for all } i \in \mathcal{E},$$

$$c_{i}(x^{*}) \geq 0, \quad \text{for all } i \in \mathcal{I},$$

$$\lambda_{i}^{*} \leq 0, \quad \text{for all } i \in \mathcal{I},$$

 $\lambda_i^* c_i(x^*) = 0$, for all $i \in \mathcal{E} \cup \mathcal{I}$.

Feasibility: Inequality constraints have to be satisfied

One-sidedness: Inequality constraints can only push, not pull

Complementary slackness: Either constraint is active, or its LM is zero

• BDF1 w/ contact constraints

$$r(v_{i+1}) = \lambda$$
$$0 \le \lambda \perp (x_i + \Delta_t v_{i+1}) \ge 0$$

$$r(\hat{v} + \Delta_v) \approx r(\hat{v}) + \frac{dr}{d\hat{v}} \Delta_v$$

$$\min\left(\frac{1}{2}\Delta_{v}^{\mathsf{T}}\frac{dr}{d\hat{v}}\Delta_{v}+\Delta_{v}^{\mathsf{T}}r(\hat{v})\right)$$

s.t.
$$\Delta_t \Delta_v \ge -(x_i + \Delta_t \hat{v})$$

Time Discretization

• BDF1 with contact constraint

Time Discretization

- BDF1 with impact law
 - Solve unconstrained equations of motion
 - Apply impact law when contact detected

$$x_{i+1} \le 0 \land v_i < 0:$$

$$0 \le \lambda \perp (v_{i+1} + v_i) \ge 0$$

Hard vs. Soft Constraints

Hard constraints

$$x \ge 0$$

$$f_{\text{floor}} = \lambda$$

Soft constraints

$$x < 0$$
: $f_{\text{floor}} = kx$

$$x \ge 0$$
: $f_{\text{floor}} = 0$

- Formally unconstrained
- Conservative force (spring analogy)
- Nonlinear force

Soft Constraints

• BDF1, BDF2 with soft constraints

Summary

• So far: 1D motion normal to floor

• Rigid contact: complementarity condition Restitution modelled via impact law

• Soft contact: allow (small) constraint violation Conservative forces – no need for impact law

Coulomb Friction

ETH zürich

• Now: tangential motion in contact

• Coulomb model: $f_t \le \mu f_n$

- Sticking: $f_t < \mu f_n \land v_t = 0$
- Sliding: $f_t = \mu f_n$

Coulomb Friction

• 2D point mass

$$m\ddot{\mathbf{x}} = \mathbf{f}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{f}_{\text{ext}} = \begin{pmatrix} 0 \\ -9.81m \end{pmatrix}$$

• Floor
$$\mathbf{n}^{\mathsf{T}}\mathbf{x} \ge 0$$
, $\mathbf{n} = \begin{pmatrix} n_x \\ n_y \end{pmatrix} = \begin{pmatrix} \sin \alpha \\ \cos \alpha \end{pmatrix}$

- Contact force $\mathbf{f}_{floor} = \mathbf{f}_n + \mathbf{f}_t$, $\mathbf{f}_n = \mathbf{n}\lambda$, $\|\mathbf{f}_t\| \le \mu \|\mathbf{f}_n\|$
- How to determine \mathbf{f}_t ?

Maximum Dissipation Principle

TH zürich

Out of all admissible tangential forces $\tilde{\mathbf{f}}_t \in \mathcal{F}$ with

$$\mathcal{F} = \{\tilde{\mathbf{f}}_t \mid ||\tilde{\mathbf{f}}_t|| \le \mu ||\mathbf{f}_n||\},\$$

the friction force f_t is the one that maximizes the rate of energy dissipation, i.e.,

$$\mathbf{f}_t = \underset{\tilde{\mathbf{f}}_t \in \mathcal{F}}{\operatorname{argmin}} - \tilde{\mathbf{f}}_t^t \mathbf{v}_t$$

where \mathbf{v}_t is the relative tangential velocity at the contact point.

J. Moreau: On unilateral constraints, friction, and plasticity. 1973

FIH zürich

• 2D point mass

$$m\ddot{\mathbf{x}} = \mathbf{f}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{f}_{\text{ext}} = \begin{pmatrix} 0 \\ -9.81m \end{pmatrix}$$

• Floor
$$\mathbf{n}^{\mathsf{T}}\mathbf{x} \ge 0$$
, $\mathbf{n} = \begin{pmatrix} n_x \\ n_y \end{pmatrix} = \begin{pmatrix} \sin \alpha \\ \cos \alpha \end{pmatrix}$

• Max. dissipation sliding $\max(-\mathbf{f}_t^\mathsf{T} \mathbf{T} \dot{\mathbf{x}})$ s.t. $\|\mathbf{f}_t\| = \mu \|\mathbf{f}_n\|$

$$T = (I - nn^T)$$

Admissible Friction Forces

• Contact force $\mathbf{f}_{floor} = \mathbf{f}_n + \mathbf{f}_t$, $\mathbf{f}_n = \mathbf{n}\lambda$, $\|\mathbf{f}_t\| \le \mu \|\mathbf{f}_n\|$

• 2D: friction force in interval $-\mu\lambda \le f_t \le \mu\lambda$

Linear constraint

• 3D: friction force in disk $\|\mathbf{f}_t\| \le \mu \lambda$

Nonlinear constraint

- Admissible friction force depends on normal force
 - → friction cone

Friction cone

• Contact force $\mathbf{f}_{floor} = \mathbf{f}_n + \mathbf{f}_t$, $\mathbf{f}_n = \mathbf{n}\lambda$, $\|\mathbf{f}_t\| \le \mu \|\mathbf{f}_n\|$

- Friction cone
 - Radius of friction force disk depends linearly on λ
 - Stacking up disks for all values of λ leads to friction cone

Friction cone

- **Problem**: nonlinear friction constraint $\|\mathbf{f}_t\| \le \mu \lambda$ is difficult to model
- **Idea**: linearize friction constraint → polygonal friction cone approximation

Pyramidal friction cone

Nonlinear Cone
$$\|\mathbf{f}_t\| \le \mu \|\mathbf{f}_n\|$$

Nonlinear Cone Pyramid
$$\|\mathbf{f}_t\| \le \mu \|\mathbf{f}_n\| \qquad \mathbf{f}_t = \beta_1 \mathbf{d}_1 + \beta_2 \mathbf{d}_2 \text{ with } -\tilde{\mu}\lambda \le \beta_i \le \tilde{\mu}\lambda$$

Outer approximation:

$$\tilde{\mu} = \mu$$

General polygonal approximation

ETH zürich

• *m*-sided linear approximation of friction cone

$$\mathbf{D} = (\mathbf{d}_1, ..., \mathbf{d}_m) \qquad \mathbf{f}_t = \mathbf{D}\boldsymbol{\beta}, \quad \mathbf{1}^\mathsf{T}\boldsymbol{\beta} \le \mu\lambda, \quad \boldsymbol{\beta} \ge 0$$

ETH zürich see also Anitescu & Potra,

Nonlinear Dynamics 14 (1997)

Simulation time step

- Collision detection: find contact point and normal
- Apply impact law
- Include approximate friction constraints

 $\mathbf{r}(\mathbf{v}_{i+1}) = \mathbf{n}\lambda + \mathbf{D}\boldsymbol{\beta}$

– System of equations:

Newtonian motion

$$0 \le \lambda \perp \mathbf{n}^{\mathsf{T}}(\mathbf{v}_{i+1} + \mathbf{v}_{i}) \ge 0$$

Normal contact

$$\mathbf{1}^{\mathsf{T}}\boldsymbol{\beta} \leq \mu\lambda \perp \gamma \geq 0, \quad -\mathbf{D}^{\mathsf{T}}\mathbf{v}_{i+1} \leq \gamma\mathbf{1} \perp \boldsymbol{\beta} \geq 0$$

Linearized friction

$$0 \le \lambda \perp \mathbf{n}^{\mathsf{T}} (\mathbf{v}_{i+1} + \mathbf{v}_{i}) \ge 0$$
$$\mathbf{1}^{\mathsf{T}} \boldsymbol{\beta} \le \mu \lambda \perp \gamma \ge 0, \quad -\mathbf{D}^{\mathsf{T}} \mathbf{v}_{i+1} \le \gamma \mathbf{1} \perp \boldsymbol{\beta} \ge 0$$

$$\mathbf{1}^{\mathsf{T}} \boldsymbol{\beta} \leq \mu \lambda \perp \gamma \geq 0, \quad -\mathbf{D}^{\mathsf{T}} \mathbf{v}_{i+1} \leq \gamma \mathbf{1} \perp \boldsymbol{\beta} \geq 0$$

Case 2: if $\mathbf{1}^T \boldsymbol{\beta} < \mu \lambda$

→ static contact, no sliding.

$$\mathbf{1}^{\mathsf{T}} \boldsymbol{\beta} \leq \mu \lambda \perp \gamma \geq 0, \quad -\mathbf{D}^{\mathsf{T}} \mathbf{v}_{i+1} \leq \gamma \mathbf{1} \perp \boldsymbol{\beta} \geq 0$$

Case 3: if
$$\mathbf{1}^T \boldsymbol{\beta} = \mu \lambda$$

$$\rightarrow \gamma > 0 \rightarrow \mathbf{v}_{i+1} \rightarrow \text{sliding}$$

- There is only one γ for all directions
- For $\beta_i > 0$, we must have $-\mathbf{d}_i^T \mathbf{v} = \gamma$
- For two active β_j , $\beta_k > 0$, we must have $\mathbf{d}_j^T \mathbf{v} = \mathbf{d}_k^T \mathbf{v}$
 - \rightarrow for direction pairs where $d_j = -d_k$, we must have $\beta_j \beta_k = 0$
 - \rightarrow typically, only one β_i will be nonzero
 - \rightarrow no guarantee that friction force is aligned with v_{i+1}

$$\mathbf{1}^{\mathsf{T}} \boldsymbol{\beta} \leq \mu \lambda \perp \gamma \geq 0, \quad -\mathbf{D}^{\mathsf{T}} \mathbf{v}_{i+1} \leq \gamma \mathbf{1} \perp \boldsymbol{\beta} \geq 0$$

Remark 3: from $-\mathbf{D}^T \mathbf{v}_{i+1} \leq \gamma \mathbf{1} \perp \boldsymbol{\beta} = \mathbf{0}$

- We have $\beta_j (\boldsymbol{d}_j^t \boldsymbol{v}_{i+1} + \gamma) = 0 \rightarrow \beta_j \boldsymbol{d}_j^t \boldsymbol{v}_{i+1} \leq 0 \ \forall j$
 - \rightarrow friction force **D** β acts against relative velocity (i.e., does negative work)
- It can be shown that β maximizes dissipation

LCP for Coulomb Friction

TIH zürich

- Simulation time step
 - Eliminate Δ_{ν}

- LCP form
$$Az + q = w$$

$$0 \leq \mathbf{w} \perp \mathbf{z} \geq \mathbf{q}$$

$$\mathbf{r}(\mathbf{v}_{i+1}) = \mathbf{n}\lambda + \mathbf{D}\boldsymbol{\beta}$$

$$\mathbf{r}(\hat{\mathbf{v}} + \Delta_{v}) \approx \mathbf{r}(\hat{\mathbf{v}}) + \mathbf{S}\Delta_{v}$$

$$\mathbf{S} := d\mathbf{r} / d\hat{\mathbf{v}}$$

$$\Delta_{v} = \mathbf{S}^{-1}(\mathbf{n}\lambda + \mathbf{D}\beta - \mathbf{r}(\hat{\mathbf{v}}))$$

$$\mathbf{z} = \begin{pmatrix} \lambda \\ \boldsymbol{\beta} \\ \boldsymbol{\gamma} \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} \mathbf{n}^{\mathsf{T}} \mathbf{S}^{-1} \mathbf{n} & \mathbf{n}^{\mathsf{T}} \mathbf{S}^{-1} \mathbf{D} & 0 \\ \mathbf{D}^{\mathsf{T}} \mathbf{S}^{-1} \mathbf{n} & \mathbf{D}^{\mathsf{T}} \mathbf{S}^{-1} \mathbf{D} & \mathbf{1} \\ \mu & -\mathbf{1}^{\mathsf{T}} & 0 \end{pmatrix}$$

see also Anitescu & Potra, Nonlinear Dynamics 14 (1997)

LCP for Coulomb Friction

$$\mathbf{A}\mathbf{z} + \mathbf{q} = \mathbf{w} \\ 0 \le \mathbf{w} \perp \mathbf{z} \ge \mathbf{q}$$

$$\mathbf{z} = \begin{pmatrix} \lambda \\ \beta \\ \gamma \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} \mathbf{n}^{\mathsf{T}}\mathbf{S}^{-1}\mathbf{n} & \mathbf{n}^{\mathsf{T}}\mathbf{S}^{-1}\mathbf{D} & 0 \\ \mathbf{D}^{\mathsf{T}}\mathbf{S}^{-1}\mathbf{n} & \mathbf{D}^{\mathsf{T}}\mathbf{S}^{-1}\mathbf{D} & \mathbf{1} \\ \mu & -\mathbf{1}^{\mathsf{T}} & 0 \end{pmatrix}$$

Existence of solution [Anitescu & Potra, 1997]

- The LCP is guaranteed to have a solution
- The solution can be computed using Lemke's algorithm

TH zürich

Soft constraints

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} \ge 0$$
$$\mathbf{f}_n = \mathbf{n}\lambda$$

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} < 0$$
: $\mathbf{f}_{\mathsf{n}} = -k_{\mathsf{n}} \mathbf{n} \mathbf{n}^{\mathsf{T}}\mathbf{x}$

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} \geq 0$$
: $\mathbf{f}_n = 0$

• Sticking
$$T\dot{x} = 0$$

$$\mathbf{T} \coloneqq (\mathbf{I} - \mathbf{n} \mathbf{n}^\mathsf{T})$$

$$\mathbf{f}_{t} = -k_{t} \mathbf{T} \dot{\mathbf{x}}$$
if $\|\mathbf{f}_{t}\| < \mu \|\mathbf{f}_{n}\|$

• Sliding

$$\max(-\mathbf{f}_t^{\mathsf{T}}\dot{\mathbf{x}})$$
s.t. $\|\mathbf{f}_t\| = \mu \|\mathbf{f}_n\|$

$$\mathbf{f}_{t} = -\mu \, \mathbf{n}^{\mathsf{T}} \mathbf{f}_{n} \, \left(\mathbf{T} \dot{\mathbf{x}} \, / \, \middle\| \mathbf{T} \dot{\mathbf{x}} \middle\| \right)$$

Extensions

• Separate μ_s for sticking and μ_k for sliding

Extensions

- Separate μ_s for sticking and μ_d for sliding
- Anisotropic models
 See also Erleben et al., "The Matchstick Model for Anisotropic
 Friction Cones" doi.org/10.1111/cgf.13885
- Adhesive contact

Summary

- Normal forces
 - Contact condition and normal force
 - Impact law for elastic contacts
- Tangential forces
 - Coulomb law for friction force magnitude
 - Max. dissipation principle for direction
- Complementarity as central modelling paradigm
- Linearization results in LCP

ETH zürich

Generalization to Rigid Bodies

- From point mass to rigid body simulation
 - Generalized coordinates: position and orientation
 - Constraints on contact points remain
 - Map contact points to generalized coordinates
 - Linearize (EoM, friction cone, rotations, ..) to obtain
 LCP

Soft Robots

X-walker

Example application for soft robot control.

FEM with Contacts

- Discretize soft body with finite elements
- Equations of motion

notion
$$\mathbf{M}\ddot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{v}) + \mathbf{N}\lambda \qquad \mathbf{x} = \begin{pmatrix} x_1 \\ y_1 \\ x_2 \\ \vdots \end{pmatrix}$$
aints

Contact constraints

$$0 \le \lambda \perp \mathbf{N}^\mathsf{T} \mathbf{x} \ge 0$$

• Note that $\mathbf{N} \in \mathbf{R}^{dn \times l}, \lambda \in \mathbf{R}^{l}$ $n \dots$ nr. of nodes $d \dots$ dimension (2 or 3) $l \dots$ nr. of (possible) contacts

FEM with Contacts

Soft body

Motion

$$\mathbf{M}\ddot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{v}) + \mathbf{N}\lambda + \mathbf{f}_t$$

Contact

$$0 \le \lambda \perp \mathbf{N}^\mathsf{T} \mathbf{x} \ge 0$$

• Static friction (sticking)

$$\mathbf{T}\dot{\mathbf{x}} = 0 \quad \wedge \quad \|\mathbf{f}_t\| \leq \mu \|\mathbf{N}\boldsymbol{\lambda}\|$$

• Dynamic friction (sliding)

$$\max(-\mathbf{f}_t^\mathsf{T} \mathbf{T} \dot{\mathbf{x}})$$
 s.t. $\|\mathbf{f}_t\| = \mu \|\mathbf{N} \lambda\|$

TIH zürich

Options for Solution

- Hard Constraints
 - Accurate solution
 - Easy for normal contact
 - Difficult for friction
- Soft constraints
 - Simple to implement and solve
 - (Small) penetrations
 - Drift for sticking contact

• Equations of motion

$$\mathbf{M}\ddot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{v}) + \mathbf{f}_n + \mathbf{f}_t$$

Contact forces per node

$$\mathbf{f}_{n} = -k_{n} \mathbf{n} \mathbf{n}^{\mathsf{T}} \mathbf{x} \qquad \text{if} \qquad \mathbf{n}^{\mathsf{T}} \mathbf{x} \leq 0$$

$$\mathbf{f}_{t} = -k_{t} \mathbf{T} \mathbf{v} \qquad \text{if} \qquad \|k_{t} \mathbf{T} \mathbf{v}\| < \mu \|\mathbf{f}_{n}\|$$

$$\mathbf{f}_{t} = -\mu \|\mathbf{f}_{n}\| \mathbf{T} \mathbf{v} / \|\mathbf{T} \mathbf{v}\| \qquad \text{otherwise}$$

FEM examples

Frictionless case

FEM Examples

Friction via soft constraints

FEM Examples

Examples

ADD: Analytically Differentiable Dynamics for Multi-Body Systems with Frictional Contact

MORITZ GEILINGER* and DAVID HAHN*, ETH Zürich JONAS ZEHNDER, Université de Montréal MORITZ BÄCHER, Disney Research BERNHARD THOMASZEWSKI, ETH Zürich and Université de Montréal STELIAN COROS, ETH Zürich

Fig. 1. Applications of our differentiable simulation framework (left-to-right): estimation of stiffness, damping and friction properties from real-world experiments, manipulation of multi-body systems, self-supervised learning of control policies for a throwing task, and physics-based motion planning for robotic creatures with compliant motors and soft feet.

M. Geilinger et al. "ADD: Analytically Differentiable Dynamics for Multi-Body Systems with Frictional Contact". ACM Transactions on Graphics (Proc. SIGGRAPH '20)

ADD: Analytically Differentiable Dynamics for Multi-Body Systems with Frictional Contact

M. Geilinger*1, D. Hahn*1, J. Zehnder*, M. Bächer*, B. Thomaszewski**, and S. Coros*

*Computational Robotics Lab, ETH Zürich *Disney Research Zürich #Université de Montreal ¹ Joint first authors

Summary

Contact constraints

$$0 \le \lambda \perp \mathbf{N}^\mathsf{T} \mathbf{x} \ge 0$$

Coulomb friction

$$\|\mathbf{f}_t\| \leq \mu \|\mathbf{f}_n\|$$

• Hard constraints \rightarrow LCP or QP (linearized)

• Soft constraints \rightarrow choose penalty factor

Further Reading

Hertz H., "Über die Berührung fester elastischer Körper", J. reine und angewandte Math. 92 (1881)

M. Anitescu & F. A. Potra, "Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems", Nonlinear Dynamics 14 (1997)

D. E. Stewart, "Rigid-Body Dynamics with Friction and Impact", SIAM Review 42, 1 (2000)

D. M. Kaufman et al., "Staggered Projections for Frictional Contact in Multibody Systems", ACM Trans. Graph. 27, 5 (2008)

V. L. Popov, "Contact Mechanics and Friction", Springer (2010)

D. Stewart, J.C. Trinkle, "An Implicit Time-Stepping Scheme for Rigid Body Dynamics with Coulomb Friction", Int. J. Num. Methods in Engineering, 1996.

D.E. Stewart and J.C. Trinkle. "An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and coulomb friction." International Journal of Numerical Methods in Engineering, 39:2673–2691, 1996.

M. Geilinger et al. "ADD: Analytically Differentiable Dynamics for Multi-Body Systems with Frictional Contact". ACM Transactions on Graphics (Proc. SIGGRAPH '20)