SUPERHOMEWORK #1

A particle *P* is launched from point *A* with the initial conditions shown.

- a) Assume the aerodynamic drag is negligible and develop a computer code in MATLAB that receives v_0 and θ and an arbitrary time t_p as inputs and generates the following outputs:
 - Range of the projectile *R*
 - Maximum height *H*
 - Velocity vector at any arbitrary time t_p (magnitude and angle)
 - Projectile position at any arbitrary time t_p
 - Velocity components in polar coordinates at any time t_p
 - Radius of curvature of the projectile path at any time t_p

Also

- Plot the path of motion $(y \ vs. \ x)$.
- Plot radius of curvature of the projectile path as a function of time.
- Plot velocity components in rectangular coordinates v_x and v_y as functions of time.
- Plot velocity components in polar coordinates v_r and v_θ as functions of time.
- b) Now, assume the particle is subjected to aerodynamic drag. The acceleration due to aerodynamic drag has the form $\mathbf{a}_D = -kv^2\mathbf{e}_t$, where k is a positive constant, v is the particle speed, and \mathbf{e}_t is the unit vector associated with the instantaneous velocity \mathbf{v} of the particle. The unit vector \mathbf{e}_t has the form $\mathbf{e}_t = \frac{v_x \mathbf{i} + v_y \mathbf{j}}{\sqrt{v_x^2 + v_y^2}}$, where v_x and v_y are the

instantaneous x- and y-components of particle velocity, respectively.

Develop another computer code for this case, capable of generating all items asked for in part (a) (constant k should be given as an input for this part).

c) Run your computer codes and present your results for the numerical values listed in the Table.

	v_0 (m/s)	θ (deg)	$t_p(s)$	$k \ (m^{-1})$
1	65	35	2	0
2	25	40	2.5	0.006
3	70	30	3	0.008