Traitement du langage approches séquentielles et génératives, partie II

GAUTIER DURANTIN GAUTIER.DURANTIN@E-I.COM

Embeddings classiques

Word2Vec (2012)

- Un réseau à deux couches permet de générer des représentations vectorielles
- On nomme ces représentations Word embeddings ou plongements lexicaux
- Deux variantes du Word2Vec existent :
 - CBOW
 - skipgram

Word2Vec - CBOW

• CBOW: Continuous Bag of Words

• On prédit un mot à partir de son contexte

je <u>mange une</u> <u>pomme</u> <u>en dessert</u>

Word2Vec - Skipgram

 On prédit un mot du contexte à partir du token central

je <u>mange une pomme en dessert</u>

Improving Word Representations via Global Context and Multiple Word Prototypes (2012)

- On réalise un clustering sur l'ensemble des contextes afin de maintenir une notion de contexte global
- Un nouveau modèle est entraîné avec une nouvelle représentation du token dans chaque cluster (i.e. si bank est proche du cluster 1, il sera tagué bank_1, etc)
- On obtient des prototypes multiples pour un token donné, permettant de maintenir des représentations différentes (gestion de la polysémie)

Center Word	Nearest Neighbors
bank_1	corporation, insurance, company
bank_2	shore, coast, direction
star_1	movie, film, radio
star_2	galaxy, planet, moon
cell_1	telephone, smart, phone
cell_2	pathology, molecular, physiology
left_1	close, leave, live
left_2	top, round, right

Table 2: Nearest neighbors of word embeddings learned by our model using the multi-prototype approach based on cosine similarity. The clustering is able to find the different meanings, usages, and parts of speech of the words.

Glove (2014)

• Plutôt que des clusters, on utilise les co-occurrences des tokens pour guider l'apprentissage

 Cela permet d'avoir une représentation proche du corpus, et de limiter la quantité de données nécessaire pour l'apprentissage

FastText (2016)

Utilisation des subwords units

 Cela permet d'avoir une représentation proche pour des mots contenant une faute d'orthographe, ou un mot n'existant pas dans le vocabulaire

Méthodes Seq2Seq

Seq2Seq disséqué

- Phases d'encodage : un RNN encode la représentation de la séquence d'entrée
- Phase de decodage : un RNN
 prédit la suite de la séquence
 de sortie en fonction du token
 courant. Ce RNN est initialisé à
 l'aide de l'encodeur.
- Problème: L'encodeur ne transmet qu'un seul vecteur de contexte au décodeur. Ce vecteur a la charge de représenter l'intégralité de la séquence

Modèles avec attention

Source : J Alammar

Utilisation des méthodes Seq2Seq

- > Traduction: input = phrase en langue A, target = phrase en langue B
- Question answering (QA): input = question, target = réponse
- Résumé automatique : input = texte long , target = texte court
- > Auto-encodage : input = texte , target = texte identique
 - Augmentation de données
 - Plongements lexicaux

Perspectives: architectures Transformer

Attention is all you need

Source: J Alammar

Attention is all you need

Attention is all you need – self attention

BERT (Bidirectional Encoders from Transformers)

- > Un module de Self Attention peut ne pas servir à tous les usages
 - > Je parle à mon oncle en pyjama
 - Mon oncle me parle en pyjama
- > Plusieurs modèles de self attention sont entraînés en parallèle : c'est le *multi-head attention*

> Embeddings utilisés par BERT

BERT

Au minimum : 12 couches dans le transformer, 768 dimensions d'embedding en sortie, 12 têtes d'attention = 124M de paramètres !