

Universidad Nacional Autónoma de México Facultad de Ciencias Cálculo I

Complemento examen 1

Elías López Rivera
elias.lopezr@ciencias.unam.mx

Ejercicio 1

Sea $x \in \mathbb{R}$, muestre que existe una única $n \in \mathbb{Z}$ tal que $n-1 \le x < n$

Demostración.

Tomemos $0 \le x$, por la propiedad arquimediana tenemos que existe $n \in \mathbb{N}$ tal que x < n, definimos el conjunto $U := \{n \in \mathbb{N} : x < n\}$, por la afirmación anterior $U \ne \emptyset$, aplicando el príncipio del buen orden se sigue que U tiene un elemento mínimo n_0 :

Si $n_0 = 1$ se sigue que $1 - 1 = 0 \le x < 1$.

Si $n_0 > 1$ se sigue que $n_0 - 1 > 0$, por tanto $n_0 - 1$ es un número natural de donde se obtiene que $n_0 - 1 \le x$, pues por construcción n_0 es el elemento mínimo de U, por tanto $n_0 - 1 \le x < n_0$, donde $n_0 \in \mathbb{Z}$

Ahora sea x < 0 se sigue que -x > 0, aplicando lo demostrado anteriomente existe n_0 tal que $n_0 - 1 \le -x < n_0$, de donde se sigue que $-n_0 + 1 - 1 = -n_0 < x \le -n_0 + 1$, donde $-n_0 + 1 \in \mathbb{Z}$

Por tanto para todo $x \in \mathbb{R}$, existe $n \in \mathbb{Z}$, tal que $n-1 \le x < n$.

Para probar la unicidad de n, suponemos la existencia de $n_1 \neq n$ tal que este cumple las mismas condiciones que n_0 , es decir dado $x \in \mathbb{R}$, $n-1 \leq x < n$, y $n_1-1 \leq x < n_1$, de la primera desigualdad se sigue que $x < n \leq x+1$, de la segunda se sigue que $x < n_1 \leq x+1 \implies -x > -n_1 \geq -x-1$ sumando ambas desigualdades se tiene que $-1 < n-n_1 < 1$, como el tanto n como n_1 son enteros $n-n_1$ es entero tambien, el unico entero que cumple estar entre -1,1 es el 0 por tanto $n-n_1=0 \implies n=n_1$, una contradicción ya que $n \neq n_1$ por hipótesis, se concluye que n_0 es unico.