

超级计算机的性能评测

吴迪

中山大学计算机学院 2023年春季

计算机性能

计算机性能指标

- 峰值性能 (Peak Performance)
 - 理论上超级计算机的硬件资源可以完成操作的最大速率(如每秒执行的操作总数)
 - 峰值性能由时钟频率和体系结构决定。
- · 持续性能 (Sustained Performance)
 - 超级计算机在运行应用程序时达到的实际或真实性能
 - 持续性能≤峰值性能
- 基准测试程序是用于评测持续性能的特定程序

性能退化 (SLOW)

- · 饥饿 (Starvation)
 - 缺少负载,或者负载不能均匀分布
- · 延迟 (Latency)
 - 访存延迟、数据传输延迟、流水线执行延迟
- · 开销 (Overhead)
 - 和计算无关的额外工作量(如任务调度、资源管理)
- ・等待 (Waiting)
 - 对共享资源的等待

性能提升

- · 提升高性能计算机的性能主要方法:
 - 硬件扩展
 - 并行算法
 - 性能监控
 - 工作与数据分发
 - 任务粒度控制
 - 其他

大纲

- ・基准评测介绍
- ・计算性能评测集
- ·IO性能评测集
- 网络性能评测集
- ・能耗评测集
- ・应用评测

基准评测介绍

· 性能基准评测就是从基准测试程序和测试 规范的角度评价和预测系统的性能。

・基准评测:

- 可以帮助机构确定所需采购的超级计算机
- 可以指导制造商高性能计算机系统的设计方向
- 是探索HPC 趋势的重要历史记录

常见基准评测分类

- 计算性能评测集: Linpack, HPCG, Graph500.
- IO性能评测集: MDTest, IOR, IO500.
- 网络性能评测集: IMB, OSU Benchmark.
- ・能耗评测集: Green 500.
- · 应用评测集: Miniapplication、戈登·贝尔奖.

计算性能评测集

Linpack

- ·用来度量系统的浮点计算能力。
- Linpack性能是指求解双精度线性代数方程 组时所达到的实际性能
 - 包括Linpack100, Linpack1000, HPL
 - Linpack100 和 Linpack1000 分别求解规模为 100
 阶和 1000 阶的线性代数方程组。
 - HPL是针对现代的并行计算机的评测基准。
- · 评测指标: 每秒浮点运算次数 (flops)

HPL

· HPL 具体为求一个 n 维的线性方程组的解:

$$\mathbf{A}\mathbf{x} = \mathbf{b}; \mathbf{A} \in \mathbb{R}^{n \times n}; \mathbf{x}, \mathbf{b} \in \mathbb{R}^n$$

· 当系数矩阵A完成了LU分解后,方程组Ax = b就可以化为L(Ux) = b:

$$Ax = L(Ux) = b$$

- ・ 等价于求解两个方程组 Ly = b 和 Ux = y
 - 通常来说A的逆是不容易求的。
 - 而将A分解为LU的形式,单位下三角矩阵L的逆和上三角矩阵U的逆是容易求的
 - 因此很容易可以求出y和x,运算量将非常小

HPL

• HPL 是国际超级计算系统 TOP500 的重要 依据。

2020年11月 TOP500榜单

排名	名称	国家	处理器核数	Rmax(TFlop/s)	Rpeak(TFlop/s)	功率 (干 瓦)
1	Fugaku	日本	7,630,848	442,010.0	537,212.0	29,899
2	Summit	美国	2,414,592	148,600.0	200,794.9	10,096
3	Sierra	美国	1,572,480	94,640.0	125,712.0	7,438
4	神威·太 湖之光	中国	10,649,600	93,014.6	125,435.9	15,371
5	Selence	美国	555,520	63,460.0	79,215.0	2646
6	天河-2A	中国	4,981,760	61,444.5	100,678.7	18,482

HPCG

- 实际应用中存在大量用偏微分方程建模,稀疏 计算和不规则的访存模式
 - 无法用Linpack衡量

- HPCG (high performance conjugate gradient,高性 能共轭梯度法):
 - 作为Linpack的补充,是求解稀疏矩阵方程组的一种 迭代算法

HPCG

- · HPCG模拟三维热力学运动问题,从而转 化为求解离散的三维偏微分方程模型问题
 - 使用局部对称高斯塞德尔预条件子的预处理 共轭梯度法
 - 主要数据为对称正定稀疏矩阵

HPCG

2020年11月 HPCG TOP500榜单

排名	TOP500 排名	名称	国家	处理器核 数	Rmax(TF lop/s)	HPCG(TFlo p/s)
1	1	Fugaku	日本	7,630,848	442,010. 0	16004.50
2	2	Summit	美国	2,414,592	148,600. 0	2925.75
3	3	Sierra	美国	1,572,480	94,640.0	1795.67
4	5	Selence	美国	555,520	63,460.0	1622.51
5	7	JUWELS	德国	449,280	44,120.0	1275.36
6	10	Damma m-7	沙特阿拉伯	672,520	22,400.0	881.40

Graph500

- · Graph500用来衡量计算机在处理数据密集型应用的 能力。
 - 利用<mark>图遍历</mark>中广度优先搜索(BFS)或单源点最短路径(SSSP)算法。
- Graph500评测流程:

· 评测指标: TEPS (每秒遍历的边数)

Graph500

Graph500 旨在提高对复杂数据的认识,它强调系统的通信子系统,而不再专注于双精度浮点数。

2020年11月 Graph500榜单

排名	名称	国家	处理器核数	节点数	规模	GTEPS
1	Fugaku	日本	7,630,848	158976	41	102956
2	神威·太湖之光	中国	10599680	40768	40	23755.7
3	TOKI-SORA	日本	276480	5760	36	10813
4	OLCF Summit	美国	86016	2048	40	7665.7
5	SuperMUC-NG	德国	196608	4096	39	6279.47
6	NERSC Cori-1024 haswell partition	美国	32768	1024	37	2562.16

IO性能评测集

MDTest

- · MDTest 用于评估文件系统的元数据性能的 基准评测。
 - 该程序通过在一组机器 (通常是 HPC 集群中的计算节点) 上并行创建、统计和删除目录树和文件树来评测 IO 性能。
- · 评测指标: 每秒操作数 (OP/秒)

IOR

- · IOR可用于使用多种IO 接口 (例如 POSIX, MPI-IO, HDF5 等) 和访问模式来测试并行文件系统的性能。
 - 通过接收参数,在客户端上产生特定的工作负载从而测试系统的 IO 性能并输出评测结果。
 - 评测结果中带宽是通过传输的数据量除以停止 时间戳与开始时间的差值得到。

10500

- · 由于测试方法、工具、参数甚至测试步骤的先后顺序不同,不同厂商发布的 IO 性能测试结果具有很大的差异性
 - IO500 最终分数是IOR分数和MDTest分数的几何平均值
 - IO500可以对高性能存储系统进行标准的测试和 比较

2020年11月 Graph500榜单

排名	名称	文件系统	得分	BW(GIB/S)	MD(KIOP/S)
1	Pengcheng Cloudbrain-II on Atlas 900	MadFS	7043.99	1475.75	33622.19
2	Wolf	DAOS	1792.98	371.67	8649.57
3	WekalO on AWS	WekalO Matrix	938.95	174.74	5045.33
4	Frontera	DAOS	763.80	78.31	7449.56
5	Presque	DAOS	537.31	108.19	2668.57
6	Tianhe-2E	Lustre	453.68	209.43	982.78

网络性能评测集

IMB

- ・用于评估HPC集群在不同消息粒度下节点间 点对点、全局通信的效率
 - 点对点通信: 评测测试的是两个进程间的消息 传递,包括了 Ping-Pong 和 Ping-Ping 测试
 - 全局通信: 评测测试的是全局负载下消息的收发效率,包括 Sendrecv 和 Exchange测试

OSU Benchmark

- ·程序生成不同规模的数据,并执行各种不同模式的MPI通信,测试各种通信模式的带宽和延迟
 - 由Ohio State University提供
 - 分为点对点通信和组通信两种形式。

能耗评测集

Green500

- · Green500提供高性能计算机的能耗排名。
 - 评测指标:使用 PPW (performance per watt)每瓦特性能作为其指标来对能源效率进行排名。

$$PPW = \frac{Performance}{Power}$$

Green500

图2-7超级计算机上单个单元的功率测量图

- GFLOPS $Per\ Watt = \frac{R_{max}(in\ GFLOPS)}{\bar{P}(R_{max})(in\ Watt)}$
- $\bar{P}(R_{max}) = N \cdot \bar{P}_{unit}(R_{max})$

Green500

2020年11月 Green500榜单

排名	名称	国家	处理器核 数	Rmax(Tflop/s)	功率 (干 瓦)	PPW (GFLOP S /Watt)
1	DGX SuperPOD	美国	19,840	2,356.0	90	26.195
2	MN-3	日本	1664	1,652.9	65	26.039
3	JUWELS	德国	449,280	44,120.0	1,76 4	25.008
4	Spartan2	法国	23,040	2,566.0	106	24.262
5	Selence	美国	555,520	63,460.0	2646	23.983
6	A64FX prototype	日本	36,864	1,999.5	118	16.876

应用评测集

Miniapplication

- 评估超级计算机对于动态应用程序的性能
 - 是真实应用程序的更小版本

- · Mantevo 集包含大量应用领域的开源
 - Miniapplication
 - 例如: MiniAMRda, MiniFE, MiniGhost, MiniMD…

戈登贝尔奖

- · 戈登贝尔奖 (ACM Gordon Bell Prize) : 超算界诺贝尔奖
 - 美国计算机协会设立于1987年,每年颁发
 - 是一种超级电脑应用软件设计奖,奖金象征性1万美元,由Gordon Bell提供
 - 通常会由当年前500排行名列前茅的超级电脑系统之上所跑的的应用软件获得

・ 奖项通常分为:

- 最高性能奖 (Peak Performance)
- 最高性价比奖(Price/Performance)
- 特别奖 (Special Achievement)

Gordon Bell

- ・ 戈登·贝尔 (Gordon Bell)
 - 1934年8月19日出生于美国密苏里州的柯克斯维尔
 - 1956年,获MIT电子工程学士学位。
 - 1957年,获MIT电子工程硕士学位。
 - 1960年-1983年,在DEC任副总裁,负责研发。
 - 1983年7月,合伙创办核心(Encore)计算机公司。
 - 1986年,全美科学基金会(NSF)计算机及信息科学和工程助理主任。
 - 1991年-1995年,担任微软公司顾问。
 - 1993年,获WPI名誉博士学位。
 - 1995年8月-至今,微软湾区研究中心高级研究员
- 作为DEC的技术灵魂,构思、设计和主持开发的超级计算机PDP-4,PDP-5,PDP-6,PDP-8,PDP-10及PDP-11

中国第一次获得戈登贝尔奖

• 2016年中国第一次获得戈登贝尔奖:

- 神威·太湖之光超级电脑上的"全球大气非静力云分辨模拟"应用 软件得奖,使用了超过一千万个核来完成一次气候的数值仿真
- 从2007年开始相关研究,到2011年冲奖团队正式成立,到2012年第一次尝试冲奖,再到2016年正式获奖

2020年戈登贝尔奖

- 2020年11月该奖项颁给了一支由中美科学家组成的研究团队,
 - 因"结合分子建模、机器学习和高性能计算相关方法,将具有从头算精度的分子动力学模拟的极限提升至1亿个原子规模"获奖
 - 获奖的8人团队中, 有7张中国面孔
 - 该团队将这一工作在美国超算Summit机器上全机运行,模拟分别实现了双精度91PFlops、混合单精度162PFlops和混合半精度275PFlops的峰值性能

小结

- · 基准评测是从基准测试程序和测试规范的角度 评价和预测系统的性能。
- · 高性能计算领域上的基准评测通常包括:
 - 计算性能的评测(Linpack、HPCG、Graph500)
 - IO 性能的评测(MDTest、 IOR 和 IO500)
 - 网络性能的评测(IMB和 OSU Benchmark)
 - 能耗方面的评测 (Green500)
 - 应用评测(Miniapplication 、戈登·贝尔奖)

参考文献

- Dongarra J J, Luszczek P, Petitet A. The linpack benchmark: past, present and future.
 Concurrency and Computation: practice and experience, 2003, 15(9):803–820.
- Dongarra J J, Moler C B, Bunch J R, et al. LINPACK users' guide. SIAM, 1979.
- Dongarra J, Heroux M A, Luszczek P. High-performance conjugate-gradient benchmark: A new metric for ranking high-performance computing systems. The International Journal of High Performance Computing Applications, 2016, 30(1):3– 10.
- Murphy R C, Wheeler K B, Barrett B W, et al. Introducing the graph 500. Cray Users Group (CUG),2010, 19:45–74.
- Kunkel J, Lofstead G F, Bent J. The virtual institute for i/o and the io-500. Technical report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2017.
- Bell G, Bailey D H, Dongarra J, et al. A look back on 30 years of the gordon bell prize. The International Journal of High Performance Computing Applications, 2017, 31(6):469–484.