Game Theory (STAT 155) Worksheet $\#3,\,02/08/2021$

- 1. For games with following payoff matrices find the value of the game and some safety strategies for both players:
 - (a) $\begin{pmatrix} 1 & -2 \\ -3 & 5 \end{pmatrix}$
 - (b) $\begin{pmatrix} 3 & 1 \\ 5 & 3 \end{pmatrix}$
 - (c) $\begin{pmatrix} 1 & 2 & 3 & 5 & 8 \\ 8 & 5 & 3 & 2 & 1 \end{pmatrix}$
 - $(d) \begin{pmatrix} 1 & 6 \\ 5 & 4 \\ 3 & 5 \end{pmatrix}$
 - (e) $\begin{pmatrix} 2 & 4 & 4 \\ 3 & 2 & 1 \\ 2 & 2 & 4 \end{pmatrix}$
 - $\begin{pmatrix}
 2 & 4 & 5 \\
 4 & 4 & 4 \\
 8 & 4 & 2
 \end{pmatrix}$
 - $\begin{array}{cccc}
 (g) & \begin{pmatrix} 11 & 3 & 9 \\ 12 & 5 & 5 \\ 13 & 7 & 1 \end{pmatrix}
 \end{array}$
 - (h) $\begin{pmatrix} -5 & 3 & -3 \\ 1 & 2 & 0 \\ 5 & -3 & -2 \end{pmatrix}$
- 2. Show that, if a zero-sum game $A = (a_{i,j})_{i,j}$ has two saddle points (i_1, j_1) and (i_2, j_2) , then $a_{i_1,j_1} = a_{i_2,j_2}$.