Lab 1: Points and vectors

3D Computer Graphics

Exercise 1

Given are two vectors $\mathbf{u}=(2,-1,1)$ and $\mathbf{v}=(1,3,-2)$ and two points P=(-2,-1,5) and Q=(1,-3,-4).

- a) Compute $2\mathbf{u} + 3\mathbf{v}$.
- b) Compute the length of **u**.
- c) Reverse u.
- d) Normalize v.
- e) Compute the dot product of **u** and **v**.
- f) Compute the cross product of \mathbf{u} and \mathbf{v} .
- g) Compute the vector \mathbf{w} from point P to point Q.

Definition

Two vectors \mathbf{u} and \mathbf{v} are **perpendicular** if the angle between them is 90° .

Definition

A unit vector is a vector with length = 1.

Exercise 2

- a) What is the dot product of two perpendicular vectors **a** and **b**?
- b) What is the length of the cross product of two perpendicular unit vectors **u** and **v**?

Exercise 3

Assume three points P = (-2, -1, 5), Q = (1, -3, -4) and R = (-1, -4, 3). There is a unique plane in 3D space which contains these three points.

a) Find a unit vector **u** which is perpendicular to this plane.

b) Can you find an easy way to determine whether a vector \mathbf{v} points to the same side of this plane as \mathbf{u} ?

Exercise 4

Given a vector $\mathbf{u} = (u_x, u_y, u_z)$ and a positive real number c. Show that the length of the vector obtained by the scalar multiplication of \mathbf{u} and \mathbf{c} is equal to the length of \mathbf{u} times c.

$$|c\mathbf{u}| = c|\mathbf{u}|$$

Exercise 5

Assume two vectors $\mathbf{u} = (1, 0, 0)$ and $\mathbf{v} = (0, 1, 0)$.

- a) Draw these two vectors in a 3D coordinate system.
- b) Use the property of the cross product to determine $\mathbf{u} \times \mathbf{v}$.
- c) Verify your answer to b) by explicitly calculating the cross product of ${\bf u}$ and ${\bf v}$.

Exercise 6

Is the following statement true or false?

For any two 3D vectors ${\bf u}$ and ${\bf v}$ holds the property that

$$\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{u}$$
.