Machine Learning

(機器學習)

Lecture 4: Theory of Generalization

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- Why Can Machines Learn?

Lecture 4: Theory of Generalization

- Effective Number of Lines
- Effective Number of Hypotheses
- Break Point
- Definition of VC Dimension
- VC Dimension of Perceptrons
- Physical Intuition of VC Dimension
- Interpreting VC Dimension

Is
$$M = \infty$$
 Feasible?

- input $x \in [-1, +1] \subset \mathbb{R}^1$, uniform iid
- target f(x) = sign(x), taking sign(0) = +1
- hypothesis set: h_a(x) = sign(x − a) for a ∈ [-1, 1] infintely many a
- algorithm: $g = h_{a^*}$ with $a^* = \min_{y_n = +1} x_n$, assuming at least one $y_n = 1$
- for $\epsilon < 0.5$, $E_{\text{out}}(g) > \epsilon$ if every $y_n = +1$ satisfies $x_n > 2\epsilon$

$$\mathbb{P}\left[\left|\underbrace{E_{\mathsf{in}}(g)}_{0} - E_{\mathsf{out}}(g)\right| > \epsilon\right] \leq \left(\frac{2 - 2\epsilon}{2}\right)^{N}$$

BAD data can happen rarely even for infinitely many hypotheses

Where Did M Come From?

$$\mathbb{P}\left[\left| \mathsf{E}_{\mathsf{in}}(g) - \mathsf{E}_{\mathsf{out}}(g)
ight| > \epsilon
ight] \leq 2 \cdot \c \mathsf{M} \cdot \exp\left(-2\epsilon^2 \mathsf{N}
ight)$$

- $\mathcal{B}AD$ events \mathcal{B}_m : $|E_{in}(h_m) E_{out}(h_m)| > \epsilon$
- to give \mathcal{A} freedom of choice: bound $\mathbb{P}[\mathcal{B}_1 \text{ or } \mathcal{B}_2 \text{ or } \dots \mathcal{B}_M]$
- worst case: all \mathcal{B}_m non-overlapping

$$\mathbb{P}[\mathcal{B}_1 \text{ or } \mathcal{B}_2 \text{ or } \dots \mathcal{B}_M] \leq \mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \dots + \mathbb{P}[\mathcal{B}_M]$$
 union bound

where did union bound fail to consider for $M = \infty$?

Where Did Union Bound Fail? union bound $\mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \ldots + \mathbb{P}[\mathcal{B}_M]$

- \mathcal{B} AD events \mathcal{B}_m : $|E_{\text{in}}(h_m) E_{\text{out}}(h_m)| > \epsilon$ overlapping for similar hypotheses $h_1 \approx h_2$ (e.g. if $a_1 \approx a_2$ in previous example)
- why? (1) $E_{\text{out}}(h_1) \approx E_{\text{out}}(h_2)$ 2 for most \mathcal{D} , $E_{\text{in}}(h_1) = E_{\text{in}}(h_2)$
- union bound over-estimating

to account for overlap, can we group similar hypotheses by kind?

How Many Lines Are There? (1/2)

$$\mathcal{H} = \left\{ \mathsf{all\ lines\ in}\ \mathbb{R}^2
ight\}$$

- how many lines? ∞
- how many kinds of lines if viewed from one input vector x₁?

2 kinds:
$$h_1$$
-like(\mathbf{x}_1) = \circ or h_2 -like(\mathbf{x}_1) = \times

How Many Lines Are There? (1/2)

$$\mathcal{H} = \left\{ \mathsf{all\ lines\ in}\ \mathbb{R}^2
ight\}$$

- how many lines? ∞
- how many kinds of lines if viewed from one input vector x₁?

2 kinds:
$$h_1$$
-like(\mathbf{x}_1) = \circ or h_2 -like(\mathbf{x}_1) = \times

Effective Number of Lines

How Many Lines Are There? (2/2)

$$\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$$

how many kinds of lines if viewed from two inputs x_1, x_2 ?

one input: 2; two inputs: 4; three inputs?

How Many Lines Are There? (2/2)

$$\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$$

how many kinds of lines if viewed from two inputs x_1, x_2 ?

one input: 2; two inputs: 4; three inputs?

How Many Kinds of Lines for Three Inputs? (1/2)

$$\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$$

8:

always 8 for three inputs?

0

How Many Kinds of Lines for Three Inputs? (2/2)

 $\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$

'fewer than 8' when degenerate (e.g. collinear or same inputs)

How Many Kinds of Lines for Four Inputs?

$$\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$$

Effective Number of Lines

maximum kinds of lines with respect to N inputs $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N$ \iff effective number of lines

- must be < 2^N (why?)
- finite 'grouping' of infinitely-many lines $\in \mathcal{H}$
- · wish:

$$\mathbb{P}\left[\left| \mathsf{E}_{\mathsf{in}}(g) - \mathsf{E}_{\mathsf{out}}(g) \right| > \epsilon
ight] \ \leq \ 2 \cdot \mathsf{effective}(N) \cdot \exp\left(-2\epsilon^2 N
ight)$$

lines in 2D

N	effective(N)
1	2
2	4
3	8
4	$14 < 2^N$

if \bigcirc effective(N) can replace M and

(2) effective(N) $\ll 2^N$

learning possible with infinite lines :-)

Questions?

Dichotomies: Mini-hypotheses

$$\mathcal{H} = \{\text{hypothesis } h \colon \mathcal{X} \to \{\times, \circ\}\}$$

call

$$h(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) = (h(\mathbf{x}_1), h(\mathbf{x}_2), \dots, h(\mathbf{x}_N)) \in \{\times, \circ\}^N$$

a **dichotomy**: hypothesis 'limited' to the eyes of $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$

\$\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N)\$:
 all dichotomies 'implemented' by \$\mathcal{H}\$ on \$\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N\$

	hypotheses ${\cal H}$	dichotomies $\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)$
e.g.	all lines in \mathbb{R}^2	{0000,000×,00××,}
size	possibly infinite	upper bounded by 2 ^N

$$|\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)|$$
: candidate for **replacing** M

Growth Function

- $|\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)|$: depend on inputs $(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)$
- growth function: remove dependence by taking max of all possible (x₁, x₂,...,x_N)

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)|$$

finite, upper-bounded by 2^N

lines in 2D		
Ν	$m_{\mathcal{H}}(N)$	
1	2	
2	4	
3	$\max(\ldots,6,8) \\ = 8$	
4	$14 < 2^N$	

how to 'calculate' the growth function?

Growth Function for Positive Rays

$$h(x) = -1$$

$$x_1 \quad x_2 \quad x_3 \quad \dots$$

$$h(x) = +1$$

$$x_1 \quad x_2 \quad x_3 \quad \dots$$

- $\mathcal{X} = \mathbb{R}$ (one dimensional)
- \mathcal{H} contains h, where each h(x) = sign(x a) for threshold a
- 'positive half' of 1D perceptrons

one dichotomy for $a \in \text{each spot } (x_n, x_{n+1})$:

$$m_{\mathcal{H}}(N) = N + 1$$

 $(N+1) \ll 2^N$ when N large!

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
0	0	0	0
×	0	0	0
×	×	0	0
×	×	×	0
×	×	×	×

Growth Function for Positive Intervals

- $\mathcal{X} = \mathbb{R}$ (one dimensional)
- \mathcal{H} contains h, where each h(x) = +1 iff $x \in [\ell, r), -1$ otherwise

one dichotomy for each 'interval kind'

$$m_{\mathcal{H}}(N) = \underbrace{\begin{pmatrix} N+1\\2 \end{pmatrix}}_{\text{interval ends in } N+1 \text{ spots}} + \underbrace{1}_{\text{all } \times}_{\text{all } \times}$$

$$= \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

$$(\frac{1}{2}N^2 + \frac{1}{2}N + 1) \ll 2^N$$
 when N large!

<i>X</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄
0	×	×	×
0	0	×	×
0	0	0	×
0	0	0	0
×	0	×	×
×	0	0	×
×	0	0	0
×	X	0	×
X	×	0	0
×	×	×	0
×	×	×	×

Growth Function for Convex Sets (1/2)

convex region in blue

non-convex region

- $\mathcal{X} = \mathbb{R}^2$ (two dimensional)
- \mathcal{H} contains h, where $h(\mathbf{x}) = +1$ iff \mathbf{x} in a convex region, -1 otherwise

what is $m_{\mathcal{H}}(N)$?

Growth Function for Convex Sets (2/2)

- one possible set of N inputs:
 x₁, x₂,..., x_N on a big circle
- every dichotomy can be implemented by H using a convex region slightly extended from contour of positive inputs

$$m_{\mathcal{H}}(N) = 2^N$$

• call those N inputs 'shattered' by H

$$m_{\mathcal{H}}(N) = 2^N \Longleftrightarrow$$
 exists N inputs that can be shattered

The Four Growth Functions

positive rays:

$$m_{\mathcal{H}}(N) = N + 1$$

 $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$

positive intervals:

2D perceptrons:

$$m_{\mathcal{H}}(N) = \frac{1}{2}N + \frac{1}{2}N + 1$$

$$m_{\mathcal{H}}(N) = 2^{N}$$

convex sets:

 $m_{\mathcal{H}}(N) < 2^N$ in some cases

what if $m_{\mathcal{H}}(N)$ replaces M?

$$\mathbb{P}\left[\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon\right] \stackrel{?}{\leq} 2 \cdot m_{\mathcal{H}}(N) \cdot \exp\left(-2\epsilon^2 N\right)$$

polynomial: good; exponential: bad

for 2D or general perceptrons, $m_{\mathcal{H}}(N)$ polynomial?

Break Point of \mathcal{H}

what do we know about 2D perceptrons now?

three inputs: 'exists' shatter; four inputs, 'for all' no shatter

if no k inputs can be shattered by \mathcal{H} , call k a **break point** for \mathcal{H}

- $m_{\mathcal{H}}(k) < 2^k$
- k + 1, k + 2, k + 3, ... also break points!
- will study minimum break point k

2D perceptrons: minimum break point at 4

The Four Minimum Break Points

- positive rays: $m_{\mathcal{H}}(N) = N + 1 = O(N)$ minimum break point at 2
- positive intervals: $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1 = O(N^2)$ minimum break point at 3
- convex sets: $m_{\mathcal{H}}(\textit{N}) = 2^{\textit{N}}$ no break point
- 2D perceptrons: $m_{\mathcal{H}}(N) < 2^N$ in some cases minimum break point at 4

theorem from combinatorics (not going to prove in class):

- no break point: $m_{\mathcal{H}}(N) = 2^N$ (sure!)
- minimum break point k: $m_{\mathcal{H}}(N) = O(N^{k-1})$

Questions?

BAD Bound for General H.

want:

$$\mathbb{P}\Big[\exists h \in \mathcal{H} \text{ s.t. } |E_{\text{in}}(h) - E_{\text{out}}(h)| > \epsilon\Big] \leq 2 \quad m_{\mathcal{H}}(N) \cdot \exp\left(-2 - \epsilon^2 N\right)$$

actually, when N large enough,

$$\mathbb{P}\Big[\exists h \in \mathcal{H} \text{ s.t. } |E_{\text{in}}(h) - E_{\text{out}}(h)| > \epsilon\Big] \leq 2 \cdot 2m_{\mathcal{H}}(2N) \cdot \exp\left(-2 \cdot \frac{1}{16}\epsilon^2 N\right)$$

called Vapnik-Chervonenkis (VC) Bound

Interpretation of Vapnik-Chervonenkis (VC) Bound

For any $g = \mathcal{A}(\mathcal{D}) \in \mathcal{H}$ and 'statistical' large \mathcal{D} , for $N \geq 2$, $k \geq 3$

$$\mathbb{P}_{\mathcal{D}}\Big[\big|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\big| > \epsilon\Big]$$

$$\leq \mathbb{P}_{\mathcal{D}}\Big[\exists h \in \mathcal{H} \text{ s.t. } \big|E_{\mathsf{in}}(h) - E_{\mathsf{out}}(h)\big| > \epsilon\Big]$$

$$\leq 4m_{\mathcal{H}}(2N) \exp\left(-\frac{1}{8}\epsilon^{2}N\right)$$
if $k \text{ exists}$

$$\leq 4(2N)^{k-1} \exp\left(-\frac{1}{8}\epsilon^{2}N\right)$$

```
if \bigcirc m_{\mathcal{H}}(N) breaks at k (good \mathcal{H})

\bigcirc N large enough (good \mathcal{D})

\Longrightarrow probably generalized 'E_{\text{out}} \approx E_{\text{in}}', and

if \bigcirc A picks a g with small E_{\text{in}} (good A)

\Longrightarrow probably learned! (:-) good luck)
```

VC Dimension

the formal name of maximum non-break point d_{VC} = (minimum break point k - 1)

Definition

VC dimension of \mathcal{H} , denoted $d_{VC}(\mathcal{H})$ is

largest N for which $m_{\mathcal{H}}(N) = 2^N$ (the most inputs \mathcal{H} that can shatter)

$$N \le d_{VC} \implies \mathcal{H}$$
 can shatter some N inputs $k > d_{VC} \implies k$ is a break point for \mathcal{H}

if
$$N \geq 2$$
, $d_{VC} \geq 2$, $m_{\mathcal{H}}(N) \leq N^{d_{VC}}$

The Four VC Dimensions

positive rays:

$$d_{VC}=1$$

• positive intervals:

$$d_{VC}=2$$

convex sets:

$$d_{VC} = \infty$$

$$m_{\mathcal{H}}(N) = \tfrac{1}{2}N^2 + \tfrac{1}{2}N + 1$$

$$m_{\mathcal{H}}(N)=2^N$$

$$d_{VC}=3$$

$$m_{\mathcal{H}}(N) \leq N^3$$
 for $N \geq 2$

good: finite d_{VC}

VC Dimension and Learning

finite $d_{VC} \Longrightarrow g$ 'will' generalize ($E_{out}(g) \approx E_{in}(g)$)

- ullet regardless of learning algorithm ${\cal A}$
- regardless of input distribution P
- regardless of target function f

From Noiseless VC to Noisy VC

real-world learning problems are often noisy

age	23 years
gender	female
annual salary	NTD 1,000,000
year in residence	1 year
year in job	0.5 year
current debt	200,000
"'O (/	4) (4))

credit? $\{no(-1), yes(+1)\}$

but more!

- noise in x (covered by P(x)): inaccurate customer information?
- noise in y (covered by P(y|x)): good customer, 'mislabeled' as bad?

does VC bound work under noise?

Probabilistic Marbles

one key of VC bound: marbles!

'deterministic' marbles

- marble $\mathbf{x} \sim P(\mathbf{x})$
- deterministic color

 [f(x) ≠ h(x)]

'probabilistic' (noisy) marbles

- marble **x** ∼ *P*(**x**)
- probabilistic color $[y \neq h(\mathbf{x})]$ with $y \sim P(y|\mathbf{x})$

same nature: can estimate $\mathbb{P}[\text{orange}]$ if $\overset{i.i.d.}{\sim}$

VC holds for
$$\underbrace{\mathbf{x} \overset{i.i.d.}{\sim} P(\mathbf{x}), y \overset{i.i.d.}{\sim} P(y|\mathbf{x})}_{(\mathbf{x},y)^{i.i.d.}P(\mathbf{x},y)}$$

The New Learning Flow

Questions?

2D PLA Revisited

general PLA for **x** with more than 2 features?

VC Dimension of Perceptrons

- 1D perceptron (pos/neg rays): d_{VC} = 2
- 2D perceptrons: d_{VC} = 3
 - $d_{\rm VC} > 3$:
 - $d_{VC} \leq 3$: $\times \circ \times$
- *d*-D perceptrons: $d_{VC} \stackrel{?}{=} d + 1$

two steps:

- $d_{VC} > d + 1$
- $d_{VC} < d + 1$

Extra Fun Time

What statement below shows that $d_{VC} > d + 1$?

- 1 There are some d+1 inputs we can shatter.
- ② We can shatter any set of d + 1 inputs.
- 3 There are some d + 2 inputs we cannot shatter.
- 4 We cannot shatter any set of d + 2 inputs.

Reference Answer: 1

 d_{VC} is the maximum that $m_{\mathcal{H}}(N)=2^N$, and $m_{\mathcal{H}}(N)$ is the most number of dichotomies of N inputs. So if we can find 2^{d+1} dichotomies on some d+1 inputs, $m_{\mathcal{H}}(d+1)=2^{d+1}$ and hence $d_{VC}\geq d+1$.

$$d_{\rm VC} \geq d+1$$

There are some d + 1 inputs we can shatter.

some 'trivial' inputs:

$$X = \begin{bmatrix} & -\mathbf{x}_{1}^{T} - \\ & -\mathbf{x}_{2}^{T} - \\ & -\mathbf{x}_{3}^{T} - \\ & \vdots \\ & -\mathbf{x}_{d+1}^{T} - \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & & 0 \\ \vdots & \vdots & & \ddots & 0 \\ 1 & 0 & \dots & 0 & 1 \end{bmatrix}$$

• visually in 2D:

note: X invertible!

Can We Shatter X?

$$X = \begin{bmatrix} & -\mathbf{x}_{1}^{T} - \\ & -\mathbf{x}_{2}^{T} - \\ & \vdots \\ & -\mathbf{x}_{d+1}^{T} - \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & & \ddots & 0 \\ 1 & 0 & \dots & 0 & 1 \end{bmatrix} \text{ invertible}$$

to shatter ...

for any
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_{d+1} \end{bmatrix}$$
, find \mathbf{w} such that

$$sign(X\mathbf{w}) = \mathbf{y} \iff (X\mathbf{w}) = \mathbf{y} \stackrel{X \text{ invertible!}}{\iff} \mathbf{w} = X^{-1}\mathbf{y}$$

'special' X can be shattered $\Longrightarrow d_{VC} \ge d+1$

Extra Fun Time

What statement below shows that $d_{VC} < d + 1$?

- 1 There are some d + 1 inputs we can shatter.
- ② We can shatter any set of d + 1 inputs.
- 3 There are some d + 2 inputs we cannot shatter.
- 4 We cannot shatter any set of d + 2 inputs.

Reference Answer: (4)

 d_{VC} is the maximum that $m_{\mathcal{H}}(N)=2^N$, and $m_{\mathcal{H}}(N)$ is the most number of dichotomies of N inputs. So if we cannot find 2^{d+2} dichotomies on $any\ d+2$ inputs (i.e. break point), $m_{\mathcal{H}}(d+2) < 2^{d+2}$ and hence $d_{VC} < d+2$. That is, $d_{VC} \le d+1$.

VC Dimension of Perceptrons

$$d_{\rm VC} \le d + 1 \ (1/2)$$

A 2D Special Case

? cannot be x

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_4 = \underbrace{\mathbf{w}^{\mathsf{T}}\mathbf{x}_2}_{0} + \underbrace{\mathbf{w}^{\mathsf{T}}\mathbf{x}_3}_{0} - \underbrace{\mathbf{w}^{\mathsf{T}}\mathbf{x}_1}_{0} > 0$$

linear dependence restricts dichotomy

$$d_{VC} \le d + 1 \ (2/2)$$

d-D General Case

$$\mathbf{X} = \begin{bmatrix} & -\mathbf{x}_1^T - \\ & -\mathbf{x}_2^T - \\ & \vdots \\ & -\mathbf{x}_{d+1}^T - \\ & -\mathbf{x}_{d+2}^T - \end{bmatrix}$$

more rows than columns:

linear dependence (some a_i non-zero) $\mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1}$

can you generate (sign(a₁), sign(a₂),..., sign(a_{d+1}), ×)? if so, what w?

$$\mathbf{w}^{T}\mathbf{x}_{d+2} = \mathbf{a}_{1}\underbrace{\mathbf{w}^{T}\mathbf{x}_{1}}_{\circ} + \mathbf{a}_{2}\underbrace{\mathbf{w}^{T}\mathbf{x}_{2}}_{\times} + \dots + \mathbf{a}_{d+1}\underbrace{\mathbf{w}^{T}\mathbf{x}_{d+1}}_{\times}$$

$$> 0(\text{contradition!})$$

'general' X no-shatter $\implies d_{VC} < d + 1$

Questions?

Physical Intuition of VC Dimension

Degrees of Freedom

(modified from the work of Hugues Vermeiren on http://www.texample.net)

- hypothesis parameters $\mathbf{w} = (w_0, w_1, \dots, w_d)$: creates degrees of freedom
- hypothesis quantity $M = |\mathcal{H}|$: 'analog' degrees of freedom
- hypothesis 'power' d_{VC} = d + 1:
 effective 'binary' degrees of freedom

 $d_{VC}(\mathcal{H})$: powerfulness of \mathcal{H}

Two Old Friends

Positive Rays ($d_{VC} = 1$)

$$h(x) = -1 \qquad \qquad a \qquad h(x) = +1$$

free parameters: a

Positive Intervals ($d_{VC} = 2$)

$$h(x) = -1$$
 $h(x) = +1$ $h(x) = -1$

free parameters: ℓ , r

practical rule of thumb:

 $d_{VC} \approx \#$ free parameters (but not always, e.g., mystery about deep learning models)

M and d_{VC}

copied from Lecture 3:-)

- 1 can we make sure that $E_{out}(g)$ is close enough to $E_{in}(g)$?
- 2 can we make $E_{in}(g)$ small enough?

small M

- 1 Yes!, $\mathbb{P}[BAD] \leq 2 \cdot M \cdot \exp(\ldots)$
- 2 No!, too few choices

large M

- 1 No!, $\mathbb{P}[\mathbf{BAD}] \leq 2 \cdot \frac{M}{M} \cdot \exp(\ldots)$
- 2 Yes!, many choices

small d_{vc}

- 1 Yes!, $\mathbb{P}[BAD] \le 4 \cdot (2N)^{d_{VC}} \cdot \exp(...)$
- 2 No!, too limited power

large d_{vc}

- 1 No!, $\mathbb{P}[BAD] \le 4 \cdot (2N)^{d_{VC}} \cdot \exp(...)$
- Yes!, lots of power

using the right d_{VC} (or \mathcal{H}) is important

Questions?

VC Bound Rephrase: Penalty for Model Complexity

For any $g = \mathcal{A}(\mathcal{D}) \in \mathcal{H}$ and 'statistical' large \mathcal{D} , for $N \geq 2$, $d_{VC} \geq 2$

$$\mathbb{P}_{\mathcal{D}}\left[\left|\underline{E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)}\right| > \epsilon\right] \leq \underbrace{4(2N)^{d_{\mathsf{vc}}} \exp\left(-\frac{1}{8}\epsilon^{2}N\right)}_{\delta}$$

Rephrase

$$\begin{aligned} &\ldots, \text{ with probability} \geq 1 - \delta, \, \textbf{GOOD:} \, \left| E_{\text{in}}(\textbf{\textit{g}}) - E_{\text{out}}(\textbf{\textit{g}}) \right| \leq \epsilon \\ &\text{set} \qquad \delta \qquad = \qquad 4(2N)^{d_{\text{VC}}} \exp\left(-\frac{1}{8}\epsilon^2N\right) \\ &\frac{\delta}{4(2N)^{d_{\text{VC}}}} \qquad = \qquad \exp\left(-\frac{1}{8}\epsilon^2N\right) \\ &\ln\left(\frac{4(2N)^{d_{\text{VC}}}}{\delta}\right) \qquad = \qquad \frac{1}{8}\epsilon^2N \\ &\sqrt{\frac{8}{N}}\ln\left(\frac{4(2N)^{d_{\text{VC}}}}{\delta}\right) \qquad = \qquad \epsilon \end{aligned}$$

VC Bound Rephrase: Penalty for Model Complexity

For any $g = \mathcal{A}(\mathcal{D}) \in \mathcal{H}$ and 'statistical' large \mathcal{D} , for $N \geq 2$, $d_{VC} \geq 2$

$$\mathbb{P}_{\mathcal{D}}\left[\left|\underline{E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)}\right| > \epsilon\right] \leq \underbrace{4(2N)^{d_{\mathsf{VC}}} \exp\left(-\frac{1}{8}\epsilon^2N\right)}_{\delta}$$

Rephrase

..., with probability $\geq 1 - \delta$, **GOOD!**

gen. error
$$|E_{in}(g) - E_{out}(g)|$$

$$\leq \sqrt{\frac{8}{N} \ln \left(\frac{4(2N)^{d/c}}{\delta} \right)}$$

$$E_{\mathsf{in}}(oldsymbol{g}) - \sqrt{rac{8}{N} \ln \left(rac{4(2N)^{\mathsf{d}_{\mathsf{VC}}}}{\delta}
ight)} \ \le \ oldsymbol{E}_{\mathsf{out}}(oldsymbol{g}) \ \le \ oldsymbol{E}_{\mathsf{in}}(oldsymbol{g}) + \sqrt{rac{8}{N} \ln \left(rac{4(2N)^{\mathsf{d}_{\mathsf{VC}}}}{\delta}
ight)}$$

$$\underbrace{\sqrt{\dots}}_{\Omega(N,\mathcal{H},\delta)}$$
: penalty for model complexity

THE VC Message

with a high probability,

$$E_{\mathsf{out}}(g) \leq E_{\mathsf{in}}(g) + \underbrace{\sqrt{rac{8}{N} \ln \left(rac{4(2N)^{d_{\mathsf{VC}}}}{\delta}
ight)}}_{\Omega(N,\mathcal{H},\delta)}$$

- d_{VC} ↑: E_{in} ↓ but Ω ↑
- d_{VC} ↓: Ω ↓ but E_{in} ↑
- best d_{VC}^* in the middle

powerful \mathcal{H} not always good!

VC Bound Rephrase: Sample Complexity

For any $g = \mathcal{A}(\mathcal{D}) \in \mathcal{H}$ and 'statistical' large \mathcal{D} , for $N \geq 2$, $d_{VC} \geq 2$

$$\mathbb{P}_{\mathcal{D}}\left[\underbrace{\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon}_{\mathsf{BAD}}\right] \qquad \leq \qquad \underbrace{4(2N)^{d_{\mathsf{VC}}} \exp\left(-\frac{1}{8}\epsilon^2N\right)}_{\delta}$$

given specs
$$\epsilon = 0.1$$
, $\delta = 0.1$, $d_{\text{VC}} = 3$, want $4(2N)^{d_{\text{VC}}} \exp\left(-\frac{1}{8}\epsilon^2N\right) \leq \delta$ $\frac{N \quad \text{bound}}{100 \quad 2.82 \times 10^7}$ $1,000 \quad 9.17 \times 10^9 \quad \text{sample complexity:}$ $10,000 \quad 1.19 \times 10^8 \quad \text{need } N \approx 10,000 d_{\text{VC}} \text{ in theory}$ $100,000 \quad 1.65 \times 10^{-38}$ $29,300 \quad 9.99 \times 10^{-2}$

practical rule of thumb:

 $N \approx 10 d_{\rm VC}$ often enough!

Looseness of VC Bound

$$\mathbb{P}_{\mathcal{D}} \Big[ig| E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g) ig| > \epsilon \Big] \qquad \leq \qquad 4 (2N)^{d_{\mathsf{VC}}} \exp \left(- rac{1}{8} \epsilon^2 \mathbf{N} \right)$$

theory: $N \approx 10,000 d_{VC}$; practice: $N \approx 10 d_{VC}$

Why?

- Hoeffding for unknown E_{out}
- $m_{\mathcal{H}}(N)$ instead of $|\mathcal{H}(\mathbf{x}_1,\ldots,\mathbf{x}_N)|$
- $N^{d_{VC}}$ instead of $m_{\mathcal{H}}(N)$
- union bound on worst cases

any distribution, any target

'any' data

'any' \mathcal{H} of same d_{VC}

any choice made by A

-but hardly better, and 'similarly loose for all models'

philosophical message of VC bound important for improving ML

Questions?

Summary

When Can Machines Learn?

Lecture 3: Feasibility of Learning

Why Can Machines Learn?

Lecture 4: Theory of Generalization

- Effective Number of Lines
- Effective Number of Hypotheses
- Break Point
- Definition of VC Dimension
- VC Dimension of Perceptrons
- Physical Intuition of VC Dimension
- Interpreting VC Dimension
- next: beyond VC theory, please :-)