Corrigé exercice 29:

- 1. Deux arêtes successives d'un cube sont perpendiculaires. On en déduit que $(AB)\perp(AD)$, et donc que $\overrightarrow{AB}\cdot\overrightarrow{AD}=0$.
- 2. Le quadrilatère EFGH est un carré. Ses diagonales sont donc perpendiculaires, ce qui donne $\overrightarrow{EG} \cdot \overrightarrow{FH} = 0$.
- 3. Les droites (AE) et (FA) sont coplanaires et non perpendiculaires. Le produit scalaire considéré n'est donc pas nul.
- 4. Le quadrilatère CGEA est un rectangle non carré. Ses diagonales ne sont donc pas perpendiculaires et le produit scalaire considéré n'est donc pas nul.

Corrigé exercice 28:

- 1. $\overrightarrow{AD} \cdot \overrightarrow{AL} = \overrightarrow{AD}^2$ par projection orthogonale du point L sur la droite (AD). Donc $\overrightarrow{AD} \cdot \overrightarrow{AL} = 16$. De plus, $\overrightarrow{AD} \cdot \overrightarrow{AL} = \left\| \overrightarrow{AD} \right\| \left\| \overrightarrow{AL} \right\| \cos{(\alpha)} = 4 \times 2\sqrt{5} \times \cos{(\alpha)} = 16$ où α désigne l'angle formé par les vecteurs considérés. On obtient $\alpha \approx 26,56$ degrés.
- 2. On remarque que $\overrightarrow{AI} \cdot \overrightarrow{JH} = -\overrightarrow{JE} \cdot \overrightarrow{JH}$. Puis, par projection orthogonale de H sur (JE), on obtient $\overrightarrow{AI} \cdot \overrightarrow{JH} = -\overrightarrow{JE}^2 = -2^2 = -4$. On obtient $\alpha \approx 116,56$ degrés.
- 3. On a $\overrightarrow{CA} \cdot \overrightarrow{CF} = \left(\overrightarrow{CB} + \overrightarrow{BA}\right) \cdot (\overrightarrow{CB} + \overrightarrow{BF})$. Comme $(CB) \perp (BF)$, $(BA) \perp (CB)$ et $(BA) \perp (BF)$ on a donc $\overrightarrow{CA} \cdot \overrightarrow{CF} = CB^2 = 16$. On obtient $\alpha = 60$ degrés.

Remarque : Ce résultat était prévisible car ACF est un triangle équilatéral.

4. $\overrightarrow{EK} \cdot \overrightarrow{EL} = EK^2$ par projection orthogonale de L sur (EK). Dans le triangle EHK rectangle en H, on a, d'après le théorème de Pythagore, $EK^2 = 2^2 + 4^2$, donc $\overrightarrow{EK} \cdot \overrightarrow{EL} = 20$. $\overrightarrow{EK} \cdot \overrightarrow{EL} = EK \times EL \times \cos(\alpha) = 20$.

Dans le triangle ELK rectangle en K. $EL^2 = EK^2 + KL^2 = 20 + 16 = 36$

$$\overrightarrow{EK} \cdot \overrightarrow{EL} = \sqrt{20} \times 6 \times \cos(\alpha) = 20 \Leftrightarrow \cos(\alpha) = \frac{20}{6\sqrt{20}}$$

On obtient $\alpha \approx 41.81$ degrés.

Corrigé exercice 27:

Le triangle AIB est rectangle en I car la médiane d'un triangle équilatéral est aussi une hauteur. D'après le théorème de Pythagore, $AB^2 = AI^2 + IB^2$ donc $AI^2 = a^2 - \left(\frac{1}{2}a\right)^2$, d'où $AI = \frac{\sqrt{3}}{2}a$. Comme $\overrightarrow{AI} \cdot \overrightarrow{AB} = \frac{1}{2}\left[AI^2 + AB^2 - BI^2\right]$, on a alors $\overrightarrow{AI} \cdot \overrightarrow{AB} = \frac{1}{2}\left[\frac{3}{4}a^2 + a^2 - \frac{1}{4}a^2\right]$ et donc $\overrightarrow{AI} \cdot \overrightarrow{AB} = \frac{3}{4}a^2$. On obtient le même résultat en utilisant le projeté orthogonal.