IIT Bombay

Makerspace (MS101)

2024 (Spring)

EE-Lecture-10

Transistors as Switches

Kushal Tuckley, Joseph John, PC Pandey, Dinesh K Sharma D Chakraborty, K Chatterjee, BG Fernandes, NS Shiradkar

Transistors: Introduction

A transistor is a 3-terminal semiconductor device. It is used as a 2-port device with one terminal common between the input and output ports. It can be modelled as a 'dependent current source'.

Commonly used types of Transistors

(a) Bipolar Junction Transistor (BJT)

(b) Metal Oxide Field Effect Transistor (MOSFET)

Bipolar Junction Transistor (BJT)

Types	NPN and PNP.
Terminals	Three terminals viz. emitter, base and collector.
Controlling quantity	BJT is a current controlled device Base current (I_B) controls the Collector Current (I_C).

Compared to MOSFETs, BJTs have lower input resistance ($\approx 10 \text{ k}\Omega$ to 1 M Ω , in common emitter configuration) and hence consume more power from the input signal source.

BJT Operation: Cricket Analogy

- The emitter is the bowler who shoots electrons into the base.
- The base is the batsman a tail-ender who swings away, but connects with no more than 1 to 2% of the incoming balls (electrons).
- Most of the balls are collected by the wicket keeper – the collector.

- The base current (rare balls connected by the batsman) is a fraction of the emitter current and the collector current is almost equal to the emitter current.
- Thus the collector current is 50 to 100 times the base current.
 Ratio of collector current to the base current is the current gain of the transistor.

BJT Operation: Current Flow

Current flow in an NPN transistor biased in active mode (forward biased BE junction and reversed biased BC junction)

Metal Oxide Field Effect Transistor (MOSFET)

Depletion

l_BEnhancement

MOSFETs are available in two Types → N-Channel and P-Channel. They are fabricated in two modes: Enhancement and Depletion.

MOSFET		
Types (4)	P-channel enhancement, P-channel depletion, N-channel enhancement, N-channel depletion.	
Terminals (4)	Source (S), Drain (D), Gate (G), Substrate or body (B). B is often connected to S.	
Controlling quantity	MOSFET is a voltage-controlled device. Gate-to-source voltage (V_{GS}) controls drain-to-source current (I_{DS}).	

MOSFETs have high input resistance (10 M Ω to 100 M Ω , depending on configuration and circuit) and hence consume less power from the input signal source, compared to BJTs.

MOSFET Operation

The MOSFET is said to be ON when current flows between Drain and Source

Depletion mode: Channel for drain-source current flow is available at $V_{GS} = 0$. The channel gets depleted for negative V_{GS} , and it is totally depleted for V_{GS} below the threshold voltage, V_{TH} (-ve for N-channel).

Enhancement mode: No channel is available at $V_{GS} = 0$ The channel for drain-source current flow is formed for V_{GS} above the threshold voltage, V_{TH} (+ve for N-channel).

N- Channel Enhancement mode MOSFET		
Metal Electrode Metal Oxide N P-Type Substrate	Metal Electrode Metal Oxide N	
Substrate/Body Sobirce: https://www.electricattechnology.org/2021/06/mo		

MOSFET Type	Condition for Switching
N – Channel Enhancement	OFF for $V_{GS} < V_{TH}$ (0.6 to 1 V)
N - Channel Depletion	OFF for $V_{GS} < V_{TH} (-1.3 \text{ to } -0.0 \text{ V})$
P - Channel Enhancement	OFF for $V_{GS} > V_{TH} (-1.0 \text{ to} -0.6 \text{ V})$
P - Channel Depletion	OFF for $V_{GS} > V_{TH}$ (0.0 to 1.3 V)

Commercially Available Transistor Packages

Switching Characteristics of BJT Presented on V_{CE} - I_{C} Plane

BJT is switched ON or OFF by changing the base current (I_R)

Base currents $I_{B1} < I_{B2} < I_{B3} < I_{B4} < I_{B5} < I_{B6} < I_{B7}$

Typical ' V_{CE} - I_C ' characteristics for BJT A & B are the operating points for the switching action

Switching Characteristics of N-Channel Enhancement mode MOSFET (Presented On V_{DS} - I_{D} Plane)

- Enhancement MOSFETs start conducting when the channel between the Drain and Source is formed.
- In N-Channel MOSFETs, N-channel is formed.
- V_T is the minimum value of V_{GS} for the formation of the channel (Hence, $V_{GS} > V_T$ for MOSFET to be ON)
- I_D increases as V_{GS} increases further

Typical 'V_{DS}-I_D' characteristics for N channel Enhancement mode MOSFET A & B: operating points for switching action
The load line between A and B represents Linear region

10

Switching Transistors with Vin as Control Input

V_{in} to control NPN BJT

V_{in} to control N-Channel enhancement MOSFET

Switching Operation for BJT

Input Grounded \rightarrow $I_B \approx 0$, OFF state.

$$\mathbf{I}_{\mathbf{C}} \approx \mathbf{0} \rightarrow \mathbf{V}_{\mathbf{OUT}} = \mathbf{V}_{\mathbf{CE}} \approx \mathbf{V}_{\mathbf{CC}}$$

Transistor as 'Open Switch'.

Input connected to V_{cc} \rightarrow High value of I_{C} $V_{OUT} = V_{CE} \approx 0.2 \text{ V}$ $I_{B} = (V_{CC} - V_{BES}) / R_{B}, V_{BES} \approx 0.8 \text{ V}$

Transistor as 'Closed Switch'.

Switching Operation for N-Channel Enhancement MOSFET

V_{in} to control N-Channel MOSFET

Connecting V_{in} to Ground $V_{GS} < V_{T}$

Connecting V_{in} to $V_{DD} \rightarrow V_{GS} >> V_T$

Input Grounded \rightarrow V_{GS} = **0**, OFF state.

$$\mathbf{I_D} \approx \mathbf{0} \rightarrow \mathbf{V}_{\mathrm{OUT}} = \mathbf{V}_{\mathrm{DS}} \approx \mathbf{V}_{\mathrm{DD}}.$$

Transistor as 'Open Switch'.

Input connected to $V_{DD} \rightarrow \text{High } I_{D}$, ON state.

$$V_{OUT}\!=V_{DS}\approx 0~V~(=I_D~R_{DSON}=0.1~\text{to}~0.8~V,$$
 depending on current & R_{DSON}).

Transistor as 'Closed Switch'

Switching Loads Connected to Supply

- Load connected to supply is switched using an NPN transistor OR an N-Channel Enhancement MOSFET.
- 2. The switch is ON when the control voltage goes to the higher value.

Switching loads using N-Channel MOSFET

Switching loads using NPN type BJT

Other loads to be switched can be connected in place of the resistor R_L .

LED Diode Array with Current Limiting Resistor

DC Motors

Heating Element

Incandescent Lamp

Switching Loads Connected to Ground

Switching loads using PNP type BJT

- Load connected to ground is switched using a PNP transistor OR a P-Channel Enhancement MOSFET.
- 2. The switch is ON when the control voltage goes to the lower value.

Switching loads using P-Channel Enhancement mode MOSFET

Relay Operation Using a BJT Switch

R_L replaced by Relay coil and Flywheel diode

Circuit Symbols for a Relay

By controlling base current (I_B) of BJT, high relay coil current $(=I_C)$ can be switched.

Current Gain: $\beta = I_C / I_B$

Relay Switching Using Micro-Controller (Arduino)

Arduino Relay Control Circuit Diagram

Source: https://www.electronicshub.org/arduino-relay-control/

This is an example of operating a relay with 'Arduino digital output pin (PD7) and NPN transistor.

Relay Coil Current = **60 mA**,

Common emitter current gain in saturation mode, $\beta_{min} = 30$.

Action: Set the pin PD7 to 'Hi'.

This will put the transistor in saturation mode or **ON** state.

This shall allow the current to flow through the relay coil making the relay **ON**.

Base current (I_B) required to drive the transistor to ON state is 2 mA.

$$(I_B = I_c / \beta_{min} = 60 / 30 = 2 \text{ mA})$$

Questions and Discussions