Limits

In the following we consider an Eschenburg space E with parameters $(\mathbf{k}, \mathbf{l}) = (k_1, k_2, k_3, l_1, l_2, l_3)$. We say that the **parameters are bounded by** P for some positive integer P if $|k_i| \leq P$ and $|l_i| \leq P$ for all i. Similarly, we say that r is **bounded by** R if $|r(E)| \leq R$ for some positive integer R, where $|r(E)| = |H^4(E)|$.

1 Lemma. For any Eschenburg space,

parameters bounded by
$$P \Rightarrow r \text{ bounded by } R = 6P^2$$
 (1)

For an Eschenburg space in standard presentation,

parameters bounded by
$$P = 2R^{1/2} \iff r \text{ bounded by } R$$
 (2)

2 Claim. Suppose r is bounded by R and the parameters are bounded by P. Suppose further that the data types used meet the following minimum requirements:

```
\begin{array}{ll} {\tt INT\_R} & \textit{signed integer with capacity of } e_R \textit{ bits} \\ {\tt INT\_P} & \textit{signed integer with capacity of } e_P \textit{ bits} \\ {\tt INT\_KS} & \textit{signed integer with capacity of } e_{KS} \textit{ bits} \\ {\tt FLOAT\_KS} & \textit{base-2 float with significand of } s_{KS} \textit{ bits (including sign bit)} \end{array}
```

Suppose further that, in the of the computation of the invariant $s_2(E)$, the sin-values are computed with a relative error of at most $A\epsilon$.¹ Then the computations of the invariants r(E), s(E), $p_1(E)$ and $s_2(E)$ are exact provided each of the following inequalities is satisfied:

$$P \le 2^{e_P - 1}$$
 $P^5 \le 2^{e_{KS} - 7.7}$ $P^5 \le (2/A)^{s_{KS} - 9.5}$ $R \le 2^{e_R - 1}$ $RP^3 \le 2^{e_{KS} - 15.1}$

3 Example. The default data types specified in config.h and their sizes on my system are:

INT_R	:= int	$32 \ bit$
INT_P	:= long	$64 \ bit$
INT_KS	:= long long	$64 \ bit$
LOAT KS	:= long double	64 bit significand

The implementation of the sin function boost/math/special_functions/sin_pi.hpp for the data type long double has a relative error of less than 1ϵ .² Thus, by the above claim and Lemma 1, computations are reliable in the following ranges:

- For analysing a single space with parameters bounded by P = 146.
- For generating and analysing list of spaces in standard parametrization with r bounded by $R=336\,442$.

Verification of Claim 2 for s_{22} . The sin-values in (5)/(6) are computed with a relative error of $\eta = A\epsilon$, where by assumption $\epsilon = 2^{1-s_{KS}}$. (Note that one bit of the significand is used to store the sign of the number, so we only have $s_{KS} - 1$ bits to store the value.) That is, the computed value of $\sin(\ldots)$ differs from the actual value by a factor of at most $1 \pm \delta$. It follows that the computed values of L and ℓ_i differ from the actual values by a factor of approximately $(1 + \delta)(1 - \delta)^{-4} \approx 1 + 5\delta < 1 + A \cdot 2^{3.4 - s_{KS}}$. By Proposition 7, this leads to

¹ Here, ε denotes the machine epsilon. See https://en.wikipedia.org/wiki/Machine_epsilon.

²http://www.boost.org/doc/libs/1_65_1/libs/math/doc/html/math_toolkit/powers/sin_pi.html

an absolute error of approximately $A \cdot 2^{3.4-s_{KS}} \cdot 2^{5.1}P^5 = A \cdot 2^{8.5-s_{KS}}$. We know that the exact value of $45\ell_i$ is an integer. To obtain the correct integer, we need this absolute error to be less than $0.5 = 2^{-1}$. That is, we need $A \cdot 2^{8.5-s_{KS}} \cdot P^5 < 2^{-1}$, or, equivalently, $P^5 < A^{-1} \cdot 2^{s_{KS}-9.5}$. This gives the above result.

0.1 Verification of the claim for the integer data types

The invariant s_2 is computed by a formula of the form

$$s_2 = (q-2)/d + \ell_1 + \ell_2 + \ell_3$$

$$= \frac{45(q-2) + [45\ell_1] + [45\ell_2] + [45\ell_3]}{45d}$$
(3)

where ℓ_i are lens space invariants such that $45\ell_i$ is an integer.

4 Lemma. Suppose the parameters are bounded by P and r is bounded by R. Then the denominator and the numerator of $|s_2|$ are bounded as follows:

$$|numerator| \le 2^{6.7} \cdot P^5$$

 $|denominator| \le 2^{14.1} \cdot RP^3$

The absolute values of the integers d, q and $45\ell_i$ appearing in (3) are bounded by the same value as the denominator of s_2 .

Proof. The absolute value of q in (3) is bounded by a sum of six squares of differences of parameters $(k_i - l_j)$, so

$$|q| \le 6(2P)^2$$
 $< 2^{4.6} \cdot P^2$ (4)

The absolute value of d is bounded by

$$|d| \le 3 \cdot 2^4 \cdot R \cdot (2P)^3 < 2^{8.6} \cdot RP^3$$

An upper bound for the values of $45\ell_i$ is estimated as $2^{5.1}P^5$ in Propsition 7 below. Thus, altogether we obtain the following bounds for numerator and denominator of s_2 :

$$|\text{numerator}| \le 45 \cdot 2^{4.6} \cdot P^2 + 3 \cdot 2^{5.1} P^5 \approx 2^{6.7} \cdot P^5$$

 $|\text{denominator}| \le 45 \cdot |d| \le 2^{14.1} \cdot RP^3$

Proof of Lemma 1. The first implication is clear from $r = \sigma_2(k_1, k_2, k_3) - \sigma_2(l_1, l_2, l_3)$. For the second implication, note that while all parameters except k_3 are bounded by \sqrt{R} in the standard representation, the parameter k_3 is bounded only by $2\sqrt{R}$. \square

Proof of the proposition. The proposition is immediate from the two lemmas and the estimates of upper bounds for the values of q, d and $45\ell_i$ appearing in the proof of Lemma 4. In both cases, it is clear that for sufficiently large R and P the bound for the denominator of $|s_2|$ is the largest bound that occurs. For Eschenburg spaces in standard presentation, this bound is $2^{10} \cdot 3^3 \cdot R^{5/2} \leq 2^{17,1} \cdot R^{5/2}$. For general Eschenburg spaces, this bound is $2^8 \cdot 3^4 \cdot 5 \cdot P^5 \leq 2^{16,7} \cdot P^5$.

0.2 Preliminary estimates for the float type

The lens invariants ℓ_1 , ..., ℓ_n are computed as a sum

$$\ell_i := \sum_{v=1}^{|p|-1} L(\mathbf{x}^{(v)}),\tag{5}$$

where the coordinates of $\mathbf{x}^{(v)}$ have the form $\frac{vp_i}{p}$ and each of $p, p_1, ..., p_4$ is a difference of parameters $k_i - l_j$. The function L appearing in this sum is given by

$$L(x_0, x_1, x_2, x_3, x_4) := (\cos(\pi x_0) - 1) \cdot \prod_{i=1}^4 \csc(\pi x_i), \tag{6}$$

where $\csc(x) := 1/\sin(x)$.

5 Lemma. Let $\epsilon > 0$ be sufficiently small $(\leq 1/100)$. Then $|\csc(\pi \cdot x)| \leq 2^{-1.6} \epsilon^{-1}$ for any real number x whose distance to the nearest integer is at least ϵ .

Proof. It suffices to show that $\sin(\pi \cdot x) \geq 2^{1.6}\epsilon$ for any real $x \in [\epsilon, 1/2]$, where $\epsilon \in (0, 1/100)$ is some given lower bound. It is known that $\sin(\pi x) \geq \pi x \cdot \cos(\pi x)$ for all $x \in [0, 1/2]$, so for $x \in [\epsilon, 1/2]$ we find that

$$\sin(\pi x) \ge \sin(\pi \epsilon) \ge \pi \epsilon \cdot \cos(\pi \epsilon).$$

If ϵ is sufficiently small, then $\pi \cdot \cos(\pi \epsilon)$ is close to π . The result is obtained by explicitly calculating this value for $\epsilon = 1/100$.

6 Lemma. Let ϵ be as above. Suppose all coordinates of $\mathbf{x} = (x_0, x_1, x_2, x_3, x_4)$ have a distance of a least ϵ to the nearest integer. Then $|L(\mathbf{x})| \leq 2^{-5.4} \epsilon^{-4}$.

Moreover, for any \mathbf{y} satisfying the same assumptions and contained in a δ -cube around \mathbf{x} , $|L(\mathbf{x}) - L(\mathbf{y})| \leq 2^{-5.6} \epsilon^{-5} \delta$

Proof. The previous lemma implies that $|L(\mathbf{x})| \leq 2 \cdot (2^{-1.6} \epsilon^{-1})^4$, so the first claim is immediate. For the second claim, we use the multivariate mean value theorem. Assuming that the absolute values of the partial derivates $\partial_{x_i} L$ are bounded on the given δ -cube by some bound U', the theorem implies that

$$|L(\mathbf{x}) - L(\mathbf{y})| \le 5 \cdot U' \cdot \delta.$$

for all \mathbf{y} in the cube. The derivatives of L are easily computed using the fact that $\partial_x \csc(\pi x) = -\pi \cos(\pi x) \csc(\pi x)^2$. One easily sees that if $|\csc(\mathbf{y})| \leq U$ on the cube, then $|\partial_{x_i} L(\mathbf{y})| \leq \pi U^5$ on the cube. So we can take $U' := \pi U^5$ with U the upper bound from the previous lemma. This gives

$$|L(\mathbf{x}) - L(\mathbf{y})| \le 5\pi \cdot (2^{-1.6} \epsilon^{-1})^5 \cdot \delta \le 2^{-5.6} \epsilon^{-5} \delta,$$

as claimed. \Box

7 Proposition. Suppose the parameters are bounded by P. Then $|45\ell_i| \leq 2^{5.1}P^5$.

Proof. As each of k_i and l_i is bounded by P, each of the parameters p, p_1 , ..., p_4 used to define the quintuples $\mathbf{x}^{(v)}$ is bounded by 2P. It follows that each coordinate of each $\mathbf{x}^{(v)}$ has a distance of at least $^{1}/^{2P}$ to the nearest integer, and hence each coordinate of each $\mathbf{y}^{(v)}$ has a distance of a least $^{1}/^{2P} - \delta$ to the nearest integer. Thus, we can apply the previous lemma to each $L(\mathbf{x}^{(v)})$ with $\epsilon = 1/(2P) - \delta$ to obtain:

$$\left| L(\mathbf{y}^{(v)}) \right| \le 2^{-5.4} (1/2P - \delta)^{-4} = 2^{-1.4} P^4 \cdot (1 - 2P\delta)^{-4}$$
$$\left| L(\mathbf{x}^{(v)}) - L(\mathbf{y}^{(v)}) \right| \le 2^{-5.6} (1/2P - \delta)^{-5} \delta = 2^{-0.6} P^5 \cdot \delta \cdot (1 - 2P\delta)^{-5}$$

Now take a (|p|-1)-fold sum, multiply by 45 and note that (|p|-1) < 2P. \Box

data type	bits	range	standard R	general P
int / long long long ??	32 64 128	$\pm 2^{31} \\ \pm 2^{63} \\ \pm 2^{127}$	$ \begin{array}{r} 47 \\ 336442 \\ 1,7 \cdot 10^{13} \end{array} $	$ \begin{array}{r} 7 \\ 613 \\ 4372418 \end{array} $

Table 1: Different data types and the resulting bounds R on |r| (for spaces in standard presentation) and P on the parameters (for any presentation), according to the above proposition. (The values in the first line of the table may not actually be "sufficiently large" for the proposition to apply.)