AIM:

To design a schmitt trigger and to study their operation.

APPARATUS REQUIRED:

S.No.	APPARATUS	ТҮРЕ	RANGE	QUANTITY
1)	Ор-Атр	μΑ741		1
2)	Resistors		29K, 1K, 16K, 1.6K	1
3)	Capacitors		0.1μF	1
4)	Signal Generator			1
5)	CRO			1
6)	Dual power supply			1
7)	Bread Board			1
8)	Connecting wires			

THEORY:

Schmitt Trigger

Schmitt trigger is otherwise called regenerative comparator. In this comparator circuit a positive feedback is added. The input voltage Vi triggers the output Vo very time it exceeds certain voltage levels. These voltages are known as upper threshold voltage (V_{UT}) and lower threshold voltage V_{LT} . The difference between

There two threshold voltages $(V_{UT} - V_{LT})$ gives the hysteresis width.

$$V_{UT} = V_{ref} + (R_2 / (R_1 + R_2) * (V_{sat} - V_{ref})$$

V_{ref} - applied reference voltage V_{sat} - saturation voltage of OP-AMP

 R_1, R_2 - Voltage divider resistances

$$V_{LT} = V_{ref} - (R_2 / (R_1 + R_2) * (V_{sat} - V_{ref})$$

When input voltage is greater than V_{UT} , output goes to negative saturation and when input voltage is less than V_{LT} , output goes to positive saturation.

Design of Schmitt trigger

Given $V_{UT} = 0.5V V_{LT} = -0.5V$

$$V_{\text{UT}} = \frac{R_2}{R_1 + R_2}$$

$$V_{\text{S at}}$$

$$V_{\text{UT}} = \frac{R_2}{R_1 + R_2}$$

$$V_{\text{LT}} = \frac{R_1 + R_2}{R_1 + R_2}$$

$$V_{\text{S at}}$$

Taking \pm V_{sat} = \pm 15V,

$$\frac{R_{2}}{\frac{R_{2}}{R+R_{1}}} = 30$$
(15V)

$$R$$
 = 29 $\frac{R_2}{R_2}$ = R₁ = 29R₂ Taking R₂ = 1K Ω R₁ = 29K Ω (set using 100K POT)

PROCEDURE:

a) Schmitt trigger:

- 1. Connect the circuit as shown in diagram
- 2. See the input sine wave and output from pin.6 in a dual channel, CRO
- 3. Plot the observed waveforms in a linear graph.
- 4. Calculate the lower threshold voltage and upper threshold voltage from the plotted graph.
- 5. Calculate the lower threshold voltage and upper threshold voltage theoretically using the formula.

PIN DIAGRAM:

CIRCUIT DIAGRAM:

a)

Schmitt Trigger:

	INPUT		OUTPUT	
S.No:	Vin (V)	Time (msec)	Vout(V)	Time (msec)
1.	20	20	28	20

RESULT:Thus Schmitt trigger and Wien bridge oscillator were designed and their operations were studied.