A Book of Abstract Algebra | (2nd Edition)

Step-by-step solution

	Step 1 of 3
Here, objective is to prove that, if $a \in D, a > 0$, then $\sqrt{a} \in D$.	
Commer	nt
	Step 2 of 3
Construc	etible point:
-	nt is either the end point of given unit segment or it is the intersection of two lines ared by previous constructible points.
Commer	nt
	Step 3 of 3
Conside	$a \in D$ if and only if the point $(a,0)$ is constructible from $\{O,I\}$
Now, we	have to prove that length \sqrt{a} is constructed from the length a
Conside	r the below figure:

figure:construction of sqare root of a

AB is the diameter of a circle.

By observing there exist two similar triangles

 $\triangle AOB$ and $\triangle BOC$

Using the property of similar triangles, we have

$$\frac{1}{x} = \frac{x}{a}$$

$$x^2 = a$$

$$x = \sqrt{a}$$

Then, the length \sqrt{a} is constructed from $\{O,I\}$ which implies $\sqrt{a}\in D$

Therefore, if $a \in D, a > 0$, then $\sqrt{a} \in D$.

Hence, proved

Comment

COMPANY

About Chegg Chegg For Good College Marketing Corporate Development Investor Relations Jobs Join Our Affiliate Program Media Center Site Map

LEGAL & POLICIES

Advertising Choices
Cookie Notice
General Policies
Intellectual Property Rights
Terms of Use
Global Privacy Policy
Honor Code
Honor Shield

CHEGG PRODUCTS AND SERVICES

Cheap Textbooks Mobile Apps Chegg Coupon Sell Textbooks Chegg Play Solutions Manual Chegg Study Help Study 101 College Textbooks Textbook Rental eTextbooks **Used Textbooks** Digital Access Codes Flashcards Learn Chegg Money Chegg Math Solver

CHEGG NETWORK

EasyBib Internships.com Thinkful

CUSTOMER SERVICE

Customer Service
Give Us Feedback
Help with eTextbooks
Help to use EasyBib Plus
Manage Chegg Study
Subscription
Return Your Books
Textbook Return Policy