Симедиана и центр поворотной гомотетии. 15 апреля

Определение. Пусть M — середина стороны BC треугольника ABC, а N — такая точка на стороне BC, что $\angle BAM = \angle CAN$. Тогда AN называется $cume\partial uano\check{u}$ треугольника ABC.

Утверждение. Пусть Γ — описанная окружность треугольника ABC. Пусть касательные к Γ в точках B и C пересекаются в точке D. Тогда прямая AD содержит симедиану треугольника ABC.

- 1. Внутри равнобедренного треугольника ABC (AC = BC) отмечена точка P такая, что $\angle PAB = \angle PBC$. Докажите, что если M середина отрезка AB, то $\angle APM + \angle BPC = 180^\circ$.
- **2.** Через точки A и B проведены две окружности, общая касательная к которым пересекает их в точках P и Q. Пусть касательные в точках P и Q к описанной окружности треугольника APQ пересекаются в точке S; пусть H точка, симметричная точке B относительно прямой PQ. Докажите, что точки A, S и H лежат на одной прямой.
- **3.** Дан треугольник ABC. Пусть X центр поворотной гомотетии, переводящей направленный отрезок BA в направленный отрезок AC. Докажите, что AX содержит симедиану треугольника ABC.
- 4. Пусть G центр масс треугольника ABC, точка P лежит на отрезке BC. Точки Q и R на сторонах AC и AB соответственно таковы, что $PQ \parallel AB$ и $PR \parallel AC$. Докажите, что описанные окружности треугольника AQR проходят через фиксированную точку X, не зависящую от точки P.
- **5.** Пусть ABC остроугольный неравнобердренный треугольник, а M, N и P середины сторон BC, CA и AB соответственно. Пусть серединные перпендикуляры к отрезкам AB и AC пересекают луч AM в точках D и E соответственно, а прямые BD и CE пересекаются в точке F, лежащей внутри треугольника ABC. Докажите, что точки A, N, F и P лежат на одной окружности.
- **6.** Окружности ω_1 и ω_2 с центрами в точках O_1 и O_2 соответственно проходят через точку A. Прямая ℓ касается ω_1 и ω_2 в точках B и C соответственно. Пусть O_3 центр описанной окружности треугольника ABC. Точка D такова, что A середина отрезка O_3D ; M середина O_1O_2 . Докажите, что $\angle O_1DM = \angle O_2DA$.

Симедиана и центр поворотной гомотетии. 15 апреля

Определение. Пусть M — середина стороны BC треугольника ABC, а N — такая точка на стороне BC, что $\angle BAM = \angle CAN$. Тогда AN называется $cume\partial uano\check{u}$ треугольника ABC.

Утверждение. Пусть Γ — описанная окружность треугольника ABC. Пусть касательные к Γ в точках B и C пересекаются в точке D. Тогда прямая AD содержит симедиану треугольника ABC.

- 1. Внутри равнобедренного треугольника ABC (AC=BC) отмечена точка P такая, что $\angle PAB=\angle PBC$. Докажите, что если M середина отрезка AB, то $\angle APM+\angle BPC=180^\circ$.
- **2.** Через точки A и B проведены две окружности, общая касательная к которым пересекает их в точках P и Q. Пусть касательные в точках P и Q к описанной окружности треугольника APQ пересекаются в точке S; пусть H точка, симметричная точке B относительно прямой PQ. Докажите, что точки A, S и H лежат на одной прямой.
- **3.** Дан треугольник ABC. Пусть X центр поворотной гомотетии, переводящей направленный отрезок BA в направленный отрезок AC. Докажите, что AX содержит симедиану треугольника ABC.
- 4. Пусть G центр масс треугольника ABC, точка P лежит на отрезке BC. Точки Q и R на сторонах AC и AB соответственно таковы, что $PQ \parallel AB$ и $PR \parallel AC$. Докажите, что описанные окружности треугольника AQR проходят через фиксированную точку X, не зависящую от точки P.
- **5.** Пусть ABC остроугольный неравнобердренный треугольник, а M, N и P середины сторон BC, CA и AB соответственно. Пусть серединные перпендикуляры к отрезкам AB и AC пересекают луч AM в точках D и E соответственно, а прямые BD и CE пересекаются в точке F, лежащей внутри треугольника ABC. Докажите, что точки A, N, F и P лежат на одной окружности.
- 6. Окружности ω_1 и ω_2 с центрами в точках O_1 и O_2 соответственно проходят через точку A. Прямая ℓ касается ω_1 и ω_2 в точках B и C соответственно. Пусть O_3 центр описанной окружности треугольника ABC. Точка D такова, что A середина отрезка O_3D ; M середина O_1O_2 . Докажите, что $\angle O_1DM = \angle O_2DA$.