定义 2.1

如果 V 是数域 k 上的线性空间,对任意的 $x > \in V$,定义一个实值函数 $\|x\|$,它满足以下三个条件:

- 1. 非负性: 当 $x \neq 0$ 时, ||x|| > 0; 当 x = 0 时, ||x|| = 0;
- 2. 齐次性: $||x|| = |a| ||x|| (a \in K, x \in V)$
- 3. 三角不等式: $||x+y|| \le ||x|| + ||y|| (x, y \in V)$

则称 ||x|| 为 V 上向量 x 的范数,简称 **向量范数**

定理 2.1

设 $\|x\|_{\alpha}$ 和 $\|x\|_{\beta}$ 为有限维线性空间 V 上的任意两种向量范数(他们不限于 p - 范数),则存在两个与向量 x 无关的正常数 c_1 和 c_2 ,使满足

$$c_1 \|x\|_{\beta} \le \|x\|_{\alpha} \le c_2 \|x\|_{\beta} \ (\forall x \in V)$$
 (2.1.9)

定义 2.2

满足不等式 (2.1.9) 的两种范数称为是 **等价** 的,于是定理 2.1 可述为:有限维线性空间上的不同范数是等价的

定理 2.2

 C^n 中的向量序列

$$x^{(k)} = (\xi_1^{(k)}, \xi_2^{(k)}, \dots, \xi_n^{(k)}) \ (k = 1, 2, 3, \dots)$$

收敛到向量 $x=(\xi_1,\xi_2,\ldots,\xi_n)$ 的充要条件是对任何一种向量范数 $\|\cdot\|$,数列 $\|x^{(k)}-x\|$ 收敛于零

定义 2.3

设 $A \in \mathbb{C}^{m \times n}$, 定义一个实值函数 ||A||, 它满足以下三个条件

- 1. 非负性: 当 $A \neq O$ 时, ||A|| > 0; 当 A = O 时, ||A|| = 0;
- 2. 齐次性: $\|\alpha A\| = |\alpha| \|A\| \ (\alpha \in C)$;
- 3. 三角不等式: $||A + B|| \le ||A|| + ||B|| \ (B \in C^{m \times n})$.

则称 $\|A\|$ 为 A 的 **广义矩阵范数**. 若对 $C^{m\times n}, C^{n\times l}$ 及 $C^{m\times l}$ 上的同类广义矩阵范数 $\|\cdot\|$, 还满足下面一个条件

4. 相容性: $\|AB\| \le \|A\| \|B\| (B \in C^{m \times l})$ 则称 $\|A\|$ 为 A 的 **矩阵范数**

定义 2.4

对于 $C^{m \times n}$ 上的矩阵范数 $\|\cdot\|_M$ 和 C^m 与 C^n 上的同类向量范数 $\|\cdot\|_V$, 如果

$$||Ax||_V \le ||A||_M ||x||_V (\forall A \in C^{m \times n}, \forall x \in C^n)$$

则称矩阵范数 $\|\cdot\|_M$ 与向量范数 $\|\cdot\|_V$ 是相容的

定理 2.4

已知 C^m 和 C^n 上的同类向量范数 $\|\cdot\|$, 设 $A\in C^{m\times n}$, 则函数

$$||A|| = max_{||x||=1} ||Ax||$$

是 $C^{m \times n}$ 上的矩阵范数,且与已知的向量范数相容

定理 2.5

设 $A=(a_{ij})_{m\times n}\in C^{m\times n}$, $x=(\xi_1,\xi_2,\ldots,\xi_n)^T\in C^n$,则从属于向量 x 的三种范数 $\|x\|_1,\|x\|_2,\|x\|_\infty$ 的矩阵范数计算公式依次为

- 1. $||A||_1 = max_j \sum_{i=1}^m |a_{ij}|;$
- 2. $||A||_2 = \sqrt{\lambda_1}$, λ_1 为 $A^H A$ 的最大特征值;
- 3. $||A||_{\infty} = max_i \sum_{j=1}^{n} |a_{ij}|$.

通常称 $||A||_1$, $||A||_2$ 及 $||A||_\infty$ 依次为 **列和范数、谱范数** 及 **行和范数**

例 2.1

(1) 根据 $\|x\| = \sqrt{|\xi_1|^2 + |\xi_2|^2 + \dots + |\xi_n|^2}$,当 $x \neq 0$ 时,显然 $\|x\| > 0$;当 x = 0 时,有 $\|x\| = \sqrt{0^2 + 0^2 + \dots + 0^2} = 0$

(2) 对任意的复数 *a*,因为

$$ax = (a\xi_1, a\xi_2, \dots, a\xi_n)$$

所以

$$||ax|| = \sqrt{|a\xi_1|^2 + |a\xi_2|^2 + \dots + |a\xi_n|^2} = |a| \sqrt{|\xi_1|^2 + |\xi_2|^2 + \dots + |\xi_n|^2} = |a| ||x||$$

(3)

对于任意两个复向量 $x=(\xi_1,\xi_2,\ldots,\xi_n),\ y=(\eta_1,\eta_2,\ldots,\eta_n),\$ 有 $x+y=(\xi_1+\eta_1,\xi_2+\eta_2,\ldots,\xi_n+\eta_n)$

可得

$$||x + y|| = \sqrt{|\xi_1 + \eta_1|^2 + |\xi_2 + \eta_2|^2 + \dots + |\xi_n + \eta_n|^2}$$

$$||x|| = \sqrt{|\xi_1|^2 + |\xi_2|^2 + \dots + |\xi_n|^2}$$

$$||y|| = \sqrt{|\eta_1|^2 + |\eta_2|^2 + \dots + |\eta_n|^2}$$

借助于 C^n 中内积式(1.3.24)及其性质,可得

$$||x + y||^2 = (x + y, x + y) = (x, x) + 2Re(x, y) + (y, y)$$

因为

$$Re(x,y) \le |(x,y)| \le \sqrt{(x,x)(y,y)} = ||x|| \ ||y||$$

所以

$$||x + y||^2 \le ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2$$

即

$$||x + y|| \le ||x|| + ||y||$$

例 2.2

当 $x\neq 0$ 时,有 $\|x\|=max_i|\xi_i|>0$;当 x=0 时,显然有 $\|x\|=0$. 又对任意的 $a\in C$,有

$$||ax|| = max_i |a\xi_i| = |a| |max_i| |\xi_i| = |a| ||x||$$

对
$$C^n$$
 的任意两个向量 $x=(\xi_1,\xi_2,\ldots,\xi_n),\;\;y=(\eta_1,\eta_2,\ldots,\eta_n),\;$ 有 $\|x+y\|=max_i\;|\xi_i+\eta_i|\leq max_i\;|\xi_i|+max_i\;|\eta_i|=\|x\|+\|y\|$

因此, $||x|| = max_i |\xi_i|$ 是 C^n 上的一种范数

例 2.3

当 $x \neq 0$ 时,显然 $\|x\| = \sum_{i=1}^n |xi_i| > 0$;当 x = 0 时,由于 x 的每一分量都是零,故 $\|x\| = 0$

又对于任意 $a \in C$,有

$$\|ax\| = \sum_{i=1}^n |a\xi_i| = |a| \sum_{i=1}^n |\xi_i| = |a| \ \|x\|$$

对任意两个向量 $x,y \in \mathbb{C}^n$,有

$$\|x_y\| = \sum_{i=1}^n |\xi_i + \eta_i| \leq \sum_{i=1}^n (|\xi_i| + |\eta_i|) = \sum_{i=1}^n |\xi_i| + \sum_{i=1}^n |\eta_i| = \|x\| + \|y\|$$

于是由定义 2.1 知 $\|x\| = \sum_{i=1}^n |\xi_i|$ 是 C^n 上的一种范数

例 2.6

给定线性空间 V^n 的基 x_1,x_2,\ldots,x_n ,设 $x\in V^n$ 在该基下的坐标向量为 $\alpha=(\xi_1,\xi_2,\ldots,\xi_n)^T$,那么

$$||x||_p = ||\alpha||_p \ (1 \le p < +\infty)$$

满足范数定义的三个条件. 因此,它是 V^n 上的范数,也称为 $oldsymbol{x}$ 的 $oldsymbol{p}$ - $oldsymbol{ar{z}}$ 数

例 2.8

显然, $\|A\|_F$ 具有非负性和齐次性. 设 $B\in C^{m imes n}$,且 A 的第 j 列分别为 a_j,b_j $(j=1,2,\ldots,n)$,则有

$$||A + B||_F^2 = ||a_1 + b_1||_2^2 + \dots + ||a_n + b_n||_2^2 \le (||a_1||_2 + ||b_1||_2)^2 + \dots + (||a_n||_2 + ||b_n||_2)^2 = (||a_1||_2^2 + \dots + ||a_n||_2^2) + 2(||)$$

显然, $\|A\|_F$ 具有非负性和齐次性. 设 $B\in C^{m\times n}$,且 A 的第 j 列分别为 a_j,b_j $(j=1,2,\ldots,n)$,则有

$$||A + B||_F^2 = ||a_1 + b_1||_2^2 + \dots + ||a_n + b_n||_2^2 \le (||a_1||_2 + ||b_1||_2)^2 + \dots + (||a_n||_2 + ||b_n||_2)^2 = (||a_1||_2^2 + \dots + ||a_n||_2^2) + 2(||)$$

显然, $\|A\|_F$ 具有非负性和齐次性. 设 $B\in C^{m\times n}$,且 A 的第 j 列分别为 a_j,b_j $(j=1,2,\ldots,n)$,则有

$$||A + B||_F^2 = ||a_1 + b_1||_2^2 + \dots + ||a_n + b_n||_2^2 \le (||a_1||_2 + ||b_1||_2)^2 + \dots + (||a_n||_2 + ||b_n||_2)^2 = (||a_1||_2^2 + \dots + ||a_n||_2^2) + 2(||a_1||_2 ||b_1||_2 + \dots + ||a_n||_2 ||b_n||_2) + (||b_1||_2^2 + \dots + ||b_n||_2^2)$$

对上式第二项应用式 (1.3.12), 可得

$$||A + B||_F^2 \le ||A||_F^2 + 2||A||_F ||B||_F + ||B||_F^2 = (||A||_F + ||B||_F)^2$$

即三角不等式成立

再设 $B=(b_{ij})_{n imes l}\in C^{n imes l}$,则 $AB=(\sum_{k=1}^n a_{ik}b_{kj})_{m imes l}\in C^{m imes l}$,于是有

$$\|AB\|_F^2 = \sum_{i=1}^m \sum_{j=1}^l |\sum_{k=1}^n a_{ik} b_{kj}| \leq \sum_{i=1}^m \sum_{j=1}^l (\sum_{k=1}^n |a_{ik}| \ |b_{kj}|)^2$$

对上式括号内的项应用式 (1.3.12), 可得

$$\|AB\|_F^2 \le \sum_{i=1}^m \sum_{j=1}^l [(\sum_{k=1}^n |a_{ik}|^2)(\sum_{k=1}^n |b_{kj}|^2)] = \|A\|_F^2 \|B\|_F^2$$

即 $\|A\|_f$ 是 A 的矩阵范数 在上式中取 $B=x\in C^{n\times l}$,则有

$$||Ax||_2 = ||AB||_F \le ||A||_F ||B||_F = ||A||_F ||x||_2$$

即矩阵范数 $\|\cdot\|_F$ 与向量范数 $\|\cdot\|_2$ 相容

非负性. 当 $x\neq 0$ 时, $xy^H\neq O$,从而 $\|x\|_V>0$;当 x=0 时, $xy^H=O$,从而 $\|x\|_V=O$.

齐次性. 对任意 $k \in C$, 有

$$\|kx\|_V = \|kxy^H\|_M = |k| \ \|xy_H\|_M = |k| \ \|x\|_V$$

三角不等式. 对任意 $x_1, x_2 \in \mathbb{C}^n$,有

$$\|x_1 + x_2\|_V = \|(x_1 + x_2)y^H\|_M = \|x_1y^H + x_2y^H\|_M \le \|x_1y^H\|_M + \|x_2y^H\|_M = \|x_1\|_V + \|x_2\|_V$$

因此, $\|x\|_V$ 是 C^n 上的向量范数. 当 $A\in C^{n imes n},\;x\in C^n$ 时,有 $\|Ax\|$

因此, $\|x\|_V$ 是 C^n 上的向量范数.当 $A\in C^{n imes n}$, $x\in C^n$ 时,有 $\|Ax\|_V=\|(Ax)y^H\|_V=\|A(xy^H)\|_M\leq \|A\|_M\,\|xy^H\|_M=\|A\|_M\,\|x\|_V$

即矩阵范数 $\|\cdot\|_M$ 与向量范数 $\|\cdot\|_V$ 相容

习题 2.1

1

对向量
$$x=(x_1,x_2,\ldots,x_n)$$
,其 1 -范数为
$$\|x\|_1=|x_1|+|x_2|+\cdots+|x_n|$$

$$2$$
 -范数为 $\|x\|_2 = \sqrt{|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2}$ ∞ -范数为 $\|x\|_\infty = \max_i |x_i|$ 故 $l_1 = |1| + |1| + \cdots + |1| = n$ $l_2 = \sqrt{|1|^2 + |1|^2 + \cdots + |1|^2} = \sqrt{n}$ $l_\infty = \max |1| = 1$

习题 2.2

 $\|A\|_1=max_i|a_i|=2,\ \|A\|_\infty=|-1|+2+1=4$ 由谱范数性质,可知

$$\|A\|_2 = \|A^T\|k = \sqrt{\lambda max(AA^T)} = \sqrt{6}$$

 $\|B\|_1 = max_i \sum_{j=1}^2 |b_{ij}| = 4$, $\|B\|_\infty = 6$ 则有

$$B^H B = egin{bmatrix} 2 & 2j & 4j \ -2j & 4 & 6 \ -4j & 6 & 10 \end{bmatrix}$$

$$|\lambda I - B^H B| = \lambda(\lambda - (8 + 2\sqrt{13}))(\lambda - (8 - 2\sqrt{13}))$$

 $\& \|B\|_2 = \sqrt{8 + 2\sqrt{13}}$