ПОСТРОЕНИЕ ЛАЧХ И ЛФЧХ ФИЛЬТРА ПРИ ДЕЙСТВИТЕЛЬНЫХ КОРНЯХ ФУНКЦИИ *H(p)*

Ограничимся рассмотрением фильтров, передаточные функции которых могут быть приведены к одному из трех видов:

$$H(p) = H_0 \frac{(\tau_1 p + 1)(\tau_2 p + 1)(\tau_3 p + 1)}{(\tau_1' p + 1)(\tau_2' p + 1)(\tau_3' p + 1)};$$
(7)

$$H(p) = H_0 \frac{p^n (\tau_1 p + 1)(\tau_2 p + 1)(\tau_3 p + 1)}{(\tau_1' p + 1)(\tau_2' p + 1)(\tau_3' p + 1)};$$
(8)

$$H(p) = H_0 \frac{(\tau_1 p + 1)(\tau_2 p + 1)(\tau_3 p + 1)}{p^n (\tau_1' p + 1)(\tau_2' p + 1)(\tau_3' p + 1)};$$
(9)

где H_0 - коэффициент усиления; au_k и au_k' - постоянные времени отдельных звеньев фильтра.

Чтобы оценить поведение функции $L(\omega)$ фильтра в целом, необходимо сложить кривые $L_k(\omega)$ всех его звеньев, включая горизонтальную линию $20 \lg H_0$. Каждый член уравнения (6), происходящий от действительного полюса или нуля, способствует общему ослаблению или усилению выходного сигнала: каждый полюс обусловит отрицательный наклон за сопрягающей частотой, а каждый нуль - положительный наклон.

Построение ЛАЧХ $L(\omega)$ фильтров, имеющих передаточные функции видов (7)...(9), выполняют в следующей последовательности:

- 1. Определяют **начальную точку** L(1) с координатами на сетке:
- $\omega = 1$ и $L(1) = 20 \lg H_0$.
- 2. Вычисляют сопрягающие частоты $\omega_k = 1/\tau_k$ и $\omega_k' = 1/\tau_k'$ и отмечают их на логарифмической оси частот.
- 3. Через начальную точку проводят низкочастотную асимптоту до пересечения с вертикалью, проходящей через первую (наименьшую) частоту сопряжения ω_1 или ω_1' :
- для вида (7) горизонтально (параллельно оси частот), т. к. отсутствует множитель p^n ;
- для вида (8) с наклоном +20n дБ/дек, т. к. имеем множитель p^n в числителе;
- для вида (9) с наклоном -20n дБ/дек, т. к. имеем множитель p^n в знаменателе.
- 4. Дальнейшее построение асимптотической ЛАЧХ ведут следующим образом. При достижении отрезком ЛАЧХ $L(\omega)$ вертикали, проведенной через сопрягающую частоту, наклон асимптоты изменяют:
- на +20 дБ/дек, если сопрягающая частота принадлежит числителю функции H(p);

- на +20n дБ/дек при n-кратных нулях;
- на -20 дБ/дек, если сопрягающая частота принадлежит знаменателю функции H(p);
 - на -20*n* дБ/дек при *n*-кратных полюсах.

Логарифмическая фазо-частотная характеристика $\Psi(\omega)$ для рассматриваемой функции H(p) определяется как сумма ФЧХ отдельных звеньев:

$$\Psi(\omega) = \Psi_1(\omega) + \Psi_2(\omega) + \Psi_3(\omega) + + \Psi_2(\omega) + \Psi_3(\omega) +,$$
 (10) где $\Psi_1(\omega) = \pi/2$, если есть множитель p в числителе; $\Psi_1(\omega) = -\pi/2$, если есть множитель p в знаменателе; $\Psi_1(\omega) = \pm n\pi/2$, если в числителе или в знаменателе множитель p имеет степень n (знак определяет место нахождения множителя p (в числителе или в знаменателе)); $\Psi_2(\omega) = \arctan(\tau_1\omega)$, $\Psi_3(\omega) = \arctan(\tau_2\omega)$, ... (для множителей в числителе); $\Psi_2(\omega) = \arctan(\tau_1\omega)$, $\Psi_3(\omega) = \arctan(\tau_2\omega)$... (для множителей в знаменателе).

Пример 2. Построить ЛАЧХ (диаграмму Боде) и ЛФЧХ для поло-

 $U_1(p)$ Рис. 5

сового фильтра (рис. 5) с параметрами: $R_1 = R_2 = R = 1$ кОм;

$$C_1 = C_2 = C = 1 \text{ MK}\Phi.$$

Решение. 1. Определим передаточную функцию фильтра, используя любой метод расчета (МУН, МКТ, правило делителя тока и др.):

$$H_u(p) = U_2(p)/U_1(p) = \frac{\tau p}{\tau^2 p^2 + 3\tau p + 1} = 10^{-3} \frac{p}{10^{-6} p^2 + 3 \cdot 10^{-3} p + 1},$$

где $\tau = RC = 10$ мс.

2. Разложив знаменатель на множители $(10^{-6} p^2 + 3 \cdot 10^{-3} p + 1 = 10^{-6} (p - p_1)(p - p_2)$, где p_1 = -0,382·10³ 1/c; p_2 = -2,62·10³ 1/c), получим

$$H_u(p) = 10^{-3} \frac{p}{(2,62 \cdot 10^{-3} p + 1)(0,383 \cdot 10^{-3} p + 1)},$$
(11)

где $H_0 = 10^{-3}$; $\tau_1' = 2,62 \cdot 10^{-3}$ c; $\tau_2' = 0,382 \cdot 10^{-3}$ c.

- 3. Сопрягающие частоты $\omega_1' = 1/\tau_1' = 382$ рад/с и $\omega_2' = 1/\tau_2' = 2620$ рад/с обратны по величине коэффициентам (постоянным времени) при $p = j\omega$ в выражении (11). Отметим начальную точку с координатами: $\omega = 1$, $L(1) = 20 \log H_0 = 20 \log 10^{-3} = -60$ дБ и сопрягающие частоты ω_1' и ω_2' на оси частот (рис. 6, a).
- 5. Из уравнения (11) видно, что RC-фильтр (см. рис. 5) состоит из одного дифференцирующего, двух интегрирующих звеньев первого порядка и одного усилительного звена. ЛАЧХ $L_0(\omega)$ (см. рис. 6, a) усилительного звена представляет собой прямую, удаленную от оси частот на рас-

стояние $20\lg H_0=20\lg 10^{-3}=$ - 60 дБ. ЛАЧХ $L_1(\omega)$ дифференцирующего звена представляет прямую, имеющую наклон +20 дБ/дек и пересекающую ось частот при частоте $\omega=10^3$ рад/с. Характеристики $L_2(\omega)$ и $L_3(\omega)$ проведены от соответствующих частот среза ω_1' и ω_2' с наклоном -20 дБ/дек.

Проведя алгебраическое сложение ординат ЛАЧХ $L_k(\omega)$ отдельных звеньев, получим результирующую ЛАЧХ $L(\omega)$ фильтра в виде сопрягающихся друг с другом прямолинейных отрезков (см. сплошные отрезки линий на рис. 6, a):

- отрезок $L_1(\omega)$ проходит от начальной точки L(1) до вертикальной линии, проведенной через сопрягающую частоту ω_1' ;

- при частоте $\omega = \omega_1'$ добавляется наклон на 20 дБ/дек, поэтому отрезок асимптотической характеристики проходит параллельно оси частот от сопрягающей частоты ω_1' до вертикальной линии, проведенной через вторую сопрягающую частоту ω_2' ;
 - при частоте ω_2' имеет место дополнительный наклон на -20 дБ/дек.
- 6. График ЛФЧХ $\Psi(\omega) = \Psi_1(\omega) + \Psi_2(\omega) + \Psi_3(\omega)$, где $\Psi_1(\omega) = \pi/2$; $\Psi_2(\omega) = \arctan(\tau_1'\omega) = \arctan(2,62\cdot10^{-3}\omega)$; $\Psi_3(\omega) = \arctan(\tau_2'\omega) = \arctan(0,382\cdot10^{-3}\omega)$, представлен на рис. 6, δ .

Примечание. При частотах, меньших первой сопрягающей частоты ω_1' , ЛАЧХ фильтра представляет собой прямую линию, проведенную с

наклоном, равным $\pm 20 n$ дБ/дек, т. к. при $\omega < \omega'_1$ ЛАЧХ $L_k(\omega)$ всех остальных звеньев имеют нулевые наклоны. Эта линия должна быть проведена так, чтобы при $\omega = 1$ рад/с её ордината равнялась $20 \lg H_0$.

Пример 3. Построить ЛАЧХ фильтра, имеющего передаточную функцию вида

$$H(p) = 100 \frac{(1,25p+1)^2}{p(5p+1)^2(0,02p+1)(0,005p+1)}.$$
 (12)

Решение. 1. Определим сопрягающие частоты, которые обратны по величине коэффициентам (постоянным времени) в выражении (12). Имеем: ω'_1 = 0,2 рад/с; ω_2 = 0,8 рад/с; ω'_3 = 50 рад/с; ω_4 = 200 рад/с. Отметим их на оси частот (рис. 7).

- 2. ЛАЧХ усилительного звена $L_0(\omega) = 20 \lg H_0 = 20 \lg 100 = 40$ дБ.
- 3. Через точку с координатами: $\omega=1$ рад/с, L(1)=40 дБ проводим низкочастотную асимптоту $L_1(\omega)$ с наклоном, равным наклону ЛАЧХ интегрирующего звена, т. е. 20 дБ/дек, т. к. ЛАЧХ $L_k(\omega)$ остальных звеньев при $\omega < \omega_1'$ имеют нулевые наклоны.
- 4. При $\omega = \omega'_1 = 0,2$ рад/с на низкочастотную асимптоту $L_1(\omega)$ накладывается ЛАЧХ двух апериодических звеньев с одинаковыми постоянными времени, имеющая наклон 40 дБ/дек. Поэтому характеристика $L(\omega)$ в интервале $\omega'_1 < \omega < \omega_2$ имеет наклон 60 дБ/дек.

- 5. При $\omega = \omega_2 = 0.8$ рад/с начинает сказывается эффект двух дифференцирующих звеньев с одинаковыми постоянными времени. Поэтому наклон $L(\omega)$ в интервале $\omega_2 < \omega < \omega_3'$ равен -20 дБ/дек.
- 6. При $\omega=\omega_3'=50$ рад/с наклон возрастает до 40 дБ/дек, а при $\omega=\omega_4=200$ рад/с ещё на 20 дБ/дек и становится равным 60 дБ/дек.

Частота ω_c , соответствующая амплитуде $H(\omega_c) = 1$ (см. точку пересечения ЛАЧХ $L(\omega)$ с осью частот), называется **частотой среза** фильтра, а диапазон частот от 0 до ω_c характеризует **полосу пропускания** фильтра.

Частотные характеристики $L(\omega)$ и $\Psi(\omega)$ используют для оценки качества фильтра, например, таких показателей как полоса пропускания сигнала, колебательность, запас устойчивости по фазе и амплитуде. Рекомендуемые запасы устойчивости:

по фазе $\gamma = 30^{\circ}...40^{\circ}$, по амплитуде m = -(8...10) дБ.

Пример 4. Построить ЛАЧХ и ЛФЧХ фильтра, передаточная функция которого при H_0 = 100 1/c; τ'_1 = 0,1 c; τ'_2 = 0,004 c имеет вид

$$H(p) = 100 \frac{1}{p(0,1p+1)(0,004p+1)}. (13)$$

Решение. 1. Для построения $L(\omega)$ и $\Psi(\omega)$ определим значения сопрягающих частот $\omega'_1 = 1/\tau'_1 = 10$ рад/с, $\omega'_2 = 1/\tau'_2 = 250$ рад/с и отметим их на оси частот (рис. 8).

- 2. На частоте $\omega = 1$ рад/с отметим значение $20 \lg 100 = 40$ дБ.
- 3. Через полученную точку A проведём низкочастотную асимптоту AM ЛАЧХ интегрирующего звена с наклоном -20 дБ/дек до пересечения с вертикалью, проведенной через первую частоту сопряжения $\omega'_1 = 10$ рад/с.
- 4. В точке M ЛАЧХ претерпевает излом вниз на 20 дБ/дек, определяемый апериодическим звеном с постоянной времени τ'_1 . Результи-

 $\Psi(\omega) = -\pi/2 - \arctan(0.1\omega) - \arctan(0.004\omega),$

рующая ЛАЧХ с наклоном - 40 дБ/дек пойдёт до пересечения в точке N с вертикалью, проведенной через вторую частоту сопряжения $\omega'_2 = 250$ рад/с. Начиная с точки N, ЛАЧХ фильтра имеет наклон - 60 дБ/дек, т. к. на этой частоте дополнительный наклон даёт апериодическое звено с постоянной времени τ'_2 .

5. Для построения ЛФЧХ воспользуемся уравнением

используя которое рассчитаем и отметим на графике фазовые углы Ψ для отдельных частот ω входного сигнала.

Из рис. 8 видно, что при заданных параметрах фильтр имеет запас устойчивости по амплитуде m=-8 дБ, а по фазе только $\gamma=11^\circ$, и, следовательно, не обладает необходимой устойчивостью. Поэтому его характеристики надо скорректировать путём введения корректирующего устройства. При этом следует иметь в виду, что изменение ЛАЧХ на каждые ± 20 дБ пропорционально изменению фазовой характеристики на $\pm 90^\circ$.