1. Statische Spiele

Gegeben sie das folgende statische Spiel in Normalform

a) Welche Lösungsmenge des Spiels ergibt sich nach iterativer Elimination strikt dominierter Strategien? (5P)

Beweis. Strategie b_3 ist für Spieler 2 strikt dominiert durch b_2 , wir erhalten:

Im reduzierten Spiel ist a_1 durch a_2 strikt dominiert für Spieler 1, d.h. Reduktion liefert

Im verbleibenden Spiel spielt Spieler 1 deterministisch a_1 und b_2 dominiert b_1 als beste Antwort für Spieler 2:

Somit ist Lösungsmenge des Spiels dich sich nach iterativer Elimination strikt dominierter Strategien ergibt ist

$$S_{eis} = (a_1, b_2)$$

Beachte: die Eliminierung von **strikt** dominierten Strategien ist immer eindeutig - im Gegensatz zur Eliminierung von schwach dominierten Strategien (falls ihr dies hattet). \Box

b) Gibt es in diesem Spiel (neben dem Gleichgewicht in reinen Strategien) ein Gleichgewicht in gemischten Strategien? Begründen Sie kurz Ihre Antwort. (5P)

1

Beweis. Die kurze Antwort wäre: nein, in einem Gleichgewicht (in gemischten Strategien) können nur Strategien sein, die die Eliminierung von strikt dominierten Strategien überleben.

Die lange Antwort: angenommen Spieler 2 würde in einem gemischten Gleichgewicht b_3 mit positiver Wahrscheinlichkeit $q_3 > 0$ spielen. Da b_3 strikt dominiert durch b_2 ist, lohnt es sich (unabhängig davon was Spieler 1 macht) für Spieler 2 b_2 anstatt b_3 zu spielen, also b_3 nicht zu spielen und die Wahrscheinlichkeit für b_2 um q_3 zu erhöhen. Da wir wissen, dass in einem Gleichgewicht b_3 nie gespielt werden wird, können wir analog zu oben a_2 für Spieler 1 ausschließen und danach ebenso b_1 für Spieler 2.

Da also nur eine Strategie pro Spieler die Eliminierung von strikt dominierten Strategien überlebt, kann es keine (echt) gemischten Strategien geben. □

c) Geben Sie ein kurze Begründung für die folgende Aussage: Wenn Spielerin i im Nash-Gleichgewicht die Strategien s_{ik} und s_{il} mit positiven Wahrscheinlichkeiten $\hat{p}_{ik} > 0$ und $\hat{p}_{il} > 0$ spielt, dann ist sie indifferent zwischen den reinen Strategien s_{ik} und s_{il} . (5P)

Beweis. Diese Aussage ist wahr. Sei S_{mixed}^* die gemischte Strategie aus der Aufgabe. Angenommen die Spielerin wäre nicht indifferent zwischen den reinen Strategien s_{ik} und s_{il} im Nash-Gleichgewicht, sei o.B.d.A k besser. In diesem Fall kann die Spielerin ihre erwartete Auszahlung steigern, indem sie die Strategie s_{ik} mit höherer Wahrscheinlichkeit anstelle s_{il} spielt (vgl. zu b)). Rechnerisch würde das so aussehen:

$$\mathbb{E}[u(S_{mixed}^*)] = \mathbb{E}[u(S_{Rest})] + \hat{p}_{ik} \cdot \mathbb{E}[u(s_{ik})] + \hat{p}_{il} \cdot \mathbb{E}[u(s_{il})]$$

$$< \mathbb{E}[u(S_{Rest})] + \hat{p}_{ik} \cdot \mathbb{E}[u(s_{ik})] + \hat{p}_{il} \cdot \mathbb{E}[u(s_{ik})] = \mathbb{E}[u(\tilde{S}_{mixed})]$$

Dies widerspricht aber der Voraussetzung, dass im Nash-Gleichgewicht

$$\mathbb{E}[u_i(S_{mixed}^*)] \ge \mathbb{E}[u_i(S_{mixed})]$$

für alle $S_{mixed} \in \Delta S_i$ gilt, insbesondere für \tilde{S}_{mixed} .

 $Mal\ nebenbei:\ das\ folgt\ unter\ Anderem\ aus\ der\ Linearit\"{a}t\ des\ Erwartungswertes.$ $\ \square$

2. Dynamische Spiele

Betrachten Sie das folgende in Extensivform beschriebene Spiel mit zwei Spielern 1 und 2 und den Auszahlungen u_1, u_2 .

a) Stellen Sie das Spiel in Normalform auf und bestimmen Sie alle Nash-Gleichgewichte. (5P)

Beweis. Zuerst betrachten wir die Strategien der Spieler. P1 kann sich entscheiden zwischen L, M und R. P2 kann nicht unterscheiden, ob er sich bei L oder M befindet und muss demnach unabhängig davon A oder F wählen. Um dies zu einem Spiel in Normalform umzuschreiben, fügen wir noch künstlich bei R die Entscheidung zwischen A und F für P2 ein, wobei dies nichts an der Auszahlung ändert.

Somit wählt P1 eine der drei Strategien L, M und R und unabhängig davon (d.h. simultan) wählt P2 eine seiner beiden:

Wir ermitteln für jede Strategie jedes Spielers die beste Antwort (also die höchste Auszahlung pro Spalte für P1 und die höchste Auszahlung pro Zeile für P2) und unterstreichen Sie im Spiel:

$$\begin{array}{c|cccc} & & & & & P2 \\ & & A & F \\ & L & \hline{ 2,1 } & 0,0 \\ P1 & M & \hline{ 0,2 } & 0,1 \\ & R & \hline{ 1,3 } & \underline{1,3} \\ \end{array}$$