

王石嵘

August 30, 2019

Contents

2	Man	y-electi	ron Wave Functions and Operators	2
	2.1	The Electronic Problem		2
		2.1.1	Atomic Units	2
		2.1.2	The B-O Approximation	2
		2.1.3	The Antisymmetry or Pauli Exclusion Principle	2
	2.2	Orbita	als, Slater Determinants, and Basis Functions	2
		2.2.1	Spin Orbitals and Spatial Orbitals	2
			Ex 2.1	2
		2.2.2	Hartree Products	2
			Ex 2.2	2
		2.2.3	Slater Determinants	2
			Ex 2.3	2

2 Many-electron Wave Functions and Operators

2.1 The Electronic Problem

- 2.1.1 Atomic Units
- 2.1.2 The B-O Approximation
- 2.1.3 The Antisymmetry or Pauli Exclusion Principle
- 2.2 Orbitals, Slater Determinants, and Basis Functions
- 2.2.1 Spin Orbitals and Spatial Orbitals
- Ex 2.1 Consider $\langle \chi_k | \chi_m \rangle$. If k = m,

$$\langle \chi_{2i-1} | \chi_{2i-1} \rangle = \langle \psi_i^{\alpha} | \psi_i^{\alpha} \rangle \langle \alpha | \alpha \rangle = 1 \tag{2.2.1}$$

$$\langle \chi_{2i} | \chi_{2i} \rangle = \langle \psi_i^{\beta} | \psi_i^{\beta} \rangle \langle \alpha | \alpha \rangle = 1$$
 (2.2.2)

thus

$$\langle \chi_k \, | \, \chi_k \rangle = 1 \tag{2.2.3}$$

If $k \neq m$, three cases may occur as below

$$\langle \chi_{2i-1} | \chi_{2j-1} \rangle = \langle \psi_i^{\alpha} | \psi_i^{\alpha} \rangle \langle \alpha | \alpha \rangle = 0 \cdot 1 = 0 \qquad (i \neq j)$$
(2.2.4)

$$\langle \chi_{2i-1} | \chi_{2j} \rangle = \left\langle \psi_i^{\alpha} | \psi_j^{\beta} \right\rangle \langle \alpha | \beta \rangle = S_{ij} \cdot 0 = 0$$
 (2.2.5)

$$\langle \chi_{2i} | \chi_{2j} \rangle = \left\langle \psi_i^{\beta} | \psi_j^{\beta} \right\rangle \langle \beta | \beta \rangle = 0 \cdot 1 = 0 \qquad (i \neq j)$$
 (2.2.6)

thus

$$\langle \chi_k \, | \, \chi_m \rangle = 0 \qquad (k \neq m) \tag{2.2.7}$$

Overall.

$$\langle \chi_k \, | \, \chi_m \rangle = \delta_{km} \tag{2.2.8}$$

2.2.2 Hartree Products

Ex 2.2

$$\mathcal{H}\Psi^{HP} = \sum_{i=1}^{N} h(i)\chi_{i}(\mathbf{x}_{1})\chi_{j}(\mathbf{x}_{2})\cdots\chi_{k}(\mathbf{x}_{N})$$

$$= \varepsilon_{i}\chi_{i}(\mathbf{x}_{1})\chi_{j}(\mathbf{x}_{2})\cdots\chi_{k}(\mathbf{x}_{N}) + \chi_{i}(\mathbf{x}_{1})[\varepsilon_{j}\chi_{j}(\mathbf{x}_{2})]\cdots\chi_{k}(\mathbf{x}_{N}) + \cdots + \chi_{i}(\mathbf{x}_{1})\chi_{j}(\mathbf{x}_{2})\cdots[\varepsilon_{k}\chi_{k}(\mathbf{x}_{N})]$$

$$= (\varepsilon_{i} + \varepsilon_{j} + \cdots + \varepsilon_{k})\Psi^{HP}$$
(2.2.9)

2.2.3 Slater Determinants

Ex 2.3

$$\langle \Psi | \Psi \rangle = \frac{1}{2} (\langle \chi_i | \chi_i \rangle \langle \chi_j | \chi_j \rangle - \langle \chi_i | \chi_j \rangle \langle \chi_j | \chi_i \rangle - \langle \chi_j | \chi_i \rangle \langle \chi_i | \chi_j \rangle + \langle \chi_j | \chi_j \rangle \langle \chi_i | \chi_i \rangle)$$

$$= \frac{1}{2} (1 + 0 + 0 + 1) = 1$$
(2.2.10)

Ex 2.4