Algorithmique de l'IA Classification

Ahmed CHADLI Fares GRABA Rémi WATRIGANT Sonia AKROUNE Yasser KADDOUR

20 mai 2010

- Introduction
- Naïve Bayes
- 3 C4.5
- 4 L'implémentation
- Résultats

- Introduction
 - Définitions
 - Critères d'évaluation
- 2 Naïve Bayes
- 3 C4.5
- 4 L'implémentation
- 6 Résultats

Définitions

- $E = E_1 \times ... \times E_n$ ensemble des instances.
- $A \subset E$ ensemble d'apprentissage.
- $T \subset E$ ensemble de test
- $C = \{c_1, ..., c_k\}$ ensemble des classes.
- $f: E \longrightarrow C$ la fonction d'affectation.

Un classifieur prend en entrée :

- $\{(x, f(x)) : x \in A\}$
- T

Et doit ensuite créer une fonction

$$\hat{f}:T\longrightarrow C$$

Critères d'évaluation

Une instance $x \in \mathcal{T}$ est bien classée ssi $\hat{f}(x) = f(x)$. On mesure alors :

- Pourcentage d'instances de T bien classées (resp. mal classées).
- Pour une classe $c \in C$:
 - Faux positifs : $FP = |\{x \in T : \hat{f}(x) = c \land f(x) \neq c\}|$. Valeur optimale : 0.
 - Faux négatifs : $FN = |\{x \in T : \hat{f}(x) \neq c \land f(x) = c\}|$. Valeur optimale : 0.
 - Vrais positifs : $TP = |\{x \in T : \hat{f}(x) = f(x) = c\}|$. Valeur optimale : |T|.
 - Precision : $\frac{TP}{TP+FP}$. Valeur optimale : 1.
 - Recall : $\frac{TP}{TP+FN}$. Valeur optimale : 1.
 - F-Mesure: 2 * \frac{precision*recall}{precision+recall}. Valeur optimale: 1.

- Introduction
- Naïve Bayes
- 3 C4.5
- 4 L'implémentation
- 6 Résultats

- 1 Introduction
- Naïve Bayes
- 3 C4.5
- 4 L'implémentation
- 6 Résultats

- Introduction
- Naïve Bayes
- 3 C4.5
- 4 L'implémentation
- 6 Résultats

- 1 Introduction
- Naïve Bayes
- 3 C4.5
- 4 L'implémentation
- 6 Résultats