

Families in the Wild (FIW)

Large-Scale Kinship Image Database and Benchmarks Joseph P. Robinson, Ming Shao, Yue Wu, Yun Fu

{jrobins1, mingshao, yuewu, yunfu}@ece.neu.edu

Problem Formulation

- Automatic kinship recognition is a challenging feat
- Pre-existing datasets do not properly represent true data distributions
- Many factors are still undiscovered by the machine vision community
- · Research has not yet reached reality, i.e., technology has not matured enough to address real world problems and data

Goal: Build and Benchmark a Large-scale Kinship Dataset to best support the task of kinship recognition

Dataset	No. Family	No. People	No. Faces	Age Vary	Family Structure	Highlights
CornellKin	150	300	300	*	*	Parent-child pairs.
UB KinFace-I	90	180	270	~	*	Parent-child pairs at various ages.
UB KinFace-II	200	400	600	~	*	Parent-child pairs at various ages.
KFW-I	_	1,066	1,066	*	*	Parent-child pairs.
KFW-II	_	2,000	2,000	*	*	Parent-child pairs.
TSKinFace	787	2,589	_	~	~	2 parents-child for tri-verification.
Family101	101	607	14,816	~	~	Family structured, variations in age and ethnicity.
FIW(Ours)	1,000	10,676	30,725	~	~	1,000 family trees, providing both depth & breadth, plus multi-task

evaluation offerings.

Table 1 Comparison of FIW with related datasets.

Fig 1 Process to build FIW (1) Data Collection: list of candidate families & photos were collected (2) Data Annotation: label tool to mark complex relationships for 1,000 families (3) Post-Processing: parsed two label-types generated by tool for verification & recognition.

- Much larger, spanning with depth and breadth (i.e., multiple generations & samples per subject)
- Quality images taken in the wild
- Abundance of full family trees; many more pair-wise samples than pre-existing datasets (i.e., far outdoes our predecessors)
- Serves multi-task purposes supported by laboratory style evaluations & benchmarked results

Table 2 Image Pair Count Comparison								
Type	KFW-II	Siblin g Face	Group Face	Family 101	FIW (Ours)			
B-B		232	40		86,000			
S-S		211	32		86,000			
SIBS		277	53		75,000			
F-D	250		69	147	45,000			
F-S	250		69	213	43,000			
M-D	787		_	148	44,000			
M-S	101		70	184	37,000			
GF-GD					410			
GF-GS					350			
GM-GD					550			
GM-GS					770			
Total	1,000	720	395	607	418,060			

Benchmarks

Top accuracies for each task resulted from fine-tuning the VGG-Face model.

Table	3 Verificatio	n scores fo	or 5-fold exp	eriment.					
	HOG LE	3P \	/GG-Face F	ine-Tuned					
F-D	56.1	55	64.4	69.4					
F-S	56.5	55.3	63.4	68.2					
M-D	56.4	55.4	66.2	68.4					
M-S	55.3	55.9	64	69.4					
SIBS	58.7	57.1	73.2	74.4					
B-B	50.3	56.8	71.5	73					
S-S	57.4	55.8	70.8	72.5					
GF-GD	59.3	58.5	64.4	72.9					
GF-GS	66.9	59.1	68.6	72.3					
GM-GD	60.4	55.6	66.2	72.4					
GM-GS	56.9	60.1	63.5	68.3					
Avg.	57.7	56.8	66.9	71					
Table 4	Table 4 Family recognition results, 5-fold experiment.								
Fold	VGG-F	ace	Fine-T	uned					
1	9.6	5	10.9						
2	14.	5	14.8						
3	11.	6	12.5						
4	12.	7	14.8						
5	13.	1	13.5						
Avg.	12.	3	13.3						

F-S

Dataset

Finish project page with data, labels, features, source code, & CNN models

Evaluations

- Release additional benchmarks
 - Search & retrieval (missing child); fine-grain categorization (build family trees), & more

Better results

• Further investigation of deep learning techniques for these problems

References

- 1. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Application to face
- recognition. PAMI (2006). 2. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV (2004).
- Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: BMVC (2015).
- Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR (2013).
- 5. Xia, S., Shao, M., Luo, J., Fu, Y.: Understanding kin relationships in a photo. IEEE Transactions on Multimedia 14(4) (2012).
- 6. Fang, R., Tang, K.D., Snavely, N., Chen, T.: Towards computational models of kinship verification.
- ICIP (2010). 7. Qin, X.., Chen, S. Tri-subject kinship verification: Understanding the core of a family.
- 8. Xia, S., Shao, M., Fu, Y.: Kinship verification through transfer learning. IJCAI (2011).
- Guo Y., Dibeklioglu H., vander Maaten L. Graph-based kin recognition ICPR (2014). 10. Y. Jia, E. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe:
- Convolutional architecture for fast feature embedding. arXiv:1408.5093, (2014).
- 11. F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. CVPR (2015).