Example: Series resonant circuit with R = 50Ω , L = 4mH and C = 0.1μ F.

Calculate the following parameters:

a)
$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{4 \times 10^{-3} \times 0.1 \times 10^{-6}}} = 50 \times 10^{-3} \times 0.1 \times 10^{-6}$$

b) $f_{0s} = \frac{\omega_{0s}}{2\pi} = \frac{50 \times 10^{-3}}{2\pi} = 7.957 \text{ kHz}$

Frequency

b)
$$f_{0s} = \frac{\omega_{0s}}{2\pi} = \frac{50 \times 10^3}{2\pi} = 7.957 \text{ kHZ}$$

c)
$$Q_{0s} = \frac{\omega_{0s}L_s}{R_s} = \frac{50 \times 10^3 \times 4 \times 10^{-3}}{50} = 4$$

c)
$$Q_{0s} = \frac{\omega_{0s}L_s}{R_s} = \frac{50\times10^3\times4\times10^{-3}}{50} = 4$$
 \Rightarrow quality factor (how steep) d) $B_s = \frac{\omega_{0s}}{Q_{0s}} = \frac{50\times10^3}{4} = 12.5$ trad/s = $\omega_z - \omega_1$ \Rightarrow bandwidth (half-power)

e)
$$\omega_1 = \omega_0 \left[\sqrt{1 + \left(\frac{1}{2Q_0}\right)^2} - \frac{1}{2Q_0} \right] = 50 \times 10^3 \left[\sqrt{1 + \left(\frac{1}{8}\right)^2} - \frac{1}{8} \right]$$

f)
$$\omega_2 = \omega_0 \left[\sqrt{1 + \left(\frac{1}{2Q_0}\right)^2} + \frac{1}{2Q_0} \right] = 50 \times 10^3 \left[\sqrt{1 + \left(\frac{1}{8}\right)^2} + \frac{1}{8} \right]$$
= 56.64 kerad/S

g)
$$Z_{in}$$
 at 45 krad/sec = ?

g)
$$Z_{in}$$
 at 45 krad/sec = ?
$$Z_{in} = R + sL + \frac{1}{sc} = 50 + 5 \times 4 \times 10^{-3} + \frac{1}{5 \times 0.1 \times 10^{-6}}$$

$$S = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} (1 + 5 \times 10^{-3}) + \int_{-\infty}^{\infty} (1 + 5 \times 10^{-3$$

Scaling

Once a network has been designed for a specific Q and ω_0 it can be scaled.

Magnitude scaling by a factor K_m means all impedances are increased by K_m (a real positive value), thus

$$R \to K_m R$$
, $L \to K_m L$, $C \to C/K_m$

$$L \to K_m L$$

$$C \to C/K_m$$

Frequency scaling by a factor K_f means that the frequency at which a particular impedance occurs is increased by K_f (a real positive value), thus

$$R \to R$$
,

$$R \to R$$
, $L \to L/K_f$, $C \to C/K_f$

$$C \rightarrow C/K_f$$

Example: Scale a prototype circuit

The "prototype" circuit shown has $\omega_0 = 1$ rad/sec, $Q_0 = 5$ and B = 0.2 rad/sec. We wish to scale it so that the maximum impedance is 800 Ω at 2x10⁶ rad/sec. Apply both magnitude and frequency scaling.

$$R = 2.5 \Omega$$
 2 km $R = 800 \Omega$
 $2.5 \text{km} = 800$
 $2.5 \text{km} = 320$
 $2 \times 10^6 = 2 \times 10^6$
 $4 \times 10^6 = 2 \times 10^6$

$$c' = \frac{c}{k_m k_f} = \frac{2}{320 \times 2 \times 10^6}$$

= 3.125 nF

Bode Diagrams

Readings: Section 15.2

Cartesian and Polar Coordinates

To draw bode plots you must be able to calculate magnitude $|G(j\omega)|$ and phase $/G(j\omega)$ from G(s) and be able to find the poles and zeros.

Example: Find magnitude $|G(j\omega)|$ and phase $\underline{/G(j\omega)}$ for $G(s) = \frac{1}{RCs+1}$

$$G(j\omega) = \frac{1}{jRC\omega + 1}$$

$$|G(j\omega)| = \frac{1}{|I^2 + (RC\omega)^2}$$

$$|G(j\omega)| = -\tan^{-1}(\frac{RC\omega}{I})$$

$$|G$$

If we had (c+jd)(e+jf)

then $1 = \frac{\sqrt{a^2 + b^2}}{\sqrt{c^2 + d^2} \sqrt{e^2 + f^2}}$

$$= tan'(\frac{b}{a}) - tan'(\frac{d}{c}) - tan'(\frac{f}{e})$$

Example 2: Find
$$|G(j\omega)|$$
 and $|G(j\omega)|$ for $G(s) = \frac{s+4}{(s+1)(s+2)}$.

$$|G(j\omega)| = \frac{\int \omega + \frac{1}{2} + \omega^{2}}{\int \omega + \frac{1}{2} + \omega^{2}} = \frac{\int \omega + \frac{1}{2} + \omega^{2}}{\int \omega + \frac{1}{2} + \omega^{2}} = \frac{\int \omega + \frac{1}{2} + \omega^{2}}{\int \omega + \omega^{2}} = \frac{\int \omega + \frac{1}{2} + \omega^{2}}{\int \omega + \omega^{2}} = \frac{\int \omega + \omega^$$

Frequency Response

- Assuming a steady-state sinusoidal response.
- Assuming a well-behaved transfer function (LHP poles).
- We can calculate $|G(j\omega)|$ and $\angle G(j\omega)$ and find:

Magnitude of input of input
$$y_{ss}(t) = r_0 |G(j\omega)| \sin(\omega t + \angle G(j\omega))$$
 Magnitude of Phase of transfer function function

- Frequency response is the visualisation of $|G(j\omega)|$ and $\angle G(j\omega)$.
- It's generally done in one of 3 ways...

1. Nichols plot: $|G(j\omega)|$ and $\angle G(j\omega)$ are shown in rectangular coordinates as ω varies.

2. Nyquist plot: $|G(j\omega)|$ and $\angle G(j\omega)$ are shown in polar coordinates as ω varies.

3. Bode plot: $|G(j\omega)|$ and $\angle G(j\omega)$ are shown in separate parametric plots as ω varies.

Bode diagrams

- A quick way to get approximate picture of amplitude and phase variation of a transfer function as a function of ω .
- Plot using logarithmic frequency scale.
- Magnitude plotted in decibels (dB).
 - Straightens commonly observed curves, easy sketching.
 - o Enables superposition of multiple curves, since log(AB) = log(A) + log(B). $\geq log(AB) = lo$
- For transfer function $H(j\omega)$
 - o Magnitude $|H(j\omega)|$.
 - Magnitude in dB is $H_{dB} = 20 \log_{10} |H(j\omega)|$.
 - $\circ |H(j\omega)| = 10^{(H_{dB}/20)}.$

Values

$ H(j\omega) $	H_{dB}
1	0
2	6.02
10	20

• An increase of $|H(j\omega)|$ by a factor of 10 leads to an increase in H_{dB} by 20 dB.

Multiplying by factor K in H(s)

• Horizontal straight line at $20 \log_{10} |K|$ dB above (below if |K| < 1) abscissa.

Asymptotes

Need to factor H(s) to show poles and zeros.

A simple zero

• Consider a zero at **s** = -a.

$$\circ \ \ H(s) = 1 + \frac{s}{a}$$

$$\circ |H(j\omega)| = \left|1 + \frac{j\omega}{a}\right| = \sqrt{1 + \frac{\omega^2}{a^2}}$$

$$0 H_{dB} = 20 \log_{10} \sqrt{1 + \frac{\omega^2}{a^2}}$$

- \circ When ω « a, $H_{dB} \approx 20 \log_{10} 1 = 0$
- When ω » a, $H_{dB} \approx 20 \log_{10} \left(\frac{\omega}{a}\right)$