

TodMasterClock

Reference Manual

Product Info	
Product Manager	Sven Meier
Author(s)	Sven Meier
Reviewer(s)	-
Version	1.6
Date	26.01.2023

Copyright Notice

Copyright © 2024 NetTimeLogic GmbH, Switzerland. All rights reserved. Unauthorized duplication of this document, in whole or in part, by any means, is prohibited without the prior written permission of NetTimeLogic GmbH, Switzerland

All referenced registered marks and trademarks are the property of their respective owners

Disclaimer

The information available to you in this document/code may contain errors and is subject to periods of interruption. While NetTimeLogic GmbH does its best to maintain the information it offers in the document/code, it cannot be held responsible for any errors, defects, lost profits, or other consequential damages arising from the use of this document/code.

NETTIMELOGIC GMBH PROVIDES THE INFORMATION, SERVICES AND PRODUCTS AVAILABLE IN THIS DOCUMENT/CODE "AS IS," WITH NO WARRANTIES WHATSOEVER. ALL EXPRESS WARRANTIES AND ALL IMPLIED WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF PROPRIETARY RIGHTS ARE HEREBY DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT SHALL NETTIMELOGIC GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, SPECIAL AND EXEMPLARY DAMAGES, OR ANY DAMAGES WHATSOEVER, ARISING FROM THE USE OR PERFORMANCE OF THIS DOCUMENT/CODE OR FROM ANY INFORMATION, SERVICES OR PRODUCTS PROVIDED THROUGH THIS DOCUMENT/CODE, EVEN IF NETTIMELOGIC GMBH HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

IF YOU ARE DISSATISFIED WITH THIS DOCUMENT/CODE, OR ANY PORTION THEREOF, YOUR EXCLUSIVE REMEDY SHALL BE TO CEASE USING THE DOCUMENT/CODE.

Overview

NetTimeLogic's Time Of Day (TOD) Master Clock is a full hardware (FPGA) only implementation of a synchronization core able to synchronize a Time of Day sink via NMEA over UART.

The whole message creation, algorithms and calculations are implemented in the core, no CPU is required. This allows running TOD synchronization completely independent and standalone from the user application. The core can be configured either by signals or by an AXI4Lite-Slave Register interface.

This core only uses the second part of the clock, frequency and sub-second offset distribution shall be done in a combination with the PPS Master Clock.

Key Features:

- Time of Day Master Clock
- Built-in UART transmitter with configurable baudrate
- Configurable GNSS Identifier for GPS (GPxxx), GLONASS (GLxxx), GALILEO (GAxxx), BEIDOU (GBxxx) or Combined (GNxxx) NMEA messages
- NMEA message creator
- Support for NMEA GxZDA and/or GxRMC messages for time distribution
- Optional support for proprietary NMEA GxUTC message for UTC information distribution
- Hardware time conversion from seconds since midnight 1.1.1970 (Linux, TAI, PTP) into Time of Day format (hh:mm:ss dd:mm:yyyy)
- Sending at the local second overflow
- In combination with a PPS Master Clock from NetTimeLogic: synchronization accuracy: +/- 25ns
- AXI4Lite register set or static configuration

Revision History

This table shows the revision history of this document.

Version	Date	Revision
0.1	10.02.2017	First draft
1.0	18.03.2017	First release
1.1	20.12.2017	Status interface added
1.2	17.02.2020	Added Polarity swap mode
1.3	30.07.2020	Added Support for GNSS Identifier
1.4	14.10.2022	Added RMC support
1.5	03.01.2023	Added Vivado upgrade version description
1.6	26.01.2023	Added GxUTC

Table 1: Revision History

Content

1	INTRODUCTION	9
1.1	Context Overview	9
1.2	Function	10
1.3	Architecture	10
2	NMEA BASICS	12
2.1	Interface	12
2.2	Messages 2.1 NMEA ZDA - Data and Time 2.2 NMEA RMC - Recommended Minimum Data 2.3 NMEA UTC - UTC Information	12 13 13 14
2.3	Message rate and phase	14
2.4	UTC vs TAI time bases	15
3	REGISTER SET	16
3.1	Register Overview	16
3.2 3.2	Register Descriptions 2.1 General	17 17
4	DESIGN DESCRIPTION	28
4.1 4.1 4.1		28 28 30
	Design Parts 2.1 TX Processor 2.2 UART Interface Adapter 2.3 Registerset	37 37 40 42

4.3	Configuration example	47
4.3	3.1 Static Configuration	47
4.3	3.2 AXI Configuration	47
4.4	Clocking and Reset Concept	49
4.4	I.1 Clocking	49
4.4	I.2 Reset	49
5	RESOURCE USAGE	51
5.1	Altera (Cyclone V)	51
5.2	AMD/Xilinx (Artix 7)	51
6	DELIVERY STRUCTURE	52
7	TESTBENCH	53
7.1	Run Testbench	53
•		
8	REFERENCE DESIGNS	54
8.1	Altera: Terasic SocKit	54
8.2	AMD/Xilinx: Digilent Arty	55
8.3	AMD/Xilinx: Vivado version	56

Definitions

Definitions	
	Is a combined electrical and data specification for commu-
	nication between marine electronics such as echo sounder,
	sonars, anemometer, gyrocompass, autopilot, GPS receiv-
NMEA 0183	ers and many other types of instruments. The NMEA 0183
	standard uses a simple ASCII, serial communications proto-
	col that defines how data are transmitted in a "sentence"
	from one "talker" to multiple "listeners" at a time
Tod Master Clock	A clock that can synchronize other vis NMEA 0183 mes-
Tod Master Clock	sages via UART
PI Servo Loop	Proportional-integral servo loop, allows for smooth correc-
11361V0 E00p	tions
Offset	Phase difference between clocks
Drift	Frequency difference between clocks

Table 2: Definitions

Abbreviations

Abbreviations	
AXI	AMBA4 Specification (Stream and Memory Mapped)
IRQ	Interrupt, Signaling to e.g. a CPU
PPS	Pulse Per Second
TOD	Time of Day
ТМ	TOD Master
GPS	Global Positioning System
NMEA	National Marine Electronics Association
TS	Timestamp
ТВ	Testbench
UART/RS232	Universal Asynchronous Receiver Transmitter
LUT	Look Up Table

FF	Flip Flop				
RAM	Random Access Memory				
ROM	Read Only Memory				
FPGA	Field Programmable Gate Array				
VHDL	Hardware description Language for FPGA's				
Coordinated Universal Time, popularly known as G					
	(Greenwich Mean Time)				
	Temps Atomique International, is the international atomic				
TAI	time scale based on a continuous counting of the SI sec-				
ond. TAI is currently ahead of UTC by 36 seconds. TAI					
	always ahead of GPS by 19 seconds.				

Table 3: Abbreviations

1 Introduction

1.1 Context Overview

The TOD Master Clock is meant as a co-processor handling Time of Day (TOD) outputs in the form of NMEA messages via UART. It transmits NMEA messages to a NMEA sink (IED receiver) via an UART/RS232 interface; it does not receive any message from the sink though.

This means it creates NMEA messages directly in hardware, converts the time from the same format and time base as the Counter Clock into the Time of Day formar and sends it via UART.

The TOD Master Clock is designed to work in cooperation with the Counter Clock core from NetTimeLogic (not a requirement). It can be combined with a PPS Master clock to synchronize for e.g. an IED receiver. Offset and drift are then distributed via the PPS Master Clock to the next second and the TOD Master Clock will distribute the absolute time on seconds level.

It contains an AXI4Lite slave for configuration and supervision from a CPU, this is however not required since the TOD Master Clock can also be configured statically via signals/constants directly from within the FPGA.

Figure 1: Context Block Diagram

1.2 Function

The TOD Master Clock first converts the local time in seconds since midnight 1.1.1970 (no fractions of seconds used) together with a configurable offset to convert between TAI and UTC or any other time base (leap seconds or different start of epoch) to time in the hh:mm:ss dd:mm:yyyy format taking leap years into account and passes it at the next second boundary to the NMEA message creator. This Time of Day is converted from binary UTC time into ASCII encoded time and is then embedded into a NMEA GxZDA messages with the local time information provided and sent via an AXI byte stream to the UART output. The UART converts the AXI byte stream to an UART output with configurable baud rate.

1.3 Architecture

The core is split up into different functional blocks for reduction of the complexity, modularity and maximum reuse of blocks. The interfaces between the functional blocks are kept as small as possible for easier understanding of the core.

Figure 2: Architecture Block Diagram

Register Set

This block allows reading status values and writing configuration.

UART Transmitter

This block is an UART Transmitter which converts the byte aligned AXI stream into a serial stream.

NMEA Crator

This block creates the NMEA message, embeds the UTC time in time of day format and adds the local time and sends it as a data stream to the UART Transmitter

Time Converter

This block converts the TAI time in seconds since 1.1.1970 without leap seconds format into UTC time in time of day format. Optionally this contains a UTC handler which handles the UTC Time and leap flags standalone.

2 NMEA Basics

2.1 Interface

NMEA 0183 is a standard for communication between navigation equipment on ships defined by the National Marine Electronics Association which also defines how the communication between a GPS receiver and a PC shall look like. The NMEA 0183 standard uses a simple ASCII, serial communications protocol that defines how data are transmitted in messages from one source to multiple sinks at a time.

Typical Baud rate 4800

Data bits 8

Parity None

Stop bits 1

Handshake None

2.2 Messages

NMEA messages always start with a "\$" character, followed by the source id which is "GP" for GPS, "GL" for GLONASS, "GA" for GALILEO, "GB" for BEIDOU or "GN" for Combined, followed by a three character message type. Then a message type dependent number of fields of different lengths follow, each field separated with a "," character. The last field is terminated with a "*" character and followed by a checksum in hexadecimal format.

There are many message types defined for GNSS sources, however only a few contain the time of day: ZDA (Data and Time) and RMC (Recommended Minimum Data).

Since there is no standard NMEA message for UTC information an additional message was defined for this.

The message format of the messages used is described in the next chapters, be aware that some GNSS receiver have higher accuracy on some values and will add fractions, so fields don't always have the same width (e.g. seconds might be with or without fractions).

2.2.1 NMEA ZDA - Data and Time

This message is specifically made for transferring time. It event has the local time offset for local time but this is not used.

\$GxZDA,hhmmss.ss,dd,mm,yyyy,aa,bb*CC

• x: P (GPS), L (GLONASS), A (GALILEO), B (BEIDOU), N (All)

• hh: hours (00 - 23)

• mm: minutes (00 - 59)

• ss.ss: decimal seconds (00.99 - 60.99)

• dd: day (01 - 31)

• mm: month (01 - 12)

• yyyy: year (1970 - 2106)

• aa: local zone hours (ignored)

• bb: local zone minutes (ignored)

• *CC: checksum (00-FF)

2.2.2 NMEA RMC - Recommended Minimum Data

This message is supported by all GPS receivers, it describes the minimum message that a GPS receiver has to be able to output when conforming with the NMEA 2.0standard.

\$GxRMC,hhmmss.ss,S,xxx.xxxx,N,xxx.xxxx,E,v.vv,aaa.aa,ddmmyy,vv.v,E,F*CC

• x: P (GPS), L (GLONASS), A (GALILEO), B (BEIDOU), N (All)

hh: hours (00 - 23)mm: minutes (00 - 59)

• ss.ss: decimal seconds (00.99 - 60.99)

S status A=active or V=Void

xxx.xxxx,N latitude (ignored)

• xxx,xxxx,E longitude (ignored)

v.vv speed (ignored)aaa.aa course (ignored)

• dd: day (01 - 31)

• mm: month (01 - 12)

• yy: year (1970 - 2069)

vv.v,E: magnetic variation (ignored)F: mode: M=manual input mode

• *CC: checksum (00-FF)

2.2.3 NMEA UTC - UTC Information

This is a proprietary NMEA message defined by NetTimeLogic for proving UTC information to NMEA Slaves, since standard NMEA has no message defining these values. From the TAI time plus the remaing leap seconds it can be calculated excatly at which second the leap event will happen or has happened. From TAI and UTC offset the UTC time can be calculated taking the leap flags also into account.

\$GxUTC,TTTTTTTTTTTTT,(-)ooo,(-)tttttttt,SS*CC

• x: P (GPS), L (GLONASS), A (GALILEO), B (BEIDOU),

N (All)

• TTTTTTTTTTTTT: current TAI Time in seconds (0 - (2^48-1))

• (-)ooo: current TAI-UTC offset in seconds (-128 - 128)

• (-)ttttttt: time since last (negative) or to next (positive) leap

second event in seconds (-99999999 - 99999999)

• SS status as ASCII represented hex (00-FF, MSB left)

BitO: TAI-UTC offset valid

Bit1: Leap info valid

Bit2: Leap61 announcement Bit3: Leap59 announcement

Bit4: Time since last or to next leap event valid

Bit5: TAI time valid Bit6: Reserved '0' Bit7: Reserved '0'

• *CC: checksum (00-FF)

2.3 Message rate and phase

The message rates of these message is set to once per second. It is important that the received NMEA message is received in a fixed phase to the second overflow (PPS) e.g. always at the second overflow other ways time jumps can happen. If both message types are enabled RMC comes first and 2 milliseconds later the ZDA message will be sent.

Figure 3: NMEA to PPS alignment

2.4 UTC vs TAI time bases

The message contains the time of day on UTC base. UTC has an offset to TAI which is the time base normally used for the Counter Clock. This time offset can be set in the core so the local clock can still run on a TAI base. UTC in comparison to TAI or GPS time has so called leap seconds. A leap second is an additional second which is either added or subtracted from the current time to adjust for the earth rotation variation over time. Until 2016 UTC had additional 36 leap seconds, therefore TAI time is currently 36 seconds ahead of UTC. The issue with UTC time is, that the time makes jumps with the leap seconds which may cause that synchronized nodes go out of sync for a couple of seconds. Leap seconds are normally introduced at midnight of either the 30 of June or 31 of December. For an additional leap second the seconds counter of the UTC time will count 59 twice before wrapping around to zero, for one fewer leap second the UTC second counter will wrap directly from 58 to 0 by skipping 59 (this has not happened yet).

Be aware that this core might not take additional precautions to handle leap seconds (in case the optional UTC handler is not there), so it will make a time jump at a UTC leap second and will cause that the sinks lose synchronization since it thinks that it has an offset of one second at tries to distribute this offset. A way to avoid this is to disable the distribution at the two dates right before midnight (e.g. one minute earlier), wait for the leap second to happen, fetch some time server to get the new offset between TAI and UTC, set this offset to the core and enable the core again. This way the distributed clock on UTC base makes no jump at the wrong second since the new offset is already considered. The only issue with this is that for the time around midnight the sinks are free running without a reference.

3 Register Set

This is the register set of the TOD Master Clock. It is accessible via AXI4Lite Memory Mapped. All registers are 32bit wide, no burst access, no unaligned access, no byte enables, no timeouts are supported. Register address space is not contiguous. Register addresses are only offsets in the memory area where the core is mapped in the AXI interconnects. Non existing register access in the mapped memory area is answered with a slave decoding error.

3.1 Register Overview

Registerset Overview						
Name	Description	Offset	Access			
Tod MasterControl Reg	Tod Master Enable Control Register	0x0000000	RW			
Tod MasterStatus Reg	Tod Master Error Status Register	0x0000004	WC			
Tod MasterUartPolarity Reg	Tod Master UART Polarity Register	0x0000008	RW			
Tod MasterVersionReg	Tod Master Version Register	0x0000004	WC			
Tod MasterCorrection Reg	Tod Master Second Corrections Register	0x0000010	RW			
Tod MasterLocal Reg	Tod Master Local Time Register	0x0000014	RW			
Tod MasterUartBaudRate Reg	Tod Master UART Baud Rate Register	0x0000020	RW			
Tod MasterUtcInfoControl Reg	Tod Master UTC Info Control Register	0x00000100	RW			
Tod MasterUtcInfo Reg	Tod Master UTC Info Register	0x00000104	RW			

Table 4: Register Set Overview

TodMaster Reference Manual 1.6 Page 16 of 58

3.2 Register Descriptions

3.2.1 General

3.2.1.1 TOD Master Control Register

Used for general control over the TOD Master Clock, all configurations on the core shall only be done when disabled.

Tod MasterControl Reg																			
Reg Description																			
31 30 29 28	27 26 25 24	23 22 21 20 19	18	17 16	15	14	13	12	11 10	0 9	9 8	7	6	5	4	3	2	1	0
1	GNSS	RESERVED	UTC_DISABLE	ZDA_DISABLE RMC_DISABLE							ı								ENABLE
RO	RW	RW	RW F	RW RW	′						RO								RW
	Reset: 0x02000000																		
				Offset	t: Ox	000C	•			•	•		•	•		•	•		_

Name	Description	Bits	Access
-	Reserved, read 0	Bit: 31:28	RO
GNSS	GNSS System to be simulated: 0=Default (GPS)	Bit: 27:24	RW

TodMaster Reference Manual 1.6 Page 17 of 58

	1=COMBINED 2=GPS 3=GLONASS 4=GALILEO 5=BEIDOU 15=PROPERITARY (TX)		
RESERVED	Reserved, readback possible but no influence (write 0)	Bit: 23:19	RW
UTC_DISABLE	Disable Sending of UTC Message	Bit: 18	RW
ZDA_DISABLE	Disable Sending of ZDA Message	Bit: 17	RW
RMC_DISABLE	Disable Sending of RMC Message	Bit: 16	RW
-	Reserved, read 0	Bit: 15:1	RO
ENABLE	Enable	Bit: 0	RW

TodMaster Reference Manual 1.6 Page 18 of 58

3.2.1.2 TOD Master Status Register

Shows the current status of the TOD Master Clock.

Tod MasterStatus Reg										
Reg Description										
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2	1 0									
	ERROR									
RO	WC									
Reset: 0x0000000										
Offset: 0x0004										

Name	Description	Bits	Access
-	Reserved, read 0	Bit:31:1	RO
ENABLE	Error (sticky)	Bit: 0	WC

TodMaster Reference Manual 1.6 Page 19 of 58

3.2.1.3 TOD Master Polarity Register

Used for setting the UART signal polarity, shall only be done when disabled. Default value is set by the UartPolarity_Gen generic.

Tod MasterPolarity Reg																															
Reg	g De	scrip	tion																												
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																															>
														E L																	
														A.																	
														0																	
																															Ф
															R)															RW
	Reset: 0x000000X																														
															Offset																

Name	Description	Bits	Access
-	Reserved, read 0	Bit:31:1	RO
POLARITY	UART Polarity (0 = Inversed, 1 = normal UART)	Bit: 0	RW

TodMaster Reference Manual 1.6 Page 20 of 58

3.2.1.4 TOD Master Version Register

Version of the IP core, even though is seen as a 32bit value, bits 31 down to 24 represent the major, bits 23 down to 16 the minor and bits 15 down to 0 the build numbers.

Name	Description	Bits	Access
VERSION	Version of the core	Bit: 31:0	RO

TodMaster Reference Manual 1.6 Page 21 of 58

3.2.1.5 TOD Master Correction Register

Correction register to compensate for leap seconds between the different time domains. NMEA is UTC time, all other time in the system is TAI, this leads to a correction of 36 seconds by 2016.

Name	Description	Bits	Access
COR_SIGN	Correction sign	Bit: 31	RW
COR_S	Correction in seconds to the time extracted from the NMEA => used to convert between TAI, UTC and GPS (leap seconds)	Bit: 30:0	RW

TodMaster Reference Manual 1.6 Page 22 of 58

3.2.1.6 TOD Master Local Register

Local Time register to distribute also local time: from -13:59 to 13:59. Hours and Minutes for local time can be set as well as the sign which is valid for both values.

То	Tod MasterCorrection Reg																														
Reg	Reg Description																														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LOCAL_SIGN						ı								LOCAL_H							1								LOCAL_M		
RW						RO								2W						R	0							R	W		
													R		: 0x0			O													
														Of	fset: (OxC	014														

Name	Description	Bits	Access
LOCAL_SIGN	Local time offset sign	Bit: 31	RW
-	Reserved, read 0	Bit: 30:20	RO
LOCAL_H	Local time offset hours, 0-13	Bit: 19:16	RW
-	Reserved, read 0	Bit: 15:6	RO
LOCAL_M	Local time offset minutes 0-59	Bit: 5:0	RW

TodMaster Reference Manual 1.6 Page 23 of 58

3.2.1.7 TOD Master UART Baud Rate Register

This set the receive baud rate of the UART. The baud rate can only be changed when the core is disabled. Otherwise the changes have no effect. Only the most common baud rates are available from a range of 1.2k to 2m baud.

Tod MasterUartBaudRate Reg	
Reg Description	
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4	3 2 1 0
	BAUD_RATE
RO	RW
Reset: 0x000000X	
Offset: 0x0020	

Name	Description	Bits	Access
-	Reserved, read 0	Bit: 31:4	RO

TodMaster Reference Manual 1.6 Page 24 of 58

BAUD_RATE	Encoded Baudrate of the UART receiver:	Bit: 3:0	RW
B/(OD_IV(TE	0 => 1200	Ыс. 5.0	1 \ \ \ \ \
	1 => 2400		
	2 => 4800		
	3 => 9600		
	4 => 19200		
	5 => 38400		
	6 => 57600		
	7 => 115200		
	8 => 230400		
	9 => 460800		
	10 => 921600		
	11 => 1000000		
	>12 => not allowed undefinded		
	Default can be set by generic		
	12 => 2000000 >12 => not allowed undefinded Default can be set by generic		

TodMaster Reference Manual 1.6 Page 25 of 58

3.2.1.8 TOD Master UTC Information Control Register

Control Register for the UTC Information.

Tod	d Ma	ster	Uto	lnf	oC	ont	rol	Re	g																								
Reg	Desc	ript	ion																														
31	30	29	28	27	26	25	24	2.	3	22	21	20	19	18	17	16	15	5 14	1	13	12	11	10	9	8	7	6	5	4	3	2	1	0
READ_DONE	READ																		1														UTC_INFO_VAL
RO	RW	RO																															RW
																				000													
																(Offs	set:	OxO)100													

Name	Description	Bits	Access
READ_DONE	UTC Info was read	Bit: 31	RO
READ	Read UTC Info (autocleared)	Bit: 30	RW
-	Reserved, read 0	Bit 29:1	RO
UTC_INFO_VAL	UTC Info valid (autocleared)	Bit 0	RW

TodMaster Reference Manual 1.6 Page 26 of 58

3.2.1.9 TOD Master UTC Information Register

TOD UTC Information, depending on the ExtSync_Gen the UTC info can be set or is just read only.

Tod MasterUtcInfo Reg					
Reg Description					
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0				
UTC_OFFSET	UTC_OFFSET_VALID LEAP59 LEAP61				
RW	RO RW RW RW RO				
Reset: 0x0000000					
	Offset: 0x0104				

Name	Description	Bits	Access	
UTC_OFFSET	UTC Offset (0-128)	Bit: 31:16	RW	
-	Reserved, read 0	Bit 15:14	RO	
UTC_OFFSET_VALID	If UTC Offset is valid	Bit: 13	RW	
LEAP59	Whether a Leap 59 will happen	Bit: 12	RW	
LEAP61	Whether a Leap 61 will happen	Bit: 11	RW	
-	Reserved, read 0	Bit 10:0	RO	

TodMaster Reference Manual 1.6 Page 27 of 58

4 Design Description

The following chapters describe the internals of the TOD Master Clock: starting with the Top Level, which is a collection of subcores, followed by the description of all subcores.

4.1 Top Level - Tod Master

4.1.1 Parameters

The core must be parametrized at synthesis time. There are a couple of parameters which define the final behavior and resource usage of the core.

Name	Туре	Size	Description
GxRmcMessage Support_Gen	boolean	1	Support for GxRMC Messages: true = supported, false = not supported
GxZdaMessage Support_Gen	boolean 1		Support for GxZDA Messages: true = supported, false = not supported
GxUtcMessage Support_Gen	boolean	1	Support for GxUTC Messages: true = supported, false = not supported
StaticConfig_Gen	boolean	1	If Static Configuration or AXI is used: true = Static, false = AXI
NmeaCorrection_Gen	natural	1	NMEA correction in seconds for when the message is sent to the next second overflow. There are some sinks which expect the NMEA of the next second and some of the current. Default is the next, then correction of 1 is needed
ClockClkPeriod Nanosecond_Gen	natural	1	Clock Period in Nanosecond: Default for 50 MHz = 20 ns
UartBaudRate_Gen	natural	1	Default Baudrate encoded: 0 => 1200

	1		11-> 2400
			1 => 2400
			2 => 4800
			3 => 9600
			4 => 19200
			5 => 38400
			6 => 57600
			7 => 115200
			8 => 230400
			9 => 460800
			10 => 921600
			11 => 100000
			12 => 2000000
UartPolarity_Gen	boolean	1	true = normal UART (idle '1')
OartPolarity_Geri	Doolean	'	false = inversed
UtclnitialUtcOffset	natural	1	The initial UTC offset used for
_Gen	Hatarai	'	UTC frames
1 Italiandlar Cupport			If a UTC Hnadler which han-
UtcHandlerSupport	boolean	1	dles leap seconds in hardware
_Gen			shall be instantiated
EvtSync Gon	boolean	1	If the UTC information is
ExtSync_Gen	Doolean	'	provided externaly
AxiAddressRang	std_logic_vector	32	AXI Base Address
Low_Gen	std_logic_vector	32	
AviAddrossDango			AXI Base Address plus Regis-
AxiAddressRange	std_logic_vector	32	terset Size
High_Gen			Default plus 0xFFFF
			If in Testbench simulation
Sim_Gen	boolean	1	mode:
			true = Simulation, false =
			Synthesis

Table 5: Parameters

One of the two parameters GxZdaMessageSupport_Gen and GxZdaMessageSupport_Gen has to be true, GxUtcMessageSupport_Gen is optional.

4.1.2 Structured Types

4.1.2.1 Clk_Time_Type

Defined in Clk_Package.vhd of library ClkLib

Type represents the time used everywhere. For this type overloaded operators + and - with different parameters exist.

Field Name	Туре	Size	Description
Second	std_logic_vector	32	Seconds of time
Nanosecond	std_logic_vector	32	Nanoseconds of time
Fraction	std_logic_vector	2	Fraction numerator (mostly
1 1 4 3 4 3 1	sta_logic_vector	-	not used)
Sign	std_logic	1	Positive or negative time, 1 =
31911		'	negative, 0 = positive.
TimeJump	Jump std_logic 1	1	Marks when the clock makes a
Timesump sta_logic	'	time jump (mostly not used)	

Table 6: Clk_Time_Type

4.1.2.2 Clk_Utclnfo_Type

Defined in Clk_Package.vhd of library ClkLib

Type represents the time used everywhere. For this type overloaded operators + and - with different parameters exist.

Field Name	Туре	Size	Description
UtcOffset	std_logic_vector	15	UTC Offset in seconds
UtcOffsetValid	std_logic	1	UTC Offset is valid
Leap59	std_logic	1	Leap59 indication
Leap61	std_logic	1	Leap61 indication

Table 7: Clk_Utclnfo_Type

4.1.2.3 Tod_MasterStaticConfig_Type

Defined in Tod_MasterAddrPackage.vhd of library TodLib This is the type used for static configuration.

Field Name	Туре	Size	Description
			Which GNSS mechanism shall
			be used (mainly used for
			NMEA)
			O=Default (GPS)
Gnss	std_logic_vector	4	1=COMBINED
			2=GPS
			3=GLONASS
			4=GALILEO
			5=BEIDOU
			Bit 0: Disable NMEA RMC
DisableMessages	std_logic_vector	8	Bit 1: Disable NMEA ZDA
DisableMessages	std_logic_vector		Bit 2: Disable NMEA UTC
			Bits 3-7: Reserved
Polarity	std_logic	1	'1' = normal UART, '0' = in-
Tolarity	sta_logic	'	versed signal level UART
	Clk_Time_Type		Time to correct the parsed
Correction		1	time to correct UTC to TAI or
			another base.
	std_logic		Sign off the local time:
LocalSign		1	0 => positive
			1 => negative
LocalHour	std_logic_vector	4	Local time hours part: 0 -13
LocalMinute	std_logic_vector	6	Local time minutes part: 0 - 59
			Baudrate encoded:
			0 => 1200
			1 => 2400
			2 => 4800
			3 => 9600
			4 => 19200
UartBaudRate	std_logic_vector	4	5 => 38400
			6 => 57600
			7 => 115200
			8 => 230400
			9 => 460800
			10 => 921600
			11 => 1000000

			12 => 2000000
UtcInfo	Clk_UtcInfo_Typ	1	The UTC information like
	е	ı	offset, leap second etc.

Table 8: Tod_MasterStaticConfig_Type

4.1.2.4 Tod_MasterStaticConfigVal_Type

Defined in Tod_MasterAddrPackage.vhd of library TodLib This is the type used for valid flags of the static configuration.

Field Name	Туре	Size	Description
Enable_Val	std_logic	1	Enables the TOD Master
UtcInfo_Val	std_logic	1	If UtcInfo shall be set

Table 9: Tod_MasterStaticConfigVal_Type

4.1.2.5 Tod_MasterStaticStatus_Type

Defined in Tod_MasterAddrPackage.vhd of library TodLib This is the type used for static status supervision.

Field Name	Type Size		Description
CoreInfo	Clk_CoreInfo_ Type	1	Infor about the Cores state
UtcInfo	Clk_UtcInfo_ Type	1	The UTC information like offset, leap second etc.

Table 10: Tod_MasterStaticConfig_Type

4.1.2.6 Tod_MasterStaticStatusVal_Type

Defined in Tod_MasterAddrPackage.vhd of library TodLib
This is the type used for valid flags of the static status supervision.

Field Name	Туре	Size	Description
CoreInfo_Val	std_logic	1	Core Info valid
UtcInfo_Val	std_logic	1	UTC Info valid

Table 11: Tod_MasterStaticConfigVal_Type

4.1.2.7 Entity Block Diagram

Figure 4: TOD Master Clock

4.1.2.8 Entity Description

Tx Processor

This module handles all outgoing NMEA message. It converts the time from seconds since 1.1.1970 format into Time of Day taking offset and leap years into account, embeds the UTC time and local time into a GxZDA, GxRMC message and sends it to the UART interface adapter, also the UTC infos are embedded here. See 4.2.1 for more details.

UART Interface Adapter

This module converts the AXI stream to a serial UART signal. It handles the RS232 protocol data stream with one start, eight data, one stop and no parity. AXI stream to this module is 8 bit width. It can handle baud rates from 9.6k up to 1m. See 4.2.2 for more details.

Registerset

This module is an AXI4Lite Memory Mapped Slave. It provides access to all registers and allows configuring the TOD Master Clock. It can be configured to either run in AXI or StaticConfig mode. If in StaticConfig mode, the configuration of the registers is done via signals and can be easily done from within the FPGA without CPU. If in AXI mode, an AXI Master has to configure the Datasets with AXI writes to the registers, which is typically done by a CPU See 4.2.3 for more details.

4.1.2.9 Entity Declaration

Name	Dir	Туре	Size	Description	
	Generics				
General GxRmcMessage	_	boolean	1	Support for GxRMC	
Support_Gen GxZdaMessage				Messages Support for GxZDA	
Support_Gen GxUtcMessage	-	boolean	1	essages Support for GxUTC	
Support_Gen	-	boolean	1	essages	
StaticConfig_Gen	ı	boolean	1	If Static Configura- tion or AXI is used	
NmeaCorrection_Gen	1	natural	1	NMEA correction in seconds for when the message arrives to the next second overflow.	
ClockClkPeriod Nanosecond_Gen	-	natural	1	Clock Period in Nanosecond	
UartBaudRate_Gen	-	natural	1	Default Baudrate encoded: 0 => 1200 1 => 2400 2 => 4800 3 => 9600 4 => 19200 5 => 38400 6 => 57600 7 => 115200 8 => 230400 9 => 460800 10 => 921600 11 => 1000000 12 => 2000000	
UartPolarity_Gen	-	boolean	1	true = normal UART (idle '1') false = inversed	

UtcInitialUtcOffset _Gen	-	natural	1	The initial UTC offset used for UTC frames			
UtcHandlerSupport _Gen	-	boolean	1	If a UTC Hnadler which handles leap seconds in hard- ware shall be instan- tiated			
AxiAddressRang Low_Gen	-	std_logic_vector	32	AXI Base Address			
AxiAddressRange High_Gen	-	std_logic_vector	32	AXI Base Address plus Registerset Size			
Sim_Gen	-	boolean	1	If in Testbench simulation mode			
Ports							
System	in	std logic	1	Cyctom Clock			
SysClk_ClkIn	in	std_logic	1	System Clock System Reset			
SysRstN_RstIn	in	std_logic	ı	System Reset			
Config StaticConfig_DatIn	in	Tod_Master StaticConfig_Type	1	Static Configuration			
StaticConfig_ValIn	in	Tod_Master StaticConfigVal _Type	1	Static Configuration valid			
Status		T N4					
StaticStatus_DatOut	out	Tod_Master StaticStatus_Type	1	Static Status			
StaticStatus_ValOut	out	Tod_Master StaticStatusVal _Type	1	Static Status valid			
Timer				Millisecond timer			
Timer1ms_EvtIn	in	std_logic	1	adjusted with the			
Time Input				A divisto d Cl = -1:			
ClockTime_DatIn	in	Clk_Time_Type	1	Adjusted Clock Time			
ClockTime_ValIn	in	std_logic	1	Adjusted Clock			

				Time valid
AXI4 Lite Slave				
AxiWriteAddrValid _Valln	in	std_logic	1	Write Address Valid
AxiWriteAddrReady _RdyOut	out	std_logic	1	Write Address Ready
AxiWriteAddrAddress _AdrIn	in	std_logic_vector	32	Write Address
AxiWriteAddrProt _DatIn	in	std_logic_vector	3	Write Address Protocol
AxiWriteDataValid _ValIn	in	std_logic	1	Write Data Valid
AxiWriteDataReady _RdyOut	out	std_logic	1	Write Data Ready
AxiWriteDataData _DatIn	in	std_logic_vector	32	Write Data
AxiWriteDataStrobe _DatIn	in	std_logic_vector	4	Write Data Strobe
AxiWriteRespValid _ValOut	out	std_logic	1	Write Response Valid
AxiWriteRespReady _RdyIn	in	std_logic	1	Write Response Ready
AxiWriteResp Response_DatOut	out	std_logic_vector	2	Write Response
AxiReadAddrValid _ValIn	in	std_logic	1	Read Address Valid
AxiReadAddrReady _RdyOut	out	std_logic	1	Read Address Ready
AxiReadAddrAddress _AdrIn	in	std_logic_vector	32	Read Address
AxiReadAddrProt _DatIn	in	std_logic_vector	3	Read Address Protocol
AxiReadDataValid ValOut	out	std_logic	1	Read Data Valid
AxiReadDataReady _RdyIn	in	std_logic	1	Read Data Ready
AxiReadData Response_DatOut	out	std_logic_vector	2	Read Data
AxiReadDataData _DatOut	out	std_logic_vector	32	Read Data Response
Time of Day Output				
Uart_DatOut	out	std_logic	1	UART to the NMEA sink

Table 12: TOD Master Clock

4.2 Design Parts

The TOD Master Clock core consists of a couple of subcores. Each of the subcores itself consist again of smaller function block. The following chapters describe these subcores and their functionality.

4.2.1 TX Processor

4.2.1.1 Entity Block Diagram

Figure 5: TX Processor

4.2.1.2 Entity Description

NMEA Creator

This module convertes the binary values into ASCII decimal values. It then embeds the converted UTC time into GxZDA messages and sends it to the UART.

Time Converter

This module converts the time from seconds since midnight 1.1.1970 into Time of Day format: hh:mm:ss dd:mm:yyyy. It loops over the years, months and days taking the leap years into account and finally extracts the hours, minutes and seconds. Before this conversion a final correction is done if the received second is for the past or second or next second. Then this time is passed to the NMEA creator module at the next second overflow. Also this module handles the conversion to UTC. Optionally a UTC handler can be instantiated to run UTC handling directly in hardware.

4.2.1.3 Entity Declaration

Name	Dir	Туре	Size	Description	
Generics					
General					
ClockClkPeriod	_	 natural	1	Clock Period in	
Nanosecond_Gen		riacarar	,	Nanosecond	
Sim_Gen	_	boolean	1	If in Testbench	
Siii_Oeii		Doolean	'	simulation mode	
TX Processor					
GxRmcMessage	-	boolean	1	Support for GxRMC	
Support_Gen				Messages	
GxZdaMessage	_	boolean	1	Support for GxZDA	
Support_Gen		Doorean	,	Messages	
GxUtcMessage	_	boolean	1	Support for GxUTC	
Support_Gen		Doolean	'	Messages	
UtcInitialUtcOffset				The initial UTC	
	-	natural	1	offset used for UTC	
_Gen				frames	
				If a UTC Handler	
I I ballan allan Coma a cob				which handles leap	
UtcHandlerSupport	-	boolean	1	seconds in hard-	
_Gen				ware shall be instan-	
				tiated	
				NMEA correction in	
				seconds for when	
NmeaCorrection_Gen	-	natural	1	the message is sent	
Timedeenreeden_een				to the next second	
				overflow.	
		Ports			
System					
SysClk_ClkIn	in	std_logic	1	System Clock	
SysRstN_RstIn	in	std_logic	1	System Reset	
Timer				No.	
				Millisecond timer	
Timer1ms_EvtIn	in	std_logic	1	adjusted with the	
				Clock	
Time of Day Error Outp	ut out	std_logic	1	Marks a parson orror	
Tod_ErrOut	out	stu_iogic	ı	Marks a parser error	

Creator Config				
TodCreator Config_DatIn	in	Tod_CreatorConfig_ Type	1	Configuration of Message creator, which GNSS to simulate and which messages to send
Enable Input				
Enable_EnaIn	in	std_logic	1	Enables the correction
Time Input ClockTime_DatIn	in	Clk_Time_Type	1	Adjusted Clock Time
ClockTime_ValIn	in	std_logic	1	Adjusted Clock Time valid
Time of Day Correction	Input			Additional correc-
TodCorrection_DatIn	in	Clk_Time_Type	1	tion to convert from TAI to a different time format (UTC) with an offset
TodLocalSign_DatIn	in	std_logic	1	Local Time correction sign, compared to UTC
TodLocalHour_DatIn	in	std_logic_vector	4	Local Time correction hours, compared to UTC
TodLocalMinute _DatIn	in	std_logic_vector	6	Local Time correction minutes, compared to UTC
Utc Info Input		Tod_UtcInfo_Type	1	UTC Info
TodUtcInfo_DatIn TodUtcInfo_ValIn	in	std logic	1	UTC Info is valid
Utc Info Output	in		· 	2 . 3 3 13 74114
TodUtcInfo_DatOut	out	Tod_UtcInfo_Type	1	UTC Info
Axi Output			-	
AxisValid_ValOut	out	std_logic	1	AXI Stream frame
AxisReady_Valln	in	std_logic	1	output
AxisData_DatOut	out	std_logic_vector	8	

AxisStrobe_ValOut	out	std_logic_vector	1	
AxisKeep_ValOut	out	std_logic_vector	1	
AxisLast_ValOut	out	std_logic	1	
AxisUser_DatOut	out	std_logic_vector	2	

Table 13: TX Processor

4.2.2UART Interface Adapter

4.2.2.1 Entity Block Diagram

Figure 6: UART Interface Adapter

4.2.2.2 Entity Description

TX Interface Adapter

This module converts the AXI stream to a serial UART signal. It handles the RS232 protocol data stream with one start, eight data (LSB first), one stop and no parity. Data is created on the system clock base. AXI stream to this module is 8 bit width. It can handle baud rates from 9.6k up to 2m baud. It also has an error detection internally to decide if a byte was valid or not. The transmitter has no buffer and only pushes the byte to the serial stream. The source module is blocked during the transfer on UART and released after transmission. When disabled all data is just consumed and not sent to the UART, a last byte might be sent if in progress.

4.2.2.3 Entity Declaration

Name	Dir	Туре	Size	Description
		Generics		
General				
ClockClkPeriod Nanosecond_Gen	-	natural	1	Clock Period in Nanosecond
Interface Adapter				
UartBaudRate_Gen	-	natural	1	Default Baudrate encoded: 0 => 1200

				1 => 2400 2 => 4800 3 => 9600 4 => 19200
				5 => 38400 6 => 57600 7 => 115200 8 => 230400
				9 => 460800 10 => 921600 11 => 1000000 12 => 2000000
UartPolarity_Gen	-	boolean	1	true = normal UART (idle '1') false = inversed
		Ports		
System SysClk_ClkIn	in	std_logic	1	System Clock
SysRstN_RstIn	in	std_logic	1	System Reset
Enable Input Enable_EnaIn	in	std_logic	1	Enables the Uart
UART Input Uart_DatIn	in	std_logic	1	UART from the NMEA source
UART Baud Rate Input UartBaudRate_DatIn	in	std_logic_vector	4	Baudrate encoded: 0 => 1200 1 => 2400 2 => 4800 3 => 9600 4 => 19200 5 => 38400 6 => 57600 7 => 115200 8 => 230400 9 => 460800 10 => 921600 11 => 1000000 12 => 2000000

UART Polarity Input				
UartPolarity_DatIN	in	std_logic	1	UART polarity true = normal UART (idle '1') false = inversed
Axi Input				
AxisValid_ValIn	in	std_logic	1	AXI Stream frame
AxisReady_ValOut	out	std_logic	1	input
AxisData_DatIn	in	std_logic_vector	8	
AxisStrobe_ValIn	in	std_logic_vector	1	
AxisKeep_ValIn	in	std_logic_vector	1	
AxisLast_ValIn	in	std_logic	1	
AxisUser_DatIn	in	std_logic_vector	2	

Table 14: UART Interface Adapter

4.2.3 Registerset

4.2.3.1 Entity Block Diagram

Figure 7: Registerset

4.2.3.2 Entity Description

Register Set

This module is an AXI4Lite Memory Mapped Slave. It provides access to all registers and allows configuring the TOD Master Clock. AXI4Lite only supports 32 bit wide data access, no byte enables, no burst, no simultaneous read and writes and no unaligned access. It can be configured to either run in AXI or StaticConfig mode. If in StaticConfig mode, the configuration of the registers is done via signals and can be easily done from within the FPGA without CPU. For each configuration parameter a valid signal is available, the enable signal shall be set last (or simultaneously). To change configuration parameters the clock has to be disabled and enabled again, the correction value and local time can be changed at runtime. If in AXI mode, an AXI Master has to configure the registers with AXI writes to the registers, which is typically done by a CPU. Parameters can in this case also be changed at runtime.

4.2.3.3 Entity Declaration

Name	Dir	Туре	Size	Description
		Generics		
Register Set				
GxRmcMessage	-	boolean	1	Support for GxRMC
Support_Gen				essages
GxZdaMessage	-	boolean	1	Support for GxZDA
Support_Gen				essages
GxUtcMessage	_	boolean	1	Support for GxUTC
Support_Gen		000.00	·	essages
				Default Baudrate
				encoded:
				0 => 1200
				1 => 2400
				2 => 4800
				3 => 9600
				4 => 19200
UartBaudRate_Gen	-	natural	1	5 => 38400
				6 => 57600
				7 => 115200
				8 => 230400
				9 => 460800
				10 => 921600
				11 => 100000
				12 => 2000000
				true = normal UART
UartPolarity_Gen	-	boolean	1	(idle '1')
				false = inversed
				The initial UTC
UtcInitialUtcOffset	_	natural	1	offset used for UTC
_Gen				frames
				If a UTC Hnadler
				which handles leap
UtcHandlerSupport	_	boolean	1	seconds in hard-
_Gen		2000011	<u>'</u>	ware shall be instan-
				tiated
				tiateu

StaticConfig_Gen	-	boolean	1	If Static Configuration or AXI is used
AxiAddressRange Low_Gen	-	std_logic_vector	32	AXI Base Address
AxiAddressRange High_Gen	-	std_logic_vector	32	AXI Base Address plus Registerset Size
		Ports		
System SysClk_ClkIn	in	std_logic	1	System Clock
SysRstN_RstIn	in	std_logic	1	System Reset
Config				
StaticConfig_DatIn	in	Tod_Master StaticConfig_Type	1	Static Configuration
StaticConfig_ValIn	in	Tod_Master StaticConfigVal _Type	1	Static Configuration valid
Status		Taal Maakan		Chabia Chabia
StaticStatus_DatOut	out	Tod_Master StaticStatus_Type	1	Static Status
StaticStatus_ValOut	out	Tod_Master StaticStatusVal _Type	1	Static Status valid
AXI4 Lite Slave AxiWriteAddrValid ValIn	in	std_logic	1	Write Address Valid
AxiWriteAddrReady _RdyOut	out	std_logic	1	Write Address Ready
AxiWriteAddrAddress AdrIn	in	std_logic_vector	32	Write Address
AxiWriteAddrProt _DatIn	in	std_logic_vector	3	Write Address Protocol
AxiWriteDataValid Valln	in	std_logic 1		Write Data Valid
AxiWriteDataReady RdyOut	out	std_logic	1	Write Data Ready
AxiWriteDataData DatIn	in	std_logic_vector	32	Write Data
AxiWriteDataStrobeDatIn	in	std_logic_vector	4	Write Data Strobe
AxiWriteRespValid _ValOut	out	std_logic	1	Write Response Valid
AxiWriteRespReady	in	std_logic	1	Write Response

_Rdyln				Ready
AxiWriteResp Response_DatOut	out	std_logic_vector	2	Write Response
AxiReadAddrValid ValIn	in	std_logic	1	Read Address Valid
AxiReadAddrReady _RdyOut	out	std_logic	1	Read Address Ready
AxiReadAddrAddress AdrIn	in	std_logic_vector	32	Read Address
AxiReadAddrProt _DatIn	in	std_logic_vector	3	Read Address Protocol
AxiReadDataValid ValOut	out	std_logic	1	Read Data Valid
AxiReadDataReady RdyIn	in	std_logic	1	Read Data Ready
AxiReadData Response_DatOut	out	std_logic_vector	2	Read Data
AxiReadDataData _DatOut	out	std_logic_vector	32	Read Data Response
UartBaud Rate_DatOut	out	std_logic_vector	4	Baudrate encoded: 0 => 1200 1 => 2400 2 => 4800 3 => 9600 4 => 19200 5 => 38400 6 => 57600 7 => 115200 8 => 230400 9 => 460800 10 => 921600 11 => 1000000 12 => 2000000
UART Polarity Output UartPolarity_DatOut	out	std_logic	1	UART polarity true = normal UART (idle '1') false = inversed
Utc Info Ouput TodCreator Config_DatOut	out	Tod_CreatorConfig_ Type	1	Configuration of Message creator, which GNSS to

				simulate and which messages to send
Utc Info Ouput TodUtcInfo_DatOut TodUtcInfo_ValOut Utc Info Input	out out	Tod_UtcInfo_Type std_logic	1	UTC Info UTC Info is valid
TodUtcInfo_DatIn	in	Tod_UtcInfo_Type	1	UTC Info
Correction Output TodCorrection_DatOut	out	Clk_Time_Type	1	Additional correction to convert from TAI to a different time format (UTC) with an offset
TodLocalSign_DatOut	out	std_logic	1	Local Time correction sign, compared to UTC
TodLocalHour _DatOut	out	std_logic_vector	4	Local Time correction hours, compared to UTC
TodLocalMinute _DatOut	out	std_logic_vector	6	Local Time correction minutes, compared to UTC
Error Input Tod_ErrIn	in	std_logic	1	An error happened
Enable Output TodMaster Enable_DatOut	out	std_logic	1	Enable TOD Master Clock

Table 15: Registerset

4.3 Configuration example

In both cases the enabling of the core shall be done last, after or together with the configuration.

4.3.1 Static Configuration

```
constant TodStaticConfigMaster Con : Tod MasterStaticConfig Type := (
                      => std_logic_vector(to_unsigned(Tod_MasterGnss_Gps_Con,4)),
   Gnss
   DisableMessages
                       => x"01", -- no ZDA
   Correction
                       => (
     Second
                       => x"00000024", -- UTC 36 leap seconds
     Nanosecond
                       => (others => '0'), -- no nanoseconds
                      => (others => '0'), -- no fractions
     Fraction
     Sign
                       => '0', -- UTC correct in positive
                      => '0', -- no local time
     LocalSign
     LocalHour
                       => (others => '0'), -- no local time
     LocalMinute
                      => (others => '0'), -- no local time
     TimeJump
                      => '0'), -- no
                       => x"7"-115200 (same enum as with generic)
   UartBaudRate
   UtcInfo
                       => Clk_UtcInfo_Type_Rst_Con,
);
 \verb|constant TodStaticConfigValMaster Con : Tod MasterStaticConfigVal Type := (\\
                      => '1',
   Enable Val
                      => '1',
   UtcInfo_Val
);
```

Figure 8: Static Configuration

The UartBaudRate has to be configured before enabling; changes on this value only have an effect on a transition from disabled to enabled. The Correction and UTC values can be set at runtime and has immediate effect; only the seconds and sign part of the correction are used.

4.3.2 AXI Configuration

The following code is a simplified pseudocode from the testbench: The base address of the TOD Master Clock is 0x10000000.

```
-- TOD MASTER
-- Config
-- correction of plus 37 second to convert TAI to UTC
AXI WRITE 10000010 00000025
-- no local time (greenich)
AXI WRITE 10000014 00000000
-- change baud rate to 115200
AXI WRITE 10000020 00000007
```


-- enable TOD Master, in GPS mode and RMC only ${\tt AXI\ WRITE\ 10000000\ 02020001}$

Figure 9: AXI Configuration

In the example the clock gets a correction of 36 seconds to correct UTC to TAI and the baud rate is set to 115200 baud/s and no local time is set.

4.4 Clocking and Reset Concept

4.4.1 Clocking

To keep the design as robust and simple as possible, the whole TOD Master Clock, including the Counter Clock and all other cores from NetTimeLogic are run in one clock domain. This is considered to be the system clock. Per default this clock is 50MHz. Where possible also the interfaces are run synchronous to this clock. For clock domain crossing asynchronous FIFOs with gray counters or message patterns with meta-stability flip-flops are used. Clock domain crossings for the AXI interface is moved from the AXI slave to the AXI interconnect.

Clock	Frequency	Description			
System					
System Clock	50MHz	System clock where the Tod Master runs			
System Clock	(Default)	on as well as the counter clock etc.			
UART Interface					
		No clock, asynchronous data signal,			
UART TX		transmit clock of the UART. Must be			
	9.6 kHz - 1MHz	defined for the core prior to use of the			
		interface not all frequencies apply.			
		Generated out of the System Clock			
AXI Interface					
AXI Clock	50MHz	Internal AXI bus clock, same as the			
	(Default)	system clock			

Table 16: Clocks

4.4.2Reset

In connection with the clocks, there is a reset signal for each clock domain. All resets are active low. All resets can be asynchronously set and shall be synchronously released with the corresponding clock domain. All resets shall be asserted for the first couple (around 8) clock cycles. All resets shall be set simultaneously and released simultaneously to avoid overflow conditions in the core. See the reference designs top file for an example of how the reset shall be handled.

Reset	Polarity	Description
System		
System Reset	Active low	Asynchronous set, synchronous release with the system clock
AXI Interface		
AXI Reset	Active low	Asynchronous set, synchronous release with the AXI clock, which is the same as the system clock

Table 17: Resets

5 Resource Usage

Since the FPGA Architecture between vendors and FPGA families differ there is a split up into the two major FPGA vendors.

5.1 Altera (Cyclone V)

Configuration	FFs	LUTs	BRAMs	DSPs
Minimal (Static Config)	442	2003	0	0
Maximal (AXI Config)	487	2142	0	0

Table 18: Resource Usage Altera

5.2 AMD/Xilinx (Artix 7)

Configuration	FFs	LUTs	BRAMs	DSPs
Minimal (Static Config)	401	1781	0	0
Maximal (AXI Config)	444	1889	0	0

Table 19: Resource Usage AMD/Xilinx

6 Delivery Structure

AXI -- AXI library folder

CLK -- CLK library folder

COMMON -- COMMON library folder

PPS -- PPS library folder

SIM -- SIM library folder

|-Testbench -- SIM library testbench template sources

TOD -- TOD library folder |-Core -- TOD library cores

|-Testbench -- TOD library cores testbench sources and sim/log

7 Testbench

The Tod Master testbench consist of 3 parse/port types: AXI, CLK and TOD. The TOD receiver port takes the time of the Clock instance as a reference and the NMEA data stream from the DUT and compares the distributed time with the time from the Clock. In addition for configuration and result checks an AXI read and write port is used in the testbench and for accessing more than one AXI slave also an AXI interconnect is required.

Figure 10: Testbench Framework

For more information on the testbench framework check the Sim_ReferenceManual documentation.

With the Sim parameter set the time base for timeouts are divided by 100 to 100000 to speed up simulation time.

7.1 Run Testbench

 Run the general script first source XXX/SIM/Tools/source with args.tcl

Start the testbench with all test cases
 src XXX/TOD/Testbench/Core/TodMaster/Script/run Tod Master Tb.tcl

3. Check the log file LogFile1.txt in the XXX/TOD/Testbench/Core/TodMaster/Log/ folder for simulation results.

8 Reference Designs

The TOD Master reference design contains a PLL to generate all necessary clocks (cores are run at 50 MHz), an instance of the TOD Master Clock IP core and an instance of the Adjustable Counter Clock IP core (needs to be purchased separately). Optionally it also contains an instance of a PPS Master Clock IP core (has to be purchased separately). To instantiate the optional IP core, change the corresponding generic (PpsMasterAvailable_Gen,) to true via the tool specific wizards. The Reference Design with a PPS and TOD Master Clock is intended to be connected to a NMEA sink with a baudrate of 9600. If another baud rate shall be used this can be set via the Static Configuration. The absolute second is distributed via the TOD Master. The PPS Master Clock is used to create a PPS output which is compensated for the output delay and has a configurable duty cycle, if not available an uncompensated PPS is directly generated out of the MSB of the Time. All generics can be adapted to the specific needs.

Figure 11: Reference Design

8.1 Altera: Terasic SocKit

The SocKit board is an FPGA board from Terasic Inc. with a Cyclone V SoC FPGA from Altera. (http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=816)

- 1. Open Quartus 16.x
- 2. Open Project /TOD/Refdesign/Altera/SocKit/TodMaster/TodMaster.qpf
- 3. If the optional core PPS Master Clock is available add the files from the corresponding folders (PPS/Core, PPS/Library, PPS/Package and CLK/Library)
- 4. Change the generic (PpsMasterAvailable_Gen) in Quartus (in the settings menu, not in VHDL) to true for the optional cores that are available.

- 5. Rerun implementation
- 6. Download to FPGA via JTAG

Figure 12: SocKit (source Terasic Inc)

For the ports on the HSMC connector the GPIO to HSMC adapter from Terasic Inc. was used.

8.2 AMD/Xilinx: Digilent Arty

The Arty board is an FPGA board from Digilent Inc. with an Artix7 FPGA from AMD/Xilinx. (http://store.digilentinc.com/arty-board-artix-7-fpga-development-board-for-makers-and-hobbyists/

- 1. Open Vivado 2019.1.
- 2. Note: If a different Vivado version is used, see chapter 8.3.
- 3. Run TCL script /TOD/Refdesign/AMD/Xilinx/Arty/TodMaster/TodMaster.tcl
 - a. This has to be run only the first time and will create a new Vivado Project
- 4. If the project has been created before open the project and do not rerun the project TCL

- 5. If the optional core PPS Master Clock is available add the files from the corresponding folders (PPS/Core, PPS/Library, PPS/Package and CLK/Library) to the corresponding Libraries (PpsLib and ClkLib).
- 6. Change the generic (PpsMasterAvailable_Gen) in Vivado (in the settings menu, not in VHDL) to true for the optional cores that are available.
- 7. Rerun implementation
- 8. Download to FPGA via JTAG

Figure 13: Arty (source Digilent Inc)

8.3 AMD/Xilinx: Vivado version

The provided TCL script for creation of the reference-design project is targeting AMD/Xilinx Vivado 2019.1.

If a lower Vivado version is used, it is recommended to upgrade to Vivado 2019.1 or higher.

If a higher Vivado version is used, the following steps are recommended:

- Before executing the project creation TCL script, the script's references of Vivado 2019 should be manually replaced to the current Vivado version. For example, if version Vivado 2022 is used, then:
 - The statement occurrences:

set property flow "Vivado Synthesis 2019" \$obj

shall be replaced by:

set property flow "Vivado Synthesis 2022 \$obj

• The statement occurrences:

set_property flow "Vivado Implementation 2019" \$obj
shall be replaced by:

set_property flow "Vivado Implementation 2022" \$obj

- After executing the project creation TCL script, the AMD/Xilinx IP cores, such as the Clocking Wizard core, might be locked and a version upgrade might be required. To do so:
 - 1. At "Reports" menu, select "Report IP Status".
 - 2. At the opened "IP Status" window, select "Upgrade Selected". The tool will upgrade the version of the selected IP cores.

A List of tables

Table 1:	Revision History	4
Table 2:	Definitions	7
Table 3:	Abbreviations	8
Table 4:	Register Set Overview	16
Table 5:	Parameters	29
Table 6:	Clk_Time_Type	30
Table 7:	Clk_UtcInfo_Type	30
Table 8:	Tod_MasterStaticConfig_Type	32
Table 9:	Tod_MasterStaticConfigVal_Type	32
Table 10:	Tod_MasterStaticConfig_Type	32
Table 11:	Tod_MasterStaticConfigVal_Type	32
Table 12:	TOD Master Clock	36
Table 13:	TX Processor	40
Table 14:	UART Interface Adapter	42
Table 15:	Registerset	46
Table 16:	Clocks	49
Table 17:	Resets	50
Table 18:	Resource Usage Altera	51
Table 19:	Resource Usage AMD/Xilinx	51
B List	of figures	
Figure 1:	Context Block Diagram	9
Figure 2:	Architecture Block Diagram	
Figure 3:	NMEA to PPS alignment	
Figure 4:	TOD Master Clock	
Figure 5:	TX Processor	37
Figure 6:	UART Interface Adapter	40
Figure 7:	Registerset	42
Figure 8:	Static Configuration	47
Figure 9:	AXI Configuration	48
Figure 10:	Testbench Framework	53
Figure 11:	Reference Design	54
Figure 12:	SocKit (source Terasic Inc)	55
Figure 13:	Arty (source Digilent Inc)	56