

CLOUD COMPUTING APPLICATIONS

Cloud Databases – Google Cloud Spanner Prof. Reza Farivar

Google Cloud Spanner

- Spanner is a distributed data layer that uses optimized sharded Paxos to guarantee consistency even in a system that spans multiple geographic regions
 - Query API is SQL (i.e. SELECT)
 - Insert and updates are done through a specialized GRPC interface
- Two-phase commit to achieve serializability
- TrueTime for external consistency, consistent reads without locking, and consistent snapshots
 - External > Strong > Weak

Spanner and CAP

- Is Spanner C+A+P?
 - No, It is CP
 - · during (some) partitions, Spanner chooses C and forfeits A
- Availability is in the 5 nines range
 - Is this acceptable to your application?
 - · Effectively CA
- Spanner uses the Paxos algorithm as part of its operation to shard (partition) data across hundreds of servers
- 2PC known as the anti-availability protocol
 - because all members must be up for it to work
 - In Spanner, each member is a Paxos group
 - ensures each 2PC "member" is highly available even if some of its Paxos participants are down
- Cloud Spanner provides stale reads, which offer similar performance benefits as eventual consistency but with much stronger consistency guarantees
 - A stale read returns data from an "old" timestamp, which cannot block writes because old versions of data are immutable

TrueTime

- Heavy use of hardware-assisted clock synchronization using GPS clocks and atomic clocks to ensure global consistency
 - avoid communication in a distributed system
 - GPS and Atomic clock have different failure modes
- "Global wall-clock time" with bounded uncertainty
 - ε is worst-case clock divergence
 - Timestamps become intervals, not single values

- Consider event e_{now} which invoked tt = TT.now():
 - Guarantee: tt.earliest <= t_{abs}(e_{now}) <= tt.latest

Method	Returns
TT.now()	TTinterval: [earliest, latest]
TT.after(t)	true if t has definitely passed
TT.before(t)	true if t has definitely not arrived

Spanner

- TrueTime exposes clock uncertainty
 - Commit wait ensures transactions end after their commit time
 - Read at TT.now.latest()
- Reads dominant, make them lock-free
 - Read-Only Transaction
 - A replica can satisfy a read at a timestamp t if t <= t_{safe}.
 - Snapshot Read, client-provided timestamp
 - read at a particular time in the past
 - Snapshot Read, client-provided bound
- Read-Write Transaction less common
 - · Pessimistic, use 2 phase locking
- Globally-distributed database
 - 2PL w/ 2PC over Paxos!

$$t_{safe} = min(t_{safe}^{Paxos}, t_{safe}^{TM})$$

Paxos State Machine Tra Safe Time

Transaction Manager Safe Time

HW-based Time Synchronization

- NTP
 - Software time synchronization with one server
 - Stratum 2
 - Network delays
 - 1/2 to 100 ms accuracy
- Google Spanner
- Microsoft Azure now offers GPS clock synchronization
 - VMICTimeSync provider
 - Precision Time Protocol
 - Stratum 1 devices
 - I.e. direct connection, not through shared network, to a reference time server (Stratum 0)
 - 10 microseconds accuracy
 - For reference, GPS accuracy < 1 us, 95% of the time ≤40 nanoseconds
- Amazon Time Sync Service
 - · Chrony vs. NTP

