Partitioned Finite Element Method for the Mindlin Plate as a Port-Hamiltonian system

Andrea Brugnoli

May 7, 2019

Plan

- 1 PH formulation of the Mindlin plate
 - Mindlin-Reissner model for thick Plates
 - Port-Hamiltonian formulation
- 2 Structure preserving discretization
 - Boundary control through forces and momenta
 - Boundary control through kinematic variables
- 3 Discretization procedure
 - Finite-dimensional system
- 4 Numerical simulations

Plan

- 1 PH formulation of the Mindlin plate
 - Mindlin-Reissner model for thick Plates
 - Port-Hamiltonian formulation
- Structure preserving discretization
- 3 Discretization procedure
- 4 Numerical simulations

The Mindlin-Reissner model

The classical model is a system 3PDEs:

$$\begin{cases} \rho h \frac{\partial^2 w}{\partial t^2} &= \operatorname{div}(\boldsymbol{q}), \\ \rho \frac{h^3}{12} \frac{\partial^2 \boldsymbol{\theta}}{\partial t^2} &= \boldsymbol{q} + \operatorname{Div}(\boldsymbol{M}), \end{cases}$$

with the parameters and variables

- ρ the material density;
- *h* the plate thickness;
- the vertical displacement scalar field w;
- the cross section deflection vector field $\boldsymbol{\theta} = (\theta_x, \theta_y)$;
- the bending symmetric tensor field M;
- \bullet shear stress vector field q;

The divergence of a tensor field is a vector defined column-wise as

$$\operatorname{Div}(\boldsymbol{M}) := \left(\sum_{\alpha=1}^{2} \partial_{x_{\alpha}} m_{\alpha\beta}\right)_{\beta=1,\dots,2}.$$

Constitutive equations

For an homogeneous, isotropic material (Greek indexes equal 1,2)

$$M_{lphaeta} = D_{lphaeta\iota\lambda}K_{\iota\lambda} \qquad q_lpha = C_{lphaeta}oldsymbol{\gamma}_eta$$

The fourth and second order tensor $D_{\alpha\beta\iota\lambda}$ (bending stiffness) and $C_{\alpha\beta}$ (shear stiffness) are symmetric, positive definite.

Constitutive equations

For an homogeneous, isotropic material (Greek indexes equal 1,2)

$$M_{lphaeta} = D_{lphaeta\iota\lambda}K_{\iota\lambda} \qquad q_lpha = C_{lphaeta}oldsymbol{\gamma}_eta$$

The fourth and second order tensor $D_{\alpha\beta\iota\lambda}$ (bending stiffness) and $C_{\alpha\beta}$ (shear stiffness) are symmetric, positive definite.

The variables

$$K := Grad(\theta), \qquad \gamma := grad(w) - \theta.$$

are the bending curvature and shear strain. The symmetric gradient of a vector field is defined as

$$\operatorname{Grad}(\boldsymbol{\theta}) := \frac{1}{2} \left(\nabla \boldsymbol{\theta} + \nabla^T \boldsymbol{\theta} \right).$$

Energies

The kinetic and potential energy density K and U read

$$\mathcal{K} = \frac{1}{2} \left\{ \rho h \left(\frac{\partial w}{\partial t} \right)^2 + \frac{\rho h^3}{12} \frac{\partial \boldsymbol{\theta}}{\partial t} \cdot \frac{\partial \boldsymbol{\theta}}{\partial t} \right\},$$

$$\mathcal{U} = \frac{1}{2} \left\{ \boldsymbol{M} : \boldsymbol{K} + \boldsymbol{q} \cdot \boldsymbol{\gamma} \right\},$$

where $M: K := \sum_{\alpha,\beta} m_{\alpha\beta} \kappa_{\alpha\beta}$ is the tensor contraction. The Hamiltonian (total energy) is the sum of the two

$$H = \int_{\Omega} (\mathcal{K} + \mathcal{U}) \ d\Omega.$$

Energy, coenergy variables

The choice of the energy variables is the same as in¹

$$lpha_w =
ho h rac{\partial w}{\partial t}, \qquad oldsymbol{lpha}_{ heta} = rac{
ho h^3}{12} rac{\partial oldsymbol{ heta}}{\partial t}, \ oldsymbol{A}_{\kappa} = oldsymbol{K}, \qquad oldsymbol{lpha}_{\gamma} = oldsymbol{\gamma}.$$

¹A. Macchelli, C. Melchiorri, and L. Bassi. "Port-based Modelling and Control of the Mindlin Plate". In: *Proceedings of the 44th IEEE Conference on Decision and Control*. 2005, pp. 5989–5994.

Energy, coenergy variables

The choice of the energy variables is the same as in¹

$$egin{aligned} lpha_w &=
ho h rac{\partial w}{\partial t}, & oldsymbol{lpha}_{ heta} &= rac{
ho h^3}{12} rac{\partial oldsymbol{ heta}}{\partial t}, \ oldsymbol{A}_{\kappa} &= oldsymbol{K}, & oldsymbol{lpha}_{\gamma} &= oldsymbol{\gamma}. \end{aligned}$$

The coenergies are given by the Hamiltonian variational derivative

$$egin{aligned} e_w &:= rac{\delta H}{\delta lpha_w} = rac{\partial w}{\partial t}, & oldsymbol{e}_ heta &:= rac{\delta H}{\delta oldsymbol{lpha}_ heta} = rac{\partial oldsymbol{ heta}}{\partial t}, \ oldsymbol{E}_\kappa &:= rac{\delta H}{\delta oldsymbol{A}_\kappa} = oldsymbol{M}, & oldsymbol{e}_{\epsilon_s} &:= rac{\delta H}{\delta oldsymbol{lpha}_\gamma} = oldsymbol{q}. \end{aligned}$$

¹A. Macchelli, C. Melchiorri, and L. Bassi. "Port-based Modelling and Control of the Mindlin Plate". In: *Proceedings of the 44th IEEE Conference on Decision and Control.* 2005, pp. 5989–5994.

PH system

The port-Hamiltonian system is expressed as follows

$$\frac{\partial}{\partial t} \begin{pmatrix} \alpha_w \\ \boldsymbol{\alpha}_{\theta} \\ \boldsymbol{A}_{\kappa} \\ \boldsymbol{\alpha}_{\gamma} \end{pmatrix} = \underbrace{\begin{bmatrix} 0 & 0 & 0 & \text{div} \\ 0 & 0 & \text{Div} & \boldsymbol{I}_{2\times 2} \\ 0 & \text{Grad} & 0 & 0 \\ \text{grad} & -\boldsymbol{I}_{2\times 2} & 0 & 0 \end{bmatrix}}_{I} \begin{pmatrix} e_w \\ \boldsymbol{e}_{\theta} \\ \boldsymbol{E}_{\kappa} \\ \boldsymbol{e}_{\gamma} \end{pmatrix},$$

with J skew symmetric. Moreover

$$\begin{pmatrix} e_w \\ e_\theta \\ E_\kappa \\ e_\gamma \end{pmatrix} = \underbrace{\begin{bmatrix} 1/(\rho h) & 0 & 0 & 0 \\ 0 & 12/(\rho h^3) & 0 & 0 \\ 0 & 0 & \boldsymbol{D} & 0 \\ 0 & 0 & 0 & \boldsymbol{C} \end{bmatrix}}_{O} \begin{pmatrix} \alpha_w \\ \boldsymbol{\alpha}_\theta \\ \boldsymbol{A}_\kappa \\ \boldsymbol{\alpha}_\gamma \end{pmatrix},$$

with Q coercive.

Boundary variables

Taking the energy rate and applying of the Green theorem

$$\dot{H} = \int_{\partial\Omega} \left\{ w_t q_n + \omega_n m_{nn} + \omega_s m_{ns} \right\} ds.$$

The dynamic boundary variable are defined as

$$ext{Shear Force} \qquad q_n := oldsymbol{e}_{\gamma} \cdot oldsymbol{n}, \ ext{Flexural momentum} \qquad m_{nn} := oldsymbol{E}_{\kappa} : (oldsymbol{n} \otimes oldsymbol{n}), \ ext{Torsional momentum} \qquad m_{ns} := oldsymbol{E}_{\kappa} : (oldsymbol{s} \otimes oldsymbol{n}), \ ext{Torsional momentum}$$

where $\boldsymbol{u} \otimes \boldsymbol{v}$ denotes the outer product of vectors.

The corresponding power conjugated (and essential) boundary variables are

```
Vertical velocity w_t := e_w,
Flexural rotation \omega_n := e_\theta \cdot n,
Torsional rotation \omega_s := e_\theta \cdot s.
```

Plan

- PH formulation of the Mindlin plate
- 2 Structure preserving discretization
 - Boundary control through forces and momenta
 - Boundary control through kinematic variables
- 3 Discretization procedure
- 4 Numerical simulations

Main step to follow

The structure-preserving discretization consists of three steps:

- write the system in weak form;
- operform integrations by parts to get the chosen boundary control;
- select the finite element spaces to achieve a finite-dimensional system.

Decomposing J in operators to be integrated by parts

$$J = J_{\text{div}} + J_{\text{grad}} + J_{I}$$

$$J = \begin{bmatrix} 0 & 0 & 0 & \mathbf{div} \\ 0 & 0 & \mathbf{Div} & \mathbf{I}_{2\times 2} \\ 0 & \mathbf{Grad} & 0 & 0 \\ \mathbf{grad} & -\mathbf{I}_{2\times 2} & 0 & 0 \end{bmatrix}$$

Decomposing J in operators to be integrated by parts

$$J = J_{\text{div}} + J_{\text{grad}} + J_{I}$$

$$J_{
m div} := egin{bmatrix} 0 & 0 & 0 & {
m div} \ 0 & 0 & {
m Div} & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}$$

Decomposing J in operators to be integrated by parts

$$J = J_{\text{div}} + J_{\text{grad}} + J_{I}$$

$$J_{
m grad} := egin{bmatrix} 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & {
m Grad} & 0 & 0 \ {
m grad} & 0 & 0 & 0 \end{bmatrix}$$

Decomposing J in operators to be integrated by parts

$$J = J_{\text{div}} + J_{\text{grad}} + J_{I}$$

$$J_{\mathbf{I}} := \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{I}_{2\times 2} \\ 0 & 0 & 0 & 0 \\ 0 & -\mathbf{I}_{2\times 2} & 0 & 0 \end{bmatrix}$$

May 7, 2019

Decomposing J in operators to be integrated by parts

$$J = J_{\text{div}} + J_{\text{grad}} + J_{I}$$

From these definitions, it holds

$$J_{\rm div} = -J_{\rm grad}^*,$$

where A^* is the formal adjoint of operator A.

Weak form

To simplify the notation, all test and unknown functions can be collected in one set variable

$$v := (v_w, \mathbf{v}_{\theta}, \mathbf{V}_{\kappa}, \mathbf{v}_{\gamma}),$$

$$\alpha := (\alpha_w, \mathbf{\alpha}_{\theta}, \mathbf{A}_{\kappa}, \mathbf{\alpha}_{\gamma}),$$

$$e := (e_w, \mathbf{e}_{\theta}, \mathbf{E}_{\kappa}, \mathbf{e}_{\gamma}),$$

so that the previous system is rewritten compactly as

$$\left(v,\frac{\partial\alpha}{\partial t}\right)=(v,Je).$$

Gradient formulation

If the operator J_{div} is integrated by parts then

$$(v, Je) = j_{\text{grad}}(v, e) + f_N(v). \tag{1}$$

The bilinear form

$$\begin{split} j_{\text{grad}}(v,e) &= (J_{\text{div}}^*v,e) + (v,J_{\text{grad}}e) + (v,J_{I}e), \\ &= (-J_{\text{grad}}v,e) + (v,J_{\text{grad}}e) + (v,J_{I}e), \end{split}$$

is skew symmetric.

Gradient formulation

If the operator J_{div} is integrated by parts then

$$(v, Je) = j_{\text{grad}}(v, e) + f_N(v). \tag{1}$$

The functional

$$f_N(v) = \int_{\partial\Omega} \left\{ v_w q_n + v_{\omega_n} m_{nn} + v_{\omega_s} m_{ns} \right\} ds,$$

= $\int_{\partial\Omega} v_{\partial} u_{\partial} ds.$

express the boundary control u_{∂} in terms of forces and momenta:

$$\mathbf{u}_{\partial} = \operatorname{Trace} \begin{pmatrix} q_n \\ m_{nn} \\ m_{ns} \end{pmatrix} \qquad \mathbf{y}_{\partial} = \operatorname{Trace} \begin{pmatrix} w_t \\ \omega_n \\ \omega_s \end{pmatrix}.$$

Divergence formulation

If the operator J_{grad} is integrated by parts then

$$(v, Je) = j_{\text{div}}(v, e) + f_D(v), \qquad (2)$$

15 / 21

The bilinear form

$$\begin{split} j_{\text{div}}(v,e) &= (v, \textit{\textbf{J}}_{\text{div}} e) + (\textit{\textbf{J}}_{\text{grad}}^* v, e) + (v, \textit{\textbf{J}}_{\textbf{I}} e), \\ &= (v, \textit{\textbf{J}}_{\text{div}} e) + (-\textit{\textbf{J}}_{\text{div}} v, e) + (v, \textit{\textbf{J}}_{\textbf{I}} e), \end{split}$$

is skew symmetric.

Divergence formulation

If the operator J_{grad} is integrated by parts then

$$(v, Je) = j_{\text{div}}(v, e) + f_D(v), \qquad (2)$$

The functional

$$\begin{split} f_D(v) &= \int_{\partial \Omega} \left\{ v_{q_n} \mathbf{w}_t + v_{m_{nn}} \mathbf{\omega}_n + v_{m_{ns}} \mathbf{\omega}_s \right\} \, \mathrm{d}s, \\ &= \int_{\partial \Omega} v_{\partial} \mathbf{u}_{\partial} \, \mathrm{d}s. \end{split}$$

expresses the boundary controls u_{∂} in terms of linear and angular velocities:

$$\begin{array}{ll} \textbf{\textit{u}}_{\partial} = \operatorname{Trace} \begin{pmatrix} w_t \\ \omega_n \\ \omega_s \end{pmatrix} \qquad \textbf{\textit{y}}_{\partial} = \operatorname{Trace} \begin{pmatrix} q_n \\ m_{nn} \\ m_{ns} \end{pmatrix}_{\partial \Omega}. \end{array}$$

Plan

- 1 PH formulation of the Mindlin plate
- 2 Structure preserving discretization
- 3 Discretization procedure
 - Finite-dimensional system
- Mumerical simulations

Homogeneous boundary conditions

Homogeneous boundary conditions:

- Clamped (C): $\mathbf{w_t} = 0$, $\mathbf{\omega_n} = 0$, $\mathbf{\omega_s} = 0$;
- Simply supported hard (S): $w_t = 0$, $m_{nn} = 0$, $\omega_s = 0$;
- Free (F): $q_n = 0$, $m_{nn} = 0$, $m_{ns} = 0$.

The gradient formulation is adopted to discretize the system. This implies that

- variables in Blue are imposed weakly by setting $\mathbf{f}_N(v) = 0$
- variables in Red have to be imposed strongly (by select a functional space that incorporates those or by introducing Lagrange multipliers)

Galerkin method

Test and co-energy variables are discretized by a Galerkin Method, while energy variables are retrieve using the relation $\alpha = Q^{-1}e$. Replacing the approximated variables into the weak form

$$\begin{bmatrix} \boldsymbol{M} & 0 \\ 0 & 0 \end{bmatrix} \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \boldsymbol{e} \\ \boldsymbol{\lambda} \end{pmatrix} = \begin{pmatrix} \boldsymbol{J} & \boldsymbol{G}_D \\ -\boldsymbol{G}_D^T & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{e} \\ \boldsymbol{\lambda} \end{pmatrix} + \begin{pmatrix} \boldsymbol{B}_N \\ 0 \end{pmatrix} \boldsymbol{u}_N$$

- G_D accounts for essential (Dirichlet) BCs;
- B_N account for inhomogeneous natural (Neumann) BCs;

Plan

- 1 PH formulation of the Mindlin plate
- 2 Structure preserving discretization
- 3 Discretization procedure
- 4 Numerical simulations

Eigenvalues

BCs	Mode	N = 10	N = 20	H-H	D-R
CCCC	$\widehat{\omega}_{11}$	1.5999	1.5917	1.591	1.594
	$\widehat{\omega}_{21}$	3.0615	3.0410	3.039	3.046
CCCC	$\widehat{\omega}_{12}$	3.0615	3.0410	3.039	3.046
	$\widehat{\omega}_{22}$	4.3161	4.2682	4.263	4.285
SSSS	$\widehat{\omega}_{11}$	0.9324	0.9324	0.930	0.930
	$\widehat{\omega}_{21}$	2.2227	2.2226	2.219	2.219
	$\widehat{\omega}_{12}$	2.2227	2.2226	2.219	2.219
	$\widehat{\omega}_{22}$	3.4142	3.3608	3.405	3.406
	$\widehat{\omega}_{11}$	1.3111	1.3013	1.300	1.302
SCSC	$\widehat{\omega}_{21}$	2.4155	2.3966	2.394	2.398
	$\widehat{\omega}_{12}$	2.9082	2.8871	2.885	2.888
	$\widehat{\omega}_{22}$	3.8906	3.8458	3.839	3.852
CCCF	$\widehat{\omega}_{\frac{1}{2}1}$	1.0855	1.0982	1.081	1.089
	$\widehat{\omega}_{\frac{3}{2}1}^2$	1.7636	1.7461	1.744	1.758
	$\omega_{\frac{1}{2}2}$	2.6696	2.6575	2.657	2.673
	$\widehat{\omega}_{\frac{5}{2}1}^2$	3.2248	3.1997	3.197	3.216

Table: Eigenvalues for h/L = 0.1 using \mathbb{P}_1 :

reference, $\epsilon < 2\%$.

20 / 21

CPDE Oaxaca 2019

Eigenvalues

BCs	Mode	N=5	N = 10	H-H	D-R
CCCC	$\widehat{\omega}_{11}$	1.5976	1.5914	1.591	1.594
	$\widehat{\omega}_{21}$	3.0584	3.0405	3.039	3.046
	$\widehat{\omega}_{12}$	3.0677	3.0405	3.039	3.046
	$\widehat{\omega}_{22}$	4.3109	4.2662	4.263	4.285
SSSS	$\widehat{\omega}_{11}$	0.9304	0.9302	0.930	0.930
	$\widehat{\omega}_{21}$	2.2223	2.2194	2.219	2.219
	$\widehat{\omega}_{12}$	2.2224	2.2194	2.219	2.219
	$\widehat{\omega}_{22}$	3.4128	3.4061	3.405	3.406
SCSC	$\widehat{\omega}_{11}$	1.3053	1.3004	1.300	1.302
	$\widehat{\omega}_{21}$	2.4040	2.3946	2.394	2.398
	$\widehat{\omega}_{12}$	2.9060	2.8858	2.885	2.888
	$\widehat{\omega}_{22}$	3.8721	3.8415	3.839	3.852
CCCF	$\widehat{\omega}_{\frac{1}{2}1}$	1.0845	1.0797	1.081	1.089
	$\widehat{\omega}_{\frac{3}{2}1}^2$	1.7559	1.7425	1.744	1.758
	$\widehat{\omega}_{\frac{1}{2}2}^2$	2.6762	2.6547	2.657	2.673
	$\widehat{\omega}_{\frac{5}{2}1}^{2}$	3.2186	3.1954	3.197	3.216

Table: Eigenvalues for h/L = 0.1 using \mathbb{P}_2 :

Eigenvalues |

BCs	Mode	N = 10	N = 20	H-H	D-R
CCCC	$\widehat{\omega}_{11}$	0.1967	0.1765	0.1754	0.1754
	$\widehat{\omega}_{21}$	0.4030	0.3604	0.3574	0.3576
	$\widehat{\omega}_{12}$	0.4030	0.3604	0.3574	0.3576
	$\widehat{\omega}_{22}$	0.6431	0.5358	0.5264	0.5274
SSSS	$\widehat{\omega}_{11}$	0.1706	0.1128	0.0963	0.0963
	$\widehat{\omega}_{21}$	0.3576	0.2660	0.2406	0.2406
	$\widehat{\omega}_{12}$	0.3576	0.2660	0.2406	0.2406
	$\widehat{\omega}_{22}$	0.5803	0.4442	0.3847	0.3848
SCSC	$\widehat{\omega}_{11}$	0.1864	0.1487	0.1411	0.1411
	$\widehat{\omega}_{21}$	0.3649	0.2829	0.2668	0.2668
	$\widehat{\omega}_{12}$	0.3987	0.3485	0.3377	0.3377
	$\widehat{\omega}_{22}$	0.6075	0.4933	0.4604	0.4608
CCCF	$\widehat{\omega}_{\frac{1}{2}1}$	0.1238	0.1166	0.1166	0.1171
	$\widehat{\omega}_{\frac{3}{2}1}^2$	0.2207	0.1954	0.1949	0.1951
	$\widehat{\omega}_{\frac{1}{2}2}$	0.3204	0.3078	0.3080	0.3093
	$\widehat{\omega}_{\frac{5}{2}1}^{2}$	0.4144	0.3751	0.3736	0.3740

Table: Eigenvalues for h/L = 0.01 using \mathbb{P}_1 : reference, $\varepsilon < 2\%$, $\varepsilon < 5\%$, $\varepsilon < 15\%$, $\varepsilon < 30\%$.

Eigenvalues

BCs	Mode	N=5	N = 10	Н-Н	D-R
CCCC	$\widehat{\omega}_{11}$	0.1872	0.1762	0.1754	0.1754
	$\widehat{\omega}_{21}$	0.3725	0.3598	0.3574	0.3576
	$\widehat{\omega}_{12}$	0.4055	0.3598	0.3574	0.3576
	$\widehat{\omega}_{22}$	0.6043	0.5335	0.5264	0.5274
SSSS	$\widehat{\omega}_{11}$	0.0963	0.0963	0.0963	0.0963
	$\widehat{\omega}_{21}$	0.2422	0.2406	0.2406	0.2406
	$\widehat{\omega}_{12}$	0.2430	0.2406	0.2406	0.2406
	$\widehat{\omega}_{22}$	0.3874	0.3848	0.3847	0.3848
SCSC	$\widehat{\omega}_{11}$	0.1492	0.1418	0.1411	0.1411
	$\widehat{\omega}_{21}$	0.2827	0.2683	0.2668	0.2668
	$\widehat{\omega}_{12}$	0.3608	0.3394	0.3377	0.3377
	$\widehat{\omega}_{22}$	0.4940	0.4654	0.4604	0.4608
CCCF	$\widehat{\omega}_{\frac{1}{2}1}$	0.1197	0.1169	0.1166	0.1171
	$\widehat{\omega}_{\frac{3}{2}1}$	0.2092	0.1960	0.1949	0.1951
	$\widehat{\omega}_{\frac{1}{2}2}^2$	0.3188	0.3089	0.3080	0.3093
	$\widehat{\omega}_{\frac{5}{2}1}^2$	0.3938	0.3757	0.3736	0.3740

Table: Eigenvalues for h/L = 0.01 using \mathbb{P}_2 :

CPDE Oaxaca 2019 20 / 21 Thank you for your attention. Questions?