

APOSTILA MATEMÁTICA BÁSICA

Este material serve como introdução aos conceitos matemáticos, adequando-se às necessidades dos alunos do CEFET/ SP, UNED de Sertãozinho.

Nele estão conteúdos dos níveis básico e intermediário da matemática, dos ensinos fundamental e médio. Os pontos, aqui abordados, fazem parte de um grupo de requisitos necessários à ascensão nos cursos oferecidos pela unidade.

Este material tem por objetivo oferecer subsídios e conhecimento básicos aos alunos que deles necessitam, a modo de proporcionar aos discentes a base matemática para prosseguir em seus estudos.

O material contém as definições matemáticas de uma maneira clara e objetiva, exemplos e uma série de exercícios de fixação.

Aluno: _		
Curso: _	Turm	na:

ÍNDICE GERAL

I.	Conjuntos numéricos			2	
II.	As quatro operações	fundamentais	(números	decimais)	(
	Expressões			2	
III.	Frações Ordinárias			9	
IV.	Potências			13	
٧.	Operações algébricas			20	
VI.	Equações do 1º grau			23	
VII.	Equações do 2º grau			28	
ΊΙΙ.	Inequações do 1º grau			30	
IX.	Proporcionalidade			31	
X.	Juros			38	
XI.	Relações Trigonométrica	as		41	
XII.	Plano Cartesiano (seu p	roduto, relações	e funções)	44	
III.	Nocões de Geometria Pl	ana e Espacial		48	

I - CONJUNTOS NUMÉRICOS

Esta figura representa a classe dos números. Veja a seguir:

N → Naturais

São os números positivos inclusive o zero, que representem uma contagem inteira.

$$N = \{0, 1, 2, 3, 4, 5, ...\}$$

Não há números naturais negativos.

Z → Inteiros

São os números naturais e seus opostos – negativos.

$$Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

Não há números inteiros em fração ou decimal.

Q → Racionais

São todos os números na forma decimal exata, periódica ou na forma de fração.

$$Q = \left\{ \cdots, -\frac{17}{6}, -\frac{5}{2}, -\frac{4}{3}, -\frac{1}{2}, 0, \frac{1}{3}, \frac{1}{2}, \frac{7}{4}, \cdots \right\}$$

Exemplos:

Números decimais na forma exata: {1,2; 3,654; 0,00005; 105,27272};

Números decimais na forma periódica:

$$2,333333... = 2,\overline{3}$$
 $3,0222... = 3,0\overline{2}$ $10,232323... = 10,\overline{23}$

I → Irracionais

São todas as decimais não exatas e não periódicas.

$$I = \left\{ \cdots, -\frac{\sqrt{2}}{6}, \sqrt{3}, \pi, \frac{\pi}{6}, \cdots \right\}$$

R → Reais

É a união dos conjuntos numéricos citados acima. Portanto, todo número, seja N, Z, Q ou I é um número R (real).

As raízes em que o radicando seja negativo e o índice par não são reais.

II - AS QUATRO OPERAÇÕES FUNDAMENTAIS (NÚMEROS DECIMAIS)

1) Adição

Apostila de Matemática BásicaProf. Msc. Luiz Carlos Leal Junior

Na adição os números são chamados de parcelas, sendo a operação aditiva, e o resultado é a soma.

Exemplos:

$$4,32 + 2,3 + 1,429 = 8,049$$

$$\frac{1}{4} + \frac{2}{3} + \frac{1}{5} = \frac{15 + 40 + 12}{60} = \frac{67}{60} \approx 1,1166$$
 ou

$$\frac{1}{4} + \frac{2}{3} + \frac{1}{5} = \frac{2,25 + 6 + 1,8}{9} = \frac{10,05}{9} \cong 1,1166$$

2) Subtração

Na subtração os números são chamados de subtraendo, sendo a operação a subtração, e o resultado é o minuendo.

Exemplos: As regras para a subtração são as mesmas da adição, portanto podemos utilizar os mesmos exemplos apenas alterando a operação. Numa subtração do tipo 4-7 temos que o minuendo é menor que o subtraendo; sendo assim a diferença será negativa e igual a -3.

3) Multiplicação

Na multiplicação os números são chamados de fatores, sendo a operação multiplicativa, e o resultado é o produto.

Pode-se representar a multiplicação por: *, x ou .

Exemplo:

Apostila de Matemática BásicaProf. Msc. Luiz Carlos Leal Junior

7,32 * 12,5 = 91,500

Na multiplicação começa-se operar da esquerda para a direita. Quando a multiplicação envolver números decimais (como no exemplo ao lado), soma-se a quantidade de casas após a vírgula.

$$\frac{1}{2} * \frac{2}{3} * \frac{8}{1} = \frac{16}{6} = \frac{8}{3} \approx 2,6$$

Na multiplicação de frações multiplica-se divisor com divisor, dividendo com dividendo (ou simplesmente, o de cima pelo de cima e o de baixo pelo de baixo).

4) Divisão

Na divisão, os números são chamados de dividendo(a parte que está sendo dividida) e divisor (a quantia de vezes que esta parte está sendo dividida), a operação é a divisão, e o resultado é o quociente.

Exemplo:

Existe na divisão, o que se pode chamar de resto. Isto é, quando uma divisão não é exata irá sempre sobrar um determinado valor, veja no exemplo a seguir:

$$843 / 5 = 168$$
 34
 43
 $3 \rightarrow \text{resto (r)}$

Para verificar se o resultado é verdadeiro basta substituir os valores na seguinte fórmula:

$$D = d * q + r$$

 $843 = 5 * 168 + 3$

Se o resto for igual a zero a divisão é chamada exata.

5) Casos particulares da multiplicação e divisão

Multiplicação

$$N * 1 = N$$

$$N * 0 = 0$$

Divisão

$$N/1 = N$$

$$N/N=1$$

$$0 / N = 0 (N \neq 0)$$

$$N / 0 = N\tilde{a}o \text{ existe}!!!!$$

6) Exercícios

a)
$$2,31 + 4,08 + 3,2 =$$

Apostila de Matemática Básica

Prof. Msc. Luiz Carlos Leal Junior

Exemplos:
$$\begin{vmatrix} -9 & 9 & 9 \\ -2 & 2 & 2 \\ |0| & 0 \end{vmatrix}$$

b) 4,03 + 200 + 51,2 = c) 32,4 - 21,3 =

d)
$$48 - 33,45 =$$

e)
$$2,1*3,2=$$

g)
$$3,21 * 2,003 =$$

i)
$$682,29 / 0,513 =$$

k) (FUVEST)
$$\frac{0.2*0.3}{3.2-2.0}$$
 =

m) 0,0281 / 0,432
$$\stackrel{\circ}{=}$$

n)
$$\frac{2,31*4,82}{5,1}$$

o)
$$\frac{0.021*4.32}{0.285}$$

8) Soma e subtração algébrica

Sinais iguais: Somam-se os valores absolutos e dá-se o sinal comum.

Sinais diferentes: Subtraem-se os valores absolutos e dá-se o sinal do maior.

Exemplos:

a)
$$2 + 4 = 6$$

b)
$$-2 - 4 = -6$$

c)
$$5-3=2$$

d)
$$-5+3=-2$$

e)
$$2 + 3 - 1 - 2 = 5 - 3 = 2$$

f)
$$-1-3+2-4+21-5-32=23-45=-22$$

7) Valor absoluto ou Módulo

Representa a distância de um número até o zero (ou origem). Sendo assim, o módulo, por representar distância, é sempre positivo e representado por | |.

9) Multiplicação e divisão algébrica

Sinais iguais → resposta positiva
Sinais diferentes → resposta negativa

Isto é:
$$(+)*(+)=(+)$$

 $(-)*(-)=(+)$
 $(+)*(-)=(-)$

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

aparecem sinais de reunião: (): parênteses, []: colchetes e { }: chaves, efetuam-se as operações eliminando-se, na ordem: parênteses, colchetes e chaves, isto é, dos sinais interiores para os exteriores. Quando à frente do sinal da reunião eliminado estiver o sinal negativo, trocam-se todos os sinais dos termos internos.

Exemplos:

a)
$$12 * 3 = 36$$

b)
$$(-12) * (-3) = 36$$

c)
$$2*(-2) = -4$$

d)
$$(-2) * 3 = -6$$

e)
$$\frac{4}{2} = 2$$

f)
$$\frac{20}{(-5)} = -4$$

g)
$$\frac{(-20)}{(-5)} = 4$$

h)
$$\frac{(-20)}{5} = -4$$

10) Expressões numéricas

Para resolver expressões numéricas realizamos primeiro as operações de multiplicação e divisão, na ordem em que estas estiverem indicadas, e depois adições e subtrações. Em expressões que

Exemplo:

a)
$$2 + [2 - (3 + 2) - 1] = 2 + [2 - 5 - 1] = 2 + [2 - 6]$$

b)
$$2 + \{3 - [1 + (2 - 5 + 4)] + 8\} = 11$$

11) Números Primos

São aqueles números divisíveis somente por eles mesmos e por 1.

Obs.: O número 1, por definição, não é primo.

Método para obtenção de números primos

Faremos isso através de um exemplo:

Encontre os números primos compreendidos entre 1 e 50.

1º Passo: Enumera-los

1 2 3 4 5 6 7 8 9 10	
----------------------	--

Apostila de Matemática BásicaProf. Msc. Luiz Carlos Leal Junior

2º Passo: Encontrar a raiz quadrada do maior número quadrado dentre os indicados, ou seja, encontrar o maior número que se conheça a raiz quadrada exata.

No caso,
$$\sqrt{49} = 7$$
.

3º Passo: Extrair da lista acima os números múltiplos dos números {2, 3, 4, 5, 6, 7}, nesta ordem, onde o 7 provém do 2º passo.

4º Passo: Os números que sobraram são os números primos procurados: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47}.

Obs.: O número 2 é o único número primo e par.

12) Decomposição de um número em um produto de fatores primos

A decomposição de um número em um produto de fatores primos é feita por meio do dispositivo prático que será mostrado nos exemplos a sequir.

Exemplos:

$$\begin{pmatrix}
30 & 2 \\
15 & 3 \\
5 & 5 \\
1 & 30
\end{pmatrix}
30 = 2 * 3 * 5$$

$$\left\langle \begin{array}{c|c} 21 & 3 \\ 7 & 7 \\ 1 & \overline{21} \end{array} \right\rangle \quad 21 = 3 * 7$$

OBS: Número primo é aquele divisível somente por ele mesmo e pelo número 1.

13) Mínimo múltiplo comum (m.m.c.)

O mínimo múltiplo comum a vários números é o menor número divisível por todos eles.

Exemplo:

a) Calcular o m.m.c. entre 12, 16 e 45

12 \ 12 \ 45 | 2

 $06 \setminus 08 \setminus 45 \mid 2$

 $\begin{array}{c|c}
03 \setminus 04 \setminus 45 \mid 2 \\
03 \setminus 02 \setminus 45 \mid 2
\end{array}$

 $03 \setminus 01 \setminus 45 \mid 3$

01 \ 01 \ 15 |3

01 \ 01 \ 05 | 5

O m.m.c. entre 12, 16 e 45 é 720

Confirme os resultados abaixo.

b) m.m.c. (4, 3) = 12

d) m.m.c. (8, 4) = 8

c) m.m.c. (3, 5, 8) = 120

 $01 \setminus 01 \setminus 01 | \overline{720}$

Campus Sertãozinho

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

Agora tomemos as menores potências dos fatores em comum apresentados acima:

$$m.d.c.(12, 18, 36) = 2.3 = 6.$$

Quando o m.d.c. entre dois números é igual a 1, dizemos que eles são relativamente primos.

Exemplo: 5 e 9 são relativamente primos, pois 5 = 5.1 e $9 = 3^2.1$. Sendo 1 o único fator comum a estes números.

Confirme os resultados abaixo:

- b) m.m.c. (9, 6) = 3
- c) m.m.c. (36, 45) = 9
- d) m.m.c. (12, 64) = 4
- e) m.m.c. (20, 35, 45) = 5

14) Máximo Divisor Comum (m.d.c.)

e) m.m.c. (60, 15, 20, 12) = 60

O m.d.c. a vários números é o maior número que os divide.

Exemplo: Encontrar o m.d.c. entre 12, 18 e 36.

Fatorando cada um dos números em fatores primos, temos:

$$12 = 2^2.3$$

$$18 = 2.3^2$$

$$36 = 2^2 \cdot 3^2$$
.

15) Exercícios:

a)
$$2 + 3 - 1 =$$

b)
$$-2-5+8=$$

c)
$$-1-3-8+2-5=$$

d)
$$2 * (-3) =$$

e)
$$(-2) * (-5) =$$

IV - FRAÇÕES ORDINÁRIAS

Definição: *Fração é um quociente indicado onde o dividendo é o numerador e o divisor é o denominador.*

As frações que serão apresentadas a seguir, partem de um círculo inteiro que ao ser dividido em partes iguais formam as frações

$$\frac{1}{4}$$
 =0.25 $\frac{1}{8}$ =0.125

$$\frac{7}{8} = 0.875$$

- g) (-1) * (-1) * (-2) =
- h) $\frac{4}{-2}$ =
- i) $\frac{-8}{2} =$
- $j) \frac{-20}{-5} =$

k)
$$\frac{(-4)*(-1)}{-2} =$$

1)
$$\frac{(-1+3-5)*(2-7)}{-1} =$$

m)
$$\frac{(2+3*4-2*5-3)}{-1}$$
 =

n)
$$2\{2-2[2-4(3*2:3)+2]\}+1 =$$

o)
$$8 - \{-20[(-3+3):(-58)] + 2(-5)\} =$$

p)
$$0.5 * 0.4 : 0.2 =$$

q)
$$0.6:0.03*0.05=$$

s)
$$3:81*0,5=$$

t) Calcule o m.m.c. e o m.d.c. entre:

Apostila de Matemática BásicaProf. Msc. Luiz Carlos Leal Junior

Exemplos:

a)
$$\frac{1}{2} = \frac{1*2}{2*2} = \frac{2}{4}$$

b)
$$\frac{3}{4} = \frac{3*5}{4*5} = \frac{15}{20}$$

c)
$$\frac{20}{30} = \frac{20:10}{30:10} = \frac{2}{3}$$

d)
$$-\frac{4}{8} = -\frac{4:4}{8:4} = -\frac{1}{2}$$

17) Soma algébrica de frações

Reduzem-se ao menor denominador comum e somam-se algebricamente os numeradores.

OBS: O menor denominador comum é o m.m.c. dos denominadores.

Exemplos:

a)
$$\frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{3+2}{6} = \frac{5}{6}$$

b)
$$\frac{1}{2} + \frac{5}{6} - \frac{2}{3} = \frac{3}{6} + \frac{5}{6} - \frac{4}{6} = \frac{3+5-4}{6} = \frac{4}{6} = \frac{2}{3}$$

c)
$$\frac{1}{12} - \frac{3}{4} + \frac{4}{3} - 2 = \frac{1}{12} - \frac{9}{12} + \frac{16}{12} - \frac{24}{12} = \frac{1 - 9 + 16 - 24}{12} = -\frac{16}{12} = -\frac{4}{3} = -1\frac{1}{3}$$

A fração é própria quando o numerador é menor do que o

denominador:
$$\frac{1}{2}$$
, $\frac{3}{5}$, $\frac{120}{210}$, etc.

A fração e imprópria quando o numerador é maior que o denominador, sendo possível representá-la por um número misto e reciprocamente.

Exemplos:

a)
$$\frac{10}{7} = 1\frac{3}{7}$$
 pois $\frac{10}{7}$ possui resto 3

b)
$$\frac{28}{5} = \frac{25+3}{5} = \frac{25}{5} + \frac{3}{5} = 5\frac{3}{5}$$
 pois $\frac{28}{5}$ possui resto 3

c)
$$\frac{11}{3} = 3\frac{2}{3}$$

d)
$$2\frac{1}{3} = \frac{7}{3}$$

e)
$$-1\frac{1}{4} = -\frac{5}{4}$$

16) Propriedade

Multiplicando ou dividindo os termos de uma fração por um número diferente de zero obtém-se uma fração equivalente à inicial.

Apostila de Matemática BásicaProf. Msc. Luiz Carlos Leal Junior

18) Multiplicação de frações

Multiplicam-se os numeradores entre si, da mesma maneira se faz com os denominadores.

Exemplos:

a)
$$\frac{1}{2} * \frac{3}{5} = \frac{3}{10}$$

b)
$$\left(-\frac{1}{4}\right) * \frac{1}{2} = -\frac{1}{8}$$

c)
$$\left(-\frac{1}{3}\right) * \left(-\frac{2}{5}\right) = \frac{2}{15}$$

d)
$$(-3)*\left(-\frac{1}{4}\right)*\left(-\frac{2}{7}\right)=-\frac{3}{14}$$

e)
$$2\frac{3}{4}*3\frac{1}{5} = \frac{11}{4}*\frac{16}{5} = \frac{44}{5} = 8\frac{4}{5}$$

19) Divisão de frações

Multiplica-se a fração dividenda pelo inverso da fração divisora.

Exemplos:

a)
$$\frac{\frac{1}{2}}{\frac{1}{3}} = \frac{1}{2} * \frac{3}{1} = \frac{3}{2} = 1\frac{1}{2}$$

b)
$$\frac{\left(-\frac{2}{3}\right)}{\frac{1}{2}} = \left(-\frac{2}{3}\right) * \frac{2}{1} = -\frac{4}{3} = -1\frac{1}{3}$$

c)
$$\frac{\frac{1}{2}}{3} = \frac{1}{2} * \frac{1}{3} = \frac{1}{6}$$

d)
$$\frac{5}{2/3} = \frac{5}{1} * \frac{3}{2} = \frac{15}{2} = 7\frac{1}{2}$$

e)
$$\frac{4\frac{1}{3}}{\left(-2\frac{1}{4}\right)} = \frac{\frac{13}{3}}{\left(-\frac{9}{4}\right)} = \frac{13}{3} * \left(-\frac{4}{9}\right) = -\frac{52}{27} = -1\frac{25}{27}$$

20) Comparação de Frações

Para comparar as frações devemos reduzi-las ao mesmo denominador e comparar os numeradores, a qual tiver o numerados maior será a maior fração.

OBS.: a < b lê-se "a é menor do que b" a > b lê-se "a é maior do que b"

Apostila de Matemática BásicaProf. Msc. Luiz Carlos Leal Junior

Exemplo: Comparar
$$\frac{6}{7}$$
 e $\frac{2}{3}$:

Para isto, calculamos o m.m.c. entre 7 e 3:

$$m.m.c.(3, 7) = 21.$$

Então, ao transformar os denominadores em 21, devemos multiplicar os numeradores pelo fatores de transformações.

$$\frac{6*3}{7*3} \in \frac{2*7}{3*7} \Rightarrow \frac{18}{21} \in \frac{14}{21}$$

Como 18 é maior que 14, podemos afirmar que:

$$\frac{18}{21} > \frac{14}{21}$$
.

O fator de transformação da fração é 3 pois 3*7 = 21, e o da fração é 7, pois 3*7 = 21.

21) Exercícios

Simplifique as frações, ou coloque-as na forma irredutível:

a)
$$\frac{2}{4} =$$

b)
$$\frac{9}{27} =$$

c)
$$\frac{12}{48} =$$

Comparar as frações:

a)
$$\frac{1}{2}$$
, $\frac{2}{3}$

b)
$$\frac{2}{3}$$
, $\frac{5}{6}$

c)
$$\frac{4}{7}$$
, $\frac{3}{8}$

Resolva:

a)
$$\frac{1}{5} + \frac{1}{10} =$$

b)
$$\frac{2}{3} - \frac{4}{3} =$$

c)
$$\frac{1}{2} - \frac{1}{3} + \frac{1}{6}$$

Simplifique:

a)
$$\frac{1+\frac{1}{1+1}}{1+\frac{1}{1+1}} =$$

b)
$$\frac{\frac{1}{2} + \frac{1}{3} + \frac{1}{4}}{\frac{2}{3} + \frac{3}{4}} : \left(\frac{9}{17} + 1\right) =$$

V - POTÊNCIAS

Definição: Potência de grau \mathbf{n} de um número \mathbf{A} é o produto de \mathbf{n} fatores iguais a \mathbf{A} .

$$A^n = \underbrace{A * A * \dots * A}_{n \text{ vezes}}$$

A é a base da potência e n é o expoente da potência, que determina seu grau.

Assim:

$$2^3 = 2 * 2 * 2 = 8$$
 \therefore $2^3 = 8$ $(-1)^4 = (-1) * (-1) * (-1) * (-1) = 1$ \therefore $(-1)^4 = 1$

CASOS PARTICULARES:

a) A potência de expoente 1 (1º grau) é igual à base:

d) $\frac{1}{3} * \frac{2}{5} =$

e)
$$\frac{3}{7} * \frac{1}{3} * \frac{2}{5} =$$

f)
$$\left(-\frac{1}{6}\right)*\left(-\frac{2}{5}\right)=$$

g)
$$\frac{\frac{1}{3}}{\frac{1}{2}}$$
=

h)
$$\frac{2}{3}:\left(-\frac{1}{5}\right)=$$

i)
$$\frac{1}{2}:\frac{2}{3}*\frac{1}{4}=$$

j)
$$2\frac{2}{5}:1\frac{1}{5}=$$

k)
$$\left(\frac{1}{3} + \frac{2}{4}\right) : \frac{1}{2} =$$

1)
$$\frac{1+\frac{1}{3}}{3} =$$

m)
$$\frac{1+\frac{1+\frac{1}{2}}{2}}{\frac{1}{2}} =$$

 $A^1 = A: 2^1 = 2$

 $1^2 = 1$; $1^3 = 1$

 $0^2 = 0$; $0^3 = 0$

Campus Sertãozinho

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

Realmente:
$$\frac{5^6}{5^4} = \frac{\frac{6 \text{ vezes}}{5*5*5*5*5}}{\frac{5*5*5*5}{4 \text{ vezes}}} = 5^{6-4} = 5^2$$

Exemplo: $3^7 : 3^3 = 3^4 = 3 * 3 * 3 * 3 = 81$

d) Toda potência de expoente par é positiva:

$$(-2)^4 = 16$$
; $2^4 = 16$; $(-3)^2 = 9$; $3^2 = 9$

b) Toda potência de 1 é igual a 1:

c) Toda potência de 0 é igual a 0:

e) Toda potência de expoente ímpar tem o sinal da base:

$$3^3 = 27$$
 ; $(-3)^3 = -27$

$$2^5 = 32$$
 ; $(-2)^5 = -32$

22) Multiplicação de potências de mesma base

Mantém-se a base comum e soma-se os expoentes.

Realmente:
$$2^3 * 2^2 = \underbrace{2 * 2 * 2}_{3 \text{ vezes}} * \underbrace{2 * 2}_{2 \text{ vezes}} = 2^{3+2} = 2^5$$

Exemplo:

$$5^2 * 57 = 59 = 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 = 1953125$$

23) Divisão de potências de mesma base

Mantém-se a base comum e diminuem-se os expoentes.

24) Multiplicação de potências de mesmo grau (semelhantes)

Multiplicam-se as bases e conserva-se o expoente comum.

Realmente: $2^2 * 7^2 = 2 * 2 * 7 * 7 = (2 * 7)^2$

Exemplo: $3^3 * 5^3 = 3 * 3 * 3 * 5 * 5 * 5 = (3 * 5)^3 = 15^3 = 3375$

25) Divisão de potências de mesmo grau (semelhantes)

Dividem-se as bases e conserva-se o expoente comum.

Realmente:
$$\frac{2^2}{7^2} = \frac{2*2}{7*7} = \frac{2}{7} * \frac{2}{7} = \left(\frac{2}{7}\right)^2$$

Exemplo: $8^3: 2^3 = 4^3 = 64$

26) Potenciação de potência

Eleva-se a base ao produto dos expoentes.

Realmente: $(2^3)^2 = 2^{3*2} = 2^6$

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

Exemplo: $(3^5)^2 = 3^{10} = 59049$

Exemplo: $5^{-2} = \frac{1}{5^2} = \frac{1}{5*5} = \frac{1}{25}$

27) Expoente nulo

Toda potência de base diferente de zero e expoente zero é igual a unidade.

Realmente:
$$\begin{cases} a^4 : a^4 = a^{4-4} = a^0 \\ a^4 : a^4 = 1 \end{cases} \qquad a^0 = 1$$

Exemplo: $(-5)^0 = 1$

28) Expoente negativo

Qualquer número diferente de zero, elevado a expoente negativo é igual a uma fração cujo numerador é a unidade e cujo denominador é a mesma base da potência elevada ao mesmo expoente com o sinal positivo.

Realmente:
$$\begin{cases} \frac{2^3}{2^7} = \frac{2^3}{2^3 * 2^4} = \frac{1}{2^4} \\ \frac{2^3}{2^7} = 2^{3-7} = 2^{-4} \end{cases}$$

29) Potências de 10

Efetuam-se as potências de 10 escrevendo à direita da unidade tantos zeros quantas forem as unidades do expoente.

Exemplos:

a)
$$10^2 = 100$$

b)
$$10^7 = 10\,000\,000$$

c)
$$200 = 2 * 100 = 2 * 10^2$$

d)
$$4000 = 4 * 10^3$$

e)
$$300\ 000 = 3 * 10^5$$

f)
$$3 * 10^8 = 300 000 000$$

30) Números decimais

Todo número decimal equivalente a um produto do qual um fator é o número escrito como inteiro, e outro é uma potência de dez com expoente negativo, com tantas unidades no expoente quantas são as ordens decimais.

Realmente: $0,0025 = \frac{25}{10000} = \frac{25}{10^4} = 25 * 10^{-4}$

Campus Sertãozinho

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

$$j)$$
 $3^4:3^2*3^5=$

k)
$$2^4 * 5^4 =$$

1)
$$(-3)^5 * (-5)^5 =$$

m)
$$15^3: 3^3 =$$

n)
$$(-4)^6:2^6=$$

o)
$$(3^3)^2 =$$

p)
$$(2^3)^5 =$$

q)
$$(3^3)^2 =$$

r)
$$[(3^3)^2]^2 =$$

s)
$$(2 * 3)^3 =$$

t)
$$(3^2 * 5 * 2)^4 =$$

u)
$$\left(\frac{5}{3}\right)^5 =$$

$$v) \left(\frac{2}{3^4}\right)^3 =$$

w)
$$\left(\frac{2^2 * 3^3}{5^3}\right)^2 =$$

$$(2 * 3^2)^0 =$$

$$y) 4^{-2} =$$

z)
$$2 * 3^{-1} =$$

Exemplos:

a)
$$0.001 = 10^{-3}$$

b)
$$0.002 = 2 * 10^{-3}$$

c)
$$0.00008 = 8 * 10^{-5}$$

d)
$$1,255 = 1255 * 10^{-3}$$

e)
$$2 * 10^{-3} = 0,002$$

31) Exercícios

a)
$$1^3 =$$

b)
$$0^4 =$$

c)
$$(-2)^3 =$$

d)
$$(-4)^3 =$$

e)
$$(-2)^4 =$$

f)
$$(-4)^4 =$$

g)
$$2^3 * 2^5 =$$

h)
$$3^2 * 3 * 3^5 =$$

i)
$$3^5: 3^4 =$$

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

Definição: Denomina-se raiz de índice **n** (ou raiz n-ésima) de **A**, ao número ou expressão que, elevado à potência **n** reproduz **A**.

OBS: Representa-se a raiz pelo símbolo $\sqrt{}$

$$\sqrt[n]{A} \begin{cases} n \text{ - indice da raiz} \\ A \text{ - radicando} \\ \sqrt{\text{ - radical}} \end{cases}$$

Assim:

a)
$$\sqrt{16} = 4$$
 porque $4^2 = 16$

b)
$$\sqrt[3]{8} = 2$$
 porque $2^3 = 8$

c)
$$\sqrt[4]{81} = 3$$
 porque $3^4 = 81$

32) Propriedade

É possível retirar um fator do radical, bastante que se divida o expoente do radicando pelo índice do radical.

Exemplos:

a)
$$\sqrt{12} = \sqrt{2^2 * 3} = 2\sqrt{3}$$

b)
$$\sqrt{180} = \sqrt{2^2 * 3^2 5} = 2 * 3 \sqrt{5} = 6 \sqrt{5}$$

aa) $\frac{1}{3^{-4}} =$

bb)
$$(2^{-3} * 5^{-2})^{-4} =$$

cc)
$$2^x + 1 * 4^x =$$

$$dd) 32^{x} * 24^{x} =$$

ee)
$$5^{4x}$$
: 25^{2x} =

Exprimir, utilizando potências de 10:

c)
$$0.01 =$$

d)
$$0.000045 =$$

Efetuar, utilizando potência de 10:

a)
$$\frac{2000*48000}{80} =$$

b)
$$\frac{28*0,000032}{0,00002}$$

RADICAIS

c) $\sqrt[4]{3^8 * 5^4 * 2} = 3^2 * 5\sqrt[4]{2}$

d) $\sqrt[4]{3^8} = 3^{8:4} = 3^2$

Campus Sertãozinho

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

Exemplo:

a)
$$\sqrt{2} * \sqrt{3} = \sqrt{2*3} = \sqrt{6}$$

b)
$$\frac{\sqrt{6}}{\sqrt{2}} = \sqrt{\frac{6}{2}} = \sqrt{3}$$

c)
$$\sqrt{3} * \sqrt{5} * \sqrt{2} = \sqrt{3*5*2} = \sqrt{30}$$

d)
$$\frac{\sqrt[4]{5} * \sqrt[4]{3}}{\sqrt[4]{2}} = \sqrt[4]{\frac{15}{4/2}} = \sqrt[4]{\frac{15}{2}}$$

33) Adição e subtração de radicais semelhantes

expoente do fator pelo índice do radical. Assim:

Radicais de mesmo índice e mesmo radicando são semelhantes. Na adição e subtração de radicais semelhantes, operam-se os coeficientes e conserva-se o radical.

Reciprocamente, para introduzir um fator no radical, multiplica-se o

Exemplos:

 $3\sqrt[3]{2} = \sqrt[3]{3^3 * 2}$

a)
$$3\sqrt{2} + 5\sqrt{2} - 10\sqrt{2} = 8\sqrt{2} - 10\sqrt{2} = -2\sqrt{2}$$

b)
$$3\sqrt[3]{2} + 6\sqrt[3]{2} - 5\sqrt[3]{2} - \sqrt[3]{2} = 9\sqrt[3]{2} - 6\sqrt[3]{2} = 3\sqrt[3]{2}$$

34) Multiplicação e divisão de radicais de mesmo índice

Multiplicam-se (dividem-se) os radicandos e dá-se ao produto (quociente) o índice comum.

35) Potenciação de radicais

Eleva-se o radicando à potência indicada e conserva-se o índice.

Exemplo:

a)
$$\left(\sqrt[4]{3}\right)^3 = \sqrt[4]{3^3} = \sqrt[4]{27}$$

b)
$$\left(\sqrt[5]{2^2 * 3}\right)^2 = \sqrt[5]{\left(2^2 * 3\right)^2} = \sqrt[5]{2^4 * 3^2}$$

36) Radiciação de radicais

Multiplicam-se os índices e conserva-se o radicando.

Exemplos:

a)
$$\sqrt{\sqrt{3}} = 2 * \sqrt[2]{3} = \sqrt[4]{3}$$

Apostila de Matemática Básica

Prof. Msc. Luiz Carlos Leal Junior

a)
$$\frac{1}{\sqrt{2}} = \frac{1*\sqrt{2}}{\sqrt{2}*\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{4}} = \frac{\sqrt{2}}{2}$$

b)
$$\frac{1}{2\sqrt{3}} = \frac{1*\sqrt{3}}{2\sqrt{3}*\sqrt{3}} = \frac{\sqrt{3}}{2\sqrt{9}} = \frac{\sqrt{3}}{2*3} = \frac{\sqrt{3}}{6}$$

c)
$$\frac{\sqrt{2}}{\sqrt{3}} = \frac{\sqrt{2} * \sqrt{3}}{\sqrt{3} * \sqrt{3}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3}$$

d)
$$\frac{2\sqrt{2}}{5\sqrt{6}} = \frac{2\sqrt{2} * \sqrt{6}}{5\sqrt{6} * \sqrt{6}} = \frac{2\sqrt{12}}{5\sqrt{36}} = \frac{2\sqrt{12}}{5*6} = \frac{2\sqrt{12}}{30} = \frac{\sqrt{12}}{15}$$

2º Caso: O denominador é uma soma ou diferença de dois termos em que um deles, ou ambos, são radicais do 2º grau. Neste caso multiplica-se o numerador e o denominador pela expressão conjugada do denominador.

OBS: A expressão conjugada de $\mathbf{a} + \mathbf{b}$ é $\mathbf{a} - \mathbf{b}$.

Na racionalização aparecerá no denominador um produto do tipo:

$$(a + b) * (a - b) = a^2 - b^2$$

Assim:

$$(5+3)*(5-3) = 5^2 - 3^2 = 25 - 9 = 16$$

Exemplos:

a)
$$\frac{1}{\sqrt{5} + \sqrt{2}} = \frac{1 * \left(\sqrt{5} - \sqrt{2}\right)}{\left(\sqrt{5} + \sqrt{2}\right) * \left(\sqrt{5} - \sqrt{2}\right)} = \frac{\sqrt{5} - \sqrt{2}}{\left(\sqrt{5}\right)^2 - \left(\sqrt{2}\right)^2} = \frac{\sqrt{5} - \sqrt{2}}{5 - 2} = \frac{\sqrt{5} - \sqrt{2}}{3}$$

b) $\sqrt[3]{\sqrt[4]{3}} = 2\sqrt[4]{3}$

37) Expoente fracionário

Uma potência com expoente fracionário pode ser convertida numa raiz, cujo radicando é a base, o índice é o denominador do expoente, sendo o numerador o expoente do radicando.

Exemplos:

a)
$$a^{p/q} = \sqrt[q]{a^p}$$

b)
$$a^{1/2} = \sqrt{a}$$

c)
$$2^{\frac{2}{3}} = \sqrt[3]{2^2} = \sqrt[3]{4}$$

d)
$$\sqrt[4]{6^3} = 6^{3/4}$$

38) Racionalização de denominadores

1º Caso: O denominador é um radical do 2º grau. Neste caso multiplica-se pelo próprio radical o numerador e o denominador da fração.

Exemplo:

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

b)
$$\frac{5}{2+\sqrt{3}} = \frac{5*(2-\sqrt{3})}{(2+\sqrt{3})*(2-\sqrt{3})} = \frac{5*(2-\sqrt{3})}{2^2-(\sqrt{3})^2} = \frac{5*(2-\sqrt{3})}{4-3} = \frac{5*(2-\sqrt{3})}{1} = 5*(2-\sqrt{3})$$

1)
$$\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2}}} =$$

39) Exercícios

Efetuar:

a)
$$\sqrt{5} - 2\sqrt{5} + 10\sqrt{5} =$$

b)
$$\sqrt{32} + 3\sqrt{2} - \sqrt{8} =$$

c)
$$3\sqrt{3} + \sqrt{3} - \sqrt[4]{729} =$$

d)
$$\sqrt{3} * \sqrt{6} =$$

e)
$$(-\sqrt[3]{2})*(-\sqrt[3]{4})=$$

f)
$$\frac{\sqrt[4]{8}}{\sqrt[4]{2}}$$
 =

g)
$$(\sqrt[3]{2})^6 =$$

h)
$$\left(\sqrt[3]{2*3^2}\right)^2 =$$

i)
$$\sqrt[3]{\sqrt[3]{3}} =$$

$$j) \quad \sqrt[3]{2} =$$

k)
$$\sqrt[3]{2\sqrt{2}} =$$

Dar a resposta sob forma de radical, das expressões seguintes:

a)
$$2^{3/4} =$$

b)
$$2^{-1/2} =$$

c)
$$\left(2^{\frac{1}{2}}\right)^{\frac{1}{2}} =$$

d)
$$(\sqrt{2} * \sqrt{3})^{1/6} =$$

Racionalizar o denominador das frações seguintes:

a)
$$\frac{1}{\sqrt{5}} =$$

b)
$$\frac{3}{\sqrt{7}} =$$

$$c) \frac{\sqrt{3}}{2\sqrt{2}} =$$

d)
$$\frac{2}{\sqrt{5}-2} =$$

e) $\frac{5}{4 - \sqrt{11}} =$

Simplifique:

$$a) \quad \frac{\sqrt{50} - \sqrt{8}}{\sqrt{2}} =$$

b)
$$\sqrt{2352} =$$

c)
$$\frac{1}{1-\sqrt{2}} - \frac{1}{\sqrt{2}+1} =$$

VII – OPERAÇÕES ALGÉBRICAS

40) Expressões algébricas

São indicações de operações envolvendo letras ou letras e números.

Exemplos:

b)
$$ax^2 + bx + c$$

c) 7a²b

OBS: No exemplo 3, onde não aparece indicação de soma ou de diferença, temos um monômio em que **7** é o coeficiente numérico e **a²b** é a parte literal.

41) Operações com expressões algébricas

l. Soma algébrica

Somente é possível somar ou subtrair termos semelhantes (monômios que possuem a mesma parte literal). Para somar ou subtrair termos semelhantes (reduzir termos semelhantes) repete-se a parte literal e opera-se com os coeficientes.

Exemplo:

$$3x^2y - 4xy^2 + 7xy^2 + 5x^2y = 8x^2y + 3xy^2$$

2. Multiplicação

Multiplica-se cada termo do primeiro fator por todos os termos do segundo fator e reproduzem-se os termos semelhantes.

Exemplo:

$$(3a^2y) * (2ay) = 6a^3y^2$$

Apostila de Matemática BásicaProf. Msc. Luiz Carlos Leal Junior

3. Divisão

1º Caso: *Divisão de monômios*: Divide-se o coeficiente numérico do dividendo pelo 1º coeficiente do divisor, e a parte literal do dividendo pela do divisor, observando-se as regras para divisão de potências de mesma base.

2º Caso: *Divisão de polinômio por monômio*: Divide-se cada termo do dividendo pelo monômio divisor.

Exemplo:

$$(42a^3bx4): (7ax^2) = 6a^2bx^2$$

42) Produtos notáveis

Há certos produtos de polinômios, que, por sua importância, devem ser conhecidos desde logo. Vejamos alguns deles:

I. Quadrado da soma de dois termos:

$$(a+b)^2 = a^2 + 2ab + b^2$$

O quadrado da soma de dois termos é igual ao quadrado do primeiro mais duas vezes o produto do primeiro pelo segundo mais o quadrado do segundo.

Exemplo:

$$(2 + x)^2 = 2^2 + 2 * 2x + x^2 = 4 + 4x + x^2$$

II. Quadrado da diferença de dois termos:

 $(a - b)^2 = a^2 - 2ab + b^2$

O quadrado da diferença de dois termos é igual ao quadrado do primeiro menos duas vezes o produto do primeiro pelo segundo mais o quadrado do segundo.

Exemplo:

$$(x-3) = x^2 + 2 * x * (-3) + (-3)^2 = x^2 - 6x + 9$$

III. Produto da soma de dois termos por sua diferença:

$$(a + b) * (a - b) = a^2 - b^2$$

O produto da soma de dois termos por sua diferença é igual ao quadrado do primeiro menos o quadrado do segundo.

Exemplo:

$$(1 - \sqrt{3}) * (1 + \sqrt{3}) = 1^2 - (\sqrt{3})^2 = 1 - 3 = -2$$

43) Fatoração

Fatorar um polinômio é escreve-lo sob a forma de um produto indicado.

Fator comum dos termos de um polinômio é o monômio cujo coeficiente numérico é o máximo divisor comum dos coeficientes dos

com os menores expoentes.

Campus Sertãozinho

Apostila de Matemática BásicaProf. Msc. Luiz Carlos Leal Junior

e)
$$(x^3 - 3x^2y + x)*(x^2 - y) =$$

f)
$$(6x^2 - 4x^5 + 2x^4 - 2x^2)$$
: 2x =

g)
$$(2a^2bc + 3a^3b^3c^2 - abc)$$
: abc =

h)
$$(x+2)^2 + (3x-3)^2 =$$

i)
$$(3xy + 8a^2)^2 =$$

$$(5ab + 3c)*(5ab - 3c) =$$

Exemplos:

a) Fatorando o polinômio 4ax² + 8a²x³ + 2a³x tem-se:

termos do polinômio e cuia parte literal é formada pelas letras comuns

Apresentando um fator comum, o polinômio pode ser escrito como o

produto de dois fatores: o 1º é o fator comum e o 2º é obtido

$$4ax^2 + 8a^2x^3 + 2a^3x = 2ax\left(\frac{4ax^2}{2ax} + \frac{8a^2x^3}{2ax} + \frac{2a^3x}{2ax}\right) = 2ax\left(2x + 4ax^2 + a^2\right)$$

b) Fatorar: $5x^2y + x4y^3 + 2x^2$. O fator comum é x^2 .

Assim:
$$5x^2y + x4y^3 + 2x^2 = x^2 (5y + x^2y^3 + 2)$$

dividindo-se o polinômio original pelo fator comum.

44) Exercícios

Efetuar:

a)
$$3a^2 - 7ab + 4b^2 - 5a^2 + 3ab - 4b^2 =$$

b)
$$(3xy^2 - 7x^2y + 3y^3) - (2y^3 - 8x^2y + 3xy^2) =$$

c)
$$(7xy^2)*(-8x^2y)*(xy) =$$

d)
$$(a + b + c) * (a - b) =$$

Fatorar:

a)
$$15a^2 - 10ab =$$

b)
$$3a^2x - 6b^2x + 12x =$$

VIII – EQUAÇÕES DO 1º GRAU

UM BREVE RELATO DA HISTÓRIA DA EQUAÇÃO

As equações foram introduzidas pelo conselheiro do rei da França, Henrique IV, o francês François Viète, nascido em 1540. Através da matemática Viète decifrava códigos secretos que era mensagens escritas com a substituição de letras por numerais. Desta forma Viète teve uma

Apostila de Matemática BásicaProf. Msc. Luiz Carlos Leal Junior

idéia simples, mas genial: fez o contrário, ou seja, usou letras para representar os números nas equações.

O sinal de igualdade foi introduzido por Robert Recorde (matemático inglês) que escreveu em um de seus livros que para ele não existiam duas coisas mais parecidas que duas retas paralelas. Um outro matemático inglês, Thomas Harriot, gostou da idéia de seu colega e começou a desenhar duas retas para representar que duas quantidades são iguais:

Exemplo:	
	 -
400 cm	4 m

Assim, diminuiu-se um pouco este sinal, =, passando a usá-lo nas equações de Viète.

Até o surgimento deste sistema de notação as equações eram expressas em palavras e eram resolvidas com muita dificuldade. A notação de Viète significou o passo mais decisivo e fundamental para construção do verdadeiro idioma da Álgebra: as equações. Por isso, Fraçois Viète é conhecido como o Pai da Álgebra.

45) Equação

Equação é uma igualdade que só se verifica para determinados valores atribuídos às letras (que se denominam incógnitas).

Incógnita: Quantidade desconhecida de uma equação ou de um problema; aquilo que é desconhecido e se procura saber; enigma; mistério. (Dicionário Silveira Bueno – Editora LISA)

Exemplo:

a)
$$\underbrace{x-2}_{1^{\circ} \text{ membro}} = \underbrace{5}_{2^{\circ} \text{ membro}}$$
 só é verdade para $x = 7$

b) 3x + y = 7 só é verdade para alguns valores de x e y, como por exemplo x = 2 e y = 1 ou x = 1 e y = 4.

Os valores atribuídos às incógnitas que tornam verdadeiras as igualdades denominam-se *raízes da equação*.

Se a equação contiver apenas uma incógnita e se o maior expoente dessa incógnita for 1 então a equação é dita equação do 1º grau a uma incógnita.

46) Resolução de uma equação do 1º grau a uma incógnita

Resolver uma equação é determinar sua raiz. No caso de uma equação do 1º grau a uma incógnita, consegue-se resolvê-la isolando-se a incógnita no 1º membro, transferindo-se para o 2º membro os termos que não contenham a incógnita efetuando-se a operação inversa (as operações inversas são: adição e subtração; multiplicação e divisão; potenciação e radiciação).

Apostila de Matemática BásicaProf. Msc. Luiz Carlos Leal Junior

Exemplos:

a)
$$x + 2 = 7 \Rightarrow x + 2 - 2 = 7 - 2 \Rightarrow x = 5$$

b)
$$x-3=0 \Rightarrow x-3+3=0+3 \Rightarrow x=3$$

c)
$$2x = 8 \Rightarrow \frac{2x}{2} = \frac{8}{2} \Rightarrow x = 4$$

d)
$$\frac{x}{3} = 5 \Rightarrow \frac{3*x}{3} = 3*5 \Rightarrow x = 15$$

Se o coeficiente da incógnita for negativo, convém utilizar as operações dos sinais:

$$-2x = -8 \Rightarrow \frac{-2x}{-2} = \frac{-8}{-2} : x = 4$$

Se a equação envolver simultaneamente denominadores e adição ou subtração, o primeiro passo será eliminar os denominadores, o que se faz mediante a aplicação da seguinte regra:

Calcula-se o m.m.c. dos denominadores; divide-se o m.m.c. encontrado por cada um dos denominadores e multiplicam-se os resultados pelos respectivos numeradores.

Os passos seguintes são descritos no exemplo a seguir:

$$\frac{3x-2}{2} - \frac{3x+1}{3} = \frac{4x-6}{5}$$

1º Passo: Eliminam-se os denominadores, se houver:

m.m.c. (2; 3; 5) = 30

Logo:
$$15 * (3x - 2) - 10 * (3x + 1) = 6 * (4x - 6)$$

2º Passo: Eliminam-se os parênteses, efetuando as multiplicações indicadas:

$$45x - 30 - 30x - 10 = 24x - 36$$

3º Passo: Transpõem-se os termos que contém a incógnita para o 1º membro, e os independentes (os que não contém a incógnita) para o 2º, efetuando as operações necessárias:

$$45x - 30x - 24x = -36 + 30 + 10$$

4º Passo: Reduzem-se os termos semelhantes em cada membro:

$$-9x = 4$$

5º Passo: Divide-se os dois membros pelo valor que o **x** está sendo multiplicado, desta maneira isola-se a incógnita:

$$\frac{-9x}{-9} = \frac{4}{-9}$$

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

valores de x e y que satisfaçam **simultaneamente** às duas equações. Por exemplo, o sistema:

$$\begin{cases} 5x + y = 16 \\ 2x - 3y = 3 \end{cases}$$
 tem solução para
$$\begin{cases} x = 3 \\ y = 1 \end{cases}$$

Pois apenas estes valores satisfazem simultaneamente às duas igualdades. (Verifique!)

Estudar-se-á nesta apostila três métodos de solução para um sistema, são eles: Substituição, comparação e adição.

SUBSTITUIÇÃO

1°) Seja o sistema: $\begin{cases} 2x + 3y = 8 & \text{equação 1} \\ 5x - 2y = 1 & \text{equação 2} \end{cases}$

2º) Isola-se uma das incógnitas em uma das equações, por exemplo, o valor de x na equação 1:

$$2x + 3y = 8$$

$$2x = 8 - 3y$$

$$x = \frac{8 - 3y}{2}$$
 equação 3

3º) Substitui-se x da equação 2 pelo seu valor (equação 3):

6º Passo: *Sendo o divisor ou o dividendo negativo, a fração passa a ser negativa também:*

$$x = -\frac{4}{9}$$

VERIFICAÇÃO OU "PROVA REAL"

Substitui-se a raiz encontrada em cada um dos membros da equação dada. Os valores numéricos devem ser iguais

47) Sistema de equação do 1º grau com duas incógnitas

A forma genérica de um sistema é:

$$\begin{cases} ax + by = c \\ mx + ny = p \end{cases}$$
 onde a, b, c, m, n, p $\in \Re$ (Reais) e x e y são as ingógnitas.

a. Equação a duas incógnitas: Uma equação a duas incógnitas admite infinitas soluções. Por exemplo, a equação 2x - y =
4 é verificada para um número ilimitado de pares de valores de x e y; entre estes pares estariam:

$$(x = 4; y = 4), (x = 2; y = 0), (x = -1; y = -6), etc.$$

b. Sistema de duas equações a duas incógnitas: resolver um sistema de suas equações a duas incógnitas é determinar os

Apostila de Matemática BásicaProf. Msc. Luiz Carlos Leal Junior

 $5*\left(\frac{8-3y}{2}\right)-2y=1$ equação 4

4º) Resolve-se a equação 4 determinando-se o valor de y:

$$5*(8-3y)-4y=2$$

$$40 - 15y - 4y = 2$$

$$19y = 38$$

$$\therefore$$
 y = 2

5º) O valor obtido para y é levado à equação 3 (em que já está isolado) e determina-se x:

$$x = \frac{8 - 3*(2)}{2}$$

$$x = \frac{8-6}{2}$$

$$\therefore$$
 x = 1

6º) A solução do sistema é:

$$x = 1 e y = 2$$

COMPARAÇÃO

1°) Seja o sistema:
$$\begin{cases} 7x + 3y = 33 \\ 5x - 2y = 7 \end{cases}$$

2º) Isola-se a mesma incógnita nas duas equações:

$$x = \frac{33 - 3y}{7}$$
 e $x = \frac{7 + 2y}{5}$

 3°) Igualam-se os segundos membros pois os primeiros são iguais (x = x):

$$\frac{33 - 3y}{7} = \frac{7 + 2y}{5}$$

4º) Resolve-se a equação e determina-se y:

$$5*(33-3y) = 7*(7+2y)$$

$$165 - 15y = 49 + 14y$$

$$29y = 16$$

$$\therefore$$
 y = 4

5°) O valor de y é levado a qualquer das equações em que x está isolado e determina-se o valor de x:

$$x = \frac{33-3y}{7} = \frac{33-3*(4)}{7} = \frac{33-12}{7} = \frac{21}{7}$$

$$\therefore$$
 x = 3

6º) A solução do sistema é:

$$x = 3 e y = 4$$

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

3*1+2y=7 :: 3+2y=7 :: 2y=4 :: y=2

ADIÇÃO

Este método consiste em somar, membro a membro, as duas equações com o objetivo de, nesta operação, eliminar uma das incógnitas e só é vantajoso no caso de os coeficientes de uma das incógnitas serem simétricos.

Exemplos:

a)
$$\begin{cases} x + y = 4 & \text{equação 1} \\ x - y = 0 & \text{equação 2} \end{cases}$$

Somando, membro a membro, vem:

$$2x = 4 : x = 2$$

Substituindo o valor de x na equação 1 (ou na equação 2, fica a critério do aluno), vem:

$$2 + y = 4 : y = 2$$

b)
$$\begin{cases} 3x + 2y = 7 \\ 5x - y = 3 \rightarrow *(2) \end{cases} \Rightarrow \begin{cases} 3x + 2y = 7 \\ 10x - 2y = 6 \end{cases}$$

Somando, membro a membro, vem:

$$13x = 13 : x = 1$$

Substituindo o valor de x na 1ª equação (ou na 2ª, fica a critério do aluno), vem:

48) Exercícios

Resolver as seguintes equações:

a)
$$4x = 8$$

b)
$$-5x = 10$$

c)
$$7 + x = 8$$

d)
$$3-2x=-7$$

e)
$$16 + 4x - 4 = x + 12$$

f)
$$8 + 7x - 13 = x - 27 - 5x$$

g)
$$\frac{2x}{3} = \frac{3}{4}$$

h)
$$\frac{1}{4} = \frac{3x}{10}$$

i)
$$9x + 2 - (4x + 5) = 4x + 3$$

j)
$$3*(2-x)-5*(7-2x)=10-4x+5$$

k)
$$\frac{x-2}{3} - \frac{12-x}{2} = \frac{5x-36}{4} - 1$$

1)
$$\frac{5x+3}{8} - \frac{3-4x}{3} + \frac{x}{2} = \frac{31}{2} - \frac{9-5x}{6}$$

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

Resolver os seguintes sistemas de equações:

a)
$$\begin{cases} x + y = 12 \\ 3x + y = 24 \end{cases}$$

b)
$$\begin{cases} 5x + 6y = 19 \\ 7x + 2y = 1 \end{cases}$$

c)
$$\begin{cases} x + 5y = 12 \\ 3x - 4y = -2 \end{cases}$$

d)
$$\begin{cases} \frac{x}{4} + \frac{y}{5} = 2\\ \frac{2x+1}{3} - \frac{y-3}{2} = 2 \end{cases}$$

Considere o problema:

A idade do pai é o dobro da idade do filho. Há 10 anos atrás, a idade do pai era o triplo da idade do filho. Qual é a idade do pai e do filho?

IX – EQUAÇÕES DO 2º GRAU

Equação do 2º grau na incógnita x, é toda igualdade do tipo:

$$a \cdot x^2 + b \cdot x + c = 0$$

onde **a, b, c** são números reais e **a** é não nulo (**a** ≠ **0**).

A equação é chamada de 2º grau ou quadrática devido à incógnita x apresentar o maior expoente igual a 2.

Se tivermos $b \neq 0$ e $c \neq 0$ teremos uma equação completa.

Se tivermos b = 0 ou c = 0 teremos uma equação incompleta.

49) Resolvendo Equações de 2º Grau

Quando a equação de 2º grau for incompleta sua resolução é bastante simples, veja:

1º caso: b = 0 e c = 0; temos então:

$$a \cdot x^2 = 0$$

Exemplo:

$$3 x^2 = 0 \Rightarrow x^2 = 0 \Rightarrow x = 0 \Rightarrow S = \{0\}$$

2º caso: c = 0 e b $\neq 0$; temos então:

$$a \cdot x^2 + b \cdot x = 0$$

Exemplo:

$$3 x^2 - 12 x = 0 \Rightarrow x \cdot (3 x - 12) = 0 \Rightarrow x = 0 \text{ ou } 3 x - 12 = 0 \Rightarrow 3 x = 12 \Rightarrow x = 4 \Rightarrow S = \{0; 4\}$$

3º caso: b = 0 e $c \neq 0$; temos então:

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

50) Exercícios

Determinar as raízes das seguintes equações quadráticas:

a)
$$x^2 - 7x + 6 = 0$$

b)
$$x^2 + 3x - 28 = 0$$

c)
$$3x^2 - 5x + 2 = 0$$

d)
$$16x^2 + 16x + 3 = 0$$

e)
$$4x^2 - 16 = 0$$

f)
$$2x^2 - 18 = 0$$

g)
$$3x^2 = 5x$$

h)
$$2x^2 + 8x = 0$$

i)
$$(2x-3)^2 = (4x-3)^2$$

Prever a natureza das raízes das equações:

a)
$$2x^2 - 3x + 1 = 0$$

b)
$$x^2 + x + 3 = 0$$

c)
$$2x^2 - 4x + 2 = 0$$

Determinar mentalmente as raízes das equações:

a)
$$x^2 - 6x + 5 = 0$$

 $a \cdot x^2 + c = 0$

Exemplo:

$$x^2 - 4 = 0 \Rightarrow x^2 = 4 \Rightarrow x = \pm \sqrt{4} \Rightarrow x' = 2 e x'' = -2 \Rightarrow$$

 $\Rightarrow S = \{-2; 2\}$

A resolução da equação completa de 2º grau é obtida através de uma fórmula que foi demonstrada por Bhaskara, matemático hindu nascido em 1 114, por meio dela sabemos que o valor da incógnita satisfaz a igualdade:

Fórmula de Bhaskara
$$x = \frac{-b \pm \sqrt{b^2 - 4.a.c}}{2.a}$$

A fórmula apresentada é uma simplificação de duas fo'rmulas; veja:

$$\Delta = b^2 - 4ac$$

∆ > 0 têm-se duas raízes reais e diferentes

∆ = 0 têm-se duas raízes reais e iguais

∆ < 0 têm-se duas raízes imaginárias

OBS: Nunca teremos a = 0, pois se houver, não existirá a equação de segundo grau visto que o x^2 seria anulado.

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

- d) y^{\geq} 4 (y é maior ou igual a 4).
- e) $1 < x \le 4$ (x é maior do que 1 e menor ou igual a 4).

b) $x^2 + 2x - 15 = 0$

- c) $x^2 4x 12 = 0$
- d) $x^2 10x + 21 = 0$
- e) $x^2 + 5x 50 = 0$

Resolver as seguintes equações:

- a) $ax^2 = b$
- b) x(x-1) = x(2x-1) 18

XI - INEQUAÇÕES DO 1º GRAU

Símbolos de desigualdades

São símbolos que permitem uma comparação entre duas grandezas.

a > b (a é maior do que b)

a < b (a é menor do que b)

 $a \ge b$ (a é maior ou igual a b)

 $a \le b$ (a é menor ou igual a b)

Exemplos:

- a) 7 > 5 (7 é maior do que 5).
- b) 3 < 6 (3 é menor do que 6).
- c) $x \le 1$ (x é menor ou igual a 1).

51) Inequação do 1º grau

Inequação do 1º grau é uma desigualdade condicionada em que a incógnita é de 1º grau.

Exemplo:

A veracidade da desigualdade está condicionada ao valor de x. Observa-se que o 1^o membro será maior do que o 2^o membro quando se atribui a \mathbf{x} qualquer valor maior do que 2. Isto \acute{e} :

x > 2 indica um conjunto de valores denominado solução da inequação. Para determinar-se o conjunto-solução de uma inequação do 1º grau isola-se x no 1º membro de forma à solução de uma equação do 1º grau, e sempre que se multiplicar ou dividir a inequação por um número negativo, inverte-se o sinal da desigualdade.

Exemplos:

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

 $4-x \le 2 \qquad \qquad 2x+1 \ge 1$

Seja dois números genéricos a e b. A razão entre a e b é

representada por $\frac{a}{b}$, a/b ou a: b, sendo $b \neq 0$.

52) Exercícios

Resolver as seguintes inequações:

- a) $2x + 1 \le -1$
- b) $-3x \le x + 2$
- c) x > 5x 16
- d) 2(x+1)+3x > 5-7x
- e) $\frac{2}{5}x \frac{1}{2} \ge \frac{4x}{5} 1$
- f) $\frac{7x}{3} 7 \le x + \frac{2}{3}$
- g) $\frac{3x}{4} 9 < \frac{2x}{7} + 4$

VII - PROPORÇÃO

Proporção é a igualdade de duas razões.

Seja a proporção: $\frac{a}{b} = \frac{c}{d}$ ou a:b=c:d ou a:b::c:d.

Seus elementos se denominam:

a - primeiro termo **a** e **b** - extremos

b - segundo termo **b** e **c** - meios

c - terceiro termo **a** e **c** - antecedentes

d - quarto termo **b** e **d** - conseqüentes

PROPRIEDADE FUNDAMENTAL: Em toda proporção o produto dos meios é igual ao produto dos extremos.

Considerando as proporções:

$$\frac{a}{b} = \frac{c}{d}$$
 então $a * d = b * c$

$$\frac{4}{3} = \frac{8}{6}$$
 então $4*6 = 3*8$

XII - PROPORCIONALIDADE

53) Razão

$$\frac{x}{2} = \frac{3}{5}$$
 então $5*x = 2*3$

A principal aplicação desta propriedade é a determinação de um elemento desconhecido na proporção. Exemplificando:

Determine x na proporção:

$$\frac{x}{4} = \frac{20}{5}$$
 então $5*x = 4*20$ ou $x = 16$

54) Grandezas diretamente ou inversamente proporcionais

Duas grandezas **x** e **y** são denominadas:

❖ Diretamente proporcionais: quando a razão entre **x** e **y** é constante.

$$\frac{x}{y} = k$$
 ou $x = ky$

Inversamente proporcionais: quando o produto delas é constante.

$$x * y = k$$
 ou $x = \frac{k}{y}$

Sendo **k** denominada constante de proporcionalidade.

Exemplos:

 a) Seja um carro que se desloca com velocidade constante em trajetória retilínea. A tabela mostra o deslocamento do carro em função do tempo.

Apostila de Matemática Básica

Prof. Msc. Luiz Carlos Leal Junior

Tempo (s)	Deslocamento (m)
1	20
2	40
3	60
4	80
5	100
10	200

Chamado de x o deslocamento e

A pergunta é: tempo e deslocamento são grandezas diretamente ou inversamente proporcionais?

razão $\frac{x}{t}$ é constante.

$$\frac{x}{t} = \frac{20}{1} = \frac{40}{2} = \frac{60}{3} = \frac{80}{4} = \frac{100}{5} = \frac{200}{10} = 20$$

Assim \mathbf{x} e \mathbf{t} são grandezas diretamente proporcionais e a constante de proporcionalidade vale $\mathbf{20}$ (que é a velocidade do carro).

b) Um gás é mantido à temperatura constante em um recipiente de volume variável. Quando se altera o volume do gás a sua pressão também se modifica.
 Registraram-se em uma tabela os valores correspondentes da prε
 P e V são grandezas

Pressão	Volume
20	20
40	10
80	5
100	4
200	2

diretamente ou inversamente proporcionais?

Apostila de Matemática Básica

Prof. Msc. Luiz Carlos Leal Junior

400

Note que PV é constante.

Assim: P e V são grandezas inversamente proporcionais com constante de proporcionalidade igual a 400.

55) Regra de três simples

Utilizamos regra de três simples na solução de problemas que envolvem grandezas proporcionais.

Exemplos:

a) Um automóvel se desloca com velocidade constante percorrendo 40 km em 1 hora. Qual o tempo gasto para percorrer 100 km?

SOLUÇÃO

As grandezas envolvidas são diretamente proporcionais. Teremos então uma regra de três simples e *direta*.

Dispomos os dados do problema colocando frente `frente agueles que se correspondem. Marcamos x no local do valor procurado:

Distância			Tempo	
	40 km) F	1h	
	100 km		X	-

Sendo a regra de três simples e direta, tem-se:

 $\frac{40}{100} = \frac{1}{x}$ (as grandezas são dispostas na mesma ordem de correspondência).

Aplicando a propriedade fundamental das proporções, vem:

$$40 * x = 1*100$$
 : $x = 2.5$ horas

b) Dois litros de gás exercem uma pressão de 0,4 atm. Cinco litros do mesmo gás, à mesma temperatura, exercerão que pressão?

SOLUÇÃO

As grandezas são inversamente proporcionais. Assim sendo, teremos uma regra de três simples e inversa.

Dispondo os dados do problema:

Volume	T	Pressão	
2L		0,4 atm	
5L		x	

Sendo a regra de três inversa, as grandezas são dispostas de forma que na proporção os termos do 2º membro ficam invertidos.

$$\frac{2}{5} = \frac{x}{0.4}$$
 ou $2*0.4 = 5*x$: $x = 0.16$ atm

56) Exercícios

Resolva os seguintes exercícios:

- a) Uma bomba eleva 272 litros de água em 16 minutos. Quantos litros elevará em 1 hora e 20 minutos?
- b) Doze operários levaram 25 dias para executar uma determinada obra. Quantos dias levarão 10 operários para executar a mesma obra?
- c) Num livro de 200 páginas há 30 linhas em cada página. Se houvesse 25 linhas em cada página, quantas páginas teriam o livro?
- d) Metade de uma obra foi feita por 10 operários em 13 dias. Quantos tempo levarão para terminar essa obra com 3 operários a mais?
- e) Com uma certa quantidade de cobre, fabricam-se 1600 metros de fio com seção de 12 mm². Se a seção for de 8 mm², quantos metros de fio poderão ser obtidos?
- f) Um quintal pode ser ladrilhado com 500 ladrilhos de 225 cm² de área cada um. Quantas lajotas de 900 cm², cada uma, são necessárias para recobrir o mesmo quintal?
- g) Um galpão pode ser construído em 48 dias por 7 pedreiros que trabalham num certo ritmo. Como ele deve ser construído em duas semanas, no mesmo ritmo de trabalho, quantos pedreiros deverão ser contratados?

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

- h) Uma máquina tem duas rodas dentadas que se engrenam.
 A maior tem 30 dentes e a menor, 18 dentes. Quantas voltas dá a menor enquanto a maior dá 150 voltas?
- i) Um Boeing vai do Rio de Janeiro a Recife em 2 horas e 40 minutos, num vôo sem escalas. Numa das viagens, ocorreu um pequeno defeito em seus motores e ele fez a viagem em 3 horas e 20 minutos, a uma velocidade de 540 km/ h. Qual é a velocidade média com que ele faz essa viagem em condições normais?
- j) Para asfaltar 345 km de estrada, uma equipe de 15 pessoas levaria 8 dias. Se forem contratados outras 9 pessoas que trabalhem no mesmo ritmo das pessoas da equipe que já existe, em quantos dias a nova equipe asfaltará o mesmo trecho de estrada?
- k) Para asfaltar 345 km de estrada, uma equipe de 15 pessoas levaria 8 dias. Qual o número de pessoas que devem ser contratadas para que a mesma obra fique completa em 5 dias, desde que todos trabalhadores tenham o mesmo ritmo de trabalho.
- I) Lisa e Rute aproveitaram uma liquidação. Lisa comprou 18 camisetas e pagou o equivalente a 14 camisetas. Rute também comprou camisetas na mesma liquidação e pagou o equivalente a 49 camisetas. Quantas camisetas Rute comprou?

57) Regra de três Composta

Algumas situações envolvem mais de duas grandezas. A análise e a resolução de problemas desta natureza podem envolver uma regra de três composta.

Exemplos:

a) 20 pintores, trabalhando 6 horas por dia, pintam um edifício em 4 dias. Quantos dias serão necessários para que 6 pintores, trabalhando 8 horas por dia, pintem o mesmo edifício?

SOLUÇÃO:

Qtde de Pintores	Trabalho diário (Hs)	Tempo (dias)
20	6	4
6	8	X

A partir de agora, adotaremos o procedimento da análise com relação a variável X, ou seja, analisaremos as colunas Qtde de Pintores e a coluna Trabalho diário (Hs) em relação à coluna Tempo (dias), onde está a variável.

Análise I:

Qtde de Pintores	Tempo (dias)	
20	4	
6	X	7

Quando o número de pintores é 20, a obra fica pronta em 4 dias, para uma carga de trabalho diária fixa. Se diminuirmos o número de pintores, o tempo para conclusão da obra, aumenta ou diminui? É claro que aumenta. Logo, pode-se concluir que essas colunas são IP (pois as flechas estão apontando em direções opostas.)

Análise II:

Trabalho diário (Hs)		Tempo (dias)	
	6	4	
	8	X	

Fixado o número de pintores. Quando o número de horas trabalhadas por dia é 6, a obra fica pronta em 4 dias. Se aumentarmos a carga horária por dia para 8, o tempo para conclusão da obra, aumenta ou diminui? É claro que diminui.

Logo, pode-se concluir que essas colunas são **IP** (pois as flechas estão apontando em direções opostas.)

Agora, faremos o seguinte procedimento, como as colunas Qtde de pintores e Trabalho diário (Hs) são IP com relação à coluna Tempo (dias) teremos que inverter as frações das duas colunas mencionadas, e manter, do outro lado da igualdade, a coluna que contém a variável.

$$\frac{6}{20} \cdot \frac{8}{6} = \frac{4}{x}$$

Apostila de Matemática BásicaProf. Msc. Luiz Carlos Leal Junior

Resolvendo essa igualdade, temos 20.6.4 = 6.8.x, que resulta em

$$x = \frac{20.6.4}{6.8} \quad \Rightarrow \quad x = 10.$$

Logo, Serão necessários 10 dias para pintar o edifício.

b) Paulo é representante da Loja A Barateira. Ele costuma percorrer 1260 km em 5 dias viajando 6 horas por dia. Em quantos dias ele percorrerá 2520 km, viajando 4 horas por dia?

SOLUÇÃO:

Distância (km)	Tempo (dias)	Horas em viagem	
1260	5	6	
2520	X	4	

A partir de agora, adotaremos o procedimento da análise com relação a variável X, ou seja, analisaremos as colunas Distância e a coluna Horas em viagem em relação à coluna Tempo (dias), onde está a variável.

Análise I:

	Distância (km)	Tempo ((dias)
	1260		5	
	2520	D	P x	
_				

Quando a distância percorrida é 1260 km o tempo gasto na viagem é de 5 dias, para um tempo de viagem por dia fixo. Se aumentarmos a distância a ser percorrida, o tempo para conclusão da viagem, aumenta ou diminui?

É claro que aumenta. Isto é, ele precisará de mais tempo para cumprir a distância.

Logo, pode-se concluir que essas colunas são **DP** (pois as flechas estão apontando em mesma direção.)

Análise II:

Tempo (dias)			Horas em viagem	1
	5 🕌		6	
	X	P	4	

Fixada a distância a ser percorrida. Quando gasta-se 6 horas por dia na viagem, o tempo necessário para concluir a mesma é de 5 dias. Quando diminui-se o número de horas de viagem por dia para 4, pode-se concluir que: Será necessário mais tempo para concluir a viagem.

Logo, essas colunas são **IP** (pois as flechas estão apontando em direções opostas.)

Dessa forma, faremos o seguinte procedimento: Manteremos a fração da coluna DP, e invertemos a fração da coluna que é IP com a coluna que contém a variável, sendo esta isolada no outro lado da igualdade.

$$\frac{1260}{2520} \cdot \frac{4}{6} = \frac{3}{2520}$$

Resolvendo essa igualdade, temos 2520.6.5 = 1260.4.x, que resulta em

$$x = \frac{2520.6.5}{1260.4} \Rightarrow x = 15.$$

Logo, Paulo fará esse percurso em 15 dias.

EXERCÍCIOS:

- a) 4 trabalhadores colhem 200 caixas iguais de laranja, em 5 dias, trabalhando num certo ritmo. Quantas caixas de laranjas, iguais a essas, serão colhidas em 3 dias, por 6 trabalhadores, no mesmo ritmo de colheita?
- b) Uma viagem entre duas cidades foi feita de carro, em 4 dias, a uma velocidade de 75 km/h, viajando-se 9 horas por dia. Viajando a 90 km/h, durante 5 horas por dia, em quantos dias iríamos de uma cidade à outra?
- c) 3 torneiras iguais enchem um tanque de 5000l de capacidade, em 10 horas. Fechando uma das torneiras, em quanto tempo as outras despejarão 3000l nesse tanque?
- d) Em 50 dias, uma escola usou 6000 folhas de papel para imprimir provas do tipo A e do Tipo B, para 1200 alunos. A escola tem 1150 alunos, no momento. Quantas folhas serão usadas, durante 20 dias, para imprimir dois tipos de provas semelhantes às anteriores?

e) Um criador usava 2400kg de ração para alimentar 120 cães durante 45 dias. Para economizar gastos com o canil, ele vendeu alguns cães e passou a usar 1200kg de ração para 3 meses. Quantos cães ele vendeu? (Use 1 mês = 30 dias.)

XIII - JUROS

58) Juros Simples

O regime de Juros Simples é aquele no qual os juros sempre incidem sobre o capital inicial. Atualmente as transações comerciais não utilizam dos juros simples e sim o regime de juros compostos.

A fórmula utilizada para o cálculo dos juros simples é:

$$J = C.i.n$$

J = juros C = capital i = taxa da aplicação n = tempo que durou a aplicação

Exemplo 1:

Um comerciante contraiu de um <u>amigo</u> um empréstimo de R\$ 600,00, comprometendo a pagar a dívida em 3 meses, á taxa de juros simples de

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

5% ao mês (a.m).

Para calcularmos os juros a serem pagos, fazemos:

1º) em um mês, os juros são de:

$$5\%$$
 de $600,00 = 0,05 \times 600 = 30,00$

2º) como o prazo é de 3 meses o comerciante deverá pagar:

$$J = 3 \times 30,00 = 90,00$$

Assim ao final dos 3 meses o comerciante deverá pagar:

$$600,00 + 90,00 = 690,00$$

O valor total a ser pago (R\$ 690,00) é chamado de montante.

e montante M igual a :

$$M = C + J = C + C i n \rightarrow$$

$$M = C (1 + in)$$

Observação importante: a taxa deve ser sempre compatível com a unidade de tempo considerada. Por exemplo, se a taxa for de 4%a.m., para um prazo de 60 dias adotaremos n=2 (2 meses).

Exemplos

1) Calcular os juros simples de R\$ 1200,00 a 13 % a.t. por 4 meses e 15 dias.

$$0.13 / 6 = 0.02167$$

logo, $4m15d = 0.02167 \times 9 = 0.195$
 $j = 1200 \times 0.195 = 234$

2 - Calcular os juros simples produzidos por R\$40.000,00, aplicados à taxa de 36% a.a., durante 125 dias.

Temos: J = P.i.n

A taxa de 36% a.a. equivale a 0.36/360 dias = 0.001 a.d.

Agora, como a taxa e o período estão referidos à mesma unidade de tempo, ou seja, dias, poderemos calcular diretamente:

$$J = 40000.0,001.125 = R$5000,00$$

3 - Qual o capital que aplicado a juros simples de 1,2% a.m. rende R\$3.500,00 de juros em 75 dias?

Temos imediatamente: J = P.i.n ou seja: 3500 = P.(1,2/100).(75/30)Observe que expressamos a taxa **i** e o período **n** em relação à mesma unidade de tempo, ou seja, meses. Logo,

4 - Se a taxa de uma aplicação é de 150% ao ano, quantos meses serão necessários para dobrar um capital aplicado através de capitalização simples?

Objetivo: M = 2.P Dados: i = 150/100 = 1,5 Fórmula: M = P (1 + i.n) Desenvolvimento: 2P = P (1 + 1,5 n) 2 = 1 + 1,5 n n = 2/3 ano = 8 meses

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

59) Juros Compostos

O regime de juros compostos é conhecido como "juro sobre juro", pois o juro incide sempre no capital anterior contrário dos juros simples. As financeiras, bancos, optam pela aplicação dos juros compostos, pois há uma possibilidade maior de lucro.

Imagine a seguinte aplicação: Vamos supor que aplicamos um capital qualquer em um banco. Esse capital irá render uma taxa qualquer, assim, de período em período renderá um montante.

Veja agora como ficaria essa aplicação de período em período:

Ao término do 1º período:

Iremos resgatar o primeiro montante $M1 = C + i \cdot C$

Ao término do 2º período:

Como se trata de regime de juros compostos o capital aplicado nesse segundo período da aplicação será o montante do período anterior e não o capital inicial como é feito no regime de juros simples. Portanto, o segundo montante será: M2 = M1 + i . M1.

Ao término do 3º período:

Seguindo a mesma regra do segundo período teremos: M3 = M2 + i . M2.

Com a aplicação nesses três períodos obtivemos três fórmulas:

$$M1 = C + i \cdot C$$

$$M2 = M1 + i . M1$$

M3 = M2 + i . M2

Colocando os termos em evidência teremos:

M1 = C (1 + i) M2 = M1 (1 + i) M3 = M2 (1 + i)

Substituindo o montante 1 no segundo montante os termos:

$$M2 = C (1 + i) (1 + i)$$

$$M2 = C(1 + i)^2$$

Substituindo o montante 2 no terceiro montante os termos:

 $M3 = C (1 + i)^2 (1 + i)$

 $M3 = C (1 + i)^3$

Se seguirmos essa seqüência veja as aplicações seguintes:

Ao término do 4º período:

 $M4 = C (1 + i)^4$

Ao término do n-ésimo período:

 $Mn = C (1 + i)^n$

Então, para fazermos o cálculo do montante do juro compostos, utilizamos a seguinte fórmula:

► Ao final do n-ésimo período:

$$\mathbf{M}_{\mathbf{n}} = \mathbf{C} (1 + \mathbf{i})^{\mathbf{n}}$$

Exemplo 1:

Joana aplicou R\$ 400,00 num investimento que rende 2% a.m. a juros compostos.

▶ O montante, ao final de 3 meses, é dado por:

$$M3 = 400 (1 + 0.02)^3 = 400 . 1.061 = 424.48$$

► Ao final de 6 meses:

$$M6 = 400 (1 + 0.02)^6 = 400 \cdot 1.126 = 450.46$$

► Ao final de 1 ano (12 meses):

$$M12 = 400 (1 + 0.02)^{12} = 400 . 1.26 = 507.29$$

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

2 - Calcule o montante de um capital de R\$6.000,00, aplicado a juros compostos, durante 1 ano, à taxa de 3,5% ao mês. (use *log 1,035=0,0149* e *log 1,509=0,1788*)

Resolução:

Usando a fórmula $M=P.(1+i)^n$, obtemos:

M =
$$6000.(1+0.035)^{12}$$
 = $6000.(1.035)^{12}$
Fazendo x = 1.035^{12} e aplicando logaritmos, encontramos:

$$\log x = \log 1,035^{12} = \log x = 12 \log 1,035 = \log x = 0,1788$$

=> $x = 1,509$

Então M = 6000.1,509 = 9054. Portanto o montante é R\$9.054,00

60) Exercícios

- 01) O capital de R\$ 530,00 foi aplicado á taxa de juros simples de 3% ao mês. Qual o valor do montante após 5 meses de aplicação?
- 01) O capital de R\$ 530,00 foi aplicado á taxa de juros compostos de 3% ao mês. Qual o valor do montante após 5 meses de aplicação?
- 02) Um capital de R\$ 600,00, aplicado a uma taxa de juros simples de 20% ao ano, gerou um montante de R\$ 1080,00 depois de certo tempo. Qual foi esse tempo?

- 02) Um capital de R\$ 600,00, aplicado a uma taxa de juros compostos de 20% ao ano, gerou um montante de R\$ 1080,00 depois de certo tempo. Oual foi esse tempo?
- 03) Qual foi o capital que, aplicado à taxa de juros simples de 1,5% ao mês, rendeu R\$ 90,00 em um trimestre?
- 03) Qual foi o capital que, aplicado à taxa de juros compostos de 1,5% ao mês, rendeu R\$ 90,00 em um trimestre?
- 04) A que taxa devemos aplicar o capital de R\$ 4500,00, no sistema de capitalização simples, para que depois de 4 meses, o montante seja de R\$ 5040,00?
- 04) A que taxa devemos aplicar o capital de R\$ 4500,00, no sistema de capitalização composta, para que depois de 4 meses, o montante seja de R\$ 5040,00?
- 05) Quanto rendeu a quantia de RS 600,00, aplicado a juros simples, com taxa de 2,5 % aõ mês, no final de 1 ano e 3 meses?
- 06) Um capital de R\$ 800,00, aplicado a juros compostos com uma taxa de 2% ao mês, resultou um montante de R\$ 880,00 após certo tempo. Qual foi o tempo da aplicação?
- 06) Um capital acrescido dos seus juros simples de 21 meses soma R\$ 7050,00. O mesmo capital, diminuído dos seus juros simples de 13 meses, reduz-se a R\$ 5350,00. O valor desse capital é:
- 07) Uma pessoa recebeu R\$ 6.000,00 de herança, sob a condição de investir todo o dinheiro em dois tipos particulares de ações, X e Y. As ações do tipo X pagam 7% a.a e as ações do tipo Y pagam 9% a.a. A

maior quantia que a pessoa pode investir nas ações x, de modo a obter R\$ 500,00 de juros em um ano, é:

- 08) No sistema de juros compostos com capitalização anual, um capital de R\$ 20.000,00, para gerar em dois anos um montante de R\$ 23.328,00, deve ser aplicada a uma taxa:
- 09) (Cespe/UnB TRT 6º Região 2002) Suponha que uma pessoa aplique R\$ 2000,00 por dois meses, a juros compostos com uma determinada taxa mensal, e obtenha um rendimento igual a R\$ 420,00, proveniente dos juros. Se essa pessoa aplicar o mesmo valor por dois messes a juros simples com a mesma taxa anterior, ela terá, no final desse período, um montante de R\$ 2.400,00.
- 10) (Cespe/UnB TRT 6º Região 2002) Considere que um capital de R\$ 4000,00 ficou aplicado por 2 meses à taxa de juros compostos de 10% a.m. Se o montante obtido foi corrigido pela inflação do período obtendose um total de R\$ 5082,00, então a inflação do período foi superior a 7%.

XIII – RELAÇÕES TRIGONOMÉTRICAS

61) Triângulo retângulo

Um triângulo retângulo é aquele que tem um ângulo reto (90º).

Em um triângulo retângulo temos:

a) **Hipotenusa**: é o lado oposto ao ângulo reto. Nas figuras acima são hipotenusas: *a, x* e *r*.

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

b) **Catetos**: são os outros dois lados do triângulo. Nas figuras são catetos: *b, c; v, z* e *s, t*.

62) Relações trigonométricas no triângulo retângulo

No triângulo retângulo ao lado consideremos o ângulo **C** formado pelo lado **b** e a hipotenusa **a**.

O lado **b** denomina-se **cateto adjacente** ao ângulo **C**. (É o cateto que faz parte da constituição do ângulo).

O lado c denomina-se cateto oposto ao ângulo C.

Os lados do triângulo e um dos ângulos (não o reto), podem ser relacionados por:

$$sen C = \frac{cateto oposto}{hipotenusa} = \frac{c}{a}$$

$$\cos C = \frac{\text{cateto adjacente}}{\text{hipotenusa}} = \frac{b}{a}$$

$$tg C = \frac{sen C}{cos C} = \frac{cateto oposto}{cateto adjacente} = \frac{c}{b}$$

Existem tabelas que fornecem os diversos valores de senos, co-senos e tangentes dos mais diversos ângulos. Assim, conhecido um ângulo de um triângulo retângulo e um dos lados, pode-se determinar os demais lados. A seguir temos uma tabela com os valores das funções trigonométricas para os ângulos de 30°, 45° e 60°.

	30 graus	45 graus	60 graus
	1	$\sqrt{2}$	$\sqrt{3}$
Seno	$\overline{2}$	2	2
	$\sqrt{3}$	$\sqrt{2}$	1
Co-seno	2	2	$\overline{2}$
	$\sqrt{3}$		
Tangente	3	1	$\sqrt{3}$

Exemplos:

a) Em um triângulo retângulo a hipotenusa vale 4 m e dos ângulos agudos vale 60°. Determine os dois catetos do triângulo.

Apostila de Matemática Básica

Prof. Msc. Luiz Carlos Leal Junior

sen
$$60^{\circ} = \frac{c}{a}$$
 : $c = a \operatorname{sen} 60^{\circ}$
 $c = 4 * \frac{\sqrt{3}}{2} = 2\sqrt{3} \operatorname{m}$
 $\cos 60^{\circ} = \frac{b}{a}$: $b = a \cos 60^{\circ}$
 $b = 4 * \frac{1}{2} = 2 \operatorname{m}$

b) Em um triângulo retângulo a hipotenusa mede 5 m e um dos catetos 2,5 m. Determinar o ângulo formado pela hipotenusa e por esse cateto. Determine o outro cateto.

1a)
$$\cos \theta = \frac{c}{a} = \frac{2.5}{5} = \frac{1}{2}$$

da tabela $\theta = 60^{\circ}$

2^a) b = a sen θ = 5*sen 60° =
$$5*\frac{\sqrt{3}}{2}$$

∴ b = $2.5\sqrt{3}$ m

 c) Em um triângulo retângulo os lados valem 3 m, 4 m e
 5 m. Determine o seno, o co-seno e a tangente do ângulo formado entre o lado de 3 m e o de 5 m.

$$\sin\theta = \frac{4}{5} = 0.8$$

$$\cos\theta = \frac{3}{5} = 0.6$$

$$tg \theta = \frac{4}{3} = 1,\overline{3}$$

Todo triângulo de lado 3, 4 e 5, ou múltiplos destes valores, é denominado Triângulo Pitagórico.

63) Exercícios

a) Dado o triângulo retângulo abaixo, calcular:

- i. sen θ
- ii. $\cos \theta$
- iii. $tg \theta$

Apostila de Matemática BásicaProf. Msc. Luiz Carlos Leal Junior

- b) Um ângulo de um triângulo mede 30° e o cateto que se opõe a este ângulo vale 5 cm. Calcular a hipotenusa e o outro cateto.
- Num triângulo retângulo a hipotenusa mede 3 cm e um dos ângulos agudos vale 45°. Calcular a medida comum dos catetos.
- d) Num triângulo retângulo, as medidas dos dois catetos são iguais. Calcular a medida comum dos ângulos agudos.
- e) Calcular os ângulos formados pelos catetos com a hipotenusa de um triângulo retângulo sabendo que um dos catetos é a metade da hipotenusa.
- f) Calcular $x \in y$ na figura a seguir:

Apostila de Matemática BásicaProf. Msc. Luiz Carlos Leal Junior

XIV – PLANO CARTESIANO (SEU PRODUTO, RELAÇÕES E FUNÇÕES)

64) Os eixos cartesianos

Dois eixos graduados, perpendiculares entre si, com origens coincidentes, são denominados eixos cartesianos.

65) Um ponto no plano cartesiano

Um ponto situado em um plano cartesiano tem sua posição definida por um par de números (**coordenadas do ponto**).

O primeiro valor numérico representa a *abscissa do ponto* e o segundo a *ordenada do ponto*.

66) Uma reta no plano cartesiano

Um conjunto de pontos representados em um plano cartesiano pode resultar em uma reta. Tal fato acontece quando atribuímos os mais diversos valores a x em uma equação característica (a seguir representada) e obtemos os valores de y correspondentes.

$$y = a * x + b$$

Esta equação é denominada *equação reduzida da reta*, sendo que *a* e *b* necessariamente são valores constantes.

A sua representação gráfica nos mostra que:

Apostila de Matemática BásicaProf. Msc. Luiz Carlos Leal Junior

c) Reta paralela ao eixo yO valor de x é constante.

67) Casos particulares

a) Reta que passa pela origemO coeficiente linear (b) é igual a zero.

A equação fica: y = a * x

a = tg @ (coeficiente angular). b = valor de y onde a reta intercepta o eixo das ordenadas (coeficiente linear).

b) Reta paralela ao eixo xO coeficiente angular (a) é igual a zero.

A equação fica y = b

Exemplos:

a) Representar graficamente a equação $y = \sqrt{3} * x$.

Solução: O coeficiente angular é $\sqrt{3}$. Como tg $60^{\circ} = \sqrt{3}$, o ângulo que a reta forma com o eixo x é 60° . Ainda, a reta não apresenta coeficiente linear, isto é, a reta passa pela origem. Representando-a:

b) Representar graficamente y = 20.

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

Solução: Como y é constante a reta deve ser perpendicular ao eixo y.

68) Exercícios

a) Situe os pontos A, B, C e D no plano cartesiano a seguir.

b) Dê as coordenadas dos pontos P, Q, R e S da figura a seguir.

c) Qual a representação gráfica da reta de equação $y = \sqrt{3} \ x - 2$

a.

b.

c.

d.

d) O gráfico da reta y = 5 é:

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

XVI – NOÇÕES DE GEOMETRIA PLANA E ESPACIAL

GEOMETRIA PLANA

69) Definição e apresentação da Geometria Plana

Geometria Plana possui como sua principal característica pertencer ao R2, isto é, possui duas dimensões sendo estas x e y como em um plano cartesiano, também conhecidas como base (b) e altura (h).

OBS: o b da base e o h da altura provem do inglês onde base = base e altura = height.

Na Geometria Plana podemos encontrar a área (A) e o perímetro (P) das figuras, onde:

Podemos definir Perímetros como sendo o comprimento do "contorno" de uma figura.

Área é o região do plano limitado pelo perímetro

Toda figura plana possui uma fórmula para encontrar o valor de seu perímetro e sua área, veja:

70) Apresentação das figuras planas e suas fórmulas

Quadrado

A = b * h mas como

$$b = l e h = l$$
 ::
A = 1 * 1 logo A = 1²

$$P = 1 + 1 + 1 + 1$$
 ::

$$P = 4 * 1$$

Retângulo

$$A = b * h$$

 $P = 2 * a + 2 * b$

Losango

*Apostila de Matemática Básica*Prof. Msc. Luiz Carlos Leal Junior

$$A = \frac{D*d}{2}$$

$$P = 4 * 1$$

$$A = \frac{b * h}{2}$$

$$P = a + b + c$$

Paralelogramo

$$A = b * h$$

$$P = 2 * a + 2 * b$$

Triângulo Eqüilátero

$$A = \frac{1^2 \sqrt{3}}{4}$$

$$P = 3 * 1$$

Trapézio

$$A = \frac{(B * b) * h}{2}$$

$$P = a + b + c + d$$

Círculo

$$A = \pi * r^2$$

Triângulo Qualquer

Circunferência

Apostila de Matemática BásicaProf. Msc. Luiz Carlos Leal Junior

$$A = 2 * \pi * R$$

GEOMETRIA ESPACIAL

71) Definição e apresentação da Geometria Espacial

Geometria Espacial possui como sua principal característica pertencer ao R³, isto é, possui três dimensões sendo estas x, y e z como no espaço, também conhecidos como base (b) e altura (h) e espessura (e).

Na Geometria Espacial podemos encontrar o volume (V) e a área lateral (S), onde:

72) Apresentação das figuras espaciais e suas fórmulas *Cubo*

$$V = b * h * e$$

$$S = 6 * 1^2$$

Pirâmide

$$V = \frac{1}{3} * B * h$$

B é a área da base da pirâmide

Cilindro circular reto

$$V = \pi * r^2 * h$$

$$S = 2 * \pi * r * h$$

EXERCÍCIOS:

1) Determine a área das seguintes figuras (em cm):

Cone circular reto

$$V = \frac{1}{3} * \pi * r^2 * h$$

$$S = \pi * r * \sqrt{r^2 + h^2}$$

Esfera

$$V = \frac{4}{3} * \pi * r^3$$

$$S = 4 * \pi * r^2$$

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

- 2) Temos um triângulo equilátero de lado 6cm. Qual é o perímetro e qual é a área deste triângulo?
- 3) Um trapézio tem a base menor igual a 2, a base maior igual a 3 e a altura igual a 10. Qual a área deste trapézio?
- 4) Sabendo que a área de um quadrado é 36cm², qual é seu perímetro?
- 5) Calcule a área e o perímetro (em metros) dos retângulos descritos:

a)
$$a = 25 e b = 12$$

b)
$$a = 14 e b = 10$$

6) Achar a área total da superfície de um cilindro reto, sabendo que o raio da base é de 10cm e a altura é de 20cm.

7) A pirâmide de Quéops, conhecida como a Grande Pirâmide, tem cerca de 230m de aresta na base e altura aproximada de 147m. Qual é o seu volume?

8) A casquinha de um sorvete tem a forma de um cone reto. Sabendo que o raio da base mede 3cm e a altura é de 12cm. Qual é o volume da casquinha?

Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior

9) Considere a Terra como uma esfera de raio 6.370km. Qual é sua área superficial? Descobrir a área da superfície coberta de água, sabendo que ela corresponde a aproximadamente 3/4 da superfície total.

10) Um líquido que está num recipiente em forma de cone será despejado em outro recipiente que possui forma cilíndrica. Se o raio da base dos dois recipientes for 25 cm e a altura dos dois for 1m, que altura atingirá o líquido no cilindro?

- 11) Um pedaço de cartolina possui a forma de um semicírculo de raio 20 cm. Com essa cartolina, um menino constrói um chapéu cônico e o coloca com a base apoiada sobre uma mesa. Qual a distância do bico do chapéu à mesa? Dica = com um semi-círculo se origina um cone eqüilátero.
- 12) As áreas das bases de um cone circular reto e de um prisma quadrangular reto são iguais. O prisma tem altura 12 cm e volume igual ao dobro do volume do cone. Determinar a altura do cone.

13) Uma pirâmide tem a altura medindo 30 cm e área da base igual a 150 cm². Qual é a área da seção superior

do tronco desta pirâmide, obtido pelo corte desta pirâmide por um plano paralelo à base da mesma, sabendo-se que a altura do tronco da pirâmide é 17 cm?

