

Master Project

Team Members

Amin El Iraki

Olivier Randavel

Hadrien Mariaccia

Kenza Hammou

Github

Part 2

Carlini L_{∞}

The optimization problem : $\begin{cases} Minimize\ D(x,x+\delta) \\ st \quad C(x+\delta)=t,x+\delta\in[0,1]^n & \text{which is not linear} \\ \text{ {\it f an objective function such that }} C(x+\delta)=t, \text{ if and only if }} f(x+\delta)\leq 0 \\ Minimize\ D(x,x+\delta) \\ st \quad f(x+\delta)\leq 0,x+\delta\in[0,1]^n \end{cases}$

The L
$$_{\infty}$$
 distance : $||x-x'||_{\infty}=max(|x_1-x_1'|,..,|x_n-x_n'|)$

The library used is **CarliniLInfMethod** with several parameters:

- epsilon: modification's pixel's limit
- learning_rate : SGD optimization coefficient
- max_iter : the number of iterations

Basic Iterative Method

=> an iterative version of FGSM

• Fast Method :
$$X^{adv} = X + \epsilon sign(farpi_X J(X, y_{true}))$$

• Iterative Version :
$$X_0^{adv} = X \\ X_{N+1}^{adv} = Clip_{X,\epsilon} \left\{ X_N^{adv} + \alpha sign(\nabla_{X_N^{adv}} J(X,y_{true})) \right\}$$

The library used is **BasicIterativeMethod** with several parameters:

- epsilon : perturbation's limit
- eps_step: input variation at each iteration
- max_iter: the number of iterations

Newton Fool

The algorithm approximates the nearest classification boundary based on Newton's method for solving nonlinear equations.

- 1. The algorithm takes an input x0 and a neural network with a softmax layer Fs such that Fs(x0) = I, η , maxIter
- 2. Outputs the minimal perturbation required to misclassify the image

It tries to find small di to decrease the value of the function F as fast as possible to $0 : F(x_0+d)_1 \approx 0$.

Starting with x0, they approximated F(xi) using a linear function step by step as follows.

$$F_s^l(x) \approx F_s^l(x_i) + \nabla F_s^l(x_i)(x - x_i)i \in [0, n] \to (1)$$

The library used is **NewtonFool** with several parameters:

- eta : characterizes the perturbation
- max_iter: the maximum number of iterations

```
!pip install adversarial-robustness-toolbox

from art.attacks import NewtonFool

classifier = KerasClassifier*model=model, clip_values=(0, 1))

attack_cw = NewtonFool(classifier=classifier; eta=0.1, max_iter=40,

targeted=False, batch_size=1)

x_test_adv = attack_cw.generatex_test)

loss_test, accuracy_test = model.evaluatex_test_adv, y_test)

perturbation = np.mean(np.abs((x test adv - x test)))
```

Evaluation metrics

La perturbation : $\frac{1}{n} \sum_{i=1}^{n} |x_{i_{attacktest}} - x_{i_{test}}|$

L'évaluation des résultats : model.evaluate(x_test_adv, y_test)

L'évaluation des résultats : show_dataset_and_predictions(x_test_adv,

y_test,
model,
class_to_name=class_to_name)

Results

References

Carlini L_{∞} : Towards Evaluating the Robustness of Neural Networks - Nicholas Carlini & David Wagner https://arxiv.org/pdf/1608.04644.pdf

Newton Fool: Objective Metrics and Gradient Descent Algorithms for Adversarial Examples in Machine Learning https://andrewxiwu.github.io/public/papers/2017/JWJ17-objective-metrics-and-gradient-descent-based-algorithms-for-adversarial-examples-in-machine-learning.pdf

Basic Iterative Method: Adversarial Machine Learning At Scale, Adversarial Examples in the Physical World https://arxiv.org/pdf/1611.01236.pdf https://arxiv.org/pdf/1607.02533.pdf

Latex maths: http://latex2png.com/

