Functii folosite:

- unsigned int* XORSHIFT32(unsigned int seed, int n)
 - Genereaza numere intregi fara semn pe 32 de biti
 - Va incepe de la valoarea pe care o are seed si se va opri dupa generarea a (n-1) numere
- pixel** matrice(int W, int H)
 - Alocare dinamica a unei matrice cu W coloane si H linii
- > pixel** citire(FILE *f, int W, int H)
 - Salveaza in matricea de tip pixel fiecare canal de culoare din imaginea citita din fisier
- pixel* liniarizare(int W, int H, pixel **I)
 - Liniarizeaza matricea I in care este salvata imaginea
- > int* Durstenfeld(int W, int H, unsigned int *R)
 - Genereaza o permutare aleatoare
 - R contine numerele aleatoare generate de functia XORSHIFT32
- > pixel* permutare(pixel *L, int H, int W, unsigned int *R, int *p)
 - Permuta pixelii imaginii L conform permutarii aleatoare returnata de functia Durstenfeld
- pixel* inversa(int W, int H, pixel *C, int *p)
 - Permuta pixelii imaginii criptate C conform inversei permutarii aleatoare salvata in p
- > pixel* criptare(pixel *P, unsigned int *R, unsigned int SV, int W, int H)
 - Se cripteaza imaginea specificata
 - Returneaza imaginea criptata prin vectorul C
 - Parametrii functiei sunt permutarea "P", numerele aleatoare "R", cheia secreta "SV", latimea imaginii "W" si inaltimea imaginii "H"
- > pixel* decriptare(pixel *C, unsigned int *R, unsigned int SV, int W, int H)
 - Se decripteaza imaginea
 - Returneaza imaginea decriptata prin vectorul D
 - Parametrii functiei sunt imaginea criptata liniarizata "C", numerele aleatoare "R", cheia secreta "SV", latimea imaginii "W" si inaltimea imaginii "H"

- ➤ void creare(FILE *fin, FILE *fout, pixel *C, int H, int W)
 - Salveaza imaginea din C in memoria externa
- > pixel* frecventa(pixel *L, int W, int H)
 - Calculeza frecventa fiecarei culori din imagine
- void test_chi(int m, int n, pixel *I)
 - Afiseaza numarul pixelilor din cele 3 canale de culoare dintr-o imagine liniarizata "I"
 - m reprezinta numarul de linii al matricei si n numarul de coloane
- void grayscale_image(char* nume_fisier_sursa,char* nume_fisier_destinatie)
 - Tansforma imaginea color in imagine alb-negru.
- ➤ double media_intensitatiilor(int i, int j, int n, int m, pixel **I)
 - Furnizeza media valorilor intensitatilor alb-negru a pixelilor din imaginea salvata in matricea I
 - i si j reprezinta coordonatele punctului de start, iar n este numarul de linii si m numarul de coloane
- double deviatia_standard(int i, int j, int n, int m, pixel **I)
 - Furnizeaza deviatia standard a intensitatilor alb-negru a pixelilor din imaginea I
- pixel** colorare(int i, int j, pixel **C, int c)
 - Schimba culoarea pixelilor in functie de valoarea cifrei din c si o salveaza in matricea C
- ➤ detectii* glisare(pixel **I, int H, int W, int h, int w, pixel **S, int c, detectii *D, int *k, double ps)
 - Gliseaza sablonul pe imaginea "decriptare2.bmp" si calculeaza corelatia dintre sablonul curent si continutul corespunzator al imaginii, dat de dimensiunea sablonului.
 - h si w sunt inaltimea si latimea sablonului S
 - in vectorul D salveaza detectiile care au corelatia mai mare decat pragul ps
- > int cmp(const void *a, const void *b)
 - Se foloseste pentru sortarea descrescatoare a detectiilor in functie de corelatie.

- void suprapunere(detectii **D, int *k)
 - Calculeaza suprapunerea spatiala dintre doua detectii D[i] si D[j]
 - Daca suprapunerea spatial este mai mare decat 0.2 atunci se sterge detectia D[j]
 - Utilizeaza functia colorare asupra detectiilor ramase