EXERCISE SHEET: COMPRESSED SENSING

JEAN-LUC BOUCHOT

1. Introduction, hands-on

Exercise 1. Prove the following:

Given an index set $S \subset \{1, \dots, N, \}$, if

$$\mathbf{v} := \operatorname{argmin}_{\mathbf{z} \in \mathbb{R}^N} \{ \|\mathbf{y} - A\mathbf{z}\|, \operatorname{supp}(\mathbf{z}) \subset S \}$$

then

$$\langle \mathbf{y} - A\mathbf{v}, a_i \rangle = 0,$$

for all $i \in S$.

Exercise 2. Prove the following

Let $A \in \mathbb{C}^{m \times N}$ be a matrix with ℓ_2 -normalized columns. Given $S \subset \{1, \dots, N\}$ and \mathbf{v} supported on S, and $1 \leq j \leq N$, if

$$\mathbf{w} := \operatorname{argmin}_{\mathbf{z} \in \mathbb{C}^N} \{ \|A\mathbf{z} - \mathbf{y}\|_2, \operatorname{supp}(\mathbf{z}) \subset S \cup \{j\} \}$$

then

$$\|\mathbf{y} - A\mathbf{w}\|_2^2 \le \|\mathbf{y} - A\mathbf{v}\|_2^2 - |(A^*(\mathbf{y} - A\mathbf{v}))_j|^2.$$

Exercise 3. Prove the alternate form for the restricted isometry constant:

$$\delta_s := \max_{|S| \le s} ||A_S^* A_S - I||_{2 \to 2}.$$

SEAMS SCHOOL ON MODERN TRENDS IN SIGNAL ANALYSIS $Email\ address:$ jlbouchot@gmail.com

 $Date \colon \text{December } 12,\,2022.$

1