

ELT 061 – Dispositivos e Circuitos Eletrônicos Básicos

Projeto de Filtros Analógicos

Referência:

- Microeletrônica 5 edição Capítulo 12 Sedra Smith,
- Microelectrónica, Vol II Capitulo 16, 2 edição.
 Jacob Millman Arvin Grabel

Função de transferência de Filtros

Regime permanente senoidal : $\frac{V_o(jw)}{V_i(jw)} = |T(jw)|e^{j\phi(w)}$

Função de atenuação : $A(w) \equiv -20 \log |T(jw)|, dB$

Tipos de Filtros

Tipos de Filtros

Função de transferência de filtros

$$T(s) = \frac{a_M(s - z_1)(s - z_2)...(s - z_M)}{(s - p_1)(s - p_2)...(s - p_N)}$$

Função de transferência de filtros

Gabarito do Filtro

Aproximações de Filtros

- Aproximação de Butterworth
- Aproximação de Chebyshev
- Aproximação elíptica
- Aproximação de Bessel

Aproximação de Butterworth

$$T(s) = \frac{H_o}{B(s)}$$

$$\left|T(jw)\right|^2 = \frac{1}{1 + \left(\frac{w}{w_p}\right)^{2N}}$$

Onde:

 $w_p \Rightarrow$ frequência de corte

N ⇒ Orden do polinómio

Propriedades da Aproximação de Butterworth

$$|T(jw)| = 1$$
 $w = 0$ rd/s

$$|T(jw)| = \frac{1}{\sqrt{2}}$$
 $w = w_p \text{ rd/s}$

Para obter uma atenuação de M dB na freqüência w_s a ordem do filtro é:

$$N = \frac{\log_{10}(10^{-(M_{dB}/10)} - 1)}{2\log_{10}\binom{W_s}{W_p}}$$

Polinomio de Butterworth normalizados

n	Polinomio $B_n(s)$
1	(s+1)
2	$(s^2 + 1,414s + 1)$
3	$(s+1)(s^2+s+1)$
4	$(s^2 + 0.765s + 1)(s^2 + 1.848s + 1)$
5	$(s+1)(s^2+0.618s+1)(s^2+1.618s+1)$
6	$(s^2 + 0.518s + 1)(s^2 + 1.414s + 1)(s^2 + 1.932s + 1)$
7	$(s+1)(s^2+0.445s+1)(s^2+1.247s+1)(s^2+1.802s+1)$
8	$(s^2 + 0.390s + 1)(s^2 + 1.111s + 1)(s^2 + 1.663s + 1)(s^2 + 1.962s + 1)$

Aproximação de Butterworth

Aproximação de Butterworth

Pafnuty Lvovich Chebyshev – 1821 - 1894

Matemático russo da Universidade de São Petersburgo nascido em Okatovo, pequena cidade a oeste de Moscou, de notáveis descobertas no estudo do cálculo avançado e da matemática aplicada.

Aproximação de Chebyshev - Tipo 1

$$|H(jw)|^2 = \frac{1}{1 + \varepsilon^2 C_n^2 \left(\frac{w}{w_p}\right)} \quad 0 < \varepsilon < 1$$

$$C_n \left(\frac{w}{w_p} \right) = \cos \left(N \arcsin \left(\frac{w}{w_p} \right) \right), \ 0 \le \frac{w}{w_p} \le 1$$

$$C_n \left(\frac{w}{w_p} \right) = \cosh \left(\frac{N \operatorname{ar} \cosh \left(\frac{w}{w_p} \right)}{w_p} \right), \frac{w}{w_p} \ge 1$$

Propriedades

1.
$$T(j0) = \frac{1}{\sqrt{1+\varepsilon^2}}$$
 para n par

2. T(j0) = 1 para n impar

3.
$$T(jw_p) = \frac{1}{\sqrt{1+\varepsilon^2}}$$

$$r_{db} = 10\log_{10}(1+\varepsilon^2)$$

Polinômios de Chebyshev normalizados

n	Factores de polinómios de filtros de Chebyshev
	Ondulação de 0,5 dB ($\varepsilon = 0.3493$)
1	s + 2,863
2	$s^2 + 1,425s + 1,516$
3	$(s + 0.626)(s^2 + 0.626s + 1.142)$
4	$(s^2 + 0.351s + 1.064)(s^2 + 0.845s + 0.356)$
5	$(s + 0.362)(s^2 + 0.224s + 1.036)(s^2 + 0.586s + 0.477)$
6	$(s^2 + 0.1554s + 1.024)(s^2 + 0.4142s + 0.5475)(s^2 + 0.5796s + 0.157)$
7	$(s + 0.2562)(s^2 + 0.1014s + 1.015)(s^2 + 0.3194s + 0.6657)(s^2 + 0.4616s + 0.2539)$
8	$(s^2 + 0.0872s + 1.012)(s^2 + 0.2484s + 0.7413)(s^2 + 0.3718s + 0.3872)(s^2 + 0.4386s + 0.08805)$
200 (1700 - 10 - 10)	Ondulação de 1,0 dB ($\varepsilon = 0,5089$)
1	s + 1,965
2	$s^2 + 1,098s + 1,103$
3	$(s + 0.494)(s^2 + 0.494s + 0.994)$
4	$(s^2 + 0.279s + 0.987)(s^2 + 0.674s + 0.279)$
5	$(s + 0.289)(s^2 + 0.179s + 0.988)(s^2 + 0.468s + 0.429)$
6	$(s^2 + 0.1244s + 0.9907)(s^2 + 0.3398s + 0.5577)(s^2 + 0.4642s + 0.1247)$
	$(s + 0.2054)(s^2 + 0.0914s + 0.9927)(s^2 + 0.2562s + 0.6535)(s^2 + 0.3702s + 0.2304)$
7	(3 + 0.2034)(3 + 0.05143 + 0.5927)(3 + 0.23023 + 0.0333)(3 + 0.37023 + 0.2304)

Filtro Protótipo de Tchebyshev – Tipo 1

Projeto de um Filtro de Chebyshev 1

- Dado o ripple máximo admissível calcula-se ε.
- Para cada frequência w_s do gabarito calcula-se o valor do polinômio C_n(w_s/w_p) que garante a atenuação mínima M_s (db).

$$C_n({\stackrel{W_s}{/}_{W_p}}) = \sqrt{\frac{10^{\frac{|M_s|}{10}} - 1}{\varepsilon^2}}$$

 Calcula-se a ordem do polinômio de Chebychev que atenda a todas as especificações simultaneamente.

$$N = \frac{\cosh^{-1}[C_n(\frac{w_s}{w_p})]}{\cosh^{-1}(\frac{w_s}{w_p})}$$

Transformação Final

$w_0 = \sqrt{w_H w_L} - 1$	Freqüência central
----------------------------	--------------------

$$B = w_H - w_L$$
 - faixa de passagem

 w_p = frequência de corte

Substituir s por ...

e	
Passa Baixas	$\frac{s}{w_p}$
Passa Altas	$\frac{w_p}{s}$
Passa Faixa	$\frac{s^2 - w_0^2}{Bs}$
Corta Faixa	$\frac{Bs}{w_0^2 - s^2}$

Filtro Protótipo de Tchebyshev – Tipo 2

Aproximação Elíptica

Rp = 0.9 dB; Rs = 20 dB; N=5 (azul) e N=6 (vermelho)

Configuração Sallen Key

Configuração passa-baixa Amplificador não inversor

$$T(s) = \frac{V_o(s)}{V_i(s)} = \frac{G}{R^2 C^2 s^2 + RCs(3 - G) + 1}$$

$$G = 1 + \frac{R_1}{R_2}$$
 $w_p = \frac{1}{RC}$ Frequência de corte

Configuração 1º ordem passa baixa

$$T(s) = \frac{V_o(s)}{V_i(s)} = \frac{1}{R_1 C_1 s + 1}$$

Exemplo Filtro Passa Baixa

Projete um filtro passa baixa com frequência de corte em 1kHz e atenuação de 40dB em 10kHz

1-Ordem do filtro

$$N = \frac{\log_{10}(10^{-(M_{dB}/10)} - 1)}{2\log_{10}\left(\frac{W_s}{W_p}\right)} = \frac{\log_{10}(10^4 - 1)}{2\log_{10}\left(\frac{10}{1}\right)} = 1,99 = 2$$

2- Polinômio de Butterworth normalizado

$$s^2 + 1,414s + 1$$

Exemplo Filtro Passa Baixa

3- Polinômio não normalizado

$$\frac{s^2}{w_p^2} + 1,414 \frac{s}{w_p} + 1$$

4- Função do circuito

$$\frac{G}{R^2C^2s^2 + RCs(3-G) + 1}$$

$$w_p = \frac{1}{RC}$$

$$R = \frac{1}{w_p C} = \frac{1}{2\pi 1000 * 10nF} = 15,92k\Omega$$

$$1,414 = 3-G \Rightarrow G = 1,586$$

$$G = 1 + \frac{R_1}{R_2}$$

$$G = 1 + \frac{R_1}{R_2} \qquad \frac{R_1}{R_2} = 0,586$$

Configuração Sallen Key

Configuração passa alta Amplificador não inversor

Considerando C1=C2 e R3=R4 tem-se:

$$T(s) = \frac{V_o(s)}{V_i(s)} = \frac{s^2 G}{s^2 + \frac{1}{RC}(3 - G)s + \frac{1}{R^2 C^2}}$$

$$G = 1 + \frac{R_1}{R_2} \qquad \qquad w_p = \frac{1}{RC}$$

Configuração 1º ordem passa alta

$$T(s) = \frac{V_o(s)}{V_i(s)} = \frac{R_1 C_1 s}{R_1 C_1 s + 1}$$

Exemplo Filtro Passa Alta

Projete um filtro passa alta com frequência de corte em 1kHz e atenuação de 40dB em 80Hz

1-Ordem do filtro

$$N = \frac{\log_{10}(10^{-(M_{dB}/10)} - 1)}{2\log_{10}\left(\frac{W_s}{W_p}\right)} = \frac{\log_{10}(10^4 - 1)}{2\log_{10}\left(\frac{80}{1000}\right)} = -1.82 = 2$$

2- Polinômio de Butterworth normalizado

$$s^2 + 1,414s + 1$$

Exemplo Filtro Passa Alta

3- Polinômio não normalizado

$$\frac{1}{\frac{w_p^2}{s^2} + 1,414 \frac{w_p}{s} + 1}$$

$$\frac{s}{s^2 + 1,414w_p s + w_p^2}$$

4- Função do circuito

$$\frac{Gs^2}{s^2 + \frac{1}{RC}s(3 - G) + \frac{1}{R^2C^2}}$$

$$w_p = \frac{1}{RC}$$

Exemplo Filtro Passa Alta

$$R = \frac{1}{w_p C} = \frac{1}{2\pi 1000 * 10nF} = 15,92k\Omega$$

$$1,414 = 3-G \Rightarrow G = 1,586$$

$$G = 1 + \frac{R_1}{R_2}$$

$$G = 1 + \frac{R_1}{R_2} \qquad \frac{R_1}{R_2} = 0,586$$