SOLIPSIS

Un monde virtuel massivement partagé

Gwendal Simon

France Telecom R&D - IRISA

Préambule

Environnement virtuel massivement partagé :

- monde virtuel généré par ordinateur (jeux multi-utilisateurs, entrainement militaire...)
- entité virtuelle :
 - > avatar d'un utilisateur ou représentation virtuelle d'un objet,
 - > position et déplacements dans le monde virtuel,
 - > interactions simulant la réalité.
- présence dans le monde virtuel :
 - > être perçu par d'autres entités,
 - > percevoir les entités proches virtuellement.

Préambule

Cohérence :

- > définition : deux entités ont la même perception d'une même scène virtuelle,
- > objectif : trouver un compromis entre la quantité de messages échangés et le maintien de la cohérence dans un environnement dynamique.

Solutions proposées :

- > utilisation de **serveurs** :
 - réception et retransmission des événements (déplacements, modifications d'un avatar...)
- > utilisation du multicast :
 - découpage du monde en zones,
 - une entité responsable et un groupe multicast par zone.

Motivation

• Principe:

- > Associer environnement virtuel partagé et réseaux de pairs :
 - ▷ le monde virtuel est une ressource partagée entre les utilisateurs (peer-to-peer),
 - chaque utilisateur est responsable de la ressource "lui-même" qu'il rend disponible,
 - chaque utilisateur collecte les informations lui permettant de reconstituer son environnement virtuel local.

Objectifs:

- > scalabilité : un nombre illimité de participants,
- > **cohérence** : maintenir une cohérence *suffisante* (espace de rencontres virtuelles).

Modèle

- Le **monde virtuel** est un *tore* :
 - > un espace sans limite,
 - > un ensemble fini de coordonnées:

$$T = \{(x, y) \in \mathbb{N}_{size_x} \times \mathbb{N}_{size_y}\}$$

- Un nœud est un élément logiciel :
 - > associé à une entité virtuelle,
 - > représenté par un identifiant unique id_e ,
 - > ayant une position dans le monde virtuel $(x_e, y_e) \in T$,
 - > connecté à d'autres nœuds (ensemble des adjacents k(e)),
 - > libre de se déplacer virtuellement à chaque instant,
 - > susceptible de quitter le monde à chaque instant.

Modèle

- Une connexion entre deux nœuds :
 - > est un lien bidirectionnel (connaissance mutuelle)

$$e' \in k(e) \Leftrightarrow e \in k(e')$$

- > permet de :
 - communiquer sa position à intervalle régulier,
 - s'échanger des flux multimédia,
 - ▷ s'informer à propos d'autres nœuds.
- L'environnement virtuel local est un disque A(e):
 - > centré sur l'entité e,
 - > de rayon r_e dépendant :
 - ⊳ des capacités de l'entité e,
 - ▷ de la densité d'entités.

Propriété

Principale propriété : Local Awareness

- Idée : une entité est connectée à tous ses plus proches voisins,
- Énoncé : la propriété est vérifiée par l'entité e quand :

$$a(e) \subseteq k(e)$$

avec:

a(e) : l'ensemble des entités situées dans le disque A(e)

Maintien de la propriété

Collaboration spontanée :

- $\forall e', e'' \in k(e)$, l'entité e indique à e'' la présence de e' si
 - > e' entre dans A(e''),
 - > d(e'', e') < d(e'', e),

Collaboration requête/réponse :

collecter des entités pour vérifier

$$pos_e \in CH(k(e))$$

CH(k(e)): l'enveloppe convexe (convex hull) des adjacents de e.

Connexion & Téléportation

Pour une entité e qui se connecte ou qui se "téléporte" dans le monde virtuel :

- e doit connaître une entité e_0 connectée et sa future position pos_e ,
- algorithme de localisation inverse :
 - > trouver l'entité la plus près de pos_e ,
 - > tourner autour de pos_e .
- définir r_e .

Résultats

Nos algorithmes garantissent:

- la connaissance des plus proches voisins,
- la connectivité en évitant la formation d'îles,

• le maintien des propriétés dans un contexte de mobilité, i.e.

d'instabilité.

Architecture Générale

Tâches périodiques

gestion du voisinage :

- > détection de défaillance
 - ▷ message Heartbeat
- > nombre de voisins constant (dans un intervalle)
 - ▷ message Close

maintien des propriétés topologiques :

- > aucun demi-plan n'est vide
 - messages Search et Found
- > nombre constant de voisins dans le disque virtuel local
 - → message Delta; AR

récupération d'informations pour le système :

> gestion du fichier bootstrap

Événements Utilisateurs

• ordre IHM:

- > déplacements :
 - ▷ message Delta; POS
- > téléportation
- > ...

• gestion des services :

- > message Service
- > message EndService

Événements du Voisinage

- nouvelles connexions :
 - > réaction à une détection
 - ▷ message Detect
 - > ouverture spontanée
- mobilité :
 - > message Delta; POS
 - > message Delta;AR
- informations pour les navigateurs
 - > messages Service et Endservice

Conclusion & travaux futurs

aujourd'hui :

- > création et animation d'une communauté Open-Source
- > présentation à la conférence internationale CodeCon'04 en février
 - http://solipsis.netofpeers.net

demain :

- > optimisation du protocole
- > gestion des collisions
- > utilisation de DHTs pour la connexion
- > confiance distribuée pour argent virtuel
- > de nouveaux services et de nouveaux navigateurs . . .

