IISER Kolkata Exercises

MA4202: Ordinary Differential Equations

Satvik Saha, 19MS154 April 10, 2023

Assignment I

Exercise 1 Let $x:[-1,1]\to\mathbb{R}$ be a continuous function satisfying

$$x(t) = x(0) + \int_0^t x(s) ds.$$

Show that

$$x^{2}(t) = x^{2}(0) + 2 \int_{0}^{t} x^{2}(s) ds.$$

Solution Observe that x'(t) = x(t), hence integrating by parts yields

$$\int_0^t x^2(s) \, ds = \int_0^t x(s)x'(s) \, ds = x^2(s) \Big|_0^t - \int_0^t x(s)x'(s) \, ds,$$

whence

$$2\int_0^t x^2(s) ds = x^2(t) - x^2(0).$$

Exercise 2 Consider the IVP

$$\dot{x} = x^2 + t^2, \qquad x(0) = 1.$$

Prove that for some b > 0, there is a solution defined on [0, b]. Also find c > 0 such that there is no solution on [0, c].

Solution Fix d=1, r=1. The map $(t,x)\mapsto x^2+t^2$ is bounded by M=5 on $[t_0-d,t_0+d]\times\overline{B_r(x_0)}=[-1,1]\times[0,2]$. Thus, Peano's Theorem guarantees a solution on the interval [0,b] with $b=\min(c,r/M)=1/5$.

Note that for any solution x, we must have

$$x'(t) \ge x^2(t), \qquad -\frac{d}{dt}\left(\frac{1}{x}\right) \ge 1,$$

whence

$$1-\frac{1}{x(t)}\geq t, \qquad x(t)\geq \frac{1}{1-t}.$$

Thus, there is no solution on [0,1].

Exercise 3 Determine the maximal interval of existence for the following IVP.

$$\dot{x} = y\cos^2 x + \sin t\cos y + 1,$$
 $\dot{y} = \sin y + x,$ $x(0) = 0,$ $y(0) = 1.$

Solution Framing the system of equations as $\dot{x} = f(t, x)$ note that

$$|f(t, \boldsymbol{x})| \le |y \cos^2 y + \sin t \cos y + 1| + |\sin y + x| \le |y| + |x| + 3 \le 2|\boldsymbol{x}| + 3.$$

Furthermore, f is C^1 ; thus the maximal interval of existence for any solution of the given IVP is \mathbb{R} .

Exercise 4 Maximize the interval length in the Picard-Lindelöf Theorem for the solution of the IVP

$$\dot{x} = 5 + x^2, \qquad x(0) = 1.$$

Solution For r > 0, the maximum value of the map $(t, x) \mapsto 5 + x^2$ on $\mathbb{R} \times \overline{B_r(x_0)} = \mathbb{R} \times [1 - r, 1 + r]$ is $M = 5 + (1 + r)^2$. Also,

$$|f(t,x) - f(t,y)| = |x^2 - y^2| = |x + y| |x - y| \le (2 + 2r)|x - y|,$$

hence L=(2+2r) is the Lipschitz constant for f. Thus, we must choose $h<\min(r/M,1/L)=\min(r/(6+2r+r^2),1/(2+2r))$. This is maximised at $r=\sqrt{6}$.

Exercise 5 Show that the sequence of Picard iterates of the IVP

$$\dot{x} = x^{1/3}, \qquad x(0) = 0$$

converges, but the IVP does not have a unique solution.

Solution It is clear that all Picard iterates of this IVP are identically zero, but we have a family of solutions $\{x_{\alpha}\}_{{\alpha}>0}$ described by

$$x_{\alpha}(t) = \begin{cases} 0, & \text{if } x \in [0, \alpha], \\ k(t - \alpha)^{3/2}, & \text{if } x \in [\alpha, \infty). \end{cases}$$

Exercise 6 Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function, and let $x: I \to \mathbb{R}$ be a solution of x' = f(x) for an interval I. Show that x is a monotone function.

Solution Suppose to the contrary that x'(a) > 0 and x'(b) < 0 for some $a, b \in I$. Without loss of generality, let a < b, $x(a) \le x(b)$. Pick $\tau \in (a, b)$ such that $x(\tau)$ is maximum, and let σ be the largest number in $[a, \tau]$ such that $x(\sigma) = x(b)$. Then, we must have all $x(t) \ge x(\sigma)$ for $t \in [\sigma, \tau]$, hence $x'(\sigma) \ge 0$. But

$$0 \le x'(\sigma) = f(x(\sigma)) = f(x(b)) = x'(b) < 0,$$

a contradiction.

Exercise 7 Let T be a linear operator on \mathbb{R}^n that leaves a subspace $E \subseteq \mathbb{R}^n$ invariant. Show that e^T also leaves E invariant.

Solution Note that for any $x \in \mathbb{R}^n$, we have

$$e^T x = \lim_{n \to \infty} \sum_{k=1}^n \frac{T^k x}{k!}.$$

Each $T^n x \in E$, so each term in the limit is in E as well. Since linear subspaces of \mathbb{R}^n are closed, the limit $e^T x \in E$.

Exercise 8 Can the Arzela-Ascoli Theorem be applied to the sequence of functions $t \mapsto \sin(nt)$ on $[0, \pi]$?

Solution No; the given family is not equicontinuous. Suppose to the contrary that there exists $\delta > 0$ such that $|\sin(nt) - \sin(ns)| < 1/2$ for all $n \in \mathbb{N}$ whenever $|s - t| < \delta$. Then we can pick $N \in \mathbb{N}$ such that $\pi/2N < \delta$. Thus, $|\pi/2N - 0| < \delta$, but $|\sin(N \cdot \pi/2N) - \sin(0)| = 1 > 1/2$, a contradiction.

Assignment III

Exercise 1 Using appropriate Lyapunov functions, discuss the stability and asymptotic stability of the following systems.

$$\dot{x} = y, \qquad \dot{y} = -x - y.$$

(ii)
$$y'' + 6y^5 = 0.$$

Solution

(i) This system has an equilibrium point at (0,0). Consider $V(x,y) = x^2 + y^2$; then, V(0,0) = 0, V(x,y) > 0 on $\mathbb{R}^2 \setminus \{(0,0)\}$, and

$$\dot{V} = 2x\dot{x} + 2y\dot{y} = -2y^2.$$

Since $\dot{V}(x,y) \leq 0$, the equilibrium point (0,0) is stable. Furthermore, (0,0) is asymptotically stable

(ii) Rewrite this system as

$$y_1' = y_2, \qquad y_2' = -6y_1^5.$$

This system has an equilibrium point at (0,0). Consider

$$V(y_1, y_2) = \frac{1}{2}y_2^2 + \int_0^{y_1} 6s^5 ds = \frac{1}{2}y_2^2 + y_1^6.$$

Then, V(0,0) = 0, $V(y_1, y_2) > 0$ on $\mathbb{R}^2 \setminus \{(0,0)\}$, and

$$\dot{V} = y_2 \cdot 6y_1^5 - 6y_1^5 \cdot y_2 = 0.$$

Thus, (0,0) is stable. Since every flow line must stay trapped on the surface $V(y_1,y_2)=0$, the point (0,0) is not asymptotically stable.

Exercise 2 Check whether solutions of the following equations have infinitely many zeros on $(0, \infty)$.

- (i) $y'' + (\sin^2 x + 1)y = 0$.
- (ii) $y'' x^2y = 0$.
- (iii) xy'' + y = 0.

Solution

(i) Use Sturm's Comparison Theorem against

$$u'' + u = 0.$$

whose solutions have infinitely many zeros on $(0, \infty)$.

- (ii) If a non-trivial solution of $y'' x^2y = 0$ would have admitted infinitely many zeros on $(0, \infty)$, so would a non-trivial solution of u'' = 0, a contradiction.
- (iii) On each interval $(0, K^2)$, the given equation y'' + y/x = 0 is a Sturm majorant of $u'' + u/K^2 = 0$, which admits non-trivial solutions of such as $u(x) = \sin(x/K)$. This admits zeros at each $nK\pi$, as long as $0 < nK\pi < K^2$, i.e. at least $\lfloor K/\pi \rfloor$ zeros. Thus, non-trivial solutions of y'' + y/x admit at least $\lfloor K/\pi \rfloor + 1$ roots on $(0, K^2)$. Since K is arbitrary, such y admit infinitely many roots.

Exercise 3 Construct a Green's function for the differential operator d^2/dx^2 under the boundary condition u(0) = u(1) = 0.

Let f be a continuous function on [0,1]. Show that the function

$$u: [0,1] \to \mathbb{R}, \qquad x \mapsto \int_0^1 G(x,\xi)f(\xi) d\xi$$

satisfies

$$u'' = f,$$
 $u(0) = u(1) = 0.$

Solution Note that u'' = 0 admits two linearly independent solutions $y_1(x) = x$, $y_2(x) = 1 - x$ with $B_0y_1 = 0$, $B_1y_2 = 0$. Thus, a Green's function for u'' = 0 is of the form

$$G(x,\xi) = \begin{cases} \xi(1-x)/c, & \text{if } 0 \le \xi \le x, \\ x(1-\xi)/c, & \text{if } x \le \xi \le 1. \end{cases}$$

Indeed, $c = W'(y_1, y_2) = -1$, so

$$G(x,\xi) = \begin{cases} -\xi(1-x), & \text{if } 0 \le \xi \le x, \\ -x(1-\xi), & \text{if } x \le \xi \le 1. \end{cases}$$

Check that

$$u(x) = \int_0^x -\xi(1-x)f(\xi) d\xi + \int_x^1 -x(1-\xi)f(\xi) d\xi$$

$$u'(x) = \int_0^x \xi f(\xi) d\xi - (1-x)xf(x) - \int_x^1 (1-\xi)f(\xi) d\xi + x(1-x)f(x)$$

$$= \int_0^1 \xi f(\xi) d\xi - \int_x^1 f(\xi) d\xi$$

$$u''(x) = f(x).$$

Exercise 4 Let λ and a non-zero function u satisfy the following equation.

$$u'' + \sin(x)u + \lambda u = 0,$$
 $u(-1) = u(1) = 0.$

Show that $\lambda \geq -1$.

Solution Suppose that $\lambda < -1$ admits a non-trivial solution u. Then, a Sturm majorant of the given problem is v'' = 0, hence any non-trivial solution v ought to admit a zero in (-1,1). However, one can choose solutions v without roots in (-1,1), say v = x + 2, a contradiction.