作业 1 马的疝病分析

数据分析

1 读取数据并将'?'用'-100'代替

```
def string2num():
      f1 = open('./data/horse-colic.data.txt', 'r')
f2 = open('./data/train.txt', 'w')
       s = f1.read()
       s = s.replace('?', '-100')
       f2.write(s)
  npdata = np.loadtxt('./data/train.txt')
  df = pd.DataFrame(npdata)
2 分析标签属性出现的频数
            [1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 21, 23, 24, 25, 26, 27, 28]
[4, 5, 6, 16, 19, 20, 22]
 labelattr
 valueattr
 for attrid in labelattr:
    print(df[attrid-1].value_counts())
    print()
1.0
         180
 2.0
          119
-100.0
            1
Name: 0, dtype: int64
1.0
       276
9.0
       24
Name: 1, dtype: int64
             2
532349.0
529424.0
             2
528729.0
             2
527544.0
             2
528996.0
             2
             2
528931.0
             2
528469.0
             2
527916.0
529461.0
             2
             2
528151.0
             2
5279822.0
528904.0
             2
530693.0
             2
```

530526.0	2
529796.0	2
528890.0	2
533692.0	1
528742.0	1
528570.0	1
5289419.0	1
534719.0	1
533738.0	1
530101.0	1
530612.0	1
530561.0	1
5305629.0	1
528047.0	1
535208.0	1
534183.0	1
528548.0	1
0200-0.0	
534403.0	1
5282839.0	1
533887.0	1
533886.0	1
530301.0	1
5275212.0	1
530297.0	1
529272.0	1
535415.0	1
530294.0	1
534899.0	1
529777.0	1
535407.0	1
5290482.0	1
533836.0	1
528743.0	1
529766.0	1
534885.0	1
5290759.0	1
535338.0	1
527709.0	1
527709.0	1
533847.0	1
528214.0	
535381.0	1
533750.0	1

527698.0	1
530255.0	1
530254.0	1
530478.0	1

Name: 2, dtype: int64

3.0	109
1.0	78
-100.0	56
2.0	30
4.0	27

Name: 6, dtype: int64

1.0	115
3.0	103
-100.0	69
4.0	8
2.0	5

Name: 7, dtype: int64

1.0	79
3.0	58
-100.0	47
4.0	41
2.0	30
5.0	25
6.0	20

Name: 8, dtype: int64

1.0	188	
2.0	78	
-100.0	32	
3.0	2	

Name: 9, dtype: int64

3.0	67
2.0	59
-100.0	55
5.0	42
4.0	39
1.0	38

Name: 10, dtype: int64

3.0 128

4.0	73
-100.0	44
1.0	39
2.0	16

Name: 11, dtype: int64

1.0 76 3.0 65 2.0 65 -100.0 56 4.0 38

Name: 12, dtype: int64

-100.0 104 2.0 102 1.0 71 3.0 23

Name: 13, dtype: int64

1.0 120 -100.0 106 3.0 39 2.0 35

Name: 14, dtype: int64

-100.0 102 4.0 79 1.0 57 3.0 49 2.0 13

Name: 16, dtype: int64

-100.0 118 5.0 79 4.0 43 1.0 28 2.0 19 3.0 13

Name: 17, dtype: int64

-100.0 165 2.0 48 3.0 46 1.0 41

Name: 20, dtype: int64

1.0	178
2.0	77
3.0	44
-100.0	1

Name: 22, dtype: int64

1.01912.0109

Name: 23, dtype: int64

0.0	56	
3111.0	33	
3205.0	29	
2208.0	20	
2205.0	13	
2209.0	11	
4205.0	11	
2124.0	9	
1400.0	8	
31110.0	7	
7111.0	7	
2113.0	6	
2112.0	5	
400.0	5	
2206.0	4	
4300.0	4	
5400.0	4	
3209.0	4	
7209.0	3	
3112.0	3	
2111.0	3	
2207.0	3	
4124.0	3	
5124.0	2	
3124.0	2	
5206.0	2	
5111.0	2	
2322.0	2	
11124.0	2	
6112.0	2	

9400.0 2

```
3025.0
            2
8400.0
            2
3113.0
            1
4111.0
            1
21110.0
            1
300.0
            1
3300.0
            1
5205.0
            1
6209.0
            1
4206.0
            1
4122.0
            1
8300.0
            1
2300.0
            1
5000.0
            1
2305.0
            1
4207.0
            1
41110.0
            1
9000.0
            1
3133.0
            1
12208.0
            1
3115.0
            1
3400.0
            1
1111.0
            1
3207.0
            1
1124.0
            1
11300.0
            1
7113.0
            1
11400.0
            1
7400.0
```

Name: 24, dtype: int64

0.0	293
3111.0	3
7111.0	1
3112.0	1
6112.0	1
1400.0	1

Name: 25, dtype: int64

0.0 299 2209.0 1

Name: 26, dtype: int64

2.0 201

1.0 99

Name: 27, dtype: int64

3 数值属性的最小值, 1/4 分位数, 中位数, 均值, 3/4 分位数, 最大值

```
for attrid in valueattr:
    print(attrname[attrid - 1])
    series = df[attrid - 1].apply(pd.to_numeric, errors='coerce')
    series = series[series.notnull()]
    print('min:', series.min())
    print('1/4 quantile:', series.quantile(0.25))
    print('mean:', series.mean())
    print('median:', series.median())
    print('3/4 quantile:', series.quantile(0.75))
    print('max:', series.max())
    print()
```

rectal_temperature

min: -100.0

1/4 quantile: 37.2

mean: 10.534333333333333

median: 38.0 3/4 quantile: 38.5

max: 40.8

pulse

min: -100.0

1/4 quantile: 48.0 mean: 58.16 median: 60.0 3/4 quantile: 88.0

max: 184.0

respiratory_rate

min: -100.0 1/4 quantile: 12.0

mean: 5.203333333333333333

median: 22.0 3/4 quantile: 34.25

max: 96.0

nasogastric_reflux_PH

min: -100.0

1/4 quantile: -100.0

mean: -81.50166666666667

median: -100.0 3/4 quantile: -100.0

max: 7.5

packed_cell_volume

min: -100.0 1/4 quantile: 37.0

mean: 32.153333333333333

median: 43.5 3/4 quantile: 50.0

max: 75.0

total_protein min: -100.0 1/4 quantile: 6.2

mean: 10.7666666666664

median: 7.2

3/4 quantile: 53.25

max: 89.0

abdomcentesis_total_protein

min: -100.0

1/4 quantile: -100.0

mean: -64.973333333333334

median: -100.0 3/4 quantile: 2.0

max: 10.1 4 绘制直方图

```
for attrid in valueattr:
    print(attrname[attrid - 1])
    x = npdata[attrid - 1]
    print(x)
    bins = np.arange(-100, 100, 5)
    plt.hist(x, bins = bins, alpha=0.5)
    plt.xlabel(attrname[attrid - 1])
    plt.ylabel('value')
    plt.title('Histogram')
    plt.grid(True)
    plt.show()
```


5 qq 图

```
for attrid in valueattr:
    print(attrname[attrid - 1])
    series = df[attrname[attrid - 1]]
    series = series[series != '?'].apply(pd.to_numeric, errors='coerce')
    _ = stats.probplot(series, dist="norm", plot=pylab)
```

rectal_temperature

6 盒图

```
for attrid in valueattr:
    print(attrname[attrid - 1])
    series = df[attrname[attrid - 1]]
    series = series[series != '?'].apply(pd.to_numeric, errors='coerce')
    _ = pd.DataFrame(series).boxplot()
```

