MAT2120 Number Theory Problems I

Suhyun Park (20181634)

Department of Computer Science and Engineering, Sogang University

1. Show that (a, c) = 1, (b, c) = 1 if and only if (ab, c) = 1.

Proof. (\Rightarrow) Suppose (ab, c) = d > 1. Then

$$d \mid c, d \mid ab$$
.

For all integers d_1 , d_2 such that $d_1 \mid a$, $d_2 \mid b$ and $d = d_1 d_2$,

$$d_1 \mid c, d_2 \mid c \Rightarrow (a, c) = d_1, (b, c) = d_2.$$

Since $d_1d_2 = d > 1$, $d_1 > 1$ or $d_2 > 1$. This is a contradiction; thus (ab, c) = 1 if (a, c) = 1, (b, c) = 1.

(\Leftarrow) Suppose (a, c) = d > 1. Then $d \mid ab$, thus (ab, c) = d > 1, which contradicts. Similarly when if (b, c) = d > 1, (ab, c) = d > 1. Thus (a, c) = 1, (b, c) = 1 if (ab, c) = 1.

2. If (a, b) = 1, prove that (a + b, a - b) = 1 or 2.

Proof. Since (a, b) = 1, (2a, 2b) = 2.

Let (a+b, a-b) = d. Then

$$\begin{split} d &\mid (a+b), d \mid (a-b) \\ \Rightarrow d &\mid [(a+b)+(a-b)], d \mid [(a+b)-(a-b)] \\ \Rightarrow d &\mid 2a, d \mid 2b \end{split}$$

Thus d = 1 or 2, given the fact that (2a, 2b) = 2.

3. Let (a, b) = 10. Find all possible values of (a^3, b^4) .

Lemma 1. If (x, y) = 1, $(x^a, y^b) = 1$ for nonnegative integers a and b.

Proof. If the set of prime factors of x is $P = \{p_1, p_2, \dots, p_n\}$, and that of y is $Q = \{q_1, q_2, \dots, q_m\}$, i. e.

$$x = \prod_{k=1}^{n} p_k^{e_k}$$
$$y = \prod_{k=1}^{m} q_k^{e'_k}$$

for $e_i, e_i' \in \mathbb{Z}^+$, then clearly if and only if $P \cap Q = \emptyset$, then (x, y) = 1.

Since

$$x^{a} = \left[\prod_{k=1}^{n} p_{k}^{e_{k}}\right]^{a} = \prod_{k=1}^{n} p_{k}^{ae_{k}}$$
$$y^{b} = \left[\prod_{k=1}^{m} q_{k}^{e'_{k}}\right]^{b} = \prod_{k=1}^{m} q_{k}^{be'_{k}},$$

the set of prime factors of x^a is also P, and that of y^b is also Q. Since $P \cap Q = \emptyset$, $(x^a, y^b) = 1$.

Since $(a, b) = 10, 10 \mid a, 10 \mid b$. We let $a = 10a_0$ and $b = 10b_0$, hence $(a_0, b_0) = 1$. Then

$$(a^3, b^4) = (10^3 a_0^3, 10^4 b_0^4)$$
$$= 10^3 (a_0^3, 10b_0^4)$$

Suppose $(a_0^3, 10b_0^4) = k$, which $k \mid a_0^3$ and $k \mid 10b_0^4$. Note that $(a_0^3, b_0^4) = 1$ by Lemma and $k \mid a_0^3$, hence $k \nmid b_0^4$, thus $k \mid 10$.

Since a and b are nonnegative, possible values for k is 1, 2, 5, and 10. Thus, possible values of $(a^3, b^4) = 10^3 k$ is $10^3, 2 \cdot 10^3, 5 \cdot 10^3$, and 10^4 .

4. Show that $e = \sum_{n=0}^{\infty} \frac{1}{n!}$ is irrational. (Hint. Suppose $e = \frac{p}{q}$ with positive integers p and q. Show that q!e and $q!\sum_{n=0}^{q} \frac{1}{n!}$ are both integers.)

Proof. Suppose that $e = \sum_{n=0}^{\infty} \frac{1}{n!}$ is rational. i. e., there exists positive integers p and q such that $e = \frac{p}{q}$.

Then q!e = (q-1)!qe = (q-1)!p is an integer. Also,

$$q! \sum_{n=0}^{q} \frac{1}{n!} = \sum_{n=0}^{q} \frac{q!}{n!}$$
$$= \sum_{n=0}^{q} \prod_{k=n+1}^{q} k$$

is an integer. Thus,

$$q!e - q! \sum_{n=0}^{q} \frac{1}{n!} = q! \sum_{n=0}^{\infty} \frac{1}{n!} - q! \sum_{n=0}^{q} \frac{1}{n!}$$
$$= q! \sum_{n=q+1}^{\infty} \frac{1}{n!}$$

should be also an (positive) integer.

Since

$$\frac{q!}{n!} = \frac{1}{\prod_{k=q+1}^{n} k} \le \frac{1}{(q+1)^{n-q}}$$

is strict for every $n \ge b + 2$, we can conclude that

$$q! \sum_{n=q+1}^{\infty} \frac{1}{n!} < \sum_{n=q+1}^{\infty} \frac{1}{(q+1)^{n-q}}$$
$$= \sum_{k=1}^{\infty} \frac{1}{(q+1)^k}$$
$$= \frac{1}{q}.$$

Note that $q! \sum_{n=q+1}^{\infty} \frac{1}{n!}$ should be a positive integer, but it is impossible that a positive integer is less than $\frac{1}{q}$, given the fact that q is also a positive integer. Hence e is not rational, thus irrational.

5. Show that if k is an integer, then the integers 6k - 1, 6k + 1, 6k + 2, 6k + 3, and 6k + 5 are pairwise relatively prime.

Proof. If (a, b) = d, then $d \mid a$ and $d \mid b$; giving that $d \mid (a - b)$.

Hence for some integer k, if a + k = b and (a, k) = 1 and (b, k) = 1, then (a, b) = 1 because $(a, b) \mid (b - a) \Rightarrow (a, b) \mid k$, giving that (a, b) is a common divisor of a and k.

For
$$k = 1$$
, $(6k + 1, 6k + 2) = 1$ and $(6k + 2, 6k + 3) = 1$.

For
$$k = 2$$
, $(6k - 1, 6k + 1) = 1$, $(6k + 1, 6k + 3) = 1$, and $(6k + 3, 6k + 5) = 1$.

For
$$k = 3$$
, $(6k - 1, 6k + 2) = 1$, and $(6k + 2, 6k + 5) = 1$.

For
$$k = 4$$
, $(6k - 1, 6k + 3) = 1$, and $(6k + 1, 6k + 5) = 1$.

For
$$k = 6$$
, $(6k - 1, 6k + 5) = 1$.

Hence the integers 6k-1, 6k+1, 6k+2, 6k+3, and 6k+5 are pairwise relatively prime. \Box

6. Show that if a and p are positive integers such that $a^p - 1$ is prime, then a = 2 or p = 1.

Proof. Note that

$$a^{p} - 1 = \sum_{r=0}^{p-1} (a^{r+1} - a^{r}) = (a-1) \sum_{r=0}^{p-1} a^{r}.$$

Thus
$$(a-1) \mid (a^p-1)$$
 and $\left(\sum_{r=0}^{p-1} a^r\right) \mid (a^p-1)$.

Suppose that $a^p - 1$ is prime.

- 1. If a < 2, then $a = 1 \Rightarrow 1^p 1 = 0$ is not prime.
- 2. If a > 2, then $a 1 \ge 2$.

Since $a^p - 1$ is prime, the only prime factor for $a^p - 1$ has to be a - 1, implying that $\sum_{r=0}^{p-1} a^r = 1 \Rightarrow p = 1$.

3. If p > 1, then $\sum_{r=0}^{p-1} a^r \ge \sum_{r=0}^{2-1} a^r = 1 + a \ge 2$.

Since $a^p - 1$ is prime, the only prime factor for $a^p - 1$ has to be $\sum_{r=0}^{p-1} a^r$, implying that $a - 1 = 1 \Rightarrow a = 2$.

Hence if $a^p - 1$ is prime, then a = 2 or p = 1.

7. Show that if $2^p - 1$ is prime, then p is prime.

Proof. Note that

$$2^p - 1 = \sum_{k=0}^{p-1} 2^k.$$

Suppose p is not prime, giving the fact that there exists some integers $p_1, p_2 \ge 2$ such that $p = p_1p_2$. Then

$$2^{p} - 1 = \sum_{k=0}^{p-1} 2^{k}$$

$$= \sum_{k=0 \cdot p_{1}}^{1 \cdot p_{1} - 1} 2^{k} + \sum_{k=1 \cdot p_{1}}^{2 \cdot p_{1} - 1} 2^{k} + \dots + \sum_{k=(p_{2} - 2)p_{1}}^{(p_{2} - 1)p_{1} - 1} 2^{k} + \sum_{k=(p_{2} - 1)p_{1}}^{p_{2} - 1} 2^{k}$$

$$= (2^{p_{1}})^{0} \sum_{k=0}^{p_{1} - 1} 2^{k} + (2^{p_{1}})^{1} \sum_{k=0}^{p_{1} - 1} 2^{k} + \dots + (2^{p_{1}})^{p_{2} - 2} \sum_{k=0}^{p_{1} - 1} 2^{k} + (2^{p_{1}})^{p_{2} - 1} \sum_{k=0}^{p_{1} - 1} 2^{k}$$

$$= \left[\sum_{k=0}^{p_{2} - 1} (2^{p_{1}})^{k}\right] \left[\sum_{k=0}^{p_{1} - 1} 2^{k}\right]$$

which $2^p - 1$ is clearly not prime. Hence if $2^p - 1$ is prime, then p is also prime.

8. Show that if a is a positive integer and $a^m + 1$ is an odd prime, then $m = 2^n$ for some nonnegative integer n.

Proof. Suppose that $a^m + 1$ is prime and $m \neq 2^n$ for any integer n. Then m can be expressed as m = rs, where $1 \leq r, s < m$, and s is odd.

Note that for any $l \in \mathbb{Z}^+$,

$$(x-y) \mid (x^l-y^l).$$

Put $x = a^r$ and y = -1. then

$$(a^{r}-1) \mid [(a^{r})^{s}-(-1)^{s}]$$

$$\Rightarrow (a^{r}-1) \mid (a^{rs}+1)$$

$$\Rightarrow (a^{r}-1) \mid (a^{m}+1).$$

Hence if $m \le 2^n$, $a^m + 1$ is clearly not prime; thus if $a^m + 1$ is prime then $m = 2^n$ for some nonnegative integer n.

9. Show that if a and b are positive integers and if $a^3 \mid b^2$, then $a \mid b$.

Let

$$a = p_1^{a_1} p_2^{a_2} \times \dots \times p_{n-1}^{a_{n-1}} p_n^{a_n}$$
$$b = p_1^{b_1} p_2^{b_2} \times \dots \times p_{n-1}^{b_{n-1}} p_n^{b_n}.$$

where $a_i, b_i \in \mathbb{Z}^+ \cup \{0\}$ and p_i is prime for $1 \le i \le n$.

Then if $a^3 \mid b^2$, it is clear that

Since p_1, p_2, \dots, p_n are primes,

$$3a_i \le 2b_i$$

 $\Rightarrow a_i \le b_i$ for all $1 \le i \le n$.

Hence

$$(p_1^{a_1}p_2^{a_2} \times \dots \times p_{n-1}^{a_{n-1}}p_n^{a_n}) \mid (p_1^{b_1}p_2^{b_2} \times \dots \times p_{n-1}^{b_{n-1}}p_n^{b_n})$$

$$\Rightarrow a \mid b.$$

10. Find all integer solutions of the following system of Diophantine equations:

$$\begin{cases} x + y + z = 100 \\ x + 8y + 50z = 156 \end{cases}$$

Subtracting the first equation from the second equation, we get

$$7y + 49z = 56 \Rightarrow y + 7z = 8$$
.

Then the arbitary solution for y and z is given by $y_0 = 1$, $x_0 = 1$, and the general solution exists as

$${y,z} = {y_0 + \frac{7}{(1,7)}t, z_0 - \frac{1}{(1,7)}t} = {1+7t, 1-t}$$

for any integer t.

Given the fact that y + z = (1 + 7t) + (1 - t) = 2 + 6t,

$$x + (y + z) = 100 \Rightarrow x + 2 + 6t = 100 \Rightarrow x + 6t = 98.$$

Then the arbitary solution for x and t is given by $x_0 = 98$, $t_0 = 0$, and the general solution exists as

$$\{x,t\} = \left\{x_0 + \frac{6}{(1,6)}u, t_0 + \frac{1}{(1,6)}u\right\} = \{98 + 6u, -u\}$$

for any integer u.

Thus the general solution for $\{x, y, z\}$ is

$$\{x, y, z\} = \{98 + 6u, 1 + 7t, 1 - t\}$$
$$= \{98 + 6u, 1 - 7u, 1 + u\}$$

for any integer u.

11. What is the smallest positive rational number that can be expressed in the form of $\frac{x}{30} + \frac{y}{36}$ with integers x and y?

Note that $\frac{x}{30} + \frac{y}{36} = \frac{6x + 5y}{180}$. Since (6, 5) = 1, there exists integer solution to equation 6x + 5y = 1, given that $1 \mid 1$.

Therefore the smallest positive rational number that can be expressed in the form of $\frac{x}{30} + \frac{y}{36}$ is $\frac{1}{180}$.

12. Let m_1, \dots, m_k be positive integers and $a, b \in \mathbb{Z}$. Show that $a \equiv b \pmod{m_i}$ for each i if and only if $a \equiv b \pmod{[m_1, \dots, m_k]}$.

Proof. By definition, if $a \equiv b \pmod{m}$, then $m \mid (a - b)$. Let $l = [m_1, \dots, m_k]$.

(⇒) If $a \equiv b \pmod{m_i}$ for all i, then $m_i \mid (a-b)$ for all i. Suppose $l \nmid (a-b)$. Then by the division algorithm, (a-b) = lp + q, where $p, q \in \mathbb{Z}$ and $1 \leq q < l$.

Suppose $a \equiv b \pmod{m_i}$ for each i. Then $m_i \mid (a-b) = (lp+q)$ for all i. Since $m_i \mid l$, $m_i \mid q$ for all i, which means that q is a common multiple of m_1, m_2, \dots, m_k , but the fact that the LCM of m_1, m_2, \dots, m_k is l and $1 \leq q < l$ leads to contradiction. Thus if $a \equiv b \pmod{m_i}$ for each i, then $a \equiv b \pmod{m_1, \dots, m_k}$.

(\Leftarrow) If $a \equiv b \pmod{l}$, then $l \mid (a-b)$. Since $m_i \mid l$ for all i, $m_i \mid (a-b)$ for all i. Thus if $a \equiv b \pmod{[m_1, \dots, m_k]}$, then $a \equiv b \pmod{m_i}$ for each i.