CS F364
Design & Analysis of Algorithms

Online Problems and Online Algorithms

Online Paging Problem:

- Definition
- Performance Parameter
- Optimal Offline Algorithm

Paging Problem

- Consider a 2 level memory hierarchy in a computer system
 - a fast therefore expensive therefore small memory M₀
 - ◆ a slow therefore inexpensive therefore large memory M₁
- Assume that each level is divided into units of exchange known as pages
 - Let M₀ have k pages and M₁ have at least k+1 pages
- ❖ When a page is to be used by the processor, it is brought in from M₁ to M₀ if it is not already available
 - ◆ If no free slot is available in M₀ then one of the existing pages have to be replaced

Online Paging Problem

- The page to be replaced is decided by a page replacement algorithm.
- The replacement problem is an online problem because
 - the inputs i.e. the requested pages are not known beforehand
- Typical (online) algorithms are:
 - + FIFO
 - replace the page that arrived the earliest
 - LFU
 - replace the page that has been used the least (since its arrival)
 - + LRU
 - replace the page that has not been used for the longest time

Paging Algorithms

- Typical performance parameters for paging algorithms include
 - Time complexity
 - time taken to make a decision
 - Space complexity
 - space used for meta data that is required for making a decision
 - Miss rate
 - the number of times a request for a page is not found in M₀ (i.e. is missed and therefore has to be brought in from M₁)
- We will analyze miss rates of paging algorithms

Paging Algorithms - Miss Rates

- * Given a sequence of page requests $\rho = \rho_0$, ρ_1 , ... ρ_n denote
 - the worst case number of misses by a specific paging algorithm A as $f_A(\rho)$ and
 - the worst case number of misses by an optimal offline algorithm as f_{OPT}(ρ)
- The following is an optimal offline paging algorithm based on greedy choice
 - GreedyPaging:
 - Given an input sequence ρ_0 , ρ_1 , ... ρ_n
 - on a miss replace the page whose next occurrence is farthest in the sequence
 - i.e. distance between the index of the current request and the index of occurrence of the page to be replaced is maximum

Paging Algorithm - Miss Rates

- Assumptions:
 - We will study the steady-state performance i.e. cold misses are not counted
 - Why is this a reasonable assumption?
 - We will assume that the size of M_1 is k+1 where k >= 2 is the size of M_0
 - Why is this a reasonable assumption?
- Greedy Paging Lemma:
 - GreedyPaging is optimal and $f_{OPT}([\rho_0, \rho_1, \dots, \rho_n]) = n / k$
 - Proof:
 - On a miss, the page to be replaced is the one that is farthest in the sequence (from the current request)
 - i.e. in the worst case at least k requests can be handled before a replacement is required;
 - so, one of every k requests will be a miss in the worst case.

Paging Algorithms - Miss Rates - RECALL

- Given a sequence of page requests $\rho = \rho_0$, ρ_1 , ... ρ_n denote
 - the worst case number of misses by a specific paging algorithm A as $f_A(\rho)$ and
 - that by an optimal offline algorithm as f_{OPT}(ρ)
- An offline paging algorithm (GreedyPaging):
 - Given an input sequence ρ_0 , ρ_1 , ... ρ_n
 - on a miss replace the page whose next occurrence is farthest in the sequence
- Steady-State Performance Assumption: Cold misses are not counted
- Greedy Paging Lemma:
 - GreedyPaging is optimal and $f_{OPT}([\rho_0, \rho_1, ..., \rho_n]) = n / k$