Malware Detection

The goal of this project was to develop machine learning models for binary classification to detect malware. The dataset contained various features extracted from executable files, such as size, entropy, and characteristics. The task was to distinguish between legitimate and malware files based on these features.

Data Preparation and Exploration: The dataset was first loaded using pandas (a software library in Python that simplifies data manipulation and analysis by providing easy-to-use data structures and tools), and initial exploration revealed that it contained 57 columns. Features like 'Name' and 'md5' were dropped since they were not relevant to the classification task. No missing data was found in the dataset, and all columns were numeric, eliminating the need for categorical encoding.

Feature Scaling and Correlation Analysis: Z-score normalization was applied to standardize the data, ensuring all features contributed equally to the models. A correlation matrix was computed to identify highly correlated features, which could impact models like logistic regression that assume feature independence.

Dimensionality Reduction using PCA: Given the high dimensionality (54 features), Principal Component Analysis (PCA) was employed to reduce the feature space while retaining 95% of the variance. This reduced the features to about 36 principal components, which were then used for modeling.

Modeling: Several machine learning algorithms were implemented and evaluated on the preprocessed dataset:

Evaluation Metrics:

Model	Accuracy	Precision	Recall	F1 Score	Cross Val Mean
Logistic Regression	97.87%	96.98%	95.9%	96.4%	97.3%
Random Forest	99.5%	99.15%	99.3%	99.2%	98.4%
Decision Tree	99.2%	98.6%	98.9%	98.7%	97.3%
Artificial	98.9%	N/A	N/A	N/A	N/A
Neural					
Network					
Support	98.8%	97.9 %	98.08 %	98.03%	98.3%
Vector					
Machine					
Gradient	99.02 %	98.49%	98.25 %	98.37%	98.6%
Boost					
Gaussian	52.01%	38.34%	99.8%	55.4%	50.7%
Naive Bayes					

Model | Training Time (seconds)

Logistic Regression	0.301832	
Random Forest	19.356451	
Decision Tree	2.038171	
Artificial Neural Network	63.904171	
Support Vector Machine	75.327707	
Gradient Boost	37.903147	
Gaussian Naive Bayes	0.108968	

Conclusion: All models performed well in malware classification, with Random Forest achieving the highest accuracy. PCA reduced computational load without losing predictive power. Both SVM and ANN, though resource-intensive, delivered competitive accuracy. This project effectively applied ML to detect malware from executable file features, proving algorithm effectiveness in a real world cybersecurity application.