ÁNH XẠ TUYẾN TÍNH

Bài 1. Kí hiệu $P_n[x]$ là không gian véc tơ các đa thức với hệ số thực có bậc không vượt quá n. Cho toán tử tuyến tính $f: P_n[x] \to P_n[x]$ được xác định bởi

$$f(x^k) = 1 + x + x^2 + \dots + x^k,$$

trong đó $k = 0, 1, 2, \dots, n$.

- a) Tìm ma trận A của f theo cơ sở $B = \{1, x, x^2, \dots, x^n\}$ của $P_n[x]$.
- b) Chứng minh rằng không tồn tại một cơ sở S của $P_n[x]$ để ma trận của f theo cơ sở S là một ma trận chéo.

Bài 2. Trong không gian vec tơ V, cho v_1, v_2, \ldots, v_n là các vec tơ khác vec tơ 0. Giả sử $f: V \to V$ là một ánh xạ tuyến tính trên không gian vec tơ V sao cho

$$f(v_1) = v_1, f(v_i) = v_i + v_{i-1}$$
 với mọi $i = 2, 3, ..., n$.

Chứng minh rằng hệ vec tơ $\{v_1, v_2, \dots, v_n\}$ độc lập tuyến tính.

Bài 3. Cho $f: V \to V$ là một toán tử tuyến tính của không gian vec tơ n chiều V. Giả sử tồn tại các véc tơ v_1, v_2, \ldots, v_n khác vec tơ 0 trong V thỏa mãn

$$f(v_i) = v_i + v_{i+1}$$
 với mọi $i = 1, 2, ..., n-1; f(v_n) = v_n.$

Chứng minh rằng f là một đẳng cấu tuyến tính.

Bài 4. Ký hiệu $\mathbb{R}[X]_{2023}$ là \mathbb{R} -không gian vectơ các đa thức một biến với bậc nhỏ hơn hoặc bằng 2023. Cho f là ánh xạ đặt tương ứng mỗi đa thức với đạo hàm cấp hai của nó:

$$f: \mathbb{R}[X]_{2023} \to \mathbb{R}[X]_{2023}, f(p(X)) = p''(X).$$

Đặt $g = \underbrace{f \circ f \circ \ldots \circ f}_{870 \; \text{làn}}$ là ánh xạ hợp của 870 lần ánh xạ f.

- a) Chứng minh rằng g là một ánh xạ tuyến tính từ $\mathbb{R}[X]_{2023}$ vào chính nó.
- b) Tìm số chiều và một cơ sở của không gian ảnh Im(g) và của không gian hạt nhân Ker(g).

Bài 5. Ký hiệu $\mathbb{R}[x]_n$ là không gian véc tơ các đa thức có bậc nhỏ hơn hoặc bằng n. Cho ánh xạ tuyến tính $\Phi : \mathbb{R}[x]_n \to \mathbb{R}[x]_n$ xác định bởi

$$\Phi(x^k) = \begin{cases} -x^{k+1} & \text{n\'eu } 0 \le k \le n-1 \\ 1 & \text{n\'eu } k = n \end{cases}$$

1

- a) Viết ma trận A của Φ trong cơ sở chính tắc của $\mathbb{R}[x]_n$.
- b) Tìm Φ^{n+1} .
- c) Tính $\det(A+I)$ và $\det(I-A+A^2-\ldots+(-1)^nA^n)$.

Bài 6. Cho α là một số thực khác 0 và giả sử $F,G:\mathbb{R}^n\to\mathbb{R}^n$ là các ánh xạ tuyến tính thỏa mãn $F\circ G-G\circ F=\alpha F$. Chứng minh rằng:

- a) $F^k \circ G G \circ F^k = \alpha k F^k, \forall k \in \mathbb{N};$
- b) tồn tại $k \in \mathbb{N}$ sao cho $F^k = 0$.
- **Bài 7.** Cho A, B là hai ma trận thực vuông cấp n thỏa mãn AB BA = A. Tính $\operatorname{tr}(A^{2024})$.
- **Bài 8.** Cho ánh xạ tuyến tính $f: \mathcal{M}_n \to \mathbb{R}$.
 - a) Chứng minh rằng tồn tại duy nhất ma trận $C \in \mathcal{M}_n$ sao cho $f(A) = \operatorname{tr}(AC) \, \forall A \in \mathcal{M}_n$.
 - b) Giả sử $f(AB) = f(BA) \ \forall A \in \mathcal{M}_n$. Chứng minh rằng tồn tại $\lambda \in \mathbb{R}$ sao cho

$$f(A) = \lambda \operatorname{tr}(A).$$

Bài 9. Kí hiệu $\mathcal{M}_3(\mathbb{R})$ là không gian các ma trận thực vuông cấp 3. Cho ma trận

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Xét phép biến đổi tuyến tính $L: \mathcal{M}_3(\mathbb{R}) \to \mathcal{M}_3(\mathbb{R})$ xác định bởi $L(X) = \frac{1}{2}(AX + XA)$. Tính định thức của L.