de L'S lechue

MLE

Discrete probability X-R.V. $V \in \Omega$ $V \in \Omega$ V

spechastic - Markou Chains

1)
$$\chi_0 = \chi_0 \in IR(10,13)$$

 $\chi_0 = O(7)$

2)
$$X_1 = X_2 = I(H)$$

3) $X_2 = X_2 = I(H)$

$$\int \left(\frac{1}{X_{n+1}} = \frac{1}{X_{n+1}} \frac{1}{X_{n}} = \frac{1}{X_{n}} \frac{1}{X$$

$$P(X_3=0|X_6=0)$$

$$= 0,6 \times 1$$

$$X_1=0$$

MDP= Markov Decision Process

n con be either "T" or "H" HH) H but n-1 cannot be changed on the fransition

Problem: bet for fossing a coin

Xo-inidial budget

Termine Ling states 50

(9/1,2/...,10/...,15)

Xn+1 = Xn ±1.

P(X, = N) = 1

To reach N from k we need to have N-k

SL = 1 A, B, C, P 1 M=(3A,B3)=2

M(1B, C, D4) = 3