1 Задачи

Задача 1.1. Найдите группу Галуа $x^3 - x - 1$ над $\mathbb{Q}(\sqrt{-23})$.

Доказательство. $\sqrt{D} \notin \mathbb{Q}$ ($D = -4c^3 - 27d^2 = -23$, $\sqrt{D} = \sqrt{-23}$). Поскольку $D \in \mathbb{Q}$, то $\mathbb{Q}(\sqrt{D})/\mathbb{Q}$ является расширением степени 2. Рассмотрим $\mathbb{Q} \subset \mathbb{Q}(\sqrt{D}) \subset \mathbb{Q}\left(\sqrt{D}, c_1\right)$, где c_1 — корень f. Заметим что $c_1 \in \mathbb{Q}(\sqrt{D})$ не правда, так как c_1 — элемент степени 3. Следовательно, $\mathbb{Q}\left(\sqrt{D}, c_1\right)$ является расширением \mathbb{Q} степени 6. Поскольку группа Галуа неприводимого многочлена является подгруппой группы перестановок на ее корнях, то $\mathrm{Gal}(f) \subseteq S_3$. Это сужает степень поля разложения максимум до 6, откуда $\mathbb{Q}\left(\sqrt{D}, c_1\right)$ — поле расщепления f, чья группа Галуа обязательно изоморфна S_3 .

Над $\mathbb{Q}(\sqrt{-23})$ поле разложения имеет степень расширения 3, то есть искомая группа - это подгруппа S_3 из 3 элементов, следовательно искомая группа A_3

Задача 1.2. Пусть f(x) - многочлен степени n>2 над \mathbb{Q}, K - его поле разложения. Докажите, что если $\mathrm{Gal}(K/\mathbb{Q})\cong S_n$ и α - корень f(x), то поле $\mathbb{Q}(\alpha)$ не имеет нетривиальных автоморфизмов.

Доказательство. Докажем что в $\mathbb{Q}(\alpha)$ нет корней f кроме α . Предположим противное – пусть $\beta \in \mathbb{Q}(\alpha)$. Тогда все автоморфизмы поля разложения K, обладающие свойством $\varphi(\alpha) = \alpha$ должны переводить β в себя $\varphi(\beta) = \beta$. По условию $\mathrm{Gal}(K/\mathbb{Q})$ изоморфно S_n , то есть всегда найдется перестановка, которая оставляет на месте α и перемещает β . Получаем противоречие, следовательно из корней в $\mathbb{Q}(\alpha)$ лежит только α .

Любой автоморфизм $\mathbb{Q}(\alpha)$ переводит α в корень (в силу S_n), φ тривиален $\Leftrightarrow \varphi(\alpha) = \alpha$. Таким образом все автоморфизмы тривиальны.

Задача 1.3. Пусть $E\subset \mathbb{C}$ - максимальное по включению подполе, не содержащее $\sqrt{2+\sqrt{3}}$. Докажите, что если F - конечное расширение E, то F/E - расширение Галуа и $G=\mathrm{Gal}(F/E)$ - циклическая группа. Указание: Как устроены максимальные собственные подгруппы в G?

Доказательство. $\operatorname{Gal}(F/E)$ содержит некоторый элемент A, который не действует тождественно на $\sqrt{2+\sqrt{3}}$: $A(\sqrt{2+\sqrt{3}}) \neq \sqrt{2+\sqrt{3}}$. Тогда поле, которое при действии A остается на месте, является расширением E и не содержит $\sqrt{2+\sqrt{3}} \Rightarrow$ совпадает с E. Рассмотрим силовскую 2-подгруппу G^* и группу обратных элементов этой подгруппы, – это расширение E, не содержащее $\sqrt{2+\sqrt{3}}$. Из максимальности следует, что такая группа совпадает с $E \Rightarrow G$ - силовская 2-подгруппа. Пусть $G' = \operatorname{Gal}(F/E[\sqrt{2+\sqrt{3}}]), \ E[\sqrt{2+\sqrt{3}}]$ содержится во всех конечных расширениях E, откуда G' - единственная максимальная подгруппа G.

2-группа с единственной максимальной подгруппой G' абелева и циклическая (так как любая конечная группа с 1 максимальной подгруппой циклическая). То есть группа Галуа циклическая \Rightarrow все подгруппы нормальные \Rightarrow все подрасширения - расширения Галуа

Задача 1.4. Какова степень поля разложения $x^{10} - 5$ над \mathbb{Q} ?

Доказательство. Корни $x^{10}-5=0$: $x=5^{\frac{1}{10}}\cdot e^{\frac{\pi ik}{5}}$ Степени расширения $[Q(5^{\frac{1}{10}}),Q]$: $10,[Q(e^{\frac{\pi ik}{5}}),Q]$: 4, то есть степень поля разложения кратна 20.

Рассмотрим $Q(5^{\frac{1}{2}})$ - данное поле является подрасширением для $Q(5^{\frac{1}{10}})$ и $Q(e^{\frac{\pi i k}{5}})$, степени в данном случае 5 и 2, то есть расширение $Q(5^{\frac{1}{10}},e^{\frac{\pi i k}{5}})$ поля $Q(5^{\frac{1}{2}})$ имеет степень $5\cdot 2=10$, то есть над Q оно будет иметь степень расширения 20