1.

2.

- 3. (а) Давайте каждому пиру отдавать данные непрерывно со скоростью $\nu = \frac{u_s}{N}$. Так как $d_{\min} \geqslant \frac{u_s}{N}$, то все пиры будут успевать принимать все передаваемые данные. Тогда понятно, что каждый пир получит все данные за время $\frac{F}{\nu} = \frac{NF}{u_s}$, что и требовалось.
 - (b) Давайте каждому пиру отдавать данные со скоростью $\nu = d_{\min}$. Так как $d_{\min} \leqslant \frac{u_s}{N}$, то $Nd_{\min} \leqslant u_s$, то есть сервер сможет отдавать данные с такой скоростью. Кроме того, понятно, что все клиенты будут успевать принимать эти данные, поскольку мы взяли минимальную скорость загрузки среди всех пиров. Тогда каждый пир получит данные за время $\frac{F}{\nu} = \frac{F}{d_{\min}}$.
 - (c) Во-первых, заметим, что минимальное время не может быть меньше, чем $\max\left\{\frac{NF}{u_s}, \frac{F}{d_{\min}}\right\}$, поскольку в таком случае оно либо меньше, чем $\frac{NF}{u_s}$, либо меньше, чем $\frac{F}{d_{\min}}$, но такого не может быть: серверу нужно передать суммарно NF бит данных, при этом его скорость отдачи не превышает u_s , то есть он не может передать данные быстрее, чем за $\frac{NF}{u_s}$; также все клиенты должны данные получить, рассмотрим того, у которого скорость загрузки равна d_{\min} . Он должен получить F бит данных, так что он не сможет сделать это быстрее, чем за $\frac{F}{d_{\min}}$.

Хорошо, теперь докажем, что можно передать данные за время ровно $\max\left\{\frac{NF}{u_s}, \frac{F}{d_{\min}}\right\}$: рассмотрим два случая. Если $d_{\min} \geqslant \frac{u_s}{N}$, то по пункту (a) мы можем передать данные за время $\frac{NF}{u_s}$, но при условии $d_{\min} \geqslant \frac{u_s}{N}$ несложно видеть, что $\max\left\{\frac{NF}{u_s}, \frac{F}{d_{\min}}\right\} = \frac{NF}{u_s}$. Если же $d_{\min} \leqslant \frac{u_s}{N}$, то по пункту (б) мы знаем, что данные можно передать за время $\frac{F}{d_{\min}}$. Но при условии $d_{\min} \leqslant \frac{u_s}{N}$ выполнено $\max\left\{\frac{NF}{u_s}, \frac{F}{d_{\min}}\right\} = \frac{F}{d_{\min}}$. Тогда в обоих случаях мы научились передавать данные за время $\max\left\{\frac{NF}{u_s}, \frac{F}{d_{\min}}\right\}$, что и требовалось.