

(10 apply various text Cheek,

wort note

Testing of Hypothesis 1 To test the significance of an Observed correlation Coefficient.

1- Horrielata coeff n-> stre of scomple

(1) If nx30 apply t-text.

@ If n>30 apply z-test

3) If variance is given apply -> Frter

1) If single attribute is given - 1 way ANOUS

(for two factor) If given - 2 way Arrova

(B) for categorical lample -> Chil-square

Estimation

TR + 1.96 6

Student's t-test

OTO test the significance of the mean of a random Sample

$$t = \frac{(\overline{x} - \mu)}{S} \times \sqrt{n}, \quad S = \sqrt{\frac{E(x - \overline{x})^2}{(n - 1)^2}}$$

$$6 = \sqrt{\frac{E(x - \mu)^2}{n}}$$

Confidence Interval estimate (for a LOS)

one toutled test \[\times \frac{5}{\times \tau} \] \(\times \frac{5}{\times \tau} \]

2 Two test the difference blu mean Of two Samples (Independent Samples) $t = \frac{(\overline{\chi_1} - \overline{\chi_2})}{5} \sqrt{\frac{n_1 \chi n_2}{n_1 + n_2}}$ $S = \left| \frac{\mathcal{E}(\chi_1 - \overline{\chi_1})^2 + \mathcal{E}(\chi_2 - \overline{\chi_2})^2}{2} \right|$

(n1+n2-2)->v

Chi- Square test The Formula 22 = E(0-E)2

(source tobserved Freq, , EtExpected freq.

E= RTXCT N RT-> Row total CT -> column total N-Total no. of observar

V= (1-1)(6-1) -7 POF

@ 22 test for populato variance

$$\kappa^2 = \frac{6s^2}{S_p^2} \chi(n-1)$$
, $\sqrt{-n-1}$

65 -> sample variance 6,5 -> Popular Vantance

F- test Larger Estimate was lance $f = \frac{61^2}{62^2}$ or $f = \frac{51}{52^2}$

 $6^2 = \frac{E(\chi-\chi)^2}{\eta}$, $S^2 = \frac{E(\chi-\bar{\chi})^2}{\eta}$

DOF V1 (numerator)= N1-1 (longer variance) V2 (Denom.) = N2-1 (Smaller various)

one way ANOVA

Vontation	Sum of Square	Degree of freedom	mean square	F	
B/w the sample	550=	V1 = 0-1	$msc = \frac{ssc}{v_i}$	mse mse=	
custing the sample	SSE=	V2= n-c	msE = 53E V2	- NOL	

$$SSC = E(\bar{x}_{A} - \bar{\bar{x}})^{2} + (\bar{x}_{B} - \bar{\bar{x}})^{2} + \dots$$

$$SSE = E(A - \bar{x}_{A})^{2} + E(B - \bar{x}_{B})^{2} + \dots$$

Two way ANOVA

Source of variatry	Sum of Square	Dof	mean sum of square	Rarie of F
B/w the column	586=	V;=C-1	msc = ssc.	mse mse
Bleo Here Row	55R=	18=7-1	$MSR = \frac{SSR}{U2}$	msa mse
Residual (01)	SSE=	W=(2-1)X (4-1)	MSE = SSE	
7771	SST=	4; 12		

