

Géométrie dans l'espace 1

Spécialité Maths

Vecteurs de l'espace

- Mêmes propriétés que dans le plan (définition, somme, Chasles, produit, colinéarité, vecteur nul et opposé)
- \Rightarrow Mêmes règles de calcul que dans $\mathbb R$: somme associative/commutative, $\overrightarrow{0}$ neutre en addition, $-\overrightarrow{v}$ opposé de \overrightarrow{v} , distributivité...
- \Rightarrow \overrightarrow{v} est une combinaison linéaire de $(\overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_n})$ si $\overrightarrow{v} = (k_1\overrightarrow{u_1} + k_2\overrightarrow{u_2} + ... + k_n\overrightarrow{u_n})$

Coplanarité

Des points, des droites ou des vecteurs sont coplanaires s'ils sont inclus dans le même plan

- 4 points $\overrightarrow{A}, B, C, D$ de l'espace sont coplanaires \iff les vecteurs $\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}$ sont coplanaires.
- Soit les points A et $B\in\mathcal{P}$. Pour tout point $C\in\mathcal{P}$, la parallèle à (AB) passant par C est incluse dans \mathcal{P}

Plans de l'espace

• Le plan $\mathcal P$ passant par A et dirigé par les vecteurs non colinéaires \overrightarrow{u} et \overrightarrow{v} est l'ensemble des points M de l'espace tels que les vecteurs \overrightarrow{AM} , \overrightarrow{u} et \overrightarrow{v} soient coplanaires.

On a donc $M \in \mathcal{P} \iff \overrightarrow{AM} = a\overrightarrow{u} + b\overrightarrow{v}$.

 $(A;\overrightarrow{u};\overrightarrow{v}) = \text{repère de } \mathcal{P} \qquad \text{ et } \qquad (\overrightarrow{u};\overrightarrow{v}) = \text{base de } \mathcal{P}$

• A, B, C non alignés définissent un unique plan (ABC)

Projections orthogonales et distances

- Le projeté orthogonal de A sur la droite d est le point $H \in d$ tq la droite (AH) soit perpendiculaire à la droite d
- ullet Le projeté orthogonal de A sur le plan $\mathcal P$ est le point $H\in \mathcal P$ tq (AH) soit orthogonale au plan $\mathcal P$.

H = point de P le + proche de A. AH = distance de A à P

Colinéarité et droites

- \Leftrightarrow Comme dans le plan, $(AB)//(CD) \iff \overrightarrow{AB}$ et \overrightarrow{CD} sont colinéaires A, B et C sont alignés $\iff \overrightarrow{AB}$ et \overrightarrow{AC} sont colinéaires
- \Rightarrow Soit une droite d et $\overrightarrow{u} \neq \overrightarrow{0}$. \overrightarrow{u} est un vecteur directeur de $d \iff \exists (A;B) \in d$ tels que $\overrightarrow{u} = \overrightarrow{AB}$
- \Rightarrow Un vecteur \overrightarrow{v} est aussi directeur de $d \iff \overrightarrow{u}$ et \overrightarrow{v} sont colinéaires
- \Rightarrow Soit $A \in d$ $M \in d \iff \overrightarrow{AM} = k\overrightarrow{u}$ $d = (A, \overrightarrow{v})$

Produit scalaire

- Le produit scalaire dans l'espace possède les mêmes propriétés que celui dans le plan (méthodes de calcul, symétrie, bilinéarité, identités rq et de polarisation..)
- $\Rightarrow \overrightarrow{u} \perp \overrightarrow{v} \text{ (orthogonaux)} \iff \overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{0}$

Vecteur normal à un plan

Un vecteur non nul \overrightarrow{n} est normal \mathcal{P} si \overrightarrow{n} est orthogonal à tout vecteur de \mathcal{P} . \overrightarrow{n} est normal à $\mathcal{P} \iff \overrightarrow{n}$ est orthogonal à 2 vecteurs d'une base de \mathcal{P} .

Soit un point A et un vecteur \overrightarrow{n} non nul de l'espace. L'ensemble des points M tels que $\overrightarrow{AM}.\overrightarrow{n}=0$ est le plan passant par A et de vecteur normal \overrightarrow{n} .

- La droite Δ dirigée par \overrightarrow{v} est parallèle à $\mathcal{P} \iff \overrightarrow{v} \perp \overrightarrow{n}$
- Δ est orthogonale à $\mathcal{P} \iff \overrightarrow{v} = k \overrightarrow{n}$ (colinéaires)
- 2 plans \mathcal{P} et \mathcal{P}' de vecteurs normaux \overrightarrow{n} et $\overrightarrow{n'}$ sont parallèles ou confondus $\iff \overrightarrow{n} = k\overrightarrow{n'}$ (colinéaires)
- $\mathcal{P} \perp \mathcal{P}'$ (perpendiculaires) $\iff \overrightarrow{n} \perp \overrightarrow{n'}$ (orthogonaux)

Orthogonalité de vecteurs et de droites

2 droites sont orthogonales:

si leurs vecteurs directeurs sont orthogonaux si leurs vecteurs normaux sont orthogonaux

- (1) Δ dirigée par \overrightarrow{u} est orthogonale au plan $\mathcal{P}: (\Delta \perp \mathcal{P})$
- $\iff \overrightarrow{u}$ est orthogonal à tt vecteur de \mathcal{P} $(\overrightarrow{u}$ normal à \mathcal{P})
- $\iff \Delta$ est orthogonale à toute droite de ${\mathcal P}$
- $\iff \Delta$ est orthogonale à deux droites sécantes de ${\mathcal P}$