Multiple Linear Regression Model Selection

William Brasic

The University of Arizona

Definition 1: Models with Quadratics

A linear regression model with quadratics is when the outcome variable is a squared function of at least one of the independent variables.

Example 1: Models with Quadratics

An example of a linear regression model with quadratics is given by

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i2}^2 + u_i.$$

Question 1

If $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i2}^2 u_i$, then what is the marginal impact of x_2 on y?

Question 1

If $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i2}^2 u_i$, then what is the marginal impact of x_2 on y?

Answer to Question 1

We take the derivative as usual, but it looks different now:

$$\frac{\partial y}{\partial x_2} = \beta_2 + 2\beta_3 x_2.$$

Question 2

When would a quadratic linear regression model be useful?

Question 2

When would a quadratic linear regression model be useful?

Answer to Question 2

When we think our outcome variable is initially an increasing function of a covariate, but after some point begins decreasing.

• Think about when a person's income is the outcome variable and their age is a covariate.

Property 1: Models with Quadratics

Suppose we estimate the impact of years of experience on wage and obtain the regression equation

$$\widehat{wage}_i = \widehat{\beta}_0 + \widehat{\beta}_1 exper_i + \widehat{\beta}_2 exper_i^2.$$

We would expect $\widehat{\beta}_2$ to be negative.

 The negative component accounts for experience having a diminishing effect on wage.

Question 3

Suppose we estimate the impact of years of experience on yearly income and obtain the regression equation

$$\widehat{income}_i = \widehat{\beta}_0 + \widehat{\beta}_1 exper_i + \widehat{\beta}_2 exper_i^2$$

= 30000 + 10000exper_i - 250exper_i^2.

- 1. What does this model predict someone with zero years of experience will make per year?
- 2. What is the effect of the first year of experience on yearly income?
- 3. What is the effect of the fifth year of experience on yearly income?

Answer to Question 3

$$\frac{\partial \widehat{income}}{\partial exper} = 10000 - 500exper.$$

- 1. When an individual has zero years of experience, the model predicts their yearly income is \$30,000.
- 2. The effect of the first year of experience on yearly income is an increase of 10000 - 500(1) = \$9,500
- 3. The effect of the fifth year of experience on yearly income is an increase of 10000 - 500(5) = \$7,500.

Question 4

Suppose we estimate the impact of years of experience on yearly income and obtain the regression equation

$$\widehat{income}_i = \widehat{\beta}_0 + \widehat{\beta}_1 exper_i + \widehat{\beta}_2 exper_i^2$$
$$= 30000 + 10000 exper_i - 250 exper_i^2$$

For what value of experience is yearly income predicted to be maximized?

Answer to Question 4

Use the first order condition!

$$\frac{\partial \widehat{wage}}{\partial exper} = 10000 - 500exper = 0 \iff 10000 = 500exper$$
$$\iff exper^* = 20.$$

Thus, the model predicts a person will maximize their yearly income with twenty years of experience.

Definition 2: Models with Interactions

A linear regression model with interactions is when the outcome variable is a function of the product of at least two covariates.

Example 2: Models with Interactions

An example of a linear regression model with interactions is given by

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + u_i$$
.

Question 5

If $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} u_i$, then what is the marginal impact of x_2 on y?

Question 5

If $y_i=\beta_0+\beta_1x_{i1}+\beta_2x_{i2}+\beta_3x_{i1}x_{i2}u_i$, then what is the marginal impact of x_2 on y?

Answer to Question 5

We take the derivative as usual, but it looks different now:

$$\frac{\partial y}{\partial x_2} = \beta_2 + \beta_3 x_1.$$

Question 6

When would a linear regression model with interactions be useful?

Question 6

When would a linear regression model with interactions be useful?

Answer to Question 6

When we think the effect of one covariate on our outcome depends on another covariate.

Property 2: Models with Interactions

Suppose we estimate the impact of the number of bedrooms a home has on its price and obtain the regression equation

$$\widehat{price}_i = \widehat{\beta}_0 + \widehat{\beta}_1 sqrft + \widehat{\beta}_2 bdrms + \widehat{\beta}_3 sqrft * bdrms.$$

- 1. $\hat{\beta}_3 > 0$ implies the estimated effect of additional bedrooms is larger for bigger homes.
- 2. $\hat{\beta}_3 < 0$ implies the estimated effect of additional bedrooms is smaller for bigger homes.

Question 7

Suppose we estimate the impact of the square footage of a home on its price and obtain the regression equation

$$\widehat{price}_i = 20000 + 250 sqrft + 20000 bdrms + 100 sqrft * bdrms.$$

What is the estimated effect of an additional square foot on the price of a home with four bedrooms?

Answer to Question 7

$$\frac{\partial income}{\partial exper} = 250 + 100bdrms$$

The effect of an additional square foot on the price of a four bedroom home is an increase in the homes price of 250 + 100(4) = \$650.

Average Partial Effects (APE)

Question 8

If we have the model $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1}^2 + u_i$, we know upon estimation we will be able to obtain

$$\frac{\partial \widehat{y}}{\partial x_1} = \widehat{\beta}_1 + 2\widehat{\beta}_3 x_1.$$

To get the estimated effect of x_1 on y, what should we use for x_1 ?

 In a model with quadratics, interactions, etc., this isn't an issue and we would simply get the estimated effect as β_1 .

Average Partial Effects (APE)

Definition 3: Average Partial Effects (APE)

The average partial effect (APE) of x_1 on y is given by:

- 1. Taking the derivative of y with respect to x_1
- 2. If an x_1 term still exists, enter its mean to obtain the APE
- Could we also use the median?

Average Partial Effects (APE)

Example 3: Average Partial Effects (APE)

Suppose we estimate the impact of years of experience on yearly income and obtain the regression equation

$$\begin{split} \widehat{income}_i &= \widehat{\beta}_0 + \widehat{\beta}_1 exper_i + \widehat{\beta}_2 exper_i^2 \\ &= 30000 + 10000 exper_i - 250 exper_i^2. \end{split}$$

If the average experience is ten years, then the APE of years of experience on yearly income is

$$\frac{\partial \widehat{income}}{\partial exper} \bigg|_{\overline{exper}} = 10000 - 500\overline{exper}$$
$$= 5000.$$

Nested Models

Example 4: Nested Models

The model

$$income_i = \beta_0 + \beta_1 exper_i + u_i$$

is nested within

$$income_i = \beta_0 + \beta_1 exper_i + \beta_2 age_i + \beta_3 educ_i + v_i$$

as the former contains a subset of the latter's covariates.

• We know we can use an F-test to choose between these models.

Non-Nested Models

Definition 4: Non-Nested models

Two models are non-nested when neither model is a special case of the other.

Example 5: Non-Nested models

The models

$$income_i = \beta_0 + \beta_1 age_i + \beta_2 exper_i + u_i$$

 $income_i = \beta_0 + \beta_1 age_i + \beta_2 educ_i + v_i$

are non-nested.

Can't use an F-test here so what do we do?

Non-Nested Models

Property 3: Non-Nested Models

To choose between two non-nested models, we can:

- 1. Estimate both and obtain their adjusted R-squared
- 2. Choose the model with the higher adjusted R-squared
- Recall that adjusted R-squared is a more robust version of the regular R-squared. Why?
- This is an example of a model selection technique
 - Model selection is critical in machine learning.

Thank You!