Introducción a Natural Language Processing

Modelos de Secuencia

Ronald Cárdenas Acosta

Setiembre, 2016

Outline

- Definición
- Notación
- Modelos de secuencia generativos
 - Hidden Markov Models
 - Estimación de Parámetros.
 - Inferencia de una secuencia.
- Modelos de Secuencia Discriminativos
 - Definición
 - Features o Características
- 6 Análisis de errores
- Aplicación: NER

Predicción Estructurada y Modelos de Secuencia

- Usados en escenarios de Predicción Estructurada, en el que el modelo inferirá una estructura determinada
- Las muestras pueden presentar dependencia espacial o temporal.
- Un modelo de secuencia modela una estructura (una cadena, árbol, etc).
- Estos modelos se usan muchas aplicaciones de NLP:
 - Tagging
 - Named Entity Recognition
 - Part-of-Speech Tagging
 - Shallow Parsing (Chunking)
 - Syntactic and Dependency Parsing
 - Machine Translation

Part-of-Speech Tagging

INPUT:

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.

- N: sustantivo
- V: verbo
- P: preposición
- Adv: adverbio
- Adj: adjetivo

Named Entity Recognition

Según informó el (Departamento)_{ORG} que dirige el consejero (Inaxio Oliveri)_{PER}, los representantes de la (Consejería)_{ORG} y de las universidades del (País Vasco)_{LOC}, (Deusto)_{ORG} y (Mondragón)_{ORG} estudiaron los nuevos retos de estos centros educativos.

PER: persona

ORG: organización/empresa

LOC: lugar

Notación

Sea el par de entrenamiento: $x^i, y^i = (x_1, ..., x_L), (y_1, ..., y_L)$

$V = w_1,, w_{ V }$	Vocabulario, o conjunto de variables obser-	
	vadas	
$S = s_1,, s_{ S }$	Conjunto de etiquetas a predecir, o estados	
L	Longitud de secuencia	
$x = x_1,x_L$	Secuencia de observaciones	
$y = y_1, y_L$	Secuencia de estados	

Outline

- Modelos de secuencia generativos
 - Hidden Markov Models
 - Estimación de Parámetros
 - Inferencia de una secuencia.
- - Definición
 - Features o Características

Hidden Markov Model

- Es un modelo generativo.
- Es uno de los modelos probabilísticos más comunes.
- Es un tipo especial de *Probabilistic Graphical Model*, con estructura lineal o secuencial
- Distingue las variables entre:
 - variables observadas ($x = x_1...x_L$) o observaciones
 - variables no observadas $(y = y_1...y_L)$ o estados
- Consideración importante: las observaciones son independientes dados los estados que las generaron.

Hidden Markov Model

Figure: Modelo gráfico de un HMM.

Hidden Markov Model: Formulación

Sea el par de entrenamiento $x = [x_1, ..., x_L], y = [y_1, ..., y_L]$

$$P(x_1,...,x_L,y_1,...,y_L) = \prod_{j=1}^L q(y_j|y_1,...,y_{j-1}) \cdot e(w_j|y_j)$$

Donde:

- $q(y_i|y_1,...y_{i-1})$: Probabilidad de transición de estado
- $e(w_i|y_i)$: Probabilidad de emisión de observación

Hidden Markov Model: Formulación

Para una cadena de Markov de primer grado (Bigram HMM):

$$P(x_1,...,x_L,y_1,...,y_L) = \prod_{j=1}^L q(y_j|y_{j-1}) \cdot e(w_j|y_j)$$

Consideraciones:

- El estado actual y_i solo depende del anterior y_{i-1} .
- La prob. de transición de un estado s_a a un estado s_b es independiente de la posición en la secuencia.

$$q(y_2 = s_a|y_1 = s_b) == q(y_5 = s_a|y_4 = s_b)$$

Outline

- Modelos de secuencia generativos
 - Hidden Markov Models
 - Estimación de Parámetros.
 - Inferencia de una secuencia.
- - Definición
 - Features o Características

HMM: Estimación de Parámetros

- Sea el conjunto de todos los parámetros θ
- El modelo HMM es entrenado para maximizar la probabilidad logaritmica de la data:

$$\underset{\theta}{\arg\max} \sum_{i=1}^{N} log P_{\theta}(X = x^{i}, Y = y^{i})$$
 (1)

HMM: Estimación de Parámetros

• Las probabilidades se aproximan por Maximum Likelihood Estimate, es decir, por cuentas.

$$q(s_{j}|s_{j-1}) = rac{count(s_{j-1}, s_{j})}{\sum_{k=1}^{|S|} count(s_{k}, s_{j})}$$
 $e(w_{j}|s_{j}) = rac{count(w_{j}, s_{j})}{\sum_{v=1}^{|V|} count(w_{v}, s_{j})}$

Outline

- Modelos de secuencia generativos
 - Hidden Markov Models
 - Estimación de Parámetros
 - Inferencia de una secuencia.
- - Definición
 - Features o Características

Inferencia de una secuencia

- Dada la secuencia de observación $x = x_1, ..., x_L$, se busca la secuencia ŷ óptima.
- La inferencia de una secuencia se conoce como decoding.
- Existen dos enfoques principales, ambos basados en programación dinámica.

Inferencia de una secuencia

Posterior Decoding o Minimum risk decoding

Para cada posición *i* de la secuencia

$$\hat{y}_j = \operatorname*{arg\,max}_{s \in S} P(y_j = s | x_1, ..., x_L)$$

- Minimiza la probabilidad de error para cada estado y_i , uno a la vez.
- No se garantiza que la secuencia final $\hat{y} = \hat{y_1}, ..., \hat{y_L}$ sea válida, es decir, puede haber una prob. de transición q igual a cero.
- Algoritmo conocido como Forward-Backward

Algoritmo Forward-backward

Algorithm 7 Forward-Backward algorithm

```
1: input: sequence x_1, \ldots, x_N, scores P_{\text{init}}, P_{\text{trans}}, P_{\text{final}}, P_{\text{emiss}}
2: Forward pass: Compute the forward probabilities
```

4: for
$$c_k \in \Lambda$$
 do

5: forward(1,
$$c_k$$
) = $P_{init}(c_k | start) \times P_{emiss}(x_1 | c_k)$

7: **for**
$$i = 2$$
 to N **do**

8: **for**
$$c_k \in \Lambda$$
 do

forward
$$(i, c_k) = \left(\sum_{c_l \in \Lambda} P_{\text{trans}}(c_k|c_l) \times \text{forward}(i-1, c_l)\right) \times P_{\text{emiss}}(x_i|c_k)$$

- end for
- 11: end for
- 12: Backward pass: Compute the backward probabilities
- 13: Initialization
- 14: for $c_1 \in \Lambda$ do
- $backward(N, c_l) = P_{final}(stop|c_l)$
- 16: end for
- 17: **for** i = N 1 **to** 1 **do**

18: backward
$$(i, c_l) = \sum_{c_k \in \Lambda} P_{\text{trans}}(c_k | c_l) \times \text{backward}(i + 1, c_k) \times P_{\text{emiss}}(x_{i+1} | c_k)$$

- 19: end for
- 20: **output:** The forward and backward probabilities.

Inferencia de una secuencia

Viberbi Decoding

Consiste en hallar la secuencia de estados globalmente óptima.

$$\hat{y} = \underset{y=y_1...y_L}{\text{arg max}} P(x = x_1, ..., x_L; y = y_1, ..., y_L)$$

Utiliza explícitamente las consideraciones de independencia del HMM. Algoritmo más utilizado en Predicción Estructurada en general.

Algoritmo de Viterbi

Algorithm 8 Viterbi algorithm

```
1: input: sequence x_1, \ldots, x_N, scores P_{\text{init}}, P_{\text{trans}}, P_{\text{final}}, P_{\text{emiss}}
  2: Forward pass: Compute the best paths for every end state
  3: Initialization
  4: for c<sub>k</sub> ∈ Λ do
          viterbi(1, c_k) = P_{init}(c_k|start) \times P_{emiss}(x_1|c_k)
 6: end for
 7: for i = 2 to N do
          for c_k \in \Lambda do
             \begin{aligned} & \text{viterbi}(i, c_k) = \left( \max_{c_l \in \Lambda} P_{\text{trans}}(c_k | c_l) \times \text{viterbi}(i-1, c_l) \right) \times P_{\text{emiss}}(x_i | c_k) \\ & \text{backtrack}(i, c_k) = \left( \underset{c_l \in \Lambda}{\text{arg max}} P_{\text{trans}}(c_k | c_l) \times \text{viterbi}(i-1, c_l) \right) \end{aligned}
10:
11:
          end for
12: end for
13: \max_{y \in \Lambda^N} P(X = x, Y = y) := \max_{c_l \in \Lambda} P_{\mathrm{final}}(\mathsf{stop}|c_l) \times \mathrm{viterbi}(N, c_l)
14:
15: Backward pass: backtrack to obtain the most likely path
16: \widehat{y}_N = \arg \max_{c_l \in \Lambda} P_{\text{final}}(\text{stop}|c_l) \times \text{viterbi}(N, c_l)
17: for i = N - 1 to 1 do
          \hat{y}_i = \text{backtrack}(i+1, \hat{y}_{i+1})
19: end for
20: output: the viterbi path \hat{y}.
```

Outline

- - Hidden Markov Models
 - Estimación de Parámetros
 - Inferencia de una secuencia.
- Modelos de Secuencia Discriminativos
 - Definición
 - Features o Características

Clasificadores Secuenciales Discriminativos

Se busca hallar la secuencia óptima \hat{y}

$$\begin{split} \hat{y} &= \underset{y_1, \dots, y_L}{\text{arg max}} \, P(y|x) \\ &= \underset{y_1, \dots, y_L}{\text{arg max}} \, w \cdot f(x, y) \\ &= \underset{y_1, \dots, y_L}{\text{arg max}} \sum_{j=1}^L w \cdot f_{trans}(j, x_j, y_j, y_{j-1}) + w \cdot f_{emis}(x_j, y_j) \end{split}$$

Donde:

$$P(y|x) = \frac{1}{Z(x,y)} exp(\sum_{j=1}^{L} w \cdot f_{trans}(j,x_{j},y_{j},y_{j-1}) + w \cdot f_{emis}(x_{j},y_{j}))$$

Z(x,y) es la función partición

Outline

- - Hidden Markov Models
 - Estimación de Parámetros
 - Inferencia de una secuencia.
- Modelos de Secuencia Discriminativos
 - Definición
 - Features o Características

Features Básicas

Las features o características binarias se pueden dividir en dos grupos, de manera que imiten los parámetros de un HMM:

$$f_{transicion}(j, x_j, y_j, y_{j-1}) \text{ y } f_{emision}(x_j, y_j)$$

Condición	Nombre	
$y_j = s_k \wedge j = 1$	Feature de transición inicial	
$y_j = s_k \wedge y_{j-1} = s_l$	Feature de transición	
$y_j = s_k \wedge j = L$	Feature de transición final	
$x_j = w_j \wedge y_j = s_k$	Feature de emisión	

Features Extendidas

Se pueden definir features que:

- capturen morfología de la palabra: sufijos y prefijos
- dependan arbitrariamente de la secuencia entera de observación (p.e. x_{i-1}, x_i, x_{i+1}
- Información ortográfica: primera letra mayúscula, todo mayúscula, etc
- capturen la semántica de la palabra (p.e. id del cluster al que pertenece)
- Entre muchas más.

Features Extendidas

Condición	Nombre
$y_j = s_k \wedge j = 1$	Feature de trans. inicial
$y_j = s_k \wedge y_{j-1} = s_l$	Feature de transición
$y_j = s_k \wedge j = L$	Feature de trans. final
$x_j = w_j \wedge y_j = s_k$	Feature de emisión
	básica
$x_j = w_j \wedge w_j[0:p] \forall p \in [1,2,3] \wedge y_j = s_k$	Feature prefijos
$x_j = w_j \wedge w_j [L - p : L] \forall p \in [1, 2, 3] \wedge y_j = s_k$	Feature sufijos
$x_j = w_j \wedge w_j$ es todo mayuscula $\wedge y_j = s_k$	Feature ortografica:
	mayúscula
$x_j = w_j \wedge w_j$ tiene un digito $\wedge y_j = s_k$	Feature ortografica: dig-
	itos

Matriz de transición (Bigram HMM)

- Permite visualizar la distribución de probabilidad de transición
- Solo aplicable a HMM de primer grado (bigramas).
- Cada columna es el estado previo.
- Cada fila es el estado actual

Matriz de transición (Bigram HMM)

Figure: Matriz de transición de un modelo entrenado de POS Tagging. Columnas son estado anterior; filas, estado actual.

Matriz de Confusión

Permite visualizar los errores de clasificación por clase.

Matriz de Confusión

Figure: Representación en barras. Cada barra corresponde a una clase predecida y sus componentes a las clases verdaderas.

Named Entity Recognition

- Entidad: grupo de palabras que nombran una persona, lugar, organización, una fecha, número telefónico, etc
- BIO-format / IOB-format:
 - B-PER: palabra inicial de entidad Persona
 - I-PER: palabra miembro de entidad Persona
 - O: la palabra no es ninguna entidad

Named Entity Recognition

Figure: Ejemplo de texto anotado en formato BIO con entidades Persona, Lugar, y nombre de Nave.