PARCIAL M.DISCRETA II-2022-TEMA B

Escribir su nombre en todas las hojas y numerarlas

(1) (5 puntos) Hallar un flujo maximal y un corte minimal en el siguiente network usando Dinic durante dos networks auxiliares y a partir de ahi Edmonds-Karp hasta llegar al flujo maximal. Calcular el valor del flujo maximal y la capacidad del corte minimal. (el valor de x que aparece 3 veces abajo es igual al número de las unidades de su DNI). Si tiene que hacer alguna elección entre opciones iguales, hagala por orden alfabetico.

sa:10	cq:2	hq:100
sc:10	cm:10	ik:11
sd: 6 + x	cn: 20	jk : 100
se:8	cp:14	kt: 45
sm:100	df:14	kb:10
af:2	dg:2	mh:100
ag:8	dp:4+x	nt: 20
ai:11	eg:15	pt:4+x
am:10	fo: 100	qr:100
an:10	gt:10	rn:100
bj:100	gm:10	ob: 100

(2) (2 puntos) Sea G un grafo con al menos un lado.

Supongamos que se le puede dar una dirección a cada lado, transformando G en un grafo dirigido \vec{G} de forma tal que no existan caminos dirigidos con 3 vertices. Es decir, que no existan vertices A,B,C tales que \vec{AB} y \vec{BC} sean lados en \vec{G} . (Notar que pueden existir caminos ***no dirigidos*** con una cantidad arbitraria de vértices).

Probar que G es bipartito, es decir $\chi(G) = 2$.

(3) Sea G el grafo con vertices {p, q, r} ∪ {x_i, y_i, z_i, u_i}⁴_{i=0} y lista de vecinos:

$$\Gamma(p) = \{y_i\}_{i=0}^4 \cup \{u_i\}_{i=0}^4 \quad \Gamma(q) = \{y_i\}_{i=0}^4 \cup \{r\} \quad \Gamma(r) = \{z_i\}_{i=0}^4 \cup \{u_i\}_{i=0}^4 \cup \{q\}$$
y para cada $i = 0, ..., 4$: (nota: los subindices son modulo 5, pej $x_{i+1} = x_0$ si $i = 4$)

$$\Gamma(x_i) = \{x_{i-1}, x_{i+1}, y_{i-1}, y_{i+1}, z_{i-1}, z_{i+1}, u_{i-1}, u_{i+1}\}$$

$$\Gamma(y_i) = \{x_{i-1}, x_{i+1}, z_{i-1}, z_{i+1}, p, q\}$$

$$\Gamma(z_i) = \{x_{i-1}, x_{i+1}, y_{i-1}, y_{i+1}, r\}$$

$$\Gamma(u_i) = \{x_{i-1}, x_{i+1}, p, r\}$$

Probar que $\chi(G) \geq 5$. (ADVERTENCIA: probar que $\chi(G) \leq 5$ tiene PUNTAJE NEGATIVO).