Exercise 9

Evgeniia Tokarchuk 383433 Petre Petrov 383349 Aman Gokrani 383477

June 2018

1

First of all, obtain the most frequent translation word by word (assume here direct alignment) using python.

```
at-voon { 'ok-voon ': 3}
bichat { 'ororok ': 2}
dat {'sprok': 5}
. {'.': 11, 'zanzanok': 1}
at-drubel {'ok-drubel': 1}
pippat { 'anok ': 2, 'drok ': 1}
rrat {'plok': 2}
totat {'erok': 1, 'wiwok': 2}
arrat {'izok': 2, 'crrrok': 1}
vat {'hihok': 2, 'izok': 1}
hilat {'ghirok': 1, 'clok': 1}
krat {'anok': 1, 'izok': 1}
sat {'brok': 1}
lat {'jok': 1, 'brok': 1}
jjat {'farok': 2}
quat {'izok': 2, 'jok': 1}
cat {'stok': 2}
wat {'lalok': 6}
eneat {'enemok': 1}
iat {'lalok': 1}
nnat { 'nok ': 3, 'mok': 1, 'rarok ': 1}
oloat {'kantok': 1}
at-yurp {'ok-yurp': 1}
gat {'nok': 1, 'mok': 1}
mat {'yorok': 1, 'hihok': 1}
bat {'ghirok': 1}
zanzanat {'yorok': 1}
forat {'nok': 1}
```

from this obtain initial vocabulary, assuming that words, which has only one translation and this translation was done more than once, it will be translation of this word. Also from statistics we can do some more conclusions: nnat will be translated to nok (because of highest rate of translations) and at-drubel \rightarrow ok-drubel, at-yurp \rightarrow ok-yurp by similarity.

Table 1: Initial vocabulary

Arcturian	Centauri
at-voon	ok-voon
bichat	ororok
dat	sprok
rrat	plok
jjat	farok
cat	stok
wat	lalok
nnat	nok
at-yurp	ok-yurp
at-drubei	ok-drubei

Now we can go step by step through sentences and find intersection among possible translations.

1. Sentence 2:

pippat \rightarrow anok (only one word not in the initial vocabulary, so translation obtained directly)

2. Sentence 3:

otat \rightarrow erok, izok, hihok,ghirok arrat \rightarrow erok, izok, hihok,ghirok vat \rightarrow erok, izok, hihok,ghirok hilat \rightarrow erok, izok, hihok,ghirok

3. Sentence 4:

 $\operatorname{krat} \to \operatorname{drok}$, brok, jok $\operatorname{sat} \to \operatorname{drok}$, brok, jok $\operatorname{lat} \to \operatorname{deok}$, brok, jok

4. Sentence 5:

 $totat \rightarrow wiwok \text{ or izok}$ quat $\rightarrow wiwok \text{ or izok}$

5. Sentence 6:

krat \rightarrow izok or jok: from sentence 4 and 6 krat = jok quat \rightarrow izok, jok: according to previous obtained translation quat=izok

6. Return back to sentence 4 because of new vocabulary sat – $\+ \+$ drok, brok

```
lat \rightarrow drok, brok
```

7. Sentence 7 vat \rightarrow izok, enemok: from sentence 2 and current sentece 7 vat=izok eneat \rightarrow izok, enemok: eneat=enemok (because of vat translation)

8. Update sentence 3 according new translations:

 $totat \rightarrow erok$, hihok, ghirok

 $\operatorname{arrat} \to \operatorname{erok}$, hihok, ghirok

 $hilat \rightarrow erok$, hihok, ghirok

9. Sentence 8:

iat \rightarrow lalok, brok

lat \rightarrow lalok, brok: from sentence 4 and current lat=brok ==; iat=lalok

10. Sentence 9:

totat \to wiwok, kantok: from sentence 5 and current totat=wiwiok oloat \to wiwok,kantok from previous ==; oloat=kantok

11. Sentence 10:

gat \rightarrow mok, yorok, ghirok, clok

 $\mathrm{mat} \to \mathrm{mok}$, yorok, ghirok, clok

 $\mathrm{bat} \to \mathrm{mok}$, yorok, ghirok, clok

hilat → mok, yorok, ghirok, clok: from sentence 3 by intersection hilat=ghirok

12. Update sentence 3 with according new vocab:

totat \rightarrow erok, hihok

 $\operatorname{arrat} \to \operatorname{erok}$, hihok

13. Sentence 11:

arrat \rightarrow crrrok, hihok, yorok, zanzanok: from sentence 3 arrat=hihok == $\[\vdots \]$ totat=erok

 $\mathrm{mat} \to \mathrm{crrrok},\, \mathrm{yorok},\, \mathrm{zanzanok} \,\, (\mathrm{sent} \,\, 10$ - $\mathrm{yorok})$

 $zanzanat \rightarrow crrrok$, yorok, zanzanok

14. Sentence 12:

for at \rightarrow rarok, mok

gat \rightarrow rarok, mok: From sentence 10 gat=mok ==; forat=rarok

15. Update sentence 10:

bat = clock

16. Last translation

zanzanat → crrrok, zanzanok (by posotion assign zananat=zanzanok)

From this produce final vocabulary:

Table 2: Final vocabulary

Table 2: Final vocabulary	
Arcturian	Centauri
at-voon	ok-voon
bichat	ororok
dat	sprok
rrat	plok
jjat	farok
cat	stok
wat	lalok
nnat	nok
at-yurp	ok-yurp
at-drubel	ok-drubel
pippat	anok
krat	jok
quat	izok
lat	brok
iat	lalok
vat	izok
eneat	enemok
totat	wiwok, erok
oloat	kantok
hilat	ghirok
arrat	hihok
mat	yorok
gat	mok
forat	rarok
bat	clock
zanzanat	zanzamok

Translation according the vocabulary:

- direct: lalok brok anok enemok ghirok kantok ok-yurp
 There is no bigrams (enemok, ghirok) and (ghirok, kantok) =; change the
 order of enemok and ghirok
 Result: lalok brok anok ghirok enemok kantok ok-yurp
- 2. direct: wiwok/erok nok rarok hihok yorok clock From bigrams result: wiwok rarok nok hihok yorok clock
- 3. direct: lalok sprok izok stok ___ ok-drubel The missing word obtained from bigrams: vok Result: lalok sprok izok stok vok ok-drubel

2

The error rates implemented in error_rates.py python file.

With punctuation (average error rate):

WER: 0.4778153295397505 PER: 0.4497648514271587

Without punctuation (average error rate):

WER: 0.5142105431874499 PRE: 0.4487520419983171

3

(a)

IBM Model 2 addresses the issue of alignment with an explicit model for alignment based on the positions of the input and output words. The translation of a foreign input word in position i to an English word in position j is modeled by an alignment probability distribution

(b)

(c)

Add fertility model. Fertility of input words is modeled directly with a probability distribution $p(\phi|f)$.

For each foreign word f, this probability distribution indicates how many $\phi=0,1,2,\dots$ output words it usually translates to.

(d)

In IBM Model 4, each word is dependent on the previously aligned word and on the word classes of the surrounding words. That means that some words trigger reordering and creates a condition for how the reordering should be made