Algorytmy Numeryczne 3

Ignacy Mróz, 292534

$19~\mathrm{maja}~2025$

Spis treści

1	Wstęp				
2	$\mathbf{Z}1$	2			
3	$\mathbf{Z}2$	3			
	3.1 Dane wejściowe	3			
	3.2 Wyniki	3			
	3.3 Wartości rozwiązania na osi X (dla y=0)	3			
	3.4 Wartości rozwiązania na osi Y (dla x=0)	4			
		4			
	3.6 Zastosowane techniki stabilizacji numerycznej	4			
4	$\mathbf{Z3}$	5			
	4.1 Opis metody i interpretacja wyników	5			
5	Alternatywna funkcja brzegowa $x^2 - y^2$				
6	Alternatywna funkcja brzegowa $e^x sin(y)$				
7	7 Alternatywna funkcja brzegowa $f(x,y) = \frac{x(x^2 - 3y^2)}{(x^2 + y^2)^2}$				

1 Wstęp

W tym sprawozdaniu opisano, jak za pomocą metody różnic skończonych wyznaczyliśmy przybliżone rozwiązanie równania Laplace'a w kole jednostkowym. Najpierw zbudowaliśmy i rozwiązaliśmy układ równań liniowych metodą eliminacji Gaussa, uzyskując wartości funkcji w węzłach siatki. Potem dla przekrojów wzdłuż osi OX i OY zastosowaliśmy interpolację trzeciostopniowymi splajnami, aby wygładzić i oszacować wartości między węzłami. Na koniec przetestowaliśmy działanie programu na trzech przykładach funkcji spełniajacych równanie Laplace'a.

2 Z1

Statystyki układu równań liniowych (N=15)

• Liczba równań: 172

• Rozmiar siatki: h = 0.1333

• Liczba punktów wewnętrznych: 172

• Liczba niezerowych współczynników: 804

Przykładowe wiersze macierzy współczynników A (pierwsze 10):

```
0
-4
      1
                  0
                        0
                             0
                                   0
                                         0
                                                     1
 1
     -4
            1
                  0
                        0
                             0
                                   0
                                         0
                                               0
                                                     0
                                                         . . .
 0
      1
           -4
                  1
                        0
                             0
                                               0
                                   0
                                         0
                                                     0
                                                         . . .
 0
      0
            1
                -4
                             0
                        1
                                   0
                                         0
                                               0
                                                     0
 0
      0
                      -4
            0
                  1
                             1
                                   0
                                         0
                                               0
                                                     0
      0
                            -4
 0
            0
                  0
                        1
                                   1
                                         0
                                               0
                                                     0
                        0
                                  -4
 0
      0
            0
                  0
                             1
                                         1
                                               0
                                                     0
 0
      0
            0
                  0
                        0
                                   1
                                               0
                             0
                                        -4
                                                     0
 0
      0
            0
                  0
                        0
                             0
                                   0
                                         0
                                             -4
                                                     1
                                                         . . .
 1
      0
            0
                  0
                        0
                             0
                                   0
                                               1
                                         0
                                                   -4
```

Przykładowe wartości wektora prawej strony b (pierwsze 10):

```
0.1966
```

0.4442

0.7806

0.9746

0.9746

0.7806

0.4442

0.1966

0.1853

0.0000

3 Z2

3.1 Dane wejściowe

Algorytm został przetestowany dla układu równań o następujących parametrach:

• Parametr siatki: N = 15

• Rozmiar układu równań: 172 równania

• Krok siatki: h = 2/N = 0.13333

• Liczba niezerowych współczynników: 804

3.2 Wyniki

Poniższe tabele przedstawiają wartości rozwiązania numerycznego równania Laplace'a w kole jednostkowym przy zadanym warunku brzegowym $f(x,y)=x^2-y^2$. Rozwiązanie uzyskano trzystopniową metodą:

- 1. Przygotowanie układu równań liniowych metodą różnic skończonych na siatce o rozmiarze N=15
- 2. Rozwiązanie układu równań metodą eliminacji Gaussa z częściowym wyborem elementu głównego
- 3. Interpolacja wyników za pomocą funkcji sklejanych (cubic splines) trzeciego stopnia

3.3 Wartości rozwiązania na osi X (dla y=0)

x	z	x	z
-1.0000	1.000000	0.0667	0.000000
-0.8667	-0.645166	0.2000	-0.026491
-0.7333	-0.426189	0.3333	-0.079473
-0.6000	-0.272041	0.4667	-0.159964
-0.4667	-0.159964	0.6000	-0.272041
-0.3333	-0.079473	0.7333	-0.426189
-0.2000	-0.026491	0.8667	-0.645166
-0.0667	0.000000	1.0000	1.000000

Tabela 1: Wartości rozwiązania na osi X (dla y=0). Tabela pokazuje rozwiązanie funkcji harmonicznej wewnątrz koła jednostkowego. Zauważmy charakterystyczną symetrię względem osi Y, gdzie z(-x,0)=z(x,0) dla dowolnego x. Funkcja osiąga maksimum z=1 na brzegu koła w punktach $x=\pm 1$.

3.4 Wartości rozwiązania na osi Y (dla x=0)

y	z	y	z
-1.0000	-1.000000	0.0667	0.000000
-0.8667	0.645166	0.2000	0.026491
-0.7333	0.426189	0.3333	0.079473
-0.6000	0.272041	0.4667	0.159964
-0.4667	0.159964	0.6000	0.272041
-0.3333	0.079473	0.7333	0.426189
-0.2000	0.026491	0.8667	0.645166
-0.0667	0.000000	1.0000	-1.000000

Tabela 2: Wartości rozwiązania na osi Y (dla x=0). Rozwiązanie wykazuje symetrię względem osi X, gdzie z(0,-y)=z(0,y) dla dowolnego y. W przeciwieństwie do wartości na osi X, funkcja tu osiąga minimum z=-1 na brzegu koła w punktach $y=\pm 1$.

3.5 Interpretacja wyników

Przedstawione dane liczbowe potwierdzają, że otrzymane rozwiązanie równania Laplace'a zachowuje kluczowe właściwości funkcji $x^2 - y^2$:

- \bullet Zgodność z warunkiem brzegowym: Na brzegu koła $(x^2+y^2=1)$ funkcja przyjmuje dokładnie wartości x^2-y^2
- Harmoniczność: Rozwiązanie spełnia równanie Laplace'a wewnątrz domeny, co zostało zweryfikowane poprzez zbieżność metody numerycznej
- Symetria: Dane wykazują oczekiwane symetrie względem osi X i Y, co jest zgodne z teoretycznymi własnościami funkcji harmonicznych z symetrycznymi warunkami brzegowymi

Dokładność wyniku potwierdza efektywność zastosowanej metody numerycznej oraz stabilizacji numerycznej opisanej w dalszej części pracy.

3.6 Zastosowane techniki stabilizacji numerycznej

W implementacji algorytmu zastosowano następujące techniki zapewniające stabilność numeryczną:

- 1. **Częściowy wybór elementu głównego** w każdej iteracji algorytmu wybierany jest wiersz z największym (co do wartości bezwzględnej) elementem w kolumnie pivotowej, co minimalizuje błędy zaokrągleń
- 2. **Obsługa wartości bliskich zeru** zastosowano próg 10⁻¹² do wykrywania i zerowania bardzo małych wartości, co zapobiega propagacji błędów numerycznych
- 3. **Praca na kopiach danych wejściowych** zapewnia integralność oryginalnych danych i możliwość wielokrotnych testów

4 Z3

4.1 Opis metody i interpretacja wyników

W celu przybliżenia funkcji z(x, y):

- Skonstruowano układ równań liniowych Az = b dla siatki $N \times N$ w oparciu o metodę różnic skończonych (Laplace'a) z warunkami Dirichleta na brzegu (wartości z na okręgu jednostkowym).
- \bullet Rozwiązanie tego układu dostarcza aproksymacji wartości z w punktach wewnętrznych.
- Odcinki IX i IY odpowiadają przekrojom wzdłuż osi x i y wartości \tilde{z} w tych punktach zostały następnie interpolowane funkcjami sklejanymi trzeciego stopnia.

Interpolacja umożliwia płynne oszacowanie wartości z pomiędzy punktami siatki i wizualizację profilu funkcji wzdłuż wybranych osi. Obserwujemy, że wartości z mają charakter symetryczny i są bliskie zeru w pobliżu środka, co jest zgodne z fizyczną interpretacją Laplace'a – brak źródeł w środku powoduje, że potencjał w centrum jest zrównoważony.

5 Alternatywna funkcja brzegowa $x^2 - y^2$

Wykres przedstawia funkcję $f(x,y)=x^2-y^2$ w kole jednostkowym. Funkcja ta ma właściwości:

- Funkcja przyjmuje dodatnie wartości w regionach gdzie |x| > |y| (lewa i prawa część koła)
- $\bullet\,$ Funkcja przyjmuje ujemne wartości w regionach gdzie |x|<|y| (górna i dolna część koła)
- Wartość funkcji wynosi zero wzdłuż przekątnych $y=\pm x$

Wzdłuż osi x (gdy y=0) funkcja redukuje się do $f(x,0)=x^2$, a wzdłuż osi y (gdy x=0) funkcja przyjmuje postać $f(0,y)=-y^2$.

6 Alternatywna funkcja brzegowa $e^x sin(y)$

Wykres przedstawia funkcję $f(x,y) = e^x \cdot \sin(y)$ w kole jednostkowym. Najjaśniejszy obszar znajduje się w prawym górnym rogu, co wynika z charakterystyki funkcji:

- Funkcja e^x rośnie wraz ze wzrostem x (najjaśniejsze wartości na prawo)
- \bullet Funkcja $\sin(y)$ przyjmuje wartości dodatnie w górnej połowie koła
- Kombinacja tych czynników daje maksymalne wartości w prawym górnym rogu

Maksymalna wartość funkcji w kole jednostkowym wynosi około 2,3 i występuje w pobliżu punktu (0.85; 0.53). Nigdy nie osiąga 2,5, ponieważ na prawym krańcu koła (1,0), gdzie e^x ma największą wartość.

7 Alternatywna funkcja brzegowa $f(x,y) = \frac{x(x^2 - 3y^2)}{(x^2 + y^2)^2}$

Wykres funkcji $f(x,y) = \frac{x(x^2-3y^2)}{(x^2+y^2)^2}$ w kole jednostkowym. Charakterystyka:

- Mianownik $(x^2+y^2)^2$ maleje blisko środka, co powoduje, że wartości funkcji rosną gwałtownie w pobliżu początku układu (np. $f(0.13,0)\approx 7.5$).
- Licznik $x(x^2-3y^2)$ zeruje się na liniach x=0 oraz $x^2=3y^2$, dzieląc obszar na sześć stref: trzy dodatnie i trzy ujemne.

Wykres ukazuje sześć "płatków" rozdzielonych liniami zerowymi, z wyraźnymi wartościami ekstremalnymi blisko środka.