1. DOMAĆA ZADAĆA – AK. GOD. 2015/16

Domaća zadaća

Implementirati razred Matrica (ili tako nekako) koji omogućava jednostavnije rukovanje objektima tipa dvodimenzionalne matrice. Razred mora imati barem sljedeće elemente:

- o podatke o dimenzijama matrice i pokazivač na elemente matrice tipa *double*. Smještaj sadržaja matrice u memoriji organizirati po izboru, uz dinamičko zauzimanje memorije
- o potrebne konstruktore i destruktore, po potrebi metode za mijenjanje dimenzija matrice.
- o operator ili metoda pridruživanja (funkcionalnost A = B).
- o metoda koja čita matricu iz tekstne datoteke u kojoj je matrica smještena tako da jedan redak matrice odgovara jednom retku u datoteci. Na osnovu broja elemenata u prvom retku određuje se broj stupaca matrice, a redaka ima koliko ima i redaka u datoteci. Brojevi u jednom retku mogu biti odvojeni razmakom ili tabulatorom. Vidi primjer ulazne datoteke na kraju!
- o metoda koja ispisuje matricu u datoteku u istom formatu, te metodu koja ispisuje matricu na ekran.
- o metode za postavljanje i dohvat jednog elementa matrice. Može biti implementirano i istom metodom, uz korištenje funkcije koja vraća referencu i/ili nadgradnjom operatora [] (C++) ili nekim drugim postupkom po želji.
- o metode za zbrajanje, oduzimanje, množenje i transponiranje matrica, te metode koje obavljaju C operatore "+=" i "-=". Preporuča se da budu implementirane kao nadgrađeni operatori.
- o metoda za množenje matrice sa skalarom. Može biti ostvarena i kao operator.
- o operator == za usporedbu matrica.

Primjer uporabe uz nadgrađene operatore u C++:

```
Matrica A("A.txt"), B("B.txt"), C;

C = A~;

C += A * 0.5 * B * (A - 2 * B);

double x = C[0][0];

C[1][1] = x;
```

Primjer ulazne datoteke matrice (elementi matrice 4x3 po retcima):

```
12.5 3.0 9 2
4 5 6 7
8 9 10 11
```

Razredu Matrica treba dodati:

- o metode koje izvode supstituciju unaprijed i supstituciju unatrag. Metode neka kao ulazni parametar (slobodni vektor s desne strane sustava) primaju vektor čija je duljina jednaka dimenziji kvadratne matrice, a koji je i sam ostvaren objektom razreda Matrica. Također trebaju vraćati vektor kao objekt tipa Matrica (u kojemu će biti upisano rješenje odgovarajućeg postupka).
- o metodu (metode) koje izvode LU i LUP dekompoziciju (kvadratne) matrice koristeći isti memorijski prostor za spremanje rezultantnih matrica L i U. Izbor odgovarajuće metode može se riješiti nekim dodatnim kontrolnim parametrom. Obratiti pažnju na mogućnost pojave nule kao stožernog (pivot) elementa (metode moraju imati neki mehanizam otkrivanja pogreške!).
- o nije obvezatno, ali može pomoći: metode koje manipuliraju stupcima matrice (postavljaju i vraćaju određeni stupac matrice pomoću objekta istoga tipa), jer se operacije te vrste često koriste u opisanim postupcima.

Obratiti pažnju na situacije u kojima se kao stožerni element može pojaviti nula ili neka jako mala vrijednost (i kod LU i kod LUP dekompozicije). Program treba 'preživjeti' pojavu takvih okolnosti i prijaviti grešku.

Glavni program treba iz zadanih datoteka pročitati matricu sustava i slobodni vektor u zadanom formatu (vidi primjer na dnu stranice) te riješiti takav sustav. Rješavanje sustava se treba odvijati u koracima i u svakom koraku moraju se moći vidjeti međurezultati. Rješenje također mora biti prikazano u datoteci ili na zaslonu.

Laboratorijska vježba

- 1. Kakva treba biti usporedba *double* varijabli kako bi uspoređivanje dalo očekivane rezultate? Isprobajte operator == s elementima matrice kao necijelim brojevima, pomnožite i podijelite sa realnim brojem i usporedite s originalom.
- 2. Riješite sustav zadan matricama u nastavku. Odredite može li se riješiti LU odnosno LUP dekompozicijom:

$$\begin{bmatrix} 3 & 9 & 6 \\ 4 & 12 & 12 \\ 1 & -1 & 1 \end{bmatrix} \underline{x} = \begin{bmatrix} 12 \\ 12 \\ 1 \end{bmatrix}$$

3. Zadanu matricu rastavite na LU odnosno LUP. Ako je ovom matricom predstavljen sustav jednadžbi, može li se sustav riješiti? (sami definirajte slobodni vektor)

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

4. Zadani sustav riješite LU te LUP dekompozicijom. Objasnite razliku u rješenjima! (očituje se prilikom uporabe *double* varijabli)

$$\begin{bmatrix} 0.000001 & 3000000 & 2000000 \\ 1000000 & 2000000 & 3000000 \\ 2000000 & 1000000 & 2000000 \end{bmatrix} \underline{x} = \begin{bmatrix} 12000000.000001 \\ 14000000 \\ 10000000 \end{bmatrix}$$

5. Zadani sustav riješite odgovarajućom metodom. Objasnite razliku između dobivenog i točnog rješenja.

$$\begin{bmatrix} 0 & 1 & 2 \\ 2 & 0 & 3 \\ 3 & 5 & 1 \end{bmatrix} \underline{x} = \begin{bmatrix} 6 \\ 9 \\ 3 \end{bmatrix}$$

6. Rješavanje sljedećeg sustava *moglo* bi zadati problema vašoj implementaciji. O čemu to ovisi? Kako je moguće izbjeći ovaj problem, transformacijom zadanog sustava tako da rješenje ostane nepromijenjeno? (*Napomena:* postavite vrijednost epsilona za ovaj primjer na 10⁻⁶)

4000000000	1000000000	3000000000		9000000000	
4	2	7	$\underline{x} =$	15	
0.0000000003	0.0000000005	0.0000000002		0.0000000015	

Napomena

Prije dolaska na laboratorijsku vježbu pripremite datoteke s matricama iz svih prethodnih zadataka, tako da odmah možete demonstrirati bilo koji od zadataka bez prepisivanja matrica iz upute.

Demonstracija funkcionalnosti u MATLAB-u

Ovaj dio vježbe izvodi se na predavanjima.

Potrebno je napisati skriptu za programski paket MATLAB koja će učitati matricu sustava i slobodni vektor (iz istih datoteka kao programska implementacija), uz pomoć LUP dekompozicije pronaći i ispisati matrice L, U i matricu permutacija P, te međurezultat y. Također naći rješenje sustava te invertiranu matricu sustava. U skripti se (između ostalih) preporučuje koristiti sljedeće ugrađene funkcije: lu, inv te lijevo dijeljenje (\). Usporedite dobiveno rješenje sa onim koje ste dobili vašim programom.

Odabrana poglavlja iz MATLAB Helpa:

- o Mathematics: Matrices and Linear Algebra: Solving Linear Systems of Equations: Computational Considerations
- o Mathematics: Matrices and Linear Algebra: Solving Linear Systems of Equations: Square Systems
- o Mathematics: Matrices and Linear Algebra: LU Factorization
- o MATLAB Functions: lu