Instructor: Dušan Djukić Date: 2.6.2022.

- 1. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that, whenever $a_1 + a_2 + \cdots + a_n$ is a square (for some n), $f(a_1) + f(a_2) + \cdots + a(a_n)$ is also a square.
- 2. Can every positive integer greater than 100^{100} be written as a sum of 15 fourth powers (some of which may be zero)?
- 3. Find all triples of positive integers a, b, c such that $ab + bc + ca = 4 \cdot \text{lcm}(a, b, c)$.
- 4. Find all positive integers n for which one can find several (at least two) positive rational numbers a_1, a_2, \ldots, a_k such that $a_1 + a_2 + \cdots + a_k = a_1 a_2 \cdots a_k = n$.

Instructor: Dušan Djukić Date: 3.6.2022.

- 5. Are there integers a, b, c, all greater than 2022, that satisfy $a^3 + 2b^3 + 4c^3 = 6abc + 1$?
- 6. Are there positive integers a, b, c, all greater than 10^{10} , such that abc is divisible by each of the numbers a + 2022, b + 2022, c + 2022?
- 7. Positive integers a,b,c,d and n are such that a+c < n and $\frac{a}{b} + \frac{c}{d} < 1$. Prove that $\frac{a}{b} + \frac{c}{d} < 1 \frac{1}{n^3}$.
- 8. Find all real numbers α with the following property: There exist a real number $r > \alpha$ and an irrational number x such that both $x^2 rx$ and $x^3 rx$ are rational numbers.

Instructor: Dušan Djukić Date: 4.6.2022.

If p > 2 is a prime, then among $1, 2, \ldots, p-1$ there are exactly $\frac{p-1}{2}$ quadratic residues and as many quadratic non-residues. Legendre's symbol is defined by

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{if } a \text{ is a quadratic residue mod } p; \\ -1 & \text{if } a \text{ is a quadratic non-residue mod } p; \\ 0 & \text{if } p \mid a. \end{cases}$$

The congruence $x^2 \equiv a \pmod{p}$ has exactly $\left(\frac{a}{p}\right) + 1$ solutions modulo p.

• If p > 2 is a prime, then $a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right)$. (Euler's criterion)

Consequently, -1 is a quadratic residue mod p if and only if $p \equiv 1 \pmod{4}$ or p = 2.

Also by Euler's criterion, Legendre's symbol is multiplicative: $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$.

Let $p \nmid a \ (p > 2)$. Knowing Euler's criterion, we can write $a^{\frac{p-1}{2}}$ as $\frac{a \cdot 2a \cdots (\frac{p-1}{2}a)}{1 \cdot 2 \cdots \frac{p-1}{2}}$. To reduce this modulo p, we note that for each $k = 1, \ldots, \frac{p-1}{2}$ there is a (unique) r_k such that $ka \equiv r_k \pmod{p}$ with $|r_k| \leqslant \frac{p-1}{2}$. Observe that $|r_1|, \ldots, |r_{\frac{p-1}{2}}|$ is a permutation of $1, 2, \ldots, \frac{p-1}{2}$, so writing $e_k = \operatorname{sgn} r_k = \pm 1$ we obtain

$$\left(\frac{a}{p}\right) \equiv \frac{r_1 r_2 \cdots r_{\frac{p-1}{2}}}{1 \cdot 2 \cdots \frac{p-1}{2}} = e_1 e_2 \cdots e_{\frac{p-1}{2}}.$$

Now show that $e_k = -1$ if and only if $\left[\frac{2ka}{p}\right] = 2\left[\frac{ka}{p}\right] + 1$, i.e. $e_k = (-1)^{\left[2ka/p\right]}$. The above equality thus becomes:

- If p > 2 and $p \nmid a$, then $\left(\frac{a}{p}\right) = (-1)^S$, where $S = \sum_{k=1}^{\frac{p-1}{2}} \left[\frac{2ka}{p}\right]$. (Gauss' Lemma) Deduce from here:
 - $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$, so 2 is a quadratic residue mod p > 2 if and only if $p \equiv \pm 1 \pmod{8}$.

Now apply the Gauss lemma to $a = \frac{p+q}{2}$ to obtain

$$\left(\frac{q}{p}\right) = \left(\frac{p+q}{p}\right) = \left(\frac{2}{p}\right)\left(\frac{a}{p}\right) = \left(\frac{2}{p}\right)(-1)^{\frac{p^2-1}{8}}(-1)^{S_1} = (-1)^{S_1}, \text{ where } S_1 = \sum_{i=1}^{\frac{p-1}{2}} \lfloor \frac{iq}{p} \rfloor.$$

Also $\left(\frac{p}{q}\right) = (-1)^{S_2}$. Guess what is S_2 ?

Think graphically: which lattice points do S_1 and S_2 count? So why is $S_1 + S_2 = \frac{p-1}{2} \cdot \frac{q-1}{2}$? Our conclusion:

• If p, q > 2 are distinct primes, then $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}$. (Quadratic reciprocity law)

There is an extension of the Legendre symbol to composite odd moduli, called the Jacobi symbol. Given an odd integer $n = p_1 p_2 \dots p_k$, where the p_i are odd primes (not necessarily distinct), the Jacobi symbol is defined as

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)\left(\frac{a}{p_2}\right)\cdots\left(\frac{a}{p_k}\right).$$

These inherit most relations from the Legendre symbols: $\left(\frac{ab}{n}\right) = \left(\frac{a}{n}\right)\left(\frac{b}{n}\right)$, $\left(\frac{-1}{n}\right) = (-1)^{\frac{n-1}{2}}$, $\left(\frac{2}{n}\right) = (-1)^{\frac{n^2-1}{8}}$, $\left(\frac{m}{n}\right)\left(\frac{n}{m}\right) = (-1)^{\frac{m-1}{2}\cdot\frac{n-1}{2}}$. An exception is that $\left(\frac{a}{n}\right) = 1$ does not imply that a is a quadratic residue modulo n.

- 9. Given a prime number p, prove that there exists x with $p \mid x^2 x + 3$ if and only if there exists y with $p \mid y^2 y + 25$.
- 10. Let p = 4k + 3 be a prime. Is 3k + 2 a quadratic residue modulo p?
- 11. Let p = 4k 1 be a prime. If congruence $x^2 \equiv a \pmod{p}$ has solutions, prove that these solutions are $x = \pm a^k$.
- 12. Prove that for every prime p>2 there exists a quadratic non-residue $a<\sqrt{p}+1$ modulo p.
- 13. Evaluate $\left[\frac{1}{101}\right] + \left[\frac{2}{101}\right] + \left[\frac{4}{101}\right] + \dots + \left[\frac{2^{99}}{101}\right]$.
- 14. Prove that every prime p has a multiple of the form $x^2 + y^2 + 1$.
- 15. (a) Prove that every prime divisor of $n^4 n^2 + 1$ is of the form 12k + 1.
 - (b) Prove that every prime divisor of $n^8 n^4 + 1$ is of the form 24k + 1.
- 16. Prove that $x^2 + 1$ is not divisible by $y^2 5$ for any x, y (y > 2).
- 17. Prove that (a) 4xy x y, (b) 4xyz x y cannot be a perfect square if x, y, z are positive integers.
- 18. Find all positive integers n such that the set $\{n, n+1, \ldots, n+101\}$ can be partitioned into several subsets with equal products of elements.

Instructor: Dušan Djukić Date: 6.6.2022.

- 19. Let $P(x) = x^3 + 14x^2 2x + 1$. Prove that there exists n such that $P(P(\dots P(x) \dots)) \equiv x \pmod{101}$ (P applied n times) for every x.
- 20. Prove that number $N = 2^{2^n} + 1$ is prime if and only if $3^{\frac{N-1}{2}} \equiv -1 \pmod{N}$.
- 21. Prove that the sum of all quadratic non-residues modulo a prime p is a multiple of p.
- 22. Let p be a prime. For a positive integer n denote $s_n = 1^n + 2^n + \cdots + (p-1)^n$. Prove that $s_n \equiv 0 \pmod{p}$ if $p-1 \nmid n$, but $s_n \equiv -1 \pmod{p}$ if $p-1 \mid n$.

The previous problem could be elegantly solved using a primitive root - that is, an integer g whose order modulo p equals p-1: thus $1, g, g^2, \ldots, g^{p-2}$ form a permutation of $1, 2, \ldots, p-1$ modulo p. So it is time to prove that a primitive root modulo a prime p always exists. The key statement, which we prove by induction on n $(n \mid p-1)$, is that the number of residues of order exactly n modulo p equals $\varphi(n)$.

First of all, $x^n - 1 \equiv 0 \pmod{p}$ has at most n solutions mod p, but $\frac{x^{p-1} - 1}{x^n - 1} \equiv 0 \pmod{p}$ has at most p - 1 - n solutions. Hence "at most" is in fact "exactly" in both cases. Thus there are exactly n residues of order dividing n. By the inductive hypothesis, for every d < n, $d \mid n$, there are $\varphi(d)$ residues of order d. Thus, by the following lemma, the number of residues of order exactly n equals $n - \sum_{d \mid n, d < n} \varphi(d) = \varphi(n)$, which finishes the induction:

Lemma.
$$\sum_{d|n} \varphi(d) = n$$
.

Proof. $\varphi(d)$ counts numbers $x \in \{1, 2, \dots, n\}$ with $\gcd(x, n) = \frac{n}{d}$. Thus $\sum_{d|n} \varphi(d)$ counts each elements from this set exactly once. \square

- 23. Let p is an odd prime and let a,b,c be integers with $p \nmid b^2 ac$. Prove that $\sum_{x=0}^{p-1} \left(\frac{ax^2 + bx + c}{p}\right) = -\left(\frac{a}{p}\right)$.
- 24. If p is a prime and $p \nmid a$, prove that the congruence $x^2 + y^2 = a$ has exactly $p \left(\frac{-1}{p}\right)$ solutions (x, y) modulo p.
- 25. If a is an integer, prove that the congruence $x^2 + y^2 + z^2 \equiv 2axyz \pmod{p}$ has exactly $\left(p + \frac{3}{2}(-1)^{p'}\right)^2 \frac{5}{4}$ solutions (x, y, z), where $p' = \frac{p-1}{2}$.
- 26. Prove that there are no positive integers a, b, c for which $a^2 + b^2 + c^2$ is divisible by 3(ab + bc + ca).
- 27. Find all positive integers x for which $x^3 + 2x + 1$ is a power of 2.

Instructor: Dušan Djukić Date: 7.6.2022.

- 28. Suppose that m and n are positive integers such that $\varphi(5^m 1) = 5^n 1$. Prove that $\gcd(m, n) > 1$.
- 29. Given a positive integer n, prove that there are at most two pairs of positive integers (a, b) such that a + b is a power of 2 and $a^2 + b = n$.
- 30. Find all pairs of positive integers x, y that satisfy the equation $3^x 8^y = 2xy + 1$.
- 31. Find all n for which there is a permutation (a_1, a_2, \ldots, a_n) of $1, 2, \ldots, n$ with the property that both $(a_1 + 1, \ldots, a_n + n)$ and $(a_1 1, \ldots, a_n n)$ are also permutations of $1, 2, \ldots, n$ modulo n.
- 32. We say that n cells in an $n \times n$ table are *scattered* if no two are in the same row or column. Is it possible to write the numbers $1, 2, \ldots, n^2$ in an $n \times n$ table so that all scattered sets of cells have the same product of elements modulo $n^2 + 1$ if (a) n = 8, and if (b) n = 10?

Instructor: Dušan Djukić Date: 9.6.2022.

- 33. Prove that 2^{n^2+n-5} divides $\varphi(2^{2^n}-1)$ for all positive integers n.
- 34. Find all positive integers n such that $\tau(n)$ divides $2^{\sigma(n)} 1$. As usual, $\tau(n)$ is the number of divisors and $\sigma(n)$ the sum of divisors of n.
- 35. Find all pairs of positive rational numbers x, y satisfying $yx^y = y + 1$.
- 36. Define $a_1 = 2021^{2021}$, and for $k \ge 2$, let a_k be the remainder when $a_{k-1} a_{k-2} + a_{k-3} \cdots$ is divided by k. Find the 2021^{2022} -th term of the sequence (a_n) .

Solutions: Number Theory – level L4

Instructor: Dušan Djukić

- 1. Fix x. We observe that, whenever $a^2 > x$, the numbers $f(x+1) + (a^2 x 1)f(1)$ and $f(x) + (a^2 x)f(1)$ are squares, since so is $x + 1 + 1 + \cdots + 1$. But these two squares differ by the fixed quantity f(x+1) f(x) f(1), so if a is too big, this can only happen if this quantity is 0. Therefore f(x+1) = f(x) + f(1), implying that f(x) = cx for some constant $c \in \mathbb{N}$.
- 2. If x is odd, then $2 \mid x^2 + 1$ and $8 \mid x^2 1$. so $16 \mid x^4 1$. Also, if x is even, then $16 \mid x^4$. Thus every fourth power gives the remainder 0 or 1 modulo 16. In particular, if 16n is a sum of 15 fourth powers, then all these fourth powers are even, so n is also a sum of 15 fourth powers.

But number 31 cannot be written as a sum of 15 fourth powers. Thus neither can the numbers $31 \cdot 16$, $31 \cdot 16^2$, etc.

- 3. The number ab + bc + ca is divisible by each of a, b, c, so $a \mid bc$. Similarly, $b \mid ca$ and $c \mid ab$. Thus each of ab, bc, ca itself is a multiple of L = lcm(a, b, c), but their sum is 4L. Thus these three multiples are L, L, 2L in some order. This leads us to a, b, c being k, 2k, 2k for some k and consequently that k = 1.
- 4. Every composite n works: if n = ab, $a, b \ge 2$, then $a+b+1+\cdots+1 = a \cdot b \cdot 1 \cdots 1 = n$. On the other hand, by AM-GM, $n = a_1 + \cdots + a_k \ge k \sqrt[k]{a_1 \cdots a_k} = kn^{1/k}$, so $n \ge k^{\frac{k}{k-1}}$. This rules out n = 2, 3, but also n = 5, as then $k \ge 3$.

The primes $n = p \ge 11$ work with the k-tuple $(\frac{p}{2}, \frac{1}{2}, 4, 1, \dots, 1)$. Also, n = 7 works with the triple $(\frac{7}{6}, \frac{4}{3}, \frac{9}{2})$.

5. Recall that $x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x + \omega y + \omega^2 z)(x + \omega^2 y + \omega z)$, where $\omega = \frac{-1+i\sqrt{3}}{2}$ is the primitive (complex) cubic root of 1. Applying this factorization for $a, b\sqrt[3]{2}, c\sqrt[3]{4}$ yields $a^3 + 2b^3 + 4c^3 - 6abc = (a + b\sqrt[3]{2} + c\sqrt[3]{4})(a + b\omega\sqrt[3]{2} + c\omega\sqrt[3]{4})$.

The smallest solution of the original equation in \mathbb{N} is (a,b,c)=(1,1,1); thus $(1+\sqrt[3]{2}+\sqrt[3]{4})(1+\omega\sqrt[3]{2}+\omega\sqrt[3]{4})(1+\omega^2\sqrt[3]{2}+\omega\sqrt[3]{4})=1$. Now raise this to the *n*-th power: we have $(1+\sqrt[3]{2}+\sqrt[3]{4})^n=a+b\sqrt[3]{2}+c\sqrt[3]{4}$ for some positive integers a,b,c. But since algebra does not distinguish between the real and complex roots, we also have $(1+\omega\sqrt[3]{2}+\omega^2\sqrt[3]{4})^n=a+b\omega\sqrt[3]{2}+c\omega^2\sqrt[3]{4}$ and $(1+\omega^2\sqrt[3]{2}+\omega\sqrt[3]{4})^n=a+b\omega^2\sqrt[3]{2}+c\omega\sqrt[3]{4}$. Multiplying these three equalities gives us $a^3+2b^3+4c^3-6abc=1$ for every n. Choosing n big leads to an arbitrarily big solution (a,b,c).

6. Why not e.g. $(a, b, c) = (an, an, a(n^2 - 1))$, where a = 2022.

7. Since $c \leqslant n-2$, we have $\frac{c}{d} \leqslant \frac{c}{c+1} \leqslant \frac{n-2}{n-1}$. Thus, if $\frac{a}{b} \leqslant \frac{1}{n}$, we have $\frac{a}{b} + \frac{c}{d} \leqslant \frac{n-2}{n-1} + \frac{1}{n} = 1 - \frac{1}{n^2 - n} < 1 - \frac{1}{n^3}$. Case $\frac{c}{d} \leqslant \frac{1}{n}$ is analogous.

Now suppose that $\frac{a}{b}$, $\frac{c}{d} > \frac{1}{n}$ and $\frac{a}{b} + \frac{c}{d} > 1 - \frac{n-1}{n}$. Then $\frac{a}{b} \cdot \frac{c}{d} > \frac{1}{n} \cdot \frac{n-2}{n} = \frac{n-2}{n^2}$, so $bd < ac \cdot \frac{b}{a} \cdot \frac{d}{c} < \frac{1}{4}(a+c)^2 \cdot \frac{n^2}{n-2} \leqslant \frac{n^2(n-1)^2}{4(n-2)} < n^3$. Therefore $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd} \leqslant 1 - \frac{1}{bd} < 1 - \frac{1}{n^3}$.

- 8. Denote $x^2 rx = a$. Then $b = x^3 rx = x(rx + a) rx = rx^2 + (a r)x = (r^2 r + a)x + ra$, so $b ra = (r^2 r + a)x$. Since b ra, $r^2 r + a \in \mathbb{Q}$ and $x \notin \mathbb{Q}$, it follows that $r^2 r + a = x^2 rx + (r^2 r) = 0$. This quadratic in x has an irrational solution x if and only if its discriminant D = r(4 3r) is not a rational square, so $0 < r < \frac{4}{3}$. On the other hand, $r = \frac{4}{3} \frac{1}{3^n}$ works for n > 1, so the answer is all $\alpha < \frac{4}{3}$.
- 9. For p=2,3,11 this is easy, so let p be some other prime. The two conditions reduce to $p \mid (2x-1)^2+11$ and $p \mid (2y-1)^2+99$, so x and y exist if and only if -11 and -99 are quadratic residues modulo p, respectively. Since $99=3^2\cdot 11$, these are simultaneously quadratic residues, and therefore the statement.
- 10. We have $\left(\frac{3k+2}{4k+3}\right) = \left(\frac{12k+8}{4k+3}\right) = \left(\frac{-1}{4k+3}\right) = -1$, so the answer is No.
- 11. For $x = \pm a^k$ we have $x^2 = a^{2k} = a \cdot a^{\frac{p-1}{2}} = a(\frac{a}{p}) = a$ by Euler criterion, since a is a quadratic residue.
- 12. Let a be the smallest positive quadratic non-residue modulo p. Choose the smallest k such that ka > p. Then 0 < ka p < a, so it is a q-residue and hence so is k. Therefore $k \ge a$, but $k < \frac{a^2}{p} + 1$, which implies the statement.
- 13. Since 2 is a quadratic non-residue modulo $101 \equiv 5 \pmod{8}$, we have $101 \mid 2^{50} + 1$ and hence $101 \mid 2^i + 2^{50+i}$ for $i = 0, 1, \dots, 49$. Therefore $\lfloor \frac{2^i}{101} \rfloor + \lfloor \frac{2^{50+i}}{101} \rfloor = \frac{2^i + 2^{50+i}}{101} 1$. Summing up over $i = 0, \dots, 49$ gives the result $\frac{2^{100} 1}{101} 50$.
- 14. The sets $X = \{x^2 \pmod{p}\}$ and $Y = \{-1 y^2 \pmod{p}\}$ each have $\frac{p+1}{2}$ elements (we count zero as well), so they must overlap for some x and y: then $p \mid x^2 + y^2 + 1$.
- 15. (a) Note that $n^4 n^2 + 1 = (n^2 1)^2 + n^2 = (n^2 + 1)^2 3n^2$, so both -1 and 3 are quadratic residues modulo p ($p \mid n^4 n^2 + 1$). This implies $p \equiv 1 \pmod{12}$.
 - (b) By part a, if $p \mid n^8 n^4 + 1$, then $p \equiv 1 \pmod{12}$. Moreover, $n^8 n^4 + 1 = (n^4 + n^2 + 1)^2 2(n^3 n)^2$, so 2 is also a quadratic residue modulo p...
- 16. If y is even, then $y^2 5 \equiv 3 \pmod{4}$, but $x^2 + 1$ has no such divisors. On the other hand, if y is odd, then $4 \mid y^2 5$, but $4 \nmid x^2 + 1$.
- 17. Let us do (b). If $4xzy x y = t^2$, then $(4xz 1)(4yz 1) = 4zt^2 + 1$, so $(\frac{-z}{4xz 1}) = 1$. But if z is odd, then $(\frac{-z}{4xz 1}) = -(-1)^{\frac{z-1}{2}}(\frac{4xz 1}{z}) = (-1)^{\frac{z+1}{2}}(\frac{-1}{-z}) = -1$. Therefore $z = 2^k u$ must be even, but then $(\frac{-z}{4xz 1}) = (\frac{-2^k u}{4xz 1}) = (\frac{2}{2^{k+2}xu 1})^k(\frac{-u}{2^{k+2}xu 1}) = 1^k \cdot (-1) = -1$ by the "z odd" case.

- 18. There are either one or two multiples of 101 among $n, \ldots, n+101$, so there can be only two subsets. On the other hand, the numbers $n, \ldots, n+101$ cannot include a multiple of 103, so they are $1, 2, \ldots, 102$ modulo 103, but their product is $-1 \pmod{103}$ by Wilson's theorem and is a quadratic non-residue modulo 103, a contradiction.
- 19. The problem is equivalent to proving that $P(0), P(1), \ldots, P(100)$ are distinct modulo 101, that is, that $101 \nmid \frac{P(x)-P(y)}{x-y}$ if $101 \nmid x-y$. Suppose that $101 \mid \frac{P(x)-P(y)}{x-y} = (x^2+xy+y^2)+14(x+y)-2$ with $x \not\equiv y \pmod{101}$. Multiplying by 4 and completing squares we find that $101 \mid (2x+y+14)^2+3(y-29)^2$. However, $(\frac{-3}{101})=-1$, so 101 must divide both 2x+y+14 and y-29, but this in turn implies $x \equiv y \equiv 29 \pmod{101}$, a contradiction.
- 20. We know that $N \equiv 5 \pmod{12}$, so if n is prime, then 3 is its quadratic non-residue and hence $3^{\frac{N-1}{2}} \equiv -1 \pmod{N}$. On the other hand, if $3^{\frac{N-1}{2}} \equiv -1 \pmod{N}$, then the order of 3 modulo every prime divisor p of N is $N-1=2^{2^n}$, which implies that $N-1 \mid p-1$ and hence p=N.
- 21. The sum of quadratic non-residues is congruent to $\sum_{i=1}^{p-1} i \sum_{j=1}^{\frac{p-1}{2}} j^2 = \frac{p(p-1)}{2} \frac{p(p^2-1)}{24}$, which is divisible by p.
- 22. Here is a general method of computing sums of this type. We have $p^{n+1} = \sum_{x=0}^{p-1} \left((x+1)^{n+1} x^{n+1} \right) = \sum_{x=0}^{p-1} \left(\binom{n+1}{1} x^n + \binom{n+1}{2} x^{n-1} + \cdots + \binom{n+1}{n} x + 1 \right) = \binom{n+1}{1} s_n + \binom{n+1}{2} s_{n-1} + \cdots + \binom{n+1}{n} s_1 + p$. In this way, we easily obtain by induction that $p \mid s_n$ for $n = 1, 2, \ldots, p-2$. Furthermore, $s_{p-1} \equiv -1$ and $s_m \equiv s_n \pmod{p}$ whenever $m \equiv n \pmod{p-1}$, and the proof is complete.

Now there is another, easier proof that uses primitive roots: since $1, 2, \ldots, p-1$ are a permutation of $1, g, g^2, \ldots, g^{p-2}$, where g is a primitive root modulo p, we have $s_n \equiv 1 + g^n + g^{2n} + \cdots + g^{(p-2)n} = \frac{g^{(p-1)n} - 1}{g^n - 1} \equiv 0 \pmod{p}$ if $p - 1 \nmid n$.

- 23. By the Euler criterion, the sum in the problem is congruent to $\sum_{x=0}^{p-1} (ax^2 + bx + c)^{\frac{p-1}{2}} = \sum_{x=0}^{p-1} \left[a^{\frac{p-1}{2}} x^{p-1} + A_{p-2} x^{p-2} + \dots + A_1 x + A_0 \right] = a^{\frac{p-1}{2}} s_{p-1} + A_{p-2} s_{p-2} + \dots + A_1 s_1 + pA_0 \equiv -a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p} \right) \pmod{p}$. But make sure it is not $(p-1)\left(\frac{a}{p} \right)!$
- 24. For every fixed x = 0, 1, ..., p 1, there are $1 + \left(\frac{a x^2}{p}\right)$ possible values of $y \pmod{p}$. The total number of solutions is $p + \sum_{x=0}^{p-1} \left(\frac{a x^2}{p}\right) = p \left(\frac{-1}{p}\right)$.
- 25. The congruence can be rewritten as $(z-axy)^2 \equiv a^2x^2y^2-x^2-y^2$, so for given x,y it has $1+\left(\frac{a^2x^2y^2-x^2-y^2}{p}\right)$ solutions. Next, if only x is fixed, we have $p+\sum_y\left(\frac{(a^2x^2-1)y^2-x^2}{p}\right)$ solutions. By the previous problem, this equals $p-\left(\frac{a^2x^2-1}{p}\right)$ if $ax \not\equiv \{-1,0,1\} \pmod p$, but $p+p\left(\frac{-1}{p}\right)$ if $ax \equiv \pm 1$ and $p+(p-1)\left(\frac{-1}{p}\right)$ if $x \equiv 0 \pmod p$.

Thus the total number of solutions is $p^2 - \sum_x \left(\frac{a^2x^2-1}{p}\right) + 3p\left(\frac{-1}{p}\right) = p^2 + 1 + 3p(-1)^{p'}$.

26. We can assume that gcd(a, b, c) = 1. If $a^2 + b^2 + c^2 = 3n(ab + bc + ca)$, then $(a+b+c)^2 = (3n+2)(ab+bc+ca)$. There is a prime divisor $p \equiv 2 \pmod{3}$ of 3n+2 with $v_p(3n+2)$

odd. Then p must divide both a+b+c and $ab+bc+ca \equiv ab-(a+b)^2=-(a^2+ab+b^2)$, but this is impossible unless $p \mid a,b,c$.

- 27. Clearly, x is odd. Since $3 \mid x^3 + 2x$ for all x, it follows that n is even. Now $(x+1)(x^2 x+3) = 2^n + 2$ is a square-plus-two, so all of its odd prime divisors are 1 or 3 modulo 8. Thus $x^2 x + 3 \equiv 1$ or 3 (mod 8), which implies $x \equiv 1$ or 3 modulo 8, but then $x^3 + 2x + 1$ is resp. 4 or 2 modulo 8. Therefore $n \leqslant 2$, and only (x, n) = (1, 2) is a solution.
- 28. We first note that $5^m 1$ cannot be a power of 2 unless m = 1. Indeed, if $8 \mid 5^m 1$, then $2 \mid m$ and hence $24 \mid 5^m 1$.

Let $5^m - 1 = 2^a p_1^{b_1} \cdots p_k^{b_k}$ where the p_i are distinct primes. Then $5^n - 1 = 2^{a-1} p_1^{b_1-1} \cdots p_k^{b_k-1} (p_1-1) \cdots (p_k-1)$ is also divisible by 2^a .

Suppose that gcd(m,n) = 1. Then $gcd(5^m - 1, 5^n - 1) = 4$, so each $b_i = 1$ and a = 2. This implies that m is odd, so $5^m - 1 = 5*^2 - 1$. It follows that 5 is a quadratic residue modulo each p_i , so $p_i \equiv \pm 1 \pmod{5}$. Moreover, no $p_i - 1$ is divisible by 5, so each $p_i \equiv -1 \pmod{5}$. Now $-1 \equiv 5^m - 1 \equiv (-1)^{k+1}$ and $-1 \equiv -3^{k+1} \pmod{5}$, implying the contradictory conditions $2 \mid k$ and $4 \mid k+1$.

- 29. Let $a+b=2^k$, $c+d=2^l$ and $a^2+b=c^2+d=n$, where l>k. Subtracting yields $2^k(2^{l-k}-1)=2^l-2^k=c-a+d-b=c-a+a^2-c^2=(a-c)(a+c-1)$. But is a and c are of the same parity, then a+c-1 is odd and hence $2^k \mid a-c$, which is impossible because $0 < a-c < a+b=2^k$. We conclude that there is at most one pair (a,b) with a odd and at most one with a even.
- 30. If $2 \mid y$, then modulo 4 we find that also $2 \mid x$, so $2xy + 1 = 3^x 8^y$ is a difference of squares and hence $3^{x/2} + 8^{y/2} \le 2xy + 1 \le x^2 + y^2 + 1$, which leaves us only with small cases to test. The only solution will be (x, y) = (4, 2).

If y is odd, then modulo 3 we find $3 \mid xy$. If $3 \mid x$, then the LHS is a difference of cubes, which we deal with as in the first case. Finally, if $3 \nmid x$, then $v_3(y) = k > 0$, then $v_3(3^x - 2xy) = k + 2$, but $v_3(2xy) = k$, so x = k and hence $3^x - 8^y < 0$, a contradiction.

31. If both $(a_i + i \mid 1 \leqslant i \leqslant n)$ and $(a_i - i \mid 1 \leqslant i \leqslant n)$ are complete residue systems modulo n, we have $n(n+1) = \sum_{i=1}^{n} (a_i + i) \equiv \sum_{j=1}^{n} j = \frac{n(n+1)}{2} \pmod{n}$, so n is odd. Moreover, $\frac{n(n+1)(2n+1)}{3} = \sum_{j=1}^{n} 2j^2 \equiv \sum_{i=1}^{n} [(a_i + i)^2 + (a_i - i)^2] = \sum_{i=1}^{n} (2a_i^2 + 2i^2) = \frac{2n(n+1)(2n+1)}{3} \pmod{n}$, so $3 \mid (n+1)(2n+1)$, i.e. $3 \nmid n$. Thus $n = 6k \pm 1$.

On the other hand, if $n = 6k \pm 1$, then $a_i = 2i \pmod{n}$ satisfies the conditions.

- 32. (a) If n = 8, then $n^2 + 1 = 65 = 5 \cdot 13$. The board can be partitioned into 8 scattered sets. One of these scattered sets contains a multiple of 13, one does not, so their products cannot be equal modulo 65.
 - (b) If n = 10, then $n^2 + 1 = 101$ is prime and has a primitive root g. Then we can arrange $g^0, g^1, g^2, \ldots, g^{99}$ in the board in this order and easily show that the condition is fulfilled.

- 33. We use induction. For $n \leq 3$ the statement holds, so assume it for n-1 $(n \geq 4)$. Then $\varphi(2^{2^n}-1)=\varphi(2^{2^{n-1}}-1)\varphi(2^{2^{n-1}}+1)$. By the inductive hypothesis, $\varphi(2^{2^{n-1}}-1)$ is divisible by 2^{n^2-n+5} . On the other hand, note that $2^{2^{n-1}}+1$ cannot be a prime power: indeed, if $2^{2^{n-1}}+1=p^k$ with $k\geq 2$, then k must be odd and, by the LTE, $v_2(p-1)=v_2(p^k-1)=2^{n-1}$, which is impossible. Therefore $2^{2^{n-1}}+1$ is either a prime of has at least two distinct prime factors that are both $\equiv 1\pmod{2^n}$ (this follows by checking the order of 2). In either case, $\varphi(2^{2^{n-1}}+1)$ is divisible by 2^{2n} , which gives us the inductive step.
- 34. Let $n = \prod_i p_i^{r_i+1}$ and let p be the smallest prime divisor of $\tau(n) = \prod (r_i+1)$. Suppose that $p \mid 2^{\sigma(n)} 1$. The order of 2 modulo p divides $\gcd(p-1,\sigma(n))$, so there is a prime q < p dividing $\sigma(n) = \prod_i \frac{p_i^{r_i+1}-1}{p_i-1}$. Hence $q \mid \frac{p_i^{r_i+1}-1}{p_i-1}$ for some i, so the order of p_i modulo q divides r_i+1 . Since $\gcd(r_i+1,q-1)=1$ by the assumption, it follows that this order is 1, i.e. $q \mid p_i-1$, and hence $q \mid \frac{p_i^{r_i+1}-1}{p_i-1} \equiv r_i+1 \pmod{q}$. This is again impossible, as $\gcd(r_i+1,q) \mid \gcd(\tau(n),q)=1$. Therefore the only solution is n=1.
- 35. Let $y = \frac{m}{n}$, where $\gcd(m,n) = 1$. Since $x^y = \frac{m+n}{m}$ is also an m-th power of a rational number and m, m+n are coprime, it follows that both m, m+n are m-th powers. But $2^m > m$, so m can be an m-th power only for m = 1. Then $(x,y) = ((n+1)^n, \frac{1}{n})$, where $n \in \mathbb{N}$.
- 36. We observe that $a_k \in \{0, 1, \dots, k-1\}$ is the number such that $a_1 a_2 + a_3 \dots + (-1)^k a_{k-1} = kb_k$ for some integer b_k . If k is even and $b_k > 0$, then b_k does not increase; if k is odd and $b_k > 0$, then b_k decreases at least by 1; if $b_k = 0$, then all consequent terms a_i and b_i (i > k) are zero. Thus b_k reaches zero before its 2021^{2022} -th term, so all the a_i after it are zero, and $a_{2021^{2022}} = 0$.