Manifold alignment approach to cover source mismatch in steganalysis

Daniel Lerch Hostalot Davíd Megías Jiménez

XIV Reunión Española sobre Criptología y Seguridad de la Información (RECSI 2016) Maó, Menorca, Illes Balears, 26-28 Octubre 2016

Introducción

ESTEGANOGRAFÍA

ESTEGOANÁLISIS

Información oculta?

CONJUNTO DE ENTRENAMIENTO

CONJUNTO DE ENTRENAMIENTO

CONJUNTO DE PRUEBA

CONJUNTO DE PRUEBA DE UNA CÁMARA DIFERENTE

COVER SOURCE MISMATCH (CSM)

Alineación

CONJUNTO DE PRUEBA

Grafo de vecinos más cercanos

Manifold alignment approach to cover source mismatch in steganalysis

Espacio proyectado en *d* << *D* dimensiones

Manifold alignment approach to cover source mismatch in steganalysis

Resultados

Results

Embedding bit rate		0.5 bpp		0.25 bpp	
Train	Test	Acc (%)	Acc DA (%)	Acc (%)	Acc DA (%)
CALP	CALP	89.6	91.4	89.6	86.0
CALP	ALBN	53.0	66.2	50.2	49.8
CALP	BOSS	74.4	82.8	53.6	75.0
CALP	ESO	95.4	97.8	52.6	87.4
CALP	INTE	91.4	98.8	51.2	93.8
CALP	NOAA	90.4	99.8	50.0	99.4
CALP	NRCS	51.0	62.6	50.0	52.8
BOSS	BOSS	88.2	85.6	84.4	76.6
BOSS	ALBN	57.2	63.4	57.0	53.2
BOSS	CALP	84.6	90.6	55.6	75.2
BOSS	ESO	64.4	94.2	81.4	87.4
BOSS	INTE	60.6	98.0	83.4	87.4
BOSS	NOAA	53.0	97.6	71.8	97.8
BOSS	NRCS	62.8	68.6	56.0	54.6
NRCS	NRCS	89.2	74.8	74.4	60.4
NRCS	ALBN	70.8	67.0	61.4	58.4
NRCS	BOSS	73.2	79.2	72.2	70.6
NRCS	CALP	67.4	87.2	61.2	68.0
NRCS	ESO	78.6	94.2	62.8	92.4
NRCS	INTE	82.0	98.4	62.2	91.0
NRCS	NOAA	66.8	99.2	55.0	98.4

Embedding bit rate		0.5 bpp		0.25 bpp					
Train	Test	Acc (%)	Acc DA (%)	Acc (%)	Acc DA (%)				
ALBN	ALBN	76.0	57.8	58.4	53.6				
ALBN	BOSS	76.4	84.4	52.2	42.0				
ALBN	CALP	51.2	82.0	50.0	48.6				
ALBN	ESO	76.0	81.2	50.0	47.4				
ALBN	INTE	73.0	88.4	50.0	51.6				
ALBN	NOAA	58.0	98.6	50.0	49.8				
ALBN	NRCS	72.0	66.4	54.8	54.8				
ESO	ESO	98.0	97.2	97.2	97.4				
ESO	ALBN	50.0	54.8	50.0	51.2				
ESO	BOSS	72.8	74.4	55.4	64.8				
ESO	CALP	72.4	74.4	64.4	64.2				
ESO	INTE	100.0	99.6	99.8	98.2				
ESO	NOAA	100.0	99.8	100.0	100.0				
ESO	NRCS	50.2	66.0	50.0	54.2				
INTE	INTE	99.8	99.6	99.2	97.6				
INTE	ALBN	56.4	52.8	50.6	58.4				
INTE	BOSS	74.4	77.0	69.4	65.6				
INTE	CALP	72.6	77.6	62.2	59.0				
INTE	ESO	97.0	96.8	95.8	95.4				
INTE	NOAA	100.0	100.0	100.0	100.0				
INTE	NRCS	56.6	59.4	51.0	55.4				

AVERAGE	75.0	82.0	67.0	72.0

Conclusiones y trabajo futuro

Conclusiones:

- En estegoanálisis, el problema del CSM produce una degradación en los resultados de clasificación.
- Los algoritmos de *Manifold Alignment* parecen un enfoque conveniente al problema.

<u>Trabajo futuro:</u>

- Analizar el grado de similitud entre el conjunto de entrenamiento y el de prueba antes de realizar la adaptación.
- Desarrollar estrategias para escoger los valores óptimos de los parámetros d (dimensiones en el espacio proyectado) y k (Número de vecinos).

Manifold alignment approach to cover source mismatch in steganalysis

Gracias por su atención

