UNIVERSITY OF OSLO

Master's thesis

-sometitle-

Classifying N-body simulations with and without relativistic corrections using machine learning techniques

Johan Mylius Kroken

Computational Science: Astrophysics 60 ECTS study points

Institute of Theoretical Astrophysics
Faculty of Mathematics and Natural Sciences

Johan Mylius Kroken

-sometitle-

Classifying N-body simulations with and without relativistic corrections using machine learning techniques

Supervisors:

A David Fonseca Mota

B Julian Adamek

C Francisco Antonio Villaescusa Navarro

Abstract

On large scales, comparable to the horizon, relativistic effects will affect the cosmological observables. In order to solve for these effects, one need to consistently solve for the metric, velocities and densities in a particular gauge. When simulating large-scale structures we use N-body simulations, which are usually performed in the Newtonian limit. However, it is not obvious that Newtonian gravity yield a good global description of an inhomogeneous cosmology across all scales (Jeong, Fabian Schmidt and Hirata 2012). However, literature suggest that Newtonian simulations are still solving the dynamics correctly, even on large scales close to the horizon where relativistic effects are important but may be corrected for (Chisari and Zaldarriaga 2011) (Green and Wald 2012).

Recently, Adamek et al. 2016 developed a relativistic N-body code, gevolution, which evolves large scales structures based on the weak field expansion in GR. I investigate the differences in the gravitational dynamics between structures evolved with and without relativistic effects, with focus on the gravitational potential Φ . This is a good choice for comparison as Φ is gauge invariant and the Newtonian and relativistic simulations are performed in different gauges.

The investigation is done by running 2000 simulations using identical ΛCDM cosmologies for the two gravity theories. The simulations are run using 64⁴ particles on a 256³ grid each with dimension 5120 Mpc/h which is a compromise in order to include both large and nonlinear scales. The data analysis consist of a preliminary analysis using conventional summary statistics, with focus on the bispectrum of Φ . There is a difference in the two cases for low redshifts in the equilateral and squeezed configurations. However, the main idea is to train a Convolutional Neural Network (CNN) to classify the two cases, given snapshots of Φ . The main analysis then involves interpretability of the CNN, which may be done by considering for instance saliency maps (Algarawi et al. 2020) or Grad-CAM (Selvaraju et al. 2020). In either case, revealing the features separating the two cases may help us understand the differences in the gravitational dynamics between the two theories. I expect that such a network is able to find relativistic corrections to the Newtonian snapshots that are of higher order than those obtained from power spectra and bispectra analysis. Further, it may also reveal which configurations of Fourier modes k yield the highest bispectral power, which for now is mainly trial and error.

Contents

1	Introd	uction	1
	1.1	Motivation	1
	1.2	Outline	1
	1.3	Aim	1
	1.4	Nomenclature	1
ı	Cosmo	logical Structure Formation	3
• 2		ninaries	5
2	2.1		5
	۷.۱	General Relativity	5 5
		2.1.1 Einstein's Field Equations	5 5
			5 5
		2.1.3 Geodesic Equation	5 5
	2.2	2.1.4 The Stress-Energy Tensor	5 5
^		Useful Relations	5 7
3	_	ground Cosmology	
	3.1	The homogeneous Universe	7
		3.1.1 The Cosmological Principle	7
		3.1.2 The Robertson-Walker Metric	7
	0.0	3.1.3 The Friedmann Equations	7
	3.2	My Universe is loaded with	7
	3.3	Thermal History of the Universe	7
4		rbation Theory	9
	4.1	Initial Conditions	9
	4.2	Transfer Functions	9
	4.3	Power Spectra	9
	4.4	Linear Evolution	9
	4.5	Non-linear Evolution	9
	4.6	Bispectra	9
		4.6.1 Analytical Bispectum	9
5	Simul	ation theory	11
	5.1	N-body simulations	11
		5.1.1 Describing a box of particles	11
		5.1.2 Forces and Fields	11
		5.1.3 Mass Assignment Schemes	11
		5.1.4 Validity of Box	11
	5.2	Newtonian Approach	11
	5.3	General Relativistic Approach	11

Contents

II	Machin	e Lear	ning																	13
6	Funda	mental	Elements of Machir	ne Lea	rnir	ng														15
	6.1		ction																	15
	6.2		Algebra																	15
	6.3		oility and Information																	15
	6.4		Machine Learning .																	15
		6.4.1	Estimators, Bias,																	15
		6.4.2	Maximum Likeliho																	16
		6.4.3	Bayesian Statistic																	16
		6.4.4	Supervised Learn																	16
		6.4.5	Unsupervised Lea																	16
7	Neura	l Netwo	rks																	17
	7.1		d pass - Prediction																	17
		7.1.1	Activation function																	17
		7.1.2	Loss functions																	17
	7.2	Backpr	opagation - Training																	17
		7.2.1	Gradient descent	_																17
		7.2.2	Optimizers																	17
		7.2.3	Regularization .																	17
8	Convo		Neural Networks .																	19
Ū	8.1		ution																	19
	8.2		ayers																	19
	0.2	8.2.1	Convolutional laye																	19
		8.2.2	Pooling layers																	19
		8.2.3	Dropout layers .																	19
		0.2.0	Bropout layers .		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
Ш	Acquii	ring Da	ta																	21
9	Simula	ations.																		23
	9.1	Parame	eters																	23
		9.1.1	Cosmological par	amete	rs															23
		9.1.2	Primordial power	spectr	um															23
		9.1.3	Box parameters .	٠																24
		9.1.4	Seeds																	24
		9.1.5	Output																	24
10	Data \	√erificati	•																	25
	10.1	Slices	of Datacubes																	25
	10.2	Powers	spectra from Simula																	25
	10.3		spectra from Datacu																	25
	10.4		cal Bispectra																	25
	10.5	-	<u>=</u>																	25
	. 0.0	•	Binning																	25
			Bispectra																	25
11	Traina	ble Data																		33
	11.1																			33
	11.2		nage from index																	33
					•	•	•	•		•	•	•		•	•	•	•	•	•	50

List of Figures

10.1	Slice 0					26
10.2	Average matter power spectra at different redshifts					27
10.3	Average potential power spectra at different redshifts.					28
10.4	Angles in arbitrary bispectrum triangle configuration.		•			29
11.1	Outline of data structure					34

List of Figures

List of Tables

9.1	Cosmological parameters								23
9.2	Primordial power spectra parameters								23
9.3	Box parameters								24

Preface

Here comes your preface, including acknowledgments and thanks. $\,$

Preface

Introduction

This is the introduction that will shortly be written. How fast does things change.

- 1.1 Motivation
- 1.2 Outline
- 1.3 Aim
- 1.4 Nomenclature

Part I Cosmological Structure Formation

Preliminaries

2.1 General Relativity

2.1.1 Einstein's Field Equations

$$G_{\mu\nu} = 8\pi G T_{\mu\nu} \tag{2.1}$$

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R \tag{2.2}$$

$$R = g^{\mu\nu} R_{\mu\nu} \tag{2.3}$$

$$R_{\mu\nu} = \partial_{\rho}\Gamma^{\rho}_{\mu\nu} - \partial_{\nu}\Gamma^{\rho}_{\mu\rho} + \Gamma^{\rho}_{\mu\nu}\Gamma^{\sigma}_{\rho\sigma} - \Gamma^{\rho}_{\mu\sigma}\Gamma^{\sigma}_{\nu\rho}$$
 (2.4)

2.1.2 Riemann Connection and Covariant Derivatives

$$\Gamma^{\rho}_{\mu\nu} = \frac{1}{2} g^{\rho\sigma} \left(\partial_{\mu} g_{\nu\sigma} + \partial_{\nu} g_{\mu\sigma} - \partial_{\sigma} g_{\mu\nu} \right) \tag{2.5}$$

$$\nabla_{\mu}T^{\mu}_{\nu} = \partial_{\mu}T^{\mu}_{\nu} + \Gamma^{\mu}_{\mu\alpha}T^{\alpha}_{\nu} - \Gamma^{\alpha}_{\mu\nu}T^{\mu}_{\alpha}$$
 (2.6)

2.1.3 Geodesic Equation

$$\frac{d^2x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\alpha\beta} \frac{dx^{\alpha}}{d\tau} \frac{dx^{\beta}}{d\tau} = 0 \tag{2.7}$$

2.1.4 The Stress-Energy Tensor

$$T_{\mu\nu} = (\rho + p)u_{\mu}u_{\nu} + pg_{\mu\nu} \tag{2.8}$$

2.2 Useful Relations

Chapter 2. Preliminaries

Background Cosmology

3.1 The homogeneous Universe

In this chapter I will focus on explaining the background cosmology in light of a homogeneous universe. A natural place to start is the cosmological principle, followed by a description of the geometry of space itself. If not otherwise stated, the development of this chapter is based on Dodelson and F. Schmidt 2020, Weinberg 2008 and TODO: cite Baumann

- 3.1.1 The Cosmological Principle
- 3.1.2 The Robertson-Walker Metric

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\Omega^{2} \right]$$
(3.1)

- 3.1.3 The Friedmann Equations
- 3.2 My Universe is loaded with...
- 3.3 Thermal History of the Universe

Chapter 3. Background Cosmology

Perturbation Theory

- 4.1 Initial Conditions
- 4.2 Transfer Functions
- 4.3 Power Spectra
- 4.4 Linear Evolution
- 4.5 Non-linear Evolution

4.6 Bispectra

The bispectra are powerful tools for studying the non-linear evolution of the density field. The bispectrum is defined as the Fourier transform of the three-point correlation function, and is given by:

$$\langle \delta(\mathbf{k}_1)\delta(\mathbf{k}_2)\delta(\mathbf{k}_3)\rangle = (2\pi)^3 \delta_D \left(\sum_i \mathbf{k}_i\right) B(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$$
 (4.1)

4.6.1 Analytical Bispectum

$$B_{\delta}^{(3)}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = 2\mathcal{P}_{\delta}(k_1)\mathcal{P}_{\delta}(k_2)F_2(\mathbf{k}_1, \mathbf{k}_2) + \text{cyc}$$

$$(4.2)$$

$$F_2(\mathbf{k}_1, \mathbf{k}_2) = \frac{5}{7} + \frac{x}{2} \left(\frac{k_1}{k_2} + \frac{k_2}{k_1} \right) + \frac{2}{7} x^2, \tag{4.3}$$

where $x = \hat{\mathbf{k}}_1 \cdot \hat{\mathbf{k}}_2 = \cos \theta_{12}$, where θ_{12} is the angle spanned by \mathbf{k}_1 and \mathbf{k}_2 . We could thus consequently write: $F_2(\mathbf{k}_1, \mathbf{k}_2) = F_2(k_1, k_2, \theta_{12})$ TODO: keep this here?

Bispectrum of potential Turn this into the bispectrum of the potential, and then use the Poisson equation to get the bispectrum of the density field. Start with the Poisson equation (at late times), valid for all scales as long as $\delta_{\rm m}$ is given in synchronous gauge:

$$k^{2}\Phi(\mathbf{k}, a) = 4\pi G a^{2} \rho_{\mathrm{m}}(a) \delta_{\mathrm{m}}(\mathbf{k}, a)$$

$$\Phi(\mathbf{k}, a) = \frac{3}{2} \Omega_{\mathrm{m}} H_{0}^{2} \frac{\delta_{\mathrm{m}}(\mathbf{k}, a)}{ak^{2}} \equiv \frac{\mathcal{C}(a)}{k^{2}} \delta_{\mathrm{m}}(\mathbf{k}, a)$$
(4.4)

where in the last step I used that $\rho_{\rm m}(a) = \Omega_{\rm m} \rho_{\rm crit} a^{-3}$ and $8\pi G \rho_{\rm crit} = 3H_0^2$. I also defined $C(a) \equiv 3\Omega_{\rm m} H_0^2/(2a)$.

$$\langle \Phi(\mathbf{k}_{1}, a) \Phi(\mathbf{k}_{2}, a) \Phi(\mathbf{k}_{3}, a) \rangle = \frac{\mathcal{C}(a)^{3}}{k_{1}^{2} k_{2}^{2} k_{3}^{2}} \langle \delta_{\mathrm{m}}(\mathbf{k}_{1}, a) \delta_{\mathrm{m}}(\mathbf{k}_{2}, a) \delta_{\mathrm{m}}(\mathbf{k}_{3}, a) \rangle$$

$$(2\pi)^{3} \delta_{D} \left(\sum_{i} \mathbf{k}_{i} \right) B_{\Phi}(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}) = \frac{\mathcal{C}(a)^{3}}{k_{1}^{2} k_{2}^{2} k_{3}^{2}} (2\pi)^{3} \delta_{D} \left(\sum_{i} \mathbf{k}_{i} \right) B_{\delta}(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3})$$

$$B_{\Phi}(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}) = \frac{\mathcal{C}(a)^{3}}{k_{1}^{2} k_{2}^{2} k_{3}^{2}} B_{\delta}(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3})$$

$$(4.5)$$

TODO: fix some stuff with a above Which leads to:

$$B_{\Phi}^{(3)}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = \frac{\mathcal{C}(a)^3}{k_1^2 k_2^2 k_3^2} \left[2\mathcal{P}_{\delta}(k_1) \mathcal{P}_{\delta}(k_2) F_2(\mathbf{k}_1, \mathbf{k}_2) + \text{cyc} \right]$$
(4.6)

Using the same logic I find a relation between the power spectrum of the gravitational potential and the matter contrast:

$$\mathcal{P}_{\Phi}(k,a) = \frac{\mathcal{C}(a)^2}{k^4} \mathcal{P}_{\delta}(k,a) \iff \mathcal{P}_{\delta}(k,a) = \frac{k^4}{\mathcal{C}(a)^2} \mathcal{P}_{\Phi}(k,a) \tag{4.7}$$

enables me to write:

$$\mathcal{P}_{\delta}(k_1)\mathcal{P}_{\delta}(k_2) = \frac{k_1^4 k_2^4}{\mathcal{C}(a)^4} \mathcal{P}_{\Phi}(k_1) \mathcal{P}_{\Phi}(k_2)$$
 (4.8)

This again leads to the following:

$$B_{\Phi}^{(3)}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = \frac{\mathcal{C}(a)^{-1}}{k_1^2 k_2^2 k_3^2} \left[2\mathcal{P}_{\Phi}(k_1) \mathcal{P}_{\Phi}(k_2) \tilde{F}_2(\mathbf{k}_1, \mathbf{k}_2) + \text{cyc} \right]$$
(4.9)

where the modified F_2 -kerner is given by:

$$\tilde{F}_2(\mathbf{k}_1, \mathbf{k}_2) \equiv k_1^4 k_2^4 \left[\frac{5}{7} + \frac{x}{2} \left(\frac{k_1}{k_2} + \frac{k_2}{k_1} \right) + \frac{2}{7} x^2 \right]$$
(4.10)

Simulation theory

Some theory and history as to how to conduct N-body simulations.

- 5.1 N-body simulations
- 5.1.1 Describing a box of particles
- 5.1.2 Forces and Fields
- 5.1.3 Mass Assignment Schemes
- 5.1.4 Validity of Box
- 5.2 Newtonian Approach
- 5.3 General Relativistic Approach

Chapter 5. Simulation theory

Part II Machine Learning

Fundamental Elements of Machine Learning

6.1 Introduction

In this chapter I will give a brief introduction into machine learning. This includes a mathematical description of some fundamental concepts common across numerous machine learning models. The more advanced models will be dealt with at a later stage. If not otherwise stated, the following chapter is based on Goodfellow, Bengio and Courville 2016 and Hastie, Tibshirani and Friedman 2009.

6.2 Linear Algebra

maybe

6.3 Probability and Information Theory

maybe

6.4 Basic Machine Learning

TODO: Fill more here

6.4.1 Estimators, Bias, Variance and Error

Estimators Based on the assumption that there exists some true parameter(s) $\boldsymbol{\theta}$ which remain unknown, we are able to make predictions and estimations of such parameter(s). Let's say we have m independent and identically distributed (i.i.d.) random variables $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$ drawn from the same probability distribution $p(\mathbf{x})$. An estimator of the true values $\boldsymbol{\theta}$ is any function of the data such that $\hat{\boldsymbol{\theta}}_m = g(\mathbf{x}_1, \dots, \mathbf{x}_m)$, where $\hat{\boldsymbol{\theta}}$ is the estimate of $\boldsymbol{\theta}$. This is known as point estimation, as we are estimating a single value. This definition does not pose any restrictions on the function g. However, a good estimator would yield an estimate $\hat{\boldsymbol{\theta}}_m$ that is close to the true value $\boldsymbol{\theta}$.

¹This is the frequentist perspective of statistics

Function estimators Say we want to predict a variable \mathbf{y} given some vector \mathbf{x} . We assume the true variable \mathbf{y} is given by some function approximation $f(\mathbf{x})$ plus some error ϵ : $\mathbf{y} = f(\mathbf{x}) + \epsilon$. The aim is then to estimate the function f with the estimator \hat{f} . If we then realise that \hat{f} is really just a point estimator in function space, the two above concepts are equivalent.

Bias The bias of the estimator $\hat{\boldsymbol{\theta}}_m$ is defined as the difference between the expected value of the estimator and the true value of the parameter: $\operatorname{bias}(\hat{\boldsymbol{\theta}}_m) = \mathbb{E}[\hat{\boldsymbol{\theta}}_m] - \boldsymbol{\theta}$. An unbiased estimator has zero bias, i.e. $\mathbb{E}[\hat{\boldsymbol{\theta}}_m] = \boldsymbol{\theta}$. An estimator is asymptotically unbiased if its bias approaches zero as the number of data points m approaches infinity, i.e. $\lim_{m\to\infty} \mathbb{E}[\hat{\boldsymbol{\theta}}_m] = \boldsymbol{\theta}$.

Variance

Standard Error

Mean Squared Error

- 6.4.2 Maximum Likelihood Estimation
- 6.4.3 Bayesian Statistics
- 6.4.4 Supervised Learning
- 6.4.5 Unsupervised Learning

Neural Networks

- 7.1 Forward pass Prediction
- 7.1.1 Activation functions
- 7.1.2 Loss functions
- 7.2 Backpropagation Training
- 7.2.1 Gradient descent
- 7.2.2 Optimizers
- 7.2.3 Regularization

Chapter 7. Neural Networks

Convolutional Neural Networks

- 8.1 Convolution
- 8.2 New Layers
- 8.2.1 Convolutional layers
- 8.2.2 Pooling layers
- 8.2.3 Dropout layers

Chapter 8. Convolutional Neural Networks

Part III Acquiring Data

Chapter 9

Simulations

9.1 Parameters

When performing simulations, it was import to keep all parameters fixed for all the different simulations. The only thing that was changed was the random seed.

9.1.1 Cosmological parameters

The relevant cosmological parameters are the dimensionless Hubble factor h, the baryon and cold dark matter densities Ω_b and $\Omega_{\rm CDM}$, the Cosmic Microwave Background temperature $T_{\rm CMB}$ and the effective number of ultra-relativistic neutrinos $N_{\rm ur}$.

Table 9.1: Cosmological parameters

Parameter	Value	Unit
h	0.67556	_
Ω_b	0.022032	_
Ω_{CDM}	0.12038	_
$T_{ m CMB}$	2.7255	K
$N_{ m ur}$	3.046	_

9.1.2 Primordial power spectrum

The primordial power spectrum, as TODO: link to when written, contains the pivot scale k_{piv} , the primordial amplitude, \mathcal{A}_{s} and the spectral index, n_{s} .

Table 9.2: Primordial power spectra parameters

Parameter	Value	Unit
$k_{ m piv}$	0.05	${ m Mpc^{-1}}$
\mathcal{A}_{s}	$\begin{array}{c} 3.03 \\ 2.215 \cdot 10^{-9} \\ 0.9619 \end{array}$	-
$n_{ m s}$	0.9619	-

9.1.3 Box parameters

The relevant box parameters were the initial redshift $z_{\rm ini}$ where the simulations were started from. The simulations box itself was characterised by the physical length L, represented on a cube grid of size $N_{\rm grid}^3$, resulting in a resolution of $\Delta_{\rm res} = L/N_{\rm grid}$. The courant factor TODO: fill and time step limit TODO: fill. This resulted in a fundamental

Parameter Value Unit 100 $z_{\rm ini}$ L5120 Mpc 256 N_{grid} рх $20 (= L/N_{\rm grid})$ $\begin{array}{c} \rm Mpc~px^{-1} \\ ? \end{array}$ $\Delta_{\rm res}$ Courant factor Time step limit 0.04

Table 9.3: Box parameters

frequency of $k_{\rm F}=2\pi/L$ and Nyquist frequency $k_{\rm N}=\pi/\Delta_{\rm res}$ TODO: what with units?

9.1.4 Seeds

In order to initialise the simulations we used random seeds, one for each simulation. This ensured that analysis performed on different simulations were of different realisations of the simulated universe, essential statistical independence. The seeds, denoted as S ranged from 0 to 2000, and consisted of the following set:

$$\{S \in \mathbb{Z} | 0 \le S < 2000\} \tag{9.1}$$

9.1.5 Output

$$z_{\rm d} = \{20, 15, 10, 5, 1, 0\} \tag{9.2}$$

$$z_{p} = \{100, 50, 20, 15, 10, 6, 5, 4, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0\}$$
(9.3)

$$\mathcal{D}(S, z_{\rm d}) \tag{9.4}$$

$$\mathcal{D}_{\Phi}(S, z_{\mathrm{p}}) \tag{9.5}$$

$$\mathcal{D}_{\delta}(S, z_{\mathrm{p}}) \tag{9.6}$$

Chapter 10

Data Verification

- 10.1 Slices of Datacubes
- 10.2 Powerspectra from Simulations
- 10.3 Powerspectra from Datacubes
- 10.4 Analytical Bispectra

$$B^{(3)}(k_1, k_2, k_3) = 2\mathcal{P}(k_1)\mathcal{P}(k_2)F_2(\mathbf{k}_1, \mathbf{k}_2) + \text{cyc}$$
(10.1)

$$F_2(\mathbf{k}_1, \mathbf{k}_2) = \frac{5}{7} + \frac{x}{2} \left(\frac{k_1}{k_2} + \frac{k_2}{k_1} \right) + \frac{2}{7} x^2, \tag{10.2}$$

where $x = \hat{\mathbf{k}}_1 \cdot \hat{\mathbf{k}}_2 = \cos \theta_{12}$, where θ_{12} is the angle spanned by \mathbf{k}_1 and \mathbf{k}_2 . We could thus consequently write: $F_2(\mathbf{k}_1, \mathbf{k}_2) = F_2(k_1, k_2, \theta_{12})$

Given k_1 and k_2 and θ_{12} we have the following relations, with reference to Section 10.4:

$$\alpha = \pi - \theta_{12}$$

$$\beta = \pi - \theta_{23}$$

$$\gamma = \pi - \theta_{31}$$
(10.3)

From cosine rule:

$$k_3 = \sqrt{k_1^2 + k_2^2 - 2k_1k_2\cos\alpha} \tag{10.4}$$

From the rule of sines TODO: explain more?:

$$\beta = \arcsin\left(\frac{k_1}{k_3}\sin\alpha\right)$$

$$\gamma = \arcsin\left(\frac{k_2}{k_3}\sin\alpha\right)$$
(10.5)

- 10.5 Bispectra from Cube
- 10.5.1 Binning
- 10.5.2 Bispectra

Figure 10.1: Slice 0

Figure 10.2: Average matter power spectra at different redshifts.

Figure 10.3: Average potential power spectra at different redshifts.

 $\textbf{Figure 10.4:} \ \textbf{Angles in arbitrary bispectrum triangle configuration.}$

Chapter 10. Data Verification

Chapter 11

Trainable Dataset

The raw data are the set of cubes generated for each random seed S, at each redshift $z_{\rm d}$ for both gravity theories. This need to be converted into a trainable dataset for use with a machine learning algorithm. One possibility is to pass the whole cube as input data into an algorithm. However, for algorithms like CNNs this is not a good idea as it would involve three-dimensional convolutional kernels which greatly increase the training time of the network TODO: source?. Instead, I will use a method similar to the one used by TODO: find source for this where they used a two-dimensional slice of the three-dimensional cube as input data. I will refer to one such slice as an *image*. Following this, I extract slices from each datacube, along all axes with a stride s. This will result in a total of $N_{\rm image} = N_{\rm axes} N_{\rm grid}/s$ images per cube, with dimensions $(s, N_{\rm grid}, N_{\rm grid})$. The whole dataset will then consist of $N_{\rm cubes} N_{\rm axes} N_{\rm grid}/s$ images.

11.1 Gathering the cubes

Since the output from each redshift

11.2 Find image from index

Given an index i of an image in the dataset, I need to find the corresponding cube, redshift and slice. This is done by the following algorithm:

Algorithm 1 Find slice from index

some

Figure 11.1: Outline of data structure.

Bibliography

- Adamek, Julian et al. (29th July 2016). 'gevolution: a cosmological N-body code based on General Relativity'. In: *Journal of Cosmology and Astroparticle Physics* 2016.7, pp. 053–053. ISSN: 1475-7516. DOI: 10.1088/1475-7516/2016/07/053. arXiv: 1604. 06065[astro-ph,physics:gr-qc,physics:physics]. URL: http://arxiv.org/abs/1604.06065 (visited on 23/08/2023).
- Alqaraawi, Ahmed et al. (3rd Feb. 2020). Evaluating Saliency Map Explanations for Convolutional Neural Networks: A User Study. arXiv: 2002.00772[cs]. URL: http://arxiv.org/abs/2002.00772 (visited on 23/10/2023).
- Chisari, Nora Elisa and Matias Zaldarriaga (2nd June 2011). 'Connection between Newtonian simulations and general relativity'. In: *Physical Review D* 83.12, p. 123505. ISSN: 1550-7998, 1550-2368. DOI: 10.1103/PhysRevD.83.123505. arXiv: 1101.3555[astro-ph,physics:gr-qc]. URL: http://arxiv.org/abs/1101.3555 (visited on 23/08/2023).
- Dodelson, S. and F. Schmidt (2020). *Modern Cosmology*. Elsevier Science. ISBN: 9780128159484. URL: https://books.google.no/books?id=GGjfywEACAAJ.
- Goodfellow, Ian, Yoshua Bengio and Aaron Courville (2016). *Deep Learning*. http://www.deeplearningbook.org. MIT Press.
- Green, Stephen R. and Robert M. Wald (15th Mar. 2012). 'Newtonian and Relativistic Cosmologies'. In: *Physical Review D* 85.6, p. 063512. ISSN: 1550-7998, 1550-2368. DOI: 10.1103/PhysRevD.85.063512. arXiv: 1111.2997[astro-ph,physics:gr-qc]. URL: http://arxiv.org/abs/1111.2997 (visited on 23/08/2023).
- Hastie, T., R. Tibshirani and J.H. Friedman (2009). *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. Springer series in statistics. Springer. ISBN: 9780387848846. URL: https://books.google.no/books?id=eBSgoAEACAAJ.
- Jeong, Donghui, Fabian Schmidt and Christopher M. Hirata (4th Jan. 2012). 'Large-scale clustering of galaxies in general relativity'. In: *Physical Review D* 85.2, p. 023504. ISSN: 1550-7998, 1550-2368. DOI: 10.1103/PhysRevD.85.023504. arXiv: 1107.5427[astro-ph]. URL: http://arxiv.org/abs/1107.5427 (visited on 23/08/2023).
- Selvaraju, Ramprasaath R. et al. (Feb. 2020). 'Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization'. In: *International Journal of Computer Vision* 128.2, pp. 336–359. ISSN: 0920-5691, 1573-1405. DOI: 10.1007/s11263-019-01228-7. arXiv: 1610.02391[cs]. URL: http://arxiv.org/abs/1610.02391 (visited on 23/10/2023).
- Weinberg, S. (2008). *Cosmology*. Cosmology. OUP Oxford. ISBN: 9780191523601. URL: https://books.google.no/books?id=nqQZdg020fsC.