

GradCraft: Elevating Multi-task Recommendations through Holistic Gradient Crafting

USTC & Kuaishou Technology

Yimeng Bai, Yang Zhang, Fuli Feng, Jing Lu, Xiaoxue Zang, Chenyi Lei, Yang Song

Outline

- Background
- Methodology
- Experiment
- Conclusion

Background

What is Multi-task Recommendation

Background

Challenge in Multi-task Recommendations

Task Heterogeneity

Viewing: long view

Engagement: like

Engagement behavior is sparser than viewing behavior

Gradient perspective: gradient magnitudes are different.

$$\parallel g_A \parallel = 10 \qquad \parallel g_B \parallel = 1e-4$$

TaskA: long view

TaskB: like

TaskC: follow

 \Longrightarrow

. . .

Gradient perspective: gradient directions are different.

Conflicting task pairs (inner product < 0)

- Gradient Magnitude Adjustment
 - ☐ **Key:** ensure an appropriate level of magnitude balance
 - ☐ How: align gradient norm with the maximum norm among tasks

For
$$i$$
 in range(T): $\hat{g}_i = \tau \frac{\max_j \|g_j\|}{\|g_i\|} g_i + (1-\tau)g_i$,

Number of tasks Hyper-parameter: control the proximity to the maximum norm

After adjustment:
$$\max_{j} \|g_j\| / \|\hat{g}_i\| < 1/\tau$$

Mitigate interference from magnitudes for subsequent manipulation

> Gradient Direction Deconfliction

☐ **Key:** ensure task gradient does not conflict with other gradients

☐ How: global gradient projection

$$g_C g_A^T < 0$$

$$g_C g_B^T < 0$$

Global gradient projection

$$g''_C g_A^T = 0$$
$$g''_C g_B^T = 0$$

- Gradient Direction Deconfliction
 - ☐ For each task, our method **simultaneously** addresses all conflicting tasks
 - ☐ Comparison: PCGrad [1] is one vs one, our projection method is one vs all
 - When only two tasks: our projection method degrades to PCGrad

[1] Gradient Surgery for Multi-Task Learning. NeuralIPS 2020.

- Gradient Direction Deconfliction
 - □ Formulation of global gradient projection

Overall Framework of GradCraft

- \blacksquare 1. Compute all task losses, $[l_1, ..., l_T]$
- \square 2. Obtain all task gradients, $[g_1, ..., g_T]$
- \square 3. Gradient magnitude adjustment, $[\hat{g}_1, ..., \hat{g}_T]$
- \square 4. Gradient direction deconfliction, $[\tilde{g}_1, ..., \tilde{g}_T]$
- **□** 5. Gradient combination, just average as $\frac{1}{T}\sum_{i=1}^{T} \tilde{g}_i$
- □ 6. Gradient update by the optimizer (shared parameters)

- Offline Experiment Setting
 - □ Dataset: Kuaishou (private), Wechat (public)
 - ☐ Task (Binary for simplicity):
 - Viewing behavior: EffectiveView (EV), LongView (LV), CompleteView (CV)
 - Engagement behavior: Like, Follow, Forward
 - Evaluation: average value of all tasks' AUC and GAUC
 - □ Baseline:
 - Simple: Single, EqualWeighting
 - Other multi-task learning methods like Uncertainty and PCGrad

➤ Offline Experiment Result

-							Wechat						
Method		Single	EW	UC	DWA	MGDA	PCGrad	PCGrad+	GradVac	CAGrad	IMTL	DBMTL	GradCraft
AUC	EV	0.7641	0.7641	0.7633	0.7646	0.7569	0.7651	0.7644	0.7648	0.7647	0.7629	0.7636	0.7653
	LV	0.8484	0.8484	0.8479	0.8490	0.8429	0.8491	0.8486	0.8489	0.8489	0.8478	0.8479	0.8490
	CV	0.7610	0.7604	0.7596	0.7620	0.7515	0.7614	0.7611	0.7613	0.7614	0.7589	0.7597	0.7616
	Like	0.8661	0.8664	0.8671	0.8656	0.8604	0.8675	0.8668	0.8665	0.8662	0.8669	0.8650	0.8661
	Fol	0.8829	0.8810	0.8763	0.8809	0.8803	0.8825	0.8827	0.8791	0.8801	0.8827	0.8750	0.8888
	For	0.8940	0.9012	0.9006	0.8983	0.8937	0.8968	0.9000	0.8991	0.9003	0.9008	0.8987	0.9001
	AV-A	0.8361	0.8369	0.8358	0.8367	0.8309	0.8371	0.8373	0.8366	0.8369	0.8367	0.8350	0.8385
	RI-A	0.000%	0.091%	-0.038%	0.078%	-0.639%	0.118%	0.135%	0.065%	0.099%	0.056%	-0.129%	0.278%
GAUC	EV	0.6207	0.6209	0.6194	0.6189	0.6055	0.6226	0.6195	0.6218	0.6200	0.6201	0.6178	0.6221
	LV	0.7731	0.7745	0.7740	0.7739	0.7684	0.7754	0.7736	0.7755	0.7743	0.7742	0.7732	0.7751
	CV	0.6499	0.6503	0.6489	0.6499	0.6345	0.6515	0.6493	0.6509	0.6491	0.6488	0.6464	0.6518
	Like	0.6324	0.6382	0.6405	0.6368	0.6328	0.6422	0.6380	0.6384	0.6390	0.6393	0.6385	0.6383
	Fol	0.6847	0.6820	0.6962	0.6915	0.6874	0.6899	0.6870	0.6721	0.6930	0.6894	0.6896	0.7003
	For	0.7012	0.7129	0.7154	0.7141	0.7021	0.7164	0.7140	0.7152	0.7135	0.7144	0.7124	0.7176
	AV-G	0.6770	0.6798	0.6824	0.6809	0.6718	0.6830	0.6802	0.6790	0.6815	0.6810	0.6796	0.6842
	RI-G	0.000%	0.413%	0.791%	0.559%	-0.809%	0.887%	0.472%	0.288%	0.653%	0.589%	0.380%	1.056%

Online Experiment on Kuaishou

```
Setting:
  Traffic: 1 week, 15 million users
  Baseline: the SOTA multi-task learning method on our platform
■ Evaluation:
     the average time users spend watching videos (WT)
     the number of effective video viewing records (VV)
   ■ the instances of video sharing (Share)
Result: WT +0.505%, VV +0.950%, Share +1.746%
```

In-depth Analysis

□ Ablation Study

Magnitude: \checkmark τ : control the proximity \checkmark ϵ : allow the positive inner product

Direction: \checkmark Projection: global (one vs all)

		Method	AV-A	RI-A	AV-G	RI-G
		GradCraft	0.8385	0.278%	0.6842	1.056%
$\epsilon = 0$	←	GradCraft-fix ϵ	0.8382	0.250%	0.6837	0.981%
$\tau = 1$	•	GradCraft-fix $ au$	0.8365	0.039%	0.6798	0.392%
$\tau = 0$		GradCraft-ori	0.8370	0.113%	0.6835	0.959%
one vs one	<u> </u>	GradCraft-local	0.8371	0.118%	0.6830	0.887%

Effect of Task Number T

GradCraft scales up effectively with the increasing complexity introduced by a growing number of tasks.

Conclusion

- Multi-task Learning in RecSys
 - □ Challenge: task heterogeneity and cardinality
 - Motivation: appropriate magnitude balance and global direction balance
 - Methodology:
 - □ Gradient magnitude adjustment
 - Gradient direction deconfliction
 - ☐ Offline experiment on real-world datasets
 - Online experiments on Kuaishou platform
 - Future work: apply to other domains and improve the efficiency