RICA: Robocentric Indoor Crowd Analysis Dataset

Viktor Schmuck and Oya Celiktutan {viktor.schmuck; oya.celiktutan}@kcl.ac.uk

Centre for Robotics Research, Department of Engineering King's College London

Introduction

As robots become increasingly prevalent, a large number of practical applications demand that they autonomously navigate in indoor spaces, recognise and approach groups or individuals, and through human-robot interaction assist them. However, available datasets for indoor crowd analysis from a robot's perspective are really scarce and limited. This paper introduces the first multisensory, egocentric dataset from a robot's point of view (robocentric) for group detection and F-formation recognition in crowded spaces.

Data Collection

Recorded at a reception-style semi-public event in an indoor environment with Toyota's Human Support Robot (HSR) with:

- ► RGB-D camera ASUS Xtion PRO LIVE
- Wide angle camera Nippon Chemi-Con NCM13-J-02
- ► LIDAR sensor Laser measuring range sensor (UST-20LX)
- IMU data
- Joint position data

Data

- ► LIDAR data: 963 samples from −2.098 to 2.098 radians per sample
- Camera-to-subject distance: 0.1-25m
- In each frame: 1 to 8 people with an average of 3.92
- Annotated with the Actanno annotation tool [3] producing group-level (40366 images) and person-level (8148 images) annotations.

Comparison to JRDB

Sensor Type	Num. of Samples		Average Framerate	
	RICA	JRDB	RICA	JRDB
RGB camera	43,060	57,713	10.542	15.116
Depth camera	39,909	57,714	9.771	15.116
Wide-angle camera	17,877	58,313	4.377	15.273
Joint position	63,569	38,476	15.563	10.078
IMU	127,324	74,234	31.172	19.443
LIDAR	50,926	56,844	12.468	14.888

Fig. 1: Summary of the collected - unfiltered - data using robot's on-board sensors compared to the relevant recordings of JRDB [2].

Acknowledgement

We thank Toyota Motor Europe for providing the Toyota HSR robot as a development platform.

Toyota HSR

Fig. 2: Sensors of the Toyota HSR robot [4].

RGB and Wide-Angle Samples

Fig. 3: RGB (left) and Wide-angle camera (right) samples from the RICA dataset.

F-formations

Fig. 4: Group-level annotations also include group formations i.e. (a) L-arrangement, (b) face-to-face, (c) sideby-side, (d) semi-circular, (e) rectangular [1]

Annotated sample

Fig. 5: An annotated image recorded with the RGB camera, showing a person (ID 21) not belonging to any group, and two individuals (IDs 19-20) belonging to group ID 57, where the group formation of group ID 57 is annotated as *face-to-face*.

Evaluation

Benchmarking three methods on our RICA dataset, without fine-tuning:

- Histogram of Oriented Gradients (HOG) combined with non-maxima suppression (NMS)
- MobileNet-SSD (SSD) trained on MS-COCO, and then fine-tuned on VOC0712 – with centroid tracking
- YOLO trained on MS-COCO

Measured the intersection over union (IOU) values of bounding boxes against ground truth (GT).

Fig. 6: Flowchart of the evaluation method.

Results

Fig. 7: Histograms of IOU values for GT vs. (a) HOG; (b) YOLO; and (c) SSD. Red lines – min. IOU for True Positive detection. Green lines – IOU for desired detection.

Conclusion

- The best mean IOU score (0.64) was obtained with the SSD detector.
- ► Human detectors fall short and sometimes are unable to detect any humans. — 11% of all images in case of HOG+NMS and 0.7% for both SSD and YOLO.

Dataset access

The dataset will be made available at https://sairlab.github.io/rica/

Future Work

Design an unsupervised approach to group detection in indoor crowded scenes.

References

- [1] P. Marshall, Y. Rogers, and N. Pantidi. Using F-formations to analyse spatial patterns of interaction in physical environments. In *Proceedings of the ACM Conference on Computer Supported Cooperative Work, CSCW*, pages 445–454, 2011.
- [2] R. Martín-Martín, H. Rezatofighi, A. Shenoi, M. Patel, J. Gwak, N. Dass, A. Federman, P. Goebel, and S. Savarese. *JRDB: A Dataset and Benchmark for Visual Perception for Navigation in Human Environments*. 2019.
- [3] C. Wolf, E. Lombardi, J. Mille, O. Celiktutan, M. Jiu, E. Dogan, G. Eren, M. Baccouche, E. Dellandréa, C.-E. Bichot, C. Garcia, and B. Sankur. Evaluation of video activity localizations integrating quality and quantity measurements. *Computer Vision and Image Understanding*, 127:14–30, Oct. 2014.
- [4] T. Yamamoto, K. Terada, A. Ochiai, F. Saito, Y. Asahara, and K. Murase. Development of Human Support Robot as the research platform of a domestic mobile manipulator. *ROBOMECH Journal*, 6(1):4, Apr. 2019.