

Advanced Microprocessors

TINYML CHALLENGES

Dennis A. N. Gookyi

TinyML Challenges

Building Blocks of Computing Hardware

Building Blocks of Computing Hardware

Hardware

Software

Building Blocks of Computing Hardware

Hardware

Software

- Building Blocks of Computing Hardware
 - Hardware

Compute

Memory

Storage

- Building Blocks of Computing Hardware
 - Hardware

Microprocessor v.

Microcontroller

- Building Blocks of Computing Hardware
 - Hardware
 - Microprocessor: only one part of the puzzle

- Building Blocks of Computing Hardware
 - Hardware
 - Microcontroller

CPU	Read-Only Memory (ROM)	Read-Write Memory	
Timer	I/O Port	Serial Interface	

- Building Blocks of Computing Hardware
 - Hardware
 - Microcontroller: a complete package

- Building Blocks of Computing Hardware
 - Hardware
 - Microcontroller vs Microprocessor

Microprocessor

- Heart of a computer system
- Just the processor, memory and storage are external
- Mainly used in general purpose systems like laptops, desktops and servers
- Offers flexibility in design
- System size is big

Microcontroller

- Heart of an embedded system
- Memory and storage are all internal to the system
- Mainly used in specialized,
 fixed function systems like
 phones, MP3 players, etc.
- Limited flexibility in design
- System size is tiny

- Building Blocks of Computing Hardware
 - Hardware
 - Microcontroller vs Microprocessor

PI	а	tf	o	r	m
	u	ы	\mathbf{u}		

Compute

Memory

Storage

Power

Microprocessor	>	Microcontroller	
			Nano
1GHz-4GHz	~10X	1MHz-400MHz	64MHz
512MB-64GB	~10000X	2KB-512KB	256KB
64GB-4TB	~100000X	32KB-2MB	1MB
30W-100W	~1000X	150µW-23.5mW	

- Building Blocks of Computing Hardware
 - Hardware
 - Microcontroller

Implications

- How complicated is the running task?
- How much memory does it need to have?
- How long does the job have to perform?

Microcontroller
1MHz-400MHz
2KB - 512KB
32KB - 2MB
150µW-23.5mW

- Building Blocks of Computing Hardware
 - Computing hardware

- Building Blocks of Computing Hardware
 - Computing hardware

	Board	MCU / ASIC	Clock	Memory	Sensors	Radio
*	Himax WE-I Plus EVB	HX6537-A 32-bit EM9D DSP	400 MHz	2MB flash 2MB RAM	Accelerometer, Mic, Camera	None
	Arduino Nano 33 BLE Sense	32-bit nRF52840	64 MHz	1MB flash 256kB RAM	Mic, IMU, Temp, Humidity, Gesture, Pressure, Proximity, Brightness, Color	BLE
	SparkFun Edge 2	32-bit ArtemisV1	48 MHz	1MB flash 384kB RAM	Accelerometer, Mic, Camera	BLE
	Espressif EYE	32-bit ESP32-DOWD	240 MHz	4MB flash 520kB RAM	Mic, Camera	WiFi, BLE

- Building Blocks of Computing Hardware
 - Computing hardware

Board	MCU / ASIC	Clock	Memory	Sensors	Radio
Himax WE-I Plus EVB	HX6537-A 32-bit EM9D DSP	400 MHz	2MB flash 2MB RAM	Accelerometer, Mic. Camera	None
Arduino Nano 33 BLE Sense	32-bit nRF52840	64 MHz	1MB flash 256kB RAM	Mic. IMU, Temp. Humidity, Gesture, Pressure, Proximity, Brightness, Color	BLE
SparkFun Edge 2	32-bit ArtemisV1	48 MHz	1MB flash 384kB RAM	Accelerometer, Mic, Camera	BLE
Espressif EYE	32-bit ESP32-DOWD	240 MHz	4MB flash 520kB RAM	Mic, Camera	WiFi, BLE

- Building Blocks of Computing Hardware
 - Software

Hardware

Software

- Building Blocks of Computing Hardware
 - Software

Hardware

- Building Blocks of Computing Hardware
 - Software
 - Widely used operating systems

- Building Blocks of Computing Hardware
 - Software
 - Libraries

- Building Blocks of Computing Hardware
 - Software

- Building Blocks of Computing Hardware
 - Portability trade-offs

- Building Blocks of Computing Hardware
 - Portability trade-offs

- Building Blocks of Computing Hardware
 - Portability trade-offs

Sacrifice portability across systems for efficiency in system performance and power efficiency

- Building Blocks of Computing Hardware
 - Summary
 - Embedded hardware is extremely limited in performance, power consumption and storage

 Embedded software is not as portable and flexible as mainstream computing

- Machine Learning
 - Deep Learning: Subset of Machine Learning in which multilayered neural networks learn from vast amounts of data

- Machine Learning
 - Neuron (Perceptron)

- Machine Learning
 - □ The Neural Network model architecture

- Machine Learning
 - ☐ ML model size growth

- Machine Learning
 - ML compute needs
 - In recent years, the amount of computing needed has grown remarkably fast
 - Compute requirements are doubling nearly every 3 to 4 months

ML COMPUTE NEEDS (FROM THE 1960S)

- Machine Learning
 - ML compute needs

Cloud TPU

- Machine Learning
 - ML model evolution

- Machine Learning
 - ML model evolution

- AlexNet (2012)
 - O 57.1% accuracy
 - O 61MB in size

- Machine Learning
 - ML model evolution

- VGGNet (2014) [VGG-16]
 - **71.5%** accuracy
 - 528MB in size

- Machine Learning
 - ML model evolution

- ResNet (2015)
 - **75.8%** accuracy
 - 22.7MB in size

- Machine Learning
 - ML model evolution

- MobileNet (2015)
 - MobileNetv1
 - 70.6% accuracy
 - **16.9MB** in size

- Machine Learning
 - ML model evolution

- MobileNet (2015)
 - O MobileNetv1
 - 70.6% accuracy
 - 16.9MB in size

Problem:

Our board (in your kit for Course 3) only has 256KB of RAM (memory) yet *MobileNetv1* needs 16.9MB!

- Machine Learning
 - Model compression techniques

Model Compression Techniques

Pruning

Quantization

Knowledge Distillation

...

- Machine Learning
 - Pruning

PRUNING SYNAPSES

- Machine Learning
 - Pruning

PRUNING NEURONS

- Machine Learning
 - Model compression techniques

Model Compression Techniques

Pruning

Quantization

Knowledge Distillation

...

- Machine Learning
 - Quantization

- Machine Learning
 - Runtimes

- Machine Learning
 - Runtimes

- Machine Learning
 - Runtimes

Less memory

Less compute power

Only focused on inference

- * Machine Learning
 - Runtimes

- Machine Learning
 - Runtimes
 - Key differences

Topology

Weights

Binary Size

Distributed Compute

Developer Background

Variable

Variable

Unimportant

Needed

ML Researcher

Fixed

Fixed

High Priority

Not Needed

Application Developer

- Machine Learning
 - Runtimes

Architecture

- Machine Learning
 - Runtimes

Even less memory

Even less compute power

Also, only focused on inference

- Machine Learning
 - Runtimes

- Machine Learning
 - Runtimes

Train a model

Convert model

Optimize model

Deploy model at Edge Make inferences at Edge

- Machine Learning
 - Runtimes

Train a model

Convert model

Optimize model

Deploy model at Edge Make inferences at Edge

- Machine Learning
 - Runtimes

Train a model

Convert model Optimize model

Deploy model at Edge Make inferences at Edge

- Machine Learning
 - Runtimes

- Machine Learning
 - Hardware

- Machine Learning
 - Hardware

Broadest Range of ML-optimized Processing Solutions

- Machine Learning
 - Hardware

Summary

KeyWord Spotting Audio Classification 50 KB

Anomaly Detection Sensor Classification 20 KB

Rpi-Pico (Cortex-M0+)

Arduino Nano (Cortex-M4)

Image Classification 250 KB+

Arduino Pro (Cortex-M7)

(Cortex-A)

(Cortex-A + GPU)

- Machine Learning
 - Hardware
 - ARM Cortex processor profiles

- Machine Learning
 - Hardware
 - ARM Cortex processor profiles

- Machine Learning
 - Hardware
 - ARM Cortex processor profiles

- Machine Learning
 - Hardware
 - ARM Cortex-M ISA

- Machine Learning
 - Hardware
 - ARM Cortex-M ISA

- Machine Learning
 - Hardware
 - ARM Cortex-M ISA

- Machine Learning
 - Hardware
 - ARM Cortex-M ISA

