

The Downward Closure Property of Frequent Patterns

- Observation: From TDB_{1:} T_1 : { a_1 , ..., a_{50} }; T_2 : { a_1 , ..., a_{100} }
 - We get a frequent itemset: $\{a_1, ..., a_{50}\}$
 - \square Also, its subsets are all frequent: $\{a_1\}$, $\{a_2\}$, ..., $\{a_{50}\}$, $\{a_1, a_2\}$, ..., $\{a_1, a_2\}$, ..., $\{a_1, a_2\}$, ...
 - There must be some hidden relationships among frequent patterns!
- The downward closure (also called "Apriori") property of frequent patterns
 - □ If **{beer, diaper, nuts}** is frequent, so is **{beer, diaper}**
 - Every transaction containing {beer, diaper, nuts} also contains {beer, diaper}
 - Apriori: Any subset of a frequent itemset must be frequent
- Efficient mining methodology
 - □ If any subset of an itemset S is infrequent, then there is no chance for S to be frequent—why do we even have to consider S!? ← A sharp knife for pruning!

Apriori Pruning and Scalable Mining Methods

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not even be generated! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Scalable mining Methods: Three major approaches
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
 - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)

Apriori: A Candidate Generation & Test Approach

- Outline of Apriori (level-wise, candidate generation and test)
 - Initially, scan DB once to get frequent 1-itemset
 - Repeat
 - □ Generate length-(k+1) candidate itemsets from length-k frequent itemsets
 - ☐ Test the candidates against DB to find frequent (k+1)-itemsets
 - Set k := k +1
 - Until no frequent or candidate set can be generated
 - Return all the frequent itemsets derived

The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k
F_k: Frequent itemset of size k
K := 1;
F_k := \{ \text{frequent items} \}; // \text{frequent 1-itemset} \}
While (F_k != \emptyset) do \{ // when F_k is non-empty
  C_{k+1} := candidates generated from F_k; // candidate generation
  Derive F_{k+1} by counting candidates in C_{k+1} with respect to TDB at minsup;
  k := k + 1
return \bigcup_k F_k // return F_k generated at each level
```

The Apriori Algorithm—An Example

Database TDB

Items

A, C, D

B, C, E

A, B, C, E

B, E

minsup = 2

1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

 F_1 {A} 2
{B} 3
{C} 3
{E} 3

 F_2

Tid

10

20

30

40

Itemset	sup
{A, C}	2
{B, C}	2
{B, E}	3
{C, E}	2

•

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

{A, B} {A, C} {A, E} {B, C} {B, E} {C, E}

 C_3 Itemset {B, C, E}

 $3^{\text{rd}} \operatorname{scan} \qquad F_3$

Itemset	sup
{B, C, E}	2

2nd scan

Apriori: Implementation Tricks

- How to generate candidates?
 - \square Step 1: self-joining F_k
 - Step 2: pruning
- Example of candidate-generation
 - \Box F_3 = {abc, abd, acd, ace, bcd}
 - \square Self-joining: $F_3 * F_3$
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - \Box acde is removed because ade is not in F_3
 - $\Box \quad C_4 = \{abcd\}$

Candidate Generation: An SQL Implementation

where $p.item_1 = q.item_1$, ..., $p.item_{k-2} = q.item_{k-2}$, $p.item_{k-1} < q.item_{k-1}$

- lacksquare Suppose the items in F_{k-1} are listed in an order
- Step 1: self-joining F_{k-1} insert into C_k select $p.item_1$, $p.item_2$, ..., $p.item_{k-1}$, $q.item_{k-1}$ from F_{k-1} as p, F_{k-1} as q
- Step 2: pruning for all *itemsets c in C_k* do for all *(k-1)-subsets s of c* do **if** *(s is not in F_{k-1})* **then delete** *c* **from** C_k

Apriori: Improvements and Alternatives

- Reduce passes of transaction database scans
 - □ Partitioning (e.g., Savasere, et al., 1995)

- Dynamic itemset counting (Brin, et al., 1997)
- Shrink the number of candidates
 - Hashing (e.g., DHP: Park, et al., 1995)

- Pruning by support lower bounding (e.g., Bayardo 1998)
- Sampling (e.g., Toivonen, 1996)
- Exploring special data structures
 - Tree projection (Agarwal, et al., 2001)
 - □ H-miner (Pei, et al., 2001)
 - Hypecube decomposition (e.g., LCM: Uno, et al., 2004)

Partitioning: Scan Database Only Twice

Theorem: Any itemset that is potentially frequent in TDB must be frequent in at least one of the partitions of TDB

- Method: (A. Savasere, E. Omiecinski and S. Navathe, VLDB'95)
 - Scan 1: Partition database (how?) and find local frequent patterns
 - Scan 2: Consolidate global frequent patterns (how to?)
- Why does this method guarantee to scan TDB only twice?

Direct Hashing and Pruning (DHP)

- DHP (Direct Hashing and Pruning): Reduce the number of candidates (J. Park, M. Chen, and P. Yu, SIGMOD'95)
- □ Observation: A *k*-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
 - Candidates: a, b, c, d, e
 - Hash entries
 - {ab, ad, ae}
 - □ {bd, be, de}
 - Frequent 1-itemset: a, b, d, e

Itemsets	Count
{ab, ad, ae}	35
{bd, be, de}	298
{yz, qs, wt}	58

Hash Table

ab is not a candidate 2-itemset if the sum of count of {ab, ad, ae} is below support threshold

Exploring Vertical Data Format: ECLAT

- ECLAT (Equivalence Class Transformation): A depth-first search algorithm using set intersection [Zaki et al. @KDD'97]
- ☐ Tid-List: List of transaction-ids containing an itemset
- □ Vertical format: $t(e) = \{T_{10}, T_{20}, T_{30}\}; t(a) = \{T_{10}, T_{20}\}; t(ae) = \{T_{10},$
- Properties of Tid-Lists
 - t(X) = t(Y): X and Y always happen together (e.g., t(ac) = t(d))
 - \Box $t(X) \subset t(Y)$: transaction having X always has Y (e.g., $t(ac) \subset t(ce)$)
- Deriving frequent patterns based on vertical intersections
- Using diffset to accelerate mining
 - Only keep track of differences of tids
 - $t(e) = \{T_{10}, T_{20}, T_{30}\}, t(ce) = \{T_{10}, T_{30}\} \rightarrow Diffset (ce, e) = \{T_{20}\}$

A transaction DB in Horizontal Data Format

Tid	Itemset	
10	a, c, d, e	
20	a, b, e	
30	b, c, e	

The transaction DB in Vertical Data Format

Item	TidList		
а	10, 20		
b	20, 30		
С	10, 30		
d	10		
е	10, 20, 30		

FPGrowth: Mining Frequent Patterns by Pattern Growth

- Idea: Frequent pattern growth (FPGrowth)
 - Find frequent single items and partition the database based on each such item
 - Recursively grow frequent patterns by doing the above for each partitioned database (also called conditional database)
 - To facilitate efficient processing, an efficient data structure, FP-tree, can be constructed
- Mining becomes
 - Recursively construct and mine (conditional) FP-trees
 - Until the resulting FP-tree is empty, or until it contains only one path single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Example: Construct FP-tree from a Transational DB

TID	Items in the Transaction	Ordered, frequent items	
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	
300	$\{b, f, h, j, o, w\}$	{ <i>f</i> , <i>b</i> }	
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$	

Scan DB once, find single item frequent pattern: Let min_support = 3

2. Sort frequent items in frequency descending order, f-list

3. Scan DB again, construct FP-tree

Divide and Conquer Based on Patterns and Data

- □ Pattern mining can be partitioned according to current patterns
 - □ Patterns containing p: p's conditional database: fcam:2, cb:1
 - Patterns having m but no p: m's conditional database: fca:2, fcab:1
- \Box p's conditional pattern base: transformed prefix paths of item p

Conditional pattern bases

<u>Item</u>	Conditional pattern base
C	f:3
а	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

Mine Each Conditional Pattern-Base Recursively

FP-tree

Conditional pattern bases

item cond. pattern base		
C	f:3	min_support = 3
а	fc:3	
b	fca:1, f:1, c:1	
m	fca:2, fca	ab:1
p	fcam:2, d	cb:1

 $\{\}$ f:3 f:3 c:3 c:3

- For each conditional pattern-base
 - Mine single-item patterns
 - Construct its FP-tree & mine it

```
p-conditional PB: fcam:2, cb:1 \rightarrow c:3
```

m-conditional PB: fca:2, $fcab:1 \rightarrow fca:3$

b-conditional PB: $fca:1, f:1, c:1 \rightarrow \phi$

Actually, for single branch FP-tree, all frequent patterns can be generated in one shot

m: 3
fm: 3, cm: 3, am: 3
fcm: 3, fam:3, cam: 3
fcam: 3

FP-tree

A Special Case: Single Prefix Path in FP-tree

- □ Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
- {} Reduction of the single prefix path into one node
- $a_1:n_1$ Concatenation of the mining results of the two parts

Scaling FP-growth by Database Projection

- What if FP-tree cannot fit in memory? DB projection
 - Project the DB based on patterns
 - Construct & mine FP-tree for each projected DB
- Parallel projection vs. partition projection
 - Parallel projection: Project the DB on each frequent item
 - Space costly, all partitions can be processed in parallel
 - Partition projection: Partition the DB in order
 - Passing the unprocessed parts to subsequent partitions

CLOSET+: Mining Closed Itemsets by Pattern-Growth

- Efficient, *direct* mining of closed itemsets
- Ex. Itemset merging: If Y appears in every occurrence of X, then Y is merged with X

□ d-	-proj. dk	o: { <u>ac</u> e <u>f</u> ,	<u>acf</u> } →	acfd-proj.	db: {e},	thus we g	get: acfd:2
------	-----------	-----------------------------	----------------	------------	----------	-----------	-------------

- Many other tricks (but not detailed here), such as
 - Hybrid tree projection
 - Bottom-up physical tree-projection
 - Top-down pseudo tree-projection
 - Sub-itemset pruning
 - Item skipping
 - Efficient subset checking
- ☐ For details, see J. Wang, et al., "CLOSET+:", KDD'03

TID	Items
1	acdef
2	abe
3	cefg
4	acdf

Let minsupport = 2

a:3, c:3, d:2, e:3, f:3

F-List: a-c-e-f-d

Recommended Readings

- R. Agrawal and R. Srikant, "Fast algorithms for mining association rules", VLDB'94
- A. Savasere, E. Omiecinski, and S. Navathe, "An efficient algorithm for mining association rules in large databases", VLDB'95
- J. S. Park, M. S. Chen, and P. S. Yu, "An effective hash-based algorithm for mining association rules", SIGMOD'95
- S. Sarawagi, S. Thomas, and R. Agrawal, "Integrating association rule mining with relational database systems: Alternatives and implications", SIGMOD'98
- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, "Parallel algorithm for discovery of association rules", Data Mining and Knowledge Discovery, 1997
- J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate generation", SIGMOD'00
- M. J. Zaki and Hsiao, "CHARM: An Efficient Algorithm for Closed Itemset Mining", SDM'02
- J. Wang, J. Han, and J. Pei, "CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets", KDD'03
- C. C. Aggarwal, M.A., Bhuiyan, M. A. Hasan, "Frequent Pattern Mining Algorithms: A Survey", in Aggarwal and Han (eds.): Frequent Pattern Mining, Springer, 2014