Summary

Outcome

 Potential framework to provide a foundation for future development of ML-driven, clinical tools for TN assessment and surgical outcome prognostication.

Key takeaways

- Comparably to imaging data, clinical data may also be applied in ML to better understand and treat TN.
- TN-related features were largely prioritized by unsupervised ML

Future directions

- Increase sample size to better refine dataset and evaluate PC1 vs duration of surgical response correlation.
- Supervised ML utilizing advanced imaging data (objective measure) and novel pain grade metric (from subjective reports) to develop a surgical outcome prognostication tool. Exploring deep learning architectures

13

Background

VECTOR INSTITUTE

Hodaie Lab

Principal investigator

Dr Mojgan Hodaie

Graduate students

Pascale Tsai Alborz Noorani

Summer students

Rose Yakubov Matthew So Shawn Hanycz Alana Byeon

Barketing staff Tommy

Research staff

Dr. Matthew Walker Dr. Patcharaporn Srisaikaew Annette Wanzhang Wang Dr. Basmah AlTinawi Ashley Zhang

Collaborators

Dr Frank Rudzicz Dr David Mikulis Marina Tawfik Dr. Peter Hung Dr Sarasa Tohyama

