Computational Logic - Assignment 3

Alessandro Marostica

December 6, 2023

Exercise 2

Let's break down the proof in two parts:

- 1. R is symmetric $\Rightarrow \varphi \Rightarrow \Box \diamond \varphi$
- 2. $\varphi \Rightarrow \Box \diamond \varphi \Rightarrow R$ is symmetric

R is symmetric $\Rightarrow \varphi \Rightarrow \Box \diamond \varphi$:

Let's assume that φ is true in a world w, $w \models \varphi$. We need to show that $w \models \Box \diamond \varphi$. By definition of modal operators, since R is symmetric, if v is accessible from w, then w is accessible from v. Therefore, if φ is true in v, then φ is also true in w. This implies that $\Box \varphi$ is true in w and $\diamond \varphi$ is true in w. Therefore $\Box \diamond \varphi$ holds in w. Since this holds for an arbitrary world w where φ is true, we can conclude that $\varphi \Rightarrow \Box \diamond \varphi$.

$\varphi \Rightarrow \Box \diamond \varphi \Rightarrow \mathbf{R}$ is symmetric:

To show symmetry, we need to show that if wRv then vRw for all worlds w and v. Let's assume wRv, this means that v is accessible form w. Let's also consider the formula $\varphi = \neg \Box \neg \diamond \bot$, which is not necessarily false. By assuming $\varphi \Rightarrow \Box \diamond \varphi$, we have $\neg \Box \neg \diamond \bot \Rightarrow \Box \diamond \neg \Box \neg \diamond \bot$. In the world w:

- 1. $\neg \Box \neg \diamond \bot$ is true in w since $\diamond \bot$ is true in vv, which is accessible from w.
- 2. $\square \diamond \neg \square \neg \diamond \bot$ is true in w by assumption.

This implies that $\neg \Box \neg \diamond \bot$ is true in all worlds accessible from w, including v. Now, considering formula $\diamond \bot$, we have that this is true in v since $\neg \Box \neg \diamond \bot$ is true in v. Therefore vRw. Since this is true in an arbitrary world, we can conclude that R is symmetric.

Exercise 3

As in Exercise 2, we will break down this proof in two parts:

- 1. F is euclidean $\Rightarrow F \models \diamond \varphi \Rightarrow \Box \diamond \varphi$
- 2. $F \models \diamond \varphi \Rightarrow \Box \diamond \varphi \Rightarrow F$ is euclidean

F is euclidean \Rightarrow $F \models \diamond \varphi \Rightarrow \Box \diamond \varphi$:

Let w be a world in W, Suppose $w \models \diamond \varphi$, meaning there exists a world v such that wRv and $v \models \varphi$. We now need to show that $w \models \Box \diamond \varphi$. Thanks to the euclidean property, if wRv and wRu then vRu for any u in W. Since wRv is reflexive, vRw, then vRv. This means that $\diamond \varphi$ is true at v. Now $\Box \diamond \varphi$ is ture at w because $\diamond \varphi$ is ture at all worlds accessible from w.

$F \models \diamond \varphi \Rightarrow \Box \diamond \varphi \Rightarrow F$ is euclidean:

Let's take any x, y, z in W such that xRy and xRz. We need to show that yRz. Let's consider the formula $\phi = \phi \varphi$, where ϕ is an arbitrary formula. Since xRy there exists u such that xRu and $u \models \varphi$. Now, xRz and, by assuming $F \models \phi \varphi \Rightarrow \Box \diamond \varphi$, we have $xRz \Rightarrow zRw$ for any w such that xRu. Therefore we have zRw for some w such that zRu. Since y is accessible from x, y is also accessible from u, which implies zRw. Given zRw and zRw, by transitivity we have zRw. Since this holds for arbitrary zRw, zRw in W, we can conclude that F is euclidean.

Exercise 4

Model 1

- 1. $\phi_1 = \diamond \top \land \Box (\neg \diamond \top)$
- 2. $\phi_2 = \diamond T \land \Box \diamond T$
- 3. $\phi_3 = \Box \diamond \top$
- 4. $\phi_4 = \diamond \perp \land \Box (\neg \diamond \bot)$

Model 2

- 1. $\phi_1 \diamond \bot \land \Box(\neg \diamond \bot)$: $\diamond \bot$ asserts that there is a possible world accessible from 4 where a false proposition exists. $\Box(\neg \diamond \bot)$ ensures that there is no other world accessible from 1 where there is a false proposition.
- 2. States 2 and 4 cannot be uniquely characterized.
- 3. $\phi_3 = \Box \diamond \top$: $\Box \diamond \top$ ensures that in all worlds accessible from 3 there is a world where a true proposition exists. There is no need for $\diamond \top$ since it is not required for 3 itself to have a true proposition
- 4. States 2 and 4 cannot be uniquely characterized.

Exercise 5