

Universidad Nacional Autónoma de Honduras Escuela de Física Materia Condensada Ondas Electromagnéticas

Nombre: Cuenta: Sección: Nombre del Docente:		
Verdadero o Falso: Encierre la letra V si considera que el enunciado es vecontrario, seleccione la opción F . En caso de elegir $falso$, justifique su respuesta. c/u)		*
1. La ley de Ampère relaciona el campo eléctrico con la corriente:	\mathbf{V}	${f F}$
2. I_d nace del flujo de campo magnético vinculado a la corriente eléctrica:	V	${f F}$
3. Las ecuaciones de Maxwell son leyes de la naturaleza:	V	\mathbf{F}
4. La ley de Lorentz <mark>da la</mark> fuerza de una <mark>part</mark> ícula ca <mark>r</mark> gada sobre sus vecinas:	\mathbf{V}	\mathbf{F}
5. Las ondas electromagnéticas se propagan a la rapidez de la luz:	V	\mathbf{F}
Selección única: Encierre la letra para el inciso que considere correcto. (Valor	r = 1%)
1. Establecieron el comportamiento ondulatorio electromagnético de la luz de matanto en teoría como en experimento:	anera de	finitiva
a James Clerk Maxwell y Heinrich Rudolf Hertz.		
a Isaac Newton y Thomas Young.		
a Christopher H <mark>uygen</mark> s y Michael Far <mark>aday</mark> .		

a James Clerk Maxwell

a Albert Einstein y Max Planck.

2. Propuso una corrección a la ley de Ampère:

- a Michael Faraday
- a Alessandro Volta
- 3. Es una superficie virtual donde coinciden puntos en igual fase de ondas planas.
 - a Frente de onda
 - a Barrera de potencial
 - a Campo electromagnético

- 4. La energía de las ondas electromagnéticas recide en:
 - a Los campos electromagnéticos.
 - a Las cargas eléctricas que producen los campos electromagnéticos.
 - a Las partículas que interactúan con las carges generadores de campos EM.

Resuelva: Lea cuidadosamente el enunciado y resuelva el problema para la cuestión planteada. (Valor = 3.5%)

Una onda electromagnética plana linealmente polarizada se propaga en la dirección $\hat{\mathbf{x}}$, si $E = 2.5 \times 10^2 N/C$ y $B = 3.76 \times 10^3 T$, determine:

- 1. La densidad volumétrica de energía de E y B. (valor 2 %)
- 2. La potencia por unidad de área de la onda electromagnética. (valor 1%)

Responda: ¿Cuál es la dirección del vector de Poynting? (valor 0.5%)

Universidad Nacional Autónoma de Honduras Escuela de Física Materia Condensada Comportamiento Cuántico de la Luz

Nombre:		
Respuesta breve: Lea cuidadosamente las preguntas a continuación y responda con p $(valor\ 4\ \%)$	recisió	ón.
1. Defina y describa un <i>cuerpo negro</i> .		
2. ¿Qué enuncia la ley de Rayleigh-Jeans?		
3. ¿En qué consistió la propuesta de Max Planck para explicar la radiación de cuerpo	negro	?
Verdadero o Falso: Encierre la letra V si considera que el enunciado es verdades contrario, seleccione la opción F . En caso de elegir $falso$, justifique su respuesta. ($valor\ 2$,	lo
1. El efecto fotoeléctrico fue descubierto por Albert Einstein	V	F
2. En el E.F.E. ¹ la energía de los fotoelectrones aumenta con la intensidad lumínica.	\mathbf{V}	F
3. En el E.F.E. los electrones son eyectados a cualquier frecuencia de la fuente de luz.	\mathbf{V}	F
4. Los fotones son capaces de transportar momento lineal además de energía.	\mathbf{V}	F
Resuelva: Les cuidadesamente el enunciado y resuelva el problema para la cuestión pl	antos	da.

Resuelva: Lea cuidadosamente el enunciado y resuelva el problema para la cuestión planteada. (Valor = 4 %)

Rayos X con $\lambda = 0.2400 \ nm$ se dispersan por Compton con un ángulo de desviación $\theta = 60.0^{\circ}$ con respecto al haz incidente. Encuentre:

- 1. La longitud de onda de los fotones dispersados.
- 2. La energía de los fotones dispersados.
- 3. La energía cinética de los electrones.
- 4. El ángulo en que se propagan los electrones después de la colisión.

 $^{^{1}}Efecto\ fotoel\'ectrico$

Universidad Nacional Autónoma de Honduras Escuela de Física Materia Condensada Aplicaciones de las Interacciones de la Radiación con la Materia

Nombre:	Cuenta:
Sección: N	ombre del Docente:
Respuesta breve: $(valor 10\%)$	Lea cuidadosamente las preguntas a continuación y responda con precisión.
1. ¿Qué es un espe	ectro de emisión? ¿Qué es un es <mark>pectro ab</mark> sorción?
2. ¿Cómo se produ	ice <mark>n los</mark> rayos X y la ra <mark>diaci</mark> ón de frenado?
3. ¿Cuál es la dife	${ m rente\ entre}\ { m la\ radiación\ de\ bremsstrahlung\ y\ los\ rayos\ }X?$
4 : En qué consist	on los processos de gracción y eniquilación de pares?
4. ¿En que consist	e <mark>n los</mark> procesos de cre <mark>ació</mark> n y aniquilación de pares?