Math Review

X and **Y** are **independent** iff $\mathbb{P}(X,Y) = \mathbb{P}(X)\mathbb{P}(Y)$

X and **Y** are **uncorrelated** iff $\mathbb{E}(X, Y) = \mathbb{E}(X)\mathbb{E}(Y)$

Expected value of g(X): $E[g(X)] = \int_{-\infty}^{\infty} g(x) f(x) dx$

Variance $\sigma^2 = E[(X - \mu)^2] = E[X^2] - \mu^2$

Determinant of matrix is product of its eigenvalues.

$$f(\vec{\boldsymbol{x}}) = \mathbf{A}\vec{\boldsymbol{x}} + \vec{\boldsymbol{x}}^{\top}\mathbf{A} + \vec{\boldsymbol{x}}^{\top}\vec{\boldsymbol{x}} + \vec{\boldsymbol{x}}^{\top}\mathbf{A}\vec{\boldsymbol{x}} \Rightarrow \frac{df(\vec{\boldsymbol{x}})}{d\vec{\boldsymbol{x}}} = \mathbf{A}^{\top} + \mathbf{A} + 2\vec{\boldsymbol{x}} + \mathbf{A}\vec{\boldsymbol{x}} + \mathbf{A}^{\top}\vec{\boldsymbol{x}}$$

$$\nabla_{\vec{\boldsymbol{x}}}(\vec{\boldsymbol{y}} \cdot \vec{\boldsymbol{z}}) = (\nabla_{\vec{\boldsymbol{x}}})\vec{\boldsymbol{z}} + (\nabla_{\vec{\boldsymbol{x}}})\vec{\boldsymbol{y}} \qquad \nabla_{\vec{\boldsymbol{x}}}f(\vec{\boldsymbol{y}}) = (\nabla_{\vec{\boldsymbol{x}}}\vec{\boldsymbol{y}})(\nabla_{\vec{\boldsymbol{y}}}f(\vec{\boldsymbol{y}}))$$

$$\nabla_{\boldsymbol{w}} w^T A w = (A + A^T) w \qquad \qquad \mathbf{H}_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_i}$$

Perceptron (Lecture 2)

$$f(\vec{x}) = \vec{w} \cdot \vec{x} + \alpha = \sum_{i=1}^{d} w_i x_i + \alpha,$$

Goal: find w s.t all constraints $y_i X_i \cdot w \ge 0$. Define a risk function and optimize it, where the loss is defined as $L(z, y_i) = -y_i z$ if $y_i z < 0$, else 0. Therefore risk $R(w) = \sum_{i \in V} -v_i X_i \cdot w$

Decision boundary, a hyperplane in \mathbb{R}^d :

$$H = {\vec{x} \in \mathbb{R}^d : f(\vec{x}) = 0} = {\vec{x} \in \mathbb{R}^d : \vec{w} \cdot \vec{x} + \alpha = 0}$$

 \vec{w} is the **normal** of the hyperplane,

 α is the **offset** of the hyperplane from origin,

 $\frac{f(\vec{x})}{\|\vec{x}\|}$ is the **signed distance** from the \vec{x} to hyperplane \mathcal{H} .

Perceptron algorithm,

Input:
$$(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \in \mathbb{R}^d \times \{\pm 1\}$$

while some $y_i \neq \operatorname{sign}(\vec{w} \cdot \mathbf{x}_i)$
pick some misclassified (\mathbf{x}_i, y_i)
 $\vec{w} \leftarrow \vec{w} + v_i \mathbf{x}_i$

Given a linearly separable data, perceptron algorithm will take no more than $\frac{R^2}{r^2}$ updates to **converge**, where $R = \max_i \|\mathbf{x}_i\|$ is the radius of the data, $\gamma = \min_{i} \frac{y_{i}(\vec{w} \cdot \mathbf{x}_{i})}{\|\vec{w}\|}$ is the margin.

Also, $\frac{\vec{w} \cdot \vec{x}}{\|\vec{x}\|\|}$ is the signed distance from H to \vec{x} in the direction \vec{w} .

Gradient descent view of perceptron, minimize margin cost function $J(\vec{w}) = \sum_{i} (-y_{i}(\vec{w} \cdot \mathbf{x}_{i}))_{+} \text{ with } \vec{w} \leftarrow \vec{w} - \eta \nabla J(\vec{w})$

Support Vector Machine (Lecture 3, 4)

Hard margin SVM,

This method makes the margin as wide as possible. The signed distance from Given a d-dimensional Gaussian $X \sim \mathcal{N}(\mu, \Sigma)$, the hyperplane to X_i is $\frac{f(\mathbf{x}_i)}{\|\mathbf{w}\|}$ Hence the margin is $\min_{i} \frac{1}{\|\boldsymbol{w}\|} |\boldsymbol{w} \cdot \boldsymbol{X}_{i} + \boldsymbol{\alpha}| \ge \frac{1}{\|\boldsymbol{w}\|} \Longrightarrow \min_{\vec{\boldsymbol{w}}} \|\vec{\boldsymbol{w}}\|^{2}, \text{ such that } y_{i}\vec{\boldsymbol{w}} \cdot \mathbf{x}_{i} \ge 1(i=1,\ldots,n)$

Soft margin SVM,

$$\min_{\vec{w}} \|\vec{w}\|^2 + C \sum_{i=1}^n \xi_i$$

Regularization and SVMs: Simulated data with many features $\phi(\vec{x})$; C controls trade-off between margin $1/\|\vec{w}\|$ and fit to data; Large C: focus on fit to data (small margin is ok). More overfitting. Small C: focus on large margin, MLE's less tendency to overfit. Overfitting increases with: less data, more features. Maximum a posterior probability: the mode of the posterior. If uniform

Decision Theory (Lecture 6)

Bayes Theorem: $\underbrace{\mathbb{P}(Y=C|X)}_{\text{Poster. Prob}} = \underbrace{\frac{\mathbb{P}(X|Y=C)}{\mathbb{P}(X)}}_{\mathbb{P}(X)} \text{Assume } (\mathbf{X},\mathbf{Y}) \text{ are chosen}$ **Covariance:** $\hat{\Sigma}_C = \frac{1}{N_C} \sum_{i:Y_i=C} (X_i - \hat{\mu}_C)(X_i - \hat{\mu}_C)^{\mathsf{T}}$

i.i.d according to some probability distribution on $\mathcal{X} \times \mathcal{Y}$. **Risk** is misclassification probability: $R(r) = \mathbb{E}(L(r(\mathbf{X}), \mathbf{Y})) = \mathbb{P}(r(\mathbf{X}) \neq \mathbf{Y}) =$ $\sum_{\vec{x}} \left[L(r(\vec{x}), 1) \mathbb{P}(Y = 1 | x) + L(r(x), -1) \mathbb{P}(Y = -1 | X = \vec{x}) \right] \times \mathbb{P}(\vec{x})$

$$= \mathbb{P}(Y=1) \sum_{Y} L(r(\vec{x}), 1) \mathbb{P}(\vec{x}|Y=1) + \mathbb{P}(Y=-1) \sum_{Y} L(r(\vec{x}), -1) \mathbb{P}(\vec{x}|Y=-1)$$

Bayes Decision Rule is

$$r^*(x) = \begin{cases} 1, & \text{if } L(-1,1) \mathbb{P}(\mathbf{Y} = 1 | x) > L(1,-1) \mathbb{P}(\mathbf{Y} = -1 | x) \\ -1, & \text{otherwise.} \end{cases}$$

and the optimal risk (Bayes risk) $R^* = \inf_r R(r) = R(r^*)$

Generative and Discriminative Models (Lecture 6)

Discriminative models: $\mathbb{P}(X, Y) = \mathbb{P}(X) \mathbb{P}(Y|X)$.

Estimate $\mathbb{P}(Y|X)$, then pretend our estimate $\hat{\mathbb{P}}(Y|X)$ is the actual $\mathbb{P}(Y|X)$ and plug in bayes rule expression.

Generative model: $\mathbb{P}(X, Y) = \mathbb{P}(Y) \mathbb{P}(X|Y)$.

Estimate $\mathbb{P}(Y)$ and $\mathbb{P}(X|Y)$, then use bayes theorem to calculate $\mathbb{P}(Y|X)$ and use discriminative model.

Gaussian class conditional densities $\mathbb{P}(\mathbf{X}|Y=+1), \mathbb{P}(\mathbf{X}|Y=-1)$ (with the same variance), the posterior probability is logistic:

$$\begin{split} \mathbb{P}(Y = +1 | \vec{x}) &= \frac{1}{1 + \exp(-\vec{x} \cdot \vec{w} - \beta_0)}, \\ \vec{w} &= \Sigma^{-1}(\mu_1 - \mu_0), \, \beta_0 = \frac{\mu_0' \Sigma^{-1} \mu^0 - \mu_1 \Sigma^{-1} \mu^1}{2} + \log \frac{\mathbb{P}(Y = 1)}{\mathbb{P}(Y = 0)} \end{split}$$

Multivariate Normal Distribution (Lecture 7)

$$\vec{x} \in \mathbb{R}^d : p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} e^{(-\frac{1}{2}(\vec{x} - \mu)' \Sigma^{-1}(\vec{x} - \mu))}$$

QDA: Class-conditional densities $X_C \sim \mathcal{N}(\vec{\mu}_C, \Sigma_C)$. Optimal decision rule $r^*(x)$ for 0–1 loss: Choose class **C** that maxes $\mathbb{P}(Y = C|X) \propto f_C(x)\pi_C$. Parameters estimated via MLE:

LDA: Assumes equal covariance matrices across classes ($\Sigma_C = \Sigma$), simplifying Where, $\mathbf{X} \in \mathbb{R}^{n \times (d+1)}$ is the **design matrix**, and $\vec{\boldsymbol{y}}$ is the **response vector**. to linear decision surfaces.

$$\Sigma = \mathbb{E}(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})'$$

Symmetric:
$$\Sigma_{i,j} = \Sigma_{j_i}$$

Non-negative diagonal entries: Σi , $i \ge 0$

Positive semidefinite: $\forall \mathbf{v} \in \mathbb{R}^d, \mathbf{v}' \mathbf{\Sigma} \mathbf{v} \ge 0$

matrix $\mathbf{A} \in \mathbb{R}^{m \times d}$ and vector $\mathbf{b} \in \mathbb{R}^m$, define $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{b}$. Then $\mathbf{Y} \sim \mathcal{N}(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\top})$

Given a d-dimensional Gaussian $X \sim \mathcal{N}(\mu, \Sigma)$,

with Σ positive definite. $\mathbf{Y} = \mathbf{\Sigma}^{-\frac{1}{2}} (\mathbf{X} - \boldsymbol{\mu}) \sim \mathcal{N}(\vec{\mathbf{0}}, \mathbf{I}_{\bullet})$

prior, MAP is MLE; if not uniform prior, MAP is Penalized MLE.

Prior:
$$\hat{\pi}_C = \mathbb{P}(Y = C) = \frac{N_C}{n}$$

Mean:
$$\hat{\mu}_C = \mathbb{E}[\mathbf{X}|Y=C] = \frac{1}{N_C} \sum_{i:Y_i=C} X_i$$

Covariance:
$$\hat{\Sigma}_C = \frac{1}{N_C} \sum_{i:V_i = C} (X_i - \hat{\mu}_C)(X_i - \hat{\mu}_C)^{\mathsf{T}}$$

Pooled Cov:
$$\hat{\Sigma} = \frac{1}{n} \sum_{C_L} \sum_{i:Y_i = C_L} (X_i - \hat{\mu}_{C_k}) (X_i - \hat{\mu}_{C_k})^{\top}$$

Discriminant Analysis (Lecture 7)

Discriminant Functions for LDA and QDA for class C, denoted $Q_C(\vec{x})$ is:

$$Q_{C}(\vec{x}) = \ln \left(\frac{f_{\vec{X}|Y=C}(\vec{x})\pi_{C}}{(2\pi)^{\frac{d}{2}}} \right) = -\frac{1}{2} (\vec{x} - \mu_{C})^{T} \mathbf{\Sigma}_{C}^{-1} (\vec{x} - \mu_{C}) - \frac{1}{2} \ln |\mathbf{\Sigma}_{C}| + \ln \frac{\pi_{C}}{(2\pi)^{\frac{d}{2}}}$$

Here we have, the class-conditional density $f_{\vec{X}|Y=C}(\vec{x})$, prior probability π_C , the mean vector of class C, and covariance matrix Σ_C of class C.

Linear Decision Function between Classes C and D: Compares classes by:

$$Q_C(\vec{\boldsymbol{x}}) - Q_D(\vec{\boldsymbol{x}}) = (\boldsymbol{\mu}_C - \boldsymbol{\mu}_D)^T \boldsymbol{\Sigma}^{-1} \vec{\boldsymbol{x}} - \frac{1}{2} (\boldsymbol{\mu}_C^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_C - \boldsymbol{\mu}_D^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_D) + \ln \frac{\pi_C}{\pi_D}.$$

This expression includes a linear term $(\mu_C - \mu_D)^T \Sigma^{-1} \vec{x}$, which describes how the decision boundary is formed linearly in the feature space, and a constant term that adjusts the boundary based on the means of the classes and their prior probabilities.

Multi-class LDA: The optimal class for a given feature vector \vec{x} is chosen by

Choose class C such that $Q_C(\vec{x})$ is maximized.

Effectively determining the most likely class based on the feature measurements and statistical properties of each class.

Linear Regression (Lecture 10)

Objective Function: The goal in linear regression is to minimize the sum of squared residuals (RSS), expressed as:

$$RSS(\vec{\boldsymbol{w}}) = \sum_{i=1}^{n} (\vec{\boldsymbol{x}}_i^{\top} \vec{\boldsymbol{w}} + \alpha - y_i)^2 = \|\mathbf{X}\vec{\boldsymbol{w}} - \vec{\boldsymbol{y}}\|^2.$$

Minimize via Calculus: $\nabla RSS(\vec{w}) = 2\mathbf{X}^{\top}\mathbf{X}\vec{w} - 2\mathbf{X}^{\top}\vec{y}$.

Setting this gradient to zero leads to the **normal equations**:

$$\mathbf{X}^{\top}\mathbf{X}\vec{\boldsymbol{w}} = \mathbf{X}^{\top}\vec{\boldsymbol{y}},$$

Solving for the optimal weights \vec{w}^* :

$$\vec{\boldsymbol{w}}^* = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \vec{\boldsymbol{y}},$$

 $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$ is known as the *Moore-Penrose pseudo-inverse* X^{\dagger} of \mathbf{X} .

Projection Theorem also leads to the normal equations, by asserting that the solution \vec{w}^* projects the residuals orthogonally onto the column space of **X**:

$$\mathbf{X}^{\top}(\vec{\mathbf{y}} - \mathbf{X}\vec{\mathbf{w}}) = 0 \Longrightarrow \mathbf{X}^{\top}\mathbf{X}\vec{\mathbf{w}} = \mathbf{X}^{\top}\vec{\mathbf{y}},$$

Logistic Regression (Lecture 10, 11)

Fits "probabilities" to data and usually used for classification. $\mathbb{P}\big(Y=1|\vec{\boldsymbol{x}}_i\big) = \frac{1}{1+\exp(-\vec{\boldsymbol{w}}^\top\vec{\boldsymbol{x}}_i)} = \sigma(\vec{\boldsymbol{w}}^\top\vec{\boldsymbol{x}}_i)$

$$\mathbb{P}(Y=1|\hat{\boldsymbol{x}}_i) = \frac{1}{1 + \exp(-\vec{\boldsymbol{w}}^\top \vec{\boldsymbol{x}}_i)} = \sigma(\hat{\boldsymbol{w}}^\top \hat{\boldsymbol{x}}_i)$$

Logistic Loss: $L(z, y) = -y \ln z - (1 - y) \ln(1 - z)$

Cost Function: $J(\vec{w}) = -\sum_{i=1}^n L(\sigma(\vec{w}^\top \vec{x}_i), y_i)$ Find $\vec{w}^* = \arg\min J(\vec{w})$, Cost function is convex, and solved by gradient descent. Converges to max margin classifier.

Let
$$\sigma_i = \sigma(\vec{w}^\top \vec{x}_i)$$
 and $\vec{\sigma} = \begin{bmatrix} \sigma_1 & \cdots & \sigma_n \end{bmatrix}^\top$

$$\nabla_{\vec{w}} \sigma_i = \sigma_i (1 - \sigma_i) \vec{x}_i$$

$$\nabla_{\vec{w}} J(\vec{w}) = \mathbf{X}^\top (\vec{\sigma} - \vec{y})$$

$$\nabla_{\vec{w}}^2 J(\vec{w}) = \mathbf{X}^\top \operatorname{diag}(\vec{\sigma} (1 - \vec{\sigma})) \mathbf{X}$$

Gradient descent:

$$\vec{\boldsymbol{w}}^{(t+1)} = \vec{\boldsymbol{w}}^{(t)} - \eta \nabla_{\vec{\boldsymbol{w}}} J(\vec{\boldsymbol{w}}^{(t)}) : O(nd) \text{ per step}$$

Stochastic gradient descent:

$$\vec{\boldsymbol{w}}^{(t+1)} = \vec{\boldsymbol{w}}^{(t)} - \eta \nabla L_i(\vec{\boldsymbol{w}}^{(t)}) : O(d)$$
 per step

Newton's method:

$$\vec{\boldsymbol{w}}^{(t+1)} = \vec{\boldsymbol{w}}^{(t)} - \left(\nabla^2 J(\vec{\boldsymbol{w}}^{(t)})\right)^{-1} \nabla J(\vec{\boldsymbol{w}}^{(t)})$$

LDA vs. Logistic Regression

Advantages of LDA:

- For well-separated classes, LDA is stable; log. reg. is suprisingly unstable.
- > 2 classes? Easy & elegant; log. reg. needs modifying. (softmax regr.)
- slightly more accurate when classes nearly normal, especially if *n* is small.

Advantages of Log. Regression:

More emphasis on desc. boundary; always separates linearly separable pts. More robust on some non-Gaussian distributions (e.g., dists w/ large skews.)

Naturally fits labels between 0 and 1.

ROC CURVES

Polynomial Regression (Lecture 11)

Replace each x_i with feature vector $\Phi(x_i)$ with all terms of degree ppolynomial. e.g., $\Phi(x_i) = \begin{bmatrix} x_{i1}^2 & x_{i1}x_{i2} & x_{i2}^2 & x_{i1} & x_{i2} & 1 \end{bmatrix}^{\top}$

Log. Reg. + quadratic features = same form of posteriors as QDA.

Statistical Justification For Regression (Lecture 12)

Typical model of reality: $\forall X_i, y_i = g(X_i) + \epsilon_i : \epsilon_i \sim D'$ where D' has mean 0. Ideal approach: choose $h(X_i) = \mathbb{E}_{V}[Y|X=X_i] = g(X_i) + \mathbb{E}[\epsilon_i] = g(X_i)$

Least Squares Cost Function From MLE

Suppose $\epsilon_i \sim \mathcal{N}(0, \sigma^2) \Longrightarrow y_i \sim \mathcal{N}(g(\vec{x}_i), \sigma^2)$. We're going to try to estimate $g(\vec{x})$, which is defined by some weights \vec{w} . The probability of y_i , given it's parameters for its distribution, is a pdf $f(y_i)$ & the log likelihood is:

$$\ell(g; \mathbf{X}, \vec{y}) = \ln \left(\prod_{i=1}^{n} f(y_i) \right) = \sum_{i=1}^{n} \ln (f(y_i)) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - g(\vec{x}_i))^2 - C$$

Maximumizing this is equivalent to minimizing $\sum_{i=1}^{n} (y_i - g(\vec{x}_i))^2 = \text{RSS}$

Logistic Loss from MLE

Consider $P[\vec{x}_i \in \text{class C}] = y_i$ as the actual probability, with $h(\vec{x}_i)$ as the predicted probability. For β hypothetical repetitions, where $y_i \beta$ samples belong to class C and $(1 - v_i)\beta$ do not. The likelihood of h given the data is:

$$\mathcal{L}(h; \mathbf{X}, \vec{\mathbf{y}}) = \prod_{i=1}^{n} h(\vec{\mathbf{x}}_i)^{y_i \beta} (1 - h(\vec{\mathbf{x}}_i))^{(1-y_i)\beta}$$

$$\ell(h; \mathbf{X}, \vec{\boldsymbol{y}}) = \beta \sum_{i=1}^{n} \left[y_i \ln \left(h(\vec{\boldsymbol{x}}_i) \right) + (1 - y_i) \ln \left(1 - h(\vec{\boldsymbol{x}}_i) \right) \right]$$

Maximizing the log likelihood $\ell(h)$ is equivalent to minimizing logistic losses.

The Bias-Variance Decomposition

There are 2 sources of error in a hypothesis *h*:

bias: error due to inability of hypothesis h to fit g perfectly.

variance: error due to fitting random noise in data, e.g., we fit linear g with a linear h, yet $h \neq g$.

Model: $X_i \sim D$, $\epsilon_i \sim D'$ and $y_i = g(X_i) + \epsilon_i$. Fit hypothesis h to \mathbf{X} , \vec{y} . Now h is a r.v., because of the random noise ϵ . Let z be an arbitrary pt and $\gamma = g(z) + \epsilon$ Now the risk fn when loss is the squared errror is:

 $R(h) = \mathbb{E}[L(h(z), \gamma)] \leftarrow \exp$ over possible training set X, y and values of γ $R(h) = \mathbb{E}[(h(z) - \gamma)^2]$

 $R(h) = \mathbb{E}[h(z)^2] + \mathbb{E}[\gamma^2] - 2\mathbb{E}[\gamma h(z)]$

 $R(h) = \operatorname{Var}(h(z)) + \mathbb{E}[h(z)]^2 + \operatorname{Var}(\gamma) + \mathbb{E}[\gamma]^2 - 2\mathbb{E}[\gamma]\mathbb{E}[h(z)]$

 $R(h) = (\mathbb{E}[h(z)] - \mathbb{E}[\gamma])^2 + \text{Var}(h(z)) + \text{Var}(\gamma)$

 $R(h) = (\mathbb{E}[h(z)] - \mathbb{E}[\gamma])^2 + \operatorname{Var}(h(z)) +$

bias² of method variance of method irreducible error

- Underfitting: Too much bias
- · Overfitting: Too much variance
- · Training Error reflects bias but not variance
- · Test error reflects both.

Linear Regression Regularization (Lecture 13)

Trading off bias/variance: some increase in bias can give big decrease in var.

Ridge regression is like *L*2 regularization:

 $\hat{\vec{w}} = \arg\min_{\vec{w}} ||\vec{y} - \mathbf{X}\vec{w}||^2 + \lambda ||\vec{w}||^2$, for some cost function *J* on classifier *h* Minimized w/ Calculus $\hat{\vec{w}}^{\text{ridge}} = (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I})^{-1} \vec{x}^{\top} \vec{y}$

Lasso regression is like *L*1 regularization:

 $\hat{\vec{w}} = \arg\min_{\vec{w}} ||\vec{y} - \mathbf{X}\vec{w}||^2 + \lambda ||w||_1$

Minimized w/ Calculus (it's also a quadratic program)

While ridge regression leads to reduced, but rare non-zero values of the weights, Lasso regression forces some weights to be zero.

Bayesian analysis: Ridge regression is equivalent to a MAP estimate with a gaussian prior. Lasso regression is equivalent to a MAP estimate with a Laplace prior.

Misc

Centering X: This involves subtracting μ^T from each row of **X**. Symbolically, **X** transforms into $\bar{\mathbf{X}}$.

Decorrelating X: This process applies a rotation $\mathbf{Z} = \bar{\mathbf{X}}\mathbf{V}$, where $Var(\mathbf{R}) = \mathbf{V}\Lambda\mathbf{V}^T$. This step rotates the sample points to the eigenvector coordinate system.

Sphering: $\bar{\mathbf{X}}$: applying transform $\mathbf{W} = \bar{\mathbf{X}} \text{Var}(\mathbf{R})^{-\frac{1}{2}}$ whitening X: centering + sphering, $X \rightarrow W$

Decision Trees (Lecture 14)

Cuts x-space into rectangular cells, and works well with both categorical and quantitative features.

Two types of nodes:

- 1. internal: test feature values & branch accordingly
- 2. **leaf**: they specify the class h(x)

For classification the learning algorithm is a greedy, top-down learning heuristic. Let S be subset of sample pts indices

Learning algorithm

```
function GROWTREE(S)
   if all y_i = C for all i \in S and some class C then
       return new leaf(C)
   else
       Choose best splitting feature j and splitting value \beta
       S_{I} = \{i \in S : X_{i,i} < \beta\}
       S_R = \{i \in S : X_{i,i} \geq \beta\}
       return new node(j, \beta, GROWTREE(S_L), GrowTree(S_R))
   end if
end function
```