Cryptographic Protocols

Spring 2019

Broadcast

Standard Model

Players

• Player set $P = \{P_1, \dots, P_n\}$

Network

- Complete
- Synchronous
- Authenticated

Adversary

- $\bullet \ \, \text{Threshold} \,\, t < n/3$
- Active (Byzantine)
- Unlimited (information-theoretical security)

Definition: Broadcast

Definition (Input x_1 , Outputs y_1, \ldots, y_n)

- ullet Consistency: Every (correct) player receives the same output y.
- $\bullet \ \ \textbf{Validity} \hbox{: Sender correct} \Rightarrow \hbox{every player receives output } y_i = x_1.$
- Termination: Every player eventually receives output.

Sender correct:	Always:
0 b ? ? 0 b b b b	• ? • b • b • b • b

Definition: Consensus

Definition (Inputs x_1, \ldots, x_n , Outputs y_1, \ldots, y_n)

- ullet Consistency: Every (correct) player receives the same output y.
- Persistency: All correct players have input $x \Rightarrow y_i = x$.
- Termination: Every player eventually receives output.

Pre-agreement:		Always:		
○ <i>b</i>	○ <i>b</i>	lacksquare	● <i>b</i>	
•?	• ?	• ?	• ?	
● b ——	→ • b	● b ——	→ • b	
○ <i>b</i>	b	● <i>b</i>	b	
○ <i>b</i>	○ <i>b</i>	lacksquare	○ <i>b</i>	

Broadcast vs Consensus

Broadcast: $(x, \perp, \dots, \perp) \rightarrow (y_1, \dots, y_n)$

Consensus: $(x_1,\ldots,x_n) \to (y_1,\ldots,y_n)$

Consensus → Broadcast

- 1. P_1 : send x to every P_j , P_j receives x_j
- 2. $(y_1,\ldots,y_n) = \mathsf{Consensus}(x_1,\ldots,x_n)$
- 3. $\forall P_j$: return y_j

Broadcast → Consensus

- 1. $\forall P_i$: Broadcast (x_i)
- 2. $\forall P_j$: return $y_j =$ majority of received x_i 's

Known Results (Broadcast/Consensus)

Road Map (w/o setup)

Definition: Weak Consensus

Definition (Inputs x_1, \ldots, x_n , Outputs y_1, \ldots, y_n)

- Weak Consistency: $\exists y \in \{0,1\}$ such that \forall correct $P_i : y_i \in \{y,\bot\}$.
- Persistency: All correct players have input $x \Rightarrow y_i = x$.
- Termination: Every player eventually receives output.

Pre-agreement:		Always:	
● <i>b</i>	b	lacksquare	$left$ $b \lor \bot$
• ?	• ?	• ?	• ?
● b ——	→ • b	● b ——	$b \lor \bot$
○ <i>b</i>	\bigcirc b	leftondown	$igodot b \lor \bot$
○ <i>b</i>	b	● <i>b</i>	$igodot b \lor \bot$

Protocol Weak Consensus

WeakConsensus $(x_1,\ldots,x_n) \to (y_1,\ldots,y_n)$

1. $\forall P_i$: send x_i to every P_j

$$\mbox{2. } \forall P_j \hbox{:} \ y_j = \left\{ \begin{array}{ll} 0 & \mbox{if $\tt\#Zeros} \geq n-t \\ 1 & \mbox{if $\tt\#Ones} \geq n-t \\ \bot & \mbox{else} \end{array} \right.$$

3. $\forall P_j$: return y_j

Definition: Graded Consensus

Definition (Inputs x_1, \ldots, x_n , Outputs $(y_1, g_1), \ldots, (y_n, g_n)$)

- $\bullet \ \, \textbf{Graded Consistency:} \ \, \textbf{Correct} \ \, P_i \ \, \textbf{has} \ \, g_i = 1 \Rightarrow \forall \ \, \textbf{corr.} \ \, P_j : y_j = y_i. \\$
- Graded Persistency: All corr. players have input $x \Rightarrow (y_i, g_i) = (x, 1)$.
- Termination: Every player eventually receives output.

Pre-agre	eement:	Always:			
$\bigcirc b$	$\bigcirc b, 1$	$lue{b}$	$\bigcirc b, *$	$igodota \overline{b}$	0 *,0
?	●? ●b 1	? • h	●? ●b,*	•?	● ? ● *.0
$lackbox{0}{b}$	b, 1	$loodbox{0}{b}$	b, *	lee_b	*,0
loodbloodbloodbloodbloodbloodbloodblood	$\bigcirc b, 1$	$lefton$ \overline{b}	$\bigcirc b, *$	$lefton$ \overline{b}	• *,0

Protocol Graded Consensus

 $\mathsf{GradedConsensus}(x_1,\ldots,x_n) \to ((y_1,g_1),\ldots,(y_n,g_n))$

- 1. $(z_1,\ldots,z_n)=\mathsf{WeakConsensus}(x_1,\ldots,x_n)$
- 2. $\forall P_i$: send z_i to every P_j .

3.
$$\forall P_j$$
:
$$y_j \; = \; \left\{ \begin{array}{l} \text{0} \;\; \text{if \#Zeros} \geq \text{\#Ones} \\ \text{1} \;\; \text{if \#Zeros} < \text{\#Ones} \end{array} \right.$$

$$g_j \ = \ \left\{ \begin{array}{l} 1 \ \ \text{if } \# y_j\text{'s} \geq n-t \\ 0 \ \ \text{else} \end{array} \right.$$

4. $\forall P_j$: return (y_j, g_j)

Definition: King Consensus

Definition (Inputs x_1, \ldots, x_n , Outputs y_1, \ldots, y_n)

- $\bullet \ \, {\rm King\ Consistency} \hbox{:}\ \, {\rm King\ is\ correct} \Rightarrow \exists y : \forall \ {\rm correct}\ P_i : y_i = y.$
- ullet Persistency: All correct players have input $x\Rightarrow y_i=x.$
- Termination: Every player eventually receives output.

$lackbox{0}{\hspace{-0.05cm}} b \hspace{-0.05cm} lackbox{0}{\hspace{-0.05cm}} b \hspace{-0.05cm} lackbox{0}{\hspace{-0.05cm}} ar{b}$	
$\begin{vmatrix} \bullet ? & \bullet ? & \bullet ? & \bullet ? \\ \bullet b & \longrightarrow \bullet b & \bullet b & \bullet b & \longrightarrow \bullet \end{vmatrix}$	ワ
$lackbox{lackbox{}}{b}$	

Protocols King Consensus (King P_k) and Consensus

 $\mathsf{KingConsensus}_k(x_1,\ldots,x_n) o (y_1,\ldots,y_n)$

- 1. $((z_1, g_1), \dots, (z_n, g_n)) = GradedConsensus(x_1, \dots, x_n)$
- 2. P_k : send z_k to every P_j .

3.
$$\forall P_j \colon \ y_j = \left\{ \begin{array}{ll} z_j & \text{if } g_j = 1 \\ z_k & \text{else} \end{array} \right.$$

4. $\forall P_j$: return y_j

 $\mathsf{Consensus}(x_1,\ldots,x_n)\to (y_1,\ldots,y_n)$

1. for
$$k = 1$$
 to $t + 1$:

$$(x_1,\ldots,x_n)=\mathsf{KingConsensus}_k(x_1,\ldots,x_n)$$

2.
$$\forall P_j$$
: return x_j

Impossibility for 3 players, 1 corrupted

