O TEOREMA DO VALOR MÉDIO (TVM)

Na figura abaixo está representado o gráfico de uma função contínua no intervalo [a,b] e derivável em todos os pontos do intervalo [a,b].

Considere a reta secante s ao gráfico de f pelos pontos A=(a,f(a)) e B=(b,f(b)). Agora vamos deslocar a reta s paralelamente a si mesmo. Note que existe um ponto ponto P=(c,f(c)), com c entre a e b, em que s "é a reta tangente ao gráfico nesse ponto". Isto é: existe algum ponto P=(c,f(c)), com a < c < b, tal que a reta tangente ao gráfico de f é paralela à reta s.

O coeficiente angular da reta secante s é $m_s=\frac{f(b)-f(a)}{b-a}$ e o coeficiente angular da reta tangente t é $m_t=f'(c)$. Portanto $f'(c)=\frac{f(b)-f(a)}{b-a}$, isto é f(b)-f(a)=f'(c)(b-a).

Figura 1. Interpretação geométrica para o TVM

O teorema do valor médio (TVM) Seja f uma função contínua no intervalo [a,b] e derivável em]a,b[. Então existe, pelo menos, um ponto c entre a e b tal que f(b)-f(a)=f'(c)(b-a)

 \bullet Obs. Apesar do nome, o ponto cnão é, necessariamente, o ponto médio do segmento [a,b].

Algumas consequências do TVM:

Teorema de Rolle Se f satisfaz as condições do TVM no intervalo [a,b] e, além disso, f(a)=f(b), então existirá algum ponto c entre a e b tal que f'(c)=0.

Aplicando o TVM à função f em [a,b] obtemos: f(b)-f(a)=f'(c)(b-a). Mas, então, f'(c)(b-a)=0, o que acarreta f'(c)=0, pois, $b-a\neq 0$.

FIGURA 2. O teorema de Rolle

Seja f função contínua num intervalo I e derivável no interior de I. Se f'(x)=0, para todo x no interior de I, f é constante.

De fato: sejam x_1 e x_2 dois pontos do intervalo]a,b[e suponha que $x_1 < x_2$. Como f é derivável para todo a < x < b, segue que f é contínua em]a,b[e, portanto, f é contínua no intervalo $[x_1,x_2]$. Aplicando o TVM nesse intervalo obtemos $f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$, para algum ponto c, com $x_1 < c < x_2$. Logo, $f(x_2) - f(x_1) = 0$, pois f'(c) = 0. Assim $f(x_2) = f(x_1)$. Se, além disso, f estiver definida e for contínua nos ponto f'(c) = 0. Vale o mesmo para o ponto f'(c) = 0. Assim, f será constante em todo intervalo f(a,b).

Seja f função contínua num intervalo I e derivável no interior de I. Se f'(x) > 0 para todo x no interior de I, então f é crescente nesse intervalo. Analogamente: se f'(x) < 0 para todo x no interior de I, então f é decrescente nesse intervalo.

- Uma função f é dita crescente num intervalo I, se para todos x_1 e x_2 em I, $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$.
- Uma função f é dita decrescente num intervalo I, se para todos x_1 e x_2 em I, $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$.

Prova da afirmação acima: sejam x_1 e x_2 dois pontos de I, com $x_1 < x_2$. Como f é derivável em]a,b[, segue que f que f é contínua nesse intervalo. Portanto, f é contínua em $[x_1,x_2]$. Aplicando o TVM nesse último intervalo obtemos: $f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$, para algum $x_1 < c < x_2$. Como f'(c) e $x_2 - x_1$ são ambos positivos, obtemos $f(x_2) - f(x_1) > 0$, isto é, $f(x_2) > f(x_1)$. Portanto f é crescente em]a,b[

Exemplo 1. Considere a função x^3+x^2-x+1 . Vamos determinar os intervalos de crescimento/decrescimento de f.

Derivando f temos: $f'(x) = 3x^2 + 2x - 1$. Desejamos saber onde f' é positiva e onde é negativa, isto é, querenos os sinais de f'.

Inicialmente encontramos suas raízes:

$$\Delta = 16$$
, $x = \frac{-2 \pm \sqrt{16}}{6} \Rightarrow x_1 = -1$, $x_2 = 1/3$.

O gráfico de f' e seus sinais estão na figura abaixo:

FIGURA 3. Sinais de $f'(x) = 3x^2 + 2x - 1$

Assim f é decrescente no intervalo] -1,1/3[e é crescente em] $-\infty,-1[\cup$] $1/3,+\infty[.$

Para indicar o crescimento/decrescimento da função f usamos o seguinte esquema:

FIGURA 4. Crescimento/decrescimento de f

A figura abaixo mostra o gráfico de f e as retas tangentes nos pontos $P_1 = (-1, f(-1))$ e $P_2 = (1/3, f(1/3))$.

O ponto x=-1 é dito um ponto de máximo local de f e o ponto x=1/3 é dito um ponto de mínimo local de f.

FIGURA 5. Gráfico de $f(x) = x^3 + x^2 - x + 1$

MÁXIMOS E MÍNIMOS

Considere a função f dada pelo gráfico abaixo.

FIGURA 6. Máximos e mínimos locais

Note que existe um pequeno intervalo aberto em torno de x_0 (a região em vermelho) com a seguinte propriedade: se x está nesta região, então $f(x) \geq f(x_0)$. Dizemos, então, que x_0 é um ponto de máximo local de f. De modo análogo, x_1 é ponto de mínimo local de f. Também x_2 e x_4 são pontos de máximo local de f e x_3 é ponto de mínimo local de f.

Sejam f uma função e x_0 um ponto do domínio de f. Dizemos que x_0 é um ponto de :

- $x_0 \in I$ e $f(x_0) \ge f(x)$, para todo $x \in I$;
- \bullet mínimo local de f, se existir intervalo aberto I tal que $x_0 \in I$ e $f(x_0) \le f(x)$, para todo $x \in I$;
- máximo global ou absoluto de f, se $f(x_0) \ge f(x)$ para todo $x \in \text{Dom}(f)$;
- mínimo global ou absoluto de f, se $f(x_0) \leq f(x)$ para todo $x \in Dom(f)$
- \bullet Um ponto de máximo/mínimo local de f também é chamado de ponto de máximo/mínimo relativo de f. Um ponto de máximo/mínimo global de f também é dito um ponto de máximo/mínimo absoluto ou simplesmente ponto de máximo/mínimo de f. Pontos de máximo/mínimo (local ou relativo) de f são chamados de pontos de extremo (local ou relativo) de f.
- ullet O valor da função num ponto de máximo/mínimo local de f é dito um valor máximo/mínimo local de f. O valor da função num ponto de máximo global de f é chamado de valor máximo de f e é denotado por $\max f$, e o valor da função num ponto de mínimo global de f é chamado de valor mínimo de f e é denotado por min f.

Um ponto x_0 do domínio de uma função f é dito um $ponto\ crítico$ de f se $f'(x_0) = 0$ ou se não existe $f'(x_0)$.

O resultado abaixo estabelece uma conexão entre ponto de extremo relativo e ponto crítico.

Sejam f uma função definida num intervalo I e x_0 um ponto interior de I e suponha que f é derivável em x_0 . Se x_0 é ponto de extremo relativo de f, então x_0 é ponto crítico de f, isto é $f'(x_0) = 0$.

Figura 7. Pontos de extremo relativo são pontos críticos

• Não vale a recíproca da proposição acima. Isto é: x_0 ponto crítico de f não implica, necessariamente, que x_0 é ponto de máximo/mínimo local de f. Como exemplo considere a função $f(x) = x^3$. Temos: $f'(x) = 0 \iff 3x^2 = 0 \iff x = 0$, mas 0 não é ponto de máximo local e nem de mínimo local de f, pois f é crescente. Veja a figura 8

Figura 8. x = 0 é ponto crítico, mas não é ponto de extremo relativo

 \bullet máximo local de f, se existir intervalo aberto I tal que **Exemplo 2.** Estudar o crescimento/decrescimento e os pontos de max./min. local de $f(x) = \frac{x}{x^2 + 1}$.

Note que $Dom(f) = \mathbb{R}$

Temos:

$$f'(x) = \frac{1(x^2+1) - x(2x)}{(x^2+1)^2} = \frac{1-x^2}{(x^2+1)^2}$$

Para estudar o sinal de f', podemos desprezar o denominador, pois este é sempre positivo. Logo o sinal de f' será o sinal do numerador $1-x^2$.

Para estudar o sinais de $1-x^2$, começamos descobrindo suas raízes: $1-x^2=0 \iff x^2=1 \iff x=\pm 1$. Lembrando que o gráfico de $y = 1 - x^2$ é uma parábola côncava para baixo temos os sinais para f'e daí, os intervalos de crescimento/decrescimento de f.

FIGURA 9. Sinais de f' e comportamento de f

Assim f é crescente em]-1,1[, e decrescente em $]-\infty,-1[\cup]1,+\infty[$. x = -1 é ponto de mínimo local de f e x = 1 é ponto de máximo local de f.

Exemplo 3. Determine os intervalos de crescimento/decrescimento e os pontos de máximo/mínimo local de: (a) $f(x) = \frac{x}{x^2 - 1}$, (b) $f(x) = xe^x$.

(a)
$$Dom(f) = \{x \in \mathbb{R} \mid x^2 - 1 \neq 0\} = \mathbb{R} - \{\pm 1\}$$

$$f'(x) = \frac{x'(x^2 - 1) - x(x^2 - 1)'}{(x^2 - 1)^2} = \frac{x^2 - 1 - 2x^2}{(x^2 - 1)^2} = \frac{-x^2 - 1}{(x^2 - 1)}$$
 Os sinais de f' são os sinais de seu numerador $-x^2 - 1$, pois $(x^2 - 1)^2$ é positivo para todo $x \neq \pm 1$.

Mas $-x^2 - 1$ tem sempre sinal negativo.

FIGURA 10. Sinais de f' e comportamento de f

Assim, f é decrescente em $]-\infty, -1[\cup]-1, 1[\cup]1, +\infty[$. Não há pontos de máximo ou mínimo local.

(b)
$$Dom(f) = \mathbb{R}$$

$$f'(x) = x'e^x + x(e^x)' = e^x + xe^x = (1+x)e^x$$

Como f' é o produto de dois termos $(1 + x e e^x)$, seus sinais são o produto dos sinais de tais termos. Mas, e^x é sempre positivo, portanto os sinais de f' são os sinais de 1 + x.

FIGURA 11. Sinais de f' e comportamento de f

Assim, f é decrescente em $]-\infty, -1[$ e é crescente em $]-1, +\infty[$. O ponto x = -1 é ponto de minimo local (e global). Não há pontos de máximo local.

Exemplo 4. Determine o maior valor e o menor valor da função f(x) = $x^3 - 3x^2 + 1$ no intervalo [-1, 4].

Aqui devemos considerar apenas o intervalo [-1, 4].

$$f'(x) = 3x^2 - 6x$$
. Assim,

$$f'(x) = 0 \iff 3x^2 - 6x = 0 \iff 3x(x-2) = 0 \iff x = 0 \text{ ou } x = 2$$

Portanto, x=-1 ou x=2 será ponto de mínino global de f (no intervalo considerado) e x = 0 ou x = 4 será ponto de máximo global de f (no intervalo considerado). calculando os valores de f nesses pontos obtemos: f(-1) = -3, f(0) = 1, f(2) = -3 e f(4) = 17. Portanto x = -3

FIGURA 12. Sinais de f' e comportamento de f

-1 e x=2 são pontos de mínimo global de f (no intervalo considerado) e x = 4 é ponto de máximo global de f (no intervalo considerado). Além disso, min f = -3 e max f = 17.

Concavidades e ponto de inflexão

Observando o gráfico abaixo vemos que o trecho correspondente ao intervalo]a, b[assemelha-se a uma parábola côncava para baixo, o trecho correspondente ao intervalo]b,c[assemelha-se a uma parábola côncava para cima e o trecho correspondente ao intervalo a[c, d] assemelha-se a uma parábola côncava para baixo novamente. Dizemos, então, que a função f (ou seu gráfico) tem concavidade para baixo em $]a,b[\,\cup\,]c,d[$ e concavidade para cima em]b, c[.

FIGURA 13. Concavidades e pontos de inflexão

Vamos examinar mais detalhadamente o que ocorre quando o gráfico tem concavidade para baixo. A figura abaixo mostra uma função concavidade para baixo e algumas retas tangentes ao gráfico da função.

FIGURA 14. Concavidade para baixo

Vemos, da figura que os coeficientes da retas tangentes decrescem no intervalo a, b: inicialmente as retas tangentes são crescentes, portanto seus coeficientes angulares são positivos, mas decrescem até 0 no ponto correspondente a x_0 , a partir desse ponto tornam-se negativos, mas continuam decrescendo, pois as retas tangentes tornam-se mais inclinadas, o que significa que os ângulos formados por tais retas e o eixo x ficam mais próximos de 90°, mas como são ângulos do segundo quadrante, suas tangentes decrescem.

Como os coeficientes angulares das retas tangentes são dados pela derivada f', vemos que f' é decrescente no intervalo]a,b[. Assim, se a função f possuir derivada segunda, essa deverá ser negativa em]a,b[: se f''(x) > 0 em]a, b[, então f' seria crescente nesse intervalo, o que não ocorre. Podemos concluir que, se f''(x) < 0 para todo $x \in]a, b[$, então f terá concavidade para cima nesse intervalo.

4

Uma análise análoga mostra que, se f''(x) > 0 num intervalo I, então f será côncava para cima nesse intervalo.

(Concavidades e pontos de inflexão) Seja f função duas vezes derivável no intervalo a, b.

Se, f''(x) for positiva em todo ponto do intervalo]a, b[, então f terá concavidade para cima nesse intervalo.

Se, f''(x) for negativa em todo ponto do intervalo a, b, então f terá concavidade para baixo nesse intervalo.

Um ponto de inflexão é um ponto do domínio de f que corresponde a uma mudança de concavidade.

Exemplo 5. Determinar as concavidades e pontos de inflexão da função $f(x) = xe^x$.

Temos: $Dom(f) = \mathbb{R}$

Do exemplo (3b) temos: $f'(x) = (x+1)e^x$.

Então,
$$f''(x) = (x+1)'e^x + (x+1)(e^x)' = e^x + (x+1)e^x = (x+2)e^x$$

Portanto, os sinais de f'' são os produtos dos sinais de x + 2 e e^x . Mas e^x é sempre positivo. Assim, os sinais de f'' são os sinais de x + 2.

FIGURA 15. Sinais de f'' e concavidades de f

Portanto, ftem concavidade para cima em $\left]-\infty,-2\right[$ e tem concavidade para baixo em $]-2,+\infty[$. Oponto x=-2 é um ponto de inflexão $\mathrm{de}\ f.$

Exemplo 6. Determinar os intervalos de crescimento/decrescimeto, os pontos de máx./mín. local, as concavidades e os pontos de inflexão de $f(x) = \ln(x^2 + 1).$

Temos: Dom $(f) = \mathbb{R}$.

$$f'(x) = \frac{1}{x^2 + 1} \cdot (x^2 + 1)' = \frac{2x}{x^2 + 1}$$

Assim, os sinais de f' são a divisão dos sinais de 2x e de $(x^2 + 1)^2$. Porém, $(x^2+1)^2$ é positivo para to $x \in \mathbb{R}$. Portanto, os sinais de f' são os sinais de 2x.

Vemos que f é decrescente em $]-\infty,0[$ e é crescente em $]0,+\infty[$. O ponto x = 0 é ponto de mínimo local (e global).

Para a determinação das concavidades devemos olhar os sinais da

$$f''(x) = \frac{(2x)'(x^2+1) - 2x(x^2+1)'}{(x^2+1)^2} = \frac{2(x^2+1) - 2x(2x)}{(x^2+1)^2} = \frac{2 - 2x^2 \bullet f'(1) = 0}{(x^2+1)^2} = \frac{2 - 2x^2 \bullet f'(1) = 0}{(x^2+1)^2}$$

Assim, os sinais de f'' são os sinais de seu numerador, $2-2x^2$, pois seu denominador é sempre positivo.

FIGURA 16. Sinais de f' e comportamento de f

Para analisar os sinais de $2-2x^2$ começamos descobrindo suas raízes: $2-2x^2=0 \iff 2x^2=2 \iff x^2=1 \iff x=\pm 1$

FIGURA 17. Sinais de f'' e as concavidades de f

Da figura acima vemos que f tem concavidade para baixo em $]-\infty, -1[\cup$ $[1, +\infty[$ e tem convavidade para cima em]-1, 1[. Os pontos x = -1 e x=1 são pontos de inflexão.

O TESTE DA DERIVADA SEGUNDA

Suponha que f'' é contínua num intervalo aberto I contendo o ponto x_0 . Então:

$$f'(x_0) = 0$$
 e $f''(x_0) > 0 \Rightarrow x_0$ é ponto de mínimo local de f ;

$$f'(x_0) = 0$$
 e $f''(x_0) < 0 \Rightarrow x_0$ é ponto de máximo local de f .

FIGURA 18. Teste da derivada segunda

Exemplo 7. Seja
$$f(x) = x^4 - x^3 - \frac{x^2}{2}$$

Temos:

$$f'(x) = 4x^3 - 3x^2 - x$$
 e $f''(x) = 12x^2 - 6x - 1$

$$f'(x) = 0 \Longleftrightarrow x(4x^2 - 3x - 1) = 0 \Longleftrightarrow \begin{cases} x = 0 \\ \text{ou} \\ 4x^2 - 3x - 1 = 0 \end{cases}$$

As raízes de $4x^2 - 3x - 1$ são -1/4 e 1. Assim, os pontos críticos de f, isto é, os pontos onde f' se anula, são x = -1/4, x = 0 e x = 1.

$${}^{\bullet}f'(-1/4)=0\;$$
 e $f''(-1/4)=5/4>0 \Rightarrow -1/4$ é ponto de mínimo local de $f.$

 $\bullet f'(0) = 0$ e $f''(0) = -1 < 0 \Rightarrow 0$ é ponto de máximo local de f.

O gráfico de f é mostrado abaixo:

Exemplo 8. Seja
$$f(x) = x^4 - x^3$$

Figura 19. Exemplo para o teste da derivada segunda

Temos:

$$f'(x) = 4x^3 - 3x^2$$
 e $f''(x) = 12x^2 - 6x$

$$f'(x) = 0 \iff x^2(4x - 3) \iff \begin{cases} x = 0 \\ \text{ou} \\ x = 3/4 \end{cases}$$

Assim, os pontos críticos de f, isto é, os pontos onde f' se anula, são x = 0 e x = 3/4.

• f'(0) = 0, mas f''(0). Portanto o teste não se aplica ao ponto x = 0.

 $\bullet f'(3/4) = 0$ e $f''(3/4) = 9/4 > 0 \Rightarrow 3/4$ é ponto de mínimo local $\mathrm{de}\ f.$

 \bullet Obs. Para descobrir a natureza do ponto x=0 podemos analisar os sinais de f' e encontrar os intervalos de crescimento/decrescimento de f e, portanto, seus pontos de máximoa/mínimo local.

O gráfico de f é mostrado abaixo:

FIGURA 20. O teste da derivada segunda não se aplica ao ponto x=0

Exercícios de revisão

- 1 Determine o valor máximo e o valor mínimo de $f(x) = -x^3/3 +$ $x^2/2 + 2x$ no intervalo [-2, 1].
- 2 Para cada item abaixo pede—se: (i) o domínio de f; (ii) os intervalos de crescimento/decrescimento, os pontos de máximo/mínimo local, as concavidades e os pontos de inflexão de f.

(a)
$$f(x) = x^3 - 2x^2 + x - 1$$
 (b) $f(x) = x^4 - 16x^2$

(b)
$$f(x) = x^4 - 16x$$

(c)
$$f(x) = \frac{x}{x^2 - 1}$$

(d)
$$f(x) = xe^{-x}$$

(e)
$$f(x) = \ln(4 + x^2)$$

(f)
$$f(x) = x\sqrt{x}$$

Respostas

- 1 x = -1 é ponto de mínimo de f e min f = -7/6; x = 1 é ponto de máximo de f e max f = 13/6
- (a) $Dom(f) = \mathbb{R}$. f é crescente em $]-\infty, 1/3[\cup]1, +\infty[$ e é decrescente em $]1/3,1[. \ x=1/3$ é ponto de máximo local de f e x = 1 é ponto de mínimo local de f. A concavidade de f é para baixo em $]-\infty,2/3[$ e é para cima em $]2/3, +\infty[$. Ponto de inflexão :x = 2/3.
 - (b) $Dom(f) = \mathbb{R}$. f é crescente em $[8, +\infty[$ e é decrescente em $]-\infty, 8[. \ x=8$ é ponto de mínimo local de f. A concavidade de f é para baixo em $]-\sqrt{8/3},\sqrt{8/3}[$ e é para cima em $]-\infty, -\sqrt{8/3}[\cup]\sqrt{8/3}, +\infty[$. São pontos de inflexão de f: $x = -\sqrt{8/3}$ e $\sqrt{8/3}$.
 - (c) $Dom(f) = \mathbb{R} \{-1, 1\}$. f é crescente em $]-\infty, -1[$ $]-1,1[\cup]1,+\infty[$. Não há pontos de máximo ou de mínimos. f tem concavidade para baixo em $]-\infty, -1[\cup]0, 1[$ e tem concavidade para cima em $]-1,0[\,\cup\,]1,+\infty[$. Ponto de inflexão x = 0.
 - (d) $Dom(f) = \mathbb{R}$. f é decrescente em $]1, +\infty[$ e é crescente em $]-\infty,1[. x = 1$ é ponto de máximo local de f. A concavidade de f é para baixo em $]-\infty,2[$ e para cima em $]2, +\infty[. \quad x=2 \text{ é ponto de inflexão de } f.$
 - (e) $Dom(f) = \mathbb{R}$. f é decrescente em $]-\infty,0[$ e é crescente em $]0,+\infty[$. x=0 é ponto de mínimo local de f. A concavidade de f é para cima em]-2,2[e é para baixo em $]-\infty, -2[\,\cup\,]2, +\infty[$. Pontos de inflexão de $f\colon x=-2$ $e \ x = 2.$
 - (f) $Dom(f) =]0, +\infty[$. f é crescente em $]1/3, +\infty[$ e é decrescente em]0,1/3[. x=1/3 é ponto de mínimo local de f. A concavidade de f é para cima em $]0,+\infty[$. Não há pontos de inflexão.