Auxiliar #2

Erik Saez A.

Department of Electrical Engineering Universidad de Chile

September 28, 2025

Contenidos

- 1 Resumen
- 2 Pregunta 1
- 3 Pregunta 2
- 4 Pregunta 3
- 5 Pregunta 4
- 6 Pregunta 5
- 7 Pregunta 6

Fig.: Facultad de Ciencias Físicas y Matemáticas , Universidad de Chile.

Señales: Energía y Potencia — Definiciones

Definición 1 — Energía de una señal

Sea $((x[n])_{n\in\mathbb{Z}} \circ (x(t))_{t\in\mathbb{R}}$ una señal (discreta o continua). Definimos su **energía** como:

$$E = \sum_{n = -\infty}^{\infty} |x[n]|^2 \qquad \text{(discreto)}$$

$$E = \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt \qquad \text{(continuo)}$$

Definición 2 — Señal de energía

Decimos que la señal $(x[n])_{n\in\mathbb{Z}}$ es una **señal de energía** si $E < \infty$. Si $E = \infty$, no es de energía.

Definición 3 — Potencia promedio

La potencia promedio de una señal es la cantidad de energía que la señal entrega por unidad de tiempo, y se define como:

$$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$

Señales: Energía y Potencia — Definiciones

Señales causales y anticausales

- Una señal x[n] es **causal** si x[n] = 0 para todo n < 0.
- Una señal x[n] es **anticausal** si x[n] = 0 para todo n > 0.

Señales simétricas y anti-simétricas

- Una señal x[n] es simétrica si x[n] = x[-n].
- Una señal x[n] es **anti-simétrica** si x[n] = -x[-n].

Fig.: Ejemplos de señales causales y anticausales.

Simetría en señales discretas: pares e impares

Propiedad

Toda señal $x[n]_{n\in\mathbb{Z}}$ tiene una parte **simétrica** y una parte **anti-simétrica**:

$$x[n] = x_s[n] + x_a[n],$$

$$x_s[n] = \frac{1}{2} (x[n] + x[-n]),$$

$$x_a[n] = \frac{1}{2} (x[n] - x[-n]).$$

Fig.: Ejemplo de descomposición par/impar.

Funciones clásicas en tiempo discreto

Funciones clásicas

Impulso

$$\delta[n] = \begin{cases} 1, & n = 0, \\ 0, & n \neq 0. \end{cases} \tag{1}$$

Escalón

$$u[n] = \begin{cases} 1, & n \ge 0, \\ 0, & n < 0. \end{cases}$$
 (2)

Rampa

$$r[n] = \begin{cases} n, & n \ge 0, \\ 0, & n < 0. \end{cases}$$
 (3)

■ Exponencial compleja

$$x[n] = A \left(r e^{j\theta} \right)^n, \tag{4}$$

$$I_{n-1} = A_{n-1} I_{\theta n}$$
 (F)

Fig.: Ejemplo de funciones clásicas.

Sistemas LTI

Definición (discreto)

Un sistema T es lineal e invariante en el tiempo (LTI) si cumple:

Linealidad (principio de superposición):

Para cualesquiera señales $x_1[n], x_2[n]$ y escalares $\alpha, \beta \in \mathbb{R}$,

$$T\{\alpha x_1[n] + \beta x_2[n]\} = \alpha T\{x_1[n]\} + \beta T\{x_2[n]\}.$$

Invariancia en el tiempo:

El comportamiento del sistema no cambia si la entrada se desplaza en el tiempo. Es decir, para todo $k \in \mathbb{Z}$.

$$T\{x[n-k]\} = y[n-k], \text{ donde } y[n] = T\{x[n]\}.$$

Respuesta al impulso y convolución:

La dinámica del sistema queda completamente caracterizada por su respuesta al impulso

$$h[n] = T\{\delta[n]\}.$$

La salida para cualquier entrada x[n] se obtiene mediante la **convolución**:

$$y[n] = (x * h)[n] = \sum_{k \in \mathbb{Z}} x[k] h[n - k].$$

Enunciado Pregunta #1

Sean los siguientes sistemas a tiempo discreto:

- Determine si los siguientes sistemas a tiempo discreto son lineales y/o invariantes en el tiempo:
 - y[n] = nx[n]
 - $y[n] = e^{x[n]}$
 - $y[n] = \sum_{j=1}^{M} a_j \cdot x[n-j] + B$
- 2 Para el sistema a tiempo discreto T definido por la relación entrada-salida y[n] = nx[n] bosqueje por separado $T_2(T((x[n])))$ y $T(T_2((x[n])))$ y compare con los resultados obtenidos en la parte a. Para el bosquejo considere la señal:

$$x[n] = \begin{cases} 1 & 0 \le n \le 2\\ 0 & \text{en otro caso} \end{cases} \tag{6}$$

Señal de prueba x[n]

Fig.: Señal discreta x[n].

Comparación de $T_2 \circ T$ vs. $T \circ T_2$

Enunciado Pregunta #2

Escriba el siguiente sistema, bosqueje la salida del sistema si a la entrada hay un impulso de magnitud 1 centrado en 0 y clasifique esa señal de salida en cuanto a su energía y si corresponde, su potencia.

Fig.: Señal de salida del sistema para un impulso de magnitud 1 centrado en 0

Enunciado Pregunta #3

Considere el sistema mostrado en la figura, donde $h[n] = a^n u[n]$ con -1 < a < 1. Determine la respuesta del sistema bajo la excitación

$$x[n] = u[n+5] - u[n-10].$$

Fig.: Sistema a analizar.

Enunciado Pregunta #4

Demuestre que, si un sistema cumple

$$y[n] = T\{x[n]\} = x[n] * h[n] = \sum_{k \in \mathbb{Z}} x[k] h[n-k],$$

entonces, con h[n] la respuesta al impulso del sistema, necesariamente el sistema es lineal e invariante en el tiempo (LTI).

Enunciado Pregunta #5

Tres sistemas con respuestas al impulso $h_1[n] = \delta[n] - \delta[n-1]$, $h_2[n] = h[n]$ y $h_3[n] = u[n]$ se conectan en cascada.

- I ¿Cuál es la respuesta al impulso total $h_c[n]$ del sistema en su conjunto?
- **2** ¿El orden de conexión afecta al sistema en su conjunto? Justifique.

Enunciado Pregunta #6

Considere el sistema a tiempo discreto de orden N caracterizado por la siguiente ecuación de diferencia de parámetros b_1, \ldots, b_N y a_0, \ldots, a_M :

$$y(n) = b_1 y(n-1) + \dots + b_N y(n-N) + a_0 x(n) + \dots + a_M x(n-M), \tag{7}$$

para todo $n \in \mathbb{Z}$.

- Verifique que el sistema determinado en la Ec es lineal.
- ☑ Verifique que el sistema determinado en la Ec es invariante en el tiempo (TI).

Continuacion Enunciado #6

Considere la versión con condiciones iniciales del sistema en (7), es decir, y(n) se determina para $n \ge 0$ donde la entrada es $(x(n))_{n\ge 0}$ (asumiendo valores nulos en tiempos negativos) y el vector de estado (condiciones iniciales de (7)) es $y_1 = y(-1), \ldots, y_N = y(-N)$. Verifique que la solución frente a la entrada $(x(n))_{n\ge 0}$ y las condiciones iniciales (y_1, \ldots, y_N) se puede escribir como

$$(y(n))_{n\geq 0} = (y_{SO}(n))_{n\geq 0} + (y_{IO}(n))_{n\geq 0},$$
 (8)

donde $(y_{SO}(n))_{n\geq 0}$ denota la *respuesta de estado cero* y $(y_{IO}(n))_{n\geq 0}$ denota la *respuesta de entrada cero*.

- 2 Bajo el setting del punto (c), verifique que la relación $(x(n))_{n\geq 0} \mapsto (y_{SO}(n))_{n\geq 0}$ determina un sistema LTI.
- Bajo el setting del punto (c), verifique que la relación $(y_1, \ldots, y_N) \mapsto (y_{IO}(n))_{n>0}$ es lineal.