### Learning Objectives

#### You will be able to:

- Define "Artificial Intelligence" (AI),
   "Machine Learning" (ML), and "Deep Learning" (DL)
- Explain how DL helps solve classical ML limitations.
- Differentiate modern AI from prior AI.
- Relate sample applications of Al.



# Al Breakthroughs

### **Image classification**



"Dog" "Cat"
As of <u>2015</u>, computers can be trained to perform better on this task than humans.

#### **Machine translation**



As of <u>2016</u>, we have achieved <u>near-human performance</u> using the latest Al techniques.

## Al Is The New Electricity

"About 100 years ago, electricity transformed every major industry. All has advanced to the point where it has the power to transform...every major sector in coming years."

-Andrew Ng, Stanford University

Projected Revenue (in billions USD) Generated from AI, 2016-2020 (IDC)



### **Definitions**

- Artificial Intelligence
- Machine Learning
- Deep Learning



# Artificial Intelligence

"A branch of computer science dealing with the simulation of intelligent behavior in computers." (Merriam-Webster)

"A program that can sense, reason, act, and adapt." (Intel)

"Colloquially, the term 'artificial intelligence' is applied when a machine mimics 'cognitive' functions that humans associate with other human minds, such as 'learning' and 'problem solving'." (Wikipedia)



### **Machine Learning**

"The study and construction of programs that are *not explicitly programmed*, but learn patterns as they are exposed to more data over time." (Intel)



## Machine Learning

These programs learn from repeatedly seeing data, rather than being explicitly programmed by humans.



# Machine Learning Terminology

This example is learning to classify a species from a set of measurement features.

#### Features:

Attributes of the data.

### Target:

Column to be predicted.

| 1 | sepal length | sepal width | petal length | petal width | species    |
|---|--------------|-------------|--------------|-------------|------------|
| I | 6.7          | 3.0         | J. C         | 2.3         | virginica  |
|   | 6.4          | 2.8         | 5.6          | 2.1         | virginica  |
| F | 4.6          | 3.4         | 1.4          | 0.3         | setosa     |
|   | 6.9          | 3.1         | 4.9          | 1.5         | versicolor |
|   | 4.4          | 2.9         | 1.4          | 0.2         | setosa     |
| Г | 4.8          | 3.0         | 1.4          | 0.1         | setosa     |
|   | 5.9          | 3.0         | 5.1          | 1.8         | virginica  |
|   | 5.4          | 3.9         | 1.3          | 0.4         | setosa     |
|   | 4.9          | 3.0         | 1.4          | 0.2         | setosa     |
|   | 5.4          | 3.4         | 1.7          | 0.2         | setosa     |

### Two Main Types of Machine Learning

**Dataset** Goal **Example Supervised** Has a target Make Fraud Learning column predictions detection Find **Unsupervised** Does not have a Customer structure in Learning target column segmentation the data

# Machine Learning Example

- Suppose you wanted to identify fraudulent credit card transactions.
- You could define features to be:
  - Transaction time
  - Transaction amount
  - Transaction location
  - Category of purchase
- The algorithm could learn what feature combinations suggest unusual activity.



# **Machine Learning Limitations**

- Suppose you wanted to determine if an image is of a cat or a dog.
- What features would you use?
- This is where Deep Learning can come in.



Dog and cat recognition



# **Deep Learning**

"Machine learning that involves using very complicated models called "deep neural networks"." (Intel)

Models determine best representation of original data; in classic machine learning, humans must do this.

### ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act, and adapt

#### MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

### DEEP Learning

Subset of machine learning in which multilayered neural networks learn from vast amounts of data



### Deep Learning Example

### Classic Machine Learning

Step 1: Determine features.

Step 2: Feed them through model.

### Deep Learning

Steps 1 and 2 are combined into 1 step.





# History of Al

Al has experienced several hype cycles, where it has oscillated between periods of excitement and disappointment.



# Deep Learning Breakthroughs (2012 – Present)

- In 2012, deep learning beats previous benchmark on the ImageNet competition.
- In 2013, deep learning is used to understand "conceptual meaning" of words.
- In 2014, similar breakthroughs appeared in language translation.
- These have led to advancements in Web Search, Document Search, Document Summarization, and Machine Translation.



Google Translate

# Deep Learning Breakthroughs (2012 – Present)

- In 2014, computer vision algorithm can describe photos.
- In 2015, Deep learning platform TensorFlow\* is developed.
- In 2016, DeepMind\* AlphaGo, developed by Aja Huang, beats Go master Lee Se-dol.



# Modern AI (2012 – Present): Deep Learning Impact

### **Computer vision**



Self-driving cars: object detection



Healthcare: improved diagnosis

### **Natural language**



Communication: language translation

### How Is This Era of Al Different?



### Other Modern Al Factors

- Continued expansion of open source AI, especially in Python\*, aiding machine learning and big data ecosystems.
- Leading deep learning libraries open sourced, allowing further adoption by industry.
- Open sourcing of large datasets of millions of labeled images, text datasets such as Wikipedia has also driven breakthroughs.





### **Health**

Enhanced
Diagnostics
Drug Discovery
Patient Care
Research
Sensory Aids



### **Industrial**

Factory
Automation
Predictive
Maintenance
Precision
Agriculture
Field
Automation





### **Finance**

Algorithmic
Trading
Fraud Detection
Research
Personal
Finance
Risk Mitigation



### **Energy**

Oil & Gas Exploration Smart Grid

Operational Improvement Conservation





**Government** 

Defense

Data Insights

Safety & Security

Engagement

Smarter Cities



### **Transport**

Autonomous Cars

Automated Trucking

Aerospace

Shipping

Search & Rescue





### **Other**

Advertising

Education

Gaming

Professional & IT Services

Telco/Media

**Sports** 

# Al Omnipresence In Transportation

### **Navigation**



Google & Waze find the fastest route, by processing traffic data.

### **Ride sharing**



Uber & Lyft predict real-time demand using AI techniques, machine learning, deep learning.

## Al Omnipresence In Social Media

#### **Audience**



Facebook & Twitter use AI to decide what content to present in their feeds to different audiences.

#### Content



Image recognition and sentiment analysis to ensure that content of the appropriate "mood" is being served.

## Al Omnipresence In Daily Life

### **Natural language**



We carry around powerful natural language processing algorithms in our phones/computers.

### **Object detection**



Cameras like Amazon DeepLens\* or Google Clips\* use object detection to determine when to take a photo.

## Latest Developments: Computer Vision



Deep Learning "proven" to work for image classification.



Models outperform humans on image classification.



Object detection models beat previous benchmarks.

2012 2015 2016

# Application Area: Abandoned Baggage Detection

- We can automatically detect when baggage has been left unattended, potentially saving lives.
- This system relies on the breakthroughs we discussed:
  - Cutting edge object detection.
  - Fast hardware on which to train the model (Intel® Xeon® processors in this case).



Abandoned baggage

### Learning Objectives Recap

In this session, we worked to:

- Define "Artificial Intelligence" (AI),
   "Machine Learning" (ML), and "Deep Learning" (DL).
- Explain how DL helps solve classical ML limitations.
- Explain key historical developments
- Relate sample applications of Al.



### Legal Notices and Disclaimers

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. Check with your system manufacturer or retailer or learn more at <a href="intel.com">intel.com</a>.

This sample source code is released under the <u>Intel Sample Source Code License Agreement</u>.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

\*Other names and brands may be claimed as the property of others.

Copyright © 2017, Intel Corporation. All rights reserved.

