Домашнее задание №2 «Логика и Теория Алгоритмов»

Саркисов Артём ИУ7-43Б Вариант №19

Задание №1

Задана булева функция f=(1,1,1,0,0,1,0,1,1,0,1,0,0,0,1,1).

x1	x2	x3	x4	f
0	0	0	0	
0	0	0		1
0	0		0	1
0	0	1	1	0
$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	1	1 1 0	0	0
0	1	0	1	1
0	1	1	0	0
0	1		1	1
1	0	1 0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	0 0 0 1 1 1 1 0 0 0 0 1 1 1 1	0	1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1	1 1 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1	1	1	0	1
1	1	1	1	1

а) найти сокращенную ДН Φ

Составим карту Карно для данной функции:

x_3x_4 x_1x_2	00	01	11	10
00	1	1	0	1
01	0	1	1	0
11	0	0	1	1
10	1	0	0	1

Перечислим все импликанты:

Импликанта №1:

x_3x_4 x_1x_2	00	01	11	10
00	1	1	0	1
01	0	1	1	0
11	0	0	1	1
10	1	0	0	1

$$K_1 = \overline{x}_2 \overline{x}_4$$

Импликанта №2:

rivitijirikalita 11-2.							
x_3x_4 x_1x_2	00	01	11	10			
00	1	1	0	1			
01	0	1	1	0			
11	0	0	1	1			
10	1	0	0	1			

$$K_2 = \overline{x}_1 \overline{x}_2 \overline{x}_3$$

Импликанта №3:

$\begin{bmatrix} x_3x_4 \\ x_1x_2 \end{bmatrix}$	00	01	11	10
00	1	1	0	1
01	0	1	1	0
11	0	0	1	1
10	1	0	0	1

$$K_3 = \overline{x}_1 \overline{x}_3 x_4$$

Импликанта №4:

x_3x_4	00	01	11	10
x_1x_2	1	01	11	10
00 01	1	1	U 1	1
11	0	0	1	1
10	1	0	0	1

$$K_4 = \overline{x}_1 x_2 x_4$$

Импликанта №5:

$\begin{bmatrix} x_3x_4 \\ x_1x_2 \end{bmatrix}$	00	01	11	10
00	1	1	0	1
01	0	1	1	0
11	0	0	1	1
10	1	0	0	1

$$K_5 = x_2 x_3 x_4$$

Импликанта №6:

IINIIIIIIIIIIII V V V.							
x_3x_4 x_1x_2	00	01	11	10			
00	1	1	0	1			
01	0	1	1	0			
11	0	0	1	1			
10	1	0	0	1			

$$K_6 = x_1 x_2 x_3$$

Импликанта №7:

x_3x_4 x_1x_2	00	01	11	10
00	1	1	0	1
01	0	1	1	0
11	0	0	1	1
10	1	0	0	1

 $K_7 = x_1 x_3 \overline{x}_4$

Сокращенная ДНФ:

$$K_1 \vee K_2 \vee K_3 \vee K_4 \vee K_5 \vee K_6 \vee K_7 = \overline{x}_2 \overline{x}_4 \vee \overline{x}_1 \overline{x}_2 \overline{x}_3 \vee \overline{x}_1 \overline{x}_3 x_4 \vee \overline{x}_1 x_2 x_4 \vee x_2 x_3 x_4 \vee x_1 x_2 x_3 \vee x_1 x_3 \overline{x}_4$$

б) Найти ядро функции.

Ядровая импликанта: $K_1 = \overline{x}_2 \overline{x}_4$, т.к. на карте Карно элементарные конъюнкции $x_1 \overline{x}_2 \overline{x}_3 \overline{x}_4$ и $\overline{x}_1 \overline{x}_2 x_3 \overline{x}_4$ покрыты только этой импликантой.Следовательно, ядро: $K_1 \overline{x}_2 \overline{x}_4$.

в) Получить все тупиковые ДНФ и указать, какие из них являются минимальными.

 $(K_2 \vee K_3)(K_3 \vee K_4)(K_4 \vee K_5)(K_5 \vee K_6)(K_6 \vee K_7) = (K_2 K_3 \vee K_2 K_4 \vee K_3 K_4 \vee K_3)(K_4 K_5 \vee K_4 K_6 \vee K_5 K_6 \vee K_5)(K_6 \vee K_7) = (K_2 K_4 \vee K_3)(K_4 K_6 \vee K_5)(K_6 \vee K_7) = (K_2 K_4 K_6 \vee K_2 K_4 K_5 \vee K_3 K_4 K_6 \vee K_3 K_5)(K_6 \vee K_7) = K_2 K_4 K_6 \vee K_2 K_4 K_5 K_6 \vee K_3 K_4 K_6 \vee K_3 K_5 K_6 \vee K_2 K_4 K_6 K_7 \vee K_2 K_4 K_5 K_7 \vee K_3 K_4 K_6 \vee K_3 K_5 K_6 \vee K_3 K_5 K_7 \vee K_2 K_4 K_5 K_7 \vee K_2 K_4 K_5 K_7 \vee K_3 K_4 K_6 \vee K_3 K_5 K_6 \vee K_3 K_5 K_7 \vee K_2 K_4 K_5 K_7$

Присоединяем ядровую импликанту К1 к каждому полученному члену и получаем 5 тупиковых ДНФ:

$$K_1K_2K_4K_6 = \overline{x}_2\overline{x}_4 \vee \overline{x}_1\overline{x}_2\overline{x}_3 \vee \overline{x}_1x_2x_4 \vee x_1x_2x_3$$

$$K_1K_3K_4K_6 = \overline{x}_2\overline{x}_4 \vee \overline{x}_1\overline{x}_3x_4 \vee \overline{x}_1x_2x_4 \vee x_1x_2x_3$$

$$K_1K_3K_5K_6 = \overline{x}_2\overline{x}_4 \vee \overline{x}_1\overline{x}_3x_4 \vee x_2x_3x_4 \vee x_1x_2x_3$$

$$K_1K_3K_5K_7 = \overline{x}_2\overline{x}_4 \vee \overline{x}_1\overline{x}_3x_4 \vee x_2x_3x_4 \vee x_1x_3\overline{x}_4$$

$$K_1K_2K_4K_5K_7 = \overline{x}_2\overline{x}_4 \vee \overline{x}_1\overline{x}_2\overline{x}_3 \vee \overline{x}_1x_2x_4 \vee x_2x_3x_4 \vee x_1x_3\overline{x}_4$$

Первые четыре ДНФ состоят из четырёх элементарных конъюнкций, а последняя — из пяти. Следовательно, кратчайшими будут первые четыре ДНФ. Все они состоят из одинакового числа литералов. Следовательно, все они являются минимальными.

Γ) На картах Карно указать ядро и покрытия, соответствующие минимальным ДН Φ .

Карта Карно для минимальной ДНФ: $K_1K_2K_4K_6 = \overline{x}_2\overline{x}_4 \vee \overline{x}_1\overline{x}_2\overline{x}_3 \vee \overline{x}_1x_2x_4 \vee x_1x_2x_3$

Карта Карно для минимальной ДНФ: $K_1K_3K_4K_6=\overline{x}_2\overline{x}_4\vee\overline{x}_1\overline{x}_3x_4\vee\overline{x}_1x_2x_4\vee x_1x_2x_3$

		X_3X_4					
		00	01	11	10		
X_1X_2	00	1	1	0	1		
	01	0	1	1	0		
	11	0	0	1	1		
	10	1	0	0	1		

Карта Карно для минимальной ДНФ: $K_1K_3K_5K_6=\overline{x}_2\overline{x}_4\vee\overline{x}_1\overline{x}_3x_4\vee x_2x_3x_4\vee x_1x_2x_3$

Карта Карно для минимальной ДНФ: $K_1K_3K_5K_7=\overline{x}_2\overline{x}_4\vee\overline{x}_1\overline{x}_3x_4\vee x_2x_3x_4\vee x_1x_3\overline{x}_4$

Задание №2

Даны функции f и w:

f	w	
$((\overline{x}_1 \lor x_2 \lor x_3) \Rightarrow (\overline{x}_2 \sim x_3)) \sim (x_1 \sim \overline{x}_3)$	(1,1,1,1,1,1,0,0)	

а) Вычислить таблицу значений функции f.

Таблица значений функции f:

x_1	x_2	x_3	\overline{x}_1	\overline{x}_2	\overline{x}_3	$(\overline{x}_1 \vee x_2 \vee x_3)$	$\overline{x}_2 \sim x_3$	$(\overline{x}_1 \lor x_2 \lor x_3) \Rightarrow (\overline{x}_2 \sim x_3)$	$x_1 \sim \overline{x}_3$	$\int f$
0	0	0	1	1	1	1	0	0	0	1
0	0	1	1	1	0	1	1	1	1	1
0	1	0	1	0	1	1	1	1	0	0
0	1	1	1	0	0	1	0	0	1	0
1	0	0	0	1	1	0	0	1	1	1
1	0	1	0	1	0	1	1	1	0	0
1	1	0	0	0	1	1	1	1	1	1
1	1	1	0	0	0	1	0	0	0	1

б) Найти минимальные ДН Φ функций f и w.

Карта Карно функции f:

$$X_1X_2$$
 $00 \quad 01 \quad 11 \quad 10$
 $X_3 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0$

$$K_1 = x_1 x_2 \ K_2 = \overline{x}_1 \overline{x}_2 \ K_3 = x_1 \overline{x}_3 \ K_4 = \overline{x}_2 \overline{x}_3$$

 K_1 и K_2 - ядровые импликанты, т.к на карте Карно элементарные конъюнкции $\overline{x}_1x_2x_3$ и $x_1x_2x_3$ покрыты только этими импликантами.

Минимальная ДНФ функции f: $K_3K_1K_2=x_1\overline{x}_3\vee x_1x_2\vee \overline{x}_1\overline{x}_2$ и $K_4K_1K_2=\overline{x}_2\overline{x}_3\vee x_1x_2\vee \overline{x}_1\overline{x}_2$ тупиковые ДНФ функции f, в свою очередь являются и минимальными, т.к имеет одинаково наименьшую сложность.

Карта Карно функции w:

x_1	x_2	x_3	w
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

$$X_1X_2$$
 $00 \quad 01 \quad 11 \quad 10$
 $X_3 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1$

7

$$K_1 = \overline{x}_1 \ K_2 = \overline{x}_2$$

Минимальная ДНФ функции w: $w=\overline{x}_1 \vee \overline{x}_2$

в) Выяснить полноту системы $\{f,w\}$. Если система не полна, дополнить систему функцией g до полной системы.

x_1	x_2	x_3	$\int f$	w
0	0	0	1	1
0	0	1	1	1
0	1	0	0	1
0	1	1	0	1
1	0	0	1	1
1	0	1	0	1
1	1	0	1	0
1	1	1	1	0

Сохранение 0: $f(0,0,0) = 1 \Rightarrow f \notin T_0$ и $w(0,0,0) = 1 \Rightarrow w \notin T_0$

Сохранение 1: $f(1,1,1) = 1 \Rightarrow f \in T_1$ и $w(1,1,1) = 0 \Rightarrow w \notin T_1$

Самодвойственность: $f(1,1,1) = f(0,0,0) = 1 \Rightarrow f \notin S$ и $w(1,0,1) = w(0,1,0) = 1 \Rightarrow w \notin S$

Монотонность: (0,0,0)<(0,1,0), но $f(0,0,0)>f(0,1,0)\Rightarrow f\notin M$ и (0,0,0)<(1,1,0), но $w(0,0,0)>w(1,1,0)\Rightarrow w\notin M$

Линейность функции: общий вид полинома Жигалкина для функции трёх переменных: $f(x_1, x_2, x_3) = a_{123}x_1x_2x_3 \oplus a_{12}x_1x_2 \oplus a_{23}x_2x_3 \oplus a_{13}x_1x_3 \oplus a_1x_1 \oplus a_2x_2 \oplus a_3x_3 \oplus a_0$

x_1	x_2	x_3	f	
0	0	0	1	$a_0 = 1$
0	0	1	1	$a_0 + a_3 = 1 \Rightarrow a_3 = 0$
0	1	0	0	$a_0 + a_2 = 0 \Rightarrow a_2 = 1$
0	1	1	0	$a_0 + a_{23} + a_2 + a_3 = 0 \Rightarrow a_{23} = 0$
1	0	0	1	$a_0 + a_1 = 1 \Rightarrow a_1 = 0$
1	0	1	0	$a_0 + a_{13} + a_1 + a_3 = 0 \Rightarrow a_{13} = 1$
1	1	0	1	$a_0 + a_{12} + a_1 + a_2 = 1 \Rightarrow a_{12} = 1$
1	1	1	1	$a_0 + a_{123} + a_{12} + a_{13} + a_{23} + a_{12} + a_{23} + a_{12} + a_{23} = 1$

Полином Жигалкина функции f: $f(x_1,x_2,x_3)=x_1x_2x_3+x_1x_2+x_1x_3+x_2+1$, т.к. полином функции f не является полиномом первой степени, то $f\notin L$

 $w(x_1, x_2, x_3) = a_{123}x_1x_2x_3 \oplus a_{12}x_1x_2 \oplus a_{23}x_2x_3 \oplus a_{13}x_1x_3 \oplus a_1x_1 \oplus a_2x_2 \oplus a_3x_3 \oplus a_0$

x_1	x_2	x_3	w	
0	0	0	1	$a_0 = 1$
0	0	1	1	$a_0 + a_3 = 1 \Rightarrow a_3 = 0$
0	1	0	1	$a_0 + a_2 = 1 \Rightarrow a_2 = 0$
0	1	1	1	$a_0 + a_{23} + a_2 + a_3 = 1 \Rightarrow a_{23} = 0$
1	0	0	1	$a_0 + a_1 = 1 \Rightarrow a_1 = 0$
1	0	1	1	$a_0 + a_{13} + a_1 + a_3 = 1 \Rightarrow a_{13} = 0$
1	1	0	0	$a_0 + a_{12} + a_1 + a_2 = 0 \Rightarrow a_{12} = 1$
1	1	1	0	$a_0 + a_{123} + a_{12} + a_{13} + a_{23} + a_{11} + a_{12} + a_{13} = 0 \Rightarrow a_{123} = 0$

Полином Жигалкина функции w: $w(x_1,x_2,x_3)=x_1x_2+1$, т.к. полином функции w не является полиномом первой степени, то $w\notin L$

Критериальная таблица:

	T_0	T_1	S	M	L
f	_	+	_	_	_
w	_	_	_	_	l

Система $\{f,w\}$ является функционально полным классом, т.к. функция w не сохраняет константу 1, которую сохраняет функция f.

г) Из функциональных элементов, реализующих функии полной системы $\{f,w\}$, построить функциональные элементы, реализующие базовые функции $(\vee,\wedge,0,1)$.

Система $\{f,w\}$ является функционально полным классом. Значит, из этих функций с помощью суперпозиций можно выразить константы 0, 1, отрицание, конъюнкцию и дизъюнкцию.

Отрицание: $w \notin T_0$ и $w \notin T_1 \Rightarrow$ отрицанием строим из функции w, т.к. w(0,0,0)=1 и w(1,1,1)=0, то $w(x,x,x)=\overline{x}$.

Константа 1: $f \notin T_0$ и $f \in T_1 \Rightarrow$ константу 1 строим из функции f, т.к. f(0,0,0) = 1 и f(1,1,1) = 1, то f(x,x,x) = 1.

Константа 0: Для построения константы 0 возьмём отрицание от функции f(x,x,x). $\overline{f(x,x,x)}=w(f(x,x,x),f(x,x,x),f(x,x,x))=0$. Проверка: w(f(0,0,0),f(0,0,0),f(0,0,0))=w(1,1,1)=0 и w(f(1,1,1),f(1,1,1),f(1,1,1))=w(1,1,1)=0.

Дизъюнкция: для построения дизъюнкции из функции $f=x_1\overline{x}_3 \lor x_1x_2 \lor \overline{x}_1\overline{x}_2$, зафиксируем переменную $x_1=1$ и обозначим $x_2\to x$ и $\overline{x}_3\to y$. Тогда: $f(1,x,\overline{y})=x\lor y$. Выражение для дизъюнкции: $d(x,y)=f(1,x,\overline{y})=f(f(x,x,x),x,\overline{y})=x\lor y$.

Проверка: d(0,0) = f(f(0,0,0),0,1) = f(1,0,1) = 0, d(0,1) = f(f(0,0,0),0,0) = f(1,0,0) = 1, d(1,0) = f(f(1,1,1),1,1) = f(1,1,1) = 1, d(1,1) = f(f(1,1,1),1,0) = f(1,1,0) = 1.

Конъюнкция: для построения конъюнкции из функции $w = \overline{x}_1 \vee \overline{x}_2$, пусть $x_1 = 1$, обозначим $\overline{x}_2 \to xy$. Тогда: $w(1, \overline{xy}, 0) = xy$. Выражение для конъюнкции: $k(x, y) = w(1, \overline{xy}, 0) = w(f(x, x, x), \overline{xy}, w(f(x, x, x), f(x, x, x), f(x, x, x))) = xy$.

Проверка: k(0,0) = w(1,1,w(1,1,1)) = w(1,1,0) = 0, k(0,1) = w(1,1,w(1,1,1)) = w(1,1,0) = 0, k(1,0) = w(1,1,w(1,1,1)) = w(1,1,0) = 0, k(1,1) = w(1,0,w(1,1,1)) = w(1,0,0) = 1.

Задание №3

Доказать в исчислении высказываний (буквы обозначают произовльные формулы): $\neg(\neg(\neg B \lor C) \to (\neg A \lor C)) \equiv (A\&(B\&\neg C)).$

Преобразуем исходное высказывание: $\neg(\neg(B \to C) \to (A \to C)) \equiv (A\&(B\&\neg C)).$

Сначала докажем правило отрицания импликации: $\neg(A \to B) \vdash A\& \neg B$. Т.к. в левой части стоит внешнее отрицание и ее не удобно использовать в качестве гипотезы, по прибегнем к контрапозиции, то есть выведем отрицание левой части из отрицания правой: $\neg(A\& \neg B) \vdash \neg \neg(A \to B)$.

Шаг	Формула	Комментарий
1	$\neg (A \& \neg B)$	Гипотеза
2	$\neg\neg(A \to \neg\neg B)$	По определени &
3	$A \to \neg \neg B$	R3(2)
4	$\neg\neg B \to B$	Секвенция 3
5	$A \to B$	R1(2)(4)
6	$\neg\neg(A \to B)$	R4(5)

Обозначим правило отрицание импликации - R10.

Шаг	Формула	Комментарий
1	$\neg(\neg(B \to C) \to (A \to C))$	Гипотеза
2	$\neg (B \to C) \& \neg (A \to C)$	Правило Де Моргана (отрицание дизъюнкции)
3	$\neg (B \to C)$	Свойство конъюнкции (2)
4	$\neg (A \to C)$	Свойство конъюнкции (2)
5	$B\&\neg C$	R10(3)
6	$A \& \neg C$	R10(4)
7	$\neg C$	Свойство конъюнкции (6)
8	$(A\&(B\&\neg C))$	Свойство конъюнкции (5) и (7)

Докажем выводимость левой части из правой. Заметим, что из секвенции 8, следует: $\vdash A \to (\neg B \to \neg (A \to B))$. По теореме дедукции имеем: $A, \neg B \vdash \neg (A \to B)$.

Шаг	Формула	Комментарий
1	$(A\&(B\&\neg C))$	Гипотеза
2	A	Свойство конъюнкции (1)
3	$B\&\neg C$	Свойство конъюнкции (1)
4	В	Свойство конъюнкции (3)
5	$\neg C$	Свойство конъюнкции (3)
6	$\neg C\&A$	Свойство конъюнкции (3) и (5)
7	$\neg (B \to C)$	R8(4,5))
8	$\neg (A \to C)$	R10(6))
9	$\neg (B \to C) \& \neg (A \to C)$	Свойство конъюнкции (7) и (8)
10	$\neg(\neg(B \to C) \to (A \to C))$	R10(9)