EXP₃

- Gabriel Tavares 10773801
- Guilherme Reis 10773700

```
    PlotlyBackend()

    begin
    using DSP \
    using Plots \
    using Plots \
    plotly()
    end
```

1) Simulação do filtro de 2 coeficientes

Parâmetros de simulação

```
- begin

- N = 200

- realizacoes = 100

- \sigma_x^2 = 1

- \sigma_v^2 = 0.01

- noprint

- end
```

Simulação

Valores teóricos

```
begin  \begin{array}{lll} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &
```

Comparação de valores simulados e teóricos

Como esperado, os valores simulados e teóricos são bastante próximos. Como o filtro ideal e LMS tem 2 coeficientes, os coeficientes finais tendem para o filtro ideal

2) Simulação com filtros de 1 e 3 coeficientes

Simulação 1 coeficiente

Valores teóricos

```
begin

R\phi 2 = [\sigma_x^2 \ 0; \\ 0 \ \sigma_x^2]

rd\phi 2 = [h2[1]*\sigma_x^2, \ 0]

K = [\mu *\sigma_y^2/2 \ 0; \\ 0 \ \mu *\sigma_y^2/2]

w_0 2 = inv(R\phi 2)*rd\phi 2

EMSE2 = tr(R\phi 2*K2)
```

Comparação de valores simulados e teóricos

Simulação 3 coeficientes

Valores teóricos

```
\begin{array}{lll} \bullet & \text{begin} \\ & R\phi 3 = \left[\sigma_{x}^{2} \ 0; \\ & 0 \ \sigma_{x}^{2}\right] \\ & rd\phi 3 = \left[h 3 \left[1\right] * \sigma_{x}^{2}, \ h 3 \left[2\right] * \sigma_{x}^{2}\right] \\ & K 3 = \left[\mu * \sigma_{y}^{2} / 2 \ 0; \\ & 0 \ \mu * \sigma_{y}^{2} / 2\right] \\ & w_{o} 3 = inv(R\phi 2) * rd\phi 3 \\ & EMSE 3 = tr(R\phi 2 * K 2) \\ & \text{noprint} \\ & \text{end} \end{array}
```

Comparação de valores simulados e teóricos

Usando um filtro ideal de 2 e 3 coeficientes, vemos que no primeiro caso no o algoritmo converge pra um resultado bom e se mantém na faixa de valores teóricos de EMSE. O primeiro coeficiente do filtro tende ao coeficiente do filtro ideal.

Com 3 coeficientes, o filtro LMS tenta chegar no valor mais próximo possível do filtro real, mas tem uma limitação de projeto de atingir o filtro ideal. Devido a iddo, o seu valor de erro não na convergência fica a cima do valor teórico

3) Simulação do filtro adaptativo de 5 coeficientes e o filtro real de 2

Simulação

Valores teóricos

```
\begin{array}{c} -\text{begin} \\ -\text{R}\phi5 &= \left[\sigma_{x}^{2} \ 0 \ 0 \ 0 \ 0\right] \\ -\text{O} \ \sigma_{x}^{2} \ 0 \ 0 \ 0; \\ -\text{O} \ 0 \ \sigma_{x}^{2} \ 0 \ 0; \\ -\text{O} \ 0 \ 0 \ \sigma_{x}^{2} \ 0; \\ -\text{O} \ 0 \ 0 \ \sigma_{x}^{2}; \\ -\text{I} \ -\text{I} \ +\text{I} \
```

Comparação de valores simulados e teóricos


```
UndefVarError: w<sub>o</sub>4 not defined

1. top-level scope @ [Local: 4]

begin
plot(title= "Coeficientes (H -> 2 coefs)")
plot!(w_lms4, label="Simulado")
hline!([w<sub>o</sub>4[1]], label="Teórico")
hline!([w<sub>o</sub>4[2]], label="Teórico")
end
```

Nesse exemplo, como esperado o filtro LMS consegue convergir para os valores ideiais e teóricos, por ter coeficientes suficiente para representar o filtro

4) Filtrando x[n] antes da adaptação

Aqui estamos usando sinal de entrada x[n] mais complexo do que apenas um ruído gaussiano

Simulação

Nesse exemplo conseguimos ver que os valores simulados ainda tendem para os mesmos valores obtidos anteriormente, mas por ter um sinal mais complexo que um ruído puro, o tempo de convergência é bem maior

Functions

```
LMS (generic function with 1 method)

- function LMS(x, d, M, \mu)

- N = length(x)

- X = zeros(M,1)

- W = zeros(N,M)

- erro = zeros(N,1)

- for n in 1:N-1

- X = [x[n]; X[1:M-1]]

- y = W[n,:]*X

- erro[n] = d[n]-y

- w[n+1,:] = w[n,:] + \mu*erro[n]*X

- end

- return W, erro

- end
```

```
noprint =  md""
```