EE5609 Assignment 10

Abhishek Thakur

Abstract-This document solves problem based on solution of vector space.

Download all solutions from

https://github.com/abhishekt711/EE5609/tree/ master/Assignment 10

1 Problem

Consider the vectors in \mathbb{R}^4 defined by:

$$\alpha_1 = \begin{pmatrix} -1\\0\\1\\2 \end{pmatrix}, \ \alpha_2 = \begin{pmatrix} 3\\4\\-2\\5 \end{pmatrix} \text{ and } \alpha_3 = \begin{pmatrix} 1\\4\\0\\9 \end{pmatrix}.$$

Find a system of homogeneous linear equations for which the space of solutions is exactly the subspace of \mathbb{R}^4 spanned by the given three vectors.

2 Solution

Let,

$$\mathbf{A} = \begin{pmatrix} -1 & 3 & 1\\ 0 & 4 & 4\\ 1 & -2 & 0\\ 2 & 5 & 9 \end{pmatrix} \tag{2.0.1}$$

By operating column operation on A, we get:

$$\begin{pmatrix}
-1 & 3 & 1 \\
0 & 4 & 4 \\
1 & -2 & 0 \\
2 & 5 & 9
\end{pmatrix}
\xrightarrow{C_3 = C_3 - 2C_1 - C_2}
\begin{pmatrix}
-1 & 3 & 0 \\
0 & 4 & 0 \\
1 & -2 & 0 \\
2 & 5 & 0
\end{pmatrix} (2.0.2)$$

$$\stackrel{C_1 = -C_1}{\longleftrightarrow} \begin{pmatrix} 1 & 3 & 0 \\ 0 & 4 & 0 \\ -1 & -2 & 0 \\ -2 & 5 & 0 \end{pmatrix} (2.0.3)$$

$$\stackrel{C_2=C_2-3C_1}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ -1 & 1 & 0 \\ -2 & 11 & 0 \end{pmatrix} \quad (2.0.4)$$

$$\stackrel{C_2=\frac{1}{4}C_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & \frac{1}{4} & 0 \\ -2 & \frac{11}{4} & 0 \end{pmatrix} \quad (2.0.5)$$

$$\stackrel{C_2 = \frac{1}{4}C_2}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & \frac{1}{4} & 0 \\
-2 & \frac{11}{4} & 0
\end{pmatrix} (2.0.5)$$

As α_3 is dependent of α_1 and α_2 . The system of homogeneous linear equation is spanned by α_1 and

The required system of homogeneous linear equation are given as:

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & \frac{1}{4} & 0 \\
-2 & \frac{11}{4} & 0
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}$$
(2.0.6)