

DECISION TREES

Decision trees: Classifying from a set of attributes

- Each level splits the data according to different attributes
- Goal: achieve perfect classification with minimal number of decisions
 - not always possible due to noise or inconsistencies in the data

Decision trees with continuous values

Predicting credit risk			
years at current job	# missed payments	defaulted?	
7	0	N	
0.75	0	Y	
3	0	Ν	
9	0	Ν	
4	2	Y	
0.25	0	Ν	
5	1	Ν	
8	4	Y	
1.0	0	Ν	
1.75	0	N	

- Turn continuous values into binary values
- Decision Boundary is non-linear !!

Decision Trees

- Any Boolean function can be represented by a decision tree.
- General cases:
- Input: binary, multi-valued, or continuous
- output: binary, multi-valued or continuous (regression trees)
- Best when a small number of attributes provide a lot of information
- Very easy to interpret
- Work well for non-linear, complex relationship between the features and the response

Decision trees: Learning

- How do we which attribute or value to split on?
- When should we stop splitting?
- What do we do when we can't achieve perfect classification?
- What if tree is too large? Can we approximate with a smaller tree?

Predicting credit risk

<2 years at current job?	missed payments?	defaulted?
N	Z	Ν
Υ	Ν	Y
N	Ν	N
N	N	N
N	Y	Y
Y	N	N
N	Y	N
N	Y	Y
Y	N	N
Y	N	N

Decision trees: Learning

- 1. Starting with whole training data
- 2. Select attribute or value along feature that gives "best" split
- 3. Create child nodes based on split
- 4. Repeat on each child using child data until a stopping criterion is reached

Splitting rules

- At each split, we must decide which variable to use for splitting
- This decision is made with reference to a measure of **node impurity**, or how much variation there is upon choosing a split
- How much "information" does an attribute give us about the class?
- attributes that perfectly partition should given maximal information
- unrelated attributes should give no information

Splitting rules

- Classification Trees
- Gini Impurity
- Entropy
- Misclassification Error

- Regression Trees
- Variance of target value within the node

Splitting Binary Attributes (using Gini)

Example:

Suppose there are two ways (A and B) to split the data into smaller subset.

Source: https://www.slideshare.net/knottisme/classification-using-decision-tree-53984611

Splitting Binary Attributes (using Gini)

Weighted Average of Gini Index: $[(7/12) \times 0.4898] + [(5/12) \times 0.480]$ = 0.486 Gain, $\Delta = 0.5 - 0.486 = 0.014$

Weighted Average of Gini Index: $[(5/12) \times 0.320] + [(7/12) \times 0.4082]$

= 0.3715

Gain, $\Delta = 0.5 - 0.3715 = 0.1285$

Therefore, **B** is preferred

Hyper-parameters

A max_depth of 2 would ensure no further splitting even if leaves have the required minimum samples

LEGEND

- Tree nodes except for terminal node
- Terminal nodes or leaves of tree
- **xx** Number of samples in a leaf
 - The predicted value of a leaf node
 - Node splitting criteria

abc

- Key Hyperparameters
 - 1. Max depth of the trees
 - 2. Min samples leaf

MODEL SELECTION AND HYPER-PARAMETER TUNING

Model Evaluation: Overfitting

Bias-Variance Tradeoff

Model Evaluation: Bias Variance Trade-Off

Bias Variance Trade-Off

Estimating Test Errors

 We are interested in how well our model predicts the response on a new observation

However, we don't always have a large designated test set

K-fold Cross Validation

K-fold Cross Validation

■ Divide the set of observations into k groups, or folds

■ At each iteration, one fold is treated as a validation set, and the method is fit on the remaining k – 1 folds. Repeat the process k times

K-fold Cross Validation

Hyper-parameter Tuning

- Decision Trees Hyper-parameters
 - Max depth of the trees
 - Min samples leaf
- Logistic Regression Hyper-parameters
 - Regularization Parameter (lambda)
- The process of finding the best-performing model from a set of models that were produced by different hyper-parameter settings is called *model* selection

Step1: Train-Test Splitting

- We split our dataset into two parts, a training and an independent test set
- We tuck away the test set for the final model evaluation step at the end

Step2: Hyper-parameters search

 We now experiment with various Hyperparameter settings using K-Fold cross validation on training data

Step3: Choose the best hyper-parameter setting

- Take the hyper-parameter settings that correspond to the best-performing model
- we can then use the complete training set for model fitting.

Step4: Evaluate the model on test set

- Now it's time to make use of the independent test set that we withheld
- We use the test set to evaluate the model that we obtained from step 3.

Step5: Fit the model to all data and ready to be deployed

• When we completed the evaluation stage, we can fit a model to all our data, which could be the model for (the so-called) *deployment*.

Credit

https://sebastianraschka.com/blog/2016/model-evaluation-selection-part3.html.