Unidad 2

Función Cuadrática

La función cuadrática tiene la siguiente forma

$$f\left(x\right) = ax^2 + bx + c$$

donde a,b y c se llaman coeficientes de la ecuación cuadrática. También se debe cumplir que $a \neq 0$.

Ejemplo 1:

Sea la función cuadrática

$$f\left(x\right) = x^2 + 2x + 1$$

realizar la gráfica de esta función.

Marzo de 2025 Matemáticas Fundamental

Figura 2.1: Gráfica de la Función $f(x) = x^2 + 2x + 1$

Las funciones cuadráticas, pueden tener cortes con el eje x, y para ello se usa una fórmula conocida como la **fórmula general de segundo grado**, y se escribe así

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Esta ecuación nos permite conocer si la función tiene cortes con el eje x , para ello solo se debe evaluar el conocido "discriminante".

El discriminante es la parte interna de la raíz, es decir

$$b^2 - 4ac$$

Si,

- O El cálculo de b^2-4ac es menor que cero, la función **NO** tiene cortes con el eje x
- O El cálculo de b^2-4ac es igual a **CERO**, la función cuadrática tiene un **solo** corte con el eje x

O El Cálculo de b^2-4ac es mayor que cero, la función cuadrática tiene **DOS** cortes con el eje x.

Del ejemplo anterior tenemos que la función es

$$f\left(x\right) = x^2 + 2x + 1$$

de aquí (recordando que la función cuadrática tiene la forma $f(x) = ax^2 + bx + c$) la función tiene valores a = 1, b = 2 y c = 1. Entonces con estos datos calculemos el "discriminante"

$$b^{2} - 4ac = (2)^{2} - 4(1)(1)$$
$$= 4 - 4 = 0$$

Por lo tanto la función cuadrática tiene un solo corte con el eje x.

2.1 ¿Cómo se calcula el vértice de la función cuadrática?

Debemos entender que el **vértice** de la función cuadrática es el punto **MÍNIMO** de la función, y en muchas aplicaciones se usa para, por ejemplo **MINIMIZAR** costos, o **minimizar** materiales.

Para calcular el vértice se usa la fórmula

$$V = \left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$

Recordemos también que **evaluar la función**, significa, cambiar todos los valores de la x por el valor que esta en el paréntesis de la función.

Por ejemplo en la función que tenemos, que es $f(x) = x^2 + 2x + 1$ queremos saber cuál es el valor de la función cuando x = 2, entonces hacemos

$$f(2) = (2)^{2} + 2(2) + 1$$
$$= 4 + 4 + 1$$
$$= 9$$

Este proceso se puede (debe) realizar en la calculadora, por ejemplo

Marzo de 2025 Matemáticas Fundamentale

Ahora si, vamos a calcular el **vértice** de la función cuadrática, así, b=2 y a=1 entonces

$$V_x = -\frac{b}{2a} = -\frac{2}{2(1)} = -1$$

tal como se observa en la calculadora

Este sería el valor para x en el plano cartesiano, ¿Cómo calculamos el valor de y?, para eso debemos evaluar la función en el valor que encontramos de x=-1, así

$$f(-1) = (-1)^{2} + 2(-1) + 1$$
$$= 0$$

tal como se ve en la calculadora

SO M STORCE STATEMPLYMATIVET DOOR FIXSCI Math
$$\sqrt{A}$$
 Disp $(-1)^2 + 2(-1) + 1$

Por lo tanto el vértice de la función cuadrática es V(-1,0).

2.2 Gráficas en Geogebra

Geogebra es una aplicación para Geometría Dinámica, esta nos permite crear construcciones en el Computador que nos permiten entender el comportamiento de diversos tipos de formas y funciones.

Si realizamos las simulaciones para los parámetros de la función cuadrática observamos lo siguiente:

O El valor de a es la amplitud horizontal de la función, si a es un valor muy grande, la función cuadrática tiene una amplitud muy pequeña, y si el valor de a es muy pequeño, tendrá una amplitud muy grande

O El valor de b "desfasa" la función cuadrática.

O El valor de c "desplaza" verticalmente a la función en c unidades.

Ejemplo 2:

Supongamos un insecto se encuentra en la posición $x=1\,\mathrm{cm}$ y salta $35\,\mathrm{cm}$, llegando a $x=36\,\mathrm{cm}$. Modelar una función cuadrática que muestre el salto de la insecto.

Para resolver este problema necesitamos usar los productos notables. Veamos, si tenemos

$$(x-a)(x-b)$$

lo puedo resolver usando la propiedad distributiva

$$x^2 - bx - ax + ab$$

Así, para resolver nuestro problema debemos considerar la siguiente función

$$I(x) = -(x = 1)(x = 36)$$

para resolver, debo pasar los números al lado de las x, entonces

$$I(x) = -(x-1)(x-36)$$

$$= -(x^2 - 36x - 1x + 36)$$

$$= -(x^2 - 37x + 36)$$

$$= -x^2 + 37x - 36$$

Por lo tanto la función que modela el salto del insecto es

$$I(x) = -x^2 + 37x - 36$$

Veamos su gráfica

Marzo de 2025 Matemáticas Fundamental

Figura 2.2: Gráfica de la Función Cuadrática

Observemos que el punto máximo sube hasta mas de 300, caso que en el fenómeno no se da.

2.3 Aplicaciones de las funciones lineales y cuadráticas

Ejemplo 3:

Unidad 2

Encontrar una **frontera de decisión o clasificación** entre dos grupos de elementos químicos.

Elemento	Radio Atómico	Electronegatividad
Litio (Li)	167	1.0
Sodio (Na)	190	0.93
Potasio (K)	227	0.82
Magnesio (Mg)	160	1.31
Calcio (Ca)	197	1.0
Flúor (F)	71	3.98
Oxígeno (O)	60	3.44
Nitrógeno (N)	56	3.04
Clóro (Cl)	99	3.16
Azufre (S)	102	2.58

Para resolver éste problema, consideremos dos puntos, el A con coordenadas (50, 1.5) y el punto B con coordenadas (250, 3). Con estos puntos sabemos que podemos calcular una función lineal.

Para ello, primero debemos calcular la pendiente de la recta que tiene la forma

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

en nuestro problema tenemos que $A=(x_1=50,y_1=1.5)$ y $B=(x_2=250,y_2=3)$ así

$$m = \frac{3 - 1.5}{250 - 50} = 0.0075$$

luego debemos usar la ecuación punto-pendiente que tiene la forma

$$y - y_1 = m\left(x - x_1\right)$$

de aquí sabemos que $y_1 = 1.5$, $x_1 = 50$ y m = 0.0075, así tenemos

$$y - 1.5 = 0.0075 (x - 50)$$

ahora debemos aplicar la propiedad distributiva, así

$$y - 1.5 = 0.0075x - 0.375$$

ahora transponemos el 1.5 positivo

$$y = 0.0075x - 0.375 + 1.5$$
$$y = 0.0075x + 1.125$$

luego sabemos por la definición de funciones que $y=f\left(x\right)$ por lo tanto la función queda definida como

$$f(x) = 0.0075x + 1.125$$

Por lo tanto una función lineal que clasifica a los dos grupos de elementos químicos es

$$f(x) = 0.0075x + 1.125$$

¿Cómo sabemos si la función clasificó de forma correcta a los elementos químicos?

Para responder a esta pregunta, vamos a evaluar un elemento de cada grupo y observamos el comportamiento.

Sea Litio (Li) Ra=167 E=1.0 y el otro elemento Clóro (Cl) Ra=99 E=3.16.

Recordemos que se ha graficado sobre el eje x el radio atómico, entonces en la función que tenemos vamos a evaluar el radio atómico de cada elemento.

O Para el Litio: Sea x = 167 entonces

$$f(167) = 0.0075(167) + 1.125$$
$$= 2.3775$$

O Para el Clóro: Sea x = 99 entonces

$$f(99) = 0.0075(99) + 1.125$$
$$= 1.867$$

¿Cómo interpretamos estos resultados?

Si observamos la gráfica, nos damos cuenta que las evaluaciones que realizamos nos generan puntos sobre la línea, este no es el objetivo. Para ello vamos a introducir un nuevo concepto.

Figura 2.3: Gráfica de la función y los elementos Químicos

Universidad del Quindío Artículos Científicos Matemáticas Fundamentales

2.3.1 Función Escalón (Signo)

Esta función se define de la siguiente manera

$$\mathbf{sign}(x) = \begin{cases} 0 & \mathbf{si} \ x < 0 \\ 1 & \mathbf{si} \ x \ge 0 \end{cases}$$

Si aplicamos este concepto a nuestro problema tendríamos que realizar una modificación a la función encontrada.

La función que tenemos actualmente es

$$f(x) = 0.0075x + 1.125$$

Si evaluamos cualquier punto del primer grupo, por ejemplo el grupo A que tiene radios atómicos mayores a 160 y usando la función escalón (signo) nos debería dar cero (0), así podemos escribir la siguiente expresión

$$CEQ(x) = \begin{cases} 0 & \mathbf{si} \ x < 140 \\ 1 & \mathbf{si} \ x \ge 140 \end{cases}$$