Automatic Pronunciation Evaluation of Singing

Chitralekha Gupta^{1,2}, Haizhou Li³, and Ye Wang^{1,2}

chitralekha@u.nus.edu, haizhou.li@nus.edu.sg, wangye@comp.nus.edu.sg

¹School of Computing, ²NUS Graduate School for Integrative Sciences and Engineering, ³Department of Electrical and Computer Engineering,

National University of Singapore

1. Motivation and Goal

- Pronunciation of lyrics is an important component of singing performance
- Singing is shown to improve pronunciation in **foreign** language learning
- Music and speech therapists apply Melodic Intonation
 Therapy to treat patients with speech disorders, such as non-fluent aphasia
- Goal: To design a strategy to automatically evaluate pronunciation in singing voice

2. A two-stage approach

3. Duration Modeling with Lexicon Modification

- Longer duration of vowels can be viewed as a type of pronunciation variation
- We modify the lexicon to model longer duration
- Eg.: the word "sleep" will have the lexicon variants:
 [S L IY P],
 [S L IY IY P],
 [S L IY IY IY P],
 [S L IY IY IY P]
- The ASR selects the closest matching variant at the time of forced-alignment

4. How does lexicon modification help?

Improves Word Alignment: 8% improvement from 83.7% to 91.7% within 50 ms deviation (896 words across 100 utterances DAMP Karaoke dataset)

Singing-adapted models	<20ms	20-50ms	50-100ms	100-200ms	>200ms
w/o LEX modification	635	115	82	24	40
LEX modification	748	74	33	9	32

Improves Lyrics Recognition in singing voice

Models Adapted by Singing Data	%WER	
w/o LEX modification	36.32	
LEX modification	29.65	

5. Scoring

(1) Template independent PEM score indicates how close the pronunciation of a test sung utterance is to the target lyrics

$$PEM_{ind} = \frac{1}{N} \sum_{i=1}^{N} \frac{P_i(T_p)}{\sum_{\forall k \neq p} P_i(T_k)}$$

(2) Template dependent PEM score indicates how close the pronunciation of a test sung utterance is to a **reference sung** utterance $PEM_{dep} = -\log(P_r \cdot P_t)$

6. Word-level Scoring Validation Experiment

Data: 990 words across 100 utterances: 10 sung utterances from 10 singers, (5 from EN zone, and 5 from non-EN zone) (DAMP) **Ground-truth**: binary pronunciation judgment per word by two university students fluent in English

Method: Template-	Accuracy	FPR	FNR
Dependent	0.52	0.48	0.47
Independent (LEX)	0.72	0.28	0.28
Independent (w/o LEX)	0.70	0.30	0.30

7. Song-level Scoring Validation Experiment

Data: 24 singers (DAMP) (13 female, 11 male) each singing one of 6 unique English popular songs

Ground-truth: Average song-level pronunciation judgments (over 5 raters) from crowd-sourcing platform Mturk. Pearson's correlation with controlled-lab experiment = 0.86.

8. Contributions

- A strategy to compute reliable pronunciation evaluation scores for singing voice
- Duration-based lexicon modification for improvement in word alignment as well as scoring accuracy
- The pronunciation annotations dataset: https://drive.google.com/open?
 id=19JPEWSBAM0ssatjBIJzAzjClxi2abt8w

<u>id=19JPEWSBAMOssatjBIJzAzjClxi2abt8w</u>

[1] Gupta, Chitralekha, Rong Tong, Haizhou Li, and Ye Wang. "Semi-supervised lyrics and solosinging alignment", ISMIR 2018.