

WHAT IS CLAIMED IS:

1 1. A computer-implemented method of automatically re-arranging nodes
2 in a display, the method comprising:

3 displaying a plurality of nodes in a first configuration on a display, wherein
4 each node has associations with one or more nodes, each association being represented by a
5 physical connector between the associated nodes on the display; and

6 automatically re-arranging the displayed nodes to a second configuration such
7 that a total length of all connectors is minimized and such that a number of overlapping
8 connectors is minimized.

1 2. The method of claim 1, wherein the nodes represent objects in a UML
2 diagram.

1 3. The method of claim 2, wherein the connectors represent associations
2 between objects.

1 4. The method of claim 1, wherein automatically re-arranging the
2 displayed nodes to a second configuration includes:

3 iteratively, for each node:

4 a) re-positioning the node to one of a plurality of pre-designated
5 coordinates so as to form a temporary configuration;

6 b) performing a relaxation process on the temporary configuration;

7 c) determining a number of overlapping connectors in the temporary
8 configuration;

9 d) if the number of overlapping connectors is less than a previous
10 number of overlapping connectors, storing the pre-designated coordinates as new
11 coordinates for the node;

12 e) repeating a) through d) for each of the remaining plurality of pre-
13 designated coordinates, wherein the coordinates for all other nodes in the first
14 configuration are used during steps a) through d); and thereafter

15 determining the second configuration using the new coordinates stored in d), if
16 any, for each node.

1 5. The method of claim 4, wherein performing a relaxation process
2 includes, iteratively, for each of said plurality of nodes to be displayed (first node):

3 i) iteratively, for each remaining node (second node):
4 calculating a first distance between the first node and the second node;
5 and
6 if the first distance is not equal to a target length, calculating a
7 displacement in each of the pair of display coordinates for the first node that would
8 reduce a difference between the target length and the first distance; and thereafter
9 ii) moving the first node according to the calculated displacement.

1 6. The method of claim 5, wherein calculating a displacement includes:
2 if the first distance is greater than a target length and if the first node and the
3 second node have an association, calculating a displacement in each of the pair of display
4 coordinates for the first node that would reduce the first distance; and
5 if the first distance is less than the target length, calculating a displacement in
6 each of the pair of display coordinates for the first node that would increase the first distance.

1 7. The method of claim 5, wherein the calculated displacement in each of
2 the pair of coordinates is proportional to the equation $(1/\text{target length} - \text{target length}) / (\text{first}$
3 distance) 2 .

1 8. The method of claim 5, wherein the calculated displacement in each of
2 the pair of coordinates is proportional to the number of associations between the first node
3 and the second node, if any.

1 9. The method of claim 5, further including calculating a cumulative
2 displacement, and if the cumulative displacement is smaller than a target displacement value,
3 repeating steps i) and ii) for each node.

1 10. A computer-implemented method of automatically arranging a
2 plurality of nodes in a display, wherein each node has associations with one or more nodes,
3 each association being represented by a physical connector between the associated nodes on
4 the display, the method comprising:

5 determining an original configuration of a plurality of nodes to be displayed,
6 each node having a pair of display coordinates;

7 determining the associations for each node, each association to be represented
8 on the display as a physical connector between the associated nodes;

9 determining a node configuration wherein a total length of all connectors is
10 minimized and wherein a number of overlapping connectors is minimized; and
11 displaying the plurality of nodes in said node configuration on the display.

1 11. The method of claim 10, wherein determining a node configuration
2 includes:

3 iteratively, for each node to be displayed:

4 a) re-positioning the node to one of a plurality of pre-designated
5 coordinates in the original configuration so as to form a temporary configuration;
6 b) performing a relaxation process on the temporary configuration;
7 c) determining a number of overlapping connectors in the temporary
8 configuration;

9 d) if the number of overlapping connectors is less than a previous
10 number of overlapping connectors, storing the pre-designated coordinates as new
11 coordinates for the node;

12 e) repeating a) through d) for each of the remaining plurality of pre-
13 designated coordinates, wherein the coordinates for all other nodes in the original
14 configuration are used during steps a) through d); and thereafter

15 determining the node configuration using the new coordinates stored in d), if
16 any, for each node.

1 12. The method of claim 11, wherein performing a relaxation process
2 includes, iteratively, for each of said plurality of nodes to be displayed (first node):

3 i) iteratively, for each remaining node (second node):

4 calculating a first distance between the first node and the second node;
5 and

6 if the first distance is not equal to a target length, calculating a
7 displacement in each of the pair of display coordinates for the first node that would
8 reduce a difference between the target length and the first distance; and thereafter

9 ii) moving the first node according to the calculated displacement.

1 13. The method of claim 12, wherein calculating a displacement includes:

2 if the first distance is greater than a target length and if the first node and the

3 second node have an association, calculating a displacement in each of the pair of display
4 coordinates for the first node that would reduce the first distance; and

5 if the first distance is less than the target length, calculating a displacement in
6 each of the pair of display coordinates for the first node that would increase the first distance.

1 14. The method of claim 12, wherein the calculated displacement in each
2 of the pair of coordinates is proportional to the equation (1/target length - target length /(first
3 distance)²).

1 15. The method of claim 12, wherein the calculated displacement in each
2 of the pair of coordinates is proportional to the number of associations between the first node
3 and the second node, if any.

1 16. The method of claim 12, further including calculating a cumulative
2 displacement, and if the cumulative displacement is smaller than a target displacement value,
3 repeating steps i) and ii) for each node.

1 17. The method of claim 10, wherein the nodes represent objects in a UML
2 diagram.

1 18. The method of claim 17, wherein the connectors represent associations
2 between objects.

1 19. A computer system configured to automatically re-arrange nodes in a
2 display, the system comprising:

3 a display for displaying node configurations, wherein a plurality of nodes is
4 displayed in a first configuration on the display, wherein each node has associations with one
5 or more nodes, each association being represented by a physical connector between the
6 associated nodes on the display; and

7 means for automatically re-arranging the displayed nodes to a second
8 configuration on the display such that a total length of all connectors is minimized and such
9 that a number of overlapping connectors is minimized.

1 20. The system of claim 19, wherein the nodes represent objects in a UML
2 diagram and wherein the connectors represent associations between objects.

1 21. A computer system configured to automatically arrange nodes in a
2 display, wherein each node has associations with one or more nodes, each association being

3 represented by a physical connector between the associated nodes on the display, the system
4 comprising:

5 means for determining an original configuration of a plurality of nodes to be
6 displayed, each node having a pair of display coordinates;

7 means for determining the associations for each node, each association to be
8 represented on the display as a physical connector between the associated nodes;

9 means for determining a node configuration wherein a total length of all
10 connectors is minimized and wherein a number of overlapping connectors is minimized; and
11 a display for displaying node configurations, wherein the plurality of nodes are
12 displayed in said node configuration on the display.

1 22. The system of claim 21, wherein the nodes represent objects in a UML
2 diagram and wherein the connectors represent associations between objects.