Laboratoire 20

Buts

Exercer l'utilisation de tableaux

Travail à réaliser

- Implanter un programme qui demande un nombre n non négatif à l'utilisateur et qui affiche la valeur exacte de n!
- On se limitera à des valeurs de n! comportant moins de 500 chiffres.
- Indications :
 - Pour pouvoir calculer la valeur exacte de n!, on utilisera un tableau de 500 entiers; chaque entrée du tableau stockera un chiffre de n!. Par exemple, si on a déjà calculé la valeur de 7! = 5040, on obtiendra la valeur de 8! de la façon suivante :

valeur de 7!	0	0	5	0	4	0
multiplication par 8	0	0	40	0	32	0
reports	0	4+0	0+0	3+0	0+2	0
résultat	0	4	0	3	2	0

Délai

Fin de la séance

Laboratoire 21

- Buts
 - Exercer l'utilisation de tableaux simples
- Travail à réaliser
 - Exercices 5.13 et 5.14
- Délai
 - Fin de la séance

Laboratoire 22

Buts

• Exercer les opérations et méthodes de bases de la classe vector : size(), at(), push_back(),...

Travail à réaliser

- La suite de Fibonacci est définie par : F₀ = 0, F₁ = 1 et F_n = F_{n-1} + F_{n-2}. Cette séquence commence par : 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, Elle apparaît de manière surprenante dans de nombreux développements mathématiques.
- Écrire une fonction add, qui prend en paramètre 2 vector correspondant à des nombres entiers naturels de taille arbitraire (voir laboratoire 20) et qui retourne un vector correspondant à l'addition de ces 2 nombres.
- Le programme demandera une valeur de n à l'utilisateur et affichera F_n .

Délai

Fin de la séance