1. Верно ли, что для любых векторов $a=(a_1,\ldots,a_n)$ и $b=(b_1,\ldots,b_n)$ справедливы следующие неравенства?

(a)
$$\sum_{i=1}^{n} (a_i - \bar{a}) = 0$$

(b)
$$\sum_{i=1}^{n} (a_i - \bar{a})^2 = \sum_{i=1}^{n} (a_i - \bar{a})a_i$$

(c)
$$\sum_{i=1}^{n} (a_i - \bar{a})(b_i - \bar{b}) = \sum_{i=1}^{n} (a_i - \bar{a})b_i$$

(d)
$$\sum_{i=1}^{n} (a_i - \bar{a})(b_i - \bar{b}) = \sum_{i=1}^{n} a_i b_i$$

- 2. Пусть $y_i = \mu + \varepsilon_i$, где $\mathbb{E}(\varepsilon_i) = 0$, $\mathrm{Var}(\varepsilon_i) = \sigma^2$, $\mathrm{Cov}(\varepsilon_i, \varepsilon_j) = 0$ при $i \neq j$. Найдите:
 - (a) $\mathbb{E}(\overline{y})$
 - (b) $Var(\overline{y})$

(c)
$$\mathbb{E}(\frac{1}{n}\sum_{i=1}^{n}(y_i-\overline{y})^2)$$

(d)
$$Var(\frac{1}{n}\sum_{i=1}^{n}(y_i - \overline{y})^2)$$

- 3. Рассматривается модель $y_i = \beta x_i + \varepsilon_i$, $\mathbb{E}(\varepsilon_i) = 0$, $\mathrm{Var}(\varepsilon_i) = \sigma^2$, $\mathrm{Cov}(\varepsilon_i, \varepsilon_j) = 0$ при $i \neq j$. При каких значениях параметров c_i несмещённая оценка $\hat{\beta} = \frac{\sum_{i=1}^n c_i y_i}{\sum_{i=1}^n c_i x_i}$ имеет наименьшую дисперсию?
- 4. Найдите каждую из следующих матриц в каждой из следующих степеней $\frac{1}{2}$, $\frac{1}{3}$, $-\frac{1}{2}$, $-\frac{1}{3}$, -1, 100.

(a)
$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$$

5. Найдите ортогональную проекцию и ортогональную составляющую (перпендикуляр) вектора u_1 на линейное подпространство $L = \mathcal{L}(u_2)$, порождённое вектором u_2 , если

(a)
$$u_1 = (1 \ 1 \ 1 \ 1), u_2 = (1 \ 0 \ 0 \ 1)$$

(b)
$$u_1 = (2 \ 2 \ 2 \ 2), u_2 = (1 \ 0 \ 0 \ 1)$$

(c)
$$u_1 = (1 \ 1 \ 1 \ 1), u_2 = (7 \ 0 \ 0 \ 7)$$

6. Найдите обратные матрицы ко всем матрицам, представленным ниже.

(a)
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\begin{array}{cccc}
 & 0 & 0 & 1 \\
 & 1 & 0 & 0 \\
 & 0 & 1 & 0
\end{array}$$

7. Найдите ранг следующих матриц в зависимости от значений параметра λ .

(a)
$$\begin{pmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 - \lambda & 1 - 2\lambda \\ 1 + \lambda & 1 + 3\lambda \end{pmatrix}$$

(c)
$$\begin{pmatrix} 1 & \lambda & -1 & 2 \\ 2 & -1 & \lambda & 5 \\ 1 & 10 & -6 & 1 \end{pmatrix}$$

(d)
$$\begin{pmatrix} \lambda & 1 & -1 & -1 \\ 1 & \lambda & -1 & -1 \\ 1 & 1 & -\lambda & -1 \\ 1 & 1 & -1 & -\lambda \end{pmatrix}$$

8. Пусть $i=(1,\dots,1)'$ — вектор из

 единиц и $\pi=i(i'i)^{-1}i'$. Найдите:

(a)
$$\operatorname{tr}(\pi)$$
 и $\operatorname{rk}(\pi)$

(b)
$$\operatorname{tr}(I-\pi)$$
 и $\operatorname{rk}(I-\pi)$

9. Пусть $i=(1,\ldots,1)'$ — вектор из n единиц, $\pi=i(i'i)^{-1}i'$ и $\varepsilon=(\varepsilon_1,\ldots,\varepsilon_n)'\sim N(0,I).$

(а) Найдите
$$\mathbb{E}(\varepsilon'\pi\varepsilon),\,\mathbb{E}(\varepsilon'(I-\pi)\varepsilon)$$
 и $\mathbb{E}(\varepsilon\varepsilon')$

- (b) Как распределены случайные величины $\varepsilon'\pi\varepsilon$ и $\varepsilon'(I-\pi)\varepsilon$?
- (c) Запишите выражения $\varepsilon'\pi\varepsilon$ и $\varepsilon'(I-\pi)\varepsilon$, используя знак суммы
- 10. Пусть X матрица размера $n \times k$, где n > k, и пусть $\mathrm{rk}(X) = k$. Верно ли, что матрица $P = X(X'X)^{-1}X'$ симметрична и идемпотентна?
- 11. Пусть X матрица размера $n \times k$, где n > k, и пусть $\mathrm{rk}(X) = k$. Верно ли, что каждый столбец матрицы $P = X(X'X)^{-1}X'$ является собственным вектором матрицы P, отвечающим собственному значению 1?
- 12. Пусть X матрица размера $n \times k$, где n > k, пусть $\mathrm{rk}(X) = k$ и $P = X(X'X)^{-1}X'$. Верно ли, что каждый вектор-столбец u, такой что X'u = 0, является собственным вектором матрицы P, отвечающим собственному значению 0?
- 13. Верно ли, что для любых матриц A размера $m \times n$ и матриц B размера $n \times m$ выполняется равенство $\operatorname{tr}(AB) = \operatorname{tr}(BA)$?
- 14. Верно ли, что собственные значения симметричной и идемпотентной матрицы могут быть только нулями и единицами?
- 15. Пусть P матрица размера $n \times n$, P' = P, $P^2 = P$. Верно ли, что $\mathrm{rk}(P) = \mathrm{tr}(P)$?
- 16. Верно ли, что для симметричной матрицы собственные векторы, отвечающие различным собственным значениям, ортогональны?
- 17. Пусть $X=\begin{pmatrix}1\\2\\3\\4\end{pmatrix},\ P=X(X'X)^{-1}X',$ случайные величины $\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4$ независимы и одинаково распределены $\sim N(0,1).$
 - (a) Найдите распределение случайной величины $\varepsilon' P \varepsilon$, где $\varepsilon = \begin{pmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & \varepsilon_4 \end{pmatrix}'$
 - (b) Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$
 - (c) При помощи таблиц найдите такое число q, что $\mathbb{P}(\varepsilon' P \varepsilon > q) = 0.1$
- 18. Пусть $X=\begin{pmatrix}1&1\\1&2\\1&3\\1&4\end{pmatrix},\ P=X(X'X)^{-1}X',$ случайные величины $\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4$ независимы и одинаково распределены $\sim N(0,1).$

- (a) Найдите распределение случайной величины $\varepsilon' P \varepsilon$, где $\varepsilon = \begin{pmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & \varepsilon_4 \end{pmatrix}'$
- (b) Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$
- (c) При помощи таблиц найдите такое число q, что $\mathbb{P}(\varepsilon' P \varepsilon > q) = 0.1$
- 19. Пусть $X=\begin{pmatrix}1&0&0\\1&0&0\\1&1&0\\1&1&1\end{pmatrix},\ P=X(X'X)^{-1}X',$ случайные величины $\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4$ независимы и

одинаково распределены $\sim N(0,1)$.

- (a) Найдите распределение случайной величины $\varepsilon' P \varepsilon$, где $\varepsilon = \begin{pmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & \varepsilon_4 \end{pmatrix}'$.
- (b) Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$.
- (c) При помощи таблиц найдите такое число q, что $\mathbb{P}(\varepsilon' P \varepsilon > q) = 0.1$.
- 20. Найдите собственные значения и собственные векторы матрицы $P = X(X'X)^{-1}X'$, если

(a)
$$X = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$

(b)
$$X = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{pmatrix}$$

(c)
$$X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

(d)
$$X = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$