Math 223, 9:45 section Final Exam 8/5/16

Name:

Problem	1	2	3	4	5	6	Total
Score							
Possible	40	40	30	30	30	30	100

NOTE: I need to see all of your work for each problem. Unjustified work will receive little or no credit.

1. (40 points) Let $f(x, y) = x^2y - x^3y^2$.

(a) (10 points) Compute the tangent plane to f(x,y) at the point (1,1).

$$f_{x} = 2xy^{-3}x^{2}y^{2} \xrightarrow{(1,1)} f_{x} = -1$$

$$f_{y} = x^{2} - 2x^{3}y \xrightarrow{f_{y}} f_{y} = -1$$

$$f_{x} = -1$$

$$f_{y} = -1$$

$$f$$

(b) (10 points) Use linear approximation to estimate f(1.1, -..97).

$$\angle(1.1, -.97) = -1(1.1-1) - 1(-.97-1) + 0$$

$$= -0.1 + 1.97$$

$$= 1.87$$

(c) (10 points) Compute the directional derivative of f at (1,1) in the direction of the vector $\mathbf{u} = \frac{1}{\sqrt{5}}\mathbf{i} + \frac{2}{\sqrt{5}}\mathbf{j}$.

$$D_{\alpha} f(1,1) = \nabla f \cdot \vec{\alpha} = \langle -1, -1 \rangle \cdot \langle \vec{\beta}, \vec{\beta} \rangle = \boxed{\frac{-3}{\sqrt{5}}}$$

(d) (10 points) What is the maximum rate of change of f at the point (1,1)?

$$|\nabla f| = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2}$$

2. (40 points) Let
$$\mathbf{F}(x,y) = (x+2y)\mathbf{i} + (x-2y)\mathbf{j}$$
.

(a) (10 points) Show that F is NOT conservative.

$$\nabla x \vec{F} = \langle 0, 0, 1-2 \rangle = \langle 0, 0, 1 \rangle \neq 0$$

(b) (20 points) Compute the work done by F on an object moving from (0,0) to (2,4) along a straight line.

$$C = \begin{cases} x = 0 + 2t & dx = 2 \\ y = 0 + 4t & t \in [0,1] & dy = 4 \\ \frac{1}{2} = 0 & dz = 0 \end{cases}$$

$$W = \int_{c} \vec{F} \cdot d\vec{r} = \int_{c} P dx + Q dy + R dz$$

$$= \int_{c} (2t + 2(4t))2 + (2t - 8t)4 dt = \int_{c} (-4t)dt$$

$$= \int_{c} (2t + 2(4t))2 + (2t - 8t)4 dt = \int_{c} (-2t^{2})^{\frac{1}{2}}$$

(c) (10 points) Compute the work done by **F** on an object moving along the circular path $x=3\cos(t),\ y=3\sin(t),$ where $0\le t\le 2\pi.$

$$\int_{c} \vec{F} \cdot d\vec{r} = \iint (\nabla x \vec{F}) \cdot (-\vec{n})$$

$$= \int_{0}^{2\pi} \int_{0}^{3} (-1) r dr d\sigma$$

$$= -\pi 3^{2}$$

xy plane -n = <0,0,1>

- 3. (30 points) Find each of the following (10 points each)
- (a) The plane that contains the points (1,0,1), (1,1,0), and (0,1,1).

(b) The point of intersection of the line x = 2 + t, y = -3 + 2t, z = 1 - t with the plane x + 2y + 3z = 4,

$$2+t+2(-3+2t)+3(1-t)=4$$

$$2+t-6+4t+3-3t=4$$

$$2t-1=4$$

$$(2+\frac{5}{2},-3+5,1-\frac{5}{2})$$

(c) The angle between the planes x + 2y + 3z = 4 and x - 2y - 3z = 6.

$$\left[\left(\frac{q}{2}, 2, -\frac{7}{2}\right)\right]$$

normals :

$$\cos O = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \frac{1 - 4 - 9}{14} = \frac{-12}{14} = -\frac{6}{7}$$

$$O = \cos^{-1}(\frac{-6}{7})$$

- 4. (30 points) Let $\mathbf{r}(t) = t^2 \mathbf{i} + \cos(t) \mathbf{j} + \sin(t) \mathbf{k}$.
- (a) Set up, but DO NOT EVALUATE, the integral to compute the length of r(t) from t = 0 to $t = 2\pi$.

$$\mathcal{L} = \int_{0}^{2\pi} |\vec{r}(t)| dt \qquad \vec{r}' = \langle 2t, -\sin t, \cos t \rangle$$

$$= \int_{0}^{2\pi} \sqrt{4t^2 + \sin^2 t + \cos^2 t} dt$$

(b) Compute T(t).

$$\overrightarrow{T}(e) = \frac{\overrightarrow{r}(t)}{|\overrightarrow{r}(t)|} = \frac{1}{\sqrt{4t^2 + \sin^2 t + \cos^2 t}} \overrightarrow{r}'(t) = \left\langle \frac{2t}{\sqrt{4t^2 + 1}}, \frac{-\sin t}{\sqrt{4t^2 + 1}}, \frac{\cos t}{\sqrt{4t^2 + 1}} \right\rangle$$

(c) Compute the curvature $\kappa(t)$. Don't bother to simplify your answer.

$$K = \frac{\vec{T}'}{\vec{r}'} = \frac{|\vec{r}' \times \vec{r}''|}{|\vec{r}'|^3}$$

$$= \frac{\langle 2t, -\sin t, \cos t \rangle}{\langle 2, -\cos t, -\sin t \rangle}$$

$$= \frac{\langle 2t, -\sin t, \cos t \rangle}{\langle 4t^2 + 1 \rangle}$$

$$= \frac{\left|\left\langle \sin^{2}t + \cos^{2}t, -\left(-2t\sin t - 2\cos t\right), -2t\cos t + 2\sin t\right\rangle}{\sqrt{4t^{2}+1}}$$

$$= \frac{\sqrt{1+\left(2t\sin t + 2\cos t\right)^{2}+\left(2t\cos t + 2\sin t\right)^{2}}}{\sqrt{4t^{2}+1}}$$

- 5. (30 points) Set up, but DO NOT EVALUATE, each of the following integrals.
- (a) (7 points) The integral(s) to find the x corrdinate of the center of mass of the top half of the circle $x^2 + y^2 = 4$ with density function $\rho(x,y) =$ $\cos(x^2 + y^2)$. Your answer should be in polar coordinates.

$$\frac{z^2 = \chi^2 + \chi^2}{\chi = 0}$$

$$\frac{z}{z} = \pm \chi$$

(b) (7 points) The integral of $f(x, y, z) = (x^2 + y^2 + z^2)^{3/2}$ over the region E, where E is the region within the top half of the sphere $x^2 + y^2 + z^2 = 9$ and inside the cone $z^2 = x^2 + y^2$. Your answer should be in spherical coordinates.

(c) (8 points) Swtich

$$\int_{x=0}^{x=25} \int_{y=-\sqrt{x}}^{\sqrt{x}} (x+y^2) dy dx$$

to dxdy.

$$\int_{-5}^{5} \int_{\gamma^2}^{25} (x + \gamma^2) dx dy$$

(d) (8 points) The integral of $f(x, y, z) = z(x^2 + y^2)$ over the region E, where E is within the cylinder $x^2 + y^2 = 4$ and the top half of the sphere $x^2 + y^2 + z^2 = 9$, in cyclindrical coordinates.

$$\int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{2} = \int_{0}^{2-x^{2}-y^{2}} (2r^{2}) r dz dr d0$$

the continue of

and in the property of the property of the property of the form of the factor of the property of the property

6. (30 points)

(a) (15 points) Compute $\int_S y dS$, where S is the part of the paraboloid $y=x^2+z^2$ that lies inside the cylinder $x^2+z^2=4$.

SKIP

(b) (15 points) Use the Divergence Theorem to compute the surface integral ${\bf F}\cdot d{\bf S}$ (i.e. the flux of ${\bf F}$ across the surface S) if

$$\mathbf{F}(x, y, z) = (\cos(z) + xy^2)\mathbf{i} + xe^{-z}\mathbf{j} + (\sin(y) + x^2z)\mathbf{k}$$

and S is the surface of the solid bounded by the paraboloid $z = x^2 + y^2$ and the plane z = 4.

plane
$$z = 4$$
.

$$\nabla \cdot \vec{F} = y^2 + 0 + \chi^2$$

$$\int_0^{2\pi} \int_0^2 \int_0^4 (y^2 + \chi^2) dV$$

$$= \int_0^{2\pi} \int_0^2 \int_0^4 \gamma^2 \gamma dz d\gamma d\theta$$

Also study 3 midterm tests.

Enjoy the rest of your summer!

