福建省部分达标学校 2023~2024 学年第一学期期中质量监测

高一数学试卷参考答案

- (1)本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准进行评分.
- (2)解答右端所注分数表示考生正确做完该步骤应得的累加分数.
- (3)评分只给整数分,选择题和填空题均不给中间分.

一、选择题

1. B 2. A 3. C 4. D 5. D 6. A 7. B 8. C

二、选择题

9. ABD 10. BD 11. AC 12. ACD

三、填空题

13. 2 14. $\lceil 3, +\infty \rangle$

15.
$$-x^2+2(或-|x|+2,答案不唯一)$$

$$16.3; \frac{3+2\sqrt{5}}{4}$$
 (第一空 2 分,第二空 3 分)

四、解答题

17. 解:(1)当 $a=4$ 时, $B=\{x 4 \leqslant x \leqslant 10\}$.
因为 $A=\{x\mid (x+2)(x-7)<0\}=\{x\mid -2< x<7\}$,
所以 $A \cap B = \{x \mid 4 \le x < 7\}$. 5 分
(2)因为 A∩B=B,所以 B⊆A. ····· 6 分
当 $B=\emptyset$ 时, $a>3a-2$,即 $a<1$,满足 $B\subseteq A$; ······· 7 分
$(a \geqslant 1,$
当 $B\neq\emptyset$ 时,由 $B\subseteq A$,得 $a>-2$,解得 $1\leqslant a<3$.
3a-2 < 7,
综上,实数 a 的取值范围是 $\{a \mid a < 3\}$ 10 分
18. 解法一:
(1)由 $f(m) = -2m + 1 = n$,得 $2m + n = 1, m > 0, n > 0$,
故 $\frac{1}{m} + \frac{2}{n} = (2m+n)(\frac{1}{m} + \frac{2}{n}) = 4 + \frac{n}{m} + \frac{4m}{n} \ge 4 + 2\sqrt{\frac{n}{m} \cdot \frac{4m}{n}} = 8$, 3分
当且仅当 $\frac{n}{m} = \frac{4m}{n}$,即 $n = 2m = \frac{1}{2}$ 时,等号成立,所以 $\frac{1}{m} + \frac{2}{n}$ 的最小值为 8
由 $k^2 - 4k + 3 \le \frac{1}{m} + \frac{2}{n}$ 恒成立,得 $k^2 - 4k + 3 \le 8$,

角	解得 $-1 \le k \le 5$,即实数 k 的取值范围为 $[-1,5]$
(2)四边形 $OCAB$ 的面积 $S=mn$.
Ē	因为 $2m+n=1, 2m+n \geqslant 2\sqrt{2mn}, \dots$ 8分
F	所以 $2\sqrt{2mn} \leqslant 1$,解得 $\sqrt{mn} \leqslant \frac{\sqrt{2}}{4}$, $mn \leqslant \frac{1}{8}$,
<u>`</u>	当且仅当 $n=2m=\frac{1}{2}$ 时,等号成立, 11 分
戶	所以四边形 $OCAB$ 面积的最大值为 $\frac{1}{8}$
角	解法二:
(1)同解法一.
(2)四边形 $OCAB$ 的面积 $S=mn$.
E	由 $2m+n=1$,得 $n=1-2m$, $0 < m < \frac{1}{2}$,
古	
<u>}</u>	当 $m=\frac{1}{4}$ 时,四边形 $OCAB$ 面积的最大值为 $\frac{1}{8}$
Ħ	a=1, $a=1$, $a=1$, $a=1$
4	圣检验, $f(x) = \frac{x}{x^2 + 1}$, $x \in [-1, 1]$ 是奇函数
(2)判断: $f(x)$ 在[-1 ,1]上为增函数 6 分
7	下等式 $f(2x-1)+f(x)<0$ 可化为 $f(2x-1)<-f(x)$.
E	因为 $f(x)$ 是定义在[-1 ,1]上的奇函数,所以 $f(2x-1) < f(-x)$ 7分
	$(-1 \leqslant 2x - 1 \leqslant 1,$
J	又因为 $f(x)$ 在定义域 $[-1,1]$ 上是增函数,所以 $\begin{cases} -1 \leqslant 2x - 1 \leqslant 1, \\ -1 \leqslant x \leqslant 1, \end{cases}$ 9分
	2x-1<-x
角	解得 $0 \leqslant x \leqslant \frac{1}{3}$, 11 分
古	效不等式 $f(2x-1)+f(x)<0$ 的解集为 $[0,\frac{1}{3})$
20. 角	$\mathfrak{P}_{x}:(1)$ 当 $x>0$ 时, $-x<0$, $f(-x)=(-x)^{2}+2 \cdot (-x)=x^{2}-2x$
7	又函数 $f(x)$ 是定义在 R 上的偶函数,

【高一数学・参考答案 第2页(共4页)】

• 24 – 121A •

22.	所以当年产量为 10 万件时,该厂所获利润最大,最大利润为 60 万元 12 分 $(1)证明:任取 x_1, x_2 \in (3, +\infty),且 x_1 < x_2,$
	则 $g(x_1) - g(x_2) = (x_1 + \frac{9}{x_1}) - (x_2 + \frac{9}{x_2}) = \frac{(x_1 - x_2)(x_1 x_2 - 9)}{x_1 x_2}$
	$x_1 < x_2, x_1, x_2 \in (3, +\infty),$
	$\therefore x_1 - x_2 < 0, x_1 x_2 - 9 > 0, x_1 x_2 > 0,$
	$\therefore g(x_1) - g(x_2) < 0, \ \ g(x_1) < g(x_2),$
	$\mathbf{i} \cdot g(x)$ 在 $(3,+\infty)$ 上单调递增. ····································
	(2)解:由 $f(x)$ 的图象可知, $0 < m < 4$,
	f(x)在区间 $(1,3),(3,9)$ 上均为单调函数.
	当 $[a,b]$ 三 $[1,3]$ 时, $f(x)$ 在区间 $[a,b]$ 上单调递增,
	则
	$: m = -\frac{9}{x^2} + \frac{10}{x} - 1$ 在 $x \in [1,3]$ 上有两个不相等的实根.
	$ \diamondsuit \frac{1}{x} = t \in [\frac{1}{3}, 1], $ 则 $h(t) = -9t^2 + 10t - 1 = -9(t - \frac{5}{9})^2 + \frac{16}{9}. $ 7 分
	由 $h(t)$ 在[$\frac{1}{3}$,1]上的图象,可知 $\frac{4}{3} \leqslant m < \frac{16}{9}$.
	当 $[a,b]$ \subseteq $[3,9]$ 时, $f(x)$ 在区间 $[a,b]$ 上单调递减,则 $\begin{cases} -a-\frac{9}{a}+10=mb,\\ -b-\frac{9}{b}+10=ma, \end{cases}$
	两式相除整理得 $(a-b)(a+b-10)=0$,且 $a-b\neq 0$, 9分
	∴ $a+b-10=0$, $\mathbb{P} a+b=10$, ∴ $b=10-a>a$, ∴ $3\leq a<5$.
	由 $-a-\frac{9}{a}+10=mb$,可得 $m=\frac{10-a-\frac{9}{a}}{10-a}=1+\frac{9}{a(a-10)}=1+\frac{9}{(a-5)^2-25}$ 10 分
	综上, m 的取值范围为 $\left[\frac{4}{7},\frac{16}{25}\right)$ $\cup \left[\frac{4}{3},\frac{16}{9}\right)$