Aufgabe 1. Es seien A und B_i für $i \in I$ Teilmengen einer Menge X. Man zeige:

(i)
$$A \cap \left(\bigcup_{i \in I} B_i\right) = \bigcup_{i \in I} \left(A \cap B_i\right)$$

(ii)
$$A \cup \left(\bigcap_{i \in I} B_i\right) = \bigcap_{i \in I} \left(A \cup B_i\right)$$

(iii)
$$A - \left(\bigcup_{i \in I} B_i\right) = \bigcap_{i \in I} \left(A - B_i\right)$$

(iv)
$$A - \left(\bigcap_{i \in I} B_i\right) = \bigcup_{i \in I} \left(A - B_i\right)$$

Aufgabe 2. Es seien $f: X \to Y$ eine Abbildung und $M_i \subset X$ für $i \in I$. Man zeige:

(i)
$$f^{-1} \Big(\bigcup_{i \in I} M_i \Big) = \bigcup_{i \in I} f^{-1} (M_i)$$

(ii)
$$f^{-1}\left(\bigcap_{i\in I} M_i\right) = \bigcap_{i\in I} f^{-1}(M_i)$$

Aufgabe 3. Sei $f: A \to B$ eine Abbildung.

- (i) Man zeige, dass die folgenden Eigenschaften äquivalent sind:
 - Die Abbildung f ist injektiv.
 - Die durch $S \mapsto f(S)$ definierte Abbildung $\mathfrak{P}(A) \to \mathfrak{P}(B)$ ist injektiv.
 - Die durch $T \mapsto f^{-1}(T)$ definierte Abbildung $\mathfrak{P}(B) \to \mathfrak{P}(A)$ ist surjektiv.
- (ii) Man zeige, dass die folgenden Eigenschaften äquivalent sind:
 - Die Abbildung f ist surjektiv.
 - Die durch $S \mapsto f(S)$ definierte Abbildung $\mathfrak{P}(A) \to \mathfrak{P}(B)$ ist surjektiv.
 - Die durch $T \mapsto f^{-1}(T)$ definierte Abbildung $\mathfrak{P}(B) \to \mathfrak{P}(A)$ ist injektiv.

Aufgabe 4. Sei A und I zwei Mengen. Eine I-Partition von A ist eine Menge M_i für jedes $i \in I$ sodass $A = \bigcup_{i \in I} M_i$ und $M_j \cap M_k = \emptyset$ für jedes $j \neq k \in I$.

Finden Sie eine Bijektion zwischen der Menge der I-Partitionen von A und der Menge der Abbildungen $A \to I$.