Chapitre

Ensembles. Puissances. Racine carrée

1.1 Vocabulaire des ensembles

Définition 1.1 Un ensemble E est constitué d'éléments.

 $a \in E$ se lit « l'élément a appartient à l'ensemble E ».

 $a \notin E$ se lit « l'élément a n'appartient pas à l'ensemble E ».

Définition 1.2 F est un sous-ensemble de l'ensemble E si tous les éléments de F appartiennent aussi à E. On écrira :

 $F \subset E$ se lit « l'ensemble F est **inclus** dans l'ensemble E ».

Exemple 1.1 Soit les ensembles $A = \{43; 0; 7; 188\}, B = \{43; 0; 7; 188\}$ $\{7; 4; 82\}$ et $D = \{188; 0; 43\}$.

L'ordre d'écriture des éléments entre accolades n'est pas impor $tant: \{43; 0; 7; 188\} = \{7; 43; 188; 0\}.$

43; 0; 7 et 188 sont les **éléments** de l'ensemble A.

 $43 \in A$

 $82 \notin A$

 $D \subset A$ car tout élément de D appartient à A.

 $B \not\subset A$. B n'est pas un sous-ensemble de A.

В

Diagramme des ensembles A et B

Les éléments d'un ensemble doivent être distincts deux-àdeux. $\{0; 5; 0\}$ n'est pas une écriture correcte.

Exercice 1

1. Compléter à l'aide de \in , \ni , \notin , $\not\ni$, \subset , \supset : $7 \dots A \qquad 43 \dots A \qquad \{43;7;188\} \dots A \qquad A \dots \\ 7 \dots B \qquad \{7\} \dots B \qquad B \dots 43 \qquad B \dots \{4;7\}$

2. Donner un ensemble inclus à la fois dans A et dans B.

1.2 Ensembles particuliers

Définition 1.3 — \mathbb{N} ensemble des entiers naturels.

$$\mathbb{N} = \{0; 1; 2; 3; 4; \dots \}$$

Définition 1.4 — \mathbb{Z} ensemble des entiers relatifs .

$$\mathbb{Z} = \{\ldots; -2; -1; 0; 1; 2; 3; \ldots\}$$

Il est composé des nombres entiers naturels et de leurs opposés. Tout entier naturel est un entier relatif : $\mathbb{N} \subset \mathbb{Z}$

■ Définition $1.5 - \mathbb{R}$ ensemble des nombres réels.

Figure 1.2 - L'ensemble des réels est représenté par une droite graduée. Chaque nombre réel correspond à un unique point de la droite graduée. Réciproquement, à chaque point de la droite graduée correspond un unique réel, appelé abscisse de ce point.

L'ensemble des réels \mathbb{R} contient tout type de nombres :

- a) les entiers relatifs : $\mathbb{Z} \subset \mathbb{R}$
- b) les décimaux positifs ou négatifs : $-4.3 \in \mathbb{R}$
- c) les fractions d'entiers relatifs : $\frac{4}{3}$, $-\frac{4}{10}$
- d) des constantes géométriques π , $\cos(45^\circ) = \frac{1}{\sqrt{2}}$, $\sin(60^\circ) = \frac{\sqrt{3}}{2}$,
- e) et bien plus encore ...

Exercice 1 Compléter par \in , \notin :

$$245...\mathbb{N}; \qquad 2^5...\mathbb{N}; \qquad \frac{3}{15}...\mathbb{N}; \qquad \frac{15}{3}...\mathbb{Z};$$
$$0...\mathbb{N}^*; \quad 0...\mathbb{N}; \qquad -5...\mathbb{Z}; \quad -5...\mathbb{N}; \quad 4,3...\mathbb{N}$$

Définition 1.6 — Ensembles étoilé.

 $\mathbb{N}^* = \mathbb{N} \setminus \{0\} = \{1; 2; 3; 4; \dots\}$ est l'ensemble des entiers

naturels non nuls. $\mathbb{Z}^*=\mathbb{Z}\setminus\{0\}=\{\ldots;-2;-1;1;2;3;\ldots\} \text{ est l'ensemble des entiers relatifs non nuls.}$

 $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ est l'ensemble des nombres réels non nuls.

De manière plus générale, on peut écrire $\mathbb{R}\setminus\{-2,4,5\}$ pour désigner l'ensemble des nombres réels autre que -2, 4 et 5.

1.3 Puissances à exposants dans \mathbb{Z}

Notation 1.1 Pour tout $a \in \mathbb{R}^*$ et $n \in \mathbb{N}$:

$$\bullet \quad a^1 = a$$

•
$$a^2 = a \times a$$

•
$$a^n = \underbrace{a \times a \times \ldots \times a}_{n \text{ fois}}$$

•
$$a^0 = 1$$

• $a^1 = a$
• $a^2 = a \times a$
• $a^n = \underbrace{a \times a \times \ldots \times a}_{n \text{ fois}}$
• • $a^{-1} = \text{Inverse de } a = \frac{1}{a}$
• • $a^{-2} = \text{Inverse de } a^2 = \frac{1}{a^2}$

•
$$a^{-2} = \text{Inverse de } a^2 = \frac{1}{a^2}$$

•
$$a^{-n}$$
 = Inverse de $a^n = \frac{1}{a^n}$

Figure 1.3 – Vocabulaire

■ Exemple 1.2

$$2^5$$
; 3^{-2} ; -3^2 ; $(-3)^{-2}$; $(\frac{5}{3})^{-1}$; $(\frac{-9}{7})^{-1}$; $(99)^0$; $(\frac{2}{3})^{-4}$

Théorème 1.3 Pour tous $m, n \in \mathbb{Z}$ et tous $a, b \in \mathbb{R}^*$:

Multiplication de puissances de même base

$$a^m \times a^n = a^{m+n}$$

Comme conséquence :

$$\frac{a^m}{a^n} = a^m \times \frac{1}{a^n} = a^{m-n}$$

Multiplication de puissances de même exposant

$$(ab)^n = a^n b^n$$
 $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

Puissance d'une puissance

$$(a^n)^m = a^{nm}$$

■ Exemple 1.4 Illustrer et justifier les simplifications des expressions suivantes sous la forme a^n avec $a \in \mathbb{R}$ et $n \in \mathbb{Z}$

$$3^4 \times 5^4; \quad (-7)^3 \times (-7)^{-5}; \quad \frac{2^3}{2^{-2}}; \quad (3^4)^7$$

Règle 1

« je multiplie des puissances, les bases sont les mêmes, j'ajoute les exposants »

Règle 2

« la puissance d'un produit est le produit des puissances ».

Règle 2 cas particulier

Pour tous réels $a \neq 0$ et $b \neq 0$

$$(ab)^2 = a^2b^2$$

$$\left(\frac{a}{b}\right)^2 = \frac{a^2}{b^2}$$

1.3.1 Exercices : puissances

■ Exemple 1.5 — Je fais.

$$a = 2^{8}$$

$$b = 3^{-2}$$

$$c = -3^{2}$$

$$d = (-3)^{-2}$$

$$e = \left(\frac{5}{3}\right)^{-1}$$

$$f = \left(\frac{-9}{7}\right)^{-1}$$

$$g = 10^{-2}$$

$$h = (99)^{0}$$

$$i = (0,7)^{-1}$$

$$j = (0,7)^{-2}$$

$$k = \left(\frac{5}{3}\right)^{-3}$$

$$l = \left(\frac{2}{3}\right)^{-4}$$

Exercice 1 — **f**. Donner l'écriture décimale :

•
$$8^{2}$$
• 2^{6}
• 4^{3}
• 5^{-1}
• 10^{-4}
• 10^{-4}
• $0,78 \times 10^{4}$
• $0,2^{-1}$
• $0,2^{-1}$
• $0,2^{-2}$
• $0,2^{-2}$
• $0,2^{-2}$
• $0,2^{-2}$
• $0,2^{-2}$
• $0,2^{-2}$
• $0,2^{-2}$
• $0,2^{-2}$
• $0,2^{-2}$
• $0,2^{-2}$
• $0,2^{-2}$
• $0,2^{-2}$
• $0,2^{-2}$
• $0,2^{-2}$
• $0,2^{-2}$
• $0,2^{-2}$
• $0,2^{-2}$
• $0,2^{-2}$

Exercice 2 — \blacksquare . À l'aide des identités $a^n \times b^n = (a \times b)^n$ et $\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$ écrire sans exposant sous forme d'une fraction irréductible :

•
$$\left(-\frac{3}{4}\right)^3$$
 | • $1,2^2$ | • $\left(\frac{5}{4}\right)^{-3}$ | • $\left(\frac{2}{3}\right)^{-4}$ | • $1,04^{-1}$ | • $0,04^{-2}$

Exercice 3 — \overrightarrow{a} . À l'aide des identités $a^n \times b^n = (a \times b)^n$ et $\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$ donner l'écriture décimale :

Exercice 4 — **f**. Compléter :

•
$$2^7 \times 2^3 = 2^{\dots}$$

• $\frac{7^9}{7^4} = 7^{\dots}$
• $(4^3)^5 = 4^{\dots} = 2^{\dots}$
• $8^{-7} \times 8^5 = 8^{\dots} = 2^{\dots}$
• $(10^{-2}) = 3^{\dots}$
• $(10^{-2}) = 3^{\dots}$

Exercice 5 — \mathbf{m} . $n \in \mathbb{N}$. Écrire sous la forme d'une puissance d'un entier :

•
$$2^8 \times 2^{-10} \times 2^{-10}$$

• $(-5)^3 \times 7^{-6} \times 7^6$

•
$$7^4 \times 7^{-3} \div 7^{10}$$

•
$$(-5)^3 \times 7^{-6} \times 7^6$$

•
$$10^{-4} \times 10^9 \times 10^{-2}$$

•
$$3^{-4} \times 3^9 \div 3^{-10}$$

Exercice 6 — \blacksquare . Trouver les nombres entiers p et q dans les cas suivants :

•
$$\frac{3^{-10} \times 9^2}{3^5} = 3^p$$

•
$$12^2 \times 9^7 \times 18^{-5} = 2^p \times 3^q$$

•
$$22^6 \times \frac{33^3}{8 \times 6^3} = 11^p$$

•
$$12^2 \times 9^7 \times 18^{-5} = 2^p \times 3^q$$

• $15^3 \times \frac{3^{-2}}{5^2} \times 45^{-2} = 3^p \times 5^q$

Exercice 7 Sur chaque ligne, une expression n'est pas équivalente aux 3 autres. Identifier l'intrus.

a)
$$a^2a^2a^2$$

$$(a^2)^3$$

$$a^5$$
 a

c)
$$9a^2$$

$$a^2 - 9a$$

a)
$$a^2a^2a^2$$
 $(a^2)^3$ a^5 a^6 c) $9a^2$ $-9a^2$ $-(3a)^2$ $-3a^2 \times 3$ b) $16a^{12}$ $(4a^6)(4a^6)$ $(2a^3)^4$ $8a^7$ d) $2a^6b^8$ $4a^6b^8$ $2(a^3b^4)^2$ $2a^2b^4 \times a^3b^4$

b)
$$16a^{12}$$

$$(4a^6)(4a^6)$$

$$(2a^3)^4$$

$$8a^7$$

d)
$$2a^6b^8$$

$$4a^{6}b^{8}$$

$$2(a^3b^4)^2$$

$$2a^2b^4 \times a^3b^4$$

Exercice 8 Il y a 7 erreurs dans les égalités ci-dessous. Corrige les.

a)
$$(3a^3)(5a^5) = 8a^5$$

d)
$$(a^4)(a^3) = a^7$$

b)
$$(6x^3)(3x^3) = 18x^9$$

e)
$$(4c^2)(-2c^3) = 8c^5$$

c)
$$(2c)(3c) = 5c$$

d)
$$(a^4)(a^3) = a^7$$

e) $(4c^2)(-2c^3) = 8c^5$
f) $(5r^3s^2)(-3s)(2r^3s^4) = -30r^6s^6$

Exemple 1.6 — multiplication et puissances de monômes. Un monome de x est une expression de la forme ax^n , avec $a \in \mathbb{R}$ et $n \in \mathbb{Z}$.

$$A = (2x^3)(4x^7)$$

$$A = (2x^3)(4x^7)$$
 $B = (-3x^5)(6x)$ $C = (x^2)^5$ $D = (3x^5)^2$ $E = (-5x^6)^3$

$$C = (x^2)^{\frac{1}{2}}$$

$$D = \left(3x^5\right)^2$$

$$E = (-5x^6)^3$$

$$=$$

Exercice 9 $x \in \mathbb{R}$ et $n \in \mathbb{Z}$. Écrire comme multiple d'une puissance de x.

$$A = (x^2)(x^4)$$

$$A = (x^{2})(x^{4}) \qquad D = (8x^{3})(-2x^{5}) \qquad G = (x^{8})^{2} \qquad J = (-4x)^{2}$$

$$B = (7x^{3})(2x^{8}) \qquad E = (x^{2})^{4} \qquad H = (15x^{2})^{2} \qquad K = (-3x)^{3}$$

$$C = (-2x^{5})(9x) \qquad F = (2x^{2})^{2} \qquad I = (-3x^{2})^{4} \qquad L = (2^{2}x^{2})^{3}$$

$$G = (x^8)^2$$

$$J = (-4x)$$

$$B = (7x^3)(2x^8)$$

$$E = (x^2)$$

$$H = \left(15x^2\right)^2$$

$$K = (-3x)^3$$

$$C = (-2x^5)(9x)$$

$$F = (2x^2)^2$$

$$I = (-3x^2)^4$$

$$L = (2^2 x^2)^3$$

1.4 Les nombres décimaux

Définition 1.7 L'ensemble des nombres réels qui peuvent s'écrire sous forme du produit d'une puissance de 10 par un entier non divisible par 10 sont dit décimaux.

$$\mathbb{D} = \left\{ a \times 10^n \mid a \in \mathbb{Z} \text{ non divisible par } 10 \text{ et } n \in \mathbb{Z} \right\}$$

■ Exemple 1.7

a)
$$315 = 315 \times 10^0$$

b)
$$26500 = 265 \times 10^2$$

c) $2,65 = 265 \times 10^{-2}$

c)
$$2.65 = 265 \times 10^{-2}$$

d)
$$\frac{3}{5} = \frac{6}{10} = 6 \times 10^{-1}$$

e) $\frac{7}{25} = \frac{32}{100} = 32 \times 10^{-2}$
f) $0,001 \ 65 = 165 \times 10^{-5}$

e)
$$\frac{7}{25} = \frac{32}{100} = 32 \times 10^{-1}$$

f)
$$0.001 65 = 165 \times 10^{-5}$$

- L'expression « nombre à virgule » est imprécise pour décrire un nombre décimal.
 - $\frac{2}{5} \in \mathbb{D}$ mais il n'y a pas de virgule dans $\frac{2}{5}$.
 - $\frac{1}{3} = 0.333...$, mais $\frac{1}{3} \notin \mathbb{D}$.

Tous les nombres réels admettent admettent une écriture décimale (finie ou infinie). Seuls les nombres décimaux ont une écriture décimale avec un nombre fini de chiffres non nuls.

 $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{R}$

Théorème 1.8 — Écriture scientifique d'un décimal. Tout • $a \in \mathbb{D}$ est la matisse, $0 \leqslant a < 10$. • $n \in \mathbb{Z}$ nombre décimal s'écrit sous la forme « $a\times 10^n$ ».

• $n \in \mathbb{Z}$ L'ordre de grandeur du nombre est alors le produit de l'entier le plus proche de a par 10^n

■ Exemple 1.9 Donner la notation scientifique et l'ordre de grandeur des nombres de l'exemple 1.7

Définition 1.8 Donner un encadrement décimal à 10^{-n} près d'un réel x c'est donner deux nombres décimaux a et b tel que

- l'amplitude de l'encadrement $b-a=10^{-n}$
- Exemple 1.10 $3{,}141 \leqslant \pi \leqslant 3{,}142$ est un encadrement décimal de $\pi \text{ à } 3,141-3,142=0,001=10^{-3} \text{ près.}$

1.4.1 Exercices : nombres décimaux

Exercice 1 Écrire chacun des nombres décimaux suivants en notation scientifique et sous la forme $a \times 10^p$ avec $a \in \mathbb{Z}$ non multiple de 10 et $p \in \mathbb{Z}$. Préciser l'ordre de grandeur.

- c) 470,84 e) 637,8 d) 97,65 f) 0,001 52
- g) 9,42

Exercice 2 Donner un encadrement décimal à 10^{-3} des nombres réels suivants :

- b) $\frac{1}{125}$ c) $\frac{22}{7}$ d) π e) $\cos(35^{\circ})$

Exercice 3 — **f**. Retrouver l'écriture scientifique des expression suivantes. Montrer les étapes.

- a) $1.5 \times 10^{-2} \times 2 \times 10^{2}$ b) $1.5 \times 10^{-2} + 2 \times 10^{2}$ e) $5 \times 10^{-7} + 45 \times 10^{-5} + 2 \times 10^{2}$ g) $0.002 \ 5 \times 30000^{2}$ h) $\frac{3 \times 10^{-3} \times (4 \times 19^{-1})^{2}}{6 \times 10^{-1}}$
- c) $(7 \times 10^3) \times (7 \times 10^2)$
- Exemple 1.11 Je fais. Écrire sous forme d'une puissance de 10 l'expression : $(10^{-x})^3 \times \frac{10^{2x+1}}{10^{x-5}} \times 10$. Simplifer l'exposant au maximum.

Exercice 4 — **Nous faisons.** Même consigne :

a) $(10^{-2x})^{-3}$

c) $(10^{2x-1})^3$ d) $\frac{10^{x+5}}{10^{3x-2}}$

b) $(10^{4x+1})^7$

e) $\frac{1}{10^{2x+1}}$ f) $(10^{x+1})^2 \times 10^{-2x}$

Exercice 5 — À vous. Même consigne :

- a) $10^{2x-1} \times 10^{-x+3}$

- b) $(10^{x+1})^{-3}$
- c) $\frac{(10^{x+1})^2}{10^{3x}}$ d) $\frac{10^{x+3} \times 10^{2x-4}}{10^{5x+1}}$ e) $\frac{30^{x+2} \times 9^{x-3}}{6^{3x-4} \times 5^{2x-6}}$ f) $\frac{3^{2x+4} \times 20^{x+2}}{10^{5x+2}}$

correction de l'exercice 5. 10^{x+2} ; 10^{-3x-6} ; 10^{-x+2} ; 10^{-2x-2} ; 10^{-2x+6} ; 10^{x+2}

Exercice 6 Soit $x, y \in \mathbb{R}^*$. Écrire les expressions suivantes sous la forme $x^p y^q$ avec $p, q \in \mathbb{Z}$.

- a) $\left(\frac{x}{y}\right)^3$ b) $\frac{(xy)^5}{a^4}$ c) $\frac{x^4}{x^3 \times y^{-7}}$ d) $\left(\frac{y}{x}\right)^4 \times x^2$

Exercice 7 • Comparer 10^{350} et 6^{420} .

8

1.5 Valeur absolue et écart entre nombres

Définition 1.9 Donner un encadrement décimal à 10^{-n} près d'un réel x c'est donner deux nombres décimaux a et b tel que

- $a \leqslant x \leqslant b$
- l'amplitude de l'encadrement $b a = 10^{-n}$
- Exemple 1.12 $3,141 \le \pi \le 3,142$ est un encadrement décimal de π à $3,141-3,142=0,001=10^{-3}$ près.

Définition 1.10 Pour tout nombre $a \in \mathbb{R}$, la valeur absolue de a est la distance qui sépare le point d'abscisse a de l'origine d'abscisse 0 sur la droite graduée. On la note |a|:

$$|a| = \begin{cases} a & \text{Si } a \geqslant 0\\ -a & \text{Si } a < 0 \end{cases}$$

Utilisation

L'écart entre deux réels a et $b \in \mathbb{R}$ est donnée par |a-b| = |b-a|.

■ Exemple 1.13

- a) |-3| = |3| = 3. Les nombres -3 et 3 sont à égales distances de 0, leurs valeurs absolues sont égales.
- b) L'écart entre 4 et -2 est |4 (-2)| = |4 + 2| = |6| = 6.
- c) Vrai ou Faux? $\left|\pi \frac{22}{7}\right| \leqslant 2 \times 10^{-3}$

Figure 1.4 – Deux nombres opposés ont la même valeur absolue.

Figure 1.5 – L'écart entre 4 et -2.

1.5.1 Exercices: valeur absolue

Exercice 1

	Vrai	Faux
1/ -5 =5		
2 / 8 = 8		
3/ 3-5 =-2		
4/ -7-5 =2		
5/ 3-5 = 3+5		
6/ 3-5 = -5-3		
7/ 7-5 = 5-7		
8/ -7-5 = 7+5		
$9/\left \frac{1}{6}-\frac{1}{2}\right =\frac{1}{3}$		
$10/\left \frac{-4}{7}\right = \frac{4}{7}$		

	Vrai	Faux
$1/\left -\sqrt{2}\right = 1,414\ 213$		
$ 2/ \pi-3 =\pi-3$		
$ 3/ \sqrt{3}-1 =-(1-\sqrt{3})$		
$ 4/ \sqrt{3}-2 = -(2-\sqrt{3})$		
$ 5/ \sqrt{5}-2 =1-\sqrt{5}$		
$ 6/ 10^5 = 10^5$		
$7/\left 10^{-3}\right = 10^3$		
$8/\left -10^{-3}\right =10^3$		
$9/\left 10^3 - 10^4\right = 10^3 + 10^4$		
$10/\left 10^3 - 10^{-4}\right = 10^3 - 10^{-4}$		

■ Exemple 1.14 — Je fais. Calculer les expressions suivantes

$$A = |3 - 10|$$

$$B = |3(-6)|$$

$$C = |-14 + 20|$$

$$D = 3|-15 + 10|$$

Exercice 2 — **A**, À vous.

$$A = |4 - 15|$$

$$B = -3|6 - 12|$$

$$C = |(-7)(-4)|$$

$$D = |15 + 26|$$

$$E = 7|3(-4)|$$

$$F = -|15 - 46|$$

$$I = -3|20 - 12|$$
 $I = |5 - 4| - |-6|$

$$J = |3| + 2|-10|$$

$$K = |-2 + (-4 \times 2)|$$

$$L = -2|1+4|$$

Défi : Trouve deux nombres qui rendent l'égalité suivante vraie: $|30-\ldots|=10.$

Exercice 3 On considère une droite graduée. Entourer le(s) égalité(s) qui correspondent à l'énoncé. Plusieurs réponses sont possibles

Tablears repolises some possibles.			
1/ La distance du point $A(3)$ à $B(2)$ vaut	2 - 3	3 - 2	3+2
2 / La distance du point $A(3)$ à $C(-2)$ vaut	-2-3	3 - 2	3+2
3 / La distance du point $C(-2)$ à $D(-5)$ vaut	-2-5	-2+5	-5+2
4/ La distance du point $M(x)$ à $A(3)$ vaut 1	x+3 = 1	x-3 =1	-x+3 =1
5/ La distance du point $M(x)$ à $B(-2)$ vaut 1	x+2 =1	x-2 =1	x+1 = -2

■ Exemple 1.15 — Je fais.

- a) Placer les points A et B dont l'abscisse x vérifie |x|=2.
- b) Placer les points C et D dont l'abscisse x vérifie |x-3|=0.5.
- c) Placer les points E et F dont l'abscisse x vérifie |x+3|=0.5.

Exercice 4 Déterminer les solutions dans \mathbb{R} des équations suivantes :

a)
$$|x| = 5$$

$$|x| = -2$$

$$|y| |x+6| = 0.1$$

b)
$$|x| = 3$$

e)
$$|x-5|=2$$

c)
$$|x| = 0$$

$$f) |x-6| = 0.1$$

$$|x+3| = 0.01$$

Exercice 5 Compléter les pointillés par > ou < :

$$a) |3,7| \dots |3,8|$$

c)
$$|-\pi| \dots |3,14|$$

e)
$$|\pi - \frac{333}{106}| \dots 10^{-6}$$

b)
$$|-2,5| \ldots |-2,4|$$

d)
$$|-1,41| \dots |-\sqrt{2}|$$

solution de l'exercice 4.

$$S_1 = \{\}; S_2 = \{\}; S_3 = \{\}; S_4 = \{\}; S_5 = \{\}; S_6 = \{\}; S_7 = \{\}; S_8 = \{\}; S_9 = \{\}; S_9$$

1.6 La racine carrée

1.6 La racine carrée

Définition 1.11 Pour tout réel $a \ge 0$. La « racine carré de a » est l'**unique réel positif** dont le carré vaut a. On le note $\sqrt{a} = a^{\frac{1}{2}}$.

$$\left(\sqrt{a}\right)^2 = \left(a^{\frac{1}{2}}\right)^2 = a$$

■ Exemple 1.16

- a) $\sqrt{36} = 6$, $49^{0.5} = 7$
- b) $\sqrt{-36}$ et $(-49)^{0.5}$ n'est pas défini.
- c) $-\sqrt{36} = -6$ et $-49^{0.5} = -7$.

Proposition 1.17 Pour tout réel $a \ge 0$:

a)
$$(\sqrt{a})^2 = (a^{0.5})^2 = a$$

b)
$$(-\sqrt{a})^2 = (-a^{0.5})^2 = a$$

■ Exemple 1.18

a)
$$\sqrt{16} = 4$$
. On a $(4)^2 = (-4)^2 = 16$.

b)
$$(\sqrt{3})^2 = (-\sqrt{3})^2 = 3$$
.

Proposition 1.19 Pour tout réel a:

a) Si
$$a \ge 0$$
, alors $\sqrt{a^2} = (a^2)^{0.5} = a$

b) Si
$$a < 0$$
, alors $\sqrt{a^2} = (a^2)^{0.5} = -a$

■ Exemple 1.20

a)
$$(3^2)^{0.5} = \sqrt{3^2} = 3$$

b)
$$((-3)^2)^{0.5} = \sqrt{(-3)^2} = \sqrt{9} = 3 = -(-3)$$

Théorème 1.21 Pour tout réels positifs non nuls a et b > 0:

$$\sqrt{a \times b} = \sqrt{a} \times \sqrt{b} \qquad \qquad \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

Démonstration. de la 1^{re} égalité, au programme. $\sqrt{a}\sqrt{b}$ est un nombre positif, dont le carré vaut ab car :

- $\sqrt{a}\sqrt{b} \geqslant 0$ car produit de $\sqrt{a} \geqslant 0$ et $\sqrt{b} \geqslant 0$.
- $(\sqrt{a}\sqrt{b})^2 = (\sqrt{a})^2(\sqrt{b})^2 = ab$

Or \sqrt{ab} est l'**unique** nombre positif dont le carré vaut ab. D'où $\sqrt{a}\sqrt{b} = \sqrt{ab}$.

Exercice 1 — À vous. Démontrer la 2^e égalité.

Bref pour tout nombre $a \in \mathbb{R}$

$$\sqrt{a^2} = |a|$$

Les formules généralisent celles déjà connues pour des produit de puissances à exposant entiers :

$$(a \times b)^{0,5} = a^{0,5} \times b^{0,5}$$

1.6.1 Exercices : racines carrées

■ Exemple 1.22 — carrés parfaits. Compléter :

Exercice 2 — **f**. Ecrire sous forme décimale :

•
$$9 + 16^{0.5}$$
 | • $4^1 \times 4^{0.5}$ | • $4^{1.5}$ | • $4^{2.5}$ | • $4 \times 25^{0.5}$ | • $2 \times 25^{-0.5}$ | • $36^{1.5}$

Exercice 3 — \blacksquare . Simplifier les expressions suivantes :

a)
$$(\sqrt{3})^2$$
 b) $\sqrt{5^2}$ c) $\sqrt{8^2}$ e) $\sqrt{7^2}$ g) $\sqrt{(1-\pi)^2}$ i) $\sqrt{(-9)^2}$ b) $\sqrt{5^2}$ f) $\sqrt{(3-\sqrt{2})^2}$ h) $(\sqrt{4,5})^2$ j) $\sqrt{(2-\frac{7}{3})^2}$

■ Exemple 1.23 En utilisant les identités $\sqrt{ab} = \sqrt{a}\sqrt{b}$ et $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ écrire sous forme décimale ou fraction d'entiers :

•
$$\sqrt{2500}$$
 | • $\sqrt{250}$ | • $\sqrt{2,5}$ | • $\sqrt{0,25}$ | • $\sqrt{0,36}$ | • $\sqrt{1,96}$

Exercice 4 — **f**. Mêmes consignes :

•
$$\sqrt{8100}$$
 | • $\sqrt{1,21}$ | • $\sqrt{2,25}$ | • $\sqrt{1,44}$ | • $\sqrt{\frac{16}{100}}$ | • $\sqrt{\frac{25}{36}}$ | • $(\frac{169}{49})^{0,5}$

Exercice 5 Compléter par <, > ou = :

•
$$\sqrt{10^2 + 3^2} \dots 10 + 3$$
 | • $\sqrt{121 + 25} \dots 11 + 5$ | • $\sqrt{9 - 4} \dots \sqrt{9} - \sqrt{4}$ | • $\sqrt{8^2 - 6^2} \dots 8 - 6$

Exercice 6

- a) À l'aide du théorème de Pythagore, exprimer la longueur de l'hypoténuse à l'aide de a et b.
- b) Expliquer pour quoi cette figure illustre l'inégalité pour tout a et b>0, on a $\sqrt{a+b}<\sqrt{a}+\sqrt{b}$.

1.6 La racine carrée

■ Exemple 1.24 — Simplifier : Écrire une expression avec le terme sous la racine le plus petit possible.

$$A=\sqrt{12}$$

$$=\sqrt{4\times3}$$
 identifier le plus grand carré facteur de 12
$$=\sqrt{4\sqrt{3}}$$

$$=\sqrt{4\sqrt{3}}$$
 utiliser $\sqrt{ab}=\sqrt{a}\sqrt{b}$
$$=$$

$$=\sqrt{2\sqrt{3}}$$

$$=$$

$$=$$

$$=$$

$$=$$

$$=$$

Exercice 7 — Mous faisons. Mêmes consignes :

a)
$$\sqrt{50}$$
 | b) $\sqrt{32}$ | c) $\sqrt{200}$ | d) $\sqrt{48}$ | e) $\sqrt{63}$ | f) $5\sqrt{8}$ | g) $2\sqrt{12}$ | h) $3\sqrt{20}$

Exercice 8 — **A** vous. Même consignes :

a)
$$4\sqrt{27}$$
 | b) $5\sqrt{18}$ | c) $5\sqrt{200}$ | d) $\sqrt{125}$ | e) $3\sqrt{80}$ | f) $3\sqrt{96}$ | g) $7\sqrt{88}$ | h) $10\sqrt{75}$

Exercice 9 Écrire sous la forme \sqrt{k} ou $k \in \mathbb{N}$. **Exemple :** $7\sqrt{7} = \sqrt{49}\sqrt{7} = \sqrt{49 \times 7} = \sqrt{343}$.

a)
$$5\sqrt{2}$$
 | b) $6\sqrt{3}$ | c) $8\sqrt{5}$ | d) $4\sqrt{6}$ | e) $10\sqrt{10}$

Exercice 10 — **Exercice 10** Comparer. Écrire sous forme \sqrt{k} ou $k \in \mathbb{N}$ puis ordonner dans l'ordre croissant. Quelle est la médiane de la série de nombres?

a)
$$3\sqrt{2}$$
 | b) $2\sqrt{3}$ | c) $2\sqrt{5}$ | d) $\sqrt{37}$ | e) $3\sqrt{5}$ | f) $\sqrt{17}$

■ Exemple 1.25 — Simplifier des produits de radicaux.

$$A = \sqrt{2} \times 3$$

$$= 3\sqrt{2}$$

$$B = 3\sqrt{2} \times \sqrt{3}$$

$$= 3\sqrt{6}$$

$$utiliser l'identité $\sqrt{a}\sqrt{b} = \sqrt{ab}$

$$= C = 2\sqrt{3} \times 5\sqrt{3}$$

$$= C = 2\sqrt{3} \times 5\sqrt{3}$$$$

Exercice 11 — À vous.

Exercice 12 — 🖬. Simplifier des produits et des quotients de radicaux :

a)
$$\sqrt{\frac{3}{4}} \times \sqrt{3}$$
 b) $\sqrt{5} \times \sqrt{45}$ d) $\sqrt{\frac{98}{\sqrt{2}}}$ d) $\sqrt{\frac{98}{\sqrt{2}}}$ e) $\sqrt{5} \times \sqrt{0,45}$ f) $\sqrt{10^{-9}} \times \sqrt{10^{15}}$ g) $\sqrt{5^7} \times \sqrt{5^{-4}}$ h) $\sqrt{\frac{10^5}{\sqrt{10^{13}}}}$ i) $\sqrt{\frac{\sqrt{3^7}}{\sqrt{3^{-15}}}}$

solution de l'exercice 8. $a = 12\sqrt{3}$; $b = 15\sqrt{2}$; $c = 50\sqrt{2}$; $d = 5\sqrt{5}$; $e = 12\sqrt{5}$; $f = 12\sqrt{6}$; $g = 14\sqrt{22}$; $h = 50\sqrt{3}$.

1.7 TP Algorithme de Babylone pour la racine entière

La racine entière d'un nombre $n \in \mathbb{N}$ est le plus grand entier $r \in \mathbb{N}$ tel que $r^2 \leqslant n$ (aussi $r \leqslant \sqrt{n}$).

Préliminaire La racine entière de 1664 est un entier r tel que $r \times r \approx 1664$.

L'algorithme de Babylone vise à trouver des paires de nombres entiers a et b tels que :

- $a \times b \approx 1664$.
- l'écart |a-b| est de plus en plus petit.

Si
$$b < \sqrt{1664} < a$$
, avec $ab \approx 1664$

À l'étape suivante, on prendra:

- $a' \approx \frac{a+b}{2}$, la moyenne de a et b.
- $b' \approx \frac{735}{a'}$, afin que $a' \times b' \approx 1664$.

On a
$$b' < \sqrt{1664} < a'$$
.

Si l'écart l'écart |a'-b'| est supérieur à 1, on re-

commence.

Figure 1.6 – Algorithme de Babylone et illustration graphique. Le rectangle ACFG est de même aire que le carré ABDE. On a l'encadrement $b < \sqrt{1664} < a$. La moyenne arithmétique $a' = \frac{a+b}{2}$ est encore plus proche de $\sqrt{1664}$, idem pour $b' \approx \frac{1664}{a'}$

Étape 0
$$a_0=1664$$
, et $b_0=\frac{1664}{a_0}=1$. On a $b_0<\sqrt{1664}< a_0$ et $a_0b_0=735$.

Étape 1
$$a_1 = \frac{1664 + 1}{2} \approx 832$$
 et $b_1 = \frac{1664}{a_1} \approx 2$. $|a_1 - b_1| > 1$, on continue.

À vous poursuivre et compléter le tableau ci-dessous.

Étape	a	b
i = 0	$a_0 = 1664$	$b_0 = 1$
i = 1	$a_1 = 832$	$b_1 = 2$
i=2	$a_2 =$	$b_2 =$
i = 3	$a_3 =$	$b_3 =$
i = 4	$a_4 =$	$b_4 =$
i = 5	$a_5 =$	$b_5 =$
i=6	$a_6 =$	$b_6 =$
i = 7	$a_7 =$	$b_7 =$

- Dans Python, le texte à droite de # est ignoré par l'interpréteur. Il sert de commentaire.
- Depuis Python v3, la division / retourne un nombre de type float (virgule flottante).
- La division entière est donnée par l'instruction //.
- Pour calculer la valeur absolue d'une variable x, on utilise l'instruction abs{x}

L'algorithme en Python

```
def babylone(n) :
1
      a, b = n, 1
                                   # démarrage : double affectation
2
                                   # poursuivre jusqu'à |a-b| \leqslant 1
       while ...
3
                                   # moyenne arithmétique des anciens a,b
4
                                   # il faut garder a \times b \approx n
           b = ...
5
                                   # pour vérifier
           print(a , b )
6
7
      return a , b
```

- a) Compléter le script de la fonction babylone() afin qu'elle retourne deux entiers a et b, d'écart inférieur ou égal à 1. L'une de ses valeurs sera la racine entière de n.
 Utiliser les indications données en commentaire.
- b) Rentrer le script sur votre pythonette. Inutile de rentrer les commentaires.
- c) Exécuter le script et vérifier que l'instruction approximation (1664) retourne 40 et 41. Vérifier les étapes intermédiaires avec les résultats obtenus dans le tableau précédent.

Une fois qu'on a vérifié le déroulement étape par étape du script, on peut effacer ou commenter la ligne 6.

LG Jeanne d'Arc, 2nd
Année 2021/2022