Lezione 7

Tipi di dato primitivi Conversioni di tipo

Tipi di dato

Tipi di dato primitivi

- Numeri interi (int)
 - Già trattati
- Valori logici
 - Già trattati quasi completamente, tranne i seguenti due argomenti, che vedremo in questa lezione:
 - Corto circuito logico
 - Espressione condizionale

- Caratteri (char)
- Enumerati (enum)
- Numeri reali (float e double)
- Tipi e conversioni di tipo

Corto-circuito 1/2

- La valutazione di un'espressione logica termina non appena si è in grado di determinarne il risultato
 - Si parla di corto circuito logico: si dice che gli operatori logici && e || sono valutati in cortocircuito
- Esempi

22 | | x L'espressione è già vera in partenza (22 è vero), <u>il secondo termine **non è** valutato</u>

false && x L'espressione è già falsa in partenza, <u>il</u> secondo termine **non è valutato**

true || f(x) L'espressione è già vera in partenza, il secondo termine non è valutato, quindi f(x) non è invocata

Corto-circuito 2/2

Schema del corto circuito con 3 fattori

```
Se a && b è falso, il secondo && non viene valutato (e quindi neanche c)

Se a || b è vero, il secondo || non viene valutato (e quindi neanche c)
```

 Lo schema del corto circuito si può banalmente generalizzare al caso di n fattori

Esempio

Cosa stampa il seguente programma?bool fun() {

```
bool run() {
    cout<<"fun invocata"<<endl ;
    return true ;
}
main()
{
    bool a = true ;
    if (a && fun())
        cout<<"programma terminato"<<endl ;
}</pre>
```

Risposta

Stampa:

```
fun invocata
programma terminato
```

 Perché è necessario invocare fun per determinare il valore dell'espressione condizionale

Esempio

Cosa stampa il seguente programma?

```
bool fun() {
    cout<<"fun invocata"<<endl ;
    return true ;
}
main()
{
    bool a = true ;
    if (a || fun())
        cout<<"programma terminato"<<endl ;
}</pre>
```

Risposta

Stampa:

programma terminato

 Perché non è necessario invocare fun per determinare il valore dell'espressione condizionale

Espressione condizionale

```
<condizione> ? <espressione1> : <espressione2>
```

- Il valore risultante è quello di <espressione1> oppure quello di <espressione2>
 - Dipende dal valore dell'espressione < condizione > :
 - se <condizione> è vera, si usa <espressione1>
 - se <condizione> è falsa, si usa
 <espressione2>
- Esempi:

```
3 ? 10 : 20  // vale sempre 10
x ? 10 : 20  // vale 10 se x è vero, 20 altrimenti
(x>y) ? x : y // vale il maggiore fra x ed y
```

Sintesi priorità degli operatori

Esercizi

 Svolgere gli esercizi oper_cond.cc ed oper cond2.cc della settima esercitazione

Operatore virgola 1/2

Date le generiche espressioni < espr1>,
 <espr2>, ..., < esprN> le si può concatenare mediante l'operatore virgola per ottenere la seguente espressione composta:

```
<espr1>, <espr2>, ..., <esprN>
```

in cui

- le espressioni < espr1>, < espr2>, ..., < esprN> saranno valutate l'una dopo l'altra
- il <u>valore</u> dell'espressione composta sarà uguale a quello <u>dell'ultima espressione valutata</u>

Operatore virgola 1/2

Esempi:

```
int i, j;
for(i = 1, j = 3 ; i < 5 ; i++, j--)
    ...;</pre>
```

Tipi di dato primitivi

- Numeri interi (int)
 - Già trattati
- Valori logici
 - Già trattati quasi completamente, tranne i seguenti due argomenti, che vedremo in questa lezione:
 - Corto circuito logico
 - Espressione condizionale
- Caratteri (char)
- Enumerati (enum)
- Numeri reali (float e double)
- Tipi e conversioni di tipo

Tipo carattere: char

- Rappresenta l'insieme dei caratteri disponibili nel sistema
- Costanti letterali carattere:
 'a'
 'A'
 '2'
 '@'
 - Dato un carattere, la corrispondente costante letterale carattere si ottiene racchiudendo il carattere tra singoli apici
 - Diverso dal caso dei letterali numerici, che non andavano corredati da simboli aggiuntivi all'inizio ed alla fine

Rappresentazione caratteri 1/2

- Abbiamo detto che la memoria è fatta solo di locazioni contenenti numeri
- Come memorizzarvi un carattere?
- Un problema simile si aveva nelle trasmissioni telegrafiche
 - Si potevano trasmettere solo segnali elettrici
 - Come avevano risolto il problema?

Rappresentazione caratteri 2/3

- Con il codice Morse
 - Associando cioè ad ogni carattere una determinata sequenza di segnali di diversa durata

Rappresentazione caratteri 3/3

- Possibile soluzione per memorizzare caratteri:
 - Associare per convenzione un numero diverso a ciascun carattere
 - Per memorizzare un carattere, si può memorizzare di fatto il numero che lo rappresenta

Codifica ASCII 1/2

- Generalmente, si utilizza il codice ASCII
- E' una codifica che, nella forma estesa, utilizza 1 byte, per cui vi sono 256 valori rappresentabili
 - I codici vanno tipicamente da 0 a 255 (da -128 a +127 nel caso i dodici dei caratteri vengano considerati numeri con segno)
- Vi è anche la forma ristretta su 7 bit, nel qual caso l'insieme di valori rappresentabili si riduce a 128

Codifica ASCII 2/2

```
Codice (decimale)
                                               Carattere
    (0-31, caratteri di controllo)
32
                                               <spazio>
33
                                               ш
34
35
                                               #
48
49
65
                         completa
            La
                 tabella
                                               B
66
            reperibile facilmente in rete, e
67
            si trova tipicamente anche
            nell'Appendice dei libri
            manuali sui
                          linguaggi
97
                                    di
                                               a
            programmazione
```

Tipo char

- Nel linguaggio C/C++ il tipo char non denota un nuovo tipo in senso stretto, ma è di fatto l'insieme dei valori interi rappresentabili (tipicamente) su di un byte
- Quindi, le costanti carattere non denotano altro che numeri
 - Scrivere una costante carattere equivale a scrivere il numero corrispondente al codice ASCII del carattere
 - Ad esempio, scrivere 'a' è equivalente a scrivere 97
 - Però una costante carattere ha anche associato un tipo, ossia il tipo char

Stampa di un carattere 1/2

Di conseguenza, se scriviamo

```
cout<<'a'<<endl ;
abbiamo passato il valore 97 al cout</pre>
```

- Ma cosa stampa ???
 - Provare per scoprirlo

Stampa di un carattere 2/2

- Stampa un carattere
- Come mai?

Risposta

 Perché l'operatore << ha dedotto dal tipo (char) cosa fare!

Esercizi

 Svolgere leggi_stampa_char.cc della settima esercitazione

Ordinamento 1/2

- I caratteri sono ordinati
- In particolare rispettano il seguente ordinamento (detto lessicografico) per ciascuna delle tre classi (cifre, lettere minuscole, lettere maiuscole):

Ordinamento 2/2

- Ma qual è l'ordinamento tra le tre classi
 - Per esempio '1' < 'a'?</p>
- Non è definito!
- Tra le tre classi lo standard del linguaggio non prevede nessuna garanzia di quale dei possibili ordinamenti viene adottato
 - La codifica ASCII ha il suo ordinamento, ma quale codifica deve/può essere utilizzata sulla macchina non è definito dallo standard
 - Lo standard lascia libera la scelta della codifica, purché sia rispettato solo l'ordinamento all'interno delle classi
 - L'effettivo ordinamento tra le classi dipenderà dalla codifica utilizzata sulla macchina su cui gira il programma

Tipi di dato primitivi

- Numeri interi (int)
 - Già trattati
- Valori logici
 - Già trattati quasi completamente, tranne i seguenti due argomenti, che vedremo in questa lezione:
 - Corto circuito logico
 - Espressione condizionale
- Caratteri (char)
- Enumerati (enum)
- Numeri reali (float e double)
- Tipi e conversioni di tipo

Conversioni di tipo

- Dato il valore di una costante, di una variabile, di una funzione o in generale di una espressione
 - Tale valore ha anche associato un tipo
 - Esempio:

'a' è di tipo char 2<3 è di tipo bool

- Esiste un modo per convertire un valore, appartenente ad un certo tipo, nel valore corrispondente in un altro tipo?
 - Sì, uno dei modi è mediante una conversione esplicita
 - Esempio: da 97 di tipo int a 97 di tipo char (ossia la costante carattere 'a')

Conversioni esplicite

• Tre forme:

```
(C/C++)
Cast
  (<tipo di destinazione>) <espressione>
  Esempi:
          d=(int) a;
             fun((int) b) ;

    Notazione funzionale

                                    (C/C++)
  <tipo di destinazione>(<espressione>)
  Esempi:
         d=int(a);
             fun(int(b)) ;
                                    (solo C++)
Operatore static cast
  static cast<<tipo di destinazione>>(<espressione>)
  Esempi: d=static cast<int>(a);
             fun(static cast<int>(b)) ;
```

Operatore static cast

- L'uso dell'operatore static_cast comporta una notazione più pesante rispetto agli altri due
- La cosa è voluta
 - Le conversioni di tipo sono spesso pericolose
 - Bisogna utilizzarle solo quando non si riesce a farne a meno senza complicare troppo il programma
 - Un notazione pesante le fa notare di più
- Se si usa lo static_cast il compilatore usa regole più rigide
 - Programma più sicuro
- Al contrario con gli altri due metodi si ha piena libertà (di sbagliare senza essere aiutati dal compilatore ...)

Esempio

```
int i = 100 ;
char a = static_cast<char>(i) ;
```

- Supponendo che il valore 100 sia rappresentabile mediante il tipo char, e che quindi non ci sia overflow
- Che cosa viene memorizzato nell'oggetto di tipo char?

Risposta

- Esattamente il valore 100
- Ma stavolta il valore sarà di tipo char
- Similmente, dopo le istruzioni:

```
char a = 100 ; // codice ASCII 100
int i = static_cast<int>(a) ;
```

nella variabile i sarà memorizzato il valore 100, ma il tipo sarà int

Domanda

 Supponendo che il codice del carattere 'a' sia 97, che differenza di significato c'è tra le due seguenti inizializzazioni?

```
char b = 'a' ;
oppure
char b = static cast<char>(97) ;
```

Risposta

Nessuna, sono perfettamente equivalenti!

Tipi di dato primitivi

- Numeri interi (int)
 - Già trattati
- Valori logici
 - Già trattati quasi completamente, tranne i seguenti due argomenti, che vedremo in questa lezione:
 - Corto circuito logico
 - Espressione condizionale
- Caratteri (char)

- Enumerati (enum)
- Numeri reali (float e double)
- Tipi e conversioni di tipo

Esercizi

- Dalla settima esercitazione
 - codice_car.cc
 - car_codice.cc
 - traccia car codici immediato.cc
 - tabella_ascii.cc

Intervallo di valori 1/2

Tipo	Dimensione	Intervallo valori
char	1 byte	-127 128 (se considerato con segno)
		oppure
		0 255 (se considerato senza segno)
unsigned char	1 byte	0 255

Intervallo di valori 2/2

- Lo standard non specifica se char deve essere considerato con segno o senza
 - La cosa può variare da una macchina all'altra
- Invece unsigned char è sempre senza segno

Operazioni

- Sono applicabili tutti gli operatori visti per il tipo int
- Pertanto, si può scrivere:

'x '	/ 'A'	equivale a	120 / 65	uguale a:	1
'R'	< 'A'	equivale a	82 < 65	uguale a:	false (0 in C
'x'	- \4'	equivale a	120 – 52	uguale a:	68 (=='D')
\x'	- 4	equivale a	120 – 4	uguale a:	116 (=='t')

Esercizi

 Svolgere, leggi_inc_stampa_char.cc della settima esercitazione

Portabilità 1/2

- Ci interessa la forma in cui il numero è memorizzato per poterci lavorare?
 - No, noi lo usiamo semplicemente come un numero intero, pensa a tutto il compilatore
- Soprattutto: se il codice che scriviamo non fa nessuna assunzione su come sono rappresentati i numeri, allora funzionerà su macchine diverse anche se su tali macchine i numeri sono rappresentati in modo diverso
 - Se invece un certo codice si basa sul fatto che i numeri sono rappresentati in un certo modo, allora, quando eseguito su una macchina in cui i numeri non so rappresentati in quel modo, quel codice non funziona più

Portabilità 2/2

- Nel primo caso si dice che il codice è portabile tra diverse macchine (architetture), nel secondo caso si dice invece che il codice non è portabile
- Lo stesso accade per i codici dei caratteri
 - Dobbiamo scrivere codice che non faccia assunzioni su quale codifica è utilizzata, altrimenti, cambiando codifica il nostro codice non funziona più!

Esercizio

- Scrivere una funzione che, dato un carattere passato in ingresso (come parametro formale), restituisca il carattere stesso se non è una lettera minuscola, altrimenti restituisca il corrispondente carattere maiuscolo
- Prima di definire il corpo della funzione, scrivere un programma che, usando SOLO tale funzione, legga un carattere da stdin e, se minuscolo, lo ristampi in maiuscolo, altrimenti comunichi che il carattere non è minuscolo
 - Adottiamo cioè, per esercizio, un approccio topdown

Specifiche della funzione

- Per adottare in modo efficace l'approccio top-down bisogna definire in modo esatto cosa va in ingresso alla funzione e cosa la funzione restituisce
 - Scriviamo quindi solo la dichiarazione della funzione
 - Inseriamo i dettagli sul comportamento della funzione sotto forma di commenti all'intestazione della funzione stessa

Prima parte

```
/*
 * Dato il carattere in ingresso c restituisce il maiuscolo
 * di c utilizzando solo le proprietà di ordinamento dei
 * codici dei caratteri.
 * Assunzione: se c non è minuscolo, ritorna il
 * carattere inalterato.
*/
char maiuscolo(char c);
main() {
  char minus, maius;
  cin>>minus;
  maius = maiuscolo (minus);
  if (minus==maius)
       cout<<"Il carattere "<<minus
           <<" non è minuscolo"<<endl;</pre>
  else
       cout<<"Minuscolo = "<<minus<<" - Maiuscolo = "
           <<maius<<endl;
```

Bozza di algoritmo funzione

- Se il parametro formale c non contiene una lettera minuscola, restituisci il carattere senza alcuna modifica
- Altrimenti, calcola il corrispondente carattere maiuscolo, sfruttando le proprietà di ordinamento della codifica dei caratteri ASCII:
 - ogni carattere è associato ad un valore intero
 - le lettere da 'A' a 'Z' sono in ordine alfabetico
 - le lettere da 'a' a 'z' sono in ordine alfabetico

Funzione

```
/*
 * Dato il carattere in ingresso c restituisce il maiuscolo
 * di c utilizzando solo le proprietà di ordinamento dei
 * codici dei caratteri.
 * Assunzione: se c non è minuscolo, ritorna il
 * carattere inalterato.
 */
char maiuscolo(char c)
{
  if (c<'a' || c>'z')
     return c;
  return c - 'a' + 'A';
}
```

Tipi di dato primitivi

- Numeri interi (int)
 - Già trattati
- Valori logici
 - Già trattati quasi completamente, tranne i seguenti due argomenti, che vedremo in questa lezione:
 - Corto circuito logico
 - Espressione condizionale
- Caratteri (char)
- Enumerati (enum)

- Numeri reali (float e double)
- Tipi e conversioni di tipo

Tipi di dato

Tipo enumerato 1/2

- Insieme di costanti intere definito dal programmatore
 - ciascuna individuata da un identificatore (nome) e detta enumeratore
- Esempio di dichiarazione:

```
enum colori_t {rosso, verde, giallo} ;
```

- dichiara un tipo enumerato di nome colori_t e tre costanti intere (enumeratori) di nome rosso, verde e giallo
- gli oggetti di tipo colori_t potranno assumere come valori solo quelli dei tre enumeratori
- agli enumeratori sono assegnati numeri interi consecutivi a partire da zero, a meno di inizializzazioni esplicite (che vedremo fra poco)

Tipo enumerato 2/2

- Rimanendo sull'esempio della precedente slide
 - mediante il tipo colori_t sarà possibile definire nuovi oggetti mediante delle definizioni, con la stessa sintassi usata per i tipi predefiniti
 - Così come si può scrivere int a ;
 si potrà anche scrivere colori_t a ;
 - il cui significato è quello di definire un oggetto di nome a e di tipo colori t
 - I valori possibili di oggetti di tipo colori_t saranno quelli delle costanti rosso, verde e giallo
 - Quindi l'oggetto a definito sopra potrà assumere solo i valori rosso, verde e giallo

Sintassi

Dichiarazione di un tipo enumerato:

```
<dichiarazione tipo enumerato> ::=
 enum <identificatore> {<lista dich enumeratori>}
<lista_dich enumeratori> ::=
   <dich_enumeratore> { , <dich_enumeratore> }
<dich enumeratore> ::=
   <identificatore> [= <espressione>]
                               Ripetuto zero o più
                                      volte
Ripetuto zero o una volta
```

Programmazione I – Paolo Valente - 2009/2010

Inizializzazione e visibilità

- Come già detto agli enumeratori sono associati per default valori interi consecutivi a partire da 0 Esempio: gli enumeratori del precedente tipo colori_t valgono 0 (rosso), 1 (verde) e 2 (giallo)
- La dichiarazione di un tipo enumerato segue le stesse regole di visibilità di una generica dichiarazione
- Nel campo di visibilità di un tipo enumerato
 - si possono utilizzare i suoi enumeratori
 - si può utilizzare il nome del tipo per definire variabili di quel tipo
 - Esempio:
 colori_t c ;
 colori t d = rosso ;

Esercizio

 Svolgere l'esercizio stampa_enum.cc della settima esercitazione

Memoria ed intervallo

- Stessa occupazione di memoria (in numero di byte) e stessi operatori del tipo int
 - Insieme di valori possibili limitato però ai soli enumeratori
- Ma non c'è controllo completo sull'intervallo da parte del compilatore!
 - Finché si usano solo gli enumeratori non ci sono problemi
 - Inoltre:
 int a = 100; colore_t c = a;
 genera correttamente un errore a tempo di compilazione
 - ma sono lecite cose pericolose tipo:
 int a = 100;
 colore_t c = static_cast<colore_t>(a) ;

Note sui tipi enumerati 1/2

 Attenzione, se si dichiara una variabile o un nuovo enumeratore con lo stesso nome di un enumeratore già dichiarato, da quel punto in poi si perde la visibilità del precedente enumeratore.

Esempio:

 Un tipo enumerato è totalmente ordinato. Su un dato di tipo enumerato sono applicabili tutti gli operatori relazionali. Continuando i precedenti esempi:

```
• lu < ma → vero
```

rosso < giallo → vero</pre>

Note sui tipi enumerati 2/2

• Se si vuole, si possono inizializzare a piacimento le costanti:

```
enum Mesi {gen=1, feb, mar, ... } ;
    // Implica: gen = 1, feb = 2, mar = 3, ...
enum romani { i=1, v = 5, x = 10, c = 100 } ;
```

- E' possibile definire direttamente una variabile di tipo enumerato, senza dichiarare il tipo a parte <definizione_variabile_enumerato> ::=
 enum { lista dich enumeratori> } <identificatore> ;
 - Esempio: enum {rosso, verde, giallo} colore ;
 - Nel campo di visibilità della variabile è possibile utilizzare sia la variabile che gli enumeratori dichiarati nella sua definizione

Esercizio

Svolgere l'esercizio giorni_lavoro.cc della settima esercitazione

Benefici del tipo enumerato

- Decisamente migliore leggibilità
- Indipendenza del codice dai valori esatti e dal numero di costanti (enumeratori)
 - Conseguenze importantissime:
 - se cambio il valore di un enumeratore, non devo modificare il resto del programma
 - posso aggiungere nuovi enumeratori senza dover necessariamente modificare il resto del programma
- Maggiore robustezza agli errori
 - Se si usano solo gli enumeratori non è praticamente possibile usare valori sbagliati
- Quindi: impariamo da subito ad <u>utilizzare gli enumerati e</u> non gli interi ovunque i primi siano più appropriati dei secondi

Tipi di dato primitivi

- Numeri interi (int)
 - Già trattati
- Valori logici
 - Già trattati quasi completamente, tranne i seguenti due argomenti, che vedremo in questa lezione:
 - Corto circuito logico
 - Espressione condizionale
- Caratteri (char)
- Enumerati (enum)
- Numeri reali (float e double)

Tipi e conversioni di tipo

Rappresetnazioni numeri reali

- Esistono tipicamente due modi per rappresentare un numero reale in un elaboratore reale:
 - Virgola fissa: Numero (massimo) di cifre intere e decimali deciso a priori
 - Esempio: se si utilizzano 3 cifre per la parte intera e 2 per la parte decimale, si potrebbero rappresentare i numeri: 184.3 4.21 213.78 ma non

2137.8 3.423 213.2981

- Virgola mobile: Numero (massimo) totale di cifre, intere e decimali, deciso a priori, ma posizione della virgola libera
 - Esempio: se si utilizzano 5 cifre in totale, si potrebbero rappresentare tutti i numeri del precedente esempio in virgola fissa, ma anche

213.78 2137.8

.32412

12617

ma non

.987276 123.456

1.321445

Numeri in virgola mobile 1/2

- Si decide a priori il numero massimo di cifre perché questo permette una rappresentazione abbastanza semplice dei numeri reali
- Tipicamente un numero reale è rappresentato mediante tre componenti:
 - Segno
 - Mantissa (significand), ossia le cifre del numero
 - Esponente in base 10, ossia il numero si immagina nella forma mantissa * 10^{esponente}
 - Tipicamente la mantissa è intesa come un numero a virgola fissa, con la virgola posizionata sempre subito prima (o in altre rappresentazioni subito dopo) della prima cifra

Numeri in virgola mobile 2/2

 Una notazione che torna utile per evidenziare le precedenti componenti nella rappresentazione di un numero reale è la notazione scientifica:

mantissa**e**esponente

Esempi:

	Notazione			
Numero	Scientifica	Segno	Mantissa E	Esponente
123	.123e3	+	.123	3
12.3	.123e2	+	.123	2
0.123	.123e0	+	.123	0
-1.23	123e1	-	.123	1

Tipi float e double

- Nel linguaggio C/C++ i numeri reali sono rappresentati mediante i tipi float e double
 - Sono numeri in virgola mobile
 - Mirano a rappresentare (con diversa precisione) un sottoinsieme dei numeri reali
 - I tipi float e double (così come int per gli interi), sono solo un'approssimazione dei numeri reali, sia come
 - precisione, ossia numero di cifre della mantissa
 - sia come intervallo di valori rappresentabili

Letterali reali

Si possono utilizzare i seguenti formati:

24.0

. 5

2.4e1

240.0e-1

- La notazione scientifica può tornare molto molto utile per scrivere numeri molto grandi o molto piccoli
- Per indicare che una costante letterale è da intendersi come reale anche se non ha cifre dopo la virgola, si può terminare il numero con un punto

Esempio:

123.

Operatori reali

Operatori aritmetici

Tipo del risultato

float 0 double

Attenzione: la divisione è quella <u>reale</u>

Operatori relazionali

Esempi

Esercizio

Svolgere divis_reale.cc della settima esercitazione

Conversione da reale ad intero

- La conversione da reale ad intero è tipicamente effettuata per troncamento
 - Si conserva cioè solo la parte intera del numero di partenza
- Ovviamente possono verificarsi problemi di overflow all'atto di una conversione

Esercizio

Svolgere reale_int.cc della settima esercitazione

IEEE 754

- I numeri float e double sono tipicamente rappresentati/memorizzati in base allo standard IEEE 754
 - Fondamentalmente, sia la mantissa che l'esponente sono memorizzati in base 2 e non in base 10
- Quindi, un numero float o double è di fatto rappresentato in memoria nella forma mantissa * 2^{esponente}
- In particolare: ...

Rappresentazione in memoria

 Un numero float o double è memorizzato come una sequenza di bit:

 Tale sequenza di bit è tipicamente distribuita su più celle contigue in memoria

Valori tipici

STANDARD COMUNE

(ma non necessariamente valido per tutte le architetture)

float	4 byte
double	8 byte
long double	10 byte

Tipo	Precisione	Intervallo di valori assoluti
float	6 cifre decimali	3.4*10 ⁻³⁸ 3.4*10 ³⁸
double	15 cifre decimali	$1.7*10^{-308} \dots 1.7*10^{308}$

Problemi di rappresentazione 1

- Siccome il numero di cifre utilizzate per rappresentare un numero reale è limitato, si potrebbero verificare approssimazioni (troncamenti) nella rappresentazione di un numero reale con molte cifre
- EsempioIl numero 277290.0010044
 - se si avessero massimo 10 cifre a disposizione potrebbe essere rappresentato come 0.277290001e+6
 - Tuttavia, questa rappresentazione trasformerebbe il numero originario 277290.0010044 → 277290.001
 - In molte applicazioni questa approssimazione non costituisce un problema, ma in altre applicazioni, come ad esempio quelle di calcolo scientifico, costituisce una seria fonte di errori

Problemi di rappresentazione 2

- Il numero di cifre limitato non è l'unica fonte di problemi di rappresentazione
- Ad esempio, come si può rappresentare 0.1 nella forma mantissa * 2^{esponente} con la mantissa rappresentata in base 2?
- Sarebbe necessario poter scrivere il numero nella forma m*2º ove m dovrebbe essere un numero minore di 1 rappresentato in base 2
 - Si possono rappresentare numeri minori di 1 in base 2 utilizzando la notazione a punto così come si fa per la base 10
 - Ad esempio: $[0.1]_2 = [0 + 1*2^{-1}]_{10}$ $[0.01]_2 = [0 + 0*2^{-1} + 1*2^{-2}]_{10}$
 - Ma $[0.1]_{10} = [10^{-1}]_{10} = [???]_{2}$

Risposta

- Purtroppo solo i numeri razionali che hanno una potenza di 2 al denominatore si possono esprimere con una sequenza finita di cifre binarie
- Quindi non esiste nessuna rappresentazione finita in base 2 di [0.1]₁₀
 - Tale numero sarà pertanto necessariamente memorizzato in modo approssimato

Operazioni tra reali ed interi

- Se si esegue una operazione tra un oggetto di tipo int, enum o char ed un oggetto di tipo reale, si effettua di fatto la variante reale dell'operazione
 - In particolare, nel caso della divisione, si effettua la divisione reale
- Vedremo in seguito il motivo ...
- Svolgere l'esercizio divis_reale2.cc

Esercizio

- Sulle slide della settima esercitazione
 - ascensore.cc
 - Se non riuscite a realizzare correttamente il programma richiesto in ascensore.cc, allora, prima di guardare la soluzione, guardate la prossima slide e riprovate

Confronto approssimato

- Ovviamente possono verificarsi errori dovuti al troncamento o all'arrotondamento di alcune cifre decimali anche nelle operazioni
- Meglio evitare l'uso dell'operatore ==
 - I test di uguaglianza tra valori reali (in teoria uguali) potrebbero non essere verificati
 - Ad esempio, non sempre vale:
 (x / y) * y == x
- Meglio utilizzare "un margine accettabile di errore":
 - * x == y → (x <= y+epsilon) && (x >= y-epsilon)
 dove, ad esempio,
 const double epsilon = 0.00000001;

Riassunto errori comuni

- Divisione fra interi e divisione fra reali
 - Stesso simbolo /, ma differente significato
- Significato e uso dell'operazione di modulo (%), che non è definita per i numeri reali
- Uso erroneo dell'operatore di assegnamento (=) al posto dell'operatore di uguaglianza (==)
- Notazione prefissa e postfissa di ++ e - negli assegnamenti

Tipi di dato primitivi

- Numeri interi (int)
 - Già trattati
- Valori logici
 - Già trattati quasi completamente, tranne i seguenti due argomenti, che vedremo in questa lezione:
 - Corto circuito logico
 - Espressione condizionale
- Caratteri (char)
- Enumerati (enum)
- Numeri reali (float e double)
- Tipi e conversioni di tipo

Tipi primitivi 1/3

Tipi interi

Dimensioni tipiche

- int (32 bit)
- short int (0 Solo short) (16 bit)
- long int (0 solo long) (64 bit)
- Tipi naturali
 - unsigned int (0 solo unsigned) (32 bit)
 - unsigned short int (0 SOIO unsigned short)(16 bit)
 - unsigned long int (0 SOIO unsigned long) (64 bit)
- Un oggetto unsigned ha solo valori maggiori o uguali di 0

Tipi primitivi 2/3

Tipo carattere

Dimensioni tipiche

• char (8 bit)

signed char (8 bit)

unsigned char (8 bit)

- A seconda delle implementazioni char è implicitamente signed (può avere anche valori negativi) o unsigned
- Tipo reale
 - float
 - double
 - long double

Tipi primitivi 3/3

- Tipo booleano
 - bool
- Tipo enumerato
 - enum <nome_tipo> {<lista_nomi_costanti>}

Domanda

 Che succede se si decrementa di una unità una variabile di tipo unsigned int o unsigned char che contiene il valore 0?

Risposta

- Si ha un overflow !!!!
 - Per quanto ci riguarda nella variabile finisce un valore casuale
 - Tale valore casuale potrebbe essere minore di 0?

Risposta

- No
 - Qualsiasi configurazione di bit utilizzata per rappresentare un numero senza segno rappresenta sempre un numero positivo o nullo

Limiti 1/3

• In C++, includendo limits> si ha accesso alle seguenti informazioni:

```
numeric_limits<nome_tipo>::min()
       valore minimo per il tipo nome tipo
numeric limits<nome tipo>::max()
       valore massimo per il tipo nome tipo
numeric limits<nome tipo>::digits
       numero di cifre in base 2
numeric limits<nome tipo>::digits10
       numero di cifre in base 10
numeric_limits<nome_tipo>::is_signed
       true se nome tipo ammette valori negativi
numeric_limits<nome_tipo>::is_integer
       true se nome tipo e' discreto (int, char, bool, enum, ...)
```

Limiti 2/3

 Le seguenti informazioni hanno significato per i numeri in virgola mobile:

```
numeric limits<nome tipo>::epsilon()
      valore positivo minimo epsilon tale che 1 + epsilon != 1
numeric limits<nome tipo>::round error()
      errore di arrotondamento
numeric limits<nome tipo>::min exponent
      esponente minimo in base 2, cioè valore minimo esp, tale
      che il numero di possa scrivere nella forma m*(2^esp)
numeric limits<nome tipo>::min exponent10
      esponente minimo in base 10, cioè valore minimo esp, tale
       che il numero di possa scrivere nella forma m*(10^esp)
```

Limiti 2/3

... continua per i numeri in virgola mobile:

```
numeric_limits<nome_tipo>::max_exponent

esponente massimo in base 2, cioè valore massimo esp,
tale che il numero di possa scrivere nella forma m*(2^esp)

numeric_limits<nome_tipo>::max_exponent10

esponente massimo in base 10, cioè valore massimo esp,
tale che il numero di possa scrivere nella forma
m*(10^esp)
```

Esercizio: limiti.cc della settima esercitazione

Espressioni eterogenee

- Non ci sono dubbi sul comportamento di alcun operatore fin quando in una espressione tutti i fattori sono dello stesso tipo
- Ma cosa succede se un'espressione con risultato di tipo int viene assegnata ad una variabile di tipo float o viceversa?
- E se un operatore binario viene invocato con due argomenti di tipo diverso?
- Nei precedenti due casi siamo in presenza di espressioni con fattori di tipo eterogeneo

Conversioni di tipo

- In presenza di espressioni eterogenee si hanno due possibilità:
 - <u>Si inseriscono conversioni esplicite</u> per rendere le espressioni omogenee
 - Non si inseriscono conversioni esplicite
 - In questo caso, se possibile, il compilatore effettua delle conversioni implicite (coercion) oppure segnala errori di incompatibilità di tipo e la compilazione fallisce

Coercion

- Il C/C++ è un linguaggio a tipizzazione forte
 - Ossia il compilatore controlla ogni operazione per evitare inconsistenze nel tipo di dato o perdite di informazione
- Le conversioni implicite di tipo che non provocano perdita sono effettuate dal compilatore senza dare alcuna segnalazione
- Tuttavia, le conversioni implicite che possono provocare perdita di informazioni non sono illegali
 - Vengono tipicamente segnalate da warning
- In generale le conversioni implicite avvengono a tempo di compilazione in funzione di un ben preciso insieme di regole
 - Vediamo prima le regole in caso di operandi eterogenei, quindi quelle in caso di assegnamenti eterogenei

Operandi eterogenei 1/2

- Regole utilizzate in presenza di <u>operandi eterogenei per</u> <u>un operatore</u>
 - Se un operatore binario ha operandi eterogenei,
 - Ogni operando di tipo char o short viene convertito in int
 - Se, dopo l'esecuzione del passo precedente, l'espressione è ancora eterogenea rispetto agli operandi coinvolti, si converte temporaneamente l'operando di tipo inferiore facendolo diventare di tipo superiore. La gerarchia è:

CHAR < INT < UNSIGNED INT < LONG INT < UNSIGNED LONG INT < FLOAT < DOUBLE < LONG DOUBLE

O più sinteticamente:

CHAR < INT < FLOAT < DOUBLE < LONG DOUBLE

Operandi eterogenei 2/2

- A questo punto l'espressione risulta omogenea e viene invocata l'operazione relativa all'operando con più alto livello gerarchico
 - Anche il risultato sarà quindi dello stesso tipo dell'operando di tipo superiore

Esempi

- int a, b, c; float x, y; double d;
- **a*b+c** → espressione omogenea (int)
- a*x+c → espressione eterogenea (float): prima a e poi c sono convertiti in float
- x*y+x → espressione omogenea (float)
- x*y+5-d → espressione eterogenea (double): 5 è convertito in float, poi il risultato di x*y+5 viene convertito in double
- a*d+5*b-x → espressione eterogenea (double): a viene convertito in double, così come l'addendo (5*b) e la variabile x

Assegnamento eterogeneo

- L'espressione a destra dell'assegnamento viene valutata come descritto dalle regole per la valutazione del tipo di un'espressione omogenea o eterogenea
- Il tipo del risultato di tale espressione viene convertito al tipo della variabile a sinistra dell'assegnamento:
 - Se il tipo della variabile è gerarchicamente uguale o superiore al tipo dell'espressione da assegnare, l'espressione viene convertita nel tipo della variabile probabilmente senza perdita di informazione
 - Se il tipo della variabile è gerarchicamente inferiore al tipo dell'espressione da assegnare, l'espressione viene convertita nel tipo della variabile con i conseguenti <u>rischi di</u> <u>perdita di informazione</u> (dovuti ad un numero inferiore di byte utilizzati oppure ad una diversa modalità di rappresentazione)

Esempi 1/2

Esempi 2/2

```
int i=6, b=5;     float f=4.;
                                                            double d=10.5;
d = i; \rightarrow assegnamento eterogeneo (double \leftarrow int) \rightarrow 6.
           (Converte il valore di i in double e lo assegna a d)
i=d; \rightarrow assegnamento eterogeneo (int <math>\leftarrow double) \rightarrow 10
      (Tronca d alla parte intera ed effettua l'assegnamento ad i)
i=i/b; \rightarrow assegnamento omogeneo (int \leftarrow int) \rightarrow 1
f=b/f; \rightarrow assegnamento omogeneo (float \leftarrow float) \rightarrow 1.25
           (Converte il b in float prima di dividere, perché f è float)
i=b/f; \rightarrow assegnamento eterogeneo (int \leftarrow float) \rightarrow 1
           (L'espressione a destra diventa float perché b è float,
           tuttavia quando si effettua l'assegnamento, si guarda al
           tipo della variabile i)
```

Esercizio

```
int a, b=2; float x=5.8, y=3.2;
a = static cast<int>(x) % static cast<int>(y); // a == ?
a = static cast<int>(sqrt(49)); // a == ?
a = b + x;
                       // è equivalente a quale nota-
                        // zione con conversioni
                        // esplicite: ?
y = b + x;
                        // è equivalente a: ?
a = b + static cast < int > (x+y); // a == ?
a = b + static cast<int>(x) + static cast<int>(y);
                        // a == ?
```

Soluzione

```
int a, b=2; float x=5.8, y=3.2;
a = static cast<int>(x) % static cast<int>(y); // a == 2
a = static cast<int>(sqrt(49)); // a == 7
a = b + x;
                           // è equivalente a:
      a = static cast<int>(static cast<float>(b)+x); → 7
y = b + x;
                      // è equivalente a:
      y = \text{static cast} < \text{float} > (b) + x; \rightarrow 7.8
a = b + static cast<int>(x+y);
      a=b+static cast < int > (9.0); \rightarrow a = 2 + 9 \rightarrow 11
a = b + static cast<int>(x) + static cast<int>(y);
      a=b+static cast<int>(5.8)+static cast<int>(3.2);
             \Rightarrow a = 2 + 5 + 3 \Rightarrow 10
```

Perdita informazione 1/6

```
int varint = static cast<int>(3.1415);
      Perdita di informazione:
      3.1415 ≠ static cast<double>(varint)
long int varlong = 123456789;
short varshort = static cast<short>(varlong);
      Overflow e quindi valore casuale!
      (il tipo short non è in grado di
       rappresentare un numero così grande)
```

 Fondamentale: in entrambi i casi <u>non viene</u> segnalato alcun errore a tempo di compilazione, né a tempo di esecuzione!

Perdita di informazione 2/6

- C'è infine un caso meno evidente ma più subdolo di perdita di informazione
- Abbiamo definito la precisione di un tipo di dato numerico come il numero di cifre rappresentabili mediante quel tipo di dato numerico
 - La precisione di un numero in virgola mobile è data dal numero di bit utilizzati per rappresentare la mantissa
 - E la precisione di un numero di tipo int?

Perdita di informazione 3/6

- Dal numero totale di bit utilizzati per rappresentare il numero
- Supponiamo quindi di aver memorizzato un numero senza cifre dopo la virgola all'interno di un oggetto di tipo double
- Supponiamo poi di assegnare il valore di tale oggetto di tipo double ad un oggetto di tipo int memorizzato su un numero di bit inferiore al numero di bit della mantissa dell'oggetto di tipo double
- Si potrebbe avere perdita di informazione?

Perdita di informazione 4/6

- Sì
- L'oggetto di tipo int potrebbe non essere in grado di rappresentare tutte le cifre
 - Ad esempio, supponiamo di poter rappresentare al più 4 cifre decimali con un int e che invece il valore sia 12543
- In particolare questo implica che il valore sarebbe numericamente troppo elevato, quindi per l'esattezza si avrebbe un overflow
 - Nel precedente esempio numerico, 12543 sarebbe più grande del massimo intero rappresentabile

Perdita di informazione 5/6

- Facciamo invece l'esempio contrario: supponiamo che sia il tipo int ad essere memorizzato su un numero di bit maggiore del numero di bit utilizzati per rappresentare la mantissa di un oggetto di tipo, per esempio, float
- Supponiamo però che, grazie all'uso dell'esponente, il tipo float sia in grado di rappresentare numeri più grandi di quelli rappresentabili con il tipo int
- In questo caso, si potrebbe avere perdita di informazione se si assegna il valore memorizzato nell'oggetto di tipo int all'oggetto di tipo float?

Perdita di informazione 6/6

- Sì
- L'oggetto di tipo float potrebbe non essere in grado di rappresentare tutte le cifre
- Questo non implica che il valore sarebbe numericamente troppo elevato, quindi non si avrebbe overflow
 - Si avrebbe semplicemente un troncamento delle cifre del numero
 - Ad esempio, se il tipo float potesse rappresentare al più 4 cifre decimali ed il numero fosse 14123, sarebbe memorizzato come .1412e4, perdendo l'ultima cifra

Morale

- Le conversioni sono praticamente sempre pericolose
- Quando le si usa bisogna sapere quello che si fa
- L'elevata precisione dei moderni tipi numerici fa comunque sì che i fenomeni di perdita di informazione dovuti a cambi di precisione nelle conversioni generino conseguenze serie solo in applicazioni che effettuano elevate quantità di calcoli e/o che necessitano di risultati numerici molto accurati

Esercizi

- Per fissare bene i concetti sulle conversioni svolgere, tra gli altri, i seguenti esercizi per casa della settima esercitazione:
 - divis_reale3.cc
 - int_reale_int.cc