교과서 변형문제 기본

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일: 2020-03-10

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

개념check

[거듭제곱]

- 어떤 수 a의 거듭제곱: $a, a^2, a^3, \dots, a^n, \dots$
- (1) a^n 에서 거듭제곱의 밑: a
- (2) a^n 에서 거듭제곱의 지수: n
- $a,\ b$ 가 실수이고 $m,\ n$ 이 자연수일 때의 지수법칙
- $a^m a^n = a^{m+n}$

$$② \ a^{m} \div a^{n} = \frac{a^{m}}{a^{n}} = \begin{cases} a^{m-n} & (m>n) \\ 1 & (m=n) \\ \frac{1}{a^{n-m}} & (m< n) \end{cases}$$
 (E, $a \ne 0$)

$$(a^m)^n = a^{mn}, (ab)^n = a^n b^n$$

④
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$
 (단, $b \neq 0$)

[거듭제곱근]

- $n \ge 2$ 인 자연수일 때,
- (1) a의 n제곱근: 방정식 $x^n = a$ 를 만족시키는 x
- (2) 실수 a의 n제곱근 중 실수

	a > 0	a=0	a < 0
<i>n</i> 이 짝수	$\sqrt[n]{a}$ $-\sqrt[n]{a}$	0	없다.
<i>n</i> 이 홀수	$\sqrt[n]{a}$	0	$\sqrt[n]{a}$

[거듭제곱근의 성질]

- •a>0, b>0이고 m과 n이 2 이상의 자연수일 때

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a} = \sqrt[n]{\sqrt[m]{a}}$$

④
$$\sqrt[np]{a^{mp}} = \sqrt[n]{a^m}$$
 (단, p 는 양의 정수)

기본문제

[문제]

다음 식을 간단히 한 것으로 옳은 것은?

(단, $a \neq 0$, $b \neq 0$)

①
$$ab^2 \times ab^3 = a^2b^5$$
 ② $(a^3b^2)^2 = a^6b^2$

$$\bigcirc (a^3b^2)^2 = a^6b$$

(3)
$$a^2b^6 \div \left(\frac{b}{a^3}\right)^2 = a^{-1}b^4$$
 (4) $a^3b^2 \times ab^3 = a^4b^6$

(4)
$$a^3b^2 \times ab^3 = a^4b^6$$

[예제]

다음 거듭제곱근 중 실수를 가지지 않는 것은?

- ① -8의 세제곱근
- ② -16의 네제곱근
- ③ 8의 다섯제곱근 ④ -4의 세제곱근
- ⑤ 2의 아홉제곱근

[문제]

3. 다음 거듭제곱근 중 실수가 2개인 것은?

- ① -16의 제곱근
- ② -16의 네제곱근
- ③ 8의 다섯제곱근
- ④ -4의 세제곱근
- ⑤ 2의 네제곱근

[문제]

4. 다음 값을 계산한 것 중 옳지 <u>않은</u> 것은?

①
$$\sqrt[4]{16} = 2$$

②
$$\sqrt[3]{125} = 5$$

$$\sqrt[3]{-64} = -4$$

$$(4) - \sqrt[3]{\frac{1}{8}} = -\frac{1}{2}$$

[문제]

5. a > 0, b > 0이고 m, n이 2 이상인 자연수일 때, 성립하지 않는 것은?

$$(3) (a^m \times a^n)^l = a^{ml+nl}$$

[문제]

6. 다음 중 옳지 않은 것은?

- ① $\sqrt[3]{4} \times \sqrt[3]{16} = 4$ ② $\frac{\sqrt[4]{64}}{\sqrt[4]{4}} = 2$
- $(3)(\sqrt[3]{9})^6 = 81$
- $\sqrt[3]{\sqrt{64}} = 2$

[문제]

7. 다음 중 가장 작은 값은?

- ① $\sqrt[6]{216} 5\sqrt{6}$
- ② $\sqrt{8} + \sqrt{\sqrt{1024}} \sqrt[3]{\sqrt{512}}$
- $\sqrt[3]{81} \sqrt[3]{9}$
- $(4) \sqrt[4]{3} + 4\sqrt[20]{243} + \sqrt[16]{81}$
- $(5) \sqrt[3]{56} + \sqrt[6]{49}$

[문제]

8. 다음 식을 계산한 것으로 옳은 것은?

$$\sqrt[3]{-11^9} + \sqrt[4]{(-3)^{16}}$$

- ① $\sqrt[3]{-11^9} + \sqrt[4]{(-3)^{16}} = \sqrt[3]{(-11)^9} + \sqrt[4]{81^4}$ $=-11^3+81=-1250$
- ② $\sqrt[3]{-11^9} + \sqrt[4]{(-3)^{16}} = \sqrt[3]{-11^9} + \sqrt[4]{(-3^4)^4}$ $=-11^3-81=-1412$
- $(3) \sqrt[3]{-11^9} + \sqrt[4]{(-3)^{16}} = \sqrt[3]{(-11)^9} + \sqrt[4]{(-1)^{16}3^{16}}$ $=11^3+81=1412$
- (4) $\sqrt[3]{-11^9} + \sqrt[4]{(-3)^{16}} = \sqrt[3]{11^9} + \sqrt[4]{(-3)^{16}}$ $=11^3-81=1250$
- (5) $\sqrt[3]{-11^9} + \sqrt[4]{(-3)^{16}} = \sqrt[3]{(-11)^9} + \sqrt[4]{(-3)^{16}}$ $=-11^3-81=-1412$

[문제]

다음 식을 간단히 한 것으로 옳은 것은?

	$\sqrt[4]{3^4} - 2\sqrt[3]{-27} + \sqrt{\sqrt{81}}$	
10	② 11	

③ 12

(1)

- ⑤ 14
- **4** 13

[문제]

10. 다음은 a > 0이고 m, n, p가 2 이상의 정수일 때, 등식 $\sqrt[np]{a^{mp}} = \sqrt[n]{a^m}$ 이 성립함을 보이는 과정이 다. 안에 알맞은 것을 순서대로 나열한 것은?

<증명>

$$\sqrt[np]{a^{mp}} = \sqrt[n]{\sqrt[n]{a^{mp}}} = \sqrt[n]{\sqrt[n]{(a^{\square})^p}} = \sqrt[n]{a^m}$$

- \bigcirc p, p, m
- $\bigcirc p, p, 0$
- $\mathfrak{g}_{p,m,m}$
- 4 m, m, m
- (5) p, m, p

평가문제

[중단원 마무리하기]

11. 다음 거듭제곱근 중 실수가 존재하는 것을 <u>모두</u> 고른 것은?

- ① 125의 네제곱근
- ② 1 81의 제곱근
- ③ 63의 일곱제곱근
- ④ -64의 여섯제곱근
- ⑤ -9의 제곱근

[중단원 마무리하기]

12. 다음 값을 구한 것으로 옳지 않은 것은?

①
$$\sqrt{6} \times \sqrt[4]{72} = 6\sqrt[4]{2}$$
 ② $\frac{\sqrt[4]{0.0027}}{\sqrt[4]{27}} = 0.01$

$$\boxed{2} \frac{\sqrt[4]{0.0027}}{\sqrt[4]{27}} = 0.0$$

[대단원 평가하기]

- **13.** $-\sqrt[3]{4}$ 의 네제곱근 중에서 실수인 것의 개수를 a, $\sqrt[4]{256}$ 의 여섯제곱근 중에서 실수인 것의 개수를 b라 할 때, a+b의 값을 구한 것은?
 - 1 1
- ② 2

③ 3

(4) 4

(5) 5

[대단원 평가하기]

14. 다음 중 옳은 것은?

- ① $\sqrt[3]{\sqrt[5]{3^3}} = \sqrt[3]{3}$
- ② $\sqrt[3]{-8} \times \sqrt[9]{27} = -2\sqrt[3]{3}$

- (5) $\sqrt{3} \times \sqrt[3]{3} = \sqrt[6]{3}$

유사문제

- **15.** $\sqrt[4]{\sqrt[3]{216}} + 4\sqrt[4]{6} + \sqrt{\sqrt[4]{36}}$ 을 간단히 하면?
 - ① $\sqrt[4]{2^3}$
- ② $2\sqrt[4]{3}$
- $3\sqrt[4]{3}$

- (4) $4\sqrt[4]{6}$
- $(5) 6\sqrt[4]{6}$

- **16.** $\sqrt[3]{-125} + \sqrt[6]{4} \sqrt[6]{16} + \frac{\sqrt[4]{48}}{\sqrt[4]{3}}$ 의 값은?
 - $\bigcirc -5$
- $\bigcirc -3$
- (3) -1
- **4**) 1
- (5) 3
- **17.** $\sqrt[4]{16^2} \times (\sqrt{2})^6 \div \sqrt{\sqrt[3]{64}}$ 의 값은?
 - 1 4

- 2 8
- 3 16
- **4**) 32
- **⑤** 64

- **18.** -27의 세제곱근 중 실수인 것을 a라 하고, 81의 네제곱근 중 실수인 것의 개수를 b라 하자. a+b의 값을 구하시오.
 - $\bigcirc 1$

③ 3

4 0

- **⑤** 1
- 19. 다음 중 옳은 것은?
 - ① 16의 네제곱근은 ±2이다.
 - ② 27의 세제곱근은 $\sqrt[3]{27}$ 이다.
 - ③ 네제곱근 16은 2이다.
 - ④ $\sqrt{81}$ 의 네제곱근은 $\sqrt{3}$ 이다.
 - ⑤ -16의 네제곱근 중 실수인 것은 $\sqrt{-16}$ 이다.
- **20.** 다음은 a>0이고, m,n은 2 이상의 정수일 때, $\sqrt[n]{\sqrt[n]{a}} = \sqrt[nm]{a}$ 가 성립함을 증명한 것이다.

<증명>

 $\sqrt[n]{\sqrt[n]{a}}$ 에서 근호를 없애기 위하여 nm제곱을 하면

$$(\sqrt[n]{\sqrt[m]{a}})^{nm} = \boxed{(7)}$$

" $\sqrt[n]{w}a>0$ 이므로 $\boxed{\mbox{(나)}}$ 는 a의 $\boxed{\mbox{(다)}}$ 의 제곱근 중에서 양수이다.

$$\therefore \sqrt[n]{\sqrt[m]{a}} = \sqrt[nm]{a}$$

위의 증명 과정에서 (가), (나), (다)에 알맞은 것은?

- (가)
- (나)
- (다)

- ① a
 ② a
- $\sqrt[n]{\sqrt[m]{a}}$
- m

- $\mathfrak{3}$ a
- $\frac{1}{nm}$
- 1

- \bigcirc a^m
- $\sqrt[n]{\sqrt[m]{a}}$
- m

- (5) a^m
- $\frac{1}{nm}$
- nm

4

정답 및 해설

1) [정답] ①

[해설] ① $ab^2 \times ab^3 = a^2 \times b^{2+3} = a^2b^5$

$$(a^3b^2)^2 = a^6b^4$$

(4)
$$a^3b^2 \times ab^3 = a^4b^5$$

2) [정답] ②

[해설] a의 n제곱근이 실근을 가질 조건은 다음과 같다.

- 1) a가 양수이고, n이 홀수인 경우 $\sqrt[n]{a}$ 로 하나
- 의 실근을 가진다.
- ③ 8의 다섯제곱근(√8)
- ⑤ 2의 아홉제곱근($\sqrt{2}$)
- 2) a가 양수이고, n이 짝수인 경우 $\sqrt[n]{a}$, $-\sqrt[n]{a}$ 로 두 개의 실근을 가진다.
- 3) a가 음수이고, n이 홀수인 경우 $\sqrt[n]{a}$ 로 하나
- 의 실근을 가진다.
- ① -8의 세제곱근 $(-\sqrt[3]{8})$
- ④ -4의 세제곱근 $(-\sqrt[3]{4})$

따라서 답은 ②이다.

3) [정답] ⑤

[해설] a의 n제곱근이 두 개의 실근을 가질 조건은 a가 양수이고, n이 짝수인 경우이다.

- ⑤ 2의 네제곱근
- 따라서 답은 ⑤이다.

4) [정답] ⑤

[해설] ① $\sqrt[4]{16} = \sqrt[4]{2^4} = 2$

②
$$\sqrt[3]{125} = \sqrt[3]{5^3} = 5$$

$$\sqrt[3]{\sqrt{-64}} = \sqrt[3]{(-4)^3} = -4$$

$$(4) - \sqrt[3]{\frac{1}{8}} = -\sqrt[3]{\left(\frac{1}{2}\right)^3} = -\frac{1}{2}$$

5) [정답] ③

[해설] $a^m \times a^n = a^{m+n} \neq a^{mn}$ 이므로 정답은 ③이다.

6) [정답] ⑤

[해설] ⑤
$$\sqrt[3]{64} \times \frac{\sqrt[3]{54}}{\sqrt[3]{2}} = \sqrt[3]{64} \times \sqrt[3]{27} = 4 \times 3 = 12$$

7) [정답] ①

[해설] ①
$$\sqrt[6]{216} - 5\sqrt{6} = \sqrt[6]{6^3} - 5\sqrt{6}$$

= $\sqrt{6} - 5\sqrt{6} = -4\sqrt{6}$

②
$$\sqrt{8} + \sqrt{\sqrt{1024}} - \sqrt[3]{\sqrt{512}}$$

= $2\sqrt{2} + 2^2\sqrt{2} - \sqrt[6]{2^9} = 2\sqrt{2} + 2^2\sqrt{2} - 2\sqrt{2} = 4\sqrt{2}$

$$\sqrt[3]{81} - \sqrt{\sqrt[3]{9}} = 3\sqrt[3]{3} - \sqrt[3]{3} = 2\sqrt[3]{3}$$

$$(5) - \sqrt[3]{56} + \sqrt[6]{49} = -2\sqrt[3]{7} + \sqrt[3]{7} = -\sqrt[3]{7}$$

8) [정답] ①

[해설]
$$\sqrt[3]{-11^9} + \sqrt[4]{(-3)^{16}} = \sqrt[3]{(-11)^9} + \sqrt[4]{81^4}$$

=-11³+81=-1250

9) [정답] ③

[해설]
$$\sqrt[4]{3^4 - 2\sqrt[3]{-27}} + \sqrt{\sqrt{81}}$$

= $3 - 2(-3) + 3 = 3 + 6 + 3 = 12$

10) [정답] ①

[해설]
$$\sqrt[np]{a^{mp}} = \sqrt[n]{2\sqrt[np]{a^{mp}}} = \sqrt[n]{2\sqrt[np]{a^{mp}}} = \sqrt[n]{a^{m}}$$

11) [정답] ①, ③

[해설] a의 n제곱근이 실근을 가질 조건은 다음과 같다.

- 1) a가 양수이고, n이 홀수인 경우 $\sqrt[n]{a}$ 로 하나
- 의 실근을 가진다.
- ③ 63의 일곱제곱근($\sqrt{63}$)
- 2) a가 양수이고, n이 짝수인 경우 $\sqrt[n]{a}$, $-\sqrt[n]{a}$
- 로 두 개의 실근을 가진다.
- ① 125의 네제곱근 $(\sqrt[4]{125}, -\sqrt[4]{125})$
- 3) a가 음수이고, n이 홀수인 경우 $\sqrt[n]{a}$ 로 하나
- 의 실근을 가진다.
- 따라서 답은 ①, ③이다.

12) [정답] ②

[해설] ① $\sqrt{6} \times \sqrt[4]{72} = \sqrt[4]{36} \times \sqrt[4]{72} = \sqrt[4]{2 \times 6^4} = 6\sqrt[4]{2}$

②
$$\frac{\sqrt[4]{0.0027}}{\sqrt[4]{27}} = \sqrt[4]{\frac{0.0027}{27}} = \sqrt[4]{0.0001} = 0.1$$

$$\left(\sqrt[6]{\frac{3}{16}}\right)^3 = \sqrt{\frac{3}{16}} = \frac{\sqrt{3}}{4}$$

(4)
$$\sqrt[3]{\sqrt[3]{729}} = \sqrt[9]{3^6} = \sqrt[3]{9}$$

13) [정답] ②

[해설] a의 n제곱근에 대하여 다음을 만족한다.

1) a가 음수이고, n이 짝수인 경우 실근을 가지지 않는다.

따라서 $-\sqrt[3]{4}$ 의 네제곱근 중 실수는 없다.

2) a가 양수이고, n이 짝수인 경우 $\sqrt[n]{a}$, $-\sqrt[n]{a}$ 로 두 개의 실근을 가진다.

따라서 $\sqrt[4]{256}$ 의 여섯제곱근 중 실수는 2개다.

a=0, b=2이므로 a+b=2

14) [정답] ②

[해설] ①
$$\sqrt[3]{\sqrt[5]{3^3}} = \sqrt[5]{\sqrt[3]{3^3}} = \sqrt[5]{3}$$

②
$$\sqrt[3]{-8} \times \sqrt[9]{27} = \sqrt[3]{-8} \times \sqrt[3]{3} = -2\sqrt[3]{3}$$

15) [정답] ⑤

[해설]
$$\sqrt[4]{\sqrt[3]{216}} + 4\sqrt[4]{6} + \sqrt[4]{36} = \sqrt[4]{6} + 4\sqrt[4]{6} + \sqrt[4]{6}$$

= $6\sqrt[4]{6}$

16) [정답] ③

[해설]
$$\sqrt[3]{(-5)^3} + \sqrt[6]{64} + \sqrt[4]{\frac{48}{3}} = -5 + 2 + \sqrt[4]{16}$$

= $-5 + 2 + 2 = -1$

17) [정답] ③

[해설]
$$\sqrt[4]{16^2} \times (\sqrt{2})^6 \div \sqrt[3]{64} = \sqrt[4]{4^4} \times 2^3 \div \sqrt[6]{2^6}$$

= $4 \times 8 \div 2 = 16$

18) [정답] ①

$$\therefore a = -3$$

81의 네제곱근 중 실수인 것은 ±3이다.

$$\therefore b = 2$$

$$\therefore a+b=-1$$

19) [정답] ③

[해설] ① 16의 네제곱근은 ± 2 , $\pm 2i$ 이다.

- ② $\sqrt[3]{27}$ 은 27의 세제곱근 중 실수인 것이다.
- ③ 네제곱근 16은 √16이므로 2이다.
- ④ $\sqrt{81}$ 은 9이므로 9의 네제곱근은 $\pm\sqrt{3}$, $\pm\sqrt{3}i$ 이다.
- ⑤-16의 네제곱근 중 실수인 것은 없다.

20) [정답] ①

[해설] $\sqrt[n]{wa}$ 에서 근호를 없애기 위하여 nm제곱을

하면
$$(\sqrt[n]{\sqrt[m]{a}})^{nm} = \boxed{a}$$

 $\sqrt[n]{\sqrt[n]{a}} > 0$ 이므로 $\sqrt[n]{\sqrt[n]{a}}$ 는 a의 nm의 제곱 근 중에서 양수이다.

$$\therefore \sqrt[n]{\sqrt[m]{a}} = \sqrt[nm]{a}$$