Регрессионный анализ, часть 2

Математические методы в зоологии с использованием R

Марина Варфоломеева

- Множественная линейная регрессия
- 2 Условия применимости линейной регрессии
- ③ Проверка условий применимости линейной регрессии

Вы сможете

- Подобрать модель множественной линейной регрессии
- Протестировать значимость модели и ее коэффициентов
- Интерпретировать коэффициенты множественной регрессии при разных предикторах
- Проверить условия применимости простой и множественной линейной регрессии при помощи анализа остатков

Множественная линейная регрессия

Множественная линейная регрессия

Пример: птицы Австралии

Зависит ли обилие птиц в лесах Австралии от характеристик леса? (Loyn, 1987, пример из кн. Quinn, Keough, 2002)

56 лесных участков в юго-восточной Виктории, Австралия

- 110area Площадь леса, га
- 110dist Расстояние до ближайшего леса, км (логарифм)
- l10ldist Расстояние до ближайшего леса большего размера, км (логарифм)
- yr.isol Год начала изоляции
- abund Обилие птиц

Скачиваем данные с сайта

Не забудьте войти в вашу директорию для матметодов при помощи setwd()

```
library(downloader)
# в рабочем каталоге создаем суб-директорию для данных
if(!dir.exists("data")) dir.create("data")
# скачиваем файл в xlsx, либо в текстовом формате
if (!file.exists("data/loyn.xlsx")) {
  download(
    url = "https://varmara.github.io/mathmethr/data/loyn.xlsx",
    destfile = "data/loyn.xlsx")
}
if (!file.exists("data/loyn.csv")) {
  download(
    url = "https://varmara.github.io/mathmethr/data/loyn.xls",
    destfile = "data/loyn.csv")
```

Читаем данные из файла одним из способов

Чтение из xlsx

```
library(readxl)
bird <- read_excel(path = "data/loyn.xlsx", sheet = 1)</pre>
```

Чтение из csv

```
bird <- read.table("data/loyn.csv", header = TRUE, sep = "\t")</pre>
```

Все ли правильно открылось?

str(bird) # Структура данных

```
'data.frame': 56 obs. of 21 variables:
                   5.3 2 1.5 17.1 13.8 14.1 3.8 2.2 3.3 3 ...
   $ abund
             : num
                   0.1 0.5 0.5 1 1 1 1 1 1 1 ...
   $ area : num
   $ yr.isol : int 1968 1920 1900 1966 1918 1965 1955 1920 1965 1900 ...
             : int 39 234 104 66 246 234 467 284 156 311 ...
   $ dist
  $ ldist : int 39 234 311 66 246 285 467 1829 156 571 ...
   $ graze : int 2553535545...
#
   $ alt
            : int 160 60 140 160 140 130 90 60 130 130 ...
#
   $ 110dist : num 1.59 2.37 2.02 1.82 2.39 ...
   $ l10ldist: num
                   1.59 2.37 2.49 1.82 2.39 ...
   $ l10area : num -1 -0.301 -0.301 0 0 ...
   $ cyr.isol: num 18.2 -29.8 -49.8 16.2 -31.8 ...
   $ cl10area: num
                   -1.932 -1.233 -1.233 -0.932 -0.932 ...
                   -0.9821 2.0179 2.0179 0.0179 2.0179 ...
   $ caraze : num
#
   $ resid1 : num
                   -4.22 -1.03 -1.86 2.28 7.14 ...
   $ predict1: num
                    9.52 3.03 3.36 14.82 6.66 ...
#
   $ arearesv: num
                    -16.49 -3.28 -6.69 -1.78 4.71 ...
                   -1.642 -0.3 -0.647 -0.543 -0.326 ...
#
   $ arearesx: num
   $ grazresv: num
                   -1.318 -0.805 -1.425 2.459 6.157 ...
                    -1 7/11 -0 137 -0 258 -0 108 0 580
   ¢ arazrecvi num
     Марина Варфоломеева
                             Регрессионный анализ, часть 2
```

Знакомимся с данными

Есть ли пропущенные значения?

```
sapply(bird, function(x)sum(is.na(x)))
```

```
# abund area yr.isol dist ldist graze alt
# 0 0 0 0 0 0 0 0 0
# ll0dist ll0ldist ll0area cyr.isol cl10area cgraze resid1
# 0 0 0 0 0 0 0 0
# predict1 arearesy arearesx grazresy grazresx yrresy yrresx
# 0 0 0 0 0 0 0 0
```

Каков объем выборки?

```
nrow(bird)
```

```
# [1] 56
```

Задача

- Подберите модель множественной линейной регрессии, чтобы описать, как зависит обилие птиц от характеристик леса
- Проверьте значимость ее коэффициентов при помощи t-критерия

- abund Обилие птиц
- 110area Площадь леса, га
- l10dist Расстояние до ближайшего леса, км (логарифм)
- l10ldist Расстояние до ближайшего леса большего размера, км (логарифм)
- yr.isol Год изоляции лесного массива

Решение

```
summarv(bird lm)
# Call:
 lm(formula = abund \sim l10area + l10dist + l10ldist + yr.isol,
     data = bird)
 Residuals:
     Min
             10 Median
                           30
                                  Max
# -16.663 -3.546 0.086
                         2.884
                                16.530
# Coefficients:
             Estimate Std. Error t value
                                           Pr(>|t|)
# (Intercept) -224,4246 74,8504 -3.00
                                             0.0042 **
               9.2348 1.2760 7.24 0.00000000023 ***
# l10area
# l10dist -0.7046 2.7077 -0.26
                                             0.7957
                         2.0954 -0.76
# l10ldist -1.5935
                                            0.4505
             0.1236
                         0.0379 3.26
# vr.isol
                                             0.0020 **
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 6.58 on 51 degrees of freedom
# Multiple R-squared: 0.652, Adjusted R-squared: 0.625
# F-statistic: 23.9 on 4 and 51 DF, p-value: 3.62e-11
```

bird $lm < -lm(abund \sim l10area + l10dist + l10ldist + yr.isol, data = bird)$

Задача

Запишите уравнение множественной линейной регрессии

В качестве подсказки:

```
coef(bird_lm)
```

```
# (Intercept) l10area l10dist l10ldist yr.isol
# -224.425 9.235 -0.705 -1.593 0.124
```

bird_lm\$call

```
# lm(formula = abund \sim l10area + l10dist + l10ldist + yr.isol, # data = bird)
```

Решение

Коэффициенты модели:

coef(bird_lm)

Уравнение регрессии:

Более формальная запись:

$$Y = -224.42 + 9.23 X1 - 0.70 X2 - 1.59 X3 + 0.12 X4$$

Интерпретация коэффициентов регрессии

```
coef(bird_lm)
```

```
# (Intercept) l10area l10dist l10ldist yr.isol
# -224.425 9.235 -0.705 -1.593 0.124
```

Интерпретация коэффициентов регрессии

```
coef(bird_lm)
```

```
# (Intercept) l10area l10dist l10ldist yr.isol
# -224.425 9.235 -0.705 -1.593 0.124
```

Обычные коэффициенты

- Величина обычных коэффициентов зависит от единиц измерения
- b_0 Отрезок (Intercept), отсекаемый регрессионной прямой на оси y. Значение зависимой переменной Y, если предикторы $X_1 = \cdots = X_p = 0$.
- Коэффициенты при X_p показывают, на сколько изменяется Y, когда предиктор X_p меняется на единицу, при условии, что остальные предикторы не меняют своих значений.

Для сравнения влияния разных факторов стандартизованные коэффициенты

scale(yr.isol)

Для сравнения влияния разных факторов стандартизованные коэффициенты

Стандартизованные коэффициенты

3.161

- Стандартизованные коэффициенты измерены в стандартных отклонениях. Их можно сравнивать друг с другом, поскольку они дают относительную оценку влияния фактора.
- b_0 Отрезок (Intercept), отсекаемый регрессионной прямой на оси y. Значение зависимой переменной Y, если предикторы $X_1 = \cdots = X_p = 0$. Для стандартизованных величин среднее значение равно нулю, поэтому b_0 это значение зависимой переменной при средних значениях всех предикторов.
- Коэффициенты при X_{ρ} показывают, на сколько изменяется Y, когда предиктор X_{ρ} меняется на одно стандартное отклонение, при условии, что остальные предикторы не меняют своих значений. Это относительная оценка влияния фактора.

F-statistic: 23.9 on 4 and 51 DF, p-value: 3.62e-11

Задача

summary(scaled bird lm)

Определите по значениям стандартизованных коэффициентов, какие факторы сильнее всего влияют на обилие птиц

```
# Call:
 lm(formula = abund \sim scale(l10area) + scale(l10dist) + scale(l10ldist) +
     scale(vr.isol), data = bird)
 Residuals:
     Min
             10 Median
                            30
                                  Max
 -16.663 -3.546 0.086
                         2.884 16.530
# Coefficients:
                Estimate Std. Error t value
                                             Pr(>|t|)
                 19.514
                            0.879 22.20
# (Intercept)
                                              < 2e-16 ***
# scale(l10area) 7.502
                            1.037 7.24 0.0000000023 ***
# scale(l10dist) -0.292
                            1.120 -0.26
                                               0.796
# scale(l10ldist) -0.916 1.205 -0.76
                                               0.450
# scale(yr.isol) 3.161
                            0.971
                                  3.26
                                               0.002 **
# Signif, codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#
# Residual standard error: 6.58 on 51 degrees of freedom
# Multiple R-squared: 0.652, Adjusted R-squared: 0.625
```

Оценка качества подгонки модели

summary(bird_lm)\$adj.r.squared

[1] 0.625

Обычный R^2 — доля объясненной изменчивости

$$R^2 = \frac{SS_{model}}{SS_{total}} = 1 - \frac{SS_{error}}{SS_{total}}$$

Не используйте обычный R^2 для множественной регрессии!

$$R_{adi}^2$$
 — скорректированный R^2

$$R_{adj}^2 = 1 - \frac{SS_{error}/df_{error}}{SS_{total}/df_{total}}$$

где $df_{error}=n-p-1$, $df_{total}=n-1$ R^2_{adj} учитывает число переменных в модели, вводится штраф за каждый новый параметр.

Используйте R_{adj}^2 для сравнения моделей с разным числом параметров.

Условия применимости линейной регрессии

Условия применимости линейной регрессии

Условия применимости линейной регрессии

Условия применимости линейной регрессии должны выполняться, чтобы тестировать гипотезы

- Независимость
- Пинейность
- В Нормальное распределение
- Томогенность дисперсий
- Отсутствие колинеарности предикторов (для множественной регрессии)

1. Независимость

- Значения у; должны быть независимы друг от друга
- берегитесь псевдоповторностей и автокорреляций (например, временных)
- Контролируется на этапе планирования
- Проверяем на графике остатков

Из кн. Diez et al., 2010, стр. 332, рис. 7.8

2. Линейность связи

- проверяем на графике рассеяния исходных данных
- проверяем на графике остатков

Из кн. Diez et al., 2010, стр. 332, рис. 7.8

Что бывает, если неглядя применять линейную регрессию

Квартет Энскомба - примеры данных, где регрессии одинаковы во всех случаях (Anscombe, 1973)

$$y_i = 3.0 + 0.5x_i$$

$$r^2 = 0.68$$

$$H_0: \beta_1 = 0, t = 4.24, p = 0.002$$

Из кн. Quinn, Keough, 2002, стр. 97, рис. 5.9

3. Нормальное распределение остатков

Нужно, т.к. в модели $Y_i=eta_0+eta x_i+\epsilon_i$ зависимая переменная $Y\sim N(0,\sigma^2)$, а значит $\epsilon_i\sim N(0,\sigma^2)$

- Нужно для тестов параметров, а не для подбора методом наименьших квадратов
- Нарушение не страшно тесты устойчивы к небольшим отклонениям от нормального распределения
- Проверяем распределение остатков на нормально-вероятностном графике

Из кн. Watkins et al., 2008, стр. 743, рис. 11.4

4. Гомогенность дисперсий

Нужно, т.к. в модели $Y_i=\beta_0+\beta x_i+\epsilon_i$ зависимая переменная $Y\sim N(0,\sigma^2)$ и дисперсии $\sigma_1^2=\sigma_2^2=...=\sigma_i^2$ для каждого Y_i Но, поскольку $\epsilon_i\sim N(0,\sigma^2)$, можно проверить равенство дисперсий остатков ϵ_i

- Нужно и важно для тестов параметров
- Проверяем на графике остатков по отношению к предсказанным значениям
- Есть формальные тесты (Cochran's C), но только если несколько значений у для каждого х

Из кн. Watkins et al., 2008, стр. 743, рис. 11.4

Диагностика регрессии по графикам остатков

\begin{enumerate}[(a)] - все условия выполнены - разброс остатков разный (wedge-shaped pattern) - разброс остатков одинаковый, но нужны дополнительные предикторы - к нелинейной зависимости применили линейную регрессию \end{enumerate}

Задача: Проанализируйте графики остатков

Скажите пожалуйста

- какой регрессии соответствует какой график остатков?
- все ли условия применимости регрессии здесь выполняются?
- назовите случаи, в которых можно и нельзя применить линейную регрессию?

Display 3.84 Four scatterplots.

Display 3.85 Four residual plots.

Из кн. Watkins et al. 2008, стр. 177, рис. 3.84-3.85

Решение

- А-І нелинейная связь нельзя;
- B-II все в порядке, можно;
- С-III все в порядке, можно;
- D-IV синусоидальный паттерн в остатках, нарушено условие независимости или зависимость нелинейная - нельзя.

Рис. из кн. Watkins et al. 2008, стр. 177, рис. 3.84-3.85

Какие наблюдения влияют на ход регрессии больше других?

Влиятельные наблюдения, выбросы, outliers

- большая абсолютная величина остатка
- близость к краям области определения (leverage - рычаг, сила; иногда называют hat)

На графике точки и линии регрессии построенные с их включением:

- 1 не влияет на ход регрессии, т.к. лежит на прямой
- 2 умеренно влияет (большой остаток, малая сила влияния)
- 3 очень сильно влияет (большой остаток, большая сила влияния)

Из кн. Quinn, Keough, 2002, стр. 96, рис. 5.8

Как оценить влиятельность наблюдений?

Paccтояние Кука (Cook's d, Cook, 1977)

- Учитывает одновременно величину остатка и близость к краям области определения (leverage)
- Условное пороговое значение: выброс, если $d \geq 4/(N-k-1)$, где N объем выборки, k число предикторов.

Как оценить влиятельность наблюдений?

Paccтояние Кука (Cook's d, Cook, 1977)

- Учитывает одновременно величину остатка и близость к краям области определения (leverage)
- Условное пороговое значение: выброс, если $d \geq 4/(N-k-1)$, где N объем выборки, k число предикторов.
- Дж. Фокс советует не обращать внимания на пороговые значения (Fox, 1991)

Из кн. Quinn, Keough, 2002, стр. 96, рис. 5.8

Что делать с влиятельными точками и с выбросами?

- Проверить, не ошибка ли это.
 Если нет, не удалять обсуждать!
- Проверить, что будет, если их исключить из модели

Из кн. Quinn, Keough, 2002, стр. 96, рис. 5.8

Колинеарность предикторов

Колинеарность

Коллинеарные предикторы коррелируют друг с другом, т.е. не являются взаимно независимыми

Последствия

- Модель неустойчива к изменению данных
- При добавлении или исключении наблюдений может меняться оценка и знак коэффициентов

Что делать с колинеарностью?

- Удалить из модели избыточные предикторы
- Получить вместо скоррелированных предикторов один новый комбинированный при помощи метода главных компонент

Проверка на колинеарность

Толерантность (tolerance)

 $1-\mathit{R}^2$ регрессии данного предиктора от всех других

 $T \leq 0.25$ — колинеарность

Показатель инфляции для дисперсии

(коэффициент распространения дисперсии, Variance inflation factor, VIF)

$$VIF = 1/T$$

$$\sqrt{\mathit{VIF}} >$$
 5, но лучше $\sqrt{\mathit{VIF}} >$ 3, а иногда и $\sqrt{\mathit{VIF}} >$ 2 $-$ коллинеарность

Проверка условий применимости линейной регрессии

Как проверить условия применимости?

- VIF колинеарность предикторов (для множественной регрессии)
- График остатков от предсказанных значений величина остатков, влиятельность наблюдений, отсутствие паттернов, гомогенность дисперсий.
- 3 График квантилей остатков распределение остатков

1. Проверим, есть ли в этих данных колинеарность предикторов

```
library(car)
vif(bird lm) # variance inflation factors
  llOarea llOdist llOldist yr.isol
     1.37
             1.60
                     1.84
                             1.20
sqrt(vif(bird lm)) > 2 # есть ли проблемы?
  l10area l10dist l10ldist vr.isol
    FALSE FALSE FALSE
1/vif(bird lm) # tolerance
```

```
# l10area l10dist l10ldist yr.isol
# 0.732 0.627 0.542 0.835
```

1. Проверим, есть ли в этих данных колинеарность предикторов

```
library(car)
vif(bird lm) # variance inflation factors
  llOarea llOdist llOldist yr.isol
     1.37
             1.60
                     1.84
                             1.20
sqrt(vif(bird lm)) > 2 # есть ли проблемы?
  l10area l10dist l10ldist vr.isol
    FALSE FALSE FALSE
1/vif(bird lm) # tolerance
```

```
0.627
Все в порядке, предикторы независимы
```

l10area l10dist l10ldist yr.isol

0.542

0.732

0.835

Для анализа остатков выделим нужные данные в новый датафрейм

```
library(ggplot2) # там есть функция fortify()
bird_diag <- fortify(bird_lm)

head(bird_diag, 2)

# abund ll0area ll0dist ll0ldist yr.isol .hat .sigma .cooksd
# 1 5.3 -1.000 1.59 1.59 1968 0.1662 6.64 0.000383
# 2 2.0 -0.301 2.37 2.37 1920 0.0853 6.63 0.003242
# .fitted .resid .stdresid
# 1 5.89 -0.589 -0.098
# 2 4.62 -2.623 -0.417
```

Для анализа остатков выделим нужные данные в новый датафрейм

```
library(ggplot2) # там есть функция fortify()
bird_diag <- fortify(bird_lm)

head(bird_diag, 2)

# abund ll0area ll0dist ll0ldist yr.isol .hat .sigma .cooksd
# 1 5.3 -1.000 1.59 1.59 1968 0.1662 6.64 0.000383
# 2 2.0 -0.301 2.37 2.37 1920 0.0853 6.63 0.003242
# .fitted .resid .stdresid
# 1 5.89 -0.589 -0.098
# 2 4.62 -2.623 -0.417
```

- .cooksd расстояние Кука
- fitted предсказанные значения
- resid остатки
- stdresid стандартизованные остатки

Задача

Постройте график зависимости стандартизованных остатков от предсказанных значений

Используйте данные из bird_diag

```
ggplot()
aes()
geom_point()
```

Стандартизованные остатки

$$\frac{y_i - \hat{y}_i}{\sqrt{MS_e}}$$

- можно сравнивать между регрессиями
- можно сказать, какие остатки большие, какие нет
 - < 2SD обычные
 - \circ > 3*SD* редкие

Решение

График зависимости стандартизованных остатков от предсказанных значений

График станет информативнее, если кое-что добавить

```
# Создаем логический вектор, где TRUE,
# если стандартизованный остаток больше 2
f outlier <- abs(bird diag$.stdresid) > 2
# Создаем будущие ярлыки
labs <- ifelse(test = f outlier,</pre>
               yes = row(bird diag), # Если test == TRUE
               no = "") # Если test == FALSE
gg resid <- ggplot(data = bird diag,</pre>
                   aes(x = .fitted, y = .stdresid)) +
  geom point(aes(size = .cooksd)) + # расстояние Кука
  geom hline(yintercept = 0) + # горизонтальная линия y = 0
  geom text(aes(label = labs), hjust = 2, colour = "blue",
            size = 2) # номера наблюдений с остатками больше 2SD
```

Интерпретируем график стандартизованных остатков от предсказанных значений

Какие выводы можно сделать по графику остатков?

Интерпретируем график стандартизованных остатков от предсказанных значений

Какие выводы можно сделать по графику остатков?

- Большая часть стандартизованных остатков в пределах двух стандартных отклонений. Есть отдельные влиятельные наблюдения, которые нужно проверить
- Разброс остатков не совсем одинаков. Похоже на гетерогенность дисперсий
- Тренда среди остатков нет

3. Квантильный график стандартизованных остатков

Используется, чтобы оценить форму распределения. Если точки лежат на одной прямой — все в порядке.

```
mean_val <- mean(bird_diag$.stdresid)
sd_val <- sd(bird_diag$.stdresid)
ggplot(bird_diag, aes(sample = .stdresid)) + geom_point(stat = "qq") +
geom_abline(intercept = mean_val, slope = sd_val) + # точки должны быть здесь
labs(x = "Квантили стандартного нормального распределения", y = "Квантили н
```


Интерпретируем квантильный график

Какие выводы можно сделать по квантильному графику?

Интерпретируем квантильный график

Какие выводы можно сделать по квантильному графику?

• Отклонений от нормального распределения нет

Take home messages

- Для сравнения влияния разных предикторов можно использовать бета-коэффициенты
- Условия применимости линейной регрессии должны выполняться, чтобы тестировать гипотезы
 - Пезависимость
 - Пинейность
 - В Нормальное распределение
 - Ф Гомогенность дисперсий
 - Отсутствие колинеарности предикторов (для множественной регрессии)

Дополнительные ресурсы

Учебники

- Quinn, Keough, 2002, pp. 92-98, 111-130
- Open Intro to Statistics: Chapter 8. Multiple and logistic regression, pp. 354-367.
- Logan, 2010, pp. 170-173, 208-211
- Sokal, Rohlf, 1995, pp. 451-491, 609-653
- Zar, 2010, pp. 328-355, 419-439

Упражнения для тренировки

- OpenIntro Labs, Lab 7: Introduction to linear regression (Осторожно, они используют базовую графику а не ggplot)
 - Обычный вариант, после упражнения 4
 - Интерактивный вариант на Data Camp, после вопроса 4
- OpenIntro Labs, Lab 8: Multiple linear regression
 - Обычный вариант, до упражнения 11
 - Интерактивный вариант на Data Camp, до вопроса 8