Семинар 15

Достаточные условия экстремума в задаче с закреплёнными концами

Итак, локальный экстремум функционала

$$V[y] = \int_{a}^{b} F(x, y, y') dx$$

с условиями

y(a) = A, y(b) = B (закреплённые концы)

может достигаться только на решениях краевой задачи для уравнения Эйлера:

$$\begin{cases} F_{y} - \frac{d}{dx} (F_{y'}) = 0, & x \in (a; b), \\ y(a) = A, & y(b) = B. \end{cases}$$

Это НУЭ. Пусть $y_0(x)$ — решение этой краевой задачи (*исследуемая* экстремаль). Для того чтобы проверить, будет ли функционал действительно достигать экстремума на функции $y_0(x)$, нужны достаточные условия экстремума (ДУЭ).

Прежде всего необходимо включить исследуемую экстремаль в поле экстремалей.

Рассмотрим область G на плоскости Oxy, содержащую кривую $y = y_0(x), x \in [a; b]$.

Поскольку уравнение Эйлера, в общем случае, является ОДУ 2-го порядка, его ОР — это двухпараметрическое семейство кривых (экстремалей):

$$y = y(x, C_1, C_2).$$

Из этого семейства можно выделить однопараметрическое подсемейство кривых: y = y(x, C).

О. Кривые семейства y = y(x, C) образуют *собственное* поле в области G, если через каждую точку области G проходит одна и только одна кривая из этого семейства.

Пусть экстремали y = y(x, C) образуют собственное поле в области G и исследуемая экстремаль $y_0(x)$ содержится *внутри* этого семейства при некотором значении $C = C_0$: $y(x, C_0) = y_0(x)$,

а выше и ниже кривой $y = y_0(x)$ есть другие кривые семейства. Тогда говорят, что исследуемая экстремаль $y_0(x)$ включена в собственное поле экстремалей.

О. Кривые семейства y = y(x, C) образуют *центральное* поле в области G, если все эти кривые проходят через некоторую общую точку $M \in G$ (*центр поля*), а через любую другую точку области G проходит одна и только одна кривая из этого семейства.

Пусть экстремали y = y(x, C) образуют центральное поле в области G, причём центр поля находится в точке (a; A) или в точке (b; B), и исследуемая экстремаль $y_0(x)$ содержится внутри этого семейства: $y(x, C_0) = y_0(x)$, а выше и ниже исследуемой экстремали есть другие кривые семейства. Тогда говорят, что исследуемая экстремаль включена в центральное поле экстремалей.

Пример 1 (самостоятельно). Образуют ли кривые семейства y(x,C) = C(x-1)x собственное или центральное поле в области

- a) $x \in (-\infty; 0]$,
- б) $x \in [0; a]$, где a < 1,
- в) $x \in [0; a]$, где $a \ge 1$,
- Γ) $x \in [2; +\infty)$?

Ответ:

- а) центральное поле,
- б) центральное поле,
- в) не образуют ни собственного, ни центрального поля,
- г) собственное поле.

Пример 2. Включить исследуемую экстремаль в собственное и центральное поле экстремалей: $V[y] = \int_{-1}^{1} (12xy + (y')^2 + x^2) dx$, y(-1) = -2, y(1) = 0.

Здесь
$$F(x, y, y') = 12xy + (y')^2 + x^2$$
.

Уравнение Эйлера принимает вид:

$$F_{y} - \frac{d}{dx} (F_{y'}) = 0.$$

$$12x - \frac{d}{dx}(2y') = 0.$$

$$\frac{d}{dx}(y') = 6x.$$

$$y' = 3x^2 + C_1, \qquad C_1 \in \mathbb{R}.$$

$$y = x^3 + C_1 x + C_2, \qquad C_2 \in \mathbb{R}.$$

Краевые условия:

$$(y(-1) = -1 - C_1 + C_2 = -2,$$

$$y(1) = 1 + C_1 + C_2 = 0.$$

Получаем систему:

$$\begin{cases}
C_1 - C_2 = 1, \\
C_1 + C_2 = -1.
\end{cases}$$

Отсюда $C_1 = 0$, $C_2 = -1$. Исследуемая экстремаль:

$$y_0(x) = x^3 - 1.$$

1. Построим собственное поле экстремалей, включающее исследуемую экстремаль. В OP уравнения Эйлера

$$y = x^3 + C_1 x + C_2$$

положим $C_1 = 0$. Получим

$$y(x, C_2) = x^3 + C_2.$$

Исследуемая экстремаль входит в это семейство при $C_2 = -1$:

$$y(x,-1) = x^3 - 1 = y_0(x).$$

Очевидно, что через каждую точку полосы $-1 \le x \le 1$ проходит одна и только одна кривая семейства $y(x, C_2) = x^3 + C_2$ (поскольку все кривые получаются друг из друга сдвигом вдоль оси Oy). Значит, кривые семейства $y(x, C_2) = x^3 + C_2$ действительно образуют собственное поле в полосе $-1 \le x \le 1$, и исследуемая экстремаль включена в это поле.

2. Построим центральное поле экстремалей, включающее исследуемую экстремаль. Потребуем, чтобы центр поля лежал на левой границе области, т. е. при x = -1. Тогда все экстремали должны удовлетворять левому краевому условию:

$$y(-1) = -2$$
.

Взяв ОР уравнения Эйлера

$$y = x^3 + C_1 x + C_2,$$

потребуем

$$y(-1) = -1 - C_1 + C_2 = -2$$
,

т. е.
$$C_2 = C_1 - 1$$
.

Получится однопараметрическое семейство кривых

$$y(x, C_1) = x^3 + C_1 x + C_1 - 1,$$

которое включает исследуемую экстремаль при $C_1 = 0$:

$$y(x,0) = x^3 - 1 = y_0(x).$$

Убедимся, что через каждую точку $(x_0; y_0)$, где $-1 < x_0 \le 1$, проходит одна и только одна кривая семейства $y(x, C_1) = x^3 + C_1 x + C_1 - 1$. В самом деле, из уравнения

$$y_0 = x_0^3 + C_1 x_0 + C_1 - 1$$

при $x_0 \neq -1$ однозначно определяется параметр C_1 :

$$C_1 = \frac{y_0 - x_0^3 + 1}{x_0 + 1}.$$

Значит, кривые семейства $y(x, C_1)$ действительно образуют центральное поле, включающее исследуемую экстремаль.

Ответ: собственное поле $y(x, C_2) = x^3 + C_2$,

центральное поле $y(x, C_1) = x^3 + C_1x + C_1 - 1$.

Достаточные условия Лежандра

Пусть $F(x, y, y') \in C^{(3)}$, $y_0(x)$ — исследуемая экстремаль (т. е. $y_0(x)$ удовлетворяет уравнению Эйлера и краевым условиям), включённая в собственное *или* центральное поле экстремалей. Тогда

а) если
$$F_{y'y'}\big|_{y=y_0(x)}>0$$
 $(F_{y'y'}\big|_{y=y_0(x)}<0)$, то на функции $y_0(x)$ достигается слабый $y'=y_0'(x)$ $x\in [a;b]$ $x\in [a;b]$

минимум (максимум) функционала V[y] в задаче с закреплёнными концами;

б) если $F_{y'y'} \ge 0$ ($F_{y'y'} \le 0$) во всех точках (x; y), достаточно близких к точкам исследуемой экстремали $(x; y_0(x))$, $x \in [a; b]$, и при любых y', то на функции $y_0(x)$ достигается *сильный* минимум (максимум) функционала V[y] в задаче с закреплёнными концами.

Достаточные условия Вейерштрасса

Пусть $F(x, y, y') \in C^{(2)}$, $y_0(x)$ — исследуемая экстремаль (т. е. $y_0(x)$ удовлетворяет уравнению Эйлера и краевым условиям), включённая в собственное *или* центральное поле экстремалей. Тогда через каждую точку, кроме центра поля, проходит одна и только одна экстремаль. Пусть

p = p(x, y) — наклон поля экстремалей в точке (x; y), т. е. производная $\frac{dy}{dx}$ той экстремали, которая проходит через ку (x; y), в этой самой точке (x; y).

Рассмотрим функцию Вейерштрасса:

$$E(x, y, p, y') = F(x, y, y') - F(x, y, p) - (y' - p)F_p(x, y, p).$$

- 1. Если $E \ge 0$ ($E \le 0$) во всех точках (x; y), достаточно близких к точкам исследуемой экстремали $(x; y_0(x))$, $x \in [a; b]$, и при всех y', достаточно близких к p(x, y), то на функции $y_0(x)$ достигается *слабый* минимум (максимум) функционала V[y] в задаче с закреплёнными концами.
- 2. Если $E \ge 0$ ($E \le 0$) во всех точках (x; y), достаточно близких к точкам исследуемой экстремали (x; $y_0(x)$), $x \in [a; b]$, и при любых y', то на функции $y_0(x)$ достигается *сильный* минимум (максимум) функционала V[y] в задаче с закреплёнными концами.
- 3. Если $E(x, y_0(x), p, y')$ принимает значения разного знака при разных y' (при каждом фиксированном $x \in [a; b]$), то *сильный* экстремум функционала V[y] в задаче с закреплёнными концами на функции $y_0(x)$ не достигается.
- 4. Если $E(x, y_0(x), p, y')$ принимает значения разного знака при y', сколь угодно близких к p(x, y) (при каждом фиксированном $x \in [a; b]$), то слабый экстремум функционала V[y] в задаче с закреплёнными концами на функции $y_0(x)$ не достигается.

Пример 3 (самостоятельно). Исследовать на экстремум: $V[y] = \int_0^a ((y')^2 - y^2) dx$, y(0) = y(a) = 0, $0 < a < \pi$.

Здесь $F(x, y, y') = (y')^2 - y^2$.

Запишем уравнение Эйлера:

$$F_{y} - \frac{d}{dx} (F_{y'}) = 0.$$

$$-2y - \frac{d}{dx}(2y') = 0.$$

 $y^{\prime\prime}+y=0.$

Его ОР:

 $y = C_1 \sin x + C_2 \cos x.$

Подставим ОР в КУ:

$$(y(0)=C_2=0,$$

$$y(a) = C_1 \sin a + C_2 \cos a = 0.$$

Отсюда получим $C_2 = 0$, $C_1 = 0$ (т. к. $\alpha < \pi$).

Исследуемая экстремаль:

$$y_0(x)=0.$$

Построим центральное поле экстремалей с центром при x = 0, включающее исследуемую экстремаль. Для этого возьмём ОР уравнения Эйлера

$$y = C_1 \sin x + C_2 \cos x$$

и потребуем выполнения краевого условия при x = 0:

$$y(0) = 0.$$

Тогда $C_2 = 0$, и получим семейство кривых: $y(x, C_1) = C_1 \sin x$.

Очевидно, в полосе $0 \le x \le a$ эти кривые образуют центральное поле, включающее исследуемую экстремаль при $C_1 = 0$:

$$y(x,0)=0=y_0(x).$$

1. Проверим условия Лежандра:

$$F_{y'y'} = 2 > 0$$

всегда, поэтому на исследуемой экстремали $y_0(x)$ достигается сильный минимум (а следовательно, и слабый минимум).

2. То же самое можно получить и из условий Вейерштрасса (другой способ решения):

$$E(x,y,p,y') = F(x,y,y') - F(x,y,p) - (y'-p)F_p(x,y,p) =$$

$$= (y')^2 - y^2 - p^2 + y^2 - (y'-p) \cdot 2p = (y')^2 - p^2 - 2py' + 2p^2 =$$

$$= (y')^2 - 2py' + p^2 = (y'-p)^2 \ge 0$$

всегда, поэтому на исследуемой экстремали $y_0(x)$ достигается сильный минимум.

 Omsem : на функции y=0 достигается сильный минимум.

Пример 4 (самостоятельно). Исследовать на экстремум: $V[y] = \int_0^1 ((y')^3 - 3y') dx$, y(0) = 0, y(1) = -2.

Поскольку $F = (y')^3 - 3y'$ — зависит только от y' и $F_{y'y'} \not\equiv 0$, то общее решение уравнения Эйлера имеет вид

 $y = C_1 x + C_2$, $C_1, C_2 \in \mathbb{R}$.

Подставим ОР в КУ:

$$(y(0)=C_2=0,$$

$$y(1) = C_1 + C_2 = -2.$$

Отсюда $C_1 = -2$, $C_2 = 0$.

Исследуемая экстремаль:

$$y_0(x) = -2x.$$

Её можно включить в собственное поле экстремалей

$$y(x, C_2) = -2x + C_2$$

при $C_2 = 0$:

$$y(x, 0) = -2x = y_0(x).$$

1. Проверим условия Лежандра.

$$F_{y'y'} = 6y'.$$

 $F_{y'y'}|_{y=y_0(x)} = -12 < 0,$
 $y'=y'_0(x)$

поэтому на исследуемой экстремали $y_0(x)$ достигается слабый максимум.

При произвольных y' функция $F_{y'y'} = 6y'$ знакопеременна, поэтому о сильном экстремуме ничего сказать нельзя.

2. Для того чтобы проверить, достигается ли сильный максимум, используем условия Вейерштрасса.

$$E(x,y,p,y') = F(x,y,y') - F(x,y,p) - (y'-p)F_p(x,y,p) =$$

$$= (y')^3 - 3y' - p^3 + 3p - (y'-p)(3p^2 - 3) =$$

$$= (y'-p)((y')^2 + y'p + p^2) - 3(y'-p) - (y'-p)(3p^2 - 3) =$$

$$= (y'-p)((y')^2 + y'p + p^2 - 3 - 3p^2 + 3) = (y'-p)((y')^2 + y'p - 2p^2) =$$

$$= (y'-p)((y')^2 - p^2 + y'p - p^2) = (y'-p)^2(y'+2p).$$

Функция Вейерштрасса не зависит от x и y, а зависит только от p и y'. При y', близких к p(x,y)=-2, имеем E(x,y,p,y')<0, поэтому на исследуемой экстремали $y_0(x)$ достигается слабый максимум (как и было получено ранее из условий Лежандра).

Поскольку $(y'-p)^2 \ge 0$ всегда, а (y'+2p) меняет знак при y'=-2p, то функция Вейерштрасса принимает значения разных знаков при разных y', и сильный экстремум на исследуемой экстремали $y_0(x)$ не достигается.

Ответ: на функции y = -2x достигается слабый максимум.

ДЗ 15.

- 1. Образуют ли кривые семейства $y = C(x^2 2x)$ собственное или центральное поле в области
 - a) $0 \le x \le 1$,
 - $6) -1 \le x \le 3$
 - B) $\frac{1}{2} \le x \le \frac{3}{2}$?
- 2. Включить исследуемую экстремаль в собственное и центральное поле экстремалей: $V[y] = \int_0^1 ((y')^2 2xy) \, dx$, y(0) = y(1) = 0.

Эльсгольц гл. 8 № 1, 3–5, 7–9, 14.