Metodi Matematici per l'Informatica - Dispensa 8 (a.a. 23/24, I canale)

Docente: Lorenzo Carlucci (lorenzo.carlucci@uniroma1.it)

1 Applicazioni di funzioni e operatori insiemistici

Dalla formulazione astratta di uno degli esempi studiati in precedenza ci rendiamo conto che è possibile formulare proprietà generali riguardanti il comportamento delle funzioni come oggetti insiemistici.

Per esempio la Proposizione seguente ci dice come l'applicazione di una funzione iniettiva a un insieme interagisce con l'intersezione.

Proposizione 1. Sia $f: I \to O$ una funzione, e siano $A, B \subseteq I$ due sottinsiemi del dominio. Se f è iniettiva allora:

$$f(A \cap B) = f(A) \cap f(B)$$

.

Dimostrazione. Dobbiamo dimostrare una identità tra due insiemi, ossia $f(A \cap B)$ e $f(A) \cap f(B)$. Procediamo dimostrando le due inclusioni:

$$f(A \cap B) \subset f(A) \cap f(B)$$
,

e

$$f(A) \cap f(B) \subseteq f(A \cap B)$$
.

Cominciamo dalla prima. Sia $z \in f(A \cap B)$. Per definizione di immagine di $A \cap B$ via f significa che esiste un w in $A \cap B$ tale che f(w) = z. Ma allora di certo esiste un $w \in A$ tale che f(w) = z ed esiste un $w' \in B$ tale che f(w') = z (basta scegliere lo stesso elemento). Dunque z appartiene all'immagine di A via f e z appartiene all'immagine di B via f. Abbiamo così dimostrato che $z \in f(A) \cap f(B)$.

Dimostriamo la seconda implicazione. Sia $z \in f(A) \cap f(B)$. Allora $z \in f(A)$ e $z \in f(B)$. Da $z \in f(A)$ deduciamo che esiste un $w \in A$ tale che f(w) = z. Da $z \in f(B)$ deduciamo che esiste un $w' \in B$ tale che f(w') = z. A questo punto – in generale – non possiamo dedurre che $w \in w'$ sono lo stesso elemento! Ma abbiamo ipotizzato che f è iniettiva, il che significa che f(w) = f(w') implica necessariamente w = w'. Esiste dunque un elemento simultaneamente in A e in B la cui immagine è z. Dunque $z \in f(A \cap B)$ come richiesto.

QED

Osservazione 1. L'inclusione $f(A) \cap f(B) \subseteq f(A \cap B)$ non vale in generale. Sia f non iniettiva, e siano $x \neq x'$ nel dominio di f tali che f(x) = f(x') (diciamo che x, x' testimoniano la non iniettività di f). Ponendo $A = \{x\}$ e $B = \{y\}$ abbiamo che $f(x) \in f(A) \cap f(B)$ ma $f(A \cap B) = f(\emptyset) = \emptyset$.

Osservazione 2. La dimostrazione dell'implicazione $f(A) \cap f(B) \subseteq f(A \cap B)$ per una funzione f generica si blocca quando vogliamo passare da

- 1. Esiste $w \in A$ tale che f(w) = x e Esiste $w' \in B$ tale che f(w') = x, a
- 2. Esiste $w \in A \cap B$ tale che f(w) = x.

Infatti il primo punto può valere anche se $w \in A$ e $w' \in B$ sono due elemeti distinti e tali che $w \notin B$ e $w' \notin A$. L'impossibilità di dedurre (2) da (1) dimostrata da questo esempio indica che in generale non si può dedurre l'esistenza di un elemento che soddisfa la congiunzione di due proprietà P e Q dall'ipotesi che esista un elemento che soddisfa P e un elemento che soddisfa Q.

Esercizio 1. Vale il viceversa della Proposizione precedente? Ossia, se $f: I \to O$ è tale che per ogni coppia di sottinsiemi $A, B \subseteq I$ vale l'identità $f(A \cap B) = f(A) \cap f(B)$ è vero che f è necessariamente iniettiva?

Esempio 1. Sia $f: I \to O$ una funzione e siano $A, B \subseteq O$ due sottinsiemi del dominio. A quali condizioni vale

$$f(A \cup B) = f(A) \cup f(B)$$
?

Consideriamo la possibile inclusione

$$f(A \cup B) \subseteq f(A) \cup f(B)$$
.

Scriviamo le definizioni dei vari insiemi coinvolti:

- $f(A \cup B) = \{z \in O : \text{ esiste } x \in A \cup B \in I \text{ t.c. } f(x) = z\}$
- $f(A) = \{z \in O : \text{ esiste } x \in A \text{ t.c. } f(x) = z\}.$
- $f(B) = \{z \in O : \text{ esiste } x \in B \text{ t.c. } f(x) = z\}.$
- $f(A) \cup f(B) = \{z \in O : (\text{esiste } x \in A \text{ t.c. } f(x) = z) \text{ oppure (esiste } x \in B \text{ t.c. } f(x) = z) \}.$

Dimostrare l'inclusione consiste nel considerare un arbitrario $z \in f(A \cup B)$ e dimostrare che $z \in f(A) \cup f(B)$. Sia dunque $z \in f(A \cup B)$. Per definizione esiste $x \in A \cup B \in I$ t.c. f(x) = z. $x \in A \cup B$ vale sse $x \in A$ oppure $x \in B$. Questo dà luogo naturalmente a un **ragionamento per casi**: se dimostriamo che in entrambi i casi z è anche in $f(A) \cup f(B)$ abbiamo fatto. Se $x \in A$ e f(x) = z allora a fortiori (a maggior ragione) vale $x \in A \cup B$ e f(x) = z. Dunque $z \in f(A) \cup f(B)$. Se $x \in B$ e f(x) = z allora a fortiori (a maggior ragione) vale $x \in A \cup B$ e f(x) = z. Dunque $z \in f(A) \cup f(B)$.

Consideriamo la possibile inclusione

$$f(A \cup B) \supseteq f(A) \cup f(B)$$
.

2 Composizione di funzioni

Comporre funzioni significa applicarle in sequenza. Per esempio, comporre la funzione $n \mapsto n+1$ alla funzione $n \mapsto n^2$ significa $n \mapsto n+1 \mapsto (n+1)^2$. Affinché questo sia possibile deve valere che l'output della prima funzione rientri tra i possibili argomenti della seconda (ossia sia parte del dominio della seconda). In questo caso è facile osservare che l'associazione risultante è anch'essa una funzione.

Definizione 1 (Funzione composta). Siano $f: X \to Y$ e $g: Y \to Z$ due funzioni. La funzione composta di f e g è la funzione $h: X \to Z$ definita ponendo: per ogni $x \in X$, h(x) = g(f(x)). La funzione composta si denota con $g \circ f$.

Osservazione 3. Si noti che la definizione sopra è ben posta: ogni elemento di X ha una immagine via $g \circ f$ perché ogni elemento di X ha una immagine in Y via $f: X \to Y$ e ogni elemento di Y ha una immagine in Z via $g: Y \to Z$ (questo giustifica la convenienza di definire una funzione in modo che sia definita su tutto il dominio).

Osservazione 4. Qui sopra abbiamo considerato le funzioni $s: \mathbf{N} \to \mathbf{N}$ definita come s(n) = n+1 e la funzione $q: \mathbf{N} \to \mathbf{N}$ definita come $q(n) = n^2$ e abbiamo descritto la loro composizione come la funzione risultante dall'applicazione prima di s e poi di q. Questa funzione si comporta così:

$$n \mapsto (n+1)^2$$
.

Da questo esempio si vede facilmente che nelle composizioni l'ordine conta: se infatti componiamo s e q applicando prima q e poi s otteniamo una funzione diversa, che si comporta così:

$$n \mapsto n^2 + 1$$
.

La composizione di funzioni (laddove è definita) non è commutativa in generale.

Esercizio 2. Verificare che la composizione di funzioni è associativa. Se $f: X \to Y$, $g: Y \to Z$ e $h: Z \to W$ sono funzioni allora la funzione composta $((f \circ g) \circ h)$ è identica alla funzione composta $(f \circ (g \circ h))$.

La seguente Proposizione ci dice quando le proprietà di iniettività, suriettività e biiettività sono preservate dalla composizione.

Proposizione 2. Siano $f: X \to Y$ e $g: Y \to Z$ due funzioni.

- 1. Se f e g sono iniettive allora $(g \circ f)$ è iniettiva.
- 2. Se f e g sono suriettive allora $(g \circ f)$ è suriettiva.
- 3. Se f e g sono biiettive allora $(g \circ f)$ è biiettiva.

Dimostrazione.

Cominciamo con il punto (1). Supponiamo che f e g siano entrambe iniettive. Dobbiamo dimostrare che la composta $(g \circ f)$ è iniettiva. Per definizione questo significa che non esistono due elementi distinti del dominio X che hanno come immagine lo stesso elemento del codominio Z. Ragioniamo **per assurdo**: supponiamo che esista un elemento del codominio $z \in Z$ tale che esistono due distinti elementi del dominio $x \neq x' \in X$ che vengono entrambi mappati in z dalla funzione composta $(g \circ f)$ e cerchiamo di dimostrare una contraddizione. In questo caso avremmo stabilito la verità desiderata. Questo significa che

$$(g \circ f)(x) = (g \circ f)(x')$$

che per definizione della composta significa che

$$g(f(x)) = g(f(x')).$$

Dato che g è iniettiva per ipotesi, se g mappa gli elementi f(x) e f(x') del suo dominio Y nello stesso elemento del codominio Z, deve essere necessariamente f(x) = f(x').

Dato he f è iniettiva per ipotesi, se f mappa gli elmenti x e x' del suo dominio X nello stesso elemento del codominio Y, deve essere necessariamente x = x'. Ma questo contraddice l'ipotesi che x e x' siano distinti. Abbiamo raggiunto una contraddizione. Dunque $(g \circ f)$ è iniettiva.

Dimostriamo il punto (2). Dobbiamo dimostrare che ogni elemento del codominio Z è immagine via $(g \circ f)$ di almeno un elemento del dominio X. Procediamo a ritroso: scegliamo un arbitrario $z \in Z$. Dato che $g: Y \to Z$ è suriettiva per ipotesi esiste $y \in Y$ tale che g(y) = z. Sia y_0 un tale y. Dato che $f: X \to Y$ è suriettiva per ipotesi esiste un $x \in X$ tale che $f(g(y_0)) = z$. Sia x_0 un tale x. Abbiamo dunque dimostrato che esiste un $x \in X$ tale che $(g \circ f)(x) = z$.

Dimostriamo il punto (3). Segue immediatamente dai due punti precedenti!

Esercizio 3. Se, nella Proposizione precedente, una sola tra f e g ha la proprietà considerata (iniettività, suriettività, biiettività), la composta $g \circ f$ ha ancora quella proprietà?

Esercizio 4. Le tre implicazioni della Proposizione precedente si invertono?

Esercizio 5. Se la composta $g \circ f$ è iniettiva, cosa posso dire di f e di g?

Esercizio 6. Se la composta $g \circ f$ è suriettiva, cosa posso dire di f e di g?