Online sellers example

Joachim Vandekerckhove and Michael Lee

Online Sellers

 This introductory modeling example comes from the YouTube channel 3Blue1Brown, and involves comparing the positive ratings of three online sellers.

Seller	Positive	Total	Percentage
One	10	10	100%
Two	48	50	96%
Three	186	200	93%

Online Sellers

- This introductory modeling example comes from the YouTube channel 3Blue1Brown, and involves comparing the positive ratings of three online sellers.
- They each have different numbers of positive ratings from different numbers of total user evaluations.

Seller	Positive	Total	Percentage
One	10	10	100%
Two	48	50	96%
Three	186	200	93%

Online Sellers

- This introductory modeling example comes from the YouTube channel 3Blue1Brown, and involves comparing the positive ratings of three online sellers.
- They each have different numbers of positive ratings from different numbers of total user evaluations.

Seller	Positive	Total	Percentage
One	10	10	100%
Two	48	50	96%
Three	186	200	93%

 The research question is to infer from these data which seller has the highest probability of generating a positive user evaluation.

• The data are the counts k_i of positive ratings out of n_i total evaluations for the *i*th seller.

- The data are the counts k_i of positive ratings out of n_i total evaluations for the *i*th seller.
 - This means that $k_1 = 10$, $k_2 = 48$, $k_3 = 186$ and $n_1 = 10$, $n_2 = 50$, $n_3 = 200$.

- The data are the counts k_i of positive ratings out of n_i total evaluations for the *i*th seller.
 - This means that $k_1 = 10$, $k_2 = 48$, $k_3 = 186$ and $n_1 = 10$, $n_2 = 50$, $n_3 = 200$.
- A simple statistical model of the rating behavior is to assume the ith seller has some underlying probability θ_i of generating a positive review each time they are evaluated.

- The data are the counts k_i of positive ratings out of n_i total evaluations for the *i*th seller.
 - This means that $k_1 = 10$, $k_2 = 48$, $k_3 = 186$ and $n_1 = 10$, $n_2 = 50$, $n_3 = 200$.
- A simple statistical model of the rating behavior is to assume the ith seller has some underlying probability θ_i of generating a positive review each time they are evaluated.
 - $m{ heta}_i$ are parameters, since they are latent probabilities controlling the process that generates the data.

- The data are the counts k_i of positive ratings out of n_i total evaluations for the *i*th seller.
 - This means that $k_1 = 10$, $k_2 = 48$, $k_3 = 186$ and $n_1 = 10$, $n_2 = 50$, $n_3 = 200$.
- A simple statistical model of the rating behavior is to assume the ith seller has some underlying probability θ_i of generating a positive review each time they are evaluated.
 - $m{\theta}_i$ are parameters, since they are latent probabilities controlling the process that generates the data.
 - Let us assume that these probabilities are equally likely to take any possible value, so $\theta_i \sim \mathrm{uniform}(0,1)$.

- The data are the counts k_i of positive ratings out of n_i total evaluations for the *i*th seller.
 - This means that $k_1 = 10$, $k_2 = 48$, $k_3 = 186$ and $n_1 = 10$, $n_2 = 50$, $n_3 = 200$.
- A simple statistical model of the rating behavior is to assume the ith seller has some underlying probability θ_i of generating a positive review each time they are evaluated.
 - $m{\theta}_i$ are parameters, since they are latent probabilities controlling the process that generates the data.
 - Let us assume that these probabilities are equally likely to take any possible value, so $\theta_i \sim \mathrm{uniform}(0,1)$.
- The process that generates the positive counts is then given by $k_i \sim \text{binomial}(\theta_i, n_i)$.

Exercise

Implement the model with these data and assumptions in JAGS. Which seller is better?

■ The probabilities are equally likely to take any possible value, so $\theta_i \sim \mathrm{uniform}(0,1)$.

Positive	Total	Percentage
10	10	100%
48	50	96%
186	200	93%
	10 48	10 10 48 50

Exercise

Implement the model with these data and assumptions in JAGS. Which seller is better?

- The probabilities are equally likely to take any possible value, so $\theta_i \sim \mathrm{uniform}(0,1)$.
- The process that generates the positive counts is given by $k_i \sim \text{binomial}(\theta_i, n_i)$.

Seller	Positive	Total	Percentage
One	10	10	100%
Two	48	50	96%
Three	186	200	93%

Rate Inferences

 The posterior distributions for the underlying rate of positive ratings show what values are plausible, based on the data and the assumptions of the model.

Rate Inferences (Continued)

The posterior distributions can be summarized by 95% credible intervals, which are (0.70, 1.00) for Seller 1, (0.86, 0.99) for Seller 2, and (0.89, 0.96) for Seller 3.

Posterior distributions of rate of positive ratings

 The posterior distributions represent everything we know about the possible underlying rates of positive reviews.

	Seller 1	Seller 2	Seller 3
Seller 1	_	0.46	0.57
Seller 2	0.54	_	0.70
Seller 3	0.43	0.30	_

- The posterior distributions represent everything we know about the possible underlying rates of positive reviews.
- But, answering "Which seller is better?" requires being clear on what it means to be better, and applying that criterion to the posterior distributions.

	Seller 1	Seller 2	Seller 3
Seller 1	_	0.46	0.57
Seller 2	0.54	_	0.70
Seller 3	0.43	0.30	_

- The posterior distributions represent everything we know about the possible underlying rates of positive reviews.
- But, answering "Which seller is better?" requires being clear on what it means to be better, and applying that criterion to the posterior distributions.
 - One approach would be to find the seller who is most likely to have a better positive rate than the other two, which is Seller 2.

	Seller 1	Seller 2	Seller 3
Seller 1	_	0.46	0.57
Seller 2	0.54	_	0.70
Seller 3	0.43	0.30	_

- The posterior distributions represent everything we know about the possible underlying rates of positive reviews.
- But, answering "Which seller is better?" requires being clear on what it means to be better, and applying that criterion to the posterior distributions.
 - One approach would be to find the seller who is most likely to have a better positive rate than the other two, which is Seller 2.

	Seller 1	Seller 2	Seller 3
Seller 1	_	0.46	0.57
Seller 2	0.54	-	0.70
Seller 3	0.43	0.30	_

 Another approach would be to find the seller with the greatest probability of having at least a 90% positive rate.

- The posterior distributions represent everything we know about the possible underlying rates of positive reviews.
- But, answering "Which seller is better?" requires being clear on what it means to be better, and applying that criterion to the posterior distributions.
 - One approach would be to find the seller who is most likely to have a better positive rate than the other two, which is Seller 2.

	Seller 1	Seller 2	Seller 3
Seller 1	_	0.46	0.57
Seller 2	0.54	_	0.70
Seller 3	0.43	0.30	_

- Another approach would be to find the seller with the greatest probability of having at least a 90% positive rate.
 - These are 0.68 for Seller 1, 0.89 for Seller 2, 0.92 for Seller 3.

Key Points

 Online sellers is a simple introductory model, but has the basic features of a parameter that controls a data-generating process, and observed data.

Key Points

- Online sellers is a simple introductory model, but has the basic features of a parameter that controls a data-generating process, and observed data.
- Inference about parameters represents uncertainty about their possible values, based on the available data and the assumptions of the model.