FLS 6441 - Methods III: Explanation and Causation

Week 1 - Review of Regression

Jonathan Phillips

March 2019

1. Change how you think about quantitative methods, *explaining* politics, and not just describing it

- 1. Change how you think about quantitative methods, *explaining* politics, and not just describing it
- 2. Understand the 'toolkit' of methods used in top journals

- 1. Change how you think about quantitative methods, *explaining* politics, and not just describing it
- 2. Understand the 'toolkit' of methods used in top journals
- 3. Apply those methods to your own research questions

- 1. Change how you think about quantitative methods, *explaining* politics, and not just describing it
- 2. Understand the 'toolkit' of methods used in top journals
- 3. Apply those methods to your own research questions

Course Website

1. Review of Regression (21st March)

- 1. Review of Regression (21st March)
- 2. A Framework for Explanation (28th March)

- Review of Regression (21st March)
- 2. A Framework for Explanation (28th March)
- 3. Field Experiments (4th April)
- 4. Survey and Lab Experiments (11th April)
- 5. Randomized Natural Experiments (18th April, Semana Santa)

- Review of Regression (21st March)
- 2. A Framework for Explanation (28th March)
- 3. Field Experiments (4th April)
- 4. Survey and Lab Experiments (11th April)
- Randomized Natural Experiments (18th April, Semana Santa)
- 6. Instrumental Variables (25th April)
- 7. Discontinuities (2nd May)

- Review of Regression (21st March)
- 2. A Framework for Explanation (28th March)
- 3. Field Experiments (4th April)
- 4. Survey and Lab Experiments (11th April)
- Randomized Natural Experiments (18th April, Semana Santa)
- 6. Instrumental Variables (25th April)
- 7. Discontinuities (2nd May)
- 8. Difference-in-Differences (9th May)
- Controlling for Confounding (16th May)
- 10. Matching (23rd May)
- 11. Comparative Cases and Process Tracing (30th May)

- Review of Regression (21st March)
- 2. A Framework for Explanation (28th March)
- 3. Field Experiments (4th April)
- 4. Survey and Lab Experiments (11th April)
- 5. Randomized Natural Experiments (18th April, Semana Santa)
- 6. Instrumental Variables (25th April)
- Discontinuities (2nd May)
- 8. Difference-in-Differences (9th May)
- Controlling for Confounding (16th May)
- Matching (23rd May)
- 11. Comparative Cases and Process Tracing (30th May)
- 12. Generalizability, Reproducibility and Mechanisms (6th June)

Course Schedule

Wednesday 18h - Submit Replication Task

Course Schedule

- ► Wednesday 18h Submit Replication Task
- ► Thursday 14h-16h Class (105)

What Does Regression NOT Do?

Course Schedule

- ► Wednesday 18h Submit Replication Task
- ► Thursday 14h-16h Class (105)
- ► Thursday 16.15-17.30 Class (105) OR Lab (122)

Course Schedule

- ► Wednesday 18h Submit Replication Task
- ► Thursday 14h-16h Class (105)
- ► Thursday 16.15-17.30 Class (105) OR Lab (122)
- ► Friday 10h-12h Office Hours (DCP 2061)
 - Or just send me an email

► Replication Tasks - 40%

- ► Replication Tasks 40%
 - 8 best grades out of 10 tasks

- ► Replication Tasks 40%
 - ▶ 8 best grades out of 10 tasks
- ► Short Research Paper 40%

- ► Replication Tasks 40%
 - 8 best grades out of 10 tasks
- ► Short Research Paper 40%
- ► Participation 20%

► Quality > Quantity

- ► Quality > Quantity
- ► Max 15 pages, English or Portuguese

- ► Quality > Quantity
- ► Max 15 pages, English or Portuguese
- ► Submit paper and code by email to me by 30th June 2019

- ► Quality > Quantity
- Max 15 pages, English or Portuguese
- ► Submit paper and code by email to me by 30th June 2019
- ▶ Use at least one of the methods studied in class

- ► Quality > Quantity
- Max 15 pages, English or Portuguese
- Submit paper and code by email to me by 30th June 2019
- Use at least one of the methods studied in class
- ► Tip: Pick a simple causal question and dataset

 Don't panic! Everyone needs to see this content 3 or 4 times to 'get' it

- Don't panic! Everyone needs to see this content 3 or 4 times to 'get' it
- 2. Simplify your thoughts all the methods are doing *less* than you think they are

- Don't panic! Everyone needs to see this content 3 or 4 times to 'get' it
- 2. Simplify your thoughts all the methods are doing *less* than you think they are
- 3. Re-read the slides and core readings

- Don't panic! Everyone needs to see this content 3 or 4
 times to 'get' it
- Simplify your thoughts all the methods are doing less than you think they are
- 3. Re-read the slides and core readings
- 4. Search online

- Don't panic! Everyone needs to see this content 3 or 4 times to 'get' it
- 2. Simplify your thoughts all the methods are doing *less* than you think they are
- 3. Re-read the slides and core readings
- 4. Search online
- 5. Ask your friends they can explain better than me

- Don't panic! Everyone needs to see this content 3 or 4 times to 'get' it
- Simplify your thoughts all the methods are doing less than you think they are
- 3. Re-read the slides and core readings
- 4. Search online
- 5. Ask your friends they can explain better than me
- 6. Ask me

Guide to 'Smart' Regression

Today's Objectives

- 1. What Does Regression Actually Do?
- 2. Guide to 'Smart' Regression
- 3. What Does Regression NOT Do?

Section 1

What Does Regression Actually Do?

Data

► We work with variables, which VARY!

Data

► We work with variables, which VARY!

Variable_1	Variable_2
-0.44	0.63
0.06	0.68
-0.21	-0.02
0.44	-0.25
1.29	0.46
-0.38	-0.81
-1.04	0.24
-0.16	1.84
1.29	0.06
-0.10	-0.18

Data

► We work with variables, which VARY!

Variable_1	Variable_2
-0.86	-0.69
-0.35	-0.44
1.27	0.42
-0.35	-0.22
-0.43	-0.56
0.05	-0.04
0.69	0.70
1.27	1.07
0.22	-0.00
-0.28	-0.13

What Does Regression Actually Do?

- 1. Regression as Least Squares
- 2. Regression as Conditional Expectation
- 3. Regression as (Partial) Correlation

 Regression identifies the line through the data that minimizes the sum of squared vertical distances

- Regression identifies the line through the data that minimizes the sum of squared vertical distances
- ▶ $y_i = \alpha + \beta D_i + \epsilon_i$

- ► Regression identifies the line through the data that minimizes the sum of squared vertical distances
- \triangleright $v_i = \alpha + \beta D_i + \epsilon_i$

- ► Regression identifies the line through the data that minimizes the sum of squared vertical distances
- $\rightarrow y_i = \alpha + \beta D_i + \epsilon_i$

- Regression identifies the line through the data that minimizes the sum of squared vertical distances
- ► $y_i = \alpha + \beta D_i + \epsilon_i$

Slope = 0

- Regression identifies the line through the data that minimizes the sum of squared vertical distances
- $\rightarrow y_i = \alpha + \beta D_i + \epsilon_i$

Slope = 03 0 3

X

Sum of Residuals $^2 = 29.6$

- Regression identifies the line through the data that minimizes the sum of squared vertical distances
- $\rightarrow y_i = \alpha + \beta D_i + \epsilon_i$

Slope = 0.5

Sum of Residuals $^2 = 21.6$

- Regression identifies the line through the data that minimizes the sum of squared vertical distances
- $\rightarrow y_i = \alpha + \beta D_i + \epsilon_i$

Slope = 13

X

Sum of Residuals $^2 = 18.3$

- Regression identifies the line through the data that minimizes the sum of squared vertical distances
- $\rightarrow y_i = \alpha + \beta D_i + \epsilon_i$

Slope = 1.5

Sum of Residuals $^2 = 19.6$

- Regression identifies the line through the data that minimizes the sum of squared vertical distances
- $\rightarrow y_i = \alpha + \beta D_i + \epsilon_i$

Slope = 2

X

Sum of Residuals $^2 = 25.5$

- Regression identifies the line through the data that minimizes the sum of squared vertical distances
- $\rightarrow y_i = \alpha + \beta D_i + \epsilon_i$

Slope = 13

X

Sum of Residuals $^2 = 18.3$

▶ If we add pure *noise* to y, our estimate of β is unchanged

- ▶ If we add pure *noise* to y, our estimate of β is unchanged
 - ► The residual error increases

$$y_i = \alpha + \beta D_i + \epsilon_i$$

Slope = 1

- ▶ If we add pure *noise* to y, our estimate of β is unchanged
 - ► The residual error increases

$$\rightarrow y_i = \alpha + \beta D_i + \epsilon_i$$

Sum of Residuals $^2 = 63.9$

- Dummy control variables remove variation associated with specific levels or categories
 - ► The same for Fixed Effects

- Dummy control variables remove variation associated with specific levels or categories
 - ► The same for Fixed Effects

$$y_{ij} = \alpha + \beta_1 D_{ij} + \epsilon_i$$

Ignoring the dummy control variable, the slope coefficient is 1

- Dummy control variables remove variation associated with specific levels or categories
 - ► The same for fixed effects

$$y_{ij} = \alpha + \beta_1 D_{ij} + \epsilon_i$$

But the data points really represent two very different groups, blues and reds

- ► Dummy control variables *remove variation* associated with specific levels or categories
 - ► The same for fixed effects

What if we ran the regression for each group *separately*?

- ▶ Dummy control variables remove variation associated with specific levels or categories
 - ► The same for fixed effects

Dummy control variables remove the average Y differences between blues and reds

- Dummy control variables remove variation associated with specific levels or categories
 - ► The same for fixed effects

The new regression line for the full data now has a slope of zero

- ▶ Dummy control variables remove variation associated with specific levels or categories
 - ► The same for fixed effects

$$y_{ij} = \alpha + \beta_1 D_{ij} + \beta_2 X_j + \epsilon_i$$

Equivalently, dummy control variables restrict comparisons to **within the same group**:

- 1. How much does *D* affect *Y* within the blue group? 0
- How much does D affect Y within the red group? 0
- What's the average of (1) and
 (2) (weighted by the number of units in each group)?

► Continuous control variables *remove variation* based on how much the control explains *y*

- ► Continuous control variables *remove variation* based on how much the control explains *y*
- $\rightarrow y_i = \alpha + \beta_1 D_i + \epsilon_i$

- Continuous control variables remove variation based on how much the control explains y
- $y_i = \alpha + \beta_1 D_i + \epsilon_i$

The coefficient β_1 is 2.267 Real effect = 1

- Continuous control variables remove variation based on how much the control explains y
- $y_i = \alpha + \beta_1 D_i + \epsilon_i$

The coefficient β_1 is 2.267 Real effect = 1

- Continuous control variables remove variation based on how much the control explains y
- $y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \epsilon_i$

The coefficient β_1 is 1.024 Real effect = 1

- Continuous control variables remove variation based on how much the control explains y
- $y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \epsilon_i$

► Equivalently, we subset the data to each value of X, and find each slope

- Continuous control variables remove variation based on how much the control explains y
- $y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \epsilon_i$

- ► Equivalently, we subset the data to each value of X, and find each slope
- ► Then average these slopes, $\beta_1 \sim 1$

- Continuous control variables remove variation based on how much the control explains y
- $y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \epsilon_i$

- Equivalently, we subset the data to each value of X, and find each slope
- ► Then average these slopes, $\beta_1 \sim 1$
- Impossible with truly continuous variables

- Continuous control variables remove variation based on how much the control explains y
- $y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \epsilon_i$

- Equivalently, we subset the data to each value of X, and find each slope
- ► Then average these slopes, $\beta_1 \sim 1$
- ► Impossible with truly continuous variables
- ► So regression uses linearity to fill in the gaps

► Regression is also a Conditional Expectation Function

- ► Regression is also a Conditional Expectation Function
- ► Conditional on D, What is our expectation (mean value) of *y*?

$$y_i = \alpha + \beta_1 D_i + \epsilon_i$$

- ► Regression is also a Conditional Expectation Function
- ► Conditional on D, What is our expectation (mean value) of *y*?

$$y_i = \alpha + \beta_1 D_i + \epsilon_i$$

$$E(y) = \alpha + \beta_1 D$$

► Conditional on a specific value of D, what is our expectation (mean value) of y?

$$y_i = \alpha + \beta_1 D_i + \epsilon_i$$

► Conditional on a specific value of D, what is our expectation (mean value) of y?

$$y_i = \alpha + \beta_1 D_i + \epsilon_i$$

$$Attitude_i = \alpha + \beta_1 Income_i + N(0, \sigma^2)$$

Conditional on a specific value of D, what is our expectation (mean value) of y?

$$y_i = \alpha + \beta_1 D_i + \epsilon_i$$

$$Attitude_i = \alpha + \beta_1 Income_i + N(0, \sigma^2)$$

$$Attitude_i = 2.235 - 0.000818 * Income_i + N(0, 2.38)$$

$$y_i = \alpha + \beta_1 D_i + \epsilon_i$$

$$Attitude_i = \alpha + \beta_1 Income_i + N(0, \sigma^2)$$

$$Attitude_i = 2.235 - 0.000818 * Income_i + N(0, 2.38)$$

$$(Attitude_i | Income_i = 3000) = 2.235 - 0.000818 * 3000 + N(0, 2.38)$$

$$y_i = \alpha + \beta_1 D_i + \epsilon_i$$

$$Attitude_i = \alpha + \beta_1 Income_i + N(0, \sigma^2)$$

$$Attitude_i = 2.235 - 0.000818 * Income_i + N(0, 2.38)$$

$$(Attitude_i | Income_i = 3000) = 2.235 - 0.000818 * 3000 + N(0, 2.38)$$

$$(Attitude_i | Income_i = 3000) = -0.22 + N(0, 2.38)$$

$$y_i = \alpha + \beta_1 D_i + \epsilon_i$$

$$Attitude_i = \alpha + \beta_1 Income_i + N(0, \sigma^2)$$

$$Attitude_i = 2.235 - 0.000818 * Income_i + N(0, 2.38)$$

$$(Attitude_i | Income_i = 3000) = 2.235 - 0.000818 * 3000 + N(0, 2.38)$$

$$(Attitude_i | Income_i = 3000) = -0.22 + N(0, 2.38)$$

$$E(Attitude | Income = 3000) = -0.22$$

$$y_i = \alpha + \beta_1 D_i + \epsilon_i$$

$$Attitude_i = \alpha + \beta_1 Income_i + N(0, \sigma^2)$$

$$Attitude_i = 2.235 - 0.000818 * Income_i + N(0, 2.38)$$

$$y_i = \alpha + \beta_1 D_i + \epsilon_i$$

$$Attitude_i = \alpha + \beta_1 Income_i + N(0, \sigma^2)$$

$$Attitude_i = 2.235 - 0.000818 * Income_i + N(0, 2.38)$$

- ► E(Attitude|Income)
 - ▶ When income is 3000, the average attitude is -0.22

$$y_i = \alpha + \beta_1 D_i + \epsilon_i$$

$$Attitude_i = \alpha + \beta_1 Income_i + N(0, \sigma^2)$$

$$Attitude_i = 2.235 - 0.000818 * Income_i + N(0, 2.38)$$

- ► E(Attitude|Income)
 - ▶ When income is 3000, the average attitude is -0.22
 - When income is 6000, the average attitude is -2.67

$$y_i = \alpha + \beta_1 D_i + \epsilon_i$$

$$Attitude_i = \alpha + \beta_1 Income_i + N(0, \sigma^2)$$

$$Attitude_i = 2.235 - 0.000818 * Income_i + N(0, 2.38)$$

- ► E(Attitude|Income)
 - ▶ When income is 3000, the average attitude is -0.22
 - When income is 6000, the average attitude is -2.67
 - ▶ When income is -1000, the average attitude is 3.05

$$y_i = \alpha + \beta_1 D_i + \epsilon_i$$

$$Attitude_i = \alpha + \beta_1 Income_i + N(0, \sigma^2)$$

$$Attitude_i = 2.235 - 0.000818 * Income_i + N(0, 2.38)$$

- ► E(Attitude|Income)
 - When income is 3000, the average attitude is -0.22
 - When income is 6000, the average attitude is -2.67
 - ▶ When income is -1000, the average attitude is 3.05
- ► *E*(*Attitude*|Income, Age, Gender, Municipality)

 \blacktriangleright How do we work out the conditional expectation? We estimate the β s

- ► How do we work out the conditional expectation? We estimate the β s
- ▶ But we **NEVER** know the exact value of β

- ► How do we work out the conditional expectation? We estimate the β s
- **But** we **NEVER** know the exact value of β
- \blacktriangleright Regression **estimates a distribution** for each $oldsymbol{eta}$

- ► How do we work out the conditional expectation? We estimate the β s
- ▶ But we **NEVER** know the exact value of β
- Regression estimates a distribution for each β
 - ightharpoonup That's why every eta comes with a standard error

- ► How do we work out the conditional expectation? We estimate the β s
- \blacktriangleright But we **NEVER** know the exact value of eta
- ightharpoonup Regression **estimates a distribution** for each $oldsymbol{eta}$
 - ▶ That's why every β comes with a standard error

	Dependent variable:
	redist
income	-0.000818*** (0.000078)
Constant	2.234719*** (0.361477)
Observations	1,000
Note:	*p<0.1; **p<0.05; ***p<0.01

- ► How do we work out the conditional expectation? We estimate the β s
- \blacktriangleright But we **NEVER** know the exact value of eta
- lacktriangle Regression **estimates a distribution** for each eta
 - ▶ That's why every β comes with a standard error

	Dependent variable:	
	redist	
income	-0.000818*** (0.000078)	
Constant	2.234719*** (0.361477)	
Observations	ervations 1,000	
Note:	*p<0.1; **p<0.05; ***p<0.01	

- ► How do we work out the conditional expectation? We estimate the β s
- \blacktriangleright But we **NEVER** know the exact value of eta
- lacktriangle Regression **estimates a distribution** for each eta
 - ▶ That's why every β comes with a standard error

	Dependent variable:	
	redist	
income	-0.000818*** (0.000078)	
Constant	2.234719*** (0.361477)	
Observations	oservations 1,000	
Note:	*p<0.1; **p<0.05; ***p<0.01	

- ► How do we work out the conditional expectation? We estimate the β s
- \blacktriangleright But we **NEVER** know the exact value of eta
- lacktriangle Regression **estimates a distribution** for each eta
 - ▶ That's why every β comes with a standard error

Dependent variable:		
	redist	
income	-0.000818*** (0.000078)	
Constant	2.234719*** (0.361477)	
Observations	servations 1,000	
Note:	*p<0.1; **p<0.05; ***p<0.01	

Regression with two variables is very similar to calculating correlation:

- Regression with two variables is very similar to calculating correlation:
- $\hat{\beta} = cor(x, y) * \frac{\sigma_Y}{\sigma_X}$

- Regression with two variables is very similar to calculating correlation:
- $\hat{\beta} = cor(x, y) * \frac{\sigma_Y}{\sigma_X}$

► Regression with two variables is very similar to calculating correlation:

$$\hat{\beta} = cor(x, y) * \frac{\sigma_Y}{\sigma_X}$$

► Correlation is 0.781

- ► Regression with two variables is very similar to calculating correlation:
- $\hat{\beta} = cor(x, y) * \frac{\sigma_Y}{\sigma_X}$

- ► Correlation is 0.781
- ► Regression Results:

-		term	estimate
	1	(Intercept)	0.006
	2	X	1.008

Regression with two variables is very similar to calculating correlation:

$$\blacktriangleright \hat{\beta} = cor(x, y) * \frac{\sigma_Y}{\sigma_X}$$

- ► Correlation is 0.781
- ► It's **identical** if we standardize both variables first $(\frac{(x_i \bar{x})}{\sigma_x})$
- Standardized Regression Results:

term		estimate
1	(Intercept)	0.000
2	Χ	0.781

► Regression with **multiple** variables is very similar to calculating **partial** correlation

- Regression with multiple variables is very similar to calculating partial correlation

Regression as (Partial) Correlation

- Regression with multiple variables is very similar to calculating partial correlation
- $y_i = \alpha + \beta_1 x_1 + \beta_2 x_2 + \epsilon_i$
- Just a small difference in the denominator (how we standardize the measure)

Regression as (Partial) Correlation

- Regression with multiple variables is very similar to calculating partial correlation
- Just a small difference in the denominator (how we standardize the measure)

$$\beta_{x_1} = \frac{r_{yx_1} - r_{yx_2} r_{x_1 x_2}}{1 - r_{x_1 x_2}^2}$$

$$r_{yx_1|x_2} = \frac{r_{yx_1} - r_{yx_2} r_{x_1 x_2}}{\sqrt{(1 - r_{yx_2}^2)(1 - r_{x_1 x_2}^2)}}$$

► There is no magic in regression, it's just 'extra' correlation

Section 2

Guide to 'Smart' Regression

1. We will use regression throughout this course

- 1. We will use regression throughout this course
- 2. But in a very **precise** way for each methodology

- 1. We will use regression throughout this course
- 2. But in a very **precise** way for each methodology
- 3. There are fundamental best practices that apply to all the methodologies

 Choose Variables and Measures: To test a specific hypothesis

- Choose Variables and Measures: To test a specific hypothesis
- 2. Choose the Data: Throw out data we cannot learn from!

- Choose Variables and Measures: To test a specific hypothesis
- 2. Choose the Data: Throw out data we cannot learn from!
- 3. **Choose a Model/Link Function:** To match the data type of your outcome variable

- Choose Variables and Measures: To test a specific hypothesis
- 2. Choose the Data: Throw out data we cannot learn from!
- 3. **Choose a Model/Link Function:** To match the data type of your outcome variable
- 4. Choose Covariates: To make specific comparisons

- Choose Variables and Measures: To test a specific hypothesis
- 2. Choose the Data: Throw out data we cannot learn from!
- 3. **Choose a Model/Link Function:** To match the data type of your outcome variable
- 4. Choose Covariates: To make specific comparisons
- Choose Fixed Effects: To focus on comparisons at a specific level

- Choose Variables and Measures: To test a specific hypothesis
- 2. Choose the Data: Throw out data we cannot learn from!
- 3. **Choose a Model/Link Function:** To match the data type of your outcome variable
- 4. Choose Covariates: To make specific comparisons
- Choose Fixed Effects: To focus on comparisons at a specific level
- Choose Error Structure: To match known dependencies/clustering in the data or sampling

- Choose Variables and Measures: To test a specific hypothesis
- 2. **Choose the Data:** Throw out data we cannot learn from!
- 3. **Choose a Model/Link Function:** To match the data type of your outcome variable
- 4. Choose Covariates: To make specific comparisons
- Choose Fixed Effects: To focus on comparisons at a specific level
- Choose Error Structure: To match known dependencies/clustering in the data or sampling
- 7. **Interpret the Coefficients:** To match the type/scale of the explanatory variable, outcome variable and model

- Choose Variables and Measures: To test a specific hypothesis
- 2. Choose the Data: Throw out data we cannot learn from!
- 3. **Choose a Model/Link Function:** To match the data type of your outcome variable
- 4. **Choose Covariates:** To make specific comparisons
- Choose Fixed Effects: To focus on comparisons at a specific level
- Choose Error Structure: To match known dependencies/clustering in the data or sampling
- 7. **Interpret the Coefficients:** To match the type/scale of the explanatory variable, outcome variable and model
- 8. **Predict Meaningful Comparisons:** To communicate your findings

1. Variables and Measures

► For the research question "Does income affect attitudes to redistribution?"

1. Variables and Measures

- ► For the research question "Does income affect attitudes to redistribution?"
- ▶ What measure of income should we use?

1. Variables and Measures

- ► For the research question "Does income affect attitudes to redistribution?"
- ► What measure of income should we use?
 - Pre-tax, post-tax, after government benefits?
- ▶ It depends on the theory we are testing

► For the research question "Does income affect attitudes to redistribution?"

- ► For the research question "Does income affect attitudes to redistribution?"
- We include a control for country

- ► For the research question "Does income affect attitudes to redistribution?"
- ► We include a control for country
- ► But everyone in our data from Qatar earns exactly \$1m no variation in income!

- ► For the research question "Does income affect attitudes to redistribution?"
- ► We include a control for country
- ► But everyone in our data from Qatar earns exactly \$1m no variation in income!
- ► We may as well throw the Qatar data away

- ► Continuous -> Ordinary Least Squares
 - Pick a precise number that reflects your attitude to redistribution

- ► Continuous -> Ordinary Least Squares
 - Pick a precise number that reflects your attitude to redistribution
- ▶ Binary -> Logit
 - Do you support redistribution, yes or no?

- ► Continuous -> Ordinary Least Squares
 - Pick a precise number that reflects your attitude to redistribution
- ▶ Binary -> Logit
 - Do you support redistribution, yes or no?
- Unordered categories -> Multinomial logit
 - Do you think redistribution is a western, oriental or african concept?

- ► Continuous -> Ordinary Least Squares
 - Pick a precise number that reflects your attitude to redistribution
- ▶ Binary -> Logit
 - Do you support redistribution, yes or no?
- Unordered categories -> Multinomial logit
 - Do you think redistribution is a western, oriental or african concept?
- ► Ordered categories -> Ordered logit
 - Do you want a lot more, more, the same, less, or a lot less redistribution?

- Continuous -> Ordinary Least Squares
 - Pick a precise number that reflects your attitude to redistribution
- ▶ Binary -> Logit
 - Do you support redistribution, yes or no?
- Unordered categories -> Multinomial logit
 - Do you think redistribution is a western, oriental or african concept?
- ▶ Ordered categories -> Ordered logit
 - Do you want a lot more, more, the same, less, or a lot less redistribution?
- ▶ Count -> Poisson
 - In the past year, how many times have you complained about redistribution?

► Which covariates should we include?

- Which covariates should we include?
- ▶ Which comparisons do we want to make?

- ► Which covariates should we include?
- ▶ Which comparisons do we want to make?
- ► Control for gender if we want to compare men with men, women with women

- Which covariates should we include?
- Which comparisons do we want to make?
- ► Control for gender if we want to compare men with men, women with women
- ► Only include controls where there is theory or evidence that this variable could be an **omitted variable**

- Which covariates should we include?
- Which comparisons do we want to make?
- ► Control for gender if we want to compare men with men, women with women
- ► Only include controls where there is theory or evidence that this variable could be an **omitted variable**

 Data are usually hierarchical: countries, states, municipalities, neighbourhoods, families, individuals

- ► Data are usually hierarchical: countries, states, municipalities, neighbourhoods, families, individuals
- ► A fixed effect for countries means we only compare people within the same country

- ► Data are usually hierarchical: countries, states, municipalities, neighbourhoods, families, individuals
- ► A fixed effect for countries means we only compare people within the same country
- ► Removing ALL the variation between countries
 - If rich countries have stronger attitudes to redistribution, we control for this
 - ► So we can ask whether richer *people* have stronger attitudes

- ► Data are usually hierarchical: countries, states, municipalities, neighbourhoods, families, individuals
- ► A fixed effect for countries means we only compare people within the same country
- ► Removing *ALL* the variation between countries
 - If rich countries have stronger attitudes to redistribution, we control for this
 - So we can ask whether richer people have stronger attitudes
- ► Our question becomes: How do variations within income in the same country affect attitudes to redistribution?

6. Errors Structure

► An assumption of regression analysis is that the errors are independent

- ► An assumption of regression analysis is that the errors are independent
 - Knowing the value of one error tells you nothing about the value of the next error

- An assumption of regression analysis is that the errors are independent
 - Knowing the value of one error tells you nothing about the value of the next error
- ► But attitudes to redistribution are probably very similar to everyone you live with, even after controlling for income etc.

- An assumption of regression analysis is that the errors are independent
 - Knowing the value of one error tells you nothing about the value of the next error
- But attitudes to redistribution are probably very similar to everyone you live with, even after controlling for income etc.
- Due to 'unobservable' variables (conversations over dinner...)

- An assumption of regression analysis is that the errors are independent
 - Knowing the value of one error tells you nothing about the value of the next error
- ► But attitudes to redistribution are probably very similar to everyone you live with, even after controlling for income etc.
- Due to 'unobservable' variables (conversations over dinner...)
- ➤ So we don't really have 2 observations, we have closer to 1 'independent' observation

- An assumption of regression analysis is that the errors are independent
 - Knowing the value of one error tells you nothing about the value of the next error
- ► But attitudes to redistribution are probably very similar to everyone you live with, even after controlling for income etc.
- Due to 'unobservable' variables (conversations over dinner...)
- So we don't really have 2 observations, we have closer to 1 'independent' observation
- ► So the standard errors for our β 's are *over-confident* (too small)

- An assumption of regression analysis is that the errors are independent
 - Knowing the value of one error tells you nothing about the value of the next error
- ► But attitudes to redistribution are probably very similar to everyone you live with, even after controlling for income etc.
- Due to 'unobservable' variables (conversations over dinner...)
- So we don't really have 2 observations, we have closer to 1 'independent' observation
- ► So the standard errors for our β 's are *over-confident* (too small)
- We need to adjust for these dependencies with clustered standard errors
 - Created by the underlying structure of the data
 - Or by our data sampling process

► The distribution of our estimated betas suggests we're pretty confident β is close to −0.0008175

With clustered SEs, the wider distribution of our betas suggests we're less confident β is close to -0.0008175

- ► Difficult! It depends on:
 - 1. The scale of the explanatory variable

- ► Difficult! It depends on:
 - 1. The scale of the explanatory variable
 - 2. The scale of the outcome

- ► Difficult! It depends on:
 - 1. The scale of the explanatory variable
 - 2. The scale of the outcome
 - 3. The regression model we used

- ► Difficult! It depends on:
 - 1. The scale of the explanatory variable
 - 2. The scale of the outcome
 - 3. The regression model we used
 - 4. The presence of any interaction

- ▶ Difficult! It depends on:
 - 1. The scale of the explanatory variable
 - 2. The scale of the outcome
 - 3. The regression model we used
 - 4. The presence of any interaction
- ► Basic OLS: $y_i = \alpha + \beta D_i + \epsilon$

- ► Difficult! It depends on:
 - 1. The scale of the explanatory variable
 - 2. The scale of the outcome
 - 3. The regression model we used
 - 4. The presence of any interaction
- ► Basic OLS: $y_i = \alpha + \beta D_i + \epsilon$
 - A 1 [unit of D] change in the explanatory variable is associated with a β [unit of y] change in the outcome, holding other variables constant

- ▶ Difficult! It depends on:
 - 1. The scale of the explanatory variable
 - 2. The scale of the outcome
 - 3. The regression model we used
 - 4. The presence of any interaction
- ▶ Basic OLS with log outcome: $log(y_i) = \alpha + \beta D_i + \epsilon$
 - ► A 1 [unit of D] change in the explanatory variable is associated with a $100 * (e^{\beta} 1)$ % change in the outcome, holding other variables constant

- ► Difficult! It depends on:
 - 1. The scale of the explanatory variable
 - 2. The scale of the outcome
 - 3. The regression model we used
 - 4. The presence of any interaction
- ▶ Basic OLS with log treatment: $y_i = \alpha + \beta log(D_i) + \epsilon$
 - A 1% change in the explanatory variable is associated with a $\beta * log(\frac{101}{100})$ change in the outcome, holding other variables constant

- ► Difficult! It depends on:
 - 1. The scale of the explanatory variable
 - 2. The scale of the outcome
 - 3. The regression model we used
 - 4. The presence of any interaction
- ► **Logit:** $Pr(y_i = 1) = logit^{-1}(\alpha + \beta D_i + \epsilon)$
 - ► A 1 [unit of D] change in the explanatory variable is associated with a β change in the log-odds of $y_i = 1$, holding other variables constant

- ► Difficult! It depends on:
 - 1. The scale of the explanatory variable
 - 2. The scale of the outcome
 - 3. The regression model we used
 - 4. The presence of any interaction
- ► **Logit:** $Pr(y_i = 1) = logit^{-1}(\alpha + \beta D_i + \epsilon)$
 - A 1 [unit of D] change in the explanatory variable is associated with a $100*(e^{\beta}-1)$ % change in the odds (relative probability, $\frac{\rho}{1-\rho}$) of $y_i=1$, holding other variables constant

- ▶ Difficult! It depends on:
 - 1. The scale of the explanatory variable
 - 2. The scale of the outcome
 - 3. The regression model we used
 - 4. The presence of any interaction
- ▶ Multinomial: $Pr(y_i = C) = \alpha + \beta D_i + \epsilon$
 - ► A 1 [unit of D] change in the explanatory variable is associated with a $100 * (e^{\beta c} 1)\%$ change in the odds (relative probability, $\frac{p}{1-p}$) of moving from the baseline category to the outcome category C, holding other variables constant

- ► Difficult! It depends on:
 - 1. The scale of the explanatory variable
 - 2. The scale of the outcome
 - 3. The regression model we used
 - 4. The presence of any interaction
- ▶ Ordered Multinomial: $Pr(y_i = C) = \alpha + \beta D_i + \epsilon$
 - ► A 1 [unit of D] change in the explanatory variable is associated with a $100 * (e^{\beta c} 1)\%$ change in the odds (relative probability, $\frac{p}{1-p}$) of moving up one unit on the outcome scale, holding other variables constant

- ▶ Difficult! It depends on:
 - 1. The scale of the explanatory variable
 - 2. The scale of the outcome
 - 3. The regression model we used
 - 4. The presence of any interaction
- ▶ **OLS with Interaction:** $y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon$

$$\frac{\partial y}{\partial D} = \beta_1 + \beta_3 X$$

- ▶ β_1 is the effect of D when X = 0: May not make sense!
- ▶ Insert values for X and see how the marginal effect changes

OLS with Interaction:

Redist_i = $\alpha + \beta_1$ Gender_i + β_2 Income_i + β_3 Gender_i * Income_i + ϵ_i

OLS with Interaction:

+
$$\beta_3$$
Gender_i * Income_i + ϵ_i

$$\frac{\partial Redist}{\partial Gender} = \beta_1 + \beta_3 * Income$$

 $Redist_i = \alpha + \beta_1 Gender_i + \beta_2 Income_i$

Redist_i =
$$\alpha + \beta_1$$
Gender_i + β_2 Income_i
+ β_3 Gender_i * Income_i + ϵ_i
$$\frac{\partial Redist}{\partial Gender} = \beta_1 + \beta_3 * Income$$
$$\frac{\partial Redist}{\partial Income} = \beta_2 + \beta_3 * Gender$$

Redist_i =
$$\alpha + \beta_1 Gender_i + \beta_2 Income_i$$

+ $\beta_3 Gender_i * Income_i + \epsilon_i$
$$\frac{\partial Redist}{\partial Gender} = \beta_1 + \beta_3 * Income$$
$$\frac{\partial Redist}{\partial Income} = \beta_2 + \beta_3 * Gender$$

	Dependent variable:
	redist
gender1	-2.942614*** (0.700510)
income	0.079980 * * * (0.000110)
gender1:income	0.000986*** (0.000152)
Constant	0.112903 (0.454926)
Observations	1,000
Note:	*p<0.1; **p<0.05; ***p<0.01

Redist_i =
$$\alpha + \beta_1$$
Gender_i + β_2 Income_i
+ β_3 Gender_i * Income_i + ϵ_i

$$\frac{\partial Redist}{\partial Gender} = \beta_1 + \beta_3 * Income$$
$$\frac{\partial Redist}{\partial Income} = \beta_2 + \beta_3 * Gender$$

			ge	nder1		
#	5.0				4	
Marginal Effect of Gender on Attitudes	2.5 -					
nal Gen Attit	0.0 -					
argi of on /	-2.5 -					
Σ						
		0	2000	4000	6000	
			In	come		

	Dependent variable:
	redist
gender1	-2.942614*** (0.700510)
income	0.079980*** (0.000110)
gender1:income	0.000986*** (0.000152)
Constant	0.112903 (0.454926)
Observations	1,000
Note:	*p<0.1; **p<0.05; ***p<0.01

Redist_i =
$$\alpha + \beta_1$$
Gender_i + β_2 Income_i
+ β_3 Gender_i * Income_i + ϵ_i

$$\frac{\partial Redist}{\partial Gender} = \beta_1 + \beta_3 * Income$$
$$\frac{\partial Redist}{\partial Income} = \beta_2 + \beta_3 * Gender$$

	Dependent variable:
	redist
gender1	-2.942614*** (0.700510)
income	0.079980*** (0.000110)
gender1:income	0.000986*** (0.000152)
Constant	0.112903 (0.454926)
Observations	1,000
Note:	*n<0.1: **n<0.05: ***n<0.01

► The coefficient on the regression of income on attitude to redistribution is -0.000818

- ► The coefficient on the regression of income on attitude to redistribution is -0.000818
 - So??? What do we learn from this?

- The coefficient on the regression of income on attitude to redistribution is -0.000818
 - So??? What do we learn from this?
 - Coefficients are hard to interpret, and depend on how we measure each variable
 - And p-values are arbitrary

- ► The coefficient on the regression of income on attitude to redistribution is -0.000818
 - ► So??? What do we learn from this?
 - Coefficients are hard to interpret, and depend on how we measure each variable
 - And p-values are arbitrary
- Better to make specific predictions of how changes in D produce changes in Y

$$Attitude_i = \alpha + \beta_1 \text{ Income}_i + \epsilon_i$$

$$Attitude_i = \alpha + \beta_1 \text{ Income}_i + \epsilon_i$$

$$Attitude_i = 2.235 - 0.000818 \text{ Income}_i + N(0, 2.378)$$

$$Attitude_i = \alpha + \beta_1 \text{ Income}_i + \epsilon_i$$

 $Attitude_i = 2.235 - 0.000818 \text{ Income}_i + N(0, 2.378)$

If Income is 3000:

$$Attitude_i = 2.235 - 0.000818 * 3000 + N(0, 2.378)$$

$$Attitude_i = -0.219 + N(0, 2.378)$$

$$Attitude_i = \alpha + \beta_1 \text{ Income}_i + \epsilon_i$$

 $Attitude_i = 2.235 - 0.000818 \text{ Income}_i + N(0, 2.378)$

If Income is 6000:

$$Attitude_i = 2.235 - 0.000818 * 6000 + N(0, 2.378)$$

$$Attitude_i = -2.673 + N(0, 2.378)$$

$$Attitude_i = \alpha + \beta_1 \text{ Income}_i + \epsilon_i$$

$$Attitude_i = 2.235 - 0.000818 \text{ Income}_i + N(0, 2.378)$$

Increasing Income from 3000 to 6000:

$$\Delta Attitude_i = (2.235-0.000818*6000)-(2.235-0.000818*3006)$$

$$\Delta Attitude_i = -2.673-(-0.219)$$

$$\Delta Attitude_i = -2.454$$

Predicted Values:

Guide to 'Smart' Regression

8. Predictions from Regressions

Attitude to Redistribution

-10

► The regression model matters because the wrong model makes non-sensical predictions

- ► The regression model matters because the wrong model makes non-sensical predictions
- ► Consider a binary outcome: $Gender_i = \alpha + \beta Income_i + \epsilon_i$

- ► The regression model matters because the wrong model makes non-sensical predictions
- ► Consider a binary outcome: $Gender_i = \alpha + \beta Income_i + \epsilon_i$
- Compare the OLS and Logit regression tables:

- ► The regression model matters because the wrong model makes non-sensical predictions
- ► Consider a binary outcome: $Gender_i = \alpha + \beta Income_i + \epsilon_i$
- ► Compare the OLS and Logit regression tables:

	Dependent variable:
	gender
income	0.0003*** (0.00001)
Constant	-0.696*** (0.066)
Observations	1,000
Note:	*p<0.1: **p<0.05: ***p<0.01

	Dependent variable:
	gender
income	0.001*** (0.0001)
Constant	-6.360*** (0.457)
Observations	1,000
Note:	*p<0.1; **p<0.05; ***p<0.01

- ► The regression model matters because the wrong model makes non-sensical predictions
- ► Consider a binary outcome: $Gender_i = \alpha + \beta Income_i + \epsilon_i$
- ► Compare the OLS and Logit **predictions** of gender for an income of R\$3000:

Section 3

► Remember, regression is just fancy correlation

- ► Remember, regression is just fancy correlation
- Even after following all this guidance, Regression does NOT:
 - 1. Explain anything
 - Make bad data better
 - 3. Tell you which theory is 'correct'
 - 4. Make it clear what comparisons you are making

- ► Remember, regression is just fancy correlation
- Even after following all this guidance, Regression does NOT:
 - 1. Explain anything
 - Make bad data better
 - 3. Tell you which theory is 'correct'
 - 4. Make it clear what comparisons you are making
- These all require research design, theory and assumptions

► Correlation is not causation

- ► Correlation is not causation
 - ▶ If we look hard enough we can always find correlations

► Correlation is not causation

- If we look hard enough we can always find correlations
- By chance...

Correlation is not causation

- If we look hard enough we can always find correlations
- ► By chance...
- Due to complex social and historical patterns...

Correlation is not causation

- If we look hard enough we can always find correlations
- ► By chance...
- Due to complex social and historical patterns...
- ▶ But we cannot conclude that D causes or explains Y

Correlation is not causation

- If we look hard enough we can always find correlations
- ► By chance...
- Due to complex social and historical patterns...
- But we cannot conclude that D causes or explains Y
- More data will not help

► Correlation is not causation

- If we look hard enough we can always find correlations
- ► By chance...
- Due to complex social and historical patterns...
- ▶ But we cannot conclude that D causes or explains Y
- ► More data will not help
- ► The problem is the content of data; it does not allow us to answer the causal question

Figure 1. Correlation between Countries' Annual Per Capita Chocolate Consumption and the Number of Nobel Laureates per 10 Million Population.

Divorce rate in Maine

correlates with

Per capita consumption of margarine

Worldwide non-commercial space launches

correlates with

Sociology doctorates awarded (US)

US crude oil imports from Norway

correlates with

Drivers killed in collision with railway train

Letters in Winning Word of Scripps National Spelling Bee

correlates with

Number of people killed by venomous spiders

► Why is correlation (regression) not causation?

- ► Why is correlation (regression) not causation?
 - 1. Omitted Variable Bias

- Why is correlation (regression) not causation?
 - 1. Omitted Variable Bias
 - 2. Reverse Causation

- Why is correlation (regression) not causation?
 - 1. Omitted Variable Bias
 - 2. Reverse Causation
 - 3. Selection Bias

- Why is correlation (regression) not causation?
 - 1. Omitted Variable Bias
 - 2. Reverse Causation
 - 3. Selection Bias
 - 4. Measurement Bias

- Why is correlation (regression) not causation?
 - 1. Omitted Variable Bias
 - 2. Reverse Causation
 - 3. Selection Bias
 - 4. Measurement Bias
 - 5. Lack of Overlap, Model Dependence

gender

0

1

0

1

2. Reverse Causation

 Significant regression coefficients just reflect the values in our dataset moving together

- Significant regression coefficients just reflect the values in our dataset moving together
- ► Does the 'direction' of regression matter? I.e. Does regression treat *D* and *Y* differently?

- Significant regression coefficients just reflect the values in our dataset moving together
- ► Does the 'direction' of regression matter? I.e. Does regression treat *D* and *Y* differently? Yes!

	Dependent variable:	
	redist	
income	-0.011 (0.029)	
gender1	-1.201*** (0.058)	
Constant	0.589*** (0.038)	
Observations	1,000	
Note:	*p<0.1; **p<0.05; ***p<0.01	

	Dependent variable:	
	income	
redist	-0.013 (0.034)	
gender1	0.993 * * * (0.069)	
Constant	-0.487 * * * (0.043)	
Observations	1,000	
Note:	*p<0.1; **p<0.05; ***p<0.01	

- Significant regression coefficients just reflect the values in our dataset moving together
- ► Does the 'direction' of regression matter? I.e. Does regression treat *D* and *Y* differently? Yes!

	Dependent variable:	
	redist	
income	-0.011 (0.029)	
gender1	-1.201*** (0.058)	
Constant	0.589 * * * (0.038)	
Observations	1,000	
Note:	*p<0.1; **p<0.05; ***p<0.01	

	Dependent variable:
	income
redist	-0.013 (0.034)
gender1	0.993*** (0.069)
Constant	-0.487 * * * (0.043)
Observations	1,000
Note:	*p<0.1; **p<0.05; ***p<0.01

- ► Remember, regression measures the *vertical* (not diagonal) distances to the regression line
 - ► It minimizes the *prediction errors* for Y

- Significant regression coefficients just reflect the values in our dataset moving together
- ► Does the 'direction' of regression matter? I.e. Does regression treat *D* and *Y* differently? Yes!

	Dependent variable:	
	redist	
income	-0.011 (0.029)	
gender1	-1.201*** (0.058)	
Constant	0.589 * * * (0.038)	
Observations	1,000	
Note:	*p<0.1; **p<0.05; ***p<0.01	

	Dependent variable:
	income
redist	-0.013 (0.034)
gender1	0.993 * * * (0.069)
Constant	-0.487 * * * (0.043)
Observations	1,000
Note:	*p<0.1; **p<0.05; ***p<0.01

- ► Remember, regression measures the *vertical* (not diagonal) distances to the regression line
 - It minimizes the prediction errors for Y
- But that doesn't mean it identifies the direction of causation!

► Higher income may lead to higher tax rates and therefore cause more negative attitudes to redistribution

- Higher income may lead to higher tax rates and therefore cause more negative attitudes to redistribution
- But negative attitudes to redistribution might also make you more likely to work in the private sector and cause you to receive a higher salary

- Higher income may lead to higher tax rates and therefore cause more negative attitudes to redistribution
- But negative attitudes to redistribution might also make you more likely to work in the private sector and cause you to receive a higher salary
- ▶ Both would look the same in a regression

- Higher income may lead to higher tax rates and therefore cause more negative attitudes to redistribution
- But negative attitudes to redistribution might also make you more likely to work in the private sector and cause you to receive a higher salary
- ▶ Both would look the same in a regression
- ► We cannot *explain* the relationship with a regression

 Imagine we do not see 'rich' units with high income (above R\$4000)

► Imagine we do not see 'rich' units with high income (above R\$4000)

- ► There are four selection risks:
 - 1. Selection into existence
 - 2. Selection into survival
 - 3. Selection into the dataset
 - 4. Selection into treatment

- ► There are four selection risks:
 - 1. Selection into existence
 - 2. Selection into survival
 - 3. Selection into the dataset
 - 4. Selection into treatment
- In each case, we don't see the full relationship between D and Y

- ► There are four selection risks:
 - 1. Selection into existence
 - 2. Selection into survival
 - 3. Selection into the dataset
 - 4. Selection into treatment
- In each case, we don't see the full relationship between D and Y
- ► So our regression estimates are biased

- ► There are four selection risks:
 - 1. Selection into existence:

- ► There are four selection risks:
 - 1. Selection into existence:
 - Where do units (eg. political parties) come from?

- ► There are four selection risks:
 - 1. Selection into existence:
 - Where do units (eg. political parties) come from?
 - Probably only parties that have a chance of success are formed

- ► There are four selection risks:
 - 1. Selection into existence:
 - Where do units (eg. political parties) come from?
 - Probably only parties that have a chance of success are formed
 - Does forming a party cause electoral success? Not for most people!

- ► There are four selection risks:
 - 2. Selection into survival:

- ► There are four selection risks:
 - 2. Selection into survival:
 - ► Certain types of units disappear, so the units we see don't tell the full story

▶ There are four selection risks:

2. Selection into survival:

 Certain types of units disappear, so the units we see don't tell the full story

► Where would additional armour protect bombers?

► There are four selection risks:

2. Selection into survival:

 Certain types of units disappear, so the units we see don't tell the full story

- Where would additional armour protect bombers?
- ► Returned bombers got hit

► There are four selection risks:

2. Selection into survival:

 Certain types of units disappear, so the units we see don't tell the full story

- Where would additional armour protect bombers?
- ► Returned bombers got hit
- ▶ But we do not know where bombers that did not return got hit

- ► There are four selection risks:
 - 3. Selection into the dataset:

- ► There are four selection risks:
 - 3. Selection into the dataset:
 - Our dataset may not be representative

- ► There are four selection risks:
 - 3. Selection into the dataset:
 - Our dataset may not be representative
 - ▶ Only units with particular values of D and Y enter the dataset

- ▶ There are four selection risks:
 - 3. Selection into the dataset:
 - Our dataset may not be representative
 - ► Only units with particular values of *D* and *Y* enter the dataset
 - Eg. If survey respondents who refuse are different from those who respond - the anti-redistribution poor may dislike answering surveys

- ► There are four selection risks:
 - 4. Selection into treatment:

- ► There are four selection risks:
 - 4. Selection into treatment:
 - All units are in our dataset, but they choose their treatment value

- ► There are four selection risks:
 - 4. Selection into treatment:
 - All units are in our dataset, but they choose their treatment value
 - Who chooses treatment? Those with the most to benefit, i.e. depending on Y!

- ► There are four selection risks:
 - 4. Selection into treatment:
 - All units are in our dataset, but they choose their treatment value
 - Who chooses treatment? Those with the most to benefit, i.e. depending on Y!
 - Applying treatment to the others would probably have a very different effect

► What happens if we measure our variables wrongly?

Effects of Measurement Error

	Measured with Bias	Measured with Random
		Noise
Outcome Variable	Coefficient biased	No bias but wider stan- dard errors
Treatment Variable	Coefficient biased	Effect biased towards zero

- ► What happens if we measure our variables wrongly?
- ► No extra noise:

	Dependent variable:
	redist
income	-0.818*** (0.078)
Constant	2.235 * * * (0.361)
Observations	1,000
Note:	*p<0.1; **p<0.05; ***p<0.01

- ▶ What happens if we measure our variables wrongly?
- ► Noise in the **outcome variable**:

	Dependent variable:	
	redist	
income	-0.831*** (0.144)	
Constant	2.272*** (0.665)	
Observations	1,000	
Note:	*p<0.1; **p<0.05; ***p<0.01	

- ▶ What happens if we measure our variables wrongly?
- ► Noise in the **explanatory** variable:

	Dependent variable:
	redist
income	-0.187*** (0.037)
Constant	-0.620*** (0.183)
Observations	1,000
Note:	*p<0.1; **p<0.05; ***p<0.01

5. Lack of Overlap

► Regression normally helps us pick appropriate comparisons

5. Lack of Overlap

- Regression normally helps us pick appropriate comparisons
 - ► Eg. Controlling for gender, what is the effect of income on attitudes to redistribution?

- ► Regression normally helps us pick appropriate comparisons
 - Eg. Controlling for gender, what is the effect of income on attitudes to redistribution?
- ▶ But what if there are no women with high income?

- Regression normally helps us pick appropriate comparisons
 - Eg. Controlling for gender, what is the effect of income on attitudes to redistribution?
- ▶ But what if there are no women with high income?
- Regression creates comparisons for us
 - How? Using the functional form of the regression
 - ► A linear regression interpolates/extrapolates *linearly* to 'create' comparison cases

- Regression normally helps us pick appropriate comparisons
 - Eg. Controlling for gender, what is the effect of income on attitudes to redistribution?
- ▶ But what if there are no women with high income?
- ► Regression *creates* comparisons for us
 - How? Using the functional form of the regression
 - ► A linear regression interpolates/extrapolates *linearly* to 'create' comparison cases
- Lack of overlap probably means we cannot explain outcomes with this data

gender

gender

► With more than a few variables, lack of overlap is guaranteed

- With more than a few variables, lack of overlap is guaranteed
- ► 6 variables with 10 categories each = $10^6 = 1,000,000$ possibilities

- With more than a few variables, lack of overlap is guaranteed
- ► 6 variables with 10 categories each = $10^6 = 1,000,000$ possibilities
- Common datasets have 0% counterfactuals present in the data (King 2006)

- With more than a few variables, lack of overlap is guaranteed
- 6 variables with 10 categories each = 10⁶ = 1,000,000 possibilities
 Common datasets have 0% counterfactuals present in the
- Common datasets have 0% counterfactuals present in the data (King 2006)
 - How many 45 year-old female accountants with a PhD and a cat who live in Centro are there?

- With more than a few variables, lack of overlap is guaranteed
- 6 variables with 10 categories each = 10⁶ = 1,000,000 possibilities
 Common datasets have 0% counterfactuals present in the
- Common datasets have 0% counterfactuals present in the data (King 2006)
 - How many 45 year-old female accountants with a PhD and a cat who live in Centro are there?
 - And we need some that are low-income and some that are high-income
- A problem of multi-dimensionality

- With more than a few variables, lack of overlap is guaranteed
- ▶ 6 variables with 10 categories each = 10⁶ = 1,000,000 possibilities
 ▶ Common datasets have 0% counterfactuals present in the
- data (King 2006)
 - How many 45 year-old female accountants with a PhD and a cat who live in Centro are there?
 - And we need some that are low-income and some that are high-income
- A problem of multi-dimensionality
- And of model dependence our results depend on the functional form in our regression model

- 1. Regression is just fancy correlation
 - A conditional expectation

- 1. Regression is just fancy correlation
 - A conditional expectation
- 'Smart' regression pays more attention to what comparisons you want to make than to statistical tests
 - ► And to interpretation/prediction rather than p-values

- 1. Regression is just fancy correlation
 - A conditional expectation
- 'Smart' regression pays more attention to what comparisons you want to make than to statistical tests
 - And to interpretation/prediction rather than p-values
- 3. Regression **cannot explain** relationships
 - Correlation is not causation

- 1. Regression is just fancy correlation
 - A conditional expectation
- 'Smart' regression pays more attention to what comparisons you want to make than to statistical tests
 - And to interpretation/prediction rather than p-values
- 3. Regression **cannot explain** relationships
 - Correlation is not causation
 - We need to understand better how the data were produced

- 1. Regression is just fancy correlation
 - A conditional expectation
- 'Smart' regression pays more attention to what comparisons you want to make than to statistical tests
 - And to interpretation/prediction rather than p-values
- 3. Regression **cannot explain** relationships
 - Correlation is not causation
 - We need to understand better how the data were produced
 - Explanation depends on research design, data selection, assumptions and qualitative evidence