

Figure 1

; GAP of: W0h051-7.Seq check: 6926 from: 1 to: 52

seq of dicamba induced band w0c0 51.7

to: Cjlpi81r.Seg check: 2737 from: 1 to: 714

Symbol comparison table: Gencoredisk: [Gcgcore.Data.Rundata] Nwsgapdna.Cmp CompCheck: 8760

Gap Weight: 50 Average Match: 10.000

Length Weight: 3 Average Mismatch: 0.000

Quality: 520 Length: 714

Percent Identity: 100.000 Percent Similarity: 100.000

Ratio: 10.000

Match display thresholds for the alignment(s):

<u>ا</u> ا

= IDENTITY

ດ ||

II

W0h051-7.Seg x Cjlpi81r.Seg..

26gctagctgcgccgtgaccacgcacat

50 CGATCGAAGTGGGTGTGTCAGCTAGCTAGCTGCGCCGTGACCACGCACAT

gaccgcagtgcgcgcggggctgatca..... 27

GACCGCAGTGCGCGCGCGGGCTGATCAAGGGAAAGTGATCGGATGGAGCTG 100 51

Figure 2

Actin

I Non-treated anthers I Dichlormid treated anthers I Dicamba treated anthers 2 I Dicamba treated anthers 1

I Dicamba treated tassel I Dicamba treated whorl leaf I Dicamba treated tassel

Figure 4

ngorses crand

ZmAxig1	DOMAIN I
	$ \mid \mid$
	. DOMAIN II. NLS . 51 LPLFVCEDGDGGGGDRDRDGVVDHEQQSNNVPRKKRLVGWPPVKCARRRS 100
	OMAIN III RKVDVSIHGS <u>YQEL</u> : . :: rkidlrvyggysel
	RRHPY
	:.
	196 LA 197
	: 177 mkgteakglgcgv 189

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

GAP of: Czaal47.Seq check: 446 from: 1 to: 1214 to: Axiglcomplete.Con check: 928 from: 1 to: 3123						
Symbol comparison table: Gencoredisk:[Gcgcore.Data.Rundata]Nwsgapdna.Cmp CompCheck: 8760						
Gap Weight: 50 Average Match: 10.000 Length Weight: 3 Average Mismatch: 0.000						
Quality: 10871 Length: 3123 Ratio: 8.955 Gaps: 3 Percent Similarity: 100.000 Percent Identity: 100.000						
<pre>Match display thresholds for the alignment(s):</pre>						
Czaal47.Seq x Axiglcomplete.Con May 11, 2000 12:05						
1	12					
 1101 CGCGTCACTCACGGGTAGCTCATGGTCGAGCGTAGCATGCAGGAACTTAT	1150					
	62					
1151 TTGCCGTGCGCTCCCAGGTCTCCGCTGCGTGCCTTCCAGTCTGTCT	1200					
63 ACTAGCTGCTGTGGGACGATCGAAGTGGGTGTCAGCTAGCT						
1201 ACTAGCTGCTGTGGGACGATCGAAGTGGGTGTCAGCTAGCT						
113 CCGTGACCACGCACATGACCGCAGTGCGCGCGGGGCTGATCAAGGGAAAG						
163 TGATCGGATGGAGCTGGAGCTCGGGCTCGCGCCGAACCCGCATCAGC	212					
	1350					
	262					
	1400					
	312					
1401 TCGTGCGGGAACAAGAGGGTTCTCGGCGACGCGTTCGGGGCCCCAAGGC	1450					
313 GGCCACGCTTCCGCTCTTCGTCTGCGAGGATGGCGACGGAGGCGGCGGCG	362					
1451 GGCCACGCTTCCGCTCTTCGTCTGCGAGGATGGCGACGGAGGCGGCGGCG	1500					

363	ACCGCGACCGCGACGGCGTCGTCGACCATGAACAGCAAAGCAACAA	408
1501	ACCGCGACCGCGACGGCGTCGTCGACCATGAACAGCAAAGCAACAAGTGA	1550
	· ·	
400		422
	$\begin{array}{cccc} {\tt CCCAAATCCGATCCGTGTGTGTGTGTACTCCAGGAAGAAGAGGCTGG} \\ & \cdot & \cdot & \cdot \\ & \cdot & \cdot \\ & \cdot & \cdot \\ \end{array}$	
432	TGGGGTGGCCGCCGGTGAAGTGCGCGCGTAGCCTGCGGCGGCGGG	481
1651	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1700
482	TACGTGAAGGTGAAGCTGGAAGGGGGCCCATCGGGCGGAAGGTGGACGT	531
1701	TACGTGAAGGTGAAGCTGGAAGGTGCCCATCGGGCGGAAGGTGGACGT	1750
532	GTCCATCCACGGCTCGTACCAGGAGCTGCTCCGCACGCTCGAGAGCATGT	581
	GTCCATCCACGGCTCGTACCAGGAGCTGCTCCGCACGCTCGAGAGCATGT	
582	TCCCTTCGGGTAACCAACA	600
1801		1850
	· ·	
601		602
1951	CTCCCGGCACTTAACTTGGTCGCATATACTATTCCTGTAACCTCTGGCAG	2000
1951 603	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2000 652
1951 603 2001	CTCCCGGCACTTAACTTGGTCGCATATACTATTCCTGTAACCTCTGGCAG ATCATGCAGAAGACGAGGTGGTGGTCTCGCACGAGCGCCGCCGTCGCCAT	2000 652 2050
1951 603 2001 653 2051	CTCCCGGCACTTAACTTGGTCGCATATACTATTCCTGTAACCTCTGGCAG ATCATGCAGAAGACGAGGTGGTGGTCTCGCACGAGCGCCGCCGTCGCCAT	2000 652 2050 702 2100
1951 603 2001 653 2051	CTCCCGGCACTTAACTTGGTCGCATATACTATTCCTGTAACCTCTGGCAG ATCATGCAGAAGACGAGGTGGTGGTCTCGCACGAGCGCCGCCGTCGCCAT	2000 652 2050 702 2100
1951 603 2001 653 2051 703	CTCCCGGCACTTAACTTGGTCGCATATACTATTCCTGTAACCTCTGGCAG ATCATGCAGAAGACGAGGTGGTGGTCTCGCACGAGCGCCGCCGTCGCCAT	2000 652 2050 702 2100 720
1951 603 2001 653 2051 703	CTCCCGGCACTTAACTTGGTCGCATATACTATTCCTGTAACCTCTGGCAG ATCATGCAGAAGACGAGGTGGTGGTCTCGCACGAGCGCCGCCGTCGCCAT	2000 652 2050 702 2100 720
1951 603 2001 653 2051 703 2101	CTCCCGGCACTTAACTTGGTCGCATATACTATTCCTGTAACCTCTGGCAG ATCATGCAGAAGACGAGGTGGTGGTCTCGCACGAGGCGCCGCCGTCGCCAT	2000 652 2050 702 2100 720 2150
1951 603 2001 653 2051 703 2101	CTCCCGGCACTTAACTTGGTCGCATATACTATTCCTGTAACCTCTGGCAG ATCATGCAGAAGACGAGGTGGTGGTCTCGCACGAGCGCCGCCGTCGCCAT	2000 652 2050 702 2100 720 2150
1951 603 2001 653 2051 703 2101	CTCCCGGCACTTAACTTGGTCGCATATACTATTCCTGTAACCTCTGGCAG ATCATGCAGAAGACGAGGTGGTGGTCTCGCACGAGGCGCCGCCGTCGCCAT	2000 652 2050 702 2100 720 2150
1951 603 2001 653 2051 703 2101	CTCCCGGCACTTAACTTGGTCGCATATACTATTCCTGTAACCTCTGGCAG ATCATGCAGAAGACGAGGTGGTGGTCTCGCACGAGCGCCGCCGTCGCCAT	2000 652 2050 702 2100 720 2150 739 2250

790	$\tt GTGTGGTCCGTCTCACCAGGATCGGAGCAGTGTAGTACTCCTGGGCGTCA$	839
2301		2350
840	TCTGCGTAATAACGTTGTTCTGTCCTGTGTGCCCGTAGCAGTACGTAC	889
2351	TCTGCGTAATAACGTTGTTCTGTCCTGTGTGCCCGTAGCAGTACGTAC	2400
890	GTCCTATAGTAAGCTAGCTTTATGGGGTGCTTCAGCTTTCAGAGCATGAC	939
2401	GTCCTATAGTAAGCTAGCTTTATGGGGTGCTTCAGCTTTCAGAGCATGAC	2450
940	GAAAGCACTGATTAGCTGCTGTCATCACATTTGGTTCGTCTTTGTGTCGT	989
2451	GAAAGCACTGATTAGCTGCTGTCATCACATTTGGTTCGTCTTTGTGTCGT	2500
990	ACGGTATCGCTGGCGTCAGTGTCGCGGCAGCCTAGGTGATCTAAGCATAC	1039
2501		2550
1040	TTACTATCTCAAGTTACTTTTGGTTTCCTGAGCTTGCATGGTAATTCATA	1089
2551	TTACTATCTCAAGTTACTTTTGGTTTCCTGAGCTTGCATGGTAATTCATA	2600
1090	TACCGTATACGTGTGTGACTCAGGGGCGAAGCTGCCTTAAGGCACAGGGG	1139
2601	TACCGTATACGTGTGACTCAGGGGCGAAGCTGCCTTAAGGCACAGGGG	2650
1140	TCACCGGACCCGATGGAATTTATCAAATCCAGTGTAAAATACTATTTAAC	1189
2651	TCACCGGACCCGATGGAATTTATCAAATCCAGTGTAAAATACTATTTAAC	2700
1190	ACTGTTCATCAATATATTTGATTTC	1214
2701	ACTGTTCATCAATATATTTGATTTCAATAATTCATGGAGCTGACCTTGTG	2750

Figure 10. Representative polynucleotides and polypeptides of the present invention.

Experiment	Control	Ubi:LEC1	Axig1:LEC1
#1 3938.37	15%	63%	44%
#2 3938.79	4%	17%	20%
#3 3938.78	16%	17%	38%
#4 3938.34	2%	14%	13%

Figure 11. Transformation frequencies by LEC1 with two different promoters. Transformation frequencies were based on the percentage of plated embryos with one or more GFP positive/Bialaphos resistant colonies. All embryos were shot with Ubi:moPAT~GFP (a construct conferring Bialaphos resistance and GFP fluorescence) along with a LEC1 construct or a control DNA.