第四章 组合逻辑电路

4.1 概述

综合性组合逻辑电路 分析与设计

4.2 组合逻辑电路的 分析和设计方法

编码器,译码器, 比较器,<mark>选通器</mark>,

4.3 若干常用的组合逻辑电路

4.4 组合电路中的竞争与冒险

串行传输数据示意图

4.3.5 数据选通器

数据选择器类型

2选1 (1位地址)

4选1 (2位地址) ---74HC153, 双4选1

8选1 (3位地址) ---74HC151, 8选1

16选1 (4位地址) ---74HC150, 16选1

2位地位多4个数

例1 设计4-1 MUX, 功能要求如下表, 写出最简逻辑函数及画电路图

2) 根据真值表画 K 图及化简函数, 或直接观察功能表写逻辑式

1) 真值表

$\boxed{A_1A_0D_3D_2D_1D_0}$	Y
000000	0
000001	1
•	
001111	1
010000	0
010001	0
:	
011111	1
100000	0
100001	0
•	
101111	1
110000	0
110001	0
•	
111111	1

4) 增加"片选"控制端Select),

6) 电路图,增加片选控制

5) 修改逻辑函数,增加片选控制信号S'

$$Y = (S')' ((A_1'A_0')D_0 + (A_1'A_0)D_1 + (A_1A_0')D_2 + (A_1A_0)D_3)$$

当S'有效时, 即S'= 0时, Y=(A₁'A₀')D₀+(A₁'A₀)D₁+(A₁A₀')D₂+(A₁A₀)D₃ 当S'无效时, 即S'= 1时, Y= 0

7) 实用芯片 74HC153,双4-1选通器(4-1MUX)

- ◆ 公共的地址输入端(A₁A₀)
- ◆ 独立的数据输入和输出端

<u>练习1</u> 设计8-1选通器(8-1MUX) 功能如下,写出Y的逻辑式。

$$Y = (S')' ((A_2'A_1'A_0')D_0 + (A_2'A_1'A_0)D_1 + (A_2'A_1A_0')D_2 + (A_2'A_1A_0)D_3$$

$$000 001 010 011$$

$$+ (A_2A_1'A_0')D_4 + (A_2A_1'A_0)D_5 + (A_2A_1A_0')D_6 + (A_2A_1A_0)D_7)$$

$$100 101 110 111$$

例2 用两个"4选1"接成一个"8选1"

8-1MUX 功能表

$A_2A_1A_0$	Y
000	$\mathbf{D_0}$
001	$\mathbf{D_1}$
010	$\mathbf{D_2}$
011	\mathbf{D}_3
100	\mathbf{D}_4
101	$\mathbf{D_5}$
110	\mathbf{D}_{6}
111	D ₇

例2 用两个"4选1"接成一个"8选1"

功能要求

$A_2A_1A_0$	Y
000	$\mathbf{D_0}$
001	\mathbf{D}_1
010	$\mathbf{D_2}$
011	\mathbf{D}_3
100	$\mathbf{D_4}$
101	\mathbf{D}_{5}
110	\mathbf{D}_{6}
1 11	\mathbf{D}_7

例3 用数据选择器实现逻辑函数,用8-1MUX实现Y(A,B,C),真值表已知

$$Y = (A'_{2}A'_{1}A'_{0})D_{0} + (A'_{2}A'_{1}A_{0})D_{1} + (A'_{2}A_{1}A'_{0})D_{2} + (A'_{2}A_{1}A_{0})D_{3}$$

$$+ (A_{2}A'_{1}A'_{0})D_{4} + (A_{2}A'_{1}A_{0})D_{5} + (A_{2}A_{1}A'_{0})D_{6} + (A_{2}A_{1}A_{0})D_{7}$$

$$= m_{0}D_{0} + m_{1}D_{1} + m_{2}D_{2} + m_{3}D_{3} + m_{4}D_{4} + m_{5}D_{5} + m_{6}D_{6} + m_{7}D_{7}$$

$$Y = \sum_{i=0}^{2^{k}-1} m_{i}D_{i} \quad (k \boxtimes b \sqcup b)$$

 $Y = \sum_{i=0}^{2^n-1} m_i D_i$ (k位地址) n个变量的逻辑函数可表示为: $Y = \sum_{i=0}^{2^n-1} m_i a_i$

设: k为数据选择器的地址输入端数,n为逻辑函数的变量数。

- a) n=k
- b) n < k
- c) n>k

例3 用数据选择器实现逻辑函数,用8-1MUX实现Y(A,B,C),真值表已知

ABC	Y
000	0
001	1
010	1
011	0
100	1
101	0
110	0
111	1

$A_2A_1A_0$	Y
000	D_0
001	D_1
010	D_2
011	D_3
100	D_4
101	D_5
110	D_6
111	D_7

- 1) 列8-1MUX功能表
- 2) 对比Y函数真值表和8-1MUX功能表
- 3) 连接对应输入输出信号
- 4) 给控制信号正确的值

练习2

用8-1MUX实现三变量逻辑函数 Y=A'B'C'+AC+A'BC

- 1) 列函数Y的真值表
- 2) 对比Y函数真值表和8-1MUX功能表
- 3) 连接对应输入输出信号
- 4) 给控制信号正确的值

Y函数真值表

ABC	Y
000	_
001	0
010	0
011	1
100	0
101	1
110	0
111	1

练习2

用8一1MUX实现三变量逻辑函数 Y=A'B'C'+AC+A'BC

Y函数 真值表

ABC	Y
000	1
001	0
010	0
011	1
100	0
101	1
110	0
111	1

- 1) 列函数Y的真值表
- 2) 对比Y函数真值表和8-1MUX功能表
- 3) 连接对应输入输出信号
- 4) 给控制信号正确的值

例4 用8-1MUX实现Y=X1+X0

- 1) 列函数Y的真值表
- 2) 对比Y函数真值表和8-1MUX功能表
- 3) 连接对应输入输出信号
- 4) 给控制信号S及多余信号A2赋正确的值

Y函数真值表

X_1X_0	Y
00	0
0 1	1
10	1
11	1

8-1MUX功能表

A ₂	A_1A_0	Y
0		D ₀
0	0 1	D_1
0	10	D_2
0	11	D_3
1	0 0	D_4
1	0 1	D ₅
1	10	D_6
1	11	D_7

例5 用8-1MUX实现 $Y(A,B,C,D) = \sum m(1,5,6,7,9,11,12,13,14)$

方法I:扩展选通器法

1) Y函数真值表

	直表_
ABCD	Y
A B C D 0 0 0 0	0
0001	1
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0	0
0011	0
ABCD 0000 0001 0010 0011 0100 0111 1000 1011 1010 1111 1100 1111	0 1 0 0
0101	1 1 0 1 1 1 1
0110	1
0111	1
0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0	0
0101 0110 0111 1000 1001 1010	1
1010	0
1011	1
1100	1
1101	1
1110	1
1111	0

2) 16-1MUX	功能表
$A_3A_2A_1A_0$	

$A_3A_2A_1A_0$	Y
0000	D_0
0001	D_1
0010	D_2
0011	D_3
0100	D_4
0101	D_5
0110	D_6
0111	D_7
1000	D ₈
1001	D ₉
1010	D_{10}
1011	D ₁₁
1100	D ₁₂
1101	D_{13}
1110	D ₁₄
1111	D ₁₅

4) 对比Y真值表和16-1MUX 真值表,连接对应信号

例5 用一片8-1 MUX 实现Y(A,B,C,D) = ∑m(1,5,6,7,9,11,12,13,14)

3) 0-IIVIUA 切能 K 图				
A_1A	00	01	11	10
0	D ₀	D_1	D_3	D_2
1	D ₄	D ₅	D ₇	D ₆
8-1MUX				

4) 对比Y函数K图和8-1MUX功能K图, 连接对应信号

$$\begin{array}{c|c}
A \rightarrow A_2 \\
C \rightarrow A_1 \\
D \rightarrow A_0 \\
Y \rightarrow Y
\end{array}$$

$$\begin{array}{c|c}
0 \rightarrow D_0 \\
1 \rightarrow D_1 \\
B \rightarrow D_2 \\
B \rightarrow D_3 \\
B \rightarrow D_4 \\
1 \rightarrow D_5 \\
B \rightarrow D_6 \\
B' \rightarrow D_7$$

对比

例5 用一片8-1 MUX 实现Y(A,B,C,D) =∑m(1,5,6,7,9,11,12,13,14)

方法II: K图降维法 (用一片8-1 MUX 实现)

1) Y函数K图

2)Y函数 K图降维

4) 对比Y函数K图和8-1MUX功能K图

例5 用一片4-1 MUX 实现Y(A,B,C,D) = ∑m(1,5,6,7,9,11,12,13,14)

方法III: K图降维法 (用一片4-1 MUX 实现)

例5 用一片4-1 MUX 实现Y(A,B,C,D) = \sum m(1,5,6,7,9,11,12,13,14)

方法III: K图降维法 (用一片4-1 MUX 实现)


```
例5 用一片8-1 MUX 实现Y(A,B,C,D) = ∑m(1,5,6,7,9,11,12,13,14)
方法IV 代数法 (用一片8-1 MUX 实现)
Y(A,B,C,D)
= (A_2'A_1'A_0')D_0 + (A_2'A_1'A_0)D_1 + (A_2'A_1A_0')D_2 + (A_2'A_1A_0)D_3 + (A_2A_1'A_0')D_4 + (A_2A_1'A_0)D_5 + (A_2A_1A_0')D_6 + (A_2A_1A_0)D_7
= (A'B'C')D_0+(A'B'C)D_1+(A'BC')D_2+(A'BC)D_3+(AB'C')D_4+(AB'C)D_5+(ABC')D_6+(ABC)D_7
=m0D_0+m1D_1+m2D_2+m3D_3+m4D_4+m5D_5+m6D_6+m7D_7
Y(A,B,C,D) = A'B'C'D+A'BC'D+A'BCD' +A'BCD+AB'C'D+AB'CD+ABC'D'+ABC'D+ABCD'
            0001
                     0101
                             0110
                                                     1011
                                                              1100
                                                                       1101
                                                                               1110
                                       0111 1001
         = m_0D + m_2D + m_3D' + m_3D + m_4D + m_5D + m_6D' + m_6D + m_7D'
         = m_0D + m_2D + m_3(D'+D) + m_4D + m_5D + m_6(D'+D) + m_7D'
          = m_0D_0+m_1D_1+m_2D_2+m_3D_3+m_4D_4+m_5D_5+m_6D_6+m_7D_7
              3位於址凑8个於此
                                                                     Y
                                                                  8-1MUX
                                                          D_0 D_1 D_2 D_3 D_4 D_5 D_6 D_7
```

例3 用数据选择器实现逻辑函数,用8-1MUX实现Y(A,B,C),真值表已知

$$Y = (A'_{2}A'_{1}A'_{0})D_{0} + (A'_{2}A'_{1}A_{0})D_{1} + (A'_{2}A_{1}A'_{0})D_{2} + (A'_{2}A_{1}A_{0})D_{3}$$

$$+ (A_{2}A'_{1}A'_{0})D_{4} + (A_{2}A'_{1}A_{0})D_{5} + (A_{2}A_{1}A'_{0})D_{6} + (A_{2}A_{1}A_{0})D_{7}$$

$$= m_{0}D_{0} + m_{1}D_{1} + m_{2}D_{2} + m_{3}D_{3} + m_{4}D_{4} + m_{5}D_{5} + m_{6}D_{6} + m_{7}D_{7}$$

$$Y = \sum_{i=0}^{2^{k}-1} m_{i}D_{i} \quad (k \boxtimes b \sqcup b)$$

 $Y = \sum_{i=0}^{2^n-1} m_i D_i$ (k位地址) n个变量的逻辑函数可表示为: $Y = \sum_{i=0}^{2^n-1} m_i a_i$

设: k为数据选择器的地址输入端数,n为逻辑函数的变量数。

- a) n=k
- b) n < k
- c) n>k

<mark>练习3</mark> 用一片8-1 MUX 实现**Y(A,B,C,D) =∑m(1,5,6,7,9,11,12,13,14),** A2A1A0已经连接好,要求填写D0~D7的输入端

<mark>练习4</mark> 用一片8-1 MUX 实现**Y(A,B,C,D) =∑m(1,5,6,7,9,11,12,13,14),** A2A1A0已经连接好,要求填写D0~D7的输入端

1) Y函数K图

- 2)Y函数 K图降维
- 3)对应8-1MUX的K图,连接信号线

AB\D	0	1
00	Ø	C
01	C	ì
1 (1	c ⁾
10	0	1

$$\begin{array}{c|c} A \rightarrow A_2 \\ B \rightarrow A_1 \\ D \rightarrow A_0 \\ Y \rightarrow Y \end{array} \quad \begin{array}{c} 0 \rightarrow D_0 \\ C' \rightarrow D_1 \\ C \rightarrow D_2 \\ 1 \rightarrow D_3 \\ 0 \rightarrow D_4 \\ 1 \rightarrow D_5 \\ 1 \rightarrow D_6 \\ C' \rightarrow D_7 \end{array}$$

练习5 用一片4-1 MUX 实现函数Y(A,B,C), 真值表已知

Y函数 真值表 ABC Y 000 0 001 1 010 1	方法I 1) Y函数K图 BC 00 01 11 10 0 0 1 1 1 0 1 Y Y Y	2) K图降维 0 1 0 A A' 1 A' A Y	3) 对应连接信号线 Y A ₁ A ₀ 4-1MUX S D ₀ D ₁ D ₂ D ₃ A A' A' A
011 0 100 1 101 0 110 0 111 1	方法II		$\begin{array}{c} Y \\ A - A_1 \\ B - A_0 \\ D_0 D_1 D_2 D_3 \end{array}$
	方法III	C 0 3 18 1 13 3	$\begin{array}{c} \textbf{Y}\\ \textbf{A}- \begin{matrix} \textbf{Y}\\ \textbf{A}_1\\ \textbf{A}_0 \end{matrix} & \textbf{4-1MUX} & \textbf{S}\\ \textbf{D}_0 \textbf{D}_1 \textbf{D}_2 \textbf{D}_3 \\ \hline & & & & & & & & & & & & & & & & & &$

练习5 用一片4-1 MUX 实现函数Y(A,B,C), 真值表已知

例: 试用1片8-1数据选择器实现函数 Z = A'B'C' + CD + ACD'

• 卡诺图法 CI	00	01	11	10
00		1	1	
0 1			1	
11				1
10				1

A	C 00	01	11	10
0				
1				

• 代数法

$$Z = A'B'C' + (A'B' + A'B + AB' + AB)CD + A(B + B')CD'$$

$$Z = A'B'C' + (A'B'C + A'BC)D + AB'C + ABC$$

$$D_0 = D_5 = D_7 = 1$$
 $D_1 = D_3 = D$ $D_2 = D_4 = D_6 = 0$

选择并行力串行

4.3.6 数据选通器→ 串行数据 → 并行数据

$A_1 A_0$	Y_0 Y_1 Y_2 Y_3
0 0	<i>D</i> 0 0 0
0 1	0 D 0 0
1 0	0 0 D 0
1 1	0 0 0 D

$$Y_0 = A_1' A_0' D, \quad Y_1 = A_1' A_0 D, \quad Y_2 = A_1 A_0' D, \quad Y_3 = A_1 A_0 D$$

$$0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1$$

例6: 用译码器构成数据分配器

1 - 4

作业 4.15 4.17 4.18 4.19 4.20 4.24