+6 -1 UF₆ +6 -6

b. Oxygen and sulfur are each more electronegative than hydrogen, so hydrogen has an oxidation number of +1. Oxygen is not combined with a halogen, nor is H₂SO₄ a peroxide. Therefore, the oxidation number of oxygen is -2. Place these known oxidation numbers above the appropriate symbols. Place the total of the oxidation numbers underneath.

+1 -2 H₂SO₄ +2 -8

The sum of the oxidation numbers must equal zero, and there is only one sulfur atom in each molecule of H_2SO_4 . Because (+2) + (-8) = -6, the oxidation number of each sulfur atom must be +6.

c. To assign oxidation numbers to the elements in ClO₃, proceed as in parts (a) and (b). Remember, however, that the total of the oxidation numbers should equal the overall charge of the anion, 1–. The oxidation number of a single oxygen atom in the ion is –2. The total oxidation number due to the three oxygen atoms is –6. For the chlorate ion to have a 1– charge, chlorine must be assigned an oxidation number of +5.

+5 -2 ClO₃ +5 -6

PRACTICE

Answers in Appendix E

1. Assign oxidation numbers to each atom in the following compounds or ions:

a. HCl **b.** CF₄

e. HNO₃ f. KH h. HClO₃i. N₂O₅

c. PCl₃ **d.** SO₂

g. P₄O₁₀

j. GeCl₂

Go to **go.hrw.com** for more practice problems that ask you to assign oxidation numbers.

Using Oxidation Numbers for Formulas and Names

As shown in **Table 6**, many nonmetals can have more than one oxidation number. (A more extensive list of oxidation numbers is given in Appendix Table A-15.) These numbers can sometimes be used in the same manner as ionic charges to determine formulas. Suppose, for example, you want to know the formula of a binary compound formed between sulfur and oxygen. From the common +4 and +6 oxidation states of sulfur, you could expect that sulfur might form SO₂ or SO₃. Both are known compounds. Of course, a formula must represent facts. Oxidation numbers alone cannot be used to prove the existence of a compound.