Analytic Functions Exam # 2

MARIO L. GUTIERREZ ABED

gutierrez.m101587@gmail.com

Problem 1. Find the value of

$$\oint_C \frac{1}{1+z^2} \, \mathrm{d}z$$

- *a)* when C is the circumference ||z i|| = 1,
- *b)* when C is the circumference ||z|| = 2.

Solution of a). Note that by partial fractions decomposition, we have

$$\frac{1}{1+z^2} = \frac{1}{(z+i)(z-i)} = \frac{1}{2i} \left(\frac{1}{z-i} - \frac{1}{z+i} \right). \tag{\dagger}$$

In this particular case for ||z - i|| = 1, we have z = i outside the curve and $\eta(C; -i) = 1$, so from (†) we get

$$\oint_{\|z-i\|=1} \frac{1}{1+z^2} \, \mathrm{d}z = 2\pi i \left(-\frac{1}{2i} \right) = -\pi.$$

Solution of b). In this particular case for ||z|| = 2, we have both z = i and z = -i inside the curve and $\eta(C; -i) = \eta(C; i) = 1$. Thus from (†) we get

$$\oint_{\|z\|=2} \frac{1}{1+z^2} \, \mathrm{d}z = 2\pi i \left(\frac{1}{2i} - \frac{1}{2i} \right) = 0.$$

Quick aside

Now we state two results that we are going to use on the following two problems:

Theorem 1 (Rouché's Theorem). Suppose that f and g are analytic inside and on a regular closed curve γ and that ||f(z)|| > ||g(z)|| for all $z \in \gamma$. Then

$$Z(f+g) = Z(f)$$
 inside γ ,

where Z(f) = the number of zeroes of f inside γ .

Theorem 2 (Maximum Modulus Theorem). *If* f *is analytic in a region* Ω *and a is a point in* Ω *with* $||f(a)|| \ge ||f(z)||$ *for all* $z \in \Omega$ *, then* f *must be a constant function.*

Problem 2. Find the number of zeros of $f(z) = \frac{1}{3}e^z - z$ in $||z|| \le 1$.

Solution. Let g(z) = -z. Both f(z) and g(z) are entire functions, and on ||z|| = 1, we have

$$||f(z) - g(z)|| = \left\|\frac{1}{3}e^{z}\right\| = \frac{1}{3}e^{\Re \mathfrak{e}\, z} \le \frac{1}{3}e^{||z||} = \frac{1}{3}e < 1 = ||g(z)||.$$

Therefore, by Rouché's theorem f and g have the same number of zeroes in $||z|| \le 1$, which is 1.

Problem 3. Let Ω be a region and suppose that $f: \Omega \to \mathbb{C}$ is holomorphic and ||f|| obtains its minimum value at an interior point $a \in \Omega$, i.e. $||f(a)|| \le ||f(z)||$ for all $z \in \Omega$. Show that either f(a) = 0 or f is a constant function.

Proof. Clearly the result holds trivially if f(a) = 0. Thus, suppose that $f(a) \neq 0$. We want to show that $||f(a)|| \leq ||f(z)||$ for all $z \in \Omega$ implies that f is constant. Since $f(a) \neq 0$, we have that ||f(a)|| > 0, which implies that $f(z) \neq 0$ for all $z \in \Omega$. Hence, we can consider the reciprocal inequality of $||f(a)|| \leq ||f(z)||$; that is, $||1/f(z)|| \leq ||1/f(a)||$. Now since f(a) is nonzero, the quantity on the right-hand side is finite and, since f(z) is also nonzero, we have that 1/f(z) is analytic in Ω . Hence by the *Maximum Modulus Theorem*, we have that 1/f(z) must be constant. Therefore f(z) is constant as well.

Problem 4. Give an example of a closed rectifiable curve γ in \mathbb{C} such that, for any integer k, there is a point $a \notin \gamma$ with winding number $\eta(\gamma; a) = k$.

Solution. Let $k \in \mathbb{Z}$ and consider the curve $\gamma \colon [0,2\pi] \to \mathbb{C}$ given by $\gamma(t) = e^{kit}$; that is γ wraps around the circle \mathbb{S}^1 k times. Then for any point a in the bounded region determined by γ (that is, for any $a \in \mathring{\mathbb{D}}^2$), we have $\eta(\gamma; a) = k$.

Problem 5. Suppose f is holomorphic in an open set containing the closed unit disk, except for a simple pole at z_0 on the unit circle. Show that if $\sum_{n=0}^{\infty} a_n z^n$ denotes the power series expansion of f in the open unit disk, then $\lim_{n\to\infty} a_n/a_{n+1} = z_0$.

Proof. Let us start by replacing z with z/z_0 , assuming WLOG that the pole is at $z_0 = 1$. Now let Ω be an open set containing $\overline{\mathbb{D}}^2$ such that f is holomorphic on Ω except for a pole at 1. Then we have that

$$g(z) = f(z) - \sum_{k=1}^{N} \frac{a_{-k}}{(z-1)^k}$$

is holomorphic on Ω for some N and a_{-1},\ldots,a_{-N} , where N is the order of the pole at 1. Next, we note that Ω must contain some disk of radius $1+\delta$ with $\delta>0$ (the set $\{z:\|z\|\leq 2\}\setminus\Omega$ is compact, so its image under the map $z\mapsto\|z\|$ is also compact and hence attains a lower bound, which must be strictly greater than 1 since the unit circle is contained in Ω). Now since g converges on the disk $\|z\|<1+\delta$, we can expand it in a power series $\sum_{n=0}^{\infty}b_nz^n$ on this disk, and we must

have $b_n \to 0$. (This follows from the fact that $\limsup b_{n+1}/b_n < 1$ when the radius of convergence is greater than 1.) Now for ||z|| < 1, we have

$$\sum_{n=0}^{\infty} a_n z^n = \sum_{k=1}^{N} \frac{a_{-k}}{(z-1)^k} + \sum_{n=0}^{\infty} b_n z^n.$$

Now we use the following fact

$$\frac{1}{(z-1)^k} = \frac{(-1)^k}{(k-1)!} \frac{\mathrm{d}^{k-1}}{\mathrm{d}z^{k-1}} \left(\frac{1}{z-1} \right) = \frac{(-1)^k}{(k-1)!} \sum_{\ell=0}^{\infty} \frac{(\ell+k-1)!}{\ell!} z^{\ell} \quad \text{for } ||z|| < 1,$$

so that we can write

$$\sum_{n=0}^{\infty} a_n z^n = \sum_{\ell=0}^{\infty} \left(\sum_{k=1}^{N} \frac{(-1)^k a_{-k}}{(k-1)!} \frac{(\ell+k-1)!}{\ell!} \right) z^{\ell} + \sum_{n=0}^{\infty} b_n z^n \implies a_n = P(n) + b_n,$$

where P(n) is a polynomial in n of degree at most N-1. Here the rearrangements of the series are justified by the fact that all these series converge uniformly on compact subsets of \mathbb{D}^2 . Then since $b_n \to 0$, we have

$$\frac{a_n}{a_{n+1}} \to \lim_{n \to \infty} \frac{P(n)}{P(n+1)} = 1.$$

Note that every polynomial P has the property that $P(n)/P(n+1) \to 1$ since, if the leading coefficient is $c_k n^k$, then we have

$$\frac{P(n)}{P(n+1)} \approx \frac{cn^k}{c(n+1)^k} = \left(1 - \frac{1}{n+1}\right)^k \to 1.$$