Plan

1. Le médicament

- 1.1. Définition
- 1.2. Origines
- 1.3. Sources
- 1.4. Nécessité d'utiliser des médicaments
- 1.5. Développement du médicament
- 1.6. Formes pharmaceutiques
- 1.7. Spécialité pharmaceutique
- 2. La pharmacologie
 - 2.1. Définition
 - 2.2. Grands axes
 - 2.3. Pharmacologie générale
 - 2.3.1. Pharmacocinétique
 - 2.3.2. Pharmacodynamie
 - 2.3.3. Effets indésirables
 - 2.3.4. Pharmacovigilance
 - 2.3.5. Autres branches
 - 2.4. Pharmacologie des spécialités
 - 2.4.1. Définitions
 - 2.4.2. Disciplines
 - 2.4.3. Classification pharmacothérapeutique
 - 2.4.4. Pharmacologie clinique

1. Le médicament

1.1. Définition

- Toute substance ou composition possédant des propriétés curatives ou préventives, destinées à guérir, à soulager ou à prévenir des maladies humaines ou animales.
- La définition plus généralisée inclue aussi les produits destinés au diagnostic

1.2. Origines

- Historiquement, il s'agissait d'utiliser des plantes ou des mélanges de plantes, des extraits d'animaux ou de minéraux
- Avec le développement industriel, la chimie à pris le relais
- · Plus récemment, le génie génétique et la biotechnologie

Résumé du cours Dr Boulesbiaat Karim R0.1.130223

Figure 1 Evolution des médicaments à travers les siècles

1.3. Sources

- Les médicaments contiennent des substances actives de diverses origines
- Elles peuvent être naturelles ou faisant intervenir la chimie et le génie génétique

Figure 2 Origines des substances actives

1.4. Nécessité d'utiliser des médicaments

- Le corps fonctionne de manière autonome pour tous les aspects de sa vie:
 - Il se régénère en permanence
 - Il se répare
 - Il se défend
 - Il s'équilibre dans son fonctionnement
 - Il vieillit et s'adapte en fonction
- Parfois une ou plusieurs de ces fonctions sont perturbées : il a besoin d'être aidé à les rétablir ou à retrouver une fonctionnalité normale ou proche de la normale
- Parfois le rétablissement est définitif : la guérison
- Parfois il est difficile, voire impossible de revenir à l'état initial : le soin, le traitement
- Pour assurer de telles tâches, on utilise les médicaments

1.5. Développement du médicament

- Les médicaments disponibles en thérapeutique ont franchi un certain nombre d'étapes avant de pouvoir être utilisés chez le grand public
- Ces étapes visent à en assurer l'activité et la sécurité
- Durant ces dernière, le médicament est testé sur tous les aspects, aussi bien in vitro, qu'in vivo et même sur des sujets humains
- Après avoir passé toutes les étapes, il est nécessaire de passer par les autorités compétentes pour obtenir une autorisation de mise sur le marché : l'AMM
- Après sa mise sur le marché, le médicament est suivi de manière constante pour s'assurer de son innocuité chez le grand public ou prendre des mesures en cas de problème : la pharmacovigilance
- Ces étapes peuvent prendre plusieurs années, sans pour autant aboutir au succès, les décisions sont prises au fur et à mesure de l'évolution des tests conduits.

Figure 3 Cycle de vie du médicament

R0.1.130223

1.6. Formes pharmaceutiques

- Au départ, on utilisait des substances telles quelles ou diluées dans des boissons ou aliments pour faciliter leur prise.
- Avec le temps, il est devenu nécessaire de formuler le médicament sous une certaine présentation : FORME GALENIQUE (De Claude Galien ou Claudius Galenus)
- Médicament = substance active + adjuvants : excipients
- Les excipients n'ont aucune activité sur l'organisme
- Ils ne sont pas inertes pour autant, et nullement inutiles ou sans rôle dans la médication
- En fonction des excipients utilisés, on aura des formes d'administration ou formes galéniques

Les médicaments existent sous plusieurs **formes** qui conditionnement la **voie d'administration** On distingue:

- La voie entérale : Tous les médicaments pris par voie digestive, comprend entre autres :
 - Comprimés
 - Sirops
 - Suspensions buvables
 - Gélules
 - Capsules
 - Poudres à dissoudre
- Les formes parentérales : qu'elles soient à visée systémique ou locale
 - Générale (entre autres)
 - Tous les injectables (IM, IV, SC)
 - Aérosols et gaz
 - Locale (entre autres)
 - Pommades
 - Crèmes
 - Patch

Figure 4 Formes pharmaceutiques

1.7. Spécialité pharmaceutique

 Tout médicament préparé à l'avance, présenté sous un conditionnement particulier et caractérisé par une dénomination spéciale (DCI) de la molécule = substance active. (Princeps et Générique)

Figure 5 Informations devant figurer sur un boite de médicament (spécialité pharmaceutique)

2. La pharmacologie

2.1. Définition

- Pharmacologie = Paramakon + Logie
- Paramakon: grec ancien voulant dire remède ou poison
- La science des effets et du devenir dans l'organisme des médicaments

La pharmacologie étudie les effets des produits biologiquement actifs sur l'organisme et comment ce dernier réagit à ces drogues

Se base sur une synthèse intégrant différentes disciplines, incluant entre autres :

- Physiologie
- Physiopathologie
- Biochimie
- Biologie médicale
- Génétique

2.2. Grands axes

La pharmacologie se divise en deux grandes disciplines complémentaires

- La pharmacologie générale
- La pharmacologie des spécialités

Figure 6 Grands axes de la pharmacologie

2.3. Pharmacologie générale

Notions fondamentales pour la compréhension de l'action des médicaments

Etudie entre autres :

- La pharmacocinétique : ADME
- Les mécanismes des médicaments : Pharmacodynamie
- Les effets indésirables
- La pharmacovigilance
- Le développement pharmaceutique
- Les études cliniques
- L'équivalence

R0.1.130223

2.3.1. Pharmacocinétique

- C'est l'étude du cheminement du médicament dans l'organisme depuis son entrée jusqu'à sa sortie de ce dernier.
- Elle ne s'intéresse pas à l'action ou l'activité de ce dernier
- Elle est divisée en quatre étapes : ADME
 - Absorption
 - Distribution
 - Métabolisme
 - Elimination

2.3.2. Pharmacodynamie

- C'est l'étude du de la manière avec laquelle le médicament exerce son action
- Se base sur la notion de récepteur (cible) et d'agoniste (médicament)
- Permet d'expliquer les mécanismes d'action des médicaments et de comprendre l'utilité des associations médicamenteuses ainsi que l'origine des effets indésirables

2.3.3. Effets indésirables

- C'est l'étude de tous les effets néfastes ou non recherchés liés à l'utilisation de médicaments
- Leur compréhension permet de mieux gérer les traitements médicamenteux, de réduire le risque et d'améliorer le suivi
- Permet d'expliquer les effets à long terme de certains médicaments

2.3.4. Pharmacovigilance

- Les médicaments mis sur le marché sont étudiés de manière limitée dans le temps et sur une population limitée
- La mise sur le marché d'un médicament expose un plus grand nombre pendant plus longtemps
- La pharmacovigilance permet le suivi de la sécurité de tous les médicaments pendant la durée de leur présence sur le marché et même au-delà

2.3.5. Autres branches

- Le développement pharmaceutique : toutes les étapes permettant l'élaboration d'un nouveau médicament sont étudiées et suivies par la pharmacologie
- Les études cliniques : essais de nouveaux médicaments sur des sujets volontaires, comparaison de médicaments
- L'équivalence : établissement de l'équivalence entre une nouvelle formulation (générique) et une formulation ayant fait ses preuves dans le temps (spécialité)

3. Pharmacologie des spécialités

3.1. Définitions

- Discipline qui se base sur la classification pharmacothérapeutique des médicaments
- Cette classification se fait sur la base de pathologies spécifiques, pour lesquelles il existe des traitements spécifiques et non spécifiques

R0.1.130223

L'action ciblée des médicaments implique :

- La connaissance de la physiopathologie
- La connaissance des points de l'organisme impactés par la pathologie
- Le choix de médicaments ciblant les dits points
- L'adaptation du traitement en fonctions des conditions du patient et de l'évolution de sa maladie
- Le suivi du traitement est nécessaire pour une réponse optimale

3.2. Disciplines

Pratiquement toutes les pathologies ont des traitements préconisés, qu'ils soient curatifs ou palliatifs On peut avoir des traitements en (entre autres) :

- Cardiologie
- Pneumologie
- Neuropsychiatrie
- Endocrinologie
- Maladies digestives
- Maladies métaboliques et de l'homéostasie
- Maladies inflammatoires et auto-immunes
- Douleurs
- Maladies infectieuses
- Néoplasies

Il existe des disciplines intermédiaires

3.3. Classification pharmacothérapeutique

La classification pharmacothérapeutique permet de :

- Bien cibler les traitements
- · Augmenter le taux de succès dans le contrôle des maladies
- Tirer profit des associations afin d'aborder les maladies sur plusieurs angles
- Minimiser le risque d'interactions et d'effets indésirables

3.4. Pharmacologie clinique

Se focalise sur:

- Les indications
- Les possibilités de substitution et d'associations
- · Le suivi du traitement
- L'ajustement des posologies
- Les effets indésirables
- Les interactions médicamenteuses

De bonnes connaissances en pharmacologie clinique permettent de :

- Bien choisir le traitement
- Bien tirer profit des associations médicamenteuses
- Eviter les erreurs médicales
- · Adapter les traitements en fonction de l'évolution du patient
- Gérer les effets indésirables et améliorer l'observance