PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-108761

(43) Date of publication of application: 25.04.1995

(51)Int.CI.

B41M 5/26

B41M 5/30

(21)Application number : 05-256825

(71)Applicant: MITSUBISHI PAPER MILLS LTD

(22)Date of filing:

14.10.1993

(72)Inventor: MARUYAMA ATSUSHI

IIDA KAZUYUKI

(54) REVERSIBLE THERMAL RECORDING MATERIAL

(57)Abstract:

PURPOSE: To obtain a reversible thermal recording material capable of forming and erasing an image in good contrast by providing a reversible thermal recording layer containing an electron donating dye precursor and a specific electron acceptive compd. on a support.

CONSTITUTION: An electron acceptive compd. represented by formula (wherein m is 1 or 2, n is 0 or 1, X is a methylene group, an oxygen atom, an NH group or an NHNH group and R is an aliphatic hydrocarbon group) and generating a reversible hue change in a colorless or light-colored electron donating dye precursor under heating and the colorless or light-coored electron donating dye precursor are dissolved or dispersed in a solvent to prepare a coating soln. This coating soln is applied to a support such as paper, a nonwoven fabric or a synthetic resin film and dried to form a reversible thermal recording layer to obtain a reversible thermal recording material. As a concrete example of the electron acceptive compd. represented by the aforementioned formula, there is N-(4-hydroxybenzoyl)-N'-n-octanoylhydrazine.

LEGAL STATUS

[Date of request for examination]

08.03.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3233751 [Date of registration] 21.09.2001

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(11) Publication number:

07108761

Generated Document.

PATENT ABSTRACTS OF JAPAN

(21) Application number: **05256825**

(51) Intl. Cl.: **B41M** 5/26 B41M 5/30

(22) Application date: 14.10.93

(30) Priority:

(43) Date of application

publication:

25.04.95

(84) Designated contracting

states:

(71) Applicant: MITSUBISHI PAPER MILLS LTD

(72) Inventor: MARUYAMA ATSUSHI IIDA KAZUYUKI

(74) Representative:

(54) REVERSIBLE THERMAL RECORDING MATERIAL

(57) Abstract:

PURPOSE: To obtain a reversible thermal recording material capable of forming and erasing an image in good contrast by providing a reversible thermal recording layer containing an electron donating dye precursor and a specific electron acceptive compd. on a support.

CONSTITUTION: An electron acceptive compd. represented by formula (wherein m is 1 or 2, n is 0 or 1, X is a methylene group, an oxygen atom, an NH group or an NHNH group and R is an aliphatic hydrocarbon group) and generating a reversible hue change in a colorless or light-colored electron donating dye precursor under heating and the colorless or light-coored electron donating dye precursor are dissolved or dispersed in a solvent to prepare a coating soln. This coating soln. is applied to a support such as paper, a nonwoven fabric or a synthetic resin film and dried to form a reversible thermal recording layer to obtain a reversible thermal recording material. As a concrete example of the electron acceptive compd. represented by the aforementioned formula, there is N-

(4-hydroxybenzoyl)-N'-n-octanoylhydrazine.

COPYRIGHT: (C)1995,JPO

【特許請求の範囲】

【請求項1】 通常無色ないし淡色の電子供与性染料前 駆体と、加熱により該染料前駆体に可逆的な色調変化を* *生じせしめる下記一般式化1で表される電子受容性化合物とを含有する可逆性感熱記録材料。

2

【化1】

$$\begin{array}{c} O \\ II \\ C-NH-(CH_2)_n-NH-C-X-R \end{array}$$

(式化1中、mは1或いは2を、nは0或いは1を表す。Xはメチレン基、酸素原子、NH基、NHNH基を表す。Rは脂肪族炭化水素基を表す。)

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、加熱により画像形成及 び消去が可能な可逆性感熱記録材料に関するものであ る。

[0002]

【従来の技術】感熱記録材料は一般に支持体上に電子供与性の通常無色ないし淡色の染料前駆体と電子受容性の顕色剤とを主成分とする感熱記録層を設けたものであり、熱ヘッド、熱ペン、レーザー光等で加熱することに 20より、染料前駆体と顕色剤とが瞬時反応し記録画像が得られるもので、特公昭43-4160号、特公昭45-14039号公報等に開示されている。

【0003】一般にこのような感熱記録材料は、一度画像を形成するとその部分を消去して再び画像形成前の状態に戻すことは不可能であるため、さらに情報を記録する場合には画像が未形成の部分に追記するしかなかった。このため感熱記録部分の面積が限られている場合には、記録可能な情報が制限され必要な情報を全て記録できないという問題が生じていた。

【0004】近年、この様な問題に対処するため画像形成・画像消去が繰り返して可能な可逆性感熱記録材料が考案されており、例えば、特開昭54-119377号公報、特開昭63-39377号公報、特開昭63-41186号公報では、樹脂母材とこの樹脂母材中に分散された有機低分子から構成された感熱記録材料が記載されている。しかしこの方法は、熱エネルギーによって感熱記録材料の透明度を可逆的変化させる物であるため、画像形成部と画像未形成部のコントラストが不十分である。

【0005】また、特開昭50-81157号公報、特開昭50-105555号公報に記載された方法においては、形成する画像は環境温度に従って変化するものであるため、画像形成状態と消去状態を保持する温度が異なっており、常温下ではこの2つの状態を任意の期間保持することが出来ない。

【0006】さらに、特開昭59-120492号公報には、呈色成分のヒステリシス特性を利用し、記録材料をヒステリシス温度域に保つことにより画像形成状態・消去状態を維持する方法が記載されているが、この方法 50

では画像形成及び消去に加熱源と冷却源が必要な上、画像の形成状態及び消去状態を保持できる温度領域がヒステリシス温度領域内に限られる欠点を有しており、日常生活の温度環境で使用するには未だ不十分である。

【0007】一方、特開平2-188293号公報、特 開平2-188294号公報、国際公開番号WO90/ 11898号には、ロイコ染料と加熱によりロイコ染料 を発色及び消色させる顕減色剤から構成される可逆性感 熱記録媒体が記載されている。顕減色剤は、ロイコ染料 を発色させる酸性基と、発色したロイコ染料を消色させ る塩基性基を有する両性化合物で、熱エネルギーの制御 により酸性基による発色作用または塩基性基による消色 作用の一方を優先的に発生させ、発色と消色を行うもの である。しかしこの方法では、熱エネルギーの制御のみ で完全に発色反応と消色反応を切り換えることは不可能 で、両反応がある割合で同時に起こるため、十分な発色 濃度が得られず、また、消色が完全には行えない。その ために十分な画像のコントラストが得られない。また、 塩基性基の消色作用は常温で発色部にも作用するため、 経時的に発色部の濃度が低下する現象が避けられない。 そして、特開平5-124360号公報には加熱により ロイコ染料を発色及び消色させる可逆性感熱記録媒体が 記載されており、電子受容性化合物として有機リン酸化 合物、α-ヒドロキシ脂肪族カルボン酸、脂肪酸ジカル ボン酸及び炭素数10以上の脂肪族基を有するアルキル チオフェノール、アルキルオキシフェノール、アルキル カルパモイルフェノール、没食子酸アルキルエステルな どの特定のフェノール化合物が例示されている。しか し、この記録媒体でもやはり発色濃度が低い、または、 消色が不完全というふたつの問題を同時に解決すること はできない。

【0008】このように、従来の技術では良好な画像コ かいたラストを持ち、画像の形成・消去が可能で、日常生 活の環境下で経時的に安定な画像を保持可能な可逆性感 熱記録材料は存在しない。

[0009]

【発明が解決しようとする課題】本発明の課題は、良好なコントラストで画像の形成・消去が可能で、日常生活の環境下で経時的に安定な、更には高温保存条件下にあっても経時的に安定な画像を保持可能な可逆性感熱記録材料を提供することである。

[0010]

🤈 【課題を解決するための手段】本発明者らは、この課題

30

を解決するため研究を行った結果、通常無色ないし淡色 の電子供与性染料前駆体に加熱により可逆的な色調変 化、すなわち、発色及び消色を生じせしめる下記一般式 化2で表される電子受容性化合物が存在することを見い* *出し、本発明を完成するに至った。 [0011] 【化2】

$$\begin{array}{c} O \\ II \\ C-NH-(CH_2)_n-NH-C-X-P \\ \end{array}$$

【0012】 (式化1中、mは1或いは2を、nは0或 いは1を表す。Xはメチレン基、酸素原子、NH基、N HNH基を表す。Rは脂肪族炭化水素基を表す。)

【0013】また、化2で表される化合物の中、Rの炭 素数は多い方が好ましく、炭素数が5以下であるものは 消去効果が十分ではない。また、炭素数が23以上であ るものは製造コストが高いため、Rは炭素数6以上22 以下の脂肪族炭化水素基であるものが特に好ましい。

【0014】本発明に用いる、通常無色ないし淡色の電 子供与性染料前駆体に可逆的な色調変化を生じせしめる 電子受容性化合物の具体例としては、下記に挙げるもの などがあるが、本発明はこれに限定されるものではな

【0015】式化2中、n=0である化合物としては、 N- (4-ヒドロキシベンゾイル) - N'-n-オクタ ノイルヒドラジン、N-(4-ヒドロキシベン**ゾ**イル) -N'-n-ドデカノイルヒドラジン、N-(4-ヒド ロキシベンゾイル) - N'-n-テトラデカノイルヒド ラジン、N-(4-ヒドロキシベンゾイル)-N'-n -オクタデカノイルヒドラジン、N-(2, 4-ジヒド ロキシベンゾイル) - N′-n-オクタノイルヒドラジ ン、N-(2, 4-ジヒドロキシベンゾイル)-N'n-ドデカノイルヒドラジン、N-(2, 4-ジヒドロ キシベンゾイル) - N' - n - テトラデカノイルヒドラ ジン、N-(2,4-ジヒドロキシベンゾイル)-N' -n-オクタデカノイルヒドラジン、N-(4-ヒドロ キシベンゾイル) - N '-n-オクチルアミノカルボニ ルヒドラジン、N-(4-ヒドロキシペンゾイル)-N′-n-ドデシルアミノカルポニルヒドラジン、N-(4-ヒドロキシベンゾイル) - N'-n-テトラデシ ルアミノカルボニルヒドラジン、N-(4-ヒドロキシ ベンゾイル) - N' - n - オクタデシルアミノカルボニ 40 ルヒドラジン、N-(2,4-ヒドロキシベンゾイル) -N'-n-オクチルアミノカルポニルヒドラジン、N - (2, 4-ジヒドロキシベンゾイル)-N'-n-ド デシルアミノカルボニルヒドラジン、N-(2,4-ジ ヒドロキシベンゾイル) - N' - n - テトラデシルアミ ノカルポニルヒドラジン、N-(2, 4-ジヒドロキシ ペンゾイル) - N′-n-オクタデシルアミノカルボニ ルヒドラジン、N- (4-ヒドロキシベンゾイル) -N′-n-オクチルオキシカルポニルヒドラジン、N-

キシカルポニルヒドラジン、N-(4-ヒドロキシベン ゾイル) - N′ - n - テトラデシルオキシカルポニルヒ 70 ドラジン、N- (4-ヒドロキシベンゾイル) -N'n-オクタデシルオキシカルポニルヒドラジン、N-(2.4-ヒドロキシペンゾイル)-N'-n-オクチ ルオキシカルボニルヒドラジン、N-(2.4-ジヒド ロキシベンゾイル) - N' - n - ドデシルオキシカルボ ニルヒドラジン、N-(2,4-ジヒドロキシベンゾイ ル) - N′ - n - テトラデシルオキシカルポニルヒドラ ジン、N-(2,4-ジヒドロキシベンゾイル)-N' -n-オクタデシルオキシカルポニルヒドラジン、N-(4-ヒドロキシベンゾイル)-N'-n-オクチルヒ ドラジノカルボニルヒドラジン、N-(4-ヒドロキシ ベンゾイル) - N '-n-ドデシルヒドラジノカルボニ ルヒドラジン、N- (4-ヒドロキシベンゾイル) -N'-n-テトラデシルヒドラジノカルボニルヒドラジ ン、N-(4-ヒドロキシベンゾイル)-N'-n-オ クタデシルヒドラジノカルポニルヒドラジン、N-(2、4-ジヒドロキシベンソイル) -N'-n-オク チルヒドラジノカルボニルヒドラジン、N-(2, 4-ジヒドロキシベンゾイル)-N'-n-ドデシルヒドラ ジノカルポニルヒドラジン、N-(2,4-ジヒドロキ シベンゾイル) - N′-n-テトラデシルヒドラジノカ ルポニルヒドラジン、N-(2, 4-ジヒドロキシベン ゾイル) - N '-n-オクタデシルヒドラジノカルポニ ルヒドラジン等が挙げられる。

【0016】また、式化2中、n=1である化合物とし ては、N-(4-ヒドロキシベンゾイル)-N'-n-オクタノイルメチレンジアミン、N-(4-ヒドロキシ ベンゾイル) - N′-n-ドデカノイルメチレンジアミ ン、N-(4-ヒドロキシベンゾイル)-N′-n-テ トラデカノイルメチレンジアミン、N-(4-ヒドロキ シベンゾイル) - N' - n - オクタデカノイルメチレン ジアミン、N-(2, 4-ジヒドロキシベンゾイル)-N'-n-d4-ジヒドロキシベンゾイル) -N'-n-ドデカノイ ルメチレンジアミン、N-(2, 4-ジヒドロキシペン ゾイル) - N′-n-テトラデカノイルメチレンジアミ ン、N-(2, 4-ジヒドロキシベンゾイル)-N'n-オクタデカノイルメチレンジアミン、N-(4-ヒ ドロキシベンゾイル) -N'-n-オクチルアミノカル (4-ヒドロキシベンゾイル) -N'-n-ドデシルオ 50 ボニルメチレンジアミン、N-(4-ヒドロキシベンゾ イル) - N′-n-ドデシルアミノカルポニルメチレン ジアミン、N-(4-ヒドロキシペンゾイル)-N'n-テトラデシルアミノカルボニルメチレンジアミン、 N- (4-ヒドロキシペンゾイル) -N'-n-オクタ デシルアミノカルポニルメチレンジアミン、N-(2, 4 - ジヒドロキシベンゾイル) - N′-n-オクチルア ミノカルポニルメチレンジアミン、N-(2, 4-ジヒ ドロキシベンゾイル) - N '- n - ドデシルアミノカル ポニルメチレンジアミン、N-(2, 4-ジヒドロキシ ペンゾイル) - N'-n-テトラデシルアミノカルボニ 10 ルメチレンジアミン、N-(2,4-ジヒドロキシベン ゾイル) - N' - n - オクタデシルアミノカルポニルメ チレンジアミン、N- (4-ヒドロキシベンゾイル) -N'-n-オクチルオキシカルポニルメチレンジアミ ン、N-(4-ヒドロキシベンゾイル)-N'-n-ド デシルオキシノカルポニルメチレンジアミン、N-(4 -ヒドロキシベンゾイル) -N'-n-テトラデシルオ キシカルポニルメチレンジアミン、N-(4-ヒドロキ シベンゾイル) - N' - n - オクタデシルオキシカルボ ニルメチレンジアミン、N-(2, 4-ジヒドロキシベ 20 ンゾイル)-N'-n-オクチルオキシカルポニルメチ レンジアミン、N-(2, 4-ジヒドロキシベンゾイ ル) - N′-n-ドデシルオキシカルボニルメチレンジ アミン、N-(2, 4-ジヒドロキシベンゾイル)-N′-n-テトラデシルオキシカルポニルメチレンジア ミン、N-(2, 4-ジヒドロキシベンゾイル)-N' -n-オクタデシルオキシカルポニルメチレンジアミ ン、N-(4-ヒドロキシベンゾイル)-N'-n-オ クチルヒドラジノカルポニルメチレンジアミン、N-(4-ヒドロキシベンゾイル) -N'-n-ドデシルヒ 30 ドラジノカルポニルメチレンジアミン、N-(4-ヒド ロキシベンゾイル) - N'-n-テトラデシルヒドラジ ノカルポニルメチレンジアミン、N-(4-ヒドロキシ ベンゾイル) - N '-n-オクタデシルヒドラジノカル ポニルメチレンジアミン、N-(2, 4-ジヒドロキシ ペンゾイル) - N' - n - オクチルヒドラジノカルボニ ルメチレンジアミン、N-(2, 4-ジヒドロキシベン ゾイル) - N′-n-ドデシルヒドラジノカルポニルメ チレンジアミン、N-(2,4-ジヒドロキシペンゾイ ル) - N' - n - テトラデシルヒドラジノカルポニルメ 40 チレンジアミン、N-(2, 4-ジヒドロキシベンゾイ ル) - N' - n - オクタデシルヒドラジノカルポニルメ チレンジアミン等が挙げられる。

【0017】本発明による電子受容性化合物はそれぞれ 1種または2種以上を混合して使用してもよく、通常無 色ないし淡色の染料前駆体に対する本発明による電子受 容性化合物の使用量は、5~5000重量%、好ましく は10~3000重量%である。

【0018】本発明に用いられる通常無色ないし淡色の電子供与性染料前駆体としては一般に感圧記録紙や感熱 50

記録紙等に用いられるものに代表されるが、特に制限されるものではない。具体的な例としては、例えば下記に挙げるものなどがあるが、本発明はこれに限定されるものではない。

6

【0019】(1)トリアリールメタン系化合物 3. 3-ピス (p-ジメチルアミノフェニル) -6-ジ メチルアミノフタリド(クリスタルパイオレットラクト ン)、3,3-ビス(p-ジメチルアミノフェニル)フ タリド、3- (p-ジメチルアミノフェニル)-3-(1, 2-ジメチルインドール-3-イル) フタリド、 3-(p-ジメチルアミノフェニル)-3-(2-メチ ルインドール-3-イル) フタリド、3-(p-ジメチ ルアミノフェニル) -3-(2-フェニルインドールー 3-イル) フタリド、3、3-ピス(1、2-ジメチル インドール-3-イル) -5-ジメチルアミノフタリ ド、3,3-ビス(1,2-ジメチルインドール-3-イル) -6-ジメチルアミノフタリド、3、3-ビス (9-エチルカルパゾール-3-イル)-5-ジメチル アミノフタリド、3,3-ピス(2-フェニルインドー $\mathcal{N}-3-4\mathcal{N}$) -5-3メチルアミノフタリド、3-p-ジメチルアミノフェニル-3-(1-メチルピロール -2-イル) -6-ジメチルアミノフタリド等、

【0020】 (2) ジフェニルメタン系化合物 4, 4' - ピス (ジメチルアミノフェニル) ベンズヒド リルベンジルエーテル、N-クロロフェニルロイコオー ラミン、N-2, 4, 5-トリクロロフェニルロイコオーラミン等、

【0021】(3) キサンテン系化合物

ローダミンBアニリノラクタム、ローダミンB-p-クロロアニリノラクタム、3-ジエチルアミノ-7-ジベンジルアミノフルオラン、3-ジエチルアミノ-7-オクチルアミノフルオラン、3-ジエチルアミノ-7-フェニルフルオラン、3-ジエチルアミノ-6-クロロ-7-メチルフルオラン、3-ジエチルアミノ-7-(3,4-ジクロロアニリノ)フルオラン、3-ジエチルアミノ-7-(2-クロロアニリノ)フルオラン、

アニリノフルオラン等、

【0023】(4) チアジン系化合物 ベンゾイルロイコメチレンブルー、p-ニトロベンゾイ ルロイコメチレンブルー等、

【0024】(5)スピロ系化合物

3-メチルスピロジナフトピラン、3-エチルスピロジ ナフトピラン、3,3'-ジクロロスピロジナフトピラ ン、3-ベンジルスピロジナフトピラン、3-メチルナ フト-(3-メトキシベンゾ)スピロピラン、3-プロ ピルスピロベンゾピラン等。

【0025】前記通常無色ないし淡色の染料前駆体はそれぞれ1種または2種以上を混合して使用してもよい。

【0026】次に本発明の可逆性感熱記録材料の具体的 製造方法について述べるが、本発明はこれに限定される ものではない。

【0027】本発明の可逆性感熱記録材料の製造方法の 具体例としては、通常無色ないし淡色の染料前駆体と本 発明による電子受容性化合物を主成分とし、これらを支 持体上に塗布或いは印刷して可逆性感熱記録層を形成す る方法が挙げられる。

【0028】通常無色ないし淡色の染料前駆体と、本発明による電子受容性化合物を可逆性感熱記録層に含有させる方法としては、各々の化合物を単独で溶媒に溶解もしくは分散媒に分散してから混合する方法、各々の化合物を混ぜ合わせてから溶媒に溶解もしくは分散媒に分散する方法、各々の化合物を加熱溶解し均一化した後冷却し、溶媒に溶解もしくは分散媒に分散する方法等が挙げられるが特定されるものではない。

【0029】また、可逆性感熱記録層の強度を向上する 等の目的でパインダーを可逆性感熱記録層中に添加する 事も可能である。パインダーの具体例としては、デンプ ン類、ヒドロキシエチルセルロース、メチルセルロー ス、カルボキシメチルセルロース、ゼラチン、カゼイ ン、ポリビニルアルコール、変性ポリビニルアルコー ル、ポリアクリル酸ソーダ、アクリル酸アミド/アクリ ル酸エステル共重合体、アクリル酸アミド/アクリル酸 エステル/メタクリル酸3元共重合体、スチレン/無水 マレイン酸共重合体のアルカリ塩、エチレン/無水マレ イン酸共重合体のアルカリ塩等の水溶性高分子、ポリ酢 酸ビニル、ポリウレタン、ポリアクリル酸エステル、ス 40 チレン/プタジエン共重合体、アクリロニトリル/プタ ジエン共重合体、アクリル酸メチル/ブタジエン共重合 体、エチレン/酢酸ビニル共重合体等のラテックスなど があげられるが、これらに限定されるものではない。

【0030】また、可逆性感熱記録層の発色感度及び消色温度を調節するための添加剤として、熱可融性物質を可逆性感熱記録層中に含有させることができる。60℃~200℃の融点を有するものが好ましく、特に80℃~180℃の融点を有するものが好ましい。一般の感熱記録紙に用いられている増感剤を使用することもでき

る。例えば、N-ヒドロキシメチルステアリン酸アミド、ステアリン酸アミド、パルミチン酸アミドなどのワックス類、2-ベンジルオキシナフタレン等のナフトール誘導体、p-ベンジルピフェニル、4-アリルオキシピフェニル等のピフェニル誘導体、1,2-ピス(3-メチルフェノキシ)エタン、2,2′-ピス(4-メトキシフェノキシ)ジエチルエーテル、ピス(4-メトキシフェニル)エーテル等のポリエーテル化合物、炭酸ジフェニル、シュウ酸ジベンジル、シュウ酸ピス(p-メチルベンジル)エステル等の炭酸またはシュウ酸ジエステル誘導体等を単独または併用して添加することができる。

【0031】本発明の可逆性感熱記録材料に用いられる 支持体としては、紙、各種不織布、織布、合成樹脂フィ ルム、合成樹脂ラミネート紙、合成紙、金属箔、ガラス 等、あるいはこれらを組み合わせた複合シートを目的に 応じて任意に用いることができ、透明、半透明或いは不 透明のいずれであっても良い。また、これらに限定され るものでもない。

20 【0032】本発明の可逆性感熱記録材料の層構成は、可逆性感熱記録層のみであっても良い。必要に応じて、可逆性感熱記録層上に保護層を設けることも又、可逆性感熱記録層と支持体の間に中間層を設けることもできる。この場合、保護層および/または中間層は2層ないしは3層以上の複数の層から構成されていてもよい。更に可逆性感熱記録層中および/または他の層および/または可逆性感熱記録層が設けられている面および/または反対側の面に、電気的、磁気的、光学的に情報が記録可能な材料を含んでも良い。また、可逆性感熱記録層が30 設けられている面と反対側の面にカール防止、帯電防止を目的としてバックコート層を設けることもできる。

【0033】可逆性感熱記録層は、各発色成分を微粉砕して得られる各々の分散液を混合し、支持体上に塗布、印刷して乾燥する方法、各発色成分を溶媒に溶解して得られる各々の溶液を混合し、支持体上に塗布、印刷して乾燥する方法などにより得ることができる。この場合、例えば、各発色成分を一層ずつに含有させ、多層構造としてもよい。

【0034】また、可逆性感熱記録層及び/または保護層及び/または中間層には、ケイソウ土、タルク、カオリン、焼成カオリン、炭酸カルシウム、炭酸マグネシウム、酸化チタン、酸化亜鉛、酸化ケイ素、水酸化アルミニウム、尿素-ホルマリン樹脂等の顔料、その他に、ステアリン酸亜鉛、ステアリン酸カルシウム等の高級脂肪酸金属塩、パラフィン、酸化パラフィン、ポリエチレン、酸化ポリエチレン、ステアリン酸アミド、カスターワックス等のワックス類を、また、ジオクチルスルホコハク酸ナトリウム等の分散剤、さらに界面活性剤、蛍光染料などを含有させることもできる。

50 [0035]

【作用】本発明による電子受容性化合物は、ロイコ染料を発色させる能力を持つにも関わらず、特異的に消色効果すなわち可逆効果も持ち合わせている。このことは全く予期しないことであり、通常の感熱記録材料に用いている電子受容性化合物、即ち、2,2-ピス(4-ヒドロキシフェニル)プロパン、ピス(4-ヒドロキシフェニル)スルホン、4-ヒドロキシ安息香酸ベンジル等ではこのような可逆効果は全く見られない。

【0036】本発明の感熱記録材料の画像形成及び消去原理は未だ明確ではないが、以下の様に考えられる。通 10 常無色ないし淡色の染料前駆体は、フェノール性化合物のような電子受容性化合物と共に加熱すると染料前駆体から電子受容性化合物への電子移動が起こり発色する。この時、電子受容性化合物分子は発色した染料分子の極めて近傍に存在していると考えられる。また、発色した染料分子から電子受容性化合物分子を引き離すと、発色した染料分子は再び電子を受け取り、発色前の染料前駆体の状態となる。本発明は加熱により、電子受容性化合物分子と染料分子との距離を変化させ発色及び消色を行うものと考えられる。 20

【0037】さらに詳しく述べるならば、本発明による 電子受容性化合物は、その構造の中に大きな脂肪鎖を持 つため、染料前駆体分子および発色した染料分子との相 溶性が低く、凝固した状態では互いに殆ど溶け合わない と考えられる。また、加熱溶融状態の様に染料前駆体分 子と本発明による電子受容性化合物分子が自由に運動で きる状態では、染料前駆体分子と本発明による電子受容 性化合物分子は互いにある割合で溶け合い、発色状態と なる。それ故、発色している溶融状態の混合物をゆっく り冷却すると、降温するに従い本発明による電子受容性 化合物と染料分子は互いに溶け合わなくなって相分離 し、消色する。この時、本発明による電子受容性化合物 は分子内に、水素結合能力を持つ連結基を含有している ため、分子間水素結合により速やかに結晶化してしま う。一方、急速に冷却を行うと、相分離する前、即ち発 色状態のままで固化するため、発色状態が固定され固化 後も発色状態が安定に保持される。

【0038】以上のように、本発明による可逆性感熱記録材料は、染料分子と本発明による電子受容性化合物との相溶状態および相分離状態を作りだし、発色および消色状態を発現させるものと考えられる。発色を行うには、加熱に引き続き急速な冷却が起これば良く、例えばサーマルヘッド、レーザー光等による加熱により可能である。また、加熱後ゆっくり冷却すれば消色し、例えば熱ロール、熱スタンプ、サーマルヘッド、高周波加熱、熱風、電熱ヒーター或いはハロゲンランプ等の光源からの輻射熱等を用いることにより行える。

【0039】以下に、本発明の電子受容性化合物の一部の具体的合成例を挙げる。

【0040】合成例1

10 N---(p--ヒドロキシベンゾイル) ----N' ----オクタ デシロイルヒドラジンの合成。

4ーヒドロキシ安息香酸ヒドラジド30.4g、トリエチルアミン21.0gをジメチルアセトアミド300m 1に溶解し、次いで氷冷下でオクタデシロイルクロリド60.0gを適下した。適下終了後、室温で1時間攪拌したのち、反応液に1NーHC1水溶液500m1を加え、析出した結晶を濾取した。得られた結晶を水洗、乾燥したのち、熱ペンゼンで洗浄、イソプロパノールから再結晶すると目的物の純品66.6gが得られた。融点、162.5℃

【0041】合成例2

N-p-ヒドロキシベンゾイル-N'-n-オクタデカ ノイルメチレンジアミンの合成。

冷却器及び攪拌機を付けた500mlのフラスコに、pーヒドロキシベンズアミド22.0g、Nーメチロールステアリルアミド25.0g、濃塩酸1.5ml及びテトラヒドロフラン350mlを仕込み、70℃で5時間加熱攪拌した。反応液を室温まで冷却し、析出した結晶を濾取した。イソプロパノールより再結晶を行い、N-pーヒドロキシベンゾイルーN′-n-オクタデカノイルメチレンジアミンの白色結晶33.1gを得た。融点、157.6℃。

[0042]

【実施例】以下実施例によって本発明を更に詳しく説明 する。

【0043】実施例1

(A) 可逆性感熱塗液の作成

染料的駆体である3ージーnープチルアミノー6ーメチルー7ーアニリノフルオラン40部を2.5%ポリビニルアルコール水溶液90部と共にボールミルで24時間粉砕し、染料的駆体分散液を得た。次いでNー(4ーヒドロキシベンゾイル)ーN′ーnーテトラデカノイルヒドラジン100部を2.5%ポリビニルアルコール水溶液400部と共にボールミルで24時間粉砕し分散液を得た。上記2種の分散液を混合した後、10%ポリビニルアルコール水溶液200部、水400部を添加、よく混合し、可逆性感熱塗液を作成した。

【0044】(B)可逆性感熱記録材料の作成

(A) で調製した可逆性感熱塗液をポリエチレンテレフタレート (PET) シートに、固形分塗抹量4g/m²となる様に塗抹し、乾燥後、スーパーカレンダーで処理して可逆性感熱記録材料を得た。

【0045】実施例2

実施例1で用いたN-(4-ヒドロキシベンゾイル)-N'-n-テトラデカノイルヒドラジンのかわりに、<math>N-(4-ヒドロキシベンゾイル-N'-n-オクタデカノイルヒドラジンを使用した他は、実施例1と同様にして可逆性感熱記録材料を得た。

50 【0046】実施例3

実施例 1 で用いたN-(4-E) ロキシベンゾイル) -N'-n-F トラデカノイルとドラジンのかわりに、N-(2,4-S) ビドロキシベンゾイル) -N'-n-F クタデカノイルとドラジンを使用した他は、実施例 1 と同様にして可逆性感熱記録材料を得た。

【0047】実施例4

実施例 1 で用いたN-(4-ヒドロキシベンゾイル)-N'-n-テトラデカノイルヒドラジンのかわりに、<math>N-(4-ヒドロキシベンゾイル)-N'-n-オクタデシルアミノカルボニルヒドラジンを使用した他は、実施 <math>10 例 1 と同様にして可逆性感熱記録材料を得た。

【0048】 実施例5

実施例 1 で用いたN-(4-ヒドロキシベンゾイル)-N'-n-テトラデカノイルヒドラジンのかわりに、<math>N-(4-ヒドロキシベンゾイル)-N'-n-オクタデカノイルメチレンジアミンを使用した他は、実施例 <math>1 と同様にして可逆性感熱記録材料を得た。

【0049】実施例6

実施例 1 で用いたN-(4-ヒドロキシベンゾイル)-N'-n-テトラデカノイルヒドラジンのかわりに、<math>N-20-(4-ヒドロキシベンゾイル)-N'-n-オクタデシルアミノカルボニルメチレンジアミンを使用した他は、実施例 <math>1 と同様にして可逆性感熱記録材料を得た。

【0050】比較例1

実施例1で用いたN-(4-ヒドロキシベンゾイル)-N'-n-テトラデカノイルヒドラジンのかわりに、没食子酸とステアリルアミンとの塩を使用した他は、実施例<math>1と同様にした。

【0051】比較例2

実施例1で用いたN-(4-ヒドロキシベンゾイル) - 30 N'-n-テトラデカノイルヒドラジンのかわりに、 2, 2-ピス(4-ヒドロキシフェニル) プロパンを使用した他は、実施例<math>1と同様にした。

【0052】比較例3

実施例 1 で用いたN- (4 - ヒドロキシベンゾイル) - N' - n - テトラデカノイルヒドラジンのかわりに、4 - ヒドロキシ安息香酸ベンジルを使用した他は、実施例 1 と同様にした。

【0053】比較例4

実施例 1 で用いたN-(4-E) にロキシベンゾイル) -N'-n-F トラデカノイルとドラジンのかわりに、オクタデシルホスホン酸を使用した他は、実施例 1 と同様にした。

12

【0054】試験1(発色濃度=熱応答性)

実施例1~6 および比較例1~4 で得た感熱記録材料を、京セラ製印字ヘッドKJT-256-8MGF1付き大倉電気製感熱ファクシミリ印字試験機TH-PMDを用いて印加パルス1. 1ミリ秒で印加電圧26ポルトの条件で印字し、得られた発色画像の濃度を濃度計マクベスRD918を用いて測定した。結果を表1に示した。

[0055]

試験2 (発色濃度の経時変化=画像安定性)

実施例1~6および比較例1~4で得た感熱記録材料を、京セラ製印字ヘッドKJT-256-8MGF1付き大倉電気製感熱ファクシミリ印字試験機TH-PMDを用いて、印加パルス1.1ミリ秒で印加電圧26ポルトの条件で印字し、温度35℃、相対温度30%の雰囲気下に14時間保存した後、試験1と同様にして、発色部の濃度を測定し、下記数1により画像残存率を計算した。結果を表1に示した。

[0056]

【数1】

 $A = (C/B) \times 100$

A:画像残存率(%)

B:試験前の画像濃度

C:試験後の画像濃度

【0057】試験3(画像の消去性)

実施例1~6および比較例1~4で得た感熱記録材料を、京セラ製印字ヘッドKJT-256-8MGF1付き大倉電気製感熱ファクシミリ印字試験機TH-PMDを用いて印加パルス1.1ミリ秒で印加電圧26ポルトの条件で印字し、得られた発色画像部に熱スタンプを用いて120℃で1秒間加熱した後、試験1と同様にして濃度を測定した。結果を表1に示した。

[0058]

【表1】

3					14
	試験1 発色部の濃度	試験2 画像残存率	試験3 消去部の濃度	コントラスト	
実施例1	1.40	98%	0.15	0	
実施例2	1.40	99%	0.10	0	
実施例3	1.38	98%	0.15	0	
実施例4	1.35	96%	0.10	0	
実施例5	1.40	98%	0.12	0	
実施例6	1.38	95%	0.10	0	
比較例1	0.47	53%	0.23	Δ	
比較例2	1.37	96%	1. 28	×	
比較例3	1.33	68%	1. 18	×	
			· -		1

78%

0.68

1.33

【0059】表1中、○は消去部の濃度が発色部の濃度の30%未満で発色部と消去部のコントラストが良好、 △は消去部の濃度が発色部の濃度の30%以上80%未満でコントラストが不十分、×は消去部の濃度が発色部の濃度の80%以上で可逆性が認められないことを表す。

比較例4

[0060]

【発明の効果】表1に示したように、通常無色ないし淡

色の電子供与性染料前駆体と、加熱により該染料前駆体に可逆的な色調変化を生じせしめる前記一般式化1で表される電子受容性化合物とを含有する可逆性感熱記録材料により、良好なコントラストで画像の形成・消去が可能で、日常生活の環境下で経時的に安定な、更には高温20 保存条件下にあっても経時的に安定な画像を保持可能な可逆性感熱記録材料を得ることができた。

Δ

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.