COMP20007 Workshop Week 8

Preparation:

- use the powerpoint or PDF slides for note taking if you like, but
 - have papers and pens (or drawing tools) ready, and/or
 - ready to work on whiteboards
- 1 | Binary Heap: Operations, Heapsort, Questions 8.2, 8.3
 - Sorting Algorithms quicksort: Question 8.1

Quickselect (Question 8.4)

LAB | Lab: Sorting algs, follow the given instructions

A Priority Queue: Binary Heap = ?

Binary Heap as a concrete data type (implementation) for PQ.

min heap, max heap = ?

What is a, say, max heap? How is it implemented?

Binary Heap: conceptually, is a binary tree

Binary Heap: is implemented as an array!


```
Heap is H[1..n]
```

- level i occupies 2ⁱ cells in array H[1..n] (except for the last level)
- if root is level 1, then level i starts from H[i]

Binary Heap: parent and children of a node

- left child of H[i] is H[2*i]
- right child of H[i] is H[2*i+1]

inject = enPQ = Insert a new elem into a heap

Sift Up

while (has parent and parent has lower priority): swap up with the parent

eject = delete (and returns) the heaviest

Sift Down:

while (has children and the heavier child has higher priority): swap down with the heavier child

Heapify: Turning an array H[1..n] into a heap

Notes:

```
function Heapify(H[1..n])
  for i ← n/2 downto 1 do
    downheap(H, i)
```

= Θ(n) (see lectures and/or ask Google for a proof)

The operation is aka. **Heapify**/Makeheap/ Bottom-Up Heap Construction

Example: build maxheap for keys E X A M P

- a) Show how this heap would be stored in an array as discussed in lectures (root is at index 1; node at index i has children at indices 2i and 2i+1)
- RemoveRootFromHeap
 (eject) algorithm from
 lectures on this heap by hand
 (i.e., swap the root and the
 "last"element and remove it. To
 maintain the heap property we
 then SiftDown from the root).
- c) Run the InsertIntoHeap (inject) algorithm and insert the value 2 into the heap

Q 8.2

Your answers:

- a) array is: [???]
- b) Run the RemoveRootFromHeap:

c) Run the InsertIntoHeap(2)

Q 8.3 [opt]: k-smallest using min-heap

- The *k-th smallest* problem:
 - Given an array A[] of n elements, and an integer k
 - Find the k-th smallest value (suppose that k is zero-origin, that is, k can be any of 0, 1, 2, ..., n-1)
- How can we use a min-heap data structure to solve the kth-smallest element problem? What is the time-complexity of this algorithm?

Your answer:

Algorithm	Complexity
<pre>function HeapkthSmallest(A[0n-1],k)</pre>	

Basic Sorting Algorithms

Know how to run by hand the following algorithms:

- Selection Sort
- Insertion Sort
- Quick Sort with Lomuto's Partitioning
- Quick Sort with Hoare's Partitioning
- Merge Sort
- Heap Sort

Run example with keys:

EXAMP

LAB: follow instructions in workshop sheet

COMP20007.Worshop

Question 8.1

We saw the following sorting algorithms,

- (a) Selection Sort
- (b) Insertion Sort
- (c) Quicksort (with Lomuto partitioning)

For each algorithm:

- (i) Run the algorithm on the array: [A N A L Y S I S]
- (ii) time complexity of the algorithm=?
- (iii) Is the sorting algorithm stable?
- (iv) Does the algorithm sort in-place?
- (v) Is the algorithm input sensitive?
- (vi) What is the strongest point of the algorithm (when should it be used)?

If you get time, try to answer these questions for

- (d) Quicksort (with Hoare partitioning), and
- (e) Merge Sort

(f) Heap Sort

Quicksort for A[I..r]

function quicksort(A[l..r])

```
if l >= r then return
s ← do partitioning, ie:  # Lomuto or Hoare or ...
  pivot= A[l]
  rearrange A[] into A[l..s-1] A[s] A[s+1..r] so that
  A[s]= pivot
  all elements in A[l..s-1] are <= pivot
  all elements in A[s+1..r] are >= pivot
  quicksort(A[l..s-1))
  quicksort(A[s+1..r)
```

Notes:

- We can choose any element in A[1..r] as pivot: just swap it with A[1] at the start of partitioning
- A[l..s-1] or A[s+1..r] could be empty
- Complexity depends on the relative lengths of A[1..s-1] and A[s+1..r]

```
function LOMUTOPARTITION(A[l..r])
# loop init:
                                            s i
  P \leftarrow A[l]
  s \leftarrow l, i \leftarrow l+1
# loop invariant:
# A[l+1..s]<P
                                                      S
# A[i..r] not yet examined
                                                <P
                                                          >=P
                                                                       un-examined
  while i \le r do
     # move i++ until A[i]<P
                                                                  i \rightarrow i
                                                     S
     if A[i] < P then
                                                <P
                                                          >=P
                                                                        un-examined
       #extend the yellow area
        s \leftarrow s + 1
        SWAP(A[S], A[i])
                                                 <P
                                                           >=P
                                                                        un-examined
     i \leftarrow i+1
  # at loop exit (i=r+1) ------
                                                     <P
                                                                       >=P
  \# A[s] is the last yellow (OR s=I)
  SWAP(A[], A[S])
                                                  <P
                                                                    >=P
                                                             Р
  return s
```

COMP20007.Worshop

Example: Run quicksort with Lomuto's for [E X A M P]

```
# loop init:
  P \leftarrow A[l]
  s \leftarrow l, i \leftarrow l+1
# loop invariant:
# A[1+1...s] < P  A[s+1...i-1] \ge P
# A[i..r] not yet examined
  while i ≤ r do
     # move i++ until A[i]<P
     if A[i] < P then
       #extend the yellow area
       s \leftarrow s + 1
       SWAP(A[S], A[i])
     i \leftarrow i+1
  # at loop exit (i=r+1) -----
  \# A[s] is the last yellow (OR s=I)
  SWAP(A[l], A[s])
  return s
```

```
Partitioning [ E X A M P]
      E<sub>s</sub> X<sub>i</sub> A M P
                                   To simplify,
      E_s X A_i M P
                                   we will write
      E A_s X_i M P
                                     out the
      E A<sub>s</sub> X M P i
                                    sequence
    [A] E_s [X M P]
                                    only: at the
                                    beginning
  Partitioning [ X M P]
                                    and end of
          X_s M_i P
                                    the loop,
          X M_{si} P
                                    and after a
          X M_s P_i
                                      swap.
         X M Psi
         X M P<sub>s</sub> i
                                       The
                                   algorithm is
         [PM]X_s
                                    quite slow
    Partitioning [ P M]
                                     on small
           P_s M_i
                                     arrays!
           P M_{si}
          PM_{si}
           [M] P_s
```

Final sorted: [A E M P X]

qsort with Lomuto's Partitioning

Q8.1c): Run quicksort with Lomuto's for [A N A L Y S I S]. Here we rewrite the sequence after each swap and at the start/end of the loop.

1. Partitioning of A N A L Y S I S

A_s N_i A L Y S I S ???

3. Partitioning of

???

5. Partitioning of

???

2. Partitioning of

???

4. Partitioning of

???

Final sorted sequence ???

```
function HoarePartition(A[1..r])
                                           i \rightarrow
# loop init:
P \leftarrow A[1]
i \leftarrow 1; j \leftarrow r + 1
                                                                                    r
# loop invariant:
                                                <=P
# A[l+1..i]≤P
                                                            un-examined
                not yet examined
\# A[i+1..j-1]
repeat
  # move i forward until A[i]>=P
  repeat i←i+1 until A[i] ≥ P
                                                 <=P
                                                             un-examined
  # same as do i←i+1 while A[i]<P
  # move j backward until A[j]<=P
  repeat j \leftarrow j-1 until A[j] \leq P
  # extend yellow and green area
                                                                             >=P
                                                <=P
                                                             un-examined
    at the same time by swapping ----
  if (i<j) then Swap(A[i], A[j])
until i ≥ j
# at loop's exit:
                                                    <=P
                                                                        >=P
                    Run example
                          with
SWAP(A[1], A[]
                      EXAMP
                                                    <=P
return j
```

qsort with Hoare's Partitioning

Q8.1d): Run quicksort with Hoare's for [A N A L Y S I S]. Here we rewrite the sequence after each swap and at the start/end of the loop.

1. Partitioning of
ANALYSIS

Ai NALYSIS

???

3. Partitioning of ???

2. Partitioning of ???

4. Partitioning of ????

Final sorted sequence ???

Also

Make sure you can run (by hand) Merge Sort and HeapSort for

- [E X A M P]
- [ANALYSIS]

And, review the lectures for the remaining questions of problem 1. For each sorting algorithm, think:

- which is the best situations when we want to employ that algorithm?
- in which situations when we definitely don't want that algorithm?

Q 7.4 [opt]

- Design an algorithm Quickselect based on Quicksort which uses the Partition algorithm to find the k-th smallest element in an array A.
- b) Show how you can run your algorithm to find the k-th smallest element where k = 4 and A = [9,3,2,15,10,29,7].
- c) What is the best-case time-complexity of your algorithm? What type of input will give this time-complexity?
- d) What is the worst-case time-complexity of your algorithm? What type of input will give this time-complexity?
- e) What is the expected-case (i.e., average) time-complexity of your algorithm?
- f) When would we use this algorithm instead of the heap based algorithm from Question 3

partitionning & qselect

```
partition( A[lo..hi]):
      return m
11
   function qselect( A[lo..hi], k)
12
     m= partition(A[lo..hi])
13
14
15
16
17
21
   function ksmallest(A[0..n-1], k)
22
      if (k>=0 \&\& k< n)
23
        return qselect(A[0..n-1], k)
```

Check: partitionning & qselect

```
partition( A[lo..hi]):
      return m
11
   function qselect( A[lo..hi], k)
12
     m= partition(A[lo..hi])
13
      if (k==m) then return A[m]
14
     if (k<m) then
15
        qselect(A[lo..m-1], k)
16
     else
17
        qselect(A[m+1..hi], k)
21
   function ksmallest(A[0..n-1], k)
22
      if (k>=0 \&\& k< n)
23
        return qselect(A[0..n-1], k)
```

Problem 4

- a) Design an algorithm based on Quicksort which uses the Partition algorithm to find the k-th smallest element in an array A.
- b) Show how you can run your algorithm to find the k-th smallest element where k = 4 and $A = \{9,3,2,15,10,29,7\}$.
- c) What is the best-case time-complexity of your algorithm? What type of input will give this time-complexity?
- d) What is the worst-case time-complexity of your algorithm? What type of input will give this time-complexity?
- e) What is the expected-case (i.e., average) time-complexity of your algorithm?

LAB