Processamento de Consultas

Banco de Dados: Teoria e Prática

André Santanchè Instituto de Computação - UNICAMP Outubro 2012

Execução de Consulta

Passos Típicos (Elmasri, 2010)

Execução de Consulta

Passos Típicos

Análise e Validação

- Análise e Validação
 - Análise léxica
 - Análise sintática
 - Validação
- Representações internas:
 - árvore de consulta
 - grafo de consulta

Estratégia de Execução

- Consulta possui muitas estratégias de execução possíveis
- Planejamento da Estratégia de Execução
 - Otimização → processo de escolha da estratégia adequada (razoavelmente eficiente)

Código da Consulta

- Pode ser:
 - Executado diretamente
 - modo interpretado
 - Armazenado e executado quando necessário
 - modo compilado

Execução do Código

- Processador executa código da consulta
- Produz resultado da execução

Ênfase desta aula: Otimização de Consultas

Consultas Declarativas

- "O quê" ao invés de "Como"
- Otimização de consulta
 - Solução razoavelmente eficiente (Elmasri, 2011)
 - Solução ótima pode ser muito custoza

Consulta SQL em Álgebra Relacional

- Consulta SQL → Álgebra Relacional Estendida
 - Inclui operadores como COUNT, SUM e MAX
- Consulta SQL decomposta em blocos
 - Bloco de Consulta ou Bloco Simples:
 - Contém uma única expressão SELECT-FROM-WHERE (GROUP BY e HAVING se houver)
 - Sem aninhamento
 - Consultas aninhadas são identificadas como consultas independentes

Decomposição em Blocos **Exemplo**

Tabela

Pessoa (Codigo, Nome, Telefone, AnoFiliacao)

Nome dos filiados mais antigos:

Blocos

- 1 SELECT Codigo, Nome
 FROM PESSOA
 WHERE AnoFiliacao = (referência 2)
- 2 SELECT MIN (AnoFiliacao)) FROM PESSOA

Algoritmos para Operações

Ordenação Externa

Ordenação Externa

38 27 43 3 9 82 10

Ordenação Externa Números

- bd blocos em disco
- bm blocos de memória
- Ordenação
 - 2*bd transferências (leitura e gravação)
- Merge
 - 2*bd transferências a cada estágio
 - bd/bm* rodadas de ordenação
 - ** níveis
- Custo: $(2*bd) + (2*bd * *tog_{bm-1}(bd/bm) *)$

Seleção

Esquema Conceitual - Exemplo Táxis

Este é um subconjunto do Estudo de Caso proposto "Despacho e controle de Táxis via terminais móveis ligados on-line com um sistema multi-usuário" por prof. Geovane Cayres Magalhães

Tabelas para exemplo - Táxis

Táxi (TX)

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Corrida (R1)

Clld	<u>Placa</u>	DataPedido
1755	DAE6534	15/02/2003
1982	JDM8776	18/02/2003

Seleção?

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Exatamente Igual Chave Primária

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Exatamente Igual Outra Chave

$$\bigcirc$$
AnoFab=2002 (TX)

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Seleção?

$$\bigcirc$$
AnoFab=2002(TX)

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Seleção?

$$\bigcirc$$
AnoFab>2000 (TX)

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

$$\bigcirc$$
AnoFab>2000 (TX)

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Algoritmos de Seleção

- Exatamente igual
 - chave primária
 - outra chave
- **■** >, <, >=, <=
- compostos

Algoritmos de Seleção

- Pesquisa linear
- Pesquisa binária
- Usando índice primário
- Usando chave hash
- Combinado com o índice primário
- Usando índice de agrupamento
- Usando índice secundário

Seleção Conjuntiva x Dijuntiva

- seleção conjuntiva e.g., and
- seleção dijuntiva e.g., or

Algoritmos de Seleção Conjuntiva

- Índice para uma das condições
- Índice composto envolvendo ambas as condições
- Índice individual para cada condição

Seletividade

- seletividade: valor entre 0 e 1
- n registros
- igualdade atributo único
 - seletividade: 1/n

Seletividade Atributo Não Único

- i valores
- i igualmente distribuído
- registros por valor?
- seletividade?

Seletividade Atributo Não Único

- i valores
- i igualmente distribuído
- n/i registros por valor
- seletividade: 1/i

Seletividade Atributo Não Único

 primeiro as condições com valor menor de seletividade Junção (Join)

Junção (Join) de Loop Aninhado

```
for each ti

for each tj

if match(ti, tj)

add-result(ti, tj)
```

- ni número de tuplas ti
- nj número de tuplas tj
- pares de tuplas? (comparações?)

- ni número de tuplas ti
- nj número de tuplas tj
- ni*nj pares de tuplas

- ni número de tuplas ti
- nj número de tuplas tj
- ni*nj pares de tuplas

- bi bloco de tuplas ti
- bj bloco de tuplas tj
- leituras de blocos?

- ni número de tuplas ti
- nj número de tuplas tj
- ni*nj pares de tuplas

- bi bloco de tuplas ti
- bj bloco de tuplas tj
- bi + bj*ni leituras de blocos

Situações:

 Quantas transferências de bloco se todos os blocos estiverem na memória?

 Quantas transferências se os blocos de um dos loops estiver todo na memória e qual deles escolher (bi ou bj)

Situações:

- Quantas transferências de bloco se todos os blocos estiverem na memória?
 - bi + bj transferências
- Quantas transferências se os blocos de um dos loops estiver todo na memória e qual deles escolher (bi ou bj)?
 - escolher bj
 - bi + bj transferências

Junção de Loop Aninhado em Bloco

```
for each bi
for each bj
for each ti
for each tj
if match(ti, tj)
add-result(ti, tj)
```

Junção de Loop Aninhado em Bloco Números

- bi bloco de tuplas ti
- bj bloco de tuplas tj
- leituras de blocos?

Junção de Loop Aninhado em Bloco Números

- bi bloco de tuplas ti
- bj bloco de tuplas tj
- bi + bj*bi leituras de blocos

Outras Junções

- Junção Indexada
- Junção Merge
- Junção Hash

Projeção

- Recorte dos campos
- **(?)**

Projeção

- Recorte dos campos
- Registros sem duplicatas
 - □ SQL → padrão não eliminar duplicatas
 - DISTINCT → elimina duplicatas
 - Registros com garantia de ser únicos
 - e.g., contendo chave primária
 - Registros sem garantia de ser únicos
 - ordenação
 - hashing

Otimização de Consulta

SQL p/ Álgebra

Versão SQL

SELECT Codigo, Nome FROM PESSOA WHERE AnoFiliacao = 1990

Versão em álgebra

Codigo, Nome (PESSOA))

Versão Árvore

Combinação de Operações usando Pipelining

- Uma consulta é mapeada em uma sequência de operações
- A execução de cada operação produz um resultado temporário
- Alternativa
 - Evitar ao máximo resultados temporários
 - Pipelining
 - concatena operações
 - conforme uma saída é produzida gera entrada para a operação subsequente

Pipelining Pattern Pipe & Filter

exemplo: Java Writer

Codigo	Nome	Telefone	AnoFiliacao
1525	Asdrúbal	5432-1098	1990
1637	Doriana	9876-5432	1983
1701	Quincas	8765-4321	1985
2042	Melissa	7654-3210	1990
2111	Horácio	6543-2109	1983

Codigo	Nome	Telefone	AnoFiliacao
1525	Asdrúbal	5432-1098	1990
1637	Doriana	9876-5432	1983
1701	Quincas	8765-4321	1985
2042	Melissa	7654-3210	1990
2111	Horácio	6543-2109	1983

Codigo	Nome	Telefone	AnoFiliacao
1525	Asdrúbal	5432-1098	1990
2042	Melissa	7654-3210	1990

Codigo	Nome	Telefone	AnoFiliacao
1525	Asdrúbal	5432-1098	1990
2042	Melissa	7654-3210	1990

Codigo	Nome	
1525	Asdrúbal	
2042	Melissa	

Árvore de Consulta

Heuristicas para Otimização de Consulta (Elmasri, 2011)

Heurísticas para Otimização de Consulta

 Título dos livros sobre poesia escritos depois de 1996

```
SELECT LIVRO.Titulo
FROM LIVRO, PERTENCE, CATEGORIA
WHERE CATEGORIA.Nome = "poesia" AND
    LIVRO.ISBN = PERTENCE.ISBN AND
    CATEGORIA.Codigo = PERTENCE.CodCategoria AND
    LIVRO.Ano > 1996
```

Heurística para Otimização de Consulta

7 LIVRO.Titulo

CATEGORIA.Nome="poesia" **AND** LIVRO.ISBN=PERTENCE.ISBN **AND** CATEGORIA.Codigo=PERTENCE.CodCategoria **AND** LIVRO.Ano>1996

- 1. Operações seleção conjuntivas podem se converter em cascatas de seleção
- 2. Operação de seleção é comutativa
- 3. Comutação de seleção com projeção
 - caso o resultado da projeção tenha atributos requeridos pela seleção

- 4. Seleção e junção (ou produto cartesiano) são comutativas
 - se atributos da seleção são de apenas uma das relações
- 5. Operações de união e interseção são comutativas
 - diferença não é

- 6. Seleção é comutativa com operações de conjunto (união, interseção e diferença)
 - sel (A @ B) equivale sel(A) @ sel(B)

Heuristicas

- Quebrar operações de seleção conjuntivas (1)
 - maior liberdade
- Mover seleção em direção às folhas (2), (3),
 (4), (5) e (6)
 - □ apenas 1 tabela → acima da tabela
 - duas tabelas → acima da junção

Quebrando e Descendo Seleções

- 7. As operações de junção e produto cartesiano são comutativas
- 8. As operações de junção, produto cartesiano, união e interseção são associativas

Heurística

 Operações de seleção mais restritivas devem ser executadas primeiro (5) e (6)

Troca de Categoria com Livro

9. Operações de produto cartesiano + seleção podem se converter em junção

Heurística

 Converta produtos cartesianos + seleções em junções

Produto Cartesiano + Seleção = Junção

Regras de Transformação

- 10. Cascata de projeções podem ser ignoradas e convertidas na última
 - Pr1(Pr2(Pr3(A))) equivale Pr1(A)
- 11. Operações de projeção e união são comutativas
 - proj (A U B) equivale proj(A) U proj(B)

Regras de Transformação

- 12. Operação de projeção pode ser comutada com junção (ou produto cartesiano)
 - Relação A → atributos a₁,...,a_n
 - Relação B → atributos b₁,...,b_m
 - $L = (a_1, ..., a_n, b_1, ..., b_m)$
 - Condição só contém atributos L
 - proj_L(A junção B) equivale (proj_{a1,...,an}(A)) junção
 (proj_{b1,...,bn}(B))

Heurística

- Baseados em (10), (11) e (12)
 - Desmembrar operações de projeção
 - Mover projeções em direção às folhas
 - Criar operações de projeção para manter apenas atributos necessários

Projeções Mais Cedo

Heurística

 Identificar subárvores com operações a ser combinadas em um algoritmo

Referências

- Elmasri, Ramez; Navathe, Shamkant B. (2005) Sistemas de Bancos de Dados. Addison-Wesley, 4ª edição em português.
- Elmasri, Ramez; Navathe, Shamkant B. (2011) Sistemas de Bancos de Dados. Addison-Wesley, 6ª edição em português.
- Ramakrishnan, Raghu; Gehrke, Johannes (2003) Database
 Management Systems. McGraw-Hill, 3rd edition.

André Santanchè

http://www.ic.unicamp.br/~santanche

Licença

- Estes slides são concedidos sob uma Licença Creative
 Commons. Sob as seguintes condições: Atribuição, Uso Não-Comercial e Compartilhamento pela mesma Licença.
- Mais detalhes sobre a referida licença Creative Commons veja no link:

http://creativecommons.org/licenses/by-nc-sa/3.0/

 Fotografia da capa e fundo por http://www.flickr.com/photos/fdecomite/
 Ver licença específica em http://www.flickr.com/photos/fdecomite/1457493536/

Figure 18.1 Typical steps when processing a high-level query.

Figure 18.1 Typical steps when processing a high-level query.

"The scanner identifies the language tokens – such as SQL keywords, attribute names, and relation names – in the text of the query, whereas the parser checks the query syntax to determine whether it is formulated according to the syntax rules (rules of grammar) of the query language. The query must also be validated, by checking that all attribute and relation names are valid and semantically meaningful names in the schema of the particular database being queried. An internal representation of the query is then created, usually as a tree data structure called a query tree. It is also possible to represent the query using a graph data structure called a query graph. The DBMS must then devise an execution strategy for retrieving the result of the query from the database files. A query typically has many possible execution strategies, and the process of choosing a suitable one for processing a query is known as query optimization." (Elmasri, 2005, p. 493)

Estratégia de Execução

- Consulta possui muitas estratégias de execução possíveis
- Planejamento da Estratégia de Execução
 - Otimização → processo de escolha da estratégia adequada (razoavelmente eficiente)

Código da Consulta

- Pode ser:
 - Executado diretamente
 - modo interpretado
 - Armazenado e executado quando necessário
 - · modo compilado

Execução do Código

- Processador executa código da consulta
- Produz resultado da execução

Ênfase desta aula: Otimização de Consultas

Consultas Declarativas

- "O quê" ao invés de "Como"
- Otimização de consulta
 - Solução razoavelmente eficiente (Elmasri, 2011)
 - Solução ótima pode ser muito custoza

Consulta SQL em Álgebra Relacional

- Consulta SQL → Álgebra Relacional Estendida
 - Inclui operadores como COUNT, SUM e MAX
- Consulta SQL decomposta em blocos
 - Bloco de Consulta ou Bloco Simples:
 - Contém uma única expressão SELECT-FROM-WHERE (GROUP BY e HAVING se houver)
 - Sem aninhamento
 - Consultas aninhadas são identificadas como consultas independentes

"15.1.1 Decomposition of a Query into Blocks

When a user submits an SQL query, the query is parsed into a collection of query blocks and then passed on to the query optimizer. A query block (or simply block) is an SQL query with no nesting and exactly one SELECT clause and one FROM clause and at most one WHERE clause, GROUP BY clause, and HAVING clause." (Ramakrishnan, 2003, p. 480)

"Typically, SQL queries are decomposed into query blocks, which form the basic units that can be translated into the algebraic operators and optimized. A query block contains a single SELECT-FROM-WHERE expression, as well as GROUP BY and HAVING clauses if these are part of the block. Hence, nested queries within a query are identified as separate query blocks." (Elmasri, 2005, p. 495)

Decomposição em Blocos **Exemplo**

Tabela

Pessoa (Codigo, Nome, Telefone, AnoFiliacao)

Nome dos filiados mais antigos:

- Blocos
- 1 SELECT Codigo, Nome FROM PESSOA

WHERE AnoFiliacao = (referência 2)

2 SELECT MIN (AnoFiliacao)) FROM PESSOA

(Elmasri, 2007, s. 15-8)

Algoritmos para Operações

Ordenação Externa Números

- bd blocos em disco
- bm blocos de memória
- Ordenação
 - 2*bd transferências (leitura e gravação)
- Merge
 - 2*bd transferências a cada estágio
 - *bd/bm** rodadas de ordenação
 - ★og_{bm-1}(bd/bm)** níveis
- Custo: (2*bd) + (2*bd * ★og_{bm-1}(bd/bm)・

Esquema Conceitual - Exemplo Táxis

Este é um subconjunto do Estudo de Caso proposto "Despacho e controle de Táxis via terminais móveis ligados on-line com um sistema multi-usuário" por prof. Geovane Cayres Magalhães

Tabelas para exemplo - Táxis

Táxi (TX)

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Corrida (R1)

<u>ClId</u>	<u>Placa</u>	DataPedido
1755	DAE6534	15/02/2003
1982	JDM8776	18/02/2003

Seleção?

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Exatamente Igual Chave Primária

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Exatamente Igual Outra Chave

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Seleção?

\bigcirc AnoFab=2002(TX)

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Seleção?

①AnoFab>2000(TX)

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Faixa (>, <, >=, <=)

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Algoritmos de Seleção

- Exatamente igual
 - chave primária
 - outra chave
- **■** >, <, >=, <=
- compostos

Algoritmos de Seleção

- Pesquisa linear
- Pesquisa binária
- Usando índice primário
- Usando chave hash
- Combinado com o índice primário
- Usando índice de agrupamento
- Usando índice secundário

Seleção Conjuntiva x Dijuntiva

- seleção conjuntiva e.g., and
- seleção dijuntiva e.g., or

Algoritmos de Seleção Conjuntiva

- Índice para uma das condições
- Índice composto envolvendo ambas as condições
- Índice individual para cada condição

Seletividade

- seletividade: valor entre 0 e 1
- n registros
- igualdade atributo único
 - seletividade: 1/n

Seletividade Atributo Não Único

- i valores
- i igualmente distribuído
- registros por valor?
- seletividade?

Seletividade Atributo Não Único

- i valores
- i igualmente distribuído
- n/i registros por valor
- seletividade: 1/i

Seletividade Atributo Não Único

 primeiro as condições com valor menor de seletividade

Junção (Join) de Loop Aninhado

```
for each ti
  for each tj
  if match(ti, tj)
   add-result(ti, tj)
```

- ni número de tuplas ti
- nj número de tuplas tj
- pares de tuplas? (comparações?)

- ni número de tuplas ti
- nj número de tuplas tj
- ni*nj pares de tuplas

- ni número de tuplas ti
- nj número de tuplas tj
- ni*nj pares de tuplas
- bi bloco de tuplas ti
- bj bloco de tuplas tj
- leituras de blocos?

- ni número de tuplas ti
- nj número de tuplas tj
- ni*nj pares de tuplas
- bi bloco de tuplas ti
- bj bloco de tuplas tj
- bi + bj*ni leituras de blocos

Situações:

- Quantas transferências de bloco se todos os blocos estiverem na memória?
- Quantas transferências se os blocos de um dos loops estiver todo na memória e qual deles escolher (bi ou bj)

- Situações:
 - Quantas transferências de bloco se todos os blocos estiverem na memória?
 - bi + bj transferências
 - Quantas transferências se os blocos de um dos loops estiver todo na memória e qual deles escolher (bi ou bj)?
 - escolher bj
 - bi + bj transferências

Junção de Loop Aninhado em Bloco

```
for each bi
for each bj
for each ti
for each tj
if match(ti, tj)
add-result(ti, tj)
```

Junção de Loop Aninhado em Bloco Números

- bi bloco de tuplas ti
- bj bloco de tuplas tj
- leituras de blocos?

Junção de Loop Aninhado em Bloco Números

- bi bloco de tuplas ti
- bj bloco de tuplas tj
- bi + bj*bi leituras de blocos

Outras Junções

- Junção Indexada
- Junção Merge
- Junção Hash

Projeção

- Recorte dos campos
- **(?)**

Projeção

- Recorte dos campos
- Registros sem duplicatas
 - SQL → padrão não eliminar duplicatas
 - DISTINCT → elimina duplicatas
 - Registros com garantia de ser únicos
 - e.g., contendo chave primária
 - Registros sem garantia de ser únicos
 - ordenação
 - hashing

Otimização de Consulta

SQL p/ Álgebra

Versão SQL

SELECT Codigo, Nome FROM PESSOA WHERE AnoFiliacao = 1990

Versão em álgebra

Versão Árvore

Combinação de Operações usando Pipelining

- Uma consulta é mapeada em uma sequência de operações
- A execução de cada operação produz um resultado temporário
- Alternativa
 - Evitar ao máximo resultados temporários
 - Pipelining
 - concatena operações
 - conforme uma saída é produzida gera entrada para a operação subsequente

Combining Operations using Pipelining (1)

Motivation

- A query is mapped into a sequence of operations.
- Each execution of an operation produces a temporary result.
- Generating and saving temporary files on disk is time consuming and expensive.

Alternative:

- Avoid constructing temporary results as much as possible.
- Pipeline the data through multiple operations pass the result of a previous operator to the next without waiting to complete the previous operation.

(Elmasri, 2007, s. 15-37)

Exemplo de Pipeline

PESSOA

Codigo	Nome	Telefone	AnoFiliacao
1525	Asdrúbal	5432-1098	1990
1637	Doriana	9876-5432	1983
1701	Quincas	8765-4321	1985
2042	Melissa	7654-3210	1990
2111	Horácio	6543-2109	1983

Heurísticas para Otimização de Consulta (Elmasri, 2011)

Heurísticas para Otimização de Consulta

 Título dos livros sobre poesia escritos depois de 1996

SELECT LIVRO.Titulo

FROM LIVRO, PERTENCE, CATEGORIA
WHERE CATEGORIA.Nome = "poesia" AND

LIVRO.ISBN = PERTENCE.ISBN AND

CATEGORIA.Codigo = PERTENCE.CodCategoria AND

LIVRO.Ano > 1996

Regras de Transformação

- 1. Operações seleção conjuntivas podem se converter em cascatas de seleção
- 2. Operação de seleção é comutativa
- 3. Comutação de seleção com projeção
 - caso o resultado da projeção tenha atributos requeridos pela seleção

Regras de Transformação

- 4. Seleção e junção (ou produto cartesiano) são comutativas
 - se atributos da seleção são de apenas uma das relações
- 5. Operações de união e interseção são comutativas
 - diferença não é

Regras de Transformação

- 6. Seleção é comutativa com operações de conjunto (união, interseção e diferença)
 - sel (A @ B) equivale sel(A) @ sel(B)

- Quebrar operações de seleção conjuntivas (1)
 - maior liberdade
- Mover seleção em direção às folhas (2), (3), (4), (5) e (6)
 - □ apenas 1 tabela → acima da tabela
 - duas tabelas → acima da junção

Regras de Transformação

- 7. As operações de junção e produto cartesiano são comutativas
- 8. As operações de junção, produto cartesiano, união e interseção são associativas

 Operações de seleção mais restritivas devem ser executadas primeiro (5) e (6)

Regra de Transformação

9. Operações de produto cartesiano + seleção podem se converter em junção

 Converta produtos cartesianos + seleções em junções

Regras de Transformação

- 10. Cascata de projeções podem ser ignoradas e convertidas na última
 - Pr1(Pr2(Pr3(A))) equivale Pr1(A)
- 11. Operações de projeção e união são comutativas
 - proj (A U B) equivale proj(A) U proj(B)

Regras de Transformação

- 12. Operação de projeção pode ser comutada com junção (ou produto cartesiano)
 - Relação A → atributos a₁,...,a_n
 - $_{□}$ Relação B \rightarrow atributos $b_{_{1}},...,b_{_{m}}$
 - $L = (a_1, ..., a_n, b_1, ..., b_m)$
 - Condição só contém atributos L
 - proj_L(A junção B) equivale (proj_{a1,...,an}(A)) junção
 (proj_{b1,...,bn}(B))

- Baseados em (10), (11) e (12)
 - Desmembrar operações de projeção
 - Mover projeções em direção às folhas
 - Criar operações de projeção para manter apenas atributos necessários

 Identificar subárvores com operações a ser combinadas em um algoritmo

Referências

- Elmasri, Ramez; Navathe, Shamkant B. (2005) Sistemas de Bancos de Dados. Addison-Wesley, 4ª edição em português.
- Elmasri, Ramez; Navathe, Shamkant B. (2011) Sistemas de Bancos de Dados. Addison-Wesley, 6ª edição em português.
- Ramakrishnan, Raghu; Gehrke, Johannes (2003) Database
 Management Systems. McGraw-Hill, 3rd edition.

André Santanchè

http://www.ic.unicamp.br/~santanche

Licença

- Estes slides são concedidos sob uma Licença Creative Commons. Sob as seguintes condições: Atribuição, Uso Não-Comercial e Compartilhamento pela mesma Licença.
- Mais detalhes sobre a referida licença Creative Commons veja no link:

http://creativecommons.org/licenses/by-nc-sa/3.0/

 Fotografia da capa e fundo por http://www.flickr.com/photos/fdecomite/
 Ver licença específica em http://www.flickr.com/photos/fdecomite/1457493536/