2024 MID - PROJECT DATA ANALYSIS

2024.04.03

목차

주제 1: 연령대/특성별 행정동 추천

- 1. 주제선정 배경
- 2. 데이터 수집 및 전처리
 - b. 기본 전처리
 - c. 소분류 통합
 - d. Segement 추가 분석
- 3. 분석결과
 - a. 연령대별 선호지역
 - b. 특성별 선호지역

주제 2 : 소득수준별 가치관 차이 및 소득 예측

- 1. 주제선정 배경
- 2. 데이터 수집 및 전처리
 - a. 데이터 수집
 - b. 기본 전처리
- 3. 시각화
- 4. 모델링 준비
- 5. 모델링

Conclusion

- 1. 활용방안
- 2. 한계점 및 자체평가
- 3. 기술사양 및 프로젝트 공정계획표

01. Project Overview

프로젝트 팀구성 및 역할

구성 및 역할

강 건

주제선정 & 자료탐색 데이터 전처리 VS 코딩 / 소스코딩 정리 인사이트 도출 김효정

주제선정 & 자료탐색 VS 코딩작업 인사이트 도출 문서정리

Project

연령대/특성별 행정동 추천

Project 1: 주제선정 배경

BACKGROUND

여러분은 어느 지역에서 살고 싶으신가요?

유명한 곳? 집값이 비싼 곳이 과연 나에게도 딱! 맞는 살기 좋을까요?

역세권

대중교통 역에 가까워 접근성이 좋은 지역 학세권

좋은 학교나 교육 시설에 가까운 지역교육 환경을 중시 숲세권

공원이나 숲과 같은 자연 친화적인 환경에 가까운 지역 몰세권

대형 쇼핑몰, 상업 시설 에 인접해 편의성이 높은 지역

Conclusion

연령별/특성별 살기좋은 지역 추천

Project 1: 데이터 수집

DATA COLLECTION

총 features 17 / segment 4개(20,30,40,50대) / row 426개(행정동)

변수	출처
주건환경 요인 선호도	오픈서베이
녹지비율	산림빅데이터거래소
교통사고안전	TAAS 교통사고분석시스템
미세먼지 / 집값 / 범죄안전 / 감염병안전 / 편의점 / 프렌차이즈커피전문점 / 패스트푸드점 / 시장 / 백화점 / 버스정류장 / 지하철역 / 초중고 / 병원 / 영화관 / 유치원	서울 열린데이터 광장

Project 1: 데이터 전처리

DATA PREPROCESS

- 1 기본 전처리
 - Null/이상치 처리
 - 행정동 <-> 법정동 기준 통일
 - 테이블 병합
 - 단위 조정(동별 인구, 면적등)
 - 스케일링 (Min-Max)

- 2 소분류 -> 대분류
- ③ Segment 추가 분석

Project 1: 데이터 전처리

DATA PREPROCESS

🚺 기본 전처리

-> 결과 점수 합산 예시: Sum(각 feature 선호도 가중치 * 행정동의 각 feature 값)

2 소분류 -> 대분류

3 Segment 추가 분석


```
✓ 0.0s
     시군구 행정구역
          서교동
214
    마포구
    도봉구
          도봉2동
149
    도봉구
           도봉1동
148
    도봉구
           방학1동
154
            창5동
     도봉구
147
   서대문구
           충현동
194
   서대문구
           홍제3동
     종로구
           삼청동
     금천구
           가산동
276
      중구
           회현동
18
```

1 final_30.sort_val

```
1 final_40.sort_valu
✓ 0.0s
     시군구
          행정구역
           서교동
     마포구
214
     종로구
            삼청동
     도봉구
           도봉2동
149
            창5동
     도봉구
147
   서대문구
           홍제3동
198
     도봉구
           방학1동
154
   서대문구
            충현동
194
     도봉구
           도봉1동
148
     마포구
            공덕동
207
     성동구
           행당1동
52
```

```
1 final_50.sort_valu
✓ 0.0s
     시군구 행정구역
          서교동
     마포구
214
            삼청동
     종로구
     도봉구
           도봉2동
149
     도봉구
            창5동
147
   서대문구
           홍제3동
198
     마포구
            공덕동
207
     도봉구
           도봉1동
148
     도봉구
           방학1동
154
   서대문구
            충현동
194
     마포구
            상암동
221
```

Project 1 : 데이터 전처리

DATA PREPROCESS

기본 전처리

+ Features 선호도 Rank

1	l feature	s_scaled_df				
	대분류	소분류	20대	30대	40대	50대
0	자연	미세먼지	0.455621	0.809160	0.852713	0.801205
1	자연	녹지비율	0.455621	0.809160	0.852713	0.801205
2	주택	집값	0.289941	0.274809	0.116279	0.204819
3	안전	범죄안전	0.615385	0.496183	0.441860	0.373494
4	안전	감염병안전	0.615385	0.496183	0.441860	0.373494
5	안전	교통사고안전	0.615385	0.496183	0.441860	0.373494
6	편의시설	편의점	0.976331	0.824427	0.426357	0.277108
7	편의시설	프렌차이즈커피전문점	0.289941	0.236641	0.031008	0.036145
8	편의시설	패스트푸드점	0.236686	0.045802	0.023256	0.018072
9	편의시설	시장	0.047337	0.137405	0.341085	0.385542
10	편의시설	백화점	0.000000	0.000000	0.000000	0.054217
11	교통	버스정류장	1.000000	0.992366	1.000000	0.765060
12	교통	지하철역	0.940828	1.000000	1.000000	1.000000
13	교육	초중고	0.136095	0.740458	0.775194	0.162651
14	복지문화	병원	0.609467	0.786260	0.992248	0.909639
15	복지문화	영화관	0.236686	0.129771	0.077519	0.120482
16	복지문화	유치원	0.029586	0.419847	0.062016	0.000000

	대분류	소분류	20대	_rank	30대_rank	40대_rank	50대_rank
0	자연	미세먼지		9.5	13.5	13.5	14.5
1	자연	녹지비율		9.5	13.5	13.5	14.5
2	주택	집값		7.5	6.0	6.0	7.0
3	안전	범죄안전		13.0	9.0	10.0	10.0
4	안전	감염병안전		13.0	9.0	10.0	10.0
5	안전	교통사고안전		13.0	9.0	10.0	10.0
6	편의시설	편의점		16.0	15.0	8.0	8.0
7	편의시설	프렌차이즈커피전문점		7.5	5.0	3.0	3.0
8	편의시설	패스트푸드점		5.5	2.0	2.0	2.0
9	편의시설	시장		3.0	4.0	7.0	12.0
10	편의시설	백화점		1.0	1.0	1.0	4.0
11	교통	버스정류장		17.0	16.0	16.5	13.0
12	교통	지하철역		15.0	17.0	16.5	17.0
13	교육	초중고		4.0	11.0	12.0	6.0
14	복지문화	병원		11.0	12.0	15.0	16.0
15	복지문화	영화관		5.5	3.0	5.0	5.0
16	복지문화	유치원		2.0	7.0	4.0	1.0

Project 1 : 데이터 전처리

DATA PREPROCESS

기본 전처리

+ Features 선호도 Rank 결과

1	final_20	_rank.sor
✓ 0.	0s	
	시군구	행정구역
214	마포구	서교동
195	서대문구	신존동
149	도봉구	도봉2동
154	도봉구	방학1동
147	도봉구	창5동
153	도봉구	쌍문4동
276	금천구	가산동
198	서대문구	홍제3동
194	서대문구	충현동
221	마포구	상암동

1	final_30	_rank.sor
✓ 0.	0s	
	시군구	행정구역
148	도봉구	도봉1동
214	마포구	서교동
195	서대문구	신존동
153	도봉구	쌍문4동
198	서대문구	홍제3동
154	도봉구	방학1동
221	마포구	상암동
147	도봉구	창5동
2	종로구	삼청동
149	도봉구	도봉2동

1	final_40	_rank.sort
✓ 0.	0s	
	시군구	행정구역
148	도봉구	도봉1동
153	도봉구	쌍문4동
214	마포구	서교동
195	서대문구	신촌동
154	도봉구	방학1동
149	도봉구	도봉2동
147	도봉구	창5동
198	서대문구	홍제3동
221	마포구	상암동
276	금천구	가산동

1	final_50	_rank.sor
✓ 0.	0s	
	시군구	행정구역
153	도봉구	쌍문4동
195	서대문구	신촌동
154	도봉구	방학1동
148	도봉구	도봉1동
149	도봉구	도봉2동
147	도봉구	창5동
214	마포구	서교동
198	서대문구	홍제3동
276	금천구	가산동
152	도봉구	쌍문3동

Project 1: 데이터 전처리

DATA PREPROCESS

② 소분류 → 대분류

- 17개 소분류 > 7개 대분류
- 무의미한 feature drop (예: 미세먼지)
- 유의미한 new feature add (예: 학원수, 음 식점수 등)
- 특정 그룹으로 쏠림 방지

연령 (20,30,40,50)

+ 미혼(독립가구), 기혼(무자녀),기혼(유자녀), 미혼(캥거루족)

Project 1: 연령대별 선호지역

ANALYSIS RESULTS

20대 행정구역 시군구 가산동 금천구 가양1동 강서구 도봉1동 도봉구 성수2가3동 성동구 종로구 종로1.2.3.4가동 247 도봉구 창5동 142 송파구 문정2동 방학1동 217 도봉구 28 도봉구 쌍문3동 가락본동

332 송파구

30대

40대

50대

시군구 행정구역 347 도봉구 도봉1동 74 종로구 종로1.2.3.4가동 37 금천구 가산동 3 강동구 상일2동 96 강서구 가양1동 179 노원구 상계1동 340 노원구 중계4동 235 은평구 진관동 360 종로구 청운효자동			
74종로구종로1.2.3.4가동37금천구가산동3강동구상일2동96강서구가양1동179노원구상계1동340노원구중계4동235은평구진관동360종로구청운효자동		시군구	행정구역
37금천구가산동3강동구상일2동96강서구가양1동179노원구상계1동340노원구중계4동235은평구진관동360종로구청운효자동	347	도봉구	도봉1동
3강동구상일2동96강서구가양1동179노원구상계1동340노원구중계4동235은평구진관동360종로구청운효자동	74	종로구	종로1.2.3.4가동
96강서구가양1동179노원구상계1동340노원구중계4동235은평구진관동360종로구청운효자동	37	금천구	가산동
179노원구상계1동340노원구중계4동235은평구진관동360종로구청운효자동	3	강동구	상일2동
340노원구중계4동235은평구진관동360종로구청운효자동	96	강서구	가양1동
235은평구진관동360종로구청운효자동	179	노원구	상계1동
360 종로구 청운효자동	340	노원구	중계4동
	235	은평구	진관동
262 서ᄎ그 양재1도	360	종로구	청운효자동
202 1 0110	262	서초구	양재1동

	시군구	행정구역
347	도봉구	도봉1동
179	노원구	상계1동
340	노원구	중계4동
156	서초구	내곡동
360	종로구	청운효자동
74	종로구	종로1.2.3.4가동
234	강남구	일원본동
262	서초구	양재1동
3	강동구	상일2동
373	중랑구	면목4동
	<u> </u>	

	시군구	행정구역
347	도봉구	도봉1동
179	노원구	상계1동
340	노원구	중계4동
156	서초구	내곡동
373	중랑구	면목4동
3	강동구	상일2동
360	종로구	청운효자동
234	강남구	일원본동
262	서초구	양재1동
299	송파구	오륜동

Project 1 : 특성별 선호지역

ANALYSIS RESULTS

기혼 (무자녀)

기<mark>혼</mark> (유자녀) 미<mark>혼</mark> (캥거루족)

	시군구	행정구역
347	도봉구	도봉1동
37	금천구	가산동
156	서초구	내곡동
235	은평구	진관동
96	강서구	가양1동
340	노원구	중계4동
179	노원구	상계1동
28	도봉구	쌍문3동
242	강서구	공항동
217	도봉구	방학1동

	시군구	행정구역
3	강동구	상일2동
0	성북구	길음2동
1	송파구	거여2동
4	서대문구	홍제3동
2	은평구	증산동
5	송파구	위례동
6	구로구	고척1동
347	도봉준	도봉1동
179	노원구	상계1동
7	중랑구	망우본동

	시군구	행정구역
347	도봉구	도봉1동
360	종로구	청운효자동
74	종로구	종로1.2.3.4가동
179	노원구	상계1동
262	서초구	양재1동
234	강남구	일원본동
318	마포구	상암동
340	노원구	중계4동
235	은평구	진관동
118	종로구	혜화동

	시군구	행정구역
347	도봉구	도봉1동
96	강서구	가양1동
179	노원구	상계1동
37	금천구	가산동
340	노원구	중계4동
3	강동구	상일2동
0	성북구	길음2동
247	도봉구	창5동
28	도봉구	쌍문3동
217	도봉구	방학1동

Project 1 : 한계점

LIMITATIONS

<u>01</u> 변별력

segment별 차별화된 요소부족 (예: 교통수단 선호) <u>02</u> 중복응답

중복응답으로 인해 구분이 명확하지 않음 <u>03</u> 신뢰성

분석목적에 맞는 자료부족 및 신뢰도가 높지 않은 조사기관 opensurvey

향후 필요한 편의시설

	현재	향후 필요한	성	별	연령			
	만족하는 편의시설	편의시설	남	여	20대	30대	40대	
Base	(996)	(1000)	(500)	(500)	(250)	(250)	(250)	
지하철 역	40.9	62.8	64.0	61.6	66.4	56.4	58.4	
버스 정류장	62.6	59.8	54.8	64.8	70.4	56.0	58.4	
네당이드	21.5	51.2	31.0	50.0	54.0	30.4	32.0	
병원	31.3	52.8	48.4	57.2	44.0	45.2	58.0	
숲/공원	43.0	46.9	49.0	44.8	33.6	46.4	50.8	
편의점	63.5	41.7	46.0	37.4	68.8	47.2	28.8	
초/중/고등학교	25.2	29.0	31.2	26.8	12.0	42.8	46.8	
재래시장/전통시장	21.7	17.7	17.8	17.6	6.0	11.2	24.4	
프랜차이즈 커피 전문점	36.5	13.3	10.6	16.0	22.4	16.4	8.4	
복합 쇼핑센터	6.8	13.2	13.6	12.8	7.6	11.2	12.8	
영화관	18,7	13.0	15.0	11.0	18.8	10.8	10.8	
어린이집/유치원	12.3	11.1	12.6	9.6	4.8	26.0	10.0	
패스트푸드점	28.1	9.5	10.4	8.6	18.8	6.4	8.0	
백화점	7.4	5.2	5.2	5.2	2.8	4.0	6.8	

[Base : 해당 편의시설 있는 자, N=996, 단위 : %<mark>, 복수응답</mark>] [Base : 전체 응답자, N=1000, 단위 : %, 복수응답(1+2+3+4+5순위)] * 하늘색 음영: 평균 대비 +4%P 이상인 데이터 <u>04</u> 통일성

매칭기준이 상이하여 전처리에 많은 시간 소요 예) 법정동 vs 행정동

D	E	F	G	Н	1	
행정동 (행정기관명)	법정동	행정구역 분류	행정기관코드	행정기관 생성일	법정동코드	
청운효자동	청운동	11010720	1111051500	20081101	1111010100	
청운효자동	신교동	11010720	1111051500	20081101	1111010200	
청운효자동	궁정동	11010720	1111051500	20081101	1111010300	
청운효자동	효자동	11010720	1111051500	20081101	1111010400	
청운효자동	창성동	11010720	1111051500	20081101	1111010500	
청운효자동	통인동	11010720	1111051500	20081101	1111010800	
청운효자동	누상동	11010720	1111051500	20081101	1111010900	
청운효자동	누하동	11010720	1111051500	20081101	1111011000	
청운효자동	옥인동	11010720	1111051500	20081101	1111011100	
청운효자동	세종로	11010720	1111051500	20081101	1111011900	
IITI도	트이도	11010500	1111000000	10000400	1111010000	

Project 2

소득수준별 가치관 차이 및 소득 예측

Project 2 : 주제선정 배경

BACKGROUND

소득수준별로 삶의 질, 의식, 가치관의 유의미한 차이가 있을까?

가치관 예: 신뢰도(가족, 친구 등), 계층 이동 가능성 등

여가활동

예: 여가 유형, 여가 시간 등 삶의질

예: 일상 생활 스트레스, 행복지수 등 행동유형

예: 통근/통학 여부, 물품 구매 경로 등

2022 서울서베이를 통한 소득수준 예측

Project 2: 데이터 수집 및 전처리

DATA COLLECTION & PREPROCESSING

- 서울서베이 (2022)
- row 약 4만개 (응답자 수)
- feature 약 200개 (설문항목)

② 기본 전처리

- 결측치/이상치 처리
- 수치형 →범주화 등
- Feature 자체 선별(예: 통근/통학 지역, 여가활용 유형 2순위~ 등)

소득수준 (저소득, 중하, 중상, 고소득) 분류

'저소득' 중위소득 75% 이하, '고소득' 중위소득 200% 이상 (OECD 기준)

Project 2: 시각화 - 소득간의 유의미한 차이?

VISUALIZATION

Project 2: 모델링 준비 - ONEHOTENCODING

MODELING

OneHotEncoding

- 범주형 변수를 처리하는 주요 기법 중 하나로, 각 범주를 독립된 이진 특성으로 변환
- 모델이 범주 간 **수치적 거리**를 오해하지 않도록 하 는 것이 장점.

Project 2 : 모델링 준비 - UNDERSAMPLING / FEATURE SELECTION

MODELING

UnderSampling

클래스 데이터 불균형 해소

클래스 데이터 불균형 : 클래스 간의 데이터 양의 차이가 클 때, 즉 특정 클래스는 데이터 비중이 크고 특정 클래스는 적을 때. 편향 되고 정확하지 않은 모델 결과를 낼 수 있음.

```
# Undersampling
from imblearn.under sampling import RandomUnderSampler
# *0.15정도 규모로 해주며 4번 그룹이 전체 10%정도 되게끔 맞춰주기
undersampler = RandomUnderSampler(sampling_strategy={'2.0': 3900, '3.0': 1000, '1.0': 780})
X_train_under, y_train_under = undersampler.fit_resample(X_train, y_train)
                                                     1 y train under.value counts()
   1 survey df['Income2'].value counts(
                                                  ✓ 0.0s
 ✓ 0.0s
                                                 Income2
Income2
2.0
       25819
                                                         1000
        6818
3.0
                                                 1.0
                                                          780
1.0
        5163
                                                          605
4.0
         807
                                                  Name: count, dtype: Int64
Name: count, dtype: Int64
```

Feature Selection

Chi-square(SelectKBest) Feature Selection 각 피처가 타겟 변수와 독립적인지를 테스트하여 가장 관련성이 높은 K개의 피처를 선택함. 이는 모델의 예측력을 향상시키고 오버피팅을 줄이는 데 도움을 줌

```
1 # 카이제곱 feature selection
2 from sklearn.feature_selection import SelectKBest
3 from sklearn.feature_selection import chi2
4
5 selector = SelectKBest(score_func=chi2, k=80)
6 X_new = selector.fit_transform(X_train_under, y_train_under)
7 X_test_new = selector.transform(X_test)
01s
```

Project 2: RANDOM FOREST CLASSIFIER

MODELING

Random Forest Classifier

여러 결정 트리를 조합하여 분류 문제를 해결하는 앙상블 학습 방법 각 트리의 예측을 통합해 더 정확한 결과 도출

```
1 from sklearn.ensemble import RandomForestClassifier #Undersampled + feature selected
2
3 rfc = RandomForestClassifier(n_estimators=100, random_state=42)
4 rfc.fit(X_new, y_train_under)
5 feature_importances = rfc.feature_importances_
6 rfc.score(X_new,y_train_under), rfc.score(X_test_new,y_test)

1.1s
(0.9978763272954404, 0.7194363862411935)
```

Project 2: GRADIENT BOOSTING CLASSIFIER & CNN

MODELING

Gradient Boosting classifier

약한 예측 모델을 순차적으로 학습시켜 오차를 줄여 나가는 앙상블 기법 이전 모델의 오류를 보완해 강력한 예측 모델 구축

CNN

이미지 인식과 처리에 주로 사용되는 딥러닝 구조 여러 층의 컨볼루션(필터링)과 풀링(축소) 과정을 거쳐, 특징을 추출하고 이를 분류하거나 인식

```
from sklearn.model_selection import train_test_split
   from tensorflow.keras.models import Sequential
   from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense
    import tensorflow.keras as tf_keras
   X = survey_encoded_df.values
   y = survey_df['Income2'].values-1
11 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
13 model = Sequential([
       Dense(128, activation='relu',input_shape=(848,)), #kc
       tf_keras.layers.Dropout(rate=0.5),
       Dense(64, activation='relu'),
           keras.layers.Dropout(rat
       Dense(4, activation='sof
23 model.compile(optimizer=tf_____.optimizers.Adam(learning
                 loss='sparse_categorical_crossentropy',
                 metrics=['accuracy'])
27 history = model.fit(X_train, y_train, epochs=100, batch_s
```

Project 2 : 한계

LIMITATIONS

<u>01</u> 불균형

타겟클래스의 불균형으로 왜곡이 발생 (고소득 4번 그룹이 전체 2%)

> <u>02</u> 통일성

매칭기준이 상이하여 데이터 통합에 많은 시간 소요 예) 2021년 vs 2022년

CONCLUSION 3

03. 활용방안

CONCLUSION

개인

일반사용자에게는 선호하는 조건에 따라 400여개의 행정구역중 적절한 지역을 추천하는데 활용

<u>부동산</u>

업체와 중개인은 이 인사이트를 활용하여, 타겟에 맞는 주거지역을 추천하고 마케팅 전략 수립

정부

정책적인 부분에서는 지역적인 특성을 이해하고 상대적으로 점수가 낮은 분야를 개발하거나 차별화 하여도시계획의 기초 데이터로 활용할 수 있음.

추후 설문조사에서 설문 응답자들의 소득 정보가 누락 되어도 나머지 항목들 로 어느 정도 소득 유추 가능

특정 회사가 고객의 민감한 급여정보를 수집하지 않아도 나머지 속성 10~20개으로 소득 수준을 어느 정도 예측해 영업 및 타겟팅에 활용 가능

03. 기술사양

CONCLUSION

01 직용 기술

개발언어 / 데이터 전처리 python

탐색적 분석 데이터 시각화, 통계 분석

예측 모델링 머신러닝(RFC, GBC), 딥러닝 (CNN) 02 적용기술 및 도구

코드개발 Visual Studio Code

형상관리

github

탐색적분석

numpy, pandas, matplotlib, seaborn 등

머신러닝

scikit-learn, xgboost, tensorflow

03. 프로젝트 공정계획표

CONCLUSION

₩BS-ID	LV1 LV2 LV3 LV4	계획	일자	기간	Task	실행	일자	Task	가중치	공정	공정	상태	산출물
		시작일	종료일	기단	계획율(%)	시작일	종료일	완료율	기공시	계획율	완료율	841	건물물
공공데이	터를 활용한 빅데이터 프로젝트												
1.	프로젝트 기획	2024.03.05	2024.03.06	2	100%	2024.03.05	2024.03.06	100%	10.0	10.00	100%	완료	데이터 분석 기획서
1.1.	비즈니스 목표 설정												
1.2.	데이터 소스 조사												
1.3.	벤치마킹 애플리케이션 조사			_									
2.	요구사항 분석 및 분석 내용 설계	2024.03.07	2023.03.11	3	100%	2024.03.07	2023.03.11	100%	10.0	10.00	100%	완료	데이터 분석 기획서
2.1.	요구사항 분석												
2.2.	분석 내용 정의							4.55.1			4.554	01-	
3.	분석 환경 구축	2024.03.12	2024.03.12	1	100%	2024.03.12	2024.03.12	100%	10.0	10.00	100%	완료	데이터 분석 환경 명세서
3.1.	데이터 수집 환경												
3.2.	데이터 분석 및 예측 모델링 환경												
3.3.	협업 환경	2024.02.42	2024.02.45	0	1.00%	2024.02.42	2024.02.45	100%	00.0	00.00	1.00%	01-	
4.	데이터 수집 및 가용	2024.03.13	2024.03.15	3	100%	2024.03.13	2024.03.15	100%	20.0	20.00	100%	완료	데이터 수집 소스코드 및 수집 파일
4.1.	데이터 수집 소스 발굴												
4.2	데이터 수집												
4.3	기초 전처리 및 저장												
5.	탐색적 데이터 분석 및 전처리	2024.03.18	2024.03.22	5	100%	2024.03.18	2024.03.22	100%	30.0	30.00	100%	완료	탐색적 데이터 분석 소스코드
5.1.	기초 통계량 분석												
5.1.	데이터 분석 시각화												
5.2.	통계적 데이터 분석												
5.3.	분석 모델 구축을 위한 데이터 전처리												
6.	예측 모델링	2024.03.25	2023.03.29	5	100%	2024.03.25	2023.03.29	100%	10.0	10.00	100%	완료	예측 모델 개발 소스코드
6.1.	분석용 데이터 구축												
6.2.	비지도학습 모델 적용												
6.3.	지도학습 기반 예측 모델 개발												
6.4.	신경망 기반 예측 모델 개발												
7.	서비스 배포	2024.04.01	2024.04.02	2	100%	2024.04.01	2024.04.02	100%	5.0	5.00	100%	완료	서비스 애플리케이션 소스 코드
7.1.	서비스 애플이케이션에 개발된 모델 적용												
7.2.	Docker, AWS 기반 서비스 환경 구축												
7.3.	서비스 배포												
8.	발표 및 시연 준비	2024.04.03	2024.04.03	1	100%	2024.04.03	2024.04.03	100%	5.0	5.00	100%	완료	발표 자료 PPT
8.1.	산출물 정리												
8.2.	발표 자료 생산												
8.3.	개인별 포트폴리오 생산												

03. 문제점 및 개선점

CONCLUSION

Good quality data leads to good results.

좋은 품질의 데이터는 좋은 결과로 이어진다

Q & A