The irrationality of π

Theorem.

The number π is irrational.

Proof.

Assume $\pi = \frac{a}{b}$ is rational, where a, b are positive integers. We define the polynomials:

$$f(x) = \frac{x^n (a - bx)^n}{n!}$$

$$F(x) = f(x) - f^{(2)}(x) + f^{(4)}(x) - \dots + (-1)^n f^{(2n)}(x)$$

where n is a positive integer which will be specified later. Note that F(0) is integer and $f(x) = f(\frac{a}{b} - x)$, follows that $F(\pi)$ is also an integer.

Now, consider the derivative of $F'(x)\sin x - F(x)\cos x$, by simple calculus we have

$$\frac{d}{dx} [F'(x)\sin x - F(x)\cos x] = F''(x)\sin x + F(x)\sin x$$
$$= f(x)\sin x$$

and

$$\int_0^{\pi} f(x) \sin x = [F'(x) \sin x - F(x) \cos x]_0^{\pi}$$

= $F(\pi) + F(0)$

We conclude that $\int_0^{\pi} f(x) \sin x$ is an integer. But for $0 < x < \pi$,

$$0 < f(x)\sin x < \frac{\pi^n a^n}{n!},$$

so the integral is positive and arbitrarily small for sufficient large n. This is a contradiction, and disproved our assumption that π is rational.

Q.E.D.