

## An Accelerated Method for Derivative-Free Smooth Stochastic Convex Optimization



Eduard Gorbunov<sup>1,2</sup>, Pavel Dvurechensky<sup>2,3</sup>, Alexander Gasnikov<sup>1,2</sup>



<sup>1</sup>Moscow Institute of Physics and Technology, Moscow, Russia
 <sup>2</sup>Institute for Information Transmission Problems of RAS, Moscow, Russia
 <sup>3</sup>Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany

## Introduction

Consider the following unconstrained optimization problem

$$\min_{\mathbf{x}\in\mathbb{R}^n}\left\{f(\mathbf{x}):=\mathbb{E}_{\xi}[F(\mathbf{x},\xi)]=\int_{\mathcal{X}}F(\mathbf{x},\xi)dP(\mathbf{x})\right\},\tag{1}$$

where  $\xi$  — random vector with probability distribution  $P(\xi)$ ,  $\xi \in \mathcal{X}$ ,  $F(x,\xi)$  — closed a.s. in  $\xi$ , f — convex,

$$\|g(x,\xi)-g(y,\xi)\|_{2} \leq L(\xi)\|x-y\|_{2}, \ \forall x,y \in \mathbb{R}^{n}, \ \text{a.s. in } \xi,$$

and  $L_2 := \sqrt{\mathbb{E}_{\xi}[L(\xi)^2]} < +\infty$ . Under this assumptions,  $\mathbb{E}_{\xi}[g(x,\xi)] = \nabla f(x)$  and

$$\|\nabla f(x) - \nabla f(y)\|_2 \leqslant L_2\|x - y\|_2, \ \forall x, y \in \mathbb{R}^n.$$

Also we assume that

$$\mathbb{E}_{\xi}\left[\|g(x,\xi)-\nabla f(x)\|_{2}^{2}\right] \leqslant \sigma^{2}. \tag{2}$$

Finally, we assume that an optimization procedure, given a pair of points  $(x,y) \in \mathbb{R}^{2n}$ , can obtain a pair of noisy stochastic realizations  $(\widetilde{f}(x,\xi),\widetilde{f}(y,\xi))$  of the objective value f, which we refer to as *oracle call*. Here  $\xi$  is independently drawn from P and

$$\widetilde{f}(x,\xi) = F(x,\xi) + \eta(x,\xi), \quad |\eta(x,\xi)| \leqslant \Delta, \ \forall x \in \mathbb{R}^n, \ \text{a.s. in } \xi$$

We choose a *prox-function* d(x) which is continuous, convex on  $\mathbb{R}^n$  and is **1**-strongly convex on  $\mathbb{R}^n$  with respect to  $\|\cdot\|_p$ ,  $p \in [1, 2]$ . We define also the corresponding *Bregman divergence* 

$$V[z](x) = d(x) - d(z) - \langle \nabla d(z), x - z \rangle, x, z \in \mathbb{R}^n$$
. Moreover,

$$\mathbb{E}_e \|e\|_q^2 \le \rho_n, \tag{3}$$

$$\mathbb{E}_{e}\left[\langle s,e\rangle^{2}\|e\|_{q}^{2}\right] \leq 6\rho_{n}\|s\|_{2}^{2}/n, \quad \forall s \in \mathbb{R}^{n}, \tag{4}$$

where  $\rho_n = \min\{q-1, 16 \ln n - 8\} n^{2/q-1}$ ,  $n \geqslant 8$  and  $s \in \mathbb{R}^n$ . Here q > 0 is such that  $\frac{1}{p} + \frac{1}{q} = 1$ .

## **New Methods and Complexity Results**

Algorithm 1. Accelerated Randomized Derivative-Free Directional Search (ARDFDS)

**Input:**  $x_0$  — starting point,  $N \ge 1$  — number of iterations, m — batch size, t > 0 — smoothing parameter,  $\{\alpha_k\}_{k=1}^N$  — stepsizes. **Output:** point  $y_N$ 

1:  $y_0 \leftarrow x_0, z_0 \leftarrow x_0$ 

2: for k = 0, ..., N - 1 do

3:  $au_k \leftarrow \frac{2}{k+2}$ 

Generate  $e_{k+1} \in RS_2(1)$  independently from previous iterations and  $\xi_i$ , i = 1, ..., m – independent realizations of  $\xi$ .

5:  $x_{k+1} \leftarrow \tau_k z_k + (1 - \tau_k) y_k.$ 

6: Calculate

$$\widetilde{\nabla}^m f^t(x_{k+1}) = \frac{1}{m} \sum_{i=1}^m \frac{(\widetilde{f}(x_{k+1} + te_{k+1}, \xi_{k,i}) - \widetilde{f}(x, \xi_{k,i}))e_{k+1}}{t}.$$

7:  $y_{k+1} \leftarrow x_{k+1} - \frac{1}{2L_2} \widetilde{\nabla}^m f^t(x_{k+1}).$ 

 $z_{k+1} \leftarrow \underset{z \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ \alpha_{k+1} \bigcap_{k=1}^{\infty} \left\langle \widetilde{\nabla}^m f^t(x_{k+1}), z - z_k \right\rangle + V[z_k](z) \right\}.$ 

9: end for

**Theorem 1.** Let ARDFDS be applied to solve problem (1) with  $\alpha_k = (k+1)/(96n^2\rho_nL_2)$ . If we set  $\Theta_p = V[z_0](x^*)$  which is defined by the chosen proximal setup, then  $\forall n \geq 8$ 

$$\mathbb{E}[f(y_N)] - f(x^*) \leqslant \frac{384n^2\rho_n L_2\Theta_p}{N^2} + \frac{384N\sigma^2}{nL_2} + \frac{12\sqrt{2n\Theta_p}}{N^2} \left(\frac{L_2t}{2} + \frac{2\Delta}{t}\right) + \frac{6N}{L_2} \left(L_2^2t^2 + \frac{16\Delta^2}{t^2}\right) + \frac{N^2}{24n\rho_n L_2} \left(L_2^2t^2 + \frac{16\Delta^2}{t^2}\right).$$

Feel free to contact us: eduard.gorbunov@phystech.edu,

eduardgorbunov.github.io, pavel.dvurechensky@wias-berlin.de,

## Algorithm 2. Randomized Derivative-Free Directional Search (RDFDS).

**Input:**  $x_0$  — starting point,  $N \ge 1$  — number of iterations, m — batch size, t > 0 — smoothing parameter,  $\alpha$  — stepsize.

Output: point  $\bar{x}_N$ .

1: for k = 0, ..., N - 1 do

Generate  $e_{k+1} \in RS_2(1)$  independently from previous iterations and  $\xi_i$ , i=1,...,m – independent realizations of  $\xi$ .

: Calculate

$$\widetilde{\nabla}^m f^t(x_{k+1}) = \frac{1}{m} \sum_{i=1}^m \frac{(\widetilde{f}(x_{k+1} + te_{k+1}, \xi_{k,i}) - \widetilde{f}(x, \xi_{k,i}))e_{k+1}}{t}.$$

4:  $x_{k+1} \leftarrow \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ \alpha_n \left\langle \widetilde{\nabla}^m f^t(x_k), x - x_k \right\rangle + V[x_k](x) \right\}.$ 

5: end for

**Theorem 2.** Let RDFDS with  $\alpha = \frac{1}{48n\rho_n L_2}$  be applied to solve problem (1) and  $\Theta_p = V[x_0](x^*)$ . Then  $\forall n \geq 8$ 

$$\mathbb{E}[f(\bar{x}_{N})] - f(x_{*}) \leq \frac{384n\rho_{n}L_{2}\Theta_{p}}{N} + \frac{2\sigma^{2}}{L_{2}m} + \left(\frac{n}{6L_{2}} + \frac{N}{3L_{2}\rho_{n}}\right) \left(\frac{L_{2}^{2}t^{2}}{2} + \frac{8\Delta^{2}}{t^{2}}\right) + \frac{8\sqrt{2n\Theta_{p}}}{N} \left(\frac{L_{2}t}{2} + \frac{2\Delta}{t}\right).$$

| Method | p = 1                                                                                                                      | p = 2                                                                                                                         |
|--------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| ARDFDS | $\tilde{O}\left(\max\left\{\sqrt{\frac{nL_2\Theta_1}{\varepsilon}}, \frac{\sigma^2\Theta_1}{\varepsilon^2}\right\}\right)$ | $\tilde{O}\left(\max\left\{\sqrt{\frac{n^2L_2\Theta_2}{\varepsilon}}, \frac{\sigma^2\Theta_2n}{\varepsilon^2}\right\}\right)$ |
| RDFDS  | $	ilde{O}\left(\max\left\{rac{L_2\Theta_1}{arepsilon},rac{\sigma^2\Theta_1}{arepsilon^2} ight\} ight)$                   | $\tilde{O}\left(\max\left\{rac{n L_2\Theta_2}{arepsilon}, rac{n\sigma^2\Theta_2}{arepsilon^2} ight\} ight)$                 |

Table 1. ARDFDS and RDFDS complexities for p=1 and p=2

| Method | p = 1                                                                                                                | p = 2                                                                                                                       |
|--------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| ARDFDS | $\tilde{O}\left(\min\left\{rac{arepsilon^{3/2}}{\sqrt{L_2\Theta_1 n}},rac{arepsilon^2}{nL_2\Theta_1} ight\} ight)$ | $\tilde{O}\left(\min\left\{\frac{\varepsilon^{3/2}}{n\sqrt{L_2\Theta_2}},\frac{\varepsilon^2}{nL_2\Theta_2}\right\}\right)$ |
| RDFDS  | $\tilde{O}\left(\min\left\{rac{arepsilon}{n},rac{arepsilon^2}{nL_2\Theta_1} ight\} ight)$                          | $\tilde{O}\left(\min\left\{rac{arepsilon}{n},rac{arepsilon^2}{nL_2\Theta_2} ight\} ight)$                                 |

Table 2. The allowable noise level  $\Delta$  for ARDFDS and RDFDS.

| Method                                                                                                                               | Assumptions               | Oracle complexity, $\widetilde{O}(\cdot)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | p=1       | $\sigma^2$  | $\delta$              |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|-----------------------|
| MD                                                                                                                                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                       |
| Duchi et al. (2015),                                                                                                                 | bound. gr.                | $\frac{n^{2/q} M_2^2 R_p^2}{\varepsilon^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>√</b>  | <b>√</b>    | <b>√</b>              |
| Gasnikov et al. (2016),                                                                                                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                       |
| Shamir (2017)                                                                                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                       |
| RSPGF                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                       |
| Ghadimi & Lan                                                                                                                        | bound. var.               | $\max\left\{rac{nL_2R_2^2}{arepsilon},rac{n\sigma^2R_2^2}{arepsilon^2} ight\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×         | 1/          | X                     |
| (2013,2016)                                                                                                                          |                           | $\left(\begin{array}{ccc} \varepsilon & \varepsilon^2 \end{array}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | •           |                       |
| RS                                                                                                                                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                       |
| Nesterov & Spokoiny                                                                                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                       |
|                                                                                                                                      | $\frac{nL_2R_2^2}{R_2^2}$ | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×         | 1/          |                       |
| ,                                                                                                                                    |                           | $oldsymbol{arepsilon}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |             | <b>V</b>              |
|                                                                                                                                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                       |
| \ /                                                                                                                                  |                           | $(n^{2/q}L_2R^2 n^{2/q}\sigma^2R^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |             |                       |
|                                                                                                                                      | bound. var.               | $\max\left\{\frac{-\frac{1}{\varepsilon}^{p}}{\varepsilon}, \frac{p}{\varepsilon^{2}}\right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\sqrt{}$ |             |                       |
|                                                                                                                                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                       |
|                                                                                                                                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                       |
| •                                                                                                                                    |                           | $n\sqrt{rac{L_2R_2^2}{arepsilon}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | ×           | 1/                    |
| ,                                                                                                                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             | V                     |
|                                                                                                                                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                       |
| \ /                                                                                                                                  |                           | $I_{1/2+1/2} = I_{1/2} I_{1/2$ |           |             |                       |
|                                                                                                                                      | bound. var.               | $\max\left\{n^{1/2+1/q}\sqrt{\frac{-2\cdot N_p}{\varepsilon}}, \frac{n-\varepsilon\cdot N_p}{\varepsilon^2}\right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | $ \sqrt{ }$ | $ \sqrt{ }$           |
| (2017), Bogolubsky et al. (2017) RDFDS [This paper] AccRS Nesterov & Spokoiny (2017), Dvurechensky et al. (2017) ARDFDS [This paper] | bound. var.               | $\frac{nL_2R_2^2}{\varepsilon}$ $\max\left\{\frac{n^{2/q}L_2R_p^2}{\varepsilon}, \frac{n^{2/q}\sigma^2R_p^2}{\varepsilon^2}\right\}$ $n\sqrt{\frac{L_2R_2^2}{\varepsilon}}$ $\max\left\{n^{1/2+1/q}\sqrt{\frac{L_2R_p^2}{\varepsilon}}, \frac{n^{2/q}\sigma^2R_p^2}{\varepsilon^2}\right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×         | × × ×       | \<br>\<br>\<br>\<br>\ |

Table 3. Comparison of oracle complexity (total number of oracle calls) of different methods with two point feedback for convex optimization problems. In the column "Assumptions" we use "bound. gr." to define  $\mathbb{E}_{\xi}\left[\|g(x,\xi)\|_2^2\right] \leq M_2^2$  and "bound. var." to define  $\mathbb{E}\|g(x,\xi) - \nabla f(x)\|_2^2 \leqslant \sigma^2$ . Column p=1 corresponds to the support of non-Euclidean setup, column " $\sigma^2$ " to the support of stochastic optimization

methods, " $\delta$ " corresponds to the support of additional noise of an unknown

nature.