A 2009-es vizsgákon szereplő elméleti kérdések

Kivezérelhetőség és teljesítményfokozatok:

1. Ismertesse a "B" osztályú teljesítményfokozat tulajdonságait (P_{fmax} , P_{Tmax} , $P_{Dmax(1 tr)}$, η_{Tmax})! (szinuszos kimenő jellel)!

$$P_{f\text{max}} = \frac{(U_t - U_m)^2}{2R_f} \qquad P_{T\text{max}} = 2U_t \overline{i_C(t)}_{\text{max}} = 2U_t \frac{I_{c\text{max}}}{\pi} = \frac{2}{\pi} U_t \frac{U_t - U_m}{R_f}$$

$$P_{D\text{max}(1tr)} = \frac{2}{\pi^2} \frac{U_t^2}{R_f} - \frac{1}{\pi^2} \frac{U_t^2}{R_f} = \frac{1}{\pi^2} \frac{U_t^2}{R_f}$$

$$\eta_T = \frac{P_{f\text{max}}}{P_{T\text{max}}} = \frac{(U_t - U_m)^2}{2R_f} \frac{\pi}{2} \frac{R_f}{U_t(U_t - U_m)} = \frac{\pi}{4} \left(1 - \frac{U_m}{U_t}\right) \lesssim 78\%$$

2. Ismertesse az "A" osztályú teljesítményfokozat tulajdonságait (P_{fmax} , P_{Tmax} , $P_{Dmax(1 tr)}$, η_{Tmax})! (szinuszos kimenő jellel)!

$$\begin{split} P_{f\text{max}} &= \frac{\left(U_{t} - U_{m}\right)^{2}}{2R_{f}} \quad P_{T\text{max}} = 2U_{t}I_{C0opt} = 2U_{t}\frac{U_{t} - U_{m}}{2R_{f}} \\ P_{D\text{max}(1tr)} &= U_{t}I_{C0opt} = U_{t}\frac{U_{t} - U_{m}}{2R_{f}} \\ \eta_{Topt} &= \frac{P_{f\text{max}}}{P_{T\text{max}}} = \frac{\left(U_{t} - U_{m}\right)^{2}}{2R_{f}} \frac{1}{2U_{t}} \frac{2R_{f}}{U_{t} - U_{m}} = \frac{1}{2}\left(1 - \frac{U_{m}}{U_{t}}\right) < 50\% \end{split}$$

3. Ismertesse az egy telepes bipoláris tranzisztoros kapcsolás kivezérelhetőségét **kapacitív** csatolású fogyasztó esetén (az egyenáramú munkaegyenes meredekségét meghatározó ellenállás értéke, a váltóáramú munkaegyenes meredekségét meghatározó ellenállás értéke, az U^+_{ki} és az U^-_{ki} értéke)!

4. Ismertesse az egy telepes bipoláris tranzisztoros kapcsolás kivezérelhetőségét **induktív** csatolású fogyasztó esetén (az egyenáramú munkaegyenes meredekségét meghatározó ellenállás értéke, a váltóáramú munkaegyenes meredekségét meghatározó ellenállás értéke, az U^+_{ki} és az U^-_{ki} értéke)!

Munkapontbeállítás

5. Ismertesse a bipoláris tranzisztorok munkapontbeállításával kapcsolatos alábbi fogalmakat: (egy telepes munkapontbeállító áramkör bázisosztóval kapcsolási rajz, a munkaponti I_{E0} számítása végtelen B esetén (U_{BE0} adott), a munkaponti I_{E0} számítása véges B esetén (U_{BE0} adott), az S_u feszültségstabilitási tényező értéke)!

$$I_{E0} = \frac{U_t - U_{BE0} + R_B I_{CB0}}{R_E + R_B (1 - A)}$$

 $I_{E0} = \frac{U_t - U_{BE0} + R_B I_{CB0}}{R_E + R_B (1 - A)},$ $V''_{EE} = \frac{V_t - U_{BE0} + R_B I_{CB0}}{R_E + R_B (1 - A)},$ $V''_{EE} = \frac{R_2}{R_1 + R_2} U_t - U_{BE0}$ $I_{E0} = \frac{R_2}{R_1 + R_2} U_t - U_{BE0}$ $I_{E0} = \frac{R_2}{R_1 + R_2} U_t - U_{BE0}$ $I_{E0} = \frac{R_2}{R_1 + R_2} U_t - U_{BE0}$

6. Ismertesse a bipoláris tranzisztorok munkapontbeállításával kapcsolatos alábbi fogalmakat: (két telepes munkapontbeállító áramkör bázisosztó nélkül kapcsolási rajz, a munkaponti I_{E0} számítása végtelen B esetén (U_{BE0} adott), a munkaponti I_{E0} számítása véges B esetén (U_{BE0} adott), az S_u feszültségstabilitási tényező értéke)!

Kb. ugyanaz, mint előbb.

7. Ismertesse a bipoláris **n-p-n** tranzisztorokkal felépített **áramtükör** tulajdonságait (kapcsolási rajz, meghatározó áramköri egyenletek, az I_{E0} számítása, S_u feszültségstabilitási tényező)

$$I_{E01} + I_{B0} = I_{E0} + I_{B0} = I_{E0} + (1 - A)I_{E0} - I_{CB0} = \frac{U_t - U_{BE0}}{R}$$

$$I_{E01} + I_{B0} = I_{E0} + I_{E0} = I_{E0} + (1 - A)I_{E0} - I_{CB0} = \frac{U_t - U_{BE0}}{R}$$

$$I_{E0} = \frac{U_t - U_{BE0} + RI_{CB0}}{R + R(1 - A)}$$

$$S_u = \frac{\partial I_{C0}}{\partial U_{ny}} = -\frac{A}{r_d + R_E + R_B(1 - A)}$$

8. Ismertesse n-csatornás záró típusú karakterisztikával rendelkező munkapontbeállításával kapcsolatos alábbi fogalmakat (egy telepes munkapontbeállító áramkör kapcsolási rajz, a munkaponti I_{S0} számítása négyzetes karakterisztika esetén ($U_P < 0$ és I_{D00} adott), az elzáródáshoz szükséges drain feszültség minimális értéke, az S_u feszültségstabilitási tényező értéke)!

$$S_{u} = -\frac{1}{R_{S} + \frac{1}{S}}$$

$$i_{D} = i_{S} \cong I_{DSS} \left(1 - \frac{u_{GS}}{U_{P}}\right)^{2}$$

$$U_{P} < u_{GS} < 0,$$

Az elzáródás akkor következik be, amikor a gate-drain feszültség eléri az elzáródási feszültség értékét, azaz u_{GD}=U_P

9. Ismertesse az **n-csatornás nyitó** típusú karakterisztikával rendelkező FET-ek munkapontbeállításával kapcsolatos alábbi fogalmakat (egy telepes munkapontbeállító áramkör gate osztóval kapcsolási rajz, a munkaponti I_{S0} számítása négyzetes karakterisztika esetén ($U_P > 0$ és I_{D00} adott), az elzáródáshoz szükséges drain feszültség minimális értéke, az S_u feszültségstabilitási tényező értéke)!

Kisjelű paraméterek

10. Rajzolja fel a bipoláris **n-p-n** tranzisztoros **földelt emitteres** fokozat kapcsolási elrendezését és kisjelű helyettesítő képét! Adja meg az alapkapcsolás következő két kisjelű paraméterét: A_u, A_i !

11. Rajzolja fel a bipoláris **n-p-n** tranzisztoros **földelt bázisú** fokozat kapcsolási elrendezését és kisjelű helyettesítő képét! Adja meg az alapkapcsolás következő két kisjelű paraméterét: A_u , R_{be} !

12. Rajzolja fel a bipoláris **n-p-n** tranzisztoros **földelt kollektoros** fokozat kapcsolási elrendezését és kisjelű helyettesítő képét! Adja meg az alapkapcsolás következő két kisjelű paraméterét: A_u , R_{ki} !

13. Rajzolja fel a **betöltéses** (=növekményes) **n-csatornás** MOS FET-es **földelt source**-os fokozat kapcsolási elrendezését és kisjelű helyettesítő képét! Adja meg az alapkapcsolás következő két kisjelű paraméterét: A_{u} , A_{i} !

- 14. Rajzolja fel a **betöltéses n-csatornás** MOS FET-es **földelt gate**-es fokozat kapcsolási elrendezését és kisjelű helyettesítő képét! Adja meg az alapkapcsolás következő két kisjelű paraméterét: A_u , R_{be} !
- 15. Rajzolja fel a betöltéses **n-csatornás** MOS FET-es **földelt drain**-es fokozat kapcsolási elrendezését és kisjelű helyettesítő képét! Adja meg az alapkapcsolás következő két kisjelű paraméterét: A_u , R_{ki} !

kapcsolási rajz kisjelû helyettesítő kép by TiMóT

16. Ismertesse a **földelt kollektoros** alapkapcsolás kisjelű paramétereit (előjelesen): A_u , feszültségerősítés; A_i , áramerősítés; R_{be} , bemeneti ellenállás; R_{ki} , kimeneti ellenállás!

$$A_{u} = \frac{u_{ki}}{u_{1}} = \frac{\left(\frac{u_{b}}{(1+\beta)r_{d}} + \frac{\alpha u_{b}}{r_{d}}\right)(R_{E} \times R_{t})}{u_{b} + \left(\frac{u_{b}}{(1+\beta)r_{d}} + \frac{\alpha u_{b}}{r_{d}}\right)(R_{E} \times R_{t})} = \frac{\left(\frac{1}{(1+\beta)} + \alpha\right)\frac{R_{E} \times R_{t}}{r_{d}}}{1 + \left(\frac{1}{(1+\beta)} + \alpha\right)\frac{R_{E} \times R_{t}}{r_{d}}} = \frac{R_{E} \times R_{t}}{r_{d} + (R_{E} \times R_{t})}$$

$$A_{i} = \frac{i_{2}}{i_{1}} = \frac{-\left(\frac{u_{b}}{(1+\beta)r_{d}} + \frac{\alpha u_{b}}{r_{d}}\right)}{\frac{u_{b}}{(1+\beta)r_{d}}} = \frac{-\left(\frac{1}{(1+\beta)} + \alpha\right)}{\frac{1}{(1+\beta)}} = -(1+\beta)$$

$$R_{be} = \frac{u_{1}}{i_{1}} = \frac{u_{b} + \left(\frac{u_{b}}{(1+\beta)r_{d}} + \frac{\alpha u_{b}}{r_{d}}\right)(R_{E} \times R_{t})}{\frac{u_{b}}{(1+\beta)r_{d}}} = (1+\beta)(r_{d} + (R_{E} \times R_{t}))$$

$$R_{ki} = \frac{u_{2}'}{i_{2}} = \frac{-i_{e}r_{d} - (1-\alpha)i_{e}(R_{g} \times R_{1} \times R_{2})}{-i_{e}} = r_{d} + \frac{R_{g} \times R_{1} \times R_{2}}{1+\beta}$$

17. Ismertesse a **földelt emitteres** alapkapcsolás kisjelű paramétereit (előjelesen): A_u , feszültségerősítés; A_i , áramerősítés; R_{be} , bemeneti ellenállás; R_{ki} , kimeneti ellenállás!

$$A_{u} = \frac{u_{ki}}{u_{1}} = \frac{u_{2}}{u_{1}} = \frac{-\frac{\alpha u_{1}}{r_{d}}(R_{C} \times R_{t})}{u_{1}} = -\alpha \frac{R_{C} \times R_{t}}{r_{d}}$$

$$A_{i} = \frac{i_{2}}{i_{1}} = \frac{\frac{\alpha u_{1}}{r_{d}}}{\frac{u_{1}}{(1+\beta)r_{d}}} = \alpha(1+\beta) = \beta$$

$$R_{be} = \frac{u_{1}}{i_{1}} = \frac{u_{1}}{\frac{u_{1}}{(1+\beta)r_{d}}} = (1+\beta)r_{d}$$

$$R_{ki} = \infty$$

18. Ismertesse a **földelt bázisú** alapkapcsolás kisjelű paramétereit (előjelesen): A_u , feszültségerősítés; A_i , áramerősítés; R_{be} , bemeneti ellenállás; R_{ki} , kimeneti ellenállás!

$$A_{u} = \frac{u_{ki}}{u_{1}} = \frac{-\alpha i_{e}(R_{C} \times R_{t})}{-i_{e}r_{d}} = \alpha \frac{R_{C} \times R_{t}}{r_{d}}$$

$$A_{i} = \frac{i_{2}}{i_{1}} = \frac{\alpha i_{e}}{-i_{e}} = -\alpha$$

$$R_{be} = \frac{u_{1}}{i_{1}} = \frac{-i_{e}r_{d}}{-i_{e}} = r_{d}$$

$$R_{ki} = \infty$$

19. Ismertesse a **földelt drain**-es alapkapcsolás kisjelű paramétereit (előjelesen): A_{u} , feszültségerősítés; A_{i} , áramerősítés; R_{be} , bemeneti ellenállás; R_{ki} , kimeneti ellenállás!

$$R_b = R_1; \qquad R_k = R_2 \times \frac{1}{S}; \qquad \frac{u_k}{u_b} = \frac{R_2}{R_2 + \frac{1}{S}} = \frac{S \cdot R_2}{1 + S \cdot R_2}$$

20. Ismertesse a **földelt source**-os alapkapcsolás kisjelű paramétereit (előjelesen): A_u , feszültségerősítés; A_i , áramerősítés; R_{be} , bemeneti ellenállás; R_{ki} , kimeneti ellenállás!

$$\frac{u_k}{u_b} = -S \cdot R_3; \qquad R_b = R_1; \qquad R_k = R_3$$

21. Ismertesse a **földelt gate**-es alapkapcsolás kisjelű paramétereit (előjelesen): A_u , feszültségerősítés; A_i , áramerősítés; R_{be} , bemeneti ellenállás; R_{ki} , kimeneti ellenállás!

Frekvenciafüggés

22. Ismertesse a Miller-hatás fogalmát (a FE fokozat kapcsolási rajza a belső kapacitások bejelölésével, a kapcsolás kisjelű modellje, a Miller kapacitás értéke, a FE fokozat bemenetén mérhető eredő párhuzamos kapacitás közelítő értéke)!

$$C_{\rm M} = C_{\rm b'c}(1 - A_{\rm U})$$

 $C_{p1} = C_{\rm b'e} + C_{\rm b'c}(1 + g_{\rm m}(R_{\rm C} \times R_{\rm t})) = C_{\rm b'e} + C_{\rm M}$

23. Ismertesse az emitter kondenzátor hatását a fokozat átviteli függvényére (a FE fokozat kapcsolási rajza a véges generátor ellenállással és emitter kondenzátorral, a kapcsolás kisjelű modellje, az emitter kondenzátor által létrehozott pólus és zérus értéke, Bode-diagram)!

$$a(p) = \frac{R'_{ki}}{R'_{ki} + R'_{E}} \frac{1 + pC_{E}R'_{E}}{1 + pC_{E}(R'_{E} \times R'_{ki})} \quad \omega_{p} = \frac{1}{C_{E}(R'_{E} \times R'_{ki})}, \quad \text{és} \quad \omega_{z} = \frac{1}{C_{E}R'_{E}}$$

24. Ismertesse a tranzisztoros alapkapcsolások **nagyfrekvenciás átvitelével** kapcsolatos elméleti alapokat (a párhuzamos RC tag hatása, a párhuzamos RC tag Bode-diagramja, a FE fokozat Miller-kondenzátorának az értéke, a FB fokozat Miller-kondenzátorának az értéke)!

FE fokozat Miller-kondenzátorának az értéke : $C_M = C_V(1 - A_U)$ FB fokozat Miller-kondenzátorának az értéke: nincs Miller effektus

25. Ismertesse a **csatoló kondenzátor** hatását a fokozat **átviteli függvényére** (a **földelt kollektoros** (FC) fokozat kapcsolási rajza véges generátor ellenállással és a generátor oldalon csatoló kondenzátorral, a kapcsolás kisjelű modellje, a csatoló kondenzátor által létrehozott pólus értéke, Bode-diagram)!

- 26. Ismertesse a **csatolókondenzátor hatását** az **erősítők átvitelére** (kapcsolási rajz, pólus és zérus frekvencia értéke, Bode-alak, Bode amplitúdó-karakterisztika)!
- 27. Ismertesse az **emitterkondenzátor** hatását az **erősítők átvitelére** (kapcsolási rajz, pólus és zérus frekvencia értéke, Bode-alak, Bode amplitúdó-karakterisztika)!

$$\omega_p = \frac{1}{C_E(R_E' \times R_{ki}')}, \text{ és } \omega_z = \frac{1}{C_E R_E'} \qquad a(p) = \frac{R_{ki}'}{R_{ki}' + R_E'} \frac{1 + pC_E R_E'}{1 + pC_E(R_E' \times R_{ki}')}$$

28. Ismertesse a jelútban lévő **párhuzamos RC tag hatását az erősítők átvitelére** (kapcsolási rajz, pólus és zérus frekvencia értéke, Bode-alak, Bode amplitúdó-karakterisztika)!

Kaszkód fokozat és differenciálerősítő

29. Ismertesse a **kaszkód fokozat** tulajdonságait (kapcsolási rajz, kisjelű modell, az első és második fokozat erősítése, a bemenetre transzformálódó Miller-kapacitás értéke)!

30. Ismertesse a **differenciálerősítő** jellemzőit (kapcsolási rajz, a kisjelű differenciál módusú erősítés értéke, az U_{off} fogalma, a nagyjelű transzfer karakterisztika $i_{cl} = f(\Delta u)$)!

A valóságos differenciálerősítő kimeneti áramai $u_1 = u_2 = 0$ feszültség esetén nem lesznek azonosak, mivel a tranzisztorok paraméterei és hőmérséklete eltér egymástól. Ahhoz, hogy a két kimeneti áram azonos legyen, a bemenetet egy adott egyenfeszültséggel kell vezérelni. Az offset feszültség az azonos kollektoráramokhoz tartozó u_{BE1} és u_{BE2} feszültségek különbsége.

31. Ismertesse a **differenciálerősítő** alábbi jellemzőit: **nagyjelű** $i_{CI} - \Delta u$ karakterisztika, a meredekség szintfüggése ($S(\Delta u)$), az offset feszültség függése a tranzisztorok felületétől, a **KME** fogalma!

$$U_{off} = U_T \ln\left(\frac{F_2}{F_1}\right)$$

Közös módusú elnyomási (KME) tényezőnek nevezzük differenciál módusú, illetve közös módusú jelekre vonatkozó érzékenységek hányadosát, mivel ez a szám azt mutatja meg, hogy nagyságú differenciál, azonos illetve közös módusú vezérlés hatására a fokozat kimenetén egymáshoz viszonyítva - mekkora nagyságú jel jelenik meg. A közös módusú elnyomási tényező a fenti érzékenységek hányadosának az abszolút értéke, mivel csak a kétféle jel nagyságának a viszonya hordoz információt számunkra.

32. Adja meg a **differenciálerősítő munkapontbeállítás**ával kapcsolatos legfontosabb fogalmakat (kapcsolási rajz, az U_{off} offset feszültség definíciója, az I_{off} offset áram definíciója, az I_{B} bias áram definíciója)!

A valóságos differenciálerősítő kimeneti áramai $u_1 = u_2 = 0$ feszültség esetén nem lesznek azonosak, mivel a tranzisztorok paraméterei és hőmérséklete eltér egymástól. Ahhoz, hogy a két kimeneti áram azonos legyen, a bemenetet egy adott egyenfeszültséggel kell vezérelni. Az offset feszültség (U_{of}) az azonos kollektoráramokhoz tartozó u_{BE1} és u_{BE2} feszültségek különbsége.

 I_{off} pedig a munkaponti bázisáramok különbsége (a differenciálerősítő offset árama).

 I_B az átlagos munkaponti bázisáram (a differenciálerősítő bias árama)

33. Ismertesse a **differenciálerősítő kisjelű paraméterei**vel kapcsolatos fontosabb fogalmakat (kapcsolási rajz, kisjelű helyettesítő kép, a differenciál módusú erősítés, a közös módusú erősítés)!

Műveleti erősítő és visszacsatolás

34. Ismertesse a **műveleti erősítők munkapont beállítás**ával kapcsolatos alapfogalmakat (U_{off} , I_{off} (I_{BI} , I_{B2}), az egyenáramú modell, az eredő U_H kimeneti hibafeszültség a fázisfordító alapkapcsolásban)!

A modell leírja az erősítő bemenetére redukált offset feszültség (\mathbf{U}_{off}), és az erősítő bemenetein folyó átlagos bemeneti áram (\mathbf{I}_{B}) és offset áram (\mathbf{I}_{off}) hatását. Ezekkel a modellekkel a műveleti erősítő munkapontbeállítását lehet leírni.

35. Ismertesse a **véges erősítés**sel és **véges bemeneti ellenállás**sal rendelkező **műveleti erősítő**vel felépített **fázisfordító** alapkapcsolás visszacsatolt erősítését, ha az erősítő átviteli függvényében **egyetlen pólus** van (kapcsolási rajz, az ideális erősítés értéke, a visszacsatolt erősítés értéke, a visszacsatolt erősítés Bode-diagramja)!

36. Ismertesse a **véges erősítés**sel és **véges bemeneti ellenállás**sal rendelkező **műveleti erősítő**vel felépített **fázist nem fordító** alapkapcsolás visszacsatolt erősítését, ha az erősítő átviteli függvényében **egyetlen pólus** van (kapcsolási rajz, az ideális erősítés értéke, a visszacsatolt erősítés értéke, a visszacsatolt erősítés Bode-diagramja)!

 ω_0

37. Ismertesse a **véges erősítés**sel és **véges bemeneti ellenállás**sal rendelkező **műveleti erősítő**vel felépített **fázisfordító** alapkapcsolás visszacsatolt erősítését, ha az erősítő átviteli függvényében **két pólus** van (kapcsolási rajz, a visszacsatolt erősítés általános alakja (másodfokú átviteli függvény), a ζ csillapítási tényező értéke, az Ω_0 törésponti frekvencia értéke)!

$$A(p) = \frac{A_0}{(1 + \frac{p}{\omega_1})(1 + \frac{p}{\omega_2})} \qquad \Omega_0 = \sqrt{\omega_1 \omega_2 (1 + A_0 \beta)}, \quad \zeta = \frac{1}{2} \frac{\sqrt{\frac{\omega_1}{\omega_2}} + \sqrt{\frac{\omega_2}{\omega_1}}}{\sqrt{1 + A_0 \beta}}$$

$$H(p) = \frac{A_0 \beta}{1 + A_0 \beta} \frac{1}{1 + 2\zeta \frac{p}{\Omega_0} + \frac{p^2}{\Omega_0^2}}$$

- 38. Ismertesse a **visszacsatolás hatását** az erősítők **bemeneti** és **kimeneti impedanciáira** (a párhuzamos és soros visszacsatolás hatása az R_{bev} értékére, a feszültség és áram visszacsatolás hatása az R_{kiv} értékére)!
- 39. Ismertesse a **két pólus**sal rendelkező visszacsatolt **műveleti erősítő**k átviteli tulajdonságait a ζ csillapítási tényező függvényében (az egységugrás gerjesztésre adott válasz ζ =1 és ζ =1/2 esetén, az átviteli függvény értéke az Ω_0 törésponti frekvencián ζ =1 és ζ =1/2 esetén)!

40. Ismertesse az **egyszerűsített Bode-diagramos stabilitásvizsgálat**i eljárást (általános Bode-kritérium, Bode-kritérium minimálfázisú hálózatok esetén, a fázistartalék és az amplitúdótartalék fogalma és Bode-diagramos illusztrációja)!

Bode-kritérium(ált.): Akkor stabil egy zárt rendszer ha $a_t < 1$ és $\phi_t < \pi$ (vagy $\phi_t > -\pi$). **Bode-kritérium(minimálfázisú hálózatra):** Mivel minimál fázisú hálózatoknál a logaritmikus amplitudókarakterisztika egyértelműen meghatározza a fázis karakterisztikát, ezért elegendő csak az amplitudókarakterisztikát vizsgálni.

 $lg(\beta A)(j\omega)$

Biztosan stabil a rendszer ha $|x| = 20 \frac{dB}{dek\acute{a}d}$

Biztosan instabil ha $|x| > 40 \frac{dB}{dek\acute{a}d}$

Fázistartalék: Az a $φ_t$ szög, amely megadja, hogy $|(\beta A)(j\omega)| = 1$ -nél a hurokerősítés fázisa mennyivel kisebb π -nél (illetve negatív szögek esetén mennyivel kisebb $-\pi$ -nél).

Ha $oldsymbol{arphi}_t < oldsymbol{\pi}$ vagy $oldsymbol{arphi}_t > -oldsymbol{\pi}$ akkor stabil

ha $\varphi_t > \pi$ vagy $\varphi_t < -\pi$ akkor instabil

ha $\phi_t = \pm \pi$ akkor a stabilitás határhelyzetében van a rendszer

Amplitúdótartalék (=erősítéstartalék): A $(\beta A)(j\omega)$ helygörbe és a negatív valós tengely metszéspontjának távolsága az origótól.

Ha $a_t < 1$ akkor stabil

ha $a_t > 1$ 1 akkor instabil

ha $a_t = 1$ akkor a stabilitás határhelyzetében van a rendszer.

41. Rajzolja fel a műveleti erősítő alapkapcsolásait (összeadó áramkör, kivonó áramkör, integráló áramkör, differenciáló (deriváló) áramkör)!

42. Ismertesse a **Nyquist stabilitási kritérium**ot (a Nyquist-diagram fogalma, a stabilitás határhelyzete, a Nyquist stabilitási kritérium, egy stabil és egy instabil rendszer Nyquist-diagramja)!

Nyquist-diagram: A visszacsatolt rendzser $(\beta A)(j\omega)$ hurokerősítésének a helygörbéje a komplex síkon, azaz a hurokerősítés valós és képzetes részének ábrázolása a frekvencia függvényében.

A **stabilitás határhelyzet**éről akkor beszélünk ha a hurokerősítés Nyquist diagrammja áthalad a komplex számsík (-1,0) pontján. Tehát a zárt rendszernek pólusa van a jω tengelyen. Ilyenkor a zárt rendszerben csillapítatlan szinuszos rezgések jönnek létre

Nyquist stabilitási kritérium: Legygyakoribb esetben a nyílt rendszer stabil, ekkor a zárt rendszer akkor és csak akkor stabil ha a hurokerősítés Nyquist diagrammja nem veszi körül a komplex számsík (-1,0) pontját.

Komparátorok

43. Ismertesse a **fázisfordító hiszterézises** (pozitív visszacsatolású) komparátor jellemzőit (kapcsolási rajz, $U_{be} - U_{ki}$ karakterisztika, a billenési küszöbértékek, az U_H értéke)!

$$\begin{aligned} U_{H} &= |(U_{kiM} - U_{kim})| \frac{R_{1}}{R_{1} - R_{2}} \\ u_{be} &\geq U_{kiM} \frac{R_{1}}{R_{1} + R_{2}} & \text{ha } U_{ki} = U_{kiM} \\ u_{be} &< U_{kim} \frac{R_{1}}{R_{1} + R_{2}} & \text{ha } U_{ki} = U_{kim} \end{aligned}$$

44. Ismertesse a **fázist nem fordító hiszterézises** (pozitív visszacsatolású) komparátor jellemzőit (kapcsolási rajz, $U_{be} - U_{ki}$ karakterisztika, a billenési küszöbértékek, az U_H értéke)!

$$\begin{aligned} U_H &= |(U_{kiM} - U_{kim})| \frac{R_1}{R_2} \\ u_{be} &\geq -U_{kim} \frac{R_1}{R_2} \\ u_{be} &\leq -U_{kiM} \frac{R_1}{R_2} \\ u_{be} &\leq -U_{kiM} \frac{R_1}{R_2} \end{aligned} \quad \text{ha } U_{ki} = U_{kim}$$

45. Ismertesse a pozitívan visszacsatolt komparátorral felépített **astabil multivibrátor** működését (kapcsolási rajz, a kondenzátoron mérhető jel időfüggvénye, a kimeneten mérhető jel időfüggvénye, a periódusidő értéke)!

Ha $U_{kiM} = -U_{kim}$ akkor a periódusidő:

$$T = RC \ln \left(\left(\frac{1 + \frac{R_1}{R_1 + R_2}}{\frac{R_2}{R_1 + R_2}} \right)^2 \right) = 2RC \ln \left(1 + 2\frac{R_1}{R_2} \right)$$

46. Ismertesse a pozitívan visszacsatolt komparátorral felépített **monostabil multivibrátor** működését (kapcsolási rajz, a kondenzátoron mérhető jel időfüggvénye, a kimeneten mérhető jel időfüggvénye, az impulzusidő értéke)!

$$t_1 = RC \ln \left(\frac{R_1 + R_2}{R_2} \right) = RC \ln \left(1 + \frac{R_1}{R_2} \right)$$

D/A és A/D konverterek

47. Ismertesse a D/A konverterek legfontosabb paramétereit (a bemeneti bitek száma N, a kimeneti feszültség értéke a bitek függvényében, a maximális kimeneti feszültség, az LSB-hez tartozó kimeneti feszültségváltozás értéke)!

bemeneti bitek száma N:

Kimeneti feszültség értéke a bitek függvényében: $u_{ki} = KU_{ref}D$

$$U_{kiM} = KU_{ref} \frac{2^N - 1}{2^N}$$

Maximális kimeneti feszültség:

$$U_m = KU_{ref} \frac{1}{2^N}$$

LSB-hez tartozó kimeneti feszültségváltozás értéke: $U_m = KU_{ref} \frac{1}{2^N}$

48. Ismertesse az R-2R létrával megvalósított D/A konverter tulajdonságait (kapcsolási rajz, az ndik ágon folyó áram értéke, a virtuális földpontba folyó eredő áram értéke, a kimeneti feszültség értéke)!

$$I_n = \frac{U_{ref}}{2^{n-1} \times 2R}$$

Virtuális földpontba folyó eredő áram: $I_{f\"{o}ld} = U_{ref} \sum_{n=1}^{N} rac{1-b_n}{2^n R}$

$$U_{ki} = -R \sum_{n=1}^{N} b_n \frac{U_{ref}}{2^n R} = -U_{ref} \left(\frac{b_1}{2} + \frac{b_2}{2^2} + \dots + \frac{b_n}{2^n} + \dots + \frac{b_N}{2^N} \right)$$

49. Ismertesse az A/D konverterek legfontosabb paramétereit (a kimeneti m szám értéke, az LSB-hez tartozó bemeneti feszültség értéke, az MSB-hez tartozó bemeneti feszültség értéke, a kvantálási hiba szórásnégyzete)!

Kimeneti m szám értéke:
$$m = \inf \left[\frac{2^N U_{be}}{U_{FS}} + \frac{1}{2} \right]$$

LSB-hez tartozó bemeneti feszültség értéke: $U_{be} = \frac{U_{FS}}{2^N}$

MSB-hez tartozó bemeneti feszültség értéke: $U_{be} = \frac{U_{FS}}{2}$ Kyantálási biba szárász í Kvantálási hiba szórásnégyzete:

$$M(\varepsilon^{2}) = \frac{1}{U_{m}} \int_{-\frac{U_{m}}{2}}^{\frac{U_{m}}{2}} x^{2} dx = \frac{1}{U_{m}} \left[\frac{x^{3}}{3} \right]_{-\frac{U_{m}}{2}}^{\frac{U_{m}}{2}} = \frac{2}{3U_{m}} \left(\frac{U_{m}}{2} \right)^{3} = \frac{U_{m}^{2}}{12}$$

50. Ismertesse az dual slope elven működő A/D konverter működési elvét (kapcsolási rajz, az integrátor kimenetén mérhető jel, az átalakítás eredménye(m), a hálózati zavarok elnyomása)!

Integrátor kimenetén mérhető jel:

$$u_C(t) = u_{C \max} - \int_0^t \frac{U_{ref}}{RC} d\sigma = u_{C \max} - \frac{U_{ref}}{RC} t$$

Átalakítás eredménye(m):

$$m = \operatorname{int}\left(\frac{T}{T_0}\right) = \operatorname{int}\left(\frac{U_{be}}{U_{ref}}2^N\right)$$

Hálózati zavarok elnyomása: A dual-slope A/D képes a hálózati 50Hz-es zavarokat és azok egész számú többszöröseit kiszűrni, ha az integrálási idő a hálózati periódusidő egész számú többszöröse.

$$T = k \cdot T_z$$