Simultaneous statistical inference for epidemic trends: the case of COVID-19

Marina Khismatullina Michael Vogt 01/10/2020

Table of contents

- 1. Introduction
- 2. Model
- 3. Testing
- 4. Theoretical properties
- 5. Application

Introduction

Motivation

Research question: How do outbreak patterns of COVID-19 compare across countries?

Motivation

Research question: How do outbreak patterns of COVID-19 compare across countries?

Aim of the paper

To develop new inference methods that allow to *identify* and *locate* differences between epidemic time trends.

Literature

Comparison of deterministic trends:

 Park et al. (2009), Degras et al. (2012), Zhang et al. (2012), Hidalgo and Lee (2014), Chen and Wu (2019).

Literature

Comparison of deterministic trends:

 Park et al. (2009), Degras et al. (2012), Zhang et al. (2012), Hidalgo and Lee (2014), Chen and Wu (2019).

Studies of COVID-19:

- SIR models: Yang et al. (2020), Wu et al. (2020), De Brouwer et al. (2020).
- Time series analysis: Gu et al. (2020), Li and Linton (2020).

We observe n time series $\mathcal{X}_i = \{X_{it} : 1 \leq t \leq T\}$ of length T.

We observe *n* time series $\mathcal{X}_i = \{X_{it} : 1 \leq t \leq T\}$ of length T.

 X_{it} are non-negative integers \Rightarrow can be modelled by a Poisson distribution with time-varying parameter $\lambda_i(t/T)$: $X_{it} \sim P_{\lambda_i(t/T)}$.

We observe *n* time series $\mathcal{X}_i = \{X_{it} : 1 \leq t \leq T\}$ of length T.

 X_{it} are non-negative integers \Rightarrow can be modelled by a Poisson distribution with time-varying parameter $\lambda_i(t/T)$: $X_{it} \sim P_{\lambda_i(t/T)}$.

Since
$$\lambda_i(t/T) = \mathbb{E}[X_{it}] = \operatorname{Var}(X_{it})$$
, we can rewrite X_{it} as

$$X_{it} = \lambda_i \left(\frac{t}{T}\right) + u_{it}$$
 with $u_{it} = \sqrt{\lambda_i \left(\frac{t}{T}\right) \eta_{it}}$

We observe *n* time series $\mathcal{X}_i = \{X_{it} : 1 \leq t \leq T\}$ of length T.

 X_{it} are non-negative integers \Rightarrow can be modelled by a Poisson distribution with time-varying parameter $\lambda_i(t/T)$: $X_{it} \sim P_{\lambda_i(t/T)}$.

Since $\lambda_i(t/T) = \mathbb{E}[X_{it}] = \operatorname{Var}(X_{it})$, we can rewrite X_{it} as

$$X_{it} = \lambda_i \left(\frac{t}{T}\right) + u_{it}$$
 with $u_{it} = \sqrt{\lambda_i \left(\frac{t}{T}\right) \eta_{it}}$

In applications the variance can be larger than the mean \Rightarrow quasi-Poisson models.

Quasi-Poisson model:

$$X_{it} = \lambda_i \left(\frac{t}{T}\right) + \sigma \sqrt{\lambda_i \left(\frac{t}{T}\right)} \eta_{it},$$

Quasi-Poisson model:

$$X_{it} = \lambda_i \left(\frac{t}{T}\right) + \sigma \sqrt{\lambda_i \left(\frac{t}{T}\right)} \eta_{it},$$

where

• λ_i are unknown trend functions on [0, 1];

Quasi-Poisson model:

$$X_{it} = \lambda_i \left(\frac{t}{T}\right) + \sigma \sqrt{\lambda_i \left(\frac{t}{T}\right)} \eta_{it},$$

where

- λ_i are unknown trend functions on [0, 1];
- \bullet σ is the overdispersion parameter;

Quasi-Poisson model:

$$X_{it} = \lambda_i \left(\frac{t}{T}\right) + \sigma \sqrt{\lambda_i \left(\frac{t}{T}\right)} \eta_{it},$$

where

- λ_i are unknown trend functions on [0, 1];
- \bullet σ is the overdispersion parameter;
- η_{it} are error terms that are independent across i and t and have zero mean and unit variance.

Testing

Let $\mathcal{F}:=\{\mathcal{I}_k\subseteq [0,1]:1\leq k\leq K\}$ be a family of rescaled time intervals on [0,1], and let $H_0^{(ijk)}$ be the hypothesis that the functions λ_i and λ_j are equal on an interval \mathcal{I}_k ,

Let $\mathcal{F}:=\{\mathcal{I}_k\subseteq [0,1]:1\leq k\leq K\}$ be a family of rescaled time intervals on [0,1], and let $H_0^{(ijk)}$ be the hypothesis that the functions λ_i and λ_j are equal on an interval \mathcal{I}_k , i.e.

$$H_0^{(ijk)}: \quad \lambda_i(w) = \lambda_j(w) \text{ for all } w \in \mathcal{I}_k$$

Let $\mathcal{F}:=\{\mathcal{I}_k\subseteq [0,1]:1\leq k\leq K\}$ be a family of rescaled time intervals on [0,1], and let $H_0^{(ijk)}$ be the hypothesis that the functions λ_i and λ_j are equal on an interval \mathcal{I}_k , i.e.

$$H_0^{(ijk)}: \quad \lambda_i(w) = \lambda_j(w) \text{ for all } w \in \mathcal{I}_k$$

We want to test $H_0^{(ijk)}$ simultaneously for all pairs of countries i and j and all intervals \mathcal{I}_k in the family \mathcal{F} and we want to control the familywise error rate (FWER) at level α .

Let $\mathcal{F}:=\{\mathcal{I}_k\subseteq [0,1]:1\leq k\leq K\}$ be a family of rescaled time intervals on [0,1], and let $H_0^{(ijk)}$ be the hypothesis that the functions λ_i and λ_j are equal on an interval \mathcal{I}_k , i.e.

$$H_0^{(ijk)}: \quad \lambda_i(w) = \lambda_j(w) \text{ for all } w \in \mathcal{I}_k$$

We want to test $H_0^{(ijk)}$ simultaneously for all pairs of countries i and j and all intervals \mathcal{I}_k in the family \mathcal{F} and we want to control the familywise error rate (FWER) at level α .

Let \mathcal{M}_0 be the set of triplets (i, j, k) for which $H_0^{(ijk)}$ holds true. Then, FWER is

$$\mathsf{FWER}(lpha) = \mathrm{P}\Big(\exists (i,j,k) \in \mathcal{M}_0 : \mathsf{we} \; \mathsf{reject} \; H_0^{(ijk)}\Big)$$

For the given interval \mathcal{I}_k and a pair of time series i and j we calculate

$$\hat{s}_{ijk,T} = \frac{1}{Th_k} \sum_{t=1}^{T} \mathbf{1} \left(\frac{t}{T} \in \mathcal{I}_k \right) (X_{it} - X_{jt}),$$

where h_k is the length of \mathcal{I}_k .

For the given interval \mathcal{I}_k and a pair of time series i and j we calculate

$$\hat{s}_{ijk,T} = \frac{1}{Th_k} \sum_{t=1}^{T} \mathbf{1} \left(\frac{t}{T} \in \mathcal{I}_k \right) (X_{it} - X_{jt}),$$

where h_k is the length of \mathcal{I}_k . $\hat{s}_{ijk,T}$ estimates the average distance between λ_i and λ_j on \mathcal{I}_k .

For the given interval \mathcal{I}_k and a pair of time series i and j we calculate

$$\hat{s}_{ijk,T} = \frac{1}{Th_k} \sum_{t=1}^{I} \mathbf{1} \left(\frac{t}{T} \in \mathcal{I}_k \right) (X_{it} - X_{jt}),$$

where h_k is the length of \mathcal{I}_k . $\hat{s}_{ijk,T}$ estimates the average distance between λ_i and λ_j on \mathcal{I}_k . Under certain assumptions,

$$\operatorname{Var}(\hat{s}_{ijk,T}) = \frac{\sigma^2}{T^2 h_k^2} \sum_{t=1}^T \mathbf{1} \left(\frac{t}{T} \in \mathcal{I}_k \right) \left\{ \lambda_i \left(\frac{t}{T} \right) + \lambda_j \left(\frac{t}{T} \right) \right\}$$

For the given interval \mathcal{I}_k and a pair of time series i and j we calculate

$$\hat{s}_{ijk,T} = \frac{1}{Th_k} \sum_{t=1}^{I} \mathbf{1} \left(\frac{t}{T} \in \mathcal{I}_k \right) (X_{it} - X_{jt}),$$

where h_k is the length of \mathcal{I}_k . $\hat{s}_{ijk,T}$ estimates the average distance between λ_i and λ_j on \mathcal{I}_k . Under certain assumptions,

$$\operatorname{Var}(\hat{s}_{ijk,T}) = \frac{\sigma^2}{T^2 h_k^2} \sum_{t=1}^T \mathbf{1} \left(\frac{t}{T} \in \mathcal{I}_k \right) \left\{ \lambda_i \left(\frac{t}{T} \right) + \lambda_j \left(\frac{t}{T} \right) \right\}$$

In order to normalize the variance of the statistic $\hat{s}_{ijk,T}$, we scale it by an estimator of its variance:

$$\widehat{\operatorname{Var}(\widehat{s}_{ijk}, \tau)} = \frac{\widehat{\sigma}^2}{T^2 h_k^2} \sum_{t=1}^T \mathbf{1} \Big(\frac{t}{T} \in \mathcal{I}_k \Big) (X_{it} + X_{jt}),$$

with $\hat{\sigma}^2$ being an appropriate estimator of σ^2 . Details

Test statistic, part 2

Test statistic for the hypothesis $H_0^{(ijk)}$ is defined as

$$\widehat{\psi}_{ijk,T} = \frac{\sum_{t=1}^{T} \mathbf{1}(\frac{t}{T} \in \mathcal{I}_k)(X_{it} - X_{jt})}{\widehat{\sigma}\{\sum_{t=1}^{T} \mathbf{1}(\frac{t}{T} \in \mathcal{I}_k)(X_{it} + X_{jt})\}^{1/2}}$$

Test statistic, part 2

Test statistic for the hypothesis $H_0^{(ijk)}$ is defined as

$$\widehat{\psi}_{ijk,T} = \frac{\sum_{t=1}^{T} \mathbf{1}(\frac{t}{T} \in \mathcal{I}_k)(X_{it} - X_{jt})}{\widehat{\sigma}\{\sum_{t=1}^{T} \mathbf{1}(\frac{t}{T} \in \mathcal{I}_k)(X_{it} + X_{jt})\}^{1/2}}$$

Under certain conditions and under the null, $\widehat{\psi}_{ijk,T}$ can be approximated by a Gaussian version of the test statistic:

$$\phi_{ijk,T} = \frac{1}{\sqrt{2Th_k}} \sum_{t=1}^{T} \mathbf{1} \left(\frac{t}{T} \in \mathcal{I}_k \right) (Z_{it} - Z_{jt}),$$

where Z_{it} are independent standard normal random variables.

How to construct critical values $c_{ijk,T}(\alpha)$?

How to construct critical values $c_{ijk,T}(\alpha)$?

• Traditional approach: $c_{ijk,T}(\alpha) = c_T(\alpha)$ for all (i,j,k).

How to construct critical values $c_{ijk,T}(\alpha)$?

- Traditional approach: $c_{ijk,T}(\alpha) = c_T(\alpha)$ for all (i,j,k).
- More modern approach: $c_{ijk,T}(\alpha)$ depend on the length h_k of the time interval (Dümbgen and Spokoiny (2001)).

How to construct critical values $c_{ijk,T}(\alpha)$?

- Traditional approach: $c_{ijk,T}(\alpha) = c_T(\alpha)$ for all (i,j,k).
- More modern approach: $c_{ijk,T}(\alpha)$ depend on the length h_k of the time interval (Dümbgen and Spokoiny (2001)).

In our context:

$$c_{ijk,T}(\alpha) = c_T(\alpha, h_k) := b_k + q_T(\alpha)/a_k,$$

where $a_k = \{\log(e/h_k)\}^{1/2}/\log\log(e^e/h_k)$ and $b_k = \sqrt{2\log(1/h_k)}$ are scale-dependent constants and $q_T(\alpha)$ is chosen such that we control FWER.

Critical values, part 2

We want to control FWER:

$$\begin{aligned} \mathsf{FWER}(\alpha) &= \mathsf{P}\Big(\exists (i,j,k) \in \mathcal{M}_0 : |\widehat{\psi}_{ijk,\mathcal{T}}| > c_{ijk,\mathcal{T}}(\alpha)\Big) \\ &= 1 - \mathsf{P}\Big(\forall (i,j,k) \in \mathcal{M}_0 : |\widehat{\psi}_{ijk,\mathcal{T}}| \leq c_{ijk,\mathcal{T}}(\alpha)\Big) \\ &= 1 - \mathsf{P}\Big(\forall (i,j,k) \in \mathcal{M}_0 : a_k\big(|\widehat{\psi}_{ijk,\mathcal{T}}| - b_k\big) \leq q_{\mathcal{T}}(\alpha)\Big) \\ &= 1 - \mathsf{P}\Big(\max_{(i,j,k) \in \mathcal{M}_0} a_k\big(|\widehat{\psi}_{ijk,\mathcal{T}}| - b_k\big) \leq q_{\mathcal{T}}(\alpha)\Big) \\ &\leq \alpha \end{aligned}$$

Critical values, part 2

We want to control FWER:

$$\begin{aligned} \mathsf{FWER}(\alpha) &= \mathsf{P}\Big(\exists (i,j,k) \in \mathcal{M}_0 : |\widehat{\psi}_{ijk,\mathcal{T}}| > c_{ijk,\mathcal{T}}(\alpha)\Big) \\ &= 1 - \mathsf{P}\Big(\forall (i,j,k) \in \mathcal{M}_0 : |\widehat{\psi}_{ijk,\mathcal{T}}| \leq c_{ijk,\mathcal{T}}(\alpha)\Big) \\ &= 1 - \mathsf{P}\Big(\forall (i,j,k) \in \mathcal{M}_0 : a_k\big(|\widehat{\psi}_{ijk,\mathcal{T}}| - b_k\big) \leq q_{\mathcal{T}}(\alpha)\Big) \\ &= 1 - \mathsf{P}\Big(\max_{(i,j,k) \in \mathcal{M}_0} a_k\big(|\widehat{\psi}_{ijk,\mathcal{T}}| - b_k\big) \leq q_{\mathcal{T}}(\alpha)\Big) \\ &\leq \alpha \end{aligned}$$

Hence, we choose $q_T(\alpha)$ as the $(1-\alpha)$ -quantile of the statistic

$$\hat{\Psi}_T = \max_{(i,j,k)} a_k (|\hat{\psi}^0_{ijk,T}| - b_k),$$

where $\hat{\psi}^0_{ijk,T}$ is equal to $\hat{\psi}_{ijk,T}$ under the null.

Test procedure

1. Consider the Gaussian test statistic

$$\Phi_T = \max_{(i,j,k)} a_k (|\phi_{ijk,T}| - b_k),$$

where a_k and b_k are scale-dependent constants and $\phi_{ijk,T}$ are weighted averages of the differences of standard normal random variables.

Test procedure

1. Consider the Gaussian test statistic

$$\Phi_T = \max_{(i,j,k)} a_k (|\phi_{ijk,T}| - b_k),$$

where a_k and b_k are scale-dependent constants and $\phi_{ijk,T}$ are weighted averages of the differences of standard normal random variables.

2. Compute a $(1 - \alpha)$ -quantile $q_{T,Gauss}(\alpha)$ of Φ_T by Monte Carlo simulations.

Test procedure

1. Consider the Gaussian test statistic

$$\Phi_T = \max_{(i,j,k)} a_k (|\phi_{ijk,T}| - b_k),$$

where a_k and b_k are scale-dependent constants and $\phi_{ijk,T}$ are weighted averages of the differences of standard normal random variables.

- 2. Compute a (1α) -quantile $q_{T,Gauss}(\alpha)$ of Φ_T by Monte Carlo simulations.
- 3. Adjust $q_{T,Gauss}(\alpha)$ by the scale-dependent constants

$$c_{T,\mathsf{Gauss}}(\alpha,h_k) = b_k + q_{T,\mathsf{Gauss}}(\alpha)/a_k$$

Test procedure

1. Consider the Gaussian test statistic

$$\Phi_T = \max_{(i,j,k)} a_k (|\phi_{ijk,T}| - b_k),$$

where a_k and b_k are scale-dependent constants and $\phi_{ijk,T}$ are weighted averages of the differences of standard normal random variables.

- 2. Compute a (1α) -quantile $q_{T,Gauss}(\alpha)$ of Φ_T by Monte Carlo simulations.
- 3. Adjust $q_{T,Gauss}(\alpha)$ by the scale-dependent constants

$$c_{T,\mathsf{Gauss}}(\alpha,h_k) = b_k + q_{T,\mathsf{Gauss}}(\alpha)/a_k$$

Test procedure

For the given significance level $\alpha \in (0,1)$ and for each (i,j,k), reject $H_0^{(ijk)}$ if $|\widehat{\psi}_{ijk,T}| > c_{T,\mathsf{Gauss}}(\alpha,h_k)$.

 ${\cal C}1$ The functions λ_i are uniformly Lipschitz continuous:

$$|\lambda_i(u)-\lambda_i(v)| \leq L|u-v| \text{ for all } u,v \in [0,1].$$

 $\mathcal{C}1$ The functions λ_i are uniformly Lipschitz continuous:

$$|\lambda_i(u) - \lambda_i(v)| \le L|u - v|$$
 for all $u, v \in [0, 1]$.

C2
$$0 < \lambda_{\min} \le \lambda_i(w) \le \lambda_{\max} < \infty$$
 for all $w \in [0,1]$ and all i .

C1 The functions λ_i are uniformly Lipschitz continuous:

$$|\lambda_i(u) - \lambda_i(v)| \le L|u - v|$$
 for all $u, v \in [0, 1]$.

C2
$$0 < \lambda_{\min} \le \lambda_i(w) \le \lambda_{\max} < \infty$$
 for all $w \in [0,1]$ and all i .

C3 η_{it} are independent both across i and t.

 $\mathcal{C}1$ The functions λ_i are uniformly Lipschitz continuous:

$$|\lambda_i(u) - \lambda_i(v)| \le L|u - v|$$
 for all $u, v \in [0, 1]$.

- C2 $0 < \lambda_{\min} \le \lambda_i(w) \le \lambda_{\max} < \infty$ for all $w \in [0,1]$ and all i.
- C3 η_{it} are independent both across i and t.
- $\mathcal{C}4$ $\mathbb{E}[\eta_{it}] = 0$, $\mathbb{E}[\eta_{it}^2] = 1$ and $\mathbb{E}[|\eta_{it}|^{\theta}] \leq C_{\theta} < \infty$ for some $\theta > 4$.

- C1 The functions λ_i are uniformly Lipschitz continuous: $|\lambda_i(u) \lambda_i(v)| \le L|u v|$ for all $u, v \in [0, 1]$.
- C2 $0 < \lambda_{\min} < \lambda_i(w) < \lambda_{\max} < \infty$ for all $w \in [0,1]$ and all i.
- C3 η_{it} are independent both across i and t.
- $\mathcal{C}4$ $\mathbb{E}[\eta_{it}] = 0$, $\mathbb{E}[\eta_{it}^2] = 1$ and $\mathbb{E}[|\eta_{it}|^{\theta}] \leq C_{\theta} < \infty$ for some $\theta > 4$.
- $\mathcal{C}5$ $h_{\mathsf{max}} = o(1/\log T)$ and $h_{\mathsf{min}} \geq CT^{-b}$ for some $b \in (0,1)$.

- $\mathcal{C}1$ The functions λ_i are uniformly Lipschitz continuous:
- $|\lambda_i(u) \lambda_i(v)| \le L|u-v|$ for all $u, v \in [0,1]$.
- C2 $0 < \lambda_{\min} \le \lambda_i(w) \le \lambda_{\max} < \infty$ for all $w \in [0,1]$ and all i.
- C3 η_{it} are independent both across i and t.
- $\mathcal{C}4$ $\mathbb{E}[\eta_{it}] = 0$, $\mathbb{E}[\eta_{it}^2] = 1$ and $\mathbb{E}[|\eta_{it}|^{\theta}] \leq C_{\theta} < \infty$ for some $\theta > 4$.
- $\mathcal{C}5$ $h_{\mathsf{max}} = o(1/\log T)$ and $h_{\mathsf{min}} \geq CT^{-b}$ for some $b \in (0,1)$.
- C6 $p := \{\#(i,j,k)\} = O(T^{(\theta/2)(1-b)-(1+\delta)})$ for some small $\delta > 0$.

Proposition

Let \mathcal{M}_0 be the set of triplets (i, j, k) for which $H_0^{(ijk)}$ holds true. Then under $\mathcal{C}1-\mathcal{C}6$, it holds that

$$P\Big(\forall (i,j,k) \in \mathcal{M}_0 : |\hat{\psi}_{ijk,T}| \leq c_{T,\mathsf{Gauss}}(\alpha,h_k) \Big) \geq 1 - \alpha + o(1)$$

Proposition

Let \mathcal{M}_0 be the set of triplets (i, j, k) for which $H_0^{(ijk)}$ holds true. Then under $\mathcal{C}1-\mathcal{C}6$, it holds that

$$\mathrm{P}\Big(orall (i,j,k) \in \mathcal{M}_0 : |\hat{\psi}_{ijk,T}| \leq c_{T,\mathsf{Gauss}}(lpha,h_k) \Big) \geq 1 - lpha + o(1)$$

Proposition

Consider a sequence of functions $\lambda_i = \lambda_{i,T}$, $\lambda_j = \lambda_{j,T}$ such that

$$\exists \mathcal{I}_k : \lambda_{i,T}(w) - \lambda_{j,T}(w) \ge c_T \sqrt{\log T/(Th_k)} \ \forall w \in \mathcal{I}_k, \tag{1}$$

and $c_T \to \infty$ faster than $\frac{\sqrt{\log T}\sqrt{\log\log T}}{\log\log\log T}$.

Proposition

Let \mathcal{M}_0 be the set of triplets (i, j, k) for which $H_0^{(ijk)}$ holds true. Then under $\mathcal{C}1-\mathcal{C}6$, it holds that

$$P\Big(orall (i,j,k) \in \mathcal{M}_0 : |\hat{\psi}_{ijk,T}| \leq c_{T,\mathsf{Gauss}}(lpha,h_k) \Big) \geq 1 - lpha + o(1)$$

Proposition

Consider a sequence of functions $\lambda_i = \lambda_{i,T}$, $\lambda_j = \lambda_{j,T}$ such that

$$\exists \mathcal{I}_k : \lambda_{i,T}(w) - \lambda_{j,T}(w) \ge c_T \sqrt{\log T/(Th_k)} \ \forall w \in \mathcal{I}_k, \tag{1}$$

and $c_T \to \infty$ faster than $\frac{\sqrt{\log T} \sqrt{\log \log T}}{\log \log \log T}$. Let \mathcal{M}_1 be the set of triplets (i,j,k) for which (1) holds true. Then under $\mathcal{C}1-\mathcal{C}6$, it holds that

$$P\Big(orall (i,j,k) \in \mathcal{M}_1 : |\hat{\psi}_{ijk,T}| > c_{T,\mathsf{Gauss}}(lpha,h_k) \Big) = 1 - o(1)$$

Application

Graphical representation

How to represent the results of the test? Plot the results of pairwise comparison $\mathcal{F}_{\text{reject}}(i,j)$.

Graphical representation

How to represent the results of the test? Plot the results of pairwise comparison $\mathcal{F}_{\text{reject}}(i,j)$.

Minimal intervals

An interval $\mathcal{I}_k \in \mathcal{F}_{\text{reject}}(i,j)$ is called **minimal** if there is no other interval $\mathcal{I}_{k'} \in \mathcal{F}_{\text{reject}}(i,j)$ with $\mathcal{I}_{k'} \subset \mathcal{I}_k$. The set of minimal intervals is denoted $\mathcal{F}_{\text{reject}}^{\min}(i,j)$.

Graphical representation

How to represent the results of the test? Plot the results of pairwise comparison $\mathcal{F}_{\text{reject}}(i,j)$.

Minimal intervals

An interval $\mathcal{I}_k \in \mathcal{F}_{\text{reject}}(i,j)$ is called **minimal** if there is no other interval $\mathcal{I}_{k'} \in \mathcal{F}_{\text{reject}}(i,j)$ with $\mathcal{I}_{k'} \subset \mathcal{I}_k$. The set of minimal intervals is denoted $\mathcal{F}_{\text{reject}}^{\min}(i,j)$.

We can make very similar confidence statement about the set of minimal intervals as well:

$$P\Big(orall (i,j,k) \in \mathcal{M}_0 : \mathcal{I}_k
otin \mathcal{F}^{\mathsf{min}}_{\mathsf{reject}}(i,j) \Big) \geq 1 - \alpha + o(1)$$

ullet Five countries: Germany, Italy, Spain, France and UK; T=120.

- ullet Five countries: Germany, Italy, Spain, France and UK; T=120.
- $\alpha = 0.05$.

- ullet Five countries: Germany, Italy, Spain, France and UK; T=120.
- $\alpha = 0.05$.
- Lengths of the time intervals 7, 14, 21, 28 days. The intervals start at days 1, 8, 15, ... and 4, 11, 19, ...

- ullet Five countries: Germany, Italy, Spain, France and UK; T=120.
- $\alpha = 0.05$.
- Lengths of the time intervals 7, 14, 21, 28 days. The intervals start at days 1, 8, 15, ... and 4, 11, 19, ...

Application results

Application results, part 2

We can claim, with confidence of about 95%, that the null hypothesis is violated for all intervals (and all pairs of countries) for which our test rejects the null.

We can claim, with confidence of about 95%, that the null hypothesis is violated for all intervals (and all pairs of countries) for which our test rejects the null.

However, we can not say anything about the causes of such differences. This question requires further (probably not purely statistical) analysis.

We can claim, with confidence of about 95%, that the null hypothesis is violated for all intervals (and all pairs of countries) for which our test rejects the null.

However, we can not say anything about the causes of such differences. This question requires further (probably not purely statistical) analysis.

Further possible extensions:

 introduce scaling factor in the trend function, that allow for adjusting for the size of the country (population, density, testing regimes, etc.);

We can claim, with confidence of about 95%, that the null hypothesis is violated for all intervals (and all pairs of countries) for which our test rejects the null.

However, we can not say anything about the causes of such differences. This question requires further (probably not purely statistical) analysis.

Further possible extensions:

- introduce scaling factor in the trend function, that allow for adjusting for the size of the country (population, density, testing regimes, etc.);
- connect with data-driven techniques such as machine learning;

We can claim, with confidence of about 95%, that the null hypothesis is violated for all intervals (and all pairs of countries) for which our test rejects the null.

However, we can not say anything about the causes of such differences. This question requires further (probably not purely statistical) analysis.

Further possible extensions:

- introduce scaling factor in the trend function, that allow for adjusting for the size of the country (population, density, testing regimes, etc.);
- connect with data-driven techniques such as machine learning;
- cluster the countries based on the trends they exhibit.

Thank you!

Simulation results for the size of the test

Table 1: Size of the multiscale test

	n=5 significance level $lpha$			$\mathit{n}=10$ significance level $lpha$			$\mathit{n} = 50$ significance level α		
	0.01	0.05	0.1	0.01	0.05	0.1	0.01	0.05	0.1
T = 100	0.011	0.047	0.093	0.010	0.044	0.087	0.008	0.037	0.075
T = 250	0.009	0.047	0.091	0.009	0.046	0.087	0.008	0.035	0.069
T = 500	0.010	0.044	0.083	0.008	0.048	0.093	0.007	0.035	0.077

Simulation results for the power of the test

Table 2: Power of the multiscale test for scenario A

	$n=5$ significance level α			$\mathit{n} = 10$ significance level α			n = 50		
							significance level α		
	0.01	0.05	0.1	0.01	0.05	0.1	0.01	0.05	0.1
T = 100	0.335	0.518	0.597	0.306	0.474	0.545	0.212	0.352	0.418
T = 250	0.615	0.790	0.836	0.580	0.764	0.800	0.470	0.648	0.705
T = 500	0.736	0.905	0.917	0.738	0.884	0.890	0.636	0.799	0.830

Simulation results for the power of the test

Table 3: Power of the multiscale test for scenario B

	n = 5			n = 10			n = 50		
	significance level α			significance level α			significance level α		
	0.01	0.05	0.1	0.01	0.05	0.1	0.01	0.05	0.1
T = 100	0.824	0.910	0.903	0.812	0.893	0.890	0.738	0.847	0.857
T = 250	0.991	0.972	0.941	0.991	0.960	0.920	0.991	0.965	0.933
T = 500	0.997	0.973	0.949	0.995	0.961	0.923	0.996	0.969	0.932

We estimate the overdispersion paramter σ^2 by

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \hat{\sigma}_i^2 \text{ and } \hat{\sigma}_i^2 = \frac{\sum_{t=2}^T (X_{it} - X_{it-1})^2}{2 \sum_{t=1}^T X_{it}}$$

We estimate the overdispersion paramter σ^2 by

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \hat{\sigma}_i^2 \text{ and } \hat{\sigma}_i^2 = \frac{\sum_{t=2}^T (X_{it} - X_{it-1})^2}{2 \sum_{t=1}^T X_{it}}$$

We assume that λ_i is Lipschitz continuous. Then

$$X_{it} - X_{it-1} = \sigma \sqrt{\lambda_i \left(\frac{t}{T}\right) (\eta_{it} - \eta_{it-1}) + r_{it}},$$

where $|r_{it}| \leq C(1+|\eta_{it-1}|)/T$ with a sufficiently large C.

We estimate the overdispersion paramter σ^2 by

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \hat{\sigma}_i^2 \text{ and } \hat{\sigma}_i^2 = \frac{\sum_{t=2}^T (X_{it} - X_{it-1})^2}{2 \sum_{t=1}^T X_{it}}$$

We assume that λ_i is Lipschitz continuous. Then

$$X_{it} - X_{it-1} = \sigma \sqrt{\lambda_i \left(\frac{t}{T}\right) (\eta_{it} - \eta_{it-1}) + r_{it}},$$

where $|r_{it}| \leq C(1+|\eta_{it-1}|)/T$ with a sufficiently large C. Hence,

$$\frac{1}{T}\sum_{t=2}^{T}(X_{it}-X_{it-1})^2=2\sigma^2\left\{\frac{1}{T}\sum_{t=2}^{T}\lambda_i(t/T)\right\}+o_p(1)$$

We estimate the overdispersion paramter σ^2 by

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \hat{\sigma}_i^2 \text{ and } \hat{\sigma}_i^2 = \frac{\sum_{t=2}^T (X_{it} - X_{it-1})^2}{2 \sum_{t=1}^T X_{it}}$$

We assume that λ_i is Lipschitz continuous. Then

$$X_{it} - X_{it-1} = \sigma \sqrt{\lambda_i \left(\frac{t}{T}\right)} (\eta_{it} - \eta_{it-1}) + r_{it},$$

where $|r_{it}| \leq C(1+|\eta_{it-1}|)/T$ with a sufficiently large C. Hence,

$$\frac{1}{T} \sum_{t=2}^{T} (X_{it} - X_{it-1})^2 = 2\sigma^2 \left\{ \frac{1}{T} \sum_{t=2}^{T} \lambda_i(t/T) \right\} + o_p(1)$$

Together with

$$\frac{1}{T}\sum_{t=1}^{T}X_{it} = \frac{1}{T}\sum_{t=1}^{T}\lambda_{i}(t/T) + o_{p}(1),$$

we get that $\hat{\sigma}_i^2 = \sigma^2 + o_p(1)$ for any i and thus $\hat{\sigma}^2 = \sigma^2 + o_p(1)$.

Notation

In order to proceed with the proof, we will need the following notation:

$$\widehat{\psi}_{ijk,T} = \frac{\sum_{t=1}^{T} \mathbf{1} \left(\frac{t}{T} \in \mathcal{I}_{k}\right) \left(X_{it} - X_{jt}\right)}{\widehat{\sigma} \left\{\sum_{t=1}^{T} \mathbf{1} \left(\frac{t}{T} \in \mathcal{I}_{k}\right) \left(X_{it} + X_{jt}\right)\right\}^{1/2}}$$

$$\widehat{\psi}_{ijk,T}^{0} = \frac{\sum_{t=1}^{T} \mathbf{1} \left(\frac{t}{T} \in \mathcal{I}_{k}\right) \sigma \overline{\lambda}_{ij}^{1/2} \left(\frac{t}{T}\right) \left(\eta_{it} - \eta_{jt}\right)}{\widehat{\sigma} \left\{\sum_{t=1}^{T} \mathbf{1} \left(\frac{t}{T} \in \mathcal{I}_{k}\right) \left(X_{it} + X_{jt}\right)\right\}^{1/2}} \quad \widehat{\Psi}_{T}^{0} = \max_{(i,j,k)} a_{k} \left(|\widehat{\psi}_{ijk,T}^{0}| - b_{k}\right)$$

$$\psi_{ijk,T}^{0} = \frac{1}{\sqrt{2Th_{k}}} \sum_{t=1}^{T} \mathbf{1} \left(\frac{t}{T} \in \mathcal{I}_{k}\right) \left(\eta_{it} - \eta_{jt}\right) \qquad \Psi_{T} = \max_{(i,j,k)} a_{k} \left(|\psi_{ijk,T}^{0}| - b_{k}\right)$$

$$\phi_{ijk,T} = \frac{1}{\sqrt{2Th_{k}}} \sum_{t=1}^{T} \mathbf{1} \left(\frac{t}{T} \in \mathcal{I}_{k}\right) \left(Z_{it} - Z_{jt}\right) \qquad \Phi_{T} = \max_{(i,j,k)} a_{k} \left(|\phi_{ijk,T}| - b_{k}\right)$$

1. We prove that $\left|\hat{\Psi}_{T}^{0} - \Psi_{T}\right| = o_{\rho}(r_{T})$, where $\{r_{T}\}$ is some null sequence.

- 1. We prove that $|\hat{\Psi}_T^0 \Psi_T| = o_p(r_T)$, where $\{r_T\}$ is some null sequence.
- 2. With the help of results from Chernozhukov et al. (2017), we prove

$$\sup_{q \in \mathbf{R}} \Big| \mathrm{P} \big(\Psi_{\mathcal{T}} \leq q \big) - \mathrm{P} \big(\Phi_{\mathcal{T}} \leq q \big) \Big| = o(1)$$

- 1. We prove that $|\hat{\Psi}_T^0 \Psi_T| = o_p(r_T)$, where $\{r_T\}$ is some null sequence.
- 2. With the help of results from Chernozhukov et al. (2017), we prove

$$\sup_{q \in \mathbf{R}} \left| \mathrm{P} \big(\Psi_{\mathcal{T}} \leq q \big) - \mathrm{P} \big(\Phi_{\mathcal{T}} \leq q \big) \right| = o(1)$$

3. By using these two results, we now show that

$$\sup_{q \in \mathbb{R}} \left| P(\hat{\Psi}_{T}^{0} \le q) - P(\Phi_{T} \le q) \right| = o(1)$$
 (2)

- 1. We prove that $|\hat{\Psi}_T^0 \Psi_T| = o_p(r_T)$, where $\{r_T\}$ is some null sequence.
- 2. With the help of results from Chernozhukov et al. (2017), we prove

$$\sup_{q \in \mathbf{R}} \left| \mathrm{P} \big(\Psi_{\mathcal{T}} \leq q \big) - \mathrm{P} \big(\Phi_{\mathcal{T}} \leq q \big) \right| = o(1)$$

3. By using these two results, we now show that

$$\sup_{q \in \mathbb{R}} \left| P(\hat{\Psi}_{T}^{0} \le q) - P(\Phi_{T} \le q) \right| = o(1)$$
 (2)

4. It can be shown that $P(\Phi_T \leq q_{T,Gauss}(\alpha)) = 1 - \alpha$. From this and (2), it immediately follows that

$$P(\hat{\Psi}_{\mathcal{T}}^0 \leq q_{\mathcal{T},\mathsf{Gauss}}(\alpha)) = 1 - \alpha + o(1),$$

which in turn implies the desired statement.

Consider the uncorrected Gaussian statistic

$$\Phi_T^{\mathrm{uncor}} = \max_{(i,j,k)} |\phi_{ijk,T}|$$

Consider the uncorrected Gaussian statistic

$$\Phi_T^{\mathsf{uncor}} = \max_{(i,j,k)} |\phi_{ijk,T}|$$

and let the family of intervals be

$$\mathcal{F} = \left\{ [(m-1)h_I, mh_I] \text{ for } 1 \le m \le 1/h_I, 1 \le I \le L \right\}$$

Consider the uncorrected Gaussian statistic

$$\Phi_T^{\mathsf{uncor}} = \max_{(i,j,k)} |\phi_{ijk,T}|$$

and let the family of intervals be

$$\mathcal{F} = \big\{[(m-1)h_I, mh_I] \text{ for } 1 \leq m \leq 1/h_I, 1 \leq I \leq L\big\}$$

Then we can rewrite the uncorrected test statistic as

$$\Phi_T^{\text{uncor}} = \max_{\substack{i,j \\ 1 \le m \le 1/h_l}} \max_{\substack{1 \le l \le L, \\ 1 \le m \le 1/h_l}} \left| \frac{1}{\sqrt{2Th_l}} \sum_{t=1}^T 1\left(\frac{t}{T} \in [(m-1)h_l, mh_l]\right) (Z_{it} - Z_{jt}) \right|$$

Consider the uncorrected Gaussian statistic

$$\Phi_T^{\mathsf{uncor}} = \max_{(i,j,k)} |\phi_{ijk,T}|$$

and let the family of intervals be

$$\mathcal{F} = \left\{ [(m-1)h_I, mh_I] \text{ for } 1 \le m \le 1/h_I, 1 \le I \le L \right\}$$

Then we can rewrite the uncorrected test statistic as

$$\Phi_T^{\text{uncor}} = \max_{\substack{i,j \\ 1 \le m \le 1/h_l}} \max_{\substack{1 \le l \le L, \\ 1 \le m \le 1/h_l}} \left| \frac{1}{\sqrt{2Th_l}} \sum_{t=1}^{l} 1\left(\frac{t}{T} \in [(m-1)h_l, mh_l]\right) (Z_{it} - Z_{jt}) \right|$$

 \Rightarrow max_m... = $\sqrt{2\log(1/h_l)} + o_P(1) \to \infty$ as $h \to 0$ and the stochastic behavior of Φ_T^{uncor} is dominated by the elements with small bandwidths h_l . Go back