	11/06/2023	=
<u> </u>	guess number higher or lower 11 (Leetcode 375)	
	i/p → [1,10]	
		_
	Suppose that we guess 6.	_
	[1,10] 6 right win	-i
	wrong (Penalty = 6\$)	_
	lower higher	<u> </u>
	([1,5]) ([7,10])	
	1	
	Smaller problem Smaller problem	
	Dry run	_
	Range - [1,5]	_
	3	
	wrong (Penalty = 3\$)	
	/ \	
	(Penalty = 2\$) 2 5 (Penalty = 5\$)	
	ans must be ans must be	
	1	
	3+2=5\$	
	3+2=5\$ 3+5=8\$ (Selected as safe in both sides)	

Scarnieu with Caril

```
1,2,3,4,5
                 ay as 3 We have to return
  91
minimum of all these answers.
Code
//Recursive code
int solve Rec (int Start, int end) {
      // Base case - Invalid range
      if (start > = end)
             return oj
      intans = INT_MAX
     for (int i = start > i< = end ; i++){
     // Considering the awvient penalty & then
     trying to fetch answer from left & right
     ans = min (ans, i + max (Solve Rec (start, i-1)
     solve Rec (i+1, end)));
  return ans
// Top down approach
int solve Top Down (int start, int end,
vector < vector <int>> &db) {
      // Base case
      if (Start >= end) {
           retwin os
     // Step 3: Check if answer already exists
     if (dp(start](end] 1 = -1)
            return dp(start][end];
    int ans = INT_MAX;
   for (int i = Start ; i <= end; i++);
```

Scarineu with Gam

Scallicu Willi Call

```
ans = min (ans, i + max (solve TopDown (start,
       l-1, dp), solve Top Down (i+1, end, dp)));
     //Step 2: Store answer in dp away.
dp [Start] (end] = ans;
     return db[start][end];
Note of array has been created in main () as
    vector < vector <int>) dp (n+1, vector <int>)
    (n+1), (-1), (-1)
    //BoHom up approach
    int solve Tab (int n) {
       // Step 1: Create db away
       vector < vector < int>> dp (n+2, vector <int>(n+2,0));
       1/ Step 2: Observe base case of top-down
      // Already done in initialization
      11 Step 3: Reverse flow of top-down
      for (int start = n istart >=1 istart --) {
          for (int end = 1; end <= n; end ++){
                 //Base case hondled
                 if (start >= end)
                      continue
                 else {
                    int ans = INT_MAX;
                   for (int i=start > i <= end > i++){
                      ans=min (ans, i+max (dp[start]
                       [i-1], ap[i+1](end]));
                  dp (start) (end) = ans ;
```


Page
//As we have made call forom 1 to n in top-do, return dp[I][n];
* Why space optimization is not possible? dp[start][end] depends on previous column and next row and also row can be from start to end & hence not possible.
Q2 Minimum cost tree from leaf values.
i/p → [6,2,4] {inorder traversal}
Le af node values
Binary tree conditions
- O or 2 children
-> non-leaf node is made via product of
That they make in left subtree and make
- RUN HOUSE III YINDT CILL
→ We have to make / retwin the minimum sum of non-leaf nodes
Dry run
i/p→ {2,1,5,3,6,83
max from left bart = 5
max from left part = 5 max from right part = 8
5X8 = 40 (40)
{2,1,53} {3,6,83}
Scarnieu With Co

ocanneu with cam

max from left part = 2 max from right part = 5 2×5=10 {3,6,8} 10 {2,13 {2,13 max from left fart = 2 max from right fart = 1 {3,6,83 {3,6,83 max from left part = 6 max from right part = 8 6×8 = 48 10 [3,63 5)

{3	3,	6	3
3 <i>x</i>	6	=	18

The above tree is formed by partitioning from middle.

$$\{2, 1, 5, 3, 6, 83 \Rightarrow T1\}$$

 $\{2, 1, 5, 3, 6, 83 \Rightarrow T2\}$
 $\{2, 1, 5, 3, 6, 83 \Rightarrow T3\}$

 $\begin{cases} 2,1,5,3,6,83 \Rightarrow T3 \\ & \text{Minimum} \\ & \text{Sum} \end{cases}$

{2,1,5,3,6,83 ⇒ T5

Note - For finding maximum value one need to create a map having range as key and max as value.

Code

int solve Rec (vector (int) & arr, map < pair (int) int) & maxi, int left, int right) {

Scarineu with Cam

ocanneu win carl

```
//Base case
     if (left = = right)
             return 0: // Leaf node & we don't have to
                         include in sum
    int ans = INT_MAX >
   for (int i = left; icright; i++){
      ans = min (ans, masci[{left,i}]米
      maxi [[i+1, right]] + solve Rec (over, maxi,
     left, i) + solve Rec (our, maxi, i+1, right)
  return ans
//Top-down approach
int solve Top Down (vector Lint) & aux, map < pair
<int, int> , int> & maxi, int left, int right,
vector < vector <int>> &db) {
    11 Base case
    if (left = = right)
           return Oi
   11 Step 3: Check if answer already exists
   if (dp [left] (right] !=-1)
              return ap (left] [right]
  int ans = INT_MAX;
 for (int i = left ; i < right; i++){
     ans = min (ans, maxi [fleft, i3] * maxi [f
      i+1, right3] + solve Top Down (avor, maxi, left,
     i, db) + solve Top Down (avor, maxi, i+1, right, dp)
 1/ Step 2: Store answer in dp averay
dp (right] (left] = ans;
retwin dp [riight] (left];
```

Note-	vector < vector < int>> db (n+1, vector < in+>(n+1,
	has been created in main ().
	Bottom up approach
	int solve Tab (vector < int > & aver, map < pair (int) in
	$>$, int $>$ 4 maxi) $\frac{1}{2}$
	int n = avg. size(); //Step 1: Create dp avgay
	vector <vector<int>>dp(n+1, vector<int)< th=""></int)<></vector<int>
	(n+1,0)
	//Step 2: Observe base case in top down
	MAlready Pnitialized to 0
	11 Step 3: Reverse flow of top-down
	for Cint left = $n-1$; left >=0; left)?
11 1 1	for (int right = 0 > right <= n-1; right++){
	// Handled base case
	if (left>= right)
	continue
	else {
	INT ans = INT - MAX;
	for (int i = left) i < right > i++){ ans = min (ans, maxi [{left, i3]* maxi [{i+1, right]} + db [left](i]+ db(i+1][right]); }
	maxi [first and 1]
	db(i+17(xiah+z).
	3
	ap[left][right] = ans;
Fq. , [3
4.2	3
	3
	// As call in top-down is from 0 to n-1. return dp[o][n-1];

Scarineu with Cam

Scarnieu with Caril

	No. of the second secon
*	How map was created?
	Range - max. value in range
	Rey Value
	map <pair <int,="" int=""> int > maxi;</pair>
	for (int i = 0) i < avr. size(); i++){
	maxi [fi, i3] = avr [i]; $fore (int i = i+1);$
	For (int $j = i + i + j = avvi \leq ize(j) + j + j = maxi (\{i, j\} = max (avvi (j), maxi(\{i, j-13\})$
	3
	3
Note -	Upperdered mach was not wood on Anni cantt
OVOLC	be made as a key due to unavailability of
	hash function for pavi.
>lc	V
	Space optimization is possible or not?
	Not possible as dp [left] (right] depends on the same column and next row but row can
	be anything from 0 to n-1 & same for column.