Not intended to be a comprehensive curriculum review, but hopefully a useful collection of:

Scoring systems Acronyms

Definitions Algorithms

Guidelines Recipes

Nick Eaddy June 2018

CONTENTS

Chapter	Page	Topic
1	3	Airway
2	8	Cardiology
3	16	Crisis
4	20	Endocrine
5	24	Haematology
6	27	Intensive Care
7	33	Neurology
8	37	Obesity
9	39	Obstetrics
10	42	Orthopaedics
11	43	Paediatrics
12	47	Pain
13	49	Perioperative
14	53	Professional
15	61	Research and Statistics
16	63	Respiratory and Thoracics
17	66	Trauma

1 - AIRWAY

Cook Modified Cormac and Lehane

		<u>Frequency</u>	<u>Difficulty</u>
GD I	Full View	68%	<1%
GD IIa	Partial Glottis	24%	4%
GD IIb	Posterior Glottis	6.5%	67%
GD IIIa	Elevated Epiglottis	1.2%	87.5%
GD IIIb	Depressed Epiglottis	RARE	
GD IV	No Epiglottis	VERY RARE	

Laryngeal Masks

LMA	Weight	Cuff Volu	<u>me</u>
1	<5 kg	4 mL	Volumo - 4 v Sizo
1.5	5-10 kg	6 mL	Volume = 4 x Size
2	10-20 kg	10 mL	
2.5	20-30 kg	15 mL	
3	30-50 kg	20 mL	10 (11 11
4	50-70 kg	30 mL	Volume = 10 x (size-1)
5	70-100 kg	40 mL	
6	>100 kg	50 mL	

Airway Tests

(Source = ANZCA Airway Document)

SPIN = Specific Test, + rules in = Low False + **SNOUT** - Sensitive Test, - rules out = Low False -

	<u>Sens</u>	<u>Spec</u>
Prognathe	20%	95%
MO	35%	95%
MP	50%	85%
TMD	80%	80%
Arne Score	90%	90%

Arne Score

(Source = ANZCA Airway Document)

P - Pathology associated with difficulty

R - ROM of neck

E - Experiences symptoms of airway pathology

D - Difficulty previously

I - Interincisor Gap

C - Class (Mallampati)

T - Thyromental Distance

NAP4 Themes

(Source = NAP4 Summary 2011)

- **F** Failure to plan for failure
- A AFOI was often indicated, but not performed
- Increased failure seen with cannula cricothyroidotomy
- L Large people are at increased risk
- **E** Emergence from anaesthesia contributes 1/3 of cases
- **D** Deaths: ICU = Trache/ no capnography, Anaesthesia = Aspiration
- **P** Perseverance to intubate
- **L** LMAs used inappropriately
- A Airway assessment was not performed, or technique not modified to suit
- N Neck/ Facial surgery increases risk
- **S** Strategies weren't employed, just plans

Fremantle Score

(Source = Blue Book 2013)

Grading system for Laryngeal view on videolaryngoscopy

3 Components:

- 1 View of Larynx in the absence of cricoid manipulation
 - Full, partial, none
- 2 Ease of task

Easy, modified (bougie, cricoid), unachievable

3 Device used

Videolaryngoscope and blade

Murphy and Wall Scores - BMV

(Source = ANZCA Airway document)

Difficult BMV = MOANS

- M Mask seal poor due to beard
- O Obesity, BMI > 26 kg/m^2
- **A** Age > 55 years
- N No teeth
- **S** Snoring

OR ~2-3x for each factor, spec/sense ~70% if >2 factors

Murphy and Wall Scores - LMA

(Source = ANZCA Airway document)

Difficult LMA = **RODS**

- **R** Reduced MO
- Obstruction at or below the larynx
- D Disrupted Airway
- **S** Stuff lungs/ neck

Difficult LMA = Failure in 3 attempts to achieve

- 1 Vt = 7 mL/kg
- 2 Leak Pressure >15cmH2O

Murphy and Wall Scores - ETT

(Source = ANZCA Airway document)

Difficult ETT = **LEMONS**

L - Looks difficult externally

E - Examination – TMD <4cm, MO <5cm

M - Mallampati class

O - Obstruction

N - Neck mobility

Murphy and Wall Scores - Cricothyroidotomy

(Source = ANZCA Airway document)

Difficult Cricothyroidotomy = **SHORT**

S - Surgery to neck

H - Haematoma or infection

O - Obesity

R - Radiation

T - Tumour

ALSO – Age <8 years, Female, C-Spine fixation, deflection deformity

Hans BMV Score

(Source = ANZCA Airway document)

	<u>Technique</u>	Frequency
Grade I	Mask	77%
Grade II	Mask + Adjunct	21%
Grade III	2 Person, unstable	1.4%
Grade IV	Can't BMV	0.16%

Grade III+ = Difficult BMV

ANZCA Airway Overview Questions

(Source = ANZCA Airway document)

9 questions = **DIFFICULT**

D - Documented previous difficulty?

I - Impact of surgery on airway?

F - Facemask/ BMV difficult?

F - FONA difficult?

I - Intubation difficult?

C - CVS/ Resp physiology altered?

U - Unable to place LMA?

L - Landing phase – Will there be a difficult extubation?

T - Throw up/ Aspiration risk?

Rheumatoid Cervical Spine

(Source = CEACCP 2006)

30% have C-Spine involvement 25% of these have unstable C-Spines

Atlanto-Axial Instability

1 - Anterior = 80%

C1 moves anterior on C2

Gap between C1 anterior Arch and Peg >3-4mm

Worse on flexion

2 - Vertical = 10-20%

Superior migration of the Peg due to disruption of the C1

lateral masses
3 - Posterior = 5%

C1 moves posterior over C2 Due to destruction of the Peg

4 - Lateral/Rotatory

Super rare

Subaxial Subluxation

Common. Causes early symptoms of nerve compression

C-Spine Extubation

(Source = Blue Book 2017)

For deciding whether to extubate after C-spine surgery, One point for each of **CSPINE**

C - Combined anterior and posterior approach

S - Surgery to >3 levels

P - Preoperative Myelopathy

I - In theatre for >5 hours

N - Neck fusion involving C2

E - EBL >300mL

SCORE

1-2 = Extubate at bend of case

2-3 = Consider delayed extubation

Dental Notation

(Source = ISO/ WHO)

Permanent

Molars	Premolars	Canines	Incisors	Incisors	Canines	Premolars	Molars
18, 17, 16	15, 14	13	12, 11	21, 22	23	24, 25	26, 27, 28
48, 47, 46	45, 44	43	42, 41	31, 32	33	34, 35	36, 37, 38

Primary

,		ı	1	1	
Molars	Canines	Incisors	Incisors	Canines	Molars
55, 54	53	52, 51	61, 62	63	64, 65
85, 84	83	82, 81	71, 72	73	74, 75

Major Signs

- Dyspnea, Stridor, Orthopnea, Emphysema

Minor Signs

- Swelling, Haemoptysis, Dysphonia, Dysphagia

LMA for Laparoscopy

Rule of 20's

<20kg over IBW <20° Head Down No leak at 20 cmH₂O <20 minutes duration

2 - CARDIOLOGY

Pulmonary Hypertension Severity

(Source = LITFL)

RVSP = Right Ventricular Systolic Pressure **mPAP** = Mean Pulmonary Artery Pressure **sPAP** = Systolic Pulmonary artery pressure

RVSP = sPAP in the absence of PS

mPAP Mild 25 – 40mmHg Moderate 41 – 55mmHg Severe >55mmHg

mPAP = (0.6x RVSP) + 2- If RVSP = 40mmHg, mPAP = 25mmHg RVSP measured from TR Jet + CVP

Mitral Stenosis Severity

Normal MVA >4cm²

In MS MVA decreases by 0.2cm²/year

Gradations for MS and AS severity by area have the same cutoffs

Gradations for MS severity by MG = those for AS/4

	MVA	MG	Pt _{1/2}
Mild	1.6 – 2cm ²	<5mmHg	<140ms
Moderate	1 – 1.6cm ²	6 – 10mmHg	140 – 220ms
Severe	<1cm ²	>10mmHg	>220ms

Mitral Regurgitation Severity

Global gestalt, Vena Contracta, Coanda effect

	Fraction	Volume	Orifice
Mild	<30%	<30mL	<0.2 cm ²
Moderate	30-50%	30-60mL	$0.2 - 0.4 \text{ cm}^2$
Severe	>50%	>60mL	>0.4 cm ²

Continuity Equation

Used to determine AVA

 SV_AV SV_{IVOT}

 $AVA \times VTI_{AV} =$ CSA_{LVOT} x VTI_{LVOT}

AVA = CSA_{LVOT} x VTI_{LVOT}

VTIAV

Aortic Stenosis Severity

	AVA	MG	Vmax	Indexed AVA
Mild	>1.5 cm ²	<20 mmHg	2.6 – 2.9 ms ⁻¹	$>0.85 \text{ cm}^2/\text{m}^2$
Moderate	$1 - 1.5 \text{ cm}^2$	20 - 40 mmHg	$3 - 4 \text{ ms}^{-1}$	$0.6 - 0.85 \text{cm}^2/\text{m}^2$
Severe	<1 cm ²	>40 mmHg	>4 ms ⁻¹	$< 0.6 \text{ cm}^2/\text{m}^2$
Δ / Year	0.1 cm ² / year	10 mmHg/ year	0.3 ms ⁻¹ / year	

Other Measures:

- DI = Dimensionless Index < 0.25 = Severe
- AVA via planimetry

Aortic Stenosis Mortality

 Angina
 50% @ 5 years

 Syncope
 50% @ 3 years

 Failure
 50% @ 2 years

Diastolic Dysfunction

NORMAL		<u>ABNORMAL</u>		
E/A	= 1-1.5			
e`	> 12cms ⁻¹	e`	< 8cms ⁻¹	
E/e`	< 8	E/e`	> 15	

		E/A	e`	E/e`	DT
GRADE 1	Impaired Relaxation	<1	<8cms ⁻¹	<8	>240ms
GRADE 1a	Abnormal Filling	<1	<8cms ⁻¹	>15	160-240ms
GRADE 2	Pseudonormal	1 - 1.5	<8cms ⁻¹	>15	160-240ms
GRADE 3/4	Restrictive	>2	<8cms ⁻¹	>15	<160ms

GRADE 3 = Reversible with Valsava GRADE 4 = Irreversible

OTHER MEASURES

D/S = Pulmonary Blood flow A_R = Diastolic Flow Reversal LA area > $20cm^2$

Fontan Circulation

STAGE 1	Norwood Procedure = Palliative Systemo-pulmonary Shunt
	Blalock-Thames-Taussig Shunt, Sano Shunt, Hybrid Procedure
STAGE 2	Glenn Bidirectional Shunt = Superior cavo-pulmonary shunt
STAGE 3	Completion Fontan = Total Cavo=Pulmonary Shunt

Lee's Revised Cardiac Risk Index

Published 1999 expanding on Goldman's Cardiac Risk Index

6 Factors

- Ischaemic Heart Disease
- Congestive Heart Failure
- Cerebrovascular Disease
- Diabetes
- Chronic Kidney Disease
- Suprainguinal Vascular/ Thoracic/ Intraperitoneal Surgery

Score:	Risk of Cardiac Event (Cardiac Death, non-fatal MI, non-fatal arrest)
0	0.4%
1	0.9%
2	6.6%
<u>></u> 3	11.1%

NSQIP

American College of Surgeons National Surgical Quality Improvement Programme Algortihmic risk predictor which utilizes:

18 patient parameters
Procedure being performed

PARAMETERS:

- Age	- Gender	- Functional state	 Emergency 	- ASA
- Steroids	- Ascites	- Sepsis	 Ventilator 	- Metastases
- Diabetes	- CHF	- Dyspnea	- Smoker	- Severe COPD
- Dialysis	- AKI	- BMI		

+ Procedure

OUTPUTS:

00110101			
- Serious Complication	- Surgical Infection	- Readmission	- Any complication
- UTI	- Return to OT	- Pneumonia	- VTE
- Death	- Renal Failure	- MACE	- DC to Resthome

EHRA Score (Source = EHRA)

European Heart Rhythm Association score of AF related symptoms

- 1 No Symptoms
- 2 Mild, daily activities unaffected
- **3** Severe, daily activities affected
- 4 Disabling, daily activities discontinued

Coronary Artery Disease Assessment

(Source = 2014 ACC/AHA)

NSTEMI Types

TYPE I Plaque rupture

TYPE II Supply-demand mismatch
TYPE III Sudden Cardiac Death

TYPE IV Post PCI
TYPE V Post CABG

NYHA Dyspnea

NYHA I	No Limitation of normal	activities
--------	-------------------------	------------

NYHA II Slight limitation of normal activities, comfortable at rest
NYHA III Marked limitation of normal activities, comfortable at rest

NYHA IV Severe limitation, dyspneic at rest

CCS Angina

CCS I	No Limitation of normal activities
CCS II	Slight limitation of normal activities, comfortable at rest
CCS III	Marked limitation of normal activities, comfortable at rest
CCS IV	Severe limitation, angina at rest

CHA₂DS₂-VASc Score

Recommended by European Society of Cardiologists (2012) and ACC/AHA (2014) HAS-BLED = Bleeding Risk Score

Points:

1	С	 – CHF or LV Dysfunction
1	Н	Hypertension
2	Α	Age >75 years
1	D	– Diabetes
2	S	– Stroke/ TIA
1	V	 Vascular Disease
1	Α	Age 65-74 years
1	Sc	– Sexual Category = Female

Score:	Stroke Risk/ year:	Score:	
0	0.2%	0	= No anticoagulation
1	1.3%	1	= Anticoagulate if male
2	2.2%	>2	= Anticoagulate
3	3.2%		
4	4.0%		
5	6.7%	INR must be t	herapeutic >70% of time to decrease risk
6	9.8%		
7	9.6%		
8	12.5%		
9	15.2%		

CHADS₂ Score

If previous CVA then automatically risk >8.5%/ year for further CVA

Points:

1	С	– CHF
1	Н	Hypertension
1	Α	Age >75 years
1	D	Diabetes
2	S	Stroke/ CVA

Score:	Stroke Risk/ year
0	2%
1	3%
2	4%
3	6%
4	8.5%
5	12.5%
6	18%

Perioperative CVA Risk

(Source = ANZCA Blue Book 2017)

High Risk = Bridge

Moderate Risk = Risk/ Benefit. Low threshold to bridge

Low Risk = No Bridging

Risk	CVA %/ Year	Valves	AF
High	>10%/ year	All MVRs	CHADS 5-6
		Mechanical AVR CVA in last 6 months	CVA in last 3 months
Moderate	4-10%/ year	Bileaflet AVR + Chads ≥1	CHADS 3-4
Low	<4%/ year	Bileaflet AVR	Chads ≤2

Post-PCI Thrombotic Risk

(Source = ACC 2017)

Consider: Indication, risk of continuing, risk of discontinuing

30 day	risk of MI/CVS death	า
1%	1-5%	- >5%

	<u>1% </u>	1-5%	>5%
Balloon Angioplasty	>4 weeks	2-4 weeks	<2 weeks
BMS	>6 months	1-6 months	<1 month
DES	>12 months	6-12 months	<6 months

NSPE/ BPEG Pacemaker/ ICD codes

Pacemaker:

Letter 1 = Pacing Chamber

O = None V = Ventricle O = None R = Rate modulation

A = Atria D = Dual

Letter 5 = Multisite pacing

Letter 4 = <u>Programmability</u>

Letter 2 = Sensing Chamber O = None

O = None V = Ventricle A = Atria D = Dual

A = Atria D = Dual

Letter 3 = <u>Sensing Response</u>

O = None I = Inhibited

T = Triggered D = Dual T + I

ICD:

O = None V = Ventricle E = ECG H = Haemodynamic

A = Atria D = Dual

Letter 4 = Antibradycardia Pacing Chamber

V = Ventricle

Letter 2 = Antitachycardia Pacing Chamber O = None V = Ventricle

O = None V = Ventricle A = Atria D = Dual

A = Atria D = Dual

Stages of Hypertension

Stage	sBP	dBP
1	140-159	90-99
2	160-179	100-109
3	180-209	110-119
4	<u>></u> 210	<u>></u> 120

CRT-D Indications

(Source = European Society of Cardiology)

Most benefit for Females, non-ischaemic cardiomyopathy

C - Conduction Abnormality

LBBB - QRS >120ms

Non-LBB – QRS >150ms

R - Reduced LVEF <35%

T - Treatment optimized medically

D - Dyspnea

AF – NYHA III-IV

SR – NYHA II-IV

MACE Risk in Heart Failure

(Source = ACC/AHA)

MACE = Major adverse cardiac event

30 day MACE in Elective Vascular Surgery

Symptomatic Heart Failure 50%
Asymptomatic - LV Systolic Dysfunction 25%
- LV Diastolic Dysfunction 20%

Normal LV Function 10%

3 - CRISIS

Drugs down an ETT

Generally not recommended though

Ν - Naloxone Α - Adrenaline ٧ - Vasopressin - Atropine Α - Lignocaine L

Causes of Cardiac Arrest

Н	- Нурохіа	Т	 Tension Pneumothorax
Н	- Hypovaolemia	T	- Tamponade
Н	- Hypothermia	T	- Toxins
Н	- Hyo/ Hyperkalaemia	T	- Thrombus

Adult Anaphylaxis

>12 years of age

(Source = ANZCA)

DR	 Danger and Response
	Stop procedure, remove trigger

S - Send for help and form a team **Anaphylaxis Box**

Leader and a Reader

AB - Airway/ Breathing FiO2 = 100%, ETT early

C - Circulation Raise legs Volume = 2L crystalloid

D - Drugs **ADRENALINE**

ONGOING HYPOTENSION

NORADRENALINE 3-40mcg/ min VASIPRESSON 1-2 units, then 2units/ hr GLUCAGON 1-2mg Q5 min

IM ADRENALINE

If no IV access/ no haemodynamic monitoring ADRENALINE 1:1000, 0.5mL = 0.5mg Lateral Thigh

IV ADRENALINE

ADRENALINE 1:10,000, 1mg/10ml, 100mcg/mL

GD II = 0.2mL = 20mcgGD III = 1-2mL = 100-200mcg GD IV = ACLS 1mg

ADRENALINE INFUSION

After 3x Adrenaline boluses ADRENALINE 3mg/50mL 3mL/hr - 40mL/hr = 3-40mcg/min

ONGOING BRONCHOSPASM

SALBUTAMOL 12 puffs/ 100-200mcg IV MAGNESIUM 2g

EZ-IO

(Source – Arch Pathol Lab Med 2010)

Contraindications

- Target bone fracture - Orthopaedic prosthesis - Infection

- BGL

- Hb

- Cr

- Osteogenesis imperfecta

15G needle

	Length:	Weight:
Red	15 mm	3-39 kg
Blue	25 mm	≥3 kg
Yellow	45 mm	>40 kg

Good IV/IO correlation: - RBCs

- Cl⁻

- Urea

Poor IV/IO correlation: - WCC - Na⁺ - PLT - K⁺ - CO₂ - Ca²⁺

- Albumin

Crisis Priorities

Immediate:

Later: - Recognise and declare

- Ongoing management - Referrals/ Disposition - Get help

- Temporise and resuscitate - Document - Mobilise a team - M&M

- Assess and diagnose - Debrief/ second victims/ self care

Develoning:

- Open disclosure - Manage

MH Manifestations

Farly:

(Source = MHANZ)

Late:

Luity.	Developing.	Late.
- Masseter spasm	- T increased 0.5°C/ 15min	- Myoglobinuria
- Ventricular ectopics	- Sweating	 Coagulopathy
- Increased ETCO ₂	- Hyperkalaemia	- Renal failure
- Tachycardia	- CVS instability	- Raised CK

- Respiratory acidosis

MH Team Members

(Source = MHANZ)

Need 10 people

- Leader - 2x Technicians - Lines, ABG, cooling

- Anaesthetists 1 = Resuscitation - 3x Dantrolene mixers - Anaesthetist 2 = Lines - Surgeon – IDC, cooling

- Theatre coordinator - Logistics - Nurses – Cooling

Trigger-Free Anaesthetics

(Sources = MHANZ, Blue Book 2017, EMHG)

Give to patients at risk of MH

- Confirmed/ equivocal MH testing IVCT + DNA
- RyR Myopathies King Denborough, Central Core Disease
- Recurrent, unexplained Rhabdomyolysis
- Pregnant woman with MH partner
- Family History
- + IVCT in a relative
- -- DNA in a relative (but still at risk)
- Untested relative with an MH reaction

IVCT = In Vitro Contracture Testing

(Sources = Blue Book 2017, EMHG)

Halothane 2% = 0.44 mmol/L

Requires a 4x3x1 cm piece of Quads Muscle

Must be >30 kg/ >10 years of age

	<u>Caffeine:</u>	Halothane:	
MHShc	<2 mmol/L	<2%	 Halothane/ Caffeine sensitive
MHSh	>3 mmol/L	<2%	- Halothane Sensitive
MHSc	<2 mmol/L	>2%	- Caffeine Sensitive
MHN	>3 mmol/L	>2%	- Normal

Needlestick Transmission Rates

(Source = BMJ)

	Risk:		
Нер В	1/3 – 33%	When HbE +	
Нер С	1/30 – 3%		
HIV	1/300 – 0.3%		

Venous Air Embolism

V = 5 mL/kg = Cardiac arrest

Monitoring:	Sensitivity:
Precordial Stethoscope	V = 1.5 mL/kg
EtCO ₂	V = 0.5 mL/kg
Precordial Doppler	V = 0.05 mL/kg
TOE	V = 0.02 mL/kg

Positioning

- Trendelenburg = Keep LV bubble away from the coronaries
- Left lateral = Traps bubble in RV

Pseudocholinesterase Deficiency

Genotype:	Frequency:	Phenotype:
Homozygous Normal = E _U /E _U	96%	Normal
Heterozygotes = E_U/E_A , E_S , E_F	4%	Block for 10 minutes
Homozygous Abnormal = E_S/E_S , E_A/E_A etc	<1%	Block for 4-8 hours

	Dibucaine Number:	Fluoride Number:
NORMAL	80 = 80% enzyme suppression	60 = 60% enzyme suppression
ABNORMAL	20 = 20% enzyme suppression	36 = 36% enzyme suppression

<u>Infusions</u>

<u>ADRENALINE</u> Anaphlaxis

Adult 3mg /50mL @ 3-40 mL/ hr Paediatrics 1mg /50mL @ 0.3-6 mL/kg/hr

<u>ISOPRENALINE</u> Life-threatening bradycardia

1 mL 1:5000 = 0.2 mg in 50 mL = 4 mcg/mL

Infuse at 1.25 mL/hr

VASOPRESSIN

Adult Bolus = 1-2 units, Infuse @ 1-2 units/hr

Paediatrics 1 unit/kg/50mL. Bolus = 2mL, Infuse @ 1-3 mL/hr

NORADRENALINE

Adult 4 mg/50mL @ 0-40 mL/hr Paediatric 0.15 mg/kg/50mL @ 0-40 mL/hr

RV Failure

- Reverse precipitant
- Maintain SVR Metaraminol, Vasopressin
- Maintian CO Rhythm, Contractility
- Lower PVR
 - Vasopressor Vasopressin has less effect on PVR
 - Iloprost Need USS nebulizer, 2.5-5 mg or 2.5 mcg/kg
 - Milrinone 2 mg (50mcg/kg) nebulized
 - Peep, FiO₂, Increase P_aO₂, Iower P_aCO₂, Temperature, pH
 - Analgesia Morphine/ Ketamine

4 - ENDOCRINE

Steroid Effects

C - Cataracts

U - Ulcers

S - Striae/ Skin thinning

H - Hirsuitism/ Hypertension

I - Immunosuppression/ Infections

N - Necrosis of femoral head

G - Glucose

O - Osteoporosis/ Obesity

I - Impaired Healing

D - Depression/ Mood changes

Phaemochromocytome Optimisation:

Goals:

- Reduce mortality 50-6% - Volume expansion

- Reduce cardiac dysfunction - Reduce chance of hypertensive crisis

- Reduce BP/SVR - Adrenergic resensitisation

Criteria:

- BP <160/90 - Orthostatic Hypotension

No STE on ECGNormal HCTNormal BGLsNasal congestion

HPA Axis Suppression

(Source = Margo)

Suppression:	Steroid Exposure:	Management:
Nil	- Prednisone <5 mg/day	- Take usual dose
	- <3 weeks exposure	- No testing
	- Every other day regimens	- No supplementation
Maybe	- Prednisone 5-20 mg/day- Inhaled steroid- Topical steroid	Either: - Test = Short Synacthen Test - Empiric supplementation
Definite	- Prednisone >20 mg/day- >3 weeks exposure- Cushingoid	- Supplement steroid

Surgery:	Preoperative:		Intraoperative:	Postoperative:
Minor - Hernia - Colonoscopy - Plastics	Usual		Nil	Usual
Moderate - Cholecystectomy - Arthroplasty	Usual		Hydrocort 50mg	Hydrocort 25mg Q8hr for 24hr then usual
Major - Whipples - Liver	Usual		Hydrocort 100mg	Hydrocort 50mg Q8hr for 24hr then ½ taper to usual
Hydrocortisone Prednisone Dexamethasone	Potency: 1 5 25	Dose: 100 m 20 mg 4 mg	g	

5 - EQUIPMENT

Electrical Equipment

Class:	Features:
Class I	Metal casing
	Earth (3 rd pin)
	Fuse to break circuit
Class II	Double insulation
	No Earth
	Isolating transformer +/- LIM
Class III	Low Voltage <24V AC, <50V DC
	or Internal Power Supply

Electrical Equipment in Contact with Patients

Class:	Features:
Class B	Class I, II or III
	Leak <100 μA
	External use only
Class BF	Class B with a floating circuit
Class CF	Very low leak currents
	Safe to connect to heart

Body Protected Area = Protection from macroshock = RCDs, LIMs **Cardiac Protected Area** = Protection from microshock = RCDs, LIMs, Equipotential Earthing

Power Failure

White Plug = Mains electrical, no backup Red Plug = Generator backup, 15-30s delay

Blue Plug = UPS

UPS = Uninterrupted Power Supply

Emergency Lighting = Low light, battery powered, will last for 90 minutes

Operating Lighting = Battery powered, will last for 90 minutes

Anaesthetic Machine = Inbuilt UPS, will last for 90 minutes

Pumps = Battery, time dependent on charge

Appraisal of Equipment

(source = ANZCA Blue Book 2015)

APPRAISE

A - Affordability Capital, maintenance, disposables

P - Portability Size, power supply
P - Purpose built Suitable for use
R - Reliability Works when needed

A - Acceptability By users

I - Integration Works with other equipment

S - Sturdy Durability

E - Environmental Impact Ecological cost

5 - HAEMATOLOGY

<u>Transfusion Infections</u>

(Source = Transfusion.com.au)

Agent:	Window Period:	Residual Risk/ Unit
HIV	6 days	<1:1000,000
HCV	3 days	<1:1000,000
HBV	15 days	1:700,000
Malaria	10 days	<1:1000,000

<u>Herbs</u>

Echinacea = Hepatotoxic

Garlic = Reduces TXA₂, inhibits platelet aggregation

Ginger = Reduces TXA₂, inhibits platelet aggregation

Gingko = Potent platelet inhibitor

Ginseng = Platelet inhibitor

Kava = Hepatotoxic

St. Johns Wart = Reduces 5HT₃/NA/DA reuptake, CYP3A4/2C9 inducer (reduces Warfarin/ increases Clopidogrel effect)

Heparin Induced Thrombocytopenia

	Type I	Type II
Timing	<4 days	>4 days
Thrombocytopenia	Mild	>50%
Thrombosis	No	Yes
Life Threatening	No	Yes
Mechanism		IgG anti-Heparin/PF4 Complex

MABL

MABL = Maximal Acceptable Blood Loss. Can be used as a trigger for transfusion

MABL = EBV x $\frac{HCT_{Start} - HCT_{Target}}{}$ **HCT**_{Target} = 25-30% = 70 mL/kg in children HCT_{Target} EBV

= 50-60 mL/kg in adults

MABL = $2(age+4) \times 0.4 \times 70$ $= 0.8(age+4) \times 70$ = 50(age+4)

Component RBC	Composition Hb 50 g/unit HCT = 0.6 Leuc = 0.3x10 ⁶ /unit	Volume Adult = 2-300 mL Paed = 50-100 mL	Dose Increase Hb ~10g/L Adult = 1 unit Paed = 4 mL/kg	Storage 42 days at 2-6°C
Platelets	PLT 280x10 ⁹ /unit Leuc = 0.2x10 ⁶ /unit	Adult = 2-300 mL Paed = 50-100 mL	Increase PLT 20-40x10 ⁹ /L Adult = 1 unit Paed = 10 mL/kg	5 days at 20-24°C on an agitator
Cryo	Fibrinogen = 1.2g - Factor VIII - Factor XIII vWF Fibrinonectin	100mL	Increase Fib by 1.0 g/L Adult = 1 unit/30 kg Paed = 5 mL/kg	12 months at -30°C 4 hrs at 20-24°C
FFP	All Coag Factors Labile Factors - Factor V - Factor VIII Low Fib = 1.6 g/L	Adult = 2-300 mL Paed = 50-100 mL	Increase Factors by 30% Adult = 15 mL/kg Paed = 10-15 mL/kg	12 months at -30°C 24 hrs at 2-6°C Extended Life = 5 days at 2- 6°C

Transfusion Time Limits

(Source = NZBB 2016)

Component:	Commence:	Complete:	Return:	Re-Issue:
RBC	ASAP	<4 hours	<30 min	<30 days
Platelets	ASAP	<1 hour	<1 hours	<5 days
Cryo	ASAP	<4 hours	<30 min	4 hours @ room temp
FFP	ASAP	<4 hours	<30 min	24 hours @ 2-6°C
EL FFP = Extended Life FFP				EL = 7 days @ $2-6^{\circ}$ C but with
				loss of labile factors

Indications for Cell Salvage

- Anticipated blood loss >750 mL/ 20% volume
- Blood loss sufficient to cause anaemia
- Rare blood groups/ JW/ Antibodies
- Surgery that >10% of people require transfusion

Massive Transfusion

Indication:

- Haemorrhage >150 mL/min
- Shock and coagulopathy

Definition:

->10 units/24 hours ->5 units/4 hours

Principles:

- 1:1 of RBC:FFP TXA
- Check Coags/ Platelets/ Hb/ Ca²⁺ Q30mins

Thresholds:

- Maintain Ca²⁺ >1.0 mmol/L
- 4 FFP if INR >1.5 or APTT > 40
- 3 Cryo if Fib < 2.0 g/L
- 1 Platelets if Plt <75 g/L

Goals:

- T > 36°C - pH > 7.2 - Ca²⁺ > 1.0 mmol/L - Hb > 70 g/L - PLT > 75 g/L - Fib > 2.0 g/L - INR < 1.5 - APTT < 40

3 units RBCs given Massive Bleeding with Shock/ Coagulopathy BOX 1 2 RBC 2 FFP BOX 2 4 RBC 4 FFP 3 Cryo 4 FFP 1 PLT 4 RBC BOX 3 4 RBC 4 FFP 3 Cryo BOX 4

6 - INTENSIVE CARE

Organ Ischaemia Times

(Sources = ANZICS, nedonation.org)

	Warm	Cold
Heart	30 mins	4 hours
Lungs	90 mins	4-6 hours
Liver	30 mins	6-10 hours
Intestines		6-12 hours
Pancreas	60 mins	12-18 hours
Kidneys	60 mins	24 hours

<u>DBD – Donation after Brain Death</u>

Determination requires:

- Unresponsive coma Apnea
- Absence of brainstem reflexes

Prerequisites:

- Evidence of intracranial pathology
- Normothermia T >35°C
- Normotension MAP >60mmHg
- No sedation
- Intact neuromuscular function
- No metabolic cause for coma

Observation period:

- GCS 3 for 24 hours

Formal examination:

- 2 Doctors, 2 separate tests
- Apnea Preoxygenate and observe
- Absent Brainstem Reflexes Bilaterally
 - Pupils CN II/III Gag CN IX/X
 - Cornea CN V/VII Vestibulocochlear CN III, IV, VI, VIII

Donor Management:

- Overall aims
 - Optimize organ perfusion Protect organ function
- Temperature
 - Warm/ cool to 36.5-38 °C
- Cardiovascular
 - sBP >100mmHg, MAP>70 mmHg, HR 60-120, Hb >100 g/L
- Respiratory
 - Lung protective ventilation, FiO₂ <0.5, PEEP 5 cmH₂O, P_aO2 >100 mmHg
- Renal/ fluids
 - Manage DI, UO 0.5-3 mL/kg/hr
- Musculoskeletal
 - Relaxation because of spinal reflexes

DCD - Donation after Cardiac Death

- Determination requires:
 - Immobility
 - Apnea
 - No pulse for 2 minutes
 - No skin perfusion

Cardiac Death Categories

CATEGORY 1 Dead on arrival CATEGORY 2 Failed CPR

CATEGORY 3 Withdrawal in ICU

CATEGORY 4 Cardiac arrest post Brain Death certification

Approach to patients with transplanted Organs

(Source = Margo)

Consider:

- Indication for transplant
- Function of transplant
- Evidence of rejection
- Consequences of immunosuppression
- Physiological/ pharmacological implications of allograft denervation

Hyponatraemia Correction

(Source = BMJ)

Either use 3% Saline or 23.4% Saline

3% Saline $[Na^+] = 500 \text{ mmol/L}$

= 0.5 mmol/L

∴ volume to increase [Na⁺]Plasma by 1 mmol/L = (2x TBW) mL

 $= 1 \, \text{mL/kg}$

23.4% Saline $[Na^+] = 4000 \text{ mmol/L}$

= 4 mmol/L

∴ volume to increase [Na⁺]Plasma by 1 mmol/L = (TBW/4) mL

Hypokalaemia Correction

 $K^{+}_{Defecit} = (K^{+}_{Target} - K^{+}_{Measured})x \ Wt(kg)x \ 0.4$ $Total \ Replacement = K^{+}_{Defecit} + K^{+}_{Daily \ Requirement}$ $K^{+}_{Daily \ Requirement} = 1 \ mmol/kg$

 $K^{+}_{Defecit}$ = 100 mmol for every 0.3 mmol/L fall in K^{+}_{Plasma}

Berlin Definition

2012 consensus definition for ARDS

TIMING <1 week from a clinical insult

IMAGING Bilateral lung opacities

OEDEMA No due to cardiac causes or fluid overload

OXYGENATION PF Ratios with PEEP

Mild
 PF 200-300
 Moderate
 Severe
 PF 100-200
 PF <100

VV-ECMO Circuit

Bypass Circuit

Sepsis III (Source = JAMA 2016)

Sepsis Life threatening organ dysfunction caused by a dysregulated immune system

in response to infection

Septic Shock Sepsis in which the underlying circulatory, cellular and metabolic abnormalities are associated with a greater risk of death

SOFA Sequential Organ Function Assessment Score

- CNS – GCS - CVS – MAP + Vasopressor - Resp – P/F Ratio

- Liver – Bilirubin - Renal – Creatinine/ Urine Output - Haem – Platelets

qSOFA Quick SOFA Score

Score ≥2 = Increased mortality, increased ICU stay

- Low BP sBP <100 mmHg
- High RR RR \geq 22 /min
- Altered mentation GCS <15

ICU Sieve

F	- Feeding	В	- Bowels
Α	- Analgesia	L	- Lines
S	- Sedation	Α	- Antibiotics
Т	- Thromboprophylaxis	M	- Medications
Н	- Head up	E	- Equipment
U	- Ulcer prophylaxis		

U - Ulcer prophylaxisG - Glycaemic control

Surgical Sieve

V - Vascular
 I - Inflammatory
 D - Degenerative
 T - Traumatic
 E - Endocrine
 A - Autoimmune
 F - Functional

M - Metabolic

I - latrogenic/idiopathic

N - Neoplastic

Lung Protective Ventilation

(Source = Blue Book)

* = Poor Evidence

V_T - 6-8 mL/kg, ARDSNET **PEEP** - 5-20 cmH₂0, titrated to:

Oxygenation- Nitrogen washout volumes- P-V lower inflection point

 $P_{Plateau}$ - <30 cmH₂O

P_aCO₂* - Permissive hypercapnia, <8 kPa FiO₂* - As low as possible, Sats >90%

Proning - PROSEVA, multicenter RCT showed reduced mortality if >16 hours/day

Recruitment* - Recruitment manouvres

Fluids - Limit IV fluids

Proning in ICU

(Source = PROSEVA, NEJM 2013)

PROSEVA NEJM 2013, multicenter RCT n=500. Proned 16 hours/day, 28 day mortality reduced from 32% to 16%

Benefits: Risks:

- Increased lung volume - Feeds intolerance

- Reduced P_{AW} and PEEP - ETT/ Trache dislodgement

- Reduced over-inflation of aerated lung - Difficult

- PROSEVA - Mortality benefit

RIFLE Criteria

(Source = LITFL)

		Creatinine	Urine Output
R	- Risk	1.5x	<0.5 mL/kg for 6 hours
1	- Injury	2x	<0.5 mL/kg for 12 hours
F	- Failure	3x	<0.3 mL/kg for 24 hours or Anuria for 12 hours
L	- Loss	Complete loss of re	nal function for >4 weeks
E	- ESRD	End stage renal dise	ease

Approach to Transports

(Source = ANZCA)

- **C** Communicate clearly with both the referring centre and the transport agency
- H Have equipment/ drugs well in excess of requirements
- Organise your team Experiences medical practitioner + qualified team
- P Plan the transport Vehicle, distance, location, weather
- P Predict physiological impact of transport T, P, FiO₂
- **E** Establish responsibility via clear handovers
- **R** Rapidly evaluate and optimize ABCDE
- **E** Establish monitoring/ infusions. Rationally defer interventions
- **D** Document everything

7 - NEUROLOGY

SAH Grading

WFNS = World Federation of neurosurgeons, clinical grading

Fisher = Radiological grading

Grade	WFNS	Fisher
1	GCS 15, no motor deficit	No blood on CT
II	GCS 13-14, no motor deficit	<1 mm blood on CT
Ш	GCS 13-14, motor deficit	Localised clots/ >1 mm blood on CT
IV	GCS 7-12	Intracerebral/intraventricular blood
V	GCS <6, moribund	

<u>Principles of Neuroanaesthesia</u>

(Source = J. Hoskins)

В	- BP +/	/- 10%, haemodynamic stability, anticipate stimulation – ETT, pins, loc	al
---	---------	---	----

R - Rapid emergence to assess neurology - Remifentanil, minimal opioid

A - Adequate CPP = 60-70 mmHg

I - Immobility - REMIFENTANIL C_{ET} 2-4 ng/mL, NDMR (Induction Dose/ 2) per hour

 Neuroprotection – Reduce cerebral metabolism, reduce ICP (Dexamethasone, Mannitol, Strong Salt, ventilation), preserve autoregulation – TIVA>SEVO

Neuro Evidence

(Source = Brain Trauma Foundation)

- **S** Steroids/ cooling have NO evidence
- M Mannitol 0.25-1 g/kg to reduce ICP
- A Airway Traches reduce ICU stays with no change in mortality or VAP rates
- **S** Sedatives reduce ICP
- **H** Hyperventilation reduce ICP in the short-term
- **E** Enoxaparin Risk vs. benefit after 48 hours
- **D** Drain EVD if GCS <6 in the first 12 hours
- **B** Bolt/ ICP in all patients with GCS <8
- R Rescue Craniectomy if ICP >25 mmHg increases GOS 2, reduces GOS 1
- A Antiseizure prophylaxis Phenytoin
- I ICP/ BP/ CPP thresholds/ targets
- N Nutrition Reduce mortality. Nasojejunal feeds reduce VAP

Myaesthenia Post-Operative Ventilation Prediction

- S Spirometry VC <40 mL/kg
- P Pyridostigmine >800 mg/day
- **L** Lung disease
- I Peak Inspiratory Pressure <-25cmH₂O
- T Time with disease >6 years

ASIA Score

ASIA Score = American Spinal Injury Association Score

Elements assessed:

- 10 muscle groups on each side
- Pin-prick discrimination at 28 sensory locations

AIS = ASIA Impairment Scale

- Impairment based on anal contraction/ sensation

AIS	Neurology
Α	= Complete Injury
В	= Complete motor, incomplete sensory
C	= Incomplete motor - >50% muscle groups have <grade 3="" strength<="" th=""></grade>
D	= Incomplete motor - >50% muscle groups have >Grade 3 strength
Ε	= Normal

Canadian CT Head Rules

(Source = Lancet 2001)

If any of the following High Risk Factors, get a CT Head

- GCS <15
- Depressed/ open skull fracture
- Basilar skull fracture
- >1 vomit
- Age <u>></u>65 years

If no High Risk Factors, get a CT head if:

- >30 minutes retrograde amnesia
- Dangerous mechanism

Imaging also recommended if:

- Blood thinners Focal neurology
- Unstable observations Seizures

TBI BP Goals (Source = Brain Trauma Foundation 2016)

Age	sBP		
15-49 years	>110 mmHg	Adult CPP	60-70 mmHg
50-69 years	>100 mmHg	Paeds CPP	40-50 mmHg
>70 years	>110 mmHg		

Glasgow Outcome Scale

Score 1-5 for outcomes after brain trauma

GOS	Outcome
1	- Death
2	- Persistent vegetative state
3	 Severe disability – Dependent for daily activities
4	- Moderate disability – Independent, but may need equipment
5	- Low disability – Minor neurological and psychological defecits

TBI Prognosis

(Source = Brain Trauma Foundation)

GRAPH

G	- GCS 3	GOS 1 = 80% GOS 4/5 = 10%
J		•
	- GCS 8	GOS 1 = 10% GOS 4/5 = 80%
R	 Radiology 	Mass effect, midline shift, SAH, Basal Cistern effacement
Α	- Age	Age 11-20 years = 35% mortality. Mortality increases 5-10%/ decade
P	- Pupils	No standardized approach
Н	- Hypotension	1 2x increase in GOS 1

	GOS 1	GOS 4/5
Hypotension	50%	33%
No Hypotension	25%	50%

Canadian C-Spine Rules

Exclusions:

- GCS <15 - Paralysis

- Unstable observations - Preexistent spinal disease

If any of the following High Risk Factors, get a CT C-Spine

- Age <u>></u>65 years
- Dangerous mechanism Axial load high speed, bicycle collision, rollover, ejection
- Paraesthesia

If no High Risk Factors, clear clinically if a low Risk Factors are present:

- Simple rear-end crash - Delayed neck pain

- Sitting in ED - No C-Spine midline tenderness

- Ambulatory

Rotate head to 45° to left and right, if unable, get a CT

If unable to clear clinically, then get a CT

NEXUS C-Spine Rules

NEXUS = National emergency Xray Utilisation Study Canadian C-spine Rules have better sensitivity and Specificity

No Radiology required if there is NO:

- Neurology N

- Ethanol Ε

- Extra distracting injuries

X U - Untoward change in level of consciousness

S - Soreness in the midline

Glasgow Coma Scale

	Eye opening	L	<u>Voice</u>		<u>Motor</u>
1	Nothing	1	Nothing	1	Nothing
2	To pain	2	Incomprehensible	2	Extension = Decerebrate
3	To voice	3	Inappropriate	3	Flexion = Decorticate
4	Open	4	Confused	4	Withdraws
		5	Orientated	5	Localises
				6	Commands

Paediatric Glasgow Coma Scale

	Eye opening	<u> </u>	<u>Voice</u>		<u>Motor</u>
1	Nothing	1	Nothing	1	Nothing
2	To pain	2	Inconsolable	2	Extension = Decerebrate
3	To voice	3	Moaning	3	Flexion = Decorticate
4	Open	4	Consolable	4	Withdraws to pain
		5	Interactive	5	Withdraws to touch
				6	Purposeful

8 - OBESITY

<u> AHI</u>

AHI = Apnea Hypopnea Index, number of Apnea/ Hypopnea events per hour of sleep

	<u>AHI</u>	
Normal	<5	In children AHI >1 is abnormal
Mild OSA	5-15	
Moderate OSA	15-30	
Severe OSA	<u>></u> 30	

STOPBANG

S	- Snoring	Risk	Score			
Т	 Tired/ fatigued/ sleepy 	Low	0-2			
0	- Observed apneas	Moderate	3-4			
P	- Pressure (hypertension)	High	5-8 or 2/4 STOP + B, N or G			
В	- BMI >35 kg/m ²					
Α	- Age >50 years					
N	- Neck circumference – Males >43 cm, Females >41cm					

N - Neck circumfereG - Gender = Male

Classes of Obesity

Obesity = A state if increased body mass and adiposity with a BMI in excess of >30 kg/m²

Class	BMI	Risk
Normal	$<25 \text{ kg/m}^2$	
Overweight	$25-30 \text{ kg/m}^2$	
Class I	$30-35 \text{ kg/m}^2$	Low risk
Class II	$35-40 \text{ kg/m}^2$	Moderate risk
Class III	>40 kg/m ²	High risk

James Formulae

Used to calculate Lean Body Mass (LBM)

Males:

LBM = $1.1x Wt(kg) - 128x (Wt/Ht)^2$

Females:

LBM = $1.07x Wt(kg) - 148x (Wt/Ht)^2$

Dose Adjustments

(Source = BJA 2010)

Propofol Induction - **LBW**

Maintenance - TBW

Fentanyl/ Remifentanil - LBW
Suxamethonium - TBW
NDMRs - IBW

Obesity Hypoventilation Syndrome

Diagnosis requires:

- BMI \sim BMI \sim 30 kg/m²

- **ABG** - PaCO2 > 6.0 kPa/ 45 mmHg

+ No other explanation for hypercapnea/ Type 2 Respiratory Failure

- Drugs - Chest wall/ spine disease

- Medications - Lung disease

- Hypothyroidism

9 - OBSTETRICS

Obstetric Sieve

Causes if obstetric collapse. Consider:

- Patient factors
- Obstetric factors
- Anaesthetic factors

T - Thrombus B - Baby - Aortocaval compression, eclampsia

H - Haemorrhage **A** - Anaphylaxis

E - Ambolus – AFE, PE S - Sepsis

I - latrogenic

C - CardiacS - Sugars

Obstetric Drug Safety

Catego	ry	Animal Risk	Human Risk	Overall	Examples
Α		No	No	No known	Amoxicillin
				adverse effects	Paracetamol
В	Either	Yes	No	No risks in	Augmentin
	Or	No	Unknown	humans	Ondansetron
С		Yes	Unknown	Potential risk	NSAIDs, Sulfonamides,
					Ciprofloxacin,
					Trimethoprim
D			Yes	Benefits >Risk	SSRIs, Phenytoin,
					Valproate, ACEi,
					Aminoglycosides
X			Yes	Risk >> Benefit	Thalidomide, Isotretinoin

Intrauterine Fetal Resuscitation

S - Syntocinin OFF

P - Position left lateral tilt

O - Oxygen

IV Crystalloid

L - Low BP – Give vasopressor

T - Tocolysis

PPH Causes

T - Tone = 70% T - Tissue = Placenta

T - Trauma = Tears T - Thrombin = Coagulopathy

NICE indications for CTG

(Source = NICE)

M - Meconium liquor

O - Obstetric bleeding

N - Neuraxial

I - Increased/ decreased fetal Heart Rate

T - Temperature = Maternal Fever

O - Oxytocin

R - Request by mother

Labour PCA Recipes

	Concentration	Bolus	Lockout	1 hr max
REMIFENTANIL	2mg/ 100mL = 20mcg/ mL	0.5 mcg/kg (10-50 mcg)	2 minutes	900mcg
ALFENTANIL	10mg/ 50mL = 200 mcg/ mL	100mcg (100-200 mcg)	3 minutes	1200mcg

C-Section Categories

Category	Delivery Time	
CAT I	<30 minutes	Immediate threat to woman/ fetus
CAT II	60-90 minutes	Early Delivery
CAT III	Earlier than planned	Early Delivery
CAT IV	At a planned time	At a time that suits services

Risk Factors for Preeclampsia

P - Parity = Nulliparous, multiparous

R - Renal disease

E - Endocrine disorders = Thyroid, diabetes

E - Egg/ embryo donor

C - Chronic hypertension

L - Large women = obesity

A - Antiphospholipid antibody syndrome

M - Maternal age >35 years

P - Previous Preeclampsia

Resuscitative Hysterotomy

Aim = Maternal survival, complete by 5 minutes post-arrest

Indications:

- Maternal cardiac arrest
- ->4 minutes of CPR
- Gravid Uterus capable of causing aortocaval compression
 - >20/40 pregnant
 - Uterus palpable above level of umbilicus

10 - ORTHOPAEDICS

BCIS

BCIS = Bone Cement Implantation Syndrome

	<u>Patient</u>	Surgical
Risk Factors	- ASA III/IV	- Long stem prosthesis
	- Pulmonary Hypertension	- Pathological fracture
	- Cardiac Disease	- Uninstrumented canal
	- NYHA III/IV	- Intertrochanteric fracture
	- Old age	
	- Osteoporosis	

<u>Grade</u>	Saturations		Systolic Blood Pressure
Grade I	<94%	or	Drop >20%
Grade II	<88%	or	Drop >40%
Grade III	CPR		

Reasons to delay Hip Fracture Surgery

(source = AAGBI)

Acceptable

- Hb <80 g/L

- Reversible coagulopathy
- K⁺ <2.8 mmol/L or >6.0 mmol/L Na⁺ <120 mmol/L or >150 mmol/L
- Chest sepsis
- LV Failure
- Correctable arrhythmia with HR >120 bpm
- Uncontrolled Diabetes
- Palliative

Unacceptable

- No staff
- No facilities
- Minor electrolyte abnormalities
- Awaiting an Echocardiogram

11 - PAEDIATRICS

<u>APGAR</u>

		0	1	2
Α	- Appearance	Blue	Blue hands/ feet	Pink
Р	- Pulse	Absent	<100 bpm	>100 bpm
G	- Grimace	Nil	On stimulation	Normal
Α	- Activity	None	Some flexion	Flexion
R	- Respiration	None	Weak	Strong

<u>Gillick Competence</u>

(Source = Gillick vs. West Norfolk & Wisbech 1985)

A Child's ability to give consent depends on their capacity to make an informed decision and not their age

McGill Score

Derived from 6 hours+ of overnight oximetry

- **Determines** Tonsillectomy and Adenoidectomy urgency
 - Post-operative monitoring requirements
 - Appropriateness for day case

D-	co+.	+	
1)6	sati	ıratı	ions

			
Score	<90%	<85%	Interpretation
1	1-2	0	Inconclusive
			A+T if clinical suspicion, day case
2	3+	1-3	Positive
			Waitlist for A+T, day case
3	3+	4+	High risk positive
			Urgent A+T, overnight oximetry/ monitoring after

Cravero/ WATCHA Scales

Measures of Paediatric Emergence Delirium Others – PAED, FLACC, CHIPP

	Cravero Scale		WATCHA Scale
1	Obtunded	0	Asleep
2	Asleep but responsive	1	Calm
3	Awake and responsive	2	Crying but consolable
4	Crying >3 minutes	3	Crying inconsolably
5	Needs restraint	4	Agitated, thrashin

- Pre-treat with Salbutamol
- Avoid ETT, use LMA
- Avoid Desflurane
- IV induction
- Senior/ paeds anaesthetist

Paediatric Fasting (Source = ANZCA)

Adults	Food 6 hours	COF 2 hours		
Children >6 months	Food 6 hours	Formula/ Milk 6 hours	Breast 6 hours	COF 2 hours
Children <6 months	Formula/ Milk 4 hours	<u>Breast</u> 3 hours	COF 2 hours	

Paediatric ETT

Neonatal	ETT	=	Gestational Weeks 10
	Depth	=	(kg + 6)cm
Paediatric	Uncuffed	=	<u>Age</u> + 4 4
	Cuffed	=	<u>Age</u> + 3.5 4
	Lip Depth	=	<u>Age</u> + 12 2
	Nose Depth	=	<u>Age</u> + 15 2

Target Neonatal Saturations

(Source = NZCOR 2016)

<u>Time</u>	Interquartile Range	Target
1 min	60-70%	>60%
2 min	65-85%	>65%
3 min	70-90%	>70%
4 min	75-90%	>75%
5 min	80-90%	>80%
10min	85-90%	>85%

Paediatric BP/ HR

Heart Rate			Blood Pressu	re
Age	Too Slow	Too Fast	Age	Systolic BP
<1 year	<100 bpm	>180 bpm	0-3 months	>50 mmHg
1-4 years	<90 bpm	>160 bpm	4-12 months	>60 mmHg
5-12 years	<80bpm	>140 bpm	1-4 years	>70 mmHg
>12 years	<60bpm	>130 bpm	5-12 years	>80 mmHg
			>12 years	>90 mmHg

Paediatric Resuscitation

 \mathbf{W} - Weight = (Age + 4) x2

E - Energy = 4 J/kg

T - Tube - Cuffed = (Age/4) + 3.5, Uncuffed = (Age/4) + 4, Depth = (Age/2) + 12

F - Fluid = 20 mL/kg

A - Adrenaline = 10 mcg/kg, Amiodarone = 5 mg/kg, Atropine = 20 mcg/kg

G - Glucose - D10W 2.5 mL/kg

Paediatric Anaphylaxis

<12 years of age

(Source = ANZCA)

DR - Danger and Response

Stop procedure, remove trigger

S - Send for help and form a team

Anaphylaxis Box Leader and a Reader

AB - Airway/ Breathing

FiO2 = 100%, ETT early

C - Circulation

Raise legs

Volume = 20 mL/kg crystalloid

D - Drugs

ONGOING HYPOTENSION

ADRENALINE

NORADRENALINE 0.1-2 mcg/kg/min VASIPRESSON 1 unit/50ml

2 mL, then 1-3 mL/ hr

IM ADRENALINE Q5 minutes

If no IV access/ no haemodynamic monitoring

ADRENALINE 1:1000, Lateral Thigh

<6 years - 0.15mL = 150 mcg

6-12 years - 0.3mL = 300mcg

IV ADRENALINE Q1-2 minutes

ADRENALINE 1mg/50ml, 20mcg/mL

GD II = 0.1 mL/kg = 2 mcg/kg

GD III = 0.2-0.5 mL/kg = 4-10 mcg/kg

GD IV = ACLS 10 mcg/kg

ADRENALINE INFUSION

After 3x Adrenaline boluses

ADRENALINE 1mg/ 50mL

0.3-6 mL/kg/hr = 0.1-2 mcg/kg/min

ONGOING BRONCHOSPASM

SALBUTAMOL <6 years - 6 puffs >6 years - 12 puffs

MAGNESIUM 50 mg/kg

Paediatric Weight

Weight = $(age+4) \times 2$

Age <9 years Weight = (2x Age) + 9

Age >9 years Weight = Age x 3

Specialist Paediatric Hospitals

- Neonates < 28 days
- Ex-prem <37/40 with a post-conceptual age <52 weeks
- History of apneic episodes
- Complex children ASA >3

Paediatric One-Lung Ventilation

(Source = BJA Ed, SPANZA)

Age	Technique
0-6 months	SLT bronchial intubation
6 months – 2 years	Parallel blocker
2-8 years	Coaxial blocker
8-18 years	DLT 26F

12 - PAIN

Approach to Regional

CALM, SOBER, PLANS & ACTIONS

C	- Consent	Р	- Probe = Linear f = 8-15 MHz
Α	- Assistant	L	- Local anaesthetic
L	- Lines	Α	- Additives
M	- Monitoring	N	- Needle
		S	- Stimulator 0.2 mA
S	- Sedation		
0	- Oxygen	Α	- Arrange the room
В	- Block trolley	С	- Clean = 0.5% Chlorhex + 70% EtOH
E	- Emergency drugs	T	- Two person time out
R	- Resuscitation equipment	1	- Image
		0	- Optimise = Depth, gain
		N	- Note relevant structures
		S	- Surround nerve with local anaesthetic

Bromage Scale

Grade	Criteria	Block
1	Free movement of feet and legs	Nil = 0%
2	Free movement of feet, just able to flex knees	Partial = 33%
3	Unable to flex knees	Almost complete = 66%
4	Unable to move legs	Complete = 100%

Brachial Plexus

R	- RUGBY	Roots
Т	- TEAMS	Trunks
D	- DRINK	Divisions
C	- COLD	Cords
В	- BEERS	Branches

Analgesic Infusions

For e	each patient, have plans for:	Instit	utional Issues:
M	- Monitoring	P	- Protocolised ca
0	- Ongoing pain	U	- Up-to-date edi
R	- Respiratory depression	M	- Management g
Р	- Pain team follow-up	Р	- Pumps – Cost e
Н	- Hypotension		
I	- Itch		
N	 Nausea and vomiting 		
E	- Emergency management		

Р	- Protocolised care
U	- Up-to-date education for staff

M - Management group – GA/QI - Pumps – Cost effectiveness etc

Tolerance/ Dependence/ Addiction

Tolerance Acquired hypoactivity to a drug whereby larger doses are required to

achieve the same effect

Dependence Physiological and psychological need for a drug with potential for

withdrawal on cessation

Addiction Use despite harm

Tachyphylaxis Rapid reduction in drug effectiveness with repeated doses

WHO Definition of dependence = >3/6 of

A - Alternative pleasures rejected

D - Desire to use

D - Detrimental to life

I - Inability to control onset/ offset/ levels

C - Cessation causes withdrawal

T - Tolerance

Budapest Criteria for CRPS

CRPS 1 No nerve injury CRPS 2 Nerve injury

C - Continuing pain disproportionate to inciting event

R - Reports 3/4 symptoms

P - Presents with 2/4 signs

S - Signs and symptoms have no other explanation

Signs/ symptoms:

- Sensory
- Motor/ trophic
- Sudomotor/ oedema
- Vasomotor

Neuropathic Pain

DysaesthesiaSpontaneous or evoked unpleasant, abnormal sensationParaesthesiaAbnormal sensation with no apparent physical cause

Hyperalgesia Increased response to a noxious stimulus

Allodynia Pain due to a non-noxious stimulus (AKA Hyperaesthesia)

13 - PERIOPERATIVE

<u>ASA</u>

E = Emergency

ASA I	Normal healthy patient
ASA II	Mild systemic disease
ASA III	Severe systemic disease
ASA IV	Severe systemic disease that is a constant threat to life
ASA V	Moribund patient who is not expected to survive without operation
ΔςΔ ΜΙ	Brain dead organ donor

Anaerobic Threshold

(Source = Blue Book 2013)

For major abdominal surgery in >60 year old patients

Anaerobic Threshold	Ischaemia on CPEX	Mortality
>11 ml/min/kg	Nil	1%
	Yes	4%
<11 ml/min/kg	Nil	20%
	Yes	40%

Surgical Urgency

(Source = AHA/ACC 2014)

	<u>Timeframe</u>	Definition
Emergency	<6 hours	Life/ limb threatening, no time to evaluate
Urgent	6-24 hours	Life/ limb threatening, time to evaluate
Time-sensitive	1-6 weeks	Delay of >1-6 weeks will affect outcome (cancer)
Elective	1 year	Delay of 1 year has no effect

CKD Stages

Stage	Impairment	GFR (ml/min/1.73m ²)
1	Normal	<u>></u> 90
II	Mild reduction	60-89
IIIa	Mild-moderate reduction	45-59
IIIb	Moderate-severe reduction	30-44
IV	Severe reduction	15-29
V	Kidney Failure	<15

Child-Pugh Score

Surpassed by MELD score

(Source = Blue Book 2017)

		<u>1</u>	2	3	
L	- Low Albumin	>35 g/L	28-35 g/L	<28 g/L	
ı	- INR	1-4	4-6	>6	
V	Volume/ascites	None	Mild	Severe	
E	- Encephalopathy	None	Mild	Severe	
R	- Raised Bilirubin	<20	20-30	>30	

Child Pugh	Score	Perioperative mortality
Α	5-6	10%
В	7-9	30%
С	>10	80%

MELD Score

(Source = Blue Book 2017)

MELD = Model for End-stage Liver Disease, Mayo clinic 2000

MELD = 10x (0.96x ln(Creatinine)) + (0.38x ln(Bilirubin)) + (1.1x ln(INR)) + 6.43

Derived from 3 parameters:		MELD	30 day mortality
В	- Bilirubin	10x	2 5%
ı	- INR	20x	20%
С	- Creatinine	30 <u>x</u> 2	40%
		40	60%

Produces a score from 6-40

APFEL/ Eberhart Scores

APFEL = Adults PONV risk prediction

Points:	Parameter:	Score:	Risk c	of PONV:
1	Female	0	10%	Low risk
1	Post-operative opioids	1	20%	Low risk
1	Previous PONV/ motion sickness	2	40%	Intermediate risk
1	Non-smoker	3	60%	High risk
		4	80%	High risk

Eberhart = Paediatric PONV risk prediction

Points:	Parameter:	Score:	Risk c	of PONV:
1	Age <u>></u> 3 years	0	9%	Low risk
1	Strabismus surgery	1	10%	Low risk
1	Previous PONV/ Family History	2	30%	Intermediate risk
1	Duration <a>>30 minutes	3	55%	High risk
		4	70%	High risk

Insulin Types

Type:	Name:	Additive:	Onset:	Peak:	Duration :
Fast	Novorapid Adipra Humalog	1x aa changed 2x aa changed Terminal aa changed	10 minutes	1 hour	4 hours
Short	Actrapid Humulin	Regular Insulin Regular Insulin	30 minutes	2 hours	6 hours
Intermediate	Protophane	Protamine	90 minutes	6 hours	12 hours
Long	Levemir Lantus	Fatty acid	90 minutes	-	24 hours

Insulin whilst NBM

(Source = Waikato/ AAGBI)

Type:		Day Before:	AM Surgery:	PM Surgery:
Long acting	AM Dose	Usual dose	2/3 dose	2/3 dose
- Lantus, Levemir	PM Dose	2/3 dose	-	-
Intermediate - Protophane, Humul	in	Usual dose	1/2 Morning	1/2 Morning
Mixed - Novomix, mixtard Penmix, Humalog mix	K	Usual dose	Either: - 1/2 Morning dose - Omit + 0.1 unit/kg Protophane	1/2 Morning dose with breakfast
Fast/ Prandial - Adipra, Novomix, Humalog		Usual dose	Omit while NBM	Usual dose with Breakfast

Oral Diabetes Mediations while NBM

(Source = AAGBI)

		Surgery:	
Class:	Drugs:	AM:	PM:
Bisguanides	Metformin	Give/omit	Give/omit
lpha Glucosidase Inhibitors	Acarbose	Omit	Omit
GLP-1 Analogues	Exenatide	Give	Give
DPP-4 Inhibitors	Sitagliptan, Vildagliptan	Give	Give
Thiazoledinediones	Rosiglitazone, Pioglitazone	Give	Give
Sulfonylureas	Gliclazide, Glipazide	Omit	Omit
Meglitinides	Repaglinide	Omit	Give AM dose

Frailty and Ageing

Frailty A multidimensional syndrome characterized by a loss of homeostatic and

physiological reserves that increase vulnerability to adverse events

Ageing A progressive reduction in viability with diminished ability to maintain

homeostasis from middle life onwards

Frieds Phenotypes = 5 Phenotypes of Frailty

	<u>Parameter:</u>	Measurement:
F	Fading	>4.5 kg weight loss
R	Reduced strength	Grip strength in lowest 20%
1	Inactivity	Self-reported
Ε	Exhaustion	Self-reported
D	Decreased speed	4.5m walk test in lowest 20%

TIVA Indications

I - Intensive care

T - Tone of Uterus – GA C-sections

S - Short/ day stay

T - Thoracics – Reduces shunt, increases PaO2 in OLV

I - Inter/ intrahospital transports

V - Vomiting/ PONV prevention

A - Anaesthesia for neurosurgery

T - Trainee teaching

I - Individual patient choiceM - Malignant hyperthermia

E - ENT/ FESS/ Shared airway surgery

Infection Prevention

SPACE

S	Surgical	- Sterility - Reduce tissue trauma	Minimise drains/ cathetersPrevent haematomas/ seromas
Р	Patient	- Normoglycemia	- MDRO screening
		- Smoking cessation	- Pre-operative Chlorhexidine wash
Α	Anaesthetic	- ?Opioids/ steroids	 Asepsis/ CLAB prevention
		- Equipment cleaning	- Hand hygiene
С	Chemo	- Antibiotics	- WHO timeout confirmation of Abs
		- Skin prep	- Target likely pathogens with Abs
E	Environment	- Reduce foot traffic	- Standard precautions
		- Temperature	- Room ventilation

14 - PROFESSIONAL

Mandatory Reporting

MCNZ/ AHPRA notifiable conduct:

- Practicing whilst intoxicated
- Sexual misconduct
- Impaired
- Significant departure from accepted professional standards

Graded Assertiveness

- Probe Do you know that ...? Α - Alert Can we reassess...? C - Challenge Are you sure...?

Ε - Emergency **STOP**

SUD Major and Minor signs

(Source= ACECC 2016

- Mistakes

- Health problems

- Social disruption

- Change in mood

- Working alone - Refusing breaks

These are indirect signs. Direct signs of SUD is observed misuse = Medical emergency

Major:

- Injection marks/ pills
- IV equipment at home/ in change room
- Increasing sign outs of controlled drugs
- Inconsistent records
- Excessive pain in PACU
- Tremors
- Intoxication
- Bizarre behaviour

Minor:

- Long sleeves
- Blood on clothes
- Absenteeism
- Reduced hygiene
- Poor punctuality
- Frequent job changes
- In Hospital out of hours
- Syringes/ ampules in clothing
- Long toilet breaks

≥1 major sign = Report

Factors that adversely affect decision making

(Source = EMAC)

HALT I'M SAFE

Н	- Hungry	S	- Stress
Α	- Angry	Α	- Alcohol
L	- Late	F	- Fatigue
Т	- Tired	E	- Eating

ı - Illness

М - Medications

Life Problems

Causes = 6 B's

B - Babies = Children B - Bugs = Illnesses

B - Booze = Substance use
 B - Babes = Relationships
 B - Blues = Mental health

<u>Substance Use Disorder Policies and Interventions</u>

PREPARE and **STONED**

Policies:

P - Prevention strategies Education, controlled drug sign out processes, SIG

R - Recognition Education, reporting, audits
 E - Evidence gathering Confidential, welfare SIG

P - Planned intervention

A - Access to treatment Immediate rehabilitation

R - Return to work As appropriate

E - Evaluation and monitoring

Interventions:

S - Support return to work

T - Take time to listen

O - Outline team roles at outset

N - Notify person about evidence

E - Escort at all times

D - Document everything

Return to work process

(Source = ANZCA)

4 stage process based on a learning-needs analysis

Stage:	When:	What:	How:
1	Before/ early	Emergency response CPDs	CICO, ACLS, massive haemorrhage
II	Early	Ability to practice	Level 1 supervision, CPD peer review
Ш	Variable	Supervision	Audit, logging, MSF, CBDs
IV	End	Completion vs. extension	Supervisors report

SPIKES Protocol

Protocol for breaking bad news

S	- Setting	Location, privacy, uniterrupted
Р	- Perception	What is known already?
ı	- Invitation	To give information
K	 Knowledge sharing 	Give information
Ε	- Empathy	Emotional response
S	Summary/ strategy	Where to?

Open Disclosure

(Source = ANZCA)

An open discussion of adverse events

Prepare

- Gather all necessary information
- Confirm participants

Perform

- Introduce roles
- Offer a sincere, unprompted apology
- Provide a factual explanation
- Encourage descriptions of personal experiences
- Take care of staff 1° and 2° victims
- May require several meetings

Follow up

- Senior clinician/ management
- Agree on future care
- Share outcomes of investigations

Can use **SPIKES** protocol as well

Bullying Behaviours

(Source = ANZCA)

BULLIES

B - Berating, rude, abusive behaviour

U - Unreasonable timelines

L - Leaving all unpleasant tasks to an individual

L - Limiting or withholding essential information

I - Intimidating, hostile, threatening behaviours

E - Excluding from college activities

S - Sarcasm and insults

<u>Principles of a Complaints Process</u>

(Source = ANZCA)

COMPLAIN

C - Confidentiality

O - Objectivity

M - Malice-free

P - Protect against false accusations

L - Let each party have a support person

A - Allow for independent counselling

I - Impartiality

N - No victimization of complainants

ANZCA Roles in Practice

(Source = ANZCA)

CCLAMPS

C - Communicator

C - Collaborator

L - Leader/ manager

A - Advocate

M - Medical expert

P - Professional

S - Scholar

Audit Cycle

SAC Events

SAC = Severity Assessment Code

SAC 1	Death or permanent severe loss of function
SAC 2	Permanent major loss of function or temporary severe loss of function
SAC 3	Permanent moderate loss of function or temporary major loss of function
SAC 4	Increased level of care or no injury

HQSC Reporting

HQSC = Health Quality and Safety Commission NZ

Root Cause Analysis

RCA A method of problem solving to identify underlying faulty processes or system errors that led to a harmful event

INSPECT

1	- Identify	Identify the event to investigate and gather information
		- Documents, interviews, investigations
N	- Nominate	Nominate a team
		- Facilitator, members
S	- Sequence	Sequence of events
		- Create a concise timeline
Р	- Propose	Propose contributing factors for each timeline step
		- Conditions and factors
E	- Examine	Examine the root cause
		- Ask 5 "why's" for each factor
С	- Changes	Implement changes for each root cause
		- Immediate = Temporise, Longterm = Control, eliminate, accept
T	- Test	Test the success of changes made
		- Audit, follow up

QA/QI (Source = ANZCA)

Quality Assurance Establish processes to meet accepted standards

Quality improvement Establish processes to achieve better clinical outcomes

3 Goals of QA/QI:

- Improve quality, safety and experience for individual patients
- Improve health and equity for the population
- Achieve best value for available resources

Beauchamp and Childress Medical Ethics

(Source = Belmont Report 1979)

Autonomy Individuals have free will. Those with diminished autonomy need

protecting

Beneficence Research and interventions should aim to maximise benefits

Non-Malificence
Justice

Human subjects should not be harmed or injured Benefits and risks should be distributed fairly. Also encompasses Human Rights and legal obligations

Informed Consent

(Source = Belmont Report 1979)

Informed consent is a direct application of the principles of Autonomy. Competence is assured until proved otherwise

Information Knowledge must be shared regarding:

- Procedure- Purpose- Risks/ benefits

With opportunity to ask questions and withdraw consent

Comprehension The knowledge must be understood

Free Will Consent must be voluntary

6 Domains or Health Care Quality

(Source = Institute of Medicine)

STEEEP

s - Safe

T - Timely Value = Quality
E - Effective Cost

E - Efficient E - Equitable

P - Patient-centered

Errors (Source = BMJ/ ANZCA/ EMAC)

Active Errors Unsafe acts which precede an incident

Slips - Unintended actions

Sequence = wrong order **Description** = Wrong object

Mode = Wrong mode

<u>Lapses</u> - Errors of omission <u>Fixation</u> - Coning of attention Violations - Intentional errors

Fumbles - Clumsiness

Latent Errors Resident pathogens in a system. These may be dormant and combine with ...

active errors

Effective Communication

(Source = Blue Book 2017)

LAURS

L Listen Reflectively Listen, reflect, don't interrupt, be comfortable with

pauses

A Acceptance Of beliefs, emotions, experiences, accepting a patient's

alternative view/ reality

U Utilise Patient's Language Use the same visual/ auditory/ kinaesthetic language.

Use concerns/ strengths

R Reframe a negative thought, perception or behavious

in a helpful manner

Suggestibility increases when anxious. Can be verbal or

non-verbal suggestions

<u>Performance Shaping Factors</u>

(Source = ANZCA)

Individual Attention, memory, motor skills, training, knowledge

Teams Leadership, communication, familiarity **Organisation** Staffing, workload, pressure, hours

Resources Equipment availability

Ergonomics Size, shape, quality of equipment

Handovers (Source = ANZCA)

Handover for Breaks: BREAK

B Background Medical history of patient

R Record Chart up to date

E Equipment Ensure machine/ equipment are working
A Anaesthetic Technique, drugs, lines, airway & current state

K Keep others in the loop Notify nurses/ tech/ surgeon

Handover of care: PISS OFF HOME

P Prepare for the handover

I Individuals Who needs to be there?S Setting Where should it occur?

S Specific paperwork Documentation ready for handover

O Optimise the Environment

F Facilities Facilities and equipment to reduce risk for patient/ staff

F Forewarn To ensure bed/ staff are available

H Handover

O Overview Utilise ISOBAR

M Members Make sure all relevant people are present

Ensure Ensure there is a leader accepting responsibility

UNESCO 1982 The complex of spiritual, intellectual, material and emotional features

which define a social group. Culture defines:

- Thoughts - Communication

- Identity - Values

Cultural Competence Challenges the elements of practice which perpetuate inequity. The

attitudes, skills and knowledge to treat people if different cultural

backgrounds effectively and respectfully. Improves:

- Patient experience - Clinical outcomes

Principles of cultural competence

- **Respect** Different world views, different health beliefs

- **Communication** Setting, time, family, interpreter

- Patient Centered Care tailored to individual needs, avoid generalisations

- Partnership Develop a good therapeutic relationship

Debriefing after a Critical Incident

DEBRIEF

- **D** Debriefer chairs the meeting
- **E** Ensure confidentiality
- **B** Before starting, identify and introduce all team members present
- **R** Relate individual experiences and clarify events
- I Identify learning points
- **E** Ensure confidentiality once more
- **F** Follow up/ report/ investigate

15 - RESEARCH and STATISTICS

Clinical Trial Phases

Efficacy = Ability to produce a result

Effectiveness = Success in producing a result (therapeutic effect)

Phase	n=	Participants	Purpose
0	10	Healthy	Pharmacokinetics
1	20-100	Healthy	Dose ranging, safety, efficacy
II	100-300	Diseased	Safety, efficacy
III	1000-2000	Diseased	Effectiveness, therapeutic effect, safety
IV	Post-marketing surveillance		

Planning a Study

RESEARCH and **PECOT**

R	Review the literature		
Ε	Establish your aims		
S	Study protocol – Design your ptotocol = PECOT	Р	Population/ sample
Ε	Ethics approval	E	Exposure
Α	Apply your protocol to a Pilot Study	C	Control
R	Review your protocol and modify it as required	Ο	Outcomes
C	Conduct the study	Т	Tests/ time
Н	Hypothesis/ conclude based on your data		

Levels of Evidence

(Source = NHMRC 1999)

I	Systematic review of RCTs
II	Properly designed RCT
III-1	Pseudorandomised control trials
III-2	Cohort/ case control studies
III-3	Comparative studies
IV	Case series
V	Case reports

Grades of Reccomendation

(Source = NHMRC)

- **A** Evidence can be trusted
- **B** Evidence can be trusted in most situations
- **C** Evidence provides some support, but needs care in its application
- **D** Body of evidence is weak

Types of Data

2 Groups:

Statistical Tests

	<u>Paired</u>	Unpaired	Paired	<u>Unpaired</u>
Parametric	- Paired	- Unpaired	- ANOVA	- ANOVA
	Students T	Students T		
Non-Parametric				
- Nominal	- McNemar	- Chi ²	- Cochrane Q	- Cochrane Q
- Ordinal – Ratio	- Wilcoxon	- Mann	- Friednman	- Kruskell
	Rank Sum	Whitney U		Wallis

<u>Error</u>

Error A reduction in data or measurement accuracy as a result of random or

systematic purposes

Random Error Non-directional variation in data accuracy resultant from

uncontrollable or poorly controlled factors. Reduces with increased

>2 Groups:

sample sizes

Systematic Error Bias is the introduction of systematic error. Systematic error occurs

with same magnitude and direction. Does not change with sample

size

16 - RESPIRATORY and THORACICS

ppoFEV₁ = Predicted Post-Operative FEV₁

The lung has 42 segments

- **RUL** = 6 - **LUL** = 10

- **RML** = 4 - **LLL** = 10

- **RLL** = 12

ppoFEV₁ = preopFEV₁ x $(1 - \frac{\% \text{ Lung Removed}}{})$

100

= preopFEV₁ x (42 - # Segments Removed)

42

ppoFEV ₁	Risk
>40%	Low Risk
30-40%	Moderate Risk
<30%	High Risk

Markers of Asthma Control

(Source = National Asthma Education & Prevention)

ASTHMA

A Activity Exercise capacity

S Salbutamol Frequency of reliever use

T Take Steroids Frequency of Prednisone requirement

H Has Symptoms How often?M Measurements FEV₁/ PEF

A Awakenings Nocturnal wakings

FACED Score

Severity assessment tool for Bronchiectasis

		0	1	2
F	FEV ₁	>50%		<50%
Α	Age	<70 years		>70 years
С	Colonisation	Nil	Pseudomonas	
Ε	Extent	1 lobe	2+ lobes	
D	Dyspnea	MRC 1	MRC 2+	

Score	Severity
0-2	Mild
3-4	Moderate
5-7	Severe

BODE Index

Severity assessment tool for COPD

		0	1	2	3
В	ВМІ	>21	<21		
0	Obstruction - FEV ₁	>65%	50-65%	35-50%	<35%
D	Dyspnea - MRC	<u><</u> 1	2	3	4
F	Exercise - 6 Minute Walk	>350m	250-350m	150-250m	<150m

4 Year Survival
80%
70%
60%
20%

CURB 65

(Source = British Thoracic Society)

Points:			Score:	Management:
1	C	Confusion	0-1	Outpatient
1	U	Urea >7 mmol/L	2	Inpatient short-stay
1	R	RR <u>></u> 30	3-5	Inpatient +/- ICU
1	В	sBP <90 mmHg		
1	65	Age >65 years		

Score:	30 Day Mortality
0	<1%
1	3%
2	7%
3	14%
4	28%
5	28%

MRC Scale

(Source = Medical Research Council)

MRC Scale = Medical Research Council Dyspnea Scale

Stage	Dyspnea
1	Dyspnea on strenuous exercise
II	Dyspnea up a slight hill
III	Walks slow, stops after 1 mile
IV	Stops after 100m
V	Dyspnea on dressing

GOLD COPD Classification

(Source = GOLD)

Stage	Severity	FEV ₁ / FVC	FEV ₁
1	Mild	<70%	>80%
II	Moderate	<70%	50-80%
III	Severe	<70%	30-50%
IV	Very severe	<70%	<30% OR <50% with chronic respiratory failure

Bronchial Blockers:

ETT Size:	Blocker Size:	Fr = Diameter(in mm) x3
4.5	5.0 Fr	
6.0	7.0 Fr	
7.5	9.0 Fr	

17 - TRAUMA

Burns

Lund-Browder Chart Calculation of %TBSA Burns

Parkland Formula Formula for fluid resuscitation in burns. Use Hartmans. In children, add 0.9% NaCl+D5W according to Halliday Segar 4-2-1 rule

Total Volume = 4mL x %TBSA x Weight

First half – First 8 hours

Second half – Second 16 hours

Baux Score Survival Prediction for burns

Baux Score = Age + %TBSA OR Score >120 = 50% Mortality

= Age + %TBSA + 17 in inhalational burns

Criteria for Intubation

- GCS <u><</u>8 - Orpharyngeal Oedema - Combative - A/B Compromised - Full thickness neck burn - Agitated

Inhalational Burns Maximal swelling occurs 12-36 hours post-burn

Major Signs:

Minor Signs:

- Hoarse Voice

- Singed nasal hairs

- Brassy Cough

- Carbonaceous sputum

- Stridor
- Facial/ oral burns/ oedema

Revised Trauma Score

3 parameters:

- GCS - Systolic BP - Respiratory Rate

RTS = (0.94 xGCS) + (0.73 xsBP) + (0.29 xRR)

Score	GCS	sBP	RR
4	13-15	>89 mmHg	10-29/ minute
3	9-12	76-89 mmHg	>29/ minute
2	6-8	50-75 mmHg	6-9/ minute
1	4-5	1-49 mmHg	1-5/ minute
0	3	0 mmHg	0

RTS <4 = Refer to Trauma Centre

Injury Severity Score

(Source = Journal of Trauma 2003)

Major Trauma = ISS >15 = 10% mortality

6 Body Regions:	<u>Score</u>	Injury
- Head/ neck	1	Minor
- Face	2	Moderate
- Chest	3	Serious
- Abdomen	4	Severe
- Pelvis/ limbs	5	Critical
- External	6	Untreatable/ lethal

ISS =
$$A^2 + B^2 + C^2$$

A, B, C = Scores for 3 most injured regions

Maximum ISS = 75

ISS	% Trauma Induced Coagulopathy
0-14	10%
15-29	20%
30-44	40%
45-59	60%
60-75	80%

Classes of Shock

Class	Volume lost	<u>Physiology</u>
1	<15%	Normal
II	15-30%	HR 100-120, BP normal or reduced, RR 20-24
Ш	30-40%	Significantly reduced BP, anxious, altered mental state
IV	>40%	Significantly reduced BP, reduced level of consciousness

Damage Control Resuscitation

Indications - RBC >10units - Coagulopathy - T <35°C

->90 minutes in OT - pH <7.2 - Lactate >5 mmol/L

3 Components:

Permissive Hypotension

- sBP 80-90 mmHg until source control unless TBI/ spinal injury

2 - Damage Control Surgery - Rapid and definitive source control

3 - Prevention of Hypothermia, Acidosis, Hypocalcaemia

Damage Control Surgery – 4 Phases:

1 - Early recognition of course

2 - Salvage operation

3 - ICU for - Resuscitation

- Correction of coagulopathy

- Physiological stabilization

4 - Re-operation at 24-48 hours if stable and responding to treatment

Carboxyhaemoglobin

HbCO	Clinical Presentation	FiO2	HbCO t _{1/2}
>10%	Symptomatic	0.21	4 hours
>20%	Consider Hyperbaric Oxygen	1.0	45 minutes
>50%	Coma, death	3ATM 1.0	20 minutes