الحسابيات

\mathbb{Z} قابلية القسمة في -I

أنشطة

لىكن n عددا صحيحا طبيعيا فرديا نشاط1

n يقسم n^2-1 لكل عدد صحيح الطبيعي فردي n^2

الحل

n = 2k + 1 حيث اليكن من \mathbb{N} عدد صحيح طبيعى فردي أي يوجد

$$n^2 - 1 = 4k(k+1)$$
 ومنه $n^2 - 1 = (n-1)(n+1)$ لدينا

وحيث أن k(k+1) عدد زوجي (لأنه جداء عددين متتاليين)

 $n^2-1=8k$ ' فانه يوجد k من \mathbb{N} حيث k(k+1)=2k و بالتالي

 n^2-1 إذن 8 يقسم

نشاط2

بين أن لكل n من IN العدد n^3-n يقبل القسمة على 3

$$n^3 - n = n(n-1)(n+1)$$
 لدينا

3k+2 و منه پوجد $k \in \mathbb{N}$ حيث n=3k أو

 $n^3 - n = (3k+1)(3k)(3k+2)$ و بالتالي $n^3 - n = 3k(3k-1)(3k+1)$ أو

$$n^3 - n = (3k+2)(3k+1)(3k+3) = 3(3k+2)(3k+1)(k+1)$$
 je

 $k' \in \mathbb{N}$ و في جميع هذه الحالات ' $n^3 - n = 3k$ حيث

اذن $n^3 - n$ يقبل القسمة على 3

نشاط3

أنشر $\left(10^6-1\right)^3$ ثم استنتج باقي القسمة للعدد $\left(10^6-1\right)^3$ على 5

نشاط4

حدد الأرقام x و y بحيث العدد الصحيح الطبيعي 11x1y قابل للقسمة على 28

1- تعریف

 $\overline{\mathbb{Z}}$ لیکن a و b من

a=kb نقول إن \mathbb{Z} نقول إن b و نكتب b/a إذا وجد b في b نقول

 $(a;b) \in \mathbb{Z}^2$ $b/a \Leftrightarrow \exists k \in \mathbb{Z}$ a = kb

2- ملاحظات

bاو a اننا نقول إن b قاسم لـ a أو a مضاعف لـ +

 $b \cdot \mathbb{Z} = \{k \cdot b / k \in \mathbb{Z}\}$ مجموعة مضاعفات العدد b هي المجموعة $b \in \mathbb{Z}$ -*

 $b \in \mathbb{Z}$ $a \in \mathbb{Z}^*$ ليکن -* $b/a \Rightarrow |b| \le |a|$

" b/a" خاصيات العلاقة -3

نقول إن العلاقة" b/a " نقول إن العلاقة $\forall a \in \mathbb{Z} \quad a/a$ -*

نقول إن العلاقة" b/a "متعدية $\forall (a;b;c) \in \mathbb{Z}^3$ $\begin{cases} b/a \\ a/c \end{cases} \Rightarrow b/c -*$

 $\forall (a;b;c) \in \mathbb{Z}^3 \quad \begin{cases} b/a \\ a/b \end{cases} \Rightarrow |a| = |b| -*$

$$\mathbb N$$
 نقول إن العلاقة" b/a " تخالفية في $orall (a;b;c)\in \mathbb N^3$ $\begin{cases} b/a \\ a/b \end{cases} \Rightarrow a=b$

 $orall (a;b) \in \mathbb{Z}^2$ $b/a \Leftrightarrow a \cdot \mathbb{Z} \subset b \cdot \mathbb{Z}$ بين أن -1

 $\forall (a; x_1; x_2; y_1; y_2) \in \mathbb{Z}^5$ $a/(x_1 - y_1)$ \land $a/(x_2 - y_2) \Leftrightarrow a/(x_1 x_2 - y_1 y_2)$ -2 -2

 \mathbb{Z} القسمة الاقلىدية في II

 \mathbb{N} القسمة الاقليدية في 1

a
eq b مبرهنة a
eq b من \mathbb{N} حيث a
eq b

 $0 \leq r \prec b$ حيث a = bq + r حيث $\left(q; r\right)$ من من وجد زوج وحيد

اصطلاحات

العملية التي تمكننا من تحديد (q;r) بحيث a=bq+r حيث $0\leq r\prec b$ تسمى القسمة الاقليدية لـ \mathbb{N} علی b فی a

الباقي. q الخارج و r الباقي. المقسوم و العدد q الباقي.

 \mathbb{Z} - القسمة الاقليدية في \mathbb{Z}

مىرھنة

a
eq b لیکن a من $\mathbb Z$ و b في

 $0 \le r \prec b$ حيث a = bq + r عين (q;r) من (q;r) عيوجد زوج وحيد

اصطلاحات

العملية التي تمكننا من تحديد (q;r) من $\mathbb{Z} imes \mathbb{N}$ بحيث a = bq + r حيث $0 \le r \prec b$ تسمى \mathbb{Z} القسمة الاقليدية لـ aعلى b

العدد q العدد q العدد b العدد b العدد a الباقي

تمرين

 q^2 حدد الأعداد الصحيحة النسبية x بحيث يكون للقسمة الاقليدية لـx على 7 خارج

بين إذا كان للقسمة الاقليدية لـ aعلى b و القسمة الاقليدية لـ 'aعلى b نفس الخارج a و كان b فان q خارج القسمة الاقليدية لـ $a \prec x \prec a$

- الأعداد الأولية

1- تعاریف

أ- القواسم الفعلية لعدد صحيح نسبي

تعريف

 $a \in \mathbb{Z}$ ليكن

 $d \notin \{-1;1;-a;a\}$ نقول إن العدد d قاسم فعلي للعدد a إذا و فقط إذا كان d يقسم d

أمثلة

*- القواسم الفعلية للعدد 6 هي 2 و 2- و 3 و 3-

العدد 7 لا يقبل قواسم فعلية $D_7 = \{1; -1; 7; -7\}$ العدد 7 ال

ں- الأعداد الأولية

 $a \in \mathbb{Z}$ لىكن

نقول إن العدد a أولي إذا و فقط إذا كان a يخالف 1 و 1- و ليس له قواسم فعلية a

 $|a| \neq 1$ و $D_a = \{1; -1; a; -a\}$ و $a \neq 1$

نرمز لمجموعة الأعداد الأولية بـ P

2- خاصيات

أ- إذا كان q و q عددين أوليين و |q|
eq |p| فان قاسمهما المشترك الأكبر هو q (العكس غير صحيح) \mathbb{Z}^* ب- لیکن a عددا غیر أولی فی \mathbb{Z}^* و پخالف1 و 1أصغر قاسم فعلي موجب للعدد a هو عدد أولي أ د- مجموعة الأعداد الأولية غير منتهية البرهان نبرهن أن مجموعة الأعداد الأولية غير منتهية لتكن P^+ مجموعة الأعداد الأولية الموجبة $2 \in P^+$ لأن $P^+ \neq \emptyset$ $m\succ p$ لدينا m=p!+1 لنعتبر p^+ لدينا لنفترض أن p^+ لدينا $q \leq p$ و منه $m \notin P^+$ أي m ليس أوليا و بالتالي للعدد m قاسم أولي $q \in P^+$ و (p! يستلزم q يقسم p! لأن $q \le p$ لدينا q/m و q/p ومن q/p ومن q/m أي q/m وهذا يتناقض مع كون q أولي ومنه P^+ غير منتهية إذن P غير منتهية -3 طريقة عملية لتحديد الأعداد الأولية $n \ge 2$ و $n \in \mathbb{N}$ ليكن $p^2 \le n$ إذا كان n غير أولي فانه يوجد عدد أولي موجب p يقسم n و البرهان لَيكن $n \in \mathbb{N}$ و $n \geq 2$ و n غير أولي و ليكن p أصغر قاسم فعلي موجب لـ n إذن p أولي ومنه يوجد n = pk من \mathbb{N}^* حیث k $p \le k$ بما أن $p \prec n$ فان $n \prec k \prec k$ إذن k قاسم فعلي موجب للعدد $p^2 \le pk = n$ إذن ملاحظة $n \ge 2$ و $n \in \mathbb{N}$ ليكن

 $p^2 \leq n$ حيث p حيث الأعداد الأولية p حيث p لتأكد من أن p هل أولي أم لا. نرى هل يقبل القسمة على أحد الأعداد الأولية

فإذا كان يقبل القسمة على أحدهم فان n غير أولي lacktriangle

و إذا كان لا يقبل القسمة على أي واحد مهن فان n عدد أولي $\stackrel{\bullet}{\sim}$

($p^2 \succ n$ عملیا نتوقف عندما تکون (عملیا

مثال العدد 179 لا يقبل القسمة على أي عدد من الأعداد الأولية التالية 2 و 3 و 5 و 11 و 13 و 13 و 13 و 13 و 13 $17^2 = 289 \; ; \; 13^2 = 169$

4- خاصیات خام ق

*- إذا كان عدد أولي يقسم جداء أعداد صحيحة نسبية فانه يقسم أحد عوامل هذا الجداء

نتبحة

لتكن p_1 و p_2 و p_n أعداد أولية موجبة و p_1 عددا أوليا $p/p_1 imes p_2 imes \dots imes p_n \Rightarrow \exists i \in \{1;2;....;n\} \quad p=p_i$

5- التفكيك الى جداء من عوامل أولية

د- مبرهنه

کل عدد صحیح نسبی n غیر منعدم ومخالف لـ1 و 1- یمکن کتابته بکیفیة وحیدة علی شـکل $lpha_1$ و p_n أعداد أولیة مختلفة مثنی مثنی و p_1 و p_1 أعداد أولیة مختلفة مثنی مثنی و p_1 و p_2 أعداد أولیة مختلفة مثنی مثنی و p_1 أعداد صحیحة طبیعیة غیر منعدمة و $e=\pm 1$

ملاحظة عندما نكتب n على شكل $p_k^{\alpha_k} \times p_2^{\alpha_2} \times \dots \times p_k^{\alpha_k}$ فاننا نقول اننا فككنا $p_k^{\alpha_k}$ الى جداء عوامل أولية مثال فكك العدد1752- إلى جداء عوامل أولية

(A) نتيجة1

لیکن p_n عداد أولیة p_n حیث p_1 حیث p_2 حیث p_1 حیث p_2 حیث p_1 حیث p_2 حیث p_3 حیث p_4 حیث p_5 حیث p_5 حیث p_5 حیث p_5 حیث p_6 حیث p_6 حیث p_7 حیث p_7 حیث p_8 حیث p

$$d = \varepsilon p_1^{\beta_1} \times p_2^{\beta_2} \times \dots \times p_k^{\beta_k}$$

 $\big\{1;2;....;k\big\}$ حيث $0 \le \beta_i \le \alpha_i$ لكل

نتىحة2

ليكن p_n أعداد أولية p_n حيث p_2 و p_1 و p_2 عداد أولية p_1 عدد p_2 عدد p_2 العدد p_2 الالعدد p_2 و فقط إذا كان تفكيك p_2 الى عوامل جداء أولية على شكل p_2 عدد p_2 مضاعفا للعدد p_2 الالعدد p_2 على p_2 العدد p_2 على p_2 على العدد p_2 العدد p_2 العدد p_2 العدد p_2 العدد p_2 العدد p_2 العدد العدد p_2 العدد العد

 $\{1;2;....;k\}$ حيث $0 \le \alpha_i \le \lambda_i$ لکل ا

IV- القاسم المشترك الأكبر

 D_a نرمز لمجموعة قواسم العدد الصحيح النسبي a بالرمز

1- تعریف

 \mathbb{Z}^* لیکن a و b من

ليكي a ليكي من كي المسترك الأكبر للعددين a و b هو أكبر قاسم مشترك موجب قطعا لـ a و b يرمز له $a \wedge b$

$$\delta = a \wedge b \Leftrightarrow \begin{cases} \delta \in D_a \cap D_b \\ \forall x \in D_a \cap D_b \end{cases} \quad x \leq \delta$$

2- خاصىات

 $\overline{\mathbb{Z}}^*$ لیکن a و b و b

$$a \wedge b = b \wedge a$$

 $(a \wedge b) \wedge c = a \wedge (b \wedge c)$
 $a \wedge a = |a|$

 $48 \wedge 60 = 12$

3- خوارزمية اقليدس أو طريقة " القسمات المتتالية " لتحديد القاسم المشترك

أ- ملًاحظة

 $\forall a \in \mathbb{Z}^* \quad D_a = D_{-a} \quad *$

ومنه تحديد القاسم المشترك الأكبر لعددين صحيحين نسبيين $\forall (a;b) \in \mathbb{Z}^{*2}$ $a \land b = |a| \land |b| *$ يرجع إلى تحديد القاسم المشترك الأكبر لعددين صحيحين طبيعيين.

 \mathbb{N}^* ب- لیکن a و a من

 $a \wedge b = b$ فان b/a فان -

 $0 \prec r \prec b$ و a = bq + r حيث $\mathbb{N} \times \mathbb{N}^*$ و a = bq + r و a = bq + r و a = bq + r و أذا كان a = bq + r وأن كل قاسم مشترك لـ a = bq + r فان كل قاسم مشترك لـ a = bq + r فان كل قاسم مشترك لـ a = bq + r

 $D_a \cap D_b \subset D_r \cap D_b$ و بالتالي قاسم مشترك لـ a و b و a هو قاسم مشترك لـ a و بالتالي قاسم مشترك لـ a و a يقسم a يقسم a (لأن a عكسيا كل قاسم مشترك لـ b و a يقسم a

 $D_r \cap D_b \subset D_a \cap D_b$ ومنه کل قاسم مشترك لـ b و a هو قاسم مشترك لـ $a \wedge b = r \wedge b$ و بالتالي $D_a \cap D_b = D_r \cap D_b$ إذن

تمهيدة

b ليكن a و a من \mathbb{N}^* بحيث b لا يقسم a و a باقي القسمة الاقليدية لـ


```
b \prec a ج- لیکن a و b من \mathbb{N}^* نفترض أن
                                0 \le r_1 \prec b حيث a = bq_1 + r_1 بإجراء القسمة الاقليدية لـ a على على الحصل على
                                                                                        a \wedge b = b و منه b/a فان r_1 = 0 و منه \diamond
               0 \le r_1 \prec r_2و b = r_1q_2 + r_2اذا كان 0 + r_1 + r_2 نجري القسمة الاقليدية لـ b = a على الالتان على القسمة الاقليدية لـ b = a
                                                      a \wedge b = b \wedge r_1 = r_1 اذا کان r_2 = 0 فان r_3 = 0 و منه
0 \le r_3 \prec r_2 و r_1 = r_2 q_3 + r_3 و نحصل على r_2 \succ 0 و نحصل القسمة الاقليدية لـ r_1 = r_2 q_3 + r_3
                                                                                     بإجراء العملية n مرة نحصل على
                                                a \wedge b = b \wedge r_1 , 0 \prec r_1 \prec b , a = bq_1 + r_1
                                                b \wedge r_1 = r_1 \wedge r_2, 0 \prec r_2 \prec r_1, b = r_1q_2 + r_2
                                              r_1 \wedge r_2 = r_2 \wedge r_3, 0 \prec r_3 \prec r_2, r_1 = r_2 q_3 + r_3
                             r_{n-2} \wedge r_{n-1} = r_{n-1} \wedge r_n , 0 < r_n < r_{n-1} , r_{n-2} = r_{n-1}q_n + r_n
                           a \wedge b = b \wedge r_1 = r_1 \wedge r_2 = r_2 \wedge r_3 = \dots = r_{n-2} \wedge r_{n-1} = r_{n-1} \wedge r_n و منه نستنتج
                                                                                                   0 \prec r_n \prec r_{n-1} \ldots \prec r_3 \prec r_2 \prec r_1 \prec b
                                                                                                  A = \{r_1; r_2; r_3, \dots, r_n; \dots\} نضع
                                                         جزء من \mathbb N مكبور بالعدد b و منه A مجموعة منتهية A
                                                                                   \exists p \in \mathbb{N} \, / \quad r_{p+1} = 0 \quad ; \quad r_p \neq 0 إذن
```

نتيجة

 \mathbb{N}^* لیکن a و a من

 $a \wedge b = r_n$ إذن

 $a \wedge b = r \wedge b$

a القاسم المشترك الأكبر للعددين a و b هو اخر باقي غير منعدم في طريقة القسمات المتتالية لـ b على b

مثال باستعمال طريقة القسمات المتتالية، نحدد القاسم المشترك الأكبر للعددين1640 و 156

$$1640 = 156 \times 10 + 80$$

$$156 = 80 \times 1 + 76$$

$$80 = 76 \times 1 + 4$$

$$76 = 4 \times 19 + 0$$

$$1640 \land 156 = 4$$
 إذن

1- خاصیات

ا- مىرھنة

 $\delta = a \wedge b$ و a من \mathbb{Z}^* و $a \wedge b$ و a لیکن b و a من a یوجد عددان a و a من a حیث

 $r_{p-1}\wedge r_p=r_b$ بما أن $r_{p+1}=r_p q_{p+1}$ فان $r_{p+1}=r_p q_{p+1}$ و منه

البرهان

$$\delta=a\wedge b$$
 و \mathbb{Z}^* و b و a ليكن a و a من \mathbb{Z}^* و نعتبر $A=\left\{n\in\mathbb{N}^*/n=au+bv\ ;\ \left(u;v\right)\in\mathbb{Z}^2\right\}$ نعتبر $a^2+b^2\in A$ لأن $A\neq\emptyset$ لدينا $A\neq\emptyset$ لأن $A\neq\emptyset$ و بالتالي $A\in\mathbb{N}$ و بالتالي $A\in\mathbb{N}$ نبرهن أن $B=au_0+bv_0$ نبرهن أن

 $\delta \leq p$ ومنه δ/p فان δ/b و منه δ

 $\exists (q;r) \in \mathbb{Z} \times \mathbb{N} \quad a = pq + r \quad ; \quad 0 \le r \prec p \quad \text{نحصل على} \quad p \quad \text{غلى} \quad a = pq + r \quad ; \quad 0 \le r \prec p$ بإنجاز القسمة لـ a

 $r = a - q(au_0 + bv_0) = a(1 - qu_0) + b(-qv_0)$ equip $(au_0 + bv_0) = a(1 - qu_0) + b(-qv_0)$

 $r\prec p$ و منه $r\geq p$ و هذا يتناقض مع كون $r\in A$ و هذا $r\succ 0$ و هذا p/b و بالتالي p/a وبنفس الطريقة نبرهن أن r=0 ومنه p قاسم مشترك لـ p و وبالتالي p>0 وبنغس $\sigma>0$ وبنغس $\sigma>0$ وبنغس $\sigma>0$ وبنغس $\sigma>0$ وبنغس مشترك لـ $\sigma>0$ وبالتالي $\sigma>0$ و وبنغس مشترك لـ $\sigma>0$ وبنغس مشترك لـ $\sigma>0$ و وبنغس

ب- استنتاجات

من البرهان السابق نستنتج $\delta = a \wedge b$ هو أصغر عدد موجب قطعا من المجموعة *

$$B = \left\{ n \in \mathbb{Z}^* / n = au + bv \quad ; \quad (u; v) \in \mathbb{Z}^2 \right\}$$

b بما أن δ قاسـم مشـترك لـ a و b فان أي قاسـم لـ δ يقسـم و \star

 $\exists \left(k_1;k_2\right) \in \mathbb{Z}^2 \qquad a=k_1c \quad ; \quad b=k_2c$ عکسیا اذا کان c قاسـم مشـترك لـ a و فان

 $\exists (u;v) \in \mathbb{Z}^2 \, / \qquad \delta = au + bv$ بما أن $\delta = a \wedge b$ فانه

 δ ومنه c أي $\delta = (k_1 u + k_2 v)c$

مبرهنة

 $\delta = a \wedge b$ و $a \wedge b$ و $a \wedge b$

 $D_a \cap D_b = D_{\delta} \quad)$

b و a و مجموعة قواسم δ هي مجموعة القواسم المشتركة لـ

نتيجة

إذا كان a و b و c أعداد من c فان $a \wedge b = \delta \Rightarrow ca \wedge cb = |c|$

خاصية

 $b=arepsilon\,p_1^{eta_1} imes p_2^{eta_2} imes \dots imes p_k^{eta_k}$ و $a=arepsilon\,p_2^{eta_k} imes \dots imes p_k^{lpha_2} imes \dots imes p_k^{lpha_k}$ و p_1 أعداد أولية p_1 أعداد أولية

 $\delta=p_1^{\lambda_1} imes p_2^{\lambda_2} imes \dots imes p_k^{\lambda_k}$ القاسم المشترك الأكبر للعددين a و a هو العدد $\{1;2;\dots;k\}$ و a تنتمي $\{1;2;\dots;k\}$

مثال حدد 1170 ∧180–

2- القاسم المشترك الأكبر لعدة أعداد

ىعرىف

 $\overline{\mathbb{Z}^*}$ و a_2 و a_2 و.... a_3

 a_1 الأكبر لـ الأكبر لـ الأكبر لـ الأكبر لـ المشترك الأكبر المشترك الأكبر لـ a_k و..... a_3 و a_2 و a_1 الأكبر لـ الأكبر لـ a_k و..... a_3 و a_2 و a_3 و a_4 و a_4 و a_5 و a_5 و a_5 و a_5 و a_5 و a_5 و a_5 و a_5 و ... a_5 و ...

 $12 \land -18 \land 15 = 3$ مثال

نتيجة

 \ldots و $lpha_3$ و $lpha_2$ و القاسم المشترك الأكبر لـ $lpha_1$ و $lpha_2$ و..... و القاسم المشترك الأكبر لـ $lpha_1$ و $lpha_2$ و

 $\sum_{i=1}^{i=k}lpha_ia_i$ و $lpha_k$ من $\mathbb Z$ حیث

VI- المضاعف المشترك الأصغر

[- تعریف

 $(a;b) \in \mathbb{Z}^{*2}$ لیکن

 $a \lor b$ المضاعف المشترك الأصغر لـ a و b هو أصغر مضاعف مشترك موجب لـ a و b نرمز له بـ

2- خاصيات

 \mathbb{Z}^* من a و a و a من $a \lor b = b \lor a$ $a \lor b = b \lor a$ $(a \lor b)|c| = ac \lor bc$ $a \land a = |a|$ $b/a \Leftrightarrow a \lor b = |a|$ $a \lor b = m$ و a من $a \lor b = m$ و $a \lor b = m$ کل مضاعف مشترك لـ $a \lor b = a$ و $a \lor b = a$ كل مضاعف مشترك لـ $a \lor b = a$

ج- مبرهنة

 $a \wedge b = \delta$ و $a \vee b = m$ و \mathbb{Z}^* و $a \wedge b = a$ لیکن $a \vee b = a$ لیکن $a \vee b = a$

نتيجة

 \mathbb{Z}^* ليكن a و a من $a \wedge b = 1 \Leftrightarrow a \vee b = |ab|$

خاصية

 p_1 ليكن $a=arepsilon p_1^{eta_1} imes p_2^{eta_2} imes \dots imes p_k^{eta_k}$ وحيث $a=arepsilon p_1^{lpha_1} imes p_2^{lpha_2} imes \dots imes p_k^{lpha_k}$ وحيث $a=arepsilon p_1^{lpha_1} imes p_2^{lpha_2} imes \dots imes p_k^{lpha_k}$ وحيث $a=arepsilon p_1^{lpha_1} imes p_2^{lpha_2} imes n$ وحيث $a=arepsilon p_1^{lpha_1} imes p_2^{lpha_2} imes n$ وحيث $a=arepsilon p_1^{lpha_1} imes p_2^{lpha_2} imes n$ وحيث $a=arepsilon p_1^{lpha_1} imes n$

 $m=p_1^{\lambda_1} imes p_2^{\lambda_2} imes \dots imes p_k^{\lambda_k}$ المضاعف المشترك الأصغر للعددين a و a و a و تنتمي b و a تنتمي a و a تنتمي a تنتمي a تنتمي a و a تنتمي a المضاعف المشترك الأصغر العددين a و a تنتمي a و المضاعف المشترك الأصغر العددين a و المضاعف المشترك الأصغر العددين a و المضاعف المشترك ال

مثال حدد 1170 \ 180

3- المضاعف المشترك لعدة أعداد

تعريف

 \mathbb{Z}^* و a_2 و a_2 و a_3 أعداد من a_1

 a_1 أصغر مضاعف مشترك موجب للأعداد a_1 و a_2 و a_3 و.... a_3 و مضاعف المشترك الأصغر لـ أصغر مضاعف مشترك الأعداد الأصغر المصاعف المشترك المصاعف المشترك الأصغر المصاعف المشترك المصاعف المصاع

 a_k و..... a_3 و

و استنتج عدد قواسم عدد صحيح نسبي

<u>III- الموافقة بترديدn</u>

<u>1- تعریف</u>

 $\mathbb N$ ليكن a و a من $\mathbb Z$ و n من $\mathbb Z$ و a من a-b يقسم a-b يوافق a بترديد a و نكتب a إذا كان a يوافق a

 $\forall (a;b) \in \mathbb{Z}^2 \quad a \equiv b \quad [n] \Leftrightarrow n/a - b \Leftrightarrow \exists k \in \mathbb{Z} \quad a - b = kn$

2- خاصيات العلاقة " الموافقة بترديد n"

انعاكسية "n نقول إن العلاقة " الموافقة بترديد $orall a \in \mathbb{Z}$ انعاكسية $orall a \equiv a$

ب- a=b "الموافقة بترديد "n نقول إن العلاقة " الموافقة بترديد "n بقول إن العلاقة " الموافقة بترديد

"n نقول إن العلاقة " الموافقة بترديد $\forall ig(a;big)\in\mathbb{Z} \quad (a\equiv b \quad ig[nig])et(b\equiv c \quad ig[nig])\Rightarrow a\equiv c \quad ig[nig]$ -ج

متعدية

نلخص الخاصيات أ و ب و ج بقولنا إن العلاقة " الموافقة بترديد n" علاقة تكافؤ

د- خاصية

 $\mathbb N$ و a من a و a من a

n تكافئ a و b لهما نفس باقي القسمة الاقليدية على $a\equiv b$

البرهان


```
0 \le r_2 \prec n و 0 \le r_1 \prec n و 0 \le r_1 \prec n و 0 \le r_2 + r_2 و 0 \le r_2 \prec n و 0 \le r_3 \prec n و 0 \le r_1 \prec n
                   a-b=n(q_1-q_2) فان r_1=r_2 فان n إذا كان a و b لهما نفس باقي القسمة الاقليدية على a
                                                                                                                                                    a \equiv b [n] أي أن
                                                                    a-b=nk عكسيا إذا كان a=b فانه يوجد k من a=b
                                                                             r_1 - r_2 و منه n_1 - r_2 = (k - q_1 - q_2)n أي n_2 = (k - q_1 - q_2)
                                                                                |r_1 - r_2| \prec n و لدينا 0 \le r_1 \prec n و 0 \le r_1 \prec n و لدينا
                                                                                                                 r_1 = r_2 و بالتالي r_1 - r_2 = 0 أي
                                                                                                                                                             \mathbb{Z}_{n\mathbb{Z}} المجموعة -3
                                          \forall (a;n) \in \mathbb{Z} \times \mathbb{N} \quad \exists (q;r) \in \mathbb{Z} \times \mathbb{N} \quad a = nq + r \quad et \quad 0 \le r \prec n
                                                       \forall (a;n) \in \mathbb{Z} \times \mathbb{N} \quad \exists r \in \mathbb{N} \quad a \equiv r \quad [n] \quad et \quad r \in \{0;1;.....;n-1\} 
r المجموعة \{x\in \mathbb{Z}\,|\,x\equiv r \quad [n]\} هي مجموعة الأعداد الصحيحة النسبية التي لها نفس الباقي -
                                                                                                       \overline{r}في القسمة الاقليدية على n نرمز لها ب
                                  \mathbb Z المجموعة \overline r تسمى صنف تكافؤ r بالنسبة للعلاقة " الموافقة بترديد \overline r
                                                                                                                                 x \in \overline{r} \iff x \equiv r \mid n \mid
         \forall a \in \mathbb{Z} \quad \exists r \in \{0;1;...;n-1\} / \quad \overline{a} \equiv \overline{r} \quad \exists r \in \{0;1;...;n-1\} / \quad a \equiv r \quad [n] - *
                                                                                   r=r' و الا0 \le r' \prec n و 0 \le r \prec n و \overline{r}=\overline{r}' فان \overline{r}=\overline{r}'
                   (nباقي القسمة الاقليدية على r ) \forall (x;n) \in \mathbb{Z} \times \mathbb{N} \exists r \in \{0;1;..;n-1\}/ x \in \overline{r} - *
                                                                                                                 \mathbb{Z} = \overline{0} \cup \overline{1} \cup \overline{2} \cup .... \cup (\overline{n-1}) اذن
                                                                                             \mathbb{Z}/_{n\mathbb{Z}_{+}}المجموعة \left\{\overline{0};\overline{1};.....;\overline{n-1}
ight\} برمز لها بالرمز
                                                                                                                       عناصر \mathbb{Z}_{n\mathbb{Z}_n} منفصلة مثنى مثنى
                                      \overline{1} = \left\{ x \in \mathbb{Z} \, / \, x = 2k+1 \ \left( k \in \mathbb{Z} \right) \right\} و \overline{0} = 2 \cdot \mathbb{Z} حيث
                                                                                                                                                             \mathbb{Z}/_{2\mathbb{Z}} = \{\overline{0}; \overline{1}\} *
                            \overline{1} = \left\{ x \in \mathbb{Z} \, / \, x = 7k + 1 \quad \left( k \in \mathbb{Z} \right) \right\} \quad \underline{0} = 7 \cdot \mathbb{Z} \quad \text{ cut} \quad \frac{\mathbb{Z}}{7\mathbb{Z}} = \left\{ \overline{0}; \overline{1}; \overline{2}; \overline{3}; \overline{4}; \overline{5}; \overline{6} \right\} \quad * = \left\{ \overline{0}; \overline{1}; \overline{2}; \overline{3}; \overline{4}; \overline{5}; \overline{6} \right\} 
                                             \overline{3} = \left\{ x \in \mathbb{Z} / x = 7k + 3 \quad \left( k \in \mathbb{Z} \right) \right\} \quad \overline{2} = \left\{ x \in \mathbb{Z} / x = 7k + 2 \quad \left( k \in \mathbb{Z} \right) \right\} 
                                                                                          \overline{6} = \{x \in \mathbb{Z} \mid x = 7k + 6 \quad (k \in \mathbb{Z})\} \mathbf{g}.....
                                                                                                       532 \equiv 4 [7] في \mathbb{Z}/_{7\%} لدينا \overline{532} = \overline{4} لأن
                                                                                                           -36 \equiv 6 [7] لأن \overline{-36} = \overline{6}
```

4- انسجام العلاقة " الموافقة بترديد n" مع الجمع والضرب

ٔ خاصیة

```
\mathbb{N}ليكن x و y و z و y هن \mathbb{N} و x هن x+z\equiv y+t [n] فان z\equiv t [n] و x\equiv y [n] إذا كان x+z\equiv y\times t [n] فان z\equiv t [n] و x\equiv y [n] إذا كان x+z\equiv y\times t
```

نقول إن العلاقة " الموافقة بترديد n" منسجمة مع الجمع والضرب

ب- نتائج

$$\overline{r+r'}=\overline{r}+\overline{r'}$$
 نکتب $x\times x'\in\overline{r\times r'}$ و $x+x'\in\overline{r+r'}$ فان $x'\in\overline{r'}$ و $x\in\overline{r}$ نکتب $x\times x'\in\overline{r\times r'}=x$ و $x\times x'\in\overline{r\times r'}=x$

امثلة

 $\overline{3} \times \overline{4} = \overline{12} = \overline{2}$, $\overline{0} + \overline{1} + \overline{2} + \overline{3} + \overline{4} = \overline{10} = \overline{0}$, $\overline{3} + \overline{4} = \overline{7} = \overline{2}$ *

تمرين

 $\overline{x} + \overline{5} = \overline{2}$ حدد مجموعة الأعداد الصحيحة النسبية x حيث في حدد مجموعة الأعداد الصحيحة النسبية ع

نمرين

 $\mathbb{Z}_{4\mathbb{Z}}^{\prime}$ أعط جدول الجمع ثم الضرب في $\mathbb{Z}_{4\mathbb{Z}}^{\prime}$

13 على على أن العدد $2^{70} + 3^{70}$ قابلة للقسمة على -2

تمرين

 $\forall n \in \mathbb{N}$ $n(n^4 - 1) \equiv 0$ [n] بين أن -3

 \mathbb{N}^* من $3 imes 5^{2n-1} + 2^{3n-2}$ بين أن 17 يقسـم -4

4- على $1^n+2^n+3^n+4^n$ على $1^n+2^n+3^n+4^n$ على -3 على $1^n+2^n+3^n+3^n+4^n$ على -3