See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/11789020

Optically Active Ortho-Metalated Half-Sandwich Ruthenium Complexes: Solid-State NMR as a Convenient Tool To Analyze Mixtures of Diastereomers

ARTICLE in INORGANIC CHEMISTRY · OCTOBER 2001

Impact Factor: 4.76 · DOI: 10.1021/ic010204w · Source: PubMed

CITATIONS

31

READS

24

5 AUTHORS, INCLUDING:

Vincent Ritleng

University of Strasbourg

35 PUBLICATIONS 2,284 CITATIONS

SEE PROFILE

Michel Pfeffer

University of Strasbourg

237 PUBLICATIONS 6,660 CITATIONS

SEE PROFILE

Philippe Bertani

University of Strasbourg

41 PUBLICATIONS **675** CITATIONS

SEE PROFILE

Claude Sirlin

University of Strasbourg

56 PUBLICATIONS **3,014** CITATIONS

SEE PROFILE

Optically Active Ortho-Metalated Half-Sandwich Ruthenium Complexes: Solid-State NMR as a Convenient Tool To Analyze Mixtures of Diastereomers

Vincent Ritleng,† Philippe Bertani,‡ Michel Pfeffer,*,† Claude Sirlin,† and Jérôme Hirschinger‡

Laboratoire de Synthèses Métallo-Induites, UMR CNRS 7513 Université Louis Pasteur, 4 rue Blaise Pascal, 67070 Strasbourg, France, and Laboratoire de RMN de la Matière Condensée, UMR CNRS 7510 Université Louis Pasteur, 4 rue Blaise Pascal, 67070 Strasbourg, France

Received February 20, 2001

Bulk solid samples of various ratios of the cyclometalated arene ruthenium diastereomers (S)_{Ru}- and (R)_{Ru}-[(η^6 -C₆H₆)Ru(C₆H₄-2-(R)-CH(Me)NMe₂)PMe₂Ph]+PF₆⁻ (**3a/3b**), of which the configurational stability at the metal center has been established by classical solution techniques, have been analyzed by the ¹³C cross-polarization magic angle spinning (CP-MAS) and ³¹P MAS NMR. The spectra obtained allowed us to detect both isomers and to estimate their respective proportions by ³¹P spectra. This technique was applied to a bulk solid sample of the diastereomers (S)_{Ru}- and (R)_{Ru}-[(η^6 -C₆H₆)Ru(C₆H₄-2-(R)-CH(Me)NMe₂)NCMe]+PF₆⁻ (**1a/1b**), which were shown to be configurationally labile by classical solution experiments. Detection of isomer **1a** only in the resulting ¹³C CP-MAS NMR spectrum demonstrated that there has been epimerization of **1b** to **1a** during crystallization, thus confirming the configurational lability at the metal center.

Introduction

Half-sandwich organometallic complexes, with a three-legged piano stool structure containing a stereogenic metal center, have attracted much interest in recent years. They have been used as catalyst precursors in enantioselective catalysis such as in asymmetric Diels—Alder reactions¹ and asymmetric hydrogen transfer.² To gain optimal enantioselection, it is crucial to understand the factors that render the metallic center configurationally stable or labile, and many investigations of the stereochemistry at the metal center have been undertaken.³

To this end, the organometallic complexes must be studied both in solution and in the solid state. Indeed, a mixture of two diastereomers which are in fast equilibrium might well lead to one single isomer in the solid state depending on the respective rates of crystallization of both isomers. Whereas there are many spectroscopic tools available for solution studies, so far X-ray diffraction studies have been the main technique used to obtain information pertaining to the structure of the compounds in the solid state. However, this technique is very limited in that it does not provide any information on the bulk material, leading to misinterpreted results.⁴ This has been established on several occasions.⁵ We therefore report our recent results concerning

the study of two half-sandwich organoruthenium complexes displaying chirality at the metal center. The use of solid-state NMR⁶ has enabled us to obtain information about the diaster-eomeric ratios of these complexes in the solid state, and thus, it proved to be a valuable technique for the analysis of mixtures of diaster-eomers.

Experimental Section

All reactions were performed in Schlenk tubes under argon unless otherwise specified. Solvents were dried and distilled under argon prior to use: diethyl ether and n-hexane over sodium/benzophenone, dichloromethane and acetonitrile over calcium hydride, and methanol over magnesium. Solution NMR spectra were recorded at 298 K on FT-Bruker AM 300, DRX 400, and ARX 500 spectrometers operating at 400.13 or 500.14 MHz for ¹H, at 100.61 or 125.77 MHz for ¹³C { ¹H}, and at 121.51 MHz for ³¹P {¹H}. The chemical shifts are referenced to the residual deuterated solvent peaks. The assignments of the ¹³C {¹H} NMR spectra were made with the aid of ¹H/¹³C heteronuclear single quantum coherence (HSQC) and ¹H/¹³C heteronuclear multiple-bond correlation (HMBC). Solid-state NMR spectra were recorded at 298 K on a FT-Bruker ASX 200 operating at 50.30 MHz for $^{13}\mathrm{C}$ and at 80.98 MHz for ³¹P and equipped with a Bruker 4 mm ¹H/X cross-polarization magic angle spinning (CP-MAS) probe. The spinning speed was set to 10 kHz. For the ¹³C CP-MAS experiments, the contact time was in the range of 1-3 ms and the decoupling rf-field during acquisition was fixed at a strength of \sim 40 kHz with a recycle delay of 3 s. For the ^{31}P MAS experiment, the decoupling rf-field was set to \sim 40 kHz and the recycle delay to 60 s. Column and preparative chromatography were, respectively, performed under argon using Al₂O₃ as support (aluminum oxide 90, Merck) and performed under air using SiO₂ plates as support (silica gel 60 F₂₅₄, Merck). Elemental analyses were performed by the

^{*} To whom correspondence should be addressed. E-mail: pfeffer@ chimie.u-strasbg.fr.

[†] Laboratoire de Synthèses Métallo-Induites.

[‡] Laboratoire de RMN de la Matière Condensée.

^{(1) (}a) Kündig, E. P.; Bourdin, B.; Bernardinelli, G. Angew. Chem., Int. Ed. Engl. 1994, 33, 1856–1858. (b) Carmona, D.; Cativiela, C.; Garcia-Correas, R.; Lahoz, F. J.; Pilar Lamata, M.; Lopez, J. A.; Pilar Lopez-Ram de Viu, M.; Oro, L. A.; San José, E.; Viguri, F. J. Chem. Soc., Chem. Commun. 1996, 1247–1248. (c) Davies, D. L.; Fawcett, J.; Garratt, S. A.; Russell, D. R. J. Chem. Soc., Chem. Commun. 1997, 1351–1352.

⁽²⁾ Haack, K.-J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R. *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 285–290.

 ⁽³⁾ Reviews: (a) Brunner, H. Adv. Organomet. Chem. 1980, 18, 151–206. (b) Consiglio, G.; Morandini, F. Chem. Rev. 1987, 87, 761–778. (c) Brunner, H. Angew. Chem., Int., Ed. 1999, 38, 1194–1208.

⁽⁴⁾ Pfeffer, M. Organometallics 2000, 19, 2427-2427.

^{(5) (}a) Brunner, H.; Oeschey, R.; Nuber, B. *Inorg. Chem.* **1995**, *34*, 3349–3351. (b) Brunner, H.; Oeschey, R.; Nuber, B. *J. Chem. Soc., Dalton Trans.* **1996**, 1499–1508. (c) Brunner, H.; Zwack, T. *Organometallics* **2000**, *19*, 2423–2426.

^{(6) (}a) Damude, L. C.; Dean, P. A. W.; Sefcik, M. D.; Schaefer, J.; J. Organomet. Chem. 1982, 226, 105–114. (b) Seidel, N.; Jacob, K.; Van der Zeijden, A. A. H.; Menge, H.; Merzweiler, K.; Wagner, C. Organometallics 2000, 19, 1438–1441.

Service Central de Microanalyse du CNRS, Strasbourg. Commercial compounds were used as received.

 $(S)_{Ru}$ - and $(R)_{Ru}$ - $[(\eta^6-C_6H_6)Ru(C_6H_4-2-(R)-CH(Me)NMe_2)NCMe]^+$ -PF₆⁻ (1a and 1b). The diastereomeric mixture was synthesized by C-H activation reaction. The observed ratio for **1a/1b** was 75/25 in CD₃-CN, 70/30 in CD₃OD, 67/33 in CDCl₃, and 65/35 in CD₂Cl₂ at room temperature. Anal. Calcd for C₁₈H₂₃N₂RuPF₆: C, 42.10; H, 4.51; N, 5.46. Found: C, 42.31; H, 4.58; N, 5.49. For 1a, ¹H NMR (CD₃CN, 500.14 MHz): δ 8.15 (dd, 1H, H6, $^{3}J = 7.4$ Hz, $^{4}J = 1.3$ Hz), 7.06 (td, 1H, H5, ${}^{3}J = 7.4$ Hz, ${}^{4}J = 1.3$ Hz), 7.00 (td, 1H, H4, ${}^{3}J = 7.4$ Hz, $^{4}J = 1.3 \text{ Hz}$), 6.86 (dt, 1H, H3, $^{3}J = 7.4 \text{ Hz}$, $^{4}J = 1.3 \text{ Hz}$, $^{5}J = 1.3$ Hz), 5.66 (s, 6H, C₆H₆), 3.71 (q, 1H, CHCH₃, ${}^{3}J = 6.7$ Hz), 3.17 and 2.47 (2s, 6H, NMe₂), 2.13 (s, CH₃CN⁸), 1.24 (d, 3H, CHCH₃). For ¹³C {1H} NMR (CD₃CN, 125.77 MHz) and 13C CP-MAS NMR (50.30 MHz) results, see Table 3. For 1b, ¹H NMR (CD₃CN, 500.14 MHz): δ 7.67 (dd, 1H, H6, ${}^{3}J = 7.3$ Hz, ${}^{4}J = 1.4$ Hz), 7.09 (td, 1H, H5, ${}^{3}J =$ 7.3 Hz, ${}^{4}J = 1.4$ Hz), 7.01 (td, 1H, H4, ${}^{3}J = 7.3$ Hz, ${}^{4}J = 1.4$ Hz), 6.85 (dt, 1H, H3, ${}^{3}J = 7.3$ Hz, ${}^{4}J = 1.4$ Hz, ${}^{5}J = 1.4$ Hz), 5.58 (s, 6H, C_6H_6), 3.94 (q, 1H, CHCH₃, $^3J = 6.8$ Hz), 3.33 and 1.89 (2s, 6H, NMe₂), 2.13 (s, CH₃CN⁸), 1.28 (d, 3H, CHCH₃). For ¹³C {¹H} NMR (CD₃CN, 125.77 MHz) results, see Table 3.

(S)_{Ru}- and (R)_{Ru}-[(η^6 -C₆H₆)Ru(C₆H₄-2-(R)-CH(Me)NMe₂)Cl] (2a and 2b). The diastereomeric mixture was synthesized by transmercuration⁹ or by substitution reaction (see below). The observed ratio for 2a/2b was 95/5 in CD₃CN, CD₃OD, CDCl₃, and CD₂Cl₂ at room temperature.

Preparation of 2a/2b by Substitution Reaction. A yellow suspension of 1a/1b (0.1 g, 0.195 mmol) and KCl (0.2 g, 2.7 mmol) in MeOH (30 mL) was stirred at room temperature. After 3 h, an aliquot of the solution was removed by syringe, concentrated in vacuo, and redissolved in CDCl₃ for ¹H NMR measurement. The resulting spectrum indicated complete conversion of 1a/1b to 2a/2b. Complete characterization of 2a/2b can be found in ref 9. For 2a, ¹³C CP-MAS NMR (50.30 MHz): δ 167.9 (C1), 150.7 (C2), 137.9 (C6), 126.3 (C5), 123.9 (C4), 122.6 (C3), 86.6 (C₆H₆), 66.2 (CHCH₃), 50.5 and 48.0 (NMe₂), 10.4 (CHCH₃).

 $(S)_{Ru}$ - and $(R)_{Ru}$ - $[(\eta^6-C_6H_6)Ru(C_6H_4-2-(R)-CH(Me)NMe_2)PMe_2Ph]^+$ - PF_6^- (3a and 3b) Preparation of the 60/40 Diastereomeric Mixture (Method 1). An orange suspension of 2a/2b (0.200 g, 0.55 mmol), PMe₂Ph (0.313 mL, 2.2 mmol), and KPF₆ (0.202 g, 1.1 mmol) was stirred in CH₂Cl₂ (10 mL) for 15 h at room temperature. The resulting reaction mixture was dried in vacuo and washed with n-hexane (3 \times 10 mL) to remove excess PMe₂Ph. The yellow residue was then redissolved in CH_2Cl_2 (3 mL) and filtered over Al_2O_3 (10 cm \times 3 cm) using CH₂Cl₂/MeOH (98/2) as eluent. A yellow fraction was collected and concentrated in vacuo to a minimum of solvent (1-2 mL). A yellow solid (0.260 g, 3a/3b ratio of 60/40 in CD₃CN and CDCl₃, 77% yield) was precipitated by addition of n-hexane. Anal. Calcd for C₂₄H₃₁NF₆P₂-Ru: C, 47.22; H, 5.12; N, 2.29. Found: C, 47.34; H, 4.94; N, 2.38. For **3a**, ¹H NMR (CDCl₃, 400.13 MHz): δ 7.71 (dt, 1H, H6, ³J = 7.5Hz, ${}^{4}J = 1.5 \text{ Hz}$, ${}^{4}J_{P-H} = 1.5 \text{ Hz}$), 7.33 (ttd, 1H, H16, ${}^{3}J = 7.5 \text{ Hz}$, ${}^{4}J$ = 1.3 Hz, ${}^{5}J_{P-H}$ = 1.8 Hz), 7.21 (tdd, 2H, H15 and H17, ${}^{3}J$ = 7.5 Hz, $^{3}J = 7.1 \text{ Hz}, ^{4}J_{P-H} = 2.4 \text{ Hz}, 7.13 \text{ (tdd, 1H, H5 or H4, }^{3}J = 7.5 \text{ Hz},$ $^4J = 1.5 \text{ Hz}$, $J_{P-H} = 0.9 \text{ Hz}$), 7.05 (tt, 1H, H4 or H5, $^3J = 7.5 \text{ Hz}$, 4J = 1.5 Hz, J_{P-H} = 1.5 Hz), 6.86 (tdd, 2H, H14 and H18, ${}^{3}J$ = 7.1 Hz, $^{4}J = 1.3 \text{ Hz}, ^{3}J_{P-H} = 8.4 \text{ Hz}, 6.61 \text{ (dt, 1H, H3, }^{3}J = 7.5 \text{ Hz}, ^{4}J = 1.5$ Hz, ${}^{5}J = 1.5$ Hz), 5.71 (d, 6H, $C_{6}H_{6}$, ${}^{3}J_{P-H} = 1.1$ Hz), 2.96 and 2.49 (d and s, 6H, NMe₂, ${}^{4}J_{P-H} = 1.4$ Hz), 2.50 (q, 1H, CHCH₃, ${}^{3}J = 6.6$ Hz), 1.98 and 1.61 (2d, 6H, PMe₂, $^2\!J_{\rm P-H}=9.0$ and 9.4 Hz), 0.92 (d, 3H, CHCH₃). For ¹³C{¹H} NMR (CDCl₃, 100.61 MHz) and ¹³C CP-MAS NMR (50.30 MHz) results, see Table 2. ³¹P {¹H} NMR (CDCl₃, 121.51 MHz): δ 4.31 (s, PMe₂Ph), -144.29 (sept, PF₆⁻, ${}^{1}J_{P-F}$ = 712.1 Hz). ³¹P MAS NMR (80.98 MHz): δ 6.35 (s + m, PMe₂Ph, ¹ J_{Ru-P} = 197 Hz), -143.99 (sept, PF_6^- , ${}^1J_{P-F} = 714.4$ Hz). For **3b**, 1H NMR (CDCl₃, 400.13 MHz): δ 7.78 (tdd, 2H, H14 and H18, 3J = 7.1 Hz, 4J = 1.3 Hz, ${}^3J_{\rm P-H}$ = 8.4 Hz), 7.57 (tdd, 2H, H15 and H17, 3J = 7.3 Hz, 3J = 7.1 Hz, ${}^4J_{\rm P-H}$ = 2.0 Hz), 7.50 (ttd, 1H, H16, 3J = 7.3 Hz, 4J = 1.3 Hz, ${}^5J_{\rm P-H}$ nr), 7.42 (d, 1H, H6, 3J = 7.5 Hz), 7.13 (t, 1H, H5 or H4, 3J = 7.5 Hz), 7.06 (td, 1H, H4 or H5, 3J = 7.5 Hz, 4J = 1.2 Hz), 6.87 (dd, 1H, H3, 3J = 7.5 Hz, 4J = 1.2 Hz), 5.76 (d, 6H, C₆H₆, ${}^3J_{\rm P-H}$ = 0.9 Hz), 4.05 (q, 1H, C*H*CH₃, 3J = 6.6 Hz), 3.17 and 1.79 (s and d, 6H, NMe₂, ${}^4J_{\rm P-H}$ = 4.0 Hz), 1.75 and 1.31 (2d, 6H, PMe₂, ${}^2J_{\rm P-H}$ = 8.6 and 8.8 Hz), 1.26 (d, 3H, CHCH₃). For 13 C { 1 H} NMR (CDCl₃, 100.61 MHz) and 13 C CP-MAS NMR (50.30 MHz) results, see Table 2. 31 P { 1 H} NMR (CDCl₃, 121.51 MHz): δ 10.00 (s, PMe₂Ph), -144.29 (sept, PF₆-, ${}^1J_{\rm P-F}$ = 712.1 Hz). 31 P MAS NMR (80.98 MHz): δ 12.52 (s, PMe₂Ph), -143.99 (sept, PF₆-, ${}^1J_{\rm P-F}$ = 714.4 Hz).

Preparation of the 60/40 Diastereomeric Mixture of 3a/3b (Method 2). A yellow solution of 1a/1b (0.080 g, 0.156 mmol) and PMe₂Ph (0.088 mL, 0.623 mmol) was stirred in CH₂Cl₂ (10 mL) for 15 h at room temperature. The resulting reaction mixture was dried in vacuo and washed with n-hexane (3 × 5 mL) to remove excess PMe₂-Ph. The yellow residue was then redissolved in a minimum of CH₂Cl₂ (1 mL), and a yellow solid (0.090 g, 3a/3b ratio of 60/40 in CD₃CN and CDCl₃, 95% yield) was precipitated by addition of n-hexane.

Preparation of the 60/40 Diastereomeric Mixture of 3a/3b (Method 3). The following experiment was performed in a NMR tube. To a yellow solution of 1a/1b (0.030 g, 0.058 mmol) in CD₃CN (0.5 mL) was added PMe₂Ph (8.3 μ L, 0.058 mmol). After 20 min, ¹H NMR signal integration of the reaction products 3a/3b and the starting material 1a/1b indicated 82% conversion with a ratio of 63/37 for 3a/3b. After 5 h, ¹H NMR measurement only showed 3a and free ligands ((R)-(+)-N,N-dimethyl-1-phenylethylamine, PMe₂Ph, and benzene) in a ratio of 64/36 indicating that 3b had completely decomposed.

Preparation of Pure 3a. An orange suspension of **2a/2b** (0.363 g, 1.0 mmol), PMe₂Ph (0.285 mL, 2.0 mmol), and KPF₆ (0.368 g, 2.0 mmol) was stirred in CH₃CN (15 mL) for 15 h at room temperature. The resulting greenish reaction mixture was dried in vacuo, redissolved in CH₂Cl₂ (2-3 mL), and subjected to column chromatography over Al₂O₃ using Et₂O/*n*-hexane (1/1) as eluent to remove excess ligands and CH₂Cl₂/MeOH (98/2) to collect a yellow fraction. This latter was then concentrated in vacuo to a minimum of solvent (2 mL) and eluted on a SiO₂ preparative plate with CH₂Cl₂/MeOH (95/5). A yellow band was collected, and the product was desorbed with CH₂Cl₂/MeOH (90/10). After filtration, the resulting yellow solution was concentrated to 1-2 mL of solvent, and a yellow solid (0.3 g, **3a**, 49% yield) was precipitated by addition of *n*-hexane.

Preparation of the 80/20, 90/10, and 95/5 Diastereomeric Mixtures, General Procedure. The required solid amounts of 3a and of 3a/3b (60/40) were mixed and dissolved in a minimum of CH₂Cl₂. For instance, 0.037 g of 3a/3b (60/40) and 0.112 g of 3a were mixed and dissolved in CH₂Cl₂ (2 mL) to give the (90/10) diastereomeric mixture. The resulting yellow solution was stirred for ca. 5–10 min, and a yellow solid was precipitated by addition of *n*-hexane. The thus obtained 3a/3b ratio was checked by ¹H NMR in CDCl₃ before submitting the solid to ¹³C CP-MAS NMR and ³¹P MAS NMR.

Experimental Procedure for the X-ray Diffraction Analysis of Compound 3a. Reflections were collected on a KappaCCD diffractometer using Mo K α graphite-monochromated radiation ($\lambda = 0.710~73$ Å). The structure was solved using direct methods and refined against |F|. Hydrogen atoms were introduced as fixed contributors. The absolute structure was determined by refining Flack's x parameter (x = 0.01(4)). For all computations, the Nonius OpenMoleN package was used. x

Results and Discussion

We have recently found that the mixture of diastereomers $(S)_{Ru}$ and $(R)_{Ru}$ - $[(\eta^6-C_6H_6)Ru(C_6H_4-2-(R)-CH(Me)NMe_2)-NCMe]^+PF_6^-$ (1a/1b) could be easily obtained by an intramolecular C-H activation reaction (eq 1). The two diasteromers

⁽⁷⁾ Fernandez, S.; Pfeffer, M.; Ritleng, V.; Sirlin, C. Organometallics 1999, 18, 2390–2394.

⁽⁸⁾ The CH₃CN singlet does not integrate for the expected number of protons because of the CD₃CN/CH₃CN exchange process.

^{(9) (}a) Abbenhuis, H. C. L.; Pfeffer, M.; Sutter, J. P.; de Cian, A.; Fischer, J.; Li Ji, H.; Nelson, J. H. Organometallics 1993, 12, 4464–4472. (b) Attar, S.; Nelson, J. H.; Fischer, J.; de Cian, A.; Sutter, J. P.; Pfeffer, M. Organometallics 1995, 14, 4559–4569.

⁽¹⁰⁾ Open MoleN. Interactive Structure Solution; Nonius, B. V.: Delft, The Netherlands, 1997.

$$\frac{\text{Me}}{\text{NMe}_{2}} \frac{\text{NaOH} / 2 \text{ KPF}_{6}}{\text{CH}_{3}\text{CN} / 45^{\circ}\text{C} / 3 - 4 \text{ h}}$$

$$\frac{6}{1 \text{ Ru} \cdot \text{NCMe}} + \frac{6}{2 \text{ Me}_{2}} + \frac{6}{2 \text{ Me}_{2}} + \frac{1}{2 \text{$$

1a and 1b were present in CD₃CN solution in a 75/25 ratio.⁷ This mixture, when treated with an excess of KCl in MeOH, afforded the neutral compounds (S)_{Ru}- and (R)_{Ru}-[(η^6 -C₆H₆)Ru- $(C_6H_4-2-(R)-CH(Me)NMe_2)Cl]$ (2a/2b) in which the acetonitrile ligand had been substituted by a chloride ion (eq 2). The ob-

served ratio of 2a/2b in CDCl₃ was the same as previously observed in the same solvent (95/5), this compound being obtained by a completely different route. 9 Dissolution of 2a/2b in CD₃-CN gave the four diastereomers 2a/2b and 1a/1b (in which CH₃-CN had been substituted by CD₃CN) in ratios of 95/5 and 75/ 25, respectively. These results demonstrate a thermodynamic

control of the diastereomeric ratios of both types of complexes. Moreover, the ratio of diastereomers for 1a/1b was solvent dependent as it dropped to 70/30 in CD₃OD, 67/33 in CDCl₃, and 65/35 in CD₂Cl₂. We have verified that these two diastereomers were in equilibrium in solution via classical ¹H NMR measurements. For instance, 2D ¹H NMR ROESY experiments carried out in CD₃CN showed that, in addition to negative NOE cross-peaks arising from cross-relaxation, the phase sensitive 2D ROESY experiment displayed positive cross-peaks connecting diastereomers 1a and 1b. It is noteworthy that one particular N-methyl of a given diastereomer interacts only with one N-methyl of the corresponding diastereomer. This indicates that no inversion of the N atom is taking place during the process and thus that the NMe₂ unit remains coordinated to the Ru atom during the epimerization of the organoruthenium compound.

The ¹H NMR spectrum of a CD₂Cl₂ solution of a solid sample of 1a/1b prepared and measured at -80 °C only showed the signals of 1a. The presence of the second diastereomer 1b could only be detected when the temperature rose to -40 °C. The epimerization of **1a** to **1b** was studied at -30 °C, following a procedure that was recently described for closely related compounds.5c At this temperature, the following kinetic data were found: $k = 4.2 \times 10^{-5} \text{ s}^{-1}$, $\tau_{1/2} = 276 \text{ min}$, and $\Delta G^{\ddagger} =$ 79 kJ mol^{-1} .

It thus appeared that the diastereomeric mixture 1a/1b consists of only isomer 1a in the solid state. However, the abovedescribed method used to establish this result proved to be somehow difficult to run and might not be amenable for those species for which the epimerization would be much faster even at low temperature. Therefore, we wondered whether other methods might be available for studying mixtures of two diastereomers in the solid state via a technique that would afford information on the bulk material. In this instance, because infrared or electronic spectra are of little help, we decided to tackle this problem via solid-state NMR techniques. As a starting point, we studied a mixture of diastereomers that are indeed configurationally stable at the metal center.

The phosphine derivatives $(S)_{Ru}$ - and $(R)_{Ru}$ - $[(\eta^6-C_6H_6)Ru(C_6 H_4$ -2-(R)-CH(Me)NMe₂)PMe₂Ph]⁺PF₆⁻ (3a/3b) were obtained by substitution reactions in different solvents of the acetonitrile or chlorine ligands of diastereomers 1a/1b or 2a/2b (eq 3).

formula	C ₂₄ H ₃₁ NPRu•PF ₆
fw, g mol^{-1}	610.53
cryst syst	orthorhombic
space group	$P2_12_12_1$
a, Å	11.8196(2)
b, Å	13.4161(4)
c, Å	15.8619(5)
V, Å ³	2515.3(2)
Z	4
temp, K	173
λ, Å	0.71073
$D_{ m calcd}$, g cm $^{-3}$	1.61
μ , mm ⁻¹	0.808
final R^a [$I > 3\sigma(I)$]	R1 = 0.032, $wR2 = 0.050$
Ra (all data)	R1 = 0.040, wR2 = 0.672

 a R1 = $\sum ||F_{o}| - |F_{c}||/\sum |F_{o}|$. wR2 = $[\sum w[(F_{o}^{2} - F_{c}^{2})^{2}]/\sum w[(F_{o}^{2})^{2}]]^{1/2}$.

Figure 1. ORTEP plot of the crystal structure of **3a** (thermal ellipsoids at 50% probability level). The PF₆ anion and the hydrogen atoms are omitted for clarity. Selected bond distances (Å) and bond angles (deg) are as follows: Ru-P 2.343(1), Ru-N 2.198(4), Ru-C1 2.058(5), N-Ru-P 96.7(1), C1-Ru-P 83.6(1), C1-Ru-N 77.2(2).

Irrespective of the starting complexes and the solvents used, the same diastereomeric ratio of 60/40 was always observed; of note is that this ratio was the same in CDCl₃ and CD₃CN. When the reaction was run in acetonitrile, the minor isomer **3b** which was initially formed started to decompose after ca. 2 h in solution, this decomposition being complete after ca. 5–10 h, thus allowing the isolation of the pure diastereomer **3a** which did not epimerize. Yellow crystals of **3a** suitable for an X-ray structure determination were obtained by slow diffusion of *n*-hexane into a CH₂Cl₂ solution of **3a**. The structure confirmed the *R* configuration of the chiral carbon and established the *S* configuration of the stereogenic ruthenium center assuming the following priority numbers: $(1 + 1)^6 - (1 + 1)^6 -$

As one could well anticipate from the selective decomposition of **3b**, analyses of the mixture **3a/3b** by 1D ¹H NMR NOE showed that **3a** and **3b** were not in equilibrium in solution. Thus, samples of **3a/3b** were good candidates for checking the validity of using solid-state NMR to achieve our goal. We have used the following five solid samples: the pure diastereomer **3a**, the 60/40 **3a/3b** mixture obtained by fast precipitation of the solution resulting from the kinetically controlled substitution of MeCN or Cl⁻ by PMe₂Ph, and three other mixtures whose ratios are 80/20, 90/10, and 95/5. These latter were obtained by mixing

Figure 2. Overlap of the ¹³C CP-MAS NMR spectra of **3a/3b** in 60/40, 80/20, 90/10, 95/5, and 100/0 ratios (from top to bottom).

3a with the 60/40 **3a/3b** mixture in the required proportions (see Experimental Section).

We studied these samples by ¹³C CP-MAS NMR¹² and ³¹P MAS NMR. We obtained ¹³C CP-MAS spectra with good resolution for all samples studied. For pure 3a, most of the signals observed in CDCl₃ solution virtually coincide (maximum difference 5.5 ppm) with those in the solid state (Table 2). The 60/40 3a/3b mixture displayed, in the solid state, five signals that were not present in the previous sample. These signals appeared at almost the same chemical shifts as those of the minor isomer in CDCl₃ solution (Table 2). The intensity of these five signals decreased for the 80/20 and 90/10 samples so that only three of these signals were seen at ca. 133.5, 47.7, and 15.8 ppm for the latter (Figure 2). These observations allowed us to conclude that the mixture of the two diastereomers 3a/3b indeed led to two sets of signals. Thus, ¹³C CP-MAS NMR spectroscopy is a valuable and easy-to-perform technique for detecting mixtures of diastereomers in the solid state. However, the 95/5 sample did not allow clear detection of a signal due to the presence of the minor isomer 3b, and thus, the lower limit of concentration of the minor isomer that can be detected in this particular case appeared to be close to 10%. One may well anticipate that this limit will be different for other samples and could be lower at higher field.

An important issue in the application of an analytical technique is the quantitative reliability of the data. In the case

^{(11) (}a) Lecomte, C.; Dusausoy, Y.; Protas, J.; Tirouflet, J.; Dormond, A. J. Organomet. Chem. 1974, 73, 67-76. (b) Brunner, H. Enantiomer, 1997, 2, 133.

⁽¹²⁾ Fyfe, C. A. Solid State NMR for Chemists; CFC Press: Guelph, Ontario, Canada, 1983.

Table 2. ¹³C {¹H} NMR and ¹³C CP-MAS NMR Data (δ , ppm) for **3a/3b**

		¹³ C chemical shift (pp	om) and $({}^{13}C - {}^{31}P)J$	(Hz)	
product	aromatics ^a	η^6 -C ₆ H ₆	CHCH ₃	NMe_2	PMe ₂
$3a^b$	159.6 (C1, ${}^{2}J$ = 24.0) 150.0 (C2, ${}^{3}J$ = 2.5) 140.0 (C6) 135.8 (C13, ${}^{1}J$ = 42.3) 130.4 (C16, ${}^{4}J$ = 2.5) 129.8 (C14 and C18, ${}^{2}J$ = 9.9) 128.8 (C15 and C17, ${}^{3}J$ = 9.1) 127.1 (C4 or C5, J = 2.5) 125.2 (C3, ${}^{4}J$ = 2.5) 124.0 (C5 or C4)	$92.4 (^{2}J = 2.5)$	70.9 (CH) 9.9 (CH ₃)	56.3 (³ <i>J</i> = 4.1) 52.5	$18.7 ({}^{1}J = 36.5)$ $18.5 ({}^{1}J = 30.7)$
$3a^c$	162.7 (C1) 149.1 (C2) 142.1, 141.1, 130.4, 128.2, 122.5	92.6	73.1 (CH) 9.9 (CH ₃)	54.6 51.5	19.2 13.0
$3b^b$	163.3 (C1, ${}^{2}J$ = 20.7) 149.6 (C2) 140.0 (C6, ${}^{3}J$ = 8.3) 136.2 (C13, ${}^{1}J$ = 39.8) 131.3 (C16, ${}^{4}J$ = 2.5) 131.0 (C14 and C18, ${}^{2}J$ = 10.7) 130.0 (C15 and C17, ${}^{3}J$ = 7.5) 127.4 (C4 or C5) 124.4 (C3) 124.1 (C5 or C4, J = 2.5)	$91.9 (^2J = 2.5)$	77.4 (CH) 10.4 (CH ₃)	$57.6 48.3 (^{3}J = 7.4)$	$21.7 ({}^{1}J = 34.0)$ $15.5 ({}^{1}J = 31.5)$
3a/3b ^{c,d}	163.3, 149.3, 142.2, 141.2, 133.5, e 130.6, 128.2, 123.4	92.5 91.5 ^e	77.6 (CH) ^e 73.4 (CH) 9.6 (CH ₃)	54.6 51.4 47.7 ^e	$\frac{19}{15.8^e}$ $\frac{12.4}{12.4}$

^a The aryl carbon numbering scheme follows that depicted in the ORTEP plot. ^b ¹³C {¹H} NMR data recorded at 100.61 MHz in CDCl₃. ^c ¹³C CP-MAS NMR data recorded at 50.30 MHz. d 3a/3b ratio equals 60/40. e Peaks attributed to 3b.

Figure 3. Overlap of the ³¹P MAS NMR spectra of 3a/3b in 60/40, 80/20, 90/10, 95/5, and 100/0 ratios. The signal of the PF₆ anion has been omitted for clarity.

of the cross-polarization experiment, the carbon magnetization comes from the proton reservoir. Thus, it has long been recognized that the signal intensities may disagree with the atomic ratios. 13 On the other hand, the MAS technique gives a quantifiable signal. Indeed, ³¹P MAS NMR spectroscopy of the same samples as above proved to be much more efficient. Pure 3a showed two sets of signals at 6.35 and −143.99 ppm for PMe₂Ph and PF₆⁻, respectively. The signal of PMe₂Ph was the superimposition of a singlet and a six-line 1:1:1:1:1 multiplet due to ¹J(⁹⁹Ru-³¹P) coupling.¹⁴ All the other samples (even

Figure 4. ¹³C CP-MAS NMR spectrum of 1a.

with a 95/5 ratio) displayed clearly two signals for the PMe₂Ph unit, thus indicating the presence of the two isomers (Figure 3). Moreover, in these cases, the integration of the signals made it possible to calculate the ratio of the isomers, and this led to results close to those expected. 15

We had thus a new tool for studying the 1a/1b mixture in the solid state. The required sample was obtained by addition of diethyl ether and *n*-hexane in an acetonitrile solution of **1a**/ **1b**. This resulted in almost instantaneous ($t \le 1$ s) precipitation of the organoruthenium species; note that more than 90% of the dissolved 1a/1b mixture had thus been precipitated. This was done in order to avoid a slow crystallization which might have favored the formation of one isomer only.

⁽¹³⁾ Alemany, L. B.; Grant, D. M.; Pugmire, R. J.; Alder, T. D.; Zilm, K. W. J. Am. Chem. Soc. 1983, 105, 2133-2141.

⁽¹⁴⁾ Eichele, K.; Wasylishen, R. E.; Corrigan, J. F.; Doherty, S.; Sun, Y.; Carty, A. J. Inorg. Chem. 1993, 32, 121-123.

⁽¹⁵⁾ Integration: 60/40 = 58/42; 80/20 = 74/26; 90/10 = 89/11; 95/5 = $92/8 \pm 5\%$; $100/0 = 100/0 \pm 5\%$. The intensities of the small spinning sidebands were neglected for integration.

Table 3. ¹³C {¹H} NMR and ¹³C CP-MAS NMR Data (δ ppm) of **1a/1b**

	¹³ C chemical shift					
product	aromatics ^a	η^6 -C ₆ H ₆	CHCH ₃	NMe ₂	CH ₃ CN	
1a ^b	162.5 (C1) 150.5 (C2) 139.5 (C6) 127.2 (C5) 124.8 (C4 and C3)	89.5	71.3 (CH) 11.4 (CH ₃)	54.5 50.9	118.3 (CN) 1.3 (CH ₃)	
$\mathbf{1b}^b$	168.7 (C1) 150.0 (C2) 139.5 (C6) 127.2 (C5) 124.8 (C4 and C3)	88.9	77.3 (CH) 11.0 (CH ₃)	56.6 45.7	118.3 (CN) 1.3 (CH ₃)	
1a ^{c,d}	162.4 (C1) 151.8 (C2) 139.5 (C6) 130.0–120.0 nr (C5, C4, and C3)	89.2	69.9 (CH) 10.1 (CH ₃)	54.7 50.9	130–120 nr (CN) 1.6 (CH ₃)	

^a The numeration of the aryl carbons follows that depicted in eq 1. ^b ¹³C {¹H} NMR data recorded at 125.77 MHz in CD₃CN. ^c ¹³C CP-MAS NMR data recorded at 50.30 MHz. ^d The assignments were made using NQS (nonquaternary suppression) and CP with short contact time and by comparison with the solution spectrum.

The ¹³C CP-MAS NMR spectrum of the thus obtained solid displayed one set of signals that almost coincide with all signals of the major diastereomer 1a in CD₃CN solution (Table 3 and Figure 4). The maximum deviation between the signals in solution and in the solid state is 1.4 ppm for identified signals. There was no characteristic signal present that could be assigned to the minor isomer 1b. This was obvious for the signals of the ruthenated aryl carbon, the benzylic carbon, and the methyl carbon atoms of the NMe₂ unit which resonate at chemical shifts significantly different from those of 1a. As far as the sensitivity of this technique is concerned and assuming that for this compound the sensitivity is analogous to that found for compounds 3a/3b, solid-state NMR allows us to conclude that the solid-state structure of 1a/1b consists of mainly isomer 1a. With no 1b being detectable, it demonstrates that the 1a/1b ratio should be at least greater than 90/10.16 Hence, it is a valuable technique for demonstrating that there has been epimerization of **1b** to **1a** during crystallization and that the Ru centers in **1a** and **1b** are configurationally labile.

Conclusion

The application of solid-state NMR has allowed us to identify the presence in the solid state of two very closely related species. Hence, it seems that this technique will prove to be quite useful soon for establishing the composition of the bulk solid materials. One may well anticipate that from this starting point further related examples will be studied by this method. However, we have so far failed to apply it to the problem of related cobalt-containing complexes because of large couplings with the 59 Co nuclei ($S=^{7}/_{2}$) leading to overlapping and broad signals.

Acknowledgment. Financial support of this work by the Ministère de l'Education Nationale, de la Recherche et de la Technologie (fellowship for V.R. and P.B.) is acknowledged. Dr. R. Graff and Dr. J.-D. Sauer are gratefully acknowledged for ¹H NMR variable temperature and 2D ¹H NMR ROESY experiments, Dr. A. de Cian for X-ray diffraction study, and Dr. B. Meurer for allowing use of the ASX 200 spectrometer.

Supporting Information Available: X-ray crystallographic data in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

IC010204W

⁽¹⁶⁾ To check the influence of the temperature upon the apparent faster crystallization rate of 1a as compared to that of 1b, the precipitation of an epimerized solution of 1a/1b was performed at −45 °C in CH₃-CN within a very short period of time (t ≤ 1 s) (as suggested by one of the reviewers). This afforded a good yield (ca. 86%) of a solid material that was dissolved and analyzed by ¹H NMR at −50 °C in CD₂Cl₂. This study revealed that the solid obtained consisted of a 1a/1b mixture in a 94/6 ratio. This simple experiment thus allows us to conclude that, even at low temperature, the apparent rate of crystallization of 1a is significantly superior to that of 1b.