

Université Sultan Moulay Slimane Faculté polydisciplinaire Khouribga A. U. 2020-2021 Filière: SMA/SMI

Responsable: N. Mrhardy

Examen: Suites numériques et fonctions <u>Durée: 1h30</u>

Numéro d'examen	Nom et prénom: Comigé	Note
	Salle:	/20
- Les documents et	t téléphones portables sont formellement interdits.	
- Les calculatrices	sont à usage personnel.	
$\frac{\text{Question 1.}(3pts)}{\text{Soient } A \text{ et } B \text{ deux ens}}$	sembles de \mathbb{R}^{+*} . On pose $A.B = \{a \times b; a \in A, b \in B\}$. Mor	ntrer que
	$\sup(A.B) = \sup A \times \sup B.$	
	alos x=axb, acAetbeB sup. t. et o <b<sup. b="">x=ab<sup. AxsupB et un majorant de AB e pup (AB) < sup. Axsup.</sup. </b<sup.>	
o. Scient act	p(A.B) et b > 0 = 0 a < sup(A.B	D.c./(.(A.)
alu cup A. dinc Sup. B	(*) et (**) implique sup (A:B)=8	. G. X.(B)
Déterminer la borne su	périeure et la borne inférieure, si elles existent, des ensemble	s suivants
$M = \{a +$	$(-1)^n b, \ n \in \mathbb{N}\}, (a, b \ge 0), \mathbb{N} = \{a + \frac{b}{n}, \ n \in \mathbb{N}^*\}, (a, b \ge 0)$	0)
. Selm lap	cuite dem mai M= Zasbi	a+4.3
Conne a, b.	>0 als a-b < a+b.	
	oM = a + b et in f M = a - b	

** Complete Annual Control (Control (Co
Justice gent in a (i) a c M (N) L'autre pent in a (i) a c M (N) L'autre pent in a (i) a c M (N) L'autre pent in a (i) a c M (N) L'autre pent in a (i) a c M (N) L'autre pent in a (i) a c M (N) L'autre pent in a c M (N) L'autre pent in a c M (N) Question 3.(3pts) Vertice que l'application f: x \ \ \ \ \ x \ est uniformément continue sur \(\mathbb{R}^+ \).
Montrer que l'application $f: x \mapsto \sqrt{x}$ est uniformément continue sur \mathbb{R}^+ . (On poutra utiliser $ \sqrt{x} - \sqrt{y} \le \sqrt{ x - y }$ pour tout $x, y \in \mathbb{R}^+$). Sol E Sol Du Pare M. = E
f(n)-f(y) = Vn Vy < VIn-of < Vn = & d'm' Ynyeir, Ye >0, 70 (= &2) >0/ n-y < v=) f(n)-f(y) < e
The first of the solution of
$x_n = (1+a)(1+a^2)\dots(1+a^n), \qquad y_n = a+a^2+\dots+a^n$ 1. Montrer que la suite $(x_n)_n$ est croissante. . Comme : $x_n = a+a^2+\dots+a^n$
$\frac{2(n+1)}{2(n)} = \frac{(1+\alpha)^{n}(1+\alpha^{n+1})}{(1+\alpha)^{n}} = 1 + \alpha^{n+1} + 1 + (\alpha)^{n}$ $\frac{(1+\alpha)^{n}(1+\alpha)^{n}}{(2n)^{n}} = 1 + \alpha^{n+1} + 1 + (\alpha)^{n}$ $\frac{(2n)^{n}}{(2n)^{n}} = 1 + \alpha^{n+1} + \alpha^{n+1} + 1 + \alpha^{n+1} + \alpha^{n+1} + 1 + \alpha^{n+1} + \alpha$
2. Pour tout $n \in \mathbb{N}^*$, calculer $(y_n)_n$ puis déduire que si $0 < a < 1$ alors (y_n) est majorée.
(yn) et la sonne de terme d'un en te géonotique. Luci y = a 1-an
Commoga (1=) 1-ah (n dru yn < a 1!m (yn) et majnee

2.

3. Mont	trer que pour	tout $x > 0$, 1	$1 + x < e^x$	$< xe^x + 1$
---------	---------------	------------------	---------------	--------------

Montrer que pour tout $x > 0$, $1 + x < e^{-} < xe^{-} + 1$
fontime, der valle professione d'aprèl T.A.F. J.C. Jone telque en er-1 = ec. no (c. (2 =) 1 < e ce.
. P. Continuary dely, Vasse pr. (29, M.)
Delapres T. A. F J. C. E. Jan Entel que
e2-1 = ec. a.o.(c.(x.=).1. <e.<e< td=""></e.<e<>
λ
et dre 1< e21 / e1 =) 2+1< e2/2 e2+1

4. En déduire que si 0 < a < 1 alors $(x_n)_n$ est convergente.

Exercice 2.(5pts) On appelle cosécante hyperbolique la fonction, notée cosech, et définie par

$$cosech(x) = \frac{1}{\sinh(x)} = \frac{2}{e^x - e^{-x}}$$

1. Déterminez l'ensemble de définition D de la fonction cosech puis calculer les limites sur ses bornes.

bornes.	
a. D. 1 = 5	(S) 2 3 3 = 2 1) = 11
M.a. Sinton.	1 1. Code chy
1: Cosecto. 2.	csize of D=1Rt o et li cosection = D
+00	-2×
	2 (Cas St. 270, 1-e. 72.)
, 1 Cosective. I	$\frac{2}{e^{2}(1-e^{2x})} = +\infty(.(a_{5}(x_{1},x_{1},y_{0}), 1-e^{-2x}, y_{0})$ $2 = -\infty(.\omega_{1}(x_{1},x_{1},y_{0}), 1-e^{-2x}, z_{0})$
0+	$\frac{e^{2}(1-e^{2})}{2}$ = $\frac{e^{2}(2-e^{2})}{e^{2}(2-e^{2})}$
	9 - co/.con. Sn. H. L.O., A-len. Z. O.,
Di. Cosechni. Lin.	- X - X)
0-	e.(A: e)
	t contract

2. Etudiez la dérivabilité de la fonction cosech et exprimez sa dérivée en fonction de tanh et

ona nessinha derivable pulit et sinh (u) = cosh(n)

par composition cosecta derivable pulita

1 // -x 1// 1	- wshx	cha	Λ	
et Vna 12", cosech (n) =	(SING x) 3	Shn	5hr	
Trasech (2) =	1.00	sech nJ		
	thn			

3. Montrez que la restriction de cosech à l'intervalle $]0,+\infty[$ induit une bijection sur un intervalle J à préciser. On note Argcosech sa bijection réciproque.

An E Jo, +00 [; shn Jo et thn Jo duc

An E Jo, +00 [; shn Jo et thn Jo duc

An E Jo, +00 [; shn Jo et thn Jo duc

Cosech et de conissante mu Jo, +00 [

on a alos cosech et antimu ; stictement croissante

m. Jo, +00 [alors d'après the'nème de la sijection

elle est bijective de Jo, +00 [ai valeurs den

Jo, +00 [d'après le linites dan (1))

4. Donnez l'ensemble de dérivabilité de Argcosech. Puis montrer que

 $(Argcosech(x))' = \frac{-1}{x\sqrt{1+x^2}}, \ \forall x \in]0, +\infty[$

<u>Indication</u>: On pourra montrer que: $tanh(x) = \frac{1}{\sqrt{1 + cosech^2(x)}}, \forall x \in]0, +\infty[$

Conner Closech (n) + 0, V. M. E. Jo. 400. [als dapris...

there we do be bijection, argument weech est der vable

pm. J. O. 1+10 [] de plus...

(ang wech. x.) = Cosech! (ang wahn) coxch (ang wech)

\[
\lambda + \omega \text{2} \lambda \lambda
\]
\[
\lambda + \omega \text{2} \lambda \lambda
\]
\[
\lambda + \omega \text{2} \lambda
\]