In [30]:

```
# import needed libraries
import pandas as pd
import numpy as np
```

Task1 (1)

Load the row data into Pandas with the meta information being removed.

In [31]:

```
# read data from csv file
df = pd.read_csv('ckd-dataset-v2.csv')
df = df.drop([0,1]) #remove descriptive row and null row (remove the meta information)
```

View the data

In [32]:

```
df.head()#view data
```

Out[32]:

	bp (Diastolic)	bp limit	sg	al	class	rbc	su	рс	рсс	ba	 htn	dm	cad	appet	ре	ane
2	0	0	1.019 - 1.021	1 - 1	ckd	0	< 0	0	0	0	 0	0	0	0	0	0
3	0	0	1.009 - 1.011	< 0	ckd	0	< 0	0	0	0	 0	0	0	0	0	0
4	0	0	1.009 - 1.011	≥ 4	ckd	1	< 0	1	0	1	 0	0	0	1	0	0
5	1	1	1.009 - 1.011	-	ckd	0	< 0	0	0	0	 0	0	0	0	0	0
6	0	0	1.015 - 1.017	< 0	ckd	0	< 0	0	0	0	 0	1	0	1	1	0

5 rows × 29 columns

Task 1 (2)

Apply ordinal encoding to all columns contains numerical bins. For instance, in the "age" column, 0 for "<12", 1 for "12-20", 2 for "20-27", etc.

Printing all unique values for each row in the dataset

for names in df.columns: #print all unique values of each row to create encoding man

In [33]:

```
print(names, end = ' -> ')
    print(df[names].unique())
bp (Diastolic) -> ['0' '1']
bp limit -> ['0' '1' '2']
sq \rightarrow ['1.019 - 1.021' '1.009 - 1.011' '1.015 - 1.017' ' \ge 1.023' ' < 1.
007']
al -> ['1 - 1' '< 0' '≥ 4' '3 - 3' '2 - 2']
class -> ['ckd' 'notckd']
rbc -> ['0' '1']
su \rightarrow ['< 0' '4 - 4' '2 - 2' '3 - 4' '1 - 2' ' \ge 4']
pc -> ['0' '1']
pcc -> ['0' '1']
ba -> ['0' '1']
bgr -> ['< 112' '112 - 154' '154 - 196' '406 - 448' '238 - 280' '196 -
 '≥ 448' '280 - 322' '364 - 406' '322 - 364']
bu -> ['< 48.1' '48.1 - 86.2' '200.5 - 238.6' '124.3 - 162.4' '86.2 -
 '162.4 - 200.5' '≥ 352.9' '238.6 - 276.7']
sod -> ['138 - 143' '133 - 138' '123 - 128' '143 - 148' '148 - 153' '<
118'
 '128 - 133' '118 - 123' '≥ 158']
sc -> ['< 3.65' '3.65 - 6.8' '16.25 - 19.4' '6.8 - 9.95' '13.1 - 16.2
 '9.95 - 13.1' '≥ 28.85']
pot -> ['< 7.31' '≥ 42.59' '7.31 - 11.72' '38.18 - 42.59']
hemo -> ['11.3 - 12.6' '8.7 - 10' '13.9 - 15.2' '≥ 16.5' '10 - 11.3'
'7.4 - 8.7'
'12.6 - 13.9' '15.2 - 16.5' '< 6.1' '6.1 - 7.4']
pcv -> ['33.5 - 37.4' '29.6 - 33.5' '41.3 - 45.2' '37.4 - 41.3' '≥ 49.
 '21.8 - 25.7' '45.2 - 49.1' '< 17.9' '25.7 - 29.6' '17.9 - 21.8']
rbcc -> ['4.46 - 5.05' '5.05 - 5.64' '3.28 - 3.87' '3.87 - 4.46' '6.23
 '5.64 - 6.23' '2.69 - 3.28' '< 2.69' '≥ 7.41']
wbcc -> ['7360 - 9740' '12120 - 14500' '14500 - 16880' '4980 - 7360'
'< 4980'
'9740 - 12120' '16880 - 19260' '≥ 24020' '19260 - 21640']
htn -> ['0' '1']
dm -> ['0' '1']
cad -> ['0' '1']
appet -> ['0' '1']
pe -> ['0' '1']
ane -> ['0' '1']
grf → ['≥ 227.944' '127.281 - 152.446' '102.115 - 127.281' '177.612 -
202.778'
 '26.6175 - 51.7832' '51.7832 - 76.949' '76.949 - 102.115'
 '152.446 - 177.612' '202.778 - 227.944' '< 26.6175' ' p ']
stage -> ['s1' 's4' 's3' 's2' 's5']
affected -> ['1' '0']
age -> ['< 12' '12 - 20' '20 - 27' '27 - 35' '35 - 43' '43 - 51' '51 -
59'
'59 - 66' '66 - 74' '≥ 74'1
```

Notice that grf consists of numerical bins except for 1 value which is 'p', therefore the row needs to be cleaned up.

```
In [34]:
```

df = df[df.grf != ' p ']#removing the row with p.

In [35]:

```
#running unique values for dataframe again.
for names in df.columns: #print all unique values of each row to create encoding mag
    print(names, end = ' -> ')
    print(df[names].unique())# note that p is now missing from grf

bp (Diastolic) -> ['0' '1']
bp limit -> ['0' '1' '2']
```

```
bp limit -> ['0' '1' '2']
sg \rightarrow ['1.019 - 1.021' '1.009 - 1.011' '1.015 - 1.017' ' \ge 1.023' ' < 1.
007'1
al \rightarrow ['1 - 1' '< 0' '\geq 4' '3 - 3' '2 - 2']
class -> ['ckd' 'notckd']
rbc -> ['0' '1']
su -> ['< 0' '4 - 4' '2 - 2' '3 - 4' '1 - 2' '≥ 4']
pc -> ['0' '1']
pcc -> ['0' '1']
ba -> ['0' '1']
bgr -> ['< 112' '112 - 154' '154 - 196' '406 - 448' '238 - 280' '196 -
238'
 '≥ 448' '280 - 322' '364 - 406' '322 - 364']
bu -> ['< 48.1' '48.1 - 86.2' '200.5 - 238.6' '124.3 - 162.4' '86.2 -
124.3'
 '162.4 - 200.5' '≥ 352.9' '238.6 - 276.7']
sod -> ['138 - 143' '133 - 138' '123 - 128' '143 - 148' '148 - 153' '<
 '128 - 133' '118 - 123' '≥ 158']
sc -> ['< 3.65' '3.65 - 6.8' '16.25 - 19.4' '6.8 - 9.95' '13.1 - 16.2
'9.95 - 13.1' '≥ 28.85']
pot -> ['< 7.31' '≥ 42.59' '7.31 - 11.72' '38.18 - 42.59']
hemo -> ['11.3 - 12.6' '8.7 - 10' '13.9 - 15.2' '≥ 16.5' '10 - 11.3'
'7.4 - 8.7'
 '12.6 - 13.9' '15.2 - 16.5' '< 6.1' '6.1 - 7.4']
pcv -> ['33.5 - 37.4' '29.6 - 33.5' '41.3 - 45.2' '37.4 - 41.3' '\geq 49.
1'
'21.8 - 25.7' '45.2 - 49.1' '< 17.9' '25.7 - 29.6' '17.9 - 21.8']
rbcc -> ['4.46 - 5.05' '5.05 - 5.64' '3.28 - 3.87' '3.87 - 4.46' '6.23
- 6.82'
 '5.64 - 6.23' '2.69 - 3.28' '< 2.69' '≥ 7.41']
wbcc -> ['7360 - 9740' '12120 - 14500' '14500 - 16880' '4980 - 7360'
'< 4980'
'9740 - 12120' '16880 - 19260' '≥ 24020' '19260 - 21640']
htn -> ['0' '1']
dm -> ['0' '1']
cad -> ['0' '1']
appet -> ['0' '1']
pe -> ['0' '1']
ane -> ['0' '1']
grf → ['≥ 227.944' '127.281 - 152.446' '102.115 - 127.281' '177.612 -
202.778'
 '26.6175 - 51.7832' '51.7832 - 76.949' '76.949 - 102.115'
 '152.446 - 177.612' '202.778 - 227.944' '< 26.6175']
stage -> ['s1' 's4' 's3' 's2' 's5']
affected -> ['1' '0']
age -> ['< 12' '12 - 20' '20 - 27' '27 - 35' '35 - 43' '43 - 51' '51 -
59'
 '59 - 66' '66 - 74' '≥ 74']
```

We can observe that columns sg,al,al,su,bgr,bu,sod,sc,pot,hemo,pcv,rbcc,wbcc,grf,age needs to be encoded.

We created a map for each column in accordance to the numerical bin it represents to preserve the relationship between attributes

In [36]:

```
#Apply ordinal encoding to all columns contains numerical bins. For instance, in the
#for "<12", 1 for "12-20", 2 for "20-27", etc.
encoding map = {"age" : {'< 12':0, '12 - 20':1, '20 - 27':2, '27 - 35':3, '35 - 43':
       51 - 59:6, 59 - 66:7, 66 - 74:8, 274:9},
                "grf" : {'\geq 227.944':9 ,'127.281 - 152.446':5 ,'102.115 - 127.281':4
:7 ,'26.6175 - 51.7832':1, '51.7832 - 76.949':2, '76.949 - 102.115':3,
 '152.446 - 177.612':6,'202.778 - 227.944':8, '< 26.6175':0},
                'wbcc':{'7360 - 9740':2, '12120 - 14500':4, '14500 - 16880':5, '4980
 '9740 - 12120':3, '16880 - 19260':6, ' \ge 24020':8, '19260 - 21640':7},
                'rbcc':{'4.46 - 5.05':4, '5.05 - 5.64':5, '3.28 - 3.87':2, '3.87 - 4.
 5.64 - 6.23:6, 2.69 - 3.28:1, < 2.69:0, \ge 7.41:8,
                'bgr' : {'< 112' : 0, '112 - 154' : 1, '154 - 196' : 2, '406 - 448' :
'bu' : {'< 48.1' : 0, '48.1 - 86.2' : 1, '200.5 - 238.6' : 5, '124.3 - 162.4' : 3,
'sod': {'138 - 143': 5, '133 - 138': 4, '123 - 128': 2, '143 - 148': 6, '148 -
'sc': {'< 3.65': 0, '3.65 - 6.8': 1, '16.25 - 19.4': 5, '6.8 - 9.95': 2, '13.1
'pot' : {'< 7.31' : 0, '≥ 42.59' : 3, '7.31 - 11.72' : 1 , '38.18 - 42.59' : 2},
'hemo' : {'11.3 - 12.6' : 5, '8.7 - 10' : 3, '13.9 - 15.2' : 7, '≥ 16.5' : 9, '10 -
'pcv': {'33.5 - 37.4': 5, '29.6 - 33.5': 4, '41.3 - 45.2': 7, '37.4 - 41.3': 6,
'su' : {'< 0' : 0, '4 - 4' : 4, '2 - 2' : 2, '3 - 4' : 3, '1 - 2' : 1, '\geq 4' : 5}, 'sg' : {'1.019 - 1.021' : 3, '1.009 - 1.011' : 1, '1.015 - 1.017' : 2, '\geq 1.023' : 4
'al' : \{'1 - 1' : 1, ' < 0' : 0, ' \ge 4' : 4, '3 - 3' : 3, '2 - 2' : 2\}\}
encoded df = df.replace(encoding map)
#running unique values for dataframe again.
for names in encoded_df.columns: #print all unique values of each row to verify encoded
    print(names, end = ' -> ')
    print(encoded df[names].unique())# note that all numerical bins are encoded
```

```
bp (Diastolic) -> ['0' '1']
bp limit -> ['0' '1' '2']
sg \rightarrow [3 1 2 4 0]
al -> [1 0 4 3 2]
class -> ['ckd' 'notckd']
rbc -> ['0' '1']
su -> [0 4 2 3 1 5]
pc -> ['0' '1']
pcc -> ['0' '1']
ba -> ['0' '1']
bgr -> [0 1 2 8 4 3 9 5 7 6]
bu -> [0 1 5 3 2 4 7 6]
sod -> [5 4 2 6 7 0 3 1 8]
sc -> [0 1 5 2 4 3 6]
pot -> [0 3 1 2]
hemo -> [5 3 7 9 4 2 6 8 0 1]
pcv -> [5 4 7 6 9 2 8 0 3 1]
rbcc -> [4 5 2 3 7 6 1 0 8]
wbcc -> [2 4 5 1 0 3 6 8 7]
htn -> ['0' '1']
dm -> ['0' '1']
cad -> ['0' '1']
appet -> ['0' '1']
pe -> ['0' '1']
ane -> ['0' '1']
grf -> [9 5 4 7 1 2 3 6 8 0]
stage -> ['s1' 's4' 's3' 's2' 's5']
affected -> ['1' '0']
age -> [0 1 2 3 4 5 6 7 8 9]
```

Task 1 (3)

Apply one-hot-encoding to the "stage" column.

```
In [37]:
```

```
#first view unique stages
encoded_df["stage"].unique()
```

```
Out[37]:
```

```
array(['s1', 's4', 's3', 's2', 's5'], dtype=object)
```

We can observe that the only possible values for stage is s1,s2,s3 and s4

In [38]:

```
#using pd.get_dummies to one hot encode the stage column
dummy = pd.get_dummies(encoded_df.stage,prefix='Stage')
dummy.head()
```

Out[38]:

	Stage_s1	Stage_s2	Stage_s3	Stage_s4	Stage_s5
2	1	0	0	0	0
3	1	0	0	0	0
4	1	0	0	0	0
5	1	0	0	0	0
6	1	0	0	0	0

Creating a dummy table for one hot encoding

In [39]:

```
#join dummy dataframe to original data frame
new_df = encoded_df.join(dummy)
new_df
```

Out[39]:

	bp (Diastolic)	bp limit	sg	al	class	rbc	su	рс	рсс	ba	 ane	grf	stage	affected	age
2	0	0	3	1	ckd	0	0	0	0	0	 0	9	s1	1	0
3	0	0	1	0	ckd	0	0	0	0	0	 0	9	s1	1	0
4	0	0	1	4	ckd	1	0	1	0	1	 0	5	s1	1	0
5	1	1	1	3	ckd	0	0	0	0	0	 0	5	s1	1	0
6	0	0	2	0	ckd	0	0	0	0	0	 0	5	s1	1	1
197	1	2	3	0	ckd	0	0	0	0	0	 1	1	s3	1	9
198	0	0	3	0	ckd	0	0	0	0	0	 1	0	s4	1	9
199	1	1	4	0	notckd	0	0	0	0	0	 0	2	s2	0	9
200	1	1	4	0	notckd	0	0	0	0	0	 0	4	s1	0	9
201	1	1	1	2	ckd	0	2	0	0	0	 0	0	s4	1	9
199 rows × 34 columns															

We can observe that the dummy table is now appended to the end of the data frame

```
In [40]:
```

```
new_df = new_df.drop(columns="stage") #dropping original stage column
```

Dropping the stage column from the dataframe as the information has been encoded in the new columns

Task 1 (4)

Find out and rank the correlations between the "class" column and all other columns

In [41]:

```
#Get information of all the data types of the dataset
new_df.info()
#some binary values are still object data types as they are wrapped in '0' and '1'
#class column is also in ckd and notckd which needs to be encoded to 0 and 1
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 199 entries, 2 to 201 Data columns (total 33 columns): # Column Non-Null Count Dtype _____ _____ ____ 0 bp (Diastolic) 199 non-null object bp limit object 1 199 non-null 2 int64 sa 199 non-null 3 al 199 non-null int64 4 class 199 non-null object 5 rbc 199 non-null object 6 199 non-null int64 S11 7 рс 199 non-null object 8 object 199 non-null pcc 9 199 non-null object int64 10 bgr 199 non-null 11 bu 199 non-null int64 12 sod int64 199 non-null 13 sc 199 non-null int64 199 non-null int64 14 pot 15 hemo 199 non-null int64 199 non-null 16 pcv int64 17 199 non-null int.64 rbcc 18 wbcc 199 non-null int64 199 non-null 19 htn object 20 dm 199 non-null object 21 199 non-null object cad 22 199 non-null object appet 23 199 non-null object ре 24 ane 199 non-null object 25 199 non-null int64 grf object 26 affected 199 non-null 27 199 non-null int64 28 Stage s1 199 non-null uint8 29 Stage s2 199 non-null uint8 30 Stage s3 199 non-null uint8 31 Stage s4 199 non-null uint8 Stage s5 199 non-null uint8 32 dtypes: int64(14), object(14), uint8(5) memory usage: 54.2+ KB

As you can observe, the dataframe still consists of not numerical attributes in the object data type columns,

therefore we need to convert the str values representing integers into true integers

In [42]:

```
encode_class = {"class":{'ckd':1,'notckd':0}}
new_df = new_df.replace(encode_class)#change ckd and notckd to 1 and 0 respectively
new_df
```

Out[42]:

	bp (Diastolic)	bp limit	sg	al	class	rbc	su	рс	рсс	ba	 ре	ane	grf	affected	age	Sta
2	0	0	3	1	1	0	0	0	0	0	 0	0	9	1	0	
3	0	0	1	0	1	0	0	0	0	0	 0	0	9	1	0	
4	0	0	1	4	1	1	0	1	0	1	 0	0	5	1	0	
5	1	1	1	3	1	0	0	0	0	0	 0	0	5	1	0	
6	0	0	2	0	1	0	0	0	0	0	 1	0	5	1	1	
197	1	2	3	0	1	0	0	0	0	0	 0	1	1	1	9	
198	0	0	3	0	1	0	0	0	0	0	 0	1	0	1	9	
199	1	1	4	0	0	0	0	0	0	0	 0	0	2	0	9	
200	1	1	4	0	0	0	0	0	0	0	 0	0	4	0	9	
201	1	1	1	2	1	0	2	0	0	0	 0	0	0	1	9	

199 rows × 33 columns

Converting the class attribute to 1 or 0

In [43]:

```
new_df = new_df.astype(int)
new_df.info()#converting all strings numericals to string
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 199 entries, 2 to 201
Data columns (total 33 columns):

Jata	columns (total	33 columns):	
#	Column	Non-Null Count	Dtype
0	bp (Diastolic)	199 non-null	 int64
1	bp limit	199 non-null	int64
2	sg	199 non-null	int64
3	al	199 non-null	int64
4	class	199 non-null	int64
5	rbc	199 non-null	int64
6	su	199 non-null	int64
7	pc	199 non-null	int64
8	pcc	199 non-null	int64
9	ba	199 non-null	int64
10	bgr	199 non-null	int64
11	bu	199 non-null	int64
12	sod	199 non-null	int64
13	sc	199 non-null	int64
14	pot	199 non-null	int64
15	hemo	199 non-null	int64
16	pcv	199 non-null	int64
17	rbcc	199 non-null	int64
18	wbcc	199 non-null	int64
19	htn	199 non-null	int64
20	dm	199 non-null	int64
21	cad	199 non-null	int64
22	appet	199 non-null	int64
23	pe	199 non-null	int64
24	ane	199 non-null	int64
25	grf	199 non-null	int64
26	affected	199 non-null	int64
27	age	199 non-null	int64
28	Stage_s1	199 non-null	int64
29	Stage_s2	199 non-null	int64
30	Stage_s3	199 non-null	int64
31	Stage_s4	199 non-null	int64
32	Stage_s5	199 non-null	int64
1+ wne	e. in+64/33)		

dtypes: int64(33)
memory usage: 61.0 KB

Converting all strings to ints

In [44]:

```
cormat = new_df.corr()
cormat = cormat.abs()
cormat['class'].sort_values(ascending=False)
#sort the class correlation matrix after transforming p value to absolute value
#ranking correlation by ascending order
```

Out[44]:

affected	1.000000
class	1.000000
hemo	0.765089
	0.703089
pcv	0.657702
sg grf	0.637083
rbcc	0.606591
htn	0.604532
	0.604532
Stage_s1	
al dm	0.558429
	0.548551
sod	0.495498
bu	0.424668
pc	0.407015
appet	0.377656
bgr	0.366404
pe -	0.347838
Stage_s5	0.341792
ane	0.329595
Stage_s3	0.323438
Stage_s4	0.307020
SC	0.301996
pcc	0.298320
su	0.286902
rbc	0.285404
Stage_s2	0.283929
bp limit	0.273247
cad	0.265454
wbcc	0.235190
age	0.232851
ba	0.182130
<pre>bp (Diastolic)</pre>	0.098866
pot	0.086149
Name: class, dty	pe: float64

As we can observe from the correlation matrix, affected is exactly correlated to the class column with a p value of 1. Other notable values such as hemo, pcv, sg, grf and rbcc have medium to strong correlation to the class attribute, hinting that those features are good indicators of predicting Chronic Kidney Disease