

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO EA619R – LABORATÓRIO DE ANÁLISE LINEAR PROF. RENATO DA ROCHA LOPES PROF. RICARDO CORAÇÃO DE LEÃO FONTOURA DE OLIVEIRA

RELATÓRIO DO EXPERIMENTO 2: RÁDIO AM

Bryan Wolff RA: 214095

João Luís Carvalho de Abreu RA: 175997

Campinas

Abril de 2021

Link para notebook no Google Colab

1. FREQUÊNCIA DA PORTADORA:

Dado que a maior frequência presente nos dois sinais seja 3kHz e que o alto falante reproduz frequências até 12kHz, a maior frequência do sinal modulado será dada por $f_c + f_m$, sendo f_c a frequência da portadora e f_m a frequência do sinal.

Neste caso, temos que
$$f_m = 3$$
kHz, logo: $f_c + 3 < 12$ kHz $\Rightarrow f_c < 9$ kHz

Nessa perspectiva, a maior frequência da portadora para que o sinal modulado ainda possa ser transmitido é de 9kHz.

2. ESPECTROS DOS SINAIS ORIGINAIS

A partir das funções implementadas, será obtido o espectro do sinal apenas com as frequências positivas.

Espectro do Sinal de Baixas Frequências

Espectro do Sinal de Altas Frequências

Ao observar os espectros gerados, é notável que em ambos os sinais as principais frequências se encontram abaixo de 3kHz, sendo possível então, filtrados a partir de um filtro passa baixas de 3kHz sem ocorrerem perdas.

3. ESPECTROS FILTRADOS

Nesta seção, foi projetado um um filtro passa baixa, mais especificamente Filtro de Butterworth para filtrar os sinais e eliminar ruídos, que atrapalham no processo de modulação de transmissão.

3.1. FILTRO DE BUTTERWORTH

Os espectros filtrados pelo Filtro de Butterworth são plotados logo abaixo:

Espectro do Sinal de Baixas Frequências Filtrado

Espectro do Sinal de Altas Frequências Filtrado

Ao análisar os espectros filtrados pelo Filtro de Butterworth, é notável que foi removido a maioria (o Filtro não é ideal) das componentes acima de 3kHz, nos permitindo transmitir um dos sinais com uma portadora de frequência 8kHz sem que haja interferência.

4. MODULAÇÃO

Para modular o sinal *station2*, o multiplicamos por $cos(2\pi f_c t)$ com $f_c = 8$ kHz.

Sinal de Altas Frequências Modulado

Espectro do Sinal de Altas Frequências Modulado

5. TRANSMISSÃO

Para transmiti-los, será somado os sinais station1 e station2 modulado.

Espectro do Sinal Transmitido

Ao comparar este sinal com o sinal rx dado, é notável que os áudios são semelhantes.

Espectro do Sinal rx

6. SINAIS RECUPERADOS

6.1. SINAL 1

Para recuperar o sinal 1, utilizaremos o sinal rx passando-o por um mesmo filtro passa

baixas com frequência de corte de 3kHz utilizado anteriormente.

Espectro do Sinal 1 Recuperado

6.2. SINAL 2

Para recuperar o *sinal 2*, utilizamos um filtro faixa de 4kHz a 12kHz, assim, eliminamos o sinal do *station1*.

Sinal Transmitido Filtrado

Depois disso, o multiplicamos pelo mesmo cosseno utilizado na modulação.

Espectro do Sinal Modulado

Por fim utilizamos o mesmo filtro passa baixas, para manter apenas a cópia de interesse (centrada na origem).

Espectro do Sinal 2 Recuperado

Vale ressaltar que o sinal obtido (áudio) é bem semelhante ao original, apesar de apresentar pequenas distorções.