Terceira lista de exercícios de Introdução à Programação de Computadores

Exercício 1

1	_	٦ ,		• 1	,			1		1 •	1
		Chyorta	OC	seguintes	numarag	nara	20	hageg	1nc	11090	190.
1	. \	Joniverta	ob	ocgumico	numeros	para	α	Dascs	1110	иса	ias.

a) Do sistema binário para	o decimal:
i) $100101_{(2)} = $	(10)
ii) $111111111_{(2)} = $	(10)
iii) $100000001_{(2)} = $	(10)
iv) $1101110111_{(2)} = $	(10)

b) Do sistema hexadecimal para o decimal:

```
\begin{array}{lll} i) \; 40A_{(16)} = \underline{\hspace{1cm}}_{(10)} \\ ii) \; 100101_{(16)} = \underline{\hspace{1cm}}_{(10)} \\ iii) \; FF_{(16)} = \underline{\hspace{1cm}}_{(10)} \\ iv) \; F4D0_{(16)} = \underline{\hspace{1cm}}_{(10)} \end{array}
```

c) Do sistema decimal para o binário:

d) Do sistema decimal para o hexadecimal:

e) Do sistema binário para o hexadecimal:

f) Do sistema hexadecimal para o binário:

- 2. Converta para decimal as seguintes frações binárias:
 - i) 11101,01₍₂₎
 - ii) $10101010,01010_{(2)}$
 - iii) 0111011,1011₍₂₎
- 3. Converta para binário as seguintes frações decimais:
 - i) $12,1_{(10)}$
 - ii) $536,48_{(10)}$
 - iii) 1024,35₍₁₀₎
- 4. Adicione os seguintes números binários sem sinal:
 - i) $10111110101_{(2)} + 10110111110_{(2)}$
 - ii) $10011011101_{(2)} + 10011011101_{(2)}$
 - iii) $11111_{(2)} + 1111_{(2)}$
 - iv) $11111,1001_{(2)} + 1111,01_{(2)}$
 - v) $1101,101_{(2)} + 111001,0101_{(2)}$
 - vi) $011101,001_{(2)} + 1110_{(2)}$
 - vii) $1001011001,1111010_{(2)} + 1010101011,0101010_{(2)}$
- 5. Represente os números seguintes em complemento para dois:
 - i) 0110101₍₂₎
 - ii) $-57_{(10)}$
 - iii) $AE1_{(16)}$
- 6. Escreva os 22 primeiros números do sistema hexadecimal.
- 7. Considere a representação em complemento para 2 usando 8 bits. Qual é a faixa de representação em decimal (mostre os maiores números, em módulo, negativo e positivo que podem ser representados).
- 8. Represente os seguintes números com 10 bits utilizando representação em (verifique em cada caso se a representação pedida é possível):
 - i) Sinal e magnitude
 - ii) Complemento para 1
 - iii) Complemento para 2
 - a) +33 e -33
 - b) +256 e -256
 - c) +512 e -512
- 9. Os números abaixo representam quais grandezas em decimal se estão representados em:
 - i) Sinal e magnitude
 - ii) Complemento para 1

- iii) Complemento para 2
- a) 10101111
- b) 01010000
- c) 11001100
- d) 00111000
- 10. Considere os pares de números binários de 6 bits indicados a seguir. Efetue a operação de soma entre eles supondo que os números estão representados em:
 - i) Sinal e magnitude
 - ii) Complemento para 2

Para cada caso, interprete o resultado, isto é, determine qual é o seu valor numérico em decimal ou indique que houve overflow (estouro de magnitude).

- a) 010101 e 110110
- b) 010101 e 010110
- c) 110101 e 110110
- 11. Converter os números a seguir de decimal para bi nário e realizar as operações indicadas utilizando a representação em complemento para 2 ocupando 6 bits.
 - a) 5 + 12
 - b) 13 9
 - c) 17 31
 - d) -12 8
 - e) 10 16
- 12. Representar os números decimais a seguir para ponto flutuante no padrão IEEE 754-2008 com precisão simples.
 - a) 413_{10}
 - b) $-15, 1875_{10}$
 - c) $-25, 5_{10}$
 - d) 0, 1234₁₀