

Facultad de Ciencias Exactas, Ingeniería y Agrimensura

Departamento de Matemática - Escuela de Ciencias Exactas y Naturales

ANÁLISIS MATEMÁTICO II

Licenciatura y Profesorado en Física, Licenciatura en Ciencias de la Computación, Licenciatura y Profesorado en Matemática - Año 2021

Práctica 5: Integrales impropias.

1. Determine $\int_{1}^{\infty} x^{r} dx \text{ si } r \neq -1$.

2. Demuestre que $\int_1^\infty \frac{1}{x} dx$ no existe (es divergente).

3. Suponga que $f(x) \ge 0$ para $x \ge a$ y que existe $\int_a^\infty f(x) \ dx$. Demuestre que si g es integrable en [a, x] para cada x y $0 \le g(x) \le f(x)$ para todo $x \ge a$, entonces existe $\int_a^\infty g(x) \ dx$.

4. Demuestre que existen las integrales

$$\int_0^\infty \frac{1}{1+x^2} \ dx \qquad \qquad \int_{-\infty}^\infty \frac{1}{1+x^2} \ dx.$$

5. Halle $\int_0^a \frac{1}{\sqrt{x}} dx$ para a > 0.

6. Halle $\int_0^a \frac{1}{x^r} dx$ para a > 0 y 0 < r < 1.

7. Halle $\int_a^0 \; |x|^r \; dx$ para a < 0 y -1 < r < 0.

8. Demuestre que $\int_0^\infty x^r \ dx$ nunca tiene sentido. Distinga los casos $r>0, \ -1< r<0$ y r<-1.

9. Decida si existen las siguientes integrales impropias:

$$\int_0^\infty \frac{1}{\sqrt{1+x^3}} \, dx, \qquad \qquad \int_0^\infty \frac{x}{1+x^{3/2}} \, dx.$$

10. Demuestre que si existe $\int_{-\infty}^{\infty} f(x) dx$ entonces existe $\lim_{N\to\infty} \int_{-N}^{N} f(x) dx$ y coincide con $\int_{-\infty}^{\infty} f(x) dx$.

Demuestre además que $\lim_{N\to\infty} \int_{-N}^{N+1} f(x) dx$ existe y coincide con $\int_{-\infty}^{\infty} f(x) dx$.

1

11. Si f es continua en [0,1], calcule $\lim_{x\to 0^+} x \int_x^1 \frac{f(t)}{t} dt$.

12. Si f es integrable en [0,1] y $\lim_{x\to 0} f(x)$ existe, calcule $\lim_{x\to 0^+} x \int_x^1 \frac{f(t)}{t^2} dt$.