Time Series Analysis - STAT 478 - Final Exam - Part 1 Q2

Alex Towell (atowell@siue.edu)

Part 1: Problem 2

Consider a linear trend process $Y_t = \beta_0 + \beta_1 t + e_t$, where $\{e_t\}$ is a 0 mean white noise process with variance σ^2 . Let \tilde{Y}_T be the simple exponential smoother, i.e.,

$$\tilde{Y}_T = (1-\theta) \sum_{t=0}^{\infty} \theta^t Y_{T-t}.$$

Show that the simple exponential smoother is a biased estimator for the linear trend process by calculating

$$\mathrm{Bias}(\tilde{Y}_T) = \mathrm{E}(Y_T) - \mathrm{E}(\tilde{Y}_T).$$

Proof. The estimator \tilde{Y}_T is biased if $\mathrm{Bias}(\tilde{Y}_T) \neq 0$.

To solve $\mathrm{Bias}(\tilde{Y}_T)$, we must first solve $\mathrm{E}(Y_T)$ and $\mathrm{E}(\tilde{Y}_T)$. The expectation of Y_T is given by

$$\begin{split} \mathbf{E}(Y_t) &= \mathbf{E}(\beta_0 + \beta_1 T + e_T) \\ &= \beta_0 + \beta_1 T + \mathbf{E}(e_T) \\ &= \beta_0 + \beta_1 T. \end{split}$$

The expectation of \tilde{Y}_T is given by

$$\begin{split} \mathbf{E}(\tilde{Y}_T) &= \mathbf{E}\left((1-\theta)\sum_{t=0}^{\infty}\theta^tY_{T-t}\right) \\ &= (1-\theta)\,\mathbf{E}\left(\sum_{t=0}^{\infty}\theta^tY_{T-t}\right) \\ &= (1-\theta)\left(\sum_{t=0}^{\infty}\theta^t\,\mathbf{E}(Y_{T-t})\right). \end{split}$$

By definition, $Y_{T-t} = \beta_0 + \beta_1(T-t) + e_{T-t}$, so we may perform that substitution, resulting in

$$\begin{split} \mathbf{E}(\tilde{Y}_T) &= (1-\theta) \left(\sum_{t=0}^\infty \theta^t \, \mathbf{E}(\beta_0 + \beta_1(T-t) + e_{T-t}) \right) \\ &= (1-\theta) \left(\sum_{t=0}^\infty \theta^t \, (\beta_0 + \beta_1(T-t) + \mathbf{E}(e_{T-t})) \right) \\ &= (1-\theta) \left(\sum_{t=0}^\infty \theta^t (\beta_0 + \beta_1 T) - \sum_{t=0}^\infty \theta^t \beta_1 t \right) \\ &= (1-\theta) \left((\beta_0 + \beta_1 T) \sum_{t=0}^\infty \theta^t - \beta_1 \sum_{t=0}^\infty t \theta^t \right). \end{split}$$

The only parts left to solve in the above are the infinite summations. Assuming $|\theta| < 1$, we observe that $\sum_{t=0}^{\infty} \theta^t$ is a geometric series that sums to $(1-\theta)^{-1}$ and $\sum_{t=0}^{\infty} t\theta^t$ is an infinite series that sums to $\theta(1-\theta)^{-2}$. Thus, we may make these substitutions, yielding

$$\begin{split} \mathbf{E}(\tilde{Y}_T) &= (1-\theta) \left((\beta_0 + \beta_1 T) (1-\theta)^{-1} - \beta_1 \theta (1-\theta)^{-2} \right) \\ &= \beta_0 + \beta_1 T - \beta_1 \theta (1-\theta)^{-1}. \end{split}$$

Then,

$$\begin{split} \mathrm{Bias}(\tilde{Y}_T) &= \mathrm{E}(Y_T) - \mathrm{E}(\tilde{Y}_T) \\ &= (\beta_0 + \beta_1 T) - \beta_0 + \beta_1 T - \beta_1 \theta (1 - \theta)^{-1}, \end{split}$$

which simplifies to

$$\mathrm{Bias}(\tilde{Y}_T) = \frac{\theta}{1-\theta}\beta_1.$$

There are two interesting special cases:

- 1. The bias is β_1 if $\theta = 0.5$.
- 2. The bias is 0 if $\theta = 0$.

Observe that the rate of change of the bias as a function of θ is given by

$$\frac{\partial \operatorname{Bias}}{\partial \theta} = \frac{1}{(1-\theta)^2}$$

and thus as θ moves away from 0.5 the bias increases without bound as it approaches 1 or 0, with the exception that when $\theta = 0$ the bias is 0.