
Leerinhoud 1: kernsplijting en kernfusie

Kernsplijting: Zwaardere kernen splijten tot lichtere kernen = kernsplijting

- → Kernsplijtingsreactor: ${}^{235}_{92}U$: ${}^{235}_{92}U + {}^{1}_{0}n$ --> ${}^{144}_{56}Ba + {}^{89}_{36}Kr + 3.{}^{1}_{0}n$
 - → Primaire kring: U-235 wordt gespleten tot Ba en Kr, 3 neutronen komen vrij, splijt verder...
 - → Secundaire kring: energie uit primaire kring (stoom) zal turbine aanwakkeren, elektriciteit ontstaat hierdoor.

Kernfusie: lichte kernen fuseren we tot zwaardere kernen

- \rightarrow Kernfusiereactor: ${}_{1}^{2}H + {}_{1}^{3}H \longrightarrow {}_{2}^{4}He + {}_{0}^{1}n$
 - → Energie komt vrij als kinetische energie die een dynamo zal laten draaien --> elektriciteit!
 - → Waarom hoge temperatuur in reactor? Zo meer kans dat deeltjes botsen (denk aan chemie!)

<u>Leerinhoud 2: Karakteristieke vervalprocessen: α-, β- en y straling: aard en eigenschappen</u>

$$\begin{array}{ll} \text{α-straling:} \ _Z^{A}X \to \ _{Z-2}^{A-4}X' + \ _2^{4}He \\ \beta^{-} \ \text{straling:} \ _Z^{A}X \to \ _{Z+1}^{A}X' + \ e^{-} + \overline{v_e} \\ \beta^{+} \ \text{straling:} \ _Z^{A}X \to \ _{Z-1}^{A}X' + \ e^{+} + v_e \\ \gamma \ \text{straling:} \ _Z^{A}X \to \ _Z^{A}X' + \gamma \end{array}$$

Alfastraling kan tegengehouden worden door papier. → groot vermogen tot ionisatie → alfastraling is het gevaarlijkst!

Bètastraling kan tegengehouden worden door aluminium.

Gammastraling kan tegengehouden worden door lood. → klein vermogen tot ionisatie

Leerinhoud 3: Radioactief verval: halveringstijd

- *Formule halveringstijd: $N(t) = \frac{N_0}{2^{\overline{T}_{1/2}}} \rightarrow N_0$ = begindeeltjes, t = tijd, $T_{1/2}$ = halveringstijd
- *Na een welbepaalde tijd is een radionuclide 50% minder radioactief, deze tijd noemen we de halveringstijd.

Leerinhoud 4: Activiteit + dosisequivalent

- *Formule gemiddelde activiteit: A = $-\frac{\Delta N}{\Delta t}$ \rightarrow De verhouding tussen het aantal deeltjes en tijdsduur
- \rightarrow De activiteit drukken we uit in Becquerel = Bq = 1 s⁻¹
- *Formule dosisequivalent: Effectieve dosis = dosis x kwaliteitsfactor
- \rightarrow Kwaliteitsfactoren: α-straling = 20 \Leftrightarrow β- en γ-straling = 1

Leerinhoud 5: Ouderdomsbepaling

- *We bepalen de ouderdom van organismen m.b.v. de koolstof-14-methode, eenmaal men sterft zal de hoeveelheid C-14 stilletjes aan afnemen (halfwaardetijd = 5750 jaar), zo kunnen we vrij nauwkeurig de ouderdom bepalen.
- *We bepalen de ouderdom van niet-organismen m.b.v. de kalium-40-methode, met een halfwaardetijd van 1,3 . 10⁹ jaar kunnen we bv. uitrekenen hoe oud een rots is of fossiele materialen zijn.

<u>Leerinhoud 6: Toepassingen in de geneeskunde</u>

- *Geneeskunde --> PET-scan --> bèta-+-straling --> deze zend positronen uit die elektronen zullen tegemoetkomen in het lichaam waarmee ze annihileren, de energie die zal vrijkomen zullen ze zien op de scan.
- *Geneeskunde --> kankerbehandeling --> protontherapie --> tumoren onschadelijk maken

Leerinhoud 7: Subatomaire deeltjes en antideeltjes

PROTON ⇔ ANTIPROTON	NEUTRON ⇔ ANTINEUTRON	ELEKTRON ⇔ POSITRON
2 UP-QUARKS + 1 DOWN-	1 UP-QUARK + 2 DOWN-	FAMILIE VAN LEPTONEN:
QUARK	QUARKS	ELEKTRON, MUON, TAU
ANDERE QUARKS: CHARM EN	LET OP: ANTIQUARKS BESTAAN	SPECIALE LEPTONEN:
STRANGE, TOP EN BOTTOM	OOK, ELK DEELTJE HEEFT ZIJN	ELEKTRON-, MUON- EN TAU-
	ANTIDEELTJE, DEZE TWEE	NEUTRINO (negatieve lading
	DEELTJES ANNIHILEREN	met weinig massa!)