Package 'FeatureSelection'

September 11, 2016

Type Package

Title A package for feature selection

Version 0.1.0

Date 2016-09-01

Author Adan M. Rodriguez <i32muroa@gmail.com>

Maintainer Adan M. Rodriguez <i32muroa@gmail.com>

Description This package provides a lot of feature selection algorithms, given a dataset. These algorithms, are formed by a search method and a measurement evaluation.

Repository CRAN

License GPL-2

LazyData false

Imports rpart, neuralnet, class, digest, RUnit

Depends rpart, neuralnet, class, digest, RUnit

RoxygenNote 5.0.1

 ${\bf Needs Compilation} \ {\bf no}$

```
Consistency based measures
```

Consistency based measures, for discrete features only

Description

These measures calculates the binary consistency, rough sets consistency, inconsistent examples consistency or inconsistent examples pairs consistency value, using hash tables

Usage

```
binaryConsistency(data, class, features)
  roughsetConsistency(data, class, features)
  IEPConsistency(data, class, features)
  IEConsistency(data, class, features)
```

Arguments

data A data frame with the features and the class of the examples

class The name of the dependent variable features The names of the selected features

Value

The consistency value for the selected features

Author(s)

Adan M. Rodriguez

```
## Not run: data <- data(Zoo)
    binaryConsistency(data, 'type', c('catsize', 'domestic'))
    IEPConsistency(data, 'type', 'tail')
    IEConsistency(data, 'type', 'catsize')
    roughsetConsistency(data, 'type', c('tail', 'domestic', 'catsize'))
## End(Not run)</pre>
```

```
Cutting criteria Feature Selection using cutting criteria
```

Description

These algorithms, take those features that exceed a certain or fulfill certain curting criteria.

Usage

```
selectKBest(data, class, featureSetEval, k)
selectPercentile(data, class, featureSetEval, percentile)
selectThreshold(data, class, featureSetEval, threshold)
selectThresholdRange(data, class, featureSetEval, p.threshold)
selectDifference(data, class, featureSetEval, d.threshold)
selectSlope(data, class, featureSetEval, s.threshold)
```

Arguments

data	A data frame with the features and the class of the examples
class	The name of the dependent variable
featureSetEval	
	The measure for evaluate features
k	Number (positive integer) of returned features
percentile	Number (positive integer) between 0 and 100
threshold	Number between 0 and 1
p.threshold	Number between 0 and 1
d.threshold	Number between 0 and 1

s.threshold Number between 0 and 1, to calculate the slope

Details

selectKBest: The selected features will be the 'k' ones with greater evaluation selectPercentile: Selects a fraction, given as a percentage, of the total number of available features

selecThreshold: Selects the features whose evaluation is over a user given threshold

selecThresholdRange: Selects the features whose evaluation is over a threshold, where this threshold is given as a fraction of the range of evaluation function

selecDifference: Selects features (in descending order) until evalu- ation difference is over a threshold.

selecSlope: Selects features (in descending order) until the slope to the next feature is over a threshold.

Value

A character vector of selected features

Author(s)

Adan M. Rodriguez

Examples

```
## Not run: data <- data(Zoo)
    selectKbest(data, 'type', roughsetConsistency, 4)
    selectPercentile(data, 'type', giniIndex, 90)
    selectThreshold(data, 'type', mutualInformation, 0.5)
    selectThresholdRange(data, 'type', determinationCoefficient, 0.3)
    selectDifference(data, 'type', chiSquared, 0.1)
    selectSlope(data, 'type', IEPconsistency, 0.8)
## End(Not run)</pre>
```

Exhaustive Search Exhaustive search

Description

This exhaustive search, searches the whole features subset in breadth first order

Usage

```
breadthFirstSearch(data, class, featureSetEval)
```

Arguments

data A data frame with the features and the class of the examples class The name of the dependent variable feature Set Eval

The measure for evaluate features

Value

A character vector of selected features

Author(s)

Adan M. Rodriguez

```
## Not run: data <- data(HouseVotes84)
breadthFirstSearch(data, 'Class', binaryConsistency)
## End(Not run)</pre>
```

Gini index measure Gini index measure, for discrete features only

Description

This measure calculates the gini index of discrete features

Usage

```
giniIndex(data, class, features)
```

Arguments

data A data frame with the features and the class of the examples

class The name of the dependent variable features The names of the selected features

Value

The Gini index value for the selected features

Author(s)

Adan M. Rodriguez

Examples

Information based measures

Information based measures, for discrete features only

Description

These measures calculates the mutual information, gain ratio or symmetrical uncertain value, using the information theory.

Usage

```
mutualInformation(data, class, features)
    gainRatio(data, class, features)
    symmetricalUncertain(data, class, features)
    entropy(x)
    entropyJ(x)
```

Arguments

data	A data frame with the features and the class of the examples
class	The name of the dependent variable
features	The names of the selected features
Х	The name of the feature or the class to calculate entropy

Value

The mutual information, gain ratio or symmetrical uncertain value for the selected features

Author(s)

Adan M. Rodriguez

Examples

```
Measures based on Chi squared test {\it Chi \ squared \ and \ Cramer \ V \ measures}
```

Description

These measures calculates the Chi squared or the Cramer V value, evaluating the selected features individually

Usage

```
chiSquared(data, class, features)
  cramer(data, class, features)
```

Arguments

data A data frame with the features and the class of the examples class The name of the dependent variable

features The feature or features to evalute individually

Value

The chi squared or cramer V value for each selected features

Normalization

Author(s)

Adan M. Rodriguez

Examples

```
## Not run: data <- data(Zoo)
    chiSquared(data, 'type', c('catsize', 'tail'))
    cramer(data, 'type', 'domestic')
## End(Not run)</pre>
```

Normalization

Normalize a data frame

Description

Takes in any data frame and normalize the data of their features

Usage

```
normalization(data, class)
```

Arguments

data A data frame with the features and the class of the examples

class The dependent variable

Value

The dataframe with the independent variables or features normalized

Author(s)

Adan M. Rodriguez

```
R squared measure R Squared, to continous features
```

Description

This measure calculates the determinantion coefficient of continuous features

Usage

```
determinationCoefficient(data, class, features)
```

Arguments

data A data frame with the features and the class of the examples

class The name of the dependent variable features The names of the selected features

Value

The R squared value for the selected features

Author(s)

Adan M. Rodriguez

Examples

```
data <- data(mtcars)
## Not run: determinationCoefficient(data, 'mpg', c('cyl', 'disp' , 'vs'))</pre>
```

```
Sequential Search Sequential search
```

Description

These algorithms implement sequential searchs for searching features in the subset space of features.

Usage

```
sfs(data, class, featureSetEval)
sbs(data, class, featureSetEval)
sffs(data, class, featureSetEval)
sfbs(data, class, featureSetEval)
```

Wrapper measure

Arguments

data A data frame with the features and the class of the examples class The name of the dependent variable

featureSetEval

The measure for evaluate features

Details

sfs (Sequential Forward Selection): The sfs method starts with an empty set of features and add a single feature at each step with a view to improving the evaluation of the set.

sbs (Sequential Backward Selection): The sbs method starts with all the features and removes a single feature at each step with a view to improving the evaluation of the set.

sffs (Sequential Floating Forward Selection): The sffs method starts with an empty set of features and add a single feature at each step with a view to improving the evaluation of the set. In addition, it checks whether removing any of the included features, improve the value of the set.

sfbs (Sequential Floating Backward Selection): The sfbs method starts with all the features and removes a single feature at each step with a view to improving the evaluation of the set. In addition, it checks whether adding any of the removed features, improve the value of the set.

Value

A character vector of selected features

Author(s)

Adan M. Rodriguez

Examples

```
## Not run: data <- data(Zoo)
sfs(data, 'type', roughsetConsistency)
sbs(data, 'type', giniIndex)
sffs(data, 'type', mutualInformation)
sfbs(data, 'type', determinationCoefficient)
## End(Not run)</pre>
```

Wrapper measure

Wrapper measure, for regression and classification problems

Description

This measure calculates CCR for classification problems or MSE for regression problems

Usage

```
wrapperParameters(k.fold, type=c("lm", "rpart", "neuralnet", "knn"))
```

Arguments

k.fold Number of folds for the cross-validation type The name of the selected learning algorithm

Value

Object type wrapper for use in a search method

Author(s)

Adan M. Rodriguez