C&O URA Spring 2017

Zach Dockstader

June 2, 2017

Contents

1 Inertia Bounds

1.1 Introduction on Inertia Bounds

1.1 Definition.

Independent Set — An independent set is a set of vertices belonging to a graph in which no two vertices are adjacent.

1.1 Example.

Consider the following graph:

An example of an independent set in this graph is:

However, often the independent set we are most interested in finding is the largest one:

1.2 Definition.

Independence Number — The independence number of a graph G, denoted $\alpha(G)$, is the size of the largest independent set of G.

1.3 Definition.

Weight Matrix — The weight matrix of a graph G, is a matrix defined by:

$$W_{i,j} = \begin{cases} c_{i,j} & \text{if } v_i \text{ and } v_j \text{ are adjacent} \\ 0 & \text{otherwise} \end{cases}$$
 (1)

with v_i a vertice of G and $c_{i,j}$, a constant.

The weight matrix of a graph, is identical to an adjacency matrix, except where there was a 1 in the matrix at entry $A_{i,j}$ if vertices v_i and v_j were adjacent, there is now a constant indicating a weighting for the edge between v_i and v_j .

For any graph G, there exists a bound on $\alpha(G)$, known as the Cvetković bound (also referred to as the Interia Bound). This bound provides a relationship between $\alpha(G)$ and the number of positive, negative, and zero eigenvalues of the weight matrix, W, associated with G. The Cvetković bound of G, is:

$$\alpha(G) \le \min\{|G| - n_+(W), |G| - n_-(W)\}$$
 (2)

Where $n_{+}(W)$ and $n_{-}(W)$ denote the number of positive and negative eigenvalues of W, respectively.

To prove this, we first need to introduce a result that comes from the Eigenvalue Interlacing Theorem:

1.1 Theorem.

Corollary of Eigenvalue Interlacing Theorem — Let A be an $n \times n$ real symmetric matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ and let C be a $k \times k$ principal submatrix of A with eigenvalues $\tau_1 \geq \tau_2 \geq \ldots \geq \tau_k$. Then $\lambda_i \geq \tau_i$ for all $i \in \{1, \ldots, k\}$. [?]

1.4 Definition.

Principal Submatrix — The principal submatrix of an $n \times n$ matrix A is the submatrix obtained where if row_i is excluded in the submatrix, then $column_i$ is excluded as well. Note that all principal submatrices of a weight matrix W, correspond to an induced subgraph in the graph represented by W.

1.2 Example.

The following is an example of a principal submatrix in relation to graph theory.

Consider the following graph:

and corresponding weight matrix:

$$\begin{bmatrix} 0 & a & 0 & 0 & 0 & 0 & 0 \\ a & 0 & d & 0 & b & 0 & 0 \\ 0 & d & 0 & g & 0 & 0 & f \\ 0 & 0 & g & 0 & e & h & 0 \\ 0 & b & 0 & e & 0 & c & 0 \\ 0 & 0 & 0 & h & c & 0 & 0 \\ 0 & 0 & f & 0 & 0 & 0 & 0 \end{bmatrix}$$

We can see the following principal submatrix and corresponding induced subgraph:

$$\begin{bmatrix} 0 & a & 0 & 0 & 0 & 0 & 0 \\ a & 0 & d & 0 & b & 0 & 0 \\ 0 & d & 0 & g & 0 & 0 & f \\ 0 & 0 & g & 0 & e & h & 0 \\ 0 & b & 0 & e & 0 & c & 0 \\ 0 & 0 & f & 0 & 0 & 0 & 0 \end{bmatrix}$$

As well, we see the following principal submatrix of an independent set of the graph:

$$\begin{bmatrix} 0 & a & 0 & 0 & 0 & 0 & 0 \\ a & 0 & d & 0 & b & 0 & 0 \\ 0 & d & 0 & g & 0 & 0 & f \\ 0 & 0 & g & 0 & e & h & 0 \\ 0 & b & 0 & e & 0 & c & 0 \\ 0 & 0 & 0 & h & c & 0 & 0 \\ 0 & 0 & f & 0 & 0 & 0 & 0 \end{bmatrix}$$

Now to prove the Cvetković Bound:

1.2 Theorem.

Cvetković Bound — Let G be a graph on n vertices, and W be the weight matrix of G. Then the following inequality holds:

$$\alpha(G) \le \min\{|G| - n_+(W), |G| - n_-(W)\}$$
(3)

Proof. ¹ Let H be the subgraph of G formed by the vertices in an independent set of size s. Then H is an induced subgraph of G and all eigenvalues of the principal submatrix W(H) are 0 since the principal submatrix will just be a zero matrix. Let λ_i denote the ith largest eigenvalue of W and τ_i denote the ith largest eigenvalue of W(H). Now, by interlacing, we have,

$$\lambda_i \ge \tau_i = 0 \text{ for all } i \in \{1, \dots, s\}$$
 (4)

and so

$$n - n_{-}(W) = n_{+}(W) + n_{0}(W) \ge s \tag{5}$$

Also, note that by negating W, the positive eigenvalues become negative eigenvalues and vice versa. Thus,

$$n - n_{+}(W) = n - n_{-}(-W), (6)$$

However, the principal submatrix corresponding to H in -W is still the zero matrix and thus has all zero eigenvalues. Thus, by interlacing, we get a similar result as above,

$$n - n_{+}(W) = n - n_{-}(-W) = n_{+}(-W) + n_{0}(-W) \ge s$$
 (7)

Therefore, both $n - n_+(W)$ and $n - n_-(W)$ are greater than or equal to s. Since s is the size of the idependent set, we can see that letting $s = \alpha(G)$, we get:

$$\alpha(G) \le \min\{|G| - n_+(W), |G| - n_-(W)\}$$
(8)

¹Interesting Graphs and their Colourings, unpublished lecture notes C. Godsil (2004)

1.2 Graphs with Tight Inertia Bounds

1.2.1 Perfect Graphs

1.5 Definition.

Chromatic Number — The chromatic number of a graph, $\chi(G)$, is the minimum number of colours needed in a proper colouring of G. [?]

1.3 Example.

Consider the following graph:

An example of a colouring would be:

However, $\chi(G)$ for this graph is 3:

1.6 Definition.

Clique — An m-clique in a graph is a complete subgraph on m vertices. [?]

The clique number, $\omega(G)$, is the number of vertices in a maximum clique of G.

1.7 Definition.

Clique Cover — A Clique Cover of the vertex set V(G) of a graph G is a set of cliques C, such that each vertex is in at least one clique in C.

The clique cover number, $\theta(G)$ is the minimum number of cliques needed in a clique cover of G. [?]

1.4 Example.

Consider the following graph:

A possible clique covering is:

However, we can find that $\theta(G)$ is equal to 3 (smallest I could find):

As well, the clique number, $\omega(G)$, is 4:

1.8 Definition.

Perfect Graph — A graph G is perfect if $\chi(G) = \omega(G)$ for all induced subgraphs, H, of G.

1.2.2 Graphs with an Eigensharp decomposition by Stars

1.3 Other Bounds on Independence Number

2 Algorithm to Find Graphs Lacking a Tight Inertia Bound

2.1 Outline of Method

2.1 Definition.

Optimal Weight Matrix — A weight matrix, W, of a graph, G, is optimal if

$$\alpha(G) = \min\{|G| - n_{+}(W), |G| - n_{-}(W)\}$$
(9)

2.1 Example.

Consider the following graph, G, with corresponding weight matrix W:

$$\begin{bmatrix} 0 & a & 0 & 0 & 0 & 0 & 0 & i \\ a & 0 & d & 0 & b & 0 & 0 & 0 \\ 0 & d & 0 & g & 0 & 0 & f & 0 \\ 0 & 0 & g & 0 & e & h & 0 & 0 \\ 0 & b & 0 & e & 0 & c & 0 & 0 \\ 0 & 0 & f & 0 & 0 & 0 & 0 & j \\ i & 0 & 0 & 0 & 0 & 0 & 0 & j & 0 \end{bmatrix}$$

We can see the independent number of G is 3:

Now, let G have the following weighting:

$$\begin{bmatrix} 0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 \\ -1 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Finding the eigenvalues of W, we find there are 3 positive eigenvalues and

5 negative eigenvalues. Thus, we see for this weight matrix we have:

$$\alpha(G) = \min\{|G| - n_{+}(W), |G| - n_{-}(W)\}$$

$$= \min\{8 - 3, 8 - 5\}$$

$$= \min\{5, 3\}$$

$$= 3$$
(10)

Therefore, this is an optimal weight matrix of G. Now consider the following weighting for the same graph:

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix}$$

Finding the eigenvalues of this weight matrix, we find there are 4 positive eigenvalues and 4 negative eigenvalues. Thus, we see we get:

$$\alpha(G) = 3 \neq \min\{|G| - n_{+}(W), |G| - n_{-}(W)\}$$

$$= \min\{8 - 4, 8 - 4\}$$

$$= \min\{4, 4\}$$

$$= 4$$
(11)

Therefore, we see that the previous weighting was not optimal for G.

2.1 Lemma.

If a graph, G, with weight matrix W, has two induced subgraphs, S_1 and S_2 , such that S_1 has $\alpha(G) + 1$ positive eigenvalues under the weighting of W, and S_2 has $\alpha(G) + 1$ negative eigenvalues under the weighting of W, then W is not optimal

 \square

2.2 Preliminary Tests to Determine if the Graph may be Suitable

2.2.1 Test for α -Critical

2.2 Definition.

 α -Critical — A graph, G, is α -critical if $\alpha(G) < \alpha(G-e)$ for all edges e.

2.2 Example.

Consider the following graph G:

we see that $\alpha(G) = 1$. But since this graph is complete, we see that if we delete any edge, we can get an independent set of size 2 by making the set include the two vertices that were connected by the edge we deleted. For example:

Thus, G is α -critical.

2.2 Lemma.

If G is α -critical, and W an optimal weight matrix of G, then $w_{i,j} \neq 0$ for all $i, j \in E(G)$

Proof. Assume for the sake of contradiction, that for some $i, j \in E(G)$, we have $w_{i,j} = 0$. Then, we know $\alpha(G - e_{i,j}) > \alpha(G)$ because G is α -critical. Thus:

$$\alpha(G) < \alpha(G - e_{i,j}) \le \min\{|G| - n_+(W), |G| - n_-(W)\}$$

Thus, we see that the inertia bound is not tight for G, so W is not an optimal weight matrix of G, which is a contradiction.

Due to the complexity of needing to consider edges that could potentially be zero in the weight matrix, it is easier to consider graphs that are restricted to only non-zero edge weights in its optimal weight matrix. Thus, it makes sense to only consider α -critical graphs, because of Lemma ?? ensuring that all α -critical graphs have non-zero weight matrices.

2.2.2 Determining Each Triangle Must Have the Same Sign

2.3 Graphs Currently Found

Graph6String	Vertices	Circulant	Strongly
			Regular
2	16	No	(16,10,6,6)
$S \sim \sim vVjjve} vmxymlG \sim Oi \sim Qm{jfxjNw{z{}}}$	20	No	No
$S \sim vnZjvUtvimj`\sim nibtTP \} [ffwk \sim wR \sim \{$	20	[1,3,4,7,8,9,10]	No
Uv~LnbgfeDShP\G}HuXmePrSemap	22	[1,2,3,5,10,11]	No
SxqJWG—ZCVhw			
WvvdtIJpB_c[LEHPiH?PsE_GAsWKcw	24	No	No
BXhGDgOFXWIBV@CZT			
W}nS—QeoOq_nWS]?KcPQUPDgU@_	24	No	No
$TBG_ug@ei?jCgCwY?J\sim$			
W}~SvAbp@IcjDgEaj?@BKPCg	24	No	No
BbXP@oCz?BLdE@KwGu[?EFZ			
W~nELU\'aKkXTJ]?@cGUB@KgBS	24	No	No
X?wG_sS'DUCGyWO'}?@M^			

3 Other Useful Information

3.1 Cayley Graphs

3.1 Definition.
Cayley Graph —