Teoria da Computação

Guilherme Henrique de Souza Nakahata

Universidade Estadual do Paraná - Unespar

22 de Maio de 2024

Avaliação de um algoritmo

- Simplicidade;
 - Facilmente entendido;
 - Implementado;
 - Mantido;
 - Não se conhece técnicas formais para isto.
- Corretude;
 - Toda entrada específica;
 - Saída correta é produzida.

Avaliação de um algoritmo

- Eficiência:
 - Recursos requeridos para o funcionamento;
 - Tempo;
 - Memória;
 - etc...

Onde utilizar?

- Projetar algoritmos mais eficientes;
- Saber se suas implementações são viáveis (Ponto de vista prático);
- Saber qual é o melhor algoritmo;
- Saber o grau de dificuldade de um problema (Teoria da complexidade).

O que é análise de algoritmos?

- Ferramentas matemáticas:
 - Análise Combinatória;
 - Teoria das probabilidades;
 - Destreza matemática:
 - Indução matemática;
 - Séries e produtórios;
 - Potências e Logaritmos;
 - etc...

- O que é?
- Onde é utilizada?
- Como utilizar?

- O que é?
 - Uma propriedade que se mantém verdadeira antes e após cada iteração de um laço;
- Onde é utilizada?
- Como utilizar?

- O que é?
 - Uma propriedade que se mantém verdadeira antes e após cada iteração de um laço;
- Onde é utilizada?
 - Correção de programas;
 - Otimização de códigos;
 - Análise de complexidade.
- Como utilizar?

- O que é?
 - Uma propriedade que se mantém verdadeira antes e após cada iteração de um laço;
- Onde é utilizada?
 - Correção de programas;
 - Otimização de códigos;
 - Análise de complexidade.
- Como utilizar?
 - Verificar se a condição é verdadeira:
 - Antes do laço começar;
 - Após cada iteração do laço;
 - Quando o laço termina.

Notação assintótica

- Expressar a complexidade de algoritmos;
- Funções matemáticas;
- Notação Assintótica;
- Descreve o comportamento de funções no limite;
- A notação assintótica descreve o crescimento de funções;
- Foca no que é importante;
- Abstrair os termos de baixa ordem e constantes multiplicativas;
- Análise Assintótica de Algoritmos.

Principais Anotações de Funções Assintóticas

Notação	Descrição
0	f(n) = O(g(n)) significa que $g(n)$ é um limite
	superior assintótico para $f(n)$.
Ω	$f(n) = \Omega(g(n))$ significa que $g(n)$ é um limite
	inferior assintótico para $f(n)$.
Θ	$f(n) = \Theta(g(n))$ significa que $f(n)$ é limitada
	assintoticamente superior e inferiormente por
	g(n).
0	f(n) = o(g(n)) significa que $f(n)$ cresce mais
	lentamente do que $g(n)$ para entradas grandes.
ω	$f(n) = \omega(g(n))$ significa que $f(n)$ cresce
	mais rapidamente do que $g(n)$ para entradas
	grandes.

Classes Comuns em Análise Assintótica

Definição

- Seja T(n) e f(n) função dos números inteiros para os reais;
- Dizemos que T(n) é O(f(n)) se:
- Existir constantes positivas c e n_0 ;
- Tais que $T(n) \le cf(n)$;
- Para todo $n \ge n_0$.

Exemplo

•
$$T(n) = 50n^3 + 5n + n \in O(n^3)$$
;

•
$$T(n) = 50n^3 + 5n + n \le c.n^3$$
;

Exercícios

•
$$T(n) = 30n^4 + 20n^2 + 10n \in O(n^4)$$
;

•
$$T(n) = 15n^5 + 7n^3 + 3n^2 \in O(n^5)$$
;

•
$$T(n) = 40n^6 + 5n^4 + 9n \in O(n^6)$$
;

Notação assintótica

- Notação Ω e Θ;
- $f(n) = \Omega(g(n))$ significa que g(n) é um limite inferior assintótico para f(n);
- $f(n) = \Theta(g(n))$ significa que f(n) é limitada assintoticamente superior e inferiormente por g(n);

Definição

- Seja f(n) e g(n) função dos números inteiros para os reais;
- Dizemos que f (n) é $\Omega(g(n))$ se existirem constantes positivas c e n_0 tais que:
- $f(n) \geq cg(n)$;
- Para todo n $> n_0$.

Exemplo de Prova de Notação Big- Ω

- Prove $T(n) = 10n^3 + 5n^2 + n \in \Omega(n^3)$;
- $T(n) = 10n^3 + 5n^2 + n \ge c.n^3$;

Exercícios

- Prove $T(n) = 30n^4 + 20n^2 + 10n \in \Omega(n^4)$;
- Prove $T(n) = 15n^5 + 7n^3 + 3n^2 \in \Omega(n^5)$;
- Prove $T(n) = 40n^6 + 5n^4 + 9n \in \Omega(n^6)$;

Exemplo Big-⊖

- Dizemos que f (n) é $\Theta(g(n))$ se existirem constantes positivas c_1 e c_2 e n_0 tais que:
- c1 g(n) \leq f (n) \leq c2 g(n);
- para todo n $\geq n_0$;
- Dizemos que f (n) = $\Theta(g(n))$ se somente se:
 - $\bullet \ f(n) = \Omega(g(n))$
 - f(n) = O(g(n))

Exemplo Big-Θ

• Prove que
$$f(n) = 2n^2 + 3n + 5 \in \Theta(n^2)$$
;

•

$$c_1 \cdot n^2 \le 2n^2 + 3n + 5 \le c_2 \cdot n^2$$

.

Exemplo Big-⊖

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty \qquad \lim_{n\to\infty} \frac{f(n)}{g(n)} = c \qquad \lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$

$$f(n) = \Omega(g(n)) \qquad f(n) = \Theta(g(n)) \qquad f(n) = O(g(n))$$

Exercícios

- Provar $f(n) = 3n^2 + 4n + 7 \in \Theta(n^2)$;
- Provar $f(n) = n \log n + n \in \Theta(n \log n)$;

Complexidade de Algoritmos Recursivos

- T(n) = T(n-1) + n
 - $\Theta(n^2)$
 - Algoritmo recursivo que a cada loop examina a entrada e elimina um item;
- T(n) = T(n/2) + c
 - $\Theta(\log n)$
 - Algoritmo recursivo que divide a entrada em cada passo;
- T(n) = T(n/2) + n
 - \bullet $\Theta(n)$
 - Algoritmo recursivo que divide a entrada, mas precisa examinar cada item na entrada;
- T(n) = 2T(n/2) + 1
 - \bullet $\Theta(n)$
 - Algoritmo recursivo que divide a entrada em duas metades e executa uma quantidade constante de operações.

Exemplo

Algorithm 1 MergeSort(A, p, r)

Exemplo

- O método é expresso na forma T(n) = aT(n/b) + f(n).
- a é o número de subproblemas.
- b é o fator pelo qual o tamanho do problema é reduzido em cada chamada recursiva.
- f(n) é o custo da divisão e conquista.

Método de substituição

- O método consiste de duas etapas:
 - Pressupor uma função como solução;
 - Usar indução matemática para encontrar as contantes da definição assintótica;
- Provar no passo da indução examente o que foi proposto;
- Provar que $T(n) \leq f(n)$.

Árvore de recursão

- Cada nó representa o custo de um único subproblema;
- Durante o processo de chamadas de funções recursivas;
- Permite somar o custo de cada nível da árvore;
- Determinar o custo total pela soma de todos os níveis.

Árvore de Recursão para T(n) = 2T(n/2) + cn

Exemplo

- Cada nível da árvore tem custo de cn;
- Altura da árvore é lg n;
- O(n lg n);

Método mestre

Caso 1:
$$f(n) = O(n^{\log_b a} - \varepsilon)$$
 Caso 2: $f(n) = \Theta(n^{\log_b a})$ $T(n) = \Theta(n^{\log_b a})$.

Caso 3: $f(n) = \Omega(n^{\log_b a + \varepsilon})$ e $af(n/b) \le kf(n)$ para algum k < 1 e n suficientemente grande

$$T(n) = \Theta(f(n)).$$

Método mestre

- Caso 1: Se f(n) é assintoticamente menor que $n^{\log_b a}$ para algum $\varepsilon > 0$, então a solução é $T(n) = \Theta(n^{\log_b a})$;
- Caso 2: Se f(n) é assintoticamente igual a $n^{\log_b a}$, então a solução é $T(n) = \Theta(n^{\log_b a} \log n)$;
- Caso 3: Se f(n) é assintoticamente maior que $n^{\log_b a}$ e $af(n/b) \le kf(n)$ para algum k < 1 e n suficientemente grande, então a solução é $T(n) = \Theta(f(n))$.

Exercícios

•
$$T(n) = 2T(n/2) + n$$
;

•
$$T(n) = 16T(n/4) + n$$
;

•
$$T(n) = 2T(n/2) + n^2$$
.

Bibliografia Básica

- LEWIS, H. R.; PAPADIMITRIOU, C. H. Elementos de Teoria da Computação. 2 ed. Porto Alegre: Bookman, 2000.
- VIEIRA, N. J. Introdução aos Fundamentos da Computação. Editora Pioneira Thomson Learning, 2006.
- DIVERIO, T. A.; MENEZES, P. B. Teoria da Computação: Máquinas Universais e Computabilidade. Série Livros Didáticos Número 5, Instituto de Informática da UFRGS, Editora Sagra Luzzato, 1 ed. 1999.

Obrigado! Dúvidas?

Guilherme Henrique de Souza Nakahata

guilhermenakahata@gmail.com

https://github.com/GuilhermeNakahata/UNESPAR-2024