Exploratory Data Analysis

Upload the libraries:

```
library(ggplot2)
library(patchwork)
library(psych)
```

Upload the data:

```
scales <- read.csv("scales_small_charlson.csv", header = FALSE,
    stringsAsFactors = FALSE)
lipids <- read.csv("lipids_small_charlson.csv", header = FALSE,
    stringsAsFactors = FALSE)
colnames(lipids) <- lipids[1, ]
lipids <- lipids[-1, ]
colnames(scales) <- scales[1, ]
scales <- scales[-1, ]
scales_lipids <- merge(scales, lipids, by = "MS ID")</pre>
```

Let's convert the data to the required type:

```
columns_to_convert <- which(names(scales_lipids) != "sex" & names(scales_lipids) !=
    "MS ID")
scales_lipids[, columns_to_convert] <- lapply(scales_lipids[,
    columns_to_convert], as.numeric)</pre>
```

Let's estimate the distribution of demographic factors in the data:

Age distribution:

```
ggplot(data = scales_lipids, aes(x = age)) + geom_histogram(fill = "#B4EEB4",
    color = "black", bins = 15) + labs(x = "Age", y = "Count") +
    theme(axis.title.x = element_text(size = 15), axis.title.y = element_text(size = 15)) +
    theme(axis.text.x = element_text(size = 15), axis.text.y = element_text(size = 15))
```


Most patients are between 90 and 95 years old.

Genders distribution:

```
ggplot(scales_lipids, aes(x = factor(sex))) + geom_histogram(aes(fill = factor(sex)),
    color = "black", bins = 20, stat = "count") + scale_fill_manual(values = c(f = "pink",
    m = "lightblue")) + labs(x = "Gender", y = "Count", fill = "Gender") +
    theme(axis.title.x = element_text(size = 15), axis.title.y = element_text(size = 15),
        legend.text = element_text(size = 15), legend.title = element_text(size = 15)) +
    theme(axis.text.x = element_text(size = 15), axis.text.y = element_text(size = 15))
```


Most patients are female.

Age distribution in different genders:

```
ggplot(data = scales_lipids, aes(x = age, fill = sex)) + geom_density(alpha = 0.5) +
    labs(x = "Age", y = "Density", fill = "Genders") + theme(axis.title.x = element_text(size = 15),
    axis.title.y = element_text(size = 15), legend.text = element_text(size = 15),
    legend.title = element_text(size = 15)) + theme(axis.text.x = element_text(size = 15),
    axis.text.y = element_text(size = 15))
```


There are differences in the distribution of age between the genders.

Let's estimate the distribution of scales in the data:

Distribution of scales by gender:

```
p1 <- ggplot(data = scales_lipids, aes(x = mmse, fill = sex)) +
    geom_density(alpha = 0.5) + labs(x = "Mmse", y = "Density",
    fill = "Sex") + ggtitle("Mmse distribution in different genders") +
    theme(plot.title = element_text(hjust = 0.5, size = 12),
        axis.title.x = element_text(size = 12), axis.title.y = element_text(size = 12),
        legend.text = element_text(size = 12), legend.title = element_text(size = 12)) +
    theme(axis.text.x = element_text(size = 12), axis.text.y = element_text(size = 12))

p2 <- ggplot(data = scales_lipids, aes(x = fab, fill = sex)) +
    geom_density(alpha = 0.5) + labs(x = "Fab", y = "Density",
    fill = "Sex") + ggtitle("Fab distribution in different genders") +
    theme(plot.title = element_text(hjust = 0.5, size = 12),
        axis.title.x = element_text(size = 12), axis.title.y = element_text(size = 12),
        legend.text = element_text(size = 12), legend.title = element_text(size = 12)) +
    theme(axis.text.x = element_text(size = 12), axis.text.y = element_text(size = 12))</pre>
```

```
geom_density(alpha = 0.5) + labs(x = "Bartel", y = "Density",
    fill = "Sex") + ggtitle("Bartel distribution in different genders") +
    theme(plot.title = element_text(hjust = 0.5, size = 12),
        axis.title.x = element_text(size = 12), axis.title.y = element_text(size = 12),
        legend.text = element_text(size = 12), legend.title = element_text(size = 12)) +
    theme(axis.text.x = element_text(size = 12), axis.text.y = element_text(size = 12))
p4 <- ggplot(data = scales_lipids, aes(x = sppb, fill = sex)) +
    geom_density(alpha = 0.5) + labs(x = "Sppb", y = "Density",
    fill = "Sex") + ggtitle("Sppb distribution in different genders") +
    theme(plot.title = element_text(hjust = 0.5, size = 12),
        axis.title.x = element_text(size = 12), axis.title.y = element_text(size = 12),
        legend.text = element_text(size = 12), legend.title = element_text(size = 12)) +
    theme(axis.text.x = element_text(size = 12), axis.text.y = element_text(size = 12))
(p1 + p2)/(p3 + p4)
```

Sex

m

Mmse distribution in different genders Fab distribution in different genders 0.08 -0.075 -0.06Sex 0.050 -0.04 0.025 0.02 0.000 0.00 5 15 10 20 30 10 0 Mmse Fab Bartel distribution in different genders Sppb distribution in different genders

The distribution of the scales differs between genders, especially in the case of the sppb scale.

Distribution of scales by age:

```
p5 <- ggplot(scales lipids, aes(x = age, y = mmse)) + geom point(shape = 16,
    size = 3, color = adjustcolor("#1874CD"), alpha = 0.2) +
```

```
labs(title = "Mmse distribution at different ages", x = "Age",
        y = "Mmse") + theme(plot.title = element_text(hjust = 0.5,
    size = 12), axis.title.x = element_text(size = 12), axis.title.y = element_text(size = 12),
    legend.text = element_text(size = 12), legend.title = element_text(size = 12)) +
    theme(axis.text.x = element_text(size = 12), axis.text.y = element_text(size = 12))
p6 <- ggplot(scales_lipids, aes(x = age)) + geom_point(aes(y = fab),
    shape = 16, size = 3, color = adjustcolor("Red"), alpha = 0.2) +
    labs(title = "Fab distribution at different ages", x = "Age",
        y = "Fab") + theme(plot.title = element_text(hjust = 0.5,
    size = 12), axis.title.x = element_text(size = 12), axis.title.y = element_text(size = 12),
    legend.text = element_text(size = 12), legend.title = element_text(size = 12)) +
    theme(axis.text.x = element_text(size = 12), axis.text.y = element_text(size = 12))
p7 <- ggplot(scales_lipids, aes(x = age)) + geom_point(aes(y = bartel),
    shape = 16, size = 3, color = adjustcolor("#BF3EFF"), alpha = 0.2) +
    labs(title = "Bartel distribution at different ages", x = "Age",
        y = "Bartel") + theme(plot.title = element_text(hjust = 0.5,
    size = 12), axis.title.x = element_text(size = 12), axis.title.y = element_text(size = 12),
    legend.text = element_text(size = 12), legend.title = element_text(size = 12)) +
    theme(axis.text.x = element_text(size = 12), axis.text.y = element_text(size = 12))
p8 <- ggplot(scales_lipids, aes(x = age)) + geom_point(aes(y = sppb),
    shape = 16, size = 3, color = adjustcolor("#8B1C62"), alpha = 0.2) +
    labs(title = "Sppb distribution at different ages", x = "Age",
        y = "Sppb") + theme(plot.title = element_text(hjust = 0.5,
    size = 12), axis.title.x = element_text(size = 12), axis.title.y = element_text(size = 12),
    legend.text = element_text(size = 12), legend.title = element_text(size = 12)) +
    theme(axis.text.x = element_text(size = 12), axis.text.y = element_text(size = 12))
(p5 + p6)/(p7 + p8)
```


Let's evaluate the correlation between scales and demographic factors:

Let's convert gender data to a numeric type:

Let's draw a correlation plot:

Correlations between scales and demographic characteristics

The scales are highly correlated with each other, but not with demographic factors.