(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-26698

(P2000-26698A) (43)公開日 平成12年1月25日(2000.1.25)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

C 0 8 L 53/02

C08F 297/04

C 0 8 L 53/02

4J002

C08F 297/04

4J026

審査請求 未請求 請求項の数5 OL (全 11 頁)

(21)出願番号

特願平10-197017

(71)出願人 000003296

電気化学工業株式会社

(22)出願日

平成10年7月13日(1998.7.13)

東京都千代田区有楽町1丁目4番1号

(72)発明者 松井 正光

千葉県市原市五井南海岸6番地 電気化学

工業株式会社千葉工場内

(72)発明者 後藤 陽介

千葉県市原市五井南海岸6番地 電気化学

工業株式会社千葉工場内

(72)発明者 渡部 秀樹

千葉県市原市五井南海岸6番地 電気化学

工業株式会社千葉工場内

最終頁に続く

(54) 【発明の名称】 プロック共重合体組成物、及びその製造方法

(57) 【要約】

【課題】 透明性、耐衝撃性、およびフィルム製膜性に 優れたプロック共重合体組成物、及びその製造方法を提 供する。

【解決手段】分子量分布曲線のピーク部の分子量(M p) が50,000~600,000であるビニル芳香 族炭化水素と共役ジエンとからなるプロック共重合体 (I) を50~95重量%、Mpが5,000~30 0.000であってプロック共重合体(I)のMp以下 であるビニル芳香族炭化水素重合体あるいはビニル芳香 族炭化水素と共役ジエンのブロック共重合体から選ばれ た1種以上の重合体(II)を5~50重量%含むプロ ック共重合体組成物であって、含まれる共役ジエン単位 が該ブロック共重合体組成物に対して10~50重量 %、かつ該共重合体組成物中に含まれるビニル芳香族炭 化水素のブロック率が70~95%であることを特徴と するブロック共重合体組成物、及びその製造方法。

【特許請求の範囲】

【請求項1】 (a)ビニル芳香族炭化水素と共役ジエ ンとからなるブロック共重合体であって、分子量分布曲 線のピーク部の分子量が50,000~600,000 であるプロック共重合体(I)を50~95重量%、お よび(b)ビニル芳香族炭化水素重合体またはビニル芳 香族炭化水素と共役ジエンとからなるブロック共重合体 から選ばれた少なくとも1種以上の重合体であって、分 子量分布曲線のピーク部の分子量が5,000~30 0,000でかつ前記プロック共重合体(I)の分子量 10 分布曲線のピーク部の分子量以下である重合体(II) を5~50重量%含有してなるプロック共重合体組成物 であって、(c)該ブロック共重合体組成物中の共役ジ エン単位の割合が10~50重量%であり、かつ(d) 該ブロック共重合体組成物中のブロック状ビニル芳香族 炭化水素量の割合が、全ビニル芳香族炭化水素量に対し て70~95%であることを特徴とするブロック共重合 体組成物。

1

【請求項 2】 ブロック共重合体(I)の重量平均分子量(M_w)の数平均分子量(M_n)対する比 M_w $/M_n$ が1.0~1.3であり、かつその化学構造が以下に示す一般式(口)~(ホ)から選ばれた少なくとも1つであり、また重合体(II)の化学構造が以下に示す一般式(イ)~(ホ)から選ばれた少なくとも1つであることを特徴とする請求項1記載のブロック共重合体組成物。

(イ) A、(ロ) (A-B)_m、(ハ) A-(B-A)_m、(二) A-(C-B)_m、(ホ) A-(C-B)_m
-A。但し、Aはビニル芳香族炭化水素の重合鎖、Bはビニル芳香族炭化水素と共役ジエンの共重合鎖、Cは共 30役ジエンの重合鎖を示す。また、mはそれぞれ独立した1以上の整数を示す。

【請求項3】 (i) ビニル芳香族炭化水素または(i i) ビニル芳香族炭化水素と共役ジエンとをリピングア ニオン重合法により(共)重合させつつある重合反応系 中に、水、アルコール、無機酸、有機酸およびフェノー ル系化合物のうちから選ばれた少なくとも1種のプロト ン供与性の物質を重合活性末端数より少ない化学量論数 の量を一括添加して、または分割添加して、重合活性末 端の一部を失活させることにより重合体(II)を生成 40 させておき、この後(i)ビニル芳香族炭化水素の該重 合反応系中にさらに共役ジエンまたは共役ジエンとビニ ル芳香族炭化水素を追加添加し、あるいは(ii)ビニ ル芳香族炭化水素と共役ジエンとの該重合反応系中に共 役ジエンおよび/またはビニル芳香族炭化水素を追加添 加し、または追加添加せずに、重合反応を続けることに よりブロック共重合体(I)を生成させて請求項1記載 のブロック共重合体組成物となすことを特徴とするブロ ック共重合体組成物の製造方法。

【請求項4】 ビニル芳香族炭化水素と共役ジエンをり 50 げたことにより、耐衝撃性の低下を伴うという結果が得

ビングアニオン重合法により共重合させてブロック共重合体(I)を生成しつつある重合反応系中に有機リチウム化合物を主成分とする重合開始剤を一括または分割添加して追加し、さらにビニル芳香族炭化水素および/または共役ジエンを追加添加し、または追加添加せずに、重合反応を続けることにより重合体(II)を生成させて請求項1記載のブロック共重合体組成物となすことを特徴とするブロック共重合体組成物の製造方法。

【請求項5】 ブロック共重合体(I)と重合体(II)と、それぞれ別の重合反応系で生成して得た後にこれを混合して請求項1記載のブロック共重合体組成物となすことを特徴とするブロック共重合体組成物の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は透明性、耐衝撃性が良好で、さらにシート、フィルムへの製膜性に優れたビニル 芳香族炭化水素と共役ジエンとからなるブロック共重合体組成物に関する。

[0002]

20

【従来の技術】無極性有機溶剤中で、アルキルリチウム を重合開始剤としたリビングアニオン重合反応では、重 合開始剤の添加量、モノマーの仕込み重量とそれらの仕 込み時期、モノマー反応性比調整剤(以後「ランダム化 剤」という)の濃度など、各種重合条件を操作すること により、化学構造が異なる様々な特性をもつ共重合体を 得ることができる。リビングアニオン重合は、ラジカル 重合に比べて一般に重合途中で連鎖移動反応による反応 活性末端の失活や新規生成を伴わない反応であり、リビ ングアニオン重合により得られた重合体の分子量分布は ラジカル重合による重合体の分子量分布に比べて著しく 狭くなる(以後「単分散性」という)ことが特徴として 知られている。そして、これらの特性を生かす種々の製 造方法が、特公昭36-19286号公報、特公昭48 - 4106号公報などに示されている。これらの方法に より製造されるビニル芳香族炭化水素と共役ジエンとか らなるブロック共重合体は、高度な透明性を持ち、特公 昭63-49702号公報で開示されているように、こ の樹脂を原材料として、室温では原形を保持しながらも 一定温度以上では短時間に収縮する特性を持つシートや、 フィルムを得ることができる。

[0003]

【発明が解決しようとする課題】シートやフィルムの外観の良し悪しは、一般的に製膜時の樹脂の流動性に左右され、例えば分子量を全般的に下げることにより樹脂の流動性を増し、製膜性を改善することが期待できる。しかしながら、単分散性の分子量分布を有するブロック共重合体においては、そのような流動性改善処方による製膜性への改善効果は少なく、また一方では、分子量を下げたことにより、耐衝撃性の低下を伴うという結果が得

40

られていた。即ち、耐衝撃性を保ちながら、良好な製膜 性を有するブロック共重合体の開発が望まれていた。 [0004]

【課題を解決するための手段】このような状況におい

て、本発明者らは異なる分子量分布域を持つプロック共

重合体同士あるいはブロック共重合体と他の重合体との

樹脂組成物が物性や製膜性に対して及ぼす影響を鋭意検 討した結果、分子量が異なる特定のプロック共重合体同 士またはプロック共重合体と他の重合体とを、特定の比 率で混合させることによって、従来の技術により製造さ れたプロック共重合体に比べ製膜性が良好で、なおかつ 透明性、耐衝撃性にも優れるブロック共重合体組成物が 得られることを見出し、本発明を完成させるに至った。 【0005】即ち、本発明は、(a)ビニル芳香族炭化 水素と共役ジエンとからなるブロック共重合体であっ て、分子量分布曲線のピーク部の分子量が50,000 ~600,000であるブロック共重合体(I)を50 ~95重量%、および(b)ビニル芳香族炭化水素重合 体またはビニル芳香族炭化水素と共役ジエンとからなる ブロック共重合体から選ばれた少なくとも1種以上の重 20 合体であって、分子量分布曲線のピーク部の分子量が 5,000~300,000でかつ前記ブロック共重合 体(I)の分子量分布曲線のピーク部の分子量以下であ る重合体(II)を5~50重量%含有してなるブロッ ク共重合体組成物であって、(c)該ブロック共重合体 組成物中の共役ジエン単位の割合が10~50重量%で あり、かつ(d)該ブロック共重合体組成物中のブロッ ク状ビニル芳香族炭化水素量の割合が、全ビニル芳香族 炭化水素量に対して70~95%であることを特徴とす るブロック共重合体組成物、及びその製造方法に関す

【0006】以下、本発明を詳細に説明する。本発明に おいて使用されるビニル芳香族炭化水素としては、スチ レン、ローメチルスチレン、ローメチルスチレン、ロー tertーブチルスチレン、2,4-ジメチルスチレ ン、2、5-ジメチルスチレン、α-メチルスチレン、 ピニルナフタレン、ビニルアントラセンなどがあるが、 特に一般的なものとしてはスチレンが挙げられる。

【0007】また、共役ジエンとしては1,3-ブタジ エン、2-メチル-1,3-ブタジエン(イソプレ ン)、2,3-ジメチル-1,3-ブタジエン、1,3 -ペンタジエン、1,3-ヘキサジエンなどであるが、 特に一般的なものとしては1,3-ブタジエン、イソプ レンが挙げられる。

【0008】ここで本発明におけるブロック共重合体 (I) および重合体 (II) の分子量分布曲線のピーク 部の分子量について説明する。ブロック共重合体 (I)、および重合体(II)の分子量分布曲線ののピ

ーク部の分子量とは、ゲルパーミエーションクロマトグ ラフィー(以下、GPCと記す)により測定された分子 50 量分布曲線のピーク部の分子量(以下、Mpと記す)を 示すものである。Mpは、分子量既知の標準ポリスチレ ンのGPCを測定し、そのピーク位置の保持容量

 (V_R) を求めて分子量と V_R との相関曲線を作図した 検量線から求められる。

【0009】本発明におけるブロック共重合体(I)の Mpは50,000~600,000であり、より好ま しくは100,000~500,000である。Mpが 50,000未満では共重合体組成物の剛性や耐衝撃性 が低下してしまい、また600、000を越えると成形 加工性が低下してしまうため好ましくない。

【0010】ブロック共重合体(I)は、その分子量分 布幅の目安となる重量平均分子量Mw の数平均分子量M n に対する比の値、即ちMw/Mnは1.0から1.3 の範囲内にあることが望ましい。1.3を越えたものを 用いてフィルムを製膜すると、透明性が若干低下するこ とがある。

【0011】また、プロック共重合体(I)は、前記M w $/M_n$ の範囲にあり、かつその化学構造が以下に示す 一般式(口)~(ホ)から選ばれた少なくとも1つであ ることが組成物の耐衝撃性、製膜性の点でより好まし

(\square) (A-B) $_{m}$, (\bigwedge) A- (B-A) $_{m}$, (\square). A- (C-B) m 、 (ホ) A- (C-B) m -A。但 し、Aはビニル芳香族炭化水素の重合鎖、Bはビニル芳 香族炭化水素と共役ジエンの共重合鎖、Cは共役ジエン の重合鎖を示す。また、mはそれぞれ独立した1以上の 整数を示す。また、一般式中にA、B、あるいはCが複 数存在しても、その分子量、共重合鎖にあってはビニル 芳香族炭化水素と共役ジエンの分布状態などそれぞれ独 立していて、同一である必要はない。

【0012】本発明における重合体(II)は、ビニル 芳香族炭化水素重合体またはビニル芳香族炭化水素と共 役ジエンとからなるブロック共重合体から選ばれた少な くとも1種以上の重合体である。

【0013】重合体(II)は、Mpが5,000~3 00,000であり、より好ましくは10,000~1 50,000の範囲内である。Mpが5,000よりも 小さいと共重合体組成物の剛性や耐衝撃性が低下してし まい、反対に300,000を越えると成形加工性が低 下し、本発明の効果が得られない。また、重合体(I I) のMpは前記プロック共重合体(I)のMp以下で あることが製膜性の点から必要である。なお重合体(I I) のMpが複数個存在する場合には、それらの中で最 も大きな値のMpが前記ブロック共重合体(I)のMp 以下であることが必要である。

【0014】重合体(II)の化学構造は以下に示すー 般式(イ)~(ホ)から選ばれた少なくとも1つである ことがより好ましい。

(1) A, (1) (A-B) (1) (A-B)

6

m、(二) A-(C-B)m、(ホ) A-(C-B)m-A。但し、記号A、B、C、mの意味はそれぞれ前記説明のとおりである。一般式中にA、B、あるいはCが複数存在しても、分子量、共重合鎖にあってはビニル芳香族炭化水素と共役ジエンの分布状態などそれぞれ独立していて、同一である必要はない。

【0015】本発明のブロック共重合体組成物は、ビニル芳香族炭化水素と共役ジエンとからなるブロック共重合体(I)50~95重量%と、ビニル芳香族炭化水素重合体またはビニル芳香族炭化水素と共役ジエンとから10なる重合体(II)50~5重量%からなる。より好ましくはブロック共重合体(I)60~90重量%と重合体(II)40~10重量%である。重合体(II)の割合が5重量%未満であると発明の効果が発現されず製膜性に支障が生じ、逆に50重量%を越えるとフィルムの強度が不十分となる。

【0016】本発明のブロック共重合体組成物中全体に占める共役ジエンの割合は $10\sim50$ 重量%であり、より好ましくは $15\sim40$ 重量%である。共役ジエンが50重量%を越えて占めると樹脂組成物の製膜性が低下し、また10重量%未満では耐衝撃性が低下してしまい好ましくない。

【0017】本発明のブロック共重合体組成物は下記式で定義されるブロック率が70~95%、より好ましくは75~92%である。ブロック率が70%未満であると透明性が低下してしまい、95%より大きいと成形加工性に難が生じる。

ブロック率 (%) = (W/W 0) \times 1 0 0 ここで、Wはブロック状ビニル芳香族炭化水素量、即ちビニル芳香族炭化水素が連続して 5 個以上結合した状態 30 のビニル芳香族炭化水素量、W0 は全ビニル芳香族炭化水素量を示す。W、W0 は核磁気共鳴吸収法(^1H-N MR法)により測定される。

【0018】重合体(II)がビニル芳香族炭化水素重合体である場合、ビニル芳香族炭化水素重合体自体のプロック率は100%としてカウントされる。

【0019】次に、本発明を構成するブロック共重合体(I)、および重合体(II)のプロック共重合体の製造方法について説明する。ブロック共重合体(I)、および重合体(II)のブロック共重合体は、有機溶媒中40で有機リチウム化合物を重合開始剤とし、前記に説明したビニル芳香族炭化水素及び共役ジエンの中から、それぞれ1種または2種以上を選びリビングアニオン重合させることにより製造できる。

【0020】このリビングアニオン重合では、重合活性 末端が存在する限り原料モノマーとしたビニル芳香族炭 化水素、及び共役ジエンは通常全量が重合し、該モノマ ーが残留することはほとんどない。また連鎖移動反応に よる重合途中での反応活性末端の失活や新規生成を伴わ ないという重合反応上の特徴を持つ。そのため本発明に 50 おけるブロック共重合体の分子量や分子構造、及び組成物となす場合のその構成割合は、モノマー、重合開始剤、ランダム化剤、活性末端の失活のために用いるプロトン供与性の物質(以下、重合停止剤という)の仕込量、及びその添加時期、添加回数を適宜変えることにより目的に応じて制御することが可能である。

【0021】有機溶媒としてはブタン、ペンタン、ヘキサン、イソペンタン、ヘプタン、オクタン、イソオクタンなどの脂肪族炭化水素、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサンなどの脂環式炭化水素、或いはペンゼン、トルエン、エチルベンゼン、キシレンなどの芳香族炭化水素などが使用できる。

【0022】重合開始剤である有機リチウム化合物は、分子中に1個以上のリチウム原子が結合した化合物であり、本発明では例えば、エチルリチウム、nープロピルリチウム、イソプロピルリチウム、nープチルリチウム、secープチルリチウム、tertープチルリチウムなどの単官能性重合開始剤、ヘキサメチレンジリチウム、ブタジエニルジリチウム、イソプレニルジリチウムなどの多官能性重合開始剤が使用できる。

【0023】そして、ブロック共重合体のブロック率 は、ビニル芳香族炭化水素と共役ジエンの共重合時の反 応性比を変化させるランダム化剤の添加濃度を変えるこ とにより制御することができる。そのランダム化剤は極 性を持つ分子であり、アミン類やエーテル類、チオエー テル類、及びホスホルアミド、アルキルベンゼンスルホ ン酸塩、その他にカリウムまたはナトリウムのアルコキ シドなどが使用可能である。適当なアミン類としては第 三級アミン、例えばトリメチルアミン、トリエチルアミ ン、テトラメチルエチレンジアミンの他、環状第三級ア ミンなども使用できる。エーテル類としてはジメチルエ ーテル、ジエチルエーテル、ジフェニルエーテル、ジエ チレングリコールジメチルエーテル、ジエチレングリコ ールジエチルエーテル、ジエチレングリコールジブチル エーテル、テトラヒドロフランなどが挙げられる。その 他にトリフェニルフォスフィン、ヘキサメチルホスホル アミド、アルキルベンゼンスルホン酸カリウムまたはナ トリウム、カリウム、ナトリウムブトキシドなどを挙げ ることができる。

【0024】ランダム化剤は1種、または複数の種類を使用することができ、その添加濃度としては、原料とするモノマー100重量部あたり合計 $0.001\sim10$ 重量部とすることが適当である。

【0025】リビングアニオン重合における重合停止剤として、本発明では水、アルコール、無機酸、有機酸、およびフェノール系化合物から選ばれる少なくとも1種以上が反応系中に添加されて重合が停止する。重合停止剤として水はとくに賞用できる。

【0026】重合停止剤としてのアルコールとしてはメ

8

【0027】なお、重合活性末端の失活数は加えた重合停止剤の化学量論数に比例するので、重合停止剤は活性末端数より少ない化学量論数の量を数回に分けて添加することとして、重合中の活性末端の一部のみを失活させ、残った活性末端による重合をさらに継続させながら所定の重合率に達したところで残りの活性末端を失活させても良いし、また一度に全ての活性末端を失活させても良い。但し、重合の完了時にはその時点における活性末端数に対して充分な量の重合停止剤を添加して活性末端を全て失活させることが必要である。

【0028】本発明において示すところの複数の成分からなるブロック共重合体組成物を得る製造方法としては、例えば以下に示す方法が好ましい製造方法として挙げられる。但し、製造方法はここに挙げる方法に限られるものではない。

【0029】第1の方法として、リビングアニオン重合 30 反応系中に、重合活性末端数より少ない化学的量論数の重合停止剤を加えて低い分子量の重合体、即ち重合体 (II)に相当する重合体を生成させ、その後さらに重合反応を継続することにより、先の時点で失活せずに重合反応の終了時まで反応に関与した分子量の高い共重合体、即ちブロック共重合体(I)に相当する重合体を生成させる製造方法が挙げられる。

【0030】即ち、(i)ビニル芳香族炭化水素または (ii)ビニル芳香族炭化水素と共役ジエンとをリビングアニオン重合法により(共)重合させつつある重合反 40 応系中に、重合活性末端数より少ない化学量論数の水、アルコール、無機酸、有機酸およびフェノール系化合物のうちから選ばれた少なくとも1種のプロトン供与性の物質を一括添加して、または分割添加してその失活作用を利用して重合活性末端の一部を失活作用を利用して重合活性末端の一部を失活させることにより重合体(II)を生成させておき、この後さらに(i)ビニル芳香族炭化水素の該重合反応系中においては共役ジエンまたは共役ジエンとビニル芳香族炭化水素を追加添加し、あるいは(ii)ビニル芳香族炭化水素と共役ジエンとの50

共重合反応系にあっては該重合反応系中に共役ジエンおよび/またはピニル芳香族炭化水素を追加添加し、または追加添加せずに、重合反応を続けることによりブロック共重合体(I)を生成させることによって本発明のブロック共重合体組成物を得ることができる。

【0031】第2の方法として、反応完結前の分子量の高い共重合体、即ちブロック共重合体(I)に相当する重合体の生成段階の後に、重合開始剤を追加添加して新たな反応開始点を生じさせ、低い分子量の重合体、即ち重合体(II)に相当する重合体を並行して生成させてブロック共重合体(I)および重合体(II)を同一の反応系内に生成させる製造方法が挙げられる。

【0032】即ち、ビニル芳香族炭化水素と共役ジエンをリビングアニオン重合法で共重合させてブロック共重合体(I)を生成しつつある重合反応系中に、有機リチウム化合物を主成分とする重合開始剤を一括または分割添加して追加し、さらにビニル芳香族炭化水素および/または共役ジエンを追加添加し、または追加添加せずに、重合反応を続けることにより重合体(II)を生成させることによって本発明のブロック共重合体組成物を得ることができる。

【0033】前記第1、あるいは第2の製造方法において、重合体の原料となるモノマー、及び重合停止剤の添加量や添加時期、及びその回数は得られる重合体(II)あるいはブロック共重合体(I)が先に記載した所定の分子量や分子量分布、構造、組成などに合致するように選ばれる。また重合停止剤の添加量は一般に反応系の総量に対して極めて微量となるため、その添加量の精度を増す目的で、原料とするモノマーや溶剤など活性末端に影響を与えない他の物質に混ぜて添加することもできる

【0034】そして第3の方法として、別々の重合反応系にて重合して得られたブロック共重合体(I)と重合体(II)を所定の割合で混合する方法が挙げられる。ブロック共重合体(II)のブロック共重合体は前記の説明のとおり、リピングアニオン重合で得ることができる。なお、全ての製造方法に共通して、重合反応の完了時にはその時点における活性末端数に対して充分な量の重合停止剤を添加して活性末端を全て失活させる。

【0035】失活処理の終わった共重合体溶液を溶剤から分離するための方法としては、(1)メタノールなどの貧溶媒中に析出させる方法、(2)加熱ロールなどに共重合体溶液を供給し、溶剤のみを蒸発させて共重合体を分離する方法(ドラムドライヤー法)、(3)加熱したブロック共重合体(組成物)溶液を、そこに含まれる有機溶媒の該温度における平衡蒸気圧よりも低い圧力に保った缶中に連続的、或いは間欠的に供給して脱揮する方法(フラッシュ蒸発法)、(4)ベント式押出機に通して脱揮させる方法、(5)温水中に撹拌しながら、共

重合体溶液を吹き込んで溶剤を蒸発させる方法 (スチームストリッピング法) などや、これらを組み合わせた方 法が挙げられる。

)

【0036】本発明で得られるブロック共重合体組成物は単独でも、さらに別種の重合体、例えばビニル芳香族炭化水素重合体、ビニル芳香族炭化水素重合体と共役ジエンとのグラフト共重合体、ビニル芳香族炭化水素と(メタ)アクリル酸エステルとの共重合体などと混ぜて使用に供することもできる。

【0037】本発明で得られるプロック共重合体組成物 10 には、必要に応じてさらに各種の添加剤を配合することができる。プロック共重合体組成物が各種の加熱処理を受ける場合や、その成形品などが酸化性雰囲気や紫外線などの照射下にて使用され物性が劣化することに対処するため、また使用目的に適した物性をさらに付与するため、たとえば安定剤、滑剤、加工助剤、ブロッキング防止剤、帯電防止剤、防暴剤、耐候性向上剤、軟化剤、可塑剤、顔料などの添加剤を添加できる。

【0038】安定剤としては、例えば2-[1-(2-ヒドロキシ-3,5-ジーtert-ペンチルフェニ 20ル)エチル]-4,6-ジーtertーペンチルフェニルアクリレート、2-tertーブチル-6-(3-tert-ブチル-2-ヒドロキシー5-メチルベンジル)-4-メチルフェニルアクリレートや、オクタデシルー3-(3,5-ジーtertーブチル-4-ヒドロキシフェニル)プロピオネート、2,6-ジーtertーブチルー4-メチルフェノールなどのフェノール系酸化防止剤、2,2-メチレンピス(4,6-ジーtertーブチルフェニル)オクチルフォスファイト、トリスノニルフェニルフォスファイト、ピス(2,6-ジーt 30ertーブチルー4-メチルフェニル)ペンタエリスリトールージーフォスファイトなどのリン系酸化防止剤が挙げられる。

【0039】また、滑剤、加工助剤、ブロッキング防止剤、帯電防止剤、防嚢剤としては、パルミチン酸、ステアリン酸、ベヘニン酸などの飽和脂肪酸、パルミチン酸オクチル、ステアリン酸オクチルなどの脂肪酸エステルやペンタエリスリトール脂肪酸エステル、さらにエルカ酸アマイド、オレイン酸アマイド、ステアリン酸アマイドなどの脂肪酸アマイドや、エチレンピスステアリン酸アマイド、またグリセリンーモノー脂肪酸エステル、グリセリンージー脂肪酸エステル、その他にソルピタンーモノーパルミチン酸エステル、ソルピタンーモノーパルミチン酸エステル、ソルピタンーモノーステアリン酸エステルなどのソルピタン脂肪酸エステル、ミリスチルアルコール、セチルアルコール、ステアリルアルコールなどに代表される高級アルコールなどが挙げられる。

【0040】 さらに耐候性向上剤としては $2-(2^-$ ヒドロキシ -3^- -tertーブチル -5^- -メチルフェニル) -5-クロロベンゾトリアゾールなどのベンゾ 50

トリアゾール系や2、4-ジ- tert-ブチルフェニル-3´, 5´-ジ- tert-ブチル-4´-ヒドロキシベンゾエートなどのサリシエート系、2-ヒドロキシー4-n-オクトキシベンゾフェノンなどのベンゾフェノン系紫外線吸収剤、また、テトラキス(2、2、6、6-テトラメチル-4-ピペリジル)-1、2、3、4-ブタンテトラカルボキシレートなどのヒンダードアミン型耐候性向上剤が例として挙げられる。さらにホワイトオイルや、シリコーンオイルなども加えること

【0041】これらの添加剤はブロック共重合体組成物 100重量部に対し5重量部以下の範囲で使用すること が望ましい。

【0042】本発明の組成物を、それぞれ別の反応系で作られた2種以上の重合体を混合することにより製造する場合において、その混合方法は公知のいかなる方法をも採用することができる。例えば、ヘンシェルミキサー、リボンブレンダー、スーパーミキサー、及びVブレンダーなどでドライブレンドしても良く、さらに押出機で溶融してペレット化しても良い。

[0043]

ができる。

【実施例】以下、本発明を実施例により詳細に説明する。但し、本発明は以下の実施例によって請求項の制限を受けるものではない。

【0044】実施例1

- (1) 容量 1200 L の反応器中に 150 p p mの T H F を含むシクロヘキサン 689 L、 37. 5 k g の スチレンモノマーを仕込み、n ープチルリチウム(10% シクロヘキサン溶液) 1650 m L を重合開始剤として加えて、攪拌しなが 530 C から昇温させ 45 C で 20 分間反応させて 単分散性ポリスチレンを生成させた。
- (2)次いで添加した触媒の化学量論数から計算される 重合活性末端数に対して20%に相当する化学量論数の 水分(6.1g)を含むシクロヘキサンを添加して活性 末端の一部を失活させた。
- (3)引き続き系内に3.8kgのブタジエンを添加し て温度60℃で15分間反応させた。
- (4) さらに 15. 3 k g の ブタジエンと 7 4. 7 k g のスチレンモノマーを追加添加して重合を継続させた。
- (5) このあと初期の重合活性末端数に対して30%に 相当する化学量論数の水分(9.2g)を含むシクロへ キサンを添加して残りの活性末端の一部を失活させた。
- (6) 前記(3)、(4)の操作を繰り返した後、最後に全ての活性末端を失活させて目的のブロック共重合体組成物を得た。なお、各モノマーの添加操作はとくに断りのない限り一括添加である。

【0045】実施例2

前記実施例1での、(1)でn-ブチルリチウム(10%シクロヘキサン溶液)1400mLとしたこと、

(2) の操作がないこと、を除いて実施例1と同様の操

作を行い目的のプロック共重合体組成物を得た。

【0046】実施例3

前記実施例1での、(1)でn-ブチルリチウム(10%シクロヘキサン溶液)を1780mLとしたこと、

- (2)で添加した触媒の化学量論数から計算される重合 活性末端数に対して50%に相当する化学量論数の水分
- (16.9g)を含むシクロヘキサンを添加して活性末端の一部を失活させたこと、(5)で初期の重合活性末端数に対して37%に相当する化学量論数の水分(1
- 2.5g)を含むシクロヘキサンを添加して残りの活性 10 末端の一部を失活させたこと、を除いて実施例1と同様 の操作を行い目的のブロック共重合体組成物を得た。

【0047】実施例4

前記実施例1で、(3)以降の操作をつぎのように変更 した以外は実施例1と同様に操作し目的のブロック共重 合体組成物を得た。

- (3) 引き続き系内に19.1Kgのブタジエンと7 4.7Kgのスチレンモノマーを追加添加して重合を継続させた。
- (4) このあと初期の重合活性末端数に対して30%に 20 相当する化学量論数の水分(9.2g) を含むシクロへキサンを添加して残りの活性末端の一部を失活させた。
- (5)前記(3)の操作を繰り返した後、最後に全ての 活性末端を失活させて目的のブロック共重合体組成物を 得た。

【0048】実施例5

- (1)容量1200Lの反応器中に150ppmのTH Fを含むシクロヘキサン689L、21.3kgのスチ レンモノマーを仕込み、n-ブチルリチウム(10%シ クロヘキサン溶液)1020mLを重合開始剤として加30 えて、攪拌しながら30℃から昇温させ45℃で20分 間反応させて単分散性ポリスチレンを生成させた。
- (2) 引き続き系内に1.9kgのブタジエンを添加して温度60℃で15分間反応させた。
- (3) さらに 17. 2 k g のブタジエンと 66. 2 k g のスチレンモノマーを追加添加して重合を継続させた。
- (4) 前記(2)、(3) の操作を繰り返した後、重合 開始剤をさらに1660mL添加した。
- (5) ここでスチレンモノマーを33.2kg添加して 反応させ、最後に全ての活性末端を失活させて目的のブ 40 ロック共重合体組成物を得た。

【0049】実施例6

- (1)容量1200Lの反応器中に150ppmのTH Fを含むシクロヘキサン689Lに、51.6kgのス チレンモノマーを仕込み、n-プチルリチウム(10% シクロヘキサン溶液)2500mLを重合開始剤として 加えて、攪拌しながら30℃から昇温させ45℃で20 分間反応させて単分散性ポリスチレンを生成させた。
- (2) 次いで添加した触媒の化学量論数から計算される 重合活性末端数に対して35%に相当する化学量論数の 50

水分(16.2g)を含むシクロヘキサンを添加して活性末端の一部を失活させた。

(3) 引き続き系内に56.3kgのブタジエンと117.2kgのスチレンモノマーを追加添加して重合を継続させた後、全ての活性末端を失活させて目的のブロック共重合体組成物を得た。

【0050】実施例7

た。

(1)容量100Lの反応器中に150ppmのTHFを含むシクロヘキサン58Lに、18.8kgのスチレンモノマーを仕込み、n-ブチルリチウム(10%シクロヘキサン溶液)890mLを重合開始剤として加えて、攪拌しながら30℃から昇温させ45℃で20分間反応させてから全活性末端を失活し、単味の単分散性ポリスチレンを得た。

(2) (2-1) 容量1200Lの反応器中に150ppm

- のTHFを含むシクロヘキサン402Lと、37.5kgのスチレンモノマーを仕込み、n-プチルリチウム(10%シクロヘキサン溶液)1450mLを重合開始剤として加えて、攪拌しながら30<math>Cから昇温させ45Cで20分間反応させポリスチレンを生成させた。さらに、(2-2)3.8kgのプタジエンを添加して温度60Cで15分間反応させた。引き続いて、(2-3)15.3kgのブタジエンと74.7kgのスチレンモノマーを追加添加して重合を継続させた。(2-4)反応終了後、全活性末端を失活させ、単分散性のプロック共重合体を得
- (3)前記(2)の操作と同様に重合を進めるが、n-ブチルリチウム(10%シクロヘキサン溶液)の添加量を1110mLとしたこと、および(2-2)~(2-3)の操作を2回繰り返してから全活性末端を失活させ、単分散性のブロック共重合体を得た。
- (4) 前記(1) \sim (3) の操作で得た3種の重合体を それぞれ重量比で5%、20%、および75%となるよ うに混合して、目的のブロック共重合体組成物を得た。 【0051】実施例8
- (1) (l-l) 容量 1 2 0 0 Lの反応器中にTHFを含まないシクロヘキサン4 0 2 Lと、3 7.5 kgのスチレンモノマーを仕込み、n ブチルリチウム(1 0 %シクロヘキサン溶液)1 1 8 0 mLを重合開始剤として加えて、攪拌しながら3 0 $\mathbb C$ から昇温させ45 $\mathbb C$ で20分間反応させポリスチレンを生成させた。さらに、(l-2)
- 3. 8 kgのブタジエンを 5 分間かけて連続的に添加して温度 6.0 \mathbb{C} で 1.5 分間反応させた。引き続いて、(1-3) 1.5
- (2) 前記(1) とこれに前記実施例6の(1)、

(2) で得られた計3種の重合体をそれぞれ重量比で5%、20%、および75%となるように混合して、目的のブロック共重合体組成物を得た。

【0052】比較例1~比較例10

THF 濃度、スチレンモノマー、ブタジエンの仕込量、 及び触媒や水の添加量や添加時期を適宜変更したことを 除き、全て前記実施例1~7のいずれかに示される手順 に従って比較例1~比較例10に示すブロック共重合体 組成物を得た。

【0053】なお、得られた各共重合体組成物のうち、溶液状態にあるものは、溶媒(シクロヘキサン)を予備 濃縮させた後、ベント式押出機にて脱揮処理してペレット状とするか、またはスチームストリッピング法で脱揮 した後で、さらに押出機にかけてペレット状として、後 述する試験に供した。

【0054】本発明に係わる試験方法等についてつぎに詳しく説明する。

[あ] 分子量、分子量分布および組成の測定

(1)別々の重合反応系で生成後混合して製造したプロック共重合体組成物の場合

該プロック共重合体組成物に含まれるブロック共重合体 (I) と重合体 (II) の含有割合は、予めGPC測定 されてピーク部の分子量や分子量分布が既知となった、 プロック共重合体(I)、及びと重合体(II)に属す る各成分を混合する際の重量比率をもってその値とし た。GPC測定条件はつぎのとおりである。下記の装置 ①によりカラム温度40℃、送液圧力39 Kg f/cm ²、試料濃度2.0mg/mL、送液流量1.0mL/ minの条件で分子量分布曲線を測定した。標準ポリス チレンとしてポリマーラボラトリー社製(単分散ポリス 30 チレン分子量1020万、390万、146万、48. 8万、21.5万、6.60万、3.30万、968 0、1300および162)の標準ポリスチレンを用い て検量線を作成した。測定された分子量分布曲線と検量 線から、ブロック共重合体(I)あるいは重合体(I I)のMp、分子量分布を求めた。

【0055】(2)前記(1)以外の方法で製造されたプロック共重合体組成物の場合

各サンプルペレット15mgをテトラヒドロフラン(T HF)30mLに溶解して被検サンプルとし、前記

(1)に記載のGPC条件により分子量分布曲線を測定した。測定された分子量分布曲線と検量線から、ブロック共重合体(I)及び重合体(II)のMp、及び各重量分率(各々の分布曲線とベースラインに囲まれた部分の面積比率)を計算して求めた。さらにブロック共重合体(I)については数平均分子量(Mn)、重量平均分子量(Mn)を分割定法に従い計算し、さらにその比率(Mn)を計算した。計算には下記の装置②を用いた。

【0056】装置① ゲルパーミエーション クロマト 50 さ50μmのものであり、その表面外観(鮫肌状の模様

グラフ (GPC) ;昭和電工社製「SYSTEM-2 1」

カラム;ポリマーラボラトリー社製「PL gel M IXIED-B」、7.5mmφ-30cm・・・3本 検出器;示差屈折計

装置② データ処理装置;東洋曹達社製「SC-8020」

【0057】なお、GPCによる分子量分布曲線のピークの裾野部分が重なり合う場合や、ピークが明確なピークの形として現れずにショルダーの形になる場合など、ブロック共重合体組成物を構成する各々の構成部分の分子量分布が明確に分離した形で現れず含有割合を直接読み取ることが困難である場合には、保持時間に対する信号強度として得られるGPC曲線の全形を、その曲線がもつピークならびにショルダーを合計した数の正規分布曲線を組合せて近似させた後、各々の正規分布に関して、改めて保持時間を分子量に換算することにより、これらの分布曲線毎に割当てられる各々のピーク部の分子量、重量分率、及びブロック共重合体(I)に相当する成分の M_n 、 M_w 、 M_w / M_n を求めた。これらの計算には前記の装置②の自動演算機能を利用した。

【0058】[い]ブロック共重合体組成物中に含まれるブタジエンの重量分率の測定

0.1gの該ペレットをクロロホルム約50mLに溶解し、25mLの一塩化ヨウ素四塩化炭素溶液を加えて暗所に1時間放置後、さらに2.5%のヨウ化カリウム溶液75mLを加えた。このとき、過剰の一塩化ヨウ素を20%のアルコール性N/10チオ硫酸ナトリウム溶液で滴定して、ポリブタジエンの二重結合への付加反応で消費されたヨウ素量を逆算し、ブタジエン濃度を求めた

【0059】 [う] ブロック率の測定

装置③を用いて、ポリスチレンの芳香族プロトンの7.0 ppmのパラ位と2個のメタプロトンに帰属されるピーク強度と、6.5 ppmの2個のオルトプロトンに帰属されるピーク強度を測定し、そのときのピーク強度の積分曲線からプロック状スチレンのプロトン数、及び全スチレンのプロトン数に対応する値を求め、この値を各々プロック状スチレン量W、及び全スチレン量Woの対応値として下記定義式に代入して算出した。なお、装置の感度上の理由から、本法により測定されるのは5個以上のモノマー単位からなる連鎖を持つプロック状スチレンである。

ブロック率 (%) = $(W/W_0) \times 100$

装置③:日本分光社製、「FX-90Q」(100MHz)

【0060】 [え] インフレーションフィルムの評価

(株) 長田製作所製の40mmφ単軸押出機によりダイ温度175℃の条件で製膜した。得られたフィルムは厚さ50μmのものであり、その表面外観(鮫肌状の模様

の有無など)を目視観察し、また後述するフィルムイン パクト試験の用に供した。フィルムインパクト強度は装 置のにて、フィルムの打ち抜きに要したエネルギー値を 測り、さらに各値毎に破壊箇所のフィルム厚みで除する ことにより求めた。数値が高いほど耐衝撃強度が優れて いることを示す。

装置④: テスター産業(株)製、「フィルムインパクト テスター」(打ち抜きヘッド:25R)

【0061】 [お] 得られた組成物の透明性の評価 成形機)を用いて温度200℃で縦×横が40mm×1 20mm、厚さ2mmのプレートを成形し、ASTM D1003に準拠して、装置**⑤**で測定されるプレートの* * 曇り度の大小で表した。数値が小さいほど透明性が良好 であることを示す。

装置⑤:日本電色工業(株)製、「NDH-1001D

【0062】実施例、比較例で得られたブロック共重合 体組成物の分子構造、分子量、重量割合などの測定値を 表1~表3に、それらのフィルム(プレート)の評価結 果を表4~表5に記した。表4~表5に示された結果か ら、本発明に関わるブロック共重合体樹脂組成物は良好 日精樹脂工業(株)社製、「FS-55」(202射出 10 な製膜性を持ちつつ、かつ耐衝撃性と高度な透明性を合 わせ持つことが判る。

[0063]

【表1】

	プロック共重合体(Ⅰ)			重合体(11)				全 体		
	分子構造	分子量Mp	M+ /Ma	重量割合	分子構造	分子量Mp	重量割合	合計	Bd 分率	プロック率
実施例1	A-(C-B) ₂	206, 000	1. 07	74 %	A-(C-B),	90, 000 22, 000	23 % 3	26	17.7 %	80%
実施例2	A-(C-B):	198, 000	1. 06	- 77	A-(C-B),	91, 000	23	23	17. 2	81
実施例3	A-(C-B) 1	492, 000	1. 14	52	A-(C-B) ₁	120, 000 20, 000	43 5	48	17. 0	80
実施例4	A-B	202. 000	1. 06	76	A-B A	91, 000 22, 000	21 3	24	17. 4	78
実施例 5	A-(C-B) ₂ -A	194. 000	1. 09	91	A	12, 000	9	8	17.2	85
実施例 6	A-B	123, 000	1. 11	92	A	20, 000	8	8	24. 7	83
実施例7	A-(C-B) ₂	194, 000	1. 07	75	A-(C-B), A	88, 000 22, 000	20 5	25	17. 4	76
実施例8	A-(C-B) ₂	188, 000	1. 34	75	A-(C-B) ₁	88, 000 22, 000	20 5	25	17. 0	85

[&]quot;Bd分率"は組成物中に含まれるブタジエンの重量分率を示す。

[0064]

【表2】

	ブロック共重合体(I)			重合体 (Ⅱ)			全 体			
	分子構造	分子量Mp	M- /M.	重量割合	分子構造	分子量Mp	重量割合	合計	Bd 分率	ブロック率
LL and risk t	A (C.P.)	189, 000	1.08	*	A-(C-B),	87, 000	50 %	5.7 %	, %	70 %
比較例」	A-(C-B) ₂	109,000	1.08	43	A	21.000	7	57	17. 3	79
比較例 2	A-(C-B) ₂	197, 000	1.09	97	A	20, 000	3	3	16.5	80
比較例3	A-(C-B) ₁	113. 000	1.05	90	A	18, 000	10	10	57. 6	86
比較例 4	A-(C-B) ₂ -A	189. 000	1.08	86	Α.	15. 000	14	14	8. 3	88
					A-(C-B) ₁	90, 000	21			
比較例 5	A-(C-B) ₂	200, 000	1. 10	75	A	20, 000	4	25	27. 1	65

※"Bd分率"は組成物中に含まれるプタジエンの重量分率を示す。

[0065]

【表3】

	ブロック共重合体(Ⅰ)			重合体 (Ⅱ)			全	体		
	分子構造	分子量Mp	M- /M.	重量割合	分子構造	分子量Mp	重量割合	合計	Bd 分率	プロック率
比較例 6	A-C-A	110,000	1. 15	93	A	21.000	7 %	% 7	23. 1 %	% 100
比較例 7	A-(C-B) ₁	39. 000	1.08	90	A	18, 000	10	10	24. 4	80
比較例 8	A-(C-B):	630. 000	1. 11	53	A-(C-B) ₁	128. 000 22. 000	42 5	47	17.2	82
比較例 9	A-(C-B),	115, 000	1. 10	91	A	4. 000	9	9	25. 2	80
比較例10	A-(C-B) ₂	482. 000	1. 13	53	A-(C-B) ₁	320, 000 23, 000	41 6	47	17. 1	79

※"Bd分率"は組成物中に含まれるプタジエンの重量分率を示す。

[0066]

【表4】

•	
	u
	-

_	_					
	評 価 結 果					
	表面外観	インパト強度 (kg・cm/cm)	Haze (%)			
実施例1	実施例1 良好		2			
実施例2	良好	166	2			
実施例3	良好	231	2			
実施例4	良好	132	2			
実施例5	良好	155	3			
実施例 6	良好	138	2			
実施例7	良好	162	2			
実施例8	良好	167	8			

【0067】 【表5】

	評価 結果					
	表面外観	インパット 強度 (kg・cm/cm)	Haze			
比較例1	良好	58	2			
比較例2	鮫肌状	177	3			
比較例3	製膜不可		プレート			
LOHXIDI O	22/J92/**J		得られず			
比較例 4	良好	89	2			
比較例5	良好	155	28			
比較例6	切れ易く 製膜困難	 .	3			
比較例7	良好	37	3			
比較例8	製膜不可		プレート			
⊁U€X[7] U	201X(1")		得られず			
比較例 9	良好	56	2			
比較例10	製膜不可		プレート			
PLANTY I U	2000 (T) H]		得られず			

* [0068]

40

30 【発明の効果】本発明によるブロック共重合体組成物は特に良好なフィルム製膜性を有し、かつ透明性、耐衝撃性にも優れるため、その製造方法も含めて特徴あるブロック共重合体組成物として産業上有用である。

フロントページの続き

Fターム(参考) 4J002 BP011 BP012 FD030 FD070

FD080 FD100 FD170 FD200

4J026 HA05 HA06 HA26 HA32 HA39

HA48 HA49 HA50 HB05 HB06

HB14 HB15 HB16 HB26 HB39

HB49 HC05 HC06 HC14 HC15

HC16 HC26 HC39 HC47 HC48

HE01 HE02 HE04 HE06