Dot product

TOTAL POINTS 5

- 1. Compute the length of $\mathbf{x} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$ using the dot product. Do the exercises using pen and paper.
- 1 / 1 point

- \bigcirc $\sqrt{5}$
- $\bigcirc \sqrt{3}$
- 3
- √13
- √11
- O 11

- 2. Compute the angle (in rad) between $\mathbf{x} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ using the dot product. Do the exercises using pen and paper, but you will need a calculator at some point.
- 1 / 1 point

When you are asked to enter numerical answers, please use decimal numbers (e.g., 1.4 or 1.41 instead of $\sqrt{2}$)

1.71

Correct

Good Job!

3. Compute the distance between $\mathbf{x} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

1/1 point

3.61

✓ Correct

4. Write a piece of code that computes the length of a given vector \boldsymbol{x} .

1 / 1 point

1 / 1 point

5. We are given two vectors

$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} -1 \\ 0 \\ 8 \end{bmatrix}$$

Compute the angle (in rad) between ${f x}$ and ${f x}-{f y}.$

Do the exercises using pen and paper, but you will need a calculator at some point.

2.00 ✓ Correct