Set theories with classes

Victoria Gitman

vgitman@nylogic.org http://victoriagitman.github.io

ASL 2019 North American Meeting
May 22, 2019

1 / 30

Victoria Gitman Set theories with classes ASL2019

Classes in naive set theory

The absence of a formal distinction between sets and classes in naive set theory led to supposed paradoxes.

Russell's Paradox

Let X be the set of all sets that are not members of themselves. Assuming $X \in X$ implies $X \notin X$ and assuming $X \notin X$ implies $X \in X$.

Burali-Forti's Paradox

The set of all ordinals is itself an ordinal larger than all ordinals and therefore cannot be an ordinal.

Classes in first-order set theory

The objects of first-order set theory are sets.

Definition: A class is a first-order definable (with parameters) collection of sets.

Classes play an important role in modern set theory.

- Inner models
- Ord-length products and iterations of forcing notions
- Elementary embeddings of the universe

But first-order set theory does not provide a framework for understanding the structure of classes.

In first-order set theory we cannot study:

- non-definable collections of sets,
- properties which quantify over classes.

Second-order set theory is a formal framework in which both sets and classes are objects of the set-theoretic universe. In this framework, we can study:

- non-definable classes
- general properties of classes

Why second-order set theory?

Kunen's Inconsistency

How do we formalize the statement of Kunen's Inconsistency that there is no non-trivial elementary embedding $j: V \to V$?

The following result is nearly trivial to prove.

Theorem: If $V \models \mathrm{ZF}$, then there is no definable non-trivial elementary embedding $j: V \to V$.

A non-trivial formulation must involve the existence and formal properties of non-definable collections.

Kunen's Inconsistency: A model of Kelley-Morse second-order set theory cannot have a non-trivial elementary embedding $j: V \to V$.

Why second-order set theory?

Properties of class forcing

Question: Does every class forcing notion satisfy the Forcing Theorem?

Fails in weak systems, holds in stronger systems.

Question: Does every class forcing notion have a Boolean completion?

Depends on how you define Boolean completion, with the right definition holds in strong systems.

Question: If two class forcing notions densely embed must they be forcing equivalent?

Question: Does the Intermediate Model Theorem (all intermediate models between a universe and its forcing extension are forcing extensions) hold for class forcing?

Fails in weak systems, holds partially in stronger systems.

Why second-order set theory?

Truth predicates

Informal definition: A truth predicate is a collection of Gödel codes

$$T = \{ \lceil \varphi(\bar{a}) \rceil \mid V \models \varphi(\bar{a}) \},\$$

where $\varphi(x)$ are first-order formulas.

Theorem: (Tarski) A truth predicate is never definable.

Models of sufficiently strong second-order set theories have truth predicates, as well as iterated truth predicates.

Victoria Gitman

Second-order set theory

Second-order set theory has two sorts of objects: sets and classes.

Syntax: Two-sorted logic

- Separate variables for sets and classes
- Separate quantifiers for sets and classes
- Convention: upper-case letters for classes, lower-case letters for sets
- Notation:

 - ▶ Σ_n^0 first-order Σ_n -formula ▶ Σ_n^1 n-alternations of class quantifiers followed by a first-order formula
- **Semantics**: A model is a triple $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle$.
 - V consists of the sets.
 - C consists of the classes.
 - Every set is a class: $V \subseteq \mathcal{C}$.
 - $C \subseteq V$ for every $C \in C$.

Alternatively, we can formalize second-order set theory with classes as the only objects and define that a set is a class that is an element of some class.

イロト イボト イラト イラト

Gödel-Bernays set theory GBC

Axioms

- Sets: ZFC
- Classes:
 - Extensionality
 - ▶ Replacement: If F is a function and a is a set, then $F \upharpoonright a$ is a set.
 - ► Global well-order: There is a class well-order of sets.
 - ► Comprehension scheme for first-order formulas: If $\varphi(x, A)$ is a first-order formula, then $\{x \mid \varphi(x, A)\}$ is a class.

Models

- L together with its definable collections is a model of GBC.
- Suppose $V \models ZFC$ has a definable global well-order. Then V together with its definable collections is a model of GBC.
- Theorem: (folklore) Every model of ZFC has a forcing extension with the same sets and a global well-order. Force to add a Cohen sub-class to Ord.

Strength

- GBC is equiconsistent with ZFC.
- GBC has the same first-order consequences as ZFC.

8 / 30

ASI 2019

$GBC + \Sigma_1^1$ -Comprehension

Axioms

- GBC
- Comprehension for Σ_1^1 -formulas:

If
$$\varphi(x,A) := \exists X \psi(x,X,A)$$
 with ψ first-order, then $\{x \mid \varphi(x,A)\}$ is a class.

Note: Σ_1^1 -Comprehension is equivalent to Π_1^1 -Comprehension.

Question: How strong is GBC + Σ_1^1 -Comprehension?

Meta-ordinals

```
Suppose \mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \text{GBC}.
```

Definition: A meta-ordinal is a well-order $(\Gamma, \leq) \in \mathcal{C}$.

- Examples: Ord, Ord + Ord, Ord $\cdot \omega$.
- Notation: For $a \in \Gamma$, $\Gamma \upharpoonright a$ is the restriction of the well-order to \leq -predecessors of a.

Theorem: GBC + Σ_1^1 -Comprehension proves that any two meta-ordinals are comparable.

- Suppose (Γ, \leq) and (Δ, \leq) are meta-ordinals.
- Let $A = \{a \in \Gamma \mid \Gamma \upharpoonright a \text{ is isomorphic to an initial segment of } (\Delta, \leq)\}$ (exists by Σ_1^1 -Comprehension)
- If $A = \Gamma$, then (Γ, \leq) embeds into (Δ, \leq) .
- Otherwise, let a be \leq -least not in A. Then $\Gamma \upharpoonright b$ is isomorphic to (Δ, \leq) , where b is immediate \leq -predecessor of a.

Question: Does GBC imply that any two meta-ordinals are comparable?

Problem: Meta-ordinals don't need to have unique representations! Unless...

10 / 30

Victoria Gitman Set theories with classes ASL2019

Elementary Transfinite Recursion ETR

Suppose
$$\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models GBC$$
.

Definition: Suppose $A \in \mathcal{C}$ is a class. A sequence of classes $\langle C_a \mid a \in A \rangle$ is a single class C such that $C_a = \{x \mid \langle a, x \rangle \in C\}$.

Definition: Suppose $\Gamma \in \mathcal{C}$ is a meta-ordinal. A solution along Γ to a first-order recursion rule $\varphi(x,b,F)$ is a sequence of classes S such that for every $b \in \Gamma$, $S_b = \varphi(x,b,S \upharpoonright b)$.

Elementary Transfinite Recursion ETR: For every meta-ordinal Γ , every first-order recursion rule $\varphi(x,b,F)$ has a solution along Γ .

Theorem: GBC+ Σ_1^1 -Comprehension implies ETR. Let $A = \{a \mid \varphi(x, b, F) \text{ has a solution along } \Gamma \upharpoonright a\}$.

ETR_Γ: Elementary transfinite recursion for a fixed Γ .

• ETR $_{Ord,\omega}$, ETR $_{Ord}$, ETR $_{\omega}$

Theorem: (Williams) If $\Gamma \geq \omega^{\omega}$ is a (meta)-ordinal, then $GBC + ETR_{\Gamma \cdot \omega}$ implies $Con(GBC + ETR_{\Gamma})$.

Truth Predicates

Suppose $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \text{GBC}$.

Definition: A class $T \in \mathcal{C}$ is a truth predicate for $\langle V, \in \rangle$ if it satisfies Tarksi's truth conditions: For every $\lceil \varphi \rceil \in V$ (φ possibly nonstandard),

- if φ is atomic, $V \models \varphi(\overline{a})$ iff $\neg \varphi(\overline{a}) \neg \in T$,
- $\lceil \neg \varphi(\overline{a}) \rceil \in T \text{ iff } \lceil \varphi(\overline{a}) \rceil \notin T$,
- $\lceil \varphi(\overline{a}) \land \psi(\overline{a}) \rceil \in T$ iff $\lceil \varphi(\overline{a}) \rceil \in T$ and $\lceil \psi(\overline{a}) \rceil \in T$,
- $\lceil \exists x \varphi(x, \overline{a}) \rceil \in T$ iff $\exists b \lceil \varphi(b, \overline{a}) \rceil \in T$.

Observation: If T is a truth predicate, then $V \models \varphi(\overline{a})$ iff $\neg \varphi(\overline{a}) \neg \in T$.

Corollary: GBC cannot imply that there is a truth predicate.

Observation: If T is a truth predicate and $\lceil \varphi \rceil \in \mathrm{ZFC}^{\mathrm{V}}$ (φ possibly nonstandard), then $\varphi \in T$.

Theorem: If there is a truth predicate $T \in \mathcal{C}$, then V is the union of an elementary chain of its rank initial segments V_{α} :

$$V_{\alpha_0} \prec V_{\alpha_1} \prec \cdots \prec V_{\alpha_s} \prec \cdots \prec V$$
,

such that V thinks that each $V_{\alpha_{\xi}} \models \mathrm{ZFC}$.

Let
$$\langle V_{\alpha}, \in, T \cap V_{\alpha} \rangle \prec_{\Sigma_1} \langle V, \in, T \rangle$$
.

Victoria Gitman Set theories with classes ASL2019 12 / 30

Iterated truth predicates

Theorem: $GBC + ETR_{\omega}$ implies that for every class A, there is a truth predicate for $\langle V, \in, A \rangle$. A truth predicate is defined by a recursion of length ω .

Theorem: (Fujimoto) GBC together with the assertion that for every class A, there is a truth predicate for $\langle V, \in, A \rangle$ implies ETR_{ω} .

Theorem: GBC + ETR_{ω} (and therefore GBC + Σ_1^1 -Comprehension) implies Con(ZFC), Con(Con(ZFC)), etc.

Definition: Suppose $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \mathrm{GBC}$ and (Γ, \leq) is a meta-ordinal. A sequence of classes $\vec{T} = \langle T_a \mid a \in \Gamma \rangle$ is an iterated truth predicate of length Γ if for every $a \in \Gamma$, T_a is a truth predicate for $\langle V, \in, \vec{T} \upharpoonright a \rangle$.

Theorem: (Fujimoto)

Victoria Gitman

- Suppose $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \mathrm{GBC}$ and $\Gamma \geq \omega^{\omega}$ is a meta-ordinal. ETR_{Γ} is equivalent to the existence of an iterated truth predicate of length Γ .
- Over GBC, ETR is equivalent to the existence of an iterated truth predicate of length Γ for every meta-ordinal Γ .

A single recursion, the iterated truth recursion, suffices to give all other recursions.

◆□ > ◆□ > ◆□ > ◆□ > □ □ 13 / 30

ASI 2019

The second-order constructible universe

Suppose $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \text{GBC} + \text{ETR}$.

Theorem: GBC + ETR implies that any two meta-ordinals are comparable.

Problem: Meta-ordinals don't need to have unique representations! Unless...

Given a meta-ordinal Γ , we can build a meta-constructible universe L_{Γ} by a recursion of length Γ.

Definition: A meta-ordinal Γ is constructible if there is another meta-ordinal Λ such that L_{Δ} has a well-order of Ord isomorphic to Γ . (" $\Gamma \in L_{\text{Ord}^+}$ ")

Theorem: (Tharp) Constructible meta-ordinals have unique representations.

Definition:

- A class $A \in \mathcal{C}$ is constructible if there is a constructible meta-ordinal Γ such that $A \in L_{\Gamma}$.
- The second-order constructible universe is $\mathcal{L} = \langle L, \in, \mathcal{L} \rangle$, where \mathcal{L} consists of the constructible classes.

Theorem: If $\mathscr{V} \models \mathrm{GBC} + \Sigma_1^1$ -Comprehension, then $\mathscr{L} \models \mathrm{GBC} + \Sigma_1^1$ -Comprehension. It also satisfies a version of the Axiom of Choice for classes. (Coming up!)

> 14 / 30 ASI 2019

イロト イ部ト イミト イミト 一度

The Class Forcing Theorem

Suppose $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \mathrm{GBC}$ and $\mathbb{P} \in \mathcal{C}$ is a class partial order.

Definition:

- A class \mathbb{P} -name is a collection of pairs $\langle \sigma, p \rangle$ such that $p \in \mathbb{P}$ and $\sigma \in V^{\mathbb{P}}$.
- G is \mathscr{V} -generic for \mathbb{P} if G meets every dense class $D \in \mathcal{C}$ of \mathbb{P} .
- The forcing extension $\mathscr{V}[G] = \langle V[G], \in, \mathcal{C}[G] \rangle$.

Observation: $\mathscr{V}[G]$ may not satisfy GBC. Force with $Coll(\omega, Ord)$.

The Class Forcing Theorem: There is a solution to the recursion defining the forcing relation for atomic formulas.

Observation: Suppose the Class Forcing Theorem holds.

- The forcing relation for all first-order formulas with a fixed class parameter is a class.
- For every second-order formula $\varphi(x, Y)$ the relation $p \Vdash \varphi(\tau, \Gamma)$ is (second-order) definable.

Theorem: (Krapf, Njegomir, Holy, Lücke, Schlicht) GBC does not imply the Class Forcing Theorem.

Theorem: (G., Hamkins, Holy, Schlicht, Williams) Over ${\rm GBC}$, ${\rm ETR}_{\rm Ord}$ is equivalent to the Class Forcing Theorem.

Victoria Gitman Set theories with classes ASL2019 15 / 30

イロト イ部ト イミト イミト 一臣

Class games and determinacy

Let $\operatorname{Ord}^{\omega}$ be the topological space of ω -length sequences of ordinals with the product topology.

Fix a class $A \subseteq \operatorname{Ord}^{\omega}$.

The Game \mathcal{G}_A

• Player I (Alice) and Player II (Bob) alternately play ordinals for ω -many steps.

- Alice wins if $\vec{\alpha} = \langle \alpha_0, \beta_0, \alpha_1, \beta_1, \dots, \alpha_n, \beta_n, \dots \rangle \in A$. Otherwise, Bob wins.
- The game is determined if one of the players has a winning strategy.

Note: A strategy for a player in the game \mathcal{G}_A is a class.

Open Class Determinacy: \mathcal{G}_A is determined for every open $A \subseteq \operatorname{Ord}^{\omega}$.

Clopen Class Determinacy: \mathcal{G}_A is determined for every clopen $A \subseteq \operatorname{Ord}^{\omega}$.

Theorem: (G., Hamkins) $GBC + \Sigma_1^1$ -Comprehension implies Open Class Determinacy.

Theorem: (G., Hamkins) Over GBC, ETR is equivalent to Clopen Class Determinacy.

Victoria Gitman Set theories with classes ASL2019 16 / 30

4日 > 4周 > 4 国 > 4 国 > 国

Beyond ETR

Theorem: (Sato) Over GBC, Open Class Determinacy is stronger than ETR.

Question: Is \overline{ETR} preserved by tame forcing? Tame forcings preserve GBC.

Theorem: (G., Hamkins) Suppose $\mathscr{V} \models GBC + ETR_{\Gamma}$, \mathbb{P} is a tame forcing notion and $G \subseteq \mathbb{P}$ is \mathscr{V} -generic. Then $\mathscr{V}[G] \models GBC + ETR_{\Gamma}$.

Theorem: (Hamkins) Tame countably strategically-closed forcing preserves ETR.

Question: Can forcing add meta-ordinals?

Theorem: (Hamkins, Woodin) Over GBC, Open Class Determinacy

- is preserved by tame forcing,
- implies that tame forcing does not add meta-ordinals.

Victoria Gitman

The hierarchy so far

$$GBC + \Sigma_1^{\text{1}}\text{-}Comprehension}$$

$$GBC + Open \text{ Determinacy}$$

$$\downarrow$$

$$GBC + For every well-order \ \Gamma, \text{ there is an iterated truth predicate of length } \Gamma$$

$$GBC + Clopen \text{ Class Determinacy}$$

$$GBC + ETR$$

$$\downarrow$$

$$GBC + There is an iterated truth predicate of length Ord$$

$$GBC + Class \text{ Forcing Theorem}$$

$$GBC + ETR_{Ord}$$

$$\downarrow$$

$$GBC + ETR_{\omega}$$

$$GBC + There \text{ exists a truth predicate}$$

$$\downarrow$$

$$GBC$$

Victoria Gitman Set theories with classes

18 / 30

Kelley-Morse set theory KM

Axioms

- GBC
- Full comprehension: If $\varphi(x, A)$ is a second-order formula, then $\{x \mid \varphi(x, A)\}$ is a class.

Models

Suppose $V \models \mathrm{ZFC}$ and κ is an inaccessible cardinal. Then $\langle V_{\kappa}, \in, V_{\kappa+1} \rangle \models \mathrm{KM}$.

Theorem: (Antos) The theory KM is preserved by tame forcing.

Theorem: Suppose $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \mathrm{KM}$. Then its constructible universe $\mathscr{L} = \langle L, \in, \mathcal{L} \rangle \models \mathrm{KM}$. It also satisfies a choice principle for classes. (Next slide!)

A choice principle for classes

Choice Scheme (CC): Given a second-order formula $\varphi(x, X, A)$, if for every set x, there is a class X witnessing $\varphi(x, X, A)$, then there is a sequence of classes collecting witnesses for every x:

$$\forall x \exists X \varphi(x, X, A) \rightarrow \exists Y \forall x \varphi(x, Y_x, A).$$

 Σ_n^1 -Choice Scheme (Σ_n^1 -CC): Choice Scheme for Σ_n^1 -formulas.

Set Choice Scheme (Set-CC): Given a second-order formula $\varphi(x, X, A)$ and a set a:

$$\forall x \in a \exists X \varphi(x, X, A) \rightarrow \exists Y \forall x \in a \varphi(x, Y_x, A).$$

Proposition: Suppose $V \models \mathrm{ZFC}$ and κ is an inaccessible cardinal. Then $\langle V_{\kappa}, \in, V_{\kappa+1} \rangle \models \mathrm{KM} + \mathrm{CC}$.

Theorem: (Marek, Mostowski, Ratajczyk) If $\mathscr{V} \models \mathrm{GBC} + \Sigma_n^1$ -Comprehension, then its constructible universe $\mathscr{L} \models \mathrm{GBC} + \Sigma_n^1$ -Comprehension+ Σ_n^1 -CC.

- If $\mathscr{V} \models \mathrm{KM}$, then its constructible universe $\mathscr{L} \models \mathrm{KM} + \mathrm{CC}$.
- The theories KM and KM+CC are equiconsistent.

Theorem: (G., Hamkins) There is a model of KM in which the Choice Scheme fails for for ω -many choices for a first-order formula.

Theorem: (Antos, Friedman, G.) The theory KM+CC is preserved by tame forcing.

Victoria Gitman Set theories with classes ASL2019 20 / 30

Fodor's Lemma for classes

The Class Fodor Principle: Every regressive class function $f: S \to \operatorname{Ord}$ from a stationary class S into Ord is constant on a stationary subclass $T \subseteq S$.

Theorem: GBC + Σ_1^0 -CC implies the Class Fodor Principle.

- Suppose each $A_n = f^{-1}(\{\alpha\})$ is not stationary.
- By Σ_0^1 -CC, there is a sequence of clubs $\langle C_n \mid n < \alpha \rangle$ such that A_α misses C_α .
- Let $C = \Delta_{\alpha \in \text{Ord}} C_{\alpha}$. Then $C \cap S = \emptyset$.

Theorem: (G., Hamkins, Karagila) Every model of \overline{KM} has an extension to a model of \overline{KM} with the same sets in which the Class Fodor Principle fails.

- Force to add a class Cohen function $f: Ord \rightarrow \omega$.
- Let $A_n = \{ \alpha \mid f(\alpha) > n \}.$
- Let $\mathbb{Q} = \prod_{n < \omega} \mathbb{Q}_n$ be the product forcing with \mathbb{Q}_n shooting a club through A_n .
- Let $G \subset \mathbb{Q}$ be \mathscr{V} -generic and take only classes added by some finite stage n.

Question: How strong is the Class Fodor Principle? Does it imply Con(ZFC)?

Theorem: (G., Hamkins, Karagila) The Class Fodor Principle is preserved by set forcing.

Question: Is the Class Fodor Principle preserved by tame forcing?

4□ > 4□ > 4 = > 4 = > = 90

The Łoś Theorem for second-order ultrapowers

Suppose $\mathscr{V} = (V, \in, \mathcal{C}) \models KM$.

- Suppose U is an ultrafilter on a cardinal κ .
- Define that functions $f : \kappa \to V$ and $g : \kappa \to V$ are equivalent when $\{\xi < \kappa \mid f(\xi) = g(\xi)\} \in U$.
- Let M be the collection of the equivalence classes $[f]_U$.
- Define that $[f]_U \to [g]_U$ when $\{\xi < \kappa \mid f(\xi) \in g(\xi)\} \in U$.
- Define that class sequences F and G are equivalent when $\{\xi < \kappa \mid F_{\xi} = G_{\xi}\} \in U$.
- Let \mathcal{M} be the collection of the equivalence classes $[F]_U$.
- $[f]_U \to [F]_U$ when $\{\xi < \kappa \mid f(\xi) \in F(\xi)\} \in U$.
- $\langle M, E, \mathcal{M} \rangle$ is the ultrapower of $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle$ by U.
- Define $j: \langle V, \in, \mathcal{C} \rangle \to \langle M, \mathsf{E}, \mathcal{M} \rangle$ by $j(a) = [c_a]_U$ and $j(A) = [C_A]_U$.

The Łoś Theorem

Problem: For the class existential quantifier, we need

$$\mathscr{V} \models \forall \xi < \kappa \,\exists X \, \varphi(X, f(\xi)) \to \exists Y \,\forall \xi < \kappa \, \varphi(Y_{\xi}, f(\xi)).$$

Theorem: (G., Hamkins) Over KM, the Łoś Theorem for second-order ultrapowers is equivalent to Set-CC.

Victoria Gitman Set theories with classes ASL2019 22 / 30

Back to first-order with KM+CC

Suppose
$$\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \text{KM+CC}$$
.

- View each extensional well-founded class relation $R \in \mathcal{C}$ as coding a transitive set.
- Define a membership relation E on the collection of all such relations R (modulo isomorphism).
 - ▶ Ord + Ord, Ord $\cdot \omega$.
 - \triangleright $V \cup \{V\}$.
- Let $\langle M_{\mathscr{V}}, \mathsf{E} \rangle$, the companion model of \mathscr{V} , be the resulting first-order structure.
 - $M_{\mathscr{V}}$ has the largest cardinal $\kappa \cong \operatorname{Ord}^{\mathscr{V}}$.
 - $V_{\kappa}^{M_{\gamma}} \cong V.$
 - $\triangleright \mathcal{P}(V_{\kappa})^{M}_{\mathscr{V}} \cong \mathcal{C}.$
 - ▶ $\langle M_{\mathscr{V}}, \mathsf{E} \rangle \models \mathrm{ZFC}_{\mathsf{I}}^-$. (Next slide!)

The theory $\mathrm{ZFC}_{\mathrm{I}}^{-}$

Axioms

- ZFC without powerset (Collection scheme instead of Replacement scheme).
- There is a largest cardinal κ .
- κ is inaccessible. (κ is regular and for all $\alpha < \kappa$, 2^{α} exists and $2^{\alpha} < \kappa$.)

Models

Suppose that $V \models \mathrm{ZFC}$ and κ is inaccessible. Then $H_{\kappa^+} \models \mathrm{ZFC}_1^-$.

Moving to second-order

Suppose $M \models \operatorname{ZFC}_{\mathsf{T}}^-$ with a largest cardinal κ .

- $\bullet V = V_{\kappa}^{M}$
- $\bullet \ \mathcal{C} = \{X \in M \mid X \subseteq V_{\kappa}^{M}\}$
- $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \text{KM+CC}$
- $M_{\mathscr{V}} \cong M$ is the companion model of \mathscr{V} .

Theorem: (Marek, Mostowski) The theory KM+CC is bi-interpretable with the theory ZFC_{L}^{-} .

→ □ → → □ → → □ → □ → ○ ○ ○

The Class Reflection Principle

Reflection Principle: Every formula is reflected by a transitive set:

For every first-order formula $\varphi(x)$, there is a transitive set M such that for all $a \in M$, $\varphi(a)$ holds if and only if $M \models \varphi(a)$.

Theorem: (Lévy) ZFC proves the reflection principle.

Every first-order formula is reflected by some V_{α} .

Class Reflection Principle: Every formula is reflected by a sequence of classes:

For every second-order formula $\varphi(X)$, there is a sequence of classes $S = \langle S_{\xi} \mid \xi \in \text{Ord} \rangle$ such that for all $\xi \in \text{Ord}$, $\varphi(S_{\xi})$ if and only if $\langle V, \in, S \rangle \models \varphi(S_{\xi})$.

Theorem: Suppose $\mathscr{V} \models \mathrm{KM} + \mathrm{CC}$ and $M_{\mathscr{V}} \models \mathrm{ZFC}_{\mathrm{I}}^-$ is its companion model.

Then $\mathscr V$ satisfies the Class Reflection Principle if and only if $M_{\mathscr V}$ satisfies the Reflection Principle.

Another class choice principle

ω-Dependent Choice Scheme (ω-DC): Given a second-order formula $\varphi(X,Y,A)$, if for every class X, there is another class Y such that $\varphi(X,Y,A)$ holds, then we can make ω-many dependent choices according to φ :

$$\forall X \exists Y \varphi(X, Y, A) \rightarrow \exists Y \forall n \varphi(Y_n, Y_{n+1}, A).$$

Theorem: Over KM+CC, ω -DC is equivalent to the Class Reflection Principle.

Question: Does KM+CC imply ω -DC?

Conjecture: (Friedman, G.) KM+CC does not imply the ω -DC.

Suppose that α is an uncountable regular cardinal or $\alpha = \operatorname{Ord}$.

 α -Dependent Choice Scheme (α -DC: Given a second-order formula $\varphi(X,Y,A)$, if for every class X, there is another class Y such that $\varphi(X,Y,A)$ holds, then we can make α -many dependent choices according to φ .

Proposition: If $\mathscr{V} \models \mathrm{KM} + \alpha\text{-DC}$, then its companion model $M_{\mathscr{V}}$ satisfies that every first-order formula reflects to a transitive set that is closed under $<\alpha$ -sequences.

Theorem: If $\mathscr{V} \models \mathrm{KM}$, then its constructible universe $\mathscr{L} \models \mathrm{KM} + \mathrm{CC} + \mathrm{Ord} + \mathrm{DC}$.

• The theories KM and KM+CC+Ord-DC are equiconsistent.

Proposition: Suppose $V \models \mathrm{ZFC}$ and κ is an inaccessible cardinal. Then $\langle V_{\kappa}, \in, V_{\kappa+1} \rangle \models \mathrm{KM} + \mathrm{CC} + \mathrm{Ord} - \mathrm{DC}$.

Victoria Gitman Set theories with classes ASL2019 26 / 30

The Class Intermediate Model Theorem

Intermediate Model Theorem: (Solovay)

- If $V \models \text{ZFC}$ and $W \models \text{ZFC}$ is an intermediate model between V and its set-forcing extension V[G], then W is a set-forcing extension of V.
- If $V \models \mathrm{ZF}$ and $V[a] \models \mathrm{ZF}$, with $a \subseteq V$, is an intermediate model between V and its set-forcing extension V[G], then V[a] is a set-forcing extension of V.

Definition: Suppose $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \mathrm{GBC}$. Then $\mathscr{W} = \langle W, \in, \mathcal{C}^* \rangle$ is a simple extension of \mathscr{V} if \mathcal{C}^* is generated by \mathcal{C} together with a single new class.

• Forcing extension are simple extensions.

Definition: Suppose *T* is a second-order set theory.

- The Intermediate Model Theorem holds for T if whenever $\mathscr{V} \models T$ and $\mathscr{W} \models T$ is an intermediate model between \mathscr{V} and its class-forcing extension $\mathscr{V}[G]$, then \mathscr{W} is a class-forcing extension of \mathscr{V} .
- The simple Intermediate Model Theorem holds for T if whenever $\mathscr{V} \models T$ and $\mathscr{W} \models T$ is a simple extension of \mathscr{V} between \mathscr{V} and its class-forcing extension $\mathscr{V}[G]$, then \mathscr{W} is a class-forcing extension of \mathscr{V} .

Victoria Gitman Set theories with classes ASL2019 27 / 30

The Class Intermediate Model Theorem (continued)

Theorem:

- (Friedman) The simple Intermediate Model Theorem for GBC fails.
- (Hamkins, Reitz) The simple Intermediate Model Theorem for GBC fails even for Ord-cc forcing.

Theorem: (Antos, Friedman, G.) The simple Intermediate Model Theorem for KM+CC holds.

Theorem: (Antos, Friedman, G.) Every model $\mathscr{V} \models \mathrm{KM} + \mathrm{CC}$ has a forcing extension $\mathscr{V}[G]$ with a non-simple intermediate model. Therefore the Intermediate Model Theorem for $\mathrm{KM} + \mathrm{CC}$ fails.

Question: Does the simple Intermediate Model Theorem for KM hold?

Boolean completions of class partial orders

Definition: Suppose \mathbb{B} is a class Boolean algebra.

- ullet is set-complete if all its subsets have suprema.
- ullet is class-complete if all its subclasses have suprema.

Theorem: (Krapf, Njegomir, Holy, Lücke, Schlicht)

- Suppose $\mathscr{V} \models \mathrm{GBC}$. A class partial order \mathbb{P} has a set-complete Boolean completion if and only if the Class Forcing Theorem holds for \mathbb{P} .
- If a Boolean algebra is class-complete, then it has the Ord-cc. Therefore a partial order has a class-complete Boolean completion if and only if it has the Ord-cc.

Definition: In a model of second-order set theory, a hyperclass is a definable collection of classes.

Definition: Suppose \mathbb{B} is a hyperclass Boolean algebra.

- ullet B is class-complete if all its subclasses have suprema.
- $\mathbb B$ is complete if all its sub-hyperclasses have suprema.

Boolean completions of class partial orders (continued)

Theorem: Suppose $\mathscr{V} \models \mathrm{GBC}$. Every class partial order \mathbb{P} has a class-complete hyperclass Boolean completion. Standard regular cuts construction.

Theorem: (Antos, Friedman, G.) Suppose $\mathscr{V} \models \mathrm{KM}$. Then every class partial order \mathbb{P} has a complete hyperclass Boolean completion.

Theorem: (Antos, Friedman, G.) Suppose $\mathscr{V} \models \mathrm{GBC}$. If some non-Ord-cc class partial order \mathbb{P} has a complete hyperclass Boolean completion, then $\mathscr{V} \models \mathrm{KM}$.

Suppose $\mathscr{V} \models \mathrm{KM} + \mathrm{CC}$ and \mathbb{P} is class partial order. In the companion model $M_{\mathscr{V}}$ (with the largest cardinal κ):

- \bullet $\, \mathbb{P}$ is a set partial order.
- ullet has a class-complete Boolean completion ${\mathbb B}.$