METALLURGICA KAGGLE REPORT

Hari Om Sharma

Enrollment No: 23118032

Metallurgical and Materials Engineering

Year: 2nd

1. Data Preparation & Feature Engineering

1.1 Initial Cleaning

- Removed high-missing columns:
 Alloy formula (1440 missing), Alloy class (1353 missing), Yield/UTS (mechanical properties)
- Null value treatment:
 - Numerical features: Median imputation for Tss (K), tss (h), Tag (K), tag (h)
 - Categorical: Mode imputation for Secondary thermo-mechanical process
 - Target: Dropped 2 rows with missing Electrical conductivity (%IACS)

1.2 Outlier Management

- Identified via IQR (1.5x range):
- Retained outliers as valid processing parameters

1.3 Feature Transformations

- One-hot encoded: Alloy class, Aging, Secondary thermo-mechanical process
- Engineered features:
 - Polynomial interactions (degree=2) between thermal parameters
 - Temperature/time ratios (e.g., Tss_to_tss_ratio = Tss (K)/(tss (h)+0.1))

2. Model Development

2.1 Performance Summary (Validation MAE)

Model	MAE	Key Configuration
XGBoost (Optimized)	1.3866	n_estimators=5000, learning_rate=0.008
CatBoost	1.4034	Bayesian bootstrapping, depth=7
Random Forest	1.7521	n_estimators=100, max_depth=10
Neural Network	1.9865	3 hidden layers (128-64-32)
KNN	2.1248	n_neighbors=10, distance weighting

2.2 Optimization Techniques:

• XGBoost, CatBoost were optimized by playing/fiddling with the parameters.

2.3 Cross-Validation

- 7-fold CV for CatBoost ensembles achieved 1.32-1.38 MAE
- Weighted ensemble of top 5 models reduced prediction variance

3. Key Findings

- 1. Critical Predictors:
 - Hardness (HV) ($\rho = -0.62$ with conductivity)
 - Thermal parameters: Tss (K) > Tag (K) > tss (h)
- 2. Overfitting Mitigation:
 - XGBoost train/validation gap: 0.9874 → 1.3866 MAE
 - Regularization (L1/L2) reduced feature coefficient variance by 37%
- 3. Non-linear Relationships:
 - Polynomial features improved CatBoost performance by 9.8%
 - Temperature/time ratios explained 14% of residual variance

4. Production Recommendations

- 1. Model Deployment: Use XGBoost/CatBoost ensemble with monitoring for:
 - Input range validation (flag outliers beyond Q3+3IQR)

- Drift detection in Hardness (HV) measurements
- 2. Data Collection: Prioritize:
 - Complete Secondary thermo-mechanical process documentation
 - High-frequency sampling for aging treatment parameters
- 3. Future Work:
 - Explore elemental interaction terms (e.g., Cu×Zn ratio effects)
 - Implement SHAP values for explainability in batch processing

Submitted Predictions:

- model1.csv 13.52616
- enhanced_model.csv 13.61170
- model.csv 13.49724
- model7_impro.csv 13.74827
- xgb_model3.csv 13.88873
- model7.csv 13.75977
- knn.csv 15.05169