DECISION TREE EXAMPLE

S.No.	Age	Income	Studen	t Credit	Buys Computer
1	Youth	high	no	fair	no
2	Youth	high	no	excellent	no
3	Middle-age	high	no	fair	yes
4	Seniar	medium	no	fair	yes
5	seniar	low	yes	fair	yes
6	seriar	low	yes	excellent	no
7	middle-age	low	yes	excellent	yes
8	youth	medium	по	fair	no
9	youth	low	yes	fair	yes
10	Seniar	medium	yes	fair	yes
1)	youth	meolium	yes	encellent	zus
12	middle-age	medium	no	encellent	yes
13	midolle-age	high	yes	fair	yes
14	serior	meolium	no	encellent	no

Attoribute Selection:

Information Gain

Let us consider class: buys. Computer as Decision viteria D.

1 Calculate information - py loge (py) - Pn loge (Pn)

where py: Propability of 'yes'

Pn: probability of 'no'

 $Info(0) = -\frac{9}{14} log_2(\frac{9}{14}) - \frac{5}{14} log_2 \frac{5}{14}$ = 0.940 bits

② Calculate entropy for 'Youth' for attribute age. Entropy 'youth' = $-\frac{2}{5}\log_2\frac{2}{5}$, $-\frac{3}{5}\log_2\frac{3}{5}$

3 Calculate entropy for middle-age for attribute age

Entropy 'midolle-age' = - 4 log2 4 - 0 log2 4

(4) Similarly

Entropy 'serior' = $-\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5}$

$$info age (0) = \frac{5}{14} \times \left(-\frac{2}{5} log_2 \frac{2}{5} - \frac{3}{5} log_2 \frac{3}{5}\right) + \frac{4}{14} \times \left(-\frac{4}{4} log_2 \frac{4}{4} - \frac{9}{4} log_2 \frac{9}{4}\right) + \frac{5}{14} \times \left(-\frac{3}{5} log_2 \frac{3}{5} - \frac{2}{5} log_2 \frac{2}{5}\right)$$

7 0.694

(7) Similarly,
info income (A) =
$$\frac{4}{14} \times \left(-\frac{2}{4} \log_2 \frac{2}{4} - \frac{2}{4} \log_2 \frac{2}{4}\right) + \frac{6}{14} \times \left(-\frac{4}{6} \log_2 \frac{4}{6} - \frac{2}{6} \log_2 \frac{2}{6}\right) + \frac{4}{14} \times \left(-\frac{1}{4} \log_2 \frac{1}{4} - \frac{3}{4} \log_2 \frac{3}{4}\right)$$

$$\Rightarrow 0.911$$

Gain of income: info(0) - info income (1) $\Rightarrow 0.940 - 0.911 = 0.029$

(8) info student (10) =
$$\frac{7}{14} \times \left(-\frac{3}{7} \log_2 \frac{3}{7} - \frac{4}{7} \log_2 \frac{4}{7}\right) + \frac{7}{14} \times \left(-\frac{6}{7} \log_2 \frac{6}{7} - \frac{1}{7} \log_2 \frac{1}{7}\right)$$

(9) info weedit reating (10) =
$$\frac{8}{14} \times \left(-\frac{6}{8} \log_2 \frac{6}{8} - \frac{2}{8} \log_2 \frac{2}{8}\right) + \frac{6}{14} \times \left(-\frac{3}{6} \log_2 \frac{3}{6} - \frac{3}{6} \log_2 \frac{3}{6}\right)$$

Independent naviable	Information Gain	
1ge	0.246	
Income	0.029	
Student	0.15	
Credit- rating	0.048	

Secause age has highest information gain among the attributes, it is selected as the splitting attribute.

- · Tuples falling into the fartition for age = middle-age all belong to the same class i.e. yes. Thrufare, a leaf should be created at the end of the branch and labelled with "yes".
- · Final Decision Tour

