

Факультет Программной Инженерии и Компьютерной техники

Лабораторная работа №2 Синтез помехоустойчивого кода Вариант №60

Выполнил:

Ковалев Руслан Бабекович

Группа Р3116

Проверил:

Пономарёв В.В

Оглавление

Задание	3-7
Программа	7
Заключение	8
Список литературы	9

- Определить свой вариант задания с помощью номера в ISU (он же номер студенческого билета). Вариантом является комбинация 3-й и 5-й цифр. Т.е. если номер в ISU = 123456, то вариант = 35.
- На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.
- Показать, исходя из выбранных вариантов сообщений (по 4 у каждого часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 11-символьного кода.
- Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.
- Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. **Подробно прокомментировать** и записать правильное сообщение.
- Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.
- Дополнительное задание №1 (позволяет набрать от 86 до 100 процентов от максимального числа баллов БаРС за данную лабораторную). Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

60	45	77	109	29	110

1.Номер 45

r1	r2	i1	r3	i2	i3	i4
0	0	1	0	0	1	1

	1	2	3	4	5	6	7	
2 ^x	r_1	<mark>r2</mark>	i ₁	r ₃	i ₂	i ₃	İ4	S
1	Х	_	Х	-	Х	-	Х	S ₁
2	-	X	Х	-	-	Х	Х	S ₂
4	-	_	-	Х	Х	Х	Х	S ₃

S = (s1, s2, s3) = 010 Ошибка в символе r2

Правильное сообщение: 1011

2.Номер 77

r1	r2	i1	r3	i2	i3	i4
0	1	1	1	1	0	1

	1	2	3	4	5	6	7	
2 ^x	r_1	r2	i ₁	r ₃	i ₂	i ₃	<mark>i</mark> 4	S
1	X	-	Х	-	Х	-	X	S ₁
2	-	Х	X	-	-	Х	X	S ₂
4	-	-	1	Х	Х	Х	X	S ₃

S = (s1,s2,s3) = 111 Ошибка в символе i4

Правильное сообщение: 1100

4

3.Номер 109

r1	r2	i1	r3	i2	i3	i4
1	0	1	1	1	1	1

 $S1 = r1 \oplus i1 \oplus i2 \oplus i4 = 1 \oplus 1 \oplus 1 \oplus 1 = 0$

 $S2 = r2 \oplus i1 \oplus i3 \oplus i4 = 0 \oplus 1 \oplus 1 \oplus 1 = 1$

 $S3 = r3 \oplus i2 \oplus i3 \oplus i4 = 1 \oplus 1 \oplus 1 \oplus 1 = 0$

	1	2	3	4	5	6	7	
2×	r_1	<mark>r2</mark>	i ₁	r ₃	i ₂	i ₃	i ₄	S
1	Х	_	Х	-	Х	-	Х	S ₁
2	-	X	Х	-	-	Х	Х	S ₂
4	-	-	-	Х	Х	Х	Х	S 3

S = (s1,s2,s3) = 010 Ошибка в символе r2

Правильное сообщение: 1111

4. Номер 29

r1	r2	i1	r3	i2	i3	i4
0	0	0	0	0	1	0

 $S1 = r1 \oplus i1 \oplus i2 \oplus i4 = 0 \oplus 0 \oplus 0 \oplus 0 = 0$

 $S2 = r2 \oplus i1 \oplus i3 \oplus i4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$

 $S3 = r3 \oplus i2 \oplus i3 \oplus i4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$

	1	2	3	4	5	6	7	
2 ^x	r ₁	r2	i ₁	r ₃	i ₂	i ₃	İ4	S
1	Х	-	Х	1	Х	_	Х	S ₁
2	-	Х	X	1	-	X	Х	S ₂
4	-	-	-	Х	Х	X	Х	S 3

S=(s1,s2,s3) = 011 Ошибка в символе i3

Правильное сообщение: 00<mark>0</mark>0

5

5.Номер 110

Ĭ	r1	r2	i1	r3	i2	i3	i4	r4	i5	i6	i7	i8	i9	i10	i11
	0	0	0	1	1	1	0	1	1	1	0	0	1	1	0

 $\begin{array}{c} s1 = r1 \oplus i1 \oplus i2 \oplus i4 \oplus i5 \oplus i7 \oplus i9 \oplus i11 = 0 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 = 1 \\ s2 = r2 \oplus i1 \oplus i3 \oplus i4 \oplus i6 \oplus i7 \oplus i10 \oplus i11 = 0 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 = 1 \\ s3 = r3 \oplus i2 \oplus i3 \oplus i4 \oplus i8 \oplus i9 \oplus i10 \oplus i11 = 1 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 = 1 \\ s4 = r4 \oplus i5 \oplus i6 \oplus i7 \oplus i8 \oplus i9 \oplus i10 \oplus i11 = 1 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 = 1 \end{array}$

	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	14	15	
2 ^x	r ₁	r ₂	i ₁	r_3	i ₂	i ₃	i ₄	r ₄	İ ₅	i ₆	i ₇	i ₈	i 9	i ₁₀	i ₁₁	S

1	Х	J	Х	-	Х	-	Х	-	Х	-	Х	-	Х	-	X	S 1
2	-	Х	Х	-	-	Х	Х	-	-	х	х	-	-	Х	X	S 2
4	-	ı	-	х	х	х	х	-	-	-	-	х	х	Х	X	S
8	-	ı	ı	-	-	-	-	Х	Х	Х	Х	Х	Х	Х	X	S 4

S = (s1,s2,s3,s4) = 1111 Ошибка в символе i11 Правильное сообщение: 0110110011<mark>1</mark>

6.
$$(45+77+109+29+110)*4 = 1480$$

1) Минимальное число проверочных разрядов (r):

Формула: $2^r >= k + r + 1$, где k = 1480 (количество информационных разрядов).

Пробуем значения г:

- * $2^10 = 1024 < 1480 + 10 + 1 = 1491$ (не подходит)
- * $2^11 = 2048 > = 1480 + 11 + 1 = 1492$ (подходит)

Ответ: Минимальное число проверочных разрядов r = 11.

6

2) Коэффициент избыточности (R):

Формула: R = r / (k + r)

Подставляем: $R = 11 / (1480 + 11) = 11 / 1491 \approx 0.0074$

Доп. задание (Программа)

```
def decode_hamming(codeword):
 p1 = int(codeword[0]) ^ int(codeword[2]) ^ int(codeword[4]) ^ int(codeword[6])
p2 = int(codeword[1]) ^ int(codeword[2]) ^ int(codeword[5]) ^ int(codeword[6])
 p3 = int(codeword[3]) ^ int(codeword[4]) ^ int(codeword[5]) ^ int(codeword[6])
 error_bit = p1 * 4 + p2 * 2 + p3 * 1
 if error_bit != 0:
 corrected_codeword = list(codeword)
 corrected_codeword[error_bit - 1] = str(1 - int(corrected_codeword[error_bit - 1]))
 codeword = "".join(corrected_codeword)
message = codeword[1] + codeword[3] + codeword[5] + codeword[6]
return message, error_bit
codeword = input("Введите код Хэмминга (7 цифр 0 и 1): ")
if len(codeword) != 7:
print("Ошибка: Длина сообщения должна быть равна 7.")
message, error_bit = decode_hamming(codeword)
 if error bit != 0:
 print(f"Исправленное сообщение: {message}")
 print(f"Ошибка обнаружена в бите {error_bit}")
 print(f"Исходное сообщение: {message}")
  print("Ошибок не обнаружено.")
```

7 Заключение

В ходе работы научился работать с кодом Хэмминга

Список Литературы

Информатика Лекция 2