

$$T(f) = a(f) \cdot B = T_{med} \cdot \left(\frac{1}{1+j\frac{f}{f_{h1}}}\right) \cdot \left(\frac{1}{1+j\frac{f}{f_{h2}}}\right)$$

$$\begin{split} A_r(f) &= \frac{A_{r\text{-med}}}{\left[\frac{\left(j\cdot f\right)^2}{f_n^2}\right] + \frac{2\cdot\xi\cdot\left(j\cdot f\right)}{f_n} + 1} \quad \text{donde} \\ \xi &= \frac{\left(f_{h1} + f_{h2}\right)}{2\cdot f_n} \quad y \\ f_n &= \sqrt{f_{h1}\cdot f_{h2}\cdot\left(1 + T_{med}\right)} \end{split}$$

$$M_{pf} = \frac{1}{2 \cdot \xi \cdot \sqrt{1 - \xi^2}}$$
 y la frecuencia para la que se produce $f_p = f_n \cdot \sqrt{1 - 2 \cdot \xi^2}$

$$\phi(f) = -\text{Arc} \cdot \text{tg} \cdot \left(\frac{2 \cdot \xi \cdot \frac{f}{f_n}}{1 - \frac{f^2}{f_n^2}} \right) \qquad \qquad \text{P.M.} \cong \text{Arc} \cdot \text{tg} \cdot \sqrt{\frac{4 \cdot \xi^2}{\sqrt{\left(4 \cdot \xi^4 + 1\right)} - 2 \cdot \xi^2}} \right) \qquad \qquad f_{cr} \cong f_n \sqrt{\sqrt{\left(4 \cdot \xi^4 + 1\right)} - 2 \cdot \xi^2}$$

P.M.
$$\cong$$
 Arc \cdot tg $\sqrt{\frac{4 \cdot \xi^2}{\sqrt{(4 \cdot \xi^4 + 1)} - 2 \cdot \xi^2}}$

$$f_{cr} \, \cong f_n \, \sqrt{\sqrt{\left(4 \cdot \xi^{\,4} + 1\right)} - 2 \cdot \xi^{\,2}}$$

$$f_c \cong f_n \cdot \sqrt{\left[1 - 2 \cdot \xi^2 + \sqrt{2 \cdot \left(2 \cdot \xi^4 - 2 \cdot \xi^2 + 1\right)}\right]}$$

$$v_{o}(t) = A_{r\text{-med}} \cdot \left(1 - \frac{e^{-2 \cdot \pi \cdot \xi \cdot f_{n} \cdot t}}{\sqrt{1 - \xi^{2}}} \cdot \text{sen} \cdot \left[\left(2 \cdot \pi \cdot f_{n} \cdot \sqrt{1 - \xi^{2}}\right) \cdot t + \text{arcos} \, \xi \right] \right)$$

$$M_{pt} = 100 \cdot e^{-\pi \cdot \frac{\xi}{\sqrt{1-\xi^2}}} t_p = \frac{1}{2 \cdot f_n \cdot \sqrt{1-\xi^2}}$$
$$T_s \approx \frac{2}{\left(\pi \cdot \xi \cdot f_n\right)}$$

ξ	P.M.	fn/fcr	fp/fcr	fc/fcr	Mpf [dB]	ξ	P.M.	f _{cr} t _p	f _c t _r	f _{cr} t _r	Tsfc	Mpt %
0	0,00	1,00	1,00	1,55	00	0	0,00	0,50	-	-	∞	100
0,1	11,42	1,01	1,00	1,56	14,02	0,1	11,42	0,50	5,40	3,46	9,82	73
0,2	22,60	1,04	1,00	1,57	8,14	0,2	22,60	0,49	2,64	1,68	4,81	53'
0,3	33,27	1,09	0,99	1,59	4,85	0,3	33,27	0,48	1,69	1,07	3,08	37
0,4	43,12	1,17	0,97	1,61	2,70	0,4	43,12	0,47	1,20	0,75	2,19	25
0,5	51,83	1,27	0,90	1,62	1,25	0,5	51,83	0,45	0,89	0,55	1,62	16
0,6	59,19	1,40	0,74	1,60	0,35	0,6	59,19	0,45	0,67	0,42	1,22	9
0,7	65,16	1,54	0,22	1,56	0,002	0,7	65,16	0,45	0,50	0,32	0,92	5
0,707	65,53	1,55	0	1,55	0	0,707	65,53	0	0,50	0,32	-	0
0,8	69,86	1,70	-	1,48		0,8	69,86	•	0,38	0,26	-	-
0,9	73,51	1,88		1,40	-	0,9	73,51	-	0,29	0,21		-
1	76,35	2,06	-	1,32	-	1	76,35	-	0,23	0,17	-	-