Started on	Tuesday, 16 January 2024, 7:42 PM
State	Finished
Completed on	Friday, 19 January 2024, 1:07 AM
Time taken	2 days 5 hours
Grade	10.00 out of 10.00 (100 %)

Question **1**Correct

Mark 1.00 out of 1.00

Consider the ML example below for prediction of sales based on advertising

	Sales (Million	Advertising
Year	Euro)	(Million Euro)
1	651	23
2	762	26
3	856	30
4	1,063	34
5	1,190	43
6	1,298	48
7	1,421	52
8	1,440	57
9	1,518	58

In this example, Sales is the

- Response
- Regressor
- Regression coefficient
- Model error

Your answer is correct.

The correct answer is: Response

Question **2**Correct
Mark 1.00 out of 1.00

Consider the ML example below for prediction of sales based on advertising

	Sales (Million	Advertising
Year	Euro)	(Million Euro)
1	651	23
2	762	26
3	856	30
4	1,063	34
5	1,190	43
6	1,298	48
7	1,421	52
8	1,440	57
9	1,518	58

In this example, Advertising is the

- Response
- Regression coefficient
- Regressor
- Model error

Your answer is correct.

The correct answer is: Regressor

Question ${\bf 3}$

Correct

Mark 1.00 out of 1.00

Which figure below represents linear regression

Your answer is correct.

The correct answer is:

Question 4	
Correct Mark 1.00 out of 1.00	
Consider the linear regression model below	
$y(k) = h_0 + h_1 x_1(k) + \dots + h_n x_n(k) + \epsilon(k)$	
The quantity $y(k)$ is	
○ Regressor	
RegressorRegression coefficient	
Model error	
	•
Response	•
Your answer is correct.	
The correct answer is: Response	
Response	
Question 5 Correct	
Mark 1.00 out of 1.00	
Consider the linear regression model below	
$y(k) = h_0 + h_1 x_1(k) + \dots + h_n x_n(k) + \epsilon(k)$ The quantities $x_i(k)$ are	
The quantities $x_i(\kappa)$ are	
○ Response	
Regressor	✓
Regression coefficient	
Model error	
Your answer is correct.	
The correct answer is:	
Regressor	

Question 6
Correct
Mark 1.00 out of 1.00

Consider the linear regression model below:

$$y(k) = h_0 + h_1 x_1(k) + \dots + h_n x_n(k) + \epsilon(k)$$

The quantities h_i are

Regression	coefficient
ricgression	COCITICICITE

Regressor

Response

Model error

Your answer is correct.

The correct answer is: Regression coefficient

Question 7

Correct

Mark 1.00 out of 1.00

The learning model for the linear regression problem described in class is

$$\underbrace{\begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(M) \end{bmatrix}}_{\bar{\mathbf{x}}} = \underbrace{\begin{bmatrix} \bar{\mathbf{x}}(1) \\ \bar{\mathbf{x}}(2) \\ \vdots \\ \bar{\mathbf{x}}(M) \end{bmatrix}}_{\bar{\mathbf{x}}} \bar{\mathbf{h}} + \underbrace{\begin{bmatrix} \epsilon(1) \\ \epsilon(2) \\ \vdots \\ \epsilon(M) \end{bmatrix}}_{\bar{\mathbf{\epsilon}}}$$

$$\underbrace{\begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(M) \end{bmatrix}}_{\bar{\mathbf{x}}} = \underbrace{\begin{bmatrix} \bar{\mathbf{x}}(1) \\ \bar{\mathbf{x}}(2) \\ \vdots \\ \bar{\mathbf{x}}(M) \end{bmatrix}}_{\mathbf{x}} \bar{\mathbf{h}}^T + \underbrace{\begin{bmatrix} \epsilon(1) \\ \epsilon(2) \\ \vdots \\ \epsilon(M) \end{bmatrix}}_{\bar{\mathbf{z}}}$$

$$\begin{bmatrix}
y(1) \\
y(2) \\
\vdots \\
y(M)
\end{bmatrix} = \begin{bmatrix}
\bar{\mathbf{x}}^{T}(1) \\
\bar{\mathbf{x}}^{T}(2) \\
\vdots \\
\bar{\mathbf{x}}^{T}(M)
\end{bmatrix} \bar{\mathbf{h}}^{T} + \begin{bmatrix}
\epsilon(1) \\
\epsilon(2) \\
\vdots \\
\epsilon(M)
\end{bmatrix}$$

$$\begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(M) \end{bmatrix} = \underbrace{\begin{bmatrix} \bar{\mathbf{x}}^{T}(1) \\ \bar{\mathbf{x}}^{T}(2) \\ \vdots \\ \bar{\mathbf{x}}^{T}(M) \end{bmatrix}}_{\bar{\mathbf{x}}} \bar{\mathbf{h}} + \underbrace{\begin{bmatrix} \epsilon(1) \\ \epsilon(2) \\ \vdots \\ \epsilon(M) \end{bmatrix}}_{\bar{\epsilon}}$$

Your answer is correct.

The correct answer is:

$$\begin{bmatrix}
y(1) \\
y(2) \\
\vdots \\
y(M)
\end{bmatrix} = \begin{bmatrix}
\bar{\mathbf{x}}^{T}(1) \\
\bar{\mathbf{x}}^{T}(2) \\
\vdots \\
\bar{\mathbf{x}}^{T}(M)
\end{bmatrix} \bar{\mathbf{h}} + \begin{bmatrix}
\epsilon(1) \\
\epsilon(2) \\
\vdots \\
\epsilon(M)
\end{bmatrix}$$

Question **8**

Correct

Mark 1.00 out of 1.00

The problem to determine the regression coefficient vector $\bar{\textbf{h}}$ given as

- \bigcirc min $\bar{y} X \bar{h}$
- \bigcirc min $|\bar{y} X \bar{h}|$
- $\|\bar{\mathbf{y}} \mathbf{X}\,\bar{\mathbf{h}}\|^2$
- $\min(\bar{\mathbf{y}} \mathbf{X}\,\bar{\mathbf{h}})^2$

Your answer is correct.

The correct answer is:

$$\min \left\| \bar{\mathbf{y}} - \mathbf{X} \, \bar{\mathbf{h}} \right\|^2$$

Question ${\bf 9}$

Correct

Mark 1.00 out of 1.00

The regression coefficient vector from the training data is determined as

$$\bar{\mathbf{h}} = \mathbf{X}^T (\mathbf{X}^T \mathbf{X})^{-1} \bar{\mathbf{y}}$$

$$\bar{\mathbf{h}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X} \bar{\mathbf{y}}$$

$$\bar{\mathbf{h}} = (\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{X}^T\bar{\mathbf{y}}$$

Your answer is correct.

The correct answer is:

$$\bar{\mathbf{h}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \bar{\mathbf{y}}$$

Question 10

Correct

Mark 1.00 out of 1.00

The pseudo-inverse of the training or design matrix $\boldsymbol{\boldsymbol{X}}$ is given as

$$(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$$

$$X^T(X^TX)^{-1}$$

$$(\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{X}^T$$

$$\mathbf{X}^T(\mathbf{X}\mathbf{X}^T)^{-1}$$

Your answer is correct.

The correct answer is:

$$(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$$