# Bonsuck Koo

New Graduate Rotation Program – Guidance, Navigation & Control



### Introduction

- Name: Bonsuck Koo
- School: University of Texas at Austin
- Degree: Integrated Master and Bachelor of Science in Mechanical Engineering (2024 Dec.)
- Hobbies: Visiting National Parks
- Obtained American Citizenship in July 2023











# Experience overview

- NGC engineering intern
  - Sandia National Laboratories (Current)
- GNC engineering Intern
  - Blue Origin (2023 Fall)
- Mechanical Engineering Intern
  - Samsung Austin Semiconductors (2022 Summer)
- System Engineering Intern
  - Trane Technologies (2021 Summer and Fall)
- Mandatory Korean Military service (2018-2020)















**Passion for our Mission** 



# Why Blue Origin?

# Project

Aerial Robotics (Drone)

- 2024 Spring (Last Semester)
- Team Competition
- Goal:
  - Create an algorithm to find the fastest routes to predetermined targets
  - The final algorithm is implemented in a high-fidelity simulation tool





Source: ASE 497W Todd E. Humphreys;



## My contributions

- Develop 6-DOF simulation in MATLAB
- Develop A\* algorithm in C++

#### **Quadrotor Dynamics**



$$\dot{\omega}_{\mathrm{B}} = J^{-1} \left( N_{\mathrm{B}} - [\omega_{\mathrm{B}} \times] J \omega_{\mathrm{B}} \right) \quad \mathrm{where} \quad N_{\mathrm{B}} = \sum_{i=1}^{4} \left( N_{i\mathrm{B}} + r_{i\mathrm{B}} \times F_{i\mathrm{B}} \right)$$



$$\dot{R}_{\rm BI} = -[\omega_{\rm B} \times] R_{\rm BI}$$

Torque from propeller acting against the air

Torque from upward thrust

Disturbance

#### PD controller



Source: ASE 497W Todd E. Humphreys; University of Texas at Austin

#### PD controller





#### PD controller





```
Attitude
Controller PD
Gains
```

```
%% PD gains
K = diag([0.05 0.25 0.05]);
Kd = diag([0.5 0.25 0.05]);
```

Trajectory 9
Controller PD 6
Gains

%% PD gains
kr = 1.5;
kd = 5;

### Sensor Modeling

GNSS Measurements



Source: ASE 497W Todd E. Humphreys; University of Texas at Austin

$$\tilde{\boldsymbol{r}}_{p\mathrm{G}}(t_k) = \boldsymbol{r}_{p\mathrm{G}}(t_k) + \boldsymbol{w}_{p\mathrm{G}}(t_k)$$

```
rpI = S.statek.rI + RIB*P.sensorParams.raB(:,1);
rpG = RIG'*rpI;
rpGtilde = rpG + RPa'*randn(3,1);
```



Source: ASE 497W Todd E. Humphreys; University of Texas at Austin

### Sensor Modeling

- IMU
  - Accelerometer Measurement Model Accelerometer



**Angular Velocity** 



- Additional Modeling
  - Camera
  - Unscented Kalman Filter
- Full MATLAB simulation
  - Goal:
    - Follow reference trajectory
      - Determined by A\* algorithm in C++
    - Maintain 0 m altitude

Completed MATLAB Simulation



### C++: Path Finding Algorithm

- Comparison of three different path finding algorithms in C++
  - Selection Criteria:
    - 1. Number of Nodes Explored
    - 2. Number of Nodes in path



A field gridded into cells and mapped into nodes. Nodes are at the center of each cell.

Red cells represent obstacles.







Depth First Search (DFS)

Dijkstra's

C++: Path Finding Algorithm



### Aerial Robotics (Drone) Team Collaboration



**Communication and Feedback** 



**GIT** 

Experience at Blue helped me lead the Team to utilize GitLab

### Summary of Drone Project



#### **Situation**

A competition to pop the balloons with a drone in the least amount of time



#### Task

Develop MATLAB simulation

Develop path finding software for the drone



#### **Action**

Apply knowledge in dynamics, classical control theory, navigation sensors (accelerometer, gyroscopes, GNSS receiver) for MATLAB simulation

Implemented A\* method in C++ for path finding algorithm

Feedback through active Communication

Git to collaborate



#### Result

2<sup>nd</sup> place!



# Q&A

## Experience overview

- Relevant Courses:
  - Automated Control Systems
  - Dynamic Systems and Control
  - Spacecraft Dynamics
  - Aircraft Dynamics
  - Stochastic Estimation and control
  - Aerial Robotics
  - GPS Signal Processing

#### Comparison of Monte Carlo result with the Numerical Solution



