التمرين الأول:

- 0 من تقریب تالغی عین قیمة تقریبیة لـــ: h حیث h حیث عین قیمه من تعرب من h
 - $\sqrt{0.99}$ ، $\sqrt{1.003}$ ، $\sqrt{1.04}$ لغامية أعط قيما تقريبية لـــ $\sqrt{1.003}$ ، $\sqrt{1.09}$ ، $\sqrt{1.09}$ ، $\sqrt{1.09}$ ، $\sqrt{1.09}$.

 $f(x) = -3x^2 + x + 2$: التمرين الثانة f المعرّفة على R كما يلي: لتكن الثالة f

- 1. أدرس قابلية اشتقاق الدالة f عند القيمة 1 وفسر النتيجة بيانيا
 - 2. أكتب معادلة المستقيم (T) المماس عند النقطة ذات
 - 3. الفاصلة 0
- (T) يعامد M_0 في (Δ) عين (Δ) عين M_0 عين عامد M_0 عين عامد (Δ)
- y = 4x 3 عين إحداثيات النقطة A في حالة وجودها، حيث المماس في A يوازي المستقيم ذي المعادلة 5.
 - 6. عين إحداثيات النقطة B في حالة وجودها، حيث المماس في B يوازي محور الفواصل
- B'(2,4)، A'(1,2) في حالة وجودها، حيث المماس في C يوازي المستقيم (Δ') الذي يشمل النقطة C في حالة وجودها، حيث المماس في C عين إحداثيات النقطة C في حالة C على المعرّفة على C كما يلي: C كما يلي: C عداد حقيقية C عداد C عداد

نسمي (C_f) المنحني الممثل لها في معلم متعامد و متحانس.

- ين قيم الأعداد الحقيقية b,a و c حتى b
- $x_0 = 2$ عند R عند حدية على C_f عند \checkmark
- -2 يشمل المنحنى (C_f) النقطة A(3,1) ويقبل عند النقطة م مماسا معامل توجيهه ightharpoonup
 - 2. أدرس تغيرات الدالة f ثم شكل حدول تغيراتها
- 3. أثبت أن المعادلة f(x)=0 تقبل حلا وحيدا α على المحال α دون استعمال المميز

التمرين الوابع: لتكن الدالة f المعرّفة على R كما يلي: $f(x) = ax^2 + bx + 7$ حيث a و d عددان حقيقيان

نسمي (C_f) المنحني الممثل لها في معلم متعامد و متجانس.

- y = -4x + 6 معادلته A(1,2) معادلته عند النقطة A(1,2) معادلته عند النقطة A(1,2) معادلته عند النقطة A(1,2)
 - أدرس تغيرات الدالة f ثم شكل جدول تغيراتما
 - [-1,4] على المحال الدالة f(x) على المحال 3

 $B = \frac{(3.1213141517)^2 + 1}{3.1213141517}$ و $A = \frac{(3.1213141516)^2 + 1}{3.1213141516}$ و $A = \frac{(3.1213141517)^2 + 1}{3.1213141516}$

 $f(x)=x^2+2|x+1|$: كما يلي: R المعرّفة على الدالة المعرّفة على العربين السادس لتكن الدالة

نسمي (C_f) المنحني الممثل لها في معلم متعامد و متجانس.

- 1. أكتب عبارة الدالة f(x) دون رمز القيمة المطلقة
- 2. أدرس قابلية اشتقاق الدالة f(x) عند القيمة 0 فسر النتيجة هندسيا
 - 3. أدرس تغيرات الدالة f ثم شكل جدول تغيراتها

المتويين السابع لتكن الدالة f المعرّفة على $f(x) = \sqrt{x} + x$ كما يلي: $f(x) = \sqrt{x} + x$ نسمي المثل لها في معلم متعامد و متحانس. أدرس قابلية اشتقاق الدالة f(x) عند القيمة f(x) فسر النتيجة هندسيا