

Automatische Balkonbewässerung

Autor: Dzaid Abiyyu Siregar, Zul Fahmi Nur Vagala, Johannes Berg

Letzte Änderung: 13. Juni 2025

Dateiname: Qualitätssicherung_Automatische_Balkonbewässerung2.docx

Version: 0.2

© htw-Berlin Seite 1 von 13

Qualitätssicherung_2Automatische Balkonbewässerung

Inhaltsverzeichnis

1	Einleitung	5
2	Testfälle	8
2.1	Sensoranbindung	Fehler! Textmarke nicht definiert.
2.2	MQTT-Verbindung	9
2.3	Manuelle Pumpensteuerung	Fehler! Textmarke nicht definiert.
2.4	Anzeige der Bodenfeuchte in UI	Fehler! Textmarke nicht definiert.
2.5	Energieverbrauch - Dauerbetrieb	Fehler! Textmarke nicht definiert.
3	Testprotokoll	13

Automatische Balkonbewässerung

Copyright

© Mohammad Abuosba

Die Weitergabe, Vervielfältigung oder anderweitige Nutzung dieses Dokumentes oder Teile davon ist unabhängig vom Zweck oder in welcher Form untersagt, es sei denn, die Rechteinhaber/In hat ihre ausdrückliche schriftliche Genehmigung erteilt.

Version Historie

Version:	Datum:	Verantwortlich	Änderung
0.1	11.11.2013	Mohammad Abuosba	Initiale Dokumenterstellung
0.2	13.06.2025	Johannes Berg	Testplan, Testfälle und Testprotokoll

© htw-Berlin Seite 3 von 13

Automatische Balkonbewässerung

Vorhandene Dokumente

Alle für die vorliegende Spezifikation ergänzenden Unterlagen müssen hier aufgeführt werden

Dokument	Autor	Datum
Automatische_Balkonbewässerung_Lastenheft	Dzaid Abiyyu Siregar, Zul Fahmi Nur Vagala, Johannes Berg	25.04.2025
Automatische_Balkonbewässerung_Pflichtenheft		23.05.2025
Automatische_Balkonbewässerung_technische_Spezifikation.docx		13.06.2025
Automatische_Balkonbewässerung_Qualitätssicherung		13.06.2025

© htw-Berlin Seite 4 von 13

Automatische Balkonbewässerung

1 Einleitung

Dieses Dokument fasst die bestehenden sowie neu hinzugekommenen Testfälle des Projekts zur automatisierten Pflanzenbewässerung zusammen. Aufbauend auf den, während Sprint 1 definierten Testfällen, die zentrale Funktionen des Systems absichern sollten, werden in dieser Erweiterung nun auch die Testfälle aus Sprint 2 dokumentiert. Ziel ist es, die fortschreitende Systementwicklung weiterhin systematisch zu begleiten und sicherzustellen, dass sowohl neue als auch überarbeitete Komponenten den Anforderungen aus Lasten- und Pflichtenheft sowie der technischen Spezifikation entsprechen.

Die Testfälle wurden entsprechend dem bestehenden Testplan erweitert und berücksichtigen funktionale sowie nichtfunktionale Anforderungen. Sie dienen wie bisher der Qualitätssicherung, der strukturierten Fehlersuche und der Validierung des Zusammenspiels einzelner Systembestandteile. Jeder Testfall folgt einem einheitlichen Aufbau und enthält Angaben zum Testziel, den Voraussetzungen, dem erwarteten Verhalten sowie den eingesetzten Testdaten.

Durch die Ergänzung um die Testfälle aus Sprint 2 wird sichergestellt, dass neue Funktionalitäten umfassend geprüft und die kontinuierliche Weiterentwicklung des Systems abgesichert werden. Das Dokument dient somit als fortlaufendes Testprotokoll und Grundlage für weitere interne Abnahmen im Projektverlauf.

© htw-Berlin Seite 5 von 13

Testplan

Test-Objekt	Qualitätskriterien	QS-Teststufe 1 "Source Code, Komponente, Funktion"		Bemerkungen	
		Test-Verfahren	Zyklus	Zuständig	
Dokumentation					
Ereignislog MQTT-Format	Korrektheit, Struktur, Vollständigkeit	Technisches Review	Nach Implementierung	Dzaid	Strukturierte JSON-Nachrichten mit definierten Feldern
Lokale Zeitplanlogik (ESP)	Vollständigkeit, Nachvollziehbarkeit	Code Review	Nach Implementierung	Dzaid	RTC-basierte Umsetzung dokumentiert
Schutzgehäuse (Skizze, Entwurf)	Eindeutigkeit, Vollständigkeit	Editorial Review	Bei Erstellung des Gehäuses	Johannes	Anforderung an Wetterschutz und Kabelführung beschrieben
Applikation					
Funktionalitäten					
Zeitplan-Funktion (App)	F – Korrektheit, Bedienbarkeit	Blackboxtest, Unittest	Nach jedem UI-Update	Zul	Nutzer kann Zeiten eingeben und ändern; Validierung der Eingabe
MQTT-Sende- /Empfangsbefehl (Zeitsteuerung)	F – Korrektheit, Timing	Integrationstest	Nach Anbindung an ESP	Dzaid, Zul	Steuerbefehl wird korrekt gesendet und empfangen
MQTT-Ereignislog auf ESP	F – Struktur, Korrektheit	Modultest, JSON- Validierung	Nach jeder Änderung im Code	Dzaid	Log enthält Zeit, Aktion, Sensorwert im definierten Schema
Lokaler Zeitplan (ESP- seitig)	F – Richtigkeit, Autonomer Betrieb	Integrationstest	Nach Implementierung	Dzaid	Gießzeit wird auch ohne App-Befehl korrekt ausgeführt
Schutzgehäuse Elektronik	F – Passform, Witterungsresistenz	Funktionstest (Aufbau)	Bei Einbau	Johannes	Pumpe, ESP und Relais sicher montiert; Kabel trocken

© htw-Berlin Seite 6 von 13

Automatische Balkonbewässerung

Feste Installation von Sensoren & Pumpen	F – Stabilität, Praxistauglichkeit	Funktionstest vor Ort	Nach Montage	Johannes	Komponenten sitzen fest im Pflanzgefäß und Wasserbehälter			
nicht funktionale Eigenscha	nicht funktionale Eigenschaften / Anforderungen							
Automatisierung	Zuverlässigkeit, Robustheit	Langzeittest	Ende Sprint 2	Dzaid, Johannes, Zul, (+ Anwender)	System funktioniert über längere Zeit stabil			

Test-Objekt	Qualitätskriterien	QS-Teststufe	2 "Integration / Sy	/stemtest"	Bemerkung?		
		Test-Verfahren	Zyklus	Zuständig			
Funktionalitäten							
Zeitbasierte Pumpensteuerung (App->ESP)	F – Richtigkeit, Timing	Manuelle Tests	Nach Integration	Dzaid, Zul	Pumpe startet automatisch zur programmierten Zeit		
MQTT-Kommunikation bei Zeitereignissen	F – Konsistenz, Stabilität	Lasttest, Integrationstest	Nach Umsetzung, regelmäßig	Dzaid, Zul	Es darf keine Konflikte bei mehreren Zeit- Ereignissen geben		
Historie anzeigen	F – Aktualität	UI-Test, Review mit Nutzer	Vor Übergabe	Zul	Letztes Gießereignis, Sensorwerte und Uhrzeit korrekt sichtbar		
Funktionstest: Gießen nach Zeitplan	F – Funktionalität	Gesamttest Setup	Nach Verbindung aller Komponente	Dzaid, Johannes, Zul	Pumpvorgang startet nur wenn Bedingungen erfüllt sind		
nicht funktionale Eigenscha	nicht funktionale Eigenschaften / Anforderungen						
Wetterresistenz der Hardware	Schutz, Dauerbetrieb	Belastungstest (Feuchtigkeit, Außeneinsatz)	Vor Übergabe	Johannes	Geprüft bei hoher Luftfeuchte oder Außentemperatur		

© htw-Berlin Seite 7 von 13

2 Testfälle

2.6 Zeitplan-Funktion in der App

Testfall	Beschreibung
Testfall-Nummer	006
Testart	Blackboxtest
Zu testender Geschäftsprozess/ Zu testende Funktionsgruppe	Zeitplanung für automatische Bewässerung
Testziel	Der Benutzer kann Zeitpunkte für das automatische Gießen definieren und speichern
Testvoraussetzungen	App ist installiert, MQTT-Verbindung zum ESP besteht
Testfalldaten	Eingabe "Bewässerung täglich um 8:00 Uhr"
Erwartetes Verhalten	Zeitplan wird gespeichert und an ESP gesendet

© htw-Berlin Seite 8 von 13

2.7 MQTT-Ereignislog

Testfall	Beschreibung
Testfall-Nummer	007
Testart	Integrationstest
Zu testender Geschäftsprozess/ Zu testende Funktionsgruppe	MQTT-Nachrichten mit Ereignisdaten nach jeder Aktion
Testziel	ESP soll nach jeder Pumpenaktion ein korrekt formatiertes JSON-Log senden
Testvoraussetzungen	MQTT-Broker aktiv, Pumpensteuerung implementiert
Testfalldaten	Pumpenaktion auslösen, Log empfangen und prüfen
Erwartetes Verhalten	JSON-Nachricht enthält Zeitstempel, Aktion, Sensorwert

© htw-Berlin Seite 9 von 13

2.8 Lokaler Zeitplan

Testfall	Beschreibung	
Testfall-Nummer	008	
Testart	Funktionstest, Logiktest	
Zu testender Geschäftsprozess/	Zeitvergleich auf ESP zur autonomen Pumpensteuerung	
Zu testende Funktionsgruppe		
Testziel	ESP führt Bewässerung ohne App-Befehl zur eingestellten Zeit selbstständig aus	
Testvoraussetzungen	RTC-Modul oder NTP-Zeitquelle vorhanden	
Testfalldaten	Uhrzeit einstellen: z.B. "Gießen um 7:00 Uhr"	
Erwartetes Verhalten	ESP schaltet die Pumpe automatisch um 7:00 Uhr ein	

© htw-Berlin Seite 10 von 13

2.9 Historie-Anzeige in der App

Testfall	Beschreibung
Testfall-Nummer	009
Testart	UI-Test, Szenarientest
Zu testender Geschäftsprozess/	Anzeige vergangener Pumpvorgänge und Sensorwerte in der App
Zu testende Funktionsgruppe	
Testziel	Nutzer sieht eine verständliche Übersicht vergangener Ereignisse
Testvoraussetzungen	Mindestens eine Pumpenaktion durchgeführt, Daten gespeichert
Testfalldaten	Nutzer öffnet Verlaufs-Ansicht
Erwartetes Verhalten	Liste zeigt Datum, Uhrzeit, Aktion (z.B. "Pumpe an"), Sensorwert

© htw-Berlin Seite 11 von 13

2.10 Wettergeschütztes Gehäuse für Elektronik

Testfall	Beschreibung	
Testfall-Nummer	010	
Testart	Belastungstest, Funktionstest	
Zu testender Geschäftsprozess/	Schutz der Elektronik gegen äußere Einflüsse (Wasser, Staub)	
Zu testende Funktionsgruppe		
Testziel	ESP und Relaismodul bleiben auch bei Feuchtigkeit funktionsfähig	
Testvoraussetzungen	Gehäuse ist montiert, System ist in Betrieb	
Testfalldaten	System 8 Stunden lang in feuchter Umgebung betrieben (z.B. Balkon)	
Erwartetes Verhalten	Keine Fehlfunktionen, stabile Verbindung	

© htw-Berlin Seite 12 von 13

QualitätssicherungAutomatische Balkonbewässerung

3 Testprotokoll

Sprint 1

TestfallNr.	Datum	Status	Schweregrad	Datum	Status
				2. Lauf	2. Lauf
001	06.06.2025	bestanden	leicht		
002	07.07.2025	bestanden	mittel		
003	07.07.2025	bestanden	mittel		
004	05.07.2025	bestanden	schwer		
005	13.06.2025	Noch nicht			
		durchgeführt			

Sprint 2

TestfallNr.	Datum	Status	Schweregrad	Datum 2. Lauf	Status 2. Lauf
006	11.07.2025	Noch nicht ausgeführt			
007	11.07.2025	Noch nicht ausgeführt			
008	11.07.2025	Noch nicht ausgeführt			
009	11.07.2025	Noch nicht ausgeführt			
010	11.07.2025	Noch nicht durchgeführt			

© htw-Berlin Seite 13 von 13