Joshua Croasdale Spring 2024

# Capstone Project

Predicting NHL Player Performance Using Linear Regression and Other ML models

#### **Overview**

- The NHL is an entertainment product
  - People become highly invested in the outcomes
    - Financially invested (betting, jobs)
    - Personally invested (passion)
- Big business in Canada and the US
  - Ticket sales, merchandise sales, endorsements
  - Online Sports gambling industry is worth 30 billion USD in North America in 2024!<sup>1</sup>
- Fantasy hockey → Ever-growing industry
  - Not as economically impactful as sports betting
    - More of a passion-driven endeavour
    - But there is an industry built around fantasy sports
  - More focused on season-long outcomes as opposed to individual games



## **Hypothetical Scenario**

- ➤ I am an aspiring data scientist and statistician that has been hired by a new sports news company to flesh out the 'Fantasy Hockey' section of their website
- First order of business: Create a model that will predict (hopefully well) the season-long statistical outcomes for any given NHL player for the upcoming season

- The company charges users a fee for access to the model
- User can input the specific parameters of their own fantasy league and receive detailed projections for every player
  - Use these projections to help them win their fantasy leagues!

## Narrowing It Down...

- For the scope of this analysis I am going to focus on predicting two important stats:
  - $\circ$  Goals  $\to$  Goal is awarded to the last skater to touch the puck before it crosses the opposing team's goal line
  - <u>Assists</u> → awarded to up to two players who touched the puck immediately before the goal scorer put it across the goal line
- This is a <u>multiple linear regression</u> problem
  - Target variable is continuous
- > In the future...
  - Classification → game-by-game predictions
    - Will a given player score a goal in their next game?
    - Will a given team win their next game?

#### The Dataset

- All player data was provided by:
  <a href="https://www.hockey-reference.com/leagues/NHL">https://www.hockey-reference.com/leagues/NHL</a> 2024 skaters.html
- > NHL player data for each season from 2005-06 to 2023-24 (19 seasons) was exported into a .csv format and saved into individual .csv files using a text editor
  - All files stored in one folder
- > All .csv files were compiled into one dataframe with python and processed from there
  - I added a 'Year' column to every individual dataset
- Do I have enough data?
  - Each row of my dataframe is an entire season's worth of data for one player!

## **Next Steps...**

Drop features that have high covariance and run analysis again

- Use a three-year weighted average of most recent three seasons, with the remainder of career averaged out and weighted accordingly
  - Can this be done? YES
  - How will this work with test vs train data?

### **Obstacles and Limitations**

- Inherent randomness of ice hockey
- Every player is unique!
- Quality of team
- Quality of linemates
- Quality of competition
- > Assists
  - Primary vs Secondary assists
- Aging curves of players
- What to do with rookies?
- What to do with 'tweeners'?