# 2023 부산시 양자컴퓨팅 개발자 교육 프로그램

#### Lecture 3

Inho Choi

Qiskit Advocate



## Syllabus



- Lecture 1: 게이트와 양자 회로 기본 작성법
  - Single qubit gate Lecture 1
  - Multiple qubit gate Lecture 2
  - Multiple qubit gate Notebook Demonstration
  - Barriers and Properties of Quantum Circuit
- Lecture 2: 양자 회로의 측정과 OpenQasm
  - Notebook Demonstration
- Lecture 3: 양자 백엔드에 양자회로 실행하기
- Lecture 4: 양자 회로 및 회로의 실행 결과 시각화 및 해석

• Lecture 5: 유용한 기능들

Lecture 3

Lecture 4

Lecture 5

## Syllabus



- Lecture 1: 게이트와 양자 회로 기본 작성법
  - Single qubit gate
  - Multiple qubit gate
  - Multiple qubit gate Notebook Demonstration
  - Barriers and Properties of Quantum Circuit
- Lecture 2: 양자 회로의 측정과 OpenQasm
  - Notebook Demonstration
- Lecture 3: 양자 백엔드에 양자회로 실행하기
- Lecture 4: 양자 회로 및 회로의 실행 결과 시각화 및 해석
- Lecture 5: 유용한 기능들

## Jupyternote Demonstration





#### Qiskit Textbook: Quantum circuits





#### Quantum Circuit and Measurement



- 1. Classical Circuit
- 2. Quantum Circuit
- 3. Projective Measurement



#### **Circuits**

- Wires: information
- Gates: operations

 $\textbf{Left} \rightarrow \textbf{Right}$ 



#### **Circuits**

**Left** → **Right** 

- Wires: information
- Gates: operations





#### **Circuits**

**Left** → **Right** 

- Wires: information
- Gates: operations





#### **Circuits**

Wires: information

Gates: operations



|   |          | ,  |              | ,  |            |
|---|----------|----|--------------|----|------------|
| a | $\neg a$ | ab | $a \wedge b$ | ab | $a \lor b$ |
| 0 | 1        | 00 | 0            | 00 | 0          |
| 1 | 1<br>0   | 01 | 0            | 01 | 1          |
|   |          | 10 | 0            | 10 | 1          |
|   |          | 11 | 1            | 11 | 1          |
|   |          | '  | '            | '  |            |



#### **Circuits**

Wires: information

Gates: operations

| ab | $a\oplus b$ |
|----|-------------|
| 00 | 0           |
| 01 | 1           |
| 10 | 1           |
| 11 | 0           |



**XOR** gate



#### Quantum Circuit and Measurement



- 1. Classical Circuit
- 2. Quantum Circuit
- 3. Projective Measurement



- Wires: qubits
- Gates: unitary operations and measurements





#### **Quantum Circuits**

Wires: qubits

Gates: unitary operations and measurements

$$H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

$$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

$$T = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1+i}{\sqrt{2}} \end{pmatrix}$$



- Wires: qubits
- Gates: unitary operations and measurements

$$H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$



$$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

$$T = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1+i}{\sqrt{2}} \end{pmatrix}$$

$$THSH = \begin{pmatrix} \frac{1+i}{2} & \frac{1-i}{2} \\ \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \end{pmatrix}$$



#### **Quantum Circuits**

- Wires: qubits
- Gates: unitary operations and measurements

Operations *TSHS* on qubit

$$|0\rangle$$
 —  $H$  —  $S$  —  $H$  —  $T$  —  $\frac{1+i}{2}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$ 

$$THSH = \begin{pmatrix} \frac{1+i}{2} & \frac{1-i}{2} \\ \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \end{pmatrix}$$











| Υ — | — H — | • |
|-----|-------|---|
| x — |       | • |















$$\mathbb{I} \otimes H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0\\ 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$









22



X is the control bit, Y is target bit

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$



23



Y is the control bit, X is target bit

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$





$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \end{pmatrix}$$















$$|\pi_0\rangle = |0\rangle|0\rangle$$





$$|\pi_0\rangle = |0\rangle|0\rangle$$
  $|\pi_1\rangle = |0\rangle|+\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|01\rangle$ 





$$|\pi_0\rangle = |0\rangle|0\rangle$$
  $|\pi_1\rangle = |0\rangle|+\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|01\rangle$   $|\pi_2\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle = |\phi^+\rangle$ 



















Unitary operation

Controlled-unitary operation

#### Quantum Circuit and Measurement



- 1. Classical Circuit
- 2. Quantum Circuit
- 3. Projective Measurement



$$|\psi\rangle = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} \quad |\phi\rangle = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$$

$$|\psi\rangle = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} \quad |\phi\rangle = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} \qquad \langle \psi | \phi \rangle = (\overline{\alpha_1} \quad \cdots \quad \overline{\alpha_n}) \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} = \overline{\alpha_1} \beta_1 + \cdots + \overline{\alpha_n} \beta_n$$



35

$$|\psi\rangle = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} \quad |\phi\rangle = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$$

$$|\psi\rangle = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} \quad |\phi\rangle = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} \qquad \langle \psi | \phi \rangle = (\overline{\alpha_1} \quad \cdots \quad \overline{\alpha_n}) \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} = \overline{\alpha_1} \beta_1 + \cdots + \overline{\alpha_n} \beta_n$$

$$|\psi\rangle = \sum_{a \in \Sigma} \alpha_a |a\rangle \quad |\phi\rangle = \sum_{b \in \Sigma} \beta_b |b\rangle$$

$$\langle \psi | \phi \rangle = \left( \sum_{a \in \Sigma} \alpha_a | a \rangle \right) \left( \sum_{b \in \Sigma} \beta_b | b \rangle \right)$$

$$= \sum_{a \in \Sigma} \sum_{b \in \Sigma} \overline{\alpha_a} \beta_b \langle a | b \rangle$$
$$= \sum_{a \in \Sigma} \overline{\alpha_a} \beta_b$$



36

$$\langle \psi | \psi \rangle = \sum_{a \in \Sigma} \overline{\alpha_a} \alpha_a = \sum_{\alpha \in \Sigma} |\alpha_a|^2 = ||\psi\rangle||^2$$

Euclidean norm of vector

$$\||\psi\rangle\| = \sqrt{\langle\psi|\psi\rangle}$$



$$\overline{\langle \psi | \phi \rangle} = \langle \phi | \psi \rangle$$

Orthogonal set

$$\langle \psi_j | \phi_k \rangle = 0$$
 (for all  $j \neq k$ )

Orthonormal set

$$\langle \psi_j | \phi_k \rangle = \begin{cases} 1 & j = k \\ 0 & j \neq k \end{cases}$$

## Projection



#### Square matrix $\Pi$ is projection if

- 1.  $\Pi = \Pi^{\dagger}$  (Hermitian matrices)
- 2.  $\Pi^2 = \Pi$  (Idempotent matrices)

## Projection



#### Square matrix $\Pi$ is projection if

 $|\psi\rangle$  is a unit vector

- 1.  $\Pi = \Pi^{\dagger}$
- 2.  $\Pi^2 = \Pi$

$$\Pi = |\psi\rangle\langle\psi|$$

$$\Pi^{\dagger} = (|\psi\rangle\langle\psi|)^{\dagger} = (\langle\psi|)^{\dagger}(|\psi\rangle)^{\dagger} = |\psi\rangle\langle\psi| = \Pi$$

$$\Pi^{2} = (|\psi\rangle\langle\psi|)^{2} = |\psi\rangle\langle\psi|\psi\rangle\langle\psi| = |\psi\rangle\langle\psi| = \Pi$$



Measurement that described by collection of projections.

The sum is:

$$\Pi_1 + \dots + \Pi_m = \mathbb{I}$$



Measurement that described by collection of projections.

The sum is:

$$\Pi_1 + \dots + \Pi_m = \mathbb{I}$$

Measurement on system X,

$$Pr(outcome \ is \ k) = \|\Pi_k|\psi\rangle\|^2 = \langle \psi|\Pi_k|\psi\rangle$$



Measurement that described by collection of projections.

The sum is:

$$\Pi_1 + \dots + \Pi_m = \mathbb{I}$$

Measurement on system X,

$$Pr(outcome \ is \ k) = \|\Pi_k|\psi\rangle\|^2 = \langle \psi|\Pi_k|\psi\rangle$$

After outcome measurement produce k, the state of X becomes

$$\frac{\Pi_k|\psi\rangle}{\|\Pi_k|\psi\rangle\|}$$



Measure

$$|\psi\rangle = \sum_{a \in \Sigma} \alpha_a |a\rangle$$

Outcome a appears with probability

$$||a\rangle\langle a|\psi\rangle||^2 = |\alpha_a|^2$$

The state becomes after outcome *a* 

$$\frac{|a\rangle\langle a|\psi\rangle}{\||a\rangle\langle a|\psi\rangle\|} = \frac{\alpha_a}{|\alpha_a|}|a\rangle$$



#### **Example**

Performing a standard basis measurement system X, but doing nothing to a system Y is equivalent to perform the projective measurement

$$\{|a\rangle\langle a|\otimes \mathbb{I}_Y:a\in\Sigma\}$$

On the system (X, Y)Outcome  $\alpha$  appears with probability

$$\|(|a\rangle\langle a|\otimes \mathbb{I})|\psi\rangle\|^2 = |\alpha_a|^2$$

The state becomes after outcome *a* 

$$\frac{(|a\rangle\langle a|\otimes \mathbb{I})|\psi\rangle}{\|(|a\rangle\langle a|\otimes \mathbb{I})|\psi\rangle\|}$$

## QnA

