University of Jyväskylä - Course TIEJ6003 Introduction to Quantum Computing

Precept-04

Prof. Ofer Shir oshir@alumni.Princeton.EDU

Summer 2024 Jyväskylä, Finland

1/10

ex3

...processing solutions to ex3...

...in-class practice...

Summer 2024

computing the order

Show that the order of x = 5 modulo N = 21 is 6.

4/10

computing the order

Show that the order of x = 5 modulo N = 21 is 6.

Solution:

$$5^2 = 4 \mod 21$$

 $5^3 = 20 \mod 21$
 $5^4 = 16 \mod 21$
 $5^5 = 19 \mod 21$

$$5^6 = 1 \mod 21$$

QFT is unitary

The QFT on a state $|x\rangle$ for $x \in \{0, 1, ..., N-1\}$ is defined as:

QFT
$$|x\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i \frac{xk}{N}} |k\rangle$$

Show that it is a unitary operator.

5/10

QFT is unitary

The QFT on a state $|x\rangle$ for $x \in \{0, 1, \dots, N-1\}$ is defined as:

QFT
$$|x\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i \frac{xk}{N}} |k\rangle$$

Show that it is a unitary operator.

Proof: The matrix form of QFT is given by:

$$F_{jk} = \frac{1}{\sqrt{N}} e^{2\pi i \frac{jk}{N}}$$

The conjugate transpose F^{\dagger} of F is:

$$(F^{\dagger})_{kj} = \overline{F_{jk}} = \frac{1}{\sqrt{N}} e^{-2\pi i \frac{jk}{N}}$$

We need to verify that $F^{\dagger}F = I$.

QFT is unitary: proof (i)

Let's compute the element in the (j, m)-th position of the product $F^{\dagger}F$:

$$(F^{\dagger}F)_{jm} = \sum_{k=0}^{N-1} (F^{\dagger})_{jk} F_{km}$$

Substituting the elements:

$$(F^{\dagger}F)_{jm} = \sum_{k=0}^{N-1} \left(\frac{1}{\sqrt{N}}e^{-2\pi i\frac{jk}{N}}\right) \left(\frac{1}{\sqrt{N}}e^{2\pi i\frac{km}{N}}\right)$$
$$= \frac{1}{N} \sum_{k=0}^{N-1} e^{-2\pi i\frac{jk}{N}}e^{2\pi i\frac{km}{N}}$$
$$= \frac{1}{N} \sum_{k=0}^{N-1} e^{2\pi i\frac{k(m-j)}{N}}$$

Summer 2024 6 / 10

Shir J

QFT is unitary: proof (ii)

When m = j:

$$(F^{\dagger}F)_{jm} = \frac{1}{N} \sum_{k=0}^{N-1} e^{2\pi i \frac{k(m-j)}{N}} = \frac{1}{N} \sum_{k=0}^{N-1} e^{2\pi i \cdot 0} = \frac{1}{N} \cdot N = 1$$

When $m \neq j$, the geometric series sums to zero:

$$\sum_{k=0}^{N-1} e^{2\pi i \frac{k(m-j)}{N}} = \frac{1 - e^{2\pi i (m-j)}}{1 - e^{2\pi i \frac{(m-j)}{N}}} = 0$$

Altogether, this completes our proof, since

$$(F^{\dagger}F)_{jm} = \delta_{jm}$$

and therefore $F^{\dagger}F = I$, as claimed.

exercises

reviewing the take-out exercises

take-out problem-set

We now review the exercises that appear in the fourth problem-set ("take-out"). We shall go over the solution in tomorrow's Precept.

Exercise 4.2: controlled-f gate

Verify that given the following controlled-f gate,

$$|a\rangle - |a\rangle |y\rangle - |f\rangle |y \oplus f(a)\rangle$$

the following "trick" is valid:

$$\begin{array}{c|c} |a\rangle & \hline & (-1)^{f(a)}|a\rangle \\ (|0\rangle - |1\rangle)/\sqrt{2} & \hline & f & (|0\rangle - |1\rangle)/\sqrt{2} \end{array}$$

Exercise 4.3: identity

Let $H^{\otimes n}$ denote Hadamard gates applied individually to n qubits.

Let $P:=2|0^{\otimes n}\rangle\langle 0^{\otimes n}|-I^{\otimes n}$, where $|0^{\otimes n}\rangle\langle 0^{\otimes n}|$ is the projector onto the n-qubit zero state.

Prove that

$$H^{\otimes n}PH^{\otimes n} = 2|\psi_u\rangle\langle\psi_u| - I$$

where $|\psi_u\rangle$ is the uniform superposition over the computational basis states,

$$|\psi_u\rangle := \frac{1}{2^{n/2}} \sum_{j=1}^{2^n-1} |j\rangle$$