

Grundbegriffe der Informatik Tutorium 33

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de Lukas Bach, lukas.bach@student.kit.edu | 12.01.2017

Gliederung

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Graphen

- Praxisbeispiele
- Ungerichtete Graphen
- Begriffe

Graphen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.ed

Definition: Graph

Graphen

Praxisbeispiel

Ungendik

Graphen

Begriff

Ein Graph G = (V, E) ist ein Tupel aus:

- Einer endlichen, nichtleeren Knotenmenge V
- Einer endlichen Kantenmenge $E \subseteq V \times V$

Beispiel: Knotenmenge $V := \{a, b, c, d\}$. Kantenmenge könnte zum Beispiel sein...

- $E := \{(a, b), (c, d), (a, d)\}$
- $E := \{(a, a), (b, b), (c, c)\}$
- $\mathbf{E} := \emptyset$

Wie sehen diese Graphen aus?

Maximilian Staab, Beispiel: Knotenmenge $V:=\{a,b,c,d\}$. Kantenmenge könnte zum Lukas Bach, Beispiel sein...

lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete

Graphe

Begriff

- $V := \{a, b, c, d\}, E := \{(a, b), (c, d), (a, d)\}$
 - (c) d
- $V := \{a, b, c, d\}, E := \{(a, a), (b, b), (c, c)\}$
 - as of
 - (c) (d)
- $V := \{a, b, c, d\}, E := \emptyset$
 - a (6
 - (c) (d)

Wann Angabe als Menge, wann als Visualisierung?

Maximilian Staab,

 $\verb|maximilian.staab@fsmi.uni-karlsruhe.de|,\\$

Lukas Bach, lukas.bach@student.kit.edu Wir verwenden gezeichnete Graphen und deren Definition als Mengen als äquivalent.

Graphen

Praxisbeispiel

Graphon

Begriff

• $\{(a,b),(c,d),(a,d)\} = \{(a,b),(a,d),(c,d)\} \neq \{(b,a),(d,c),(d,a)\},$ also Kantenmenge mit unterschiedlichen Reihenfolgen darstellbar. Genauso die Knotenmenge.

Es kann also in jedem Fall der Graph sowohl als "Visualisierung" oder als Menge angegeben werden, beide Varianten sind formal korrekt.

Praxisbeispiel: Soziales Netzwerk

Maximilian Staab, maximilian.staab@fsmi.uni Lukas Bach, lukas.bach@student.kit.ed

Graphen

Praxisbeispiele

Ungerichte Graphen

Begriffe

- Ist Person A direkt mit Person B befreundet? \Leftrightarrow Gibt es eine Kante (A, B)?
- Ist Person A über maximal 2 verschiedene Leute mit Person B befreundet? ⇔ Gibt es einen Pfad von A nach B mit maximaler Länge 3?
- Wieviele Freunde hat Person $A? \Leftrightarrow$ Welchen Grad hat Person $A \in V$?

Praxisbeispiel: Wie kommt man am schnellsten von *A* nach *B*

Maximilian Staab, maximilian.staab@fsmi.uni Lukas Bach, lukas.bach@student.kit.ed

Graphen

Praxisbeispiele

Ungerichtet Graphen

Beariff

- Kantengewichtung: Jeder Kante wird eine Zahl $c \in \mathbb{R}$ zugewiesen.
- Wie lange dauert der kürzeste Weg von Kongresszentrum nach Hauptfriedhof?

 Wie lang ist ein kürzester Pfad von Kongresszentrum nach Hauptfriedhof?
- Wo kommt man von Kronenplatz überall innerhalb von 5 Zeiteinheiten hin? \Leftrightarrow Für welche Orte $v \in V$ existiert ein Pfad (*Kronenplatz*, ..., v) mit einer Länge von maximal 5?

Praxisbeispiel: Huffman-Bäume

Maximilian Staab, maximilian.staab@fsmi.uni Lukas Bach, lukas.bach@student.kit.ed

Graphen

Praxisbeispiele

Ungerichtet Graphen

Begriffe

- Wie lang ist die Kodierung vom Zeichen c? Wie lang ist der Pfad von Wurzel zu Knoten c? In diesem Fall 2.
- Wie viele Zeichen werden kodiert?

 Wie viele Knoten sind von der Wurzel erreichbar, die selbst keine ausgehenden Kanten haben?

 Wie viele Blätter hat der Baum?

Ungerichtete Graphen

Maximilian Staab

maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach.

lukas bach@student kit edu

Graphen

Ungerichtete Graphen

Bis jetzt: Gerichtete Graphen, dh. Kanten (u, v) hatten eine Richtung von Knoten u nach Knoten v

Ungerichteter Graph

Ein ungerichteter Graph ist ein Graph, dessen Kanten Mengen, und keine Tupel sind.

- Beispiel: Statt Kante (u, v) jetzt Kante $\{u, v\} = \{v, u\}$.
- Information über Richtung geht also verloren, Kanten verbinden nur noch Knoten, ohne sich zu merken, welcher Knoten Start und welcher Ziel ist.

Teilgraph

Maximilian Staab, maximilian.staab@fsmi.u Lukas Bach, lukas bach@student.kit.

Teilgraph

Zu einem Graph G := (V, E) ist ein Teilgraph definiert als G' = (V', E'), falls gilt $V' \subseteq V$ und $E' \subseteq E$.

Graphen

Praxisbeispiele

Ungerichtete

Begriffe

■ Beispiel: Sei G := (V, E) mit $V := \{a, b, c, d, e, f\}$ und $E := \{(b, a), (b, f), (f, d), (e, f), (f, a), (e, b), (a, e), (f, c), (a, c), (c, a), (c, e)\}$

- Ist ein Graph mit $V_1 := \{a, c, d, e, f\}, E_1 := \{(a, c), (c, a), (a, e), (f, d)\}$ ein Teilgraph von G?
- Ist ein Graph mit $V_2 := \{d, f\}, E_2 := \{(f, d)\}$ ein Teilgraph von G?
- Ist ein Graph mit $V_3 = E_3 = \emptyset$ ein Teilgraph von G?

Teilgraph

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete

Begriffe

Teilgraph

Zu einem Graph G := (V, E) ist ein Teilgraph definiert als G' = (V', E'), falls gilt $V' \subseteq V$ und $E' \subseteq E$.

- Beispiel: Sei G := (V, E) mit $V := \{a, b, c, d, e, f\}$ und $E := \{(b, a), (b, f), (f, d), (e, f), (f, a), (e, b), (a, e), (f, c), (a, c), (c, a), (c, e)\}$
- Ist ein Graph mit $V_4 := \{a, b\}, E_4 := \{(f, d)\}$ ein Teilgraph von G?
- Ist ein Graph mit $V_5 := \{g, a\}, E_5 := \{(g, a), (a, g)\}$ ein Teilgraph von G?

Weg/Pfad

Maximilian Staab maximilian.staab@fsmi. Lukas Bach.

lukas.bach@student.kit

Graphen

Praxisbeispiele

Begriffe

Pfad informell

Ein Pfad (u, ..., v) ist eine Aneinanderreihung von Knoten, die jeweils

mit Kanten verbunden sind, sodass man über das traversieren der Kanten vom Startknoten

 $u \in V$ zum Zielknoten $v \in V$ kommt.

Anmerkung: Wenn man sich einen Knoten $x \in V$ merkt und eine Kante $(x, y) \in E$ traversiert, so gelangt man zu Knoten y.

Pfad formell

Ein Pfad $P := (v_0, v_1, ..., v_n)$ der Länge n ist eine Permutation auf V, wobei gilt: $\forall i \in \mathbb{Z}_n : (v_i, v_{i+1}) \in E$.

 α

Der Pfad (b, f, c, e) ist ein möglicher Pfad von b nach e der Länge 3.

Gibt es noch andere solcher Pfade?

Zyklus

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de Lukas Bach,

Zyklus

lukas.bach@student.kit.

Ein Zyklus ist ein Pfad $(v_1, ..., v_n)$ mit $v_1 = v_n$.

Graphen

Praxisbeispiele

Ungerichtete

Begriffe

Der Pfad (b, f, a, c, e) ist ein möglicher Zyklus. Gibt es noch andere Zyklen?

Zusammenhängend

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.

Zusammenhängender Graph

Graphen

Ein ungerichteter Graph heißt zusammenhängend, wenn gilt: $\forall u, v \in V \exists$ Pfad von u nach v.

Praxisbeispiele

Stark zusammenhängender Graph

Ungerichtet

Ein gerichteter Graph heißt stark zusammenhängend, wenn gilt:

Begriffe

 $\forall u, v \in V \exists$ Pfad von u nach v.

Schwach zusammenhängender Graph

Ein gerichteter Graph heißt schwach zusammenhängend, wenn der zugehörige ungerichteter Graph zusammenhängend ist.

Knotengrad

Maximilian Staab Lukas Bach.

maximilian.staab@fsmi.uni-karlsruhe.de

Eingangsgrad

lukas bach@student kit

Der Eingangsgrad eines Knoten $u \in V$ ist definiert als:

Graphen

 $d_{-}(u) := |\{(v, u) \in E : v \in V\}|$, also die Anzahl der Kanten, die in den

Knoten *u* zeigen.

Ausgangsgrad

Begriffe

Der Ausgangsgrad eines Knoten $u \in V$ ist definiert als:

 $d_+(u) := |\{(u, v) \in E : v \in V\}|$, also die Anzahl der Kanten, die vom Knoten u aus weg zeigen.

Grad

Der Grad eines Knoten u ist definiert als: $d(u) := d_+(u) + d_-(u)$, also die Anzahl der Kanten, über die *u* verbunden ist.

Gerichtete Bäume

Maximilian Staab,

maximilian.staab@fsmi.uni-kaisrkerint ihr schon: Huffman-Baum

lukas.bach@student.kit.edu

Gerichteter Baum

Graphen

Praxispeispiei

Ungerichtet

Begriffe

Ein gerichteter Baum ist ein schwach zusammenhängender kreisfreier gerichteter Graph.

Ungerichteter Baum

Ein ungerichteter Baum ist ein zusammenhängender kreisfreier ungerichteter Graph.

- Bäume haben immer einen Wurzelknoten, von dem alle anderen Knoten ausgehen.
- Ungerichtete Bäume können mehrere Wurzeln haben.
- Knoten mit Grad 1 heißen Blätter.

Randfälle

Maximilian Staab,
maximilian.staab@fsmi.uni-karlsruhe.de,
Lukas Bach,
lukas bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete

Graphe

Begriffe

- Wieviele Kanten kann ein Graph mit n Knoten maximal haben? n²
- Wieviele Kanten kann ein schlingenfreier Graph mit n Knoten maximal haben? $n^2 n = n(n 1)$
- Wieviele Kanten kann ein ungerichteter Graph mit n Knoten maximal haben? $\frac{n(n-1)}{2} + n = \frac{n(n+1)}{2}$
- Wieviele Kanten kann ein ungerichteter schlingenfreier Graph mit n Knoten maximal haben? $\frac{n(n-1)}{2}$

Informationen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit

Graphen

Praxisbeispiele

Ungerichtete

Begriffe

Zum Tutorium

Lukas Bach

Tutorienfolien auf:

http:

//gbi.lukasbach.com

Tutorium findet statt:

Donnerstags, 14:00 - 15:30

■ 50.34 Informatikbau, -107

Mehr Material

Ehemalige GBI Webseite:

http://gbi.ira.uka.de

Altklausuren!

Zur Veranstaltung

Grundbegriffe der Informatik

Klausurtermin:

o 06.03.2017, 11:00

Zwei Stunden Bearbeitungszeit

 6 ECTS für Informatiker und Informationswirte, 4 ECTS für Mathematiker und Physiker

Zum Übungsschein

Übungsblatt jede Woche

Ab 50% insgesamt hat man den Übungsschein

 Keine Voraussetzung für die Klausur, aber für das Modul