Evaluating ECAL timing properties using spacal data and Machine Learning

Student: Fakanov Pavel

Supervisor: Ratnikov Fedor

Introduction

- We want to compare the performance of Machie Learning algorithms for two different datasets
- The goal is not to improve particular baseline algorithm with ML
- The goal is to use ML to extract the maximum of available in data information and evaluate limitations of the possible physics performance that are driven by behaviours of actual, test beam data
- We would like to explore how the quality of algorithms depends on the stability of the data

A few words about data

- Data obtained from the 30 GeV electron beam
- Use "output" module of the LHCb electromagnetic calorimeter
- Reference time is measured as average of two quick scintillator counters
- 7848 signals
- Each signal is 1024 impulse measurements, sampled with a step 200 picoseconds (5GHz) + the reference time of a signal

What do we want?

- Explore possible quality of signal recovery for different sampling rates
- Explore the ability to distinguish between single signal and two close signals for different sampling rates
- Explore the ability to determine the time and amplitude of a signal in the presence of a second close signal for different sampling rates

Spacal vs Shahlik data

What do we want?

- Explore possible quality of signal recovery for different sampling rates
- Explore the ability to distinguish between single signal and two close signals for different sampling rates
- Explore the ability to determine the time and amplitude of a signal in the presence of a second close signal for different sampling rates

Spacal vs Shahlik data

Problem 1. Predict reference time for a signal

Baseline method description

Baseline metric: RMSE[ns]: 0.09752

Scores dependency on sampling frequency

Xgboost is used as a model

Reducing sampling frequency

Preprocessing data

Model tuning

```
space = {
    'booster': hp.choice('booster', ['gbtree', 'gblinear', 'dart']),
    'eta': hp.loguniform('eta', low=np.log(0.001), high=np.log(1)),
    'gamma': hp.loguniform('gamma', low=np.log(0.001), high=np.log(100)),
    'max_depth': ho_scope.int(hp.quniform('max_depth', low=5, high=50, q=2)),
    'lambda': hp.loguniform('lambda', low=np.log(0.001), high=np.log(10)),
    'alpha': hp.loguniform('alpha', low=np.log(0.001), high=np.log(10)),
}
```

```
XGB Regressor:
95% confidence interval:
RMSE[ns]: 0.12482 (+/- 0.03096)
RMSE[ns]: 0.12482 (+/- 0.03096)
```

Models comparison

What if there are two signals?

A few words about data preparation

Problem 2. Identify the presence of two signals

Problem 2. Examples of two signals

Problem 2. Pipeline

How to evaluate our results?

Confusion Matrix

	Actually Positive (1)	Actually Negative (0)
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

Problem 2. Results comparison

Accuracy, frequency = 1000 [MHZ]

- 0.9

Accuracy, frequency = 5000 [MHZ]

Spacal data

Problem 3. Predict the reference time of a multiple signal

Problem 3. Results comparison

Shashlik data

log10(RMSE), frequency = 5000 [MHz] log10(RMSE), frequency = 1000 [MHz] -3.0 - 1.5 -3.0 1.25 Delta t [ns] log10(RMSE) - 0.25 - 0.25 3.0 - 0.0 - 0.0 - -0.25 5.0 1.0 10.0 100.0 1000.0 0.001 0.01 0.1 0.01 10 10.0 100.0 1000.0 Two signals ratio Two signals ratio log10(RMSE), frequency = 200 [MHz] log10(RMSE), frequency = 100 [MHz] -5.0 -1.75 - 1.75 - 1.5 -3.0 -3.0 1.25 Delta t [ns] log10(RMSE) log10(RMSE) - 0.5 - 0.25 - 0.25 3.0 - 0.0 - 0.0 -0.25 5.0

0.001 0.01

0.1

1.0

Two signals ratio

10.0 100.0 1000.0

0.001 0.01

0.1

Two signals ratio

1.0 10.0 100.0 1000.0

Spacal data

Problem 4. Predict the amplitudes ratio

Problem 4. Results

Comparing the scores of a model for one signal and a model for two signals

Conclusions

- Spacal timing properties are much noisier comparing to shashlik data
- Using signals obtained in test beam measurements we estimated
 - Effect of signal sampling rate on the timing resolution
 - Efficiency to identify presence of another particle in the signal
 - Disturbing of time measurements due to another particle contribution in the signal
- Obtained results may be plugged into the physics simulation to evaluate effects of higher occupancies on ECAL reconstruction

Any questions?