TẢI LIỆU DÀNH CHO HỌC SINH KHẢ – GIỚI – XUÂT SẮC MỰC 8-9-10 ĐIỀM

Dạng 1. Tích phân Hàm ấn

Dạng 1.1 Giải bằng phương pháp đổi biến

Thông thường nếu trong bài toán xuất hiện $\int_{-\infty}^{\infty} f[u(x)] dx$ thì ta sẽ đặt u(x) = t

(Chuyên Biên Hòa - Hà Nam - 2020) Cho hàm số f(x) liên tục trên $\mathbb R$ và thỏa mãn Câu 1. $\int_{-5}^{5} f(x) dx = 9. \text{ Tích phân } \int_{0}^{5} \left[f(1-3x) + 9 \right] dx \text{ bằng}$

D. 21.

Chon D

Ta có
$$\int_{0}^{2} \left[f(1-3x) + 9 \right] dx = \int_{0}^{2} f(1-3x) dx + \int_{0}^{2} 9 dx = \int_{0}^{2} f(1-3x) dx + 18.$$

Xét
$$\int_{0}^{2} f(1-3x) dx$$
, đặt $t = 1-3x \implies dt = -3dx \implies dx = -\frac{dt}{3}$.

Đổi cận khi
$$x = 0 \Rightarrow t = 1$$
; $x = 2 \Rightarrow t = -5$. Suy ra $\int_{0}^{2} f(1-3x) dx = -\frac{1}{3} \int_{1}^{-5} f(t) dt = \frac{1}{3} \int_{-5}^{1} f(t) dt$.

Khi đó
$$\int_{0}^{2} \left[f(1-3x) + 9 \right] dx = \frac{1}{3} \int_{-5}^{1} f(t) dt + 18 = \frac{1}{3} \int_{-5}^{1} f(x) dx + 18 = 21$$
.

(Chuyên Lam Sơn - 2020) Cho hàm số f(x) liên tục trên đoạn [0;10] thỏa mãn Câu 2. $\int_{0}^{10} f(x) dx = 7, \int_{2}^{10} f(x) dx = 1. \text{ Tính } P = \int_{0}^{1} f(2x) dx.$ **A.** P = 6. **B.** P = -6. **C.** P = 3. **D.** P = 12.

Chon C

Ta có:
$$\int_{0}^{2} f(x) dx = \int_{0}^{10} f(x) dx - \int_{2}^{10} f(x) dx = 6.$$

Xét
$$P = \int_{0}^{1} f(2x) dx$$
. Đặt $t = 2x \Rightarrow dt = 2dx \Rightarrow dx = \frac{1}{2} dt$.

Đổi cân:

x	0	1
t	0	2

Lúc đó:
$$P = \int_{0}^{1} f(2x) dx = \frac{1}{2} \int_{0}^{2} f(t) dt = \frac{1}{2} \int_{0}^{2} f(x) dx = 3$$
.

- **Câu 3.** (**Chuyên Bắc Ninh 2020**) Cho $I = \int_{1}^{5} f(x) dx = 26$. Khi đó $J = \int_{0}^{2} x \Big[f(x^{2} + 1) + 1 \Big] dx$ bằng
 - <u>A</u>. 15.

- **B.** 13.
- **C.** 54.
- **D.** 52.

Lời giải

Chọn A

+ Ta có:
$$J = \int_{0}^{2} x \left[f(x^{2} + 1) + 1 \right] dx = \int_{0}^{2} x dx + \int_{0}^{2} x f(x^{2} + 1) dx$$
.

+ Xét
$$A = \int_{0}^{2} x dx$$
.

$$A = \int_{0}^{2} x dx = \frac{x^{2}}{2} \Big|_{0}^{2} = 2.$$

+ Xét
$$B = \int_{1}^{2} xf(x^2+1)dx$$
.

$$\text{D} \check{a} t \ t = x^2 + 1 \Longrightarrow dt = 2x dx.$$

Đổi cận:

Ta có:

х	0	2
t	1	5

$$B = \int_{0}^{2} xf(x^{2} + 1) dx = \frac{1}{2} \int_{1}^{5} f(t) dt = \frac{1}{2} \int_{1}^{5} f(x) dx = \frac{1}{2}.26 = 13.$$
Vây $J = A + B = 15$.

Câu 4. (Chuyên Lào Cai - 2020) Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn $\int_{1}^{9} \frac{f(\sqrt{x})}{\sqrt{x}} dx = 4$ và

$$\int_{0}^{\frac{\pi}{2}} f(\sin x) \cos x dx = 2. \text{ Tích phân } I = \int_{0}^{3} f(x) dx \text{ bằng}$$

A.
$$I = 8$$
.

B.
$$I = 6$$

C.
$$I = 4$$
.

D.
$$I = 10$$
.

Chọn C

Đặt
$$t = \sqrt{x} \Rightarrow dt = \frac{1}{2\sqrt{x}} dx$$
. Khi đó $x = 1 \Rightarrow t = 1; x = 9 \Rightarrow t = 3$

Suy ra
$$\int_{1}^{9} \frac{f(\sqrt{x})}{\sqrt{x}} dx = 2 \int_{1}^{3} f(t) dt = 4 \Rightarrow \int_{1}^{3} f(t) dt = 2.$$

Đặt
$$t = \sin x; x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \Rightarrow dt = \cos dx$$
. Khi đó. $x = 0 \Rightarrow t = 0; x = \frac{\pi}{2} \Rightarrow t = 1$

Suy ra
$$\int_{0}^{3} f(x)dx = \int_{0}^{1} f(x)dx + \int_{1}^{3} f(x)dx = 2 + 2 = 4.$$

- **Câu 5.** (**THPT Cẩm Giàng 2019**) Cho biết $\int_{-1}^{5} f(x) dx = 15$. Tính giá trị của $P = \int_{0}^{2} [f(5-3x)+7] dx$.
 - **A.** P = 15.
- **B.** P = 37
- **C.** P = 27
- **D.** P = 19.

Lời giải

Đặt
$$t = 5 - 3x \Rightarrow dt = -3dx \Rightarrow dx = -\frac{1}{3}dt$$
.

Đổi cận: x = 0 thì t = 5; x = 2 thì t = -1.

Ta có:
$$P = \int_{0}^{2} \left[f(5-3x) + 7 \right] dx = \int_{0}^{2} f(5-3x) dx + \int_{0}^{2} 7 dx = \int_{5}^{-1} f(t) \frac{dt}{-3} + 7x \Big|_{0}^{2} = \frac{1}{3} \int_{-1}^{5} f(t) dt + 14$$

= $\frac{1}{3} \cdot 15 + 14 = 19$.

Câu 6. (THPT Lương Thế Vinh Hà Nội 2019) Cho $\int_0^4 f(x) dx = 2018$. Tính tích phân

$$I = \int_{0}^{2} \left[f(2x) + f(4-2x) \right] dx.$$

A.
$$I = 0$$

B.
$$I = 2018$$

C.
$$I = 4036$$
.

D.
$$I = 1009$$
.

Lời giải

Ta có
$$I = \int_{0}^{2} f(2x) dx + \int_{0}^{2} f(4-2x) dx = H + K$$

Tính
$$K = \int_{0}^{2} f(2x) dx$$
.

Đặt $t = 2x \Rightarrow dt = 2dx$; đổi cận: $x = 0 \Rightarrow t = 2; x = 2 \Rightarrow t = 4$. Nên $K = \frac{1}{2} \int_{0}^{4} f(t) dt = 1009$

Tính
$$H = \int_{0}^{2} f(4-2x) dx$$
,

Đặt $t = 4 - 2x \Rightarrow dt = -2dx$; đổi cận: $x = 0 \Rightarrow t = 4; x = 2 \Rightarrow t = 0$. Nên $H = \frac{1}{2} \int_{0}^{4} f(t) dt = 1009$

Suy ra I = K + H = 2018.

Câu 7. Cho y = f(x) là hàm số chẵn, liên tục trên [-6;6]. Biết rằng $\int_{-1}^{2} f(x) dx = 8$; $\int_{1}^{3} f(-2x) dx = 3$.

Giá trị của $I = \int_{-1}^{6} f(x) dx$ là

A.
$$I = 5$$
.

B.
$$I = 2$$

C.
$$I = 14$$
.

D.
$$I = 11$$
.

Lời giải

Ta có y = f(x) là hàm số chẵn, suy ra f(-2x) = f(2x). Khi đó: $\int_{1}^{3} f(-2x) dx = \int_{1}^{3} f(2x) dx = 3$.

Xét tích phân: $I_1 = \int_1^3 f(2x) dx$.

Đặt $t = 2x \Rightarrow dt = 2dx \Leftrightarrow \frac{1}{2}dt = dx$. Đổi cận: $x = 1 \Rightarrow t = 2$; $x = 3 \Rightarrow t = 6$.

$$\Rightarrow I_1 = \int_{2}^{6} f(t) \cdot \frac{1}{2} dt = \frac{1}{2} \int_{2}^{6} f(t) dt = 3 \Rightarrow \int_{2}^{6} f(t) dt = 6 \Rightarrow \int_{2}^{6} f(x) dx = 6.$$

Vậy
$$I = \int_{-1}^{6} f(x) dx = \int_{-1}^{2} f(x) dx + \int_{2}^{6} f(x) dx = 8 + 6 = 14$$
.

(THPT Đoàn Thượng - Hải Dương -2019) Cho hàm số f(x) liên tục trên $\mathbb R$ và $\int_{0}^{\pi} f(x) dx = 2018, \text{ tinh } I = \int_{0}^{\pi} x f(x^{2}) dx.$

C. I = 2017. **D.** I = 1009.

Lời giải

$$X\acute{e}t \ I = \int_{0}^{\pi} x f\left(x^{2}\right) dx.$$

Đặt
$$t = x^2 \Rightarrow dt = 2xdx \Rightarrow xdx = \frac{1}{2}dt$$
.

Đổi cận:
$$x = 0 \Rightarrow t = 0; x = \pi \Rightarrow t = \pi^2$$
.

Khi đó
$$I = \frac{1}{2} \int_{0}^{\pi^{2}} f(t) dt = \frac{1}{2} \int_{0}^{\pi^{2}} f(x) dx = 1009.$$

(Chuyen Phan Bội Châu Nghệ An 2019) Cho $\int_{1}^{2} f(x) dx = 2$. Khi đó $\int_{1}^{4} \frac{f(\sqrt{x})}{\sqrt{x}} dx$ bằng Câu 9.

Lời giải

Đặt
$$\sqrt{x} = t \Rightarrow \frac{1}{2\sqrt{x}} dx = dt \Rightarrow \frac{1}{\sqrt{x}} dx = 2dt$$
. Khi $x = 1$ thì $t = 1$; $x = 4$ thì $t = 2$.

Suy ra
$$\int_{1}^{4} \frac{f(\sqrt{x})}{\sqrt{x}} dx = \int_{1}^{2} f(t) \cdot 2dt = 2 \int_{1}^{2} f(t) dt = 2.2 = 4$$
.

Vậy
$$\int_{1}^{4} \frac{f(\sqrt{x})}{\sqrt{x}} dx = 4.$$

Câu 10. (Sở Hà Nội 2019) Cho $\int_{1}^{2} f(x^2 + 1)x dx = 2$. Khi đó $I = \int_{2}^{6} f(x) dx$ bằng

A. 2.

Lời giải

Đặt
$$x^2 + 1 = t \Rightarrow 2x dx = dt \Rightarrow x dx = \frac{dt}{2}$$

Đổi cận
$$x = 1 \Rightarrow t = 2; x = 2 \Rightarrow t = 5.$$

Suy ra:
$$2 = \int_{1}^{2} f(x^{2} + 1) dx = \frac{1}{2} \int_{2}^{5} f(t) dt \implies \int_{2}^{5} f(t) dt = 4 \implies I = \int_{2}^{5} f(x) dx = 4$$
.

Câu 11. Cho f,g là hai hàm số liên tục trên [1;3] thỏa mãn điều kiện $\int_{-\infty}^{\infty} [f(x)+3g(x)]dx=10$ đồng thời

$$\int_{1}^{3} \left[2f(x) - g(x) \right] dx = 6. \text{ Tính } \int_{1}^{3} f(4-x) dx + 2 \int_{1}^{2} g(2x-1) dx$$

D. 8.

Ta có:
$$\int_{1}^{3} \left[f(x) + 3g(x) \right] dx = 10 \Leftrightarrow \int_{1}^{3} f(x) dx + 3 \int_{1}^{3} g(x) dx = 10.$$

$$\int_{1}^{3} \left[2f(x) - g(x) \right] dx = 6 \Leftrightarrow 2 \int_{1}^{3} f(x) dx - \int_{1}^{3} g(x) dx = 6.$$

$$\text{Dặt } u = \int_{1}^{3} f(x) dx; \ v = \int_{1}^{3} g(x) dx.$$

Ta được hệ phương trình:
$$\begin{cases} u+3v=10 \\ 2u-v=6 \end{cases} \Leftrightarrow \begin{cases} u=4 \\ v=2 \end{cases} \Rightarrow \begin{cases} \int_{1}^{3} f(x) dx=4 \\ \int_{1}^{3} g(x) dx=2 \end{cases}$$

+ Tính
$$\int_{1}^{3} f(4-x) dx$$

Đặt
$$t = 4 - x \Rightarrow dt = -dx$$
; $x = 1 \Rightarrow t = 3$; $x = 3 \Rightarrow t = 1$.

$$\int_{1}^{3} f(4-x) dx = \int_{3}^{1} f(t)(-dt) = \int_{1}^{3} f(t) dt = \int_{1}^{3} f(x) dx = 4.$$

+ Tính
$$\int_{1}^{2} g(2x-1) dx$$

Đặt
$$z = 2x - 1 \Rightarrow dz = 2dx$$
; $x = 1 \Rightarrow z = 1$; $x = 2 \Rightarrow z = 3$.

$$\int_{1}^{2} g(2x-1) dx = \frac{1}{2} \int_{1}^{3} g(z) dz = \frac{1}{2} \int_{1}^{3} g(x) dx = 1.$$

Vậy
$$\int_{1}^{3} f(4-x)dx + 2 \int_{1}^{2} g(2x-1)dx = 6$$
.

Câu 12. Cho hàm số
$$f(x)$$
 liên tục trên \mathbb{R} thỏa $\int_0^1 f(x) dx = 2$ và $\int_0^2 f(3x+1) dx = 6$. Tính $I = \int_0^7 f(x) dx$.

A.
$$I = 16$$
.

B.
$$I = 18$$

C.
$$I = 8$$

D.
$$I = 20$$

Lời giải

$$A = \int_{0}^{1} f(x) dx = 2, \ B = \int_{0}^{2} f(3x+1) dx = 6 \text{ d} x \ t = 3x+1 \Rightarrow dt = 3dx.$$

Đổi cận :
$$\begin{cases} x = 0 \Rightarrow t = 1 \\ x = 2 \Rightarrow t = 7 \end{cases}$$

Ta có:
$$B = \frac{1}{3} \int_{1}^{7} f(t) dt = 6 \Rightarrow \int_{1}^{7} f(t) dt = 18 \Rightarrow \int_{1}^{7} f(x) dx = 18$$
.

Vậy
$$I = \int_{0}^{7} f(x) dx = \int_{0}^{1} f(x) dx + \int_{1}^{7} f(x) dx = 20$$
.

Câu 13. (THPT Quỳnh Lưu 3 Nghệ An 2019) Cho f(x) liên tục trên \mathbb{R} thỏa mãn f(x) = f(10-x) và

$$\int_{3}^{7} f(x) dx = 4. \text{ Tinh } I = \int_{3}^{7} x f(x) dx.$$

A. 80.

B. 60

C. 40.

D. 20.

Đặt
$$t = 10 - x$$
. Khi đó d $t = -dx$.

NGUYĒN BẢO VƯƠNG - 0946798489

Đổi cận: $x = 3 \Rightarrow t = 7$.

$$x = 7 \Rightarrow t = 3$$
.

Khi đó
$$I = -\int_{7}^{3} (10-t) f(10-t) dt = \int_{3}^{7} (10-t) f(10-t) dt = \int_{3}^{7} (10-x) f(10-x) dx$$

$$= \int_{2}^{7} (10-x) f(x) dx = 10 \int_{2}^{7} f(x) dx - \int_{2}^{7} x f(x) dx = 10 \int_{2}^{7} f(x) dx - I.$$

Suy ra
$$2I = 10\int_{3}^{7} f(x) dx = 10.4 = 40$$
. Do đó $I = 20$.

(THPT Quang Trung Đống Đa Hà Nội 2019) Cho $\int_{-1}^{1} f(x) dx = 9$.

$$I = \int_{0}^{\frac{\pi}{6}} f(\sin 3x) \cos 3x dx.$$

A.
$$I = 5$$

B.
$$I = 9$$
.

$$\underline{\mathbf{C}}$$
. $I = 3$. \mathbf{D} . $I = 2$.

$$D I = 2$$

Lời giải

 $Dat t = \sin 3x \Rightarrow dt = 3\cos 3x.dx$

Đổi cận:
$$\begin{cases} x = 0 \Rightarrow t = 0 \\ x = \frac{\pi}{6} \Rightarrow t = 1 \end{cases}$$

$$I = \int_{0}^{\frac{\pi}{6}} f(\sin 3x) \cos 3x dx = \frac{1}{3} \int_{0}^{1} f(t) dt = \frac{1}{3}.9 = 3$$

(Chuyên Quốc Học Huế -2019) Cho tích phân $I = \int_{0}^{4} f(x) dx = 32$. Tính tích Câu 15.

$$phân J = \int_{0}^{2} f(2x) dx.$$

A.
$$J = 32$$
 B. $J = 64$ **C.** $J = 8$ **L**ời giải

R.
$$I = 64$$

C.
$$J = 8$$

D.
$$J = 16$$

Lời giải

Đặt
$$t = 2x \Rightarrow dt = 2dx \Rightarrow \frac{dt}{2} = dx$$
.

Đổi cận:
$$x = 0 \Rightarrow t = 0$$
; $x = 2 \Rightarrow t = 4$.

$$J = \int_{0}^{2} f(2x) dx = \int_{0}^{4} \frac{1}{2} f(t) dt = \frac{1}{2} \int_{0}^{4} f(t) dt = \frac{1}{2} I = 16.$$

(Việt Đức Hà Nội 2019) Biết f(x) là hàm liên tục trên \mathbb{R} và $\int_{-\infty}^{\infty} f(x) dx = 9$. Khi đó giá trị của

$$\int_{1}^{4} f(3x-3) dx \text{ là}$$

A. 0.

Xét
$$I = \int_{1}^{4} f(3x-3) dx$$
.

$$\text{Dăt } t = 3x - 3 \Rightarrow dt = 3dx.$$

Đổi cận:
$$\begin{cases} x = 4 \Rightarrow t = 9 \\ x = 1 \Rightarrow t = 0 \end{cases}$$
. Vậy $I = \int_{0}^{9} f(t) \frac{1}{3} dt = \frac{1}{3} \int_{0}^{9} f(x) dx = \frac{1}{3} .9 = 3$.

(Đề Thi Công Bằng KHTN 2019) Cho hàm số f(x) thỏa mãn $\int f(2x)dx = 2$. Tích phân

$$\int_{0}^{2} f(x)dx \text{ bằng}$$

A. 8.

B. 1.

C. 2.

D. 4.

Lời giải

Đặt
$$t = 2x \implies dt = 2dx \implies dx = \frac{dt}{2}$$
,

$$x = 0 \Longrightarrow t = 0$$

$$x = 1 \Rightarrow t = 2$$

Ta có
$$2 = \int_{0}^{1} f(2x)dx = \int_{0}^{2} \frac{f(t)dt}{2} = \frac{1}{2} \int_{0}^{2} f(t)dt \implies \int_{0}^{2} f(t)dt = 4$$

Theo tính chất tích phân $\int_{0}^{2} f(x)dx = \int_{0}^{2} f(t)dt = 4$

$$V_{a}^{2}y\int_{0}^{2}f(x)dx=4$$

Câu 18. Cho hàm f(x) thỏa mãn $\int_{0}^{2017} f(x) dx = 1$. Tính tích phân $I = \int_{0}^{1} f(2017x) dx$.

A.
$$I = \frac{1}{2017}$$
. **B.** $I = 0$. **C.** $I = 2017$. **D.** $I = 1$.

B.
$$I = 0$$

C.
$$I = 2017$$
.

D.
$$I = 1$$
.

Đặt
$$t = 2017x \Rightarrow dt = 2017dx \Rightarrow dx = \frac{1}{2017}dt$$

Đổi cận:
$$x = 0 \Rightarrow t = 0$$
; $x = 1 \Rightarrow t = 2017$

Vậy
$$I = \int_{0}^{2017} f(t) \cdot \frac{1}{2017} dt = \frac{1}{2017} \int_{0}^{2017} f(t) dt = \frac{1}{2017}.$$

Câu 19. Cho tích phân $\int_{1}^{2} f(x) dx = a$. Hãy tính tích phân $I = \int_{0}^{1} x f(x^2 + 1) dx$ theo a.

A.
$$I = 4a$$

B.
$$I = \frac{a}{4}$$

B.
$$I = \frac{a}{4}$$
. **D.** $I = 2a$.

D.
$$I = 2a$$
.

Lời giải

$$Dăt \ t = x^2 + 1 \Rightarrow dt = 2xdx.$$

Đổi cân

x	0	1
t	1	2

$$I = \int_{0}^{1} x f(x^{2} + 1) dx = \int_{0}^{2} f(t) \cdot \frac{dt}{2} = \frac{1}{2} \int_{1}^{2} f(t) dt = \frac{1}{2} \int_{1}^{2} f(x) dx = \frac{a}{2}.$$

Câu 20. (Thpt Hoàng Hoa Thám Hưng Yên 2019) Cho hàm số f(x) liên tục trên \mathbb{R} và thỏa mãn

$$\int_{0}^{\frac{\pi}{4}} \tan x \cdot f(\cos^{2} x) dx = 2 \text{ và } \int_{e}^{e^{2}} \frac{f(\ln^{2} x)}{x \ln x} dx = 2 \cdot \text{Tính } \int_{\frac{1}{4}}^{2} \frac{f(2x)}{x} dx.$$

A. 0.

B. 1

C. 4.

<u>D</u>. 8.

Lời giải

*
$$I_1 = \int_0^{\frac{\pi}{4}} \tan x . f(\cos^2 x) dx = \frac{1}{2} \int_0^{\frac{\pi}{4}} \frac{f(\cos^2 x)}{\cos^2 x} . \sin 2x dx$$
.

 $\text{D} \times \cos^2 x = t \implies \sin 2x \, dx = -dt.$

Đổi cận

$$\begin{array}{c|cccc}
x & 0 & \frac{\pi}{4} \\
\hline
t & 1 & \frac{1}{2}
\end{array}$$

Khi đó
$$I_1 = -\frac{1}{2} \int_{1}^{\frac{1}{2}} \frac{f(t)}{t} dt \implies \int_{\frac{1}{2}}^{1} \frac{f(t)}{t} dt = 4$$
.

*
$$I_2 = \int_{0}^{e^2} \frac{f(\ln^2 x)}{x \ln x} dx = \frac{1}{2} \int_{0}^{e^2} \frac{f(\ln^2 x)}{\ln^2 x} \cdot \frac{2 \ln x}{x} dx$$
.

Đặt
$$\ln^2 x = t \Rightarrow \frac{2 \ln x}{x} dx = dt$$
.

Đổi cận

Khi đó
$$I_2 = \frac{1}{2} \int_{1}^{4} \frac{f(t)}{t} dt \implies \int_{1}^{4} \frac{f(t)}{t} dt = 4$$
.

* Tính
$$I = \int_{\frac{1}{4}}^{2} \frac{f(2x)}{x} dx$$
. Đặt $2x = t \Rightarrow dx = \frac{1}{2} dt$.

Đổi cận

$$\begin{array}{c|ccc}
x & \frac{1}{4} & 2 \\
\hline
t & \frac{1}{2} & 4
\end{array}$$

Khi đó
$$I = \int_{\frac{1}{2}}^{4} \frac{f(t)}{t} dt = \int_{\frac{1}{2}}^{1} \frac{f(t)}{t} dt + \int_{1}^{4} \frac{f(t)}{t} dt = 4 + 4 = 8.$$

Câu 21. (**THPT Lương Thế Vinh Hà Nội 2019**) Cho hàm số $y = f(x) = \begin{cases} x^2 + 3x^2; x \ge 1 \\ 5 - x; x < 1 \end{cases}$. Tính

$$I = 2\int_{0}^{\frac{\pi}{2}} f(\sin x) \cos x dx + 3\int_{0}^{1} f(3-2x) dx.$$

A.
$$I = \frac{71}{6}$$
.

B.
$$I = 31$$

C.
$$I = 32$$
.

D.
$$I = \frac{32}{3}$$
.

Lời giải

Xét tích phân $I_1 = \int_{0}^{\frac{\pi}{2}} f(\sin x) \cos x dx$. Đặt $t = \sin x \Rightarrow dt = \cos x dx$

Đổi cận

х	0	$\frac{\pi}{2}$
t	0	1

Ta có
$$I_1 = \int_0^1 f(t) dt = \int_0^1 f(x) dx = \int_0^1 (5-x) dx = \left(5x - \frac{x^2}{2}\right)\Big|_0^1 = \frac{9}{2}$$

Xét tích phân $I_2 = \int_0^1 f(3-2x) dx$. Đặt $t = 3-2x \Rightarrow dt = -2dx \Rightarrow dx = \frac{-dt}{2}$

Đổi cận

x	0	1
t	3	1

Ta có

$$I_2 = \int_0^1 f(3-2x) dx = \frac{1}{2} \int_1^3 f(t) dt = \frac{1}{2} \int_1^3 f(x) dx = \frac{1}{2} \int_1^3 (x^2+3) dx = \frac{1}{2} \left(\frac{x^3}{3} + 3x\right) \Big|_1^3 = \frac{1}{2} \left(18 - \frac{10}{3}\right) = \frac{22}{3}$$

Vậy
$$I = 2\int_{0}^{\frac{\pi}{2}} f(\sin x) \cos x dx + 3\int_{0}^{1} f(3-2x) dx = 9 + 22 = 31$$
.

Câu 22. (THPT Yên Khánh - Ninh Bình- 2019) Cho $I = \int_{1}^{2} f(x) dx = 2$. Giá trị của

$$\int_{0}^{\frac{\pi}{2}} \frac{\sin x f\left(\sqrt{3}\cos x + 1\right)}{\sqrt{3}\cos x + 1} dx \text{ bằng}$$

B.
$$-\frac{4}{3}$$
.

$$\underline{\mathbf{C}} \cdot \frac{4}{3}$$
.

Lời giải

Đặt $u = \sqrt{3\cos x + 1} \Rightarrow u^2 = 3\cos x + 1 \Rightarrow -\frac{2}{3}udu = \sin xdx$. Đổi cận $\begin{cases} x = \frac{\pi}{2} \Rightarrow u = 1\\ x = 0 \Rightarrow u = 2 \end{cases}$

Do đó
$$\int_{0}^{\frac{\pi}{2}} \frac{\sin x f\left(\sqrt{3\cos x + 1}\right)}{\sqrt{3\cos x + 1}} dx = \int_{2}^{1} \frac{-2u f\left(u\right)}{3u} du = \frac{2}{3} \int_{1}^{2} f\left(u\right) du = \frac{2}{3} \int_{1}^{2} f\left(x\right) dx = \frac{4}{3}.$$

Câu 23. (Chuyên Lê Hồng Phong Nam Định 2019) Biết $\int_{1}^{4} f(x) dx = 5$ và $\int_{4}^{5} f(x) dx = 20$. Tính $\int_{1}^{2} f(4x-3) dx - \int_{1}^{\ln 2} f(e^{2x}) e^{2x} dx$.

NGUYĒN BĀO VƯƠNG - 0946798489

$$\underline{\mathbf{A}}$$
. $I = \frac{15}{4}$.

B.
$$I = 15$$
.

C.
$$I = \frac{5}{2}$$
.

D.
$$I = 25$$
.

Lời giải

Chọn A

Đặt $t = 4x - 3 \Rightarrow dt = 4dx$ thì

$$\int_{1}^{2} f(4x-3) dx = \frac{1}{4} \int_{1}^{5} f(t) dt = \frac{1}{4} \left(\int_{1}^{4} f(t) dt + \int_{4}^{5} f(t) dt \right) = \frac{1}{4} (5+20) = \frac{25}{4}.$$

Đặt $u = e^{2x} \Rightarrow du = 2e^{2x} dx$ thì

$$\int_{0}^{\ln 2} f(e^{2x}) e^{2x} dx = \frac{1}{2} \int_{1}^{4} f(u) du = \frac{5}{2}.$$

Vậy
$$I = \frac{25}{4} - \frac{5}{2} = \frac{15}{4}$$
.

(Chuyên Thái Bình 2019) Cho f(x)là hàm số liên tục trên Câu 24. $f(x) + f(2-x) = x \cdot e^{x^2}$, $\forall x \in \mathbb{R}$. Tính tích phân $I = \int_{-\infty}^{\infty} f(x) dx$.

A.
$$I = \frac{e^4 - 1}{4}$$
. **B.** $I = \frac{2e - 1}{2}$. **C.** $I = e^4 - 2$. **D.** $I = e^4 - 1$.

B.
$$I = \frac{2e-1}{2}$$
.

C.
$$I = e^4 - 2$$
.

D.
$$I = e^4 - 1$$
.

Lời giải

 $\text{Dăt } x = 2 - t \Rightarrow dx = -dt$

$$\Rightarrow I = \int_{2}^{0} f(2-t)(-dt) = \int_{0}^{2} f(2-t)(dt) = \int_{0}^{2} f(2-x)dx.$$

$$\Rightarrow 2I = \int_{0}^{2} \left[f(x) + f(2-x) \right] dx = \int_{0}^{2} x e^{x^{2}} dx = \frac{1}{2} \int_{0}^{2} e^{x^{2}} d\left(x^{2}\right) = \frac{1}{2} e^{x^{2}} \Big|_{0}^{2} = \frac{e^{4} - 1}{2}.$$

Vậy
$$I = \frac{e^4 - 1}{4}$$
.

(Chuyên Vĩnh Phúc Năm 2019) Cho hàm số f(x) liên tục trên \mathbb{R} thỏa mãn f(2x) = 3f(x), Câu 25.

 $\forall x \in \mathbb{R}$. Biết rằng $\int_{0}^{1} f(x) dx = 1$. Tính tích phân $I = \int_{1}^{2} f(x) dx$.

A.
$$I = 5$$

B.
$$I = 0$$

C.
$$I = 3$$

D.
$$I = 2$$

Ta có:
$$3 = 3.1 = 3.\int_{0}^{1} f(x) dx = \int_{0}^{1} 3f(x) dx = \int_{0}^{1} f(2x) dx = \frac{1}{2} \int_{0}^{1} f(2x) d(2x), \forall x \in \mathbb{R}$$
.

Đặt
$$2x = t \Rightarrow d(2x) = dt$$
, với $x = 0 \Rightarrow t = 0$; $x = 1 \Rightarrow t = 2$.

$$\Leftrightarrow 3 = \frac{1}{2} \int_{0}^{1} f(2x) d(2x) = \frac{1}{2} \int_{0}^{2} f(t) dt = \frac{1}{2} \int_{0}^{2} f(x) dx, \forall x \in \mathbb{R} \text{ (do hàm số } f(x) \text{ liên tục trên } \mathbb{R} \text{)}.$$

$$\Leftrightarrow \int_{0}^{2} f(x) dx = 6, \forall x \in \mathbb{R} \Leftrightarrow \int_{0}^{1} f(x) dx + \int_{1}^{2} f(x) dx = 6, \forall x \in \mathbb{R}.$$

$$\Leftrightarrow 1 + \int_{1}^{2} f(x) dx = 6, \forall x \in \mathbb{R}.$$

$$\Leftrightarrow \int_{1}^{2} f(x) dx = 5, \forall x \in \mathbb{R}.$$

Câu 26. Cho hàm số f(x) liên tục trên \mathbb{R} và thỏa mãn $\int_{0}^{\frac{\pi}{2}} \tan x \cdot f(\cos^{2} x) dx = 2 \text{ và } \int_{e}^{e^{2}} \frac{f(\ln^{2} x)}{x \ln x} dx = 2.$

$$Tinh \int_{\frac{1}{4}}^{2} \frac{f(2x)}{x} dx.$$

A. 0.

B. 1.

C. 4.

D. 8.

Lời giải

Ta có
$$\int_{0}^{\frac{\pi}{2}} \tan x \cdot f(\cos^{2} x) dx = 2 \Leftrightarrow \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cdot \cos x}{\cos^{2} x} \cdot f(\cos^{2} x) dx = 2.$$

Đặt $t = \cos^2 x \Rightarrow dt = -2\sin x \cos x dx \Rightarrow -\frac{1}{2}dt = \sin x \cos x dx$.

Đổi cận:
$$x = 0 \Rightarrow t = 0$$
 và $x = \frac{\pi}{4} \Rightarrow t = \frac{1}{2}$.

$$\Leftrightarrow \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cdot \cos x}{\cos^{2} x} \cdot f(\cos^{2} x) dx = 2 \Leftrightarrow \int_{\frac{1}{2}}^{1} \frac{f(t)}{t} = 4.$$

Ta có
$$\int_{e}^{e^2} \frac{f(\ln^2 x)}{x \ln x} dx = 2 \iff \int_{e}^{e^2} \frac{\ln x \cdot f(\ln^2 x)}{x \ln^2 x} dx = 2.$$

Turong tự trên ta có $\int_{a}^{e^{2}} \frac{f(\ln^{2} x)}{x \ln x} dx = 2 \iff \int_{1}^{4} \frac{f(t)}{t} = 4.$

* Tính
$$\int_{\frac{1}{4}}^{2} \frac{f(2x)}{x} dx$$
.

$$\text{D} x t = 2x \Rightarrow dx = \frac{1}{2} dt.$$

Đổi cận:
$$x = \frac{1}{4} \Rightarrow t = \frac{1}{2} \text{ và } x = 2 \Rightarrow t = 4$$
.

Khi đó
$$\int_{\frac{1}{4}}^{2} \frac{f(2x)}{x} dx = \int_{\frac{1}{2}}^{4} \frac{f(t)}{t} = \int_{\frac{1}{2}}^{1} \frac{f(t)}{t} dt + \int_{1}^{4} \frac{f(t)}{t} = 4 + 4 = 8.$$

NGUYĒN BẢO VƯƠNG - 0946798489

Câu 27. (Chuyên KHTN 2019) Cho hàm số f(x) liên tục trên \mathbb{R} thỏa mãn

$$\int_{0}^{\frac{\pi}{3}} \tan x \cdot f(\cos^{2} x) dx = \int_{1}^{8} \frac{f(\sqrt[3]{x})}{x} dx = 6. \text{ Tinh tich phân } \int_{\frac{1}{2}}^{\sqrt{2}} \frac{f(x^{2})}{x} dx$$

A. 4

B. 6

<u>C</u>. 7

D. 10

Lời giải

+) Đặt
$$t = \sqrt[3]{x} \Rightarrow t^3 = x \Rightarrow 3t^2 dt = dx$$

Đổi cân
$$x = 1 \Rightarrow t = 1$$
 và $x = 8 \Rightarrow t = 2$.

Khi đó
$$\int_{1}^{8} \frac{f(\sqrt[3]{x})}{x} dx = \int_{1}^{2} \frac{f(t)}{t^3} 3t^2 dt = 3 \int_{1}^{2} \frac{f(t)}{t} dt = 6 \Rightarrow \int_{1}^{2} \frac{f(t)}{t} dt = 2$$

+) Đặt
$$t = \cos^2 x \Rightarrow dt = -2\cos x \sin x dx \Rightarrow dt = -2\cos^2 x \tan x dx \Rightarrow \tan x dx = -\frac{1}{2t} dt$$

Đổi cận:
$$x = 0 \Rightarrow t = 1$$
 và $x = \frac{\pi}{3} \Rightarrow t = \frac{1}{4}$

Khi đó
$$\int_{0}^{\frac{\pi}{3}} \tan x \cdot f(\cos^2 x) dx = -\frac{1}{2} \int_{1}^{\frac{1}{4}} \frac{f(t)}{t} dt = 6 \Rightarrow \int_{\frac{1}{4}}^{1} \frac{f(t)}{t} dt = 12$$

+) Đặt
$$t = x^2 \Rightarrow dt = 2xdx \Rightarrow dt = 2x^2 \frac{dx}{x} \Rightarrow \frac{dx}{x} = \frac{1}{2} \frac{dt}{t}$$

Đổi cận:
$$x = \frac{1}{2} \Rightarrow t = \frac{1}{4} \text{ và } x = \sqrt{2} \Rightarrow t = 2 \text{ Khi đó}$$

$$\int_{\frac{1}{2}}^{\sqrt{2}} \frac{f(x^2)}{x} dx = \frac{1}{2} \int_{\frac{1}{2}}^{2} \frac{f(t)}{t} dt = \frac{1}{2} \int_{\frac{1}{2}}^{1} \frac{f(t)}{t} dt + \frac{1}{2} \int_{1}^{2} \frac{f(t)}{t} dt = \frac{2+12}{2} = 7$$

Câu 28. (Chuyên Lê Quý Đôn - Đà Nẵng - 2018) Cho hàm số f(x) liên tục trên $\mathbb R$ thỏa

$$\int\limits_{0}^{2018} f\left(x\right)\mathrm{d}x = 2 \text{ . Khi đó tích phân } \int\limits_{0}^{\sqrt{\mathrm{e}^{2018}-1}} \frac{x}{x^2+1} f\left(\ln\left(x^2+1\right)\right)\mathrm{d}x \text{ bằng}$$

A. 4.

B. 1

<u>C</u>. 2

D. 3.

Đặt
$$I = \int_{0}^{\sqrt{e^{2018}-1}} \frac{x}{x^2+1} f(\ln(x^2+1)) dx$$
.

Đặt
$$t = \ln(x^2 + 1) \implies dt = \frac{2x}{x^2 + 1} dx$$
.

Đổi cận:
$$x = 0 \implies t = 0$$
; $x = \sqrt{e^{2018} - 1} \implies t = 2018$.

Vậy
$$I = \int_{0}^{2018} f(t) dt = \int_{0}^{2018} f(x) dx = 2$$
.

(Chuyên Vĩnh Phúc - 2018) Cho hàm số f(x) liên tục trên \mathbb{R} thỏa mãn $\int f(\tan x) dx = 3$ và

$$\int_{0}^{1} \frac{x^{2} f(x)}{x^{2} + 1} dx = 1. \text{ Tính } I = \int_{0}^{1} f(x) dx.$$

A.
$$I = 2$$

B.
$$I = 6$$

C.
$$I = 3$$
.

D.
$$I = 4$$
.

Lời giải

Ta có $K = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} f(\tan x) dx = 3$. Đặt $\tan x = t \Rightarrow dt = d \tan x = \frac{1}{\cos^2 x} dx = (t^2 + 1) dx$.

Vậy
$$K = \int_{0}^{1} f(t) \cdot \frac{1}{t^2 + 1} dt = \int_{0}^{1} f(x) \cdot \frac{1}{x^2 + 1} dx = 3.$$

Lại có
$$\int_{0}^{1} \frac{x^{2} f(x)}{x^{2} + 1} dx = \int_{0}^{1} \left[f(x) - \frac{1}{x^{2} + 1} f(x) \right] dx = \int_{0}^{1} f(x) dx - \int_{0}^{1} \frac{1}{x^{2} + 1} f(x) dx.$$

Vậy suy ra
$$I = \int_{0}^{1} f(x) dx = 4$$
.

(SGD Thanh Hóa - 2018) Cho hàm số f(x) liên tục trên $\mathbb R$ và thỏa mãn

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot x \cdot f\left(\sin^2 x\right) dx = \int_{1}^{16} \frac{f\left(\sqrt{x}\right)}{x} dx = 1. \text{ Tính tích phân } \int_{\frac{1}{8}}^{1} \frac{f\left(4x\right)}{x} dx.$$

$$\mathbf{A.} \ I = 3. \qquad \mathbf{B.} \ I = \frac{3}{2}. \qquad \mathbf{C.} \ I = 2. \qquad \mathbf{\underline{D.}} \ I = \frac{5}{2}.$$

$$\mathbf{Lời giải}$$

A.
$$I = 3$$
.

B.
$$I = \frac{3}{2}$$

C.
$$I = 2$$
.

$$\underline{\mathbf{D}}$$
. $I = \frac{5}{2}$.

$$\text{Dặt } I_1 = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot x. f(\sin^2 x) dx = 1, \ I_2 = \int_{1}^{16} \frac{f(\sqrt{x})}{x} dx = 1.$$

 \Box Đặt $t = \sin^2 x \implies dt = 2\sin x \cdot \cos x dx = 2\sin^2 x \cdot \cot x dx = 2t \cdot \cot x dx$.

$$\begin{array}{c|cccc}
x & \frac{\pi}{4} & \frac{\pi}{2} \\
\hline
t & \frac{1}{2} & 1
\end{array}$$

$$I_{1} = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot x \cdot f(\sin^{2} x) dx = \int_{\frac{1}{2}}^{1} f(t) \cdot \frac{1}{2t} dt = \frac{1}{2} \int_{\frac{1}{2}}^{1} \frac{f(t)}{t} dt = \frac{1}{2} \int_{\frac{1}{8}}^{\frac{1}{4}} \frac{f(4x)}{4x} d(4x) = \frac{1}{2} \int_{\frac{1}{8}}^{\frac{1}{4}} \frac{f(4x)}{x} dx.$$

Suy ra
$$\int_{\frac{1}{8}}^{\frac{1}{4}} \frac{f(4x)}{x} dx = 2I_1 = 2$$

 \square Đặt $t = \sqrt{x} \implies 2t dt = dx$.

NGUYĒN BẢO VƯƠNG - 0946798489

$$I_{2} = \int_{1}^{16} \frac{f(\sqrt{x})}{x} dx = \int_{1}^{4} \frac{f(t)}{t^{2}} 2t dt = 2 \int_{1}^{4} \frac{f(t)}{t} dt = 2 \int_{\frac{1}{2}}^{1} \frac{f(4x)}{4x} d(4x) = 2 \int_{\frac{1}{2}}^{1} \frac{f(4x)}{x} dx.$$

Suy ra
$$\int_{\frac{1}{4}}^{1} \frac{f(4x)}{x} dx = \frac{1}{2}I_2 = \frac{1}{2}$$

Khi đó, ta có:

$$\int_{\frac{1}{8}}^{1} \frac{f(4x)}{x} dx = \int_{\frac{1}{8}}^{\frac{1}{4}} \frac{f(4x)}{x} dx + \int_{\frac{1}{4}}^{1} \frac{f(4x)}{x} dx = 2 + \frac{1}{2} = \frac{5}{2}.$$

(SGD - Nam Định - 2018) Cho hàm số f(x) liên tục trên đoạn [1;4] và thỏa mãn Câu 31.

$$f(x) = \frac{f(2\sqrt{x} - 1)}{\sqrt{x}} + \frac{\ln x}{x}$$
. Tính tích phân $I = \int_{3}^{4} f(x) dx$.

A. $I = 3 + 2 \ln^2 2$. **B.** $I = 2 \ln^2 2$.

C. $I = \ln^2 2$.

D. $I = 2 \ln 2$.

Ta có
$$\int_{1}^{4} f(x) dx = \int_{1}^{4} \left[\frac{f(2\sqrt{x} - 1)}{\sqrt{x}} + \frac{\ln x}{x} \right] dx = \int_{1}^{4} \frac{f(2\sqrt{x} - 1)}{\sqrt{x}} dx + \int_{1}^{4} \frac{\ln x}{x} dx.$$

$$\text{X\'et } K = \int_{1}^{4} \frac{f\left(2\sqrt{x} - 1\right)}{\sqrt{x}} dx.$$

Đặt
$$2\sqrt{x} - 1 = t \implies \sqrt{x} = \frac{t+1}{2} \implies \frac{dx}{\sqrt{x}} = dt$$
.

$$\Rightarrow K = \int_{1}^{3} f(t) dt = \int_{1}^{3} f(x) dx.$$

Xét
$$M = \int_{1}^{4} \frac{\ln x}{x} dx = \int_{1}^{4} \ln x d(\ln x) = \frac{\ln^{2} x}{2} \Big|_{1}^{4} = 2 \ln^{2} 2.$$

Do đó
$$\int_{1}^{4} f(x) dx = \int_{1}^{3} f(x) dx + 2 \ln^{2} 2 \Rightarrow \int_{2}^{4} f(x) dx = 2 \ln^{2} 2$$
.

$$\text{T\'er}\left(1\right) \Longrightarrow I = -\frac{4}{7}I + \frac{2018}{7}.\frac{98}{3} \Longleftrightarrow \frac{11}{7}I = \frac{2018.98}{7.3} \Longleftrightarrow I = \frac{197764}{33} \,.$$

(Nam Định - 2018) Cho hàm số y = f(x) liên tục trên [1;4] và thỏa mãn Câu 32.

$$f(x) = \frac{f(2\sqrt{x} - 1)}{\sqrt{x}} + \frac{\ln x}{x}$$
. Tính tích phân $I = \int_{3}^{4} f(x) dx$.

A. $I = 3 + 2 \ln^2 2$. **B.** $I = 2 \ln^2 2$.

C. $I = \ln^2 2$.

D. $I = 2 \ln 2$.

Ta có:
$$\int_{1}^{4} f(x) dx = \int_{1}^{4} \left(\frac{f(2\sqrt{x} - 1)}{\sqrt{x}} + \frac{\ln x}{x} \right) dx = \int_{1}^{4} \frac{f(2\sqrt{x} - 1)}{\sqrt{x}} dx + \int_{1}^{4} \frac{\ln x}{x} dx = A + B.$$

Xét
$$B = \int_{1}^{4} \frac{\ln x}{x} dx = \int_{1}^{4} \ln x \, d(\ln x) = \frac{(\ln x)^{2}}{2} \bigg|_{1}^{4} = \frac{(\ln 4)^{2}}{2} - \frac{(\ln 1)^{2}}{2} = 2 \ln^{2} 2$$
.

$$X\acute{e}t \ A = \int_{1}^{4} \frac{f(2\sqrt{x} - 1)}{\sqrt{x}} dx.$$

Đặt
$$t = 2\sqrt{x} - 1 \Rightarrow dt = \frac{1}{\sqrt{x}} dx$$
. Khi đó $A = \int_{1}^{4} \frac{f(2\sqrt{x} - 1)}{\sqrt{x}} dx = \int_{1}^{3} f(t) dt = \int_{1}^{3} f(x) dx$

Vậy
$$\int_{1}^{4} f(x) dx = \left(\int_{1}^{3} f(x) dx\right) + 2 \ln^{2} 2 \Rightarrow \int_{1}^{4} f(x) dx - \int_{1}^{3} f(x) dx = 2 \ln^{2} 2 \Rightarrow I = 2 \ln^{2} 2.$$

(Chuyên Hùng Vương - Gia Lai - 2020) Cho hàm số f(x) liên tục và là hàm số lẻ trên Câu 33. đoạn [-2;2]. Biết rằng $\int_{-1}^{0} f(x) dx = -1$, $\int_{\frac{1}{2}}^{1} f(-2x) dx = 2$. Mệnh đề nào sau đây đúng?

A.
$$\int_{-2}^{2} f(x) dx = 2 \int_{0}^{2} f(x) dx$$
.

B.
$$\int_{1}^{1} f(x) dx = -4$$
.

$$\mathbf{C.} \int_{0}^{1} f(x) dx = -1.$$

C.
$$\int_{0}^{1} f(x) dx = -1.$$

$$\underline{\mathbf{D}}. \int_{0}^{2} f(x) dx = -3.$$

Lời giải

Chon D

Đặt
$$t = -x \Rightarrow \int_{-1}^{0} f(x) dx = -\int_{1}^{0} f(-t) dt = \int_{0}^{1} -f(t) dt$$
 (vì $f(x)$ là hàm lẻ)

$$\Rightarrow \int_{-1}^{1} f(t) dt = 1.$$

$$\text{D} \underbrace{at} t = 2x \Rightarrow \int_{\frac{1}{2}}^{1} f\left(-2x\right) dx = \int_{\frac{1}{2}}^{1} -f\left(2x\right) dx = \frac{-1}{2} \int_{1}^{2} f\left(t\right) dt$$

$$\Rightarrow \frac{-1}{2} \int_{1}^{2} f(t) dt = 2 \Rightarrow \int_{1}^{2} f(t) dt = -4.$$

$$V_{a}^{2}y\int_{0}^{2} f(x) dx = \int_{0}^{1} f(x) dx + \int_{1}^{2} f(x) dx = 1 - 4 = -3.$$

(Chuyên Sơn La - 2020) Cho f(x) là hàm số liên tục trên \mathbb{R} thỏa f(1)=1 và $\int f(t) dt = \frac{1}{3}$. Câu 34.

Tính

$$I = \int_{0}^{\frac{\pi}{2}} \sin 2x \cdot f'(\sin x) \, \mathrm{d}x$$

$$\underline{\mathbf{A}}. \ I = \frac{4}{3}$$

B.
$$I = \frac{2}{3}$$

A.
$$I = \frac{4}{3}$$
. **B.** $I = \frac{2}{3}$. **C.** $I = -\frac{2}{3}$

D.
$$I = \frac{1}{3}$$
.

Lời giải

Chọn A

 $\text{Dăt } t = \sin x, \, dt = \cos x \, dx.$

Đổi cân

NGUYĒN BAO VƯƠNG - 0946798489

$$\frac{x}{t} = \int_{0}^{\frac{\pi}{2}} \sin 2x \cdot f'(\sin x) dx = \int_{0}^{1} 2t \cdot f'(t) dt.$$

$$\text{Dặt } \begin{cases} u = 2t \\ dv = f'(t) dt \end{cases} \Rightarrow \begin{cases} du = 2dt \\ v = f(t) \end{cases}$$

$$I = \left(2t \cdot f(t)\right) \begin{vmatrix} 1 \\ 0 \end{vmatrix} - 2 \int_{0}^{1} f(t) dt = 2 \cdot f(1) - 2 \cdot \frac{1}{3} = \frac{4}{3}.$$

(Chuyên Vĩnh Phúc - 2020) Cho hàm số f(x) liên tục Câu 35.

$$\int_{1}^{9} \frac{f(\sqrt{x})}{\sqrt{x}} dx = 4, \int_{0}^{\frac{\pi}{2}} f(\sin x) \cos x dx = 2. \text{ Tính tích phân } I = \int_{0}^{3} f(x) dx.$$
A. $I = 6$.
B. $I = 4$.
C. $I = 10$.

D. I = 2.

Chọn B

Ta có:
$$\int_{1}^{9} \frac{f(\sqrt{x})}{\sqrt{x}} dx = 2 \int_{1}^{9} f(\sqrt{x}) d(\sqrt{x}) = 2 \int_{1}^{3} f(t) dt.$$

Mà
$$\int_{1}^{9} \frac{f(\sqrt{x})}{\sqrt{x}} dx = 4$$
 nên $2\int_{1}^{3} f(t) dt = 4 \Leftrightarrow \int_{1}^{3} f(t) dt = 2$

Vì tích phân không phụ thuộc vào biến số nên $\int_{1}^{3} f(t) dt = 2 \Leftrightarrow \int_{1}^{3} f(x) dx = 2$.

Ta có:
$$\int_{0}^{\frac{\pi}{2}} f(\sin x) \cos x dx = \int_{0}^{\frac{\pi}{2}} f(\sin x) d(\sin x) = \int_{0}^{1} f(t) dt$$
.

Mà
$$\int_{0}^{\frac{\pi}{2}} f(\sin x)\cos x dx = 2 \text{ nên } \int_{0}^{1} f(t) dt = 2.$$

Vì tích phân không phụ thuộc vào biến số nên $\int_{a}^{b} f(t) dt = 2 \Leftrightarrow \int_{a}^{b} f(x) dx = 2$.

Khi đó
$$I = \int_{0}^{3} f(x) dx = \int_{0}^{1} f(x) dx + \int_{1}^{3} f(x) dx = 2 + 2 = 4$$
.

(Sở Hưng Yên - 2020) Cho f(x) liên tục trên \mathbb{R} thỏa mãn f(x) = f(2020 - x) và Câu 36. $\int_{0}^{2017} f(x) dx = 4. \text{ Khi d\'o } \int_{0}^{2017} x f(x) dx \text{ bằng}$

C. 2020.

D. 8080.

Đặt
$$u = 2020 - x \Rightarrow x = 2020 - u$$
. Ta có $dx = -du$.

Với
$$x = 3$$
 thì $u = 2017$.

Với
$$x = 2017$$
 thì $u = 3$.

Khiđó
$$\int_{3}^{2017} xf(x)dx = \int_{3}^{2017} (2020 - u) f(2020 - u) du = \int_{3}^{2017} (2020 - x) f(x) dx$$

Suy ra
$$2\int_{3}^{2017} xf(x)dx = \int_{3}^{2017} 2020 f(x)dx = 8080$$
. Do đó $\int_{3}^{2017} xf(x)dx = 4040$.

Câu 37. (Sở Phú Thọ - 2020) Cho hàm số f(x) có đạo hàm và xác định trên \mathbb{R} . Biết f(1)=2 và

$$\int_{0}^{1} x^{2} f'(x) dx = \int_{1}^{4} \frac{1 + 3\sqrt{x}}{2\sqrt{x}} f(2 - \sqrt{x}) dx = 4. \text{ Giá trị của } \int_{0}^{1} f(x) dx \text{ bằng}$$

B.
$$\frac{5}{7}$$

C.
$$\frac{3}{7}$$
.

$$\underline{\mathbf{D}} \cdot \frac{1}{7}$$

Lời giải

Chọn D

Ta có

$$4 = \int_0^1 x^2 f'(x) dx = \left(x^2 f(x)\right)\Big|_0^1 - \int_0^1 2x f(x) dx = 2 - 2\int_0^1 x f(x) dx \Rightarrow \int_0^1 x f(x) dx = -1$$

Đặt
$$t = 2 - \sqrt{x} \implies dt = -\frac{1}{2\sqrt{x}} dx$$

Khi đó

$$\int_{1}^{4} \frac{1 + 3\sqrt{x}}{2\sqrt{x}} f\left(2 - \sqrt{x}\right) dx = 4 \Leftrightarrow -\int_{1}^{0} \left(1 + 3\left(2 - t\right)\right) f\left(t\right) dt = 4 \Leftrightarrow \int_{0}^{1} 7 f\left(t\right) dt - 3\int_{0}^{1} t f\left(t\right) dt = 4$$

Suy ra
$$\int_0^1 f(t) dt = \frac{4+3\int_0^1 tf(t) dt}{7} = \frac{4+3\cdot(-1)}{7} = \frac{1}{7}$$
.

$$V_{0}^{2}y \int_{0}^{1} f(x) dx = \frac{1}{7}.$$

Câu 38. (Sở Yên Bái - 2020) Cho hàm số y = f(x) liên tục trên $\mathbb R$ và thỏa mãn

$$4xf(x^2) + 6f(2x) = \frac{3}{5}x^3 + 4$$
. Giá trị $\int_0^4 f(x)dx$ bằng

$$\underline{\mathbf{A}} \cdot \frac{52}{25}$$
.

C.
$$\frac{48}{25}$$
.

D. 48.

Lời giải

Chọn A

$$4xf(x^{2}) + 6f(2x) = \frac{3}{5}x^{3} + 4 \Rightarrow \int_{0}^{2} \left[4xf(x^{2}) + 6f(2x)\right] dx = \int_{0}^{2} \left[\frac{3}{5}x^{3} + 4\right] dx$$

$$\Rightarrow 2\int_{0}^{2} f(x^{2}) d(x^{2}) + 3\int_{0}^{2} f(2x) d(2x) = \frac{52}{5} \Rightarrow 2\int_{0}^{4} f(t) dt + 3\int_{0}^{4} f(u) du = \frac{52}{5}$$

$$\Rightarrow 2\int_{0}^{4} f(x)dx + 3\int_{0}^{4} f(x)dx = \frac{52}{5} \Rightarrow 5\int_{0}^{4} f(x)dx = \frac{52}{5} \Rightarrow \int_{0}^{4} f(x)dx = \frac{52}{25}$$

NGUYĒN BAO VƯƠNG - 0946798489

(Đô Lương 4 - Nghệ An - 2020) Cho f(x) liên tục trên \mathbb{R} và thỏa mãn $f(2) = 16, \int_{0}^{1} f(2x) dx = 2. \text{ Tích phân } \int_{0}^{2} xf'(x) dx \text{ bằng}$

D. 16.

Lời giải

Chon B

Ta có:
$$\int_{0}^{1} f(2x) dx = 2 \Leftrightarrow \frac{1}{2} \int_{0}^{1} f(2x) d(2x) = 2 \Leftrightarrow \int_{0}^{2} f(x) dx = 4.$$

Đặt
$$\begin{cases} u = x \\ dv = f'(x) dx \end{cases} \Rightarrow \begin{cases} du = dx \\ v = f(x) \end{cases}$$

$$\Rightarrow \int_{0}^{2} xf'(x) dx = xf(x)\Big|_{0}^{2} - \int_{0}^{2} f(x) dx = 2f(2) - 4 = 32 - 4 = 28.$$

(**Kim Liên - Hà Nội - 2020**) Cho hàm số f(x) liên tục trên đoạn [0;1] và $\int_{1}^{2} f(\sin x) dx = 5$.

$$Tinh I = \int_{0}^{\pi} x f(\sin x) dx$$

A.
$$I = \frac{5}{2}\pi$$
.

B. $I = 10\pi$.

C. $I = 5$.

Lòi giải

B.
$$I = 10\pi$$

Chọn D

Ta có
$$I = \int_0^{\pi} xf(\sin x)dx = \int_0^{\frac{\pi}{2}} xf(\sin x)dx + \int_{\frac{\pi}{2}}^{\pi} xf(\sin x)dx$$
,

Tính
$$\int_{\frac{\pi}{2}}^{\pi} x f(\sin x) dx$$

Đặt
$$x = \pi - t$$

$$dx = -dt$$

$$xf(\sin x)dx = (\pi - t)f[\sin(\pi - t)](-dt) = (t - \pi)f(\sin t)dt$$

Đổi cận
$$x = \frac{\pi}{2} \Rightarrow t = \frac{\pi}{2}$$

 $x = \pi \Rightarrow t = 0$

$$\int_{-\frac{\pi}{2}}^{\pi} x f(\sin x) dx = \int_{-\frac{\pi}{2}}^{0} (t - \pi) f(\sin t) dt = \pi \int_{0}^{\frac{\pi}{2}} f(\sin t) dt - \int_{0}^{\frac{\pi}{2}} t f(\sin t) dt = \pi \int_{0}^{\frac{\pi}{2}} f(\sin x) dx - \int_{0}^{\frac{\pi}{2}} x f(\sin x) dx$$

Do đó
$$I = \int_{0}^{\pi} xf(\sin x) dx = \int_{0}^{\frac{\pi}{2}} xf(\sin x) dx + \int_{\frac{\pi}{2}}^{\pi} xf(\sin x) dx = \pi \int_{0}^{\frac{\pi}{2}} f(\sin x) dx = 5\pi$$

Vậy chọn **D.**

Câu 41. (THPT Hoàng Hoa Thám - Hưng Yên 2019) Cho hàm số f(x) liên tục trên $\mathbb R$, thỏa mãn

$$\int_0^{\frac{\pi}{4}} \tan x \cdot f(\cos^2 x) dx = 2 \text{ và } \int_e^{e^2} \frac{f(\ln x^2)}{x \ln x} dx = 2 \cdot \text{Tính } \int_{\frac{1}{4}}^2 \frac{f(2x)}{x} dx.$$

A. 0.

B. 1.

C. 4

D. 8.

Lời giải

Chọn D

• Đặt $t = \cos^2 x$ suy ra $dt = -2\sin x \cdot \cos x dx$.

Suy

ra

$$I_{1} = \int_{0}^{\frac{\pi}{4}} \tan x \cdot f(\cos^{2} x) dx = \int_{0}^{\frac{\pi}{4}} \frac{\sin x}{\cos x} \cdot f(\cos^{2} x) dx = -\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \frac{-2 \sin x \cos x}{\cos^{2} x} \cdot f(\cos^{2} x) dx = \frac{1}{2} \int_{\frac{1}{2}}^{1} \frac{f(t)}{t} dt$$

Đặt
$$t = \ln^2 x$$
 suy ra $dt = 2 \frac{\ln x}{x} dx$

Suy ra
$$I_2 = \int_e^{e^2} \frac{f(\ln^2 x)}{x \ln x} dx = \frac{1}{2} \int_e^{e^2} \frac{2 \ln x \cdot f(\ln^2 x)}{x \ln^2 x} dx = \frac{1}{2} \int_1^4 \frac{f(t)}{t} dt$$
.

• Đặt t = 2x suy ra dt = 2 dx.

Ta có

$$I = \int_{\frac{1}{4}}^{2} \frac{f(2x)}{x} dx = \int_{\frac{1}{4}}^{2} \frac{f(2x)}{2x} d(2x) = \int_{\frac{1}{2}}^{4} \frac{f(t)}{t} d(t) = \int_{\frac{1}{2}}^{1} \frac{f(t)}{t} dt + \int_{1}^{4} \frac{f(t)}{t} dt = 2(I_{1} + I_{2}) = 2(2 + 2) = 8.$$

Câu 42. (**Hùng Vương Gia Lai 2019**) Cho hàm số y = f(x) liên tục trên $\left[\frac{1}{3};3\right]$ thỏa

mãn $f(x) + x \cdot f\left(\frac{1}{x}\right) = x^3 - x$. Giá trị tích phân $I = \int_{\frac{1}{2}}^{3} \frac{f(x)}{x^2 + x} dx$ bằng:

<u>A.</u> $\frac{8}{9}$

B. $\frac{16}{9}$

C. $\frac{2}{3}$.

D. $\frac{3}{4}$

Lời giải

Chon A

$$f(x) + x \cdot f\left(\frac{1}{x}\right) = x^3 - x \Rightarrow \frac{f(x)}{x^2 + x} + \frac{f\left(\frac{1}{x}\right)}{x + 1} = x - 1 \Rightarrow \int_{\frac{1}{3}}^{3} \frac{f(x)}{x^2 + x} dx + \int_{\frac{1}{3}}^{3} \frac{f\left(\frac{1}{x}\right)}{x + 1} dx = \int_{\frac{1}{3}}^{3} (x - 1) dx = \frac{16}{9}.$$

NGUYĒN BĀO VƯƠNG - 0946798489

Xét
$$I' = \int_{\frac{1}{3}}^{3} \frac{f\left(\frac{1}{x}\right)}{x+1} dx$$
.

$$D \check{a} t \frac{1}{x} = t \Rightarrow \frac{-1}{x^2} dx = dt \Rightarrow dx = \frac{dt}{-t^2}.$$

$$I' = \int_{\frac{1}{3}}^{3} \frac{f\left(\frac{1}{x}\right)}{x+1} dx = \int_{\frac{3}{4}}^{\frac{1}{4}} \frac{f(t)}{t-t^{2}} dt = \int_{\frac{1}{3}}^{3} \frac{f(t)}{t^{2}+t} dt = \int_{\frac{1}{3}}^{3} \frac{f(x)}{x^{2}+x} dx = I.$$

Suy ra
$$2I = \frac{16}{9} \Rightarrow I = \frac{8}{9}$$
.

Dạng 1.2 Giải bằng phương pháp từng phần

Thông thường nếu bài toán xuất hiện $\int_{a}^{b} g(x) f'(x) dx$ ta sẽ đặt $\begin{cases} u = g(x) \\ dv = f'(x) dx \end{cases}$

(Đề tham khảo 2017) Cho hàm số f(x) thỏa mãn $\int_{0}^{x} (x+1)f'(x)dx = 10$ và 2f(1)-f(0)=2.

Tính
$$\int_{0}^{1} f(x) dx$$
.

A.
$$I = -12$$
 B. $I = 8$

B.
$$I = 8$$

C.
$$I = 1$$

D.
$$I = -8$$

Đặt
$$\begin{cases} u = x + 1 \\ dv = f'(x) dx \end{cases} \Rightarrow \begin{cases} du = dx \\ v = f(x) \end{cases}$$
. Khi đó $I = (x+1) f(x) \Big|_{0}^{1} - \int_{0}^{1} f(x) dx$

Suy ra
$$10 = 2f(1) - f(0) - \int_{0}^{1} f(x) dx \Rightarrow \int_{0}^{1} f(x) dx = -10 + 2 = -8$$

$$V_{ay} \int_{0}^{1} f(x) dx = -8.$$

(Mã 104 - 2019) Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} . Biết f(3)=1

$$\operatorname{va} \int_{0}^{1} x f(3x) dx = 1$$
, khi đó $\int_{0}^{3} x^{2} f'(x) dx$ bằng

A.
$$\frac{25}{3}$$
.

Lời giải

Chọn D

Đặt
$$t = 3x \Rightarrow dt = 3dx \Rightarrow dx = \frac{1}{3}dt$$
.

Suy ra
$$1 = \int_{0}^{1} xf(3x)dx = \frac{1}{9} \int_{0}^{3} tf(t)dt \Leftrightarrow \int_{0}^{3} tf(t)dt = 9$$
.

$$\begin{aligned}
&\text{Đặt} \left\{ \begin{aligned} u &= f(t) \\ \mathrm{d}v &= t \mathrm{d}t \end{aligned} \right\} \Rightarrow \begin{cases} \mathrm{d}u &= f'(t) \mathrm{d}t \\ v &= \frac{t^2}{2} \end{aligned} \\
&\Rightarrow \int_0^3 t f(t) \mathrm{d}t = \frac{t^2}{2} f(t) \Big|_0^3 - \int_0^3 \frac{t^2}{2} f'(t) \mathrm{d}t = \frac{9}{2} f(3) - \frac{1}{2} \int_0^3 t^2 f'(t) \mathrm{d}t \\ &\Leftrightarrow 9 &= \frac{9}{2} - \frac{1}{2} \int_0^3 t^2 f'(t) \mathrm{d}t \Leftrightarrow \int_0^3 t^2 f'(t) \mathrm{d}t = -9 \end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}
\end{aligned}$$

$$\end{aligned}
\end{aligned}$$

$$\end{aligned}$$

Câu 45. (**Mã** 101 - 2019) Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} . Biết f(4)=1 và $\int_0^1 x f(4x) dx = 1$, khi đó $\int_0^4 x^2 f'(x) dx$ bằng

A. 8.

B. 14.

C. $\frac{31}{2}$.

D. -16.

Lời giải

Chọn D

Xét
$$\int_0^1 x f(4x) dx = 1$$
. Đặt:

$$t = 4x \Rightarrow \int_0^4 \frac{1}{4} t \cdot f(t) \cdot \frac{1}{4} dt = 1 \Rightarrow \int_0^4 t \cdot f(t) dt = 16 \Rightarrow \int_0^4 x \cdot f(x) dx = 16.$$

Xét
$$I = \int_0^4 x^2 f'(x) dx = \int_0^4 x^2 df(x)$$

Suy ra:
$$I = x^2 \cdot f(x) \Big|_0^4 - \int_0^4 2x \cdot f(x) dx = 4^2 f(4) - 2 \cdot 16 = -16$$
.

Câu 46. (**Mã** 103 - 2019) Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} . Biết f(6)=1 và $\int_0^1 x f(6x) dx = 1$, khi đó $\int_0^6 x^2 f'(x) dx$ bằng

A. $\frac{107}{3}$.

B. 34.

C. 24.

D. −36.

Lời giải

Chọn D

Theo bài ra: $\int_{0}^{1} xf(6x) dx = 1.$

 $\text{Dăt } t = 6x \Rightarrow dt = 6dx.$

Đối cận:

X	0	1
t	0	6

Do đó: $\int_{0}^{1} xf(6x) dx = 1 \Leftrightarrow \int_{0}^{6} \frac{1}{6}t \cdot f(t) \frac{dt}{6} = 1 \Leftrightarrow \frac{1}{36} \int_{0}^{6} t \cdot f(t) dt = 1 \Leftrightarrow \int_{0}^{6} t \cdot f(t) dt = 36.$

NGUYĒN <mark>BẢO</mark> VƯƠNG - 0946798489

Tính
$$I = \int_{0}^{6} x^2 f'(x) dx$$
.

Đặt
$$\begin{cases} u = x^2 \\ dv = f'(x) dx \end{cases} \Leftrightarrow \begin{cases} du = 2x dx \\ v = f(x) \end{cases}$$

$$\Rightarrow I = x^2 f(x) \Big|_0^6 - \int_0^6 2x f(x) dx = 36 f(6) - 2 \int_0^6 x f(x) dx = 36.1 - 2.36 = -36.$$

Câu 47. (**Mã** 102 - 2019) Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} . Biết f(5) = 1 và $\int_0^1 x f(5x) dx = 1$, khi đó $\int_0^5 x^2 f'(x) dx$ bằng

C.
$$\frac{123}{5}$$

Lời giải

<u>C</u>họn <u>D</u>

$$+) I = \int_{0}^{5} x^{2} f'(x) dx = \int_{0}^{5} x^{2} df(x) = x^{2} \cdot f(x) \Big|_{0}^{5} - \int_{0}^{5} f(x) dx^{2}$$
$$= 25 \cdot f(5) - 0 \cdot f(x) - \int_{0}^{5} f(x) \cdot 2x dx$$

$$=25-2\int_{0}^{5}xf(x)dx$$

+) Ta có:
$$\int_{0}^{1} xf(5x)dx = 1$$

Đặt
$$5x = t \implies \int_{0}^{5} \frac{t}{5} f(t) dt = 1 \iff \int_{0}^{5} t f(t) dt = 25$$

Vậy
$$I = 25 - 2 \times 25 = -25$$
.

Câu 48. (Chuyên ĐH Vinh - Nghệ An -2020) Cho f(x) là hàm số có đạo hàm liên tục trên [0;1] và

$$f(1) = -\frac{1}{18}$$
, $\int_{0}^{1} x \cdot f'(x) dx = \frac{1}{36}$. Giá trị của $\int_{0}^{1} f(x) dx$ bằng

$$\underline{\mathbf{A}} \cdot -\frac{1}{12}$$
.

B.
$$\frac{1}{36}$$
.

C.
$$\frac{1}{12}$$
.

D.
$$-\frac{1}{36}$$
.

Lời giải

Chọn A

Đặt
$$\begin{cases} u = x \\ dv = f'(x) dx \end{cases} \Rightarrow \begin{cases} du = dx \\ v = f(x) \end{cases}$$
, khi đó ta có

$$\int_{0}^{1} x \cdot f'(x) dx = x \cdot f(x) \Big|_{0}^{1} - \int_{0}^{1} f(x) dx = f(1) - \int_{0}^{1} f(x) dx = \frac{1}{36} \Rightarrow \int_{0}^{1} f(x) dx = f(1) - \frac{1}{36} = -\frac{1}{12}.$$

Câu 49. (Sở Phú Thọ - 2020) Cho hàm số f(x) có $f(1) = e^2$ và $f'(x) = \frac{2x-1}{x^2}e^{2x}$ với mọi x khác 0.

Khi đó
$$\int_{1}^{\ln 3} x f(x) dx$$
 bằng

A.
$$6 - e^2$$
.

B.
$$\frac{6-e^2}{2}$$
.

C.
$$9 - e^2$$
.

D.
$$\frac{9-e^2}{2}$$
.

Lời giải

Chọn D

Xét tích phân $\int f'(x) dx = \int \frac{2x-1}{x^2} e^{2x} dx$

$$\int f'(x) dx = \int \frac{2x-1}{x^2} e^{2x} dx = -\frac{1}{x} (2x-1) e^{2x} + 4 \int e^{2x} dx = -\frac{1}{x} (2x-1) e^{2x} + 2 e^{2x} + C.$$

Do
$$f(1) = e^2 \Rightarrow C = 0$$
. Vậy $f(x) = -\frac{1}{x}(2x-1)e^{2x} + 2e^{2x}$.

Khi đó, ta có
$$\int_{1}^{\ln 3} x f(x) dx = \int_{1}^{\ln 3} \left[(1 - 2x) e^{2x} + 2x e^{2x} \right] dx = \int_{1}^{\ln 3} e^{2x} dx = \frac{e^{2x}}{2} \Big|_{1}^{\ln 3} = \frac{1}{2} (9 - e^2).$$

(HSG Bắc Ninh 2019) Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và thỏa mãn

$$f(2) = 16, \int_{0}^{2} f(x)dx = 4$$
. Tính $I = \int_{0}^{1} xf'(2x)dx$.
A. $I = 20$ **B.** $I = 7$ **C.** $I = 12$ **Lòi giải**

A.
$$I = 20$$

B.
$$I = {}^{t}$$

C.
$$I = 12$$

D.
$$I = 13$$

Ta có: $I = \int_{1}^{1} x f'(2x) dx = \frac{1}{2} x f(2x) \Big|_{1}^{1} - \int_{1}^{1} \frac{1}{2} f(2x) dx = \frac{1}{2} f(2) - \frac{1}{4} \int_{1}^{1} f(2x) d(2x) dx$

$$I = \frac{1}{2}f(2) - \frac{1}{4}\int_{0}^{2}f(x)dx = \frac{1}{2}.16 - \frac{1}{4}.4 = 7.$$

(THCS - THPT Nguyễn Khuyến 2019) Cho hàm số f(x) có đạo hàm liên tục trên [0;1] thỏa Câu 51.

mãn
$$\int_0^1 x^2 f(x) dx = -\frac{1}{21}$$
, $f(1) = 0$ và $\int_0^1 \left[f'(x) \right]^2 dx = \frac{1}{7}$. Giá trị của $\int_0^1 f(x) dx$ bằng

A.
$$\frac{5}{12}$$
.

$$\underline{\mathbf{B}}_{\bullet} - \frac{1}{5}$$
.

C.
$$\frac{4}{5}$$
.

D.
$$-\frac{7}{10}$$
.

$$\operatorname{D\check{a}t} \begin{cases} u = f(x) \\ dv = x^2 dx \end{cases} \Rightarrow \begin{cases} du = f'(x) dx \\ v = \frac{x^3}{3} \end{cases}.$$

$$\bullet -\frac{1}{21} = \int_0^1 x^2 f(x) dx = \int_0^1 u dv = uv \Big|_0^1 - \int_0^1 v du = \frac{x^3}{3} f(x) \Big|_0^1 - \int_0^1 \frac{x^3}{3} f'(x) dx = -\frac{1}{3} \int_0^1 x^3 f'(x) dx$$

$$\Rightarrow \int_0^1 x^3 f'(x) dx = \frac{1}{7}.$$

$$\bullet \int_0^1 \left(x^3 - f'(x) \right)^2 dx = \int_0^1 x^6 dx - 2 \int_0^1 x^3 f'(x) dx + \int_0^1 \left[f'(x) \right]^2 dx = \frac{1}{7} - 2 \cdot \frac{1}{7} + \frac{1}{7} = 0$$

$$\Rightarrow (f'(x) - x^3)^2 = 0, \forall x \in [0;1] \Rightarrow f'(x) = x^3, \forall x \in [0;1].$$

Kết hợp điều kiện
$$f(1) = 0$$
 ta có $f(x) = \frac{1}{4}(x^4 - 1); \forall x \in [0;1]$

Vậy
$$\int_0^1 f(x) dx = \int_0^1 \frac{1}{4} (x^4 - 1) dx = \frac{1}{4} \int_0^1 (x^4 - 1) dx = -\frac{1}{5}$$
.

Câu 52. (Chuyên Lê Quý Đôn Quảng Trị -2019) Cho hàm số f(x) có đạo hàm liên tục trên $\mathbb R$ và thỏa mãn

$$\int_{0}^{1} f(x) dx = 1, f(1) = \cot 1. \text{ Tính tích phân } I = \int_{0}^{1} \left[f(x) \tan^{2} x + f'(x) \tan x \right] dx.$$

$$A. -1.$$

B.
$$1 - \ln(\cos 1)$$
.

D.
$$1 - \cot 1$$
.

Lời giải

Ta có
$$\int_{0}^{1} [f(x) \tan^{2} x + f'(x) \tan x] dx = \int_{0}^{1} f(x) \tan^{2} x dx + \int_{0}^{1} f'(x) \tan x dx$$
.

Lại có:

$$\int_{0}^{1} f(x) \tan^{2} x dx = \int_{0}^{1} f(x) \left(\frac{1}{\cos^{2} x} - 1 \right) dx = \int_{0}^{1} \frac{f(x)}{\cos^{2} x} dx - \int_{0}^{1} f(x) dx = \int_{0}^{1} \frac{f(x)}{\cos^{2} x} dx - 1.$$

$$\int_{0}^{1} f'(x) \tan x dx = \int_{0}^{1} \tan x d(f(x)) = f(x) \cdot \tan x \Big|_{0}^{1} - \int_{0}^{1} f(x) d(\tan x)$$

$$= f(1) \cdot \tan 1 - \int_0^1 \frac{f(x)}{\cos^2 x} dx = \cot 1 \cdot \tan 1 - \int_0^1 \frac{f(x)}{\cos^2 x} dx = 1 - \int_0^1 \frac{f(x)}{\cos^2 x} dx.$$

Vậy
$$I = 0$$
.

Câu 53. (THPT Ngô Sĩ Liên Bắc Giang 2019) Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1]

thỏa mãn
$$f(1) = 0$$
, $\int_{0}^{1} x^{2} f(x) dx = \frac{1}{3}$ Tính $\int_{0}^{1} x^{3} f'(x) dx$.

Lời giải

Chọn A

$$\begin{cases} u = f(x) \Rightarrow du = f'(x)dx \\ dv = x^2 dx \Rightarrow v = \frac{x^3}{3} \end{cases}$$

$$I = \frac{x^3}{3} f(x) \Big|_{0}^{1} - \int_{0}^{1} \frac{x^3}{3} f'(x) dx = \frac{1^3}{3} f(1) - 0.f(0) - \int_{0}^{1} \frac{x^3}{3} f'(x) dx \alpha$$

$$\frac{1}{3} = \frac{-1}{3} \int_{0}^{1} x^{3} f'(x) dx \Rightarrow \int_{0}^{1} x^{3} f'(x) dx = -1$$

Câu 54. Biết *m* là số thực thỏa mãn $\int_{0}^{\frac{\pi}{2}} x(\cos x + 2m) dx = 2\pi^{2} + \frac{\pi}{2} - 1$. Mệnh đề nào dưới đây đúng?

A.
$$m \le 0$$
.

B.
$$0 < m \le 3$$
.

C.
$$3 < m \le 6$$
.

D.
$$m > 6$$
.

Ta có:
$$\int_{0}^{\frac{\pi}{2}} x(\cos x + 2m) dx = \int_{0}^{\frac{\pi}{2}} x \cos x dx + \int_{0}^{\frac{\pi}{2}} 2mx dx = \int_{0}^{\frac{\pi}{2}} x \cos x dx + \frac{m\pi^{2}}{4}.$$

Gọi
$$I = \int_0^{\frac{\pi}{2}} x \cos x dx$$
. Đặt
$$\begin{cases} u = x \\ dv = \cos x dx \end{cases} \Rightarrow \begin{cases} du = dx \\ v = \sin x \end{cases}$$

$$I = x \sin x \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \sin x dx = \frac{\pi}{2} + \cos x \Big|_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 1.$$

Khi đó:
$$\int_{0}^{\frac{\pi}{2}} x(\cos x + 2m) dx = \frac{m\pi^2}{4} + \frac{\pi}{2} - 1$$
.

Suy ra
$$\frac{m}{4} = 2 \iff m = 8$$
.

Câu 55. (Đề Tham Khảo 2018) Cho hàm số y = f(x) có đạo hàm liên tục trên [0;1] thỏa mãn

$$f(1) = 0$$
, $\int_{0}^{1} [f'(x)]^{2} dx = 7$ và $\int_{0}^{1} x^{2} f(x) dx = \frac{1}{3}$. Tính tích phân $\int_{0}^{1} f(x) dx$

B.
$$\frac{7}{5}$$

D.
$$\frac{7}{4}$$

Lời giải

Chọn B

Cách 1: Đặt $u = f(x) \Rightarrow du = f'(x) dx$, $dv = x^2 dx \Rightarrow v = \frac{x^3}{3}$.

Ta có
$$\frac{1}{3} = \frac{x^3}{3} f(x) \Big|_0^1 - \int_0^1 \frac{x^3}{3} f'(x) dx \Rightarrow \int_0^1 x^3 f'(x) dx = -1$$

Ta có
$$\int_{0}^{1} 49x^{6} dx = 7$$
, $\int_{0}^{1} [f'(x)]^{2} dx = 7$, $\int_{0}^{1} 2.7x^{3} \cdot f'(x) dx = -14 \Rightarrow \int_{0}^{1} [7x^{3} + f'(x)]^{2} dx = 0$

$$\Rightarrow 7x^3 + f'(x) = 0 \Rightarrow f(x) = -\frac{7x^4}{4} + C, \text{ mà } f(1) = 0 \Rightarrow C = \frac{7}{4}$$

$$\Rightarrow \int_{0}^{1} f(x) dx = \int_{0}^{1} \left(-\frac{7x^{4}}{4} + \frac{7}{4} \right) dx = \frac{7}{5}.$$

Cách 2: Nhắc lại bất đẳng thức Holder tích phân như sau:

$$\left(\int_{a}^{b} f(x)g(x)dx\right)^{2} \leq \int_{a}^{b} f^{2}(x)dx.\int_{a}^{b} g^{2}(x)dx$$

Dấu bằng xảy ra khi $f(x) = k.g(x), (\forall x \in [a;b], k \in \mathbb{R})$

Ta có
$$\frac{1}{9} = \left(\int_{0}^{1} \frac{x^{3}}{3} f'(x) dx\right)^{2} \le \int_{0}^{1} \frac{x^{6}}{9} dx \cdot \int_{0}^{1} \left[f'(x)\right]^{2} dx = \frac{1}{9}$$
. Dấu bằng xảy ra khi $f'(x) = k \cdot \frac{x^{3}}{3}$

Mặt khác
$$\int_{0}^{1} \frac{x^{3}}{3} f'(x) dx = \frac{-1}{3} \Rightarrow k = 21 \Rightarrow f'(x) = -7x^{3}$$
 suy ra $f(x) = -\frac{7x^{4}}{4} + \frac{7}{4}$.

NGUYĒN BẢO VƯƠNG - 0946798489

Từ đó
$$\int_{0}^{1} f(x) dx = \int_{0}^{1} \left(-\frac{7x^{4}}{4} + \frac{7}{4} \right) dx = \frac{7}{5}.$$

(THPT Đoàn Thượng - Hải Dương -2019) Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn Câu 56.

[0;1] và
$$f(0) + f(1) = 0$$
. Biết $\int_{0}^{1} f^{2}(x) dx = \frac{1}{2}$, $\int_{0}^{1} f'(x) \cos(\pi x) dx = \frac{\pi}{2}$. Tính $\int_{0}^{1} f(x) dx$.

 $\mathbf{B.} \frac{3\pi}{2}. \qquad \qquad \mathbf{\underline{C}.} \frac{2}{\pi}.$

D. $\frac{1}{-}$.

Lời giải

Xét tích phân
$$I = \int_{0}^{1} f'(x) \cos(\pi x) dx = \frac{\pi}{2}$$

Đặt
$$\begin{cases} u = \cos(\pi x) \\ dv = f'(x) dx \end{cases} \Rightarrow \begin{cases} du = -\pi \sin(\pi x) dx \\ v = f(x) \end{cases}$$
, ta có

$$I = f(x)\cos(\pi x)\Big|_{0}^{1} + \pi \int_{0}^{1} f(x)\sin(\pi x) dx = -f(1) - f(0) + \pi \int_{0}^{1} f(x)\sin(\pi x) dx = \pi \int_{0}^{1} f(x)\sin(\pi x) dx$$

Mà
$$I = \frac{\pi}{2} \Leftrightarrow \pi \int_{0}^{1} f(x) \sin(\pi x) dx = \frac{\pi}{2} \Leftrightarrow \int_{0}^{1} f(x) \sin(\pi x) dx = \frac{1}{2}$$

Mặt khác:
$$\int_{0}^{1} \sin^{2}(\pi x) dx = \frac{1}{2} \int_{0}^{1} \left[1 - \cos(2\pi x) \right] dx = \frac{1}{2} \left[x - \frac{1}{2\pi} \sin(2\pi x) \right]_{0}^{1} = \frac{1}{2}$$

$$\Rightarrow \int_{0}^{1} \left[f^{2}(x) - 2.f(x)\sin(\pi x) + \sin^{2}(\pi x) \right] dx = \frac{1}{2} - 2.\frac{1}{2} + \frac{1}{2} = 0.$$

Khi đó
$$\int_{0}^{1} \left[f(x) - \sin(\pi x) \right]^{2} dx = 0$$

Vì f(x) có đạo hàm liên tục trên đoạn [0;1] và $[f(x)-\sin(\pi x)]^2 \ge 0, \forall x \in [0;1]$ nên ta suy ra $f(x) - \sin(\pi x) = 0 \Leftrightarrow f(x) = \sin(\pi x)$.

Do đó
$$\int_{0}^{1} f(x) dx = \int_{0}^{1} \sin(\pi x) dx = -\frac{1}{\pi} \cos(\pi x) \Big|_{0}^{1} = \frac{2}{\pi}$$

(Chuyên Vĩnh Phúc 2019) Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn

$$f(1) = 0$$
, $\int_{0}^{1} [f'(x)]^{2} dx = 7$ và $\int_{0}^{1} x^{2} f(x) dx = \frac{1}{3}$. Tích phân $\int_{0}^{1} f(x) dx$ bằng

D. 4

Từ giả thiết:
$$\int_{0}^{1} x^{2} f(x) dx = \frac{1}{3} \Rightarrow \int_{0}^{1} 3x^{2} f(x) dx = 1.$$

Tính:
$$I = \int_{0}^{1} 3x^{2} f(x) dx$$
.

$$\text{Đặt: } \begin{cases} u = f(x) \\ dv = 3x^2 dx \end{cases} \Rightarrow \begin{cases} du = f'(x) dx \\ v = x^3 \end{cases}.$$

Ta có:

$$I = \int_{0}^{1} 3x^{2} f(x) dx = x^{3} f(x) \Big|_{0}^{1} - \int_{0}^{1} x^{3} \cdot f'(x) dx = 1 \cdot f(1) - 0 \cdot f(0) - \int_{0}^{1} x^{3} \cdot f'(x) dx = -\int_{0}^{1} x^{3} \cdot f'(x) dx.$$

Mà:
$$\int_{0}^{1} 3x^{2} f(x) dx = 1 \Rightarrow 1 = -\int_{0}^{1} x^{3} . f'(x) dx$$

$$\Leftrightarrow \int_{0}^{1} x^{3} \cdot f'(x) dx = -1 \Leftrightarrow 7 \int_{0}^{1} x^{3} \cdot f'(x) dx = -7 \Leftrightarrow \int_{0}^{1} 7x^{3} \cdot f'(x) dx = -\int_{0}^{1} \left[f'(x) \right]^{2} dx, \text{ (theo giả thiết: }$$

$$\int_{0}^{1} \left[f'(x) \right]^{2} dx = 7 .$$

$$\Leftrightarrow \int_{0}^{1} \left(7x^{3} \cdot f'(x) + \left[f'(x)\right]^{2}\right) dx = 0 \Leftrightarrow \int_{0}^{1} f'(x) \left[7x^{3} + f'(x)\right] dx = 0$$

$$\Rightarrow 7x^3 + f'(x) = 0 \Leftrightarrow f'(x) = -7x^3 \Rightarrow f(x) = -\frac{7}{4}x^4 + C.$$

Với
$$f(1) = 0 \Rightarrow -\frac{7}{4} \cdot 1^4 + C = 0 \Rightarrow C = \frac{7}{4}$$
.

Khi đó:
$$f(x) = -\frac{7}{4}x^4 + \frac{7}{4}$$
.

Vậy:
$$\int_{0}^{1} f(x) dx = \int_{0}^{1} \left(-\frac{7}{4}x^{4} + \frac{7}{4} \right) dx = -\frac{7}{4} \left(\frac{x^{5}}{5} - x \right) \Big|_{0}^{1} = \frac{7}{5}.$$

Câu 58. (Chuyên Vĩnh Phúc 2019) Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn

$$f(1) = 4$$
, $\int_{0}^{1} [f'(x)]^{2} dx = 36$ và $\int_{0}^{1} x \cdot f(x) dx = \frac{1}{5}$. Tích phân $\int_{0}^{1} f(x) dx$ bằng

A.
$$\frac{5}{6}$$

$$\underline{\mathbf{B}}$$
. $\frac{3}{2}$

D.
$$\frac{2}{3}$$

Từ giả thiết:
$$\int_{0}^{1} x \cdot f(x) dx = \frac{1}{5} \Rightarrow \int_{0}^{1} 5x \cdot f(x) dx = 1.$$

Tính:
$$I = \int_{0}^{1} 5x \cdot f(x) dx$$
.

$$\text{Đặt: } \begin{cases} u = f(x) \\ dv = 5x dx \end{cases} \Rightarrow \begin{cases} du = f'(x) dx \\ v = \frac{5}{2}x^2 \end{cases}.$$

Ta có:
$$I = \int_{0}^{1} 5x.f(x) dx = \frac{5}{2}x^{2}.f(x)\Big|_{0}^{1} - \frac{5}{2}\int_{0}^{1} x^{2}.f'(x) dx$$

$$= \frac{5}{2} \cdot f(1) - \frac{5}{2} \int_{0}^{1} x^{2} \cdot f'(x) dx = 10 - \frac{5}{2} \int_{0}^{1} x^{2} \cdot f'(x) dx, \text{ (vi } f(1) = 4)$$

NGUYĒN BẢO VƯƠNG - 0946798489

Mà:
$$I = \int_{0}^{1} 5x \cdot f(x) dx = 1 \Rightarrow 1 = 10 - \frac{5}{2} \int_{0}^{1} x^{2} \cdot f'(x) dx \Leftrightarrow \int_{0}^{1} x^{2} \cdot f'(x) dx = \frac{18}{5}$$

$$\Leftrightarrow 10 \int_{0}^{1} x^{2} \cdot f'(x) dx = 36 \Leftrightarrow 10 \int_{0}^{1} x^{2} \cdot f'(x) dx = \int_{0}^{1} \left[f'(x) \right]^{2} dx, \text{ (theo giả thiết: } \int_{0}^{1} \left[f'(x) \right]^{2} dx = 36)$$

$$\Leftrightarrow \int_{0}^{1} \left[10x^{2} \cdot f'(x) - \left[f'(x) \right]^{2} \right] dx = 0 \Leftrightarrow \int_{0}^{1} f'(x) \left[10x^{2} - f'(x) \right] dx = 0$$

$$\Rightarrow 10x^{2} - f'(x) = 0 \Leftrightarrow f'(x) = 10x^{2} \Rightarrow f(x) = \frac{10x^{3}}{3} + C$$

$$V \circ i f(1) = 4 \Rightarrow 4 = \frac{10 \cdot 1}{3} + C \Rightarrow C = \frac{2}{3}.$$

$$Khi d\circ : f(x) = \frac{10x^{3}}{3} + \frac{2}{3}.$$

$$V \circ i f(x) dx = \int_{0}^{1} \left(\frac{10x^{3}}{3} + \frac{2}{3} \right) dx = \left(\frac{5x^{4}}{6} + \frac{2}{3}x \right) \Big|_{0}^{1} = \frac{3}{2}.$$

(Chuyên Vĩnh Phúc Năm 2019) Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;2] thỏa Câu 59.

mãn
$$f(2) = 3$$
, $\int_{0}^{2} [f'(x)]^{2} dx = 4$ và $\int_{0}^{2} x^{2} f(x) dx = \frac{1}{3}$. Tích phân $\int_{0}^{2} f(x) dx$ bằng

A.
$$\frac{2}{115}$$

B.
$$\frac{297}{115}$$

B.
$$\frac{297}{115}$$
 \underline{C} , $\frac{562}{115}$

D.
$$\frac{266}{115}$$

Từ giả thiết:
$$\int_{0}^{2} x^{2} f(x) dx = \frac{1}{3} \Rightarrow \int_{0}^{2} 3x^{2} f(x) dx = 1.$$

Tính:
$$I = \int_{0}^{2} 3x^2 f(x) dx.$$

Đặt:
$$\begin{cases} u = f(x) \\ dv = 3x^2 dx \end{cases} \Rightarrow \begin{cases} du = f'(x) dx \\ v = x^3 \end{cases}$$

Ta có:
$$I = \int_{0}^{2} 3x^{2} f(x) dx = x^{3} \cdot f(x) \Big|_{0}^{2} - \int_{0}^{2} x^{3} \cdot f'(x) dx = 24 - \int_{0}^{2} x^{3} \cdot f'(x) dx$$
, (vì $f(2) = 3$)

Mà:
$$I = \int_{1}^{2} 3x^{2} f(x) dx = 1 \Rightarrow 1 = 24 - \int_{1}^{2} x^{3} \cdot f'(x) dx$$

$$\Leftrightarrow \int_{0}^{2} x^{3} \cdot f'(x) dx = 23 \Leftrightarrow \frac{4}{23} \int_{0}^{2} x^{3} \cdot f'(x) dx = 4$$

$$\Leftrightarrow \frac{4}{23} \int_{0}^{2} x^{3} \cdot f'(x) dx = \int_{0}^{2} \left[f'(x) \right]^{2} dx, \text{ (theo giả thiết: } \int_{0}^{1} \left[f'(x) \right]^{2} dx = 4)$$

$$\Leftrightarrow \int_{0}^{2} \left[\frac{4}{23} x^{3} \cdot f'(x) - \left[f'(x) \right]^{2} \right] dx = 0 \Leftrightarrow \int_{0}^{2} f'(x) \left[\frac{4}{23} x^{3} - f'(x) \right] dx = 0$$

$$\Rightarrow \frac{4}{23}x^3 - f'(x) = 0 \Leftrightarrow f'(x) = \frac{4}{23}x^3 \Rightarrow f(x) = \frac{1}{23}x^4 + C$$

Với
$$f(2) = 3 \Rightarrow 3 = \frac{16}{23} + C \Rightarrow C = \frac{53}{23}$$

Khi đó:
$$f(x) = \frac{1}{23}x^4 + \frac{53}{23}$$
.

Vậy
$$\int_{0}^{2} f(x) dx = \int_{0}^{2} \left(\frac{1}{23} x^4 + \frac{53}{23} \right) dx = \left(\frac{1}{115} x^5 + \frac{53}{23} x \right) \Big|_{0}^{2} = \frac{562}{115}.$$

(Chuyên Vĩnh Phúc 2019) Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn Câu 60.

$$f(1) = 4$$
, $\int_{0}^{1} [f'(x)]^{2} dx = 5$ và $\int_{0}^{1} x \cdot f(x) dx = -\frac{1}{2}$. Tích phân $\int_{0}^{1} f(x) dx$ bằng

A.
$$\frac{15}{19}$$

B.
$$\frac{17}{4}$$

B.
$$\frac{17}{4}$$
 C. $\frac{17}{18}$

D.
$$\frac{15}{4}$$

Tính:
$$I = \int_{0}^{1} x \cdot f(x) dx$$
. Đặt:
$$\begin{cases} u = f(x) \\ dv = x dx \end{cases} \Rightarrow \begin{cases} du = f'(x) dx \\ v = \frac{1}{2}x^{2} \end{cases}$$

Ta có:
$$I = \frac{1}{2}x^2 \cdot f(x) \Big|_0^1 - \frac{1}{2} \int_0^1 x^2 f'(x) dx = 2 - \frac{1}{2} \int_0^1 x^2 f'(x) dx$$
, (vì $f(1) = 4$).

Mà:
$$\int_{0}^{1} x \cdot f(x) dx = -\frac{1}{2} \implies -\frac{1}{2} = 2 - \frac{1}{2} \int_{0}^{1} x^{2} f'(x) dx$$

$$\Leftrightarrow \int_{0}^{1} x^{2} f'(x) dx = 5, \text{ (theo giả thiết: } \int_{0}^{1} \left[f'(x) \right]^{2} dx = 5) \Leftrightarrow \int_{0}^{1} x^{2} f'(x) dx = \int_{0}^{1} \left[f'(x) \right]^{2} dx$$

$$\Leftrightarrow \int_{0}^{1} \left(x^{2} f'(x) - \left[f'(x) \right]^{2} \right) dx = 0 \Leftrightarrow \int_{0}^{1} f'(x) \cdot \left[x^{2} - f'(x) \right] dx = 0$$

$$\Rightarrow x^2 - f'(x) = 0 \Leftrightarrow f'(x) = x^2 \Rightarrow f(x) = \frac{1}{3}x^3 + C.$$

Với
$$f(1)=4 \implies C=\frac{11}{3}$$
.

Khi đó:
$$f(x) = \frac{1}{3}x^3 + \frac{11}{3}$$
.

Vậy
$$\int_{0}^{1} f(x) dx = \int_{0}^{1} \left(\frac{1}{3} x^{3} + \frac{11}{3} \right) dx = \left(\frac{1}{12} x^{4} + \frac{11}{3} x \right) \Big|_{0}^{1} = \frac{15}{4}.$$

(Chuyên Vĩnh Phúc 2019) Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;2] thỏa mãn

$$f(2) = 6$$
, $\int_{0}^{2} [f'(x)]^{2} dx = 7$ và $\int_{0}^{2} x \cdot f(x) dx = \frac{17}{2}$. Tích phân $\int_{0}^{2} f(x) dx$ bằng

Tính:
$$I = \int_{0}^{2} x \cdot f(x) dx$$
.

$$\text{Đặt: } \begin{cases} u = f(x) \\ dv = x dx \end{cases} \Rightarrow \begin{cases} du = f'(x) dx \\ v = \frac{1}{2}x^2 \end{cases}$$

NGUYĒN BẢO VƯƠNG - 0946798489

Ta có:
$$I = \frac{1}{2}x^2 \cdot f(x)\Big|_0^2 - \frac{1}{2}\int_{2}^{2}x^2 f'(x) dx = 12 - \frac{1}{2}\int_{2}^{2}x^2 f'(x) dx$$
, (vì $f(2) = 6$).

Theo giả thiết:
$$\int_{0}^{2} x \cdot f(x) dx = \frac{17}{2} \Rightarrow \frac{17}{2} = 12 - \frac{1}{2} \int_{0}^{2} x^{2} f'(x) dx$$

$$\Leftrightarrow \int_{0}^{2} x^{2} f'(x) dx = 7$$

$$\Leftrightarrow \int_{0}^{2} x^{2} f'(x) dx = \int_{0}^{2} \left[f'(x) \right]^{2} dx$$

$$\Leftrightarrow \int_{0}^{2} \left(x^{2} f'(x) - \left[f'(x) \right]^{2} \right) dx = 0$$

$$\Leftrightarrow \int_{0}^{2} f'(x) \cdot \left[x^{2} - f'(x)\right] dx = 0$$

$$\Rightarrow x^2 - f'(x) = 0 \Leftrightarrow f'(x) = x^2 \Rightarrow f(x) = \frac{1}{3}x^3 + C.$$

Với
$$f(2)=6 \implies C=\frac{10}{3}$$
.

Khi đó:
$$f(x) = \frac{1}{3}x^3 + \frac{10}{3}$$
.

Vậy
$$\int_{0}^{2} f(x) dx = \int_{0}^{2} \left(\frac{1}{3} x^{3} + \frac{10}{3} \right) dx = \left(\frac{1}{12} x^{4} + \frac{10}{3} x \right) \Big|_{0}^{2} = 8.$$

Câu 62. (Chuyên Vĩnh Phúc 2019) Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;3] thỏa mãn

$$f(3) = 6$$
, $\int_{0}^{3} \left[f'(x) \right]^{2} dx = 2$ và $\int_{0}^{3} x^{2} \cdot f(x) dx = \frac{154}{3}$. Tích phân $\int_{0}^{3} f(x) dx$ bằng

A.
$$\frac{53}{5}$$

B.
$$\frac{117}{20}$$

C.
$$\frac{153}{5}$$

D.
$$\frac{13}{5}$$

Tính
$$I = \int_{0}^{3} x^{2} \cdot f(x) dx$$
.

$$\text{Đặt } \begin{cases} u = f(x) \\ dv = x^2 dx \end{cases} \Rightarrow \begin{cases} du = f'(x) dx \\ v = \frac{1}{3}x^3 \end{cases}.$$

Ta có
$$I = \frac{1}{3}x^3 \cdot f(x)\Big|_0^3 - \frac{1}{3}\int_0^3 x^3 f'(x) dx = 54 - \frac{1}{3}\int_0^3 x^3 f'(x) dx$$
, (vì $f(3) = 6$).

Theo giả thiết:
$$\int_{0}^{3} x^{2} \cdot f(x) dx = \frac{154}{3} \Rightarrow \frac{154}{3} = 54 - \frac{1}{3} \int_{0}^{3} x^{3} f'(x) dx$$

$$\Leftrightarrow \int_{0}^{3} x^{3} f'(x) dx = 8 \Leftrightarrow \int_{0}^{3} x^{3} f'(x) dx = 4 \int_{0}^{3} \left[f'(x) \right]^{2} dx \Leftrightarrow \int_{0}^{3} \left(x^{3} f'(x) - 4 \left[f'(x) \right]^{2} \right) dx = 0$$

$$\Leftrightarrow \int_{0}^{3} f'(x) \Big[x^{3} - 4f'(x) \Big] dx = 0.$$

$$\Rightarrow x^{3} - 4f'(x) = 0 \Leftrightarrow f'(x) = \frac{x^{3}}{4} \Rightarrow f(x) = \frac{x^{4}}{16} + C.$$

$$V \circ i \quad f(3) = 6 \Rightarrow C = \frac{15}{16}.$$

$$Khi \, d\circ : \quad f(x) = \frac{x^{4}}{16} + \frac{15}{16}.$$

$$V \circ y \int_{0}^{3} f(x) \, dx = \int_{0}^{3} \left(\frac{1}{16}x^{4} + \frac{15}{16}\right) dx = \left(\frac{1}{80}x^{5} + \frac{15}{16}x\right) \Big|_{0}^{3} = \frac{117}{20}.$$

Câu 63. (Chuyên Vĩnh Phúc Năm 2019) Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa

mãn
$$f(1) = 2$$
, $\int_{0}^{1} [f'(x)]^{2} dx = 8$ và $\int_{0}^{1} x^{3} \cdot f(x) dx = 10$. Tích phân $\int_{0}^{1} f(x) dx$ bằng

A.
$$-\frac{2}{285}$$

B.
$$\frac{194}{95}$$

$$\underline{\mathbf{C}} \cdot \frac{116}{57}$$

D.
$$\frac{584}{285}$$

Lời giải

Tính:
$$I = \int_0^1 x^3 \cdot f(x) dx.$$

$$\text{Đặt: } \begin{cases} u = f(x) \\ dv = x^3 dx \end{cases} \Rightarrow \begin{cases} du = f'(x) dx \\ v = \frac{1}{4}x^4 \end{cases}.$$

Ta có:
$$I = \frac{1}{4}x^4 \cdot f(x)\Big|_0^1 - \frac{1}{4}\int_0^1 x^4 f'(x) dx = \frac{1}{2} - \frac{1}{4}\int_0^1 x^4 f'(x) dx$$
, (vì $f(1) = 2$).

Theo giả thiết:
$$\int_{0}^{1} x^{3} \cdot f(x) dx = 10 \Rightarrow \int_{0}^{1} x^{4} f'(x) dx = -38$$

$$\Leftrightarrow 8.\int_{0}^{1} x^{4} f'(x) dx = -38.8 \Leftrightarrow 8.\int_{0}^{1} x^{4} f'(x) dx = -38.\int_{0}^{1} \left[f'(x) \right]^{2} dx$$

$$\Leftrightarrow \int_{0}^{1} \left(8x^{4}f'(x) + 38\left[f'(x)\right]^{2}\right) dx = 0 \Leftrightarrow \int_{0}^{1} f'(x) \cdot \left[8x^{4} + 38f'(x)\right] dx = 0$$

$$\Rightarrow 8x^4 + 38f'(x) = 0 \iff f'(x) = -\frac{4}{19}x^4 \implies f(x) = -\frac{4}{95}x^5 + C.$$

Với
$$f(1) = 2 \implies C = \frac{194}{95}$$
.

Khi đó:
$$f(x) = -\frac{4}{95}x^5 + \frac{194}{95}$$

Vậy
$$\int_{0}^{1} f(x) dx = \int_{0}^{1} \left(-\frac{4}{95} x^{5} + \frac{194}{95} \right) dx = \left(-\frac{2}{285} x^{6} + \frac{194}{95} x \right) \Big|_{0}^{1} = \frac{116}{57}.$$

Câu 64. (**Bắc Giang - 2018**) Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(1)=0 và

$$\int_{0}^{1} \left[f'(x) \right]^{2} dx = \int_{0}^{1} (x+1)e^{x} f(x) dx = \frac{e^{2}-1}{4}.$$
 Tính tích phân $I = \int_{0}^{1} f(x) dx$.

A.
$$I = 2 - e$$
.

$$\mathbf{B}. \ I = \mathbf{e} - 2.$$

C.
$$I = \frac{e}{2}$$
.

D.
$$I = \frac{e-1}{2}$$
.

NGUYĒN BAO VƯƠNG - 0946798489

$$X\acute{e}t A = \int_{0}^{1} (x+1)e^{x} f(x) dx$$

$$\text{D} \check{\text{a}} t \begin{cases} u = f(x) \\ \mathrm{d} v = (x+1)e^{x} \mathrm{d} x \end{cases} \Rightarrow \begin{cases} \mathrm{d} u = f'(x) \mathrm{d} x \\ v = x e^{x} \end{cases}$$

Suy ra
$$A = xe^x f(x)\Big|_0^1 - \int_0^1 xe^x f'(x) dx = -\int_0^1 xe^x f'(x) dx \Rightarrow \int_0^1 xe^x f'(x) dx = \frac{1 - e^2}{4}$$

Xét
$$\int_{0}^{1} x^{2} e^{2x} dx = e^{2x} \left(\frac{1}{2} x^{2} - \frac{1}{2} x + \frac{1}{4} \right) \Big|_{0}^{1} = \frac{e^{2} - 1}{4}$$

Ta có:
$$\int_{0}^{1} \left[f'(x) \right]^{2} dx + 2 \int_{0}^{1} x e^{x} f'(x) dx + \int_{0}^{1} x^{2} e^{2x} dx = 0 \Leftrightarrow \int_{0}^{1} \left(f'(x) + x e^{x} \right)^{2} dx = 0$$

Suy ra
$$f'(x) + xe^x = 0, \forall x \in [0;1] (do (f'(x) + xe^x)^2 \ge 0, \forall x \in [0;1])$$

$$\Rightarrow f'(x) = -xe^x \Rightarrow f(x) = (1-x)e^x + C$$

Do
$$f(1) = 0$$
 nên $f(x) = (1-x)e^x$

Vậy
$$I = \int_{0}^{1} f(x) dx = \int_{0}^{1} (1-x)e^{x} dx = (2-x)e^{x}\Big|_{0}^{1} = e-2$$
.

(Nam Định - 2018) Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn $\left[0; \frac{\pi}{4}\right]$ và $f\left(\frac{\pi}{4}\right) = 0$. Câu 65.

Biết
$$\int_{0}^{\frac{\pi}{4}} f^{2}(x) dx = \frac{\pi}{8}$$
, $\int_{0}^{\frac{\pi}{4}} f'(x) \sin 2x dx = -\frac{\pi}{4}$. Tính tích phân $I = \int_{0}^{\frac{\pi}{8}} f(2x) dx$

A.
$$I = 1$$
.

B.
$$I = \frac{1}{2}$$
. **C.** $I = 2$.

C.
$$I = 2$$

D.
$$I = \frac{1}{4}$$
.

Tính
$$\int_{0}^{\frac{\pi}{4}} f'(x) \sin 2x dx = -\frac{\pi}{4} \cdot \text{Đặt} \begin{cases} \sin 2x = u \\ f'(x) dx = dv \end{cases} \Rightarrow \begin{cases} 2\cos 2x dx = du \\ f(x) = v \end{cases}, \text{ khi đó}$$

$$\int_{0}^{\frac{\pi}{4}} f'(x) \sin 2x dx = \sin 2x \cdot f(x) \Big|_{0}^{\frac{\pi}{4}} - 2 \int_{0}^{\frac{\pi}{4}} f(x) \cos 2x dx = \sin \frac{\pi}{2} \cdot f(\frac{\pi}{4}) - \sin 0 \cdot f(0) - 2 \int_{0}^{\frac{\pi}{4}} f(x) \cos 2x dx$$

$$= -2 \int_{0}^{\frac{\pi}{4}} f(x) \cos 2x dx.$$

Theo đề bài ta có
$$\int_{0}^{\frac{\pi}{4}} f'(x) \sin 2x dx = -\frac{\pi}{4} \Rightarrow \int_{0}^{\frac{\pi}{4}} f(x) \cos 2x dx = \frac{\pi}{8}.$$

Mặt khác ta lại có
$$\int_{0}^{\frac{\pi}{4}} \cos^2 2x dx = \frac{\pi}{8}.$$

Do
$$\int_{0}^{\frac{\pi}{4}} \left[f(x) - \cos 2x \right]^{2} dx = \int_{0}^{\frac{\pi}{4}} \left[f^{2}(x) - 2f(x) \cdot \cos 2x + \cos^{2} 2x \right] dx = \left(\frac{\pi}{8} - 2\frac{\pi}{8} + \frac{\pi}{8} \right) = 0 \text{ nên}$$

$$f(x) = \cos 2x.$$

Ta có
$$I = \int_{0}^{\frac{\pi}{8}} \cos 4x dx = \frac{1}{4} \sin 4x \Big|_{0}^{\frac{\pi}{8}} = \frac{1}{4}.$$

Câu 66. (Chuyên Vinh - 2018). Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [0;1] và f(0) + f(1) = 0. Biết $\int_{0}^{1} f^{2}(x) dx = \frac{1}{2}$, $\int_{0}^{1} f'(x) \cos(\pi x) dx = \frac{\pi}{2}$. Tính $\int_{0}^{1} f(x) dx$.

B.
$$\frac{1}{\pi}$$

$$\underline{\mathbf{C}} \cdot \frac{2}{\pi}$$

D.
$$\frac{3\pi}{2}$$

Lời giải

Đặt
$$\begin{cases} u = \cos(\pi x) \\ dv = f'(x) dx \end{cases} \Leftrightarrow \begin{cases} du = -\pi \sin(\pi x) dx \\ v = f(x) \end{cases}$$
. Khi đó:

$$\int_{0}^{1} f'(x) \cos(\pi x) dx = \cos(\pi x) f(x) \Big|_{0}^{1} + \pi \int_{0}^{1} f(x) \sin(\pi x) dx$$

$$= -(f(1) + f(0)) + \pi \int_{0}^{1} f(x) \sin(\pi x) dx = \pi \int_{0}^{1} f(x) \sin(\pi x) dx \Rightarrow \int_{0}^{1} f(x) \sin(\pi x) dx = \frac{1}{2}.$$

Cách 1: Ta có
$$\int_{0}^{1} \left[f(x) - k \sin(\pi x) \right]^{2} dx = \int_{0}^{1} f^{2}(x) dx - 2k \int_{0}^{1} f(x) \sin(\pi x) dx + k^{2} \int_{0}^{1} \sin^{2}(\pi x) dx$$

$$=\frac{1}{2}-k+\frac{k^2}{2}=0 \Leftrightarrow k=1.$$

Do đó
$$\int_{0}^{1} \left[f(x) - \sin(\pi x) \right]^{2} dx = 0 \Rightarrow f(x) = \sin(\pi x). \text{ Vậy } \int_{0}^{1} f(x) dx = \int_{0}^{1} \sin(\pi x) dx = \frac{2}{\pi}.$$

Cách 2: Sử dụng BĐT Holder.

$$\left[\int_{a}^{b} f(x)g(x)dx\right]^{2} \leq \int_{a}^{b} f^{2}(x)dx \cdot \int_{a}^{b} g^{2}(x)dx\right].$$

Dấu "=" xảy ra
$$\Leftrightarrow f(x) = kg(x), \forall x \in [a;b]$$
.

Áp dụng vào bài ta có
$$\frac{1}{4} = \left[\int_{0}^{1} f(x) \sin(\pi x) dx \right]^{2} \le \int_{0}^{1} f^{2}(x) dx \cdot \int_{0}^{1} \sin^{2}(\pi x) dx = \frac{1}{4}$$

NGUYĒN BĀO VƯƠNG - 0946798489

suy ra
$$f(x) = k \sin(\pi x)$$
.

$$\operatorname{M\grave{a}} \int_{0}^{1} f(x) \sin(\pi x) \, \mathrm{d}x = \frac{1}{2} \Leftrightarrow k \int_{0}^{1} \sin^{2}(\pi x) \, \mathrm{d}x = \frac{1}{2} \Leftrightarrow k = 1 \Rightarrow f(x) = \sin(\pi x).$$

Vậy
$$\int_{0}^{1} f(x) dx = \int_{0}^{1} \sin(\pi x) dx = \frac{2}{\pi}.$$

(THPT Trần Phú - Đà Nẵng - 2018) Cho hàm số y = f(x) có đạo hàm và liên tục trên $0; \frac{\pi}{4}$ Câu 67.

thỏa mãn $f\left(\frac{\pi}{4}\right) = 3$, $\int_{-\cos x}^{\frac{\pi}{4}} \frac{f(x)}{\cos x} dx = 1$ và $\int_{-\cos x}^{\frac{\pi}{4}} \left[\sin x \cdot \tan x \cdot f(x)\right] dx = 2$. Tích phân $\int_{-\cos x}^{\frac{\pi}{4}} \sin x \cdot f'(x) dx$ bằng:

B.
$$\frac{2+3\sqrt{2}}{2}$$
. **C.** $\frac{1+3\sqrt{2}}{2}$.

C.
$$\frac{1+3\sqrt{2}}{2}$$
.

Ta có:
$$I = \int_{0}^{\frac{\pi}{4}} \sin x \cdot f'(x) dx$$
. Đặt
$$\begin{cases} u = \sin x \\ dv = f'(x) dx \end{cases} \Rightarrow \begin{cases} du = \cos x dx \\ v = f(x) \end{cases}$$
.

$$I = \sin x. f(x)\Big|_0^{\frac{\pi}{4}} - \int_0^{\frac{\pi}{4}} \cos x. f(x) dx = \frac{3\sqrt{2}}{2} - I_1.$$

$$2 = \int_{0}^{\frac{\pi}{4}} \left[\sin x \cdot \tan x \cdot f(x) \right] dx = \int_{0}^{\frac{\pi}{4}} \left[\sin^{2} x \cdot \frac{f(x)}{\cos x} \right] dx = \int_{0}^{\frac{\pi}{4}} \left[(1 - \cos^{2} x) \cdot \frac{f(x)}{\cos x} \right] dx.$$

$$= \int_{0}^{\frac{\pi}{4}} \left[\frac{f(x)}{\cos x} \right] dx - \int_{0}^{\frac{\pi}{4}} \cos x \cdot f(x) dx = 1 - I_{1}.$$

$$\Rightarrow I_1 = -1 \Rightarrow I = \frac{3\sqrt{2}}{2} + 1 = \frac{3\sqrt{2} + 2}{2}.$$

Cho hàm số f(x) có đạo hàm f'(x) liên tục trên đoạn [0;1] thỏa f(1) = 0, $\int_{1}^{1} (f'(x))^2 dx = \frac{\pi^2}{8}$

và
$$\int_{0}^{1} \cos\left(\frac{\pi}{2}x\right) f(x) dx = \frac{1}{2}$$
. Tính $\int_{0}^{1} f(x) dx$.

$$\mathbf{A.} \frac{\pi}{2}$$
.

C.
$$\frac{1}{\pi}$$
.

$$\underline{\mathbf{D}} \cdot \frac{2}{\pi}$$
.

Do đó
$$\int_{0}^{1} \cos\left(\frac{\pi}{2}x\right) f(x) dx = \frac{1}{2}$$

$$\Leftrightarrow \frac{2}{\pi} \sin \frac{\pi x}{2} f(x) \Big|_{0}^{1} - \frac{2}{\pi} \int_{0}^{1} \sin \left(\frac{\pi}{2}x\right) f'(x) dx = \frac{1}{2} \Leftrightarrow \int_{0}^{1} \sin \left(\frac{\pi}{2}x\right) f'(x) dx = -\frac{\pi}{4}.$$
Lại có:
$$\int_{0}^{1} \sin^{2} \left(\frac{\pi}{2}x\right) dx = \frac{1}{2}$$

$$\Rightarrow I = \int_{0}^{1} \left(-\frac{2}{\pi} f'(x)\right)^{2} dx - 2\left(-\frac{2}{\pi}\right) \int_{0}^{1} \sin \left(\frac{\pi}{2}x\right) f'(x) dx + \int_{0}^{1} \sin^{2} \left(\frac{\pi}{2}x\right) dx$$

$$= \int_{0}^{1} \left(-\frac{2}{\pi} f'(x) - \sin \left(\frac{\pi}{2}x\right)\right)^{2} dx = \frac{4}{\pi^{2}} \frac{\pi^{2}}{8} - \frac{2}{\pi} \cdot \frac{\pi}{2} + \frac{1}{2} = 0$$

$$\text{Vì} \left(-\frac{2}{\pi} f'(x) - \sin \left(\frac{\pi}{2}x\right)\right)^{2} \ge 0 \text{ trên đoạn [0;1] nên}$$

$$\int_{0}^{1} \left(-\frac{2}{\pi} f'(x) - \sin \left(\frac{\pi}{2}x\right)\right)^{2} dx = 0 \Leftrightarrow -\frac{2}{\pi} f'(x) = \sin \left(\frac{\pi}{2}x\right) \Leftrightarrow f'(x) = -\frac{\pi}{2} \sin \left(\frac{\pi}{2}x\right).$$
Suy ra $f(x) = \cos \left(\frac{\pi}{2}x\right) + C$ mà $f(1) = 0$ do đó $f(x) = \cos \left(\frac{\pi}{2}x\right).$

$$\text{Vây } \int_{0}^{1} f(x) dx = \int_{0}^{1} \cos \left(\frac{\pi}{2}x\right) dx = \frac{2}{\pi}.$$

Câu 69. (Chuyên Trần Phú - Hải Phòng - 2018) Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1]

thỏa mãn f(1) = 1, $\int_0^1 \left[f'(x) \right]^2 dx = 9$ và $\int_0^1 x^3 f(x) dx = \frac{1}{2}$. Tích phân $\int_0^1 f(x) dx$ bằng:

A.
$$\frac{2}{3}$$

$$\underline{\mathbf{B}} \cdot \frac{5}{2}$$
.

C.
$$\frac{7}{4}$$
.

D.
$$\frac{6}{5}$$
.

Ta có:
$$\int_{0}^{1} \left[f'(x) \right]^{2} dx = 9 \quad (1)$$

$$- \text{Tính } \int_{0}^{1} x^{3} f(x) dx = \frac{1}{2}.$$

$$\text{Đặt } \begin{cases} u = f(x) \\ dv = x^{3}.dx \end{cases} \Rightarrow \begin{cases} du = f'(x) dx \\ v = \frac{x^{4}}{4} \end{cases}$$

$$\Rightarrow \frac{1}{2} = \int_{0}^{1} x^{3} f(x) dx = \left(\frac{x^{4}}{4}.f(x) \right) \Big|_{0}^{1} - \frac{1}{4} \int_{0}^{1} x^{4}.f'(x) dx = \frac{1}{4} - \frac{1}{4} \int_{0}^{1} x^{4}.f'(x) dx$$

$$\Rightarrow \int_{0}^{1} x^{4}.f'(x) dx = -1 \Rightarrow 18 \int_{0}^{1} x^{4}.f'(x) dx = -18 \quad (2)$$

$$- \text{Lại có: } \int_{0}^{1} x^{8} dx = \frac{x^{9}}{9} \Big|_{0}^{1} = \frac{1}{9} \Rightarrow 81 \int_{0}^{1} x^{8} dx = 9 \quad (3)$$

$$- \text{Cộng vế với vế các đẳng thức (1), (2) và (3) ta được:}$$

$$\int_{0}^{1} \left[\left[f'(x) \right]^{2} + 18x^{4}.f'(x) + 81x^{8} \right] dx = 0 \Leftrightarrow \int_{0}^{1} \left[f'(x) + 9x^{4} \right] dx = 0$$

NGUYĒN BẢO VƯƠNG - 0946798489

$$\Leftrightarrow \pi \cdot \int_{0}^{1} \left[f'(x) + 9x^{4} \right] dx = 0$$

Hay thể tích khối tròn xoay sinh bởi hình phẳng giới hạn bởi đồ thị hàm số $y = f'(x) + 9x^4$, trục hoành Ox, các đường thẳng x = 0, x = 1 khi quay quanh Ox bằng 0

$$\Rightarrow f'(x) + 9x^4 = 0 \Rightarrow f'(x) = -9x^4 \Rightarrow f(x) = \int f'(x) dx = -\frac{9}{5}x^4 + C.$$

Lại do
$$f(1) = 1 \Rightarrow C = \frac{14}{5} \Rightarrow f(x) = -\frac{9}{5}x^5 + \frac{14}{5}$$

$$\Rightarrow \int_{0}^{1} f(x) dx = \int_{0}^{1} \left(-\frac{9}{5} x^{5} + \frac{14}{5} \right) dx = \left(-\frac{3}{10} x^{6} + \frac{14}{5} x \right) \Big|_{0}^{1} = \frac{5}{2}.$$

(THPT Phan Chu Trinh - Đắc Lắc - 2018) Cho hàm số f(x) có đạo hàm liên tục trên đoạn Câu 70.

[0;1] thỏa mãn
$$\int_{0}^{1} \left[f'(x) \right]^{2} dx = \int_{0}^{1} (x+1) e^{x} f(x) dx = \frac{e^{2}-1}{4}$$
 và $f(1) = 0$. Tính $\int_{0}^{1} f(x) dx$

A.
$$\frac{e-1}{2}$$
.

B.
$$\frac{e^2}{4}$$
.

B.
$$\frac{e^2}{4}$$
. $\underline{\mathbf{C}}$. $\mathbf{e} - 2$.

D.
$$\frac{e}{2}$$

- Tính:
$$I = \int_{0}^{1} (x+1)e^{x} f(x) dx = \int_{0}^{1} xe^{x} f(x) dx + \int_{0}^{1} e^{x} f(x) dx = J + K$$
.

Tính
$$K = \int_{0}^{1} e^{x} f(x) dx$$

$$\Rightarrow K = \left(xe^{x}f(x)\right)\Big|_{0}^{1} - \int_{0}^{1} \left[xe^{x}f(x) + xe^{x}f'(x)\right] dx = -\int_{0}^{1} xe^{x}f(x) dx - \int_{0}^{1} xe^{x}f'(x) dx \quad \left(do f(1) = 0\right)$$

$$\Rightarrow K = -J - \int_{0}^{1} x e^{x} f'(x) dx \Rightarrow I = J + K = -\int_{0}^{1} x e^{x} f'(x) dx.$$

- Kết hợp giả thiết ta được:

$$\begin{cases} \int_{0}^{1} \left[f'(x) \right]^{2} dx = \frac{e^{2} - 1}{4} \\ -\int_{0}^{1} x e^{x} f'(x) dx = \frac{e^{2} - 1}{4} \end{cases} \Rightarrow \begin{cases} \int_{0}^{1} \left[f'(x) \right]^{2} dx = \frac{e^{2} - 1}{4} \end{cases} (1)$$

- Mặt khác, ta tính được :
$$\int_{0}^{1} x^{2} e^{2x} dx = \frac{e^{2} - 1}{4}$$
 (3).

- Cộng vế với vế các đẳng thức (1), (2), (3) ta được:

$$\int_{0}^{1} \left(\left[f'(x) \right]^{2} + 2xe^{x} f'(x) + x^{2}e^{2x} \right) dx = 0 \iff \int_{0}^{1} \left(f'(x) + xe^{x} \right)^{2} dx = 0 \iff \pi \int_{0}^{1} \left(f'(x) + xe^{x} \right)^{2} dx = 0$$

hay thể tích hình phẳng giới hạn bởi đồ thị hàm số $y = f'(x) + xe^x$, trục Ox, các đường thẳng x = 0, x = 1 khi quay quanh trục Ox bằng 0

$$\Rightarrow f'(x) + xe^x = 0 \Leftrightarrow f'(x) = -xe^x$$

$$\Rightarrow f(x) = -\int x e^x dx = (1-x)e^x + C.$$
- Lai do $f(1) = 0 \Rightarrow C = 0 \Rightarrow f(x) = (1-x)e^x$

$$\Rightarrow \int_{0}^{1} f(x) dx = \int_{0}^{1} (1 - x) e^{x} dx = ((1 - x) e^{x}) \Big|_{0}^{1} + \int_{0}^{1} e^{x} dx = -1 + e^{x} \Big|_{0}^{1} = e - 2$$

Câu 71. (Sở Phú Thọ - 2018) Cho hàm số f(x) có đạo hàm liên tục trên đoạn [1,2] thỏa mãn $\int_{1}^{2} (x-1)^{2} f(x) dx = -\frac{1}{3}, \ f(2) = 0 \text{ và } \int_{1}^{2} \left[f'(x) \right]^{2} dx = 7. \text{ Tính tích phân } I = \int_{1}^{2} f(x) dx.$

A.
$$I = \frac{7}{5}$$
.

B.
$$I = -\frac{7}{5}$$
.

B.
$$I = -\frac{7}{5}$$
. **C.** $I = -\frac{7}{20}$. **D.** $I = \frac{7}{20}$.

D.
$$I = \frac{7}{20}$$
.

Đặt
$$u = f(x) \Rightarrow du = f'(x) dx$$
, $dv = (x-1)^2 dx \Rightarrow v = \frac{(x-1)^3}{3}$

Ta có
$$-\frac{1}{3} = \int_{1}^{2} (x-1)^{2} f(x) dx = \frac{(x-1)^{3}}{3} \cdot f(x) \Big|_{1}^{2} - \int_{1}^{2} \frac{(x-1)^{3}}{3} f'(x) dx$$

$$\Leftrightarrow -\frac{1}{3} = -\frac{1}{3} \int_{1}^{2} (x-1)^{3} f'(x) dx \Leftrightarrow \int_{1}^{2} (x-1)^{3} f'(x) dx = 1 \Rightarrow -\int_{1}^{2} 2.7(x-1)^{3} f'(x) dx = -14$$

Tính được
$$\int_{1}^{2} 49(x-1)^{6} dx = 7 \implies \int_{1}^{2} \left[f'(x) \right]^{2} dx - \int_{1}^{2} 2.7(x-1)^{3} f'(x) dx + \int_{1}^{2} 49(x-1)^{6} dx = 0$$

$$\Rightarrow \int_{1}^{2} \left[7(x-1)^{3} - f'(x) \right]^{2} dx = 0 \Rightarrow f'(x) = 7(x-1)^{3} \Rightarrow f(x) = \frac{7(x-1)^{4}}{4} + C.$$

Do
$$f(2) = 0 \Rightarrow f(x) = \frac{7(x-1)^4}{4} - \frac{7}{4}$$
.

Vậy
$$I = \int_{1}^{2} f(x) dx = \int_{1}^{2} \left[\frac{7(x-1)^{4}}{4} - \frac{7}{4} \right] dx = -\frac{7}{5}.$$

(THPT Quảng Yên - Quảng Ninh - 2018) Cho hàm số f(x) có đạo hàm liên tục trên đoạn Câu 72. [0;1] thỏa mãn: f(1) = 0, $\int_{0}^{1} [f'(x)]^{2} dx = 7$ và $\int_{0}^{1} x^{2} \cdot f(x) dx = \frac{1}{3}$. Tính tích phân $I = \int_{0}^{1} f(x) dx$.

A.
$$I = 1$$
.

B.
$$I = \frac{7}{5}$$
.

C.
$$I = 4$$

D.
$$I = \frac{7}{4}$$
.

Lời giải

Xét tích phân $\int_{0}^{1} x^{2} \cdot f(x) dx$.

$$\text{Đặt } \begin{cases} u = f(x) \\ dv = x^2 dx \end{cases} \Rightarrow \begin{cases} du = f'(x) dx \\ v = \frac{x^3}{3} \end{cases}$$

$$\frac{1}{3} = \int_{0}^{1} x^{2} \cdot f(x) dx = \frac{x^{3}}{3} f(x) \Big|_{0}^{1} - \frac{1}{3} \int_{0}^{1} x^{3} f'(x) dx = -\frac{1}{3} \int_{0}^{1} x^{3} f'(x) dx \implies \int_{0}^{1} x^{3} f'(x) dx = -1$$

$$\int_{0}^{1} x^{6} dx = \frac{1}{7}.$$
Ta có:
$$\int_{0}^{1} \left[f'(x) \right]^{2} dx + 14 \int_{0}^{1} x^{3} f'(x) dx + 49 \int_{0}^{1} x^{6} dx = 0 \Rightarrow \int_{0}^{1} \left(f'(x) + 7x^{3} \right)^{2} dx = 0$$
Mà
$$\int_{0}^{1} \left(f'(x) + 7x^{3} \right)^{2} dx \ge 0. \quad \text{Dấu "=" xảy ra khi} \quad f'(x) + 7x^{3} = 0 \Rightarrow f'(x) = -7x^{3}$$

$$\Rightarrow f(x) = \int f'(x) dx = -\int 7x^{3} dx = -\frac{7x^{4}}{4} + C.$$

$$f(1) = 0 \Rightarrow C = \frac{7}{4} \Rightarrow f(x) = -\frac{7x^{4}}{4} + \frac{7}{4}.$$

 $I = \int_{0}^{1} f(x) dx = \int_{0}^{1} \left(-\frac{7x^{4}}{4} + \frac{7}{4} \right) dx = -\frac{7x^{5}}{20} \Big|_{0}^{1} + \frac{7x}{4} \Big|_{0}^{1} = -\frac{7}{20} + \frac{7}{4} = \frac{7}{5}.$

Câu 73. (Yên Phong 1 - 2018) Cho hàm số y = f(x) có đạo hàm liên tục trên [0;1] thỏa mãn

$$f(1) = 3$$
, $\int_{0}^{1} \left[f'(x) \right]^{2} dx = \frac{4}{11} \text{ và } \int_{0}^{1} x^{4} f(x) dx = \frac{7}{11}$. Giá trị của $\int_{0}^{1} f(x) dx$ là

A. $\frac{35}{11}$.

B. $\frac{65}{21}$.

 $\underline{\mathbf{C}} \cdot \frac{23}{7}$.

D. $\frac{9}{4}$.

Lời giải

$$X

et \int_{0}^{1} x^{4} f(x) dx = \frac{7}{11}$$

$$Dif \begin{cases} u = f(x) \\ dv = x^{4} dx \end{cases} \Rightarrow \begin{cases} du = f'(x) dx \\ v = \frac{x^{5}}{5} \end{cases}$$

$$\Rightarrow \int_{0}^{1} x^{4} f(x) dx = \frac{1}{5} x^{5} f(x) \Big|_{0}^{1} - \frac{1}{5} \int_{0}^{1} x^{5} f'(x) dx = \frac{3}{5} - \frac{1}{5} \int_{0}^{1} x^{5} f'(x) dx \text{ (vi) } f(1) = 3 \text{)}$$

$$\Rightarrow \int_{0}^{1} x^{5} f'(x) dx = 5 \left(\frac{3}{5} - \frac{7}{11} \right) = -\frac{2}{11}.$$

$$\begin{cases} \int_{0}^{1} \left[f'(x) \right]^{2} dx = \frac{4}{11} \\ \int_{0}^{1} x^{5} f'(x) dx = -\frac{2}{11} \\ \int_{0}^{1} x^{5} f'(x) dx = \frac{1}{11} x^{11} \Big|_{0}^{1} = \frac{1}{11}$$

$$\Rightarrow \int_{0}^{1} \left[f'(x) \right]^{2} dx + 4 \int_{0}^{1} x^{5} f'(x) dx + 4 \int_{0}^{1} x^{10} dx = 0 \Rightarrow \int_{0}^{1} \left[\left(f'(x) + 2x^{5} \right) \right]^{2} dx = 0$$

$$\Rightarrow f'(x) = -2x^{5} \Rightarrow f(x) = \frac{-x^{6}}{3} + C. \text{ Do } f(1) = 3 \Rightarrow C = \frac{10}{3} \text{ nên}$$

$$\int_{0}^{1} f(x) dx = \int_{0}^{1} \left(\frac{-x^{6}}{3} + \frac{10}{3} \right) dx = \frac{23}{7}$$

(THPT Bình Giang - Hải Dương - 2018) Cho hàm số f(x) có đạo hàm liên tục trên [1,2] và

thỏa mãn
$$f(2) = 0$$
, $\int_{1}^{2} (f'(x))^2 dx = \frac{5}{12} + \ln \frac{2}{3}$ và $\int_{1}^{2} \frac{f(x)}{(x+1)^2} dx = -\frac{5}{12} + \ln \frac{3}{2}$. Tính tích phân

$$\int_{1}^{2} f(x) dx.$$

A.
$$\frac{3}{4} + 2 \ln \frac{2}{3}$$
.

B.
$$\ln \frac{3}{2}$$
.

C.
$$\frac{3}{4} - 2 \ln \frac{3}{2}$$
. **D.** $\frac{3}{4} + 2 \ln \frac{3}{2}$.

D.
$$\frac{3}{4} + 2 \ln \frac{3}{2}$$
.

Lời giải

$$\int_{1}^{2} \frac{f(x)}{(x+1)^{2}} dx = -\frac{5}{12} + \ln \frac{3}{2}.$$

$$\int_{1}^{2} \frac{f(x)}{(x+1)^{2}} dx = -\frac{f(x)}{x+1} \Big|_{1}^{2} + \int_{1}^{2} \frac{f'(x)}{x+1} dx = \frac{f(1)}{2} - \frac{f(2)}{3} + \int_{1}^{2} \frac{f'(x)}{x+1} dx = \frac{f(1)}{2} + \int_{1}^{2} \frac{f'(x)}{x+1} dx$$

$$\Rightarrow \int_{1}^{2} (f'(x))^{2} dx + \int_{1}^{2} \frac{f'(x)}{2} dx + \int_{1}^{2} \frac{f'(x)}{x+1} dx = 0$$

$$\Rightarrow \int_{1}^{2} (f'(x))^{2} dx - \int_{1}^{2} \frac{f'(x)}{2} dx + \int_{1}^{2} \frac{f'(x)}{x+1} dx = 0$$

$$\Leftrightarrow \int_{1}^{2} \left[\left(f'(x) \right)^{2} + \frac{f'(x)}{x+1} - \frac{f'(x)}{2} \right] dx = 0$$

$$\Leftrightarrow (f'(x))^2 + \frac{f'(x)}{x+1} - \frac{f'(x)}{2} = 0$$

$$\Leftrightarrow \begin{bmatrix} f'(x) = 0 \\ f'(x) + \frac{1}{x+1} - \frac{1}{2} = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} f(x) = C \\ f(x) = \frac{x}{2} - \ln|x+1| + C \end{bmatrix}$$

TH1:
$$f(x) = C$$
, $f(2) = 0 \Rightarrow C = 0 \Rightarrow f(x) = 0$ (loại)

TH2:
$$f(x) = \frac{x}{2} - \ln|x+1| + C$$
, $f(2) = 0 \Leftrightarrow C = \ln 3 - 1 \Rightarrow f(x) = \frac{x}{2} - \ln|x+1| + \ln 3 - 1$

$$\int_{1}^{2} f(x) dx = \frac{3}{4} - 2 \ln \frac{3}{2}.$$

(Sở Bạc Liêu - 2018) Cho hàm số f(x) có đạo hàm liên tục trên [0;1] thỏa mãn f(1)=0,

$$\int_{0}^{1} [f'(x)]^{2} dx = \frac{4}{3} - \ln 3 \text{ và } \int_{0}^{1} \frac{4f(x)}{(2x+1)^{2}} dx = 2\ln 3 - \frac{8}{3}. \text{ Tính tích phân } \int_{0}^{1} \frac{f(x)}{4} dx \text{ bằng.}$$

A.
$$\frac{1-3\ln 3}{3}$$
.

B.
$$\frac{4-\ln 3}{3}$$
. \underline{C} . $\frac{-\ln 3}{16}$.

$$\frac{\mathbf{C}}{16}$$

D.
$$-\ln \frac{3}{16}$$
.

Lời giải

Ta tinh.
$$\int_{0}^{4} \frac{4f(x)}{(2x+1)^{2}} dx = 2 \ln 3 - \frac{8}{3} \Leftrightarrow \int_{0}^{4} \frac{f(x)}{(2x+1)^{2}} dx = \frac{1}{2} \ln 3 - \frac{2}{3}$$

$$Date \begin{cases} u = f(x) \\ dv = \frac{1}{(2x+1)^{2}} dx \Rightarrow \begin{cases} du = f'(x) dx \\ v = -\frac{1}{2} \cdot \frac{1}{2x+1} + \frac{1}{2} = \frac{x}{2x+1} \end{cases}$$

$$\frac{1}{2} \ln 3 - \frac{2}{3} = \int_{0}^{1} \frac{f'(x)}{(2x+1)^{2}} dx = \frac{xf(x)}{2x+1} \Big|_{0}^{1} - \int_{0}^{1} \frac{xf'(x)}{2x+1} dx = -\int_{0}^{1} \frac{x}{2x+1} f'(x) dx$$

$$\Rightarrow \int_{0}^{1} \frac{x}{2x+1} f'(x) dx = -\frac{1}{2} \ln 3 + \frac{2}{3} \Leftrightarrow 4 \int_{0}^{1} \frac{x}{2x+1} f'(x) dx = -2 \ln 3 + \frac{8}{3}$$
Tinh tich phân:
$$\int_{0}^{1} \left(\frac{x}{2x+1} \right)^{2} dx = \frac{1}{4} \int_{0}^{1} \left(1 - \frac{1}{2x+1} \right)^{2} dx = \frac{1}{4} \int_{0}^{1} \left(1 - \frac{1}{2x+1} \right)^{2} dx$$

$$= \frac{1}{4} \int_{0}^{1} \left(1 - \frac{2}{2x+1} + \frac{1}{(2x+1)^{2}} \right) dx$$

$$= \frac{1}{4} \left(x - \ln |2x+1| - \frac{1}{2(2x+1)} \right) \Big|_{0}^{1} = \frac{1}{3} - \frac{1}{4} \ln 3$$

$$\Rightarrow 4 \int_{0}^{1} \left(\frac{x}{2x+1} \right)^{2} dx = \frac{4}{3} - \ln 3$$

$$\Rightarrow \int_{0}^{1} \left[f'(x) \right]^{2} dx - 4 \int_{0}^{1} \frac{x}{2x+1} f'(x) dx + 4 \int_{0}^{1} \left(\frac{x}{2x+1} \right)^{2} dx = 0$$

$$\Leftrightarrow \int_{0}^{1} \left(f'(x) - \frac{2x}{2x+1} \right)^{2} dx = 0 \Rightarrow f'(x) = \frac{2x}{2x+1} = 1 - \frac{1}{2x+1}$$

$$\Rightarrow f(x) = x - \frac{1}{2} \ln (2x+1) + C \text{ vi } x \in (0;1)$$

$$\forall i \ f(1) = 0 \Rightarrow C = \frac{1}{2} \ln 3 - 1$$

$$\Rightarrow I = \int_{0}^{1} \frac{f(x)}{4} dx = \frac{1}{4} \int_{0}^{1} \left(x - \frac{1}{2} \ln (2x+1) + \frac{1}{2} \ln 3 - 1 \right) dx = \frac{1}{4} \int_{0}^{1} \left(x + \frac{1}{2} \ln 3 - 1 \right) dx - \frac{1}{8} \int_{0}^{1} \ln (2x+1) dx$$

$$A = \frac{1}{4} \int_{0}^{1} \left(x + \frac{1}{2} \ln 3 - 1 \right) dx = \frac{1}{4} \left(\frac{x^{2}}{2} + \frac{x}{2} \ln 3 - x \right) \Big|_{0}^{1} = -\frac{1}{8} + \frac{1}{8} \ln 3$$

$$B = \int_{0}^{1} \ln (2x+1) dx \text{ dif } \begin{cases} u = \ln (2x+1) \\ dv = dx \end{cases} \Rightarrow I = A - \frac{1}{6} B = \frac{1}{12} \ln 3$$

$$\Rightarrow I = A - \frac{1}{6} B = \frac{1}{12} \ln 3$$

Câu 76. (Sở Hưng Yên - 2018) Cho hàm số f(x) có đạo hàm liên tục trên [0;1] thỏa mãn f(0)=1;

$$\int_{0}^{1} [f'(x)]^{2} dx = \frac{1}{30} \text{ và } \int_{0}^{1} (2x-1) f(x) dx = -\frac{1}{30}. \text{ Tích phân } \int_{0}^{1} f(x) dx \text{ bằng}$$

A.
$$\frac{11}{30}$$
.

B.
$$\frac{11}{12}$$
.

C.
$$\frac{11}{4}$$
.

D.
$$\frac{1}{30}$$
.

Lời giải

$$\operatorname{D\check{a}t} \begin{cases} u = f(x) \\ \mathrm{d}v = (2x-1)\,\mathrm{d}x \end{cases} \Rightarrow \begin{cases} \mathrm{d}u = f'(x)\,\mathrm{d}x \\ v = x^2 - x \end{cases}.$$

Suy ra
$$\int_{0}^{1} (2x-1) f(x) dx = (x^{2}-x) f(x) \Big|_{0}^{1} - \int_{0}^{1} (x^{2}-x) f'(x) dx = -\int_{0}^{1} (x^{2}-x) f'(x) dx$$

$$\Rightarrow \int_{0}^{1} (x^{2} - x) f'(x) dx = \frac{1}{30}$$

Ta có:
$$\int_{0}^{1} (x^{2} - x)^{2} dx = \int_{0}^{1} (x^{4} - 2x^{3} + x^{2}) dx = \left(\frac{x^{5}}{5} - \frac{x^{4}}{2} + \frac{x^{3}}{3}\right)\Big|_{0}^{1} = \frac{1}{30}.$$

Do đó,
$$\int_{0}^{1} \left[f'(x) \right]^{2} dx - 2 \int_{0}^{1} (x^{2} - x) f'(x) dx + \int_{0}^{1} (x^{2} - x)^{2} dx = 0 \Leftrightarrow \int_{0}^{1} \left[f'(x) - (x^{2} - x) \right]^{2} dx = 0$$

$$\Rightarrow f'(x) = x^2 - x \Rightarrow f(x) = \frac{x^3}{3} - \frac{x^2}{2} + C.$$

Vì
$$f(0) = 1$$
 nên $C = 1 \Rightarrow f(x) = \frac{x^3}{3} = \frac{x^2}{2} + 1$.

Vậy
$$\int_{0}^{1} f(x) dx = \int_{0}^{1} \left(\frac{x^{3}}{3} - \frac{x^{2}}{2} + 1 \right) dx = \left(\frac{x^{4}}{12} - \frac{x^{3}}{6} + x \right) \Big|_{0}^{1} = \frac{11}{12}.$$

Câu 77. (Sở Nam Định - 2018) Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn $\left[0; \frac{\pi}{4}\right]$ và

$$f\left(\frac{\pi}{4}\right) = 0$$
. Biết $\int_{0}^{\frac{\pi}{4}} f^{2}(x) dx = \frac{\pi}{8}$, $\int_{0}^{\frac{\pi}{4}} f'(x) \sin 2x dx = -\frac{\pi}{4}$. Tính tích phân $I = \int_{0}^{\frac{\pi}{8}} f(2x) dx$.

A.
$$I = 1$$
.

B.
$$I = \frac{1}{2}$$
.

C.
$$I = 2$$
.

D.
$$I = \frac{1}{4}$$
.

Lời giải

Ta có
$$\int_{0}^{\frac{\pi}{4}} f'(x) \sin 2x dx = \int_{0}^{\frac{\pi}{4}} \sin 2x df(x) = \left[f(x) \sin 2x \right]_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} f(x) d\sin 2x$$

$$= f\left(\frac{\pi}{4}\right) \sin\left(2.\frac{\pi}{4}\right) - f(0)\sin(2.0) - 2\int_{0}^{\frac{\pi}{4}} f(x)\cos 2x dx$$

$$= f\left(\frac{\pi}{4}\right) - 2\int_{0}^{\frac{\pi}{4}} f(x)\cos 2x dx = -2\int_{0}^{\frac{\pi}{4}} f(x)\cos 2x dx.$$

Do đó
$$2\int_{0}^{\frac{\pi}{4}} f(x)\cos 2x dx = \frac{\pi}{4}$$
.

Mặt khác:
$$\int_{0}^{\frac{\pi}{4}} \cos^2 2x dx = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} (1 + \cos 4x) dx = \left(\frac{1}{2}x + \frac{1}{8}\sin 4x\right) \Big|_{0}^{\frac{\pi}{4}} = \frac{\pi}{8}.$$

Bởi vây:

$$\int_{0}^{\frac{\pi}{4}} f^{2}(x) dx - 2 \int_{0}^{\frac{\pi}{4}} f(x) \cos 2x dx + \int_{0}^{\frac{\pi}{4}} \cos^{2} 2x dx = \frac{\pi}{8} - \frac{\pi}{4} + \frac{\pi}{8}$$

$$\Leftrightarrow \int_{0}^{\frac{\pi}{4}} \left[f^{2}(x) - 2f(x)\cos 2x + \cos^{2} 2x \right] dx = 0$$

$$\Leftrightarrow \int_{0}^{\frac{\pi}{4}} \left[f(x) - \cos 2x \right]^{2} dx = 0 \Rightarrow f(x) = \cos 2x.$$

Nên:

$$I = \int_{0}^{\frac{\pi}{8}} f(2x) dx = \int_{0}^{\frac{\pi}{8}} \cos 4x dx = \frac{1}{4} \sin 4x \Big|_{0}^{\frac{\pi}{8}} = \frac{1}{4}.$$

Câu 78. Cho hàm số f(x) liên tục, có đạo hàm trên \mathbb{R} , f(2)=16 và $\int_{0}^{2} f(x)dx=4$. Tích phân

$$\int_{0}^{4} xf'\left(\frac{x}{2}\right) dx \text{ bằng}$$

A. 112.

B. 12.

C. 56.

D. 144.

Lời giải

Đặt
$$t = \frac{x}{2} \Rightarrow x = 2t \Rightarrow dx = 2dt$$
.

Đổi cận:
$$\begin{cases} x = 0 \Rightarrow t = 0 \\ x = 4 \Rightarrow t = 2 \end{cases}$$
. Do đó
$$\int_{0}^{4} xf'\left(\frac{x}{2}\right) dx = \int_{0}^{2} 4tf'(t) dt = \int_{0}^{2} 4xf'(x) dx$$
.

$$\text{D}\check{\text{a}}\mathsf{t} \begin{cases} u = 4x \\ dv = f'(x) dx \end{cases} \Rightarrow \begin{cases} du = 4dx \\ v = f(x) \end{cases}.$$

Suy ra
$$\int_{0}^{2} 4xf'(x) dx = \left[4xf(x)\right]_{0}^{2} - \int_{0}^{2} 4f(x) dx = 8f(2) - 4\int_{0}^{2} f(x) dx = 8.16 - 4.4 = 112.$$

Câu 79. (**Chuyên Lê Quý Đôn Điện Biên 2019**) Cho hàm số f(x) liên tục trên \mathbb{R} và $f(2) = 16, \int_{0}^{2} f(x) dx = 4$. Tính $I = \int_{0}^{1} x \cdot f'(2x) dx$.

<u>**A**</u>. 7.

B. 12

C. 20.

D. 13.

Lời giải

Đặt
$$t = 2x \Rightarrow dt = 2dx$$
. Với $x = 0 \Rightarrow t = 0$; Với $x = 1 \Rightarrow t = 2$.

Suy ra:
$$I = \int_{0}^{2} \frac{t}{2} f'(t) \frac{dt}{2} = \frac{1}{4} \int_{0}^{2} t f'(t) dt = \frac{1}{4} \int_{0}^{2} x f'(x) dx$$
.

Ta có
$$I = \frac{1}{4} \left[xf(x) \Big|_{0}^{2} - \int_{0}^{2} f(x) dx \right] = \frac{1}{4} \left[2f(2) - 0f(0) - 4 \right] = \frac{1}{4} (2.16 - 4) = 7.$$

Câu 80. (Chuyên Bắc Ninh - 2020) Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} và thỏa mãn $\int_0^1 f(x) dx = 10, \ f(1) = \cot 1. \text{ Tính tích phân } I = \int_0^1 \left[f(x) \tan^2 x + f'(x) \tan x \right] dx.$

$$\mathbf{A.} \ 1 - \ln(\cos 1).$$

D.
$$1 - \cot 1$$
.

Lời giải

Chọn C

Cách 1:

$$+ I = \int_{0}^{1} \left[f(x) \tan^{2} x + f'(x) \tan x \right] dx = \int_{0}^{1} f(x) \tan^{2} x dx + \int_{0}^{1} f'(x) \tan x dx \quad (1).$$

+ Tính
$$J = \int_{0}^{1} f'(x) \tan x dx$$
.

Đặt
$$\begin{cases} u = \tan x \\ dv = f'(x)dx \end{cases}$$
, ta có
$$\begin{cases} du = (1 + \tan^2 x)dx \\ v = f(x) \end{cases}$$

$$\Rightarrow J = f(x) \cdot \tan x \Big|_0^1 - \int_0^1 f(x) \cdot (1 + \tan^2 x) dx$$

$$= f(1) \cdot \tan 1 - f(0) \cdot \tan 0 - \int_{0}^{1} f(x) \cdot \tan^{2} x dx - \int_{0}^{1} f(x) dx$$

=
$$\cot 1 \cdot \tan 1 - \int_{0}^{1} f(x) \cdot \tan^{2} x dx - 10$$

$$=1-\int_{0}^{1} f(x) \cdot \tan^{2} x dx - 10 = -9 - \int_{0}^{1} f(x) \cdot \tan^{2} x dx.$$

Thay J vào (1) ta được:

$$I = \int_{0}^{1} f(x) \tan^{2} x dx + \left(-9 - \int_{0}^{1} f(x) \cdot \tan^{2} x dx\right) = -9.$$

Cách 2:

Ta có:
$$(f(x)\tan x)' = f'(x)\tan x + f(x)(\tan^2 x + 1) = f'(x)\tan x + f(x)\tan^2 x + f(x)$$

$$\Rightarrow f'(x)\tan x + f(x)\tan^2 x = \left[f(x)\tan x\right]' - f(x)$$

$$\Rightarrow I = \int_{0}^{1} \left[f(x) \tan^{2} x + f'(x) \tan x \right] dx = \int_{0}^{1} \left\{ \left[f(x) \tan x \right]' - f(x) \right\} dx$$

$$= f(x) \tan x \Big|_0^1 - \int_0^1 f(x) dx = f(1) \tan 1 - 10 = \cot 1 \cdot \tan 1 - 10 = -9.$$

Câu 81. (Chuyên Lào Cai - 2020) Cho hàm số f(x) có đạo hàm liên tục trên [0;3] thỏa mãn

$$f(3) = 0$$
, $\int_{0}^{3} [f'(x)]^{2} dx = \frac{7}{6}$ và $\int_{0}^{3} \frac{f(x)}{\sqrt{x+1}} dx = -\frac{7}{3}$. Tích phân $\int_{0}^{3} f(x) dx$ bằng:

$$A. -\frac{7}{3}$$
.

B.
$$\frac{-97}{30}$$
.

$$C. \frac{7}{6}$$
.

D.
$$\frac{-7}{6}$$
.

Lời giải

Chọn B

Xét:
$$\int_{0}^{3} \frac{f(x)}{\sqrt{x+1}} dx = -\frac{7}{3}$$

Đặt:
$$\begin{cases} u = f(x) \\ dv = \frac{1}{\sqrt{x+1}} dx \end{cases} \Rightarrow \begin{cases} du = f'(x) dx \\ v = 2(\sqrt{x+1} - 1) \end{cases}$$

Khi đó:
$$\int_{0}^{3} \frac{f(x)}{\sqrt{x+1}} dx = \left[2(\sqrt{x+1} - 1)f(x) \right]_{0}^{3} - 2 \int_{0}^{3} (\sqrt{x+1} - 1)f'(x) dx$$

$$\Rightarrow \int_{0}^{3} \left(\sqrt{x+1} - 1 \right) \cdot f'(x) dx = \frac{7}{6}$$
 (1)

Mặt khác:
$$\int_{0}^{3} \left(\sqrt{x+1} - 1 \right)^{2} dx = \int_{0}^{3} \left(x + 2 - 2\sqrt{x+1} \right) dx = \frac{7}{6}$$
 (2)

$$\int_{0}^{3} [f'(x)]^{2} dx = \frac{7}{6}$$
 (3)

Từ (1) và (2) suy ra:
$$\begin{bmatrix} f'(x) = 0 \\ f'(x) = \sqrt{x+1} - 1 \end{bmatrix}$$

+)
$$f'(x) = 0 \Rightarrow (3) \text{ vô lý}$$

+)
$$f'(x) = \sqrt{x+1} - 1 \Rightarrow f(x) = \frac{2}{3}(x+1)\sqrt{x+1} - x + C$$
, mà $f(3) = 0 \Rightarrow C = -\frac{7}{3}$

$$\Rightarrow f(x) = \frac{2}{3}(x+1)\sqrt{x+1} - x - \frac{7}{3}$$

Vậy:
$$\int_{0}^{3} f(x) dx = \int_{0}^{3} \left[\frac{2}{3} (x+1) \sqrt{x+1} - x - \frac{7}{3} \right] dx = -\frac{97}{30}.$$

Câu 82. (**Chuyên - Vĩnh Phúc - lần 3 - 2019**) Cho hàm số y = f(x) có đạo hàm liên tục trên (**0**; **1**) thỏa mãn f(0) = 0 và $\int_{0}^{1} f^{2}(x) dx = \frac{9}{2}$; $\int_{0}^{1} f'(x) . \cos \frac{\pi x}{2} dx = \frac{3\pi}{4}$. Tính $\int_{0}^{1} f(x) dx$ bằng:

A.
$$\frac{2}{\pi}$$
.

B.
$$\frac{1}{\pi}$$
.

$$\underline{\mathbf{C}} \cdot \frac{6}{\pi}$$
.

D.
$$\frac{4}{\pi}$$
.

Lời giải

Chọn C

Ta có:
$$\int_{0}^{1} f'(x) \cdot \cos \frac{\pi x}{2} dx = \frac{3\pi}{4}$$
.

Suy ra:
$$\frac{3\pi}{4} = \cos\frac{\pi x}{2} \cdot f(x) \Big|_{0}^{1} + \int_{0}^{1} \frac{\pi}{2} \cdot f(x) \cdot \sin\frac{\pi x}{2} dx$$
.

$$\Rightarrow \frac{3\pi}{4} = \cos\frac{\pi}{2} \cdot f(1) - \cos 0 \cdot f(0) + \frac{\pi}{2} \cdot \int_{0}^{1} f(x) \cdot \sin\frac{\pi x}{2} dx.$$

$$\Rightarrow \int_{0}^{1} f(x) \cdot \sin \frac{\pi x}{2} dx = \frac{3}{2}.$$

Theo đề:
$$\int_{0}^{1} f^{2}(x) dx = \frac{9}{2}$$

Mặt khác:
$$\int_{0}^{1} \sin^{2} \frac{\pi x}{2} dx = \int_{0}^{1} \frac{1 - \cos \pi x}{2} dx = \frac{1}{2} \left(x - \frac{\sin(\pi x)}{\pi} \right) \Big|_{0}^{1} = \frac{1}{2}.$$

Nên ta có
$$\int_{0}^{1} \left[f^{2}(x) - 6f(x) \cdot \sin \frac{\pi x}{2} + 9 \sin^{2} \frac{\pi x}{2} \right] dx = \frac{9}{2} - 6 \cdot \frac{3}{2} + 9 \cdot \frac{1}{2} = 0.$$

$$\Rightarrow \int_{0}^{1} \left(f(x) - 3\sin\frac{\pi x}{2} \right)^{2} dx = 0.$$

Do hàm số y = f(x) có đạo hàm liên tục trên (0; 1) nên $f(x) = 3\sin\frac{\pi x}{2}$.

Suy ra
$$\int_{0}^{1} f(x) dx = \int_{0}^{1} 3 \sin \frac{\pi x}{2} dx = -3 \cdot \frac{2}{\pi} \cdot \cos \frac{\pi x}{2} \Big|_{0}^{1} = \frac{6}{\pi}$$
.

(Hậu Lộc 2-Thanh Hóa- 2019) Cho hàm số f(x) nhận giá trị dương và có đạo hàm liên tục Câu 83. [0;1] sao cho f(1)=1 và $f(x).f(1-x)=e^{x^2-x}$, $\forall x \in [0;1]$ $I = \int_{-1}^{1} \frac{(2x^3 - 3x^2) f'(x)}{f(x)} dx.$

A.
$$I = -\frac{1}{60}$$
. **B.** $I = \frac{1}{10}$.

B.
$$I = \frac{1}{10}$$

C.
$$I = -\frac{1}{10}$$
. **D.** $I = \frac{1}{10}$

D.
$$I = \frac{1}{10}$$
.

Lời giải

$$\operatorname{D\check{a}t} \begin{cases} u = 2x^3 - 3x^2 \\ dv = \frac{f'(x)}{f(x)} dx \Rightarrow \begin{cases} du = (6x^2 - 6x) dx \\ v = \ln f(x) \end{cases}$$

Ta có
$$I = (2x^3 - 3x^2) \ln f(x) \Big|_0^1 - \int_0^1 (6x^2 - 6x) \ln f(x) dx$$

$$= \ln 1 - \int_{0}^{1} (6x^{2} - 6x) \ln f(x) dx = -\int_{0}^{1} (6x^{2} - 6x) \ln f(x) dx.$$

Đặt
$$t = 1 - x$$
 ⇒ $dt = -dx$.

Ta có
$$I = \int_{1}^{1} \left[6(1-t^2) - 6(1-t) \right] \ln f(1-t) dt = -\int_{0}^{1} (6t^2 - 6t) \ln f(1-t) dt$$

$$= -\int_{0}^{1} (6x^2 - 6x) \ln f(1-x) dx.$$
Suy ra, $2I = -\int_{0}^{1} (6x^2 - 6x) \ln f(x) dx - \int_{0}^{1} (6x^2 - 6x) \ln f(1-x) dx$

$$\begin{aligned} & \text{ray ra, } 2I = -\int_{0}^{1} \left(6x^{2} - 6x\right) \ln f(x) dx - \int_{0}^{1} \left(6x^{2} - 6x\right) \ln f(1 - x) dx \\ & = -\int_{0}^{1} \left(6x^{2} - 6x\right) \left[\ln f(x) + \ln f(1 - x)\right] dx \\ & = -\int_{0}^{1} \left(6x^{2} - 6x\right) \ln f(x) \cdot f(1 - x) dx = -\int_{0}^{1} \left(6x^{2} - 6x\right) \ln e^{x^{2} - x} dx \\ & = -6\int_{0}^{1} \left(x^{2} - x\right)^{2} dx = -6\int_{0}^{1} \left(x^{4} - 2x^{3} + x^{2}\right) dx = -\frac{1}{5}. \end{aligned}$$

Như vậy,
$$2I = -\frac{1}{5} \Rightarrow I = -\frac{1}{10}$$

Câu 84. (Sở Nam Định-2019) Cho hàm số f(x) có đạo hàm liên tục trên [1;2] và thỏa mãn:

$$f(2) = 0, \int_{1}^{2} (f'(x))^{2} dx = \frac{5}{12} + \ln \frac{2}{3} \text{ và } \int_{1}^{2} \frac{f(x)}{(x+1)^{2}} dx = -\frac{5}{12} + \ln \frac{3}{2}. \text{ Tính tích phân } \int_{1}^{2} f(x) dx.$$

A.
$$\frac{3}{4} + 2 \ln \frac{3}{2}$$
. **B.** $\ln \frac{2}{3}$.

B.
$$\ln \frac{2}{3}$$
.

C.
$$\frac{3}{4} - 2 \ln \frac{2}{3}$$
.

D.
$$\frac{3}{4} + 2 \ln \frac{2}{3}$$
.

Chọn D

Ta có
$$\int_{1}^{2} \frac{f(x)}{(x+1)^{2}} dx = -\frac{1}{x+1} f(x) \Big|_{1}^{2} + \int_{1}^{2} \frac{f'(x)}{x+1} dx = -\frac{1}{3} f(2) + \frac{1}{2} f(1) + \int_{1}^{2} \frac{f'(x)}{x+1} dx$$
Do $f(2) = 0$ nên
$$\int_{1}^{2} \frac{f'(x)}{x+1} dx + \frac{1}{2} f(1) = -\frac{5}{12} + \ln \frac{3}{2}$$

Lại có
$$\int_{1}^{2} f'(x) dx = f(2) - f(1) \implies f(1) = -\int_{1}^{2} f'(x) dx$$

Suy ra
$$\int_{1}^{2} \left[\frac{1}{x+1} - \frac{1}{2} \right] f'(x) dx = -\frac{5}{12} + \ln \frac{3}{2}$$

Mặt khác
$$\int_{1}^{2} \left(\frac{1}{x+1} - \frac{1}{2} \right)^{2} dx = \int_{1}^{2} \left(\frac{1}{(x+1)^{2}} - \frac{1}{x+1} + \frac{1}{4} \right) dx = \left(-\frac{1}{x+1} - \ln|x+1| + \frac{1}{4}x \right) \Big|_{1}^{2} = \frac{5}{12} + \ln \frac{2}{3}$$

$$\int_{1}^{2} (f'(x))^{2} dx + 2 \int_{1}^{2} \left[\frac{1}{x+1} - \frac{1}{2} \right] f'(x) dx + \int_{1}^{2} \left(\frac{1}{x+1} - \frac{1}{2} \right)^{2} dx$$

$$= \frac{5}{12} + \ln \frac{2}{3} + 2 \left(-\frac{5}{12} - \ln \frac{2}{3} \right) + \frac{5}{12} + \ln \frac{2}{3} = 0$$

$$\Leftrightarrow \int_{1}^{2} \left(f'(x) + \frac{1}{x+1} - \frac{1}{2} \right)^{2} dx = 0 \Rightarrow f'(x) = \frac{1}{2} - \frac{1}{x+1} \Rightarrow f(x) = -\ln|x+1| + \frac{1}{2}x + \ln 3 - 1$$

do
$$f(2) = 0 \implies \int_{1}^{2} f(x) dx = \left[\frac{1}{4} x^{2} - x + x \ln 3 - ((x+1) \ln(x+1) - (x+1)) \right]_{1}^{2} = \frac{3}{4} + 2 \ln \frac{2}{3}$$
.

Câu 85. Cho hàm số y = f(x) có đạo hàm liên tục trên [0;1] thỏa mãn f(1) = 3, $\int_{0}^{1} [f'(x)]^{2} dx = \frac{4}{11}$ và

$$\int_{0}^{1} x^{4} f(x) dx = \frac{7}{11}. \text{ Giá trị của } \int_{0}^{1} f(x) dx \text{ là:}$$

A.
$$\frac{35}{11}$$
.

B.
$$\frac{65}{21}$$
.

C.
$$\frac{23}{7}$$
.

D.
$$\frac{9}{4}$$

Lời giải

Chọn C

• Xét
$$\int_{0}^{1} x^4 f(x) dx = \frac{7}{11}$$

$$\text{Đặt} \begin{cases} u = f(x) \\ dv = x^4 dx \end{cases} \Rightarrow \begin{cases} du = f'(x) dx \\ v = \frac{x^5}{5} \end{cases}$$

Khi đó
$$\int_{0}^{1} x^{4} f(x) dx = \left(\frac{x^{5}}{5}.f(x)\right)\Big|_{0}^{1} - \int_{0}^{1} \frac{x^{5}}{5}.f'(x) dx = \frac{7}{11}$$

Suy ra
$$\int_{0}^{1} \frac{x^{5}}{5} \cdot f'(x) dx = \frac{f(1)}{5} - \frac{7}{11} = \frac{-2}{55}$$

• Mặt khác
$$\int_{0}^{1} \left(\frac{x^{5}}{5}\right)^{2} dx = \frac{1}{275}$$

• Ta có:

$$\int_{0}^{1} [f'(x)]^{2} dx + 2.10 \int_{0}^{1} \frac{x^{5}}{5} \cdot f'(x) dx + 10^{2} \cdot \int_{0}^{1} \left(\frac{x^{5}}{5}\right)^{2} dx = 0$$

$$\Leftrightarrow \int_{0}^{1} [f'(x) + 2x^{5}]^{2} dx = 0$$

$$\Rightarrow f'(x) = -2x^{5}$$

• Do đó
$$f(x) = \frac{-x^6}{3} + C$$
. Mà $f(1) = 3$ nên $f(x) = \frac{-x^6}{3} + \frac{10}{3}$

• Khi đó
$$\int_{0}^{1} f(x)dx = \frac{1}{3} \int_{0}^{1} (-x^{6} + 10)dx = \frac{23}{7}$$

Câu 86. Cho hàm số f(x) có đạo hàm liên tục trên đoạn [1;2] và thỏa mãn $\int_{1}^{2} (x-2)^{2} f(x) dx = -\frac{1}{21}$,

$$f(1) = 0$$
, $\int_{1}^{2} [f'(x)]^{2} dx = \frac{1}{7}$. Tính $\int_{1}^{2} x f(x) dx$.

A.
$$\frac{-19}{60}$$
.

B.
$$\frac{7}{120}$$
.

$$C_{\bullet} = \frac{-1}{5}$$
.

D. $\frac{13}{30}$.

<u>C</u>họn <u>B</u>

Ta có:

$$\int_{1}^{2} (x-2)^{2} f(x) dx = -\frac{1}{21}.$$

Đặt:
$$u = f(x) \Rightarrow du = f'(x)dx$$
; $dv = (x-2)^2 dx \Rightarrow v = \frac{(x-2)^3}{3}$.

$$\int_{1}^{2} (x-2)^{2} f(x) dx = \left(\frac{(x-2)^{3}}{3} f(x) \right) \Big|_{1}^{2} - \int_{1}^{2} \frac{(x-2)^{3}}{3} f'(x) dx$$

$$= -\int_{1}^{2} \frac{(x-2)^{3}}{3} f'(x) dx.$$

$$\Rightarrow \int_{1}^{2} (x-2)^{3} f'(x) dx.$$

$$\Rightarrow \int_1^2 (x-2)^3 f'(x) dx = \frac{1}{7}.$$

Do đó,
$$\int_{1}^{2} (x-2)^{3} f'(x) dx = \int_{1}^{2} [f'(x)]^{2} dx = \frac{1}{7}$$

Mà
$$\int_{1}^{2} (x-2)^{6} dx = \left(\frac{(x-2)^{7}}{7}\right)_{1}^{2} = \frac{1}{7}.$$

Vậy,
$$\int_{1}^{2} \left((x-2)^{6} - 2(x-2)^{3} f'(x) + \left[f'(x) \right]^{2} \right) dx = \frac{1}{7} - \frac{2}{7} + \frac{1}{7} = 0$$

$$\Rightarrow \int_1^2 \left(\left(x - 2 \right)^3 - f'(x) \right)^2 \mathrm{d}x = 0 \Rightarrow \left(x - 2 \right)^3 - f'(x) = 0$$

$$\Rightarrow f(x) = \frac{(x-2)^4}{4} + C.$$

Mà
$$f(1) = 0 \Rightarrow C = \frac{-1}{4} \Rightarrow f(x) = \frac{(x-2)^4}{4} - \frac{1}{4}$$

$$\int_{1}^{2} x f(x) dx = \frac{1}{4} \int_{1}^{2} \left(x(x-2)^{4} - x \right) dx = \frac{1}{4} \int_{1}^{2} \left((x-2)^{5} + 2(x-2)^{4} - x \right) dx$$

$$= \frac{1}{4} \left(\frac{(x-2)^6}{6} + \frac{2(x-2)^5}{5} - \frac{1}{2}x^2 \right) \Big|_{1}^{2}$$

$$= \frac{1}{4} \left(-2 - \frac{1}{6} + \frac{2}{5} + \frac{1}{2} \right) = -\frac{19}{60}.$$

Câu 87. (Chuyên ĐH Vinh- 2019) Giả sử hàm số f(x) có đạo hàm cấp 2 trên $\mathbb R$ thỏa mãn f(1) = f'(1) = 1 và $f(1-x) + x^2 \cdot f''(x) = 2x$ với mọi $x \in \mathbb R$. Tính tích phân $I = \int_{0}^{1} x f'(x) dx$.

A.
$$I = 1$$
.

B.
$$I = 2$$

$$\underline{\mathbf{C}}$$
. $I = \frac{1}{3}$.

D.
$$I = \frac{2}{3}$$
.

Lời giải

Chọn C

$$\operatorname{D\check{a}t} \begin{cases} u = f'(x) \\ dv = x dx \end{cases} \Rightarrow \begin{cases} \operatorname{d}u = f''(x) \, \mathrm{d}x \\ v = \frac{x^2}{2} \end{cases}.$$

Suy ra
$$I = \int_{0}^{1} x f'(x) dx = \frac{x^2}{2} f'(x) \Big|_{0}^{1} - \int_{0}^{1} \frac{x^2}{2} f''(x) dx = \frac{1}{2} - \int_{0}^{1} \frac{x^2}{2} f''(x) dx.$$

Do
$$f(1-x)+x^2.f''(x)=2x \Rightarrow \frac{x^2}{2}.f''(x)=x-\frac{1}{2}f(1-x)$$
.

Vậy
$$I = \frac{1}{2} - \int_{0}^{1} \left[x - \frac{1}{2} f(1 - x) \right] dx = \frac{1}{2} \int_{0}^{1} f(1 - x) dx$$
.

Đặt
$$t = 1 - x$$
 suy ra $I = -\frac{1}{2} \int_{1}^{0} f(t) dt = \frac{1}{2} \int_{0}^{1} f(t) dt = \frac{1}{2} \int_{0}^{1} f(x) dx$.

Đặt
$$\begin{cases} u = f(x) \\ dv = dx \end{cases} \Rightarrow \begin{cases} du = f'(x)dx \\ v = x \end{cases}$$

Suy ra
$$I = \frac{1}{2} \left[xf(x) \Big|_{0}^{1} - \int_{0}^{1} xf'(x) dx \right] \Leftrightarrow I = \frac{1}{2} (1 - I) \Leftrightarrow I = \frac{1}{3}.$$

Dạng 1.3 Biến đổi

Dạng 1. Bài toán tích phân liên quan đến đẳng thức u(x) f'(x) + u'(x) f(x) = h(x)

Phương pháp:

Dễ dàng thấy rằng u(x)f'(x)+u'(x)f(x)=[u(x)f(x)]'

Do dó
$$u(x)f'(x) + u'(x)f(x) = h(x) \Leftrightarrow [u(x)f(x)]' = h(x)$$

Suy ra
$$u(x) f(x) = \int h(x) dx$$

Từ đây ta dễ dàng tính được f(x)

Dang 2. Bài toán tích phân liên quan đến biểu thúrc f'(x) + f(x) = h(x)

Phương pháp:

Nhân hai vế với e^x ta durọc $e^x \cdot f'(x) + e^x \cdot f(x) = e^x \cdot h(x) \Leftrightarrow [e^x \cdot f(x)]' = e^x \cdot h(x)$

Suy ra
$$e^x \cdot f(x) = \int e^x \cdot h(x) dx$$

Từ đây ta dễ dàng tính được f(x)

Dang 3. Bài toán tích phân liên quan đến biểu thúc f'(x) - f(x) = h(x)

Phương pháp:

Nhân hai vế với e^{-x} ta durọc $e^{-x} \cdot f'(x) - e^{-x} \cdot f(x) = e^{-x} \cdot h(x) \Leftrightarrow \left[e^{-x} \cdot f(x) \right]' = e^{-x} \cdot h(x)$

Suy ra
$$e^{-x} \cdot f(x) = \int e^{-x} \cdot h(x) dx$$

Từ đây ta dễ dàng tính được f(x)

Dạng 4. Bài toán tích phân liên quan đến biểu thúrc $f'(x) + p(x) \cdot f(x) = h(x)$

(Phương trình vi phân tuyên tinh cấp 1)

Phương pháp:

Nhân hai vế với $e^{\int p(x)dx}$ ta được

$$f'(x) \cdot e^{\int p(x)dx} + p(x) \cdot e^{\int p(x)dx} \cdot f(x) = h(x) \cdot e^{\int p(x)dx} \Leftrightarrow \left[f(x) \cdot e^{\int p(x)dx} \right]' = h(x) \cdot e^{\int p(x)dx}$$

Suy ra
$$f(x) \cdot e^{\int p(x)dx} = \int e^{\int p(x)dx} h(x) dx$$

Từ đây ta dễ dàng tính được f(x)

Dang 5. Bài toán tích phân liên quan đến biểu thúc $f'(x) + p(x) \cdot f(x) = 0$

Phương pháp:

Chia hai vế với
$$f(x)$$
 ta được $\frac{f'(x)}{f(x)} + p(x) = 0 \Leftrightarrow \frac{f'(x)}{f(x)} = -p(x)$

Suy ra
$$\int \frac{f'(x)}{f(x)} dx = -\int p(x) dx \Leftrightarrow \ln|f(x)| = -\int p(x) dx$$

Từ đây ta dễ dàng tính được f(x)

Dạng 6. Bài toán tích phân liên quan đến biểu thức $f'(x) + p(x) \cdot [f(x)]^n = 0$

Phương pháp:

Chia hai vế với
$$[f(x)]^n$$
 ta được $\frac{f'(x)}{[f(x)]^n} + p(x) = 0 \Leftrightarrow \frac{f'(x)}{[f(x)]^n} = -p(x)$

Suy ra
$$\int \frac{f'(x)}{[f(x)]^n} dx = -\int p(x) dx \Leftrightarrow \frac{[f(x)]^{-n+1}}{-n+1} = -\int p(x) dx$$

(Mã 102 2018) Cho hàm số f(x) thỏa mãn $f(2) = -\frac{1}{3}$ và $f'(x) = x [f(x)]^2$ với mọi $x \in \mathbb{R}$. Giá trị của f(1) bằng

A.
$$-\frac{2}{3}$$

B.
$$-\frac{2}{9}$$

B.
$$-\frac{2}{9}$$
 C. $-\frac{7}{6}$ **D.** $-\frac{11}{6}$

D.
$$-\frac{11}{6}$$

Lời giải

Chọn A

Từ hệ thức đề cho: $f'(x) = x[f(x)]^2$ (1), suy ra $f'(x) \ge 0$ với mọi $x \in [1;2]$. Do đó f(x) là hàm không giảm trên đoạn [1;2], ta có $f(x) \le f(2) < 0$ với mọi $x \in [1;2]$.

Chia 2 vế hệ thức (1) cho
$$[f(x)]^2 \Rightarrow \frac{f'(x)}{[f(x)]^2} = x, \forall x \in [1;2].$$

Lấy tích phân 2 về trên đoạn [1,2] hệ thức vừa tìm được, ta được:

$$\int_{1}^{2} \frac{f'(x)}{[f(x)]^{2}} dx = \int_{1}^{2} x dx \Rightarrow \int_{1}^{2} \frac{1}{[f(x)]^{2}} df(x) = \frac{3}{2} \Rightarrow \frac{-1}{f(x)} \Big|_{1}^{2} = \frac{3}{2} \Rightarrow \frac{1}{f(1)} - \frac{1}{f(2)} = \frac{3}{2}$$

Do
$$f(2) = -\frac{1}{3}$$
 nên suy ra $f(1) = -\frac{2}{3}$.

Chú ý: có thể tự kiểm tra các phép biến đổi tích phân trên đây là có nghĩa.

(**Mã 104 2018**) Cho hàm số f(x) thỏa mãn $f(2) = -\frac{1}{5}$ và $f'(x) = x^3 [f(x)]^2$ với mọi $x \in \mathbb{R}$. Câu 89.

Giá trị của f(1) bằng

A.
$$-\frac{4}{35}$$

B.
$$-\frac{71}{20}$$

B.
$$-\frac{71}{20}$$
 C. $-\frac{79}{20}$ **D.** $-\frac{4}{5}$

D.
$$-\frac{4}{5}$$

Lời giải

Chon D

Ta có:
$$f'(x) = x^3 \left[f(x) \right]^2 \Rightarrow \frac{f'(x)}{f^2(x)} = x^3 \Rightarrow \int_1^2 \frac{f'(x)}{f^2(x)} dx = \int_1^2 x^3 dx$$

$$\Leftrightarrow \left(-\frac{1}{f(x)}\right)\Big|_{1}^{2} = \frac{15}{4} \Leftrightarrow -\frac{1}{f(2)} + \frac{1}{f(1)} = \frac{15}{4} \Leftrightarrow f(1) = -\frac{4}{5}.$$

Câu 90. (**Minh họa 2020 Lần 1**) Cho hàm số f(x) liên tục trên $\mathbb R$ thảo mãn

$$xf(x^3) + f(1-x^2) = -x^{10} + x^6 - 2x, \forall x \in \mathbb{R}$$
. Khi đó $\int_{-1}^{0} f(x) dx$?

A.
$$\frac{-17}{20}$$
.

B.
$$\frac{-13}{4}$$
.

C.
$$\frac{17}{4}$$

Lời giải

Chon B

Ta có
$$xf(x^3) + f(1-x^2) = -x^{10} + x^6 - 2x \Rightarrow x^2 f(x^3) + xf(1-x^2) = -x^{11} + x^7 - 2x^2$$
.

Lấy tích phân hai vế cận từ 0 đến 1 ta được:

$$\int_{0}^{1} x^{2} f(x^{3}) dx + \int_{0}^{1} x f(1-x^{2}) dx = \int_{0}^{1} (-x^{11} + x^{7} - 2x^{2}) dx$$

$$\Leftrightarrow \frac{1}{3} \int_{0}^{1} f(x^{3}) d(x^{3}) - \frac{1}{2} \int_{0}^{1} f(1-x^{2}) d(1-x^{2}) = -\frac{5}{8}$$

$$\Rightarrow \frac{1}{3} \int_{0}^{1} f(t) dt - \frac{1}{2} \int_{1}^{0} f(t) dt = -\frac{5}{8}$$

$$\Leftrightarrow \frac{1}{3} \int_{0}^{1} f(t) dt + \frac{1}{2} \int_{0}^{1} f(t) dt = -\frac{5}{8}$$

$$\Leftrightarrow \frac{5}{6} \int_{0}^{1} f(t) dt = -\frac{5}{8}$$

$$\Leftrightarrow \int_{0}^{1} f(t) dt = -\frac{3}{4}$$

Suy ra
$$\int_{0}^{1} f(x) dx = -\frac{3}{4}.$$

Lấy tích phân hai vế cận từ −1 đến 0 ta được:

$$\int_{-1}^{0} x^{2} f(x^{3}) dx + \int_{-1}^{0} x f(1-x^{2}) dx = \int_{-1}^{0} (-x^{11} + x^{7} - 2x^{2}) dx$$

$$\Leftrightarrow \frac{1}{3} \int_{-1}^{0} f(x^{3}) d(x^{3}) - \frac{1}{2} \int_{-1}^{0} f(1-x^{2}) d(1-x^{2}) = -\frac{17}{24}$$

$$\Rightarrow \frac{1}{3} \int_{-1}^{0} f(t) dt - \frac{1}{2} \int_{0}^{1} f(t) dt = -\frac{17}{24}$$

$$\Leftrightarrow \frac{1}{3} \int_{-1}^{0} f(t) dt - \frac{1}{2} \int_{0}^{1} f(t) dt = -\frac{17}{24}$$

$$\Leftrightarrow \frac{1}{3} \int_{-1}^{0} f(t) dt = -\frac{17}{24} + \frac{1}{2} \int_{0}^{1} f(t) dt$$

$$\Rightarrow \frac{1}{3} \int_{-1}^{0} f(x) dx = \frac{-17}{24} + \frac{1}{2} \int_{0}^{1} f(x) dx = \frac{-17}{24} - \frac{1}{2} \cdot \frac{3}{4} = -\frac{13}{12}$$

$$\Rightarrow \int_{0}^{0} f(x) dx = \frac{-13}{4}$$

Câu 91. Cho hàm số f(x) liên tục trên [0;1] thỏa mãn $f(1-x) = 6x^2 f(x^3) - \frac{6}{\sqrt{3x+1}}$. Khi đó $\int f(x) dx$

bằng

Lời giải

Chọn A

Ta có
$$f(1-x) = 6x^2 f(x^3) - \frac{6}{\sqrt{3x+1}} \iff f(1-x) - 6x^2 f(x^3) = -\frac{6}{\sqrt{3x+1}}$$

$$\Leftrightarrow \int_{0}^{1} f(1-x) dx - \int_{0}^{1} 6x^{2} f(x^{3}) dx = -\int_{0}^{1} \frac{6}{\sqrt{3x+1}} dx \quad (*).$$

Ta có
$$\int_{0}^{1} f(1-x) dx = -\int_{0}^{1} f(1-x) d(1-x) = -\int_{0}^{0} f(u) du = \int_{0}^{1} f(x) dx$$
.

$$V\grave{a} \int_{0}^{1} 6x^{2} f(x^{3}) dx = 2 \int_{0}^{1} f(x^{3}) d(x^{3})^{u=x^{3}} = 2 \int_{0}^{1} f(u) du = 2 \int_{0}^{1} f(x) dx.$$

Ta có (*)
$$\Leftrightarrow \int_0^1 f(x) dx - 2 \int_0^1 f(x) dx = -6 \int_0^1 \frac{1}{\sqrt{3x+1}} dx \Leftrightarrow \int_0^1 f(x) dx = 6 \int_0^1 \frac{1}{\sqrt{3x+1}} dx = 4$$
.

$$V_{a}^{2}y \int_{0}^{1} f(x) dx = 4.$$

Cho hàm số f(x) xác định và liên tục trên $\mathbb{R}\setminus\{0\}$ thỏa mãn $x^2f^2(x)+(2x-1)f(x)=xf'(x)-1$, với mọi $x \in \mathbb{R} \setminus \{0\}$ đồng thời thỏa f(1) = -2. Tính $\int_{\mathbb{R}} f(x) dx$

A.
$$-\frac{\ln 2}{2} - 1$$

B.
$$-\ln 2 - \frac{1}{2}$$
.

C.
$$-\ln 2 - \frac{3}{2}$$

A.
$$-\frac{\ln 2}{2} - 1$$
. **B.** $-\ln 2 - \frac{1}{2}$. **C.** $-\ln 2 - \frac{3}{2}$. **D.** $-\frac{\ln 2}{2} - \frac{3}{2}$.

Chon D

Ta có
$$x^2 f^2(x) + 2xf(x) + 1 = xf'(x) + f(x) \Leftrightarrow (xf(x) + 1)^2 = (xf(x) + 1)^2$$

Do đó
$$\frac{\left(xf\left(x\right)+1\right)^{2}}{\left(xf\left(x\right)+1\right)^{2}}=1 \Rightarrow \int \frac{\left(xf\left(x\right)+1\right)^{2}}{\left(xf\left(x\right)+1\right)^{2}}dx=\int 1dx \Rightarrow -\frac{1}{xf\left(x\right)+1}=x+c \Rightarrow xf\left(x\right)+1=-\frac{1}{x+c}$$

Mặt khác
$$f(1) = -2$$
 nên $-2+1 = -\frac{1}{1+c} \Rightarrow c = 0 \Rightarrow xf(x)+1 = -\frac{1}{x} \Rightarrow f(x) = -\frac{1}{x^2} - \frac{1}{x}$

Vậy
$$\int_{1}^{2} f(x) dx = \int_{1}^{2} \left(-\frac{1}{x^{2}} - \frac{1}{x} \right) dx = \left(-\ln x + \frac{1}{x} \right) \Big|_{1}^{2} = -\ln 2 - \frac{1}{2}$$
.

số f(x) liên tục Câu 93. Cho hàm thỏa mãn

$$f(x)+(x^2-1)f(\frac{1}{4}x^3-\frac{3}{4}x-\frac{3}{2})=x^5-4x^3-5x^2+7x+6, \forall x \in \mathbb{R}$$
. Tích phân $\int_{1}^{2}f(x)dx$ bằng

$$\underline{\mathbf{A}} \cdot \frac{1}{7}$$
.

B.
$$\frac{1}{3}$$
.

D.
$$-\frac{19}{3}$$
.

Lời giải

Mặt khác:
$$(*) \Rightarrow \int_{1}^{2} f(x) dx + \int_{1}^{2} (x^{2} - 1) f\left(\frac{1}{4}x^{3} - \frac{3}{4}x - \frac{3}{2}\right) dx = \int_{1}^{2} (x^{5} - 4x^{3} - 5x^{2} + 7x + 6) dx$$

$$\Leftrightarrow \int_{1}^{2} f(x) dx + \frac{4}{3} \int_{1}^{2} f\left(\frac{1}{4}x^{3} - \frac{3}{4}x - \frac{3}{2}\right) d\left(\frac{1}{4}x^{3} - \frac{3}{4}x - \frac{3}{2}\right) = \frac{1}{3}$$

$$\Rightarrow \int_{1}^{2} f(x) dx + \frac{4}{3} \int_{1}^{2} f(x) dx = \frac{1}{3} \Leftrightarrow \int_{1}^{2} f(x) dx = \frac{1}{7}.$$

Câu 94. Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(1)=1 và $\left(f'(x)\right)^2+4\left(6x^2-1\right).f(x)=40x^6-44x^4+32x^2-4, \forall x\in[0;1].$ Tích phân $\int\limits_0^1 f(x)dx$ bằng?

A.
$$\frac{23}{15}$$

B.
$$\frac{13}{15}$$
.

$$C_{\bullet} - \frac{17}{15}$$
.

D.
$$-\frac{7}{15}$$
.

Lời giải

Chon B

$$(f'(x))^{2} + 4(6x^{2} - 1).f(x) = 40x^{6} - 44x^{4} + 32x^{2} - 4$$

$$\Rightarrow \int_{0}^{1} (f'(x))^{2} dx + \int_{0}^{1} 4(6x^{2} - 1).f(x) dx = \int_{0}^{1} (40x^{6} - 44x^{4} + 32x^{2} - 4) dx. \quad (1)$$

$$X \text{ \'et } I = \int_{0}^{1} 4(6x^{2} - 1).f(x) dx = \int_{0}^{1} (24x^{2} - 4) f(x) dx.$$

$$\text{D\'et} \begin{cases} u = f(x) \\ dv = (24x^{2} - 4) dx \end{cases} \Rightarrow \begin{cases} du = f'(x) dx \\ v = 8x^{3} - 4x \end{cases}$$

$$\Rightarrow I = (8x^3 - 4x) \cdot f(x) \Big|_0^1 - \int_0^1 (8x^3 - 4x) \cdot f'(x) dx = 4 - 2 \int_0^1 (4x^3 - 2x) \cdot f'(x) dx.$$

Do đó:

$$(1) \Rightarrow \int_{0}^{1} (f'(x))^{2} dx - 2\int_{0}^{1} (4x^{3} - 2x) \cdot f'(x) dx + \int_{0}^{1} (4x^{3} - 2x)^{2} dx = \int_{0}^{1} (56x^{6} - 60x^{4} + 36x^{2} - 8) dx.$$

$$\Rightarrow \int_{0}^{1} \left[f'(x) - (4x^{3} - 2x) \right]^{2} dx = 0 \Rightarrow f'(x) = 4x^{3} - 2x \Rightarrow f(x) = x^{4} - x^{2} + c.$$

Mà
$$f(1) = 1 \Rightarrow c = 1 \Rightarrow f(x) = x^4 - x^2 + 1$$
.

Do đó
$$\int_{0}^{1} f(x) dx = \int_{0}^{1} (x^{4} - x^{2} + 1) dx = \frac{13}{15}.$$

Câu 95. Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} và thỏa mãn f(0) = 3 và $f(x) + f(2-x) = x^2 - 2x + 2, \forall x \in \mathbb{R}$. Tích phân $\int_0^2 x f'(x) dx$ bằng

A.
$$\frac{-4}{3}$$
.

B.
$$\frac{2}{3}$$

C.
$$\frac{5}{3}$$
.

D.
$$\frac{-10}{3}$$

Lời giải

Chọn D Cách 1.

Áp dụng công thức tích phân từng phần, ta có: $\int_0^2 x f'(x) dx = x f(x) \Big|_0^2 - \int_0^2 f(x) dx.$

Từ
$$f(x) + f(2-x) = x^2 - 2x + 2, \forall x \in \mathbb{R}$$
 (1)

Thay
$$x = 0$$
 vào (1) ta được $f(0) + f(2) = 2 \Rightarrow f(2) = 2 - f(0) = 2 - 3 = -1$.

$$X\acute{e}t I = \int_{0}^{2} f(x) dx$$

Đặt
$$x=2-t \Rightarrow dx=-dt$$
, đổi cận:
$$\begin{cases} x=0 \Rightarrow t=2 \\ x=2 \Rightarrow t=0 \end{cases}$$

Khi đó
$$I = -\int_{0}^{0} f(2-t)dt = \int_{0}^{2} f(2-t)dt \Rightarrow I = \int_{0}^{2} f(2-x)dx$$

Do đó ta có
$$\int_{0}^{2} \left(f(x) + f(2-x) \right) dx = \int_{0}^{2} \left(x^2 - 2x + 2 \right) dx \Leftrightarrow 2 \int_{0}^{2} f(x) dx = \frac{8}{3} \Leftrightarrow \int_{0}^{2} f(x) dx = \frac{4}{3}.$$

Vậy
$$\int_{0}^{2} xf'(x)dx = xf(x)\Big|_{0}^{2} - \int_{0}^{2} f(x)dx = 2.(-1) - \frac{4}{3} = -\frac{10}{3}.$$

Từ
$$\begin{cases} f(x) + f(2-x) = x^2 - 2x + 2 & (1) \\ f(0) = 3 & (1) \end{cases}$$

Thay x = 0; x = 1 vào (1) ta được f(2) = -1; $f(1) = \frac{1}{2}$.

Xét hàm số
$$f(x) = ax^2 + bx + c$$
 từ giả thiết trên ta có
$$\begin{cases} c = 3 \\ a + b + c = \frac{1}{2} \\ 4a + 2b + c = -1 \end{cases} \Leftrightarrow \begin{cases} c = 3 \\ a = \frac{1}{2} \\ b = -3 \end{cases}$$

Câu 96. Cho hàm số y = f(x) có đạo hàm liên tục trên [2;4] và f'(x) > 0, $\forall x \in [2;4]$. Biết $4x^3 f(x) = [f'(x)]^3 - x^3, \forall x \in [2;4], f(2) = \frac{7}{4}$. Giá trị của f(4) bằng

A.
$$\frac{40\sqrt{5}-1}{2}$$

A.
$$\frac{40\sqrt{5}-1}{2}$$
. **B.** $\frac{20\sqrt{5}-1}{4}$. **C.** $\frac{20\sqrt{5}-1}{2}$. $\underline{\mathbf{D}}$. $\frac{40\sqrt{5}-1}{4}$.

C.
$$\frac{20\sqrt{5}-1}{2}$$

D.
$$\frac{40\sqrt{5}-1}{4}$$
.

Ta có: f'(x) > 0, $\forall x \in [2;4]$ nên hàm số y = f(x) đồng biến trên $[2;4] \Rightarrow f(x) \ge f(2)$ mà $f(2) = \frac{7}{4}$. Do đó: $f(x) > 0, \forall x \in [2;4]$.

Từ giả thiết ta có: $4x^3 f(x) = \left[f'(x) \right]^3 - x^3 \Leftrightarrow x^3 \left[4f(x) + 1 \right] = \left[f'(x) \right]^3$

$$\Leftrightarrow x.\sqrt[3]{4f(x)+1} = f'(x) \Leftrightarrow \frac{f'(x)}{\sqrt[3]{4f(x)+1}} = x.$$

Suy ra:
$$\int \frac{f'(x)}{\sqrt[3]{4f(x)+1}} dx = \int x dx \Leftrightarrow \frac{1}{4} \int \frac{d[4f(x)+1]}{\sqrt[3]{4f(x)+1}} = \frac{x^2}{2} + C \Leftrightarrow \frac{3}{8} \sqrt[3]{[4f(x)+1]^2} = \frac{x^2}{2} + C.$$

$$f(2) = \frac{7}{4} \Leftrightarrow \frac{3}{2} = 2 + C \Leftrightarrow C = -\frac{1}{2}$$
.

Vậy:
$$f(x) = \frac{\sqrt{\left[\frac{4}{3}(x^2 - 1)\right]^3 - 1}}{4} \Rightarrow f(4) = \frac{40\sqrt{5} - 1}{4}$$
.

Câu 97. Cho hàm số f(x) có đạo hàm liên tục trên [0;2] $(f'(x))^2 + 4f(x) = 8x^2 - 32x + 28$ với mọi x thuộc [0;2]. Giá trị của $\int f(x) dx$ bằng

A.
$$-\frac{5}{3}$$
.

$$\underline{\mathbf{B}} \cdot \frac{4}{3}$$
.

$$C. -\frac{2}{3}$$
.

D.
$$-\frac{14}{3}$$
.

Lời giải

Chọn B

$$\text{Dăt } I = \int_{1}^{2} 2f(x) \, \mathrm{d}x.$$

Dùng tích phân từng phần, ta có: $\begin{cases} u = f(x) \\ dy = 2dx \end{cases} \Rightarrow \begin{cases} du = f'(x)dx \\ y = 2x - 4 \end{cases}$.

$$I = (2x-4) f(x) \Big|_{1}^{2} - \int_{1}^{2} (2x-4) f'(x) dx = -\int_{1}^{2} (2x-4) f'(x) dx.$$

Ta có
$$(f'(x))^2 + 4f(x) = 8x^2 - 32x + 28 \Rightarrow \int_1^2 (f'(x))^2 dx + 2\int_1^2 2f(x) dx = \int_1^2 (8x^2 - 32x + 28) dx$$

$$\Leftrightarrow \int_1^2 (f'(x))^2 dx - 2\int_1^2 (2x - 4)f'(x) dx + \int_1^2 (2x - 4)^2 dx = \int_1^2 (8x^2 - 32x + 28) dx + \int_1^2 (2x - 4)^2 dx$$

$$\Leftrightarrow \int_1^2 [f'(x) - (2x - 4)]^2 dx = 0 \Leftrightarrow f'(x) = 2x - 4 \Rightarrow f(x) = x^2 - 4x + C, C \in \mathbb{R}.$$

Mà
$$f(1) = 0 \Rightarrow C = 3 \Rightarrow f(x) = x^2 - 4x + 3 \Rightarrow \int_0^1 f(x) dx = \int_0^1 (x^2 - 4x + 3) dx = \frac{4}{3}$$

Câu 98. Cho hàm số f(x) liên tục trên [0;1] và $f(x) + f(1-x) = \frac{x^2 + 2x + 3}{x+1}$, $\forall x \in [0;1]$. Tính $\int f(x) dx$

A.
$$\frac{3}{4} + 2 \ln 2$$
. **B.** $3 + \ln 2$. **C.** $\frac{3}{4} + \ln 2$. **D.** $\frac{3}{2} + 2 \ln 2$.

B.
$$3 + \ln 2$$

C.
$$\frac{3}{4} + \ln 2$$

D.
$$\frac{3}{2} + 2 \ln 2$$
.

Chon C

Theo giả thiết, ta có: $f(x)+f(1-x)=\frac{x^2+2x+3}{x+1}$, $\forall x \in [0;1]$ và f(x) liên tục trên [0;1] nên

Lời giải

$$\int_{0}^{1} \left[f(x) + f(1-x) \right] dx = \int_{0}^{1} \frac{x^{2} + 2x + 3}{x + 1} dx \iff \int_{0}^{1} f(x) dx + \int_{0}^{1} f(1-x) dx = \int_{0}^{1} \frac{(x+1)^{2} + 2}{x + 1} dx \tag{1}$$

Đặt 1-x=t thì dx = -dt, với $x = 0 \Rightarrow t = 1$, với $x = 1 \Rightarrow t = 0$

Do đó:
$$\int_{0}^{1} f(1-x) dx = -\int_{1}^{0} f(t) dt = \int_{0}^{1} f(t) dt = \int_{0}^{1} f(x) dx \Rightarrow \int_{0}^{1} f(x) dx + \int_{0}^{1} f(1-x) dx = 2 \int_{0}^{1} f(x) dx$$
(2).

Lại có
$$\int_{0}^{1} \frac{(x+1)^{2}+2}{x+1} dx = \int_{0}^{1} \left(x+1+\frac{2}{x+1}\right) dx = \left(\frac{x^{2}}{2}+x+2\ln|x+1|\right)\Big|_{0}^{1} = \frac{3}{2}+2\ln 2$$
 (3)

Từ (1), (2) và (3) suy ra
$$2\int_{0}^{1} f(x) dx = \frac{3}{2} + 2 \ln 2 \Leftrightarrow \int_{0}^{1} f(x) dx = \frac{3}{4} + \ln 2$$
.

Câu 99. Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn $3f(x) + f(2-x) = 2(x-1)e^{x^2-2x+1} + 4$. Tính tích phân $I = \int f(x) dx$ ta được kết quả:

A.
$$I = e + 4$$
.

B.
$$I = 8$$

D.
$$I = e + 2$$
.

Chọn C

Theo giả thuyết ta có
$$\int_{0}^{2} \left[3f(x) + f(2-x) \right] dx = \int_{0}^{2} \left[2(x-1)e^{x^{2}-2x+1} + 4 \right] dx$$
 (*).

Ta tính
$$\int_{0}^{2} f(2-x) dx = -\int_{0}^{2} f(2-x) d(2-x) = \int_{0}^{2} f(x) dx$$
.

Vì vậy
$$\int_{0}^{2} [3f(x) + f(2-x)] dx = 4 \int_{0}^{2} f(x) dx$$
.

Hơn nữa
$$\int_{0}^{2} 2(x-1)e^{x^{2}-2x+1} dx = \int_{0}^{2} e^{x^{2}-2x+1} d(x^{2}-2x+1) = e^{x^{2}-2x+1} \Big|_{0}^{2} = 0 \text{ và } \int_{0}^{2} 4 dx = 8.$$

Suy ra
$$4\int_{0}^{2} f(x) dx = 8 \Leftrightarrow \int_{0}^{2} f(x) dx = 2$$
.

Câu 100. Cho

hàm

số

f(x) liên tục

mãn

thỏa

$$xf(x^5) + f(1-x^4) = x^{11} + x^8 + x^6 - 3x^4 + x + 3, \forall x \in \mathbb{R}$$
. Khi đó $\int_{-1}^{0} f(x) dx$ bằng

A.
$$\frac{35}{6}$$
.

B.
$$-\frac{15}{4}$$

B.
$$-\frac{15}{4}$$
. **C.** $-\frac{7}{24}$.

$$\underline{\mathbf{D}}$$
. $\frac{5}{6}$.

Chon D

Với
$$\forall x \in \mathbb{R}$$
 ta có : $xf(x^5) + f(1-x^4) = x^{11} + x^8 + x^6 - 3x^4 + x + 3$

$$\Rightarrow x^4 f(x^5) + x^3 f(1 - x^4) = x^{14} + x^{11} + x^9 - 3x^7 + x^4 + 3x^3 \quad (*)$$

$$\Rightarrow \int_{0}^{1} x^{4} f(x^{5}) dx + \int_{0}^{1} x^{3} f(1 - x^{4}) dx = \int_{0}^{1} (x^{14} + x^{11} + x^{9} - 3x^{7} + x^{4} + 3x^{3}) dx$$

$$\Leftrightarrow \frac{1}{5} \int_{0}^{1} f(x^{5}) d(x^{5}) - \frac{1}{4} \int_{0}^{1} f(1 - x^{4}) d(1 - x^{4}) = \frac{33}{40}$$

$$\Leftrightarrow \frac{1}{5} \int_{0}^{1} f(x) dx + \frac{1}{4} \int_{0}^{1} f(x) dx = \frac{33}{40} \Leftrightarrow \int_{0}^{1} f(x) dx = \frac{11}{6}$$

Mặt khác: (*)
$$\Rightarrow \int_{-1}^{0} x^4 f(x^5) dx + \int_{-1}^{0} x^3 f(1-x^4) dx = \int_{-1}^{0} (x^{14} + x^{11} + x^9 - 3x^7 + x^4 + 3x^3) dx$$

$$(*) \Rightarrow \frac{1}{5} \int_{-1}^{0} f(x^{5}) d(x^{5}) - \frac{1}{4} \int_{-1}^{0} f(1 - x^{4}) d(1 - x^{4}) = -\frac{7}{24}$$

$$\Rightarrow \frac{1}{5} \int_{-1}^{0} f(x) dx - \frac{1}{4} \int_{0}^{1} f(x) dx = -\frac{7}{24} \Rightarrow \int_{-1}^{0} f(x) dx = 5 \left(-\frac{7}{24} + \frac{1}{4} \cdot \frac{11}{6} \right) = \frac{5}{6}.$$

Câu 101. Cho hàm số f(x) liên tục trên $\left[\frac{2}{5};1\right]$ và thỏa mãn $2f(x)+5f\left(\frac{2}{5x}\right)=3x, \forall x \in \left[\frac{2}{5};1\right]$. Khi đó

$$I = \int_{\frac{2}{15}}^{\frac{1}{3}} \ln 3x \cdot f'(3x) dx \text{ bằng:}$$

A.
$$\frac{1}{5} \ln \frac{2}{5} + \frac{3}{35}$$

B.
$$\frac{1}{5} \ln \frac{5}{2} - \frac{3}{35}$$

A.
$$\frac{1}{5} \ln \frac{2}{5} + \frac{3}{35}$$
. **B.** $\frac{1}{5} \ln \frac{5}{2} - \frac{3}{35}$. **C.** $-\frac{1}{5} \ln \frac{5}{2} - \frac{3}{35}$. **D.** $-\frac{1}{5} \ln \frac{2}{5} + \frac{3}{35}$

D.
$$-\frac{1}{5}\ln\frac{2}{5} + \frac{3}{35}$$
.

Chon B

Cách 1: Tự Luận

Ta có:
$$2f(x) + 5f\left(\frac{2}{5x}\right) = 3x, \forall x \in \left[\frac{2}{5}; 1\right]$$
 (1)

$$\Leftrightarrow 2\frac{f(x)}{x} + 5\frac{f\left(\frac{2}{5x}\right)}{x} = 3, \forall x \in \left[\frac{2}{5}; 1\right]$$

$$\Leftrightarrow 2\int_{\frac{2}{5}}^{1} \frac{f(x)}{x} dx + 5\int_{\frac{2}{5}}^{1} \frac{f(\frac{2}{5x})}{x} dx = \int_{\frac{2}{5}}^{1} 3 dx = \frac{9}{5}$$
 (2)

$$\text{X\'et } I_1 = 5 \int_{\frac{2}{5}}^{1} \frac{f\left(\frac{2}{5x}\right)}{x} dx \text{ d\~at } u = \frac{2}{5x} \Rightarrow du = -\frac{2}{5x^2} dx \Rightarrow -\frac{2}{5} \frac{du}{u^2} = dx.$$

Đổi cận:
$$\begin{cases} x = \frac{2}{5} \Rightarrow u = 1 \\ x = 1 \Rightarrow u = \frac{2}{5} \end{cases}$$

$$\Rightarrow I_{1} = -5 \int_{1}^{\frac{2}{5}} \frac{f(u)}{u} du = 5 \int_{\frac{2}{5}}^{1} \frac{f(u)}{u} du = 5 \int_{\frac{2}{5}}^{1} \frac{f(x)}{x} dx$$

Từ (2) suy ra,
$$2\int_{\frac{2}{5}}^{1} \frac{f(x)}{x} dx + 5\int_{\frac{2}{5}}^{1} \frac{f(x)}{x} dx = \frac{9}{5}$$

$$\Leftrightarrow \int_{\frac{2}{5}}^{1} \frac{f(x)}{x} dx = \frac{9}{35}$$

Tính
$$I = \int_{\frac{2}{15}}^{\frac{1}{3}} \ln 3x \cdot f'(3x) dx$$
.

Đặt
$$t = 3x \Rightarrow dt = 3dx \Rightarrow \frac{1}{3}dt = dx$$
. Đổi cận:
$$\begin{cases} x = \frac{2}{15} \Rightarrow t = \frac{2}{5} \\ x = \frac{1}{3} \Rightarrow t = 1 \end{cases}$$

$$\Rightarrow I = \frac{1}{3} \int_{\frac{2}{5}}^{1} \ln t \cdot f'(t) dt$$

$$\text{Dăt: } \begin{cases} u = \ln t \\ dv = f'(t) \end{cases} \Rightarrow \begin{cases} du = \frac{1}{t}dt \\ v = f(t) \end{cases}$$

$$I = \frac{1}{3} (\ln t \cdot f(t)) \Big|_{\frac{2}{5}}^{1} - \frac{1}{3} \int_{\frac{2}{5}}^{1} \frac{f(t)}{t} dt = -\frac{1}{3} \ln \frac{2}{5} \cdot f(\frac{2}{5}) - \frac{3}{35}$$

Tính
$$2f(x) + 5f\left(\frac{2}{5x}\right) = 3x, \forall x \in \left[\frac{2}{5}; 1\right]$$

Cho $x = 1; x = \frac{2}{5}$ vào (1) ta có hệ phương trình sau:

$$\begin{cases} 2f(1) + 5f\left(\frac{2}{5}\right) = 3\\ 2f\left(\frac{2}{5}\right) + 5f(1) = \frac{6}{5} \end{cases} \Leftrightarrow \begin{cases} f(1) = 0\\ f\left(\frac{2}{5}\right) = \frac{3}{5} \end{cases}$$

Suy ra,
$$I = -\frac{1}{3} \cdot \frac{3}{5} \ln \frac{2}{5} - \frac{3}{35} = \frac{1}{5} \ln \frac{5}{2} - \frac{3}{35}$$
.

Câu 102. Cho hàm số f(x) liên tục trên \mathbb{R} và thỏa mãn $f(x) + 2xf(x^2) = 2x^7 + 3x^3 - x - 1$ với $x \in \mathbb{R}$.

Tính tích phân $\int_{0}^{1} xf'(x) dx$.

A.
$$\frac{1}{4}$$
.

$$\underline{\mathbf{B}}$$
. $\frac{5}{4}$.

$$C_{2} = \frac{3}{4}$$
.

D.
$$-\frac{1}{2}$$
.

Lời giải

Chọn B

Áp dụng công thức tích phân từng phần, ta có: $\int_{0}^{1} xf'(x) dx = xf(x) \Big|_{0}^{1} - \int_{0}^{1} f(x) dx \ (*)$

Từ
$$f(x) + 2xf(x^2) = 2x^7 + 3x^3 - x - 1$$
 (1)

Thay
$$x = 1$$
 vào (1) ta được $f(1) + 2f(1) = 3 \Rightarrow f(1) = 1(2)$

Mặt khác từ (1) ta có
$$\int_{0}^{1} f(x) dx + \int_{0}^{1} 2xf(x^{2}) dx = \int_{0}^{1} (2x^{7} + 3x^{3} - x - 1) dx$$

$$\Rightarrow \int_{0}^{1} f(x) dx + \int_{0}^{1} f(x^{2}) d(x^{2}) = -\frac{1}{2} \Rightarrow 2 \int_{0}^{1} f(x) dx = -\frac{1}{2} \Rightarrow \int_{0}^{1} f(x) dx = -\frac{1}{4} (3)$$

Thay (2), (3) vào (*) ta được
$$\int_{0}^{1} xf'(x)dx = 1 + \frac{1}{4} = \frac{5}{4}$$

Câu 103. Cho hàm số f(x) liên tục trên $\mathbb R$ thỏa mãn

$$x^{2} f(1-x) + 2f(\frac{2x-2}{x}) = \frac{-x^{4} + x^{3} + 4x - 4}{x}, \forall x \neq 0, x \neq 1$$
. Khi đó $\int_{-1}^{1} f(x) dx$ có giá trị là

$$C. \frac{1}{2}$$
.

D.
$$\frac{3}{2}$$
.

Lời giải

<u>C</u>họn <u>A</u>

Từ giả thiết suy ra $f(1-x) + \frac{2}{x^2} f(\frac{2x-2}{x}) = \frac{-x^4 + x^3 + 4x - 4}{x^3}$

thỏa

mãn

Ta có:
$$\int_{1}^{2} f(1-x) dx + \int_{1}^{2} f\left(\frac{2x-2}{x}\right) \cdot \frac{2}{x^{2}} dx = \int_{1}^{2} \frac{-x^{4} + x^{3} + 4x - 4}{x^{3}} dx$$

$$\Leftrightarrow -\int_{1}^{2} f(1-x) d(1-x) + \int_{1}^{2} f\left(\frac{2x-2}{x}\right) d\left(\frac{2x-2}{x}\right) = \int_{1}^{2} \left(-x + 1 + \frac{4}{x^{2}} - \frac{4}{x^{3}}\right) dx$$

$$\Leftrightarrow -\int_{0}^{-1} f(t) dt + \int_{0}^{1} f(t) dt = \left(-\frac{x^{2}}{2} + x - \frac{4}{x} + \frac{2}{x^{2}}\right) \Big|_{1}^{2}$$

$$\Leftrightarrow \int_{-1}^{0} f(t) dt + \int_{0}^{1} f(t) dt = 0 \Leftrightarrow \int_{-1}^{1} f(t) dt = 0.$$

$$V_{a}^{2} y \int_{-1}^{1} f(x) dx = 0.$$

Cách trắc nghiệm

Ta có:
$$x^2 f(1-x) + 2f\left(\frac{2x-2}{x}\right) = \frac{-x^4 + x^3 + 4x - 4}{x}, \forall x \neq 0, x \neq 1$$

 $\Leftrightarrow x^2 f(1-x) + 2f\left(\frac{2x-2}{x}\right) = \frac{-x^4 + x^3}{x} + \frac{4x-4}{x}, \forall x \neq 0, x \neq 1$
 $\Leftrightarrow x^2 f(1-x) + 2f\left(\frac{2x-2}{x}\right) = x^2(1-x) + 2\left(\frac{2x-2}{x}\right), \forall x \neq 0, x \neq 1$
Chọn $f(x) = x \Rightarrow \int_{-1}^{1} f(x) dx = \int_{-1}^{1} x dx = 0$.

Câu 104. Cho hàm số f(x) liên tục trên $\mathbb R$

$$f(x) + (x^{2} - 1) f\left(\frac{1}{4}x^{3} - \frac{3}{4}x - \frac{3}{2}\right) = x^{5} - 4x^{3} - 5x^{2} + 7x + 6, \forall x \in \mathbb{R} . \text{ Tich phân } \int_{1}^{2} f(x) dx \text{ bằng}$$
A. $\frac{1}{7}$.

B. $\frac{1}{3}$.

C. 7.

D. $-\frac{19}{3}$.

Lời giải

Chọn C

Với
$$\forall x \in \mathbb{R}$$
 ta có : $f(x) + (x^2 - 1) f\left(\frac{1}{4}x^3 - \frac{3}{4}x - \frac{3}{2}\right) = x^5 - 4x^3 - 5x^2 + 7x + 6$ (*)

$$\Rightarrow \int_{-2}^{-1} f(x) dx + \int_{-2}^{-1} (x^2 - 1) f\left(\frac{1}{4}x^3 - \frac{3}{4}x - \frac{3}{2}\right) dx = \int_{-2}^{-1} (x^5 - 4x^3 - 5x^2 + 7x + 6) dx$$

$$\Leftrightarrow \int_{-2}^{-1} f(x) dx + \frac{4}{3} \int_{-2}^{-1} f\left(\frac{1}{4}x^3 - \frac{3}{4}x - \frac{3}{2}\right) d\left(\frac{1}{4}x^3 - \frac{3}{4}x - \frac{3}{2}\right) = -\frac{35}{3}$$

$$\Leftrightarrow \int_{-2}^{-1} f(x) dx + \frac{4}{3} \int_{-2}^{-1} f(x) dx = -\frac{35}{3} \Leftrightarrow \int_{-2}^{-1} f(x) dx = -5$$
Mặt khác : (*)
$$\Rightarrow \int_{1}^{2} f(x) dx + \int_{1}^{2} (x^2 - 1) f\left(\frac{1}{4}x^3 - \frac{3}{4}x - \frac{3}{2}\right) dx = \int_{1}^{2} (x^5 - 4x^3 - 5x^2 + 7x + 6) dx$$

$$\Leftrightarrow \int_{1}^{2} f(x) dx + \frac{4}{3} \int_{1}^{2} f\left(\frac{1}{4}x^3 - \frac{3}{4}x - \frac{3}{2}\right) d\left(\frac{1}{4}x^3 - \frac{3}{4}x - \frac{3}{2}\right) = \frac{1}{3}$$

$$\Rightarrow \int_{1}^{2} f(x) dx + \frac{4}{3} \int_{1}^{2} f(x) dx = \frac{1}{3} \Leftrightarrow \int_{1}^{2} f(x) dx = \frac{1}{3} - \frac{4}{3} \cdot (-5) = 7.$$

Câu 105. (Chuyên Biên Hòa - Hà Nam - 2020) Cho hàm số f(x) liên tục trên [-1;2] và thỏa mãn điều kiện $f(x) = \sqrt{x+2} + xf(3-x^2)$.

Tích phân $I = \int_{1}^{2} f(x)dx$ bằng

A.
$$I = \frac{14}{3}$$

A.
$$I = \frac{14}{3}$$
. **D.** $I = \frac{28}{3}$. **D.** $I = 2$.

C.
$$I = \frac{4}{3}$$

D.
$$I = 2$$

Lời giải

Chon B

Ta có
$$I = \int_{-1}^{2} \left[\sqrt{x+2} + xf(3-x^2) \right] dx = \int_{-1}^{2} \sqrt{x+2} dx + \int_{-1}^{2} xf(3-x^2) dx = \frac{14}{3} + \int_{-1}^{2} xf(3-x^2) dx.$$

Xét
$$\int_{-1}^{2} xf(3-x^2) dx$$
 đặt $t = 3-x^2 \implies dt = -2x dx \implies x dx = -\frac{dt}{2}$.

Đổi cận khi
$$x = -1 \Rightarrow t = 2$$
; $x = 2 \Rightarrow t = -1$. Suy ra
$$\int_{-1}^{2} xf(3-x^2) dx = -\frac{1}{2} \int_{2}^{-1} f(t) dt = \frac{1}{2} \int_{-1}^{2} f(t) dt$$
.

Khi đó
$$I = \frac{14}{3} + \int_{1}^{2} xf(3-x^2) dx = \frac{14}{3} + \frac{1}{2} \int_{1}^{2} f(t) dt = \frac{14}{3} + \frac{1}{2} \int_{1}^{2} f(x) dx \Leftrightarrow I = \frac{14}{3} + \frac{I}{2} \Rightarrow I = \frac{28}{3}$$
.

Câu 106. (**Hậu Lộc 2 - Thanh Hóa - 2020**) Cho hàm số f(x) có đạo hàm cấp hai trên đoạn [0;1]đồng thời thỏa mãn các điều kiện $f'(0) = -1, f'(x) < 0, [f'(x)]^2 = f''(x), \forall x \in [0;1]$. Giá trị f(0)-f(1) thuộc khoảng

B.
$$(-1;0)$$
. $\underline{\mathbf{C}}$. $(0;1)$. Lời giải

D.
$$(-2;-1)$$
.

Chon C

$$[f'(x)]^2 = f''(x) \Leftrightarrow \frac{f''(x)}{[f'(x)]^2} = 1 \Leftrightarrow \int \frac{f''(x)}{[f'(x)]^2} dx = \int dx \Leftrightarrow \frac{-1}{f'(x)} = x + C$$

$$f'(0) = -1 \Rightarrow \frac{-1}{-1} = 0 + C \Leftrightarrow C = 1 \Rightarrow \frac{-1}{f'(x)} = x + 1 \Leftrightarrow f'(x) = \frac{-1}{x+1}$$

$$f(0) - f(1) = \int_{1}^{0} f'(x) dx = \int_{1}^{0} \frac{-1}{x+1} dx = -\ln|x+1| \begin{vmatrix} 0 \\ 1 \end{vmatrix} = \ln 2 \in (0;1)$$

Tre - 2020) Cho hàm số y = f(x)Câu 107. (Chuyên Bến mãn $\left[f'(x) \right]^2 + f(x) \cdot f''(x) = x^3 - 2x, \forall x \in \mathbb{R} \text{ và } f(0) = f'(0) = 2 \text{ . Tính giá trị của } T = f^2(2)$

A.
$$\frac{160}{15}$$

B.
$$\frac{268}{15}$$

C.
$$\frac{4}{15}$$

C.
$$\frac{4}{15}$$
 D. $\frac{268}{30}$

Lời giải

Chon B

Ta có:
$$[f'(x)]^2 + f(x).f''(x) = x^3 - 2x, \forall x \in R$$

$$\Leftrightarrow (f'(x).f(x))' = x^3 - 2x, \forall x \in R$$

Lấy nguyên hàm hai vế ta có:

$$\int (f'(x).f(x))' dx = \int (x^3 - 2x) dx$$
$$\Leftrightarrow f'(x).f(x) = \frac{x^4}{4} - x^2 + C$$

Theo đề ra ta có: f'(0).f(0) = C = 4

Suy ra:

$$\int_{0}^{2} f'(x).f(x).dx = \int_{0}^{2} \left(\frac{x^{4}}{4} - x^{2} + 4\right) dx$$

$$\Leftrightarrow \frac{f^2(x)}{2}\bigg|_0^2 = \frac{104}{15} \Leftrightarrow f^2(2) = \frac{268}{15}.$$

Câu 108. (Chuyên Thái Bình - 2020) Cho f(x) là hàm số liên tục trên tập xác đinh \mathbb{R}^+ và thỏa mãn

$$f(x^2 + 3x + 1) = x + 2$$
. Tinh $I = \int_{1}^{5} f(x) dx$

A.
$$\frac{37}{6}$$
.

B.
$$\frac{527}{3}$$
. $\underline{\mathbf{C}} \cdot \frac{61}{6}$.

$$\underline{\mathbf{C}}$$
. $\frac{61}{6}$

D.
$$\frac{464}{3}$$
.

Chọn C

$$f(x^{2}+3x+1) = x+2$$

$$\Leftrightarrow (2x+3) f(x^{2}+3x+1) = (2x+3)(x+2)$$

$$\Leftrightarrow \int_{0}^{1} (2x+3) f(x^{2}+3x+1) dx = \int_{0}^{1} (2x+3)(x+2) dx = \frac{61}{6}$$

$$\text{Dặt } t = x^2 + 3x + 1 \Rightarrow dt = (2x + 3)dx$$

х	0	1
t	1	5

Suy ra
$$\int_{1}^{5} f(t) dt = \frac{61}{6}.$$

Câu 109. (Chuyên Chu Văn An - 2020) Cho hàm số y = f(x) liên tục, có đạo hàm trên R thỏa mãn điều

kiện
$$f(x) + x(f'(x) - 2\sin x) = x^2\cos x, x \in R$$
 và $f\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$. Tính $\int_{0}^{\frac{\pi}{2}} xf''(x)dx$

<u>A</u>. 0.

C. 1.

D. π .

Lời giải

Chọn A

Từ giả thiết $f(x) + x(f'(x) - 2\sin x) = x^2 \cos x$

NGUYỄN <mark>BẢO</mark> VƯƠNG - 0946798489

$$\Leftrightarrow f(x) + xf'(x) = x^2 \cos x + 2x \sin x$$

$$\Leftrightarrow (xf(x))' = (x^2 \sin x)'$$

$$\Leftrightarrow xf(x) = x^2 \sin x + C$$

Mặt khác:
$$f\left(\frac{\pi}{2}\right) = \frac{\pi}{2} \Rightarrow C = 0 \Rightarrow f(x) = x \sin x$$
.

Ta có:
$$\int_{0}^{\frac{\pi}{2}} xf''(x) dx = xf'(x) \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} f'(x) dx = x^{2} \cos x + 2x \sin x - 2f(x) \Big|_{0}^{\frac{\pi}{2}}$$

$$= x^2 \cos x + 2x \sin x - 2x \sin x \Big|_0^{\frac{\pi}{2}}$$

$$=x^2\cos x\Big|_0^{\frac{\pi}{2}}=0$$

Câu 110. (Chuyên Lê Hồng Phong - Nam Định - 2020) Cho hàm số f(x) thỏa mãn $f(0) = \frac{2}{3}$ và

$$\left(\sqrt{x}+\sqrt{x+1}\right)f'(x)=1, \forall x\geq -1.$$
 Biết rằng $\int_{0}^{1}f(x)dx=\frac{a\sqrt{2}+b}{15}$ với $a,b\in\mathbb{Z}$. Tính $T=a+b$.

Lời giải

<u>C</u>họn <u>B</u>

Ta có:
$$(\sqrt{x} + \sqrt{x+1}) f'(x) = 1, \forall x \ge -1.$$

$$\Rightarrow f'(x) = \frac{1}{\sqrt{x+1} + \sqrt{x}}$$

$$\Rightarrow \int f'(x)dx = \int \frac{1}{\sqrt{x+1} + \sqrt{x}} dx$$

$$\Rightarrow \int f'(x)dx = \int (\sqrt{x+1} - \sqrt{x})dx$$

$$\Rightarrow f(x) = \frac{2}{3}\sqrt{(x+1)^3} - \frac{2}{3}\sqrt{x^3} + C.$$

Mặt khác:
$$f(0) = \frac{2}{3} \Rightarrow \frac{2}{3} = \frac{2}{3} - \frac{2}{3} + C \Leftrightarrow C = 0 \Rightarrow f(x) = \frac{2}{3} \sqrt{(x+1)^3} - \frac{2}{3} \sqrt{x^3}$$
.

Do đó:
$$\int_{0}^{1} f(x) dx = \int_{0}^{1} \left(\frac{2}{3} \sqrt{(x+1)^3} - \frac{2}{3} \sqrt{x^3} \right) dx = \left(\frac{2}{3} \cdot \frac{2}{5} \sqrt{(x+1)^5} - \frac{2}{3} \cdot \frac{2}{5} \sqrt{x^5} \right) \Big|_{0}^{1} = \frac{16\sqrt{2} - 8}{15}.$$

$$\Rightarrow a = 16; b = -8 \Rightarrow T = a + b = 8.$$

Câu 111. (Chuyên Hưng Yên - 2020) Cho hàm số f(x) liên tục trên đoạn [0;1] thỏa mãn

$$4x.f(x^2) + 3f(1-x) = \sqrt{1-x^2}$$
. Tính $I = \int_0^1 f(x) dx$.

A.
$$\frac{\pi}{4}$$

B.
$$\frac{\pi}{16}$$
.

$$\underline{\mathbf{C}} \cdot \frac{\pi}{20}$$
.

D.
$$\frac{\pi}{6}$$
.

Lời giải

<u>C</u>họn <u>C</u>

Lấy tích phân hai vế, ta có $\int_{0}^{1} \left[4x \cdot f(x^{2}) + 3f(1-x) \right] dx = \int_{0}^{1} \sqrt{1-x^{2}} dx \quad (*).$

Xét tích phân $J = \int_{0}^{1} \sqrt{1 - x^2} dx$. Đặt $x = \sin t \Rightarrow dx = \cos t dt$. Khi đó, ta có

$$J = \int_{0}^{1} \sqrt{1 - x^{2}} dx = \int_{0}^{\frac{\pi}{2}} \sqrt{1 - \sin^{2} t} \cdot \cos t dt = \int_{0}^{\frac{\pi}{2}} \cos^{2} t dt = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (1 + \cos 2t) dt = \frac{1}{2} \left(t + \frac{\sin 2t}{2} \right) \Big|_{0}^{\frac{\pi}{2}} = \frac{\pi}{4}.$$

Xét tích phân $K = \int_{0}^{1} 4x \cdot f(x^{2}) dx$. Đặt $t = x^{2} \Rightarrow dt = 2x dx$. Khi đó, ta có

$$K = \int_{0}^{1} 4x \cdot f(x^{2}) dx = 2 \int_{0}^{1} f(t) dt = 2 \int_{0}^{1} f(x) dx.$$

Xét tích phân $L = \int_{0}^{1} 3f(1-x) dx$. Đặt $t = 1-x \Rightarrow dt = -dx$. Khi đó, ta có

$$L = \int_{0}^{1} 3f(1-x) dx = 3 \int_{1}^{0} f(t)(-dt) = 3 \int_{0}^{1} f(t) dt = 3 \int_{0}^{1} f(x) dx.$$

Vậy (*)
$$\Leftrightarrow 5\int_{0}^{1} f(x) dx = \frac{\pi}{4} \Rightarrow \int_{0}^{1} f(x) dx = \frac{\pi}{20}$$
.

Câu 112. (Chuyên Nguyễn Bỉnh Khiêm - Quảng Nam $\stackrel{\checkmark}{\sim}$ 2020) Cho hàm số f(x) liên tục trên khoảng

$$(0;+\infty)$$
. Biết $f(3)=3$ và $xf'(2x+1)-f(2x+1)=x^3, \forall x \in (0;+\infty)$. Giá trị của $\int_3^5 f(x)dx$ bằng

A.
$$\frac{914}{3}$$
.

B.
$$\frac{59}{3}$$
.

C.
$$\frac{45}{4}$$
.

D. 88.

Lời giải

Chọn B

Ta có:

$$xf'(2x+1) - f(2x+1) = x^{3} \Leftrightarrow \frac{2x^{2}f'(2x+1) - 2xf(2x+1)}{x^{4}} = 2, \forall x \in (0; +\infty).$$

$$\Leftrightarrow \left(\frac{f(2x+1)}{x^{2}}\right)' = 2 \Leftrightarrow \frac{f(2x+1)}{x^{2}} = 2x + C. (1)$$

Cho
$$x = 1$$
 từ $(1) \Rightarrow \frac{f(3)}{1^2} = 2.1 + C \Leftrightarrow \frac{3}{1^2} = 2.1 + C \Rightarrow C = 1 \Rightarrow f(2x+1) = x^2(2x+1) = 2x^3 + x^2$.

$$\Rightarrow \int_{1}^{2} f(2x+1)dx = \int_{1}^{2} (2x^{3} + x^{2})dx = \left(2\frac{x^{4}}{4} + \frac{x^{3}}{3}\right)\Big|_{1}^{2} = \frac{59}{6}.$$

$$\Rightarrow \int_{3}^{5} f(x)dx = 2\int_{1}^{2} f(2x+1)dx = \frac{59}{3}.$$

Câu 113. (Chuyên Thái Bình - 2020) Cho hàm số f(x) có đạo hàm và đồng biến trên [1;4], thỏa mãn

$$x + 2xf(x) = [f'(x)]^2$$
 với mọi $x \in [1;4]$. Biết $f(1) = \frac{3}{2}$, tính $I = \int_{1}^{4} f(x) dx$

A.
$$\frac{1188}{45}$$
.

B.
$$\frac{1187}{45}$$
.

$$\underline{\mathbf{C}} \cdot \frac{1186}{45}$$
.

D.
$$\frac{9}{2}$$
.

Lời giải

Chọn C

Do f(x) đồng biến trên [1;4] nên $f(x) \ge f(1) = \frac{3}{2} > -\frac{1}{2}$, ngoài ra $f'(x) \ge 0$, $\forall x \in [1;4]$. Khi đó ta có biến đổi sau:

$$x + 2xf(x) = [f'(x)]^2 \Leftrightarrow \frac{f'(x)}{\sqrt{2f(x)+1}} = \sqrt{x}$$

$$\Leftrightarrow \left(\sqrt{2f(x)+1}\right)' = \left(\frac{2}{3}\sqrt{x^3} + C\right)' \Leftrightarrow \sqrt{2f(x)+1} = \frac{2}{3}\sqrt{x^3} + C$$

Mà
$$f(1) = \frac{3}{2} \Rightarrow C = \frac{4}{3} \Rightarrow f(x) = \frac{\left(\frac{2}{3}\sqrt{x^3} + \frac{4}{3}\right)^2 - 1}{2} = \frac{2}{9}x^3 + \frac{8}{9}\sqrt{x^3} + \frac{7}{18}$$
.

Vậy
$$I = \int_{1}^{4} f(x) dx = \left(\frac{1}{18}x^4 + \frac{16}{45}x^2\sqrt{x} + \frac{7}{18}x\right)_{1}^{4} = \frac{1186}{45}$$
.

Câu 114. (Chuyên Thăng Long - Đà Lạt - 2018) Cho hàm số f(x) liên tục trên $\mathbb R$ thảo mãn:

$$7f(x) + 4f(4-x) = 2018x\sqrt{x^2 + 9}$$
, $\forall x \in \mathbb{R}$. Tính $I = \int_{0}^{4} f(x) dx$.

A.
$$\frac{2018}{11}$$
.

B.
$$\frac{7063}{3}$$
.

C.
$$\frac{98}{3}$$
.

D.
$$\frac{197764}{33}$$
.

Lời giải

Ta có:
$$7f(x) + 4f(4-x) = 2018x\sqrt{x^2+9} \Rightarrow f(x) = -\frac{4}{7}f(4-x) + \frac{2018}{7}x\sqrt{x^2+9}$$
.

Khi đó
$$I = \int_{0}^{4} f(x) dx = -\frac{4}{7} \int_{0}^{4} f(4-x) dx + \frac{2018}{7} \int_{0}^{4} x \sqrt{x^2 + 9} dx$$
 (1).

Xét:
$$\int_{0}^{4} f(4-x) dx$$
, đặt $t = 4-x$, $\Rightarrow dt = -dx$ nên
$$\int_{0}^{4} f(4-x) dx = -\int_{4}^{0} f(t) dt = \int_{0}^{4} f(t) dx = I$$

Xét:
$$\int_{0}^{4} x \sqrt{x^2 + 9} dx$$
, đặt $u = \sqrt{x^2 + 9} \Rightarrow u^2 = x^2 + 9 \Rightarrow u du = x dx$.

Nên
$$\int_{0}^{4} x \sqrt{x^2 + 9} dx = \int_{3}^{5} u^2 du = \frac{u^3}{3} \Big|_{3}^{5} = \frac{98}{3}.$$

Câu 115. (THPT Ba Đình 2019) Hàm số f(x) có đạo hàm đến cấp hai trên $\mathbb R$ thỏa mãn:

$$f^{2}(1-x) = (x^{2}+3) f(x+1)$$
. Biết rằng $f(x) \neq 0, \forall x \in \mathbb{R}$, tính $I = \int_{0}^{2} (2x-1) f''(x) dx$.

Ta có:
$$\begin{cases} f^{2}(1-x) = (x^{2}+3), f(x+1) \Rightarrow f^{4}(1-x) = (x^{2}+3)^{2}. f^{2}(x+1) (1) \\ f^{2}(1+x) = (x^{2}+3). f(1-x) (2) \end{cases}$$

$$\text{Tùr (1) và (2)} \Rightarrow f(1-x) = x^{2}+3 = (1-x-1)^{2}+3$$

$$\Rightarrow f(x) = (x-1)^{2}+3$$

$$\Rightarrow f''(x) = 2$$

$$\Rightarrow I = \int_{0}^{2} (4x-2) dx = (2x^{2}-2x) \Big|_{0}^{2} = 4.$$

Câu 116. Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} thỏa mãn $x.f(x).f'(x) = f^2(x) - x, \forall x \in \mathbb{R}$ và có f(2) = 1. Tích phân $\int_{0}^{x} f^{2}(x)dx$

A.
$$\frac{3}{2}$$

B.
$$\frac{4}{3}$$

Lời giải

Chọn C

Ta có:

$$x.f(x).f'(x) = f^{2}(x) - x \Leftrightarrow 2x.f(x).f'(x) = 2f^{2}(x) - 2x$$

$$\Leftrightarrow 2x.f(x).f'(x) + f^{2}(x) = 3f^{2}(x) - 2x \Leftrightarrow \int_{0}^{2} (x.f^{2}(x))' dx = 3\int_{0}^{2} f^{2}(x) dx - \int_{0}^{2} 2x dx$$

$$\Leftrightarrow (x.f^{2}(x))\Big|_{0}^{2} = 3I - 4 \Leftrightarrow 2 = 3I - 4 \Leftrightarrow I = 2$$

Câu 117. (THPT Đông Sơn Thanh Hóa 2019) Cho hàm số f(x) nhận giá trị không âm và có đạo hàm liên tục trên \mathbb{R} thỏa mãn $f'(x) = (2x+1)[f(x)]^2$, $\forall x \in \mathbb{R}$ và f(0) = -1. Giá trị của tích phân $\int_{1}^{1} f(x) dx$ bằng

$$A_{\bullet} - \frac{1}{6}$$
.

$$\mathbf{B.} - \ln 2$$

$$\underline{\mathbf{C}}. -\frac{\pi\sqrt{3}}{9}$$

$$\underline{\mathbf{C}} \cdot -\frac{\pi\sqrt{3}}{9}. \qquad \qquad \mathbf{D} \cdot -\frac{2\pi\sqrt{3}}{9}.$$

Lời giải

$$f'(x) = (2x+1)[f(x)]^2, \forall x \in \mathbb{R} \Rightarrow \frac{-f'(x)}{[f(x)]^2} = -(2x+1), \forall x \in \mathbb{R}$$

$$\Rightarrow \left(\frac{1}{f(x)}\right)' = -(2x+1), \forall x \in \mathbb{R}$$

Vậy
$$\frac{1}{f(x)} = -\int (2x+1)dx = -x^2 - x + C \Rightarrow f(x) = \frac{1}{-x^2 - x + C}$$
.

Do
$$f(0) = -1 \Rightarrow C = -1$$
. Vậy $f(x) = -\frac{1}{x^2 + x + 1}$.

NGUYĒN <mark>BẢO</mark> VƯƠNG - 0946798489

$$I = \int_{0}^{1} f(x) dx = -\int_{0}^{1} \frac{1}{x^{2} + x + 1} dx = -\int_{0}^{1} \frac{1}{\left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}} dx.$$

$$\text{Đặt } x + \frac{1}{2} = \frac{\sqrt{3}}{2} \tan t, \ t \in \left(\frac{-\pi}{2}; \frac{\pi}{2}\right). \text{ Suy ra } I = -\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{3}}{2} \left(1 + \tan^2 t\right) dt = -\frac{2\sqrt{3}}{3} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} dt = -\frac{\pi\sqrt{3}}{9}.$$

Câu 118. Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} , f(0) = 0, $f'(0) \neq 0$ và thỏa mãn hệ thức $f(x).f'(x)+18x^2 = (3x^2+x)f'(x)+(6x+1)f(x); \forall \in \mathbb{R}$.

Biết $\int_{a}^{1} (x+1)e^{f(x)} dx = ae^2 + b, (a,b \in \mathbb{Q})$. Giá trị của a-b bằng

<u>A</u>. 1.

B. 2.

C. 0.

D. $\frac{2}{2}$

lời giải

Chọn A

Ta có
$$f(x).f'(x)+18x^2 = (3x^2+x)f'(x)+(6x+1)f(x)$$

lấy nguyên hàm 2 vế ta được: $\frac{f^2(x)}{2} + 6x^3 = (3x^2 + x)f(x)$

$$\Rightarrow f^{2}(x) - 2(3x^{2} + x) f(x) + 12x^{3} = 0 \Rightarrow \begin{bmatrix} f(x) = 6x^{2} \\ f(x) = 2x \end{bmatrix}$$

TH1: $f(x) = 6x^2$ không thoả mãn kết quả $\int_{-\infty}^{\infty} (x+1)e^{f(x)}dx = ae^2 + b, (a,b \in \mathbb{Q})$

TH2:
$$f(x) = 2x \Rightarrow \int_{0}^{1} (x+1)e^{f(x)}dx = \int_{0}^{1} (x+1)e^{2x}dx = \frac{3}{4}e^{2} - \frac{1}{4}$$
. Suy ra $a = \frac{3}{4}$; $b = -\frac{1}{4}$

Vậy a-b=1

Câu 119. (Chuyên Trần Phú Hải Phòng 2019) Cho hàm số f(x) thỏa mãn f(x) > 0 và

$$f(x)-f'(x)=-\frac{2[f(x)]^2}{e^x.x.\sqrt{x-x^2}} \ \forall x \in (0;1)$$
. Biết $f(\frac{1}{2})=\frac{1}{2}$, khẳng định nào sau đây đúng?

$$\underline{\mathbf{A}} \cdot f\left(\frac{1}{5}\right) \ge \frac{1}{4}$$

B. $\frac{1}{6} \le f\left(\frac{1}{5}\right) < \frac{1}{5}$ **C.** $\frac{1}{5} \le f\left(\frac{1}{5}\right) < \frac{1}{4}$ **D.** $f\left(\frac{1}{5}\right) < \frac{1}{6}$

Lời giải

Vì f(x) > 0 và $\forall x \in (0,1)$ ta có:

$$f(x) - f'(x) = -\frac{2[f(x)]^{2}}{e^{x} \cdot x \cdot \sqrt{x - x^{2}}} \Leftrightarrow \frac{e^{x} f(x) - e^{x} f'(x)}{[f(x)]^{2}} = -\frac{2}{x \sqrt{x - x^{2}}}$$

$$\Rightarrow \left(\frac{e^x}{f(x)}\right)' = \frac{-2}{x\sqrt{x-x^2}} \Rightarrow \int_{\frac{1}{5}}^{\frac{1}{2}} \frac{-2}{x\sqrt{x-x^2}} dx = \frac{e^x}{f(x)} \Big|_{\frac{1}{5}}^{\frac{1}{2}} = \frac{\sqrt{e}}{f\left(\frac{1}{2}\right)} - \frac{\sqrt[5]{e}}{f\left(\frac{1}{5}\right)} = 2\sqrt{e} - \frac{\sqrt[5]{e}}{f\left(\frac{1}{5}\right)}$$

$$\int_{\frac{1}{5}}^{\frac{1}{2}} \frac{-2}{x\sqrt{x-x^2}} dx = \int_{\frac{1}{5}}^{\frac{1}{2}} \frac{-2}{x^2 \cdot \sqrt{\frac{1}{x}-1}} dx = \int_{\frac{1}{5}}^{\frac{1}{2}} \frac{2}{\sqrt{\frac{1}{x}-1}} d\left(\frac{1}{x}\right) = 4\sqrt{\frac{1}{x}-1}\Big|_{\frac{1}{5}}^{\frac{1}{2}} = -4$$

$$\Rightarrow 2\sqrt{e} - \frac{\sqrt[5]{e}}{f\left(\frac{1}{5}\right)} = -4 \Leftrightarrow f\left(\frac{1}{5}\right) = \frac{2(\sqrt{e}+2)}{\sqrt[5]{e}} \approx 5,97$$

Câu 120. Cho hàm số f(x) liên tục và nhận giá trị không âm trên đoạn [0;1]. Giá trị nhỏ nhất của biểu

thức
$$M = \int_{0}^{1} \left[2f(x) + 3x \right] f(x) dx - \int_{0}^{1} \left[4f(x) + x \right] \sqrt{xf(x)} dx$$
 bằng

$$\underline{\bf A} \cdot -\frac{1}{24}$$

B.
$$-\frac{1}{8}$$

C.
$$-\frac{1}{12}$$

D.
$$-\frac{1}{6}$$

Lời giải

Chon A

Ta có
$$M = \int_{0}^{1} \left[2f^{2}(x) + 3xf(x) - 4f(x)\sqrt{xf(x)} - x\sqrt{xf(x)} \right] dx$$

$$= \int_{0}^{1} \left[-\left(\sqrt{x} - \sqrt{f(x)}\right)\sqrt{f(x)} \left[\left(\sqrt{f(x)} - \sqrt{x}\right)^{2} + f(x) \right] \right] dx$$

Đặt
$$a = \sqrt{x} - \sqrt{f(x)}$$
, $b = \sqrt{f(x)}$ thì

$$M = \int_{0}^{1} \left[-ab \left(a^{2} + b^{2} \right) \right] dx \ge \int_{0}^{1} \left[-\frac{\left(a + b \right)^{2}}{4} \cdot \frac{\left(a + b \right)^{2}}{2} \right] dx \ge \int_{0}^{1} -\frac{x^{2}}{8} dx = -\frac{1}{24}.$$

Câu 121. (Chuyên Nguyễn Trãi Hải Dương -2019) Cho hàm số f(x) có đạo hàm liên tục trên $\mathbb R$,

$$f(0)=0,f'(0)\neq 0$$

thức

$$f(x).f'(x)+18x^2 = (3x^2+x)f'(x)+(6x+1)f(x), \forall x \in \mathbb{R}$$
.

Biết
$$\int_{0}^{1} (x+1)e^{f(x)} dx = a \cdot e^{2} + b$$
, với $a; b \in \mathbb{Q}$. Giá trị của $a-b$ bằng.

D.
$$\frac{2}{3}$$
.

Lời giải

Ta có
$$f(x).f'(x) + 18x^2 = (3x^2 + x)f'(x) + (6x + 1)f(x)$$

$$\Rightarrow \int [f(x).f'(x) + 18x^2] dx = \int [(3x^2 + x)f'(x) + (6x + 1)f(x)] dx$$

$$\Rightarrow \int \left[\frac{1}{2}f^{2}(x) + 6x^{3}\right]' dx = \int \left[\left(3x^{2} + x\right)f(x)\right]' dx$$

$$\Rightarrow \frac{1}{2}f^{2}(x) + 6x^{3} = (3x^{2} + x)f(x) + C, \text{ v\'oi } C \text{ là hằng s\'o}.$$

Mặt khác: theo giả thiết f(0) = 0 nên C = 0.

Khi đó
$$\frac{1}{2}f^{2}(x)+6x^{3}=(3x^{2}+x)f(x)(1), \forall x \in \mathbb{R}$$
.

$$(1) \Leftrightarrow f^{2}(x) + 12x^{3} = (6x^{2} + 2x)f(x) \Leftrightarrow [f(x) - 2x][f(x) - 6x^{2}] = 0 \Leftrightarrow \begin{cases} f(x) = 2x \\ f(x) = 6x^{2} \end{cases}$$

Trường hợp 1: Với $f(x) = 6x^2, \forall x \in \mathbb{R}$, ta có f'(0) = 0 (loại).

Trường hợp 2: Với $f(x) = 2x, \forall x \in \mathbb{R}$, ta có :

$$\int_{0}^{1} (x+1)e^{f(x)} dx = \int_{0}^{1} (x+1)e^{2x} dx = \left[\frac{(x+1)e^{2x}}{2} \right]_{0}^{1} - \int_{0}^{1} \frac{e^{2x}}{2} dx = \frac{3}{4}e^{2} - \frac{1}{4}$$

$$\Rightarrow \begin{cases} a = \frac{3}{4} \\ b = -\frac{1}{4} \end{cases} \Rightarrow a - b = 1.$$

Câu 122. (**Bắc Ninh 2019**) Cho hàm số f(x) liên tục và có đạo hàm trên $\left| -\frac{1}{2}; \frac{1}{2} \right|$

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \left[f^2(x) - 2f(x) \cdot (3 - x) \right] dx = -\frac{109}{12} \cdot \text{Tinh } \int_{0}^{\frac{1}{2}} \frac{f(x)}{x^2 - 1} dx.$$

A.
$$\ln \frac{7}{9}$$
.

$$\underline{\mathbf{B}}$$
. $\ln \frac{2}{9}$

C.
$$\ln \frac{5}{9}$$
.

D.
$$\ln \frac{8}{9}$$

Lòi giải
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \left[f^2(x) - 2f(x) \cdot (3-x) \right] dx = -\frac{109}{12} \cdot \Leftrightarrow \int_{-\frac{1}{2}}^{\frac{1}{2}} \left[\left(f(x) - (3-x) \right)^2 - (3-x)^2 \right] dx = -\frac{109}{12}$$

$$\Leftrightarrow \int_{-\frac{1}{2}}^{\frac{1}{2}} (f(x) - (3-x))^2 dx - \int_{-\frac{1}{2}}^{\frac{1}{2}} (3-x)^2 dx = -\frac{109}{12}.$$

$$\text{Mà} \int_{-\frac{1}{2}}^{\frac{1}{2}} (3-x)^2 dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} (9-6x+x^2) dx = \left(9x-3x^2+\frac{x^3}{3}\right) \left| \frac{1}{2} = \frac{109}{12} \right|$$

Suy ra
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} (f(x) - (3-x))^2 dx = 0$$
.

Vì
$$[f(x)-(3-x)]^2 \ge 0$$
, $\forall x \in [-\frac{1}{2};\frac{1}{2}]$ nên $f(x) = 3-x$, $\forall x \in [-\frac{1}{2};\frac{1}{2}]$.

Vậy
$$\int_{0}^{\frac{1}{2}} \frac{f(x)}{x^{2} - 1} dx = \int_{0}^{\frac{1}{2}} \frac{3 - x}{x^{2} - 1} dx = \int_{0}^{\frac{1}{2}} \frac{1 - x + 2}{x^{2} - 1} dx = \int_{0}^{\frac{1}{2}} \left(\frac{-1}{x + 1} + \frac{2}{(x - 1)(x + 1)} \right) dx$$

$$= \left(-\ln|x+1| + \ln\left|\frac{x-1}{x+1}\right|\right) \left|\frac{1}{2} = \ln\frac{2}{9}.$$

Câu 123. (**Chuyên Hùng Vương - Phú Thọ - 2018**) Cho hàm số f(x) xá định trên $\left[0; \frac{\pi}{2}\right]$ thỏa mãn

$$\int_{0}^{\frac{\pi}{2}} \left[f^{2}(x) - 2\sqrt{2}f(x)\sin\left(x - \frac{\pi}{4}\right) \right] dx = \frac{2 - \pi}{2}. \text{ Tích phân } \int_{0}^{\frac{\pi}{2}} f(x) dx \text{ bằng}$$

$$\mathbf{A.} \frac{\pi}{4}. \qquad \qquad \mathbf{B.} \ 0. \qquad \qquad \mathbf{C.} \ 1. \qquad \qquad \mathbf{D.} \ \frac{\pi}{2}.$$

Lời giải

Ta có:

$$\int_{0}^{\frac{\pi}{2}} 2\sin^{2}\left(x - \frac{\pi}{4}\right) dx = \int_{0}^{\frac{\pi}{2}} \left[1 - \cos\left(2x - \frac{\pi}{2}\right)\right] dx = \int_{0}^{\frac{\pi}{2}} (1 - \sin 2x) dx$$
$$= \left(x + \frac{1}{2}\cos 2x\right)\Big|_{0}^{\frac{\pi}{2}} = \frac{\pi - 2}{2}.$$

Do đó:

$$\int_{0}^{\frac{\pi}{2}} \left[f^{2}(x) - 2\sqrt{2}f(x)\sin\left(x - \frac{\pi}{4}\right) \right] dx + \int_{0}^{\frac{\pi}{2}} 2\sin^{2}\left(x - \frac{\pi}{4}\right) dx = \frac{2-\pi}{2} + \frac{\pi-2}{2} = 0$$

$$\Leftrightarrow \int_{0}^{\frac{\pi}{2}} \left[f^{2}(x) - 2\sqrt{2}f(x)\sin\left(x - \frac{\pi}{4}\right) + 2\sin^{2}\left(x - \frac{\pi}{4}\right) \right] dx = 0$$

$$\Leftrightarrow \int_{0}^{\frac{\pi}{2}} \left[f(x) - \sqrt{2}\sin\left(x - \frac{\pi}{4}\right) \right]^{2} dx = 0$$
Suy ra $f(x) - \sqrt{2}\sin\left(x - \frac{\pi}{4}\right) = 0$, hay $f(x) = \sqrt{2}\sin\left(x - \frac{\pi}{4}\right)$.

Bởi vậy:

$$\int_{0}^{\frac{\pi}{2}} f(x) dx = \int_{0}^{\frac{\pi}{2}} \sqrt{2} \sin\left(x - \frac{\pi}{4}\right) dx = -\sqrt{2} \cos\left(x - \frac{\pi}{4}\right) \Big|_{0}^{\frac{\pi}{2}} = 0.$$

Câu 124. (THPT Hậu Lộc 2 - TH - 2018) Cho số thực a > 0. Giả sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).f(a-x)=1. Tính tích phân $I=\int_{0}^{a}\frac{1}{1+f(x)}\mathrm{d}x$?

A.
$$I = \frac{2a}{3}$$
.

$$\underline{\mathbf{B}}$$
. $I = \frac{a}{2}$.

C.
$$I = \frac{a}{3}$$
.

D.
$$I = a$$
.

Lời giải

 $\text{Dăt } t = a - x \Rightarrow dt = -dx.$

Thay vào ta được
$$I = \int_{0}^{a} \frac{1}{1+f(x)} dx = \int_{0}^{a} \frac{1}{1+f(a-t)} dt = \int_{0}^{a} \frac{1}{1+f(a-x)} dx$$
.

Suy ra
$$0 = \int_{0}^{a} \left[\frac{f(a-x) - f(x)}{(1+f(x))(1+f(a-x))} \right] dx$$
, do hàm số $f(x)$ liên tục và luôn dương trên đoạn

$$[0;a]$$
. Suy ra $f(a-x)=f(x)$, trên đoạn $[0;a]$.

Mà
$$f(x).f(a-x) = 1 \Rightarrow f(x) = 1$$
. Vậy $I = \int_{0}^{a} \frac{1}{2} dx = \frac{a}{2}$.

Câu 125. (Chuyên Phan Bội Châu - Nghệ An - 2018) Xét hàm số f(x) liên tục trên đoạn [0;1] và thỏa

mãn
$$2f(x)+3f(1-x)=\sqrt{1-x}$$
. Tích phân $\int_{0}^{1} f(x) dx$ bằng

A.
$$\frac{2}{3}$$
.

B.
$$\frac{1}{6}$$
.

C.
$$\frac{2}{15}$$
.

D.
$$\frac{3}{5}$$
.

Lời giải

Ta có:
$$2f(x) + 3f(1-x) = \sqrt{1-x}$$
 (1)

Đặt
$$t = 1 - x \Rightarrow x = 1 - t$$
, phương trình (1) trở thành $2f(1-t) + 3f(t) = \sqrt{t}$

Thay t bởi x ta được phương trình $3f(x) + 2f(1-x) = \sqrt{x}$ (2)

Từ (1) và (2) ta có hệ phương trình
$$\begin{cases} 2f(x) + 3f(1-x) = \sqrt{1-x} \\ 3f(x) + 2f(1-x) = \sqrt{x} \end{cases} \Rightarrow f(x) = \frac{1}{5} \left(3\sqrt{x} - 2\sqrt{1-x}\right)$$

$$\Rightarrow \int_{0}^{1} f(x) dx = \frac{1}{5} \int_{0}^{1} \left(3\sqrt{x} - 2\sqrt{1 - x} \right) dx = \frac{3}{5} \int_{0}^{1} \sqrt{x} dx - \frac{2}{5} \int_{0}^{1} \sqrt{1 - x} dx$$

*Xét
$$I = \int_{0}^{1} \sqrt{x} dx$$

Đặt
$$u = \sqrt{x} \implies u^2 = x \implies dx = 2udu$$

Đổi cận:
$$x = 0 \Rightarrow u = 0$$
; $x = 1 \Rightarrow u = 1$

$$\Rightarrow I = 2\int_0^1 u^2 du = \frac{2u^3}{3}\Big|_0^1 = \frac{2}{3}$$

*Xét
$$J = \int_{0}^{1} \sqrt{1 - x} dx$$

Đặt
$$v = \sqrt{1-x} \Rightarrow v^2 = 1-x \Rightarrow dx = -2vdv$$

Đổi cận:
$$x = 0 \Rightarrow v = 1$$
; $x = 1 \Rightarrow v = 0$

$$\Rightarrow J = -2\int_{1}^{0} v^{2} dv = 2\int_{0}^{1} v^{2} dv = \frac{2v^{3}}{3} \Big|_{0}^{1} = \frac{2}{3}$$

$$\Rightarrow \int_{0}^{1} f(x) dx = \frac{3}{5} \cdot \frac{2}{3} - \frac{2}{5} \cdot \frac{2}{3} = \frac{2}{15}.$$

Câu 126. (**Hà Tĩnh - 2018**) Cho hàm số f(x) đồng biến, có đạo hàm đến cấp hai trên đoạn [0;2] và thỏa

mãn
$$\left[f(x)\right]^2 - f(x) \cdot f''(x) + \left[f'(x)\right]^2 = 0$$
. Biết $f(0) = 1$, $f(2) = e^6$. Khi đó $f(1)$ bằng

A.
$$e^{2}$$
.

B.
$$e^{\frac{3}{2}}$$

C.
$$e^{3}$$
.

D.
$$e^{\frac{5}{2}}$$

Lời giải

Theo bài ra ta có hàm số f(x) đồng biến trên $[0;2] \Rightarrow f(x) \ge f(0) = 1 > 0$ do đó $f(x) > 0 \quad \forall x \in [0;2]$.

Ta có
$$\left[\frac{f'(x)}{f(x)}\right]' = \frac{f''(x).f(x) - \left[f'(x)\right]^2}{\left[f(x)\right]^2}$$

Theo đề bài
$$\left[f(x) \right]^2 - f(x) \cdot f''(x) + \left[f'(x) \right]^2 = 0$$

$$\Rightarrow f''(x).f(x) - [f'(x)]^2 = [f(x)]^2 \Rightarrow \left[\frac{f'(x)}{f(x)}\right]' = 1$$

$$\Rightarrow \frac{f'(x)}{f(x)} = x + C \Rightarrow \int_0^2 \frac{f'(x)}{f(x)} dx = \int_0^2 (x + C) dx \Rightarrow \int_0^2 \frac{1}{f(x)} d(f(x)) = \left(\frac{x^2}{2} + Cx\right)\Big|_0^2$$

$$\Rightarrow \ln|f(x)|\Big|^2 = 2 + 2C \Rightarrow \ln|e^6| - \ln|1| = 2 + 2C \Rightarrow C = 2 \Rightarrow \frac{f'(x)}{f(x)} = x + 2.$$

Do đó
$$\ln f(x)\Big|_{0}^{1} = \left(\frac{x^{2}}{2} + 2x\right)\Big|_{0}^{1} \Rightarrow \ln f(1) = \frac{5}{2} \Rightarrow f(1) = e^{\frac{5}{2}}.$$

Câu 127. (THPT Hàm Rồng - Thanh Hóa - 2018) Cho hàm số y = f(x) có đạo hàm trên [0;3];

$$f(3-x).f(x) = 1, f(x) \neq -1$$
 với mọi $x \in [0;3]$ và $f(0) = \frac{1}{2}$. Tính tích phân:

$$\int_{0}^{3} \frac{x.f'(x)}{\left[1+f(3-x)\right]^{2}.f^{2}(x)} dx.$$

B.
$$\frac{5}{2}$$

B.
$$\frac{5}{2}$$
. $\underline{\mathbf{C}} \cdot \frac{1}{2}$.

D.
$$\frac{3}{2}$$

$$(1+f(3-x))^2 \cdot f^2(x) = f^2(x) + 2 \cdot f(3-x) \cdot f^2(x) + f^2(3-x) \cdot f^2(x)$$

$$= f^{2}(x) + 2.f(x) + 1 = (f(x) + 1)^{2}.$$

$$I = \int_{0}^{3} \frac{x \cdot f'(x)}{\left(1 + f(x)\right)^{2}} dx$$

$$I = \frac{-x}{1+f(x)} \bigg|_{0}^{3} + \int_{0}^{3} \frac{dx}{1+f(x)} = \frac{-3}{1+f(3)} + I_{1}$$

$$f(0) = \frac{1}{2} \Rightarrow f(3) = 2$$

$$\text{Dăt } t = 3 - x \Rightarrow dt = -dx$$

Đổi cận
$$x = 0 \Rightarrow t = 3$$

$$x = 3 \Rightarrow t = 0$$

$$I_{1} = \int_{0}^{3} \frac{dt}{1 + f(3 - t)} = \int_{0}^{3} \frac{dx}{1 + \frac{1}{f(x)}} = \int_{0}^{3} \frac{f(x).dx}{1 + f(x)}$$

$$2I_{1} = \int_{0}^{3} \frac{1 + f(x)}{1 + f(x)} dx = 3 \Rightarrow I_{1} = \frac{3}{2}$$

Vậy $I = -1 + \frac{3}{2} = \frac{1}{2}$.

Câu 128. (Sở Bình Phước - 2018) Cho số thực a > 0. Giả sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).f(a-x)=1. Tính tích phân $I=\int_{0}^{a}\frac{1}{1+f(x)}\mathrm{d}x$?

A.
$$I = \frac{a}{3}$$
.

$$\underline{\mathbf{B}}$$
. $I = \frac{a}{2}$

$$\mathbf{C.}\ I = a$$

B.
$$I = \frac{a}{2}$$
. **C.** $I = a$. **D.** $I = \frac{2a}{3}$.

- Đặt $t = a - x \Rightarrow dx = -dt$; đổi cận: $x = 0 \Rightarrow t = a$, $x = a \Rightarrow t = 0$.

$$\Rightarrow I = \int_{0}^{a} \frac{1}{1 + f(x)} dx = \int_{0}^{a} \frac{1}{1 + f(a - t)} dt = \int_{0}^{a} \frac{1}{1 + f(a - x)} dx = \int_{0}^{a} \frac{1}{1 + \frac{1}{f(x)}} dx = \int_{0}^{a} \frac{f(x)}{1 + f(x)} dx$$

$$\Rightarrow 2I = \int_{0}^{a} \frac{1}{1 + f(x)} dx + \int_{0}^{a} \frac{f(x)}{1 + f(x)} dx = \int_{0}^{a} \frac{1 + f(x)}{1 + f(x)} dx = \int_{0}^{a} dx = x \Big|_{0}^{a} = a$$

Vậy $I = \frac{a}{2}$.

Câu 129. (THCS&THPT Nguyễn Khuyến - Bình Dương - 2018) Cho hàm số y = f(x) là hàm số lẻ trên

 \mathbb{R} và đồng thời thỏa mãn hai điều kiện f(x+1) = f(x) + 1, $\forall x \in \mathbb{R}$ và $f\left(\frac{1}{x}\right) = \frac{f(x)}{x^2}$, $\forall x \neq 0$.

Gọi $I = \int_{-\frac{f(x)}{f^2(x)+1}}^{1} dx$. Hãy chọn khẳng định đúng về giá trị của I.

A.
$$I \in (-1,0)$$
.

B.
$$I \in (1,2)$$
.

C.
$$I \in (0;1)$$
.

C.
$$I \in (0;1)$$
. **D**. $I \in (-2;-1)$.

Lời giải

- Đặt y = f(x). Khi đó từ giả thiết ta có :

$$f(x+1) = y+1, f\left(\frac{1}{x+1}\right) = \frac{y+1}{(x+1)^2}, f\left(-\frac{1}{x+1}\right) = -\frac{y+1}{(x+1)^2}.$$

Suy ra
$$f\left(\frac{x}{x+1}\right) = f\left(-\frac{1}{x+1}+1\right) = f\left(-\frac{1}{x+1}\right)+1 = -\frac{y+1}{(x+1)^2}+1 = \frac{x^2+2x-y}{(x+1)^2}$$
 (1)

Và
$$f\left(\frac{x+1}{x}\right) = f\left(1+\frac{1}{x}\right) = 1 + f\left(\frac{1}{x}\right) = 1 + \frac{y}{x^2} = \frac{x^2 + y}{x^2}$$
,

$$f\left(\frac{x}{x+1}\right) = f\left(\frac{1}{\frac{x+1}{x}}\right) = \frac{f\left(\frac{x+1}{x}\right)}{\left(\frac{x+1}{x}\right)^2} = \frac{\frac{x^2+y}{x^2}}{\left(\frac{x+1}{x}\right)^2} = \frac{x^2+y}{\left(x+1\right)^2} \quad (2).$$

- Từ (1) và (2) suy ra:
$$\frac{x^2 + 2x - y}{(x+1)^2} = \frac{x^2 + y}{(x+1)^2} \Rightarrow x^2 + 2x - y = x^2 + y \Rightarrow y = x \text{ hay } f(x) = x.$$

Do đó:
$$I = \int_0^1 \frac{f(x)}{f^2(x) + 1} dx = \int_0^1 \frac{x}{x^2 + 1} dx = \frac{1}{2} \int_0^1 \frac{d(x^2 + 1)}{x^2 + 1} = \frac{1}{2} \ln(x^2 + 1) \Big|_0^1 = \frac{1}{2} \ln 2 \approx 0.35$$
.
Vậy $I \in (0;1)$.

Câu 130. (**ĐHQG Hà Nội - 2020**) Cho hàm số f(x) liên tục trên đoạn [0;1] thỏa mãn điều kiện $\int_{0}^{1} f(x)dx = 2 \text{ và } \int_{0}^{1} xf(x)dx = \frac{3}{2}. \text{ Hỏi giá trị nhỏ nhất của } \int_{0}^{1} f^{2}(x)dx \text{ bằng bao nhiều?}$

A.
$$\frac{27}{4}$$
.

B.
$$\frac{34}{5}$$
.

D. 8.

Lời giải

Chon C

Ta tìm hàm ax + b thỏa mãn $\int_{a}^{b} [f(x) - (ax + b)] dx = 0 \Rightarrow f(x) = ax + b$

$$\Rightarrow \begin{cases} \int_{0}^{1} f(x)dx = 2 \\ \int_{0}^{1} xf(x)dx = \frac{3}{2} \end{cases} \Leftrightarrow \begin{cases} \left(\frac{a}{2}x^{2} + bx\right)\Big|_{0}^{1} = 2 \\ \left(\frac{a}{3}x^{3} + \frac{b}{2}x^{2}\right)\Big|_{0}^{1} = \frac{3}{2} \end{cases} \Leftrightarrow \begin{cases} \frac{a}{2} + b = 2 \\ \frac{a}{3} + \frac{b}{2} = \frac{3}{2} \end{cases} \Rightarrow a = 6; b = -1.$$

$$+ \int_{0}^{1} \left[f(x) - (6x - 1) \right] dx \ge 0$$

$$\Leftrightarrow \int_{0}^{1} f^{2}(x)dx \ge 2 \int_{0}^{1} f(x)(6x - 1)dx - \int_{0}^{1} (6x - 1)^{2} dx = 12 \int_{0}^{1} xf(x)dx - 2 \int_{0}^{1} f(x)dx - \int_{0}^{1} (6x - 1)^{2} dx = 7$$

Câu 131. (Sở Phú Thọ - 2020) Cho hàm số f(x) > 0 và có đạo hàm liên tục trên \mathbb{R} , thỏa mãn

$$(x+1) f'(x) = \frac{\sqrt{f(x)}}{x+2}$$
 và $f(0) = \left(\frac{\ln 2}{2}\right)^2$. Giá trị $f(3)$ bằng

A.
$$\frac{1}{2}(4\ln 2 - \ln 5)^2$$

B.
$$4(4\ln 2 - \ln 5)^2$$
.

A.
$$\frac{1}{2}(4\ln 2 - \ln 5)^2$$
. **B.** $4(4\ln 2 - \ln 5)^2$. **C.** $\frac{1}{4}(4\ln 2 - \ln 5)^2$. **D.** $2(4\ln 2 - \ln 5)^2$.

Lời giải

Chọn C

Ta có
$$(x+1) f'(x) = \frac{\sqrt{f(x)}}{x+2} \Leftrightarrow \frac{f'(x)}{\sqrt{f(x)}} = \frac{1}{(x+1)(x+2)}.$$

Khi đó

$$\int_{0}^{3} \frac{f'(x)}{\sqrt{f(x)}} dx = \int_{0}^{3} \frac{1}{(x+1)(x+2)} dx \Leftrightarrow \int_{0}^{3} \frac{d(f(x))}{\sqrt{f(x)}} = \int_{0}^{3} \frac{1}{(x+1)(x+2)} dx$$

$$\Leftrightarrow 2\sqrt{f(x)}\Big|_{0}^{3} = \ln\frac{x+1}{x+2}\Big|_{0}^{3} \Leftrightarrow 2\sqrt{f(3)} - 2\sqrt{f(0)} = \ln\frac{4}{5} - \ln\frac{1}{2}$$

$$\Leftrightarrow 2\sqrt{f(3)} = \ln\frac{8}{5} + 2\sqrt{f(0)} \Leftrightarrow \sqrt{f(3)} = \frac{1}{2}(\ln 8 - \ln 5) + \sqrt{f(0)}$$

$$\Leftrightarrow \sqrt{f(3)} = \frac{1}{2}(3\ln 2 - \ln 5) + \frac{\ln 2}{2} \Leftrightarrow \sqrt{f(3)} = \frac{1}{2}(4\ln 2 - \ln 5).$$

$$\text{Vây } f(3) = \frac{1}{4}(4\ln 2 - \ln 5)^2.$$

Câu 132. (Sở Phú Thọ - 2020) Cho hàm số f(x) liên tục trên khoảng $(0; +\infty)$ và thỏa mãn $f\left(x^2+1\right)+\frac{f\left(\sqrt{x}\right)}{4x\sqrt{x}}=\frac{2x+1}{2x}\ln\left(x+1\right). \text{ Biết } \int\limits_{1}^{17}f\left(x\right)\mathrm{d}x=a\ln 5-2\ln b+c \text{ với } a,b,c\in\mathbb{R} \text{ . Giá trị của } a+b+2c \text{ bằng}$

A.
$$\frac{29}{2}$$
.

B. 5.

C. 7.

D. 37.

Lời giải

Chọn C

Ta có
$$f(x^2+1) + \frac{f(\sqrt{x})}{4x\sqrt{x}} = \frac{2x+1}{2x} \ln(x+1) \Leftrightarrow xf(x^2+1) + \frac{f(\sqrt{x})}{4\sqrt{x}} = \frac{2x+1}{2} \ln(x+1)$$
.

Suy ra $\int_{1}^{4} \left[xf(x^2+1) + \frac{f(\sqrt{x})}{4\sqrt{x}} \right] dx = \int_{1}^{4} \frac{2x+1}{2} \ln(x+1) dx$.

Ta có $\int_{1}^{4} \left[xf(x^2+1) + \frac{f(\sqrt{x})}{4\sqrt{x}} \right] dx = \int_{1}^{4} f(x^2+1) \frac{d(x^2+1)}{2} + \int_{1}^{4} f(\sqrt{x}) \frac{d(\sqrt{x})}{2}$

$$= \int_{1}^{17} \frac{1}{2} f(x) dx + \int_{1}^{2} \frac{1}{2} f(x) dx = \frac{1}{2} \int_{1}^{17} f(x) dx$$
.

$$\int_{1}^{4} \frac{2x+1}{2} \ln(x+1) dx = \frac{1}{2} \int_{1}^{4} \ln(x+1) d(x^2+x) = \frac{1}{2} \left[(x^2+x) \ln(x+1) \Big|_{1}^{4} - \int_{1}^{4} (x^2+x) \frac{1}{x+1} dx \right]$$

$$= \frac{1}{2} \left[20 \ln 5 - 2 \ln 2 - \frac{x^2}{2} \Big|_{1}^{4} \right] = \frac{1}{2} \left[20 \ln 5 - 2 \ln 2 - \frac{15}{2} \right].$$

Do dó $\int_{1}^{17} f(x) dx = 20 \ln 5 - 2 \ln 2 - \frac{15}{2} \Rightarrow a = 20, b = 2, c = -\frac{15}{2}$.

Vây $a + b + 2c = 7$.

Câu 133. (THPT Nguyễn Viết Xuân - 2020) Cho hàm số f(x) liên tục trên đoạn [0;1] thỏa mãn $6x^2f(x^3)+4f(1-x)=3\sqrt{1-x^2}$. Tính $\int_{1}^{1}f(x)dx$.

$$\underline{\mathbf{A}} \cdot \frac{\pi}{8}$$

B. $\frac{\pi}{20}$.

C. $\frac{\pi}{16}$.

D. $\frac{\pi}{4}$.

Lời giải

<u>C</u>họn <u>A</u>

Từ giả thiết $6x^2 f(x^3) + 4f(1-x) = 3\sqrt{1-x^2}$, lấy tích phân từ 0 đến 1 của 2 vế ta được

$$\int_{0}^{1} 6x^{2} f(x^{3}) dx + \int_{0}^{1} 4 f(1-x) dx = \int_{0}^{1} 3\sqrt{1-x^{2}} dx$$

Đặt
$$I_1 = \int_0^1 6x^2 f(x^3) dx$$
, $I_2 = \int_0^1 4f(1-x) dx$, $I = \int_0^1 3\sqrt{1-x^2} dx$.

+) Đặt
$$t = x^3$$
 ta được $I_1 = 2\int_0^1 f(t) dt = 2\int_0^1 f(x) dx$

+) Đặt
$$v = 1 - x$$
 ta được $I_2 = 4 \int_{0}^{1} f(v) dv = 4 \int_{0}^{1} f(x) dx$.

Từ đó ta được $I = 6 \int_{0}^{1} f(x) dx$

+) Đặt
$$u = \sin x$$
 ta được $I = \frac{3\pi}{4}$, suy ra $\int_{0}^{1} f(x) dx = \frac{\pi}{8}$.

Câu 134. (Yên Lạc 2 - Vĩnh Phúc - 2020) Cho hàm số y = f(x) liên tục trên \mathbb{R} . Biết $f(4x) = f(x) + 4x^3 + 2x$ và f(0) = 2. Tính $I = \int_{0}^{2} f(x) dx$.

A.
$$\frac{147}{63}$$
.

B.
$$\frac{149}{63}$$
.

C.
$$\frac{148}{63}$$
.

D.
$$\frac{352}{63}$$
.

Lời giải

Chọn D

Ta có:
$$f(4x) = f(x) + 4x^3 + 2x \Rightarrow f(4x) - f(x) = 4x^3 + 2x$$
 (1).

Suy ra: f(x) và f(4x) là hàm số bậc ba.

Khi đó:
$$f(x) = ax^3 + bx^2 + cx + d(a \ne 0)$$
 và $f(4x) = 64ax^3 + 16bx^2 + 4cx + d$.

Ta có:
$$f(4x)-f(x)=63ax^3+15bx^2+3cx$$
 (2).

Từ (1) và (2) ta suy ra: $\begin{cases} a=\frac{4}{63}\\ b=0 \end{cases}$. Mặt khác: vì $f\left(0\right)=2$ nên d=2. $c=\frac{2}{3}$

Do đó,
$$f(x) = \frac{4}{63}x^3 + \frac{2}{3}x + 2$$
.

Vậy
$$I = \int_{0}^{2} f(x) dx = \int_{0}^{2} \left(\frac{4}{63}x^{3} + \frac{2}{3}x + 2\right) dx = \frac{352}{63}$$
.

* Chứng minh f(x) là duy nhất.

Ta có:
$$f(x) = \frac{4}{63}x^3 + \frac{2}{3}x + 2$$
 và $f(4x) = \frac{256}{63}x^3 + \frac{8}{3}x + 2$; $f(4x) - f(x) = 4x^3 + 2x$.

Suy ra:
$$f(4x) - \frac{4}{63}(4x)^3 - \frac{2}{3}(4x) = f(x) - \frac{4}{63}x^3 - \frac{2}{3}x$$
.

Đặt
$$g(4x) = f(4x) - \frac{4}{63}(4x)^3 - \frac{2}{3}(4x)$$
 và $g(x) = f(x) - \frac{4}{63}x^3 - \frac{2}{3}x$.

Ta có:
$$g(4x) = g(x)$$
; $g(0) = f(0) = 2$.

Suy ra:
$$g(x) = g(\frac{x}{4}) = g(\frac{x}{4^2}) = ... = g(\frac{x}{4^n}), n \in \mathbb{N}^*$$

Khi $n \to +\infty$ suy ra g(x) = g(0) = 2.

Vậy
$$f(x) = \frac{4}{63}x^3 - \frac{2}{3}x + 2, \forall x$$
.

Câu 135. (Kìm Thành - Hải Dương - 2020) Cho hàm số f(x) có đạo hàm liên tục trên [1;2] thỏa mãn

$$\int_{1}^{2} (x-1)^{2} f(x) dx = -\frac{1}{3}, \ f(2) = 0 \text{ và } \int_{1}^{2} \left[f'(x) \right]^{2} dx = 7. \text{ Tính tích phân } I = \int_{1}^{2} f(x) dx.$$

A.
$$I = \frac{7}{5}$$
.

B.
$$I = -\frac{7}{5}$$

B.
$$I = -\frac{7}{5}$$
. **C.** $I = -\frac{7}{20}$. **D.** $I = \frac{7}{20}$

D.
$$I = \frac{7}{20}$$
.

Chon B

$$-\frac{1}{3} = \int_{1}^{2} (x-1)^{2} f(x) dx = \frac{1}{3} \int_{1}^{2} f(x) d(x-1)^{3} = \frac{1}{3} \left[(x-1)^{3} f(x) \Big|_{1}^{2} - \int_{1}^{2} (x-1)^{3} f'(x) dx \right]$$

$$= -\frac{1}{3} \int_{1}^{2} (x-1)^{3} f'(x) dx \Rightarrow \int_{1}^{2} (x-1)^{3} f'(x) dx = 1 (1)$$

Ta có
$$\int_{1}^{2} \left[f'(x) - 7(x-1)^{3} \right]^{2} dx = \int_{1}^{2} \left[f'(x) \right]^{2} dx - 14 \int_{1}^{2} f'(x) (x-1)^{3} dx + 49 \int_{1}^{2} (x-1)^{6} dx = 0$$

$$\Rightarrow f'(x) = 7(x-1)^3 \Rightarrow f(x) = 7\int (x-1)^3 dx = \frac{7(x-1)^4}{4} + C.$$

Mà
$$f(2) = 0$$
 nên $C = -\frac{7}{4}$. Suy ra $f(x) = \frac{7(x-1)^4}{4} - \frac{7}{4}$.

Vậy
$$I = \int_{1}^{2} f(x) dx = \int_{1}^{2} \left[\frac{7(x-1)^{4}}{4} - \frac{7}{4} \right] dx = -\frac{7}{5}.$$

Câu 136. (Lương Thế Vinh - Hà Nội - 2020) Cho hàm số y = f(x) liên tục trên $\mathbb R$ và thảo mãn

 $\sin x f(\cos x) + \cos x f(\sin x) = \sin 2x - \frac{1}{3}\sin^3 2x \text{ v\'oi } \forall x \in \mathbb{R}$. Tính tích phân $I = \int_0^1 f(x) dx$ bằng

A.
$$\frac{1}{6}$$

B. 1.

$$\underline{\mathbf{C}} \cdot \frac{7}{18}$$
.

D.
$$\frac{1}{3}$$
.

Lời giải

Chon C

$$\sin x f(\cos x) + \cos x f(\sin x) = \sin 2x - \frac{1}{3}\sin^3 2x$$

$$\Rightarrow \int_{0}^{\frac{\pi}{2}} \sin x \, f(\cos x) \, dx + \int_{0}^{\frac{\pi}{2}} \cos x \, f(\sin x) \, dx = \int_{0}^{\frac{\pi}{2}} \left(\sin 2x - \frac{1}{3} \sin^{3} 2x\right) \, dx$$

$$\Rightarrow -\int_{0}^{\frac{\pi}{2}} f(\cos x) \, d(\cos x) + \int_{0}^{\frac{\pi}{2}} f(\sin x) \, d(\sin x) = -\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \left(1 - \frac{1 - \cos^{2} 2x}{3}\right) \, d(\cos 2x).$$

$$\Rightarrow -\int_{0}^{0} f(t) \, dt + \int_{0}^{1} f(u) \, du = -\frac{1}{2} \left(\frac{2}{3} \cos 2x + \frac{\cos^{3} 2x}{9}\right) \Big|_{0}^{\frac{\pi}{2}}$$

$$\Rightarrow \int_{0}^{1} f(t) \, dt + \int_{0}^{1} f(u) \, du = -\frac{1}{2} \left[\left(-\frac{2}{3} + \frac{-1}{9}\right) - \left(\frac{2}{3} + \frac{1}{9}\right)\right]$$

$$\Rightarrow 2\int_{0}^{1} f(x) \, dx = \frac{7}{9} \Rightarrow \int_{0}^{1} f(x) \, dx = \frac{7}{18}$$

Câu 137. (**Chuyên Lam Sơn 2019**) Cho hàm số f(x) có đạo hàm liên tục trên $[0;\pi]$. Biết f(0) = 2e và f(x) thỏa mãn hệ thức $f'(x) + \sin x . f(x) = \cos x . e^{\cos x}, \forall x \in [0;\pi]$. Tính $I = \int_0^{\pi} f(x) dx$ (làm tròn đến hàng phần trăm).

A.
$$I \approx 6,55$$
.

B.
$$I \approx 17.30$$
.

C.
$$I \approx 10,31$$
.

D.
$$I \approx 16,91$$
.

Lời giải

Chọn C

Giả thiết
$$f'(x) + \sin x \cdot f(x) = \cos x \cdot e^{\cos x}$$
 $\Leftrightarrow e^{-\cos x} \cdot f'(x) + e^{-\cos x} \cdot \sin x \cdot f(x) = \cos x$

$$\Leftrightarrow \left[e^{-\cos x} . f(x) \right]' = \cos x \Rightarrow e^{-\cos x} . f(x) = \sin x + C_1 (1).$$

Do
$$f(0) = 2e$$
, thế vào (1) ta được $C_1 = 2$ suy ra $f(x) = (2 + \sin x)e^{\cos x}$.

Dùng máy tính thì
$$I = \int_{0}^{\pi} f(x) dx = \int_{0}^{\pi} (2 + \sin x) \cdot e^{\cos x} dx \approx 10,30532891$$
.

Câu 138. (Chuyên Thái Bình - 2019) Cho hàm số f(x) liên tục và nhận giá trị dương trên [0;1]. Biết

$$f(x).f(1-x)=1$$
 với $\forall x \in [0;1]$. Tính giá trí $I=\int_0^1 \frac{\mathrm{d}x}{1+f(x)}$

A.
$$\frac{3}{2}$$

$$\underline{\mathbf{B}} \cdot \frac{1}{2}$$

Lời giải

Ta có:
$$f(x).f(1-x)+f(x)=1+f(x) \Rightarrow \frac{1}{f(1-x)+1} = \frac{f(x)}{1+f(x)}$$

$$X\acute{e}t I = \int_{0}^{1} \frac{\mathrm{d}x}{1 + f(x)}$$

Đặt
$$t = 1 - x \Leftrightarrow x = 1 - t \implies dx = -dt$$
. Đổi cận: $x = 0 \implies t = 1$; $x = 1 \implies t = 0$.

Khi đó
$$I = -\int_{1}^{0} \frac{dt}{1+f(1-t)} = \int_{0}^{1} \frac{dt}{1+f(1-t)} = \int_{0}^{1} \frac{dx}{1+f(1-x)} = \int_{0}^{1} \frac{f(x)dx}{1+f(x)}$$

Mặt khác
$$\int_{0}^{1} \frac{dx}{1+f(x)} + \int_{0}^{1} \frac{f(x)dx}{1+f(x)} = \int_{0}^{1} \frac{1+f(x)}{1+f(t)} dx = \int_{0}^{1} dx = 1 \text{ hay } 2I = 1. \text{ Vậy } I = \frac{1}{2}.$$

Câu 139. (THPT Cẩm Bình 2019) Cho hàm số y = f(x) có đạo hàm trên khoảng $(0; +\infty)$ thỏa mãn

$$f(x) = x \cdot \ln\left(\frac{x^3}{x \cdot f'(x) - f(x)}\right)$$
 và $f(1) = 0$. Tính tích phân $I = \int_1^5 f(x) dx$.

A. 12 ln 13 – 13.

B. $13 \ln 13 - 12$.

C. $12 \ln 13 + 13$.

D. $13 \ln 13 + 12$.

Lời giải

Chọn B

Từ giả thiết và
$$f(x) = x \cdot \ln\left(\frac{x^3}{x \cdot f'(x) - f(x)}\right) \Leftrightarrow \frac{f(x)}{x} = \ln\frac{x^3}{x \cdot f'(x) - f(x)}$$

$$\Leftrightarrow e^{\frac{f(x)}{x}} = \frac{x^3}{x \cdot f'(x) - f(x)} \Leftrightarrow \frac{x \cdot f'(x) - f(x)}{x^2} \cdot e^{\frac{f(x)}{x}} = x \Leftrightarrow \left[\frac{f(x)}{x}\right]' \cdot e^{\frac{f(x)}{x}} = x \quad (1)$$

Lấy nguyên hàm hai vế của (1) suy ra $e^{\frac{f(x)}{x}} = \frac{x^2}{2} + C$.

Do
$$f(1) = 0 \Rightarrow C = \frac{1}{2}$$
, nên $e^{\frac{f(x)}{x}} = \frac{x^2 + 1}{2} \Rightarrow f(x) = x \ln \frac{x^2 + 1}{2}$ với $x \in (0; +\infty)$.

$$I = \int_{1}^{5} f(x) dx = \int_{1}^{5} x \cdot \ln \frac{x^{2} + 1}{2} dx$$
 (2).

Đặt
$$u = \ln \frac{x^2 + 1}{2}$$
 \Rightarrow $du = \frac{2x}{x^2 + 1} dx$; $dv = x dx$, chọn $v = \frac{x^2 + 1}{2}$.

Theo công thức tích phân từng phần, ta được:

$$I = \left(\frac{x^2 + 1}{2} \cdot \ln \frac{x^2 + 1}{2}\right) \Big|_{1}^{5} - \int_{1}^{5} x dx = 13 \ln 13 - \frac{x^2}{2} \Big|_{1}^{5} = 13 \ln 13 - 12.$$

Câu 140. Cho hàm số f(x) không âm, có đạo hàm trên đoạn [0;1] và thỏa mãn f(1)=1,

$$\left[2f(x)+1-x^2\right]f'(x)=2x\left[1+f(x)\right], \ \forall x \in [0;1].$$
 Tích phân $\int_0^1 f(x)dx$ bằng

A. 1.

B. 2.

 $\underline{\mathbf{C}} \cdot \frac{1}{3}$.

D. $\frac{3}{2}$.

Lời giải

Chọn C

Xét trên đoạn [0;1], theo đề bài: $[2f(x)+1-x^2]f'(x) = 2x[1+f(x)]$

$$\Leftrightarrow 2f(x).f'(x) = 2x + (x^2 - 1).f'(x) + 2x.f(x)$$

$$\Leftrightarrow [f^2(x)]' = [x^2 + (x^2 - 1).f(x)]'$$

$$\Leftrightarrow f^{2}(x) = x^{2} + (x^{2} - 1).f(x) + C(1).$$

Thay x = 1 vào (1) ta được: $f^2(1) = 1 + C \Leftrightarrow C = 0$ (vì f(1) = 1).

Do đó, (1) trở thành: $f^{2}(x) = x^{2} + (x^{2} - 1).f(x)$

$$\Leftrightarrow f^{2}(x) - 1 = x^{2} - 1 + (x^{2} - 1) \cdot f(x)$$

$$\Leftrightarrow [f(x) - 1] \cdot [f(x) + 1] = (x^{2} - 1) \cdot [f(x) + 1]$$

$$\Leftrightarrow f(x) - 1 = x^{2} - 1 \text{ (vi } f(x) \ge 0 \Rightarrow f(x) + 1 > 0 \quad \forall x \in [0; 1])$$

$$\Leftrightarrow f(x) = x^{2}.$$

Vậy
$$\int_{0}^{1} f(x) dx = \int_{0}^{1} x^{2} dx = \frac{x^{3}}{3} \Big|_{0}^{1} = \frac{1}{3}.$$

Câu 141. (**Kinh Môn - Hải Dương 2019**) Cho hàm số f(x) liên tục trên $\mathbb{R} \setminus \{-1;0\}$ thỏa mãn điều kiện $f(1) = -2 \ln 2$ và $x.(x+1).f'(x) + f(x) = x^2 + x$ (1). Biết $f(2) = a + b.\ln 3$ $(a, b \in \mathbb{Q})$. Giá trị của $2(a^2 + b^2)$ là:

A.
$$\frac{27}{4}$$
.

C.
$$\frac{3}{4}$$
.

D.
$$\frac{9}{2}$$

Lời giải

Chọn B

Xét trên đoạn [1;2], chia cả hai vế của phương trình (1) cho $(x+1)^2$, ta được:

$$\frac{x}{x+1} \cdot f'(x) + \frac{1}{(x+1)^2} \cdot f(x) = \frac{x}{x+1} \Rightarrow \left[\frac{x}{x+1} \cdot f(x) \right]' = \frac{x}{x+1} \Rightarrow \int \left[\frac{x}{x+1} \cdot f(x) \right]' dx = \int \frac{x}{x+1} dx$$

$$\Rightarrow \frac{x}{x+1} \cdot f(x) + C_1 = \int \left(1 - \frac{1}{x+1} \right) dx \Rightarrow \frac{x}{x+1} \cdot f(x) = x - \ln|x+1| + C \quad (2).$$

Theo giả thiết, $f(1) = -2 \ln 2$ nên thay x = 1 vào phương trình (2), ta được:

$$\frac{1}{2}f(1) = 1 - \ln 2 + C \Leftrightarrow -\ln 2 = 1 - \ln 2 + C \Leftrightarrow C = -1.$$

Thay x = 2 vào (2), ta được:

$$\frac{2}{3}f(2) = 2 - \ln 3 - 1 \Leftrightarrow f(2) = \frac{3}{2} - \frac{3}{2}\ln 3 \implies a = \frac{3}{2}, \ b = -\frac{3}{2}. \text{ Vậy } 2(a^2 + b^2) = 9.$$

Câu 142. (Sở Cần Thơ - 2019) Cho hàm số y = f(x) xác định và có đạo hàm f'(x) liên tục trên [1;3]; $f(x) \neq 0, \forall x \in [1;3];$ $f'(x) \Big[1 + f(x) \Big]^2 = (x-1)^2 \Big[f(x) \Big]^4$ và f(1) = -1. Biết rằng

 $\int_{a}^{3} f(x) dx = a \ln 3 + b(a, b \in \mathbb{Z}), \text{ giá trị của } a + b^2 \text{ bằng}$

B. 0

C. 2.

Lời giải

D. -1.

Chọn B

$$\operatorname{Tr} f'(x)[1+f(x)]^2 = (x-1)^2 [f(x)]^4 \Leftrightarrow \frac{f'(x)}{f^4(x)} + \frac{2f'(x)}{f^3(x)} + \frac{f'(x)}{f^2(x)} = (x-1)^2.$$

Hav

$$\int \left(\frac{f'(x)}{f^4(x)} + \frac{2f'(x)}{f^3(x)} + \frac{f'(x)}{f^2(x)} \right) dx = \int (x-1)^2 dx \Rightarrow -\left(\frac{1}{3f^3(x)} + \frac{1}{f^2(x)} + \frac{1}{f(x)} \right) = \frac{1}{3}(x-1)^3 + C(2).$$

Do
$$f(1) = -1$$
 nên $C = \frac{1}{3}$. Thay vào (2) ta được $\left(\frac{1}{f(x)} + 1\right)^3 = -(x-1)^3 \Rightarrow f(x) = \frac{-1}{x}$.

Khi đó:
$$\int_{e}^{3} \frac{-1}{x} dx = -\ln|x||_{e}^{3} = -\ln 3 + 1 \Rightarrow a = -1, b = 1$$
, nên $a + b^{2} = 0$.

Cách khác

Tù
$$f'(x)[1+f(x)]^2 = (x-1)^2[f(x)]^4 \Leftrightarrow \left(\frac{1}{f(x)}+1\right)^2 \cdot \frac{f'(x)}{f^2(x)} = (x-1)^2.$$

$$\Leftrightarrow -\left(\frac{1}{f(x)}+1\right)^2 \cdot \left(\frac{1}{f(x)}+1\right)^{\prime} = (x-1)^2.$$

Nên
$$-\int \left(\frac{1}{f(x)} + 1\right)^2 \cdot \left(\frac{1}{f(x)} + 1\right)^4 dx = \int (x - 1)^2 dx \Rightarrow -\int \left(\frac{1}{f(x)} + 1\right)^2 d\left(\frac{1}{f(x)} + 1\right) = \int (x - 1)^2 dx.$$

Suy ra
$$-\frac{1}{3} \left(\frac{1}{f(x)} + 1 \right)^3 = \frac{1}{3} (x - 1)^3 + C(2).$$

Do
$$f(1) = -1$$
 nên $C = 0$. Thay vào (2) ta được $\left(\frac{1}{f(x)} + 1\right)^3 = -(x-1)^3 \Rightarrow f(x) = \frac{-1}{x}$.

Câu 143. (Chuyên Lê Quý Đôn Quảng Trị 2019) Cho hàm số f(x) nhận giá trị dương và thỏa mãn $f(0) = 1, (f'(x))^3 = e^x (f(x))^2, \forall x \in \mathbb{R}.$

Tính f(3)

A.
$$f(3)=1$$

B.
$$f(3) = e^2$$

A.
$$f(3) = 1$$
. **B.** $f(3) = e^2$. **C.** $f(3) = e^3$. **D.** $f(3) = e$.

D.
$$f(3) = e$$

Lời giải

Chọn C

Ta có:
$$(f'(x))^3 = e^x (f(x))^2$$
, $\forall x \in \mathbb{R} \Leftrightarrow f'(x) = \sqrt[3]{e^x} \cdot \sqrt[3]{(f(x))^2} \Leftrightarrow \frac{f'(x)}{\sqrt[3]{(f(x))^2}} = \sqrt[3]{e^x}$

$$\Rightarrow \int_{0}^{3} \frac{f'(x)}{\sqrt[3]{(f(x))^{2}}} dx = \int_{0}^{3} \sqrt[3]{e^{x}} dx \Leftrightarrow \int_{0}^{3} \frac{1}{\sqrt[3]{(f(x))^{2}}} df(x) = \int_{0}^{3} e^{\frac{x}{3}} dx \Leftrightarrow 3\sqrt[3]{f(x)}\Big|_{0}^{3} = 3e^{\frac{x}{3}}\Big|_{0}^{3}$$

$$\sqrt[3]{f(3)} - \sqrt[3]{f(0)} = e - 1 \Leftrightarrow \sqrt[3]{f(3)} - 1 = e - 1 \Leftrightarrow f(3) = e^3.$$

Câu 144. Hàm số f(x) có đạo hàm cấp hai trên \mathbb{R} thỏa mãn: $f^2(1-x) = (x^2+3).f(x+1) \forall x \in \mathbb{R}$. Biết $f(x) \neq 0, \forall x \in \mathbb{R}$, tính $I = \int_0^2 (2x-1) f''(x) dx$.

Lời giải

Chọn A

Đặt: u = 2x - 1 ⇒ du = 2dx,

$$dv = f''(x) dx \Rightarrow v = f'(x)$$

$$I = \int_0^2 (2x - 1) f''(x) dx = (2x - 1) f'(x) \Big|_0^2 - \int_0^2 2f'(x) dx$$

= $3f'(2) + f'(0) - 2f(x) \Big|_0^2 = 3f'(2) + f'(0) - 2f(2) + 2f(0) (*).$

Ta có:
$$f^2(1-x) = (x^2+3).f(x+1) \forall x \in \mathbb{R}$$

Ta lấy:

*
$$x = 1 \Rightarrow f^{2}(0) = 4.f(2)$$

*
$$x = -1 \Rightarrow f^{2}(2) = 4.f(0) \Rightarrow f^{4}(2) = 64.f(2)$$
.

Mà theo đề $f(x) \neq 0, \forall x \in \mathbb{R} \Rightarrow f(2) = 4$.

Vậy, ta có:
$$f(2) = f(0) = 4(1)$$
.

Ta có:
$$-2f'(1-x)f(1-x) = 2x \cdot f(x+1) + (x^2+3) \cdot f'(x+1)$$

Ta lấy:

$$x = 1 \Rightarrow -2f'(0)f(0) = 2f(2) + 4f'(2) \Rightarrow f'(2) + 2f'(0) = -2.$$

$$x = -1 \Rightarrow -2f'(2)f(2) = -2f(0) + 4f'(0) \Rightarrow 2f'(2) + f'(0) = 2$$
.

Vậy, ta có:
$$f'(0) = -2$$
, $f'(2) = 2(2)$.

Thế (1) và (2) vào (*), suy ra
$$I = \int_0^2 (2x-1) f''(x) dx = 3f'(2) + f'(0) - 2f(2) + 2f(0)$$

= 3.2-2-2.4+2.4 = 4.

Câu 145. (Sở Nam Định - 2019) Cho hàm số y = f(x) có đạo hàm liên tục trên [0;1], thỏa mãn

$$(f'(x))^2 + 4f(x) = 8x^2 + 4, \forall x \in [0;1] \text{ và } f(1) = 2. \text{ Tính } \int_0^1 f(x) dx.$$

A.
$$\frac{1}{3}$$
.

C.
$$\frac{4}{3}$$
.

D.
$$\frac{21}{4}$$
.

Lời giải

Chọn C

Có
$$(f'(x))^2 + 4f(x) = 8x^2 + 4 \Rightarrow \int_0^1 (f'(x))^2 dx + 4 \int_0^1 f(x) dx = \int_0^1 (8x^2 + 4) dx = \frac{20}{3}.$$
 (1)

Ta có
$$\int_{0}^{1} xf'(x) dx = xf(x)\Big|_{0}^{1} - \int_{0}^{1} f(x) dx = 2 - \int_{0}^{1} f(x) dx \Rightarrow -4 \int_{0}^{1} xf'(x) dx = -8 + 4 \int_{0}^{1} f(x) dx$$
. (2)

$$\int_{0}^{1} (2x)^{2} dx = \frac{4}{3}. (3)$$

Cộng vế với vế của (1), (2), (3) ta được
$$\int_{0}^{1} \left(f'(x) - 2x \right)^{2} dx = 0 \Rightarrow f'(x) = 2x \Rightarrow f(x) = x^{2} + C.$$

Có
$$f(1) = C + 1 = 2 \Rightarrow C = 1 \Rightarrow f(x) = x^2 + 1$$
.

Do đó
$$\int_{0}^{1} f(x) dx = \int_{0}^{1} (x^{2} + 1) dx = \frac{4}{3}$$
.

Câu 146. Cho hàm số f(x) nhận giá trị dương thỏa mãn $f'(x) = \frac{2f(x)}{x} + 2x^3$, $\forall x \in (0; +\infty)$ và $\int_{0}^{3} \frac{x^{5}}{f^{2}(x)} dx = \frac{1}{20}$. Giá trị của biểu thức f(2) + f(3) bằng

Lời giải

Chon A

Với $x \in (0; +\infty)$:

Ta có
$$f'(x) = \frac{2f(x)}{x} + 2x^3 \Leftrightarrow \frac{x^2 f'(x) - 2xf(x)}{x^4} = 2x \Leftrightarrow \left(\frac{f(x)}{x^2}\right)' = 2x$$

$$\Rightarrow \frac{f(x)}{x^2} = x^2 + C \Leftrightarrow f(x) = x^2 (x^2 + C).$$

$$\Leftrightarrow f^2(x) = x^4(x^2 + C)^2$$
.

Khi đó
$$\int_{2}^{3} \frac{x^{5}}{f^{2}(x)} dx = \frac{1}{20} \Leftrightarrow \int_{2}^{3} \frac{x}{(x^{2} + C)^{2}} dx = \frac{1}{20} \Leftrightarrow \frac{1}{2} \int_{2}^{3} \frac{d(x^{2} + C)}{(x^{2} + C)^{2}} = \frac{1}{20} \Leftrightarrow \int_{2}^{3} \frac{d(x^{2} + C)}{(x^{2} + C)^{2}} = \frac{1}{10}$$

$$\Leftrightarrow -\frac{1}{x^2 + C}\Big|_{2}^{3} = \frac{1}{10} \Leftrightarrow \frac{1}{4 + C} - \frac{1}{9 + C} = \frac{1}{10} \Leftrightarrow C^2 + 13C - 14 = 0 \Leftrightarrow \begin{bmatrix} C = 1 \\ C = -14 \end{bmatrix}.$$

+ Với
$$C = -14 \Rightarrow f(x) = x^2(x^2 - 14)$$
.

Chọn $x=1\in (0;+\infty)$ ta được f(1)=-13<0 (vô lý vì f(x) là hàm số dương).

+ Với
$$C=1 \Rightarrow f(x)=x^2(x^2+1)$$
 là hàm số dương.

Khi đó
$$f(2)+f(3)=110$$
.

Câu 147. Cho hàm số y = f(x) có đạo hàm liên tục trên [0;1] thỏa mãn $3f(x) + xf'(x) \ge x^{2018}$, $\forall x \in [0;1]$. Tìm giá trị nhỏ nhất của $\int_0^1 f(x) dx$.

A.
$$\frac{1}{2018.2020}$$
. **B.** $\frac{1}{2019.2020}$. **C.** $\frac{1}{2020.2021}$. $\underline{\mathbf{D}}$. $\underline{\mathbf{D}}$. $\underline{\mathbf{D}}$.

B.
$$\frac{1}{2019.2020}$$

C.
$$\frac{1}{2020.2021}$$

$$\underline{\mathbf{D}}$$
. $\frac{1}{2019.2021}$

Lời giải

Chọn D

Ta có:

$$3f(x) + xf'(x) \ge x^{2018}, \ \forall x \in [0;1] \Leftrightarrow 3x^2 f(x) + x^3 \cdot f'(x) \ge x^{2020} \ \forall x \in [0;1]$$

$$\Leftrightarrow (x^3 f(x))' \ge x^{2020}, \forall x \in [0;1]$$

$$\Rightarrow x^{3} f(x) \ge \int x^{2020} dx, \ \forall x \in [0;1] \Rightarrow x^{3} f(x) \ge \frac{x^{2021}}{2021} + C, \ \forall x \in [0;1].$$

Cho
$$x = 0 \Rightarrow C = 0 \Rightarrow x^3 f(x) \ge \frac{x^{2021}}{2021}, \forall x \in [0;1] \Rightarrow f(x) \ge \frac{x^{2018}}{2021}, \forall x \in [0;1].$$

Trang 82 Fanpage Nguyễn Bảo Vương * https://www.facebook.com/tracnghiemtoanthpt489/

$$\Rightarrow \int_0^1 f(x) dx \ge \int_0^1 \frac{x^{2018}}{2021} dx = \left(\frac{x^{2019}}{2019.2021}\right)\Big|_0^1 = \frac{1}{2019.2021}.$$

Câu 148. Cho hàm số y = f(x) liên tục trên $\mathbb{R} \setminus \{0; -1\}$ thỏa mãn điều kiện $f(1) = 2 \ln 2$ và $x(x+1).f'(x) + f(x) = x^2 + 3x + 2$. Giá trị $f(2) = a + b \ln 3$, với $a, b \in \mathbb{Q}$. Tính $a^2 + b^2$.

A.
$$\frac{5}{2}$$
.

B.
$$\frac{13}{4}$$
.

C.
$$\frac{25}{4}$$
.

D.
$$\frac{9}{2}$$
.

Lời giải

Chọn D

Do hàm số y = f(x) liên tục trên $\mathbb{R} \setminus \{0; -1\}$ nên

$$x(x+1) f'(x) + f(x) = x^2 + 3x + 2$$

$$\Leftrightarrow \frac{x}{x+1}f'(x) + \frac{1}{(x+1)^2}f(x) = \frac{x+2}{x+1}$$

$$\Leftrightarrow \left(\frac{x}{x+1}f(x)\right)' = \frac{x+2}{x+1}$$

$$\Rightarrow \int_{1}^{2} \left(\frac{x}{x+1} f(x) \right)' dx = \int_{1}^{2} \frac{x+2}{x+1} dx$$

$$\Leftrightarrow \left(\frac{x}{x+1}f(x)\right)\Big|_{1}^{2} = 1 + \ln\frac{3}{2}$$

$$\Leftrightarrow \frac{2}{3}f(2) - \frac{1}{2}f(1) = 1 + \ln \frac{3}{2}$$

$$\Leftrightarrow \frac{2}{3}f(2) - \ln 2 = 1 + \ln \frac{3}{2} \Leftrightarrow f(2) = \frac{3}{2} + \frac{3}{2}\ln 3.$$

$$\Rightarrow a = b = \frac{3}{2} \Rightarrow a^2 + b^2 = \frac{9}{2}.$$

Câu 149. (Chuyên Lê Hồng Phong-Nam Định- 2019) Cho hàm số y = f(x) liên tục trên $\mathbb R$ thỏa mãn:

$$3f(x) + f(2-x) = 2(x-1)e^{x^2-2x+1} + 4, \forall x \in \mathbb{R}$$
. Tính giá trị của tích phân $I = \int_0^2 f(x)dx$.

A.
$$I = e + 2$$
.

B.
$$I = 2e + 4$$
.

C.
$$I = 2$$
.

D.
$$I = 8$$
.

Lời giải

<u>C</u>họn <u>C</u>

Cách 1:

$$3f(x) + f(2-x) = 2(x-1)e^{x^2-2x+1} + 4, \forall x \in \mathbb{R}$$
.

$$\Rightarrow 3\int_0^2 f(x)dx + \int_0^2 f(2-x)dx = \int_0^2 (2x-2)e^{x^2-2x+1}dx + 4\int_0^2 dx$$
 (1).

Đặt
$$t = 2 - x \Rightarrow \int_0^2 f(2 - x) d(x) = -\int_2^0 f(t) dt = \int_0^2 f(t) dt = \int_0^2 f(x) dx$$
 (2).

$$\text{D} \not= u = x^2 - 2x + 1 \Rightarrow du = (2x - 2)dx \Rightarrow \int_0^2 (2x - 2)e^{x^2 - 2x + 1}dx = \int_1^1 e^u du = 0 (3).$$

Thay (2) và (3) vào (1) $\Rightarrow 4\int_0^2 f(x)dx = 4\int_0^2 dx \Rightarrow I = \int_0^2 f(x)dx = 2$. Chọn phương án C.

Cách 2: Do
$$3f(x) + f(2-x) = 2(x-1)e^{x^2-2x+1} + 4, \forall x \in \mathbb{R}$$
 (1)

Thay
$$x = 2 - x$$
 vào (1) ta có: $3f(2-x) + f(x) = -2(x-1)e^{x^2-2x+1} + 4, \forall x \in \mathbb{R}$ (2)

Từ (1) và (2) ta có hệ phương trình: $\begin{cases} 3f(x) + f(2-x) = 2(x-1)e^{x^2-2x+1} + 4, \forall x \in \mathbb{R} \\ f(x) + 3f(2-x) = -2(x-1)e^{x^2-2x+1} + 4, \forall x \in \mathbb{R} \end{cases}$

$$\Leftrightarrow \begin{cases} 9f(x) + 3f(2 - x) = 6(x - 1)e^{x^2 - 2x + 1} + 12 \\ f(x) + 3f(2 - x) = -2(x - 1)e^{x^2 - 2x + 1} + 4 \end{cases} \Rightarrow f(x) = 2(x - 1)e^{x^2 - 2x + 1} + 1$$

$$\Rightarrow \int_{0}^{2} f(x) dx = \int_{0}^{2} \left(2(x-1) e^{x^{2}-2x+1} + 1 \right) dx = 2$$

Câu 150. (Chuyên Lê Hồng Phong Nam Định 2019) Cho hàm số y = f(x) có đạo hàm liên tục trên [2;4] và f'(x) > 0, $\forall x \in [2;4]$. Biết rằng

$$f(2) = \frac{7}{4} \text{ và } 4x^3 f(x) = [f'(x)]^3 - x^3, \forall x \in [2;4]. \text{ Giá trị của } f(4) \text{ bằng}$$

A.
$$\frac{20\sqrt{5}-1}{4}$$
.

A.
$$\frac{20\sqrt{5}-1}{4}$$
. **B.** $\frac{40\sqrt{5}-1}{2}$. **C.** $\frac{20\sqrt{5}-1}{2}$. $\underline{\mathbf{D}}$. $\frac{40\sqrt{5}-1}{4}$.

C.
$$\frac{20\sqrt{5}-1}{2}$$

D.
$$\frac{40\sqrt{5}-1}{4}$$

Lời giải

Ta có f'(x) > 0, $\forall x \in [2;4]$ nên hàm số y = f(x) đồng biến trên [2;4].

Suy ra
$$f(x) \ge f(2) = \frac{7}{4} > 0, \forall x \in [2;4]$$
 (1).

Mặt khác, từ giả thiết ta có $x^3 \lceil 4f(x) + 1 \rceil = \lceil f'(x) \rceil^3$, $\forall x \in [2, 4]$

Kết hợp với (1) ta suy ra:
$$4x = \frac{4f'(x)}{\sqrt[3]{4f(x)+1}}, \forall x \in [2;4].$$

Lấy tích phân 2 vế cận từ 2 đến 4 ta được:

$$24 = \int_{2}^{4} 4x dx = \int_{2}^{4} \frac{4f'(x)}{\sqrt[3]{4f(x)+1}} dx = \frac{3}{2} \sqrt[3]{\left[4f(x)+1\right]^{2}} \Big|_{2}^{4}$$

$$\Leftrightarrow \sqrt[3]{\left[4f(x)+1\right]^2}\Big|_2^4 = 16 \Leftrightarrow \sqrt[3]{\left[4f(4)+1\right]^2} - \sqrt[3]{\left[4\cdot\frac{7}{4}+1\right]^2} = 16 \Leftrightarrow \sqrt[3]{\left[4f(4)+1\right]^2} = 20$$

$$\Rightarrow \left[4f(4)+1\right]^2 = 8000 \Rightarrow f(4) = \frac{40\sqrt{5}-1}{4}.$$

Câu 151. Cho hàm số y = f(x) liên tục trên đoạn $[e; e^2]$. Biết $x^2 f'(x) \cdot \ln x - x f(x) + \ln^2 x = 0, \forall x \in [e; e^2]$

và
$$f(e) = \frac{1}{e}$$
. Tính tích phân $I = \int_{1}^{e^2} f(x) dx$.

A.
$$I = 2$$
.

B.
$$I = \frac{3}{2}$$
.

C.
$$I = 3$$
.

D.
$$I = \ln 2$$
.

Lời giải

Chon B

Ta có: $x^2 f'(x) \cdot \ln x - x f(x) + \ln^2 x = 0, \forall x \in [e; e^2]$

$$\Leftrightarrow \frac{f'(x) \cdot \ln x - \frac{1}{x} \cdot f(x)}{\ln^2 x} = -\frac{1}{x^2} \Leftrightarrow \left(\frac{f(x)}{\ln x}\right)' = -\frac{1}{x^2}$$

Lấy nguyên hàm hai vế ta được: $\frac{f(x)}{\ln x} = \frac{1}{x} + C$ theo đề bài ta có $f(e) = \frac{1}{e} \Rightarrow C = 0$

suy ra
$$f(x) = \frac{\ln x}{x} \Rightarrow I = \int_{e}^{e^2} f(x) dx = I = \int_{e}^{e^2} \frac{\ln x}{x} dx = \frac{3}{2}$$
.

Dạng 2. Tích phân một số hàm đặc biệt

Dạng 2.1 Tích phân của hàm số lẻ và hàm số chẵn

Nhắc lại kiến thức về hàm số lẻ và hàm số chẵn:

Hàm số y = f(x) có miền xác định trên tập đối xứng D và

Nếu f(-x) = f(x), $\forall x \in D \Rightarrow y = f(x)$: là hàm số chẵn.

Nếu f(-x) = -f(x), $\forall x \in D \Rightarrow y = f(x)$: là hàm số lẻ.

(thay thế chỗ nào có x bằng -x sẽ tính được f(-x) và so sánh với f(x)).

Thường gặp cung góc đối nhau của $\cos(-x) = \cos x$, $\sin(-x) = -\sin x$.

- \Box Nếu hàm số f(x) liên tục và lẻ trên [-a;a] thì $\int_{-a}^{a} f(x).dx = 0$.
- □ Nếu hàm số f(x) liên tục và chẵn trên [-a;a] thì $\begin{cases} \int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx \\ \int_{-a}^{a} \frac{f(x)}{b^{x} + 1} dx = \int_{0}^{a} f(x) dx \end{cases}$.

Do những kết quả này không có trong SGK nên về mặt thực hành, ta làm theo các bước sau (sau khi nhận định đó là hàm chẵn hoặc lẻ và **bài toán thường có cận đối nhau** dạng $-a \rightarrow a$):

$$\square$$
 Buốc 1. Phân tích: $I = \int_{-a}^{a} f(x).dx = \int_{-a}^{0} f(x).dx + \int_{0}^{a} f(x).dx = A + B$.

□ Bước 2. Tính $A = \int_{-a}^{0} f(x) dx$? bằng cách đổi biến t = -x và cần nhớ rằng: tích phân không phụ thuộc vào biến, mà chỉ phụ thuộc vào giá trị của hai cận, chẳng hạn luôn có: $\int_{-2014}^{0} \frac{3t^2 \cos t}{1 + \sin^2 t} dt = \int_{-2014}^{0} \frac{3x^2 \cos x}{1 + \sin^2 x} dx \ .$

2. Tích phân của hàm số liên tục

 \Box Nếu hàm số f(x) liên tục trên [a;b] thì $\int_a^b f(x) dx = \int_a^b f(a+b-x) dx$.

 \square Nếu hàm số f(x) liên tục trên [0;1] thì

$$+\int_{0}^{\frac{\pi}{2}} f(\sin x) dx = \int_{0}^{\frac{\pi}{2}} f(\cos x) dx.$$

$$+ \int_{a}^{\pi-a} xf(\sin x) dx = \frac{\pi}{2} \int_{a}^{\pi-a} f(\sin x) dx \quad \text{và } \int_{0}^{\pi} x \cdot f(\sin x) dx = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) dx.$$

$$+ \int_{a}^{2\pi - a} x f(\cos x) dx = \pi \int_{a}^{2\pi - a} f(\cos x) dx \text{ và } \int_{0}^{2\pi} x . f(\cos x) dx = \pi \int_{0}^{2\pi} f(\cos x) dx$$

Về mặt thực hành, sẽ đặt x = cận trên + cận dưới - t (x = a + b - t). Từ đó tạo tích phân xoay vòng (tạo ra I), rồi giải phương trình bậc nhất với ẩn I.

 \square Nếu hàm số f(x) liên tục trên \mathbb{R} và tuần hoàn với chu kỳ T thì

$$\int_{a}^{a+T} f(x) dx = \int_{0}^{T} f(x) dx \text{ và } \int_{0}^{nT} f(x) dx = n \int_{0}^{T} f(x) dx.$$

Lưu ý: Hàm số f(x) có chu kỳ T thì f(x+T) = f(x).

→ Về mặt thực hành, ta sẽ làm theo các bước sau:

Buốc 1. Tách:
$$I = \int_{a}^{a+T} f(x) dx = \int_{a}^{0} f(x) dx + \int_{0}^{T} f(x) dx + \int_{0}^{a+T} f(x) dx + \int_{0}^{a+T} f(x) dx$$
 (i)

Bước 2. Tính
$$C = \int_{T}^{a+T} f(x) dx$$
?

Đặt
$$x = t + T \Rightarrow dx = dt$$
. Đổi cận:
$$\begin{cases} x = a + T \\ x = T \end{cases} \Rightarrow \begin{cases} t = a \\ t = 0 \end{cases}$$
. Khi đó:

$$C = \int_{0}^{a} f(t+T)dt = -\int_{a}^{0} f(t)dt = -\int_{a}^{0} f(x)dx = -A \quad (ii)$$

Thế
$$(i)$$
 vào (ii) ta được: $I = B = \int_{0}^{T} f(x) dx$.

Câu 1. (Đề Tham Khảo 2017) Cho hàm số f(x) liên tục trên $\mathbb R$ và thoả mãn

$$f(x) + f(-x) = \sqrt{2 + 2\cos 2x}, \forall x \in \mathbb{R}. \text{ Tinh } I = \int_{-\frac{3\pi}{2}}^{\frac{3\pi}{2}} f(x) dx.$$

A.
$$I = -6$$

B.
$$I = 0$$

C.
$$I = -2$$

D.
$$I = 6$$

Lời giả

 $\underline{\mathbf{C}}$ họn $\underline{\mathbf{D}}$

Đặt
$$x = -t$$
. Khi đó $\int_{-\frac{3\pi}{2}}^{0} f(x) dx = \int_{\frac{3\pi}{2}}^{0} f(-t) d(-t) = -\int_{\frac{3\pi}{2}}^{0} f(-t) dt = \int_{0}^{\frac{3\pi}{2}} f(-x) dx$

Ta có:
$$I = \int_{-\frac{3\pi}{2}}^{\frac{3\pi}{2}} f(x)d(x) = \int_{-\frac{3\pi}{2}}^{0} f(x)d(x) + \int_{0}^{\frac{3\pi}{2}} f(x)d(x) = \int_{0}^{\frac{3\pi}{2}} f(-x)d(x) + \int_{0}^{\frac{3\pi}{2}} f(x)d(x)$$

Hay
$$I = \int_{0}^{\frac{3\pi}{2}} (f(-x) + f(x)) d(x) = \int_{0}^{\frac{3\pi}{2}} \sqrt{2 + 2\cos 2x} d(x) = \int_{0}^{\frac{3\pi}{2}} \sqrt{2(1 + \cos 2x)} d(x)$$

$$\Leftrightarrow I = \int_{0}^{\frac{3\pi}{2}} \sqrt{4\cos^{2}x} d(x) = 2 \int_{0}^{\frac{3\pi}{2}} |\cos x| d(x) = 2 \int_{0}^{\frac{\pi}{2}} \cos x d(x) - 2 \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos x d(x)$$

$$\text{Vây } I = 2\sin x \Big|_{0}^{\frac{\pi}{2}} - 2\sin x \Big|_{\frac{\pi}{2}}^{\frac{3\pi}{2}} = 6.$$

Câu 2. (THPT Hàm Rồng - Thanh Hóa - 2018) Cho
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\sin x}{\sqrt{1+x^2+x}} dx = \pi \sqrt{\frac{a}{b}} - \sqrt{c}, \text{ với } a,b,c \in \mathbb{N},$$

b < 15. Khi đó a+b+c bằng:

Lời giải

$$I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\sin x}{\sqrt{1 + x^2} + x} \, dx = \underbrace{\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sqrt{1 + x^2} \sin x dx}_{I_1} - \underbrace{\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} x \sin x dx}_{I_2}$$

Ta nhận thấy $\sqrt{1+x^2} \sin x$ là hàm lẻ nên $I_1 = 0$

$$\begin{cases} u = x \Rightarrow du = dx \\ dv = \sin x dx. \text{ Cho} \mathbf{n} \ v = -\cos x \end{cases}$$

$$I_{2} = -x \cos x \Big|_{\frac{\pi}{4}}^{\frac{\pi}{4}} + \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos x dx = -\frac{\pi\sqrt{2}}{8} - \frac{\pi\sqrt{2}}{8} + \sin x \Big|_{\frac{\pi}{4}}^{\frac{\pi}{4}} = -\frac{\pi\sqrt{2}}{4} + \sqrt{2}$$

Suy ra
$$I = \frac{\pi\sqrt{2}}{4} - \sqrt{2} = \pi\sqrt{\frac{2}{16}} - \sqrt{2} = \pi\sqrt{\frac{1}{8}} - \sqrt{2}$$

Vậy
$$a+b+c=11$$

(THCS - THPT Nguyễn Khuyến 2019) Cho f(x) là hàm số chẵn trên đoạn [-a;a] và k>0. Câu 3.

Giá trị tích phân $\int_{-1}^{a} \frac{f(x)}{1 + e^{kx}} dx$ bằng

$$\underline{\mathbf{A}} \cdot \int_{0}^{a} f(x) dx$$

$$\mathbf{B.} \int_{a}^{a} f(x) \mathrm{d}x$$

$$\mathbf{C.}\ 2\int_{0}^{a}f(x)\mathrm{d}x$$

$$\underline{\mathbf{A}}. \int_{0}^{a} f(x) dx. \qquad \underline{\mathbf{B}}. \int_{-a}^{a} f(x) dx. \qquad \underline{\mathbf{C}}. 2 \int_{0}^{a} f(x) dx. \qquad \underline{\mathbf{D}}. 2 \int_{0}^{a} f(x) dx.$$

Ta có
$$\int_{-a}^{a} \frac{f(x)}{1 + e^{kx}} dx = \int_{-a}^{0} \frac{f(x)}{1 + e^{kx}} dx + \int_{0}^{a} \frac{f(x)}{1 + e^{kx}} dx.$$

Xét tích phân $\int_{1+e^{kx}}^{0} \frac{f(x)}{1+e^{kx}} dx.$

Đặt
$$t = -x \Leftrightarrow x = -t$$

$$\Rightarrow dt = -dx \Leftrightarrow -dt = dx$$

Đổi cân:

$$x = -a \Rightarrow t = a$$

$$x = 0 \Longrightarrow t = 0$$

Khi đó.

$$\int_{-a}^{0} \frac{f(x)}{1 + e^{kx}} dx = \int_{a}^{0} \frac{f(-t)}{1 + e^{k(-t)}} (-dt) = \int_{0}^{a} \frac{f(t)}{1 + e^{-kt}} dt$$

$$= \int_{0}^{a} \frac{e^{kt} \cdot f(t)}{1 + e^{kt}} dx = \int_{0}^{a} \frac{e^{kx} \cdot f(x)}{1 + e^{kx}} dx$$

Do đó,
$$\int_{-a}^{a} \frac{f(x)}{1 + e^{kx}} dx = \int_{0}^{a} \frac{e^{kx} \cdot f(x)}{1 + e^{kx}} dx + \int_{0}^{a} \frac{f(x)}{1 + e^{kx}} dx = \int_{0}^{a} \frac{(e^{kx} + 1)f(x)}{1 + e^{kx}} dx = \int_{0}^{a} f(x) dx$$

Câu 4. (**Việt Đức Hà Nội 2019**) Cho f(x), f(-x) liên tục trên \mathbb{R} và thỏa mãn

$$2f(x)+3f(-x)=\frac{1}{x^2+4}$$
. Biết $I=\int_{-2}^{2}f(x)dx=\frac{\pi}{m}$. Khi đó giá trị của m là

A. m = 2.

B. m = 20

C. m = 5

D. m = 10

Lời giải

Hàm số f(x), f(-x) liên tục trên \mathbb{R} và thỏa mãn $2f(x)+3f(-x)=\frac{1}{x^2+4}$ nên ta có:

$$\int_{-2}^{2} (2f(x) + 3f(-x)) dx = \int_{-2}^{2} \frac{dx}{x^2 + 4}$$
 (1)

Đặt
$$K = \int_{-2}^{2} (2f(x) + 3f(-x)) dx = 2\int_{-2}^{2} f(x) dx + 3\int_{-2}^{2} f(-x) dx$$

Đặt
$$-x = t \Rightarrow dx = -dt$$
; $f(-x) = f(t)$, $x = -2 \Rightarrow t = 2$; $x = 2 \Rightarrow t = -2$

Do đó
$$\int_{-2}^{2} f(-x) dx = \int_{2}^{-2} f(t) \cdot (-dt) = \int_{-2}^{2} f(t) dt = \int_{-2}^{2} f(x) dx$$

$$\Rightarrow K = 2\int_{2}^{2} f(x) dx + 3\int_{2}^{2} f(-x) dx = 2\int_{2}^{2} f(x) dx + 3\int_{2}^{2} f(x) dx = 5\int_{2}^{2} f(x) dx$$
 (2)

$$\text{Dăt } J = \int_{-2}^{2} \frac{dx}{x^2 + 4}; \ x = 2 \tan \alpha, \alpha \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right),$$

Ta có:
$$dx = d(2 \tan \alpha) = \frac{2d\alpha}{\cos^2 \alpha} = 2(1 + \tan^2 \alpha)d\alpha$$
.

Với
$$x = -2 \Rightarrow \alpha = -\frac{\pi}{4}$$
; Với $x = 2 \Rightarrow \alpha = \frac{\pi}{4}$.

Do đó
$$J = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{2(1+\tan^2\alpha)}{4\tan^2\alpha+4} d\alpha = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{d\alpha}{2} = \frac{1}{2}\alpha \Big|_{-\frac{\pi}{4}}^{\frac{\pi}{4}} = \frac{\pi}{4}$$
 (3)

Từ (1), (2) và (3), ta có
$$K = J \Rightarrow 5 \int_{-2}^{2} f(x) dx = \frac{\pi}{4} \Rightarrow \int_{-2}^{2} f(x) dx = \frac{\pi}{20}$$

Mà theo giả thiết,
$$I = \int_{-2}^{2} f(x) dx = \frac{\pi}{m}$$
 nên $\frac{\pi}{m} = \frac{\pi}{20} \Rightarrow m = 20$.

Chú ý: Có thể tính nhanh
$$\int_{-2}^{2} \frac{dx}{x^2 + 4}$$
 bằng công thức: $\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C$

$$\int \frac{dx}{x^2 + 4} = \frac{1}{2} \arctan \frac{x}{2} + C$$

$$\Rightarrow \int_{-2}^{2} \frac{dx}{x^2 + 4} = \frac{1}{2} \arctan \frac{x}{2} \Big|_{-2}^{2} = \frac{1}{2} \left(\arctan 1 - \arctan(-1)\right) = \frac{1}{2} \left[\frac{\pi}{4} - \left(-\frac{\pi}{4}\right)\right] = \frac{\pi}{4}$$

(THPT Hàm Rồng Thanh Hóa -2019) Cho hàm số f(x), f(-x) liên tục trên $\mathbb R$ và thõa mãn Câu 5.

$$2f(x) + 3f(-x) = \frac{1}{4 + x^2}$$
. Tính $I = \int_{-2}^{2} f(x) dx$.

$$\underline{\mathbf{A}}. \ I = \frac{\pi}{20}. \qquad \qquad \mathbf{B}. \ I = \frac{\pi}{10}.$$

B.
$$I = \frac{\pi}{10}$$

C.
$$I = \frac{-\pi}{20}$$
. D. $I = \frac{-\pi}{10}$.

D.
$$I = \frac{-\pi}{10}$$
.

Lời giải

$$Tinh \int_{-2}^{2} f(-x) dx$$

Đặt
$$t = -x \Longrightarrow dt = -dx$$

Đổi cân

x	-2	2
t	2	-2

$$\Rightarrow \int_{-2}^{2} f(-x) dx = -\int_{2}^{-2} f(t) dt = \int_{-2}^{2} f(t) dt = \int_{-2}^{2} f(x) dx$$

$$2f(x) + 3f(-x) = \frac{1}{4 + x^2} \Rightarrow \int_{-2}^{2} (2f(x) + 3f(-x)) dx = \int_{-2}^{2} \frac{1}{4 + x^2} dx$$

$$\Leftrightarrow \int_{-2}^{2} 5f(x) dx = \int_{-2}^{2} \frac{1}{4+x^2} dx$$

$$\Leftrightarrow \int_{-2}^{2} f(x) dx = \frac{1}{5} \int_{-2}^{2} \frac{1}{4 + x^{2}} dx = \frac{1}{5} \cdot \frac{1}{2} \arctan\left(\frac{x}{2}\right) \Big|_{-2}^{2} = \frac{1}{10} \cdot \left(\frac{\pi}{4} + \frac{\pi}{4}\right) = \frac{\pi}{20}$$

(Hà Nội - 2018) Cho hàm số y = f(x) là hàm lẻ và liên tục trên [-4;4] biết Câu 6.

$$\int_{-2}^{0} f(-x) dx = 2 \text{ và } \int_{1}^{2} f(-2x) dx = 4. \text{ Tính } I = \int_{0}^{4} f(x) dx.$$

A.
$$I = -10$$
.

B.
$$I = -6$$
.

C.
$$I = 6$$
.

D.
$$I = 10$$
.

Lời giải

Xét tích phân
$$\int_{-2}^{0} f(-x) dx = 2.$$

$$\text{D} \ddot{\mathbf{a}} \mathbf{t} - \mathbf{x} = \mathbf{t} \implies \mathbf{d} \mathbf{x} = -\mathbf{d} \mathbf{t} .$$

Đổi cận: khi
$$x = -2$$
 thì $t = 2$; khi $x = 0$ thì $t = 0$ do đó

$$\int_{-2}^{0} f(-x) dx = -\int_{2}^{0} f(t) dt = \int_{0}^{2} f(t) dt \Rightarrow \int_{0}^{2} f(t) dt = 2 \Rightarrow \int_{0}^{2} f(x) dx = 2.$$

Do hàm số y = f(x) là hàm số lẻ nên f(-2x) = -f(2x)

Do đó
$$\int_{1}^{2} f(-2x) dx = -\int_{1}^{2} f(2x) dx \Rightarrow \int_{1}^{2} f(2x) dx = -4$$
.

$$X\acute{e}t\int\limits_{1}^{2}f(2x)dx.$$

Đặt
$$2x = t \Rightarrow dx = \frac{1}{2}dt$$
.

Đổi cận: khi
$$x = 1$$
 thì $t = 2$; khi $x = 2$ thì $t = 4$ do đó $\int_{1}^{2} f(2x) dx = \frac{1}{2} \int_{2}^{4} f(t) dt = -4$

$$\Rightarrow \int_{2}^{4} f(t) dt = -8 \Rightarrow \int_{2}^{4} f(x) dx = -8.$$

Do
$$I = \int_{0}^{4} f(x) dx = \int_{0}^{2} f(x) dx + \int_{2}^{4} f(x) dx = 2 - 8 = -6$$
.

Câu 7. (Hồng Quang - Hải Dương - 2018) Cho hàm số f(x) liên tục trên đoạn $[-\ln 2; \ln 2]$ và thỏa

mãn
$$f(x)+f(-x)=\frac{1}{e^x+1}$$
. Biết $\int_{-\ln 2}^{\ln 2} f(x) dx = a \ln 2 + b \ln 3 \ (a;b \in \mathbb{Q})$. Tính $P=a+b$.

$$\underline{\mathbf{A}} \cdot P = \frac{1}{2}$$
.

B.
$$P = -2$$
. **C.** $P = -1$. **D.** $P = 2$.

C.
$$P = -1$$
.

D.
$$P = 2$$

Lời giải

Gọi
$$I = \int_{-\ln 2}^{\ln 2} f(x) dx$$
.

Đặt
$$t = -x \implies dt = -dx$$
.

Đổi cận: Với
$$x = -\ln 2 \implies t = \ln 2$$
; Với $x = \ln 2 \implies t = -\ln 2$.

Ta được
$$I = -\int_{\ln 2}^{-\ln 2} f(-t) dt = \int_{-\ln 2}^{\ln 2} f(-t) dt = \int_{-\ln 2}^{\ln 2} f(-x) dx$$
.

Khi đó ta có:
$$2I = \int_{-\ln 2}^{\ln 2} f(x) dx + \int_{-\ln 2}^{\ln 2} f(-x) dx = \int_{-\ln 2}^{\ln 2} \left[f(x) + f(-x) \right] dx = \int_{-\ln 2}^{\ln 2} \frac{1}{e^x + 1} dx$$
.

Xét
$$\int_{\ln 2}^{\ln 2} \frac{1}{e^x + 1} dx$$
. Đặt $u = e^x \implies du = e^x dx$

Đổi cận: Với
$$x = -\ln 2 \Rightarrow u = \frac{1}{2}$$
; $x = \ln 2 \Rightarrow u = 2$.

Ta được
$$\int_{-\ln 2}^{\ln 2} \frac{1}{e^x + 1} dx = \int_{-\ln 2}^{\ln 2} \frac{e^x}{e^x (e^x + 1)} dx = \int_{-\ln 2}^{\ln 2} \frac{1}{u(u + 1)} du$$

$$= \int_{-\ln 2}^{\ln 2} \left(\frac{1}{u} - \frac{1}{u+1} \right) du = \left(\ln |u| - \ln |u+1| \right) \Big|_{\frac{1}{2}}^{2} = \ln 2$$

Vậy ta có
$$a = \frac{1}{2}$$
, $b = 0 \Rightarrow a + b = \frac{1}{2}$.

(Chuyên ĐH Vinh - 2018) Cho y = f(x) là hàm số chẵn và liên tục trên \mathbb{R} . Biết Câu 8.

$$\int_{0}^{1} f(x) dx = \frac{1}{2} \int_{1}^{2} f(x) dx = 1. \text{ Giá trị của } \int_{-2}^{2} \frac{f(x)}{3^{x} + 1} dx \text{ bằng}$$

Do
$$\int_{0}^{1} f(x) dx = \frac{1}{2} \int_{1}^{2} f(x) dx = 1 \Rightarrow \int_{0}^{1} f(x) dx = 1 \text{ và } \int_{1}^{2} f(x) dx = 2$$

$$\Rightarrow \int_{0}^{1} f(x) dx + \int_{1}^{2} f(x) dx = \int_{0}^{2} f(x) dx = 3.$$

Mặt khác
$$\int_{-2}^{2} \frac{f(x)}{3^{x} + 1} dx = \int_{-2}^{0} \frac{f(x)}{3^{x} + 1} dx + \int_{0}^{2} \frac{f(x)}{3^{x} + 1} dx \text{ và } y = f(x) \text{ là hàm số chẵn, liên tục trên } \mathbb{R}$$

$$\Rightarrow f(-x) = f(x) \ \forall x \in \mathbb{R}.$$

Xét
$$I = \int_{-2}^{0} \frac{f(x)}{3^{x} + 1} dx$$
. Đặt $t = -x \Rightarrow dx = -dt$

$$\Rightarrow I = \int_{-2}^{0} \frac{f(x)}{3^{x} + 1} dx = -\int_{2}^{0} \frac{f(-t)}{3^{-t} + 1} dt = \int_{0}^{2} \frac{f(-t)}{\frac{1}{3^{t}} + 1} dt = \int_{0}^{2} \frac{3^{t} f(t)}{3^{t} + 1} dt = \int_{0}^{2} \frac{3^{x} f(x)}{3^{x} + 1} dx$$

$$\Rightarrow \int_{-2}^{2} \frac{f(x)}{3^{x} + 1} dx = \int_{-2}^{0} \frac{f(x)}{3^{x} + 1} dx + \int_{0}^{2} \frac{f(x)}{3^{x} + 1} dx = \int_{0}^{2} \frac{3^{x} f(x)}{3^{x} + 1} dx + \int_{0}^{2} \frac{f(x)}{3^{x} + 1} dx = \int_{0}^{2} \frac{(3^{x} + 1) f(x)}{3^{x} + 1} dx = \int_{0}^{2} \frac{(3^{x} + 1) f(x)}{3^{x} + 1} dx = \int_{0}^{2} \frac{f(x)}{3^{x} + 1} dx = \int_{0}^{2} \frac{(3^{x} + 1) f(x)}{3^{x} + 1} dx = \int_{0}^{2} \frac{f(x)}{3^{x} +$$

Câu 9. (SGD&DT BRVT - 2018) Hàm số f(x) là hàm số chẵn liên tục trên \mathbb{R} và $\int_0^2 f(x) dx = 10$. Tính $I = \int_0^2 \frac{f(x)}{2^x + 1} dx$.

$$\underline{\mathbf{A}}$$
. $I = 10$.

B.
$$I = \frac{10}{3}$$
.

C.
$$I = 20$$
.

D.
$$I = 5$$
.

Lời giải

Đặt $t = -x \Rightarrow dt = -dx$. Đổi cận: $x = -2 \Rightarrow t = 2$, $x = 2 \Rightarrow t = -2$.

$$I = \int_{-2}^{2} \frac{f(t)}{2^{-t} + 1} dt = \int_{-2}^{2} \frac{2^{t}}{2^{t} + 1} f(t) dt = \int_{-2}^{2} \frac{2^{x}}{2^{x} + 1} f(x) dx$$

$$\Rightarrow 2I = \int_{-2}^{2} \frac{f(x)}{2^{x} + 1} dx + \int_{-2}^{2} \frac{2^{x}}{2^{x} + 1} f(x) dx = \int_{-2}^{2} f(x) dx = \int_{-2}^{0} f(x) dx + \int_{0}^{2} f(x) dx = \int_{-2}^{0} f(x) dx + \int_{0}^{2} f(x) dx = \int_{0}^{0} f(x) dx$$

Mặt khác do f(x) là hàm số chẵn nên f(-x) = f(x).

Xét
$$J = \int_{-2}^{0} f(x) dx$$
, đặt $t = -x \Rightarrow dt = -dx$

$$\Rightarrow J = \int_{0}^{2} f(-t) dt = \int_{0}^{2} f(-x) dx = \int_{0}^{2} f(x) dx = 10 \Rightarrow 2I = 20 \Rightarrow I = 10.$$

Câu 10. (Yên Phong 1 - 2018) Cho hàm số y = f(x) là hàm số chẵn, liên tục trên đoạn [-1;1] và $\int_{-1}^{1} f(x) dx = 6$. Kết quả của $\int_{-1}^{1} \frac{f(x)}{1 + 2018^{x}} dx$ bằng

A. 2

<u>**B**</u>. 3

C. 4

D. 5.

Lời giải

Xét tích phân $\int_{-1}^{1} \frac{f(x)}{1 + 2018^{x}} dx$. Đặt x = -t; dx = -dt; $x = -1 \Rightarrow t = 1$; $x = 1 \Rightarrow t = -1$.

$$\int_{-1}^{1} \frac{f(x)}{1 + 2018^{x}} dx = -\int_{1}^{-1} \frac{f(-t)}{1 + 2018^{-t}} dt = \int_{-1}^{1} \frac{f(t)}{1 + \frac{1}{2018^{t}}} dt = \int_{-1}^{1} \frac{2018^{t} \cdot f(t)}{1 + 2018^{t}} dt = \int_{-1}^{1} \frac{2018^{x} f(x)}{1 + 2018^{x}} dx.$$

Vậy
$$\int_{-1}^{1} \frac{f(x)}{1 + 2018^x} dx + \int_{-1}^{1} \frac{2018^x f(x)}{1 + 2018^x} dx = \int_{-1}^{1} f(x) dx = 6.$$

Do đó
$$\int_{1}^{1} \frac{f(x)}{1+2018^{x}} dx = \frac{1}{2}.6 = 3$$
.

(**Toán Học Và Tuổi Trẻ 2018**) Cho f(x) là hàm liên tục trên đoạn [0;a] thỏa mãn Câu 11.

$$\begin{cases} f(x).f(a-x)=1\\ f(x)>0, \forall x\in[0;a] \end{cases} \text{ và } \int_{0}^{a} \frac{\mathrm{d}x}{1+f(x)} = \frac{ba}{c}, \text{ trong d\'o b , c là hai số nguyên dương và $\frac{b}{c}$ là phân số nguyên dương và là phân số nguyên dương và bà phân số$$

tối giản. Khi đó b+c có giá trị thuộc khoảng nào dưới đây?

Lời giải

Cách 1. Đặt $t = a - x \Rightarrow dt = -dx$

Đổi cận
$$x = 0 \Rightarrow t = a; x = a \Rightarrow t = 0.$$

Lúc đó
$$I = \int_{0}^{a} \frac{dx}{1 + f(x)} = \int_{a}^{0} \frac{-dt}{1 + f(a - t)} = \int_{0}^{a} \frac{dx}{1 + f(a - x)} = \int_{0}^{a} \frac{dx}{1 + \frac{1}{f(x)}} = \int_{0}^{a} \frac{f(x)dx}{1 + f(x)}$$

Suy ra
$$2I = I + I = \int_{0}^{a} \frac{dx}{1 + f(x)} + \int_{0}^{a} \frac{f(x)dx}{1 + f(x)} = \int_{0}^{a} 1dx = a$$

Do đó
$$I = \frac{1}{2}a \Rightarrow b = 1; c = 2 \Rightarrow b + c = 3.$$

(Chuyên Sơn La - 2020) Tích phân $\int_{a}^{2} \frac{x^{2020}}{e^x + 1} dx = \frac{2^a}{b}$. Tính tổng S = a + b.

A.
$$S = 0$$

B.
$$S = 2021$$
.

C.
$$S = 2020$$
.

D.
$$S = 4042$$
.

Lời giải

Xét
$$I = \int_{-2}^{2} \frac{x^{2020}}{e^x + 1} dx$$
.

Đặt
$$x = -t \Rightarrow dx = -dt$$
. Đổi cận $x = -2 \Rightarrow t = 2$; $x = 2 \Rightarrow t = -2$

Ta được
$$I = \int_{2}^{-2} \frac{\left(-t\right)^{2020}}{e^{-t}+1} \cdot \left(-dt\right) = \int_{-2}^{2} \frac{t^{2020}}{\frac{1}{e^{t}}+1} \cdot dt = \int_{-2}^{2} \frac{t^{2020} \cdot e^{t}}{e^{t}+1} \cdot dt = \int_{-2}^{2} \frac{x^{2020} \cdot e^{x}}{e^{x}+1} \cdot dx$$

Suy ra
$$2I = I + I = \int_{-2}^{2} \frac{x^{2020}}{e^x + 1} . dx + \int_{-2}^{2} \frac{x^{2020} . e^x}{e^x + 1} . dx = \int_{-2}^{2} x^{2020} . dx = \frac{x^{2021}}{2021} \Big|_{-2}^{2} = \frac{2^{2021} - (-2)^{2021}}{2021} = \frac{2^{2022}}{2021}.$$

Do đó
$$I = \frac{2^{2021}}{2021}$$
. Suy ra $a = b = 2021$. Vậy $S = a + b = 4042$.

(Đại Học Hà Tĩnh - 2020) Cho hàm số f(x) liên tục trên đoạn $[-\ln 2; \ln 2]$ và thỏa mãn Câu 13.

$$f(x)+f(-x)=\frac{1}{e^x+1}$$
. Biết $\int_{-\ln 2}^{\ln 2} f(x) dx = a \ln 2 + b \ln 3, (a,b \in \mathbb{Q})$. Tính $P=a+b$.

A.
$$P = -2$$
.

B.
$$P = \frac{1}{2}$$
. **C.** $P = -1$.

C.
$$P = -1$$
.

D.
$$P = 2$$
.

Lời giải

Chọn B

Từ giả thiết suy ra
$$\int_{-\ln 2}^{\ln 2} \left[f(x) + f(-x) \right] dx = \int_{-\ln 2}^{\ln 2} \frac{1}{e^x + 1} dx.$$
Ta có
$$\int_{-\ln 2}^{\ln 2} \left[f(x) + f(-x) \right] dx = \int_{-\ln 2}^{\ln 2} f(x) dx - \int_{-\ln 2}^{\ln 2} f(-x) d(-x) = 2 \int_{-\ln 2}^{\ln 2} f(x) dx.$$
Mặt khác
$$\int_{-\ln 2}^{\ln 2} \frac{1}{e^x + 1} dx = \int_{-\ln 2}^{\ln 2} \frac{1}{(e^x + 1)e^x} d(e^x) = \int_{-\ln 2}^{\ln 2} \left[\frac{1}{e^x} - \frac{1}{e^x + 1} \right] d(e^x)$$

$$= \int_{-\ln 2}^{\ln 2} \frac{1}{e^x} d(e^x) - \int_{-\ln 2}^{\ln 2} \frac{1}{e^x + 1} d(e^x + 1) = x \Big|_{-\ln 2}^{\ln 2} - \ln(e^x + 1) \Big|_{-\ln 2}^{\ln 2} = \ln 2 + \ln 2 - \ln 3 + \ln \frac{3}{2} = \ln 2.$$
Suy ra
$$\int_{-\ln 2}^{\ln 2} f(x) dx = \frac{1}{2} \ln 2 \Rightarrow a = \frac{1}{2}, b = 0 \Rightarrow a + b = \frac{1}{2}.$$

Câu 14. (Đại học Hồng Đức – Thanh Hóa 2019) Cho f(x) là hàm số chẵn và $\int_{0}^{1} f(x) dx = 2$. Giá trị của

tích phân
$$\int_{-1}^{1} \frac{f(x)}{1 + 2019^{x}} dx$$
 là

A.
$$\frac{2}{2019}$$
.

<u>**B.**</u> 2.

C. 4.

D. 0.

Lời giải

Chọn B

$$I = \int_{-1}^{1} \frac{f(x)}{1 + 2019^{x}} dx$$

Đặt
$$t = -x \rightarrow -dt = dx$$

Cân

$$I = -\int_{1}^{1} \frac{f(-t)}{1 + 2019^{-t}} dt = \int_{-1}^{1} \frac{f(t)}{1 + 2019^{t}} dt = \int_{-1}^{1} \frac{2019^{t} f(t)}{1 + 2019^{t}} dt$$

$$\Rightarrow 2I = \int_{-1}^{1} \frac{2019^{t} f(t)}{1 + 2019^{t}} dt + \int_{-1}^{1} \frac{f(t)}{1 + 2019^{t}} dt = \int_{-1}^{1} \frac{f(t)(1 + 2019^{t})}{1 + 2019^{t}} dt$$

$$\Rightarrow 2I = \int_{-1}^{1} f(t) dt = 2\int_{0}^{1} f(t) dt = 2.2 \Rightarrow I = 2.$$

Dạng 2.2 Tích phân của hàm chứa dấu trị tuyệt đối

Tính tích phân: $I = \int_{a}^{b} |f(x)| dx$?

<u>Bước</u> 1. Xét dấu f(x) trên đoạn [a;b]. Giả sử trên đoạn [a;b] thì phương trình f(x)=0 có nghiệm $x_o \in [a;b]$ và có bảng xét dấu sau:

<u>Bước</u> 2. Dựa vào công thức phân đoạn và dấu của trên $[a; x_a], [x_a; b]$ ta được:

$$I = \int_{a}^{b} |f(x)| dx = \int_{a}^{x_{o}} f(x) dx + \int_{x}^{b} \left[-f(x)\right] dx = A + B.$$

Sử dụng các phương pháp tính tích phân đã học tính $A, B \Rightarrow I$.

Câu 15. Cho a là số thực dương, tính tích phân $I = \int_{a}^{b} |x| dx$ theo a.

$$\underline{\mathbf{A}} \cdot I = \frac{a^2 + 1}{2}$$

B.
$$I = \frac{a^2 + 2}{2}$$

A.
$$I = \frac{a^2 + 1}{2}$$
. **B.** $I = \frac{a^2 + 2}{2}$. **C.** $I = \frac{-2a^2 + 1}{2}$. **D.** $I = \frac{|3a^2 - 1|}{2}$.

D.
$$I = \frac{|3a^2 - 1|}{2}$$
.

Chọn A

Vì
$$a > 0$$
 nên $I = -\int_{-1}^{0} x \, dx + \int_{0}^{a} x \, dx = \frac{1}{2} + \frac{a^{2}}{2} = \frac{1 + a^{2}}{2}$

(THPT Lương Thế Vinh Hà Nội 2019) Cho số thực m > 1 thỏa mãn $\int_{-\infty}^{\infty} |2mx - 1| dx = 1$. Khẳng Câu 16. định nào sau đây đúng?

A.
$$m \in (4;6)$$
.

B. $m \in (2;4)$.

C. $m \in (3;5)$. **D.** $m \in (1;3)$.

Do $m > 1 \Rightarrow 2m > 2 \Rightarrow \frac{1}{2m} < 1$. Do đó với $m > 1, x \in [1; m] \Rightarrow 2mx - 1 > 0$.

Vậy
$$\int_{1}^{m} |2mx - 1| dx = \int_{1}^{m} (2mx - 1) dx = (mx^{2} - x) \Big|_{1}^{m} = m^{3} - m - m + 1 = m^{3} - 2m + 1.$$

Từ đó theo bài ra ta có $m^3 - 2m + 1 = 1 \Leftrightarrow \begin{bmatrix} m = 0 \\ m = +\sqrt{2} \end{bmatrix}$. Do m > 1 vậy $m = \sqrt{2}$.

(Chuyên Lê Hồng Phong Nam Định 2019) Khẳng định nào sau đây là đúng? Câu 17.

A.
$$\int_{-1}^{1} |x|^3 dx = \left| \int_{-1}^{1} x^3 dx \right|$$
. **B.** $\int_{-1}^{2018} |x^4 - x^2| + 1 dx = \int_{-1}^{2018} (x^4 - x^2) dx$.

C.
$$\int_{-2}^{3} |e^{x}(x+1) dx| = \int_{-2}^{3} e^{x}(x+1) dx$$
. D. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1-\cos^{2}x} dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x dx$.

D.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1 - \cos^2 x} dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x dx$$

Chọn B

Ta có:
$$x^4 - x^2 + 1 = x^4 - 2 \cdot x^2 \cdot \frac{1}{2} + \frac{1}{4} + \frac{3}{4} = \left(x^2 - \frac{1}{2}\right)^2 + \frac{3}{4} > 0, \forall x \in \mathbb{R}$$
.

Do đó:
$$\int_{-1}^{2018} |x^4 - x^2| dx = \int_{-1}^{2018} (x^4 - x^2 + 1) dx.$$

(Chuyên Bắc Giang 2019) Cho tích phân $\int_{1}^{3} \left| \frac{x-2}{x+1} \right| dx = a + b \ln 2 + c \ln 3 \quad \text{với } a, b, c \text{ là các số}$ Câu 18. nguyên. Tính P = abc.

$$\underline{\mathbf{A}}. P = -36$$

B.
$$P = 0$$

C.
$$P = -18$$

D.
$$P = 18$$

Lời giải

Chon A

Ta có

$$\int_{1}^{5} \left| \frac{x-2}{x+1} \right| dx = -\int_{1}^{2} \frac{x-2}{x+1} dx + \int_{2}^{5} \frac{x-2}{x+1} dx$$

$$= -\int_{1}^{2} \left(1 - \frac{3}{x+1} \right) dx + \int_{2}^{5} \left(1 - \frac{3}{x+1} \right) dx$$

$$= -\left(x - 3\ln|x+1| \right) \Big|_{1}^{2} + \left(x - 3\ln|x+1| \right) \Big|_{2}^{5}$$

$$= -\left(2 - 3\ln 3 \right) + 1 - 3\ln 2 + 5 - 3\ln 6 - 2 + 3\ln 3$$

$$= 2 - 6\ln 2 + 3\ln 3$$

Vậy $a = 2, b = -6, c = 3 \Rightarrow P = abc = -36$.

Câu 19. (Chuyên Hạ Long 2019) Có bao nhiều số tự nhiên m để $\int_{0}^{2} \left| x^2 - 2m^2 \right| dx = \left| \int_{0}^{2} \left(x^2 - 2m^2 \right) dx \right|$.

A. Vô số.

B. 0.

C. Duy nhất.

D. 2

Lời giải

$$\int_{0}^{2} \left| x^{2} - 2m^{2} \right| dx = \left| \int_{0}^{2} \left(x^{2} - 2m^{2} \right) dx \right|$$
 (*)

Ta có:
$$x^2 - 2m^2 = 0 \Leftrightarrow \begin{bmatrix} x = -m\sqrt{2} \\ x = m\sqrt{2} \end{bmatrix}$$
.

TH1. Nếu m = 0 thì (*) luôn đúng.

TH2. Nếu $m \neq 0$ thi (*) đúng $\Leftrightarrow \begin{bmatrix} x^2 - 2m^2 > 0 & (1) \\ x^2 - 2m^2 < 0 & (2) \end{bmatrix}$ với mọi $x \in [0;2]$.

+) m > 0.

(1) đúng
$$\Leftrightarrow \begin{bmatrix} -m\sqrt{2} < m\sqrt{2} \le 0 \\ 2 \le -m\sqrt{2} < m\sqrt{2} \end{bmatrix}$$
 (vô nghiệm).

(2) đúng
$$\Leftrightarrow \begin{cases} -m\sqrt{2} \le 0 \\ m\sqrt{2} \ge 2 \end{cases} \Leftrightarrow \begin{cases} m \ge 0 \\ m \ge \sqrt{2} \Leftrightarrow m \ge \sqrt{2} \end{cases}$$
.

+) m < 0.

(1) đúng
$$\Leftrightarrow \begin{bmatrix} m\sqrt{2} < -m\sqrt{2} \le 0 \\ 2 \le m\sqrt{2} < -m\sqrt{2} \end{bmatrix}$$
 (vô nghiệm).

(2) đúng
$$\Leftrightarrow \begin{cases} m\sqrt{2} \le 0 \\ -m\sqrt{2} \ge 2 \end{cases} \Leftrightarrow \begin{cases} m \le 0 \\ m \le -\sqrt{2} \Leftrightarrow m \le -\sqrt{2} \end{cases}$$
.

Suy ra $m \in (-\infty; -\sqrt{2}] \cup [\sqrt{2}; +\infty) \cup \{0\}$ là giá trị cần tìm.

Câu 20. (Chu Văn An -Thái Nguyên - 2018) Tính tích phân $I = \int_{-1}^{1} |2^x - 2^{-x}| dx$.

 $\underline{\mathbf{A}} \cdot \frac{1}{\ln 2}$.

B. ln 2.

C. 2ln2.

D. $\frac{2}{\ln 2}$.

Lời giải

$$I = \int_{1}^{1} \left| 2^{x} - 2^{-x} \right| dx \text{ ta có } 2^{x} - 2^{-x} = 0 \implies x = 0.$$

$$\Rightarrow I = \int_{-1}^{1} \left| 2^{x} - 2^{-x} \right| dx = \int_{-1}^{0} \left| 2^{x} - 2^{-x} \right| dx + \int_{0}^{1} \left| 2^{x} - 2^{-x} \right| dx = \left| \int_{-1}^{0} \left(2^{x} - 2^{-x} \right) dx \right| + \left| \int_{0}^{1} \left(2^{x} - 2^{-x} \right) dx \right|$$
$$= \left| \left(\frac{2^{x} + 2^{-x}}{\ln 2} \right) \right|_{-1}^{0} + \left| \left(\frac{2^{x} + 2^{-x}}{\ln 2} \right) \right|_{0}^{1} = \frac{1}{\ln 2}.$$

(KTNL Gia Bình 2019) Cho hàm số f(x) liên tục trên \mathbb{R} và có $\int_{\mathbb{R}}^{x} f(x) dx = 2$;

$$\int_{0}^{3} f(x) dx = 6. \text{ Tính } I = \int_{-1}^{1} f(|2x-1|) dx$$

A.
$$I = 8$$

B.
$$I = 6$$

B.
$$I = 6$$
 C. $I = \frac{3}{2}$

D.
$$I$$
 = 4

Lời giải

Chọn D

$$I = \int_{-1}^{1} f(|2x-1|) dx = \int_{-1}^{\frac{1}{2}} f(1-2x) dx + \int_{\frac{1}{2}}^{1} f(2x-1) dx = I_1 + I_2.$$

Xét
$$I_1 = \int_{-1}^{\frac{1}{2}} f(1-2x) dx = -\frac{1}{2} \int_{-1}^{\frac{1}{2}} f(1-2x) d(1-2x) = \frac{1}{2} \int_{0}^{3} f(t) dt = \frac{1}{2} \int_{0}^{3} f(x) dx = 3$$
.

Xét
$$I_2 = \int_{\frac{1}{2}}^{1} f(2x-1) dx = \frac{1}{2} \int_{\frac{1}{2}}^{1} f(2x-1) d(2x-1) = \frac{1}{2} \int_{0}^{1} f(t) dt = \frac{1}{2} \int_{0}^{1} f(x) dx = 1$$

Vây
$$I = I_1 + I_2 = 4$$

(Chuyên KHTN 2019) Cho hàm số f(x) liên tục trên \mathbb{R} và có $\int f(x)dx = 8$ và

$$\int_{0}^{5} f(x)dx = 4. \text{ Tinh } \int_{-1}^{1} f(|4x-1|)dx.$$

A.
$$\frac{9}{4}$$

B.
$$\frac{11}{4}$$

Lời giải

Ta có
$$\int_{-1}^{1} f(|4x-1|) dx = \int_{-1}^{\frac{1}{4}} f(|4x-1|) dx + \int_{\frac{1}{4}}^{1} f(|4x-1|) dx$$

$$= \int_{-1}^{\frac{1}{4}} f(1-4x)dx + \int_{\frac{1}{4}}^{1} f(4x-1)dx = I+J.$$

+) Xét
$$I = \int_{1}^{\frac{1}{4}} f(1-4x)dx$$
.

Đặt
$$t = 1 - 4x \Rightarrow dt = -4dx$$

Với
$$x = -1 \Rightarrow t = 5; x = \frac{1}{4} \Rightarrow t = 0.$$

$$I = \int_{-1}^{\frac{1}{4}} f(1 - 4x) dx = \int_{5}^{0} f(t)(-\frac{1}{4}dt) = \frac{1}{4} \int_{0}^{5} f(t) dt = \frac{1}{4} \int_{0}^{5} f(x) dx = 1.$$

+) Xét
$$J = \int_{\frac{1}{4}}^{1} f(4x-1)dx$$
.

Đặt
$$t = 4x - 1$$
 \Rightarrow $dt = 4dx$;

Với
$$x = 1 \Rightarrow t = 3; x = \frac{1}{4} \Rightarrow t = 0.$$

$$J = \int_{\frac{1}{4}}^{1} f(4x-1)dx = \int_{0}^{3} f(t)(\frac{1}{4}dt) = \frac{1}{4} \int_{0}^{3} f(t)dt = \frac{1}{4} \int_{0}^{3} f(x)dx = 2.$$

Vậy
$$\int_{-1}^{1} f(|4x-1|) dx = 3.$$

Câu 23. Cho hàm số f(x) liên tục trên \mathbb{R} thỏa $\int_{0}^{1} f(2x) dx = 2$ và $\int_{0}^{2} f(6x) dx = 14$. Tính

$$\int_{-2}^{2} f\left(5\left|x\right|+2\right) dx.$$

+ Xét
$$\int_{0}^{1} f(2x) dx = 2.$$

Đặt
$$u=2x \Rightarrow du=2dx$$
; $x=0 \Rightarrow u=0$; $x=1 \Rightarrow u=2$.

Nên
$$2 = \int_{0}^{1} f(2x) dx = \frac{1}{2} \int_{0}^{2} f(u) du \Rightarrow \int_{0}^{2} f(u) du = 4$$
.

+ Xét
$$\int_{0}^{2} f(6x) dx = 14$$
.

Đặt
$$v = 6x \Rightarrow dv = 6dx$$
; $x = 0 \Rightarrow v = 0$; $x = 2 \Rightarrow v = 12$.

Nên
$$14 = \int_{0}^{2} f(6x) dx = \frac{1}{6} \int_{0}^{12} f(v) dv \Rightarrow \int_{0}^{12} f(v) dv = 84$$
.

+ Xét
$$\int_{-2}^{2} f(5|x|+2) dx = \int_{-2}^{0} f(5|x|+2) dx + \int_{0}^{2} f(5|x|+2) dx$$
.

$$\Box$$
 Tính $I_1 = \int_{-2}^{0} f(5|x|+2) dx$.

$$\text{Dặt } t = 5|x| + 2.$$

Khi
$$-2 < x < 0$$
, $t = -5x + 2 \Rightarrow dt = -5dx$; $x = -2 \Rightarrow t = 12$; $x = 0 \Rightarrow t = 2$.

$$I_{1} = \frac{-1}{5} \int_{12}^{2} f(t) dt = \frac{1}{5} \left[\int_{0}^{12} f(t) dt - \int_{0}^{2} f(t) dt \right] = \frac{1}{5} (84 - 4) = 16.$$

$$\Box$$
 Tính $I_1 = \int_{0}^{2} f(5|x|+2) dx$.

 $\text{D} \check{\mathbf{a}} \mathbf{t} \, t = 5 \, \big| x \big| + 2 \, .$

Khi 0 < x < 2, $t = 5x + 2 \Rightarrow dt = 5dx$; $x = 2 \Rightarrow t = 12$; $x = 0 \Rightarrow t = 2$.

$$I_2 = \frac{1}{5} \int_{2}^{12} f(t) dt = \frac{1}{5} \left[\int_{0}^{12} f(t) dt - \int_{0}^{2} f(t) dt \right] = \frac{1}{5} (84 - 4) = 16.$$

Vậy
$$\int_{-2}^{2} f(5|x|+2) dx = 32$$
.

Câu 24. (**Phong 1 - 2018**) Cho hàm số f(x) liên tục trên (0;3) và $\int_{0}^{1} f(x) dx = 2$; $\int_{0}^{3} f(x) dx = 8$. Giá trị

của tích phân $\int_{-1}^{1} f(|2x-1|) dx = ?$

A. 6

B. 3

C. 4

D. 5

Lời giải

Ta có $\int_{-1}^{1} f(|2x-1|) dx = \int_{-1}^{\frac{1}{2}} f(1-2x) dx + \int_{\frac{1}{2}}^{1} f(2x-1) dx = I + J$

Tính $I = \int_{-1}^{\frac{1}{2}} f(1 - 2x) dx$

Đặt $t = 1 - 2x \Rightarrow dt = -2dx$. Đổi cận $x = -1 \Rightarrow t = 3$; $x = \frac{1}{2} \Rightarrow t = 0$

 $\Rightarrow I = -\frac{1}{2} \int_{3}^{0} f(t) dt = \frac{1}{2} \int_{0}^{3} f(t) dt = \frac{1}{2} \int_{0}^{3} f(x) dx = \frac{1}{2} \cdot 8 = 4$

Tinh $J = \int_{\frac{1}{2}}^{1} f(2x-1) dx$

Đặt $t = 2x - 1 \Rightarrow dt = 2dx$. Đổi cận $x = \frac{1}{2} \Rightarrow t = 0; x = 1 \Rightarrow t = 1$

$$\Rightarrow J = \frac{1}{2} \int_{0}^{1} f(t) dt = \int_{0}^{1} f(x) dx = \frac{1}{2}.2 = 1$$

Vậy
$$\int_{-1}^{1} f(|2x-1|) dx = I + J = 4 + 1 = 5$$
.

Câu 25. Cho hàm số f(x) liên tục trên \mathbb{R} và có $\int_0^3 f(x)dx = 8$ và $\int_0^5 f(x)dx = 4$. Tính $\int_{-1}^1 f(|4x-1|)dx$

A. $\frac{9}{4}$.

B. $\frac{11}{4}$

<u>C</u>. 3.

D. 6.

Lời giải

 $\underline{C} hon \ \underline{C}$

Ta có: $\int_{-1}^{1} f(|4x-1|) dx = \int_{-1}^{\frac{1}{4}} f(-4x+1) dx + \int_{\frac{1}{4}}^{1} f(4x-1) dx.$

Tính:
$$A = \int_{-1}^{\frac{1}{4}} f(-4x+1)dx$$
. Đặt $t = -4x+1 \Rightarrow -\frac{1}{4}dt = dx$

$$\Rightarrow A = -\frac{1}{4} \int_{5}^{0} f(t)dt = \frac{1}{4} \int_{0}^{5} f(t)dt = 1$$
Tính: $B = \int_{\frac{1}{4}}^{1} f(4x-1)dx$. Đặt $t = 4x-1 \Rightarrow \frac{1}{4}dt = dx$

$$\Rightarrow B = \frac{1}{4} \int_{0}^{3} f(t)dt = 2$$
Vậy $\int_{-1}^{1} f(4x-1)dx = A+B=3$.

Câu 26. Cho hàm số y = f(x) xác định trên \mathbb{R} và thỏa mãn $f'(x) + 2f'(-x) = \frac{2|x|}{x^6 + x^2 + 1}$ với mọi số thực x. Giả sử f(2) = m, f(-3) = n. Tính giá trị của biểu thức T = f(-2) - f(3).

A.
$$T = m + n$$

$$\mathbf{\underline{B}}$$
. $T = n - m$.

C.
$$T = m - n$$

D.
$$T = -m - n$$
.

Lời giả

Chọn B

Với mọi số thực x, thay x bởi -x vào biểu thức $f'(x) + 2f'(-x) = \frac{2|x|}{x^6 + x^2 + 1}$ (1), ta được

$$f'(-x) + 2f'(x) = \frac{2|-x|}{(-x)^6 + (-x)^2 + 1} \text{ hay } 2f'(x) + f'(-x) = \frac{2|x|}{x^6 + x^2 + 1}$$
(2).

Nhân hai vế của (2) với 2 sau đó trừ theo vế cho (1), rút gọn suy ra $f'(x) = \frac{2}{3} \cdot \frac{|x|}{x^6 + x^2 + 1}$ với mọi số thực x.

Xét
$$I = \int_{-3}^{2} f'(x) dx = \int_{-3}^{2} \frac{2}{3} \cdot \frac{|x|}{x^6 + x^2 + 1} dx$$
. Đặt $u = -x$, khi đó ta được $du = -dx$.

Đổi cận: Khi $x = -3 \Rightarrow u = 3$ và $x = 2 \Rightarrow u = -2$.

Ta được

$$I = \int_{3}^{-2} \frac{2}{3} \cdot \frac{|-u|}{(-u)^{6} + (-u)^{2} + 1} (-du) = \int_{-2}^{3} \frac{2}{3} \cdot \frac{|u|}{u^{6} + u^{2} + 1} du = \int_{-2}^{3} \frac{2}{3} \cdot \frac{|x|}{x^{6} + x^{2} + 1} dx = \int_{-2}^{3} f'(x) dx.$$

Mà
$$I = \int_{3}^{2} f'(x) dx = f(2) - f(-3)$$
 (3) và $I = \int_{3}^{3} f'(x) dx = f(3) - f(-2)$ (4).

Từ (3) và (4), ta được
$$f(2)-f(-3)=f(3)-f(-2)$$
 suy ra

$$f(-2)-f(3)=f(-3)-f(2)=n-m$$
.

Dạng 2.3 Tích phân nhiều hàm

Câu 27. Cho số thực a và hàm số $f(x) = \begin{cases} 2x & khi \ x \le 0 \\ a(x-x^2) & khi \ x > 0 \end{cases}$. Tính tích phân $\int_{-1}^{1} f(x) dx$ bằng:

$$\underline{\mathbf{A}} \cdot \frac{a}{6} - 1.$$

B.
$$\frac{2a}{3} + 1$$
.

C.
$$\frac{a}{6} + 1$$
.

D.
$$\frac{2a}{3} - 1$$
.

Ta thấy,
$$\int_{-1}^{1} f(x) dx = \int_{-1}^{0} f(x) dx + \int_{0}^{1} f(x) dx = \int_{-1}^{0} 2x dx + \int_{0}^{1} a(x - x^{2}) dx$$
$$= \left(x^{2}\right)\Big|_{-1}^{0} + a\left(\frac{x^{2}}{2} - \frac{x^{3}}{3}\right)\Big|_{0}^{1} = -1 + a\left(\frac{1}{6}\right) = \frac{a}{6} - 1.$$

(Chuyên Nguyễn Trãi Hải Dương 2019) Cho hàm số $f(x) = \begin{cases} e^x + m & \text{khi } x \ge 0 \\ 2x\sqrt{3 + x^2} & \text{khi } x < 0 \end{cases}$ liên tục trên

R và $\int_{-1}^{1} f(x) dx = ae + b\sqrt{3} + c, (a,b,c \in Q). \text{ Tổng } a+b+3c \text{ bằng}$

D. -17.

Ta có $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (e^x + m) = m + 1$, $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (2x\sqrt{3 + x^2}) = 0$ và f(0) = m + 1.

Vì hàm số đã cho liên tục trên $\mathbb R$ nên liên tục tại x=0

Suy ra $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x) = f(0)$ hay $m+1=0 \Leftrightarrow m=-1$.

Khi đó $\int_{0}^{1} f(x) dx = \int_{0}^{0} 2x \sqrt{3 + x^{2}} dx + \int_{0}^{1} (e^{x} - 1) dx = \int_{0}^{0} \sqrt{3 + x^{2}} d(3 + x^{2}) + \int_{0}^{1} (e^{x} - 1) dx$ $= \frac{2}{3} (3 + x^2) \sqrt{3 + x^2} \Big|_{0}^{1} + (e^x - x) \Big|_{0}^{1} = e + 2\sqrt{3} - \frac{22}{3}.$

Suy ra a = 1, b = 2, $c = -\frac{22}{2}$.

Vậy tổng a+b+3c = -19.

(THPT Yên Phong 1 Bắc Ninh 2019) Tính tích phân $\int \max \{e^x, e^{1-2x}\} dx$

A. e-1.

<u>B.</u> $\frac{3}{2}(e^{-\sqrt[3]{e}})$. **C.** $e^{-\sqrt[3]{e}}$. **D.** $\frac{1}{2}(e^{-\frac{1}{e}})$.

Lời giải

Ta có: $e^x \ge e^{1-2x} \Leftrightarrow x \ge 1-2x \Leftrightarrow x \ge \frac{1}{3}$. Suy ra: $\max \left\{ e^x, e^{1-2x} \right\} = \begin{cases} e^{1-2x} & \text{thi } 0 \le x \le \frac{1}{3} \\ e^x & \text{thi } \frac{1}{2} \le x \le 1 \end{cases}$

Do đó $I = \int_{0}^{1} \max \left\{ e^{x}, e^{1-2x} \right\} dx = \int_{0}^{\frac{\pi}{3}} e^{1-2x} dx + \int_{1}^{1} e^{x} dx = -\frac{1}{2} e^{1-2x} \Big|_{0}^{\frac{1}{3}} + e^{x} \Big|_{\frac{1}{3}}^{1}$ $= -\frac{1}{2}e^{\frac{1}{3}} + \frac{1}{2}e + e - e^{\frac{1}{3}} = \frac{3}{2}(e - \sqrt[3]{e}).$

Câu 30. Cho hàm số $y = f(x) = \begin{cases} x^2 + 3 & khi \ x \ge 1 \\ 5 - x & khi \ x < 1 \end{cases}$. Tính $I = 2\int_{-\infty}^{\infty} f(\sin x) \cos x dx + 3\int_{-\infty}^{\infty} f(3 - 2x) dx$

A.
$$I = \frac{71}{6}$$
. **B.** $I = 31$.

B.
$$I = 31$$

C.
$$I = 32$$
.

D.
$$I = \frac{32}{3}$$
.

Lời giải

Chon B

+ Xét tích phân:
$$I_1 = 2 \int_{0}^{\frac{\pi}{2}} f(\sin x) \cos x dx$$
.

 $Dăt: t = \sin x \Rightarrow dt = \cos x dx.$

Đổi cận: với x = 0 thì t = 0, với $x = \frac{\pi}{2}$ thì t = 1.

$$I_{1} = 2 \int_{0}^{\frac{\pi}{2}} f(\sin x) \cos x dx = 2 \int_{0}^{1} f(t) dt = 2 \int_{0}^{1} f(x) dx = 2 \int_{0}^{1} (5 - x) dx = (10x - x^{2}) \Big|_{0}^{1} = 9.$$

+ Xét tích phân:
$$I_2 = 3 \int_0^1 f(3-2x) dx$$
.

Đặt:
$$t = 3 - 2x \Rightarrow dt = -2dx \Rightarrow dx = -\frac{1}{2}dt$$

Đổi cận: với x = 0 thì t = 3, với x = 1 thì t = 1.

$$I_2 = 3 \int_0^1 f(3-2x) dx = -\frac{3}{2} \int_3^1 f(t) dt = -\frac{3}{2} \int_3^1 f(x) dx$$

$$= -\frac{3}{2} \int_{3}^{1} (x^{2} + 3) dx = \left(-\frac{1}{2} x^{3} - \frac{9}{2} x \right) \Big|_{3}^{1} = 22.$$

Vậy:
$$I = 2 \int_{0}^{\frac{\pi}{2}} f(\sin x) \cos x dx + 3 \int_{0}^{1} f(3 - 2x) dx = 9 + 22 = 31$$
.

BẠN HỌC THAM KHÁO THÊM DẠNG CÂU KHÁC TẠI

https://drive.google.com/drive/folders/15DX-hbY5paR0iUmcs4RU1DkA1-7QpKlG?usp=sharing

Theo doi Fanpage: Nguyễn Bảo Vương * https://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương * https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIỆU TOÁN) # https://www.facebook.com/groups/703546230477890/

Ân sub kênh Youtube: Nguyễn Vương

https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view as=subscriber

Tải nhiều tài liệu hơn tại: http://diendangiaovientoan.vn/

ĐỂ NHẬN TÀI LIỆU SỚM NHẤT NHÉ!

NGUYĒN <mark>BẢO</mark> VƯƠNG - 0946798489

Agiljet Bio Vilotie