## Corrigés des exercices

## Exercice 1

1. Soit  $x \in \mathbb{R}^+$ . Étudions la série numérique  $\sum nx^2e^{-x\sqrt{n}}$ 

Si x = 0, la série converge trivialement.

Sinon on a  $n^2 f_n(x) \xrightarrow[n \to +\infty]{} 0$  donc au voisinage de l'infini,  $f_n(x) = o\left(\frac{1}{n^2}\right)$ .

D'où la série numérique à termes positifs  $\sum f_n(x)$  converge par comparaison.

Ainsi  $\sum f_n$  converge simplement sur  $\mathbb{R}^+$ .

2. Remarquons tout d'abord que  $(f_n)_{n\in\mathbb{N}^*}$  converge simplement vers la fonction nulle sur  $\mathbb{R}_+$ .

En effet 
$$f_n(0) = 0$$
 et si  $x \in \mathbb{R}^*_+, f_n(x) \xrightarrow[n \to +\infty]{} 0.$ 

Étudions à présent la convergence uniforme de  $(f_n)$  sur  $\mathbb{R}_+$ .

Pour tout  $x \in \mathbb{R}^+$ , on a

$$f_n'(x) = nx(2 - x\sqrt{n})e^{-x\sqrt{n}}$$

On en déduit le tableau de variations suivant



donc 
$$\sup_{x \in \mathbb{R}^+} |f_n(x)| = f_n\left(\frac{2}{\sqrt{n}}\right) = \frac{4}{e^2} \xrightarrow[n \to +\infty]{} 0$$

Ainsi  $(f_n)$  ne converge pas uniformément vers la fonction nulle sur  $\mathbb{R}^+$ .

3.  $(f_n)$  ne converge pas uniformément vers la fonction nulle sur  $\mathbb{R}^+$  donc  $\sum f_n$  ne converge pas uniformément sur  $\mathbb{R}_+$ .

## Exercice 2

1. Soit  $x \in [0, 1]$ .

La série numérique  $\sum f_n(x)$  est alternée et vérifie le critère spécial car la suite numérique  $(|f_n(x)|)$  est décroissante et converge vers 0 donc  $\sum f_n(x)$  converge.

Ainsi  $\sum f_n$  converge simplement sur [0,1].

2. Pour tout  $x \in [0,1]$ , comme la série numérique alternée  $\sum f_n(x)$  vérifie le critère spécial, on a

$$\left| R_n(x) \right| \leqslant \left| \frac{(-1)^{n+1} x^{n+1}}{n+1} \right| \leqslant \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 0$$

donc  $(R_n)$  converge uniformément vers la fonction nulle sur [0,1].

Ainsi la série  $\sum f_n$  converge uniformément sur [0,1].

## Exercice 3

1. Soit  $x \in \mathbb{R}_+$ .

Si 
$$x = 0$$
, alors  $\sum f_n(x) = \sum \frac{1}{n}$  diverge.

Si 
$$x \in \mathbb{R}_+^*$$
, alors  $\frac{1}{n+n^3x^2} \underset{+\infty}{\sim} \frac{1}{n^3x^2}$ .

Or 
$$\sum \frac{1}{n^3}$$
 converge donc la série numérique à termes positifs  $\sum \frac{1}{n+n^3x^2}$  converge par comparaison.

Ainsi  $\sum f_n$  converge simplement sur  $\mathbb{R}_+^*$  (mais ne converge pas simplement sur  $\mathbb{R}_+$ ).

2. On a immédiatement

$$\sup_{x \in \mathbb{R}_{+}^{*}} \left| f_{n}(x) \right| = \frac{1}{n} \xrightarrow[n \to +\infty]{} 0$$

Donc  $(f_n)$  converge uniformément vers la fonction nulle sur  $\mathbb{R}_+^*$ .

3. Soit  $x \in \mathbb{R}_+^*$ .

Alors 
$$|R_n(x)| = \left| \sum_{k=n+1}^{+\infty} f_k(x) \right| = \sum_{k=n+1}^{+\infty} \frac{1}{k + k^3 x^2} \geqslant \sum_{k=n+1}^{2n} \frac{1}{k + k^3 x^2}$$
.

Donc 
$$|R_n(x)| \ge \underbrace{n}_{\text{nombre de termes}} \cdot \underbrace{\frac{1}{2n + 8n^3x^2}}_{\text{terme le plus pet it}} = \frac{1}{2 + 8n^2x^2}$$

Ainsi pour tout 
$$n \in \mathbb{N}^*$$
,  $R_n\left(\frac{1}{n}\right) \geqslant \frac{1}{10}$  donc  $\sup_{x \in \mathbb{R}^*_+} |R_n(x)| \xrightarrow[n \to +\infty]{} 0$ .

Donc  $\sum f_n$  ne converge pas uniformément sur  $\mathbb{R}_+^*$ .