Твердотельный лазер на керамике с волоконно-лазерной накачкой

Работу выполнили:

Геликонова В.Г., Платонова М.В., Сарафанов Ф.Г.

Научный руководитель:

Антипов О.Л.

Нижний Новгород - 2017

Цели работы

- 1 Ознакомиться с принципами работы лазера
- 2 Измерить мощность волоконного и твердотельного лазеров
- **3** Поучаствовать в эксперименте по созданию лазера и измерению его параметров

Виды переходов электронов между уровнями энергии

1 Спонтанное излучение

Виды переходов электронов между уровнями энергии

2 Вынужденное излучение

Устройство лазера

Лазер [Light Amplification by Stimulated Emition of Radiation] — устройство, усиливающее свет посредством вынужденного излучения.

Основные составляющие:

- 1 Активная (рабочая) среда
- 2 Система накачки (источник энергии)
- 3 Непрозрачное зеркало
- 4 Полупрозрачное зеркало

Некоторые виды лазеров

Лазер на керамике

Волоконный лазер

Газовый лазер

Вид лазера	Рабочая среда	Длина волны	Мощность
твердотельный	кристалл/керамика	? нм	10 Вт
волоконный	волокно	? нм	40 Вт
газовый	газ	633 нм	1 Вт?

Накачка

Система накачки – устройство, которое создает инверсию населенности (состояние вещества, при котором на высоких уровнях энергии находится большее количество электронов, чем на низких) в активной среде

Виды накачки:

- 1 оптическая за счет энергии света
- 2 электрическая накачка электрическим током
- 3 химическая с использованием энергии химических реакций

Активные среды и энергетические уровни

3-уровневая среда

4-уровневая среда

В лазере сначала происходит спонтанный переход, фотоны от него создают вынужденное излучение других фотонов, когерентных первоначальным, таким образом возникает фотонная лавина, усиливающаяся в резонаторе

Резонатор

В простейшем случае представляет собой два зеркала, установленных друг напротив друга, одно из которых полупрозрачное – через него луч лазера частично выходит из резонатора

Простейший резонатор

Схема установки

 $oldsymbol{1}$ — волоконный лазер накачки

2a, 2b — зеркала резонатора

3 – активная среда

4а – диэлектрическое зеркало

4b – зеркало

5 – камера

Диэлектрическое зеркало

Конструктивная интерференция

Деструктивная интерференция

Волоконный лазер

 1 – активная среда (легированное волокно)

2 – волновод накачки

3 – внешняя оболочка

4 - излучение накачки

5 — излучение генерации

6 – волоконная брэгговская решетка

Зависимость излучения волоконного лазера от тока

Лазер на керамике

Экспериментальный лазер на керамике

Структура керамики

- 1 выходное зеркало резонатора
- 2 входное зеркало резонатора
- 3 активная среда с термостабилизацией

Характерный размер зерна керамики (кристаллита) $\sim 500 \text{ нм} \Rightarrow \text{малые потери на рассеяние}$

Зависимость излучения лазера на керамике от тока

Зависимость излучения лазера на керамике от мощности накачки

Выводы

В данной работе были:

- 1 Осуществлено знакомство с принципами работы лазера
- 2 Измерена мощность волоконного лазера
- 3 Проведен эксперимент по созданию лазера на керамике
- 4 Измерена мощность лазера на керамике

Спасибо за внимание!

Презентация подготовлена в издательской системе LaTeX с использованием пакетов PGF/TikZ и Beamer