

Alexander Neuwirth

 Z^0 Resonanz Z^0 Resonanz

Z°-Resonanz
Alexarder Browletts
wissen, lebels

- 1. Begrüßung
- 2. Thema

wissen.leben

Z⁰ Resonanz —Gliederun -Gliederung 2018-12

-Gliederung

Gliederung

Gliederung

Historischer Überblick

Theorie

Experimentelle Untersuchung

Zusammenfassung

1. Historie

2. Theorie

3. Messung/Experiment

4. Zusammenfasssung

Z⁰ Resonanz Historisch 2018-12

• Zunächst Historie

-Historischer Überblick

Historischer Überblick

2018

Z⁰ Resonanz

Historischer Überblick

1979 Nobelpreis an Steven Weinberg, Sheldon Glashow und Abdus Salam [1]

Alexander Neuwirth 3

Z⁰ Resonanz ⊢Historischer Überblick

∟Historischer Überblick

- 1. Vereinheitlichung von elektr.magn. + schwache WW. Kräfteaustausch durch Photon, W^{\pm} , Z^0
- 2. 1979 Nobelpreis für GWS

Historischer Überblick

Z⁰ Resonanz Historischer Überblick ☐ Historischer Überblick

1. Gargamelle-Blasenkammer am CERN

Historischer Überblick

Meer [2]

Z⁰ Resonanz Historischer Überblick

- 1. Am Large Electron Positorn Collider, fokus
- 2. Nobelpreis für Carlo Rubbia and Simon van der Meer für experimentelle Beitrag Proton-Antiproton-Kollisionen
- 3. Mehr später
- 4. Weil führte mit zum Nachweis der Z und W Bosonen

Historischer Überblick

- 1. Large Electron Positron Ring (CERN) Präzessionsmessungen
- 2. weiter Bestätigung der Theorie/Standardmodell und W-Z-Bosonen
- 3. bis 2000

Historischer Überblick

Z⁰ Resonanz
Historischer Überblick

Historischer Überblick

- 1. Higgs Theorie in 60er-Jahren
- 2. 2013 Francois Englert und Peter Higgs Nobelpreis
- 3. Alle Nachweise am CERN!
- 4. Randnotitz

Alexander Neuwirth

3

Z⁰ Resonanz Theorie

Theorie

Binordung im Standardmodell der Elementartellchen
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung

Historischer Überblic

Theorie

Einordnung im Standardmodell der Elementarteilchen Elektroschwache Vereinheitlichung

Experimentelle Untersuchung

Zusammenfassui

Einordnung im Standardmodell der Elementarteilchen

Standardmodell[3]

Z⁰ Resonanz
—Theorie
—Einordnung im Standardmodell der
Elementarteilchen
—Einordnung im Standardmodell der

- 1. Antiteilchen invers
- 2. Masse steigt mit Generation
- 3. Lebensdauer sehr sehr kurz
- 4. Masse (Reichweite)
- 5. ungleaden/neutral
- 6. Boson also Spin 1, außer Higgs
- 7. Schwache Wechselwirkung
- 8. Bestätigung der 3 Neutrinogenerationen

Elektroschwache VereinheitlichungAustauschteilchen

- lacktriangle Photon ightarrow elektromagnetische Wechselwirkung
- ► Gluon → starke Wechselwirkung
- W-, Z-Boson → schwache Wechselwirkung

Z⁰ Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

➤ Gluon → starke Wechselwirkung
➤ W-, Z-Boson → schwache Wechselwirkung

- 1. Warum? Weil Divergenzen in höherer Ordnung/Energien auftreten
- 2. Vereint QED mit schwacher WW.
- 3. Kräfte durch Austauschteilchen
- 4. Photon elektro magn. beispielweise Elektron-Elektron-Streuung, Rutherford Streuung
- 5. W,Z bsplw. Beta-Zerfall, Elektron-Positron-Streuung (Energieabhänig)
- 6. Gluon Kernzusammenhalt, Farbladung, 8 (n-p-Anziehung), Quarkanziehung
- 7. Nur durch Z-Boson lässt sich Neutrino-Neutrino-WW erklären, da sie nicht elektrisch sind.

Elektroschwache Vereinheitlichung Schwacher Isospin

		Fermionmultipletts			T	T_3	$z_{ m f}$
	Leptonen	$\begin{pmatrix} \nu_{\rm e} \\ {\rm e} \end{pmatrix}_{ m L}$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{ au} \\ au \end{array}\right)_{ ext{L}}$	1/2	$^{+1/2}_{-1/2}$	$0 \\ -1$
	Lej	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	0	-1
	Quarks	$\left(\begin{array}{c} u \\ d' \end{array} \right)_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_L$	$\begin{pmatrix} t \\ b' \end{pmatrix}_{L}$	1/2	$^{+1/2}_{-1/2}$	$+2/3 \\ -1/3$
	Qua	u_{R}	c_{R}	t_{R}	0	0	+2/3
		d_{R}	s_{R}	b_{R}	0	0	-1/3

Schwacher Isospin[4]

Z⁰ Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

- 1. Einführung von schwachem Isospin, analogon zu starkem Isospin
- 2. Chiralität Index R/L formal: Zerlegung von Dirac-Spinoren in orthogonale Zustände die unter Paritätsoperationen ineinander übergehen. Eigenzustände ± 1
- 3. Rechtshändige e, μ, τ Singulett Zustand.
- 4. Chiralität (l/r), Spinor Symmetrie
- 5. Rechtshändige Neutrinos $T_3 = z = 0$, keine WW, Auftreten in Natur unbekannt
- 6. Der ' bedeuted != Masseneigenzustände, sondern Quarkmisch-Matrix CKM
- 7. T_3 Werte Bereich analog zu anderen Spins
- 8. z_f beschreibt Ladung
- 9. invers für Antiteilchen: rechshändige Fermionen (linkshändige Antifermionen) Singulettt ($T = 0 = T_3$)
- 10. Umwandung durch Absorption von W^{\pm} -Boson innerhalb Multiplett (darin Ladungsdifferenz = 1)

Alexander Neuwirth

7

Elektroschwache Vereinheitlichung Schwacher Isospin

 β^- -Zerfall[5]

Z⁰ Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

- 1. Bekannt aus schwacher WW
- 2. $d\rightarrow u + W^-$

Elektroschwache Vereinheitlichung

Schwacher Isospin

Z⁰ Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

1. T₃ Erhaltungsgröße

Elektroschwache Vereinheitlichung

Schwacher Isospin

Z⁰ Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

- 1. T_3 in Graphik
- 2. W⁻ muss -1 sein

Alexander Neuwirth

8

Elektroschwache Vereinheitlichung

Schwacher Isospin

Z⁰ Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

- 1. analog β^+ -Zerfall: $u \rightarrow d + W^+$
- 2. Hier Kaon-Zerfall

Elektroschwache Vereinheitlichung

Schwacher Isospin

Z⁰ Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

- 1. Analog zu 1/2x1/2 Gekoppelten Spins
- 2. Tripplett und Singulett Zustände
- 3. B^0 postuliert
- 4. Mehr zum Beta-Zerfall nächste Woche (+Paritätsverletzung)

Elektroschwache Vereinheitlichung

▶ Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 :

$$|\gamma\rangle = +\cos\theta_{\mathrm{W}}|B^{0}\rangle + \sin\theta_{\mathrm{W}}|W^{0}\rangle$$

 $|Z^{0}\rangle = -\sin\theta_{\mathrm{W}}|B^{0}\rangle + \cos\theta_{\mathrm{W}}|W^{0}\rangle$

Z⁰ Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 : $|Y\rangle = +\cos\theta_W |B^0\rangle + \sin\theta_W |W^0\rangle$ $|Z^0\rangle = -\sin\theta_W |B^0\rangle + \cos\theta_W |W^0\rangle$

- 1. Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. spontane Symmetriebrechung, diagonaliesierung der Massematrix führt zu diesen.
- 3. orthogonal + linear Kombination

Elektroschwache Vereinheitlichung

▶ Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 :

$$|\gamma\rangle = +\cos\theta_{\mathrm{W}}|B^{0}\rangle + \sin\theta_{\mathrm{W}}|W^{0}\rangle$$

 $|Z^{0}\rangle = -\sin\theta_{\mathrm{W}}|B^{0}\rangle + \cos\theta_{\mathrm{W}}|W^{0}\rangle$

➤ Weinbergwinkel:

$$\cos \theta_{
m W} = rac{M_{
m W}}{M_{
m Z}} pprox 0.88$$

► Photon und Z⁰ als orthogonale Linearkombination von B⁰ un

 $|\gamma\rangle = +\cos\theta_W |B^0\rangle + \sin\theta_W |W^0\rangle$ $|Z^0\rangle = -\sin\theta_W |B^0\rangle + \cos\theta_W |W^0\rangle$

el: $\cos \theta_W = \frac{M_W}{M_*} \approx 0.88$

- 1. experimentelle Bestimmung, später mehr
- 2. Masse für Z⁰ leichter zu Bestimmen, da W-Boson in Neutrino zerfällt. => bestimmung über fehlenden Transversalimpuls

Elektroschwache Vereinheitlichung

▶ Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 :

$$|\gamma\rangle = +\cos\theta_{\mathrm{W}}|B^{0}\rangle + \sin\theta_{\mathrm{W}}|W^{0}\rangle$$

 $|Z^{0}\rangle = -\sin\theta_{\mathrm{W}}|B^{0}\rangle + \cos\theta_{\mathrm{W}}|W^{0}\rangle$

➤ Weinbergwinkel:

$$\cos heta_{
m W} = rac{M_{
m W}}{M_{
m Z}} pprox 0.88$$

► Gekoppelte Ladungen:

$$e = g \cdot sin\theta_{W}$$

$$\begin{split} &\textbf{Elektroschwache Vereinheitlichung} \\ & \blacktriangleright \text{Proton und } \mathcal{B}^* \text{ als otherpaniel transhombination von } \mathcal{B}^0 \text{ und } \mathcal{B}^0, \\ &|\gamma| = -\cos \theta_0 |\mathcal{B}^0| + \sin \theta_0 |\mathcal{B}^0| \\ &|\beta^*| = -\sin \theta_0 |\mathcal{B}^0| + \cos \theta_0 |\mathcal{B}^0| \end{split}$$
 $& \blacktriangleright \text{ Weinbergniskel:} & \cos \theta_0 = \frac{M_0}{M_0} = 0.88$ $& \blacktriangleright \text{ Celooppelle Ladangeon:} & e = g \cdot \sin \theta_0 \end{aligned}$

- 1. schwache Ladung g (Analogon zu e) aus schwache WW. aus QFT
- 2. beschreibbar durch elektrische und schwache Ladung
- 3. Umformung zu e/g und M/M

Experimentelle Untersuchung

Erzeugung des Z^0 -Bosons

Nachweis

Präzisionsmessungen

Eigenschaften

Anzahl Neutrinogenerationen

2018-1

Z⁰ Resonanz Experimen Experimentelle Untersuchung

Präzisionsmessungen Elgenschaften

Anzahl Neutrinogenerationen

Erzeugung des Z^0 **-Bosons**

Feynmandiagramme zur Elektron-Positron-Annihilation

11

Z⁰ Resonanz Experimentelle Untersuchung Erzeugung des Z⁰-Bosons -Erzeugung des Z⁰-Bosons

- W/Z-Boson durch Antilepton+Lepton/AntiQuark+Quark Reaktion
- kollidierende Teilchenstrahlen
- feynman diagram
- Zeit nach rechts

• Antiteilchen Zeitlich invers (Aus Dirac-Gleichung (Schrödinger gleichung mit eingesetzter Impuls/Energie Relation wirkt auf vier komponentigen Dirac Spinor) ergeben sich positive und negative Lösungen für die Energie) (bzw. Klein Gordon Gleichung (entkoppelt))

- nach Stückelberg-Feynman-Interpretation, bsplw. E-Feld e^- vs e^+ mit anderer Richtung ist gleich. (Dirac sagte Antiteilchen vorher/definierte, wobei negative Energien besetzt sind und Löcher sich ausbreiten basierend auf Pauli-Ausschlussprinzip, da Bosonen nicht gehorchen => reverse Zeit Interpretation)
- über yoder Z zu Fermion und Antifermion paar.
- bei passender Energie approx M_Z dominiert Z^0 , aus QFT+Feynmanregeln

Erzeugung des Z^0 **-Bosons**

am Large Electron-Positron Collider (LEP)

$$ightharpoonup e^- + e^+
ightarrow Z^0$$
: Schwerpunktsenergie $\sqrt{s} = 2E_e \geq M_Z c^2 pprox 91,6~GeV$

$$ightharpoonup e^- + e^+
ightarrow W^+ + W^-$$
: benötigt $2E_e \geq 2M_{
m W}c^2 pprox 160,8~{\it GeV}$

 Z^0 Resonanz

Experimentelle Untersuchung

Erzeugung des Z^0 -Bosons

Erzeugung des Z^0 -Bosons

am Large Electron-Positron Collider (LEP)

Erzeugung des 20-Bosons

▶ $e^- + e^+ \rightarrow Z^0$: Schwerpunktsenergie $\sqrt{s} = 2E_g \ge M_2c^2 \approx 91.6 \text{ GeV}$ ▶ $e^- + e^+ \rightarrow W^+ + W^-$: benötigt $2E_g \ge 2M_Bc^2 \approx 160.8 \text{ GeV}$

- 1. 1989 am Stanford Linear Collider und LEP
- 2. Tritt nicht auf bei Energien $\approx 100 \, GeV$
- 3. 1996 am LEP, 50 \rightarrow 86 \rightarrow 104,6 GeV

Erzeugung des Z^0 -Bosons

am Super Proton Synchrotron (SPS/SppS)

- ▶ $u + \overline{u} \rightarrow Z^0$: pp-Kollision benötigt $E_p \gtrsim 600 \ GeV$ ▶ $u + \overline{u} \rightarrow Z^0$: $p\overline{p}$ -Kollision benötigt $E_p \gtrsim 300 \ GeV$

Proton-Proton-Kollision [7]

13 Alexander Neuwirth

Z⁰ Resonanz Experimentelle Untersuchung Erzeugung des Z⁰-Bosons -Erzeugung des Z⁰-Bosons

- 1. Energie muss in Quarks enthalten sein \rightarrow sehr viel mehr Energie auf Protonen (analog mit d) => e-e+ Kollision einfacher
- 2. Besser Proton-Antiproton, da weniger Enrgie notwendig.
- 3. in Beschleuniger inverse Rotation
- 4. Veranschaulichung der Seequarks, Pfeile nicht direkt relevant
- 5. Keine Trennung up-down, sondern grün ist Antiquark

Erzeugung des Z⁰-Bosons

Einfluss auf Beschleuniger durch Gezeiten

LEP Ausdehnung[8]

Z⁰ Resonanz
Experimentelle Untersuchung
Erzeugung des Z⁰-Bosons
Erzeugung des Z⁰-Bosons

- 1. weiter relevanter Effekt
- 2. Energie schwankt im Tagesverlauf
- 3. Güne Linie ist grob Erdrotation

Erzeugung des Z⁰-**Bosons** Einfluss auf Beschleuniger durch Gezeiten

Relative Strahlenergieänderung[9]

- 1. Resonante depolarisation genaue Enrgiemessung (notwendig)
- 2. Über Verhalten des Spins der beschleunigten Elektronen
- 3. Größe primär relevant für Energie (+Synchrotron strahlung)

Nachweis

des Z⁰-Bosons durch neutrale Ströme

- Neutrinostrahl durch $\pi^+ \rightarrow \mu^+ + \overline{\nu}_{\mu}$
- Blasenkammer: $\bar{v}_{\mu} + e^{-} \stackrel{Z^{0}}{\longrightarrow} \bar{v}_{\mu} + e^{-}$
- Elektron sendet
 Bremsstrahlung aus
- $ightharpoonup e^-e^+$ -Paarbildung ightharpoonup elektromagnetischer Schauer

[10][11]

Z⁰ Resonanz
Experimentelle Untersuchung
Nachweis
Nachweis

- 1. Striche und Kreise sind Lamben und Spiegel Reflexionen
- 2. Myonlose Neutrinoreaktion
- 3. Neutrale Ströme von links nach rechts Antineutrinostrahl in Blasenkammer.
- 4. Neutrionstrahl durch bsplw. $\pi^+ o \mu^+ + \overline{\nu}_\mu$ und Ladungsfilter
- 5. Photon nur bei elektr. Prozessen. (=> neutraler Strom, Z)
- 6. Vorhergesagter Winkel und 1/3 Energie des *e*⁻ impliziert Wechselwirkung durch neutrale Ströme.
- 7. 700000 Bilder überprüft. Spiral/Bremsstrahlung.

Nachweis

Entdeckung des Z⁰ Bosons

"Lego-Diagramm" $q + \overline{q} o Z^0 o e^+ + e^-$ [4]

- ▶ 1983 UA2 Detektor am SppS
- ➤ Masse des Z⁰-Bosons entspricht der Summe der Energie von e⁻ und e⁺
- Entgegengesetzte Impulse von e^- und e^+

Z⁰ Resonanz Experimentelle Untersuchung Nachweis

- nicht L3, aber analog
- Beispiel Event einer der ersten Messung
- Plane unten sind Kaloriemeterzellen
- Energie Summe = Masse Z^0
- Winkel 180° => entgegen gesetzte Richtungen

Präzisionsmessungen

Large Electron Positron Collider (LEP, 1989-2000)

Beschleuniger am CERN 1996 [12]

Alexander Neuwirth 17

Z⁰ Resonanz

Experimentelle Untersuchung

Präzisionsmessungen

Präzisionsmessungen

- 1. LEP wurde zu LHC
- 2. L3 wurde zu ALICE
- 3. SppS von 1981 bis 1991 anstelle von SPS
- 4. Erzeugung, Lineare Beschleuniger und Vorstufen

Präzisionsmessungen L3 Detektoraufbau am LEP

L3 Detektor [9]

Z⁰ Resonanz Experimentelle Untersuchung Präzisionsmessungen Präzisionsmessungen

- 1. Mensch für Größenverhältnis.
- 2. Magnet im ALICE wieder verwendet.

Präzisionsmessungen L3 Detektoraufbau am LEP

L3 Detektor [9]

Von Innen nach Außen:

- 1. Spurdetektor
- 2. Elektromagnetisches Kalorimeter
- 3. Hadronisches Kalorimeter
- 4. Myonenkammer

Z⁰ Resonanz CExperimentelle Untersuchung Präzisionsmessungen

- 1. Alles in Magnetfeld
- 2. Spurdetektor: misst elektrische Teilchen
- 3. Krümmung gibt Impuls und Ladung
- 4. EM Kalorimeter: Energie von Elektron und Photon, EM Teilchen wird absorbiert
- 5. Had Kalorimeter: Energie von Hadronen, starke WW Teilchen werden absorbiert
- 6. Myonenkammern: Für Myonen, groß, weil geringe WW
- 7. Vortrag speziell zur Teilchendetektion

20

Präzisionsmessungen

L3 Detektor (1993 am LEP)

- Energiemessung im elm. Kalorimeter
- ► Entgegengesetzte Ausbreitung

$$e^- + e^+ \to Z^0 \to e^- + e^+$$
 [9]

Z⁰ Resonanz Experimentelle Untersuchung -Präzisionsmessungen

- 1. L3 Detektor LEP
- 2. beispielhafte Ereignisse
- 3. entlang der Strahlachse
- 4. analog zu Lego
- 5. herausgezoomt, weil Enrgie weniger verteilt

-Präzisionsmessungen

- 6. Winkel 180° => entgegen gesetzte Richtungen
- 7. Balken sind die Energien die Kaloriemeter messen

Präzisionsmessungen

L3 Detektor (1993 am LEP)

- ➤ Einzelnes Quark führt zu Quark-Antiquark-Paar Erzeugung, um isolierte Farbladung zu verhindern (Confinement)
- Reaktion äußert sich in hadronische lets
- Energiemessung im Hadronischen Kalorimeter

 $e^- + e^+ \rightarrow Z^0 \rightarrow \text{hadronische Jets [9]}$

Z⁰ Resonanz

Experimentelle Untersuchung

Präzisionsmessungen

Präzisionsmessungen

Detector (1993 on LEP)

Electrics Quark filled as Quark filled

- 1. Hadronische Jets, Farbladung nicht aleine vorkommend, immmer neue Quark-Antiquark-Paare (Confinment)
- 2. Zerfallsquarks kaum unterscheidbar

Präzisionsmessungen

L3 Detektor (1993 am LEP)

- Messung der Spur der Myonen durch mehrere Myonenkammern
- ► I.A. keine Absorption

 $e^- + e^+ \to Z^0 \to \mu^+ + \mu^-$ [9]

Z⁰ Resonanz

Experimentelle Untersuchung

Präzisionsmessungen

Präzisionsmessungen

1. Muon erst an äußeren Platten detektiert

Präzisionsmessungen

 Z^0 -Resonanz bei \approx 91 GeV

Wirkungsquerschnitte bei e^-e^+ Kollision [13]

Wirkungsquerschnitte verschiedener Beschleuniger [14] Z⁰ Resonanz
Experimentelle Untersuchung
Präzisionsmessungen
Präzisionsmessungen

- 1. Achsen + Farbliche Zuordnung
- 2. Z⁰ Resonanz und weitere Messungen

Eigenschaften

Experimentelle Bestimmung

- ► Messung:
 - Ruhemasse $M_7 = 91,188(2) \, GeV/c^2$
 - \triangleright Zerfallsbreite $\Gamma_7 = 2,495(2)$ GeV

Z⁰ Resonanz
Experimentelle Untersuchung
Ligenschaften
Eigenschaften

Eigenschaften
Experimentelle Bestimmung

► Messung:

► Rohomasse M₂ = 91,188(2) GeV/c²

► Zerfallsbreite F₂ = 2,495(2) GeV

- 1. Über Wirkungsquerschnitt? src [PD12]
- 2. Breite + Maximalstelle

Eigenschaften

Experimentelle Bestimmung

- Messung:
 - Ruhemasse $M_7 = 91,188(2) \, GeV/c^2$
 - \triangleright Zerfallsbreite $\Gamma_7 = 2,495(2)$ GeV
- > Zerfall:

$$Z^{0} \rightarrow e^{-} + e^{+} \qquad \qquad 3,363(4) \% \\ \mu^{-} + \mu^{+} \qquad \qquad 3,366(7) \% \\ \tau^{-} + \tau^{+} \qquad \qquad 3,370(8) \% \\ v_{e,\mu,\tau} + \overline{v}_{e,\mu,\tau} \qquad \qquad 20,0(6) \% \\ \text{Hadronen} \qquad \qquad 69,91(6) \%$$

Z⁰ Resonanz
Experimentelle Untersuchung
Eigenschaften
Eigenschaften

- 1. Hadronen (idR. Anti+Quark) nicht unterscheidbar
- 2. Anti+Neutrino schwer detektierbar \Rightarrow % über Γ_{tot}

Anzahl Neutrinogenerationen

Wirkungsquerschnitt

$$\sigma_f \propto \frac{\Gamma_f \cdot \Gamma_e}{(s-M_Z^2)^2 + M_Z^2 \Gamma_Z^2}$$

Z⁰ Resonanz
Experimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationer Wirkungsquerschnitt

 $\sigma_f \propto \frac{\Gamma_f \cdot \Gamma_d}{(s-M_\chi^2)^2 + M_\chi^2 \Gamma_\chi^2}$

- 1. Formel für σ Breit-Wigner
- 2. Einheiten *h* und *c* multiplizieren
- 3. Abhängig von ...
- 4. y unterdrückt

26

Anzahl Neutrinogenerationen

Berechnung der Zerfallsbreite

$$\Gamma_Z = \sum_f \Gamma_{Z \to f\bar{f}}$$

Z⁰ Resonanz
Experimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationen Berechnung der Zerfallsbreite $\Gamma_Z = \sum_f \Gamma_{Z \to df}$

1. Breite ergibt sich aus Partial Breiten

Anzahl Neutrinogenerationen

Berechnung der Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \to f\bar{f}} \\ &= \Gamma_{\text{u,c,d,s,b}} + \Gamma_{\text{e},\mu,\tau} + \Gamma_{\nu_{e},\nu_{\mu},\nu_{\tau}} \end{split}$$

Z⁰ Resonanz
Experimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

 $\begin{aligned} & \textbf{Anzahl Neutrinogenerationen} \\ & \textbf{Berechnung der Zerfallsbreite} \\ & \textbf{Γ_2} = & \textbf{$\Gamma_{2 \sim ij}$} \\ & = & \textbf{$\Gamma_{k,l,d,h,b}$} + & \textbf{$\Gamma_{k,l,k}$} + & \textbf{$\Gamma_{k,l,k}$}, \textbf{ν_{i}} \end{aligned}$

1. kein top-Quark, da t-Masse ($\approx 175~GeV$)größer als Z^0 -Masse ist

Anzahl Neutrinogenerationen

Berechnung der Zerfallsbreite

$$\begin{split} \Gamma_Z &= \sum_f \Gamma_{Z \to f\bar{f}} & \Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2) \\ &= \Gamma_{\text{u,c,d,s,b}} + \Gamma_{\text{e,\mu,\tau}} + \Gamma_{v_e,v_\mu,v_\tau} \\ &= N_C \cdot 2 \cdot \Gamma_u + N_C \cdot 3 \cdot \Gamma_d + 3 \cdot \Gamma_e + N_v \cdot \Gamma_v \end{split}$$

 N_C : Anzahl der Farbladungen

 N_{v} : Anzahl der Neutrinogenerationen

 $G_F:$ Fermi-Kopplungskonstante

 Q_f : Ladung

Z⁰ Resonanz
Experimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationen Berechnung der Zerfallsbreite $\Gamma_2 = \sum_f \Gamma_{Z \rightarrow f \bar{f}}$ $= \Gamma_{a,c,d,h,h} + \Gamma_{a,\mu,x} + \Gamma_{a,\nu_a,\nu_a}$ $= N_C \cdot 2 \cdot \Gamma_a + N_C \cdot 3 \cdot \Gamma_d + 3 \cdot \Gamma_s + N_v \cdot \Gamma_v$

1.
$$\Gamma_f = \frac{G_f M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

2. *G_F* Fermikonstante

3. Q_f Ladung des Fermions

4. Quantenmechanisch Herleitung der Formel nicht notwendig

5. primär von Ladung abhängig

6. Lep: e^{\pm} , μ^{\pm} , τ^{\pm}

7. Had: u,c=2/3; d,s,b=-1/3

8. Neutrinos

9. N_C Anzahl Farbledungsnmöglichkeiten

Anzahl Neutrinogenerationen

Berechnung der Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \to f\bar{f}} & \Gamma_{f} = \frac{G_{F} M_{Z}^{3}}{24 \sqrt{2} \pi} \cdot (1 + (1 - e|Q_{f}|\sin^{2}\theta_{W})^{2}) \\ &= \Gamma_{u,c,d,s,b} + \Gamma_{e,\mu,\tau} + \Gamma_{v_{e},v_{\mu},v_{\tau}} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + N_{v} \cdot \Gamma_{v} \\ &= 3 \cdot 2 \cdot 94,9 \ MeV + 3 \cdot 3 \cdot 122,4 \ MeV + 3 \cdot 83,3 \ MeV + 3 \cdot 165,8 \ MeV \end{split}$$

 N_c : Anzahl der Farbladungen

 N_{ν} : Anzahl der Neutrinogenerationen

 G_F : Fermi-Kopplungskonstante

 Q_f : Ladung

Z⁰ Resonanz Experimentelle Untersuchung —Anzahl Neutrinogenerationen —Anzahl Neutrinogenerationen

Anzahl Neutrinogeneratione Berechnung der Zerfallsbreite $= N_C \cdot 2 \cdot \Gamma_0 + N_C \cdot 3 \cdot \Gamma_C + 3 \cdot \Gamma_0 + N_V \cdot \Gamma_V$

1. Einsetzen, vgl Maximal für minimale Ladung

Anzahl Neutrinogenerationen

Berechnung der Zerfallsbreite

$$\begin{split} \Gamma_Z &= \sum_f \Gamma_{Z \to f\bar{f}} & \Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f| \sin^2\theta_W)^2) \\ &= \Gamma_{\rm u,c,d,s,b} + \Gamma_{\rm e,\mu,\tau} + \Gamma_{\rm v_e,v_\mu,v_\tau} \\ &= N_C \cdot 2 \cdot \Gamma_u + N_C \cdot 3 \cdot \Gamma_d + 3 \cdot \Gamma_e + N_V \cdot \Gamma_V \\ &= 3 \cdot 2 \cdot 94.9 \, \textit{MeV} + 3 \cdot 3 \cdot 122.4 \, \textit{MeV} + 3 \cdot 83.3 \, \textit{MeV} + 3 \cdot 165.8 \, \textit{MeV} \\ &= 2.42 \, \textit{GeV} & N_C : \quad \text{Anzahl der Farbladungen} \\ & N_V : \quad \text{Anzahl der Neutrinogenerationen} \\ & G_F : \quad \text{Fermi-Kopplungskonstante} \\ & Q_f : \quad \text{Ladung} \end{split}$$

Z^o Resonanz
Experimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

Anzahl Neutrinogeneratione Berechnung der Zerfallsbreite $\Gamma_2 = \sum_f \Gamma_{g,n_f}$ $= \Gamma_{a,c,d,h,h} + \Gamma_{g,n_f,h}$ $= N_c \cdot 2 \cdot \Gamma_g + N_c \cdot 3 \cdot \Gamma_g + 3 \cdot \Gamma_g + N_g \cdot \Gamma_g$ $= 3 \cdot 3 \cdot 9.0 \text{ WeV}_{-2} \cdot 3 \cdot 1.79 \text{ AMOV}_{-2} \cdot 3.153 \text{ MeV} \pm 3.165 \text{ R MeV}_{-2}$

1. Summe

Anzahl Neutrinogenerationen

Berechnung der Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \to f\bar{f}} & \Gamma_{f} = \frac{G_{F} M_{Z}^{3}}{24 \sqrt{2} \pi} \cdot (1 + (1 - e|Q_{f}|\sin^{2}\theta_{W})^{2}) \\ &= \Gamma_{\text{u,c,d,s,b}} + \Gamma_{\text{e,\mu,\tau}} + \Gamma_{\text{v_e,v_{\mu},v_{\tau}}} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + N_{v} \cdot \Gamma_{v} \\ &= 3 \cdot 2 \cdot 94,9 \, \textit{MeV} + 3 \cdot 3 \cdot 122,4 \, \textit{MeV} + 3 \cdot 83,3 \, \textit{MeV} + 3 \cdot 165,8 \, \textit{MeV} \\ &= 2,42 \, \textit{GeV} & N_{C}: \quad \text{Anzahl der Farbladungen} \\ &\frac{\text{Strahlungs-}}{\text{korrektur}} \geq 2,497 \, \textit{GeV} & N_{v}: \quad \text{Anzahl der Neutrinogenerationen} \\ &G_{F}: \quad \text{Fermi-Kopplungskonstante} \\ &Q_{f}: \quad \text{Ladung} \end{split}$$

Z⁰ Resonanz
Experimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

Azzah Neutrinogenerationen Berchnung der Zertallsbrite $\Gamma_{x} = \sum_{i} \Gamma_{x,i,0} = \frac{1}{\epsilon_{x_i,0,0}} + \frac{1}{\epsilon_{x_i,0}} +$

- 1. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur
- 2. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)
- 3. $\Gamma_e/\Gamma_{tot} = 3,37\%$ passt auch zu Exp.

Anzahl Neutrinogenerationen

Vergleich Theorie und Experiment

Z ⁰ Zerfall	theoretisch	experimentell
$e^{-} + e^{+}$	3,34 %	3,363(4) %
$V + \overline{V}$	19,92%	20,0(6)%
Hadronen	66,92 %	69,91(6)%
Γ_Z	2,497 GeV	2,495(2) GeV

Z⁰ Resonanz
—Experimentelle Untersuchung
—Anzahl Neutrinogenerationen
—Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationen Vergleich Theorie und Experiment

Zº Zerfall	theoretisch	experimentell
$e^- + e^+$	3,34%	3,363(4)%
$V + \overline{V}$	19,92%	20,0(6)%
Hadronen	66,92%	69,91(6)%
T ₂	2,497 GeV	2,495(2) GeV

- 1. e⁻ exemplarisch für Leptonen
- 2. passt alles gut

Anzahl Neutrinogenerationen

- ► OPAL-Detektor am LEP
- Messung bestätigt vermutete 3 Neutrinogenerationen
- ► Hinweis für 3 Generationen von Leptonen und Quarks

Wirkungsquerschnitt $e^+e^- \rightarrow \text{Hadronen}$ [4]

Z^o Resonanz
Experimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

- 1. Cern Experiment
- 2. Wirkungsquerschnitt gegen Schwerpunktenergie
- 3. Ähnlich der Breit Wigner Funktion aber nicht passend symmetrisch durch Korrekturen höherer Ordnung udn Bremstrahlung durch e^-
- 4. Verschiedene Anzahl-Neutrinogenerationen-Kurven
- 5. 3 Neutrinogenerationen \rightarrow 3 Leptonen 3 Quarks Generationen

70 Resonanz — Zusamme

Resonanz -Zusammenfassung

Theorie

Experimentelle Untersuchung

Zusammenfassung

Historischer Überblic

eorie

COTIC

Experin

Experime

Zusammenfassung

Alexander Neuwirth

29

Zusammenfassung

- ightharpoonup Weinbergwinkel cos $\theta_{
 m W} \approx 0.88$
- ightharpoonup Zerfallsbreite $\Gamma_7 \approx 2,50 \, GeV$
- ▶ 3 Neutrinogenerationen

- 1. Weinbergwinkel Massenverhältniss W,Z Boson
- 2. Zerfallsbreite aus QFT großer Erfolg in Übereinstimmung mit Experiment
- 3. Bestätigung, dass es 3 Neutrinogenerationen gibt
- 4. Weiterfüherend Große Vereinheitlichung Analog ab 10¹⁶ GeV ⇒ keine Differenzierung Fermionen, Quarks und Leptonen. (Astrovorträge, Universumentwicklungröhre)
- 5. Noch Weiterfüherend Quantengravitation kombiniert mit GUT

Quellen I

Sheldon Glashow, Abdus Salam and Steven Weinberg. URL: http://thescientificodyssey.libsyn.com/episode-225-puttingthe-puzzle-together (besucht am 12.11.2018).

The Nobel Prize in Physics 1984. URL: https://www.nobelprize.org/prizes/physics/1984/summary/ (besucht am 03. 12. 2018).

Standardmodell. URL: https://de.wikipedia.org/wiki/Standardmodell (besucht am 12.11.2018).

Povh et al. Teilchen und Kerne. Springer Spektrum, 2014. Kap. 12.

Z⁰ Resonanz $\dot{\infty}$

Zusammenfassung

-Quellen

Ouellen I

- Sheldon Glashow, Abdus Salam and Steven Weinberg, uss.
- The Nobel Prize in Physics 1984, upp.
- Standardmodell. uss:
- Povh et al. Teilchen und Keme. Springer Spektrum, 2014. Kap. 12.

Quellen II

Schwache_wechselwirkung. URL: https://de.wikipedia.org/wiki/Schwache_Wechselwirkung (besucht am 04.12.2018).

Donald H. Perkins. Introduction to High Energy Physics. Cambridge University Press, 2000.

International Masterclasses. URL: http://atlas.physicsmasterclasses.org/de/index.htm (besucht am 04.12.2018).

How is the beam energy calibrated through the resonant spin depolarization? URL: http://tlep.web.cern.ch/content/how-beam-energy-calibrated-through-resonant-spin-depolarization (besucht am 29.11.2018).

Z⁰ Resonanz Zusammenfassung

Quetten ii

Schwachewechselwirkung. USS

(besucht am 04.12.2018).

Donald H. Perkins. Introduction to High Energy Physics. Cambridge University Press, 2000.

International Masterclasses. URL:

am 04.12.2018).

How is the beam energy calibrated through the resonant spin depolarization? URL: http://tlep.web.cerm.ch/content/how-b

mailtrated-through-resonant-spin-depolarization am 29.11.2018).

32

Quellen III

Versuch ZO-Resonanz, URL: https://www.physik.huberlin.de/de/eephys/teaching/lab/z0resonance/index_html (besucht am 25.11.2018).

F.J. Hasert u. a. "Search for elastic muon-neutrino electron scattering". In: Physics Letters B 46.1 (1973), S. 121–124. ISSN: 0370-2693. DOI: https://doi.org/10.1016/0370-2693(73)90494-2. URL: http://www. sciencedirect.com/science/article/pii/0370269373904942.

Weak neutral current, URL: https://www.symmetrymagazine.org/article/august-2009/weakneutral-current (besucht am 03.12.2018).

Z⁰ Resonanz Zusammenfassung $\dot{\infty}$ -Quellen

Versuch ZO-Resonanz, URL: https://www.physik.hu-

E.L. Hasert u. a. .. Search for elastic muon-neutrino electron scattering".

Weak neutral current, usu

Quellen IV

L3 Home Page. URL: http://l3.web.cern.ch/l3/ (besucht am 03.12.2018).

The ALEPH Collaboration u. a. "Precision Electroweak Measurements on the Z Resonance". In: (2005). DOI: 10.1016/j.physrep.2005.12.006. eprint: arXiv:hep-ex/0509008.

Z⁰ Resonanz

Zusammenfassung

Balli Accidenta con.

Stray from they only a social registral follows a few and re

• Masterclasses Atlas ist qualitativ gut

 $\begin{array}{c} Z^{0} \text{ Resonanz} \\ -21.8 \\ -20.2 \\ -2$ -Zusammenfassung

Vielen Dank für eure Aufmerksamkeit!

Vielen Dank für eure Aufmerksamkeit!

Fragen?

35