$$\begin{array}{l} f(x) \in O(g(x)) \to f(x) \leq g(x) \iff 0 \leq \lim_{x \to +\infty} f(x)/g(x) < \infty \\ f(x) \in \Theta(g(x)) \to c_1 g(x) \leq f(x) \leq c_2 g(x) \iff 0 < \lim_{x \to +\infty} f(x)/g(x) < \infty \\ f(x) \in \Omega(g(x)) \to g(x) \leq f(x) \iff 0 < \lim_{x \to +\infty} f(x)/g(x) \leq \infty \end{array}$$

$$\lim_{X \to +\infty} \frac{a_0 \times^m}{b_0 \times^n} = \lim_{X \to +\infty} \frac{a_0}{b_0} \times^{m-n} = \frac{a_0 \setminus b_0}{b_0} \text{ se } m < n$$

$\log_b a + \log_b c = \log_b(a \cdot c)$	teorema del prodotto
$\log_b a - \log_b c = \log_b \left(\frac{a}{c}\right)$	teorema del rapporto
$c \log_b a = \log_b a^c$	teorema della potenza

	potenze con la stessa base	
$a^m \cdot a^n = a^{m+n}$	prodotto di potenze con la stessa base	$2^7 \cdot 2^3 = 2^{10}$
$a^m : a^n = a^{m-n}$	rapporto di potenze con la stessa base	$2^7: 2^3 = 2^4$
$(a^m)^n = a^{m \cdot n}$	potenza di potenza	$(2^7)^3 = 2^{21}$
	potenze con lo stesso esponente	
$a^n \cdot b^n = (a \cdot b)^n$	prodotto di potenze con lo stesso esponente	$10^3 \cdot 2^3 = 20^3$
$a^n : b^n = \left(\frac{a}{b}\right)^n$	rapporto di potenze con lo stesso esponente	$10^3: 7^3 = \left(\frac{10}{7}\right)^3$

$\sqrt[n]{a^m} = a^{\frac{m}{n}}$	$\sqrt[3]{a^2} = a^{\frac{2}{3}}$
1.00	V W

$\left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m}$	potenza di radicali	$\left(\sqrt[3]{5}\right)^2 = \sqrt[3]{5^2}$
$\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$	radice di radice	$\sqrt[3]{\sqrt[4]{2}} = \sqrt[12]{2}$

- 1. Riflessività: cf(n) = O(f(n)), dove c > 0 è costante, anche per Ω , Θ
- 2. Transitività: $g(n) = O(f(n)) \wedge f(n) = O(h(n)) \Rightarrow g(n) = O(h(n))$, anche per Ω , Θ
- 3. Simmetria: $g(n) = \Theta(f(n)) \Leftrightarrow f(n) = \Theta(g(n))$
- 4. Trasposizione: $g(n) = O(f(n)) \Leftrightarrow f(n) = \Omega(g(n))$
- 5. Somma: $f(n) + g(n) = O(\max\{f(n), g(n)\})$, anche per Ω , Θ
- 6. Prodotto: $g(n) = O(f(n)) \wedge h(n) = O(q(n)) \Rightarrow g(n)h(n) = O(f(n)q(n))$, anche per Ω , Θ .

$$O(1) \subset O(\log n) \subset O(n^{1/2}) \subset O(n) \subset O(n\log n) \subset O(n^2 \log n) \subset O(n^3) \subset O(2^n) \subset O(n^3) \subset O(2^n) \subset O(n^3) \subset O(n^3$$

$$f(n) \in O(f(n))$$

$$cf(n) \in O(f(n)) \quad c \text{ deve essere costante}$$

$$f(n) + f(n) \in O(f(n))$$

$$f(n) + g(n) \in O(f(n) + g(n))$$

$$f(n) \in O(g(n)) \implies (f(n) + g(n) \in O(g(n)))$$

$$f(n)g(n) \in O(f(n)g(n))$$

$$T(n) = \begin{cases} d & \text{se } n \le m \le h \\ \sum_{1 \le i \le h} a_i T(n-i) + c n^{\beta} & \text{se } n > m \end{cases}$$

Teorema. Se
$$c>0, \beta\geq 0, a=\sum_{1\leq i\leq h}a_i$$
 allora
$$\begin{cases} T(n)\in O\left(n^{\beta+1}\right) & \text{se } a=1\\ T(n)\in O\left(a^nn^{\beta}\right) & \text{se } a\geq 2 \end{cases}$$

Rel. ob ric.	O. grande	esem pi
T(n) = T(n-1)+1	O(m)	manimo/minimo
T(n) = T(n-1) + m	O(n2)	impertourt
T(m) = 2T(m-1)+1	0(2")	Hanoi
$T(n) = T(\frac{m}{2}) + 1$	O (logn)	sic. olic.
$T(n) = T(\frac{n}{2}) + n$	0(n)	
$T(m) = 2 T\left(\frac{m}{2}\right) + 1$	O(m)	
$T(m) = 2T\left(\frac{m}{2}\right) + m$	O(nlogn)	mergeout

Teorema. Se $a \ge 1$; $b \ge 2$; c > 0; $d, \beta \ge 0$, posto $\alpha = \log a / \log b$ allora:

$$\begin{cases} T(n) \in O(n^{\alpha}) & \text{se } \alpha > \beta & \text{log 1} \Rightarrow \text{log 10} \\ T(n) \in O(n^{\alpha} \log n) & \text{se } \alpha = \beta & \text{o in in 1} \\ T(n) \in O(n^{\beta}) & \text{se } \alpha < \beta & \text{log 10} \Rightarrow \text{log 10} \\ T(n) \in O(n^{\beta}) & \text{se } \alpha < \beta & \text{log 10} \Rightarrow \text{log 10} \\ T(n) \in O(n^{\beta}) & \text{se } \alpha < \beta & \text{log 10} \Rightarrow \text{log 10} \end{cases}$$

$$T(n) = \begin{cases} d & \text{se } n = 1\\ aT(n/b) + cn^{\beta} & \text{se } n > 1 \end{cases}$$