1

2020-PH-53-65

AI24BTECH11023 - Tarun Reddy Pakala

53)	Let u^{μ} denote the 4-velocity of a relativistic particle whose square $u^{mu}u_{mu}=1$. If $\epsilon_{\mu\nu\rho\sigma}$ is the Levi-Civita tensor then the value of $\epsilon_{\mu\nu\rho\sigma}u^{\mu}u^{\nu}u^{\rho}u^{\sigma}$ is
54)	Consider a simple cubic monoatomic Bravais lattice which has a basis with vectors $\overrightarrow{r_1} = 0$, $\overrightarrow{r_2} = \frac{a}{4}(\hat{x} + \hat{y} + \hat{z})$, a is the lattice parameter. The Bragg reflection is observed due to the change in the wave vector between the incident and the scatterd beami is given by $\overrightarrow{K} = n_1 \overrightarrow{G_1} + n_2 \overrightarrow{G_2} + n_3 \overrightarrow{G_3}$, where $\overrightarrow{G_1}$, $\overrightarrow{G_2}$ and $\overrightarrow{G_3}$ are primitive reciprocal lattice vectors. For $n_1 = 3$, $n_2 = 3$ and $n_3 = 2$, the geometrical structure factor is
55)	A plane electromagnetic wave of wavelength λ is incident on a circular loop of conducting wore The loop radius is a ($a << \lambda$). The angle (in degrees), made by the Poynting vector with the norma to the plane of the loop to generate a maximum induced electrical signal, is
56)	An electron in a hydrogen atom is in the state $n = 3$, $l = 2$, $m = -2$. Let \hat{L}_y denote the y-componen
57)	of the orbital angular momentum operator. If $\left(\Delta \hat{L}_{y}\right)^{2} = \alpha \hbar^{2}$, the value of α is A sinusoidal voltage of the form $v(t) = V_{o} \cos{(\omega t)}$ is applied across a parallel plate capacitor placed
7 0)	in vacuum. Ignoring the edge effects, the induced emf within the region between the capacitor plates can be expressed as a power series in ω . The lowest non-vanishing exponent in ω is
58)	If $\sum_{k=1}^{\infty} a_k \sin(kx)$, for $-\pi \le x \le \pi$, the value of a_2 is
59)	Let $f_n(x) = \begin{cases} 0, & \text{if } x < -\frac{1}{2n} \\ n, & \text{if } -\frac{1}{2n} < x < \frac{1}{2n} \\ 0, & \text{if } x > \frac{1}{2n} \end{cases}$
	The value of $\lim_{n\to\infty} \int_{-\infty}^{\infty^{2n}} f_n(x) \sin x dx$ is
	Consider the Hamiltonian $\hat{H} = \hat{H_0} + \hat{H'}$ where
	$\hat{H}_0 = \begin{pmatrix} E & 0 & 0 \\ 0 & E & 0 \\ 0 & 0 & E \end{pmatrix} \text{ and } \hat{H}' \text{ is the time independent pertubation given by}$
	$\hat{H}' = \begin{pmatrix} 0 & k & 0 \\ k & 0 & k \\ 0 & k & 0 \end{pmatrix}, \text{ where } k > 0. \text{ If, the maximum energy eigenvalue of } \hat{H} \text{ is } 3 \text{ eV corresponding to}$
	E = 2 eV, the value of k (rounded off to three decimal places) in eV is
61)	A hydrogen atom is in orbital angular momentum $ l, m = l\rangle$. If \overrightarrow{L} lies on a cone which makes a half angle 30° with respect to z-axis, the value of l is
62)	In the center of mass frame, two protons having energy 7000 <i>GeV</i> , collide to produce protons and anti-protons. The maximum number of anti-protons produced is
63)	(Assume the proton mass to be $1 \frac{GeV}{c^2}$) Consider a gas of hydrogen atoms in the atmosphere of the Sun where the temperature is 5800 K. If a sample from this atmosphere contains 6.023×10^{23} of hydrogen atoms in the ground state, the number of hydrogen atoms in the first excited state is approximately 8×10^n , where n is an integer.
	The value of <i>n</i> is (Boltzmann constant: $8.617 \times 10^{-5} \frac{eV}{K}$)
	(Boltzmann Constant. 0.017×10^{-10}

64) For a gas of non-interacting particles, the probability that a particle has a speed v in the interval v to v + dv is given by

$$f(v) dv = 4\pi v^2 dv \left(\frac{m}{2\pi k_B T}\right)^{\frac{3}{2}} e^{\frac{mv^2}{2k_B T}}$$

- If E is the energy of a particle, then the maximum in the corresponding energy distributions in units of $\frac{E}{k_BT}$ occurs at _____ (rounded off to one decimal place).
- 65) The Planck's energy density distribution in given by $u(\omega) = \frac{\hbar \omega^3}{\pi^2 c^3 \left(e^{\frac{\hbar \omega}{k_B T} 1}\right)}$. At long wavelengths, the energy density of photons in thermal equilibrium with a cavity at temperature T varies as T^{α} , where α is