On-board fish detector using machine learning

Clare Walker, August 2021

Aim: Automate fish detection for passive imaging systems

FishOASIS imaging and acoustic system deployed in kelp forest MPAs

- 1500 photos a day stored on R-Pi
- All fish counted by scientists

Incorporate on-board ML tool to automate detection and counting

- Only store photos with fish
- Only check sample of labels

Lit review

Observations from literature review

- Much of existing literature applying CNNs to images of fish focus on classification
- Object detection has predominantly been used for post-processing in labs
- Open-source tools exist for this context: VIAME, FathomNet, Fish4Knowledge
- Results confirm that YOLO is faster than region proposal techniques, but requires more training data (>1000 annotations of each class)
- Most results come from coral reefs and other shallow, relatively static environments — no evidence (so far) of application in kelp forests
- Tools for on-board, real-time detection have been developed for midwater ROVs rather than passive, low-cost imaging systems

Most similar paper by Coro, to be published July 2021

Similarities:

- On-board object detection for underwater applications
- Built as an 'intelligent' component of passive monitoring system
- Open-source code, deployable after specifying a few parameters
- Utilizes YOLO Tiny

Differences:

- Optimised for large fish, rather than detecting all fish in an image
- Tested in relatively static environments, rather than in dynamic kelp forests
- No re-training for use in new environments, harder to update based on experience
- Training set generated by animating fish, rather than on live data
- Utilizes YOLO Tiny v3 rather than v4, as well as options for two other models

Data & Methodology

Overview of key steps followed

- 1. Trained YOLO Tiny v4 on four different training sets:
 - a. Excluded images before / after cut-off times (determined by brightness)
 - b. Excluded images with no fish, i.e. downsampled majority class
 - c. Incorporated simple batch image enhancements (edge enhance using PIL)
 - d. Removed labels for small fish below YOLO recommended size (see analysis of results)
- 2. Calculated performance metrics to reflect keep/discard precision, recall, F1
- 3. Apply trained model to test sets
- 4. Create data visualisations for results (e.g. keep/discard heatmap, count time series)
- 5. Clean up notebooks and create GitHub repo

YOLO v4 Tiny architecture

```
filters size/strd(dil)
                                    input
                               608 x 608 x 3 -> 304 x 304 x 32 0.160 BF
  0 conv
                    3 x 3/ 2
  1 conv
                    3 x 3/ 2 304 x 304 x 32 -> 152 x 152 x 64 0.852 BF
  2 conv
                    3 x 3/ 1 152 x 152 x 64 -> 152 x 152 x 64 1.703 BF
  3 route 2
                                          1/2 -> 152 x 152 x 32
  4 conv
                    3 x 3/1 152 x 152 x 32 -> 152 x 152 x 32 0.426 BE
  5 conv
                    3 x 3/1 152 x 152 x 32 -> 152 x 152 x 32 0.426 BE
  6 route 5.4
                                              -> 152 x 152 x 64
  7 conv
                     1 x 1/ 1 152 x 152 x 64 -> 152 x 152 x 64 0.189 BF
  8 route 2.7
                                              -> 152 x 152 x 128
  9 max
                     2x 2/ 2 152 x 152 x 128 -> 76 x 76 x 128 0.003 BE
 10 conv
                    3 x 3/1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BE
 11 route 10
                                          1/2 -> 76 x 76 x 64
 12 conv
                    3 x 3/1
                                76 x 76 x 64 -> 76 x 76 x 64 0.426 BE
 13 conv
                                76 x 76 x 64 -> 76 x 76 x 64 0.426 BE
 14 route 13 12
                                              -> 76 x 76 x 128
                                76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
 15 conv
 16 route 10 15
                                              -> 76 x 76 x 256
 17 max
                                76 x 76 x 256 -> 38 x 38 x 256 0.001 BE
 18 conv
                                38 x 38 x 256 -> 38 x 38 x 256 1.703 BF
 19 route 18
                                          1/2 -> 38 x 38 x 128
 20 conv
                    3 x 3/1
                                38 x 38 x 128 -> 38 x 38 x 128 0.426 BF
 21 conv
                                38 x 38 x 128 -> 38 x 38 x 128 0.426 BE
 22 route 21 20
                                              -> 38 x 38 x 256
 23 conv
                                38 x 38 x 256 -> 38 x 38 x 256 0.189 BF
 24 route 18 23
                                              -> 38 x 38 x 512
 25 max
                     2x 2/ 2
                                38 x 38 x 512 -> 19 x 19 x 512 0.001 BF
 26 conv
                    3 x 3/1
                                19 x 19 x 512 -> 19 x 19 x 512 1.703 BF
 27 conv
                    1 x 1/1
                                19 x 19 x 512 -> 19 x 19 x 256 0.095 BF
 28 conv
                    3 x 3/1 19 x 19 x 256 -> 19 x 19 x 512 0.852 BF
 29 conv
                    1 x 1/1
                               19 x 19 x 512 -> 19 x 19 x 18 0.007 BE
 30 volo
[yolo] params: iou loss: ciou (4), iou norm: 0.07, obj norm: 1.00, cls norm: 1.00, delta norm: 1.00, scale x y: 1.05
nms kind: greedvnms (1), beta = 0.600000
 31 route 27
                                              -> 19 x 19 x 256
 32 conv 128
                    1 x 1/1
                                19 x 19 x 256 -> 19 x 19 x 128 0.024 BF
 33 upsample
                                19 x 19 x 128 -> 38 x 38 x 128
 34 route 33 23
                                              -> 38 x 38 x 384
 35 conv
                    3 x 3/1
                                38 x 38 x 384 -> 38 x 38 x 256 2.555 BF
 36 conv
                    1 x 1/1
                                38 x 38 x 256 -> 38 x 38 x 18 0.013 BF
 37 volo
[yolo] params: iou loss: ciou (4), iou norm: 0.07, obj norm: 1.00, cls norm: 1.00, delta norm: 1.00, scale x y: 1.05
```

nms kind: greedynms (1), beta = 0.600000

More information on object detection using CNNs and further explanation of YOLO found here

Summary of data split

Date	Site C	Site C.2				
		1	2	3	4	
25/05/18						
26/05/18	(5)					
10/07/18						
11/07/18						
12/07/18						
13/07/18					4)	
14/07/18						
15/07/18						
16/07/18						
17/07/18		(1)	(3)			
18/07/18						
19/07/18						
20/07/18						
21/07/18		(2)	6)			
22/07/18						
23/07/18						

- 1 Training & test: Same site, same perspective, same days, different images
- **Test**: Same site, same perspective, different days (temporal)
- **Test**: Same site, same days, different perspective (spatial)
- **Test**: Same site, different days, different perspective (temporal and spatial)
- **Test**: Different site, different days (temporal and spatial)
- **Proof of application**: Apply to unlabeled data, compare time series

Definition of performance metrics

Problem:

- We want to measure performance terms of binary classification: Keep or Discard
- The test data are imbalanced, typically 20% keep (at least one fish) and 80% discard (no fish)

Best practice:

- Majority class is typically referred to as the negative outcome (e.g. "no change" or "negative test result")
- Minority class is typically referred to as the positive outcome (e.g. "change" or "positive test result")
- This is because metrics measure ability to detect positive outcomes if majority class were defined as positive outcome, a model that only predicted the majority class would look better than random

Solution:

- We will define Keep as positive outcome and Discard as negative outcome
- Note that due to above, results would look much better if defined in opposite direction

Definition of performance metrics

Measure in terms of binary classification: Keep (Positive) / Discard (Negative)

- True positive (TP) = found > 0 fish, image had > 0 fish
- False positive (FP) = found > 0 fish, image had no fish (error okay)
- True negative (TN) = found no fish, image had no fish
- False negative (FN) = found no fish, image had > 0 fish (error not okay)

Key metrics:

- Precision = TP / (TP + FP) : proportion of images kept that actually contained fish
- Recall = TP / (TP + FN) : proportion of images kept out all images that should have been kept
- F1 = 2 * Pr * Re / (Pr + Re) : harmonic mean of precision and recall

Example: Choice of positive outcome impacts results

Positive outcome: Keep

Confusion matrix

	Kept (+)	Discarded (-)	Total
Has fish (+)	133 (TP)	64 (FN)	197
Has no fish (-)	41 (FP)	762 (TN)	803
Total	174	826	1000

Accuracy = 895 / 1000 = 90%

Precision = 133 / 174 = **76**%

Recall = 133 / 197 = **68**%

Positive outcome: Discard

Confusion matrix

	Discarded (+)	Kept (-)	Total
Has no fish (+)	762 (TP)	41 (FN)	803
Has fish (-)	64 (FP)	133 (TN)	197
Total	826	174	1000

Accuracy = 895 / 1000 = **90**%

Precision = 762 / 826 = 92%

Recall = 762 / 803 = 95%

Results

Preliminary results (imbalanced test sets)

		Model a	Model a (n = 4171, % pos = 20)			Model b (n = 837, % pos = 100)		
	% pos	Precision	Recall	F1	Precision	Recall	F1	
Valid (1)	20	82	49	61	76	68	72	
Valid (1) - no small fish	9 (a) 8 (b)	39	50	44	40	81	53	
Test (2)	11	57	46	51	48	63	54	
Test (3)	13	48	43	45	31	66	42	
Test (4)	37	61	55	58	51	70	59	
Test (5)	32	32	70	44	32	80	46	

Preliminary results (balanced test sets) - better precision

		Model a (n = 4171, % pos = 20)		pos = 20)	Model b (n = 837, % pos = 100)		
	% pos	Precision	Recall	F1	Precision	Recall	F1
Valid (1)	50	95	49	65	94	68	78
Valid (1) - no small fish	50	85	50	63	92	81	86
Test (2)	50	95	46	62	97	63	77
Test (3)	50	95	43	59	80	66	72
Test (4)	50	74	55	63	66	70	68
Test (5)	50	47	70	56	48	80	60

Analysis of results: Where is the model going wrong?

False negatives

This occurs when the model fails to detect fish in an image, which is usually owing to:

- 1. Uncommon/rare fish not in training set
- 2. Labelled fish are blurry/unclear *
- 3. Labelled fish are too small **

False positives

This occurs when the model confuses something else for a fish, usually:

- 1. Slight variation in water color
- 2. Kelp

Conducted two further experiments:

- c. Incorporated simple batch image enhancements from PIL (addresses *)
- d. Removed labels for small fish below YOLO recommended size (addresses **)

Analysis of results: Uncommon/rare fish (FN)

Analysis of results: Labelled fish too blurry (FN)

Annotated results sorted by TP, TN, FP, FN are saved here

Analysis of results: Labelled fish too blurry (FP)

Annotated results sorted by TP, TN, FP, FN are saved here

Analysis of results: Labelled fish too small (FN)

Annotated results sorted by TP, TN, FP, FN are saved here

Analysis of results: Kelp confused with fish (FP)

Example: Best image processing from PIL (Model c)


```
def enhance(path):
    im = Image.open(path)
    im = im.filter(EDGE_ENHANCE_MORE)
    enh = ImageEnhance.Contrast(im)
    return enh.enhance(1.2)
```

Preliminary results (imbalanced test sets)

		Model c (n = 837, % pos = 100)			Model d (n = 837, % pos = 47)		
	% pos	Precision	Recall	F1	Precision	Recall	F1
Valid (1)	20 / 8	59	46	52	69	44	53
Test (2)							
Test (3)							
Test (4)							
Test (5)							

Preliminary results (balanced test sets) - better precision

		Model c (n = 837, % pos = 100)			Model d (n = 837, % pos = 47)			
	% pos	Precision	Recall	F1	Precision	Recall	F1	
Valid (1)	50	86	46	60	97	44	60	
Test (2)								
Test (3)								
Test (4)								
Test (5)								

Conclusion

Conclusion: Further improvement limited by 5 challenges

Key takeaways:

- Best results achieved with model b (trained on only positive examples) and tested on set without small fish
- Given existing labels and basic image enhancement packages, this appears to be an upper bound on performance

Further improvements are limited by:

- 1. Many fish of interest are too small for basic YOLO v4 implementation
- 2. Some labels are too blurry to make out, especially without bespoke editing (e.g. in Adobe LightRoom)
- 3. Fish are too heterogenous to treat as one class
- 4. Real data is imbalanced (i.e. % images without fish > % images with fish)
- 5. Kelp can look like fish resulting in false positives (less severe)

These could be addressed by further research:

- Define and apply more sophisticated image processing algorithms (e.g. https://colorcorrection.firebaseapp.com/)
- Use another version of YOLO optimised for small objects
- Relabel images with only distinct fish

However, there is no obvious solution for class imbalance, fish heterogeneity and false positives due to kelp

Colab Notebooks will be shared on GitHub (w/o data)

Fish	FishOASIS_ML-Detector > CLARE > Notebooks -					
Name	\uparrow					
co	Mat to YOLO conversion.ipynb					
СО	YoloV4-FishOASIS-Test-Analyze.ipynb					
СО	YoloV4-FishOASIS-Train-A.ipynb					
СО	YoloV4-FishOASIS-Train-B.ipynb					
СО	YoloV4-FishOASIS-Train-C.ipynb					
СО	YoloV4-FishOASIS-Train-D.ipynb					

Next steps

- 1. Try a few more experiments with YOLO Tiny v4:
 - a. "Clean" labels (remove unclassified) and increase input image size
 - b. "Cleaner" labels (remove unclassified, remove edge fish, remove small fish) and increase input image size
 - c. Split image into e.g. 6 segments
 - d. Apply Derya's image enhancement algorithm + other literature, using color palette
- 2. Treat as pure classification task, i.e. try experiment with VGG or ResNet

Heatmaps

Heatmaps | Model a, Valid (1)

Heatmaps | Model b, Valid (1)

Heatmaps | Model c, Valid (1)

Heatmaps | Model d, Valid (1)

Heatmaps | Model a, Test (2)

Heatmaps | Model b, Test (2)

Heatmaps | Model a, Test (3)

Heatmaps | Model b, Test (3)

Heatmaps | Model a, Test (4)

Heatmaps | Model b, Test (4)

Heatmaps | Model a, Test (5)

Heatmaps | Model b, Test (5)

