

Code : 15EF	£21T
-------------	------

Register				
Number				

11 Semester Diploma Examination, Nov./Dec. 2017

ELECTRICAL CIRCUITS

Tim	e: 3 Hours [Ma	x. Marks : 100					
Note	 (i) Answer any six questions from Part – A. Each question carries (ii) Answer any seven full questions from Part – B. Each question 						
	PART – A						
1.	Define the following:						
	(i) Bilateral circuit						
	(ii) Unilateral circuit						
2.	Compare magnetic circuit and electric circuit (write any 5 comparisons)).					
3.	Define flux density, write SI unit and the equation for flux density.						
4.	Define Leakage co-efficient and permeance.						
5.	State Faraday's laws of Electromagnetic Induction.						
6.	Define the following:						
	(i) RMS value						
	(ii) Average value	·					
	[1 of 4]	[Turn over					

- 7. Write a sinusoidal waveform and mark the following:
 - (i) Instantaneous value
 - (ii) Maximum value
 - (iii) Cycle
 - (iv) Time period
- 8. Explain the following:
 - (i) Power factor
 - (ii) Leading power factor
 - (iii) Lagging power factor
 - (iv) Unity power factor
 - (v) Zero power factor
- 9. Define the following in 3 phase system:
 - (i) Phase voltage and phase current
 - (ii) Line voltage and line current

PART - B

- 10. (a) Explain with diagram passive network and active network.
 - (b) With a neat circuit diagram, explain:
 - (i) Open circuit
 - (ii) Short circuit
 - (iii) Closed circuit, conditions
- 11. (a) In the given circuit, calculate the current through resistor ${\bf R_3}$ using Kirchoff's laws :

(b) State and explain reciprocity theorem.

12. (a) Using Delta-Star transformation, calculate the value of the equivalent resistance between P and Q of the circuit shown below:

- (b) State Superposition theorem.
- 13. (a) Define the following and write their units:
 - (i) Flux
 - (ii) mmf
 - (iii) Magnetising force
 - (iv) Reluctance
 - (v) Absolute permeability
 - (b) State the law of reluctance and show the relation between mmf reluctance and flux.
- 14. (a) Define the following and give one example for each:
 - (i) Dynamically induced emf.
 - (ii) Statically induced emf.
 - (b) State and explain Fleming's right hand rule.
- 15. (a) Explain Analytical method of calculating the average value of alternating current.
 - (b) Explain the generation of single phase alternating voltage.

[Turn over

- 16. (a) An AC voltage is represented by e = 100 sin 314t. Calculate the
 - (i) maximum value
 - (ii) frequency
 - (iii) RMS value
 - (iv) Instantaneous voltage at t = 0.001 seconds
 - (b) Convert the following into polar forms if A = (10 + j 6), B = (30 + j 52). Perform the following:
 - (i) $A \times B$
 - (ii) A/B
- 17. (a) Define the following and write their units:
 - (i) Inductive reactance
 - (ii) Capacitive reactance
 - (iii) Impedance
 - (b) Define and write the equations for the following:
 - (i) Resonant frequency of an RLC series circuit
 - (ii) Q factor of RLC series circuit
- 18. (a) Derive the equation for power in a pure resistive circuit.
 - (b) A circuit has a resistance of 5 Ω , inductance of 0.1 henry and capacitance of 0.5 μ F. Calculate the power factor.
 - 19. (a) Show that line voltage = $\sqrt{3}$ phase voltage in 3 phase star connected system.
 - (b) Explain Delta connected 3 phase system.