

(19) **RU** (11) 2 166 988 (13) C1

(51) MITK⁷ B 01 F 17/34, 17/16

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 2000116339/04, 27.06.2000
- (24) Дата начала действия патента: 27.06.2000
- (43) Дата публикации заявки: 20.05.2001
- (46) Дата публикации: 20.05.2001
- (56) Ссылки: RU 2062142 C1, 20.06.1996. SU 1143760 A, 07.03.1985. КИСТЭР Э.Г. и др. -Бурение, 1974, № 12, с.15-18. US 4575428 A, 11.03.1986.
- (98) Адрес для переписки: 109088, Москва, ул. Угрешская, 2, ЗАО НПФ "БУРСИНТЕЗ-М", ген. директору А.Г.Селезневу
- (71) Заявитель: Закрытое акционерное общество научно-производственная фирма "БУРСИНТЕЗ-М"
- (72) Изобретатель: Селезнев А.Г., Крянев Д.Ю., Макаршин С.В.
- (73) Патентообладатель: Закрытое акционерное общество научно-производственная фирма "БУРСИНТЕЗ-М"

 ∞

6 9

G

(54) ЭМУЛЬГАТОР ИНВЕРТНЫХ ЭМУЛЬСИЙ

(57) Реферат:

Изобретение относится к эмульгаторам инвертных эмульсий для получения однородных смесей несмешивающихся жидкостей, таких как нефть и вода, углеводород и вода, применяемых в технологиях добычи нефти и газа. Комплексный эмульгатор инвертных эмульсий включает маслорастворимое поверхностно-активное вещество в виде продукта взаимодействия кислот таллового масла с триэтаноламином и карбамидом, хлорсульфированный полиэтилен и

углеводородный растворитель при следующем соотношении компонентов, мас.%: продукт взаимодействия кислот таллового масла с триэтаноламином и карбамидом при массовом соотношении кислоты: триэтаноламин: карбамид 2,5:1:0,02 хлорсульфированный полиэтилен 0.2 - 5углеводородный растворитель:толуол, этилбензольная или бутилбензольная фракция - до 100. В результате повышается термостабильность инвертных эмульсий в случае использования указанного выше эмульгатора. 1 табл.

⁽¹⁹⁾ RU⁽¹¹⁾ 2 166 988 ⁽¹³⁾ C1

(51) Int. Cl. 7 B 01 F 17/34, 17/16

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

- (21), (22) Application: 2000116339/04, 27.06.2000
- (24) Effective date for property rights: 27.06.2000
- (43) Application published: 20.05.2001
- (46) Date of publication: 20.05.2001
- (98) Mail address: 109088, Moskva, ul. Ugreshskaja, 2, ZAO NPF "BURSINTEZ-M", gen. direktoru A.G.Seleznevu
- (71) Applicant: Zakrytoe aktsionernoe obshchestvo nauchno-proizvodstvennaja firma "BURSINTEZ-M"
- (72) Inventor: Seleznev A.G., Krjanev D.Ju., Makarshin S.V.
- (73) Proprietor: Zakrytoe aktsionernoe obshchestvo nauchno-proizvodstvennaja firma "BURSINTEZ-M"

(54) EMULSIFIER OF INVERTED EMULSIONS

(57) Abstract:

FIELD: technology of production of oil and gas. SUBSTANCE: complex emulsifier of inverted emulsions comprises oil-soluble surfactant in the form of products of reaction of tall oil acids with triethanol amine and carbamide, chlorosulfonated polyethylene and hydrocarbon solvent, ratio of components is as follows, wt.%: product

of reaction of tall oil acids with triethanol amine and carbamide at triethanol amine to carbamide ratio of 2.5:1: 0.02, 35-45; chlorosulfonated polyethylene, 0.2-5; hydrocarbon solvent, toluene, ethylbenzene or butylbenzene fraction, up to 100. EFFECT: increased thermal stability of inverted emulsions when using said emulsifier. 1 tbl

 ∞

တ

ဖ

ဖ

21669

双

C

 ∞

Изобрет ние относится к эмульгаторам инвертных эмульсий и мож т быть использовано для получения однородных смесей несмешивающихся жидкостей, таких как нефть и вода, углеводород и вода и т.д., применяемых в технологиях добычи нефти и газа.

Наиболее близким к изобретению по сущности и достигаемому технической результату является комплексный эмульгатор НЕФТЕНОЛ НЗ (патент Российской Федерации N 2062142, кл. В 01 F 17/34, 1994 представляющий собой углеводородный раствор смеси продуктов взаимодействия кислот таллового масла с триэтаноламином и кубовыми остатками оксиэтилированных алкиламинов с добавкой оксиэтилированных алкилфенолов. Данный имеет низкую температуру застывания. относительно хорошую эмульгирующую способность, но полученные на его основе инвертные эмульсии имеют недостаточно высокую термостабильность. Это ведет к увеличению расхода эмульгатора и снижает положительный эффект от применения приготовленных на его основе инвертных эмульсий.

Для повышения термостабильности получаемых на основе реагента инвертных эмульсий при сохранении его высокой способности и низкой эмульгирующей температуры застывания предлагается эмульгатор инвертных эмульсий, включающий маспорастворимое поверхностно-активное вещество, углеводородный растворитель и который качестве маслорастворимого поверхностно-активного вещества содержит продукт взаимодействия кислот таллового масла с триэтаноламином и карбамидом, в качестве добавки хлорсульфированный полиэтилен, качестве углеводородного растворителя или этилбензольную бутилбензольную фракцию при следующем соотношении компонентов, мас.%:

Продукт взаимодействия кислот таллового масла с триэтаноламином и карбамидом при массовом соотношении кислоты:триэтаноламин:карбамид 2,5:1:0,02 - 35 - 45

Хлорсульфированный полиэтилен (ХСПЭ) - 0.2 - 5

Углеводородный растворитель, толуол или этилбензольная или бутилбензольная фракция - До 100

Талловое масло (ТУ 13-00281074-26-95) является побочным продуктом при переработке древесины и представляет собой смесь олеиновой, линолевой, линоленовой и смоляных кислот.

Триэтаноламин улучшенный выпускается по ТУ 38.602-22-51-95, содержание триэтаноламина не менее 50 мас.%.

Хлорсульфированный полиэтилен ХСПЭ-20 (ТУ 2211-006-00209906-95) получают сульфохлорированием полиэтилена. Представляет собой чешуйки или порошок от белого до светло-серого или бежевого цвета. Относительная средняя молекулярная масса - 20000. Массовая доля хлора в пределах 26-32%, массовая доля серы в пределах 1,3-2,2%.

Толуол нефтяной выпускается по ГОСТ 14710-78, толуол каменноугольный по ГОСТ 9880-76.

Предлагаемый эмульгатор получается следующим образом: в углеводородном растворителе при перемешивании и температуре 40-60°С посл доват льно растворяют полученные в результате реакции кирот таллового масла с триэтаноламином и карбамидом смесь сложных эфиров и уреидов, а затем в полученную смесь добавляют рассчитанное количество 5%-ного раствора хлорсульфированного полиэтилена в толуоле.

При получении основы эмульгатора талловое масло первоначально подвергают взаимодействию с карбамидом, что позволяет связать основную часть присутствующих в масле смоляных кислот в уреиды, которые в отличие от соответствующих моноэфиров триэтаноламина не оказывают значительного отрицательного влияния на эффективность получаемого эмульгатора. Далее в полученную смесь добавляют триэтаноламин и проводят этерификацию с получением сложных моноэфиров триэтаноламина и кислот таллового масла.

Пример 1. Получение смеси эфиров и уреидов кислот таллового масла.

трехгорлый реактор, снабженный мешалкой, насадкой Дина-Старка с обратным холодильником и термометром, загружают 200 г таллового масла с кислотным числом 153 мг КОН/г и 4 г карбамида, смесь перемешивают при температуре 120°C в течение 2 ч. Затем в реакционную массу добавляют 80 г триэтаноламина, поднимают температуру смеси до 160-180°C и выдерживают при перемешивании в течение 6-8 ч до окончания отгона воды. За время реакции отогналось 11,2 мл воды. Образовавшийся продукт представляет собой вязкую жидкость темно-коричневого цвета с плотностью 960 кг/м³, температурой застывания -12 °C, кислотным числом 7.3 мг КОН/г и содержит в своем составе 93% моноэфиров кислот таллового масла и триэтаноламина и 7% уреидов кислот таллового масла (в основном смоляных).

Пример 2 (в таблице пример 3). В лабораторный стакан помещают 40 г продукта, полученного в примере 1, нагревают на водяной бане до 60 °С и вливают при перемешивании 50 г толуола. Не прекращая перемешивания и нагрева, добавляют 10 г раствора 0,5 г ХСПЭ-20 в 9,5 г толуола. Полученную смесь перемешивают 15-20 мин до образования гомогенного продукта. Он представляет собой подвижную жидкость темно-коричневого цвета с плотностью 910 кг/м³, температурой застывания -43 °С, кислотным числом 2,5 мг КОН/г. Аналогично были получены эмульгаторы с

другим массовым соотношением компонентов. Для оценки эксплуатационных свойств предлагаемых эмульгирующих композиций были проведены испытания термостабильности инвертных эмульсий приготовленных на их основе. Инвертную эмульсию готовили следующим образом. В расчетное количество раствора эмульгатора в дизельном топливе при перемешивании вводили расчетное количество минерализованной воды. В результате получали устойчивую высокодисперсную эмульсию типа "вода в масле".

Пример 3. Получение инвертной эмульсии и определение ее термостабильности.

-3-

40

Z

a

တ

စ

 ∞

 ∞

в ступанном стакан на 200	
В ст клянном стакан на 200 см ³ растворяли 4 см ³ эмульгатора (прим р	
од в 20 см ³ диз пъного топлива. В стакан с	:
раствором эмульгатора в дизельном топлив	
при энергичном встряхивании приливали 76 см	i
іри знергичном вогрумами. ³ водной фазы. Водную фазу готовили	1
растворением 3 см ³ 30%-ного хлористого	,
растворением 3 см 30%-ного хлориотого	
кальция в 73 см ³ минерализованной воды (б	,
r/л NaCl и 12 г/л CaCl ₂). По окончании ввода	3
водной фазы стакан с эмульсией ставили на	3
магнитную мешалку и перемешивали	1
пополительно 10 мин. устанавливая скорост	Ь
поремення 1500 об/мин. Готовую	
омильсию в копичестве 15 см заливали	B
пробирку емкостью 20 см°, закрывали	И
притертой пробкой и ставили на испытание	0
термостат при температуре 80°C. Времене	М
стабильности "эмульсии считали время от	ſ
начала испытаний до выделения из эмульси	И
крупных капель воды. При испытаниях	
допускалось отслоение углеводородной фаз	Ы
в количестве не более 1-2%.	
Анополиченым образом готовили	V

Аналогичным образом готовили и испытывали эмульсии другого состава.

Состав эмульгирующих композиций и их физико-химические свойства даны в таблице.

В качестве образцов-прототипов для сравнения были взяты два промышленных образца эмульгаторов НЕФТЕНОЛ НЗ и НЕФТЕНОЛ НЗН, выпускаемых по ТУ 2488-007-17197708-93.

Из полученных данных можно сделать вывод, что предлага мая эмульгирующая композиция обладает значительно бол е высокой термостабильностью по сравн нию с эмульгаторами НЕФТЕНОЛ НЗ и НЕФТЕНОЛ НЗН при сохранении высокой эмульгирующей способности и низкой темп ратуры застывания.

Формула изобретения:

эмульсий, Эмульгатор инвертных включающий маслорастворимое поверхностно-активное вещество, углеводородный растворитель и добавку, отличающийся тем, что в качестве маслорастворимого поверхностно-активного содержит ОН вещества взаимодействия кислот таллового масла с триэтаноламином и карбамидом, в качестве добавки - хлорсульфированный полиэтилен, а в качестве углеводородного растворителя этилбензольную или толуол бутилбензольную фракцию при следующем соотношении компонентов, мас.%:

Продукт взаимодействия кислот таллового масла с триэтаноламином и карбамидом при массовом соотношении кислоты : триэтаноламин : карбамид 2,5 : 1 : 0,02 - 35

Хлорсульфированный полиэтилен - 1 - 5 Углеводородный растворитель: толуол, этилбензольная или бутилбензольная фракция - До 100

30

25

35

40

45

50

55

60

BNSDOCID: <RU 2166988C1 | >

9 8 8

-4

 α

	Состав эмульгатора, % масс.								
N <u>o</u> No ⊓nn.	Продукт взаимо- действия кислот таллового масла с триэтанолами- ном и карбами- дом	Хлорсульфи- рованный по- лиэтилен ХСПЭ-20	Углеводо- родный раствори- тель	Плотность при 20° С, кг/м³	Температу- ра засты- вания, ° С	Термоста- бильность, часов при 80° С			
1.		ЮЛ НЗ (протот	ип)	910	-43	 			
2.	НЕФТЕНОЛ НЗН (прототип)			915	-41	9			
Предл	Предлагаемый эмульгатор								
3.	40,0	0,5	59,5	910	-43	72			
4	40,0	1,0	59,0	916	-43	120			
5	40,0	3,0	57,0	924	-42	>144			
6	35,0	1,0	64,0	904	-47				
7	35,0	2,0	63,0	910	-45	72			
8	35,0	5,0	60,0	915	-43 -42	96			
9	45,0	0,2	54,8	898	-45	120			
10.	45,0	0,5	54,5	902	-43 -44	24			
11.	45,0	1,0	54,0	914		72			
Контро	Контрольные примеры 1,0 34,0 914 -42 >144								
12.	45,0		55,0	906					
13.	45,0	j		895	-44	12			
14.		0,1	54,9	897	-44	13			
	30,0	5,0	65,0	904	-41	13			
15.	50,0	5,0	45,0	929	-30	>144			

*) Состав прототипов:

НЕФТЕНОЛ НЗ – эфиры кислот таллового масла и триэтаноламина 43%, эфиры кислот таллового масла и оксиэтилированного алкиламина 5%, углеводородный растворитель 52%.

НЕФТЕНОЛ НЗН — эфиры кислот таллового масла и триэтаноламина 32%, эфиры кислот таллового масла и оксиэтилированного амина 3%, оксиэтилированный алкилфенол (Неонол А Φ_9 -4) 10%, углеводородный растворитель 55%.

4	
* 1	
r.	
	The second secon
3	
4	· · · · · · · · · · · · · · · · · · ·
	A controlled the cont