1

Assignment 18

Jayati Dutta

Abstract

This is a simple document explaining about the properties of linear operator T on the vector space V especially the characteristic values and characteristic vectors.

Download all and latex-tikz codes from

svn co https://github.com/gadepall/school/trunk/ncert/geometry/figs

1 Problem

Let **V** be the space of $n \times n$ matrices over F. Let **A** be a fixed $n \times n$ matrix over F. Let **T** be the linear operator 'left multiplication by **A**' on **V**. Is it true that **A** and **T** have the same characteristic values?

2 Solution

Given	V is the space of $n \times n$ matrices over F A is a fixed $n \times n$ matrix over F T be the linear operator on V such that $\mathbf{T}(\mathbf{B}) = \mathbf{A}\mathbf{B}$
To prove	A and T have the same characteristic values
Theorem	Let λ be a characteristic value of T and $\lambda \in F$, then if T is a linear operator on a finite dimensional space V , it must be $TB = \lambda B$ for all B where B is any $n \times n$ matrix in V So, $(T - \lambda I)B = 0$, \Longrightarrow det $(T - \lambda I) = 0$
Proof	As per the problem statement, $TB = \lambda B$ or, $AB = \lambda B$, as $TB = AB$ or, $(A - \lambda I)B = 0$ From here 2 cases can be arrived.
Case 1:	$\det ((\mathbf{A} - \lambda \mathbf{I})) = 0, \text{ where } \mathbf{B} \neq 0$ $\implies \lambda \text{ is characteristic value of } \mathbf{A}.$
Case 2:	$\det\left((\mathbf{A} - \lambda \mathbf{I})\right) \neq 0$

	$\implies (\mathbf{A} - \lambda \mathbf{I}) \text{ is invertible and } \mathbf{B} = 0$ so, for $(\mathbf{T} - \lambda \mathbf{I})\mathbf{B} = 0$ and
	$(\mathbf{T} - \lambda \mathbf{I}) \neq 0$
	$\implies \det (\mathbf{T} - \lambda \mathbf{I}) \neq 0$
	which is a contradiction. So, case 2 is not
	possible.
Conclusion	So, from the above 2 cases and from
	the theorem, it can be concluded that A and
	T have the same characteristic values

TABLE 0: Solution summary