

UniLabTool

Koncept

Universal Laboratory Tool by měl být jednoduchý a universální nástroj do elektrotechnické laboratoře. Primárně by se měl použít k výuce praktické elektroniky, dále pak jako levná varianta stolních přístrojů. Jedná se především o softwarově definovaný osciloskop, voltmetr a PWM generátor, s doplňkovou funkcionalitou logického analyzátoru, čítače a signálového generátoru.

Hardware by si měl zvolit uživatel sám, firmware by tak měl být vytvořen pro více různých mikrokontrolerů. Jde hlavně o levné STM32 kity (Blue/Black Pill) a STM32 Nucelo kity. Podrobný popis je uveden v kapitole *Požadavky* v sekci *Firmware/Přehled kompatibilních MCU a jejich parametrů*. Cílem této práce má být primárně firmware a software, přizpůsobení napěťových úrovní si tedy uživatel zrealizuje sám dle návodu. Zařízení má komunikovat s PC jak pomocí USB, tak UART. Jelikož má hardware různé parametry, bude se i firmware lišit svými dostupnými funkcemi, popsáno to bude v uživatelské dokumentaci.

Software by měl být multiplatformní, cílený na platformy PC, Linux a macOS. Software by měl sloužit k intuitivnímu ovládání všech zmíněných komponent. Cílem je, aby výsledný produkt byl použitelný formou Plug&Play jak pro amatéry, tak profesionály. Vznikne přehledná uživatelská dokumentace v PDF, který bude integrována i do aplikace. Software by měl být vícejazyčný, minimálně dostupný v češtině a angličtině. Zdrojové kódy firmwaru i softwaru budou volně dostupné na serveru GitHub.com.

Požadavky

• Firmware

- Obecné vlastnosti
 - LED blink patterns (start systému, komunikace, chyby)
 - Velikost pod 32 KB
 - Distribuce ve formátech S19, HEX, BIN a ELF
 - Nahrání do MCU pomocí DFU (je třeba bootloader) nebo SWD
 - Integrace s platformou mbed u podporovaných kontrolérů
- o Přehled kompatibilních MCU a jejich parametrů

STM32	Kit	Pozn.	ADC /Msps	Flash	RAM	DAC	USB	Boot	Cena
F042 F6	Aliexpress kit	TSSOP / kit	1x 12bit /1	32	6		kit	✓	\$8.7
F042 K6	Nucelo-32	STLink UART	1x 12bit /1	32	6		piny	\checkmark	\$12.5
F103 C8	Blue/Black Pill v1	R10 = 1.5 K	2x 12bit /1	64	20	1x 12bit	\checkmark		\$1.9
F303 RE	Nucelo-64	mbed	4x 12bit /5	512	80	2x 12bit	piny	\checkmark	\$10.7
F401 CC	Black Pill v2		1x 12bit /2	256	64		\checkmark	\checkmark	\$2.0
F401 RE	Nucelo-64	mbed	1x 12bit /2	512	96		piny	\checkmark	\$13.4
F407 VE	Aliexpress kit		3x 12bit /2	512	192	2x 12bit	\checkmark	\checkmark	\$6.8
F411 CE	Black Pill v2		1x 12bit /2	512	128		✓	\checkmark	\$3.5
F412 RB	Nucelo-64		2x 12bit /5	128	40		piny	✓	\$15.3
F446 RE	Nucelo-64	mbed	3x 12bit /2	512	128	2x 12bit	piny	\checkmark	\$19.2
L072 CZ	Nucelo-64	LoRa	1x 12bit /1	192	20	2x 12bit	\checkmark		\$46.5
L412 RB	Nucelo-64		2x 12bit /5	128	40		piny	\checkmark	\$19.5
G031 J6	Discovery Kit	DIL8	1x 12bit /2	32	8	1x 12bit	piny	\checkmark	\$10.1

o <u>Komunikace</u>

- UART kity s dedikovaným USB pro ST-LINK (Nucelo)
- USB (CDC VCP) kity s vyvedeným nativním USB 2.0 (Blue/Black Pill)
- Vždy bude mít prioritu UART, z důvodu kompatibility
- Bude použit textový ASCII protokol, inspirace z LEO nebo SCPI (PC polling)
- Minimální přenosová rychlost bude 115200 bps \approx 12 KB/s

o <u>Komponenty</u>

- Osciloskop
 - Bude sloužit pouze ke sběru dat maximální rychlostí, která se budou dávkově posílat do dalšího kruhového bufferu v PC. Práce s daty (trigger, zoom...) se bude provádět na straně PC. Díky tomu se vyřeší problémy s kompatibilitou různých typů MCU a jejich periferií. Také díky tomu bude odezva na ovládání živější (115200 bps UART by bylo úzké hrdlo).
 - Maximální vstupní impedance $7 \, \mathrm{k}\Omega$ (vstupní kapacitance 8-16 pF)
 - Ukládání dat pomocí DMA do kruhového bufferu
 - Velikost bufferu bude dána dostupnou RAM dle typu MCU
 - 4 signálové kanály (budou existovat ≈4 konfigurace v závislosti typu MCU)
 - o 1x 12-bit /1 Msps => 4x 0.25 Msps
 - \circ 1x 12-bit /2 Msps => 4x 0.5 Msps
 - \circ 2x 12-bit /1 Msps => 2x 0.5 Msps + 2x 0.5 Msps
 - \circ 4x 12-bit /5 Msps => 4x 5.0 msps
 - Po startu (pravidelně) provést selfcalibration (ADCEx_Calibration_Start)
 - Použít int. 1.2 V referenci včetně kalibrace $V_x = \frac{3.3 \cdot VREF_INT_{CAL} \cdot ADC_IN_x}{ADC_IN_{17} \cdot 4095}$
 - Implementovat volitelnou funkci oversampling (potlačení aliasingu)
 - Pokusit se o řešení, kdy půjdou kanály (a tím i Msps) volit individuálně

Voltmetr

- Minimální frekvence měření 100 Hz
- 4 měřící kanály + měření napájecího napětí $V_{\rm dd}$
- V_{dd} měřit pomocí vnitřní bandgap reference vzorcem $V_{dd} = \frac{3.3 \cdot VREF_INT_{CAL}}{ADC_IN_{17}}$
- Je třeba zvážit, jestli je nutné požadovat paralelní běh osciloskopu a voltmetru. Dále je třeba rozhodnout, jestli budou sdílet stejné vstupní piny. Pokud je vyžadován paralelní běh, je třeba zajistit adekvátní rozvržení kanálů ADC, aby osciloskop měl co nejvíce Msps, a zvolit tak konfigurace pro různé typy MCU. Pokud ne, zjednodušil by se celkový návrh.
- PWM generátor
 - 1 kanál (pomocí časovače TIM_X v režimu PWM)
 - Nastavení frekvence a střídy
 - Vyčtení reálných hodnot
- Signálový generátor
 - 1 kanál (pomocí DAC pouze u vybraných modelů)
 - Nastavení frekvence, amplitudy a průběhu (sin, triangle, square, saw, noise)
 - Vyčtení reálných hodnot
 - Použít algoritmus DDS

- Logický analyzátor
 - 4 kanály (GPIO)
 - Ukládání dat pomocí DMA do kruhového bufferu
 - Stejná filosofie jako u osciloskopu
 - Data budou místo 16bitových hodnot přenášena po bytech (8 hodnot)
- Čítač
 - 1 kanál (pomocí časovače TIM_X v režimu *input capture*)

• Software

- o Obecné vlastnosti
 - PC GUI program ve frameworku Qt v jazyce C++
 - Build pro Windows, Linux a macOS (x86, amd64)
 - Přepínání jazyku (čeština, angličtina)
 - Připojení bude realizováno pomocí COM portu
 - Zvážit možnost implementovat software upgrade ze serveru
 - Hlavní menu bude obsahovat výběr spuštění následujících komponent

o <u>Osciloskop</u>

- Hlavní ovládání přepínací
 - Run (kontinuální akvizice dat podmíněná nastavením spouštění)
 - Stop (akvizice vypnuta, k dispozici pouze aktuální data v bufferu)
 - Single (pouze jedno naplnění bufferu po splnění spouštěcí podmínky)
- Hlavní ovládání otočné
 - Časová základna (s každou změnou se zobrazí jiný výsek bufferu)
 - Vertikální zesílení
 - Horizontální pozice
 - Vertikální pozice
- V grafu bude hlavní a sekundární mřížka, časovka a zesílení se bude nastavovat otočnými potenciometry v jednotkách s/dilek, resp. V/dilek
- Pro každý kanál bude možnost nastavit hodnotu odporového děliče na vstupu (simulace atenuátoru v analogovém front-endu reálného osciloskopu) – díky tomu bude možné vyčítat z grafu reálné hodnoty napětí
- Graf bude vždy na dvě poloviny rozdělovat vertikální čára (pre-trigger / post-trigger) a horizontální čára (prostředek měřeného napětového rozsahu).
- Nastavení spouštění (na řadách F0, L0 a F3 zvážit analog watchdog)
 - Úroveň
 - Typ hrany
 - o Rising (náběžná)
 - Falling (sestupná)
 - Režimy
 - o Auto (spuštění za krátký čas i pokud nebyla splněna podmínka)
 - o Normal (spuštění pouze po splnění podmínky)
 - o Off (spouštění vypnuto)
- Vyhlazení křivek pomocí sinc interpolace $\left(\frac{\sin(x)}{x}\right)$
- Možnost zobrazit kurzory s hodnotami a jejich rozdílem
- Možnost měřit různé hodnoty (max, min, RMS, avg, V_{pp})

- Zobrazovat velikost bufferu, počet právě zobrazených bodů a vzorkovací frekvenci
- Možnost ukládat data do souboru
- FFT režim
- Zvážit možnost nastavení vzorkovací frekvence pro studijní účely. Velikost bufferu bude neměnná, a to ideálně vždy co největší (např. pro funkci Zoom Out v režimu Stop)

Voltmetr

- $4 + 1 (V_{dd})$ číselné indikátory
- Graf záznamu měřených hodnot
- Rozdíly napětí (libovolná konfigurace)
- Možnost zobrazit kurzory
- Možnost zapnout průměrování
- Možnost ukládat záznam do souboru

o PWM generátor

- 2 pole pro nastavení frekvence a střídy
- indikátory pro zobrazení reálných hodnot
- o <u>Signálový generátor</u> (dostupný pouze pro vybrané modely)
 - 3 pole pro nastavení frekvence, amplitudy a typu průběhu
 - Indikátory s reálnými hodnotami.
 - Zvážit implementaci arbitrážního generátoru (nakreslení křivky, přenos do MCU)

Logický analyzátor

- Hlavní ovládání bude realizováno pouze pomocí tlačítek Start / Stop
- Signál bude možné horizontálně posouvat a nastavovat časovou základnu
- Nastavení spouštění (typ hrany, kanál)
- Naměřená data budou automaticky konvertována na odpovídající hodnotu (bin, hex, dec), tato hodnota se bude zobrazovat nad signálem v horní oblasti grafu
- Možnost zobrazit kurzory a měřené hodnoty
- Ukládání a export dat v kompatibilním formátu (sigrok)
- Zvážit implementaci knihovny sigrok pro dekódování dat

o <u>Čítač</u>

- 2 číselné indikátory (frekvence, perioda)
- Graf záznamu měřených hodnot
- Možnost zapnout průměrování
- Ukládat záznam do souboru

o Prohlížeč záznamů

• Protokol

- Textový ASCII (odpověď s binárními daty bude umístěna mezi speciální ASCII znaky)
- PC polling komunikaci zahajuje PC, zařízení na každou zprávu vždy ihned odpoví
- Budou se posílat pakty, pro každou komponentu max 1 paket. Každá komponenta odpoví na každý paket. Pakety budou zřetězeny do jedné zprávy pomocí speciálního znaku. Každý paket bude mít hlavičku a jasně definovanou strukturu příkazu i odpovědi.
- o Inspirace protokolem LEO, SCPI, GPIB
- o Zvážit přínosy implementace čistého SCPI nebo GPIB dle standardu nad vlastním návrhem