Concours administrateur externe de l'insee

SESSION 2018

ÉPREUVE DE MATHÉMATIQUES

DURÉE: 4 heures

L'énoncé comporte 7 pages, numérotées de 1 à 7.

Tous documents et appareils électroniques interdits.

Partie 1 : analyse-algèbre

Cette partie est constituée de deux exercices indépendants

Exercice 1

Dans tout l'exercice, x désigne un réel appartenant à]0,1[.

1. (a) Établir, pour tout entier naturel n supérieur ou égal à 1, l'égalité suivante :

$$\sum_{p=1}^{n} \frac{x^{p}}{p} = -\ln(1-x) - \int_{0}^{x} \frac{t^{n}}{1-t} dt$$

(b) En déduire la formule suivante :

$$\sum_{p=1}^{+\infty} \frac{x^p}{p} = -\ln(1-x)$$

2. On définit la fonction f par :

$$\forall x \in]0,1[, \quad f(x) = -\ln(1-x) - \int_1^{+\infty} \frac{x^t}{t} dt$$

et pour tout entier naturel n non nul, la fonction f_n par :

$$\forall x \in]0,1[, f_n(x) = \sum_{p=1}^n \frac{x^p}{p} - \int_1^n \frac{x^t}{t} dt$$

- (a) Montrer que $\int_1^{+\infty} \frac{x^t}{t} dt$ converge.
- (b) Établir, pour tout couple d'entiers naturel (n, N), $N > n \ge 1$, l'encadrement suivant :

$$0 \leqslant f_n(x) - f_N(x) \leqslant \frac{x^n}{n} - \frac{x^N}{N}$$

- (c) En déduire que la suite $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément vers f.
- 3. On définit la suite $(S_n)_{n\geqslant 1}$ par :

$$S_n = \sum_{p=1}^n \frac{1}{p} - \ln n$$

- (a) Montrer que la suite $(S_n)_{n\geqslant 1}$ est convergente; on note γ sa limite.
- (b) Montrer que $\lim_{x\to 1^-} f_n(x) = S_n$.
- 4. En utilisant, entre autre, le résultat de la question 2(c), montrer que $\lim_{x\to 1^-} f(x) = \gamma$.
- 5. (a) Montrer que les deux intégrales suivantes sont convergentes

$$I = \int_0^1 \frac{1 - e^{-u}}{u} du \text{ et } J = \int_1^{+\infty} \frac{e^{-u}}{u} du$$

- (b) Déterminer $\lim_{x\to 1^-} \left[\ln(1-x) \ln(-\ln x) \right]$.
- (c) En déduire le résultat suivant :

$$\gamma = \int_0^1 \frac{1 - e^{-u}}{u} du - \int_1^{+\infty} \frac{e^{-u}}{u} du$$

2

Exercice 2

Dans tout le problème, n est un entier naturel ≥ 2 .

 $\begin{aligned} & \textbf{Pour toute matrice-colonne} \quad X \in \mathcal{M}_{n,1}(\textbf{\textit{C}}) \text{ , d'éléments } x_i \text{, on pose} : \ \left\| X \right\| = \underset{i \, \in \, \{1, \, 2, \dots, \, n\}}{\textit{Max}} \left\{ \left| x_i \right| \right\} \text{ et, pour toute matrice } A \in \mathcal{M}_n(\textbf{\textit{C}}) \ : \ N(A) = \underset{X \neq 0}{Sup} \frac{\left\| AX \right\|}{\left\| X \right\|}. \end{aligned}$

Les trois parties du problème sont indépendantes mais utilisent des notations et des méthodes de raisonnement communes.

1ère partie

1. Montrer que : $N(A) \le \underset{i \in \{1,2,...,n\}}{Max} \left\{ \sum_{j=1}^{n} |a_{i,j}| \right\}$.

2.

- $\text{a.}\quad \text{Montrer qu'il existe}\ \ X_0\ \in \mathcal{M}_{n,1}(\boldsymbol{C})\ \ \text{tel que}:\ \frac{\left\|AX_0\right\|}{\left\|X_0\right\|}=\underset{i\ \in\ \{1,2,\dots,n\}}{Max}\left\{\sum_{j=1}^n\left|a_{i,j}\right|\right\}.$
- b. En déduire la valeur de N(A) exprimée en fonction des éléments de A.
- c. Montrer que, si A et $B \in \mathcal{M}_{p}(\mathbf{C})$: $N(AB) \leq N(A)N(B)$.

3.

- a. Soit λ une valeur propre de A. Montrer que : $|\lambda| \leq N(A)$.
- b. Montrer que, si $\lim_{p\to +\infty} N(A^p)=0$, alors toutes les valeurs propres de A sont de module strictement inférieur à 1.
- c. Établir la réciproque de cette dernière propriété lorsque A est diagonalisable.

2^{ème} partie

Dans cette partie, on s'intéresse à des critères d'inversibilité de la matrice A.

- 4. On suppose que A possède un vecteur propre Z (assimilé à une matrice-colonne d'éléments z_i) associé à la valeur propre 0.
 - a. Montrer qu'il existe $i \in \{1, 2, ..., n\}$ tel que : $\left|a_{i,i}\right| \leq \sum_{\substack{j=1 \ j \neq i}}^{n} \left|a_{i,j}\right| \frac{\left|z_{j}\right|}{\left|z_{i}\right|}$.
 - b. En déduire qu'il existe $i \in \{1,2,...,n\}$ tel que : $\left|a_{i,i}\right| \leq \sum_{\substack{j=1 \ j \neq i}}^n \left|a_{i,j}\right|$.
 - c. Déduire de ce qui précède une condition *suffisante* d'inversibilité de la matrice A s'exprimant en fonction de ses éléments. Cette condition est-elle nécessaire ?
 - d. En déduire également une localisation, dans le plan complexe, des points-images ayant pour affixes les valeurs propres de A.

3

5. On suppose satisfaite la condition du 4.c. On note : $\delta = \underset{i \in \{1,2,...,n\}}{Min} \left\{ \left| a_{i,i} \right| - \underset{j \neq i}{\overset{n}{\sum}} \left| a_{i,j} \right| \right\}$

Soient $V\in\mathcal{M}_{n,1}(\mathbf{C})$, $V\neq 0$, et Y=AV , d'éléments respectifs v_i et y_i .

- a. Montrer que : $\forall i \in \{1, 2, ..., n\}$: $\left|a_{i,i}\right| \left|v_i\right| \sum_{\substack{j=1 \ j \neq i}}^n \left|a_{i,j}\right| \left|v_j\right| \leq \left|y_i\right|$.
- b. En déduire que : $\forall i \in \{1, 2, ..., n\} : |y_i| \ge |a_{i,i}| |v_i| ||V|| \sum_{i=1}^n |a_{i,j}|$
- c. Montrer que : $\exists i_0 \in \{1, 2, ..., n\} : ||Y|| \ge \left(\left| a_{i_0, i_0} \right| \sum_{j=1}^n \left| a_{i_0, j} \right| \right) ||V||$.
- d. En déduire que : $N(A^{-1}) \le \frac{1}{\delta}$.
- 6. Généralisation de la question 4 : on suppose que :
 - il existe $k \in \{1,2,...,n\}$ tel que : $\left|a_{k,k}\right| = \sum_{\substack{j=1 \ j \neq k}}^n \left|a_{k,j}\right|$ et : $a_{k,k} \neq 0$.
 - $\forall i \in \{1, 2, ..., n\}: i \neq k \Rightarrow \left|a_{i,i}\right| > \sum_{\substack{j=1 \ i \neq i}}^{n} \left|a_{i,j}\right|.$

On cherche à montrer que A est inversible. Pour cela on raisonne par l'absurde, en supposant qu'il existe $Z \in \mathcal{M}_{n,\mathbf{i}}(\mathbf{C})$, non nul, d'éléments z_i , tel que : AZ = 0.

- a. Montrer que : $\forall i \neq k, \exists j \neq i : \begin{cases} a_{i,j} \neq 0 \\ \left|z_{j}\right| > \left|z_{i}\right| \end{cases}$
- $\text{b.} \quad \text{Montrer que}: \sum_{\substack{j=1\\j\neq k}}^{n} \left|a_{k,j}\right| \left(\left|z_{j}\right| \left|z_{k}\right|\right) \geq 0$
- c. En utilisant le 6.a , montrer que : $\sum_{\substack{j=1\\j\neq k}}^n \left|a_{k,j}\right| \left(\left|z_j\right| \left|z_k\right|\right) \leq 0 \, .$
- d. En déduire une contradiction et conclure.

Partie 2 : probabilités-statistiques

Cette partie est constituée de deux exercices indépendants

Exercice 1

Soient U et X deux variables aléatoires indépendantes, définies sur un même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, à valeurs positives. On suppose que U suit la loi uniforme sur [0,1], et que X admet une densité f, continue sur \mathbb{R}_+ et nulle sur \mathbb{R}_- .

- 1. (a) Déterminer une densité de la variable $A = \ln X$ en fonction de f.
 - (b) Déterminer une densité de $B = \ln U$.
 - (c) Montrer que la variable $C = \ln(UX)$ admet une densité f_C , et on exprimera pour tout réel t, $f_C(t)$ en fonction de $\int_t^{+\infty} f(e^s) ds$.
- 2. En déduire que la variable Y = UX admet une densité h que l'on donnera, sur \mathbb{R}_+^* , sous forme d'intégrale.
- 3. On suppose dans cette question que X suit la loi uniforme sur [0,1].
 - (a) Déterminer une densité de Y.
 - (b) Soit X_1, \ldots, X_n , n variables aléatoires indépendantes suivant toutes la loi uniforme sur [0, 1]. On considère la variable Z_n définie par :

$$Z_n = \prod_{k=1}^n X_k.$$

Déterminer une densité de Z_n .

4. On considère la fonction f définie par :

$$f(x) = \begin{cases} \alpha x^2 e^{-x^2/2} \text{ si } x \geqslant 0\\ f(x) = 0 \text{ sinon} \end{cases}$$

- (a) Déterminer la valeur du réel α pour que la fonction f soit une densité de probabilité. On suppose dans la suite de cette question que la densité de X est cette fonction f.
- (b) Soit S une variable aléatoire définie sur $(\Omega, \mathcal{A}, \mathbb{P})$, à valeurs dans $\{-1, 1\}$, telle que :

$$P([S=1]) = P([S=-1]) = \frac{1}{2}.$$

On suppose en outre que les variables U, X, S sont indépendantes. Déterminer la loi de la variable T = SY.

5. On considère un entier n supérieur ou égal à 1 et on considère dans cette question n+1 variables aléatoires indépendantes T_0, \ldots, T_n qui suivent toutes la loi exponentielle de paramètre 1 et on définit la variable X par :

$$X = \sum_{k=0}^{n} T_k.$$

- (a) Déterminer une densité de X.
- (b) Montrer qu'une densité de Y est :

$$f_Y(y) = \begin{cases} \frac{1}{n} \sum_{k=0}^{n-1} \frac{y^k e^{-y}}{k!} & \text{si } y > 0\\ 0 & \text{si } y \le 0 \end{cases}$$

Exercice 2

Une boulangère vend du pain chaque jour.

La quantité produite de pain un jour donné est fixée de manière déterministe et vaut Q (en kilogrammes). En revanche, la demande de pain est une variable aléatoire X>0 (toujours en kilogrammes). On suppose que X suit une loi continue, de fonction de répartition F strictement croissante et s'annulant en 0, et admettant une densité continue f.

Le **coût unitaire de fabrication** (par kilogramme) est c, le **prix de vente unitaire** est p. Il n'y a pas de coût fixe de fabrication. On suppose p > c > 0.

1^{ère} partie

Si la demande de pain X est inférieure à l'offre Q, la boulangère ne vend que la quantité X (le pain invendu un jour donné n'est pas remis en vente le lendemain) ; si la demande est supérieure à l'offre, elle ne vend que la quantité produite Q.

Dans ces conditions, on cherche la quantité optimale Q à produire.

L'optimalité est à entendre au sens de la maximisation de l'espérance du bénéfice journalier (produit total de la vente - coût total de fabrication).

- 1. Écrire la formule donnant le bénéfice journalier B, en fonction des paramètres p et c, de la quantité Q et de la variable aléatoire X. On introduira en particulier la variable aléatoire indicatrice $\mathbf{1}_{X < Q}$.
- 2. Exprimer l'espérance de B, soit EB, au moyen des différents paramètres et, éventuellement, d'intégrales faisant intervenir les fonctions f ou F.
- 3. Montrer que EB possède un *maximum unique* atteint en une valeur Q^* que l'on explicitera en fonction des paramètres et de la fonction F.

2ème partie

La boulangère (qui est en même temps statisticienne) cherche à prévoir sa demande journalière. La demande (aléatoire) X_T qui va s'exprimer à une date T n'est pas connue à l'avance, mais la boulangère fait l'hypothèse que la demande ne varie pas beaucoup d'un jour à l'autre, soit :

$$X_{t+1} = X_t + U_{t+1}$$
 ,

où U_{t+1} représente une perturbation (aléatoire) représentant la variation de la demande du jour t+1 par rapport à celle du jour t.

On suppose que X_0 est déterministe (valeur fixée connue) et que les U_t sont mutuellement indépendants entre eux, de même loi, d'espérance nulle et de variance $\sigma^2 \neq 0$.

A une date $T \geq 1$, la boulangère ne dispose malheureusement pas des demandes journalières précédentes : $X_0, X_1, ..., X_{T-1}$, information qu'elle a perdue en partie, mais ne connaît explicitement que la moyenne de ces demandes : $\overline{X}_{T-1} = \frac{1}{T} \sum_{t=0}^{T-1} X_t$.

4

- a. Étudier la convergence **en probabilité** de la suite $\left\{\frac{X_T}{T}\right\}$ quand $T \to +\infty$ [il s'agit bien ici de X_T et non de \overline{X}_T].
- $b. \quad \text{\'etudier la convergence en loi des suites} \quad \left\{\frac{X_T}{\sqrt{T}}\right\}, \ \left\{\frac{X_T^2}{T}\right\} \text{ quand } T \to +\infty \,.$

Il sera utile d'exprimer toutes les variables aléatoires considérées en fonction des U_{ι} .

5.

- a. Calculer $E\,\overline{X}_T$ et $V\,\overline{X}_T$ [il s'agit bien ici de \overline{X}_T]. On rappelle que : $\sum_{k=1}^T k^2 = \frac{T(T+1)(2T+1)}{6}$.
- b. Peut-il y avoir convergence dans L $_2$ de la suite $\{\overline{X}_T\}$ vers une constante quand $T\to +\infty$?

Pour simplifier la suite des calculs, la boulangère suppose que les U_ι suivent une même loi normale.

6.

- a. Calculer la loi de la variable aléatoire $\frac{\overline{X}_T}{\sqrt{T}}$ [il s'agit bien ici de \overline{X}_T].
- b. En déduire la convergence en loi de la suite $\{\overline{\frac{X}{T}}\}$ quand $T\to +\infty$.
- 7. La boulangère sait que sa prévision optimale de la demande X_T du jour T, connaissant \overline{X}_{T-1} , est l'espérance conditionnelle : $X_T^* = E(X_T/\overline{X}_{T-1})$ (pour $T \geq 2$).
 - a. Calculer X_T^* .
 - b. Donner sa loi.
 - c. Calculer la variance conditionnelle $V(X_T/\overline{X}_{T-\mathbf{I}})$.
 - d. Calculer $\lim_{T \to +\infty} V(\frac{X_T}{\sqrt{T}}/\overline{X}_{T-1})$.