Comunicações por Computador

Mestrado Integrado em Engenharia Informática

3° ano/2° semestre

2018/2019

Computer Networking: A Top Down Approach, Capítulo 2

Jim Kurose, Keith Ross, Addison-Wesley ©2016.

- E-Mail precisa entregar uma mensagem dirigida a a 10000@alunos.uminho.pt, costa@di.uminho.pt e belem@presidencia.pt ... onde entregar? Como fazer?
- Servidor de mail recebe pedido de entrega suspeita de
 222.122.229.55... deve aceitar a conexão ou não? Como decidir?
- Browser precisa de iniciar conexão TCP com <u>www.google.com</u> ... para onde mandar o pacote de SYN? Para qual dos googles mandar?
- Tenho uma chamada VoIP para o número de telefone +351 253 604442? O que faço com ela?
- Vou ligar-me a <u>www.cgd.pt</u>... Mas será mesmo a Caixa Geral de Depósitos??

• Ferramentas cliente: host, nslookup, dig

\$ host www.google.pt

\$ host 193.136.19.20

\$ nslookup www.google.pt

\$ dig www.google.pt

DNS: Domain Name System

Pessoas: muitos identificadores:

Segurança Social, Contribuinte,
 Nome, BI, N° Passaporte...

Internet: hosts e routers:

- Endereços IP (32 ou 128 bit) usados para endereçar datagramas
- "nome", ex: www.google.com usado pelos humanos

Q: Como mapear os endereços IP nos nomes ?

Uma App? A fazer coisas da rede? Não devia estar no layer 3?

Domain Name System:

- Base de dados distribuída implementada numa hierarquia de servidores de nomes
- Protocolo da camada de aplicação hosts, routers, servidores de nomes comunicam parar resolver nomes (tradução endereço/nome)
 - nota: uma função nuclear da Internet implementada como protocolo de aplicação
 - Complexidade na periferia ("edge") da rede!

Serviços DNS

- Tradução dos nomes dos hosts para endereços IP
- Aliases dos hosts (nomes alternativos)
 - Nome principal, aliases
- Definição do servidor de mail
- Distribuição de carga
 - Servidores Web replicados: um conjunto de endereços IP associados a um único nome

Porque não centralizar o DNS?

- ponto de falha único
- Volume de tráfego
- Base de dados centralizada distante
- manutenção

É claro que não é escalável!

Base de dados distribuída e hierárquica

Cliente pretende o IP de www.amazon.com; 1ª aproximação (funciona?):

- Cliente interroga um root server para descobrir servidores de DNS para o domínio de topo com
- Cliente interroga servidor DNS de com para obter o servidor DNS de amazon.com
- Cliente interroga servidor DNS de amazon.com para obter o endereço IP de www.amazon.com
- Cliente guarda toda a informação obtida nesta interacção em cache (servidores DNS, endereços IP, etc.)

DNS: Root servers

- São contactados pelos servidores de nomes locais que não conseguem resolver um nome
- O que pode/poderia fazer o root server:
 - Contactar servidor DNS autoritativo se o mapeamento do nome não é conhecido
 - Obtém mapeamento (nome, servidor DNS)
 - Retorna esse mapeamento ao servidor de nomes local

TLD e Servidores Autoritativos

Domínios de topo (TLD: Top-Level Domain Servers)

- responsáveis por com, org, net, edu, etc, e todos os domínios de topo dos países pt, uk, fr, ca, jp, etc.
- Network Solutions administra os servidores TLD para o domínio com
- Educause gere o TLD edu
- TLD para Portugal: Associação DNS Portugal

Servidores DNS autoritativos:

- Servidores DNS das organizações, com autoridade sobre um domínio de nomes local e sobre os mapeamentos nome/endereço dessa organização
- Pode ser gerido pela própria organização ou pelo seu ISP

Servidor de Nomes local

- Pode pertencer à hierarquia
- Cada ISP (ISP residencial, empresas, universidades) tem um.
 - Também designado por "default name server"
- Quando um host formula uma interrogação DNS ela é sempre dirigida ao seu Servidor DNS local
 - Funciona como um proxy, redireccionando a query para a hierarquia quando necessário; designa-se por <u>forwarder</u>
 - Faz caching
 - O papel de <u>proxy/caching</u> justifica só por si a existência do servidor local; pode ainda acumular funções de <u>servidor</u> <u>autoritativo</u>;

DNS: exemplo da resolução dum nome

• O Host *shiva.di.uminho.pt* pretende o endereço IP de *gaia.cs.umass.edu*

Modo interactivo:

- Servidor contactado responde com o nome do servidor a contactar
- "Eu não conheço esse nome, mas pergunte a este servidor"

DNS: exemplo da resolução dum nome

Modo recursivo:

- Coloca o fardo da resolução no servidor de nomes contactado
- Fardo pesado?

DNS: modo de operação

- Todas as aplicações consultam o DNS!!
 - Enviar uma mensagem de e-mail pode implicar 2 ou três consultas!
 - Aceder a uma página WWW, implica pelo menos 1 consulta!

- Funciona sobre UDP:
 - basta um único datagrama (512 bytes) por cada pedido e por cada resposta
- Existem múltiplos servidores por cada domínio:
 - Um servidor primário e um ou mais secundários
 - Os servidores secundários mantém, de forma automática, réplicas dos primários
- Os servidores e os clientes armazenam as respostas obtidas durante um certo tempo (TTL) para não andarem sempre a perguntar a mesma coisa...
 - caching

DNS: actualização de dados

- sempre que um (qualquer) servidor de nomes aprender um mapeamento, guarda-o de imediato em cache
 - as entradas na cache expiram (timeout) e desaparecem após algum tempo
 - Os servidores de nomes TLD guardam normalmente em cache os servidores DNS locais
 - Portanto os root name servers acabam por não ser assim tão visitados...
- Mecanismos de actualização dinâmica e notificação (update/notify) já definidos pelo IETF
 - RFC 2136
 - http://www.ietf.org/html.charters/dnsind-charter.html

DNS resource records (RR)

DNS: BD distribuída que armazena *resource records* (RR)

Formato RR: (name, value, type, ttl)

- Type=A
 - name é o nome de um host
 - value é o endereço IP
- Type=NS
 - **name** é um nome de um *domínio* (ex:. uminho.pt)
 - value é o nome do host do servidor DNS autoritativo para o domínio

Type=CNAME

- name é um *alias* (nome alternativo)

 para outro nome "canónico" (o real!)

 www.dn.pt é na realidade

 dn.sapo.pt
- value é o nome canónico (real)
- Type=MX
 - name é um nome de domínio
 - value é o nome do servidor de email associado ao nome name

DNS resource records (RR)

http://en.wikipedia.org/wiki/List_of_DNS_record_types

SOA	(Start Of Authority)	Define o início de uma zona e todos os seus parâmetros
NS	(Name Server)	Define o(s) servidor(es) que detém autoridade numa zona
MX	(Mail Exchanger)	Define o(s) servidor(es) de mail para o domínio
A	(Address)	Endereço IP v4.
AAAA	(IPv6 Address)	Endereço IP v6.
HINFO	(Hardware Info)	Define o CPU e o SO de um sistema
WKS	(Well Known Services)	Define serviços (portas) disponíveis num sistema
DTD	(Paintar)	Anontodor nora a noma usado no reversa manning

Apontador para o nome... usado no reverse-mapping (Pointer) PIK

Generalização do MX para localizar outros serviços... **SRV** (Service Locator)

CNAME (Canonical name) Nome alternativo...

Chave pública **KEY** (Public key) Segurança (Veremos mais tarde) Assinatura digital SIG (Signature) Só em 2010 nos root servers!!

DNS protocolo, mensagens protocolares

12 bytes

Protocolo DNS: duas mensagens (query e reply), exactamente com o mesmo formato

cabeçalho da mensagem

- identification: quantidade de 16 bits; uma resposta usa sempre o mesmo valor da interrogação
- flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

identification	flags					
number of questions	number of answer RRs					
number of authority RRs	number of additional RRs					
questions (variable number of questions)						
answers (variable number of resource records)						
authority (variable number of resource records)						
additional information (variable number of resource records)						

DNS protocolo, mensagens protocolares

- O programa nslookup permite consultar o DNS directamente:
 - Obter um endereço IP, dado um nome

C:> nslookup xpto.com

Server: dns.xyz.pt Address: 194.67.3.20

Name: xpto.com Address: 198.41.0.6

Obter um nome, dado um endereço IP

```
C:> nslookup
> set type=PTR
> 193.136.9.240
...
```

C:> nslookup > set type=A

> xpto.com

C:> nslookup

- > set type=PTR
- > 240.9.136.193.in-addr.arpa.

••

- O programa nslookup permite consultar o DNS directamente:
 - Obter os servidores de E-Mail de um domínio (Mail eXchangers)

```
C:> nslookup
> set type=MX
> uminho.pt
...
```

Obter os servidores de DNS de um domínio (Name Servers)

```
C:> nslookup
> set type=NS
> uminho.pt
...
```

Saber quem é o responsável por um domínio (type = SOA)


```
set debug
                                                                                          identification
⊳ set ty=mx
> alunos.uminho.pt.
Non-authoritative answer:
Server: marco.uminho.pt
                                                                                        number of authority RRs | number of additional RRs
Address: 193.136.9.240
                                                                                            (variable number of questions)
|Got answer:
    HEADER:
         opcode = QUERY, id = 2, rcode = NOERROR
        header flags: response, want recursion, recursion avail.
                                                                                          (variable number of resource records)
        questions = 1, answers = 1, authority records = 3, additional = 7
    OUESTIONS:
        alunos.uminho.pt, type = MX, class = IN
    ANSWERS:
    -> alunos.uminho.pt
        MX preference = 5, mail exchanger = mx.uminho.pt
         ttl = 3600 (1 hour)
    AUTHORITY RECORDS:
    -> alunos.uminho.pt
        nameserver = dns3.uminho.pt
                                                            dns3.uminho.pt
        ttl = 46640 (12 hours 57 mins 20 secs)
                                                            AAAA IPv6 address = 2001:690:2280:1::65
    -> alunos.uminho.pt
                                                            ttl = 150 (2 mins 30 secs)
        nameserver = dns2.uminho.pt
                                                        -> dns.uminho.pt
        tt1 = 46640 (12 hours 57 mins 20 secs)
                                                            internet address = 193.137.16.75
    -> alunos.uminho.pt
                                                            tt1 = 150 (2 mins 30 secs)
        nameserver = dns.uminho.pt
                                                        -> dns.uminho.pt
        tt1 = 46640 (12 hours 57 mins 20 secs)
                                                            AAAA IPv6 address = 2001:690:2280:1::75
    ADDITIONAL RECORDS:
                                                            ttl = 150 (2 mins 30 secs)
    -> mx.uminho.pt
                                                        -> dns2.uminho.pt
        internet address = 193.137.9.142
                                                            internet address = 193.137.16.145
        tt1 = 150 (2 mins 30 secs)
                                                            ttl = 150 (2 mins 30 secs)
    -> dns3.uminho.pt
                                                        -> dns2.uminho.pt
        internet address = 193.137.16.65
                                                            AAAA IPv6 address = 2001:690:2280:801::145
                                                            tt1 = 150 (2 mins 30 secs)
         tt1 = 150 (2 mins 30 secs)
```



```
> set ty=PTR
> 1.19.136.193.in-addr.arpa.
Non-authoritative answer:
Server: marco.uminho.pt
Address: 193.136.9.240
Got answer:
    HEADER:
        opcode = QUERY, id = 21, rcode = NOERROR
        header flags: response, want recursion, recursion avail.
        questions = 1, answers = 1, authority records = 6, additional = 10
    OUESTIONS:
        1.19.136.193.in-addr.arpa, type = PTR, class = IN
    ANSWERS:
    -> 1.19.136.193.in-addr.arpa
        name = dns.di.uminho.pt
        tt1 = 251 (4 mins 11 secs)
    AUTHORITY RECORDS:
    -> 19.136.193.in-addr.arpa
        nameserver = alfa.di.uminho.pt
        tt1 = 251 (4 mins 11 secs)
    -> 19.136.193.in-addr.arpa
```

Exercício

- Quais os servidores TLD para pt?
- Qual deles é o servidor primário?
- Qual o(s) servidor(es) de correio electrónico do DI?
- Qual o endereço IP do Google?
- Qual a máquina que usa o IP 209.197.89.22?
- É possível fazer balanceamento de carga usando o DNS?

Exercício

- Para todos os clientes da rede fixa do DI, designados em abstracto por Cli(di), o servidor local do DNS é, também em abstracto, NS(di). Essa informação é colocada manualmente no ficheiro /etc/resolv.conf, ou obtida automaticamente por DHCP. Suponha agora que um Cli(di) quer resolver o nome mail.nasa.gov. Explique como se processa a resolução nas seguintes circunstâncias:
 - Todos os servidores de nomes da hierarquia aceitam responder em modo recursivo (altamente improvável!)
 - Só o servidor local admite responder em modo recursivo ao cliente;
 - Nenhum servidor admite o modo recursivo;

Implementação de um domínio

 O MIEI quer estabelecer-se em Portugal e montar o site WEB www.miei.pt;

Passo 1: Instalar e configurar ns.miei.pt como servidor primário Incluir ficheiro com todos os ROOT servers;

Passo 2: Instalar um servidor secundário noutro domínio; (Atualização automática; pedir a outra organização)

Passo 3: Pedir ao servidor primário de PT (ver qual é) que adicione dois RR debaixo de pt para "delegar autoridade" em ns.lei.pt para lei.pt:

miei.pt	IN	NS	ns.miei.pt.	
ns.miei.pt.	IN	Λ	193.136.130.1	
usimerbr	114	A	193'130'130'1	

Implementação de um domínio

• Ficheiro named.conf

```
options {
       directory "/var/named";
       allow-transfer "193.168.100.1"; // secundário
 };
 // type domain
                                    file
                     source
  zone "." {
       type hint;
       file "named.root";
 };
  zone "localhost" {
       type master;
       file "named.local";
 };
  zone "127.in-addr.arpa" {
       type master;
       file "named.rev-local";
  };
```

```
zone "miei.pt" {
    type master;
    file "miei.db";
};

zone "130.136.193.in-addr.arpa" {
    type master;
    file "miei-rev.db";
};
```

Exemplo de um ficheiro de dados

• Ficheiro miei.db

```
$ORIGIN pt.
Miei
       86400 IN
                   SOA ns.miei.pt. admin.miei.pt. (
       2017031501
       86400
       7200
       604800
       86400)
        NS ns.miei.pt.
   IN
        NS
            ns.dns.pt.
   IN
        MX
            10
                   mail.miei.pt.
$ORIGIN miei.pt.
               193.136.130.80
mail
               193.136.130.25
               193.136.130.80
www
          A 193.136.130.1
ns
```

Exemplo de um ficheiro de dados

• Ficheiro miei.rev

```
130.136.193.in-addr.arpa. IN SOA ns.miei.pt. admin.miei.pt. (
           2017031501
                         : Serial
           28800
                          : Refresh - 24 hours
           7200
                         ; Retry - 2 hours
                         ; Expire - 7 days
           604800
                         ; Minimum TTL - 1 days
           86400)
        NS
             ns.miei.pt.
        NS
             ns.dns.pt.
$0RIGIN 130.136.193.in-addr.arpa.
           PTR
                  ns.miei.pt.
25
                  mail.miei.pt.
       IN PTR
       IN PTR
80
                  www.miei.pt.
```

Programação - Consulta simples

Em Java

java.lang.Object

java.net.InetAddress

java.net.Inet6Address

Em C

```
#include <netdb.h>

<u>struct hostent *</u> gethostbyname(<u>const char *name</u>);

<u>struct hostent *</u> gethostbyaddr(<u>const void *addr, socklen_t len, int type</u>);
```

Programação – Todas as queries

Em Java

Package javax.naming

Provides the classes and interfaces for accessing naming services.

Em C

Usar as funções da biblioteca "*Resolver*"

```
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

res_mkquery(...)
res_send(...)
```