Algorytmy metaheurystyczne

Problem komiwojażera euklidesowego. Algorytm genetyczny. Algorytm memetyczny. Karol Janic $21~{\rm stycznia}~2024$

Spis treści

1	Cel zadania	2
2	Dane testowe	2
3	Algorytm genetyczny 3.1 Wybór parametrów	2
4	Wyniki	3
5	Porównanie zaimplementowanych heurystyk 5.1 Ranking zaimplementowanych algorytmów	3

1 Cel zadania

Celem zadania jest sprawdzenie skuteczności algorytmu genetycznego oraz algorytmu memetycznego na przykładzie euklidesowego problemu komiwojażera oraz zbadanie wpływu wyboru parametrów tych heurystyk na jakość rozwiązania.

2 Dane testowe

Opisane wyżej metaheurystyki zostały nastrojone oraz testowane na przykładach z https://www.math.uwaterloo.ca/tsp/vlsi/index.html.

3 Algorytm genetyczny

Algorytm genetyczny jest heurystyką inspirowaną ewolucją biologiczną. W każdej iteracji algorytmu tworzona jest nowa populacja osobników, która jest następnie poddawana krzyżowaniu i mutacji. Populacje rozdzielone są na wyspy, które są od siebie izolowane. Co pewną liczbę epok populacje są wymieniane między wyspami. W ten sposób algorytm może uniknąć zatrzymania się w lokalnym optimum. Dodatkowo rozwiązania mogą być ulepszane przez algorytm lokalnego przeszukiwania, np. algorytm Local Search.

3.1 Wybór parametrów

• Rozmiar populacji: 64

• Liczba wysp: 8

• Liczba epok: 10

• Liczba iteracji w epoce: 1000

• Prawdopodobieństwo krzyżowania: 0.8

• Prawdopodobieństwo mutacji: 0.1

3.2 Mutacje

- Zamiana dwóch losowych wierzchołków
- Odwrócenie kolejności wierzchołków między dwoma losowymi wierzchołkami

3.3 Krzyżowanie

- PMX(Partially Mapped Crossover) polega na wybraniu losowego fragmentu jednego z rodziców i przepisaniu go do dziecka. Następnie wypełniane są brakujące wierzchołki z drugiego rodzica w kolejności występowania w nim.
- OX(Order Crossover) polega na wybraniu losowego fragmentu jednego z rodziców i przepisaniu go do
 dziecka. Następnie wypełniane są brakujące wierzchołki z drugiego rodzica w kolejności występowania w
 nim, ale bez powtórzeń.
- CX(Cycle Crossover) polega na wybraniu losowego cyklu z jednego z rodziców i przepisaniu go do dziecka.
 Następnie wypełniane są brakujące wierzchołki z drugiego rodzica w kolejności występowania w nim, ale bez powtórzeń.

3.4 Lokalna poprawa rozwiązania

Wykorzystywany jest algorytm Local Search z losowym sasiedztwem typu INVERT.

4 Wyniki

	Genetyczy	Memetyczny	Genetyczny	Memetyczny	Genetyczny	Memetyczny
Przykład	PMX	PMX	OX	OX	CX	CX
xqf131	635	582	598	580	630	589
xqg237	1206	1097	1148	1090	1213	1087
pma343	1896	1454	1736	1466	1872	1461
pka379	1930	1428	1769	1431	1920	1438
bcl380	2534	1786	2349	1799	2549	1796
pbl395	2002	1392	1860	1407	1977	1406
pbk411	2200	1480	2033	1470	2173	1483
pbn423	2261	1516	2114	1511	2289	1509
pbm436	2446	1574	2272	1576	2460	1587
xql662	6175	2777	5646	2770	6195	2809
xit1083	15016	4009	13464	4021	15069	4011
icw1483	25768	4979	22766	5007	25949	5038
djc1785	43547	6896	37660	6913	43308	6927
dcb2086	59801	7525	51310	7530	59914	7503
pds2566	86694	8756	73254	8806	86744	8787

Tabela 1: Średnie wagi rozwiązań znalezionych przez algorytmy genetyczne i memetyczne

5 Porównanie zaimplementowanych heurystyk

Przykład	Opt	MST	LS	SA	TS	MA
xqf131	564	718	612	580	602	582
xqg237	1019	1445	1115	1056	1089	1087
pma343	1368	1883	1484	1395	1454	1461
pka379	1332	1855	1445	1380	1398	1438
bcl380	1621	2319	1817	1730	1750	1796
pbl395	1281	1871	1429	1363	1377	1406
pbk411	1343	1935	1488	1431	1433	1483
pbn423	1365	1918	1521	1457	1468	1509
pbm436	1443	2119	1612	1540	1563	1587
xql662	2513	3691	2813	2682	2699	2809
xit1083	3558	5190	4021	3825	3909	4011
icw1483	4416	6754	4990	4731	4739	5038
djc1785	6115	8908	6872	6545	6470	6927
dcb2086	6600	9777	7457	7129	7171	7503
pds2566	7643	11427	8701	8225	8377	8787

Tabela 2: Porównanie wyników: Rozwiązania budowane na podstawie MST, Local Search, Symulowanego Wyżarzania, Tabu Search, Algorytmu Memetycznego.

5.1 Ranking zaimplementowanych algorytmów

- 1. Symulowane Wyżarzanie
- 2. Tabu Search
- 3. Algorytm Memetyczny
- 4. Local Search
- $5.\ \,$ Rozwiązanie oparte na MST