Regressão Linear

Prof. Luciano Galdino

REGRESSÃO LINEAR SIMPLES

Modelo matemático linear capaz de realizar previsões.

$$y = m.x + b$$

Utilizado posteriormente à análise de correlação linear.

Equação obtida após um ajuste de um reta no gráfico de dispersão com resíduo mínimo (Linha de regressão).

Linhas de regressão

Linha que melhor se ajusta aos dados plotados, onde a soma dos quadrados dos resíduos seja mínima.

Modelo Matemático (Equação da reta)

$$y = m.x + b$$

Coeficientes

$$m=n\sum xy-iii$$

$$b = \bar{y} - m\bar{x}$$

$$b = \frac{\sum y}{n} - m \frac{\sum x}{n}$$

Exemplo: Encontrar a equação da reta de regressão para os gastos de propaganda e as vendas de uma empresa.

Gastos com propaganda (1.000s de \$), x	Vendas da empresa (1.000s de \$), y	
2,4	225	
1,6	184	
2,0	220	
2,6	240	
1,4	180	
1,6	184	
2,0	186	
2,2	215	

Gastos com propaganda (1.000s de \$), x	Vendas da empresa (1.000s de \$), y	xy	x ²	y ²
2,4	225	540	5,76	50.625
1,6	184	294,4	2,56	33.856
2,0	220	440	4	48.400
2,6	240	624	6,76	57.600
1,4	180	252	1,96	32.400
1,6	184	294,4	2,56	33.856
2,0	186	372	4	34.596
2,2	215	473	4,84	46.225
$\Sigma x = 15.8$	$\Sigma y = 1.634$	$\Sigma xy = 3.289.8$	$\Sigma x^2 = 32,44$	$\Sigma y^2 = 337.558$

$$m=n\sum xy-iii$$

$$b = \frac{\sum y}{n} - m \frac{\sum x}{n}$$

$$m = \frac{8.3289,8 - 15,8.1634}{8(32,44) - 15,8^2}$$

$$b = \frac{1634}{8} - 50,729 \frac{15,8}{8}$$

$$m = 50,729$$

$$b = 104,061$$

$$y = m.x + b$$

$$y = 50,729 x + 104,061$$

Vendas em função de propagandas

REGRESSÃO LINEAR MÚLTIPLA

Quando possui mais de uma variável independente.

independente. $y=b_0+b_1x_1+b_2x_2+\ldots+b_nx_n+\varepsilon$

Utiliza-se o método dos mínimos quadrados para estimar os coeficientes da regressão múltipla, sendo que o ideal é usar a tecnologia.

Após a obtenção dos coeficientes e, consequentemente, a equação da regressão linear múltipla, aí sim será possível a realização das previsões.