# Real-Time GPS-Free Underground Worker Tracking System

ESP32, BLE, IMU & Django Implementation

**Technical Implementation Guide**For Mining & Cave Operations





## Critical Problem: Worker Safety Underground

#### **GPS Blackout Zones**

Underground mines and caves completely block GPS signals, leaving workers invisible to surface monitoring systems.

#### Safety Risk

Without real-time location data, emergency response times increase dramatically during accidents or cave-ins.

#### **Cost Barriers**

Commercial indoor tracking solutions cost \$5,000-15,000 per worker, making them prohibitive for smaller mining operations.

#### **Technical Gaps**

Existing systems require extensive infrastructure or specialized hardware incompatible with harsh underground conditions.





## **Solution Objective**



#### Real-Time Tracking

Continuous location monitoring with sub-2-meter accuracy using BLE signal triangulation and IMU sensor fusion.

#### **Cost-Effective Design**

Total system cost under ₹1,500 per worker using ESP32 microcontrollers and open-source software stack.

#### **GPS-Independent**

Fully autonomous indoor positioning using Bluetooth Low Energy beacons and inertial measurement units.

# System Architecture Overview



Workers wear ESP32 tags that scan fixed BLE beacons and collect IMU motion data. The Django backend processes location algorithms and serves real-time coordinates to the monitoring dashboard.

# Hardware Components & Specifications



#### **ESP32 Dev Board**

₹300 - Dual-core processor with built-in WiFi/BLE. Handles beacon scanning, IMU data collection, and wireless transmission to backend systems.



#### **BLE Beacons**

₹300-600 - Fixed reference points throughout the underground facility. Continuously broadcast identification signals for triangulation positioning.



#### **MPU6050 IMU**

₹150 - 6-axis accelerometer and gyroscope. Provides motion detection, orientation tracking, and helps estimate movement direction between beacon readings.



#### **Power System**

₹200 - Rechargeable Li-ion battery pack with 8-12 hour operation. Includes charging circuit and low-power sleep modes for extended runtime.

# Software Stack Implementation



#### **ESP32 Firmware**

C++ code handles BLE scanning, MPU6050 data acquisition, and WiFi transmission. Implements power management and error handling for continuous operation.



#### **Data Processing Script**

Python service reads serial/WiFi data from ESP32 devices, applies RSSI-to-distance algorithms, and forwards processed location data to Django REST API.



#### Django Backend

REST API stores worker locations in MySQL with timestamps. Implements real-time data validation, device management, and historical tracking queries.



#### Real-Time Dashboard

Web-based interface displays live worker positions on 2D facility maps. Updates every 2-3 seconds with WebSocket connections for minimal latency.

## **BLE + IMU Data Collection Process**

### **Beacon Scanning**

ESP32 continuously scans for nearby BLE beacons, recording RSSI values and beacon IDs every 500ms.

## **Motion Tracking**

MPU6050 samples acceleration and gyroscope data at 100Hz, detecting worker movement patterns and orientation changes.

```
{ "device_id": "ESP32_001",
  "timestamp": 1703025600,
  "beacons": [ {"id":
  "BEACON_A", "rssi": -45},
  {"id": "BEACON_B", "rssi":
  -62} ], "imu": { "accel":
  [0.2, 9.8, -0.1], "gyro":
  [0.05, -0.02, 0.0] }}
```





# Django Backend Architecture



#### **REST API Endpoints**

/api/track/ receives location
data/api/workers/ manages device
registry/api/history/ provides location
history



#### MySQL Schema

Worker locations table with device\_id, coordinates, timestamp, and raw sensor data stored as JSON fields.



#### **Position Algorithm**

Trilateration using RSSI-to-distance conversion with IMU-based movement prediction for improved accuracy.

## System Performance & Accuracy

1.5M

2-3

8-12

**Positioning Accuracy** 

Update Frequency

**Battery Life** 

Average location error within underground test environment using 4+ beacon triangulation

Seconds between location updates with real-time WebSocket dashboard refresh

Hours of continuous operation with optimized power management and sleep modes



## Implementation Results & Next Steps

#### **Proven Cost Savings**

Significant cost savings: ₹1,500 per worker vs. ₹50,000+ for commercial UWB, a 97% reduction while maintaining essential safety functionality.

#### **Future Enhancements**

- ML algorithms for drift correction & improved accuracy
- Emergency SOS button with auto-alerts
- Predictive battery maintenance alerts
- Mobile app for field deployment



**Cost Reduction** 

Compared to commercial indoor tracking solutions



**Implementation Success** 

System uptime in underground test environment

**Ready for production deployment** in mining, cave exploration, and emergency response where GPS is impossible.