Sprawozdanie

Laboratorium 4 Metody obliczeniowe w nauce i technice

Wykonanie: Kamil Kurp

Interpolacja wielomianowa

Interpolacja wielomianowa, nazywana też interpolacja Lagrange'a, od nazwiska pioniera badań nad interpolacja Josepha Lagrange'a, lub po prostu interpolacją jest metodą numeryczną przybliżania funkcji tzw. wielomianem Lagrange'a stopnia n przyjmującym w n+1 punktach, zwanych węzłami interpolacji, wartości takie same jak przybliżana funkcja.

Interpolacja jest często stosowana w naukach doświadczalnych, gdzie dysponuje się zazwyczaj skończoną liczbą danych do określenia zależności miedzy wielkościami.

Zgodnie z twierdzeniem Weierstrassa dowolną funkcję y=f(x), ciągłą na przedziale domkniętym, można dowolnie przybliżyć za pomocą wielomianu odpowiednio wysokiego stopnia.

Wielomian Lagrange'a

Postać Lagrange'a wielomianu to jedna z metod przedstawiania wielomianu, wykorzystywana często w zagadnieniach interpolacji. Dla wielomianu stopnia n wybiera się n+1 punktów – x_0, x_1, \dots, x_n i wielomian ma postać:

$$w(x) = \sum_{i=0}^{n} y_i \prod_{j=0 \land j \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$

$$\prod^{n} \frac{x - x_{j}}{x_{j} - x_{j}}$$

 $\prod_{j=0 \land j \neq i}^n \frac{x-x_j}{x_i-x_j}$ Ponieważ $j=0 \land j \neq i$ jest równy 1 dla x równego x_i (licznik i mianownik są równe), 0 zaś dla wszystkich innych x_j (licznik jest równy zero), można łatwo za pomocą postaci Lagrange'a **interpolować** dowolną funkcję:

$$L_f(x) = \sum_{i=0}^{n} f(x_i) \prod_{j=0 \land j \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$

Wielomian ten bedzie sie zgadzał z funkcja f we wszystkich punktach x_i .

Wielomian interpolacyjny Newton'a

Danych jest n+1 węzłów: $x_0, x_1,...,x_n x_i \neq x_j$ dla i \neq j oraz n+1 liczb: $y_0, y_1,...,y_n$. Należy wyznaczyć wielomian $w_n(x)$ stopnia niewiększego od n taki, że:

$$w_n(x_i) = y_i i = 1(1)n$$

Wielomian o którym powyżej ma na przykład postać

$$w_n(x) = \sum_{k=1}^n b_k p_k(x) \quad \text{gdzie} \, b_k - \text{wspóczynniki, stp} \, p_k(x) = k \, i \, p_0(x) = 1, \, p_k(x) = \prod_{j=0}^{k-1} (x - x_j)$$

 $\underline{\text{Definicja}}$ Ilorazem różnicowym rzędu 0 opartym o węzęł $\mathbf{x_i}$ nazywamy liczbę y[x_i] określoną wzorem

$$y[x_i] = y_i$$

Ilorazem różnicowym rzędu k opartym o węzły $\boldsymbol{x}_i,\,\boldsymbol{x}_{i+1},...,\boldsymbol{x}_{i+k}$ nazywamy liczbę

$$y[x_i, x_{i+1}, \dots, x_{i+k}] = \frac{y[x_{i+1}, \dots, x_{i+k}] - y[x_i, \dots, x_{i+k-1}]}{x_{i+k} - x_i}$$

$$\mathbf{b}_{k} = \mathbf{y}[\mathbf{x}_{0}, \mathbf{x}_{1}, ..., \mathbf{x}_{k}]$$

Porównanie interpolacji

Wnioski:

- interpolacje GSL i Newtona dają podobne wykresy, jedyną różnicą jest występowanie nieznacznego efektu Rungego dla interpolacji Newtona

- interpolacja Lagrange'a daje niepoprawne wyniki, co mogło być spowodowowane wystąpieniem efektu Rungego

Jednoznaczność interpolacji wielomianowej Dowód

Zakłada się, że istnieją dwa tożsamościowo różne wielomiany $W_1(x)$ i $W_2(x)$ stopnia n, przyjmujące w węzłach x_0, x_1, \cdots, x_n takie same wartości.

Niech

$$W_3(x) = W_1(x) - W_2(x)$$

będzie wielomianem. Jest on stopnia co najwyżej n (co wynika z własności odejmowania wielomianów).

Ponieważ $W_1(x)$ i $W_2(x)$ w węzłach $x_i: i\in 0,1,\cdots,n$ interpolują tę samą funkcję, to $W_1(x_i)=W_2(x_i)$, a więc $W_3(x_i)=0$ (węzły interpolacji są pierwiastkami $W_3(x)$).(*)

Ale każdy **niezerowy** wielomian stopnia n ma co najwyżej n pierwiastków rzeczywistych, a ponieważ z (*) wiadomo, że $W_3(x)$ ma n+1 pierwiastków, to $W_3(x)$ musi być wielomianem tożsamościowo równym zeru, a ponieważ:

$$W_3(x) = W_1(x) - W_2(x) = 0$$

to

$$W_1(x) = W_2(x)$$

co jest sprzeczne z założeniem, że $W_1(x)$ i $W_2(x)$ są różne.

computation time (seconds) Lagrange Newton 0.8 9.0 9.4 0.2

40

60

number of nodes

Time in relation to number of nodes

20

Wnioski:

0.0

- interpolacje GSL i Newtona mają podobnie niski czas obliczeń, GSL daje odrobinę szybszy wynik

80

- interpolacja Lagrange'a rośnie zdecydowanie szybciej od pozostałych interpolacji

Interpolacja funkcjami sklejanymi

Metoda numeryczna polegająca na przybliżaniu nieznanej funkcji wielomianami niskiego stopnia.

Dla przedziału [a,b], zawierającego wszystkie n+1 węzły interpolacji, tworzy sie m przedziałów:

$$t_0 \cdots t_1$$
 $t_1 \cdots t_2$
...
 $t_{m-1} \cdots t_m$,
takich że $a = t_0 < t_1 < \cdots < t_m = b$

i w każdym z nich interpoluje się funkcję wielomianem interpolacyjnym (najczęściej niskiego stopnia). "Połączenie" tych wielomianów ma utworzyć funkcję sklejaną.

Funkcja sklejana S jest funkcją interpolującą funkcję F, jeżeli:

$$F(x_i) = S(x_i)$$
dla $x_i, i \in {0,1,\cdots,n}$ są węzłami interpolacyjnymi funkcji F

Porównanie czasów dla róznych interpolacji dostępnych w GSL

Time in relation to number of nodes

Wnioski:

- interpolacja wielomianowa daje znacznie wyższe wyniki od pozostałych dwóch
- interpolacje cspline i akima mają podobną złożoność, cspline daje trochę lepszy czas