

Information & Communication Technology Subject: Capstone Project

Name: Fenil Vadher

En Roll no: 92200133023

Subject: Capstone Project

System Design and Architecture

1. Modular Design

The proposed **Multimodal Movie Script Search System** is designed using a **modular architecture** to ensure maintainability, extensibility, and scalability. The system is divided into the following major modules:

1. User Interface (UI) Module

- Provides an intuitive front-end for users to query the system.
- Supports text, image, and dialogue input queries.
- Displays ranked search results with scene previews and metadata.

2. Query Processing and Preprocessing Module

- Normalizes and tokenizes user input.
- Converts queries (text, image, audio) into embeddings compatible with retrieval models.
- Applies language processing (stemming, lemmatization) for textual queries.

3. Multimodal Embedding and Retrieval Module

- o Core AI engine powered by Vid2Seq, BLIP-2, mPLUG, GIT2, Sky, SPtPT.
- o Generates **unified embeddings** for movie scripts, dialogues, and visual scenes.

Information & Communication Technology Subject: Capstone Project

• Implements **semantic similarity search** to retrieve contextually relevant results.

4. Database and Indexing Module

- Stores structured movie scripts, dialogue transcripts, and scene metadata.
- Uses vector databases (e.g., Pinecone, FAISS, or Milvus) for efficient embedding retrieval.

5. Backend API and Orchestration Module

- Exposes RESTful APIs/GraphQL endpoints for queries.
- Orchestrates communication between front-end, embedding models, and databases.
- Ensures secure authentication and access control.

6. Evaluation and Analytics Module

- Integrates evaluation metrics: **BLEU**, **METEOR**, **CIDEr**, **ROUGE-L**, **CLIP-Similarity**, **Precision**, **Recall**.
- o Provides reports for model performance and retrieval quality.
- Logs user interactions to refine recommendation strategies.

Justification of Modularity:

• Each module is **independent yet loosely coupled**, enabling upgrades without disrupting the entire system.

Information & Communication Technology Subject: Capstone Project

- Supports **reusability** (e.g., embedding module can be reused for other multimedia retrieval tasks).
- Facilitates parallel development, improving project efficiency.

2. System Architecture Diagram

Information & Communication Technology

Subject: Capstone Project

3. Technology Stack

Layer/Module	Technology	Justification
Frontend (UI)	React.js, Tailwind CSS	Provides responsive, modular UI with reusability.
Backend API	Node.js (Express) / FastAPI (Python)	Lightweight, high-performance API framework for handling queries.
AI Models	Vid2Seq, BLIP-2, mPLUG, GIT2, Sky, SPtPT	Pre-trained multimodal transformers for embedding and retrieval.
Text Processing	Hugging Face Transformers, SpaCy	Robust NLP processing and embeddings.
Vector Database	FAISS / Pinecone / Milvus	High-performance similarity search for embeddings.

Information & Communication Technology Subject: Capstone Project

Justification:

- React.js + Node.js/FastAPI → ensures low latency and modern web app support.
- Vector DB (FAISS/Milvus) → optimized for nearest-neighbor search on embeddings.

4. Scalability Planning

Model Scalability

- Deploy AI models on **GPU-enabled cloud instances** (AWS SageMaker, GCP Vertex AI).
- Use batch inference and model quantization to reduce compute costs.
- As demand grows, implement distributed inference frameworks (Ray, Horovod).

Cost and Reliability Considerations

- Auto-scaling policies to minimize idle resource cost.
- **Spot instances** for low-cost compute when possible.
- Redundancy and failover strategies to ensure uptime.