Aufgabe 15: Clebsch-Gordan Koeffizienten

ein System sei aus zwei Spin-1 Systemen zusammengesetzt. Wie lauten die Eigenzustände des Gesamtdrehimpulses, $|jm\rangle$, ausgedrückt als Linearkombinationen der gekoppelten $|1m_1\rangle$ $|1m_2\rangle$ -Zustände? Mit anderen Worten: bestimmen Sie die Clebsch-Gordan Koeffizienten für $1\otimes 1=0\oplus 1\oplus 2$. Beachten Sie die Condon-Shortley Konvention. Sie können die Koeffizienten für $|j-m\rangle$ aus denen für $|jm\rangle$ durch bekannte Symmetrien bestimmen. Als letzen zustand werden Sie vermutlich $|00\rangle$ berechnen. J_- auf deisen angewandt sollte 0 ergeben. Üerprüfen Sie das. (B ei der Gelegenheit lohnt es sich herauszufinden, was Alfred Clebsch mit dem Polytechnikum Karlsruhe zu tun hatte.)

LSG

Die CGKs bilden eine vollständige orthonormale Basis für die gilt: $\sum_{m_1,m_2} |j_1j_2;m_1m_2\rangle\langle j_1j_2;m_1m_2|=1$

$$|jm\rangle = \left(\sum_{m_1, m_2} |j_1 j_2; m_1 m_2\rangle \langle j_1 j_2; m_1 m_2|\right) |jm\rangle \tag{0.1}$$

$$= \sum_{m_1, m_2} \underbrace{\langle j_1 j_2; m_1 m_2 | j m \rangle}_{CGK} |j_1 j_2; m_1 m_2 \rangle \tag{0.2}$$

Aufgrund der Beziegung $m=m_1+m_2\to \langle j_1j_2;m_1m_2|j,m=m_1+m_2\rangle\neq 0$ lassen sich zunächst die Gesamtbasis $|jm\rangle$ in der anderen Basis $|j_1j_2;m_1m_2\rangle$ ausdrücken: $j=0,1,2,\,m=-2,-1,0,1,2,\,m_1,m_2=\pm 1,0$

- $|00\rangle = \langle 11; -11|00\rangle |11; -11\rangle + \langle 11; 1 1|00\rangle |11; 1 1\rangle + \langle 11; 00|00\rangle |11; 00\rangle$
- $|1-1\rangle = \langle 11; -10|1-1\rangle |11; -10\rangle + \langle 11; 0-1|1-1\rangle |11; 0-1\rangle$
- $|10\rangle = \langle 11; -11|10\rangle |11; -11\rangle + \langle 11; 1 1|10\rangle |11; 1 1\rangle + \langle 11; 00|10\rangle |11; 00\rangle$
- $|11\rangle = \langle 11; 10|11\rangle |11; 10\rangle + \langle 11; 01|11\rangle |11; 01\rangle$
- $|2-2\rangle = \langle 11; -1-1|2-2\rangle |11; -1-1\rangle$
- $|2-1\rangle = \langle 11; -10|2-1\rangle |11; -10\rangle + \langle 11; 0-1|2-1\rangle |11; 0-1\rangle$
- $|20\rangle = \langle 11; -11|20\rangle |11; -11\rangle + \langle 11; 1 1|20\rangle |11; 1 1\rangle + \langle 11; 00|20\rangle |11; 00\rangle$
- $|21\rangle = \langle 11; 10|21\rangle |11; 10\rangle + \langle 11; 01|21\rangle |11; 01\rangle$
- $|22\rangle = \langle 11; 11|22\rangle |11; 111\rangle$

 $\langle j'm'|jm\rangle = \delta_{j'j'}\delta_{m'm} \rightarrow \langle jm|jm\rangle = 1$

$$\langle jm|jm\rangle = \langle jm|\left(\sum_{m_1m_2} |j_1j_2; m_1m_2\rangle\langle j_1j_2; m_1m_2|\right)|jm\rangle \tag{0.3}$$

$$= \sum_{m_1 m_2} \langle jm|j_1 j_2; m_1 m_2 \rangle \langle j_1 j_2; m_1 m_2 | jm \rangle \tag{0.4}$$

$$= \sum_{m_1 m_2} \langle jm | j_1 j_2; m_1 m_2 \rangle^2 \tag{0.5}$$

$$= 1$$
 (0.6)

 $(1)\Rightarrow \sum_{m_1m_2}\langle jm|j_1j_2;m_1m_2\rangle^2=1$ die Condon-Shortley Konvention (2): $\langle jj|j_1j_1;m_1=j_2,m_2=j-j_1\rangle\equiv \text{positiv}$ (3) $\langle j_1j_2;m_1m_2|jm\rangle=(-1)^{j-j_1-j_2}\langle j_2j_1;m_2m_1|jm\rangle$ (4)

$$\langle j_1 j_2; m_1 m_2 | j m \rangle = (-1)^{j-j_1-j_2} \langle j_2 j_1; -m_1 - m_2 | j - m \rangle = \langle j_2 j_1; -m_2 - m_1 | j - m \rangle$$

mit (1),(2) und (3) lassen sich die einfachen und zweifachen CGKs leicht finden:

$$\bullet \ |00\rangle = \underbrace{\langle 11; -11|00\rangle}_{\equiv \text{positiv}} |11; -11\rangle + \underbrace{\langle 11; 1-1|00\rangle}_{\equiv \text{positiv}} |11; 1-1\rangle + \langle 11; 00|00\rangle |11; 00\rangle$$

$$\bullet \ |1-1\rangle = \underbrace{\langle 11; -10|1-1\rangle}_{\equiv -\langle 11; 0-1|1-1\rangle} |11; -10\rangle + \langle 11; 0-1|1-1\rangle |11; 0-1\rangle$$

•
$$|10\rangle = \underbrace{\langle 11; -11|10\rangle}_{\equiv -\langle 11; 1-1|10\rangle} |11; -11\rangle + \langle 11; 1-1|10\rangle |11; 1-1\rangle + \langle 11; 00|10\rangle |11; 00\rangle$$

$$\bullet \ |11\rangle = \underbrace{\langle 11; 10|11\rangle}_{\equiv \text{aus (2) positiv} \rightarrow \frac{1}{\sqrt{2}}} |11; 10\rangle + \underbrace{\langle 11; 01|11\rangle}_{\equiv \text{aus (3) negativ} \rightarrow -\frac{1}{\sqrt{2}}} |11; 01\rangle$$

$$\bullet \ |2-2\rangle = \underbrace{\langle 11; -1-1|2-2\rangle}_{\equiv 1} |11; -1-1\rangle$$

•
$$|2-1\rangle = \underbrace{\langle 11; -10|2-1\rangle}_{\frac{1}{\sqrt{2}}} |11; -10\rangle + \underbrace{\langle 11; 0-1|2-1\rangle}_{\frac{1}{\sqrt{2}}} |11; 0-1\rangle$$

•
$$|20\rangle = \underbrace{\langle 11; -11|20\rangle}_{\equiv \langle 11; 1-1|20\rangle} |11; -11\rangle + \langle 11; 1-1|20\rangle |11; 1-1\rangle + \langle 11; 00|20\rangle |11; 00\rangle$$

•
$$|21\rangle = \underbrace{\langle 11; 10|21\rangle}_{\frac{1}{\sqrt{2}}} |11; 10\rangle + \underbrace{\langle 11; 01|21\rangle}_{\frac{1}{\sqrt{2}}} |11; 01\rangle$$

•
$$|22\rangle = \underbrace{\langle 11; 11|22\rangle}_{\text{megen (1) oder (2)}} |11; 11\rangle$$

Aufgrund der Beziehung $\langle j_1, j_2; m_1, m_2 | J_{\pm} | jm \rangle = \langle j_1, j_2; m_1, m_2 | J_{1\pm} + J_{2\pm} | jm \rangle$ und sich daraus ergebenden Gleichung:

(5)

$$\sqrt{(j \mp m)(j \pm m + 1)}\langle j_1, j_2; m_1, m_2 | j, m \pm 1 \rangle =$$
(0.7)

$$= \sqrt{(j_1 \pm m_1)(j_1 \mp m_1 + 1)} \langle j_1, j_2; m_1 \mp 1, m_2 | jm \rangle$$
 (0.8)

$$+\sqrt{(j_2 \pm m_2)(j_2 \mp m_2 + 1)}\langle j_1, j_2; m_1, m_2 \mp 1 | jm \rangle$$
(0.9)

Kommt man auf die restlichen CGKs.

mit $j = 0, m = 0; m_1 = 1; m_2 = 0$ eingesetzt in (5) ergibt $-\langle 11; -11|00\rangle = \langle 11; 00|00\rangle$ aus (1) und dem schon bekeannten Teilergebniss für $|00\rangle$ folgt: $\frac{1}{\sqrt{3}} = \langle 11; -11|00\rangle = |11; 1-1\rangle = -\langle 11; 00|00\rangle$

$$\Rightarrow |00\rangle = \frac{1}{\sqrt{3}}[|11;-11\rangle + |11;1-1\rangle - |00\rangle |11;00\rangle]$$

mit
$$j = 1; m = -1; m_1 = m_2 = 0$$
 in (5)

aus (3) und (4)
$$\langle 11; 10|11 \rangle \equiv \text{positiv} \equiv \langle 11; 0-1|1-1 \rangle$$

 $\Rightarrow |1-1\rangle = \frac{1}{\pi}[|11; 0-1\rangle - |11; -10\rangle]$

$$\Rightarrow |1-1\rangle = \frac{1}{\sqrt{2}}[|11;0-1\rangle - |11;-10\rangle]$$

mit
$$j = 2, m = 1, m_1 = -1, m_2 = 1$$
 in (5) $\sqrt{3 \cdot 2} \langle 11; -11 | 20 \rangle = \sqrt{2} \underbrace{\langle 11; 01 | 21 \rangle}_{\frac{1}{\sqrt{6}}} \langle 11; -11 | 20 \rangle = \langle 11; 1 - 1 | 20 \rangle = \frac{1}{\sqrt{6}}$

aus
$$(1) \frac{1}{6} + \frac{1}{6} + \langle 11; 00|20 \rangle^2 = 1 \rightarrow \langle 11; 00|20 \rangle = \pm 2\frac{1}{\sqrt{6}}$$

mit $j = 2, m = -1; m_1 = m_2 = 0$ in $(5) \sqrt{3 \cdot 2} \langle 11; 00|20 \rangle = \sqrt{2} \underbrace{\langle 11; -10|2-1 \rangle}_{\frac{1}{\sqrt{2}}} + \sqrt{2} \underbrace{\langle 11; 0-1|2-1 \rangle}_{\frac{1}{\sqrt{2}}} \rightarrow \langle 11; 00|20 \rangle = 2^{-1} = \text{positiv}$

$$\langle 11; 00|20 \rangle = 2\frac{1}{\sqrt{6}} \equiv \text{positiv}$$

$$\Rightarrow |20\rangle = \frac{1}{\sqrt{6}}[|11; -11\rangle + |11; 1 - 1\rangle + 2|11; 00\rangle]$$

Zusammenfassung der Ergebnisse:

•
$$|00\rangle = \frac{1}{\sqrt{3}}[|11; -11\rangle + |11; 1 - 1\rangle - |00\rangle |11; 00\rangle]$$

•
$$|1-1\rangle = \frac{1}{\sqrt{2}}[|11;0-1\rangle - |11;-10\rangle]$$

•
$$|10\rangle = \frac{1}{\sqrt{2}}[|11; -11\rangle + |11; 1-1\rangle]$$
 Rechnung TODO

•
$$|11\rangle = \frac{1}{\sqrt{2}}[|11;10\rangle - |11;01\rangle]$$

•
$$|2-2\rangle = |11; -1-1\rangle$$

•
$$|2-1\rangle = \frac{1}{\sqrt{2}}[|11;-10\rangle + |11;0-1\rangle]$$

•
$$|20\rangle = \frac{1}{\sqrt{6}}[|11; -11\rangle + |11; 1 - 1\rangle + 2|11; 00\rangle]$$

•
$$|21\rangle = \frac{1}{\sqrt{2}}[|11;10\rangle + |11;01\rangle]$$

•
$$|22\rangle = |11;11\rangle$$

TODO Alernativ J_{-} auf den höchsten ket zum niedrigsten anwenden und somit ebenfalls die Werte erhalten.