New Developments in Modeling of Catastrophic Events

AIR Terrorism Loss Estimation Model

Jack Seaquist
Terrorism Model Product Manager
AIR Worldwide Corporation

BETTER TECHNOLOGY

BETTER DATA

BETTER DECISIONS

http://www.casact.org/education/specsem/f2002/handouts/seaquist1.pdf (retrieved 16 May 2016)

Components of Catastrophe Models

Components of Catastrophe Models - Terrorism Challenges

Event Generation and Intensity Approach

- Generate comprehensive landmark database
- Use expert opinion for attack frequency and allocation to landmarks
 - ➤ Delphi Method used to solicit expert opinion
 - Individual terrorist groups considered independently
- Resulted in attack likelihood distribution for each individual landmark (Landmark Attack Vector)
- ☐ Generates full range of events that could happen

Landmark Database - Classification of Potential Terrorist Target Types

- Commercial facilities
 - Prominent buildings
 - ➤ Corporate headquarters
 - Transportation facilities and critical infrastructure
 - Industrial facilities
 - > Energy facilities
 - > Retail centers and malls
 - ➤ Sport arenas and stadiums
 - ➤ Amusement parks
- Government facilities
 - Federal office buildings and courthouses
 - ➤ Embassies
 - ➤ Postal facilities
- Educational, medical, and religious institutions

© 2002 AIR Worldwide Corporation

Landmark Attack Vector (LAV) Development

Threat Index (TI) is Spread across Individual Landmarks

Threat Index (TI)

- Target type
- Weapon/attack type
- Locale

TI spread across set of individual landmarks for Target Type at Locale

Trophy Value

- For each individual landmark
- LAV indicates weighted likelihood of each weapon/attack type

	7			
Bldg. 3 Port. bomb	Car bomb	Truck bomb	Crash	

© 2002 AIR Worldwide Corporation

Weapon Intensity and Damage

Damage Pattern from Oklahoma City Bombing

© 2002 AIR Worldwide Corporation

Damage and Casualty Estimates Consider Multiple Effects on the Target and Surrounding Buildings

AIR Teams With Weidlinger Associates - Industry-Leading Blast Damage Expertise

- Leader in defense-related blast effects research and design for 50 years
- Only firm with experience in high rise, long span structural engineering and blast resistant design
- Developer of advanced analysis techniques for blast and impact calibrated with extensive field testing
- Performs terrorism vulnerability assessment and upgrade of major transportation facilities, courthouses, office buildings, and embassies
- Specializes in assessment of glazing and curtain wall hazards
- Simplified or detailed analyses

© 2002 AIR Worldwide Corporation

Advanced Blast/Impact Analysis

- Based on detailed information about building structure and occupancy
- Advanced analysis of structures using in-house transient nonlinear dynamic finite-element software code

Exposure, Mortality and Damage Contours for CBRN

Now Being Used for Property and Workers Compensation Loss Analyses

- Evaluation of proximity of exposures to landmarks
- □ Deterministic analysis of specific exposures
- Fully probabilistic analysis of a special or general book of business

Concentration of Exposures Analysis

© 2002 AIR Worldwide Corporation

Deterministic Analysis - Midtown Manhattan

- □ Delivery truck bomb
- 80,000 workers in surrounding area
- Damage sustained in 29 buildings
- □ 5,000 estimated disability and fatality casualties

Sample Exposure Portfolio

© 2002 AIR Worldwide Corporation

Workers' Compensation Loss Potential

Modeling Workers' Compensation

BETTER TECHNOLOGY

BETTER DATA

BETTER DECISIONS

Components of AIR's Workers Compensation Model

Building Physical Damage Distribution Mapped to Damage States

- 1 Slight Damage
- 2 Moderate Damage
- 3 Extensive Damage
- 4 Complete Damage
 - collapse
 - no collapse

© 2002 AIR Worldwide Corporation

Injury Severity Levels Defined

Injury Classification Scale

Injury Severity Level Injury Description Severity 1: Injuries requiring basic medical aid without requiring Minor hospitalization Severity 2: Injuries requiring a greater degree of medical care and Moderate hospitalization, but not expected to progress to a life threatening status Severity 3: Injuries that pose an immediate life threatening condition if Life Threatening not treated adequately and expeditiously. The majority of these injuries are the result of structural collapse and subsequent entrapment or impairment of the occupants. Severity 4: Instantaneously killed or mortally wounded Fatality

Source: HAZUS®

Damage States Determine Injury Severity Distribution

© 2002 AIR Worldwide Corporation

Calculation of Injury/Fatality Loss for Individual **Building in One Event**

Total Injury and Loss Distributions

© 2002 AIR Worldwide Corporation

Data Needs

BETTER TECHNOLOGY

BETTER DATA

BETTER DECISIONS

Desired Data Requirements

- Number of people insured
- Building information for each location
 - ➤ Address
 - ➤ Construction type
 - ➤ Building age
 - > Number of floors
- Typical location by time of day
 - ➤ Daytime, nighttime
- Benefits levels
 - ➤ AIR default values for workers' compensation
 - ➤ Average benefits under a policy
 - > Full distribution from company experience

© 2002 AIR Worldwide Corporation

Typical Data Available

- □ Number of employees and payroll
- □ Company location
- □ Benefit levels under each policy

Geographic Resolution of Input Data

- Detailed data, down to the location level, is preferred
- If not available the data can also be provided in the following geographic resolutions
 - ➤ ZIP Code
 - ➤ County
 - ➤ State
- Aggregate level data will be distributed to the detail level before the model is run

© 2002 AIR Worldwide Corporation

Simulated Industry Losses for Historical Earthquakes If They Were to Occur Today

1906 San Francisco*	1811 New Madrid*	
76,672	671,789	
3,756,918	32,917,748	
1,916,801	16,794,788	
	76,672 3,756,918	

^{*}Values in thousands of dollars

AIR Recommends You Use the Best Available Information to Manage Your Exposure to Terrorism

Better data results in better analysis
Understand your potential losses
Evaluate your reinsurance needs
Negotiate a better price
Manage exposure

