ННГУ им. Н. И. Лобачевского, ВШОПФ

Лабораторная работа "Определение отношения удельных теплоёмкостей воздуха"

Цель работы:

• Определить отношение удельных теплоёмкостей воздуха

Приборы и оборудование:

- Сосуд с воздухом (объём: 3 л), имеющий клапан
- Компрессор
- Водяной манометр

Теоритическая часть

Исходное *состояние 0*: атмосферное давление p_a =97,3[$K\Pi a$] , комнатная температура T_{κ} =23 ^{o}C , удельный объём ν .

Накачиваем в сосуд воздух: давление повышается до $\ p_1$, температура повышается до $\ T_1$.

По истечении некоторого времени температура опускается до комнатной, а удельный объём повышается до v_1 .

Получаем $cocmoshue\ 1$: давление $\ p_1$, температура комнатная, удельный объём $\ \nu_1$.

Далее на короткое время открываем клапан (аддиабатический процесс).

Получаем $cocmoshue\ 2$: давление атмосферное, удельный объём $\ \ \nu$, температура $\ T_0(T_0{<}T_a)$.

По истечении некоторого времени температура повысится до комнатной, удельный объём не изменится, а давление возрастёт до $\ p_2$.

Получаем *состояние* 3: атмосферная температура, удельный объём ν , давление p_2 .

Уравнение адиабатического процесса (переход 1-2):

$$p_1 v_1^{y} = p_a v^{y}$$
, отсюда $\frac{p_a}{p_1} = \left(\frac{v_1}{v}\right)^{y}$ (*)

Для cocmoshuŭ 1 u 3 выполняется соотношение:

$$p_1 v_1 = p_2 v$$
, отсюда $\frac{v_1}{v} = \frac{p_2}{p_1}$

Подставим в (*) и получим:

$$rac{p_a}{p_1} = \left(rac{p_2}{p_1}
ight)^{\gamma}$$
, отсюда $\gamma = rac{\ln rac{p_a}{p_1}}{\ln rac{p_2}{p_1}}$ (#)

Представим $p_a = p_1 - h_1$, $p_2 = p_1 - h_1 + h_2$, т.е.:

$$\frac{p_a}{p_1} = 1 + \frac{-h_1}{p_1}; \quad \frac{p_2}{p_1} = 1 + \frac{h_2 - h_1}{p_1}; \quad \ln\left(\frac{p_a}{p_1}\right) = \frac{-h_1}{p_1}; \quad \ln\left(\frac{p_2}{p_1}\right) = \frac{h_2 - h_1}{p_1}$$

Подставим в (#):

$$\gamma = \frac{-\frac{h_1}{p_1}}{-\frac{h_1 - h_2}{p_1}} = \frac{h_1}{h_1 - h_2}$$

Практическая часть

1. При закрытом клапане, нагнетаем давление в сосуде до разности от 30 до 40 см водяного столба. Затем ждём охлаждения воздуха до комнатной температуры и занесём давление в таблицу. Затем выровняем внутреннее и наружное давление путём кратковременного открытия клапана. После чего дождёмся повышения температуры до комнатной и снова занесём давление в таблицу. Проделаем описанные выше действия пять раз.

№ опыта	1	2	3	4	5	
h_1	205; 200	201; 196	220; 215	174; 170	206; 201	
h_2	56; 55	62; 60	51; 50	43; 42	63; 61	
γ	1,37	1,44	1,3	1,32	1,43	
${\mathcal Y}_{cp}.$	1,372					

Табличный результат $\gamma = 1,4$.

Погрешности:

1.

2.

переход 1-2 – адиабата

 $PV^{\gamma} = const$ - уравнение Пуассона, отсюда и из уравнения Менделеева-Клайпероан получаем: $P^{1-\gamma}T^{\gamma} = const$ и $TV^{\gamma-1} = const$

переход 2-3 – изохора

 $P = \alpha T$, $\alpha = const$

переход 3-1 – изотерма

PV = const

3.

Теплоёмкость тела — это количество теплоты, которое нужно сообщить телу, чтобы нагреть его на 1 К.

Удельная теплоёмкость — это количество теплоты, которое нужно сообщить телу, массой 1 кг, чтобы нагреть его на 1 К.

Соотношение Майера:

 $C_{P,m}-C_{V,m}=R$, где $C_{P,m},C_{V,m}$ - молярные теплоёмкости при постоянном давлении и температуре соответственно, R - универсальная газовая постоянная.

Домножив соотношение Майера на количество вещества и поделив на массу вещества, а также перенеся удельную теплоёмкость при постоянном объёме в правую часть, получим: $C_P = C_V + const.$

4. Оценка величины понижения температуры

Из уравнения Менделеева-Клайперона для **состояния 1-2**: $\frac{p_a v}{p_1 v_1} = \frac{T_0}{T}$

Отсюда получим:
$$T_0 = T(\frac{p_0}{p_0 + h_1})^{\frac{\gamma - 1}{\gamma}}; \Delta T = T - T_0$$

5. Вычисление количества воздуха, выходящего при открытии клапана	