Model prostownika bezpośredniego 2

Cezary Karolak, 318989

30 maja 2023

Spis treści

1	Wst	Wstęp							
	1.1	Cel projektu	2						
	1.2	Parametry projektowe	2						
2	Dob	ór elementów biernych	2						
	2.1	Kondensator wyjściowy C _O	2						
	2.2	Dławiki	3						
3	Kon	trola napięcia odbiornika i metody kształtowania prądu dławika	5						
	3.1	Pętla napięciowa - praca w trybie CCM	5						
	3.2	Pętla prądowa - praca w trybie CrCM	9						
4	Dob	ór elementów półprzewodnikowych dla CCM	11						
	4.1	Diody prostownicze	12						
	4.2	Diody w układzie podwyższającym	14						
	4.3	Tranzystory w układzie podwyższającym	17						
	4.4		21						
5	Dob	ór elementów półprzewodnikowych dla CrCM	22						
	5.1	Diody prostownicze	22						
	5.2	Diody w układzie podwyższającym	22						
	5.3	Tranzystory w układzie podwyższającym	23						
	5.4	Podsumowanie	23						
6	Dob	ór radiatora	24						
	6.1	Diody prostownicze	25						
	6.2		25						
	6.3		25						
	6.4	Radiator	26						

1 Wstęp

1.1 Cel projektu

Wykonanie modelu symulacyjnego prostownika o zadanej topologii dla określonych parametrów układu.

1.2 Parametry projektowe

Topologia: BL2

Parametr	Oznaczenie	Wartość
Napięcie wejściowe (skuteczne)	U_S	230V
Napięcie wejściowe minimalne (skuteczne)	U_{SMIN}	200V
Napięcie wyjściowe (stałe)	U_O	400V
Tętnienia napięcia wyjściowego (pk-pk)	ΔU_O	3%
Moc wyjściowa	P_O	2kW
Czas podtrzymania	t_{HLD}	20ms
Napięcie wyjściowe minimalne	U_{OMIN}	350V

Tabela 1: Parametry projektowe

2 Dobór elementów biernych

2.1 Kondensator wyjściowy Co

Obliczenie pojemności kondensatora z dopuszczalnych tętnień na wyjściu:

$$\Delta U_O = 3\% \times 400V = 12V \tag{2.1}$$

$$C_O \geqslant \frac{P_O}{2\pi f \Delta U_O U_O} \tag{2.2}$$

$$C_O \geqslant 1326\mu F$$

Obliczenie pojemności kondensatora z wymaganego czasu podtrzymania:

$$C_O \geqslant \frac{2P_O t_{HLD}}{U_O^2 - U_{OMIN}^2} \tag{2.3}$$

$$C_O \geqslant 2133\mu F$$

Na podstawie obliczonych wyżej pojemności, uwzględniając większą, wybieram kondensator Vishay 202 PML-ST dla napięcia 450V o pojemności:

$$C_O = 2200 \mu F$$

Prąd kondensatora C_O:

$$I_{CO} = \sqrt{\frac{8\sqrt{2}P_O^2}{3\pi U_{SMIN}U_O} - \frac{P_O^2}{U_O^2}}$$
 (2.4)

$$I_{CO} = 5.92A$$

Straty mocy na kondensatorze wyjściowym:

$$P_{CO} = I_{CO}^2 ESR (2.5)$$

Z karty charakterystyki wybranego kondensatora:

$$ESR_{max} @ 100Hz = 55m\Omega$$
$$P_{CO} = 1.93W$$

Weryfikacja napięcia i prądu kondensatora C_O w Gecko.

Characteristics avg rms THD min max peak-peak									
Uc0	400.3693	400.3774		396.7188		7.2813			
iC	3.2175e-6	5.3255	1.6848e6	-5.05	9.9248	14.9749			

Rysunek 1: Napięcie i prąd kondensatora wyjściowego C_O

Characteristics								
	avg	rms	THD	min	max			
Pc0	1.5572	1.8457	18.8038e3	16.3398e-12	5.4153			

Rysunek 2: Moc na ESR kondensatora

2.2 Dławiki

Wstępnie zakładam częstotliwość przełączeń $f_S = 50kHz$.

$$L = \frac{1}{\Delta i_L} \cdot \frac{U_{SMIN}^2}{P_I f_S} \left(1 - \frac{\sqrt{2} U_{SMIN}}{U_O} \right) \tag{2.6}$$

Przyjmuję $\Delta i_L=0.25$, sprawność $\eta=0.95$, więc moc wejściowa $P_I=2105W$. Zatem indukcyjność dławików jest równa $L=445.2\mu F$. Wybieram dławik ATCA-08-471M o indukcyjności:

$$L = 470 \mu F$$

Obliczenie uśrednionej częstotliwości przełączeń dla trybu CCM. W tym celu mierzę liczbę przełączeń jednego tranzystora (counter max) przez 60ms.

	avg	rms	THD	min	max	
i_s	-59.4322e-6	8.8332	50.6494e3	-14.9482	14.9478	
iL1	3.9474	6.2461	35.8378e3	-40.5461e-6	14.9482	
gt1	242.925e-3	492.8742e-3	24.4355e3	0	1	
u_s	-2.9491e-9	229.8042	54.1618e9	-325	325	
uDC	400.0782	400.0866	134.6506	396.1094	404.0313	
counter	1.1173e3	1.2491e3	816.4631e-3	1	1.922e3	
uabs	636.6079e-3	707.0941e-3	16.8401e12	0	1	
L2	-3.9473	6.246	63.6415e3	-14.9478	40.5442e-6	
gt2	242.935e-3	492.8844e-3	26.2748e3	0	1	
gt	-514.1467e-3	1	26.011e3	-1	1	

Rysunek 3: Pomiar przez 60ms

$$f_{Ssrednie} = \frac{1922}{0.06} = 32033Hz$$

Rysunek 4: Model przekształtnika z regulatorem histerezowym

3 Kontrola napięcia odbiornika i metody kształtowania prądu dławika

3.1 Pętla napięciowa - praca w trybie CCM

Rysunek 5: Pętla regulacji napięcia z PI

Ograniczenie na limiterze ustawiam na nieco wyższe niż prąd, który zadawałem na regulator histerezowy bez pętli napięciowej. Nieznaczne zwiększenie wartości zadanej pozwoliło polepszyć regulację.

Dobranie nastaw regulatora PI. stała czasowa $\tau=RC=80\cdot 2200\cdot 10^{-6}=0.176$ Przyjmuję:

$$K_P(r0) = 1.1$$

 $T_I(T) = 0.18$

Rysunek 6: Regulator PI

Żeby zapobiec ładowaniu się kondensatora gdy wartość odfiltrowana napięcia (U_{dcf}) rośnie, załączam obciążenie dopiero w momencie wyzerowania się uchybu.

Rysunek 7: Załączenie obciążenia (Reg_ON)

Skok obciążenia o 50%.

Aby sprawdzić jak układ reaguje na gwałtowny przyrost obciążenia, łączę równolegle dwa rezystory 160 Ω i odłączam jeden z nich. Powoduje to nagły skok obciążenia i spadek mocy.

Rysunek 8: Załączenie podwójnego obciążenia (load)

Wymagania układu:

- 1. Spadek napięcia przy starcie układu nie powinien przekraczać U_{OMIN}
- 2. Zmiana napięcia w stanach dynamicznych przy zmianie obciążenia o 50% nie powinna przekraczać 10%
- 3. Czas osiągnięcia wartości zadanej (uchyb <3%) powinien być krótszy niż 1 s

	avg	rms	THD	min	max	peak-peak
uDC	397.6638	397.7286	2.0394	365.7188	408.1406	42.4219
Jdcf	397.5021	397.5305	1.1493	383.2344	400.6563	17.4219
Reg_ON	926.5945e-3	962.5978e-3	2.3291	0	1	1
eu	2.4901	5.3678	1.1493	-668.7927e-3	16.7637	17.4325
_zadl	11.2928	11.8238	2.1397	0	13	13
i_zad	12.5633	13.5271	3.0829	0	23.416	23.416
load	0	0	0	0	0	0

Rysunek 9: Start układu (0s - 0.8s na wykresie)

Jak widać na wykresie oraz na powyższym rysunku, układ spełnia pierwsze z wymagań. Napięcie wyjściowe przy starcie spada do około 365V, czyli więcej niż założone $U_{OMIN}=350V.$

Characte	ristics					
	avg	rms	THD	min	max	peak-peak
uDC	400.636	400.6713	4.0116	379.9531	418.6719	38.7188
Udcf	401.181	401.187	1.6823	392.5938	407.75	15.1563
Reg_ON	1	1	NaN	1	1	0
eu	-1.1888	2.4996	1.6884	-7.7505	7.3928	15.1433
i_zadl	6.8216	7.1577	2.1212	2.4847	13	10.5153
i_zad	6.8472	7.2071	2.1177	2.4847	15.4668	12.9821
load	877.8524e-3	936.9378e-3	1.6659	0	1	1

Rysunek 10: Stany dynamiczne (1.1s - 1.8s na wykresie)

W stanach dynamicznych, gdy obciążenie zmienia się o 50%, zmiana napięcia nie przekracza 10% (+/- 40V), ponieważ jak widać na rysunku: $U_{DC}(min-max)=379-418V$.

Characteristics								
	avg	rms	THD	min	max	peak-peak		
uDC	399.9435	399.9519	104.289	395.9531	403.9375	7.9844		
Udcf	399.9433	399.9432	NaN	399.7813	400.0938	312.5e-3		
Reg_ON	1	1	NaN	1	1	0		
eu	49.1475e-3	98.1158e-3	4.6286	-96.8933e-3	217.6819e-3	314.5752e-3		
i_zadl	12.3164	12.3167	24.3966	12.168	12.457	289.0625e-3		
i_zad	12.3164	12.3167	24.3966	12.168	12.457	289.0625e-3		
load	0	0	0	0	0	0		

Rysunek 11: Stan ustalony (0.8s - 1.1s na wykresie)

Układ spełnia trzecie wymaganie. Czas osiągnięcia wartości zadanej jest krótszy niż 1s. W stanie ustalonym napięcie wyjściowe (pk-pk) mieści się w zakresie założonym w parametrach projektowych. $U_{DC}(min-max)=396-404V$.

Rysunek 12: Model i układ sterowania w trybie CCM

3.2 Pętla prądowa - praca w trybie CrCM

Rysunek 13: Załączenie obciążenia (CrCM)

Układ w trybie CrCM również spełnia wymagania projektowe, jednak zmniejszyła się częstotliwość przełączeń.

Characteristics								
	avg	rms	THD	min	max			
uDC	400.1085	400.1166	350.4033	396.1094	404.3594			
Udcf_pn	400.1578	400.1575	NaN	400.0156	400.2969			
Reg_ON_pn	1	1	NaN	1	1			
eu_pn	-164.8787e-3	184.7615e-3	5.9987	-312.1796e-3	-25.6186e-3			
i_zadl	12.3702	12.3706	52.935	12.2402	12.5			
i_zad_pn	12.3702	12.3706	52.935	12.2402	12.5			
load_pn	0	0	0	0	0			
counter	456.0232e3	456.0229e3	NaN	455.856e3	456.144e3			

Rysunek 14: Pomiar przez 60ms

$$f_S = \frac{456144 - 455856}{0.06} = 4800 Hz$$

Częstotliwość przełączeń jednego tranzystora przy zastosowaniu dławików $470\mu H$ to około 4800 Hz. Aby zwiększyć częstotliwość przełączeń można zmniejszyć indukcyjność dławika. Aby zwiększyć częstotliwość przełączeń wybieram dławik $1\mu F$ Vishay IHLP- 2020 CZ-11.

Dla dławika $L = 1\mu H$ częstotliwość przełączeń $f_S = 15500 Hz$.

Rysunek 15: Model i układ sterowania w trybie CrCM

4 Dobór elementów półprzewodnikowych dla CCM

Do określenia strat przewodzenia na elementach używam poniższych wzorów. Dla diody:

$$P_{C(D)} = U_{F0}I_{d(av)} + r_d I_{d(rms)}^2$$
(4.1)

Dla tranzystora IGBT:

$$P_{C(T)} = U_{T0}I_{T(av)} + r_T I_{T(rms)}^2 (4.2)$$

Dla tranzystora MOSFET:

$$P_{C(T)} = r_{DS(on)} I_{T(rms)}^{2} (4.3)$$

Do określenia strat przełączania używam poniższego wzoru.

$$P_{SWT} = f_S(E_{ON} + E_{OFF}) \frac{I_{in}}{I_n} \frac{U_{in}}{U_n}$$

$$\tag{4.4}$$

 f_S - częstotliwość przełączania;

 E_{ON} - energia potrzebna do załączenia elementu;

 E_{OFF} - energia potrzebna do wyłączenia elementu;

 I_{in} - prąd elementu w projektowanym przekształtniku;

 I_n - prąd elementu, przy którym producent wyznaczył energię;

 U_{in} - napięcie elementu w projektowanym przekształtniku;

 U_n - napięcie elementu, przy którym producent wyznaczył energię.

Przyjmuję współczynnik zapasu $k_u=1.5$. Oznacza to, że dobrane elementy półprzewodnikowe będą na 1.5 maksymalnego napięcia występującego na elementach.

4.1 Diody prostownicze

Dla diod prostowniczych jedynym źródłem strat są straty przewodzenia P_C . Dobieram prąd znamionowy ze współczynnikiem zapasu.

Rysunek 16: Napięcia i prądy na diodach D3 i D4

Vishay SE10DTG

Na 400V i 10A.

Rysunek 17: Vishay SE10DTG

Obliczam z karty charakterystyki (dla $Tj = 25^{\circ}$):

$$U_{F0} = 0.65V$$

$$1.05V @ 10A$$

$$r_F = \frac{1.05 - 0.65}{10} = 0.04\Omega$$

Korzystam ze wzoru (4.1).

$$P_{C(D)} = 0.65V \times 3.93A + 0.04\Omega \times (6.22A)^2 = 4.10W$$

Podobnie liczę straty dla dwóch innych prostowników.

Vishay SE100PWTG

Na 400V i 10A. $U_{F0} = 0.6V$ 1V @ 10A $r_F = 0.04\Omega$ $P_{C(D)} = 3.91W$

Diodes Inc. STPF1040CTW

Na 400V i 10A. $U_{F0} = 0.7V$ 1.2V @ 10A $r_F = 0.05\Omega$ $P_{C(D)} = 4.69W$

Wybieram prostownik Vishay SE100PWTG i wprowadzam jego parametry do modelu. Weryfikacja strat w Gecko:

Rysunek 18: Straty przewodzenia diody D3

Na dwóch takich prostownikach $2 \times P_{C(D)} = 7.8W$, czyli straty na diodach prostowniczych są na poziomie 0.39%.

4.2 Diody w układzie podwyższającym

Rysunek 19: Napięcia i prądy na diodach D1 i D2

Diody pracujące w układzie podwyższającym muszą być dobrane do napięcia uwzględniającego współczynnik zapasu tj. 600V i prądu RMS 5.15A.

Infineon IDD08SG60C

Dioda SiC na 600V i 8A.

3 Typ. forward characteristic

 $I_F = f(V_F)$; $t_p = 400 \mu s$; parameter: T_i

Rysunek 20: Infineon IDD08SG60C

Obliczam straty dla przewidywanej temperatury pracy równej 100°C.

$$U_{F0} = 1V$$
$$2V @ 10A$$
$$r_F = 0.1\Omega$$

Korzystam ze wzoru (4.1).

$$P_{C(D)} = 1V \times 2.5A + 0.1\Omega \times (5.15A)^2 = 5.15W$$

Dla diod Schottky'ego oprócz strat przewodzenia P_C należy również wziąć pod uwagę straty łączeniowe P_{SW} .

Product Summary

V _{DC}	600	٧
Q_c	12	nC
I _F ; T _C < 130 °C	8	Α

$$E_{REC} = \frac{Q_C U_O}{I_F} = \frac{12nC \times 400V}{8A} = 0.6 \mu J$$

Stąd straty wynikające z przełączenia (przy częstotliwości $f_S=32kHz$):

$$P_{SW(D)} = f_S E_{REC} = 0.019W$$

Podobne obliczenia wykonuję dla dwóch innych wybranych elementów.

Vishay SE80PWTJ

Na 600V i 8A. $U_{F0} = 0.45V$ 0.9V @ 10A $r_F = 0.045\Omega$ $P_{C(D)} = 2.32W$

Vishay S8CJ

Na 600V i 8A. $U_{F0} = 0.45V$ 0.9V @ 10A $r_F = 0.045\Omega$ $P_{C(D)} = 2.32W$

Wybieram prostownik Vishay SE80PWTJ. Na dwóch takich elementach straty przewodzenia będą wynosiły $2 \times P_{C(D)} = 4.64W$, czyli na poziomie 0.23%. Weryfikacja strat przewodzenia w Gecko:

Rysunek 21: Straty na diodzie D1

4.3 Tranzystory w układzie podwyższającym

Rysunek 22: Napięcia i prądy na tranzystorach

Wybieram tranzystory na napięcie blokowania 600V. Jako prąd znamionowy przyjmuję 6A. Przy doborze elementów przyjmuję przewidywaną temperaturę pracy Tj = 100°C.

Infineon IPL60R225CFD7

MOSFET 600V $12A @ 25^{\circ}C$ $R_{DS(on)max} = 0.225\Omega @ 25^{\circ}C$ $R_{DS(on)typ} = 0.189\Omega @ 25^{\circ}C$

Rysunek 23: R_{DS(on)} [normalized] dla IPL60R22CFD7

$$R_{DS(on)}[typical] @ 100^{\circ}C = 1.65 \times 0.189\Omega = 0.312\Omega$$

Wyliczam straty przewodzenia tranzystora korzystając ze wzoru (4.3).

$$P_{C(T)} = 0.312V \times (3.58A)^2 = 4W$$

Obliczenie strat łączeniowych. Do wzoru (4.4) potrzebujemy E_{ON} i E_{OFF} , które można policzyć z poniższych wzorów.

$$E_{ON} = \frac{1}{2}U_OI(t_{ri} + t_{fu}) + E_{OSS}$$
 (4.5)

$$E_{OFF} = \frac{1}{2} U_O I(t_{ru} + t_{fi}) \tag{4.6}$$

Gdzie:

 t_{ri} - czas narastania prądu;

 t_{fu} - czas opadania napięcia;

 t_{ru} - czas narastania napięcia;

 t_{fi} - czas opadania prądu.

$$t_{ri} = R_G C_{ISS} \ln \left(\frac{U_{GG} - U_{GS}}{U_{GG} - U_{GS(P)}} \right)$$
 (4.7)

$$t_{fu} = R_G C_{RSS} \frac{U_O}{U_{GG} - U_{GS(P)}} \tag{4.8}$$

$$t_{fi} = R_G C_{ISS} \ln \left(\frac{U_{GS(PL)}}{U_{GS(TH)}} \right)$$
 (4.9)

$$t_{ru} = R_G C_{RSS} \frac{U_{DS}}{U_{GS(P)}} \tag{4.10}$$

Obliczam energię dla warunków w jakich producent przeprowadzał testy, które są wpisane w karcie charakterystyki. $U=400V,\,I_D=6A,\,R_G=10.2\Omega,\,U_{GG}=10V.$

Rysunek 24: Wykresy z karty charakterystyki

Z wykresów odczytuję: $U_{GS(TH)}=4.2V,~U_{GS(P)}=5.1V.$ Z karty charakterystyki: $C_{ISS}=1015pF,~C_{RSS}=\frac{Q_{GD}}{U_O}=\frac{7nC}{400V}=17.5pF,~E_{OSS}=2.5\mu J$ Następnie korzystając z odpowiednich wzorów liczę potrzebne czasy.

z (4.7):
$$t_{ri} = 1.7ns$$

z (4.8): $t_{fu} = 14.6ns$
z (4.9): $t_{fi} = 2ns$
z (4.10): $t_{ru} = 14ns$

Teraz mogę wyliczyć energie przełączeń dla U=400V, $I_D=6A$ używając wzorów (4.5) i (4.6).

$$E_{ON} = 22.1 \mu J$$

$$E_{ON} = 10.2 \mu J$$

 $E_{OFF} = 19.2 \mu J$

Dla trybu pracy CCM częstotliwość przełączeń jednego tranzystora to około 32 kHz. Stąd straty przełączeń dla tego tranzystora są równe (ze wzoru (4.4)):

$$P_{SW(T)} = 32000Hz \times (22.1\mu J + 19.2\mu J) = 1.32W$$

Podobnie liczę straty dla dwóch innych wybranych tranzystorów.

Vishay SiHP12N60E

MOSFET 600V 12A @ 25°C $R_{DS(on)}$ @ $100^{\circ}C = 0.56\Omega$ $P_{C(T)} = 7.18W$ $P_{SW(T)} = 1.98W$

ROHM R6012,JNX

MOSFET 600V $12A @ 25^{\circ}C$ $R_{DS(on)} @ 100^{\circ}C = 0.525\Omega$ $P_{C(T)} = 6.73W$ $P_{SW(T)} = 1.5W$

Jako tranzystory w układzie podwyższającym wybieram Infineon IPL60R225CFD7 ze względu na najmniejsze straty przewodzenia. Następnie wprowadzam parametry tego tranzystora do modelu.

Zamieniam energię na współczynniki.

$$k_{ON} = \frac{E_{ON}}{I_D} = \frac{22.1\mu J}{6A} = 3.7 \frac{\mu J}{A}$$

$$k_{OFF} = \frac{E_{OFF}}{I_D} = \frac{19.2\mu J}{6A} = 3.2 \frac{\mu J}{A}$$

Rysunek 25: Ustawienie współczynników w Gecko

Po uzupełnieniu współczynników i rezystancji dren - źródło oraz parametrów diody przeciwprzepięciowej, weryfikuję straty przewodzenia P_C oraz straty przełączeń P_{SW} .

Rysunek 26: Straty dla jednego tranzystora

4.4 Podsumowanie

Wybrane przeze mnie elementy półprzewodnikowe i ich straty ukazane są w tabeli poniżej. Po zsumowaniu strat na półprzewodnikach i strat na kondensatorze wyjściowym otrzymuję straty na poziomie P=41.6W czyli około 2.08%.

	2× SE100PWTG	2× SE80PWTJ	2× IPL60R225CFD7
P_C	7.8W	4.6W	8W
P_{SW}	-	18.6W	2.6W

Tabela 2: Tabela strat na elementach półprzewodnikowych (CCM)

Rysunek 27: Końcowy model układu dla pracy w trybie CCM z dobranymi półprzewodnikami

5 Dobór elementów półprzewodnikowych dla CrCM

Dla układu pracującego w trybie CrCM wybieram te same elementy półprzewodnikowe co dla CCM. W wyniku zmiany prądów i częstotliwości przełączeń zmienią się jednak straty na poszczególnych elementach układu.

5.1 Diody prostownicze

Char	- Characteristics -									
	avg	rms	THD	min	max	p				
uD3	-102.7318	202.4738	10.5436e6	-404.7188	1.4351	4				
iD3	2.7612	5.3827	25.077e3	-40.5312e-6	20.877	í				
uD4	-102.7318	202.5155	10.5795e6	-405.2344	1.4351	4				
iD4	2.7638	5.3862	20.5018e3	-40.5833e-6	20.877	2				

Rysunek 28: Napięcia i prądy na diodach D3 i D4

Liczę straty przewodzenia ze wzoru (4.1).

$$P_{C(D)} = 0.6V \times 2.76A + 0.04\Omega \times (5.38A)^2 = 2.81W$$

Weryfikacja strat w Gecko:

Rysunek 29: Straty na D3 (CrCM)

5.2 Diody w układzie podwyższającym

Rysunek 30: Napięcia i prądy na diodach D1 i D2

Liczę straty przewodzenia ze wzoru (4.1).

$$P_{C(D)} = 0.45V \times 2.5A + 0.045\Omega \times (5.96A)^2 = 2.72W$$

Weryfikacja strat w Gecko:

Rysunek 31: Straty na diodzie D1 (CrCM)

5.3 Tranzystory w układzie podwyższającym

Characteris	tics				
	avg	rms	THD	min	max
uMOSFET1	102.7014	202.7836	10.0553e6	-1.1252	405.25
iMOSFET1	262.9132e-3	4.546	21.1841e3	-5.8833	25.1904
uMOSFET2	102.7014	202.8258	12.129e6	-1.1255	405.7344
iMOSFET2	262.8822e-3	4.5486	25.0074e3	-5.8899	25.1914

Rysunek 32: Napięcia i prądy na tranzystorach przy CrCM

Liczę straty przewodzenia i straty przełączania ze wzorów (4.3) i (4.4).

$$P_{C(T)} = 0.312\Omega \times (4.55A)^2 = 6.46W$$

 E_{ON} i E_{OFF} zostają takie same.

$$P_{SW(T)} = 15500Hz \times (22.1\mu J + 19.2\mu J) = 0.64W$$

Weryfikacja strat w Gecko:

Rysunek 33: Straty na tranzystorze T1 (CrCM)

5.4 Podsumowanie

Zestawienie strat na elementach półprzewodnikowych dla trybu pracy CrCM. Straty całkowite razem z kondensatorem wyjściowym na poziomie P=32.5W, czyli około 1.63%.

	2× SE100PWTG	2× SE80PWTJ	2× IPL60R225CFD7
P_C	5.6W	5.4W	12.9W
P_{SW}	-	7.3W	1.3W

Tabela 3: Tabela strat na elementach półprzewodnikowych (CrCM)

Rysunek 34: Końcowy model układu dla pracy w trybie CrCM z dobranymi półprzewodnikami

6 Dobór radiatora

Dla układów w trybie pracy CCM i CrCM wybieram docelowo te same radiatory do odprowadzania ciepła z elementów półprzewodnikowych. W tym celu biorę pod uwagę wyższe straty mocy. Diody prostownicze i tranzystory umieszczam na wspólnym radiatorze. Diody w układzie podwyższającym umieszczam na wspólnym radiatorze ze względu na ich duże straty przełączeń. Obliczam jaką rezystancje termiczną musi mieć wspólny radiator aby skutecznie odprowadzać ciepło i nie przekraczać założonej temperatury maksymalnej. Do określenia rezystancji termicznej radiatora używam poniższego wzoru.

$$R_{THJSA} < \frac{T_{JMAX} - \Delta T_{JS} - T_A}{P_{LOSS}} \tag{6.1}$$

Gdzie:

 R_{THJSA} - rezystancja termiczna radiatora;

 T_{JMAX} - założona temperatura maksymalna (100°C);

 ΔT_{JS} - przyrost temperatury złącze - radiator;

 T_A - temperatura otoczenia (25°C);

 P_{LOSS} - suma strat mocy elementów na radiatorze.

Przyrost temperatury złącze - radiator liczę ze wzoru:

$$\Delta T_{JS} = (R_{THCS} + R_{THJC}) \times P \tag{6.2}$$

Gdzie:

 R_{THCS} - rezystancja termiczna przekładki;

 R_{THJC} - rezystancja termiczna złącze - obudowa;

P - straty na elemencie.

6.1 Diody prostownicze

Z karty charakterystyki elementów odczytuję potrzebne wartości. Dla diod D3 i D4 są to $R_{THJA} = 94 \, {}^{\circ}_{W}, \, R_{THJM} = 2.8 \, {}^{\circ}_{W}.$

THERMAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)						
PARAMETER	SYMBOL	TYP.	MAX.	UNIT		
Typical thermal resistance	R _{6JA} (1)(2)	75	94	°C/W		
Typical thermal resistance	R _{eJM} ⁽³⁾	2.2	2.8	C/VV		

Rysunek 35: Rezystancje termiczne diod D3, D4

CCM:
$$\Delta T_{JSD} = (2.8 + 0.4) \times 3.91 = 12.51$$
°C
CrCM: $\Delta T_{JSD} = (2.8 + 0.4) \times 2.81 = 9$ °C

6.2 Diody w układzie podwyższającym

Tak samo jak dla diod D3 i D4, liczę przyrosty temperatury.

THERMAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)						
PARAMETER	SYMBOL	TYP.	MAX.	UNIT		
Tunical thormal resistance	R _{0JA} (1)(2)	76	95	°C/W		
Typical thermal resistance	R _{eJM} (3)	2.4	3	-C/W		

Rysunek 36: Rezystancje termiczne diod D1, D2

Ze wzoru (6.2):

CCM:
$$\Delta T_{JSD} = (3 + 0.4) \times 11.6 = 39.44^{\circ}C$$

CrCM: $\Delta T_{JSD} = (3 + 0.4) \times 6.4 = 21.76^{\circ}C$

6.3 Tranzystory

Z karty charakterystyki:

Table 3 Thermal characteristics

Parameter	Cymbol	Values			l Imit
Parameter	Symbol	Min.	Тур.	Max.	Unit
Thermal resistance, junction - case	R _{thJC}	-	-	1.84	°C/W
Thermal resistance, junction - ambient	R _{thJA}	-	-	62	°C/W
Thermal resistance, junction - ambient for SMD version	$R_{ m thJA}$	-	35	45	°C/W
Soldering temperature, wavesoldering only allowed at leads	T _{sold}	-	-	260	°C

Rysunek 37: Rezystancje termiczne tranzystorów

Ze wzoru (6.2):

CCM:
$$\Delta T_{JST} = (1.84 + 0.4) \times 5.32 = 11.92^{\circ}C$$

CrCM:
$$\Delta T_{JST} = (1.84 + 0.4) \times 7 = 15.68^{\circ}C$$

6.4 Radiator

Teraz liczę maksymalną rezystancję termiczną docelowych radiatorów na podstawie wyżej obliczonych zmian temperatur. Do wzoru (6.1) biorę największe policzone ΔT_{JS} dla obu trybów pracy. Najpierw liczę radiator dla diod prostowniczych i tranzystorów.

CCM:
$$R_{THJSA}(max) = \frac{100 - 12.51 - 25}{2 \times 3.91 + 2 \times 5.32} = 3.39 \frac{{}^{\circ}C}{W}$$

CrCM:
$$R_{THJSA}$$
 $(max) = \frac{100 - 15.68 - 25}{2 \times 2.81 + 2 \times 7} = 3.02 \frac{{}^{\circ}C}{W}$

Teraz liczę wymaganą rezystancję termiczną radiatora dla diod w układzie podwyższającym.

CCM:
$$R_{THJSA} (max) = \frac{100 - 39.44 - 25}{2 \times 11.6} = 1.53 \frac{^{\circ}C}{W}$$

CrCM: $R_{THJSA} (max) = \frac{100 - 21.76 - 25}{2 \times 6.4} = 4.16 \frac{^{\circ}C}{W}$

Na podstawie powyższych obliczeń stwierdzam, że wymagania dla obu trybów pracy spełnia radiator Fischerelektronik LAM3D505 o $R_{THJSA}=1.35\,\frac{^{\circ}C}{W}$.

Rysunek 38: Rezystancja termiczna radiatora

Następnie weryfikuję działanie radiatora w Gecko dla obu układów.

Rysunek 39: Obwód termiczny układu

Rysunek 40: Sprawdzenie w symulacji działania radiatorów

Jak widać na powyższych rysunkach, układ spełnia wymagania dotyczące maksymalnej temperatury pracy.