Binary Classification

Wei Xu

(many slides from Greg Durrett and Vivek Srikumar)

This and next Lecture

Linear classification fundamentals

Naive Bayes, maximum likelihood in generative models

- Three discriminative models: logistic regression, perceptron, SVM
 - Different motivations but very similar update rules / inference!

Classification

Classification: Sentiment Analysis

this movie was great! would watch again

Positive

that film was awful, I'll never watch again

Negative

- Surface cues can basically tell you what's going on here: presence or absence of certain words (great, awful)
- Steps to classification:
 - Turn examples like this into feature vectors
 - Pick a model / learning algorithm
 - Train weights on data to get our classifier

Feature Representation

this movie was great! would watch again

Positive

Convert this example to a vector using bag-of-words features

```
[contains the] [contains a] [contains was] [contains movie] [contains film] ...

position 0 position 1 position 2 position 3 position 4

f(x) = [0 	 0 	 1 	 1 	 0 	 ...
```

- Very large vector space (size of vocabulary), sparse features
- Requires indexing the features (mapping them to axes)

What are features?

Don't have to be just bag-of-words

$$f(x) = \begin{cases} \text{count("boring")} \\ \text{count("not boring")} \\ \text{length of document} \\ \text{author of document} \\ \vdots \end{cases}$$

More sophisticated feature mappings possible (tf-idf), as well as lots of other features: character n-grams, parts of speech, lemmas, ...

Classification

- $\hbox{ Datapoint x with label $y \in \{0,1\}$ }$
- Embed datapoint in a feature space $f(x) \in \mathbb{R}^n$ but in this lecture f(x) and x are interchangeable
- Linear decision rule: $w^{\top}f(x) + b > 0$ $w^{\top}f(x) > 0 1$
- Can delete bias if we augment feature space:

$$f(x) = [0.5, 1.6, 0.3]$$

$$\downarrow$$

$$[0.5, 1.6, 0.3, 1]$$

Linear functions are powerful!

Linear functions are powerful!

"Kernel trick" does this for "free," but is too expensive to use in NLP applications, training is $O(n^2)$ instead of $O(n \cdot (\text{num feats}))$

Naive Bayes

Naive Bayes

- Data point $x=(x_1,...,x_n)$, label $y\in\{0,1\}$
- lacktriangle Formulate a probabilistic model that places a distribution P(x,y)
- Compute P(y|x), predict $\operatorname{argmax}_y P(y|x)$ to classify

$$P(y|x) = \frac{P(y)P(x|y)}{P(x)} \qquad \text{Bayes' Rule}$$

$$\propto P(y)P(x|y) \qquad \text{for finding the max}$$

$$\operatorname{argmax}_{y} P(y|x) = \operatorname{argmax}_{y} \log P(y|x) = \operatorname{argmax}_{y} \left[\log P(y) + \sum_{i=1}^{n} \log P(x_{i}|y) \right]$$

Why the log?

$$P(y|x) = \frac{P(y)P(x|y)}{P(x)} = P(y) \prod_{i=1}^{n} P(x_i|y)$$

- Multiplying together lots of probabilities
- Probabilities are numbers between 0 and 1

Q: What could go wrong here?

Why the log?

Problem — floating point underflow

S exponent significand

1 11 bits 52 bits

Largest =
$$1.111... \times 2^{+1023}$$

Smallest = $1.000... \times 2^{-1024}$

Solution: working with probabilities in log space

X	log(x)
0.000001	-16.118095651
0.000001	-13.815511
0.00001	-11.512925
0.0001	-9.210340
0.001	-6.907755
0.01	-4.605170
0.1	-2.302585

Maximum Likelihood Estimation

- ▶ Data points (x_j, y_j) provided (i indexes over examples)
- Find values of P(y), $P(x_i|y)$ that maximize data likelihood (generative):

$$\prod_{j=1}^{m} P(y_j, x_j) = \prod_{j=1}^{m} P(y_j) \left[\prod_{i=1}^{n} P(x_{ji}|y_j) \right]$$
 data points (j) features (i) ith feature of jth example

Maximum Likelihood Estimation

Imagine a coin flip which is heads with probability p

• Observe (H, H, H, T) and maximize likelihood: $P(y_j) = p^3(1-p)$

$$\prod_{j=1}^{n} P(y_j) = p^3 (1 - p)$$

Easier: maximize *log* likelihood

$$\sum_{j=1}^{m} \log P(y_j) = 3 \log p + \log(1 - p)$$

log likelihood

http://fooplot.com/

Maximum Likelihood Estimation

Imagine a coin flip which is heads with probability p

• Observe (H, H, H, T) and maximize likelihood: $P(y_j) = p^3(1-p)$

$$\prod_{j=1}^{m} P(y_j) = p^3 (1 - p)$$

Easier: maximize *log* likelihood

$$\sum_{j=1}^{m} \log P(y_j) = 3 \log p + \log(1 - p)$$

Maximum likelihood parameters for binomial/ multinomial = read counts off of the data + normalize

log likelihood

http://fooplot.com