

Intro to the big data ecosystem

Patrick Smith

Intro to Big Data

LEARNING OBJECTIVES

- Recognize big data problems
- Explain how the map reduce algorithm works
- Perform a map-reduce on a single node using python

Intro to Big Data

OPENING

What *really* is "big data?"

What is big data?

 Big data is a term used when the data exceeds the processing capacity of typical database.

What is big data?

- Big data is a term used when the data exceeds the processing capacity of typical database.
- We need a big data analytics when the data grows quickly and we need to uncover hidden patterns, unknown correlations, and other useful information.

Examples of big data

- Facebook social graph
- Netflix movie preferences
- Large recommender systems
- Activity of visitors to a website
- Customer activity in a retail store (ie: Target)

What challenges exist with big data?

- Processing time
- Cost
- Architecture maintenance and setup
- Hard to visualize

The Three Vs:

• Volume: Large amounts of data

The Three Vs:

- Volume: Large amounts of data
- Variety: Different types of structured, unstructured, and multi-structured data

The Three Vs:

- Volume: Large amounts of data
- Variety: Different types of structured, unstructured, and multi-structured data
- Velocity: Needs to be analyzed quickly

The Three Vs:

Two approaches to Big Data: High Performance Computing and Cloud.

Intro to big data: HPC

Supercomputers are very expensive, very powerful calculators used by researchers to solve complicated math problems.

Intro to big data: HPC

Can you think of advantages and disadvantages of this configuration?

Intro to big data: Cloud Computing

Instead of one huge machine, what if we got a bunch of (commodity) machines?

Intro to big data: Cloud Computing

Can you think of advantages and disadvantages of this configuration?

Intro to big data: Cloud Computing

How do you think many computers process data?

Parallelism

Parallelism

The foundation of Big
Data processing, is the
idea that a problem can
be computed by multiple
machines together. This
allows many resources to
be used in "parallel".

Parallelism

- Running multiple instances to process data
- Data can be subsetted and solved iteratively
- Sub-solutions can be solved independently

Divide and Conquer

The defining characteristic of a problem that is suitable for the divide and conquer approach is that it can be broken down into independent subtasks.

MapReduce

The term Map Reduce indicate a two-phase divide and conquer algorithm initially invented and publicized by Google in 2004.

MapReduce

It involves splitting a problem into subtasks and processing these subtasks in parallel and it consists of two phases:

- the mapper phase
- the reducer phase

MapReduce

In the *mapper phase*, data is split into chunks and the same computation is performed on each chunk, while in the reducer phase, data is aggregated back to produce a final result.

MapReduce

Map-reduce uses a functional programming paradigm. The data processing primitives are mappers and reducers, as we've seen.

- mappers filter & transform data
- reducers aggregate results

Key Value pairs

Data is passed through the various phases of a map-reduce pipeline as key-value pairs.

What python data structures could be used to implement a key value pair?

Intro to Big Data

Exercises

Combiners

Combiners are intermediate reducers that are performed at node level in a multinode architecture.

Intro to Big Data

MapReduce in python

MapReduce - Word Count Example Flow

Optional Demo: Manual ARIMA

Conclusion

Q&A