Klausur "Robot Vision"

Name	Matrikel-Nummer

Hinweise:

- 1.) Tragen Sie in obige Felder Ihren Namen und Ihre Matrikelnummer ein.
- 2.) Zusätzliche Lösungsblätter versehen Sie bitte mit Namen und Matrikelnummer.

Nehmen Sie zur Bearbeitung einer Aufgabe jeweils ein neues Blatt.

- 3.) Vermerken Sie in den vorgesehenen Lösungsfeldern der Aufgabenblätter, falls ein Zusatzblatt existiert.
- 4.) Zur Bearbeitung stehen **120 Minuten** zur Verfügung.
- 5.) Erlaubte Hilfsmittel:

Bücher, Vorlesungsskript und eigene Aufzeichnungen.

Einfacher Taschenrechner.

Sonst keine weiteren Hilfsmittel (Notebooks, Handy's).

Übersicht zur Bewertung der Aufgaben.			
Aufgabe	Punkte		
01	6		
02	7		
03	8		
04	8		
05	5		
06	15		
07	5		
08	6		
Punl	kte ≅ 60		

a) Ein 3x3-Bildausschnitt aus einem 3-bit-Bild (= 8 Grauwerte) hat das angegebene Histogramm. Wie groß ist der Median des Bildausschnitts.

b) Geben Sie für die 2 hellen Felder das Ergebnis des angegebenen Faltungs-Operators an.

2	2	2	3
2	2	2	3
3	3	3	4
3	3	4	4
0 111 11 1			

Quellbild

Zielbild

1	2	1
2	4	2
1	2	1

Operator

c) Geben Sie für das helle Feld den \underline{Betrag} und die $\underline{Richtung}$ des 3x3-Sobel-Operators an.

3	3	2	1
4	3	2	2
3	2	1	1
2	1	0	0

Quellbild

Zielbild

Faltungsmasken:

	-1	0	1
	-2	0	2
l	-1	0	1
	G _x		

-1	-2	-1	
0	0	0	
1	2	1	
G _∨			

Ein **4-bit**-Grauwertbild (= **16 Grauwerte**) hat das angegebene Histogramm.

a) Berechnen Sie den Mittelwert und die Varianz des Histogramms.

b) Zeichnen Sie das akkumulierte Histogramm. Auf welchen Zielgrauwert würde <u>bei einem Histogrammausgleich</u> der Quellgrauwert 4 transformiert (Ergebnis ganzzahlig runden)?

Gegeben ist ein Quellbild der Größe 25 x 25. Das Zielbild hat die Größe 15 x 10. Der markierte Quellbildausschnitt soll in das Zielbild transformiert werden. Hierzu soll die <u>4-Punkte-Transformation</u> verwendet werden.

Die Eckpunkte des markierten Quellbildausschnittes sind (s. Bild):

A=(4, 8)

$$B=(24, 12)$$

$$C=(20, 20)$$

$$D=(12, 22)$$

y ↑ ○ ○ ○ ○ ×

Zielbild (15 x 10)

a) Geben Sie die Werte $\Phi_1,\Phi_2,\Phi_3,\Phi_4$ für die Zielbildkoordinate Z=(7, 3) an.

 $b) \ Geben \ Sie \ jetzt \ die \ zur \ Zielbildkoordinate \ Z \ korrespondierende \ Quellbildkoordinate \ an.$

<u>Aufgabe 4</u> (neuronale Netze)

[8 Punkte]

An einem Neuron liegt der folgende Eingangsvektor o_{pi} (i=1..2) an: $(o_{p1}, o_{p2}) = (0.2, 0.8)$. Der Gewichtsvektor habe den Wert $(w_1, w_2) = (0.5, -0.2)$

Das gewünschte Ausgangssignal des Neurons sei 1.0 .

Der Schrittweitenfaktor sei $\eta=0.5$.

- a) Welcher Wert o_{pj} wird ausgegeben?
- b) Geben Sie den Gewichtsvektor nach einem Trainingsschritt an.

Anmerkung zur Aktivierungsfunktion

$$f_{\log} = \frac{1}{1 + e^{-x}}$$

$$f'_{\log} = \frac{e^{-x}}{(1+e^{-x})^2}$$

<u>Aufgabe 5</u> (Dynamische Programmierung)

[5 Punkte]

Mit Hilfe der dynamischen Programmierung soll im angegebenen Graphen ein Weg von links nach rechts mit der <u>maximalen Gewichtssumme</u> gefunden werden.

Zeichnen Sie hierzu in den abgebildeten Graphen ein:

- die maximale Gewichtssumme der Einzelknoten
- die Richtung des Rückwegs
- den optimalen Gesamtweg (dick zeichnen).

Bei der Flaschenherstellung soll die Flaschenkontur im beobachteten Bildausschnitt (gestrichelt) der folgenden Funktion entsprechen:

$$y = Ax^3 + Bx + 8$$

Auf dem Konturausschnitt werden folgende Koordinaten gemessen:

Punkt	X	у
P1	-1	2
P2	1	13
Р3	2	50

Berechnen Sie die Parameter **A** und **B** des <u>Ausgleichspolynoms</u>. Verwenden Sie zur Lösung die Determinantenmethode.

<u>Aufgabe 7</u> (Momente)

[5 Punkte]

Berechnen Sie die den Schwerpunkt des Bildobjektes mit der Momentenmethode.

Gegeben ist das kantengefilterte Bild eines flachen, dreieckigen Objektes.

a) Markieren Sie im zugehörigen Houghraum den Ort der Maxima (Mehrfachschnittpunkte) <u>durch Punkte</u>.

b) Geben Sie die abgebildete Gerade in der Hesseschen Normalform an.

