CG1111: Engineering Principles and Practice I

Debrief and Tutorial for Week 9

Comparator

 The comparator is an electronic decisionmaking circuit that makes use of an opamp's very high gain in its open-loop state (i.e., there is no feedback resistor)

Op-Amp as a Comparator – How It Works

Recall that for op-amp:

- The difference between the two inputs is amplified as $(A(V_{+} V_{-}))'$ at the output
- The open-loop voltage gain ('A') of the op-amp is very high (ideally ∞)
- Even if there is a very small difference between the inputs, the high 'A' will pull the output to "saturation"

Op-Amp as a Comparator

How It Works

• If $V_+ > V_-$: $V_{\text{out}} = +V_{\text{sat}}$

■ If V₋ > V₊:

$$V_{\text{out}} = \begin{cases} -V_{\text{sat}} & \text{if dual power supply} \\ 0 & \text{if single power supply} \end{cases}$$

Common Application of Comparator

 The comparator is ideal for converting analog signals to digital signals at certain threshold values

Filter

 A filter is a device or process that removes some unwanted components or features from a signal

• Examples:

 Removing the noise from measured ECG signal using a filter to help a doctor understand the heart better

 Removing some frequencies or frequency bands from an audio signal

Passive Low-Pass Filter

Voltage divider:

The capacitor's impedance decreases as the frequency increases, hence V_c decreases

Power Gain in decibels (dB)

■ The Voltage Amplification (A_v) or Gain of a voltage amplifier/filter is given by:

$$A_{v} = \frac{V_{\text{out}}}{V_{\text{in}}}$$

The voltage gain is commonly expressed in terms of the resulting power gain in dB:

Power Gain (dB) =
$$10 \log_{10} \left(\frac{V_{\text{out}}}{V_{\text{in}}} \right)^2 dB$$

= $20 \log_{10} \left| \frac{V_{\text{out}}}{V_{\text{in}}} \right| dB$

Frequency Response

- It is the quantitative measure of the output spectrum of a system or device in response to a stimulus, and is used to characterize the dynamics of the system
 - -Frequency in logarithmic Scale: horizontal x-axis

Power Gain in decibels (dB): vertical y-axis
 To describe a change in output power over the whole frequency range

Power Gain in dB $(f) = 20 \log_{10} |A_v(f)|$

Cut-off Frequency

 In filters, the cut-off frequency characterizes a boundary between a passband and a stopband

 The cut-off frequency is taken as the frequency at which the output of the circuit is −3 dB (corresponding to half the power) of the nominal

passband value

Cut-off Frequency: -3 dB Point (i.e., Half-power Point)

- Graphical approach:
 - -Find the passband gain from the magnitude vs frequency plot

-Subtract 3 dB from the passband gain and draw a line

on the plot

-The points where this line cuts the plot corresponds to the cut-off frequency(s)

Cut-off Frequency: -3 dB Point (i.e., Half-power Point)

• Quantitative approach (for <u>first</u>-order filters):

$$f_H = \frac{1}{2\pi R_H C_H}, \quad f_L = \frac{1}{2\pi R_L C_L}$$

First-order Low-Pass Filter

Slope after cut-off frequency

 $\approx -20 \text{ dB/decade}$

Question 1

Show that if $R_{in} = R_{L}$, then the power gain in dB for an amplifier circuit is given by

Power gain (dB) =
$$20 \log_{10} \left| \frac{V_{\text{out}}}{V_{\text{in}}} \right|$$
 dB

- Power at amplifier's input: $P_{\text{in}} = \frac{V_{\text{in}}^2}{R_{\text{in}}}$
- Power delivered to load: $P_{\text{out}} = \frac{V_{\text{out}}^2}{R_{\text{L}}}$
- Power Gain in dB

$$= 10 \log_{10} \left(\frac{P_{\text{out}}}{P_{\text{in}}}\right) \qquad \text{Equals 0 if} \\ R_{\text{in}} = R_{\text{L}}$$

$$= 10 \log_{10} \left(\frac{V_{\text{out}}}{V_{\text{in}}}\right)^{2} + 10 \log_{10} \left(\frac{R_{\text{in}}}{R_{\text{L}}}\right)$$

$$= 20 \log_{10} \left|\frac{V_{\text{out}}}{V_{\text{in}}}\right|$$

Question 2

 Calculate the voltage gain (V_{out}/V_{in}) of Op Amp 1

Using op amp Golden rules,

```
o For Op amp 1, V_+ = V_- = V_{in}. Hence, V_1 = V_{in}
```

o For Op amp 2, $V_- = V_+ = 0$. Hence, $V_3 = 0$

Current through R₁ (downwards)

$$I_{R1} = \frac{V_{\rm in}}{R_1}$$

Current through R₂ (right to left)

$$I_{R2} = I_{R1} = \frac{V_{\text{in}}}{R_1}$$

$$V_2 = V_1 + (I_{R2} \times R_2)$$

= $V_{in} + \frac{V_{in}}{R_1} \times R_2 = (1 + \frac{R_2}{R_1}) \times V_{in}$

$$\rightarrow V_2 = (1 + \frac{R_2}{R_1}) \times V_{in} - - - > Equation 1$$

Applying KCL at Node 3,

$$\frac{V_2 - 0}{R_3} + \frac{V_{\text{out}} - 0}{R_4} = 0$$

Applying expression for V₂ from Equation 1,

$$(1 + \frac{R_2}{R_1}) \times \frac{V_{\text{in}}}{R_3} = \frac{-V_{\text{out}}}{R_4}$$

$$\frac{V_{\text{out}}}{V_{\text{in}}} = -\left(1 + \frac{R_2}{R_1}\right) \times \frac{R_4}{R_3}$$

Question 3

- Derive the expression relating V_{out} and the two inputs, V₁ and V₂
- Design R values such that $V_{out} \propto (V_1 V_2)$

For both op amps, V_{_} = V₊ = 0 (op amp golden rules)

$$\frac{V_1 - 0}{R_1} + \frac{V_{\text{out1}} - 0}{R_3} = 0 \rightarrow V_{\text{out1}} = -\frac{R_3}{R_1} V_1$$

Applying KCL at Node 2,

$$\frac{V_2 - 0}{R_2} + \frac{V_{\text{out}1} - 0}{R_4} + \frac{V_{\text{out}} - 0}{R_5} = 0$$

$$V_{\text{out}} = \left(\frac{R_5}{R_4} * \frac{R_3}{R_1} * V_1\right) - \left(\frac{R_5}{R_2} * V_2\right)$$

If
$$\frac{R_5 R_3}{R_4 R_1} = \frac{R_5}{R_2}$$
, which gives $\frac{R_3}{R_4 R_1} = \frac{1}{R_2}$, then

$$V_{\text{out}} = \frac{R_5}{R_2} (V_1 - V_2)$$

$$= K (V_1 - V_2)$$

Question 4

- Audio song frequencies: 100-3000 Hz
- Corrupted with 10 kHz noise

- Design a low-pass filter to suppress the 10 kHz noise by 20 dB relative to the passband gain
- What is the cut-off frequency of the low-pass filter?

A Note About -20 dB in Power

- Suppressing the noise by 20 dB is equivalent to reducing its power to just 1% compared to no filtering
- Also equivalent to reducing its voltage to just 10% compared to no filtering

■ 10
$$\log_{10} \left(\frac{P_{\text{noise(filtered)}}}{P_{\text{noise(no filter)}}} \right) = 10 \log_{10} (0.01) = -20 \text{ dB}$$

$$20 \log_{10} \left(\frac{V_{\text{noise(filtered)}}}{V_{\text{noise(no filter)}}} \right) = 20 \log_{10} (0.1) = -20 \text{ dB}$$

Vin sine

Suppose we take an <u>active</u> low-pass filtering approach (i.e., filtering noise + <u>amplifying</u> entire signal)

Blue:

Active gain (= 2) due to amplifier

Red:

Passive filter's gain (< 1) due non-inverting to RC potential divider (ω -dependent)

$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{V_{\text{out}}}{V_{+}} \times \frac{V_{+}}{V_{\text{in}}} = \left(1 + \frac{R_f}{R_1}\right) \frac{V_{+}}{V_{\text{in}}} = 2\left[\frac{\frac{1}{j\omega C}}{\frac{1}{j\omega C} + R}\right] = \frac{2}{1 + j\omega CR}$$

Hence, gain's magnitude w.r.t.
$$\omega = \left| \frac{V_{\text{out}}}{V_{\text{in}}} \right| = \frac{2}{\sqrt{1 + (\omega CR)^2}}$$

Vout

Rf

10 kΩ

R1 10 kΩ

Gain in dB =
$$\frac{20 \log_{10} 2}{20 \log_{10} 2} - \frac{20 \log_{10} \sqrt{1 + (\omega CR)^2}}{20 \log_{10} \sqrt{1 + (\omega CR)^2}}$$

A gain reduction of 20 dB at f = 10 kHz means:

$$-20 \log_{10} \sqrt{1 + (\omega CR)^2} \Big|_{f = 10 \text{ kHz}} = -20 \text{ dB}$$

Hence,
$$\sqrt{1 + (\omega CR)^2} = 10$$
 when $f = 10$ kHz

Our low-pass filter needs to have:

$$RC = \frac{\sqrt{10^2 - 1}}{2\pi \times 10000} = 1.584 \times 10^{-4} \text{ s}$$

- Cutoff frequency is the frequency at which the gain decreases by 3 dB from passband gain
- A gain reduction of 3 dB at $f = f_c$ means:

$$-20 \log_{10} \sqrt{1 + (\omega CR)^2} \Big|_{f = f_c} = -3 \text{ dB}$$

■ Hence, $\sqrt{1 + (\omega CR)^2} = 10^{3/20} = \sqrt{2}$ when $f = f_c$

$$\omega CR = 1$$
 when $f = f_c$

$$f_c = \frac{1}{2\pi RC} = \frac{1}{2\pi \times 1.584 \times 10^{-4}} \approx 1 \text{ kHz}$$

Graphical Visualization for Q4

First-order low-pass filter: —20 dB/decade

Each horizontal box is "1 decade"

Why -20 dB/decade?

f	$-20\log_{10}\sqrt{1+(\omega CR)^2}$
f_c	≈ -3 dB
$10 \times f_c$	\approx −3 dB \approx −17 \approx −20 dB
100 x f _c	$\approx -40 \text{ dB}$
1000 x f_c	$\approx -60 \text{ dB}$

Graphical Visualization for Q4

 We need to reduce the gain at 10 kHz by 20 dB (always relative to passband gain)

Graphical Visualization for Q4

 If 10 kHz noise has to be reduced by 20 dB, we need to have the cutoff frequency at 1 kHz

Extra Points to Note for Q4

For your curiosity only:

As can be seen, with a first-order filter, we also lose some audio signals that we desire. How do we improve this?

We can use higher-order filters! This allows us to have sharper attenuation slope, so that our desired passband is not

attenuated too much!

- 2nd order: 40 dB/decade
 - http://www.electronics-tutorials.ws/ filter/second-order-filters.html
- 3rd order: 60 dB/decade
 - http://www.circuitstoday.com/ higher-order-filters

