Camera lens distortions

f = focal length

 c_x = principal point x coordinate

 c_y = principal point y coordinate

 k_n = $n^{\rm th}$ radial distortion coefficient p_n = $n^{\rm th}$ tangential distortion coefficient skew coefficient between the x and the y axis.

Camera lens distortions

• A trade-off between lens radial distortion term and computed surface form can lead to "doming"

James & Robson (2014), Mitigating systematic error in topographic models derived from UAV and ground-based image networks, *Earth Surface Processes and Landforms*

Camera lens distortions Fixed, error-free Fixed camera model with Self-calibrated camera model radial distortion error radial distortion 2.5 100 -100 -100 100 100 -100 -100 0.02 Vertical DEM error (m) Vertical DEM error (m) • Doming can be mitigated by incorporating a few oblique camera angles (in red) 100 -100 -100

James & Robson (2014), Mitigating systematic error in topographic models derived from UAV and ground-based image networks, *Earth Surface Processes and Landforms*

Camera lens distortions

• Doming can be mitigated by calibrating the camera parameters by photographing a calibration target

• Doming can be mitigated by georeferencing using ground control points

• Doming can be mitigated by incorporating a few oblique camera angles (in red)

Spring 2019 "fly off"— Earth Fissures in Apache Junction, AZ with Alan Deino and David Feary (+others)

DJI Mavic Pro (Deino)

DEM Comparison: No GCPs, only on board GPS

Value

Low: -46.3043

Mavic

Inspire + ZenMuse

Notice the magnitude and sign of the "doming"

Grey surface is the Mavic

Blue surface is the Inspire + ZenMuse

