

UWO CHEM 1302

Winter 2024, Chapter 14 Notes

Table of Contents

Chapter 14. Batteries

14.I. Chapter Intro

14.1. Batteries and Other Applications

14.1.1. Types of Batteries

14.1.2. Rechargeable Batteries

14.1.3. Concentration Cells

14. Batteries

14.I

14.1 Batteries and Other Applications

14.1.1

There are 3 main types of batteries:

1) Primary batteries

- non-rechargeable (discarded when the cell reaction reaches equilibrium)
- one way (irreversible)
- self-contained series of voltaic cells
- ex. modern alkaline battery, silver button battery (like the one we see in watches), lithium battery,
- alkaline cells is about 1.5V

Primary Cell

- One use (non-rechargeable/disposable)
- Chemical reaction used, can not be reversed
- Used when long periods of storage are required
- Lower discharge rate than secondary batteries
- Use: smoke detectors, flashlights, remote controls

2) Secondary Batteries

- rechargeable
- self-contained series of voltaic cells
- electrical current supplied to reverse the cell reaction
- ex: lead-acid batteries (car batteries), nickel-metal hydride batteries (power tools), lithium ion battery (laptops, cell phone)

6

a) Charging

- electrolysis (not a voltaic cell)
- need a voltage source
- reaction stops when the cathodic solution runs out of cations

b) Discharging

- this acts like a galvanic cell (spontaneous electron flow)
- reverse process is occurring, metal on right is now the anode, metal on left is the cathode

3) Fuel Cells

- non self-contained voltaic cells
- controlled combustion (O2 and H2 enter cells, H20 leaves cells)
- can flow chemicals through system to generate electricity

Rechargeable Batteries

- We will soon see that rechargeable batteries can act as both galvanic and electrolytic cells!
- Think of our phone batteries!
 - o If we unplug it from our charger in the morning, then from that point onwards the battery is **discharging** (we will soon see that this is a **spontaneous** process)

• Then at night, when we go to plug it into the charger, the battery is **charging** (this part requires a battery, which is an external source of energy so this part is **non-spontaneous**)

• Based on this info do you think the discharging process is more like a galvanic or electrolytic cell?

•	What about for the charging process?	

Let's consider a rechargeable lead-acid battery...

The overall equation for this battery is:

$$Pb(s) + PbO_2(s) + 2H_2SO_4(aq)$$
 eqm $2PbSO_4(s) + 2H_2O(s)$

1) Draw in the oxidation states for Pb in the above equation

2) Now let's consider the discharge process

We have these 2 reactions:

a)
$$Pb(s) \longrightarrow Pb^{2+}(aq) + 2e - E^{o}$$
 =0.13V
b) $Pb^{4+}(aq) + 2e - --> Pb^{2+}(aq) E^{o}$ =1.83V
 $E^{o}_{redox} =$

Is this process spontaneous or not?

We can now draw out the cell for this: ____ cell Make one electrode Pb(s) and the other PbO₂(s) (which is Pb $^{4+}$)

- Is a battery needed for this reaction?
- label the anode and the cathode
- Show the direction in which electrons flow
- Label the charges of both the anode and the cathode

2	K I	1 4 1	4.4	4.1	100	
3)	Now	iet's	consider	tne	chargina	ı process

To charge the battery, we have the same 2 reactions but want them to run in reverse:

a)
$$Pb^{2+}(aq) + 2e^{-->}Pb(s) E^{0} = V$$

a)
$$Pb^{2+}(aq) + 2e^{-} -> Pb(s) E^{o} = V$$

b) $Pb^{2+}(aq) --> 2e^{-} + Pb^{4+}(aq) E^{o} = V$

Is this process spontaneous or not?

We can now draw out the cell for this:

Make one electrode $PbSO_4$ (which is also Pb^{2+}) and the other electrode the same.

- Is a battery needed for this reaction?
- Label the anode and the cathode
- Show the direction in which electrons flow
- Label the charges of both the anode and the cathode
- What are the charges on the battery (if there is one?)

Concentration Cells

Concentration Cells

- Consider the cell presented on the left.
- The 1/2 cell reactions are the same, it is just the concentrations that differ.
- Will there be electron flow?

Are these standard or non-standard conditions?

If there is electron flow, when would the flow of electrons stop?

Problem:

There are two half-cells connected together. Both half-cells have a zinc electrode

and ZnCl₂ electrolyte. The concentration of Zn²⁺ in one cell is 0.20 M and in the other cell is more dilute but unknown. The voltage across the electrodes is 0.0289 V. Find the unknown

[Zn ²⁺].	
We will need to use the Nernst equation since the conditions are	
Ecell=Eocell - (RT/nF)(lnQ)	