2 A = (2a;j)

Produit des matrices
B) Si A(aii) est maxin et B = (hij) est mxp
en définit le produit des matrices por
PXB = (\subsection aik buj 12 j2 p
Rq: clest une matrice mxp
P) Si A E Mon (UK); B E Monp (K); C E Mp; q (K), ofons:
2 AXB \(\text{BA} \) on général 3) Si con acte \(\text{T} = \left(\text{1 a} - \text{0} \) of a \(\text{A} \text{T} = \text{A} \)
1) $A \times (B \times c) = (A + B) \times C$ 2) $A \times B \neq BA$ on général 3) Si on mote $I_m = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ on $A \times I_m = A$ $A \times A \in M_m(IK)$
Tronsposée d'une matrice
D) Si A=(aij) esture matrice mxm, or definit Pornatrice hoursposes de A notés
pan: At = (aji) 12 jem 14 i em
Ry) ('est donc une mâtrice nxm obtenue par échange ignes / colonnes de la omotrice de passe.
^ / 21
Exemple: $A = \begin{pmatrix} 1 & 10 & 7 \\ 2 & -1 & 13 \\ 5 & 3 & 12 \end{pmatrix} \rightarrow A^{T} = \begin{pmatrix} 1 & 2 & 4 \\ 10 & -1 & 3 \\ 7 & 13 & 12 \end{pmatrix}$
O(1) C = 1
P) 1) (A+B) t = At + Bt 2) (A+B) t = &t + At 3) (A+B) t = &t + At
$3) \left(A \times B \right)^{\dagger} = B^{\dagger} \times A^{\dagger}$