Support vector machine (SVM)

CE-477: Machine Learning - CS-828: Theory of Machine Learning Sharif University of Technology Fall 2024

Fatemeh Seyyedsalehi

Outline

- Margin concept
- Hard-Margin SVM
 - Dual Problem of Hard-Margin SVM
- Soft-Margin SVM
 - Dual Problem of Soft-Margin SVM

Margin

Which line is better to select as the boundary to provide more generalization capability?

Larger margin provides better generalization to unseen data

- Margin for a hyperplane that separates samples of two linearly separable classes is:
 - The smallest distance between the decision boundary and any of the training samples

What is better linear separation

Linearly separable data

Which line is better?

Why the bigger margin?

Maximum margin

SVM finds the solution with maximum margin

The hyperplane with the largest margin has equal distances to the nearest sample of both classes

Distance between an $x^{(n)}$ and the plane

distance =
$$\frac{\left| \boldsymbol{w}^T \boldsymbol{x}^{(n)} + w_0 \right|}{\|\boldsymbol{w}\|}$$

$$\max_{M, \mathbf{w}, \mathbf{w}_0} \frac{2M}{\|\mathbf{w}\|}$$
s. t. $(\mathbf{w}^T \mathbf{x}^{(i)} + \mathbf{w}_0) \ge M \quad \forall \mathbf{x}^{(i)} \in C_1 \longrightarrow y^{(i)} = 1$
 $(\mathbf{w}^T \mathbf{x}^{(i)} + \mathbf{w}_0) \le -M \quad \forall \mathbf{x}^{(i)} \in C_2 \longrightarrow y^{(i)} = -1$

Margin: $2 \frac{M}{\|w\|}$

$$\max_{M, \mathbf{w}, \mathbf{w}_0} \frac{2M}{\|\mathbf{w}\|}$$

s. t. $y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + \mathbf{w}_0) \ge M$ $i = 1, ..., N$

Rescaling parameters,
$$\mathbf{w}' = \frac{\mathbf{w}}{M}$$
, $w_0' = \frac{w_0}{M}$:
$$\max_{\mathbf{w}', w_0'} \frac{2}{\|\mathbf{w}'\|}$$

s. t.
$$y^{(i)}(\mathbf{w'}^T \mathbf{x}^{(i)} + w'_0) \ge 1$$
 $i = 1, ..., N$

$$\max_{\boldsymbol{w}, w_0} \frac{2}{\|\boldsymbol{w}\|}$$

s. t. $y^{(i)}(\boldsymbol{w}^T \boldsymbol{x}^{(i)} + w_0) \ge 1$, $n = 1, ..., N$

Margin: $\frac{2}{\|w\|}$

$$\max_{\boldsymbol{w}, w_0} \frac{2}{\|\boldsymbol{w}\|}$$
s. t. $(\boldsymbol{w}^T \boldsymbol{x}^{(n)} + w_0) \ge 1 \quad \forall \boldsymbol{y}^{(n)} = 1$
 $(\boldsymbol{w}^T \boldsymbol{x}^{(n)} + w_0) \le -1 \quad \forall \boldsymbol{y}^{(n)} = -1$

Margin: $\frac{2}{\|w\|}$

We can equivalently optimize:

$$\min_{\mathbf{w}, w_0} \frac{1}{2} \mathbf{w}^T \mathbf{w}$$

s.t. $y^{(n)} (\mathbf{w}^T \mathbf{x}^{(n)} + w_0) \ge 1 \quad n = 1, ..., N$

- ▶ It is a convex Quadratic Programming (QP) problem
 - There are computationally efficient packages to solve it and find optimum w and w_0 , i.e. the decision boundary.
 - It has a global minimum (if any).

Dual formulation of the SVM

- We are going to introduce the dual SVM problem which is equivalent to the original primal problem
 - Gives us further insights into the optimal hyper-plane
 - Enable us to exploit the kernel trick

- Lagrangian multipliers technique
 - An optimization method useful for problems with equality or inequality constraints

Lagrangian multipliers technique

Considering following convex optimization problem with convex constraints

$$\min_{\mathbf{x}} f(\mathbf{x})$$

s. t. $g_i(\mathbf{x}) \le 0$ $i = 1, ..., m$

We can construct the following Lagrangian function

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}) = f(\mathbf{x}) + \sum_{i=1}^{m} \alpha_i g_i(\mathbf{x})$$

Lagrangian multipliers

And optimize:

$$\min_{\mathbf{x}} \max_{\{\alpha_i \geq 0\}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}) \\
\max_{\{\alpha_i \geq 0\}} \min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha})$$

$$\min_{\mathbf{w}, w_0} \frac{1}{2} ||\mathbf{w}||^2$$

s. t. $y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + \mathbf{w}_0) \ge 1$ $i = 1, ..., N$

By incorporating the constraints through Lagrangian multipliers, we will have:

$$\min_{\mathbf{w}, w_0} \max_{\{\alpha_n \ge 0\}} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{n=1}^{N} \alpha_n (1 - y^{(n)} (\mathbf{w}^T \mathbf{x}^{(n)} + w_0)) \right\}$$

$$\min_{\mathbf{w}, w_0} \frac{1}{2} ||\mathbf{w}||^2$$

s. t. $y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + \mathbf{w}_0) \ge 1$ $i = 1, ..., N$

By incorporating the constraints through Lagrangian multipliers, we will have:

$$\min_{\mathbf{w}, \mathbf{w}_0} \max_{\{\alpha_n \ge 0\}} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{n=1}^{N} \alpha_n (1 - y^{(n)} (\mathbf{w}^T \mathbf{x}^{(n)} + \mathbf{w}_0)) \right\}$$

Dual problem (changing the order of min and max in the above problem):

$$\max_{\{\alpha_n \ge 0\}} \min_{\mathbf{w}, \mathbf{w}_0} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{n=1}^{N} \alpha_n (1 - y^{(n)} (\mathbf{w}^T \mathbf{x}^{(n)} + \mathbf{w}_0)) \right\}$$

$$\max_{\{\alpha_n \geq 0\}} \min_{\mathbf{w}, w_0} \mathcal{L}(\mathbf{w}, w_0, \boldsymbol{\alpha})$$

$$\mathcal{L}(\mathbf{w}, \mathbf{w}_0, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{n=1}^{N} \alpha_n (1 - y^{(n)} (\mathbf{w}^T \mathbf{x}^{(n)} + \mathbf{w}_0))$$

$$\max_{\{\alpha_n \geq 0\}} \min_{\boldsymbol{w}, w_0} \mathcal{L}(\boldsymbol{w}, w_0, \boldsymbol{\alpha})$$

$$\mathcal{L}(\mathbf{w}, \mathbf{w}_0, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{n=1}^{N} \alpha_n (1 - y^{(n)} (\mathbf{w}^T \mathbf{x}^{(n)} + \mathbf{w}_0))$$

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, w_0, \boldsymbol{\alpha}) = 0 \Rightarrow \mathbf{w} - \sum_{n=1}^{N} \alpha_n y^{(n)} \boldsymbol{x}^{(n)} = \mathbf{0}$$
$$\Rightarrow \mathbf{w} = \sum_{n=1}^{N} \alpha_n y^{(n)} \boldsymbol{x}^{(n)}$$

$$\max_{\{\alpha_n \geq 0\}} \min_{\mathbf{w}, w_0} \mathcal{L}(\mathbf{w}, w_0, \boldsymbol{\alpha})$$

$$\mathcal{L}(\mathbf{w}, \mathbf{w}_0, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{n=1}^{N} \alpha_n (1 - y^{(n)} (\mathbf{w}^T \mathbf{x}^{(n)} + \mathbf{w}_0))$$

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, w_0, \boldsymbol{\alpha}) = 0 \Rightarrow \mathbf{w} - \sum_{n=1}^{N} \alpha_n y^{(n)} \boldsymbol{x}^{(n)} = \mathbf{0}$$
$$\Rightarrow \mathbf{w} = \sum_{n=1}^{N} \alpha_n y^{(n)} \boldsymbol{x}^{(n)}$$

$$\frac{\partial \mathcal{L}(\mathbf{w}, \mathbf{w}_0, \alpha)}{\partial \mathbf{w}_0} = 0 \Rightarrow -\sum_{n=1}^{N} \alpha_n y^{(n)} = 0$$

 w_0 do not appear, instead, a "global" constraint on α is created.

Substituting

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y^{(n)} \mathbf{x}^{(n)}$$

$$\sum_{n=1}^{N} \alpha_n y^{(n)} = 0$$

In the Largrangian

$$\mathcal{L}(\mathbf{w}, \mathbf{w}_0, \alpha) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^{N} \alpha_n (1 - y^{(n)} (\mathbf{w}^T \mathbf{x}^{(n)} + \mathbf{w}_0))$$

Substituting

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y^{(n)} \mathbf{x}^{(n)}$$

$$\sum_{n=1}^{N} \alpha_n y^{(n)} = 0$$

In the Largrangian

$$\mathcal{L}(\mathbf{w}, \mathbf{w}_0, \alpha) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^{N} \alpha_n (1 - y^{(n)} (\mathbf{w}^T \mathbf{x}^{(n)} + \mathbf{w}_0))$$

We get

$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y^{(n)} y^{(m)} \boldsymbol{x}^{(n)^T} \boldsymbol{x}^{(m)}$$

Maximize w.r.t. α subject to $\alpha_n \geq 0$ for $n=1,\dots,N$ and $\sum_{n=1}^N \alpha_n y^{(n)} = 0$

$$\max_{\alpha} \left\{ \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y^{(n)} y^{(m)} x^{(n)^T} x^{(m)} \right\}$$
Subject to
$$\sum_{n=1}^{N} \alpha_n y^{(n)} = 0$$

$$\alpha_n \ge 0 \quad n = 1, ..., N$$

The dual form is a convex QP too!

Solution

Quadratic programming:

$$\min_{\alpha} \frac{1}{2} \alpha^{T} \begin{bmatrix} y^{(1)} y^{(1)} x^{(1)^{T}} x^{(1)} & \cdots & y^{(1)} y^{(N)} x^{(1)^{T}} x^{(N)} \\ \vdots & \ddots & \vdots \\ y^{(N)} y^{(1)} x^{(N)^{T}} x^{(1)} & \cdots & y^{(N)} y^{(N)} x^{(N)^{T}} x^{(N)} \end{bmatrix} \alpha + (-1)^{T} \alpha$$

s.t.
$$-\alpha \leq 0$$

 $y^T \alpha = 0$

Finding the hyperplane

• After finding α by QP, we find w:

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y^{(n)} \mathbf{x}^{(n)}$$

- \blacktriangleright How to find w_0 ?
 - we discuss it after introducing support vectors

Karush-Kuhn-Tucker (KKT) conditions

Necessary conditions for the solution $[w^*, w_0^*, \alpha^*]$:

$$\alpha_{n}^{*} \geq 0 \quad n = 1, ..., N$$

$$y^{(n)} (\mathbf{w}^{*T} \mathbf{x}^{(n)} + \mathbf{w}_{0}^{*}) \geq 1 \quad n = 1, ..., N$$

$$\alpha_{i}^{*} (1 - y^{(n)} (\mathbf{w}^{*T} \mathbf{x}^{(n)} + \mathbf{w}_{0}^{*})) = 0 \quad n = 1, ..., N$$

$$\min_{\mathbf{x}} f(\mathbf{x})$$

s. t. $g_i(\mathbf{x}) \le 0$ $i = 1, ..., m$

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}) = f(\mathbf{x}) + \sum \alpha_i \, g_i(\mathbf{x})$$

In general, the optimal x^* , α^* satisfies KKT conditions:

$$\alpha_i^* \ge 0 \quad i = 1, ..., m$$
 $g_i(\mathbf{x}^*) \le 0 \quad i = 1, ..., m$
 $\alpha_i^* g_i(\mathbf{x}^*) = 0 \quad i = 1, ..., m$

Karush-Kuhn-Tucker (KKT) conditions

Active constraint

26

Hard-margin SVM: Support vectors

- Inactive constraint: $y^{(n)}(\mathbf{w}^T \mathbf{x}^{(n)} + \mathbf{w_0}) > 1$
 - $\Rightarrow \alpha_n = 0$ and thus $\mathbf{x}^{(n)}$ is not a support vector.
- Active constraint: $y^{(n)}(\mathbf{w}^T \mathbf{x}^{(n)} + \mathbf{w_0}) = 1$
 - $ightarrow lpha_n$ can be greater than 0 and thus $x^{(i)}$ can be a support vector.

Hard-margin SVM: Support vectors

- Inactive constraint: $y^{(n)}(\mathbf{w}^T \mathbf{x}^{(n)} + \mathbf{w_0}) > 1$
 - $\Rightarrow \alpha_n = 0$ and thus $\mathbf{x}^{(n)}$ is not a support vector.
- Active constraint: $y^{(n)}(\mathbf{w}^T \mathbf{x}^{(n)} + \mathbf{w_0}) = 1$

Hard-margin SVM: Support vectors

- Support Vectors (SVs)= $\{x^{(n)} | \alpha_n > 0\}$
- ▶ The **direction** of hyper-plane can be found only based on support vectors:

$$\mathbf{w} = \sum_{\alpha_n > 0} \alpha_n \ y^{(n)} \mathbf{x}^{(n)}$$

Finding the hyperplane

• After finding α by QP, we find w:

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y^{(n)} \mathbf{x}^{(n)}$$

- How to find w_0 ?
 - Each of the samples that has $\alpha_s > 0$ is on the margin, thus we solve for w_0 using any of SVs:

$$y^{(s)}(\mathbf{w}^T \mathbf{x}^{(s)} + \mathbf{w_0}) = 1$$

$$\Rightarrow \mathbf{w_0} = \mathbf{y}^{(s)} - \mathbf{w}^T \mathbf{x}^{(s)}$$

Hard-margin SVM: Dual problem Classifying new samples using only SVs

Classification of a new sample x:

$$\hat{y} = \operatorname{sign}(\mathbf{w}_0 + \mathbf{w}^T \mathbf{x})$$

$$\hat{y} = \operatorname{sign}\left(\mathbf{w}_0 + \left(\sum_{\alpha_n > 0} \alpha_n y^{(n)} \mathbf{x}^{(n)}\right)^T \mathbf{x}\right)$$

$$\hat{y} = \operatorname{sign}(\mathbf{y}^{(s)} - \sum_{\alpha_n > 0} \alpha_n y^{(n)} \mathbf{x}^{(n)}^T \mathbf{x}^{(s)} + \sum_{\alpha_n > 0} \alpha_n y^{(n)} \mathbf{x}^{(n)}^T \mathbf{x})$$
Support vectors are sufficient to predict labels of new samples

 \blacktriangleright The classifier is based on the expansion in terms of dot products of x with support vectors.

Hard-margin SVM dual problem: An important property

$$\max_{\alpha} \left\{ \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y^{(n)} y^{(m)} \boldsymbol{x}^{(n)^T} \boldsymbol{x}^{(m)} \right\}$$
Subject to
$$\sum_{n=1}^{N} \alpha_n y^{(n)} = 0$$

$$\alpha_n \ge 0 \quad n = 1, \dots, N$$

- Only the dot product of each pair of training data appears in the optimization problem
 - An important property that is helpful to extend to non-linear SVM
 - We will talk about it later (kernel-based methods)

In the transformed space

$$\max_{\alpha} \left\{ \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y^{(n)} y^{(m)} \phi(\boldsymbol{x}^{(n)})^T \phi(\boldsymbol{x}^{(m)}) \right\}$$
 Subject to
$$\sum_{n=1}^{N} \alpha_n y^{(n)} = 0$$

 $\alpha_n \geq 0 \ n = 1, \dots, N$

33

Beyond linear separability

When training samples are not linearly separable, it has no solution.

▶ How to extend it to find a solution even though the classes are not exactly linearly separable.

Gaussian kernel

- Example: SVM boundary for a Gaussian kernel
 - Considers a Gaussian function around each data point.

$$w_0 + \sum_{\alpha_i > 0} \alpha_i y^{(i)} \exp(-\frac{\|x - x^{(i)}\|^2}{\sigma}) = 0$$

- SVM + Gaussian Kernel can classify any arbitrary training set
 - ightharpoonup Training error is zero when $\sigma
 ightharpoonup 0$
 - ☐ All samples become support vectors (likely overfiting)

Hard margin Example Gaussian kernel

 $\exp(-1\|\mathbf{x} - \mathbf{x}'\|^2)$

 $\exp(-10\|\mathbf{x} - \mathbf{x}'\|^2)$

$$\exp(-100\|\mathbf{x} - \mathbf{x}'\|^2)$$

Near linear separability

- How to extend the hard-margin SVM to allow classification error
 - Overlapping classes that can be approximately separated by a linear boundary
 - Noise in the linearly separable classes

Near linear separability: Soft-margin SVM

- Minimizing the number of misclassified points?!
 - NP-complete
- Soft margin:
 - Maximizing a margin while trying to minimize the *distance* between misclassified points and their correct margin plane

Error measure

Margin violation amount ξ_n ($\xi_n \geq 0$):

$$y^{(n)}(\mathbf{w}^T \mathbf{x}^{(n)} + w_0) \ge 1 - \xi_n$$

▶ Total violation: $\sum_{n=1}^{N} \xi_n$

Soft-margin SVM: Optimization problem

SVM with slack variables: allows samples to fall within the margin, but penalizes them

$$\min_{\substack{\mathbf{w}, w_0, \{\xi_n\}_{n=1}^N \\ \mathbf{v}}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^N \xi_n$$
s.t.
$$y^{(n)} (\mathbf{w}^T \mathbf{x}^{(n)} + w_0) \ge 1 - \xi_n \quad n = 1, ..., N$$

$$\xi_n \ge 0$$

 ξ_n : slack variables

 $0 < \xi_n < 1$: if $\boldsymbol{x}^{(n)}$ is correctly classified but inside margin

 $\xi_n > 1$: if $\mathbf{x}^{(n)}$ is misclassifed

Soft-margin SVM

- linear penalty (hinge loss) for a sample if it is misclassified or lied in the margin
 - tries to maintain ξ_n small while maximizing the margin.
 - always finds a solution (as opposed to hard-margin SVM)
 - more robust to the outliers
- Soft margin problem is still a convex QP

Soft-margin SVM: Parameter C

- ▶ *C* is a tradeoff parameter:
 - small C allows margin constraints to be easily ignored
 - large margin
 - large C makes constraints hard to ignore
 - narrow margin
- $ightharpoonup C
 ightharpoonup \infty$ enforces all constraints: hard margin
- $lackbox{\colored}{\mathcal{C}}$ can be determined using a technique like cross-validation

Soft-margin SVM: Cost function

$$\min_{\mathbf{w}, w_0, \{\xi_n\}_{n=1}^N} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{n=1}^N \xi_n$$
s. t.
$$y^{(n)} (\mathbf{w}^T \mathbf{x}^{(n)} + \mathbf{w}_0) \ge 1 - \xi_n \quad n = 1, ..., N$$

$$\xi_n \ge 0$$

Lagrange formulation

$$\mathcal{L}(\mathbf{w}, w_0, \xi, \alpha, \beta)$$

$$= \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{n=1}^{N} \xi_n$$

$$+ \sum_{n=1}^{N} \alpha_n (1 - \xi_n - y^{(n)} (\mathbf{w}^T \mathbf{x}^{(n)} + w_0)) - \sum_{n=1}^{N} \beta_n \xi_n$$

Minimize w.r.t. w, w_0 , ξ and maximize w.r.t. $\alpha_n \geq 0$ and β_n

$$\geq 0$$

$$\min_{\mathbf{w}, w_0, \{\xi_n\}_{n=1}^N} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{n=1}^N \frac{\xi_n}{n}$$
s.t.
$$y^{(n)} (\mathbf{w}^T \mathbf{x}^{(n)} + w_0) \ge 1 - \xi_n \quad n = 1, ..., N$$

$$\xi_n \ge 0$$

Lagrange formulation

$$\mathcal{L}(\mathbf{w}, w_0, \xi, \alpha, \beta) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n + \sum_{n=1}^{N} \alpha_n (1 - \xi_n - y^{(n)} (\mathbf{w}^T \mathbf{x}^{(n)} + w_0)) - \sum_{n=1}^{N} \beta_n \xi_n$$

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{w}_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = 0 \Rightarrow \mathbf{w} - \sum_{n=1}^{N} \alpha_n y^{(n)} \boldsymbol{x}^{(n)} = \mathbf{0}$$
$$\Rightarrow \mathbf{w} = \sum_{n=1}^{N} \alpha_n y^{(n)} \boldsymbol{x}^{(n)}$$

$$\frac{\partial \mathcal{L}(\mathbf{w}, \mathbf{w}_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial \mathbf{w}_0} = 0 \Rightarrow -\sum_{n=1}^N \alpha_n y^{(n)} = 0$$

$$\frac{\partial \mathcal{L}(\mathbf{w}, \mathbf{w}_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial \boldsymbol{\xi}_n} = 0 \Rightarrow C - \alpha_n - \beta_n = 0$$

Soft-margin SVM: Dual problem

$$\max_{\alpha} \left\{ \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y^{(n)} y^{(m)} \boldsymbol{x}^{(n)^T} \boldsymbol{x}^{(m)} \right\}$$
Subject to
$$\sum_{n=1}^{N} \alpha_n y^{(n)} = 0$$

$$0 \le \alpha_n \le C \quad n = 1, \dots, N$$

After solving the above quadratic problem, w is find as:

$$\boldsymbol{w} = \sum_{n=1}^{N} \alpha_n \ y^{(n)} \boldsymbol{x}^{(n)}$$

Karush-Kuhn-Tucker (KKT) conditions

- Necessary conditions for the solution $[w^*, w_0^*, \xi^*, \alpha^*, \beta^*]$:
 - $\alpha_n^* \ge 0 \ \ n = 1, ..., N$
 - $y^{(n)}(\mathbf{w}^{*T}\mathbf{x}^{(n)} + \mathbf{w}_0^*) \ge 1 \xi_n^* \ n = 1, ..., N$
 - $\alpha_i^* (1 y^{(n)} (\mathbf{w}^{*T} \mathbf{x}^{(n)} + \mathbf{w}_0^*) \xi_n^*) = 0 \quad n = 1, ..., N$
 - $\beta_n^* \ge 0 \quad n = 1, ..., N$
 - $\xi_n^* \geq 0$

$$\min_{\mathbf{x}} f(\mathbf{x})$$

s. t. $g_i(\mathbf{x}) \le 0$ $i = 1, ..., m$

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}) = f(\mathbf{x}) + \sum_{i} \alpha_{i} g_{i}(\mathbf{x})$$

In general, the optimal x^* , α^* satisfies KKT conditions:

$$\alpha_i^* \ge 0 \quad i = 1, ..., m$$
 $g_i(\mathbf{x}^*) \le 0 \quad i = 1, ..., m$
 $\alpha_i^* g_i(\mathbf{x}^*) = 0 \quad i = 1, ..., m$

Soft-margin SVM: Support vectors

- Support Vectors: $\alpha_n > 0$
 - If $0 < \alpha_n < C$ (margin support vector)

SVs on the margin

$$y^{(n)}(\mathbf{w}^T \mathbf{x}^{(n)} + w_0) = 1$$
 $(\xi_n = 0)$

If $\alpha = C$ (non-margin support vector)

SVs on or over the margin

$$y^{(n)}(\mathbf{w}^T \mathbf{x}^{(n)} + w_0) < 1$$
 $(\xi_n > 0)$

$$C - \alpha_n - \beta_n = 0$$

SVM Gaussian kernel: Example Soft margin

49

This example has been adopted from Zisserman's slides

50

$$\sigma = 1.0 \quad C = \infty$$

$$f(\mathbf{x}) = 0$$

$$f(\mathbf{x}) = -1$$

$$f($$

This example has been adopted from Zisserman's slides

$$\sigma = 1.0$$
 $C = 100$

This example has been adopted from Zisserman's slides

$$\sigma = 1.0$$
 $C = 10$

This example has been adopted from Zisserman's slides

$$\sigma = 1.0$$
 $C = \infty$

This example has been adopted from Zisserman's slides

$$\sigma = 0.25$$
 $C = \infty$

This example has been adopted from Zisserman's slides

$$\sigma = 0.1$$
 $C = \infty$

55

References

Mahdieh Soleymani, Machine learning course, Sharif univ. of tech.