Übungen Formale Grundlagen der Informatik II Blatt 2

Übungsaufgabe 2.3:

2.3.1:

$$L(A_n) = \left((ab)^0 d(ba)^0 + \ldots + (ab)^{\frac{n}{2}} d(ba)^{\frac{n}{2}} \right)$$

$$+ \left((ab)^0 a da(ba)^0 + \ldots + (ab)^{\frac{n}{2} - 1} a da(ba)^{\frac{n}{2} - 1} \right)$$

$$+ (ab)^{\frac{n}{2}}$$

2.3.2:

$$L(A_n) = \{ab\}^0 \cdot \{d\} \cdot \{ba\}^0 \cup \ldots \cup \{ab\}^{\frac{n}{2}} \cdot \{d\} \cdot \{ba\}^{\frac{n}{2}}$$
$$\cup \{ab\}^0 \cdot \{ada\} \cdot \{ba\}^0 \cup \ldots \cup \{ab\}^{\frac{n}{2}-1} \cdot \{ada\} \cdot \{ba\}^{\frac{n}{2}-1}$$
$$\cup \{ab\}^{\frac{n}{2}}$$

2.3.3:

$$Z.zg.: L(A_n) = \{ab\}^0 \cdot \{d\} \cdot \{ba\}^0 \cup \ldots \cup \{ab\}^{\frac{n}{2}} \cdot \{d\} \cdot \{ba\}^{\frac{n}{2}}$$

$$\cup \{ab\}^0 \cdot \{ada\} \cdot \{ba\}^0 \cup \ldots \cup \{ab\}^{\frac{n}{2}-1} \cdot \{ada\} \cdot \{ba\}^{\frac{n}{2}-1}$$

$$\cup \{ab\}^{\frac{n}{2}}$$

Diesen Block nennen wir im folgenden der Übersicht halber $M(A_n)$

 $,, \Rightarrow$ ": Sei $w \in L(A_n)$.

Dann wird w von A_n akzeptiert. A_n hat zwei Endzustände Z_1 und Z_{2n} . Nun gibt es drei Möglichkeiten welche Form w haben kann.

Um den Endzustand Z_{2n} zu erreichen muss w aus $\frac{n}{2}$ vielen Aneinanderreihungen von ab bestehen. Also $w = \{ab\}^{\frac{n}{2}}$ und damit auch $w \in M(A_n)$.

Um den Endzustand Z_1 zu erreichen gibt es zwei Möglichkeiten, hier die erste. Der direkte Weg zu Z_1 ist immer über w = d vorhanden, für $n \geq 2$ kommt nun die Möglichkeit hinzu im Automaten einen Bogen zu "laufen". Das funktioniert wie folgt: zuerst liest man bis zu $\frac{n}{2}$ viele ab,dann ein dum nach "unten" zu kommen und anschließend liest man $\frac{n}{2}$ viele ba um in Z_1 zu landen. w kann also alle Formen zwischen $\{ab\}^0 \cdot \{d\} \cdot \{ba\}^0$ und $\{ab\}^{\frac{n}{2}} \cdot \{d\} \cdot \{ba\}^{\frac{n}{2}}$ annehmen. Auch hier gilt $w \in M(A_n)$.

Form 3:

Funktioniert analog zu Form 2: zuerst liest man bis zu $\frac{n}{2}-1$ viele ab, dann noch ein a, dann d um nach "unten" zu kommen und anschließend liest man noch ein a und $\frac{n}{2}-1$ viele ba um in Z_1 zu landen. w kann also alle Formen zwischen $\{ab\}^0 \cdot \{ada\} \cdot \{ba\}^0$ und $\{ab\}^{\frac{n}{2}-1} \cdot \{ada\} \cdot \{ba\}^{\frac{n}{2}-1}$ annehmen. Auch hier gilt wieder $w \in M(A_n)$.

Also ist $w \in M(A_n)$ und $L(A_n) \subseteq M(A_n)$.

 $,, \Leftarrow$ ": Sei $w \in M(A_n)$.

Wir unterteilen w in drei Fälle.

Fall 1:

 $w = \{ab\}^{\frac{n}{2}}$

Daraus ergibt sich folgende Kantenrelation:

$$\delta(Z_0, \{ab\}^{\frac{n}{2}}) \mapsto \delta(Z_2, \{b\} \cdot \{ab\}^{\frac{n}{2}-1}) \mapsto \delta(Z_4, \{ab\}^{\frac{n}{2}-1}) \mapsto \ldots \mapsto \delta(Z_{2n}, \lambda)$$

D.h. bei Eingaben dieser Form landet der Automat immer in \mathbb{Z}_{2n} . Dies ist ein Endzustand.

Fall 2:

 $w \in \{ab\}^0 \cdot \{d\} \cdot \{ba\}^0 \cup \ldots \cup \{ab\}^{\frac{n}{2}} \cdot \{d\} \cdot \{ba\}^{\frac{n}{2}}$

Dann hat w die Form $w = u \cdot \{d\} \cdot v \mid u = \{ab\}^x \text{ und } v = \{ba\}^x \text{ wobei } x \in (0, \frac{n}{2})$

Daraus ergibt sich folgende Kantenrelation:

$$\delta(Z_0, u \cdot \{d\} \cdot v) \mapsto \ldots \mapsto \delta(Z_{4x}, \{d\} \cdot v) \mapsto \delta(Z_{4x+1}, v) \mapsto \ldots \mapsto \delta(Z_1, \lambda)$$

D.h. bei Eingaben dieser Form landet der Automat immer in \mathbb{Z}_1 . Dies ist ein Endzustand.

Fall 3:

 $w \in \{ab\}^0 \cdot \{ada\} \cdot \{ba\}^0 \cup \ldots \cup \{ab\}^{\frac{n}{2}-1} \cdot \{ada\} \cdot \{ba\}^{\frac{n}{2}-1}$

Dann hat w die Form $w = u \cdot \{ada\} \cdot v \mid u = \{ab\}^x \text{ und } v = \{ba\}^x \text{ wobei } x \in (0, \frac{n}{2} - 1)$

Daraus ergibt sich folgende Kantenrelation:

 $\delta(Z_0, u \cdot \{ada\} \cdot v) \mapsto \ldots \mapsto \delta(Z_{4x}, \{ada\} \cdot v) \mapsto \delta(Z_{4x+2}, \{da\} \cdot v) \mapsto$ $\delta(Z_{4x+3}, \{a\} \cdot v) \mapsto \delta(Z_{4x+1}, v) \mapsto \ldots \mapsto \delta(Z_1, \lambda)$

D.h. auch bei Eingaben dieser Form landet der Automat immer in Z_1 . Dies ist ein Endzustand.

Also ist $w \in L(A_n)$ und $M(A_n) \subseteq L(A_n)$.

2.3.4:

Die Sprache $L(A_n)$ ist regulär, da sie als regulärer Ausdruck geschrieben werden kann. Siehe 1.3.1

Übungsaufgabe 2.4:

2.4.1:

- 1. Die Menge der Start- und Endzustände wird vertauscht bzw. $Q'_0 := F$ und $F' := \{q_0\}$
- 2. Alle Kanten werden umgekehrt bzw. $\delta' := \{(p, w, q) \mid (q, w, p) \in \delta\}$
- 3. Aus dem nun entstandenen NFA wird mittels Potenzautomatenkonstruktion ein DFA erstellt.
- 4. Der entstandene DFA wird ggf. vollständig gemacht.

2.4.2:

Z.zg.:
$$L(A) = \Sigma^* \cdot \{reed\} \cdot \Sigma^* \mid \Sigma = \{r, e, d\}$$

$$,,\Rightarrow$$
 ": Sei $w\in L(A)$.

Dann wird w von A akzeptiert. Dazu muss w in q_4 enden, da dies der einzige Endzustand ist. Am Anfang ist der Automat in q_0 . Um zu q_4 zu gelangen, muss man durch die restlichen drei Zustände gehen. Die einzige Zeichenkette, die Richtung q_4 führt ist reed. Falls dieses Wort mit anderen Buchstaben unterbrochen wird, geht man zurück in Richtung q_0 . Sobald man in q_4 angekommen ist, kann man alle Zeichen in Σ lesen und bleibt im Endzustand. D.h. w hat die Form $u \cdot reed \cdot v \mid u, v \in \Sigma^*$.

Also ist $w \in \Sigma^* \cdot \{reed\} \cdot \Sigma^*$ und $L(A') \subseteq \Sigma^* \cdot \{reed\} \cdot \Sigma^*$.

$$,, \Leftarrow$$
 ": Sei $w \in \Sigma^* \cdot \{reed\} \cdot \Sigma^*$.

 $\text{Dann gilt } w = x_1 \cdot x_2 \cdot x_3 \mid x_1, x_3 \in \Sigma^* \quad \text{und} \quad x2 = reed.$

Daraus ergibt sich folgende Kantenrelation:

$$\delta(q_0, x_1 \cdot x_2 \cdot x_3) \mapsto \delta(\{q_0, q_1, q_2, q_3, q_4\}, x_2 \cdot x_3) \mapsto \delta(q_4, x_3) \mapsto \delta(q_4, \lambda)$$

D.h. bei Eingaben dieser Form landet der Automat immer in q_4 . q_4 ist ein Endzustand.

Also ist $w \in L(A)$ und $\Sigma^* \cdot \{reed\} \cdot \Sigma^* \subseteq L(A')$.

2.4.3:

Der reguläre Ausdruck zu $\Sigma^* \cdot \{reed\} \cdot \Sigma^*$ lautet $\Sigma^* \cdot reed \cdot \Sigma^*$.

2.4.4:

1. Der Ursprüngliche Automat:

2. Kanten umkehren:

3. Potenzautomaten konstruieren:

A':

4. Vollständig machen: Der Automat ist bereits vollständig!

2.4.5:

$$\text{Z.zg.: } L(A') = \{w^{rev} \mid w \in L(A)\} = \{w^{rev} \mid w \in \Sigma^* \cdot \{reed\} \cdot \Sigma^*\} = \Sigma^* \cdot \{deer\} \cdot \Sigma^*$$

 $, \Rightarrow$ ": Sei $w \in L(A')$.

Dann wird w von A akzeptiert. Dazu muss w in q_0 enden, da dies der einzige Endzustand ist. Am Anfang ist der Automat in q_4 . Um zu q_0 zu gelangen, muss man durch die restlichen drei Zustände gehen. Die einzige Zeichenkette, die Richtung q_0 führt ist deer. Falls dieses Wort mit anderen Buchstaben unterbrochen wird, geht man zurück in Richtung q_4 . Sobald man in q_0 angekommen ist, kann man alle Zeichen in Σ lesen und bleibt im Endzustand. D.h. w hat die Form $u \cdot deer \cdot v \mid u,v \in \Sigma^*$

Also ist $w \in \Sigma^* \cdot \{deer\} \cdot \Sigma^* \text{ und } L(A') \subseteq \{w^{rev} \mid w \in L(A)\}.$

 $,, \Leftarrow$ ": Sei $w \in \Sigma^* \cdot \{deer\} \cdot \Sigma^*$.

Dann gilt $w = x_1 \cdot x_2 \cdot x_3 \mid x_1, x_3 \in \Sigma^*$ und $x_2 = deer$.

Daraus ergibt sich folgende Kantenrelation:

$$\delta(q_4, \quad x_1 \cdot x_2 \cdot x_3) \mapsto \delta(\{q_0, q_1, q_2, q_3, q_4\}, \quad x_2 \cdot x_3) \mapsto \delta(q_0, \quad x_3) \mapsto \delta(q_0, \lambda)$$

D.h. bei Eingaben dieser Form landet der Automat immer in q_0 . q_0 ist ein Endzustand. Also ist $w \in L(A')$ und $\{w^{rev} \mid w \in L(A)\} \subseteq L(A')$.