

OpenCV 기본연산

- 화소 접근, ROI, 영상 복사, 컬러

미디어기술콘텐츠학과 강호철

영상 속성과 화소 접근

- numpy와 OpenCV 자료형
 - numpy.ndarray로 영상 표현
 - 영상의 속성도 numpy.ndarray 관련 함수 사용

구분	numpy 자료형	OpenCV 자료?	형		
8비트 unsigned 정수	np.uint8	cv2.CV_8U			
8비트 signed 정수	np.int8	cv2.CV_8S		C n	모양, 자료형
16비트 unsigned 정수	np.uint16	cv2.CV_16U			• astype: 속성
16비트 signed 정수	np.int16	cv2.CV_16S			• ndim: 차원
32비트 signed 정수	np.int32	cv2.CV_32S			• shape: 크기
32비트 실수	np.float32	cv2.CV_32F			• dtype: 원소 자료형
64비트 실스	np.float64	cv2.CV_64F			

출처: https://wjddyd66.github.io/opencv/OpenCV(3)/

영상 속성과 화소 접근

- numpy와 OpenCV 자료형
 - 컬러 접근 및 설정

```
# images are just NumPy arrays. The top-left pixel can be found at (0, 0)
(b, g, r) = image[0, 0]
print("Pixel at (0, 0) - Red: {r}, Green: {g}, Blue: {b}".format(r=r, g=g, b=b))

# now, let's change the value of the pixel at (0, 0) and make it red
image[0, 0] = (0, 0, 255)
(b, g, r) = image[0, 0]
print("Pixel at (0, 0) - Red: {r}, Green: {g}, Blue: {b}".format(r=r, q=q, b=b))
```

- Black: (0, 0, 0)
- White: (255, 255, 255)
- Red: (255, 0, 0)
- Green: (0, 255, 0)
- Blue: (0, 0, 255)
- Aqua: (0, 255, 255)
- Fuchsia: (255, 0, 255)
- Maroon: (128, 0, 0)
- Navy: (0, 0, 128)
- Olive: (128, 128, 0)
- Purple: (128, 0, 128)
- Teal: (0, 128, 128)
- Yellow: (255, 255, 0)

관심영역과 ROI

- ROI 설정
 - 슬라이싱 이용
 - (cy, cx) = (h//2, w//2)
 - tl = image[0:cy, 0:cx]
- 마우스를 이용한 ROI 설정
 - selectROI (winname, img[,showCrosshair[,fromCenter]]) → (x, y, w, h)
 - showCrosshair: 격자 표시 여부
 - fromCenter: 마우스 클릭 위치 설정
 - selectROIs (winname, img[,showCrosshair[,fromCenter]]) → boundingBoxes

영상 복사

- 복사의 필요성
 - 원본 영상 유지
 - numpy.copy()
 - np.zeros() 영상 생성 후 복사
 - 중요) dst = src (복사 or 참조)

영상 채널 분리와 병합

- 채널 분리
 - cv2.split()
 - 다중 채널 영상 → 단일 채널 영상들
- 채널 병합
 - cv2.merge()
 - 단일 채널 영상들 → 다중 채널 영상

컬러 공간 변환

■ 컬러 공간

■ GRAY, HSV, YCrCb,

GRAY

COLOR_BGR2GRAY, COLOR_GRAY2BGR COLOR_RGB2GRAY, COLOR_GRAY2RGB

HSV

COLOR_BGR2HSV, COLOR_HSV2BGR COLOR_RGB2HSV, COLOR_HSV2RGB

YCrCb

COLOR_BGR2HSVYCrCb, COLOR_YCrCb2BGR COLOR_RGB2HSVYCrCb, COLOR_YCrCb2RGB

출처: https://m.blog.naver.com/PostView.nhn?blogId=alsrb968&logNo=220909428222&proxyReferer=https%3A%2F%2Fwww.google.com%2F

cv2.cvtColor(src, code[,dst[,dstCn]]) → dst

화이트 보드

영상처리 프로그래밍 기초

- Python으로 배우는 OpenCV 프로그래밍
 - 김동근 지음
 - 가메출판사, 2018

