NO. 1376 P. 13 Application No.: 09/643,138

Attorney Docket No.: 03678.0064.00US00

In the Claims

1. (Currently Amended) A <u>pharmaceutical formulation comprising a</u> compound of general formula I, or salts thereof:

Formula I

wherein:

 X_1 , X_2 , and X_3 are independently selected from the group consisting of oxygen, methylene, monochloromethylene, dichloromethylene, monofluoromethylene, difluoromethylene, and imido;

T, W, and V are independently oxygen or sulfur;

m=0, 1 or 2;

n=0, 1, or 2;

p=0, 1, or 2;

M= H or a pharmaceutically-acceptable inorganic or organic counterion;

 $D_i = O \text{ or } C;$

B' is a purine or a pyrimidine residue according to general formulas IV and V which is linked to the [[5']] 1' position of the furanose or carbocycle via the 9- or 1- position, respectively;

 $Y' = H \text{ or } OR_{1}$

 $Z' = H \text{ or } OR_2;$

A is elected from the group consisting of M, alkyl, eyeloalkyl, aralkyl, aryl, and acylthicalkyl, with or

without substituents or heteroatoms M or alkyl; or

A is a nucleoside residue which is defined as:

and which is linked to the phosphate chain via the 5' position of the furanose or carbocycle; wherein:

Z -Hor ORa:

 $Y = H \text{ or } OR_4$;

 $D_2 = O \text{ or } C$;

B is a purine or a pyrimidine residue according to general formulas IV and V which is linked to the sugar or carbocycle via the 9- or 1- position, respectively;

 R_1 , R_2 , R_3 , and R_4 are H, provided that at least one of the four is a residue according to general formula H or III, which is linked to the 2' or 3' furanese or carbocycle hydroxyl oxygen via a carbon atom; wherein when D_1 and D_2 are oxygen, the furanese is in the β -configuration;

Y'= H, OH, or OR₁, where OR₁ falls under the definition of general Formula II or III;

Z'= OH or OR2, where OR2 falls under the definition of general Formula II or III;

Z=OH or OR₃, where OR₃ falls under the definition of general Formula II or III;

Y=H, OH, or OR4, where OR4 falls under the definition of general Formula II or III;

provided that at least one of Y', Z', Z, and Y is OR1, OR2, OR3, or OR4, respectively;

wherein compounds of general Formula I are molecules whose structures fall within the definitions of Formula Ia and Formula Ib:

Formula Ia

wherein:

Application No.: 09/643,138 Attorney Docket No.: 03678.0064.00US00

```
X_1, X_2, and X_3=0;
T, V, and W=0;
M=H, NH4+ NH4+, Na+ or other pharmaceutically-acceptable inorganic or organic counterion;
Y'= H, OH, or OR_1, where OR_1 falls under the definition of general formula II;
Z'=OH or OR_2, where \underline{O}R_2 falls under the definition of general formula II;
Z=OH or OR3, where OR3 falls under the definition of general formula II;
Y=H, OH, or OR4, where OR4 falls under the definition of general formula II;
provided that at least one of Y', Z', Z, and Y is OR1, OR2, OR3, or OR4, respectively;
D_1 = 0;
D_2 = 0 or C;
B and B' are purine or pyrimidine residues according to general formulas IV and V;
-m and p= 0, 1 or 2; ---
n=0 or 1;
such that the sum of m+n+p is from [[1]] 0 to 5; or
X_1, X_2, \text{ and } X_3=0;
T. V. and W = 0;
M=H, NH4+ NH4+, Na+ or other pharmaceutically-acceptable inorganic or organic counterion;
Y'= H, OH, or OR_1, where OR_1 falls under the definition of general formula III;
Z'=OH or OR_2, where \underline{O}R_2 falls under the definition of general formula III;
Z=OH or OR3, where OR3 falls under the definition of general formula III;
 Y=H, OH, or OR4, where OR4 falls under the definition of general formula III;
 provided that at least one of Y', Z', Z, and Y is OR1, OR2, OR3, or OR4, respectively,
 D_1 = 0;
 D_2 = O \text{ or } C;
 B and B' are purine or pyrimidine residues according to general formulas IV and V;
 m and p=0, 1 or 2;
 n=0 or 1;
 such that the sum of m+n+p is from [[1]] 0 to 5; or
 X_1 and X_3=0;
```

Attorney Docket No.: 03678.0064.00US00

X₂ is selected from the group consisting of methylene, monochloromethylene, dichloromethylene, monofluoromethylene, difluoromethylene, and imido;

T, V, and W = 0;

M=H, NH4+ NH4+, Na+ or other pharmaceutically-acceptable inorganic or organic counterion;

Y'= H, OH, or OR_1 , where OR_1 falls under the definition of general formula Π ;

Z'=OH or OR_2 , where $\underline{O}R_2$ falls under the definition of general formula II;

Z=OH or OR₃, where OR₃ falls under the definition of general formula II;

Y=H, OH, or OR₄, where QR_4 falls under the definition of general formula II;

provided that at least one of Y', Z', Z, and Y is OR1, OR2, OR3, or OR4, respectively,

 $D_1 = 0;$

 $D_2 = 0$ or C;

m and p = 0, 1, 0, 1 or 2;

B-and B' are purine or pyrimidine residues according to general formulas IV-and V;

n= 1;

such that the sum of m+n+p is from [[1]] 0 to 5; or

 X_1 and $X_3=0$;

X₂ is selected from the group consisting of methylene, monochloromethylene, dichloromethylene, monofluoromethylene, difluoromethylene, and imido;

T, V, and W = O;

M=H, NH4+ NH4+, Na+ or other pharmaceutically-acceptable inorganic or organic counterion;

Y'= H, OH, or OR_1 , where OR_1 falls under the definition of general formula III;

Z'=OH or OR_2 , where $\underline{O}R_2$ falls under the definition of general formula III;

Z=OH or OR3, where OR3 falls under the definition of general formula III;

Y= H, OH, or OR₄, where \underline{O} R₄ falls under the definition of general formula III;

provided that at least one of Y', Z', Z, and Y is OR1, OR2, OR3, or OR4, respectively;

 $D_1 = 0;$

D₂ is O or C;

B and B' are purine or pyrimidine residues according to general formulas IV and V; m and p= 0, 1 or 2;

n=1;

NO. 13/6 P. 1/ Application No.: 09/643,138

Attorney Docket No.: 03678.0064.00US00

such that the sum of m+n+p is from [[1]] 0 to 5; or

 X_1 and $X_3=0$;

X₂ is selected from the group consisting of methylene, monochloromethylene, dichloromethylene, monofluoromethylene, difluoromethylene, and imido;

T=S;

V and W=0:

M= H, NH4+ NH4+, Na+ or other pharmaceutically-acceptable inorganic or organic counterion;

Y'= H, OH, or OR_1 , where OR_1 falls under the definition of general formula II;

Z'=OH or OR_2 , where $\underline{O}R_2$ falls under the definition of general formula Π ;

Z=OH or OR₃, where OR_3 falls under the definition of general formula II;

Y=H, OH, or OR4, where OR4 falls under the definition of general formula II;

provided that at least one of Y', Z', Z, and Y is OR1x OR2x OR3x or OR4x respectively;

 $D_1 = 0;$

 $D_2 = O \text{ or } C$;

B and B' are purine or pyrimidine residues according to general formulas IV and V;

 X_1 and $X_3=0$;

m, n, and p=1; or

X₂ is selected from the group consisting of methylene, monochloromethylene, dichloromethylene, monofluoromethylene, difluoromethylene, and imido;

T=S:

V and W=O;

M is selected from the group consisting of H, NH4⁺ NH₄[±], Na⁺ and other pharmaceutically-acceptable inorganic or organic counterion;

Y'= H, OH, or OR_1 , where OR_1 falls under the definition of general formula III;

Z'=OH or OR_2 , where $\underline{O}R_2$ falls under the definition of general formula III;

Z=OH or OR3, where OR3 falls under the definition of general formula III;

Y=H, OH, or OR4, where OR4 falls under the definition of general formula III;

provided that at least one of Y', Z', Z, and Y is OR1, OR2, OR3, or OR4, respectively;

 $D_1 = 0$;

 $D_2 = 0$ or C;

HOWREY SIMON ARNOLD

NO. 1376 P. 18 Application No.: 09/643,138

Attorney Docket No.: 03678.0064.00US00

B and B' are purine or pyrimidine residues according to general formulas IV and V; m, n, and p= 1;

Formula Ib

$$AO = \begin{bmatrix} W \\ V \\ II \\ P \\ OM \end{bmatrix} V \begin{bmatrix} T \\ II \\ P \\ OM \end{bmatrix} OM OM OM OM DE THE PROPERTY OF THE PROPER$$

wherein:

A is elected from the group consisting of M, alkyl, cycloalkyl, aralkyl, aryl, and acylthicalkyl, with or without substituents or heteroatoms M or alkyl;

 X_1 and $X_2 = 0$;

T, V, and W = O;

M=H, NH4 NH4[±], Na or other pharmaceutically-acceptable inorganic or organic counterion;

Y'= H, OH, or OR_1 , where OR_1 falls under the definition of general formula II;

Z'=H, OH or OR₂, where OR_2 falls under the definition of general formula II; with the provision that at least one of Y' and Z' is OR_1 or OR_2 ;

 $D_1 = O \text{ or } C$;

B' is purine or pyrimidine residue according to general formulas IV and V; n and p are 0, 1, or 2 such that the sum of n+p is from 1 to 3; or

A is selected from the group consisting of M, alkyl, cycloalkyl, aralkyl, aryl, and acylthicalkyl, with or without substituents or heteroatoms M or alkyl;

 X_1 and $X_2 = 0$;

T, V, and W = 0;

M is selected from the group consisting of H, NH4 NH4[±], Na Na[±] and other pharmaceutically-acceptable inorganic or organic counterion;

Y'= OR_1 , where OR_1 falls under the definition of general formula III;

Attorney Docket No.: 03678.0064.00US00

 $Z'=OR_2$, where $\underline{O}R_2$ falls under the definition of general formula III;

 $D_1 = 0$ or C;

B' is purine or pyrimidine residue according to general formulas IV and V;

n and p are 0, 1, or 2 such that the sum of n+p is from 1 to 3; or

A is selected from the group consisting of M, alkyl, eyeloalkyl, aralkyl, aryl, and acylthicalkyl, with or without substituents or heteroatoms M or alkyl;

 X_1 and $X_2 = 0$;

T and V=0;

W=S:

M=H, NH4 NH4[±], Na Na[±] or other pharmaceutically-acceptable inorganic or organic counterion;

Y'= H, OH, or OR1, where OR1 falls under the definition of general formula II; -

Z'=H, OH or OR₂, where OR_2 falls under the definition of general formula II;

with the provision that at least one of Y' and Z' is OR1 or OR2;

 $D_1 = O \text{ or } C$;

B' is purine or pyrimidine residue according to general formulas IV and V;

p is 0, 1, or 2 such that the sum of n+p is from 1 to 3;

n=1; or

A is selected from the group consisting of M, alkyl, eyeloalkyl, aralkyl, aryl, and acylthicalkyl, with or without substituents or heteroatoms M or alkyl;

 X_1 and $X_2 = 0$;

T and V = 0:

W=S:

M is selected from the group consisting of H, NH4 NH₄[±], Na Na[±] and other pharmaceutically-acceptable inorganic or organic counterion;

 $Y' = OR_1$, where OR_1 falls under the definition of general formula III;

 $Z'=OR_2$, where OR_2 falls under the definition of general formula III;

 $D_1 = 0$ or C;

B' is purine or pyrimidine residue according to general formulas IV and V;

p is 0, 1, or 2 such that the sum of n+p is from 1 to 3;

MAY. 14. 2004 12:42PM

NO. 1376 P. 20 Application No.: Uy/643,138

Attorney Docket No.: 03678.0064.00US00

n=1; or

A is selected from the group consisting of M, alkyl, cycloalkyl, aralkyl, aryl, and acylthicalkyl, with or without substituents or heteroatoms M or alkyl;

 $X_1 = 0;$

X₂ is selected from the group consisting of methylene, monochloromethylene, dichloromethylene, monofluoromethylene, difluoromethylene, and imido;

T, V, and W=0;

M is selected from the group consisting of H, NH4 NH4, Na Na⁺ and other pharmaceutically-acceptable inorganic or organic counterion;

Y'= H, OH, or OR_1 , where OR_1 falls under the definition of general formula II;

Z'=H, OH or OR_2 , where OR_2 falls under the definition of general formula H; with the provision that at least one of Y' and Z' is OR_1 or OR_2 ;

 $D_1 = O \text{ or } C$;

B' is purine or pyrimidine residue according to general formulas IV and V;

p is 0, 1, or 2 such that the sum of n+p is from 1 to 3;

n=1; or

A is selected from the group consisting of M, alkyl, cycloalkyl, aralkyl, aryl, and acylthicalkyl, with or without substituents or heteroatoms M or alkyl;

 $X_i = 0;$

 X_2 is selected from the group consisting of methylene, monochloromethylene, dichloromethylene, monofluoromethylene, difluoromethylene, and imido;

T, V, and W=0;

M is selected from the group consisting of H, NH4 NH_a⁺, Na Na⁺ and other pharmaceutically-acceptable inorganic or organic counterion;

Y'= H, OH, or OR_1 , where OR_1 falls under the definition of general formula III;

Z'=H, OH or OR₂, where $\underline{O}R_2$ falls under the definition of general formula III;

 $D_1 = O \text{ or } C;$

B' is purine or pyrimidine residue according to general formulas IV and V; p is 0, 1, or 2 such that the sum of n+p is from 1 to 3;

NO. 1376 P. 21 Application No.: 05/643,138 Attorney Docket No.: 03678.0064.00US00

n=1;

wherein, for compounds according to Formula Ia or Ib, where Y'= OR₁, Z'= OR₂, Z= OR₃ and/or Y= OR₄, at least one of the four is a residue which is linked directly to the corresponding 2' or 3' hydroxyl oxygen of the furanose or carbocycle via a carbon atom; wherein said residue falls within the scope of formula II or formula III:

Formula II

wherein:

O is the corresponding 2' or 3' oxygen of the furanose or carbocycle;

 R_5 , R_6 , and R_7 are selected from the group consisting of H, an alkyl, cycloalkyl, aralkyl, aryl, substituted aralkyl, and substituted aryl, such that the moiety defined according to formula II is an ether; or R_5 and R_6 are taken together to be oxygen or sulfur doubly bonded to Q, and R_7 is selected from the group consisting of alkyl, cycloalkyl, aralkyl, [aryl,] and substituted aralkyl, [and substituted aryl,] such that the moiety defined according to formula II is an ester or thioester; or

R₅ and R₆ are taken together to be oxygen or sulfur doubly bonded to Q, and R₇ is amino or mono- or disubstituted amino, where the substituents are selected from the group consisting of alkyl, cycloalkyl, aralkyl, aryl, substituted aralkyl, and substituted aryl, such that the moiety according to formula II is a carbamate or thiocarbamate; or

 R_5 and R_6 are taken together to be oxygen or sulfur doubly bonded to Q, and R_7 is selected from the group consisting of alkoxy, cycloalkoxy, aralkyloxy, aryloxy, substituted aralkyloxy, and substituted aryloxy, such that the moiety according to formula II is a carbonate or thiocarbonate; or R_5 and R_6 are taken together to be oxygen or sulfur doubly bonded to Q and both the 2' and 3' oxygens of the furanose are directly bound to Q to form a cyclical carbonate or thiocarbonate, R_7 is not present;

NO. 1376 P. 22 Application No.: 09/643,138

Attorney Docket No.: 03678.0064.00US00

Formula III

wherein:

O is the 2' and 3' oxygens of the furanose or carbocycle; and

the 2' and 3' oxygens of the furanose or carbocycle are linked by a common carbon atom to form a cyclical acetal, cyclical ketal, or cyclical orthoester; and

for cyclical acetals and ketals, R₈ and R₉ are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, aralkyl, aryl, substituted aralkyl, and substituted aryl; or are joined together to form a homocyclic or heterocyclic ring composed of 3 to 8 atoms, or

for cyclical orthoesters, R_8 is selected from the group consisting of hydrogen, alkyl, cycloalkyl, aralkyl, aryl, substituted aralkyl, and substituted aryl,

and R_9 is selected from the group consisting of alkyloxy, cycloalkyloxy, aralkyloxy, aryloxy, substituted aralkyloxy, and substituted aryloxy;

B and B' are independently a purine residue, as in formula IV, linked through the 9- position, or a pyrimidine residue, as in formula V, linked through the 1- position;

wherein, provided when D1 and D2 are oxygen, the ribosyl moieties are in the D- configuration;

NO. 1376 P. 23 Application No.: 09/643,138

Attorney Docket No.: 03678.0064.00US00

Formula V

$$R_{16}$$
 R_{16}
 R

wherein:

 R_{10} and R_{14} are selected from the group consisting of hydroxy, oxo, amino, mercapto, alkylthio, alkyloxy, aryloxy, alkylamino, cycloalkylamino, aralkylamino, arylamino, diaralkylamino, diarylamino, er and dialkylamino, where the alkyl groups are optionally linked to form a heterocycle; or R₁₀ and R₁₄ are acylamino according to Formula VI, provided that they incorporate an amino residue

maximum of 20 carbon atoms, with or without unsaturation;

Attorney Docket No.: 03678.0064.00US00

from the C-6 position of the purine or the C-4 position of the pyrimidine; or when R_{10} in a purine or R_{14} in a pyrimidine has as its first atom nitrogen, R_{10} and R_{11} or R_{14} and R_{15} are taken together to form a 5-membered fused imidazole ring, optionally substituted on the etheno ring with R_5 - R_9 selected from the group consisting of alkyl, cycloalkyl, aralkyl, or aryl moieties, as described above;

J is carbon or nitrogen, with the provision that when nitrogen, R₁₂ is not present;

R₁₁ is hydrogen, O or is absent;

R₁₂ is selected from the group consisting of hydrogen, alkyl, azido, alkylamino, arylamino, aralkylamino, alkoxy, aryloxy, aralkyloxy, alkylthio, arythio, aralkylthio, and ω-A(C₁₋₆alkyl)B- wherein A and B are selected from the group consisting of independently amino, mercapto, hydroxy and carboxyl; R₁₃ is selected from the group consisting of hydrogen, chlorine, amino, monosubstituted amino, disubstituted amino, alkylthio, arylthio, and aralkylthio, where the substituent on sulfur contains up to a

R₁₅ is selected from the group consisting of hydrogen, and acyl, such as acetyl, benzoyl, phenylacyl, with or without substituents;

R₁₆ is selected from the group consisting of hydrogen, methyl, alkyl, halo, alkyl, alkenyl, substituted alkynyl, and substituted alkynyl;

Formula VI

$$-\overset{H}{\sim}\overset{W}{\sim}_{R_1}$$

wherein:

NH is the amino residue at the C-6 position in a purine or the amino residue at the C-4 position in a pyrimidine;

Q is a carbon atom;

NO. 1376 P. 25 Appucation No.: 02/643,138 Attorney Docket No.: 03678.0064.00US00

W is oxygen or sulfur;

R₁₇ is amino or mono- or disubstituted amino such that the moiety according to formula VI is a urea or thiourea; or

 R_{17} is selected from the group consisting of alkoxy, aralkyloxy, aryloxy, substituted aralkyloxy, and substituted aryloxy, such that the moiety according to formula VI is a carbamate or thiocarbamate; or R_{17} is selected from the group consisting of alkyl, cycloalkyl, aralkyl, and aryl, with or without substituents or heteroatoms, such that the moiety according to formula VI is an amide.

- 2. (Currently Amended) The compound according to Claim [[1]] 37, wherein said compound is fluorescently labeled and used as a biochemical probe for the P2_T receptor.
- 3. (Currently Amended) A method of preventing or treating diseases or conditions associated with platelet aggregation comprising:

administering to a subject patient a pharmaceutical composition formulation according to Claim

1. [comprising a therapeutic effective amount of P2_T
receptor antagonist compound,] wherein said [amount] compound is effective to bind the P2_T receptors on platelets and inhibit ADP-induced platelet aggregation.

- 4. (Canceled).
- 5. (Currently Amended) The method according to Claim 3, wherein said administering of said antagonist compound is used pharmaceutical formulation is administered to reduce the incidence of dose-related adverse side effects of other therapeutic agents used to prevent, manage or treat platelet aggregation disorders.
- 6. (Currently Amended) The method according to Claim 3, wherein said administering is systemic administration of said compound.
- 7. (Original) The method according to Claim 6, wherein said systemic administration is administration of an injectable form of said compound, such that a therapeutically effective amount of said compound contacts the target platelets of said patient via systemic absorption and circulation.

NO. 1376 P. 26 Application No.: 09/643,138

Attorney Docket No.: 03678.0064.00US00

8. (Currently Amended) The method according to Claim 6, wherein said systemic administration of said compound is accomplished by administering an oral form of said compound, such that a therapeutically effective amount of said compound contacts the target platelets of said patient via systemic absorption and circulation.

- 9. (Original) The method according to Claim 6, wherein said systemic administration is administration of said compound in a form of a transdermal patch or a transdermal pad, such that a therapeutically effective amount of said compound contacts the target platelets of said patient via systemic absorption and circulation.
- 10. (Original) The method according to Claim 6, wherein said systemic administration is administration of a liquid/liquid suspension of said compound via nose drops or nasal spray, or administration of a nebulized liquid to oral or nasopharyngeal airways of said subject, such that a therapeutically effective amount of said compound inhibits platelet aggregation.
- 11. (Original) The method according to Claim 6, wherein said systemic administration comprises infusion of said compound to target platelets via a device selected from a group consisting of a pump catheter system and a continuous or selective release device.
- 12. (Original) The method according to Claim 6, wherein said systemic administration is administration of a suppository form of said compound, such that a therapeutically effective amount of said compound contacts the target platelets of said patient via systemic absorption and circulation.
- 13. (Original) The method according to Claim 6, wherein said systemic administration is vaginal administration in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles.
- 14. (Original) The method according to Claim 6, wherein said compound is administered to a patient by an intravitreal delivery.
- 15. (Original) The method according to Claim 6, wherein said systemic administration is administration of an intra-operative instillation of a gel, cream, powder, foam, crystals, liposomes, spray

MAY. 14. 2004 12:45PM HOWREY SIMON ARNOLD

NO. 1376 P. 27 Application No.: 07/643,138 Attorney Docket No.: 03678.0064.00US00

or liquid suspension form of said compound, such that a therapeutically effective amount of said compound contracts the target platelets of said patient via systemic absorption and circulation.

- 16. (Previously Amended) The method according to Claim 3, wherein said diseases or conditions associated with platelet aggregation are disorders or procedures characterized by thrombosis, primary arterial thrombotic complications of atherosclerotic disease, thrombotic complications of interventions of atherosclerotic disease, thrombotic complications of surgical or mechanical damage, mechanically—induced platelet activation, shunt occlusion, thrombosis secondary to vascular damage and inflammation, indications with a diffuse thrombotic/platelet consumption component, venous thrombosis, coronary arterial thrombosis, pathological effects of atherosclerosis and arteriosclerosis, platelet aggregation and clot formation in blood and blood products during storage, chronic or acute states of hyper-aggregability, reocclusion of an artery or vein following fibrinolytic therapy, platelet adhesion associated with extracorporeal circulation, thrombotic complications associated with thrombotic complications associated with coronary and other angioplasty, or thrombotic complications associated with coronary artery bypass procedures.
- 17. (Previously Amended) The method according to Claim 16, wherein said disorders or procedures characterized with thrombosis are unstable angina, coronary angioplasty, or myocardial infarction.
- 18. (Previously Amended) The method according to Claim 16, wherein said primary arterial thrombotic complications of atherosclerosis are thrombotic stroke, peripheral vascular disease, or myocardial infarction without thrombolysis.
- 19. (Currently Amended) The method according to Claim 16, wherein said thrombotic complications of interventions of atherosclerotic disease are <u>associated with</u> angioplasty, endarterectomy, stent placement, coronary or other vascular graft surgery.
- 20. (Currently Amended) The method according to Claim 16, wherein said thrombotic complications of surgical or mechanical damage are <u>associated with</u> tissue salvage following surgical or

Attorney Docket No.: 03678.0064.00US00

accidental trauma, reconstructive surgery including skin flaps, or reductive surgery such as breast reduction.

- 21. (Currently Amended) The method according to Claim 16, wherein said mechanically induced platelet activation is caused by cardiopulmonary bypass resulting in microthromboembolism or storage of blood products.
- 22. (Previously Amended) The method according to Claim 16, wherein said shunt occlusion is renal dialysis or plasmapheresis.
- 23. (Previously Amended) The method according to Claim 16, wherein said thrombosis secondary to vascular damage and inflammation is vasculitis, arteritis, glomerulonephritis or organ graft rejection.
- 24. (Previously Amended) The method according to Claim 16, wherein said indications with a diffuse thrombotic/platelet consumption component are disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, hemolytic uremic syndrome, heparin-induced thrombocytopenia, or pre-eclampsia/eclampsia.
- 25. (Previously Amended) The method according to Claim 16, wherein said venous thrombosis is deep vein thrombosis, veno-occlusive disease, hematological conditions, or migraine.
- 26. (Previously Amended) The method according to Claim 25, wherein said hematological conditions are thrombocythemia or polycythemia.
- 27. (Previously Amended) The method according to Claim 16, wherein said coronary arterial thrombosis is associated with unstable angina, coronary angioplasty or acute myocardial infarction.

MAY. 14. 2004 12:45PM

Appulation No.: 29643,138 Attorney Docket No.: 03678.0064.00US00

28. (Previously Amended) The method according to Claim 16, wherein pathological effects of atherosclerosis and arteriosclerosis are arteriosclerosis, acute myocardial infarction, chronic stable angina, unstable angina, transient ischemic attacks, strokes, peripheral vascular disease, arterial thrombosis, preeclampsia, embolism, restenosis or abrupt closure following angioplasty, carotid endarterectomy, or anastomosis of vascular grafts.

- 29. (Previously Amended) The method according to Claim 16, wherein said chronic or acute states of hyper-aggregability is caused by DIC, septicemia, surgical or infectious shock, post-operative and post-partum trauma, cardiopulmonary bypass surgery, incompatible blood transfusion, abruptio placenta, thrombotic thrombocytopenic purpura, snake venom or immune diseases.
- 30. (Original) The method according to Claim 16, wherein said reocclusion of an artery or vein following fibrinolytic therapy is inhibited by internal administration of said compound with a fibrinolytic agent.
- 31. (Currently Amended) The method according to Claim 30, wherein said fibrinolytic agent is selected from the group consisting of natural or synthetic products which directly or indirectly cause lysis of a the fibrin clot.
- 32. (Previously Amended) The method according to Claim 30, wherein said fibrinolytic agent is a plasminogen activator selected from the group consisting of anistreplase, urokinase, pro-urokinase, streptokinase, tissue plasminogen activator and mutants or variants thereof, which retain plasminogen activator activity.

Attorney Docket No.: 03678.0064.00US00

- 33. (Previously Amended) The method according to Claim 32, wherein said variants are selected from the group consisting of variants which have been chemically modified, variants which one or more amino acids have been added, deleted or substituted and variants with one or more modified functional domains.
- 34. (Previously Amended) The method according to Claim 33, wherein said modified functional domains are added, deleted or altered by combining the active site of one plasminogen activator or fibrin binding domain with another plasminogen activator or fibrin binding molecule.

Add following new claims.

- 35. (New) The pharmaceutical formulation according to Claim 1, wherein said formulation is sterile.
- 36. (New) The pharmaceutical formulation according to Claim 1, wherein said formulation further comprises a pharmaceutical carrier.
- 37. (New) The pharmaceutical formulation according to Claim 1, wherein said formulation further comprises a buffering agent.
- 38. (New) A compound of general formula I, or salts thereof:

Formula I

wherein:

 X_1 , X_2 , and X_3 are independently selected from the group consisting of oxygen, methylene, monochloromethylene, dichloromethylene, monofluoromethylene, difluoromethylene, and imido;

T, W, and V are independently oxygen or sulfur;

m=0, 1 or 2;

n=0, 1, or 2;

p=0, 1, or 2;

M= H or a pharmaceutically-acceptable inorganic or organic counterion;

 $D_1 = 0$ or C;

B' is a purine or a pyrimidine residue according to general formulas IV and V which is linked to the 1' position of the furanose or carbocycle via the 9- or 1- position, respectively,

A is M or alkyl; or

A is a nucleoside residue which is defined as:

and which is linked to the phosphate chain via the 5' position of the furanose or carbocycle; wherein:

 $D_2 = O \text{ or } C;$

B is a purine or a pyrimidine residue according to general formulas IV and V which is linked to the sugar or carbocycle via the 9- or 1- position, respectively;

wherein when D_1 and D_2 are oxygen, the furanose is in the β -configuration;

Y'= H, OH, or OR1, where OR1 falls under the definition of general Formula II or III;

Z'= OH or OR2, where OR2 falls under the definition of general Formula II or III;

Z=OH or OR3, where OR3 falls under the definition of general Formula II or III;

Y= H, OH, or OR₄, where OR₄ falls under the definition of general Formula II or III; provided that at least one of Y', Z', Z, and Y is OR₁, OR₂, OR₃, or OR₄, respectively; wherein compounds of general Formula I are molecules whose structures fall within the definitions of

Formula Ia and Formula Ib:

NO. 1376 P. 32 Application No.: uy/643,138 Attorney Docket No.: 03678.0064.00US00

Formula la

wherein:

$$\begin{array}{c|c} B \\ H \\ \hline \\ D_2 \end{array} \begin{array}{c} T \\ \hline \\ OM \\ \hline \end{array} \begin{array}{c} W \\ \hline \\ OM \\ \hline \end{array} \begin{array}{c} V \\ \hline \\ D_1 \\ \hline \\ OM \\ \hline \end{array} \begin{array}{c} B' \\ \hline \\ OM \\ \hline \end{array} \begin{array}{c} B' \\ \hline \\ OM \\ \hline \end{array} \begin{array}{c} D_1 \\ \hline \\ D_2 \\ \hline \end{array}$$

 $X_1, X_2, \text{ and } X_3=0;$

T, V, and W=0;

M=H, NH4⁺, Na⁺ or other pharmaceutically-acceptable inorganic or organic counterion;

Y'= H, OH, or OR_1 , where OR_1 falls under the definition of general formula II;

Z'= OH or OR2, where OR2 falls under the definition of general formula II;

Z=OH or OR3, where OR3 falls under the definition of general formula II;

Y=H, OH, or OR4, where OR4 falls under the definition of general formula II;

provided that at least one of Y', Z', Z, and Y is OR1, OR2, OR3, or OR4, respectively;

 $D_1 = 0;$

 $D_2 = O \text{ or } C$;

B and B' are purine or pyrimidine residues according to general formulas IV and V;

m and p=0, 1 or 2;

n=0 or 1;

such that the sum of m+n+p is from 0 to 5; or

 X_1 , X_2 , and $X_3=0$;

T, V, and W = O;

M=H, NH4+, Na+ or other pharmaceutically-acceptable inorganic or organic counterion;

D₁ =O; Y'= H, OH, or OR₁, where OR₁ falls under the definition of general formula III;

Z'= OH or OR2, where OR2 falls under the definition of general formula III;

Z=OH or OR3, where OR3 falls under the definition of general formula III;

Y=H, OH, or OR4, where OR4 falls under the definition of general formula III;

provided that at least one of Y', Z', Z, and Y is OR1, OR2, OR3, or OR4, respectively;

```
D_2 = O \text{ or } C;
```

B and B' are purine or pyrimidine residues according to general formulas IV and V;

m and p=0, 1 or 2;

n=0 or 1;

such that the sum of m+n+p is from 0 to 5; or

 X_1 and $X_3=0$;

X₂ is selected from the group consisting of methylene, monochloromethylene, dichloromethylene, monofluoromethylene, difluoromethylene, and imido;

T, V, and W=0;

M=H, NH4, Na+ or other pharmaceutically acceptable inorganic or organic counterion;

Y'= H, OH, or OR1, where OR1 falls under the definition of general formula II;

Z'= OH or OR2, where OR2 falls under the definition of general formula II;

Z= OH or OR₃, where OR₃ falls under the definition of general formula II;

Y=H, OH, or OR4, where OR4 falls under the definition of general formula II;

provided that at least one of Y', Z', Z, and Y is OR1, OR2, OR3, or OR4, respectively;

 $D_1 = 0;$

 $D_2 = 0$ or C;

B and B' are purine or pyrimidine residues according to general formulas IV and V;

m and p=0, 1 or 2;

n=1;

such that the sum of m+n+p is from 0 to 5; or

 X_1 and $X_3=0$;

X₂ is selected from the group consisting of methylene, monochloromethylene, dichloromethylene, monofluoromethylene, difluoromethylene, and imido;

T, V, and W=0;

M= H, NH4⁺, Na⁺ or other pharmaceutically-acceptable inorganic or organic counterion;

Y'= H, OH, or OR1, where OR1 falls under the definition of general formula III;

Z'= OH or OR2, where OR2 falls under the definition of general formula III;

NO. 1376 P. 34 Application No.: 09/643,138

Attorney Docket No.: 03678.0064.00US00

Z=OH or OR3, where OR3 falls under the definition of general formula III;

Y=H, OH, or OR4, where OR4 falls under the definition of general formula III;

provided that at least one of Y', Z', Z, and Y is OR1, OR2, OR3, or OR4, respectively;

 $D_1 = 0;$

D₂ is O or C;

B and B' are purine or pyrimidine residues according to general formulas IV and V;

m and p = 0,1 or 2;

n=1;

such that the sum of m+n+p is from 0 to 5; or

 X_1 and $X_3=0$;

X2 is selected from the group consisting of methylene, monochloromethylene, dichloromethylene,

monofluoromethylene, difluoromethylene, and imido;

T=S;

V and W=O;

M=H, NH4+, Na+ or other pharmaceutically-acceptable inorganic or organic counterion;

Y'= H, OH, or OR_1 , where OR_1 falls under the definition of general formula II;

Z'= OH or OR2, where OR2 falls under the definition of general formula II;

Z= OH or OR₃, where OR₃ falls under the definition of general formula II;

Y= H, OH, or OR4, where OR4 falls under the definition of general formula II;

provided that at least one of Y', Z', Z, and Y is OR1, OR2, OR3, or OR4, respectively;

 $D_1 = 0;$

 $D_2 = O \text{ or } C;$

B and B' are purine or pyrimidine residues according to general formulas IV and V;

m, n, and p= 1; or

 X_1 and $X_3=0$;

X₂ is selected from the group consisting of methylene, monochloromethylene, dichloromethylene, monofluoromethylene, difluoromethylene, and imido;

T=S;

V and W=O;

M is selected from the group consisting of H, NH4+, Na+ and other pharmaceutically-acceptable

NO. 1376 P. 35 Application No.: 02/643,138 Attorney Docket No.: 03678.0064.00US00

inorganic or organic counterion;

Y'= H, OH, or OR1, where OR1 falls under the definition of general formula III;

Z'= OH or OR2, where OR2 falls under the definition of general formula III;

Z=OH or OR3, where OR3 falls under the definition of general formula III;

Y=H, OH, or OR4, where OR4 falls under the definition of general formula III;

provided that at least one of Y', Z', Z, and Y is OR1, OR2, OR3, or OR4, respectively;

 $D_1 = 0$;

 $D_2 = 0$ or C;

B and B' are purine or pyrimidine residues according to general formulas IV and V;

m, n, and p=1;

Formula Ib

$$AO = \begin{bmatrix} W \\ P \\ OM \end{bmatrix} = \begin{bmatrix} V \\ P \\ OM \end{bmatrix} = \begin{bmatrix} T \\ P \\ OM \end{bmatrix} = \begin{bmatrix} P \\ OM \end{bmatrix} =$$

wherein:

A is M or alkyl;

 X_1 and $X_2 = 0$;

T, V, and W = 0;

M=H, NH4, Na or other pharmaceutically-acceptable inorganic or organic counterion;

Y'= H, OH, or OR1, where OR1 falls under the definition of general formula II;

Z'= H, OH or OR₂, where OR₂ falls under the definition of general formula II;

with the provision that at least one of Y' and Z' is OR1 or OR2;

 $D_1 = O \text{ or } C$;

B' is purine or pyrimidine residue according to general formulas IV and V; n and p are 0, 1, or 2 such that the sum of n+p is from 1 to 3; or

NO. 1376 P. 36 Application No.: 09/643,138

Attorney Docket No.: 03678.0064.00US00

A is M or alkyl;

 X_1 and $X_2 = 0$;

T, V, and W = 0;

M is selected from the group consisting of H, NH₄⁺, Na⁺ and other pharmaceutically-acceptable inorganic or organic counterion;

Y'= OR_1 , where R_1 falls under the definition of general formula III;

Z'= OR2, where R2 falls under the definition of general formula III;

 $D_1 = 0$ or C;

B' is purine or pyrimidine residue according to general formulas IV and V;

n and p are 0, 1, or 2 such that the sum of n+p is from 1 to 3; or

A is M or alkyl;

 X_1 and $X_2 = 0$;

T and V = 0;

w=s:

M=H, NH4+, Na+ or other pharmaceutically-acceptable inorganic or organic counterion;

Y'= H, OH, or OR1, where OR1 falls under the definition of general formula II;

Z'= H, OH or OR2, where OR2 falls under the definition of general formula II;

with the provision that at least one of Y' and Z' is OR1 or OR2;

 $D_1 = O \text{ or } C;$

B' is purine or pyrimidine residue according to general formulas IV and V;

p is 0, 1, or 2 such that the sum of n+p is from 1 to 3;

n=1; or

A is M or alkyl;

 X_1 and $X_2 = 0$;

T and V = 0;

W=S:

M is selected from the group consisting of H, NH₄⁺, Na⁺ and other pharmaceutically-acceptable inorganic or organic counterion;

Y'= OR1, where OR1 falls under the definition of general formula III;

NO. 1376 P. 37 Application No.: 09/643,138

Attorney Docket No.: 03678.0064.00US00

Z'= OR2, where OR2 falls under the definition of general formula III;

 $D_1 = 0$ or C;

B' is purine or pyrimidine residue according to general formulas IV and V;

p is 0, 1, or 2 such that the sum of n+p is from 1 to 3;

n=1; or

A is M or alkyl;

 $X_1 = 0;$

X₂ is selected from the group consisting of methylene, monochloromethylene, dichloromethylene, monofluoromethylene, difluoromethylene, and imido;

T, V, and W = O;

M is selected from the group consisting of H, NH₄⁺, Na⁺ and other pharmaceutically acceptable inorganic or organic counterion;

Y'= H, OH, or OR1, where OR1 falls under the definition of general formula II;

Z'= H, OH or OR2, where OR2 falls under the definition of general formula II;

with the provision that at least one of Y' and Z' is OR1 or OR2;

 $D_1 = O \text{ or } C$;

B' is purine or pyrimidine residue according to general formulas IV and V;

p is 0, 1, or 2 such that the sum of n+p is from 1 to 3;

n=1; or

A is M or alkyl;

 $X_1 = 0$:

X₂ is selected from the group consisting of methylene, monochloromethylene, dichloromethylene, monofluoromethylene, difluoromethylene, and imido;

T, V, and W = O;

M is selected from the group consisting of H, NH₄⁺, Na⁺ and other pharmaceutically-acceptable inorganic or organic counterion;

Y'= H, OH, or OR1, where OR1 falls under the definition of general formula III;

Z'= H, OH or OR2, where OR2 falls under the definition of general formula III;

 $D_1 = O \text{ or } C;$

NO. 1376 P. 38 Application No.: ארט /643,138

Attorney Docket No.: 03678.0064.00US00

B' is purine or pyrimidine residue according to general formulas IV and V; p is 0, 1, or 2 such that the sum of n+p is from 1 to 3; n=1;

wherein, for compounds according to Formula Ia or Ib, where Y'= OR₁, Z'= OR₂, Z= OR₃ and/or Y= OR₄, at least one of the four is a residue which is linked directly to the corresponding 2' or 3' hydroxyl oxygen of the furanose or carbocycle via a carbon atom; wherein said residue falls within the scope of formula II or formula III:

Formula II

wherein:

O is the corresponding 2' or 3' oxygen of the furanose or carbocycle;

 R_5 , R_6 , and R_7 are selected from the group consisting of H, an alkyl, cycloalkyl, aralkyl, aryl, substituted aralkyl, and substituted aryl, such that the moiety defined according to formula II is an ether, or R_5 and R_6 are taken together to be oxygen or sulfur doubly bonded to Q, and R_7 is selected from the group consisting of alkyl, cycloalkyl, aralkyl, aryl, substituted aralkyl, and substituted aryl, such that the moiety defined according to formula II is an ester or thioester, or

 R_5 and R_6 are taken together to be oxygen or sulfur doubly bonded to Q, and R_7 is amino or mono- or disubstituted amino, where the substituents are selected from the group consisting of alkyl, cycloalkyl, aralkyl, aryl, substituted aralkyl, and substituted aryl, such that the moiety according to formula II is a carbamate or thiocarbamate; or

 R_5 and R_6 are taken together to be oxygen or sulfur doubly bonded to Q, and R_7 is selected from the group consisting of alkoxy, cycloalkoxy, aralkyloxy, aryloxy, substituted aralkyloxy, and substituted aryloxy, such that the moiety according to formula II is a carbonate or thiocarbonate; or R_5 and R_6 are taken together to be oxygen or sulfur doubly bonded to Q and both the 2' and 3' oxygens of the furanose are directly bound to Q to form a cyclical carbonate or thiocarbonate, R_7 is not present;

Application No.: 09/643,138

Attorney Docket No.: 03678.0064.00US00

Formula III

wherein:

O is the 2' and 3' oxygens of the furanose or carbocycle; and

the 2' and 3' oxygens of the furanose or carbocycle are linked by a common carbon atom to form a cyclical acetal, cyclical ketal, or cyclical orthoester; and

for cyclical acetals and ketals, Rs and Rs are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, aralkyl, aryl, substituted aralkyl, and substituted aryl; or are joined together to form a homocyclic or heterocyclic ring composed of 3 to 8 atoms, or

for cyclical orthoesters, R₈ is selected from the group consisting of hydrogen, alkyl, cycloalkyl, aralkyl, aryl, substituted aralkyl, and substituted aryl,

and R₉ is selected from the group consisting of alkyloxy, cycloalkyloxy, aralkyloxy, aryloxy, substituted aralkyloxy, and substituted aryloxy;

B and B' are independently a purine residue, as in formula IV, linked through the 9- position, or a pyrimidine residue, as in formula V, linked through the 1- position;

wherein, provided when D1 and D2 are oxygen, the ribosyl moieties are in the D- configuration;

NO. 1376 P. 40 Application No.: 09/643,138

Attorney Docket No.: 03678.0064.00US00

wherein:

R₁₀ and R₁₄ are selected from the group consisting of alkylthio, alkyloxy, aryloxy, cycloalkylamino, aralkylamino, arylamino, diaralkylamino, and diarylamino, where the alkyl groups are optionally linked to form a heterocycle; or

 R_{10} and R_{14} are acylamino according to Formula VI, provided that they incorporate an amino residue from the C-6 position of the purine or the C-4 position of the pyrimidine; or

when R_{10} in a purine or R_{14} in a pyrimidine has as its first atom nitrogen, R_{10} and R_{11} or R_{14} and R_{15} are taken together to form a 5-membered fused imidazole ring, optionally substituted on the etheno ring with R_5 - R_9 selected from the group consisting of alkyl, cycloalkyl, aralkyl, or aryl moieties, as described above;

J is carbon or nitrogen, with the provision that when nitrogen, R_{12} is not present;

R₁₁ is hydrogen, O or is absent;

 R_{12} is selected from the group consisting of hydrogen, alkyl, azido, alkylamino, arylamino, aralkylamino, alkoxy, aryloxy, aralkyloxy, alkylthio, arythio, aralkylthio, and ω -A(C_{1-6} alkyl)B- wherein A and B are selected from the group consisting of independently amino, mercapto, hydroxy and carboxyl;

R₁₃ is selected from the group consisting of hydrogen, chlorine, amino, monosubstituted amino, disubstituted amino, alkylthio, arylthio, and aralkylthio, where the substituent on sulfur contains up to a maximum of 20 carbon atoms, with or without unsaturation;

R₁₅ is selected from the group consisting of hydrogen, and acyl, such as acetyl, benzoyl, phenylacyl, with or without substituents;

NO. 1376 P. 41

Application No.: 09/643,138

Attorney Docket No.: 03678.0064.00US00

R₁₆ is selected from the group consisting of hydrogen, methyl, alkyl, halo, alkyl, alkenyl, substituted alkynyl, and substituted alkynyl;

Formula VI

wherein:

NH is the amino residue at the C-6 position in a purine or the amino residue at the C-4 position in a pyrimidine;

Q is a carbon atom;

W is oxygen or sulfur;

 R_{17} is amino or mono- or disubstituted amino such that the moiety according to formula VI is a urea or thiourea; or

R₁₇ is selected from the group consisting of alkoxy, aralkyloxy, aryloxy, substituted aralkyloxy, and substituted aryloxy, such that the moiety according to formula VI is a carbamate or thiocarbamate; or R₁₇ is selected from the group consisting of alkyl, cycloalkyl, aralkyl, and aryl, with or without substituents or heteroatoms, such that the moiety according to formula VI is an amide.