High Reliability Power Supplies PMA 44 - 56

Instruction Manual

High Reliability Power Supplies PMA 44 - 56

Instruction Manual

Gould Power Supplies UK.

Raynham Road, Bishop's Stortford, Hertfordshire, CM23 5PF, England Telephone, (0279) 55155 Telex. 81510

Contents

SECTION 1 INTRODUCTION	5	SECTION 7	GUARANTEE AND SERVICE FACILITIES	47
SECTION 2 SPECIFICATION	6	Table 1	TABLES Fixings, Dimensions, Weights and	9
SECTION 3 OPERATION	9	1 11010	Dissipations	ם
3.1 Installation	9	Table 2	Transformer Primary Connections 100-125V	12
3.2 AC Supply and Preliminary Checks	11	Table 3	Transformer Primary Connections 200-250V	12
The second secon	14	Table 4	Fuse Ratings	13
	15	Table 5	Constant Current Mode Ratings 0-15V	17
3.4 Resetting the Overload Protection	20	Table 6	Constant Current Mode Ratings 0-30 V	13
3.5 Resetting the Overvoltage Protection (if fitted)	20	Table 7	Constant Current Mode Ratings 30-50V	19
3.6 Unit Connections (PMA 44-56)	20 21	Table 8	Voltage Adjustments 0-15V Units	27
3.7 Programming Current and Voltage	23	Table 9	Voltage Adjustments 0-30V Units	28
3.8 Parallel and Series Operation		Table 10	Voltage Adjustments 30-50V Units	29
3.9 Operation with other Power Supply Units	25	Table 11	Permissible Lead Lengths	30
3.10 Four-terminal Sensing	25	Table 12	Fault Finding Chart	40
SECTION 4 CIRCUIT DESCRIPTION	31		ILLUSTRATIONS	
4.1 General	31	Fig. 1 Typi	cal Modular Power Supply	4
4.2 Supply Rectification and Smoothing	31,		ension Diagrams	4
4.3 Series Regulator	32		sformer Primary Connections for 110V	
4.4 Bridge Reference Sources	32		sformer Primary Connections for 240V	11
4.5 Auxiliary Stabiliser	32		out Voltage plotted against Output Current	12
4.6 Voltage Control Bridge	33		out Current limit in constant Current Mode	15
4.7 Current Control Bridge	34		rnal Programming	16
4.8 Mode Gate	37		lel Operation	21
4.9 Crossover in the Mode Gate	38			23
4.10 Overvoltage Protection	38		lel Operation with Overvoltage Circuits Fitted	24
4.11 External Programming	39		-terminal Sensing	26
4.11 External Frogramming			-terminal Sensing (Parallel)	26
SECTION 5 MAINTENANCE	40		tional Diagram of Power Unit	30
SECTION 5 MAINTENANCE 5.1 Access to Components	40		age Control Circuit	33
			ent Control Circuit	34
5.2. Replacement Servicing of	40	Fig. 15 Outp	ut Voltage Plotted Against Output Current in	35
Printed Circuit Boards	40		Re-entrant Mode	
5.3 Fault Finding			F at varying temperatures	42
5.4 MTBF	42		Programme and the state of the	42
SECTION 6 COMPONENT LIST & ILLUSTRATIONS	43		tit Diagram and Components List PMA 16-20	74
SECTION 7 GUARANTEE AND SERVICE FACILITIES	49	Fig. 20 Circu	it Diagram and Components List PMA 44-56	

Introduction

The range of Modular Power Supplies, PMA16-20, consists of units having a fully variable output of 0 to 7V with a choice of current ratings from 1 to 20A. They have been specifically designed to meet the requirements of Integrated Circuit Technology with particular reference to very high reliability and incorporate a new protection circuit to safeguard both the power supply and the load. This range offers the Integrated Circuit user a power supply to satisfy most applications.

The range of Modular Power Supplies, PMA44-56, marks a radical departure from accepted attitudes in commercial power supply design. The range provides pre-set output voltages in the range 0-50V in current ratings of 1, 3, 5, 10A and 20A with very extensive facilities and a high degree of reliability. Facilities available include the selection of various output characteristics, such as constant current operation, by means of internal links, external programming and optional built in thyristor overvoltage protection.

Particular emphasis has been placed on a high specification, rugged mechanical construction and long-life components. As a result of this attention it is possible to quote estimated MTBF figures for each individual unit.

- 10,000:1 Stability
- · Programmeable on Voltage and Current
- MTBF estimated not less than 25,000 hours.

INPUT-VOLTAGE

100, 105, 110, 115, 120, 125, 200, 210, 220, 230, 240, 250V±10% 48-450Hz

LINE REGULATION (VOLTAGE MODE)

Less than $\pm (0.001\% + 30\mu\text{V})$ for $\pm 10\%$ AC line variation at any specified tap.

LOAD REGULATION (VOLTAGE MODE)

Less than $(0.001\% + 100\mu\text{V})$ for a no load to full load current change.

RIPPLE (VOLTAGE MODE)

Less than 400µV pk-pk, (typically 250µVpk-pk).

TEMPERATURE CO-EFFICIENT (VOLTAGE MODE)

Less than $\pm (0.01\% + 100 \mu V)$ per °C.

LINE REGULATION (CURRENT MODE PMA 16-20)

Less than ± (.02% +200μA) for ±10% AC line variation at any specified tap for currents in the range 5-100% of rated current.

LOAD REGULATION (CURRENT MODE PMA 16-20)

Less than (0.1% + 2mA) for a no load to full load voltage change.

RIPPLE (CURRENT MODE PMA 16-20)

Less than 0.1% pk-pk of rated output current.

TEMPERATURE CO-EFFICIENT (CURRENT MODE PMA16-20)

Less than 0.1% (of maximum rated output current) per °C.

OUTPUT IMPEDANCE

Less than 0.25 Ωat 100kHz. Typically less than 0.1 Ω at 100kHz.

RECOVERY TIME

For a full load step change the output voltage will recover in approximately 50µ seconds to within 10mV of the regulation band.

OVERLOAD PROTECTION (PMA 16-20)

Constant current overload protection set at 105% of full load current.

OVERLOAD PROTECTION (PMA 44-56)

Re-entrant overload protection set at 105% of full load current At switch on the protection may be set to operate at constant current for a period of 200m seconds after which it reverts to re-entrant operation. This facility is optional and may be selected by an internal link but is not available below 4 volts output.

OVERVOLTAGE PROTECTION

Overvoltage protection is by means of a high speed thyristor crowbar with fuse. The trip voltage may be varied by potentiometer or programming resistors. This facility is fitted as standard on PMA 16-20 and as an optional extra which can be built into the unit if required on PMA 44-56.

TEMPERATURE RANGE

10° to ±60°C.

INSULATION

Floating output must not exceed ±250V DC from ground. Input tested 500V DC line to ground and line to output greater than $10M\Omega$.

CONSTANT CURRENT OPERATION

Optional

PMA44-56 can be operated in the constant current mode at reduced ratings. Further details can be found in Fig. 6 Section 3 and Tables 5 to 7.

PROGRAMMING

External programming of both voltage and current by means of external resistors is possible and is restricted to operation within the re-entrant characteristic or within the constant current restrictions if operating in this mode. Further details of this form of operation can be found in Section 3

PROGRAMMING RESISTANCES

VOLTAGE MODE 1000Ω/V ±1/4%

CURRENT MODE $1000\Omega/100\%$ of output current $\pm 2\%$ PMA 16-20. CURRENT MODE $100\Omega/100\%$ of output current $\pm 3\%$ for re-entrant

(PMA44-56)

current mode.

 $1050\Omega/100\%$ of output current $\pm 3\%$ for constant current mode.

OUTPUT VOLTAGES AND CURRENTS

Output Voltage	Output Current							
0-7V 0-15V 0-30V 30-50V	PMA16 PMA44 PMA45 PMA46	3A PMA17 PMA47 PMA48 PMA49	5A PMA18 PMA50 PMA51 PMA52	10A PMA19 PMA53 PMA54 PMA55	20A PMA20 PMA56			

PMA 16-20 Output voltage continuously variable from 0-7V by a potentiometer on the front panel.

PMA 44-56 Output Voltages factory pre-set in IV increments and variable by ± 0.5 V min. by a potentiometer on the front panel.

FACTORY FITTED OPTIONS (PMA44-56)

Extra

SUFFIX 'Y'

The Power Unit will be set to operate in constant current mode at the ratings in Tables 5, 6 and 7 instead of standard re-entrant mode.

SUFFIX 'Z' A thyristor overvoltage protection circuit will be fitted within the Power Unit normally set to 10% or 1 volt (whichever is greater) above the nominal output

voltage.

3.1 INSTALLATION

Dimension Diagram A Diagram B

Fig. 2 Dimension Diagrams

Table 1 Fixing Centre Data, Dimensions, Weights and Dissipations

Overall D	imen	sions and \	Veights					
Туре	Heig	ht	Widt	h	Lengt	h	Weig	ht
	A		В		С			
	in	cm	in	cm	in	cm	lb	kg
PMA16	5 lg	13.0	3 ¹ / ₄	8.3	5\frac{1}{8}	13.0	4	1.8
PMA17	5 lg.	13.0	31/4	8.3	. 94	23.5	8	3.6
PMA18	5 l	13.0	314 450 78	11.8	91/4	23.5	11	5.0
PMA19	5 l	13.0	7 3	18.7	94	23.5	17	7.7
PMA20	5 g	13.0	91g	23.2	$15\frac{1}{16}$	38.2	44	20.0
PM A44	518	13.0	9 3 4 3 3 43 4 3 3 4	8.3	5 lg	13.0	4	1.8
PMA45	5 lg	13.0	42	11.8	5k 94	13.0	6	2.7
PMA46	5 1/8	13.0	3 32	8.3	91	23.5	8	3.6
PMA47	5 g	13.0	333	8.3	94	23.5	8	3.6
PMA48	5\frac{1}{8}	13.0	421	11.8	91	23.5	11	5.0
PMA49	5 8	13.0	78	18.7	94	23.5	15	6.8
PMA50	5	13.0	48	11.8	9 ¹ / ₄ 9 ¹ / ₄	23.5	11	5.0
PMA51	5	13.0	7/2001/2001/2001/2001/2001/2001/2001/200	18.7	94	23.5	17	7,7
PMA52	51	13.0	48	11.8	1516	38.2	21	9.5
PMA53	5 8	13.0	7흥	18.7	94	23.5	17	7.7
PMA54	5 g	13.0	78	18.7	1516	38.2	35	15.9
PMA55	5	13.0	9-∤	23.2	1516	38.2	44	20.0
PMA56	5	13.0	9 8	23.2	1516	38.2	44	20.0

Table 1 Fixing Centre Data, Dimensions, Weights and Dissipations (Cont)

	entres							
Туре	D		Ē		F		G	
	in	cm	<u>în</u>	cm	in	cm	<u>i</u> n	cm
PMA16	44	12.07	1	2.54	-	_	38 74	7.94
PMA17	44	12.07	1	2.54	_		7	18.42
PMA18	44	12.07	1	2.54	_	_	7	18.42
PMA19	44	12.07	1	2.54	_	-	71	18.42
PM A20	4474 4474 4474	12.07	216	5.24	5,15	13.89	1015	27.78
PM A44	44	12.07	1	2.54	_		3 "	7.94
PM A45	44	12.07	1	2.54	-	_	3 8 3 8	7.94
PM A46	43	12.07	1	2.54	_	_	74	18.42
PM A47	44	12.07	1	2.54	_	_	74	18.42
PM A48	44	12.07	1	2.54	-	_	71	18.42
PM A49	44	12,07	1	2.54	_	_	7 d 7 d	18.42
PMA50	44	12.07	1	2,54	_	_	71	18.42
PMA51	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	12.07	1	2.54	-	_	71	18.42
PMA52	44	12.07	216	5.24	5 15	13.89	1015	27.78
PMA53	44	12,07	1	254	_	_	74	18,42
PM A54	44	12,07	216	5.24	5 15	13.89	1015	27.78
PMA55	44	12.07	210	5.24	513	13.89	10%	27.78
PMA56	44	12.07	216 216	5,24	5 15 5 15 5 15 5 15	13.89	1018	27.78
		~	-		-			
Турс	H		J		K		L	
	in	cm	in	cm	in	em	in	cm
PMAI6	229 220 217 464	7.39	12	3.81	_	_	2 h 5 h	5.40
PM A17	2篇	7.39	2	5.08	_		5!	
DMAID							- 4	13.30
	464	10.85	2	5.08	_	_	54	13.30
PMA19	7	10.85 17.78	2	5.08 5.08	_ 	_	5å 5å	13.30 13.30
PMA19 PMA20	7 84	10.85 17.78 22.23	2	5.08 5.08 7.62	- 5 in	_ 	54 54 91 916	13.30 13.30 23.02
PMA19 PMA20 PMA44	7 84	10.85 17.78 22.23 7.39	2	5.08 5.08 7.62 3.81	- 5 in	12.86	54 54 91 916	13.30 13.30 23.02 5.40
PMA19 PMA20 PMA44 PMA45	7 84	10.85 17.78 22.23 7.39 10.85	2 3 15 15	5.08 5.08 7.62 3.81 3.81	5 th	12.86	54 54 91 916	13.30 13.30 23.02 5.40 5.40
PMA18 PMA19 PMA20 PMA44 PMA45 PMA46	7 84	10.85 17.78 22.23 7.39 10.85 7.39	2 3 15 15 2	5.08 5.08 7.62 3.81 3.81 5.08	5 in	12.86 — —	54 54 54 916 28 28 54	13.30 13.30 23.02 5.40 5.40 13.30
PMA19 PMA20 PMA44 PMA45 PMA46 PMA47	7 84	10.85 17.78 22.23 7.39 10.85 7.39 7.39	2 3 12 12 2 2	5.08 5.08 7.62 3.81 5.08 5.08	5 th	_ _ _	54 54 54 916 28 28 54	13.30 13.30 23.02 5.40 5.40 13.30
PMA19 PMA20 PMA44 PMA45 PMA46 PMA47 PMA48	7 84227 4227 4227 4227 4427 4437 4437 4437	10.85 17.78 22.23 7.39 10.85 7.39 7.39 10.85	2 3 12 12 2 2 2	5.08 5.08 7.62 3.81 5.08 5.08 5.08	5 1	12.86	54 54 54 916 28 28 54	13.30 13.30 23.02 5.40 5.40 13.30 13.30
PMA19 PMA20 PMA44 PMA45 PMA46 PMA47 PMA48 PMA49	7 2227 4227 4227 4227 444 7	10.85 17.78 22.23 7.39 10.85 7.39 7.39 10.85 17.78	2 12 12 2 2 2 2	5.08 5.08 7.62 3.81 5.08 5.08 5.08 5.08	5 16	_ _ _	54-4-4 5-4-4-4 5-5-5-5-5-5-5-5-5-5-5-5-5	13.30 13.30 23.02 5.40 5.40 13.30 13.30 13.30
PMA19 PMA20 PMA44 PMA45 PMA46 PMA47 PMA48 PMA48 PMA49 PMA50	7 84227 4227 4227 4227 4427 4437 4437 4437	10.85 17.78 22.23 7.39 10.85 7.39 7.39 10.85 17.78	2 3 12 12 2 2 2 2 2	5.08 5.08 7.62 3.81 5.08 5.08 5.08	51h 	_ _ _	54 54 54 916 28 28 54	13.30 13.30 23.02 5.40 5.40 13.30 13.30 13.30 13.30
PMA19 PMA20 PMA44 PMA45 PMA46 PMA47 PMA48 PMA49 PMA50 PMA51	7 1422 422 422 422 422 422 422 422 422 42	10.85 17.78 22.23 7.39 10.85 7.39 7.39 10.85 17.78 10.85	2 3 12 12 2 2 2 2 2 2	5.08 5.08 7.62 3.81 5.08 5.08 5.08 5.08	1 1 1 1		54 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	13.30 13.30 23.02 5.40 5.40 13.30 13.30 13.30 13.30 13.30
PMA19 PMA20 PMA44 PMA45 PMA46 PMA47	7 84 22 4 22 4 22 4 7 4 7 4 7	10.85 17.78 22.23 7.39 10.85 7.39 7.39 10.85 17.78	2 3 12 12 2 2 2 2 2 2 2 2 3	5.08 5.08 7.62 3.81 5.08 5.08 5.08 5.08	1 1 1 1	_ _ _	5.5.9.18.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	13.30 13.30 23.02 5.40 5.40 13.30 13.30 13.30 13.30
PMA19 PMA20 PMA44 PMA45 PMA46 PMA47 PMA48 PMA49 PMA50 PMA51	7 1422 422 422 422 422 422 422 422 422 42	10.85 17.78 22.23 7.39 10.85 7.39 7.39 10.85 17.78 10.85	2 3 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	5.08 5.08 7.62 3.81 5.08 5.08 5.08 5.08 5.08	516		5.5.9.18.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	13.30 13.30 23.02 5.40 5.40 13.30 13.30 13.30 13.30 13.30
PMA19 PMA20 PMA44 PMA45 PMA46 PMA47 PMA48 PMA49 PMA50 PMA51 PMA52 PMA53 PMA54	7 1425 155 155 155 155 155 155 155 155 155 1	10.85 17.78 22.23 7.39 10.85 7.39 7.39 10.85 17.78 10.85 17.78	2 3 12 12 2 2 2 2 2 2 2 2 3	5.08 5.08 7.62 3.81 5.08 5.08 5.08 5.08 5.08 5.08	516		5.59.22.81.41.41.41.41.41.41.41.41.41.41.41.41.41	13.30 13.30 23.02 5.40 5.40 13.30 13.30 13.30 13.30 13.30 23.02 13.30 23.02
PMA19 PMA20 PMA44 PMA45 PMA46 PMA47 PMA48 PMA49 PMA50 PMA51 PMA52 PMA53	7 84 22 22 22 22 22 22 22 22 22 22 22 22 22	10.85 17.78 22.23 7.39 10.85 7.39 10.85 17.78 10.85 17.78 10.85 17.78	2 3 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.08 5.08 7.62 3.81 5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08	1 1 1 1		54 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	13.30 13.30 23.02 5.40 5.40 13.30 13.30 13.30 13.30 13.30 23.02 13.30

Table 1 Fixing Centra Data, Dimensions, Weights & Dissipations (Cont)

Unit	Max Full Load	Max Overload	Unit	Max Full Load	Max Overload
PMA16	8W	15W	PMA48	45W	60W
PMA17	24W	45W	PMA49	60W	95W
PMA18	40W	75W	PMA50	50W	60W
PMA19	80W	150W	PMA51	65W	105W
PMA20	160W	300W	PMA52	90W	155W
PMA44	12W	13W	PMA53	95W	130W
PMA45	15W	20W	PMA54	130W	200W
PMA46	20W	33W	PMA55	180W	310W
PMA47	30W	35W	PMA56	190W	260W

3.2 AC SUPPLY AND PRELIMINARY CHECKS

Verify that the connections to the primary of supply transformer T1 corresponds to the voltage of the local supply and that the supply fuse FS1 is correct for the unit in use (see Table 4).

The primary connections of T1 should be paralleled when the local supply is 100 to 125V. Fig. 3 shows the connections for a 110V supply and Table 2 gives the connections for supplies between 100 and 125V.

Fig. 3 Transformer Primary Connections for 110V

Supply	Neutral	Line	Neutral Link Between	Line Link Between
100V	0	100	0-0	100-100
105V	5	100	5∸5	100-100
110V	0	110	0-0	110-110
115V	5	110	5-5	110-110
120V	0	120	0-0	120~120
125V	5	120	5-5	120-120

When a 200 to 250V supply is available the primary connections of T1 should be made in series. Fig. 4 shows the series connections to be made for a 240V supply and Table 3 gives the connections for supplies between 200 and 250V.

Fig. 4 Transformer Primary Connections for 240V

Table 3 Transformer Primary Connections 200-250V

Supply	Neutral to Inner Tag	Line to Outer Tag	Diagonal Link Between
200	0	100	0-100
210	5	100	5-100
220	0	110	0-110
230	5	110	5-110
240	0	120	0-120
250	5	120	5-120

Operation

Table 4 Fuse Rating (fuses up to 10A must be HRC type)

Power Supply	FS1 200-250	FS1 200-250V		FS1 100-125 V		FS2 DC Fuse	
	Rating	Size	Rating	Size	Rating	Size	
PMA16	1A	00	2A	00	2.5A	00	
PMA17	2A	00	4A	00	4A	00	
PMA18	3A	0	7A	0	7.5A	0	
PMA19	5.A	0 .	10A	0	12A	0	
PMA2()	7A	0	15A	0	25A	#	
PM A44	1A	00	2.5 A	00	2.5A	00	
PMA45	2.5A	00	4 A	00	2.5A	00	
PMA46	2.5 A	00	4A	00	2.5A	00	
PMA47	2.5A	00	4A	00	4A	00	
PM A48	3A	0	7A	0	5A	0	
PMA49	5 A	0	10A	0	7A	ő	
PMA50	3A	0	7A	0	7A	Õ	
PMA51	5A	0	10A	0	7A	ő	
PMA52	7A	0	15A	0	7A	0	
PMA53	5A	0	10A	0	12A	0	
PMA54	7A	0	15 A	ő	12A	0	
PMAS5	10A	0	20.A	ŏ l	12A	0	
MA56	IOA .	0	20 A	ŏ	25 A	*	

^{*}Fast Blow E.E. GS150/25

Before the mains supply is connected to the unit ensure that the correct fuses are fitted as specified in Table 4. Check that the following terminal links on terminal block TB2 (mounted on the front panel) and TB3 (mounted on the left-hand side of the unit) are in position.

- (1) 1 and 2 on TB2 (DC LINK)
- (2) 3 (+s) to 4 on TB2)
- DC output (3) 6 (-s) to 5 on TB2
- (4) 1 and 2 on TB3 (External programming of current)
- (5) 4 and 5 on TB3 (External programming of voltage)

NOTE If these links are not made the unit will not operate satisfactorily. When the preliminary checks have been completed connect the mains supply to the following terminals on TB1.

to I Line

Neutral to 2

Ground to 3

3.3 RESETTING THE OUTPUT VOLTAGE (PMA44-56)

(a) SETTING THE OUTPUT VOLTAGE

The unit is adjusted in the factory to provide the voltage indicated on the serial number panel with a further ±0.5V control available on the SET OUTPUT VOLTS control positioned on the front panel. The following conditions should be observed.

- (1) The level of output voltage does not exceed the trip level of the overvoltage protection circuit (when fitted).
- (b) TO CHANGE THE OUTPUT VOLTAGE
- (1) Connect a voltmeter across terminals 3 (+s) and 6 (-s) on TB2.
- (2) Adjust the transformer taps on the secondary of T1 and R110, R111,
- R117 and (R50 and R57 if fitted), as shown on Tables 8, 9 and 10.
- (3) Switch on the AC Supply.
- (4) Adjust the SET OUTPUT VOLTS control to obtain the exact output level required.
- (c) EXTERNAL PROGRAMMING OF OUTPUT VOLTAGE (see Section 3.7).

3.4 RESETTING THE OVERLOAD PROTECTION

(a) The current limit level is set at 105% by resistor R105 and can only be varied by external programming as described in Section 3.7.

Fig. 5 Output Voltage Plotted Against Output Current (PMA44-56)

NOTE As the output current setting is reduced so the maximum short circuit current is reduced proportionately, as shown on Fig. 5.

(b) TO OPERATE THE POWER SUPPLY IN CONSTANT CURRENT MODE (PMA44-56)

Remove the link between terminals 20 and 21, and 18 and 19 on the

AUX PC Board and fit an external programming resistor between terminals 2 and 3 on TB3 having first removed the link between terminals 1 and 2. The maximum nominal currents allowable are shown on Tables 5, 6 and 7.

NOTE At no time must the current exceed the limit shown on Fig. 6.

For currents other than those shown on Tables 5, 6 and 7 calculate programming resistor values as per specification, Section 2.

Fig. 6 Output current in constant current mode.

(c) CONSTANT CURRENT SWITCH ON (PMA44-56)

To remove the 200mS constant current switch on facility, remove the link between the terminals 20 and 21 on the AUX PC Board.

Table 5 Maximum Current in Constant Current Mode

With Output	Nomina	inal Output Current (Max)					
Volts set to	PM44	PM47	PM50	PM53	PM56		
1	1. 0A	3,0A	5,0A	10A	20A		
2	1.0	3,0	5,0	10	20		
3	1.0	3,0	5, 0	10	20		
4	.83	2.9	4.1	8.3	16.6		
5	.74	2,2	3.7	7.4	14.8		
6	. 62	1,9	3, 1	6.2	12,4		
7	. 57	1,7	2.8	5. 7	11.4		
8	, 54	1.6	2.7	5,4	10.8		
9	. 50	1.5	2.5	5.0	10.0		
10	.48	1,4	2,4	4.8	9,6		
11	. 45	1,4	2, 2	4,5	9.0		
12	. 42	1.3	2,1	4.2	8,4		
13	. 40	1,2	2.0	4.0	8,0		
14	. 39	1, 2	1, 9	3.9	7.8		
15	. 37	1,1	1,8	3,7	7.4		

With Output	Nominal	Output Cur	rent (Max)	
Volts set to	PM46	PM48	PM51	PM54
1	1.0A	3.0A	5A	10A
2	1.0	3.0	6	10
3	1.0	3.0	5	10
4	1.0	3, 0	5	10
5	1.0	3.0	5	10
6	1.0	3.0	5	10
7	1.0	3.0	5	10
8	. 90	2.7	4.5	9
9	. 82	2.5	4.1	8, 2
10	. 77	2.3	3.8	7.7
11	. 72	2.2	3.6	7, 2
12	. 68	2.0	3.4	6, 8
13	. 65	1.9	3, 2	6,5
14	. 61	1.8	3, 0	6, 1
15	. 58	1.7	2, 9	5.8
16	. 57	1.7	2.8	5.7
17	. 55	1.6	2.7	5. 5
18	. 52	1,6	2.6	5, 2
19	. 51	1, 5	2.5	5, 1
20	. 50	1,5	2.5	5.0
21	. 47	1.4	2,3	4.7
22	. 44	1.3	2.2	4.4
23	.43	1,3	2. 1	4.3
24	. 42	1. 3	2.1	4.2
25	.40	1, 2	2,0	4.0
26	. 39	1.2	1, 9	3, 9
27	. 38	1.1	1.9	3.8
28	. 37	1.1	1.8	3.7
29	. 36	1.1	1, 8	3, 6
30	. 35	1.0	1.7	3.5
		L		

Table 7

With Output	Nomina	l Output Cu	irrent (Max	r)
Volts set to	PM46	PM49	PM52	PM55
30	. 52A	1.8A	2. 6A	5, 2A
31	, 51	1.5	2, 5	5.1
32	. 50	1,5	2.5	5.0
33	.49	1.5	2.4	4.9
34	.48	1.4	2.4	4.8
35	. 47	1.4	2.4	4.7
36	. 46	1.4	2. 3	4.6
37	. 45	1.3	2.3	4.5
38	. 44	1.3	2.2	4.4
39	. 43	1.3	2,2	4.3
40	.42	1.3	2. 1	4.2
41	.41	1.2	2. 1	4.1
42	. 40	1.2	2.0	4.0
43	. 39	1.2	2.0	3.9
44	. 38	1.1	1.9	3.8
45	. 38	1.1	1, 9	3.8
46	. 37	1,1	1.9	3.7
47	. 37	1, 1	1.9	3.7
48	. 36	1.1	1.8	3.8
49	. 36	1.1	1.8	3. 6
50	. 35	1.0	1.8	3.5

3.5 RESETTING THE OVERVOLTAGE PROTECTION (IF FITTED)

- (1) Having checked that the overload protection is working, connect a voltmeter from terminal 4 (+) to terminal 5 (-) on TB2.
- (2) Set the overvoltage control (RV50) mounted on the Overvoltage Board to the maximum setting - fully clockwise.
- (3) Set the output voltage by rotating the SET OUTPUT VOLTS control to the required overvoltage level.
- (4) Slowly turn RV50 counter-clockwise until the overvoltage circuit operates. Operation is evident by a reduction to approximately 1V on the voltmeter.
- (5) Reduce the output voltage by rotating the SET OUTPUT VOLTS control to give approximately normal voltage.
- (6) Switch off the AC supply and then switch on again to reset the circuit.
- (7) Increase the output voltage by slowly rotating the SET OUTPUT VOLTS control. This will check the operation of the circuit at the level indicated on the voltmeter.
- (8) Check the output voltage setting.

NOTE. For overvoltage settings which are out of the range of the internal SET OUTPUT VOLTS potentiometer either use must be made of the external voltage programming facility to achieve these higher voltages or the overvoltage must be applied from some external source of controllable and current limited voltage.

3.6 UNIT CONNECTIONS (PMA44-56)

Tables 8, 9 and 10 show the connections that should be made between the various secondary windings of T1 and the values of R110, R111, R117 and (R50 and R57 if fitted) that should be inserted to obtain the required output voltage. These resistors are located on the AUX PC Board and R50 and R57 on the O/V PC Board.

NOTE When the overvoltage circuit is fitted it is necessary to change the link on the O/V PC board when operating units above 7V i.e.

- 0 7V LINK terminals 1 and 9
- 8 50V LINK terminals 1 and 8

3.7 PROGRAMMING CURRENT AND VOLTAGE

Output Characteristics and Programming

To enable users of these power supplies to have a wide range of operating conditions care has been taken in the design to accommodate facilities for modifying the basic operating characteristic. It will be appreciated that an alteration to the normal characteristic of the power unit must impose certain limits to its operating area.

3.7.1. EXTERNAL PROGRAMMING

Voltage, current and overvoltage protection levels can be controlled externally. To utilise the facility it is necessary to remove terminal links (which disconnect the internal controls from circuit) and connect external resistors by means of remote lines if necessary. By using resistors whose values correspond to the voltage or current required voltage control, current control and overvoltage control can be effected remotely.

Fig. 7 External programming.

NOTE If remote lines are used their resistance is to be included in the value of the programming resistor and they should be shielded from stray electromagnetic fields to minimise 'noise' pick-up.

3.7.1. (a) VOLTAGE CONTROL

For external control of voltage the SET OUTPUT VOLTS potentiometer is disconnected from circuit and replaced by an external potentiometer or fixed resistor. The level of the output voltage is related to the value of the external resistance by the $1000\Omega/V$ scale factor for all units.

NOTE When the voltage is reduced from the set MAX the MAX current setting is also reduced if re-entrant current mode protection is in use. Sec Fig. 7.

To connect the unit for external programming of voltage the procedure is as follows:

- (1) Switch off AC supply.
- (2) Disconnect the link across terminals 4 and 5 of TB3.
- (3) Connect the external programme resistor to terminal 4 of TB3 and terminal 6 of TB2. (-ve SENSE).
- (4) Switch on the AC supply.

3.7.1. (b) CURRENT CONTROL

For external control of current R105 is disconnected from circuit and replaced by an external potentiometer or fixed resistor. The level of current is related to the value of the external resistance by the Ω/A scale factor which is given in Section 2 for each of the power supplies. To connect the unit for external programming of current the procedure is as follows:-

- (1) Switch off the AC supply.
- (2) Disconnect the link across terminals 1 and 2 of TB3.
- (3) Connect the external programme resistor to terminals 3 and 2 of TB3.
- (4) Switch on the AC supply.

3.7.1. (c) OVERVOLTAGE CONTROL

For external control of the overvoltage protection circuit RV50 is disconnected from circuit and replaced by an external potentiometer or resistors. A resistance range from 0 to 3.3 K Ω corresponds approximately to an overvoltage protection range of

2.5V to 120% of FULL OUTPUT VOLTAGE FOR 0-7V AND 0-15V UNITS

3V to 120% of FULL OUTPUT VOLTAGE FOR 0-30V UNITS 5V to 120% of FULL OUTPUT VOLTAGE FOR 30-50V UNITS

To connect the unit for external programming of overvoltage protection the procedure is as follows: -

- (1) Switch off the AC supply.
- (2) Disconnect the link across terminals 4 and 5 on the overvoltage printed circuit board.
- (3) Connect an external programme potentiometer of 3.3KΩ resistance to terminals 4 (slider), 6 and 7 of the printed circuit board connector. Alternatively connect fixed resistors between terminals 7 and 4 and between terminals 6 and 4.
- (4) Switch on the AC supply.
- (5) Adjust for overvoltage setting.

3.8 PARALLEL AND SERIES OPERATION

3.8.1. Up to a maximum of 5 modular power units can be operated in parallel (or 3, 20A units) and should be connected as shown in Fig. 8. For best voltage regulation terminal 6 of TB3 on each unit (labelled 'P' on the circuit diagram) should be returned to a common point and four-terminal sensing used as described in Section 3.10 - but this is not essential.

NOTE When units are connected in parallel the built-in thyristor of the optional overvoltage circuit in each unit must be made inoperative because it is not possible to ensure that each thyristor will have an equal share of total current under fault conditions unless connected as shown in Fig. 9. This is done by removing the gate connection of the thyristor either at the thyristor itself or at the overvoltage PC board (terminal 3).

If overvoltage protection is required an external thyristor of suitable rating for the total parallel current of all units should be used. Its gate terminal should be connected to pin 3 on the overvoltage board of one unit after disconnecting the existing gate connection to D102. A gate firing current of approximately 50mA is available from pin 3. The cathode should be connected to the common negative line and the anode to the common positive line. Set overvoltage as in Section 3.5. All other units should have gate connections to pin 3 removed as outlined above.

Fig. 8 Parallel Operation

3.8.2. PARALLEL OPERATION WITH BUILT IN THYRISTORS

Units should be connected as shown in Fig. 9 under the conditions as follows: -

- (a) If necessary each unit is to be set up separately to the required operating conditions as detailed in paragraphs 3.4 and 3.5.
- (b) A diode of the same current and voltage rating as the power module must be connected in series with each output (cathode of the diode to negative terminal of power module).
- (c) Link the 'P' terminals 6 on TB3.
- (d) Link the sensing terminals as shown in Fig. 9.

NOTE Because the forward voltage drop of the diode uses all the allowable external lead voltage drop no extra lead length can be allowed for four terminal sensing.

Fig. 9 Parallel Operation with Overvoltage Circuits Fitted

NOTE R106 must be removed from between terminals -ve and -ve sense.

- 3.8.3. It is also possible to operate modular power units in series under certain conditions as follows:-
- (a) If necessary each unit is to be set up separately to the required operating conditions as detailed in paragraphs 3.4 and 3.5.
- (b) A diode, of the same current and voltage rating as the power module, must be connected across EACH power module output (cathode of of diode to positive terminal of power module).
- (c) The number of modules connected in series is limited to give a maximum of 250V DC.

3.9 OPERATION WITH OTHER POWER SUPPLY UNITS

When power modules are used in conjunction with other power supplies of opposite polarity provision must be made as in 3.8.3(b) to protect the power module against reverse voltage conditions. The rating of the diode used must be sufficient to carry the fault current generated.

3.10 FOUR-TERMINAL SENSING

Where long external output leads are used, four-terminal sensing is provided to enable the load voltage regulation of the power supply to be maintained at the load connections. The two links between the +ve output and the +ve sense, and the -ve output and the -ve sense terminals should be removed and connections made as shown in Fig. 10. These output connections should be run together and a decoupling capacitor, similar to C102 in the power supply, connected at the load terminals if the high frequency output impedance is to be maintained. Parallel connection should be made as shown in Fig. 11.

The maximum permissible voltage drop in the external leads when using four-terminal sensing is 0.5V total in both leads i.e. 0.25V in each lead +ve and -ve or 0.5V in one supply lead with a ground return of negligible resistance. The total permissible length of lead for 0.5V drop is listed in Table 11 for various wire sizes and current ratings. Note that this is the total permissible loop length 'go and return' and that the power supply can only be situated at half this distance from the load for a two wire +ve and -ve lead system.

Fig. 10 Four-terminal Sensing

Fig. 11 Four-terminal Sensing (Parallel)

Table 8 Voltage Adjustments PMA44, 47, 50, 53, 56

	CON	NECTIONS		RES1S	STOR Y	VALUE	S	
Volts out	Rec (1)	Transformer 8 4 2 1 1 -+ -+	Rec (2)	R110	R111	R117	R50	R57
1	-			22Ω	22Ω	LINK	470Ω	91Ω
2			_	150Ω	12Ω	1K	470Ω	91Ω
3	-	4	-	270Ω		2K	470Ω	91Ω
4				390Ω	33Ω	3K	470Ω	91Ω
5				560Ω	LINK	4K	470Ω	91Ω
6			-		LINK	5K	470Ω	91Ω
7					LINK		470Ω	91Ω
8			-	910Ω			120Ω	51Ω
9			-	910Ω	180Ω	8K	120Ω	51Ω
10	-		-	1.2K	LINK	9K	120Ω	51Ω
11	-		<u> </u>	1.2K	150Ω	10K	470Ω	51Ω
12	-		-	1.2K	270Ω	11K	470Ω	51Ω
13	-	9 40 4 10 6		1.5K	100Ω	12K_	470Ω	51Ω
14				1.5K	220Ω	13K	470Ω	
15	-	- + + + + + + - + -	-	1.8K	47Ω	14K	470Ω	150Ω

NOTE Resistor Types R110 R111 R117

R50 R57 Electrosil TR5 ±2% HOLCO H4 25ppm. 1% Electrosil TR5±2% Electrosil TR5±2%

Table 9 Voltage Adjustments PMA45, 48, 51, 54

	CON	NECTIONS		RESISTOR VALUES									
Volts	Rec (I)	Transformer	Rec (2)	R110 R111 R117 R50 R5	7								
	(1)	_+-+-+	(2)	220 220 1101// 1200									
1				22Ω 22Ω LINK 470Ω 91	_								
2				$150\Omega 12\Omega \cdot 1K + 470\Omega 91$									
3				270Ω 22Ω $2K$ 470Ω 91									
4				390Ω 33Ω $3K$ 470Ω 91									
5				560 Ω ILINK 4K 470 Ω 91									
6	-			680Ω LINK 5K 470Ω 91									
7			-	820 Ω :LINK 6K 470 Ω 91									
8	-	-	-	910 Ω LINK 7K 120 Ω 51									
9	-	0,-10		910 Ω 180 Ω 8K 120 Ω 51									
10	-			1.2K LINK 9K 120Ω 51									
11	-			1.2K 150 Ω 10K 470 Ω 51	Ω								
12	-			1.2K 270Ω 11K 470Ω 51									
13	_		1	1.5K 100Ω 12K 470Ω 51	Ω								
14				1.5K 220 Ω 13K 470 Ω 15	Ω 0								
15			-	1.8K 47Ω I4K 470Ω 15	Ω 0								
16				1.8K 180Ω 14.5K 470Ω 15	Ω 0								
17	-		-		Ω 0								
18	-	-	-		Ω 0								
19	-	-	-		Ω 0								
20	-		-		Ω 0								
21	-		-		Ω 0								
22	-				Ω 0								
23	0-40				Ω 0								
24	-		-		Ω 0								
25	-		-		0Ω								
26	-				0Ω								
27	-				υΩ								
	-		-		0Ω								
28	-	4-1-1-1		3.3K 390Ω 27.5K 1.5K 33	0Ω								
29	-		\pm		Ω 0								
30 NOTE	-			$3.3K$ 510Ω $28.5K$ $1.5K$ 33	048								

NOTE

Resistor Types R110 R111

Electrosil TR5 ±2%

R117

R50 R57 HOLCO H4

25ppm ±1% Electrosil TR5 ±2%

Up to 18V Electrosil TR5 ±2%

19-30V Welwyn W21 ±5%

Table 10 Voltage Adjustment PMA46, 49, 52, 55

	CON	NECTIONS		RESISTOR VALUES								
Volts out	Rec (1)	Transformer 40 6 3 1 -+-+-+	Rec (2)	R110	R111	R117	R50	R57				
30	•			3.3K	510Ω	28.5K	1.5K	330Ω				
31	•			3.6K	330Ω	29.5K	2.7K	390Ω				
32				3.6K	470Ω	30.5 K	2.7K	390Ω				
33	-		_	3.6K	620Ω	31.5K	2.7K	470Ω				
34	-		_	3.9K	470Ω	32.5K	2.7K	470 Ω				
35	-		_	3.9K	560Ω	33.5K	2.7K	470Ω				
36	-			2.4 K	1.2K	34.5K	2.7K	470Ω				
37	-		-	2.7K	2.0K	35.5K	2.7K	470Ω				
38				2.7K	2.2K	36.5K	2.7K	560Ω				
39	-		-	3.0K	2.0K	37.5K	3.3K	560Ω				
40	-			3.3K	1.8K	38.5K	3.3K	560Ω				
41	-		-	3.3K	2.0K	39.5K	3.3K	560Ω				
42				3.6K	1.8K	40.5K	3.3K	560Ω				
43	-		_	3.3K	2.2K	41.5K	3.3 K	560Ω				
44			_	3.6K	2.0K	42.5K	3.9K	560Ω				
45_			→	3.6K	2.2K	43.5K	3.9K	680Ω				
46	_	9 5-9 9		3.9K	2.0K	44.5K	3.9K	Ω 089				
47	-			4.3K	1.8K	45.5K	3.9K	080Ω				
48			-	4.7K	1.5K	46.5 K	4.3K	0.000				
49	•			4.3K	2.0K	47.5K	4.3K	Ω 086				
50		- +		4.3K	2.2K	48.5K	4.3K	680Ω				

NOTE

Resistor Types R110 R111

R117

R50 R57 Electrosil TR5 ±2%

HOLCO H4 25ppm. ±1%

Electrosil TR5 ±2%

30-32V Welwyn W21 ±5%

33-50V Welwyn W22 ±5%

Table 11 Permissible lead length for four-terminal sensing

Wire	Lead Length (feet and metres)												
Size	PM/ 44, 46	416, 45	PM. 47. 49	A17, 48	PM. 50, 52	A 18, 51	PM. 53, 55	A19, 54.	PM 56	A20,			
	ft	m	ft	m	ft	m	ft	m	ft	m			
7/0076 14/0076 23/0076 40/0076 70/0076 110/0076 162/0076	19 38 60	6 12 18	13 20 68	4 6 21	12 21 37 58	3, 5 6, 5 11 18	10 18 29 43	3 5, 5 9 13	9 14 21	2.7 4.5 6.5			

Fig. 12 Functional Diagram of Power Unit

4.1 GENERAL

A simplified functional diagram of the circuitry of the power unit is shown in Fig. 12. The voltage and current modes of operation are controlled by two independent bridge circuits. Any variation of load current or output voltage produces an out-of-balance condition of the associated bridge. The output of the bridge is applied to a comparator amplifier whose output is fed into a mode gate. The output of the mode gate controls the output resistance of a series regulator which (assuming the initial variation was within the preset operating limits of the unit) restores the original mode conditions.

The circuit cannot operate in both modes simultaneously and only the control signal from the bridge corresponding to the mode of operation passes through the gate. Crossover from one mode to another is automatic and the point of crossover is determined by the setting of the potentiometer SET OUTPUT VOLTS and R105.

An auxiliary stabilised power supply is also incorporated. This supplies the bridge circuits and the comparator amplifiers; to simplify the functional diagram the output connections of the auxiliary supply are not shown. Overvoltage protection is afforded by a sensing circuit connected across the stabilised output terminals. The level at which the circuit operates is controlled by the setting of a potentiometer.

4.2 SUPPLY RECTIFICATION AND SMOOTHING

The AC input voltage within the range 100V-125V and 200V-250V, 48Hz to 450Hz is applied, via the terminals of TB1, to the primary of T1. Interconnection of the primary terminals for different voltage supplies is given in Section 3.2.

The transformer has two secondary windings. The output voltage derived from one winding is used for the auxiliary supply. This AC voltage is full-wave rectified by D1 and D2 and smoothed by R1 and C1. The output voltage of the other winding connected as per Section 3.6 is applied to the bridge rectifier MR100 and then smoothed by C101. The resultant 'raw' DC is protected by fuse FS2 and then applied to the series regulator.

4.3 SERIES REGULATOR

The series regulator contains transistor TR 100 and transistor TR 101. (which may consist of several transistors in parallel) arranged in a Darlington-pair configuration. An increasing positive signal applied to the base of TR100 decreases the output resistance of the circuit; conversely, a decreasing signal increases the output resistance. Each transistor in TR101 has a separate resistor in the emitter circuit to provide current sharing between transistors. The voltage developed by the flow of load current through the resistor R101 is connected across a common potential divider network of resistors R102 and R103 to provide a voltage signal proportional to the output current which is standardised at 0.85V for 100% output current.

4.4 BRIDGE REFERENCE SOURCES

Two zener diodes D6 and D9 are used as the reference sources in the current and voltage bridges respectively. The current supply to D9 is further stabilised by zener diodes D7 and D8. The current through D9 is held constant and accurately determined by D7, D8, R13, R14, R15 and the action of the auxiliary stabiliser circuit.

4.5 AUXILIARY STABILISER

This is effectively a constant current generator feeding the amplifiers and the reference sources. TR1 compares the voltage drop across the current sensing resistor R2 with that across the zener diode D3. Any difference in voltages is amplified by TR1 and fed to TR2 the action of the circuit being such that the voltage across and hence the current through R2 is held constant.

4.6 VOLTAGE CONTROL BRIDGE

The essential part of this circuit is redrawn here for clarity. A bridge circuit is formed such that the bridge is balanced when

$$\frac{e_{ref}}{V_{out}} = \frac{R_X}{R_Y}$$
 or $V_{out} = \frac{e_{ref}}{R_X}(R_Y)$

Any unbalance voltage is detected by the amplifier IC2 and fed to the series regulator such that the circuit maintains this balance.

Hence
$$V_{out} = k R_y$$
 where $k = \frac{e_{ref}}{R_y}$

Fig. 13 Voltage Control Circuit

4.7 CURRENT CONTROL BRIDGE

The essential part of the circuit is shown here for clarity:

Fig. 14 Current Control Circuit

Ignoring for the moment the re-entrant resistors R110, 111 and 119 (PMA44-56 only).

At balance

$$\frac{v}{e_{ref}} = \frac{R_X}{R_V}$$

Now v is directly proportional to the load current i L_{Oad} as this gives rise to a voltage drop across R101 which is divided down to a standard value by R102, R103 and R104.

Therefore $v = k1 i_L = R_X \frac{e_r e_f}{R_y}$ or $i_L = R_X \frac{k2}{k1}$

where k1 is the constant relating v to the load current i_L and k2 = $\frac{e_{ref}}{R_{v}}$

The action of the circuit is such that the bridge is kept balanced any error voltage being amplified by IC1 and fed to the series regulator in order to achieve this.

4.7.1. RE-ENTRANT CURRENT MODE (PMA44-56) In this mode, R110, R111 and R119 are connected.

The boundary state of the state

The balance equation shown in Section 4.6 can be modified as follows!— When the bridge is balanced, $v_{ry} = e_{ref}$

and
$$v = v_{TX} = R_X i_1$$

also $i_2 + i_3 = i_1$ and $v = kl i_L$

Therefore $R_X(i_2 + i_3) = kl i_L$

This shows that if R_X is constant the output current is proportional to the sum of i_2 and i_3 .

. Now i_3 is constant since it is $\frac{e_{ref}}{R_y}$, i_2 on the other hand is $\frac{V_{out}}{R119 + R110 + R111}$ i.e. proportional to the output voltage.

Now consider what happens when there is a short circuit on the output: the output voltage is zero hence i_2 is zero and the output current is proportional to i_3 only. As the load resistance is increased so does the output voltage. This results in i_3 increasing and as the output current is proportional to $i_2 + i_3$ this increases too. This gives rise to the re-entrant characteristics. The circuit values are so arranged that i_3 is approximately 12% of i_2 at nominal output voltage, and hence so is the short circuit current approximately 12% of the maximum output current.

Fig. 15 Output Voltage Plotted Against Output Current in Re-entrant Mode

R119, 110, 111 are disconnected for this characteristic therefore leaving $i_1 = i_3$.

Hence the output current is essentially constant and independent of the output voltage,

4.7.3. SERIES SWITCH-ON CIRCUIT (PMA44-56)

It is sometimes desired to have re-entrant current protection generally but to have the full output current available at switch on for starting up the load or when supplies are connected in series.

The circuit and characteristics are that of the re-entrant circuit except that a switch-on circuit is connected between the junction of R119, R111 and R20, D6. This affects i₂ such that for the first 200mS after switch-on i₂ is held at its final, full-output voltage value irrespective of the state of the output voltage.

This is done by clamping the junction of R119, R111 to -2V for the first 200mS after switch-on. TR102 is turned on by C103 charging up for this period through R114.

Circuit Description

4,8 MODE GATE

During either mode of operation both amplifiers IC1 and IC2 produce output signals. When the voltage amplifier IC2 is in control (i.e. during "constant voltage" operation) D5 is forward biased and D4 is reverse biased. D4 therefore blocks any signals from the current amplifier when in this mode.

During constant current operation the reverse is true: D4 is conducting and IC1 is operational, D5 blocking any signals from IC2.

The crossover from one mode to the other is completely automatic.

4.9 CROSSOVER IN THE MODE GATE

The crossover action is best understood by considering the action of the circuit when, say, it is operating in the constant voltage mode and the load resistance is decreased taking the unit into the constant current mode.

Initially in the constant voltage mode IC2 controls the output. TR3 is supplied with base current through R7 and IC2 controls the output by taking some of this current away from TR3 through D5. Under these conditions D4 is cut off. As the load current is increased IC2 takes less and less current and its output voltage is increasing. At the same time the output voltage of IC1 is decreasing because of the increased load current; however D4 is still cut off.

At the crossover point D4 is just starting to conduct thus transferring the control from IC2 to IC1 and cutting off D5.

4.10 OVERVOLTAGE PROTECTION

The overvoltage protection circuit uses a long-tail pair comparator circuit containing transistors TR50 and TR51. The input to the base of TR51 is derived from R55 which with R54 forms a potential divider across the stabilised output supply. TR51 base voltage is compared with the base voltage of TR50 derived from the potentiometer RV50 connected across a Zener diode reference source D50. The level at which overvoltage protection is required is effected by the setting of RV50; because this level is obviously above the stabilised output voltage, the normal quiescent condition of the long-tail pair is such that TR50 is conducting much more than TR51. In practice, the overvoltage limit is set approximately 10% above the level of the stabilised voltage. If the stabilised output voltage rises above the level set by the SET OUTPUT VOLTS control transistor TR51 conducts and drives TR52 into heavy conduction. The base voltage of TR52 is fixed by the Zener diode D\$1; consequently, TR52 provides a constant current via R57 to the gate electrode of thyristor D102 which fires and produces a short circuit across the terminals of the stabilised output supply.

4.11 EXTERNAL PROGRAMMING

Resistance-output voltage and resistance-output current relationships exist and these are expressed as Ω/V and Ω/A scale factors, respectively. By disconnecting the variable resistors from circuit and in their place connecting — by remote lines if necessary — fixed or variable resistors the output voltage or current level can be set by altering the value of resistance. The advantage of this circuit facility is that without any monitoring or metering aid the voltage and current level can be set simply by the value of resistance in circuit. The method of connecting the unit for external programming of output voltage, output current and overvoltage protection is detailed in Section 3.

All components, except those mounted on the printed circuit boards, are accessible after removing the front panel (held by fixing screws) and detaching the heat sink assemblies from the side bars. Access to the components on the printed circuit board during operating conditions may be obtained by removing the board and connecting it to the socket in the unit via an extension board (Advance Part No. 63265).

NOTE The printed circuit boards must not be removed from the modules without first switching off the AC supply.

5.2 REPLACEMENT SERVICING OF PRINTED CIRCUIT BOARDS The control boards used in any of the units in the PMA16-20 and PMA44-56 range are interchangeable. The Overvoltage Boards, if fitted in the units are also interchangeable.

The extension board is available as a servicing aid. This board can be used as an extended connector for any printed circuit board in the entire range of modular Stabilised Power Supplies.

All boards are available as spare parts, and the following Advance Part No. should be quoted when ordering.

(1) Control Board Advance Part No. 62693

(2) Overvoltage Board Advance Part No. 23321 (3) Extension Board Advance Part No. 63265

5.3 FAULT FINDING

Determine the state of the output voltage ON LOAD and proceed as outlined in Table 12.

Table 12 Fault Finding Chart

Output Voltage	Fault	Action
No Output	Input Fuse blown MR100 open circuit FS1 blown AND OR FS2 DC LINK OPEN	Change fuse. Change MR100 Change fuse. Check circuit for cause. TR101 may be short circuit. Refit
	CCT	Kent

Table 12 Fault Finding Chart (Cont)

Output Voltage	Fault	Action
	TR101 open circuit SET OUTPUT VOLTS control fully anti- clockwise (PMA16-20) Printed circuit board out of socket of faulty	,
Low Output	MR100 partially open circuit D102 has fired (if fitted) SET OUTPUT VOLTS control Set Low Low Re-entrant Links open-circuit. Printed circuit board faulty	Change MR100 Check external circuit for overvoltage. Readjust Replace Replace with new assembly.
High unstabilised output	TR100 short circult TR101 short circuit	Change TR100 Change TR101
High Ripple	Printed circuit board faulty	Replace with new assembly. Check to see why D102 has not fired. (If fitted.)
Excessive Output Current	Programming link TB3 (2 & 3) o/c Programming link Resistor o/c	Replace Replace

Please note that If the auxiliary PCB or R101 have been changed R104 may have to be reset as laid down in the 'adjust-on test' procedure.

5.4 MEAN TIME BETWEEN FAILURES

The figures quoted below are estimated from data currently available from international sources. These estimates are based on continuous operation at maximum temperature, output voltage and current and will improve appreciably if units are operated in less arduous conditions. An indication of the possible improvement can be obtained from the accompanying graphs.

Unit	PMA16 PMA17 PMA44-47	PMA18 PMA48-50	PMA19 PMA51-53	PMA20 PMA54-56
Estimated MTBF hrs	35,000	34,000	29,000	25,00

Fig. 16 MTBF at varying temperature Fig. 17 MTBF at varying load current.

	PMA 44	0-7v 1	A		PMA 45	0-30v 1	A	PMA 46 30-	50v 1A	T	PMA 47	n-15v	3A	PMA 48	0-30v 3	A	PMA 49	30-	SOV BA	PMA 50 0-	15V 5A
REF	DESCRIPTION		TY PART NO		LIPTION	QTY PA		DESCRIPTION	QTY. PAI	-	DESCRIPTION		Y. PART HO		QTY. PA		DESCRIPTION		PART HO		QTY. PART NO
Tr				TRANSFORMER				TRANSFORMER MT 529	1 35	080	TRANSFORMER MT 58			TRANSFORMER MT 625	1 3	5141	TRANSFORMER MT 532	1	35083	TRANSFORMER MT 503	1 35113
	CAPACITORS				CITORS			CAPACITORS			CAPACITORS			CAPACITORS			CAPACITORS			CAPACITORS	
C100	C/P FILM 0-1 uF 10		1 52840	CAP FILM CAP ELECT 1200				CAP FILM 0-1 بر 160 CAP ELECT 1500 ا عبر 1500 ا		04 0	CAP FILM 0-1 F	10% 160	004	CAP FILM 0-1 pF 10% 1						CAP FILM 1 F 10% 160	
2012	CAP ELECT 2230 µF 40 v			CAP ELECT	1000 UF 40.			CAP ELECT TODO F 634			CAP ELECT 6800 of 40 v CAP ELECT 3300 of	25		CAP ELECT 3900 µF 43+			CAP ELECT 3300 pF 100+ CAP ELECT 1000 pF 63+		52175	CAP ELECT 12000 pF 40 v CAP ELECT 3300 pF 25 v	1 32320
	O-4THE 1604 CAP FILM			F 160 - CAF				I JF 16D V CAP FILM	1 31		F 160v CAP FILH			O-47 FIGO CAP FILM			I pF 160v CAP FILM	1	31383	1,UF 160 CAP FILM	1 31383
						- -	-														
8100	RESISTORS 2.7 K 2%	н о	1 26728		STORS 4-7K 2% M	0 20	2772	RESISTORS 6-BK 5 0 CIT	. 2	057	RESISTORS	W.W. 1	19642	RESISTORS 1.5K 5% W	W 1 4	1004	RESISTOR Z-2K W		17745	AESISTORS 270 5% W.W	10441
RIOI	IR 5"/+ 10 W		1 23066			W 1 23		IR S 70 WW	1 25		820 5°/« 0:33 5°/«		24969		W 2 2				23067	0-39 5°/• W W	
8102	10 2 /1		ורר 28		10 24/+ M				2 28		10 24/+		28771	The second secon			10 2*/e H		28771	10 2% H.O	
R105	1000 Z*/e		27346		1000 Z% M			1000 2 ⁸ /ø M 0.			1000 2%		27346				1000 2*/• H		27346	1000 2% H O.	
RIOS	1000 2%		1 27346		1000 2% M			1000 2% H 0				M D I					1000 2°/e H	0 1	27346	1000 2% H 0	
RI15	100 Z ³ / ₉	H O	1 26747		100 2 ⁴ / ₃ H	10 1 20	0741	100 2 % a M O	1 26	747	100 274	HD I	2674	1 100 2°/ ₀ H	0 2 2	6747	100 2 ⁰ / → H	0 5	26747	100 2% M0	2 26141
		-					-		+ +	-									-		
	TRANSISTORS				SISTORS			TRANSISTORS			TAANSISTORS			TRANSISTORS			TRANSISTORS			TRANSISTORS	
TRIDD	40250		1 4224	40250				STANDARD POWER TRANSISTOR			STANDARD POWER TRANS	157 O R 1	52329	2 H 3 0 5 4			STANDARD POWER TRANSISTOR		52361	40250	1 4224
TRIGI	STANDARD POWER TRANSIST	O R	1 52329	STANDARD POWER	TRANSISTOR	1 52	360 5	STANDARD POWER TRANSISTOR	1 52	361 5	STANDARD POWER TRANS	ISTOR I	52329	STANDARD POWER TRANSISTOR	5 15	5360	STANDARD POWER TRANSISTOR	- 5	52361	STANDARD POWER TRANSISTOR	2 52329
			_						-	-+			-	•	-				- i		
						1			-												
																			i		
							-											-	<u> </u>		
						-	-+						-	-	-				-		
	MISCELLANEOUS			MISCELL	ANEOUS			HISCELLANEOUS		-1	MISCELLAHEOUS			MISCELLANEOUS			MISCELLANEOUS			MISCELLANEOUS	
MR 100	RECTIFIER WOZ		1 197.25	RECTIFIER WOZ		1 19	725	RECTIFIER WOZ	1 19	725	RECTIFIER 1840K2	0 1	17763	AECTLEIER IB40X20		7763	RECTIFIER 1840 K 20	1	117763	RECTIFIER	1 52293
				-			+		-									-+-	+		
					-								+								
RVIDI	CONTROL POT	2 K2 10%	1 53322	CONTROL POT	\$K3	10 ⁹ /e I - 53	323 0	OHTROL FOT 3K3 (0)	1 53	323	CONTROL POT -	2K2 10% 1	53522	CONTROL POT 3K3	10% 1 5	3323	CONTROL FOT 3K3	1070 1	53323	CONTROL POT 2K2 10%	1 53322
	-				<u> </u>		_											_	-		
					1		-		-	_				-				-			+++
FSI	FUSE B/LEE LS62 17	A	1 1254	FUSE B/LEE LS6	2 2 5A	1 21	189 F	USE B/LEE LS62 2-5A	1 21	189	FUSE B/LEE LS62	2-SA 1	21189	FUSE B/LEE L693 240+ 3A	1 1	2699	FUSE B/LEE L693 SA	1	638	FUSE B/LEE L693 3A	1 12699
	FUSE B/LEE LS62 2 5A			FUSE B/LEE LS6				USE B/LEE LS62 2-SA			FUSE B/LEE LS62 4A			FUSE B/ LEE L693 SA			FUSE B/LEE L693 7A	1	13040		1 13040
D 102	THYRISTOR BTY 79/100 R		1 18695	THYRISTOR BTY	79/ 100 K	1 18	693 11	THYRISTOR BTY 79/100R	1 18	693	THYRISTOR BTY B7/ 100R		23074	THYRISTOR BTY B7/100R	_ Z	3074	THYRISTOL BTY 87/100A		23074	THYRISTOR BTY 87/100R	1 23074
							-		_	-1								_	<u> </u>		
					*						1								-		
-							-							1					1		
					4								-								
	PMA 51	0-30V	51		PMA 52	30-50V	54	PMA 53 0-1	5V 10	A	PMA 54	0-30	IOA	PMA 55	30-50V	10A	PMA 56 1	-15V	20 A		
REF	DESCRIPTION	-	QTY PART HO	1	RIPTION	QTY P			QTY PA	-	BESCPIPTION	от	TY PART H	DESCRIPTION	QTY.	PART NO.	DESCRIPTION		Y. PART NO		
Ti	TRANSFORMER MT 626			TRANSFORMER				TRANSFORMER MT 582	1		TRANSFORMER MT 65			3 TRANSFORMER MT 538			TRANSFORMER MT COTS		3513		
			1	Hans, Suites		, ,	500.0							4							
	CAPACITORS				LCITORS			CAPACITORS			CAPACITORS			CAPACITORS			CAPACITORS				
C100	CAP FILM الم	0% 160 v	1 52799	CAP FI	16 ه/10 عبر الم	0 v 1 5	2799	CAP FILM OHJEF 10% 160v	1 1	804	CAP FILM INF 10	*/s 160 v. 1	807	CAP FILM 1,0F 10% 16	0+ 1	807	CAP FILM JF 10% 160	4. 2	807	-	

	DMA 51 0-20	W SA	DAMA 52	30-50V 54	PMA 53 0-	15v 1/) A	PMA 54 0-30	/	IOA I	PMA 55 30-50	1V 10A	PMA 56 0-1	5v 20A	
REF	DESCRIPTION	QTY PART HO		QTY PART NO		-	ART NO			PART NO		T Y. PART NO.		GTY. PART NO	
Ti	TRANSFORMER MT 626				TRANSFORMER MT 582						TRANSFORMER MT 538			1 35/39	
- 11	THANSFURMER MI COZCO	35142	IMANSTURMER WIT 55	1 55066	TRANSPURMEN INTEREST		2312	TRANSFORMER INTEGEL	<u> </u>	33143	THANSTVENER INT. 536	33.30	I TRANSFORMER INTO COLO	1 - 22,23	
	CAPACITORS		CAPACITORS		CAPACITORS			CAPACITORS			CAPACITORS		CAPACITORS		
C100	CAP FILM (pF 10% 160	v 1 52799	CAP FILM TUF 10%	160 v 1 52799	CAP FILM 0-1 JF 10 % 16	0 v 1	804	CAP FILH 1 JF 10 % 160 v.	1	807	CAP FILM 1,0F 10% 160+	807	CAP FILM 1 10% 160 4.	2 807	
C101	CAP ELECT 7500 pF 63v	1 52845	CAP ELECT 5600 UF 100 v.	1 52848	CAP ELECT 12000 # 40 V.	2 :	2842	CAP ELECT 7500 UF 63 x	1	52845	CAP ELECT 5600 UF 100 V	2 52848	CAP ELECT 12000 UF 40v	4 52842	
5102	CAP E_ECT 3400+3400 pF 40v		CAP ELECT 2350+ 2350 pF			5v 4 !	2867	CAP ELECT SDOD + SDOO # F 40 -	1.	52871	CAP ELECT 2350 + 2350 pF 63 v 2	52875	CAP ELECT 9100 F 25	1 52838	
0105	INF 160 V CAP FILM	1 31383	INF 160 V CAP FILM	1 31383	F 160v CAP FILM	1	31383	I F 160 V CAP FILM	1	31383	F 160 v CAP FILM	1 31383	FUF 160+ CAP FILM	1 3/383	
-															
	RESISTORS		RESISTORS		RESISTORS			RESISTORS		-	RESISTORS		RESISTORS		
2018	470 5"/• WW	1 4805		WW 1 4806			4804		-	19363		2 18755		2 18767	1000
9101	0 82 5% WW		1 5%	WW 5 23066			25:42			23067		0 123066		9 23069	
R104	22 2°/a MO	4 26750	27 2 °/o	MO 5 28774			26750			26749		0 28176	47 2% H.O	9 26748	
R106	1000 Z*/e HO		1000 1%	HO 1 27346	1000 2% HD		7346	1000 2% MO	1	27346	1000 2°/• H 0	27346	1000 2% HO	1 27346	
R109	1000 2°/e M0		1000 2%		.000 2% HO	1 2	7346	IODD Z°/e MD		27346		27346		1 27346	
R (15	100 27+ MO	4 26747	100 2%	HO 5 26747	100 2% MO	4 2	26747	00 Z°/e MO	1	26747	100a 2% HO II	0 26747	100 z ⁴ /e H0	9 76747	
										+				+	
	TRANSISTORS		TRANSISTORS		TRANSISTORS			TRANSFER			TRANSISTORS		TRANSISTORS	+	
TR 100	STANDARD POWER TRANS	1 52360	STANDARD POWER TRANS.	1 52361	STANDARD POWER TRANS		2120	TRANSISTORS STANDARO POWER TRANS.		52360		1 52361	STANDARD POWER TRANS,	1 52329	
	STANDARD POWER TRANS		STANDARD POWER TRANS		STANDARD POWER TRANS	4 3	2329						STANDARD POWER TRANS.	9 52329	
		1	i i					, , , , , , , , , , , , , , , , , , , ,		25 400	P. A. D. WEB TRANS				
													9		
-										4				ļ	
		-													
		+ +										I		-	
-		1	-		***************************************										
	· MISCELLANEOUS		* MISCELLANEOUS		MISCELLANEOUS			MISCE: LANEOUS			MISCELLANEOUS		MISCELLANEDUS		
			1												
HR100	RECTIFIER MOA 9 BO-2	1 52293	RECTIFIER MDA 980	1-3 1 52294				AECTIFIER DIOCES DO 6123	2	27214			RECTIFIER DIDDES DO 6123	2 27214	
			3		RECTIFIER DIODES DD 6123A	2	27215	RECTIFIER 210DES OD 6123A	2	27215	RECTIFIER MODES D. 6123A	2 27215	RECTIFIER OIDOES DD 6123A	1 27215	
RVIOL	CONTROL POT 3K3	10"/a 1 53323	CONTROL POT 3	K3 10% 53323	CONTROL POT 247	10%	18822	CONTROL POT 3K2 10%	-	6172	CONTRAL DAY	1 62277	CONTROL POT 2K2 10	1 53322	
17.101	283	33223	3	10.10	PARTITURE TO L	10/0	3366	CUNTRUL PUT 3K2 107a		23323	CUNTRUL POT 3KZ 1076	1 33363	COMINGE 701 SKE 10	1 3332 €	
									_						
									-						
	FUSE B/LEE L693 5A	1 638	FUSE B/LEE_L693 YA		FUSE R/LEE L 693 SA		638	FUSE B/LEE L693 TA	ī	13040	FUSE B/LEE L693 10A	1 4227	FUSE B/LEE L693 10A	1 4227	
FSZ	FUSE B/LEE L693 74	1 13040	FUSE B/LEE L693 7A	1 13040	FUSE BILEE LIOSS IZA	1	20834				FUSE B/ LEE L1055 12A	20834	FUSE B/LEE GS150/25 25A	1 19021	
			1												
0102	THYRISTON BTYB7/10 DR	1 23074	THYRISTOR BTY 87/100 A	23024	THYRISTOR ZN 3896		25425								
-	ANTHER BITTER	1 23014	THE STORY STREET	23074	THERESES SET SETS		2413	THYRISTOR 2H3896	1	125473	THYRISTOR 2N 3896	1 25473	THYRISTOR CR 26-051 BI	1 27298	
								-		-	1	-			
14															
					1										

This instrument is guaranteed for a period of five years from its delivery to the purchaser covering the replacement of defective parts other than fuses.

We maintain comprehensive after sales facilities and the instrument can. if necessary, be returned to our factory for servicing. The Type and Serial Number of the instrument should always be quoted together with full details of any fault and the service required. The Service Department can also provide maintenance and repair information by telephone or letter.

Equipment returned to us for servicing must be adequately packed, preferably in the special box supplied, and shipped with the transportation charges prepaid. We can accept no responsibility for instruments arriving damaged. Should the cause of failure during the guarantee period be due to misuse or abuse of the instrument, or if the guarantee has expired, the repair will be put in hand without delay and charged unless other instructions are received.

OUR SALES, SERVICE AND ENGINEERING DEPARTMENTS ARE READY TO ASSIST YOU AT ALL TIMES.

Printed in England

Manual Part No. 53712 Issue 1 March 1974

Gould Power Supplies UK. Raynham Road, Bishop's Stortford, Hertfordshire, CM23 5PF, England Telephone. (0279) 55155 Telex. 81510 Electronics & Electrical Products