Semaine 7b

Contraintes et déformations relatives pour poutre en flexion

PARTIE 1: (slide 4 - 23)

Contraintes et déformations relatives pour poutre en flexion (en partie expliqué dans Chapitre 5 de Gere et Goodno)

PARTIE 2: (slide 24 - 50)

Poutres: Moment quadratique (moment d'inertie)

(en partie expliqué dans Chapitre 12 de Gere et Goodno)

PROGRAMME DU COURS, semaines 7-10

Sem	Date	Matière	Cours	Exos	
		Herbert Shea			
7	mardi 01.11	Poutre: forces internes, relation différentielles, forces distribuées	X		
7	jeudi 03.11	ϵ et σ_n ormale en flexion pure. Moment inertie de poutre	x	Série 7	
8	mardi 08.11	charge axiale (et normales). poutre composite		Série 7	
8	jeudi 10.11	Flèche des poutres pt1	Х	Série 8	
9	mardi 15.11	Flèche des poutres pt 2	Х	Série 8	
9	jeudi 17.11	Systèmes indéterminés et thermiques	Х	Série 9	
10	mardi 22.11	Energie déformation Flambage	х	Série 9+10	
10	jeudi 24.11	fin Flambage	Х	Série 10	

Résumé du chapitre précédent (semaine 7a)

$$\blacksquare \frac{dM_Z}{dx} = V(x)$$

- $M_z(x)$: Moment de flexion
- V(x): Force de cisaillement
- q(x): Charge distribuée (positif vers le bas)

Résumé chapitre actuel (semaine 7b)

Poutres avec une épaisseur en y

Poutre en flexion

■ Déformation Relative normale $\varepsilon_{\chi}(y)$:

$$\varepsilon_{x}(y) = -\frac{y - y_0}{\rho} = -\kappa(y - y_0)$$

- y_0 : Position de l'axe neutre
- ρ : Rayon de courbure
- $\kappa = \frac{1}{\rho}$: Courbure
- $y y_0$: Distance de l'axe neutre
- y_0 = Centroïde de la section transverse pour poutres mono-matériaux:

$$y_0 = \frac{\int_A y dA}{A}$$

□ Contrainte normale $\sigma_{\chi}(x,y)$:

$$\sigma_x(x, y) = -\frac{M_z(x)}{I_{z, y_0}}(y - y_0)$$

- I_{z,y_0} : Moment d'inertie de la section sur un axe parallèle à l'axe z passant par l'axe neutre
- $I_{z,y_0} = \int_A (y y_0)^2 dA$
- $M_Z(x) = \frac{E}{\rho} I_{Z,y_0}$
- □ Contrainte normale maximum:

$$|\sigma_{x,max}(x)| = \frac{|M_Z(x)|}{I_{Z,y_0}}c = \frac{|M_Z(x)|}{S}$$

- C: Distance maximale vers l'axe neutre
- $S = \frac{I_{z,y_0}}{c}$: Module d'inertie élastique

Semaine 7b –partie 1 Objectifs d'apprentissage

Savoir ce qu'est une Poutre en flexion pure

Pour les poutres en flexion pure:

- Exprimer $\varepsilon_{\chi}(y)$
- Définir et savoir trouver l'axe neutre
- Exprimer $\sigma_{\chi}(y)$

Déformation relative dans les poutres en flexion pure

! Pas de forces axiales pour le moment

Déformation relative dans une poutre en flexion pure

C'est quoi être en flexion pure?

- Moment interne non-nul le long de la poutre, mais pas de forces internes
 - □ C-a-d : on « tord » les 2 extrémités de la poutre, sans tirer ou pousser
- La flexion ne crée pas d'élongation de l'axe neutre
- Une contrainte normale est la seule contrainte induite par la flexion
- Le niveau de contrainte dépend de *y* (en compression d'un coté, en traction de l'autre)

Source des vidéos des prochains slides

The Bending of Beams (10 part video series) was created for CIV E 204: Mechanics of Solids 1
University of Waterloo, Waterloo, Ontario, Canada.

Permission is granted to use this video for educational purposes only, provided it is unaltered and includes these credits.

© 2009 G W Brodland and J Sherwood

Déformation relative dans une poutre en flexion pure

$$\varepsilon_{x}(y) = -\frac{y - y_{0}}{\rho}$$

Visualisation de la contrainte pour une poutre de section rectangulaire

 y_0 = axe neutre y_0 = 0 dans cette vidéo

$\varepsilon_x(x,y)$: Déformation relative normales pour une poutre en flexion pure en fonction de x et y

- Lorsqu'une poutre fléchit, nous pouvons définir localement un rayon de courbure ρ et une courbure $\kappa=1/\rho$
- Les sections de la poutre perpendiculaires à l'axe de la poutre avant la flexion resteront plan après pliage (c-a-d à x constant)
- Un coté (par ex ici le dessus) de la poutre va s'allonger, tandis que l'autre coté devient plus court.
- L'axe où il n'y a pas d'allongement est appelé axe neutre et passe à travers le <u>centroïde</u> de la poutre

$$\kappa = \frac{1}{\rho} = \frac{d\theta}{dx}$$

Axe Neutre (poutre simple) et déformation relative selon *y*

- Après déformation, l'axe neutre conserve sa longueur d'origine
- tout autre ligne parallèle à l'axe neutre s'allonge ou se raccourcit

$$ds = (\rho - (y - y_0))$$

$$d\theta = ds_0 - (y - y_0) \frac{ds_0}{\rho}$$

$$\varepsilon_{\chi} = \frac{ds - ds_0}{ds_0} \to \varepsilon_{\chi}(x, y) = -\frac{y - y_0}{\rho}$$

 \blacksquare y_0 est la position de l'axe neutre (centroïde)

poutre flexion pure: pas de dépendence en x de ε_x

Déformation relative $\varepsilon_{\chi}(x,y)$ normales (donc selon axe x)

dans une poutre en flexion

$$\varepsilon_{\chi}(y) = -\frac{y - y_0}{\rho}$$

Visualisation contrainte pour poutre avec section en T

L'axe neutre est toujours au centroïde, mais donc pas au milieu (en y) de la poutre.

Où est le Centroïde?

$$\frac{\int y \, dA}{\bar{y}} = \frac{\int z \, dA}{A}$$

$$\bar{z} = \frac{\int z \, dA}{A}$$
intégrales dans le plan yz. (donc dy.dz)

Comme centre de masse

(en 2D, nous n'allons calculer que \overline{y} , pas \overline{z})

Contraintes normales $\sigma_{\chi}(y)$ dans une poutre en flexion

Loi de Hooke dans la poutre

Permet de lier $\varepsilon_{\chi}(y)$ avec $\sigma_{\chi}(y)$

https://www.youtube.com/watch?v=i23bk08PWpI

Contraintes normales $\sigma_{x}(y)$

$$\mathbf{E}_{\chi}(y) = -\frac{y - y_0}{\rho}$$

la loi de Hooke:
$$\sigma_{\chi}(y) = E \varepsilon_{\chi}(y) = -E \frac{y-y_0}{\rho}$$

- □ Rappelez-vous des matrices de souplesse et de rigidité
- \square Ici simple car $\sigma_v = \sigma_z = 0$

 \square Mais pour trouver σ et ε , il faut connaitre la position de l'axe neutre (y_0)

Contraintes normales dans une poutre

■ Pour une poutre en flexion pure : la contrainte normale est la seule contrainte induite par la flexion:

flexion pure
$$V = 0$$
 $M = constante$

flexion pure
$$V = 0$$

$$M = constante$$

$$\tilde{\sigma} = \begin{pmatrix} \sigma_{\chi} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

■ Nous avons des déformation relatives en x, mais donc aussi en y et z !!

$$\varepsilon_{\chi}(x,y) = \frac{\sigma_{\chi}(x,y)}{E}$$

$$\varepsilon_{y}(x,y) = \varepsilon_{z}(x,y) = -\nu \varepsilon_{x}(x,y)$$

Comment trouver l'axe neutre?

(derivation pour le cas sans force axiale)

section dans le plan yz, puis utiliser équations de la statique, sachant que la force axiale est 0 en flexion pure.

$$\sum F_{x}=N=0$$

$$N = \int \sigma_{x}(x, y) dA = \iint -E \frac{(y - y_{0})}{\rho} dy dz = 0$$

$$y_0 = \frac{\int E \frac{y}{\rho} dA}{\int E \frac{1}{\rho} dA} = \frac{\int y dA}{\int dA} \to centro \ddot{d}e$$

Les intégrales sont dans le plan yz

plan xy

Exemple: calcul d'axe neutre pour poutre de section rectangulaire

l'origine

$$y_0 = \frac{\int y \, dA}{\int dA}$$

Les intégrales sont dans le plan yz

Notez que vous choisissez l'origine du système de coordonnées.

Lien entre contrainte $\sigma_x(x, y)$ et moment de flexion $M_z(x)$

Poutre sur laquelle on impose moment M_0 à chaque extrémité

1. pour trouver $M_z(x)$: "couper" la poutre (à x donné, selon axe y, comme semaine 7a), puis utiliser équations de la statique pour trouver $M_z(x)$, le moment interne

$$\sum M_Z = M_Z(x) - M_0 = 0 \to M_Z(x) = M_0$$

2. Puis: exprimer $M_z(x)$ en fonction de $\sigma_x(x, y)$. Mais comment?

$$N(x) = 0$$
$$V(x) = 0$$

Lien entre contrainte $\sigma_x(x, y)$ et moment de flexion $M_z(x)$

https://www.youtube.com/watch?v=asBW0Ojc0bY

Lien entre contrainte $\sigma_x(x,y)$ et moment de flexion $M_z(x)$

(sans force axiale)

- Nous pouvons calculer le moment créé par les contraintes normales par rapport à l'axe neutre. Rappel: $\sigma_{\chi}(\chi, y) = -E \frac{y - y_0}{\rho}$
- Statique: donc $\sum M = 0$ sur chaque plan yz. $\int_{plan \ VZ} Moments \ dA = M_Z(x)$

$$M_z(x) = -\int \sigma_x(x, y)(y - y_0) dA = \int_{plan \ yz} \frac{E}{\rho} (y - y_0)^2 dA$$

ainsi

$$M_Z(x) = \frac{E}{\rho} I_{Z,y_0}$$

$$M_{z}(x) = \frac{E}{\rho} I_{z,y_0}$$
 avec $I_{z,y_0} = \int (y - y_0)^2 dA$

$$\sigma_x(x, y) = -\frac{M_Z(x)}{I_{Z, y_0}}(y - y_0)$$

Formule Flexion

 \Box Si l'origine y a été choisi sur l'axe neutre, alors $y_0 = 0$

Semaine 7b – partie 2 Objectifs d'apprentissage de cette partie

Lier contrainte et Moment de flexion par le moment d'inertie

$$\sigma_{\chi}(x,y) = -\frac{M_Z(x)}{I_{Z,y_0}}(y - y_0)$$

Trouver contrainte maximale dans une poutre en flexion

Calculer moment d'inertie pour poutre de section assemblée de formes simples

Trouver l'axe neutre pour poutre de section assemblée de formes simples

$$I_{z,y_0} = \int (y - y_0)^2 \, dA$$

Moment quadratique (moment d'inertie)

$I_{axe,position_{sur}-l'axe}$

- Exprime la rigidité d'une géométrie à la flexion
- Dépend de la géométrie de la section de la poutre
- Ne dépend pas du matériau

Poutre: Axe long sur x, charge et déflection sur y, flexion autour de l'axe z

Moment quadratique (moment d'inertie)

$I_{axe,position-axe}$

$$I_{z,y=0} = \int y^2 dA$$
 $I_{y,z=0} = \int z^2 dA$

axe selon lequel on "enroule" la poutre (pour nos poutres, ce sera l'axe z, car moment de flexion sur l'axe z, et déflection sur l'axe y)

- Dépend de la géométrie de la section de la poutre
- Ne dépend pas du matériau
- Nous aller "plier" à l'axe neutre: $I_{z,y=y_0}$

Contrainte MAXIMUM: toujours en haut ou en bas de la poutre

https://www.youtube.com/watch?v=VDiNTuVKPSM

Contrainte max dans un poutre en flexion pure

■ Contrainte maximum:

$$\sigma_x(x,y) = -\frac{M_z(x)}{I_{z,y_0}}(y - y_0)$$
 \rightarrow $|\sigma_{x,max}(x)| = \frac{|M_z(x)|}{I_{z,y_0}}c = \frac{|M_z(x)|}{S}$

- c est la distance maximale entre l'axe neutre et bord de la poutre
- S est le module d'inertie élastique: donne l'efficacité d'une section transversale pour résister à la flexion
- *S*= elastic section modulus (in English)
- S = I/c
- grand S → petite contrainte générée pour un moment de flexion donné

$https://en.wikipedia.org/wiki/Section_modulus$

Section modulus equations[3]

Cross-sectional shape	Figure	Equation	Comment
Rectangle		$S=rac{bh^2}{6}$	Solid arrow represents neutral axis
doubly symmetric I -section (major axis)	h DA H	$Sx=rac{BH^2}{6}-rac{bh^3}{6H}$ $Sx=rac{Ix}{y},$ with $y=rac{H}{2}$	NA indicates neutral axis
doubly symmetric I -section (minor axis)	h b/2 H	$Sy = rac{B^2(H-h)}{6} + rac{(B-b)^3h}{6B}$ [4]	NA indicates neutral axis
Circle	r ÿ	$S=rac{\pi d^3}{32}$ [3]	Solid arrow represents neutral axis

Comment trouver le <u>centroïde</u> et le <u>moment d'inertie</u> d'une section de poutre?

$$\sigma_{x}(x,y) = -\frac{M_{z}(x)}{I_{z,y_{0}}}(y - y_{0})$$

Centroïde

$$y_0 = \frac{\int_A y dA}{A} = \frac{\int_A y dy dz}{\int_A dy dz} = \frac{\int_{y_{min}}^{y_{max}} yz(y) dy}{\int_{y_{min}}^{y_{max}} z(y) dy}$$

section de la poutre

Moment d'inertie autour de l'axe z passant par y₀

$$I_{z,y_0} = \int_A (y - y_0)^2 dA = \int_{y_{min}}^{y_{max}} (y - y_0)^2 z(y) dy$$

$$I_{z,y_0} \text{ dépend de } y_0$$

Les intégrales sont dans le plan yz. Attention à l'origine que vous choisissez.

Moment d'inertie (quadratique)

rappel

$$I_{y,x=0} = \int x^2 dA = \int_{-b/2}^{b/2} x^2 h dx = \frac{hb^3}{12}$$

$$I_{X} = \int y^2 dA = \int_{-h/2}^{h/2} y^2 b dy = \frac{bh^3}{12}$$

- on « plie » ou s'enroule selon un axe donné (exemple ci-dessus selon x or y, mais pour nos poutres avec l'axe long x, nous chercherons toujours I_z)
- le choix de l'axe origine est important! Origine = axe ou on plie/tourne. ici les axes passent par ce le centre de l'objet. $I_{y,x=0} \neq I_{y,x=b/2}$
- Si axe pas selon centre, utiliser Steiner = théorème des axes parallèles)

$$I_{x^\prime} = I_x + Ad^2$$

where

 \boldsymbol{A} is the area of the shape, and

d is the perpendicular distance between the x and x^\prime axes. [4][5]

NOTATION: $A = \text{area (length)}^2$; y = distance to extreme fiber (length); $I = \text{moment of inertia (length}^4)$; r = radius of gyration (length); $Z = \text{plastic section modulus (length}^3)$; SF = shape factor. See Sec. 8.15 for applications of Z and SF

Form of section	Area and distances from centroid to extremities	Moments and products of inertia and radii of gyration about central axes	Plastic section moduli, shape factors, and locations of plastic neutral axes
1. Square	$A = a^2$ $y_c = x_c = \frac{a}{2}$	$I_x = I_y = I'_x = \frac{1}{12}a^4$ $r_x = r_y = r'_x = 0.2887a$	$Z_x = Z_y = 0.25a^3$ $SF_x = SF_y = 1.5$
a V _c α x	$y_c = x_c - \frac{\pi}{2}$ $y_c = 0.707a\cos\left(\frac{\pi}{4} - \alpha\right)$		
2. Rectangle	A = bd	$I_x = \frac{1}{12}bd^3$	$Z_x = 0.25bd^2$
^y → x _c ←	$y_c = \frac{d}{2}$	$I_{\mathbf{y}} = \frac{1}{12} db^3$	$Z_{\rm y}=0.25db^2$
→ Xc ←	$x_c = \frac{b}{2}$	$I_x > I_y$ if $d > b$	$SF_x = SF_y = 1.5$
d X Yc	2	$r_x = 0.2887d$ $r_y = 0.2887b$	
3. Hollow rectangle	$A = bd - b_i d_i$	$I_x = \frac{bd^3 - b_i d_i^3}{12}$	$Z_{\mathbf{x}} = \frac{bd^2 - b_i d_i^2}{4}$
У х _с -	$y_c = \frac{d}{2}$	$I_{y} = \frac{db^{3} - d_{i}b_{i}^{3}}{12}$	$SF_x = \frac{Z_x d}{2I_x}$
70	$x_c = \frac{b}{2}$		$Z_{x}=rac{db^{2}-d_{i}b_{i}^{2}}{4}$
		$r_x = \left(\frac{x}{A}\right)$	_
d d _i x y _c		$r_x = \left(\frac{I_x}{A}\right)^{1/2}$ $r_y = \left(\frac{I_y}{A}\right)^{1/2}$	$\mathrm{SF_y} = rac{Z_y b}{2I_y}$
b			

802

Centroïde

avec symétrie

Fig. 12-2

Area with one axis of symmetry

Fig. 12-3

Area with two axes of symmetry

Fig. 12-4

Area that is symmetric about a point

forme complexe

$$\bar{y} = \frac{Q_x}{A} = \frac{\sum_{i=1}^n \bar{y}_i A_i}{\sum_{i=1}^n A_i}$$

Comment trouver le centroïde et le moment d'inertie d'une section de poutre plus complexe

section d'une poutre, union de différentes formes

Assembler les morceaux pour trouver le centroïde et *I* d'un objet complexe

Centroïde d'un assemblage

$$y_0 = \frac{\sum_{i=1}^{N} y_i A_i}{\sum_{i=1}^{N} A_i}$$

Moment d'inertie (autour de l'axe neutre)

$$I_{z,y_0} = \sum_{i=1}^{N} I_{z,y_i} + \sum_{i=1}^{N} A_i (y_i - y_0)^2$$

- on commence par analyser chaque sous-élément. A_i = aire de l'élément i
- y_i est le centroïde de l'élément i, par rapport à l'origine
- $I_{z,yi}$ est le moment d'inertie de l'élément i, pour « plier » par l'axe qui passe par le centroïde de l'objet i
- On peut soustraire les « trous »

Exemple 0: Trouver S pour une poutre avec cette section

Rappel

S = I/c

c est la distance maximale à l'axe neutre

Il nous faut donc I et c

Exemple 0

Solution. On décompose la forme complexe en formes simples

Solution: calcul des centroïdes de chaque élément

Surfaces

$$A_{Rec} = bh$$

Surface du rectangle

$$A_{Cir} = \pi r^2$$

 $A_{Cir} = \pi r^2$ Surface du cercle

$$A = A_{Rec} - A_{Cir} = bh - \pi r^2$$

$$y_{\text{\'el\'ement}} = \frac{\int y \, dA}{\int dA} \rightarrow centro\"ide$$

Centroïdes (à partir de y = 0)

$$y_{Rec} = \frac{h}{2}$$

Centroïde du rectangle

$$y_{Cir} = d$$

Centroïde du cercle (pas zéro ou r/2!)

$$y_0 = \frac{\sum_{i=1}^{N} y_i A_i}{\sum_{i=1}^{N} A_i} \qquad y_0 = \frac{y_{Rec} A_{Rec} - y_{Cir} A_{Cir}}{A} = \frac{\left(\frac{h}{2}\right) bh - d\pi r^2}{bh - \pi r^2}$$

Solution: calcul du moment d'inertie complet

$$I_{z,y_0} = \sum_{i=1}^{N} I_{z,y_i} + \sum_{i=1}^{N} A_i (y_i - y_0)^2$$

Moments d'inertie

$$I_{Rec} = \frac{1}{12}bh^3$$
 Moment d'inertie du rectangle par l'axe passant par son centroïde y_{rec}

$$I_{Cir} = \frac{1}{4}\pi r^4$$
 Moment d'inertie du cercle par l'axe passant par son centroïde y_{cir}

$$I_{y_0} = I_{Rec} - I_{Cir} + A_{Rec}(y_{Rec} - y_0)^2 - A_{Cir}(y_{Cir} - y_0)^2$$

$$y_0 = \frac{\left(\frac{h}{2}\right)bh - d\pi r^2}{bh - \pi r^2}$$

Finalement: calcul de c et de S

Distance maximale de l'axe neutre

$$c = h - y_0$$

• et enfin, le module de section élastique

$$s = \frac{I_{y_0}}{c}$$

$$y_0 = \frac{\left(\frac{h}{2}\right)bh - d\pi r^2}{bh - \pi r^2}$$

2 Poutres de section différentes sous charge uniforme (poids)

Poutre encastrée. 2 poutres avec la même masse par longueur, mais pas la même section

Trouvez celle qui à le « S » le plus grand (c-a-d les contraintes les plus faibles)

les 2 poutre ont la même section (6 mm²)

Poutre avec force distribuée uniforme.

■ Etape 1 - Nous calculons le moment de flexion $M_z(x)$, puis sa valeur maximale. poutre de section A, densité ρ

$$q(x) = \rho Ag$$

$$V(x) = \rho Ag(L - x)$$

$$M(x) = -\rho Ag \frac{(L - x)^2}{2}$$

$$|M|_{Max} = |M(x = 0)| = \rho Ag \frac{L}{2}$$

Poutre avec force distribuée uniforme.

■ Etape 2 – trouver a) la surface de la section, b) la position du centroïde, et c) la distance max entre centroïde et bord de la poutre.

$$y_0 = \frac{\int y \, dA}{\int dA}$$

$$A = 2ab$$

(voir prochain slide pour l'intégrale)

$$y_0 = \frac{a \int_0^b y \, dy + b \int_b^{b+a} y \, dy}{2ab} = \frac{3b+a}{4}$$

$$c = y_0 = \frac{3b + a}{4} = 2.5 \text{ mm}$$

$$A = 2ab$$

$$y_0 = \frac{b}{2}$$

$$c = y_0 = \frac{b}{2} = 1.5 \text{ mm}$$

$$A = ab + ab = 2ab$$

$$\int y dA = \int y dA + \int y dA$$

$$= \int_{3=\frac{a}{2}}^{3=\frac{a}{2}} \int_{20}^{3=\frac{b}{2}} y dy dy + \int_{3=-\frac{b}{2}}^{3=-\frac{b}{2}} \int_{y=\frac{b}{2}}^{y+a} y dy dy$$

$$= a \int_{0}^{y} y dy + b \int_{0}^{0} \int_{y=\frac{a}{2}}^{y+a} y dy$$

Poutre sous charge uniforme

$$I_{z,y_0} = \int (y - y_0)^2 \, dA$$

■ Etape 3 - Nous calculons le moment d'inertie, selon z

$$I_{z,y_0} = I_{green,y_0} + I_{blue,y_0}$$

$$= I_{green,y_{g,0}} + A_{green} \cdot (y_0 - y_{g,0})^2 + I_{blue,y_{b,0}} + A_{blue} \cdot (y_0 - y_{b,0})^2$$

$$= \frac{ab^3}{12} + \frac{ba^3}{12} + ab\left(\frac{b+a}{4}\right)^2 + ab\left(\frac{b+a}{4}\right)^2$$

$$= \frac{ab^3}{12} + \frac{ba^3}{12} + \frac{ab(b^2 + 2ab + a^2)}{8} =$$

$$= \frac{5ab^3 + 5ba^3 + 6a^2b^2}{24} = 8.5 \text{ mm}^4$$

Poutre sous charge uniforme

$$I_{z,y_0} = \int (y - y_0)^2 \, dA$$

■ Etape 3 - Nous calculons le moment d'inertie, selon z

$$I_{z,y_0} = 8.5 \text{ mm}^4$$

$$I_{z,y_0} = \int \left(y - \frac{b}{2}\right)^2 dA =$$

$$= 2a \int_0^b \left(y^2 - by + \frac{b^2}{4}\right) dy =$$

$$= \frac{ab^3}{6} = 4.5 \text{ mm}^4$$

Poutre sous charge uniforme

■ Etape 3 - Nous calculons le moment d'inertie (MÉTHODE alternative, par intégrale directement plutôt que par Steiner)

$$I_{z,y_0} = \int (y - y_0)^2 \, dA$$

$$I_{z,y_0} = I_{green,y_0} + I_{blue,y_0} = \int_0^b a(y - y_0)^2 dy + \int_b^{b+a} b(y - y_0)^2 dy$$

$$= a \frac{(y - y_0)^3}{3} \Big|_0^b + b \frac{(y - y_0)^3}{3} \Big|_b^{b+a}$$

$$= \frac{a}{3} \Big[\Big(b - \frac{3b + a}{4} \Big)^3 + \Big(\frac{3b + a}{4} \Big)^3 \Big] + \frac{b}{3} \Big[\Big(b + a - \frac{3b + a}{4} \Big)^3 - \Big(b - \frac{3b + a}{4} \Big)^3 \Big]$$

$$= \frac{1}{3} [0.5^3 + 2.5^3 + 1.5^3 \cdot 3 - 3 \cdot 0.5^3] \text{ mm}^4 = 8.5 \text{ mm}^4$$

Poutre sous charge uniforme

$$S = \frac{I_{y_0}}{c} \qquad \left| \sigma_{x,max}(x) \right| = \frac{|M_z(x)|}{S}$$

■ Etape 4 - Nous calculons le module de section élastique S

$$S = \frac{8.5}{2.5} = 3.4 \text{ mm}^3$$

$$S = \frac{4.5}{1.5} = 3 \text{ mm}^3$$

et donc il y aura des contraintes maximum très semblables pour les deux cas pour un même moment imposé, malgré le fait que la barre "en T" soit 2x plus rigide

- Une poutre de longueur L, largeur b et épaisseur 2f(x) est chargée comme indiqué.
- Trouvez f(x) pour avoir la même contrainte maximum tout le long de la poutre

Solution 2

- Moment de flexion: $M(x) = -F_0(d + L x)$
- Contrainte Maximum : $\left|\sigma_{x,max}(x)\right| = \frac{|M_z(x)|}{I_{z,y_0}}c$

- Moment d'inertie: $I_{z,y_0}(x) = \frac{1}{12} [2f(x)]^3 b$
- Distance maximale de l'axe neutre: c = f(x)
- Contrainte Maximum : $|\sigma_{x,max}(x)| = \frac{|M_Z(x)|}{I_{Z,y_0}}c = \frac{3F_0(d+L-x)}{2bf^2(x)} = \sigma_0$
- $f(x) = \sqrt{\frac{3F_0(d+L-x)}{2b\sigma_0}}$

