Painel / Meus cursos / SC26EL / 16-Projeto de Controlador com Observador de Estados - Parte 1

/ Questionário sobre Projeto de Controlador com Observador de Estados - Parte 1

Iniciado em sábado, 15 mai 2021, 09:34

Estado Finalizada

Concluída em sábado, 15 mai 2021, 09:41

Tempo 7 minutos 4 segundos empregado

Notas 2,6/3,0

Avaliar 8,7 de um máximo de 10,0(**87**%)

Questão 1

Correto

Atingiu 1,0 de 1,0

Considere o sistema representado por:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 3 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Assinale as alternativas verdadeiras.

- a. Para que o sistema siga uma referência do tipo degrau e tenha maior rejeição à variações paramétricas e à perturbações nos estados, utilizamos uma estrutura de controle baseada em realimentação de estados contento a integral do erro de rastreamento da referência.
- b. Suponha que deseja-se polos dominantes de malha fechada em $s_{1,2} = -2 \pm j2$, uma boa escolha para os autovalores de um observador de estados para esse sistema é $\frac{1}{2} = -4$.
- \square c. Considerando os polos dominantes de malha fechada em $s_{1,2} = -2 \pm j2$, uma possível escolha para os autovalores de um observador de estados para esse sistema é $\sqrt{1,2}=-20$.
- d. Como a planta não tem polo na origem não é possível projetar um controlador baseado em realimentação de estados de forma que a saída siga uma referência do tipo degrau com erro nulo sem a inserção de um integrador.

Questão 2

Parcialmente correto

Atingiu 0,8 de 1,0

Considere o sistema abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -12 & -19 & -8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Projete um controlador por realimentação de estados para que o sistema em malha fechada tenha polos em $s_{1,2}=-2$ e $s_{3,4}=-20$, rastreie uma referência do tipo degrau com erro nulo e tenha maior capacidade de rejeitar variações paramétricas e perturbações nos estados.

Na sequência, projete um observador de estados para este sistema. Os autovalores do observador devem ser $\mu_{1,2}=-20$ e $\mu_3=-200$.

A soma dos elementos da matriz de controlabilidade do sistema a ser controlado vale:

-146

✔ .

O posto da matriz de controlabilidade é:

4

~

Portanto, o sistema é: Controlável ✓

O vetor de ganhos do controlador é dado por $\bar{K} = \begin{bmatrix} K & \vdots & -k_I \end{bmatrix} = \begin{bmatrix} k_1 & k_2 & k_3 & -k_I \end{bmatrix}$. Assim, os ganhos do controlador são:

k₁ = 948

✓ , $k_2 = 645$

✓ , **k**₃ =

✓ , k_I =800

~

A soma dos elementos da matriz de observabilidade do sistema vale:

-31

~

O posto da matriz de observabilidade é:

3

✓.

Portanto, o sistema é: Observável

O vetor de ganhos do observador é dado por $K_{\rm e} = \left[\begin{array}{cc} k_{\rm e1} & k_{\rm e2} & k_{\rm e3} \end{array} \right]^T$. Assim, os ganhos do observador são:

 $k_{e1} = 32077$

~

 $k_{e2} =$ -63922

~ ,

 $k_{e3} =$

134369

O sistema controlado juntamente com o observador de estados pode ser representado por:

$$\begin{bmatrix} \dot{x} \\ \dot{\xi} \\ \dot{\tilde{x}} \end{bmatrix} = A_{MFO} \begin{bmatrix} x \\ \xi \\ \tilde{x} \end{bmatrix} + B_{MFO} ref$$

$$y = C_{MFO} \begin{bmatrix} x \\ \xi \\ \tilde{x} \end{bmatrix}$$

onde $x = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$ é o vetor de estados do sistema, ξ representa a integral do erro de rastreamento da referência e $\tilde{x} = \begin{bmatrix} \tilde{x}_1 & \tilde{x}_2 & \tilde{x}_3 \end{bmatrix}^T$ é o vetor de estados estimados.

 a_{11} a_{12} a_{13} a_{14} a_{15} a_{16} a_{17} A matriz A_{MFO} tem a forma $A_{MFO} = \begin{bmatrix} a_{11} & a_{12} & a_{23} & a_{24} & a_{25} & a_{26} & a_{27} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} & a_{37} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} & a_{46} & a_{47} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} & a_{56} & a_{57} \\ a_{22} & a_{23} & a_{24} & a_{25} & a_{26} & a_{27} \end{bmatrix}$. Assim, os elementos da matriz A_{MFO} são: a_{61} a_{62} a_{63} a_{64} a_{65} a_{66} a_{67} a₇₇ _

- ✓ , a₁₃ =
- \checkmark , $a_{15} =$
- \checkmark , $a_{16}=$
- ✓ , $a_{17} =$

- ✓ , a₂₆ =
- ✓ , a₂₇ =

- **~** ,
- $a_{31} = 0$
- \mathbf{x} , $\mathbf{a}_{32} = 0$
- $x , a_{33} = 0$
- **x** , $a_{34} = 800$
- **✓** , **a**₃₅ =
- **✓** , **a**₃₆ =
- **✓** , **a**₃₇ =
- **x** ,
- **a**₄₁ =
- ✓ , a₄₂ =-1
- ✓ , a₄₃ =0
- \checkmark , $a_{44} = 0$
- \checkmark , $a_{45} = 0$
- \checkmark , $a_{46} = 0$
- \checkmark , $a_{47} = 0$
- **~** ,
- $a_{51} = 0$
- \mathbf{x} , $\mathbf{a}_{52} = 0$
- \mathbf{x} , $a_{53} = 0$
- ✓ , a₅₄ =
 0
- ✓ , a₅₅ =
 -64154
- ✓ , a₅₆ =
 -32076
- \checkmark , $a_{57} = 0$
- **~** ,

- \mathbf{x} , $\mathbf{a}_{62} = \mathbf{0}$
- \mathbf{x} , $a_{63} = 0$
- ✓ , a₆₄ =

 0
- ✓ , $a_{65} =$ 127844
- **✓** , **a**₆₆ = 63922
- **✓** , **a**₆₇ =
- **~**
- $a_{71} = 0$
- **x** , $a_{72} =$
- \mathbf{x} , $a_{73} = 0$
- **✓** , **a**₇₄ =
- **x** , $a_{75} =$ -268750
- ✓ , a₇₆ =
 -134388
- ✓ , a₇₇ =0
- ×

A matriz B_{MFO} tem a forma $B_{MFO}= egin{pmatrix} b_{21} \\ b_{31} \\ b_{41} \\ b_{51} \\ b_{61} \end{pmatrix}$

 b_{11}

 $\lfloor b_{71} \rfloor$

. Assim, os elementos da matriz B_{MFO} são:

- $b_{11} = 0$
- **~** ,
- $b_{21} = 0$
- **~**
- $b_{31} = 0$

b_{41}	=	
1		

~

$$b_{51} = 0$$

~ ,

$$b_{61} = 0$$

~

$$b_{71} = 0$$

~ .

A matriz C_{MFO} tem a forma $C_{MFO} = [c_{11} \quad c_{12} \quad c_{13} \quad c_{14} \quad c_{15} \quad c_{16} \quad c_{17}]$. Assim, os elementos da matriz C_{MFO} são:

$$\checkmark$$
 , $c_{12} =$

$$\checkmark$$
 , $c_{13} = 0$

$$\checkmark$$
 , $c_{14} = 0$

$$\checkmark$$
 , $c_{15}=$

$$\checkmark$$
 , $c_{16}=$

$$\checkmark$$
 , $c_{17} = 0$

~

Questão **3**Parcialmente correto

Atingiu 0,8 de 1,0

Considere o sistema abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -12 & -19 & -8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Projete um controlador por realimentação de estados sem a integral do erro de rastreamento da referência para que o sistema em malha fechada tenha polos em $s_{1,2}=-2$ e $s_3=-20$ e rastreie uma referência do tipo degrau com erro nulo.

Na sequência, projete um observador de estados para este sistema. Os autovalores do observador devem ser $\mu_{1,2}=-20$ e $\mu_3=-200$.

A soma dos elementos da matriz de controlabilidade do sistema a ser controlado vale:

32

~ .

O posto da matriz de controlabilidade é:

3

v .

Portanto, o sistema é: Controlável

O vetor de ganhos do controlador é dado por $K = [k_1 \quad k_2 \quad k_3]$. Assim, os ganhos do controlador são:

 $k_1 = \frac{k_1}{68}$

 \checkmark , $k_2 = 65$

 \checkmark , $k_3 =$

~

A soma dos elementos da matriz de observabilidade do sistema vale:

-31

✔ .

O posto da matriz de observabilidade é:

3

~ .

Portanto, o sistema é: Observável

O vetor de ganhos do observador é dado por $K_e = \begin{bmatrix} k_{e1} & k_{e2} & k_{e3} \end{bmatrix}^T$. Assim, os ganhos do observador são:

 $k_{e1} = 32077$

~ ,

 $k_{e2} =$ -63922

~

 $k_{e3} =$ 134369

~

O sistema controlado juntamente com o observador de estados pode ser representado por:

$$\begin{bmatrix} \dot{x} \\ \dot{\tilde{x}} \end{bmatrix} = A_{MFO} \begin{bmatrix} x \\ \tilde{x} \end{bmatrix} + B_{MFO}ref$$

$$y = C_{MFO} \begin{bmatrix} x \\ \tilde{x} \end{bmatrix}$$

onde $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$ é o vetor de estados do sistema e $\tilde{\mathbf{x}} = \begin{bmatrix} \tilde{x}_1 & \tilde{x}_2 & \tilde{x}_3 \end{bmatrix}^T$ é o vetor de estados estimados.

A matriz A_{MFO} tem a forma $A_{MFO} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} & a_{46} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} & a_{56} \\ a_{61} & a_{62} & a_{63} & a_{64} & a_{65} & a_{66} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} & a_{46} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} & a_{56} \\ a_{61} & a_{62} & a_{63} & a_{64} & a_{65} & a_{66} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} & a_{46} \\ a_{52} & a_{53} & a_{54} & a_{55} & a_{56} \\ a_{61} & a_{62} & a_{63} & a_{64} & a_{65} & a_{66} \\ a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} & a_{46} \\ a_{52} & a_{53} & a_{54} & a_{55} & a_{56} \\ a_{64} & a_{65} & a_{66} \\ a_{71} & a_{72} & a_{73} & a_{74} & a_{75} & a_{75} \\ a_{72} & a_{73} & a_{74} & a_{75} & a_{75} \\ a_{73} & a_{74} & a_{75} & a_{75} \\ a_{74} & a_{75} & a_{75} & a_{75} \\ a_{75} a_{75} & a_{$

. Assim, os elementos da matriz A_{MFO} são:

- $a_{11} = 0$
- ✓ , a₁₂ =
- **✓** , **a**₁₃ =
- \checkmark , $a_{14} = 0$
- ✓ , a₁₅ =
- **✓** , **a**₁₆ =
- $a_{21} = 0$
- \checkmark , $a_{22} = 0$
- ✓ , a₂₃ =1
- \checkmark , $a_{24} = 0$
- ✓ , a₂₅ =

 0
- \checkmark , $a_{26} = 0$
- ~
- $a_{31} = 0$
- \mathbf{x} , $\mathbf{a}_{32} = 0$
- $x , a_{33} =$
- **x** , $a_{34} = 6$
- **×** , $a_{35} =$

-84

-80

- **x** , $a_{36} =$
- **x** ,
- $a_{41} = 0$
- \mathbf{x} , $a_{42} = 0$
- \mathbf{x} , $a_{43} = 0$
- ✓ , a₄₄ =-64154
- **✓** , **a**₄₅ = -32076
- ✓ , a₅₆ =0
- ~
- $a_{51} = 0$
- \mathbf{x} , $a_{52} = 0$
- \mathbf{x} , $a_{53} = 0$
- **✓** , **a**₅₄ = 127844
- **✓** , **a**₅₅ = 63922
- ✓ , a₅₆ =
- ~
- $a_{61} = 0$
- \mathbf{x} , $a_{62} = 0$
- \mathbf{x} , $\mathbf{a}_{63} = 0$
- ✓ , a₆₄ =-268750
- ✓ , a₆₅ =
 -134388
- **✓** , **a**₆₆ =
- **X** .

15/05/2021

A matriz B_{MFO} tem a forma $B_{MFO}=egin{bmatrix} b_{11} \\ b_{31} \\ b_{41} \\ b_{51} \\ b_{61} \end{bmatrix}$. Assim, os elementos da matriz B_{MFO} são:

- $b_{11} = 0$
- **V**
- $b_{21} = 0$
- ~
- $b_{31} = 40$
- **~** ,
- $b_{41} = 0$
- ~
- $b_{51} = 0$
- **~** ,
- $b_{61} = 0$
- **X** .

A matriz C_{MFO} tem a forma $C_{MFO} = [c_{11} \quad c_{12} \quad c_{13} \quad c_{14} \quad c_{15} \quad c_{16}]$. Assim, os elementos da matriz C_{MFO} são:

- $c_{11} = \frac{1}{2}$
- **✓** , **c**₁₂ =
- \checkmark , $c_{13} = 0$
- \checkmark , $c_{14} = 0$
- \checkmark , $c_{15} = 0$
- \checkmark , $c_{16} = 0$
- ~
- → Diagrama de Blocos Scilab/Xcos Simulação

Seguir para...