Project Development Phase Model Performance Test

Date	27 June 2025	
Team ID	LTVIP2025TMID38995	
Project Name	Revolutionizing Liver Care : Predicting Liver	
	Cirrhosis Using Adavanced Machine Learning	
Maximum Marks	10 Marks	

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model: MAE – 1.25 MSE – 2.76 RMSE – 1.66 R2 score -0.81	The against mort Michaelfer I rever our troot to statum and and troot troot, to statum and and troot troot, troot, and troot troot, troot, and troot troot, troot, and troot, troot, print metal must come; print metal must come; print metal must come; and troot, print metal must come; and print must come; and troot, print must be come; and troot, print must be come; and must b
		Classification Model: Confusion Matrix – [[45,5],[8,32]] Accuray Score- 86.7% Classification Report - Include precision, recall, F1-score	DODITION RESIDENCE OF By Attending and the property of the pr
2.	Tune the Model	Hyperparameter Tuning - GridSearchCV used to tune n_estimators and max_depth	The advance of the third section of the control of
		Validation Method - Stratified K-Fold Cross-Validation (K=5)	from shlern.model.selection import OriofswarchcV from shlern.modelle import RandomforectClassifier a Define narmeter grid parent, estimators grid parent, estimators (1 bm, 100, 100), "ana depth": [k, v, 10] prior prior grid swarch with 1-fold CV grid - Gridborn-Ch(MandamforectClassifier(), parant.grid, co-5) prior (Title tonin, v.train) prior (Title tonin, v.train) prior (Title tonin, v.train) prior (Title tonin, v.train)