

KONKURS CHEMICZNY

DLA UCZNIÓW GIMNAZJÓW

II ETAP REJONOWY

08 listopada 2013

Ważne informacje:

- 1. Masz 90 minut na rozwiązanie wszystkich zadań.
- 2. Pisz długopisem lub piórem, nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i zaznacz inną odpowiedź.
- 3. Pisz czytelnie i zamieszczaj odpowiedzi w miejscu na to przeznaczonym. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 4. Podczas pracy możesz korzystać z układu okresowego pierwiastków oraz z tabeli rozpuszczalności soli i wodorotlenków w wodzie zamieszczonych na końcu arkusza.
- 5. Masy atomowe pierwiastków potrzebne do obliczeń odczytuj z tabeli układu okresowego zamieszczonej w arkuszu. W obliczeniach przyjmij wartości: liczba Avogadro: $N_A=6,02\cdot 10^{23}\,\frac{1}{mol}$; objętość molowa gazów w warunkach normalnych: $V_0=22,4\,\frac{dm^3}{mol}$

Życzymy powodzenia!

Maksymalna liczba punktów	30	100%
Uzyskana liczba punktów		%
Podpis osoby sprawdzającej		

Zadanie 1. (1 pkt)

Wskaż cechę wspólną, którą charakteryzuje się zbiór atomów: O, S, Se. Te. **Zaznacz** poprawną odpowiedź.

- A. elektrony rozmieszczone są w 6 powłokach
- B. równa liczba elektronów walencyjnych
- C. wszystkie mogą utworzyć maksymalnie sześć wiązań kowalencyjnych
- D. równy promień atomowy

Zadanie 2. (1 pkt)

Porcjom substancji z kolumny 1 przyporządkuj odpowiadające im liczby cząsteczek z kolumny 2. Objętość tlenku węgla(IV) odniesiono do warunków normalnych. **Zaznacz poprawną odpowiedź.**

1	2
1. $2,24 \text{ dm}^3 \text{ CO}_2$	X. 9,03·10 ²³ cząsteczek
2. 25,5 g NH ₃	Y. 9,03·10 ²² cząsteczek
3. $2,2 \text{ g CO}_2$	Z. $3.01 \cdot 10^{22}$ cząsteczek
4. 0,15 mola NH ₃	W. 6,02 10 ²² cząsteczek
A. 1-X; 2-Y; 3-Z; 4-W	C. 1-X; 2-W; 3-Y; 4-Z
B. 1-W; 2-Y; 3-Z; 4-X	D. 1-W; 2-X; 3-Z; 4-Y

Zadanie 3. (1 pkt)

Do dwóch identycznych, gumowych baloników wprowadzono w tych samych warunkach ciśnienia i temperatury: do pierwszego 10 g tlenku węgla(II) i do drugiego 10 g tlenku azotu(I). Co można zaobserwować? **Zaznacz poprawną odpowiedź.**

- A. Pierwszy balonik jest większy od drugiego.
- B. Pierwszy balonik jest mniejszy od drugiego.
- C. Oba baloniki są tej samej wielkości.
- D. Jest zbyt mało danych aby można było ustalić, który balonik jest większy

Zadanie 4. (*1 pkt*)

Ustal liczby nukleonów w jądrze izotopu stanowiącego produkt emisji jednej cząstki β^- z jądra radionuklidu węgla-14 . **Zaznacz poprawną odpowiedź.**

A. 7 protonów i 7 neutronów	C.	6 neutronów i 8 protonów
B. 7 protonów i 7 elektronów	D.	8 neutronów i 6 protonów

1	2	3	4	Razem

Zadanie 5. (1 pkt)

Oblicz wartość indeksu stechiometrycznego x we wzorze pewnego kwasu karboksylowego C_3H_xCOOH , wiedząc, że tlen stanowi około 37,2% masy cząsteczki tego kwasu. **Zaznacz poprawną odpowiedź.**

A. 4

B. 5

C. 6

D. 7

Zadanie 6. (1 pkt)

Mieszaninom wymienionym w kolumnie I przyporządkuj metody ich rozdzielenia, których nazwy podano w kolumnie. **Zaznacz poprawną odpowiedź**.

	I.		II.
1.	Mieszanina wody i tlenku	X.	Zlanie jednej cieczy znad drugiej przy użyciu
	glinu		rozdzielacza
2.	Roztwór wodny amoniaku	Y.	Dekantacja
3.	Roztwór wodny siarczanu(VI)	Z.	Desaturacja
	miedzi(II)		
4.	Mieszanina wody i heptanu	W.	Krystalizacja
	C_7H_{16}		

A. 1-Z; 2-Y; 3-X; 4-W

C. 1-X; 2-Y; 3-Z; 4-W

B. 1-Y; 2-Z; 3-W; 4-X

D. 1-W; 2-X; 3-Y; 4-Z

⊃ Informacja do zadań 7. i 8.

W celu porównania mocy kwasów przeprowadzono szereg doświadczeń, na podstawie których ustalono, że kwas siarkowy(VI) roztwarza stały fosforan(V) sodu. Roztwory wodne kwasu siarkowego(VI) oraz kwasu fosforowego(V) dodane do roztworu wodnego węglanu sodu powodują, w obu wypadkach, wydzielanie bezbarwnego gazu wywołującego mętnienie wody wapiennej.

Zadanie 7. (1 *pkt*)

Uszereguj wzory kwasów w porządku <u>od najsłabszego do najmocniejszego</u>. **Zaznacz poprawną odpowiedź.**

A. H₂CO₃, H₂SO₄, H₃PO₄

C. H₂SO₄, H₃PO₄, H₂CO₃

B. H₂CO₃, H₃PO₄, H₂SO₄

D. H₃PO₄, H₂CO₃, H₂SO₄

5	6	7	Razem

Zadanie 8. (1 pkt)

Wskaż równanie reakcji zachodzącej po zmieszaniu roztworów wodnych kwasu siarkowego(VI) i węglanu sodu. Zaznacz poprawną odpowiedź.

A.
$$2Na^{+}+CO_{3}^{2-}+2H^{+}+SO_{4}^{2-} \rightarrow Na_{2}SO_{4}+CO_{2}\uparrow + H_{2}O_{3}$$

B.
$$2H^+ + CO_3^{2-} \rightarrow CO_2 \uparrow + H_2O$$

C. $2H^+ + CO_3^{2-} \rightarrow H_2CO_3$

C.
$$2H^+ + CO_3^{2-} \rightarrow H_2CO_3$$

D.
$$Na_2CO_3 + 2H^+ + SO_4^{2-} \rightarrow H_2CO_3 + Na_2SO_4$$

⊃ Informacja do zadania 9.

Uczniowie na zajęciach koła chemicznego badali zachowanie metali w reakcjach z kwasami.

- ✓ Kacper wprowadził miedź do probówki z rozcieńczonym kwasem solnym.
- ✓ Szymon wprowadził miedź do probówki ze stężonym roztworem kwasu azotowego(V).
- ✓ Radek wprowadził miedź do probówki z rozcieńczonym roztworem kwasu azotowego(V).

Zadanie 9. (1 pkt)

Przyporządkuj chłopcom obserwacje, których mogli dokonać wykonując opisane doświadczenia. Zaznacz poprawną odpowiedź.

Nr obserwacji	Obserwacje
1.	Po wprowadzeniu miedzi do kwasu metal powoli roztwarza się, roztwór zabarwia się na niebiesko i wydziela się bezbarwny gaz, który u wylotu probówki, w kontakcie z powietrzem brunatnieje.
2.	Po wprowadzeniu miedzi do kwasu metal roztwarza się, roztwór zabarwia się na niebiesko i wydziela się brunatny gaz.
3.	Po wprowadzeniu miedzi do kwasu metal opada na dno naczynia, roztwór pozostaje bezbarwny i nie wydziela się żaden gaz.

- A. Kacper 3; Szymon 1; Radek 2.
- B. Kacper 2; Szymon 3; Radek 1.
- C. Kacper 1; Szymon 3; Radek 2.
- D. Kacper 3; Szymon 2; Radek 1.

Zadanie 10. (1 pkt)

Wskaż zestaw jonów obecnych w roztworze wodnym kwasu weglowego H₂CO₃, uporządkowanych w porządku malejących ich ilości. Wskaż poprawną odpowiedź.

A. HCO_3^-, CO_3^{2-} C. H^+, CO_3^{2-} B. H^+, HCO_3^-, CO_3^{2-} D. HCO_3^-, CO_3^{2-}, H^+

8	9	10	Razem

⊃ Informacja do zadań 11. i 12.

Wietrzenie skał wapiennych polega na roztwarzaniu węglanu wapnia w wodzie deszczowej zawierającej rozpuszczony tlenek węgla(IV). W jaskiniach, po obniżeniu się zawartości CO₂ w wodzie następuje ponowne wytrącanie węglanu wapnia i tworzą się tzw. stalagmity i stalaktyty, co opisuje równanie reakcji: Ca(HCO₃)₂ → CaCO₃+H₂O+CO₂

Zadanie 11. (1 pkt)

Nazwij substrat reakcji, w wyniku której tworzą się stalagmity i stalaktyty. Wskaż poprawną odpowiedź.

A. weglan wapnia

C. wodoroweglan wapnia

B. diwodoroweglan wapnia

D. weglik wapnia

Zadanie 12. (1 pkt)

Wybierz równanie reakcji ilustrujące wietrzenie chemiczne skał wapiennych. Wskaż poprawną odpowiedź.

A.
$$2CaCO_3 + H_2O \rightarrow Ca(HCO_3)_2 + CaO$$

B.
$$CaCO_3 \rightarrow Ca^{2+} + CO_3^{2-}$$

C.
$$CaCO_3 + H_2O + CO_2 \rightarrow Ca(HCO_3)_2$$

D.
$$Ca(HCO_3)_2 \rightarrow CaCO_3 + H_2O + CO_2$$

⊃ Informacja do zadania 13.

Do kolby miarowej o pojemności 500 cm³ wprowadzono odważkę 8,2 grama bezwodnego azotanu(V) wapnia(II). Do kolby dodano trochę wody i jej zawartość wymieszano aż cała sól się rozpuściła. Następnie kolbę dopełniono wodą destylowaną do kreski i jej zawartość starannie wymieszano.

Zadanie 13. (1 pkt)

Oblicz stężenie molowe jonów azotanowych(V) w roztworze uzyskanym sposobem opisanym w informacji wprowadzającej. Wskaż poprawną odpowiedź.

A. $0.05 \frac{\text{mol}}{\text{dm}^3}$ B. $0.15 \frac{\text{mol}}{\text{dm}^3}$

C. $0.10 \frac{\text{mol}}{\text{dm}^3}$ D. $0.20 \frac{\text{mol}}{\text{dm}^3}$

11	12	13	Razem

⊃ Informacja do zadań 14. i 15.

Przeprowadzono doświadczenie, którego przebieg ilustruje schemat:

$$KMnO_4 + HNO_3 + KNO_2 \rightarrow KNO_3 + Mn(NO_3)_2 + H_2O$$

Zadanie 14. (1 pkt)

Wybierz prawidłowo sformułowane obserwacje. Wskaż poprawną odpowiedź.

- A. fioletowy roztwór odbarwił się
- B. bezbarwny roztwór zabarwił się na fioletowo
- C. fioletowy roztwór odbarwił się i wytrącił się osad
- D. fioletowy roztwór zmienił barwę na zieloną

Zadanie 15. (1 pkt)

Ustal współczynniki stechiometryczne, jakie należy wstawić przed wzorami reagentów aby podany w informacji wprowadzającej schemat stał się równaniem reakcji. **Wskaż wiersz** tabeli zawierający poprawną odpowiedź.

	KMnO ₄	HNO ₃	KNO ₂	KNO ₃	$Mn(NO_3)_2$	H ₂ O
A.	2	2	5	5	2	2
B.	1	2	3	4	1	1
C.	2	6	5	7	2	3
D.	2	3	5	6	2	3

⊃ Informacja do zadań 16. i 17.

W pewnym roztworze zawarte są oprócz anionów, kationy srebra (Ag⁺), baru (Ba²⁺) i cynku (Zn²⁺). Zaplanowano doświadczenie, którego celem było rozdzielenie tych kationów. Projektując doświadczenie założono, że związki chemiczne wytrącające się w formie osadów w reakcjach strąceniowych są całkowicie nierozpuszczalne w wodzie.

- ✓ Do badanego roztworu dodano roztwór wodny związku chemicznego F i odsączono wytrącony osad związku chemicznego X. Stwierdzono, że przesącz jest pozbawiony jonów srebra.
- ✓ Do uzyskanego przesączu (zawierającego kationy baru i cynku) dodano roztwór wodny związku chemicznego G i odsączono wytrącony osad związku chemicznego Y. Stwierdzono, że przesącz jest pozbawiony jonów baru.
- ✓ Do uzyskanego przesączu (zawierającego jony cynku) dodano roztwór związku chemicznego H i odsączono uzyskany osad związku chemicznego Z. Przesącz był pozbawiony jonów cynku.

Zadanie 16. (1 pkt)

Ustal wzory związków chemicznych F, G i H, których roztworów wodnych użyto w kolejnych etapach opisanego doświadczenia. **Wskaż wiersz tabeli zawierający poprawną odpowiedź.**

	F	G	Н
A.	NaOH	Na ₂ S	K_2CO_3
B.	K_2SO_4	K_2CO_3	Na ₂ SiO ₃
C.	NaCl	KNO_3	NaOH
D.	NaCl	K ₂ SO ₄	Na ₂ SiO ₃

Zadanie 17. (1 pkt)

Podaj nazwy związków chemicznych, które wytrąciły się z roztworów w postaci osadów i zostały odsączone na sączkach w kolejnych etapach doświadczenia. **Wskaż wiersz tabeli zawierający poprawną odpowiedź.**

	Osad X	Osad Y	Osad Z
A.	chlorek srebra	siarczan(VI) baru	krzemian cynku
B.	siarczan(VI) srebra	węglan baru	tlenek cynku
C.	wodorotlenek srebra	siarczek cynku	węglan baru
D.	chlorek srebra	azotan(V) baru	wodorotlenek cynku

Zadanie 18. (1 pkt)

Przyporządkuj podane barwy wzorom soli, które wprowadzone do płomienia palnika gazowego zabarwią go w charakterystyczny sposób. **Wskaż poprawną odpowiedź.**

 $\begin{array}{lll} 1. \ \dot{z} \acute{o} \acute{t} \dot{a} & X. \ K_2 SO_4 \\ 2. \ \dot{r} \acute{o} \dot{z} owo fioletowa & Y. \ Ca(NO_3)_2 \\ 3. \ \dot{n} \dot{e} \dot{b} \dot{e} \dot{s} \dot{k} \dot{o} \dot{z} \dot{e} \dot{l} ona & Z. \ CuSO_4 \\ 4. \ \dot{c} eglastoczerwona & W. \ Na_3 PO_4 \\ \end{array}$

A. 1-X; 2-Y; 3-Z; 4-W B. 1-Y; 2-Z; 3-W; 4-X C. 1-W; 2-X; 3-Z; 4-Y D. 1-W; 2-X; 3-Y; 4-Z

Zadanie 19. (1 pkt)

Wybierz wzór związku chemicznego, z którego, w wyniku hydrolizy, jako jeden z produktów, powstaje etanol. **Wskaż poprawną odpowiedź.**

A. $(C_6H_{10}O_5)_x$

B. C₄H₉COOC₂H₅

C. CH₃COOC₄H₉

D. $C_{12}H_{22}O_{11}$

14	15	16	17	18	19	Razem

Konkurs chemiczny. Etap rejonowy

Zadanie 20. (1 pkt)

Wskaż właściwe dokończenie zdania będącego wnioskiem z doświadczenia.

Na próbkę potrawy podziałano alkoholowym roztworem jodu (I_2) . Zaobserwowano intensywne ciemnoniebieskie zabarwienie. Świadczy to o tym, że w skład potrawy wchodzi...

- A. glukoza.
- B. białko.
- C. skrobia.
- D. celuloza.

Zadanie 21. (3 *pkt*)

Uczennica sporządziła wodę bromową rozpuszczając 3,6 g bromu w 100 cm³ wody. Następnie do otrzymanego roztworu wprowadziła 0,02 dm³ etynu (objętość przeliczona na warunki normalne). **Rozstrzygnij,** dokonując odpowiednich obliczeń, czy przepuszczona przez roztwór ilość etenu wystarczy do jego całkowitego odbarwienia. Przyjmij 100% wydajność reakcji.

Obliczenia:
Odpowiedź:

Konkurs chemiczny. Etap rejonowy

Zadanie 22. (*3 pkt*)

Zaprojektuj doświadczenie, którego wynik dowiedzie, że sód wypiera wodór z wody. W projekcie doświadczenia uwzględnij konieczność identyfikacji produktów reakcji. W tym celu:

- a) wypisz nazwy potrzebnego sprzętu oraz naczyń laboratoryjnych;
- b) **narysuj i opisz schemat** przebiegu doświadczenia (nie zapomnij o zaznaczeniu na rysunku substratów i produktów reakcji);
- c) **sformuluj trzy obserwacje**, jakich można dokonać wykonując zaplanowane doświadczenie;

;	a)	Wykaz potrzebnego sprzętu i naczyń laboratoryjnych:
	•••	
1		Schemat doświadczenia:
(c)	Obserwacje:
1		
2	•••	

3.

Konkurs chemiczny. Etap rejonowy

Zadanie 23. (4 pkt)

Karl Wilhelm Scheele otrzymał w 1774 roku po raz pierwszy chlor działając stężonym kwasem solnym na stały tlenek manganu(IV). Opisana reakcja zachodziła zgodnie z równaniem:

$$\mathsf{MnO_2} + \mathsf{4HCl} \ \rightarrow \ \mathsf{MnCl_2} + \ \mathsf{2H_2O} + \ \mathsf{Cl_2} \ \mathsf{\uparrow}$$

Działając 17,705 cm³ kwasu solnego o stężeniu 35% masowych na 5 gramów tlenku manganu(IV) otrzymano 1,12 dm³ chloru odmierzonego w warunkach normalnych. Zakładając 100% wydajność reakcji, oblicz gęstość kwasu solnego użytego doświadczenia .
Odpowiedź: Gęstość kwasu solnego o stężeniu 35% masowych jest równa

UKŁAD OKRESOWY PIERWIASTKÓW CHEMICZNYCH

masy atomowe podano w atomowych jednostkach masy [u]

₁ H				11	asy are	ino we	podu	no w uc	omowyc	n jeune	Januari I	masy [uj				₂ He 4
₃ Li 7	₄ Be 9											₅ B 11	₆ C 12	₇ N 14	₈ O 16	₉ F 19	10Ne 20
11Na 23	12Mg 24											13Al 27	14Si 28	15P 31	16S 32	17Cl 35,5	18Ar 40
₁₉ K 39	₂₀ Ca 40	21Sc 45	₂₂ Ti 48	₂₃ V 51	₂₄ Cr 52	₂₅ Mn 55	₂₆ Fe 56		28Ni 59	₂₉ Cu 64	₃₀ Zn 65	31Ga 70	32Ge 73	33As 75	₃₄ Se 79	35Br 80	36Kr 84
37Rb 85	₃₈ Sr 88	₃₉ Y 89	₄₀ Zr 91	41Nb 93	₄₂ Mo 96	₄₃ Tc 97	₄₄ Rı 101			47Ag 108	48Cd 112	49In 115	₅₀ Sn 119	51Sb 122	₅₂ Te 128	₅₃ I 127	₅₄ Xe 131
₅₅ Cs 133	₅₆ Ba 137	57La 139 (*)	₇₂ Hf 178	₇₃ Ta 181	₇₄ W 184	₇₅ Re 186	₇₆ O: 190			₇₉ Au 197	₈₀ Hg 201	81Tl 204	₈₂ Pb 207	₈₃ Bi 209	84Po 209	85At 210	86Rn 222
₈₇ Fr 223	88Ra 226	89Ac 227 (**)	104Rf 261	105Db 262	106Sg 266	₁₀₇ Bh 272	108H 277			111Rg 280	112Cn 285	113 284	114 289	115 288	116 292		118 294
(*))	58	Ce ₅₉ I	Pr 60N	d 61F	Pm co	Sm	₆₃ Eu	₆₄ Gd	₆₅ Tb	₆₆ Dy	₆₇ Ho	₆₈ Er	₆₉ Tn	n 70	√h π	Lu
	, itanowo						50	152	157	159	163	165	167	169			75
(**	*)	90	Γh 91F	Pa ₉₂ U	J 93N	Np 94	Pu	₉₅ Am	₉₆ Cm	97 Bk	₉₈ Cf	99Es	₁₀₀ Fm	₁₀₁ M	d ₁₀₂ l	No 103	3Lr

ROZPUSZCZALNOŚĆ SOLI I WODOROTLENKÓW W WODZIE (TEMP. 291-298K)

251

243

247

252

257

251

259

262

258

	Na ⁺	K ⁺	NH ₄ ⁺	Mg^{2+}	Ca ²⁺	Sr ²⁺	Ba ²⁺	\mathbf{Ag}^{+}	Cu ²⁺	Zn ²⁺	Al ³⁺	Mn ²⁺	Cr ³⁺	Fe ²⁺	Fe ³⁺	Pb ²⁺	Sn ²⁺	Sn ⁴⁺
OH.	r	r	r	S	S	S	r	n	n	n	n	n	n	n	n	S	n	n
F-	S	r	r	S	S	S	S	r	0	S	S	S	S	S	S	S	r	r
Cl ⁻	r	r	r	r	r	r	r	n	r	r	r	r	S	r	r	S	r	r
Br [·]	r	r	r	r	r	r	r	n	r	r	r	r	S	r	r	S	r	r
I.	r	r	r	r	r	r	r	n	0	r	0	0	О	S	0	S	S	r
S ²⁻	r	r	r	0	0	0	О	n	n	n	0	n	О	n	n	n	n	n
SO_3^{2-}	r	r	r	S	S	S	S	S	S	S	0	S	О	S	О	S	0	О
SO_4^{2-}	r	r	r	r	S	S	n	S	r	r	r	r	r	r	О	n	r	r
NO_3	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	0	r
ClO ₃	r	r	r	r	r	r	r	r	r	X	X	X	X	X	X	r	X	X
PO ₄ ³⁻	r	r	r	S	n	n	n	n	S	S	S	S	S	S	S	n	0	r
CO_3^{2-}	r	r	r	S	n	n	n	n	S	S	0	S	О	S	О	n	0	0
HCO ₃	S	r	r	S	S	S	О	0	0	0	О	S	О	S	О	0	X	X
SiO ₃ ² -	r	r	0	n	n	0	n	n	n	n	n	n	n	n	n	n	0	0
CrO ₄ ² ·	r	r	r	r	S	S	n	n	S	S	О	S	О	0	S	n	0	0

- r substancja dobrze rozpuszczalna
- s substancja słabo rozpuszczalna (osad wytrąca się ze stężonego roztworu)
- n substancja praktycznie nierozpuszczalna
- o substancja w roztworze wodnym nie istnieje

238

237

244

x - związek nie istnieje

aktynowce

232

231

Brudnopis