1 Pag	е
---------	---

This is a practice test for CH 231 Final. There are 22 questions in total and is of similar difficulty of what can be expected on the actual final. Please treat it as a real examination, with no outside help from notes, internet, or peers. Take 80 minutes to complete this practice test and remember to keep in mind significant figures. Once done, let James know for the answer key. Good luck! It was a pleasure helping out Gen Chem I and I hope to see you again next term.

$\lambda = \frac{h}{mv}$	$q = mc\Delta T$	$q=m\Delta H$		
$\Delta E = q + w$	q = c ΔT	$c = 3.00 \times 10^8 \text{ m/s}$		
$h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$	$v = \frac{c}{\lambda}$	E = hv		
$\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$	$R_{\rm H} = 2.180 \ {\rm x} \ 10^{-18} \ {\rm J/photon}$	$R_{\rm H} = 10973731.6 \ m^{-1}$		
$1 J = 1 \frac{kg \bullet m^2}{s^2}$	electron mass = 9.10938 × 10 ⁻³¹ kg	E=mc ²		
ЕΨ=НΨ	$\Delta E = q + w$	$W = -P\Delta V$		
ΔΗ = ΔΕ - ΡΔV	$P(r) = 4 \pi r^2 \Psi^2$	$(\Delta x)(m\Delta v) \ge h/4\pi$		
$E_n = -hcR_{\infty}/n^2$	$E_n = -RZ^2/n^2$	$KE = E_{photon} - \phi$		

								1
	87 Fr Francium (223.02)	55 Cs Cesium 132.91	37 Rb Rubidium 85.47	19 X Potassium 39.10	11 Na sodium 22.99	Lithium 6.941	1.008	1A -1
	88 89 Ra Ac Radium Actinium (226.03)(227.03	56 Ba Barium 137.33	38 Sr Strontium 87.62	20 Ca Calcium 40.08	12 Mg Magnesium 24.31	4 Be Beryllium 9.012	2 2A	
	89 AC Actinium (227.03)	57 La Lanthanum 138.91	39 Yttrium 88.91	21 SC Scandium 44.96	3B			
	104 Rf Ruhefortum (261.11)	72 Ha Hafnium 178.49	40 Zr Zirconium 91.22	22 Ti Titanium 47.87	4B			
58 Ce Cerium 140.12 90 Th Thorium 232.04	105 Db Dubnium (262.11)	73 Ta Tantalum 180.95	-	23 V Vanadium 50.94	5B			
59 Pr 140.91 91 Pa Protectnium 231.04	106 Sg Seaborgium (266.12)	74 W Tungsten 183.84	42 Mo Molybdenum 95.96	24 Cr Chromium 52.00	6 6B			
60 Neodymium 144.24 92 Uranium 238.03	107 Bh Bohrium (264.12)	75 Re Rhenium 186.21	43 TC Technetium (98)	Mn Manganese 54.94	7 7B			
61 Pm Promethium (145) 93 93 Neptuhium (237.05)	108 Hs Hassium (269.13)	76 OS Osmium 190.23	44 Ru Ruthenium 101.07	26 Fe	ີ່ າ ∞			
62 Sm Samarium 150.36 94 Pu Pu Putonium (244.06)	109 Mt Meitnerium (268.14)	77 r Iridium 192.22	45 Rh Rhodium 102.91	27 Co Cobalt 58.93	9 - 8B –			
61 62 63 Pm Sm Eu Promethium Samarium Europium (145) 150.36 151.96 93 94 95 Np Pu Am Neptuhium Plutonium Americium (237.05)(244.06)(243.06)	110 Ds Dammstadtium (271)	78 Pt Platinum 195.08	46 Pd Palladium 106.42	28 Nickel 58.69]			
64 Gd Gadolinium 157.25 96 Cm Curium (247.07)	Regularization (272)	79 Au Gold 196.97	47 Ag Silver 107.87	29 Cu Copper 63.55	11 1B			
64 7b Gadolinium Terbium 157.25 158.93 96 97 Cm Bk Curium Berkelium (247.07) (247.07)	112 Cn (Copernicium (285)	80 Hg Mercury 200.59	48 Cd Cadmium 112.41	30 Zn Zinc 65.38	12 2B			
66 Dy Dysprofum 162.50 98 Cf Californium (251.08)	113	81 Thallium 204.38	49 In Indium 114.82	31 Ga Gallium 69.72	13 Al Aluminum 26.98	5 Boron 10.81	13 3A	
67 Ho Holmium 164.93 99 ES Einsteinium	114 Flerovium (289)	82 Pb Lead 207.2	50 Sn 118.7	32 Ge Germanium 72.64	Silicon 28.09	6 Carbon 12.01	14 4A	
66 67 68 Dy Ho Er Dysprosium Holmium 162.50 164.93 167.26 98 99 100 Cf Es Californium Einsteinium (257.08) (252.08) (257.10)	115	83 Bi Bismuth 208.98	Sb Antimony 121.76	33 AS Arsenic 74.92	Phosphorous 30.97	Nitrogen 14.01	15 5A	
69 Tm Thulium 168.93 101 Md Mendelevium (258.10)	116 LV Livermorium (293)	84 Po Polonium (208.98)	52 Te Tellurium 127.60	34 Se Selenium 78.96	16 Sulfur 32.07	0 0 0 0 0 0 0 0 16.00	16 6A	
70 Yb Ytterbium 173.05 102 No Nobelium (259.10)	117	85 At Astatine (209.99)	53 	35 Br Bromine 79.90	17 C Chlorine 35.45	9 Fluorine 19.00	17 7A	
70 71 Yb Lu Ytterbium 173.05 174.97 102 103 No Lr Nobselium Lawrencium (259.10) (262.11)	118	86 Rn Radon (222.02)	54 Xe Xenon 131.29	36 Krypton 83.80	18 Ar Argon 39.95	10 Ne Neon 20.18	2 He Helium 4.003	18 8A

Multiple Choice

- 1) Jamesonnium (Jh) has two stable isotopes: ¹⁴⁵Jh(mass = 144.9362 amu) and ¹⁴⁸Jh(mass = 147.9177). Which of the following cannot be an average atomic mass of Jamesonnium?
- a) 145.7731 amu
- b) 144.9968 amu
- c) 146.3214 amu
- d) 147.9882 amu
- e) Any of these are valid average atomic masses
- 2) How many total electrons are present in 0.1415 g of oxide ions?
- a) 2.23×10^{23}
- b) 3.20×10^{22}
- c) 4.26×10^{22}
- d) 5.33 x 10²¹
- e) None of these
- 3) Look at the diagram shown below:

James shoves $H_2(g)$ and $N_2(g)$ into a closed container shown above. Which of the following diagrams would represent the results if the reaction shown before were to proceed to completion?

3) Consider the following reaction below:

$$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$$

What mass of hydrogen gas must be reacted in excess nitrogen gas to give a theoretical yield of 75.0 grams of NH_3 gas?

- a) 6.60 g
- b) 13.3 g
- c) 46.5 g
- d) 11.3 g
- e) 5.92 g
- 4) (written) How many mmol are present in 5.45mg of carbon? _____
- 5) If a carbon atom has 3 sigma bonds and 1 pi bond. What is its molecular geometry?
 - a) Trigonal planar
 - b) Tetrahedral
 - c) Bent
 - d) Trigonal bipyramidal
 - e) Linear
- 6) Which is the correct order ranking smallest to largest 2nd ionization energy?
 - a) He, Be, B, Li
 - b) Be, B, He, Li
 - c) Be, B, Li, He
 - d) Li, Be, B, He
 - e) Li, B, Be, He
- 7) Which of the following compounds are covalently bonded?
 - a) BaO
 - b) AsH₅
 - c) MgBr₂
 - d) GaN
 - e) MgSO₄

- 8) Which of the following metals does not exhibit attraction to an external magnetic field in a 2+ oxidation state?
 - a) Cu
 - b) Ni
 - c) Zn
 - d) Mn
 - e) They all will exhibit an attraction
- 9) What is the formal charge of sulfur on a sulfate ion?
 - a) -4
 - b) -2
 - c) 0
 - d) +2
 - e) +4
- 10) What is the bond order for N_2^{+1} ?
 - a) 1
 - b) 3/2
 - c) 2
 - d) 5/2
 - e) 3
- 11) Rank the following ions by increasing ionic radii:

Br⁻ K^{+} Rb⁺

- a) $Br^{-} < Rb^{+} < K^{+}$
- b) $K^+ < Rb^+ < Br^-$
- c) $Rb^{+} < Br^{-} < K^{+}$
- d) $Br^{-} < K^{+} < Rb^{+}$
- e) $Rb^{+} < K^{+} < Br^{-}$
- 12) How many electrons can be described by described by n=3, l= 2?
- a) 2
- b) 5
- c) 6
- d) 8
- e) 10

Jamesonnium is shown below:

- 13) Jamesonnium contains: Select all
- An alcohol
- An aldehyde
- A ketone
- An ether
- A methyl
- A carboxylic acid
- An amine
- An ester
- 14) How many chiral centers does Jamesonnium have? _____

15)

Which of the following are correct resonance structures for SO₃?

16) A molecule of nicotine contains 74.01% C, 17.28% N, and balance H by mass.

Short Answer

a) Wh	at is the molecular formula of nicotine if it has a molar mass of 162.12 g/mol?
	ne average person smokes 17 cigarettes a day, and each cigarette contains 13.30 mg of otine, how many atoms of Nitrogen will be consumed over a year?
17Liqui	d ethanol reacts with diatomic oxygen to form carbon dioxide and water.
a)	Write the balanced equation for the reaction. Include phases
b)	How many grams of gas is expected to form if 5.43 grams of ethanol and 4.44 grams of oxygen are produced?
c)	If 2.44 grams of gas is formed, what is the percent yield of the gas?
	plate is struck by a photon with wavelength of 360 nm. The plate has binding energy of oules. If an electron is ejected from the surface, what would its velocity be?

19) Consider the following reaction:

$$4 C_2H_3OF(g) + 9 O_2(g) \rightarrow 8 CO_2(g) + 6 H_2O(g) + 2 F_2(g)$$

When 5.82 mol of C_3H_3OF and 10.35 mol of O_2 are initially present in the reaction mixture, how much, in grams, of which reactant will remain after the reaction goes to completion?

20)Consider the following aqueous solution: 22.50 g of HI and 100.0 mL of water.

- a) What is the molarity of the solution?
- b) If barium hydroxide has a concentration of 0.800M, then what volume of it is required to fully react with the above solution?

- 21)Draw the Lewis structure for XeOF₄
 - a) What is its molecular geometry?
 - b) What is its hybridization?

22) It takes 208.5 kJ of energy to remove 1 mol of electrons from an atom on the surface of rubidium metal. What is the maximum wavelength of light capable of removing a single electron from an atom on the surface of solid Rb?