

Introducción

Analizamos la base de datos de Airbnb de NY y propusimos un modelo que realizara predicciones del precio de renta por habitación.

La base de datos originalmente contaba con 48,885 observaciones y 16 variables. Después del proceso de limpieza de los datos nos quedamos con 38,811 observaciones y 11 variables.

Adicionalmente, exploramos la técnica de **feature hashing** para manejar variables categóricas que tenían muchas clases.

Descripción de la base de datos

Columna	Tipo de la variable	Descripción de la variable
id	Categórica A-Z	ID de la propiedad
name	Categórica A-Z	Nombre de la propiedad
host_id	Categórica A-Z	Id del Propietario
host_name	Categórica A-Z	Nombre del anfitrión
neighbourhood_group	Categórica A-Z	Delegación
Neighbourhoodarea	Categórica A-Z	Colonia
latitudelatitude coordinates	Numérica #	Coordenadas de latitud
longitudelongitude coordinates	Numérica #	Coordenadas de longitud
room_type	Categórica	Tipo de cuarto (1 cuarto, casa entera, otro)
price	Numérica #	precio en dólares
minimum_nights	Numérica #	Cantidad mínima de días necesarios para apartar la habitación
number_of_reviews	Numérica #	Número de reseñas de los huéspedes
last_review	Fecha-categórica 🕗	Fecha en que se realizó la ultima reseña
reviews_per_month	Numérica #	Número de reseñas por mes
calculated_host_listings	Numérica #	Número de propiedades de Airbnb que tiene el anfitrión
availability_365	Numérica #	Número de días al año que la propiedad está disponible para ser alquilada

Particularidades del problema

• Se usa **log(precio+1)** para modelar el precio porque la distribución del precio está sesgada a la izquierda, y para aproximarla a una normal hacemos la transformación de la variable con log (precio +1) ya que no existe logaritmo de 0.

• Se decidió usar el host_id como variable categórica, lo cual aumenta en gran manera la dimensionalidad del problema. Para mitigar esto usamos la técnica de feature hashing.

Feature Hashing

- ¿Qué es? Es una técnica de reducción de dimensionalidad donde se usa una función hash para mapear los valores de los features a índices en un vector de features.
- ¿Cuándo se usa y para qué? Con "high dimensional input data" que es "sparse".
- Ventajas: uso eficiente de memoria, rápido y simple, conserva el sparcity, fácil manejo de datos faltantes, ingeniería de características
- Desventajas: no hay *inverse mapping*, mala interpretabilidad y características importantes, *hash collisions*, impacto en la precisión de *hash collisions*

El truco del Hashing

Se una función hash para mapear los valores de los features a índices en un vector de features

Modelos propuestos

- Modelo de regresión lineal
- Modelo de regresión lineal con regularización Ridge
- Bosque Aleatorio
- XGBoost

Resultados

	Sin host_id		
Modelo	Conjunto	rmse	r2_score
Regresión	Entrenamiento	0.427846	0.5727581
Regresión	Validación	0.441220	0.5629389
Regresión	Prueba	0.431223	0.5628377
Ridge	Entrenamiento	0.427971	0.5725088
Ridge	Validación	0.440941	0.5634912
Ridge	Prueba	0.431182	0.5629220
Bosque Aleatorio	Entrenamiento	0.240415	0.8650964
Bosque Aleatorio	Validación	0.409476	0.6235672
Bosque Aleatorio	Prueba	0.401028	0.6219172
XGBoost	Entrenamiento	0.389560	0.6457999
XGBoost	Validación	0.418865	0.6061066
XGBoost	Prueba	0.406794	0.6109663

Con host_id						
Modelo	Conjunto	rmse	r2_score			
Regresión**	Entrenamiento	0.432760158	0.562886901			
Regresión**	Validación	0.449889826	0.545594217			
Regresión**	Prueba	0.441625728	0.541491583			
Ridge**	Entrenamiento	0.432819305	0.562767409			
Ridge**	Validación	0.450041648	0.545287473			
Ridge**	Prueba	0.441686858	0.541364639			
Bosque Aleatorio	Entrenamiento	0.226554006	0.880203874			
Bosque Aleatorio	Validación	0.407512681	0.627167501			
Bosque Aleatorio	Prueba	0.399814423	0.624201109			

Conclusiones

- La base de datos puede ser complementada con información adicional que ayudaría a mejorar las predicciones.
- Hay un área de oportunidad para reducir aún mas el error de predicción a través de feature engineering, que por restricciones de tiempo no exploramos a fondo.
- La técnica de feature hashing nos permitió probar modelos con variables categóricas (host_id)que de otra forma no hubiera sido possible.

-0.0

- -0.2

Referencias

https://www.kaggle.com/duygut/airbnb-nyc-price-prediction

https://www.slideshare.net/Hadoop Summit/machine-learning-on-hadoop-data-lakes

 $\frac{https://www.slideshare.net/SparkSummit/feature-hashing-for-scalable-machine-learning-spark-summit-east-talk-by-nick-pentreath/8$

----Lasso-----Phase-1--MAE: 0.375922 RMSE: 0.520400 R2 0.530591 ---Phase-2---MAE: 0.523562 RMSE: 0.671290 R2 0.218595 -----ElasticNet----Phase-1 ---MAE: 0.371707 RMSE: 0.518862 R2 0.533362 ---Phase-2--MAE: 0.524883 RMSE: 0.670878 R2 0.219553

-----Lineer Regression--------Phase-1--MAE: 0.377923 RMSE: 0.522021 R2 0.527663 --Phase-2--MAE: 0.531963 RMSE: 0.685894 R2 0.184227 -----Ridge -------Phase-1--MAE: 0.377915 RMSE: 0.522038 R2 0.527631 ---Phase-2---MAE: 0.529255 RMSE: 0.679340 R2 0.199742

Benchmark mejor resultado en Kaggle