LP 36 : Diffraction par des structures périodiques

Niveau: L3

Prérequis:

- Diffraction de Fraunhofer (Diffraction par une fente de largeur b)
- Interférences (Formule des réseaux, transmission et réflexion)
- Cristallographie (Réseau de Bravais, Réseau réciproque, Maille, Motif, Plan réticulaires)
- □Transformée de Fourier

Diffraction par un rideau d'une lumière extérieure Source : Wikipedia

Diffraction par les ailes d'un colibri Crédit photo: Christian Spencer

Source: Taillet, Optique physique

Détermination du pas d'un CD-rom

Formule des réseaux en réflexion :

$$a = p \lambda / \sin(\theta_p)$$

$$Ici: p = 1$$

$$\lambda = 532 \text{ nm}$$

$$\sin(\theta_{\rm p}) \approx 0.34$$

Crédit photo : Laurent Douek

$a \approx 1.6 \mu m$ (Standard du format)

Crédit illustration : Cmglee

Détermination du pas de l'aile du colibri

Formule des réseaux :

$$a = \lambda / \sin(\theta)$$

Avec
$$sin(\theta) =$$

Ici : f' ~ 50 mm

 $1 \sim L/4 \sim 2 \text{ cm}$

Donc $sin(\theta) \sim 0.37$

 $\lambda \sim 400 \text{ nm}$

 $a \sim 1 \mu m$ (Cohérent avec la litterature)

Crédit photo : Laurent Douek

Crédit photo : Dennis Kunkel Microscopy

Réseaux de Bravais direct

Soit trois vecteurs (a,b,c).

Un réseau de Bravais est l'ensemble des points de position :

 $\mathbf{R}_{\mathbf{u},\mathbf{v},\mathbf{w}} = \mathbf{u}\mathbf{a} + \mathbf{v}\mathbf{b} + \mathbf{w}\mathbf{c}$ avec (u,v,w) entiers relatifs.

Il est décrit par la fonction :

$$S(\mathbf{r}) = \sum_{u,v,w} \delta(\mathbf{r} - \mathbf{R}_{u,v,w})$$

Source : Ashcroft et Mermin, Physique des solides

Réseaux de Bravais réciproque

Ensemble des vecteurs d'onde K donnant une onde plane de périodicité égale à celle du réseau de Bravais direct étudié

On a donc :
$$e^{i\mathbf{K}.\mathbf{R}} = 1 \iff \mathbf{K}.\mathbf{R} = 2 \pi m$$

Le réseau réciproque est lui même un réseau de Bravais de vecteurs (a* ,b* ,c*)

$$\mathbf{K}_{\mathbf{h},\mathbf{k},\mathbf{l}} = \mathbf{h}\mathbf{a}^* + \mathbf{k}\mathbf{b}^* + \mathbf{l}\mathbf{c}^*$$
 avec (h,k,l) entiers relatifs.

Il est décrit par la fonction :

$$S(\mathbf{q}) = \sum_{h,k,l} \delta(\mathbf{q} - \mathbf{K}_{h,k,l}) = TF(S(\mathbf{r}))$$

Motif et Réseau

Motif: Unité physique répétée à chaque nœud de réseau

Une structure cristalline est formé de l'union du motif et du réseau

Source : Ashcroft et Mermin, Physique des solides

Source: Ma maison, mon jardin

Plan réticulaire

Plan donné par trois points du réseau non alignés. Engendre une famille de plan parallèles espacés de la distance d

Un plan réticulaire est toujours orthogonal à un vecteur $\mathbf{K}_{\mathbf{h.k.l}}$ du réseau réciproque, tel que :

Conclusion

Source: M. Delalande et al., Journal of Materials Chemistry, 2007, 17, 1579-1588.

Source: D. Shechtman et al., Metallic Phase with Long-Ranged Orientational Order and No Trabslational Symmetry, Phys. Rev. Lett., volume 53, p. 1951, 1984.

Construction d'Ewald, mesure des pics

Source : Ashcroft et Mermin, Physique des solides