C21 Nonlinear Systems

Mark Cannon

4 lectures

Michaelmas Term 2017

Lecture 1

Introduction and Concepts of Stability

Course outline

- 1. Types of stability
- 2. Linearization
- 3. Lyapunov's direct method
- 4. Regions of attraction
- 5. Linear systems and passive systems

Books

- J.-J. Slotine & W. Li Applied Nonlinear Control, Prentice-Hall 1991.
 - ⋆ Stability
 - * Interconnected systems and passive systems
- H.K. Khalil Nonlinear Systems, Prentice-Hall 1996.
 - ⋆ Stability
 - * Passive systems
- M. Vidyasagar Nonlinear Systems Analysis, Prentice-Hall 1993.
 - * Stability & passivity (more technical detail)

- Real systems are nonlinear
 - * friction, non-ideal components
 - * actuator saturation
 - ⋆ sensor nonlinearity
- Analysis via linearization
 - * accuracy of approximation?
 - * conservative?
- Account for nonlinearities in high performance application
 - * Robotics, Aerospace, Petrochemical industries, Process control, Power generation . .
- Account for nonlinearities if linear models inadequate
 - large operating region
 - * model properties change at linearization point

- Real systems are nonlinear
 - ⋆ friction, non-ideal components
 - * actuator saturation
 - ★ sensor nonlinearity
- Analysis via linearization
 - * accuracy of approximation?
 - ★ conservative?
- Account for nonlinearities in high performance application.
 - * Robotics, Aerospace, Petrochemical industries, Process control, Power generation . . .
- Account for nonlinearities if linear models inadequate
 - large operating region
 - * model properties change at linearization point

- Real systems are nonlinear
 - ★ friction, non-ideal components
 - * actuator saturation
 - ★ sensor nonlinearity
- Analysis via linearization
 - * accuracy of approximation?
 - * conservative?
- Account for nonlinearities in high performance applications
 - * Robotics, Aerospace, Petrochemical industries, Process control, Power generation . . .
- Account for nonlinearities if linear models inadequate
 - * large operating region
 - * model properties change at linearization point

- Real systems are nonlinear
 - ★ friction, non-ideal components
 - * actuator saturation
 - ★ sensor nonlinearity
- Analysis via linearization
 - * accuracy of approximation?
 - ★ conservative?
- Account for nonlinearities in high performance applications
 - * Robotics, Aerospace, Petrochemical industries, Process control, Power generation . . .
- Account for nonlinearities if linear models inadequate
 - ★ large operating region
 - * model properties change at linearization point

Free response

Linear system

$$\dot{x} = Ax$$

Unique equilibrium poin

$$Ax = 0 \iff x = 0$$

Stability independent of initial conditions

Nonlinear system

$$\dot{x} = f(x)$$

Multiple equilibrium points

$$f(x) = 0$$

Stability dependent on initial conditions

Free response

Linear system

$$\dot{x} = Ax$$

• Unique equilibrium point:

$$Ax = 0 \iff x = 0$$

Stability independent of initial conditions

Nonlinear system

$$\dot{x} = f(x)$$

• Multiple equilibrium points

$$f(x) = 0$$

Stability dependent on initial conditions

Free response

Linear system

$$\dot{x} = Ax$$

• Unique equilibrium point:

$$Ax = 0 \iff x = 0$$

Stability independent of initial conditions

Nonlinear system

$$\dot{x} = f(x)$$

• Multiple equilibrium points

$$f(x) = 0$$

• Stability dependent on initial conditions

Forced response

Linear system

$$\dot{x} = Ax + Bu$$

- ||u|| finite $\Rightarrow ||x||$ finite if open-loop stable
- Frequency response: $u = U \sin \omega t \implies x = X \sin(\omega t + \phi)$
- Superposition

$$u = u_1 + u_2 \implies x = x_1 + x$$

$$\dot{x} = f(x, u)$$

- ||u|| finite $\Rightarrow ||x||$ finite
- No frequency response $u = U \sin \omega t \implies x \text{ sinusoida}$
- No linear superposition

$$u = u_1 + u_2 \implies x = x_1 + x_2$$

Forced response

Linear system

$$\dot{x} = Ax + Bu$$

- $\bullet \ \|u\| \ \text{finite} \Rightarrow \|x\| \ \text{finite if open-loop stable}$
- Frequency response: $u = U \sin \omega t \Rightarrow x = X \sin(\omega t + \phi)$
- Superposition:

$$u = u_1 + u_2 \implies x = x_1 + x$$

$$\dot{x} = f(x, u)$$

- ||u|| finite $\Rightarrow ||x||$ finite
- No frequency response $u = U \sin \omega t \, \neq \, x \, \text{sinusoidal}$
- No linear superposition $u = u_1 + u_2 \implies x = x_1 + x_2$

Forced response

Linear system

$$\dot{x} = Ax + Bu$$

- $\|u\|$ finite $\Rightarrow \|x\|$ finite if open-loop stable
- Frequency response: $u = U \sin \omega t \implies x = X \sin(\omega t + \phi)$
- Superposition: $u = u_1 + u_2 \Rightarrow x = x_1 + x_2$

$$\dot{x} = f(x, u)$$

- ||u|| finite $\Rightarrow ||x||$ finite
- No frequency response $u = U \sin \omega t \; \not \Rightarrow \; x \; \text{sinusoidal}$
- No linear superposition $u = u_1 + u_2 \implies x = x_1 + x_2$

Forced response

Linear system

$$\dot{x} = Ax + Bu$$

- $\|u\|$ finite $\Rightarrow \|x\|$ finite if open-loop stable
- Frequency response: $u = U \sin \omega t \implies x = X \sin(\omega t + \phi)$
- Superposition:

$$u = u_1 + u_2 \implies x = x_1 + x_2$$

$$\dot{x} = f(x, u)$$

- ||u|| finite $\Rightarrow ||x||$ finite
- No frequency response $u = U \sin \omega t \; \not\Rightarrow \; x \; \text{sinusoidal}$
- No linear superposition

$$u = u_1 + u_2 \implies x = x_1 + x_2$$

Example: step response

Mass-spring-damper system

Equation of motion:

$$\ddot{x} + c(\dot{x}) + k(x) = u$$

$$c(\dot{x})=\dot{x}$$

k(x) nonlinear:

Example: step response

Mass-spring-damper system

Equation of motion:

$$\ddot{x} + c(\dot{x}) + k(x) = u$$

$$c(\dot{x}) = \dot{x}$$

k(x) nonlinear:

apparent damping ratio depends on size of input step

Example: multiple equilibria

First order system: $\dot{x} = f(x)$

- x_a , x_c are unstable equilibrium points
- x_b is a stable equilibrium point

Example: multiple equilibria

First order system: $\dot{x} = f(x)$

- x_a , x_c are unstable equilibrium points
- x_b is a stable equilibrium point

Example: limit cycle

Van der Pol oscillator:

$$\ddot{x} + (x^2 - 1)\dot{x} + x = 0$$

- ullet Response x(t) tends to a limit cycle (= trajectory forming a closed curve)
- Amplitude independent of initial conditions

Example: limit cycle

Van der Pol oscillator:

$$\ddot{x} + (x^2 - 1)\dot{x} + x = 0$$

- Response x(t) tends to a limit cycle (= trajectory forming a closed curve)
- Amplitude independent of initial conditions

Response with x(0) = 0.05, $\dot{x}(0) = 0.05$

State trajectories $(x(t), \dot{x}(t))$

Strange attractor

Lorenz attractor

• Simplified model of atmospheric convection:

$$\dot{x} = \sigma(y - x)$$

$$\dot{y} = x(\rho - z) - y$$

$$\dot{z} = xy - \beta z$$

State variables

x(t): fluid velocity

y(t): difference in temperature of acsending and descending fluid

z(t): characterizes distortion of vertical temperature profile

 \bullet Parameters $\sigma=10$, $\beta=8/3$, $\rho=$ variable

Lorenz attractor

$$\rho=28 \implies$$
 "strange attractor":

Lorenz attractor

sensitivity to initial conditions

Lorenz attractor

sensitivity to initial conditions $\quad \mbox{ blue: } (x,y,z) = (0,1,1.05)$

blue:
$$(x, y, z) = (0, 1, 1.05)$$

red: $(x, y, z) = (0, 1, 1.050001)$

Lorenz attractor

$$\rho = 99.96 \implies$$
 limit cycle:

Lorenz attractor

 $ho=14 \implies$ convergence to a stable equilibrium:

State space equations

$$\dot{x} = f(x,u,t)$$
 x : state u : input

e.g. *n*th order differential equation:

$$\frac{d^n y}{dt^n} = h\left(y, \dots, \frac{d^{n-1} y}{dt^{n-1}}, u, t\right)$$

has state vector (one possible choice)

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y \\ \dot{y} \\ \vdots \\ d^{n-1}y/dt^{n-1} \end{bmatrix}$$

and state space dynamics:

$$\dot{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} x_2 \\ x_3 \\ \vdots \\ h(x_1, x_2, \dots, x_n, u, t) \end{bmatrix} = f(x, u, t)$$

 x^* is an equilibrium point of system $\dot{x} = f(x)$ iff:

$$x(0) = x^* \quad \text{implies} \quad x(t) = x^* \quad \forall t > 0$$
 i.e. $f(x^*) = 0$

Examples

$$x = \begin{bmatrix} y \\ \dot{y} \end{bmatrix}, \quad x^* = \begin{bmatrix} n\pi \\ 0 \end{bmatrix}, \ n = 0, \pm$$

(b)
$$\ddot{y} + (y-1)^2 \dot{y} + y - \sin(\pi y/2) = 0$$

$$x = \begin{bmatrix} y \\ \dot{y} \end{bmatrix}, \quad x^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

- * Consider local stability of individual equilibrium points
- \star Convention: define f so that x=0 is equilibrium point of interest
- \star Autonomous system: $\dot{x} = f(x) \implies x^* = \text{constant}$

 x^* is an equilibrium point of system $\dot{x} = f(x)$ iff:

$$x(0) = x^* \quad \text{implies} \quad x(t) = x^* \quad \forall t > 0$$
 i.e. $f(x^*) = 0$

Examples:

$$x = \begin{bmatrix} y \\ \dot{y} \end{bmatrix}, \quad x^* = \begin{bmatrix} n\pi \\ 0 \end{bmatrix}, \ n = 0, \pm 1$$

(b)
$$\ddot{y} + (y-1)^2 \dot{y} + y - \sin(\pi y/2) = 0$$

$$x = \begin{bmatrix} y \\ \dot{y} \end{bmatrix}, \quad x^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

- * Consider local stability of individual equilibrium points
- \star Convention: define f so that x=0 is equilibrium point of interest
- \star Autonomous system: $\dot{x} = f(x) \implies x^* = \text{constant}$

 x^* is an equilibrium point of system $\dot{x} = f(x)$ iff:

$$x(0) = x^* \quad \text{implies} \quad x(t) = x^* \quad \forall t > 0$$
 i.e. $f(x^*) = 0$

Examples:

$$x = \begin{bmatrix} y \\ \dot{y} \end{bmatrix}, \quad x^* = \begin{bmatrix} n\pi \\ 0 \end{bmatrix}, \ n = 0, \pm 1$$

(b)
$$\ddot{y} + (y-1)^2 \dot{y} + y - \sin(\pi y/2) = 0$$

$$x = \begin{bmatrix} y \\ \dot{y} \end{bmatrix}, \quad x^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

- * Consider local stability of individual equilibrium points
- \star Convention: define f so that x=0 is equilibrium point of interest
- \star Autonomous system: $\dot{x} = f(x) \implies x^* = \text{constant}$

 x^* is an equilibrium point of system $\dot{x} = f(x)$ iff:

$$x(0) = x^* \quad \text{implies} \quad x(t) = x^* \quad \forall t > 0$$
 i.e. $f(x^*) = 0$

Examples:

$$x = \begin{bmatrix} y \\ \dot{y} \end{bmatrix}, \quad x^* = \begin{bmatrix} n\pi \\ 0 \end{bmatrix}, \ n = 0, \pm 1$$

(b)
$$\ddot{y} + (y-1)^2 \dot{y} + y - \sin(\pi y/2) = 0$$

$$x = \begin{bmatrix} y \\ \dot{y} \end{bmatrix}, \quad x^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

- * Consider local stability of individual equilibrium points
- \star Convention: define f so that x=0 is equilibrium point of interest
- \star Autonomous system: $\dot{x} = f(x) \implies x^* = \text{constant}$

Stability definition

An equilibrium point x=0 is stable iff: $\max_t \|x(t)\| \text{ can be made arbitrarily small}$ by making $\|x(0)\|$ small enough

- Is x = 0 a stable equilibrium for the Van der Pol oscillator example?
- No guarantee of convergence to the equilibrium point

Stability definition

An equilibrium point x = 0 is stable iff:

 $\max_t \|x(t)\| \text{ can be made arbitrarily small}$ by making $\|x(0)\|$ small enough \updownarrow

for any R > 0, there exists r > 0 so that $||x(0)|| < r \implies ||x(t)|| < R \quad \forall t > 0$

- Is x = 0 a stable equilibrium for the Van der Pol oscillator example?
- No guarantee of convergence to the equilibrium point

Stability definition

An equilibrium point x = 0 is stable iff:

 $\max_t \|x(t)\| \text{ can be made arbitrarily small}$ by making $\|x(0)\|$ small enough \updownarrow

for any R>0, there exists r>0 so that $\|x(0)\| < r \implies \|x(t)\| < R \quad \forall t>0$

- Is x = 0 a stable equilibrium for the Van der Pol oscillator example?
- No guarantee of convergence to the equilibrium point

Asymptotic stability definition

An equilibrium point x = 0 is asymptotically stable iff:

- (i). x=0 is stable (ii). $\|x(0)\| < r \implies \|x(t)\| \to 0$ as $t \to \infty$

for any
$$R>0$$
,
$$\|x(0)\| < r \implies \|x(t)\| < R \quad \forall t>T$$
 for some r , T

Asymptotic stability definition

An equilibrium point x = 0 is asymptotically stable iff:

- (i). x=0 is stable (ii). $\|x(0)\| < r \implies \|x(t)\| \to 0$ as $t \to \infty$
- (ii) is equivalent to:

for any
$$R>0,$$

$$\|x(0)\| < r \implies \|x(t)\| < R \quad \forall t > T$$

for some r, T||x||R0

Exponential stability definition

An equilibrium point x=0 is exponentially stable iff:

$$||x(0)|| < r \implies ||x(t)|| \le \beta e^{-\alpha t} \quad \forall t > 0$$

exponential stability is a special case of asymptotic stability

Region of attraction

The region of attraction of x=0 is the set of all initial conditions x(0)

for which $x(t) \to 0$ as $t \to \infty$

- Every asymptotically stable equilibrium point has a region of attraction
- $\begin{array}{ccc} \bullet & r = \infty & \Longrightarrow & \text{entire state space is a region of attraction} \\ & \Longrightarrow & x = 0 \text{ is globally asymptotically stable} \end{array}$
- Are stable linear systems asymptotically stable?

Region of attraction

The region of attraction of x=0 is the set of all initial conditions x(0)

for which $x(t) \to 0$ as $t \to \infty$

- Every asymptotically stable equilibrium point has a region of attraction
- $\begin{array}{ccc} \bullet & r = \infty & \Longrightarrow & \text{entire state space is a region of attraction} \\ & \Longrightarrow & x = 0 \text{ is globally asymptotically stable} \end{array}$
- Are stable linear systems asymptotically stable?

Summary

- Nonlinear state space equations: $\dot{x} = f(x, u)$ x = state vector, u = control input
- Equilibrium points: x^* is an equilibrium point of $\dot{x} = f(x)$ if $f(x^*) = 0$
- Stable equilibrium point: x^* is stable if state trajectories starting close to x^* remain near x^* at all times
- Asymptotically stable equilibrium point: x^* must be stable and state trajectories starting near x^* must tend to x^* asymptotically
- ullet Region of attraction: the set of initial conditions from which state trajectories converge asymptotically to equilibrium x^*

Lecture 2

Linearization and Lyapunov's direct method

Linearization and Lyapunov's direct method

- Review of stability definitions
- Linearization method
- Direct method for stability
- Direct method for asymptotic stability
- Linearization method revisited

Review of stability definitions

System:
$$\dot{x} = f(x)$$

- System: $\dot{x} = f(x)$ * unforced system (i.e. closed-loop)
 - * consider stability of individual equilibrium points

0 is a stable equilibrium if:

$$\begin{split} \|x(0)\| \leq r &\implies \|x(t)\| \leq R \\ & \text{for any } R > 0 \end{split}$$

$$\|x(0)\| \le r \implies \|x(t)\| \to 0$$
 as $t \to \infty$

Review of stability definitions

System:
$$\dot{x} = f(x)$$

- System: $\dot{x} = f(x)$ * unforced system (i.e. closed-loop)
 - * consider stability of individual equilibrium points

0 is a stable equilibrium if:

$$\begin{split} \|x(0)\| \leq r &\implies \|x(t)\| \leq R \\ & \text{for any } R > 0 \end{split}$$

0 is asymptotically stable if:

$$\|x(0)\| \leq r \ \implies \ \|x(t)\| \to 0$$
 as $t \to \infty$

Review of stability definitions

System:
$$\dot{x} = f(x)$$

- System: $\dot{x} = f(x)$ * unforced system (i.e. closed-loop)
 - * consider stability of individual equilibrium points

0 is a stable equilibrium if:

$$\|x(0)\| \leq r \implies \|x(t)\| \leq R$$
 for any $R > 0$

Stability Asymptotic stability \rightarrow global if $r = \infty$ allowed

x(0)

0 is asymptotically stable if:

$$\|x(0)\| \leq r \implies \|x(t)\| \to 0$$
 as $t \to \infty$

→ local property

4 D > 4 A > 4 B > 4 B > B 9 9 0

Historical development of Stability Theory

• Potential energy in conservative mechanics (Lagrange 1788):

An equilibrium point of a conservative system is stable if it corresponds to a minimum of the potential energy stored in the system

- Energy storage analogy for general ODEs (Lyapunov 1892)
- Invariant sets (Lefschetz, La Salle 1960s)

J-L. Lagrange 1736-1813

A. M. Lyapunov 1857-1918

S. Lefschetz 1884-1972

- ullet Determine stability of equilibrium at x=0 by analyzing the stability of the linearized system at x=0.
- Jacobian linearization:

$$\dot{x} = f(x)$$
 original nonlinear dynamics
$$= f(0) + \frac{\partial f}{\partial x}\Big|_{x=0} x + R_1$$
 Taylor's series expansion, $R_1 = O(\|x\|^2)$ since $f(0) = 0$

where

$$A = \frac{\partial f}{\partial x}\Big|_{x=0} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}, \qquad \frac{\partial f}{\partial x} \text{ assumed continuous at } x = 0$$

- ullet Determine stability of equilibrium at x=0 by analyzing the stability of the linearized system at x=0.
- Jacobian linearization:

$$\dot{x} = f(x)$$
 original nonlinear dynamics
$$= f(0) + \frac{\partial f}{\partial x}\Big|_{x=0} x + R_1$$
 Taylor's series expansion, $R_1 = O(\|x\|^2)$ $\approx Ax$ since $f(0) = 0$

where

$$A = \frac{\partial f}{\partial x}\Big|_{x=0} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}, \qquad \frac{\partial f}{\partial x} \text{ assumed continuous at } x = 0$$

Conditions on ${\cal A}$ for stability of original nonlinear system at x=0:

stability of linearization	stability of nonlinear system at $\boldsymbol{x}=\boldsymbol{0}$
$\operatorname{Re} ig(\lambda(A)ig) < 0$	asymptotically stable (locally)
$\max Re \big(\lambda(A) \big) = 0$	stable or unstable
$\max Re \big(\lambda(A) \big) > 0$	unstable

Some examples

$$\begin{array}{lll} \text{(stable)} & & \dot{x} = -x^3 & \xrightarrow{\text{linearize}} & \dot{x} = 0 & \text{(indeterminate)} \\ \text{(unstable)} & & \dot{x} = x^3 & \xrightarrow{\text{linearize}} & \dot{x} = 0 & \text{(indeterminate)} \\ & & & \uparrow & \end{array}$$

higher order terms determine stability

- Why does linear control work?
 - 1. Linearize the model:

$$= f(x, u)$$

$$\approx Ax + Bu, \qquad A = \frac{\partial f}{\partial x}(0, 0), \ B = \frac{\partial f}{\partial u}(0, 0)$$

2. Design a linear feedback controller using the linearized model

$$u=-Kx, \quad \max \operatorname{Re} \left(\lambda(A-BK)\right) < 0$$
 closed-loop linear model strictly stable

nonlinear system $\dot{x} = f(x, -Kx)$ is locally asymptotically stable at x = 0

Some examples

$$\begin{array}{lll} \text{(stable)} & & \dot{x} = -x^3 & \xrightarrow{\text{linearize}} & \dot{x} = 0 & \text{(indeterminate)} \\ \text{(unstable)} & & \dot{x} = x^3 & \xrightarrow{\text{linearize}} & \dot{x} = 0 & \text{(indeterminate)} \\ & & & \uparrow & \end{array}$$

higher order terms determine stability

- Why does linear control work?
 - 1. Linearize the model:

$$\dot{x} = f(x, u)$$

$$\approx Ax + Bu, \qquad A = \frac{\partial f}{\partial x}(0, 0), \ B = \frac{\partial f}{\partial u}(0, 0)$$

2. Design a linear feedback controller using the linearized model:

$$u = -Kx$$
, $\max \operatorname{Re}(\lambda(A - BK)) < 0$ closed-loop linear model strictly stable

nonlinear system $\dot{x} = f(x, -Kx)$ is locally asymptotically stable at x = 0

Some examples

$$\begin{array}{lll} \text{(stable)} & & \dot{x} = -x^3 & \xrightarrow{\text{linearize}} & \dot{x} = 0 & \text{(indeterminate)} \\ \text{(unstable)} & & \dot{x} = x^3 & \xrightarrow{\text{linearize}} & \dot{x} = 0 & \text{(indeterminate)} \\ & & & \uparrow & & \end{array}$$

higher order terms determine stability

- Why does linear control work?
 - 1. Linearize the model:

$$\dot{x} = f(x, u)$$

$$\approx Ax + Bu, \qquad A = \frac{\partial f}{\partial x}(0, 0), \ B = \frac{\partial f}{\partial u}(0, 0)$$

2. Design a linear feedback controller using the linearized model:

$$u = -Kx$$
, $\max \operatorname{Re}(\lambda(A - BK)) < 0$ closed-loop linear model strictly stable

nonlinear system $\dot{x}=f(x,-Kx)$ is locally asymptotically stable at x=0

◆ロト ◆卸 ▶ ◆ き ▶ ◆ き * り へ ○

Lyapunov's direct method: mass-spring-damper example

$$m\ddot{y} + c(\dot{y}) + k(y) = 0$$

$$V = extsf{K.E.} + extsf{P.E.}$$
 $\left\{egin{array}{l} extsf{K.E.} &= rac{1}{2}m\dot{y}^2 \ extsf{P.E.} &= \int_0^y k(y)\,dy \end{array}
ight.$

Rate of energy dissipation

$$\dot{V} = \frac{1}{2}m\ddot{y}\frac{d}{d\dot{y}}\dot{y}^2 + \dot{y}\frac{d}{dy}\left[\int_0^y k(y)\,dy\right]$$
$$= m\ddot{y}\dot{y} + \dot{y}\dot{k}(y)$$

but
$$m\ddot{y} + k(y) = -c(\dot{y})$$
, so $\dot{V} = -c(\dot{y})y$

4□ > 4回 > 4 = > 4 = > = 990

Lyapunov's direct method: mass-spring-damper example

$$m\ddot{y} + c(\dot{y}) + k(y) = 0$$

$$V = extsf{K.E.} + extsf{P.E.}$$
 $\left\{egin{array}{l} extsf{K.E.} &= rac{1}{2}m\dot{y}^2 \ extsf{P.E.} &= \int_0^y k(y)\,dy \end{array}
ight.$

$$\dot{V} = \frac{1}{2}m\ddot{y}\frac{d}{d\dot{y}}\dot{y}^2 + \dot{y}\frac{d}{dy}\left[\int_0^y k(y)\,dy\right]$$
$$= m\ddot{y}\dot{y} + \dot{y}k(y)$$

but
$$m\ddot{y}+k(y)=-c(\dot{y})$$
, so $\dot{V}=-$

$$\leq 0 \qquad \leftarrow \operatorname{since} \operatorname{sign} \bigl(c(\dot{y}) \bigr) = \operatorname{sign} (\dot{y})$$

Lyapunov's direct method: mass-spring-damper example

$$m\ddot{y} + c(\dot{y}) + k(y) = 0$$

$$V = \text{K.E.} + \text{P.E.} \quad \left\{ egin{array}{l} \text{K.E.} &= rac{1}{2} m \dot{y}^2 \\ \text{P.E.} &= \int_0^y k(y) \, dy \end{array}
ight.$$

Rate of energy dissipation

$$\dot{V} = \frac{1}{2}m\ddot{y}\frac{d}{d\dot{y}}\dot{y}^2 + \dot{y}\frac{d}{dy}\left[\int_0^y k(y)\,dy\right]$$
$$= m\ddot{y}\dot{y} + \dot{y}k(y)$$

but
$$m\ddot{y}+k(y)=-c(\dot{y})$$
, so $\dot{V}=-c(\dot{y})\dot{y}$

$$\leq 0 \qquad \leftarrow \operatorname{since sign}(c(\dot{y})) = \operatorname{sign}(\dot{y})$$

Mass-spring-damper example contd.

- System state: e.g. $x = [y \ \dot{y}]^T$
- $\dot{V}(x) \le 0$ implies that x = 0 is stable \uparrow

V(x(t)) must decrease over time but

V(x) increases with increasing $\|x\|$

Formal argument

for any given R>0

$$\|x\| < R$$
 whenever $V(x) < \overline{V}$ for some \overline{V} and $V(x) < \overline{V}$ whenever $\|x\| < r$ for some r

$$\begin{split} \therefore \|x(0)\| < r &\implies V\big(x(0)\big) < \overline{V} \\ &\implies V\big(x(t)\big) < \overline{V} \quad \text{ for all } t > 0 \\ &\implies \|x(t)\| < R \quad \text{ for all } t > 0 \end{split}$$

Mass-spring-damper example contd.

- System state: e.g. $x = [y \ \dot{y}]^T$
- $\dot{V}(x) \leq 0 \text{ implies that } x = 0 \text{ is stable }$

$$V(x(t)) \ {\rm must \ decrease \ over \ time} \\ {\rm but}$$

V(x) increases with increasing $\|x\|$

• Formal argument:

for any given R>0:

$$\|x\| < R \qquad \text{ whenever } \qquad V(x) < \overline{V} \ \text{ for some } \overline{V}$$
 and $V(x) < \overline{V} \qquad \text{ whenever } \qquad \|x\| < r \quad \text{ for some } r$

$$\begin{split} \therefore \|x(0)\| < r &\implies V\big(x(0)\big) < \overline{V} \\ &\implies V\big(x(t)\big) < \overline{V} \quad \text{ for all } t > 0 \\ &\implies \|x(t)\| < R \quad \text{ for all } t > 0 \end{split}$$

Mass-spring-damper example contd.

- $\bullet \ \, \text{System state: e.g.} \,\, x = [y \ \, \dot{y}]^T$
- $\dot{V}(x) \leq 0 \text{ implies that } x = 0 \text{ is stable }$

$$V(x(t))$$
 must decrease over time but

V(x) increases with increasing $\|x\|$

• Formal argument:

for any given R>0:

$$\|x\| < R \qquad \text{ whenever } \qquad V(x) < \overline{V} \ \text{ for some } \overline{V}$$
 and $V(x) < \overline{V} \qquad \text{ whenever } \qquad \|x\| < r \quad \text{ for some } r$

$$\begin{split} \therefore \|x(0)\| < r &\implies V\big(x(0)\big) < \overline{V} \\ &\implies V\big(x(t)\big) < \overline{V} \quad \text{ for all } t > 0 \\ &\implies \|x(t)\| < R \quad \text{ for all } t > 0 \end{split}$$

Positive definite functions

- What if V(x) is not monotonically increasing in ||x||?
- ullet Same arguments apply if V(x) is continuous and positive definite, i.e.

(i).
$$V(0) = 0$$

(ii).
$$V(x) > 0$$
 for all $x \neq 0$

for any given $\overline{V}>0$, can always find r so that

$$V(x) < \overline{V}$$
 whenever $\|x\| < r$

 $V(x) \ge \alpha ||x||^n$ for some constants α , n, so

$$\|x\| < (\overline{V}/\alpha)^{1/n}$$
 whenever $V(x) < \overline{V}$

Positive definite functions

- What if V(x) is not monotonically increasing in ||x||?
- Same arguments apply if V(x) is continuous and positive definite, i.e.

(i).
$$V(0) = 0$$

(ii).
$$V(x) > 0$$
 for all $x \neq 0$

for any given $\overline{{\cal V}}>0$, can always find r so that

$$V(x) < \overline{V} \quad \text{ whenever } \quad \|x\| < r$$

$$V(x) \ge \alpha \|x\|^n$$
 for some constants α , n , so

$$\|x\|<(\overline{V}/\alpha)^{1/n} \quad \text{ whenever } \quad V(x)<\overline{V}$$

If there exists a continuous function V(x) such that

V(x) is positive definite $\dot{V}(x) \leq 0$

then x = 0 is stable.

To show that this implies ||x(t)|| < R for all t > 0 whenever ||x(0)|| < r

for any R and some r:

- 1. choose \overline{V} as the minimum of V(x) for $\|x\|=R$
- 2. find r so that $V(x) < \overline{V}$ whenever $\|x\| < r$
- 3. then $\dot{V}(x) \leq 0$ ensures that

$$V(x(t)) < \overline{V} \quad \forall t > 0 \quad \text{if } ||x(0)|| < r$$

 $\therefore ||x(t)|| < R \quad \forall t > 0$

If there exists a continuous function $V(\boldsymbol{x})$ such that

V(x) is positive definite $\dot{V}(x) \leq 0$

then x = 0 is stable.

To show that this implies $\|x(t)\| < R$ for all t > 0 whenever $\|x(0)\| < r$

for any R and some r:

- 1. choose \overline{V} as the minimum of V(x) for $\|x\|=R$
- 2. find r so that $V(x) < \overline{V}$ whenever $\|x\| < r$
- 3. then $\dot{V}(x) \leq 0$ ensures that

$$V(x(t)) < \overline{V} \quad \forall t > 0 \quad \text{if } ||x(0)|| < r$$

 $\therefore ||x(t)|| < R \quad \forall t > 0$

ullet Lyapunov's direct method also applies if V(x) is locally positive definite, i.e. if

(i).
$$V(0) = 0$$

(ii).
$$V(x) > 0$$
 for $x \neq 0$ and $||x|| < R_0$

then x = 0 is stable if $\dot{V}(x) \le 0$ whenever $||x|| < R_0$.

ullet Apply the theorem without determining R, η

- only need to find p.d.
$$V(x)$$
 satisfying $V(x) \leq 0$.

Examples

(i).
$$\dot{x} = -a(t)x$$
, $a(t) > 0$

$$V = \frac{1}{2}x^2 \implies \dot{V} = x\dot{x}$$

= $-a(t)x^2 \le$

(ii).
$$\dot{x} = -a(x)$$
, $\operatorname{sign}(a(x)) = \operatorname{sign}(x)$

$$V = \frac{1}{2}x^2 \implies \dot{V} = x\dot{x}$$

= $-a(x)x \le 0$

ullet Lyapunov's direct method also applies if V(x) is locally positive definite, i.e. if

(i).
$$V(0) = 0$$

(ii).
$$V(x) > 0$$
 for $x \neq 0$ and $||x|| < R_0$

then x = 0 is stable if $\dot{V}(x) \le 0$ whenever $||x|| < R_0$.

- ullet Apply the theorem without determining R, r
- only need to find p.d. V(x) satisfying $\dot{V}(x) \leq 0$.

Examples

(i).
$$\dot{x} = -a(t)x$$
, $a(t) > 0$

$$V = \frac{1}{2}x^2 \implies \dot{V} = x\dot{x}$$

= $-a(t)x^2 \le$

(ii).
$$\dot{x} = -a(x)$$
, $\operatorname{sign}(a(x)) = \operatorname{sign}(x)$

$$V = \frac{1}{2}x^2 \implies \dot{V} = x\dot{x}$$

= $-a(x)x \le 0$

ullet Lyapunov's direct method also applies if V(x) is locally positive definite, i.e. if

(i).
$$V(0) = 0$$

(ii).
$$V(x) > 0$$
 for $x \neq 0$ and $||x|| < R_0$

then x = 0 is stable if $\dot{V}(x) \le 0$ whenever $||x|| < R_0$.

- ullet Apply the theorem without determining R, r
- only need to find p.d. V(x) satisfying $\dot{V}(x) \leq 0$.

Examples

(i).
$$\dot{x} = -a(t)x$$
, $a(t) > 0$

$$V = \frac{1}{2}x^2 \implies \dot{V} = x\dot{x}$$
$$= -a(t)x^2 < 0$$

(ii).
$$\dot{x} = -a(x)$$
, $\operatorname{sign}(a(x)) = \operatorname{sign}(x)$

$$V = \frac{1}{2}x^2$$
 \Longrightarrow $\dot{V} = x\dot{x}$
= $-a(x)x \le 0$

More examples

(iii).
$$\dot{x}=-a(x), \quad \int_0^x a(x)\ dx>0$$

$$V=\int_0^x a(x)\ dx \quad \implies \quad \dot{V}=a(x)\dot{x}$$

$$=-a^2(x)\leq 0$$

(iv).
$$\ddot{\theta} + \sin \theta = 0$$

$$V = \frac{1}{2}\dot{\theta}^2 + \int_0^\theta \sin\theta \, d\theta \quad \Longrightarrow \quad \dot{V} = \ddot{\theta}\dot{\theta} + \dot{\theta}\sin\theta$$
$$= 0$$

Asymptotic stability theorem

If there exists a continuous function V(x) such that

 $egin{array}{ll} V(x) & \mbox{is positive definite} \\ \dot{V}(x) & \mbox{is negative definite} \end{array}$

then x = 0 is locally asymptotically stable.

 $(\dot{V} \ {
m negative \ definite} \ \Longleftrightarrow \ -\dot{V} \ {
m positive \ definite})$

Asymptotic convergence $x(t) \to 0$ as $t \to \infty$ can be shown by contradiction

if $\|x(t)\| > R'$ for all $t \ge 0$, then

$$\begin{array}{c} \dot{V}(x) < -W \\ \\ V(x) \geq \underline{V} \end{array} \qquad \begin{array}{c} \text{for all } t \geq 0 \\ \\ \end{array}$$

Asymptotic stability theorem

If there exists a continuous function V(x) such that

 $egin{array}{ll} V(x) & \mbox{is positive definite} \\ \dot{V}(x) & \mbox{is negative definite} \end{array}$

then x = 0 is locally asymptotically stable.

(\dot{V} negative definite $\iff -\dot{V}$ positive definite)

Asymptotic convergence $x(t) \to 0$ as $t \to \infty$ can be shown by contradiction:

if $\|x(t)\| > R'$ for all $t \ge 0$, then

$$\begin{array}{c} \dot{V}(x) < -W \\ \\ V(x) \geq \underline{V} \end{array} \qquad \begin{array}{c} \text{for all } t \geq 0 \\ \\ \\ \text{contradiction} \end{array}$$

Linearization method and asymptotic stability

- \bullet Asymptotic stability result also applies if $\dot{V}(x)$ is only locally negative definite.
- Why does the linearization method work?
 - \star consider 1st order system: $\dot{x}=f(x)$ linearize about x=0: $=-ax+R \hspace{1cm} R=O(x^2)$
 - \star assume a>0 and try Lyapunov function V:

$$V(x) = \frac{1}{2}x^{2}$$

$$\dot{V}(x) = x\dot{x} = -ax^{2} + Rx = -x^{2}(a - R/x)$$

$$\leq -x^{2}(a - |R/x|)$$

 \star but $R = O(x^2)$ implies $|R| \leq \beta x^2$ for some constant β , so

$$\dot{V} \le -x^2(a-\beta|x|)
\le -\gamma x^2 \quad \text{if } |x| \le (a-\gamma)/\beta$$

- $\implies \dot{V}$ negative definite for |x| small enough
- $\implies x = 0$ locally asymptotically stable

Generalization to nth order systems is straightforward

Linearization method and asymptotic stability

- ullet Asymptotic stability result also applies if $\dot{V}(x)$ is only locally negative definite.
- Why does the linearization method work?
 - \star consider 1st order system: $\dot{x}=f(x)$ linearize about x=0: =-ax+R $R=O(x^2)$
 - \star assume a > 0 and try Lyapunov function V:

$$V(x) = \frac{1}{2}x^{2}$$

$$\dot{V}(x) = x\dot{x} = -ax^{2} + Rx = -x^{2}(a - R/x)$$

$$\leq -x^{2}(a - |R/x|)$$

* but $R = O(x^2)$ implies $|R| \le \beta x^2$ for some constant β , so

$$\dot{V} \le -x^2(a-\beta|x|)
\le -\gamma x^2 \quad \text{if } |x| \le (a-\gamma)/\beta$$

 $\implies V$ negative definite for |x| small enough

 $\implies x = 0$ locally asymptotically stable

Generalization to nth order systems is straightforward

Linearization method and asymptotic stability

- ullet Asymptotic stability result also applies if $\dot{V}(x)$ is only locally negative definite.
- Why does the linearization method work?
 - \star consider 1st order system: $\dot{x}=f(x)$ linearize about x=0: $=-ax+R \hspace{1cm} R=O(x^2)$
 - ★ assume a > 0 and try Lyapunov function V:

$$V(x) = \frac{1}{2}x^{2}$$

$$\dot{V}(x) = x\dot{x} = -ax^{2} + Rx = -x^{2}(a - R/x)$$

$$\leq -x^{2}(a - |R/x|)$$

 \star but $R=O(x^2)$ implies $|R|\leq \beta x^2$ for some constant β , so

- $\implies \dot{V}$ negative definite for |x| small enough
- $\implies x = 0$ locally asymptotically stable

Generalization to nth order systems is straightforward

Global asymptotic stability theorem

If there exists a continuous function V(x) such that

$$\left. \begin{array}{ll} V(x) & \text{is positive definite} \\ \dot{V}(x) & \text{is negative definite} \\ V(x) \to \infty \text{ as } \|x\| \to \infty \end{array} \right\} \text{ for all } x$$

then x = 0 is globally asymptotically stable

- If $V(x) \to \infty$ as $||x|| \to \infty$, then V(x) is radially unbounded
- Test whether V(x) is radially unbounded by checking if $V(x) \to \infty$ as each individual element of x tends to infinity (necessary).

Global asymptotic stability theorem

Global asymptotic stability requires:

$$\|x(t)\| \text{ finite } \left\{ \begin{array}{c} \text{ for all } t>0 \\ \text{ for all } x(0) \end{array} \right.$$

not guaranteed by \dot{V} negative definite

in addition to asymptotic stability of $\boldsymbol{x}=\boldsymbol{0}$

• Hence add extra condition: $V(x) \to \infty$ as $\|x\| \to \infty$ \updownarrow equiv. to

level sets $\{x \ : \ V(x) \leq \overline{V}\}$ are finite

‡ equiv. to

 $\|x\|$ is finite whenever V(x) is finite

 $\uparrow \\ \text{prevents } x(t) \text{ drifting away from } 0 \text{ despite } \dot{V} < 0$

Asymptotic stability example

System:
$$\dot{x}_1 = (x_2 - 1)x_1^3$$

 $\dot{x}_2 = -\frac{x_1^4}{(1 + x_1^2)^2} - \frac{x_2}{1 + x_2^2}$

• Trial Lyapunov function $V(x) = x_1^2 + x_2^2$:

$$\dot{V}(x) = 2x_1\dot{x_1} + 2x_2\dot{x_2}$$

$$= -2x_1^4 + 2x_2x_1^4 - 2\frac{x_2x_1^4}{(1+x_1^2)^2} - 2\frac{x_2^2}{1+x_2^2} \le 0$$

change V to make these terms cancel

Asymptotic stability example

System:
$$\dot{x}_1 = (x_2 - 1)x_1^3$$

 $\dot{x}_2 = -\frac{x_1^4}{(1 + x_1^2)^2} - \frac{x_2}{1 + x_2^2}$

• Trial Lyapunov function $V(x) = x_1^2 + x_2^2$:

$$\dot{V}(x) = 2x_1\dot{x}_1 + 2x_2\dot{x}_2$$

$$= -2x_1^4 + 2x_2x_1^4 - 2\frac{x_2x_1^4}{(1+x_1^2)^2} - 2\frac{x_2^2}{1+x_2^2} \not\leq 0$$

change V to make these terms cancel

Asymptotic stability example

• New trial Lyapunov function $V(x) = \frac{x_1^2}{1 + x_1^2} + x_2^2$:

$$\dot{V}(x) = 2\left[\frac{x_1}{1+x_1^2} - \frac{x_1^3}{(1+x_1^2)^2}\right]\dot{x_1} + 2x_2\dot{x_2}$$
$$= -2\frac{x_1^4}{(1+x_1^2)^2} - 2\frac{x_2^2}{1+x_2^2} \le 0$$

V(x) positive definite, $\dot{V}(x)$ negative definite $\implies x=0$ a.s. But V(x) not radially unbounded, so cannot conclude global asymptotic stability

State trajectories:

Summary

- Positive definite functions
- Derivative of V(x) along trajectories of $\dot{x} = f(x)$
- Lyapunov's direct method for: stability
 asymptotic stability
 global stability
- Lyapunov's linearization method

Lecture 3

Convergence and invariant sets

Convergence and invariant sets

- Review of Lyapunov's direct method
- Convergence analysis using Barbalat's Lemma
- Invariant sets
- Global and local invariant set theorem
- Example

Positive definite functions

If

$$V(0) = 0$$

$$V(x) > 0 \quad \text{ for all } x \neq 0$$

then V(x) is positive definite

• If \mathcal{S} is a set containing x=0 and

$$V(0) = 0$$

$$Y(x) > 0$$
 for all $x \neq 0$, $x \in S$

then V(x) is locally positive definite (within S)

e.g.

$$V(x) = x^T x$$

positive definite

$$V(x) = x^T x (1 - x^T x)$$

locally positive definite within $S = \{x : x^T x < 1\}$

Positive definite functions

If

$$\begin{split} V(0) &= 0 \\ V(x) &> 0 \quad \text{ for all } x \neq 0 \end{split}$$

then V(x) is positive definite

ullet If ${\mathcal S}$ is a set containing x=0 and

$$V(0) = 0$$

$$V(x) > 0$$
 for all $x \neq 0$, $x \in \mathcal{S}$

then V(x) is locally positive definite (within S)

e.g

$$V(x) = x^T x$$
 \leftarrow positive definite

$$Y(x) = x^T x (1 - x^T x)$$
 \leftarrow locally positive definite within $\mathcal{S} = \{x : x^T x < 1\}$

Positive definite functions

If

$$\begin{split} V(0) &= 0 \\ V(x) &> 0 \quad \text{ for all } x \neq 0 \end{split}$$

then V(x) is positive definite

• If S is a set containing x=0 and

$$\begin{split} V(0) &= 0 \\ V(x) &> 0 \quad \text{ for all } x \neq 0 \text{, } x \in \mathcal{S} \end{split}$$

then V(x) is locally positive definite (within S)

• e.g.

$$V(x) = x^T x$$

positive definite

$$V(x) = x^T x (1 - x^T x) \qquad \leftarrow$$

locally positive definite within $S = \{x : x^T x < 1\}$

System:
$$\dot{x} = f(x), \quad f(0) = 0$$

Storage function: V(x)

Time-derivative of
$$V\colon \dot{V}(x) = \frac{\partial V}{\partial x}\frac{dx}{dt} = \nabla V(x)^T\dot{x} = \nabla V(x)^Tf(x)$$

(i).
$$V(x)$$
 is positive definite

(ii).
$$\dot{V}(x) \leq 0$$

then the equilibrium x=0 is stable

If

(iii). $\dot{V}(x)$ is negative definite $x \in \mathcal{S}$

then the equilibrium x = 0 is asymptotically stable

iv).
$$S = \text{entire state space}$$

(v).
$$V(x) \to \infty$$
 as $||x|| \to \infty$

then the equilibrium x=0 is globally asymptotically stable

System:
$$\dot{x} = f(x), \quad f(0) = 0$$

Storage function: V(x)

Time-derivative of
$$V\colon \dot{V}(x) = \frac{\partial V}{\partial x}\frac{dx}{dt} = \nabla V(x)^T\dot{x} = \nabla V(x)^Tf(x)$$

If

(i).
$$V(x)$$
 is positive definite (ii). $\dot{V}(x) \leq 0$ for all $x \in \mathcal{S}$

then the equilibrium x = 0 is stable

- (iii). $\dot{V}(x)$ is negative definite for all $x \in \mathcal{S}$ ibrium x = 0 is asymptotically stable
- then the equilibrium x = 0 is asymptotically stable

I

- (iv). S =entire state space
- (v). $V(x) \to \infty$ as $||x|| \to \infty$

then the equilibrium x=0 is globally asymptotically stable

System:
$$\dot{x} = f(x), \quad f(0) = 0$$

Storage function: V(x)

Time-derivative of
$$V\colon \dot{V}(x) = \frac{\partial V}{\partial x}\frac{dx}{dt} = \nabla V(x)^T\dot{x} = \nabla V(x)^Tf(x)$$

If

(i).
$$V(x)$$
 is positive definite (ii). $\dot{V}(x) \leq 0$ for all $x \in \mathcal{S}$

then the equilibrium x = 0 is stable

If

(iii).
$$\dot{V}(x)$$
 is negative definite for all $x\in\mathcal{S}$ then the equilibrium $x=0$ is asymptotically stable

(iv).
$$S =$$
entire state space

(v).
$$V(x) \to \infty$$
 as $||x|| \to \infty$

then the equilibrium x=0 is globally asymptotically stable

System:
$$\dot{x} = f(x), \quad f(0) = 0$$

Storage function: V(x)

Time-derivative of
$$V$$
: $\dot{V}(x) = \frac{\partial V}{\partial x} \frac{dx}{dt} = \nabla V(x)^T \dot{x} = \nabla V(x)^T f(x)$

If

(i).
$$V(x)$$
 is positive definite (ii). $\dot{V}(x) \leq 0$ for all $x \in \mathcal{S}$

then the equilibrium x = 0 is stable

- If
 - (iii). $\dot{V}(x)$ is negative definite for all $x \in \mathcal{S}$ then the equilibrium x=0 is asymptotically stable
- If

(iv).
$$S={\rm entire\ state\ space}$$

(v).
$$V(x) \to \infty$$
 as $||x|| \to \infty$

then the equilibrium x = 0 is globally asymptotically stable

- What can be said about convergence of x(t) to 0 if $\dot{V}(x) \leq 0$ but $\dot{V}(x)$ is not negative definite?
- Revisit m-s-d example

Equation of motion: $m\ddot{y} + c(\dot{y}) + k(y) = 0$

Storage function:
$$V=$$
 K.E. $+$ P.E. $=\frac{1}{2}m\dot{y}^2+\int_0^y k(y)\ dy$ $\dot{V}=-c(\dot{y})\dot{y}$

- What can be said about convergence of x(t) to 0 if $\dot{V}(x) \leq 0$ but $\dot{V}(x)$ is not negative definite?
- Revisit m-s-d example:

Equation of motion: $m\ddot{y} + c(\dot{y}) + k(y) = 0$

Storage function:
$$V=$$
 K.E. $+$ P.E. $=\frac{1}{2}m\dot{y}^2+\int_0^yk(y)\,dy$ $\dot{V}=-c(\dot{y})\dot{y}$

- ullet V is p.d. and $\dot{V} \leq 0$ so: $(y,\dot{y})=(0,0)$ is stable and $V(y,\dot{y})$ tends to a finite limit as $t \to \infty$
- but does (y, \dot{y}) converge to (0, 0)?

‡ equivalent to

can
$$V(y,\dot{y})$$
 "get stuck" at $V=V_0\neq 0$ as $t\to\infty$?

1

need to consider motion at points (y,\dot{y}) for which $\dot{V}=0$

Example

Equation of motion: $m\ddot{y} + c(\dot{y}) + k(y) = 0$

$$k(y) = 5 \tan^{-1}(y/5)$$

Storage function:
$$V = \frac{1}{2} \cdot \frac{$$

$$V = \frac{1}{2}\dot{y}^2 + \int_0^y 5 \tan^{-1}(y/5) \, dy$$

$$V = -c(\dot{y})\dot{y} \le 0$$

$$\dot{V}=0$$
 when $\dot{y}=0$

but
$$k(y) \neq 0 \implies \ddot{y} \neq 0 \implies \ddot{V} \neq 0$$

V continues to decrease until $y = \dot{y} = 0$

Example

Equation of motion: $m\ddot{y} + c(\dot{y}) + k(y) = 0$

Storage function:

$$V = \frac{1}{2}\dot{y}^2 + \int_0^y 5 \tan^{-1}(y/5) \, dy$$
$$\dot{V} = -c(\dot{y})\dot{y} \le 0$$

$$\dot{V}=0 \text{ when } \dot{y}=0$$

$$\mathsf{but}\ k(y) \neq 0 \implies \ddot{y} \neq 0 \implies \ddot{V} \neq 0$$

V continues to decrease until $y=\dot{y}=0$

Summary of method:

- 1. show that $\dot{V}(x) \to 0$ as $t \to \infty$
- 2. determine the set \mathcal{R} of points x for which $\dot{V}(x)=0$
- 3. identify the subset ${\mathcal M}$ of ${\mathcal R}$ for which $\dot V(x)=0$ at all future times

then x(t) has to converge to \mathcal{M} as $t\to\infty$

Barbalat's Lemma

Barbalat's lemma: For any function $\phi(t)$, if

- (i). $\int_0^t \phi(\tau)\,d\tau$ converges to a finite limit as $t\to\infty$ (ii). $\dot{\phi}(t)$ is finite for all t

then $\lim_{t\to\infty} \phi(t) = 0$

- Obvious for the case that $\phi(t) \geq 0$ for all t
- Condition (ii) is needed to ensure that $\phi(t)$ remains continuous for all t

Barbalat's Lemma

Barbalat's lemma: For any function $\phi(t)$, if

- (i). $\int_0^t \phi(\tau)\,d\tau$ converges to a finite limit as $t\to\infty$ (ii). $\dot{\phi}(t)$ is finite for all t

then $\lim_{t\to\infty} \phi(t) = 0$

- Obvious for the case that $\phi(t) \geq 0$ for all t
- Condition (ii) is needed to ensure that $\phi(t)$ remains continuous for all t

Can construct discontinuous $\phi(t)$ for which $\int_0^t \phi(\tau)\,d\tau$ converges but $\phi(t) \not\to 0$ as $t \to \infty$

Barbalat's Lemma

Example: pulse train $\phi(t) = \sum_{k=0}^{\infty} e^{-4^k (t-k)^2}$:

$$\phi(t)$$
:

$$\int_0^t \phi(\tau) d\tau$$
:

From the plots it is clear that

$$\int_0^t \phi(s)\,ds$$
 tends to a finite limit

$$\text{but} \quad \phi(t) \not\to 0 \text{ as } t \to \infty \quad \text{ because } \ \dot{\phi}(t) \to \infty \text{ as } t \to \infty$$

Barbalat's Lemma contd.

Apply Barbalat's Lemma to $\dot{V}\big(x(t)\big) = \phi(t) \leq 0$:

• Integrate:

$$\int_0^t \phi(s) \, ds = V(x(t)) - V(x(0))$$

 \leftarrow finite limit as $t \to \infty$

• Differentiate:

$$\begin{split} \dot{\phi}(t) &= \ddot{V}\big(x(t)\big) = f^T(x) \frac{\partial^2 V}{\partial x^2}(x) f(x) + \nabla V(x) \frac{\partial f}{\partial x}(x) f(x) \\ &= \text{finite for all } t \text{ if } f(x) \text{ continuous and } V(x) \text{ continuously differentiable} \end{split}$$

$$\dot{V}(x)
ightarrow 0$$
 as $t
ightarrow \infty$

The above arguments rely on ||x(t)|| remaining finite for all t, which is implied by:

V(x) positive definite $\dot{V}(x) \leq 0$ $V(x) \to \infty$ as $\|x\| \to 0$

Barbalat's Lemma contd.

Apply Barbalat's Lemma to $\dot{V}\big(x(t)\big) = \phi(t) \leq 0$:

• Integrate:

$$\int_0^t \phi(s) \, ds = V(x(t)) - V(x(0))$$

 \leftarrow finite limit as $t \to \infty$

Differentiate:

$$\dot{\phi}(t) = \ddot{V}(x(t)) = f^{T}(x) \frac{\partial^{2} V}{\partial x^{2}}(x) f(x) + \nabla V(x) \frac{\partial f}{\partial x}(x) f(x)$$

= finite for all t if f(x) continuous and V(x) continuously differentiable

$$\dot{V}(x) \to 0 \text{ as } t \to \infty$$

The above arguments rely on ||x(t)|| remaining finite for all t, which is implied by:

$$V(x)$$
 positive definite
$$\dot{V}(x) \leq 0$$

$$V(x) \rightarrow \infty \text{ as } \|x\| \rightarrow \infty$$

Summary of method:

1. show that $\dot{V}(x) \to 0$ as $t \to \infty$ \to true whenever $\dot{V} \le 0 \ \& \ V, f$ are smooth $\& \ \|x(t)\|$ is bounded

by Barbalat's Lemma

- 2. determine the set $\mathcal R$ of points x for which $\dot V(x)=0$ algebra!
- 3. identify the subset $\mathcal M$ of $\mathcal R$ for which $\dot V(x)=0$ at all future times $x\mapsto \mathcal M$ must be invariant

then x(t) has to converge to \mathcal{M} as $t\to\infty$

Summary of method:

1. show that $\dot{V}(x) \to 0$ as $t \to \infty$ \to true whenever $\dot{V} \le 0$ & V,f are smooth & $\|x(t)\|$ is bounded

[by Barbalat's Lemma]

- 2. determine the set $\mathcal R$ of points x for which $\dot V(x)=0$ \rightarrow algebra!
- 3. identify the subset ${\mathcal M}$ of ${\mathcal R}$ for which $\dot V(x)=0$ at all future times $x\to {\mathcal M}$ must be invariant

then x(t) has to converge to $\mathcal M$ as $t \to \infty$

Summary of method:

1. show that $\dot{V}(x) \to 0$ as $t \to \infty$ \to true whenever $\dot{V} \le 0$ & V,f are smooth & $\|x(t)\|$ is bounded

[by Barbalat's Lemma]

- 2. determine the set $\mathcal R$ of points x for which $\dot V(x)=0$ \rightarrow algebra!
- 3. identify the subset ${\cal M}$ of ${\cal R}$ for which $\dot V(x)=0$ at all future times $\to {\cal M}$ must be invariant

then x(t) has to converge to \mathcal{M} as $t\to\infty$

Summary of method:

1. show that $\dot{V}(x) \to 0$ as $t \to \infty$ \to true whenever $\dot{V} \le 0$ & V,f are smooth & $\|x(t)\|$ is bounded

[by Barbalat's Lemma]

- 2. determine the set $\mathcal R$ of points x for which $\dot V(x)=0$ \to algebra!
- 3. identify the subset \mathcal{M} of \mathcal{R} for which $\dot{V}(x)=0$ at all future times $\rightarrow \mathcal{M}$ must be invariant

then x(t) has to converge to \mathcal{M} as $t\to\infty$

Invariant sets

ullet A set of points ${\cal M}$ in state space is invariant if

$$x(t_0) \in \mathcal{M} \quad \Longrightarrow \quad x(t) \in \mathcal{M} \quad \text{ for all } t > t_0$$

Examples:

- * Equilibrium points
- * Limit cycles
- \star Level sets of V(x) $\qquad \leftarrow$ $\quad \text{i.e. } \{x: V(x) \leq V_0\} \text{ for constant } V_0 \text{ provided } \dot{V}(x) \leq 0$
- If $V(x) \to 0$ as $t \to \infty$, then

x(t) must converge to an invariant set ${\cal M}$ contained within the set of points on which $\dot{V}(x)=0$

Invariant sets

ullet A set of points ${\cal M}$ in state space is invariant if

$$x(t_0) \in \mathcal{M} \quad \Longrightarrow \quad x(t) \in \mathcal{M} \quad \text{ for all } t > t_0$$

Examples:

- * Equilibrium points
- * Limit cycles
- \star Level sets of V(x) $\qquad \leftarrow$ $\quad \text{i.e. } \{x: V(x) \leq V_0\} \text{ for constant } V_0 \text{ provided } \dot{V}(x) \leq 0$
- If $\dot{V}(x) \to 0$ as $t \to \infty$, then

x(t) must converge to an invariant set ${\cal M}$ contained within the set of points on which $\dot{V}(x)=0$

as $t \to \infty$

Global invariant set theorem

If there exists a continuously differentiable function $V(\boldsymbol{x})$ such that

$$\begin{split} V(x) & \text{ is positive definite} \\ \dot{V}(x) & \leq 0 \\ V(x) & \to \infty \text{ as } \|x\| \to \infty \end{split}$$

then: (i). $\dot{V}(x) \rightarrow 0$ as $t \rightarrow \infty$

(ii). $x(t) o \mathcal{M} =$ the largest invariant set contained in \mathcal{R}

where $\mathcal{R} = \{x : \dot{V}(x) = 0\}$

- $\dot{V}(x)$ negative definite $\Longrightarrow \mathcal{M} = 0$
- ullet Determine ${\mathcal M}$ by considering system dynamics within ${\mathcal R}$

(c.f. Lyapunov's direct method)

Global invariant set theorem

If there exists a continuously differentiable function $V(\boldsymbol{x})$ such that

 $\begin{array}{l} V(x) \text{ is positive definite} \\ \dot{V}(x) \leq 0 \\ V(x) \rightarrow \infty \text{ as } \|x\| \rightarrow \infty \end{array}$

- then: (i). $\dot{V}(x) \rightarrow 0$ as $t \rightarrow \infty$
 - (ii). $x(t) \to \mathcal{M} =$ the largest invariant set contained in \mathcal{R}

where $\mathcal{R} = \{x : \dot{V}(x) = 0\}$

- $\dot{V}(x)$ negative definite $\Longrightarrow \mathcal{M} = 0$
- Determine \mathcal{M} by considering system dynamics within \mathcal{R}

(c.f. Lyapunov's direct method)

Global invariant set theorem

Revisit m-s-d example (for the last time)

• V(x) is positive definite, $V(x) \to \infty$ as $||x|| \to \infty$, and

$$\dot{V}(y,\dot{y}) = -c(\dot{y})\dot{y} \le 0$$

- therefore $\dot{V} \to 0$, implying $\dot{y} \to 0$ as $t \to \infty$ i.e. $\mathcal{R} = \{(y,\dot{y}) \ : \ \dot{y} = 0\}$
- but $\dot{y} = 0$ implies $\ddot{y} = -k(y)/m$
- therefore $\ddot{y} \neq 0$ unless y=0, so $\dot{y}(t)=0$ for all t only if y(t)=0 i.e. $\mathcal{M}=\{(y,\dot{y})\,:\,(y,\dot{y})=(0,0)\}$

 $y(y,\dot{y})=(0,0)$ is a globally asymptotically stable equilibrium

Revisit m-s-d example (for the last time)

• V(x) is positive definite, $V(x) \to \infty$ as $||x|| \to \infty$, and

$$\dot{V}(y,\dot{y}) = -c(\dot{y})\dot{y} \le 0$$

- therefore $\dot{V} \to 0$, implying $\dot{y} \to 0$ as $t \to \infty$ i.e. $\mathcal{R} = \{(y,\dot{y}) \ : \ \dot{y} = 0\}$
- but $\dot{y} = 0$ implies $\ddot{y} = -k(y)/m$
- therefore $\ddot{y} \neq 0$ unless y=0, so $\dot{y}(t)=0$ for all t only if y(t)=0 i.e. $\mathcal{M}=\{(y,\dot{y})\,:\,(y,\dot{y})=(0,0)\}$

 $(y, \dot{y}) = (0, 0)$ is a globally asymptotically stable equilibrium!

If there exists a continuously differentiable function $V(\boldsymbol{x})$ such that

the level set $\Omega=\{x: V(x)\leq V_0\}$ is bounded for some V_0 and $\dot{V}(x)\leq 0$ whenever $x\in\Omega$

then: (i). Ω is an invariant set

- (ii). $x(0) \in \Omega \implies \dot{V}(x) \to 0 \text{ as } t \to \infty$
- (iii). $x(t) \to \mathcal{M} = \text{largest invariant set contained in } \mathcal{R}$

where $\mathcal{R} = \{x : \dot{V}(x) = 0\}$

- ullet V(x) doesn't have to be positive definite or radially unbounded
- ullet Result is based on Barbalat's Lemma applied to \dot{V}

1

applies here because finite Ω implies $\|x(t)\|$ finite for all

since
$$x(0)\in\Omega$$
 and $\dot{V}\leq0$

ullet Ω is a region of attraction for ${\cal N}$

- ullet V(x) doesn't have to be positive definite or radially unbounded
- \bullet Result is based on Barbalat's Lemma applied to \dot{V}

applies here because finite Ω implies $\|x(t)\|$ finite for all t

since
$$x(0)\in\Omega$$
 and $\dot{V}\leq0$

ullet Ω is a region of attraction for ${\cal N}$

- ullet V(x) doesn't have to be positive definite or radially unbounded
- \bullet Result is based on Barbalat's Lemma applied to \dot{V}

applies here because finite Ω implies $\|x(t)\|$ finite for all t

since
$$x(0)\in\Omega$$
 and $\dot{V}\leq0$

ullet Ω is a region of attraction for ${\mathcal M}$

- \bullet Second order system: $\dot{x}_1=x_2 \\ \dot{x}_2=-(x_1-1)^2x_2^3-x_1+\sin(\pi x_1/2)$
- Equilibrium points: $(x_1, x_2) = (0, 0), (1, 0), (-1, 0)$
- Trial storage function

$$V(x) = \frac{1}{2}x_2^2 + \int_0^{x_1} (y - \sin(\pi y/2)) dy$$

V is not positive definite but $V(x) o\infty$ if $x_1 o\infty$ or $x_2 o\infty$

level sets of V are finite

- \bullet Second order system: $\dot{x}_1=x_2 \\ \dot{x}_2=-(x_1-1)^2x_2^3-x_1+\sin(\pi x_1/2)$
- Equilibrium points: $(x_1, x_2) = (0, 0), (1, 0), (-1, 0)$
- Trial storage function:

$$V(x) = \frac{1}{2}x_2^2 + \int_0^{x_1} (y - \sin(\pi y/2)) dy$$

V is not positive definite but $V(x)
ightarrow \infty$ if $x_1
ightarrow \infty$ or $x_2
ightarrow \infty$

level sets of V are finite

- Second order system: $\dot{x}_1 = x_2$ $\dot{x}_2 = -(x_1-1)^2 x_2^3 x_1 + \sin(\pi x_1/2)$
- Equilibrium points: $(x_1, x_2) = (0, 0), (1, 0), (-1, 0)$
- Trial storage function:

$$V(x) = \frac{1}{2}x_2^2 + \int_0^{x_1} (y - \sin(\pi y/2)) dy$$

V is not positive definite but $V(x)\to\infty$ if $x_1\to\infty$ or $x_2\to\infty$

level sets of V are finite

• Differentiate:
$$\dot{V}(x)=-(x_1-1)^2x_2^4\leq 0$$

$$\dot{V}(x)=0 \iff x\in\mathcal{R}=\{x: x_1=1 \text{ or } x_2=0\}$$

• From the system model, $x \in \mathcal{R}$ implies

$$\begin{array}{ll} x_1=1 &\Longrightarrow & (\dot{x}_1,\dot{x}_2)=(x_2,0)\\ \text{and}\\ x_2=0 &\Longrightarrow & (\dot{x}_1,\dot{x}_2)=(0,\sin(\pi x_1/2)-x_1)\\ \text{therefore} \left\{ \begin{array}{ll} x(t) \text{ remains on line } x_1=1 \text{ only if } x_2=0\\ x(t) \text{ remains on line } x_2=0 \text{ only if } x_1=0,\ 1 \text{ or } -1 \end{array} \right. \\ \Longrightarrow \mathcal{M} = \left\{ (0,0), (1,0), (-1,0) \right\} \end{array}$$

• Apply local invariant set theorem to any level set $\Omega = \{x : V(x) \leq V_0\}$

$$\begin{array}{c} \Omega \text{ is finite} \\ \dot{V} \leq 0 \end{array} \right\} \implies \quad x(t) \rightarrow \mathcal{M} = \{(0,0),(1,0),(-1,0)\} \text{ as } t \rightarrow \infty$$

• Differentiate:
$$\dot{V}(x)=-(x_1-1)^2x_2^4\leq 0$$

$$\dot{V}(x)=0 \iff x\in\mathcal{R}=\{x: x_1=1 \text{ or } x_2=0\}$$

• From the system model, $x \in \mathcal{R}$ implies:

$$\begin{array}{ll} x_1=1 &\Longrightarrow & (\dot{x}_1,\dot{x}_2)=(x_2,0)\\ \text{and}\\ x_2=0 &\Longrightarrow & (\dot{x}_1,\dot{x}_2)=(0,\sin(\pi x_1/2)-x_1)\\ \\ \text{therefore} \left\{ \begin{array}{ll} x(t) \text{ remains on line } x_1=1 \text{ only if } x_2=0\\ x(t) \text{ remains on line } x_2=0 \text{ only if } x_1=0, 1 \text{ or } -1 \end{array} \right. \\ \\ \Longrightarrow \mathcal{M}=\left\{(0,0),(1,0),(-1,0)\right\} \end{array}$$

• Apply local invariant set theorem to any level set $\Omega = \{x : V(x) \leq V_0\}$

$$\begin{array}{c} \Omega \text{ is finite} \\ \dot{V} \leq 0 \end{array} \right\} \implies \quad x(t) \rightarrow \mathcal{M} = \{(0,0),(1,0),(-1,0)\} \text{ as } t \rightarrow \infty$$

• Differentiate:
$$\dot{V}(x)=-(x_1-1)^2x_2^4\leq 0$$

$$\dot{V}(x)=0 \iff x\in\mathcal{R}=\{x: x_1=1 \text{ or } x_2=0\}$$

• From the system model, $x \in \mathcal{R}$ implies:

$$\begin{array}{ll} x_1=1 &\Longrightarrow & (\dot{x}_1,\dot{x}_2)=(x_2,0)\\ \text{and}\\ x_2=0 &\Longrightarrow & (\dot{x}_1,\dot{x}_2)=(0,\sin(\pi x_1/2)-x_1)\\ \\ \text{therefore} \left\{ \begin{array}{ll} x(t) \text{ remains on line } x_1=1 \text{ only if } x_2=0\\ x(t) \text{ remains on line } x_2=0 \text{ only if } x_1=0, 1 \text{ or } -1 \end{array} \right. \\ \\ \Longrightarrow \mathcal{M}=\{(0,0),(1,0),(-1,0)\} \end{array}$$

• Apply local invariant set theorem to any level set $\Omega = \{x : V(x) \leq V_0\}$:

$$\left. \begin{array}{l} \Omega \text{ is finite} \\ \dot{V} < 0 \end{array} \right\} \implies \quad x(t) \to \mathcal{M} = \{(0,0), (1,0), (-1,0)\} \text{ as } t \to \infty$$

• From any initial condition, x(t) converges asymptotically to (0,0), (1,0) or (-1,0) but x=(0,0) is unstable (linearized system at (0,0) has poles $\pm \sqrt{\frac{\pi}{2}-1}$ so is unstable)

• Contours of V(x)

Use local invariant set theorem on level sets $\Omega=\{x:V(x)\leq V_0\}$ for $V_0<0$, $x=(1,0),\ x=(-1,0)$ are stable equilibrium points

• From any initial condition, x(t) converges asymptotically to (0,0), (1,0) or (-1,0) but x=(0,0) is unstable $\text{(linearized system at } (0,0) \text{ has poles } \pm \sqrt{\tfrac{\pi}{2}-1} \text{ so is unstable)}$

• Contours of V(x):

Use local invariant set theorem on level sets $\Omega = \{x: V(x) \leq V_0\}$ for $V_0 < 0$

x=(1,0), x=(-1,0) are stable equilibrium points

Summary

- Convergence analysis using Barbalat's lemma
- Invariant sets
- Invariant set methods for convergence: local invariant set theorem global invariant set theorem

Lecture 4

Linear systems, passivity, and the circle criterion

Linear systems, passivity, and the circle criterion

- Summary of stability methods
- Lyapunov functions for linear systems
- Passive systems
- Passive linear systems
- The circle criterion
- Example

Linearization method

$$\dot{x} = Ax \text{ is strictly stable, } A = \frac{\partial f}{\partial x}\Big|_{x=0}$$

$$\downarrow \hspace{1cm} x=0 \text{ locally asymptotically stable}$$

Lyapunov's direct method

Invariant set theorems

$$\begin{array}{l} V(x) \text{ p.d.} \\ \dot{V}(x) \leq 0 \\ V(x) \rightarrow \infty \text{ as } \|x\| \rightarrow \infty \end{array} \qquad \begin{array}{l} \Omega = \{x \ : \ V(x) \leq V_0\} \text{ bounded} \\ \dot{V}(x) \leq 0 \text{ for all } x \in \Omega \\ \downarrow \\ & . \end{array}$$

x(t) converges to the union of invariant sets contained in $\{x: \dot{V}(x)=0\}$

Linearization method

$$\dot{x} = Ax \text{ is strictly stable, } A = \frac{\partial f}{\partial x} \Big|_{x=0}$$

$$\downarrow \downarrow$$

$$x = 0 \text{ locally asymptotically stable}$$

Lyapunov's direct method

Invariant set theorems

$$\begin{array}{ll} V(x) \text{ p.d.} \\ \dot{V}(x) \leq 0 & \Omega = \{x \ : \ V(x) \leq V_0\} \text{ bounded} \\ V(x) \rightarrow \infty \text{ as } \|x\| \rightarrow \infty & \dot{V}(x) \leq 0 \text{ for all } x \in \Omega \end{array}$$

Linearization method

$$\dot{x} = Ax \text{ is strictly stable, } A = \frac{\partial f}{\partial x} \Big|_{x=0}$$

$$\downarrow \downarrow$$

$$x = 0 \text{ locally asymptotically stable}$$

Lyapunov's direct method

$$\begin{array}{lll} V(x) \text{ locally p.d.} & V(x) \text{ locally p.d.} & \dot{V}(x) \text{ n.d.} \\ \dot{V}(x) \leq 0 \text{ locally} & \dot{V}(x) \text{ locally n.d.} & V(x) \rightarrow \infty \text{ as } \|x\| \rightarrow \infty \\ & & & \downarrow & & \downarrow \\ x = 0 \text{ stable} & x = 0 \text{ locally} & x = 0 \text{ globally} \\ & & & \text{asymptotically stable} & \text{asymptotically stable} \end{array}$$

Invariant set theorems

$$\begin{array}{l} V(x) \text{ p.d.} \\ \dot{V}(x) \leq 0 \\ V(x) \rightarrow \infty \text{ as } \|x\| \rightarrow \infty \end{array} \qquad \begin{array}{l} \Omega = \{x \ : \ V(x) \leq V_0\} \text{ bounded} \\ \dot{V}(x) \leq 0 \text{ for all } x \in \Omega \end{array}$$

x(t) converges to the union of invariant sets contained in $\{x: \dot{V}(x)=0\}$

V(x) p.d.

Instability theorems analogous to Lyapunov's direct method, e.g.

$$\left. \begin{array}{c} V(x) \text{ p.d.} \\ \dot{V}(x) \text{ p.d.} \end{array} \right\} \quad \Longrightarrow \quad x = 0 \text{ unstable}$$

• Lyapunov stability criteria are only sufficient, e.g

$$V(x)$$
 p.d. $\dot{V}(x) \neq 0$ $\implies x = 0$ unstable

(some other V(x) demonstrating stability may exist)

Converse theorems

$$x=0$$
 stable $\implies V(x)$ demonstrating stability exists

(can swap premises and conclusions in Lyapunov's direct method)

1

But no general method for constructing V(x)

• Instability theorems analogous to Lyapunov's direct method, e.g.

$$\left. egin{array}{c} V(x) \ {
m p.d.} \\ \dot{V}(x) \ {
m p.d.} \end{array} \right\} \quad \Longrightarrow \quad x=0 \ {
m unstable}$$

• Lyapunov stability criteria are only sufficient, e.g.

$$\begin{cases} V(x) \text{ p.d.} \\ \dot{V}(x) \not\leq 0 \end{cases} \implies x = 0 \text{ unstable}$$

(some other V(x) demonstrating stability may exist)

Converse theorems

$$v=0$$
 stable $\implies V(x)$ demonstrating stability exists

(can swap premises and conclusions in Lyapunov's direct method)

个

But no general method for constructing V(x)

Instability theorems analogous to Lyapunov's direct method, e.g.

$$\left. egin{array}{ll} V(x) \ {
m p.d.} \\ \dot{V}(x) \ {
m p.d.} \end{array} \right\} \quad \Longrightarrow \quad x=0 \ {
m unstable}$$

• Lyapunov stability criteria are only sufficient, e.g.

$$\begin{array}{c} V(x) \text{ p.d.} \\ \dot{V}(x) \not \leq 0 \end{array} \right\} \qquad \not \Longrightarrow \qquad x = 0 \text{ unstable}$$

(some other $V(\boldsymbol{x})$ demonstrating stability may exist)

Converse theorems

$$x=0$$
 stable \implies $V(x)$ demonstrating stability exists

(can swap premises and conclusions in Lyapunov's direct method)

↑

But no general method for constructing V(x)

• Systematic method for constructing storage function $V(x) = x^T P x$

 $\dot{x} = Ax$ strictly stable \implies can always find constant matrix P so that $\dot{V}(x)$ is negative definite

ullet Only need consider symmetric P

$$e^T P x = \frac{1}{2} x^T P x + \frac{1}{2} x^T P^T x = \frac{1}{2} x^T \underbrace{(P + P^T)}_{\text{SYMMETRIC}} x$$

 \bullet Need $\lambda(P)>0$ for positive definite $V(x)=x^TPx$

$$\begin{array}{cccc} P = U\Lambda U^T & \text{eigenvector/value decompositior} \\ & & & \\ x^T P x = z^T \Lambda z & z = U^T x \\ & & \\ & & \\ x^T P x \text{ positive definite} & \begin{cases} \text{notation: } P > 0 \\ \text{or } "P \text{ is positive definite}" \end{cases} \end{array}$$

• Systematic method for constructing storage function $V(x) = x^T P x$

$$\dot{x} = Ax$$
 strictly stable \implies can always find constant matrix P so that $\dot{V}(x)$ is negative definite

ullet Only need consider symmetric P

$$x^T P x = \frac{1}{2} x^T P x + \frac{1}{2} x^T P^T x = \frac{1}{2} x^T \underbrace{(P + P^T)}_{\text{SYMMETRIC}} x$$

 \bullet Need $\lambda(P)>0$ for positive definite $V(x)=x^TPx$

$$\begin{array}{cccc} P = U\Lambda U^T & \text{eigenvector/value decomposition} \\ & & & \downarrow \\ x^T P x = z^T \Lambda z & z = U^T x \\ & & \downarrow \\ x^T P x \text{ positive definite} & \left\{ \begin{array}{c} \text{notation: } P > 0 \\ \text{or } "P \text{ is positive definite} \end{array} \right. \end{array}$$

- Systematic method for constructing storage function $V(x) = x^T P x$
 - $\dot{x} = Ax$ strictly stable \implies can always find constant matrix P so that $\dot{V}(x)$ is negative definite
- ullet Only need consider symmetric P

$$x^TPx = \tfrac{1}{2}x^TPx + \tfrac{1}{2}x^TP^Tx = \tfrac{1}{2}x^T\underbrace{(P+P^T)}_{\text{SYMMETRIC}}x$$

 $\bullet \ \ \mathrm{Need} \ \lambda(P) > 0 \ \ \mathrm{for \ positive \ definite} \ V(x) = x^T P x$

$$P = U\Lambda U^T \qquad \qquad \text{eigenvector/value decomposi}$$

$$\downarrow \downarrow \\ x^T P x = z^T \Lambda z \qquad \qquad z = U^T x$$

$$\downarrow \downarrow \\ x^T P x \text{ positive definite} \qquad \qquad \begin{cases} \text{notation: } P > 0 \\ \text{or "P is positive definite"} \end{cases}$$

- - $\dot{x} = Ax$ strictly stable \implies can always find constant matrix P so that $\dot{V}(x)$ is negative definite
- ullet Only need consider symmetric P

$$x^TPx = \tfrac{1}{2}x^TPx + \tfrac{1}{2}x^TP^Tx = \tfrac{1}{2}x^T\underbrace{(P+P^T)}_{\text{SYMMETRIC}}x$$

 $\bullet \ \ \mathrm{Need} \ \lambda(P) > 0 \ \ \mathrm{for \ positive \ definite} \ V(x) = x^T P x$

$$\begin{array}{cccc} P = U \Lambda U^T & \text{eigenvector/value decomposition} \\ & & & \downarrow \\ x^T P x = z^T \Lambda z & z = U^T x \\ & & \downarrow \\ x^T P x \text{ positive definite} & \begin{cases} \text{notation: } P > 0 \\ \text{or } "P \text{ is positive definite}" \end{cases} \end{array}$$

• How is P computed?

$$\begin{array}{c} \dot{x} = Ax \\ V(x) = x^T P x \end{array} \right\} \quad \Longrightarrow \quad \begin{array}{c} \dot{V}(x) = x^T P \dot{x} + \dot{x}^T P x \\ = x^T (PA + A^T P) x \end{array}$$

 $\therefore x = 0$ is globally asymptotically stable if, for some Q:

$$PA + A^T P = -Q Q = Q^T > 0$$

Lyapunov matrix equation

• Pick Q>0 and solve $PA+A^TP=-Q$ for P, then

$$\operatorname{Re} \big[\lambda(A) \big] \! < 0 \qquad \Longleftrightarrow \qquad \begin{array}{c} \text{unique solution for } P \\ \text{and } P = P^T > 0 \end{array}$$

Proof

• How is P computed?

$$\begin{array}{c} \dot{x} = Ax \\ V(x) = x^T P x \end{array} \right\} \quad \Longrightarrow \quad \begin{array}{c} \dot{V}(x) = x^T P \dot{x} + \dot{x}^T P x \\ = x^T (PA + A^T P) x \end{array}$$

 $\therefore x = 0$ is globally asymptotically stable if, for some Q:

$$PA + A^T P = -Q Q = Q^T > 0$$

Lyapunov matrix equation

• Pick Q > 0 and solve $PA + A^TP = -Q$ for P, then

$$\operatorname{Re} \big[\lambda(A) \big] < 0 \qquad \Longleftrightarrow \qquad \qquad \text{unique solution for } P \\ \text{and } P = P^T > 0$$

Proof:

• How is P computed?

$$\begin{vmatrix} \dot{x} = Ax \\ V(x) = x^T P x \end{vmatrix} \implies \dot{V}(x) = x^T P \dot{x} + \dot{x}^T P x \\ = x^T (PA + A^T P) x$$

 $\therefore x = 0$ is globally asymptotically stable if, for some Q:

$$PA + A^T P = -Q Q = Q^T > 0$$

Lyapunov matrix equation

• Pick Q > 0 and solve $PA + A^TP = -Q$ for P, then

$$\operatorname{Re} \big[\lambda(A) \big] < 0 \qquad \Longleftrightarrow \qquad \begin{array}{c} \text{unique solution for } P \\ \text{and } P = P^T > 0 \end{array}$$

Proof:

 \leftarrow due to $\dot{V}(x) = -x^T Q x$ negative definite

 $\implies \text{follows from integrating } \dot{V} \text{ w.r.t. } t: P = \int_0^\infty e^{A^T t} Q e^{At} \ dt$

Example: Lyapunov matrix equation

Stable linear system
$$\dot{x} = Ax$$
: $\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & -16 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \lambda(A) = -1 \pm i\sqrt{15}$

Solve
$$PA + A^TP = -Q$$
 for P :

$$Q_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow P_1 = \begin{bmatrix} 0.33 & -0.5 \\ -0.5 & 4.25 \end{bmatrix}$$

$$Q_2 = \begin{bmatrix} 0.41 & -0.19 \\ -0.19 & 0.11 \end{bmatrix} \Rightarrow P_2 = \begin{bmatrix} 0.12 & -0.21 \\ -0.21 & 1.67 \end{bmatrix}$$

Here:

- \star any choice of Q>0 gives P>0 (since A is strictly stable)
- * but not every P > 0 gives Q > 0

- Systematic method for constructing storage functions
- Input-output representation of system:

The system is passive if

$$\dot{V} = yu - g \quad \text{ for some } V(t) \geq 0, \quad g(t) \geq 0$$

also the system is dissipative if
$$\int_0^\infty yu\,dt \neq 0 \implies \int_0^\infty g\,dt > 0$$

Motivated by electrical networks with no internal power generation

- Systematic method for constructing storage functions
- Input-output representation of system:

The system is passive if

$$\dot{V} = yu - g \quad \text{ for some } V(t) \geq 0, \quad g(t) \geq 0$$

also the system is dissipative if
$$\int_0^\infty yu\,dt \neq 0 \implies \int_0^\infty g\,dt > 0$$

Motivated by electrical networks with no internal power generation

input:
$$i$$
 output: v } stored energy: $V = \int_0^t vi \ dt$ $\dot{V} = iv$

Passivity is useful for determining storage functions for feedback systems

• Closed-loop system with passive subsystems S_1 , S_2 :

$$S_{1}: V_{1} \geq 0 \quad \dot{V}_{1} = y_{1}u_{1} - g_{1}$$

$$S_{2}: V_{2} \geq 0 \quad \dot{V}_{2} = y_{2}u_{2} - g_{2}$$

$$V_{1} + V_{2} \geq 0$$

$$\dot{V}_{1} + \dot{V}_{2} = y_{1}u_{1} + y_{2}u_{2} - g_{1} - g_{2}$$

$$= y_{1}(-y_{2}) + y_{2}y_{1} - g_{1} - g_{2}$$

$$= -g_{1} - g_{2}$$

 $\implies V = V_1 + V_2$ is a Lyapunov function for the closed-loop system

if V is a p.d. function of the system state

Passivity is useful for determining storage functions for feedback systems

• Closed-loop system with passive subsystems S_1 , S_2 :

$$S_1: V_1 \ge 0 \quad \dot{V}_1 = y_1 u_1 - g_1$$

$$S_2: V_2 \ge 0 \quad \dot{V}_2 = y_2 u_2 - g_2$$

$$V_1 + V_2 \ge 0$$

$$\dot{V}_1 + \dot{V}_2 = y_1 u_1 + y_2 u_2 - g_1 - g_2$$

$$= y_1 (-y_2) + y_2 y_1 - g_1 - g_2$$

$$= -g_1 - g_2$$

$$< 0$$

 $\implies V = V_1 + V_2$ is a Lyapunov function for the closed-loop system

if V is a p.d. function of the system state

Interconnected passive systems

• Parallel connection:

Feedback connection:

$$V_1 + V_2 \ge 0$$

$$\dot{V}_1 + \dot{V}_2 = y_1 u_1 + y_2 u_2 - g_1 - g_2$$

$$= (y_1 + y_2) u - g_1 - g_2$$

$$= y u - g_1 - g_2$$

Overall system from u to y is passive

$$\begin{aligned} V_1 + V_2 &\geq 0 \\ \dot{V}_1 + \dot{V}_2 &= y_1 u_1 + y_2 u_2 - g_1 - g_2 \\ &= y (u - y_2) + y_2 y - g_1 - g_2 \\ &= y u - g_1 - g_2 \end{aligned}$$

Overall system from u to y is passive

Interconnected passive systems

Parallel connection:

• Feedback connection:

$$V_1 + V_2 \ge 0$$

$$\dot{V}_1 + \dot{V}_2 = y_1 u_1 + y_2 u_2 - g_1 - g_2$$

$$= (y_1 + y_2)u - g_1 - g_2$$

$$= yu - g_1 - g_2$$

Overall system from u to y is passive

$$\begin{aligned} V_1 + V_2 &\geq 0 \\ \dot{V}_1 + \dot{V}_2 &= y_1 u_1 + y_2 u_2 - g_1 - g_2 \\ &= y(u - y_2) + y_2 y - g_1 - g_2 \\ &= y u - g_1 - g_2 \end{aligned}$$

Overall system from u to y is passive

Passive linear systems

Transfer function :
$$\frac{Y(s)}{U(s)} = H(s)$$

- H is passive if and only if
 - (i). $\operatorname{Re}(p_i) \leq 0$, where $\{p_i\}$ are the poles of H(s)(ii). $\operatorname{Re}[H(j\omega)] \geq 0$ for all $0 \leq \omega \leq \infty$

$$\operatorname{Re} \big[H(j\omega) \big] \geq 0 \quad \iff \quad \int_0^t y u \, dt \geq 0 \text{ for all } u(t) \text{ and } u(t)$$

$$\operatorname{Re}\big[H(j\omega)\big]>0$$
 for all $0\leq\omega<\infty$

Passive linear systems

Transfer function : $\frac{Y(s)}{U(s)} = H(s)$

• H is passive if and only if

- (i). $\operatorname{Re}(p_i) \leq 0$, where $\{p_i\}$ are the poles of H(s)(ii). $\operatorname{Re}[H(j\omega)] \geq 0$ for all $0 \leq \omega \leq \infty$
- \star H must be stable, otherwise $V(t) = \int_0^t yu \, dt$ is not defined for all u
- ★ From Parseval's theorem:

$$\operatorname{Re} \big[H(j\omega) \big] \geq 0 \quad \iff \quad \int_0^t yu \ dt \geq 0 \text{ for all } u(t) \text{ and } t$$

frequency domain criterion for passivity

$$\operatorname{Re}\big[H(j\omega)\big] > 0 \text{ for all } 0 \le \omega < \infty$$

Passive linear systems

Transfer function :
$$\frac{Y(s)}{U(s)} = H(s)$$

- H is passive if and only if
 - $\label{eq:continuous} \begin{array}{ll} \mbox{(i)} & \mbox{Re}(p_i) \leq 0 \mbox{, where } \{p_i\} \mbox{ are the poles of } H(s) \\ \mbox{(ii)} & \mbox{Re}\big[H(j\omega)\big] \geq 0 \mbox{ for all } 0 \leq \omega \leq \infty \end{array}$

 - \star H must be stable, otherwise $V(t) = \int_0^t yu \, dt$ is not defined for all u
 - ★ From Parseval's theorem:

$$\operatorname{Re} \big[H(j\omega) \big] \geq 0 \quad \iff \quad \int_0^t yu \ dt \geq 0 \text{ for all } u(t) \text{ and } t$$

frequency domain criterion for passivity

• H is dissipative if and only if $Re(p_i) \leq 0$ and

$$\operatorname{Re}\big[H(j\omega)\big] > 0$$
 for all $0 \le \omega < \infty$

$$H$$
 linear: $\frac{Y(s)}{U(s)} = H(s)$

 ϕ static nonlinearity: $z=\phi(y)$

What are the conditions on H and ϕ for closed-loop stability?

- A common problem in practice, due to e.g
 - * actuator saturation (valves, dc motors, etc.)
 - * sensor nonlinearity
- Determine closed-loop stability given

$$\phi$$
 belongs to sector $[a,b]$
$$\label{eq:alpha} \updownarrow$$

$$a \leq \frac{\phi(y)}{y} \leq b$$

'Absolute stability problem"

$$H$$
 linear: $\frac{Y(s)}{U(s)} = H(s)$

 ϕ static nonlinearity: $z=\phi(y)$

What are the conditions on H and ϕ for closed-loop stability?

- A common problem in practice, due to e.g.
 - ★ actuator saturation (valves, dc motors, etc.)
 - ★ sensor nonlinearity
- Determine closed-loop stability given:

$$\phi$$
 belongs to sector $[a,b]$
$$\label{eq:ab} \updownarrow$$

$$a \leq \frac{\phi(y)}{y} \leq b$$

'Absolute stability problem"

$$H$$
 linear: $\frac{Y(s)}{U(s)} = H(s)$

 ϕ static nonlinearity: $z=\phi(y)$

What are the conditions on H and ϕ for closed-loop stability?

- A common problem in practice, due to e.g.
 - * actuator saturation (valves, dc motors, etc.)
 - ★ sensor nonlinearity
- Determine closed-loop stability given:

$$\phi$$
 belongs to sector $\left[a,b\right]$

"Absolute stability problem"

• Aizerman's conjecture (1949):

Closed-loop system is stable if stable for
$$\phi(y)=ky$$
, $a\leq k\leq b$ false (necessary but not sufficient)

• Sufficient conditions for closed-loop stability:

Popov criterion (1960) Circle criterion
$$\}$$
 based on passivity

$$y\phi(y) \ge 0$$

(1) & (2)
$$\implies \dot{V} \leq -x^T Q x$$

 $\implies x = 0$ is globally asymptotic

• Aizerman's conjecture (1949):

Closed-loop system is stable if stable for
$$\phi(y)=ky$$
, $a\leq k\leq b$ false (necessary but not sufficient)

- The passivity approach:
 - (1). If H is dissipative (i.e. if $\mathrm{Re}\big[H(j\omega)\big]>0$ and H is stable), then:

$$\begin{array}{l} V = x^T P x \\ \dot{V} = y u - x^T Q x \\ = -y \phi(y) - x^T Q x \end{array} \right\} \text{ for some } P > 0, \quad Q > 0$$

(2). If ϕ belongs to sector $[0,\infty)$, then:

$$y\phi(y) \ge 0$$

(1) & (2)
$$\implies V \le -x^T Qx$$

 $\implies x = 0$ is globally asymptotically stable

• Aizerman's conjecture (1949):

Closed-loop system is stable if stable for
$$\phi(y) = ky$$
, $a \le k \le b$ false (necessary but not sufficient)

- The passivity approach:
 - (1). If H is dissipative (i.e. if $\operatorname{Re}[H(j\omega)] > 0$ and H is stable), then:

$$\begin{array}{l} V = x^T P x \\ \dot{V} = y u - x^T Q x \\ = -y \phi(y) - x^T Q x \end{array} \right\} \text{ for some } P > 0, \ \ Q > 0$$

 $\leftarrow x = \text{state of } H$

(2). If ϕ belongs to sector $[0, \infty)$, then:

$$y\phi(y) \ge 0$$

$$\begin{array}{ll} \text{(1) \& (2)} & \Longrightarrow & \dot{V} \leq -x^TQx \\ & \Longrightarrow & x=0 \text{ is globally asymptotically stable} \end{array}$$

Circle criterion

Use loop transformations to generalize the approach for

$$\left\{ \begin{array}{l} H \text{ not passive} \\ \phi \not \in [0,\infty) \end{array} \right.$$

equiv. to

 $\phi \in [a, b]$ a, b arbitrary

$$H'(j\omega) = \frac{H(j\omega)}{1 + aH(j\omega)} + \frac{1}{b - a}$$

Circle criterion

To make
$$H'(j\omega)=\frac{H(j\omega)}{1+aH(j\omega)}+\frac{1}{b-a}$$
 dissipative, need:

(i).
$$H'$$
 stable $\iff \frac{H(j\omega)}{1+aH(j\omega)}$ stable \updownarrow

Nyquist plot of $H(j\omega)$ goes through ν anti-clockwise encirclements of -1/a as ω goes from $-\infty$ to ∞

 $(\nu = \text{no. poles of } H(j\omega) \text{ in RHP})$

(ii).
$$\operatorname{Re} \big[H'(j\omega) \big] > 0 \iff \left\{ \begin{array}{ll} H(j\omega) \text{ lies outside } \frac{D(a,b)}{D(a,b)} & \text{if } ab > 0 \\ H(j\omega) \text{ lies inside } \frac{D(a,b)}{D(a,b)} & \text{if } ab < 0 \end{array} \right.$$

Graphical interpretation of circle criterion

 $\boldsymbol{x} = \boldsymbol{0}$ is globally asymptotically stable if:

$$\star 0 < a < b$$

 $H(j\omega)$ lies in shaded region and does ν anti-clockwise encirclements of D(a,b)

$$\star~b>a=0$$

$$H(j\omega)~{\rm lies~in~shaded~region~and}~\nu=0$$
 (can't encircle $-1/a$)

- $\star~a<0< b$ $H(j\omega)~{\rm lies~in~shaded~region~and}~\nu=0$ (can't encircle -1/a)
- $\star~a < b < 0$ $-H(j\omega) \mbox{ lies in shaded region and does } \nu$ anti-clockwise encirclements of D(-b,-a)

Circle criterion

• Circle criterion is equivalent to Nyquist criterion for a=b>0

$$\uparrow$$
 then $D(a,b)=-rac{1}{a}$ (single point)

ullet Circle criterion is only sufficient for closed-loop stability for general a,b

 \bullet Results apply to time-varying static nonlinearity: $\phi(y,t)$

Example: Active suspension system

• Active suspension system for high-speed train:

$$Q = \phi(u)$$
$$\dot{x}_a = Q/A$$

 $u: \mathsf{valve} \ \mathsf{input} \ \mathsf{signal}$

 $Q: \mathsf{flow} \mathsf{\ rate}$

 ϕ : valve characteristics, $\phi \in [0.005, 0.1]$

A: actuator working area

 \bullet Force exerted by suspension system on carriage body: $F_{\rm susp}$

$$\begin{split} F_{\text{susp}} &= k(x_a - x) + c(\dot{x}_a - \dot{x}) \\ &= \left(k \int_{-t}^{t} Q \, dt + cQ\right) / A - kx - c\dot{x}, \qquad Q = \phi(u) \end{split}$$

• Design controller to compensate for the effects of (constant) unknown load on displacement x despite uncertain valve characteristics $\phi(u)$.

Example: Active suspension system

• Active suspension system for high-speed train:

$$Q = \phi(u)$$
$$\dot{x}_a = Q/A$$

 $u: \mathsf{valve} \ \mathsf{input} \ \mathsf{signal}$

 ${\it Q}$: flow rate

 ϕ : valve characteristics, $\phi \in [0.005, 0.1]$

A: actuator working area

 \bullet Force exerted by suspension system on carriage body: $F_{\rm susp}$

$$\begin{split} F_{\text{susp}} &= k(x_a - x) + c(\dot{x}_a - \dot{x}) \\ &= \left(k \int^t Q \ dt + cQ\right) / A - kx - c\dot{x}, \qquad Q = \phi(u) \end{split}$$

• Design controller to compensate for the effects of (constant) unknown load on displacement x despite uncertain valve characteristics $\phi(u)$.

Dynamics:

$$\begin{split} F_{\rm susp} - F &= m \ddot{x} \\ \Longrightarrow & m \ddot{x} + c \dot{x} + k x = \left(k \int^t Q \ dt + c Q\right) / A - F, \qquad Q = \phi(u) \end{split}$$

F: unknown load on suspension unit m: effective carriage mass

Transfer function model:

$$X(s) = \frac{cs+k}{ms^2+cs+k} \cdot \frac{Q(s)}{As} - \frac{F}{ms^2+cs+k} \qquad Q = \phi(u)$$

• Try linear compensator C(s)

$$U(s) = C(s)E(s) \qquad e = -x, \quad \text{setpoint: } x = 0$$

$$0 \qquad + \qquad e \qquad C(s) \qquad u \qquad \phi(\cdot) \qquad Q \qquad cs + k \qquad ds \qquad 1 \qquad x \qquad a$$

Oynamics:

$$\begin{split} F_{\rm susp} - F &= m \ddot{x} \\ \Longrightarrow & m \ddot{x} + c \dot{x} + k x = \left(k \int^t Q \ dt + c Q\right) / A - F, \qquad Q = \phi(u) \end{split}$$

F: unknown load on suspension unit m: effective carriage mass

Transfer function model:

$$X(s) = \frac{cs+k}{ms^2+cs+k} \cdot \frac{Q(s)}{As} - \frac{F}{ms^2+cs+k} \qquad Q = \phi(u)$$

• Try linear compensator C(s):

ullet For constant F, we need to stabilize the closed-loop system:

static nonlinearity: $\phi \in [0.005, 0.1]$

P+D compensator (no integral term needed):

$$C(s) = K(1 + \alpha s)$$
 \Longrightarrow $H(s) = \frac{K(1 + \alpha s)(cs + k)}{As(ms^2 + cs + k)}$
 H open-loop stable ($\nu = 0$)

 \bullet From the circle criterion, closed-loop (global asymptotic) stability is ensured if $H(j\omega) \text{ lies outside } D(0.005,0.1)$

sufficient condition: $\operatorname{Re}[H(j\omega)] > -10$

ullet For constant F, we need to stabilize the closed-loop system:

static nonlinearity: $\phi \in [0.005, 0.1]$

• P+D compensator (no integral term needed):

$$C(s) = K(1 + \alpha s) \quad \implies \quad H(s) = \frac{K(1 + \alpha s)(cs + k)}{As(ms^2 + cs + k)}$$

H open-loop stable ($\nu = 0$)

 \bullet From the circle criterion, closed-loop (global asymptotic) stability is ensured if $H(j\omega)$ lies outside D(0.005,0.1)

sufficient condition: $\operatorname{Re}[H(j\omega)] > -10$

ullet For constant F, we need to stabilize the closed-loop system:

static nonlinearity: $\phi \in [0.005, 0.1]$

• P+D compensator (no integral term needed):

$$C(s) = K(1 + \alpha s)$$
 \Longrightarrow $H(s) = \frac{K(1 + \alpha s)(cs + k)}{As(ms^2 + cs + k)}$

H open-loop stable $(\nu=0)$

• From the circle criterion, closed-loop (global asymptotic) stability is ensured if:

$$H(j\omega)$$
 lies outside $D(0.005,0.1)$

sufficient condition: $\mathrm{Re} \big[H(j\omega) \big] > -10$

• Nyquist plot of $H(j\omega)$ for K=1 and $\alpha=0,0.2,0.4,0.8$:

• To maximize gain margin:

choose
$$\alpha=0.2$$

$$K\leq 10/3.4=2.94$$

 \leftarrow allows for largest K

Summary

At the end of the course you should be able to do the following:

Understand the basic Lyapunov stability definitions	(lecture 1)
Analyse stability using the linearization method	(lecture 2)
Analyse stability by Lyapunov's direct method	(lecture 2)
Determine convergence using Barbalat's Lemma	(lecture 3)
Understand how invariant sets can determine regions of attraction	(lecture 3)
Construct Lyapunov functions for linear systems and passive systems	(lecture 4)
• Use the circle criterion to design controllers for systems with static nonlinearities	(lecture 4)

Addendum – Limit cycle stability analysis

System has state $x = (x_1, x_2)$ and dynamics:

$$\dot{x}_1 = -x_2 - x_1 h(x)$$

 $\dot{x}_2 = x_1 - x_2 h(x)$

where $h(x) = x_1^2 + x_2^2 - 1$.

Limit cycle

Differentiate h(x) w.r.t. t using system dynamics:

$$\dot{h} = 2x_1\dot{x}_1 + 2x_2\dot{x}_2 = -2(x_1^2 + x_2^2)h(x) = -2(h+1)h$$

hence $h=0\Longrightarrow \dot{h}=0$, so $\{x:x_1^2+x_2^2=1\}$ must contain a limit cycle.

Addendum – Limit cycle stability analysis

System has state $x = (x_1, x_2)$ and dynamics:

$$\dot{x}_1 = -x_2 - x_1 h(x)$$
$$\dot{x}_2 = x_1 - x_2 h(x)$$

where $h(x) = x_1^2 + x_2^2 - 1$.

Limit cycle stability

Let
$$V(x)=h^2(x)$$
, then $\dot{V}=2h\dot{h}=-4h^2(h+1)$
$$=-4h^2(x)(x_1^2+x_2^2)\leq 0$$

- $\{x:V(x)\leq c\}$ is an invariant set for any constant c and $\{x:V(x)=0\}=\{x:x_1^2+x_2^2=1\}$ is stable
- $\begin{array}{cccc} \bullet \ \dot{V} = 0 & \Longrightarrow & h = 0 \ \ (\text{or} \ x_1 = x_2 = 0) \\ h = 0 & \Longrightarrow & \dot{h} = 0 \\ & \Longrightarrow & \text{the limit cycle} \ \{x : h = 0\} \ \text{is the largest invariant set} \\ & \text{contained in} \ \{x : V(x) < 1 \ \text{and} \ \dot{V}(x) = 0\}, \ \text{so is asymptotically} \\ & \text{stable} \\ \end{array}$