Programação e Otimização em SQL (CET 0604)

Discussão Artigo

Performance Impact of Optimization Methods on MySQL Document-Based and Relational Databases

Comentários?

Instalação Mysql

Instalaram?

Mysql Server

https://dev.mysql.com/doc/mysql-gettingstarted/en/#mysql-getting-started-installing

Mysql Workbench:

https://www.mysql.com/products/workbench/

Objetivos da Aula Prática

- Utilização Prática do Mysql
- Modelagem de dados
- Criação de Banco de Dados e Tabelas
- Geração de Massa de Dados
- Execução de Querys
- Análise de Querys
- Otimização de Querys
- Comparativo de Performance

```
mirror object to mirror
mirror_mod.mirror_object
peration == "MIRROR_X":
eirror_mod.use_x = True
mirror_mod.use_y = False
__mod.use_z = False
 _operation == "MIRROR_Y"
irror_mod.use_x = False
lrror_mod.use_y = True
 lrror_mod.use_z = False
  _operation == "MIRROR_Z":
  rror_mod.use_x = False
  rror_mod.use_y = False
  rror_mod.use_z = True
  melection at the end -add
   ob.select= 1
   er ob.select=1
   ntext.scene.objects.action
   "Selected" + str(modifice
   irror ob.select = 0
  bpy.context.selected_obj
   ata.objects[one.name].se
  int("please select exactle
  OPERATOR CLASSES ----
    X mirror to the selected
   ject.mirror_mirror_x"
  oxt.active_object is not
```

Utilização Prática do Mysql

- Login (mysql –u root –p)
- show processlist;
- show databases;
- use <DATABASE>;
- show tables

Configuração de Logs

```
SET global general_log = 1;
SET global log_output = 'table';
```

USE mysql;

SELECT *, CONVERT(argument USING utf8) FROM mysql.general_log;

Caso as tabelas não estejam criadas:

https://tableplus.com/blog/2018/10/how-to-show-queries-log-in-mysql.html

*log_querys.sql

Log

- Baixar o arquivo no formato .csv
- Utilizar o Excel para uma limpeza dos dados
- Separar as colunas por vírgula
- Ordenar para ver a repetição entre as consultas
- Otimizar as mais requisitadas

Estrutura Banco de Dados

schema.sql

Criação do Banco de Dados (CREATE DATABASE)

Criação das Tabelas (CREATE TABLE)

Descrição das tabelas criadas (DESC)

Exercício de Modelagem Parte 1

Façam a modelagem de um E-commerce, no mínimo: Categoria, Produto, Cliente e Pedido.

Modelo Entidade-Relacionamento e o Arquivo com instruções SQL de criação.

Tabelas, chaves, relacionamentos.

Bônus: +1 ponto no trabalho

Tabela Categoria

```
CREATE TABLE Categoria (
cat_id INT UNSIGNED AUTO_INCREMENT NOT NULL,
cat_nome VARCHAR (255),
cat_descricao VARCHAR (255),
PRIMARY KEY(cat_id)
) ENGINE=INNODB;
```

Tabela Produto

```
CREATE TABLE Produto (
pro_id INT UNSIGNED AUTO_INCREMENT NOT NULL,
pro_nome VARCHAR (255),
pro_descricao VARCHAR (255),
pro_preco FLOAT,
pro_cat_id INT UNSIGNED NOT NULL,
PRIMARY KEY(pro_id),
FOREIGN KEY (pro_cat_id) REFERENCES Categoria(cat_id) ON DELETE RESTRICT
) ENGINE=INNODB;
```

Tabela Cliente

```
CREATE TABLE Cliente (
cli_id INT UNSIGNED AUTO_INCREMENT NOT NULL,
cli_nome VARCHAR (255),
cli_email VARCHAR (255),
PRIMARY KEY(cli_id)
) ENGINE=INNODB;
```

Tabela Pedido

```
CREATE TABLE Pedido (
ped_id INT UNSIGNED AUTO_INCREMENT NOT NULL,
ped data DATETIME,
ped_endereço VARCHAR (255),
ped_pro_id INT UNSIGNED NOT NULL,
ped_cli_id INT UNSIGNED NOT NULL,
PRIMARY KEY (ped id),
FOREIGN KEY (ped_pro_id) REFERENCES Produto(pro_id) ON DELETE RESTRICT,
FOREIGN KEY (ped_cli_id) REFERENCES Cliente(cli_id) ON DELETE RESTRICT
) ENGINE=INNODB;
```


Geração da Massa de Dados

- https://generatedata.com/
- https://www.mockaroo.com/
- Configuração dos tipos de dados
- Escolha do nome das tabelas
- Formato de exportação
- Download do dataset Gerado
- Dados regionalizados

CREATE

```
CREATE TABLE t1 (
col1 VARCHAR(10),
col2 VARCHAR(20),
INDEX (col1, col2(10))
);
CREATE INDEX idx2 ON t1 (col1, col2(10));
SHOW INDEX from t1
```

Exercício de Otimização Parte 2

Exercício de Otimização Parte 2

Consultas com e sem índice:

Categoria: Listagem de todas as categorias com pelo menos 3 produtos cadastrados (JOIN)

Clientes: Listagem dos clientes cujo nome contenham sequencia de letras "ca" (TEXT SEARCH)

Produto: Listagem de todos os produtos com valor entre 100 e 200 (FILTRAGEM)

Pedidos: Listagem dos 10 clientes que fizeram a maior quantidade de compras. (AGRUPAMENTO)

Bônus: +1 ponto na prova teórica.

Dump e Restore

- Backup do Banco de Dados:
- mysqldump -u [user] -p [database_name]> [filename].sql
- Restore Banco de Dados
- mysql -u [user] -p [database_name] < [filename].sql
- Compactar o arquivo .sql com rar ou zip e o tamanho pode ser reduzido em 95%.

Métricas

- Reduzir o tempo de respostas das querys mais utilizadas
- Aumentar a capacidade de executar mais querys por segundo
- Caso não seja o foco do projeto, não olhar para redução de recursos, eles estão lá para serem utilizados.

Otimizações Modelagem

Usar char ao invés de varchar

Reduzir o tamanho dos campos para o máximo que ele irá armazenar

Evitar que os campos tenham dados null

Usar enum para representar dados que sejam um subconjunto

EXPLAIN

id	select_ty	table	partitions	type	possible_keys	key	key_len	ref	rows	filtered Extra	
▶ 1	SIMPLE	Produto	NULL	index	pro_cat_id	pro_cat_id	4	NULL	1500	100.00 Using index; Using temporary; Using filesort	

Table 8.1 EXPLAIN Output Columns

Column	JSON Name	Meaning		
id	select_id	The SELECT identifier		
select_type	None	The SELECT type		
table	table_name	The table for the output row		
partitions	partitions	The matching partitions		
type	access_type	The join type		
possible_keys	possible_keys	The possible indexes to choose		
<u>key</u>	key	The index actually chosen		
key_len	key_length	The length of the chosen key		
ref	ref	The columns compared to the index		
rows	rows	Estimate of rows to be examined		
filtered	filtered	Percentage of rows filtered by table condition		
<u>Extra</u>	None	Additional information		

Otimizações Querys

- Reduzir as linhas do resultado. (LIMIT)
- Reduzir as colunas do resultado (Não usar *)
- Em alguns casos é possível trocar uma query complexa por algumas mais simples e agrupar os dados externamente (aplicação ou relatório)
- Inspecionar com o EXPLAIN

Índices

Colocar índices para todos os campos que são usados nas filtragens (WHERE e ORDER BY)

Colocar índice em todas as Foreign Keys

Índices simples: somente uma coluna

Índices compostos: mais de uma coluna utilizada em uma mesma query

Primary key tem um índice automático.

Quando a tabela tem poucos registros o impacto é pequeno, mas quando ela cresce é MUITO grande.

^{*}vitesse.sql

HEAP TABLE

CREATE TABLE relatorio ENGINE=MEMORY SELECT pro_id, pro_nome, pva_peso FROM tbl_produto JOIN tbl_produto_variante ON pva_pro_id = pro_id WHERE pro_id < 10;

SELECT * FROM relatorio;

DROP TABLE relatorio;

*heap-table-query-vitesse.sql

Artigo
Leitura
Extra
(opcional)

SmartIX: A database indexing agent based on reinforcement learning

Trabalhos Avaliativos

Análise crítica dos 3 artigos científicos:

- Resumo
- Como seria possível avançar mais no tema?
- Prazo: 19/04/2024 23:59

Avaliação: (TI * 0,2) + (PP * 0,4) + (AV * 0,4)

- TI Trabalho Individual
- PP Projeto Prático
- AV Avaliação Teórica
- * Bônus: até +1 ponto no Trabalho e +1 ponto na Prova

Projeto Prático em Grupo

- Divisão dos Grupos
- Temas dos Projetos
- Conhecimento deve ser compartilhado
- Tabela Fato > 24.000 registros (simular 2 anos de operação de uma empresa)
- 5 Tabelas Dimensões
- Dimensões Importantes: responsável, item utilizado, instante, local, tipo de fato.
- Prazo: 05/05/2024 até 23:59

Entregáveis

- Descrição DETALHADA do projeto
- Modelagem (anexar modelo)
- Explicação e justificativa de cada tabela e campo
- Análises sobre as escolhas de campos e querys que refletem em otimizações (tipos de dados, escrita de consultas, índices).
- Um relatório gerencial online ou offline com 5 indicadores (KPI) via consultas SQL que poderiam ser utilizadas em um dashboard de acompanhamento estratégico da operação comercial. Demonstrar o funcionamento delas e o EXPLAIN para justificar a correta construção da consulta.

Aprofundar mais

High Performance MySQL: Optimization, Backups, and Replication

Baron Schwartz

Baron Schwartz, Peter Zaitsev & Vadim Tkachenko

