Network Simulator-2

Shashata Sawmya Abdullah Al Ishtiaq
Student Id.: 1505089 Student Id.: 1505080

January 12, 2019

Department of Computer Science and Engineering Bangladesh University of Engineering and Technology (BUET)

Dhaka - 1000

Contents

1	Inti	roducti	on	5
2	Sim	ulated	Networks	5
3	Par 3.1 3.2	ameter Param Metric		
4	Bor	nus Tas	sks	6
5	Mo	dificati	ons	6
6	Cor 6.1	Mired 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 Wirele 6.2.1 6.2.2		. 8 . 10 . 12 . 14 . 16 . 19 . 22
7	Bor 7.1 7.2 7.3	Cross	Packet Delivery Ratio Packet Drop Ratio Energy Consumption Average Congestion Window Per-Node Throughput nulation Data Transmission	. 26 . 28 . 30 . 32 . 36 . 40 . 40
8	Sun	nmary		42

List of Figures

1	Wired: Network Throughput VS Number of Nodes	8
2	Wired: Network Throughput VS Number of Flows	9
3	Wired: Network Throughput VS Packets Per Second	9
4	Wired: Delay VS Number of Nodes	10
5	Wired: Delay VS Number of Flows	11
6	Wired: Delay VS Packets Per Second	11
7	Wired: Delivery Ratio VS Number of Nodes	12
8	Wired: Delivery Ratio VS Number of Flows	13
9	Wired: Delivery Ratio VS Packets Per Second	13
10	Wired: Drop Ratio VS Number of Nodes	14
11	Wired: Drop Ratio VS Number of Flows	15
12	Wired: Drop Ratio VS Packets Per Second	15
13	Wired: Average Congestion Window VS Number of Nodes	16
14	Wired: Average Congestion Window VS Number of Flows	17
15	Wired: Average Congestion Window VS Packets Per Seconds	18
16	Wired: Per-Node Throughput VS Number of Nodes	19
17	Wired: Per-Node Throughput VS Number of Flows	20
18	Wired: Per-Node Throughput VS Packets Per Seconds	21
19	Wireless 802.11: Network Throughput VS Number of Nodes	22
20	Wireless 802.11: Network Throughput VS Number of Flows	22
21	Wireless 802.11: Network Throughput VS Packets Per Second .	23
22	Wireless 802.11: Network Throughput VS Node Speed	23
23	Wireless 802.11: Delay VS Number of Nodes	24
24	Wireless 802.11: Delay VS Number of Flows	24
25	Wireless 802.11 : Delay VS Packets Per Second	25
26	Wireless 802.11: Delay VS Node Speed	25
27	Wireless 802.11: Delivery Ratio VS Number of Nodes	26
28	Wireless 802.11: Delivery Ratio VS Number of Flows	26
29	Wireless 802.11: Delivery Ratio VS Packets Per Second	27
30	Wireless 802.11: Delivery Ratio VS Node Speed	27
31	Wireless 802.11: Drop Ratio VS Number of Nodes	28
32	Wireless 802.11: Drop Ratio VS Number of Flows	28
33	Wireless 802.11: Drop Ratio VS Packets Per Second	29
34	Wireless 802.11: Drop Ratio VS Node Speed	29
35	Wireless 802.11: Energy Consumption VS Number of Nodes	30
36	Wireless 802.11: Energy Consumption VS Number of Flows	30
37	Wireless 802.11: Energy Consumption VS Packets Per Second.	31
38	Wireless 802.11: Energy Consumption VS Node Speed	31
39	Wireless 802.11: Average Congestion Window VS Number of	
	Nodes	32
40	Wireless 802.11: Average Congestion Window VS Number of Flows	
41	Wireless 802.11 : Average Congestion Window VS Packets Per	
	Seconds	34
42	Wireless 802 11 · Average Congestion Window VS Node Speed	35

43	Wireless 802.11: Per-Node Throughput VS Number of Nodes	36
44	Wireless 802.11 : Per-Node Throughput VS Number of Flows	3
45	Wireless 802.11 : Per-Node Throughput VS Packets Per Seconds	38
46	Wireless 802.11 : Per-Node Throughput VS Node Speed	39
47	LTE Network	4
48	LTE Network Data Transfer	4

1 Introduction

NS2 is an open-source event-driven simulator designed specifically for research in computer communication networks. In this experiment we have to vary different parameters such as number of nodes, number of flows, number of packets per second, speed of nodes and measure some metrics and plot them in some graphs. We also had to modify some mechanisms of tcp and/or routing, mac layer protocol, queue control mechanism etc and compare our modified version of the ns2 with the original version through the metrics and generated graph.

2 Simulated Networks

- Wired network using TCP in Ring topology
- Wireless 802.11 (Mobile) network using TCP in Random Topology
- Wired-Cum-Wireless Network
- LTE (4G)
- WiMax

3 Parameters and Metrics

3.1 Parameters

- 1. Number of nodes (20, 40, 60, 80, and 100)
- 2. Number of flows (10, 20, 30, 40, and 50)
- 3. Number of packets per second (100, 200, 300, 400, and 500)
- 4. Speed of nodes (5 m/s, 10 m/s, 15 m/s, 20 m/s, and 25 m/s) [for 802.11 mobile nodes]

3.2 Metrics

- 1. Network Throughput
- 2. End-to-End Delay
- 3. Packet Delivery Ratio
- 4. Packet Drop Ratio
- 5. Energy Consumption [for 802.11 mobile nodes]
- 6. Average Congestion Window
- 7. Per-Node Throughput

4 Bonus Tasks

We have attempted 3 bonus tasks as instructed in the assignment. They are:

- 1. Cross transmission of packets [Simulation and Statistics Building]
- 2. Simulating LTE(4G) [Simulation Only] and WiMax network [Simulation and Statistics Building]
- 3. Measuring 2 extra metrics
 - Average Congestion Window
 - Per-node Throughput

5 Modifications

We have done several modifications in the simulator and run our code in the modified version. The modifications are listed below.

- 1. Congestion Control: TCP uses slow-start algorithm for congestion control. In congestion avoidance phase after the congestion window has crossed threshold value, it increases window by 1/cwnd_. In our case we have formulated a new mechanism of increasing the congestion window in congestion avoidance phase. We have increased the congestion window when the expression awnd_ × wnd_const_ × srtt is greater than the current congestion window. where awnd_ is averaged congestion window wnd_const_ is packets per RTT srtt is smoothed round trip time
- 2. RTT Mechanism: The current unbounded retransmit timeout calculation uses smoothed round trip time and rtt variation variables srtt_ and rttvar_. the formula for the calculation of srtt and rttvar is given below:

$$srtt(k+1) = \frac{7}{8}srtt(k) + \frac{1}{8}rtt(k+1)$$

and

$$rttvar(k+1) = \frac{3}{4}rttvar(k) + \frac{1}{4}|\delta|$$

where rtt(k+1) = new rtt sampleand $\delta = rtt(k+1) - srtt(k)$

It is changed as below:

$$srtt(k+1) = \frac{15}{16}srtt(k) + \frac{1}{16}rtt(k+1)$$

and

$$rttvar(k+1) = \frac{7}{8}rttvar(k) + \frac{1}{8}|\delta|$$

We have changed the value of T_SRTT_BITS and T_RTTVAR_BITS to get this effect

3. RTO Timeout change: The function rtt_timeout is changed to enforce the value of rtt_update to be taken for calculating timeout value as

$$timeout = t_rtxcur_ \times t_backoff_$$

- **4. Changing the gain of Omni-antenna:** We have changed the Transmission and Receiving gain Gt_ and Gr_ from 1.0 to 2.0 for wireless 802.11 protocol simulation
- **5. AODV Change:** The changes done in AODV.h file are given below:
 - 1. ACTIVE_ROUTE_TIMEOUT is changed from 10 to 8. As AODV is generally used for wireless nodes, this change will prune inaccessible routes faster in case of link failures.
 - 2. RREQ_RETRIES is changed from 3 to 5 and MAX_RREQ_TIMEOUT is changed from 10.0 to 6.0. This change will make the nodes to try to retry more times in Route Discovery phase. This helps to find mobile nodes better.
 - 3. TTL_START, TTL_THRESHOLD and TTL_INCREMENT is changed from 5, 7, 2 to 3, 9, 3 respectively. AODV implements ring search in Route Discovery Phase. To limit the flooding in the network, at first we are searching with small TTL values and then gradually expanding our search. This should find routes to nodes which are close faster than before.
- 6. SFQ Change: We have used Stochastic Fair Queue i.e. SFQ instead of Droptail queue in wired network simulation and we have changed the number of buckets for the hash mechanism which have effected the variable fairshare. The buckets_ variable have been changed from 16 to 25 in this case.

6 Comparison

6.1 Wired

6.1.1 Network Throughput

Figure 1: Wired : Network Throughput VS Number of Nodes

Figure 2: Wired : Network Throughput VS Number of Flows

Figure 3: Wired : Network Throughput VS Packets Per Second

6.1.2 End-to-End Delay

Figure 4: Wired : Delay VS Number of Nodes

Figure 5: Wired : Delay VS Number of Flows

Figure 6: Wired : Delay VS Packets Per Second

6.1.3 Packet Delivery Ratio

Figure 7: Wired : Delivery Ratio VS Number of Nodes

Figure 8: Wired : Delivery Ratio VS Number of Flows

Figure 9: Wired : Delivery Ratio VS Packets Per Second

6.1.4 Packet Drop Ratio

Figure 10: Wired : Drop Ratio VS Number of Nodes

Figure 11: Wired : Drop Ratio VS Number of Flows

Figure 12: Wired : Drop Ratio VS Packets Per Second

6.1.5 Average Congestion Window

Figure 13: Wired: Average Congestion Window VS Number of Nodes

Figure 14: Wired : Average Congestion Window VS Number of Flows

Figure 15: Wired : Average Congestion Window VS Packets Per Seconds

6.1.6 Per-Node Throughput

Figure 16: Wired: Per-Node Throughput VS Number of Nodes

Figure 17: Wired : Per-Node Throughput VS Number of Flows

Figure 18: Wired : Per-Node Throughput VS Packets Per Seconds

6.2 Wireless 802.11 (Mobile)

6.2.1 Network Throughput

Figure 19: Wireless 802.11: Network Throughput VS Number of Nodes

Figure 20: Wireless 802.11: Network Throughput VS Number of Flows

Figure 21: Wireless 802.11: Network Throughput VS Packets Per Second

Figure 22: Wireless 802.11: Network Throughput VS Node Speed

6.2.2 End-to-End Delay

Figure 23: Wireless 802.11: Delay VS Number of Nodes

Figure 24: Wireless 802.11: Delay VS Number of Flows

Figure 25: Wireless 802.11: Delay VS Packets Per Second

Figure 26: Wireless 802.11: Delay VS Node Speed

6.2.3 Packet Delivery Ratio

Figure 27: Wireless 802.11: Delivery Ratio VS Number of Nodes

Figure 28: Wireless 802.11: Delivery Ratio VS Number of Flows

Figure 29: Wireless 802.11: Delivery Ratio VS Packets Per Second

Figure 30: Wireless 802.11: Delivery Ratio VS Node Speed

6.2.4 Packet Drop Ratio

Figure 31: Wireless 802.11: Drop Ratio VS Number of Nodes

Figure 32: Wireless 802.11: Drop Ratio VS Number of Flows

Figure 33: Wireless 802.11: Drop Ratio VS Packets Per Second

Figure 34: Wireless 802.11: Drop Ratio VS Node Speed

6.2.5 Energy Consumption

Figure 35: Wireless 802.11: Energy Consumption VS Number of Nodes

Figure 36: Wireless 802.11: Energy Consumption VS Number of Flows

Figure 37: Wireless 802.11: Energy Consumption VS Packets Per Second

Figure 38: Wireless 802.11: Energy Consumption VS Node Speed

6.2.6 Average Congestion Window

Figure 39: Wireless 802.11: Average Congestion Window VS Number of Nodes

Figure 40: Wireless 802.11: Average Congestion Window VS Number of Flows

Figure 41: Wireless 802.11: Average Congestion Window VS Packets Per Seconds

Figure 42: Wireless 802.11: Average Congestion Window VS Node Speed

6.2.7 Per-Node Throughput

Figure 43: Wireless 802.11: Per-Node Throughput VS Number of Nodes

Figure 44: Wireless 802.11: Per-Node Throughput VS Number of Flows

Figure 45: Wireless 802.11: Per-Node Throughput VS Packets Per Seconds

Figure 46: Wireless 802.11: Per-Node Throughput VS Node Speed

7 Bonus Simulation Data

7.1 Cross Transmission

The Average statistics found in 10 iterations of the wired-cum-wireless network simulation is shown in Table 1.

Metric	Value
Throughput	323506.52000
Average Delay	16.24650
Sent Packets	1212.00000
Received Packets	1132.00000
Dropped Packets	0
Packet Delivery Ratio	93.40000
Packet Drop Ratio	0
Total Time	29.08820
Total Retransmit	1132.00000

(a) Statistics

Node Number	Throughput	
6	323506.51880	

(b) Per-Node Throughput

Table 1: Wired-Cum-Wireless Network

7.2 LTE

The simulation of LTE (4G) network was done and network animator view is attached of the simulation.

Figure 47: LTE Network

Figure 48: LTE Network Data Transfer

7.3 WiMax

The statistics found in simulation of WiMax network is shown in 2

Metric	Value
Throughput	38800.3376
Average Delay	0.0202
Sent Packets	101
Received Packets	97
Dropped Packets	33
Packet Delivery Ratio	96.0396
Packet Drop Ratio	32.673267
Total Routed Packets	16272

(a) Statistics

Node Number	Throughput
1	38800.3376

(b) Per-Node Throughput

Table 2: Wimax Network

8 Summary

We have performed the modifications mentioned in Section 5 with intuition to improve results of simulation and measured several metrics of network before and after the modifications. But in most of the cases, it is prominent from the graphs in Section 6 that the results of the measured metrics are degrading. However, the average congestion window has increased after the modifications which can be identified as an improvement. Also in some cases of Wireless 802.11 network, Package Delivery Ratio has slightly increased within particular range.

Finally, simulations of Wired-Cum-Wireless network, WiMax network and LTE (4G) network are also done and statistics are built for the first two of those.