Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z ćwiczenia laboratoryjnego nr 2

Bartłomiej Boczek, Aleksander Piotrowski, Łukasz Śmigielski

Spis treści

1.	Punkt 1																	 								2
2.	Punkt 2																	 								3
3.	Punkt 3																	 								4
4.	Punkt 4																	 								6
5.	Punkt 5															_		 								7

Dla wartości $U_{\rm pp}=31$ oraz Z=0 wartość wyjścia stabilizuje się na wartości 31,5°C, co świadczy o tym, że jest to punkt pracy układu.

Właściwości statyczne obiektu można uznać za w przybliżeniu liniowe, gdyż możemy zauważyć, że skoki wyjścia są proporcjonalne do skoków zakłócenia. (skok Y dla $Z_{skok}=10$ jest ok 2 razy mniejszy niż skok Y dla $Z_{skok}=20$). Możemy zatem obliczyć wzmocnienie statyczne, które jest równe: $K_{stat}=0,1465$.

Rys. 2.1. Odpowiedzi skokowe toru zakłócenie-wyjście procesu dla trzech różnych zmian sygnału zakłócającego

Paramatry członu inercyjnego drugiego rzędu z opóźnieniem zostały dobrane w wyniku minimalizacji średniokwadratowego błędu z użyciem optymalizatora ga.

Dla odpowiedzi s parametry te wynoszą: $T_1=0,\!0555;\,T_2=118,\!9431;\,K=0,\!3926$ $T_d=10.$

Natomiast dla odpowiedzi $s^z\colon T_1=54{,}5808;\, T_2=60{,}8558;\, K=0{,}14;\, T_d=10.$

Rys. 3.1. Odpowiedź skokowa przy skoku sygnału sterującego (góra) oraz zakłócającego (dół)

3. Punkt 3 5

Rys. 3.2. Porównanie odpowiedzi skokowej oryginalnej i aproksymowanej dla skoku sygnału sterującego

Rys. 3.3. Porównanie odpowiedzi skokowej oryginalnej i aproksymowanej dla skoku sygnału zakłócenia

Dobrane nastawy regulatora DMC wynoszą: $D=110;\,N=130;\,N_u=6;\,\lambda=1,8;$

Rys. 4.1. Przebiegi sygnałów z regulatora DMC przy zerowym zakłó-ceniu

Podczas labolatorium udało nam się wykonać symulację jedynie dla przypadku z pomiarem zakłócenia, jednak nasze teorytyczne doświadczenia na projekcie pokazały, że pomiar zakłócenia znacznie poprawia jakość regulacji, a co za tym idzie możemy się spodziewać, że uzyskany przez nas wynik jest lepszy niż ten, który uzyskalibyśmy bez pomiaru zakłócenia. Nastawy regulatora DMC jakich użyliśmy podczas symulacji: $D=110;~N=130;~N_u=6;~\lambda=2;~D_z=50;$

Rys. 5.1. Przebiegi sygnałów regulatora DMC przy skokowej zmianie sygnału zakłócającego