

Pledge

116048/SHASHANK MAHALE

I solemnly affirm that I am presenting this journal based on my own experimental work. I have neither copied the observations, calculations, graphs and results from others nor given it to others for copying.

Signature of the student

Experiment 6: Energy gap of Semiconductor

Aim: To measure energy gap of given semiconductor

Apparatus

(i) Semiconductor (thermistor with NTC)

(ii) Heating arrangement with mini-oven filled with sand powder and secondary windings of a step down transfer for controlled electrical heating,

(iii) Digital Multimeter (DMM) (Refer Fig 7.2)

Significance of the experiment: The energy gap, i.e. the gap between valance band and conduction band decides the conductivity of a material. The typical energy gaps of the semiconductors which are in the range 1 eV to 3 eV impart many useful properties to the semiconductors. The ability of the semiconductors to conduct due to electrons as well as holes, their ability to convert light in to electricity and electricity in to light, decrease in the resistance with temperature are all due to their typical energy gaps. The electronics (PN junction diode, NPN or PNP transistor), photonics (LED, laser diode, photodiode, solar cell, LDR etc.) and thermistors, are all based on the typical energy gaps of semiconductors. The energy gap of silicon (1.1 eV) makes it more applicable than germanium (0.72 eV). This experiment demonstrates one of the simplest methods of measuring the energy gap of semiconductors.

Theory: Individual atoms are characterized by discrete energy levels. When atoms come together and form bonds, their energy levels split and become bands. This happens due to the overlapping of electron wave-functions and Pauli's exclusion principle. Crystalline solids are characterized

Figure 6.1: Concept of energy gap

Figure 6.2: Experimental arrangement for the band gap experiment

by energy band diagrams. The energy band diagram of a solid is characteristic to it's atom and inter-atomic spacing. The highest occupied band in such energy bands is called as valance band while the lowest unoccupied band is called as conduction band. The valance band and conduction band are separated by a group of quantum mechanically forbidden energy levels called as energy gap (refer Fig 7.1). The size or value of this energy gap varies with the material. In conductors like copper, aluminum, gold, silver etc. the energy gap is zero, while it is high in insulators like diamond (5 to 6 eV). Elemental semiconductors such as silicon, germanium and

compound semiconductors such as gallium arsenide, zinc sulphide, gallium phospide, etc are characterized by intermediate energy gaps (0.66 to 3.6 eV).

The resistance (R_T) of a semiconductor having energy gap (E_g) decreases with the temperature (T), according to following relation

$$R_T = R_{TO} e^{\frac{E_g}{2KT}} \qquad \dots (6.1)$$

Where K is the Boltzmann's constant

By taking logarithms and rearranging

$$lnR_T = lnR_{TO} + \left(\frac{E_g}{2K}\right) \times \frac{1}{T} \qquad \dots (6.2)$$

Eqn (7.2) signifies a straight line ($\Rightarrow y = mx + c$) Thus the graph of $lnR_T Vs \frac{1}{T}$ is a straight line having slope $m = \frac{E_g}{2K}$. Thus

Eqn (6.3) provides a simple and straightforward method of measuring energy gap of a semiconductor.

Procedure:

- 1. Connect the circuit as shown in the circuit diagram and get it checked. Connect the terminals of the thermistor to the DMM. Operate DMM in resistance mode and with
- 2. Record the room temperature and corresponding resistance (R_T) of thermistor. Express resistance in Ω (not in $k\Omega$ or $M\Omega$).
- 3. Start heating the oven by making AC mains ON. Record decreasing values of resistances (in Ω) at different temperatures as shown in the observation table.
- Calculate various quantities such as T = (t + 273 K), $\frac{1}{T}$ and $\ln R_T$
- Plot the graph of $R_T Vs T$. This graph exhibits the NTC (Negative Temperature Coefficient) property of thermistor
- 4. Plot the graph of $lnR_T Vs \frac{1}{T}$. Calculate its slope (m) and the energy gap using Eqn (7.3)

ROUGH WORK

Observation table

	and the second s	Calculations			
	Resistance R_T, Ω	Temperature, T(K)	1/T (Expressed in 10 ³) K ⁻¹)	InRT	
R.T. = 30	1500	303	3.30	7.3132	
0.0	1000	308	3.24	6.9077	
		313	3.19	6.8023	
		318	3.14	6.6333	
		323	3.09	6.5207	
		328	3.04	6.8969	
		333	3.003	6.263	
		338	2.95		
		343	2.91	6.086	
	Temperature <i>T</i> , ^O C	T , $^{\circ}$ C R_{7} , Ω R.T. = 30 1500 35 1000 40 900 45 760 50 680 55 600 60 525 65 475	Observations Temperature T , ^{O}C Resistance R_{T} , Ω Temperature, $T(K)$ R.T. = 30 1500 303 35 1000 308 40 900 313 45 760 316 50 680 323 55 600 328 60 525 333 65 475 338 64 475 338	Observations Temperature T , O C Resistance R_T , $Ω$ Temperature, T (K) I/T (Expressed in 10^{-1}) K^{-1}) R.T. = 30 1500 303 3.30 35 1000 308 3.24 40 900 313 3.19 45 760 318 3.14 50 680 323 3.09 55 600 328 3.04 60 525 333 3.003 65 475 338 2.95 65 475 338 2.95	

Calculations:

Slope of the graph of $lnR_T Vs \frac{1}{T} = m = 2.786 \text{ K}$

Slope of the graph of the
$$K = 1.37 \times 10^{-23} \text{ J/K}$$

Energy gap, $E_g = 2Km$, where $K = \text{Boltzman's constant} = 1.37 \times 10^{-23} \text{ J/K}$
 $= 2 \times 1.37 \times 10^{-23} \left(\frac{J}{K}\right) \times m (K) = 2 \times 1.37 \times 10^{-23} \left(\frac{J}{K}\right) \times \frac{2.786}{K} (K)$
 $= \frac{7.6336}{1.6 \times 10^{-19} \frac{J}{eV}} = \frac{477}{1.6 \times 10^{-19} \frac{J}{eV}} = \frac{477}{1.6 \times 10^{-19} \frac{J}{eV}}$

Result: The energy gap of given semiconductor (thermistor) is 0.477..eV

FAIR WORK

Observation table

Sr Observations			Calculations InR _T		
Sr. No.	Temperature T, OC	Resistance R_T , Ω	Temperature, T(K)	(Expressed in 10 ^{r3}) K ⁻¹)	
1	R.T. = 30	1500	303	3.30	7.31
2	35	1000	308	3.24	6.90
3	40	900	313	3.19	6.80
4	45	760	318	3,14	6.63
5	50	680	323	3.09	6.52
6	- 0	600	328	3.04	6-39
7	55	525	333	3.00	6.26
8	60	475	338	2.95	6-16
9	70	440	343	2.91	6.08

Calculations:

Slope of the graph of
$$lnR_T Vs \frac{1}{T} = m = \frac{2.786}{100}$$
 K

Energy gap,
$$E_g = 2Km$$
, where $K = \text{Boltzman's constant} = 1.37 \times 10^{-23} \text{ J/K}$
 $= 2 \times 1.37 \times 10^{-23} \left(\frac{J}{K}\right) \times m (K) = 2 \times 1.37 \times 10^{-23} \left(\frac{J}{K}\right) \times \frac{2786}{K} ... (K)$
 $= \frac{7.6336 \times 10^{-20}}{1.6 \times 10^{-19} \frac{J}{eV}} = \frac{0.477}{1.6 \times 10^{-19} \frac{J}{eV}} = 0.477 \text{ eV}$

Result: The energy gap of given semiconductor (thermistor) is 6.477.eV

	My emderstanding to this experiment
	J
2.	=> In this experiment we learn't about
	the study of variation in its conductonce
	with respect to harication in temperature. The
	gop between valance band and conduction band
	is the factor that decides the conductivity of
	the given material. The conductivity of a
	the given material. The conductivity of a semiconductor increases as we increase temperature
	마이크 (1985년 - 1985년 - 1 - 1985년 - 1985