Problem Set 2 Solutions

Tufts University Prof. George McNinch Math 065, Fall 2025

Due: September 15, 2025

Question 1: Write the following sentence using the quantifier notation (that is, the symbols \exists , \forall). Notice: We do not claim these statements are true, so please do not try to prove them.

- (a) Every natural number greater than one is prime. $\forall n \in \mathbb{N}, \ n > 1, \ n \text{ is prime.}$
- (b) There is a natural number greater than one that is neither prime nor composite. $\exists n \in \mathbb{N}, n > 1$ such that $(n \text{ not prime}) \land (n \text{ not composite}).$
- (c) For every integer x there exists an integer y such that xy = 1. $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} \text{ such that } xy = 1$.
- (d) There is an integer x such that for every integer y, xy = 1. $\exists x \in \mathbb{Z}$ such that $\forall y \in \mathbb{Z}, \ xy = 1$.
- (e) For every integer x and every integer y, x+y=y+x. $\forall x,y\in\mathbb{Z},\ x+y=y+x$.
- (f) There is an integer x and an integer y such that x/y is an integer. $\exists x, y \in \mathbb{Z}$, such that $\frac{x}{y} \in \mathbb{Z}$.

Question 2: Write the negation of each of the statements in Question 1, in such a way that the negation appears as late in the sentence as possible. For each statement, decide whether the negation is true, and confirm your assessment with an argument.

- (a) $\exists n \in \mathbb{N}, n > 1$ such that n is not prime True: $4 \in \mathbb{N}$ and 4 > 1, but 4 = 2 * 2, which means 4 is not prime.
- (b) $\forall n \in \mathbb{N}$ with n > 1, n is either prime or composite. True: If a natural number greater than 1 is not prime, it is composite by definition.
- (c) $\exists x \in \mathbb{Z}$ such that $\forall y \in \mathbb{Z}$, $xy \neq 1$. True: Suppose this statement were false. Then for all $x \in \mathbb{Z}$, there would exist some $y \in \mathbb{Z}$ such that xy = 1. However, $x \cdot y = 1$ implies $x = \frac{1}{y}$. If $y \neq 1$, then $\frac{1}{y} = x \notin \mathbb{Z}$. if y = 1, then for any $x \neq 1$, we know $xy \neq 1$. Thus, we have a contradiction, and so the statement must be true.
- (d) $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} \text{ such that } xy \neq 1.$ True: let y = 5. Then xy = 1 implies $x = \frac{1}{5} \notin \mathbb{Z}$. Since $x \in \mathbb{Z}, xy \neq 1$, and so the staement is true.
- (e) $\exists x, y \in \mathbb{Z}$ such that $x + y \neq y + x$. False: We know that the commutative property holds for integers under addition!
- (f) $\forall x, y \in \mathbb{Z}, \frac{x}{y} \notin \mathbb{Z}$. False: Let x = 4 and y = 2. Then $\frac{x}{y} = 2 \in \mathbb{Z}$.

Question 3: (a) Prove that an integer is odd if and only if it is equal to the sum of two consecutive integers.

 (\Rightarrow) Let $n \in \mathbb{Z}$ be odd. Then

$$n = 2a + 1 = a + (a + 1)$$

for some $a \in \mathbb{Z}$. Since a and (a+1) are two consecutive integers, this direction is shown.

 (\Leftarrow)

Suppose $n \in \mathbb{Z}$ is the sum of two consecutive integers. Then

$$n = a + (a+1) = 2a + 1$$

for $a \in \mathbb{Z}$. This is the definition of an odd number, and so n is odd.

(b) Prove or disprove the assertion that every even integer a is the sum of two consecutive even integers.

The statement is false. Suppose we could write 12 as the sum of two consecutive even integers. Then there must exist $a \in \mathbb{Z}$ such that

$$12 = 2a + (2a + 2) = 4a + 2 = 2(2a + 1).$$

Then this implies 2a + 1 = 6, which implies $a = \frac{5}{2} \notin \mathbb{Z}$, a contradiction. Thus, 12 cannot be expressed as a sum of two consecutive even integers, and so the statement is disproved.

Question 4: Let $a, b, c \in \mathbb{Z}$. Show that if a does not divide bc, then a does not divide b. (Hint: Prove the contrapositive.)

Contrapositive: Let $a, b, c \in \mathbb{Z}$. If a|b, then a|bc.

Suppose a|b. Then there exists $m \in \mathbb{Z}$ such that $a \cdot m = b$. Thus, $(a \cdot m)c = bc$, and so $a \cdot (mc) = bc$, which implies a|bc. Thus, the contrapositive is proved.

Therefore, if $a \not\mid bc$, then $a \not\mid b$

Question 5: Let P and Q denote logical propositions. Prove that P is logically equivalent to $(P \wedge Q) \vee (P \wedge \neg Q)$.

P	Q	$P \wedge Q$	$P \wedge \neg Q$	$(P \land Q) \lor (P \land \neg Q)$
\overline{T}	T	T	F	T
T	F	F	T	T
F	T	F	F	F
F	F	F	F	F

Thus, $P = (P \wedge Q) \vee (P \wedge \neg Q)$

Question 6: Let $a,b,c\in\mathbb{Z}$ be odd integers. Prove that the equation $ax^2+bx+c=0$ has no rational solution, i.e. there is no rational number p/q (with $p,q\in\mathbb{Z}$) which can be substituted for x to yield a true equation. (Hint: Follow the ideas in the proof that $\sqrt{2}$ is not rational.)

Proof by contradiction: Suppose there exists some rational number $\frac{p}{q} \in \mathbb{Q}$ that solves the equation $f(x) = ax^2 + bx + c = 0$. (Suppose $f(\frac{p}{q}) = 0$).

Let $\frac{p}{q}$ be in reduced form, i.e., $p \not\mid q$.

Then

$$a\left(\frac{p}{q}\right)^2 + b\frac{p}{q} + c = 0,$$

which implies

$$ap^2 + bpq + q^2 = 0.$$

Now consider the parity of p and q. This is where we use the fact that a, b, c are all odd numbers:

Case 1: p and q are odd. Then ap^2 , bpq, and q^2 are all odd. Three odd numbers cannot sum to an even number (0 is even), so this case must be false.

Case 2: p is odd and q is even. Then ap^2 is odd, while bpq and q^2 are even. An odd number added to an even number cannot be even, and so this case must also be false. The same argument shows that we cannot have p even and q odd either.

Case 3: p and q are both even. This case gives us three even numbers summing to 0, which works just fine. Thus, p and q must both be even! However, this implies that $\frac{p}{q}$ is not in reduced form, a contradiction.