Ngoc Ha

ST 557 - HW 1 ¶

```
In [1]: library(readr)
```

Problem 1

(1a,b)

```
In [2]: data1 <- read_csv('HW1-1.csv', col_types = cols(
    X = col_double(),
    Y = col_double()
))
head(data1)

\[ \frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\f
```

```
In [4]: plot(data1$X, data1$Y, main = 'X vs Y', xlab = 'X', ylab = 'Y')
points(sampMean1[1], sampMean1[2], pch = 16, col =2)
```


(1c) Covariance matrix

(1d) Eigendecomposition

(1e)

```
In [7]: plot(data1$X, data1$Y, main = 'X vs Y', xlab = 'X', ylab = 'Y')
points(sampMean1[1], sampMean1[2], pch = 16, col =2)
arrows(sampMean1[1], sampMean1[2], sampMean1[1]+eigendecomp1$vectors[,1][1], s
ampMean1[2]+eigendecomp1$vectors[,1][2])
```


The eigenvector with the largest eigenvalue is the direction along which the data set has the maximum variance.

Problem 2

(2a,b)

```
In [8]: data2 <- read_csv('HW1-2.csv', col_types = cols(
    X = col_double(),
    Y = col_double()
))
head(data2)

x    Y
-1.54    1.96
-4.25    4.17
-0.85    1.13
-2.90    2.79
-1.09    0.80
-5.92    6.31</pre>
```

```
In [9]: sampMean2 = c(mean(data2$X), mean(data2$Y))
```

```
In [10]: plot(data2$X, data2$Y, main = 'X vs Y', xlab = 'X', ylab = 'Y')
points(sampMean2[1], sampMean2[2], pch = 16, col =2)
```


(2c) Covariance matrix

```
In [11]: covar2 <- var(data2) covar2

X Y

X 10.140227 -9.983968
Y -9.983968 10.046978
```

(2d) Eigendecomposition

(2e)

```
In [13]: plot(data2$X, data2$Y, main = 'X vs Y', xlab = 'X', ylab = 'Y')
points(sampMean2[1], sampMean2[2], pch = 16, col =2)
arrows(sampMean2[1], sampMean2[2], sampMean2[1] + eigendecomp2$vectors[,1][1],
sampMean2[2] + eigendecomp2$vectors[,1][2])
```


The eigenvector with the largest eigenvalue is the direction along which the data set has the maximum variance.

Problem 3

```
In [14]: A = cbind(c(5.125, 3.875, 2.125, -1.125, 0.000), c(3.875, 5.125, -1.125, 2.125)
         , 0.000), c(2.125, -1.125, 5.125, 3.875, 0.000), c(-1.125, 2.125, 3.875, 5.125
         , 0.000), c(0.000, 0.000, 0.000, 0.000, -3.000))
         print(A)
                [,1]
                       [,2]
                              [,3]
                                     [,4] [,5]
         [1,]
               5.125
                      3.875 2.125 -1.125
               3.875 5.125 -1.125
                                    2.125
                                             0
         [2,]
                             5.125
                                   3.875
                                             0
         [3,]
              2.125 -1.125
         [4,] -1.125
                      2.125
                             3.875 5.125
                                             0
                                    0.000
         [5,]
               0.000
                      0.000
                            0.000
                                            -3
```

(a)

```
In [15]: | eigen(A)
         eigen() decomposition
         $values
         [1] 10.0 8.0 4.5 -2.0 -3.0
         $vectors
              [,1] [,2] [,3] [,4] [,5]
         [1,] 0.5 -0.5 -0.5 0.5
         [2,]
               0.5 -0.5 0.5 -0.5
                                     0
         [3,]
               0.5 0.5 -0.5 -0.5
                                     0
         [4,]
               0.5
                   0.5
                         0.5 0.5
                                     0
                                     1
         [5,]
               0.0
                    0.0
                         0.0 0.0
```

(b)

A is *not* positive definite.

Since $v^TAv=\lambda v^Tv=\lambda ||v||$ and ||v||>0 , we have:

$$v^T A v < 0 \iff \lambda < 0 \iff \lambda \in \{-2.0, -3.0\}$$

-2

(c)

 $x=4v_1+2v_5$, where v_1 is the eigenvector corresponding to the largest eigenvalue λ_1 of A, and v_5 is the eigenvector corresponding to the smallest eigenvalue λ_5 of A.

$$Ax = A(4v_1 + 2v_5) = 4Av_1 + 2Av_5 = 4\lambda_1v_1 + 2\lambda_5v_5$$

Problem 4

```
In [17]: iris = read.csv('IrisData.csv')
head(iris)
```

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	1
4.9	3.0	1.4	0.2	1
4.7	3.2	1.3	0.2	1
4.6	3.1	1.5	0.2	1
5.0	3.6	1.4	0.2	1
5.4	3.9	1.7	0.4	1

(4a) sample mean vector

```
In [18]: sapply(iris[,1:4], mean)
```

Petal.Length 3.758

Petal.Width 1.199333333333333

(4b) sample mean vector for each vector

Species 1

```
In [19]: meanVec1 <- sapply(iris[iris$Species == 1,1:4], mean)
    print(meanVec1)

Sepal.Length Sepal.Width Petal.Length Petal.Width
    5.006    3.428    1.462    0.246</pre>
```

Species 2

Species 3

```
In [21]: meanVec3 <- sapply(iris[iris$Species == 3,1:4], mean)
    print(meanVec3)

Sepal.Length Sepal.Width Petal.Length Petal.Width
    6.588    2.974   5.552   2.026</pre>
```

(4c) sample correlation matrix

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
Sepal.Length	1.0000000	-0.1175698	0.8717538	0.8179411
Sepal.Width	-0.1175698	1.0000000	-0.4284401	-0.3661259
Petal.Length	0.8717538	-0.4284401	1.0000000	0.9628654
Petal.Width	0.8179411	-0.3661259	0.9628654	1.0000000

Petal Length and Petal Width are most highly correlated.

(4d) individual sample correlation matrix

Species 1

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
Sepal.Length	1.0000000	0.7425467	0.2671758	0.2780984
Sepal.Width	0.7425467	1.0000000	0.1777000	0.2327520
Petal.Length	0.2671758	0.1777000	1.0000000	0.3316300
Petal.Width	0.2780984	0.2327520	0.3316300	1.0000000

In [24]: cor(iris[iris\$Species == 2,1:4])

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
Sepal.Length	1.0000000	0.5259107	0.7540490	0.5464611
Sepal.Width	0.5259107	1.0000000	0.5605221	0.6639987
Petal.Length	0.7540490	0.5605221	1.0000000	0.7866681
Petal.Width	0.5464611	0.6639987	0.7866681	1.0000000

Species 3

In [25]: cor(iris[iris\$Species == 3,1:4])

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
Sepal.Length	1.0000000	0.4572278	0.8642247	0.2811077
Sepal.Width	0.4572278	1.0000000	0.4010446	0.5377280
Petal.Length	0.8642247	0.4010446	1.0000000	0.3221082
Petal.Width	0.2811077	0.5377280	0.3221082	1.0000000

Petal Length and Petal Width are most highly correlated for Species 1 and 2, but not Species 3.

(4e)

In [26]: pairs(iris[,1:4], col = iris\$Species)

There are distinct groups of flowers.

I can completely predict Species 1 just by using Petal width as they have distinctly small petal widths; Species 2 & 3 would be a little more tricky if petal width is around 1.5.

I would choose **petal width** and **petal length**, as the groups seem most "separated" when plotting with petal width and length.

Problem 5

Let A be any n imes p matrix, for arbitrary dimensions n and p, and let B be the product matrix $B = A^T A$

(5a) Show that B is symmetric

$$B^T = A^T (A^T)^T = A^T A = B \iff B$$
 is symmetric

(5b) Show that B is postitive semi-definite: $x^TBx \geq 0 \ orall x \in \mathbb{R}^p$

$$x^TBx = x^TA^TAx = (Ax)^TAx = \left|\left|Ax
ight|
ight|^2> = 0 \; orall x \in \mathbb{R}^p$$

(5c)
$$S=rac{1}{n-1}(X-ar{X})^T(X-ar{X}).$$
 Argue that S is positive-definite.

The sample covariance matrix S has the form A^TA (scaled by a constant factor), so it is positive semi-definite.

In []: