

NOSC TD 1149

NOSC

NAVA

AD-A189 157

SEAN SYSTEMS CENTER San Diego, California 921525000

SP

DTIC FILE COPY

Technical Document 1149
September 1987

Historical Electromagnetic Propagation Condition Database Description

W. L. Patterson

**S DTIC
ELECTED
DEC 04 1987
D**

Approved for public release. distribution is unlimited.

87 11 27 062

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

E. G. SCHWEIZER, CAPT, USN
Commander

R. M. HILLYER
Technical Director

ADMINISTRATIVE INFORMATION

The work described in this report was completed for the Office of Naval Technology (ONT) by Code 543 of the Naval Ocean Systems Center.

Released by
H.V. Hitney, Head
Tropospheric Branch

Under authority of
J.H. Richter, Head
Ocean and Atmospheric Sciences
Division

JJ

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b RESTRICTIVE MARKINGS					
2a SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION AVAILABILITY OF REPORT Approved for public release; distribution is unlimited.					
7d DECLASSIFICATION/DOWNGRADING SCHEDULE							
4 PERFORMING ORGANIZATION REPORT NUMBER(S) NOSC/TD-1149		5 MONITORING ORGANIZATION REPORT NUMBER(S)					
6a NAME OF PERFORMING ORGANIZATION Naval Ocean Systems Center	6b OFFICE SYMBOL <i>(if applicable)</i>	7a NAME OF MONITORING ORGANIZATION					
8c ADDRESS (City, State and ZIP Code) San Diego, CA 92152-5000		7b ADDRESS (City, State and ZIP Code)					
8a NAME OF FUNDING SPONSORING ORGANIZATION Office of Naval Technology	8b OFFICE SYMBOL <i>(if applicable)</i> ONT	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER					
8c ADDRESS (City, State and ZIP Code) Arlington, VA 22217		10 SOURCE OF FUNDING NUMBERS <table border="1"><tr><td>PROGRAM ELEMENT NO 62435N</td><td>PROJECT NO SXB3</td><td>TASK NO</td><td>AGENCY ACCESSION NO DN888 715</td></tr></table>		PROGRAM ELEMENT NO 62435N	PROJECT NO SXB3	TASK NO	AGENCY ACCESSION NO DN888 715
PROGRAM ELEMENT NO 62435N	PROJECT NO SXB3	TASK NO	AGENCY ACCESSION NO DN888 715				

11 TITLE (include Security Classification)
Historical Electromagnetic Propagation Condition Database Description

12 PERSONAL AUTHOR(S) W.L. Patterson		13b TIME COVERED		14 DATE OF REPORT (Year Month Day) FROM May 86 TO May 87 September 1987	15 PAGE COUNT 74
13a TYPE OF REPORT Final					
16 SUPPLEMENTARY NOTATION					

17 CUSAT CODES			18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) electromagnetic propagation radiosonde soundings		
FIELD	GROUP	SUB GROUP			
19 ABSTRACT (Continue on reverse if necessary and identify by block number)					

The purpose of this report is to describe an electromagnetic propagation condition climatological database.

20a REPORT SECURITY CLASSIFICATION OF ABSTRACT <input type="checkbox"/> SAME AS RPT <input checked="" type="checkbox"/> SAME AS RPT <input type="checkbox"/> SAME AS RPT			21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED	
22a TELEPHONE (include Area Code) (619)225-7247			22b OFFICE SYMBOL Code 543	
23a NAME OF REPORTING ORGANIZATION W.L. Patterson				

DD FORM 1473, 64 JAN

REPRODUCTION MAY BE USED UNTIL EXHAUSTED
ALL OTHER EDITIONS ARE OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

DD FORM 1473, 84 JAN

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

CONTENTS

	page
SECTION 1.....	1
Purpose.....	1
Background.....	1
SECTION 2.....	3
GTE Sylvania Radiosonde Data Analysis II Description	3
General.....	3
Term Definitions.....	3
Statistics.....	8
Additional Considerations.....	8
SECTION 3.....	9
DUCT63 Database Description	9
General.....	9
DUCT63 Database Elements.....	9
SECTION 4.....	14
Historical Propagation Condition Database Construction	14
HEPC Radiosonde Observations	14
HEPC Surface Observation	16
REFERENCES	19
APPENDIX A: SYLVANIA LONG-A TAPE FORMAT.....	A-1
APPENDIX B: SYLVANIA RADIOSONDE STATION LISTING	B-1
APPENDIX C: RADIOSONDE OBSERVATION DATA STATION 4YN	C-1
APPENDIX D: DUCT63 SURFACE OBSERVATION DATA MSQ 85	D-1

Accession For	
NTIS CRAZI <input checked="" type="checkbox"/>	
DTIC TAB <input type="checkbox"/>	
Undersigned <input type="checkbox"/>	
Justification	
By	
Distribution	
Classification	
Date	
Dist	
Serial	
A-1	

ILLUSTRATIONS

Figure	page
1. HEPC function output for metric units.	2
2. M-unit versus height profile for a surface duct.	4
3. M-unit versus height profile for an elevated surface duct.	4
4. M-unit versus height profile for an elevated duct.	4
5. Marsden square numbering system for the world.	10
6. Variable definitions as used in elevated, surface-based and elevated-surface ducts	15
7. Variable definitions as used in constructed surface-based duct	16

TABLES

Table	page
1. Instrument types definition.	5
2. Computed values for variables within the HEPC radiosonde database. WMO station 4YN, fixed ship North Pacific Ocean	16
3. Computed values for variables within the HEPC surface observation database, Marsden square 85 (daytime).	17
4. Computed values for variables within the HEPC surface observation database, Marsden square 85 (nighttime).	18

SECTION 1

PURPOSE

The purpose of this report is to describe an electromagnetic propagation conditions climatological database, a subset of which is employed by the Historical Electromagnetic Propagation Conditions Summary Function (HEPC) within the Tactical Environmental Support System (TESS) (reference 1).

BACKGROUND

The HEPC function generates a climatological description of the refractive conditions for a user-specified geographic location. The climatological description is composed of five parts:

- a percent occurrence of enhanced surface-to-surface radar detection, electronic support measures (EMS) intercept and communications range
- a surface-based duct summary,
- an elevated duct summary,
- an evaporation duct histogram,
- a general meteorology summary.

Figure 1 illustrates the description.

The statistics displayed by the HEPC function are derived from two meteorological databases, the Radiosonde Data Analysis II assembled by the GTE Sylvania Corporation and the Duct63 assembled by the National Climatic Data Center. Prior to the discussion of the HEPC database construction, it is appropriate to describe these two sources of data.

HISTORICAL PROPAGATION CONDITIONS SUMMARY

Specified location: 20.00 N 130.00 W MS = 86 (* = Insufficient data)
 Radiosonde source: 30.00 N 140.00 W MS = 123 WMO number = 4YN
 Coastal station: FIXED SHIP, NORTH PACIFIC OCEAN Hgt = 12 m
 Surface observation source: 25.00 N 125.00 W MS = 85

Percent occurrence of enhanced surface-to-surface radar/esm/com ranges:

Frequency	Average			Jan			Feb			Mar		
	day	nite	d&n	day	nite	d&n	day	nite	d&n	day	nite	d&n
100 MHz	3	<1	2	3	<1	2	4	<1	2	3	<1	2
1 GHz	12	3	7	11	3	7	14	2	8	10	4	7
3 GHz	17	4	11	16	4	10	21	3	12	15	6	11
6 GHz	47	26	37	45	26	36	49	24	37	47	29	38
10 GHz	71	55	64	70	55	62	72	52	63	73	58	66
20 GHz	90	83	87	88	82	85	90	82	86	91	85	88

Surface based duct summary:

Parameter	Average			Jan			Feb			Mar		
	day	nite	d&n	day	nite	d&n	day	nite	d&n	day	nite	d&n
Percent occurrence	22	5	13	19	5	12	28	3	16	18	7	13
Avg thickness Km	.09			.09			.09			.09		
Avg trap freq GHz	.81			.73			.96			.75		
Avg 1yr grad -N/Km	225			227			220			227		

Elevated duct summary:

Parameter	Average			Jan			Feb			Mar		
	day	nite	d&n	day	nite	d&n	day	nite	d&n	day	nite	d&n
Percent occurrence	38	57	48	42	56	49	37	53	45	36	61	49
Avg duct top Km	1.6			1.4			1.6			1.7		
Avg thickness Km	.17			.18			.17			.17		
Avg trap freq GHz	.20			.21			.19			.20		
Avg 1yr grad -N/Km	222			215			218			233		
Avg 1yr base Km	1.5			1.3			1.5			1.6		

Evaporation duct histogram in percent occurrence.

Percent Occurrence	Average			Jan			Feb			Mar		
	day	nite	d&n	day	nite	d&n	day	nite	d&n	day	nite	d&n
0 to 4 Meters	4	5	5	5	5	5	4	5	5	4	4	4
4 to 8 Meters	11	18	15	13	18	16	12	18	15	9	17	13
8 to 12 Meters	26	33	30	26	32	29	28	34	31	26	33	29
12 to 16 Meters	30	29	30	30	29	30	30	27	28	31	30	31
16 to 20 Meters	19	12	16	19	12	15	17	11	14	20	14	17
20 to 24 Meters	7	3	5	6	3	5	7	3	5	7	2	5
24 to 28 Meters	1	<1	1	1	<1	<1	2	<1	1	2	<1	1
28 to 32 Meters	<1	<1	<1	<1	0	<1	<1	<1	<1	<1	<1	<1
32 to 36 Meters	<1	<1	<1	0	0	0	<1	0	<1	<1	<1	<1
36 to 40 Meters	0	0	0	0	0	0	0	0	0	0	0	0
above 40 Meters	0	<1	<1	0	<1	<1	0	0	0	0	0	0
Mean height Meters	13	11	12	13	11	12	13	11	12	13	12	13
# of observations	2k	2k	2k	2k	2k	2k	2k	2k	2k	2k	2k	2k

General meteorology summary:

Parameter	Average			Jan			Feb			Mar		
	day	nite	d&n	day	nite	d&n	day	nite	d&n	day	nite	d&n
# Accepted soundings	120	120	120	116	120	118	115	112	114	129	127	128
% occur EL&SB acts		3			3				3		2	
% occur 2+ EL dcts		3			5				3		2	
Avg station N		339			343				337		337	
Avg station -N/Km		48			50				48		45	
Avg sfc wind m/s	7	7	7	7	7	7	7	7	7	7	7	7

Figure 1. HEPC Function output for metric units.

SECTION 2

GTE SYLVANIA RADIOSONDE DATA ANALYSIS II DESCRIPTION

General

GTE Sylvan, under contract by the Department of Defense (DoD), conducted a large scale analysis of approximately three million worldwide radiosonde soundings from 1966 to 1969 and 1973 to 1974. Numerous statistics of tropospheric ducts and super-refractive layers (SRLRs) were compiled. The basic pressure, temperature, and dew-point temperature profiles for each of the soundings were expanded and converted into a refractive index profile with 2 millibar increments. A search of each expanded profile was conducted to locate occurrences of gradients less than -157 N/Km (in the case of ducts) or less than -100 N/Km (in the case of SRLRs). Monthly estimates of the probability of occurrence of ducts and SRLRs were then computed for each of the 921 radiosonde stations. Characteristics such as height, thickness, intensity, and minimum trapping frequency were also computed.

The radiosonde Long-A tape, a truncated version of the Long Plus 2 tape data set represents the final output for the GTE Sylvan project (reference 2). The Long-A tape consists of 1842 records containing tropospheric ducting characteristics and weather-related parameters for 921 radiosonde stations distributed worldwide. Each set of two consecutive records supplies all the data for a particular station. The records are formatted in ASCII code with a length of 7104 bytes each. Appendix A lists the format for records 1 and 2 for an observation station. Appendix B is a listing of the included radiosonde stations.

Term Definitions

Layers are defined as surface (S), elevated-surface (ES), or elevated (E). Figures 2, 3, and 4 illustrate the M-unit versus height relationships for these layers.

The following is a description of each item contained within the two records. Appendix C contains a listing of the data as it appears on the GTE/Sylvan Long A data tape for station 4YN, fixed ship, North Pacific.

Station Number. World Meteorological Organization (WMO) block and station number.

Station Name. Station name by city and country together with a numerical indicator of coastal (1) or inland (0).

Record Sequence Number. Either record 1 or 2.

Latitude/Longitude. Station latitude and longitude to hundredth of a degree.

Positive values represent north (west) and negative values represent south (east) latitude (longitudes).

Elevation. Station elevation above mean sea level in meters.

Local Time. Local time corresponding to midnight Greenwich Mean Time.

Figure 2. M-unit versus height profile for a surface duct.

Figure 3. M-unit versus height profile for an elevated surface duct.

Figure 4. M-unit versus height profile for an elevated duct.

Local Time. Local time corresponding to noon Greenwich Mean Time.

Station Elevation Reliability. Errors in station elevation contribute directly to errors in duct heights and slopes. Various kinds of discrepancies were noted in the elevation of each radiosonde station. For example, during the measurement period, the station may have changed locations and thus elevations. These discrepancies have been compensated by a correction scheme. Values of 1 (most reliable) to 7 (least reliable) have been applied to the results of this compensation.

Instrument Type. A numerical designation of the two most popular types of instrument used during the last 2 years together with the percentage of the data during those 2 years for which those instruments were used. Table 1 provides the definition of the instrument designators.

Table 1. Instrument types definition.

Indicator	Definition
0	Unknown
1	USWB exposed thermister -403MC/1680MC R/S
2	Australian-variable AM R/S
3	Bendix AN/AM1-4/4B/4D/12; GMD-1 TMQ 5/TYPE 430
4	French - Measural
5	Canadian - Sangamo
6	Indian Chron - AM R/S 1680 MHz
7	Indian FAN - R/S
8	Russian - A 22 Malahit/RKZ-2
9	Chinese
10	West German - GRAW M60
11	Pakistani FM R/S 403 MHz
12	Finnish - Vaisala
13	Japanese - Code sending
14	Malaysia Asior 403
15	Italian - Autovox IA/AMT
16	East German - Freiberg RKS2
17	British - KFW MK II B
18	Dim Type R.V. 4
19	Omara Decca
20	PTU Swiss Institute
21	MARS 1 K

Accepted Soundings. The number of soundings for which an expanded refractive index profile was computed and a search for ducts and SRLR was conducted.

Accepted Soundings With Surface. Number and percent of soundings for which complete surface data were available.

Accepted Soundings With Signal Level. Ducts are separated into those whose minimum trapping frequency exceeds 10,000 MHz and those with frequency less than 10,000 MHz. Since measurement errors and approximations inherent in the computational procedures are probably responsible for the occurrence of the thin, high frequency ducts, only the ducts with minimum trapping frequency less than 10,000 MHz are included in the statistics.

Accepted Soundings With 1000-mb Winds. Number and percent of soundings which contain both wind speed and direction for the 1000-mb level.

Accepted Soundings With 850-mb Winds. Number of soundings which contain both wind speed and direction for the 850 mb level.

Average Mandatory Levels. Average number of mandatory levels up to the 100 mb level contained within the soundings from the last 2-years data.

Average Significant Levels. Average number of significant levels between the surface (but not including the surface) and the 500-mb level contained within the soundings from the last 2-years data.

Pressure. Median value of the atmospheric pressure in millibars at the surface of the reporting station.

Temperature. Median value of the atmospheric temperature in degrees Celsius at the surface of the reporting station.

Dew Point. Median value of the atmospheric dew point temperature in degrees Celsius at the surface of the reporting station.

NS. Median value of the refractive index at the surface of the reporting station.

NW. Median value of the "wet" component of the refractive index at the surface of the reporting station.

$dN/dZ (xx)$. Median value of the refractive index gradient over the first xx meters above the surface at the reporting station.

Wind Direction (xx). Estimate of the wind direction distributed over a circle at the xx pressure level.

Wind Speed (xx). Median wind speed in knots at the xx pressure level.

Number of Ducts (5 Years). Number of ducts occurring over a 5-year period of the data. There is a separate entry for E, ES, and S ducts.

Number of Soundings With Ducts. Number of soundings containing at least one duct of the type E and a combination of S and ES.

Number of Soundings With SRLRs. Number of soundings containing at least one refractive layer of the type E and a combination of S and ES.

Percent Soundings With Ducts. Percent of soundings with ducts of type E, ES, or S. Statistics are provided for various time intervals and duct occurrences.

Probability ≥ 2 Elevated Ducts. Probability of 2 or more E ducts occurring simultaneously.

Probability S and E Ducts. Probability of S and E duct occurring simultaneously.

Median Maximum Height. Median maximum height in meters of all ducting occurrences.

Coupling Factor. The difference between the M-unit value at the surface and the top of the duct.

Bottom Height. The height in meters from the surface to the bottom of the duct.

Optimum Coupling Height. The height in meters from the surface at which the M-unit gradient becomes just trapping (inflection point).

Top Height. The height in meters from the surface to the top of the duct. For S ducts, this is equivalent to the optimum coupling height.

Thickness. The distance in meters from the bottom to the top of the duct.

Intensity. The difference between the M-unit value at the inflection point in the profile and the top of the duct.

Frequency. Median, standard deviation, and mode of the maximum electromagnetic frequency trapped within the trapping layer.

Average Gradient. Median of the M-unit gradient within the duct.

Delta M. The difference between the M-unit value at the surface (for S ducts) or at the inflection point (for ES and E ducts) and the top of the duct.

Upper Slope. The M-unit gradient over the distance from the inflection point to the top of the duct.

Lower Slope. The M-unit gradient over the distance from the bottom of the duct to the inflection point.

Surface to Inflection Point. The height in meters from the surface to the inflection point in the refractive index profile.

Surface to Bottom. The height in meters from the surface to the bottom of the duct.

Statistics

The mean is the average of the values of the given duct parameter. The standard deviation is the unbiased sample standard deviation of the value of the duct parameter. The CI (mean) gives the width of the 50-percent confidence interval for the mean, assuming that the sample was taken from a normal (Gaussian) distribution. The confidence interval width for the median will, in general, be wider than the confidence interval for the mean, since the median confidence interval is based only on the relative weak assumption of symmetry of the underlying distribution. For the case of wind direction, the 25-and 75-percent confidence interval limits are based upon symmetry about the estimated wind direction for the xx pressure level.

Additional Considerations

- a. Where monthly variables are found in groups of 13, the order of the data is for January through December and annual total.
- b. Where monthly numbers and percentages appear in groups of 7818 values, the order is
 1. number then percentage, alternating for months January through December and annual total.
 2. same as (1) above but for time period 0000 GMT only
 3. same as (1) above but for time period 1200 GMT only
- c. Where groups of 3818 values are given for medians and confidence intervals, the order is
 1. the lower confidence intervals for January through December and annual totals.
 2. the medians for 12 months and annual totals
 3. the upper confidence intervals for 12 months and annual totals.

SECTION 3

DUCT63 DATABASE DESCRIPTION

General

The National Climatic Data Center, Asheville, North Carolina, under contract from the Naval Ocean Systems Center (NOSC), produced a subset analysis of its Standard Tape Deck Family 11 (STD-11) database. The STD-11 database consists of over 150 years of worldwide surface meteorological observations. These observations were assembled from ship logs, ship weather reporting forms, published ship observations, automatic buoys, teletype reports, and card decks purchased from foreign meteorological services.

The subset analysis, known as the DUCT63, covers 293 Marsden squares and spans 15 years of surface observations. A Marsden square is a region of the earth's surface defined by a grid of 10 degrees latitude by 10 degrees longitude and is assigned a unique identification number. Figure 5 shows the location and the numerical assignment of all Marsden squares. For example, Marsden square 1 is defined as the region bounded by the prime meridian to 10 degrees west longitude and from the equator to 10 degrees north latitude. Not all of the 648 possible Marsden squares are included in the DUCT63 analysis for two reasons. First, the analysis is specifically concerned with the maritime environment. Marsden squares not containing a region of ocean are excluded from the data. Second, a requirement of at least 100 valid observations per month was imposed to reduce the effects of any spurious meteorological measurements on the distributions.

Figure 5 shows the location of the Marsden squares contained within the DUCT63 analysis as the region enclosed by the heavy border.

DUCT63 Database Elements

The DUCT63 analysis contains distributions of meteorological quantities and surface-to-surface attenuation rates for frequencies of 35 and 94 GHz. These distributions are expressed as either a probability or a percentage of time that the quantity is observed within a specified range. The distributions include diurnal effects where day categories imply a positive solar angle within the Marsden square at the time of the meteorological observation. Night categories are times of observation between one hour after the local sunset and one hour before the local sunrise. Observations taken in the interval between the day and night categories are excluded from the data set.

There are two forms of distributions: a probability (or percent of time) distribution for a specific quantity (i.e., wind speed) and a joint probability distribution of two quantities. The latter form, also called a cross distribution, is specifically designed for use by NOSC in its research efforts.

The following quantities are distributed within the DUCT63 analysis and appear within the data in the order listed. Appendix D contains a complete listing of the data for Marsden square number 85.

1. Paulus evaporation duct height (meters).
2. Paulus evaporation duct height crossed with Jeske duct height.
3. Wind speed (meters per second).
4. Absolute humidity (grams per cubic meter).

Figure 5. Marsden square numbering system for the world.

5. Modified air-sea temperature difference (deg C).
6. Rain rate (scaled millimeters per hour).
7. Attenuation rate (Gaseous) at 35 GHz (scaled dB/km).
8. Attenuation rate (Gaseous) at 94 GHz (scaled dB/km).
9. Attenuation rate (total) at 35 GHz (scaled dB/km).
10. Attenuation rate (total) at 94 GHz (scaled dB/km).
11. Paulus evaporation duct height crossed with wind speed.

Each Marsden square's data are contained within a record of 55242 bytes and formatted in ASCII code.

Each record is headed with two lines of identification data. The first line contains the Marsden square number, the mean sub square (M SUB SQ) and the period of record (POR). Marsden squares are subdivided into 1 degree sub squares and this M SUB SQ shows the mean location of all of the observations within the analysis for this square. The POR is expressed as QQRR-SSTT where QQ is the starting year, RR is the starting month, SS is the ending year and TT is the ending month. Generally, the POR is 7001-8412 indicating that the data is comprised of observations taken between January 1970 and December 1984.

The second line contains the number of records examined for the analysis, the number of records accepted as valid, the number of records which failed the quality control checks and the number of records which failed the time constraints.

Each subsequent line of data is preceded by a 10 character identification field and terminated with a 6 character card number. The format of the identification field is MSQMMMDNTTT where MSQ is the Marsden square, MM is the month, DN is the day or night (1 for day, 2 for night) and TTT is the type of data. These data types are 1 for Paulus evaporation duct height, D12 for Paulus evaporation duct height crossed with Jeske duct height, W for wind speed, A for absolute humidity, M for modified air-sea temperature difference, r for rain rate, s for gaseous attenuation rate at 35 GHz, t for gaseous attenuation rate at 94 GHz, u for total attenuation rate at 35 GHz, v for total attenuation rate at 94 GHz, and M11 for Paulus evaporation duct height crossed with wind speed. For the cross distributions, the MM does not represent the month but rather, represents an index field of the cross distribution.

Details of the specific quantities and distribution characteristics are described in the following paragraphs.

Paulus Evaporation Duct Height. The Paulus formulation of evaporation duct height calculations (reference 3) is a modification to the classical Jeske method (reference 4). The major difference in the approaches is that the Paulus technique attempts to account for inaccuracies in air temperature observations which are caused by thermal influence of the ship.

The data are in month order subdivided by day and night. An observational set is divided into 27 sections (section number followed by data value). Sections 1 through 22 are the number of observations of evaporation duct height from 0 to 40 meters in 2 meter intervals with two additional categories: duct heights greater than 40 meters and duct heights that are not calculable (undefined). Sections 23 through 26 consists of the mean, first, second, and third quartile heights respectively, and section 27 is the total number of observations during the period.

Paulus Evaporation Duct Height Crossed with Jeske Duct Height. The joint probability of a duct height computed by the Paulus and Jeske methods is represented by a 22 by 22 matrix where the 22 data line pairs and the first 22 integers within each line pair represents height intervals from 0 to 40 meters in 2 meter intervals for both Paulus and Jeske duct heights. The real number and the final integer of each line pair represents the mean value of the quantity and the number of valid observations that the distribution is derived from respectively.

Surface Wind Velocity. An observation set consists of 24 elements, i.e., the number of observations of wind velocity from 0 to 20 meters per second in 1 meter per second intervals; number of observations where winds exceeded 20 meters per second; the mean wind velocity for the period; and the total number of observations during the period.

Absolute Humidity. An observation set consists of 24 elements, i.e., the number of observations of absolute humidity from less than 1 to more than 41 grams per cubic meter (g/m^{**3}) in 2 grams per cubic meter increments; a mean absolute humidity for the period; and the total number of observations during the period.

Modified Air-Sea Temperature Difference. The modified air-sea temperature difference is defined in reference 3. Its purpose for inclusion within the DUCT63 database is to aid NOSC research efforts in the climatological description of evaporation duct heights. An observation set consists of 24 elements, i.e., the number of observations of modified air-sea temperature difference from less than -10 to greater than +10 degrees Celsius in 1 degree increments; a mean modified air-sea temperature difference for the period; and the total number of observations during the period.

Rain Rate. Rain rate is not a directly reported quantity in the STD-11 database. Rather, it is computed from the present weather code by techniques developed by Goroch (reference 5). An observation set consists of 24 elements, i.e., the number of observations of rain rate from less than 1 to greater than 5.01 mm/hr increments; the mean rate for the period; and the total number of observations during the period.

Gaseous Attenuation Rate at 35 GHz. This quantity is derived from observations of air temperature, relative humidity, and visibility. The reported visibility is used to calculate a value of the liquid water content based on the work of Johnson reported by Cook (reference 6). Methods described by Liebe (reference 7) are used to calculate the attenuation rate. Since the meteorological data is surface data, the attenuation rate is valid only for surface-to-surface propagation. It is not applicable for use with slant paths. An observation set consists of 24 elements, i.e., the number of observations of from less than 0.001 to greater than 5.01 dB/km in 0.025 dB/km increments; the mean gaseous attenuation rate for the period; and the total number of observations during the period.

Gaseous Attenuation Rate at 94 GHz. The description above applies to the gaseous attenuation rate of 94 GHz with two exceptions. First the frequency is 94 GHz and second, the observations range from less than 1 dB/km to greater than 5.01 dB/km in 0.25 dB/km increments.

Total Attenuation at 35 GHz. The major difference between the attenuation rate described for this quantity and the attenuation rate described in section 3 is that the total attenuation includes the effects of rain rate from section 3. The contributions from rain rate are modeled after the work of Falcone (reference 8). The data format is the same as for the 35 GHz gaseous attenuation rate.

Total Attenuation at 94 GHz. The comments of the preceding section are directly applicable for the total attenuation rate at 94 GHz. Again, it should be stressed that the meteorological data are observed at the surface and the attenuation rates described are strictly applicable to the surface-to-surface path. That is, the data are not applicable to a slant path.

Paulus Duct Height Crossed with Wind Speed. The Paulus duct height crossed with wind speed is designed primarily for use by NOSC in the determination of evaporation ducting. The format of the data is identical to that as described within section 3 except the intergers within each line pair represents wind velocities from 0 to 22 meters per second in 1 meter per second intervals.

SECTION 4

HISTORICAL PROPAGATION CONDITION DATABASE CONSTRUCTION

HEPC Radiosonde Observations

By using the technique as described below, construction of the radiosonde based portion of the database is achieved.

The following data (for an individual radiosonde station) are read from the GTE/Sylvania Radiosonde Long A tape:

Name	Description	data type
GNSBD	N-gradient first 100 meters	median, monthly
GNSTD	N-gradient first 1000 meters	median, monthly
PEL00	% occur elevated duct 00Z	" "
PEL12	% occur elevated duct 12Z	" "
PES00	% occur elev-sfc duct 00Z	" "
PES12	% occur elev-sfc duct 12Z	" "
PSB00	% occur sfc-base duct 00Z	" "
PSB12	% occur sfc-base duct 12Z	" "
AAG	annual average gradient for elevated-surface and surface ducts in layer	average, annual
OHEL	elev duct optm coupling hgt	median, monthly
MTEL	elev duct median thickness	median, monthly
MDEL	elev duct M-unit deficit	" "
GMEL	elev duct M-unit gradient	" "
MFEL	elev duct trapping freq	" "
MTES	elev-sfc duct thickness	" "
MDES	elev-sfc duct M-unit deficit	" "
MFES	elev-sfc duct trapping freq	" "
MTSB	sfc-base duct thickness	" "
MDSB	sfc-base duct M-unit deficit	" "
MFSB	sfc-base duct trapping freq	" "
P2EL	probability >1 elevated duct	probability
PSBEL	probability sfc & elev duct	" "
ACC00	number accepted soundings 00Z	number
ACC12	number accepted soundings 12Z	" "
NS	median surface N-units	median
SLEV	station elevation (meters)	"

All N-unit gradients are converted to M-unit gradients with the following convention:

$$GMSBD = GNSBD + 156 \quad (M / Km) \quad (100 \text{ meter gradient})$$

$$GMSTD = GNSTD + 156 \quad (M / Km) \quad (1000 \text{ meter gradient})$$

$$TAG = (AAG + 156) / 1000 \quad (M / Km)$$

Figure 6 illustrates the relationships of the above terms.

Figure 6. Variable definitions as used in elevated, surface-based and elevated-surface ducts.

The elevated-surface and the surface-based duct data is combined to produce a surface-based duct with a positive lower gradient. This is accomplished by using a weighted average of the duct thickness, M-unit deficit and the trapping frequency as described below:

elev-sfc duct $ESN = (PES00 * ACC00) + (PES12 * ACC12)$

sfc-based duct $SBN = (PSB00 * ACC00) + (PSB12 * ACC12)$

soundings with ducts $TWD = ESN + SBN$

weighted thickness $THK = (ESN * MTES + SBN * MTSB) / TWD$

weighted M deficit $DM = -(ESN * MDES + SBN * MDSB) / TWD$

weighted trap freq $T^* = (ESN * MFES + SBN * MFSB) / TWD$

The optimum coupling height for surface ducts is computed as follows, insuring that a surface-based duct is formed from the statistics.

optimum height $OHSB = THK - DM/TAG$

if $OHSB < 0$, then $OHSB = THK / 2$

A surface-based duct M-unit deficit is computed as follows

surface M deficit $SMD = OHSB * (GMSBD/1000) + DM$

If SMD is greater than zero, the weighted M deficit (DM) is recomputed such that the surface deficit is 4 M-units. Setting the surface deficit to 4 M-units is a purely subjective decision. A surface-based duct must be created

weighted M deficit $DM = -(4 + SMD - DM)$

Figure 7 illustrates the relationships of the weighted and adjusted statistical information used to construct a TESS acceptable surface-based duct.

Table 2 illustrates the computed radiosonde database for World Meteorological Organization station 4YN, Fixed Ship, North Pacific Ocean.

Figure 7. Variable definitions as used in constructed surface-based duct.

Table 2. Computed values for variables within the HEPC radiosonde database.
WMO station 4YN, fixed ship North Pacific Ocean.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
SELV	12	12	12	12	12	12	12	12	12	12	12	12	12
ACC daytime	116	115	129	117	132	118	75	107	106	95	108	106	1324
ACC nighttime	120	112	127	107	133	120	81	108	100	95	107	97	1307
NS	343	337	337	336	341	348	351	356	359	353	341	343	345
GMSTD	107	109	112	111	109	105	105	98	102	104	108	107	107
GMSBD	85	89	92	71	97	97	94	72	85	89	84	100	90
OHSB	32	26	17	41	80	24	106	86	110	92	82	43	56
THK	89	89	88	83	133	114	144	129	137	121	125	58	98
DM	4	4	5	7	11	6	14	10	13	12	10	8	9
MFSB	730	960	746	577	575	1087	673	815	962	1014	692	3483	751
PSB daytime	19	27	18	29	11	9	16	30	25	22	12	9	19
PSB nighttime	5	3	7	9	2	1	1	3	1	3	3	0	3
GMEL	118	122	119	119	116	115	111	112	117	114	121	120	117
OHEL	1286	1522	1561	1552	1522	1185	1515	1551	1572	1544	1542	1401	1498
MTEL	180	173	172	172	168	203	210	220	171	181	215	177	186
MDEL	7	7	8	8	7	8	10	10	6	5	12	7	8
MFEL	206	186	201	205	197	151	133	119	212	216	121	194	175
PEL daytime	42	37	36	46	48	60	56	51	52	47	55	40	47
PEL nighttime	56	53	61	71	66	65	64	70	71	75	67	71	66
P2EL	466	264	234	134	264	714	705	512	874	632	279	443	445
PSBEL	339	264	195	848	226	294	641	791	388	368	186	99	376

HEPC Surface Observation

The HEPC function employs the Paulus evaporation duct heights and the surface wind velocities portion of the DUCT63. By using the technique as described below, construction of the surface observation database is achieved.

- The following data (for an individual Marsden square) is read from the DUCT63 data tape:

Name	Description	data type
NHOD	number height observations, day	height, monthly
NHON	numbe. height observations, night	height, monthly
TAOD	total accepted observations, ducts	monthly
MSWV	surface wind velocity	mean, monthly
NAOW	total accepted observations, wind	monthly

b. The percent occurrence of evaporation ducts is given by

$$\text{POED (day)} = \text{NHOD} / \text{TAOD}$$

$$\text{POED (night)} = \text{NHON} / \text{TAOD}$$

c. The mean surface wind velocity is transferred to the database without processing.

d. If the total number of accepted observations is less than 10 for the evaporation duct height or the surface wind velocity, a -1. (indicating an error) is substituted for the calculated value.

Tables 3 and 4 illustrate the computed surface observation database (day and night respectively) for Marsden square 85.

Table 3. Computed values for variables within the HEPC surface observation database, Marsden square 85 (daytime).

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
00-02 meters	3.1	2.4	2.2	1.7	2.3	2.8	3.2	3.6	1.9	2.2	1.8	1.8
02-04 meters	1.8	1.8	1.8	.8	1.5	2.7	1.9	1.9	1.3	.7	1.2	1.6
04-06 meters	5.2	4.6	2.9	2.7	2.7	4.9	5.6	3.9	3.6	2.0	3.1	3.4
06-08 meters	7.6	7.6	6.3	4.7	5.9	7.6	7.6	7.2	5.7	5.4	4.3	7.0
08-10 meters	11.0	12.2	11.0	9.6	10.2	11.4	12.4	10.8	9.8	8.9	8.1	10.3
10-12 meters	14.5	15.6	14.9	12.8	17.6	16.8	19.2	15.3	13.3	12.7	12.6	13.7
12-14 meters	16.6	16.1	17.4	15.8	18.3	19.0	18.4	17.6	17.0	16.0	15.4	15.0
14-16 meters	13.7	13.4	13.8	15.1	15.8	13.6	14.7	16.6	16.4	16.3	16.1	14.5
16-18 meters	11.5	10.4	12.7	14.8	11.6	11.1	8.5	11.4	12.9	12.2	12.5	12.1
18-20 meters	7.2	6.9	7.8	10.6	7.4	5.5	4.4	5.6	7.8	10.3	10.9	8.9
20-22 meters	4.4	4.5	5.2	6.5	4.1	2.5	2.4	3.6	4.7	7.1	7.0	5.6
22-24 meters	1.9	2.5	2.3	2.9	1.7	1.2	1.1	1.6	3.1	3.0	3.8	3.4
24-26 meters	.8	1.0	1.3	.9	.6	.4	.3	.6	1.4	1.4	1.3	1.7
26-28 meters	.4	.5	.4	.5	.2	.2	.1	.1	.5	1.0	1.0	.8
28-30 meters	.2	.2	.2	.3	.2	.1	.1	.1	.3	.4	.5	.1
30-32 meters	.0	.2	.0	.2	.1	.0	.0	.0	.1	.1	.2	.1
32-34 meters	.0	.0	.0	.0	.0	.0	.0	.0	.1	.1	.0	.1
34-36 meters	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
36-38 meters	.0	.0	.0	.0	.1	.0	.0	.0	.0	.0	.0	.0
38-40 meters	.0	.0	.0	.0	.0	.0	.0	.0	.0	.1	.0	.0
> 40 meters	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
mean height	12.7	12.9	13.3	14.2	13.1	12.2	11.9	12.6	13.7	14.3	14.4	13.7
# of soundings	2278	2218	2397	2555	2480	2405	2355	2190	2074	2534	2391	2244
wind (m/sec)	6.8	6.7	6.7	7.2	6.8	6.6	6.6	6.2	6.1	6.1	6.6	7.0

Table 4. Computed values for variables within the HEPC surface observation database,
Marsden square 85 (nighttime).

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
00-02 meters	2.1	1.9	1.1	.9	1.0	1.3	2.1	2.3	1.2	1.0	.6	1.2
02-04 meters	2.8	3.5	2.6	2.5	2.5	3.2	5.0	3.4	3.3	1.7	2.2	2.2
04-06 meters	6.0	6.2	6.2	4.6	5.0	7.3	6.4	6.3	7.4	4.9	4.8	4.5
06-08 meters	12.3	11.8	10.8	9.1	11.1	12.7	14.6	11.8	9.0	10.5	8.2	8.5
08-10 meters	15.2	17.4	15.3	14.1	17.4	19.3	21.0	19.2	16.0	12.6	11.6	15.5
10-12 meters	17.2	17.0	17.5	17.7	23.0	22.1	20.8	18.5	19.6	16.8	17.5	17.2
12-14 meters	15.5	14.5	16.7	18.4	17.0	16.8	16.4	18.3	14.8	17.5	17.5	16.6
14-16 meters	13.2	12.9	13.2	14.8	11.7	10.4	7.4	11.1	12.8	15.3	15.9	13.1
16-18 meters	7.2	7.1	9.0	10.2	6.3	3.8	4.0	5.1	8.4	10.2	11.0	9.2
18-20 meters	4.9	4.3	4.6	4.9	3.4	1.9	1.4	2.5	3.8	4.6	5.8	6.6
20-22 meters	2.0	2.1	1.8	1.9	.9	.9	.6	1.0	2.4	2.8	2.4	3.3
22-24 meters	.8	.7	.6	.7	.3	.2	.3	.2	.8	1.6	1.6	1.3
24-26 meters	.4	.5	.5	.2	.2	.1	.2	.2	.1	.4	.5	.5
26-28 meters	.2	.1	.1	.2	.0	.0	.0	.1	.5	.3	.3	.2
28-30 meters	.0	.1	.1	.0	.0	.0	.0	.0	.0	.1	.1	.1
30-32 meters	.0	.0	.0	.0	.0	.0	.0	.0	.0	.1	.1	.1
32-34 meters	.0	.0	.1	.0	.0	.0	.0	.1	.0	.0	.1	.0
34-36 meters	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
36-38 meters	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
38-40 meters	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
> 40 meters	.1	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.1
mean height	11.4	11.3	11.7	12.0	11.3	10.5	10.1	10.7	11.5	12.3	12.6	12.3
# of soundings	1872	1750	1906	1970	2004	1927	1939	1789	1653	1998	1899	1770
wind (m/sec)	6.5	6.5	6.5	6.8	6.5	6.4	6.3	5.9	5.7	5.7	6.2	6.7

REFERENCES

1. Patterson, W.L., 31 December 1985. Historical Electromagnetic Propagation Condition Summary Function for the Tactical Environmental Support System, Computer Sciences Corporation Technical Report, Contract N66001-83-D-0043 Delivery Order 0103.
2. Ortenburger, L.N., 29 July 1977. Radiosonde Data Analysis II, GTE/Sylvania Incorporated, Contract MDA-904-76-C-0233.
3. Paulus, R.A., 29 June 1984. Practical Application of the IREPS Evaporation Duct Model, NOSC Technical Report 966.
4. Jeske, H., February 1971. "The State of Radar Range Prediction Over Sea," Tropospheric Radio Wave Propagation - Part II, NATO-AGARD.
5. Goroch, A.K., May 1984. Rain Rate Climatologies Over Maritime Regions, Naval Environmental Research Prediction Facility Technical Report 84-04.
6. Cook, J., Private Communication.
7. Liebe, H.J., Nov-Dec 1981. Modeling Attenuation and Phase of Radio Waves in Air at Frequencies Below 1000 GHz, Radio Science, Vol 16, No 6.
8. Falcone, V.J., 15 October 1979. Atmospheric Attenuation of Millimeter and Sub-millimeter Waves: Models and Computer Code, AFGL-TR-79-0253.

APPENDIX A

Format	Layer	Variable	Type	Statistic	Time
2A4		Station Number	Station Name and CT indicator		
14		Record sequence Number (1 or 2)			
18		Latitude (hundredths of degrees)			
18		Longitude (hundredths of degrees)			
18		Local time (hundredths of hours)			
18		Local time (hundredths of hours)			
18		Station elevation reliability			
18		Most common instrument type			
18		Percent of time used			
18		2nd most common instrument type			
18		Percent of time used			
7818		Accepted soundings			
7818		Accepted soundings with surface			
7818		Accepted soundings with signal level			
1318		Accepted soundings with 1000mb winds			
1318		Accepted soundings with 850mb winds			
1318		Average mandatory levels			
1318		Average significant levels			
3918		Pressure (millibars)			
3918		Temperature (Celsius)			
3918		Dew point (Celsius)			
3918		NS			
3918		No			
1318		del N { 50 } { N units km }			
1318		del N { 100 } { N units km }			
1318		del N { 500 } { N units km }			
1318		del N { 1000 } { N units km }			
3918		Wind direction (1000 mb)			
3918		Wind direction (850 mb)			
3918		Wind speed (1000 mb) { knots }			
3918		Wind speed (850 mb) { knots }			
1318		Number of ducts (5 years)			
1318		Number of ducts (5 years)			
18		Number of soundings with ducts			
18		Number of soundings with ducts			
18		Number of soundings with SRUR's			
18		Number of soundings with SRUR's			

Sylvania Long-A tape format Record 1

Format	Layer	Variable	Type	Statistic	Time
2A4		Station Number			
11A4		Record Sequence Number (1 or 2)			
14		CT indicator			
3918		Soundings with ducts	all	med; UCI	all
1318		Soundings with ducts	all	med; UCI	002
3918		Soundings with ducts	all	med; UCI	122
1318		Soundings with ducts	all	med; UCI	all
3918		Soundings with ducts	all	med; UCI	002
1318		Soundings with ducts	all	med; UCI	122
3918		Soundings with ducts	all	med; UCI	all
1318		Soundings with ducts	all	med; UCI	002
3918		Soundings with ducts	all	med; UCI	122
1318		Soundings with ducts	all	med; UCI	all
3918		Soundings with ducts	all	med; UCI	002
1318		Soundings with ducts	all	med; UCI	122
3918		Soundings with ducts	all	med; UCI	all
1318		Soundings with ducts	all	med; UCI	002
3918		Soundings with ducts	all	med; UCI	122
1318		Soundings with ducts	all	med; UCI	all
3918		Soundings with ducts	all	med; UCI	002
1318		Soundings with ducts	all	med; UCI	122
3918		Soundings with ducts	all	med; UCI	all
1318		Probability (≥ 2 elevated ducts)	all	med; UCI	all
3918		Probability (S and E ducts)	all	med; UCI	all
1318		Median maximum height	all	med; UCI	all
3918		Coupling factor (duct)	all	med; UCI	all
1318		Bottom height (ducts)	all	med; UCI	all
3918		Bottom height (ducts)	all	med; UCI	all
1318		Optimum coupling height (ducts)	all	med; UCI	all
3918		Optimum coupling height (ducts)	all	med; UCI	all
1318		Optimum coupling height (ducts)	all	med; UCI	all
3918		Top height (ducts)	all	med; UCI	all
1318		Top height (ducts)	all	med; UCI	all
3918		Top height (ducts)	all	med; UCI	all
1318		Thickness (ducts)	all	med; UCI	all
3918		Thickness (ducts)	all	med; UCI	all
1318		Intensity (ducts)	all	med; UCI	all
3918		Intensity (ducts)	all	med; UCI	all
1318		Intensity (ducts)	all	med; UCI	all
3918		Frequency (ducts)	all	med; UCI	all
1318		Frequency (ducts)	all	med; UCI	all
3918		Average gradient (ducts)	all	med; UCI	all
1318		Average gradient (ducts)	all	med; UCI	all
3918		Average gradient (ducts)	all	med; UCI	all

Sylvania Long-A tape format Record 2

Sylvania Long-A tape format Record 2 (continued)

Sylvania Long-A tape format Record 2 (continued)

Sylvania Lang-A tape format Record 2 (continued)

APPENDIX B

WHO number	station name and country	Land/coast	Latitude	Longitude	Marsden square
10035	SCHLESWIG, GERMANY	1	54.53	-9.55	216
10184	GRETZWALD, GERMANY	0	54.10	-13.38	215
10202	EMDEN-WOLTHUSEN, GERMANY	0	53.37	-7.22	216
10238	GERGEN/HOENE, GERMANY	0	52.82	-9.93	216
10307	RHEINE/WALDHUGEL, WEST GERMANY	0	52.27	-7.43	216
10338	HANNOVER, GERMANY	0	52.47	-9.70	216
10384	BERLIN/STEMPETHOF, GERMANY	0	52.47	-13.40	215
10393	LINDENBERG, GERMANY	0	52.22	-14.12	215
10404	COCH, WEST, GERMANY	0	51.68	-16.17	216
10410	ESSEN, GERMANY	0	51.40	-6.93	216
10486	WAHLSDORF, GERMANY	0	51.12	-13.68	215
10548	MEINIGEN, GERMANY	0	50.55	-10.37	215
10618	ILDAR/OBERSTILL, GERMANY	0	49.70	-7.33	180
10687	GRAFENMOHR, GERMANY	0	50.17	-12.52	215
10739	STUTTGART/CANNSTADT, GERMANY	0	48.83	-9.20	180
10771	GARNERSDORF, GERMANY	0	49.41	-11.90	179
10866	MUNCHEN/RTEM, GERMANY	0	48.13	-11.72	179
11035	WIEN/HOE-WARTE, AUSTRIA	0	48.25	-16.37	179
111518	PRAGA/PRZYNE, CZECHOSLOVAKIA	0	50.10	-14.30	215
111520	LIBUS, CZECHOSLOVAKIA	0	50.00	-14.45	215
111934	POPRAD/TATRY, CZECHOSLOVAKIA	0	49.07	-20.20	178
12105	KOSZALIN, POLAND	0	54.20	-16.20	215
12120	LEBA, POLAND	0	54.75	-17.53	215
122330	POZNAŃ, POLAND	0	52.42	-16.83	215
122374	LEGIONOWO, POLAND	0	52.40	-20.97	214
12425	WROCŁAW I, POLAND	0	51.13	-16.98	215
12843	BUDAPEST-LORINC, HUNGARY	0	47.43	-19.18	179
12982	SZEGED, HUNGARY	0	46.25	-20.10	178
13130	ZAGREB/MAKSIMIR, YUGOSLAVIA	0	45.82	-16.03	179
13275	BELGRADE/ZELENO GORO, YUGOSLAVIA	0	44.80	-20.50	178
15120	BUJUJ, ROMANIA	0	46.78	-23.57	178
15420	BUCURESTI/BANEASA, ROMANIA	0	44.50	-26.13	178
15480	CONSTANTA C, ROMANIA	0	44.22	-28.63	178
15614	SOFIA (OBSERV.), BULGARIA	0	42.82	-23.38	178
15730	KURDISTANI, BULGARIA	0	41.63	-25.40	178
16044	UDINE/CAMPOROTondo, ITALY	0	46.03	-13.18	179
16080	MILANO/LINATE, ITALY	0	45.43	-7.28	180
16242	ROMA/FLUMICINO, ITALY	0	41.80	-12.23	179
16320	BRINDISI, ITALY	0	40.65	-17.95	143
16420	MESSINA, ITALY	0	38.20	-15.60	143
16560	CAGLIARI/ELMAS, ITALY	0	39.25	-9.05	144
16596	OPENDI, MALTA	0	35.83	-14.43	143
16622	THESSALONIKI/MIRRA, GREECE	0	40.52	-22.97	178
16716	ATHINAI/HELIANTHON, GREECE	0	37.90	-23.73	142
16754	HERAKLION/CRETE, GREECE	0	35.33	-25.18	142
17030	SAMSUN, TURKEY	0	41.28	-36.33	177
17062	ISTANBUL/COZLEFE, TURKEY	0	40.97	-29.08	141
17130	ANKARA/CENTRAL, TURKEY	0	39.95	-32.88	141

WMO number	station name and country	Land/coast	Latitude	Longitude	Marsden square
17220	IZMIR, TURKEY	100	38.43	-27.17	142
17240	ISPARTA, TURKEY	0	37.75	-30.55	141
17280	DIVARBAKIR, TURKEY	0	37.88	-40.20	140
17603	EPISKOPI, CYPRUS	0	34.68	-32.82	141
17606	NICOSIA, CYPRUS	0	35.20	-33.30	141
20046	OSTROV HEJSA, U.S.S.R.	0	80.62	-58.05	931
20069	OSTROV VIZE, U.S.S.R.	0	79.50	-76.98	281
20107	BARENCHBURG, U.S.S.R.	0	78.07	-14.22	281
20274	OSTROV UEDINENIA, U.S.S.R.	0	77.50	-82.23	280
20292	MYS CELJUSKIN, U.S.S.R.	0	77.72	-104.28	278
20353	MYS ZELANJA, U.S.S.R.	0	76.95	-68.58	282
20667	OSTROV BELTY, U.S.S.R.	0	73.33	-70.03	281
20674	OSTROV DDSON, U.S.S.R.	0	73.50	-80.23	280
20744	MALEVY KARPAKULY, U.S.S.R.	0	72.38	-52.73	283
20891	HATANGA, U.S.S.R.	0	71.98	-102.47	278
21358	OSTROV ZOLOVA, U.S.S.R.	0	71.50	-152.83	273
21432	OSTROV KOTTEL'NYJ, U.S.S.R.	0	76.00	-137.90	275
21524	OSTROV FREDRAZENTJA, U.S.S.R.	0	74.67	-112.93	277
21647	MYS SALA'DROVA, U.S.S.R.	0	73.18	-143.93	274
21824	BUTIA TIKSI, U.S.S.R.	0	71.58	-128.92	276
21946	OKURAEAH, U.S.S.R.	0	70.62	-147.88	272
21965	OSTROV CETYREHSTOLBOVOJ, U.S.S.R.	0	70.63	-162.40	270
21982	OSTROV VRANGEL'YAJA, U.S.S.R.	0	70.97	-178.53	249
22113	MURMANSK, U.S.S.R.	0	68.97	-13.05	249
22217	KANDALAKSHA, U.S.S.R.	0	67.13	-32.43	249
22271	SOUNA, U.S.S.R.	0	67.88	-44.13	248
22522	KEM'-PORT, U.S.S.R.	0	64.98	-34.78	249
22550	ARKHANGEL'SK, U.S.S.R.	0	64.58	-40.50	248
22802	SORTOVALA, U.S.S.R.	0	61.72	-30.72	249
22820	PETROZAVODSK, U.S.S.R.	0	61.82	-34.27	249
22845	KARCOLPOL', U.S.S.R.	0	61.50	-38.93	246
23022	AMDERMA, U.S.S.R.	0	69.77	-61.68	244
23077	NORILSK, U.S.S.R.	0	69.02	-86.12	244
23146	MYS KAMENNYJ, U.S.S.R.	0	69.47	-73.60	245
23205	NAR'JAN-TAR, U.S.S.R.	0	67.65	-53.02	247
23274	IGARKA, U.S.S.R.	0	67.47	-86.57	244
23330	SALE-HARD, U.S.S.R.	0	66.53	-66.53	246
23418	PEGORAY, U.S.S.R.	0	65.12	-57.10	247
23472	TURJANSK, U.S.S.R.	0	65.78	-87.95	244
23552	TARO-SALE, U.S.S.R.	0	64.92	-77.82	245
23804	SYKTYVKAR, U.S.S.R.	0	61.67	-50.85	247
23884	PODKAMENNAJA TUNGUSKA, U.S.S.R.	0	61.60	-90.00	243
23921	IVDEL', U.S.S.R.	0	60.68	-60.43	246
23933	HANTY-MANSIJSK, U.S.S.R.	0	60.97	-69.07	245
23955	ALEKSANDROVSKOE, U.S.S.R.	0	60.43	-77.87	245
24125	OLENEK, U.S.S.R.	0	68.50	-112.43	241
24266	VERHOJANSK, U.S.S.R.	0	67.55	-133.38	239
24343	ZIGANSK, U.S.S.R.	0	66.77	-123.40	240
24507	TURA, U.S.S.R.	0	64.17	-100.07	242
24641	VILIJUJSK, U.S.S.R.	0	63.77	-121.62	238
24688	OMAKON, U.S.S.R.	0	63.27	-143.15	238

WHO number	Station name and country	Land/coast	Latitude	Longitude	Marsden square
24726	MIRNY, U.S.S.R.	0	62.55	-114.00	241
24790	SUSUMAN, U.S.S.R.	0	62.77	-148.17	238
24817	ERBOGACEN, U.S.S.R.	0	61.27	-108.02	242
24908	VANDAVARA, U.S.S.R.	0	60.33	-102.27	242
24944	OLEMINSK, U.S.S.R.	0	60.40	-120.42	240
24959	JAKUTSK, U.S.S.R.	0	62.08	-129.75	240
25042	AYON, U.S.S.R.	0	69.93	-167.97	236
25123	CHERSKIJ, U.S.S.R.	0	68.80	-161.28	234
25173	MEIS SMIDTA, U.S.S.R.	0	68.92	-179.48	233
25399	MYS UZLEN, U.S.S.R.	0	66.17	-162.83	233
25400	ZIRJANKA, U.S.S.R.	0	65.73	-150.90	233
25428	SHCHERBAKOVO, U.S.S.R.	0	65.22	-160.57	235
25551	MARKOVO, U.S.S.R.	0	64.68	-170.42	234
25563	ANDYR, U.S.S.R.	0	64.78	-177.57	235
25594	BURITA, BROVTDENJA, U.S.S.R.	0	63.43	-173.23	234
25677	BURITA, UGOLNAYA, U.S.S.R.	0	63.05	-152.42	235
25703	SEMINCAN, U.S.S.R.	0	62.92	-160.57	236
25822	EVENSK, U.S.S.R.	0	61.85	-150.78	201
25913	NAGAEVO, U.S.S.R.	0	59.58	-166.00	236
25954	KOF, U.S.S.R.	0	59.35	-24.80	214
26038	TAUILLIN, U.S.S.R.	0	59.42	-30.30	213
26063	LENINGRAD (TOWN), U.S.S.R.	0	59.97	-28.35	214
26258	PSKOV, U.S.S.R.	0	57.83	-34.05	214
26298	BOLGOGIE, U.S.S.R.	0	57.90	-21.02	214
26406	LIEPAJA, U.S.S.R.	0	56.95	-24.07	213
26422	VELIUKIE LUKI, U.S.S.R.	0	56.38	-30.60	214
26629	KALINJAS, U.S.S.R.	0	54.88	-23.88	214
26702	KALINTINGRAD, U.S.S.R.	0	54.70	-20.62	214
26781	SPOLENSK, U.S.S.R.	0	54.75	-32.07	213
26850	MINSK, U.S.S.R.	0	53.87	-27.53	214
27037	VOLOGDA, U.S.S.R.	0	53.28	-39.87	213
27196	KIROV, U.S.S.R.	0	59.65	-49.62	214
27553	GORKIJ, U.S.S.R.	0	56.22	-43.82	212
27595	KAZAN, U.S.S.R.	0	55.78	-49.18	212
27612	MOSKVA, U.S.S.R.	0	55.75	-37.57	213
27707	SHIRNITI, U.S.S.R.	0	54.12	-35.33	213
27731	RUTZAN, U.S.S.R.	0	54.62	-39.72	213
27794	TAMBOV, U.S.S.R.	0	52.13	-41.47	212
27962	PERZA, U.S.S.R.	0	58.02	-45.02	211
28225	PERM, U.S.S.R.	0	58.15	-56.30	210
28275	TOBOLSK, U.S.S.R.	0	56.80	-68.18	210
28440	SVERDLOVSK, U.S.S.R.	0	54.47	-60.63	209
28661	KURGAN, U.S.S.R.	0	54.93	-73.40	211
28698	QESK, U.S.S.R.	0	54.75	-56.00	211
28722	KUDYSEV (BEZENOK), U.S.S.R.	0	53.25	-50.45	211
28900	KUSTANAJ, U.S.S.R.	0	53.22	-63.62	210
28952	KOPASEV, U.S.S.R.	0	58.30	-82.90	208
29231	DNISEJSK, U.S.S.R.	0	58.45	-92.15	207
29263	BOGUCANY, U.S.S.R.	0	58.42	-97.40	207
29282		0			

WMO number	Station name and country	Land/coast	Latitude	Longitude	Marsden square
29574	KRASNOJARSK, U.S.S.R.	0	56.00	-92.88	207
29612	BARABINSK, U.S.S.R.	0	55.37	-78.40	209
29634	NOVOSIBIRSK, U.S.S.R.	0	55.03	-82.90	208
29698	NTZNE-JUDINSK, U.S.S.R.	0	54.88	-99.03	207
29838	BARNaul, U.S.S.R.	0	53.33	-83.70	208
29865	ABAKAN, U.S.S.R.	0	53.72	-91.40	207
30054	VITIM, U.S.S.R.	0	59.45	-112.58	205
30230	KIRENSK, U.S.S.R.	0	57.77	-108.12	206
30309	ERATSK, U.S.S.R.	0	56.07	-101.83	205
30372	CARA, U.S.S.R.	0	56.92	-118.37	206
30521	ZIGALOVO, U.S.S.R.	0	54.80	-105.17	205
30554	TROICKIJ, PRIISK, U.S.S.R.	0	54.47	-113.58	206
30635	UST-BARGUZIN, U.S.S.R.	0	53.43	-108.98	205
30636	BARGUZIN, U.S.S.R.	0	53.73	-119.00	206
30673	MOGOKA, U.S.S.R.	0	54.00	-123.97	204
30692	SKOVORODINO, U.S.S.R.	0	52.27	-104.35	206
30710	IRKUTSK, U.S.S.R.	0	52.02	-113.33	205
30758	CITTA, U.S.S.R.	0	50.37	-108.75	205
30935	KRASNAYA CROJ, U.S.S.R.	0	50.38	-125.37	204
30965	BORZJA, U.S.S.R.	0	58.62	-116.52	204
31004	ALDAN, U.S.S.R.	0	59.37	-143.20	202
31088	CHOTISK, U.S.S.R.	0	56.45	-138.15	203
31168	AJAN, U.S.S.R.	0	53.07	-127.23	204
31300	ZEJA, U.S.S.R.	0	53.15	-132.93	203
31329	EKIM'CAN, U.S.S.R.	0	50.27	-140.70	202
31369	NIKOLAEVSK-NA-AMURE, U.S.S.R.	0	50.07	-127.50	204
31510	BLAGOEVSCINSK, U.S.S.R.	0	47.73	-132.13	203
31538	SUTUR, U.S.S.R.	0	48.52	-137.08	203
31561	KOMSOMOL'SK-NA-AMUR', U.S.S.R.	0	49.00	-130.97	203
31707	EKATERINNO-NTIKOLSKOE, U.S.S.R.	0	45.87	-135.17	167
31735	HARBARDINSK, U.S.S.R.	0	48.90	-140.27	166
31770	SOVETSKAYA GULJAN, U.S.S.R.	0	45.03	-133.73	167
31873	IMAN, U.S.S.R.	0	43.12	-136.67	167
31909	TEREJ, U.S.S.R.	0	49.22	-131.90	167
31960	VIADEVOSTOK, U.S.S.R.	0	49.20	-143.10	202
32061	ALEKSANDROVSK SAHALINSKI, U.S.S.R.	0	48.90	-144.60	166
32098	FORONAJSK, U.S.S.R.	0	44.02	-142.73	166
32099	N. TERPENTINYA, U.S.S.R.	0	46.20	-145.82	165
32150	JUZNO-SAHALINSK, U.S.S.R.	0	50.00	-155.38	201
32165	URUP, U.S.S.R.	0	56.32	-160.83	200
32186	MIS VASILEVA, U.S.S.R.	0	54.30	-155.97	201
32217	KLIJUCHI, U.S.S.R.	0	52.97	-158.75	200
32389	SOBOLEVO, U.S.S.R.	0	52.12	-165.98	214
32477	PETROPAVLOVSK-KAMCATSKIJ, U.S.S.R.	0	52.00	-23.68	214
32540	OSTROV BERINGA, U.S.S.R.	0	52.09	-31.00	213
32618	BREST, U.S.S.R.	0	52.45	-27.05	214
33008	MOZIR', U.S.S.R.	0	50.17	-30.45	213
33036	COMEL, U.S.S.R.	0	50.40		
33341	SEPETUVKA, U.S.S.R.	0			
33345	KIEV, U.S.S.R.	0			

WMO number	Station name and country	Land/coast	Latitude	Longitude	Marsden square
33393	LYVON, U.S.S.R.	0	49.82	-23.95	178
33631	UGGOROD, U.S.S.R.	0	48.63	-22.27	178
33658	CERNOVICH, U.S.S.R.	0	48.27	-25.97	178
33791	KRIVYI ROG, U.S.S.R.	0	47.93	-33.33	178
33815	KISINEV, U.S.S.R.	0	47.02	-28.87	178
33837	ODESSA, U.S.S.R.	0	46.48	-30.63	177
33946	SIMFEROPOL, U.S.S.R.	0	45.02	-33.98	177
34009	KURSK, U.S.S.R.	0	51.65	-36.18	213
34122	VORONEZ, U.S.S.R.	0	51.70	-39.17	213
34172	SARATOV, U.S.S.R.	0	51.57	-46.03	212
34247	KALAC, U.S.S.R.	0	50.42	-41.05	212
34300	YAR'KOV, U.S.S.R.	0	49.93	-36.28	177
34560	ZOLGOGRAD, U.S.S.R.	0	48.68	-44.35	176
34731	ROSTOV-NA-DOU, U.S.S.R.	0	47.25	-43.82	177
34858	DIVNOE, U.S.S.R.	0	45.92	-43.35	176
34880	ASTRAHAN, U.S.S.R.	0	46.27	-48.03	176
35008	URALSK, U.S.S.R.	0	51.25	-51.40	211
35121	ORENBURG, U.S.S.R.	0	51.75	-55.10	211
35229	AKTJUBINSK, U.S.S.R.	0	50.28	-57.15	211
35361	AMANGEL'DY, U.S.S.R.	0	50.13	-65.23	210
35394	KARAGANDA, U.S.S.R.	0	49.80	-73.13	173
35671	DZEZKAZGAN, U.S.S.R.	0	47.80	-67.72	174
35700	GUREV, U.S.S.R.	0	47.02	-51.85	211
35746	ARALSKOE MORE, U.S.S.R.	0	46.78	-61.67	174
35796	BALJAS, U.S.S.R.	0	46.90	-75.00	173
36003	PAVLODAR, U.S.S.R.	0	52.28	-76.95	209
36096	KYZYL, U.S.S.R.	0	51.67	-94.38	207
36177	SEMIPALATINSK, U.S.S.R.	0	50.35	-80.25	208
36259	KOSH AGACHI, U.S.S.R.	0	50.00	-88.83	208
36859	PANTIKOV, U.S.S.R.	0	44.17	-80.07	172
36870	ALMA-ATA, U.S.S.R.	0	43.23	-76.93	173
36974	NARYN, U.S.S.R.	0	41.43	-76.00	173
37018	TURAPSE, U.S.S.R.	0	44.10	-39.07	177
37054	MINERALNYE VODY, U.S.S.R.	0	44.22	-43.10	176
37260	BABUSERI (SUHDM), U.S.S.R.	0	42.87	-41.13	176
37472	MAHACKALA, U.S.S.R.	0	43.02	-47.43	176
37484	BATUMI, U.S.S.R.	0	41.65	-41.63	176
37549	TBILISTI, U.S.S.R.	0	41.68	-44.95	176
37789	EREVAN, U.S.S.R.	0	40.13	-44.47	176
37860	BLIAN/BAKU, U.S.S.R.	0	40.65	-49.98	176
37985	LENKORAN, U.S.S.R.	0	38.73	-48.83	140
38062	KYZL-ORDA, ZAGORDAJA, U.S.S.R.	0	44.77	-65.53	174
38341	DEZMEUL, U.S.S.R.	0	42.85	-71.38	173
38353	ERUNZE, U.S.S.R.	0	42.83	-74.58	173
38392	TASAUZ, U.S.S.R.	0	41.83	-59.98	175
38413	TAMDY, U.S.S.R.	0	41.73	-64.62	174
38457	TASKEV, U.S.S.R.	0	41.27	-69.27	174
38507	KRASNODORSK, U.S.S.R.	0	40.03	-52.98	175
38613	DAHAL-ABAD, U.S.S.R.	0	40.92	-72.95	173
38687	CARDZCU, U.S.S.R.	0	39.08	-63.60	138
38750	GASAN-KULI, U.S.S.R.	0	37.47	-53.97	139

WMO number	Station name and country	Land/coast	Latitude	Longitude	Marsden square
38836	DISANBE, U.S.S.R.	0	38.58	-68.78	138
38860	ASHABAD, U.S.S.R.	0	37.97	-58.33	139
38927	TERMEZ, U.S.S.R.	0	37.23	-67.32	138
38954	HOROG, U.S.S.R.	0	35.95	-62.50	138
38982	TAKHTA-BAZAR, U.S.S.R.	0	36.12	-37.22	141
40007	AL-FOU, SYRIA	0	33.82	-35.48	141
40100	BEYROUTH (AEROPORT), LEBANON	0	32.00	-34.82	141
40179	DET-LACAH, ISRAEL	0	32.37	-36.27	141
40265	MARFAQ, JORDAN	0	29.22	-47.98	104
40372	KUWAIT, INTERNATIONAL AIRPORT, KUWAIT	0	26.30	-50.60	103
40427	Bahrain/Muharraq, PERSIAN GULF	0	24.70	-46.73	104
40438	RIYADH, SAUDI ARABIA	0	21.50	-39.20	105
40477	JEDDAH, SAUDI ARABIA	0	20.67	-58.90	103
40564	MASTRAH, OTHER TERRITORIES IN ARABIA	0	23.38	-45.05	140
40597	ADEN/RIBAT-AS-SAR, ARABIA-RED SEA	0	26.30	-44.20	140
40608	MOSUL, IRAQ	0	33.23	-46.25	140
40650	BAKHDAH, IRAQ	0	30.57	-47.78	140
40689	PAISRAH, IRAQ	0	38.13	-59.63	139
40706	TAHRIZ, IRAN	0	36.27	-51.32	139
40715	MASHHAD, IRAN	0	35.68	-51.67	139
40754	TEHRAN/MEHRABAD, IRAN	0	32.62	-56.97	139
40800	ESFAHAN, IRAN	0	30.25	-52.53	139
40841	KEHRAN, IRAN	0	29.60	-69.22	139
40848	SHIRAZ, IRAN	0	34.55	-73.17	139
40948	KABUL AIRPORT, AFGHANISTAN	0	34.68	-71.58	138
41350	CAN, MALDIVE ISLANDS, INDIAN OCEAN	0	34.02	-67.13	102
41530	PESSAWAR, PAKISTAN	0	24.90	-90.40	137
41780	KARACHI, PAKISTAN	0	23.80	-74.08	137
41917	DACCA/TEJGAON, PAKISTAN	0	28.58	-77.20	101
42027	SRINAGAR, INDIA	0	26.30	-73.02	101
42182	NEW DELHI/SAFdarJung, INDIA	0	26.75	-80.83	100
42339	JODHPUR, INDIA	0	26.10	-91.58	101
42369	LICKNOW/AMRUSI, INDIA	0	23.07	-88.45	100
42410	GAUDATI, INDIA	0	22.65	-79.05	101
42647	AMMEDABAD, INDIA	0	21.10	-85.83	100
42809	CALCUTTA/GOA DUM, INDIA	0	19.25	-72.85	66
42867	NAGPUR/SoneGAN, INDIA	0	17.45	-78.47	64
42971	BHUBANESWAR, INDIA	0	17.72	-83.27	64
43003	BOMBAY/SANTA CRUZ AERODROME, INDIA	0	15.48	-73.82	64
43128	HYDERABAD/BETGAMPUT, INDIA	0	13.00	-80.18	65
43149	VISHAKHAPATNAM, INDIA	0	12.97	-77.58	63
43192	COA/PANTJAM, INDIA	0	11.67	-92.72	29
43229	MADRAS/MINAMBAKAM, INDIA	0	11.93	-76.23	29
43295	BANGALORE, INDIA	0	8.30	-73.00	29
43333	PORT BLAIR, INDIA	0	8.48	-76.95	29
43353	COCHIN/WILLINGDON, INDIA	0	6.90	-79.87	170
43369	MINICOY, INDIA	0	47.93	-106.98	169
43371	TRIVANDRUM, INDIA	0	44.90	-110.12	
43466	COLOMBO, CEYLON	0			
44292	ULAN-BATOR, MONGOLIA	0			
44354	SALSHAND, MONGOLIA	0			

WMO number	Station name and country	Land/coast	Latitude	Longitude	Marsden square
44373	DALANZADGAD, MONGOLIA	0	43.58	-104.42	171
45004	KINGS PARK, HONG KONG	22.32	-114.17	97	
46692	TAIPEI, CHINA (TAIWAN)	25.03	-121.52	96	
46697	TAOTUAN, CHINA (TAIWAN)	25.05	-121.22	97	
46734	MAKUNG, CHINA (TAIWAN)	23.52	-119.57	97	
46747	TUNG KONG, CHINA (TAIWAN)	22.47	-120.43	96	
46810	PRATAS IS., CHINA (TAIWAN)	20.67	-116.72	97	
47058	PYONG YANG, KOREA	39.02	-125.82	132	
47122	OGAN AB, KOREA	37.10	-127.03	132	
47138	POHANG, KOREA	36.03	-129.38	132	
47187	MOSUL PDO AB, KOREA	33.20	-126.22	132	
47401	WAKKANAI, JAPAN	45.42	-141.68	166	
47412	SAPPORO, JAPAN	43.05	-141.33	166	
47420	NEMURU, JAPAN	43.33	-145.58	166	
47580	MISAWA AB, JAPAN	40.68	-141.38	166	
47582	AKITA, JAPAN	39.72	-140.10	130	
47590	SENDAI, JAPAN	38.27	-140.90	130	
47600	WATIMA, JAPAN	37.38	-136.90	131	
47646	TATENO, JAPAN	36.05	-140.13	130	
47678	HACHIJOGUTMA, JAPAN	36.12	-139.78	131	
47681	HAMAMATSU AB, JAPAN	34.73	-137.67	131	
47744	YONAGO, JAPAN	35.43	-133.35	131	
47778	SHIONOMI SAKI, JAPAN	33.45	-135.77	131	
47807	FUKUOKA, JAPAN	33.58	-130.38	131	
47827	KAGOSHIMA, JAPAN	31.63	-130.58	131	
47881	TOKUSHIMA AB, JAPAN	34.13	-134.60	131	
47909	NAZE, JAPAN	28.38	-129.55	131	
47918	ISHE GAKIJIMA, JAPAN	24.32	-124.17	96	
47931	KADENA AB, JAPAN	26.40	-127.80	96	
47936	NAHA/KAGAMIZU, JAPAN	26.20	-127.67	96	
47945	MINAMIDAITOJIMA, JAPAN	25.83	-131.23	95	
47971	CHI CHI JIMA, JAPAN	27.08	-142.18	94	
47991	MINAMATORISHIMA, JAPAN	24.30	-153.97	93	
48327	CHIANG MAI, THAILAND	18.78	-98.98	63	
48354	UDORN THANI, THAILAND	17.37	-102.80	62	
48407	UBON RATCHATHANI (U), THAILAND	15.25	-104.87	62	
48455	BANGKOK, THAILAND	13.73	-100.50	62	
48568	SONGKHLA, MALAYSIA	7.20	-100.60	26	
48601	PENANG/BAVAN LEPAS	5.30	-100.27	26	
48615	KOTA BHARU/PENCIKAN, MALAYSIA	6.17	-102.28	26	
48647	KUALA LUMPUR/SUBANG, MALAYSIA	3.12	-101.55	26	
48657	KUANTAN/BESERUH, MALAYSIA	3.78	-103.22	26	
48694	SINGAPORE AIRPORT, SINGAPORE	1.37	-103.92	22	
48849	DONG HA, VIET NAM	16.80	-107.10	62	
48855	DA-NANG/TOURANE (SD), CENTRAL VIET NAM	16.03	-108.18	62	
48896	BITEN-HOP, CENTRAL VIET NAM	11.00	-106.80	62	
48900	SAIGON/TANSONNHUT (VS), SOUTH VIET NAM	10.82	-119.75	169	
50527	HULUN/HAILAR, CHINA	49.22	-125.22	168	
50557	NAUKTANG, CHINA	49.17	-128.90	168	
50774	YICHUN, CHINA	47.72	-126.62	168	
50953	HARBIN, CHINA	45.68	-126.62	168	

WMO number	station name and country	Land/coast	Latitude	Longitude	Marsden square
51076	ALFETAI, CHINA	0	47.73	-88.08	172
51133	T'A-CH'ENG, CHINA	0	46.73	-83.00	172
51243	ANGERLA, CHINA	0	45.60	-84.85	172
51238	PEI TA YSHAN, CHINA	0	45.37	-90.53	171
51431	NING, CHINA	0	43.95	-81.33	172
51463	WUJU MOH, CHINA	0	43.90	-87.47	172
51644	KUO CHE, CHINA	0	41.72	-82.95	172
51656	KU-EH-LC, CHINA	0	41.75	-86.13	172
51709	SU ID/SHU LEH, CHINA	0	39.47	-75.98	137
51777	NOCHIANG, CHINA (MAINLAND)	0	39.03	-88.73	136
51828	HOITIEN, CHINA	0	37.12	-79.93	137
51866	HANG-YAI-CHEN, CHINA	0	38.37	-90.15	135
52203	HAMI, CHINA	0	42.82	-92.52	171
52267	SOH KUO NOR, CHINA	0	41.98	-101.07	170
52323	YENTAJIE, CHINA	0	41.63	-96.88	171
52391	PANG-TING-TO-JO-KAI, CHINA	0	41.70	-104.00	170
52418	TUNHWANG, CHINA	0	40.13	-94.78	171
52495	PAVAN NOB, CHINA	0	40.75	-104.50	170
52533	CHUCHUAN, CHINA	0	39.77	-98.52	135
52602	ANGER TOLOGOI, CHINA	0	38.93	-93.38	135
52652	CHANG YEN, CHINA	0	38.72	-100.58	134
52681	MUDNICHIN, CHINA	0	36.20	-94.10	135
52818	KARMU, CHINA	0	36.33	-98.63	135
52836	CHABAHAMUSU, CHINA	0	36.75	-101.60	134
52866	SIDING, CHINA	0	36.05	-103.88	134
52889	LANCHOW, CHINA	0	43.65	-112.00	169
53068	ERHILIEN, CHINA	0	41.67	-108.80	170
53336	HAILIUT, CHINA	0	40.82	-111.68	169
53463	HUERHOT, CHINA	0	40.77	-107.40	134
53513	TINGKOW, CHINA	0	39.83	-109.98	134
53543	TUNG SHENG, CHINA	0	38.48	-106.22	134
53614	YINCHUAN, CHINA	0	37.78	-112.55	133
53772	TAYMIAN, CHINA	0	37.07	-114.50	134
53798	NEI CHIU, CHINA	0	36.60	-109.50	134
53845	YEDAN, CHINA	0	35.55	-106.67	169
53915	PINGLIANG, CHINA	0	43.95	-116.07	168
54102	HSILINHOT, CHINA	0	43.60	-122.27	168
54135	TUNGLLAO, CHINA	0	43.90	-125.22	168
54161	CHIANGCHUN, CHINA	0	42.27	-118.97	169
54218	CHUFENG, CHINA	0	42.88	-129.47	168
54292	YENCH'U, CHINA	0	41.13	-121.12	168
54337	CHINCHOW, CHINA	0	41.82	-123.55	168
54342	SHENYANG, CHINA	0	41.72	-126.92	168
54374	LUDCHIANG, CHINA	0	40.78	-114.88	168
54401	ZHANGJIAKOU, CHINA	0	40.05	-124.33	133
54497	ANTUNG, CHINA	0	39.80	-116.47	132
54511	PEKING, CHINA	0	38.98	-121.63	132
54662	TAIJUEN, CHINA	0	36.68	-120.33	132
54823	TSINGTAO, CHINA	0	36.07	-92.05	135
55299	HEHO, CHINA	0	31.48		

IMO number	station name and country	Land/coast	Latitude	Longitude	Marsden square
55591	LASA, CHINA	0	29.70	-91.13	99
56004	TO TU HO YEN, CHINA	0	33.95	-92.62	135
56029	YUSHU (P), CHINA	0	33.10	-96.75	135
56046	CHINAI, CHINA	0	33.80	-99.80	134
56080	HA TUNG, CHINA	0	34.92	-103.07	134
56096	WUJUOU, CHINA	0	33.38	-104.68	134
56137	CHANGTU, CHINA	0	31.18	-96.98	135
56146	KANTZE, CHINA	0	31.63	-99.98	134
56294	CHENGKU, CHINA	0	30.67	-104.02	134
56444	DEICHIN, CHINA	0	28.65	-104.53	135
56492	I PIN YEH PIN, CHINA	0	28.82	-102.30	98
56571	HSUKTANG, CHINA	0	27.88	-100.43	98
56651	LICHTANG, CHINA	0	26.87	-104.28	99
56691	WEI NONG, CHINA	0	25.12	-98.48	99
56739	TENG CHUNG, CHINA	0	25.02	-102.68	99
56778	KUNMING, CHINA	0	22.60	-101.40	99
56964	SZEKOA, CHINA	0	22.50	-103.95	99
56989	HOKTOW, CHINA	0	34.30	-108.93	134
57036	SIAN, CHINA	0	34.72	-113.65	133
57083	CHENG CHOW, CHINA	0	33.07	-107.03	134
57127	HANCHUNG, CHINA	0	33.03	-112.58	133
57178	NANYANG, CHINA	0	32.72	-109.03	134
57245	ANKANG, CHINA	0	32.97	-114.05	133
57290	HSIN YANG, CHINA	0	31.27	-107.47	134
57328	DAHSIEN, CHINA	0	30.27	-109.37	134
57447	HSIETHH, CHINA	0	30.70	-111.08	133
57461	YEHCTANG, CHINA	0	30.63	-114.07	134
57494	HANKOW, CHINA	0	29.52	-106.48	133
57515	SAPINDA, CHINA	0	28.20	-113.07	134
57679	CHANGSHA, CHINA	0	27.45	-109.63	133
57745	CHUHTIANG, CHINA	0	26.58	-106.72	133
57816	KWEIYANG, CHINA	0	25.33	-110.30	97
57957	KWEILIN, CHINA	0	25.75	-112.98	97
57972	CHENGKETEN, CHINA	0	25.83	-114.83	97
57993	KANCHOW, CHINA	0	24.28	-117.30	98
58027	HSUCHOW, CHINA	0	23.77	-120.25	97
58150	NAN-YANG-AN/YEN-CH	CHINA	32.93	-115.83	132
58203	FOU YANG/FUMANG	CHINA	32.00	-118.80	133
58238	YINGCHOW, CHINA	CHINA	31.17	-121.43	132
58367	SHANGHAI, CHINA	CHINA	30.52	-117.03	133
58424	ANCHING, CHINA	CHINA	30.23	-120.17	132
58457	HANGCHOW, CHINA	CHINA	28.67	-115.97	97
58506	NANCHANG, CHINA	CHINA	28.97	-118.87	97
58633	CHUNCHOW, CHINA	CHINA	28.45	-121.88	96
58666	TA CHEN TAO, CHINA	CHINA	27.33	-117.47	97
58725	SHAO WU, CHINA	CHINA	26.08	-119.28	98
58847	FUCHOW, CHINA	CHINA	24.70	-108.05	97
59023	HECHI, CHINA	CHINA	24.37	-114.48	97
59096	LIEU PING, CHINA	CHINA	24.45	-118.97	98
59134	SHAMEN, CHINA	CHINA	23.92	-105.53	98
59211	FOSEH, CHINA	CHINA			

IMO number	Station name and country	Land/coast	Latitude	Longitude	Marsden square
59265	WUCHOW, CHINA	0	23.48	-111.30	97
59287	KUANGCHOW, CHINA	0	23.13	-113.32	97
59316	SHANTOU, CHINA	0	23.40	-116.68	97
59431	YANNING, CHINA	0	22.82	-108.35	98
59553	TUNG KONG, CHINA	0	24.15	-120.68	96
59663	YANGCHIAN, CHINA	0	21.87	-111.97	97
59758	HAIKOW, CHINA	0	20.03	-110.35	97
59981	HSI SHA, CHOU/ PARACEL ISLAND, CHINA	0	16.83	-112.33	61
60020	SANTA CRUZ DE TENERITE, CANARY ISLANDS	0	28.47	-16.25	74
60119	KENITRA II (EX. FORD-LWALTEY), MOROCCO	0	34.30	6.60	109
60155	CASABLANCA, MOROCCO	0	33.57	7.67	109
60250	AGADIR/DIEZ GANE, MOROCCO	0	30.38	9.57	109
60390	ALGER/DAR EL BEIDA, ALGERIA	0	36.72	-3.25	144
60571	EDDCHAR, ALGERIA	0	31.63	-5.25	109
60580	OUARGLA, ALGERIA	0	31.90	-5.40	144
60630	IN SALAH, ALGERIA	0	27.20	-2.47	108
60680	TAMANRASSET, ALGERIA	0	22.78	-5.52	108
60715	TUNIS, CARTHAGE, TUNISIA	0	36.83	-10.23	143
60760	TOZEUR, TUNISIA	0	33.94	-8.17	72
61052	NAMEY-AERO, NIGER	0	13.48	-2.17	37
61223	TOMBOLIOTOU, MALI	0	16.72	-3.00	144
61290	SAMAKO, MALI	0	12.63	8.03	37
61415	PORTE-ETIENNE, MAURITANIA	0	20.93	17.03	38
61641	DAKARY OFF, SENEGAL	0	14.73	17.50	38
61902	WIDE AWAKE FLD-ASCENSION IS., OCEAN ISLANDS	0	7.97	14.40	301
61967	DieGO GARCIA, OCEAN ISLANDS	0	7.35	-72.48	328
61995	VACAS (MAURITIUS), OCEAN ISLANDS	0	-20.30	-57.59	402
61996	ILLE NOUVELLE-AMSTERDAM, OCEAN ISLANDS	0	-37.80	-77.53	436
61998	PORT-AUX-FRANCAIS (ILES MERQUELEN), OCEAN IS.	0	-49.33	-70.22	472
62010	TDRI, LIBYA	0	32.68	-13.17	143
62011	WHEELIS FIELD, LIBYA	0	32.90	-13.30	142
62053	ENGHAZI/BENTINA, LIBYA	0	32.08	-20.27	142
62062	TOBRUK, LIBYA	0	32.10	-24.00	142
62306	MERSA MATLUH, UNITED ARAB REPUBLIC (EGYPT)	0	31.32	-27.22	105
62378	HELWAN, UNITED ARAB REPUBLIC (EGYPT)	0	29.87	-31.33	105
62414	ASWAN, UNITED ARAB REPUBLIC (EGYPT)	0	23.97	-32.82	105
62641	PORT SUDAN, SUDAN	0	19.58	-37.22	69
62721	KHARTOUM, SUDAN	0	15.60	-32.55	69
63450	ADDIS ABABA, ETHIOPIA	0	8.98	-38.80	33
63705	ENTEBBE AIRPORT, UGANDA	0	0.05	-32.45	33
63741	NAIROBI/DAGORETTI, KENYA	0	-1.30	-36.75	332
63894	DAR ES SALAAM AIRPORT, TANZANIA	0	-6.88	-39.20	332
64650	BANGUI, CENTRAL AFRICAN REPUBLIC	0	4.40	-18.52	335
64700	PORT-LAMY, CHAD	0	12.13	-15.03	71
64910	DOUALA, CAMEROON	0	4.02	-9.70	36
65046	KANO, NIGERIA	0	12.05	-18.53	72
65202	LAGOS, NIGERIA	0	6.55	-3.35	36
65578	ABIDJAN, IVORY COAST	0	5.25	-3.93	34
66160	LUANDA, ANGOLA	0	-8.85	-13.23	34
66285	ILUZO, ANGOLA	0	-14.78	-19.92	370
66390	SA DA BANDERIA, ANGOLA	0	-14.93	-13.58	370

WHO number	Station name and country	Land/coast	Latitude	Longitude	Marsden square
67083	TANANARIVE/IVATO, MADAGASY REPUBLIC	0	-18.80	-47.48	367
67085	TANANARIVE, MADAGASY REPUBLIC	0	-18.90	-47.50	367
67197	FT. DAUTHIN, MADAGASY REPUBLIC	0	-25.03	-46.95	403
67237	MAPUTA, MOZAMBIQUE	0	-15.10	-39.28	368
67341	LORENZO MARQUES/CAGO COINTINHO, MOZAMBIQUE	0	-25.92	-32.57	404
67663	BROKEN HILL, ZAMBIA	0	-14.45	-28.47	369
68014	GROTTONTEIN, SOUTH AFRICA	0	-19.60	-18.13	370
68112	J. C. STRIJDOM, SOUTH WEST AFRICA	0	-22.48	-17.47	406
68262	PRETORIA, SOUTH AFRICA	0	-25.57	-28.22	405
68263	PRETORIA/IRENE, SOUTH AFRICA	0	-25.92	-28.22	405
68406	ALEXANDER BAY, SOUTH WEST AFRICA	0	-28.57	-16.53	406
68442	BLOEMFONTEIN (J. B. M. HERTZOG) SOUTH AFRICA	0	-29.10	-26.30	405
68588	DURBAN (LOUIS BOYNE) SOUTH AFRICA	0	-30.95	-30.95	404
68816	CAPE TOWN (D. F. MALAN) SOUTH AFRICA	0	-33.97	-18.60	442
68842	PORT ELIZABETH, SOUTH AFRICA	0	-33.98	-25.60	441
68906	COUGH ISLAND, SOUTH ATLANTIC OCEAN	0	-40.35	9.88	444
68994	MARION ISLAND, SOUTH AFRICA	0	-46.88	-37.87	476
70026	BAFFIN, ALASKA	1	71.30	156.78	268
70086	BARTER ISLAND, ALASKA	1	70.13	143.63	267
70133	KUTZEBUE, ALASKA	1	66.87	162.63	233
70200	NOME, ALASKA	1	64.50	165.43	233
70219	BETHEL, ALASKA	1	60.78	161.80	232
70231	MCGREGOR, ALASKA	1	62.97	155.62	232
70261	FAIRBANKS/INT., ALASKA	1	64.82	147.87	231
70273	ANCHORAGE/INT., ALASKA	1	61.17	150.02	232
70308	ST. PAUL IS, ALASKA	1	57.15	170.22	198
70316	COLD BAY, ALASKA	1	55.20	162.72	197
70326	KING SALMON, ALASKA	1	58.68	156.65	196
70350	KODIAK/NAS, ALASKA	1	57.75	152.52	196
70361	YAKUTAT, ALASKA	1	59.52	139.67	194
70398	ANNETTE ISLAND, ALASKA	1	55.63	-174.50	194
70414	SHEMNA, ALASKA	1	54.72	-176.65	198
70454	ADAK, ALASKA	1	51.88	81.70	81
72201	KEY WEST/INT., FLA., USA	1	24.58	80.27	81
72202	MIAMI/INT., FLA., USA	1	25.80	80.27	81
72206	JACKSONVILLE/TIMESON, FLA., USA	1	30.40	81.03	117
72208	CHARLESTON/MRN., S.C., USA	1	32.90	80.03	117
72211	TAMPA/INT., FLA., USA	1	27.97	82.53	81
72213	WAYCROSS/WARE CO., GEORGIA, U.S.A.	1	31.25	82.40	117
72220	APPALACHICOLA, FLORIDA, U.S.A.	1	29.73	84.98	91
72221	EGLEN AFB, FLA., USA	1	30.48	86.52	117
72225	LAWSON AAF, GEORGIA, USA	1	32.20	84.50	117
72226	MONTGOMERY/DANNELLY, ALA., USA	1	32.30	86.40	117
72228	BIRMINGHAM, ALABAMA, U.S.A.	1	33.57	86.75	117
72232	BOOTHVILLE, LA., USA	1	29.33	89.40	81
72235	JACKSON/TOMSON, MISS., USA	1	32.32	90.08	118
72240	LAKE CHARLES/MRN., LA., USA	1	30.12	93.22	118
72243	HOUSTON/INTONTL, TEXAS, U.S.A.	1	29.97	95.35	82
72248	SHEREVEPORT/MRN., LA., USA	1	32.47	93.62	118
72250	HOODSVILLE/R.G.V./INT., TEX., USA	1	25.90	97.43	82
72255	VICTORIA/FOSTER, TEX., USA	1	28.85	96.92	82

WMO number	Station name and country	Land/coast	Latitude	Longitude	Marsden square
72257	HOOD AAF, TEXAS, UNITED STATES	C	31°10'	97.33	118
72259	FT. WORTH/GREATER FT. WORTH INT., TEX., USA	C	32°10'	97.42	118
72260	STEPHENVILLE, TEXAS, U.S.A.	C	32°22'	98.18	118
72261	DEL RIO/INT., TEX., USA	C	29°37'	100.92	83
72265	MIDLAND/AIR INT., TEX., USA	C	31°55'	102.18	119
72266	ABERDENE/MON., TEX., USA	C	32°43'	99.68	118
72270	EL PASO/INT., TEX., USA	C	31°80'	106.40	119
72274	TOCSON/INT., ARIZ., USA	C	32°12'	110.93	120
72280	YUMA/YUMA INT., ARIZ., USA	C	32°67'	114.60	120
72290	SAN DIEGO/LIND BERG, CALIF., USA	C	32°82'	117.13	120
72291	SAN NICOLAS IS./NF, CALIF., USA	C	33°25'	119.45	120
72295	LOS ANGELES/INT., CALIF., USA	C	33°93'	118.40	120
72304	CAPE HALTERAS, N.C., USA	C	35°27'	75.55	116
72311	ANDREWS/BEN EPES FIELD, GA., USA	C	33°35'	83.32	116
72317	GREENSBORO/C.-HIGH POINT, N.C., USA	C	36°08'	79.95	117
72327	NASHVILLE/METROPOLITAN, TENN., USA	C	36°25'	86.57	117
72340	LITTLE ROCK/ADAMS, ARK., USA	C	34°73'	92.23	118
72349	MONETT, MISSOURI, U.S.A.	C	36°88'	93.90	118
72353	OKLAHOMA CITY/W. ROGERS WORLD, OKLA., USA	C	35°40'	97.60	118
72354	TUNNER AFB, OKLA., USA	C	35°42'	97.38	118
72355	FT. STILL, OKLAHOMA, USA	C	34°60'	98.40	118
72357	NORMAN/FAZ WESTHEIM, OKLAHOMA, U.S.A.	C	35°23'	97.47	118
72363	AMARILLO/AIR TERM., TEX., USA	C	35°23'	101.70	119
72365	ALBUQUERQUE/SUNPORT-KIRTLAND AFB, N.MEX., USA	C	35°05'	106.62	119
72374	WINDSLOW/MUN., ARIZ., USA	C	35.02	110.73	120
72381	EDWARDS AFB, CALIF., USA	C	34.92	117.90	120
72385	YUCCA FLAT, NEV., USA	C	36.95	116.05	120
72386	LAS VEGAS/MCARRAN, NEVADA, U.S.A.	C	36.10	119.72	120
72389	FRESNO/AIR TERM., CALIF., USA	C	36.77	119.72	120
72391	POINT MUGU/NAS, CALIFORNIA, U.S.A.	C	34.12	119.12	121
72393	VANDENBERG AFB, CALIF., USA	C	34.75	120.57	121
72402	WALLOPS ISLAND, VA., USA	C	37.85	75.48	116
72403	WASHINGTON/DULLES INT., VA., USA	C	38.98	75.25	116
72406	PHILADELPHIA INTL., PENNSYLVANIA, U.S.A.	C	39.88	81.60	117
72414	CHARLESTON/KANAWHA, WEST VIRGINIA, U.S.A.	C	38.37	82.55	117
72425	HUNTINGTON/TRU-STATE, W. VA., USA	C	38.37	84.12	117
72429	HUNTINGTON/COX DAYTON MUN., OHIO, USA	C	39.87	86.97	117
72433	SAYDEV/LECKRONE, ILLINOIS, U.S.A.	C	38.65	92.40	118
72445	COLUMBIA, MO., USA	C	39.00	99.97	118
72451	DODGE CITY/MINN., KANS., USA	C	37.77	95.63	119
72456	TOPEKA/MUN., KANS., USA	C	39.07	104.87	119
72468	BUTTS AAF, GEORGIA, USA	C	38.70	108.53	120
72469	DENVER/STAPLETON, COLO., USA	C	39.75	114.85	121
72476	GRAND JUNCTION/WALKER, COLO., USA	C	39.12	122.20	152
72486	ELY/YELLAND, NEV., USA	C	39.28	73.80	152
72493	OAKLAND/DAU, CALIF., USA	C	37.73	42.75	153
72506	NANTUCKET/MEMORIAL, MASS., USA	C	41.30	80.23	153
72518	ALBANY/ALBANY CO., N.Y., USA	C	42.75	78.73	153
72520	PITTSBURGH/GREATER PITTSBURGH, PA., USA	C	40.53	89.68	153
72528	BUFFALO/GREATER BUFFALO INT., N.Y., USA	C	42.93	80.23	153
72532	PEORIA/GREATER PEORIA, ILL., USA	C	40.67	78.73	153

WMO number	Station name and country	Land/coast	Latitude	Longitude	Marsden square
72534	CHICAGO-MILWAUKEE, ILLINOIS, U.S.A.		41.78	87.75	153
72553	OMAHA/NORTH OMAHA, NEBR., USA		41.37	96.02	154
72562	NORTH PLATTE/LEE BIRD, NEBR., USA		41.13	100.68	155
72572	SALT LAKE CITY/MIN., UTAH, USA		40.77	111.97	156
72576	LANDER/HUNT, WYO., USA		42.82	108.73	155
72583	WINNEMUCKY, M.N., NEV., USA		40.90	117.80	156
72597	MEFFORD/MEFFORD-JACKSON COUNTY, OREG., USA		42.37	122.87	157
72600	SABLE ISLAND, N.S., CANADA		43.93	60.02	151
72606	PORTLAND/MIN., MAINE, USA		43.65	70.32	152
72637	FLINT/BUSHOP, MICH., USA		42.97	83.73	153
72645	GREEN BAY/A. STRAUBEL, WIS., USA		44.48	88.13	153
72654	HURON/HOMES, MIN., S.DAK., USA		44.38	98.22	154
72655	ST. CLOUD/WHITNEY'S, MINN., USA		45.58	94.07	155
72662	RABID CITY/MIN., S.DAK., USA		44.05	103.07	156
72681	BOISE/MIN., IDAHO, USA		43.57	116.22	157
72694	SALEM/MONARY, OREG., USA		44.92	123.02	151
72701	GAGETOWN, CANADA		45.83	66.43	151
72712	CARIBOU/MIN., MAINE, USA		46.87	68.02	152
72722	MANTIMAWI, QUE., CANADA		46.37	75.98	152
72734	SAULT STE. MARIE, MICH., USA		46.47	84.37	153
72747	INTERNATIONAL FALLS, MINN., USA		48.57	93.38	154
72764	BLISWICK/MIN., N.DAK., USA		46.77	100.75	155
72768	GLASGOW/INT'L., MONT., USA		48.22	106.62	156
72775	GREAT FALLS/INT'L., MONT., USA		47.48	111.37	156
72785	SPokane/INT'L., WASH., USA		47.63	117.53	157
72793	SEATTLE/TACOMA, INT'L., WASH., U.S.A.		47.45	122.30	157
72797	QUITO/AYACUCHO, WASH., USA		47.95	124.55	157
72798	DAUOCH ISLAND, WASHINGTON, U.S.A.		48.40	124.70	157
72801	ST. JOHN'S/TORBAY, CANADA		47.07	52.75	150
72807	ARGENTIA, NFLD., CANADA		47.30	54.00	150
72811	SEPT-ILES (SEVEN ISLANDS), QUE., CANADA		50.22	66.27	187
72815	STEPHENVILLE, NFLD., CANADA		48.53	58.55	187
72816	GOOSE, NFLD., CANADA		52.32	69.42	188
72826	NITCHEQUON, QUE., CANADA		53.20	70.90	189
72836	MOOSONEE, ONT., CANADA		51.27	80.65	189
72846	TROUT LAKE, ONT., CANADA		53.83	89.87	189
72853	CAMP SHILO, MAN., CANADA		49.82	99.65	154
72867	THE PAS, MAN., CANADA		53.97	101.10	191
72896	PRINCE GEORGE, B.C., CANADA		53.88	122.68	193
72906	FORT CHIMO, QUE., CANADA		58.10	68.42	187
72907	INOCOJOUAC, QUE., CANADA		58.45	78.12	188
72909	FROBISHER BAY, N.W.T., CANADA		63.75	68.55	223
72913	CHURCHILL, MAN., CANADA		58.75	94.07	225
72915	CORAL HARBOUR, N.W.T., CANADA		64.20	83.37	297
72917	EUREKA, N.W.T., CANADA		80.90	85.93	262
72924	RESOLUTE, N.W.T., CANADA		74.72	94.98	226
72925	CAMBRIDGE BAY, N.W.T., CANADA		69.10	96.00	192
72926	BAKER LAKE, N.W.T., CANADA		64.30	52.38	228
72928	ROCKY Mtn. HOUSE, CANADA		60.02	114.97	228
72934	FORT SMITH, N.W.T., CANADA		67.80	111.97	228
72938	COPPERMINE, N.W.T., CANADA		67.80	115.10	228

WMO number	Station name and country	Land/coast	Latitude	Longitude	Marsden square
72945	FORT NELSON, B.C. CANADA	0	58.83	122.58	193
72957	INUVIK, N.W.T. CANADA	0	68.30	133.48	230
72964	WHITEHORSE, Y.T. CANADA	0	60.72	135.07	230
72964	NORMAN WELLS, N.W.T. CANADA	0	65.28	126.80	229
74043	SACHS HARBOUR, N.W.T. CANADA	0	71.98	125.28	265
74051	MOULD BAY, N.W.T. CANADA	0	76.23	119.33	264
74072	ISACHSEN, N.W.T. CANADA	0	78.78	103.53	263
74074	HALL BEACH, N.W.T. CANADA	0	68.78	81.25	225
74081	ALERT, N.W.T. CANADA	0	82.50	62.33	907
74082	CLYDE, N.W.T. CANADA	0	70.50	68.60	259
74090	PORT HARDY, B.C. CANADA	0	50.68	127.37	193
74109	VERNON BRIDGE, CANADA	0	53.23	119.28	192
74115	EDMONTON (STONY PLAIN), ALTA., CANADA	0	53.55	114.10	192
74119	SHELBURNE, CANADA	0	43.72	165.25	151
74399	NEW YORK/JOHN F. KENNEDY INT., N.Y., USA	0	40.65	73.78	152
74486	CHATHAM, MASS., U.S.A.	0	41.67	69.97	151
74494	EL MONTE, ENGSU, CALIFORNIA, U.S.A.	0	34.08	118.03	120
74704	CAPE KENNEDY, FLORIDA, USA	0	28.47	80.55	81
74794	ISLA GUADALUPE, MEXICO	0	29.17	118.32	84
76151	CHIHUAHUA, CHIH. MEXICO	0	28.70	106.07	83
76225	FRACCIONAMIENTO LIB. MEXICO	0	27.95	110.80	84
76256	MONTERREY, N.L., MEXICO	0	25.87	100.23	83
76394	MAZATLAN, SIN., MEXICO	0	23.18	105.42	33
76458	MERIDA, YUC. MEXICO	0	20.95	89.67	81
76644	MEXICO CITY, D.F. MEXICO	0	19.43	99.07	46
76679	VERACRUZ, VER., MEXICO	0	19.15	96.12	46
76692	ISLAND SOCORRA, MEXICO	0	18.72	110.95	48
76723	KINDLEY FIELD, ST. GEORGE'S, BERMUDA	0	32.37	64.68	115
78016	GOLD ROCK CREEK, GRAND BAHAMA IS., BAHAMAS	0	26.60	78.30	80
78063	COFTIN HILLS, ELEUTHERA ISLAND, BAHAMAS	0	25.30	76.30	80
78076	TURKS ISLAND, (AUX. AFB), TURKS ISLANDS	0	21.45	71.15	80
78118	CASA BLANCA, CUBA	0	23.15	82.35	81
78325	CAMAGUEY, CUBA	0	21.40	77.90	80
78355	QUANTANAMO, 'ORIENTE, CUBA	0	19.90	75.15	44
78367	ROBERTS FIELD, GRAND CAYMAN, CAYMAN ISLANDS	0	19.32	81.35	45
78384	KINGSTON/PALLISADES, JAMAICA	0	18.07	76.85	44
78397	SANTO DOMINGO, DOMINICAN REPUBLIC	0	18.47	69.88	43
78486	SWAN ISLAND, SWAN ISLAND	0	17.40	83.93	45
78501	SAN JUAN INT., PUERTO RICO	0	18.13	66.00	43
78526	GUATEMALA/LA AURORA, GUATEMALA	0	14.58	90.52	46
78641	CHOLUTECA, HONDURAS	0	13.30	87.20	45
78724	SAN JOSE/SANTAMARIA, COSTA RICA	0	9.98	84.22	9
78762	HOWARD AIR FORCE BASE, CANAL ZONE	0	8.97	79.60	8
78806	COOLIDGE FIELD, ANTIGUA, BRITISH ISLANDS	0	8.97	61.78	43
78861	JULIANA AIRPORT, ST. MARTIN	0	18.05	63.12	43
78866	RATZET, GUADELUPPE, LA GUADELOUPE	0	16.27	61.52	43
78897	SEAWELL AIRPORT, BARBADOS	0	13.07	59.48	42
78954	CHAGAARAMAS, TRINIDAD	0	10.70	61.60	43
78967	PIARCO/PORT OF SPAIN, TRINIDAD + TOBAGO	0	10.62	61.25	43
78970	DR. A. PLESMAN AIRPORT, CURACAO	0	12.20	68.97	43
80001	SAN ANDRES, COLOMBIA	0	12.58	81.70	45

WMO number	Station name and country	Land/coast	Latitude	Longitude	Marsden square
80222	BOGOTA/ELDORADO, COLOMBIA	0	4.70	74.13	8
80413	MARACAY-B.A. SURTE, VENEZUELA	0	10.25	67.65	43
80447	SAN ANTONIO, VENEZUELA	0	17.85	72.45	6
81403	KOURON, FRENCH GUIANA	0	5.20	52.70	6
81405	CAYENNE/ROCHAMBEAU, FRENCH GUIANA	0	4.83	52.37	6
82193	BELEM (VAL DE CAS), BRAZIL	-1.38	-2.53	48.48	304
82280	SAO LUIZ, BRAZIL	-3.15	59.98	305	303
82332	MANAUS (ONTA PEREIRA), BRAZIL	-3.75	38.55	303	303
82397	FORTALEZA, BRAZIL	-7.03	43.02	304	304
82400	FERNANDO NORONHA, BRAZIL	-8.07	47.47	303	304
82599	NATAL (ALGUSIO SEVERO), BRAZIL	-12.73	40.50	304	304
82678	FLORIANO/CANGAPARA, BRAZIL	-13.00	40.13	342	342
82765	CAROLINA, BRAZIL	-13.27	38.52	339	340
82900	RECIFE, CURADO, BRAZIL	-15.87	43.42	340	340
82983	PETROLINA, BRAZIL	-20.47	47.93	377	374
83208	VITHEA (AEROPORTO), BRAZIL	-20.50	29.32	374	376
83229	SALVADOR (ONDINA), BRAZIL	-22.82	43.25	376	376
83288	BON JESUS DA LAPA, BRAZIL	-23.62	46.65	376	376
833378	BRASILIA (AIRPORT), BRAZIL	-25.62	49.17	413	413
83612	CAMPO GRANDE (AIRPORT), BRAZIL	-30.00	51.18	308	308
83650	TRINIDADE (ISLAND), BRAZIL	-1.90	89.62	307	307
83746	RIO JANEIRO/AEROPORTO GALEAO, BRAZIL	-2.20	79.88	343	343
83780	SAO PAULO/CONGONHAS, BRAZIL	-12.00	77.12	379	379
83840	CURITIBA (ALFONSO PENA), BRAZIL	-12.10	77.00	414	414
83971	PORTO ALFREGE (SALGADO FILHO), BRAZIL	-23.43	70.47	382	382
84008	SAN CRISTOBAL (GALAPAGOS), ECUADOR	-2.17	109.43	415	415
84129	GUAYAQUIL/SIMON BOLIVAR, ECUADOR	-2.20	71.53	451	451
844628	LIMA-CALLAO (INT. AIRPORT), PERU	-12.00	72.93	451	451
84631	LIMATAMBO, PERU	-12.10	72.90	378	378
85442	ANTOFAGASTA/CERRO MORENO, CHILE	-23.43	65.48	377	377
85469	ISLA DE PASCUA, CHILE	-27.17	109.43	414	414
85543	QUINTERO, CHILE	-32.78	71.53	414	414
85799	PUERTO MONTT/EL TEP, CHILE	-41.47	72.93	414	414
85801	PUERTO MONIT/LA CHIMIZA, CHILE	-41.50	72.90	414	414
87047	SALTA ARGENTINA	-24.85	65.48	413	413
87155	RESISTENCIA AEROP. INT., ARGENTINA	-27.45	59.05	486	486
87344	CORDOBA, ARGENTINA	-31.32	64.22	522	522
87418	MENDOZA/EL PILUMERIL, ARGENTINA	-32.83	68.78	520	520
87420	OBSERVATORIO MENDOZA, ARGENTINA	-32.88	58.53	552	552
87576	EZEIZA, ARGENTINA	-34.82	58.53	588	588
87623	SANTA ROSA, ARGENTINA	-36.57	64.27	554	554
87715	NEUQUEN, ARGENTINA	-38.95	68.13	414	414
87748	BASE AERONAVAL COMANDANTE ESPORA, ARGENTINA	-38.73	62.17	450	450
87860	COMODORO RIVADAVIA, ARGENTINA	-45.78	67.45	486	486
87926	ESTACION AERONAVAL DE RIO GALLEGOS, ARGENTINA	-51.63	69.22	520	520
87938	ESTACION AERONAVAL USHUAIA, ARGENTINA	-54.80	68.30	2.37	2.37
88952	ARGENTINE ISLANDS	-65.25	64.27	0.00	0.00
88968	ISLAS ORCadas ISLANDS	-60.75	44.72	26.60	26.60
89001	S.A.N.A.E. STATION, ANTARCTICA	-70.32	55.52		
89009	AMUNDSEN-SCOTT, ANTARCTICA	-90.00	58.88		
89022	HALLEY BAY, ANTARCTICA	-75.52	55.54		

WMO number	Station name and country	Land/coast	Latitude	Longitude	Marsden square
89050	HELLINGHAUSEN, ANTARCTICA	1	-62.20	58.93	521
89125	BIRD STATION, ANTARCTICA	0	-80.02	119.53	599
89512	NCOLAZAREVSKAJA, ANTARCTICA	0	-70.77	-111.83	576
89532	SYOWA, ANTARCTICA	0	-69.00	-39.58	548
89542	MOLODEZNAJA, ANTARCTICA	0	-67.67	-45.85	547
89571	DAVIS, ANTARCTICA	0	-68.58	-77.98	544
89592	MERNYJ, ANTARCTICA	0	-66.55	-93.02	542
89606	VOSTOK, ANTARCTICA	0	-78.45	-106.87	577
89611	WTLKES, ANTARCTICA	0	-66.25	-110.53	540
89664	MCURDO, ANTARCTICA	0	-77.85	-166.67	571
91030	CHICHI JIMA ISLAND, PACIFIC OCEAN	1	28.10	-142.30	94
91066	MIDWAY ISLAND, PACIFIC OCEAN	1	28.22	-141.30	90
91115	CENTRAL AIRFIELD, IWO JIMA	1	24.80	-154.00	94
91131	MARCUS ISLAND, PACIFIC OCEAN	1	24.30	-159.35	92
91165	LIHUE, KAUAI, HAWAII	1	21.98	-144.83	88
91217	GUAM, TAGUAC, MARIANA IS.	1	13.55	-166.55	58
91245	WAKE ISLAND	1	19.28	-162.40	56
91250	ENIWEITOK ATOLL, MARSHALL IS.	1	11.40	-169.52	53
91275	JOHNSTON ISLAND	1	16.73	-169.52	53
91285	HILIO/GEN LYMAN, HAWAII	1	19.72	-155.07	52
91334	TRUK, CAROLINE IS.	1	7.47	-151.85	21
91348	RONAPE, EASTERN CAROLINE IS.	1	6.97	-158.22	21
91366	KWAJALEIN, MARSHALL IS.	1	8.72	-167.73	20
91376	MAJURO, MARSHALL IS.	1	7.08	-171.38	19
91408	KOROR, PALAU IS.	1	7.33	-134.48	23
91413	YAP, CAROLINE IS.	1	9.48	-138.08	23
91517	HONIARA, BRITISH SOLOMON ISLANDS	1	-9.42	-159.97	320
91558	VILA, NEW HEBRIDIES	1	-17.75	-168.30	355
91592	NOUMEA (NILE-CLETONIE), NEW CALEDONIA	1	-22.27	-166.45	391
91610	TARAWA, GILBERT ISLANDS	1	-1.35	-172.92	19
91643	FUNAFUTI, ELICE IS.	1	-8.52	-179.22	318
91680	NANDI, FIJI ISLANDS	1	-17.75	-171.72	317
91700	CANTON ISLAND, TOKELAU ISLANDS	1	-2.77	-170.72	353
91755	PAGO PAGO/INT. AIRPORT, AMERICAN SAMOA	1	-14.33	159.82	387
91843	RAROTONGA, COOK ISLANDS	1	-21.20	139.03	313
91925	ATUONA, FRENCH OCEANIA	1	-79.82	149.62	350
91938	TAHITI-PAIA, FRENCH OCEANIA	1	-17.55	-18.07	350
91944	HAO, FRENCH OCEANIA	1	-18.07	134.87	385
91948	RIKITEA, FRENCH OCEANIA	1	-23.10	144.33	386
91958	RAPA, FRENCH OCEANIA	1	-27.62	-174.80	426
93119	AUCKLAND AIRPORT, NEW ZEALAND	1	-37.02	-175.68	462
93337	WAIOURU, NEW ZEALAND	1	-39.47	-43.48	463
93780	CHRISTCHURCH AIRPORT, NEW ZEALAND	1	-46.40	-168.33	499
93844	INVERCARGILL AIRPORT, NEW ZEALAND	1	-52.55	-169.15	461
93986	CAMPBELL ISLAND, NEW ZEALAND	1	-43.95	175.57	389
93997	CHATHAM ISLAND, NEW ZEALAND	1	-29.25	177.97	321
94027	RAOUL IS. KERMADEC IS, NEW ZEALAND	1	-6.73	-147.06	358
94120	LAE, AUSTRALIAN NEW GUINEA	1	-12.43	-130.87	359
94203	DARWIN AERODRONE, AUSTRALIA	1	-17.95	-122.22	357
94294	BROOME, AUSTRALIA	1	-19.25	-146.77	
	TOWNSVILLE, AUSTRALIA	1			

WMO number	station name and country	Land/coast	Latitude	Longitude	Marsden square
94299	WILLIS ISLAND, AUSTRALIAN NEW GUINEA		-16.30	-149.98	357
94300	CARNARVON, AUSTRALIA		-24.88	-113.65	396
94312	PORT HedLAND, AUSTRALIA		-20.38	-118.62	394
94326	ALICE SPRINGS, AUSTRALIA		-23.80	-133.90	393
94335	CLONCURRY, AUSTRALIA		-20.67	-140.50	392
94380	GLADSTONE, M.Q., AUSTRALIA		-23.85	-151.27	395
94461	GILES, AUSTRALIA		-25.03	-128.30	393
94510	CHARLEVILLE, AUSTRALIA		-26.47	-146.28	393
94527	MOREE, AUSTRALIA		-29.47	-149.85	392
94578	BRISBANE AIRPORT, AUSTRALIA		-27.43	-153.08	431
94610	PERTH AIRPORT, AUSTRALIA		-31.92	-121.45	431
94637	KALGOORLIE, AUSTRALIA		-30.77	-136.80	430
94638	ESPERANCE, M.O., AUSTRALIA		-33.82	-138.53	429
94646	FORREST, AUSTRALIA		-30.83	-145.82	428
94659	WOOMERA, AUSTRALIA		-31.15	-128.10	431
94672	ADELAIDE AIRPORT, AUSTRALIA		-34.95	-115.67	430
94711	COBAR M.O., AUSTRALIA		-34.95	-121.88	431
94750	NOWRA, AUSTRALIA		-34.95	-121.45	431
94776	WILLIAMSTON, AUSTRALIA		-32.82	-136.80	428
94802	ALBANY N.O., AUSTRALIA		-34.95	-117.80	432
94821	MT. GAMBIER M.O., AUSTRALIA		-37.87	-140.78	429
94865	LAVERDON (AEROD.), AUSTRALIA		-35.17	-144.75	429
94910	WAGGA, AUSTRALIA		-42.83	-147.47	428
94975	HOBART AIRPORT, AUSTRALIA		-47.60	-147.50	465
94986	MAWSON (AUST.), ANTARCTICA		-31.53	-62.88	545
94995	LORD HOWE ISLAND, AUSTRALIA		-29.05	-159.08	428
94996	NORFOLK ISLAND, AUSTRALIA		-24.50	-167.93	391
94998	MACQUARIE ISLAND, AUSTRALIA		-66.67	-140.02	500
95502	DUMONT D'URVILLE, ANTARCTICA		-65.95	-116.05	537
96471	JESSELTON, NORTH BORNEO, INDONESIA		-76.15	-106.85	325
96743	DIKAPUTU/KEMAJORAN, INDONESIA		-12.18	-96.83	362
96996	OOCOS ISLAND, INDONESIA		-18.17	-120.53	60
98223	LAOS, PHILIPPINES		10.30	-120.57	60
98327	CLARK AFB, PHILIPPINES		7.50	-123.97	60
98646	MACTAN INTL, PHILIPPINES		7.50	-122.12	24
98836	ZAMBORANGA, PHILIPPINES		7.50	-8.67	253
10011	JAN MAYEN, NORWAY		70.93	-19.02	251
10288	BJORNØYA, NORWAY		74.52	-14.40	252
11522	BODØ, NORWAY		67.25	-19.43	251
12411	ORLAND, NORWAY		63.70	-11.10	251
13841	OSLO/GARDERMOEN, NORWAY		60.20	-15.67	250
14155	STAVANGER/SOLA, NORWAY		58.87	-22.13	251
14205	LULEÅ/VÄLLAX, SWEDEN		63.18	-14.50	251
14207	ÖSTERGÅRD/FROSON, SWEDEN		62.53	-17.45	215
20620	SUNDEVALI/HÄRJEDALE, SWEDEN		59.35	-17.95	215
20660	STOCKHOLM/BROMMA, SWEDEN		57.72	-11.78	215
20777	BÖTEBORG/TORSLANDA, SWEDEN		57.65	-18.35	250
20844	TINGSTADDE, SWEDEN		57.37	-26.65	250
21600	SODANKYLÄ, FINLAND		62.40	-25.67	250
28366	JYVÄSKYLÄ/LUONETJÄRVI, FINLAND		60.82	-23.50	250
29355	JOKIÖNEN, FINLAND				
29633					

WMO number	Station name and country	Land/coast	Latitude	Longitude	Marsden square
3005	LERWICK, UNITED KINGDOM		60.13	1.18	217
3026	STORMWAY, UNITED KINGDOM		58.22	6.32	181
3170	SHANWELL, UNITED KINGDOM		56.43	2.87	181
3222	AUGHTON, UNITED KINGDOM		53.55	2.92	181
3496	HEMSBY, UNITED KINGDOM		52.68	-1.68	216
3502	ABERPORTH, UNITED KINGDOM		52.13	4.57	181
3693	SHOEHURNESS, UNITED KINGDOM		51.55	5.83	216
3743	LARKHILL, UNITED KINGDOM		51.20	1.80	181
3774	CRATLEY, UNITED KINGDOM		51.08	5.22	181
3808	CAMBORNE, UNITED KINGDOM		50.22	5.32	181
3920	LONG KEST, UNITED KINGDOM		54.48	6.10	182
3953	VALENTIA OBSERVATORY, IRELAND		51.93	10.25	182
4018	KEFLAVIK (2ND STATION), ICELAND		63.97	22.60	219
4202	THULE A.B., GREENLAND		76.52	68.83	259
4220	ECCEDESMINDE, GREENLAND		68.70	52.75	222
4270	NAPSSARSSUAQ, GREENLAND		61.18	45.43	221
4310	NORD, GREENLAND		81.60	16.70	902
4320	DANMARKSHAVN, GREENLAND		76.77	18.77	254
4340	KAP TOBIN, GREENLAND		70.42	21.97	255
4360	ANGMAGSSALIK, GREENLAND		65.60	37.63	220
6011	THORSTAVN, DENMARK		62.02	6.77	217
6030	ALBORG, DENMARK		57.10	-9.87	216
6181	KOBENHAVN/GARDERHØJ, DENMARK		55.77	-12.52	215
6260	DE BILT, NETHERLANDS		52.10	-5.18	216
6447	UCCLE, BELGIUM		50.80	-4.35	216
6476	ST. HUBERT, BELGIUM		50.03	-5.40	216
6610	PAYERNE (ST. AEROL.), SWITZERLAND		46.82	-6.95	180
7110	BREST/GU PAVAS, FRANCE		48.45	4.42	145
7145	TRAPPES, FRANCE		48.77	-2.02	180
7180	NANCY/ESSEY, FRANCE		48.68	-6.22	180
7480	LYON/BRON, FRANCE		45.72	-4.95	180
7510	BORDEAUX/MERIGNAC, FRANCE		44.83	-4.70	145
7645	NTME/COUBESSAC, FRANCE		43.87	-4.40	180
7761	AJACCIO/CAMPO DEL QRO, FRANCE		41.92	-8.80	145
8001	LA CORUNA, SPAIN		43.37	8.42	145
8221	MADRID/BARAJAS, SPAIN		40.47	3.57	145
8302	PALMA/SON BONET, BALEARIC ISLANDS		39.60	-2.70	144
8395	NORTH FRONT, GIBRALTAR		36.15	5.33	109
8509	LATES (ACORES), PORTUGAL		38.73	27.08	111
8521	FUNCHAL (MADEIRA), PORTUGAL		32.68	16.77	110
8536	LISBOA/PORTELA, PORTUGAL		38.77	9.13	109
8594	SAL (CABO VERDE), PORTUGAL		16.73	22.95	39
4YA	FDED SHIP, NORTH ATLANTIC OCEAN		61.80	51.00	219
4YB	FDED SHIP, NORTH ATLANTIC OCEAN		56.50	35.50	186
4YC	FDED SHIP, NORTH ATLANTIC OCEAN		52.70	41.00	184
4YD	FDED SHIP, NORTH ATLANTIC OCEAN		44.00	48.00	149
4YE	FDED SHIP, NORTH ATLANTIC OCEAN		35.00	71.00	113
4YH	FDED SHIP, ATLANTIC OCEAN		38.00	15.80	116
4YT	FDED SHIP, NORTH ATLANTIC OCEAN		57.90	20.20	183
4YJ	FDED SHIP, NORTH ATLANTIC OCEAN		52.30	16.00	146
4YK	FDED SHIP, NORTH ATLANTIC OCEAN		45.00		

WMO number	Station name and country	Land/coast	Latitude	Longitude	Marsden square
4YM	FDDED SHIP, NORWEGIAN SEA	1	65.70	-2.20	252
4YN	FDDED SHIP, NORTH PACIFIC OCEAN	1	30.00	-140.00	123
4YP	FDDED SHIP, NORTH PACIFIC OCEAN	1	50.00	-145.00	195
4YT	FDDED SHIP, PHILIPPINE SEA	1	28.80	-134.70	95
4YV	FDDED SHIP, NORTH PACIFIC OCEAN	1	34.00	-164.00	128

APPENDIX C

4N FIXED SHIP, NORTH PACIFIC OCEAN		1	2	3	4	5	6	7	8	9	10	11	12
1467	267	0	224	73	79	265	88	236	14000	127	227	227	227
	256	86	206	71	190	64	215	80	156				
	215	71	116	78	115	83	129	73	203				
	54	89	108	72	106	69	1324	86	117				
	68	127	127	85	107	76	133	75	106				
	72	80	108	72	100	70	95	66	120				
	112	54	1307	75	184	78	171	75	107				
	81	87	246	93	180	76	134	86	220				
	80	97	192	66	151	79	151	74	159				
	74	141	68	84	73	110	85	100	124				
	79	90	78	64	85	86	80	72	78				
	94	95	81	69	79	86	80	74	87				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73	110	86	70	72				
	79	90	78	64	85	86	80	74	78				
	94	95	81	69	79	86	80	72	78				
	86	192	75	127	92	122	92	85	70				
	74	141	68	84	73								

Raw radiosonde observation data as it appears GTE Sylvania Long A tape.
Station: 4YN Fixed ship, North Pacific Ocean (Record one continued)

Raw radioonde observation data as it appears GTE Sylvania Long A tape.
Station 4YN Fixed ship, North Pacific Ocean
(Record two)

Raw radioconde observation data as it appears GTE Sylvania Long A tape.
Station 4YN Fixed ship, North Pacific Ocean (Record two continued)

APPENDIX D

Raw surface data as it appears on the DUC163 tape. Marsden square 85.

Raw surface data as it appears on the DUC63 tape. Marsden square 85.

8510 1 1 7	405 8	413 9	309 10	260 11	181 12	76	1
8510 1 1 13	36 14	25 15	11 16	17 17	3 18		
8510 1 1 19	11 20	21 22	0 22	0 22	0 22		
8510 1 1 23	14 24	10 25	3 26	17 27	2534 27	336	6
8510 2 1 17	350 28	305 29	203 30	209 31	252 32	31	6
8510 2 1 13	7 14	0 15	1 16	1 17	0 18	0	0
8510 2 1 19	0 20	9 21	12 22	10 23	15 24	302	6
8510 2 1 23	12 24	9 25	12 26	10 27	1998 27	92	1
8511 1 1 17	368 28	386 29	299 30	260 31	167 32	630103	
8511 1 1 13	31 20	24 21	13 22	13 23	0 24	630104	
8511 1 1 19	11 22	11 23	10 24	10 25	18 26	630105	
8511 1 1 23	14 24	11 25	14 26	14 27	2391 27	630106	
8511 1 1 17	333 28	302 29	208 30	110 31	220 32	333	6
8511 1 1 13	10 29	14 30	16 31	17 32	45 33	31	0
8511 1 1 19	10 20	0 21	0 22	0 23	1 18	0	
8511 1 1 23	12 24	9 25	12 26	15 27	1899 27	630107	
8511 2 1 17	337 28	326 29	271 30	199 31	232 32	302	6
8511 2 1 13	339 29	318 30	215 31	216 32	126 33	76	0
8511 2 1 19	13 30	18 31	0 32	0 33	2 18	0	
8511 2 1 23	13 32	10 33	25 34	25 35	0 18	630108	
8512 1 1 17	337 28	326 29	271 30	199 31	232 32	302	6
8512 1 1 13	339 29	318 30	215 31	216 32	126 33	76	0
8512 1 1 19	13 30	18 31	0 32	0 33	2 18	0	
8512 1 1 23	13 32	10 33	25 34	25 35	0 18	630109	
8512 2 1 17	293 28	232 29	163 30	116 31	59 32	23	0
8512 2 1 13	29 30	14 31	15 32	16 33	17 0	0	
8512 2 1 19	0 31	21 32	0 33	1 22	0 18	0	
8512 2 1 23	12 32	9 33	25 34	12 35	15 4	305	6
8512 3 1 23	678 0	0 0	0 0	0 0	274 27	630110	
8512 4 1 23	0 0	0 0	0 0	0 0	150 27	630111	
8512 5 1 23	363 1	6 2	4 3	3 4	156 27	630112	
8512 6 1 23	11 2	6 3	4 5	3 4	156 27	630113	
8512 7 1 23	13 2	6 3	4 5	3 4	156 27	630114	
8512 8 1 23	49 2	14 3	653 4	63 5	156 27	630115	
8512 9 1 23	4 2	14 3	654 5	63 6	156 27	630116	
8512 10 1 23	4 2	18 3	26 4	39 5	156 27	630117	
8512 11 1 23	60 3	18 4	26 5	39 6	156 27	630118	
8512 12 1 23	6 3	10 4	26 5	39 6	156 27	630119	
8512 13 1 23	52 3	17 4	39 5	1715 6	156 27	630120	
8512 14 1 23	21 3	14 4	39 5	15 6	156 27	630121	
8512 15 1 23	28 3	23 4	40 5	2366 6	156 27	630122	
8512 16 1 23	32 3	25 4	14 5	15 6	156 27	630123	
8512 17 1 23	32 3	25 4	14 5	15 6	156 27	630124	
8512 18 1 23	32 3	25 4	14 5	15 6	156 27	630125	
8512 19 1 23	32 3	25 4	14 5	15 6	156 27	630126	
8512 20 1 23	32 3	25 4	14 5	15 6	156 27	630127	
8512 21 1 23	32 3	25 4	14 5	15 6	156 27	630128	
8512 22 1 23	32 3	25 4	14 5	15 6	156 27	630129	
8512 23 1 23	32 3	25 4	14 5	15 6	156 27	630130	
8512 24 1 23	32 3	25 4	14 5	15 6	156 27	630131	
8512 25 1 23	32 3	25 4	14 5	15 6	156 27	630132	
8512 26 1 23	32 3	25 4	14 5	15 6	156 27	630133	
8512 27 1 23	32 3	25 4	14 5	15 6	156 27	630134	
8512 28 1 23	32 3	25 4	14 5	15 6	156 27	630135	
8512 29 1 23	32 3	25 4	14 5	15 6	156 27	630136	
8512 30 1 23	32 3	25 4	14 5	15 6	156 27	630137	
8512 31 1 23	32 3	25 4	14 5	15 6	156 27	630138	

Raw surface data as it appears on the Duct3 tape. Marsden square 85.

Raw surface data as it appears on the DCT63 tape. Marsden square 85.

Raw surface data as it appears on the DUC63 tape. Marsden square 85.

1	6.	6.	2405	6302231
2	139	114	2405	6302231
3	6.	4.	1927	6302234
4	237	191	129	6302239
5	6.	6.	2355	6302236
6	107	128	128	6302337
7	6.	3.	1939	6302239
8	158	123	123	6302238
9	6.	2.	2190	6302239
10	121	89	89	6302449
11	125	106	106	6302421
12	6.	1.	2074	6302443
13	87	80	80	6302447
14	122	108	108	6302446
15	144	124	124	6302448
16	144	114	114	6302449
17	127	104	104	6302450
18	128	102	102	6302451
19	128	101	101	6302452
20	128	99	99	6302453
21	128	98	98	6302454
22	128	97	97	6302455
23	128	96	96	6302456
24	128	95	95	6302457
25	128	94	94	6302458
26	128	93	93	6302459
27	128	92	92	6302460
28	128	91	91	6302461
29	128	90	90	6302462
30	128	89	89	6302463
31	128	88	88	6302464
32	128	87	87	6302465
33	128	86	86	6302466
34	128	85	85	6302467
35	128	84	84	6302471
36	128	83	83	6302734
37	128	82	82	6302745
38	128	81	81	6302750
39	128	80	80	6302755
40	128	79	79	6302760
41	128	78	78	6302765
42	128	77	77	6302770
43	128	76	76	6302775
44	128	75	75	6302780
45	128	74	74	6302785
46	128	73	73	6302790
47	128	72	72	6302795
48	128	71	71	6302800
49	128	70	70	6302805
50	128	69	69	6302810
51	128	68	68	6302815
52	128	67	67	6302820
53	128	66	66	6302825
54	128	65	65	6302830
55	128	64	64	6302835
56	128	63	63	6302840
57	128	62	62	6302845
58	128	61	61	6302850
59	128	60	60	6302855
60	128	59	59	6302860
61	128	58	58	6302865
62	128	57	57	6302870
63	128	56	56	6302875
64	128	55	55	6302880
65	128	54	54	6302885
66	128	53	53	6302890
67	128	52	52	6302895
68	128	51	51	6302900
69	128	50	50	6302905
70	128	49	49	6302910
71	128	48	48	6302915
72	128	47	47	6302920
73	128	46	46	6302925
74	128	45	45	6302930
75	128	44	44	6302935
76	128	43	43	6302940
77	128	42	42	6302945
78	128	41	41	6302950
79	128	40	40	6302955
80	128	39	39	6302960
81	128	38	38	6302965
82	128	37	37	6302970
83	128	36	36	6302975
84	128	35	35	6302980
85	128	34	34	6302985
86	128	33	33	6302990
87	128	32	32	6302995
88	128	31	31	6303000
89	128	30	30	6303005
90	128	29	29	6303010
91	128	28	28	6303015
92	128	27	27	6303020
93	128	26	26	6303025
94	128	25	25	6303030
95	128	24	24	6303035
96	128	23	23	6303040
97	128	22	22	6303045
98	128	21	21	6303050
99	128	20	20	6303055
100	128	19	19	6303060
101	128	18	18	6303065
102	128	17	17	6303070
103	128	16	16	6303075
104	128	15	15	6303080
105	128	14	14	6303085
106	128	13	13	6303090
107	128	12	12	6303095
108	128	11	11	6303100
109	128	10	10	6303105
110	128	9	9	6303110
111	128	8	8	6303115
112	128	7	7	6303120
113	128	6	6	6303125
114	128	5	5	6303130
115	128	4	4	6303135
116	128	3	3	6303140
117	128	2	2	6303145
118	128	1	1	6303150
119	128	0	0	6303155

Raw surface data as it appears on the DUC63 tape. Marsden square 85.

Raw surface data as it appears on the DUC63 tape. Marsden square 85.

0	0	0	-1.2	2480	630323
85	5	585	715	58	630324
85	5	0	-1.8	2004	630325
85	5	368	1557	120	630326
85	5	0	-1.0	2405	630327
85	5	335	512	803	82
85	5	0	-1.6	1927	630329
85	5	315	1576	125	630330
85	5	0	-1.0	2355	630331
85	5	29	87	256	510
85	5	0	0	866	113
85	5	396	149	0	630332
85	5	0	0	309	112
85	5	36	44	143	0
85	5	0	0	309	1493
85	5	35	115	335	0
85	5	0	0	0	102
85	5	16	20	119	315
85	5	0	0	0	102
85	5	17	16	30	119
85	5	0	0	0	2190
85	5	29	87	256	510
85	5	0	0	0	630334
85	5	38	99	286	456
85	5	0	0	0	77
85	5	30	18	36	112
85	5	0	0	0	630335
85	5	31	17	264	405
85	5	0	0	0	77
85	5	30	16	61	126
85	5	0	0	0	630336
85	5	31	17	117	276
85	5	0	0	0	1465
85	5	30	16	117	405
85	5	0	0	0	58
85	5	31	17	264	733
85	5	0	0	0	62
85	5	30	16	117	1653
85	5	0	0	0	630341
85	5	31	17	264	1636
85	5	0	0	0	58
85	5	30	16	117	1653
85	5	0	0	0	630342
85	5	31	17	264	1653
85	5	0	0	0	630343
85	5	30	16	117	1653
85	5	0	0	0	630344
85	5	31	17	264	1653
85	5	0	0	0	630345
85	5	30	16	117	1653
85	5	0	0	0	630346
85	5	31	17	264	1653
85	5	0	0	0	630347
85	5	30	16	117	1653
85	5	0	0	0	630348
85	5	31	17	264	1653
85	5	0	0	0	630349
85	5	30	16	117	1653
85	5	0	0	0	630350
85	5	31	17	264	1653
85	5	0	0	0	630351
85	5	30	16	117	1653
85	5	0	0	0	630352
85	5	31	17	264	1653
85	5	0	0	0	630353
85	5	30	16	117	1653
85	5	0	0	0	630354
85	5	31	17	264	1653
85	5	0	0	0	630355
85	5	30	16	117	1653
85	5	0	0	0	630356
85	5	31	17	264	1653
85	5	0	0	0	630357
85	5	30	16	117	1653
85	5	0	0	0	630358
85	5	31	17	264	1653
85	5	0	0	0	630359
85	5	30	16	117	1653
85	5	0	0	0	630360
85	5	31	17	264	1653
85	5	0	0	0	630361
85	5	30	16	117	1653
85	5	0	0	0	630362
85	5	31	17	264	1653
85	5	0	0	0	630363
85	5	30	16	117	1653
85	5	0	0	0	630364
85	5	31	17	264	1653
85	5	0	0	0	630365
85	5	30	16	117	1653
85	5	0	0	0	630366
85	5	31	17	264	1653
85	5	0	0	0	630367
85	5	30	16	117	1653
85	5	0	0	0	630368

Raw surface data as it appears on the IUCM3 tape. Marsden square 85.

0	2459	0	1970	630369
0	2459	0	1970	630370
0	2480	0	1970	630371
0	2480	0	1970	630372
0	2004	0	1970	630373
0	2004	0	1970	630374
0	1.0	0.6	1970	630375
0	1.0	0.6	1927	630376
0	1.0	0.6	1927	630377
0	1.0	0.6	1927	630378
0	1.0	0.6	1927	630379
0	1.0	0.6	1927	630380
0	1.0	0.6	1927	630381
0	1.0	0.6	1927	630382
0	1.0	0.6	1927	630383
0	1.0	0.6	1927	630384
0	1.0	0.6	1927	630385
0	1.0	0.6	1927	630386
0	1.0	0.6	1927	630387
0	1.0	0.6	1927	630388
0	1.0	0.6	1927	630389
0	1.0	0.6	1927	630390
0	1.0	0.6	1927	630391
0	1.0	0.6	1927	630392
0	1.0	0.6	1927	630393
0	1.0	0.6	1927	630394
0	1.0	0.6	1927	630395
0	1.0	0.6	1927	630396
0	1.0	0.6	1927	630397
0	1.0	0.6	1927	630398
0	1.0	0.6	1927	630399
0	1.0	0.6	1927	630400
0	1.0	0.6	1927	630401
0	1.0	0.6	1927	630402
0	1.0	0.6	1927	630403
0	1.0	0.6	1927	630404
0	1.0	0.6	1927	630405
0	1.0	0.6	1927	630406
0	1.0	0.6	1927	630407
0	1.0	0.6	1927	630408
0	1.0	0.6	1927	630409
0	1.0	0.6	1927	630410
0	1.0	0.6	1927	630411
0	1.0	0.6	1927	630412
0	1.0	0.6	1927	630413
0	1.0	0.6	1927	630414

Raw surface data as it appears on the LUC163 tape. Marsden square 85.

99	862	799	178	27	152	2	2555	630415
0	862	799	178	0	153	5	1970	630416
17	738	1275	380	56	111	0	630418	
0	738	1275	380	0	161	4	2480	630419
26	689	1048	217	19	0	0	630420	
0	689	1048	217	0	157	8	2004	630421
0	295	1309	665	107	18	2405	630422	
0	295	1309	665	0	0	0	630423	
0	292	1160	420	45	55	1927	630424	
0	292	1160	420	0	166	9	630425	
0	46	900	1021	299	68	12	630426	
0	46	900	1021	0	183	3	2355	630427
39	888	786	184	33	7	7	630428	
0	888	786	184	0	180	0	1939	630429
18	584	1003	420	128	26	26	630430	
0	584	1003	420	0	190	5	630431	
30	565	841	274	60	14	14	630432	
0	565	841	274	0	185	9	630433	
49	570	912	408	106	25	25	630434	
0	570	912	408	0	189	1	2074	630435
56	507	773	264	42	8	8	630436	
0	507	773	264	0	184	5	1653	630437
164	921	947	390	390	0	0	630438	
0	921	947	390	0	182	5	22	630439
135	809	756	261	28	6	6	630440	
0	809	756	261	0	179	1	1998	630441
15	325	991	766	216	63	8	630442	
0	325	991	766	0	174	6	2391	630443
16	290	838	601	139	13	1	1	630444
0	290	838	601	0	171	7	1899	630445
34	438	1025	576	129	34	4	4	630446
0	438	1025	576	0	168	8	2244	630447
35	430	795	414	85	8	0	0	630448
0	430	795	414	0	165	1	1770	630449
56	1290	868	620	0	0	0	0	630450
0	1290	868	620	0	74	0	2278	630451
46	1174	626	24	0	0	0	0	630452
0	1174	626	24	0	72	0	1872	630453
49	1352	762	53	0	0	0	0	630454
0	1352	762	53	0	72	8	2218	630455
34	1204	497	15	0	0	0	0	630456
0	1204	497	15	0	70	6	1750	630457
53	1684	627	29	3	0	0	0	630458
0	1684	627	29	0	70	5	2397	630459
54	1419	424	9	0	0	0	0	630460

Raw surface data as it appears on the DUC163 tape. Marsden square 85.

Raw surface data as it appears on the DICT63 tape. Marsden square 85.

1	59	699	838	236	38	163.3	2394	630507
0	90	949	1073	313	4	159.3	8	630508
0	0	98	854	1	11	1903	1903	630509
1	17	737	1261	371	57	163.0	3	630510
0	26	681	1033	208	2	160.0	2552	630511
1	29	148	0	657	27	3	7	630512
0	4	289	1153	417	1	156.4	1967	630513
1	45	45	890	999	294	6	11	630514
0	38	38	876	768	163	2	163.0	2478
1	17	591	988	0	1	160.2	8	630515
1	30	113	104	651	1	160.7	2002	630516
0	4	205	13	370	1	160.7	2002	630517
1	1	4	289	0	1	160.7	2002	630518
0	38	38	876	768	163	9	173.8	2403
1	17	591	988	0	1	168.8	1926	630519
0	45	45	890	999	294	15	15	630520
1	30	30	562	824	264	6	69	630521
0	48	48	565	898	398	10	10	630522
1	55	55	503	762	253	15	10	630523
2	14	14	512	821	211	15	187.7	2348
3	48	48	565	898	398	10	10	630524
4	17	591	988	0	1	186.2	1936	630525
5	30	30	562	824	264	6	69	630526
6	15	15	503	762	253	15	15	630527
7	163	163	911	935	378	11	189.7	2348
8	4	134	11	91	3	11	189.7	2348
9	3	135	800	745	246	15	10	630528
10	6	324	971	746	207	60	9	630529
11	6	324	971	746	207	60	9	630529
12	15	15	324	971	746	207	60	9
13	17	286	828	590	137	11	11	630530
14	16	286	828	590	137	11	11	630530
15	17	286	828	590	137	11	11	630530
16	16	286	828	590	137	11	11	630530
17	17	286	828	590	137	11	11	630530
18	16	286	828	590	137	11	11	630530
19	17	286	828	590	137	11	11	630530
20	16	286	828	590	137	11	11	630530
21	17	286	828	590	137	11	11	630530
22	16	286	828	590	137	11	11	630530
23	17	286	828	590	137	11	11	630530
24	16	286	828	590	137	11	11	630530
25	17	286	828	590	137	11	11	630530
26	16	286	828	590	137	11	11	630530
27	17	286	828	590	137	11	11	630530
28	16	286	828	590	137	11	11	630530
29	17	286	828	590	137	11	11	630530
30	16	286	828	590	137	11	11	630530
31	17	286	828	590	137	11	11	630530
32	16	286	828	590	137	11	11	630530
33	17	286	828	590	137	11	11	630530
34	16	286	828	590	137	11	11	630530
35	17	286	828	590	137	11	11	630530
36	16	286	828	590	137	11	11	630530
37	17	286	828	590	137	11	11	630530
38	16	286	828	590	137	11	11	630530
39	17	286	828	590	137	11	11	630530
40	16	286	828	590	137	11	11	630530
41	17	286	828	590	137	11	11	630530
42	16	286	828	590	137	11	11	630530
43	17	286	828	590	137	11	11	630530
44	16	286	828	590	137	11	11	630530
45	17	286	828	590	137	11	11	630530
46	16	286	828	590	137	11	11	630530
47	17	286	828	590	137	11	11	630530
48	16	286	828	590	137	11	11	630530
49	17	286	828	590	137	11	11	630530
50	16	286	828	590	137	11	11	630530
51	17	286	828	590	137	11	11	630530
52	16	286	828	590	137	11	11	630530
53	17	286	828	590	137	11	11	630530
54	16	286	828	590	137	11	11	630530
55	17	286	828	590	137	11	11	630530
56	16	286	828	590	137	11	11	630530
57	17	286	828	590	137	11	11	630530
58	16	286	828	590	137	11	11	630530
59	17	286	828	590	137	11	11	630530
60	16	286	828	590	137	11	11	630530
61	17	286	828	590	137	11	11	630530
62	16	286	828	590	137	11	11	630530
63	17	286	828	590	137	11	11	630530
64	16	286	828	590	137	11	11	630530
65	17	286	828	590	137	11	11	630530
66	16	286	828	590	137	11	11	630530
67	17	286	828	590	137	11	11	630530
68	16	286	828	590	137	11	11	630530
69	17	286	828	590	137	11	11	630530
70	16	286	828	590	137	11	11	630530
71	17	286	828	590	137	11	11	630530
72	16	286	828	590	137	11	11	630530
73	17	286	828	590	137	11	11	630530
74	16	286	828	590	137	11	11	630530
75	17	286	828	590	137	11	11	630530
76	16	286	828	590	137	11	11	630530
77	17	286	828	590	137	11	11	630530
78	16	286	828	590	137	11	11	630530
79	17	286	828	590	137	11	11	630530
80	16	286	828	590	137	11	11	630530
81	17	286	828	590	137	11	11	630530
82	16	286	828	590	137	11	11	630530
83	17	286	828	590	137	11	11	630530
84	16	286	828	590	137	11	11	630530
85	17	286	828	590	137	11	11	630530
86	16	286	828	590	137	11	11	630530
87	17	286	828	590	137	11	11	630530
88	16	286	828	590	137	11	11	630530
89	17	286	828	590	137	11	11	630530
90	16	286	828	590	137	11	11	630530
91	17	286	828	590	137	11	11	630530
92	16	286	828	590	137	11	11	630530
93	17	286	828	590	137	11	11	630530
94	16	286	828	590	137	11	11	630530
95	17	286	828	590	137	11	11	630530
96	16	286	828	590	137	11	11	630530
97	17	286	828	590	137	11	11	630530
98	16	286	828	590	137	11	11	630530
99	17	286	828	590	137	11	11	630530
100	16	286	828	590	137	11	11	630530
101	17	286	828	590	137	11	11	630530
102	16	286	828	590	137	11	11	630530
103	17	286	828	590	137	11	11	630530
104	16	286	828	590	137	11	11	630530
105	17	286	828	590	137	11	11	630530
106	16	286	828	590	137	11	11	630530
107	17	286	828	590	137	11	11	630530
108	16	286	828	590	137	11	11	630530
109	17	286	828	590	137	11	11	630530
110	16	286	828	590	137	11	11	630530
111	17	286	828	590	137	11	11	630530
112	16	286	828	590	137	11	11	630530
113	17	286	828	590	137	11	11	630530
114	16	286	828	590	137	11	11	630530
115	17	286	828	590	137	11	11	630530
116	16	286	828	590	137	11	11	630530
117	17	286	828	590	137	11	11	630530
118	16	286	828	590	137	11	11	630530
119	17	286	828	590	137	11	11	630530
120	16	286	828	590	137	11	11	630530
121	17	286	828	590	137	11	11	630530
122	16	286	828	590	137	11	11	630530
123	17	286	828	590	137	11	11	630530
124	16	286	828	590	137	11	11	630530
125	17	286	828	590	137	11	11	630530
126	16	286	828	590	137	11	11	630530
127	17	286	828	590	137	11	11	630530
128	16	286	828	590	137	11	11	630530
129	17	286	828	590	137	11	11	630530
130	16	286	828	590	137	11	11	630530
131	17	286	828	590	137	11	11	630530
132	16	286	828	590	137	11	11	630530
133	17	286	828	590	137	11	11	630530
134	16	286	828	590	137	11	11	630530
135	17	286	828	590				

Raw surface data as it appears on the DICT63 tape. Marsden square 85.

Kaw surface data as it appears on the DUCT63 tape. Marsden square 85.

Raw surface data as it appears on the DICT63 tape. Marsden square 85.