COPECCION LANINY HON VICTO

コノエハーン

Family list 11 family members for: JP7135323 Derived from 8 applications.

1 Thin film semiconductor integrated circuit and method of fabricating the same

Publication info: CN1058585C C - 2000-11-15 CN1107257 A - 1995-08-23

2 Thin membrane semiconductor integrated circuit and its manufacturing method

Publication Info: CN1132241C C - 2003-12-24 CN1192044 A - 1998-09-02

3 Thin film semiconductor integrated circuit and method of fabricating the same.

Publication Info: EP0650197 A2 - 1995-04-26 EP0650197 A3 - 1997-07-09

4 Thin film semiconductor integrated circuit and method of fabricating the same

Publication info: EP1538676 A1 - 2005-06-08

5 THIN FILM SEMICONDUCTOR INTEGRATED CIRCUIT AND ITS FABRICATION

Publication info: JP7135323 A - 1995-05-23

6 SEMICONDUCTOR INTEGRATED CIRCUIT AND A MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE Publication info: KR216940 B1 - 1999-09-01

7 Thin film semiconductor Integrated circuit and method of fabricating the same

Publication Info: US5608251 A - 1997-03-04

8 Method of fabricating thin film semiconductor integrated circuit Publication Info: US5620905 A - 1997-04-15

Data supplied from the esp@cenet database - Worldwide

DIALOG(R)File 347:JAPIO

(c) 2005 JPO & JAPIO. All rts. reserv.

04842723 **Image available**

THIN FILM SEMICONDUCTOR INTEGRATED CIRCUIT AND ITS FABRICATION

PUB. NO.: **07-135323** [JP 7135323 A]

PUBLISHED: May 23, 1995 (19950523)

INVENTOR(s): KONUMA TOSHIMITSU

HIROKI MASAAKI

CHIYOU KOUYUU

YAMAMOTO MUTSUO

TAKEMURA YASUHIKO

APPLICANT(s): SEMICONDUCTOR ENERGY LAB CO LTD [470730] (A Japanese

Company

or Corporation), JP (Japan)

APPL. NO.: 05-285990 [JP 93285990]

FILED: October 20, 1993 (19931020)

INTL CLASS: [6] H01L-029/786; G02F-001/136

JAPIO CLASS: 42.2 (ELECTRONICS -- Solid State Components); 29.2 (PRECISION

INSTRUMENTS -- Optical Equipment)

JAPIO KEYWORD:R002 (LASERS); R003 (ELECTRON BEAM); R004 (PLASMA); R011

(LIQUID CRYSTALS); R097 (ELECTRONIC MATERIALS -- Metal Oxide

Semiconductors, MOS); R100 (ELECTRONIC MATERIALS -- Ion

Implantation); R131 (INFORMATION PROCESSING -- Microcomputers

& Microprocessers)

ABSTRACT

PURPOSE: To allow the modification of the width of high resistance region depending on the required characteristics and reliability by connecting the source-drain region of at least one thin film transistor with a wiring formed of same film as other gate electrode through a metal wiring formed on an layer insulator.

CONSTITUTION: A layer insulator 117 and the anode oxide 112 of a wiring 108 are etched to make a contact hole 119 at the source-drain of a TFT.

Multilayer wirings 120-125 of titanium nitride and aluminium are then formed wherein the wiring 124 is connected with a pixel electrode 118 and the wiring 125 is connected with gate electrodes 106, 107. Each of TFTs 126, 127 formed on a same substrate has an active layer of crystalline silicon and suitable for high speed operation because of its narrow high resistance region whereas a TFT 128 has an active layer of amorphous silicon and suitable for low leak current operation because of its wide high resistance region.

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平7-135323

(43)公開日 平成7年(1995)5月23日

(51) Int. C1. 6

識別記号

FΙ

H01L 29/786

(19)日本国特許庁(JP)

G02F 1/136

500

9056-4M

H01L 29/78

311 A

審査請求 有 請求項の数9 FD (全12頁)

(21)出願番号

特願平5-285990

(22)出願日

平成5年(1993)10月20日

(71)出願人 000153878

株式会社半導体エネルギー研究所

神奈川県厚木市長谷398番地

(72)発明者 小沼 利光

神奈川県厚木市長谷398番地 株式会社半

導体エネルギー研究所内

(72)発明者 ▲ひろ▼木 正明

神奈川県厚木市長谷398番地 株式会社半

導体エネルギー研究所内

(72) 発明者 張 宏勇

神奈川県厚木市長谷398番地 株式会社半

導体エネルギー研究所内

最終頁に続く

(54) 【発明の名称】薄膜状半導体集積回路およびその作製方法

(57)【要約】

【目的】 同一基板上に最適な特性を示す薄膜トランジスタ(TFT)を多数有する集積回路を提供する。

【構成】 絶縁表面上に、少なくともゲイト電極の側面に陽極酸化物を有する薄膜トランジスタ(TFT)を多数形成する。そして、それぞれのTFTにおいて必要とされる信頼性、特性に応じて前記陽極酸化物の厚さを変える。かくすることによって、同一基板上にそれぞれの目的にとって最適な特性、信頼性を示すTFTを多数形成した半導体集積回路を形成することができる。

2

【特許請求の範囲】

【請求項1】 絶縁表面上に、高抵抗領域の幅の異なる 薄膜トランジスタを少なくとも2つ有し、かつ、少なく とも1つの薄膜トランジスタのソース/ドレイン領域 と、他の薄膜トランジスタのゲイト電極もしくはゲイト 電極と同一被膜によって形成された配線とが、層間絶縁 物上に形成された金属配線によって接続されていること を特徴とする半導体集積回路

1

【請求項2】 複数の薄膜トランジスタを有するアクティブマトリクス回路と、該回路を駆動するためのドライ 10 パー回路およびデコーダー回路とを同一基板上に有する半導体集積回路において、前記アクティブマトリクス回路中の任意のNチャネル型薄膜トランジスタの高抵抗領域の幅は、前記ドライバー回路中のNチャネル型薄膜トランジスタの高抵抗領域の幅よりも大きいことを特徴とする半導体集積回路。

【請求項3】 複数の薄膜トランジスタを有するアクティブマトリクス回路と、該回路を駆動するためのドライパー回路およびデコーダー回路とを同一基板上に有する半導体集積回路において、前記デコーダー回路中のNチ 20ャネル型薄膜トランジスタの高抵抗領域の幅はドライバー回路中のNチャネル型薄膜トランジスタの高抵抗領域の幅より大きいことを特徴とする半導体集積回路。

【請求項4】 複数の薄膜トランジスタを有するアクティブマトリクス回路と、該回路を駆動するためのドライバー回路およびデコーダー回路とを同一基板上に有する半導体集積回路において、CPU回路、メモリー回路、入出力回路の薄膜トランジスタの高抵抗領域の幅はアクティブマトリクス回路の薄膜トランジスタの高抵抗領域の幅より大きいことを特徴とする半導体集積回路。

【請求項5】 請求項2において、アクティブマトリクス回路中の薄膜トランジスタを覆って窒化珪素を主成分とする被膜が設けられ、かつ、該被膜はソース/ドレインの一部もしくは全部、およびゲイト電極を覆うゲイト電極の酸化物を主成分とする絶縁被膜に密着するとともに、アクティブマトリクス中の透明導電性被膜とも密着することを特徴とする半導体集積回路。

【請求項6】 同一基板上にNチャネル型の薄膜トランジスタとPチャネル型の薄膜トランジスタとをそれぞれ少なくとも1つ有する半導体集積回路において、Nチャ 40ネル型の薄膜トランジスタの高抵抗領域の幅はPチャネル型の薄膜トランジスタの高抵抗領域の幅よりも常に大きいことを特徴とする半導体集積回路。

【請求項7】 絶縁表面上に、絶縁被膜によって表面の 覆われた少なくとも2つの独立した第1および第2の薄 膜状半導体領域と前記絶縁被膜上に設けられ、第1およ び第2の半導体領域を横断し、互いに独立な第1および 第2の配線とを有し、かつ、該第1および第2の配線の 少なくとも側面には該配線の酸化物を主成分とする絶縁 物が設けられ、第1の配線の絶縁物の厚さは第2の配線 50 の絶縁物の厚さよりも大であることを特徴とする半導体 装置。

【請求項8】 請求項7において、第1の半導体領域の配線の下の領域の結晶性は、第2の半導体領域のものよりも低いことを特徴とする半導体装置。

【請求項9】 絶縁表面上に、第1および第2の薄膜状 半導体領域を形成する第1の工程と、

前記薄膜状半導体領域を覆って絶縁被膜を形成する第2 の工程と、

前記絶縁被膜上に第1および第2の半導体領域をそれぞれ横断する第1および第2の電気的に互いに絶縁された 2つの配線を形成する第3の工程と、

前記第1および第2の配線に同時にもしくは独立に電解溶液中で通電することによって、すくなくともそれぞれの配線の側面に該配線の酸化物を主成分とする絶縁物を形成する第4の工程とを有する半導体装置の作製方法において、第4の工程における第1の配線への通電時間は、第2の配線への通電時間よりも長いことを特徴とする半導体装置の作製方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、絶縁表面上に薄膜状の 絶縁ゲイト型半導体装置(薄膜トランジスタもしくはT FT)が多数形成された集積回路の信頼性および特性を 向上させる方法に関する。本発明による半導体装置は、 液晶ディスプレー等のアクティブマトリクスやイメージ センサー等の駆動回路、あるいはSOI集積回路や従来 の半導体集積回路(マイクロプロセッサーやマイクロコ ントローラ、マイクロコンピュータ、あるいは半導体メ 電気光学装置を駆動するアクティブマトリクス回路と、 その駆動のためのドライバー回路、あるいはメモリー回 路と中央演算回路(CPU)とを同一基板上に形成する モノリシック型の薄膜集積回路およびその作製方法に関 する。

[0002]

【従来の技術】近年、絶縁基板上、もしくは半導体基板上であっても厚い絶縁膜によって半導体基板と隔てられた表面(絶縁表面)上に絶縁ゲイト型半導体装置(MISFET)を形成する研究が盛んに成されている。特に半導体層(活性層)が薄膜状である半導体装置を薄膜トランジスタ(TFT)という。このような半導体装置においては、単結晶の半導体のような良好な結晶性を有する素子を得ることは困難で、通常は結晶性は有するが単結晶でない、非単結晶の半導体を用いていた。

【0003】このような非単結晶半導体は、単結晶半導体に比較して特性が悪く、特に、ゲイト電極に逆電圧(すなわち、Nチャネル型TFTの場合には負、Pチャネル型TFTの場合には正の電圧)を印加した場合には、ソース/ドレイン間のリーク電流が増加するという

問題があった。また、かかるTFTの移動度が電圧の印 加によって低下するという劣化の問題もあった。このよ うな問題を解決するためには、ソース/ドレイン領域と ゲイト電極の間に真性もしくは弱いN型やP型の高抵抗 領域を設ける必要があることが知られている。特に、髙 抵抗領域を作製する際には、ゲイト電極を陽極酸化、そ の他の方法で少なくともその側面を酸化させ、この酸化 物もしくは酸化物の跡を利用して自己整合的にドーピン グをおこなうことによって、均一な幅の高抵抗領域を得 ることができた。

[0004]

【発明が解決しようとする課題】しかしながら、このよ うな高抵抗領域はソース/ドレイン間に直列に挿入され た抵抗としても機能するので、例えば、高速動作が必要 な場合にはかえって不必要なものであった。特に、同一 絶縁表面上に異なった特性を要求されるTFTを形成す る場合には問題であった。例えば、電気光学索子を駆動 するアクティブマトリクス回路と、その回路を駆動する ためのドライバー回路とを同一基板上に有するモノリシ ック回路を考えてみると、アクティブマトリクス回路に 20 おいては、リーク電流が低い方が望ましいので、高抵抗 領域の幅が広いTFTが望まれた。

【0005】しかしながら、デコーダー回路やドライバ 一回路、さらには、CPU、メモリー回路等において は、高速動作の必要上、高抵抗領域の幅は小さい方が望 まれた。しかしながら、同一基板上に同一プロセスで形 成されたTFTでは、高抵抗領域の幅は全て同じであ り、上記のような回路、目的に応じて高抵抗領域の幅を 変更するということは困難であった。そのため、モノリ シック型のアクティブマトリクス回路や、さらにそれを 30 発展させたモノリシック集積回路を作製することは困難 であった。本発明は、このような困難を解決し、TFT や回路の必要とする特性、信頼性に応じて高抵抗領域の 幅を変更した半導体集積回路およびその作製方法に関す る。

[0006]

【課題を解決するための手段】本発明の第1は、ゲイト 電極の陽極酸化工程において、TFTに応じて陽極酸化 時間を変化させることによって、得られる高抵抗領域の ク型アクティブマトリクス回路において、低オフ電流、 低周波動作用のアクティブマトリクス回路中のTFTの 高抵抗領域の幅を、大電流駆動、高周波動作用のドライ バー回路、低消費電力、高周波動作用のデコーダー回路 中のTFTのものよりも大きくしたものである。本発明 の第3は、Nチャネル型TFTの高抵抗領域の幅をPチ ャネル型TFTのものよりも大きくするものである。

【0007】例えば、モノリシック型のアクティプマト リクス回路においては、アクティブマトリクス回路中の

回路においては、Nチャネル型TFT(以下、NTFT という) で、0.2~0.3 μm、Pチャネル型TFT (以下、PTFTという) においては0~0.2 μmと する。さらに、中央演算回路(CPU)その他の論理演 算素子/回路に用いられるデコーダーにおいても、Nチ ャネル型TFTでは0.3~0.4μm、Pチャネル型 TFTにおいては $0 \sim 0$. 2μ mとする。このように、 本発明では、アクティブマトリクス回路のTFTの高抵 抗領域の幅は、ドライバー、デコーダーのTFTのもの よりも大きく、Nチャネル型TFTの高抵抗領域の幅は Pチャネル型TFTのものより大きいことを特徴とす る。

【0008】前記のようにアクティブマトリクス回路の TFTの高抵抗領域の幅が、ドライバーやデコーダーの TFTの幅よりも大きな理由は要求されるTFTの特性 が、前者は低リーク電流、後者は高速動作というように 互いに異なるからである。一方、同じドライバーもしく はデコーダーにおいて、Nチャネル型TFTとPチャネ ル型TFTとで高抵抗領域の幅を変えることは以下の理 由による。

【0009】特にNチャネル型TFTにおいて、弱いN 型の高抵抗領域を設けると、ドレイン近傍の電界を緩和 させて、ホットキャリヤ効果による劣化を抑制すること ができる。したがって、この場合のNチャネル型TFT の高抵抗領域は弱いN型であることが望まれる。一方、 Pチャネル型TFTにおいては、ホットキャリヤによる 劣化は少ないので、特にこのような高抵抗領域を設けな くともよい。逆に、高抵抗領域の存在はTFTの動作速 度の低下をもたらす。Pチャネル型TFTの移動度はN チャネル型TFTよりも劣るので可能な限り、高抵抗領 域の幅は小さい方が好ましい。その結果、上述のように Nチャネル型TFTの高抵抗領域の幅がPチャネル型T FTのものよりも大きくなるのである。

[0010]

【実施例】

(実施例1) 本発明によって、異種のTFTを有する 集積回路を作製する例を図1および図2に示す。図2の (A)、(B)、(C)は、図1の(A)、(C)、

(E) と、それぞれほぼ対応した、平面図を示す。ま 幅を変更するものである。本発明の第2は、モノリシッ 40 た、図1は、図2中の一点鎖点線で示された部分の断面 である。まず、基板(コーニング7059、300mm ×300mmもしくは100mm×100mm) 101 上に、厚さ1000~3000Åの酸化珪素膜102を スパッタ法によって堆積した。これは、プラズマCVD 法によって形成してもよい。

【0011】その後、プラズマCVD法やLPCVD法 によってアモルファス状のシリコン膜を300~150 0Å、好ましくは500~1000Å堆積し、これをパ ターニングして、島状シリコン領域103および104 TFTの高抵抗領域の幅は0.4~1μm、ドライパー 50 を形成した。そして、厚さ200~1500Å、好まし

20

6

くは $500\sim100$ Aの酸化珪素をスパッタ法もしくはプラズマCVD法によって形成した。この酸化珪素膜はゲイト絶縁膜としても機能するので、その作製には十分な注意が必要である。例えば、プラズマCVD法を用いる場合には、TEOSを原料とし、酸素とともに基板温度 $150\sim400$ ℃、好ましくは $200\sim250$ ℃で、RF放電させて、原料ガスを分解・堆積した。TEOSと酸素の圧力比は $1:1\sim1:3$ 、また、圧力は $0.05\sim0.5$ torr、RFパワーは $100\sim250$ Wとした。あるいはTEOSを原料としてオゾンガス 10 とともに減圧CVD法もしくは常圧CVD法によって、基板温度を $150\sim400$ ℃、好ましくは $200\sim250$ ℃として形成してもよい。

【0012】そして、KrFエキシマーレーザー(波長248nm、パルス幅20nsec)を照射して、シリコン領域103のみを結晶化させた。レーザーのエネルギー密度は200~400mJ/cm²、好ましくは250~300mJ/cm²とし、また、レーザー照射の際には基板を300~500℃に加熱した。レーザーとしてはXeC1エキシマーレーザー(波長308nm)、その他を用いてもよい。シリコン領域104はアモルファスのままであった。

【0013】その後、厚さ2000Å~5μm、例え ば、6000人のアルミニウム膜を電子ピーム蒸着法に よって形成して、これをパターニングし、ゲイト電極1 06、107、109および配線108を形成した。ア ルミニウムにはスカンジウム (Sc) を0.05~0. 3 重量%ドーピングしておくと、加熱によるヒロックの 発生が抑制された。この状態を図1 (A) および図2 (A) に示す。図2 (A) から明らかなように、ゲイト 30 電極109と配線108は電気的に接続されており、ま た、ゲイト電極106、107とゲイト電極109、配 線108とは、電気的に独立している。以下、前者をA 系列、後者をB系列と称する。次に基板をpH≒7、1 ~3%の酒石酸のエチレングリコール溶液に浸し、白金 を陰極、このアルミニウムのゲイト電極を陽極として、 陽極酸化をおこなった。このような中性の溶液を用いて 得られる陽極酸化物はバリヤ型陽極酸化物と呼ばれ、緻 密で耐圧も高い。

【0014】陽極酸化の際には、陽極の電源端子は独立 40 して制御できるものを2種類用意し、A系列とB系列とは異なる端子に接続した。陽極酸化は、最初、A系列およびB系列の両方に、一定電流を印加し続け、第1の電圧、V,まで電圧を上げ、その状態で1時間保持した。その後、A系列は電圧V,を保ったまま、B系列には一定の電流を印加し続け、第2の電圧V,まで電圧を上昇した。このように2段階の陽極酸化をおこなったために、A系列とB系列とではゲイト電極の側面、および上面に形成される陽極酸化物の厚さが異なり、後者の方が厚くなる。V,としては、50~150Vが好ましく、50

ここでは、100 Vとした。V, としては、100 ~ 2 50 Vが好ましく、ここでは、200 Vとした。本実施例では定電流状態では、電圧の上昇速度は $2\sim 5$ V/分が適当であった。当然ではあるが、V, < V, である。この結果、A系列であるゲイト電極106、107 には厚さ約1200 Aの陽極酸化物110、111 が、また、ゲイト電極109 と配線108 には厚さ2400 Aの陽極酸化物112、113 がそれぞれ形成された。(図1(B))

【0015】その後、イオンドーピング法(プラズマドーピング法ともいう)によって、各TFTの島状シリコン膜中に、公知のCMOS技術、自己整合不純物注入技術を用いて、不純物イオン(燐、ホウ素)を注入した。ドーピングガスとしてはフォスフィン(PH,)およびジボラン(B, H。)を用いた。ドーズ量は、2~8×10¹⁵ cm⁻¹とした。この結果、N型不純物(燐)領域114、116およびP型不純物(ホウ素)領域115が形成された。それは、図面でNTFT126、128、PTFT127を形成するためである。

【0016】さらに、KrFエキシマーレーザー(波長 248nm、パルス幅20nsec) を照射して、上記 不純物領域の導入によって結晶性の劣化した部分の結晶 性を改善させた。レーザーのエネルギー密度は150~ 400mJ/cm¹、好ましくは200~250mJ/ cm'であった。こうして、N型不純物領域114、1 16およびP型の不純物領域115が活性化された。こ れらの領域のシート抵抗は200~800Ω/口であっ た。本工程はRTA(ラピッ・サーマル・アニール)に よっておこなってもよい。(図1(C)、図2(B)) 【0017】以上の工程によって、それぞれのTFTの オフセット領域(高抵抗領域)の幅が決定された。すな わち、図1の左側の2つのTFTでは、陽極酸化物11 0、111の厚さが約1200人なので、オフセット幅 x, x, はイオンドーピングの際の回りこみを考慮し て約1000Åであり、右側のTFTでは、陽極酸化物 113の厚さが約2400人なので、オフセット幅x, は約2000Åであった。(図1 (D)参照) 高周波動 作用のTFT126, 127のオフセット幅x, 、x, は、低オフ電流の要求されるNTFT128のオフセッ ト幅x,よりも小さいことが必要である。しかし、ま た、NTFTはドレインの逆パイアスでのホットキャリ ヤによる劣化が多発しやすいため、PTFTよりもオフ セット幅を大とすることが好ましい。すなわち、x,> x, である。また、オフ電流が少なく、かつ、高いドレ イン電流が印加されるNTFT128は大きなオフセッ ト幅を有するためx、>x、である。

した。このように 2 段階の陽極酸化をおこなったため 【0018】その後、ゲイト電極および配線(図 2 に、A 系列とB 系列とではゲイト電極の側面、および上 (C)の130)を分断して、回路に必要な長さにし 面に形成される陽極酸化物の厚さが異なり、後者の方が た。そして、全面に層間絶縁物 117として、TEOS 厚くなる。 V としては、 $50\sim150$ Vが好ましく、 50 を原料として、これと酸素とのプラズマCVD法、もし

くはオゾンとの減圧CVD法あるいは常圧CVD法によ って酸化珪素膜を厚さ3000~1000点、例え ば、6000A形成した。この際にフッ素を六フッ化二 炭素(C, F,)を用いて反応させて酸化珪素中に添加 するとステップカバレージが改善できる。基板温度は1 50~400℃、好ましくは200℃~300℃とし た。さらに、スパッタ法によってITO被膜を堆積し、 これをパターニングして画素電極118とした。そし て、前記層間絶縁物117および配線108の陽極酸化 物112をエッチングして、コンタクトホール119を 10 T128(そのオフセット幅をx,とする)よりもドレ 形成した。(図1(D))

【0019】その後、層間絶縁物とゲイト絶縁膜105

をエッチングし、TFTのソース/ドレインにコンタク トホールを形成した。図1には示されていないが、この コンタクトホール形成の際に、同時に、陽極酸化物11 0、111をもエッチングして、ゲイト電極106、1 07へもコンタクトホールが形成されている。(図2 (C) 参照) そして、窒化チタンとアルミニウムの多層 膜の配線120~125を形成した。配線124は画素 電極118に接続させた。また、ゲイト電極106、1 20 07には先に形成されたコンタクトホールを介して、配 線125が接続した。最後に、水素中で200~300 ℃で0.1~2時間アニールして、シリコンの水素化を 完了した。このようにして、集積回路が完成した。 (図 1 (E)、図2 (C))

【0020】本実施例では、厚い陽極酸化物113をエ ッチングしてコンタクトホールを形成する工程と、その 他のコンタクトホールを形成する工程を別々におこなっ た。もちろん、同時におこなってもよいのであるが、本 実施例において、量産性を犠牲にして、あえてこのよう 30 にしたのは、前者の厚さが、後者よりも陽極酸化物の厚 さの差、1200点だけ厚く、かつ、本実施例で得られ たパリヤ型陽極酸化物のエッチングレートが、酸化珪素 等に比較して極めて小さいからであり、この両者を同時 にエッチングすると、エッチングされやすい酸化珪素膜 で覆われたソース、ドレインへのコンタクトホールが大 幅にエッチングされ、ソース、ドレインにまで孔があい てしまうからである。

【0021】このようにして、異種のTFTが同一基板 つのTFT126、127は活性層が結晶性シリコンで 髙抵抗領域(オフセット領域)の幅の小さいTFTで髙 速動作に適しており、右側のTFT129は活性層がア モルファスシリコンで高抵抗領域(オフセット領域)の 幅の大きなTFTで低リーク電流を特徴としている。T FT128の活性層はTFT127、128よりも結晶 化の程度の低い結晶生シリコンでも同じ効果が得られ る。同じプロセスを用いてモノリシック型アクティブマ トリクスを作製する場合には、前者をドライバー回路 に、後者をアクティブマトリクス回路に用いればよいこ 50 し、配線部206、209、ゲイト電極部207、20

とはいうまでもない。

【0022】ホットキャリヤによる劣化はNTFTによ く見られるが、チャネル幅の大きなドライバーTFT (このオフセット幅をx, とする)では、あまり観察さ れない。また、高周波動作を要求されるデコーダー回 路、特にシフトレジスタ、CPU、メモリー、その他の 補正回路のNTFT(そのオフセット幅をx、とする) は、チャネル幅が小さく、かつ、チャネル超も小さくす る必要があるため、アクティブマトリクス回路中のTF イン電圧が低いために劣化が少ない。このため、x、く x, くx, であることが求められる。そして、PTFT のオフセット幅x, はドライバーTFTでもその外の補 助回路でも劣化がほとんどないため、x、≦x、である ことが許される。

【0023】〔実施例2〕 図3および図4に本実施例 を示す。図3は、図4中の一点鎖点線で示された部分の 断面である。まず、基板(コーニング7059、300 mm×400mmもしくは100mm×100mm) 2 01上に下地酸化膜202として厚さ1000~300 0Å、例えば、2000Åの酸化珪素膜を形成した。こ の酸化膜の形成方法としては、酸素雰囲気中でのスパッ 夕法を使用した。しかし、より量産性を高めるには、T EOSをプラズマCVD法で分解・堆積した膜を用いて

【0024】その後、プラズマCVD法やLPCVD法 によってアモルファスシリコン膜を300~5000 A、好ましくは500~1000A堆積し、これを、5 50~600℃の還元雰囲気に24時間放置して、結晶 化せしめた。この工程は、レーザー照射によっておこな ってもよい。そして、このようにして結晶化させた珪素 膜をパターニングして島状の活性層領域203および2 04を形成した。さらに、この上にスパッタ法によって 厚さ700~1500人の酸化珪素膜205を形成し た。

【0025】その後、厚さ1000Å~3μm、例え ば、6000Aのアルミニウム膜(1wt%のSi、も しくは0.1~0.3wt%のScを含む)を電子ビー ム蒸着法もしくはスパッタ法によって形成した。そし 上に形成された。すなわち、図1および図2の左側の2 40 て、フォトレジスト (例えば、東京応化製、OFPR8 00/30cp) をスピンコート法によって形成した。 フォトレジストの形成前に、アルミニウム膜の全表面に 陽極酸化法によって厚さ100~1000人の酸化アル ミニウム膜を表面に形成しておくと、フォトレジストと の密着性が良く、また、フォトレジストからの電流のリ ークを抑制することにより、後の陽極酸化工程におい て、多孔質陽極酸化物を側面のみに形成するうえで有効 であった。その後、フォトレジストとアルミニウム膜を パターニングして、アルミニウム膜と一緒にエッチング 8、210を形成した。(図3(A))

【0026】これらの配線、ゲイト電極の上には前記の フォトレジストが残されており、これは後の陽極酸化工 程において陽極酸化防止のマスクとして機能する。この 状態を上から見た様子を図4に示す。この場合も、実施 例1と同様に、ゲイト電極207、208および配線2 09と、配線206とゲイト電極210とは電気的に独 立しており、前者をA系列、後者をB系列と称する。 (図4 (A))

9

【0027】そして、上記の配線、ゲイト電極のうち、 B系列にのみ電解液中で電流を通じて陽極酸化し、厚さ 3000Å~25μm、例えば、厚さ0.5μmの陽極 酸化物211、212を配線、ゲイト電極の側面に形成 した。陽極酸化は、3~20%のクエン酸もしくはショ ウ酸、燐酸、クロム酸、硫酸等の酸性水溶液を用いてお こない、5~30V、例えば、8Vの一定電流をゲイト 電極に印加しておこなった。このようにして形成された 陽極酸化物は多孔質なものであった。本実施例では、シ ュウ酸溶液 (30~80℃) 中で電圧を8 Vとし、20 化時間および温度によって制御した。この際、A系列に は電流が流されていないのでゲイト電極207、20 8、配線209には陽極酸化物は形成されなかった。 (図3 (B)、図4 (B))

【0028】次に、マスクを除去し、再び電解溶液中に おいて、ゲイト電極・配線に電流を印加した。今回は、 3~10%の酒石液、硼酸、硝酸が含まれたPH≒7の エチレングルコール溶液を用い、A系列、B系列ともに 通電した。溶液の温度は10℃前後の室温より低い方が 206~210の上面および側面にパリヤ型の陽極酸化 物213~217が形成された。陽極酸化物213~2 17の厚さは印加電圧に比例し、例えば、印加電圧が1 00 Vで1200 Åの陽極酸化物が形成された。本実施 例では、電圧は100Vまで上昇させたので、得られた 陽極酸化物の厚さが1200人であった。パリヤ型の陽 極酸化物の厚さは任意であるが、あまり薄いと、後で多 **孔質陽極酸化物をエッチングする際に、アルミニウムを** 溶出させてしまう危険があるので、500人以上が好ま しかった。

【0029】注目すべきは、バリヤ型の陽極酸化物は後 の工程で得られるにもかかわらず、多孔質の陽極酸化物 の外側にパリヤ型の陽極酸化物ができるのではなく、多 孔質陽極酸化物とゲイト電極の間にバリヤ型の陽極酸化 物が形成されることである。(図3 (C))その後、イ オンドーピング法によって、TFTの活性層203、2 04に、ゲイト電極部(すなわちゲイト電極とその周囲 の陽極酸化膜)およびゲイト絶縁膜をマスクとして自己 整合的に不純物を注入し、不純物(ソース/ドレイン)

スとしてはフォスフィン (PH,) およびジボラン (B 1 H.) を用いた。ドーズ量は5×10¹¹~5×10¹¹ cm⁻¹、加速エネルギーは50~90keVとした。領 域218および220はN型、領域219はP型となる ように不純物を導入した。領域218により、NTFT 228、領域219によりPTFT229、領域220 により、NTFT230が作られる。

【0030】この結果、図の左側の2つのTFT(これ らは相補型TFTである)228、229では、ゲイト 10 電極の側面の陽極酸化物214、215の厚さが約12 00Åであるので、ゲイト電極と不純物領域の重ならな い領域(オフセット領域)の幅x,、x,は、イオンド ーピングの際の回りこみを考慮して約1000Aであっ た。一方、右側のTFT230では、陽極酸化物212 および217の厚さが合わせて約6200人なので、オ フセット幅x, は約6000Åであった。

【0031】その後、燐酸、酢酸、硝酸の混酸を用いて 多孔質陽極酸化物211、213をエッチングした。こ のエッチングでは陽極酸化物211、213のみがエッ ~ 240 分、陽極酸化した。陽極酸化物の厚さは陽極酸 20 チングされ、エッチングレートは約600 A/分であっ た。バリヤ型陽極酸化物213~217や酸化珪素膜2 05はそのまま残存した。その後、KrFエキシマーレ ーザー(波長248nm、パルス幅20nsec)を照 射して、活性層中に導入された不純物イオンの活性化を おこなった。(図3(E))

【0032】そして、ゲイト電極・配線を分断して、必 要とする大きさ、形状とした。(図4(C)。さらに、 全面に層間絶縁物221として、CVD法によって酸化 珪素膜を厚さ6000Å形成した。次いで、厚さ800 良好な酸化膜が得られた。このため、ゲイト電極・配線 30 AのITO膜をスパッタ法によって形成し、これをパタ ーニングして、画素電極222を形成した。そして、層 間絶縁物221およびゲイト絶縁膜205をエッチング して、TFTのソース/ドレインにコンタクトホールを 形成し、同時に、層間絶縁物221および陽極酸化物2 13~217をエッチングして、ゲイト電極・配線にコ ンタクトホールを形成した。本実施例では、実施例1と は異なり、陽極酸化物はA系列、B系列のいずれもほぼ 同じ厚さであるので、これらを同時にエッチングするこ とができ、したがって、フォトリソ工程は、実施例1の 40 場合よりも1つ少なくなる。最後に、アルミニウム配線 ・電極223~226を形成し、200~400℃で水 素アニールをおこなった。

【0033】なお、配線223は配線206と相補型T FTのNチャネル型TFTのソースを接続し、配線22 5は相補型TFTのTFTのPチャネル型TFTのソー スと配線209を接続する。また、配線224(すなわ ち226) は相補型TFTの出力端子(すなわち、Nチ ャネル型TFTとPチャネル型TFTのドレイン)と右 のTFTのドレインとを接続する。さらに、配線227 領域218、219、220を形成した。ドーピングガ 50 は右のTFTのドレインと画素電極222とを接続す

11

る。以上によって、TFTを有する集積回路が完成され た。(図3(F))

【0034】また、特にA系列において、実施例に示し たごとく、ドライバーは大電流駆動となるため、PTF T (高抵抗領域幅をx, とする)、NTFT (高抵抗 領域幅をx、とする)とも劣化が少ない。また、デコー ダー、CPU、シフトレジスタ、メモリーその他の駆動 回路は小消費電力であり、かつ、髙周波動作のため、チ ャネル幅、チャネル長とも小さく、ホットキャリヤによ る劣化が発生しやすい。これらの回路に用いられるNT 10 こない、5~30Vの一定電流をゲイト電極に印加し FTの高抵抗領域の幅x、は、PTFTの高抵抗領域の 幅x」よりも大なることが必要である。また、大電圧の 印加されるアクティブマトリクス回路中のNTFT(高 抵抗領域幅をx、とする)は、必要とされる移動度も小 さいため、劣化が非常に発生しやすく、結果として、信 頼性向上のためには、x, >x, >x, $\ge x$, であるこ とが求められる。例えば、x, は0. $5\sim 1 \mu m$ 、x, $d0. 2\sim 0. 3 \mu m, x_1 d0\sim 0. 2 \mu m, x_1 d$ $0 \sim 0$. $1 \mu m$ である。かくすると、シフトレジスタは は、画素電極の制御をおこなうTFT(右のTFT)の オフセットの幅が実施例1よりも十分に大きいでのリー ク電流を抑える効果が大である。

【0035】〔実施例3〕 図5に本実施例を示す。本 実施例は、モノリシック型アクティブマトリクス液晶デ ィスプレーに関するもので、図の左側はドライバー回路 の相補型TFTを、右側はアクティブマトリクス回路の 画素制御用TFTを示している。まず、基板(コーニン グ7059、300mm×400mm) 301上に下地 酸化膜302として厚さ2000Åの酸化珪素膜を形成 30 した。この酸化膜の形成方法としては、酸素雰囲気中で のスパッタ法もしくはプラズマCVD法で分解・堆積し た膜を用いるとよい。

【0036】その後、プラズマCVD法やLPCVD法 によってアモリファスシリコン膜を300~5000 A、好ましくは500~1000A堆積し、これを、5 50~600℃の還元雰囲気に24時間放置して、結晶 化せしめた。そして、このようにして結晶化させたシリ コン膜をパターニングして島状活性層領域303、30 4を形成した。さらに、この上にスパッタ法によって厚 40 さ700~1500人の酸化珪素膜205を形成した。 【0037】その後、厚さ1000Å~3µm、例え ば、6000Åのアルミニウム(0.1~0.3wt% のScを含む) 膜をスパッタ法によって形成した。そし て、実施例2(図3(A)~(C)参照)と同様な方法 で、アルミニウム膜上にフォトレジストをスピンコート 法によって形成した。フォトレジストの形成前には、陽 極酸化法によって厚さ100~1000点の酸化アルミ ニウム膜をアルミニウム表面に形成した。その後、フォ トレジストとアルミニウム膜をパターニングして、アル 50 を示す。このため、領域314~316は極めて低濃度

ミニウム膜と一緒にエッチングし、ゲイト電極306、 307、308および配線309を形成した。ゲイト電 極306とゲイト電極307とゲイト電極308は電気 的に独立であり、また、ゲイト電極308と配線309 は電気的に接続されている。

【0038】 さらにこれに電解液中で電流を通じて陽極 酸化し、厚さ3000Å~25µmの陽極酸化物を形成 した。陽極酸化は、3~20%のクエン酸もしくはショ ウ酸、燐酸、クロム酸、硫酸等の酸性水溶液を用いてお た。このようにして得られた陽極酸化物は多孔質であ る。本実施例ではシュウ酸溶液(30℃)中で電圧を8 Vとし、20~140分、陽極酸化した。陽極酸化物の 厚さは陽極酸化時間によって制御し、ゲイト電極306 および307には、500~2000Å、例えば100 0人の薄い陽極酸化物を形成し、ゲイト電極308と配 線309には、3000~9000Å、例えば、500 0 Åの厚い陽極酸化物を形成した。

【0039】次に、マスクを除去し、再び電解溶液中に $1\sim50\,\mathrm{MHz}$ で動作させることができた。本実施例で 20 おいて、ゲイト電極に電流を印加した。今回は、 $3\sim1$ 0%の酒石液、硼酸、硝酸が含まれたPH≒7のエチレ ングルコール溶液を用いた。また、今回は全てのゲイト 電極・配線に同じだけの電圧を印加した。このため、全 てのゲイト電極・配線の上面および側面にパリヤ型の陽 極酸化物が形成された。本実施例では、バリヤ型陽極酸 化物の厚さは1000Åとした。(図5(A))

【0040】その後、ドライエッチング法によって酸化 珪素膜305をエッチングした。このエッチングにおい ては、等方性エッチングのプラズマモードでも、あるい は異方性エッチングの反応性イオンエッチングモードで もよい。ただし、珪素と酸化珪素の選択比を十分に大き くすることによって、活性層を深くエッチングしないよ うにすることが重要である。例えば、エッチングガスと してCF、を使用すれば陽極酸化物はエッチングされ ず、すなわち、ゲイト電極306、307、308、配 線313の下部に存在する酸化珪素膜305はエッチン グされずに、それぞれ、ゲイト絶縁膜310、311、 312、絶縁膜313として残った。(図5(B)) 【0041】その後、燐酸、酢酸、硝酸の混酸を用いて 多孔質陽極酸化物をエッチングした。そして、イオンド ーピング法によって、TFTの活性層303、304 に、ゲイト電極部(すなわちゲイト電極とその周囲の陽 極酸化膜)およびゲイト絶縁膜をマスクとして自己整合 的に不純物を注入した。この際には、イオンの加速電圧 とドーズ量によって、不純物領域にさまざまな組み合わ せが考えられる。例えば、加速電圧を50~90kVと 高めに設定し、ドーズ量を1×10''~5×10''cm ごと低めにすれば、領域314~316には、ほとんど の不純物イオンは活性層を通過し、下地膜で最大の濃度

の不純物領域となる。一方、上にゲイト絶縁膜310~ 312の存在する領域317~319では、ゲイト絶縁 膜によって髙速のイオンが減速されて、ちょうど、不純 物濃度が最大となり、低濃度の不純物領域を形成するこ とができる。

【0042】逆に、加速電圧を5~30kVと低めに設 定し、ドーズ量を5×10''~5×10''cm-'と多め にすれば、領域314~316には、多くの不純物イオ ンが注入され、高濃度の不純物領域となる。一方、上に 19では、ゲイト絶縁膜によって低速のイオンが妨げら れて、不純物イオンの注入量は低く、低濃度の不純物領 域を形成することができる。このように、いずれの方法 を用いても、領域317~319は低濃度の不純物領域 となり、本実施例では、いずれの方法を採用してもよ い。このようにして、イオンドーピングをおこない、N 型の低濃度不純物領域317、319とP型の低濃度不 純物領域318を形成した後、KFFエキシマーレーザ 一(波長248nm、パルス幅20nsec)を照射し て、活性層中に導入された不純物イオンの活性化をおこ 20 なった。この工程は、RTP(ラピッド・サーマル・プ ロセス) を用いてもよい。(図5 (C))

【0043】この結果、各TFTで高抵抗領域(すなわ ち、低濃度領域とオフセット領域) の幅が異なった。す なわち、ドライバー回路のNチャネル型TFTでは、高 抵抗領域の幅x」はオフセット幅1000Åに低濃度領 域の幅1000Åを加えた2000Åであり、同じくP チャネル型TFTにおいては、x,は低濃度領域の幅の みの1000Åであり、画素制御のTFTにおいては、 0Åを加えた6000Åであった。

【0044】さらに、全面に適当な金属、例えば、チタ ン、ニッケル、モリプテン、タングステン、白金、パラ ジウム等の被膜、例えば、厚さ50~500人のチタン 膜320をスパッタ法によって全面に形成した。この結 果、金属膜(ここではチタン膜)320は高濃度(もし くは極低濃度) 不純物領域314~316に密着して形 成された。(図5(D))

【0045】そして、KrFエキシマーレーザー(波長 膜(ここではチタン)と活性層のシリコンを反応させ、 金属珪化物(ここでは珪化チタン)の領域330~33 2を形成した。レーザーのエネルギー密度は200~4 00mJ/cm'、好ましくは250~300mJ/c m'が適当であった。また、レーザー照射時には基板を 200~500℃に加熱しておくと、チタン膜の剥離を 抑制することはできた。なお、本実施例では上記の如 く、エキシマーレーザーを用いたが、他のレーザーを用 いてもよいことはいうまでもない。ただし、レーザーを

統発振レーザーでは照射時間が長いので、熱によって被 照射物が熱によって膨張することによって剥離するよう な危険がある。

【0046】パルスレーザーに関しては、Nd:YAG レーザー(Qスイッチパルス発振が望ましい)のごとき 赤外光レーザーやその第2高調波のごとき可視光、Kr F、XeCl、ArF等のエキシマーを使用する各種紫 外光レーザーが使用できるが、金属膜の上面からレーザ 一照射をおこなう場合には金属膜に反射されないような ゲイト絶縁膜310~312の存在する領域317~3 10 波長のレーザーを選択する必要がある。もっとも、金属 膜が極めて薄い場合にはほとんど問題がない。また、レ ーザー光は、基板側から照射してもよい。この場合には 下に存在するシリコン半導体膜を透過するレーザー光を 選択する必要がある。

> 【0047】また、アニールは、可視光線もしくは近赤 外光の照射によるランプアニールによるものでもよい。 ランプアニールを行う場合には、被照射面表面が600 ~1000℃程度になるように、600℃の場合は数分 間、1000℃の場合は数10秒間のランプ照射を行う ようにする。近赤外線(例えば1.2 μmの赤外線)によ るアニールは、近赤外線が珪素半導体に選択的に吸収さ れ、ガラス基板をそれ程加熱せず、しかも一回の照射時 間を短くすることで、ガラス基板に対する加熱を抑える ことができる等、使用上、都合が良い。

【0048】この後、過酸化水素とアンモニアと水とを 5:2:2で混合したエッチング液で未反応のチタン膜 のエッチングした。露出した活性層と接触した部分以外 のチタン膜(例えば、ゲイト絶縁膜や陽極酸化膜上に存 在したチタン膜)はそのまま金属状態で残っているが、 x, はオフセット幅1000Aに低濃度領域の幅500 30 このエッチングで除去できる。一方、金属珪化物である 珪化チタン330~332はエッチングされないので、 残存させることができた。本実施例では、珪化物領域3 30~332のシート抵抗は10~50Ω/口となっ た。一方、低濃度不純物領域317~319では10~ 100kΩ/□であった。

【0049】そして、アクティブマトリクス回路のNT FT337上に厚さ500~3000Å、例えば、10 00人の窒化珪素膜322を形成した。一般に窒化珪素 膜は、正孔を捕獲する性質がある。したがって、特にホ 248nm、パルス幅20nsec)を照射して、金属 40 ットキャリヤの発生しやすい用途、例えば、アクティブ マトリクス回路のTFT等、において、ホットキャリヤ 注入によるゲイト絶縁膜のホットエレクトロンによる電 子のチャージアップを防止するうえで窒化珪素膜322 は有効であった。もっとも、PTFTの場合には、逆効 果となるので、相補型回路の存在する部分には窒化珪素 膜は形成しない方が好ましい。本実施例で、アクティブ マトリクス回路(図の右側)だけに窒化珪素膜を残した のは以上の理由による。

【0050】さらに、全面に層間絶縁物321として、 用いるにあたってはパルス状のレーザーが好ましい。連 50 CVD法によって酸化珪素膜を厚さ2000A \sim 1μ

m、例えば、5000Å形成した。そして、配線309に孔324を形成し、窒化珪素膜322を露出させた。そして、スパッタ法によってITO膜を形成し、これをパターニング・エッチングして、画素電極323を形成した。画素電極323は、孔324において、バリヤ型陽極酸化物(1000Å)と窒化珪素膜(1000Å)をはさんで配線309と静電容量を形成する。この際、陽極酸化物も窒化珪素も誘電率が大きく、薄いので僅かな面積で大きな容量を得ることができた。この容量は、アクティブマトリクスの画素と対向電極とによって形成10される容量に並列に挿入される、いわゆる保持容量として用いられる。すなわち、配線309は対向電極と同じ電位に保たれる。

【0051】その後、層間絶縁物321をエッチング し、TFTのソース/ドレインおよびゲイト電極等にコ ンタクトホールを形成し、2000Α~1μm、例えば 5000人の厚さの窒化チタンとアルミニウムの多層膜 による配線・電極325~329を形成した。 (図5 (E)) 本実施例では、アクティブマトリクス回路を構 成するNTFT337、デコーダー、CPU、メモリ 一、その他の高周波低消費電力用のNTFT、大電力駆 動のドライバー用NTFT、およびPTFTの高抵抗領 域幅の値は実施例2と同じとした。かくして、モノリシ ック型の電気光学装置を有する薄膜集積回路にて、Nチ ャネルTFTとPチャネルTFTとで、高抵抗領域の幅 を最適化することが示された。図6には、1枚のガラス 基板上にディスプレーから、CPU、メモリーまで搭載 した集積回路を用いた電気光学システムののプロック図 を示す。本実施例1~3では、このうちのアクティブマ トリクス回路とXおよびYデコーダー/ドライバーの部 30 分のみを主として示したにすぎないが、本実施例を発展 させれば、より高度な回路、システムを構成することが 可能であることは容易に想像のつくことであろう。

【0052】ここで、入力ポートとは、外部から入力さ れた信号を読み取り、画像用信号に変換し、補正メモリ ーは、アクティブマトリクスパネルの特性に合わせて入 力信号等を補正するためのパネルに固有のメモリーであ る。特に、この補正メモリーは、各画素固有の情報を不 揮発性メモリーとして融資、個別に補正するためのもの である。すなわち、電気光学装置の画素に点欠陥のある 40 場合には、その点の周囲の画素にそれに合わせて補正し た信号を送り、点欠陥をカパーし、欠陥を目立たなくす る。または、画素が周囲の画素に比べて暗い場合には、 その画素により大きな信号を送って、周囲の画素同じ明 るさとなるようにするものである。CPUとメモリーは 通常のコンピュータのものと同様で、特にメモリーは各 画素に対応した画像メモリーをRAMとして持ってい る。また、画像情報に応じて、基板を裏面から照射する バックライトを変化させることもできる。

【0053】そして、これらの回路のそれぞれに適した 50

高抵抗領域の幅を得るために、3~10系統の配線を形 成し、個々に陽極酸化条件を変えられるようにすればよ い。典型的には、アクティブマトリクス回路において は、チャネル長が10μmで、髙抵抗領域の幅は0.4 $\sim 1 \,\mu$ m、例えば、0.6 μ m。ドライバーにおいて は、Nチャネル型TFTで、チャネル長8μm、チャネ ル幅200μmとし、高抵抗領域の幅は0.2~0.3 μ m、例えば、0.25 μ m。同じくPチャネル型TF Tにおいては、チャネル長 5μ m、チャネル幅 500μ mとし、高抵抗領域の幅は $0 \sim 0$. $2 \mu m$ 、例えば、 $0.1 \mu m$ 。デコーダーにおいては、Nチャネル型TFTで、チャネル長8 μ m、チャネル幅10 μ mとし、高 抵抗領域の幅は0.3~0.4 μm、例えば、0.35 μm。同じくPチャネル型TFTにおいては、チャネル 長 5μ m、チャネル幅 10μ mとし、高抵抗領域の幅は $0 \sim 0$. $2 \mu m$ 、例えば、0. $1 \mu m$ とすればよい。さ らに、図6における、CPU、入力ポート、補正メモリ ー、メモリーのNTFT、PTFTは高周波動作、低消 費電力用のデコーダーと同様に高抵抗領域の幅を最適化 20 すればよい。かくして、電気光学装置64を絶縁表面を 有する同一基板上に形成することができた。

【0054】本発明においては、高抵抗領域の幅を2~4種類、またはそれ以上に用途によって可変することを特徴としている。また、この領域はチャネル形成領域と全く同じ材料、同じ導電型であるという必要はない。すなわち、NTFTでは、微量にN型不純物を、また、PTFTでは微量にP型不純物を添加し、また、選択的に炭素、酸素、窒素等を添加して高抵抗領域を形成することもホットキャリヤによる劣化と信頼性、周波数特性、オフ電流とのトレードオフを解消する上で有効である。【0055】

【発明の効果】本発明によって、各TFTの必要とする特性、信頼性に応じて最適な幅の高抵抗領域を有するTFTを同一基板上に作製することができる。その結果、従来にない自由度を得ることができる。このように本発・された回路を構成することができる。このように本発明は工業的価値が大きな発明であるが、特に大面積基や上にTFT群を形成し、これをアクティブマトリクスを担けて、電気光やシステムとし、オンボードの超薄型パソコン、携帯端とした場合にはその利用分野は限りなく拡大させることができる。さらに、この電気光学システムはインテリジェント化されて、他の単結晶半導体を用いたCPU、コンピュータシステム、画像処理システムと結合することによって、新たな産業を形成するに十分たる資質を有する。

【図面の簡単な説明】

【図1】本発明によるTFT回路の作製方法を示す。 (断面図、実施例1)

【図2】本発明によるTFT回路の作製方法を示す。

(上面図、実施例1)

【図3】本発明によるTFT回路の作製方法を示す。 (断面図、実施例2)

【図4】本発明によるTFT回路の作製方法を示す。 (上面図、実施例2)

【図5】本発明によるTFT回路の作製方法を示す。 (断面図、実施例3)

【図6】本発明による集積回路のブロック図の例を示す。

【符号の説明】

101

基板

102

下地絶縁膜

[図1]

 103、104
 島状半導体領域(シリコン)

 105
 ゲイト絶縁膜(酸化珪素)

 106~109
 ゲイト電極・配線(アルミニウム)

 110~113
 陽極酸化物(酸化アルミニウム)

 114、116
 N型不純物領域

 115
 P型不純物領域

 117
 層間絶縁物(酸化珪素)

 118
 画素電極(ITO)

 119
 コンタクトホール

 10120~124
 金属配線(窒化チタン/アルミニウ

18

【図 2】

ム)

フロントページの続き

(72)発明者 山本 睦男

神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内 (72)発明者 竹村 保彦

神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内