

Computer Science and Engineering IV Semester : CIE-1(Event-I)

Design and Analysis of Algorithms

Duration:1 Hr.

Date: 05.05.2023

Max. Marks:20

NOTE: PART-A is Compulsory, PART-B has internal choice

PART-A

Q.NO	со	CD/PI	QUESTION	MARKS
1.	CO1	L2	a) List important types of problems and discuss with examples, the issues associated with the sorting problem. b) What are asymptotic notations? Discuss with examples different asymptotic notations.	03+07

			PART-B	
			a) Design iterative algorithm to find the element uniqueness property in an unsorted array of 'n' elements and analyze the efficiency.	
2.	COI	L2 2.5.3	b) Appraise the use of limit based approach to compare the order of growth of the functions and apply the same to compare the growth of the following functions	05+05
			i) logn and nlogn ii) 2 ⁿ and n!	
			OR	
3.	CO1	L2 2.5.3	 a) Design an iterative algorithm to compute the sum of the squares of first 'n' natural numbers and establish the order of growth of the algorithm's basic operation count. b) Consider the following algorithm. Algorithm Secret(A[0n - 1]) //Input: An array A[0n - 1] of n real numbers T1 ← A[0]; T2 ← A[0] for i ← 1 to n - 1 do if A[i] < T1 T1 ← A[i] if A[i] > T2 T2 ← A[i] return T2 - T1 a. What does this algorithm compute? b. What is its basic operation c. What is the efficiency class of this algorithm? d. Is it possible to reduce the number of basic operations? Justify your answer. 	05+05

Computer Science and Engineering IV Semester : CIE-3(Test-2)

Design and Analysis of Algorithms

Duration:1 Hr.

Date: 13.06.2023

Max. Marks:20

NOTE: PART-A is Compulsory, PART-B has internal choice

			PART-A	MAR
Q.NO	СО	CD/PI	QUESTION	KS
1.	CO2	L2 2.5.2	a) Discuss the strengths and weaknesses of brute force design strategy. b) With the tree of recursive calls, trace the Quick sort algorithm to sort the list: 'M','E','R','G','E','S','O','R','T' in alphabetical order. What is the best case input for the quick sort? Setup a recurrence relation for the same and solve it to find the order of growth of the basic operation.	3+7

		1.5	PART-B	gate and tribe (1995)
2.	CO2 CO3	L2 ,L3 2.5.3	 a) Write algorithms to find an (a>0 and n is a positive integer) with divide and conquer and decrease by two strategies. Perform comparative analysis of the two algorithms. b) Applying DFS considering 'A' as the starting vertex, check whether the graph given in fig 2b is strongly connected or not, if not strongly connected then find the strongly connected components. 	05+05
			OR	
3.	CO2 CO3	L2, L3 2.6.4, 2.5.3	 a) Design an efficient algorithm to find the number of substrings that starts with some character 'X' and ends with 'Y'(for example: there are 4 such substrings in ABAAEBDA which starts with A and ends with B) and Analyze its efficiency. b) Traverse the graph given in fig 3b in BFS showing the contents of the data structure used and also construct the forest. 	05+05

Fig3b

Computer Science and Engineering IV Semester: CIE - 5 (Event-V)

Design and Analysis of Algorithms

Duration:1 Hr.

Date: 07.07.2023

Max. Marks:20

NOTE: PART-A is Compulsory, PART-B has internal choice

			PART-A	
Q.NO	co	CD/PI	QUESTION	MARKS
1.	CO3	- L2 2.5.2	a) Outline an algorithm to compute Mode in a list of elements with presorting and perform its analysis.b) For the graph shown in figl.b, find the shortest path between every pair of vertices using dynamic programming technique.	5+5

	-	-	PART-B	
2.	CO3	L.2, L.3 2.5.3	 a) Sort the list {'M','E',R','G','E','S','O','R','T'} in alphabetical order by constructing Max Heap. Show the Heap contents after each deletion. b) Compute C(6,5) with dynamic programming technique and compare the growth of additions while computing C(n,k) with dynamic programming and directly solving with recursion without dynamic programming. 	05+05
			OR	
3.	CO4		a) What are AVL trees? Illustrate with examples and general forms the different rotations used in AVL trees. b) Discuss with an example, the general idea of Dynamic Programming technique. How this is similar to and different from divide and conquer technique? Illustrate with an example. OR Construct 2-3 tree for the list ('R', 'E', 'P', 'R', 'E', 'S', 'E', 'N', 'T') and prove that the time efficiency of searching, insertion and deletion in 2-3 trees are all in O(log n) in the worst case.	05+05

IV Semester BE Degree Examination Department of Computer Science and Engineering DESIGN AND ANALYSIS OF ALGORITHMS

Duration: 3 Hours

Max. Marks: 100

NOTE: Part-A is compulsory and Part-B has internal choice

PART - A

Q.NO	со	CD	PI	QUESTION	MARKS
1.	CO1	L1	2.5.2	Discuss with neat diagram, sequence of steps to be followed while designing and analyzing algorithms.	10
2(a).	CO1	L1	1.7.1	Discuss the strengths and weakness of brute force design strategy.	4
2(b).	CO3	L4	4.4.2	Design an efficient polynomial evaluation algorithm with brute force design technique and analyze the same to prove its linear efficiency class.	6
3(a).	CO2	L3	4.4.2	Discuss how presorting can be used to improve the efficiency of brute force element uniqueness algorithm and mode computation algorithm.	5
3(b).	CO4	L4	2.6.4	Design an algorithm to compute an using decrease and conquer design technique and analyze its efficiency.	5
4.	CO3	L4	2.5.2	Discuss how Dynamic programming is different from divide and conquer technique. Design a dynamic programming algorithm for computing C(n,k). Analyze its space and time complexity. Trace the same for C(6,3).	10
5.	CO2	L3	1.7.1	Discuss how decision trees are useful in establishing the lower bound of an algorithm. Illustrate the same to establish the lower bound of comparison based sorting algorithms with example	10

PART – B

Q.NO	со	CD	PI	QUESTION	MARKS
6(a).	CO3	L4	2.5.3	Design an iterative algorithm to find the sum of square of first 'n' natural numbers. Analyze the same to establish the order of growth of the algorithm's basic operation count. Is it possible to improve the efficiency of your algorithm? Justify your answer.	5
6(b).	CO3	L4	10.4.1	For the algorithm given below answer the following. xyz(A[0n-1,0n-1]) for i ← 0 to n-2 do for j ← i+1 to n-1 do if A[i,j] ≠ A[j,i] return false return true i) What does this algorithm compute? ii) Establish the order of growth for the algorithm's basic operation count. iii) Is it possible to improve the efficiency of this algorithm? Justify your answer.	5
				OR	
7.	CO1	L2	1.7.1	Discuss with examples the asymptotic notations used to compare and rank the order of growth of algorithms basic operation count.	10
8.	CO4	L4		Design a recursive merge sort algorithm, specify the worst case and best case input and analyze the same to establish the order of growth. Trace the same in sorting the string Q,U,I,C,K,S,O,R,T.	10
				OR	
9.	CO4	L4		Design a recursive Quick sort algorithm, specify the worst case and best case inputs and analyze the same. Trace the same in sorting the string M,E,R,G,E,S,O,R,T. Draw the tree of recursive calls.	10

						1		1 1	
				OR					
5	to sort an	Design di array. Ana	2.5.3	L4	CO2	11(a).			
5	he following	tree for t			Construct list of valu	2.5.3	L3	CO2	11(b).
5	inimum cost aclude in the dy in the tree	i.12(a). In not alread	ph in fig vertices	for the gra eue all the	Apply Pring spanning priority que .Choose ve	2.5.2	L3	CO4	12(a).
5	d the single the source.	(b) to fin rtex 'a' as	in fig.12(with ver	instance ortest path	Solve the source sho	2.5.2	L3	CO2	12(b).
	\			OR			-		
	solved using p approach. stances, find ciency.	bottom-u Ilowing in	ng with Ive the fo	orogrammi same to so sition and	dynamic i	1.7.1	L3	CO3	13.
10		Value	Weight	Item	`				
		\$25	3	1					
		\$20	2	2					
	1					1 1		1	
		\$15	1	3					
		\$15 \$40	4	4					
			-						

For the graph shown in Figure 10(a), starting from the vertex 'a' construct Breadth first search forest

and give the order in which the vertices are visited showing the contents of the data structure used.

sort the list H,E,A,P,S,O,R,T in alphabetical order by applying heap sort. Analyze its efficiency.

10(a)

10(b)

CO3

CO3

L2

L4

3.6.2

3.6.2

4

6

14(b).	CO1	L2	2.6.4	Appraise the bound technic			acktr	ackin	g and	d Branch and	5
			-		OR						
15.	CO4	L3	4.4.2	Solve the a instance and state space to	obta	in th	e op	timal	for solut	the following ion. Draw the	
		J				J1	J2	J3	J4		
					P1	9	2	7	8		10
	1	12			P2	6	4	3	7		
,					P3	5	8	1	8		
					P4	7	6	9	4		

Course Outcome: At the end of the course the students will have the ability to						
CO-1	Understand various algorithm design techniques and Mathematical models.					
CO-2	Apply appropriate data structures and suitable design technique to develop an algorithm for the given problem.					
CO-3	Analyse the problem domain, use mathematical analysis model to estimate the running time efficiency of different algorithms for best, average and worst cases.					
CO-4	Evaluate a suitable design technique to develop an algorithm for the given problem.					

Performance Indicator:

1.7.1	Apply theory and principles of computer science and
1	engineering to solve an engineering problem.
2.5.2	Identify processes/modules/algorithms of a computer based
	system and parameters to solve a problem.
2.5.3	Identify mathematical algorithmic knowledge that applies to a
	given problem.
2.6.4	Compare and contrast alternative solution/methods to select the
2.0.7	,
	best methods.
3.6.2	Able to produce a variety of potential design solutions suited to meet
0.0.2	
	functional requirements.
4.40	
4.4.2	Able to choose appropriate procedure/algorithm, dataset and test cases.