Домашнее задание 2 Часть 3 Пряничникова Алена, Дубровский Михаил БЭК1811 2017 год

Введение

Закончим наше приключение со второй домашней работой. В данной части нам предстоит проверить правильность спецификации модели на наличие квадратичной или кубической зависимости от регрессоров. В конце будет проведена проверка на мультиколлинеарность и сделаны соответствующие выводы.

Тест Рамсея

Нами была оценена следующая линейная модель:

 $Unemployment = \beta_0 + \beta_1 * GDPpercap + \beta_2 * Urbanshare + \beta_3 * Higheduc$

Затем мы провели тест Рамсея на правильную спецификацию модели:

 H_0 : модель правильно специфицирована

 H_1 : наличие ошибок спецификации модели

Source	ment GDPperca	df	MS		ber of obs	=	85
				•	, 81)	=	
Model	267.746225	3	89.248741	L6 Prol	b > F	=	
Residual	811.219657	81	10.015057	75 R-se	quared	=	0.2482
				— Adj	Adj R-squared		0.2203
Total	1078.96588	84	12.844831	L9 Roo	t MSE	=	3.1647
Unemployment GDPpercap Urbanshare	-4.79e-08 1307659	5.81e-07 .0273373	-0.08 -4.78	P> t 0.935 0.000	-1.20e-0 185158	6	1.11e-06 0763732
Higheduc	0568294	.0712058	-0.80	0.427	198506	6	.0848478
_cons	17.51559	2.821607	6.21	0.000	11.9014	8	23.12971
. ovtest Ramsey RESET 1 Ho: mo	test using pow odel has no om F(3, 78)	itted vari	ables	alues of	Unemployme	nt	

0.0287

. gen GDPpercap2 = (GDPpercap)^2

Prob > F =

. gen Higheduc2 = (Higheduc)^2

Рис 1. Линейная регрессия и тест Рамсея

Для теста Рамсея $p_{value} = 0.0287$. Таким образом, на уровне значимости 5% мы отвергаем нулевую гипотезу и признаем, что в модели допущены ошибки спецификации и необходимо рассмотреть добавление квадратов или кубов переменных (можно степени и выше, но не нужно).

Вспоминая диаграммы рассеяния переменных из второй части ДЗ, заметим, что для переменных Urbanshare и Higheduc зависимость более-менее похожа на линейную. Соответственно, для них мы не будем вводить квадраты и кубы. А вот у GDPpercap зависимость явно нелинейная, и можно поэкспериментировать.

Для начала, добавим к уже имеющимся регрессорам квадрат GDPpercap. Теперь модель выглядит следующим образом:

 $Unemploymen = \beta_0 + \beta_1 * GDPpercap + \beta_2 * GDPpercap^2 + \beta_3 * Urbanshare + \beta_4 * Higheduc$

Оценим созданную модель и проведем тест Рамсея.

- . gen GDPpercap2 = (GDPpercap)^2
- . reg Unemployment GDPpercap Urbanshare Higheduc GDPpercap2

Source	SS	df	MS	Number of obs	=	85
				F(4, 80)	=	7.36
Model	290.223191	4	72.5557977	Prob > F	=	0.0000
Residual	788.742692	80	9.85928364	R-squared	=	0.2690
				Adj R-squared	=	0.2324
Total	1078.96588	84	12.8448319	Root MSE	=	3.1399

Unemployment	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]	
GDPpercap	-3.50e-06	2.36e-06	-1.48	0.142	-8.18e-06	1.19e-06
Urbanshare	1082392	.0309563	-3.50	0.001	1698442	0466342
Higheduc	042229	.0713085	-0.59	0.555	1841375	.0996795
GDPpercap2	7.84e-13	5.19e-13	1.51	0.135	-2.49e-13	1.82e-12
_cons	16.68797	2.852733	5.85	0.000	11.01085	22.36509

. ovtest

```
Ramsey RESET test using powers of the fitted values of Unemployment Ho: model has no omitted variables F(3, 77) = 4.93
Prob > F = 0.0035
```

Рис 2. Модель с добавлением квадрата и тест Рамсея

И снова на уровне значимости 5% мы отвергаем гипотезу о правильной спецификации. Заметим, что в данном случае p_{value} еще меньше, а F-статистика больше, чем в прошлой модели.

Наконец, оценим модель с добавлением и квадрата, и куба регрессора GDPpercap и проведем тест Рамсея.

. reg Unemployment GDPpercap Urbanshare Higheduc GDPpercap2 GDPpercap3

Source	SS	df	MS	Numb	er of obs	=	85
				, ,	79)	=	6.02
Model	297.524371	5	59.5048742	2 Prob	> F	=	0.0001
Residual	781.441512	79	9.8916647	R-sq	uared	=	0.2757
				- Adj	R-squared	=	0.2299
Total	1078.96588	84	12.8448319	Root	MSE	=	3.1451
Unemployment	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
GDPpercap	-6.41e-06	4.13e-06	-1.55	0.125	000014	6	1.81e-06
Urbanshare	1012052	.0320698	-3.16	0.002	165038	5	0373718
Higheduc	0559502	.0731893	-0.76	0.447	2016	3	.0897295
GDPpercap2	2.90e-12	2.52e-12	1.15	0.253	-2.11e-1	2	7.91e-12
GDPpercap3	-3.39e-19	3.95e-19	-0.86	0.393	-1.12e-1	8	4.47e-19
cons	17.40564	2.977014	5.85	0.000	11.4800	4	23.33124

. ovtest

```
Ramsey RESET test using powers of the fitted values of Unemployment Ho: model has no omitted variables F(3, 76) = 6.07
Prob > F = 0.0009
```

Рис 3. Модель с добавлением квадрата и куба; тест Рамсея

И снова после проведения теста Рамсея нулевая гипотеза отвергается на уровне значимости 5%, поэтому и эта модель не может быть признана правильно специфицированной.

На основании трех тестов продолжим наше исследование с линейной моделью без добавления квадратов и кубов, так как, несмотря на то что при добавлении многочленов \mathbb{R}^2 немного увеличился, тест Рамсея с каждым разом показывал результаты хуже и хуже.

Мультиколлинеарность

Перейдем к исследованию проблемы мультиколлинеарности. Необходимость в обработке данных может возникнуть, если среди всего множества признаков существует подмножество признаков, корреляция которых примерно равна 1. Наличие такого подмножества отрицательно влияет на способность модели прогнозировать целевую переменную: небольшое изменение во входных данных может привести к очень сильному изменению коэффициентов перед регрессорами.

Одним из способов выявления наличия мультиколлинеарности является проверка так называемых VIF'ов данных — Variance Inflation Factor. Необходимо рассчитать VIF для каждого регрессора следующим образом:

1) Предположим, есть следующая линейная модель:

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_n X_n + \varepsilon$$

2) Построим следующую линейную модель для ј-го регрессора:

$$X_j = \alpha_0 + \alpha_1 X_1 + \ldots + \alpha_{j-1} X_{j-1} + \alpha_{j+1} X_{j+1} + \ldots + \alpha_n X_n + \varepsilon$$

3) Оценим R^2 данной модели и обозначим его за R_i^2

4)
$$VIF = \frac{1}{1 - R_j^2}$$

Будем исходить из следующих предположений: VIF > 6 свидетельствует о наличии мультиколлинеарности - линейной зависимости между объясняющими переменными, а VIF < 6 - о ее отсутствии.

Создадим простую линейную регрессию и проверим в Стате VIF'ы для каждого регрессора:

. reg Unemployment GDPpercap Urbanshare Higheduc

Source	ss	df	MS		er of obs	=	85
Model Residual	267.746225 811.219657	3 81	89.2487416 10.0150575			= =	8.91 0.0000 0.2482
Total	1078.96588	84	12.8448319	- Adj I	R-squared	=	0.2203 3.1647
Unemployment	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
GDPpercap Urbanshare Higheduc _cons	-4.79e-08 1307659 0568294 17.51559	5.81e-07 .0273373 .0712058 2.821607	-0.08 -4.78 -0.80 6.21	0.935 0.000 0.427 0.000	-1.20e-0 185158 198506 11.9014	36 36	1.11e-06 0763732 .0848478 23.12971

. vif

1/VIF	VIF	Variable
0.915482 0.921338 0.971315	1.09 1.09 1.03	GDPpercap Urbanshare Higheduc
	1.07	Mean VIF

Puc 4. VIF для линейной модели

Заметим, что как среднее значение, так и значение VIF'а каждой переменной не превосходит 6. Таким образом, мы можем спокойно сделать вывод об отсутствии мультиколлинеарности в нашей модели.