

预测行为

策略优化

题目: A和B两小偷被警察抓住分开审讯 A和B只能选择"坦白"和"抗拒"

规则: 如果都坦白,每人判8年 如果都抗拒,每人判1年 如果只有1人坦白, 坦白者释放,抗拒者判10年

问题: 在不进行串供的情况下 A和B会做什么选择?

纳什均衡

Catalogue

}

静态博弈

2 不/完全信息博弈

3 动态博弈

4 狼人杀 x 博弈

题目: A和B各丢失了一件瓷器要求赔偿 瓷器估价 2~100 元 赔偿者让 A和B各自写出价格

规则: 如果价格相同则赔偿 如果价格不同则按低价赔偿 价高者罚 2 元,价低者奖 2 元

问题: 在不进行串谋的情况下 A和B会写下什么样的价格?

文文: A和B都是理性的、利益至上的

纳什均衡

质疑: 不符合生活经验

Catalogue

}

静态博弈

- 2 不/完全信息博弈
- 3 动态博弈
- 4 狼人杀 x 博弈

甲乙丙三国轮流交战 甲进攻任意一方成功率 80% 乙进攻任意一方成功率 60%

丙 进攻任意一方成功率 40%

三国均清楚每一方的进攻能力; 每一轮交战,每方只能选择进攻一方; 只要某国被攻占主城就属战败被灭国; 若一轮交战结束后被进攻方还存活,他 可以通过征兵恢复进攻能力

第一轮交战结束后,谁的生存几率 最大?

干 存活率: (1 - 60%) x (1 - 40%) = 24%

乙 存活率: 1-80=20%

万 存活率: 100%

进攻方	甲 (80%)	乙 (60%)	丙 (40%)	 存活率	乙存活率	<mark>万</mark> 存活率
	Attack 乙	Attack 甲	Attack 甲	(1 - 60%) x (1 - 40%)	1 - 80%	100%
	Attack 乙	Attack 甲	Attack 乙	1 - 60%	(1 - 80%) x (1 - 40%)	100%
	Attack 乙	Attack 丙	Attack 甲	1 - 40%	1 - 80%	1 - 60%
忆 .星	Attack 乙	Attack 丙	Attack 乙	100%	(1 - 80%) x (1 - 40%)	1 - 60%
场景	Attack 丙	Attack 甲	Attack 甲	(1 - 60%) x (1 - 40%)	100%	1 - 80%
	Attack 丙	Attack 甲	Attack 乙	1 - 60%	1 - 40%	1 - 80%
	Attack 丙	Attack 丙	Attack 甲	1 - 40%	100%	(1 - 80%) x (1 - 60%)
	Attack 丙	Attack 丙	Attack 乙	100%	1 - 40%	(1 - 80%) x (1 - 60%)
小计				56%	48%	42%

随机进攻

Catalogue

}

静态博弈

3 动态博弈

4 狼人杀 x 博弈

题目: ABC三人分100个金币

规则: ABC依次提议分金币的方案, 若提议未获半数以上通过,提议人处死

假设: 三人都是聪明、理性的 人性本恶

问题: 假如你是A,你会怎么做?

余下B和C=>B必死

B 知道 => 无条件支持 A

A 知道 => A 100, B 0, C 0

M 知道 => M 98, A 0, B 1, C 1

先手优势

共谋

Catalogue

1 纳什均衡

}

静态博弈

2 不/完全信息博弈

3 动态博弈

4 狼人杀 x 博弈

	好人 阵营	坏人 阵营	
无	民		无
身份	x 4		技能
有	神	狼	有
身份	x 2	x 4	技能
	模糊 信息	准确 信息	

被人看 → 看别人	1: W	2: W	3: W	4: W	5: G	6: G	7: V	8: V	9: V	10: V
1 : W	<1, 0, 0>	<1, 0, 0>	<1, 0, 0>	<1, 0, 0>	$<0,\frac{1}{2},\frac{1}{2}>$	$<0,\frac{1}{2},\frac{1}{2}>$	$<0,\frac{1}{2},\frac{1}{2}>$	$<0,\frac{1}{2},\frac{1}{2}>$	$<0,\frac{1}{2},\frac{1}{2}>$	$<0,\frac{1}{2},\frac{1}{2}>$
2: W	<1, 0, 0>	<1, 0, 0>	<1, 0, 0>	<1, 0, 0>	$<0,\frac{1}{2},\frac{1}{2}>$	$<0,\frac{1}{2},\frac{1}{2}>$	$<0,\frac{1}{2},\frac{1}{2}>$	$<0,\frac{1}{2},\frac{1}{2}>$	$<0,\frac{1}{2},\frac{1}{2}>$	$<0,\frac{1}{2},\frac{1}{2}>$
3: W	<1, 0, 0>	<1, 0, 0>	<1, 0, 0>	<1, 0, 0>	$<0,\frac{1}{2},\frac{1}{2}>$	$<0,\frac{1}{2},\frac{1}{2}>$	$<0,\frac{1}{2},\frac{1}{2}>$	$<0,\frac{1}{2},\frac{1}{2}>$	$<0,\frac{1}{2},\frac{1}{2}>$	$<0,\frac{1}{2},\frac{1}{2}>$
4: W	<1, 0, 0>	<1, 0, 0>	<1, 0, 0>	<1, 0, 0>	$<0,\frac{1}{2},\frac{1}{2}>$	$<0,\frac{1}{2},\frac{1}{2}>$	$<0,\frac{1}{2},\frac{1}{2}>$	$<0,\frac{1}{2},\frac{1}{2}>$	$<0,\frac{1}{2},\frac{1}{2}>$	$<0,\frac{1}{2},\frac{1}{2}>$
5: G	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	<0, 1, 0>	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$
6: G	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	<0, 1, 0>	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$
7: V	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	<0, 0, 1>	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$
8: V	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	<0, 0, 1>	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$						
9: V	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	<0, 0, 1>	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$							
10: V	$<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$	<0, 0, 1>								

p<W, G, V> (W: 狼; G: 神; V: 民)

我的视觉的概率向量

我接着会执行的动作

置信度

发言	隐含意思	有效?
今天天气不错	无	无效
4号: 1号这次发言没有用人格担保,我怀疑他是狼	我们不同阵营?	?
我没有信息;这轮我弃投	我是村民 p<0, 0, 1>	有效
5号:我是女巫,我昨晚救了8号	5 号身份 p<0, 1, 0> 8 号身份 p<0, ½, ½>	有效
5号:我是女巫,我要投3号;如果投不死我今晚也会毒死3号	5 号身份 p<0, 1, 0> 3 号身份 p<1, 0, 0>	有效
10号:我赞同5号,我会跟投	同阵营 P(10) = P(5)	有效
我是有身份的人	我的身份 $p<\frac{1}{2},\frac{1}{2},0>$	有效

有身份?

好人阵营: 是狼?

坏人阵营: 是神?

最大对局数 = 10 / 2 = 5

实际对局数 < 5

发言次数≈3

劣势: 掌握信息少、不准确 没有先手优势 活动时间只有白天

优势: 人数多

第1天如何提高存活率?

- 不要过早站队
- 不要塑造神职身份
- 不要怼下家

身份	作用	目的
神	收集信息 (带节奏)	扩大阵营
民	确保神存活(挡刀)	收集信息
民	确保己存活	保持人数 优势

情景: 你是4号预言家 你在第1天晚上验到1号是狼

假设: 你不想自曝身份 好人阵营都是聪明的、理性的

问题: 你想带节奏弄死1号,你应该怎样做?

1号这次发言没有用人格担保, 我怀疑他是狼

我没有更多信息,但我是有身份的人

优势: 掌握信息多、精准 有先手优势 每轮对局可额外活动1次 共谋

劣势: 人数少

如何在第1轮结束时就赢得游戏

隐含胜利方式:

投票结束后,坏人>=好人

追平人数 => 杀 2 个好人

末位点杀 P(救人) < 50%

末位狼跳预言家 有争执的

排在首位的

