Raphaël Attias

Boston, MA ● 929-600-4563 ● raphael_attias@hms.harvard.edu ● raphaelattias.com ● LinkedIn ● Github

Education

09/2022 - 03/2023 **Harvard University,** *Master Thesis* Boston, USA • Develop advanced Machine Learning methods to analyze slide pathology images. • Motivated Self-Supervised Learning for detecting regions of interest in an unlabeled set of slide images. • Extend the existing framework by implementing and testing Convolutional Nets, Vision Transformers, and other state-of-the-art models using Pytorch. Swiss Federal Institute of Technology (EPFL), Master Degree in Data Science 09/2020 - 03/2023 Focus on Machine Learning, Data Science, and Computer Vision. Grade: 5.36/6 Lausanne, Switzerland 00/2017 00/2020 -- (EDEL) Davids de alem De

09/2017 – 09/2020 Lausanne, Switzerland	Swiss Federal Institute of Technology (EPFL), <i>Bachelor Degree in Mathematics</i> Focus on Numerical Analysis, Statistics, and Numerical Optimization. Grade: 5.02/6
Professional Experie	ence
09/2022 – present Geneva, Switzerland	 Software Developer, University of Geneva ≥ Developed in Python a web library for understanding energy needs with graph modeling. Contributed to an existing framework by adding key features when handling networks and geodata.
02/2022 – 08/2022 Princeton, USA	 Software & Research Intern, NEC Laboratories America Tested data augmentation techniques in order to improve model generalization for the segmentation of cancer cells in whole-slide pathology images. Contributed to the existing framework in Pytorch by implementing an uncertainty estimator.
09/2021 – 02/2022 Lausanne, Switzerland	Teacher Assistant in Machine Learning CS-433, Swiss Federal Institute of Technology (EPFL) <i>⊗</i> Graded projects, wrote part of the exam, and maintained weekly TA sessions.
07/2021 – 09/2021 Lausanne, Switzerland	 Machine Learning Intern, Arcanite ∂ Implemented a Generative Adversarial Network (GAN) to produce images of handwritten text. Wrote a Python library using Pytorch Lightning using the original work of GANWriting (2021).
Projects	
2022	Decentralized Federated Learning using D-Cliques topology, <i>Grade:</i> 90/100 <i>⊗</i> Contributed and experimented on a Distributed Federated Learning framework using Pytorch.
2021	Movie Recommendation System in Spark for Big Data, <i>Grade: 90/100 ∂</i> Reached SOTA performance on a recommander system on the MovieLens dataset using Spark in Scala.
2021	Robust Journey Planning for CFF Zurich, <i>Grade</i> : 100/100 <i>⊗</i> Built in group a journey planner using Swiss transportation dataset with PySpark, BeHive, and Kafka.
2021	Robust Deep Learning Diagnosis of Pneumonia from Chest X-ray Data, <i>Grade</i> : 90/100 Implemented and tested a self-supervised learning model to detect pneumonia from chest X-rays.
2021	Reinforcement Learning for moon landing in OpenGym, <i>Grade: 90/100 ⊗</i> Implemented in Tensorflow an agent to perform moon landing using Q-Learning.
Publications	
09/08/2021	Quantification of the suitable rooftop area for solar panel installation from overhead imagery using

Convolutional Neural Networks, *Journal of Physics ∂*

Skills

Machine Learning (Python, Pytorch, Lightning, Tensorflow, Scikit, Huggingface, Wandb)

Big Data (Python, Scala, Spark, Beautiful Soup, Kafka) • **Data Science** (R, Python, Pandas, Statsmodel, Seaborn)

MLOps (Python, Docker, Spark ML, Airflow, Ray, Kubernets) • **Software Engineer** (C++, Python, Scala, Github, Docker, FastAPI)

Reference Letters

Prof. Martin Jaggi, Professor of Machine Learning, EPFL

Dr. Eric Cosatto, Senior Researcher, NEC Labs America

Prof. Kun-Hsing Yu, Professor of Biomedical Informatics, Harvard Medical School