Dimensionality Reduction

Prof. Dr. Renato Pajarola
Visualization and MultiMedia Lab
Department of Informatics
University of Zürich

Copyrights

- Most figures of these slides are copyright protected and come from the various indicated sources
- You understand that the slides contain copyright protected material and therefore the following conditions of use apply:
 - ▶ The slides may be used for personal teaching purposes only
 - Publishing the slides to any public web site is not allowed
 - Sharing the slides with other persons or institutions is prohibited

Overview

- 1. Dimensionality reduction
- 2. Low-rank SVD approximation
- 3. Principal component analysis
- 4. Multidimensional scaling
- 5. Self-organizing maps

Dimensionality Reduction

- Given a set of high-dimensional data points $x_i \in \mathbb{R}^K$ (for i=1...N), dimensionality reduction methods compute a projection $y_i \in \mathbb{R}^{1,2 \text{ or } 3}$ into a lower dimensional Euclidean space
 - For 1D charts and curve plots, 2D scatter or height-plots and maps, or visualizations in 3D
- Key goal: preserve the relative relations between projected data points y_i in the low-dimensional space as given by the data records x_i in their original high-dimensional input space
 - ▶ E.g. preserve relative distances, outliers, clusters, patterns

Source http://bigdata.csail.mit.edu/node/27

• Mapping high-dimensional data points into 2D or 3D is a very important step for data visualization

Dimensionality Reduction

- Two main strategies: feature selection and feature extraction
- Feature selection: find a subset of the original variables/dimensions
 - ▶ E.g. using information gain or guided search methods
- Feature extraction: transform data from original space to a space of fewer dimensions
- Express input data vectors $X = \{x_1, ..., x_N\}$ as a matrix $X \in \mathbb{R}^{N \times K}$ with N rows and K columns and each $x_i \in \mathbb{R}^K$
 - Data items = rows
 - Data attributes = columns
- The sample mean of each column of X is typically shifted to zero
 - Column-wise zero mean extracted and subtracted beforehand
- Reduced dimensionality output data vectors $Y = \{y_1, \dots y_i\}$ as a matrix $Y \in \mathbb{R}^{N \times \{1,2,3\}}$ with $y_i \in \mathbb{R}^{\{1,2,3\}}$

Singular Value Decomposition (SVD)

- Singular Value Decomposition $X = USV^T$ represents X in terms of singular vectors and singular values
 - lacktriangleright Matrices U and V: left and right singular vectors
 - both column-orthonormal
 - (Generalized) diagonal matrix S: the K ordered, non-zero singular values $\sigma_{i=1...K}$
- SVD represents high-dimensional data points (matrix) X exactly
 - Plain decomposition, transformation into different data representation space

Low-rank Approximation using SVD

- ullet We can approximate matrix X by using fewer singular values and vectors of the SVD decomposition
 - Use only R < K singular values/vectors, i.e. take sub-matrices of U, S, V
 - Low-rank approximation
- Original high-dimensional data points X can be represented in low-dimensional display space as points Y = US (or Y = U)
 - ▶ E.g. keeping only the $R \le 3$ most significant singular values of S and columns of U

Principal Component Analysis (PCA)

- Principal Component Analysis is the main linear technique for dimensionality reduction
- Performs a linear mapping of the high-dimensional input data to a lower-dimensional output space
 - Transforms the data into a new coordinate system
 - New coordinates known as principal components
 - First principal component has highest possible variance
 - Each succeeding component has highest variance possible while being orthogonal to the preceding components
- Corresponds to fitting a K-dimensional ellipsoid to the data
 - Each axis corresponds to a principal component
- Can be done by constructing the covariance matrix of the data and computing its eigenvectors
 - Eigenvectors of the largest 2 or 3 eigenvalues define subspace of maximal variance of the original data
- Also known as Karhunen-Loève transform (KLT)

Eigendecomposition-based PCA

- The covariance matrix $M = X^TX$ of the data can be analyzed to find the principal components
 - lacktriangleright Requires the data X to be column-wise mean-centered
- Eigendecomposition $X^TX = W\Lambda W^T$
 - ▶ Diagonal matrix Λ may only have $j \le K$ non-zero eigenvalues $\lambda_{i=1...j}$
- Data points projected in new coordinate system: $X_T = XW$

Eigendecomposition-based PCA

- The covariance matrix $M = X^TX$ of the data can be analyzed to find the principal components
 - lacktriangle Requires the data X to be column-wise mean-centered
- Eigendecomposition $X^TX = W\Lambda W^T$
 - ▶ Diagonal matrix Λ may only have $j \le K$ non-zero eigenvalues $\lambda_{i=1...j}$
- Data points projected in new coordinate system: $X_T = XW$
- Reduced dimensionality data points given by $Y = XW_R$
 - ▶ E.g. keeping only the $R \le 3 \le K$ most significant eigenvalues of Λ and columns of W

Covariance Matrix X^TX

Eigendecomposition SVD Equivalence

- Eigendecomposition equivalence to SVD: $Y = XW_D \Leftrightarrow Y = U_DS_D$
 - ▶ Keeping only the $D \le K$ most significant dimensions, columns of W, or U and S
 - lacktriangle Use W if other (new) data X_{new} has to be projected into the same space
- U has unit columns, $Y = U_D$ thus represents the data X in a 1.0 x... x 1.0 D-dimensional scatterplot
 - Projects data X into a unit D-dimensional box
- Keeping e.g. 95% of the variance in the data = keeping all eigenvalues λ_i for which $\sum_{i=1}^{D} \lambda_i / \sum_{i=1}^{K} \lambda_i \ge 95\%$
 - Or the corresponding to singular values $\sigma_i = \sqrt{\lambda_i}$
 - σ_i from SVD of X and λ_i from eigendecomposition fo X^TX

17D Example: Eating in the UK

- Average consumption of 17 types of food in grams per person per week for every country in the UK
- Clear difference of Northern Ireland in 1D projection
- Visible outlier or special case in 2D projection
 - From the table, this makes sense: Northern Irish eat way more grams of fresh potatoes and way fewer of fresh fruits, cheese, fish and alcoholic drinks

http://setosa.io/ev/principal-component-analysis/

Using Gram, Hermitian and Self-adjoint Matrix

- The eigenvalues of matrix $M = XX^T$ are the eigenvalues of $M = X^TX$ plus additional 0s
 - ▶ Or opposite more dimensions than elements, i.e. if K > N
 - Matrix of all pairwise inner products
- Given an eigenvector e of W (from X^TX), then Me is an eigenvector of XX^T and the corresponding eigenvalue from both X^TX and XX^T
 - If not zero
 - reverse holds too
- Thus all eigenvalues of X^TX are also eigenvalues of XX^T

MultiDimensional Scaling (MDS)

- MDS computes low dimensional representation based on pairwise distances between data points
 - Particularly useful to visualize information contained in a distance matrix
- Key goal: preserve original distances as well as possible
 - Map positions of original data points based on distances
 - In fact, positions are computed solely from pairwise distances
- Problem: given matrix $\mathbf{D}=(d_{ij})$ $1 \leq i,j \leq N$ compute $y_1,...,y_n \in \mathbb{R}^R$ s.t. $d_{ij} \approx \|y_i-y_j\|_2$ e.g. R=2
- Different versions of MDS set different requirements on the approximation of the given distances
 - Classical MDS
 - Metric MDS
 - Non-metric MDS

Classical MDS (cMDS)

- Classical MDS (cMDS) aims to compute positions $y_1, ..., y_N \in \mathbb{R}^R$ such that $\tilde{d}_{ij} = \|y_i y_j\|_2 \approx d_{ij}$
- ullet cMDS formulation based on the assumption that the distances d_{ij} are Euclidean distances
- The values d_{ii} can be dissimilarities, not necessarily distances
 - For large target dimensions R, there often exists $y_1, ..., y_N$ s.t. $||y_i y_j||_2 = d_{ij}$
 - d is an actual Euclidean distance
 - In other cases, e.g. R = 2, MDS finds an approximation
- Solution not unique, consider centered configuration
- Define centering matrix C as follows:

$$\mathbf{C} = \mathbf{I}_N - \frac{1}{N} \cdot \mathbf{1}_N \mathbf{1}_N^T$$

$$\mathbf{C} \text{ is } N \times N \text{ identity matrix minus an all-ones-over-} N$$

- Can be used to make matrix of observations mean-centered
 - i.e. given $\mathbf{X} \in \mathbb{R}^{N \times K}$, rows of $\mathbf{C}\mathbf{X}$ are mean-centered

Classical MDS (cMDS)

- Compute the coordinates of the points from the distance matrix $\mathbf{D} = (d_{ij})$
- It can be shown that:

$$-\frac{1}{2}\mathbf{C}\mathbf{D}^2\mathbf{C} = \mathbf{X}\mathbf{X}^T = \mathbf{B}$$

- Applied double-centering on squared input distance matrix
- By eigenvector decomposition of **B**, we can obtain:

$$\mathbf{B} = \mathbf{W} \mathbf{\Lambda} \mathbf{W}^T = \mathbf{W} \mathbf{\Lambda}^{1/2} \mathbf{\Lambda}^{1/2} \mathbf{W}^T = \mathbf{X} \mathbf{X}^T$$

- The exact positions of the data points are therefore: $\mathbf{X} = \mathbf{W} \Lambda^{1/2}$
- Keep only the first R eigenpairs to obtain the desired positions in the low-dimensional space:

$$\mathbf{Y} = \mathbf{W}_R \mathbf{\Lambda}^{1/2}$$

Classical MDS (cMDS)

- Main steps of cMDS:
 - 1. Compute squared distance matrix \mathbf{D}^2 (i.e. square the input distance matrix)
 - 2. Compute matrix $\mathbf{B} = -\frac{1}{2}\mathbf{C}\mathbf{D}^2\mathbf{C}$, with $\mathbf{C} = \mathbf{I}_N \frac{1}{N} \cdot \mathbf{1}_N \mathbf{1}_N^T$
 - 3. Compute eigendecomposition $\mathbf{B} = \mathbf{W} \mathbf{\Lambda} \mathbf{W}^T$
 - 4. Compute low-dimensional positions $\mathbf{Y} = \mathbf{W}_R \mathbf{\Lambda}^{1/2}$

Classical vs Metric MDS

- Classical MDS corresponds to minimizing a specific loss function termed strain, given $\mathbf{B}=(b_{ij})$

Strain(
$$\mathbf{y}_1, ..., \mathbf{y}_N$$
) = $\sqrt{\frac{\sum_{i,j} (b_{ij} - \langle \mathbf{y}_i, \mathbf{y}_j \rangle)^2}{\sum_{i,j} b_{ij}^2}}$

- Metric MDS generalizes the loss function used in the optimization
 - ▶ E.g. using stress function based on sum of squared residuals between original and "new" distances

Stress
$$(y_1, ..., y_N) = \sqrt{\frac{\sum_{i,j} (d_{ij} - ||y_i - y_j||)^2}{\sum_{i,j} d_{ij}^2}}$$

Non-Metric MDS

- Works with input dissimilarities δ_{ii} that only correspond to a ranking between original points
 - Spacing between successive dissimilarities is not interesting/not available
- Further generalization of stress function
 - lacktriangleright Based on a monotonically increasing function heta of input dissimilarities

Stress
$$(y_1, ..., y_N) = \sqrt{\frac{\sum_{i,j} (\theta(\delta_{ij}) - ||y_i - y_j||)^2}{\sum_{i,j} ||y_i - y_j||^2}}$$

20

- Starting from initial coordinates, iteratively adjust to minimize stress function
 - Different numerical optimization strategies possible
 - gradient descent, conjugate gradient, simulated annealing etc.
 - Initialization random or based on cMDS

MDS Example

- Classical MDS of vote data from the United States
 House of Representatives
 - ► Each data record represents one Member of Congress
 - color represents political party (red for Republican, blue for Democrat).
- Used votes (K=10 binary data attributes):
 - H.R. 2642: Federal Agriculture Reform and Risk Management Act of 2013
 - H.R. 2609: Energy and Water Development and Related Agencies Appropriations Act
 - H.R. 1564: Audit Integrity and Job Protection Act
 - H.R. 1797: Pain-Capable Unborn Child Protection Act
 - H.R. 3: Northern Route Approval Act
 - H.R. 1911: Improving Postsecondary Education Data for Students Act
 - H.R. 1256: Swap Jurisdiction Certainty Act
 - H.R. 1960: National Defense Authorization Act for Fiscal Year 2014
 - H.R. 45: To repeal the Patient Protection and Affordable Care Act
 - H.R. 1062: SEC Regulatory Accountability Act

Voting patterns

© Creative Commons Attribution-Share Alike 3.0 Unported license

Self-Organizing Maps (Kohonen Maps)

- Dimensionality reduction technique based on Artificial Neural Networks (ANNs)
- Artificial Neural Network:
 - ▶ Collection of neurons (or nodes), interconnected to form a network
 - ▶ Each neuron produces a response as function of input signal and a vector of weights
 - each neuron holds a weight vector
 - Network corresponds to a function on the input
 - Function can be learned by adjusting weights during a training phase
 - weights modified so that output produced for a certain input matches known output for that input

- Based on unsupervised learning
- lacktriangle Uses $N_{\rm neurons}$ neurons arranged on a low-dimensional map space with certain topology
 - e.g. 1D line, 2D rectangular or hexagonal grid
- Each neuron has a weight vector $w \in \mathbb{R}^K$ of same size of input data vector $x \in \mathbb{R}^K$

Self-Organizing Maps (Kohonen Maps)

- Given a collection of input samples $X = \{x_i\}$, SOMs are trained so that different parts of the network respond similarly to similar patterns in input data
 - Iteratively modify weights w_j of neurons so that they match input data vectors x_i
 - \blacktriangleright Neighboring vectors in input space, with similar x, should be mapped to neighboring neurons
- If network has lower dimensionality than input data dimensions, only the most important similarity relationships are preserved and mapped onto network neighborhood
- Training performed by iterating over individual samples x_i in multiple cycles ($N_{\text{timesteps}}$ time steps)
 - \triangleright Start with random weight vectors w_j for all neurons
 - other initialization possibles
 - For each sample x_i at timestep t, find and update neurons with weights w_i closest to x_i
 - requires defining similarity weights/samples, neighborhood system, update rules
- Given trained SOM, an input point i gets mapped to the neuron j with most similar attribute vector
 - Thus with w_j most similar to x_i

SOM Training

© Creative Commons Attribution-Share Alike 3.0 Unported license.

Interactive Data Visualization

24

SOM Training

Initialize neuron weight vectors $\mathbf{w}_i \in \mathbb{R}^K$

for
$$t = 1$$
 to $N_{\text{timesteps}}$

for each x_i in set of input points X

for k = 1 to N_{neurons}

compute distance d_k between x_i and w_k

end for

find id k_{BMU} of Best Matching Unit (BMU)

for k = 1 to N_{neurons}

update weight vector we

end for

end for

end for

decreasing function of distance between neurons k and $k_{\rm BMU}$ on neighborhood system of the SOM

size of neighborhood decreases with time

e.g. Euclidean distance: $d_k = \|\mathbf{x}_i - \mathbf{w}_k\|$

 $\star k_{BMU} = \arg\min_{k} \{d_k\}$

learning rate factor; decreases with time

- One-dimensional SOM versus principal component analysis (PCA)
 - ▶ The SOM is the red line with squares, 20 nodes
 - ▶ The first principal component is presented by a blue line
 - Data points are the small grey circles
- The fraction of variance unexplained in this example is 23.23% for PCA and 6.86% for SOM

SOM Example

- Map of documents in which two documents are close to each other in the two-dimensional space if their contents are similar
 - Represent documents as the occurrences of words, words that occur in same kinds of contexts tend to have similar meanings
- Collection of 3224 applications sent to Academy of Finland
 - Likey (Language Independent Keyphrase Extraction) extracts relevant terminology
 - finds terms by comparing word frequency with a large reference corpus

• The Likey method is able to find automatically terms (words or phrases) using an approach in which the frequency or rank of a word or phrase in the corpus at hand is compared with that in a large reference

corpus

Recap

- Review of matrix SVD: singular value decomposition, low-rank approximation using SVD
- Principal component analysis: eigendecomposition based PCA, covariance matrix, eigendecomposition and SVD equivalence
- Multidimensional scaling: classical, metric and non-metric MDS
- Self-organizing maps: artificial neural network based SOMs (aka Kohonen maps), iterative training of SOM's network weight vectors
- Required textbook Chapter(s): 6