Problem 1. Is the category of monoids cartesian closed? (Exercise 6.8.4)

Proof. We know that the category of monoids, has initial object $E = \langle \{e\}, \star, e \rangle$. Now consider two monoids A and B such that there exists more than 1 homomorphism from A to B. (We can find two monoids with this property). We want to show that the object B^A cannot exists. Assume the opposite:

Now we know that there exists more than 1 homomorphism from A to B, but there only exists one \tilde{f} from E to B^A since E is initial. And since for any f there must exists a unique morphism \tilde{f} from E to B^A , we get a contradition, and therefore object B^A cannot exists. This shows that category of monoids is not CCC.

Problem 2. Show that for any objects A,B in a CCC, there is a bijective correspondence between points of the exponential $1 \to B^A$ and arrows $A \to B$.(Exercise 6.8.9)

Proof. By definition of exponential object we have:

For any f there exists a unique \tilde{f} and for any \tilde{f} there exists a unique f, therefore there exists a bijection between points in $1 \to B^A$ and $1 \times A \to B$. Thus we only have to show that there is a bijection between arrows in $1 \times A \to B$ and arrows in $A \to B$. For this we show that $A \cong 1 \times A$.

Now it is only enough to show that $P_A \circ \langle !_A, 1_A \rangle = 1_A$ and $\langle !_A, 1_A \rangle \circ P_A = 1_{1 \times A}$. The first one is obvious since $1 \times A$ is the product of 1 and A. For the second one:

$$\langle !_A, 1_A \rangle \circ P_A = \langle !_A \circ P_A, 1_A \circ P_A \rangle = \langle !_{1 \times A}, P_A \rangle$$

Where we can observe:

Since $\langle !_{1\times A}, P_A \rangle$ is unique and also $1_{1\times A}$ commutes with the diagram, then we have $1_{1\times A} = \langle !_{1\times A}, P_A \rangle$. This proves that $A \cong 1\times A$. Thus we have $A \rightleftharpoons_{f^{-1}} 1\times A$. Now we can have our bijection with:

$$g:A\to B\implies f^{-1}\circ g:1\times A\to B\implies f\circ f^{-1}\circ g=g:A\to B$$

$$\overline{g}:1\times A\to B\implies f\circ \overline{g}:A\to B\implies f^{-1}\circ f\circ \overline{g}=\overline{g}:1\times A\to B$$

Therefore there is a bijection between arrows in $A \to B$ and $1 \times A \to B$.

Problem 3. Show that the category of ω CPOs is cartesian closed, but that the category of strict ω CPOs is not.(Exercise 6.8.10)

Proof. First we show that category of ω CPOs is cartesian closed. Given two ω CPOs P and Q, the ω CPO $P \times Q$ has elements of the form (p,q) with $p \in P$ and $q \in Q$. And relations as below:

$$(p,q) \le (p',q') \iff p \le p' \text{ and } q \le q'$$

To check if this really is an ω CPO let:

$$(p_0, q_0) \leq (p_1, q_1) \leq \dots$$

$$\implies p_0 \leq p_1 \leq \dots \implies \lim_{\stackrel{\longrightarrow}{}} p_i = p_\omega$$

$$\implies q_0 \leq q_1 \leq \dots \implies \lim_{\stackrel{\longrightarrow}{}} q_i = q_\omega$$

$$\implies \lim_{\stackrel{\longrightarrow}{}} (p_i, q_i) = (p_\omega, q_\omega)$$

Now let (x, y) such that for any i, $(p_i, q_i) \leq (x, y)$:

$$\begin{cases} \forall i : p_i \le x \implies p_\omega \le x \\ \forall i : q_i \le y \implies q_\omega \le y \end{cases} \implies (p_\omega, q_\omega) \le (x, y)$$

Therefore $P \times Q$ is indeed an ω CPO. Now let π_1 and π_2 be projections. Let $(p_0, q_0) \leq (p_1, q_1) \leq \ldots$, with colimit (p_ω, q_ω) . Therefore for any $i, p_i \leq p_\omega$. Now suppose there is an element $x \in P$ such that for any $i, p_i \leq x$. This shows that for any i we have: $(p_i, q_i) \leq (x, q_\omega)$. And since (p_ω, q_ω) is colimit, then we have $(p_\omega, q_\omega) \leq (x, q_\omega)$ which means that $p_\omega \leq x$. This shows that p_ω is the colimit of p_0, p_1, \ldots . Therefore π_1 (and similarly π_2) is continuous.

Since both f and g are monotone, and $\langle g, f \rangle(x) = (g(x), f(x))$ with $x \in X$, then $\langle g, f \rangle$ is also monotone. Also since f and g are continuous, suppose suppose x_{ω} is the colimit of $x_0 \leq x_1 \leq x_2 \leq \ldots$, then $f(x_{\omega})$ and $g(x_{\omega})$ are both colimit of the respective diagrams. It is obvious that $\langle g(x_{\omega}), f(x_{\omega}) \rangle$ is the colimit of $\langle g(x_0), f(x_0) \rangle \leq \langle g(x_1), f(x_1) \rangle \leq \ldots$. Thus $\langle g, f \rangle$ is continuous.

For exponentials, consider:

$$Q^P = \{f : P \to Q | f \text{ is monotone and } \omega\text{-continuous.}\}$$

First we show that this object is an ω CPO. Note that order in functions is pointwise. Let $\forall i: f_i \in Q^P$ such that:

$$f_0 \le f_1 \le f_2 \le \dots$$

$$\implies \forall p \in P : f_0(p) \le f_1(p) \le f_2(p) \le \dots$$

Since all $f_i(p)$ s are in Q, then there exists a colimit for them, p_{ω} . Let $g(p) = p_{\omega}$. It is easy to see that for any $0 \le i$, $f_i \le g$. Now consider $h \in Q^P$ such that for any $0 \le i$, $f_i \le h$.

$$\forall p \in P : f_i(p) \le h(p) \implies p_w \le h(p) \implies g(p) \le h(p)$$

 $\implies g \le h$

Therfore g is the colimit of this sequence and therefore Q^P is an ω CPO. The next step is to show that Q^P has the properties of an exponential object. define $\epsilon: Q^P \times P \to Q$ as $\epsilon(f,p) = f(p)$. We need to show that ϵ is monotone and continuous. Suppose $(f,p) \leq (f',p')$:

$$\epsilon(f,p) = f(p) \le f'(p) \le f'(p') = \epsilon(f',p')$$

Thus ϵ is monotone. Now suppose (f_{ω}, p_{ω}) is the colimit of $(f_0, p_0) \leq (f_1, p_0) \leq \ldots$. Since ϵ is monotone, then $f_i(p_i) \leq f_{\omega}(p_{\omega})$. Now let $x \in Q$ such that for any $i, f_i(p_i) \leq x$. First we prove that for any $i, f_i(p_{\omega}) \leq x$.

$$f_i(p_0) \le f_i(p_1) \le \dots \le f_i(p_i) \le x$$

 $\forall_{j>i} : f_i(p_j) \le f_j(p_j) \le x$

Since f_i is ω -continuous, then since p_{ω} is the colimit of $p_0 \leq p_1 \leq \ldots$, then $f_i(p_{\omega})$ is the colimit of $f_i(p_0) \leq f_i(p_1) \leq \ldots$, which means that $f_i(p_{\omega}) \leq x$. Now consider:

$$f_0(p_\omega) \leq f_1(p_\omega) \leq \dots$$

We introduce $g: P \to Q$ as below:

$$g(p) = \begin{cases} x & \text{if } p \le p_0 \text{ or } p \ge p_0 \\ f_{\omega}(p) & O.W. \end{cases}$$

We can see that g is monotone. And also ω -continuous, since for any $r_0 \leq r_1 \leq \ldots$, where $r_i \in P$, either $g(r_i) = x$ for all of r_i s, or $g(r_i) = f_{\omega}(r_i)$. First case is obvious. The second case is ω -continuous since f_{ω} is ω -continuous. Now we can see:

$$p \le p_0 \text{ or } p \ge p_0 \implies f_i(p) = x = g(p)$$

 $O.W. \implies f_i(p) \le f_\omega(p) = g(p)$

This proves that for all $i, f_i \leq g$. Now we know that f_{ω} is the colimit of $f_0 \leq f_1 \leq \ldots$, therefore we have $f_{\omega} \leq g$:

$$f_i(p_\omega) \le f_\omega(p_\omega) \le g(p_\omega) = x$$

This proves that $f_{\omega}(p_{\omega})$ is the colimit of $f_0(p_0) \leq f_1(p_1) \leq \ldots$. Thus ϵ is ω -continuous. Now let:

 $\tilde{f}(x) \in Q^P$ where for any $p \in P$ we have $(\tilde{f}(x))(p) = f(x,p)$. We know that in case of existing such function, it is unique, Now we only have to show that if f is monotone and ω -continuous, then \tilde{f} is monotone and ω -continuous as well. Suppose $x, x' \in X$ such that $x \leq x'$. We need to show that $\tilde{f}(x) \leq \tilde{f}(x')$. And for this we need to show that for any $p \in P$, $\tilde{f}(x)(p) \leq \tilde{f}(x')(p)$:

$$\tilde{f}(x)(p) = f(x,p) \le f(x',p) = \tilde{f}(x')(p)$$

Thus \tilde{f} is monotone. Note that since $(x,p) \leq (x',p)$ and f is monotone we conclude that $f(x,p) \leq f(x',p)$. As for ω -continuous, consider $x_0 \leq x_1 \leq \ldots$, with colimit x_ω in X. Since \tilde{f} is monotone, therefore $\tilde{f}(x_i) \leq \tilde{f}(x_\omega)$. Now Consider the function $g: P \to Q$ such that for any $i, \tilde{f}(x_i) \leq g$.

$$\tilde{f}(x_i) \le g \implies \forall p \in P : \tilde{f}(x_i)(p) \le g(p)$$

 $\implies \forall p \in P : f(x_i, p) \le g(p)$

Since x_{ω} is the colimit of $x_0 \leq x_1 \leq \ldots$, therefore (x_{ω}, p) is the colimit of $(x_0, p) \leq (x_1, p) \leq \ldots$. And since f is ω -continuous, therefore:

$$\forall p \in P : f(x_i, p) \le f(x_\omega, p) \le g(p)$$

$$\implies \forall p \in P : \tilde{f}(x_\omega)(p) \le g(p)$$

$$\implies \tilde{f}(x_\omega) \le g$$

This shows that \tilde{f} preserves limit and is ω -continuous. This concludes that the category of ω CPOs is indeed CCC.

To show that the category of strict ω CPOs is not CCC we show that some exponential objects cannot exist. Let P and Q be two ω CPOs with more than 1 element. We know that $\{\bot\}$ is also an ω CPO:

Now there exists many $f: \{\bot\} \times P \cong P \to Q$. But there exists only one $\tilde{f}: \{\bot\} \to Q^P$ since \tilde{f} preserves \bot . This shows that such object Q^P doesn't exist. And therefore the category of strict ω CPOs is not CCC.

Problem 4. Consider the forgetful functors

$$oldsymbol{Groups} \overset{U}{
ightarrow} oldsymbol{Monoids} \overset{V}{
ightarrow} oldsymbol{Sets}$$

Say whether each is faithful, full, injective on arrows, surjective on arrows, injective on objects, and surjective on objects. (Exercise 7.11.4)

Proof. U:

$U: \mathbf{Groups} \to \mathbf{Monoids}$

$$\langle X, \star, e \rangle \to \langle X, \star, e \rangle$$

$$f \downarrow \qquad \qquad \downarrow f$$

$$\langle Y, *, e' \rangle \to \langle Y, *, e' \rangle$$

(i) Full: We have to see that whether

$$F: Hom_{Grp}(A, B) \to Hom_{Mon}(UA, UB)$$

is surjective. Let $g \in Hom_{Mon}(UA, UB)$ be a monoid homomorphism. Therefore for any $x, y \in UA$ we have:

$$g(xy) = g(x)g(y)$$
$$g(1_{UA}) = 1_{UB}$$

Since U is a forgetful functor, therefore UA (similarly UB) is exactly A (similarly B). This shows that g also a group homomorphism between A and B and since both A and B have group structure as well, therefore F is surjective, thus U is full.

(ii) Faithful: We have to see that whether

$$F: Hom_{Grp}(A, B) \to Hom_{Mon}(UA, UB)$$

is injective. Let $f, g \in Hom_{Grp}(A, B)$, $f \neq g$ be two group homomorphisms. Since any group homomorphism is also a monoid homomorphism thus Fg = g and Ff = f. Now if Ff = Fg then we would have for any $a \in A$, f(a) = g(a). But this cannot happen since $f \neq g$ in the first place.

- (iii) Surjective on objects: Since any monoid is not a group, thus U is not surjective on objects.
- (iv) Surjective on arrows: Since U is not surjective on objects, it can't be surjective on arrows as well.
- (v) Injective on objects: Let $G = \langle X, \star, e \rangle$ and $H = \langle Y, *, e' \rangle$ where $H \neq G$. If $Y \neq X$ it is easy to see that after U, they are both different monoids. If Y = X, therefore there exists some $a, b \in X$ such that $a \star b \neq a * b$. This shows that after U they are two different monoids. Therefore U is injective on objects.

(vi) Injective on arrows: Since U is injective on objects, then for any $f: A \to B$ and $g: C \to D$ where $f \neq g$, if one of $A \neq C$ or $B \neq D$ happens, then $Uf \neq Ug$ because of different objects on domain or codomain. And if A = C and B = D then since U is faithful, we have $Uf \neq Ug$. Therefore U is injective on arrows as well.

 \mathbf{V} :

$V: \mathbf{Monoids} \to \mathbf{Sets}$

$$\langle X, \star, e \rangle \longrightarrow X$$

$$f \downarrow \qquad \qquad \downarrow f$$

$$\langle Y, \star, e' \rangle \longrightarrow Y$$

(i) Full: We have to see whether

$$V: Hom_{Mon}(A, B) \to Hom_{Set}(VA, VB)$$

is surjective. Consider A and B non-trivial monoids, then for any morphism f between A and B we have: $f(1_A) = 1_B$. Now consider some function between A and B such that it doesn't preserve identity. It can't be the image of any morphism in Monoids. Therefore V here is not surjective and therefore is not full.

(ii) Faithful: We have to see whether

$$V: Hom_{Mon}(A, B) \to Hom_{Set}(VA, VB)$$

is injective. Let $f, g \in Hom_{Mon}(A, B)$ such that $f \neq g$. Therefore there exists some $a \in A$ such that $f(a) \neq g(a)$. Now since V is forgetful, then Vf = f and Vg = g as functions. Therefore $Vf \neq Vg$, thus V here is injective and faithful.

- (iii) Surjective on objects: There is no moniod M such that VM =, since for any monoid M there exists some identity element $e \in M$, Thus it can't be empty. Therefore V is not surjective on objects.
- (iv) Surjective on arrows: Since V is not surjective on objects, it can't be surjective on arrows.
- (v) Injective on objects: Consider the monoids $M = \langle \{e, a\}, \star, e \rangle$ and $M' = \langle \{e, a\}, \star, e \rangle$ where $a \star e = a \star e = a \star a = a$ and $a \star a = e$. Clearly $M \neq M'$, but $VM = \{1, 2\} = VM'$, thus V is not injective on objects.
- (vi) Injective on arrows: Consider M and M' from the previous part. Functions below are different in Monoids:

$$1_M: M \to M$$
 $1_{M'}: M' \to M'$ $m \mapsto m$ $m' \mapsto m'$

But are the same in Sets since they are both $1_{\{a,e\}}:\{a,e\}\to\{a,e\}$. Therefore V is not injective on arrows.

Problem 5. Make every poset (X, \leq) into a topological space by letting $U \subset X$ be open just if $x \in U$ and $x \leq y$ implies $y \in U$ (U is "closed upwards"). This is called Alexandroff topology on X. Show that it gives a functor

$$A: Pos \rightarrow Top$$

from posets and monotone maps to spaces and continuous maps by showing that any monotone map of posets $f: P \to Q$ is continuous with respect to this topology on P and Q (the inverse image of an open set must be open). Is A faithful? is it full?

How would the situation change if instead one took as open sets those subsets that are closed downwards? (Exercise 7.11.5)

Proof. First we show that any monotone map between P and Q is also a continuous map between topology on P and Q.

Let $V \subset Q$ be an open in τ_Q . And let $U = f^{-1}(V)$. Let $x \in U$ and $y \in P$ such that $x \leq y$. Since f is monotone:

$$\left. \begin{array}{l} x \leq y \implies f(x) \leq f(y) \\ f(x) \in V \\ V \text{ is open} \end{array} \right\} \implies f(y) \in V \implies y \in f^{-1}(V) = U$$

This shows that U is open in τ_P . Therefore inverse image of any open, is open, thus f is continuous. Two other properties of functors is easy to check since for any map f in Pos, Af = f.

Sicne Af = f then for any two $f, g \in Hom_{Pos}(P, Q)$ where $f \neq g$, then $Af \neq Ag$, therefore A is faithful. For full, consider the continuous function $f: (P, \tau_P) \to (Q, \tau_Q)$. Let $x, y \in P$ such that $x \leq y$. We want to show that f is also monotone. If $f(x) \leq f(y)$ then we are done. Otherwise suppose f(y) < f(x). Now in (Q, τ_Q) consider the open set U with $f(x) \in U$ and $z \in U$ iff $f(x) \leq z$. It is easy to see that f(y) is not in U. Since f is continuous, then $V = f^{-1}(U)$ is open in (P, τ_P) . And since $f(y) \notin U$ then $y \notin V$. And also since $f(x) \in U$ then $x \in V$. Since V is open we have:

$$\left. \begin{array}{l} x \in V \\ x \le y \end{array} \right\} \implies y \in V$$

But we showed that $y \notin V$. The contradiction shows that the assumption f(y) < f(x) was wrong and we have $f(x) \leq f(y)$. Therefore if f is a continuous map between (P, τ_P) and (Q, τ_Q) , then f is also monotone between P and Q. This shows that A is full, since any continuous map is image of some monotone map.

For open sets such that they are closed downwards, is exactly the same, A is functor, full, and faithful.

Problem 6. Prove that every functor $F: C \to D$ can be factored as $D \circ E = F$,

$$C \stackrel{E}{\longrightarrow} E \stackrel{D}{\longrightarrow} D$$

in the following two ways:

- (a) $E: C \rightarrow E$ is bijective on objects and full, and $D: E \rightarrow D$ is faithful;
- (b) $E: C \to E$ is surjective on objects and $D: E \to D$ is injective on objects and full and faithful.

When do the two factorizations agree? (Exercise 7.11.6)

Proof. For each part, we construct \mathbf{E} :

(a) Let **E** be a category with $\mathbf{E_0} = \mathbf{C_0}$ and for any $X, Y \in \mathbf{E_0}$ we have:

$$Hom_{\mathbf{E}}(X,Y) = Hom_{F(\mathbf{C})}(FX,FY)$$

In other words, each morphism between X and Y in \mathbf{E} , is representing a morphism in image of F, between FX and FY. For any $X \in \mathbf{E}$, $1_X \in Hom_{\mathbf{E}}(X,X)$ is the equivalent of $1_{F(\mathbf{C})}(FX,FX)$. And composition of two morphisms f and g is as below:

$$\exists f', g' : f = Ff', g = Fg'$$
$$f \circ g = F(f') \circ F(g') = F(f' \circ g')$$

 $E: \mathbf{C} \longrightarrow \mathbf{E}$

It is obvious that **E** is a category. Now consider the functor:

$$\begin{array}{ccc}
X & \xrightarrow{E} & X \\
\downarrow & & \downarrow \\
f \downarrow & & \downarrow \\
Y & \xrightarrow{E} & Y
\end{array}$$

To show that E is functor, we only need to show that composition and Identity are preserved, which is trivial since both are preserved with functor F.

Note that any morphism in **E** is of the form Ff' for some $f' \in C_1$. Now consider the functor:

To see that D is functor, we have to show that it preserves Identity and composition, which is trivial since F is a functor. To see that $F = D \circ E$:

This shows that the composition of D and E is indeed F. Now E is injective on objects, since for any $X \in \mathbb{C}$, we have E(X) = X. And is also full, since by construction, any morphism in \mathbb{E} is of the form Ff for some $f \in \mathbb{C}_1$. And also D is faithful, since for any morphism $Ff \in \mathbb{E}_1$, we have D(Ff) = Ff.

(b) Let **E** be a category with $E_0 = F(C_0)$ and for any $FX, FY \in \mathbf{E_0}$ we have:

$$Hom_{\mathbf{E}}(FX, FY) = Hom_{\mathbf{D}}(FX, FY)$$

In other words, the set of morphisms in \mathbf{E} between FX and FY is exactly the set of morphism in \mathbf{D} between FX and FY. For any $FX \in \mathbf{E_0}$, let 1_{FX} be the equivalent of 1_{FX} in \mathbf{D} . And composition is defined exactly like composition for morphisms in \mathbf{D} . It is obvious that E is a category. Consider the functors:

To check if E is a functor we have to check that it preserves identity and composition. Identity is preserved since $E(1_X) = F(1_X) = 1_{FX}$. And composition is preserved since F is a functor. The other functor is:

Where D is the inclusion functor. Now to see that the composition of these two is F:

Now E is surjective on objects, since by definition we had $\mathbf{E_0} = \mathbf{F}(\mathbf{C_0})$. Now D is injective on objects since for any $FX \in \mathbf{E_0}$ we have D(FX) = FX. Also D is full and faithful since by definition we had:

$$Hom_{\mathbf{E}}(FX, FY) = Hom_{\mathbf{D}}(FX, FX)$$

Problem 7. Show that the map of sets

$$\eta_A: A \to PP(A)$$

$$a \mapsto \{U \subseteq A | a \in U\}$$

is the component at A of a natural transformation $\eta: 1_{Sets} \to PP$, where $P: Sets^{op} \to Sets$ is the (contraviariant) powerset functor. (Exercise 7.11.9)

Proof. First to understand the functor PP, since P is contraivariant:

$$A \xrightarrow{P} P(A) \xrightarrow{P} PP(A)$$

$$f \downarrow \qquad \qquad \uparrow \\ P(f) = f^{-1} \qquad \downarrow PP(f)$$

$$B \xrightarrow{PB} P(B) \xrightarrow{P} PP(B)$$

Let $X \in P(B)$, Then $P(f)(X) = f^{-1}(X) = \{x \in A | f(x) \in X\}$, similarly for PP(f), if $U \in PP(A)$:

$$PP(f)(U) = P(f)^{-1}(U) = (f^{-1})^{-1}(U) = \{X \in P(B)|f^{-1}(X) \in U\}$$

Now we only need to show that for any sets A and B, the following diagram commutes:

$$A \xrightarrow{\eta_A} PP(A)$$

$$f \downarrow \qquad \qquad \downarrow PP(f)$$

$$B \xrightarrow{\eta_B} PP(B)$$

And since we are in **Sets**, let $a \in A$, we need to show that $\eta_B(f(a)) = PP(f)(\eta_A(a))$.

$$PP(f)(\eta_{A}(a)) = PP(f)(\{U \subseteq A | a \in U\})$$

$$= \{X \in P(B) | f^{-1}(X) \in \{U \subseteq A | a \in U\}\}\}$$

$$= \{X \in P(B) | a \in f^{-1}(X)\}$$

$$= \{X \in P(B) | f(a) \in X\}$$

$$= \{X \subseteq B | f(a) \in X\}$$

$$= \eta_{B}(f(a))$$

This completes the proof.

Problem 8. A category is skeletal if isomorphic objects are always identical. Show that every category is equivalent to a skeletal subcategory. (Every category has a "skeleton.") (Exercise 7.11.16)

Proof. Let C be a category. Since isomorphism of objects in a category is an equivalence relationship, then with the help of AC we choose a subcategory D, that from each equivalence class there is exactly one object. And all the morphisms between the chosen objects are also chosen. Now let F be a functor from C to D such that it maps every object to its equivalent in D:

$$F: C \longrightarrow D$$

Since A and FA are isomorphic to each other, therefore there exist F_A^{-1} . And we have $Ff = F_B \circ f \circ F_A^{-1}$. It is easy to see that $F(1_A) = F_A \circ 1_A \circ F_A^{-1} = 1_{FA}$. And for composition, let $g: A \to B$ and $f: B \to C$:

$$F(f \circ g) = F_C \circ (f \circ g) \circ F_A^{-1} = F_c \circ f \circ F_B \circ F_B^{-1} \circ g \circ F_A^{-1} = F(f) \circ F(g)$$

Thus F is indeed a functor. Now we have to show that F is full, faithful and essensially surjective on objects.

For full consider any $h: FA \to FB$. Then $k = F_B^{-1} \circ h \circ F_A : A \to B$ is in $Hom_C(A, B)$ and F(k) = h.

For faithful, if F(f) = F(g) then we have:

$$F(f) = F_B \circ f \circ F_A^{-1} \implies f = F_B^{-1} \circ F(f) \circ F_A$$

$$F(g) = F_B \circ g \circ F_B^{-1} \implies g = F_B^{-1} \circ F(g) \circ F_A$$

$$\implies f = g$$

For essensially surjective on objects, for any $X \in D$, we have $X \in C$. And we have $FX = X \cong X$.

This shows that C and D are equivalent, and since D by construction was skeletal, then the proof is complete.