SQL DATA ANALYSIS PROJECT

Samantha Watson January 2024

The following project was completed using PostgresSQL and the uncleaned "Data Science Job Posting on Glassdoor" dataset on Kaggle and involves exploratory data analysis and data cleaning/wrangling. The dataset can be found at the following link: https://www.kaggle.com/datasets/rashikrahmanpritom/datasetence-job-posting-on-glassdoor?select=Uncleaned DS jobs.csv

Please note that due to the size and number of records in this data set, data output shown has been limited to a certain number of records (i.e. first ten records).

EXPLORATORY DATA ANALYSIS

1) Create a database to allow for table creation and data import.

CREATE DATABASE projects_2024;

2) Create table to import data into.

```
CREATE TABLE ds salaries(
        index int PRIMARY KEY,
        job_title text,
        salary_estimate text,
        job_description text,
        rating numeric,
        company name text,
        location text,
        headquarters text,
        size text,
        founded int,
        ownership text,
        industry text,
        sector text,
        revenue text,
        competitors text
);
3) Import csv file.
COPY ds salaries
FROM 'C:\Users\Public\ds_salaries_project.csv'
```

4) View output to verify import and display table.

SELECT * FROM ds_salaries

LIMIT 10;

lex job_title	salary_estimate	job_description	rating	company_name	location	headquarters	size	founded	ownership	Industry	sector	revenue	competitors
O Sr Data Scientist	\$137K-\$171K (Glassdoor e	Description	3.1	L Healthfirst	New York, NY	New York, NY	1001 to 5000 employees	199	3 Nonprofit Organiza	Insurance Carriers	Insurance	Unknown / Non-Applicable	EmblemHealth, UnitedHealt
1 Data Scientist	\$137K-\$171K (Glassdoor e	Secure our Nation, Ignite	4.2	ManTech	Chantilly, VA	Herndon, VA	5001 to 10000 employees	196	8 Company - Public	Research & Development	Business Service	\$1 to \$2 billion (USD)	-1
2 Data Scientist	\$137K-\$171K (Glassdoor e	Overview	3.8	3 Analysis Group	Boston, MA	Boston, MA	1001 to 5000 employees	198	1 Private Practice / Fi	Consulting	Business Service	\$100 to \$500 million (USD)	-1
3 Data Scientist	\$137K-\$171K (Glassdoor e	OB DESCRIPTION:	3.5	INFICON	Newton, MA	Bad Ragaz, Switzerland	501 to 1000 employees	200	O Company - Public	Electrical & Electronic Manufacturing	Manufacturing	\$100 to \$500 million (USD)	MKS Instruments, Pfeiffer Vi
4 Data Scientist	\$137K-\$171K (Glassdoor e	Data Scientist	2.5	Affirity	New York, NY	New York, NY	51 to 200 employees	199	8 Company - Private	Advertising & Marketing	Business Service	Unknown / Non-Applicable	Commerce Signals, Cardlyti
5 Data Scientist	\$137K-\$171K (Glassdoor e	About Us:	4.3	2 HG Insights	Santa Barbara, CA	Santa Barbara, CA	51 to 200 employees	201	0 Company - Private	Computer Hardware & Software	Information Te	Unknown / Non-Applicable	-1
6 Data Scientist / Machine Lear	ni\$137K-\$171K (Glassdoor e	Posting Title	3.9	9 Novartis	Cambridge, MA	Basel, Switzerland	10000+ employees	199	6 Company - Public	Biotech & Pharmaceuticals	Biotech & Phar	r \$10+ billion (USD)	-1
7 Data Scientist	\$137K-\$171K (Glassdoor e	Introduction	3.5	Robot	Dedford, MA	Bedford, MA	1001 to 5000 employees	199	0 Company - Public	Consumer Electronics & Appliances Stores	Retail	\$1 to \$2 billion (USD)	-1
8 Staff Data Scientist - Analytic	\$137K-\$171K (Glassdoor e	Intuit is seeking a Staff D	4.4	1 Intuit - Data	San Diego, CA	Mourtain View, CA	5001 to 10000 employees	198	3 Company - Public	Computer Hardware & Software	Information Te	\$2 to \$5 billion (USD)	Square, PayPal, H&R Block
9 Data Scientist	\$137K-\$171K (Glassdoor e	Ready to write the best	3.6	5 XSELL	Chicago, IL	Chicago, IL	51 to 200 employees	201	4 Company - Private	Enterprise Software & Network Solutions	Information Te	Unknown / Non-Applicable	-1

5) Verify column datatypes.

SELECT table_name, column_name, data_type
FROM information_schema.columns
WHERE table_name = 'ds_salaries';

	table_name name	column_name name	data_type character varying
1	ds_salaries	rating	numeric
2	ds_salaries	founded	integer
3	ds_salaries	index	integer
4	ds_salaries	job_description	text
5	ds_salaries	company_name	text
6	ds_salaries	location	text
7	ds_salaries	headquarters	text
8	ds_salaries	size	text
9	ds_salaries	ownership	text
10	ds_salaries	industry	text
11	ds_salaries	sector	text
12	ds_salaries	revenue	text
13	ds_salaries	competitors	text
14	ds_salaries	job_title	text
15	ds_salaries	salary_estimate	text

6) Create a backup table now that data import and accurate format has been verified.

CREATE TABLE ds_salaries_backup AS SELECT * FROM ds_salaries;

7) Count the number of records in the dataset.

SELECT COUNT(*) FROM ds_salaries;

8) Perform a quick data inspection of the head and tail of dataset.

SELECT * FROM ds_salaries

ORDER BY index ASC

LIMIT 5;

SELECT * FROM ds_salaries

ORDER BY index DESC

LIMIT 5;

9) Retrieve counts of various job titles and possible spelling/format variations of similar job titles.

SELECT job_title, COUNT(job_title) FROM ds_salaries

GROUP BY job_title

ORDER BY COUNT(job_title) DESC;

	job_title text	count bigint	
1	Data Scientist	337	
2	Data Engineer		
3	Senior Data Scientist	19	
4	Machine Learning Engineer	16	
5	Data Analyst	12	
6	Senior Data Analyst	6	
7	Senior Data Engineer	5	
8	Data Science Software Engineer	4	
9	ENGINEER - COMPUTER SCIENTIST - RESEARCH COMPUTER SCIENTIST - SIGNAL PROCESSING - SAN ANTONIO	4	
10	Data Scientist - TS/SCI FSP or CI Required	4	
11	Data Modeler (Analytical Systems)	3	
12	Analytics - Business Assurance Data Analyst	3	
13	Senior Data Scientist - Image Analytics, Novartis Al Innovation Lab	3	
14	Senior Machine Learning Scientist - Bay Area, CA	3	
15	Lead Data Scientist	3	
16	Decision Scientist	3	
17	Senior Business Intelligence Analyst	3	
18	Data Scientist - TS/SCI Required	3	
19	Sr. ML/Data Scientist - Al/NLP/Chatbot	3	
20	Principal Data Scientist	3	
21	Al Ops Data Scientist	3	
22	Scientist - Machine Learning	2	
23	Cloud Data Engineer (Azure)	2	
24	Data Scientist (TS/SCI w/ Poly)	2	
25	VP, Data Science	2	

^{*}Observations: There are many variations of the same job title. For example, "Senior Data Scientist" vs. "Sr. Data Scientist."

- 10) Investigation and exploration (code shown below) of the remaining text columns reveal similar formatting issues. Additional observations include:
 - The need to change the salary_estimate column to a numerical format so that
 mathematical and aggregate calculations may be performed. The salary_estimate
 column has text that needs to be removed and the salary range needs to be split
 into a lower range and upper range.
 - It appears that NULL values are coded as a "-1" in the following columns: size, ownership, industry, sector, revenue, and competitors columns, as "Unknown" in the ownership and size columns, and as "Unknown/Non-Applicable" in the revenue column. These could be converted to NULL to aid in later analysis.
 - Both city and state are listed in the location column, this can be split into separate columns to aid in later analysis.

SELECT salary_estimate, COUNT(salary_estimate) FROM ds_salaries GROUP BY salary_estimate ORDER BY COUNT(salary_estimate) DESC;

SELECT company_name, COUNT(company_name) FROM ds_salaries GROUP BY company_name
ORDER BY company_name DESC;

SELECT ownership, COUNT(ownership) FROM ds_salaries
GROUP BY ownership
ORDER BY ownership DESC;

SELECT location, COUNT(location) FROM ds_salaries GROUP BY location ORDER BY location DESC;

SELECT size, COUNT(size) FROM ds_salaries
GROUP BY size
ORDER BY COUNT(size) DESC;

SELECT industry, COUNT(industry) FROM ds_salaries GROUP BY industry ORDER BY COUNT(industry) DESC; SELECT sector, COUNT(sector) FROM ds_salaries
GROUP BY sector
ORDER BY COUNT(sector) DESC;

SELECT revenue, COUNT(revenue) FROM ds_salaries
GROUP BY revenue
ORDER BY COUNT(revenue) DESC;

SELECT competitors, COUNT(competitors) FROM ds_salaries GROUP BY competitors ORDER BY competitors;

11) Explore min/max, mean and median of rating and founded columns (excluding NULLS).

SELECT MAX(rating) AS max_rating, MIN(rating) AS min_rating, ROUND(AVG(rating), 1) AS average_rating, PERCENTILE_CONT(.5) WITHIN GROUP(ORDER BY rating) AS median FROM ds_salaries WHERE rating<>>-1;

	max_rating numeric	min_rating numeric	average_rating numeric	median double precision
1	5	2	3.9	3.8

SELECT MAX(founded) AS newest, MIN(founded) AS oldest, ROUND(AVG(founded), 1) AS average_founded, PERCENTILE_CONT(.5) WITHIN GROUP(ORDER BY founded) AS median FROM ds_salaries WHERE founded<>-1;

	newest integer	oldest integer	average_founded numeric	median double precision
1	2019	1781	1984.1	1999

^{*}Observation: Founding date of 1781 is questionable; this may skew average.

DATA CLEANING & WRANGLING

1) After investigation of each column, it appears that NULL values are coded as "-1", "Unknown", or "Unknown / Non-Applicable" and will need to be updated for consistency purposes.

```
START TRANSACTION;
UPDATE ds_salaries
SET rating = NULL
WHERE rating = -1;
UPDATE ds_salaries
SET headquarters = NULL
WHERE headquarters = '-1';
UPDATE ds salaries
SET size = NULL
WHERE size = '-1' OR size = 'Unknown';
UPDATE ds_salaries
SET competitors = NULL
WHERE competitors = '-1';
UPDATE ds_salaries
SET founded = NULL
WHERE founded = -1;
UPDATE ds_salaries
SET industry = NULL
WHERE industry = '-1';
UPDATE ds salaries
SET sector = NULL
WHERE sector = '-1';
UPDATE ds_salaries
SET ownership = NULL
WHERE ownership = '-1' OR ownership = 'Unknown';
UPDATE ds salaries
SET revenue = NULL
WHERE revenue = '-1'
UPDATE ds salaries
SET revenue = NULL
WHERE revenue ILIKE '%unknown%';
COMMIT;
```

2) Find duplicate records.

SELECT job_title, salary_estimate, job_description, rating, company_name, location, industry, sector, revenue, competitors, COUNT(*) FROM ds_salaries

GROUP BY job_title, salary_estimate, job_description, rating, company_name, location, industry, sector, revenue, competitors

HAVING COUNT(location_state) >1;

^{*} It would be noteworthy to know whether these duplicate records are erroneous or are due to multiple job postings due to the actual number of positions available. Therefore, for the purposes of this project, duplicate records will be kept.

3) The salary_estimate column needs to be:

- Split into two columns, low range and high range columns containing the lower range of the salary and higher range of salary
- The low and high range columns need to be rid of text values (i.e. the "Glassdoor estimate" at the end of each salary range)
- The low and high range columns need to be converted to numeric format to allow for further analysis

SELECT DISTINCT salary_estimate FROM ds_salaries ORDER BY salary_estimate;

Add lower range and higher range columns, will originate as text data type and convert to numeric later.

ALTER TABLE ds_salaries
ADD COLUMN lower_range text;
ALTER TABLE ds_salaries
ADD COLUMN higher range text;

Split salary_estimate column into ranges using "-" as a delimiter.

START TRANSACTION;

UPDATE ds_salaries

SET lower_range = split_part(salary_estimate, '-', 1)

RETURNING salary_estimate, lower_range;

	salary_estimate text	lower_range text
1	\$137K-\$171K (Glassdoor est.)	\$137K
2	\$137K-\$171K (Glassdoor est.)	\$137K
3	\$137K-\$171K (Glassdoor est.)	\$137K
4	\$137K-\$171K (Glassdoor est.)	\$137K
5	\$137K-\$171K (Glassdoor est.)	\$137K
6	\$137K-\$171K (Glassdoor est.)	\$137K
7	\$137K-\$171K (Glassdoor est.)	\$137K
8	\$137K-\$171K (Glassdoor est.)	\$137K
9	\$137K-\$171K (Glassdoor est.)	\$137K
10	\$137K-\$171K (Glassdoor est.)	\$137K

UPDATE ds_salaries

SET higher_range = split_part(salary_estimate, '-', 2)

RETURNING salary_estimate, higher_range;

	salary_estimate text	higher_range text
1	\$137K-\$171K (Glassdoor est.)	\$171K (Glassdoor est.)
2	\$137K-\$171K (Glassdoor est.)	\$171K (Glassdoor est.)
3	\$137K-\$171K (Glassdoor est.)	\$171K (Glassdoor est.)
4	\$137K-\$171K (Glassdoor est.)	\$171K (Glassdoor est.)
5	\$137K-\$171K (Glassdoor est.)	\$171K (Glassdoor est.)
6	\$137K-\$171K (Glassdoor est.)	\$171K (Glassdoor est.)
7	\$75K-\$131K (Glassdoor est.)	\$131K (Glassdoor est.)
8	\$75K-\$131K (Glassdoor est.)	\$131K (Glassdoor est.)
9	\$75K-\$131K (Glassdoor est.)	\$131K (Glassdoor est.)
10	\$75K-\$131K (Glassdoor est.)	\$131K (Glassdoor est.)

Remove text from end of higher_range column.

UPDATE ds_salaries

SET higher_range = SUBSTRING(higher_range,2,3)

RETURNING salary_estimate, higher_range;

Remove "K" from end of higher_range values <100K.

UPDATE ds_salaries
SET higher_range = LEFT(higher_range,2)
WHERE POSITION ('K' IN higher_range)>0
RETURNING salary_estimate, higher_range;

	salary_estimate text	higher_range text
1	\$56K-\$97K (Glassdoor est.)	97
2	\$56K-\$97K (Glassdoor est.)	97
3	\$56K-\$97K (Glassdoor est.)	97
4	\$56K-\$97K (Glassdoor est.)	97
5	\$56K-\$97K (Glassdoor est.)	97
6	\$56K-\$97K (Glassdoor est.)	97
7	\$31K-\$56K (Glassdoor est.)	56
8	\$31K-\$56K (Glassdoor est.)	56
9	\$137K-\$171K (Glassdoor est.)	171
10	\$137K-\$171K (Glassdoor est.)	171

Remove "\$" from beginning of lower_range values and "K" from lower_range values <100K.

UPDATE ds_salaries

SET lower_range = SUBSTRING(lower_range,2,3)

RETURNING salary_estimate, lower_range;

	salary_estimate text	lower_range text
1	\$56K-\$97K (Glassdoor est.)	56K
2	\$56K-\$97K (Glassdoor est.)	56K
3	\$56K-\$97K (Glassdoor est.)	56K
4	\$56K-\$97K (Glassdoor est.)	56K
5	\$56K-\$97K (Glassdoor est.)	56K
6	\$56K-\$97K (Glassdoor est.)	56K
7	\$31K-\$56K (Glassdoor est.)	31K
8	\$31K-\$56K (Glassdoor est.)	31K
9	\$137K-\$171K (Glassdoor est.)	137
10	\$137K-\$171K (Glassdoor est.)	137

UPDATE ds_salaries
SET lower_range = LEFT(lower_range,2)
WHERE POSITION ('K' IN lower_range)>0
RETURNING salary_estimate, lower_range;

	salary_estimate text	lower_range text
1	\$56K-\$97K (Glassdoor est.)	56
2	\$56K-\$97K (Glassdoor est.)	56
3	\$56K-\$97K (Glassdoor est.)	56
4	\$56K-\$97K (Glassdoor est.)	56
5	\$56K-\$97K (Glassdoor est.)	56
6	\$56K-\$97K (Glassdoor est.)	56
7	\$31K-\$56K (Glassdoor est.)	31
8	\$31K-\$56K (Glassdoor est.)	31
9	\$56K-\$97K (Glassdoor est.)	56
10	\$31K-\$56K (Glassdoor est.)	31

Add trailing zeros to prepare for converting data type to integer.

UPDATE ds_salaries

SET lower_range = lower_range||'000'

RETURNING lower_range;

	lower_range text
1	56000
2	56000
3	31000
4	75000
5	75000
6	31000
7	31000
8	31000
9	31000
10	31000

UPDATE ds_salaries SET higher_range = higher_range||'000' RETURNING higher_range;

	higher_range text
1	97000
2	97000
3	56000
4	131000
5	56000
6	56000
7	56000
8	131000
9	131000
10	56000
_	10.000

Change data type to integer to allow for further analysis.

ALTER TABLE ds_salaries
ALTER COLUMN lower_range
SET DATA TYPE integer
USING lower_range::integer;

ALTER TABLE ds_salaries
ALTER COLUMN higher_range
SET DATA TYPE integer
USING higher_range::integer;

SELECT salary_estimate, lower_range, higher_range FROM ds_salaries;

COMMIT;

Final output shows new columns reflecting lower and higher salary ranges with no unnecessary text and converted to integer format.

	salary_estimate text	lower_range integer	higher_range integer
1	\$56K-\$97K (Glassdoor est.)	56000	97000
2	\$56K-\$97K (Glassdoor est.)	56000	97000
3	\$31K-\$56K (Glassdoor est.)	31000	56000
4	\$75K-\$131K (Glassdoor est.)	75000	131000
5	\$56K-\$97K (Glassdoor est.)	56000	97000
6	\$56K-\$97K (Glassdoor est.)	56000	97000
7	\$31K-\$56K (Glassdoor est.)	31000	56000
8	\$75K-\$131K (Glassdoor est.)	75000	131000
9	\$56K-\$97K (Glassdoor est.)	56000	97000
10	\$137K-\$171K (Glassdoor est.)	137000	171000

4) To split the location column into separate city and state columns, first check to make sure each record has both a city and state listed by checking for a "," delimiter. This allows us to see which records will not be transformed when using a delimiter to split the column.

SELECT location, COUNT(location) FROM ds_salaries WHERE location NOT LIKE '%,%' GROUP BY location;

	location text	count bigint	â
1	California		1
2	New Jersey		2
3	Remote		6
4	Texas		1
5	United States		11
6	Utah		2

^{*}Some records only list the state, country or are listed as "Remote". We can set the city to NULL for those records only listing the state, set the state as NULL for those only listing the country and have both city and state listed as "Remote" for remote jobs.

SELECT location, COUNT(location) FROM ds_salaries WHERE location ILIKE '%,%,%' GROUP BY location;

	location text	count bigint	â
1	Patuxent, Anne Arundel, MD		1

*There is one record that contains more than one comma delimiter, it appears this record lists the city, county and state. This record will be changed to only list the city and state.

START TRANSACTION;

Create new columns for city and state.

ALTER TABLE ds_salaries
ADD COLUMN location_city text;

ALTER TABLE ds_salaries
ADD COLUMN location_state text;

Update record containing two commas to reflect only city and state.

UPDATE ds_salaries

SET location = 'Patuxent, MD'

WHERE location = 'Patuxent, Anne Arundel, MD';

Extract only city from location column by using "," as a delimiter.

UPDATE ds_salaries
SET location_city = split_part(location, ',',1)
RETURNING location, location_city;

	location text	location_city text
1	Patuxent, MD	Patuxent
2	San Carlos, CA	San Carlos
3	Chantilly, VA	Chantilly
4	Laurel, MD	Laurel
5	Newton, MA	Newton
6	Oshkosh, WI	Oshkosh
7	Herndon, VA	Herndon
8	San Francisco, CA	San Francisco
9	Vicksburg, MS	Vicksburg
10	Chicago, IL	Chicago

Set city to NULL where city was not listed in location column.

```
UPDATE ds_salaries
SET location_city = NULL
WHERE location IN('California', 'New Jersey', 'Texas', 'United States', 'Utah');
```

Verify results.

SELECT location_city, COUNT(location_city) FROM ds_salaries GROUP BY location_city ORDER BY location_city;

	location_city text	count bigint	â
1	Adelphi		2
2	Akron		1
3	Alexandria		4
4	Alpharetta		2
5	Ann Arbor		2
6	Annapolis Junction		5
7	Appleton		1
8	Arlington		3
9	Ashburn		1
10	Atlanta		7

Extract only state from location column.

UPDATE ds_salaries
SET location_state = split_part(location, ',',2)
RETURNING location, location_state;

Set state column to NULL where state was not listed in location column.

```
UPDATE ds_salaries
SET location_state = NULL
WHERE location IN('United States');
```

-Set state column to correct state where only state was listed with no comma delimiter.

```
UPDATE ds_salaries

SET location_state = split_part(location, ',',1)

WHERE location IN('California', 'New Jersey', 'Texas', 'Utah', 'Remote')

RETURNING location, location_state;
```

Transform full state name to two letter abbreviation.

UPDATE ds_salaries
SET location_state = 'CA'
WHERE location_state = 'California';

UPDATE ds_salaries
SET location_state = 'NJ'
WHERE location_state = 'New Jersey';

UPDATE ds_salaries
SET location_state = 'TX'
WHERE location_state = 'TX'
WHERE location_state = 'Texas';

UPDATE ds_salaries
SET location_state = 'UT'
WHERE location_state = 'UT'
WHERE location_state = 'Utah';

Trim whitespace.

UPDATE ds_salaries
SET location_state = TRIM(location_state);

Verify results.

SELECT location_state, COUNT(location_state) FROM ds_salaries GROUP BY location_state ORDER BY location_state;

1	AL	4
2	AZ	4
3	CA	166
4	со	10
5	СТ	4
6	DC	26
7	DE	1
8	FL	8
9	GA	9
10	IA	3

SELECT location, location_city, location_state FROM ds_salaries ORDER BY location;

	location text	location_city text	location_state text
1	Adelphi, MD	Adelphi	MD
2	Adelphi, MD	Adelphi	MD
3	Akron, OH	Akron	ОН
4	Alexandria, VA	Alexandria	VA
5	Alexandria, VA	Alexandria	VA
6	Alexandria, VA	Alexandria	VA
7	Alexandria, VA	Alexandria	VA
8	Alpharetta, GA	Alpharetta	GA
9	Alpharetta, GA	Alpharetta	GA
10	Ann Arbor, MI	Ann Arbor	MI

COMMIT;

5) Many job titles have different variations that are similar enough that they can be grouped together to make further analysis more meaningful. For example, Senior Data Scientist is also listed as Sr Data Scientist and Sr. Data Scientist. Some job titles have the company or location listed after the actual job title. This can be removed so that we are only left with the actual job title. The following steps merge variations of job titles into singular, simplified job titles.

START TRANSACTION;

UPDATE ds_salaries

SET job_title = 'Data Analyst'

WHERE job_title IN('Data Analyst - Unilever Prestige', 'In-Line Inspection Data Analyst', 'Data Science Analyst', 'Report Writer-Data Analyst', 'Data Analyst I', 'Global Data Analyst', 'Diversity and Inclusion Data Analyst', 'E-Commerce Data Analyst', 'Enterprise Data Analyst (Enterprise Portfolio Management Office', 'Operations Data Analyst', 'RFP Data Analyst');

UPDATE ds_salaries

SET job_title = 'Senior Data Analyst'

WHERE job_title IN('Health Plan Data Analyst, Sr', 'Senior Data Analyst - Finance & Platform Analytics', 'Sr. Data Analyst', 'Sr Data Analyst');

UPDATE ds_salaries

SET job_title = 'Data Scientist'

WHERE job_title IN('Data Scientist, Kinship - NYC/Portland', 'Real World Science, Data Scientist', 'Data Scientist - Intermediate', 'Data Scientist - Statistics, Mid-Career',

```
'Product Data Scientist - Ads Data Science', 'Data Scientist/Data Analytics Practitioner');
UPDATE ds_salaries
SET job title = 'Senior Data Scientist'
WHERE job_title IN('Senior Data Scientist - Image Analytics, Novartis Al Innovation Lab', 'Sr Data Scientist',
   'Sr. Data Scientist', 'Sr. Data Scientist II', 'Senior Data Scientist - R&D Oncology',
   'Experienced Data Scientist', '(Sr.) Data Scientist - ', 'Senior Data Scientist - Algorithms',
   'Senior Clinical Data Scientist Programmer');
UPDATE ds salaries
SET job title = 'Associate Data Scientist'
WHERE job_title IN('Data Scientist - Statistics, Early Career', 'Patient Safety- Associate Data Scientist');
UPDATE ds salaries
SET job title = 'Data Scientist - TS/SCI Required'
WHERE job_title = 'Data Scientist (TS/SCI)';
UPDATE ds salaries
SET job title = 'Staff Data Scientist'
WHERE job_title IN('Staff Data Scientist - Analytics', 'Staff Data Scientist - Pricing', 'Staff Scientist-
  Upstream PD');
UPDATE ds salaries
SET job_title = 'Data Scientist - Machine Learning'
WHERE job_title IN('Data & Machine Learning Scientist', 'Data Scientist, Applied Machine Learning - Bay
  Area', 'Scientist - Machine Learning', 'Data Scientist / Machine Learning Expert', 'Data Scientist
  Machine Learning', 'Machine Learning Scientist - Bay Area, CA');
UPDATE ds_salaries
SET job_title = 'Business Data Analyst'
WHERE job_title IN('Analytics - Business Assurance Data Analyst', 'Say Business Data Analyst');
UPDATE ds_salaries
SET job_title = 'Machine Learning Engineer'
WHERE job_title IN('Machine Learning Engineer/Scientist', 'Machine Learning Scientist / Engineer');
UPDATE ds salaries
SET job_title = 'Senior Machine Learning Engineer'
WHERE job_title IN('Machine Learning Engineer, Sr.', 'Senior Machine Learning Scientist - Bay Area, CA');
UPDATE ds salaries
```

WHERE job_title IN('Data Engineer - Kafka', 'Data Engineer (Analytics, SQL, Python, AWS)',

'Data Engineer, Digital & Comp Pathology', 'Data Analytics Engineer',

SET job title = 'Data Engineer'

```
'Data Engineer, Enterprise Analytics', 'Tableau Data Engineer 20-0117',
   'Cloud Data Engineer (Azure)', 'Data Engineer (Remote)');
UPDATE ds salaries
SET job title = 'Senior Data Engineer'
WHERE job_title = 'Sr Data Engineer (Sr BI Developer)';
UPDATE ds salaries
SET job title = 'Computer Scientist - Engineer'
WHERE job title IN('ENGINEER - COMPUTER SCIENTIST - RESEARCH COMPUTER SCIENTIST - SIGNAL
  PROCESSING - SAN ANTONIO OR',
   'COMPUTER SCIENTIST - ENGINEER - RESEARCH COMPUTER SCIENTIST - TRANSPORTATION
  TECHNOLOGY', 'COMPUTER SCIENTIST - ENGINEER - RESEARCH COMPUTER SCIENTIST - SIGNAL
  PROCESSING');
UPDATE ds_salaries
SET job_title = 'Data Science Manager'
WHERE job_title IN('Data Science Manager, Payment Acceptance - USA', 'Manager / Lead, Data Science &
  Analytics');
UPDATE ds_salaries
SET job_title = 'Software Engineer'
WHERE job_title IN('Software Engineer - Data Science', 'Software Engineer - Machine Learning & Data
  Science (Applied Intelligence Services Team)', 'Software Engineer (Data Scientist, C,C++,Linux, Unix) -
  SISW - MG');
UPDATE ds salaries
SET job_title = 'Principal Data Scientist - Machine Learning'
WHERE job title = 'Principal Machine Learning Scientist';
UPDATE ds_salaries
SET job title = 'Senior Business Intelligence Analyst'
WHERE job_title = 'Intelligence Data Analyst, Senior';
UPDATE ds_salaries
SET job_title = 'Business Intelligence Analyst'
WHERE job title = 'Business Intelligence Analyst I- Data Insights';
UPDATE ds_salaries
SET job title = 'Lead Data Scientist'
WHERE job_title = 'Lead Data Scientist - Network Analysis and Control';
UPDATE ds salaries
SET job_title = 'Data Scientist - AI'
WHERE job_title IN('AI Data Scientist', 'AI Ops Data Scientist');
```

UPDATE ds_salaries

SET job_title = 'Data Modeler'

WHERE job_title = 'Data Modeler (Analytical Systems)';

UPDATE ds_salaries

SET job_title = 'Computational Scientist'

WHERE job_title IN('Computational Behavioral Scientist', 'Computational Scientist, Machine Learning');

UPDATE ds_salaries

SET job_title = 'Analytics Manager'

WHERE job_title = 'Analytics Manager - Data Mart';

UPDATE ds_salaries

SET job_title = 'Lead Data Scientist'

WHERE job_title = 'Lead Data Scientist - Network Analysis and Control';

Verify results.

SELECT job_title, COUNT(job_title) FROM ds_salaries GROUP BY job_title ORDER BY COUNT(job_title) DESC;

	job_title text	count bigint
1	Data Scientist	350
2	Data Engineer	38
3	Senior Data Scientist	38
4	Data Analyst	24
5	Machine Learning Engineer	19
6	Data Scientist - Machine Learning	16
7	Senior Data Analyst	12
8	Associate Data Scientist	6
9	Computer Scientist - Engineer	6
10	Senior Machine Learning Engineer	6
11	Senior Data Engineer	6
12	Business Data Analyst	5
13	Senior Business Intelligence Analyst	5
14	Staff Data Scientist	5
15	Data Modeler	4

COMMIT;

FURTHER ANALYSIS ON CLEANED DATA

1) Which job titles (having a count greater than 1) pays the least? The most?

SELECT job_title, AVG((lower_range+higher_range)/2) AS average_salary FROM ds_salaries GROUP BY job_title
HAVING COUNT(job_title)>1
ORDER BY average_salary ASC
LIMIT 1;

	job_title text	average_salary numeric
1	VP, Data Science	78250.000000000000

SELECT job_title, AVG((lower_range+higher_range)/2) AS average_salary FROM ds_salaries GROUP BY job_title
HAVING COUNT(job_title)>1
ORDER BY average_salary DESC
LIMIT 1;

2) Which city pays the least/most? Which state pays the least/most?

SELECT location_city, AVG((lower_range+higher_range)/2) AS average_salary FROM ds_salaries GROUP BY location_city
HAVING COUNT(location_city)>1
ORDER BY average_salary ASC
LIMIT 1;

SELECT location_city, AVG((lower_range+higher_range)/2) AS average_salary FROM ds_salaries GROUP BY location_city
HAVING COUNT(location_city)>1
ORDER BY average_salary DESC
LIMIT 1;

SELECT location_state, AVG((lower_range+higher_range)/2) AS average_salary FROM ds_salaries GROUP BY location_state

HAVING COUNT(location_state)>1

ORDER BY average_salary ASC

LIMIT 1;

SELECT location_state, AVG((lower_range+higher_range)/2) AS average_salary FROM ds_salaries GROUP BY location_state

HAVING COUNT(location_state)>1

ORDER BY average_salary DESC

LIMIT 1;

3) Which company pays the lowest/highest average salaries? Which industry pays the lowest/highest?

SELECT company_name, AVG((lower_range+higher_range)/2) AS average_salary FROM ds_salaries GROUP BY company_name
HAVING COUNT(company_name)>1
ORDER BY average_salary ASC
LIMIT 1;

SELECT company_name, AVG((lower_range+higher_range)/2) AS average_salary FROM ds_salaries GROUP BY company_name
HAVING COUNT(company_name)>1
ORDER BY average_salary DESC
LIMIT 1;

	company_name text	average_salary numeric
1	Comtech Global Inc	203750.0000000000000

SELECT industry, AVG((lower_range+higher_range)/2) AS average_salary FROM ds_salaries GROUP BY industry
HAVING COUNT(industry)>1
ORDER BY average_salary ASC
LIMIT 1;

	industry text	average_salary numeric
1	Oil & Gas Services	68000.000000000000

SELECT industry, AVG((lower_range+higher_range)/2) AS average_salary FROM ds_salaries GROUP BY industry
HAVING COUNT(industry)>1
ORDER BY average_salary DESC
LIMIT 1;

4) What percent of jobs are senior roles vs junior/associate role and what is the salary difference?

SELECT ROUND((SELECT SUM(number_senior) AS total_senior FROM

(SELECT COUNT(job_title) AS number_senior FROM ds_salaries

WHERE job_title ILIKE '%senior%'))/(SELECT COUNT(*) FROM ds_salaries)*100,2) AS percent_senior,

(SELECT ROUND(AVG((lower_range+higher_range)/2),2) AS average_salary FROM ds_salaries

WHERE job_title ILIKE '%senior%');

	percent_senior numeric	average_salary numeric
1	10.86	124890.41

SELECT ROUND((SELECT SUM(number_junior) AS total_junior FROM (SELECT COUNT(job_title) AS number_junior FROM ds_salaries WHERE job_title ILIKE '%jr%' OR job_title ILIKE '%associate%'))/(SELECT COUNT(*) FROM ds_salaries)*100,2);

AS percent_junior,

(SELECT ROUND(AVG((lower_range+higher_range)/2),2) AS average_salary FROM ds_salaries WHERE job_title ILIKE '%jr%' OR job_title ILIKE '%associate%')

	percent_junior numeric	average_salary numeric
1	1.79	116833.33

- * Senior positions made up almost 11% of the data set, at an average salary of almost \$125,000/year. While junior/associate roles made up almost 2% of the data at an average salary of almost \$117,000/year.
- 5) Do smaller (500 or less employees) or large companies (over 5000 employees) pay higher salaries?

SELECT size, COUNT(size), AVG((lower_range+higher_range)/2) AS average_salary FROM ds_salaries WHERE size IS NOT NULL

GROUP BY size ORDER BY average_salary ASC;

	size text	count bigint	average_salary numeric
1	201 to 500 employees	85	118970.588235294118
2	1 to 50 employees	86	119988.372093023256
3	501 to 1000 employees	77	120935.064935064935
4	1001 to 5000 employees	104	121754.807692307692
5	10000+ employees	80	122481.250000000000
6	5001 to 10000 employees	61	126663.934426229508
7	51 to 200 employees	135	127422.22222222222

^{*}Two of the three small size categories pay the lowest average salary, however one of the three small categories pays the highest average salary. Both large size categories are in the top three highest average salary listings.