Linear Models with the rstanarm R Package

Ben Goodrich April 13, 2020

Difficulty of Analytical Bayesian Inference

· Bayes Rule for an unknown parameter (vector) $m{ heta}$ conditional on known data (vector) ${f y}$ can be written as

$$f\left(oldsymbol{ heta} \mid \mathbf{y}
ight) = rac{f\left(oldsymbol{ heta}
ight)f\left(\mathbf{y} \mid oldsymbol{ heta}
ight)}{f\left(\mathbf{y}
ight)} = rac{f\left(oldsymbol{ heta}
ight)f\left(\mathbf{y} \mid oldsymbol{ heta}
ight)f\left(\mathbf{y} \mid oldsymbol{ heta}
ight)}{\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\ldots\int_{-\infty}^{\infty}f\left(oldsymbol{ heta}
ight)f\left(\mathbf{y} \mid oldsymbol{ heta}
ight)d heta_{1}d heta_{2}\ldots d heta_{K}}$$

- To obtain the denominator of Bayes Rule, you would need to do an integral
- The Risch Algorithm tells you if an integral has an elementary form (rare)
- · In most cases, we can't write the denominator of Bayes Rule in a useful form
- But we can draw from a distribution whose PDF is characterized by the numerator of Bayes Rule without knowing the denominator

Four Ways to Execute Bayes Rule

1. Draw from the prior predictive distribution and keep realizations of the parameters iff the realization of the outcome matches the observed data

- Very intuitive what is happening but is only possible with discrete outcomes and only feasible with few observations and parameters
- 2. Numerically integrate the numerator of Bayes Rule over the parameter(s)
 - Most similar to what we did in the discrete case but is only feasible when there are few parameters and can be inaccurate even with only one
- 3. Analytically integrate the numerator of Bayes Rule over the parameter(s)
 - Makes incremental Bayesian learning obvious but is only possible in simple models when the distribution of the outcome is in the exponential family
- 4. Use MCMC to sample from the posterior distribution
 - · Stan works for any posterior PDF that is differentiable w.r.t. the parameters

Comparing Stan to Ancient MCMC Samplers

- · Like M-H, only requires user to specify numerator of Bayes Rule
- Like M-H but unlike Gibbs sampling, proposals are joint
- Unlike M-H but like Gibbs sampling, proposals always accepted
- · Unlike M-H but like Gibbs sampling, tuning of proposals is (often) not required
- · Unlike both M-H and Gibbs sampling, the effective sample size is typically 25% to 125% of the nominal number of draws from the posterior distribution because ho_1 can be negative in $n_{eff}=\frac{S}{1+2\sum_{k=1}^\infty \rho_k}$
- Unlike both M-H and Gibbs sampling, Stan produces warning messages when things are not going swimmingly. Do not ignore these!
- Unlike BUGS, Stan does not permit discrete unknowns but even BUGS has difficulty drawing discrete unknowns with a sufficient amount of efficiency

Linear Model

The prior predictive distribution for a linear model proceeds like

$$egin{aligned} &lpha \sim ????\ eta \sim ??? \end{aligned} \ orall n : \mu_n = lpha + \sum_{k=1}^K eta_k x_{nk} \ & oldsymbol{\sigma} \sim ??? \ orall n : \epsilon_n \sim \mathcal{N}\left(0,\sigma
ight) \ orall n : y_n = \mu_n + \epsilon_n \end{aligned}$$

where ??? indicates the parameter to the left is drawn from a distribution that is up to you.

Hibbs Bread Model for Presidential Vote %

What is the relationship between growth and incumbent party vote share?

Hibbs Model

Breakout Rooms

Use R to draw S=10000 times (using replicate) from the prior predictive distribution of the Hibbs model with reasonable GLD priors, which require

```
rstan::expose_stan_functions(file.path("..", "Week2", "quantile_functions.stan")) # GLD_icdf
source(file.path("..", "Week2", "GLD_helpers.R")) # GLD_solver and GLD_solver_bounded
ROOT <- "https://raw.githubusercontent.com/avehtari/ROS-Examples/master/"
hibbs <- readr::read_delim(paste0(ROOT, "ElectionsEconomy/data/hibbs.dat"), delim = " ")
hibbs$growth <- hibbs$growth - mean(hibbs$growth) # centering
y_ <- t(replicate(10000, {
    # fill in this part
}))</pre>
```

Answer: Hyperparameters of GLD Priors

```
a s alpha <- GLD solver bounded(bounds = c(0, 100), median = 52, IQR = 4)
## Warning in GLD solver bounded(bounds = c(0, 100), median = 52, IQR = 4): no asymmetry and
## steepness values achieve the bounds exactly; actual bounds are 0.00030366349862021 and
## 99.9989293029639
a s beta <- GLD solver(lower quartile = -2, median = 0, upper quartile = 3,
                       other_quantile = 6.5, alpha = 0.9)
## Warning in GLD_solver(lower_quartile = -2, median = 0, upper_quartile = 3, : solution
## implies a bounded lower tail at -3.50577775150403
a s sigma \leftarrow GLD solver(lower quartile = 2.5, median = 4, upper quartile = 6,
                        other_quantile = 0, alpha = 0)
```

Answer: Prior Predictive Distribution

Checking the Prior Predictive Distribution

summary(vote_) # a little too wide

##	1952	1956	1960	1964	1968
##	Min. :-0.4549	Min. : -0.4877	Min. : -3.88	6 Min. :-18.87	Min. : 10.32
##	1st Qu.:48.8175	1st Qu.: 48.5606	1st Qu.: 46.48	8 1st Qu.: 46.76	1st Qu.: 48.45
##	Median :52.5403	Median : 52.6831	Median : 51.25	3 Median : 52.87	Median : 52.73
##	Mean :52.5904	Mean : 53.0959	Mean : 50.76	0 Mean : 54.50	Mean : 53.21
##	3rd Qu.:56.3395	3rd Qu.: 57.2168	3rd Qu.: 55.51	2 3rd Qu.: 60.46	3rd Qu.: 57.61
##	Max. :95.5229	Max. :105.7294	Max. :109.59	4 Max. :201.82	Max. :119.28
##	1972	1976	1980	1984	1988
##	Min. : -7.34	Min. : 2.184	Min. :-99.92	Min. :-18.62	Min. :-0.8681
##	1st Qu.: 47.82	1st Qu.: 47.038	1st Qu.: 43.52	1st Qu.: 47.41	1st Qu.:48.7976
##	Median : 53.00	Median : 51.339	Median : 51.32	Median : 52.88	Median :52.3899
##	Mean : 53.98	Mean : 51.136	Mean : 49.51	Mean : 54.25	Mean :52.4509
##	3rd Qu.: 59.15	3rd Qu.: 55.372	3rd Qu.: 57.08	3rd Qu.: 59.78	3rd Qu.:56.0688
##	Max. :172.22	Max. :120.397	Max. :100.87		Max. :89.5535
##	1992	1996	2000	2004	2008
##	Min. :-25.07	Min. : 1.563	Min. : 5.036	Min. : 1.347	Min. :-49.01
##	1st Qu.: 45.40	1st Qu.: 46.941	1st Qu.: 48.667	1st Qu.: 48.240	1st Qu.: 44.70
##	Median : 51.08	Median : 51.387	Median : 52.458	Median : 51.844	Median : 51.25
##	Mean : 50.27	Mean : 51.064	Mean : 52.477	Mean : 51.890	Mean : 50.05
##	3rd Qu.: 55.92	3rd Qu.: 55.350	3rd Qu.: 56.207	3rd Qu.: 55.403	3rd Qu.: 56.36
##	Max. :123.51	Max. :129.069	Max. :117.500	Max. :112.482	Max. :106.71
##	2012				
##	Min. : -2.40				
##	1st Qu.: 46.72				
##	Median : 51.34				
##	Mean : 51.03				
##	3rd Qu.: 55.49				
##	Max. :131.60				

Tthe stan_glm Function in the rstanarm Package

post

```
Median MAD_SD =
## (Intercept) 52.1
                      0.8
## growth
          2.9 0.6
##
## Auxiliary parameter(s):
##
        Median MAD SD
               0.7
## sigma 3.8
##
## Sample avg. posterior predictive distribution of y:
           Median MAD SD
##
## mean PPD 52.0 1.2
##
```

Plotting the Marginal Posterior Densities

plot(post, plotfun = "areas_ridges", pars = c("growth", "sigma")) # exclude the intercept

Credible Intervals and ${\cal R}^2$

Sampling Distribution of OLS vs. Posterior Kernel

```
functions { /* saved as OLS rng.stan*/
functions { /* saved as lm kernel.stan*/
 matrix OLS_rng(int S, real alpha, real beta, real lm_kernel(real alpha, real beta, real tau,
                real sigma, vector x) {
                                                              vector y, vector x) {
   matrix[S, 3] out; int N = rows(x); int N = rows(x);
   vector[N] x_{-} = x - mean(x);
                                  vector[N] x = x - mean(x);
   vector[N] mu = alpha + beta * x ;
vector[N] mu = alpha + beta * x ;
    real SSX = sum(square(x)); int Nm2 = N - 2;
   for (s in 1:S) {
     vector[N] y = to vector(normal rng(mu, sigma));
     real a = mean(y);  // alpha and beta have improper priors ... real b = sum(y \cdot * x_) / SSX;  // ... so they add nothing to the log-kernel
     vector[N] residuals = y - (a + b * x_);  // vvv inv_sqrt(tau) = 1 / sqrt(tau)
     real s2_hat = sum(square(residuals)) / Nm2; real sigma = inv_sqrt(tau);
     out[s, ] = [a, b, s2 hat];
                                       return -log(tau) // Jeffreys prior on tau
                                                        + normal lpdf(y | mu, sigma);
                                                        // ^^^ log-likelihood of parameters
   return out;
```

Normal Distribution of the True Test Statistic

```
rstan::expose_stan_functions("OLS_rng.stan"); x <- lfactorial(0:16); alpha <- 0
beta <- 0.5; sigma <- 10; OLS <- OLS_rng(S = 10 ^ 5, alpha, beta, sigma, x); colMeans(OLS)

## [1] -0.002718179     0.500792448 100.012222281

se <- sqrt(sigma ^ 2 / sum( (x - mean(x)) ^ 2 )) # true standard error of estimated slope
plot(ecdf((OLS[ , 2] - beta) / se), main = "", xlab = "", ylab = "CDF of Test Statistic")</pre>
```


Student t Distribution of Estimated Test Statistic

```
se_hat <- sqrt(OLS[ , 3] / sum( (x - mean(x)) ^2 )) # estimated standard error of estimate plot(ecdf((OLS[ , 2] - beta) / se_hat), main = "", xlab = "", ylab = "CDF of Test Statistic") curve(pt(z, df = 17 - 2), from = -5, to = 5, lty = 2, col = 2, add = TRUE, xname = "z") curve(pnorm(z), from = -5, to = 5, lty = 3, col = 3, add = TRUE, xname = "z") legend("topleft", legend = c("Simulated", "True", "Phi"), col = 1:3, lty = 1:3, bg = "grey")
```


Power of the Test that $\beta=0$ against $\beta>0$

```
round(x, digits = 4)

## [1] 0.0000 0.0000 0.6931 1.7918 3.1781 4.7875 6.5793 8.5252 10.6046 12.8018

## [11] 15.1044 17.5023 19.9872 22.5522 25.1912 27.8993 30.6719

mean( (OLS[ , 2] - 0) / se_hat > qt(0.95, df = 17 - 2) )
```

[1] 0.62395

In other words, for THESE 17 values of x, we EXPECT (over Y) to reject the false null hypothesis that $\beta=0$ in favor of the alternative hypothesis that $\beta>0$ at the 5% level with probability 0.624 when the true value of β is $\frac{1}{2}$.

- · What good is this PRE-DATA (on y_1, y_2, \dots, y_{17}) statement?
- But in this case the posterior distribution is the same as the estimated sampling distribution of the OLS estimator across datasets

Breakout Rooms: IQ of Three Year Olds

- All examples from the reading (plus more) are available at https://github.com/avehtari/RAOS-Examples
- · At 36 months, kids were given an IQ test
- Suppose the conditional expectation is a linear function of whether its mother graduated high school and the IQ of the mother
- · In breakout rooms, draw from the prior predictive distribution of the outcome using independent normal priors on the intercept and coefficients and an exponential prior on σ

```
data(kidiq, package = "rstanarm")
colnames(kidiq) # remember to center
```

```
## [1] "kid_score" "mom_hs" "mom_iq" "mom_age"
```

Answer

```
kid_score <- with(kidiq, t(replicate(10000, {
    alpha_ <- rnorm(1, mean = 100, sd = 15)
    beta_hs_ <- rnorm(1, mean = 0, sd = 2.5)
    beta_iq_ <- rnorm(1, mean = 0, sd = 2.5)
    mu_ <- alpha_ + beta_hs_ * (mom_hs - mean(mom_hs)) + beta_iq_ * (mom_iq - mean(mom_iq))
    sigma_ <- rexp(1, rate = 1 / 15)
    epsilon_ <- rnorm(n = length(mu_), mean = 0, sd = sigma_)
    mu_ + epsilon_
})))
summary(kid_score[ , 1]) # predictive distribution for first 3 year old (too wide)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -211.15 60.35 99.73 99.73 139.05 399.66</pre>
```

Answer (in class)

Drawing from the Posterior Distribution

```
post <- update(priors, prior_PD = FALSE)</pre>
```

summary(post)

```
##
                       2.5% 25%
                                  50%
                                       75%
                                            97.5%
                  sd
            mean
             29.2
                   5.7
                       18.1 25.3 29.2
                                      33.1
                                            40.3
## (Intercept)
## mom hs
            5.6
                   2.1 1.4 4.2 5.6 7.1 9.7
## I(mom iq/10) 5.3
                   0.6 4.2 4.9 5.3 5.7 6.5
             18.2 0.6 17.0 17.8 18.2 18.6 19.5
## sigma
             86.9 1.2 84.4 86.0 86.8 87.7
## mean PPD
                                             89.3
##
## Diagnostics:
           mcse Rhat n eff
##
          0.1
              1.0 4839
## (Intercept)
## mom hs
       0.0 1.0 4453
## I(mom iq/10) 0.0 1.0 4843
## sigma 0.0 1.0 5221
## mean PPD
           0.0 1.0 4584
## log-posterior 0.0
                 1923
              1.0
##
```

Posterior vs. Prior

posterior_vs_prior(post, prob = 0.5, regex_pars = "^[^(]") # excludes (Intercept)

Plot at the Posterior Median Estimates

Correct Plot

```
pp_check(post, plotfun = "loo_intervals", order = "median")
```


Utility Function for Predictions of Future Data

- For Bayesians, the log predictive PDF is the most appropriate utility function
- Choose the model that maximizes the expectation of this over FUTURE data

$$egin{aligned} \operatorname{ELPD} &= \mathbb{E}_Y \ln f\left(y_{N+1}, y_{N+2}, \ldots, y_{2N} \mid y_1, y_2, \ldots, y_N
ight) = \ \ln \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(y_{N+1}, y_{N+2}, \ldots, y_{2N} \mid \mathbf{y}
ight) dy_{N+1} dy_{N+2} \ldots dy_{2N} pprox \ \sum_{n=1}^{N} \ln f\left(y_n \mid \mathbf{y}_{-n}
ight) = \sum_{n=1}^{N} \ln \int_{\Theta} f\left(y_n \mid oldsymbol{ heta}
ight) f\left(oldsymbol{ heta} \mid \mathbf{y}_{-n}
ight) d heta_1 d heta_2 \ldots d heta_K \end{aligned}$$

- · $f(y_n \mid \boldsymbol{\theta})$ is just the n-th likelihood contribution, but can we somehow obtain $f(\boldsymbol{\theta} \mid \mathbf{y}_{-n})$ from $f(\boldsymbol{\theta} \mid \mathbf{y})$?
- \cdot Yes, assuming y_n does not have an outsized influence on the posterior

Pareto Smoothed Importance Sampling

Let
$$r_n^s=rac{1}{fig(y_n|\widehat{m{ heta}}^sig)}\proptorac{fig(\widehat{m{ heta}^s}|\mathbf{y}_{-n}ig)}{fig(\widehat{m{ heta}^s}|\mathbf{y}ig)}$$
 be the s -th importance ratio for y_n

· Fit a generalized Pareto model to these importance ratios, which have PDF

$$f\left(r_{n}\mid\mu,\sigma,k
ight)=rac{1}{\sigma}igg(1+rac{k\left(\mu-r_{n}
ight)}{\sigma}igg)^{-1-rac{1}{k}}$$

- In the 20% right tail, use an interpolated \hat{r}_n^s rather than r_n^s
- Doing so stabilizes the variances as long as the estimated shape parameters of the generalized Pareto distribution are not too large
 - $\hat{k}_n < 0.5$ is good and $\hat{k}_n \in [0.5, 0.7]$ is okay
 - $\hat{k}_n > 0.7$ is bad and $\hat{k}_n > 1.0$ is very bad

PSISLOOCV with the Kid IQ Example

loo(post)

Model with Interaction Term

Data on Diamonds

```
data("diamonds", package = "ggplot2")
diamonds <- diamonds[diamonds$z > 0, ] # probably mistakes in the data
str(diamonds)
## Classes 'tbl df', 'tbl' and 'data.frame': 53920 obs. of 10 variables:
   $ carat : num 0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 ...
   $ cut : Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 4 2 3 3 3 1 3 ...</pre>
   $ color : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<...: 2 2 2 6 7 7 6 5 2 5 ...
   $ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<...: 2 3 5 4 2 6 7 3 4 5 ...
   $ depth : num 61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 ...
##
##
   $ table : num 55 61 65 58 58 57 57 55 61 61 ...
   $ price : int 326 326 327 334 335 336 336 337 337 338 ...
##
##
   $ X
            : num 3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 ...
   $ y
            : num 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 ...
##
            : num 2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 ...
##
   $ Z
```

· What do you think is the prior \mathbb{R}^2 for a model of $\log(\text{price})$?

Do This Once on Each Computer You Use

- R comes with a terrible default coding for ordered factors in regressions known as "Helmert" contrasts
- Execute this once to change them to "treatment" contrasts, which is the conventional coding in the social sciences with dummy variables relative to a baseline category

```
cat('options(contrasts = c(unordered = "contr.treatment", ordered = "contr.treatment"))',
    file = "~/.Rprofile", sep = "\n", append = TRUE)
```

- Without this, you will get a weird rotation of the coefficients on the cut and clarity dummy variables
- "contr.sum" is another reasonable (but rare) choice

The stan_lm Function

```
post <- stan lm(log(price) \sim carat * (log(x) + log(y) + log(z)) + cut + color + clarity,
                data = diamonds, prior = R2(location = 0.8, what = "mode"), adapt delta = 0.9)
                                                           $ colorI
                                                                                 -0.37 -0.38 -0.37 -0.38 ...
                                                                           : num
str(as.data.frame(post), vec.len = 3, digits.d = 2)
                                                       ## $ colorJ
                                                                                 -0.51 -0.51 -0.51 -0.52 ...
                                                                           : num
                                                       ## $ claritySI2
                                                                                0.42 0.42 0.41 0.42 ...
                                                                           : num
                                                           $ claritySI1
                                                                           : num 0.58 0.59 0.58 0.59 ...
## 'data.frame':
                    4000 obs. of 28 variables:
                                                           $ clarityVS2
                                                                           : num
                                                                                0.73 0.73 0.73 0.73 ...
   $ (Intercept)
                   : num 0.71 0.71 0.71 0.71 ...
                                                           $ clarityVS1
                                                                                 0.8 0.8 0.8 0.81 ...
                                                                           : num
  $ carat
                   : num 7.3 7.5 7.3 7.4 ...
                                                           $ clarityVVS2
                                                                                0.93 0.94 0.93 0.93 ...
                                                                           : num
                   : num 4.5 4.5 4.6 4.5 ...
  $ log(x)
                                                          $ clarityVVS1
                                                                          : num 1 1 1 1 ...
                         -2.5 -2.4 -2.5 -2.4 ...
   $ log(y)
                   : num
                                                           $ clarityIF
                                                                                 1.1 1.1 1.1 1.1 ...
                                                                           : num
## $ log(z)
                         0.97 0.86 0.98 0.93 ...
                   : num
                                                           \frac{1}{2} $ carat:log(x) : num -3.9 -4 -3.9 -3.9 ...
  $ cutGood
                         0.083 0.086 0.09 0.079 ...
                   : num
                                                           $ carat:log(y) : num 1.9 1.9 1.9 1.8 ...
## $ cutVery Good : num
                         0.12 0.13 0.13 0.12 ...
                                                           $ carat:log(z) : num -1.1 -1 -1.1 -1 ...
## $ cutPremium
                         0.13 0.14 0.14 0.13 ...
                   : num
                                                                           : num 0.13 0.13 0.13 0.13 ...
                                                            $ sigma
## $ cutIdeal
                         0.17 0.17 0.17 0.16 ...
                   : num
                                                           $ log-fit ratio: num -0.00102 0.00107 -0.00123 -0.00015
## $ colorE
                         -0.054 -0.056 -0.052 -0.06
                   : num
                                                                           : num 0.98 0.98 0.98 0.98 ...
                                                           $ R2
## $ colorF
                         -0.093 -0.098 -0.092 -0.103 .....
                   : num
## $ colorG
                         -0.16 -0.17 -0.16 -0.17 ...
                   : num
                         -0.26 -0.26 -0.25 -0.26 ...
## $ colorH
                   : num
```

Typical Output

```
print(post, digits = 4)
```

```
Median LD SD
##
                0.7655
                        0.0351
## (Intercept)
                7.4180
                        0.0714
## carat
               4.5248
                        0.0803
## log(x)
## log(y)
                -2.5175 0.0728
## log(z)
                0.9587
                        0.0416
                0.0851
## cutGood
                        0.0037
## cutVery Good 0.1222 0.0035
## cutPremium
               0.1353
                        0.0034
## cutIdeal
                0.1665
                       0.0034
## colorE
                -0.0552
                        0.0020
## colorF
                -0.0962
                        0.0020
## colorG
                -0.1629
                        0.0020
                -0.2573
                        0.0021
## colorH
## colorI
                -0.3750
                        0.0023
## colorJ
                -0.5116
                        0.0030
               0.4165
                        0.0049
## claritySI2
## claritySI1
               0.5820
                        0.0049
## clarityVS2
                0.7287
                        0.0049
## clarityVS1
                0.8000
                        0.0050
```

```
## clarityVVS2
                0.9307
                        0.0050
## clarityVVS1 1.0021
                        0.0053
## clarityIF
                1.0971
                        0.0056
## carat:log(x) - 3.9644 0.0655
## carat:log(y) 1.9116
                        0.0541
                        0.0429
## carat:log(z) -1.1190
##
## Auxiliary parameter(s):
##
                Median MAD SD
                0.9846 0.0001
## R2
## log-fit ratio 0.0000 0.0005
## sigma
                0.1257 0.0004
##
## Sample avg. posterior predictive distribution
##
           Median MAD SD
## mean PPD 7.7864 0.0008
##
## ----
## * For help interpreting the printed output see
## * For info on the priors used see ?prior summa
```

. . .

What Is the Effect of an Increase in Carat?

```
mu_0 <- exp(posterior_linpred(post, draws = 500)) / 1000

df <- diamonds[diamonds$z > 0, ]; df$carat <- df$carat + 0.2

mu_1 <- exp(posterior_linpred(post, newdata = df, draws = 500)) / 1000

plot(density(mu_1 - mu_0), xlab = expression(mu[1] - mu[0]), xlim = c(.3, 10), log = "x", main</pre>
```


But Wait

plot(loo(post), label_points = TRUE)

