Fyzický pohled na data

Různé úrovně pohledu na data

konceptuální schéma

Databázové schéma

úložiště jako množina souborů

úložiště jako množina BOIS bloků Úroveň analytických konceptů

Úroveň implementačních konceptů

Fyzická úroveň

Struktura databáze

Databázové soubory

Parametry

log souborů

Klient – (aplikační server) - Server

Fyzická organizace relační tabulky

Adresa řádku

select rowid, t.* from Titul ROWID	t TITUL_ID	NAZEV	ROK_VYROBY
AAAsaTAAHAAA656AAA AAAsaTAAHAAA656AAB AAAsaTAAHAAA656AAC	1 2 3	Název_titulu _1 Název_titulu _2 Název_titulu _3	01.01.2005 01.01.2005 01.01.2005

Asociativní výběr – "prohrabání hromady"

select * from Titul t where NAZEV='Název_titulu _2'

Adresní výběr (nadrelační rys):

select * from Titul t where ROWID = 'AAAsaTAAHAAA656AAB'

Index typu B*-Tree

Index typu B-strom

B-strom (*řádu m*) je m-ární strom, splňující následující omezení:

- Kořen má nejméně dva potomky, pokud není listem,
- každý uzel kromě kořene a listu má nejméně [m/2] a nejvýše m potomků,
- každý uzel má nejméně 「m/2 -1 a nejvíce m-1 datových záznamů (většinou pouze klíčů),
- všechny cesty ve stromě jsou stejně dlouhé,
- data v nelistovém uzlu jsou organizována následovně:
- p0,(k1,p1),(k2,p2),...,(kn,pn),u
- odpovídá-li ukazateli pi, kde i ∈ <1,n>, podstrom U(pi), potom platí:
- (i) pro každé k v U(pi-1) je k ≤ k i,
- (ii) pro každé k v U(pi) je k > k i,
- listy obsahují úplnou množinu klíčů a mohou mít odlišnou strukturu.

Bitmapové indexy

```
CREATE BITMAP INDEX rok_id_bix
ON Titul (rok_vyroby);
```

Rok_vyroby

		2001		2002	2003	2004	
			1				• • •
	titul1'	1		0	0	0	
	\titul2'	0		1	0	0	
Titul_id	\titul3'	0		0	1	0	
_	`titul4'	0		0	0	1	
	\titul5'	0		1	0	0	
	'titul6'	0		0	1	0	
	•						
	•						

Použití bitmapového indexu při vyhodnocení dotazu

Kombinování několika map

- Výběrová podmínka s operátorem IN
- Výběrová podmínka s operátory AND/OR

Porovnání indexů B-strom a Bitmap

B-strom	Bitová mapa
Sloupce s vysokou kardinalitou	Sloupce s nízkou kardinalitou
DML operace relativně drahé	DML operace velmi drahé
Vhodné pro OLTP	Vhodné pro ad hoc dotazy v datových skladech DSS

Indexově organizovaná tabulka

Heap tabulka s idexem

Indexově organizovaná tabulka

Shluk (Cluster)

Samostatné tabulky s vazbou přes cizí klíč

Tabulky ve shluku