ST509 Computational Statistics

Lecture 10: Integration

Seung Jun Shin

Department of Statistics Korea University

E-mail: sjshin@korea.ac.kr

Numerical Integration I

- ▶ Integration is crucial in statistics.
- Consider

$$I = \int_{a}^{b} f(x)dx$$

- \blacktriangleright We may not have a closed form of I.
- ▶ Requires a numerical integration.

Numerical Integration II

▶ Mid-point rule computes

$$I \approx \sum_{i=1}^{n} f\left(\frac{x_{i-1} + x_i}{2}\right) \times (x_i - x_{i-1})$$

where $a = x_0 < x_1 < \dots < x_n = b$.

 $Let x_i - x_{i-1} = d then$

$$I \approx \sum_{i=1}^{n} f\left(x_i - \frac{d}{2}\right) \times d$$

Numerical Integration III

Figure: Illustration of numerical integration (mid-point rule)

Numerical Integration IV

▶ Trapezoidal rule computes

$$I \approx \sum_{i=1}^{n} \frac{x_{i-1} - x_i}{2} \{ f(x_i) + f(x_{i-1}) \}$$

Figure: Illustration of numerical integration (Trapezoidal rule)

Numerical Integration V

▶ Simpson rule suggests to use higher order polynomials:

Given

$$(x_0, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2))$$

we have the following expression of quadratic polynomial that possess through the three points:

$$\frac{x-x_1}{x_0-x_1}\frac{x-x_2}{x_0-x_2}f(x_0) + \frac{x-x_0}{x_1-x_0}\frac{x-x_2}{x_1-x_2}f(x_1) + \frac{x-x_0}{x_2-x_0}\frac{x-x_1}{x_2-x_1}f(x_2)$$

Numerical Integration VI

Let
$$x_0 = x_{i-1}, x_1 = (x_{i-1} + x_i)/2$$
 and $x_2 = x_i$, then

$$I \approx \sum_{i=1}^{n} (x_i - x_{i-1}) \frac{f(x_{i-1}) + 4f((x_{i-1} + x_i)/2) + f(x_i)}{6}$$

Numerical Integration VII

▶ The idea can be generalized for k points $(x_j, f(x_j)), j = 1, \dots, k$:

$$\sum_{j=1}^{k} \underbrace{f(x_j) \prod_{l=1}^{k} \frac{x - x_l}{x_j - x_l}}_{P_j(x)}$$

▶ Let $x_0 = x_{i-1}, x_1 = \frac{1}{3}(x_{i-1} + x_i), x_2 = \frac{2}{3}(x_{i-1} + x_i)$ and $x_3 = x_i$, then

$$I \approx \sum_{i=1}^{n} (x_i - x_{i-1}) \frac{f(x_{i-1}) + 3f(1(x_{i-1} + x_i)/3) + 3f(2(x_{i-1} + x_i)/3) + f(x_i)}{8}$$

Numerical Integration VIII

▶ Gaussian quadrature on [-1, 1] solves

$$\int_{-1}^{1} f(x)dx = \sum_{i=1}^{n} c_{i} f(x_{i})$$

for $f(x) = x^0, x^1, \dots, x^{2n-1}$ w.r.t (c_1, \dots, c_n) and (x_1, \dots, x_n) .

Numerical Integration IX

ightharpoonup For n=2:

$$f(x) = 1 \implies \int_{-1}^{1} 1 dx = 2 = c_1 + c_2$$

$$f(x) = x \implies \int_{-1}^{1} x dx = 0 = c_1 x_1 + c_2 x_2$$

$$f(x) = x^2 \implies \int_{-1}^{1} x^2 dx = \frac{2}{3} = c_1 x_1^2 + c_2 x_2^2$$

$$f(x) = x^3 \implies \int_{-1}^{1} x^3 dx = 0 = c_1 x_1^3 + c_2 x_2^3$$

which yields

$$\int_{-1}^{1} f(x)dx \approx f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$$

Numerical Integration X

Figure: Comparison: Blue line is the polynomial $f(x)=7x^3-8x^2-3x+3$ whose integral is 2/3. The trapezoidal rule returns f(-1)+f(1)=-10. The 2-point Gaussian quadrature rule returns $f(-\sqrt{1/3})+f(\sqrt{1/3})=2/3$.

Numerical Integration XI

\overline{n}	$x_i, i=1,\cdots,n$	$c_i, i=1,\cdots,n$
2	$-1/\sqrt{3}$	1
	$1/\sqrt{3}$	1
3	$-\sqrt{3/5}$	5/9
	0	8/9
	$\sqrt{3/5}$	5/9
4	$-\sqrt{(15+2\sqrt{30})/35}$	$(18 - \sqrt{30})/36$
	$-\sqrt{(15-2\sqrt{30})/35}$	$(18 + \sqrt{30})/36$
	$\sqrt{(15-2\sqrt{30})/35}$	$(18 + \sqrt{30})/36$
	$\sqrt{(15+2\sqrt{30})/35}$	$(18 - \sqrt{30})/36$

Numerical Integration XII

▶ Transformation from [a, b] to [-1, 1].

$$t = \frac{b-a}{2}x + \frac{b+a}{2}$$

▶ Then we have

$$\int_{a}^{b} f(t)dt = \int_{-1}^{1} f\left(\frac{b-a}{2}x + \frac{a+b}{2}\right) \left(\frac{b-a}{2}\right) dx$$
$$= \int_{-1}^{1} g_{a,b}(x) dx$$
$$\approx g_{a,b} \left(-\frac{1}{\sqrt{3}}\right) + g_{a,b} \left(\frac{1}{\sqrt{3}}\right)$$

Monte Carlo Integration I

▶ In statistics, integration is expectation. For a random variable $\mathbf{X} \sim f$,

$$E\{h(\mathbf{X})\} = \int h(\mathbf{x})f(\mathbf{x})d\mathbf{x}$$

where $g(\mathbf{x})$ is an arbitrary function.

- ightharpoonup Previous approaches are not applicable unless p is very small (curse of dimensionality)
- ▶ However, we have a beautiful alternative, the Law of Large Numbers!
- $\blacktriangleright \text{ For } X_1, \cdots, X_n \stackrel{iid}{\sim} f(\mathbf{x})$

$$\frac{1}{n} \sum_{i=1}^{n} h(X_i) \quad \to \quad E\{h(\mathbf{X})\}$$

▶ Key is the generation of random sample!

Monte Carlo Integration II

▶ For example, we like to compute

$$I = \int_{S} g(\mathbf{x}) d\mathbf{x}$$

where $S \in \mathbb{R}^p$.

▶ Suppose we can generate a uniform random variable $\mathbf{X}_1, \dots, \mathbf{X}_n$ on S. (i.e., $f(\mathbf{x}) = |S|^{-1}$ with |S| being the area of S.)

$$\frac{1}{n} \sum_{i=1}^{n} g(\mathbf{X}_i) \quad \to \quad \int g(\mathbf{x}) \frac{1}{|S|} d\mathbf{x}.$$

which yields

$$I \approx \frac{1}{n} \sum_{i=1}^{n} g(\mathbf{X}_i) \times |S|$$

Monte Carlo Integration III

▶ Suppose $X \sim F$ where $F(x) = P(X \le x)$. Let Y = F(X), then

$$P(Y \le y) = P(F(X) \le y) = P(X \le F^{-1}(y)) = F(F^{-1}(y)) = y.$$

- ▶ Probability Integral Transformation:
 - 1. Generate $u_1, \dots, u_n \stackrel{iid}{\sim} U(0,1)$.
 - 2. $x_i = F^{-1}(u_i)$ are the random samples from F.
- ex. Distribution function of exponential RV is

$$F(x) = 1 - e^{\lambda x}$$

thus

$$x_i = -\log(1 - u_i)/\lambda, \qquad u_i \stackrel{iid}{\sim} U(0, 1), \ i = 1, \cdots, n$$

are the random samples from $Exp(\lambda)$.

Monte Carlo Integration IV

- ► Normal Generator:
- (CLT) Suppose $u_1, \dots, u_{12} \stackrel{iid}{\sim} U(-1/2, 1/2)$, then

$$\sum_{i=1}^{12} u_i \sim N(0,1)$$

▶ (Box-Muller) Suppose $u_1, u_2 \stackrel{iid}{\sim} U(0,1)$, then

$$z_1 = \sqrt{-2\log(u_1)}\cos(2\pi u_2)$$

$$z_2 = \sqrt{-2\log(u_1)}\sin(2\pi u_2)$$

follows N(0,1).

▶ Multivariate Normal RV $\mathbf{x} \sim N(\mu, \Sigma)$ directly follows after

$$\mathbf{x} = \mu + \mathbf{\Sigma}^{1/2} \mathbf{z}$$

with $\mathbf{z} = (z_1, \dots, z_p)$ and $z_i \stackrel{iid}{\sim} N(0, 1)$.

Monte Carlo Integration V

- \blacktriangleright We like to generate sample X from f (target density).
- \triangleright Suppose there exists a simpler density g (proposal density) s.t.
 - ▶ f and g have compatible supports, i.e., $g(x) \ge 0$ when $f(x) \ge 0$.
 - ▶ There is a constant M with $f(x)/g(x) \le M$ for all x.
- ► Rejection Sampling:
 - 1. Generate $y_i \sim g$ and $u_i \sim U(0,1)$.
 - 2. Accept $x_i = y_i$ if

$$u_i \le \frac{1}{M} \frac{f(y_i)}{g(y_i)}$$

3. Return to 1 otherwise.

Monte Carlo Integration VI

▶ Justification:

$$\begin{split} P\left(Y \leq x \mid U \leq \frac{f(Y)}{Mg(Y)}\right) &= \frac{P\left(Y \leq x, \ U \leq \frac{f(Y)}{Mg(Y)}\right)}{P\left(U \leq \frac{f(Y)}{Mg(Y)}\right)} \\ &= \frac{\int_{-\infty}^{x} \int_{0}^{f(y)/\{Mg(y)\}} dug(y) dy}{\int_{-\infty}^{\infty} \int_{0}^{f(y)/\{Mg(y)\}} dug(y) dy} \\ &= \frac{\int_{-\infty}^{x} f(y)/\{Mg(y)\}g(y) dy}{\int_{-\infty}^{\infty} f(y)/\{Mg(y)\}g(y) dy} \\ &= \frac{\int_{-\infty}^{x} f(y) dy}{\int_{-\infty}^{\infty} f(y) dy} \\ &= P(X \leq x) \end{split}$$

Monte Carlo Integration VII

- ▶ Goal is to compute $E\{h(X)\}$ where $X \sim f$.
- ▶ Suppose direct sampling from f is not possible, but there exists a simpler density g s.t. g(x) is strictly positive when $h(x) \times f(x)$ is.
- ▶ Now we have

$$E_{\mathbf{f}}\{h(X)\} = \int h(x)\frac{f(x)}{g(x)}dx = E_g\left[\frac{h(X)f(X)}{g(X)}\right]$$

▶ Suppose we have random sample $x_1, \dots, x_n \stackrel{iid}{\sim} g(x)$, then

$$\frac{1}{n} \sum_{i=1}^{n} \frac{f(x_i)}{g(x_i)} h(x_i) \quad \to \quad E_f\{h(X)\}$$

► This is known as Importance Sampling.

Reference

 \blacktriangleright Robert, & Casella (2010) Introducing Monte Carlo Methods with R; , Springer.