

ecasmus HOGESCHOOL BRUSSEL

IT Essentials

Deel II: Hardwarecomponenten

4: Chipsets en bussen

INHOUD

- Bussen
- Chipsets

- Wat zijn bussen?
 - Gemeenschappelijke weg tussen verschillende onderdelen in de computer voor overdracht van gegevens
 - "Lijm" tussen de verschillende onderdelen
 - Vroeger 1 bus, nu meerdere bussen met aangepaste bussnelheden voor verschillende apparaten
 - Keyboard
 - CPU
 - Grafische kaart

- Computer heeft meestal 2 belangrijke bussen:
 - Systeembus
 - Ook gekend als local bus, FSB (front-side bus), processor bus
 - Verbinding tussen microprocessor en werkgeheugen
 - Indien aanwezig: gecontroleerd door de northbridge, tegenwoordig alsmaar meer geïntegreed in de CPU
 - Shared bus (ISA, EISA, PCI, PCI-Express)
 - Verbonden met systeembus via bridge
 - Bridge behoort tot de chipset, zie later...
 - Gecontroleerd door de southbridge
 - Gedeeld door verschillende in- en uitvoerapparaten
 - Geluidskaart
 - NIC
 - SSD

- Systeembus
 - Uiteindelijke centrale verbindingsorgaan
 - Tussen processor en geheugen, I/O apparaten, ...
 - Bus: aantal bij elkaar horende "lijnen"
 - 3 delen
 - Adresbus
 - Databus
 - Controlebus

- Systeembus
 - Adresbus
 - Eenrichtingsverkeer van processor naar werkgeheugen of I/O apparaat
 - Gebruikt voor adressering
 - Breedte:
 - Bepaalt hoeveel geheugen maximaal kan gebruikt worden
 - Vroeger 20 bits: 2²⁰ individueel aanspreekbare eenheden
 - = 1 MB aan geheugen aanspreekbaar (elke individueel aanspreekbare eenheid is 1 Byte)
 - 36-bits (64 GiB) op 32-bits architectuur
 - 40-bits (1 TiB) of 44 bits (256 TiB) op 64-bits architectuur
 - In de praktijk: gelimiteerd door chipset, moederbord, OS

Systeembus

- Databus
 - Gegevens transporteren tussen processor en werkgeheugen of I/O apparaten
 - Tweerichtingsverkeer (full-duplex)
 - Moet vrij zijn alvorens gegevenstransport kan plaatsvinden (cfr. Multiplexing)
 - Breedte
 - Bepaalt hoeveel gegevens tijdens 1 klokcyclus kunnen worden verplaatst (maar soms is het ook mogelijk om 2 of 4 transfers per cycle uit te voeren, bv. quad-pumped)
 - Vroeger: 8 bits (dus 1 byte tegelijkertijd)
 - Nu: 64 bits (dus 8 bytes tegelijkertijd)

- Systeembus
 - Controlebus
 - Systeemklok zorgt via controlebus voor timing van de microprocessor
 - Instellen volgens geïnstalleerde processor
 - Overclocking: systeemklok hoger instellen dan processor eigenlijk voor gemaakt is
 - Signalen naar en van het werkgeheugen of I/O
 - Lees/schrijf operatie

Intel

- PCI-bus
 - Oorspronkelijk PC bus (Personal computer Bus)
 - 4.77 MHz (4.77 miljoen cycles per seconde)
 - 8 bits breed: 8 bits per cycle verwerken
 - In 1982: 16 bits aan 8 MHz
 - ISA: Industry Standard Architecture
 - Max. 16 MBps
 - Opvolgers
 - EISA: Extended ISA: 32 bits @ 8 MHz
 - VL-bus (Vesa Local Bus)
 - (E)ISA niet meer in gebruik sinds 2000

- PCI-bus
 - Interne parallelle bus op moederbord met bijhorend slot
 - Sinds 1992
 - Zeer lang zeer populair geweest => komt soms nog voor op oudere moederborden
 - Intussen vervangen door nieuwere technologieën

- PCI-X: (PCI-extended)
 - Opvolger van PCI, nooit echt commercieel succes
 - Nog steeds parallel
 - High performance bus
 - Backward compatible t.o.v. PCI

- Nadelen parallelle communicatie t.o.v. serieel
 - Parallel: bits worden over de verschillende kanalen tegelijkertijd verzonden
 - Signal Skew:
 - Bits komen niet meer tegelijkertijd aan
 - Hoe sneller de verbinding, hoe langer de afstand, hoe meer skew
 - Skew moet gecompenseerd worden aan de ontvangende kant: snelheidsverlies
 - Maximumsnelheid bereikt voor parallelle communicatie
 - Hogere snelheden => meer skew => meer verlies
 - = nuloperatie
 - Seriële communicatie heeft hier geen last van

- PCI-e (Express)
 - Nieuwste PCI "variant"
 - Niet achterwaarts compatibel
 - Serieel ipv parallel (geen skew)
 - Kleine connectoren mogelijk
 - Grafische kaarten
 - Hot-pluggable

- PCI Express
 - Vernieuwingen tov. PCI
 - Elk apparaat heeft een point-to-point verbinding met de zogenaamde PCI-Express Switch
 - Geen gedeelde bandbreedte
 - Vergelijking netwerking: bustopologie versus switched startopologie
 - Zeer geschikt voor tijdsafhankelijke (real-time) data
 - Verbeteringen aan de fysieke materialen die gebruikt worden

PCI Express ×4

PCI Express ×16

PCI Express ×1

PCI Express ×16

Legacy PCI (32-bit)

https://en.wikipedia.org/wiki/PCI_Express

- PCI Express
 - Kan gebruikt worden voor het aansluiten van een veelheid van apparaten
 - Grafische kaart
 - Ook mogelijkheid tot het verbinden van 2 grafische kaarten
 - Rendering op 3 manieren:
 - » Split-screen (elke grafische kaart de helft)
 - » Tiled-screen (elke grafische kaart even-oneven)
 - » Alternate frame (afwisselend)
 - AMD (vroeger ATI) Crossfire of nVidia SLI
 - Raid controllers
 - Netwerkkaarten
 - PCI-e SSD drives

 (niet beperkt door de tragere snelheid van de SATA III aansluiting)

_ ...

PCI Express performantie

PCI Express version	Line code	Throughput				
		×1	×2	×4	×8	×16
1.0	8b/10b	250 MB/s	500 MB/s	1 GB/s	2 GB/s	4 GB/s
2.0	8b/10b	500 MB/s	1 GB/s	2 GB/s	4 GB/s	8 GB/s
3.0	128b/130b	984.6 MB/ s	1.97 GB/s	3.94 GB/s	7.9 GB/s	15.8 GB/s
4.0	128b/130b	1969 MB/s	3.94 GB/s	7.9 GB/s	15.8 GB/s	31.5 GB/s
5.0	128b/130b	3938 or 3077 MB/s	7.9 or 6.15 GB/s	15.8 or 12.3 GB/s	31.5 or 24.6 GB/s	63.0 or 49.2 GB/s

https://en.wikipedia.org/wiki/PCI_Express

- USB
 - Universal Serial Bus
 - Verscheidene apparaten, 1 interface
 - Meest wijdverspreid
 - O.a. door medewerking HP, MS, IBM, Compaq, Apple, ...
 - Plug & play
 - Hot-pluggable
 - Zie hoofdstuk 10: "Poorten"

- ATA
 - Aansluiten
 - Harde schijf
 - CD-ROM
 - PATA (cfr IDE)
 - Parallel
 - Tot 167 MiB/s (Ultra DMA 7)

- ATA
 - SATA
 - Seriële variant
 - SATA III: tot 6 Gb/s

- Bredere aansluiting
- Kan ook gebruikt worden voor (2) gewone SATA aansluitingen
- Tot 10 Gib/s

- SAS
 - Serial Attached SCSI
 - Verschillende versies: 1,2,3,4
 - Laatste versie is SAS-4
 - Kan tot 22,5 Gbit/s!
 - Wordt vooral in servers & storage oplossingen gebruikt
 - SATA HDD kunnen verbonden worden met SAS backplanes (omgekeerd niet mogelijk)

mSATA, M.2 en U.2

 Small form factor aansluitingen voor storage devices zoals SSD

mSATA

- Vaak gebruikt in laptops
- Volgt SATA (III) standaard
- Intussen vervangen door de betere M.2 en U.2 standaarden
- Geen kabels

- M.2
 - Opvolger van mSATA
 - Volgt PCIe 3.0 standaard met 2-4 channels (max. 32 Gib/s)
 - Meestal gebruikt voor SSD storage, maar kan ook gebruikt worden voor bijvoorbeeld WIFI-modules
 - Geen kabels
 - Aan het evolueren naar de nieuwe standaard

- U.2
 - Aansluiting voor SSD disks
 - Terug in de casing: meer ruimte voor chips dus hogere maximale capaciteit
 - Kabels vereist
 - Vaak via M.2 expansiekaart

- AHCI en NVMe
 - Interfaces specificaties voor het communiceren van non-volatile storage devices met het werkgeheugen
 - Vergelijkbaar met een protocol
- AHCI
 - Advanced Host Controller Interface
 - Gemaakt voor SATA connectie (HDD, SSD,...)
 - Hoge compabiliteit

- NVMe
 - Non-Volatile Memory (Host Controller Interface)
 Express
 - Gemaakt voor PCI-e connectie (rechtstreeks of via M.2, U.2)
 - Speciaal gemaakt voor SSD's
 - Benut maximaal de voordelen van deze technologie
 - Lage latency
 - Interne paralellisme

Technology	Speed	Year
Single Density 5.25-inch FM Floppy Disk Controller (180 KB)	125 kbit/s	1978
High Density Floppy Disk Controller (1.2 MB/1.44 MB)	250 kbit/s	1984
CD Controller (1×)	1.171 Mbit/s	1988
DVD Controller (1x)	11.1 Mbit/s	
HD DVD Controller (1×)	36 Mbit/s	
ISA 16-Bit/8.33 MHz	66.64 Mbit/s	1984
EISA 32-bit/8.33 MHz	266.56 Mbit/s	1988
Blu-ray Controller (16×)	576 Mbit/s	2005
Ultra DMA ATA 133	1.064 Gbit/s	2005
PCI 32-bit/33 MHz	1067 Mbit/s	1993
VESA Local Bus (VLB) 32-bit/40 MHz	1280 Mbit/s	1992
SATA Revision 3.0	6 Gbit/s	2008
PCI 64-bit/100 MHz	6.4 Gbit/s	
Serial Attached SCSI (SAS) SAS-3	12 Gbit/s	2013
SATA Express	16 Gbit/s	2013
PCI-X QDR 16-bit	8.533 Gbit/s	
AGP 8×	17.066 Gbit/s	2002
Serial Attached SCSI (SAS) 4	22.5 Gbit/s	2017
NVMe over M.2 or U.2 (using PCI Express 3.0 ×4 link)	32 Gbit/s	2013
PCI Express 1.0 (×16 link)	40 Gbit/s	2004
NVMe over M.2 or U.2 (using PCI Express 4.0 ×4 link)	64 Gbit/s	2017
PCI Express 2.0 (×16 link)	80 Gbit/s	2007
NVMe over M.2, U.2, U.3 or EDSFF (using PCI Express 5.0 ×4 link)	128 Gbit/s	2019
PCI Express 3.0 (×16 link)	128 Gbit/s	2011
PCI Express 4.0 (×16 link)	256 Gbit/s	2018
PCI Express 5.0 (×16 link)	512 Gbit/s	2019
PCI Express 6.0 (×16 link)	968 Gbit/s	2022

- Chipset
 - Verzameling componenten op het moederbord
 - Centraliseren van functies op chips
 - Interrupt-controller
 - DMA-controller
 - Memory-controller
 - Timer
 - Chipset steeds voor bepaalde processor-familie

- System Controller (North Bridge)
 - Memory controller
 - Op NB bij Intel Atom, Core2, Pentium
 - Op CPU zelf bij AMD64 bij alle recentere CPU-architecturen
 - Aanspreken geheugen
 - Refreshes op DRAM
 - Anders na 64 ms verlies data uit condensators
 - ECC

- Pheripheral controller (South Bridge)
 - Businterface (PCI)
 - Floppy-ata
 - USB
 - SATA PATA
 - _ ...

- DMA (Direct Memory Access)
 - Een bus kan DMA aanbieden
 - Grote hoeveelheden data naar geheugen of van geheugen (bv. laden van een filmpje)
 - Best processor niet belasten
 - DMA-chips laat toe dat apparaten rechtstreeks naar geheugen schrijven
 - Voorbeeld
 - Geluidskaart die op achtergrond muziek afspeelt
 - CPU stelt soundcard in
 - CPU stelt DMA in
 - DMA kan beginnen
 - » Data van RAM naar kaart

- Belangrijkste PCB (printed circuit board)
 - Verbindt de belangrijkste componenten van een computer met elkaar via
 - Socket voor de CPU
 - Slots voor interne devices
 - Poorten voor externe devices
- gereguleerd door de chipset en uitgevoerd via bussen
- Bestaan in verschillende form factors
 - gestandaardiseerde afmeting en uitvoering
 - Legt regels op zowel voor het moederbord als voor de voeding
 - Verschillende form factors zijn vaak compatibel, bijvoorbeeld wat betreft de hechtingspunten
 - ATX en Micro-ATX

- Motherboard form factors
 - Eerste computers
 - XT-standaard
 - Geen real-time klok
 - Bij opstarten 1-1-1980 0:00 u
 - DOS-opdrachten DATE en TIME
 - AT
 - Real-time klok, met (CMOS)-batterij
 - Oscillerend kristal zorgt voor precisie
 - Onafhankelijk van CPU

Motherboard form factors

Standard-ATX

Micro-ATX

Mini-ITX

HOGESCHOOL BRUSSEL

Meest voorkomende form factors

EATX

 Nog groter dan de ATX standaard, met vaak extra ruimte voor RAM modules of dual CPU socket

ATX

- 1995
- Meest voorkomende form factor voor desktop PC's
- 305 × 244 mm
- Ruimte voor veel uitbreidingsslots en RAM modules

– Micro-ATX

- Laatste jaren gewonnen aan populariteit
- 244 × 244 mm
- Minder aantal uitbreidingsslots

– Mini-ITX

• 284 × 208 mm

- ATX voedingen
 - PSU: Power Supply Unit
 - Meestal 150 × 86 × 140 mm
 - Verbonden met het moederbord en andere componenten via verschillende connectors

- ATX voedingen
 - Connectors
 - Moederbord
 - 20+4 pins
 - 24 pins
 - Andere componenten
 - PCI-e 6 of 8 pins
 - CPU 4 +4 pins
 - Molex (PATA)
 - SATA

CPU 4 + 4 Pins

Molex

SATA

- 1. CPU slot
- 2. RAM slots
- 3. PCI-e 16x slot
- 4. PCI-e 1x slot
- 5. PCI slot
- 6. Southbridge
- 7. CMOS batterij
- 8. SATA-slots
- Powerconnector motherboard (24-pin)
- 10. Powerconnector CPU (4-pin)

