# Komputerowe systemy rozpoznawania

2019/2020

Prowadzący: dr hab. inż. Adam Niewiadomski prof. uczelni

pon., 12:15

Data oddania: \_\_\_\_\_ Ocena: \_\_\_\_

Mateusz Walczak 216911 Konrad Kajszczak 216790

# Zadanie 2: Lingwistyczne podsumowania baz danych\*

#### 1. Cel

Celem zadania było zaprojektowanie aplikacji desktopowej, służącej do generowania podsumowań lingwistycznych oraz obliczania ich miar jakości dla wybranej bazy danych. Dodatkowo, aplikacja powinna posiadać graficzny interfejs użytkownika, który umożliwi intuicyjne korzystanie z programu.

# 2. Wprowadzenie

Rozważania we wprowadzeniu rozpoczniemy od *zbioru rozmytego*, czyli najbardziej podstawowego pojęcia, bez którego analiza działania ingwistycznych podsumowań baz danych nie byłaby mozliwa. Przytoczmy zatem definicję *zbioru rozmytego*:

**Definicja 1.** Niech  $\mathcal{X}$  będzie zbiorem, którego elementy interesują nas w sposób bezpośredni, czyli jest zbiorem klasycznym znanym z teorii mnogości (dany element przynależy do zbioru lub nie przynależy). Wówczas *zbiorem rozmytym opisanym w przestrzeni rozważań*  $\mathcal{X}$  nazywamy każdy zbiór A postaci:

$$A = \bigcup_{x \in \mathcal{X}} \{ (x, \mu_A(x)) \},$$

<sup>\*</sup> SVN: https://github.com/Walducha1908/KSR2

gdzie  $\mu_A(x): \mathcal{X} \to [0,1]$  nazywamy funkcją przynależności do zbioru rozmytego A.

W związku z faktem, iż pojęcie *funkcji przynależności* wystąpiło w powyższej definicji, w następnym podrozdziale zajmiemy się opisem tego rodzaju funkcji, wykorzystywanych przez nas.

#### 2.1. Funkcje przynależności

Funkcja przynależności określa w jakim stopniu dany element przynależy do zbioru. W zbiorach rozmytych zakres wartości jakie może ona przyjmować jest rozszerzony do przedziału [0,1].

W naszym programie, posłużyliśmy się dwoma rodzajami funkcji przynależności:

• funkcją trójkątną opisaną wzorem:

$$f_{troj}(x) = \begin{cases} \frac{x-a}{b-a} & \text{jeśli } a \le x < b \\ 1 & \text{jeśli } x = b \\ \frac{c-x}{c-b} & \text{jeśli } b < x \le v \\ 0 & \text{w przeciwnym wypadku.} \end{cases}$$
 (1)

• oraz funkcją trapezoidalną opisaną wzorem:

$$f_{trap}(x) = \begin{cases} \frac{x-a}{b-a} & \text{jeśli } a \le x < b \\ 1 & \text{jeśli } b \le x \le c \\ \frac{d-x}{d-c} & \text{jeśli } c < x \le d \\ 0 & \text{w przeciwnym wypadku.} \end{cases}$$
 (2)

gdzie  $a,\,b,\,c$  oraz d są parametrami funkcji przynależności - wierzchołkami trójkata lub trapezu na wykresie.

#### 2.2. Miary jakości dla podumowań lingwistycznych

Aby określić jakość naszych podsumowaniań zaimplementowaliśmy 11 miar jakości od  $T_1$  do  $T_{11}$  [4].

#### 2.2.1. $T_1$ – stopień prawdziwości

Stopień prawdziwości jest najbardziej naturalną miarą jakości podsumowania. Określa ona sumę przynależności wszystkich rozważanych krotek do sumaryzatora  $S_j$ :

$$r = \sum_{i=1}^{m} \mu_{\operatorname{ce}(S_j)}(d_i) ,$$

gdzie  $ce(S_j)$  jest rozszerzeniem cylindrycznym sumaryzatora  $S_j$ , m liczba wszystkich krotek, a  $d_i$ . Dla kwantyfikatorów relatywnych stopnień prawdziwości możemy zapisać jako

$$T_1 = \mu_Q(\frac{r}{m}),$$

zaś dla kwantyfikatorów absolutnych jako

$$T_1 = \mu_O(r),$$

gdzie r jest kardynalnością.

#### 2.2.2. $T_2$ – stopień nieprecyzyjności

Dla podsumowania z n sumaryzatorami  $S_1 \dots S_n$  możemy określić stopień nieprecyzyjności, definiowany następującym wzorem:

$$T_2 = 1 - \left(\prod_{j=1}^n \inf(S_j)\right)^{1/n}$$
.

Wyrażenie  $\left(\prod_{j=1}^n \operatorname{in}(S_j)\right)^{1/n}$  to określa średnią geometryczna ze stopni rozmycia wykorzystanych sumaryzatorów, czyli w jakim stopniu precyzyjny jest sumaryzator. Im mniejszy nośnik zbioru rozmytego, tym wyższa jest jego precyzja.

#### 2.2.3. $T_3$ – stopień pokrycia

Stopień pokrycia  $T_3$  jest zdefiniowany dla podsumowań z kwalifikatorami. Stopień pokrycia  $T_3$  Dla każdego i=1...m (związanego z krotką  $d_i$  z bazy danych) możemy zdefiniować (z kwalifikatorem):

$$t_i = \begin{cases} 1 & \text{gdy } \mu_{\text{ce}(S_j)}(d_i) > 0 \land \mu_W(d_i) > 0 \\ 0 & \text{w przeciwnym wypadku.} \end{cases}$$
$$h_i = \begin{cases} 1 & \text{gdy } \mu_W(d_i) > 0 \\ 0 & \text{w przeciwnym wypadku.} \end{cases}$$

Bez kwalifikatora:

$$t_i = \begin{cases} 1 & \text{gdy } \mu_{\text{ce}(S_j)}(d_i) > 0 \\ 0 & \text{w przeciwnym wypadku.} \end{cases}$$
$$h_1 = 1$$

Przy powyższych oznaczeniach:

$$T_3 = \frac{\sum_{i=1}^m t_i}{\sum_{i=1}^m h_i} \ .$$

Reprezentuje stopień w jakim nośnik sumaryzatora pokrywa się z nośnikiem kwalifikatora.

#### 2.2.4. $T_4$ – stopień trafności

Dla podsumowania z n sumaryzatorami  $S_1 \dots S_n$  oraz m krotkami w bazie danych możemy wprowadzić oznaczenia:

$$g_{ij} = \begin{cases} 1 & \text{gdy } \mu_{ce(S_j)}(d_i) > 0 \\ 0 & \text{w przeciwnym wypadku.} \end{cases}$$

oraz

$$r_j = \frac{\sum_{i=1}^m g_{ij}}{m} \ .$$

Wówczas możemy zapisać:

$$T_4 = \left| \prod_{j=1}^n r_j - T_3 \right| .$$

Określa jak wiele krotek przynależy do sumaryzatora, czyli czy dane podsumowanie jest właściwe dla zestawu danych.

# 2.2.5. $T_5$ – długość podsumowania

Dla podsumowania z n sumaryzatorami  $S_1 \dots S_n$  miarę długości podsumowania definiujemy jako:

$$T_5 = 2\left(\frac{1}{2}\right)^{|s|} .$$

Gdzie |s| jest ilością zbiorów rozmytych, z których skomponowany jest sumaryzator. Określa jakość podsumowania na podstawie złożoności sumaryzatora, czyli im więcej składowych sumaryzatora złożonego, tym niższa wartość tej miary.

#### 2.2.6. $T_6$ – stopień nieprecyzyjności kwantyfikatora

 $T_6,$ czyli stopień nieprecyzyjności kwantyfikatora możemy zdefiniować jako:

$$T_6 = 1 - \operatorname{in}(Q) .$$

Reprezentuje w jakim stopniu precyzyjny jest kwantyfikator. Im mniejszy nośnik zbioru rozmytego tym wyższa jest jego precyzja.

#### 2.2.7. T<sub>7</sub> – stopień liczności kwantyfikatora

W przeciwieństwie do  $T_6$ , zamiast zliczać elementy z nośnika Q, policzymy moc zbioru rozmytego:

$$T_7 = 1 - \frac{|Q|}{|\mathcal{X}_Q|} \ .$$

Opisuje stopień precyzji kwantyfikatora, im mniejsza kardynalność kwantyfikatora tym jest on bardziej precyzyjny.

#### 2.2.8. $T_8$ – stopień liczności sumaryzatora

W przypadku zastosowania sumaryzatora złożonego, podobnie jak przy poprzednich miarach, stosujemy średnią geometryczną. Dla podsumowania z n sumaryzatorami  $S_1 \dots S_n$ :

$$T_8 = 1 - \left(\prod_{j=1}^n \frac{|S_j|}{|\mathcal{X}_j|}\right)^{\frac{1}{n}}.$$

Opisuje stopień precyzji sumaryzatora, im mniejsza kardynalność kwantyfikatora tym jest on bardziej precyzyjny.

#### 2.2.9. $T_9$ – stopień nieprecyzyjności kwalifikatora

Stopień precyzji kwalifikatora  $T_9$  jest oparty na drugiej formie podsumowań tzn.: Q obiektów będących/mających W jest/ma S, gdzie W jest reprezentowane przez zbiór rozmyty i jest kwalifikatorem. Definicja tej miary jest następująca:

$$T_9 = 1 - \text{in}(W)$$
.

Określa w jakim stopniu precyzyjny jest kwalifikator. Im szerszy nośnik zbioru rozmytego tym niższa jest jego precyzja, gdyż bierze pod uwagę większy zakres wartości.

#### 2.2.10. $T_{10}$ – stopień liczności kwalifikatora

Stopień kardynalności kwalifikatora  $T_{10}$  definiujemy jako:

$$T_{10} = 1 - \frac{|W|}{|\mathcal{X}_q|} \ .$$

Opisuje stopień precyzji kwalifikatora, im większa jest kardynalność kwalifikator tym jest on mniej precyzyjny.

#### 2.2.11. $T_{11}$ – długość kwalifikatora

Długość kwalifikatora  $T_{11}$  definiujemy następująco:

$$T_{11} = 2\left(\frac{1}{2}\right)^{|W|}$$
.

Wyznacza jakość podsumowania na podstawie złożoności kwalifikatora, Im bardziej złożony kwalifikator tym jakość podsumowania gorsza.

# 3. Opis implementacji

Program został napisany w języku Java z wykorzystaniem narzędzia Maven [2], służącego do automatyzacji budowy oprogramowania. Graficzny interfejs użytkownika został zbudowany w oparciu o bibliotekę JavaFX [3].

W opisie implementacji skoncentrujemy się na jej najważniejszej części, czyli logice aplikacji.

W celu zbudowania struktury klas reprezentujących typy, parametry i własności zbiorów rozmytych oraz operacji na nich, zaimplementowaliśmy własną bibliotekę w formie pakietu w naszej aplikacji o nazwie FuzzyLib.

Pakiet FuzzyLib został podzielony na następujące podpakiety:

- Membership,
- Logic,
- Containers,
- Summaries.

W tym rozdziale omówione zostaną wszystkie wyżej wymienione podpakiety. Przedstawimy diagramy UML każdego z podpakietów a także omówimy zastosowanie poszczególnych klas.

# 3.1. Podpakiet Membership

Podpakiet *Membership* zawiera implementacje funkcji przynależności. Każda klasa tego podpakietu implementuje interfejs *MembershipFunction*.



Rysunek 1. Diagram UML dla podpakietu Membership

Klasy podpakietu *Membership* są następujące:

- *MembershipFunction* interfejs implementowany przez wszystkie klasy należące do tego podpakietu,
- TriangularFunction klasa implementująca trójkątną funkcję przynależności,

- DescreteFunction klasa implementująca dyskretną funkcję przynależności,
- ConstantFunction klasa implementująca stałą funkcję przynależności,
- *TrapezoidFunction* klasa implementująca trapezoidalną funkcję przynależności.

#### 3.2. Podpakiet Logic

Podpakiet *Logic* odpowiada za implementacje zmiennych lingwistycznych, operacji sumy i iloczynu zbiorów rozmytych a także miar jakości podsumowań lingwistycznych.



Rysunek 2. Diagram UML dla podpakietu Logic

Klasy podpakietu *Logic* są następujące:

- Linguistic Variable klasa implementująca zmienną lingwistyczną,
- And Summarizer klasa implementująca operacje iloczynu, dziedziczy z klasy Linguistic Variable,
- OrSummarizer klasa implementująca operacje sumy, dziedziczy z klasy Linguistic Variable,
- *Measures* klasa implementująca miary jakości podsumowań lingwistycznych.

#### 3.3. Podpakiet Containers

Podpakiet *Containers* zawiera klasy kontenerowe, tworzące i przetrzymujące zmienne lingwistyczne i kwantyfikatory.



Rysunek 3. Diagram UML dla podpakietu Containers

Klasy podpakietu *Containers* są następujące:

- Linguistic Variable Container klasa kontenerowa dla zmiennych lingwistycznych,
- QuantifierContainer klasa kontenerowa dla kwantyfikatorów.

#### 3.4. Podpakiet Summaries

Podpakiet *Summaries* zawiera dwie klasy odpowiadające za budowę zdań podsumowania lingwistycznego w języku ludzkim (angielskim) oraz obliczenie wszystkich miar jakości dla danego podsumowania lingwistycznego - wywołanie statycznych metod klasy *Measures* podpakietu *Logic*.



Rysunek 4. Diagram UML dla podpakietu Summaries

Klasy podpakietu Summaries są następujące:

- LinguisticSummary klasa odpowiadająca za obliczenie wszystkich miar jakości dla danego podsumowania,
- SentenceMaker klasa odpowiadająca za budowanie zdań w języku ludzkim.

# 4. Materially i metody

Wybrana przez nas baza danych zawiera historyczne pomiary pogodowe z Holandii [1]. Dane zostały zgromadzone przez KNMI (*Dutch weather institute* - Holenderski instytut pogodowy) na przestrzeni lat 1901-2018 i pochodziły z 50 różnych stacji pogowych znajdujących się na terenie całego kraju.

Ze względu na fakt, iż oryginalna baza danych składa się z 804099 krotek, postanowiliśmy wybrać tylko niewielką część z dostępnych danych. Zdecydowaliśmy się na najnowsze dane pomiarowe - z lat 2016-2018. W ten sposób ograniczyliśmy liczbę wykorzystywanych krotek do 17000.

#### 4.1. Wybór kolumn

W celu analizy bazy danych i tworzenia jej lingwistycznych podsumowań wybraliśmy 10 kolumn z danymi liczbowymi.

| 4  | A   | В        | C  | D   | E   | F   | G  | Н  | 1   | J    | K   | L  |
|----|-----|----------|----|-----|-----|-----|----|----|-----|------|-----|----|
| 1  | STN | YYYYMMDD | FG | FHX | FHN | FXX | TG | TN | TX  | T10N | Q   | RH |
| 2  | 380 | 20181231 | 23 | 30  | 10  | 60  | 83 | 74 | 91  | 70   | 96  | 19 |
| 3  | 370 | 20181231 | 27 | 40  | 20  | 70  | 89 | 73 | 99  | 72   | 115 | 5  |
| 4  | 350 | 20181231 | 28 | 40  | 20  | 80  | 89 | 75 | 98  | 72   | 132 | 5  |
| 5  | 375 | 20181231 | 28 | 50  | 20  | 90  | 90 | 73 | 98  | 71   | 105 | 1  |
| 6  | 290 | 20181231 | 36 | 60  | 20  | 90  | 88 | 74 | 99  | 73   | 126 | 2  |
| 7  | 275 | 20181231 | 30 | 50  | 20  | 90  | 86 | 72 | 98  | 70   | 132 | 1  |
| 8  | 279 | 20181231 | 40 | 60  | 20  | 100 | 86 | 78 | 97  | 77   | 150 | -1 |
| 9  | 260 | 20181231 | 27 | 40  | 20  | 100 | 89 | 77 | 100 | 76   | 137 | 1  |
| 10 | 269 | 20181231 | 36 | 50  | 20  | 80  | 87 | 78 | 100 | 75   | 155 | -1 |
| 11 | 280 | 20181231 | 40 | 60  | 20  | 110 | 88 | 80 | 99  | 77   | 174 | 5  |
| 12 | 240 | 20181231 | 45 | 70  | 30  | 110 | 90 | 83 | 109 | 76   | 205 | -1 |
| 13 | 344 | 20181231 | 35 | 50  | 20  | 90  | 91 | 79 | 104 | 77   | 207 | -1 |
| 14 | 215 | 20181231 | 42 | 60  | 20  | 90  | 89 | 82 | 97  | 80   | 212 | 0  |
| 15 | 235 | 20181231 | 51 | 80  | 40  | 110 | 90 | 83 | 98  | 77   | 229 | -1 |
| 16 | 270 | 20181231 | 50 | 80  | 30  | 120 | 87 | 82 | 97  | 78   | 236 | -1 |
| 17 | 310 | 20181231 | 48 | 60  | 30  | 90  | 88 | 73 | 102 | 71   | 335 | 3  |
| 18 | 375 | 20181230 | 32 | 40  | 20  | 90  | 79 | 53 | 92  | 42   | 137 | 31 |
| 19 | 350 | 20181230 | 29 | 50  | 20  | 80  | 82 | 56 | 93  | 49   | 139 | 14 |
| 20 | 260 | 20181230 | 26 | 50  | 20  | 100 | 85 | 62 | 95  | 52   | 112 | 10 |
| 21 | 370 | 20181230 | 33 | 50  | 20  | 90  | 80 | 51 | 91  | 45   | 156 | 11 |
| 22 | 269 | 20181230 | 33 | 60  | 20  | 110 | 82 | 63 | 92  | 54   | 119 | 8  |
| 23 | 344 | 20181230 | 36 | 60  | 20  | 120 | 86 | 50 | 97  | 36   | 141 | 4  |
| 24 | 215 | 20181230 | 43 | 60  | 20  | 100 | 87 | 57 | 99  | 48   | 127 | 7  |
| 25 | 275 | 20181230 | 35 | 70  | 20  | 120 | 77 | 55 | 90  | 48   | 138 | 24 |
| 26 | 279 | 20181230 | 39 | 80  | 20  | 160 | 76 | 67 | 84  | 62   | 148 | 10 |

Rysunek 5. Fragment widoku bazy w formacie xlsx

Wybrane kolumny są następujące:

- FG średnia prędkość wiatru przez cały dzień  $[0.1\frac{m}{s}]$ .
- FHX najwyższa średnia prędkość wiatru w ciągu jednej godziny  $[0.1\frac{m}{s}]$ .
- FHN najniższa średnia prędkość wiatru w ciągu jednej godziny  $[0.1\frac{m}{s}]$ .
- FXX najszybszy podmuch wiatru w ciągu całego dnia  $[0.1\frac{m}{s}]$ .
- TG średnia dzienna temperatura  $[0.1^{\circ}C]$ .
- TN minimalna dzienna temperatura  $[0.1^{\circ}C]$ .
- TX maksymalna dzienna temperatura  $[0.1^{\circ}C]$ .
- T10N minimalna dzienna temperatura na wysokości 10 cm od poziomu gruntu  $[0.1^{\circ}C]$ .

- Q nasłonecznienie, energia słoneczna przypadająca na powierzchnię  $\left[\frac{J}{cm^2}\right]$ .
- $\bullet$  RH suma opadów atmosferycznych w ciągu całego dnia [0.1mm].

Oprócz wyżej opisanych danych liczbowych, w naszej bazie znajdują się także dwie dodatkowe kolumny, służące do identyfikacji pomiaru:

- STN numer stacji badawczej wykonującej pomiar.
- YYYYMMDD data pomiaru w formacie opisanym przez nazwę kolumny.

#### 4.2. Zmienne lingwistyczne

W tym rozdziale przedstawimy wzory i wykresy opisujące zaproponowane przez nas zmiennie lingwistyczne. We wszystkich przypadkach, wykorzystywanymi przez nas funkcjami przynależności są funkcje trapezoidalne. <sup>1</sup>.

Aby nie duplikować treści wzorów, niepotrzebnie zwiększając w ten sposób objętość sprawozdania, zdecydowano się na zamieszczenie tabel z parametrami etykiet zmiennych lingwistycznych, odnoszącymi się do wzorów z poprzedniego podrozdziału.

 $<sup>^1</sup>$  Wartości prezentowane w tabelach są tylko propozycjami. Autorzy sprawozdania zastrzegają sobie możliwość do ich późniejszej modyfikacji

#### 4.2.1. Kolumna FG

Wykres opisujący zmienną lingwistyczną dla kolumny zawierającej wartości średniej prędkości wiatru przez cały dzień (FG), zamieszczono poniżej.



Rysunek 6. Wykres opisujący zmienną lingwistyczną dla kolumny FG.

| Etykieta | a  | b  | $\mathbf{c}$ | d   |
|----------|----|----|--------------|-----|
| Gentle   | 5  | 5  | 21           | 28  |
| Moderate | 23 | 32 | 47           | 56  |
| Strong   | 50 | 75 | 157          | 157 |

Tabela 1. Przyporządkowane parametry funkcji trapezoidalnej dla kolumny FG.

#### 4.2.2. Kolumna FHX

Wykres opisujący zmienną lingwistyczną dla kolumny zawierającej najwyższą średnią prędkości wiatru w przeciągu jednej godziny (FHX), zamieszczono poniżej.



Rysunek 7. Wykres opisujący zmienną lingwistyczną dla kolumny FHX.

| Etykieta    | a   | b   | c   | d   |
|-------------|-----|-----|-----|-----|
| Gentle      | 10  | 10  | 30  | 40  |
| Moderate    | 30  | 45  | 75  | 90  |
| Strong      | 80  | 100 | 150 | 180 |
| Very strong | 150 | 180 | 240 | 240 |

Tabela 2. Przyporządkowane parametry funkcji trapezoidalnej dla kolumny FHX.

#### 4.2.3. Kolumna FHN

Wykres opisujący zmienną lingwistyczną dla kolumny zawierającej najniższą średnią prędkości wiatru w przeciągu jednej godziny (FHN), zamieszczono poniżej.



Rysunek 8. Wykres opisujący zmienną lingwistyczną dla kolumny FHN.

| Etykieta    | a  | b  | $\mathbf{c}$ | d   |
|-------------|----|----|--------------|-----|
| Gentle      | 0  | 0  | 10           | 15  |
| Moderate    | 10 | 18 | 28           | 36  |
| Strong      | 30 | 38 | 55           | 65  |
| Very strong | 50 | 70 | 140          | 140 |

Tabela 3. Przyporządkowane parametry funkcji trapezoidalnej dla kolumny FHN.

#### 4.2.4. Kolumna FXX

Wykres opisujący zmienną lingwistyczną dla kolumny zawierającej najsilniejszy powiew wiatru (FXX), zamieszczono poniżej.



Rysunek 9. Wykres opisujący zmienną lingwistyczną dla kolumny FXX.

| Etykieta    | a   | b   | c   | d   |
|-------------|-----|-----|-----|-----|
| Gentle      | 20  | 20  | 50  | 60  |
| Moderate    | 50  | 65  | 100 | 120 |
| Strong      | 100 | 130 | 200 | 250 |
| Very strong | 200 | 275 | 390 | 390 |

Tabela 4. Przyporządkowane parametry funkcji trapezoidalnej dla kolumny FXX.

#### 4.2.5. Kolumna TG

W przypadku średniej dziennej temperatury (TG) oraz innych kolumn związacnyh z temperaturą (TN, TX oraz T10N), zdecydowaliśmy się podzielić nasze rozważania ze względu na pory roku. Dlatego też przyjęliśmy trzy różne warianty zmiennej lingiwstycznej dla kolumny TG:

- TGW dla pomiarów uzyskanych podczas astronomicznej zimy (litera W od Winter),
- TGSA dla pomiarów uzyskanych podczas astronomicznej wiosny lub jesieni (S od Spring, A od Autumn),
- TGS dla pomiarów uzyskanych podczas astronomicznego lata (litera S od Summer).

Rozpocznijmy od zmiennej lingwistycznej TGW.



Rysunek 10. Wykres opisujący zmienną lingwistyczną dla kolumny TG dla pomiarów wykonanych astronomiczną zima.

| Etykieta             | a   | b   | $\mathbf{c}$ | d   |
|----------------------|-----|-----|--------------|-----|
| Cold                 | -81 | -81 | -10          | 20  |
| Warm                 | 10  | 40  | 90           | 120 |
| $\operatorname{Hot}$ | 100 | 150 | 306          | 306 |

Tabela 5. Przyporządkowane parametry funkcji trapezoidalnej dla zmiennej TGW.

Następną prezentowaną zmienną, będzie zmienna lingwistyczna TGSA.



Rysunek 11. Wykres opisujący zmienną lingwistyczną dla kolumny TG dla pomiarów wykonanych astronomiczną wiosną i jesienią.

| Etykieta | a   | b   | c   | d   |
|----------|-----|-----|-----|-----|
| Cold     | -81 | -81 | 35  | 85  |
| Warm     | 70  | 100 | 150 | 180 |
| Hot      | 160 | 200 | 306 | 306 |

Tabela 6. Przyporządkowane parametry funkcji trapezoidalnej dla zmiennej TGSA.

Ostatnią zmienną dla kolumny TG będzie zmienna dotycząca pomiarów letnich - TGS.



Rysunek 12. Wykres opisujący zmienną lingwistyczną dla kolumny TG dla pomiarów wykonanych astronomicznym latem.

| Etykieta | a   | b   | c   | d   |
|----------|-----|-----|-----|-----|
| Cold     | -81 | -81 | 100 | 150 |
| Warm     | 130 | 150 | 230 | 250 |
| Hot      | 240 | 260 | 306 | 306 |

Tabela 7. Przyporządkowane parametry funkcji trapezoidalnej dla zmiennej TGS.

#### 4.2.6. Kolumna TN

Kolumna TN zawiera najniższą temperaturę powietrza w ciągu dnia. Wszystkie trzy warianty zmiennej lingwistycznej dla kolumny TN zaprezentowano poniżej:

- TNW dla pomiarów uzyskanych podczas astronomicznej zimy,
- TNSA dla pomiarów uzyskanych podczas astronomicznej wiosny lub jesieni,
- TNS dla pomiarów uzyskanych podczas astronomicznego lata.

Pomiary zimowe - zmienna TNW.



Rysunek 13. Wykres opisujący zmienną lingwistyczną dla kolumny TN dla pomiarów wykonanych astronomiczną zimą.

| Etykieta | a    | b    | $\mathbf{c}$ | d   |
|----------|------|------|--------------|-----|
| Cold     | -108 | -108 | -40          | -20 |
| Warm     | -40  | -10  | 60           | 80  |
| Hot      | 60   | 100  | 244          | 244 |

Tabela 8. Przyporządkowane parametry funkcji trapezoidalnej dla zmiennej TNW.

Pomiary wiosenne i jesienne - zmienna TNSA.



Rysunek 14. Wykres opisujący zmienną lingwistyczną dla kolumny TN dla pomiarów wykonanych astronomiczną wiosną i jesienią.

| Etykieta             | a    | b    | c   | d   |
|----------------------|------|------|-----|-----|
| Cold                 | -108 | -108 | 0   | 30  |
| Warm                 | 10   | 50   | 110 | 140 |
| $\operatorname{Hot}$ | 110  | 160  | 244 | 244 |

Tabela 9. Przyporządkowane parametry funkcji trapezoidalnej dla zmiennej TNSA.

Pomiary letnie - zmienna TNS.



Rysunek 15. Wykres opisujący zmienną lingwistyczną dla kolumny TN dla pomiarów wykonanych astronomicznym latem.

| Etykieta | a    | b    | c   | d   |
|----------|------|------|-----|-----|
| Cold     | -108 | -108 | 70  | 100 |
| Warm     | 80   | 130  | 180 | 200 |
| Hot      | 175  | 210  | 244 | 244 |

Tabela 10. Przyporządkowane parametry funkcji trapezoidalnej dla zmiennej TNS.

#### 4.2.7. Kolumna TX

Kolumna TX zawiera najwyższą temperaturę powietrza w ciągu dnia. Wszystkie trzy warianty zmiennej lingwistycznej dla kolumny TX zaprezentowano poniżej:

- TXW dla pomiarów uzyskanych podczas astronomicznej zimy,
- TXSA dla pomiarów uzyskanych podczas astronomicznej wiosny lub jesieni,
- TXS dla pomiarów uzyskanych podczas astronomicznego lata.

Pomiary zimowe - zmienna TXW.



Rysunek 16. Wykres opisujący zmienną lingwistyczną dla kolumny TX dla pomiarów wykonanych astronomiczną zimą.

| Etykieta             | a   | b   | С   | d   |
|----------------------|-----|-----|-----|-----|
| Cold                 | -60 | -60 | 10  | 30  |
| Warm                 | 10  | 50  | 100 | 130 |
| $\operatorname{Hot}$ | 100 | 150 | 376 | 376 |

Tabela 11. Przyporządkowane parametry funkcji trapezoidalnej dla zmiennej TXW.

Pomiary wiosenne i jesienne - zmienna TXSA.



Rysunek 17. Wykres opisujący zmienną lingwistyczną dla kolumny TX dla pomiarów wykonanych astronomiczną wiosną i jesienią.

| Etykieta | a   | b   | c   | d   |
|----------|-----|-----|-----|-----|
| Cold     | -60 | -60 | 60  | 80  |
| Warm     | 60  | 100 | 190 | 225 |
| Hot      | 180 | 250 | 376 | 376 |

Tabela 12. Przyporządkowane parametry funkcji trapezoidalnej dla zmiennej TXSA.

Pomiary letnie - zmienna TXS.



Rysunek 18. Wykres opisujący zmienną lingwistyczną dla kolumny TX dla pomiarów wykonanych astronomicznym latem.

| Etykieta | a   | b   | c   | d   |
|----------|-----|-----|-----|-----|
| Cold     | -60 | -60 | 160 | 190 |
| Warm     | 170 | 210 | 270 | 300 |
| Hot      | 280 | 300 | 376 | 376 |

Tabela 13. Przyporządkowane parametry funkcji trapezoidalnej dla zmiennej TXS.

#### 4.2.8. Kolumna T10N

Kolumna T10N zawiera najmniejszą temperaturę w ciągu dnia zmierzoną na wysokości 10cm od poziomu gruntu. Wszystkie trzy warianty zmiennej lingwistycznej dla kolumny T10N zaprezentowano poniżej:

- T10NW dla pomiarów uzyskanych podczas astronomicznej zimy,
- T10NSA dla pomiarów uzyskanych podczas astronomicznej wiosny lub jesieni,
- T10NS dla pomiarów uzyskanych podczas astronomicznego lata.

Pomiary zimowe - zmienna T10NW.



Rysunek 19. Wykres opisujący zmienną lingwistyczną dla kolumny T10N dla pomiarów wykonanych astronomiczną zimą.

| Etykieta | a    | b    | С   | d   |
|----------|------|------|-----|-----|
| Cold     | -138 | -138 | -60 | -30 |
| Warm     | -50  | -10  | 40  | 60  |
| Hot      | 45   | 75   | 232 | 232 |

Tabela 14. Przyporządkowane parametry funkcji trapezoidalnej dla zmiennej T10NW.

Pomiary wiosenne i jesienne - zmienna T10NSA.



Rysunek 20. Wykres opisujący zmienną lingwistyczną dla kolumny T10N dla pomiarów wykonanych astronomiczną wiosną i jesienią.

| Etykieta | a    | b    | $\mathbf{c}$ | d   |
|----------|------|------|--------------|-----|
| Cold     | -138 | -138 | -20          | 20  |
| Warm     | 0    | 30   | 100          | 130 |
| Hot      | 100  | 140  | 232          | 232 |

Tabela 15. Przyporządkowane parametry funkcji trapezoidalnej dla zmiennej T10NSA.

Pomiary letnie - zmienna T10NS.



Rysunek 21. Wykres opisujący zmienną lingwistyczną dla kolumny T10N dla pomiarów wykonanych astronomicznym latem.

| Etykieta             | a    | b    | c   | d   |
|----------------------|------|------|-----|-----|
| Cold                 | -138 | -138 | 50  | 70  |
| Warm                 | 50   | 80   | 160 | 180 |
| $\operatorname{Hot}$ | 150  | 190  | 232 | 232 |

Tabela 16. Przyporządkowane parametry funkcji trapezoidalnej dla zmiennej T10NS.

# 4.2.9. Kolumna Q

Wykres opisujący zmienną lingwistyczną dla kolumny zawierającej wartości nasłonecznienia (Q), zamieszczono poniżej.



Rysunek 22. Wykres opisujący zmienną lingwistyczną dla kolumny Q

| Etykieta | a    | b    | $\mathbf{c}$ | d    |
|----------|------|------|--------------|------|
| Overcast | 24   | 24   | 350          | 500  |
| Cloudy   | 400  | 700  | 1300         | 1600 |
| Sunny    | 1400 | 1900 | 3145         | 3145 |

Tabela 17. Przyporządkowane parametry funkcji trapezoidalnej dla kolumny Q.

#### 4.2.10. Kolumna RH

Wykres opisujący zmienną lingwistyczną dla kolumny zawierającej sumę opadów atmosferycznych w ciągu całego dnia (RH), zamieszczono poniżej.



Rysunek 23. Wykres opisujący zmienną lingwistyczną dla kolumny RH

| Etykieta              | a   | b   | $\mathbf{c}$ | d   |
|-----------------------|-----|-----|--------------|-----|
| None                  | -1  | -1  | 5            | 7   |
| Low                   | 5   | 10  | 35           | 45  |
| $\operatorname{High}$ | 40  | 60  | 120          | 175 |
| Downpour              | 150 | 180 | 776          | 776 |

Tabela 18. Przyporządkowane parametry funkcji trapezoidalnej dla kolumny RH.

#### 4.3. Kwantyfikatory

W tym rozdziale skoncentrujemy się na zaproponowanych przez nas kwantyfikatorach. Prezentację rozpoczniemy od kwantyfikatorów względnych, aby następnie omówić kwantyfikatory bezwzględne.

W przypadku kwantyfikatorów, wykorzystywanymi przez nas funkcjami przynależności są zarówno funkcje trapezoidalne jak i funkcje trójkątne. Za każdym razem w tabelach podano, z jakiej funkcji skorzystano przy definicji danej etykiety, co ma swoje odzwierciedlenie na prezentowanych wykresach.

#### 4.3.1. Kwantyfikatory względne

Wykres ilustrujący wszystkie kwantyfikatory względne, zamieszczono poniżej.



Rysunek 24. Kwantyfikatory względne

Tabela zawierająca parametry i nazwy funkcji przynależności, dla poszczególnych kwantyfikatorów, prezentuje się następująco.

| Kwantyfikator     | Funkcja przynależności | a    | b    | c    | d   |
|-------------------|------------------------|------|------|------|-----|
| None              | Trójkątna              | 0    | 0    | 0.1  |     |
| Less than quarter | Trapezoidalna          | 0    | 0.1  | 0.25 | 0.3 |
| Some              | Trapezoidalna          | 0.15 | 0.2  | 0.35 | 0.4 |
| Around one thirds | Trójkątna              | 0.23 | 0.33 | 0.43 | -   |
| Around half       | Trapezoidalna          | 0.4  | 0.45 | 0.55 | 0.6 |
| Around two thirds | Trójkątna              | 0.56 | 0.66 | 0.67 | -   |
| Majority          | Trapezoidalna          | 0.7  | 0.75 | 0.85 | 0.9 |
| Almost all        | Trapezoidalna          | 0.85 | 0.9  | 1    | 1   |

Tabela 19. Funkcje przynależności kwantyfikatorów względnych - nazwy wraz z parametrami.

#### 4.3.2. Kwantyfikatory bezwzględne

Wykres ilustrujący wszystkie kwantyfikatory bezwzględne, zamieszczono poniżej.



Rysunek 25. Kwantyfikatory bezwzględne

Tabela zawierająca parametry i nazwy funkcji przynależności, dla poszczególnych kwantyfikatorów, prezentuje się następująco.

| Kwantyfikator  | Funkcja przynależności | a    | b    | c    | d     |
|----------------|------------------------|------|------|------|-------|
| Less than 200  | Trapezoidalna          | 0    | 0    | 200  | 220   |
| Around 500     | Trójkątna              | 350  | 500  | 650  | -     |
| Around 1000    | Trójkątna              | 700  | 1000 | 1300 | -     |
| Around 2000    | Trójkątna              | 1700 | 2000 | 2300 | -     |
| Around 3000    | Trójkątna              | 2600 | 3000 | 3400 | -     |
| Around 5000    | Trójkątna              | 4500 | 5000 | 5500 | -     |
| More than 6000 | Trapezoidalna          | 5500 | 6000 | 8000 | 17000 |

Tabela 20. Funkcje przynależności kwantyfikatorów bezwzględnych - nazwy wraz z parametrami.

# 5. Wyniki

Przeprowadzone eksperymenty zostały podzielone na trzy etapy, w których porównywać będziemy różne zależności:

- W pierwszym etapie sprawdzimy jak zmieniać się będą miary podsumowań dla poszczególnych kwantyfikatorów.
- W drugim etapie przeanalizujemy zdania bardziej złożone sumaryzatory wykorzystujące spójniki AND oraz OR.
- W trzecim etapie skoncentrujemy się na różnicy w rezultatch uzyskiwanych w wyniku wykorzystania kwalifikatora w opozycji do zdań, w których kwalifikator nie jest używany.

#### 5.1. Wpływ wyboru kwantyfikatora na jakość podsumowania

W pierwszym etapie, wygenerowano następujące zdania:

- Zdanie pierwsze: X of summer measures with cold daily average temperature have cloudy insolation wykorzystujące zmienną lingwistyczną TGS jako kwalifikator (etykieta Cold) oraz zmienną Q jako sumaryzator (etykieta Cloudy).
- Zdanie drugie: X of measures with very strong strongest wind blow have overcast insolation wykorzystujące zmienną lingwistyczną FXX jako kwalifikator (etykieta Very strong) oraz zmienną Q jako sumaryzator (etykieta Overcast).
- Zdanie trzecie: X of measures with none precipitation have gentle daily wind speed average. - wykorzystujące zmienną lingwistyczną RH jako kwalifikator (etykieta None) oraz zmienną FG jako sumaryzator (etykieta Gentle).

gdzie X jest jednym ze zdefiniowaych przez nas kwantyfikatorów.

Miary  $T_2 - T_5$  oraz  $T_8 - T_{11}$  osiągały stałe wartości w obrębie każdego ze zdań, dlatego też ich wartości zostały zamieszczone poza tabelami, w których zestawiono tylko te miary, których wartości były zmienne wewnątrz jednego eksperymentu.

#### 5.1.1. Zdanie pierwsze

| Kwantyfikator     | $T_1$ | $T_6$  | $T_7$  |
|-------------------|-------|--------|--------|
| None              | 0,000 | 0,900  | 0,950  |
| Less than quarter | 0,000 | 0,700  | 0,775  |
| Some              | 0,000 | 0,750  | 0,800  |
| Around one thirds | 0,000 | 0,800  | 0,900  |
| Around half       | 0,000 | 0,800  | 0,850  |
| Around two thirds | 0,116 | 0,800  | 0,900  |
| Majority          | 0,968 | 0,800  | 0,850  |
| Almost all        | 0,000 | 0,840  | 0,870  |
| Less than 200     | 1,000 | 0,950  | 0,953  |
| Around 500        | 0,000 | 0,932  | 0,966  |
| Around 1000       | 0,000 | 0,865  | 0,932  |
| Around 2000       | 0,000 | 0,865  | 0,932  |
| Around 3000       | 0,000 | 0,820  | 0,910  |
| Around 5000       | 0,000 | 0,775  | 0,887  |
| More than 6000    | 0,000 | -1,590 | -0,520 |

Tabela 21. Tabela przedstawiająca wyniki eksperymentu dla zdania pierwszego

#### 5.1.2. Zdanie drugie

#### 5.1.3. Zdanie trzecie

# 5.2. Wpływ wykorzystania operacji sumy i ilooczynu na jakość podsumowania

Praca w toku

#### 5.3. Wpływ wykorzystania kwalifikatora na jakość podsumowania

Praca w toku

# 6. Dyskusja

Praca w toku

#### 7. Wnioski

Praca w toku

#### Literatura

- [1] Baza danych "Historical weather in the Netherlands 1901-2018"
- [2] Narzędzie Maven https://maven.apache.org/.

- [3] Biblioteka JavaFX https://openjfx.io/
- [4] Methods for the linguistic summarization of data aplications of fuzzy sets and their extensions, Adam Niewiadomski, Akademicka Oficyna Wydawnicza EXIT, Warszawa 2008