Proof of Kemnitz' Conjecture and a generalization to higher dimensions

Panwei Hu

Introduction

We define a d-dimensional affine space V and consider the set of points which lie in the set

$$V_d := \left\{ \sum_{i=1}^d \alpha_i v_i \mid \alpha_i \in \mathbb{Z}, \quad 1 \leq i \leq d \right\},$$

where $\{v_i \mid 1 \le i \le d\}$ are linear independent vectors in V. We also call the points in V_d as *lattice* points.

Problem 1

Find out the minimum of the number f s.t. given f sequences in V_d , we can guarantee to find out a subsequence of length n, s.t. the centroid of this subsequence is also a lattice point. We define such minimum number as f(n, d).

Goal

Find the exact value of f(n, d), if not possible, study the upper and lower bound of f(n, d)

Goal

Find the exact value of f(n, d), if not possible, study the upper and lower bound of f(n, d)

Consider the additive group $G := \mathbb{Z}_n^d$. We call a subsequence of length I, which sums to a 0 in \mathbb{Z}_n^d as 0-sum I-subsequence (w.r.t G), where 0 denotes the zero vector in G.

Goal

Find the exact value of f(n, d), if not possible, study the upper and lower bound of f(n, d)

Consider the additive group $G := \mathbb{Z}_n^d$. We call a subsequence of length I, which sums to a 0 in \mathbb{Z}_n^d as 0-sum I-subsequence (w.r.t G), where 0 denotes the zero vector in G.

Problem 2

Find the number f(n, d), s.t. for any sequences of elements in G, with length $l \ge f(n, d)$, there exists a 0-sum n-subsequence.

Goal

Find the exact value of f(n, d), if not possible, study the upper and lower bound of f(n, d)

Consider the additive group $G := \mathbb{Z}_n^d$. We call a subsequence of length I, which sums to a 0 in \mathbb{Z}_n^d as 0-sum I-subsequence (w.r.t G), where 0 denotes the zero vector in G.

Problem 2

Find the number f(n, d), s.t. for any sequences of elements in G, with length $l \ge f(n, d)$, there exists a 0-sum n-subsequence.

Observation

Problem 1 and Problem 2 are equivalent

Lemma 2.2

$$(n-1)2^d + 1 \le f(n,d) \le (n-1)n^d + 1$$
 (1)

A natural bound on f(n, d)

Lemma 2.2

$$(n-1)2^d + 1 \le f(n,d) \le (n-1)n^d + 1 \tag{1}$$

Proof.

Left inequality: Construct $(n-1)2^d$ vectors, which include all the vectors in \mathbb{Z}_n^d , which has 0 or 1 in their entry, so there are in all 2^d different vectors. Each vector appear exactly n-1 times. It is impossible to find a 0-sum n-subsequence among these vectors.

A natural bound on f(n, d)

Lemma 2.2

$$(n-1)2^d + 1 \le f(n,d) \le (n-1)n^d + 1 \tag{1}$$

Proof.

Left inequality: Construct $(n-1)2^d$ vectors, which include all the vectors in \mathbb{Z}_n^d , which has 0 or 1 in their entry, so there are in all 2^d different vectors. Each vector appear exactly n-1 times. It is impossible to find a 0-sum n-subsequence among these vectors. Right inequality: pigeon hole principle Since $|G| = n^d$, given $(n-1)n^d + 1$ elements, there are at least one vector v which has multiplicity

$$\lceil \frac{(n-1)n^d+1}{n^d} \rceil = n.$$

Decomposition of f(n, d) (1)

Lemma 2.3

$$f(pq,d) \le f(p,d) + p(f(q,d) - 1)$$
 (2.3.1)

Proof.

For the convenience of notation, we define

$$f_1 := f(p, d), f_2 := f(q, d), f := f_1 + p(f_2 - 1).$$

since

$$f = f_1 + p(f_2 - 1),$$

we would obtain f_2 0-sum p-subsequence (w.r.t \mathbb{Z}_p^d). Among all these f_2 vectors, there exists a 0-sum q-subsequence (w.r.t \mathbb{Z}_q^d), which means they sum to a vector z, with each component divisible by q. Since each summand has components all divisible by p, the resultant vectors will be divisible by pq = n, thus we obtain a 0-sum p-subsequence.

Decomposition of f(n, d) (2)

Due to the symmetry we would obtain similarly:

$$f(pq,d) \le f(q,d) + q(f(p,d) - 1)$$
 (2.3.1')

Decomposition of f(n, d) (2)

Due to the symmetry we would obtain similarly:

$$f(pq,d) \le f(q,d) + q(f(p,d) - 1)$$
 (2.3.1')

Combining (2.3.1) and (2.3.1), we obtain the following upper bound.

Corollary 2.5

$$f(pq,d) \le \min\{f(p,d) + p(f(q,d) - 1), f(q,d) + q(f(p,d) - 1)\}$$
(2)

Decomposition of f(n, d) (2)

Due to the symmetry we would obtain similarly:

$$f(pq,d) \le f(q,d) + q(f(p,d) - 1)$$
 (2.3.1')

Combining (2.3.1) and (2.3.1), we obtain the following upper bound.

Corollary 2.5

$$f(pq,d) \le \min\{f(p,d) + p(f(q,d)-1), f(q,d) + q(f(p,d)-1)\}\$$
 (2)

Theorem 2.5 (Cauchy-Davenport)

Let p be a prime number. If $A, B \subset \mathbb{Z}_p$ are nonempty, then

$$|A + B| \ge \min\{p, |A| + |B| - 1\},\$$

where
$$A + B := \{ a + b \mid a \in A, b \in B \}$$

Examples

Theorem 2.7 (Erdös-Ginsburg-Ziv)

$$f(n,1) = 2n - 1$$

Proof sketches.

From (1):

$$f(n,1) \ge 2n - 1 \tag{3}$$

Only need to show

$$f(n,1) \le 2n-1. \tag{4}$$

Examples

Theorem 2.7 (Erdös-Ginsburg-Ziv)

$$f(n,1)=2n-1$$

Proof sketches.

From (1):

$$f(n,1) \ge 2n - 1 \tag{3}$$

Only need to show

$$f(n,1) \le 2n - 1. \tag{4}$$

Recall $f(pq, d) \le f(p, d) + p(f(q, d) - 1)$

Examples

Theorem 2.7 (Erdös-Ginsburg-Ziv)

$$f(n,1)=2n-1$$

Proof sketches.

From (1):

$$f(n,1) \ge 2n - 1 \tag{3}$$

Only need to show

$$f(n,1) \le 2n - 1. \tag{4}$$

f(pq, d) < f(p, d) + p(f(q, d) - 1)Recall

- restrict to prime number $(f(pq, 1) \le 2pq 1)$
- 2 application of Theorem 1 to prove

$$f(p,1) \leq 2p-1$$

Proof of (4)(1)

Proof of (4)(2)

Lemma 2.8

$$f(2^n,d) = (2^n - 1)2^d + 1$$

Lemma 2.8

$$f(2^n,d) = (2^n - 1)2^d + 1$$

Lemma 2.9

$$f(3^n, 2) = 4 \cdot 3^n - 3$$

Further examples

Lemma 2.8

$$f(2^n,d) = (2^n - 1)2^d + 1$$

Lemma 2.9

$$f(3^n, 2) = 4 \cdot 3^n - 3$$

Problem

Is it true for all $n \in \mathbb{N}$,

$$f(n,2) = 4n - 3$$

This is the well-known Kemnitz' Conjecture

Remark

Notation: \equiv means modulo in \mathbb{Z}_p .

The 0 denotes the usual neutral element of addition in the corresponding abelian group. In particular, 0 denotes the standard 0 in the abelian group \mathbb{Z}_p and (0,0) in the case of $\mathbb{Z}_p \times \mathbb{Z}_p$.

Remark

Notation: \equiv means modulo in \mathbb{Z}_p .

The 0 denotes the usual neutral element of addition in the corresponding abelian group. In particular, 0 denotes the standard 0 in the abelian group \mathbb{Z}_p and (0,0) in the case of $\mathbb{Z}_p \times \mathbb{Z}_p$.

Theorem 3.1 (Chevalley-Warning Theorem)

Let p be a prime number and $q=p^t, t\in\mathbb{N}$. We use \mathbb{F}_q to denote the finite field of q elements. Let p_1,\ldots,p_m be m polynomials in $\mathbb{F}_q[x_1,x_2,\ldots,x_n]$, with degree d_i . Denote the number of common zeros of the m polynomials as N. If

$$\sum_{i=1}^m d_i < n,$$

then

$$N \equiv 0 \pmod{p}$$

First reduction

Main Theorem (Kemnitz' Conjecture)

$$f(n,2)=4n-3$$

Proposition

It suffices to consider the case for n is an odd prime number.

First reduction

Main Theorem (Kemnitz' Conjecture)

$$f(n,2)=4n-3$$

Proposition

It suffices to consider the case for n is an odd prime number.

Notation

Denote J, X and other capital alphabets as a multiset of $G := \mathbb{Z}_p \times \mathbb{Z}_p$.

 $(m|J) \cong \text{number of 0-sum } m\text{-subsequence (w.r.t G) in J.}$

If
$$|J| = 3p - 3$$
, then $1 - (p - 1|J) - (p|J) + (2p - 1|J) + (2p|J) \equiv 0$

If
$$|J| = 3p - 3$$
, then $1 - (p - 1|J) - (p|J) + (2p - 1|J) + (2p|J) \equiv 0$

We specify J as the multiset $\{(a_n, b_n) \mid 1 \le n \le 3p - 3\}$. We consider three polynomials

$$p_1 := \sum_{n=1}^{3p-3} x_n^{p-1} + x_{3p-2}^{p-1}, \quad p_2 := \sum_{n=1}^{3p-3} a_n x_n^{p-1}, \quad p_3 := \sum_{n=1}^{3p-3} b_n x_n^{p-1}$$

If
$$|J| = 3p - 3$$
, then $1 - (p - 1|J) - (p|J) + (2p - 1|J) + (2p|J) \equiv 0$

We specify J as the multiset $\{(a_n, b_n) \mid 1 \le n \le 3p - 3\}$. We consider three polynomials

$$p_1 := \sum_{n=1}^{3p-3} x_n^{p-1} + x_{3p-2}^{p-1}, \quad p_2 := \sum_{n=1}^{3p-3} a_n x_n^{p-1}, \quad p_3 := \sum_{n=1}^{3p-3} b_n x_n^{p-1}$$

Since the total sum of degress are 3(p-1)=3p-3<3p-2, we can apply the *Chevalley-Warning Theorem*.

If
$$|J| = 3p - 3$$
, then $1 - (p - 1|J) - (p|J) + (2p - 1|J) + (2p|J) \equiv 0$

We specify J as the multiset $\{(a_n, b_n) \mid 1 \le n \le 3p - 3\}$. We consider three polynomials

$$p_1 := \sum_{n=1}^{3p-3} x_n^{p-1} + x_{3p-2}^{p-1}, \quad p_2 := \sum_{n=1}^{3p-3} a_n x_n^{p-1}, \quad p_3 := \sum_{n=1}^{3p-3} b_n x_n^{p-1}$$

Since the total sum of degress are 3(p-1)=3p-3<3p-2, we can apply the *Chevalley-Warning Theorem*.

Since three polynomials have 0 as a common zero, the Chevalley-Warning Theorem states that there are non-trivial common zeros. We consider the common zeros depending on the term x_{3p-2} in p_1 .

Proof of Corollary 3.2(1) $x_{3n-2} = 0$

$$x_{3n-2} = 0$$

Proof of Corollary 3.2(1) $x_{3n-2} = 0$

$$x_{3n-2} = 0$$

$$p_1 := \sum_{n=1}^{3p-3} x_n^{p-1} + x_{3p-2}^{p-1}$$

$$p_2 := \sum_{n=1}^{3p-3} a_n x_n^{p-1}$$

$$p_3:=\sum_{n=1}^{3p-3}b_nx_n^{p-1}$$

Proof of Corollary 3.2(1) $x_{3n-2} = 0$

$$x_{3n-2}=0$$

$$p_1 := \sum_{n=1}^{3p-3} x_n^{p-1} + x_{3p-2}^{p-1}$$

$$p_2:=\sum_{n=1}^{p-1}a_nx_n^{p-1}$$

$$p_3:=\sum_{n=1}^{3p-3}b_nx_n^{p-1}$$

In this case for the zero of p_1 , it needs to satisfy

$$\sum_{n=1}^{3p-3} x_n^{p-1} \equiv 0$$

We know that

$$x^{p-1} \equiv \begin{cases} 1, & \text{if } x \not\equiv 0; \\ 0, & \text{if } x \equiv 0. \end{cases}$$

Since there are in all 3p-3 variables left, there could only be three cases:

$$p_1 := \sum_{n=1}^{3p-3} x_n^{p-1} + x_{3p-2}^{p-1}$$

$$p_2 := \sum_{n=1}^{3p-3} a_n x_n^{p-1}$$

$$p_3 := \sum_{n=1}^{3p-3} b_n x_n^{p-1}$$

$$p_1 := \sum_{n=0}^{3p-3} x_n^{p-1} + x_{3p-2}^{p-1}$$

$$p_2:=\sum_{n=1}^{3p-3}a_nx_n^{p-1}$$

$$p_3:=\sum_{n=1}^{3p-3}b_nx_n^{p-1}$$

0 of them are 1: # 1

$$p_1 := \sum_{n=1}^{3p-3} x_n^{p-1} + x_{3p-2}^{p-1}$$

$$p_2 := \sum_{n=1}^{3p-3} a_n x_n^{p-1}$$

$$p_3 := \sum_{n=1}^{3p-3} b_n x_n^{p-1}$$

- 0 of them are 1: # 1
- p of them are 1: x_{i_1}, \ldots, x_{i_n} .

$$p_1 := \sum_{n=1}^{3p-3} x_n^{p-1} + x_{3p-2}^{p-1}$$

$$p_2:=\sum_{n=1}^{3p-3}a_nx_n^{p-1}$$

$$p_3:=\sum_{n=1}^{3p-3}b_nx_n^{p-1}$$

- 0 of them are 1: # 1
- \bullet p of them are 1: x_{i_1}, \ldots, x_{i_p} .

$$\sum_{j=1}^p a_{i_j} \equiv 0, \quad \sum_{j=1}^p b_{i_j} \equiv 0.$$

$$\# (p-1)^p(p|J).$$

• 2p of them are 1: $\# (p-1)^{2p} (2p|J)$.

Proof of Corollary 3.2(3)

$$p_{1} := \sum_{n=1}^{3p-3} x_{n}^{p-1} + x_{3p-2}^{p-1}$$

$$p_{2} := \sum_{n=1}^{3p-3} a_{n} x_{n}^{p-1}$$

$$p_{3} := \sum_{n=1}^{3p-3} b_{n} x_{n}^{p-1}$$

Proof of Corollary 3.2(3)

$$p_1 := \sum_{n=1}^{3p-3} x_n^{p-1} + x_{3p-2}^{p-1}$$

$$p_2:=\sum_{n=1}^{3p-3}a_nx_n^{p-1}$$

$$p_3:=\sum_{n=1}^{3p-3}b_nx_n^{p-1}$$

$$p-1$$
 of them are 1.
$(p-1)^p(p-1|J)$

Proof of Corollary 3.2(3)

$$p_1 := \sum_{n=1}^{3p-3} x_n^{p-1} + x_{3p-2}^{p-1}$$

$$p_2 := \sum_{n=1}^{3p-3} a_n x_n^{p-1}$$

$$p_3:=\sum_{n=1}^{3p-3}b_nx_n^{p-1}$$

•
$$p-1$$
 of them are 1.
$(p-1)^p(p-1|J)$

$$p_1 := \sum_{n=1}^{3p-3} x_n^{p-1} + x_{3p-2}^{p-1}$$

$$p_2 := \sum_{n=1}^{3p-3} a_n x_n^{p-1}$$

$$p_3:=\sum_{n=1}^{3p-3}b_nx_n^{p-1}$$

•
$$p-1$$
 of them are 1.
$(p-1)^p(p-1|J)$

• 2p - 1 of them are 1. # $(p - 1)^{2p}(2p - 1|J)$

Collecting all the number of common zeros:

$$1 + (p-1)^{p}(p|J) + (p-1)^{2p}(2p|J) + (p-1)^{p}(p-1|J) + (p-1)^{2p}(2p-1|J) \equiv 0$$

Simplifying the equation above we obtain

$$1 - (p-1|J) - (p|J) + (2p-1|J) + (2p|J) \equiv 0$$

If
$$|J| = 3p - 2$$
, or $|J| = 3p - 1$, then $1 - (p|J) + (2p|J) \equiv 0$

If
$$|J| = 3p - 2$$
, or $|J| = 3p - 1$, then $1 - (p|J) + (2p|J) \equiv 0$

Corollary 3.5

If
$$|J| = 3p - 2$$
 or $|J| = 3p - 1$, then $(p|J) = 0$ implies $(2p|J) \equiv -1$.

If
$$|J| = 3p - 2$$
, or $|J| = 3p - 1$, then $1 - (p|J) + (2p|J) \equiv 0$

Corollary 3.5

If
$$|J| = 3p - 2$$
 or $|J| = 3p - 1$, then $(p|J) = 0$ implies $(2p|J) \equiv -1$.

Corollary 3.6

If J contains exactly 3p elements, and $\sum_{x \in J} x \equiv 0$, then (p|J) > 0.

Proof of Corollary 3.6

Proof.

If
$$(p|J) = 0 \Rightarrow$$

$$\forall x \in J$$
, $(p|J-x)=0$.

Proof of Corollary 3.6

Proof.

If
$$(p|J) = 0 \Rightarrow$$

$$\forall x \in J, \quad (p|J-x) = 0.$$

$$|J-x|=3p-1 \Rightarrow$$

$$(2p|J-x)\equiv -1.$$

In particular

$$(2p|J-x)>0$$

Proof of Corollary 3.6

Proof.

If
$$(p|J) = 0 \Rightarrow$$

$$\forall x \in J, \quad (p|J-x) = 0.$$

$$|J-x|=3p-1 \Rightarrow$$

$$(2p|J-x)\equiv -1.$$

In particular

$$(2p|J-x)>0$$

$$\forall A \subset J$$
, s.t. $\sum_{a \in A} a \equiv 0$,

$$\sum_{a \in A} a + \sum_{b \in J - A} b = \sum_{j \in J} j \equiv 0$$

$$\Rightarrow \sum_{b \in J - A} b \equiv 0$$

The map T

$$T: \left\{ A \subset J \mid |A| = p, \sum_{a \in A} a \equiv 0 \right\} \to \left\{ A \subset J \mid |A| = 2p, \sum_{a \in A} a \equiv 0 \right\}$$
$$A \mapsto I - A$$

is a bijection. It follows that:

$$(p|J) = (2p|J) \ge (2p|J-x) > 0,$$

which is a contradiction to the assumption (p|J) = 0

If
$$|X| = 4p - 3$$
, then

$$1 - 1 + (p|X) - (2p|X) + (3p|X) \equiv 0$$

②
$$(p-1|X)-(2p-1|X)+(3p-1|X)\equiv 0$$

Corollary 3.8

If
$$|X| = 4p - 3$$
, then $3 - 2(p - 1|X) - 2(p|X) + (2p - 1|X) + (2p|X) \equiv 0$.

Proof.

We deduce from Corollary 3.2 that:

$$\sum_{I} 1 - (p-1|I) - (p|I) + (2p-1|I) + (2p|I) \equiv 0,$$

where the sum is over $I \subset X$, s.t, |I| = 3p - 3.

Proof.

We deduce from Corollary 3.2 that:

$$\sum_{I} 1 - (p-1|I) - (p|I) + (2p-1|I) + (2p|I) \equiv 0,$$

where the sum is over $I \subset X$, s.t, |I| = 3p - 3.

$$|\{(Y,I)|Y\subset I, s.t. \sum_{y\in Y}y\equiv 0, |I|=3p-3\}|={3p-3\choose 2p-3},$$

We consider the sum

$$\sum_{\substack{Y\subset X,\\\sum_{y\in Y}y=0}}\sum_{\substack{I,s.t.\\Y\subset I,\\\left|I\right|=3p-3}}1$$

$${3p-3 \choose 2p-3}(p|X) = \sum_{\substack{Y \subset X \\ \sum_{y \in Y} y = 0}} {3p-3 \choose 2p-3} = \sum_{\substack{Y \subset X, \\ \sum_{y \in Y} y = 0}} \sum_{\substack{I,s.t. \\ Y \subset I, \\ |I| = 3p-3}} 1$$

$$= \sum_{\substack{I,s.t. \\ |I| = 3p-3}} \sum_{\substack{Y \subset I, \\ \sum_{y \in Y} y = 0}} 1 = \sum_{I} (p|I)$$

Performing similar calculation, we get

$${4p-3 \choose 3p-3} - {3p-2 \choose 2p-2} (p-1|X) - {3p-3 \choose 2p-3} (p|X)$$

$$+ {2p-2 \choose p-2} (2p-1|X) + {2p-3 \choose p-3} (2p|X) \equiv 0$$
 (5)

We finally prove that

$$\begin{pmatrix} 4p-3 \\ 3p-3 \end{pmatrix} \equiv 3, \begin{pmatrix} 3p-2 \\ 2p-2 \end{pmatrix} \equiv 2,$$
 (6)

because:

Note that we have used the fact that p is an odd prime, s.t. $(-1)^{p-1} \equiv 1$.

Similarly, one can prove that

$$\binom{3p-3}{2p-3} \equiv 2, \binom{2p-2}{p-2} \equiv 1, \binom{2p-3}{p-3} \equiv 1.$$
 (7)

Combining the modulo equivalence in (6) and (7), (5) can be simplified to

$$3 - 2(p-1|X) - 2(p|X) + (2p-1|X) + (2p|X) \equiv 0, \quad (8)$$

which is what we want to prove.

Lemma 3.9

If
$$|X| = 4p - 3$$
 and $(p|X) = 0$, then $(p - 1|X) \equiv (3p - 1|X)$.

Proof.

We consider the partition of $X = A \cup B \cup C$, where

$$|A| = p - 1, \quad |B| = p - 2, \quad |C| = 2p.$$

and

$$\sum_{a \in A} a \equiv 0, \quad \sum_{b \in B} b \equiv \sum_{x \in X} x, \quad \sum_{c \in C} c \equiv 0$$

Let χ denote the number of such partition. We use two ways to compute the number χ , the first one fixes A and find out the possible set C:

$$\chi \equiv \sum_{\Delta} (2p|X-A) \equiv \sum_{\Delta} -1 \equiv -(p-1|X),$$

where we have used Corollary 3.5, for J=X-A, with |J|=3p-2 and the fact that

$$0 \le (p|J) \le (p|X) = 0,$$

Now by fixing B and count the possible set C, we get:

$$\chi \equiv \sum_{B} (2p|X - B) \stackrel{1}{\equiv} \sum_{B} -1 \stackrel{2}{\equiv} \sum_{X - B} -1 \stackrel{3}{\equiv} -(3p - 1|X)$$

For the three equivalences, we have used the following facts:

1: We use the similar argumentation as before, since |X - B| = 3p - 1 and apply Corollary 3.5 leads to $(2p|X-B) \equiv -1.$

2: Consider the two sets

$$S := \left\{ B \subset X \mid |B| = p - 2, \sum_{b \in B} b \equiv \sum_{x \in X} x \right\}$$
$$W := \left\{ J \subset X \mid |J| = 3p - 1, \sum_{i=1}^{n} j \equiv 0 \right\}$$

The map T defined by:

$$T: S \to W$$
$$B \mapsto X - B$$

is a bijection, s.t.

$$\sum_{B} 1 \equiv \sum_{X-B} 1$$

3: Since $\sum_{b \in B} b \equiv \sum_{x \in X} x$, it follows that

$$\sum_{x \in X - B} x \equiv 0,$$

in particular

$$\sum_{X=B} -1 \equiv -1 \cdot (3p - 1|X)$$

Proof of Kemnitz' Conjecture

Proof.

$$-1 + (p|X) - (2p|X) + (3p|X) \equiv 0$$
 (9)

$$(p-1|X) - (2p-1|X) + (3p-1|X) \equiv 0$$
 (10)

$$3 - 2(p-1|X) - 2(p|X) + (2p-1|X) + (2p|X) \equiv 0.$$
 (11)

Proof.

$$-1 + (p|X) - (2p|X) + (3p|X) \equiv 0$$
 (9)

$$(p-1|X) - (2p-1|X) + (3p-1|X) \equiv 0$$
 (10)

$$3 - 2(p-1|X) - 2(p|X) + (2p-1|X) + (2p|X) \equiv 0.$$
 (11)

Adding the three above equations, we obtain:

$$2 - (p - 1|X) - (p|X) + (3p - 1|X) + (3p|X) \equiv 0$$
 (12)

Assume there is a set X, with |X| = 4p - 3 which contradicts the theorem, that is (p|X) = 0.

Proof of Kemnitz' Conjecture

Proof.

$$-1 + (p|X) - (2p|X) + (3p|X) \equiv 0$$
 (9)

$$(p-1|X) - (2p-1|X) + (3p-1|X) \equiv 0$$
 (10)

$$3 - 2(p-1|X) - 2(p|X) + (2p-1|X) + (2p|X) \equiv 0.$$
 (11)

Adding the three above equations, we obtain:

$$2 - (p - 1|X) - (p|X) + (3p - 1|X) + (3p|X) \equiv 0$$
 (12)

Assume there is a set X, with |X| = 4p - 3 which contradicts the theorem, that is (p|X) = 0.

Using the previous Lemma 3.9, we obtain $(p-1|X) \equiv (3p-1|X)$. Then (12) simplifies to

$$2 - (p|X) + (3p|X) \equiv 0 \tag{13}$$

Since p is odd, we see that (p|X) and (3p|X) could not both be 0. Since we assume that (p|X)=0, it follows that (3p|X)>0, i.e., there is a subset $J\subset X$, $\left|J\right|=3p$ and $\sum_{j\in J}j\equiv 0$. But from Corollary 3.6, we see that (p|J)>0, in particular (p|X)>0, which is a contradiction.

Theorem (Alon-Dubiner Theorem)

 $\exists c > 0$, s.t. $\forall n \in \mathbb{N}$,

$$f(n,d) < (cd \log_2 d)^d n$$

Thank You