

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-2019 EXAMINATION

Subject Name: Basic Mathematics <u>Model Answer</u>

Subject Code:

22103

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answers	Marking
No.	Q.N.	Allswers	Scheme
1.		Attempt any FIVE of the following:	10
	a)	Prove that $\frac{1}{\log_3 6} + \frac{1}{\log_8 6} + \frac{1}{\log_9 6} = 3$	02
	Ans	$L.H.S = \frac{1}{\log_3 6} + \frac{1}{\log_8 6} + \frac{1}{\log_9 6}$	
		$= \frac{\log 3}{\log 6} + \frac{\log 8}{\log 6} + \frac{\log 9}{\log 6}$	1/2
		$=\frac{\log(3\times8\times9)}{\log6}$	1/2
		$=\frac{\log 216}{\log 6}$	
		$=\frac{\log 6^3}{\log 6}$	1/2
		$=\frac{3\log 6}{\log 6}$	
		= 3 = R.H.S	1/2
	b)	Find x, if $\begin{vmatrix} 4 & 3 & 9 \\ 3 & -2 & 7 \\ 11 & 4 & x \end{vmatrix} = 0$	02
		$\begin{vmatrix} 11 & 4 & x \end{vmatrix}$	

Perimeter = 2(length + breadth)

e)

Ans

=2(60+50)=220

Area of ring = A(larger circle) - A(smaller circle)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 2019 EXAMINATION

Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code:	22103
Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	b) Ans	$\begin{vmatrix} 4 & 3 & 9 \\ 3 & -2 & 7 \\ 11 & 4 & x \end{vmatrix} = 0$	
		4(-2x-28)-3(3x-77)+9(12+22)=0	1/2
		$\therefore -8x - 112 - 9x + 231 + 306 = 0$	1/2
		$\therefore -17x + 425 = 0$	
		$\therefore x = 25$	1
	c)	Without using calculator, find the value of $\cos(105^{\circ})$	02
	Ans	$\cos\left(105^{0}\right) = \cos\left(60^{0} + 45^{0}\right)$	1/2
		$=\cos 60^{\circ}\cos 45^{\circ}-\sin 60^{\circ}\sin 45^{\circ}$	1/2
		$= \left(\frac{1}{2}\right) \left(\frac{1}{\sqrt{2}}\right) - \left(\frac{\sqrt{3}}{2}\right) \left(\frac{1}{\sqrt{2}}\right)$	1/2
		$=\frac{1-\sqrt{3}}{2\sqrt{2}}$ or -0.2588	1/2
	d)	The area of a rectangular garden is 3000 m ² . Its sides are in the ratio 6:5. Find the perimeter of the garden	02
	Ans	:: Sides are in the ratio 6:5	
		$\therefore \text{ length } = 6x, \text{breadth} = 5x$	
		Area = (6x)(5x)	1/2
		$3000 = 30x^2$	/2
		$\therefore x^2 = 100$	
		$\therefore x = 10$	1
		$\therefore \text{Length} = 60 \ m , \text{Breadth} = 50 \ m$	1 -

Find the area of ring between two concentric cicles whose circumferences are $75 \, \mathrm{cm}$ and $55 \, \mathrm{cm}$.

1/2

02

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER –2019 EXAMINATION

Subject Name: Basic Mathematics Model Answer Subject Code: 22103

Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	e)	:. Area of ring = $\pi r_1^2 - \pi r_2^2 = \pi (r_1^2 - r_2^2)$:: $2\pi r_1 = 75$	1/2
		$\therefore r_1 = \frac{75}{2\pi}$ $\therefore 2\pi r_2 = 55$	1/2
		$\therefore r_2 = \frac{55}{2\pi}$	1/2
		Area of ring $=\pi \left(r_1^2 - r_2^2\right)$ $=\pi \left(\left(\frac{75}{2\pi}\right)^2 - \left(\frac{55}{2\pi}\right)^2\right)$	
		= 206.9	1/2
	f)	Find the range and coefficient of range 40, 52, 47, 28, 45, 36, 47, 50	02
	Ans	Range = $L - S$ = $52 - 28$	
		$= 24$ Coefficient of range = $\frac{L-S}{L+S}$ $= \frac{52-28}{52+28}$	1
		52 + 28 $= 0.3$	1
	g)	The two sets of observations are given below: Set I Set II $\overline{x} = 82.5$ $\overline{x} = 48.75$ $\sigma = 7.3$ $\sigma = 8.35$	02
	A o	Which of two sets is more consistent?	
	Ans	For Set I $C.V = \frac{\sigma}{x} \times 100$	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 2019 EXAMINATION

Subject Name: Basic Mathematics <u>Model Answer</u> Subject Code: 22103

Q. No.	Sub Q. N.	Answers	Marking Scheme
1.	g)	$C.V. = \frac{7.3}{82.5} \times 100 = 8.848$	1/2
		82.5 For Set II	
		$C.V. = \frac{\sigma}{=} \times 100$	
		<i>x</i> 8.35	
		$=\frac{8.35}{48.75}\times100 = 17.128$	1/2
		C.V. of Set $I < C.V$. of Set II	1
		:. Set I is more consistent.	_
2.		Attempt any THREE of the following:	12
	a)	Solve the equations by Cramer's rule:	04
		x + y + z = 3, x - y + z = 1, x + y - 2z = 0	
		1 1 1	
	Ans	$D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -2 \end{vmatrix} = 1(2-1)-1(-2-1)+1(1+1) = 6$	1
		$D_{x} = \begin{vmatrix} 3 & 1 & 1 \\ 1 & -1 & 1 \\ 0 & 1 & -2 \end{vmatrix} = 3(2-1)-1(-2-0)+1(1+0) = 6$	
		$\therefore x = \frac{D_x}{D} = \frac{6}{6} = 1$	1
		$D_{y} = \begin{vmatrix} 1 & 3 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & -2 \end{vmatrix} = 1(-2-0) - 3(-2-1) + 1(0-1) = 6$	
		$\therefore y = \frac{D_y}{D} = \frac{6}{6} = 1$	
		D = 0	1
		$\begin{vmatrix} 1 & 1 & 3 \\ D & -1 & -1 & 1 \\ -1 & 0 & -1 & -1 \end{vmatrix}$	
		$D_z = \begin{vmatrix} 1 & 1 & 3 \\ 1 & -1 & 1 \\ 1 & 1 & 0 \end{vmatrix} = 1(0-1)-1(0-1)+3(1+1)=6$	
		$\therefore z = \frac{D_z}{D} = \frac{6}{6} = 1$	1
		D 6	

Put x = 1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 2019 EXAMINATION

Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code:	22103
Q. No.	Sub Q.N.	Answers	Marking Scheme
2.	b) Ans	If $A = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix}$, find $A^2 - 8A$. $A^2 = AA = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix} \begin{bmatrix} 4 + 16 + 16 & 8 + 8 + 16 & 8 + 16 + 8 \\ 8 + 8 + 16 & 16 + 4 + 16 & 16 + 8 + 8 \\ 8 + 16 + 8 & 16 + 8 + 8 & 16 + 16 + 4 \end{bmatrix}$ $A^2 = \begin{bmatrix} 36 & 32 & 32 \\ 32 & 36 & 32 \\ 32 & 32 & 36 \end{bmatrix}$ $A^2 = \begin{bmatrix} 36 & 32 & 32 \\ 32 & 36 & 32 \\ 32 & 32 & 36 \end{bmatrix}$ $3BA = 8 \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix} = \begin{bmatrix} 16 & 32 & 32 \\ 32 & 16 & 32 \\ 32 & 32 & 16 \end{bmatrix}$ $\therefore A^2 - 8A = \begin{bmatrix} 36 & 32 & 32 \\ 32 & 36 & 32 \\ 32 & 32 & 36 \end{bmatrix} - \begin{bmatrix} 16 & 32 & 32 \\ 32 & 16 & 32 \\ 32 & 32 & 32 \end{bmatrix} = \begin{bmatrix} 20 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 20 \end{bmatrix}$	1 1 1
	c) Ans	Resolve into partial fractions $\frac{3x+2}{(x+1)(x^2-1)}$ $\frac{3x+2}{(x+1)^2(x-1)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x-1}$ $\therefore 3x+2 = A(x-1)(x+1) + B(x-1) + C(x+1)^2$ Put $x = -1$ $\therefore -3+2 = B(-1-1)$	04 ½

1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

Sub	ject Nan	ne: Basic Mathematics <u>Model Answer</u> Subject Code: 2	22103
Q. No.	Sub Q. N.	Answers	Marking Scheme
2.	c)	$\therefore 3 + 2 = C(1+1)^2$ $\boxed{C = \frac{5}{4}}$	1
		Put $x = 0, B = \frac{1}{2}, C = \frac{5}{4}$	
		$\therefore 2 = A(0-1)(0+1) + \frac{1}{2}(0-1) + \frac{5}{4}(0+1)^2$	
		$\boxed{A = -\frac{5}{4}}$	1
		$\therefore \frac{3x+2}{(x+1)^2(x-1)} = \frac{-\frac{5}{4}}{x+1} + \frac{\frac{1}{2}}{(x+1)^2} + \frac{\frac{5}{4}}{x-1}$	1/2
	d)	A metal strip having sides $17 \times 7 \times 5$ cm is melted down and minted into coins each of diameter 1.4 cm and thickness 0.08 cm. Assuming no wastage, how many coins can be minted?	04
	Ans	Metal strip has dimensions $17 \times 7 \times 5$ cm	
		Volume of metal strip= $17 \times 7 \times 5 = 595$ cm ³	1/2
		Coin has diameter 1.4 cm : radius = $0.7 cm$	
		Thickness of $coin = 0.08$ cm	1/2
		Volume of one coin $=\pi r^2 h$	
		$=\pi \left(0.7\right) ^{2}\left(0.08\right)$	
		=0.123	1
		Number of coin minted = $\frac{\text{Volume of metal strip}}{\text{Volume of one coin}}$	
		volume of one com	
		$=\frac{595}{0.123}$	
		$=4837.4 \approx 4837$	2
3.		Attempt any THREE of the following:	12
		Prove that	
	a)	$\tan 70^{0} - \tan 50^{0} - \tan 20^{0} = \tan 70^{0} \tan 50^{0} \tan 20^{0}$	04
	Ans	$\therefore 70^{0} - 20^{0} = 50^{0}$	

Subject Name: Basic Mathematics	Model Answer	Subject Code:	22103
Subject Name: Basic Mathematics	<u> Model Answer</u>	Subject Code:	

Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	a)	$\tan\left(70^{0} - 20^{0}\right) = \tan 50^{0}$	1
		$\frac{\tan 70^{0} - \tan 20^{0}}{1 + \tan 70^{0} \tan 20^{0}} = \tan 50^{0}$	1
		$\tan 70^{0} - \tan 20^{0} = \tan 50^{0} \left(1 + \tan 70^{0} \tan 20^{0} \right)$	1/2
		$\tan 70^{0} - \tan 20^{0} = \tan 50^{0} + \tan 50^{0} \tan 70^{0} \tan 20^{0}$	1/2
		$\tan 70^{0} - \tan 50^{0} - \tan 20^{0} = \tan 70^{0} \tan 50^{0} \tan 20^{0}$	1
	b)	Prove that $\frac{1+\sin\theta-\cos\theta}{1+\sin\theta+\cos\theta} = \tan\left(\frac{\theta}{2}\right)$	04
	Ans	$ \frac{1+\sin\theta-\cos\theta}{1+\sin\theta+\cos\theta} \\ = \frac{1-\cos\theta+\sin\theta}{1+\cos\theta+\sin\theta} $	
		$= \frac{2\sin^2\frac{\theta}{2} + 2\sin\frac{\theta}{2} \times \cos\frac{\theta}{2}}{2\cos^2\frac{\theta}{2} + 2\sin\frac{\theta}{2} \times \cos\frac{\theta}{2}}$	2
		$= \frac{2\sin\frac{\theta}{2}\left(\sin\frac{\theta}{2} + \cos\frac{\theta}{2}\right)}{2\cos\frac{\theta}{2}\left(\sin\frac{\theta}{2} + \cos\frac{\theta}{2}\right)}$	1
		$=\tan\left(\frac{\theta}{2}\right)$	1
	c)	Prove that $\frac{\cos 2A + 2\cos 4A + \cos 6A}{\cos A + 2\cos 3A + \cos 5A} = \cos A - \sin A \tan 3A$	04
	Ans	$\frac{\cos 2A + 2\cos 4A + \cos 6A}{\cos A + 2\cos 3A + \cos 5A} = \frac{2\cos 4A + \cos 2A + \cos 6A}{2\cos 3A + \cos A + \cos 5A}$	
		$= \frac{2\cos 4A + 2\cos\left(\frac{2A+6A}{2}\right)\cos\left(\frac{2A-6A}{2}\right)}{2\cos 3A + 2\cos\left(\frac{A+5A}{2}\right)\cos\left(\frac{A-5A}{2}\right)}$	1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 2019 EXAMINATION

Subject Name: Basic Mathematics Model Answer Subject Code: 22103

Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	c)	$\frac{\cos 2A + 2\cos 4A + \cos 6A}{\cos A + 2\cos 3A + \cos 5A} = \frac{2\cos 4A + 2\cos 4A \cdot \cos(-2A)}{2\cos 3A + 2\cos 3A \cdot \cos(-2A)}$	<i>y</i> ₂
		$= \frac{2\cos 4A \left(1 + \cos\left(-2A\right)\right)}{2\cos 3A \left(1 + \cos\left(-2A\right)\right)}$ $= \cos 4A$	1/2
		$= \frac{\cos 4A}{\cos 3A}$ $= \frac{\cos (3A + A)}{\cos 3A}$	1/2
		$= \frac{\cos 3A \cos A - \sin 3A \sin A}{\cos 3A}$ $= \frac{\cos 3A \cos A}{\cos A} - \frac{\sin 3A \sin A}{\cos A}$	1/2
		$\cos 3A \qquad \cos 3A$ $= \cos A - \tan 3A \sin A$ $= R.H.S$	1
	d) Ans	Prove that $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ} = \frac{3}{16}$ $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}$	04
		$= \frac{\sqrt{3}}{2} \left[\sin 40^{0} \sin 80^{0} \right] \sin 20^{0}$ $= \frac{\sqrt{3}}{4} \left[\cos 40^{0} - \cos 120^{0} \right] \sin 20^{0}$	1/2
		$= \frac{\sqrt{3}}{4} \left[\cos 40^{\circ} - \cos \left(180^{\circ} - 60 \right) \right] \sin 20^{\circ}$	½ ½
		$= \frac{\sqrt{3}}{4} \left[\cos 40^{\circ} + \cos 60^{\circ} \right] \sin 20^{\circ}$	1/2
		$= \frac{\sqrt{3}}{4} \left[\cos 40^{\circ} + \cos 60^{\circ} \right] \sin 20^{\circ}$ $= \frac{\sqrt{3}}{4} \left[\cos 40^{\circ} + \frac{1}{2} \right] \sin 20^{\circ}$	1/2
		$=\frac{\sqrt{3}}{4}\left[\cos 40^{0}\sin 20^{0}+\frac{1}{2}\sin 20^{0}\right]$	1/2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 2019 EXAMINATION

Subject Name: Basic Mathematics <u>Model Answer</u> Subject Code: 22103

	•	·	22105
Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	d)	$= \frac{\sqrt{3}}{8} \left[\sin 60^{0} + \sin \left(-20^{0} \right) + \sin 20^{0} \right]$ $= \frac{\sqrt{3}}{8} \left[\sin 60^{0} + \sin 20^{0} - \sin 20^{0} \right]$ $= \frac{\sqrt{3}}{8} \frac{\sqrt{3}}{2} = \frac{3}{16}$	½ ½ ½
4.		Attempt any THREE of the following:	12
	a)	Find the adjoint of matrix $A = \begin{bmatrix} 2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	04
	Ans	$A = \begin{bmatrix} 2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	
		Matrix of minors = $\begin{bmatrix} \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} & \begin{vmatrix} 3 & 2 \\ 1 & 1 \end{vmatrix} & \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} \\ \begin{vmatrix} 5 & 3 \\ 2 & 1 \end{vmatrix} & \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} & \begin{vmatrix} 2 & 5 \\ 1 & 2 \end{vmatrix} \\ \begin{vmatrix} 5 & 3 \\ 1 & 2 \end{vmatrix} & \begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix} & \begin{vmatrix} 2 & 5 \\ 3 & 1 \end{vmatrix} \end{bmatrix}$	
		$= \begin{bmatrix} -3 & 1 & 5 \\ -1 & -1 & -1 \\ 7 & -5 & -13 \end{bmatrix}$	2
		Matrix of cofactors = $\begin{bmatrix} -3 & -1 & 5 \\ 1 & -1 & 1 \\ 7 & 5 & -13 \end{bmatrix}$	1
		$AdjA = \begin{bmatrix} -3 & 1 & 7 \\ -1 & -1 & 5 \\ 5 & 1 & -13 \end{bmatrix}$	1

Subject Name: Basic Mathematics	Model Answer	Subject Code: 22103
---------------------------------	--------------	---------------------

04
1/2
1
1

Subject Name: Basic Mathematics	Model Answer	Subject Code:	22103	
---------------------------------	---------------------	---------------	-------	--

Q. No.	Sub Q.N.	Answers	Marking Scheme
4.		$\therefore B = \frac{1}{3}$ $\therefore \frac{x}{(x+1)(x^2 - x + 1)} = \frac{-\frac{1}{3}}{x+1} + \frac{\frac{1}{3}x + \frac{1}{3}}{x^2 - x + 1}$	1
		$\frac{x^4}{x^3+1} = x - \frac{-\frac{1}{3}}{x+1} + \frac{\frac{1}{3}x + \frac{1}{3}}{x^2 - x + 1}$	1/2
	c)	Prove that $\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \pi$	04
	Ans	$\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3)$	
		$= \pi + \tan^{-1} \left(\frac{1+2}{1-(1)(2)} \right) + \tan^{-1} (3)$	1
		$=\pi + \tan^{-1}(-3) + \tan^{-1}(3)$	1
		$=\pi-\tan^{-1}(3)+\tan^{-1}(3)$	1
		$=\pi$	1
	d)	Prove that $\sin^{-1}\left(\frac{3}{5}\right) - \sin^{-1}\left(\frac{8}{17}\right) = \cos^{-1}\left(\frac{84}{85}\right)$	04
	Ans	Let $\sin^{-1}\left(\frac{3}{5}\right) = A$	
		$\therefore \sin A = \frac{3}{5}$	
		$\therefore \cos^2 A = 1 - \sin^2 A$	
		$=1-\frac{9}{25}$ $=\frac{16}{25}$ $\therefore \cos A = \frac{4}{5}$	
		$\therefore \cos A = \frac{4}{5}$	1

Subject Name: Basic Mathematics	Model Answer	Subject Code:	22103	
---------------------------------	--------------	---------------	-------	--

Q. No.	Sub Q.N.	Answers	Marking Scheme
4.		$\sin^{-1}\left(\frac{8}{17}\right) = B \therefore \sin B = \frac{8}{17}$	
		$\therefore \cos^2 B = 1 - \sin^2 B$	
		$=1-\frac{64}{289}$	
		$=\frac{225}{289}$	
		$\therefore \cos B = \frac{15}{17}$	1
		$\therefore \cos(A-B) = \cos A \cos B + \sin A \sin B$	
		$=\frac{4}{5}\times\frac{15}{17}+\frac{3}{5}\times\frac{8}{17}$	
		$\therefore \cos\left(A - B\right) = \frac{84}{85}$	1
		$\therefore A - B = \cos^{-1}\left(\frac{84}{85}\right)$	
		$\sin^{-1}\left(\frac{3}{5}\right) - \sin^{-1}\left(\frac{8}{17}\right) = \cos^{-1}\left(\frac{84}{85}\right)$	1
	e)	Without using calculator, Prove that	04
		$\sin 420^{\circ} \cos 390^{\circ} + \cos \left(-300^{\circ}\right) \sin \left(-330^{\circ}\right) = 1$	
	Ans	$\sin 420^{\circ} = \sin \left(90^{\circ} \times 4 + 60^{\circ} \right)$	
		$=\sin 60^{\circ} = \frac{\sqrt{3}}{2}$	1/2
		$\cos 390^0 = \cos \left(90^0 \times 4 + 30^0 \right)$	1/
		$=\cos 30^{\circ} = \frac{\sqrt{3}}{2}$	1/2
		$\cos\left(-300^{\circ}\right) = \cos\left(300^{\circ}\right)$	1/2
		$=\cos\left(90^{\circ}\times3+30^{\circ}\right)$	
		$= \sin 30^0 = \frac{1}{2}$	1/2

${\bf MAHARASHTRA\ STATE\ BOARD\ OF\ TECHNICAL\ EDUCATION}$

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 2019 EXAMINATION

Subject Name: Basic Mathematics <u>Model Answer</u> Subject Code: 22103

0 0.10	,000	inc. busic Muthernaties intouch Answer	22103
Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	e)	$\sin\left(-330^{\circ}\right) = -\sin\left(330^{\circ}\right)$	1/2
		$=-\sin(90^{\circ}\times3+60^{\circ})$	
		` '	1/2
		$=-(-\cos 60^{\circ})=\frac{1}{2}$	
		$\sin 420^{\circ} \cos 390^{\circ} + \cos \left(-300^{\circ}\right) \sin \left(-330^{\circ}\right)$	
		$= \left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)$	
		=1	1
5.		Attempt any TWO of the following:	12
	a)	Attempt the following:	06
	i)	Find the acute angle between the lines $y = 5x + 6$ and $y = x$.	03
	Ans	For $y = 5x + 6$: $5x - y + 6 = 0$	
		slope $m_1 = -\frac{a}{b} = -\frac{5}{-1} = 5$	1
		For $y = x : x - y = 0$	
		slope $m_2 = -\frac{a}{b} = -\frac{1}{-1} = 1$	1
		$\therefore \tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $	
		$= \left \frac{5-1}{1+5\times 1} \right $	
		$\therefore \tan \theta = \frac{2}{3}$	1
		$\therefore \theta = \tan^{-1}\left(\frac{2}{3}\right)$	
	ii)	Find the equation of the line passing through the point $(4,5)$ and perpendicular to the line	03
		7x - 5y = 420.	
	l		

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

(ISO/IDO 27001 2010 certifica)

Subject Name: Basic Mathematics		me: Basic Mathematics <u>Model Answer</u> Subject Code:	22103
Q. No.	Sub Q.N.	Answers	Marking Scheme
5.	a)ii)	Point = $(x_1, y_1) = (4,5)$	
	Ans	Slope of the line $7x - 5y = 420$ is,	
		$m = -\frac{a}{b} = -\frac{7}{-5} = \frac{7}{5}$	1
		b −5 5 ∴ Slope of the required line is,	_
		$m_1 = -\frac{1}{m} = \frac{-5}{7}$	1
		∴ equation is,	
		$y - y_1 = m_1 \left(x - x_1 \right)$	
		$\therefore y-5=\frac{-5}{7}(x-4)$	
		$\therefore 5x + 7y - 55 = 0$	1
	b)	Attempt the following:	06
	i)	Find the length of the perpendicular from the point $(2,3)$ on the line $4x-6y-3=0$.	03
	Ans	$p = \left \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right $ $= \left \frac{4(2) + (-6)(3) - 3}{\sqrt{(4)^2 + (-6)^2}} \right $	
		$= \left \frac{4(2) + (-6)(3) - 3}{\sqrt{(4)^2 + (-6)^2}} \right $	1
		$= \left \frac{8 - 18 - 3}{\sqrt{52}} \right $	
		$=\frac{13}{\sqrt{52}}$ or 1.803	2
	ii)	Find the equation of the line passing through $(1,7)$ and having slope 2 units.	03
	Ans	Point = $(x_1, y_1) = (1,7)$ & slope = 2	
		∴ Equation of line is,	
		$y - y_1 = m(x - x_1)$	1
		$\therefore y - 7 = 2(x - 1)$ $\therefore 2x - y + 5 = 0$	2
		$\dots \angle x = y + 3 - 0$	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 2019 EXAMINATION

22103 **Subject Code: Subject Name: Basic Mathematics Model Answer**

Q. No.	Sub Q.N.	Answers	Marking Scheme											
5.	c)	Attempt the following:	06											
	i)	A square grassy plot is of side 100 meters. It has a gravel path 10 meters wide all round it on												
		the inside. Find the area of the path.												
	Ans	Area of path = Area of grassy plot – Area of inner gravel path												
		$=(100)^2-(80)^2$												
		$=3600 \ sq.m.$												
	ii)	The volume of a sphere is $\frac{88}{21}$ cubic meters. Find its surface area.	03											
	11)													
	Ans	Volume of sphere = $\frac{4}{3}\pi r^3$												
		$\therefore \frac{4}{3}\pi r^3 = \frac{88}{21}$	1											
		$r^3 = \frac{88}{21} \times \frac{3}{4} \times \frac{7}{22}$												
		$r^3 = 1$	1											
		r=1 South the second of the												
		Surface area of sphere = $4\pi r^2$ = $4\pi (1)^2 = 4\pi$ sq.m.	1											
		$=4\pi \left(1\right) =4\pi \text{ sq.m.}$	1											
6.		Attempt any TWO of the following:	12											
	-)(:)	Find the mean deviation from mean of the following distribution:	03											
	a)(i)	This the mean deviation from mean of the following distribution.												
		C.I 0-10 10-20 20-30 30-40 40-50												
		f_i 5 8 15 16 6												

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 2019 EXAMINATION

Subject Name: Basic Mathematics Model Answer Subject Code: 22103

Q. No.	Sub Q.N.				Answe	ers			Marking Scheme
6.	a)(i) Ans	C.I.	f_i	x_i	$f_i x_i$	$d_i = x_i - \overline{x} $	$f_i d_i$	Í	
		C	71		$J_i x_i$		71-1		
		0-10	5	5	25	22	110		
		10-20	8	15	120	12	96		1
		20-30	15	25	375	2	30		_
		30-40	16	35	560	8	128		
		40-50	6	45	270	18	108		
			$\sum f_i = 50$		$\sum f_i x_i = 1350$		$\sum f_i d_i = 472$		
		Mean x =	$=\frac{\sum f_i x_i}{\sum f}$						
		$\therefore \bar{x} = \frac{135}{50}$							
		$\therefore \overline{x} = 27$)						1
			_						
		$M.D = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n$	$\frac{\sum f_i d_i}{f_i}$						
		∴ <i>M</i> . <i>D</i> =	472						
		∴ <i>M</i> . <i>D</i> . =	50						1
	ii)	Find ran	ge & coefficie	nt of ra	ange for the follow	ing data:			03
				C.I	10-19 20-29	30-39 40-49	50-59		
				f	15 25	13 17	10		

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 2019 EXAMINATION

Subject Name: Basic Mathematics

Model Answer

Subject Code: 22103

	,				-									,	1	
Q. No.	Sub Q.N.							Ansv	wers						Marking Scheme	
6.	ii)	C.	.I	9.5-19.5	19.5-2	9.5	29.5-39	9.5	39.5	-49.5	49.5-5	59.5				
		f	f	15	25		13		1	7	10				1	
	Ans														_	
		Range	e = I	-S												
		Tung		.5-9.5												
			=50												1	
					1 5											
		Coeff	Coefficient of range $=\frac{L-S}{L+S}$													
			$=\frac{59.5-9.5}{59.5+9.5}$													
					= 0.725										1	
	b)	Calcul	ate cta	andard dev	riation a	nd co-	efficie	nt of	varia	nce of 1	he foll	owing	table:		06	
	0)	Calcula	aic sta	ilidald dev	iation a	iiu co-	CITICIC	ant Or	varia	iicc or i	iic ion	ownig	tabic.			
					Mar	ks bel	ow	5	10	15	20	25				
					NT /	(C			1.0	20	20	1.6				
					No.01	f Stude	ents	6	16	28	38	46				
								1	<u> </u>							
	Ans			21			1				a		- 2	1 2		
	1 1115		(Class	X_i	f_i		$f_i x_i$		$d_i = \frac{\lambda}{2}$	$\frac{a_i - a}{h}$	$f_i d_i$	d_i^2	$f_i d_i^2$		
				0-5	2.5	6		15		-2	<u> </u>	-12	4	24		
			Ę	5-10	7.5	10		75		-1		-10	1	10		
			1	.0-15	12.5	12		150		0		0	0	0	3	
			1	5-20	17.5	10		175		1		10	1	10	3	
			2	20-25	22.5	8		180		2		16	4	32		
						46		595				4		76		
		L														
		Mean	$\frac{1}{x} = \frac{\sum_{x=1}^{\infty} x}{x}$	$\frac{\sum f_i x_i}{N} = \frac{5}{2}$	$\frac{95}{16} = 12.$.935									1	
				$\sqrt{\frac{\sum f_i d_i^2}{N}}$	$(\sum f_i)$	$(d_i)^2$										
		S.D. =	$=\sigma = 0$	$\sqrt{\frac{2^{j+1}}{N}}$	$-\left \frac{2^{j}}{N}\right $	· / ×	h									
				γ	(-,)										

${\bf MAHARASHTRA\ STATE\ BOARD\ OF\ TECHNICAL\ EDUCATION}$

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Sub	ject Na	me: Basic Ma	thematics		<u>Model A</u>	<u>nswer</u>		Subject Code	22103	}				
Q. No.	Sub Q. N.		Answers											
6.	b)	$S.D. = \sigma = $	$\overline{\frac{76}{46} - \left(\frac{4}{46}\right)^2}$	×5										
		$S.D. = \sigma = 6$.412						1					
		Coefficient of	of variance =	$=\frac{\sigma}{x}\times 100$										
			=	$=\frac{6.412}{12.935}\times10^{-1}$	00									
			=	49.57					1					
					<u>0</u>	<u>)R</u>								
			Class Interval	X_i	f_i	$f_i x_i$	x_i^2	$f_i x_i^2$						
			0-5	2.5	6	15	6.25	37.5						
			5-10	7.5	10	75	56.25	562.5						
			10-15	12.5	12	150	156.25	1875	3					
			15-20	17.5	10	175	306.25	3062.5						
			20-25	22.5	8	180	506.25	4050						
					46	595		9587.5						
		Mean $\bar{x} = \sum_{x=0}^{\infty} M$ S.D. = $\sigma = \sqrt{S}$ S.D. = $\sigma = \sqrt{S}$	1, 19						1					
		S.D. = σ = $$	$\frac{9587.5}{46}$ - (12)	2.935) ²										

Matrix of minors = $\begin{bmatrix} -11 & -27 & 20 \\ -9 & -9 & 0 \\ 4 & 0 & -4 \end{bmatrix}$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 2019 EXAMINATION

Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code:	22103
Q. No.	Sub Q. N.	Answers	Marking Scheme
6.	b)	S.D. = σ = 6.412	1
		Coefficient of variance = $\frac{\sigma}{x} \times 100$	
		$=\frac{6.412}{12.935} \times 100$	
		= 49.57	1
	c)	Solve the following equations by matrix inversion method: x + y + z = 6 , $3x - y + 3z = 10$, $5x + 5y - 4z = 3$	06
	Ans	Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & -1 & 3 \\ 5 & 5 & -4 \end{bmatrix}$, $B = \begin{bmatrix} 6 \\ 10 \\ 3 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$	
		$\begin{vmatrix} A = \begin{vmatrix} 1 & 1 & 1 \\ 3 & -1 & 3 \\ 5 & 5 & -4 \end{vmatrix}$	
		A = 1(4-15)-1(-12-15)+1(15+5)	
		$\therefore A = 36 \neq 0$	1
		A^{-1} exists $\begin{bmatrix} -1 & 3 & 3 & 3 & 3 & -1 \end{bmatrix}$	
		Matrix of minors = $\begin{bmatrix} \begin{vmatrix} -1 & 3 & & 3 & 3 & & 3 & -1 \\ 5 & -4 & & 5 & -4 & & 5 & 5 \end{vmatrix} \\ \begin{vmatrix} 1 & 1 & & 1 & & 1 & 1 \\ 5 & -4 & & 5 & -4 & & 5 & 5 \end{vmatrix} \\ \begin{vmatrix} 1 & 1 & & 1 & & 1 & 1 \\ -1 & 3 & & 3 & 3 & & 3 & -1 \end{vmatrix} \end{bmatrix}$	

1

${\bf MAHARASHTRA\ STATE\ BOARD\ OF\ TECHNICAL\ EDUCATION}$

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

(150/1250 27001 2020 007011000)

Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code: 2	22103
Q. No.	Sub Q. N.	Answers	Marking Scheme
6.	c)	Matrix of cofactors = $\begin{bmatrix} -11 & 27 & 20 \\ 9 & -9 & 0 \\ 4 & 0 & -4 \end{bmatrix}$	1/2
		$Adj.A = \begin{bmatrix} -11 & 9 & 4 \\ 27 & -9 & 0 \\ 20 & 0 & -4 \end{bmatrix}$	1/2
		$A^{-1} = \frac{1}{ A } \operatorname{Adj} A$	
		$A^{-1} = \frac{1}{36} \begin{bmatrix} -11 & 9 & 4 \\ 27 & -9 & 0 \\ 20 & 0 & -4 \end{bmatrix}$	1
		$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{36} \begin{bmatrix} -66 + 90 + 12 \\ 162 - 90 + 0 \\ 120 + 0 - 12 \end{bmatrix}$	1
		$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{36} \begin{bmatrix} 36 \\ 72 \\ 108 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	
		$\therefore x = 1, y = 2, z = 3.$	1
		<u>Important Note</u>	
		In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.	