What Is Claimed Is:

1	1. A method for detecting a failure sequence or other undesirable						
2	system behavior in a computer system and subsequently taking a corresponding						
3	remedial action, comprising:						
4	receiving instrumentation signals from the computer system while the						
5	computer system is operating;						
6	determining from the instrumentation signals if the computer system is in						
7	a failure sequence that is likely to lead to undesirable system behavior, such as a						
8	system crash;						
9	wherein the determination involves considering predetermined						
10	multivariate correlations between multiple instrumentation signals and a failure						
11	sequence that is likely to lead to undesirable system behavior; and						
12	if the computer system is in a failure sequence that is likely to lead to						
13	undesirable system behavior, taking a remedial action.						
1	2. The method of claim 1, wherein taking the remedial action						
2	involves generating an alarm.						
1	3. The method of claim 2, wherein generating the alarm involves						
2	communicating the alarm to a system administrator so that the system						
3	administrator can take the remedial action.						
1	4. The method of claim 3, wherein communicating the alarm to the						
2	system administrator involves communicating information specifying the nature						
3	of the failure sequence to the system administrator.						

1	5.	The method of claim 1, wherein taking the remedial action can						
2	involve: killir	ng processes, blocking creation of new processes, or throwing away						
3	work, until the system is no longer in a failure sequence that is likely to lead to							
4	undesirable system behavior.							
1	6.	The method of claim 1, wherein determining if the computer						
2	system is in a	failure sequence involves:						
3	deriving estimated signals for a number of instrumentation signals,							
4	wherein each estimated signal is derived from correlations with other							
5	instrumentation signals; and							
6	comparing an actual signal with an estimated signal for a number of							
7	instrumentation signal to determine whether the computer system is in a failure							
8	sequence.							
1	7.	The method of claim 6, wherein comparing an actual signal with an						
2	estimated signal involves using sequential detection methods to detect changes in							
3	a relationship	between the actual signal and the estimated signal.						
1	8.	The method of claim 7, wherein the sequential detection methods						
2	include the Sequential Probability Ratio Test (SPRT).							
1	9.	The method of claim 6, wherein prior to deriving the estimated						
2	signal, the method further comprises determining correlations between							
3	instrumentation signals in the computer system, whereby the correlations can							
4	subsequently be used to generate estimated signals.							

2	involves:						
3	deliberately overloading the computer system during a test mode to						
4	produce undesirable system behavior, such as a system crash; and						
5	identifying multivariate correlations between multiple instrumentation						
6	signals and the system crash.						
1	11. The method of claim 9, wherein determining the correlations						
2	involves using a non-linear, non-parametric regression technique to determine the						
3	correlations.						
1	12. The method of claim 11, wherein the non-linear, non-parametric						
2	regression technique can include a multivariate state estimation technique.						
2	regression technique can menuce a munivariate state estimation technique.						
1	13. The method of claim 1, wherein the instrumentation signals can						
2	include:						
3	signals associated with internal performance parameters maintained by						
4	software within the computer system;						
5	signals associated with physical performance parameters measured						
6	through sensors the computer system; and						
7	signals associated with canary performance parameters for synthetic user						
8	transactions, which are periodically generated for performance measuring						
9	purposes.						
1	14. A computer-readable storage medium storing instructions that						
2	when executed by a computer cause the computer to perform a method for						
3	detecting a failure sequence or other undesirable system behavior in a computer						

The method of claim 9, wherein determining the correlations

10.

4	system and subsequently taking a corresponding remedial action, the method					
5	comprising:					
6	receiving instrumentation signals from the computer system while the					
7	computer system is operating;					
8	determining from the instrumentation signals if the computer system is in					
9	a failure sequence that is likely to lead to undesirable system behavior, such as a					
10	system crash;					
11	wherein the determination involves considering predetermined					
12	multivariate correlations between multiple instrumentation signals and a failure					
13	sequence that is likely to lead to undesirable system behavior; and					
14	if the computer system is in a failure sequence that is likely to lead to					
15	undesirable system behavior, taking a remedial action.					
1	15. The computer-readable storage medium of claim 14, wherein					
2	taking the remedial action involves generating an alarm.					
1	16. The computer-readable storage medium of claim 15, wherein					
2	generating the alarm involves communicating the alarm to a system administrator					
3	so that the system administrator can take the remedial action.					
1	17. The computer-readable storage medium of claim 16, wherein					
2	communicating the alarm to the system administrator involves communicating					
3	information specifying the nature of the failure sequence to the system					
4	administrator.					
1	18. The computer-readable storage medium of claim 16, wherein					

taking the remedial action can involve: killing processes, blocking creation of new

2

^					1	. * 1	. 1		•	•	•	C '.
٦.	processes,	α r	throwing	awav	work	unfil	thes	vstem	18 no	longer	ın a	tailure
J	processes,	O.	uno wing	umuj	******	MIILLI	tile 5	Jocom	10 110	1011501	111 C	iallarc

- 4 sequence that is likely to lead to undesirable system behavior.
- 1 19. The computer-readable storage medium of claim 14, wherein
- 2 determining if the computer system is in a failure sequence involves:
- deriving estimated signals for a number of instrumentation signals,
- 4 wherein each estimated signal is derived from correlations with other
- 5 instrumentation signals; and
- 6 comparing an actual signal with an estimated signal for a number of
- 7 instrumentation signal to determine whether the computer system is in a failure
- 8 sequence.
- 1 20. The computer-readable storage medium of claim 19, wherein
- 2 comparing an actual signal with an estimated signal involves using sequential
- 3 detection methods to detect changes in a relationship between the actual signal
- 4 and the estimated signal.
- 1 21. The computer-readable storage medium of claim 20, wherein the
- 2 sequential detection methods include the Sequential Probability Ratio Test
- 3 (SPRT).
- 1 22. The computer-readable storage medium of claim 19, wherein prior
- 2 to deriving the estimated signal, the method further comprises determining
- 3 correlations between instrumentation signals in the computer system, whereby the
- 4 correlations can subsequently be used to generate estimated signals.

1	23. The computer-readable storage medium of claim 22, wherein						
2	determining the correlations involves:						
3	deliberately overloading the computer system during a test mode to						
4	produce undesirable system behavior, such as a system crash; and						
5	identifying multivariate correlations between multiple instrumentation						
6	signals and the system crash.						
1	24. The computer-readable storage medium of claim 22, wherein						
2	determining the correlations involves using a non-linear, non-parametric						
3	regression technique to determine the correlations.						
1	25. The computer-readable storage medium of claim 24, wherein the						
2	non-linear, non-parametric regression technique can include a multivariate state						
3	estimation technique.						
1	26. The computer-readable storage medium of claim 14, wherein the						
2	instrumentation signals can include:						
3	signals associated with internal performance parameters maintained by						
4	software within the computer system;						
5	signals associated with physical performance parameters measured						
6	through sensors the computer system; and						
7	signals associated with canary performance parameters for synthetic user						
8	transactions, which are periodically generated for performance measuring						
9	purposes.						

1	28. An apparatus that detects a failure sequence or other undesirable						
2	system behavior in a computer system and subsequently takes a corresponding						
3	remedial action, comprising:						
4	a monitoring mechanism configured to monitor instrumentation signals						
5	from the computer system while the computer system is operating;						
6	a determination mechanism configured to determine from the						
7	instrumentation signals if the computer system is in a failure sequence that is						
8	likely to lead to undesirable system behavior, such as a system crash;						
9	wherein the determination mechanism is based on multivariate						
10	correlations between multiple instrumentation signals and a failure sequence that						
11	is likely to lead to undesirable system behavior; and						
12	a remediation mechanism that is configured to take a remedial action if the						
13	computer system is in a failure sequence that is likely to lead to undesirable						
14	system behavior.						
15							