

哈爾濱工業大學

第3章 随机变量及其分布

第17讲 随机变量函数的分布

问题 若已知分子运动的速率X的分布,如何求分子运动的动能 $Y = \frac{1}{2}mX^2$ (m为分子的质量)分布?

对随机变量的函数Y=g(X),已知随机变量X的分布,如何求随机变量Y的分布?

离散型随机变量函数的分布

例1 已知X的分布列为

求 $Y = X^2$ 的分布列.

解

P	0.1	0.2	0.3	0.4
X	-1	0	1	2
Y	1	0	1	4

连续型随机变量函数的分布

例2 设 $X\sim U(0,3)$, 求Y=2X+3 的概率密度.

$$F(X) = \begin{cases} 1/3, & 0 < x < 3, \\ 0, & \text{其他.} \end{cases}$$
 $\Rightarrow P(0 < X < 3) = 1.$ 从而 $P(3 < Y < 9) = 1.$

当
$$y \le 3$$
时, $F_{Y}(y) = P(Y \le y) = 0 \Rightarrow f_{Y}(y) = F'_{Y}(y) = 0;$

当
$$y \ge 9$$
时, $F_Y(y) = P(Y \le y) = 1 \Rightarrow f_Y(y) = F_Y'(y) = 0$;

当3 < y < 9时, Y的分布函数为

$$F_Y(y) = P(Y \le y) = P(2X + 3 \le y) = P(X \le (y - 3)/2)$$
$$= F_Y((y - 3)/2)$$

$$f_Y(y) = F_Y'(y) = f_X\left(\frac{y-3}{2}\right) \cdot \frac{1}{2} = \frac{1}{6}.$$

$$f_{Y}(y) = \begin{cases} \frac{1}{6}, & 3 < y < 9, \\ 0, & 其它. \end{cases}$$

连续型随机变量函数概率密度的两种求法

■ 分布函数法

已知X的概率密度 $f_X(x)$,分布函数 $F_X(x)$,Y=g(X),

求Y概率密度 $f_{y}(y)$,分两步:

(1) 先求Y的分布函数 $F_{Y}(y)$

$$F_Y(y) = P(Y \le y) = P\{g(X) \le y\} \xrightarrow{\text{解出}X}$$
表示成 X 的分布函数;

(2)求导数: $f_{V}(y) = F'_{V}(y)$.

例3 设随机变量X的概率密度为

$$f_X(x) = \begin{cases} 3x^2/2, -1 < x < 1, \\ 0, & \text{ 其他.} \end{cases}$$
 $\forall Y = X^2$ 的概率密度.

解 由已知 $\hat{P}(-1 < X < 1) = 1$, 得P(0 < Y < 1) = 1.

当
$$y \le 0$$
时, $F_Y(y) = P(Y \le y) = 0 \Rightarrow f_Y(y) = F_Y'(y) = 0$;

当0<y<1时,Y的分布函数为(解法1)

$$F_Y(y) = P(Y \le y) = P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = F_X(\sqrt{y}) - F_X(-\sqrt{y}),$$

$$f_Y(y) = F_Y'(y) = f_X(\sqrt{y}) \frac{1}{2\sqrt{y}} + f_X(-\sqrt{y}) \frac{1}{2\sqrt{y}} = \frac{3}{2}\sqrt{y}.$$

30 < v < 1时,Y的分布函数为(解法2)

$$F_Y(y) = P(Y \le y) = P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y})$$

$$= \int_{-\sqrt{y}}^{\sqrt{y}} f_X(x) dx = \int_{-\sqrt{y}}^{\sqrt{y}} \frac{3}{2} x^2 dx = \left(\frac{1}{2} x^3\right)_{-\sqrt{y}}^{\sqrt{y}} = y^{3/2}.$$

$$f_Y(y) = F_Y'(y) = y^{3/2} = \frac{3}{2}\sqrt{y}$$
.
$$f_X(x) = \begin{cases} 3x^2/2, -1 < x < 1, \\ 0, & \text{i.e.} \end{cases}$$

$$f_Y(y) = \begin{cases} \frac{3}{2}\sqrt{y}, & 0 < y < 1, \\ 0, & 其他. \end{cases}$$

连续型随机变量函数概率密度的两种求法

- 公式法
- 定理1设X的概率密度 $f_X(x)$, y = g(x)为(a,b)上严格单调可微函数 $(-\infty \le a < b \le +\infty)$,则Y = g(X)的概率密度为

$$f_Y(y) = \begin{cases} f_X(h(y)) | h'(y) |, A < y < B, \\ 0,$$
其他.

其中h(y)为g(x)的反函数且 $A = \min\{g(a), g(b)\},$ $B = \max\{g(a), g(b)\}.$

例4设 $X \sim N(\mu, \sigma^2)$,求Y = aX + b(a, b是常数, $a \neq 0$) 概率密度.

解
$$y = ax + b, (a \neq 0)$$
在 $(-\infty, +\infty)$ 严格单调可微,
反函数为 $x = h(y) = (y - b)/a, h'(y) = 1/a.$

$$f_Y(y) = f_X(h(y))|h'(y)|$$

$$= f_X(\frac{y - b}{a})\frac{1}{|a|}$$

$$= \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{((y - b)/a - \mu)^2}{2\sigma^2}} \cdot \frac{1}{|a|} = \frac{1}{|a|\sigma\sqrt{2\pi}}e^{-\frac{[y - (a\mu + b)]^2}{2a^2\sigma^2}}.$$
即, $Y \sim N(a\mu + b, a^2\sigma^2).$

例如,
$$X \sim N(1,2)$$
,则 $Y = 3X - 4 \sim N(-1,18)$ 。
$$a\mu + b = 3 \cdot 1 + (-4) = -1$$
$$a^2\sigma^2 = 3^2 \cdot 2 = 18$$

连续型随机变量函数概率密度的两种求法

- 公式法
- 上 定理2 设X的概率密度 $f_X(x)$, y = g(x)在不相交的区间 I_1 , I_2 , L 上逐段严格单调,其反函数分别为 $h_1(y)$, $h_2(y)$, L ,且 $h_1'(y)$, $h_2'(y)$, L 均连续,则Y = g(X)的概率密度为

$$f_{Y}(y) = \sum_{i=1}^{n} f_{X}(h_{i}(y)) |h'_{i}(y)|$$

练习

1. 设
$$X$$
的密度 $f_X(x) = \begin{cases} x/8, & 0 < x < 4 \\ 0, & 其它 \end{cases}$, 求 $Y = 2X + 8$ 的密度 $f_Y(y)$.

解 设Y的分布函数为 $F_Y(y)$, 则 $P(0 < X < 4) = 1 \Rightarrow P(8 < Y < 16) = 1$ 当 $y \le 8$, $F_Y(y) = 0$; 当 $y \ge 16$, $F_Y(y) = 1$; 当8 < y < 16时,

$$F_{Y}(y) = P(Y \le y) = P(2X + 8 \le y) = P(X \le \frac{y - 8}{2}) = F_{X}\left(\frac{y - 8}{2}\right)$$

$$f_{Y}(y) = F'_{Y}(y) = f_{X}(\frac{y - 8}{2}) \cdot \frac{1}{2} = \begin{cases} \frac{y - 8}{32}, & 8 < y < 16, \\ 0, & 其他. \end{cases}$$

2. 设随机变量X的概率密度为 $f(x) = \begin{cases} \frac{2x}{\pi^2}, & 0 < x < \pi, \\ 0, & \text{其它} \end{cases}$

解由于

$$P(0 < X < \pi) = 1 \Rightarrow P(0 < Y \le 1) = 1$$

所以

$$\stackrel{\text{def}}{=} y \le 0, F_Y(y) = 0, \Rightarrow f_Y(y) = 0;$$

 $\stackrel{\text{def}}{=} y > 1, F_Y(y) = 1, \Rightarrow f_Y(y) = 0;$

当
$$0 < y \le 1$$
时, $F_Y(y) = P(Y \le y) = P(\sin X \le y)$

$$= P(0 \le X \le \arcsin y) + P(\pi - \arcsin y \le X \le \pi)$$

$$= F_{y}(\arcsin y) - F_{y}(0) + F_{y}(\pi) - F_{y}(\pi - \arcsin y)$$

$$\Rightarrow f_Y(y) = f_X(\arcsin y) \frac{1}{\sqrt{1 - y^2}} + f_X(\pi - \arcsin y) \frac{1}{\sqrt{1 - y^2}}$$

$$f(x) = \begin{cases} \frac{2x}{\pi^2}, & 0 < x < \pi, \\ 0, & 其它 \end{cases}$$

$$f(x) = \begin{cases} \frac{2x}{\pi^2}, & 0 < x < \pi, \\ 0, & \text{#$\dot{\mathbb{C}}$} \end{cases}$$

$$f_Y(y) = \begin{cases} \frac{2}{\pi\sqrt{1-y^2}}, & 0 < y < 1, \\ 0, & \text{#$\dot{\mathbb{C}}$} \end{cases}$$

方法2 当
$$0 < y \le 1$$
时, $F_Y(y) = P(Y \le y) = P(\sin X \le y)$

$$= P(0 \le X \le \arcsin y) + P(\pi - \arcsin y \le X \le \pi)$$

$$= \int_0^{\arcsin y} \frac{2x}{\pi^2} dx + \int_{\pi - \arcsin y}^{\pi} \frac{2x}{\pi^2} dx$$

$$= \left(\frac{\arcsin y}{\pi}\right)^2 + 1 - \left(\frac{\pi - \arcsin y}{\pi}\right)^2$$

$$f_Y(y) = \begin{cases} \frac{2}{\pi \sqrt{1 - y^2}}, & 0 < y < 1, \\ 0, & 其它$$

3. 已知随机变量X的分布函数F(x)是严格单调的连续函数,证明Y=F(X)服从[0,1]上的均匀分布.

证明 设Y的分布函数是G(y),

由于 $0 \le y \le 1$,故

当y < 0时,G(y) = 0,当y > 1时,G(y) = 1,

又由于X的分布函数F是严格递增的连续函数,其反函数 F^{-1} 存在且严格递增.

当 $0 \le y \le 1$ 时,

$$G(y) = P(Y \le y) = P(F(X) \le y)) = P(X \le F^{-1}(y))$$

$$= F(F^{-1}(y)) = y$$
即Y的分布函数是 $G(y) = \begin{cases} 0, & y < 0 \\ y, & 0 \le y \le 1 \\ 1, & y > 1 \end{cases}$
求导得Y的密度函数
$$g(y) = \begin{cases} 1, & 0 \le y \le 1 \\ 0, & \text{其它} \end{cases}$$

可见, Y 服从[0, 1]上的均匀分布.

本例的结论在计算机模拟中有重要的应用

例如, 想得到具有密度函数为

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & x \le 0 \end{cases}, \lambda > 0$$
 参数为 λ 的 指数分布

的随机数应如何做呢?

由于 当 $x \ge 0$ 时, $F(x) = 1 - e^{-\lambda x}$ 是严格单调的连续函数 .

根据前面的结论,Y=F(X)服从[0,1]上的均匀分布.

于是得到产生指数分布的随机数的方法

练习题

设随机变量的概率密度为
$$f(x) = \begin{cases} \frac{1}{4}x^2 & 0 < x < 3 \\ 0 & \text{其他} \end{cases}$$
,令随机变量 $Y = \begin{cases} 2 & x \le 1 \\ x & 1 < x < 2 \\ 1 & x \ge 2 \end{cases}$

$$\text{http://blog.csdn.net/}$$

- 求Y的分布函数
- (2) 求概率P(X≤Y)

谢 谢!