Metrics

It is extremely important to use **quantitative metrics** for evaluating a machine learning model

- Until now, we relied on the cost function value for regression and classification
- Other metrics can be used to better evaluate and understand the model

For classification

✓ Accuracy/Precision/Recall/F1-score, ROC curves,...

For regression

✓ Normalized RMSE, Normalized Mean Absolute Error (NMAE),...

Accuracy

Accuracy is a measure of **how close** a given set of guessing from our model are closed to their true value.

$$Accuracy = \frac{\text{\# Correct classifications}}{\text{\# All classifications}}$$

- If a classifier make 10 predictions and 9 of them are correct, the accuracy is 90%.
- Accuracy is a measure of how well a binary classifier correctly identifies or excludes a condition.
- > It's the proportion of correct predictions among the total number of cases examined.

Confusion Matrix

Classification case: metrics for skewed classes

<u>Disease dichotomic classification example</u>

Train logistic regression model h(x), with y = 1 if disease, y = 0 otherwise.

Find that you got 1% error on test set (99% correct diagnoses)

Only 0.5% of patients **actually have** disease

The y = 1 class has very few samples with respect to the y = 0 class

If I use a classifier that **always classifies** the observations to the **0 class**, I get 99.5% of accuracy!!

For skewed classes, the accuracy metric can be deceptive

Precision and recall

Suppose that y = 1 in presence of a **rare class** that we want to detect

Precision (How much we are precise in the detection)

Of all patients where we classified y = 1, what fraction actually has the disease?

$$\frac{\text{True Positive}}{\text{\# Estimated Positive}} = \frac{\text{True Positive}}{\text{True Positive} + \text{False Positive}}$$

Recall (How much we are good at detecting)

Of all patients that actually have the disease, what fraction did we correctly detect as having the disease?

$$\frac{\text{True Positive}}{\text{# Actual Positive}} = \frac{\text{True Positive}}{\text{True Positive} + \text{False Negative}}$$

Confusion matrix

Actual class

Estiamted class

1 (p)		0 (n)		
1(Y)	True positive (TP)	False positive (FP)		
0 (N)	False negative (FN)	True negative (TN)		

Trading off precision and recall

Logistic regression: $0 \le s(\boldsymbol{\varphi}^{\mathsf{T}}\boldsymbol{\theta}) \le 1$

- Classify 1 if $s(\varphi^{\mathsf{T}}\theta) \ge 0.5$ Classify 0 if $s(\varphi^{\mathsf{T}}\theta) < 0.5$ These thresholds can be different from 0.5!

At different thresholds, correspond different confusion matrices!

be different from 0.5!

Suppose we want to classify y = 1 (disease) only if very confident

Increase threshold → Higher precision, lower recall

Suppose we want to avoid missing too many cases of disease (avoid false negatives)

Decrease threshold → Higher recall, lower precision

Precision/Recall

F1-score

It is usually better to compare models by means of one number only. The F1-score can be used to combine precision and recall

	Precision(P)	Recall (R)	Average	F ₁ Score	
Algorithm 1	0.5	0.4	0.45	0.444	The best is Algorithm 1
Algorithm 2	0.7	0.1	0.4	0.175	
Algorithm 3	0.02	1.0	0.51	0.0392	
Algorithm 3 classifies always 1			Average sa that Algorit	ys not corre thm 3 is the bo	ectly est

Average =
$$\frac{P + R}{2}$$
 F_1 score = $2\frac{P \cdot R}{P + R}$

•
$$P = 0$$
 or $R = 0 \Rightarrow F_1$ score = 0

•
$$P = 1$$
 and $R = 1 \Rightarrow F_1$ score = 1

Summaries of the confusion matrix

Different metrics can be computed from the confusion matrix, depending on the class of

interest (https://en.wikipedia.org/wiki/Precision_and_recall)

		True condition				
	Total population	Condition positive	Condition negative	Prevalence = $\frac{\sum \text{Condition positive}}{\sum \text{Total population}}$ Accuracy (ACC) $\frac{\sum \text{True positive} + \sum \text{True}}{\sum \text{Total population}}$		
Predicted	Predicted condition positive	True positive, Power	False positive, Type I error	Z Truo positivo		
condition	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection = $\frac{\sum \text{True positive}}{\sum \text{Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds ratio F ₁ score =	
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate $(TNR) = \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = $\frac{FNR}{TNR}$	$(DOR) = \frac{LR+}{LR-}$ $\frac{\frac{1}{Recall} + \frac{1}{Precision}}{2}$	

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

Actual class\Predicted class	C ₁	¬ C ₁	
C_1	True Positives (TP)	False Negatives (FN)	
¬ C ₁	False Positives (FP)	True Negatives (TN)	

Example of Confusion Matrix:

Actual class\Predicted	buy_computer	buy_computer	Total
class	= yes	= no	
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

- Given m classes, an entry, $CM_{i,j}$ in a confusion matrix indicates # of tuples in class i that were labeled by the classifier as class j
- May have extra rows/columns to provide totals

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	Ρ'	N'	All

• Classifier Accuracy, or recognition rate: percentage of test set tuples that are correctly classified

$$Accuracy = (TP + TN)/AII$$

• Error rate: 1 – accuracy, or Error rate = (FP + FN)/All

Class Imbalance Problem:

- One class may be rare, e.g. fraud, or HIV-positive
- Significant majority of the negative class and minority of the positive class
- Sensitivity: True Positive recognition rate
 - Sensitivity = TP/P
- Specificity: True Negative recognition rate
 - Specificity = TN/N

Classifier Evaluation Metrics: Example

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.40 (accuracy)

$$Recall = 90/300 = 30.00\%$$