

Uma Certificação em Coq do Algoritmo W Monádico

Rafael Castro

rafaelcgs10@gmail.com

Departamento de Ciência da Computação Centro de Ciências e Tecnológicas Universidade do Estado de Santa Catarina

22 de Agosto de 2019

- Introdução
- Fundamentos
- Certificação do Algoritmo W

Introdução - Algoritmo para Inferência de Tipos

- O algoritmo W é um algoritmo para a inferência de tipos no sistema Damas-Milner.
 Uma das bases para a inferência em Haskell e OCaml.
- *Idealmente* um algoritmo de inferência deve *representar* o que o seu sistema de tipos define.
- Formalmente isso é Soundness e Completeness.
 Provados por Damas em seu PhD.
- Essas propriedades são diretamente refletidas nas implementações?

Introdução - Provas mecanizadas

- O uso de assistentes de provas na pesquisa de linguagens de programação.
- Aproximam formalização e implementação.
- Reduzem o trabalho da verificação da prova.
- PoplMark Challenge e Principles of Programming Languages (POPL)

Introdução - O que é este trabalho?

Introdução - O que é este trabalho?

Uma Certificação em Coq do Algoritmo W Monádico

Introdução - O que é este trabalho?

Uma Certificação em Coq do Algoritmo W Monádico

- Uma completa certificação de uma implementação monádica do algoritmo W no assistentes de provas Coq.
- Certificação do algoritmo de unificação.
- Uso da Hoare State Monad (HSM) para certificar o código monádico.

Introdução - Objetivos específicos

- Uma implementação certificada do algoritmo de unificação: consistência, completude e terminação.
- Modificar a Hoare State Monad para lidar com o efeito de exceção necessário no algoritmo W e avaliar as qualidades dessa técnica.
- Provar a consistência e a completude do algoritmo W monádico.

Fundamentos - Damas-Milner e algoritmo W

- Damas-Milner: polimorfismo via let: forma restrita de polimorfismo.
- O algoritmo W é consistente e completo em relação as regras de Damas-Milner.
- Consistência (Soundness): O que o algoritmo W infere pode ser demostrado pelas regras de Damas-Milner.
- Completude (*Completeness*): Se o sistema Damas-Milner mostra que e tem o tipo τ , então o algoritmo infere para e o tipo τ' , de maneira que $\tau = \mathbb{R}(\tau')$ para alguma substituição \mathbb{R} .

Fundamentos - Trabalhos relacionados

- [Dubois and Ménissier-Morain, 1999] forneceram provas em Coq de consistência e completude do algoritmo W. As propriedades da unificação foram tomadas como axiomas e binding de variáveis é resolvido com de Bruijn indices.
- [Naraschewski and Nipkow, 1999] também apresentaram provas de consistência e completude do algoritmo W, mas em Isabelle/HOL.
 As propriedades da unificação também foram assumidas como axiomas e de Bruijn indices também foi utilizado.
- [Kothari and Caldwell, 2009] relataram um resultado parcial na certificação em Coq da extensão polimórfica do algoritmo de Wand.
- [Tan et al., 2015] verificaram a inferência de tipos de CakeML, uma linguagem baseada em SML (Standard ML) cujo compilador tem um backend completamente verificado [Kiam Tan et al., 2019]. As provas de consistência e completude da inferência de tipos foram feitas no assistente de provas HOL4.

Fundamentos - Hoare State Monad

- Hoare State Monad (HSM): apresentada por [Swierstra, 2009]
 Uma variante da usual mônada de estados.
- Verificação de programas com efeitos de estado.
- Um tipo HoareState p a q: : a pré-condição, o tipo do valor de retorno e a pós-condição.

Figura: A Mônada de Estado de Hoare.

Fundamentos - Hoare Exception-State Monad

O algoritmo W tem dois tipos de efeitos: estado e exceção.

Program Definition HoareState (B:Prop) (pre:Pre) (a:Type) (post:Post a) : Type :=

 Hoare Exception-State Monad (HESM): embute-se o tipo sum na definição de HoareState.

Figura: A Mônada de Estado-Exceção de Hoare.

Certificação do algoritmo W

Certificação do algoritmo W - Unificação I

- O algoritmo de unificação [Robinson, 1965] é parte fundamental do algoritmo W.
- Modifica-se a certificação da unificação realizada por [Ribeiro and Camarão, 2016]:
 - A operação da substituição é de reformulada para ser não-incremental
 - O algoritmo é reescrito para unificar somente dois tipos, ao invés de uma lista de tipos.
- A unificação não é recursão estrutural. A prova de terminação é feita por uma relação bem-fundada sobre uma ordenação lexicográfica.
- Essas modificações resultaram em algumas alterações não triviais na prova de terminação.

Certificação do algoritmo W - Unificação II

- Os tipos (monomórficos) são definidos em Coq como tipos indutivos, onde os identificadores são números naturais.
- A substituição de tipos é definida em Coq como uma lista de duplas de identificadores de tipo e tipos.
 Acompanhado de uma operação de aplicação da substituição.

Certificação do algoritmo W - Damas-Milner em Coq I

- O trabalho de [Dubois and Ménissier-Morain, 1999] é a principal referência desta formalização.
- Termos e tipos da linguagem de Damas-Milner são definidos em Cog como tipos indutivos.
- A linguagem dos tipos é divida em duas:
 - Tipos monomórficos.
 - Tipos polimórficos: possuem um construtor a mais para representar variáveis quantificadas.

Certificação do algoritmo W - Damas-Milner em Coq II

- Contextos s\(\tilde{a}\) representados como listas de duplas de identificadores e tipos polim\(\tilde{o}\) ricos.
- As regras de tipagem do sistema Damas-Milner são utilizadas na versão syntax-directed, pelo o tipo indutivo has_type.
- Essas modificações resultaram em algumas alterações não triviais na prova de terminação.
 - Árvores de provas tem um único formato para cada termo lambda
 - Quantificação e instanciação estão embutidas, respectivamente, nas regras para variáveis e lets.

Certificação do algoritmo W - Instanciação de tipos

- Tipos polimórficos são instanciados para tipos monomórficos por meio de uma operação de substituição especial chamada inst_subst.
- inst_subst é apenas uma lista de tipos monomórficos, ao invés de uma lista de associatividade.
- O número *n* na variável quantificada associada com o tipo encontrado na *n*-ésima posição em inst_subst.

Certificação do algoritmo W - Generalização de tipos

A problemática da generalização

- α e β são duas variáveis de tipo sintaticamente distintas.
- Não ocorrem livres no contexto considerado.
- Os tipos $\alpha \to \alpha$ and $\beta \to \beta$ são quantificados, respectivamente, para $\forall \alpha.\alpha \to \alpha$ e $\forall \beta.\beta \to \beta$.
- Sintaticamente diferentes, mas representam exatamente o mesmo conjunto de tipos.

Certificação do algoritmo W - Generalização de tipos

A problemática da generalização

- α e β são duas variáveis de tipo sintaticamente distintas.
- Não ocorrem livres no contexto considerado.
- Os tipos $\alpha \to \alpha$ and $\beta \to \beta$ são quantificados, respectivamente, para $\forall \alpha.\alpha \to \alpha$ e $\forall \beta.\beta \to \beta$.
- Sintaticamente diferentes, mas representam exatamente o mesmo conjunto de tipos.
- Binding de variáveis costuma dificultar provas. Utiliza-se de Bruijn indices para lidar com as variáveis quantificadas e evitar lidar com equivalência α .
- A função de gen_ty quantifica as variáveis de tipo são quantificados linearmente: se var n é a m-ésima variável de tipo, então essa é convertida em sc_gen m.

Certificação do algoritmo W - A algoritmo W monádico

- O algoritmo W foi implementado de forma monádica com a HESM.
- A certificação é dada pela assinatura com tipos dependentes:

```
Program Fixpoint W (e:term) (G:ctx) {struct e} :
Infer (fun i => new_tv_ctx G i) (ty * substitution)
   (fun i x f => i <= f /\ new_tv_subst (snd x) f /\ new_tv_ty (fst x) f /\
   new_tv_ctx (apply_subst_ctx (snd x) G) f /\
   has_type (apply_subst_ctx ((snd x)) G) e (fst x) /\
   completeness e G (fst x) ((snd x)) i) :=</pre>
```


Certificação do algoritmo W - Prova de consistência

- Enunciado por has_type sobre o resultado do algoritmo W.
- Trivial para a maioria dos casos:
 - O caso da aplicação: requer o lema da estabilidade da substituição.
 - O caso do termo let: requer vários lemas e definições auxiliares, incluindo sobre listas disjuntas¹, sub-listas e substituições de renomeação.

¹Cujo predicado chama-se are_disjoints

Certificação do algoritmo W - Substituição de renomeação

- A substituição de renomeação é uma substituição tal que:
 - Cada variável no domínio (id) mapeia para uma variável (id).
 - O domínio e a imagem da substituição são disjuntos.
 - Duas distintas variáveis no domínio têm diferentes imagens.
- Definido pelo tipo ren_subst, implementado como uma lista de associatividade entre identificadores.
- Condições são formalizadas no tipo indutivo: is_rename_subst.
- A prova do caso let² requer a demostração da existência de uma substituição de renomeação em especial: o domínio é uma lista de variáveis 1 e que não mapeia para as listas de variáveis 11 e 12.

²Para a prova de consistência do algoritmo W e do lema da estabilidade da tipagem sobre a substituição

Certificação do algoritmo W - Estabilidade da substituição

- O lema da estabilidade da substituição é uma propriedade clássica em sistemas de tipos.
- Se é verdade que $\Gamma \vdash \mathbf{e} : \tau$, então para qualquer substituição \mathbb{S} tem-se $\mathbb{S}\Gamma \vdash \mathbf{e} : \mathbb{S}\tau$.
- Casos monomórficos são fáceis.
- O caso polimórfico do let_ht requer uma prova sobre a comutação de uma generalização de tipo (de algum tau) com uma substituição de tipo s.
 - Condição: a substituição s não pode estar relacionada com as variáveis a serem quantificadas tau
- Computa-se uma substituição rho que renomeia as variáveis de tipo em tau que devem ser generalizadas em novas variáveis de tipos que não ocorrem na substituição s e não são livres no contexto considerado.

Certificação do algoritmo W - Estabilidade da substituição

- O lema da estabilidade da substituição é uma propriedade clássica em sistemas de tipos.
- Se é verdade que $\Gamma \vdash \mathbf{e} : \tau$, então para qualquer substituição \mathbb{S} tem-se $\mathbb{S}\Gamma \vdash \mathbf{e} : \mathbb{S}\tau$.
- Casos monomórficos são fáceis.
- O caso polimórfico do let_ht requer uma prova sobre a comutação de uma generalização de tipo (de algum tau) com uma substituição de tipo s.
 - Condição: condição: a substituição s não pode estar relacionada com as variáveis a serem quantificadas tau
- Computa-se uma substituição rho que renomeia as variáveis de tipo em tau que devem ser generalizadas em novas variáveis de tipos que não ocorrem na substituição s e não são livres no contexto considerado.

Certificação do algoritmo W - Definição de completude

Dados Γ e e, seja Γ' uma instância de Γ e σ um scheme tal que

$$\Gamma' \vdash \mathbf{e} : \sigma$$
,

então

- **1** $W(\Gamma, e)$ termina com sucesso.
- **2** Se $W(\Gamma, \mathbf{e}) = (\mathbb{S}, \tau)$ então, para alguma substituição \mathbb{R} ,

$$\Gamma' = \mathbb{RS}\Gamma \in \mathbb{R}\mathbf{gen}(\mathbb{S}\Gamma, \tau) \geq \sigma.$$

A reformulação de completude é:

```
Definition completeness (e:term) (G:ctx) (tau:ty) (s:substitution) (st:id) :=
 forall (tau':ty) (phi:substitution),
 has_type (apply_subst_ctx phi G) e tau' ->
 exists s', tau' = apply_subst s' tau /\
  (forall x:id, x < st ->
                apply_subst phi (var x) = apply_subst s' (apply_subst s (var x))).
```


Certificação do algoritmo W - Prova de completude

- A HESM é útil nesta prova, pois permite raciocinar sobre o estado do contador.
- É necessário apresentar (computar) quem é a substituição s'.
- O caso da aplicação se utiliza do fato da unificação computada ser a mais geral.
- A maior dificuldade novamente é o caso do termo let, que requer raciocínio sobre a criação de novas variáveis de tipo e a relação de mais geral entre tipos.

Certificação do algoritmo W - Novas variáveis de tipo

- A existência de novas variáveis de tipo é tomada como garantida numa prova com papel e caneta, mas deve ser demostrada numa prova mecanizada.
- É suficiente mostrar que o atual estado na mônada é maior que todos os números das variáveis de livres no contexto atual.
- A relação é definida para tipos monomórficos (new_tv_ty),
 para schemes (new_tv_schm), para contextos (new_tv_ctx)
 e para substituições (new_tv_subst).
- Diversos lemas sobre essa relação foram necessários.
- A assinatura do algoritmo de unificação garante que o mesmo não cria novas variáveis de tipo.
- A assinatura de tipos do algoritmo W garante que o estado é sempre novo em relação ao resultado do algoritmo.

Certificação do algoritmo W - Relação mais geral

- A relação mais geral (≥) é definida formalmente no Damas-Milner.
- Aqui defini-se de forma mais estrita pelo tipo
 is_schm_instance: se um scheme σ₁ é mais geral que outro
 σ₂, então toda instância de σ₂ também é uma instância de σ₁
- Essa relação é estendida para contextos.
- Diversos lemas sobre essas relações foram necessários, especial:
 - "Tipagem em um contexto mais geral": se é possível construir uma prova de Γ₂ ⊢ e : τ, então também é possível construir uma prova de Γ₁ ⊢ e : τ, onde Γ₁ é mais geral que Γ₂.

Certificação do algoritmo W - Análise da prova

- A HESM é um tipo dependente: o programa, cujo tipo é a sua especificação, e a sua prova são desenvolvidos na mesma etapa.
- Program permite que elementos da prova sejam postergados como obrigações de provas e a escrita do programa seja feita como em tipos simples, evitando casamentos de padrão dependentes.
- As informações presentes no contexto são similares as suposições feitas na prova com papel e caneta do algoritmo W [Damas, 1984]
- Evitou-se diversos lemas auxiliares deselegantes relacionados ao estado do contador e lemas que são hipóteses de indução.

Conclusão de la Conclusão de l

- Algumas modificações não triviais no certificação do algoritmo de unificação apresentado por [Ribeiro and Camarão, 2016].
- Modificou-se a Hoare State Monad para lidar com exceções.
- Apresentou-se uma certificação completa em Coq do algoritmo, cujo código pode ser extraído e executado.
- Uso da HESM para a certificação de um algoritmo de inferência de tipos.

Dificuldades

- A certificação de algoritmos de inferência de tipos requer um grande corpo de lemas e definições.
- Binding de variáveis é difícil de lidar.
- Os casos polimórficos são os mais complicados.

Trabalhos futuros

- Não há certificação do algoritmo de Wand (inferência por solução de restrições).
- Certificação da inferência de tipos em uma linguagem de escala industrial.
- Verificar propriedades do caso de exceção com a HESM.
 Ex: Caso a inferência falhe, o retorno poderia ser um dado com as informações do erro e uma prova de que o termo não é tipável.

References I

Dubois, C. and Ménissier-Morain, V. (1999).

Certification of a Type Inference Tool for ML: Damas-Milner within Coq.

Journal of Automated Reasoning, 23(3-4):319-346.

Kiam Tan, Y., Myreen, M. O., Kumar, R., Fox, A., Owens, S., and Norrish, M. (2019).

The Verified CakeML Compiler Backend.

Journal of Functional Programming, 29.

References II

Kothari, S. and Caldwell, J. L. (2009).

Toward a machine-certified correctness proof of Wand's type reconstruction algorithm.

Naraschewski, W. and Nipkow, T. (1999).

Type Inference Verified: Algorithm script W sign in Isabelle/HOL.

Journal of Automated Reasoning, 23(3-4):299-318.

Ribeiro, R. and Camarão, C. (2016).

A mechanized textbook proof of a type unification algorithm.

In Cornélio, M. and Roscoe, B., editors, *Formal Methods: Foundations and Applications*, Cham.

References III

Robinson, J. A. (1965).

A machine-oriented logic based on the resolution principle.

J. ACM, 12(1):23-41.

Swierstra, W. (2009).

The Hoare State Monad.

Technology, pages 440–451.

Tan, Y. K., Owens, S., and Kumar, R. (2015).

A verified type system for CakeML.

pages 1–12.