

COMPRESOR TORNILLO

Alumno: Carlos Aguilar Pinto

Asignatura: ICM557-3

Fecha: 09/11/2020

Profesores: Cristóbal Galleguillos Ketterer

Tomas Herrera Muñoz

Contenido

INTRODUCCIÓN.	II
OBJETIVOS.	III
PROCEDIMIENTO DEL TRABAJO	IV
DATOS Y FORMULAS A USAR	IV
TABLA VALORES CALCULADOS.	
DESARROLLO.	1
DESCRIBA UTILIZANDO UN ESQUEMA DEL COMPRESOR Y SU OPERACIÓN. Esquema representativo.	
Gráficos	III
Datos del fabricante. ¿Los valores están en el rango que les corresponde?	<i>IV</i>
¿Qué comentario surge de lo anterior? PRP	V
¿Qué significa el punto de roció? Calcule el contenido de humedad del aire que entra y que sale del compresor	
CONCLUSIÓN.	VI
ANEXO.	VII
BIBLIOGRAFÍA	IX

Introducción.

En el presente informe se hablará sobre el trabajo que realiza el compresor de tornillo y como varían sus valoren a medida que varia la presión de descarga.

Objetivos.

- Analizar el comportamiento del compresor de tornillo como máquina de una instalación industrial.
- Determinar la capacidad a distintas presiones.
- Comparar los cálculos con los datos del fabricante.

Procedimiento del trabajo

Poner en marcha la instalación, programando el compresor a una presión de 7 [bar].

Cerrar a descarga del estanque de almacenamiento.

Descargar parcialmente el estanque y observar cómo actúan los sistemas automáticos.

Programar el compresor a una presión mínima de 5,5 [bar] y regular el caudal de descarga para que se mantenga a esa presión con el máximo caudal posible.

Medir:

- Presión de descarga, [bar].
- Velocidad del compresor, [rpm].
- Temperatura ambiente, [°C].
- Temperatura de descarga del compresor, [°C].
- Temperatura de PRP secador, [°C].
- Temperatura del estanque de baja presión, [°C].
- Presión en el estanque de baja presión, [cmca].
- Corriente eléctrica, [A].
- Humedad relativa, [%]

Se repiten las mediciones para las presiones 6, 7, 8 y 9 [bar].

La presión atmosférica, [mm_{Hq}] se mide al comienzo del ensayo.

Datos y formulas a usar

Capacidad:

Estanque baja presión

$$V = 8,62 * \alpha * S * Ta \sqrt{\frac{H}{T * Pa}}$$

Donde:

V	Capacidad, caudal de aire libre [m³/h]
α =0,600	Coeficiente de caudal de diafragma
S	Sección del orificio del diafragma en [cm²], el diámetro del
	orificio es de 22 [mm]
Та	Temperatura absoluta de aspiración del compresor [K]
Т	Temperatura absoluta del estanque de baja presión [K]
Н	Presión en el manómetro diferencial [cmagua]
Pa	Presión barométrica [cm _{agua}]

				COMPR	COMPRESOR DE TORNILLO	ORNILLO				
177	0	Temp	4 V	dmaL	Punto	Temp.	Pres.		7	Pres.
์ •	veloc.	Amb	nuill. AiliD.	Desc.	Rocío	EBP	EBP	Cornente	Caudai	Atm
	n	t _{amb}	$ m H_{amb}$	$\mathfrak{t}_{\mathrm{desc}}$	PRP	t _{EBP}	Δh	I	0	$\mathbf{P}_{ m atm}$
[]	[rpm]	[°C]	%	$[J_{\bullet}]$	[°C]	[°C]	$[\mathrm{mm}_{\mathrm{ca}}]$	[A]	[%]	[g-Hutu]
	4315	18	59,4	23	4	20	476	17	86	759,5
	4350	19	6′85	23	4	20	484	16	100	759,5
	4350	18	9′85	22	4	21	464	17	100	759,5
	4176	18	6′85	9/	4	21,5	406	17	100	759,5
	3984	19	6′85	<i>LL</i>	4	21	348	17	100	759,5

Tabla valores calculados.

P desc.	Cau	ıdal	Velocidad	
Pd	(2	n	
[bar]	[m3/h]	[%]	[rpm]	
5,5	42,1818116	100	4315	
6	41,9012869	100	4350	
7	42,7890766	100	4350	
8	43,2954739	100	4176	
9	42,9360424	100	3984	

Ilustración 1: Tabla valores calculados.

Desarrollo.

Describa utilizando un esquema del compresor y su operación.

Ilustración 2: Esquema del compresor.

- 1) El aire ingresa a través de la rejilla, choca con la pared para luego pasar al punto 2.
- 2) La pared filtra las partículas mas grandes que se aspiran en el aire.
- 3) El ventilador, que hace circular el aire directamente hacia el motor.
- 4) El aire ingresa al compresor para la compresión, al mismo tiempo se refrigera el motor eléctrico ubicado directamente después del ventilador, y por ultimo se refrigera el tablero eléctrico también.
- 5) Filtro de aire.
- 6) Válvula reguladora del paso de aire.
- 7) Compresor en donde el aire circula por los tornillos y se comprime.
- 8) Válvula de retención y mínima presión.
- 9) Intercambiador de calor por donde circula el liquido refrigerante que se encarga de refrigerar el compresor.

Finalmente, el aire pasa al estanque de acumulación del compresor. Luego de 2 filtros mas a la salida del aire se incorpora el estanque de alta presión donde es media la presión de descarga.

De forma paralela el aceite que se separo del aire llega a un refrigerador de aceite que incluye un sistema de filtrado para eliminar las impurezas que se pudieron recoger en el trayecto, nuevamente una vez limpio es inyectado al tornillo para seguir su funcionamiento.

Esquema representativo.

Ilustración 3: Esquema representativo.

Gráficos.

Ilustración 4: Caudal vs Presión de carga.

Datos del fabricante.

	Presid		C	-:			Potencia instalada del			Peso (kg/lbs)	
TIPO DE	trabajo Work		Сара	cidad FAD* mír	ımax.		tor	sonoro**	Work	Place	WorkPlace	Full Feature
COMPRESOR	bar(e)	psig	l/s	m³/h	cfm	kW	cv	dB(A)	Montado sobre suelo	Montado sobre depósito	Montado sobre suelo	Montado sobre depósito
VERSIÓN a 50/60	Hz											
CAFVCD	5.5	80	6.1-15.2	22.0-54.7	13.4-33.4	5.5	7.5	62	275	335	318	378
	7.5	109	5.7-15.0	20.5-54.0	12.7-33.0	5.5	7.5	62	275	335	318	378
GA 5 VSD Copiar (Ctrl+C)	10	145	7.1-13.2	24.5-42.1	15.0-25.7	5.5	7.5	62	275	335	318	378
	13	188	8.9-10	32-36.0	18.3-22.0	5.5	7.5	62	275	335	318	378
	5.5	80	5.1-20.5	18.4-73.8	11.2-45.1	7.5	10	64	280	340	325	385
GA7VSD	7.5	109	7.3-20.3	26.2-73.1	15.4-44.7	7.5	10	64	280	340	325	385
GA / VSD	10	145	6.6-17.0	23.7-61.2	13.9-37.0	7.5	10	64	280	340	325	385
	13	188	5.9-13.5	21.2-48.6	12.9-30.4	7.5	10	64	280	340	325	385

Ilustración 5: Datos del fabricante.

Para poder comparar los valores es necesario normalizar nuestros valores ya que los datos del fabricante se refieren a aire FAD, según norma ISO 1217 (Temperatura de aire de entrada 20 °C, 68 °F. Presión absoluta de entrada 1 bar (14,5 psi). Humedad 0 [%]), como se muestra en la tabla siguiente:

-

P desc.	Velocidad	Caudal	Caudal normalizado	Valores mínimo fabricante	Valores máximo fabricante
Pd	n	Q			
[bar]	[rpm]	[m3/h]	[m3/h]	[m3/h]	[m3/h]
5,5	4315	42,1818116	42,5239584	18,4	73,8
6	4350	41,9012869	41,9012869	20,48	73,66
7	4350	42,7890766	42,7890766	25,68	73,31
8	4176	43,2954739	45,099452	21,22	71,196
9	3984	42,9360424	46,880468	23,7	66,436

Ilustración 6: Tabla normalizada para comparar valores.

¿Los valores están en el rango que les corresponde?

Comparando datos de ambas tablas podemos observar que los rangos obtenidos se cumplen y se mantiene dentro de los parámetros establecidos por el fabricante.

Se podría encontrar leves diferencias, pero siguen estando dentro de los parámetros que se pueden tolerar para el ensayo.

¿Qué comentario surge de lo anterior?

Las variaciones por lo que se puede ver comparando ambas tablas son mínimas, los valores se encuentran dentro del rango de funcionamiento dado por el fabricante.

Las leves diferencias se deben en mayor medida a la realización de la toma de mediciones, diferencias ambientales y factores humanos durante el ensayo, aun así, se considera una buena toma de muestras.

PRP

¿Qué significa el punto de roció?

La temperatura en la que el vapor-gas alcanza enfriándose a una presión constante y condensando en forma de agua líquida. Esta condensación del agua es un problema constante en las instalaciones de aire comprimido.

Calcule el contenido de humedad del aire que entra y que sale del compresor.

$$PR = \sqrt[8]{HR/100} * (110 + T) - 110$$

PR = temperatura pounto rocío

T = temperatura ambiente

$$w = \frac{0.622 * HR * Psat}{p - HR * Psat}$$

w = humedad absoluta

Los datos sobre los valores se obtendrán de la tabla A-4 mostrado en el anexo.

Presión descarga [bar]	HR entrada [%]	HR salida [%]	Psat entrada [Pa]	Psat salida [Pa]	Humedad absoluta entrada [Kg _{agua} /Kg _{aseco}]	Humedad absoluta salida [Kg _{agua} /Kg _{aseco}]
5,5	59,4	39,58758907	101258.35	233920	0,0089	0,00099
6	58,9	37,19813175	101258.36	233920	0,0086	0,00095
7	58,6	39,58758907	101258.37	250532	0,0086	0,0009
8	58,9	39,58758907	101258.38	258838	0,0086	0,0009
9	58,9	37,19813175	101258.39	250532	0,0086	0,00059

Ilustración 7:Tabla humedad.

Conclusión.

En el presente informe se concluyo el objetivo en su totalidad, se analizo el comportamiento del compresor y se comparo con los valores de funcionamiento dados por el fabricante.

Estos valores dieron una total concordancia con lo dado por que pudimos verificar el funcionamiento pleno en su rango de funcionamiento del compresor de tornillo.

Anexo.

914: Tablas de propiedades, figuras y diagramas (unidades su

TABLA A-4

Agua saturada. Tabla de temperaturas

	<i>-</i>		n específico),	Energia			Ental	oia.		Entropi	
	Pres.		m³/kg		kJ/	kg		kJ/k			kJ/kg ·	
Tem;		Líq. sat.,	Vapor sat.,	Líq.	_	Vapor	Líq.		Vapor	Líq.		Vapor
T°C	P _{sat} kPa			sat.,	Evap.,	5 8 50 5	sat.,	Evap.,		sat.,	Evap.	
0.0			v_{g}	Uf	u _{tg}	u_g	h_t	h _{fg}	h _g	Sf	Stg	Set.,
5	0.6117 0.8725		206.00	0.000	2374.9	2374.9	0.001					
10	1.2281		147.03	21.019	2360.8	2381.8						
15	1.7057		106.32	42.020	2346.6							
20			77.885	62.980	2332.5							8.8999
	2.3392		57.762	83.913	2318.4	2402.3			2528.3 2537.4			8.7803
25	3.1698		43.340	104.83	2304,3	2409.1		150505			8 3000	8.6661
30	4.2469	0.001004	32.879	125.73	2290.2	2415.9	104.83	2441.7		0.3672	8.1895	8.5567
35	5.6291	0.001006	25.205	146.63	2276.0	2413.9	125.74	2429.8	2555.6	0.4368		8.4520
40	7.3851	0.001008	19.515	167.53	2261.9	2429.4	146.64	2417.9	2564.6	0.5051	7.8466	8.3517
45	9.5953	0.001010	15.251	188.43	2247.7	2429.4	167.53	2406,0	2573.5	0.5724	7.6832	8.2556
50	12.352	0.001012	12,026				188.44	2394.0	2582,4	0.6386	7.5247	8.1633
55	15.763	0.001015	9.5639	209.33	2233.4	2442.7	209.34	2382.0	2591.3	0.7038	7 2710	8.0748
50	19,947	0.001017	7.6670	230.24	2219.1	2449.3	230.26	2369.8	2600.1	0.7680		7.9898
65	25.043	0.001020	6.1935	251.16	2204.7	2455.9	251.18	2357.7	2608.8	0.8313		7.9098
70	31.202	0.001023		272.09	2190.3	2462.4	272.12	2345.4	2617.5	0.8937	6.9360	
75			5.0396	293.04	2175.8	2468.9	293.07	2333.0	2626.1	0.9551		7.8296 7.7540
80	38.597	0.001026	4.1291	313.99	2161.3	2475.3	314.03					
85	47.416	0.001029	3.4053	334,97	2146.6	2481.6	335.02	2320.6 2308.0	2634.6	1.0158		7.6812
90	57.868	0.001032	2.8261	355.96	2131.9	2487.8	356.02		2643.0	1.0756	6.5355	7.6111
95	70.183	0.001036	2.3593	376,97	2117.0	2494.0	377.04	2295.3	2651.4	1.1346	6.4089	7.5435
	84.609	0.001040	1.9808	398.00	2102.0	2500.1	398.09	2282.5 2269.6	2659.6	1.1929	6.2853	7,4782
100	101.42	0.001043	1.6720	419.06	2087.0				2667.6	1.2504	6.1647	7.4151
105	120.90	0.001047	1.4186	440.15	2071.8	2506.0	419.17	2256.4	2675.6	1.3072	6.0470	7.3542
110	143.38	0.001052	1.2094	461.27	2056.4	2511.9	440.28	2243.1	2683.4	1.3634	5.9319	7.2952
115	169.18	0.001056	1.0360	482.42	2040.9	2517.7	461.42	2229.7	2691.1	1,4188	5.8193	7.2382
120	198.67	0.001060	0.89133	503.60	2025.3	2523.3	482.59	2216.0	2698.6	1.4737	5.7092	7.1829
125	232.23	0.001065	10			2528.9	503.81	2202.1	2706.0	1.5279	5.6013	7.1292
130	270.28	0.001065	0.77012	524.83	2009.5	2534.3	525.07	2188.1	2713.1	1.5816		
135	313.22	0.001075	0.66808	546.10	1993.4	2539.5	546.38	2173.7	2720.1	1.6346	5.4956	7.07/1
140	361.53	0.001075	0.58179	567.41	1977.3	2544.7	567.75	2159.1	2726.9	1.6872	5.3919 5.2901	
145	415.68	0.001085	0.50850	588.77	1960.9	2549.6	589.16	2144.3	2733.5	1.7392		6.9773
150			0.44600	610.19	1944.2	2554.4	610.64	2129.2	2739.8	1.7908		6.9294
155	476.16	0.001091	0.39248	631.66	1927.4	2559.1	632.18					6.8827
150	543.49	0.001096	0.34648	653.19	1910.3	2563.5	653.79	2113.8	2745.9	1.8418	4.9953	6.8371
165	618.23	0.001102	0.30680	674.79	1893.0	2567.8	675.47	2098.0	2751.8	1.8924	4.9002	6.7927
170	700.93	0.001108	0.27244	696.46	1875.4	2571.9	697.24	2082.0	2757.5	1.9426	4.8066	6.7492
	792.18	0.001114	0.24260	718.20	1857.5	2575.7	719.08	2065.6 2048.8	2762.8	1.9923	4.7143	6.7067
175	892.60	0.001121	0.21659	740.02	1839,4				2767.9	2.0417	4.6233	6.6650
180	1002.8	0.001127	0.19384	761.92	1000.0	2579.4	741.02	2031.7	2772.7	2.0906	4.5335	6.6242
185	1123.5	0.001134	0.17390	783.91	1820.9	2582.8		2014.2	2777.2	2.1392	4.4448	
190	1255.2	0.001141	0.175536	806.00	1802.1	2586.0	785.19	1996.2	2781.4		4.3572	6.5447
195	1398.8	0.001149	0.14089	828.18	1783.0	2589.0	807.43	1977.9	2785,3	2.2355	4.2705	6 5059
200	1554.9	0.001157	0.12721		1763.6	2591.7	829.78	1959.0	2788.8		4.1847	6.4678
		5.0	C.TE/57	850.46	1743.7	2594.2	852.26	1939 8	27920		4.2007	0.7070

www.FreeLibros.me

THE STATE OF THE S

Agua saturada. Tabla de temperaturas (conclusión)

			n específico, m³/kg	E	nergla in kJ/kg	0.000		Entalpi kJ/kg			Entropia, kJ/kg · k	
Temp., 7°C	Pres. sat., P _{sat} kPa	Liq. sat, v _f	Vapor sat., v _g	Liq. sat., u _f	Evap., u _{fg}	Vapor sat., u _g	Líq. sat., h,	Evap.,	Vapor sat., h _g	Líq. sat., s _í	Evap.,	Vapor sat., s _g
205 210 215 220 225	1724.3 1907.7 2105.9 2319.6 2549.7	0.001164 0.001173 0.001181 0.001190 0.001199	0.11508 0.10429 0.094680 0.086094 0.078405	872.86 895.38 918.02 940.79 963.70	1723.5 1702.9 1681.9 1660.5 1638.6	2596.4 2598.3 2599.9 2601.3 2602.3	897.61 920.50 943.55	1920.0 1899.7 1878.8 1857.4 1835.4	2794.8 2797.3 2799.3 2801.0 2802.2	2.3776 2.4245 2.4712 2.5176 2.5639	4.0154 3.9318 3.8489	6.3930 6.3563 6.3200 6.2840
230 235 240 245 250	2797.1 3062.6 3347.0 3651.2 3976.2	0.001209 0.001219 0.001229 0.001240 0.001252	0.071505 0.065300 0.059707 0.054656 0.050085	986.76 1010.0 1033.4 1056.9 1080.7	1616.1 1593,2 1569.8 1545.7 1521.1	2602.9 2603.2 2603.1 2602.7 2601.8		1812.8 1789.5 1765.5 1740.8 1715.3	2802.9 2803.2 2803.0 2802.2 2801.0	2.6100 2.6560 2.7018 2.7476 2.7933	3.6028 3.5216 3.4405	6.2128 6.1775 6.1424 6.1072
255 260 265 270 275	4322.9 4692.3 5085.3 5503.0 5946.4	0.001263 0.001276 0.001289 0.001303 0.001317	0.045941 0.042175 0.038748 0.035622 0.032767	1104.7 1128.8 1153.3 1177.9 1202.9	1495.8 1469.9 1443.2 1415.7 1387.4	2600.5 2598.7 2596.5 2593.7 2590.3	1110.1 1134.8 1159.8 1185.1 1210.7	1689.0 1661.8 1633.7 1604.6 1574.5	2799.1 2796.6 2793.5 2789.7 2785.2	2.8390 2.8847 2.9304 2.9762 3.0221	3.1169 3.0358	6.0369 6.0017 5.9662 5.9305 5.8944
280 285 290 295 300	6416.6 6914.6 7441.8 7999.0 8587.9	0.001333 0.001349 0.001366 0.001384 0.001404	0.030153 0.027756 0.025554 0.023528 0.021659	1228.2 1253.7 1279.7 1306.0 1332.7	1358.2 1328.1 1296.9 1264.5 1230.9	2586.4 2581.8 2576.5 2570.5 2563.6	1236.7 1263.1 1289.8 1317.1 1344.8	1543.2 1510.7 1476.9 1441.6 1404.8	2779.9 2773.7 2766.7 2758.7 2749.6	3.0681 3.1144 3.1608 3.2076 3.2548	2.7898 2.7066 2.6225 2.5374 2.4511	5.7834 5.7450
305 310 315 320 325	9209,4 9865.0 10,556 11,284 12,051	0.001425 0.001447 0.001472 0.001499 0.001528	0.019932 0.018333 0.016849 0.015470 0.014183	1360.0 1387.7 1416.1 1445.1 1475.0	1195.9 1159.3 1121.1 1080.9 1038.5	2555.8 2547.1 2537.2 2526.0 2513.4	1373.1 1402.0 1431.6 1462.0 1493.4	1366.3 1325.9 1283.4 1238.5 1191.0	2739.4 2727.9 2715.0 2700.6 2684.3	3.3024 3.3506 3.3994 3.4491 3.4998	2.3633 2.2737 2.1821 2.0881 1.9911	5.5816
330 335 340 345 350	12,858 13,707 14,601 15,541 16,529	0.001560 0.001597 0.001638 0.001685 0.001741	0.012979 0.011848 0.010783 0.009772 0.008806	1505.7 1537.5 1570.7 1605.5 1642.4	993.5 945.5 893:8 837.7 775.9	2499.2 2483.0 2464.5 2443.2 2418.3	1525.8 1559.4 1594.6 1631.7 1671.2	1140.3 1086.0 1027.4 963.4 892.7	2666.0 2645.4 2622.0 2595.1 2563.9	3.5516 3.6050 3.6602 3.7179 3.7788		5.3907 5.3358 5.2765
355 360 365 370 373.95	17,570 18,666 19,822 21,044 22,064	0.001808 0.001895 0.002015 0.002217 0.003106	0.007872 0.006950 0.006009 0.004953 0.003106	1682.2 1726.2 1777.2 1844.5 2015.7	706.4 625.7 526.4 385.6 0	2388.6 2351.9 2303.6 2230.1 2015.7	1714.0 1761.5 1817.2 1891.2 2084.3	812.9 720.1 605.5 443.1 0	2526.9 2481.6 2422.7 2334.3 2084.3	3.8442 3.9165 4.0004 4.1119 4.4070	1.2942 1.1373 0.9489 0.6890 0	5.1384 5.0537 4.9493

Fuente. Las tablas A-4 a A-8 fueron generadas utilizando el programa para resolver ecuaciones de ingeniería (EES) desarrollado por S. A. Klein y F. L. Alvarado, La rutina utilizada en los cálculos es la altamente precisa Steam_JAPWS, que incorpora la Formulación 1995 para las Propiedades Termodinámicas de la Sustancia Água Ordinaria para Uso Científico y General, editada por The International Association for the Properties of Water and Steam (IAPWS). Esta formulación de 1984 de Haar, Gallagher y Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), la cual está también disponible en EES como la rutina STEAM. La nueva formulación se base en las correlaciones de Saul y Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) con modificaciones para ajustarla a la Escala Internacional de Temperaturas de 1990. Las modificaciones están descritas por Wagner y Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993), Las propiedades del hielo están basadas en Hyland y Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 K a 473.15 K", ASHRAE Trans., Part 2A, Paper 2793, 1983.

www.FreeLibros.me

Bibliografía

"Termodinámica" yunus cengel 7ma edición.

Apuntes Profesor Ramiro Mege