Corso di laurea in Informatica - Università di Udine

CALCOLO DELLE PROBABILITÀ E STATISTICA

Sei esercizi – parte 2 – 25 gennaio 2021

(i frequentanti dell'a.a. 15/16 o precedenti omettono l'esercizio 6)

Nel seguito a, b, c sono, rispettivamente, la terza, la quarta, la quinta cifra del Tuo numero di matricola; ad esempio, matricola 142431 $\implies a = 2, b = 4, c = 3$

Nota bene: il tempo disponibile per questa parte della prova è di 45 minuti.

- 4. Una apparecchiatura ha solo due componenti che si possono guastare. La vita operativa X_i (i=1,2) di ciascuna di esse ha distribuzione esponenziale con valore atteso pari a 2(1+a) anni, indipendentemente dalla durata di corretto funzionamento dell'altra. Quando almeno una delle due è guasta, l'apparecchiatura non è più operativa. Sia T il tempo di corretto funzionamento dell'apparecchiatura. Si esprima T come funzione di X_1 , X_2 . Si dica qual è il supporto di T. Si ottengano poi la funzione di ripartizione e la funzione di densità di probabilità di T, esplicitandole in tutti i loro tratti. Si calcolino il sesto decile di T (è il quantile-p con p=6/10) e la probabilità condizionale P(T>4(a+1)|T>2(a+1)).
- **5.** La variabile casuale multivariata (Y_1, \ldots, Y_n) ha componenti indipendenti e identicamente distribuite con legge marginale normale, in particolare $Y_1 \sim N(a+b,9)$. Si mostri che la variabile casuale $\bar{Y}_n = \sum_{i=1}^n Y_i/n$ ha legge normale, $\bar{Y}_n \sim N(a+b,9/n)$. Sia n=4. Si calcolino $P(\bar{Y}_4 > a+b+1)$ e $P(\bar{Y}_4 < a+b-1.5)$. Si ottenga infine il novantanovesimo percentile di \bar{Y}_4 (è il quantile-p con p=99/100).
- **6.** Dato un campione y_1, \ldots, y_n , realizzazione di variabili casuali $Y_1, \ldots, Y_n, n > 1$, indipendenti con legge di Poisson di media $\lambda + a$ dove $\lambda > 0$ è ignoto, si reperisca una stima di λ e si indaghino le proprietà campionarie dello stimatore corrispondente.

Buon lavoro!