תרגיל מס.6

2009 במאי 7

עפיף חלומה	שם התלמיד
302323001	מס' ת"ז
מר מתן פרזמה	שם המתרגל
קבוצת תרגול	
10:00-11:45 שעה	יום ג'

טבלה 1: טבלת מידע אישי

ו שאלה ו

X 1.1

נגדיר $(x+\frac{1}{2})$ היא פונקציה רציפה כי לפי אריטמטיקה של g . g (x)=f (x)-f $(x+\frac{1}{2})$ היא בולות אם (x)-f $(x+\frac{1}{2})$ פונקציות רציפות אז גם (x)-f (x)-f רציפה. ננית בשלילה כי (x)-f לא מתאפסת בתחום (x)-f בתחום בתחום (x)-f

$$\begin{array}{rcl} g\left(0\right) & = & f\left(0\right) - f\left(\frac{1}{2}\right) \\ g\left(\frac{1}{2}\right) & = & f\left(\frac{1}{2}\right) - f\left(1\right) \\ & = & f\left(\frac{1}{2}\right) - f\left(0\right) \\ & = & - \left(f\left(0\right) - f\left(\frac{1}{2}\right)\right) \\ & = & -g\left(0\right) \end{array}$$

2 שאלה 2

ננית בשלילה כי $f\left(x
ight)
eq \sqrt{1-x^2}$ וגם $f\left(x
ight)
eq \sqrt{1-x^2}$ בתחום ננית בשלילה כי

$$(f(x))^{2} \neq \left(\pm\sqrt{1-x^{2}}\right)^{2}$$
$$(f(x))^{2} \neq 1-x^{2}$$
$$(f(x))^{2}+x^{2} \neq 1$$

בשלילה לנתון

3 שאלה

לכל λ כך ש $\lambda < c$ של מספרים בוחרים $0 < \lambda < M$ של מספרים לכל כך ש $\lambda < c$ ש בוחרים חברים $0 < \lambda < M$ ש מספרים ממשיים קיים כזה). $\alpha < t < b$ אזי קיים אזי היא רציפה ווא משניים היא רציפה לבונקציה שני ערכים כי קיימים לפונקציה שני ערכים f

 $f\left(x_{1}\right)=\lambda$ ערך כך משפט קיים קיים קיים ערך הביניים אז לפי משפט ערך הביניים מצד שני גם יודעים כי

 $f\left(x_2
ight)=\lambda$ ערך כך אז לפי משפט ערך הביניים קיים אזי לפי משפט ערך הביניים מתחום ההגדרה של גוווא תראים כי $x_1 \neq x_2$ רואים גווווא מתחום ההגדרה אל אוי

$$\forall \lambda \in [a, b] \exists (x_1, x_2) : f(x_1) = f(x_2) = \lambda$$

4 שאלה 4

× 4.1

זה לא יתכן.

f(x) מקבלת מינימום f(x)>0 לכל f(x)>0 אזי לפי משפט ווירשטראוס ווירשטראוס אזי לכל בתחום. $c=rac{A}{2}< A$ מים אזי קיים f(x)>0 כי f(x)>0 כי f(x)>0 אזי קיים לבותחום. f(x)>0 שמקיים לבוf(x)>0 לכל משפט אזי לפי משפט אזי לפי משפט לבי מש

□ 4.2

 $f\left(x
ight) =c$ באופן כללי זה לא מתקיים. דוגמה נגדית לזה היא באופן באופן מקרים מקרים פרטיים לדוגמה:

$$f(x) = x^2$$
$$x_0 = 0$$

 $f\left(x
ight)>f\left(x_{0}
ight)$ מתקיים $x
eq x_{0}$

8 שאלה *5*

X 5.1

 $\lim_{x \to \pm \infty} f\left(x
ight) = 0$ לא נכון. לא מקבל מקסימום לא לא לא ל $f\left(x
ight) = rac{1}{x^2+1}$

□ 5.2

 $f\left(x_{0}
ight)=c$ ננית בשלילה כי ל $c\in\mathbb{R}$ לא

 $x>x_0$ לכל x_0 קיים לכל לכל וודעים $\lim_{x\to\infty}f\left(x\right)=\infty$ שלכל לפי ההגדרה לפי התקיים $f\left(t\right)>c$ ש לכך אוי בפרט היים בפרט האי בפרט האי בפרט לעד. ל

לפי x_0 פיים x_0 יודעים כי לכל $\lim_{x \to -\infty} f(x) = -\infty$ כך שלכל לפי ההגדרה של f(p) < c ע כך איים אייב בפרט פרט איי בפרט איי בפרט איים $x < x_0$

 $f\left(x_{0}
ight) = c$ ע כך ש $p < x_{0} < t$ ע כך אזי קיים אזי אי ל $\left(p
ight) < c < f\left(t
ight)$ כך אזי להנחת השלילה שלנו.

٦ 5.3

 $f\left(x
ight)=x^{2}$ זה לא נכון. דוגמה:

 $f \in [a,b]$ היא רציפה אזי לפי משפט קנטור ל רציפה המידה אווה בקטע אזי לפי היא היא רציפה היא בפרט [n,n+1]

אבל $\delta>0$ אזי עבור כל $\varepsilon_0=2$ אחרים כי אם במידה שווה מתקיים אבל f אבל לא במידה במידה שווה כי אם $|f\left(x_1\right)-f\left(x_2\right)|\geq \varepsilon_0$ אז $|x_1-x_2|<\delta$ שאם

נסמן $\delta=\frac{1}{n}$ ונסמן $(\delta>0)$ ונסמן ווא $\delta=\frac{1}{n}$ אזי אני $\delta=\frac{1}{n}$ אזי אזי אני

$$\begin{vmatrix} n^2 - \left(n^2 + \frac{1}{n}\right)^2 & \stackrel{?}{\geq} & \varepsilon_0 \\ \left| n^2 - n^2 - \frac{2n}{n} - \frac{1}{n^2} \right| & \stackrel{?}{\geq} & \varepsilon_0 \\ 2 + \frac{1}{n^2} & \geq & 2 \end{vmatrix}$$

משל.

שאלה 9

X 6.1

זה נכון כי אם f,g רציפות במידה שווה אז קיימים δ_f,δ_g שמקיימים את הגדרת הנכון כי אם $\delta=\min\left(\alpha\delta_f,\beta\delta_g\right)$ נגדיר מלך מקרימת אזי במקרה אזי במקרה של $\alpha f+\beta g$ נגדיר שווה. של רציפות במידה שווה.

□ 6.2

זה לא נכון. דוגמה נגדית: f=x, g=x אזי לf=x, g=x פונקציה רציפה לא נכון. דוגמה במידה שווה.