FUNDAMENTOS E TÉCNICAS EM CIÊNCIAS DE DADOS

PROF. JOSENALDE OLIVEIRA

josenalde@eaj.ufrn.br https://github.com/josenalde/datascience

ANÁLISE E DESENVOLVIMENTO DE SISTEMAS - UFRN

NO QUE CONSISTE UM PROJETO DE CIÊNCIA DE DADOS?

Analisar dados — aplicar algum tipo de transformação nos dados em busca de conhecimento. Dados podem ser produzidos para posterior análise. A ideia é conhecer antes de analisar, para melhor escolha das técnicas.

Exploratória: conhece os dados que irá analisar? Tem noção de como estão distribuídos? Quais suas médias? Desvios padrões? Como estão relacionados? Existem valores anormais?

NO QUE CONSISTE UM PROJETO DE CIÊNCIA DE DADOS?

Modelagem/Avaliação/Indicadores Escopo/Necessidades/Indicadores Scoping Research Development Productization Product KPIs Check KPIs Check Approval Var. independente Var. de entrada Yes **KPIs** Var. explicativa Var. preditora Model Test atributos Failure Data Preperation & Accessability Solution Deploymen ~ 1-2 weeks ~ 2-3 weeks [per iteration] 2-3 weeks [per iteration] ~ 2-3 weeks

Mas o que é um modelo?

Simplesmente uma especificação de relação matemática (ou probabilística) existente entre variáveis diferentes

f(x,y,z,...)

cro nos próximos anos

- Probabilidade de ganhar
- Mensagem é spam ou não
- Transação no cartão é fraudulenta?
- Probabilidade de um banner ser clicado
- Que time ganhará?

x,y,z,...

Impacto de ação A ou B em processo X

Var. resposta
Var. dependente

Target var.

AS VÁRIAS POSSIBILIDADES E TÉCNICAS

Var Var Indep. Resposta	Categóricas	Intervalares (numéricas)	Intervalares e categóricas
Intervalar (numérica)	ANOVA Árvore Decisão Random Forest Gradient boosting Rede neural	Regressão linear* Árvore decisão Random Forest Gradient boosting Rede neural	ANCOVA Árvore decisão Random Forest Gradient boosting Rede neural
Categórica	Regressão logística Rule induction Árvore Decisão Random Forest Gradient boosting Rede neural	Regressão logística Rule induction Árvore Decisão Random Forest Gradient boosting Rede neural	Regressão logística Rule induction Árvore Decisão Random Forest Gradient boosting Rede neural

Variáveis:

Qualitativas

Nominal (categoria, descrição, classe), exemplo: cor dos olhos, tipo de material, gênero, modo de pagamento...

Ordinal (pequeno, médio, grande etc.)

Quantitativas

<u>Discreta</u>: têm um número contável de valores entre quaisquer dois valores. Uma variável discreta é sempre numérica. Por exemplo, o número de reclamações de clientes ou o número de falhas ou defeitos. <u>Contínua</u>: medições (-inf, +inf)

*RL – preço de produtos variando em função da quantidade vendida **ANOVA – gastos no cartão de crédito em função do gênero

***ANCOVA – salários em função de faixa etária, gênero, anos de empresa

RETORNANDO AO CICLO DO DADO: PRODUÇÃO

- 1) Dados podem ser coletados, **produzidos** ou simplesmente comprados (data brokers)
 - 1) PRODUZIDOS como resultado de processamento (Ex. folha de pagamento) em sistemas transacionais,
 - 2) podem ser resultado de TRANSFORMAÇÃO de dados (para análise, armazenamento)
 - 3) podem ser produzidos por modelagem estatística ou aprendizagem de máquina
 - 3) podem ser COLETADOS de outros sistemas, pesquisas, dados históricos, arquivos, de um Data WareHouse
 - 4) Das chaves mecânicas, passando pelos cartões perfurados, às telas touch-screen e sensores de movimento
 - 5) teclados, mouses, leitores (barras, QR), RFID, mesas digitalizadoras, câmeras
 - 6) Projetos de computação distribuída, com base em doação de tempo de CPU (SETI,

CLIMATE PREDICTION, ROSETTA@)

Acelerômetros – aceleração do objeto em 3 eixos GPS

Giroscópio – orientação do celular em 3 eixos Magnetômetro – mede o campo magnético da Terra Podem se utilizar das interfaces de comunicação: Wifi, bluetooth, nfc etc.

WEARABLES

Em Desenvolvimento APIs permitem manipulação

CC BY-SA-NC

RETORNANDO AO CICLO DO DADO: ARMAZENAMENTO

- 1) Uma vez armazenado, pode ser recuperado para replicar processos ou produzir informação ou conhecimento
- 2) Contempla as premissas de segurança da informação, integridade, minimização da redundância, concorrência, otimização de espaço etc.
- 3) Podem ser simplesmente REPLICADOS em sua forma original (backup, redundância (RAID 1, clusterização)
- 4) Já num data warehouse, é armazenado com sua estrutura modificada

A Medida que o volume e complexidade aumentaram, a partir de 1950 surge necessidade de gerenciadores capazes de incluir, alterar e excluir, mas também de manter integridade, segurança e de prover indexação.

Modelo	Década
Pré-relacionais (hierárquico, rede (codasyl)	60
Relacional	70
Orientado a objetos (caché, Db4o, Versant)	80
NoSQL (kvs, colunas ordenadas, documentos, grafos)	2000

Modelo de rede baseado em navegação – registros vinculados precisavam ser percorridos numa árvore, Unidirecional, do pai para o filho, não havendo controle efetivo de integridade e redundância – O consórcio CODASYL é conhecido por ter criado a linguagem COBOL – relacionamentos: LINKS OBS: ideia de Grafo e sua teoria remonta a Leonhard Euler (1736) e as pontes de Königsberg

RELACIONAL: Criado por Edgar Codd em 1970 (Relational Model of Data for Large Shared Data Banks)
Foco na manutenção da integridade das transações (inclui, altera, exclui) e redução da redundância

- 1) Baseado em álgebra relacional (junções), abstrai implementação física do BD, permitindo realizar consultas através da Linguagem Estruturada de Consulta (SQL) recuperar dados distribuídos em várias TABELAS
- 2) Estrutura básica (rígida e fixa): TABELAS, com instâncias (registros) sendo as linhas (row) e os atributos as colunas (column) (schema)
- 3) Bom para armazenamento, não necessariamente para ANÁLISE (podem haver consultas complexas) 🛕
- 4) Relacionamentos são mantidos por identificadores únicos denominados CHAVES: primária (PK) e estrangeira (FK), possuindo o conceito de cardinalidade: um-para-um, um-para-muitos, muitos-para-muitos,...
- 5) Implementações confiáveis, estáveis, eficientes, permitindo backups incrementais, replicação, clusterização, tolerança a falhas, distribuição de carga entre outros: DB2, Oracle, SQL Server, PostgreSQL, MySQL etc.
- 6) CODD definiu a NORMALIZAÇÃO e suas FORMAS NORMAIS (FN)
 - 6) 1FN: atributos atômicos, sem valores repetidos ou possuindo mais de um valor. Por exemplo, CLIENTE = {IDC + END + TELEFONES}, como TELEFONES é multivalorado, ou remove ou cria uma outra TABELA com IDC como chave FSTRANGEIRA

		CLIENTES	
1	IDC	END	TELEFONES
	12	Av. Jundiaí, 13	9944-3232, 9932-5089

CI	.IENTES
IDC	END
12	Av. Jundiaí, 13

TELEFONES		
IDT	IDC	NUMTEL
8	12	9944-3232
9	12	9932-5089

6.2) 2FN: os atributos não chave devem depender unicamente da PK da tabela em questão. As colunas que não são dependentes apenas da PK são removidas e colocadas em outra tabela professorCurso = {idProf, idCurso, salario, descricaoCurso}: descricaoCurso não depende de idProf, mas de idCurso

	professorCurso		professorCurso		irso			cursos			
idP	Prof	idCurso	salario	descricaoCurso		idProf	idCurso	salario	+	idCurso	descricaoCurso
12		10	1.500,00	computação		12	10	1.500,00		10	computação

6.3) 3FN: projetada para melhorar desempenho do BD e minimizar custos de armazenamento. Atributos devem ser independentes funcionalmente uns dos outros.

funcionarios = {idFunc, nome, salario, fgts}: fgts (não chave) depende de salario (não chave), logo pode ser retirado e deixar o cálculo para a camada de negócio ou, se necessário, ir para outra tabela referenciando funcionários.

6.4) 4FN: remover multiplicidade de campos multivalorados

Solicitação de Exame

Paciente	Plano de Saúde	Exame
João	Amil	Teor alcoólico
João	Blue-Life	Teor alcoólico
João	Amil	Sangue
João	Blue-Life	Sangue

Solicitação de Exame

PacienteExameJoãoTeor alcoólicoJoãoSangue

Suporte de Seguridade

Paciente	Plano de Saúde		
João	Amil		
João	Blue-Life		

7) A PK pode ter valor semântico ou incremental e também pode ser simples ou composta

Cliente | Cliente ID Transação **ESNORMALIZADO** Tr. ID Data Valor 14/out/2003 15/out/2003 -50 Tr. ID Valor Wilson 2 12898 14/out/2003 Tr. ID 12907 15/out/2003 Márcio 3 14920 | 20/nov/2003 15003 | 27/nov/2003 | -60

Tabela dos clientes Cliente Cliente ID João 1 Wilson 2 Márcio 3

		3	
Cliente ID	Tr. ID	Data	Valo
1	12890	14/out/2003	-87
1	12904	15/out/2003	-50
2	12898	14/out//2003	-21

14920

15003

15/out/2003

20/nov/2003

27/nov/2003

Tabela das transações

SELECT Transacoes.TrID, Clientes.Cliente FROM Transacoes

3

INNER JOIN Clientes ON Transacoes.ClienteID = Clientes.ClienteID;

Produto e cliente repetidos, não se sabe ao certo se é o mesmo cliente Como o valor não tem referência única, qual linha tem o valor atual?

Já imaginou a cada compra cadastrar os dados do cliente?

ADC	Vendas		
NORMALIZA	Cliente Endereço Produto Valor		
)ES	Data		

	Vendas				
Cliente	Endereço	Produto	Valor	Data	
José da Silva	Bloco A, Casa 3	Chupeta	5,34	12/09/2014	
Maria Cardoso	Rua Brasil, 44	Mamadeira	12,30	13/09/2014	
Pedro Henrique	Bloco C, casa 24	Colchão	348,00	12/09/2014	
José da Silva	Bloco A, casa 3	Chupeta	6,00	13/09/2014	
Pedro H.	Bloco C, casa 24	Mamadeira	12,30	13/09/2014	

Vendas

Clientes

OBSERVAÇÕES AO MODELO RELACIONAL

- De fato o modelo apresenta boa integridade, reduz redundância, mas possui muitas TABELAS
- Torna assim mais complexa a álgebra das consultas para recuperar dados (para analisar)
- Com o aumento do volume de dados, operações demandam custo computacional elevado
- O desenvolvimento da web passa a demandar armazenamento de dados não estruturados, com escalabilidade e redundância a partir dos anos 90, o volume aumenta e a dificuldade em analisar consequentemente
- Organizações tinham vários bancos de dados separados e necessitavam agregar estes dados e transformá-los para as operações de análise surgem os DATA WAREHOUSES
- Os modelos NewSQL ou NoSQL surgem para atender a tais situações, não substituindo o relacional, mas sendo uma alternativa a depender do problema. Para aplicações com demandas de integridade, informações estruturadas e normalizadas, o relacional ainda tem seu espaço
- O NoSQL usa um modelo mais simples, de objetos com atributos, os quais trazem flexibilidade na definição e cada objeto da coleção pode trazer apenas um subconjunto de atributos
- Apropriado para situações onde não é fácil ou possível decompor em conjunto de atributos, como por exemplo texto livre (tweets etc.) ou imagens contudo necessitam serem colocados em algo estruturado para análise

ΦSQL (NOT ONLY SQL)

- Aplicações para agregar grandes volumes de dados (gestão de documentos, séries temporais, feed de notícias, dados em painéis em tempo real
- Problema não só de R/W, mas o simples armazenamento em si
- Como armazena-se +1 bi de usuários do Facebook e o conteúdo que gerem diariamente?
- Produtos baseados em não normalização, poucas restrições de integridade e controle mínimo de transações
 - TIPOS:
 - Key-Value Store (KVS) (chave-valor) todos os registros fazem parte da mesma coleção de elementos, e a única coisa que todos eles tem em comum é a chave única; invés de incluir um conjunto de atributos, a operação insere apenas uma chave e um valor (Couchbase, Kyoto Cabinet, Redis, DynamoDB)


```
SELECT
    Dim1, Dim2,
    SUM(Measure1) AS MSum,
    COUNT(*) AS RecordCount,
    AVG(Measure2) AS MAvg.
    MIN(Measure1) AS MMin
    MAX(CASE
      WHEN Measure2 < 100
      THEN Measure2
    END) AS MMax
FROM DenormAggTable
WHERE (Filter1 IN ('A', 'B'))
    AND (Filter2 = 'C')
    AND (Filter3 > 123)
GROUP BY Dim1, Dim2
HAVING (MMin > 0)
ORDER BY RecordCount DESC
LIMIT 4, 8
```

- (I) Grouped dimension columns are pulled out as keys in the map function, reducing the size of the working set.
- Measures must be manually aggregated.
- (3) Aggregates depending on record counts must wait until finalization.
- 4 Measures can use procedural logic.
- (5) Filters have an ORM/ActiveRecordlooking style.
- 6 Aggregate filtering must be applied to the result set, not in the map/reduce.
- (7) Ascending: 1; Descending: -1

105QL (NOT ONLY SQL)

- TIPOS:
- Key-Value Store (KVS) (chave-valor) todos os registros fazem parte da mesma coleção de elementos, e a única coisa que todos eles tem em comum é a chave única; invés de incluir um conjunto de atributos, a operação insere apenas uma chave e um valor (Couchbase, Kyoto Cabinet, Redis (open source), DynamoDB Amazon) BD as a servisse
- Estrutura mais SIMPLES
- Grande tabela hash

Chave	Valor
16	nome = NoSQL Essencial, ano - 2014
Connor	idade = 22, interesse = programação
2	nome = True Blood, gênero = fantasia, classificação = 16 anos
Laís	ocupação = estudante

Customers

