CMPT 419/983: Theoretical Foundations of Reinforcement Learning

Lecture 8

Sharan Vaswani

October 27, 2023

Recap

- ullet Approximate policy iteration (API) aims to find an optimal policy without access to \mathcal{P} , r.
- \bullet API alternates between policy evaluation and policy improvement: at iteration k,
 - **Policy Evaluation**: Compute the estimate \hat{q}^{π_k} (for example, using TD, Monte-Carlo).
 - Policy Improvement: $\forall s, \ \pi_{k+1}(s) = \arg \max_a \hat{q}^{\pi_k}(s, a)$.
- If the policy evaluation error at iteration k is controlled s.t. $\hat{q}^{\pi_k} = q^{\pi_k} + \epsilon_k$, then, API has the following convergence, $\|v^{\pi_{K+1}} v^*\|_{\infty} \le \gamma^K \|v^{\pi_0} v^*\|_{\infty} + \frac{2\max_{k \in \{\mathbf{0}, \dots, K-1\}} \|\epsilon_k\|_{\infty}}{(1-\gamma)^2}$
- We have access to $\Phi \in \mathbb{R}^{SA \times d}$ s.t. for every π , there exists a θ^* such that, $\max_{(s,a)} |q^{\pi}(s,a) \langle \theta^*, \phi(s,a) \rangle| \leq \varepsilon_{\mathbf{b}}$.
- In order to control the policy evaluation error,
 - Choose $\mathcal{C} \subset \mathcal{S} \times \mathcal{A}$, and for each $z := (s, a) \in \mathcal{C}$, rollout m trajectories (truncated to horizon H) and calculate $\hat{R}(z)$. We can ensure that $|\hat{R}(z) q^{\pi}(z)| \leq \varepsilon_{\mathfrak{s}}$ w.p. 1δ for all $z \in \mathcal{C}$.
 - Estimate $\hat{\theta} := \arg\min_{\theta} \frac{1}{2} \sum_{z \in \mathcal{C}} \zeta(z) \left[\langle \theta, \phi(z) \rangle \hat{R}(z) \right]^2$.

1

Claim: Assuming $V := \sum_{z \in \mathcal{C}} \zeta(z) \phi(z) \phi(z)^T \in \mathbb{R}^{d \times d}$ is invertible, for any $z \in \mathcal{S} \times \mathcal{A}$, $|q^{\pi}(z) - \langle \hat{\theta}, \phi(z) \rangle| \leq \varepsilon_{\mathbf{b}} + \|\phi(z)\|_{V^{-1}} \left[\varepsilon_{\mathbf{s}} + \varepsilon_{\mathbf{b}}\right]$

Proof: Since $\hat{\theta}$ is computed by minimizing $\frac{1}{2} \sum_{z \in \mathcal{C}} \zeta(z) \left[\langle \theta, \phi(z) \rangle - \hat{R}(z) \right]^2$ and V is invertible,

$$\begin{split} \hat{\theta} &= V^{-1} \left[\sum_{z' \in \mathcal{C}} \zeta(z') \, \hat{R}(z') \, \phi(z') \right] \\ |q^{\pi}(z) - \langle \hat{\theta}, \phi(z) \rangle| &= |q^{\pi}(z) - \langle \theta^*, \phi(z) \rangle + \langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| \\ &\qquad \qquad (\mathsf{Add/subtract} \, \langle \theta^*, \phi(z) \rangle) \\ &\leq |q^{\pi}(z) - \langle \theta^*, \phi(z) \rangle| + |\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| \\ &\qquad \qquad (\mathsf{Triangle inequality}) \\ \Longrightarrow |q^{\pi}(z) - \langle \hat{\theta}, \phi(z) \rangle| &\leq \varepsilon_{\mathsf{L}} + |\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| \end{split}$$

We will now bound $|\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle|$.

For $z' \in \mathcal{C}$, define $\mathcal{E}(z') := \hat{R}(z') - \langle \theta^*, \phi(z') \rangle$. Hence,

$$\begin{split} \hat{\theta} &= V^{-1} \left[\sum_{z' \in \mathcal{C}} \zeta(z') \left[\langle \theta^*, \phi(z') \rangle + \mathcal{E}(z') \right] \phi(z') \right] \\ &= V^{-1} \left[\sum_{z' \in \mathcal{C}} \zeta(z') \phi(z') \phi(z')^T \right] \theta^* + V^{-1} \left[\sum_{z' \in \mathcal{C}} \zeta(z') \mathcal{E}(z') \phi(z') \right] \\ \Longrightarrow \hat{\theta} - \theta^* &= V^{-1} \left[\sum_{z' \in \mathcal{C}} \zeta(z') \mathcal{E}(z') \phi(z') \right] \end{split}$$

Hence, for an arbitrary $z \in \mathcal{S} \times \mathcal{A}$,

$$\begin{aligned} |\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| &= \left| \left\langle V^{-1} \left[\sum_{z' \in \mathcal{C}} \zeta(z') \, \mathcal{E}(z') \, \phi(z') \right], \phi(z) \right\rangle \right| \\ &= \left| \left\langle \sum_{z' \in \mathcal{C}} \zeta(z') \, \mathcal{E}(z') \, V^{-1} \phi(z'), \phi(z) \right\rangle \right| &= \left| \sum_{z' \in \mathcal{C}} \zeta(z') \, \mathcal{E}(z') \, \langle \phi(z), V^{-1} \phi(z') \rangle \right| \end{aligned}$$

Recall that
$$|\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| = |\sum_{z' \in \mathcal{C}} \zeta(z') \mathcal{E}(z') \langle \phi(z), V^{-1} \phi(z') \rangle|.$$

$$|\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| \leq \sum_{z' \in \mathcal{C}} |\mathcal{E}(z')| |\zeta(z')| |\langle \phi(z), V^{-1} \phi(z') \rangle|.$$

$$\leq \left(\max_{z' \in \mathcal{C}} |\mathcal{E}(z')| \right) \sum_{z' \in \mathcal{C}} |\zeta(z')| |\langle \phi(z), V^{-1} \phi(z') \rangle|.$$

$$\sum_{z' \in \mathcal{C}} |\zeta(z')| |\langle \phi(z), V^{-1} \phi(z') \rangle| = \sqrt{\left(\mathbb{E}_{z' \sim \zeta} |\langle \phi(z), V^{-1} \phi(z') \rangle|\right)^2} \stackrel{\text{Jensen}}{\leq} \sqrt{\mathbb{E}_{z'} |\langle \phi(z), V^{-1} \phi(z') \rangle|^2}$$

$$= \sqrt{\mathbb{E}_{z'} \left[\phi(z)^T V^{-1} \phi(z') \phi(z')^T V^{-1} \phi(z) \right]} = \sqrt{\phi(z)^T V^{-1} \left[\sum_{z'} |\zeta(z') \phi(z') \phi(z')^T V^{-1} \phi(z) \right]}$$

$$\Rightarrow \sum_{z' \in \mathcal{C}} |\zeta(z')| |\langle \phi(z), V^{-1} \phi(z') \rangle| = \sqrt{\phi(z)^T V^{-1} \phi(z)} = ||\phi(z)||_{V^{-1}}$$

$$\Rightarrow |\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| \leq \max_{z' \in \mathcal{C}} |\mathcal{E}(z')| ||\phi(z)||_{V^{-1}}$$

Recall that
$$|\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| \le \max_{z' \in \mathcal{C}} |\mathcal{E}(z')| \ \|\phi(z)\|_{V^{-1}}$$
. Bounding $\max_{z' \in \mathcal{C}} |\mathcal{E}(z')|$,
$$|\mathcal{E}(z')| = |\hat{R}(z') - \langle \theta^*, \phi(z') \rangle| = |\hat{R}(z') - q^{\pi}(z') + q^{\pi}(z') - \langle \theta^*, \phi(z') \rangle|$$
 (Add/subtract $q^{\pi}(z')$)
$$\le |\hat{R}(z') - q^{\pi}(z')| + |q^{\pi}(z') - \langle \theta^*, \phi(z') \rangle|$$
 (Triangle inequality)
$$\le \varepsilon_{\bullet} + \varepsilon_{\mathbf{b}}$$

$$\implies |\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| \le |\varepsilon_{\bullet} + \varepsilon_{\mathbf{b}}| \ \|\phi(z)\|_{V^{-1}}$$

Putting everything together,

$$|q^{\pi}(z) - \langle \hat{\theta}, \phi(z) \rangle| \le \varepsilon_{\mathsf{b}} + [\varepsilon_{\mathsf{s}} + \varepsilon_{\mathsf{b}}] \|\phi(z)\|_{V^{-1}}$$

Hence, in order to control the generalization error, we have to control $\|\phi(z)\|_{V^{-1}}$, while controlling the size of \mathcal{C} .

Kiefer-Wolfowitz Theorem: There exists a $\mathcal{C} \subset \mathcal{S} \times \mathcal{A}$ and a distribution $\zeta \in \Delta_{|\mathcal{C}|}$ such that for $V := \sum_{z \in \mathcal{C}} \zeta(z) \phi(z) \phi(z)^T \in \mathbb{R}^{d \times d}$,

$$\sup_{z \in \mathcal{S} \times \mathcal{A}} \left\| \phi(z) \right\|_{V^{-1}} \leq \sqrt{d} \quad ; \quad |\mathcal{C}| \leq \frac{d \left(d+1\right)}{2}$$

- Intuitively, this means that we can find a *coreset* of feature vectors that captures most of the information in Φ. Finding such a coreset is referred to as *G-optimal design* in statistics.
- C and ζ can be approximately computed using a greedy algorithm that has access to Φ (Need to do this in Assignment 3!)

Combining the Kiefer-Wolfowitz theorem with our previous result gives,

$$|q^{\pi}(z) - \hat{q}^{\pi}(z)| = |q^{\pi}(z) - \langle \hat{\theta}, \phi(z) \rangle| \leq \varepsilon_{\mathbf{b}} + \sqrt{d} \left[\varepsilon_{\mathbf{s}} + \varepsilon_{\mathbf{b}} \right] = \varepsilon_{\mathbf{b}} \left(1 + \sqrt{d} \right) + \varepsilon_{\mathbf{s}} \sqrt{d}$$

- Note that the \sqrt{d} amplification in the error is tight.
- Algorithmically, we need to run Monte-Carlo estimation from $O(d^2)$ (s,a) pairs, and we can estimate $q^{\pi}(s,a)$ upto an $\varepsilon_{\mathbf{b}}$ $\left(1+\sqrt{d}\right)+\varepsilon_{\mathbf{s}}\sqrt{d}$ error for all (s,a) pairs.

Convergence of Approximate Policy Iteration

We have seen the following results:

$$\begin{split} \|v^{\pi_{K}} - v^{*}\|_{\infty} &\leq \gamma^{K} \ \|v^{\pi_{\mathbf{0}}} - v^{*}\|_{\infty} + \frac{2 \max_{k \in \{0, \dots, K-1\}} \|\epsilon_{k}\|_{\infty}}{(1 - \gamma)^{2}} \\ |q^{\pi}(s, a) - \hat{q}^{\pi}(s, a)| &\leq \varepsilon_{\mathbf{b}} \left(1 + \sqrt{d}\right) + \varepsilon_{\mathbf{s}} \sqrt{d} \qquad \qquad \text{(for all π and (s, a) pairs)} \\ \implies \|v^{\pi_{K}} - v^{*}\|_{\infty} &\leq \gamma^{K} \ \|v^{\pi_{\mathbf{0}}} - v^{*}\|_{\infty} + \frac{2\varepsilon_{\mathbf{b}} \left(1 + \sqrt{d}\right) + 2\varepsilon_{\mathbf{s}} \sqrt{d}}{(1 - \gamma)^{2}} \end{split}$$

- If the q functions are exactly in the span of Φ , $\varepsilon_b = 0$. For example, in the *tabular* setting where d = S and the features are one hot vectors, the error depends on $\sqrt{S} \varepsilon_{\bullet}$.
- The algorithm for constructing C requires iterating through the states, and this can be inefficient. [YHAY⁺22] considers an online algorithm that does not require global access to the full Φ matrix, but has similar theoretical guarantees.
- Next, we will see an alternative algorithm Politex that has slower convergence $[O(1/\sqrt{K})]$, but smaller error amplification $[O(1/(1-\gamma))]$.

Politex

- Like policy iteration, Politex alternates between evaluating the policy and updating it.
- Unlike policy iteration that uses a max over actions, Politex uses a softmax (multiplicative weights) to update the policy. This makes the resulting algorithm less aggressive.

Algorithm Politex

- 1: **Input**: MDP $M = (S, A, \rho)$, π_0 , step-size η
- 2: **for** $k = 0 \to K 1$ **do**
- 3: **Policy Evaluation**: Compute the estimate $\hat{q}_k := \hat{q}^{\pi_k}$ (for example, using TD, Monte-Carlo) and define $\bar{q}_k = \sum_{i=0}^k \hat{q}_i$
- 4: Policy Update: $\forall (s, a), \ \pi_{k+1}(a|s) = \frac{\exp(\eta \ \bar{q}_k(s, a))}{\sum_{s'} \exp(\eta \ \bar{q}_k(s, a'))}$.
- 5: end for
- 6: Return the *mixture policy* $\bar{\pi}_K := \frac{\sum_{k=0}^{K-1} \pi_k}{K}$
- Politex returns the *mixture policy* $\bar{\pi}_K$ which corresponds to choosing a policy in $\{\pi_k\}_{k=0}^{K-1}$ uniformly at random.
- If $\bar{q}_k = \hat{q}_k$, Politex recovers policy iteration as $\eta \to \infty$ (Prove in Assignment 3!)

Claim: If the policy evaluation error at iteration k is controlled s.t. $\hat{q}^k = q^{\pi_k} + \epsilon_k$, then Politex has the following convergence,

$$\left\| v^{\bar{\pi}_K} - v^* \right\|_{\infty} \leq \frac{\left\| \mathsf{Regret}(K) \right\|_{\infty}}{\left(1 - \gamma \right) K} + \frac{2 \max_{k \in \{0, \dots, K - 1\}} \left\| \epsilon_k \right\|_{\infty}}{\left(1 - \gamma \right)},$$

where $\operatorname{Regret}(K) = \sum_{k=0}^{K-1} [\mathcal{M}_{\pi^*} \hat{q}_k - \mathcal{M}_{\pi_k} \hat{q}_k] \in \mathbb{R}^S$ is the regret incurred by Politex on an online linear optimization problem for each state $s \in \mathcal{S}$.

- The error amplification only depends on $1/1-\gamma$, and thus Politex has a better dependence on ϵ compared to approximate policy iteration.
- Compared to policy iteration that has an γ^K convergence, the convergence for Politex depends on $\frac{\mathrm{Regret}(K)}{K}$. We will show that $\mathrm{Regret}(K) = O(\sqrt{K})$, and hence, the Politex achieves the slower $O(1/\sqrt{K})$ convergence.
- The above claim does not depend on the specific update rule of Politex, and can be used to prove convergence for alternative algorithms that have sublinear regret.

Proof:
$$v^{\pi^*} - v^{\pi_k} = (I - \gamma \mathbf{P}_{\pi^*})^{-1} [\mathcal{T}_{\pi^*} v^{\pi_k} - v^{\pi_k}]$$

(Value difference lemma)

Summing up from k = 0 to k = K - 1 and dividing by K,

$$v^{\pi^*} - \frac{\sum_{k=0}^{K-1} v^{\pi_k}}{K} = \frac{1}{K} (I - \gamma \mathbf{P}_{\pi^*})^{-1} \sum_{k=0}^{K-1} [\mathcal{T}_{\pi^*} v^{\pi_k} - v^{\pi_k}]$$

$$\implies v^{\pi^*} - v^{\bar{\pi}_K} = (I - \gamma \mathbf{P}_{\pi^*})^{-1} \sum_{k=0}^{K-1} [\mathcal{T}_{\pi^*} \, v^{\pi_k} - v^{\pi_k}] = \frac{1}{K} (I - \gamma \mathbf{P}_{\pi^*})^{-1} \sum_{k=0}^{K-1} [\mathcal{T}_{\pi^*} \, v^{\pi_k} - \mathcal{T}_{\pi_k} \, v^{\pi_k}]$$

$$(\text{Since } v^{\bar{\pi}_K} = \frac{\sum_{k=0}^{K-1} v^{\pi_k}}{K} \text{ and } v^{\pi} = \mathcal{T}_{\pi} v^{\pi})$$

$$=\frac{1}{K}\left(I-\gamma\mathbf{P}_{\pi^*}\right)^{-1}\sum_{k=0}^{K-1}\left[\mathcal{M}_{\pi^*}\,q^{\pi_k}-\mathcal{M}_{\pi_k}q^{\pi_k}\right] \qquad \qquad (\mathsf{Since}\,\,\mathcal{T}_{\pi}v=\mathcal{M}_{\pi}[r+\gamma\mathbb{P}v]=\mathcal{M}_{\pi}q)$$

$$=\frac{1}{\mathcal{K}}\left(\mathbf{I}-\gamma\mathbf{P}_{\pi^*}\right)^{-1}\sum_{k=0}^{\mathcal{K}-1}\left[\mathcal{M}_{\pi^*}\,\hat{q}_k-\mathcal{M}_{\pi_k}\hat{q}_k\right]+\frac{1}{\mathcal{K}}\left(\mathbf{I}-\gamma\mathbf{P}_{\pi^*}\right)^{-1}\sum_{k=0}^{\mathcal{K}-1}\left[\left(\mathcal{M}_{\pi_k}-\mathcal{M}_{\pi^*}\right)\underbrace{\left(\hat{q}_k-q^{\pi_k}\right)}_{=\epsilon_k}\right]$$

$$v^{\pi^*} - v^{\bar{\pi}_K} = \frac{1}{K} (I - \gamma \mathbf{P}_{\pi^*})^{-1} \sum_{k=0}^{K-1} [\mathcal{M}_{\pi^*} \, \hat{q}_k - \mathcal{M}_{\pi_k} \, \hat{q}_k] + \frac{1}{K} (I - \gamma \mathbf{P}_{\pi^*})^{-1} \sum_{k=0}^{K-1} [(\mathcal{M}_{\pi_k} - \mathcal{M}_{\pi^*}) \, \epsilon_k]$$
Using the definition of Regret(K) and taking norms,

$$\left\| \mathbf{v}^{\pi^*} - \mathbf{v}^{\bar{\pi}_{K}} \right\|_{\infty} = \left\| \frac{1}{K} \left(I - \gamma \mathbf{P}_{\pi^*} \right)^{-1} \operatorname{Regret}(K) + \frac{1}{K} \left(I - \gamma \mathbf{P}_{\pi^*} \right)^{-1} \sum_{k=0}^{K-1} \left[\left(\mathcal{M}_{\pi_k} - \mathcal{M}_{\pi^*} \right) \epsilon_k \right] \right\|_{\infty}$$

$$\leq \frac{1}{K} \left\| \left(I - \gamma \mathbf{P}_{\pi^*} \right)^{-1} \operatorname{Regret}(K) \right\|_{\infty} + \frac{1}{K} \left\| \left(I - \gamma \mathbf{P}_{\pi^*} \right)^{-1} \sum_{k=0}^{K-1} \left[\left(\mathcal{M}_{\pi_k} - \mathcal{M}_{\pi^*} \right) \epsilon_k \right] \right\|_{\infty}$$
(Triangle inequality)

$$\leq \frac{\|\operatorname{Regret}(K)\|_{\infty}}{K(1-\gamma)} + \frac{1}{K(1-\gamma)} \left\| \sum_{k=0}^{K-1} \left[\left(\mathcal{M}_{\pi_{k}} - \mathcal{M}_{\pi^{*}} \right) \epsilon_{k} \right] \right\|_{\infty}$$

$$\leq \frac{\|\operatorname{Regret}(K)\|_{\infty}}{K(1-\gamma)} + \frac{1}{K(1-\gamma)} \sum_{k=0}^{K-1} \left[\|\mathcal{M}_{\pi_{k}} \epsilon_{k}\|_{\infty} + \|\mathcal{M}_{\pi^{*}} \epsilon_{k}\|_{\infty} \right]$$
(Triangle inequality)

$$\leq \frac{1}{K(1-\gamma)} + \frac{1}{K(1-\gamma)} \sum_{k=0}^{\infty} \frac{\||\mathcal{N}t_{\pi_k} \mathbf{e}_k\|_{\infty} + \||\mathcal{N}t_{\pi^*} \mathbf{e}_k\|_{\infty}}{K(1-\gamma)}$$

$$\leq \frac{\||\operatorname{Regret}(K)\||_{\infty}}{K(1-\gamma)} + \frac{2 \max_{k \in \{0, \dots, K-1\}} \||\mathbf{e}_k\||_{\infty}}{(1-\gamma)}$$

$$(\mathcal{M}_{\pi} \text{ is non-expansive})$$

Our aim now is to control $\|\text{Regret}(K)\|_{\infty}$ where $\text{Regret}(K) = \sum_{k=0}^{K-1} [\mathcal{M}_{\pi^*} \hat{q}_k - \mathcal{M}_{\pi_k} \hat{q}_k]$. By definition, for an arbitrary vector $u \in \mathbb{R}^{S \times A}$, $(\mathcal{M}_{\pi} u)(s) = \sum_{a} \pi(a|s) u(s,a)$. Hence,

$$\left\| \mathsf{Regret}(K) \right) \right\|_{\infty} = \max_{s} \left| \sum_{k=0}^{K-1} \left[\sum_{a} \pi^*(a|s) \, \hat{q}_k(s,a) - \sum_{a} \pi_k(a|s) \, \hat{q}_k(s,a) \right] \right|$$

Define
$$R_K(\pi^*, s) := \sum_{k=0}^{K-1} \langle \pi^*(\cdot|s), \hat{q}_k(s, \cdot) \rangle - \langle \pi_k(\cdot|s), \hat{q}_k(s, \cdot) \rangle$$

$$\implies \| \operatorname{Regret}(K)) \|_{\infty} = \max_{s} |R_{K}(\pi^{*}, s)|$$

To bound $R_K(\pi^*, s)$, we will cast Politex as an online linear optimization for each state $s \in S$:

- In each iteration $k \in [K]$, Politex chooses a distribution $\pi_k(\cdot|s) \in \Delta_A$ for each state s.
- The "environment" chooses and reveals the vector $\hat{q}_k(s,\cdot) \in \mathbb{R}^A$ and Politex receives a reward $\langle \pi_k(\cdot|s), \hat{q}_k(s,\cdot) \rangle$.
- The aim is to do as well as the optimal policy π^* that receives a reward $\langle \pi^*(\cdot|s), \hat{q}_k(s,\cdot) \rangle$

Online Optimization

- 1: **Input**: w_0 , Algorithm \mathcal{A} , Convex set \mathcal{W}
- 2: **for** k = 0, ..., K 1 **do**
- 3: Algorithm \mathcal{A} chooses point (decision) $w_k \in \mathcal{W}$
- 4: Environment chooses and reveals the (potentially adversarial) function $f_k: \mathcal{W} \to \mathbb{R}$
- 5: Algorithm receives a reward $f_k(w_k)$
- 6: end for

Application: Prediction from Expert Advice – Given n experts,

$$\mathcal{W}=\Delta_n=\{w_i|w_i\geq 0\;;\;\sum_{i=1}^n w_i=1\}$$
 and $f_k(w_k)=\langle c_k,w_k
angle$ where c_k is the reward vector.

Application: Imitation Learning – Given access to an expert that knows what action $a \in [A]$ to take in each state $s \in \mathcal{S}$, learn a policy $\pi : \mathcal{S} \to \mathcal{A}$ that imitates the expert, i.e. we want that $\pi(a|s) \approx \pi_{\text{expert}}(a|s)$. Here, $w = \pi$ and $\mathcal{W} = \Delta_A \times \Delta_A \dots \Delta_A$ (simplex for each state) and f_k is a measure of the (negative) discrepancy between π_k and π_{expert} .

Q: What is w, W, f_k for Politex (for state s)? Ans: $\pi(\cdot|s)$, Δ_A , $\langle \pi(\cdot|s), \hat{q}_k(s,\cdot) \rangle$

Recall that the sequence of functions $\{f_k\}_{k=0}^{K-1}$ is potentially adversarial and can depend on w_k .

Objective: Do well against the *best fixed decision in hindsight*, i.e. if we knew the entire sequence of functions beforehand, we would choose $w^* := \arg\max_{w \in \mathcal{W}} \sum_{k=0}^{K-1} f_k(w)$.

Regret:
$$R_K(w^*) := \sum_{k=0}^{K-1} [f_k(w^*) - f_k(w_k)]$$

We want to design algorithms that achieve a *sublinear regret* (that grows as o(T)). A sublinear regret implies that the performance of our sequence of decisions is approaching that of w^* .

Q: What is "best" decision we want to compare against in Politex (for state s)? Ans: $\pi^*(\cdot|s)$

Hence, bounding $R_K(\pi^*, s)$ for Politex is equivalent to bounding the regret for a sequence of linear functions of the form: $f_k(w) = \langle g_k, w \rangle$.

The simplest algorithm that results in sublinear regret is Online Gradient Ascent.

Online Gradient Ascent: At iteration k, the algorithm chooses the point w_k . After the function f_k is revealed, the algorithm receives a reward $f_k(w_k)$ and uses it to compute

$$w_{k+1} = \Pi_{\mathcal{W}}[w_k + \eta_k \nabla f_k(w_k)]$$

where $\Pi_{\mathcal{W}}[x] = \arg\min_{y \in \mathcal{W}} \frac{1}{2} \|y - x\|_2^2$ is the Euclidean projection onto \mathcal{W} .

The Online Gradient Ascent update at iteration k can also be written as:

$$w_{k+1} = \underset{w \in \mathcal{W}}{\operatorname{arg max}} \left[\left\langle \nabla f_k(w_k), w \right\rangle - \frac{1}{2\eta_k} \|w - w_k\|_2^2 \right]$$

In other words, gradient ascent moves in the direction of the gradient $\nabla f_k(w_k)$, while remaining "close" (in the Euclidean norm) to the previous iterate w_k .

Instead of using the Euclidean norm, we could measure the distance to w_k differently.

- Online Mirror Ascent generalizes gradient ascent by choosing a strictly convex, differentiable function $\psi : \mathbb{R}^d \to \mathbb{R}$ to induce a distance measure. ψ is referred to as the *mirror map*.
- ψ induces the Bregman divergence $D_{\psi}(\cdot,\cdot)$, a distance measure between points x,y,

$$D_{\psi}(y,x) := \psi(y) - \psi(x) - \langle \nabla \psi(x), y - x \rangle.$$

Geometrically, $D_{\psi}(y, x)$ is the distance between the function $\psi(y)$ and the line $\psi(x) + \langle \nabla \psi(x), y - x \rangle$ which is tangent to the function at x.

Using this distance measure results in the mirror ascent update:

$$w_{k+1} = rg \max_{w \in \mathcal{W}} \left[\langle
abla f_k(w_k), w
angle - rac{1}{\eta_k} D_{\psi}(w, w_k)
ight]$$

• Setting $\psi(x) = \frac{1}{2} \|x\|^2$ results in $D_{\psi}(y, x) = \frac{1}{2} \|y - x\|^2$ and recovers gradient ascent.

The mirror ascent update can be equivalently written as:

$$w_{k+1/2} = (\nabla \psi)^{-1} (\nabla \psi(w_k) + \eta_k \nabla f_k(w_k))$$
; $w_{k+1} = \underset{w \in \mathcal{W}}{\arg \min} D_{\psi}(w, w_{k+1/2})$

Prove in Assignment 3!

In order to analyze mirror ascent, we will make some assumptions on f_k and ψ .

• We will assume that $\{f_k\}_{k=0}^{K-1}$ are linear i.e. for some vector g_k , $f_k(w) = \langle g_k, w \rangle$. We will also assume that $\{f_k\}_{k=0}^{K-1}$ are G-Lipschitz continuous.

Lipschitz continuous functions: f is *Lipschitz continuous* iff f can not change arbitrarily fast meaning that its gradient is bounded. Formally, for any $w \in \mathcal{W}$,

$$\|\nabla f(w)\|_{\infty} \leq G$$

where G is the Lipschitz constant.

ullet We will assume that ψ is ν strongly-convex.

Strongly-convex functions: If f is differentiable, it is ν -strongly convex iff its domain \mathcal{D} is a convex set and for all $x, y \in \mathcal{D}$ and $\nu > 0$,

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\nu}{2} \|y - x\|_1^2$$

i.e. for all y, the function is lower-bounded by the quadratic defined in the RHS.

References i

Dong Yin, Botao Hao, Yasin Abbasi-Yadkori, Nevena Lazić, and Csaba Szepesvári, *Efficient local planning with linear function approximation*, International Conference on Algorithmic Learning Theory, PMLR, 2022, pp. 1165–1192.