5. Classification of Groups

5.1 Sylow Subgroups and Sylow Theorems

p is a prime and G is a group whose order is divisible by p. A subgroup H is a p-subgroup if $|H|=p^r$ for some positive integer r.

If $|G| = p^e m$ where p is a prime and $p \nmid m$. Then a subgroup H is a Sylow p-subgroup if $|H| = p^e$.

Sylow Theorem. G is a group. $|G| = p^e m$, where p is a prime and $p \nmid m$. Then:

- 1. There exists a Sylow p-subgroup of G.
- 2. If H is a Sylow p-subgroup of G, and K is a p-subgroup of G, then there exists $g \in G$ such that $K \subset gHg^{-1}$.
- 3. The number of Sylow p-subgroups divides m and congruent to 1 modulo p.

Cor. Any two Sylow p-subgroup of G are conjugate to each other, i.e. if H, K are Sylow p-subgroups, then there exists $g \in G$ such that $K = gHg^{-1}$.

Pf. By part (2) of the Theorem, $\exists g \in G, K \subset gHg^{-1}$. By part (1), $|H|=|K|=p^e$. Also $|gHg^{-1}|=|H|=p^e$.

Cor. H is a Sylow p-subgroup of G. Then H is the unique Sylow p-subgroup $\iff H$ is a normal subgroup of G.

Pf. By the above corollary, all the Sylow p-subgroups are of form gHg^{-1} for some $g\in G$. Then H is unique $\iff \forall g\in G, gHg^{-1}=H \iff H\lhd G$

Example:
$$|G|=15=3\times 5$$

Let H be a Sylow 3-subgroup of G. $|H|=3^1=3$.

Let K be a Sylow 5-subgroup of G. $|K| = 5^1 = 5$.

The number of Sylow 3-subgroup divides 5, and $\equiv 1 \pmod{3}$, so it's 1. So $H \triangleleft G$.

The number of Sylow 5-subgroup divides 3, and $\equiv 1 \pmod{5}$, so it's 1. So $K \lhd G$.

$$|H\cap K|=1$$
 since it divides both $|H|=3$ and $|K|=5$. $\rightarrow H\cap K=\{1\}$

$$|HK| = \frac{|H| imes |K|}{|H \cap K|} = 15 = |G| \rightarrow G = HK$$

So
$$G=H imes K\cong\ C_3 imes C_5=C_{15}$$

Example: We will show that a group of order 30 is not simple.

Let
$$|G| = 30 = 2 \times 3 \times 5 = 3 \times 10 = 5 \times 6$$
.

The number of Sylow 3-subgroup divides 10, and $\equiv 1 \pmod{3}$, so it's 1 or 10.

The number of Sylow 5-subgroup divides 6, and $\equiv 1 \pmod{5}$, so it's 1 or 6.

If $n_3 = 10$, $n_5 = 6$, $H_1, ..., H_{10}$ are Sylow 3-sub, $K_1, ..., K_6$ are Sylow 5-sub

•
$$H_i \cap K_i = \{1\}$$
 since $gcd(|H_i|, |K_i|) = 1$

• $H_i \cap H_j = \{1\}, K_i \cap K_j = \{1\}, \forall i \neq j \text{ since if } a \neq 1, a \in H_i \cap H_j \rightarrow \text{since } |H_i| = |H_j| = 3 \text{ is prime, } H_i = < a >= H_j \rightarrow \text{contradiction}$

So the union of all these 16 subgroups has element 1+10 imes (3-1)+6 imes (5-1)>30 \rightarrow contradiction

So either $n_3=1$, then $H \lhd G$; or $n_5=1$, then $K \lhd G \to \text{proper normal subgroup} \to \text{not simple}.$

5.2 Proof of Sylow Theorem

Omitted.

5.3 Semidirect Product Construction

G and G' are groups, and $\phi: G' \to Aut(G)$ is a homomorphism. The semidirect product of G and G' with respect to ϕ is the group $G \rtimes_{\phi} G'$ whose underlying set is same as that of $G \times G'$, and the law of composition is defined by

$$(g_1,g_1')(g_2,g_2')=(g_1\phi_{g_1'}(g_2),g_1'g_2')$$

Prop. $G \rtimes_{\phi} G'$ defines a group.

Pf. 1. Associativity:

$$egin{aligned} ((g_1,g_1')(g_2,g_2'))(g_3,g_3') &= (g_1\phi_{g_1'}(g_2),g_1'g_2')(g_3,g_3') \ &= (g_1\phi_{g_1'}(g_2)\phi_{g_1'g_2'}(g_3),g_1'g_2'g_3') \ &= (g_1\phi_{g_1'}(g_2)\phi_{g_1'}(\phi_{g_2'}(g_3)),g_1'g_2'g_3') \ &= (g_1\phi_{g_1'}(g_2\phi_{g_2'}(g_3)),g_1'g_2'g_3') \ &= (g_1,g_1')(g_2\phi_{g_2'}(g_3),g_2'g_3') \ &= (g_1,g_1')((g_2,g_2')(g_3,g_3')) \end{aligned}$$

2. Idendity: (1,1')

$$(1,1')(g,g')=(1\phi_{1'}(g),1'g')=(g,g')$$
 and $(g,g')(1,1')=(g\phi_{g'}(1),g'1')=(g,g')$

3. Inverse: $(g,g')^{-1}=(\phi_{(g')^{-1}}(g^{-1}),(g')^{-1})$ $(g,g')(\phi_{(g')^{-1}}(g^{-1}),(g')^{-1})=(g\phi_{g'}(\phi_{(g')^{-1}}(g^{-1})),g'(g')^{-1})=(g\phi_{g'(g')^{-1}}(g^{-1})),1')=(1,1')$ $(\phi_{(g')^{-1}}(g^{-1}),(g')^{-1})(g,g')=(\phi_{(g')^{-1}}(g^{-1})\phi_{(g')^{-1}}(g),(g')^{-1}g')=(\phi_{(g')^{-1}}(g^{-1}g),1')=(1,1')$

Similar to G imes G' , we can identify G with $G imes \{1'\} \subseteq G
times_\phi G'$

$$G'$$
 with $\{1\} imes G'\subseteq G
times_\phi G'$

and it's easy to verify G, G' are subgroups of $G \rtimes_{\phi} G'$ under this identification.

Prop. Under the above identification, G is a normal subgroup of $G \rtimes_{\phi} G'$, and $(1,g')(g,1')(1,g')^{-1} = (\phi_{g'}(g),1')$.

Pf.
$$\forall (x,y) \in G \rtimes_{\phi} G'$$
, $\forall (g,1') \in G \times \{1\}$,
$$(x,y)(g,1')(x,y)^{-1} = (x\phi_y(g),y)(\phi_{y^{-1}}(x^{-1}),y^{-1}) = (x\phi_y(g)\phi_y(\phi_{y^{-1}}(x^{-1})),yy^{-1}) = (x\phi_y(g)x^{-1},1') \in G \times \{1'\}$$

so $G imes \{1'\}$ is a normal subgroup of $G imes_\phi G'$ In particular, taking (x,y)=(1,g'), $(1,g')(g,1')(1,g')^{-1}=(1\phi_{\sigma'}(g)1^{-1},1')=(\phi_{\sigma'}(g),1')$

We want to identify G as a semidirect product of its subgroups H and K. By the Prop above, the action of K on H in G should be conjugation, so let $\phi: K \to Aut(H)$ be $\phi_k: H \to H$, $h \mapsto khk^{-1}$. Define $f: H \rtimes_{\phi} K \to G$, $(h,k) \mapsto hk$.

Prop. H is a normal subgroup of G and K is a subgroup of G. Then f defined above is a semidirect product $\iff H \cap K = \{1\}$ and HK = G.

Notation. If the above f is an isomorphism, we write $G=H\rtimes K$. The symbol ϕ , which stands for the conjugation action of K on H, is omitted.

Example:
$$S_3$$
. $H = <(123) >$. $K = <(12) >$. $S_3 = H \times K$ since

- H is a normal subgroup of S_3 . K is a subgroup of S_3 .
- $H \cap K = \{1\}$
- $|HK|=rac{|H| imes|K|}{|H\cap K|}=6=|S_3|
 ightarrow S_3=HK$

5.4 Rubik's Cube Group

The Rubik's Cube Groups G is the group of all moves of a $3 \times 3 \times 3$ Rubik's Cube, with the law of composition be the composition of moves.

Each element in G can be written as a finite sequence of composition of the following elements: U, D, F, B, L, R, which denotes the clockwise rotation by 90 degree of the Up, Down, Front, Back, Left and Right face respectively. Each is of order 4.

Let V denote the set of 8 corner blocks and E the set of 12 edge blocks. Each move will induce a permutation on V and on E respectively. We obtain a homomorphism $G \to S_8 \times S_{12}$.

Let γ_0 be the kernel of this map, then it consists of moves that do not permute the blocks.

If we assign an orientation to each of the subcube, then let γ_1 be the subgroup of G that preserves the orientation of each subcube.

Then
$$G = \gamma_0 \times \gamma_1$$
.

5.5 Groups of Order 2p

If p is a prime and G is a group of order 2p, then G is isomorphic to either $\mathbb{Z}/2p\mathbb{Z}$ or D_p .

5.6 Groups of Order 12

There are five isomorphic classes of groups of order 12.

 $\mathbb{Z}/12\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, D_6 , A_4 , another with no name.

Pf.
$$|G|=12=2^2 imes 3$$

Let H be a Sylow 2-subgroup of G. |H|=4.

Let K be a Sylow 3-subgroup of G. |K|=3.

$$n_2 \mid 3, n_2 \equiv 1 \pmod{2} \to n_2 = 1/3$$

$$n_3 \mid 4, n_3 \equiv 1 \pmod{3} \rightarrow n_3 = 1/4$$

Tf there are 4 subgroups of order 3, then there are only $12-1-4\times(3-1)=3$ elements outside the union of there four Sylow 3-subgroups, so there is only space for at most 1 Sylow 2-subgroup. We conclude either H or K is a normal subgroup of G.

Case 1. $H \triangleleft G$, $K \triangleleft G$.

$$G = H \times K$$

Case 1a.
$$G=H imes K\cong \mathbb{Z}/4\mathbb{Z} imes \mathbb{Z}/3\mathbb{Z}\cong \mathbb{Z}/12\mathbb{Z}$$

Case 1b.
$$G=H imes K\cong \, \mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/3\mathbb{Z}$$

Case 2. $H \triangleleft G$, K is not normal.

$$G = H \rtimes K$$

Case 2a. $G\cong \mathbb{Z}/4\mathbb{Z}\rtimes_{\phi}\mathbb{Z}/3\mathbb{Z}, \phi:\mathbb{Z}/3\mathbb{Z}\to Aut(\mathbb{Z}/4\mathbb{Z})\cong (\mathbb{Z}/4\mathbb{Z})^{\times}\cong \{\bar{1},\bar{3}\}.$ So $|Aut(\mathbb{Z}/4\mathbb{Z})|=2$ and $|\mathbb{Z}/3\mathbb{Z}|=3$, there is no nontrivial homomorphism ϕ in this case.

Case 2b. $G\cong (\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z})\rtimes_{\phi}\mathbb{Z}/3\mathbb{Z}$, $\phi:(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z})\to Aut(\mathbb{Z}/4\mathbb{Z})\cong Aut(K_4)\cong S_3$. ϕ is determined by $\phi(\bar{1}_3)$, and $|\bar{1}_3|=3$, so $\bar{1}$ is mapped to one of the two 3-cycles in S_3 . These two choices will give isomorphic semi-direct product group structure since there is an automorphism of S_3 switching the two 3-cycles. In this case there is a unique semi-direct product structure.

Case 3. $K \triangleleft G$, H is not normal.

$$G = K \rtimes H$$

Case 3a. $G\cong \mathbb{Z}/3\mathbb{Z}\rtimes_{\phi}\mathbb{Z}/4\mathbb{Z}$, $\phi:\mathbb{Z}/4\mathbb{Z}\to Aut(\mathbb{Z}/3\mathbb{Z})\cong (\mathbb{Z}/3\mathbb{Z})^{\times}\cong \{\bar{1},\bar{2}\}$. ϕ is determined by $\phi(\bar{1}_4)$ and ϕ is not trivial, so $\phi(\bar{1}_4)$ is the map $\bar{k}_3\to 2\bar{k}_3=-\bar{k}_3$, and $\phi(\bar{m}_4)=(\bar{k}_3\mapsto (-1)^m\bar{k}_3)$. In this case there is a unique semi-direct product structure.

Case 3b. $G\cong \mathbb{Z}/3\mathbb{Z} \rtimes_{\phi} (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/3\mathbb{Z} \rtimes_{\phi} K_4$. $\phi: K_4 \to Aut(\mathbb{Z}/3\mathbb{Z}) \cong (\mathbb{Z}/3\mathbb{Z})^{\times} \cong \{\bar{1},\bar{2}\}$. The three non-identity elements in K_4 are all of order 2, so if ϕ is not trivial, it has to be the case two of these three elements map to $\bar{2}_3$ and the remaining one maps to $\bar{1}_3$. And the difference choices of the element sending to $\bar{1}_4$ give isomorphic semidirect product groups. In this case this is a unique semi-direct product structure.

5.6 Groups of Order 8

There are 5 isomorphic classes of groups of order 12.

$$\mathbb{Z}/8\mathbb{Z}$$
, $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, D_4 , Q_8 .

G is a group of order 8. Let $m=\max_{g\in G}|g|$, the maximal order of elements in G. The possibilities are m=2, m=4 or m=8.

Case 1. m=8. $G\cong \mathbb{Z}/8\mathbb{Z}$.

Case 2.
$$m=2$$
. $G\cong \mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z}$.

Case 3.
$$m=4$$
. $G\cong \mathbb{Z}/4\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$.

$$G\cong \mathbb{Z}/4\mathbb{Z}\rtimes_{\phi}\mathbb{Z}/2\mathbb{Z}\cong D_4.$$

$$G\cong Q_8$$
.

Lemma. If all the non-identity elements of a group G are of order 2, then G is abelian.

Pf.
$$\forall x,y \in G, \, x^2=1$$
 , $y^2=1$ $\Rightarrow x=x^{-1}$, $y=y^{-1}$, $(xy)^2=1$ $\Rightarrow xy=(xy)^{-1}=y^{-1}x^{-1}=yx$

Lemma. H, K are subgroups of a group G. Then HK is a subgroup of $G \iff HK = KH$.

Pf. If
$$HK=KH$$
 , $orall h_1k_1,h_2k_2\in HK$, $(h_1k_1)^{-1}(h_2k_2)=k_1^{-1}h_1^{-1}h_2k_2$.

$$k_1^{-1}\in K$$
, $h_1^{-1}h_2\in H$, so $k_1^{-1}h_1^{-1}h_2\in KH=HK$, there exists $h\in H$ and $k\in K$ such that $k_1^{-1}h_1^{-1}h_2=hk$. Therefore, $k_1^{-1}h_1^{-1}h_2k_2=hkk_2\in HK$.

If HK is a subgroup of G, for any $kh\in KH$, $kh=(h^{-1}k^{-1})^{-1}\in HK$ since $h^{-1}k^{-1}\in HK$ and HK is a subgroup. So $KH\subseteq HK$.

For any $hk\in HK$, $(hk)^{-1}\in HK$ since HK is a subgroup, so $(hk)^{-1}=h'k'$ for $h'\in H$ and $k'\in K$, so $hk=k'^{-1}h'^{-1}\in KH$. So $HK\subseteq KH$. Therefore, HK=KH.