Detección de anomalías

¿Puede la estadística superar a la Inteligencia Artificial?

Anomalías

Tipos de anomalías

¿Qué es la detección de anomalías?

Dataset Multivariante

Tabla 4.1: Dataset reducido países europeos COVID-19.

Country	Median age	Cases per million	Deaths per million
DEU	46,6	306698,552	1638,835
FRA	42,0	433655,706	$2185,\!399$
GBR	40,8	$326289{,}747$	$2601,\!2680$
ITA	47,9	$282567,\!295$	2737,302
ESP	$45,\!5$	259430,255	$2255{,}718$
POL	41,8	$158833,\!664$	$3074,\!503$
NLD	43,2	$475238,\!184$	$1304,\!308$
CHE	43,1	$418697,\!437$	$1581,\!207$
FIN	42,8	$192802,\!884$	$772,\!120$
NOR	39,7	261593,130	560,045
LTU	$43,\!5$	$394302,\!384$	3393,111
SEN	18,7	5003,341	114,327

Modelo de Normalidad

Objetivo

Deep learning

Anécdota

SELECT menu_name, COUNT(*) as menu_count FROM usage_logs
GROUP BY menu_name ORDER BY menu_count DESC LIMIT 5;

Métodos

Multivariate análisis

PCA

Deep learning

Autoencoders

[D. Bank, N. Koenigstein, and R. Giryes, "Autoencoders," 2020]

PCA

 $\underset{\text{\tiny Data in}}{X} \to \underset{\text{\tiny Loadings}}{P} \to \underset{\text{\tiny Scores}}{T} \to \underset{\text{\tiny Loadings'}}{P^T} \to \mathring{X}_{\text{\tiny Reconstructed}}$

Entrenamiento de PCA

Algoritmo 1 Proceso de entrenamiento de PCA.

Require: train_data to be normal

Ensure: Minimal loss

1: procedure Train_data, PCs)

2: $X \leftarrow train_data$

 \triangleright Without labels

3: $P \leftarrow eigenvectors(X \cdot X^T)$

▶ Loadings

4: $D \leftarrow eigenvalues(X \cdot X^T)$

, 1

Sort P by D

_

 $T \leftarrow X \cdot P$

▶ Scores

7: $D \leftarrow D(1:PCs)$

 $T \leftarrow T(1:PCs)$

 \triangleright Use only first PCs

9: end procedure

Data
Eigenvector 1

$$\underset{\text{\tiny Data in}}{X} \to \underset{\text{\tiny Loadings}}{P} \to \underset{\text{\tiny Scores}}{T} \to \underset{\text{\tiny Loadings'}}{P^T} \to \underset{\text{\tiny Reconstructed}}{\hat{X}}$$

Autoencoder

[D. Bank, N. Koenigstein, and R. Giryes, "Autoencoders," 2020]

Autoencoder

Entrenamiento del Autoencoder

```
Algoritmo 2 Proceso de entrenamiento del Autoencoder.
Require: train_data to be normal
Ensure: Minimal loss
 1: procedure Train_data, epochs, bottleneck_size, hidden_size)
       X \leftarrow train\_data
                                                             ▶ Without labels
       N \leftarrow epochs
       Build encoder network with provided sizes
 4:
       Build decoder network with provided sizes
       for N iterations do
           X_{enc} \leftarrow Encoder(X)
           X_{dec} \leftarrow Decoder(X_{enc})
          loss \leftarrow MSE(X, X_{dec})
           Encoder, Decoder \leftarrow ADAM(Encoder, Decoder, loss)
10:
11:
       end for
       Model \leftarrow Decoder(Encoder(X))
12:
13: end procedure
```


$$X \to Encode \to Bottleneck \to Decode \to \hat{X}$$

Detección

PCA

Autoencoder

Métricas: ROC y AUC

Dataset ECG

Normal

Anomalía

Resultados ECG

Tabla 6.4: Resultados del *dataset* de electrocardiogramas con distintos preprocesados: Auto-scaling (AS), Mean-centering (MC) y sin procesar (\emptyset).

Prep.	Method	\mathbf{AUC}	Precision	Recall	Accuracy	F_1
AS	PCA	1	0.89	1	0.945	0.9418
	Autoencoder	0.9453	0.99	0.93396	0.96	0.96117
	S-Autoencoder	0.9485	0.98	0.93333	0.955	0.9561
MC	PCA	0.981	0.99	0.97059	0.98	0.9802
	Autoencoder	0.9912	0.74	0.98667	0.865	0.84571
	S-Autoencoder	0.995	0.81	0.9878	0.9	0.89011
Ø	PCA	0.9926	0.99	0.97059	0.98	0.9802
	Autoencoder	0.9999	0.99	0.99	0.99	0.99
	S-Autoencoder	0.9998	0.98	0.9899	0.985	0.98492

Generación de datasets

Delgado

Cuadrado

Grueso

1000 x 10000

Dataset delgado

Tabla 6.1: Resultados del dataset delgado (100 variables) con Ψ variables anómalas.

Ψ	Method	AUC	Precision	Recall	Accuracy	F_1
10	PCA	0.9569	0.82	0.97619	0.9	0.8913
	Autoencoder	0.9678	0.93	0.92079	0.925	0.92537
	S-Autoencoder	0.9645	0.94	0.85455	0.89	0.89524
	PCA	0.9126	0.62	0.96875	0.8	0.7561
20	Autoencoder	0.9272	0.87	0.91579	0.895	0.89231
	S-Autoencoder	0.8608	0.82	0.78846	0.8	0.80392
	PCA	0.8101	0.34	0.94444	0.66	0.5
50	Autoencoder	0.864	0.68	0.90667	0.805	0.77714
	S-Autoencoder	0.7968	0.61	0.75309	0.705	0.67403

Dataset cuadrado

Tabla 6.2: Resultados del dataset cuadrado (1000 variables) con Ψ variables anómalas.

Ψ	${f Method}$	\mathbf{AUC}	Precision	Recall	Accuracy	F_1
100	PCA	0.9989	0.99	0.99	0.99	0.99
	Autoencoder	0.9815	0.99	0.66892	0.75	0.79839
	S-Autoencoder	0.9667	0.97	0.78226	0.85	0.86607
200	PCA	0.9953	0.92	0.98925	0.955	0.95337
	Autoencoder	0.9464	0.99	0.66443	0.745	0.79518
	S-Autoencoder	0.9201	0.92	0.74797	0.805	0.82511
500	PCA	0.9483	0.68	0.98551	0.835	0.80473
	Autoencoder	0.8355	0.93	0.63699	0.7	0.7561
	S-Autoencoder	0.8159	0.85	0.66406	0.71	0.74561

Dataset grueso

Tabla 6.3: Resultados del dataset grueso (10000 variables) con Ψ variables anómalas.

Ψ	Method	AUC	Precision	Recall	Accuracy	F_1
1000	PCA	0.9999	1	0.87719	0.93	0.93458
	Autoencoder	0.9564	0.81	0.96429	0.89	0.88043
	S-Autoencoder	0.9385	0.85	0.95506	0.905	0.89947
2000	PCA	0.9993	1	0.87719	0.93	0.93458
	Autoencoder	0.93	0.74	0.94872	0.85	0.83146
	S-Autoencoder	0.8481	0.57	0.91935	0.76	0.7037
5000	PCA	0.9838	0.96	0.87273	0.91	0.91429
	Autoencoder	0.805	0.37	0.90244	0.665	0.52482
	S-Autoencoder	0.7664	0.47	0.85455	0.695	0.60645

Conclusiones

Referencias

- J. Camacho, J. M. García-Giménez, N. M. Fuentes-García, and G. Maciá-Fernández, "Multivariate big data analysis for intrusion detection: 5 steps from the haystack to the needle" 2019
- D. Bank, N. Koenigstein, and R. Giryes, "Autoencoders" 2020
- J. Camacho. MEDA-Toolbox (https://github.com/josecamachop/MEDA-Toolbox), 2022
- M. Abadi et al., "TensorFlow: Large-scale machine learning on heterogeneous systems" 2015

Agradecimientos

- José Camacho Páez (Universidad de Granada)
- José Suárez-Varela Maciá (Universidad Politécnica de Cataluña)