

Sistemas complementares para Câmara de Termo-Vácuo para **CubeSats**

1

Contextualização

CubeSat e sua importância

Definição de CubeSat

Satélite de pequeno porte em forma de um cubo, cuja aresta mede 10 centímetros e que obedece a um padrão tendo uma estrutura com massa de até 1,3 quilograma.

Comparação com satélite tradicional

Vantagens

Menor custo;

Mesmas aplicações;

Equipe menor;

Menos tempo de desenvolvimento;

Desvantagens

Menor tempo de vida;

Limitação de espaço;

Número de Cubesats lançados por ano

Modelo Sistêmico

Modelo Sistêmico

Execução dos testes no LIT

- Tempo de espera
- Burocracia de testes
- Logística de transporte
- Custos

Mas e os testes do modelo de engenharia?

2 Solução

Uma câmara de termo-vácuo para testes de CubeSat no modelo de engenharia ou pré-qualificação.

Funcionamento

Sistemas da câmara de termo-vácuo

Objetivos

- Proporcionar alto vácuo e temperatura entre -20°C e 60°C
- Possuir cinco modos de operação de teste
- Acoplar CubeSats de até 3U
- Movimentar o Cubesat em 2 eixos (inovação)
- Acompanhar dados em tempo real com interface para o usuário

Modos de operação

	Alto vácuo	LN2 frio	GN2 Quente	Simulador Solar
Vácuo Simples	X			
Vácuo Quente	X		X	
Vácuo frio	X	X		
Ciclagem térmica	X	X	X	
Simulação espacial	X	X	X	X

Escopo do projeto

Metodologia, riscos e requisitos

Metodologia

SCRUM + KANBAN

Requisito

Definido a partir das necessidades dos stakeholders

Riscos

Definido a partir das premissas quando não cumpridas.

Estrutura Analítica do Projeto

4

Escopo do produto

Fluxograma

Delimitação do escopo

Divisão da solução

5

Solução Estrutural

Arquitetura de sistemas que viabilizam os cinco modos de operações de teste previstos.

Suporte para o Cubesat

- 2 graus de liberdade
- Giro em torno no eixo longitudinal
- Giro em 180°
- Aço Inox

Interface Camara-linha de N2

- Duas linhas de N2:
 líquido e gás
- Válvulas de retenção e medidor de vazão
- Aquecedor,
 condensador e bomba
- Dewar para armazenar o LN2

Interface Camara-linha de N2

- Bifurcação: uma para a porta e outra para o restante da placa térmica
- Sensores de pressão e temperatura
- Válvulas de controle de vazão

Câmara de vácuo

Solução de Energia

Sistema de simulação solar

Parte Elétrica

Trocadores de Calor

7

Solução de Eletrônica

Arquitetura inicial do sistema eletrônico

Central de controle e sensoriamento

- Termopar tipo T;
- Sensor de pressão
 Pirani;
- Sensor de pressão penning;

Sistema de atuadores

- Controle PID
- Controle ON/OFF
- Controle de velocidade

8

Solução de Software

Visão Geral

Integração com eletrônica

Obter e apresentar dados de cada sensor individualmente

Enviar comandos para os testes

Usabilidade

Apresentar o necessário, mantendo o sistema minimalista e intuitivo

Aplicação Web

Automatizar serviços da câmara

Painel de dados da câmara em tempo real

Geração posterior de gráficos com os dados obtidos

Prototipação

Protótipo v1.0

Protótipo v2.0

Protótipo v2.0

Protótipo v2.0

Dúvidas?

Câmara de Termo-vácuo para Cubesats

Grupo 4