2025 睿抗机器人开发者大赛(RAICOM2025)

CAIP 信息技术创新赛道

智海人工智能算法应用赛总决赛规则文件

一、项目概览

1. 赛项名称

智海人工智能算法应用赛

2. 赛项简介

当前,人工智能技术正以前所未有的速度重塑各行各业,成为推动社会进步的核心驱动力。然而,技术的高门槛和复杂开发流程让许多学习者与创新者望而却步。为此,智海 Mo 平台始终秉持"让 AI 学习与开发更简单"的使命,致力于提供易用、开放的人工智能工具与资源,赋能每一位开发者与学习者轻松踏入 AI 领域,释放创新潜能。

为进一步降低 AI 应用门槛、激发全民创新活力,智海 Mo 平台联合睿抗机器人开发者竞赛组委会共同发起"智海算法 应用赛"。本次赛事聚焦人工智能技术的实践与落地,面向 各阶段院校学生开放,旨在通过真实场景的算法设计与应用 挑战,推动参赛者深入理解 AI 技术逻辑,掌握从理论到实践 的全流程能力。

二、竞赛交流群

OO 交流群号: 974222522 (验证信息格式: 学校+姓名)

咨询老师电话: 陈老师, 电话: 18068447080; 郑老师, 15869162394 (工作日 9:00-17:00)

答疑支持: 每日8: 30-17: 30

三、赛项目标

为响应国家全面推进全民人工智能素养的规划,促进新一代人工智能发展规划中相关教育改革的推进,鼓励选手们学以致用,在教的过程中更好地掌握知识。因此,本赛项通过在"Mo-Tutor"的创新教学模式下制作高质量的教学课件,以促进人才培养与筛选,促进人工智能领域内容的创新与提升。

人才培养:深度理解人工智能的核心素养,掌握 Python 编程、深度学习框架应用等知识。

产业转化:推动 AI 技术在教育互动等场景的落地应用,探索"AI+X"交叉学科赋能。

四、参赛要求

1. 团队能力要求

正式注册的全日制在校师生(含中职、高职高专、本科生、 硕博研究生、教师)可报名参赛。

参赛人员以组队形式参加,每队不超过5个人,报名、答题与成果提交均于线上进行。

2. 设备规范

需要一台能够访问网络的电脑。由于 Mo 平台在线编程环境对浏览器的兼容性进行了优化,建议使用 Chrome 浏览器,以获得最佳的使用体验。

3. 参赛平台

报名须在睿抗(Raicom)(https://www.raicom.com.cn/)官网报名。在赛事正式开放前,Mo平台(https://momodel.cn/competition)将开放访问,供参赛者提前熟悉和练习。建议利用这段时间,熟悉平台的操作界面、编程工具及提交流程,确保在竞赛中能够高效地完成任务。

五、竞赛场地及道具

1. 提交要求

国赛需在智海Mo平台进行课程内容制作,并按规定格式提交, 详细提交内容请参考竞赛任务说明。 比赛时间: 2025 年 8 月 11 日-13 日 (全天开放,截至提交 8 月 13 日 16: 59: 59);

线上参赛: 智海 Mo 平台(https://momodel.cn/competition) 选手最终将成果通过 Mo 平台提交入口进行提交。

2. 道具清单(物料、障碍物、标签等) 本赛事无额外赛事物料购买要求,Mo平台提供相关算力资源。

六、竞赛任务

● 任务:课程制作挑战

选手们需要转换身份,作为学生的同时从老师角度出发,选择相关知识主题制作学习内容。具体要求如下:

- 1. 根据提供的课程"知识点"与"实训项目"两大主题范围,制作课程内容,课程形态为"Mo-Tutor"形式。
- 2. 选手可在两大主题下选择合适内容制作课件,主题范围详见第十一点,其中针对每个内容都提供参考数据集链接,选手可根据需要使用其他数据集,并在提交成果时附上数据集或者数据集链接。
 - 3. 提交相应知识制作完的课件,课件需包含:
 - 1) 带队教师针对课程设计的不超过 10 分钟的讲解视频 (视频内容需要包含 a. 为何选择这个知识点/实训

主题, b. 整体内容是如何组织设计, c. 带队教师对教案的介绍);

- 2)课程文件(.ipynb 格式): 课程文件是指针对特定知识点或实训主题,为学生提供自主学习和实践操作内容的资料集合。它强调的是学生视角的学习资源,目标是让学生在没有老师直接指导的情况下,也能通过阅读和操作完成学习目标;
- 3)与课程内容配套的教案(.ipynb格式): 教案是教师为了课堂教学而准备的详细教学计划。它强调的是教师视角的教学实施策略,是教师在课堂上如何引导学生学习、如何组织教学活动、如何评估学习效果的计划书。内容至少包含课程题目、教学课型、教学重难点、教学方法、预期教学成果、教学过程等;
- 4. 课程文件及教案样例参见链接:

https://digitallab.yuque.com/akxo27/cf20ug/haiqg1 411km5mn00?singleDoc#

概念解释:

知识点是指在特定主题或领域中需要掌握的具体事实、概

念、原则或技能。它是教学内容的基本单元,用于构建更复杂的理解和技能。知识点是教学和学习过程中的基础元素,帮助学习者逐步建立起对特定领域的深入理解;知识点可以是理论性的,也可以是实践性的,根据学习目标的不同而有所差异。示例如下:在数据分析与可视化领域,知识点可能包括 Numpy数组的统计运算, Pandas 缺失值处理, Matplotlib 绘图等。

实训项目是针对教学过程中增强应用能力的案例项目,包含实验指南、代码、数据集等内容。比赛提供多个实训题目,并在智海 Mo 提供"Mo-Tutor"功能插件,选手可自由选择题目进行内容创作。赛项将根据内容的学习效果、理解难度、"Mo-Tutor"功能利用率(Mo-Tutor提供课件屏幕与手写板书录制功能,选手完成的内容应充分体现相关功能)进行评分,要求 notebook 代码运行需无错误,文字描述和代码相匹配,内容详实。实训要求样例如下:

- 房价预测

根据房屋的位置、大小、建造年份等特征,使用 PyTorch 构建预测模型预测房屋的市场价值。项目需要包含完整的项目 背景说明、数据集分析、模型结构说明、模型训练、模型测试 部分。默认学生已具备 Python 基础和深度学习基础知识。

概念介绍:

实训项目开发指的是围绕特定问题或情境,设计和实施的 教学案例或项目。这些案例通常包括实际问题、数据集、工具 和技术的应用,以及预期的学习成果。实训内容开发侧重于应 用和实践,通过解决具体问题来加深理解;它们通常包含详细 的背景信息、目标、步骤、数据和可能的解决方案;数据集来 源部分案例库中会提供,如果没有,则需要自己搜集并上传至 平台。

七、成绩评定

1. 评分细则(项目、分值、评分标准) 评分标准:组织专家委员会,将根据内容的教学效果、理解 难度、"Mo-Tutor"功能利用率进行评选。

国赛评分细则:

- 内容的准确性(30分)
- ◆ 概念准确性 (15分): 内容中的概念、定义、原理等 是否准确无误,是否存在歧义或误导性表述。
- ◆ 代码可运行性(15分):提供的代码是否能够正常、 流畅运行,是否存在语法错误、逻辑错误或运行环境不兼容等问 题。

- **完整性(20分):** 内容的结构是否完整,是否按照要求覆盖 所有内容,逻辑是否严密。
- **创新性(20分):** 使用 Mo-Tutor 进行课件屏幕与手写板书录制的比例。
- 教学效果 (20分):
- ◆ 清晰度(10分): 教学目标和知识点是否表述清晰, 逻辑是否连贯。
- ◆ **互动性(10分):** 内容是否包括互动元素,如问题、 讨论和实践练习。
- **课件资源丰富度(10分):** 内容中是否提供了多种教学资源, 包括且不限于文字、可运行代码、视频、图片等。
- 2. 违规扣分(人为干预、设备越界等) 抄袭或影响比赛公平性的行为将直接取消资格。
- 3. 统分办法

国赛由专家委员会综合评审。

4. 特殊情况处理(如成绩并列)

国赛阶段:

若总分相同,按以下优先级排序:

准确性(权重30%)得分更高者优先;

完整性(权重20%)得分更高者优先;

创新性(权重20%)得分更高者优先。

八、赛程赛制

1. 赛制规划

国赛采用线上参赛形式,为期三天。

比赛需要提交课件文件(包括. ipynb 格式的 Notebook 及相关文件)、教案(. ipynb 格式)、关于课程设计的讲解视频(10分钟)。参赛队伍需根据选择的主题,制作"Mo-Tutor"形式的课件内容。提交的内容需通过 Mo 平台的 Notebook 完成,代码需能正常运行,文字描述与代码需匹配。

九、竞赛流程

1. 场地适应

在赛事正式开放前, Mo 平台将开放访问, 供参赛者提前熟悉和练习。建议利用这段时间, 熟悉平台的操作界面、编程工具及提交流程, 确保在竞赛中能够高效地完成任务。

2. 检录规则

不涉及

3. 赛场规则

不涉及

4. 离场规则

不涉及

5. 紧急情况

如涉及影响赛事正常进行的情况出现,赛事主办方将与主委会协调解决方案。

十、赛项安全

1. 安全管理

参赛者需遵守平台使用规范,禁止攻击系统或窃取数据。 组委会保留对异常提交的审查权。

2. 应急预案

如遇平台故障等影响比赛正常进行的情况,将咨询组委会意见,酌情考虑启用备选方案,顺延比赛时间。

十一、其他说明

- 1. 规则最终解释权归组委会所有;
- 2. 技术细节更新以赛前睿抗官网/公众号发布的为准。
- 3. 知识点主题范围

知识点	知识点说明	学生基础	内容长度要求
SSD	需涵盖 SSD 的起源、算法讲解、网络结构 (如多尺度特征图、Default Box)、损失函 数以及在目标检测中的应用场景;	默认学生已具备 Python 基础和深度学习基础知识	满足 45 分钟课 时内容量

YOLOv5	需涵盖 YOLO 的起源、YOLOv5 网络结构、 边界框预测、非极大值抑制(NMS)以及在 目标检测中的应用场景;	默认学生已具备 Python 基础和深度学习基础知识	满足 45 分钟课 时内容量
Tokenizer	需涵盖 Tokenizer 的起源、定义、常见分词方法(如 WordPiece, BPE, SentencePiece)、词汇表构建以及在自然语言处理中的应用;	默认学生已具备 Python 基础和自然语言处理基础知识	满足 45 分钟课时内容量
Word Embedding	需涵盖 Embedding 的起源、定义、常见 Embedding 方法 (如 Word2Vec, GloVe, FastText)以及在自然语言处理中的应用;	默认学生已具备 Python 基础和自然语言处理基础知识	满足 45 分钟课 时内容量
Transformer	需涵盖 Transformer 的起源、定义、编码器 - 解 码 器 结 构 、 自 注 意 力 机 制 (Self-Attention)、多头注 意 力 机 制 (Multi-Head Attention)、位置编码以及在 自然语言处理中的应用	默认学生已具备 Python 基础和自然语言处理基础知识	满足 45 分钟课时内容量
BERT	需涵盖 BERT 的起源、定义、模型结构、预训练任务(如 Masked Language Model, Next Sentence Prediction)、Fine-tuning 策略以及在自然语言处理中的应用	默认学生已具备 Python 基础和自然语言处理基础知识	满足 45 分钟课 时内容量

4. 实训项目主题范围

实训项目名	实训项目目标	实训描述	学生基础	建议数据集
基于 SSD 的农作物病害检测	训练一个基于 SSD 的模型,用 于实时检测和 识别农作物病 害	随着全球气候变化和农业生产的集约化,农作物病害的发生日益频繁,严重威胁粮食安全。及时准确地识别农作物病害是有效防治的关键。本项目旨在利用深度学习中的 SSD (Single Shot MultiBox Detector) 模型,对农作物图像中的病害进行实时检测和识别。	默认学生 已 具 备 Python 基础和深 度学习 础知识	https://www.kaggle.com/d atasets/kamipakistan/plant- diseases-detection-dataset
基于 YOLOv5 的足球比赛 目标检测	训练一个基于 YOLOV5 的模型,用于实时检测足球比赛中的球员和足球	在体育赛事分析、战术复盘及智能裁判系统中,实时准确地检测场上球员和足球的位置至关重要。本项目旨在利用深度学习中的 YOLOv5模型,对足球比赛视频或图像流中的球员和足球进行实时检测和识别。此项目可用于开发智能体育分	默认学生 已 具 备 Python 基础和深 度学习基 础知识	https://www.kaggle.com/d atasets/borhanitrash/footb all-players-detection-datase t

		析工具,提升比赛数据收集的效率 和精度,甚至为自动裁判系统提供 支持。		
基于规则与统计的中文新闻分词器构建	构建一个高效 的文本分词器, 用于预处理大 规模新闻文章 数据	在自然语言处理(NLP)领域,文本分词(Tokenization)是所有后续任务(如文本分类、机器翻译、信息检索等)的基础步骤。本项目旨在通过对比和实践不同的分词方法(如基于规则的词典匹配、基于统计的 BPE、WordPiece等),构建一个高效、准确的中文分词器。	默 以 其 B Python 基 出 語 主 出 出 出 出 出 出 出 出 出 出 出 出 出	https://www.kaggle.com/d atasets/ceshine/yet-anothe r-chinese-news-dataset
基于词嵌入的电影评论情感分析	基于文本内容 训练问嵌入模 型,提升电影评 论情感分类的 准确性	在自然语言处理任务中,将文本数据转化为机器可理解的数值表示是关键一步。词嵌入(Word Embedding)技术能够将词语映射到低维连续向量空间,捕获词语之间的语义关系。本项目旨在训练和比较不同的词嵌入模型(如Word2Vec, GloVe, FastText),并将其应用于下游自然语言处理任务以进行比较。通过本实训,学生将理解词嵌入的原理、训练过程以及如何利用高质量的词向量来提升文本分类等下游NLP任务的性能。	默认 具 Python 基 然 语 量 础 知 识	https://www.kaggle.com/d atasets/lakshmi25npathi/i mdb-dataset-of-50k-movie- reviews
基 Transformer 的智能对话 系统构建	训练一个基于 Transformer 模型的文本生成器,实现多轮对话	随着人工智能技术的发展,构建能够进行流畅、有逻辑、多轮对话的智能系统成为了热门方向。Transformer 架构,凭借其强大的自注意力机制,在序列建模任务上取得了突破性进展。本项目旨在训练一个基于 Transformer 的对话生成模型。该模型能够理解用户意图,并生成连贯、相关的回复,模拟真实的对话场景。学生将学习Transformer 的核心组件(如自注意力、多头注意力、位置编码),以及如何将其应用于对话生成任务,理解其在解决长距离依赖和并行计算方面的优势。	默已Python基然理识	https://www.kaggle.com/d atasets/atharvjairath/empa thetic-dialogues-facebook-a i?select=emotion-emotion_ 69k.csv
基于 BERT	利用 BERT 模	命名实体识别 (NER) 是信息抽取的	默认学生	https://www.kaggle.com/d

的新闻文章	型进行命名实	核心任务,旨在从非结构化文本中	己具备	atasets/namanj27/ner-data
命名实体识	体识别,从新闻	识别并分类出具有特定意义的实	Python	set
别	文章中提取关	体,如人名、地名、组织机构名、	基础和自	
	键信息	日期等。本项目旨在利用 BERT 模	然语言处	
		型实现对内容的精确信息抽取。学	理基础知	
		生将学习 BERT 在序列标注任务上	识	
		的应用,理解其如何通过上下文信		
		息识别和分类不同类型的实体,这		
		对于构建知识图谱、信息检索和问		
		答系统等具有重要意义。		