```
import numpy as np
ar1=np.array([[1,2],[5,6]])
ar2=np.array([[2,1],[6,5]])
print(ar1)
print(ar2)
print("Matrix Addition")
print(np.add(ar1,ar2))
print("Matrix Subtraction")
print(np.subtract(ar1,ar2))
print("Matrix multiplication")
print(np.multiply(ar1,ar2))
print("Matrix Division")
print(np.divide(ar1,ar2))
print("Matrix Multiplication")
print(np.dot(ar1,ar2))
print("Matrix Transpose")
print(ar1.transpose())
print("Sum of diagonal Matrix ")
print(np.trace(ar1))
output
```

$C:\ \ \ C:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
[[1 2]
[5 6]]
[[2 1]
[6 5]]
Matrix Addition
[[3 3]
[11 11]]
Matrix Subtraction
[[-1 1]
[-1 1]]
Matrix multiplication
[[2 2]
[30 30]]
Matrix Division
[[0.5 2.]
[0.83333333 1.2]]
Matrix Multiplication
[[14 11]
[46 35]]
Matrix Transpose
[[1 5]
[2 6]]
Sum of diagonal Matrix
7

Process finished with exit code 0