PROJECT PRESENTATION - CREDIT CARD FRAUD DETECTION

BLM5110 Machine Learning ÖNDER GÖRMEZ 21501035

Agenda

I. Literature Review

II. Dataset

III. Experiments and Results

IV. Conclusions

V. References

VI. Q & A

Literature Review

Dolandırıcılık Tespit Yöntemleri:

- Geleneksel Dolandırıcılık Tespit Yöntemleri
- Geleneksel Makine Öğrenmesi Yöntemleri
 - Decision Trees
 - K-Nearest Neighbors (KNNs)
 - Support Vector Machine (SVM)
- Derin Öğrenme Yöntemleri
 - Yapay Sinir Ağları (ANN)
 - Konvolüsyonel Sinir Ağları (CNN)
 - Recurrent Neural Networks (RNN)

Literature Review

2020 International Conference on E-Commerce and Internet Technology (ECIT)

Credit Card Fraud Detection Using Lightgbm Model

Dingling Ge, Northeastern University, Boston, United States, ge.di@husky.neu.edu,

Jianyang Gu, Nankai University, Tianjin, China, gjy1198350167@163.com, Shunyu Chang, Changchun University of Science and Technology, Jilin, China, changshunyu@yullioner.com,

> JingHui Cai, JiNan University, Guangzhou, China, legolascai@163.com.

Literature Review

2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE 2021)

CatBoost for Fraud Detection in Financial Transactions

Yeming Chen Clarity AI Beijing, China cymcsg@gmail.com Xinyuan Han ClarityAI Beijing, China eric@clarityai.tech

Literature Review

2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE)

A Data Mining Based Fraud Detection Hybrid Algorithm in E-bank

Zijian Song University of Rochester Newyork, United States zsong6@u.rochester.edu

Literature Review

Received March 20, 2022, accepted April 8, 2022, date of publication April 12, 2022, date of current version April 18, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3166891

Credit Card Fraud Detection Using State-of-the-Art Machine Learning and Deep Learning Algorithms

FAWAZ KHALED ALARFAJ¹⁰, IQRA MALIK², HIKMAT ULLAH KHAN¹⁰, NAIF ALMUSALLAM¹, MUHAMMAD RAMZAN¹⁰, AND MUZAMIL AHMED¹⁰

Corresponding author: Hikmat Ullah Khan (hikmat.ullah@ciitwah.edu.pk)

This work was supported by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University through the Research Group under Grant RG-21-51-01.

¹Department of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11564, Saudi Arabia

²Department of Computer Science and Information Technology, University of Sargodha, Sargodha 40100, Pakistan

³Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 47040, Pakistan

Literature Review

Received 29 February 2024, accepted 19 March 2024, date of publication 22 March 2024, date of current version 23 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3380823

Identifying Fraudulent Credit Card Transactions Using Ensemble Learning

JABER JEMAI¹⁰¹, ANIS ZARRAD², AND ALI DAUD¹⁰³

¹CIS Division, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates

Corresponding author: Ali Daud (alimsdb@gmail.com)

²University of Birmingham Dubai, Dubai, United Arab Emirates

³Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates

Agenda

I. Literature Review

II. Dataset

III. Experiments and Results

IV. Conclusions

V. References

VI. Q & A

Dataset

Dataset Features:

- A research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be)
 of ULB (Université Libre de Bruxelles)
- Transactions, September 2013 by European cardholders
- In two days, 492 frauds out of 284,807 transactions
- Input variables which are the result of a PCA transformation
- +5K Users studied in Kaggle

Dataset

	Time	V1	V2	V3	V4	V 5	V6	V7	V8	V9	
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	

5 rows × 31 columns

 V21	V22	V23	V24	V25	V26	V27	V28	Amount	Class
 -0.018307	0.277838	-0.110474	0.066928	0.128539	-0.189115	0.133558	-0.021053	149.62	0
 -0.225775	-0.638672	0.101288	-0.339846	0.167170	0.125895	-0.008983	0.014724	2.69	0
 0.247998	0.771679	0.909412	-0.689281	-0.327642	-0.139097	-0.055353	-0.059752	378.66	0
 -0.108300	0.005274	-0.190321	-1.175575	0.647376	-0.221929	0.062723	0.061458	123.50	0
 -0.009431	0.798278	-0.137458	0.141267	-0.206010	0.502292	0.219422	0.215153	69.99	0

Dataset

Class Distribution of Dataset

Dataset

Splitting the Dataset:

%80 Train, %20 Test set olarak ayrıldı

Train set size: 227845

Non-Fraud transactions in the training set: 227451 samples, 99.8271%

Fraud transactions in the training set: 394 samples, 0.1729%

Test set size: 56962

Non-Fraud transactions in the test set: 56864 samples, 99.8280%

• Fraud transactions in the test set: 98 samples, 0.1720%

Agenda

I. Literature Review

II. Dataset

III. Experiments and Results

IV. Conclusions

V. References

VI. Q & A

Experiments and Results - Logistic Regression

Experiments and Results - Decision Tree

Experiments and Results - Random Forest

Experiments and Results - SVM - Grid Search w. 10% of Data

Kernel Türü	С	degree	gamma
Lineer	0.1, 1, 10 , 100	-	_
Polinomsal	0.1 , 1, 10, 100	2 , 3, 4, 5	-
Gaussian RBF	0.1 , 1, 10, 100	-	0.01 , 0.1, 1, 10

[INFO] [2025-01-04T18:44:57.992Z] Non-Fraud transactions in the training set: 22745 samples, 99.8288%

[INFO] [2025-01-04T18:44:57.992Z] Fraud transactions in the training set: 39 samples, 0.1712%

[INFO] [2025-01-04T18:44:57.992Z]

[INFO] [2025-01-04T18:44:57.993Z] Non-Fraud transactions in the test set: 5686 samples, 99.8244%

[INFO] [2025-01-04T18:44:57.993Z] Fraud transactions in the test set: 10 samples, 0.1756%

[INFO] [2025-01-04T18:44:57.994Z]

	Model	Data	Accuracy	Precision	Recall	F1 Score
0	Best Linear SVM	Train	99.86%	0.706	0.308	0.429
1	Best Linear SVM	Test	99.81%	0.429	0.300	0.353
2	Best Polynomial SVM	Train	99.83%	0.000	0.000	0.000
3	Best Polynomial SVM	Test	99.82%	0.000	0.000	0.000
4	Best RBF SVM	Train	99.83%	0.000	0.000	0.000
5	Best RBF SVM	Test	99.82%	0.000	0.000	0.000

Experiments and Results - SVM - Grid Search w. 10% of Data

Experiments and Results - SVM - Grid Search w. 10% of Data

Experiments and Results - SVM - Grid Search w. 50% of Data

Kernel Türü	С	degree	gamma
Lineer	0.1, 1 , 10, 100	-	_
Polinomsal	0.1 , 1, 10, 100	2 , 3, 4, 5	-
Gaussian RBF	0.1, 1 , 10, 100	-	0.01 , 0.1, 1, 10

[INFO] [2025-01-04T20:51:43.590Z] Non-Fraud transactions in the training set: 113725 samples, 99.8271%

[INFO] [2025-01-04T20:51:43.591Z] Fraud transactions in the training set: 197 samples, 0.1729%

[INF0] [2025-01-04T20:51:43.591Z]

[INFO] [2025-01-04T20:51:43.592Z] Non-Fraud transactions in the test set: 28432 samples, 99.8280%

[INFO] [2025-01-04T20:51:43.592Z] Fraud transactions in the test set: 49 samples, 0.1720%

[INF0] [2025-01-04T20:51:43.593Z]

	Model	Data	Accuracy	Precision	Recall	F1 Score
0	Best Linear SVM	Train	99.87%	0.740	0.376	0.498
1	Best Linear SVM	Test	99.87%	0.714	0.408	0.519
2	Best Polynomial SVM	Train	99.83%	0.000	0.000	0.000
3	Best Polynomial SVM	Test	99.83%	0.000	0.000	0.000
4	Best RBF SVM	Train	99.95%	1.000	0.706	0.827
5	Best RBF SVM	Test	99.83%	1.000	0.020	0.040

Experiments and Results - SVM - Grid Search w. 50% of Data

Experiments and Results - SVM - Grid Search w. 50% of Data

Experiments and Results - SVM

Experiments and Results - KNN

Experiments and Results - XGBoost vs Naive Bayes

	Model	Data	Accuracy	Precision	Recall	F1 Score	Support
0	DT	Train	1.0000	1.0000	1.0000	1.0000	394
0	DT	Test	0.9991	0.7347	0.7347	0.7347	98
0	LR	Train	0.9989	0.6915	0.7056	0.6985	394
0	LR	Test	0.9987	0.6000	0.6735	0.6346	98
0	KNN	Train	0.9997	0.9731	0.8274	0.8944	394
0	KNN	Test	0.9996	0.9620	0.7755	0.8588	98
0	SVM	Train	0.9987	0.7674	0.3350	0.4664	394
0	SVM	Test	0.9986	0.7143	0.3061	0.4286	98
0	RF	Train	1.0000	1.0000	0.9975	0.9987	394
0	RF	Test	0.9995	0.9383	0.7755	0.8492	98
0	NB	Train	0.9930	0.1470	0.6320	0.2385	394
0	NB	Test	0.9932	0.1568	0.6735	0.2543	98

Agenda

I. Literature Review

II. Dataset

III. Experiments and Results

IV. Conclusions

V. References

VI. Q & A

Conclusions

- Başarı Sırası: KNN > RF > DT > LR > SVM > NB
- Her makine öğrenmesi yöntemi her problem için uygun değildir.
- Veri seti ön işleme modelin çalışabilmesi / performansı için önemlidir

Future Works

- LightGBM (Light Gradient Boosting Machine) ile çalışma yapılabilir.
- CatBoost ile çalışma yapılabilir.

Conclusions

Future Works

- Derin öğrenme yöntemleri üzerinden başarım ölçümü yapılabilir.
- Imbalanced veri setini balanced bir veri seti haline getirerek sınıflandırma performansları ölçülebilir.
 - Random Oversampling
 - Random Undersampling
 - SMOTE (Synthetic Minority Over-sampling Technique)

Agenda

I. Literature Review

II. Dataset

III. Experiments and Results

IV. Conclusions

V. References

VI. Q & A

References

- [1] Credit Card Fraud Detection Using State-of-the-Art Machine Learning and Deep Learning Algorithms
- [2] Machine Learning Group ULB Credit Card Fraud Detection Dataset
- [3] Credit Card Fraud Detection Using Lightgbm Model
- [4] CatBoost for Fraud Detection in Financial Transactions
- [5] A Data Mining Based Fraud Detection Hybrid Algorithm in E-bank
- [6] Identifying Fraudulent Credit Card Transactions Using Ensemble Learning

Agenda

I. Literature Review

II. Dataset

III. Experiments and Results

IV. Conclusions

V. References

VI. Q & A

Q&A

THANK YOU FOR LISTENING...