BAI1 GI	Übung "Grundlagen der Informatik"	Hübner
WS 2019	Aufgabe 1 – Registermaschinenprogramme	Seite 1 von 1

1. Maximum-Berechnung

Schreiben Sie ein Registermaschinenprogramm maximum.asm, das das Maximum von zwei eingegebenen Zahlen berechnet und ausgibt (also die größere Zahl).

Testfälle:

- \rightarrow (10, 20) \rightarrow 20
- \rightarrow (5, -3) \rightarrow 5
- \rightarrow $(1,1) \rightarrow 1$

2. Mittelwert-Berechnung

Schreiben Sie ein Registermaschinenprogramm mittel.asm, das eine Folge von ganzen Zahlen entgegennimmt und anschließend den (ganzzahligen) Mittelwert ausgibt, also für n eingegebene ganze Zahlen $z_1 \dots z_n$ folgende Formel berechnet:

 $\frac{\sum_{i=1}^{n} z_i}{n}$

Testfälle:

- $(10, 20) \rightarrow 30/2 = 15$
- $(5, 23, 47) \rightarrow 75/3 = 25$
- → (13, -256, 4578, -19) → 4316 / 4 = 1079

3. Wert einer Dualzahl berechnen

Schreiben Sie ein Registermaschinenprogramm dualwert.asm, welches den Dezimalwert einer positiven Dualzahl berechnet und ausgibt. Lassen Sie dazu jedes Bit (0/1) der Dualzahl einzeln eingeben (von rechts nach links, also die niederwertigste Stelle zuerst).

Das Ende der Eingabe soll dem Programm durch eine negative Zahl angezeigt werden. Testfälle:

Dualzahl	Eingabefolge	Ergebnis (Dezimalzahl)
0	0	0
1	1	1
01	1,0	1
10	0,1	2
100	0,0,1	4
1110	0,1,1,1	14
10101	1,0,1,0,1	21

Tipp: Der (Dezimal-)Wert einer natürlichen Zahl errechnet sich durch eine <u>Summe</u>, wobei hier jeder Summand (0/1) zusätzlich mit der der Stelle entsprechenden Zweierpotenz multipliziert wird. Da die niederwertigste Stelle zuerst eingegeben wird, können Sie die nächste Zweierpotenz aus der aktuellen leicht berechnen.

Allgemeine Anforderungen:

Der Kommentar im Programmcode muss folgendes enthalten (siehe Beispielprogramme summe.asm, minimum.asm):

- Beschreibung, was in welchem Datenspeicher gespeichert wird (Datenspeicher-Verwendung)
- Beschreibung des Algorithmus

Abgabe: Die Lösung muss dem Dozenten anhand des Java-basierten Simulators **RegmaschHAWgi.jar** vorgeführt und erläutert werden!