Alexandria University Faculty of Engineering Computer and Communications Program

Due: Sunday 1/3/2020 CCE: Pattern Recognition

Sheet#2

Orthogonal Projection

1) For the given vectors $\mathbf{u_1}$ and $\mathbf{u_2}$

- a) Verify \mathbf{u}_1 and \mathbf{u}_2 are orthogonal
- b) Find the projection of the point $y=[6,3,-2]^T$ on $\mathbf{u_1}$ and $\mathbf{u_2}$

$$\mathbf{u_1} = \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix}$$
, and $\mathbf{u_2} = \begin{bmatrix} -4 \\ 3 \\ 0 \end{bmatrix}$

LDA

2) For the data on two class problem

- a) Compute μ_{+1} and μ_{-1} , and **B**, the between-class scatter matrix.
- b) Find the best direction **w** that discriminates between classes and **sketch** it.

Given S⁻¹=
$$\begin{pmatrix} 0.056 & -0.029 \\ -0.029 & 0.052 \end{pmatrix}$$

3) Midterm Question Fall 2017

For the data on two class problem

- a) Compute μ_{+1} and μ_{-1} , and B, the between-class scatter matrix.
- b) Compute S_{+1} and S_{-1} , and S, the within-class scatter matrix.
- c) Visually sketch the best direction that splits the data into the two classes.

i	X	yi		
X1	(1,1)	1		
X2	(2,1)	1		
X3	(1,2)	1		
X4	(2,2)	-1		
X5	(3,2)	-1		

K Means Clustering

1. Use the k-means algorithm and Euclidean distance to cluster the following 8 examples into 3 clusters: A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9). The distance matrix based on the Euclidean distance is given below:

-1010	A1	A2	A3	A4	A5	A6	A7	A8
Al	0	$\sqrt{25}$	√36	√13	√50	√52	√65	$\sqrt{5}$
A2		0	$\sqrt{37}$	$\sqrt{18}$	$\sqrt{25}$	$\sqrt{17}$	$\sqrt{10}$	$\sqrt{20}$
A3	S.		0	$\sqrt{25}$	$\sqrt{2}$	$\sqrt{2}$	√53	$\sqrt{41}$
A4	97			0	√13	$\sqrt{17}$	√52	$\sqrt{2}$
A5					0	$\sqrt{2}$	$\sqrt{45}$	$\sqrt{25}$
A6						0	$\sqrt{29}$	$\sqrt{29}$
A7							0	√58
A8	90-							0

Suppose that the initial seeds (centers of each cluster) are A1, A4 and A7. Run the k-means algorithm for 1 epoch only. At the end of this epoch show:

- a. The new clusters
- b. The centers of the new clusters
- c. Draw a plot with all the 8 points and show the clusters after the first epoch and the new centroids.
- d. How many more iterations are needed to converge? Draw the result for each epoch.