Reproducing Kernel Hilbert Space

Hwiyoung Lee

Department of Statistics, Florida State University

Overview

- 1. Motivations
 - 1.1 Nonparametric Regression

- 2. Preliminary
 - 2.1 Some Functional Analysis

Nonparametric Regression

▶ Standard non parametric regression model :

$$Y_i = f(X_i) + \varepsilon_i, \qquad \varepsilon_i = \sigma w_i \sim N(0, \sigma^2)$$

- Estimate f by $\hat{f} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{i=1}^{n} (Y_i f(X_i))^2$
- ▶ Interpolating ? \rightarrow Regularization!

$$\hat{f} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{i=1}^{n} (Y_i - f(X_i))^2 + \lambda P(f)$$

- ▶ Equivalent to choose $f \in \mathcal{F}$ minimize $\sum_{i=1} (Y_i f(X_i))^2$, where $\mathcal{F} = \{f : P(f) < R\}$ for some R > 0
- ▶ Typically, \mathcal{F} is a compact subset of some ambient function class \mathcal{G} ex: a ball of radius R in some norm $||\cdot||_{\mathcal{G}}$

$$\hat{f} = \underset{f \in \mathcal{G}}{\operatorname{argmin}} \sum_{i=1}^{n} (Y_i - f(X_i))^2 + \lambda ||f||_{\mathcal{G}}^2$$

Nonparametric Regression

Tikhnov Regularization

$$\frac{1}{n} \sum_{i=1}^{n} V(f(X_i), Y_i) + \lambda ||f||_{\mathcal{G}}^2 , \lambda > 0$$

- $\blacktriangleright V(f(x),y)$ is the loss function
- $|\cdot|_{\mathcal{G}}$ is the norm in the function space \mathcal{G}
- Powerful: does not need a specific algorithm, present a large class of algorithms
- ▶ General : By choosing V and \mathcal{H} differently, we can derive many statistical methods, including linear regression and SVM
- \triangleright We want to construct \mathcal{G} so that it contains smooth functions
- ▶ RKHS is a good choice

Example 1: Linear regression

For a given vector $\beta \in \mathbb{R}^d$, define the function $f_{\beta}(x) = \langle \beta, x \rangle$

For a compact set $\mathcal{C} \subset \mathbb{R}^d$, define

$$\mathcal{F}_{\mathcal{C}} = \{ f_{\beta} : \mathbb{R}^d \to \mathbb{R} \mid \beta \in \mathcal{C} \}$$

Then the constrained lest square problem:

$$\underset{\beta \in \mathcal{C}}{\operatorname{argmin}} \, \frac{1}{2n} ||y - X\beta||_2^2$$

- Examples
 - Ridge : $C = \{ \beta \in \mathbb{R}^d \mid ||\beta||_2^2 \le R \}$

$$\underset{\beta \in \mathcal{C}}{\operatorname{argmin}} \, \frac{1}{2n} ||y - X\beta||_2^2 + \lambda ||\beta||_2^2$$

• Lasso : $\mathcal{C} = \{ \beta \in \mathbb{R}^d \mid ||\beta||_1 \le R \}$

$$\underset{\beta \in \mathcal{C}}{\operatorname{argmin}} \frac{1}{2n} ||y - X\beta||_2^2 + \lambda ||\beta||_1$$

Example 2 : Support Vector Machine

Suppose $Y_i \in \{-1, 1\}$

Linear SVM

$$\underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} \left[1 - Y_{i}(\beta_{0} + \beta^{\top} X_{i}) \right]_{+} + \frac{\lambda}{2} ||\beta||_{2}^{2}$$

RKHS version SVM

$$\underset{f \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{n} \left[1 - Y_i f(X_i) \right]_{+} + \frac{\lambda}{2} ||f||_{\mathcal{H}}^{2}$$

Example 3: Kernel Ridge Regression

- ▶ Let \mathcal{H} be the Hilbert space equipped with the norm $||\cdot||_{\mathcal{H}}$
- ▶ For some radius R > 0, consider the constrained least square estimator

$$\hat{f} \in \underset{\|f\|_{\mathcal{H}} \le R}{\operatorname{argmin}} \frac{1}{2n} \sum_{i=1}^{n} (Y_i - f(X_i))^2$$

▶ Dual form, the penalized least square estimator

$$\hat{f} \in \underset{f \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{2n} \sum_{i=1}^{n} (Y_i - f(X_i))^2 + \lambda ||f||_{\mathcal{H}}^2$$

▶ In particular, we assume \mathcal{H} to be a RKHS

Example 4 : Cubic Spline

▶ For some radius R > 0, consider the class of twice continuously differentiable functions $f : [0,1] \to \mathbb{R}$,

$$\mathcal{F}(R) := \{ f : [0,1] \to \mathbb{R} \mid \int_0^1 (f''(x))^2 dx \le R \}$$

- ► This constraint can be understood as a Hilbert norm bound in a second-order Sobolev space
- ▶ The penalized non-parametric least squares estimates is given by

$$\hat{f} \in \underset{f}{\operatorname{argmin}} \frac{1}{2n} \sum_{i=1}^{n} (Y_i - f(X_i))^2 + \lambda \int_0^1 (f''(x))^2 dx$$

- \triangleright The minimizer f is a cubic spline
- ▶ As $R \to 0$, the cubic spline fit \hat{f} becomes a liner function

Norm

 \mathcal{F} : vector space over the field \mathbb{K}

Definition

Nonnegative function $||\cdot||_{\mathcal{F}}: \mathcal{F} \to \mathbb{K}$ is said to be a Norm on \mathcal{F} if $\forall f,g \in \mathcal{F}, \alpha \in \mathbb{K}$

- 1. $||f||_{\mathcal{F}} = 0$ iff f = 0
- $2. \ ||f+g||_{\mathcal{F}} \leq ||f||_{\mathcal{F}} + ||g||_{\mathcal{F}}$
- 3. $||\lambda f||_{\mathcal{F}} = |\lambda|||f||_{\mathcal{F}}$
- ▶ The norm induces a metric : $d(f,g) = ||f g||_{\mathcal{F}}$
- Examples
 - $\mathcal{F} = \mathbb{R}^d : ||X||_p = \left(\sum_{i=1}^d |X_i|^p\right)^{1/p}$, where $p \ge 1$
 - $\mathcal{F} = L_p : ||X||_p = \left(\int |f(x)|^p d\mu \right)^{1/p}$, where $p \ge 1$

Note : $||f||_{\infty} = \sup_{x} |f(x)|$, and $||\cdot||_{\infty} = \lim_{p \to \infty} ||\cdot||_{p}$

Inner Product

Definition

A function $\langle \cdot, \cdot \rangle_{\mathcal{F}} : \mathcal{F} \times \mathcal{F} \to \mathbb{K}$ is said to be an Inner product on \mathcal{F}

- 1. $\langle f, f \rangle \geq 0$, and $\langle f, f \rangle = 0$ iff f = 0
- 2. $\langle f, g \rangle = \langle g, f \rangle$
- 3. $\langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle = \alpha_1 \langle f_1, g \rangle + \alpha_2 \langle f_2, g \rangle$
- ▶ Norm induced by the inner product : $||f||_{\mathcal{F}} = \langle f, f \rangle_{\mathcal{F}}^{1/2}$
- ▶ Some useful relations between norm and inner product
 - 1. $|\langle f, g \rangle| \leq ||f|| \cdot ||g||$
 - 2. $||f+g||^2 + ||f-g||^2 = 2||f||^2 + 2||g||^2$
 - 3. $4\langle f, g \rangle = ||f + g||^2 ||f g||^2$
- Examples
 - $\mathcal{F} = \mathbb{R}^d : \langle x, y \rangle = \sum x_i y_i$
 - $\mathcal{F} = \mathcal{C}([a,b]) : \langle f,g \rangle = \int_a^b f(x)g(x)dx$
 - $\mathcal{F} = \mathbb{R}^{d \times d} : \langle A, B \rangle = Tr(AB^{\top})$

Cauchy Sequence

Definition

 $\{f_n\}_{n=1}^{\infty}$ of $(\mathcal{F}, ||\cdot||_{\mathcal{F}})$ is said to be a Cauchy sequence if for every $\epsilon > 0$, $\exists N_{\epsilon} \in \mathbb{N}$ s.t $\forall n, m \geq N_{\epsilon}, ||f_n - f_m||_{\mathcal{F}} < \epsilon$

- ▶ Cauchy sequence is always bounded
- ▶ Convergent sequence is a Cauchy sequence

$$||f_n - f_m|| \le ||f_n - f|| + ||f - f_m||$$

- ▶ Not every Cauchy sequence converges
 - $1, 1.4, 1.414, 1.4142, \cdots$ is a cauchy seq in \mathbb{Q} , but does not converge $(\sqrt{2} \notin \mathbb{Q})$

Complete space

A space $\mathcal F$ is Complete if every cauchy sequence in $\mathcal F$ converges

- ightharpoonup complete + norm = Banach space
- ► complete + inner product = Hilbert space

Exmple: L_p space

Let be (X, \mathcal{A}, μ) a measure space and $1 \leq p < \infty$. Then the L_p space consist of measurable functions $f: X \to \mathbb{R}$ such that

$$\int_X |f|^p d\mu < \infty$$

 $ightharpoonup L_p$ norm is defined by

$$||f||_p = \left(\int_X |f|^p d\mu\right)^{1/p}$$

- ▶ L_p is a Banach space $(1 \le p \le \infty)$
 - For $p = \infty$,

$$||f||_{\infty} := \operatorname*{esssup}_{X} |f| = \inf \left\{ C \geq 0 : |f(x)| \leq C \text{ for } a.e \right\}$$

 $ightharpoonup L_2$ is a Hilbert space

$$\langle f, g \rangle = \int_{Y} f(x)g(x)d\mu$$

Exmple: Hölder space

Let f be a function defined on $\Omega \subset \mathbb{R}^d$, $0 < \alpha \le 1$, and $k \in \mathbb{Z}^+$

Definition

Functions whose kth order derivatives are Hölder continuous with α

$$\mathcal{C}^{k,\alpha} = \left\{ f \in C^k(\Omega) \mid [D^k f]_{\mathcal{C}^{0,\alpha}} < \infty \right\}$$

- ► Hölder continuous : $[f]_{\mathcal{C}^{0,\alpha}} := \sup_{x \neq y \in \Omega} \frac{|f(x) f(y)|}{|x y|^{\alpha}} < \infty$
- $ightharpoonup C^{0,1}$: Lipschitz space, $C^{1,1}$: Bounded second derivatives
- ▶ Hölder space is a Banach space

$$||f||_{\mathcal{C}^{k,\alpha}(\Omega)} := ||f||_{\mathcal{C}^k} + \max_{|\beta|=k} [D^{\beta}f]_{\mathcal{C}^{0,\alpha}}$$

where
$$||f||_{\mathcal{C}^k} = \max_{|\beta| \le k} \sup_{x \in \Omega} |D^{\beta} f(x)|$$

Exmple: Sobolev space

Definition

The sobolev space of order m is defined by

$$W_{m,p} = \left\{ f \in L_p(\Omega) : D^j f \in L_p(\Omega), |j| \le m \right\}$$

where $D^{j}f$ is a jth weak derivative of f

- ▶ $W_{m,p}$ is defined to be the subset of L_p s.t. f and weak derivatives upto order m have a finite L_p norm
- ▶ $W_{m,p}$ is a Banach space

$$||f||_{W_{m,p}} = \left(\sum_{|j| \le m} \int_{\Omega} |D^j f|^p dx\right)^{1/p}, \quad p \in [1, \infty)$$

$$||f||_{W_{m,\infty}} = \sum_{|j| \le m} \operatorname{esssup}_{x \in \Omega} |D^j f|$$

• $W_m = W_{m,2}$ is a Hilbert space $\langle f, g \rangle = \sum_{|j| \le m} \int_{\Omega} D^j f D^j g dx$

Reference

- Bhattacharya, R., and Patrangenaru, V. (2003). Large Sample Theory of Intrinsic and Extrinsic Sample Means on Manifolds. I. *Annals of Stat* **31**: 1-29
- Sirovich, L., and Kirby, M. (1987) Low-dimensional procedure for the characterization of human faces. J. Optical Society of Amer. A. 4: 519-524
- Lin, L., Thomas, B. st., Zhu, H., and Dunson, D. (2017). Extrinsic Local Regression on Manifold-Valued Data J. Amer. Statist. Assoc. 112: 1261-1273