BDE Solution

Bde Candidate

Introduction

- The given datasets are:
 - website_dataset.csv
 - 2. facebook_dataset.csv
 - 3. google_dataset.csv
- The main task:
 - 1. combine data from 3 given input datasets
 - 2. in a most accurate way,
 - 3. cleaned and transformed data.

Terminology & Details

- Language and environment: Pyspark (python+spark) jupyter notebook databricks
- web_data, website_data referring to the website dataset (website_dataset.csv)
- fb_data, facebook_data referring to the facebook dataset (facebook_dataset.csv)
- gg_data, google_data referring to the google dataset (google_dataset.csv)
- {dataset}_missing referring to null value percentage of dataset for each column
- {dataset}_distinct referring to unique value percentage of dataset for each column
- web_fb website_dataset and facebook_dataset
- web_fb_left website_dataset and facebook_dataset join with left operation
- web_fb_inner website_dataset and facebook_dataset join with inner operation
- remaining_gg non-matched data in google_dataset after join operation
- web_fb_gg_full website_dataset, facebook_dataset, google_dataset are merged into that dataset

Data Reading

- Problem (new line characters):
 - 1. multiline option
 - 2. encoding option with UTF-8

Understanding Data

```
website_data.printSchema()
                                                      facebook_data.printSchema()
                                                                                                           google data.printSchema()
root
                                                                                                    root
                                                                                                     |-- address: string (nullable = true)
|-- root_domain: string (nullable = true)
                                                 |-- domain: string (nullable = true)
 |-- domain suffix: string (nullable = true)
                                                 |-- address: string (nullable = true)
                                                                                                     |-- category: string (nullable = true)
 |-- language: string (nullable = true)
                                                 |-- categories: string (nullable = true)
                                                                                                     |-- city: string (nullable = true)
 |-- legal_name: string (nullable = true)
                                                 |-- city: string (nullable = true)
                                                                                                     |-- country code: string (nullable = true)
 |-- main city: string (nullable = true)
                                                 |-- country_code: string (nullable = true)
                                                                                                     |-- country_name: string (nullable = true)
 |-- main country: string (nullable = true)
                                                 |-- country name: string (nullable = true)
                                                                                                     |-- name: string (nullable = true)
 |-- main region: string (nullable = true)
                                                 |-- description: string (nullable = true)
                                                                                                     |-- phone: long (nullable = true)
 |-- phone: string (nullable = true)
                                                 |-- email: string (nullable = true)
                                                                                                     |-- phone country code: string (nullable = true)
 |-- site_name: string (nullable = true)
                                                |-- link: string (nullable = true)
                                                                                                     |-- raw address: string (nullable = true)
 |-- tld: string (nullable = true)
                                                 |-- name: string (nullable = true)
                                                                                                     |-- raw phone: string (nullable = true)
 |-- s_category: string (nullable = true)
                                                                                                     |-- region code: string (nullable = true)
                                                 |-- page type: string (nullable = true)
                                                 |-- phone: long (nullable = true)
                                                                                                     |-- region name: string (nullable = true)
                                                 |-- phone_country_code: string (nullable = true)
                                                                                                     |-- text: string (nullable = true)
                                                 |-- region_code: string (nullable = true)
                                                                                                     |-- zip code: string (nullable = true)
                                                 |-- region name: string (nullable = true)
                                                                                                     |-- domain: string (nullable = true)
                                                |-- zip code: string (nullable = true)
```

Understanding Data

Website_data

Understanding Data

Facebook_data

Understanding Data

Google_data

Data Preparation and Merging

- l web_fb_inner = web_data.join(fb_data, on = [web_data.web_domain == fb_data.fb_domain], how = "inner")
- web_fb_left = web_data.join(fb_data, on = [web_data.web_domain == fb_data.fb_domain], how = "left")
- 3 print("join ratio:",web_fb_inner.count()/web_fb_left.count())
- ▶ (6) Spark Jobs
- web_fb_inner: pyspark.sql.dataframe.DataFrame = [web_domain: string, web_name: string ... 17 more fields]
- ▶ web_fb_left: pyspark.sql.dataframe.DataFrame = [web_domain: string, web_name: string ... 17 more fields]

join ratio: 0.9998194895720515


```
from pyspark.sql import functions as F
# FB phone has well format, if it is available use it. I try both version and fb_phone has bigger coverage rate
web_fb_data = web_fb_data.withColumn('fb_phone', F.regexp_replace(F.col("fb_phone"), '[^0-9]+', ''))
web_fb_data = web_fb_data.withColumn('web_phone', F.regexp_replace(F.col("web_phone"), '[^0-9]+', ''))
web_fb_data = web_fb_data.withColumn('new_phone', F.when(F.isnan("fb_phone") | F.col("fb_phone").isNull(), F.col("web_phone")).otherwise(F.col("fb_phone")))

gg_data = gg_data.withColumn('gg_phone', F.regexp_replace(F.col("gg_phone"), '[^0-9]+', ''))
```

Data Preparation and Merging

```
remaining_web_fb = remaining_web_fb.withColumn('new_name',

F.when((F.isnan("fb_name") | F.col("fb_name").isNull()) & (F.isnan("web_name") | F.col("web_name").isNull()), F.col("web_site_name"))

.when(F.isnan("fb_name") | F.col("fb_name").isNull(), F.col("web_name"))

.otherwise(F.col("fb_name"))

)
```

MinHashLSH Model & approxSimilari tyJoin

print("domain coverage ratio for remaining:",remaining_web_fb_gg.select("web_domain").distinct().count()/remaining_web_fb.select
("web_domain").distinct().count())

▶ (17) Spark Jobs

domain coverage ratio for remaining: 0.4181164901664145

print("final coverage ratio:",web_fb_gg_full.select("web_domain").distinct().count()/web_fb_data.select("web_domain").distinct().count())

▶ (17) Spark Jobs

final coverage ratio: 0.8290982809853092

Conclusion

- The project successfully merged data from three distinct sources
 - website, Facebook, and Google
- Achieving an 82.9% coverage,
 - this process can be further improved
 - enhancement and optimization
- When I encounter very similar data across sources,
 - I can prioritize data from the source
 - with the highest reliability
 - based on my domain-specific knowledge
 - or previous experiences.

Thank you

BDE candidate