California Apartments Renting Price Analysis

-- Linear Regression & ANOVA Analysis

Sicheng Zhu

Content

Introduction

Data Preprocessing

Model Building

Model Diagnostic

- Craigslist Posts
- Data Types

- Data Collecting and Cleaning
- Data Exploration
- Transformations
- Main Effect Model
- Variable Selection
- Lasso & Ridge
- Model Comparison
- Outlier Detecting

- Residuals
- Cross Validation
- Test Prediction

Introduction

- House Renting Information from Craigslist.com
- Web Scraping (lxml.html, requests, requests_cache, re)
- 21947 Observations
- Response Variable: price
- Dependent Variables:
 - Numerical: sqft, bedrooms, bathrooms
 - Categorical: pets, laundry, parking, county

title	21947	non-null	object
text	21947	non-null	object
latitude	21864	non-null	float64
longitude	21864	non-null	float64
city_text	20287	non-null	object
date_posted	21947	non-null	object
date_updated	8809 r	non-null d	object
price	21845	non-null	float64
deleted	21948	non-null	bool
sqft	16357	non-null	float64
bedrooms	20900	non-null	float64
bathrooms	20900	non-null	float64
pets	21655	non-null	object
laundry	21732	non-null	object
parking	21649	non-null	object
craigslist	21948	non-null	object
place	21247	non-null	object
city	20092	non-null	object
state	21853	non-null	object
county	21853	non-null	object

Data Preprocessing (lxml.html, requests, requests_cache, re)

```
requests cache.install cache("../craigslist")
start url = "https://sacramento.craigslist.org/d/apts-housing-for-rent/search/apa"
def scrape front page(url):
    response = requests.get(url)
    response.raise for status()
    html = lx.fromstring(response.text)
    html.make links absolute(url)
    # Get all <a> tags with class "result-title"
    links = html.xpath("//a[contains(@class, 'result-title')]/@href")
    next page = html.xpath("//a[contains(@class, 'next')]/@href")[0]
    return next page, links
next page, links = scrape front page(start url)
price = html.xpath("//*[contains(@class, 'price')]")[0]
title = html.cssselect("#titletextonly")[0].text content()
attribs = [x.text content() for x in html.xpath("//p[contains(@class, 'attrgroup')]/span")]
coords = html.cssselect("#map")[0]
lon = coords.attrib.get("data-longitude")
lat = coords.attrib.get("data-latitude")
text = html.cssselect("#postingbody")[0].text content()
```

Data Cleaning

- Subset the data frame for modeling
- Missing Response Variables
- Wrong Response Variables
- Missing values in numerical variables
- Missing values in categorical variables
- Train Test Split

```
RangeIndex: 15876 entries, 0 to 15875
Data columns (total 9 columns):
Unnamed: 0
              15876 non-null int64
              15876 non-null int64
price
sqft
             15876 non-null int64
bedrooms
              15876 non-null int64
              15876 non-null float64
bathrooms
              15876 non-null object
pets
laundry
              15876 non-null object
parking
              15876 non-null object
              15876 non-null object
county
```

Data Exploration

Data Exploration

Pairwise Correlation

•
$$r_{XY} = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2 \sum (Y_i - \bar{Y})^2}$$

Pairwise Scatter Plots

Data Exploration

Price Distribution of Different Groups

Assumptions Checking

Data Preprocessing — Box-Cox Transformation

•
$$Y_i^{(\lambda)} = \begin{cases} \frac{Y_i^{\lambda} - 1}{\lambda}, & \text{if } \lambda \neq 0 \\ \log Y_i, & \text{if } \lambda = 0 \end{cases}$$

Apply log transformation to Price

Data Preprocessing — Standardization

•
$$z_i = \frac{x_i - \bar{x}}{S_x}$$
, $z_i \sim (0, 1)$

- Reduce bias caused by different scales
- Reduce collinearity by reducing VIF

$$VIF_k = \frac{1}{1 - R_k^2}$$

• R_k^2 is the correlation of determination of the linear model $X_k = \beta_0 + \beta_1 X_1 + \dots + \beta_{k-1} X_{k-1} + \beta_{k+1} X_{k+1} + \beta_p X_p$

```
[vif(X_train.iloc[:, 0:3].values, i) for i in range(3)]
[12.30064180690518, 12.830346973628702, 1.1550296427952673]
[vif(X_train_S.iloc[:, 0:3].values, i) for i in range(3)]
[2.761267792510718, 2.5871404283815598, 2.1156008482348003]
```

X_train.describe()

	sqft	bedrooms	bathrooms
count	10636.000000	10636.000000	10636.000000
mean	869.235709	1.518052	1.367055
std	293.564447	0.755829	0.522823
min	3.000000	0.000000	0.000000
25%	680.000000	1.000000	1.000000
50%	835.000000	2.000000	1.000000
75%	1020.000000	2.000000	2.000000
max	5210.000000	5.000000	6.000000

Model Building

н

Initial Model

Main Effect Model

Log(Price) = Sqft + Bedrooms + Bathrooms + factor(Pets)+ factor(Laundry) + factor(Parking) + factor(County)

R ²	0.770	# Observation	10636
R ² _{adjust}	0.769	Df Residuals	10593
F-statistic	845.4	Df Model	42
P-value	0.000		

Strong Collinearity

model.eigenvals

```
3.10899947e+00, 2.14595627e+00, 1.99626086e+00, 1.14793303e+00, 1.06003835e+00, 9.94822228e-01, 7.43261506e-27, 1.04813194e-27, 5.27318888e-28, 1.34333452e-28, 8.85244332e-29])
```

One-Way ANOVA Test for Categorical Variables

- H₀: Mean renting prices of different pets / laundry / location / parking options are the same.
- H_A: Means are NOT same.

• Result: Reject H₀ for all categorical variable at significance level 0.01

Model Building

::

Variable
Selection
Including
Interactions

Bias-Variance Tradeoff

• Bias =
$$E(\hat{Y}) - E(Y)$$

• Variance =
$$\sum var(\widehat{Y}_i) = Tr(\sigma^2 H) = \sigma^2 p$$
, H = X(X^TX)⁻¹X^T

•
$$MSEE(M) = var(M) + bias^2(M)$$

•
$$E(SSE) = \sigma^2(n-p) + ||bias^2(M)||_2^2$$

•
$$AIC = n\log \frac{SSE_p}{n} + 2p$$

•
$$BIC = n\log \frac{SSE_p}{n} + \log(n) p$$

- n: # of observations
- p: # of variables in model
- Adding variable to model → SSE decrease, p increase
 - → bias decrease, variance increase

Model Building

н

Variable
Selection
Including
Interactions

- Stepwise Selection using AIC and BIC criteria
- Step 0: Start from Log(Price) = constant + factor(Laundry) + factor(Parking) + factor(County)

• AIC = 708.3728, BIC = 311.8810

. . .

• AIC Model:

```
Log(Price) = constant + sqft + bedrooms + bathrooms +
bedrooms * bathrooms + sqft * bathrooms +
factor(Laundry) + factor(Parking) + factor(County)
```

• BIC Model:

```
Log(Price) = constant + sqft + bedrooms + bathrooms +
sqft * bedrooms +
factor(Laundry) + factor(Parking) + factor(County)
```

Model Comparison

- Model 1: Main Effect Model
 - Log(Price) = Sqft + Bedrooms + Bathrooms + factor(Pets) + factor(Laundry) + factor(Parking) + factor(County)

\mathbb{R}^2	0.770	BIC	-4919
F-statistic	845.4	MSE	0.03566

- Model 2:
 - Log(Price) = Sqft + Bedrooms + Bathrooms + Sqft * Bedrooms + factor(Pets) + factor(Laundry) + factor(Parking) + factor(County)

R ²	0.770	BIC	-4923
F-statistic	825.7	MSE	0.03565

•

Model Diagnostics

Model 1:

• Model 2:

Model Building

Reduce Collinearity

- Least Square: $\min_{\beta} (Y X\beta)^T (Y X\beta)$
- Solution: $\hat{\beta}_{OLS} = (X^T X)^{-1} X^T Y$
- $(X^TX)^{-1}$ may not exist

- Add regularization term to LS optimization:
 - Ridge: $\min_{\beta} (Y X\beta)^T (Y X\beta) + \lambda ||\beta||_2^2$
 - Lasso: $\min_{\beta} (Y X\beta)^T (Y X\beta) + \lambda |\beta|$
 - Elastic-Net: $\min_{\beta} (Y X\beta)^T (Y X\beta) + \lambda_1 ||\beta||_2^2 + \lambda_2 |\beta|$

```
Ridge & Lasso
```

- Ridge
 - $\lambda = 0.0001$
 - $R^2 = 0.770$

- Lasso
 - $\lambda = 0.005$
 - $R^2 = 0.721$
 - Modify categorical variables (43 → 15 dummy variables)

Model Comparison — Cross Validation

- Break the training dataset into 5 folders
- $MSPE = \frac{\sum (Y_i \hat{Y}_i)^2}{m}$,
 where m is the size of

where m is the size of the validation folder

• Cross validation score = $\sum MSPE_k/5$

Model Comparison

Model 1: Main Effect Model

\mathbb{R}^2	0.763		
F-statistic	832.0	MSPE	0.03632

Model 2: Model with Interaction

\mathbb{R}^2	0.763		
F-statistic	812.7	MSPE	1504.374

• Model 3: Lasso with $\lambda = 0.005$

 Log(Price) = Sqft + Bedrooms + Bathrooms + factor'(Laundry) + factor'(Parking) + factor'(County)

R² 0.722 MSPE 0.04345

• Model 4: Ridge with $\lambda = 0.0001$

$R^2 = 0.769 = MSPE = 0.03632$	\mathbb{R}^2	0.769	MSPE	0.03632
--------------------------------	----------------	-------	------	---------

Outlier Detecting

Using Model 1 (-765)

Studentized Deleted Residuals: (35)

•
$$t_i = \frac{d_i}{s\{d_i\}} = \frac{d_i}{\sqrt{MSE_{(i)}/(1-h_{ii})}} = \sqrt{\frac{n-p-1}{SSE(1-h_{ii})-e_i^2}}$$
,

where $MSE_{(i)}$ is the MSE of the regression fit excluding case i, h_{ii} is the entry (i, i) of the hat matrix $X(X^TX)^{-1}X^T$

- Under H₀: The model is correct, and $t_i \sim t_{n-p-1}$
- Outlying Y at α : $|t_i| > t_{n-p-1}(1 \alpha/2n)$
- Leverage Value (h_{ii}) : (587)
 - $\bar{h} = \frac{1}{n} \sum h_{ii} = \frac{p}{n}$
 - Outlying X: $h_{ii} > \frac{2p}{n}$
- Cook's Distance: (307)

•
$$D_i = \frac{\sum (\hat{Y}_j - \hat{Y}_{j(i)})^2}{p*MSE} = \frac{r_i^2 h_{ii}}{p(1-h_{ii})}$$
, where $r_j = \frac{e_i}{\sqrt{MSE(1-h_{ii})}}$

• Influential: $D_i > \frac{4}{n-p}$

Model Diagnostics Without Outliers

Model 1:

• Model 2:

Model Comparison Without Outliers

Model 1: Main Effect Model

\mathbb{R}^2	0.824		
F-statistic	1923	MSPE	0.02510

Model 2: Model with Interaction

\mathbb{R}^2	0.825		
F-statistic	1930	MSPE	0.02757

• Model 3: Lasso with $\lambda = 0.005$

 Log(Price) = Sqft + Bedrooms + Bathrooms + factor'(Laundry) + factor'(Parking) + factor'(County)

R² 0.795 MSPE 0.02862

• Model 4: Ridge with $\lambda = 0.0001$

\mathbb{R}^2	0.769	MSPE	0.02457

Refitting Model & Prediction

Model 3:

•
$$\log(Price) = 0.1508 * \frac{sqft - 871.2389}{312.9308} + 0.0021 * \frac{bedrooms - 1.5208}{0.7507} + 0.0196 * bathrooms + 0.1203 * C(in unit laundry) - 0.0424 * C(covered parking) + 0.0462 * C(garage parking) - 0.2077 * C(Placer) - 0.5381 * C(Sacramento) - 0.2183 * C(San Diego) + 0.3119 * C(San Francisco) + 0.1497 * C(San Mateo) + 0.0908 * C(Santa Clara) - 0.1508 * C(elsewhere)$$

Test Set Prediction:

MSPE	With outliers	Without outliers
Model 1	0.03511	> 10000
Model 2	0.03509	0.06399
Model 3	0.04326	0.04370
Model 4	0.03511	0.06389

Conclusion

- Lasso Regression has simpler model, and acceptable predicting ability.
- Collinearity will not hurt predicting ability.
- Sqft, #Bedrooms, #Bathrooms are all positive related to renting price.
- Levels of categorical data can be simplified to reduce dimensions.
- Large cities tend to have more expensive renting price.
- Standardization may hurt the predictivity, but can reduce effects caused by scale differences.
- Some coefficients do not make sense, but predicting results seem fine.

Thank you for listening!