_		 		
١	D			

AD-E402 730

Technical Report ARAED-TR-95029

MOLECULAR STRUCTURE OF A NEW POTENTIAL PROPELLANT OXIDIZER 4,5-DINITROIMIDAZOLE (45DNI)

A. J. Bracuti

May 1996

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER

Armament Engineering Directorate

Picatinny Arsenal, New Jersey

Approved for public release; distribution is unlimited.

19960625 177

The views, opinions, and/or findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement by or approval of the U.S. Government.

Destroy this report when no longer needed by any method that will prevent disclosure of its contents or reconstruction of the document. Do not return to the originator.

REPORT DOCUMENTATI		Form Approved OMB No. 0704-0188				
Public reporting burden for this coinstructions, searching existing data information. Send comments regar reducing this burden, to Washingt Highway, Suite 1204, Arlington, V. 0188), Washington, DC 20503.	a sources, gathering and maintain rding this burden estimate or any o ton Headquarters Services. Direct	ing the dat other aspectorate for I	a needed, and c t of this collection nformation Opera	ompleti n of inf ation a	ng and reviewing the collection of ormation, including suggestions for nd Reports, 1215 Jefferson Davis	
AGENCY USE ONLY (Leave blank)	TTYPE	AND DATES COVERED				
4. TITLE AND SUBTITLE				5. FUI	NDING NUMBERS	
MOLECULAR STRUCTURE C 4,5-DINITROIMIDAZOLE (45D 6. AUTHOR(S)		PELLANT	OXIDIZER			
A. J. Bracuti						
7. PERFORMING ORGANIZATION	NAME(S) AND ADDRESSES(S)				FORMING ORGANIZATION PORT NUMBER	
ARDEC, AED Energetics Warheads Division Picatinny Arsenal, NJ 07806-						
9.SPONSORING/MONITORING AGE	ENCY NAME(S) AND ADDRESS(S)				ONSORING/MONITORING GENCY REPORT NUMBER	
ARDEC, DOIM Information Research Center (AMSTA-AR-IMC) Picatinny Arsenal, NJ 07806-5000					Technical Report ARAED-TR-95029	
11. SUPPLEMENTARY NOTES						
12a. DISTRIBUTION/AVAILABILITY	STATEMENT			12b. D	ISTRIBUTION CODE	
Approved for public release; o	distribution is unlimited.					
13. ABSTRACT (Maximum 200 word	ds)		<u>_</u>			
A single crystal x-ray diffraction str synthesized. Some structural feat (24DNI).	tudy verified that the target oxidiz tures of 45DNI are compared wit	er molecul h those of	e 4,5-dinitroimida 1,4-dinitroimidaz	azole (ole (14	45DNI) had, indeed, been DNI) and 2,4-dinitroimidazole	
45DNI, in not planar, but the arom bonds are all partial double bonds P2 ₁ /n (14) with unit-cell dimension density of 1.781 g/cm ³ . The mole hydrogen bonds [N(1)-H(1)N(3) held together by molecular interactions.	s. $45DNI$ crystallizes with two crystallizes with two crystals: $a = 11.5360(8)$, $b = 9.071(1)$ ecular packing consists of infinite 631) and 831 0 and 831 0. 831 0 and	ystallograp), c = 11.82 chains of 4	hically unique m 22(1) Å, b = 107 ISDNI molecules	olecule .640(6) hydro	es in the monoclinic space group deg, and Z = 8 and has a gen linked by two different	
14. SUBJECT TERMS		15. NUMBER OF PAGES 20				
Oxidizer Imidazoles	Propellant ingredient				16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE		JRITY CLASSIFIC	ATION	20. LIMITATION OF ABSTRACT	
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED					SAR	

CONTENTS

	Page
Introduction	1
Experimental	1
X-ray Data Reduction Structure Determination	2 2
Results and Discussion	2
Description of the 4,5-Dinitroimidazole Molecule Description of the Crystal Structure	3 4
Conclusions	5
References	15
Distribution List	17

FIGURES

		Page
1	45DNI molecular conformations and atom numbering scheme	7
2	Unit-cell diagram viewed down the b axis	7
3	Unit-cell diagram viewed down the a axis	8
4	Unit-cell diagram viewed down the c axis	8
5	45DNI molecular configuration using space filed van der Waals atomic radii	9
	TABLES	
1	45DNI crystal data collected at 23±1°C	11
2	45DNI atomic coordinates and equivalent thermal parameters and their esd's in parentheses	12
3	45DNI bond lengths in angstroms (Å) and their esd's in parentheses	13
4	45DNI bond angles in degrees and their esd's in parentheses	13
5	4,5-DNI hydrogen bond distances in angstroms (Å) and angles in degrees and their esd's in parentheses	14

INTRODUCTION

The Propulsion Branch, in its quest for more energetic propellant oxidizers, initiated an investigation into heterocycles with high nitrogen and oxygen content. One group of heterocycles considered was the dinitro derivatives (DNI) of the five-membered ring imidazole (ref 1).

DNI is an energetic, dense, aromatic molecule which may have potential use in propellant formulations. However, this molecule can exist as several different isomers with respect to the positions of the substituted nitro groups. Substitution on the ring carbon atoms is preferable to substitution on the nitrogen atoms because molecules with nitro groups tend to be usually more stable than ones with nitramine groups. This limits the isomers of interest to 24DNI, 25DNI, and 45DNI. The structure of the 24DNI isomer was reported recently (ref 2).

This study was done primarily to confirm the identity of the product of a synthetic scheme employed by this laboratory (ref 3) to produce the target isomer 4,5-dinitroimidazole (45DNI). This target isomer is currently under consideration as a potential oxidizer substitute for RDX in solid and gel/slurry gun propellant formulations.

EXPERIMENTAL

A pale yellow crystal of 45DNI synthesized at this laboratory, having approximate dimensions of 0.20 x 0.20 x 0.25 mm, was mounted on a glass fiber. The preliminary examination and data collection were performed with Cu K α x-radiation (λ = 1.54178 Å) on a Rigaku computer controlled diffractometer equipped with a graphite crystal incident-beam monochromater and a 12 kW rotating anode generator.

Cell constants presented in table 1 and orientation matrix for data collection were obtained at $23\pm1^{\circ}$ C from least squares refinement using setting angles of 21 carefully centered reflections in the angular range of 79.57 deg < 2θ < 79.95 deg.

The intensity data were collected at a temperature of $23\pm1^{\circ}$ C using the ω scan technique [θ scan width of 1.78 + 0.14 tan θ)] at a scan rate of 32.0 deg/min (in omega) to maximum 2 θ value of 120.0 deg . To assure good counting statistics, the intensities of weak reflections [I < 10.0σ (I)] were measured by accumulating the counts from four successive rescans. Stationary background counts were measured on each side of the reflection. The ratio of peak counting time to background was 2:1.

X-ray Data Reduction

A total of 3,783 reflections were measured, but only 1,897 were unique. The R_{int} value for averaged intensities was 0.055. As a check on system stability (electronic and crystal), the intensities of three representative reflections were measured after every 500 reflections. Over the course of data collection, the intensities of the standard reflections increased by 3.8%. To correct for this effect, a polynomial correction factor was applied to the data.

The reflections were corrected for Lorentz-polarization and secondary extinction effects (table 1). The secondary extinction coefficient applied was 3.82143E-05. Absorption corrections were not applied because azimuthal scan data of several reflections indicated that absorption was insignificant. The x-ray scattering factors were taken from Cromer and Waber (ref 4). Anomalous dispersion effects for heavy atoms were included in the structure factor calculations (ref 5) and the values of f' and f" were those of Creagh and McAuley (ref 6). On the basis of systematic absences, space group P2₁/n was selected.

Structure Determination

Non-hydrogen atom positions were found by direct methods (ref 7) and the hydrogen atom positions were located by difference Fourier techniques. The hydrogen atoms were refined isotropically while the non-hydrogen atoms were refined anisotropically by full-matrix least-squares. The final cycle of full-matrix least-squares refinement, based on 1,390 reflections [I > 3σ (I)] and 216 variable parameters, converged with an unweighted agreement factor (R) and a weighted agreement factor (Rw) of 0.042 and 0.039, respectively.

Atomic coordinates and equivalent temperature factors, bond lengths, bond angles, and hydrogen bonding details are presented in tables 2 through 5, respectively. Two crystallographically unique molecules of 45DNI with their atom numbering schemes are shown in figure 1. The molecular packing viewed in three different unit-cell orientations is shown in figures 2 through 4. A space filled van der Waals diagram illustrating the hydrogen bond interaction is displayed in figure 5.

RESULTS AND DISCUSSION

45DNI crystallizes in the monoclinic primitive space group P2₁/n with unit-cell dimensions: a = 11.5360(8) Å, b = 9.071(1) Å, c = 11.822(1) Å, and b = 107.640(6) deg. The asymmetric unit consists of two crystallographically unique 45DNI molecules, designated 45DNI(1) and 45DNI(2), which contain six carbon atoms, four hydrogen atoms, eight nitrogen atoms, and eight oxygen atoms. The symmetry operations of this space group generate eight molecules of 45DNI per unit cell which results in a calculated x-ray density of 1.781 g/cm³.

Description of the 4,5-Dinitroimidazole Molecule

It is clearly shown in figure 1, that two nitro groups are substituted on the C(2) and C(4), and the C(21) and C(41) vicinal positions of the imidazole rings of the two respective molecules in this structure. This confirms that the target isomer 4,5-dinitroimidazole was made with the synthetic scheme devised by this laboratory.

4,5-dinitroimidazole, itself, is not a planar molecule but its ring moiety is planar. Similar conformational relationships also were reported for its 24DNI and 14DNI isomers (refs 2 and 8). The mean absolute deviation from the plane in the 45DNI(1) ring is 0.004 Å and is 0.003 Å in the 45DNI(2) ring. The greatest heavy ring atom deviation from planarity for both molecules is displayed by C(2), which is the carbon with the hydrogen atom substituent. In 45DNI(1), C(2) deviates from the plane of its ring by -0.008(3) Å and in 45DN(2) C(21) deviates by 0.006(3) Å. All hydrogen atoms are also displaced from the plane of the ring. In 45DNI(1), H(1) which is bonded to N(1) is off the plane by 0.067 Å and H(2) which is bonded to C(2) is off the plane by 0.018 Å. In 45DNI(2), its counterparts H(11) and H(21) are off the plane by 0.152 and 0.078 Å, respectively.

In each molecule, both nitro groups are twisted out of the ring plane and each twist axis is also displaced from the plane. The 4-nitro group in 45DNI(1) is twisted out of the ring plane by about 28 deg and the 5-nitro group is twisted out by 18 deg. N(4) in the 4-nitro group is displaced from the ring plane by 0.058 Å while N(5) of the 5-nitro group is off the plane by -0.117 Å. In 45DNI(2), the 4-nitro group is twisted out of the ring plane by 17 deg and the 5-nitro group is twisted out by 172 deg. In 45DI(2), the nitrogen atom N(41) of the 4-nitro group is displaced 0.028 Å and N(51) in the 5-nitro group is displaced 0.117 Å.

In the 14DNI isomer, the 1-nitro group is twisted 9 deg and the 4-nitro group is twisted 2 deg out of the ring plane. In 24DNI, the 2-nitro group is twisted about 1 deg and the 4-nitro group about 8 deg. In general, the nitro group twist angles for the 45DNI isomer are larger than either those of the 24 or 14 isomers. This is not unexpected because the vicinal nitro group conformation in the 45 isomer should cause greater stearic hinderance or molecular interactions between nitro groups than do the non-vicinal nitro conformations in the other isomers.

The large adjacent angles between the ring and the two nitro groups for both 45DNI(1) and 45DNI(2) [N(5)-C(5)-C(4) is 133.8(2) deg, N(4)-C(4)-C(5) is 130.0(2) deg, and N(51)-C(51)-C(41) is 136.1(3) deg, N(41)-C-(41)-C(51) is 131.0(2) deg] is further evidence of intramolecular repulsion between the juxtaposed nitro groups.

The bond lengths (table 2) for C(4)-C(5) and C(41)-C(51) are 1.355(3) and 1.357(4) Å, respectively. These are partial C-C double bonds because these interatomic distances are closer to the accepted double-bond length of 1.337(4) Å than to the single-bond length of 1.541(3) Å (ref 9). The C-C bond lengths of the 45DNI isomer agree with C(4)-C(5) reported for 14DNI isomer with a value of 1.354(3) Å, but are shorter than observed in the 24DNI isomer [C(4)-C(5) 1.370 Å].

All four ring C-N bonds (table 2) in this isomer are also significantly shorter than the accepted C-N single bond length of 1.472(5) Å. Hence, each C-N bond is a partial double bond rather than a single-bond. Since all the ring bonds are partial double bonds, 45DNI may be considered an aromatic molecule.

In 24DNI, C(2)-N(3) is the shortest C-N bond in the ring with a value of 1.265(9) Å, while its neighboring C(2)-N(1) bond is the longest C-N bond (1.363°) in the ring. In 45DNI, C(21)-N(31) in 45DNI(2) is the also the shortest C-N bond with a value of 1.316(4) Å, but its neighboring C(21)-N(11) bond has a value of 1.346(4) Å. However, C(21)-N(11) is shorter than its remaining C-N ring bonds. In 45DNI(1), the analogous C(2)-N(3) bond has a value of 1.326(3) Å but is now equivalent with its neighboring C(2)-N(1) with a value of 1.329(4) Å.

All N-O bond lengths in the 45DNI nitro groups are in the range of accepted single bonds [1.14 to -1.21(14) Å].

Description of the Crystal Structure

The crystal structure is composed of a network of infinite chains of 45DNI molecules linked by zigzag hydrogen bonds oriented approximately along (1 0 -1), the ac direction. The dihedral angle between the planes of imidazole moieties in adjacent 45DNI molecules within the chain is 40.52 deg. The chains are held together by lateral intermolecular forces. This molecular packing is demonstrated in different unit-cell orientations in figures 1 through 4.

Each molecule has one hydrogen atom and one acceptor nitrogen atom participating in two unique hydrogen bonds. The data in table 4 indicate that N(11)-H(11)...N(3) is the stronger hydrogen bond because it has an almost linear bond angle of 172(3) deg and relatively short interatomic distances [N(11)..N(3) 2.848(3) and H(11)..N(3) 1.98(5) Å]. The weaker bond, N(1)-H(I)...N(31), has a bond angle of 152(4) deg and longer interatomic distances [N(1)...N(31) 2.865(4) and H(1)..N(31) 2.07(5) Å]. The hydrogen bond interaction is depicted in figure 5 where the overlapping of the nitrogen and hydrogen van der Waals atomic radii is clearly shown.

The crystalline forces manifested by this molecular packing affect the structure of the individual molecules. This is demonstrated by the observed differences in the analogous molecular parameters of the two crystallographically unique 45DNI

molecules. Furthermore, these crystalline forces can also perturb the molecular structure to such an extent that the molecular parameters may differ significantly from those values calculated by quantum mechanics for an isolated molecule. Work is currently in progress at this laboratory to calculate these parameters by ab initio and semi-empirical methods (ref 10).

CONCLUSIONS

The target molecule, the 4,5-dinitroimidazole isomer, was selectively synthesized by this laboratory.

Figure 1 45DNI molecular conformations and atom numbering scheme

Hydrogen bonds are shown as dashed lines

Figure 2
Unit-cell diagram viewed down the b axis

Hydrogen bonds are shown as dashed lines

Figure 3
Unit-cell diagram viewed down the a axis

hydrogen bonds are shown as dashed lines

Figure 4
Unit-cell diagram viewed down the c axis

Figure 5
45DNI molecular configuration using space filled van der Waals atomic radii

Table 1 45DNI crystal data collected at 23±1°C*

Molecular formula Formula weight Crystal System Space group a b c β V Z D λ (Cu K α) u F(000)	C3H2N404 158.07 Monoclinic P2 ₁ /n (#14) 11.5360(8) Å 9.071(1) Å 11.822(1) Å 107.640(6) deg 1178.9(2) Å ³ 8 1.781 g/cm ³ 1.54178 Å 14.83 cm ⁻¹
Scan type	ω
2θ max Total reflections Unique reflections No. reflections [I > 3.σ (I)] h k Secondary extinction R; Rw GOF Final Diff Fourier	120.2 deg 3783 1807 1390 (R _{int} = 0.055) 0 to 12 -2 to 10 -13 to 12 3.8213E-05 0.042; 0.039 2.21
Max peak Min peak	0.24 e-/Å ³ -0.24 e-/Å ³

^{*} X-ray diffraction data collected by Molecular Structure Corporation, The Woodlands, Texas.

Table 2
45DNI atomic coordinates and equivalent thermal parameters and their esd's in parentheses

<u>Atom</u>	<u>x/a</u>	<u>y/b</u>	<u>z/c</u>	<u>Beq</u>
45DNI(1)				
0(41) 0(42) 0(51) 0(52) N(1) N(3) N(4) N(5) C(2) C(4) C(5) H(1) H(2)	1.0736(1) 1.0574(2) 0.7483(2) 0.9304(1) 0.6948(2) 0.8158(2) 1.0140(2) 0.8322(6) 0.7021(2) 0.8826(2) 0.8105(2) 0.635(3) 0.634(6)	0.2161(2) 0.1947(2) 0.3904(2) 0.4330(2) 0.2381(2) 0.1417(2) 0.2098(2) 0.3712(2) 0.1590(3) 0.2126(2) 0.2738(2) 0.261(3) 0.124(3)	0.7451(2) 0.5600(2) 0.8119(2) 0.8042(2) 0.6063(2) 0.5130(2) 0.6414(3) 0.7696(2) 0.5140(3) 0.6118(3) 0.6707(3) 0.634(3) 0.461(3)	4.66(5) 5.40(6) 4.97(5) 4.46(5) 3.08(5) 3.17(5) 3.46(5) 3.45(5) 3.21(6) 2.81(6) 2.78(6) 5.2(7) 4.2(6)
45DNI(2)				
0(43) 0(44) 0(53) 0(54) N(11) N(31) N(41) N(51) C(21) C(41) C(51) H(11) H(21)	0.9318(2) 0.7448(2) 0.6845(2) 0.6540{2) 0.8850(2) 0.9832(2) 0.8491(2) 0.7093(2) 0.9833(2) 0.8786(2) 0.8166(2) 0.876(3) 1.046(2)	0.1357(2) 0.0880(2) -0.0212(2) -0.0507(3) 0.1303(2) 0.1968(2) 0.1155(2) -0.0002(2) 0.1982(3) 0.1296(2) 0.0871(2) 0.104(5) 0.229(3)	-0.0569(2) -0.0714(2) 0.2731(2) 0.0849(2) 0.3000(3) 0.1740(3) -0.0142(2) 0.1807(2) 0.2583(3) 0.1137(3) 0.1891(3) 0.367(5) 0.356(2)	5.72(6) 5.78(6) 5.19(6) 6.58(7) 3.09(5) 3.43(6) 3.87(6) 3.70(6) 3.50(7) 3.02(6) 2.81(5) 10(1) 4.1(6)

Table 3 45DNI bond lengths in angstroms (Å) and their esd's in parentheses

<u>Atom</u>	<u>Atom</u>	<u>Distance</u>	<u>Atom</u>	<u>Atom</u>	Distance
0(41)	N(4)	1.212(3)	0(42)	N(4)	1.220(3)
0(43)	N(41)	1.221(3)	0(44)	N(41)	1.214(3)
0(51)	N(5)	1.229(2)	0(52)	N(5)	1.219(2)
0(53)	N(51)	1.224(3)	0(54)	N(51)	1.209(4)
N(1)	C(2)	1.329(4)	N(1)	C(5)	1.360(3)
N(1)	H(1)	0.87(3)	N(3)	C(2)	1.326(3)
N(3)	C(4)	1.352(4)	N(4)	C(4)	1.449(3)
N(5)	C(5)	1.426(3)	N(11)	C(21)	1.346(3)
N(11)	C(51)	1.366(4)	N(11)	H(11)	0.86(5)
N(31)	C(21)	1.316(4)	N(31)	C(41)	1.355(3)
N(41)	C(41)	1.452(4)	N(51)	C(51)	1.447(3)
C(2)	H(2)	0.90(3)	C(4)	C(5)	1.355(3)
C(21)	H(21)	0.97(3)	C(41)	C(51)	1.357(4)

Table 4 45DNI bond angles in degrees and their esd's in parentheses

<u>Atom</u>	<u>Atom</u>	<u>Atom</u>	<u>Angle</u>	<u>Atom</u>	<u>Atom</u>	<u>Atom</u>	<u>Angle</u>
C(2)	N(1)	C(5)	107.0(2)	C(2)	N(1)	H(1)	133(2)
C(5)	N(1)	H(1)	119(2)	C(2)	N(3)	C(4)	104.0(2)
0(41)	N(4)	0(42)	124.1(2)	0(41)	N(4)	C(4)	118.4(3)
0(42)	N(4)	C(4)	117.4(3)	0(51)	N(5)	0(52)	124.4(2)
0(51)	N(5)	C(5)	117.2(2)	0(52)	N(5)	C(5)	118.4(2)
C(21)	N(11)	C(51)	105.8(3)	C(21)	N(11)	H(11)	126(2)
C(51)	N(11)	H(11)	127(2)	C(21)	N(31)	C(41)	104.7(2)
0(43)	N(41)	0(44)	124.6(3)	0(43)	N(41)	C(41)	116.8(2)
0(44)	N(41)	C(41)	118.5(2)	0(53)	N(51)	0(54)	125.2(2)
0(53)	N(51)	C(51)	116.8(3)	0(54)	N(51)	C(51)	118.0(3)
N(1)	C(2)	N(3)	112.4(2)	N(1)	C(2)	H(2)	120(1)
N(3)	C(2)	H(2)	126(1)	N(3)	C(4)	N(4)	118.7(2)
N(3)	C(4)	C(5)	111.2(2)	N(4)	C(4)	C(5)	130.0(3)
N(1)	C(5)	N(5)	120.4(2)	N(1)	C(5)	C(4)	105.4(2)
N(5)	C(5)	C(4)	133.8(2)	N(11)	C(21)	N(31)	112.7(3)
N(11)	C(21)	H(21)	117(1)	N(31)	C(21)	H(21)	129(1)
N(31)	C(41)	N(41)	118.6(3)	N(31)	C(41)	C(51)	110.4(3)
N(41)	C(41)	C(51)	131.0(2)	N(11)	C(51)	N(51)	117.2(2)
N(11)	C(51)	C(41)	106.4(2)	N(51)	C(51)	C(41)	136.1(3)

Table 5
4,5-DNI hydrogen bond distances in angstroms (Å) and angles in degrees and their esd's in parentheses

<u>D-HA*</u>	<u>D-H</u>	<u>HA</u>	<u>DA</u>	<u>Angle</u>
N(1)-H(1)N(31)	0.87(5)	2.07(5)	2.865(7)	152(4)
N(11)-H(11)N(3)	0.86(3)	1.98(5)	2.848(3)	172(3)

^{*} D is the hydrogen donor atom and A is the hydrogen acceptor atom.

REFERENCES

- Vladimiroff, T., "Molecular Mechanics Calculations for Nitro and Amino Substituted Conjugated Systems Containing and Oxygen and Nitrogen," Proceedings of 27th JANNAF Combustion Meeting, CPIA Publication 557, Vol. I, p. 255, 1960.
- 2. Bracuti, A. J., "Molecular Structure of 2,4,-dinitroimidazole (24DNI)," <u>J. Chem Cryst.</u>, Vol 10?, No. 5, 1995.
- 3. Damavarapu, R., Private Communication, US Army ARDEC, Picatinny Arsenal, 1994.
- 4. Cromer, D. T. and Waber, J. T., <u>International Tables For X-Ray Crystallography</u>, Vol. IV, Table 2.2a, The Kynoch Press, Birmingham, England, (Present distributor, Kluwar Academic Publishers, Boston, USA), 1974
- 5. Ibers, J. A. and Hamilton, W. C., "Dispersion Corrections and Crystal Structure Refinements," Acta Cryst., 17, 781, 1964.
- Creagh, D. C. and McAuley, W. J., <u>International Tables for Crystallography</u>, Vol C (A.J. Wilson ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pp. 200-206 (1992).
- 7. Gilmore, C. J., "-MITHRIL- An Integrated Direct Methods Computer Program," J. Appl. Cryst. 17, 42-46, 1984.
- 8. Grimmett, M. R.; Hua, S.; Chang, R.; Foley, S.; and Simpson, "1,4-Dinitroimidazole and Derivatives. Structure and Rearrangement," <u>Aust. J. Chem.</u>, 42, 1281-1289, 1989.
- 9. Kennard, O., <u>International Tables For X-Ray Crystallography</u>, Vol. III, Table 4.2, p. 276.,The Kynoch Press, Birmingham, England, (Present distributor Kluwer Academic Publishers, Boston, USA),1974.
- Vladimiroff,T., "Acidity and Basicity of Nitro Substituted Imidazoles," Proceedings of 31th Combustion Meeting, CPIA Publication 620, vol II, pp. 269-276, Sunnyvale, CA, Oct 17-18, 1994.

DISTRIBUTION LIST

Commander

Armament Research, Development and Engineering Center U.S. Army Tank-automotive and Armaments Command

ATTN:

AMSTA-AR-IMC AMSTA-AR-GCL

AMSTA-AR-AEE (4) AMSTA-AR-AEE-B, A. Bracuti (10)

Picatinny Arsenal, NJ 07806-5000

Defense Technical Information Center (DTIC)

DTIC-OCC (12) ATTN:

8725 John J. Kingman Road, Ste 0944

Fort Belvoir, VA 22060-6218

Director

U.S. Army Materiel Systems Analysis Activity

AMXSY-MP

Aberdeen Proving Ground, MD 21005-5066

Commander

Chemical/Biological Defense Agency

U.S. Army Armament, Munitions and Chemical Command ATTN: AMSCB-CII, Library

Aberdeen Proving Ground, MD 21010-5423

Director

U.S. Army Edgewood Research, Development and Engineering Center

SCBRD-RTB (Aerodynamics Technology Team)

Aberdeen Proving Ground, MD 21010-5423

Director

U.S. Army Research Laboratory

AMSRL-OP-CI-B, Technical Library Aberdeen Proving Ground, MD 21005-5066

Chief

Benet Weapons Laboratory, CCAC

Armament Research, Development and Engineering Center U.S. Army Armament, Munitions and Chemical Command

SMCAR-CCB-TL ATTN:

Watervliet, NY 12189-5000

Director

U.S. Army TRADOC Analysis Command-WSMR

ATTN: ATRC-WSS-R

White Sands Missile Range, NM 88002

GIDEP Operations Center

P.O. Box 8000

Corona, CA 91718-8000