Práctica de Sistemas Difusos

28 de octubre de 2014

1. Considérese el problema de control difuso de la temperatura y humedad en un cuarto de baño. El estado ideal es templado y seco. El parámetro a controlar es la velocidad angular de un ventilador.

Las variables Temmperatura, Humedad y Velocidad del ventilador están definidas en el siguiente rango de valores $T \in [40,120], H \in [0,100]$ y $W \in [0,1000]$. la variable lingüística "Temperatura" toma valores lingüísticos $T = \{ \text{Baja, Media, Alta } \}$, y los conjuntos difusos asociados se muestran en la figura:

La variable "Humedad" toma valores lingüísticos $H = \{$ Baja, Media, Alta $\}$ y los conjuntos difusos correspondientes se muestran a continuación:

Finalmente, la variable velocidad angular del ventilador en revoluciones por minuto toma valores lingüísticos $W=\{$ Baja, Media, Alta $\}$ y los conjuntos difusos se definen como:

A partir de entrevista con expertos humanos se definen las siguientes reglas de control de la velocidad del ventilador:

	Baja	Media	Alta
Baja	Baja	Media	Media
Media	Baja	Media	alta
Alta	Media	Media	alta

Obtener en R las funciones de pertenencia de las reglas difusas como se muestra en la figura:

- Obtener la función de pertenencia de alguna de las reglas mostrada en la tabla adjunta.
- Utilizando el sistema de inferencia producto (22) y fusificador "singleton" (24), obtener la función de pertenencia del consecuente difuso para $T^* = 60$ y $H^* = 40$. Dibujar dicha función de pertenencia utilizando R.