<u>Assignment -4</u> Problem Statement-Customer Segmentation Analysis

Assignment Date	13 October 2022
Student Name	Miss.KIRUTHIKA M
Student Roll Number	620119106043
Maximum Marks	2 Marks

Question-1:

You own the mall and want to understand the customers who can quickly converge [Target Customers] so that the insight can be given to the marketing team and plan the strategy accordingly.

1.Download the data set

2.Load the dataset

import pandas as pd
import numpy as np
df=pd.read_csv('Mall_Customers.csv')
df.head()

Out[9]:		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	
	0	1	Male	19	15	39	
	1	2	Male	21	15	81	
	2	3	Female	20	16	6	
	3	4	Female	23	16	77	
	4	5	Female	31	17	40	

3.Perform below visualizations Univarient analysis

import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

In [7]:

plt.plot(df['Annual Income (k\$)'])
plt.show()

In [11]:

data=np.array(df['Age'])

plt.plot(data,linestyle = 'dotted')

[<matplotlib.lines.Line2D at 0x208915ef430>]

sns.countplot(df['Age'])

C:\Users\91948\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

Out[12]: <AxesSubplot:xlabel='Age', ylabel='count'>

df['Annual Income (k\$)'].plot(kind='density')

Out[13]: <AxesSubplot:ylabel='Density'>

sns.countplot(df['Gender'])

C:\Users\91948\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

Out[14]: <AxesSubplot:xlabel='Gender', ylabel='count'>

sns.boxplot(df['Annual Income (k\$)'])

C:\Users\91948\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

Out[15]: <AxesSubplot:xlabel='Annual Income (k\$)'>

plt.hist(df['Annual Income (k\$)'])

Bi - variate analysis

Out[18]: <AxesSubplot:xlabel='Age', ylabel='Annual Income (k\$)'>

In [19]: sns.stripplot(x=df['Age'],y=df['Spending Score (1-100)'])

Out[19]: <AxesSubplot:xlabel='Age', ylabel='Spending Score (1-100)'>

plt.scatter(df['Age'],df['Annual Income (k\$)'],color='blue')
plt.ylabel("Age")
plt.ylabel("Annual Income (k\$)")

Out[20]: Text(0, 0.5, 'Annual Income (k\$)')

In [21]: sns.violinplot(x ='Age', y ='Spending Score (1-100)', data = df)

Out[21]: <AxesSubplot:xlabel='Age', ylabel='Spending Score (1-100)'>

Multi - varient analysis

4. Descriptive statistics

sns.heatmap(df.corr(),annot=True)

df.shape

Out[26]: (200, 5) In [31]:

df.isnull().sum()

Out[31]:

 $\begin{array}{ccc} CustomerID & 0 \\ Gender & 0 \\ Age & 0 \\ Annual Income (k\$) & 0 \\ Spending Score (1-100) & 0 \\ \end{array}$

dtype: int64

In [32]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 200 entries, 0 to 199 Data columns (total 5 columns):

Column Non-Null Count Dtype

--- -----

0 CustomerID 200 non-null int64 1 Gender 200 non-null object 2 Age 200 non-null int64

3 Annual Income (k\$) 200 non-null int64 4 Spending Score (1-100) 200 non-null int64

dtypes: int64(4), object(1) memory usage: 7.9+ KB

df.describe()

Out[33]:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

In [34]: df.mean()

C:\Users\91948\AppData\Local\Temp\ipykernel_6316\3698961737.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. df.mean()

Out[34]:

CustomerID 100.50
Age 38.85
Annual Income (k\$) 60.56
Spending Score (1-100) 50.20

dtype: float64

df.median()

C:\Users\91948\AppData\Local\Temp\ipykernel_6316\530051474.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise T ypeError. Select only valid columns before calling the reduction. df.median()

Out[35]:

CustomerID 100.5 Age 36.0 Annual Income (k\$) 61.5 Spending Score (1-100) 50.0 dtype: float64

In [36]: df.mode()

Out[36]:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Female	32.0	54.0	42.0
1	2	NaN	NaN	78.0	NaN
2	3	NaN	NaN	NaN	NaN
3	4	NaN	NaN	NaN	NaN
4	5	NaN	NaN	NaN	NaN
195	196	NaN	NaN	NaN	NaN
196	197	NaN	NaN	NaN	NaN
197	198	NaN	NaN	NaN	NaN
198	199	NaN	NaN	NaN	NaN
199	200	NaN	NaN	NaN	NaN

 $200 \text{ rows} \times 5 \text{ columns}$

In [37]:
df['Gender'].value_counts()
Out[37]:
Female 112

Name: Gender, dtype: int64

5. Check for Missing values and deal with them

df.isna().sum()

Male

Out[39]:
CustomerID 0
Gender 0
Age 0
Annual Income (k\$) 0
Spending Score (1-100) 0
dtype: int64

6. Find the outliers and replace them outliers

sns.boxplot(df['Annual Income (k\$)'])

C:\Users\91948\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

Out[43]: <AxesSubplot:xlabel='Annual Income (k\$)'>


```
Q1 = df['Annual Income (k$)'].quantile(0.25)
Q3 = df['Annual Income (k$)'].quantile(0.75)
IQR = Q3 - Q1
whisker_width = 1.5
lower_whisker = Q1 -(whisker_width*IQR)
upper_whisker = Q3 +(whisker_width*IQR)
df['Annual Income (k$)']=np.where(df['Annual Income
(k$)']>upper_whisker,upper_whisker,np.where(df['Annual Income
(k$)']<lower_whisker,lower_whisker,df['Annual Income (k$)']))
```

In [45]:

sns.boxplot(df['Annual Income (k\$)'])

C:\Users\91948\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[45]: <AxesSubplot:xlabel='Annual Income (k\$)'>

7. Check for columns and perform encoding

```
numeric_data = df.select_dtypes(include=[np.number])
categorical_data = df.select_dtypes(exclude=[np.number])
print("Number of numerical variables: ", numeric_data.shape[1])
print("Number of categorical variables: ", categorical_data.shape[1])
Number of numerical variables: 4
Number of categorical variables: 1
In [48]:
```

print("Number of categorical variables: ", categorical_data.shape[1])
Categorical_variables = list(categorical_data.columns)

```
Categorical_variables
Number of categorical variables: 1
Out[48]:
['Gender']
In [49]:
df['Gender'].value_counts()
Out[49]:
Female 112
Male
        88
Name: Gender, dtype: int64
In [50]:
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
label = le.fit_transform(df['Gender'])
df["Gender"] = label
In [51]:
df['Gender'].value_counts()
OUT [51]:
0 112
1
   88
Name: Gender, dtype: int64
8. Scaling the data
X = df \cdot drop("Age", axis=1)
Y = df['Age']
In [55]:
from sklearn.preprocessing import StandardScaler
object= StandardScaler()
scale = object.fit_transform(X)
print(scale)
[-1.70609137 1.12815215 -1.74542941 1.19570407]
[-1.68877065 -0.88640526 -1.70708307 -1.71591298]
[-1.67144992 -0.88640526 -1.70708307 1.04041783]
[-1.6541292 \ -0.88640526 \ -1.66873673 \ -0.39597992]
[-1.63680847 -0.88640526 -1.66873673 1.00159627]
[-1.61948775 -0.88640526 -1.6303904 -1.71591298]
[-1.60216702 -0.88640526 -1.6303904 1.70038436]
[-1.5848463 1.12815215 -1.59204406 -1.83237767]
[-1.56752558 - 0.88640526 - 1.59204406 \ 0.84631002]
[-1.55020485 1.12815215 -1.59204406 -1.4053405 ]
[-1.53288413 -0.88640526 -1.59204406 1.89449216]
[-1.5155634 \ -0.88640526 \ -1.55369772 \ -1.36651894]
[-1.49824268 - 0.88640526 - 1.55369772 \ 1.04041783]
[-1.48092195 1.12815215 -1.55369772 -1.44416206]
[-1.46360123 1.12815215 -1.55369772 1.11806095]
```

```
[-1.4462805 -0.88640526 -1.51535138 -0.59008772]
[-1.42895978 1.12815215 -1.51535138 0.61338066]
[-1.41163905 1.12815215 -1.43865871 -0.82301709]
[-1.39431833 -0.88640526 -1.43865871 1.8556706 ]
[-1.3769976 1.12815215 -1.40031237 -0.59008772]
[-1.35967688 1.12815215 -1.40031237 0.88513158]
[-1.34235616 -0.88640526 -1.36196603 -1.75473454]
[-1.32503543 1.12815215 -1.36196603 0.88513158]
[-1.30771471 -0.88640526 -1.24692702 -1.4053405 ]
[-1.29039398 1.12815215 -1.24692702 1.23452563]
[-1.27307326 -0.88640526 -1.24692702 -0.7065524 ]
[-1.25575253 1.12815215 -1.24692702 0.41927286]
[-1.23843181 -0.88640526 -1.20858069 -0.74537397]
[-1.22111108 -0.88640526 -1.20858069 1.42863343]
[-1.20379036 1.12815215 -1.17023435 -1.7935561 ]
[-1.18646963 - 0.88640526 - 1.17023435 \ 0.88513158]
[-1.16914891 1.12815215 -1.05519534 -1.7935561 ]
[-1.15182818 1.12815215 -1.05519534 1.62274124]
[-1.13450746 -0.88640526 -1.05519534 -1.4053405 ]
[-1.11718674 -0.88640526 -1.05519534 1.19570407]
[-1.09986601 -0.88640526 -1.016849 -1.28887582]
[-1.06522456 -0.88640526 -0.90180999 -0.93948177]
[-1.04790384 -0.88640526 -0.90180999 0.96277471]
[-1.03058311 -0.88640526 -0.86346365 -0.59008772]
[-1.01326239 1.12815215 -0.86346365 1.62274124]
[-0.99594166 1.12815215 -0.82511731 -0.55126616]
[-0.97862094 -0.88640526 -0.82511731 0.41927286]
[-0.96130021 -0.88640526 -0.82511731 -0.86183865]
[-0.94397949 -0.88640526 -0.82511731 0.5745591]
[-0.92665877 -0.88640526 -0.78677098 0.18634349]
[-0.90933804 -0.88640526 -0.78677098 -0.12422899]
[-0.89201732 -0.88640526 -0.78677098 -0.3183368 ]
[-0.87469659 -0.88640526 -0.78677098 -0.3183368 ]
[-0.85737587 -0.88640526 -0.7100783 0.06987881]
[-0.84005514 1.12815215 -0.7100783 0.38045129]
[-0.82273442 -0.88640526 -0.67173196 0.14752193]
[-0.80541369 \ 1.12815215 \ -0.67173196 \ 0.38045129]
[-0.78809297 -0.88640526 -0.67173196 -0.20187212]
[-0.77077224 1.12815215 -0.67173196 -0.35715836]
[-0.75345152 -0.88640526 -0.63338563 -0.00776431]
[-0.73613079 1.12815215 -0.63338563 -0.16305055]
[-0.71881007 -0.88640526 -0.55669295 0.03105725]
[-0.70148935 1.12815215 -0.55669295 -0.16305055]
[-0.68416862 1.12815215 -0.55669295 0.22516505]
[-0.6668479 1.12815215 -0.55669295 0.18634349]
[-0.64952717 -0.88640526 -0.51834661 0.06987881]
[-0.63220645 -0.88640526 -0.51834661 0.34162973]
[-0.61488572 1.12815215 -0.48000028 0.03105725]
[-0.597565 1.12815215 -0.48000028 0.34162973]
[-0.58024427 -0.88640526 -0.48000028 -0.00776431]
[-0.56292355 -0.88640526 -0.48000028 -0.08540743]
[-0.54560282 1.12815215 -0.48000028 0.34162973]
[-0.5282821 -0.88640526 -0.48000028 -0.12422899]
[-0.51096138 1.12815215 -0.44165394 0.18634349]
[-0.49364065 -0.88640526 -0.44165394 -0.3183368 ]
[-0.47631993 -0.88640526 -0.4033076 -0.04658587]
```

```
[-0.4589992 -0.88640526 -0.4033076 0.22516505]
[-0.44167848 1.12815215 -0.24992225 -0.12422899]
[-0.42435775 1.12815215 -0.24992225 0.14752193]
[-0.40703703 -0.88640526 -0.24992225 0.10870037]
[-0.3897163 1.12815215 -0.24992225 -0.08540743]
[-0.37239558 -0.88640526 -0.24992225 0.06987881]
[-0.35507485 -0.88640526 -0.24992225 -0.3183368 ]
[-0.33775413 1.12815215 -0.24992225 0.03105725]
[-0.3204334 1.12815215 -0.24992225 0.18634349]
[-0.30311268 1.12815215 -0.24992225 -0.35715836]
[-0.28579196 -0.88640526 -0.24992225 -0.24069368]
[-0.26847123 -0.88640526 -0.24992225 0.26398661]
[-0.25115051 1.12815215 -0.24992225 -0.16305055]
[-0.23382978 -0.88640526 -0.13488324 0.30280817]
[-0.21650906 -0.88640526 -0.13488324 0.18634349]
[-0.19918833 \ -0.88640526 \ -0.0965369 \ \ 0.38045129]
[-0.18186761 -0.88640526 -0.0965369 -0.16305055]
[-0.16454688 -0.88640526 -0.05819057 0.18634349]
[-0.14722616 \ 1.12815215 \ -0.05819057 \ -0.35715836]
[-0.12990543 1.12815215 -0.01984423 -0.04658587]
[-0.11258471 -0.88640526 -0.01984423 -0.39597992]
[-0.09526399 -0.88640526 -0.01984423 -0.3183368 ]
[-0.07794326 1.12815215 -0.01984423 0.06987881]
[-0.06062254 -0.88640526 -0.01984423 -0.12422899]
[-0.04330181 -0.88640526 -0.01984423 -0.00776431]
[-0.02598109 1.12815215 0.01850211 -0.3183368]
[-0.00866036 1.12815215 0.01850211 -0.04658587]
[ 0.00866036 -0.88640526  0.05684845 -0.35715836]
[ 0.02598109 -0.88640526  0.05684845 -0.08540743]
[ 0.04330181 1.12815215 0.05684845 0.34162973]
[ 0.06062254 1.12815215 0.05684845 0.18634349]
[ 0.07794326 1.12815215 0.05684845 0.22516505]
[ 0.09526399 -0.88640526  0.05684845 -0.3183368 ]
[ 0.11258471 -0.88640526 0.09519478 -0.00776431]
[ 0.12990543 1.12815215 0.09519478 -0.16305055]
[ 0.14722616 1.12815215 0.09519478 -0.27951524]
[\ 0.19918833\ -0.88640526\ \ 0.09519478\ \ 0.14752193]
[ 0.21650906 -0.88640526  0.13354112 -0.3183368 ]
[ 0.23382978 1.12815215 0.13354112 -0.16305055]
[ 0.25115051 -0.88640526  0.17188746 -0.08540743]
[\ 0.26847123\ -0.88640526\ \ 0.17188746\ -0.00776431]
[ 0.28579196 -0.88640526  0.17188746 -0.27951524]
[\ 0.30311268 \ -0.88640526 \ \ 0.17188746 \ \ 0.34162973]
[ 0.3204334 -0.88640526 0.24858013 -0.27951524]
[\ 0.33775413\ -0.88640526\ \ 0.24858013\ \ 0.26398661]
[ 0.35507485 1.12815215 0.24858013 0.22516505]
[ 0.37239558 -0.88640526  0.24858013 -0.39597992]
[ 0.3897163 -0.88640526 0.32527281 0.30280817]
[ 0.40703703 1.12815215 0.32527281 1.58391968]
[ 0.42435775 -0.88640526  0.36361914 -0.82301709]
[ 0.44167848 -0.88640526  0.36361914  1.04041783]
[ 0.47631993 1.12815215 0.40196548 1.73920592]
[ 0.49364065 1.12815215 0.40196548 -1.52180518]
[ 0.51096138 1.12815215 0.40196548 0.96277471]
```

```
[ 0.54560282 1.12815215 0.40196548 0.96277471]
[ 0.56292355 -0.88640526  0.44031182 -0.62890928]
[ 0.58024427 -0.88640526  0.44031182  0.80748846]
[ 0.61488572 -0.88640526  0.47865816  1.46745499]
[ 0.63220645 -0.88640526  0.47865816 -1.67709142]
[ 0.64952717 1.12815215 0.47865816 0.88513158]
[ 0.68416862 -0.88640526  0.51700449  0.84631002]
[ 0.70148935 -0.88640526  0.55535083 -1.75473454]
[ 0.73613079 -0.88640526  0.59369717 -0.39597992]
[ 0.75345152 -0.88640526  0.59369717  1.42863343]
[ 0.77077224 1.12815215 0.6320435 -1.48298362]
[\ 0.78809297\ \ 1.12815215\ \ 0.6320435\ \ \ 1.81684904]
[ 0.80541369 1.12815215 0.6320435 -0.55126616]
[ 0.82273442 -0.88640526  0.6320435  0.92395314]
[\ 0.84005514\ -0.88640526\ \ 0.67038984\ -1.09476801]
[\ 0.85737587\ \ 1.12815215\ \ 0.67038984\ \ 1.54509812]
[0.87469659 \ 1.12815215 \ 0.67038984 \ -1.28887582]
[ 0.89201732 1.12815215 0.67038984 1.46745499]
[ 0.90933804 -0.88640526  0.67038984 -1.17241113]
[ 0.92665877 -0.88640526  0.67038984  1.00159627]
[ 0.94397949 -0.88640526  0.67038984 -1.32769738]
[ 0.96130021 -0.88640526  0.67038984  1.50627656]
[\ 0.97862094\ \ 1.12815215\ \ 0.67038984\ -1.91002079]
[ 0.99594166 -0.88640526  0.67038984  1.07923939]
[ 1.03058311 -0.88640526  0.67038984  0.88513158]
[ 1.04790384 -0.88640526  0.70873618 -0.59008772]
[ 1.06522456 -0.88640526  0.70873618  1.27334719]
[ 1.09986601 -0.88640526 0.78542885 1.6615628 ]
[ 1.11718674 1.12815215 0.9388142 -0.93948177]
[ 1.13450746 -0.88640526  0.9388142  0.96277471]
[\ 1.16914891\ -0.88640526\ \ 0.97716054\ \ 1.73920592]
[ 1.18646963 -0.88640526 1.01550688 -0.90066021]
[\ 1.23843181\ \ 1.12815215\ \ 1.01550688\ \ 0.96277471]
[1.25575253 1.12815215 1.01550688 -1.56062674]
[ 1.29039398 -0.88640526 1.05385321 -1.44416206]
[ 1.30771471 -0.88640526 1.05385321 1.38981187]
[ 1.34235616 1.12815215 1.05385321 0.72984534]
[ 1.35967688 1.12815215 1.2455849 -1.4053405 ]
[ 1.39431833 -0.88640526 1.39897025 -0.7065524 ]
[ 1.41163905 -0.88640526 1.39897025 1.38981187]
[ 1.42895978 1.12815215 1.43731659 -1.36651894]
[ 1.4462805 -0.88640526 1.43731659 1.46745499]
[ 1.46360123 -0.88640526 1.47566292 -0.43480148]
[\ 1.48092195\ \ 1.12815215\ \ 1.47566292\ \ 1.81684904]
[ 1.49824268 -0.88640526 1.5523556 -1.01712489]
```

8. Scale the independent variables

 $X_{scaled} = pd.DataFrame(scale, columns = X.columns)$ X_{scaled}

Out[56]:

	CustomerID	Gender	Annual Income (k\$)	Spending Score (1-100)
0	-1.723412	1.128152	-1.745429	-0.434801
1	-1.706091	1.128152	-1.745429	1.195704
2	-1.688771	-0.886405	-1.707083	-1.715913
3	-1.671450	-0.886405	-1.707083	1.040418
4	-1.654129	-0.886405	-1.668737	-0.395980
•••				
195	1.654129	-0.886405	2.280936	1.118061
196	1.671450	-0.886405	2.511014	-0.861839
197	1.688771	1.128152	2.511014	0.923953
198	1.706091	1.128152	2.769852	-1.250054
199	1.723412	1.128152	2.769852	1.273347

 $200 \text{ rows} \times 4 \text{ columns}$

9. Perform any of the clustering algorithms

x = df.iloc[:, [3, 4]].values

```
In [64]:
```

#finding optimal number of clusters using the elbow method

from sklearn.cluster import KMeans

wcss_list=[] #Initializing the list for the values of WCSS

#Using for loop for iterations from 1 to 10.

for i **in** range(1, 11):

kmeans = KMeans(n clusters=i, init='k-means++', random state= 42)

kmeans.fit(x)

wcss_list.append(kmeans.inertia_)

plt.plot(range(1, 11), wcss_list)

plt.title('The Elobw Method Graph')

plt.xlabel('Number of clusters(k)')

plt.ylabel('wcss_list')

plt.show()

C:\Users\91948\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:1036: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

10. Split the data into training and testing

#train test split

from sklearn.model_selection import train_test_split

split the dataset

X_train, X_test, Y_train, Y_test = train_test_split(X_scaled, Y, test_size=0.20

11. Train the Model

X_train.shape

Out[58]:
(160, 4)

In [59]:
X_test.shape

Out[59]:
(40, 4)

In [60]:
Y_train.shape

Out[60]:
(160,)

In [61]:
Y_test.shape

Out[61]:
(40,)

12. Test the Model

In [39]:

print('Testing accuracy: ',accuracy_score(Y_Test,y_predict))

Output

Testing accuracy: 0.5322966507177034

13. Build a Model

```
#training the K-means model on a dataset
kmeans = KMeans(n_clusters=5, init='k-means++', random_state= 42)
y_predict= kmeans.fit_predict(x)
```

In [66]:

#visulaizing the clusters

```
plt.scatter(x[y\_predict == 0, 0], x[y\_predict == 0, 1], s = 100, c = 'blue', label = 'Cluster 1') \textit{#for first cluster} \\ plt.scatter(x[y\_predict == 1, 0], x[y\_predict == 1, 1], s = 100, c = 'green', label = 'Cluster 2') \textit{#for second cluster} \\ plt.scatter(x[y\_predict == 2, 0], x[y\_predict == 2, 1], s = 100, c = 'red', label = 'Cluster 3') \textit{#for third cluster} \\ plt.scatter(x[y\_predict == 3, 0], x[y\_predict == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4') \textit{#for fourth cluster} \\ plt.scatter(x[y\_predict == 4, 0], x[y\_predict == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5') \textit{#for fifth cluster} \\ plt.scatter(kmeans.cluster\_centers\_[:, 0], kmeans.cluster\_centers\_[:, 1], s = 300, c = 'yellow', label = 'Centroid') \\ \end{cases}
```

plt.title('Clusters of customers')
plt.xlabel('Annual Income (k\$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()

In []:
#the End