Please amend the above identified application as follows:

In the Claims:

at claim 7, page 28, line 32; claim 9, page 30, line 31; claim 10, page 32, line 30; claim 13, page 37, line 12; and claim 14, page 39, line 7, delete "or" and insert therefor --and--;

at claim 7, page 29, line 6; claim 9, page 31, line 9 and claim 13, page 37, line 17, delete "compound" and insert therefor -- analogue--;

at claim 9, page 30, lines 18 and 22; and claim 10, lines 17 and 21, insert --, -- after the word " β -Nal";

at claim 10, page 31, line 30, after "Arg", insert --, deleted--;

at claim 1) page 34, line 21, and page 35, lines 3 and %, delete "Glu⁶" and insert therefor --Gln⁶--;

13 (amended). A PTHrP analogue of formula (IV) that selectively binds to the PTH2 receptor, $(R^1R^2) - A^1 - A^2 - A^3 - A^4 - A^5 - A^6 - A^7 - A^8 - A^9 - A^{10} - A^{11} - A^{12} - A^{13} - A^{14} - A^{15} - A^{16} - A^{17} - A^{18} - A^{19} - A^{20} - A^{21} - A^{22} - A^{23} - A^{24} - A^{25} - A^{26} - A^{27} - A^{28} - A^{29} - A^{30} - A^{31} - A^{32} - A^{33} - A^{34} - A^{35} - A^{36} - A^{37} - A^{38} - R^3$,

(IV)

or a pharmaceutically acceptable salt thereof, wherein

A¹ is Ala, Ser, Dap, Thr, Aib or is deleted;

 A^2 is Val or is deleted;

A³ is Ser, Aib, Thr or is deleted;

A⁴ is Glu, Asp or is deleted;

 A^5 is His, Ile, Acc, Val, Nle, Phe, Leu, p-X-Phe, β -Nal, Aib, Cha or is deleted;

A⁶ is Gln, a hydrophilic amino acid or is deleted;

 A^7 is Leu, Val, Cha, Nle, β -Nal, Trp, Pal, Acc, Phe, p-X-Phe, Aib, a lipophilic amino acid or is deleted;

Application No.: 09/072,956 Art Unit: 1654

 A^{θ} is Leu, Met, Acc, Cha, Aib, Nle, Phe, Ile, Val, $\beta\text{-Nal},$ p-X-Phe, a lipophilic amino acid or is deleted;

A⁹ is His, a hydrophilic amino acid or is deleted;

A¹⁰ is Asp, Asn, a hydrophilic amino acid or is deleted;

 A^{11} is Lys, Arg, Leu, Cha, Aib, p-X-Phe, Ile, Val, Nle, Acc, Phe, β -Nal, HN-CH((CH₂)_nNH-R⁴)-C(O), a lipophilic D-amino acid, a hydrophilic amino acid or is deleted;

A¹² is Gly, Acc, Aib or is deleted;

 A^{13} is Lys, Arg, HN-CH((CH₂)_nNH-R⁴)-C(O) or is deleted;

A¹⁴ is Ser, His or is deleted;

 A^{15} is Ile, Acc, Cha, Leu, Phe, Nle, β -Nal, Trp, p-X-Phe, Val, Aib or is deleted;

A¹⁶ is Gln, Aib or is deleted;

A¹⁷ is Asp, Aib or is deleted;

 A^{18} is Leu, Aib, Acc, Cha, Phe, Ile, Nle, β -Nal, Val, p-X-Phe or is deleted;

 A^{19} is Arg, Lys, Aib, $HN-CH((CH_2)_nNH-R^4)-C(O)$ or is deleted;

 A^{20} is Arg, Lys, HN-CH((CH₂)_nNH-R⁴)-C(O) or is deleted;

 A^{21} is Arg, Lys, HN-CH((CH₂)_nNH-R⁴)-C(O) or is deleted;

 A^{22} is Phe, Glu, Aib, Acc, p-X-Phe, β -Nal, Val, Leu, Ile, Nle or Cha;

 A^{23} is Phe, Leu, Lys, Acc, Cha, $\beta\text{-Nal},$ Aib, Nle, Ile, p-X-Phe, Val or Trp;

 A^{24} is Leu, Lys, Acc, Nle, Ile, Val, Phe, β -Nal, Aib, p-X-Phe, Arg or Cha;

A²⁵ is His, Lys, Aib, Acc, Arg or Glu;

A²⁶ is His, Aib, Acc, Arg or Lys;

 A^{27} is Leu, Lys, Acc, Arg, Ile, Val, Phe, Aib, Nle, $\beta\text{-Nal},$ p-X-Phe or Cha;

 A^{28} is Ile, Leu, Lys, Acc, Cha, Val, Phe, p-X-Phe, Nle, $\beta\text{-Nal},$ Aib or is deleted;

A²⁹ is Ala, Glu, Acc, Aib or is deleted;

A³⁰ is Glu, Leu, Nle, Cha, Aib, Acc, Lys, Arg or is deleted;

 A^{31} is Ile, Leu, Cha, Lys, Acc, Phe, Val, Nle, β -Nal, Arg or is deleted;

RE

 A^{32} is His or is deleted;

A³³ is Thr, Ser or is deleted;

 A^{34} is Ala, Phe, Tyr, Cha, Val, Ile, Leu, Nle, $\beta\text{-Nal},$ Aib, Acc or is deleted;

 A^{35} is Glu, Asp or is deleted;

 A^{36} is Ile, Acc, Cha, Leu, Phe, Nle, β -Nal, Trp, p-X-Phe, Val, Aib or is deleted;

 A^{37} is Arg, Lys, $HN-CH((CH_2)_nNH-R^4)-C(O)$ or is deleted;

 A^{38} is Ala, Phe, Tyr, Cha, Val, Ile, Leu, Nle, β -Nal, Aib, Acc or is deleted;

where X for each occurrence is independently selected from the group consisting of OH, a halo and CH₃;

 R^1 and R^2 are each independently selected from the group consisting of H, (C_{1-30}) alkyl, (C_{2-30}) alkenyl, phenyl- (C_{1-30}) alkyl, naphthyl (C_{1-30}) alkyl, hydroxy (C_{1-30}) alkyl, hydroxy (C_{2-30}) alkenyl, hydroxy-phenyl (C_{1-30}) alkyl or hydroxy-naphthyl (C_{1-30}) alkyl; or one of R^1 or R^2 is COE^1 where E^1 is (C_{1-30}) alkyl, (C_{2-30}) alkenyl, phenyl (C_{1-30}) alkyl, naphthyl (C_{1-30}) alkyl, hydroxy (C_{1-30}) alkyl, hydroxy-phenyl (C_{1-30}) alkyl;

 R^3 is OH, NH_2 , (C_{1-30}) alkoxy or $NH-Y-CH_2-Z$, where Y is a (C_{1-30}) hydrocarbon moiety and Z is CO_2H or $CONH_2$;

n for each occurrence is independently an integer from 1 to 5; and

 R^4 for each occurrence is independently (C_1-C_{30}) alkyl, (C_1-C_{30}) acyl or $-C((NH)(NH_2))$;

provided that the compound is not PTHrP(1-34)R³, PTHrP(1-35)R³, PTHrP(1-36)R³, PTHrP(1-37)R³ or PTHrP(1-38)R³,

and further provided that the compound is not $[Ile^5, Trp^{23}]PTHrP(1-36)$ or $[Trp^{23}]PTHrP(1-36)$.

14 (amended). A compound of formula (V), $(R^1R^2) - A^1 - A^2 - A^3 - A^4 - A^5 - A^6 - A^7 - A^8 - A^9 - A^{10} - A^{11} - A^{12} - A^{13} - A^{14} - A^{15} - A^{16} - A^{17} - A^{18} - A^{19} - A^{20} - A^{21} - A^{22} - A^{23} - A^{24} - A^{25} - A^{26} - A^{27} - A^{28} - A^{29} - A^{30} - A^{31} - A^{32} - A^{33} - A^{34} - A^{35} - A^{36} - A^{37} - A^{38} - R^3$ (V)

or a pharmaceutically acceptable salt thereof, wherein ${\tt A}^1$ is Ala, Ser, Dap, Thr, Aib or is deleted;

 A^2 is Val or is deleted;

A³ is Ser, Aib, Thr or is deleted;

A⁴ is Glu, Asp or is deleted;

 A^{5} is His, Ile, Acc, Val, Nle, Phe, Leu, p-X-Phe, $\beta\text{-Nal},$ Aib, Cha or is deleted;

A⁶ is Gln, a hydrophilic amino acid or is deleted;

 A^7 is Leu, Val, Cha, Nle, β -Nal, Trp, Pal, Acc, Phe, p-X-Phe, Aib, a lipophilic amino acid or is deleted;

 A^8 is Leu, Met, Acc, Cha, Aib, Nle, Phe, Ile, Val, β -Nal, p-X-Phe, a lipophilic amino acid or is deleted;

A⁹ is His, a hydrophilic amino acid or is deleted;

A¹⁰ is Asp, Asn, a hydrophilic amino acid or is deleted;

 A^{11} is Lys, Arg, Leu, Cha, Aib, p-X-Phe, Ile, Val, Nle, Acc, Phe, β -Nal, HN-CH((CH₂)_nNH-R⁴)-C(O), a lipophilic D-amino acid, a hydrophilic amino acid or is deleted;

A¹² is Gly, Acc, Aib or is deleted;

 A^{13} is Lys, Arg, HN-CH((CH₂)_nNH-R⁴)-C(0) or is deleted;

A¹⁴ is Ser, His or is deleted;

 A^{15} is Ile, Acc, Cha, Leu, Phe, Nle, β -Nal, Trp, p-X-Phe, Val, Aib or is deleted;

A¹⁶ is Gln, Aib or is deleted;

A¹⁷ is Asp, Aib or is deleted;

 A^{18} is Leu, Aib, Acc, Cha, Phe, Ile, Nle, β -Nal, Val, p-X-Phe or is deleted;

 A^{19} is Arg, Lys, Aib, HN-CH((CH₂)_nNH-R⁴)-C(O) or is deleted;

 A^{20} is Arg, Lys, HN-CH((CH₂)_nNH-R⁴)-C(O) or is deleted;

 A^{21} is Arg, Lys, HN-CH((CH₂)_nNH-R⁴)-C(O) or is deleted;

 A^{22} is Phe, Glu, Aib, Acc, p-X-Phe, β -Nal, Val, Leu, Ile, Nle or Cha;

 A^{23} is Phe, Leu, Lys, Acc, Cha, β -Nal, Aib, Nle, Ile, p-X-Phe, Val or Trp;

 A^{24} is Leu, Lys, Acc, Nle, Ile, Val, Phe, eta-Nal, Aib, p-X-Phe, Arg or Cha;

 A^{25} is His, Lys, Aib, Acc, Arg or Glu;

A²⁶ is His, Aib, Acc, Arg or Lys;

 A^{27} is Leu, Lys, Acc, Arg, Ile, Val, Phe, Aib, Nle, β -Nal, p-X-Phe or Cha;

 A^{28} is Ile, Leu, Lys, Acc, Cha, Val, Phe, p-X-Phe, Nle, $\beta\text{-Nal},$ Aib or is deleted;

A²⁹ is Ala, Glu, Acc, Aib or is deleted;

A³⁰ is Glu, Leu, Nle, Cha, Aib, Acc, Lys, Arg or is deleted;

 A^{31} is Ile, Leu, Cha, Lys, Acc, Phe, Val, Nle, $\beta\text{-Nal},$ Arg or is deleted;

 A^{32} is His or is deleted;

A³³ is Thr, Ser or is deleted;

 A^{34} is Ala, Phe, Tyr, Cha, Val, Ile, Leu, Nle, $\beta\text{-Nal},$ Aib, Acc or is deleted;

 A^{35} is Glu, Asp or is deleted;

 A^{36} is Ile, Acc, Cha, Leu, Phe, Nle, β -Nal, Trp, p-X-Phe, Val, Aib or is deleted;

 A^{37} is Arg, Lys, $HN-CH((CH_2)_nNH-R^4)-C(O)$ or is deleted;

 A^{38} is Ala, Phe, Tyr, Cha, Val, Ile, Leu, Nle, $\beta\text{-Nal},$ Aib, Acc or is deleted;

where X for each occurrence is independently selected from the group consisting of OH, a halo and CH₃;

 R^1 and R^2 are each independently selected from the group consisting of H, (C_{1-30}) alkyl, (C_{2-30}) alkenyl, phenyl- (C_{1-30}) alkyl, naphthyl (C_{1-30}) alkyl, hydroxy (C_{1-30}) alkyl, hydroxy (C_{2-30}) alkenyl, hydroxy-phenyl (C_{1-30}) alkyl or hydroxy-naphthyl (C_{1-30}) alkyl; or one of R^1 or R^2 is COE^1 where E^1 is (C_{1-30}) alkyl, (C_{2-30}) alkenyl, phenyl (C_{1-30}) alkyl, naphthyl (C_{1-30}) alkyl, hydroxy (C_{1-30}) alkyl, hydroxy (C_{2-30}) alkyl, hydroxy-phenyl (C_{1-30}) alkyl or hydroxy-naphthyl (C_{1-30}) alkyl;

 R^3 is OH, NH_2 , (C_{1-30}) alkoxy or $NH-Y-CH_2-Z$, where Y is a (C_{1-30}) hydrocarbon moiety and Z is CO_2H or $CONH_2$;

n for each occurrence is independently an integer from 1 to 5; and

 R^4 for each occurrence is independently (C1-C30)alkyl, (C1-C30)acyl or -C((NH)(NH2));

