

Ţ <u>Help</u>

sandipan_dey >

Next >

Discussion <u>Syllabus</u> laff routines **Community** <u>Progress</u> <u>Outline</u> <u>Course</u> <u>Dates</u>

(1)

☐ Bookmark this page

< Previous</pre>

■ Calculator

1. Let $L_A: \mathbb{R}^3 \to \mathbb{R}^2$ and $L_B: \mathbb{R}^3 \to \mathbb{R}^3$ be linear transformations with

$$L_B\left(\begin{pmatrix}1\\0\\0\end{pmatrix}\right) = \begin{pmatrix}3\\1\\0\end{pmatrix}, L_B\left(\begin{pmatrix}0\\1\\0\end{pmatrix}\right) = \begin{pmatrix}-2\\-1\\1\end{pmatrix}, L_B\left(\begin{pmatrix}0\\0\\1\end{pmatrix}\right) = \begin{pmatrix}0\\1\\2\end{pmatrix}$$

and

$$L_A\left(\begin{pmatrix} 3\\1\\0 \end{pmatrix}\right) = \begin{pmatrix} 2\\1 \end{pmatrix}, L_A\left(\begin{pmatrix} -2\\-1\\1 \end{pmatrix}\right) = \begin{pmatrix} 0\\1 \end{pmatrix}, L_A\left(\begin{pmatrix} 0\\1\\2 \end{pmatrix}\right) = \begin{pmatrix} 1\\0 \end{pmatrix}$$

(a) Let B equal the matrix that represents the linear transformation L_B . (In other words, $Bx = L_B(x)$ for all $x \in \mathbb{R}^3$). Then

B =

- (b) Let C equal the matrix such that $Cx = L_A(L_B(x))$ for all $x \in \mathbb{R}^3$.
 - What are the row and column sizes of C?
 - Then

C =

Answer Video

© All Rights Reserved

edX

About

Affiliates

edX for Business

<u>Open edX</u>

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>