MATH5004 Tutorial 5 1D Finite Element formulation

Exercise 1. Find variational statement of the following boundary value problems:

a)
$$u'' + c^2 \lambda^2 u = 0$$
, $u(a) = f(x)$, $u(b) = g(x)$.

b)
$$u'' + u' + u = 0$$
, $u'(a) = f(x)$, $u(b) = g(x)$.

c)
$$u'' - u' - c^2 \lambda^2 u = 0$$
, $u'(a) = f(x)$, $u'(b) = g(x)$.

Exercise 2. Consider the following BVP:

$$-u_{xx} = 1 + x$$
 in $\Omega = (0,1)$, $u(0) = 1$, $u'(1) + u(1) = 1$.

- a) Develop a variational statement of the problem.
- b) For the mesh of four linear elements of the same length, write down two linear shape functions N_1^2 and N_2^2 on the second element.
- c) Sketch the linear finite element basis function $\emptyset_3(x)$ and $\emptyset_4(x)$ at the nodes x_3 and x_4 .
- d) By Galerkin approximation, derive Finite Element Formulation (the stiffness matrix and load vector) of the problem.

Assignment II

Question 1. (LUT-WK5)

For the mesh of four linear elements of the same length, derive Finite Element Formulation of the BVP:

$$k(x)\frac{d^2u}{dx^2} = f(x), \ \ 0 < x < 1$$

where $f(x) = -\cos(\pi x)$, $k = \pi x^2$ and the following boundary conditions:

(a)
$$u(0) = 1$$
, $u(1) = 0$

(a)
$$u(0) = 1$$
, $u(1) = 0$,
(b) $\frac{d}{dx}u(0) = \frac{d}{dx}u(1) = 1$.

Note: Assignments II (25%): Assignment Questions will be given weekly.

In this week, Questions 1 (TUT-WK5) is a part of Assignment II, please submit a document file with MATLAB code via Blackboard by the due date of Assignment I on Friday 23 October 2020