ПАСПОРТ //-6/-84

НА АЛОМИНЕВЫЙ СПЛАВ МАРКИ 01570

Рекоменлацию к испытаниям в производственно-эксплуатапионных условиях

УТВЕРЖЦАЮ

Зам. директора предприятия п/я A-II47

July as de la constant

декабря 1984г

I.I	Краткая	Спло	0155	0 является	0.000	INO DI DI T	ožopuvnyo			
спариваемым сплавом системы лг - мг - Sc Среди отечественных и зарубежных сплавов ан не имеет. Из сплава изготавливаются прессов (полосы, прутки, профили), катаные (листы) по рикаты, раскатные кольца и поковки. Сплав об высокой прочностью, теплопрочностью, удовлетельной свариваемостью и коррозионной стойк Сплав в отожженном состоянии предназначен д гото пления сварных конструкций, работающих 196 до 150°C, и имеет на всех видах полуф тов более высокие, чем у сплава АМГ6 прочно свойства. Высокая прочность основного метал ностью реализуется в конструкции при наличутолщения свариваемых кромок, получаемых ме ческим или химическим фрезерованием. В паспорте привелены показатели механически свойств, полученные при исследовании материных партий полуфабрикатов. Назначение сплава в конструкции согласовыва предприятием п/я А-ТІ47										
1.2	*****									
1.3	Химический состав, вес. %	***		Осно	овные к	омпонент	'H			
		Алюминип		Магний	Ска	ндип	Марганец			
		Основа		5,8-6,8	0,3	-0,5	0,1-0,25			
		Продолже Примеси, не более								
		Медь	Цинк	Пирконий	Желево	Кремния	Гериллиг	Проч		
	1		0,1	0,05-0,15	0,3	0,2	0,0002-	0,1		
~14U.		0,1	0,1	0,00 0,10			-0,005	0,1		
1.4	Исходные составляю- гие мате- риала	Соде чива коли	ржит отся честв	дорогостоя отечествен ах из-за о кандия	ий мат ным сыр	ериал-ск ъем, но	2-0,005 кандий, об в огранич	еспечі енных		
1.4	СОСТВВЛЯЮ- ГІМЕ МОТЕ-	Соде чива коли	ржит отся честв	дорогостоя отечествен ах из-за о	ий мат ным сыр	ериал-ск ъем, но	2-0,005 кандий, об в огранич	еспечі енных		

Н. контр. Утв.

-1.5	Види полуфаб-	Вид полу-	Сбозна-	Состоя-	Термооб- работка	Направ-		нические сво	ГСТ Ва
-	рикатов, спо- соб произ- нодства, сортамент, технические	фабриката	чение докумен- та на поставку	постав- ки	испытуе- мых контроль- ных об-	разцов	(KLC/WW ₅)	Ce, Ma (Krc/MM ²)	8,9
	условия для обормления				разцов		Н	е менее	
	3484308	Листы ката-	ТУопІ-		Стомжен-	Поперечное	235(24)	363(37)	15
	H O I I I	ные толщиной от I,0 до I0,5 мм, шириной от 600 до I000 мм, длиной от 1000 до 2000 мм	-809-615- -82	нке	ные Гез тер- мической обработ- ки	Поперечное	216(22)	353(36)	I 5
		Прутки прес- сованные ди- аметром свыше 8 до 90 мм	TYonI- -809-58I-	Отожжен н ы е		Долевое	235(24)	353(36)	I 5
2		свыше 90 до 1 50мм					216(22)	353(36)	15
		свыше 150мм					196(20)	333(36)	I 5

•6	Рекоменлуемые области при- менения	ся примен сварных к условиях гептил, а Сплав в о	70 в отожженном состоянии рекомен устять для средне- и высоконагруженных онструкции, работающих в атмосферных и в контакте с продуктами типа амил, мидол, 030ВК. тожженном состоянии работоспособен в температур от минус 196 до 150°С.
.7	Кем разработан сплав	ИМЕТ им. В п/я Г-436	айкова АН СССР и предприятием I
.8	Термическая обработка	ется. Еди которому внутренни материала тов из сп рах 310—3 сохраняет Промежуто лей холод пературах разупрочн	70 термической обработкой не упрочня- нетвенным ви ом термической обработки, подвергается сплав ОІ570 для снятия х напряжений и повышения пластичности , является отжиг. Отжиг полуфабрика- лава ОІ570 производится при температу- 35°С, как для сплава АМгб, при этом ся нерекристаллизованная структура, чиме отжиги, в случае изготовления дета ной деформацией, производить при тем- , не превышающих 380°С, во избежание ения сплава. Не рекомендуется проведе- двух промежуточных отжигов
		o augunec	HOME CBOSCTBA
2.1	Температура плавления, ^О С	Z. WANTED	TOTE COUNCIDA
2.2	Плотность У,		2,64
2.3	Корфрициент ли- нейного расшира ния, 100 К-1 при температу- рах, С 20-100 20-150 20-200 20-250		2I,8 22,I 23,I 24,5
	Incr M govyu. Hosm.	Aava	- П11-61-84

. .

		Про	одолжение
UU Srs	Наименопание свойств	Показатели -	
2.4	іюзфінциент тепло- проводности З, Вт/м. К		!
	при температурах, ОС		
	20	-	
	50	67	
	100	98	1
	150 200	108	
	250	II2	į
2.5	Коліфиционт темпе- ратуропряводности С., см-/сек при температурах, СС		
	20	0,37	
	- 50	.0,38	
	ICC	0,39	
	150	0,41	
	200	0,42	1
	250	0,43	
2.6	Удельная теплоем- кость Ср. кДж/кг.К. при температурах, °С		
	50	0,863	
	100	0,941	
	150	0,950	1
. 1	500	0,977	
	250	0,982	
2.7	Удельное электросопро-		
	TITE OM.M		
	при температурах. ОС		
	20	4,8	
*	100	6,3	
	200	7,8	-
	250	8,5	+
		711-61-84.	

Fi	T					3. MEX	АНИЧЕСКИ	E CBOSC	TBA				
131	1	MAMA	Наименование	Вид полу-	Направ-				Пок	азатели			
¥ 20	1	пп	СВОРСТВ	та брика т а	ление вы резки об	-		при	темпера	турах ис	пытания, 0	2	
KYN.					разцов	минус 253	минус 196	минус 70	20 ⁺ I5	ICO	150	200	250
.Подп. Дата		3.I	Модуль упру- гости стати- ческий Е. 2 МПа (кгс/мм ²)	Прессован- ный пруток диаметром 50мм	Долевое			- 11-11-1	69580 (7100)	<u>64190</u> (6550)	60074 (6130)		
-	וות	3,2	Модуль упру- гости динамич ческий Е, 2 МЛа (кгс/мм)	Прессован- ный пруток лиаметром 50 мм	Долевое		минус 186 <u>76244</u> (7780)	73402 (7490)	69678 (7110)	63700 (6500)	-	-	-
	1-61-84	3.3	Предел пропор- циональности блу50, МПа (кгс/мм ²)	Прессо- ванный пруток диа- метром 50мм	Долевоє	-	-	1	27I,5 (27,7)	240,I (24,5)	210,7 (21,5)	-	-
				лист тол-	Попереч- ное по ширине	-	•	-	269,5 (27,5)	254,8 (26,0)	220,5 (22,5)	-	-
		3.4	Предел теку- чести без МПа (кгс/мм ²)	Катаный лист тол- шиной 2 мм	Попереч- ное по ширине	460,6 (47,0)	400,8 (40,9)	345,9 (35,3)	340,I (34,7)	335,2 (34,2)	310,6 (31,7)	213,6 21,8)	80,3 (8,2)
S	Лист			Змм 4мм		382,2	381,2 (38,9) 347,9 (35,5)	318,5 (32,5) 295,9 (30,2)	312,6 (31,9) 293,0 (29,9)	289, I	220,5 (22,5) 277,3 (28,3)	237,2 (24,2) 238,1 (24,3)	I05,8 (10,8) I22,5 (12,5)

.

.

11	-									Прод	олжение	
	対権	Наименорание свойств	Вид полу- фабриката	Направле- ние вы-				казатели	00			
	пп	CBOPCTB	per perara	резки об-				уре испыт	ания, С			
				разцов	минус 253	минус 196	минус 70	20 ⁺¹⁵	ICO	I50	200	250
		Предел теку- чести быг, МПа (кгс/мм ²)	Раскатные кольца ди- аметром до 900мм	Попереч- нсе по толщине (по высо- те)		257.7 (26,3)	224,4 (22,9)	220,5 (22,5)	210,7 (21,5)	199,9 (20,4)	I83,3 (I8,7)	100,0
<u> </u>			Прессован- ный пруток диаметром 50мм	Долевое	-	-	-	285,I (29,I)	240,I (24,5)	2I0,7 (2I,5)	-	-
П11-61-84.			модтеменц		-	37I,4 (37,9)	-	307.7 (31,4)	296,9 (30,3)	284,2 (29,0)	243,0 (24,8)	I44,0 (I4,7)
4.	6.5	Временное со- противление бв ,МПа	Катаный лист тол- шиной 2 мм	Попереч- ное по ширине	607,6 (62,0)	519.4 (53,0)	429,2 (43,8)	427,3 (43,6)	387,I (39,5)	323,4 (33,0)	233,2 (23,8)	I00,9 (I0,3
		(KLC/WM_)	Змы	_n _	612,5 (62,5)	524,3 (53,5)	396,9 (40,5)	409.6 (4I,8)	364,6 (37,2)	307,7 (31,4)	247,9 (25,3)	I4I.I (I4,4
			4mm	— n —	617,4 (63,0)	500,7 (5 I,I)	40I,8 (4I,0)	409,6 (41,8)	369,5 (37,7)	305,8 (31.2)	254,8 (26,0)	I44,I (I4,7
Лист			Раскатные кольца диаметром до 900мм	Попереч- ное по толщине (по высо- те)	-	400,8 (40,9)	257,7 (26,3)	362.6 (37,0)	305,8 (31,2)	258,7 (26,4)	208,7 (21,3)	I44, I (I4,7

I	MIA	Наименовани	в Вид полу-	Направле-	1		- 5	Іоказатели		прод	олжение	!
+	Πn	свойств	фабриката	ние вы- резки об-		при		атуре испы	лания, ^о С			
				разцов	минс 253	минус 196	минус 70	20+15	100	I50	200	250
1			Прессован- ный пруток диаметром 50мм	Долевое		-		426,3 (43,5)	369,5 (37,7)	290 I (29,6)	-	-
1		_	Прессован- ный профил с толщиной полки Змм	E	-	572,3 (58,4)	-	442,0 (45,I)	396,9 (40,5)	334,2 (34,I)	261,6 (26,7)	179,3 (18,3
711-61-84	3.6	Относитель- ное удлине- ние	Катаний лист тол- щиной 2 мм	Попереч- ное по ширине	9,5 16,5	I4,5 34,0	19,0 24,6	17,0 21,4	35,5 30,6	42,5 32,0	50,5 36,2	I44,0 70,4
	4.		4 мм		17,5	33,3	23,0	23,0	35,0	41,0	49,7	132,7
			Раскатные кольца дивметром до 900мм	Попереч- ное по толщине (по вы- соте)		9,3	16,3	I8,6	29,3	34,6	34,6	45,3
			Прессован- ны? пру- ток диа- метром 50мм	Долевое	-	-		18,0	36,7	46,7	-	-
Лист			Прессован- ный профиль с толщиной полки Змм	Долевое	-	-	-	12,0	16,6	31,3	32,0	-

	,	r							Продол	гение	
nin	Наименорание свойств	Вид полу-	Направле-				казатели	0.0			
			разцов	FORENCE		and the second s	атуре исп		,	Loss	Luca
			hoodon	минус 253	196 196	минус 70	20+15	IOC	150	200	250
5.7	Ударная вяз- кость КСV,	Катане ^я лист тол- щиной Эмм	Попереч- ное по ширине	-	II,8 (1,2)	-	I7,6 (I,8)	I7,6 (I,8)	18,6	18,6 (1,9)	I8,6 (1,9
	(Krc.m/cm ²)	Прессован- ни пруток диаметром 50 мм	Долевое	9,8 (1,0)	II.8 (I,2)	•	I7,6 (I,8)	I9,6 (2,0)	19,6 (2,0)	29,4 (3,0)	29,4 (3,0
3.8	Зударная вяз- кость на об- разце с треди- но КСТ, Джей (кгс.м/см)	Катаны ^д лист тол- щиной Змм	Попереч- ное по ширине	9,8 (1,0)	9,5 (0,97)	-	I2,7 (I,3)	I3,7 (I,4)	I3.7 (I.4)	I3,7 (I,4)	I7,6 (I,8
		Прессован- ный пруток диаметром 50мм		•	9,8 (1,0)	-	I6,7 (I,7)	21,6 (2,2)	25,5 (2,6)	24,5 (2,5)	24,5 (2,5
3.9	Чувствитель- ность к над- резу бъ 68	Раскатные кольца диаметром по 900мм	Долевое (хордо-	-	I,04	-	I, I4	-	-	-	-
	при 7 надре- ла =0,025мм		Попереч- ное по толщине (по ви- соте)	-	0,8	-	Ι, Ι	-	-	-	-
		-									
									-		

ı	
ı	
	.7
ı	11-1
١	-19

1	nn	На имено вание сво гств	Вид полу- фабриката	Направле- ние вн- резки		при те		атели е испытани.	я,°С			
				образцов	минус 253	минус 196	минус 70	20 ^{+I5}	100	150	200	250
1		3. IO Напряжень МПа няе, МПа	Прессован- ный про- филь с толщиной	Долевое	-	-	-	-	-		-	29,4 (3,0)
_		вед истельная до разруше- ния в час	полки Змм		_							2
		и ния в час										

Примечания:

- I. Механические сворства определялись на образцах, отожменных по режиму 320°С-I ч.
- 2. Значения механических свойств катаных листов приведены по результатям исследования материала листов нескольких партий и различных химических составов (в пределах марки сплава).
- 3. Испытания на растяжение проводились:
 - при пониженных температурах по ГОСТИИ50-75.

 - при комнатной температуре по ГОСТ 1497-73, при повышенных температурах ло ГОСТ 9651-73.
- 4. Определение ударной вязкости КС V и КСТ проводились по ГОСТ 9454-78 на образцах с радиусом надреза: $KCV-Z_N = 0.25 + 0.025$ мм и $KCT - Z_N = 0.1 + 0.025$ мм.
- 5. Определение чувствительности к надрезу проводились на круглых образцах диаметром рабочей части 7 мм с надрезом глубиной I_0 мм и 2n = 0.025 мм.

4. ТЕХНОЛОГИЧЕСКИЕ СВОЛСТВА

aio III	Наименование свойств		Показат	ели					
1. I	Термическая обработка	Режим отжи	ra:	яботкой не уг ратуре: 310-3 воздухе					
1.5	Понка и горя- чая штамповка	Температур под деформ	а нлгрева ацип, ОС	Допустимая дефорнация за один нагрев, %					
1		пресс	молот	пресс	молот				
		320-380	320-360	70	50				
		З20-380 З20-360 70 50 Сплав удовлетворительно сваривается аргоноду- говой и контактной сваркой. Сварка материала вы полняется в отожженном состоянии без последуй- щей термической обработки. В качестве приса- дочного материала рокомендуется проволока сос- тава основного металла, св. 01571 (Туоп 1-809639-82), а также из сплава АМгб (ГОСТ7871-75). Коэффициент трещинообразования по методике "рыбий скелет" олизок нулю							
4.5	Снариваемость	говой и колодинать полняется прей термич дочного матава основ -639-82, Коэффициен	нтактной св в отожженно еской обраб гериала рек ного металл в также из т трещинооб	аркот. Сварка м состояний с отки. В качес омендуется п а, св. О1571 сплава Амго разования по	а материала без последую стве приса- роволока сос (ТуопІ-809- (ГССТ7871-75				
4.4	Снариваемость Обрабатываемость резанием	говой и кололняется полняется прочного матава основ -639-82), Коэффициентрибий ске.	нтактной св в отожженно еской обраб гериала рек ного металл а также из т трещинооб лет близок	аркот. Сварка м состояний с отки. В качес омендуется п а, св. О1571 сплава Амго разования по	а материала без последую стве приса- роволока сос (ТуопІ-809- (ГССТ7871-75				
	Обрабатываемость	говой и кололняется полняется прочного матава основ -639-82), Коэффициентрибий ске.	нтактной св в отожженно еской обраб гериала рек ного металл а также из т трещинооб лет близок	аркот. Сваркам состояний сотки. В качестом сомендуется праводать в ОТ571 сплава Амго правования по нулю	а материала без последую стве приса- роволока сос (ТуопІ-809- (ГССТ7871-75				

П11-61-84

Juner IU

ロロート記録	Наименование свойств	Вид свар-	Вид полу- фабриката	Толщина сварива-	Me	ханические с пол	войства опри нтания. С	температуре	
		KA		emerk RPOMOR,	минус 253	минус 196	at-15	I50	250
5.1	ление Св (образци		лист толщиной Зим	3 .	44 <u>0</u> (45,0)	46 5 (47,6)	395 (40,I)	295 30,3)	I35 (14,0)
	плавом сварного шва, МПа (кгс/мм²)	ргонодуговая	прессован- ння про- филь с тол- щиноя пол- ки 3 мм		-	400 (40,6)	385 (39, 2)	265 (26,9)	II5 (11,6)
5.2	ление Ga (образін без усиления и про-	ਰ	лист толщиной 3 мм		420 (43,0)	465 (47,7)	3I5 (32,I)	265 (26,8)	120 (12,4)
	mama chaphoro wha),	Автоматическая	прессован- ный про- филь с тол- щиной пол- ки 3 мм		-	400 (40,7)	315 (32,1)	335 (23,8)	I45 14,8
5.3	Коэффициент проч- ности $K_{\text{пр.}} = \frac{G_{0} c_{0} c_{0} c_{0} c_{0}}{G_{0} c_{0} c_{0}}$	ABT	лист толщиной 3 мм		0,72	0,89	0,95	1,0	1,0
			прессован- ный про- филь с тол- пиной пол- еи 3 мм		-	0,7	0,37		11.3

--

. .

- 1000 TH3			Вид полу- рабриката	Толшина сварива-	механические свойства при температуре испытания, С					
-		KN.		emix kpomox, MM	минус 253	минус 196	a +15	150	250	
5.4	5.4 Ударная вязность лист толщиной 3 мм прессован-	3	I40 (I,45)	205 (2,I)	3I5 (3, 2).	255 (2,6)	205 (2, I)			
	no gby $\gamma_H = I_{MM}$		прессован- ный про- филь с тол щиной пол- ки 3 мм		-	155 (1,6)	245 (2,5)	235 (2,4)	195	
5.	Ударная вязкость кс и , Дж Ан (кгс м/см2), над-	аргоно цуго вая	лист толщиной 3 мм		75 (0,79)	(IIO)	195 (2,0)	I85 1,9)	I45 1,5)	
	рез по зоне сплав- ления С н = I мм		прессован- ный профиль с толщиной полки 3 мм	b	,	-	I00 (1,0)	I85 (1,9)	I85 1,9)	195 (2,0)
5.0	б Угол изгиба d, град.	Автоматическая	лист толщиной 3 мм		-	60	0 130	190	180	
		ABTO	прессован- ный профиль с толжиной полни 3 мм		-	55	100	180	180	
					-					

п-п	па имоно ахии е Свойств	рид свар-	луфабрика-	CBADA -		O BROTOBVILLEXBE	BORCIBO COR	волства гри температуре				
	RM	Ru i		ваемых кромок,	минус 253	минус 196	a +15	150	250			
5.7	Padota зарождения трежини A ₃ cv, ftx &u ² (кгс м/см ²),		лист толщиной 3 мм	3	-	0,07)	0,12)	-	-			
на дрез по вву $T_{\rm H} = 0,025$ мм		прессован- ный про- филь с тол- финой пол-			5 (0,05)	17,5 0,18)						
5.8	7 н= 0,025 мм	уговая	лист толшиной З ми		-	5 (0,05).	20 (0, 20)	-	-			
		аргонодуговая	прессован- ный профиле с толщиной полки 3 мм		-	4 (0,04)	8 (0,08)	-	-			
5.9	Padota развития трещины ApC V, had (кгс м/см²),	А Втом атическая	тическая	тическа	тическа	лист толщиной 3 мм		-	3I,5 (0,32)	81,5 70,83)	-	-
-	натрез по шву т _н = 0,025 мм	A BTOMB	прессован- ный пројили с толщиной полки 3 мм		-	25,5 (0,27)	6I 5 (0,63)		-			
5.10	Padota развітия трещини ApC , fx Av ² (кгс м/см ²),		лист толщиной 3 мм,		-	29,5 (0,30)	45 (0,48)	-	_			
	надрез по зоне сплавления 7 н = 0,025 мм		прессован- ний про- филь с тол- щиной пол- ки 3 мм		-	33,5 70,34)	40 (0,39)	-	-			

— <u>ПП</u>	Наименование войств	Вид сварии	Вид полу- фабриката	Ha CBA-	Механические свойства при температуре испытанил, С				
				MUK KDO-	минус 253	минуе 196	30 -IO	150	250
5.11	Другие харантерис- тики сварных сое- динений	1 20						,	
5.II.	Б.II.I Минимальная раз- рушающая нагрузка соединений при диаметре сварной	оецинений при В то	лист толираной	3 . 3	На срез				
			3 MM		-	3350 (2490.)	2350 (2500.)	SICO	-
	10,0 - 10,2м, да		ень			Ha	OTONB		
		Tou				470 (520)	680 7740)	830 (150)	-

Примечания:

- І. Определение меканических свойств сварных ссетинений проводилось по ГОСТ 6996-66.
- 2. Определение свойств сварных соединений при испытаниях на статический изгиб A_{s}^{CU} , A_{p}^{CU} проводилось по ОСТ 92-0940-30.
- 3. Ориентировочные режимы точечной контактной сварки приведены в ОСТ 92-1115-79, табл. 14, стр. 57.

2	коррозионные	COOPCTOA
0.	RUPPUSMUTHEL	CHULL I BA

riri Tiri	Наименование свойств	Показателя
6.1	Керрозионная стой- кость (в зависимос- ти от условий аксплуатации).	Сплав обладает удовлетворительной коррози- онной стойкостью в атмосферных условиях и продуктах амил, гептил, амидол, 0-30. Для эксплуатац и в морских условиях необходи- ма защита, аналогичная зощите сплава АМг6
6.2	Методы зацити от коррозии (в зави- симости от условий эксплуатации)	Защита от общей коррозии в атмосферных условиях в зависимости от условий эксплуатации производится анодно-окисным покрытием по ОСТ92-I467-78 с последующим нанесением ЛКП по ОСТ92-I48I-79
6.3	Коррозионная стой- кость сварных соеди- нений	Сварные соединения, выполненные АДС, обла- дают удовлетворительной коррозионной стойностью в атмосферных условиях. Для эксплуатации в морских условиях необходи- ма защита, аналогичная защите сплава АМГ6
6.4	Методы защиты снар- ных соединения	Защита сварных соединений в атмосферных условиях аналогична защите основного металла, указанной в п.б.2
6 . 6	Коррозия под напря— женнем	Ооновной металя и сварные соединения не склонны к коррозионному растрескиванию при напрядениях, равных 0,9 50,2 и 20 кгс/мм

ПП-61-84

Лист 15

		Продолжение
р П	Наименование свойств	Показатели
.6	Межкристаллитная коррозия	Полубабрикаты (листи ≠ 2,3,5 мм. прессованная полоса) обладают удовлетворительной стойкостью против межкристаллитной коррозни
.7	Расслаивающая коррозия	Полуфебрикаты (листы ≠ 2,3,5 мм, прессованная полоса) обладеют удовлетворительной стой-костью против расслаивающей коррозии
	Ha KOI	ания проподились: дую коррозию по ГССТ 9.017-74, прозию под напряжением — по ГССТ 9.019-74, ккристаллитную коррозию — по ГССТ 9.021-74, сслаивающую коррозию — по ГССТ 9.504-82.
	Начальник отдела Исметьну отдела	Начальник лаборатории ВЛАСОВА Т.А. Начальник лаборатории УСИНОВИЧ В.И. Начальник лаборатории

Начальник отдела Менес вамынков А.С.

Начельния сектора Помер Мелиндина Т.И. От предприятил п/я № 5539 Помер В.Т. И. От пач. отдела Помер В.Т.

				Annual at	JINES
			_	П11-61-84.	16
Man June	M ADKEN.	Hoan.	Лата		

Приложение I

Перечень упомянутых документов

Обозначение	Наименование	Лист
ΓΟCT11150-75	Методы испытания на растяжение при пониженных температурах	9
FOCT 1497-73	Металлы. Методы испытания на растлжение	9
POCT 9651-73	Металлы. Методы испытания при повышен- ных температурах	9
rout 9454-78	Металлы. Метод испытания на ударный изгиб при пониженной, комнатной и повы- шенной температурах	9
10CT 787 I-75	Проволока сварочная из алюминия и алю- миниевых сплавов. Технические условия	IO
TOCT 9.017-74	Алрминий и сплавы алеминиевые. Методы ускоренных испытаний на общую коррозию	16
roct 9.019-74	ЕСЗКС. Сплавы алюминиевые и магниевые. Методы ускоренных испытаний на корро- зионное растрескивание	16
roct9.02I-74	Алюминий и сплавы алюминиевые. Методы ускоренных испытаний на межкристаллит- ную коррозию	16
1001 V.904-82	Сплавы алюминиевые. Методы ускорсных испытаний на расслаивающую коррозию	16
OUT92-1481-79	Покрытия лакокрасочные для металли- ческих поверхностей. Типовые техноло- гические процессы	15
POCT6996-66	Свариче соединения. Методы определе- ния механических свойств	14
0CT92-III5- 7 9	Сварка точечная и шовная контактная. Технические требования	14
00192-0940-80	Метод определения работы разрушения при испытании на изгиб с различными скорос- тлми деформирования при различных тем- пературах	14

Нам. Ляст № докум. Подп. Лата

TIL-61-84

Лист

I7