Concours Communs Polytechniques - Session 2009

Corrigé de l'épreuve d'algèbre

Valeurs propres, symétrie orthogonale et résultant de deux polynômes

Corrigé par M.TARQI

PREMIER EXERCICE

- 1. Soit λ une valeur propre de u, alors il existe $x \neq 0$ tel que $u(x) = \lambda x$ et par composition, on obtient $P(u)(x) = P(\lambda)x$, donc $P(\lambda)$ est une valeur propre de l'endomorphisme P(u).
- 2. (a) D'après l'égalité précédente, on obtient $P(\lambda)x=0$ et comme $x\neq 0$, alors $P(\lambda)=0$.
 - (b) Non, Si E est de dimension finie n, le polynôme $P=(X^n-1)(X+1)$ est un polynôme anulateur de l'identité, alors que -1 qui est une racine de P, n'est une valeur propre de l'identité.
- 3. Comme la dimension est impaire, le spectre de u est non vide. D'autre part le polynôme X^3-X^2+X-1 , anulateur de u, admet 1 comme la seule racine réelle, donc le spectre de u est $\{1\}$.

DEUXIÈME EXERCICE

- 1. Les vecteurs u=(1,0,-2) et v=(0,1,-3) forment une base de Π et comme w est un vecteur normal à Π , alors (u,v,w) est une base de \mathbb{R}^3 .
- 2. Il est clair que s(u) = u, s(v) = v et s(w) = -w, donc :

$$S' = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right)$$

3. Soit P la matrice de passage de la base canonique à la base (u, v, w), alors

$$P = \left(\begin{array}{ccc} 1 & 0 & 2\\ 0 & 1 & 3\\ -2 & -3 & 1 \end{array}\right)$$

et par conséquent

$$S = PS'P^{-1} = \frac{1}{7} \begin{pmatrix} 3 & -6 & -2 \\ -6 & -2 & -3 \\ -2 & -3 & 6 \end{pmatrix}$$

PROBLÈME: RÉSULTANT DE DEUX POLYNÔMES

I. DÉFINITION ET PROPRIÉTÉS

- 1. Cas où u est bijective
 - (a) Soient (A, B) et (A', B') deux éléments de E et $\lambda \in \mathbb{R}$, alors :

$$u(\lambda(A, B) + (A', B')) = u(\lambda A + A', \lambda B + B)$$

$$= P(\lambda A + A') + Q(\lambda B + B')$$

$$= \lambda(PA + QB) + (PA' + QB')$$

$$= \lambda u(A, B) + u(A', B')$$

Donc u est bien est une application linéaire.

- (b) Si u est une bijection, alors le polynôme constant 1 est atteint et une seule fois, donc il existe un unique élément (A,B) de E tel que PA+QB=1, donc d'après le théorème de Bézout les polynômes P et Q sont premiers entre eux.
- (c) Soit $(A,B) \in \ker u$, alors PA + QB = 0 ou encore PA = -QB et comme P et Q sont premiers entre eux alors si $B \neq 0$ P diviserait B, ce qui est absurde en raison de degrés. De même A = 0, donc u est injective et comme les deux espaces ont la même dimension, alors u est bijective.

2. Matrice de u

- (a) On a $\forall 0 \leq i \leq q-1$, $u(X^i,0) = X^i P = \sum_{k=0}^p a_k X^{k+i}$ et $\forall 0 \leq j \leq p-1$, $u(0,X^j) = X^j Q = \sum_{k=0}^q b_k X^{k+j}$. La matrice de u par rapport au bases \mathcal{B} et \mathcal{B}' est donc $M_{P,Q}$.
- (b) D'après la question 1., les polynômes P et Q sont premiers entre eux si et seulement si u est bijective ou encore

$$\det Mat(u, \mathcal{B}, \mathcal{B}') = \det M_{P,Q} = \operatorname{Res}(P, Q) \neq 0.$$

3. Racine multiple

- (a) Un polynôme de $\mathbb{C}[X]$ admet une racine multiple si et seulement si P et P' ont une racine commune, ou encore $\mathrm{Res}(P,P')=0$
- (b) *Application*: Le polynôme $X^3 + aX + b$ admet une racine double si et seulement si $Res(X^3 + aX + b, 3X^2 + a) = 0$, ou encore

$$\begin{vmatrix} b & 0 & a & 0 & 0 \\ a & b & 0 & a & 0 \\ 0 & a & 3 & 0 & a \\ 1 & 0 & 0 & 3 & 0 \\ 0 & 1 & 0 & 0 & 3 \end{vmatrix} = 27b^2 + 4a^3 = 0.$$

II APPLICATIONS

4. Équation de Bézout

(a) Calculons le résultant de *P* et *Q*. On a :

Donc les deux polynômes sont premiers entre eux.

(b) Il faut résoudre le système $M_{P,Q}Z = 1$, avec $Z = (x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ et 1 = (1, 0, 0, 0, 0, 0, 0).

On trouve donc, après les calculs, Z = (1, -1, -1, 0, 1, 2, 1), ce qui donne le couple :

$$(A_0, B_0) = (1,0) - (X,0) - (X^2,0) + (0,X) + 2(0,X^2) + (0,X^3)$$

= $(1 - X - X^2, X + 2X^2 + X^3)$

(c) Soit (A, B) un couple de polynômes de $\mathbb{C}[X]$ vérifiant : PA + QB = 1. Par soustraction on obtient:

$$P(A - A_0) = Q(B_0 - B) (*)$$

Comme Q et P sont premiers entre eux, alors Q divise $A - A_0$ et par suite il existe un polynôme R_1 tel que $A - A_0 = RQ$, donc $A = A_0 + RQ$, puis en remplaçant dans (*), on obtient $B = B_0 - RP$.

Inversement tout couple de la forme $(A, B) = (A_0 + RQ, B_0 - RP)$ vérifie PA + QB = 1.

- 5. Équation d'une courbe
 - (a) Tableau de variation:

t	$-\infty$	$\frac{-1}{2}$	$\frac{1}{2}$ $+\infty$
x'(t)		- 0	+
x(t)	$+\infty$	$\frac{-1}{4}$	$+\infty$
y(t)	$+\infty$	\	$\frac{3}{4}$ / $+\infty$
y'(t)		_	0 +
$\frac{y'(t)}{x'(t)}$	1	∞	0 1

L'allure de Γ :

(b) Le point M(x,y) appartient à la courbe de représentation paramétrique : $\left\{ \begin{array}{ll} x(t)=P(t) \\ y(t)=Q(t) \end{array} \right. \quad \text{pour } t \in \mathbb{R}.$

$$\begin{cases} x(t) = P(t) \\ y(t) = Q(t) \end{cases} \text{ pour } t \in \mathbb{R}.$$

si et seulement si il existe $t_0 \in \mathbb{R}$ tel que $x = P(t_0)$ et $y = Q(t_0)$, donc $A(t_0) =$ $B(t_0) = 0$, c'est-à-dire A et B ont une racine commune.

 $M(x,y) \in \Gamma$ si et seulement si les polynômes $A = X^2 + X - x$ et B = $X^2 - X + 1 - y$ ont une racine commune, c'est-à-dire Res(A, B) = 0. Or

$$\begin{vmatrix} -x & 0 & 1-y & 0 \\ 1 & -x & -1 & 1-y \\ 1 & 1 & 1 & -1 \\ 0 & 1 & 0 & 1 \end{vmatrix} = x^2 + y^2 - 2xy - 4y + 3 = 0.$$
 de q est 1, donc la courbe c'est une conique sans centre;

- (c) Le rang de q est 1, donc la courbe c'est une conique sans centre ; c'est une parabole.
- 6. Si x_0 est solution de $P = X^2 3$, et si P et Q ont une racine commune, alors $y = x_0 \pm \sqrt{7}$. Mais une condition nécessaire et suffisante, pour que les polynômes P et Q_y ont une racine commune, c'est que :

$$\operatorname{Res}(P, Q_y) = \begin{vmatrix} -3 & 0 & y^2 - 7 & 0\\ 0 & -3 & -2y & y^2 - 7\\ 1 & 0 & 1 & -2y\\ 0 & 1 & 0 & 1 \end{vmatrix} = y^4 - 20y + 16 = 0$$

On prend donc le polynôme $X^4-20X+16$. Les autres racines sont $\sqrt{3}-\sqrt{7},-\sqrt{3}-\sqrt{7}$ et $-\sqrt{3}+\sqrt{7}$.

•••••

M.Tarqi-Centre Ibn Abdoune des classes préparatoires-Khouribga. Maroc E-mail : medtarqi@yahoo.fr