Review:

- 1) V.S.I with device conduction period = 180° is known as "square wave inverter"
- ⇒ 6 step/cycle in line current 6 step/cycle in phase voltage load is Y connected

$$V_{ab} = \frac{2\sqrt{3}}{\pi} V_{dc} \left\{ \sin \omega t - \frac{1}{5} \sin 5\omega t - \frac{1}{7} \sin 7\omega t - \ldots \right\}$$
$$= (6N \pm 1) \text{ harmonics}$$

$$V_{AN} = \frac{2}{\pi} V_{dc} [\sin \omega t + \frac{1}{5} \sin 5\omega t + \frac{1}{7} \sin 7\omega t]$$

 V_{A0} , V_{B0} , V_{C0} have triple harmonics

- O Isolated neutral, all triple harmonics = 0
- $\therefore V_{N0} \rightarrow Will have tripplen harmonics$

- ⇒ Frequency of the Fundamental itself is changing
- ⇒ Frequency of the Pre-dominant Harmonic will also change
- ⇒ Difficult to design a filter
- ⇒ Frequency of the fundamental can be varied by varying the duration of half a cycle
 - How to vary the magnitude?

Magnitude of phase voltage & line voltage ∞ ' V_{dc} '

In V.V.V.F. sources, magnitude of 'V' should vary 'F'

- ⇒ Vary input 'V'
- ⇒ In DC to AC converter

 there is a AC to DC converter

- \rightarrow As to \downarrow $V_{dc} \propto \uparrow$ towards 90°
- \rightarrow P.F. \downarrow also $\phi_1 \uparrow$

- $\Rightarrow \phi_1$ is maximum for α =0 \Rightarrow uncontrolled rectification
- \Rightarrow Source line I has (6N±1) harmonics
- ⇒ 'F' of fundamental=50Hz
- ⇒ Requires filter at the input

- Now $V_{out} \propto V_{dc}$ if device is ON for 180°
- \Rightarrow Instead keep V_{dc} constant
 - (Corresponding to $\alpha=0 \Rightarrow$ diode bridge)
 - & control conduction period of each device

- ⇒ Use P.W.M
- 1) Switching frequency F_s is a function of load. (as Power Rating \uparrow , $F_s \downarrow$)

2) Distortion in the current waveform \uparrow as $F_s \downarrow$.

- \Rightarrow PWM strategy must aim at \downarrow this distortion.
- ⇒ It can be shown that it is leakage reactance that limits the current due to harmonic voltage.

- ⇒ As the 'F' of harmonic 'V' \uparrow , |x| \uparrow & ∴ I \downarrow .
- \Rightarrow Harmonic I produces torque pulsations in addition to I²R loss.
- ⇒○'F' of harmonic I is high, speed pulsations; 0

How to choose the no. of pulses/cycle?

Sub-harmonics = 0 if pulse number is an integer.

PWM waveform should have $\frac{1}{2}$ wave

symmetry (no even harmonics)

.: Pulse number is an odd integer

- $3-\phi$ symmetry must also be attained. (Only then will every component be balanced)
- \Rightarrow In addition, $\frac{1}{4}$ wave symmetry results in low distortion.

In sinusoidal PWM technique,

 $F_c \Rightarrow$ Frequency of the carrier wave

 $F_s = F_c \rightarrow$ multiple of frequency of F_{sine} for synchronization.

 \Rightarrow Odd multiples of F_c for $\frac{1}{2}$ wave symmetry.

- \Rightarrow Multiples of 3 for 3- φ symmetry.
- $\therefore \frac{F_{C}}{F_{Sine}} = \text{should be ODD multiples of 3}$

for synchronization, $\frac{1}{2}$ wave symmetry & 3- ϕ symmetry.

Sinusoidal PWM Technique:
 3 sinusoids, displaced by 120°.

$$V_{cn} = V_{m} \sin \omega_{1}t$$
,
 $V_{bn} = V_{m} \sin(\omega_{1}t - 120^{\circ}) &$
 $V_{cn} = V_{m} \sin(\omega_{1}t + 120^{\circ})$

Both A_{M} and F of sine wave (modulating wave) are varying. F of sine wave = F of fundamental component o/p V $A_c & F_c \rightarrow constant$ $V_0 \propto m = \frac{A_M}{A_C}$

All phase voltages are identical & out of phase by 120° (no even harmonics)

Peak of fundamental component of

$$V_{a0} = \frac{V_{dc}}{2} * m$$

$$= \frac{V_{dc}}{2} \text{ when m=1}$$

Peak of fundamental for 180° conduction

$$= \frac{4}{\pi} * \frac{V_{dc}}{2} = 1.27 \frac{V_{dc}}{2}$$

$$\therefore V_{ab(PWM)} = \sqrt{3} \frac{V_{dc}}{2}$$

$$V_{ab1(square)} = \frac{2\sqrt{3}}{\pi} V_{dc}$$

Magnitude of nth harmonic for fundamental frequency > F_{rated}

$$= \frac{1}{n} * \frac{2\sqrt{3}}{\pi} V_{dc}$$

⇒ Frequency spectrum:

Let
$$F_N = \frac{F_C}{F_{\text{sine}}}$$

$$\therefore$$
 n = j $F_N \pm k$

where j = 1,3,5... for k = 2,4,6... and = 2,4,6... for k = 1,5,7...

such that 'n' is not a multiple of 3

If
$$F_N$$
 =45
'F' of harmonic = 45 F_{sine} \pm 2 F_{sine}
45 F_{sine} \pm 4 F_{sine}

90 F_{sine} ± F_{sine} 90 F_{sine} ± 5 F_{sine}

As $m \rightarrow 1$, narrow pulses near the center

⇒ To complete switching operation of the devices, minimum notch and pulse width must be maintained.

- ⇒ These narrow pulses may be blocked.
- ⇒ Affects the machine performance
- ⇒ As m[↑], operation ⇒ 6 step operation
- ⇒ harmonics will re-appear
 5th & 7th
- \Rightarrow This happens at F > 50 Hz
- \Rightarrow Frequency of $F_5 > 250$

- ⇒ Possible to design a filter or get filtered by machine leakage 'L'
- \Rightarrow 'F' of predominant harmonic till rated F; F_c
- \Rightarrow 'F' of predominant harmonic above the rated F = $5F_1$
- ⇒ May not have a choice!

- ⇒ Peak of fundamental = 78.55% of the peak of square wave (1/1.27)
- ⇒ Using sinusoidal P.W.M
 - \rightarrow Frequency of predominant harmonic \uparrow
 - \rightarrow Distortion in I \downarrow
 - \rightarrow Utilization of DC link voltage \downarrow
 - \rightarrow Δ wave intersects only near the zero crossings as m \uparrow above 1

- Is it possible to change the shape of the modulating waveform without \(^1\) harmonic content & \(^1\) DC link utilization?
- ⇒ Add 3rd harmonic component to the sinusoidal modulating wave.
- ⇒ Cannot appear in line-line voltage waveform

