Compléments : dérivation et convexité

Table des matières

1	Contin	Continuité			
	1.1 D	éfinitions	2		
	1.2 Pr	ropriété des valeurs intermédiaires	2		
		ontinuité et suites			
2	Généra	alités	2		
	2.1 D	éfinitions	3		
	2.2 L'	'inégalité des accroissements finis	4		
	2.3 R	ègles de dérivation	5		
3	Convexité				
	3.1 D	éfinition	5		
	3.2 C	onvexité et dérivation	6		
	3.3 Ex	xemples d'application	8		
4	Développements limités à l'ordre 2				
	4.1 Co	omparaison des fonctions au voisinage d'un point	9		
	4.2 La	a formule de Taylor à l'ordre 2	9		
		as à connaître	10		
		polication aux formes indéterminées	12		

1 Continuité

1.1 Définitions

(reconduction du programme de ECE 1)

1.2 Propriété des valeurs intermédiaires

(reconduction du programme de ECE 1)

1.3 Continuité et suites

Proposition 1 (Passage à la limite)

```
Soit (u_n) une suite et f: I \to \mathbb{R}.

On suppose que : \blacktriangleright \lim(u_n) = \ell \in I,

\blacktriangleright \text{ la fonction } f \text{ est continue en } \ell.

Alors, on a : \lim_{n \to +\infty} f(u_n) = f(\ell).
```

L'exemple de la limite d'Euler : On montre, pour $a \in \mathbb{R}$, la limite : $\lim_{n \to +\infty} \left(1 + \frac{a}{n}\right)^n = \exp(a) = e^a$.

Posons, pour n > 0 la suite definie par : $e_n = (1 + \frac{a}{n})^n$, pour $a \in \mathbb{R}$.

Alors pour n > -a, on a: $e_n > 0$. Passons au logarithme : $\ln(e_n) = n \cdot \ln\left(1 + \frac{a}{n}\right)$.

On va utiliser la forme indéterminée : $\lim_{h\to 0} \frac{\ln(1+h)}{h} = 1$. (taux d'accroissement du logarithme ln.)

En posant $h = \frac{a}{n}$, il vient donc : $\ln(e_n) = a \cdot \frac{\ln(1+h)}{h}$.

Quand $n \to \infty$, on a: $h = \frac{a}{n} \to 0$. Ainsi: $\lim_{n \to +\infty} \ln(e_n) = a \cdot \lim_{h \to 0} \frac{\ln(1+h)}{h} = a$.

On compose par l'exponentielle, qui est continue.

Il vient bien : $e_n = \exp(\ln(e_n)) \rightarrow \exp(a)$.

Application : le théorème du point fixe

(Programme du chapitre suivant)

On peut appliquer le passage à la limite au cas des suites d'itérées.

Soit une suite est définie par une relation de récurrence de la forme $u_{n+1} = f(u_n)$.

Si la suite (u_n) est convergente, et si f est continue, alors : $\lim(u_{n+1}) = \lim(f(u_n))$.

 $= f(\lim(u_n))$

La limite $\ell = \lim(u_n)$ doit donc alors vérifier : $\ell = f(\ell)$ (équation du point fixe.)

2 Généralités

Introduction: une remarque sur les fonctions affines

Définition 2 (Fonctions affines)

Une **fonction affine** est une fonction $f : \mathbb{R} \to \mathbb{R}$ s'écrivant, pour $x \in \mathbb{R}$, comme : f(x) = ax + b, pour $a, b \in \mathbb{R}$ deux constantes.

Interprétation graphique

Le graphe de la fonction f est alors une droite \mathcal{D} (qui n'est pas verticale)

Les coefficients a,b s'interprètent comme suit : a: le coefficient directeur de \mathcal{D} ,

• b: son ordonnée à l'origine : b = f(0).

Le coefficient directeur a s'obtient aussi comme le **taux d'accroissement** : $a = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$ pour x_0, x_1 quelconques, avec $x_0 \neq x_1$.

Changement de point

On peut aussi écrire l'équation de droite comme : $y = a' \cdot (x - x_0) + b'$

avec les nouveaux coefficients : $\begin{cases} a' = a \\ 1/a \end{cases}$

 $b' = b + ax_0 = f(x_0)$

2.1 Définitions

Définition 3 (Dérivabilité, nombre dérivé)

Soit $f: I \to \mathbb{R}$ une fonction réelle, et $x_0 \in I$.

► On dit que f est **dérivable** en x_0 si, pour $x \to x_0$, on peut écrire **l'approximation**:

$$f(x) = f(x_0) + a(x - x_0) + o(x - x_0),$$

pour $a \in \mathbb{R}$ une constante.

$$avec \, \epsilon(x) = f(x) - [f(x_0) + f'(x_0)(x - x_0)]$$

En réécrivant, pour $x \to x_0$, la formule : $f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + o(x - x_0)$

comme:
$$\frac{f(x)-f(x_0)}{x-x_0} = f'(x_0) + \underbrace{\frac{o(x-x_0)}{x-x_0}}_{=o(1)\longrightarrow 0}$$
,

on retrouve la formulation familière:

Proposition 4 (Limite du taux d'accroissement)

Soit $f: I \to \mathbb{R}$ une fonction réelle, et $x_0 \in I$. Alors f est **dérivable** en x_0 ssi: $\frac{f(x)-f(x_0)}{x-x_0}$ (le taux d'accroissement) a une **limite** pour $x \to x_0$. Si c'est le cas, alors le nombre dérivé vérifie :

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Définition 5 (Fonction dérivée)

Soit $f: I \to \mathbb{R}$ une fonction réelle.

- ▶ On dit que f est **dérivable sur l'intervalle** I si f est dérivable en tout point $\forall x_0 \in I$.
- ▶ La **fonction dérivée** $x \mapsto f'(x)$ est alors bien définie sur I.

Exemples: dérivation de puissances:

▶ La fonction carré $f(x) = x^2$.

On pose $x = x_0 + h$, et alors $x \to x_0 \iff h \to 0$. On trouve alors :

$$f(x) = f(x_0 + h) = (x_0 + h)^2 = \underbrace{x_0^2 + 2x_0 h}_{\text{affine en } h} + \underbrace{h^2}_{=o(h)}$$

Ainsi, on trouve bien $f'(x_0) = 2x_0$ (soit $(x^2)' = 2x$).

▶ La fonction cube $f(x) = x^3$.

On trouve alors : $f(x) = f(x_0 + h) = (x_0 + h)^3 = \underbrace{x_0^3 + 3x_0^2 h}_{\text{affine en } h} + \underbrace{3x_0h^2 + h^3}_{=o(h)}$. Ainsi, on trouve bien $f'(x_0) = 3x_0^2$ (soit $(x^3)' = 3x^2$).

► **La fonction inverse** $f(x) = \frac{1}{x}$. (un peu plus subtil!)

Pour se donner des idées, on commence par calculer le taux d'accroissement :

$$\frac{f(x)-f(x_0)}{x-x_0}=\frac{\frac{1}{x}-\frac{1}{x_0}}{x-x_0}=\frac{\frac{x_0-x}{x_0x}}{x-x_0}=\frac{-1}{x_0x},$$

soit la formule : $f(x) = f(x_0) - \frac{x - x_0}{x_0} \times f(x)$ ou $f(x_0 + h) = f(x_0) - \frac{h}{x_0} \times f(x_0 + h)$.

Par suite il vient $f(x_0 + h) = f(x_0) - \frac{h}{x_0} \left[f(x_0) - \frac{h}{x_0} \times f(x_0 + h) \right]$ soit :

$$f(x_0 + h) = \underbrace{f(x_0) - f(x_0) \frac{h}{x_0}}_{\text{affine en } h} + \underbrace{f(x_0 + h) \frac{h^2}{x_0^2}}_{=o(h)}.$$

L'inégalité des accroissements finis

Proposition 6 (Inégalité des accroissements finis)

Soit $f:[a;b] \to \mathbb{R}$ une fonction numérique. On suppose f dérivable sur]a;b[.

1. Soit $M \in \mathbb{R}$.

Supposons que la **dérivée** f' est **majorée** par M: si $\forall x \in]a; b[, f'(x) \leq M,$ $\frac{f(b)-f(a)}{b-a} \leq M.$ alors alors le **taux** d'accroissement $\tau_{a,b}f$ **l'est aussi** :

2. Soit $k \ge 0$.

Supposons que la **dérivée** f' est **bornée** par k: si $\forall x \in]a; b[, |f'(x)| \le k,$

alors le **taux** d'accroissement $\tau_{a,b}f$ **l'est aussi** : alors $\left|\frac{f(b)-f(a)}{b-a}\right| \le k$.

Résumé de la proposition:

taux d'accroissement de f

Le taux d'accroissement est la valeur moyenne de la dérivée : $\frac{f(x_1) - f(x_0)}{x_1 - x_0} = \underbrace{\frac{1}{x_1 - x_0} \cdot \int_{x_0}^{x_1} f'(t) dt}$

valeur moyenne de f

Ainsi, si la dérivée vérifie une certaine inégalité **sur tout l'intervalle** *I*, alors les taux d'accroissement satisfont « la même inégalité ».

En particulier, l'énoncé 1. s'étend *mutatis mutandis* pour

• une minoration $m \le f'(x)$

(on retourne l'inégalité pour le taux d'accroissement),

• un encadrement $m \le f'(x) \le M$

 $(\leadsto un\ encadrement\ du\ taux\ d'accroissement),$

• des inégalités strictes m < f'(x) ou f'(x) < M.

(→ inégalité stricte sur le taux d'accroissement).

Remarque sur la portée du résultat

Par définition, la dérivée s'obtient à partir du taux d'accroissement (par passage à la limite).

L'inégalité des accroissements finis nous permet de faire le trajet en sens inverse :

partant d'informations sur la dérivée, on conclut sur le taux d'accroissement.

Démonstration (Si f est C^1): Supposons f de classe C^1 (au lieu de « seulement dérivable »).

Alors la dérivée f' est continue et on peut l'intégrer sur le segment $[x_0; x_1]$.

Il vient:
$$\int_{x_0}^{x_1} f'(t) dt = \left[f(t) \right]_{x_0}^{x_1} = f(x_1) - f(x_0).$$

Si on a $\forall t \in I$, $f'(t) \leq M$, alors: $\int_{x_0}^{x_1} f'(t) dt \leq \int_{x_0}^{x_1} M dt = M \cdot (x_1 - x_0).$ (on rappelle que $x_0 \leq x_1$!)

Il vient donc bien alors : $f(x_1) - f(x_0) \le M(x_1 - x_0)$.

Proposition 7 (Sens de variations)

Soit $f: I \to \mathbb{R}$ une fonction numérique dérivable.

- **1.** La fonction f est **croissante** $ssi f' \ge 0$ sur I.
- **2.** Si f' > 0 sur I, alors la fonction f est **strictement croissante**.

2.3 Règles de dérivation

(reconduction du programme de ECE 1)

3 Convexité

3.1 Définition

Définition 8 (Fonction convexe sur un intervalle)

Soit $f: I \to \mathbb{R}$ une fonction continue.

On dit que f est **convexe** sur I si pour tous $\rightarrow a, b \in I$, et

▶
$$p, q \in]0; 1[$$
, avec $p + q = 1$,

on a l'inégalité : $f(qa+pb) \le qf(a) + pf(b)$

image de la moyenne moyenne des images

Interprétation graphique par les cordes

La corde de la fonction entre deux abscisses $a,b \in I$ est le **segment** joignant les points du graphe à ces abscisses.

Une fonction est **convexe** si son **graphe** est en dessous de ses cordes.

Exemple: Convexité sur \mathbb{R} **de la fonction** $f: x \mapsto x^2$: Soient $a, b \in \mathbb{R}$ et $p, q \in]0; 1[$, avec p + q = 1.

On trouve:
$$q \cdot f(a) + p \cdot f(b) - f(qa + pb) = q \cdot a^2 + p \cdot b^2 - (qa + pb)^2$$

= $(q - q^2) \cdot a^2 + (p - p^2) \cdot b^2 - 2pq \cdot ab$
= $pq \cdot (a^2 - 2ab + b^2)$.

Ainsi: $q \cdot f(a) + p \cdot f(b) = f(qa + pb) + pq \cdot (a - b)^2$.

On obtient bien l'inégalité de convexité pour f, soit : $q \cdot f(a) + p \cdot f(b) \ge f(qa + pb)$.

Remarques (pour f une fonction convexe)

- Notamment pour $p = q = \frac{1}{2}$, on obtient: $f\left(\frac{a+b}{2}\right) \le \frac{f(a)+f(b)}{2}$
- Généralisation

Si on a davantage de coefficients $p_1, p_2, ..., p_n$, avec $\forall i \in [1, n], p_i \ge 0$,

$$\sum_{i=1}^{n} p_i = 1 \quad (=100\%),$$

on a aussi, pour toute suite $(a_i) \in I^n$, l'inégalité : $f\left(\sum_{i=1}^n p_i a_i\right) \le \sum_{i=1}^n p_i f(a_i)$.

Convexité et dérivation

Avec des taux d'accroissements

On écrit ici : x = qa + pb, et on a donc : x - a = p(b - a). et b-x=q(b-a).

L'inégalité de convexité $f(qa + pb) \le qf(a) + pf(b)$ s'écrit:

$$f(x) \le \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b)$$

On regroupe avec la formule $\frac{b-x}{b-a} + \frac{x-a}{b-a} = 1, \quad f(x)$ et on obtient les deux reformulations suivantes pour cette inégalité : $\frac{f(b)-f(a)}{b-a} \leqslant \frac{f(b)-f(x)}{b-x}, \qquad f(b)$

ou encore $\frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(a)}{b - a}$

(On note ici $\tau_{a,b}$ le taux d'accroissements de f entre a et b, et idem pour $\tau_{a,x}, \tau_{x,b}$.)

Convexité sur \mathbb{R}_+^* de $f: x \mapsto \frac{1}{x}$:

Soient $a, x, b \in]0; +\infty[$ avec a < x < b.

Le taux d'accroissement de f entre a et b est : $\tau_{a,b} = \frac{\frac{1}{b} - \frac{1}{a}}{b - a} = \frac{\frac{a - b}{ab}}{b - a} = \frac{-1}{ab}$.

De même : $\tau_{a,x} = \frac{-1}{ax}$, et $\tau_{x,b} = \frac{-1}{xb}$. Comme 0 < a < x < b, on a bien $\frac{-1}{ax} \le \frac{-1}{xb} \le \frac{-1}{xb}$, soit $\tau_{a,x} \le \tau_{a,b} \le \tau_{x,b}$.

Ainsi f est bien convexe sur $]0; +\infty[$.

Proposition 9 (Croissance de la dérivée)

Soit $f: I \to \mathbb{R}$ une fonction dérivable.

- Alors f est convexe sur I ssi sa dérivée f' est croissante sur I.
- ▶ Si f est deux fois dérivable, alors f est convexe ssi f'' est positive (≥ 0) sur I.

Démonstration (hors-progamme, et que l'on peut omettre) :

• f convexe $\Longrightarrow f'$ croissante On suppose $f: I \to \mathbb{R}$ dérivable et convexe.

Montrons que si $a, b \in I$ vérifient $a \le b$, alors $f'(a) \le f'(b)$.

D'après la Remarque 3.1, pour $x \in a$; b[, on a :

On passe à la limite pour $x \to b$ et $x \to a$ respectivement. Il vient : $\qquad \qquad \frac{f(b) - f(a)}{b - a} \le f'(b)$

 $f'(a) \le \frac{f(b) - f(a)}{b - a}.$

Ainsi on a bien : $f'(a) \le f'(b)$, et f' est croissante.

▶ f' **croissante** \Longrightarrow f **convexe** On suppose $f: I \to \mathbb{R}$ dérivable et f' croissante.

Soient $a \le b \in I$, et $x \in]a; b[$.

Par les accroissements finis, et la croissance de f', on a : $\frac{f(b)-f(x)}{b-x} \ge f'(x)$ et

 $\qquad \qquad \frac{f(x) - f(a)}{x - a} \le f'(x).$

Ainsi: $\frac{f(x)-f(a)}{x-a} \le \frac{f(b)-f(x)}{b-x}$.

Or le taux d'accroissement $\tau_{a,b}$ s'écrit comme une moyenne de $\tau_{a,x}$ et $\tau_{x,b}$:

$$\underbrace{\frac{f(b)-f(a)}{b-a}}_{\tau_{a,b}} = \underbrace{\frac{x-a}{b-a}}_{q} \cdot \underbrace{\frac{f(x)-f(a)}{x-a}}_{\tau_{a,x}} + \underbrace{\frac{b-x}{b-a}}_{p} \cdot \underbrace{\frac{f(b)-f(x)}{b-x}}_{\tau_{x,b}}.$$

On a donc bien : $\frac{f(x)-f(a)}{x-a} \le \frac{f(b)-f(a)}{b-a}$.

La fonction f est donc convexe par la Remarque 3.1.

Proposition 10 (Caractérisation par les tangentes)

Soit $f: I \to \mathbb{R}$ une fonction dérivable.

Alors f est convexe \rightarrow ssi le graphe de f est au-dessus de ses tangentes,

• c'est-à-dire $ssi \forall a, x \in I$, $f(x) \ge f(a) + f'(a)(x - a)$.

Démonstration : On suppose que f est de classe C^2 . On a donc $f''(t) \ge 0$ pour $t \in I$. On va écrire f(x) en faisant apparaître une intégrale avec f''(t):

$$f(x) = f(a) + \int_{a}^{x} f'(t) dt$$

= $f(a) + \left[(t - x)f'(t) \right]_{a}^{x} - \int_{a}^{x} (t - x)f''(t) dt$

où l'on a fait l'intégration par parties :
$$\begin{cases} u(t) = f'(t) \\ v'(t) = 1 \end{cases} \rightsquigarrow \begin{cases} u'(t) = f''(t) \\ v(t) = t - x. \end{cases}$$
 Ainsi :
$$f(x) = f(a) + f'(a)(x - a) + \underbrace{\int_a^x (x - t) f''(t) \, \mathrm{d}t}_{\geqslant 0}, \text{ d'où } f(x) \geqslant f(a) + f'(a)(x - a).$$

3.3 Exemples d'application

Exercice 1 (Une estimée de la queue Gaussienne)

- 1. Montrer que la fonction $x \mapsto -\frac{x^2}{2}$ est concave.
- **2.** En déduire que pour $a, x \in \mathbb{R}$, on a : $-\frac{x^2}{2} \le -\frac{a^2}{2} a \cdot (x a)$.
- **3.** En déduire, pour a > 0, l'inégalité : $\int_a^{+\infty} e^{-\frac{x^2}{2}} dx \le e^{-\frac{a^2}{2}} \cdot \frac{1}{a}.$

Exercice 2 (Inflexions de la Gaussienne)

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie pour $x \in \mathbb{R}$ par : $f(x) = \alpha \exp\left(-\frac{x^2}{2}\right)$, où $\alpha > 0$.

- 1. Montrer que la fonction f est de classe C^{∞} .
- **2.** Montrer que la fonction f est paire.
- **3.** Faire l'étude des variations de la fonction f sur \mathbb{R} .
- **4.** Faire l'étude de la convexité de la fonction f sur \mathbb{R} .
- **5.** Pour $\mu \in \mathbb{R}$, $\sigma > 0$, où sont le max, et les inflexions de $g: x \mapsto \alpha \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$? (*réponse:* maximum: en μ , inflexion: en $\mu \pm \sigma$

Exercice 3 (Moyenne harmonique)

- 1. Montrer que la fonction $x \mapsto \frac{1}{x}$ est convexe sur $]0; +\infty[$.
- **2.** En déduire que pour a, b > 0, on a : $\frac{1}{\frac{a+b}{2}} \le \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right)$.

On rappelle, pour a,b > 0, la définition de : \blacktriangleright la moyenne harmonique : $H(a,b) = \frac{2ab}{a+b}$,

► la moyenne arithmétique : $A(a,b) = \frac{a+b}{2}$.

- **3.** Montrer, pour a,b > 0, que : $H(a,b) \le A(a,b)$. Déterminer les cas d'égalité.
- **4.** Montrer que si 0 < a < b, alors on a : a < H(a,b) < b.

Exercice 4 (Moyenne géométrique)

- **1.** Montrer que la fonction $x \mapsto \ln(x)$ est concave sur $]0; +\infty[$.
- **2.** En déduire que pour a, b > 0, on a : $\frac{1}{2} \left[\ln(a) + \ln(b) \right] \le \ln \left(\frac{a+b}{2} \right)$.
- **3.** Conclure que la moyenne harmonique $G(a,b) = \sqrt{ab}$ est majorée par la moyenne arithmétique $A(a,b) = \frac{a+b}{2}$.
- **4.** Montrer que si 0 < a < b, alors on a a < G(a,b) < b.

Exercice 5 (Relation entre les trois moyennes)

Pour deux réels a, b > 0, on définit : • leur moyenne **arithmétique** par : $A(a,b) = \frac{a+b}{2}$

▶ leur moyenne **harmonique** par : $H(a,b) = \frac{2ab}{a+b}$

• leur moyenne **géométrique** par : $G(a,b) = \sqrt{ab}$.

1. Calculer le produit $A(a,b) \times H(a,b)$.

2. En déduire la moyenne géométrique de A(a,b) et de H(a,b).

3. En déduire l'encadrement $H(a,b) \le G(a,b) \le A(a,b)$.

4 Développements limités à l'ordre 2

4.1 Comparaison des fonctions au voisinage d'un point

Pour n > 0, on a: $\lim_{x \to 0} x^n = 0$.

La vitesse de cette convergence dépend de n.

La tendance $\lim_{x\to 0} x^n = 0$ est d'autant plus rapide que l'exposant n est élevé.

Plus précisément, si n > m, alors, on a : $x^n = o(x^n)$

Définition 11 (Développement limité à l'ordre 2)

Soit $f: I \to \mathbb{R}$ une fonction.

Un **développement limité** à l'ordre 2 en $x_0 \in I$ s'écrit, pour $x \rightarrow x_0$:

$$f(x) = \underbrace{a + b \cdot (x - x_0) + c \cdot (x - x_0)^2}_{\text{partie principale : un trinôme}} + \underbrace{o((x - x_0)^2)}_{\text{terme d'erreur}}.$$

Proposition 12 (Unicité)

Soit $f: I \to \mathbb{R}$ une fonction numérique, et $x_0 \in I$.

Si f admet un développement limité en x_0 , celui-ci est unique.

En d'autres termes, si l'on peut écrire : $f(x) = a + b \cdot (x - x_0) + c \cdot (x - x_0)^2 + o((x - x_0)^2),$ = $a' + b' \cdot (x - x_0) + c \cdot (x - x_0)^2 + o((x - x_0)^2)$

pour $a, b, c, a', b', c' \in \mathbb{R}$, alors on a nécessairement : $\begin{cases} a = a' \\ b = b' \end{cases}$

4.2 La formule de Taylor à l'ordre 2

Développements limités à l'ordre 1

(On s'intéresse, comme dans la suite, à l'étude en 0.)

On a l'approximation de f(x) pour $x \to 0$, par une fonction affine, grâce à la dérivée :

$$f(x) = \underbrace{f(0) + f'(0) \cdot x}_{\text{fonction affine + terme d'erreur}} + \underbrace{o(x)}_{\text{fonction affine + terme d'erreur}}$$

Pour une fonction **affine** f(x) = ax + b, cette formule est **exacte**.

En effet le terme d'erreur est alors nul, car on a : $\begin{cases} f(0) = b, \\ f'(0) = a. \end{cases}$

Recherche d'un analogue pour un polynôme de degré 2

Pour une fonction donnée par : $f(x) = ax^2 + bx + c$,

on a: f'(x) = 2ax + b, et: f''(x) = 2a.

En prenant x = 0, on trouve ainsi l'expression des coefficients :

$$\begin{cases} c = f(0), \\ b = f'(0). \\ a = \frac{f''(0)}{2}. \end{cases}$$

Pour f fonction polynomiale de degré 2, on a obtenu : $f(x) = f(0) + f'(0) \cdot x + \frac{f''(0)}{2} \cdot x^2$.

En général, la formule ci-dessus persiste, à un terme d'erreur près :

Proposition 13 (Formule de Taylor à l'ordre 2)

Si $f: I \to \mathbb{R}$ est C^2 au voisinage de x_0 , alors $x \to x_0$, et $h \to 0$:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + o(x - x_0)^2$$
$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2}h^2 + o(h^2)$$

4.3 Cas à connaître

\mathbf{e}^{x}	ln(1+x)	$(1+x)^a$, $a \in \mathbb{R}$
$1 + x + \frac{x^2}{2} + o(x^2)$	$x - \frac{x^2}{2} + o(x^2)$	$1 + ax + \frac{a(a-1)}{2} \cdot x^2 + o(x^2)$

Pour la fonction exponentielle

Proposition 14 (Développement limité de exp)

Pour
$$x \to 0$$

 $e^x = 1 + x + \frac{x^2}{2} + o(x^2)$

Démonstration:

Pour la fonction $\exp: x \mapsto e^x$, on a : $\exp'' = \exp' = \exp$. Les valeurs en 0 sont donc : $\exp''(0) = \exp'(0) = \exp(0) = 1$. Le développement limité s'ensuit de la formule de Taylor.

Pour la fonction logarithme

Proposition 15 (Développement limité de ln)

Pour $x \to 1$, on a: $\ln(x) = x - 1 - \frac{(x-1)^2}{2} + o((x-1)^2)$. Pour $h \to 0$, on a: $\ln(1+h) = h - \frac{h^2}{2} + o(h^2)$.

Démonstration:

On a: $\forall x > 0$, $\ln'(x) = \frac{1}{x}$, et $\ln''(x) = \frac{-1}{x^2}$.

 $\begin{cases} \ln(1) = 0 \\ \ln'(1) = 1 \\ \ln''(1) = -1 \end{cases}$ Ainsi il vient :

Le développement limité s'ensuit de la formule de Taylor.

Pour les fonctions puissances

Proposition 16 ($D\acute{e}v^t$ limité $de(1+x)^a$)

Soit $a \in \mathbb{R}$.

Alors, pour $x \rightarrow 0$, on a :

$$(1+x)^a = 1 + ax + \frac{a(a-1)}{2} \cdot x^2 + o(x^2)$$

Démonstration:

Pour x > 0, notons $f(x) = (1 + x)^a$.

Cette fonction est bien de classe C^2 .

Pour x > 0, on a: $f'(x) = a \cdot (1+x)^{a-1}$

 $f''(x) = a(a-1) \cdot (1+x)^{a-2}$

Ainsi:

Les cas $(1+x)^a$, pour $a \in \mathbb{N}$

On développe par la formule du **binôme de Newton** : $(1 + x)^0 = 1$

 $(1+x)^1 = 1+x$

 $(1+x)^2 = 1 + 2x + x^2$

 $(1+x)^{3} = 1 + 3x + 3x^{2} + x^{3}$ $(1+x)^{4} = \underbrace{1 + 4x + 6x^{2}}_{\text{dev}^{t} \text{ lim.}_{2}} + \underbrace{4x^{3} + x^{4}}_{=o(x^{2})}$

En général, de la formule $(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$ on ne garde pour développement limité que les

trois premiers termes, soit : $\sum_{k=0}^{2} {n \choose k} x^k = 1 + nx + \frac{n(n-1)}{2} x^2.$

Le cas a = -1 (la fraction $\frac{1}{1+x}$)

On peut écrire : $\frac{1}{1+x} = \frac{1+x-x}{1+x} = 1 - x \cdot \frac{1}{1+x}$. On réinjecte : $\frac{1}{1+x} = 1 - x \cdot \left(1 - x \cdot \frac{1}{1+x}\right) = 1 - x \cdot \left(1 - x \cdot \left(1 - x \cdot \frac{1}{1+x}\right)\right)$.

On a trouvé la formule du développement limité à l'ordre 2 : $\frac{1}{1+x} = \underbrace{1-x+x^2}_{\text{dev. lim}_2} - \underbrace{\frac{x^3}{1+x}}_{2}.$

(en itérant, on trouve $\frac{1}{1+x} = 1 - x + x^2 - x^3 + \frac{x^4}{1+x}$, etc.)

Le cas $a = \frac{1}{2}$, la racine $\sqrt{1+x}$

Pour l'exposant
$$a = \frac{1}{2}$$
, on trouve : $\sqrt{1+x'} = 1 + \frac{1}{2} \cdot x - \frac{1}{8} \cdot x^2 + o(x^2)$.

On vérifie que :
$$\left(1 + \frac{1}{2} \cdot x - \frac{1}{8} \cdot x^2\right)^2 = 1 + x - \frac{1}{8} \cdot x^3 + \frac{1}{64} \cdot x^4$$

= $1 + x + o(x^2)$

$$= 1 + x + o(x^2).$$

Le sujet Ecricome ECE 2017 demandait d'appliquer cette formule dans un contexte matriciel.

4.4 Application aux formes indéterminées

Formes indéterminées simples

On connaît déjà le principe pour taux d'accroissement : $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$.

Il vient en particulier :
$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 1} \frac{\ln(x)}{x - 1} = 1 \quad \text{ et : } \quad \lim_{h \to 0} \frac{\ln(h)}{h} = 1.$$

$$\lim_{h \to 0} \frac{(1+h)^a - 1}{h} = a \quad \text{et}: \quad \lim_{x \to 1} \frac{x^a - 1}{x - 1} = 1.$$

Formes indéterminées doubles

de la forme : $f(x) = a + bx + cx^2 + o(x^2)$ Si on a un développement limité à l'ordre 2

alors:
$$\lim_{x \to 0} \frac{1}{x^2} \cdot [f(x) - a - bx] = c.$$

Par la formule de Taylor, pour f de classe \mathcal{C}^2 en 0, il vient ainsi : $\lim_{x\to 0} \frac{f(x)-f(0)-f'(0)\cdot x}{x^2} = \frac{f''(0)}{2}$.

Il vient en particulier :
$$\lim_{x\to 0} \frac{e^x - 1 - x}{x} = \frac{1}{2}$$

$$\lim_{x \to 1} \frac{\ln(x) - (x - 1)}{(x - 1)^2} = -\frac{1}{2} \quad \text{et}: \quad \lim_{h \to 0} \frac{\ln(h) - h}{h} = -\frac{1}{2}.$$

$$\lim_{x \to 1} \frac{\ln(x) - (x - 1)}{(x - 1)^2} = -\frac{1}{2} \quad \text{et}: \quad \lim_{h \to 0} \frac{\ln(h) - h}{h} = -\frac{1}{2}.$$

$$\lim_{h \to 0} \frac{(1 + h)^a - 1 - ah}{h^2} = \frac{a(a - 1)}{2} \quad \text{et}: \quad \lim_{x \to 1} \frac{x^a - 1 - a(x - 1)}{(x - 1)^2} = \frac{a(a - 1)}{2}.$$