Vorlesungen

Einführung in die Datenvisualisierung

(Kapitel in grüner Farbe)

und

Angewandte Datenvisualisierung für Medizinphysiker

(Kapitel in grüner und blauer Farbe)

Dr. Frank Weichert

SS 2018

A. Einführung	1
A.1. Organisation	2
A.1.1. Einleitung	3
A.1.2. Bachelor-Studiengang Informatik	5
A.1.3. Master-Studiengang Medizinphysik	8
A.1.4. Leistungsnachweis	
A.1.5. Übersicht	
A.2. Informationen zur Vorlesung	
A.2.1. Zielsetzung und Einordnung	12
A.2.2. Bücher	14
A.2.3. Zeitschriften und Tagungen	
A.2.4. Anwendungsgebiete	18
A.2.5. Softwaresysteme	36
A.2.6. Ziel der Vorlesung	37
A.2.7. Inhalt der Vorlesung	38
A.3. Allgemeine Definitionen	39
A.3.1. Prinzipien	
A.3.2. Terminologie	41
A.3.3. Stufen der Datenvisualisierung	42
B. Bilderzeugung	44
B.1. Einleitung	
B.1.1. Ablauf der Datenvisualisierung	
B.1.2. Bilderzeugungs-Pipeline	
B.1.3. Graphikelemente	
B.1.4. Farbmodelle	
B.2. Zweidimensionale Bilderzeugung	
B.2.1. Transformation	

B.2.1.1. Affine Abbildungen	
B.2.1.2. Homogene Darstellung	
B.2.1.3. Transformationsmatrizen	
B.2.2. Clipping	
B.2.3. Verrasterung	
B.2.3.1. Streckenverrasterung	
B.2.3.2. Polygonverrasterung	
B.2.3.3. Alias-Problem	85
B.3. Dreidimensionale Bilderzeugung	87
B.3.1. Transformation	
B.3.2. Beleuchtung	
B.3.2.1. Beleuchtungsmodell	
B.3.2.2. Shading-Modelle	
B.3.2.3. Textur	105
B.3.3. Projektion	107
B.3.3.1. Parallelprojektion	
B.3.3.2. Perspektivische Projektion	
B.3.4. Sichtbarkeitsberechnung	113
B.4. Beleuchtungssimulation	116
B.4.1. Strahlverfolgung (Raytracing)	
B.4.1.1. Algorithmus	
B.4.1.2. Effiziente Strahlverfolgung	
B.4.1.3. Bemerkungen	
B.4.2. Strahlungsverfahren (Radiosity)	126
B.4.2.1. Strahlungsgleichung	
B.4.2.2. Beispiele	
C. Cranbia aka Datananak sa	VVV
C.Graphische Datenanalyse	
D.Visualisierung von Graphen	.XXX
E.Visualisierung räumlicher Daten	.XXX
F. Data Mining/Informationsvisualisierung	
G. Visualisierung Zeit-abhängiger Daten	
H.Visualisierung räumlicher Daten	.XXX
I. Versuchsplanung	.XXX
J. Medizinische Datenvisualisierung	.XXX
K.Volumenvisualisierung	
1	. /////

Anlage A (Mathematische Grundlagen)

Anlage B (Splines)