Unit 4. Dimensionality Reduction

Antonio Manuel Durán Rosal (amduran@uloyola.es)

Machine Learning - Ingeniería de Datos I

4º IITV - 3º ISW - 4º CVAD

Course 2025-2026

September 2025

Outline

- 1. Objectives
- 2. Introduction
- 3. Principal Component Analysis
- 4. t-distributed Stochastic Neighbour Embedding (t-SNE)

Outline

- 1. Objectives
- 2. Introduction
- 3. Principal Component Analysis
- 4. t-distributed Stochastic Neighbour Embedding (t-SNE)

Objectives

- Understand the basic concepts of dimensionality reduction.
- Explain how PCA work.
- Apply PCA to datasets.
- Visualise reduced data in 2D or 3D.
- Evaluate the impact on machine learning models.
- Use Python (sklearn, matplotlib) to implement the techniques.

Outline

- 1. Objectives
- 2. Introduction
- 3. Principal Component Analysis
- 4. t-distributed Stochastic Neighbour Embedding (t-SNE)

Dimensionality reduction

- **Dimensionality**: The number of features (variables) that describe each observation in a dataset.
 - ► Images: each pixel is a dimension.
 - ► Text: each unique word is a dimension.

		Discrete Nominal	Discrete Nominal	Binary Discrete Nominal	Ordinal Discrete Nominal	Continuous Ratio-scale
	Student ID	Name	Course	Gender	Grades	Height (cm)
	S1	Alicent	Literature	Female	А	167.6
	S2	Otto	Psychology	Male	С	185.9
	S3	Criston	Computer Science	Male	В	179.8
	S4	Laena	Life Science	Female	Α+	161.5

Dimensionality reduction

- Dimensionality reduction: A process aimed at decreasing the number of features while preserving as much relevant information as possible.
- Importance:
 - ► Simplifies data analysis and visualisation.
 - ► Enhances the performance of machine learning models.
 - ► Reduces computational costs.

Problems of high dimensionality

- The Curse of Dimensionality: As the number of dimensions increases:
 - ► The distance between points becomes less meaningful.
 - ► Models require more data to generalise well.
- Redundancy and Irrelevance:
 - ▶ **Redundancy**: Variables that convey the same information.
 - ▶ Irrelevance: Variables that do not provide useful information.
- Impact on ML Models:
 - Increased risk of overfitting.
 - Longer training times.
 - Difficulty in identifying patterns.

How to reduce the number of variables?

- Feature Selection: Retains a subset of the original features.
 - ▶ **Filter**: Based on statistical metrics (correlation, chi-squared).
 - ▶ Wrapper: Uses predictive models to evaluate combinations.
 - ► **Embedded**: The model itself includes a feature selection mechanism (e.g. decision trees).
- Feature Extraction: Transforms the original data into a new set of features.
 - ▶ PCA: Combines features into new orthogonal variables.
 - ► t-SNE: Reduces dimensionality while preserving local proximity relationships.

How to reduce the number of variables?

Advantages of reduction

- Improves model efficiency.
 - ► Faster and more efficient models.
 - ► Reduced computational cost.
- Prevents overfitting.
 - Removing irrelevant features enhances generalisation ability.
- Facilitates visualisation.
 - ▶ More comprehensible representations (2D, 3D).
 - Useful for cluster analysis.
- Increases interpretability:
 - Fewer variables result in simpler, more explainable models.

Outline

- 1. Objectives
- 2. Introduction

Introduction

3. Principal Component Analysis

Linear Algebra Geometric Interpretation

Computation of the Components

Final Considerations

4. t-distributed Stochastic Neighbour Embedding (t-SNE)

What is PCA?

- Principal Component Analysis (PCA) is a dimensionality reduction method.
- It allows for simplifying the complexity of high-dimensional spaces.
- It preserves as much information as possible while reducing dimensions.

Dimensionality reduction with PCA

- Consider a sample with n individuals and p variables, that is, a sample space of p dimensions (X_1, X_2, \dots, X_p) .
- PCA allows us to find a reduced number of underlying factors
 z
- Whereas previously p values were needed to characterise each individual, now z values are sufficient.
- Each of these z new variables is called a **principal component**.

Dimensionality reduction with PCA

Dimensionality reduction with PCA

Applications and tools for PCA

- The PCA method allows information from multiple variables to be "condensed" into just a few principal components.
- It is important to remember that the values of the original variables are required to calculate these components.
- The main applications of PCA are:
 - ▶ Visualisation of data in lower-dimensional spaces.
 - ▶ **Preprocessing** of predictors before fitting supervised models.
- In Python, the scikit-learn library provides a class called sklearn.decomposition.PCA to implement PCA models.

Eigenvectors

- Eigenvectors represent a special case of matrix-vector multiplication.
- Example of matrix multiplication:

$$\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ 8 \end{pmatrix} = 4 \times \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

- The resulting vector is an integer multiple of the original vector.
- Therefore, the eigenvectors of a matrix are those vectors which, when multiplied by the matrix, result in the same vector or a scalar multiple of it.

Eigenvectors

We thus start from the following fundamental equation:

$$Av = \lambda v$$

Where:

- A: Square matrix.
- v: Eigenvector.
- λ : Eigenvalue.

Mathematical properties of eigenvectors

- Eigenvectors only exist for square matrices, and not all square matrices have eigenvectors.
- If a matrix is of size n × n and has eigenvectors, their number is n.
- When an **eigenvector** is scaled before being multiplied by the matrix, the result is a multiple of the same eigenvector:

$$A(\alpha v) = \alpha(Av) = \alpha \lambda v$$

This happens because scaling a vector only changes its **length**, not its **direction**.

• All eigenvectors of a matrix are **perpendicular (orthogonal)** to each other, regardless of the number of dimensions they span.

Standardisation of eigenvectors

- Multiplying an eigenvector by a scalar only changes its length, not its nature.
- It is common to scale eigenvectors so that their **length is 1**, resulting in **standardised vectors** (unit norm).
- Example of standardisation:

Original eigenvector:
$$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
Length: $\sqrt{3^2 + 2^2} = \sqrt{13}$
Standardised eigenvector: $\frac{1}{\sqrt{13}} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{3}{\sqrt{13}} \\ \frac{2}{\sqrt{13}} \end{pmatrix}$

 With this standardisation, all eigenvectors become unit vectors, making them easier to compare and use in further calculations.

Eigenvalue

- When a matrix is multiplied by one of its eigenvectors, the result is a multiple of that same vector.
- The number by which the eigenvector is multiplied is known as the eigenvalue.
- Each eigenvector is associated with an eigenvalue, and vice versa.
- In the context of **PCA**:
 - Each **principal component** corresponds to an **eigenvector**.
 - ► The order of the principal components is determined by the eigenvalues in decreasing order.
 - ► The **first principal component** is the eigenvector with the **largest eigenvalue**, i.e., the one that explains the **most variance**.

Geometric interpretation

- An intuitive way to understand the **PCA** process is to interpret the principal components from a **geometric** perspective.
- Suppose we have a dataset with two variables (X_1, X_2) .
- The **first principal component** Z_1 is defined as the **vector** that follows the direction of the **greatest variance** in the data (red line).
- The projection of each observation onto this direction is the value of the first principal component, known as the Principal Component Score z_{i1} .
- Graphically, the projection indicates how the observations are distributed along the direction that carries the most information.

First component

Second principal component

- The **second principal component** Z₂ represents the **second direction** in which the data shows the **greatest variance**.
- This second direction is **independent** of the first component, meaning it is **uncorrelated** with it.
- The **lack of correlation** between principal components implies that their directions are **perpendicular (orthogonal)**.
- Mathematically, orthogonality means that the dot product between the component directions is zero:

$$Z_1 \cdot Z_2 = 0$$

• In PCA, this orthogonality ensures that each component adds **new, non-redundant information**.

Second component

Principal components

- Each principal component Z_i is a linear combination of the original variables.
- The principal components can be interpreted as **new variables** formed by combining the original variables.
- The first principal component of a group of variables (X₁,..., X_p) is the normalised linear combination that has the greatest variance:

$$Z_1 = \beta_{11}X_1 + \beta_{21}X_2 + \cdots + \beta_{p1}X_p$$

Where:

- $ightharpoonup eta_{j1}$ are the **coefficients of the linear combination** (known as **loadings**).
- ► Each coefficient indicates the **contribution** of each original variable to the principal component.

Principal components

• The **normalisation condition** for the linear combination is:

$$\sum_{j=1}^{p} \beta_{j1}^2 = 1$$

This normalisation ensures that the **length of the coefficient** vector is equal to 1, allowing components to be compared on the same scale.

Procedure

- 1. Normalise the data.
- 2. Compute the covariance matrix.
- **3.** Obtain eigenvectors and eigenvalues.
- **4.** Sort by explained variance.
- 5. Reduce dimensionality.

Normalisation

- The PCA process identifies the directions in which the data shows the greatest variance.
- Variance is measured in the squared units of the variables.
- If the variables have different scales, those with larger values will dominate the analysis, masking the impact of variables with smaller scales.
- For this reason, it is recommended to standardise the data before applying PCA.

$$X_{\rm std} = \frac{X - \overline{X}}{\sigma}$$

Where:

- $ightharpoonup \overline{X}$ is the **mean** of the variable.
- \triangleright σ is the **standard deviation**.

Computing the covariance matrix

- PCA solves an optimisation problem to find the values of the loadings that maximise the variance.
- The optimisation is performed by computing the eigenvectors and eigenvalues of the covariance matrix of the standardised data:

$$\Sigma = \frac{1}{n-1} X_{\text{std}}^T X_{\text{std}}$$

Computing eigenvectors and eigenvalues

- The eigenvector associated with the largest eigenvalue is the first principal component, as it is the direction that maximises the variance.
- The subsequent principal components are obtained from the remaining eigenvectors, sorted by eigenvalues in descending order.
- This method ensures that each component is orthogonal (uncorrelated) with the others.

Determinism in the PCA process

- The standard PCA process is deterministic, meaning that applying it to the same data always produces the same principal components.
- The **values of the loadings** (coefficients of the linear combinations) are always the same.
- The only possible difference is that the sign of all loadings may be inverted.
 - ► This is because the **loading vector** indicates the **direction** of the principal component.
 - A direction remains the same **regardless of sign**, as a component follows a **line** that extends in **both directions**.
- Similarly, the Principal Component Scores (component values for each observation) are always the same, except possibly for a change in sign.

PCA sensitivity to outliers

- The PCA method is sensitive to outliers because it relies on variance, which is affected by extreme values.
- It is important to detect outliers before applying PCA, especially in multiple dimensions, where unusual relationships are less evident.
- Example: A man who is 2 metres tall and weighs 50 kg:
 - ▶ Individually, neither value is extreme.
 - ► Together, it's an atypical combination.
- These multidimensional outliers can distort the principal components and affect the results of the PCA.

Proportion of explained variance

- In PCA, each principal component captures a portion of the total variance in the data.
- The proportion of explained variance indicates how much information from the original data is captured by each component.
- The proportion of variance explained by component *i* is:

Proportion of Explained Variance (EVP) =
$$\frac{\lambda_i}{\sum_{j=1}^p \lambda_j}$$

Optimal number of principal components

- This proportion helps decide how many principal components to retain in order to summarise the data without losing important information.
- The cumulative EVP is often used, which is the sum of the EVP explained by the first k components:

Cumulative EVP =
$$\sum_{i=1}^{k} \frac{\lambda_i}{\sum_{j=1}^{p} \lambda_j}$$

• A common method is the **elbow plot**, which shows cumulative variance and helps identify the optimal number of components.

Optimal number of principal components

Outline

- 1. Objectives
- 2. Introduction
- 3. Principal Component Analysis
- 4. t-distributed Stochastic Neighbour Embedding (t-SNE)

What is t-SNE?

- t-SNE is a dimensionality reduction technique particularly useful for visualising complex data in 2D or 3D.
- Unlike **PCA**, which captures **global variance**, **t-SNE** preserves the **local relationships** between observations.
- Its goal is to project nearby points in the original space so that they remain close in the reduced space.
- The method is based on comparing **similarity probabilities** between points in high- and low-dimensional spaces.

References

- Benítez-Iglésias, R., Escudero-Bakx, G., Kanaan-Izquierdo, S., Masip-Rodó, D. (2014). Inteligencia artificial avanzada. Editorial UOC.
- Bishop, CM. (2006). Pattern recognition and machine learning.
 Springer.
- Géron, A. (2019). Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow (Second Edition). O'Reilly.
- James, G.; Witten, D.; R Hastie, T.; Tibshirani, R.; Taylor, J. (2023). An Introduction to Statistical Learning with Applications in Python. Springer.
- Mohri, M., Talwalkar, A., Rostamizadeh, A. (2019). Foundations of machine learning. Cambridge: The MIT Press.

¿Preguntas?

