Scalable Structure Learning for Spatiotemporal Analysis

Qi (Rose) Yu USC/Caltech

2017: Large-Scale Spatiotemporal Problems

\$124 billion Congestion cost

\$1.5 trillion
Disaster damage

61% Energy waste

The Solution: Spatiotemporal Analysis

forecasting

clustering

tracking

sensing

monitoring

High-Order Correlation

Non-Linear Dynamics

traffic flow

air turbulence

High Dimensionality

stock time series

sensor network signals

Learning from Spatiotemporal Data

Low-Rank Tensor Learning [NIPS 2014, ICML 2015, ICML 2016]

Road Network Traffic Forecasting [KDD 2015, SDM 2017]

Learning Chaotic Dynamics [ICML 2017 deepstruct]

Geographic User Profiling [WSDM 2015]

Social Media Anomaly Detection [KDD 2014]

Graph Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting

Graph Convolutional Recurrent Neural Network: Data Drive Traffic Forecasting, joint work with Yaguang Li, Cyrus Shahabi, Yan Liu.

Introduction

- Spatiotemporal forecasting
 - Input: history from P locations $\chi_{t-1,1},...,\chi_{t-K,P}$
 - Output: future values $\mathcal{X}_{t,1},..., \mathcal{X}_{t+H,P}$
- Challenges
 - Non-linear dynamics
 - Non-regular graphs

Traffic Forecasting

Knowledge-driven

- Queueing theory
- Strong model assumption
- Human engineering

Data-driven

- Flexible modeling
- Quick response time
- Better generalization

internet of things

epidemic control

Deep Recurrent Neural Networks

RNN with Gated Recurrent Unit (GRU)

[†] Christopher Olah, "Understanding LSTM Networks", blog post http://colah.github.io/posts/2015-08-Understanding-LSTMs/

11

Spatial Dependency

- Network connectivity: High-way networks have sensors installed every 1-2 miles
- Flow conservation: The number of vehicles entering/exiting roads are approximately the same

Local spatial dependency for single sensor learned from weighted average

Network Connectivity

- Human visual attention: many animals focus on specific parts of their visual inputs
- Generalize the attention mechanism † for irregular graphs
- Learn to focus only on the close neighborhood instead of the entire network

$$a_{ij} = \frac{\exp(f_{att}(h_i, h_j))}{\sum_{k \in nb(i,K)} \exp(f_{att}(h_i, h_k))}, \quad f_{att}(h_i, h_j) = h_i W_a h_j$$

13

[†] Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).

Flow Conservation

- Applying Laplacian operator y = Lx represents one-step diffusion of the signal on the graph
- Similar to heat equation, which is given by the law "conservation of energy" in physics

Graph Convolution

• Powers of Laplacian represent different spatial resolutions

$$y^{t} = g_{w}(L)x^{t} =: \sum_{k=0}^{\infty} w_{k}L^{k}x^{t} = W *_{g} x^{t}$$

• Use Chebyshev polynomial expansion t as approximation

$$\sum_{k=0}^{T} g_{w}(L) = U \sum_{k=0}^{T} g_{\overline{w}}(\Lambda) U^{T} \approx U \sum_{k=0}^{T} g_{\overline{w}} T_{k}(\overline{\Lambda}) U^{T}$$

† Defferrard, Michael and Bresson, Xavier and Vandergheynst, Pierre, "Convolutional neural networks on graphs with fast localized spectral filtering", *Advances in Neural Information Processing Systems*, (NIPS) 2016

15

Spectral Transformation over Time

Traffic signal over time

$$z_{t} = \sigma (W_{z} *_{g}[h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} *_{g}[h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W *_{g}[r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

- Spectral domain enjoys better sparsity.
- Skewness of the distribution corresponds to traffic congestion condition.

Long-Term Forecasting

- Encoder-decoder architecture in sequence to sequence
- Mitigate error propagation with Scheduled Sampling †

[†] Bengio, Samy, et al. "Scheduled sampling for sequence prediction with recurrent neural networks." *Advances in Neural Information Processing Systems*. 2015.

Graph Convolutional Recurrent Neural Network

- Graph convolutional kernel
- Recurrent neural network
- Encoder-decoder with scheduled sampling

18

Experiment Setup

Data:

- 207 Highway loop detectors
- 4 months in 2012 in Los Angeles County.

Baselines:

- Historical Average (HA)
- Autoregressive Integrated Moving Average (ARIMA)
- Random Walk (RW)
- Support Vector Regression (SVR)
- Vector Auto-Regression (VAR)
- Feed forward Neural network (FC)
- RNN with LSTM hidden units (LSTM)
- RNN with spatial attention (LSTM-attn)

Experimental Results

 GCRNN achieves best performance for all forecasting horizons (5 min, 15 min, 30 min)

Experimental Results

- GCRNN can benefit from jointly learning multivariate times series and is less prone to error propagation
- Generates smooth prediction and is usually able to predict the start and end of peak hours.

Learning from large-scale Spatiotemporal Data

Scalability

- How to forecast over long-range and long-term?
 - Structured prediction
 - Multi-resolution inference
- How to reduce the sampling complexity?
 - Weak supervision
 - Physical constraints

structured prediction

physical constraint

Reliablity

- How to handle messy data?
 - Error propagation
 - Adversarial corruption
- How to reason with uncertainty?
 - Probabilistic calibration
 - Stochastic optimization

chaotic dynamics

reason with uncertainty

Q&A?