Prueba 1

1S - 2015

NOMBRE:	
NRO.MATRICULA:	
☐ Estructura de Datos ☐	Complejidad Computacional

Programación Orientada a Objetos

Teórico

1	En	programación	orientada a o	hietos ur	ohieto	Γ1	nto]
.			or iciitada a o	bjetos, ar		1 4	ρ ι σ ι

- a. puede contener clases.
- b. es una clase.
- c. es un programa.
- d. puede contener datos y métodos.

\sim		1	1 1		Г1	- 1 -
Z. (∡uanao un o	bjeto quiere	nacer aigo.	este usa un	11	pto

^	NT I	1 1	1		.,	1	1	F4
≺ .	Nombre una	ventala de l	a here	ncia en n	rogramacion	orientada	a objetos	11 nto

a.	 	 	

4. ¿Qué valor de z imprime este código? [3 ptos]

```
int x=5;
  int z=0;
  for (int y=4; y>0; y--) {
     z += x++ - y;
  }
System.out.println("z="+z);
```

Arreglos

Teórico

- 5. Insertar un elemento en un arreglo no ordenado [1 pto]
 - a. Requiere múltiples comparaciones
 - b. Toma un tiempo proporcional a tamaño del arreglo
 - c. Toma el mismo tiempo independiente del número de elementos actuales.
 - d. Requiere mover elementos para hacer espacio al nuevo elemento.

6.	En un arreglo desordenado, es generalmente más lento encontrar un elemento que no esta en el arreglo, a encontrar un elemento que se encuentra en él. JUSTIFIQUE. [3 ptos]							
	a. ver	dader	o b. falso					
	Porqu	ıe,						
7.	a. b. c.	Son r Son r Son r	s ordenados, comparados con los arreglos desordenados [<i>1 pto</i>] nás rápidos de crear. nás lentos en la eliminación. nás rápidos en la búsqueda. nás rápidos en la inserción.					
8.		olo de a	siguientes tiempos de ejecución del menos eficiente al más eficiente y dé un algún método que se ejecute en ese tiempo: O(N²), O(1), O(log N), O(N).					
	a.	0() – ejemplo:					
	b.	0() – ejemplo:					
	c.	0() – ejemplo:					
	d.	0() – ejemplo:					
9.			náximo de elementos que deben ser examinados para completar una búsqueda n arreglo de 300 elementos es [1 pto]					
	a.							
		50. 12.						
	d.	9.						
10	. La not	tación	O indica [1 pto]					
	a.		mpo de ejecución de un algoritmo para el tamaño de una estructura de datos					
	b.	El tie	minada. mpo en segundos que tarda un algoritmo en procesar un numero					
	C		minado de ítems. o el tamaño de la estructura de datos se relaciona con el número de ítems.					
			o se relaciona la velocidad de un algoritmo al número de ítems.					

Práctico

11. Dada la siguiente clase. Implemente el método insertar. No olvide incluir los comentarios respectivos al código según corresponda.
[6 ptos]

```
class arregloOrdenado {
   private long[] a;
   private int nElems;

public arregloOrdenado (int max) {
    a = new long[max];
   nElems = 0;
}
```

```
public void insertar (long valor)
{
```

Ordenamiento Simple

Teórico

- 12. Los algoritmos de ordenamiento de computadores son más limitados que el ordenamiento hecho por humanos porque: [1 pto]
 - a. Los computadores sólo pueden manejar una cantidad limitada de datos.
 - b. Los humanos son mejores inventando nuevos algoritmos.
 - c. Los computadores sólo pueden comparar dos cosas a la vez.
 - d. Los humanos saben lo que hay que ordenar, mientras que las computadoras necesitan una especificación de lo que hay que ordenar.

13 : Par que al ordenamiente por Incarción os major que al ordenamiente por Salección? [2

pto]	er or denament	o por <u>miserción</u> es	mejor que er o	тиенанненто ро	i <u>selección</u> : [2
14. ¿Por que 6 pto]	el ordenamient	o por <u>Selección</u> es	mejor que el o	rdenamiento de	la <u>Burbuja</u> ? [2

Práctico

15. Describa los pasos necesarios para ordenar el arreglo A = [15,8,4] usando el Algoritmo de Inserción. Explique en cada paso cual fue la operación realizada (Ejemplo: copiar, mover, etc.) [6 ptos]

15 8 4

_			
		1 1	
		100	
		1 1	
		1 4	
		Caracter 1	

F773

16. Especifique como queda el arreglo después de insertar el elemento con el valor "101" [2 ptos]

0	599	\leftarrow	12	
1	786		13	
1 2 3	492		14	
	192		15	<u></u>
4 5 6	348		16	
5	465		17	10 0
	166		18	
7	985		19	
8	944			77
9	659			
10				

11

17. Identifique el nombre del algoritmo [4 ptos]

```
public boolean A(long value) {
       int j;
       for(j=0; j<nElems; j++)</pre>
               if( value == a[j] ) break;
               if(j==nElems) return false;
                       for(int k=j; k< nElems; k++) a[k] = a[k+1];
                       nElems--;
                       return true;
               }
}
public void B() {
       int out, in;
       for(out=nElems-1; out>1; out--)
               for(in=0; in<out; in++)</pre>
                      if( a[in] > a[in+1] )
                       swap(in, in+1);
}
public void C() {
       int in, out;
       for(out=1; out<nElems; out++) {</pre>
               long temp = a[out];
               in = out;
               while(in>0 && a[in-1] >= temp) {
                       a[in] = a[in-1];
                       --in;
               a[in] = temp;
       }
public int D(int left, int right, long pivot) {
       int leftPtr = left - 1;
       int rightPtr = right + 1;
       while(true) {
               while(leftPtr < right && theArray[++leftPtr] <</pre>
               pivot);
               while(rightPtr > left && theArray[--rightPtr] >
               pivot);
               if(leftPtr >= rightPtr)
                      break;
               else
                       swap(leftPtr, rightPtr);
       return leftPtr;
```