DSA INNOVATIVE ASSIGNMENT

DATA COMPRESSING USING HUFFMAN CODDING

- ➤ Huffman coding is a lossless data compression algorithm.
- idea is to assign variable-length codes to input characters, lengths of the assigned codes are based on the frequencies of corresponding characters.
- > There are mainly two major parts in Huffman Coding.
 - 1. Build a Huffman Tree from input characters.
 - 2. Traverse the Huffman Tree and assign codes to characters.

o Build Huffman Tree:

- 1. Create a leaf node for each unique character and build a min heap of all leaf nodes.
- 2. Extract two nodes with the minimum frequency from the min heap.
- 3. Create a new internal node with a frequency equal to the sum of the two nodes frequencies.
- 4. Make the first extracted node as its left child and the other extracted node as its right child. Add this node to the min heap.
- 5. Repeat steps 2 and 3 until the heap contains only one node.
- 6. The remaining node is the root node and the tree is complete.

Traverse of Huffman Tree :

- 1. Traverse the tree formed starting from the root
- 2. While moving to the left child, write 0 to the array.
- 3. While moving to the right child, write 1 to the array.
- 4. Print the array when a leaf node is encountered.

Our Used Concept:

- 1. In this project, we have used the concept of **MIN HEAP** tree.
- 2. From MIN HEAP tree build a tree for create code for each character in the data.
- 3. From that tree make **2D Array** for store the character and it's compressing code.
- 4. At the last, print a string of Compressed Data.

o **OUTPUT:**

Enter the Data : welcome in nirma		
Compression Data Table :		
character	compress	data
n	000	
С	0010	
1	0011	
i	010	
0	0110	
r	0111	
е	100	
	101	
m	110	
a	1110	
W	1111	