Control of a multi-robot cooperative team guided by a human operator

M. Angerer

Intermediate Presentation Master Thesis

Betreuer: S. Musić

Lehrstuhl für Informationstechnische Regelung

Technische Universität München

Shared control with a human in the loop

Human reasoning combines with the enhanced flexibility of multiple robots

Non-restrictive input interfaces allow for almost arbitrary trajectories

How can we ensure stability and safety with a human in the loop?

Problem setting

- A set of robots manipulating a common object
- A human guiding the formation by hand motion

Goals for control design

- Automatic preservation of formation
- Stability with arbitrary trajectories
- Safe behaviour with humans on-site

Related Work

Robot-team control

- (Inverse) grasp-matrix approaches [SC92,CCMV08]
- Virtual structures [Str01,SMH15]

Human in the loop

- Bilateral tele-manipulation [LS05]
- Human leader robotic followers [SMH15,SMP14]
- Gesture-based Control [GFS+14]

Safety by energy-regulation

- Adaptive impedance control of a single manipulator [TVS14]
- Energy observer in physical human-robot interaction [GSLP16]
- Stability with non-restrictive input interfaces is unexplored
- Passivity is commonly used to cope with unmodelled dynamics
- Energy-based safety metrics apply for impact limitation

Overview

- Source for the passive robot-team controller: Energy Tank
- Human user controls the power flow
- Energy supplied to the robots is re-fed into the tank

Energy-consistent description in the *port-Hamiltonian* framework

port-Hamiltonian systems

Visualize power flow, allow for model-based control design, facilitate stability proofs

 $\textbf{Hamiltonian} \,\, \mathcal{H} \colon \, \mathsf{total} \,\, \mathsf{energy} \,\, \mathsf{of} \,\, \mathsf{the} \,\, \mathsf{system}$

 $\textbf{Port} \colon \mathsf{power}\text{-}\mathsf{conjugated} \ \mathsf{pair} \ (u,y) \ \mathsf{of} \ \mathit{flow} \ u \ \mathsf{and} \ \mathit{effort} \ y \ \mathsf{variables}$

$$\dot{x} = [J(x) - R(x)] \frac{\partial \mathcal{H}}{\partial x}(x) + B(x)u$$
$$y = B^{T}(x) \frac{\partial \mathcal{H}}{\partial x}(x)$$

input-state-output form with structure- J(x), dissipation- R(x) and mapping matrix B(x)

Energy balance: $\frac{d}{dt}\mathcal{H} = y^T u - \frac{\partial^T \mathcal{H}}{\partial x}R(x)\frac{\partial \mathcal{H}}{\partial x}$ (\rightarrow passive)

Model-based control design

Plants and controllers are energy-transforming devices, which we interconnect to achieve the desired behaviour. [OSMM01]

Virtual structure

- Geometric composition of springs, masses and dampers
- Establishing a formation of robots
- Virtually coupling the human
- Energetic model of the real system
- Connection by physical rules (actio = reactio)

Stability

Model errors never influence passivity nor stability [Str01]

Example controller derivation

Starting from the virtual object...

$$\dot{P_b^b} = C_b \frac{\partial \mathcal{H}}{\partial P_b^b} + I_6 W_b^b$$
$$T_b^{b,0} = I_6 \frac{\partial \mathcal{H}}{\partial P_b^b}$$

Momentum P_b^b (state), wrench W_b^b (flow), twist $T_b^{b,0}$ (effort), centripetal and Coriolis terms C_b Hamiltonian $\mathcal{H} = \frac{1}{2} P_b^{bT} M_b^{-1} P_b^b$

Example controller derivation

... adding a coupling spring to the user...

$$\begin{pmatrix} \dot{H}_b^v \\ \dot{P}_b^b \end{pmatrix} = \begin{pmatrix} 0 & H_b^v \\ -H_b^{vT} & C_b \end{pmatrix} \begin{pmatrix} \frac{\partial \mathcal{H}}{\partial H_b^v} \\ \frac{\partial \mathcal{H}}{\partial P_b^b} \end{pmatrix} + \begin{pmatrix} -H_b^v A d_{H_0^b} & 0 \\ 0 & I_6 \end{pmatrix} \begin{pmatrix} T_v^0 \\ W_b^b \end{pmatrix}$$

$$\begin{pmatrix} W_v^0 \\ T_b^{b,0} \end{pmatrix} = \begin{pmatrix} -A d_{H_0^b}^T H_b^{vT} & 0 \\ 0 & I_6 \end{pmatrix} \begin{pmatrix} \frac{\partial \mathcal{H}}{\partial H_v^b} \\ \frac{\partial \mathcal{H}}{\partial P_b^b} \end{pmatrix}$$

$$H_v^0 \underbrace{H_b^0}_{P_b^b}$$

relative configuration H_b^v (state), desired twist T_v^0 (flow), wrench W_v^0 (effort), adjoint mapping $Ad_{H_0^b}$

Hamiltonian
$$\mathcal{H} = \frac{1}{2} P_b^{b^T} M_b^{-1} P_b^b + V_P(H_b^v)$$

Example controller derivation

... and another spring to the *i*-th manipulator.

$$\begin{pmatrix} \dot{H}_{b}^{v} \\ \dot{P}_{b}^{b} \\ \dot{H}_{b(i)}^{i} \end{pmatrix} = \begin{pmatrix} 0 & H_{b}^{v} & 0 \\ -H_{b}^{vT} & C_{b} & -Ad_{H_{b}^{b(i)}}^{T}H_{b(i)}^{i} & T \\ 0 & H_{b(i)}^{i}Ad_{H_{b}^{b(i)}} & 0 \end{pmatrix} \begin{pmatrix} \frac{\partial \mathcal{H}}{\partial H_{v}^{v}} \\ \frac{\partial \mathcal{H}}{\partial P_{b}^{b}} \\ \frac{\partial \mathcal{H}}{\partial P_{b}^{b}} \end{pmatrix}$$

$$+ \begin{pmatrix} -H_{b}^{v}Ad_{H_{b}^{b}} & 0 \\ 0 & 0 \\ 0 & -H_{b(i)}^{i}Ad_{H_{0}^{b(i)}} \end{pmatrix} \begin{pmatrix} T_{v}^{0} \\ T_{i}^{0} \end{pmatrix}$$

$$\begin{pmatrix} W_{v}^{0} \\ W_{v}^{0} \end{pmatrix} = \begin{pmatrix} -Ad_{H_{b}^{b}}^{T}H_{b}^{vT} & 0 & 0 \\ 0 & 0 & -Ad_{H_{0}^{b}^{i}}^{T}H_{b(i)}^{i} & T \end{pmatrix} \begin{pmatrix} \frac{\partial \mathcal{H}}{\partial H_{b}^{v}} \\ \frac{\partial \mathcal{H}}{\partial P_{b}^{b}} \\ \frac{\partial \mathcal{H}}{\partial P_{b}^{b}} \end{pmatrix}$$

$$H_{v}^{0} \qquad \qquad H_{b}^{0} \begin{pmatrix} H_{b}^{0} & H_{b}^{0} \\ H_{b}^{i} \end{pmatrix} H_{b}^{0} \begin{pmatrix} H_{b}^{0} \\ H_{b}^{i} \end{pmatrix} H_{b}^{0}$$

Hamiltonian
$$\mathcal{H} = \frac{1}{2} P_b^{bT} M_b^{-1} P_b^b + V_P(H_b^v) + V_P(H_{b(i)}^i)$$

Modelling of rigid contact

In cooperative manipulation it is common to assume a rigid connection of manipulators and object.

Kinematic constraints $0 = A^T(x) \frac{\partial \mathcal{H}}{\partial x} \ (\rightarrow \text{DAEs})$

Solved input-state-output form

$$\dot{x} = [J(x) - R(x)] \frac{\partial \mathcal{H}}{\partial x}(x) + B(x)u$$

$$+ A(A^{T}M^{-1}A)^{-1}A^{T}M^{-1}(u + C\frac{\partial \mathcal{H}}{\partial x})$$

$$y = B^{T}(x)\frac{\partial \mathcal{H}}{\partial x}(x)$$

Rigid connections are power-conservative.[Sch13]

Energy tanks

Virtual storage element: Energy function $T(x_t) = \frac{1}{2}x_t^2$

$$x_{\mathsf{t}} = u_{\mathsf{t}}$$

$$y_{\mathsf{t}} = \frac{\partial T(x_{\mathsf{t}})}{\partial x_{\mathsf{t}}} (= x_{\mathsf{t}})$$

Interconnection of tank and controller by a transformer/gyrator

$$u = ny_{\mathsf{t}}$$
$$u_{\mathsf{t}} = -n^T y$$

The interconnection is power-continuous for any ratio n For $n = \frac{w}{r_*}$, w is the new control input

$$\dot{x} = [J(x) - R(x)] \frac{\partial \mathcal{H}}{\partial x}(x) + B(x) \frac{w}{x_t} y_t$$
$$y = B^T(x) \frac{\partial \mathcal{H}}{\partial x}(x)$$

Re-filling and energy balance

Lossy robots and unknown energy exchange with the environment Controller dissipation and power supplied to the robots is re-fed into the tank, i.e. $\dot{T}(x_{\rm t}) + \dot{\mathcal{H}} = 0$.

$$\dot{T}(x_{\mathsf{t}}) + \underbrace{\frac{\partial^T \mathcal{H}}{\partial x} R(x) \frac{\partial \mathcal{H}}{\partial x} + \sum_{i=1}^n W_i^{0,0^T} T_i^0}_{\text{compensation}} = -\dot{\mathcal{H}} + \sum_{i=1}^n W_i^{0,0^T} T_i^0$$

Introduction Approach 000 00000●0

Results 000 Conclusion

11

Safety metrics and adaptive stiffness

Minimal kinetic energies that result in severe injuries TVS14

$$V_{\rm K,min} = \begin{cases} 517 \ {\rm J} & {\rm adult\ cranium\ bone\ failure} \\ 127 \ {\rm J} & {\rm infant\ cranium\ bone\ failure} \\ 30 \ {\rm J} & {\rm neck\ fracture} \end{cases}$$

How can we change user commands to comply with these limits? Human hand is stiff when moving slow, compliant when fast [Hog84] **Energy-adapted human coupling:** reduced stiffness κ and damping below a threshold tank level T_{th}

$$\kappa = \begin{cases} k_{vb} & \text{if } T(x_{\mathsf{t}}) \geq T_{\mathsf{th}} \\ k_{vb} \frac{T(x_{\mathsf{t}})}{T_{\mathsf{th}}} & \text{if } T(x_{\mathsf{t}}) < T_{\mathsf{th}} \end{cases}$$

Trajectory tracking: Comparison

Trajectory tracking: Interpretation

Different role of inertias in the controllers: force gradients cause performance gap

Energy-bounded trajectory tracking

- Controller is an energetic model of the real system
- Velocity and possible forces are limited by the energy budget
- Robots return to the desired position as fast as possible

Conclusion & future work

- Energy-consistent modelling and control of a cooperative set-up
- Intrinsically passive controller with energy-adapted coupling of the user
- Energy budget at the user's disposal to operate the system
- System behaves save and stable with arbitrary user commands

Future work

Introduction

- Experimental implementation
- Evaluation of safety metrics for violent pressure
- Generalization for a wider class of teleoperated systems

References I

F. Caccavale, P. Chiacchio, A. Marino, and L. Villani.

Six-DOF Impedance Control of Dual-Arm Cooperative Manipulators.

In: Mechatronics, IEEE/ASME Transactions on 13.5 (2008), pp. 576–586.

F. Caccvale and L. Villani. An impedance control strategy for cooperative manipulation.

In: Advanced Intelligent Mechatronics, IEEE/ASME International Conference on 1 (2001), pp. 343-348.

S. Erhart and S. Hirche.

Internal Force Analysis and Load Distribution for Cooperative Multi-Robot Manipulation.

In: Robotics, IEEE Transactions on 31.5 (2015), pp. 1238–1243.

G. Gioioso, A. Franchi, G. Salvietti, S. Scheggi, and D. Prattichizzo.

The flying hand: A formation of UAVs for cooperative aerial tele-manipulation.

In: Robotics and Automation (ICRA), 2014 IEEE International Conference on (2014), pp. 4335-4341.

Dongjun Lee and Ke Huang.

Passive-Set-Position-Modulation Framework for Interactive Robotic Systems.

In: Robotics, IEEE Transactions on 26.2 (2010), pp. 354-369.

Dongjun Lee and M.W. Spong. Bilateral Teleoperation of Multiple Cooperative Robots over Delayed Communication Networks: Theory.

In: Robotics and Automation (ICRA), International Conference on (2005), pp. 360-365,

Ltd. MHI. "MEISTER" Remote Control Robot Completes Demonstration Testing At Fukushima Daiichi Nuclear Power Station. Press Information 1775, February 20, 2014; Online, accessed January 13, 2016.

2014. URL: https://www.mhi-global.com/news/story/1402201775.html.

S. Scheggi, F. Morbidi, and D. Prattichizzo.

Human-Robot Formation Control via Visual and Vibrotactile Haptic Feedback.

In: Haptics, IEEE Transactions on 7.4 (2014), pp. 499-511.

References II

S.A. Schneider and R.H. Cannon.

Object impedance control for cooperative manipulation: theory and experimental results. In: Robotics and Automation, IEEE Transactions on 8.3 (1992), pp. 383-394.

D. Sieber, S. Music, and S. Hirche,

Multi-robot manipulation controlled by a human with haptic feedback. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2015), pp. 2440-2446.

Stefano Stramigioli.

Modeling and IPC Control of Interactive Mechanical Systems: A Coordinate-Free Approach.

London, UK: Springer-Verlag London, 2001. ISBN: 1852333952.

T. Wimboeck, C. Ott, and G. Hirzinger. Analysis and experimental evaluation of the Intrinsically Passive Controller (IPC) for multifingered hands.

In: Robotics and Automation, IEEE International Conference on (2008), pp. 278-284.

T. Wimboeck, C. Ott, and G. Hirzinger.

Passivity-based Object-Level Impedance Control for a Multifingered Hand.

In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2006), pp. 4621-4627.

