Complex sistems - vinoran part - Assimment 4 (2) (A) let T, S G-IR NX be stochastic and let XCIR, be a distribution; 11x11= Ex; = 1, let de[0,1] =) (Tx11=115x11=1 then: 11(2T+ (1-2)S) x 11 = 211T111+ (1-0)11511=2+(1-2)=7 be coused x, T, S ≥ 0 (B) Q= tE PAN= [dQ+(-2)] Pn= = [dQ+(1-d)] Pn q=Q== = 1= Po given that the limit exists, limp = D = lim [dQ+(1-a)] Pn = (dQ+(1-1)] p it must follow that P = IP = [dQ+(1-4)T]P = 2QP+(1-4)TP = 2Q+(1-4)TP (=) (120) 99=(I-(1-2)T)P

remark con and velkt s.t HVIII= 1 we have Qv = q = (h, h, ..., h)So Po doesn't matter as long or we pick a distribution.

hw(vingron)4_final

July 8, 2021

0.1 Problem 1

```
[1]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     import networkx as nx
     from mpl_toolkits.axes_grid1 import make_axes_locatable
     import matplotlib as mpl
     from numpy.random import MT19937
     from numpy.random import RandomState, SeedSequence
     %pylab inline
     def transitionMatrixG(G):
         """input G: a graph.
         output T: the transition matrix of G,
         column normalized.
         11 11 11
         A = nx.to_numpy_array(G)
         T = A.T / A.sum(axis=1)
         return T
     def coreTransitionMatrixG(G):
         """Similar to transitionMatrixG but
         Returns the core normalized transition matrix of G.
         The cloumns are normalized.
         11 11 11
         A = nx.to_numpy_array(G)
         coreness = nx.core_number(G)
         coreness = np.array([coreness[k] for k in range(len(coreness))])
         A = A * coreness
         T = A.T / A.sum(axis=1)
         #T.sum(axis=0)
         return T
```

```
def diffusionMatrix(T, alpha=0.2):
    input T: a transition matrix (column normalized).
    input alpha: a the restart probability.
    Output K: the diffusion matrix, which is
    K = a [I - (1-a)T]^{(-1)}
    11 11 11
    n = T.shape[0]
    I = np.identity(n)
    K = I - (1 - alpha)*T
   K = alpha * np.linalg.inv(K)
    return K
def diffusionMatrixG(G, alpha=0.2, coreness=False):
    input G: a networkz graph.
    input alpha: the restart parameter.
    input bool coreness: If True, the normalization uses core number rather
    than the standard adjacency matrix.
    Output K: the diffusion matrix, which is
    K = a [I - (1-a)T]^{(-1)}
    \#A = nx. to numpy array(G)
    \#T = A.T / A.sum(axis=1)
    if coreness:
        T = coreTransitionMatrixG(G)
    else:
        T = transitionMatrixG(G)
    n = T.shape[0]
    I = np.identity(n)
    K = I - (1 - alpha)*T
    K = alpha * np.linalg.inv(K)
    return K
def RWR(T, alpha=0.2, q=1, epsilon=1e-6, maxiter=10**6):
    """Calculates the stationary distribution of a RWR process
    using the power method.
    input T: a transition matrix (column normalized).
    input alpha: restart probability.
    input q: restart distribution. If none is provided the uniform distribution
    is used (pageRank).
    input epsilon: the stop condition for the convergence.
    input maxiter: maximum number of iterations if convergence isn't reached.
    output p: the stationary distribution
```

```
n = T.shape[0]
    if q==1:
        q = 1/n * np.ones(n)
    y = alpha * q + (1 - alpha) * np.dot(T, x)
    #while np.linalg.norm((x-y)) > epsilon:
    for _ in range(maxiter):
        x = y
        y = alpha * q + (1 - alpha) * np.dot(T, x)
        if np.linalg.norm((x-y)) < epsilon:</pre>
            break
    return y
def RWRG(G, alpha=0.2, q=1, epsilon=1e-6, maxiter=10**6):
    """Calculates the stationary distribution of a RWR process
    using the power method.
    input G: a networkx graph.
    input alpha: restart probability.
    input q: restart distribution. If none is provided the uniform distribution
    is used (pageRank).
    input epsilon: the stop condition for the convergence.
    input maxiter: maximum number of iterations if convergence isn't reached.
    output p: the stationary distribution
    outut c: vector with the difference between iterations (convergence)
    A = nx.to_numpy_array(G)
    \#T = A.T / A.sum(axis=1)
    s = A.sum(axis=1)
    s = s + (s == 0) \# flip Os
    T = A.T / s
    n = T.shape[0]
    c = np.zeros(maxiter)
    if q==1:
        q = 1/n * np.ones(n)
    y = alpha * q + (1 - alpha) * np.dot(T, x)
    #while np.linalg.norm((x-y)) > epsilon:
    for i in range(maxiter):
        x = y
        y = alpha * q + (1 - alpha) * np.dot(T, x)
        c[i] = np.linalg.norm((x-y))
        if c[i] < epsilon:</pre>
            break
    return y,c
#rs = RandomState(MT19937(SeedSequence(42)))
```

Populating the interactive namespace from numpy and matplotlib

0.2 (C) Create the following 5 random networks (remember to use a seed= 42) using networkX:

- Erdős-Rényi (for n = 100, $p = \{0.01, 0.08, 0.4\}$),
- Watts-Strogatz (for n = 50, k = 7, p = 0.3)
- Barabási-Albert (for n = 50 and m = 3).

0.2.1 Erdős-Rényi (for n = 100, p = 0.01)

```
[2]: G1 = nx.erdos_renyi_graph(n=100, p=0.01, seed=42)
y1,c1 = RWRG(G1, alpha=0.15, q=1)
q1 = np.ones(100)/100
y1.sum()
```

[2]: 0.69399999999998

```
[3]: nx.draw_spring(G1)
```



```
[4]: K1 = diffusionMatrixG(G1, alpha=0.15)
p1 = np.dot(K1,q1)
print("Direct Method states:", p1)
print("Difference between both RWR methods:", np.linalg.norm(y1-p1))
```

nan nan nan nan

D:\Anaconda3\lib\site-packages\ipykernel_launcher.py:22: RuntimeWarning: invalid value encountered in true divide

The graph is not connected and some of the vertices have 0 edges. Therefore this graph is not stochastic because a vertex without edges doesn't have a transition distribution. So we can't really talk about pageRank of this graph.

PageRank of each G1 node as Size and Color


```
[6]: print("All pagerank values:")
for node, rank in zip(G1.nodes(), y1):
```

print(node, ":", rank)

All pagerank values:

- 0: 0.00571489608786104
- 1: 0.007702588999769012
- 2: 0.009931270583889268
- 3: 0.009468170029973142
- 4 : 0.0127794629255878
- 5: 0.0015
- 6: 0.0015
- 7 : 0.009738816514354999
- 8: 0.0015
- 9 : 0.008912444439415692
- 10: 0.01
- 11: 0.0015
- 12 : 0.01257947536010542
- 13 : 0.0015
- 14: 0.0015
- 15 : 0.007702588999769012
- 16: 0.0015
- 17: 0.0015
- 18: 0.0015
- 19: 0.0015
- 20 : 0.019835127785025056
- 21 : 0.0015
- 22 : 0.0052915755187352915
- 23 : 0.0015
- 24 : 0.016924176449673655
- 25 : 0.00701754385964912
- 26: 0.0015
- 27 : 0.014594822000461973
- 28: 0.01
- 29 : 0.01
- 30 : 0.01913516241885217
- 31: 0.0015
- 32 : 0.0052765458491523184
- 33 : 0.009427148492464923
- 34 : 0.0015
- 35 : 0.005894086966860439
- 36 : 0.01
- 37 : 0.013381932593035559
- 38 : 0.00571489608786104
- 39 : 0.005566219402370979
- 40 : 0.012982456140350875
- 41 : 0.0015
- 42 : 0.008741561707967714
- 43 : 0.009283058291206799
- 44 : 0.0015

- 45 : 0.009974720805407398
- 46 : 0.0015
- 47 : 0.0015
- 48 : 0.0015
- 49 : 0.01
- 50 : 0.00936893723424102
- 51: 0.01
- 52 : 0.00615472473473695
- 53 : 0.0015
- 54: 0.0015
- 55 : 0.0015
- 56: 0.01
- 57: 0.005692982818646525
- 58: 0.01
- 59 : 0.01703855737988888
- 60 : 0.0015
- 61: 0.01
- 62: 0.0015
- 63 : 0.0015
- 64 : 0.01071032238381748
- 65 : 0.022720272423282336
- 66 : 0.00536242479218654
- 67 : 0.010542435489445324
- 68: 0.00701754385964912
- 69: 0.005692982818646525
- 70 : 0.00536242479218654
- 71 : 0.01
- 72 : 0.012982456140350875
- 73 : 0.0015
- 74 : 0.00536242479218654
- 75 : 0.010952367796106026
- 76: 0.0015
- 77 : 0.0015
- 78 : 0.013514365173985967
- 79 : 0.01
- 80 : 0.0015
- 81 : 0.01
- 82: 0.014798765623081944
- 83 : 0.005566219402370979
- 84 : 0.0015
- 85 : 0.0015
- 86 : 0.01
- 87 : 0.01
- 88: 0.0015
- 89: 0.0015
- 90 : 0.01033912945962275
- 91: 0.0015
- 92 : 0.01

93 : 0.01

94 : 0.006327539401584285 95 : 0.006051890766069046 96 : 0.017772105969235286 97 : 0.011359091609947473 98 : 0.005739286828930811

99 : 0.0015

0.2.2 Erdős-Rényi (for n = 100, p = 0.08)

```
[7]: G2 = nx.erdos_renyi_graph(n=100, p=0.08, seed=42)
y2,c2 = RWRG(G2, alpha=0.15, q=1)
q2 = np.ones(100)/100
y2.sum()
```

[7]: 0.99999999999996

[8]: nx.draw_spring(G2)


```
[9]: K2 = diffusionMatrixG(G2, alpha=0.15)
p2 = np.dot(K2,q2)
print("Difference between both RWR methods:", np.linalg.norm(y2-p2)) # we see

→ that both methods give very similar result
```

Difference between both RWR methods: 3.7494711607160316e-07

```
[10]: numIters2 = (c2 > 0).sum()
    print("Number of Iterations till convergence:", numIters2)

plt.plot(np.arange(numIters2+1),c2[:numIters2+1])
    plt.ylabel("Difference")
    plt.xlabel("Iteration")
    plt.title("Convergence between k-th and (k-1)-st iteration")
    plt.show()
```

Number of Iterations till convergence: 15


```
[12]: print("All pagerank values:")
for node, rank in zip(G2.nodes(), y2):
    print(node, ":", rank)
```

All pagerank values:

0: 0.011749878209451637

1 : 0.009465248127316207

2: 0.010514319992097298

3: 0.010830585679058487

4 : 0.010460926095139563

5 : 0.010625321938303931

6: 0.008606758920755157

7: 0.008502462790574681

8: 0.007378333661641805

9 : 0.007155245990874632

10 : 0.011693165073391774

11: 0.009237139161359468

12 : 0.014963756279054077

 $13\ :\ 0.010868164869989096$

14 : 0.008495207671811283

15 : 0.012781847232808239

16: 0.009093824970101923

17 : 0.011805817606789497

18: 0.006611326057421513

19: 0.008490508968972797

- 21: 0.011661695420044386
- 22: 0.011753558277567685
- 23 : 0.0026934449972816966
- 24 : 0.01636064210204045
- 25 : 0.009549916946910339
- 26: 0.005080451416852819
- 27 : 0.013995416993002366
- 28: 0.009339344620407601
- 29 : 0.008377616699155661
- 30 : 0.015214186210240227
- 31 : 0.01208564653646586
- 32 : 0.011493077140092709
- 33 : 0.009561960909723506
- 34 : 0.015311283550313231
- 35 : 0.007270577408410804
- 36 : 0.007051503375088265
- 37 : 0.013848726969141937
- 01 . 0.010040120303141301
- 38 : 0.007313552977426056
- 39 : 0.011667061763950897 40 : 0.009345476475834969
- 40 . 0.009040470470004903
- 41 : 0.004865276221600505
- 42 : 0.01280513057839638
- 43 : 0.009525412726675564
- 44 : 0.010448374908361086
- 45 : 0.012798959375884527
- 46 : 0.006114452653296153
- 47 : 0.00505925130010101
- 48 : 0.008267191176701922
- 49 : 0.010521671691159964
- 50 : 0.014040263426018586
- 51 : 0.008338231490175487
- 52 : 0.012005211096472089
- 53 : 0.008878197049689273
- 54 : 0.010731203267833438
- 55 : 0.009668341658256743
- 56: 0.007216248481540845
- 57: 0.008252305050324874
- 58: 0.011784631659736207
- 59 : 0.0162769369974545
- 60: 0.007053475805135779
- 61: 0.008230795575284477
- 62: 0.008529792941692687
- 63: 0.01069947791475565
- 64: 0.009436576986596439
- 65 : 0.012726377677507303
- 66 : 0.015317392982404233
- 67 : 0.008725416734094436
- 68: 0.00719377363582689

```
70 : 0.01164310987037751
     71: 0.007394186739309664
     72 : 0.011747404362599445
     73: 0.007009803821583052
     74 : 0.01160774280333405
     75 : 0.011936963980605274
     76: 0.009580858392950318
     77: 0.009342932518663949
     78: 0.011605966820517528
     79 : 0.009540430648681727
     80 : 0.010480283368862678
     81: 0.007260286559725087
     82: 0.010353285523510957
     83: 0.007549999081323366
     84: 0.012945711646350087
     85 : 0.007592919672076178
     86: 0.008553103740043273
     87 : 0.01276660808047725
     88: 0.00928086641994394
     89 : 0.006111541900393492
     90 : 0.0162236409424093
     91: 0.007234265609850844
     92 : 0.007065223389912502
     93 : 0.01171221510187361
     94 : 0.007535692952087775
     95 : 0.010788363958673938
     96: 0.013880592096264781
     97 : 0.011195483163054219
     98: 0.008419138262259531
     99 : 0.00841324060570454
     0.2.3 Erdős-Rényi (for n = 100, p = 0.4)
[13]: G3 = nx.erdos_renyi_graph(n=100, p=0.4, seed=42)
      y3,c3 = RWRG(G3, alpha=0.15, q=1)
      q3 = np.ones(100)/100
      y3.sum()
[13]: 0.99999999999996
[14]: nx.draw_spring(G3)
```



```
[15]: K3 = diffusionMatrixG(G3, alpha=0.15)
p3 = np.dot(K3,q3)
print("Difference between both RWR methods:", np.linalg.norm(y3-p3)) # we see

→ that both methods give very similar result
```

Difference between both RWR methods: 1.6364350313944108e-07

```
[16]: numIters3 = (c3 > 0).sum()
print("Number of Iterations till convergence:", numIters3)
```

Number of Iterations till convergence: 5

```
[17]: plt.plot(np.arange(numIters3+1),c3[:numIters3+1])
    plt.ylabel("Difference")
    plt.xlabel("Iteration")
    plt.title("Convergence between k-th and (k-1)-st iteration")
    plt.show()
```



```
[19]: print("All pagerank values:")
for node, rank in zip(G3.nodes(), y3):
    print(node, ":", rank)
```

All pagerank values:

0: 0.011639117850394565

1 : 0.00963237330709581

2: 0.009857843972450276

3 : 0.010105639246459377

4 : 0.008806032119144921

5: 0.009670513223449643

6: 0.009663641725543865

7 : 0.009001737050334078

8: 0.007519675464541473

9: 0.008817448172728599

10 : 0.009869813794178244

11: 0.009202749787044474

12: 0.010954958295328408

 $13\ :\ 0.009641122596384232$

14: 0.01053574384344565

15 : 0.009684013575482294

16: 0.009871689610652669

17 : 0.009021349903312924

18: 0.009718688345388353

19 : 0.009651115411778531

- 21 : 0.008597458993464629
- 22 : 0.01098340166396368
- 23 : 0.009049624951346803
- 24 : 0.010104339931135334
- 25 : 0.010752669089095376
- 26 : 0.007715435265582642
- 27 : 0.009848706123604887
- 28: 0.010106136073615416
- 29 : 0.009671512707003147
- 30 : 0.01119177624938665
- 31: 0.008826253012127696
- 32 : 0.01054049272319639
- 33 : 0.009901595222109257
- 34 : 0.011147630855318882
- 35 : 0.008630576300548011
- 36 : 0.010116022084589215
- 30 . 0.010110022004303210
- 37 : 0.012666562779214859
- 38 : 0.006434091034033808
- 39 : 0.010938187918818988
- 40 : 0.009873268056322496
- 41 : 0.009461893307345787
- 42 : 0.011617656576866385
- 43 : 0.010955584670949122
- 44 : 0.010693324231309784
- 45 : 0.01143484625245953
- 46 : 0.009460037391215492
- 47 : 0.009869261756154728
- 48 : 0.00902674099569965
- 49 : 0.010115575003062932
- 50 : 0.010547891575140507
- 51: 0.010502633188870129
- 52 : 0.010527108574770343
- 53 : 0.007740935991982554
- 54 : 0.010104004681796713
- 55 : 0.00944399727499631
- 56: 0.010963875182420896
- 57: 0.010516924953372045
- 58: 0.009244700256121233
- 59 : 0.009709026741152262
- 60: 0.008780067189768965
- 61 : 0.01031504218993461
- 62: 0.009664725264712744
- 63: 0.012438567246145976
- 64: 0.00988535578423685
- 65 : 0.010503496016261599
- 66 : 0.010537505634768362
- 67 : 0.010342297678116796
- 68: 0.009017391596749767

```
69: 0.010981047413026001
70: 0.008352526476611105
71: 0.010745331369971254
72: 0.009676098992963554
73: 0.010961226983804398
74 : 0.010065904434572384
75 : 0.009860792698586064
76: 0.010516081305099966
77 : 0.010327468391855537
78: 0.010933348837742241
79 : 0.01267993733854762
80 : 0.010779140097949549
81 : 0.009660243113005623
82 : 0.009244838754769552
83 : 0.010505443173179405
84 : 0.010306362307637193
85 : 0.011632320530413362
86 : 0.010112878761101092
87 : 0.010992267600129635
88: 0.00861821083666434
89 : 0.00988122019836635
90 : 0.010915565968414134
91: 0.009003243539363935
92: 0.009691352652393237
93: 0.011158023977156638
94 : 0.01139883933194049
95 : 0.01096081886959504
96: 0.010950578794280078
97 : 0.007749536673122198
98: 0.007933206488667176
99: 0.010524551995694624
```

0.2.4 Watts-Strogatz (for n = 50, k = 7, p = 0.3)

```
[20]: G4 = nx.watts_strogatz_graph(n=50, k=7, p=0.3, seed=42)
  q4 = np.ones(50)/50
  nx.draw_spring(G4)
```



```
[21]: y4,c4 = RWRG(G4, alpha=0.15, q=1)
y4.sum()
```

[21]: 0.99999999999996

```
[22]: K4 = diffusionMatrixG(G4, alpha=0.15)
p4 = np.dot(K4,q4)
print("Difference between both RWR methods:", np.linalg.norm(y4-p4)) # we see

→ that both methods give very similar result
```

Difference between both RWR methods: 1.0868785762758303e-06

```
[23]: numIters4 = (c4 > 0).sum()
  print("Number of Iterations till convergence:", numIters4)
  plt.plot(np.arange(numIters4+1),c4[:numIters4+1])
  plt.ylabel("Difference")
  plt.xlabel("Iteration")
  plt.title("Convergence between k-th and (k-1)-st iteration")
  plt.show()
```

Number of Iterations till convergence: 16

PageRank of each G4 node as Size and Color


```
[25]: print("All pagerank values:")
for node, rank in zip(G4.nodes(), y4):
    print(node, ":", rank)
```

All pagerank values:

0: 0.023296177814411886

1 : 0.017576840897649916

2: 0.023237885380037564

3 : 0.017231217245334832

4 : 0.020098957633082715

5 : 0.017109819591521042

6: 0.025640500959879547

7 : 0.01728582882946785

8: 0.017248993929739602

9 : 0.017135412637715303

10 : 0.020374716765371552

11: 0.0203814608291317

12 : 0.020072387666177464

13 : 0.020549166254589402

14: 0.02015783996532755

15 : 0.02278543396413318

16 : 0.017656191212874497

17 : 0.02030331491279442

18: 0.017301899698200125

19: 0.020089043962648327

```
21: 0.020115731787028197
22 : 0.01978194933938149
23 : 0.01997791783665201
24 : 0.022719163999173526
25 : 0.01959757857291608
26 : 0.01951912639598511
27 : 0.025306507524790904
28: 0.014069830799798549
29 : 0.019634721024229508
30: 0.022595956215818943
31 : 0.0286467441418698
32 : 0.019782088193145052
33 : 0.016898124721865446
34 : 0.014454942394228922
35 : 0.017470717663728767
36: 0.022876347398072046
37 : 0.01950424137513895
38 : 0.02525618875073178
39 : 0.019448044405525645
40 : 0.02519981009793475
41 : 0.02247784860635125
42 : 0.017028696440761243
43 : 0.017042703800854365
44 : 0.014465530520219462
45 : 0.025803352358488692
46 : 0.019907930032962144
47 : 0.0176848277059894
48 : 0.022523228849419732
```

49 : 0.014645064459117445

0.2.5 Barabási-Albert (for n = 50 and m = 3)

```
[26]: G5 = nx.barabasi_albert_graph(n=50, m=3, seed=42)
  q5 = np.ones(50)/50
  nx.draw_spring(G5)
```



```
[27]: y5,c5 = RWRG(G5, alpha=0.15, q=1)
y5.sum()
```

[27]: 0.99999999999998

```
[28]: K5 = diffusionMatrixG(G5, alpha=0.15)
p5 = np.dot(K5,q5)
print("Difference between both RWR methods:", np.linalg.norm(y5-p5)) # we see

→ that both methods give very similar result
```

Difference between both RWR methods: 2.6716341454496354e-07

```
[29]: numIters5 = (c5 > 0).sum()
    print("Number of Iterations till convergence:", numIters5)
    plt.plot(np.arange(numIters5+1),c5[:numIters5+1])
    plt.ylabel("Difference")
    plt.xlabel("Iteration")
    plt.title("Convergence between k-th and (k-1)-st iteration")
    plt.show()
```

Number of Iterations till convergence: 20


```
[31]: print("All pagerank values:")
      for node, rank in zip(G5.nodes(), y5):
          print(node, ":", rank)
```

All pagerank values:

0: 0.02393378123421

1 : 0.05331557345802402

2: 0.03246354716956735

3: 0.050978127368944894

4: 0.045378394548766895

5 : 0.04256705172199071

6: 0.011250827813334339

7: 0.020286822638053877

8 : 0.05237246092960013

9 : 0.03644269117771701

10 : 0.02114347104385858

11: 0.02081431728975516

12: 0.024021302699037007

13: 0.014966268506538545

14: 0.02769054349692764

15 : 0.01762471864162042

16 : 0.01773452898711803 17: 0.011462927849418478

18: 0.024299419415420655

19 : 0.015071690051659151

```
21 : 0.02158102174693858
22: 0.018132078028503824
23 : 0.011645656798328598
24 : 0.011322864680116715
25 : 0.021472879585911462
26 : 0.017961778517871625
27 : 0.018921043441236105
28 : 0.021307724361656934
29 : 0.011490359098228237
30 : 0.015248755867886588
31 : 0.011653605965325057
32 : 0.011911383529386494
33 : 0.015235837602693671
34 : 0.022189612995755684
35 : 0.018147003098186815
36: 0.0113978693607951
37 : 0.012201199280803147
38 : 0.011901739303523819
39 : 0.012077058687260698
40 : 0.011680755807134797
41 : 0.012106114795314073
42 : 0.015363093551318041
43 : 0.012410592787101833
44 : 0.012192421873984984
45 : 0.011561682513857887
46 : 0.011609969396879243
47 : 0.011630465629027156
48 : 0.011700556223329075
49 : 0.01218198929539524
```

0.2.6 (E)

Try different initial distributions. Does it change the end result?

 p_0 doesn't change the result, becaue $E \cdot v = (1/n, \dots, 1/n)$ for any distribution vector, where E is the matrix with all entries equal 1/n.

0.2.7 (G)

In the Barabási-Albert network randomly assign the probabilities {0.4, 0.1, 0.5} to 3 nodes (the rest should have a 0 assigned) and propagate these scores in the network using the iterative approach in RWR. Plot how the PageRank value changes (X-axis - iteration, Y-axis - PageRank value) for all nodes (overlay the 50 lines in one figure).

```
[32]: G = nx.barabasi_albert_graph(n=50, m=3, seed=42)
T = transitionMatrixG(G)
q = np.zeros_like(T[0])
q[:3]=[0.5,0.4,0.1]
np.random.shuffle(q)
```

```
its = 20 #number of iterations
pranks1 = np.zeros((its, 50)) #here we'll store the results of each iteration
pranks1[0]=q
q = np.ones_like(q)/50
a = 0.15
for i in range(1,its,1):
    pranks1[i] = a*q + (1-a) * np.dot(T,pranks1[i-1])
# plot
for node in range(50):
    #plt.plot(np.arange(50),pranks[node])
    x = np.arange(its)
    y = pranks1[:,node]
    plt.plot(x,y)
plt.xlabel("Iteration")
plt.ylabel("PageRank value")
plt.title("PageRank value evolution for all nodes")
plt.plot()
```

[32]: []

0.2.8 (H)

In which iterations is there the largest change in the scores? Create 4 plots - each in a different iteration to illustrate this change (the propagation). Let the color of the nodes represent the logarithmized PageRank value (to avoid errors add a pseudo-count of 0.0001) of the node after the respective iteration.

Result: The largest change is between Iteration 2 and 3, when instead of few nodes with high page ranks, the ranks get very homogenious. Then from Iteration 3 to 4 after the initial overshooting, a few more nodes return to a lower/higher page rank and then stabilize.

0.2.9 (I)

Repeat the above two steps for the Watts-Strogatz network.

```
[34]: T = transitionMatrixG(G4)
      q = np.zeros_like(T[0])
      q[:3]=[0.5,0.4,0.1]
      np.random.shuffle(q)
      its = 20 #number of iterations
      pranks2 = np.zeros((its, 50)) #here we'll store the results of each iteration
      pranks2[0]=q
      q = np.ones_like(q)/50
      a = 0.15
      for i in range(1,its,1):
          pranks2[i] = a*q + (1-a) * np.dot(T,pranks2[i-1])
      # plot
      for node in range(50):
          #plt.plot(np.arange(50), pranks[node])
          x = np.arange(its)
          y = pranks2[:,node]
          plt.plot(x,y)
```

```
#
plt.xlabel("Iteration")
plt.ylabel("PageRank value")
plt.title("PageRank value evolution for all nodes")
plt.plot()
```

[34]: []

Result: The largest change is between Iteration 2 and 3, when instead of few nodes with high page ranks, the ranks get more homogenious. Here the high PageRank nodes have a lot less total connections and are more at the outside of the plotted graph.

0.2.10 (J)

Now calculate the propagation using the direct solution. Is it the same as the converged iterative solution?

```
[36]: # for the Barabási-Albert network
T = transitionMatrixG(G5)
q6 = np.zeros_like(T[0])
q6[:3]=[0.5,0.4,0.1]
np.random.shuffle(q6)
q6 = np.ones_like(q6)/50
K6 = diffusionMatrixG(G5, alpha=0.15)
p6 = np.dot(K6,q6)
print("Difference between both RWR methods:", np.linalg.norm(pranks1[-1,:]-p6))
# we see that both methods give very similar result
```

Difference between both RWR methods: 2.076193150315235e-06

```
[37]: # for the Watts-Strogatz network
T = transitionMatrixG(G4)
q7 = np.zeros_like(T[0])
q7[:3]=[0.5,0.4,0.1]
np.random.shuffle(q7)
q7 = np.ones_like(q7)/50
K7 = diffusionMatrixG(G4, alpha=0.15)
p7 = np.dot(K7,q7)
print("Difference between both RWR methods:", np.linalg.norm(pranks2[-1,:]-p7))
# we see that both methods give very similar result
```

Difference between both RWR methods: 1.1577328160264661e-05

Result: Both methods produce very similar results for both methods.