

=====

Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2009; month=11; day=20; hr=14; min=9; sec=30; ms=465;]

=====

Reviewer Comments:

<210> 1

<211> 191

<212> DNA

<213> artificial

<400> 1

For all sequences using "Artificial sequence", for numeric identifier <213>, a mandatory feature is required to explain the source of the genetic material. The feature consists of <220>, which remains blank, and <223>, which states the source of the genetic material. To explain the source, if the sequence is put together from several organisms, please list those organisms. If the sequence is made in the laboratory, please indicate that the sequence is synthesized. These errors appear in other sequences in the sequence listing. Please check for similar errors and make all necessary changes.

Application No: 10597403 Version No: 2.0

Input Set:

Output Set:

Started: 2009-11-06 17:12:17.544
Finished: 2009-11-06 17:12:20.448
Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 904 ms
Total Warnings: 14
Total Errors: 7
No. of SeqIDs Defined: 14
Actual SeqID Count: 14

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (1)
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (4)
W 402	Undefined organism found in <213> in SEQ ID (5)
W 402	Undefined organism found in <213> in SEQ ID (6)
W 402	Undefined organism found in <213> in SEQ ID (7)
W 402	Undefined organism found in <213> in SEQ ID (8)
W 402	Undefined organism found in <213> in SEQ ID (9)
W 402	Undefined organism found in <213> in SEQ ID (10)
W 402	Undefined organism found in <213> in SEQ ID (11)
W 213	Artificial or Unknown found in <213> in SEQ ID (12)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (12)

Input Set:

Output Set:

Started: 2009-11-06 17:12:17.544
Finished: 2009-11-06 17:12:20.448
Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 904 ms
Total Warnings: 14
Total Errors: 7
No. of SeqIDs Defined: 14
Actual SeqID Count: 14

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (13)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (13)
W 213	Artificial or Unknown found in <213> in SEQ ID (14)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (14)

SEQUENCE LISTING

<110> Signalomics GmbH

<120> Phycocyanine Expressing Eukaryotic Cell

<130> 46 402 K

<140> 10597403

<141> 2009-11-06

<150> PCT/EP2005/000663

<151> 2005-01-24

<150> EP 04001504.2

<151> 2004-01-23

<160> 14

<170> PatentIn version 3.3

<210> 1

<211> 191

<212> DNA

<213> artificial

<400> 1

aagttccat ggaatctcg aacaccatca ccatcaccat taaggatat aactctgtag 60

aaataaagag tatcatcttt caaacgcgg attgtcgca tcaaatcgat atgtctttag 120

cggccgctta cgaccgttaa ctgttctag attgggctag cggttagatc tttagaaacg 180

tcgacgaatt c 191

<210> 2

<211> 191

<212> DNA

<213> artificial

<400> 2

aagttccat gaaatctcg aacaccatca ccatcaccat taaggatat aactctgtag 60

aaataaagag tatcatcttt caaacgcgg attgtcgca tcaaatcgat atgtctttag 120

cggccgctta cgaccgttaa ctgttctag attgggctag cggttagatc tttagaaacg 180

tcgacgaatt c 191

<210> 3

<211> 173

<212> DNA

<213> artificial

<400> 3

aagcttccat ggaatctcg aataaggat ataactctgt agaaataaag agtatcatct 60
ttcaaaccgc ggattgtcgc gatcaaatcg atatgtctta tgccggccgct tacgaccgtt 120
aacttgttct agattgggct agcgttgaga tcttttagaaa cgtcgacgaa ttc 173

<210> 4
<211> 173
<212> DNA
<213> artificial

<400> 4
aagcttccat gaaatctcg aataaggat ataactctgt agaaataaag agtatcatct 60
ttcaaaccgc ggattgtcgc gatcaaatcg atatgtctta tgccggccgct tacgaccgtt 120
aacttgttct agattgggct agcgttgaga tcttttagaaa cgtcgacgaa ttc 173

<210> 5
<211> 731
<212> DNA
<213> *S. cerevisiae* Y190

<400> 5
gagctcatat cctttgttg ttccgggtg tacaatatgg acttccttctt ttctggcaac 60
caaaccata catcgggatt cctataatac ctgcgttgtt ctccctaaca tgttaggtggc 120
ggaggggaga tatacaatag aacagatacc agacaagaca taatgggcta aacaagacta 180
caccaattac actgcctcat tgatggtgtt acataacgaa ctaatactgt agccctagac 240
ttgatagcca tcatacatatc gaagttcac taccctttt ccatttgcca tctattgaag 300
taataatagg cgcatgcaac ttctttctt ttttttctt ttctctctcc cccgttgtt 360
tctcaccata tccgcaatga caaaaaaatg atgaaagaca ctaaaggaaa aaattaacga 420
caaagacagc accaacagat gtcgttgtt cagagctgat gaggggtatc tcgaagcaca 480
cgaaaactttt tccttccttc attcacgcac actactctt aatgagcaac ggtatacggc 540
cttccttcca gttacttgaa tttgaaataa aaaaaagttt gctgtcttgc tatcaagtat 600
aaatagacct gcaattatta atctttgtt tcctcgcat tggctctcggtt ccctttcttc 660
cttggttctt ttctgcaca atattcaag ctataccaag catacaatca actatctcat 720
atacaccatg g 731

<210> 6
<211> 496
<212> DNA
<213> *Synechocystis* sp. PCC6803

<400> 6
tcatgaagac cccattgacc gaagctgttt ctaccgcaga ttctcaaggt agattcttgt 60
catctaccga attgcaaatt gcttcggta gattgagaca agcaaatgct ggtttgcagg 120
ctgctaaggc tttgaccgat aacgctcaat ctttggtaa tggtgctgct caagctgttt 180
acaacaagtt cccatacacc actcaaacc aaggtaacaa ctgcgtgca gatcaaagag 240
gtaaggataa gtgtgctaga gatattgggt actacttgag aattgttacc tactgttgg 300
ttgcagggtgg tactggtcca ttggatgaat acttgattgc tggattgtat gaaattaaca 360
gaaccttcga tttgtctcca tcttggtagc ttgaagcatt gaagtacatt aaggcaaatc 420
atggtttatac tggtgatgct agagatgaag caaactctta cttggattac gctattaacg 480
ctttgtctaa ctgcgag 496

<210> 7
<211> 826
<212> DNA
<213> Synechocystis sp. PCC6803

<400> 7
tcatgagtga accaaacttg aacccagctt acaccttggta tcaagctatt gcaaacttgc 60
aacaaaccga agatgcttct gctagatact atgctgcttg gtggattgggt agattcagag 120
ctgctcaacc agaaaccatt gctgcttgc ttggattgtt ggaagatgaa accgatagat 180
caccagatgg tggtaacca ttgagaagaa acgctgctaa ggctttgggt aaattgggtg 240
atagacaagt tgccagct ttgattaagg ctttggatg tgaagattac tacgttagag 300
aatctgctgc tcaaggatttgc gaagggttgg gtgatgttgc agctatggct ccattgttgc 360
ctaagttgac cggtggtttg gctgctgctc aattgggtga aggttgcac catttggctc 420
aaccatacga agctatcatt gaagcattgg gtactttgc aactgttgc tctattggtt 480
tgattgaacc attctggaa catttctcac caaagggtca atacgctgct gctagagctt 540
tgttccaatt gaccgggtgat aacagatacg gtgattttttt gattaccgct ttgggtggta 600
cagatttgca attgagaaga tcagctatga tggatttggg tgctactgggt tacttaccag 660
gtgctcaagc tattgctaa gctttcgctg aaaactctttt gaagtttgcattt gctttggag 720
atttgtgggc taccataga caaagacaag catcttctga atctaaggct ttgtctccag 780
cttcaagaca aattttggaa ttgatggatt ctttggtaa ctgcgag 826

<210> 8

<211> 652
<212> DNA
<213> Synechocystis sp. PCC6803

<400> 8
ccatggaagg taactctgtt gttaccccaag aaattgaaag attgattcaa gctgttgaaa 60
ccgcagattc tgctgctaag tttagttgggt ctgttagagc tttggctgct accagatcac 120
catgggctgt tccacaattt accaccgttt tgagatacaa caaccagggt gctgctgtt 180
ctgcagttga tggtttgatt caaattggtg atgctgctat gaccatttg ttggcaaaca 240
tggatggta caactacggt gctagagctt gggctactag agcttggct ggtattggtg 300
atccaagagc tttggcttg ttgcaagaag ctgcttgac cgatttcgct ttgtctgtta 360
gaagagctgc tgctaagggt ttgggtttct tgagatggca atcttgcca caagaagaac 420
aagaaaccgt tcaaaaggct attacgata ctttgattca agtttggtaa gatccagaat 480
gggttggtag atacggtgct attgctggtt tggaaaactt ggctaaagcaa gctcaacatt 540
acagacaacc attgaaggat ttcttgcaat cttcggttga acaagaacca gaagctattt 600
ttggtgaaag aattttgtgg accttggaaa acattggtcc aattaactcg ag 652

<210> 9
<211> 730
<212> DNA
<213> Synechocystis sp. PCC6803

<400> 9
tcatgagttttaaacttggct tcacaatttga gagaaggtaac taagaagtctt cattctatgg 60
ctgaaaacgt tggtttcgtt aagtgtttct tgaagggtgt tggaaaagg aactcttaca 120
gaaagtttgttggtaacttgcgtt actctgctat ggaagaagaa atggctaaatgtt 180
tcaaggatca tccaaatttttgcgtt tctcatatctt acttcccaaaatgaaacaga aagcaatctt 240
tggaaacaaga ttgcaatttgcgtt tactacgggtt caaactggag acaagaagttt aagatttctt 300
ctgctggtaaagcgtt gatagagtttgcgtt gacaaggtaac tgctaccgtt ccagaattttgtt 360
tggtttgctca ttcttacacc agataacttgg gtgatttgcgtt tggggtaaaattttgaaga 420
agatttgcgttca aaacgctatg aacttgcgtt atgggtggtaac tgctttcttgcgtt ccagaattttgtt 480
atatttgcgttca tgaaaaggct ttcaagaaca cctacagaca agctatgaaac gatttgcgtt 540
ttgatcaaggc taccgctgaa agaatttgcgtt atgaagcaaa cgatgctttc gctatgaaaca 600
tgaagatgtt caacgaaatttgcgtt gaaggtaact tgatggtaac tatttgcgtt atgggtttca 660
actctttgac cagaagaaga tcacaagggtt ctaccgaagt tggtttgctt acctctgttca 720

gtaactcgag 730

<210> 10
<211> 754
<212> DNA
<213> Synechocystis sp. PCC6803

<400> 10
ccatggctgt taccgatttg tctttgacca actcttcttt gatgccaacc ttgaacccaa 60
tgattcaaca attggctttg gctattgctg cttcttggca atcttgcca ttgaagccat 120
accaattgcc agaagatttg ggtaacgttg aaggcagatt ggaaggtgaa aagttggta 180
ttgaaaacag atgttaccaa accccacaat tcagaaagat gcatttgaa ttggctaaag 240
ttggtaaggg ttggatatt ttgcattgtg ttatgtccc agaaccattg tacggttgc 300
cattgttcgg ttgtatatt gtgctggc caggtgggt ttctgctgct attgcagatt 360
tgtctccaac ccaatcagat agacaattgc cagctgctta ccaaaagtct ttggctgaat 420
tgggtcaacc agaatttgaa caacaaagag aattgccacc ttgggtgaa attttctctg 480
aatactgttt gttcattaga ccatcaaacg ttaccgaaga agaaagattc gttcaaagag 540
tggttgcattt ctgcatttgc cattgtcatc aatctattgt tgctgaacca ttgtctgaag 600
ctcaaactt ggaacataga caaggtcaaa ttcatctactg tcaacaacaa caaaagaacg 660
ataagaccag aagagtttg gaaaaggctt tcggtaagc atgggctgaa agatacatgt 720
ctcaagttt gttcgatgtt attcaaaact cgag 754

<210> 11
<211> 519
<212> DNA
<213> Synechocystis sp. PCC6803

<400> 11
atgttcgacg tattcaactcg ggttggccca agctgatg ctcggcga gtacctct 60
ggttctcagt tagatgctt gacgcctacc gttgctgaag gcaacaaacg gattgattct 120
gttaaccgca tcaccggtaa tgctccgct atcggttcca acgctgctcg tgctttgttc 180
gttgaacacg cccaaataat ccaacccggt ggaaacgcct acaccagccg tcgtatggct 240
gcttggccgcgt gtagacatgga aatcatcctc cgctatgtta cctacgcaac cttcacccggc 300
gacgcttcccg ttctagaaga tcgttgcttg aacggctcc gtgaaaccta cgttgcctg 360
gggttccccg gtgctccgt agctgctggc gttcaaaaaa tgaaagaagc tgccctggac 420

atcgtaacg atccaatgg catcacccgt ggtgattgca gtgctatcgt tgctgaaatc 480

gctggttact tcgaccgcgc cgctgctgcc gtagcctag 519

<210> 12

<211> 172

<212> PRT

<213> artificial

<400> 12

Met Phe Asp Val Phe Thr Arg Val Val Ser Gln Ala Asp Ala Arg Gly
1 5 10 15

Glu Tyr Leu Ser Gly Ser Gln Leu Asp Ala Leu Ser Ala Thr Val Ala
20 25 30

Glu Gly Asn Lys Arg Ile Asp Ser Val Asn Arg Ile Thr Gly Asn Ala
35 40 45

Ser Ala Ile Val Ser Asn Ala Ala Arg Ala Leu Phe Val Glu Gln Pro
50 55 60

Gln Leu Ile Gln Pro Gly Gly Asn Ala Tyr Thr Ser Arg Arg Met Ala
65 70 75 80

Ala Cys Leu Arg Asp Met Glu Ile Ile Leu Arg Tyr Val Thr Tyr Ala
85 90 95

Thr Phe Thr Gly Asp Ala Ser Val Leu Glu Asp Arg Cys Leu Asn Gly
100 105 110

Leu Arg Glu Thr Tyr Val Ala Leu Gly Val Pro Gly Ala Ser Val Ala
115 120 125

Ala Gly Val Gln Lys Met Lys Glu Ala Ala Leu Asp Ile Val Asn Asp
130 135 140

Pro Asn Gly Ile Thr Arg Gly Asp Cys Ser Ala Ile Val Ala Glu Ile
145 150 155 160

Ala Gly Tyr Phe Asp Arg Ala Ala Ala Val Ala
165 170

<210> 13

<211>	10	
<212>	DNA	
<213>	artificial	
<400>	13	
actctgtaga		10
<210>	14	
<211>	11874	
<212>	DNA	
<213>	artificial	
<400>	14	
tcgcgcgtt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca		60
cagcttgtct gtaaggcgat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg		120
ttggcgggtg tcggggctgg cttaaactatg cggcatcaga gcagattgt a ctgagagtgc		180
accacgctt tcaattcaat tcatcattt ttttttattc tttttttga ttccggtttc		240
tttgaattt tttttagttcg gtaatctccg aacagaagga agaacgaaagg aaggagcaca		300
gacttagatt ggttatata cgcatatgt a gtgttgaaga aacatgaaat tgcccagtat		360
tcttaaccca actgcacaga acaaaaaacct gcagggaaacg aagataaattc atgtcgaaag		420
ctacatataa ggaacgtgct gctactcatc ctatgcgt tgctgccaag ctatataa		480
tcatgcacga aaagcaaaca aacttgcgtg cttcatgga tggcgatacc accaaggaaat		540
tactggagtt agttgaagca tttaggtccca aaatttgcgtt actaaaaaca catgtggata		600
tcttgactga ttttccatg gagggcacag ttaagccgct aaaggcatta tccgccaagt		660
acaattttt actcttcgaa gacagaaaaat ttgctgacat tgtaataca gtcaaattgc		720
agtactctgc ggggtgtatac agaatagcag aatgggcaga cattacgaat gcacacggtg		780
tgggtggccc aggtattgtt agcggttga agcaggcgcc agaagaagta acaaaggaaac		840
ctagaggcct ttgtatgttgc gcaaaattgtt catgcaaggc ctccctatct actggagaat		900
atactaaggc tactgttgac attgcgaaga ggcacaaaga tttgttattc ggctttattg		960
ctcaaaagaga catgggtgga agagatgaag gttacgattt gttgattatg acacccggtg		1020
tgggtttaga tgacaaggga gacgcattgg gtcacacgtt tagaaccgtt gatgtgttgg		1080
tctctacagg atctgacatt attattgttgc gaagaggact atttgcaaaag ggaagggtat		1140
ctaaggtaga gggtaacgt tacagaaaaag caggctggga agcatatttgc agaagatgcg		1200
gccagcaaaa ctaaaaaact gtattataag taaatgcattt gataactaaac tcacaaatta		1260
gagcttcaat ttaatttatc cagttattac cctgcgggtgt gaaataccgc acagatgcgt		1320

aaggagaaaa taccgcatca gcaaattgt aacgttaata ttttgtaaa attcgctta 1380
aattttgtt aaatcagctc attttaac caataggccg aaatcggcaa aatcccttat 1440
aatcaaaag aatagaccga gatagggttg agtgttggc cagttggaa caagagtcca 1500
ctattaaaga acgtggactc caacgtcaaa gggcgaaaaa ccgtctatca gggcgatggc 1560
ccactacgtg aaccatcacc ctaatcaagt ttttggggt cgaggtgccc taaagcacta 1620
aatcggaacc ctaaaggagccccgattt agagcttgac ggggaaagcc ggcgaacgtg 1680
gcgagaaagg aagggaaagaa agcgaaagga gcggggccta gggcgctggc aagtgttagcg 1740
gtcacgctgc gcgttaaccac cacacccgcc gcgttaatg cggcgctaca gggcgctcg 1800
cgccattcgc cattcaggct gcgtcaactgt tggttgggc gatcggtgctggc 1860
ctattacgcc agctggcgaa gggggatgt gctgcaaggc gattaagttt ggttaacgcca 1920
gggtttccc agtcacgacg ttgtaaaacg acggccagtg aattgtataa cgactcacta 1980
tagggcgaat tggagctcat atcctttgt tggttccggg tgtacaatat ggacttcctc 2040
ttttctggca accaaaccca tacatcgga ttcctataat accttcgttg gtctccctaa 2100
catgttaggtg gcggagggga gatatacaat agaacagata ccagacaaga cataatggc 2160
taaacaagac tacaccaatt acactgcctc attgtatggtg gtacataacg aactaataact 2220
gtagccctag acttgatagc catcatcata tcgaagttt actacccttt ttccatttgc 2280
catctattga agtaataata ggcgcatttca acttcttttcc ttttttttcc ttttctct 2340
cccccggtgt tgtctcacca tatccgcaat gacaaaaaaaaa tgatggaaga cactaaagga 2400
aaaaattaac gacaaagaca gcaccaacag atgtcggtgt tccagagctg atgagggtta 2460
tctcgaagca cacgaaacctt ttccttcct tcattcacgc acactactct ctaatgagca 2520
acggtatacg gccttccttc cagttacttg aatttgaat aaaaaaaaaagt ttgctgtctt 2580
gctatcaagt ataaatagac ctgcaattat taatcttttgc tttcctcgatc attgttctcg 2640
ttccctttct tccttggttcc ttttctgca caatattca agctatacca agcataacaat 2700
caactatctc atatacacca tggaaaggtaa ctctgtgtt accccagaaaa ttgaaagatt 2760
gattcaagct gttgaaaccg cagattctgc tgcttaagttt gttgggtgctg ttagagctt 2820
ggctgctacc agatcaccat tggctgttcc acaattgacc accgtttga gatacaacaa 2880
cccagggtgt gctgtgtcg cagttgtatgg tttgatcaa attgggtatcg ctgctatgac 2940
ccatttggc gcaaacatgg atggttacaa ctacggtgct agagcttggg ctactagac 3000

tttgtctgg attgggtatc caagagctt ggctttgtt caagaagctg ctttgaccga 3060
tttcgcttt tctgttagaa gagctgctgc taagggtttt ggtttcttga gatggcaatc 3120
tttgcacaa gaagaacaag aaaccgttca aaaggctatt tacgataacct tgattcaagt 3180
ttgtgaagat ccagaatggg ttgttagata cggtgctatt gctggtttgg aaaacttggc 3240
taagcaagct caacattaca gacaaccatt gaaggatttc ttgcaatctt tcgttgaaca 3300
agaaccagaa gctattgtt gtgaaagaat tttgtggacc ttggaaaaca ttggtccat 3360
taactcgaga taaggatata aactctgttag aaataaagag tatcatctt caaaccgcgg 3420
atatcctttt gttgtttccg ggtgtacaat atggacttcc tcttttctgg caaccaaacc 3480
catacatcg gattcctata ataccttcgt tggtctccct aacatgtagg tggcggaggg 3540
gagatataca atagaacaga taccagacaa gacataatgg gctaaacaag actacaccaa 3600
ttacactgcc tcattgttgg tggtaaaaaa cgaactaata ctgtagccct agacttgata 3660
gccatcatca tatcgaagtt tcaactaccct tttccattt gccatctatt gaagtaataa 3720
taggcgcattt caacttcttt tcttttttt tcttttctct ctccccgtt gttgtctcac 3780
catatccgca atgacaaaaaa aatgtatggaa gacactaaag gaaaaaaatta acgacaaaga 3840
cagcaccaac agatgtcggtt gttccagagc tggatgagggtt tatctcgaag cacacgaaac 3900
tttttccttc ctcatcactc gcacactact ctctaattttt caacggataa cggccttcct 3960
tccagttact tgaatttgaa ataaaaaaaaa gtttgctgtc ttgttatcaa gtataaatag 4020
acctgcaattt attaatctttt tgtttcctcg tcattgttct cgttccctttt ctcccttgc 4080
tcttttctg cacaatattt caagctatac caagcataca atcaactatc tcataacac 4140
catggctgtt accgatttgtt ctgttgcacaa ctcttctttt atgccaacct tgaacccat 4200
gattcaacaa ttggctttgg ctattgtgc ttcttgcaaa tctttgcatt tgaagccata 4260
ccaattgcca gaagatttgg gttacgttga aggtagattt gaaaggtaaa agttggttat 4320
tgaaaaacaga tgttacaaaa ccccaacaaattt cagaaagatg catttggaaat tggctaaatgt 4380
tggtaagggtt ttggatattt tgcattgtgt tatgttccca gaaccattgtt acggtttgc 4440
attgttcgggt tgtgatattt ttgttgcgttcc aggtgggtttt tctgtgttca ttgcagattt 4500
gtctccaaacc caatcagata gacaatttgc agctgcttac caaaagtctt tggctgttca 4560
gggtcaacca gaatttgaac aacaaagaga attgcccaccc tgggggtgaaa ttttcttgc 4620
atactgtttt ttcatttagac catcaaacgtt taccgttgc gaaaggattcg ttcaaaagatgt 4680
tggatatttcc ttgttgcacaaatttcc attgttgcattca atctattgtt gctgttgcacat tggctgttgc 4740

tc当地atggaaacaaat tc当地tgc当地gt caacaacaac aaaagaacga 4800
taagaccaga agagtttgg aaaaggctt cggtgaagca tgggctgaaa gatacatgtc 4860
tcaagtttg tt当地atgtta tt当地aaactc gagataaggt atataactct gt当地aaataa 4920
agagtatcat ctttcaaacc gc当地gattgtc gc当地atcaaat cgat当地gtct tatgc当地ggccg 4980
catatcctt tgggtttcc ggggtgtaaa tatggacttc ct当地ttctg gcaaccaaac 5040
ccatacatcg ggattcctat aataccttcg tt当地gtctccc taacatgttag gtggc当地ggagg 5100
ggagatatac aatagaacag ataccagaca agacataatg ggctaaacaa gactacacca 5160
attacactgc ct当地attgtatg gt当地gtacata acgaaactaat actgttagccc tagacttgat 5220
agccatcatc atatcgaagt tt当地actaccc tt当地ttccatt tgccatctat tgaagtaata 5280
ataggc当地cat gcaacttctt tt当地tttttt tt当地tttctc tctccccgt tgggtctca 5340
ccatatccgc aatgacaaaaa aaatgatgga agacactaaa ggaaaaaaatt aacgacaaaag 5400
acagcaccaa cagatgtcgt tggccagag ctgatgaggg gt当地tctcgaa gc当地acgaaa 5460
tttttcctt cttcattca cgc当地acactac tctctaatga gcaacggtat acggccttcc 5520
ttccagttac tt当地attgtatg aataaaaaaa agtttgc当地gt cttgc当地tatca agtataaata 5580
gacctgcaat tattaatctt tt当地tttctc gtc当地attgttc tggccctt tcttc当地ttgt 5640
ttcttttctt gcacaatatt tcaagctata ccaagcatac aatcaactat ct当地atataca 5700
ccatgagtga accaaacttg aacccagctt acacctgga tcaagctatt gcaaacttgc 5760
aacaaaccga agatgcttct gctagatact atgctgcttgc gtggattgggt agattcagag 5820
ctgctcaacc agaaaccatt gctgcttgc tggttgctt ggaagatgaa accgatagat 5880
caccagatgg tggttaccca tt当地agaagaa acgctgctaa ggcttgggt aaattgggtg 5940
ata