A multi-way search tree is an ordered tree such that

■ Each internal node has at least two and at most d children and stores d-1 data items (k_i, D_i)

Rule: Number of children = 1 + number of data items in a node

d is the degree or order of the tree

A multi-way search tree is an ordered tree such that

- Each internal node has at least two and at most d children and stores d-1 data items (k_i, D_i)
- An internal node storing keys $k_1 \le k_2 \le ... \le k_{d-1}$ has d children $v_1 v_2 ... v_d$ such that

A multi-way search tree is an ordered tree such that

- Each internal node has at least two and at most d children and stores d-1 data items (k_i, D_i)
- An internal node storing keys $k_1 \le k_2 \le ... \le k_{d-1}$ has d children $v_1 v_2 ... v_d$ such that
- By convenience we add sentinel keys $k_{\theta} = -\infty$ and $k_{d} = \infty$

A multi-way search tree is an ordered tree such that

- Each internal node has at least two and at most d children and stores d-1 data items (k_i, D_i)
- An internal node storing keys $k_1 \le k_2 \le ... \le k_{d-1}$ has d children $v_1 v_2 ... v_d$ such that
- By convenience we add sentinel keys $k_{\theta} = -\infty$ and $k_{d} = \infty$
- The leaves store no items and serve as placeholders

Multi-Way Search Tree of Degree 4?

Multi-Way Search Tree of Degree 4?

Multi-Way Inorder Traversal

- We can extend the notion of inorder traversal from binary trees to multi-way search trees
- An inorder traversal of a multi-way search tree visits the keys in increasing order

Inorder traversal:

Data Structures for Multi-Way Search Trees

Data Structures for Multi-Way Search Trees

Data Structures for Multi-Way Search Trees

Secondary data structures

- Similar to search in a binary search tree
- Example: search for 31

- Similar to search in a binary search tree
- Example: search for 46


```
Algorithm get(r,k)
In: Root r of a multiway search tree, key k
Out: data for key k or null if k not in tree
if r is a leaf then return null
else {
   Use binary search to find the index i such that either

    r.keys[i] = k, or

        r.keys[i] < k < r.keys[i+1]</li>
   if k = r.keys[i] then return r.data[i]
   else return get(r.child[i],k)
```

```
Algorithm get(r,k)
In: Root r of a multiway search tree, key k
Out: data for key k or null if k not in tree
if r is a leaf then return null
else {
   Use binary search to find the index i such that either

    r.keys[i] = k, or

        r.keys[i] < k < r.keys[i+1]</li>
   if k = r.keys[i] then return r.data[i]
   else return get(r.child[i],k)
```

Ignoring recursive calls: $c_1 \log d + c_2$ operations

Time Complexity of get Operation

Smallest and Largest Operations


```
Algorithm successor (r,k)
In: Root & of a multiway search tree, key K
Out: Successor of K, or null if k has no successor
     p < get (r, k)
      Use binary search to find index i such that p. keys[i]=K
      if p. children [i] is an internal node then
              return smallest (p. children [i])
       else if p. keys[i] is not the last key in p then return p. keys[i+1]
                   peparent of P
                   while p = null do {
                       if p has a key k'>k then return k'
                        else perparent of ?3
                  return null
```

Put Operation

Put Operation

remove(2)

Ordered Dictionary Operations on a Multiway Search Tree of Degree d

```
smallest O(height)
```

largest O(height)

get $O(height \times log d)$

successor $O(height \times log d)$

predecessor $O(height \times log d)$

put $O(d + height \times log d)$

remove $O(d + height \times log d)$