9/05/2024 | LEZ 30

### INTRODUZIONE ALLA NP-COMPLETEZZA

STORIO DI PROBLEMI HARD' -> A FORER DLGO. × REDLUR IN

LE3 0661

- INTRO CHASSIFICAZIONE PROBLEY/
- RIBUZIONE POLINOFIALE

### CLASSI DI PROBLEXI

7 DEL TEORDE CHE PLESSED UN LA DIFFICILIZZA DI UN

COME POSSIANO DIROSTRARMO)

INTANTO PISTINGUIARO DAI PROBLEMI RIDLVIBILI IN 12000 FAST

CLOR I PROBL U ALGO POLIMANALE

WHY?

- PEF ROBUSTA TEXCHEND ROVE POZIN. CHR MONTIFUR
  - COSTANTI SICCOLLE -> PLE . 3 M Z

ASSUNTO OURINO.

QUALI IOLO ( PROBLEMI "FACILI" E "DIFFICILI" ?

NEXT. PAG TABELLA

POL FORSK NOT POL

| yes                    | probably no                |
|------------------------|----------------------------|
| shortest path          | longest path               |
| min cut                | max cut                    |
| 2-satisfiability       | 3-satisfiability           |
| planar 4-colorability  | planar 3-colorability      |
| bipartite vertex cover | vertex cover               |
| matching               | 3d-matching                |
| primality testing      | factoring                  |
| linear programming     | integer linear programming |

- TEORIA VUOLE CATEGORIGE ZARRI PROBLEMI "HARD" R "EB"
- ALCUM NOW ANCORES DIM.

CI LOW BLCOWI RESEARI PLROSTRATI

CHE HOWED COMPL. EXP.

HOLTING PROBLEM

(7) PROBLEMA DOMA

TOOL X CATEGORIZEARE PROBL

RINISCOUR POLLOMIALE

SEF

UN PROBLEMA X È MOUCHBIAR DO 7, JR UN

ISTANGO DI X TRANSFORMATA POL. IN ISTANZA X CHE

PUJ RISARE RESOLVE BA Y (POL.)

U NUONA (STAVIA X Y SEMPIR POTINUMIA KE

MUTAZWIM

= & HUGMGGH IN F. D

X Sp Y



## TEUR. SU REDUCTION

POSITASE XEAY e Y REPLUE IN COS. TIME, DUCHE X POL.

MRGAT. USE XS, Y & X CAN'T RESEXUE POL. TIME, ALHORA
Y CANT ARE SOLVE IN POL.

EQUIV. NIF X SPY 1 Y SIX > X = PY.

RIDUZ. POLILOMIALE: PRATICA

## 1 PROB: INDIPENDENT SET

SARCHI IN CORUNE

## 2) MUB: VERTEX COVER

SING G=(U,F) & KEN / I SUBSET EK NOON CHE COPPOND BLL ARCHI.

DIM; (.SRT = S. COVER

S= 1. SRT OF K => V-S 15 V. COURR OF M-K

DM =>

· J = 1. SET DI (S/=K

- · U-S -> (V-S) = M K
- · SIA (U,V) EE
- S (NDIP QUID) SIA: UES-VVUES-VV/ Quipi
- · V-S coppe (u,v).

## DIM CO

- · V-S = V, COVER DI [V-S] = m-k
- : [SI = K]
- SIA (U,V) EE ·NA: UEV-S & VEV-SOBOTH
- · V-S = V.COVRR Sosa: UES & VES OBOTH

  QUIUDI

  S= 1. SRT

## ALTRE PLOUZION

1 PROB: SET COVER

- · SIA U= SET ELE., S=SET OF SUBSET OI U, KEN.

  . I A = {1: 2eS}t.c. IA|EK / U1= U.

TEOR: V.C. & P SET. COVER

#### DIM

- · SIA 6= (V,E) ek-> ISTANZA DI V.C., MOOR (STANZA (U,2,16) OI S.C. L.C.: 3 s.c. = K <=> G HA V.C. = K
- · COSTPUZIONE (U,2,K)

~ U = E

~ SUBSET × OGNI MOSS V -> SV = {e E E: e luciobuil}

#### RIDUZIONA

G=(V,R) COLTIENE V.C. DI SIBR K

(U,2,12) CONTIRNE S.C. SIBB H

DIT

- SIA X E V UN V.C. DI SIBE K LAUDRE
- Y= {Sv: VEX} 12 S.C. DI SIZE h

BANALE

OIM 
$$\Rightarrow$$
  
 $Y \subseteq S = S.C.$  BY  $S188 \times$   
 $\int alloward$   
 $X = \{ \sigma : S_{\sigma} \in Y \} = V.C.$   $S188 \times$ 

istanze 'si' e 'no' tutti e due risolvibili con questa trasformazione (il perchè è banale)

# PROBL. SODDISFACIBILITÀ (SAT)

UN PAIO OI DEPINIZIONI:

- · LETTERALE ~> VORIBBILE BOOL. ~> Xi & Xi
- · CLAUSOLA ~> DISGIUNZIONE ~> C5= X1 V X2 V X3
- FORMS CONGIUNTNA (CNF) ~> PROPOS.  $\overline{\Phi} = C_1 \wedge C_2 \wedge C_3$

DEF PROB2.

- SAT -> SIR \$, 3 ASS. BI VREITO X CRUPERE \$ T.C
- -3-SAT -> SAT MG CON &C CONTIEUR 3 LATTERALI.

COUCEMD FOUDBYRUTALE

FORSE # ALGO POZ. X RRIDZUE 3-SAT.

RIDUZUVE: 3-SAT S. I. SET

DIM: DA 15TAUZO DI 3-SAT (5, /E(=k)

15.70HER DI 1.5. (6,K)

#### COSTRUZIONE:

- 06NI CLAUDIA -> 3 NOSI (X LATTROLLA)

- GRAPO-CLAUDILA -> CONNESSI AS  $\triangle$ 

- RDGR X VAR - VAR NRGARA

ESEMIO



#### DIM >>

· SIA I U ASSIBGUATRATI DI VERNITO!

· 7 1.5. ON SIZE 1/4 (=K)



- SIA S = 1.5. OI SIZE K • X STRUMURA  $G \rightarrow DEUR CONTRUKKE 1 MOD X <math>\Delta$  (C)
- · SRITE QUEI MOI (HATTERALI) COTOR TRUR
- . JODDISFACIBILE

NB.

#### Basic reduction strategies.

- Simple equivalence: INDEPENDENT-SET  $\equiv_{P}$  VERTEX-COVER.
- Special case to general case: Vertex-Cover  $\leq_P$  Set-Cover.
- Encoding with gadgets:  $3-SAT \le_P INDEPENDENT-SET$ .

Transitivity. If  $X \leq_P Y$  and  $Y \leq_P Z$ , then  $X \leq_P Z$ . Pf idea. Compose the two algorithms.

Ex. 3-Sat  $\leq_P$  Independent-Set  $\leq_P$  Vertex-Cover  $\leq_P$  Set-Cover.



