Advanced Database Management Systems

Lecture 2
Entity-Relationship Diagrams

Database Development Process

Common Data Models

UML/OO	ER	Relational
class	entity type	relation/table
object	entity	tuple/row
attribute	attribute	attribute/column
association	relationship	foreign key
	key attribute	primary key
inheritance	inheritance	foreign key

 We have standard techniques for translating between data models.

Common Data Models

- UML and ER have graphical notations
 - very good for conceptual design
 - very expressive: capture more application semantics
- Relational model is an implementation model
 - not good for conceptual design
 - not very expressive: many concepts map to same notation

Entity Types

Entity types → boxes
 Weak entity type → double box

EMPLOYEE

Entity

DEPENDENT

Weak Entity

Entity Types

- Entity types are similar to classes, they describe potential objects (entities) that will appear in the database.
- Weak entity types describe dependent entities, entities that depend on other entities for identity.

Entity DEPENDENT

Weak Entity

Attributes and Keys

- Attributes → ovals
- Key attributes → underlined name

Attributes and Keys

- Key attributes must be unique for each entity
- Keys are used to identify particular entities
- Partial keys are only partially unique
 - used for weak entity types

Entity Types and Attributes

Attributes are connected to entity types by lines

Entity Types and Entities

Entities are instances of an entity type.

Entity Types and Keys

- All regular entity types must have a key attribute or set of key attributes
- Weak entity types must have partial keys
- Weak entities get part of their key (and part of their identity) from some related entity.

Sets and Derived Attributes

- - multivalued = set valued
 - that there may be more than one value for the attribute.
- Derived attributes -> dashed line ovals
 - the attribute is computed from other data

Locations

Multivalued

Multivalued
Attribute

NumEmployees

Derived Attribute

Composite Attributes

- Composite attributes → tree
 - composed of other attributes.
 - used for a set of related attributes,
 when the set is not a conceptual entity
 - the composite doesn't have identity ... it doesn't have a key

Registration (Number, State), Vehicle_id, Make, Model, Year, {Color}

CAR₁ ((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 2004 {red, black}) CAR₂ ((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 2005, {blue}) CAR₃ ((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 2002, {white, blue})

Relationships

- Relationships → diamonds
- Identifying relationship

 double diamond

Relationships

- Relationships indicate a meaningful connection between two entity types
- Relationships may have attributes, but they cannot have key attributes.
- Identifying relationships connect a weak entity type to some other entity type
 - indicates where the weak entity gets a key to complete its own partial key

Participation and Cardinality

- Participation and cardinality define constraints on relationships
- Participation indicates whether an entity is required to take part in a relationship
- Cardinality ratios and structural constraints place limits on the number of entities that may participate in a relationship

Participation Constraints

- Total participation → double or thick line
 - indicates required participation
- Partial participation → thin line
 - indicates optional participation

Participation Constraints

- Arrowheads can be used to indicate an upper bound of 1 for participation
 - (not used in our textbook)

X may participate in at most one R

Cardinality Ratios

Cardinality ratios specify
 the maximum number of relationship instances
 that an entity may participate in

Structural Constraints

 Structural constraints specify the minimum and maximum number of relationship instances that an entity may participate in

An employee must work for exactly 1 department. A department must have at least 4 employees.

An employee may manage at most 1 department.

A department must have exactly 1 manager.

Participation and Cardinality

 There's generally numerous ways to express a relationship constraint.

Equivalent Notations

- An employee can manage at most one department.
- A department must have exactly one manager.

Equivalent Notations

- An employee must work for exactly one department.
- A department must have at least one employee.

Relationship Instances

Each EMPLOYEE instance is connected to exactly one WORKS_FOR instance.

Each DEPARTMENT instance is connected to at least one WORKS_FOR instance.

Relational Roles

- It is sometimes convenient to name an entity's role in a relationship.
 - particularly useful in recursive relationships
 - removes ambiguity in direction of relationship

Recursive Relationship

Notation Summary

Equivalent Schema defined in UML

Design an ER schema for the following enterprise:

Consider a MAIL_ORDER database in which employees take orders for parts from customers. The data requirements are summarized as follows:

- The mail order company has employees, each identified by a unique employee number, first and last name, and ZIP code.
- Each customer of the company is identified by a unique customer number, first and last name, and ZIP code.
- Each part sold by the company is identified by a unique part number, a part name, price, and quantity in stock.
- Each order placed by a customer is taken by an employee and is given a unique order number. Each order contains specified quantities of one or more parts. Each order has a date of receipt as well as an expected ship date. The actual ship date is also recorded.

