Put your written answers in the comment section of BinaryNode.java.

Use the following trees to fill in the table.

Quantity	Left tree	Right Tree
List the leaf/leaves	6HIJ	HIJ
List the root/roots	A	A
Number of edges	9	9
List child/children of node D	6	AI
List parent(s) of node I	F	D
Height of tree	4	4
Is this a full tree?	NO	No
Is this a complete tree?	No	Yes
Is this a balanced tree?	N 9	Yes
Post -order traversal	6 DHEBIJFC A	HI DJEBFGCA
Pre-order traversal	ABDGEHCFIJ	ABDHIEJ CFG
In-order traversal	GDISHEACIFU	HDI BUEAFCG

D

1. Determine postorder traversal, given the following:

b. Preorder = DBACEGF

2. How many nodes are there in a full binary tree of the following heights? The first one is done for you:

3. What formula describes the number of nodes in a juli binary tree of neight 11.

4. Give parse trees that corresponds to the following formulas:

5. Give three distinct binary search trees for the following data: 1 2 3 4 5 6 7. One of these tree must have minimum height and another must have maximum height.

6. Draw a picture of a max heap for the following data (binary trees): 0 1 2 3 4 5 6 7 8

7. Determine the tree produced by mystery (8), where mystery is a method in the BinaryNode class.

```
public BinaryNode mystery(int N) {
    BinaryNode result = null;
    if (N > 0)
        result = new BinaryNode(N, mystery(N/2), mystery(N/4));
    return result;
}
```

8. Complete/add the following **bold** functions in the following methods that are in the BinaryTree<T> class. Implementing these might necessitate adding methods to the BinaryNode<T> class.

public boolean isFullTree()
public boolean isBalancedTree()
public boolean isBST()