第二章部分习题参考答案与提示

1. 设 $E_1 \subset E_2 \subset \mathbb{R}$, 求证: $m^*(E_1) \leq m^*(E_2)$.

证明. 设开区间列 $\{I_n:n\geq 1\}$ 构成 E_2 的一个覆盖,则它也构成 E_1 的一个覆盖,从而 $m^*(E_1)\leq \sum\limits_{n=1}^\infty \ell(I_n)$. 由 $\{I_n:n\geq 1\}$ 的任意性可得 $m^*(E_1)\leq m^*(E_2)$.

提示: 无

2. 求证: $m^*(E) = \inf\{m(Q) : E \subset Q, Q$ 是开集}.

证明. 记 $\lambda = \inf\{m(Q): E \subset Q, Q$ 是开集}. 对任何开集 $Q, E \subset Q$, 有 $m^*(E) \leq m^*(Q) = m(Q)$, 所以, $m^*(E) \leq \lambda$. 因此, 当 $m^*(E) = \infty$ 时, 命题成立.

当 $m^*(E)$ < ∞ 时,对任何 ε > 0,存在开区间列 $\{I_k: k \geq 1\}$,使得 $E \subset \bigcup_{k=1}^{\infty} I_k$ 并且 $\sum_{k=1}^{\infty} \ell(I_k) \leq m^*(E) + \varepsilon$. 令 $Q = \bigcup_{k=1}^{\infty} I_k$,则 Q 是开集, $E \subset Q$, $m(Q) \leq \sum_{k=1}^{\infty} \ell(I_k) \leq m^*(E) + \varepsilon$. 因此, $\lambda \leq m^*(E) + \varepsilon$. 令 $\varepsilon \to 0$ 可得 $\lambda \leq m^*(E)$.

提示: 无

3. 设 $E \subset \mathbb{R}$, M > 0. 求证: $m^*(E) = \inf\{\sum_{n=1}^{\infty} \ell(I_n) : I_n 为 开区间, \ell(I_n) < M, E \subset \bigcup_{n=1}^{\infty} I_n\}$.

证明. 设 $\lambda = \inf\{\sum_{n=1}^{\infty} \ell(I_n) : I_n$ 为开区间, $\ell(I_n) < M, E \subset \bigcup_{n=1}^{\infty} I_n\}$. 则有 $m^*(E) \leq \lambda$. 若 $m^*(E) = \infty$, 则结论成立.

下设 $m^*(E) < \infty$. 对任何 $\varepsilon > 0$, 存在开区间列 $\{I_n: n \geq 1\}$, 使得 $E \subset \bigcup_{n=1}^{\infty} I_n$ 并且 $\sum_{n=1}^{\infty} \ell(I_n) \leq m^*(E) + \varepsilon$. 对任何 $n \geq 1$, 由于 $\ell(I_n) < \infty$, 所以存在有限多个区间 $I_n^{(k)}$, $1 \leq k \leq m_n$, 使得 $I_n \subset \bigcup_{k=1}^{m_n} I_n^{(k)}$, $\ell(I_n^{(k)}) < M$ 并且 $\sum_{k=1}^{m_n} \ell(I_n^{(k)}) < \ell(I_n) + \varepsilon/2^n$. 再从 $E \subset \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{m_n} I_n^{(k)}$ 可得

$$\lambda \leq \sum_{n=1}^{\infty} \sum_{k=1}^{m_n} \ell(I_n^{(k)}) \leq \sum_{n=1}^{\infty} \left(\ell(I_n) + \frac{\varepsilon}{2^n}\right) \leq m^*(E) + 2\varepsilon.$$

提示: 无

证明. 设区间列 $\{I_n:n\geq 1\}$ 是 $E_1\cup E_2$ 的一个开覆盖, 则 $\{I_n\cap G_i:n\geq 1\}$ 是 $E_i\cap G_i$ 的一个开覆盖,于是

$$m^{\star}(E_1) + m^{\star}(E_2) \le \sum_{n=1}^{\infty} (m^{\star}(I_n \cap G_1) + m^{\star}(I_n \cap G_2))$$

 $= \sum_{n=1}^{\infty} (m(I_n \cap G_1) + m(I_n \cap G_2))$
 $\le \sum_{n=1}^{\infty} \ell(I_n)$

由 $\{I_n: n \geq 1\}$ 的任意性, 我们有 $m^*(E_1) + m^*(E_2) \leq m^*(E_1 \cup E_2)$. 另一方面, 由外侧度的次可加性, $m^*(E_1 \cup E_2) \leq m^*(E_1) + m^*(E_2)$. 所以, $m^*(E_1 \cup E_2) = m^*(E_1) + m^*(E_2)$.

证明二:由己知, $E_1 \subset G_1$, $E_2 \subset G_1^c$,因为 G_1 可测,所以

 $m^{\bullet}(E_1 \cup E_2) \ge m^{\bullet}((E_1 \cup E_2) \cap G_1) + m^{\bullet}((E_1 \cup E_2) \cap G_1^{\epsilon}) = m^{\bullet}(E_1) + m^{\bullet}(E_2).$

而反向不等式显然成立,故 $m^{\bullet}(E_1 \cup E_2) = m^{\bullet}(E_1) + m^{\bullet}(E_2)$.

提示: 设区间列 $\{I_n: n \geq 1\}$ 是 $E_1 \cup E_2$ 的一个开覆盖, 证明 $m^*(E_1) + m^*(E_2) \leq \sum_{i=1}^n \ell(I_n)$.

5. $\not\equiv d(E_1, E_2) = \inf\{|x_1 - x_2| : x_1 \in E_1, x_2 \in E_2\} > 0, \, \, \& \not\equiv m^*(E_1 \cup E_2) = m^*(E_1) + m^*(E_2).$

证明. 令 $G_1=\{x:d(x,E_1)< d(x,E_2)\},\ G_2=\{x:d(x,E_2)< d(x,E_1)\}.$ 则 G_1 和 G_2 都是开集并且 $E_1\subset G_1,\ E_2\subset G_2$. 由习题 2.4 可知结论成立.

提示: 用习题 2.4 结论.

6. 设 $m^{\bullet}(A) < \infty$, $m^{\bullet}(B) < \infty$. 基证: $|m^{\bullet}(A) - m^{\bullet}(B)| \le m^{\bullet}(A \triangle B)$.

证明. 因为 $A \subset (A \triangle B) \cup B$, 所以 $m^*(A) \le m^*(B) + m^*(A \triangle B)$. 类似可证 $m^*(B) \le m^*(A) + m^*(A \triangle B)$. 故结论成立.

提示: 无

7. 例. 设 $\{E_n\}_{n\geq 1}$ 单增, 求证 $m^*(\lim_{n\to\infty} E_n) = \lim_{n\to\infty} m^*(E_n)$.

证明. 若有某 n 使 $m^*(E_n)=\infty$,则命题显然成立. 故不妨设对一切 $n\geq 1$ 有 $m^*(E_n)<\infty$. 于是有开集 G_n 使 $E_n\subset G_n$ 并且 $m(G_n)< m^*(E_n)+\varepsilon$.

20

第二章部分习题参考答案与提示

由 $\{E_n\}$ 的单增性, $E_n\subset \bigcap_{s=n}^\infty G_s\stackrel{\triangle}{=}P_n$, 其中 P_n 可测, 单增且 $m(P_n)< m^*(E_n)+arepsilon$. 从而

$$\begin{split} m^{\bullet}(\lim_{n \to \infty} E_n) &= m^{\bullet}(\bigcup_{n=1}^{\infty} E_n) \leq m(\bigcup_{n=1}^{\infty} P_n) \\ &= \lim_{n \to \infty} m(P_n) \leq \lim_{n \to \infty} m^{\bullet}(E_n) + \varepsilon. \end{split}$$

由此易知所要证等式成立.

证明.

提示: 无

- 8. 设对每一 $x \in I = (a,b), A_x$ 是一个实数集, 而且当 $x_1 < x_2$ 时 $A_{x_1} \subset A_{x_2}$. 求证
 - (i) $m^{\bullet}(\bigcup_{x\in I} A_x) = \lim_{x\to x} m^{\bullet}(A_x);$
 - (ii) $m^{\bullet}(\bigcap_{x\in I} A_x) \leq \lim_{x \to \infty} m^{\bullet}(A_x)$;
- (iii) 当 A_x 可測时 $m(\bigcup_{x\in I}A_x)=\lim_{x\to b^-}m(A_x)$; 此外当有某个 A_x 測度有限时, $m(\bigcap_{x\in I}A_x)=\lim_{x\to a^+}m(A_x)$.

证明

- (i) 取单增数列 x_n 使得 $x_n \to b$. 则 $\bigcup_{x \in I} A_x = \bigcup_{n=1}^{\infty} A_{x_n}$. $\lim_{x \to b^-} m^*(A_x) = \lim_{n \to \infty} m^*(A_{x_n})$. 由习题 2.7 可知结论成立.
- (ii) 对任何 $y \in (a,b)$, $\bigcap_{x \in I} A_x \subset m^*(A_y)$, 所以 $m^*(\bigcap_{x \in I} A_x) \le m^*(A_y)$. 于是 $m^*(\bigcap_{x \in I} A_x) \le \min_{x \in I} m^*(A_x)$.
- (iii) 任取单减实数列 x_n ,使得 $x_n \to a$,则 $\bigcap_{x \in I} A_x = \bigcap_{n=1}^\infty A_{x_n}$ 是可測集并且 $\lim_{x \to a+0} m(A_x) = \lim_{n \to \infty} m(A_{x_n})$. 由测度的性质即知结论成立. 提示: 无
- 9. 设 $E \subset \mathbf{R}, 0 < m^*(E) < \infty$, 求证 $f(x) = m^*((-\infty, x) \cap E)$ 是 x 的连续函数. 由此证明 $I = \{m^*(F): F \subset E\}$ 是一个有界闭区间.

证明. 对任何 x < y, $(-\infty, y) \cap E \subset (((-\infty, x) \cap E) \cup ([x, y) \cap E))$. 由外测度的性质, $f(y) \le f(x) + m^*([x, y) \cap E) \le f(x) + y - x$. 所以, $0 \le f(y) - f(x) \le y - x$. 因此, $f(x) \in \mathbb{R}$ 上一致连续.

为证明 $I=\{m^*(F): F\subset E\}$ 是一个有界闭区间,只需证明 $\lim_{x\to -\infty}f(x)=0$ 且 $\lim_{x\to \infty}f(x)=m^*(E)$.

因为 f(x) 在 R 上单调递增. 所以 $\lim_{n\to\infty} f(n) = \lim_{x\to +\infty} f(x)$. 由习题 2.7. $\lim_{n\to\infty} f(n) = m^*(E)$. 所以, $\lim_{n\to +\infty} f(x) = m^*(E)$.

另一方面,由于 $m^*(E)<\infty$. 所以存在开集 G. 使得 $E\subset G$ 并且 $m(G)<\infty$. 因此,对整数 n, $f(n)=m^*((-\infty,n)\cap E)\leq m^*((-\infty,n)\cap G)=m((-\infty,n)\cap G)$

G). 由測度的性质、 $\lim_{n \to \infty} f(n) = 0$

提示 用习题 2.7

10/设 {E_n}_{n≥1} 是可测集列.

mlunax)

(i) $m(\lim_{n\to\infty} E_n) \leq \lim_{n\to\infty} m(E_n)$:

(ii) 若有 k0 使 m(Uk=k, Ek) < ∞, 未证

 $m(\overline{\lim}_{n\to\infty} E_n) \ge \overline{\lim}_{n\to\infty} m(E_n)$;

(iii) 若 $m(\bigcup_{k=1}^{\infty} E_k) < \infty$ 且 $\lim_{n \to \infty} E_n$ 存在, 未证

Lim En = U NEK

 $m(\lim_{n\to\infty} E_n) = \lim_{n\to\infty} m(E_n).$

是我的干地说

 $m(\bigcap_{k \geqslant n} E_k) \leq m(E_k)$

AN.

由于 $\bigcap_{k=n}^{n} E_k \subset E_n$,所以 $m(\underline{\lim} E_n) = \underline{\lim}_{n \to \infty} m(\bigcap_{k=n}^{n} E_k)$ $\underline{\lim}_{n \to \infty} m(E_n)$.

因为 $\bigcup_{k=n}^{\infty} E_k$ 关于 $(n + \overline{\mu})$ 并且存在 k_0 使得 $\bigcup_{k=k_0}^{\infty} E_k$ 的测度有限 $(n + \overline{\mu})$ 所以 $m(\underline{\lim}_{n \to \infty} E_n) = \underline{\lim}_{n \to \infty} m(\bigcup_{k=n}^{\infty} E_k)$. 又因为 $\bigcup_{k=n}^{\infty} E_k \supset E_n$,所以 $\underline{\lim}_{n \to \infty} m(\bigcup_{k=n}^{\infty} E_k) \geq \underline{\lim}_{n \to \infty} m(E_n)$.

(iii) 由 (i)(ii) 可得

Enc UEx

提示 无

11. 设 A 可測并且 $m(A \triangle B) = 0$, 永证 B 可測

证明. 因为 $A\triangle B=(A-B)\cup(B-A)$, 所以 m(A-B)=m(B-A)=0. 因此, $A\cap B^c$ 和 $B\cap A^c$ 都是可測集. 又 $A=(A\cap B)\cup(A\cap B^c)$, 所以 $A\cap B$ 可測. 于是 $B=(B\cap A)\cup(B\cap A^c)$ 可测.

提示:无

12. 设 $0 < m(E) < \infty$. 求证有測度皆为 m(E) 的开集列 $\{G_n\}_{n \geq 1}$, 使 $m(E \triangle G_n) \rightarrow 0 (n \rightarrow \infty)$.

证明. 对任何 $n \ge 1$, 取开集 $H_n \supset E$ 使得 $m(H_n - E) < \frac{1}{2n}$. 由习题 2.9. 存在 H_n 的开子集 G_n 使得 $m(G_n) = m(E)$. 此时, $m(G_n - E) + m(E - G_n) \le m(H_n - E) + m(H_n - G_n) \le 1/n$. 所以结论成立.

提示 无

22

第二章部分习题参考答案与提示

(13. 设 E_1 和 E_2 都可測, 本证: $m(E_1) + m(E_2) = m(E_1 \cup E_2) + m(E_1 \cap E_2)$.

证明. 注意到 $E_1 = (E_1 \cap E_2) \cup (E_1 \cap E_2), E_2 = (E_2 \cap E_1) \cup (E_2 \cap E_1),$ 我们有

 $m(E_1) + m(E_2) = 2m(E_1 \cap E_2) + m(E_1 \cap E_2^c) + m(E_2 \cap E_1^c).$

又 $E_1 \cup E_2 = (E_1 \cap E_2^c) \cup (E_1 \cap E_2) \cup (E_2 \cap E_1^c)$, 所以,

 $m(E_1 \cup E_2) = m(E_1 \cap E_2^c) + m(E_1 \cap E_2) + m(E_2 \cap E_1^c).$

由此可知结论成立.

提示: 无

★证: R 中可测集全体具有基数 2°.

证明. [0,1] 中 Cantor 完备集 C 具有连续统势并且测度为零. 由于 C 的任何子集都可测, 所以可测集全体的基数不小于 2^c , 从而等于 2^c .

提示。无

,1

15. (i) 若 F 是 [0,1] 中闭集且 m(F) = 1. 试问是否一定 F = [0,1]?

(ii) 若 G 是 (0,1) 中开集且 m(G) = 1. 试问是否一定 G = (0,1)?

证明. (i). 若存在 $x \in [0,1] - F$, 则存在 $\varepsilon > 0$ 使得 $V(x,\varepsilon) \cap F = \emptyset$ 并且 $m(V(x,\varepsilon) \cap [0,1]) > 0$, 与 m(F) = 1 矛盾.

(ii). 不一定. 见 Cantor 完备集的构造.

提示: 无

16. 若 $A \cup B$ 和 A 都可測, 试问 B 是否一定可測? 若其中 m(A) = 0, 结论如何? 若 $A \cap B = \emptyset$, 结论见如何?

证明. (i). 不一定, 如 A = [0,1], B 为 [0,1] 内的不可測集, 则 $A \cup B$ 可測.

(ii). 若 m(A) = 0, 则 B = A∪B - (A - B) 可測. 若 A∩B = Ø, 则 B 可
N.

示无 住意 极

17. 设 $E \subset \mathbf{R}, m(E) > 0, 0 < \alpha < 1$. 本证有并区间 I 使 $m(I \cap E) > \alpha \cdot m(I)$.

证明. 不妨设 $m(E) < \infty$. 假设对任何开区间 $I, m(I \cap E) \le \alpha \cdot m(I)$. 任 取一列开区间 $\{I_n: n \ge 1\}$, 使得 $E \subset \bigcup_{n=1}^{\infty} I_n$. 则有 $m^{\bullet}(E) = m^{\bullet}(\bigcup_{n=1}^{\infty} (E \cap I_n)) \le \sum_{n=1}^{\infty} m^{\bullet}(I_n \cap E) \le \sum_{n=1}^{\infty} \alpha \cdot m(I_n)$. 对 $\{I_n: n \ge 1\}$ 取下确界,得 $m^{\bullet}(E) \le \alpha m^{\bullet}(E)$. 所以 $m^{\bullet}(E) = 0$,矛盾.

m(I) X

提示: 任取一列开区间 $\{I_n:n\geq 1\}$. 使得 $E\subset \bigcup_{n=1}^\infty I_n.$ 则有 $m^\bullet(E)<$ $\sum_{n=1}^{\infty} m^*(I_n \cap E)$

(18. 设可测集 $E\subset [0,1]$. 若有 $\delta>0$. 使对 [0,1] 中任何区间 (a,b) 有 $m(E\cap (a,b))>$ $\delta(b-a)$. \star if m(E)=1

证明. 若 m(E) < 1, 则 $m(E^c) > 0$. 此时存在单减开集列 $\{G_n : n \ge 1\}$ 体 得 $E^c \subset G_n$, $m(G_n) \to m(E^c)$. 于是 $m(G_n - E^c) = \underline{m(E \cap G_n)} \ge \delta m(G_n) > 0$ $\delta m(E^c) > 0$. 令 $n \to \infty$. 得 $0 \ge \delta m(E^c)$. 矛盾.

建明二. 若 m(E) < 1. 则 $m(E^c) > 0$. 于是由习题 2.17、存在 [0,1] 中区 间 I, 使得 $m(I \cap E^c) > (1 - \delta)m(I)$. 从而 $m(I) = m(I \cap E) + m(I \cap E^c) > 0$ $\delta m(I) + (1 - \delta)m(I) = m(I)$, 矛盾.

使 $[a,b]-igcup_{k=1}^n E_{x_k}$ 的測度小子 ε , 其中 $E_{x_k}=\{x+x_k:x\in E\}$.

ne(I)

证明. 不妨设 $0<\varepsilon< b-a$,由习题 2.17,存在开区间 I,使得 $\ell(I)<\varepsilon/2$ 并 且 $m(E\cap I)> \alpha\cdot \ell(I)$, 其中 $\alpha=\frac{b-a-\varepsilon}{b-a-\varepsilon/2}<1$. 取 [a,b] 的一个分划

$$a = y_0 < y_1 < \cdots < y_n < y_{n+1} =$$

其中 $y_k-y_{k-1}=\ell(I),\ 1\leq k\leq n,\ y_{n+1}-y_n\leq \ell(I)<\varepsilon/2.$ 取 x_k 使得 I 关于 $y_n - a > b^{-}a - \frac{2}{2}$ 的平移 I_{x_k} 为 (y_{k-1}, y_k) . 则

$$m\Big(\bigcup_{k=1}^{n}(E_{x_{k}}\cap I_{x_{k}})\Big) = \sum_{k=1}^{n}m(E_{x_{k}}\cap I_{x_{k}}) = n \cdot m(E\cap I)$$

$$\geq n\alpha \cdot \ell(I) = \alpha(y_{n} - a)$$

$$> \alpha(b - a - \varepsilon/2) = b - a - \varepsilon.$$

又 $[a,b] - \bigcup_{k=1}^n E_{x_k} \subset [a,b] - \bigcup_{k=1}^n (E_{x_k} \cap I_{x_k})$, 所以其測度小于 ε . 提示: 同证明.

20. 设 {E_k}_{k≥1} 是 [0,1] 中測度皆为 1 的可測集列, 求证 $/m(\bigcap_{k=1}^{\infty} E_k) = 1.$

证明. $m([0,1]-\bigcap_{k=1}^{\infty}E_k)=m(\bigcup_{k=1}^{\infty}([0,1]-E_k))\leq \sum_{k=1}^{\infty}m([0,1]-E_k)=0.$

提示无

m(A-B) = m(A)-m(B)

β≤A 学霸助手[xuebazhushou.com]-课后答案 | 期末试卷 | 复习提纲

①写性色 ②序号按题目.

第二章部分习题参考答案与提示

21. 设 $\{E_k\}_{k\geq 1}$ 是 [0,1] 中的可测集列, 使得 $m(E_k)\to 1 (k\to\infty)$. 求证对任何 $0 < \lambda < 1$, 有子列 $\{E_{k_n}\}_{n \geq 1}$ 使 $m(\bigcap_{n=1}^{\infty} E_{k_n}) > \lambda$.

证明. 因为 $m(E_k) \to 1$, 所以 $m([0,1] - E_k) \to 0$. 从而存在子列 $\{E_{k_n} : n \ge 1\}$ 1}, 使得 $m(E_n^c) < \frac{1-\lambda}{2n}, n \ge 1$. 于是

$$m\left(\left(\bigcap_{n=1}^{\infty}E_{k_n}\right)^c\right)=m\left(\bigcup_{n=1}^{\infty}E_{k_n}^c\right)\leq \sum_{n=1}^{\infty}m(E_{k_n}^c)<\sum_{n=1}^{\infty}\frac{1-\lambda}{2^n}=1-\lambda.$$

从而 $m(\bigcap_{n=1}^{\infty}, E_{k_n}) > \lambda$.

提示: 无

22. 设 $\{E_k\}_{1\leq k\leq n}$ 是 [0,1] 中的 n 个可测集,满足 $\sum\limits_{}^{n}m(E_k)>n-1$. 永证 $m(\bigcap_{k=1}^n E_k) > 0.$

证明. 因为 $m((\bigcap_{k=1}^{n} E_k)^c) = m(\bigcup_{k=1}^{n} E_k^c) \le \sum_{k=1}^{n} m(E_k^c) = \sum_{k=1}^{n} (1 - \sum_{k=1}^{n} E_k^c)$ $m(E_k) = n - \sum_{k=1}^n m(E_k) < 1$, 所以 $m(\bigcap_{k=1}^n E_k) > 0$.

提示: 无

23. 设 $\{I_{\lambda}\}_{\lambda\in\Lambda}$ 是一族区间, 求证 $E=\bigcup_{\lambda\in\Lambda}I_{\lambda}$ 可测

证明. 把区间分为四类: 开区间、左开右闭区间、左闭右开区间、闭区间. 分 别证明每一类区间的并为可测集. 注意: 此处要求闭区间不能是 (退化的) 一个 点.

例如,设 I_{λ} 是一族闭区间. 对任何 $x \in E := \bigcup_{\lambda \in \Lambda} I_{\lambda}$, 令 $a_x = \inf\{a : A \in E := \bigcup_{\lambda \in \Lambda} I_{\lambda} \}$ $[a,x] \subset E$ }, $b_x = \sup\{b: [x,b] \subset E\}$, 则 $a_x < b_x$ 并且 $(a_x,b_x) \subset E$. 对于 $x_1 \neq x_2$, (a_{x_1}, b_{x_1}) 与 (a_{x_2}, b_{x_2}) 或者不相交, 或者相同. 因此, 这些开区间的端点 集 F 是至多可数集,从而 $E = \bigcup_{x \in E} (a_x, b_x) \cup (E \cap F)$ 是可测集。

(24) 沒 m*(E) < ∞. 试证下列三件事等价:

FREE T m'(E-Fn) < n

(i) E 可测:

(ii) 存在 E 的间子集列 {Fn} 使 m(Fn) → m*(E);

(i) => (ii) (2) 19 2.5.1

(iii) 存在 E 的可測子集列 $\{E_n\}$ 使 $m(E_n) \rightarrow m^*(E)$.

证明. 只证 (iii) ⇒ (i). 设 {E_n: n ≥ 1} 为一列可测集, E_n ⊂ E 并且 $m(E_n) \to m^{\bullet}(E)$. 因为 E_n 可测, 所以 $m^{\bullet}(E) = m^{\bullet}(E \cap E_n) + m^{\bullet}(E \cap E_n^c) =$ $m^*(E_n) + m^*(E - E_n)$. 因此, $m^*(E - E_n) \to 0$. 于是 $m^*(E - \bigcup_{n \ge 1} E_n) \le$ $m^{\bullet}(E-E_n) \to 0$. 所以 $(E-\bigcup_{n\geq 1} E_n$ 是零測集.)从而 E 可测.

提示: 同证明

总结结果方法 25 (ii) →(iii) 星然

25. 设 $m^{\bullet}(E) < \infty$. 未证有 G_{δ} 集 G, 使 $G \supset E$, $m^{\bullet}(E) = m(G)$. 证明. 因为 $m^{\bullet}(E) < \infty$. 所以存在开集列 $\{G_n \cap n \geq 1\}$. 使得 $G_n \supset E$ 并且 $m^{\bullet}(G_n) \to m^{\bullet}(E)$. 令 $G = \bigcap_{n \geq 1} G_n$, 则 $E \subset G$ 并且 $m^{\bullet}(E) \leq m^{\bullet}(\bigcap_{n \geq 1} G_n) =$ $m^{\bullet}(G) \leq m(G_n) \to m^{\bullet}(E)$

26. 设 $A \cup B$ 可測且 $m(A \cup B) = m^*(A) + m^*(B) < \infty$. 未证 A 和 B 都可測

证明. 取 G_δ 集 H 使 $H\supset B$ 并且 $m(H)=m^{\bullet}(B)$ 则 $E:=(A\cup B)\cap H^c$ ECA

しなう20 是.A 的可測子集. 因为

 $m^{\bullet}(B) \leq m((A \cup B) \cap H) \leq m(H) = m^{\bullet}(B),$ 所以 $m^{\bullet}(B) = m((A \cup B) \cap H)$. 再从

 $m^{\bullet}(A)+m^{\bullet}(B)=m(A\cup B)=m((A\cup B)\cap H^c)+m((A\cup B)\cap H)$

可得 $m^*(A) = m((A \cup B) \cap H^c)$. \checkmark = m(E)

n 书定理 2.5.1

对任何 $\varepsilon > 0$, 存在开集 $G \supset A$, 使得 $m(G) < m^*(A) + \varepsilon$; 存在闭集 $F \subset F$ 使得 $m(E-F)<\varepsilon$. 于是. $F\subset E\subset A\subset G$ 并且 $m(G)< m^{\bullet}(A)+\varepsilon=m(E)+\varepsilon$ $\varepsilon = m(E-F) + m(F) + \varepsilon.$ 因此, $m(G-F) = m(G) - m(F) \le m(E-F) + \varepsilon < 2\varepsilon$. 所以 A 可測. 类似可证 B 可測

/提示:同证明.

27 / 构造不相交的集 A 和 B 使 $m^{\bullet}(A \bigcup B) < m^{\bullet}(A) + m^{\bullet}(B)$.

证明. 取 [0,1] 中的不可測集 A, 令 B=[0,1]-A. 由习题 2.26 可知 AUB = [0,1] $m^{\bullet}(A \bigcup B) < m^{\bullet}(A) + m^{\bullet}(B).$

28. 设 E ⊂ R, m(E) > 0. 令

 $E^{\bullet} = \{x \in E : \ \text{对任何} \delta > 0 \\ \text{有} \\ m(E \bigcap (x - \delta, x + \delta)) > 0 \}.$

求证 E^{\bullet} 可测且 $m(E^{\bullet}) = m(E)$.

证明. 对每一 $x \in E - E^*$, 存在 $\delta_x > 0$ 使得 $m(E \cap (x \to \delta_x, x + \delta_x)) = 0$, 从 而存在有理数 r_x , R_x 使得 $r_x < x < R_x$ 并且 $m(E \cap (r_x, R_x)) = 0$. 因为端点为 有理数的开区间至多可数,所以 $E-E^*\subset\bigcup\{E\cap(r_x,R_x):x\in E-E^*\}$ 是\$ 測集. 从而 $E^{\bullet} = E - (E - E^{\bullet})$ 可测并且 $m(E^{\bullet}) = m(E)$.

提示: 无

x- 8x< yx < X < Rx < X+ 8x

第二章部分习题参考答案与提示

29. 设 $E \subset \mathbb{R}$ 可测, a 和 b 是两个实数. 求证 $F = \{ax + b : x \in E\}$ 可测并且 $m(F) = |a| \cdot m(E)$

证明. 不妨设 $a \neq 0$. 设 $A \subset \mathbb{R}$. 设 $\{I_k : k \geq 1\}$ 是一列开区间, $A \subset \bigcup_{k=1}^{\infty} I_k$, 则 $aA \subset \bigcup_{k=1}^{\infty} aI_k$. 于是

$$m^*(aA) \le \sum_{k=1}^{\infty} \ell(aI_k) = |a| \sum_{k=1}^{\infty} \ell(I_k).$$

所以.

$$m^{\bullet}(aA) \leq |a|m^{\bullet}(A), \quad \forall a \neq 0.$$

以 1A代 A,得

$$m^{\bullet}(A) = m^{\bullet}(\frac{1}{a} \cdot aE) \leq \frac{1}{|a|}m^{\bullet}(aA).$$

因此.

$$m^*(aA) \ge |a|m^*(A)$$
.

故 $m^*(aA) = |a|m^*(A)$.

因为 E 可测, 所以对任何 $A \subset \mathbb{R}$,

$$m^*(\frac{1}{a}A) \geq m^*((\frac{1}{a}A) \cap E) + m^*((\frac{1}{a}A) \cap E^c)$$

从而

$$m^*(A) = am^*(\frac{1}{a}A)$$

$$\geq am^*((\frac{1}{a}A) \cap E) + am^*((\frac{1}{a}A) \cap E^c)$$

$$= m^*(A \cap aE) + am^*(A \cap (aE)^c).$$

所以 aE 可测且 m(aE) = am(E). 再从测度的平移不变性可知结论成立,

证明二. 设 a>0. 若 E=(c,d) 为开区间,则 aE=(ac,ad) 可测并且 m(aE) = ad - ac = am(E). 这样当 E 为开集时结论成立. 对于一般的可测集 E 以及 $\varepsilon > 0$, 存在闭集 F 及开集 G 使得 $m(G - F) < \varepsilon/a$. 此时 aF 为闭集, aG 为开集, $aF \subset aE \subset aG$, G - F 为开集, 故 m(aG - aF) = m(a(G - F)) = $am(G-F) < \varepsilon$. 所以, aE 可測.

当 $m(E) = \infty$ 时, $m(G) = \infty$, $m(aG) = am(G) = \infty$, 从而 $m(aF) = \infty$, 因此 $m(aE) = \infty$.

当 $m(E) < \infty$ 时, $0 < m(aG) - m(aE) < m(a(G - F)) < \varepsilon$, $0 < am(G) - m(aE) < m(a(G - F)) < \varepsilon$ $am(E) < am(G) - am(F) = m(a(G - F)) < \varepsilon$. 又 m(aG) = am(G), 所以 $|m(aE) - am(E)| < \varepsilon$. 由 ε 的任意性, m(aE) = am(E).

30. 设可测集 $E\subset [0,\infty), \lambda>0$. 求证 E^λ 可测, 其中 $E^\lambda=\{x^\lambda:x\in E\}$.

证明. 先设 $E \subset (a,b)$, $0 < a < b < \infty$.

若 $E=\bigcup_{n=1}^\infty (a_n,b_n)$ 为开集、则 $E^\lambda=\bigcup_{n=1}^\infty (a_n^\lambda,b_n^\lambda)$ 为开集、从而可测. 老 E 为闭集,则 E^{λ} 也是闭集,从而可测

对于一般情形, 任取 $\varepsilon > 0$, 存在 (a,b) 中的开集 G 和闭集 F, 使 $F \subset E \subset G$ 并且 $m(G-F) < \varepsilon$. 于是 $F^{\lambda} \subset E^{\lambda} \subset G^{\lambda}$, F^{λ} 为闭集, G^{λ} 为开集, 表 $G-F=\bigcup_{n=1}^{\infty}(a_n,b_n), \ \ \emptyset \ \ G^{\lambda}-F^{\lambda}=\bigcup_{n=1}^{\infty}(a_n^{\lambda},b_n^{\lambda}). \ \ \ \ \ \ \ b_n^{\lambda}-a_n^{\lambda}=\lambda\xi^{\lambda-1}(b_n-a_n)<0$ $M(b_n - a_n)$, 其中 M 只与 a, b 有关. 因此, $m(G^{\lambda} - F^{\lambda}) \le M \cdot m(G - F) < M_F$ 所以 E^λ 可测.

对于一般的集合 $E,\,(E\cap(1/n,n))^\lambda$ 可测, 对 $n\geq 1$ 求并即可得到 E^λ 可测 提示: 先考虑 E 为有限开区间的情形

31. 何. 若 $E \subset \mathbf{R}$, m(E) > 0, 未证(可) $\{x - y : x, y \in E\}$ 的内点.

证明. 由题 2.17, 存在开区间 (a,b) 使 $m((a,b) \cap E) > \frac{3}{4}(b-a)$. 今 F = $(a,b) \cap E$. 可证 0 是 $H = \{x-y: x,y \in F\}$ 的内点. 因为不然就有 $z_n \notin H$ 他 $z_n \to 0$. 令 $F_n = \{x+z_n: x \in F\}$, 则 F_n 可测, $m(F_n) = m(F) > \frac{3}{4}(b-a)$, 病 且对一切 $n \ge 1$ 有 $F_n \cap F = \emptyset$. 于是 $m(F_n \cup F) > \frac{6}{4}(b-a)$. 但对任何 $\varepsilon > 0$. 当 n 充分大时 $F_n \cup F \subset (a - \varepsilon, b + \varepsilon)$. 由此得矛盾.

证明.

提示: 无

32. $A \notin m(A) > 0, m(B) > 0$. $A : \{a - b : a \in A, b \in B\} \not A \{a + b : a \in A, b \in B\}$ 都有内点

证明. 先证明存在 $x \in \mathbb{R}$, 使得 $A \cap B_x$ 是正测集. $1 = (A \cap B_x)$

由习题 2.17, 存在 $0 < \alpha < 1$ 以及区间 I = [a, b] 使得 $m(A \cap I) > \alpha(b-a)$. 由习题 2.19, 存在有限个实数 x_1, \ldots, x_n , 使得 $m(I - \bigcup_{k=1}^n B_{x_k}) < \alpha(b-a)$. 因 此, $m(\bigcup_{k=1}^{n} B_{x_k} \cap I) + m(A \cap I) > b - a$. 故 $m(\bigcup_{k=1}^{n} B_{x_k} \cap A) > 0$. 从而存在某

因为 $\{a-b: a \in A, b \in B\} \supset \{a'-b'+x_k: a', b' \in A \cap B_{x_k}\}$, 由习题 2.31, x_k 是 $\{a-b: a \in A, b \in B\}$ 的内点. 类似可证 $\{a+b: a \in A, b \in B\}$ 存在内点. 提示: 同证明.

33. 设 m(E) > 0, 并且对任何 $x, y \in E$, $(x + y)/2 \in E$, 证明: E 有内点.

第二章部分习题参考答案与提示

循环矩阵

证明. 令 $E_1 = \frac{1}{2}E$. 由习题 2.32, $E \supset \{x + y : x, y \in E_1\}$ 含有内点.

 $n \times 1$ $n \times 1$ $n \times 1$ $n \times 2$ $n \times 3$ $n \times 3$ $n \times 4$ $n \times$ $\max\{x_n\} = 9$ }. $\#iE\ m(A_9) = 1$. 循环

证明. 对 n > 1. 今

 $B_n = \{x \in [0,1]: x_n = 9, 0 \le x_k \le 8, 1 \le k \le n-1\}.$

固定 n 以及 n-1 个小于 9 的非负整数 x_1, \ldots, x_{n-1} , 则前 n 位小数分别是 $x_1, \ldots, x_{n-1}, 9$ 的数 x 构成一个区间 $\left[\sum_{k=1}^{n-1} \frac{x_k}{10k} + \frac{9}{10n}, \sum_{k=1}^{n-1} \frac{x_k}{10k} + \frac{10}{10n}\right]$, 它的长 度为 $\frac{1}{100}$. 从而 $m(B_n) = 9^{n-1}/10^n$. 因为 $B_n \cap B_{n+1}$ 为有限集并且当 $k \ge 2$ 时 $B_n \cap B_{n+k} = \emptyset$, 由 $A_9 = \bigcup_{n \ge 1} B_n$ 可得

11

11

$$m(A_9) = \sum_{n=1}^{\infty} m(B_n) = \sum_{n=1}^{\infty} \frac{9^{n-1}}{10^n} = 1.$$

12345

提示: 同证明.

35. 在題 2.34 中, 若 $A = \{x \in (0,1) : \{x_n\} \$ 中只有有限个 $9\}$, 求证 m(A) = 0.

证明. 由习题 2.34, $\{x \in (0,1) : \max\{x_n\} < 9\}$ 是零測集.

任意固定 n 个不超过 9 的非负整数 $y_1, ..., y_n$. 令 $B_n = \{x \in [0, 1] : x_k =$ $y_k, 1 \le k \le n, x_k < 9, k \ge n+1$. $10^n B_n - \sum_{k=1}^n 10^{n-k} x_k = \{x \in (0,1) :$ $\max\{x_k\} < 9\}$ 是零測集, 从而 B_n 是零測集, 所以 $\{x \in [0,1]: x_k < 9, k > n+1\}$ 是零測集. 故 A 是零測集.

证明. 与 [0,1] 中不可測集的构造类似.

提示: 无

Tite

37. 追 F 是 [0,1] 中不可測集. 求证有 $0<\varepsilon<1$, 使对 [0,1] 中任何满足 $m(E)\geq\varepsilon$ 的可測集 E,FNE 也是不可測集. 但是 O<ECD , 日:·· YM星E ... FNE FDE

证明. 反证. 设对任何 $n \ge 1$, 存在可测集 $E_n \subset [0,1]$ 使得 $m(E_n) > 1 - 1/n$ 并且 $F \cap E_n$ 可测. 从而 $E = \bigcup_{n \geq 1} E_n$ 可测并且 m(E) = 1. 此时 $\bigcup_{n \geq 1} (F \cap E_n) = 1$ $F \cap E$ 可測. 由于 $F \cap E^c = F \cap ([0,1] - E)$ 是零測集, 所以 $F = (F \cap E) \cup (F \cap E^c)$ 可测、矛盾.

提示: 同证明.

29

(38). 设 f(x) 定义在 R 上,并且对任何可测集 E, f(E) 可测. 求证对任何零测集 E. (E) 也是本测集.

零測集并且 m(f(E)) > 0, 则 f(E) 有不可測子集 F. 从而有 E 的子集 E^* 使得 $F = f(E^*)$. 但 E^* 为零測集, 可测, 而 $f(E^*) = F$ 不可測, 矛

提示: 同证明

(39. 设 f(x) 在 R 上连续, 水证为使 f 把任何可测集变为可测集, 充要条件是 f 把 证明. 必要性由习题 2.38 可得. 利用工家公民将答案一闭案 任何零測集变为零測集.

下证充分性. 设 E 是可测集. 若 F 是有界闭集, 则 f(F) 是闭集, 可测. 若 F 是无界闭集, 则 $f(F) = \bigcup_{n \geq 1} f(F \cap [-n, n])$ 可测. 因此对任何闭集 F, f(F)可测. 从而, 对任何 Fa 集 F. f(F) 可测.

因为 E 可测, 所以存在 F_a 集 F, 使得 $F \subset E$ 并且 m(E - F) = 0. 此时 f(E-F) 是零測集, 从而 $f(E)=f(E-F)\cup f(F)$ 可測.

提示: 同证明

(40) 设 f(x) 在 R 上连续可微且 f'(x) > 0. 求证当 E 可测时, $f^{-1}(E)$ 也可测.

证明. 此时 f 严格单增, 故 $g(y) = f^{-1}(y)$ 在 $I := (f(-\infty), f(+\infty))$ 上有定 义, 并且是严格单增可微函数, 此外, 对任何 $u \in I$.

$$g'(y) = \frac{1}{f'(x)}, \qquad y = f(x).$$

因为 f' 连续且大于 0, 所以 g(y) 在任何有界区间上的导函数有界) 由习题 2.39, 为证结论成立, 只需证明 g 把零测集映射到零测集, 而这又只需证明 g 把有界零 测集映射到零测集.

设 E 是有界区间 (a,b) 中的零測集, 令 $M = \max_{x \in [a,b]} |g'(x)|$. 此时存在开 集 $G = \bigcup_{n \geq 1} (a_n, b_n) \subset (a, b)$ 使得 $E \subset G$, $m(G) = \sum_{n \geq 1} (b_n - a_n) < \varepsilon/M$. 注意 到 $g((a_n,b_n))$ 是一个区间, 记为 I_n . 对 (a_n,b_n) 中任何两点 x,y, $|g(x)-g(y)| \le$ M|x-y|. 因此 $m(I_n) \leq M(b_n-a_n)$. 于是

$$m(g(E)) \leq m(g(G)) = m(\bigcup_{n \geq 1} g((a_n,b_n))) \leq \sum_{n \geq 1} m(I_n) \leq M \cdot m(G) < \varepsilon.$$

 $\Leftrightarrow \varepsilon \to 0$, 得到 m(g(E)) = 0.

提示: 同证明.

第二章部分习题参考答案与提示

41. 例. 设 $E \subset [a,b]$ 可测, $\{I_k\}_{1 \le k \le n}$ 是 [a,b] 中 n 个开区间, 并且 $m(I_k \cap E) \ge$ $\frac{2}{3}m(I_k), 1 \le k \le n. \text{ $\not = 1$ } m(E \cap (\bigcup_{k=1}^n I_k)) \ge \frac{1}{3}m(\bigcup_{k=1}^n I_k).$

证明. 不失一般性, 设 $I_{k} = (a_{k}, b_{k})$ 满足下列三条件; (i) $a_{1} < a_{2} < \cdots < a_{n}$; (ii) $\bigcup_{k=1}^{n} I_k = (a_1, b_n)$; (iii) 对任何 1 < k < n, $\bigcup_{s \neq k} I_s$ 不是开区间.

此时 I_1 仅与 I_2 有非空交、 I_n 仅与 I_{n-1} 有非空交、而对任何 1 < k < n, I_k 仅与 I_{k-1} 及 I_{k+1} 有非空交. 下面对 n=3 来证. 但其证法有一般性. 此时

$$I_1 = (I_1 - I_2) \bigcup (I_1 \bigcap I_2) \stackrel{\triangle}{=} A_1 \bigcup A_2,$$

$$I_2 = (I_1 \bigcap I_2) \bigcup (I_2 - I_1 - I_3) \bigcup (I_2 \bigcap I_3) \stackrel{\triangle}{=} A_2 \bigcup A_3 \bigcup A_4,$$

$$I_3 = (I_2 \cap I_3) \bigcup (I_3 - I_2) \stackrel{\triangle}{=} A_4 \bigcup A_5,$$

其中 $\{A_k\}_{1 \le k \le 5}$ 两两不相交且 $\bigcup_{k=1}^5 A_k = \bigcup_{k=1}^3 I_k$. 今

$$a_k = m(A_k), \ a_k^* = m(A_k \cap E), \ 1 \le k \le 5.$$

由于 $m(I_k \cap E) \geq \frac{2}{3}m(I_k)$, 从而由上面三个恒等式得

$$\begin{aligned} a_1^{\star} + a_2^{\star} &= m(I_1 \bigcap E) \ge \frac{2}{3} m(I_1) = \frac{2}{3} (a_1 + a_2), \\ a_2^{\star} + a_3^{\star} + a_4^{\star} &= m(I_2 \bigcap E) \ge \frac{2}{3} m(I_2) = \frac{2}{3} (a_2 + a_3 + a_4), \\ a_4^{\star} + a_5^{\star} &= m(I_3 \bigcap E) \ge \frac{2}{3} m(I_3) = \frac{2}{3} (a_4 + a_5). \end{aligned}$$

由此易知 $2\sum_{k=1}^{5}a_{k}^{*}\geq\frac{2}{3}\sum_{k=1}^{5}a_{k}$ 、即 $m(E\bigcap\bigcup_{k=1}^{3}I_{k})\geq\frac{1}{3}m(\bigcup_{k=1}^{3}I_{k})$.

提示: 无

42. 设 $0 < \varepsilon < 1$. 试构造 [0,1] 中测度为 ε 的完备疏集.

证明. 第一步, 在 [0,1] 中间取走长度为 $(1-\epsilon)/3$ 的开区间.

第二步, 在剩下的两个闭区间的中间分别取走长度为 $(1-\varepsilon)/3^2$ 的开区间

第三步, 在剩下的 4 个闭区间的中间分别取走长度为 $(1-\epsilon)/3^3$ 的开区间。

同时

提示: 同证明

43./构造 $A \rightarrow B$, 使得 $A \cap B = \emptyset$, $A \cup B = [0,1]$, 并且对任何区间 $I \subset [0,1]$, 有 $m(A \cap I) > 0$, $m(B \cap I) > 0$.

证明. 设 $G = \bigcup_{n \geq 1} (a_n, b_n)$ 是一个开集, 其中 $\{(a_n, b_n): n \geq 1\}$ 两两 业明. 以 $G = \bigcup_{n \ge 1} (a_n, b_n)$ 的稠开子集 B_n , 使復不相交. 对任何 $n \ge 1$, 由习题 2.42. 存在 (a_n, b_n) 的稠开子集 B_n , 使復 $m(B_n) < \frac{1}{2}(b_n - a_n)$. $\Leftrightarrow B = \bigcup_{n=1}^{\infty} B_n$. 则 $B \in G$ 中稠开子集, 并且对 G 的每 个构成区间 (a_n, b_n) $m((a_n, b_n) - B) = m((a_n, b_n) - B_n)$ $\frac{1}{2}(b_n - a_n)$.

设 $A_0 = (0,1)$. 归纳地定义 A_n . 使得 A_{n+1} 是 A_n 的稠开子集, $m(A_{n+1})$ < $\frac{1}{2}m(A_n)$,并且对 A_n 的任一构成区间 I, $m(I-A_{n+1})>\frac{1}{2}m(I)$. 令

$$\tilde{A}_n$$
), $\tilde{H} = \tilde{A}_n$ \tilde{A}_n $\tilde{H} = 1$ (A_{2n+1}), $\tilde{B} = \bigcup_{n=0}^{\infty} (A_{2n+1} - A_{2n+2})$, $\tilde{C} = \bigcap_{n=0}^{\infty} A_n$.

则 \hat{A},\hat{B},\hat{C} 这三个集合两两不相交. 若 $x\in(0,1)-\hat{C},$ 则存在 n_0 使得 $x\not\in A_n$ 设 n_0 是使得 $x \notin A_n$ 的最小的 n, 则 $n_0 \ge 1$, $x \in A_{n_0-1} - A_{n_0}$. 因此, $x \in \tilde{A} \cup \tilde{R}$ 于是, $\tilde{A} \cup \tilde{B} \cup \tilde{C} = (0,1)$. 再从 $m(\tilde{A}_n) \to 0$ 知 $m(\tilde{C}) = 0$. 所以 $m(\tilde{A} \cup \tilde{B}) = 1$

设 I 是 [0,1] 中任一区间. 由于 A_{2n} 是 (0,1) 的稠开子集且 $m(A_{2n}) \rightarrow 0$ 所以存在 N, 使得 A_{2N} 的某个构成区间 $(a_{2N},b_{2N}) \subset I$. 于是

$$m(I\cap (A_{2N}-A_{2N+1}))\geq m((a_{2N},b_{2N})-A_{2N+1})\geq \frac{1}{2}(b_{2N}-a_{2N})>0.$$

从而 $m(I \cap \tilde{A}) > 0$. 类似可证 $m(I \cap \tilde{B}) > 0$.

令 $A = \tilde{A}$, $B = \tilde{B} \cup \tilde{C} \cup \{0,1\}$, 则 A, B 即为所求.

杨莲和 Contor集的特.

m({f>a})皇族道侯?

第三章部分习题参考答案与提示

、1/设 [a,b] 上的可测函数 f 几乎处处有限, 求证: $m(\{f>\alpha\})$ 是 $\alpha\in\mathbb{R}$ 的右连续

证明. 任取 $\alpha_n \downarrow \alpha$, $\{f > \alpha\} - \{f > \alpha_n\} = \{\alpha < f \le \alpha_n\} \downarrow \emptyset$.

由測度性质知 $m(\{f>\alpha\})-m(\{f>\alpha_n\})=m(\{\alpha< f\leq \alpha_n\})\to 0$. 即 $m(\{f > \alpha_n\}) \to m(\{f > \alpha\})$. 故 $m(\{f > \alpha\})$ 关于 α 右连续

同样取 $\alpha_n \uparrow \alpha$, 则 $\{f \ge \alpha_n\} - \{f \ge \alpha\} = \{\alpha_n \le f < \alpha\} \downarrow \phi$, 故可得 $m(\{f \ge \alpha\})$ 关于 α 左连续.

提示: 无

- 2. 设 [0,1] 上可测函数 f(x) 几乎处处有限.
 - (i) 求证当 $n \to \infty$ 时, $m(\{f > n\}) \to 0$, $m(\{f > -n\}) \to 1$.
 - (ii) 求证有 $\alpha_0 \in \mathbb{R}$, 使 $m(\{f \geq \alpha_0\}) \geq \frac{1}{2}$, $m(\{f \leq \alpha_0\}) \geq \frac{1}{2}$. 证明.
- (i) $\{f > n\} \downarrow \{f = \infty\}$ —零測集. $\{f > -n\} \uparrow ([0,1] \{f = -\infty\})$ 由此得 (i).
- (ii) 由 (i) 知必有 α , 使 $m(\{f \geq \alpha\}) \geq \frac{1}{2}$. 令 $\alpha_0 = \sup\{\alpha : m(\{f \geq \alpha\}) \geq \frac{1}{2}\}$. 由 (i) 知 $\alpha_0 \in \mathbb{R}$. 由习题 3.1 知 $m(\{f \ge \alpha\})$ 关于 α 左连续, 故 $m(\{f \ge \alpha_0\})$ \ge

今证 $m(\{f \leq \alpha_0\}) \geq \frac{1}{2}$. 若不然, $m(\{f \leq \alpha_0\}) < \frac{1}{2}$. 由习题 3.1 知, $m(\{f \leq \alpha\})$ 关于 α 右连续, 因此从 $m(\{f \leq \alpha_0\}) < \frac{1}{2}$ 知有 $\varepsilon > 0$ 使 $m(\{f \leq \alpha_0\})$ $\alpha_0 + \varepsilon\}$) $< \frac{1}{2}$, $m(\{f \ge \alpha_0 + \varepsilon\}) \ge \frac{1}{2}$. 此与 α_0 的取法矛盾.

提示: 无

3. \bigcirc 设 $D \subset \mathbb{R}$ 是可测集、f(x) 沿 D 连续、求证 f 在 D 上可测

证明. 对任意实数 α , 讨论集 $E_{\alpha} = \{x \in D : f(x) > \alpha\}$. 任取 $x \in E_{\alpha}$, 由于 f 沿 D 在 x 连续, 故有 $\delta_x > 0$, 使 $f(y) > \alpha$, $\forall y \in D \cap V(x, \delta_x)$, 其中 $V(x, \delta_x)$ 表示 x 为中心, δ_x 为半径的开球. 即 $D \cap V(x, \delta_x) \subset E_{\alpha}$

这样, $E_{\alpha} \subset \bigcup_{x \in E_{\alpha}} (D \cap V(x, \delta_x)) \subset E_{\alpha}$, $E_{\alpha} = D \cap (\bigcup_{x \in E_{\alpha}} V(x, \delta_x))$. 但 $\bigcup_{x\in E_{\alpha}}V(x,\delta_{x})$ 是开集, 可测, 故 E_{α} 可测. 从而 f 是可测函数.

4. 若对任何 [a, β] ⊂ (a, b), f 在 [a, β] 上可測, 永证 f 在 (a, b) 上可測,

证明. 对任何 $\lambda \in \mathbb{R}$, $\{x \in (a,b): f(x) > \lambda\} = \bigcup_{n=0}^{\infty} \{x \in ([a_n,b_n]: f(x) > \lambda\}$ 其中 an 1 a, bn 1 b, 从而 f 在 (a, b) 上可测

提示: 无

 \mathcal{F} 设 f(x) 定义在可测集 D 上、若 f^2 在 D 上可测而且 $\{f>0\}$ 是可测集、求证 f

{f=2} \makegin

证明. 由于 $\{f>0\}$ 可测. 故 $\{f\leq 0\}$ 可测. 任取 $\alpha\in\mathbb{R}$, 若 $\alpha\geq 0$, 则 $\{f > \alpha\} = \{f^2 > \alpha^2\} \cap \{f > 0\}$ 可测; 若 $\alpha < 0$, 则 $\{f > \alpha\} = \{f > 0\} \cup \{\alpha < \alpha\}$ $f \le 0$ }. 而 $\{\alpha < f \le 0\} = \{f^2 < \alpha^2\} \cap \{f \le 0\}$ 可测, 故 $\{f > \alpha\}$ 可测.

提示:无

g. 若 D 是可測集, 而且对任何有理数 r, $\{x \in D : f(x) > r\}$ 是可測集, 求证 f 在

此时对任何, $\alpha \in \mathbb{R}$, 取单减收敛于 α 的有理数列 $\{r_n\}_{n\geq 1}$, 则 $\{f > \alpha\} = \bigcup \{f > r_n\}$ —可測, 从而得结论

X 美可測? 若所有 $f_{\lambda}(x)$ 都在 [a,b] 上连续, 结论又如何?

$$f_{\lambda}(x) = \begin{cases} 1, & x = \lambda, \\ 0, & x \neq \lambda, \end{cases} \quad \lambda \in E.$$

则 $\{f_{\lambda}(x)\}_{\lambda\in E}$ 是 [0,1] 上的一族可測函数. 而 $\underline{f(x)}=\lambda_E$ 是一个不可測函数. 若所有 $f_{\lambda}(x)$ 都连续, 则对任何 $\alpha \in \mathbb{Z}$, $\{f_{\lambda} \leq \alpha\}$ 是闭集, $\int_{A \in \Lambda} \{ f_A \le \alpha \}$ 是闭集, 可測. 故 f 可測.

提示: 同证明.

[8] 设 f 是可測集 D 上的可测函数, 永证对任何开集 $G \subset \mathbb{R}$, 和闭集 F, $f^{-1}(G)$ 和 f-1(F) 皆可測.

证明. 若 $D \subset \mathbb{R}^n$, $G = \bigcup_{n=1}^{\infty} (a_n, b_n)$ 是开集、則 $f^{-1}(G) = \bigcup_{n=1}^{\infty} \{a_n < f < b_n\}$ 可測. $f^{-1}(F) = f^{-1}(\mathbb{R}) - f^{-1}(F^e) = D - f^{-1}(F^e)$ 可測, 其中 F^e 是开集.

开杂的原泰仍是开来

IR上 支援公司 → Mix 第三章部分习题参考答案与提示

9. 设 f 在 R 上连续、 $D \subset \mathbb{R}^n$ 可测、g(x) 是 D 上几乎处处有限的可测函数、永证 Viog在D上可测.

证明. (i) 任取 $\alpha \in \mathbb{R}$, 则 $G = \{y \in \mathbb{R} : f(y) > \alpha\} = \bigcup_{i=1}^{\infty} (a_n, b_n)$ 是一个开 集, 从而 $\{x \in D : f(g(x)) > \alpha\} = \{x \in D : g(x) \in G\} = \bigcup_{n=0}^{\infty} \{a_n < g < b_n\}.$

(ii) 有简单函数列 $\{g_n(x)\}$ 使 $g_n(x) \rightarrow g(x), \forall x \in D$. 此时 f(g(x)) 是简单 函数且 $f(q_n(x)) \rightarrow f(q(x)), a.e.$, 从而 $f \circ g$ 可测

提示: 无

10. 设 $\{f_n(x)\}_{n\geq 1}$, 是可測集 D 上的可测函数列, 求证 D 中使 $\{f_n(x)\}_{n\geq 1}$ 收敛的

证明. $F(x) = \overline{\lim}_{n \to \infty} f_n(x)$ 和 $f(x) = \underline{\lim}_{n \to \infty} f_n(x)$ 都是可測函数. 由于 $\{F \ge f\} = D$ 可測, $\{F > f\}$ 可測, 故 $\{F = f\} = D - \{F > f\}$ 可測.

证明, 此时 f(x) 和 $f(x+\frac{1}{x})$ 都连续, 可测. 从而 f'(x) 作为可测函数列 $(f(x+\frac{1}{n})-f(x))/\frac{1}{n}=n[f(x+\frac{1}{n})-f(x)]$ 的极限函数, 也可测.

提示: 无

12. 求证为使 R 上几乎处处有限的可测函数 f(x) 除一零测集外为常数) 充要条件是 对任何实数 λ , $\{f > \lambda\}$ 和 $\{f < \lambda\}$ 中至少有一个为零測集.

证明, 必要性显然, 设充分性条件满足, 不妨设对某一 λ , $\{f > \lambda\}$ 是零測集, 由于 $m(\{f > \lambda\})$ 关于 λ 单减, \diamondsuit $\lambda_0 = \inf\{\lambda : m(\{f > \lambda\}) = 0\}$. 若 $\lambda_0 = -\infty$, 则 f(x) 几乎处处为 $-\infty$, 此与题设矛盾. 从而 $\lambda_0 \in \mathbb{R}$. 由于 $m(\{f > \lambda\})$ 是 λ 的 右连续函数, 从而 $m(\{f > \lambda_0\}) = 0$. 其次对任何 $\lambda < \lambda_0$.由于 $m(\{f > \lambda\}) > 0$. 故由充分性条件 $m(\{f < \lambda\}) = 0$. 由于 $m(\{f < \lambda\})$ 是 λ 的左连续函数, 从而 $m(\{f < \lambda_0\}) = 0$. 因此 $f(x) = \lambda_0$, a.e..

提示: 无

13. 在 Egoroff 定理中, 若 $f(x) = +\infty$, a.e., 试叙述此时定理的结论并证明之.

证明。

提示: 定理: 设 $\{f_n: n \geq 1\}$ 是测度有限的可测集 D 上的可测函数列 若 $\lim_{x\to\infty} f_{\alpha}(x) = +\infty$, a.e., 则对任何 $M.\varepsilon > 0$. 存在 D 的闭子集 F. 使 $m(D-F) < \varepsilon$, # $\mathbb{H} f_n(x) > M$, $\forall x \in F$.

35

证明。今

$$D_1 = \{x \in D : \lim_{n \to \infty} f_n(x) = +\infty\}.$$

则 $m(D_1) = m(D)$, 对每个 $n, r \ge 1$, 令

$$A_n^{(r)} = \bigcap_{k=n}^{\infty} \{x \in D_1: \, f_k(x) > r\}.$$

当 r 固定时, $\{A_n^{(r)}\}_{n\geq 1}$ 单增并且 $D_1\subset \bigcup_{n=1}^\infty A_n^{(r)}=\lim_{n\to\infty}A_n^{(r)}$. 由测度的性质. 存在 nr. 使

$$m(D_1-A_{n_r}^{(r)})<\frac{\varepsilon}{2^{r+1}}.$$

令 $E = \bigcap_{n=1}^{\infty} A_n^{(r)}$, 则 f_n 在 E 上一致发散于 $+\infty$. 此外,

$$m(D - E) = m(D_1 - E) = m\left(\bigcup_{r=1}^{\infty} (D_1 - A_{n_r}^{(r)})\right)$$

 $\leq \sum_{r=1}^{\infty} m(D_1 - A_{n_r}^{(r)}) < \sum_{r=1}^{\infty} \frac{\varepsilon}{2^{r+1}} = \frac{\varepsilon}{2}.$

再取 E 的闭子集 F 使 $m(E-F) < \frac{1}{2}$. 则 f_n 在 F 上一致发散于 $+\infty$ 并且

「Qia $\exists K$ 。, f(x) 设 $\{D_k: k \ge 1\}$ 是一列两两不相交的可測集, $D = \bigcup_{k=1}^{\infty} D_k$. 求证: 为使 f(x) 在 D 上可測, 充分必要条件是对任何 $k \ge 1$, f(x) 在 D_k 上可測. 证明. $\{x \in D: f(x) > a\} = \bigcup_{k=1}^{\infty} \{x \in D_k: f(x) > a\}$. 提示: 无

$$\overline{U}^{H,}$$
 $\{x \in D: f(x) > \lambda\} = \bigcup_{k=1}^{N} \{x \in D_k: f(x) > \lambda\}$

15 设 f 是 [a,b] 上的实值可测函数, 永证有 $h_k > 0$, $h_k \to 0$, 使 $f(x+h_k) \to f(x)$,

证明. 由 Lusin 定理, 对每一 $k \ge 1$, 有闭子集 $F_k \subset (a,b)$, 使 $m(F_k) >$ $b-a-\frac{b-1}{b-1}$, 而且 f 治 F_k 连续. 此时 f 在 F_k 上一致连续. 因此有充分小的 $h_k > 0$, $\notin F_k^* = \{x - h_k : x \in F_k\} \subset (a, b)$ \coprod

$$|f(x+h_k)-f(x)|<\frac{1}{k}, x\in F_k, x+h_k\in F_k.$$

令 $E_k = F_k \cap F_k^*$. 则易知 $m(E_k) > b - a - \frac{b-a}{2^k}$, 并且对任何 $x \in E_k$, 必定 $x+h_k\in F_k$. 从而 $|f(x+h_k)-f(x)|<1/k$. 令 $E=\lim_{k\to\infty}E_k=\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty E_k$. 则 $E \subset [a,b], \ m(E) = b-a$. 而对每一 $x \in E$, 必有 n_0 使 $x \in \bigcap_{i=1}^{\infty} E_k$. 从而 $|f(x+h_k)-f(x)|<1/k,\ k\geq n_0.\ \text{th}\ f(x+h_k)\to f(x),\ \text{a.e.}$

提示。无

第三章部分习题参考答案与提示

.16. 设 f 是 [a,b] 上几乎处处有限的可测函数. 求证: 有连续函数列 $\{g_n(x)\}_{n\geq 1}$, 使

证明.(由 Lusin 定理,)对每个 $k \ge 1$, 存在连续函数 $h_k(x)$ 使 $\max_{a \le x \le b} |h_k(x)| \le$ $\sup |f(x)|$ 并且 $m(\{h_k \neq f\}) < 1/k$. 从而对任何 $\delta > 0$. $m(\{|h_k - f| \geq \delta\}) \leq$ $m(\{h_k \neq f\}) < 1/k \to 0$, 即 $h_k \Rightarrow f$. 由 Riesz 定理, 有子列 $h_{k_n} \to f(x)$, a.e. 取 $g_n(x) = h_{k_n}(x) \, \square \, \overline{\square}$

提示: 同证明.

12/12/12/2

(17) 设 $\{f_p\}_{p\geq 1}$ 是 [a,b] 上一列可测函数. 求证为使 $f_p(x) o 0$, a.e., 充要条件是对 任何 $\varepsilon > 0$, $m(\{\sup |f_p(x)| > \varepsilon\}) \to 0$, $k \to \infty$.

证明. 令

$$D = \{x \in [a,b] : \lim_{p \to \infty} f_p(x) = 0\} (= \bigcap_{r=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{p=k}^{\infty} \{|f_p| \le \frac{1}{r}\}).$$

 $f_p \to 0$, a.e., 等价于 m(D) = b - a, 等价于 $m(D^c) = 0$, 等价于 $\bigcup_{r=1}^{\infty} \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} \{|f_p| > 1\}$ 1} 是零测集,等价于对任何 r≥1,

$$\bigcap_{k=1}^{\infty} \bigcup_{p=k}^{\infty} \{|f_p| > \frac{1}{r}\} = \lim_{k \to \infty} \bigcup_{p=k}^{\infty} \{|f_p| > \frac{1}{r}\} = \lim_{k \to \infty} \{\sup_{p \ge k} |f_p(x)| > \frac{1}{r}\}$$

是零測集, 其中 $\sup_{p\geq k} |f_p(x)| > \frac{1}{r}\}_{k\geq 1}$ 是測度有限 単減集合列 从而 $f_p(x) \to 0$, a.e., 等价于 $\lim_{k\to\infty} m(\{\sup_{p>k} |f_p(x)| > \frac{1}{r}\}) = 0$, $\forall r\geq 1$.

提示: 无

18. 设 f 在 [0,1] 上有界可測. 试问是否必定有 [0,1] 上的连续函数 g 使 f(x) = g(x).

证明. 不一定. 取 $f = \chi_{[0,1/2]}$ 即可

提示: 同证明.

19. 设 $\{f_k(x)\}_{k\geq 1}$ 是 [a,b] 上一列实值可测函数, 求证有正数列 $\{a_k\}_{k\geq 1}$ 使 $a_k f_k(x) \to 0$, a.e.

证明. 此时对每一 $k \ge 1$, 有 n_k 使 $m(\{|f_k| \ge n_k\}) < 1/2^k$, $k = 1, 2, \cdots$ 令

$$E = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \{ |f_k| \ge n_k \}$$

20. (0,1) 中的数 x 用十进制小数 $x = \sum_{k=0}^{\infty} x_k/10^k$ 表示, 并记 $x = \{x_k\}_{k \geq 1}$. 令 $f(x) = \max\{x_k : k \ge 1\}$, 求证 f 在 (0,1) 上可测.

> 证明. 由习题 2.34, $\{f=9\}$ 是可测集, 测度为 1. 故 f(x)=9, a.e. 提示: 同证明.

21. 设 f 足 \mathbb{R} 上实值可测函数且 f(x+1)=f(x), a.e. 求 g(x), 使 g(x)=f(x), a.e., 并且对任何 $x \in \mathbb{R}$, q(x+1) = q(x).

证明. 由于 $\{f(x+n+1) \neq f(x)\} \subset \{f(x+n+1) \neq f(x+n)\} \cup \{f(x+n) \neq f(x+n)\}$ f(x)}, 因此用归纳法易证对每一整数 n, $A_n = \{f(x+n) \neq f(x)\}$ 是零测集 $\diamondsuit A = \bigcup_{n=1}^{\infty} A_n, B = \mathbb{R} - A, M A$ 是零测集. 现对任何 $x \in A$, 有 n_0 使 $f(x+n_0) \neq f(x)$. 于是对任何整数 $n, x+n \in A_{n_0-n} \subset A$. 即对任何 $x \in A$ 及整 数 n, 亦有 $x + n \in A$. 现在 B 上定义 g(x) = f(x), 在 A 上定义 g(x) = 1 即可.

提示: 无

22. 设 f(x) 和 g(x) 都在 (0,1) 上可测而且都单减左连续. 若对任何 $\lambda \in \mathbb{R}$ 有 $m(\lbrace f \geq \lambda \rbrace) = m(\lbrace g \geq \lambda \rbrace), \; \text{\vec{x} if } \; f(x) = g(x), \; \forall x \in (0,1).$

g(x.) < f(x.) x>Xo, 9(x) < f(x0)

证明. 设存在 $x_0 \in (0,1)$ 使 $f(x_0) > g(x_0)$. 由于 g 左连续, 故有 $\varepsilon > 0$, 使对 任何 $x \in (x_0 - \varepsilon, x_0)$ 皆有 $f(x_0) > g(x)$ 即 $(x_0 - \varepsilon, x_0) \cap \{g \ge f(x_0)\} = \emptyset$. 再由 g 单减知 $m(\{g \ge f(x_0)\}) \le x_0 - \varepsilon$. 但 $m(\{f \ge f(x_0)\}) \ge x_0$, 与题设矛盾. 从而 $f(x) \le g(x)$. 同理 $g(x) \le f(x)$. 因此, 结论成立. 提示: 同证明.

23. 设在可测集 $D \perp f_k \Rightarrow f, g_k \Rightarrow g$. 求证

- (i) $f_k \pm g_k \Rightarrow f \pm g$;
- (ii) $|f_k| \Rightarrow |f|$;
- (iii) $\min\{f_k, g_k\} \Rightarrow \min\{f, g\} \perp \max\{f_k, g_k\} \Rightarrow \max\{f, g\};$
- (iv) 当 $m(D) < \infty$ 时 $f_k g_k \Rightarrow fg$.

此外举例说明在一般情形下 $f_k g_k \Rightarrow fg$ 不成立.

第三章部分习题参考答案与提示

证明.

- (i) $\{|(f_k \pm g_k) (f \pm g)| \ge \delta\} \subset \{|f_k \pm g_k| \ge \delta/2\} \cup \{|f \pm g| \ge \delta/2\}.$
- (ii) $\{||f_k| |f|| \ge \delta\} \subset \{|f_k f| \ge \delta\}.$
- (iii) 利用 (i)(ii) 以及下列恒等式

$$\max\{f_k, g_k\} = \frac{f_k + g_k - |f_k - g_k|}{2}, \quad \min\{f_k, g_k\} = \frac{f_k + g_k + |f_k - g_k|}{2}.$$

(iv) 若 $f_k g_k \neq fg$, 则存在 $\delta_0 > 0$, $\varepsilon_0 > 0$ 及子列 $\{f_{k_n} g_{k_n} : n \geq 1\}$ 使得

$$m(\{|f_{k_n}g_{k_n} - fg| \ge \delta_0\}) \ge \varepsilon_0, \quad n \ge 1.$$
(3.2)

但 $f_{k_n} \Rightarrow f, g_{k_n} \Rightarrow g$, 故存在子列几乎处处收敛, 不妨设 $f_{k_n} \rightarrow f, g_{k_n} \rightarrow g$, a.e., 则 $f_{k_n}g_{k_n} \to fg$, a.e. 由 $m(D) < \infty$ 知 $f_{k_n}g_{k_n} \Rightarrow fg$, 与 (3.2) 矛盾.

在 R 上 $f_k(x) = x + 1/k$, f(x) = x, 则 $f_k \Rightarrow f$. 但 $f_k^2(x) = x^2 + 2x/k + 1/k^2$, $f^{2}(x) = x^{2}, f_{k}^{2}(x) - f^{2}(x) = 2x/k + 1/k^{2}, \forall k \in \{0, m(\{|f_{k}^{2} - f^{2}| \ge \delta\}) = \infty.$ 因此, $f_k^2 \not \to f^2$.

证明. 若 $g \circ f_k \not\to g \circ f$, 则存在 $\delta_0 > 0$, $\varepsilon_0 > 0$ 及子列 $\{f_{k_n} : n \ge 1\}$, 使得

又 $f_{k_n} \Rightarrow f$, 故存在子列几乎处处收敛、 x 妨设 f_{k_n} 几乎处处收敛于 f 由 g 连 续知 $(g \circ f_{k_n}) \to g \circ f$, a.e. 又 [a,b] 是有界区间, 故 $g \circ f_{k_n} \Rightarrow g \circ f$, 与上式矛盾.

25. 例. 设在 [0,1] 上 {fk} 测度收敛. 此外有 M 使

$$|f_k(x_1) - f_k(x_2)| \le M|x_1 - x_2|, k = 1, 2, \dots, x_1, x_2 \in [0, 1].$$

求证 {fk(x)} 在 [0,1] 上一致收敛.

证明. 任給 $\varepsilon > 0$. 取定正数 δ 和 λ 使 $\delta + 4M\lambda < \varepsilon, \lambda < \frac{1}{4}$. 此时有 K 使

$$m(\{|f_m-f_n|\geq \delta\})<\lambda,\quad m,n>K.$$

令 $E_{m,n} = \{|f_m - f_n| < \delta\}, 则 m(E_{m,n}) > 1 - \lambda(m,n > K).$ 现可 证明对每一 $x \in [0,1]$ 及 m,n > K, 必有 $d(x,E_{m,n}) < 2\lambda$. 因为不 然 $(x-2\lambda,x+2\lambda)\cap E_{m,n}=\emptyset$. 但 $m\left((x-2\lambda,x+2\lambda)\cap [0,1]\right)\geq 2\lambda$, 从而 $1 \ge m(((x-2\lambda,x+2\lambda)\cap [0,1]) \cup E_{m,n}) \ge 2\lambda+1-\lambda>1$, 此为矛盾. 于是对 每一 $x \in [0,1]$, 必有 $x_{m,n} \in E_{m,n}$ 使 $|x-x_{m,n}| < 2\lambda$. 这样当 m,n > K 时,

$$\begin{split} |f_m(x_{m,n}) - f_n(x_{m,n})| &< \delta, \\ |f_m(x_{m,n}) - f_m(x)| &\leq M|x_{m,n} - x| < 2M\lambda, \\ |f_n(x_{m,n}) - f_n(x)| &\leq M|x_{m,n} - x| < 2M\lambda. \end{split}$$

由此, 当 m,n > K 时, 对一切 $x \in [0,1]$ 有 $|f_m(x) - f_n(x)| < \delta + 4M\lambda < \varepsilon$, 从 而 $\{f_k(x)\}$ 一致收敛.

提示: 无

26.)设在可测集 D 上, 对每一固定的 $n \ge 1$, $f_{n,k} \Rightarrow f_n$, $k \to \infty$, $f_n \Rightarrow f$, $n \to \infty$, 求 证 $\{f_{n,k}: n, k \geq 1\}$ 中有子列測度收敛于 f.

证明. 对任何 $n\geq 1$, 因为 $f_{n,k}\Rightarrow f_n$, 所以存在 $k_n\geq 1$, 使得 $m(\{|f_{n,k_n}-f_n|>\frac{1}{n}\})<\frac{1}{n}.$

对任何 $\delta > 0$, 当 $n > 2/\delta$ 时, 由于 $\{|f_{n,k} - f| > \delta\} \subset \{|f_{n,k} - f_n| > \delta/2\}$ \cup $\{|f_n - f| > \delta/2\}$, 所以

$$m(\{|f_{n,k_n} - f| > \delta\}) \leq m(\{|f_{n,k_n} - f_n| > \frac{1}{n}\}) + m(\{|f_n - f| > \frac{\delta}{2}\})$$

$$\leq \frac{1}{n} + m(\{|f_n - f| > \frac{\delta}{2}\}) \to 0, \quad n \to \infty.$$

 $\{f_{n,k_n}: n \geq 1\}$ 即为所求.

提示: 无

(27.) 设 $\{f_k\}_{k>1}$ 是 [0,1] 上一列实值可测函数且 $|f_k(x)|/(1+|f_k(x)|) \to 0$, a.e. 求证: $f_k \Rightarrow 0$.

证明. 若对某 x, $|f_k(x)|/(1+|f_k(x)|) \to 0$, 则 $|f_k(x)| \to 0$. 因为不然有正数 $\varepsilon>0$, 使 $|f_{k_n}(x)|\geq \varepsilon$. $n=1,2,\cdots$, 从而 $|f_k(x)|/(1+|f_k(x)|)\geq \varepsilon/(\varepsilon+1)$, n= $1,2,\cdots$, 矛盾. 这样 $f(x) \to 0$, a.e. 故在 [0,1] 上, $f_k \Rightarrow 0$.

提示: 无

28. 设 $f(\xi_1,\xi_2)$ 是 \mathbb{R}^2 上的连续函数, $g_1(x)$ 和 $g_2(x)$ 都在 [a,b] 上几乎处处有限可 測. 求证 $f(g_1(x), g_2(x))$ 在 [a, b] 上可測.

证明.

- (i) 此时有 [a,b] 上连续函数列 $\{g_1^{(n)}(x)\}_{n\geq 1}$ 和 $\{g_2^{(n)}(x)\}_{n\geq 1}$ 使 $g_1^{(n)}(x)$ $g_1(x)$, a.e., $g_2^{(n)}(x) \to g_2(x)$, a.e. 于 [a,b] (见题). 此时 [a,b] 上的连续函 数列 $f(g_1^{(n)}(x), g_2^{(n)}(x)) \rightarrow f(g_1(x), g_2(x))$, a.e. 从而得本題
- (ii) 也可用简单函数列 $\{g_1^{(n)}(x)\}_{n\geq 1}$ 和 $\{g_2^{(n)}(x)\}_{n\geq 1}$ 逼近 g_1 和 g_2 .

设 h_1 和 h_2 是简单函数, $h_1([a,b]) = \{a_1, \cdots, a_{m_1}\}, h_2([a,b]) =$ $\{b_1, \cdots, b_{m_2}\}$, 则

$$\{f(g_1(x),g_2(x))>\alpha\}=\bigcup_{(i,j):\,f(a_i,b_j)>\alpha}\{h_1=a_i\}\cap\{h_2=b_j\}$$

是可測集, 由此可知 $f(g_1^{(n)}(x), g_2^{(n)}(x))$ 是简单函数列, 所以……

(iii) $\{f(\xi_1, \xi_2) > \alpha\}$ 是 \mathbb{R}^2 中的开集 G, 而 $G = \bigcup I_k$, 其中 $\{I_k\}$ 是两两不相交的 半开方体. 若 $I_k = (a_k, b_k] \times (c_k, d_k]$, 则

$$[a,b] \bigcap \{(g_1(x),g_2(x)) \in I_k\} = \{a_k < g_1 \le b_k\} \bigcap \{c_k < g_2 \le d_k\}$$

是可测的. 从而 $[a,b] \cap \{(g_1(x),g_2(x)) \in G\}$ 可测. 故 $\{f(g_1(x),g_2(x)) > \alpha\}$ $= \{(g_1(x), g_2(x)) \in G\}$ 可测.

提示: 无

(29.)设 f 和 g 都在 R 上可测, 求证 f(x)g(y) 在 R² 上可测.

证明. 先设 f 和 q 都是简单函数,

$$f(x) = \sum_{i=1}^{S} a_i \chi_{E_i}(x), \quad g(y) = \sum_{j=1}^{T} b_j \chi_{F_j}(y),$$

其中 $\{E_i\}_{1\leq i\leq S}$ 和 $\{F_j\}_{1\leq j\leq T}$ 都是 R 的分划, $a_i,\,b_j$ 都是实数. 此时, f(x)g(y)= $\sum_{i=1}^{S} \sum_{j=1}^{T} a_i b_j \chi_{E_i}(x) \chi_{F_j}(y) = \sum_{i=1}^{S} \sum_{j=1}^{T} a_i b_j \chi_{E_i \times F_j}(x, y)$, 其中 $E_i \times F_j$ 是 \mathbb{R}^2 中的可 测集, $\{E_i \times F_i\}$ 是 \mathbb{R}^2 的一个分划. 从而 f(x)g(y) 是 \mathbb{R}^2 上的简单函数, 可测

对一般 f 和 g、有简单函数列 $\{f_n\}$ 和 $\{g_n\}$ 使 $f_n(x) \to f(x)$, $g_n(x) \to g(x)$. 从而 $f_n(x)g_n(y) \to f(x)g(y)$. 现 $f_n(x)g_n(y)$ 是 \mathbb{R}^2 上的可测函数, 从而 f(x)g(y)也是.

函数、从而它们的乘积也是可测函数.

91x)>)

证明. 任给 $\varepsilon>0$, 有 k_0 使 $\sum\limits_{k=k_0+1}^{\infty}m(D_k)<\varepsilon/2$. 对每一 k, $1\leq k\leq k_0$, $\{f_p\}$ 是 D_k 上的測度基本列, 从而有 N_k , 使

$$m(\{x\in D_k: |f_p(x)-f_q(x)|\geq \delta\})<\frac{\varepsilon}{2^{k+1}},\quad p,q>N_k.$$

取 $N = max\{N_k : 1 \le k \le k_0\}$, 则当 p, q > N 时,

$$\begin{split} & m(\{x \in D: |f_p(x) - f_q(x)| \ge \delta\}) \\ & \le & m(\{x \in \bigcup_{k=1}^{k_0} D_k: |f_p(x) - f_q(x)| \ge \delta\}) + m(\{\bigcup_{k=k_0+1}^{\infty} D_k\}) \\ & \le & \sum_{k=1}^{k_0} m(\{x \in D_k: |f_p(x) - f_q(x)| \ge \delta\}) + \sum_{k=k_0}^{\infty} m(D_k) \\ & \le & \sum_{k=1}^{k_0} \frac{\varepsilon}{2^{k+1}} + \frac{\varepsilon}{2} < \varepsilon. \end{split}$$

从而
$$\{f_p\}$$
 也是 $D = \bigcup_{k=1}^{\infty} D_k$ 上的測度基本列. 提示: 无

- 31. 设 f(x,y) 是 $(x,y) \in \mathbb{R}^2$ 上的函数、对每一 $x \in \mathbb{R}$, f(x,y) 是 y 的连续函数、对每一 $y \in \mathbb{R}$, f(x,y) 是 x 的可测函数、求证
 - (i) $F(x) = \max\{f(x,y): 0 \le y \le 1\}$ 在 R 上可测.
 - (ii) f(x,y) 在 R² 上可测.

证明.

(i) 令 {r_n}_{n≥1} 是 [0,1] 上有理数全体,则

$$\{F > \alpha\} = \bigcup_{n=1}^{\infty} \{f(\cdot, r_n) > \alpha\}$$
一可拠.

(ii) 对每一 n ≥ 1, 定义

$$f_n(x,y) = \begin{cases} f(x, \frac{k-1}{2^n}), & \text{ if } \frac{k-1}{2^n} \le y < \frac{k}{2^n}, \ -n2^n + 1 \le k \le n2^n, \\ 0, & \text{ if } y < -nxy \ge n. \end{cases}$$

易证 $f_n(x,y) \to f(x,y) \ (n \to \infty)$. 但

$$f_n(x,y) = \sum_{k=-n2^n+1}^{n2^n} f(x,\frac{k-1}{2^n}) \chi_{\left[\frac{k-1}{2^n},\frac{k}{2^n}\right)}(y).$$

和号中每一项在 \mathbb{R}^2 中可测 (题). 从而 f(x,y) 在 \mathbb{R}^2 上可测.

提示: 无

证明. 令 $g(x) = \inf\{\lambda : m(\{f > \lambda\}) \le x\}, \ x \in (0,1).$ 若 $0 < x_1 < x_2 < 1$, 则 $\{\lambda : m(\{f > \lambda\}) \le x_1\} \subset \{\lambda : m(\{f > \lambda\}) \le x_2\}$, 从而 $g(x_1) \ge g(x_2)$. 即 g 单减. 为证结论成立,只需证明 $\{g > \lambda\} = (0, m(\{f > \lambda\}))$.

事实上, 若 $m(\{f > \lambda\}) \le x$, 则 $g(x) \le \lambda$. 从而 $\{g > \lambda\} \subset (0, m(\{f > \lambda\}))$. 反之, 若 $0 < x < m(\{f > \lambda\})$, 由于 $m(\{f > \lambda\})$ 关于 λ 右连续, 故存在 $\lambda_0 > \lambda$ 使 $0 < x < m(\{f > \lambda\})$, 从而对一切 $t \le \lambda_0$ 有 $0 < x < m(\{f > t\})$. 于是 $g(x) \ge \lambda_0 > \lambda$. 所以 $(0, m(\{f > \lambda\})) \subset \{g > \lambda\}$. 故结论成立.

提示: 同证明.

33. 设 f 在 [a,b] 上连续. 对每一 $y \in \mathbb{R}$, $\eta(y)$ 表示方程 f(x) = y 在 [a,b] 上解的个数. 求证 $\eta(y)$ 可测.

证明. 把 [a,b] 区间 2^n 等分,分点为 $\{x_i\}_{0 \le i \le 2^n}$. 令 $I_i = f([x_{i-1},x_i))$. $1 \le i \le 2^n - 1$, $I_{2^n} = f([x_{2^n-1},x_{2^n}])$. 因为 f 连续,所以 I_i 是区间, $1 \le i \le 2^n$. 令 $\chi_i^{(n)}(y)$ 是 I_i 上的特征函数, $\eta_n(y) = \sum_{i=1}^{2^n} \chi_i^{(n)}(y)$,则 $\eta_n(y)$ 可测.

任意固定 $y \in \mathbb{R}$. 若 $\eta(y) = 0$, 则对一切 $n \ge 1$, $\eta_n(y) = 0$; 若 $\eta(y) = k$ 为正整数, 则当 n 充分大时, $\eta_n(y) = k$; 若 $\eta(y) = \infty$, 则 $\lim_{n \to \infty} \eta_n(y) = \infty$. 所以, $\eta(y) = \lim_{n \to \infty} \eta_n(y)$ 是可测函数.

提示: 无

34. 设 f(x) 是 \mathbb{R} 上实值可测函数,而且对任何 $x,y\in\mathbb{R}$ 有 f(x+y)=f(x)+f(y). 求证 f 连续.

证明. 由 Lusin 定理, 存在正测集 E 使 f 沿 E 连续. 不妨设 E 是有界闭集, 则 f 在 E 上一致连续. 由习题 2.32, 0 是 $\{x-y: x,y\in E\}$ 的内点. 故对任何 $z_n\to 0$, 当 z_n 充分小时, 存在 x_n , $y_n\in E$ 使 $z_n=x_n-y_n$. 于是 $f(z_n)=f(x_n)-f(y_n)\to 0$. 所以 f 在点 0 连续, 从而在 $\mathbb R$ 上连续.

提示: 同证明.

35. 构造 [0,1] 上处处收敛的可测函数列 $\{f_n: n \geq 1\}$, 使得它在 [0,1] 中任何测度为 1 的子集上不一致收敛.

证明. $f_n(x) = x^n$.

提示: 同证明.

证明. 先证 f(x) 几乎处处为常数. 由习题 3.12, 只需证明对任何 $\lambda \in \mathbb{R}$, $\{f > \lambda\}$ 和 $\{f < \lambda\}$ 必有一个是零测集.

设 $E_1 = \{f > \lambda\}$ 是正測集. 因为 $\{x + y : x, y \in E_1\} \subset E_1$, 所以 E_1 中有内点, 即存在 $a, \varepsilon > 0$. 使得 $(a.a + \varepsilon) \subset E_1$. 于是 $(2a, 2a + 2\varepsilon) \subset E_1$, …, $(na, na + n\varepsilon) \subset E_1$, $n \ge 1$. 所以, 当 n 充分大时, $(na, na + a] \subset E_1$. 因此, 存在 $x_1 > 0$, 使得 $(x_1, \infty) \subset E_1$.

若 $E_2 = \{f < \lambda\}$ 也是正测集, 类似可证存在 $x_2 > 0$, 使得 $(x_2, \infty) \subset E_2$, 与 $E_1 \cap E_2 = \emptyset$ 矛盾.

所以, 存在常数 c 以及集合 F, 使得 $m((0,\infty)\setminus F)=0$ 并且

$$f(x) = c, \quad x \in F.$$

对任何 x > 0, 令 $F_1 = F \cap (0, x)$, $F_2 = \{x - y : y \in F_1\}$, 则 $m(F_1) = m(F_2) = x$. 于是, $m(F_1 \cap F_2) = x > 0$. 所以, 存在 $y, z \in F_1$, 使得 z = x - y, x = y + z. 因为 f(z) = f(y) = c, 所以 f(x) = c.

提示: 同证明.

第四章部分习题参考答案与提示

1. 设 $m(E)>0, f\in L(E), f$ 非负且 $\int_E f(x)dx=0$. 求证: f(x)=0, a.e.

证明. 对任意 $n \ge 1$, $0 = \int_E f(x) dx \ge \int_{\{f \ge 1/n\}} f(x) dx \ge \frac{1}{n} \cdot m(\{f \ge 1/n\})$, 故 $m(\{f \ge 1/n\}) = 0$. 从而 $\{f \ge 0\} = \bigcup_{n=1}^{\infty} \{f \ge 1/n\}$ 是零測集. 因此 f(x) = 0, a.e.

提示: 无

$$\begin{array}{c} 2 \text{ if } f \in L(E), \, \&\, \mathrm{i} \varpi \colon k \cdot m(\{|f| > k\}) \to 0 (k \to \infty). \\ & \text{证明.} \, \diamondsuit \, f_k(x) = \left\{ \begin{array}{c} f(x), \ |f(x)| \leq k \\ 0, \ |f(x)| > k \end{array}, \, \underbrace{\text{则} \, |f_k(x)| \uparrow |f(x)|, \, \mathrm{a.e.}}_{\text{left}} \, (注意 \, \{|f| = \infty) \, \text{ Be } \ggg \oplus \text{ in } \bigoplus \text{ in$$

提示: 无

3 设 $m(E)<\infty$, $\{f_k\}$ 是 E 上几乎处处有限的可测函数列. 求证: 为使 $f_k\Rightarrow 0$, 充要条件是 $\int_E |f_k(x)|/(1+|f_k(x)|)dx\to 0 (k\to\infty)$.

证明. 设 $f_k \Rightarrow 0$. 此时对任何 $\delta > 0$,

$$\begin{split} \int_{E} \frac{|f_{k}(x)|}{1+|f_{k}(x)|} dx &= \int_{\{|f_{k}(x)| \geq \delta\}} \frac{|f_{k}(x)|}{1+|f_{k}(x)|} dx + \int_{\{|f_{k}(x)| < \delta\}} \frac{|f_{k}(x)|}{1+|f_{k}(x)|} dx \\ &\leq m(\{|f_{k}| \geq \delta\}) + \int_{\{|f_{k}| < \delta\}} \frac{\delta}{1+\delta} dx \\ &\leq m(\{|f_{k}| \geq \delta\}) + \delta \cdot m(E) \end{split}$$

任给 $\varepsilon > 0$,取 $\delta = \varepsilon/2m(E)$. 対此 δ ,有 K,当 k > K 时 $m(\{|f_k| \ge \delta\}) < \varepsilon/2$. 这样当 k > K 时, $\int_E |f_k(x)|/(1+|f_k(x)|)dx < \varepsilon/2+m(E)\varepsilon/2m(E) = \varepsilon$. 故 $\int_E |f_k(x)|/(1+|f_k(x)|)dx \to 0$.

反之若 $\int_{E} |f_k(x)|/(1+|f_k(x)|)dx \to 0$, 则从 $\int_{E} |f_k(x)|/(1+|f_k(x)|)dx \ge \int_{\{|f_k(x)| \ge \delta\}} |f_k(x)|/(1+|f_k(x)|)dx \ge m(\{|f_k| \ge \delta\})\delta/(1+\delta)$ 知 $m(\{|f_k| \ge \delta\}) \to 0(k \to \infty)$, 即 $f_k \Rightarrow 0$.

提示: 无

4. 段 $f \in L([a,b]), \varepsilon > 0$. 求证: