

CS326 – Systems Security

Lecture 4 DES Key Scheduling

Elias Athanasopoulos ethanasopoulos.elias@ucy.ac.cy

Sections of this Lecture

- DES Key Scheduling
- DES Decryption
- DES Security Analysis
- Alternatives

Cryptography Roadmap Cryptology Cryptanalysis Cryptography (Attacks) **Utilities** Symmetric Asymmetric Apps/Protocols (Hash Functions, **Ciphers** Ciphers (TLS, ToR, etc.) MACs, etc.) Block Stream Ciphers Ciphers DES

DES KEY SCHEDULING

DES Feistel Network

Key Schedule Overview

Key Permutations

- PC-1 and PC-2 are permuted choice 1 and permuted choice 2
 - PC-1 takes 64 bits and drops the 8, output is 56 bits (effective key size)
 - PC-2 takes 56 bits and outputs 48
- LS₁ and LS₂ perform a *left shift* of the bits
 - For rounds 1, 2, 9, and 16 the shift involves 1 bit
 - For all other rounds the shift involves 2 bits
 - Final Round: 4x1 + 12x2 = 28 bits (C_0 and D_0 are equal to C_{16} and D_{16} very important for the decryption process, since it is easy to derive K_{16} as easy it is to derive K_1)

PC-1 and PC-2

PC-1							
57	49	41	33	25	17	9	1
58	50	42	34	26	18	10	2
59	51	43	35	27	19	11	3
60	52	44	36	63	55	47	39
31	23	15	7	62	54	46	38
30	22	14	6	61	53	45	37
29	21	13	5	28	20	12	4

PC-2							
14	17	11	24	1	5	3	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

DES DECRYPTION

Decryption

Reverse Key Schedule

Decrypting the Feistel Network

Key Relationship

 C_0 and D_0 are equal to C_{16} and D_{16} – very important for the decryption process, since it is easy to derive K_{16} as easy it is to derive K_1

Does it work?

Does it work?

•
$$L_{1}^{d} = R_{0}^{d} = L_{16}^{e} = R_{15}^{e}$$

•
$$R^{d}_{1} = L^{d}_{0} \oplus f(R^{d}_{0}, K_{16}) = R^{e}_{16} \oplus f(L^{e}_{16}, K_{16})$$

 $R^{d}_{1} = (L^{e}_{15} \oplus f(R^{e}_{15}, K_{16})) \oplus f(R^{e}_{15}, K_{16})$
 $R^{d}_{1} = L^{e}_{15} \oplus (f(R^{e}_{15}, K_{16})) \oplus f(R^{e}_{15}, K_{16})) = L^{e}_{15}$

DES SECURITY ANALYSIS

Brute-force the Key Space

- DES effective key size is 56 bits
- 1998
 - EFF constructed Deep Crack with a cost of less than \$250K and cracked a DES key in 56 hours (see https://crack.sh)
- 2006
 - COPACOBANA based on FPGAs, can break a DES key in 7 days with a cost of less than \$10K
- 2012
 - Cloud infrastructures can break a DES key in less than a day

Analytical Attacks

- Differential Cryptanalysis
 - A set of techniques for identifying how differences in information input can affect the resultant difference at the output
- Linear Cryptanalysis
 - Construct linear equations relating plaintext,
 ciphertext and key bits
 - Use these linear equations in conjunction with known plaintext-ciphertext pairs to derive key bits

Analytical Attacks

- S-box structure of DES is resistant in differential and linear cryptanalysis
 - A slight change of the numbers of an S-box can make DES very weak
- Differential Cryptanalysis
 - 2⁵⁵ random plaintext-ciphertext pairs
 - 2⁴⁷ particularly chosen plaintext-ciphertext pairs
- Linear Cryptanalysis
 - 2⁴³ random plaintext-ciphertext pairs

ALTERNATIVES

Cipher	Key Length	Remarks		
AES (Rinjndael)	128/192/256	DES replacement		
3DES (Triple DES)	112 (effective)	DES hardened		
Mars	128/192/256	AES finalist		
RC6	128/192/256	AES finalist		
Serpent	128/192/256	AES finalist		
Twofish	128/192/256	AES finalist		

Resources

- This lecture was built using material that can be found at
 - Chapter 7, Handbook of Applied Cryptography, http://cacr.uwaterloo.ca/hac/
 - Chapter 3, Understanding Cryptography, http://www.crypto-textbook.com