

AP 2005.04.18 APR 2005

Synergistische fungizide Wirkstoffkombinationen

Die vorliegende Erfindung betrifft neue Wirkstoffkombinationen, die aus bekannten Carboxamiden einerseits und weiteren bekannten fungiziden Wirkstoffen andererseits bestehen und sehr gut zur Bekämpfung von unerwünschten phytopathogenen Pilzen geeignet sind.

Es ist bereits bekannt, dass bestimmte Carboxamide fungizide Eigenschaften besitzen: z.B. *N*-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1*H*-pyrazol-4-carboxamid aus WO 03/010149 und 3-(Trifluormethyl)-*N*-[2-(1,3-dimethylbutyl)phenyl]-5-fluor-1-methyl-1*H*-pyrazol-4-carboxamid aus DE-A 103 03 589. Die Wirksamkeit dieser Stoffe ist gut, lässt aber bei niedrigen Aufwandmengen in manchen Fällen zu wünschen übrig. Ferner ist schon bekannt, dass zahlreiche Triazol-Derivate, Anilin-Derivate, Dicarboximide und andere Heterocyclen zur Bekämpfung von Pilzen eingesetzt werden können (vgl. EP-A 0 040 345, DE-A 22 01 063, DE-A 23 24 010, Pesticide Manual, 9th. Edition (1991), Seiten 249 und 827, EP-A 0 382 375 und EP-A 0 515 901). Auch die Wirkung dieser Stoffe ist aber bei niedrigen Aufwandmengen nicht immer ausreichend. Ferner ist bereits bekannt, dass 1-(3,5-Dimethyl-isoxazol-4-sulfonyl)-2-chlor-6,6-difluor-[1,3]-dioxolo-[4,5f]-benzimidazol fungizide Eigenschaften besitzt (vgl. WO 97/06171). Schließlich ist auch bekannt, dass substituierte Halogenpyrimidine fungizide Eigenschaften besitzen (vgl. DE-A1-196 46 407, EP-B-712 396).

20 Es wurden nun neue Wirkstoffkombinationen mit sehr guten fungiziden Eigenschaften gefunden, enthaltend ein Carboxamid der allgemeinen Formel (I) (Gruppe 1)

(I), in welcher

R¹ für Wasserstoff, Halogen, C₁-C₃-Alkyl oder C₁-C₃-Halogenalkyl mit 1 bis 7 Fluor-, Chlor- und/oder Bromatomen steht;

25 A für einen der folgenden Reste A1' bis A8 steht:

R² für C₁-C₃-Alkyl steht,

R³ für Wasserstoff, Halogen, C₁-C₃-Alkyl oder C₁-C₃-Halogenalkyl mit 1 bis 7 Fluor-, Chlor- und/oder Bromatomen steht,

R⁴ für Wasserstoff, Halogen oder C₁-C₃-Alkyl steht,

5 R⁵ für Halogen, C₁-C₃-Alkyl oder C₁-C₃-Halogenalkyl mit 1 bis 7 Fluor-, Chlor- und/oder Bromatomen steht,

R⁶ für Wasserstoff, Halogen, C₁-C₃-Alkyl, Amino, Mono- oder Di(C₁-C₃-alkyl)amino steht,

R⁷ für Wasserstoff, Halogen, C₁-C₃-Alkyl oder C₁-C₃-Halogenalkyl mit 1 bis 7 Fluor-, Chlor- und/oder Bromatomen steht,

10 R⁸ für Halogen, C₁-C₃-Alkyl oder C₁-C₃-Halogenalkyl mit 1 bis 7 Fluor-, Chlor- und/oder Bromatomen steht,

R⁹ für Halogen, C₁-C₃-Alkyl oder C₁-C₃-Halogenalkyl mit 1 bis 7 Fluor-, Chlor- und/oder Bromatomen steht,

R¹⁰ für Wasserstoff, Halogen, C₁-C₃-Alkyl oder C₁-C₃-Halogenalkyl mit 1 bis 7 Fluor-, Chlor- und/oder Bromatomen steht,

15 und mindestens einen Wirkstoff, der aus den folgenden Gruppen (2) bis (24) ausgewählt ist:

Gruppe (2) Strobilurine der allgemeinen Formel (II)

20 in welcher

A¹ für eine der Gruppen

steht,

A² für NH oder O steht,

25 A³ für N oder CH steht,

L für eine der Gruppen

steht, wobei die Bindung, die mit einem Stern (*) markiert ist an den Phenylring gebunden ist,

R^{11} für jeweils gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Chlor, Cyano, Methyl oder Trifluormethyl substituiertes Phenyl, Phenoxy oder Pyridinyl, oder für 1-(4-Chlorphenyl)-pyrazol-3-yl oder für 1,2-Propandion-bis(O-methyloxim)-1-yl steht;

R^{12} für Wasserstoff oder Fluor steht;

5

Gruppe (3) Triazole der allgemeinen Formel (III)

in welcher

Q für Wasserstoff oder SH steht,

10 m für 0 oder 1 steht,

R^{13} für Wasserstoff, Fluor, Chlor, Phenyl oder 4-Chlor-phenoxy steht,

R^{14} für Wasserstoff oder Chlor steht,

A^4 für eine direkte Bindung, $-CH_2-$, $-(CH_2)_2-$ oder $-O-$ steht,

15 A^4 außerdem für $*-CH_2-CHR^{17}-$ oder $*-CH=CR^{17}-$ steht, wobei die mit * markierte Bindung mit dem Phenylring verknüpft ist, und

R^{15} und R^{17} dann zusammen für $-CH_2-CH_2-CH[CH(CH_3)_2]-$ oder $-CH_2-CH_2-C(CH_3)_2-$ stehen,

A^5 für C oder Si (Silizium) steht,

20 A^4 außerdem für $-N(R^{17})-$ steht und A^5 außerdem zusammen mit R^{15} und R^{16} für die Gruppe $C=N-R^{18}$ steht, wobei R^{17} und R^{18} dann zusammen für die Gruppe

stehen, wobei die mit * markierte Bindung mit R^{17} verbunden ist,

20

R^{15} für Wasserstoff, Hydroxy oder Cyano steht,

R^{16} für 1-Cyclopropylethyl, 1-Chlorcyclopropyl, C₁-C₄-Alkyl, C₁-C₆-Hydroxyalkyl, C₁-C₄-Alkylcarbonyl, C₁-C₂-Halogenalkoxy-C₁-C₂-alkyl, Trimethylsilyl-C₁-C₂-alkyl, Monofluorphenyl, oder Phenyl steht,

25 R^{15} und R^{16} außerdem zusammen für $-O-CH_2-CH(R^{18})-O-$, $-O-CH_2-CH(R^{18})-CH_2-$, oder $-O-CH-(2-Chlorphenyl)-$ stehen,

R^{18} für Wasserstoff, C₁-C₄-Alkyl oder Brom steht;

Gruppe (4) Sulfenamide der allgemeinen Formel (IV)

in welcher R¹⁹ für Wasserstoff oder Methyl steht;

5 Gruppe (5) Valinamide ausgewählt aus

- (5-1) Iprovalicarb
- (5-2) N¹-[2-(4-{[3-(4-chlorophenyl)-2-propynyl]oxy}-3-methoxyphenyl)ethyl]-N²-
(methylsulfonyl)-D-valinamid
- (5-3) Benthiavalicarb

10

Gruppe (6) Carboxamide der allgemeinen Formel (V)

in welcher

X für 2-Chlor-3-pyridinyl, für 1-Methylpyrazol-4-yl, welches in 3-Position durch Methyl oder
15 Trifluormethyl und in 5-Position durch Wasserstoff oder Chlor substituiert ist, für 4-Ethyl-2-
ethylamino-1,3-thiazol-5-yl, für 1-Methyl-cyclohexyl, für 2,2-Dichlor-1-ethyl-3-methyl-
cyclopropyl, für 2-Fluor-2-propyl, oder für Phenyl steht, welches einfach bis dreifach, gleich
oder verschieden durch Chlor oder Methyl substituiert ist, steht,

20 außerdem für 3,4-Dichlor-isothiazol-5-yl, 5,6-Dihydro-2-methyl-1,4-oxathium-3-yl, 4-Methyl-
1,2,3-thiadiazol-5-yl, 4,5-Dimethyl-2-trimethylsilyl-thiophen-3-yl, 1-Methylpyrrol-3-yl, wel-
ches in 4-Position durch Methyl oder Trifluormethyl und in 5-Position durch Wasserstoff
oder Chlor substituiert ist, steht,

Y für eine direkte Bindung, gegebenenfalls durch Chlor, Cyano oder Oxo substituiertes C₁-C₆-
Alkandiyl (Alkylen) oder Thiophendiyl steht,

25 Y außerdem für C₂-C₆-Alkendiyl (Alkenylen) steht,

Z für Wasserstoff oder die Gruppe

steht,

Z außerdem für C₁-C₆-Alkyl steht,

A⁶ für CH oder N steht,

R^{20} für Wasserstoff, Chlor, durch gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Chlor oder Di(C₁-C₃-alkyl)aminocarbonyl substituiertes Phenyl steht,
 R^{20} außerdem für Cyano oder C₁-C₆-Alkyl steht,
 R^{21} für Wasserstoff oder Chlor steht,
5 R^{22} für Wasserstoff, Chlor, Hydroxy, Methyl oder Trifluormethyl steht,
 R^{22} außerdem für Di(C₁-C₃-alkyl)aminocarbonyl steht,
 R^{20} und R^{21} außerdem gemeinsam für *-CH(CH₃)-CH₂-C(CH₃)₂- oder *-CH(CH₃)-O-C(CH₃)₂- steht,
wobei die mit * markierte Bindung mit R^{20} verknüpft ist;

10 Gruppe (7) Dithiocarbamate ausgewählt aus

(7-1) Mancozeb
(7-2) Maneb
(7-3) Metiram
(7-4) Propineb
15 (7-5) Thiram
(7-6) Zineb
(7-7) Ziram

Gruppe (8) Acylalanine der allgemeinen Formel (VI)

20

in welcher

* ein Kohlenstoffatom in der R- oder der S-Konfiguration, bevorzugt in der S-Konfiguration, kennzeichnet,

R^{23} für Benzyl, Furyl oder Methoxymethyl steht;

25

Gruppe (9) Anilino-pyrimidine der allgemeinen Formel (VII)

in welcher

R^{24} für Methyl, Cyclopropyl oder 1-Propinyl steht;

30

Gruppe (10): Benzimidazole der allgemeinen Formel (VIII)

in welcher

R<sup>25</sup> und R<sup>26</sup> jeweils für Wasserstoff oder zusammen für -O-CP<sub>2</sub>-O- stehen,

5 R<sup>27</sup> für Wasserstoff, C<sub>1</sub>-C<sub>4</sub>-Alkylaminocarbonyl oder für 3,5-Dimethylisoxazol-4-ylsulfonyl steht,

R<sup>28</sup> für Chlor, Methoxycarbonylamino, Chlorphenyl, Furyl oder Thiazolyl steht;

Gruppe (11): Carbamate der allgemeinen Formel (IX)

10 in welcher

R<sup>29</sup> für n- oder iso-Propyl steht,

R<sup>30</sup> für Di(C<sub>1</sub>-C<sub>2</sub>-alkyl)amino-C<sub>2</sub>-C<sub>4</sub>-alkyl oder Diethoxyphenyl steht,

wobei auch Salze dieser Verbindungen eingeschlossen sind;

Gruppe (12): Dicarboximide ausgewählt aus

(12-1) Captafol

(12-2) Captan

(12-3) Folpet

(12-4) Iprodione

20 (12-5) Procymidone

(12-6) Vinclozolin

Gruppe (13): Guanidine ausgewählt aus

(13-1) Dodine

25 (13-2) Guazatine

(13-3) Iminoctadine triacetate

(13-4) Iminoctadine tris(albesilate)

Gruppe (14): Imidazole ausgewählt aus

30 (14-1) Cyazofamid

(14-2) Prochloraz

(14-3) Triazoxide

(14-4) Pefurazoate

Gruppe (15): Morpholine der allgemeinen Formel (X)

5 in welcher

R³¹ und R³² unabhängig voneinander für Wasserstoff oder Methyl stehen,R³³ für C₁-C₄-Alkyl (bevorzugt C₁₂-C₁₄-Alkyl), C₅-C₁₂-Cycloalkyl (bevorzugt C₁₀-C₁₂-Cycloalkyl), Phenyl-C₁-C₄-alkyl, welches im Phenylteil durch Halogen oder C₁-C₄-Alkyl substituiert sein kann, oder für Acryl, welches durch Chlorphenyl und Dimethoxyphenyl substituiert ist, steht;

10

Gruppe (16): Pyrrole der allgemeinen Formel (XI)

in welcher

15 R³⁴ für Chlor oder Cyano steht,R³⁵ für Chlor oder Nitro steht,R³⁶ für Chlor steht,R³⁵ und R³⁶ außerdem gemeinsam für -O-CF₂-O- stehen;20 Gruppe (17): Phosphonate ausgewählt aus

(17-1) Fosetyl-Al

(17-2) Phosphonsäure;

Gruppe (18): Phenylethanamide der allgemeinen Formel (XII)

25 in welcher

R³⁷ für unsubstituiertes oder durch Fluor, Chlor, Brom, Methyl oder Ethyl substituiertes Phenyl, 2-Naphthyl, 1,2,3,4-Tetrahydronaphthyl oder Indanyl steht;

Gruppe (19): Fungizide ausgewählt aus

(19-1) Acibenzolar-S-methyl
 (19-2) Chlorothalonil
 (19-3) Cymoxanil
 5 (19-4) Edifenphos
 (19-5) Famoxadone
 (19-6) Fluazinam
 (19-7) Kupferoxychlorid
 (19-8) Kupferhydroxid
 10 (19-9) Oxadixyl
 (19-10) Spiroxamine
 (19-11) Dithianon
 (19-12) Metrafenone
 (19-13) Fenamidone
 15 (19-14) 2,3-Dibutyl-6-chlor-thieno[2,3-d]pyrimidin-4(3H)-on
 (19-15) Probenazole
 (19-16) Isoprothiolane
 (19-17) Kasugamycin
 (19-18) Phthalide
 20 (19-19) Ferimzone
 (19-20) Tricyclazole
 (19-21) N-({4-[Cyclopropylamino]carbonyl}phenyl)sulfonyl)-2-methoxybenzamid
 (19-22) 2-(4-Chlorphenyl)-N-{2-[3-methoxy-4-(prop-2-in-1-yloxy)phenyl]ethyl}-2-(prop-2-in-1-yloxy)acetamid
 25

Gruppe (20): (Thio)Harnstoff-Derivate ausgewählt aus

(20-1) Pencycuron
 (20-2) Thiophanate-methyl
 (20-3) Thiophanate-ethyl

30

Gruppe (21): Amide der allgemeinen Formel (XIII)

in welcher

A⁷ für eine direkte Bindung oder -O- steht,

A⁸ für -C(=O)NH- oder -NHC(=O)- steht,
 R³⁸ für Wasserstoff oder C₁-C₄-Alkyl steht;
 R³⁹ für C₁-C₆-Alkyl steht;

5 Gruppe (22): Triazolopyrimidine der allgemeinen Formel (XIV)

in welcher

R⁴⁰ für C₁-C₆-Alkyl oder C₂-C₆-Alkenyl steht,
 R⁴¹ für C₁-C₆-Alkyl steht,
 10 R⁴⁰ und R⁴¹ außerdem gemeinsam für C₄-C₅-Alkandiyl (Alkylen) stehen, welches einfach oder zweifach durch C₁-C₆-Alkyl substituiert ist;
 R⁴² für Brom oder Chlor steht,
 R⁴³ und R⁴⁷ unabhängig voneinander für Wasserstoff, Fluor, Chlor oder Methyl stehen,
 R⁴⁴ und R⁴⁶ unabhängig voneinander für Wasserstoff oder Fluor stehen,
 15 R⁴⁵ für Wasserstoff, Fluor oder Methyl steht,

Gruppe (23): Idochromone der allgemeinen Formel (XV)

in welcher

20 R⁴⁸ für C₁-C₆-Alkyl steht,
 R⁴⁹ für C₁-C₆-Alkyl, C₂-C₆-Alkenyl oder C₂-C₆-Alkinyl steht;

Gruppe (24): Biphenylcarboxamide der allgemeinen Formel (XVI)

25 in welcher

R^{50} für Wasserstoff oder Fluor steht,
 R^{51} für Fluor, Chlor, Brom, Methyl, Trifluormethyl, Trifluormethoxy, $-CH=N-OMe$ oder
 $-C(Me)=N-OMe$ steht,

R^{52} für Wasserstoff, Fluor, Chlor, Brom, Methyl oder Trifluormethyl steht,

5 Het für einen der folgenden Reste Het1 bis Het7 steht:

R^{53} für Iod, Methyl, Difluormethyl oder Trifluormethyl steht,

R^{54} für Wasserstoff, Fluor, Chlor oder Methyl steht,

R^{55} für Methyl, Difluormethyl oder Trifluormethyl steht,

10 R^{56} für Chlor, Brom, Iod, Methyl, Difluormethyl oder Trifluormethyl steht,

R^{57} für Methyl oder Trifluormethyl steht.

Überraschenderweise ist die fungizide Wirkung der erfindungsgemäßen Wirkstoffkombinationen wesentlich höher als die Summe der Wirkungen der einzelnen Wirkstoffe. Es liegt also ein nicht vorhersehbarer, echter synergistischer Effekt vor und nicht nur eine Wirkungsergänzung.

Die Verbindungen der Gruppe (1) sind durch die Formel (I) allgemein definiert.

Bevorzugt sind Carboxamide der Formel (I), in welcher

20 R^1 für Wasserstoff, Fluor, Chlor, Methyl, Ethyl, n-, iso-Propyl, Monofluormethyl, Difluormethyl, Trifluormethyl, Monochlormethyl, Dichlormethyl oder Trichlormethyl steht,

A für einen der folgenden Reste A1 bis A5 steht:

R^2 für Methyl, Ethyl, n- oder iso-Propyl steht,

25 R^3 für Iod, Methyl, Difluormethyl oder Trifluormethyl steht,

R^4 für Wasserstoff, Fluor, Chlor oder Methyl steht,

R^5 für Chlor, Brom, Iod, Methyl, Difluormethyl oder Trifluormethyl steht,

R^6 für Wasserstoff, Chlor, Methyl, Amino oder Dimethylamino steht,

R^7 für Methyl, Difluormethyl oder Trifluormethyl steht,

R⁸ für Brom oder Methyl steht,
 R⁹ für Methyl oder Trifluormethyl steht.

Besonders bevorzugt sind Carboxamide der Formel (I), in welcher

5 R¹ für Wasserstoff, Fluor, Chlor, Methyl, Ethyl oder Trifluormethyl steht,
 A für einen der folgenden Reste A1 oder A2 steht:

R² für Methyl oder iso-Propyl steht,
 R³ für Methyl, Difluormethyl oder Trifluormethyl steht,
 10 R⁴ für Wasserstoff oder Fluor steht,
 R⁵ für Iod, Difluormethyl oder Trifluormethyl steht.

Ganz besonders bevorzugt sind Carboxamide der Formel (I), in welcher

R¹ für Wasserstoff oder Methyl steht,
 15 A für einen der folgenden Reste A1 oder A2 steht:

R² für Methyl steht,
 R³ für Methyl steht,
 R⁴ für Fluor steht,
 20 R⁵ für Iod oder Trifluormethyl steht.

Ganz besonders bevorzugt werden Verbindungen der Formel (Ia) in Mischungen eingesetzt,

in welcher R¹, R², R³ und R⁴ die oben angegebenen Bedeutungen haben.
 25 Ganz besonders bevorzugt werden Verbindungen der Formel (Ib) in Mischungen eingesetzt,

in welcher R¹ und R⁵ die oben angegebenen Bedeutungen haben.

Die Formel (I) umfasst insbesondere die folgenden bevorzugten Mischungspartner der Gruppe (1):

- 5 (1-1) N-[2-(1,3-Dimethylbutyl)phenyl]-1,3-dimethyl-1*H*-pyrazol-4-carboxamid
- (1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1*H*-pyrazol-4-carboxamid
(bekannt aus WO 03/010149)
- (1-3) N-[2-(1,3-Dimethylbutyl)phenyl]-5-chlor-1,3-dimethyl-1*H*-pyrazol-4-carboxamid
(bekannt aus JP-A 10-251240)
- 10 (1-4) 3-(Difluormethyl)-N-[2-(1,3-dimethylbutyl)phenyl]-1-methyl-1*H*-pyrazol-4-carboxamid
- (1-5) 3-(Trifluormethyl)-N-[2-(1,3-dimethylbutyl)phenyl]-5-fluor-1-methyl-1*H*-pyrazol-4-carbox-
amid (bekannt aus DE-A 103 03 589)
- (1-6) 3-(Trifluormethyl)-N-[2-(1,3-dimethylbutyl)phenyl]-5-chlor-1-methyl-1*H*-pyrazol-4-carbox-
amid (bekannt aus JP-A 10-251240)
- 15 (1-7) 1,3-Dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1*H*-pyrazol-4-carboxamid
(bekannt aus JP-A 10-251240)
- (1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1*H*-pyrazol-4-carboxamid
(bekannt aus WO 03/010149)
- (1-9) 3-(Difluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1*H*-pyrazol-4-carboxamid
- 20 (1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1*H*-pyrazol-4-carboxamid
- (1-11) 3-(Trifluormethyl)-5-fluor-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1*H*-pyrazol-4-
carboxamid (bekannt aus DE-A 103 03 589)
- (1-12) 3-(Trifluormethyl)-5-chlor-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1*H*-pyrazol-4-
carboxamid (bekannt aus JP-A 10-251240)
- 25 (1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid
(bekannt aus DE-A 102 29 595)
- (1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid
(bekannt aus DE-A 102 29 595)
- (1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid
- 30 (bekannt aus DE-A 102 29 595)
- (1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid
(bekannt aus DE-A 102 29 595)

Hervorgehoben sind erfindungsgemäße Wirkstoffkombinationen, die neben dem Carboxamid (1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1*H*-pyrazol-4-carboxamid (Gruppe 1) einen oder mehrere, bevorzugt einen, Mischungspartner der Gruppen (2) bis (24) enthält.

5 Hervorgehoben sind erfindungsgemäße Wirkstoffkombinationen, die neben dem Carboxamid (1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1*H*-pyrazol-4-carboxamid (Gruppe 1) einen oder mehrere, bevorzugt einen, Mischungspartner der Gruppen (2) bis (24) enthält.

10 Hervorgehoben sind erfindungsgemäße Wirkstoffkombinationen, die neben dem Carboxamid (1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid (Gruppe 1) einen oder mehrere, bevorzugt einen, Mischungspartner der Gruppen (2) bis (24) enthält.

15 Hervorgehoben sind erfindungsgemäße Wirkstoffkombinationen, die neben dem Carboxamid (1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid (Gruppe 1) einen oder mehrere, bevorzugt einen, Mischungspartner der Gruppen (2) bis (24) enthält.

Die Formel (II) umfasst folgende bevorzugte Mischungspartner der Gruppe (2):

(2-1) Azoxystrobin (bekannt aus EP-A 0 382 375) der Formel

20 (2-2) Fluoxastrobin (bekannt aus DE-A 196 02 095) der Formel

(2-3) (2*E*)-2-(2-{{[6-(3-Chlor-2-methylphenoxy)-5-fluor-4-pyrimidinyl]oxy}phenyl}-2-(methoxyimino)-N-methylethanamid (bekannt aus DE-A 196 46 407, EP-B 0 712 396) der Formel

25 (2-4) Trifloxystrobin (bekannt aus EP-A 0 460 575) der Formel

(2-5) (2E)-2-(Methoxyimino)-N-methyl-2-(2-[(1E)-1-[3-(trifluormethyl)phenyl]ethyliden]amino)oxy)methylphenyl ethanamide (bekannt aus EP-A 0 569 384) der Formel

5 (2-6) (2E)-2-(Methoxyimino)-N-methyl-2-{2-[(E)-{1-[3-(trifluormethyl)phenyl]ethoxy}imino]methyl}phenyl ethanamide (bekannt aus EP-A 0 596 254) der Formel

(2-7) Orysastrobin (bekannt aus DE-A 195 39 324) der Formel

10 (2-8) 5-Methoxy-2-methyl-4-(2-[(1E)-1-[3-(trifluormethyl)phenyl]ethyliden]amino)oxy)methylphenyl-2,4-dihydro-3H-1,2,4-triazol-3-on (bekannt aus WO 98/23155) der Formel

(2-9) Kresoxim-methyl (bekannt aus EP-A 0 253 213) der Formel

(2-10) Dimoxystrobin (bekannt aus EP-A 0 398 692) der Formel

(2-11) Picoxystrobin (bekannt aus EP-A 0 278 595) der Formel

5 (2-12) Pyraclostrobin (bekannt aus DE-A 44 23 612) der Formel

(2-13) Metominostrobin (bekannt aus EP-A 0 398 692) der Formel

Die Formel (III) umfasst folgende bevorzugte Mischungspartner der Gruppe (3):

10 (3-1) Azaconazole (bekannt aus DE-A 25 51 560) der Formel

(3-2) Etaconazole (bekannt aus DE-A 25 51 560) der Formel

(3-3) Propiconazole (bekannt aus DE-A 25 51 560) der Formel

(3-4) Difenoconazole (bekannt aus EP-A 0 112 284) der Formel

5 (3-5) Bromuconazole (bekannt aus EP-A 0 258 161) der Formel

(3-6) Cyproconazole (bekannt aus DE-A 34 06 993) der Formel

(3-7) Hexaconazole (bekannt aus DE-A 30 42 303) der Formel

10

(3-8) Penconazole (bekannt aus DE-A 27 35 872) der Formel

(3-9) Myclobutanol (bekannt aus EP-A 0 145 294) der Formel

(3-10) Tetraconazole (bekannt aus EP-A 0 234 242) der Formel

5 (3-11) Flutriafol (bekannt aus EP-A 0 015 756) der Formel

(3-12) Epoxiconazole (bekannt aus EP-A 0 196 038) der Formel

(3-13) Flusilazole (bekannt aus EP-A 0 068 813) der Formel

10

(3-14) Simeconazole (bekannt aus EP-A 0 537 957) der Formel

(3-15) Prothioconazole (bekannt aus WO 96/16048) der Formel

(3-16) Fenbuconazole (bekannt aus DE-A 37 21 786) der Formel

5 (3-17) Tebuconazole (bekannt aus EP-A 0 040 345) der Formel

(3-18) Ipcconazole (bekannt aus EP-A 0 329 397) der Formel

(3-19) Metconazole (bekannt aus EP-A 0 329 397) der Formel

10

(3-20) Triticonazole (bekannt aus EP-A 0 378 953) der Formel

(3-21) Bitertanol (bekannt aus DE-A 23 24 010) der Formel

(3-22) Triadimenol (bekannt aus DE-A 23 24 010) der Formel

5 (3-23) Triadimefon (bekannt aus DE-A 22 01 063) der Formel

(3-24) Fluquinconazole (bekannt aus EP-A 0 183 458) der Formel

(3-25) Quinconazole (bekannt aus EP-A 0 183 458) der Formel

10

Die Formel (IV) umfasst folgende bevorzugte Mischungspartner der Gruppe (4):

(4-1) Dichlofluanid (bekannt aus DE-A 11 93 498) der Formel

(4-2) Tollyfluanid (bekannt aus DE-A 11 93 498) der Formel

Bevorzugte Mischungspartner der Gruppe (5) sind

(5-1) Iprovalicarb (bekannt aus DE-A 40 26 966) der Formel

5 (5-3) Benthiavalicarb (bekannt aus WO 96/04252) der Formel

Die Formel (V) umfasst folgende bevorzugte Mischungspartner der Gruppe (6):

(6-1) 2-Chloro-N-(1,1,3-trimethyl-indan-4-yl)-nicotinamid (bekannt aus EP-A 0 256 503) der Formel

10 (6-2) Boscalid (bekannt aus DE-A 195 31 813) der Formel

(6-3) Furametpyr (bekannt aus EP-A 0 315 502) der Formel

(6-4) 1-Methyl-3-trifluormethyl-1H-pyrazol-4-carbonsäure-(3-p-tolyl-thiophen-2-yl)-amid

(bekannt aus EP-A 0 737 682) der Formel

(6-5) Ethaboxam (bekannt aus EP-A 0 639 574) der Formel

5. (6-6) Fenhexamid (bekannt aus EP-A 0 339 418) der Formel

(6-7) Carpropamid (bekannt aus EP-A 0 341 475) der Formel

(6-8) 2-Chlor-4-(2-fluoro-2-methyl-propionylamino)-N,N-dimethyl-benzamid

10. (6-8) bekannt aus EP-A 0 600 629) der Formel

(6-9) Picobenzamid (bekannt aus WO 99/42447) der Formel

(6-10) Zoxamide (bekannt aus EP-A 0 604 019) der Formel

(6-11) 3,4-Dichlor-N-(2-cyanophenyl)isothiazol-5-carboxamid (bekannt aus WO 99/24413) der Formel

(6-12) Carboxin (bekannt aus US 3,249,499) der Formel

5

(6-13) Tiadinil (bekannt aus US 6,616,054) der Formel

(6-14) Pentiopyrad (bekannt aus EP-A 0 737 682) der Formel

10 (6-15) Silthiofam (bekannt aus WO 96/18631) der Formel

(6-16) N-[2-(1,3-Dimethylbutyl)phenyl]-1-methyl-4-(trifluormethyl)-1*H*-pyrrol-3-carboxamid

(bekannt aus WO 02/38542) der Formel

15 Bevorzugte Mischungspartner der Gruppe (7) sind

(7-1) Mancozeb (bekannt aus DE-A 12 34 704) mit dem IUPAC-Namen
Manganese ethylenebis(dithiocarbamate) (polymeric) complex with zinc salt

(7-2) Maneb (bekannt aus US 2,504,404) der Formel

(7-3) Metiram (bekannt aus DE-A 10 76 434) mit dem IUPAC-Namen
Zinc ammoniate ethylenebis(dithiocarbamate) – poly(ethylenethiuram disulfide)

(7-4) Propineb (bekannt aus GB 935 981) der Formel

5.

(7-5) Thiram (bekannt aus US 1,972,961) der Formel

(7-6) Zineb (bekannt aus DE-A 10 81 446) der Formel

10 (7-7) Ziram (bekannt aus US 2,588,428) der Formel

Die Formel (VI) umfasst folgende bevorzugte Mischungspartner der Gruppe (8):

(8-1) Benalaxyl (bekannt aus DE-A 29 03 612) der Formel

15 (8-2) Furalaxyd (bekannt aus DE-A 25 13 732) der Formel

(8-3) Metalaxyloxyfuran (bekannt aus DE-A 25 15 091) der Formel

(8-4) Metalaxyl-M (bekannt aus WO 96/01559) der Formel

5

(8-5) Benalaxyloxyfuran (bekannt aus EP-A 0 310 550) der Formel

Die Formel (VII) umfasst folgende bevorzugte Mischungspartner der Gruppe (9):

(9-1) Cyprodinil (bekannt aus EP-A 0 310 550) der Formel

10

(9-2) Mepanipyrim (bekannt aus EP-A 0 270 111) der Formel

(9-3) Pyrimethanil (bekannt aus DD 151 404) der Formel

Die Formel (VIII) umfasst folgende bevorzugte Mischungspartner der Gruppe (10):

(10-1) 6-Chlor-5-[(3,5-dimethylisoxazol-4-yl)sulfonyl]-2,2-difluor-5H-[1,3]dioxolo[4,5-f]-benzimidazol (bekannt aus WO 97/06171) der Formel

5 (10-2) Benomyl (bekannt aus US 3,631,176) der Formel

(10-3) Carbendazim (bekannt aus US 3,010,968) der Formel:

(10-4) Chlorfenazole der Formel

10

(10-5) Fuberidazole (bekannt aus DE-A 12 09 799) der Formel

(10-6) Thiabendazole (bekannt aus US 3,206,468) der Formel

15

Die Formel (IX) umfasst folgende bevorzugte Mischungspartner der Gruppe (11):

(11-1) Diethofencarb (bekannt aus EP-A 0 078 663) der Formel

(11-2) Propamocarb (bekannt aus US 3,513,241) der Formel

(11-3) Propamocarb-hydrochloride (bekannt aus US 3,513,241) der Formel

(11-4) Propamocarb-Fosetyl der Formel

5

Bevorzugte Mischungspartner der Gruppe (12) sind

(12-1) Captafol (bekannt aus US 3,178,447) der Formel

(12-2) Captan (bekannt aus US 2,553,770) der Formel

10

(12-3) Folpet (bekannt aus US 2,553,770) der Formel

(12-4) Iprodione (bekannt aus DE-A 21 49 923) der Formel

15 (12-5) Procymidone (bekannt aus DE-A 20 12 656) der Formel

(12-6) Vinclozolin (bekannt aus DE-A 22 07 576) der Formel

Bevorzugte Mischungspartner der Gruppe (13) sind

5 (13-1) Dodine (bekannt aus GB 11 03 989) der Formel

(13-2) Guazatine (bekannt aus GB 11 14 155)

(13-3) Iminoctadine triacetate (bekannt aus EP-A 0 155 509) der Formel

10 Bevorzugte Mischungspartner der Gruppe (14) sind

(14-1) Cyazofamid (bekannt aus EP-A 0 298 196) der Formel

(14-2) Prochloraz (bekannt aus DE-A 24 29 523) der Formel

15 (14-3) Triazoxide (bekannt aus DE-A 28 02 488) der Formel

(14-4) Pefurazoate (bekannt aus EP-A 0 248 086) der Formel

Die Formel (X) umfasst folgende bevorzugte Mischungspartner der Gruppe (15):

5 (15-1) Aldimorph (bekannt aus DD 140 041) der Formel

(15-2) Tridemorph (bekannt aus GB 988 630) der Formel

(15-3) Dodemorph (bekannt aus DE-A 25 432 79) der Formel

10

(15-4) Fenpropimorph (bekannt aus DE-A 26 56 747) der Formel

(15-5) Dimethomorph (bekannt aus EP-A 0 219 756) der Formel

Die Formel (XI) umfasst folgende bevorzugte Mischungspartner der Gruppe (16):

(16-1) Fenpiclonil (bekannt aus EP-A 0 236 272) der Formel:

5

(16-2) Fludioxonil (bekannt aus EP-A 0 206 999) der Formel

(16-3) Pyrrolnitrine (bekannt aus JP 65-25876) der Formel

10

Bevorzugte Mischungspartner der Gruppe (17) sind

(17-1) Fosetyl-Al (bekannt aus DE-A 24 56 627) der Formel

(17-2) Phosphonic acid (bekannte Chemikalie) der Formel

15

Die Formel (XII) umfasst folgende bevorzugte Mischungspartner der Gruppe (18), welche aus WO 96/23793 bekannt sind und jeweils als E- oder Z-Isomere vorliegen können. Verbindungen der

Formel (XII) können daher als Gemisch von verschiedenen Isomeren oder auch in Form eines einzigen Isomeren vorliegen. Bevorzugt sind Verbindungen der Formel (XII) in Form ihres E-Isomers:

(18-1) die Verbindung 2-(2,3-Dihydro-1H-inden-5-yl)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2-(methoxyimino)acetamid der Formel

5

(18-2) die Verbindung N-[2-(3,4-Dimethoxyphenyl)ethyl]-2-(methoxyimino)-2-(5,6,7,8-tetrahydro-naphthalen-2-yl)acetamid der Formel

10

(18-3) die Verbindung 2-(4-Chlorphenyl)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2-(methoxyimino)acetamid der Formel

(18-4) die Verbindung 2-(4-Bromphenyl)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2-(methoxyimino)acetamid der Formel

15 (18-5) die Verbindung 2-(4-Methylphenyl)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2-(methoxyimino)acetamid der Formel

(18-6) die Verbindung 2-(4-Ethylphenyl)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2-(methoxyimino)acetamid der Formel

Bevorzugte Mischungspartner der Gruppe (19) sind

(19-1) Acibenzolar-S-methyl (bekannt aus EP-A 0 313 512) der Formel

5. (19-2) Chlorothalonil (bekannt aus US 3,290,353) der Formel

(19-3) Cymoxanil (bekannt aus DE-A 23 12 956) der Formel

(19-4) Edifenphos (bekannt aus DE-A 14 93 736) der Formel

10.

(19-5) Famoxadone (bekannt aus EP-A 0 393 911) der Formel

(19-6) Fluazinam (bekannt aus EP-A 0 031 257) der Formel

15

(19-7) Kupferoxychlorid

(19-9) Oxadixyl (bekannt aus DE-A 30 30 026) der Formel

(19-10) Spiroxamine (bekannt aus DE-A 37 35 555) der Formel

5 (19-11) Dithianon (bekannt aus JP-A 44-29464) der Formel

(19-12) Metafenone (bekannt aus EP-A 0 897 904) der Formel

10 (19-13) Fenamidone (bekannt aus EP-A 0 629 616) der Formel

(19-14) 2,3-Dibutyl-6-chlor-thieno[2,3-d]pyrimidin-4(3H)on (bekannt aus WO 99/14202) der
Formel

(19-15) Probenazole (bekannt aus US 3,629,428) der Formel

(19-16) Isoprothiolane (bekannt aus US 3,856,814) der Formel

(19-17) Kasugamycin (bekannt aus GB 1 094 567) der Formel

5 (19-18) Phthalide (bekannt aus JP-A 57-55844) der Formel

(19-19) Ferimzone (bekannt aus EP-A 0 019 450) der Formel

(19-20) Tricyclazole (bekannt aus DE-A 22 50 077) der Formel

10

(19-21) N-((4-[(Cyclopropylamino)carbonyl]phenyl)sulfonyl)-2-methoxybenzamid der Formel

(19-22) 2-(4-Chlorophenyl)-N-{2-[3-methoxy-4-(prop-2-in-1-yloxy)phenyl]ethyl}-2-(prop-2-in-1-yloxy)acetamid (bekannt aus WO 01/87822) der Formel

15

Bevorzugte Mischungspartner der Gruppe (20) sind

(20-1) Pencycuron (bekannt aus DE-A 27 32 257) der Formel

(20-2) Thiophanate-methyl (bekannt aus DE-A 18 06 123) der Formel

5

(20-3) Thiophanate-ethyl (bekannt aus DE-A 18 06 123) der Formel

Bevorzugte Mischungspartner der Gruppe (21) sind

(21-1) Fenoxanil (bekannt aus EP-A 0 262 393) der Formel

10

(21-2) Diclofencimet (bekannt aus JP-A 7-206608) der Formel

Bevorzugte Mischungspartner der Gruppe (22) sind

(22-1) 5-Chlor-N-[(1*S*)-2,2,2-trifluor-1-methylethyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]-

15

pyrimidin-7-amin (bekannt aus US 5,986,135) der Formel

(22-2) 5-Chlor-N-[*(IR*)-1,2-dimethylpropyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amin (bekannt aus WO 02/38565) der Formel

(22-3) 5-Chlor-6-(2-chlor-6-fluorphenyl)-7-(4-methylpiperidin-1-yl)[1,2,4]triazolo[1,5-a]pyrimidin
5 (bekannt aus US 5,593,996) der Formel

(22-4) 5-Chlor-6-(2,4,6-trifluorophenyl)-7-(4-methylpiperidin-1-yl)[1,2,4]triazolo[1,5-a]pyrimidin
10 (bekannt aus DE-A 101 24 208) der Formel

Bevorzugte Mischungspartner der Gruppe (23) sind:

(23-1) 2-Butoxy-6-iod-3-propyl-benzopyran-4-on (bekannt aus WO 03/014103) der Formel

(23-2) 2-Ethoxy-6-iod-3-propyl-benzopyran-4-on (bekannt aus WO 03/014103) der Formel

15 (23-3) 6-Iod-2-propoxy-3-propyl-benzopyran-4-on (bekannt aus WO 03/014103) der Formel

(23-4) 2-But-2-inyloxy-6-iod-3-propyl-benzopyran-4-on (bekannt aus WO 03/014103) der Formel

(23-5) 6-Iod-2-(1-methyl-butoxy)-3-propyl-benzopyran-4-on (bekannt aus WO 03/014103) der Formel

5

(23-6) 2-But-3-enyloxy-6-iod-benzopyran-4-on (bekannt aus WO 03/014103) der Formel

(23-7) 3-Butyl-6-iod-2-isopropoxy-benzopyran-4-on (bekannt aus WO 03/014103) der Formel

10 Bevorzugte Mischungspartner der Gruppe (24) sind

(24-1) *N*-(3',4'-Dichlor-5-fluor-1,1'-biphenyl-2-yl)-3-(difluormethyl)-1-methyl-1*H*-pyrazol-4-carboxamid (bekannt aus WO 03/070705) der Formel

(24-2) 3-(Difluormethyl)-*N*-{3'-fluor-4'-[(E)-(methoxyimino)methyl]-1,1'-biphenyl-2-yl}-1-methyl-1*H*-pyrazol-4-carboxamid (bekannt aus WO 02/08197) der Formel

15

(24-3) 3-(Trifluormethyl)-N-{3'-fluor-4'-[*(E*)-(methoxyimino)methyl]-1,1'-biphenyl-2-yl}-1-methyl-1*H*-pyrazol-4-carboxamid (bekannt aus WO 02/08197) der Formel

(24-4) N-(3',4'-Dichlor-1,1'-biphenyl-2-yl)-5-fluor-1,3-dimethyl-1*H*-pyrazol-4-carboxamid (bekannt aus WO 00/14701) der Formel

(24-5) N-(4'-Chlor-3'-fluor-1,1'-biphenyl-2-yl)-2-methyl-4-(trifluormethyl)-1,3-thiazol-5-carboxamid (bekannt aus WO 03/066609) der Formel

10 (24-6) N-(4'-Chlor-1,1'-biphenyl-2-yl)-4-(difluormethyl)-2-methyl-1,3-thiazol-5-carboxamid (bekannt aus WO 03/066610) der Formel

(24-7) N-(4'-Brom-1,1'-biphenyl-2-yl)-4-(difluormethyl)-2-methyl-1,3-thiazol-5-carboxamid (bekannt aus WO 03/066610) der Formel

(24-8) 4-(Difluormethyl)-2-methyl-N-[4'-(trifluormethyl)-1,1'-biphenyl-2-yl]-1,3-thiazol-5-carboxamid (bekannt aus WO 03/066610) der Formel

5

Die Verbindung (6-7) Carpropamid besitzt drei asymmetrische substituierte Kohlenstoffatome. Die Verbindung (6-7) kann daher als Gemisch von verschiedenen Isomeren oder auch in Form einer einzigen Komponente vorliegen. Besonders bevorzugt sind die Verbindungen

(1*S*,3*R*)-2,2-Dichlor-N-[(1*R*)-1-(4-chlorphenyl)ethyl]-1-ethyl-3-methylcyclopropancarboxamid der Formel

10

und

(1*R*,3*S*)-2,2-Dichlor-N-[(1*R*)-1-(4-chlorphenyl)ethyl]-1-ethyl-3-methylcyclopropancarboxamid der Formel

15

Als Mischungspartner sind die folgenden Wirkstoffe besonders bevorzugt:

(2-1) Azoxystrobin
 (2-2) Fluoxastrobin
 (2-3) (2E)-2-(2-{{[6-(3-Chlor-2-methylphenoxy)-5-fluor-4-pyrimidinyl]oxy}phenyl}-2-(methoxyimino)-N-methylethanamid
 (2-4) Trifloxystrobin

20

(2-5) (2E)-2-(Methoxyimino)-N-methyl-2-(2-[(1E)-1-[3-(trifluoromethyl)phenyl]ethyliden]amino)oxy]methyl}phenyl)ethanamid

(2-6) (2E)-2-(Methoxyimino)-N-methyl-2-{2-[(E)-{1-[3-(trifluoromethyl)phenyl]-ethoxy}imino)methyl]phenyl}ethanamid

5 (2-8) 5-Methoxy-2-methyl-4-(2-[(1E)-1-[3-(trifluoromethyl)phenyl]ethyliden]amino)oxy]methyl}phenyl)-2,4-dihydro-3*H*-1,2,4-triazol-3-on

(2-11) Picoxystrobin

(2-9) Kresoxim-methyl

(2-10) Dimoxystrobin

10 (2-12) Pyraclostrobin

(2-13) Metominostrobin

(3-3) Propiconazole

(3-4) Difenoconazole

(3-6) Cyproconazole

15 (3-7) Hexaconazole

(3-8) Penconazole

(3-9) Myclobutanil

(3-10) Tetraconazole

(3-13) Flusilazole

20 (3-15) Prothioconazole

(3-16) Fenbuconazole

(3-17) Tebuconazole

(3-21) Bitertanol

(3-22) Triadimenol

25 (3-23) Triadimefon

(3-12) Epoxiconazole

(3-19) Metconazole

(3-24) Fluquinconazole

(4-1) Dichlofuanid

30 (4-2) Tolylfuanid

(5-1) Iprovalicarb

(5-3) Benthiavalicarb

(6-2) Boscalid

(6-5) Ethaboxam

35 (6-6) Fenhexamid

(6-7) Carpropamid

(6-8) 2-Chlor-4-[(2-fluor-2-methylpropanoyl)amino]-N,N-dimethylbenzamid
(6-9) Picobenzamid
(6-10) Zoxamide
(6-11) 3,4-Dichlor-N-(2-cyanophenyl)isothiazol-5-carboxamid
5 (6-14) Pentiopyrad
(6-16) N-[2-(1,3-Dimethylbutyl)phenyl]-1-methyl-4-(trifluormethyl)-1*H*-pyrrol-3-carboxamid
(7-1) Mancozeb
(7-2) Maneb
(7-4) Propineb
10 (7-5) Thiram
(7-6) Zineb
(8-1) Benalaxyll
(8-2) Furalaxyll
(8-3) Metalaxyll
15 (8-4) Metalaxyll-M
(8-5) Benalaxyll-M
(9-1) Cyprodinil
(9-2) Mepanipyrim
(9-3) Pyrimethanil
20 (10-1) 6-Chlor-5-[(3,5-dimethylisoxazol-4-yl)sulfonyl]-2,2-difluor-5*H*-[1,3]dioxolo[4,5-f]benzimidazol
(10-3) Carbendazim
(11-1) Diethofencarb
(11-2) Propamocarb
(11-3) Propamocarb-hydrochloride
25 (11-4) Propamocarb-Fosetyl
(12-2) Captan
(12-3) Folpet
(12-4) Iprodione
(12-5) Procymidone
30 (13-1) Dodine
(13-2) Guazatine
(13-3) Iminoctadine triacetate
(14-1) Cyazofamid
(14-2) Prochloraz
35 (14-3) Triazoxide
(15-5) Dimethomorph

- (15-4) Fenpropimorph
- (16-2) Fludioxonil
- (17-1) Fosetyl-Al
- (17-2) Phosphonic acid
- 5 (19-1) Acibenzolar-S-methyl
- (19-2) Chlorothalonil
- (19-3) Cymoxanil
- (19-5) Famoxadone
- (19-6) Fluazinam
- 10 (19-9) Oxadixyl
- (19-10) Spiroxamine
- (19-7) Kupferoxychlorid
- (19-13) Fenamidone
- (19-22) 2-(4-Chlorphenyl)-N-{2-[3-methoxy-4-(prop-2-in-1-yloxy)phenyl]ethyl}-2-(prop-2-in-1-yloxy)acetamid
- 15 (20-1) Pencycuron
- (20-2) Thiophanate-methyl
- (22-1) 5-Chlor-N-[(*1S*)-2,2,2-trifluor-1-methylethyl]-6-(2,4,6-trifluorphenyl)[1,2,4]triazolo[1,5-a]-pyrimidin-7-amin
- 20 (22-2) 5-Chlor-N-[(*1R*)-1,2-dimethylpropyl]-6-(2,4,6-trifluorphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amin
- (22-4) 5-Chlor-6-(2,4,6-trifluorphenyl)-7-(4-methylpiperidin-1-yl)[1,2,4]triazolo[1,5-a]pyrimidin
- (23-1) 2-Butoxy-6-iod-3-propyl-benzopyran-4-on
- (23-2) 2-Ethoxy-6-iod-3-propyl-benzopyran-4-on
- 25 (23-3) 6-Iod-2-propoxy-3-propyl-benzopyran-4-on
- (24-1) *N*-(3',4'-Dichlor-5-fluor-1,1'-biphenyl-2-yl)-3-(difluormethyl)-1-methyl-1*H*-pyrazol-4-carbox-amid
- (24-3) 3-(Trifluormethyl)-*N*-{3'-fluor-4'-[*(E*)-(methoxyimino)methyl]-1,1'-biphenyl-2-yl}-1-methyl-1*H*-pyrazol-4-carboxamid
- 30 (24-7) *N*-(4'-Brom-1,1'-biphenyl-2-yl)-4-(difluormethyl)-2-methyl-1,3-thiazol-5-carboxamid

Als Mischungspartner sind die folgenden Wirkstoffe ganz besonders bevorzugt:

- (2-2) Fluoxastrobin
- (2-4) Trifloxystrobin
- 35 (2-3) (*2E*)-2-(2-{{[6-(3-Chlor-2-methylphenoxy)-5-fluor-4-pyrimidinyl]oxy}phenyl)-2-(methoxyimino)-*N*-methylethanamid

(3-15) Prothioconazole

(3-17) Tebuconazole

(3-21) Bitertanol

(3-22) Triadimenol

5 (3-24) Fluquinconazole

(4-1) Dichlofuanid

(4-2) Tolylfuanid

(5-1) Iprovalicarb

(6-6) Fenhexamid

10 (6-9) Picobenzamid

(6-7) Carpropamid

(6-14) Pentiopyrad

(7-4) Propineb

(8-4) Metalaxy-M

15 (8-5) Benalaxy-M

(9-3) Pyrimethanil

(10-3) Carbendazim

(11-4) Propamocarb-Fosetyl

(12-4) Iprodione

20 (14-2) Prochloraz

(14-3) Triazoxide

(16-2) Fludioxonil

(19-10) Spiroxamine

25 (19-22) 2-(4-Chlorphenyl)-N-[2-[3-methoxy-4-(prop-2-in-1-yloxy)phenyl]ethyl]-2-(prop-2-in-1-yloxy)acetamid

(22-4) 5-Chlor-6-(2,4,6-trifluorphenyl)-7-(4-methylpiperidin-1-yl)[1,2,4]triazolo[1,5-a]pyrimidin

(24-1) N-(3',4'-Dichlor-5-fluor-1,1'-biphenyl-2-yl)-3-(difluormethyl)-1-methyl-1*H*-pyrazol-4-carboxamid

30 Im Folgenden werden bevorzugte Wirkstoffkombinationen beschrieben, die aus zwei Gruppen von Wirkstoffen bestehen und jeweils wenigstens ein Carboxamid der Formel (I) (Gruppe 1) und wenigstens einen Wirkstoff der angegebenen Gruppe (2) bis (24) enthalten. Diese Kombinationen sind die Wirkstoffkombinationen A bis U.

35 Innerhalb der bevorzugten Wirkstoffkombinationen A bis U sind solche hervorzuheben, die ein Carboxamid der Formel (I) (Gruppe 1)

in welcher R¹ und A die oben angegebenen Bedeutungen haben, enthalten.

Besonders bevorzugt sind Wirkstoffkombinationen A bis U, enthaltend ein Carboxamid der Formel

(I) (Gruppe 1)

5

in welcher

R¹ für Wasserstoff, Fluor, Chlor, Methyl, Ethyl oder Trifluormethyl steht,

A für eine der folgenden Reste A1 oder A2:

steht,

10 R² für Methyl steht,

R³ für Methyl, Difluormethyl oder Trifluormethyl steht,

R⁴ für Wasserstoff oder Fluor steht,

R⁵ für Iod oder Trifluormethyl steht.

15 Ganz besonders bevorzugt sind Wirkstoffkombinationen A bis U, worin das Carboxamid der Formel

(I) (Gruppe 1) aus der folgenden Liste ausgewählt ist:

(1-1) N-[2-(1,3-Dimethylbutyl)phenyl]-1,3-dimethyl-1*H*-pyrazol-4-carboxamid

(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1*H*-pyrazol-4-carboxamid

(1-3) N-[2-(1,3-Dimethylbutyl)phenyl]-5-chlor-1,3-dimethyl-1*H*-pyrazol-4-carboxamid

20 (1-4) 3-(Difluormethyl)-N-[2-(1,3-dimethylbutyl)phenyl]-1-methyl-1*H*-pyrazol-4-carboxamid

(1-5) 3-(Trifluormethyl)-N-[2-(1,3-dimethylbutyl)phenyl]-5-fluor-1-methyl-1*H*-pyrazol-4-carboxamid

(1-6) 3-(Trifluormethyl)-N-[2-(1,3-dimethylbutyl)phenyl]-5-chlor-1-methyl-1*H*-pyrazol-4-carboxamid

- (1-7) 1,3-Dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1*H*-pyrazol-4-carboxamid
- (1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1*H*-pyrazol-4-carboxamid
- (1-9) 3-(Difluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1*H*-pyrazol-4-carboxamid
- (1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1*H*-pyrazol-4-carboxamid
- 5 (1-11) 3-(Trifluormethyl)-5-fluor-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1*H*-pyrazol-4-carboxamid
- (1-12) 3-(Trifluormethyl)-5-chlor-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1*H*-pyrazol-4-carboxamid
- (1-13) *N*-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid
- 10 (1-14) 2-Iod-*N*-[2-(1,3,3-trimethylbutyl)phenyl]benzamid
- (1-15) *N*-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid
- (1-16) 2-(Trifluormethyl)-*N*-[2-(1,3,3-trimethylbutyl)phenyl]benzamid

Insbesondere bevorzugt sind Wirkstoffkombinationen A bis U, worin das Carboxamid der Formel (I) (Gruppe 1) aus der folgenden Liste ausgewählt ist:

- (1-2) *N*-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1*H*-pyrazol-4-carboxamid
- (1-8) 5-Fluor-1,3-dimethyl-*N*-[2-(1,3,3-trimethylbutyl)phenyl]-1*H*-pyrazol-4-carboxamid
- (1-10) 3-(Trifluormethyl)-1-methyl-*N*-[2-(1,3,3-trimethylbutyl)phenyl]-1*H*-pyrazol-4-carboxamid
- (1-13) *N*-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid
- 20 (1-14) 2-Iod-*N*-[2-(1,3,3-trimethylbutyl)phenyl]benzamid
- (1-15) *N*-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid
- (1-16) 2-(Trifluormethyl)-*N*-[2-(1,3,3-trimethylbutyl)phenyl]benzamid

Die Wirkstoffkombinationen A enthalten neben einem Carboxamid der Formel (I) (Gruppe 1) auch ein Strobilurin der Formel (II) (Gruppe 2)

25

in welcher A¹, L und R¹¹ die oben angegebenen Bedeutungen haben.

Bevorzugt sind Wirkstoffkombinationen A, worin das Strobilurin der Formel (II) (Gruppe 2) aus der folgenden Liste ausgewählt ist:

- 30 (2-1) Azoxystrobin
- (2-2) Fluoxastrobin
- (2-3) (2*E*)-2-{[6-(3-Chlor-2-methylphenoxy)-5-fluor-4-pyrimidinyl]oxy}phenyl)-2-(methoxyimino)-*N*-methylmethanamid
- (2-4) Trifloxystrobin

(2-5) (2E)-2-(Methoxyimino)-N-methyl-2-(2-{{(1E)-1-[3-(trifluormethyl)phenyl]ethyliden}amino}oxy)methylphenyl)ethanamid

(2-6) (2E)-2-(Methoxyimino)-N-methyl-2-{2-[*E*]-{1-[3-(trifluormethyl)phenyl]ethoxy}imino)methylphenyl)ethanamid

5 (2-7) Orysastrobin

(2-8) 5-Methoxy-2-methyl-4-(2-{{(1E)-1-[3-(trifluormethyl)phenyl]ethyliden}amino}oxy)methylphenyl)-2,4-dihydro-3*H*-1,2,4-triazol-3-on

(2-9) Kresoxim-methyl

(2-10) Dimoxystrobin

10 (2-11) Picoxystrobin

(2-12) Pyraclostrobin

(2-13) Metominostrobin

Besonders bevorzugt sind Wirkstoffkombinationen A, worin das Stobilurin der Formel (II) (Gruppe 2) aus der folgenden Liste ausgewählt ist:

15 (2-1) Azoxystrobin

(2-2) Fluoxastrobin

(2-3) (2E)-2-(2-{{[6-(3-Chlor-2-methylphenoxy)-5-fluor-4-pyrimidinyl]oxy}phenyl}-2-(methoxyimino)-N-methylethanamid

(2-4) Trifloxystrobin

20 (2-12) Pyraclostrobin

(2-9) Kresoxim-methyl

(2-10) Dimoxystrobin

(2-11) Picoxystrobin

(2-13) Metominostrobin

25

Hervorgehoben sind die in der folgenden Tabelle 1 angeführten Wirkstoffkombinationen A:

Tabelle 1: Wirkstoffkombinationen A

Nr.	Carboxamid der Formel (I)	Stobilurin der Formel (II)
A-1	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(2-2) Fluoxastrobin
A-2	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(2-3) (2E)-2-(2-{{[6-(3-Chlor-2-methylphenoxy)-5-fluor-4-pyrimidinyl]oxy}phenyl}-2-(methoxyimino)-N-methylethanamid
A-3	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(2-4) Trifloxystrobin
A-4	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(2-2) Fluoxastrobin
A-5	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(2-3) (2E)-2-(2-{{[6-(3-Chlor-2-methylphenoxy)-5-fluor-4-pyrimidinyl]oxy}phenyl}-2-(methoxyimino)-N-

Tabelle 1: Wirkstoffkombinationen A

Nr.	Carboxamid der Formel (I)	Strobilurin der Formel (II)
A-6	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)-phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	methylethanamid (2-4) Trifloxystrobin
A-7	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(2-2) Fluoxastrobin
A-8	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(2-3) (2 <i>E</i>)-2-(2-{{[6-(3-Chlor-2-methylphenoxy)-5-fluor-4-pyrimidinyl]oxy}phenyl}-2-(methoxyimino)- <i>N</i> -methylethanamid
A-9	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(2-4) Trifloxystrobin
A-10	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(2-2) Fluoxastrobin
A-11	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(2-3) (2 <i>E</i>)-2-(2-{{[6-(3-Chlor-2-methylphenoxy)-5-fluor-4-pyrimidinyl]oxy}phenyl}-2-(methoxyimino)- <i>N</i> -methylethanamid
A-12	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(2-4) Trifloxystrobin
A-13	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(2-2) Fluoxastrobin
A-14	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(2-3) (2 <i>E</i>)-2-(2-{{[6-(3-Chlor-2-methylphenoxy)-5-fluor-4-pyrimidinyl]oxy}phenyl}-2-(methoxyimino)- <i>N</i> -methylethanamid
A-15	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(2-4) Trifloxystrobin
A-16	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluoromethyl)benzamid	(2-2) Fluoxastrobin
A-17	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluoromethyl)benzamid	(2-3) (2 <i>E</i>)-2-(2-{{[6-(3-Chlor-2-methylphenoxy)-5-fluor-4-pyrimidinyl]oxy}phenyl}-2-(methoxyimino)- <i>N</i> -methylethanamid
A-18	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluoromethyl)benzamid	(2-4) Trifloxystrobin
A-19	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(2-2) Fluoxastrobin
A-20	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(2-3) (2 <i>E</i>)-2-(2-{{[6-(3-Chlor-2-methylphenoxy)-5-fluor-4-pyrimidinyl]oxy}phenyl}-2-(methoxyimino)- <i>N</i> -methylethanamid
A-21	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(2-4) Trifloxystrobin
A-22	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(2-1) Azoxystrobin
A-23	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(2-12) Pyraclostrobin
A-24	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(2-9) Kresoxim-methyl
A-25	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(2-10) Dimoxystrobin
A-26	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(2-11) Picoxystrobin
A-27	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(2-13) Metominostrobin

Tabelle 1: Wirkstoffkombinationen A

Nr.	Carboxamid der Formel (I)	Strobilurin der Formel (II)
A-28	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)-phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(2-1) Azoxystrobin
A-29	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)-phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(2-12) Pyraclostrobin
A-30	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)-phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(2-9) Kresoxim-methyl
A-31	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)-phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(2-10) Dimoxystrobin
A-32	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)-phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(2-11) Picoxystrobin
A-33	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)-phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(2-13) Metominostrobin
A-34	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(2-1) Azoxystrobin
A-35	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(2-12) Pyraclostrobin
A-36	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(2-9) Kresoxim-methyl
A-37	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(2-10) Dimoxystrobin
A-38	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(2-11) Picoxystrobin
A-39	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(2-13) Metominostrobin
A-40	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(2-1) Azoxystrobin
A-41	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(2-12) Pyraclostrobin
A-42	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(2-9) Kresoxim-methyl
A-43	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(2-10) Dimoxystrobin
A-44	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(2-11) Picoxystrobin
A-45	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(2-13) Metominostrobin
A-46	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(2-1) Azoxystrobin
A-47	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(2-12) Pyraclostrobin
A-48	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(2-9) Kresoxim-methyl
A-49	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(2-10) Dimoxystrobin
A-50	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(2-11) Picoxystrobin
A-51	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(2-13) Metominostrobin
A-52	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluoromethyl)benzamid	(2-1) Azoxystrobin
A-53	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluoromethyl)benzamid	(2-12) Pyraclostrobin
A-54	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluoromethyl)benzamid	(2-9) Kresoxim-methyl
A-55	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluoromethyl)benzamid	(2-10) Dimoxystrobin
A-56	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluoromethyl)benzamid	(2-11) Picoxystrobin
A-57	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluoromethyl)benzamid	(2-13) Metominostrobin
A-58	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)-phenyl]benzamid	(2-1) Azoxystrobin

Tabelle 1: Wirkstoffkombinationen A

Nr.	Carboxamid der Formel (I)	Strobilurin der Formel (II)
A-59	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)-phenyl]benzamid	(2-12) Pyraclostrobin
A-60	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)-phenyl]benzamid	(2-9) Kresoxim-methyl
A-61	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)-phenyl]benzamid	(2-10) Dimoxystrobin
A-62	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)-phenyl]benzamid	(2-11) Picoxystrobin
A-63	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)-phenyl]benzamid	(2-13) Metominostrobin

Die Wirkstoffkombinationen B enthalten neben einem Carboxamid der Formel (I) (Gruppe 1) auch ein Triazol der Formel (III) (Gruppe 3)

5 in welcher Q, m, R¹⁴, R¹⁵, A⁴, A⁵, R¹⁶ und R¹⁷ die oben angegebenen Bedeutungen haben.

Bevorzugt sind Wirkstoffkombinationen B, worin das Triazol der Formel (III) (Gruppe 3) aus der folgenden Liste ausgewählt ist:

- (3-1) Azaconazole
- 10 (3-2) Etaconazole
- (3-3) Propiconazole
- (3-4) Difenoconazole
- (3-5) Bromuconazole
- (3-6) Cyproconazole
- 15 (3-7) Hexaconazole
- (3-8) Penconazole
- (3-9) Myclobutanil
- (3-10) Tetraconazole
- (3-11) Flutriafol
- 20 (3-12) Epoxiconazole
- (3-13) Flusilazole
- (3-14) Simeconazole
- (3-15) Prothioconazole

(3-16) Fenbuconazole

(3-17) Tebuconazole

(3-18) Ipconazole

(3-19) Metconazole

5 (3-20) Triticonazole

(3-21) Bitertanol

(3-22) Triadimenol

(3-23) Triadimefon

(3-24) Fluquinconazole

10 (3-25) Quinconazole

Besonders bevorzugt sind Wirkstoffkombinationen B, worin das Triazol der Formel (III) (Gruppe 3) aus der folgenden Liste ausgewählt ist:

(3-3) Propiconazole

(3-6) Cyproconazole

15 (3-15) Prothioconazole

(3-17) Tebuconazole

(3-21) Bitertanol

(3-4) Difenoconazole

(3-7) Hexaconazole

20 (3-19) Metconazole

(3-22) Triadimenol

(3-24) Fluquinconazole

Hervorgehoben sind die in der folgenden Tabelle 2 angeführten Wirkstoffkombinationen B:

Tabelle 2: Wirkstoffkombinationen B

Nr.	Carboxamid der Formel (I)	Triazol der Formel (III)
B-1	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(3-3) Propiconazole
B-2	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(3-6) Cyproconazole
B-3	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(3-15) Prothioconazole
B-4	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(3-17) Tebuconazole
B-5	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(3-21) Bitertanol
B-6	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(3-3) Propiconazole
B-7	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(3-6) Cyproconazole
B-8	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(3-15) Prothioconazole

Tabelle 2: Wirkstoffkombinationen B

Nr.	Carboxamid der Formel (I)	Triazol der Formel (III)
B-9	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(3-17) Tebuconazole
B-10	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(3-21) Bitertanol
B-11	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(3-3) Propiconazole
B-12	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(3-6) Cyproconazole
B-13	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(3-15) Prothioconazole
B-14	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(3-17) Tebuconazole
B-15	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(3-21) Bitertanol
B-16	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(3-3) Propiconazole
B-17	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(3-6) Cyproconazole
B-18	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(3-15) Prothioconazole
B-19	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(3-17) Tebuconazole
B-20	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(3-21) Bitertanol
B-21	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(3-3) Propiconazole
B-22	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(3-6) Cyproconazole
B-23	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(3-15) Prothioconazole
B-24	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(3-17) Tebuconazole
B-25	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(3-21) Bitertanol
B-26	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(3-3) Propiconazole
B-27	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(3-6) Cyproconazole
B-28	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(3-15) Prothioconazole
B-29	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(3-17) Tebuconazole
B-30	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(3-21) Bitertanol
B-31	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]-benzamid	(3-3) Propiconazole
B-32	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]-benzamid	(3-6) Cyproconazole
B-33	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]-benzamid	(3-15) Prothioconazole
B-34	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]-benzamid	(3-17) Tebuconazole
B-35	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]-benzamid	(3-21) Bitertanol
B-36	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(3-4) Difenoconazole
B-37	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(3-7) Hexaconazole
B-38	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(3-19) Metconazole
B-39	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(3-22) Triadimenol
B-40	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(3-24) Fluquinconazole
B-41	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(3-4) Difenoconazole

Tabelle 2: Wirkstoffkombinationen B

Nr.	Carboxamid der Formel (I)	Triazol der Formel (III)
B-42	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(3-7) Hexaconazole
B-43	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(3-19) Metconazole
B-44	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(3-22) Triadimenol
B-45	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(3-24) Fluquinconazole
B-46	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(3-4) Difenoconazole
B-47	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(3-7) Hexaconazole
B-48	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(3-19) Metconazole
B-49	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(3-22) Triadimenol
B-50	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(3-24) Fluquinconazole
B-51	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(3-4) Difenoconazole
B-52	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(3-7) Hexaconazole
B-53	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(3-19) Metconazole
B-54	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(3-22) Triadimenol
B-55	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(3-24) Fluquinconazole
B-56	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(3-4) Difenoconazole
B-57	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(3-7) Hexaconazole
B-58	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(3-19) Metconazole
B-59	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(3-22) Triadimenol
B-60	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(3-24) Fluquinconazole
B-61	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(3-4) Difenoconazole
B-62	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(3-7) Hexaconazole
B-63	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(3-19) Metconazole
B-64	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(3-22) Triadimenol
B-65	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(3-24) Fluquinconazole
B-66	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]-benzamid	(3-4) Difenoconazole
B-67	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]-benzamid	(3-7) Hexaconazole
B-68	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]-benzamid	(3-19) Metconazole
B-69	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]-benzamid	(3-22) Triadimenol
B-70	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]-benzamid	(3-24) Fluquinconazole

Die Wirkstoffkombinationen C enthalten neben einem Carboxamid der Formel (I) (Gruppe 1) auch ein Sulfenamid der Formel (IV) (Gruppe 4)

in welcher R¹⁹ die oben angegebenen Bedeutungen hat.

Bevorzugt sind Wirkstoffkombinationen C, worin das Sulfenamid der Formel (IV) (Gruppe 4) aus der folgenden Liste ausgewählt ist:

5 (4-1) Dichlofuanid
 (4-2) Tolyfluanid

Hervorgehoben sind die in der folgenden Tabelle 3 angeführten Wirkstoffkombinationen C:

Tabelle 3: Wirkstoffkombinationen C

Nr.	Carboxamid der Formel (I)	Sulfenamid der Formel (IV)
C-1	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1H-pyrazol-4-carboxamid	(4-1) Dichlofuanid
C-2	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1H-pyrazol-4-carboxamid	(4-2) Tolyfluanid
C-3	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid	(4-1) Dichlofuanid
C-4	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid	(4-2) Tolyfluanid
C-5	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid	(4-1) Dichlofuanid
C-6	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid	(4-2) Tolyfluanid
C-7	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(4-1) Dichlofuanid
C-8	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(4-2) Tolyfluanid
C-9	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(4-1) Dichlofuanid
C-10	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(4-2) Tolyfluanid
C-11	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(4-1) Dichlofuanid
C-12	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(4-2) Tolyfluanid
C-13	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(4-1) Dichlofuanid
C-14	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(4-2) Tolyfluanid

10

Die Wirkstoffkombinationen D enthalten neben einem Carboxamid der Formel (I) (Gruppe 1) auch ein Valinamid (Gruppe 5) ausgewählt aus

(5-1) Iprovalicarb
 (5-2) N¹-[2-(4-{[3-(4-chlorophenyl)-2-propynyl]oxy}-3-methoxyphenyl)ethyl]-N²-(methylsulfonyl)-D-valinamid
 (5-3) Benthiavalicarb

15

Bevorzugt sind Wirkstoffkombinationen D, worin das Valinamid (Gruppe 5) aus der folgenden Liste ausgewählt ist:

- (5-1) Iprovalicarb
- (5-3) Benthiavalicarb

5

Hervorgehoben sind die in der folgenden Tabelle 4 angeführten Wirkstoffkombinationen D:

Tabelle 4: Wirkstoffkombinationen D

Nr.	Carboxamid der Formel (I)	Valinamid
D-1	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1H-pyrazol-4-carboxamid	(5-1) Iprovalicarb
D-2	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1H-pyrazol-4-carboxamid	(5-3) Benthiavalicarb
D-3	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid	(5-1) Iprovalicarb
D-4	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid	(5-3) Benthiavalicarb
D-5	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid	(5-1) Iprovalicarb
D-6	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid	(5-3) Benthiavalicarb
D-7	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(5-1) Iprovalicarb
D-8	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(5-3) Benthiavalicarb
D-9	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(5-1) Iprovalicarb
D-10	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(5-3) Benthiavalicarb
D-11	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(5-1) Iprovalicarb
D-12	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(5-3) Benthiavalicarb
D-13	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(5-1) Iprovalicarb
D-14	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(5-3) Benthiavalicarb

Die Wirkstoffkombinationen E enthalten neben einem Carboxamid der Formel (I) (Gruppe 1) auch ein Carboxamid der Formel (V) (Gruppe 6)

10

in welcher X, Y und Z die oben angegebenen Bedeutungen haben.

Bevorzugt sind Wirkstoffkombinationen E, worin das Carboxamid der Formel (V) (Gruppe 6) aus der folgenden Liste ausgewählt ist:

- (6-1) 2-Chloro-N-(1,1,3-trimethyl-indan-4-yl)-nicotinamid
- (6-2) Boscalid
- (6-3) Furametylpr
- (6-4) 1-Methyl-3-trifluormethyl-1H-pyrazol-4-carbonsäure-(3-p-tolyl-thiophen-2-yl)-amid
- (6-5) Ethaboxam
- (6-6) Fenhexamid
- 20 (6-7) Carpropamid

- (6-8) 2-Chlor-4-(2-fluor-2-methyl-propionylamino)-N,N-dimethyl-benzamid
- (6-9) Picobenzamid
- (6-10) Zoxamide
- (6-11) 3,4-Dichlor-N-(2-cyanophenyl)isothiazol-5-carboxamid
- 5 (6-12) Carboxin
- (6-13) Tiadinil
- (6-14) Pentiopyrad
- (6-15) Silthiofam
- (6-16) *N*-[2-(1,3-Dimethylbutyl)phenyl]-1-methyl-4-(trifluormethyl)-1*H*-pyrrol-3-carboxamid

10 Besonders bevorzugt sind Wirkstoffkombinationen E, worin das Carboxamid der Formel (V) (Gruppe 6) aus der folgenden Liste ausgewählt ist:

- (6-2) Boscalid
- (6-5) Ethaboxam
- (6-6) Fenhexamid
- 15 (6-7) Carpropamid
- (6-8) 2-Chlor-4-(2-fluor-2-methyl-propionylamino)-N,N-dimethyl-benzamid
- (6-9) Picobenzamid
- (6-10) Zoxamide
- (6-11) 3,4-Dichlor-N-(2-cyanophenyl)isothiazol-5-carboxamid

20 (6-14) Pentiopyrad

- (6-16) *N*-[2-(1,3-Dimethylbutyl)phenyl]-1-methyl-4-(trifluormethyl)-1*H*-pyrrol-3-carboxamid

Ganz besonders bevorzugt sind Wirkstoffkombinationen E, worin das Carboxamid der Formel (V) (Gruppe 6) aus der folgenden Liste ausgewählt ist:

- (6-2) Boscalid
- 25 (6-6) Fenhexamid
- (6-7) Carpropamid
- (6-9) Picobenzamid
- (6-14) Pentiopyrad

30 Hervorgehoben sind die in der folgenden Tabelle 5 angeführten Wirkstoffkombinationen E:

Tabelle 5: Wirkstoffkombinationen E

Nr.	Carboxamid der Formel (I)	Carboxamid der Formel (V)
E-1	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(6-2) Boscalid
E-2	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(6-6) Fenhexamid
E-3	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(6-7) Carpropamid

Tabelle 5: Wirkstoffkombinationen E

Nr.	Carboxamid der Formel (I)	Carboxamid der Formel (V)
E-4	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(6-9) Picobenzamid
E-5	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(6-14) Pentiopyrad
E-6	(1-8) 5-Fluor-1,3-dimethyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(6-2) Boscalid
E-7	(1-8) 5-Fluor-1,3-dimethyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(6-6) Fenhexamid
E-8	(1-8) 5-Fluor-1,3-dimethyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(6-7) Carpropamid
E-9	(1-8) 5-Fluor-1,3-dimethyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(6-9) Picobenzamid
E-10	(1-8) 5-Fluor-1,3-dimethyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(6-14) Pentiopyrad
E-11	(1-10) 3-(Trifluormethyl)-1-methyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(6-2) Boscalid
E-12	(1-10) 3-(Trifluormethyl)-1-methyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(6-6) Fenhexamid
E-13	(1-10) 3-(Trifluormethyl)-1-methyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(6-7) Carpropamid
E-14	(1-10) 3-(Trifluormethyl)-1-methyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(6-9) Picobenzamid
E-15	(1-10) 3-(Trifluormethyl)-1-methyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(6-14) Pentiopyrad
E-16	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(6-2) Boscalid
E-17	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(6-6) Fenhexamid
E-18	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(6-7) Carpropamid
E-19	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(6-9) Picobenzamid
E-20	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(6-14) Pentiopyrad
E-21	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(6-2) Boscalid
E-22	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(6-6) Fenhexamid
E-23	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(6-7) Carpropamid
E-24	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(6-9) Picobenzamid
E-25	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(6-14) Pentiopyrad
E-26	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(6-2) Boscalid
E-27	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(6-6) Fenhexamid
E-28	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(6-7) Carpropamid
E-29	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(6-9) Picobenzamid
E-30	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(6-14) Pentiopyrad
E-31	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(6-2) Boscalid
E-32	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(6-6) Fenhexamid
E-33	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(6-7) Carpropamid
E-34	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(6-9) Picobenzamid
E-35	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(6-14) Pentiopyrad

Die Wirkstoffkombinationen F enthalten neben einem Carboxamid der Formel (I) (Gruppe 1) auch ein Dithiocarbamat (Gruppe 7) ausgewählt aus

(7-2) Maneb
 (7-3) Metiram
 (7-4) Propineb
 (7-5) Thiram
 5 (7-6) Zineb
 (7-7) Ziram

Bevorzugt sind Wirkstoffkombinationen F, worin das Dithiocarbamat (Gruppe 7) aus der folgenden Liste ausgewählt ist:

10 (7-1) Mancozeb
 (7-2) Maneb
 (7-4) Propineb
 (7-5) Thiram
 (7-6) Zineb

15 Besonders bevorzugt sind Wirkstoffkombinationen F, worin das Dithiocarbamat (Gruppe 7) aus der folgenden Liste ausgewählt ist:

(7-1) Mancozeb
 (7-4) Propineb

Hervorgehoben sind die in der folgenden Tabelle 6 angeführten Wirkstoffkombinationen F:

Tabelle 6: Wirkstoffkombinationen F

Nr.	Carboxamid der Formel (I)	Dithiocarbamat
F-1	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1H-pyrazol-4-carboxamid	(7-1) Mancozeb
F-2	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1H-pyrazol-4-carboxamid	(7-4) Propineb
F-3	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid	(7-1) Mancozeb
F-4	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid	(7-4) Propineb
F-5	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid	(7-1) Mancozeb
F-6	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid	(7-4) Propineb
F-7	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(7-1) Mancozeb
F-8	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(7-4) Propineb
F-9	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(7-1) Mancozeb
F-10	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(7-4) Propineb
F-11	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(7-1) Mancozeb
F-12	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(7-4) Propineb
F-13	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(7-1) Mancozeb
F-14	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(7-4) Propineb

Die Wirkstoffkombinationen G enthalten neben einem Carboxamid der Formel (I) (Gruppe 1) auch ein Acylalanin der Formel (VI) (Gruppe 8).

in welcher * und R²³ die oben angegebenen Bedeutungen haben.

5. Bevorzugt sind Wirkstoffkombinationen G, worin das Acylalanin der Formel (VI) (Gruppe 8) aus der folgenden Liste ausgewählt ist:

(8-1) Benalaxyd

(8-2) Furalaxyd

(8-3) Metalaxyd

10 (8-4) Metalaxyd-M

(8-5) Benalaxyd-M

Besonders bevorzugt sind Wirkstoffkombinationen G, worin das Acylalanin der Formel (VI) (Gruppe 8) aus der folgenden Liste ausgewählt ist:

(8-3) Metalaxyd

15 (8-4) Metalaxyd-M

(8-5) Benalaxyd-M

Hervorgehoben sind die in der folgenden Tabelle 7 angeführten Wirkstoffkombinationen G:

Tabelle 7: Wirkstoffkombinationen G

Nr.	Carboxamid der Formel (I)	Acylalanin der Formel (VI)
G-1	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(8-3) Metalaxyd
G-2	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(8-4) Metalaxyd-M
G-3	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(8-5) Benalaxyd-M
G-4	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(8-3) Metalaxyd
G-5	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(8-4) Metalaxyd-M
G-6	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(8-5) Benalaxyd-M
G-7	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(8-3) Metalaxyd
G-8	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(8-4) Metalaxyd-M
G-9	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(8-5) Benalaxyd-M
G-10	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(8-3) Metalaxyd
G-11	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(8-4) Metalaxyd-M

Tabelle 7: Wirkstoffkombinationen G

Nr.	Carboxamid der Formel (I)	Acylalanin der Formel (VI)
G-12	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(8-5) Benalaxy1-M
G-13	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(8-3) Metalaxyl
G-14	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(8-4) Metalaxyl-M
G-15	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(8-5) Benalaxy1-M
G-16	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(8-3) Metalaxyl
G-17	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(8-4) Metalaxyl-M
G-18	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(8-5) Benalaxy1-M
G-19	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-benzamid	(8-3) Metalaxyl
G-20	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-benzamid	(8-4) Metalaxyl-M
G-21	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-benzamid	(8-5) Benalaxy1-M

Die Wirkstoffkombinationen H enthalten neben einem Carboxamid der Formel (I) (Gruppe 1) auch ein Anilino-pyrimidin (Gruppe 9) ausgewählt aus

- (9-1) Cyprodinil
- 5 (9-2) Mepanipyrim
- (9-3) Pyrimethanil

Hervorgehoben sind die in der folgenden Tabelle 8 angeführten Wirkstoffkombinationen H:

Tabelle 8: Wirkstoffkombinationen H

Nr.	Carboxamid der Formel (I)	Anilino-pyrimidin
H-1	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(9-1) Cyprodinil
H-2	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(9-2) Mepanipyrim
H-3	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(9-3) Pyrimethanil
H-4	(1-8) 5-Fluor-1,3-dimethyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(9-1) Cyprodinil
H-5	(1-8) 5-Fluor-1,3-dimethyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(9-2) Mepanipyrim
H-6	(1-8) 5-Fluor-1,3-dimethyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(9-3) Pyrimethanil
H-7	(1-10) 3-(Trifluormethyl)-1-methyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(9-1) Cyprodinil
H-8	(1-10) 3-(Trifluormethyl)-1-methyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(9-2) Mepanipyrim
H-9	(1-10) 3-(Trifluormethyl)-1-methyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(9-3) Pyrimethanil
H-10	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(9-1) Cyprodinil
H-11	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(9-2) Mepanipyrim
H-12	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(9-3) Pyrimethanil
H-13	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(9-1) Cyprodinil
H-14	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(9-2) Mepanipyrim
H-15	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(9-3) Pyrimethanil

Tabelle 8: Wirkstoffkombinationen H

Nr.	Carboxamid der Formel (I)	Anilino-pyrimidin
H-16	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(9-1) Cyprodinil
H-17	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(9-2) Mepanipyrim
H-18	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(9-3) Pyrimethanil
H-19	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(9-1) Cyprodinil
H-20	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(9-2) Mepanipyrim
H-21	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(9-3) Pyrimethanil

Die Wirkstoffkombinationen I enthalten neben einem Carboxamid der Formel (I) (Gruppe 1) auch ein Benzimidazol der Formel (VIII) (Gruppe 10)

5 in welcher R²⁵, R²⁶, R²⁷ und R²⁸ die oben angegebenen Bedeutungen haben.

Bevorzugt sind Wirkstoffkombinationen I, worin das Benzimidazol der Formel (VIII) (Gruppe 10) aus der folgenden Liste ausgewählt ist:

(10-1) 6-Chlor-5-[(3,5-dimethylisoxazol-4-yl)sulfonyl]-2,2-difluor-5H-[1,3]dioxolo[4,5-f]-

10 benzimidazol

(10-2) Benomyl

(10-3) Carbendazim

(10-4) Chlorfenazole

(10-5) Fuberidazole

15 (10-6) Thiabendazole

Besonders bevorzugt sind Wirkstoffkombinationen I, worin das Benzimidazol der Formel (VIII) (Gruppe 10) ist:

(10-3) Carbendazim

Hervorgehoben sind die in der folgenden Tabelle 9 angeführten Wirkstoffkombinationen I:

Tabelle 9: Wirkstoffkombinationen I

Nr.	Carboxamid der Formel (I)	Benzimidazol der Formel (VIII)
I-1	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(10-3) Carbendazim
I-2	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(10-3) Carbendazim
I-3	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(10-3) Carbendazim
I-4	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(10-3) Carbendazim
I-5	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(10-3) Carbendazim
I-6	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(10-3) Carbendazim
I-7	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(10-3) Carbendazim

Die Wirkstoffkombinationen J enthalten neben einem Carboxamid der Formel (I) (Gruppe 1) auch ein Carbamat (Gruppe 11) der Formel (IX)

in welcher R²⁹ und R³⁰ die oben angegebenen Bedeutungen haben.

5

Bevorzugt sind Wirkstoffkombinationen J, worin das Carbamat (Gruppe 11) aus der folgenden Liste ausgewählt ist:

- (11-1) Diethofencarb
- (11-2) Propamocarb
- 10 (11-3) Propamocarb-hydrochloride
- (11-4) Propamocarb-Fosetyl

Hervorgehoben sind die in der folgenden Tabelle 10 angeführten Wirkstoffkombinationen J:

Tabelle 10: Wirkstoffkombinationen J

Nr.	Carboxamid der Formel (I)	Carbamat der Formel (IX)
J-1	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(11-2) Propamocarb
J-2	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(11-3) Propamocarb-hydrochloride
J-3	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(11-4) Propamocarb-Fosetyl
J-4	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(11-2) Propamocarb
J-5	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(11-3) Propamocarb-hydrochloride
J-6	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(11-4) Propamocarb-Fosetyl
J-7	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(11-2) Propamocarb
J-8	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(11-3) Propamocarb-hydrochloride
J-9	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(11-4) Propamocarb-Fosetyl
J-10	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(11-2) Propamocarb
J-11	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(11-3) Propamocarb-hydrochloride
J-12	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(11-4) Propamocarb-Fosetyl
J-13	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(11-2) Propamocarb
J-14	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(11-3) Propamocarb-hydrochloride
J-15	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(11-4) Propamocarb-Fosetyl
J-16	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(11-2) Propamocarb

Tabelle 10: Wirkstoffkombinationen J

Nr.	Carboxamid der Formel (I)	Carbamat der Formel (IX)
J-17	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)-benzamid	(11-3) Propamocarb-hydrochloride
J-18	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)-benzamid	(11-4) Propamocarb-Fosetyl
J-19	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-benzamid	(11-2) Propamocarb
J-20	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-benzamid	(11-3) Propamocarb-hydrochloride
J-21	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-benzamid	(11-4) Propamocarb-Fosetyl

Die Wirkstoffkombinationen K enthalten neben einem Carboxamid der Formel (I) (Gruppe 1) auch ein Dicarboximid (Gruppe 12) ausgewählt aus

(12-1) Captafol

5 (12-2) Captan

(12-3) Folpet

(12-4) Iprodione

(12-5) Procymidone

(12-6) Vinclozolin

10 Bevorzugt sind Wirkstoffkombinationen K, worin das Dicarboximid (Gruppe 12) aus der folgenden Liste ausgewählt ist:

(12-2) Captan

(12-3) Folpet

(12-4) Iprodione

15

Hervorgehoben sind die in der folgenden Tabelle 11 angeführten Wirkstoffkombinationen K:

Tabelle 11: Wirkstoffkombinationen K

Nr.	Carboxamid der Formel (I)	Dicarboximid
K-1	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(12-2) Captan
K-2	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(12-3) Folpet
K-3	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(12-4) Iprodione
K-4	(1-8) 5-Fluor-1,3-dimethyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(12-2) Captan
K-5	(1-8) 5-Fluor-1,3-dimethyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(12-3) Folpet
K-6	(1-8) 5-Fluor-1,3-dimethyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(12-4) Iprodione
K-7	(1-10) 3-(Trifluormethyl)-1-methyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(12-2) Captan

Tabelle 11: Wirkstoffkombinationen K

Nr.	Carboxamid der Formel (I)	Dicarboximid
K-8	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid	(12-3) Folpet
K-9	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid	(12-4) Iprodione
K-10	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(12-2) Captan
K-11	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(12-3) Folpet
K-12	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(12-4) Iprodione
K-13	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(12-2) Captan
K-14	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(12-3) Folpet
K-15	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(12-4) Iprodione
K-16	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(12-2) Captan
K-17	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(12-3) Folpet
K-18	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(12-4) Iprodione
K-19	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(12-2) Captan
K-20	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(12-3) Folpet
K-21	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(12-4) Iprodione

Die Wirkstoffkombinationen L enthalten neben einem Carboxamid der Formel (I) (Gruppe 1) auch ein Guanidin (Gruppe 13) ausgewählt aus

5 (13-1) Dodine
 (13-2) Guazatine
 (13-3) Iminoctadine triacetate
 (13-4) Iminoctadine tris(albesilate)

10 Bevorzugt sind Wirkstoffkombinationen L, worin das Guanidin (Gruppe 13) aus der folgenden Liste ausgewählt ist:

(13-1) Dodine
 (13-2) Guazatine

Hervorgehoben sind die in der folgenden Tabelle 12 angeführten Wirkstoffkombinationen L:

Tabelle 12: Wirkstoffkombinationen L

Nr.	Carboxamid der Formel (I)	Guanidin
L-1	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1H-pyrazol-4-carboxamid	(13-1) Dodine
L-2	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1H-pyrazol-4-carboxamid	(13-2) Guazatine
L-3	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid	(13-1) Dodine
L-4	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid	(13-2) Guazatine
L-5	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid	(13-1) Dodine
L-6	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid	(13-2) Guazatine

Tabelle 12: Wirkstoffkombinationen L

Nr.	Carboxamid der Formel (I)	Guanidin
L-7	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(13-1) Dodine
L-8	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(13-2) Guazatine
L-9	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(13-1) Dodine
L-10	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(13-2) Guazatine
L-11	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(13-1) Dodine
L-12	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(13-2) Guazatine
L-13	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(13-1) Dodine
L-14	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(13-2) Guazatine

Die Wirkstoffkombinationen M enthalten neben einem Carboxamid der Formel (I) (Gruppe 1) auch ein Imidazol (Gruppe 14) ausgewählt aus

(14-1) Cyazofamid

5 (14-2) Prochloraz

(14-3) Triazoxide

(14-4) Pefurazoate

Bevorzugt sind Wirkstoffkombinationen M, worin das Imidazol (Gruppe 14) aus der folgenden Liste ausgewählt ist:

10 (14-2) Prochloraz

(14-3) Triazoxide

Hervorgehoben sind die in der folgenden Tabelle 13 angeführten Wirkstoffkombinationen M:

Tabelle 13: Wirkstoffkombinationen M

Nr.	Carboxamid der Formel (I)	Imidazol
M-1	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(14-2) Prochloraz
M-2	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(14-3) Triazoxide
M-3	(1-8) 5-Fluor-1,3-dimethyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(14-2) Prochloraz
M-4	(1-8) 5-Fluor-1,3-dimethyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(14-3) Triazoxide
M-5	(1-10) 3-(Trifluormethyl)-1-methyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(14-2) Prochloraz
M-6	(1-10) 3-(Trifluormethyl)-1-methyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(14-3) Triazoxide
M-7	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(14-2) Prochloraz
M-8	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(14-3) Triazoxide
M-9	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(14-2) Prochloraz
M-10	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(14-3) Triazoxide
M-11	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(14-2) Prochloraz
M-12	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(14-3) Triazoxide
M-13	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(14-2) Prochloraz
M-14	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(14-3) Triazoxide

Die Wirkstoffkombinationen N enthalten neben einem Carboxamid der Formel (I) (Gruppe 1) auch ein Morphin (Gruppe 15) der Formel (X).

in welcher R³¹, R³² und R³³ die oben angegebenen Bedeutungen haben.

5 Bevorzugt sind Wirkstoffkombinationen N, worin das Morphin (Gruppe 15) der Formel (X) aus der folgenden Liste ausgewählt ist:

- (15-1) Aldimorph
- (15-2) Tridemorph
- (15-3) Dodemorph
- 10 (15-4) Fenpropimorph
- (15-5) Dimethomorph

Besonders bevorzugt sind Wirkstoffkombinationen N, worin das Morphin (Gruppe 15) der Formel (X) aus der folgenden Liste ausgewählt ist:

- 15 (15-4) Fenpropimorph
- (15-5) Dimethomorph

Hervorgehoben sind die in der folgenden Tabelle 14 angeführten Wirkstoffkombinationen N:

Tabelle 14: Wirkstoffkombinationen N

Nr.	Carboxamid der Formel (I)	Morpholin der Formel (X)
N-1	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(15-4) Fenpropimorph
N-2	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(15-4) Fenpropimorph
N-3	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(15-4) Fenpropimorph
N-4	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(15-4) Fenpropimorph
N-5	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(15-4) Fenpropimorph
N-6	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)-benzamid	(15-4) Fenpropimorph
N-7	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]-benzamid	(15-4) Fenpropimorph

20 Die Wirkstoffkombinationen O enthalten neben einem Carboxamid der Formel (I) (Gruppe 1) auch ein Pyrrol (Gruppe 16) der Formel (XI)

in welcher R³⁴, R³⁵ und R³⁶ die oben angegebenen Bedeutungen haben.

Bevorzugt sind Wirkstoffkombinationen O, worin das Pyrrol (Gruppe 16) der Formel (XI) aus der folgenden Liste ausgewählt ist:

- 5 (16-1) Fenpiclonil
- (16-2) Fludioxonil
- (16-3) Pyrrolnitrine

Besonders bevorzugt sind Wirkstoffkombinationen O, worin das Pyrrol (Gruppe 16) der Formel (XI) aus der folgenden Liste ausgewählt ist:

- 10 (16-2) Fludioxonil

Hervorgehoben sind die in der folgenden Tabelle 15 angeführten Wirkstoffkombinationen O:

Tabelle 15: Wirkstoffkombinationen O

Nr.	Carboxamid der Formel (I)	Pyrrol der Formel (XI)
O-1	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(16-2) Fludioxonil
O-2	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(16-2) Fludioxonil
O-3	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(16-2) Fludioxonil
O-4	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(16-2) Fludioxonil
O-5	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(16-2) Fludioxonil
O-6	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(16-2) Fludioxonil
O-7	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(16-2) Fludioxonil

Die Wirkstoffkombinationen P enthalten neben einem Carboxamid der Formel (I) (Gruppe 1) auch

15 ein Phosphonat (Gruppe 17) ausgewählt aus

- (17-1) Fosetyl-Al
- (17-2) Phosphonsäure

Hervorgehoben sind die in der folgenden Tabelle 16 angeführten Wirkstoffkombinationen P:

Tabelle 16: Wirkstoffkombinationen P

Nr.	Carboxamid der Formel (I)	Phosphonat
P-1	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(17-1) Fosetyl-Al
P-2	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(17-1) Fosetyl-Al
P-3	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(17-1) Fosetyl-Al

Tabelle 16: Wirkstoffkombinationen P

Nr.	Carboxamid der Formel (I)	Phosphonat
P-4	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(17-1) Fosetyl-Al
P-5	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(17-1) Fosetyl-Al
P-6	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(17-1) Fosetyl-Al
P-7	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(17-1) Fosetyl-Al

Die Wirkstoffkombinationen Q enthalten neben einem Carboxamid der Formel (I) (Gruppe 1) auch ein Fungizid (Gruppe 19) ausgewählt aus

- (19-1) Acibenzolar-S-methyl
- 5 (19-2) Chlorothalonil
- (19-3) Cymoxanil
- (19-4) Edifenphos
- (19-5) Famoxadone
- (19-6) Fluazinam
- 10 (19-7) Kupferoxychlorid
- (19-8) Kupferhydroxid
- (19-9) Oxadixyl
- (19-10) Spiroxamine
- (19-11) Dithianon
- 15 (19-12) Metrafenone
- (19-13) Fenamidone
- (19-14) 2,3-Dibutyl-6-chlor-thieno[2,3-d]pyrimidin-4(3H)on
- (19-15) Probenazole
- (19-16) Isoprothiolane
- 20 (19-17) Kasugamycin
- (19-18) Phthalide
- (19-19) Ferimzone
- (19-20) Tricyclazole
- (19-21) *N*-{(4-[(Cyclopropylamino)carbonyl]phenyl}sulfonyl)-2-methoxybenzamid
- 25 (19-22) 2-(4-Chlorphenyl)-*N*-{2-[3-methoxy-4-(prop-2-in-1-yloxy)phenyl]ethyl}-2-(prop-2-in-1-yloxy)acetamid

Bevorzugt sind Wirkstoffkombinationen Q, worin das Fungizid (Gruppe 19) aus der folgenden Liste ausgewählt ist:

- (19-1) Acibenzolar-S-methyl
- 30 (19-2) Chlorothalonil
- (19-3) Cymoxanil
- (19-5) Famoxadone

(19-6) Fluazinam
 (19-7) Kupferoxychlorid
 (19-9) Oxadixyl
 (19-10) Spiroxamine
 5 (19-13) Fenamidone
 (19-21) N-({4-[Cyclopropylamino]carbonyl}phenyl)sulfonyl)-2-methoxybenzamid
 (19-22) 2-(4-Chlorophenyl)-N-{2-[3-methoxy-4-(prop-2-in-1-yloxy)phenyl]ethyl}-2-(prop-2-in-1-yloxy)acetamid

Besonders bevorzugt sind Wirkstoffkombinationen Q, worin das Fungizid (Gruppe 19) aus der folgenden Liste ausgewählt ist:

10 (19-2) Chlorothalonil
 (19-7) Kupferoxychlorid
 (19-10) Spiroxamine
 (19-21) N-({4-[Cyclopropylamino]carbonyl}phenyl)sulfonyl)-2-methoxybenzamid
 15 (19-22) 2-(4-Chlorophenyl)-N-{2-[3-methoxy-4-(prop-2-in-1-yloxy)phenyl]ethyl}-2-(prop-2-in-1-yloxy)acetamid

Hervorgehoben sind die in der folgenden Tabelle 17 angeführten Wirkstoffkombinationen Q:

Tabelle 17: Wirkstoffkombinationen Q

Nr.	Carboxamid der Formel (I)	Fungizid
Q-1	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(19-2) Chlorothalonil
Q-2	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(19-7) Kupferoxychlorid
Q-3	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(19-10) Spiroxamine
Q-4	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(19-21) N-({4-[Cyclopropylamino]carbonyl}phenyl)sulfonyl)-2-methoxybenzamid
Q-5	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(19-22) 2-(4-Chlorophenyl)-N-{2-[3-methoxy-4-(prop-2-in-1-yloxy)phenyl]ethyl}-2-(prop-2-in-1-yloxy)acetamid
Q-6	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(19-2) Chlorothalonil
Q-7	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(19-7) Kupferoxychlorid
Q-8	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(19-10) Spiroxamine
Q-9	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(19-21) N-({4-[Cyclopropylamino]carbonyl}phenyl)sulfonyl)-2-methoxybenzamid
Q-10	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(19-22) 2-(4-Chlorophenyl)-N-{2-[3-methoxy-4-(prop-2-in-1-yloxy)phenyl]ethyl}-2-(prop-2-in-1-yloxy)acetamid
Q-11	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(19-2) Chlorothalonil

Tabelle 17: Wirkstoffkombinationen Q

Nr.	Carboxamid der Formel (I)	Fungizid
Q-12	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(19-7) Kupferoxychlorid
Q-13	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(19-10) Spiroxamine
Q-14	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(19-21) N-({4-[(Cyclopropylamino)carbonyl]phenyl}sulfonyl)-2-methoxybenzamid
Q-15	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(19-22) 2-(4-Chlorphenyl)-N-{2-[3-methoxy-4-(prop-2-in-1-yloxy)phenyl]ethyl}-2-(prop-2-in-1-yloxy)acetamid
Q-16	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(19-2) Chlorothalonil
Q-17	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(19-7) Kupferoxychlorid
Q-18	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(19-10) Spiroxamine
Q-19	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(19-21) N-({4-[(Cyclopropylamino)carbonyl]phenyl}sulfonyl)-2-methoxybenzamid
Q-20	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(19-22) 2-(4-Chlorphenyl)-N-{2-[3-methoxy-4-(prop-2-in-1-yloxy)phenyl]ethyl}-2-(prop-2-in-1-yloxy)acetamid
Q-21	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(19-2) Chlorothalonil
Q-22	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(19-7) Kupferoxychlorid
Q-23	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(19-10) Spiroxamine
Q-24	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(19-21) N-({4-[(Cyclopropylamino)carbonyl]phenyl}sulfonyl)-2-methoxybenzamid
Q-25	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(19-22) 2-(4-Chlorphenyl)-N-{2-[3-methoxy-4-(prop-2-in-1-yloxy)phenyl]ethyl}-2-(prop-2-in-1-yloxy)acetamid
Q-26	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(19-2) Chlorothalonil
Q-27	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(19-7) Kupferoxychlorid
Q-28	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(19-10) Spiroxamine
Q-29	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(19-21) N-({4-[(Cyclopropylamino)carbonyl]phenyl}sulfonyl)-2-methoxybenzamid
Q-30	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(19-22) 2-(4-Chlorphenyl)-N-{2-[3-methoxy-4-(prop-2-in-1-yloxy)phenyl]ethyl}-2-(prop-2-in-1-yloxy)acetamid
Q-31	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(19-2) Chlorothalonil
Q-32	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(19-7) Kupferoxychlorid

Tabelle 17: Wirkstoffkombinationen Q

Nr.	Carboxamid der Formel (I)	Fungizid
Q-33	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(19-10) Spiroxamine
Q-34	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(19-21) N-{4-[(Cyclopropylamino)carbonyl]-phenyl}sulfonyl)-2-methoxybenzamid
Q-35	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(19-22) 2-(4-Chlorphenyl)-N-{2-[3-methoxy-4-(prop-2-in-1-yloxy)phenyl]ethyl}-2-(prop-2-in-1-yloxy)acetamid

Die Wirkstoffkombinationen R enthalten neben einem Carboxamid der Formel (I) (Gruppe 1) auch ein (Thio)Harnstoff-Derivat (Gruppe 20) ausgewählt aus:

5 (20-1) Pencycuron
 (20-2) Thiophanate-methyl
 (20-3) Thiophanate-ethyl

Bevorzugt sind Wirkstoffkombinationen R, worin das (Thio)Harnstoff-Derivat (Gruppe 20) aus der folgenden Liste ausgewählt ist:

10 (20-1) Pencycuron
 (20-2) Thiophanate-methyl

Hervorgehoben sind die in der folgenden Tabelle 18 angeführten Wirkstoffkombinationen R:

Tabelle 18: Wirkstoffkombinationen R

Nr.	Carboxamid der Formel (I)	(Thio)Harnstoff-Derivat
R-1	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(20-1) Pencycuron
R-2	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(20-1) Pencycuron
R-3	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(20-1) Pencycuron
R-4	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(20-1) Pencycuron
R-5	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(20-1) Pencycuron
R-6	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(20-1) Pencycuron
R-7	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(20-1) Pencycuron

Die Wirkstoffkombinationen S enthalten neben einem Carboxamid der Formel (I) (Gruppe 1) auch ein Triazolopyrimidin (Gruppe 22) der Formel (XIV)

Bevorzugt sind Wirkstoffkombinationen S, worin das Triazolopyrimidin (Gruppe 22) der Formel (XIV) aus der folgenden Liste ausgewählt ist:

(22-1) 5-Chlor-N-[*(1S)*-2,2,2-trifluor-1-methylethyl]-6-(2,4,6-trifluorphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amin

5 (22-2) 5-Chlor-N-[*(IR)*-1,2-dimethylpropyl]-6-(2,4,6-trifluorphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amin

(22-3) 5-Chlor-6-(2-chlor-6-fluorphenyl)-7-(4-methylpiperidin-1-yl)[1,2,4]triazolo[1,5-a]pyrimidin

(22-4) 5-Chlor-6-(2,4,6-trifluorphenyl)-7-(4-methylpiperidin-1-yl)[1,2,4]triazolo[1,5-a]pyrimidin

Besonders bevorzugt sind Wirkstoffkombinationen S, worin das Triazolopyrimidin (Gruppe 22) der Formel (XIV) aus der folgenden Liste ausgewählt ist:

(22-1) 5-Chlor-N-[*(1S)*-2,2,2-trifluor-1-methylethyl]-6-(2,4,6-trifluorphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amin

(22-2) 5-Chlor-N-[*(IR)*-1,2-dimethylpropyl]-6-(2,4,6-trifluorphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amin

15 (22-4) 5-Chlor-6-(2,4,6-trifluorphenyl)-7-(4-methylpiperidin-1-yl)[1,2,4]triazolo[1,5-a]pyrimidin

Hervorgehoben sind die in der folgenden Tabelle 19 angeführten Wirkstoffkombinationen S:

Tabelle 19: Wirkstoffkombinationen S

Nr.	Carboxamid der Formel (I)	Triazolopyrimidin der Formel (XIV)
S-1	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(22-1) 5-Chlor-N-[<i>(1S)</i> -2,2,2-trifluor-1-methylethyl]-6-(2,4,6-trifluorphenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-amin
S-2	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(22-2) 5-Chlor-N-[<i>(IR)</i> -1,2-dimethylpropyl]-6-(2,4,6-trifluorphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amin
S-3	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(22-4) 5-Chlor-6-(2,4,6-trifluorphenyl)-7-(4-methylpiperidin-1-yl)[1,2,4]triazolo[1,5-a]pyrimidin
S-4	(1-8) 5-Fluor-1,3-dimethyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(22-1) 5-Chlor-N-[<i>(1S)</i> -2,2,2-trifluor-1-methylethyl]-6-(2,4,6-trifluorphenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-amin
S-5	(1-8) 5-Fluor-1,3-dimethyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(22-2) 5-Chlor-N-[<i>(IR)</i> -1,2-dimethylpropyl]-6-(2,4,6-trifluorphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amin
S-6	(1-8) 5-Fluor-1,3-dimethyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(22-4) 5-Chlor-6-(2,4,6-trifluorphenyl)-7-(4-methylpiperidin-1-yl)[1,2,4]triazolo[1,5-a]pyrimidin
S-7	(1-10) 3-(Trifluormethyl)-1-methyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(22-1) 5-Chlor-N-[<i>(1S)</i> -2,2,2-trifluor-1-methylethyl]-6-(2,4,6-trifluorphenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-amin
S-8	(1-10) 3-(Trifluormethyl)-1-methyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(22-2) 5-Chlor-N-[<i>(IR)</i> -1,2-dimethylpropyl]-6-(2,4,6-trifluorphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amin
S-9	(1-10) 3-(Trifluormethyl)-1-methyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(22-4) 5-Chlor-6-(2,4,6-trifluorphenyl)-7-(4-methylpiperidin-1-yl)[1,2,4]triazolo[1,5-a]pyrimidin

Tabelle 19: Wirkstoffkombinationen S

Nr.	Carboxamid der Formel (I)	Triazolopyrimidin der Formel (XIV)
S-10	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(22-1) 5-Chlor- <i>N</i> [(<i>1S</i>)-2,2,2-trifluor-1-methylethyl]-6-(2,4,6-trifluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-amin
S-11	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(22-2) 5-Chlor- <i>N</i> [(<i>1R</i>)-1,2-dimethylpropyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amin
S-12	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(22-4) 5-Chlor-6-(2,4,6-trifluorophenyl)-7-(4-methylpiperidin-1-yl)[1,2,4]triazolo[1,5-a]pyrimidin
S-13	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(22-1) 5-Chlor- <i>N</i> [(<i>1S</i>)-2,2,2-trifluor-1-methylethyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amin
S-14	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(22-2) 5-Chlor- <i>N</i> [(<i>1R</i>)-1,2-dimethylpropyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amin
S-15	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(22-4) 5-Chlor-6-(2,4,6-trifluorophenyl)-7-(4-methylpiperidin-1-yl)[1,2,4]triazolo[1,5-a]pyrimidin
S-16	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(22-1) 5-Chlor- <i>N</i> [(<i>1S</i>)-2,2,2-trifluor-1-methylethyl]-6-(2,4,6-trifluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-amin
S-17	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(22-2) 5-Chlor- <i>N</i> [(<i>1R</i>)-1,2-dimethylpropyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amin
S-18	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(22-4) 5-Chlor-6-(2,4,6-trifluorophenyl)-7-(4-methylpiperidin-1-yl)[1,2,4]triazolo[1,5-a]pyrimidin
S-19	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(22-1) 5-Chlor- <i>N</i> [(<i>1S</i>)-2,2,2-trifluor-1-methylethyl]-6-(2,4,6-trifluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-amin
S-20	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(22-2) 5-Chlor- <i>N</i> [(<i>1R</i>)-1,2-dimethylpropyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amin
S-21	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(22-4) 5-Chlor-6-(2,4,6-trifluorophenyl)-7-(4-methylpiperidin-1-yl)[1,2,4]triazolo[1,5-a]pyrimidin

Die Wirkstoffkombinationen T enthalten neben einem Carboxamid der Formel (I) (Gruppe 1) auch ein Iodochromon (Gruppe 23) der Formel (XV)

5 in welcher R⁴⁸ und R⁴⁹ die oben angegebenen Bedeutungen haben.

Bevorzugt sind Wirkstoffkombinationen T, worin das Iodochromon (Gruppe 23) der Formel (XV) aus der folgenden Liste ausgewählt ist:

(23-1) 2-Butoxy-6-iod-3-propyl-benzopyran-4-on
 10 (23-2) 2-Ethoxy-6-iod-3-propyl-benzopyran-4-on
 (23-3) 6-Iod-2-propoxy-3-propyl-benzopyran-4-on

(23-4) 2-But-2-enyloxy-6-iod-3-propyl-benzopyran-4-on
 (23-5) 6-Iod-2-(1-methyl-butoxy)-3-propyl-benzopyran-4-on
 (23-6) 2-But-3-enyloxy-6-iod-benzopyran-4-on
 (23-7) 3-Butyl-6-iod-2-isopropoxy-benzopyran-4-on

5

Besonders bevorzugt sind Wirkstoffkombinationen T, worin das Iodochromon (Gruppe 23) der Formel (XV) aus der folgenden Liste ausgewählt ist:

(23-1) 2-Butoxy-6-iod-3-propyl-benzopyran-4-on
 (23-2) 2-Ethoxy-6-iod-3-propyl-benzopyran-4-on

10

Hervorgehoben sind die in der folgenden Tabelle 20 angeführten Wirkstoffkombinationen T:

Tabelle 20: Wirkstoffkombinationen T

Nr.	Carboxamid der Formel (I)	Iodochromon der Formel (XV)
T-1	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(23-1) 2-Butoxy-6-iod-3-propyl-benzopyran-4-on
T-2	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(23-2) 2-Ethoxy-6-iod-3-propyl-benzopyran-4-on
T-3	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(23-1) 2-Butoxy-6-iod-3-propyl-benzopyran-4-on
T-4	(1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(23-2) 2-Ethoxy-6-iod-3-propyl-benzopyran-4-on
T-5	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(23-1) 2-Butoxy-6-iod-3-propyl-benzopyran-4-on
T-6	(1-10) 3-(Trifluormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(23-2) 2-Ethoxy-6-iod-3-propyl-benzopyran-4-on
T-7	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(23-1) 2-Butoxy-6-iod-3-propyl-benzopyran-4-on
T-8	(1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(23-2) 2-Ethoxy-6-iod-3-propyl-benzopyran-4-on
T-9	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(23-1) 2-Butoxy-6-iod-3-propyl-benzopyran-4-on
T-10	(1-14) 2-Iod-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(23-2) 2-Ethoxy-6-iod-3-propyl-benzopyran-4-on
T-11	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(23-1) 2-Butoxy-6-iod-3-propyl-benzopyran-4-on
T-12	(1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(23-2) 2-Ethoxy-6-iod-3-propyl-benzopyran-4-on
T-13	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(23-1) 2-Butoxy-6-iod-3-propyl-benzopyran-4-on
T-14	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(23-2) 2-Ethoxy-6-iod-3-propyl-benzopyran-4-on

Die Wirkstoffkombinationen U enthalten neben einem Carboxamid der Formel (I) (Gruppe 1) auch ein Biphenylcarboxamid (Gruppe 24) der Formel (XVI)

in welcher R⁵⁰, R⁵¹, R⁵² und Het die oben angegebenen Bedeutungen haben.

Bevorzugt sind Wirkstoffkombinationen U, worin das Biphenylcarboxamid (Gruppe 24) der Formel

5 (XVI) aus der folgenden Liste ausgewählt ist:

- (24-1) N-(3',4'-Dichlor-5-fluor-1,1'-biphenyl-2-yl)-3-(difluormethyl)-1-methyl-1*H*-pyrazol-4-carboxamid
- (24-2) 3-(Difluormethyl)-N-{3'-fluor-4'-[*(E*)-(methoxyimino)methyl]-1,1'-biphenyl-2-yl}-1-methyl-1*H*-pyrazol-4-carboxamid
- 10 (24-3) 3-(Trifluormethyl)-N-{3'-fluor-4'-[*(E*)-(methoxyimino)methyl]-1,1'-biphenyl-2-yl}-1-methyl-1*H*-pyrazol-4-carboxamid

(24-4) N-(3',4'-Dichlor-1,1'-biphenyl-2-yl)-5-fluor-1,3-dimethyl-1*H*-pyrazol-4-carboxamid

(24-5) N-(4'-Chlor-3'-fluor-1,1'-biphenyl-2-yl)-2-methyl-4-(difluormethyl)-1,3-thiazol-5-carboxamid

(24-6) N-(4'-Chlor-1,1'-biphenyl-2-yl)-4-(difluormethyl)-2-methyl-1,3-thiazol-5-carboxamid

15 (24-7) N-(4'-Brom-1,1'-biphenyl-2-yl)-4-(difluormethyl)-2-methyl-1,3-thiazol-5-carboxamid

(24-8) 4-(Difluormethyl)-2-methyl-N-[4'-(trifluormethyl)-1,1'-biphenyl-2-yl]-1,3-thiazol-5-carboxamid

Besonders bevorzugt sind Wirkstoffkombinationen U, worin das Biphenylcarboxamid (Gruppe 24) der Formel (XVI) aus der folgenden Liste ausgewählt ist:

- 20 (24-1) N-(3',4'-Dichlor-5-fluor-1,1'-biphenyl-2-yl)-3-(difluormethyl)-1-methyl-1*H*-pyrazol-4-carboxamid
- (24-3) 3-(Trifluormethyl)-N-{3'-fluor-4'-[*(E*)-(methoxyimino)methyl]-1,1'-biphenyl-2-yl}-1-methyl-1*H*-pyrazol-4-carboxamid
- (24-7) N-(4'-Brom-1,1'-biphenyl-2-yl)-4-(difluormethyl)-2-methyl-1,3-thiazol-5-carboxamid

25

Hervorgehoben sind die in der folgenden Tabelle 21 angeführten Wirkstoffkombinationen U:

Tabelle 21: Wirkstoffkombinationen U

Nr.	Carboxamid der Formel (I)	Biphenylcarboxamid der Formel (XVI)
U-1	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(24-1) N-(3',4'-Dichlor-5-fluor-1,1'-biphenyl-2-yl)-3-(difluormethyl)-1-methyl-1 <i>H</i> -pyrazol-4-carboxamid
U-2	(1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(24-3) 3-(Trifluormethyl)-N-{3'-fluor-4'-[<i>(E</i>)-(methoxyimino)methyl]-1,1'-biphenyl-2-yl}-1-methyl-1 <i>H</i> -pyrazol-4-carboxamid

Tabelle 21: Wirkstoffkombinationen U

Nr.	Carboxamid der Formel (I)	Biphenylcarboxamid der Formel (XVI)
U-3	(1-2) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1 <i>H</i> -pyrazol-4-carboxamid	(24-7) <i>N</i> -(4'-Brom-1,1'-biphenyl-2-yl)-4-(difluormethyl)-2-methyl-1,3-thiazol-5-carboxamid
U-4	(1-8) 5-Fluor-1,3-dimethyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(24-1) <i>N</i> -(3',4'-Dichlor-5-fluor-1,1'-biphenyl-2-yl)-3-(difluormethyl)-1-methyl-1 <i>H</i> -pyrazol-4-carboxamid
U-5	(1-8) 5-Fluor-1,3-dimethyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(24-3) 3-(Trifluormethyl)- <i>N</i> -{3'-fluor-4'-[(E)-(methoxyimino)methyl]-1,1'-biphenyl-2-yl}-1-methyl-1 <i>H</i> -pyrazol-4-carboxamid
U-6	(1-8) 5-Fluor-1,3-dimethyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(24-7) <i>N</i> -(4'-Brom-1,1'-biphenyl-2-yl)-4-(difluormethyl)-2-methyl-1,3-thiazol-5-carboxamid
U-7	(1-10) 3-(Trifluormethyl)-1-methyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(24-1) <i>N</i> -(3',4'-Dichlor-5-fluor-1,1'-biphenyl-2-yl)-3-(difluormethyl)-1-methyl-1 <i>H</i> -pyrazol-4-carboxamid
U-8	(1-10) 3-(Trifluormethyl)-1-methyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(24-3) 3-(Trifluormethyl)- <i>N</i> -{3'-fluor-4'-[(E)-(methoxyimino)methyl]-1,1'-biphenyl-2-yl}-1-methyl-1 <i>H</i> -pyrazol-4-carboxamid
U-9	(1-10) 3-(Trifluormethyl)-1-methyl- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]-1 <i>H</i> -pyrazol-4-carboxamid	(24-7) <i>N</i> -(4'-Brom-1,1'-biphenyl-2-yl)-4-(difluormethyl)-2-methyl-1,3-thiazol-5-carboxamid
U-10	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(24-1) <i>N</i> -(3',4'-Dichlor-5-fluor-1,1'-biphenyl-2-yl)-3-(difluormethyl)-1-methyl-1 <i>H</i> -pyrazol-4-carboxamid
U-11	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(24-3) 3-(Trifluormethyl)- <i>N</i> -{3'-fluor-4'-[(E)-(methoxyimino)methyl]-1,1'-biphenyl-2-yl}-1-methyl-1 <i>H</i> -pyrazol-4-carboxamid
U-12	(1-13) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid	(24-7) <i>N</i> -(4'-Brom-1,1'-biphenyl-2-yl)-4-(difluormethyl)-2-methyl-1,3-thiazol-5-carboxamid
U-13	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)-phenyl]benzamid	(24-1) <i>N</i> -(3',4'-Dichlor-5-fluor-1,1'-biphenyl-2-yl)-3-(difluormethyl)-1-methyl-1 <i>H</i> -pyrazol-4-carboxamid
U-14	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)-phenyl]benzamid	(24-3) 3-(Trifluormethyl)- <i>N</i> -{3'-fluor-4'-[(E)-(methoxyimino)methyl]-1,1'-biphenyl-2-yl}-1-methyl-1 <i>H</i> -pyrazol-4-carboxamid
U-15	(1-14) 2-Iod- <i>N</i> -[2-(1,3,3-trimethylbutyl)-phenyl]benzamid	(24-7) <i>N</i> -(4'-Brom-1,1'-biphenyl-2-yl)-4-(difluormethyl)-2-methyl-1,3-thiazol-5-carboxamid
U-16	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(24-1) <i>N</i> -(3',4'-Dichlor-5-fluor-1,1'-biphenyl-2-yl)-3-(difluormethyl)-1-methyl-1 <i>H</i> -pyrazol-4-carboxamid
U-17	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(24-3) 3-(Trifluormethyl)- <i>N</i> -{3'-fluor-4'-[(E)-(methoxyimino)methyl]-1,1'-biphenyl-2-yl}-1-methyl-1 <i>H</i> -pyrazol-4-carboxamid
U-18	(1-15) <i>N</i> -[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid	(24-7) <i>N</i> -(4'-Brom-1,1'-biphenyl-2-yl)-4-(difluormethyl)-2-methyl-1,3-thiazol-5-carboxamid
U-19	(1-16) 2-(Trifluormethyl)- <i>N</i> -[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(24-1) <i>N</i> -(3',4'-Dichlor-5-fluor-1,1'-biphenyl-2-yl)-3-(difluormethyl)-1-methyl-1 <i>H</i> -pyrazol-4-carboxamid

Tabelle 21: Wirkstoffkombinationen U

Nr.	Carboxamid der Formel (I)	Biphenylcarboxamid der Formel (XVI)
U-20	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(24-3) 3-(Trifluormethyl)-N-{3'-fluor-4'-(E)-(methoxyimino)methyl}-1,1'-biphenyl-2-yl}-1-methyl-1H-pyrazol-4-carboxamid
U-21	(1-16) 2-(Trifluormethyl)-N-[2-(1,3,3-trimethylbutyl)phenyl]benzamid	(24-7) N-(4'-Brom-1,1'-biphenyl-2-yl)-4-(difluormethyl)-2-methyl-1,3-thiazol-5-carboxamid

Die erfindungsgemäßen Wirkstoffkombinationen enthalten neben einem Wirkstoff der Formel (I) mindestens einen Wirkstoff von den Verbindungen der Gruppen (2) bis (24). Sie können darüber hinaus auch weitere fungizid wirksame Zutischkomponenten enthalten.

5

Wenn die Wirkstoffe in den erfindungsgemäßen Wirkstoffkombinationen in bestimmten Gewichtsverhältnissen vorhanden sind, zeigt sich der synergistische Effekt besonders deutlich. Jedoch können die Gewichtsverhältnisse der Wirkstoffe in den Wirkstoffkombinationen in einem relativ großen Bereich variiert werden. Im Allgemeinen enthalten die erfindungsgemäßen Kombinationen Wirkstoffe der Formel (I) und einen Mischpartner aus einer der Gruppen (2) bis (24) in den in der nachfolgenden Tabelle 22 beispielhaft angegebenen Mischungsverhältnisse.

10

Die Mischungsverhältnisse basieren auf Gewichtsverhältnissen. Das Verhältnis ist zu verstehen als Wirkstoff der Formel (I) : Mischpartner.

15

Tabelle 22: Mischungsverhältnisse

Mischpartner	bevorzugtes Mischungsverhältnis	besonders bevorzugtes Mischungsverhältnis
Gruppe (2): Strobilurine	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
Gruppe (3): Triazole ohne (3-15)	50 : 1 bis 1 : 50	20 : 1 bis 1 : 20
(3-15): Prothioconazole	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
Gruppe (4): Sulfenamide	1 : 1 bis 1 : 150	1 : 1 bis 1 : 100
Gruppe (5): Valinamide	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
Gruppe (6): Carboxamide	50 : 1 bis 1 : 50	20 : 1 bis 1 : 20
Gruppe (7): Dithiocarbamate	1 : 1 bis 1 : 150	1 : 1 bis 1 : 100
Gruppe (8): Acylalanine	10 : 1 bis 1 : 150	5 : 1 bis 1 : 100
Gruppe (9): Anilino-pyrimidine	5 : 1 bis 1 : 50	1 : 1 bis 1 : 20
Gruppe (10): Benzimidazole	10 : 1 bis 1 : 50	5 : 1 bis 1 : 20
Gruppe (11): Carbamate ohne (11-1)	1 : 1 bis 1 : 150	1 : 1 bis 1 : 100
(11-1): Diethofencarb	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
Gruppe (12): (12-1)/(12-2)/(12-3)	1 : 1 bis 1 : 150	1 : 5 bis 1 : 100

Tabelle 22: Mischungsverhältnisse

Mischpartner	bevorzugtes Mischungsverhältnis	besonders bevorzugtes Mischungsverhältnis
Gruppe (12): (12-4)/(12-5)/(12-6)	5 : 1 bis 1 : 50	1 : 1 bis 1 : 20
Gruppe (13): Guanidine	100 : 1 bis 1 : 150	20 : 1 bis 1 : 100
Gruppe (14): Imidazole	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
Gruppe (15): Morpholine	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
Gruppe (16): Pyrrole	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
Gruppe (17): Phosphonate	10 : 1 bis 1 : 150	1 : 1 bis 1 : 100
Gruppe (18): Phenylethanamide	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
(19-1): Acibenzolar-S-methyl	50 : 1 bis 1 : 50	20 : 1 bis 1 : 20
(19-2): Chlorothalonil	1 : 1 bis 1 : 150	1 : 1 bis 1 : 100
(19-3): Cymoxanil	10 : 1 bis 1 : 50	5 : 1 bis 1 : 20
(19-4): Edifenphos	10 : 1 bis 1 : 50	5 : 1 bis 1 : 20
(19-5): Famoxadone	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
(19-6): Fluazinam	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
(19-7): Kupferoxychlorid	1 : 1 bis 1 : 150	1 : 5 bis 1 : 100
(19-8): Kupferhydroxid	1 : 1 bis 1 : 150	1 : 5 bis 1 : 100
(19-9): Oxadixyl	10 : 1 bis 1 : 150	5 : 1 bis 1 : 100
(19-10): Spiroxamine	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
(19-11): Dithianon	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
(19-12): Metrafenone	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
(19-13): Fenamidone	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
(19-14): 2,3-Dibutyl-6-chlor-thieno-[2,3-d]pyrimidin-4(3H)on	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
(19-15): Probenazole	10 : 1 bis 1 : 150	5 : 1 bis 1 : 100
(19-16): Isoprothiolane	10 : 1 bis 1 : 150	5 : 1 bis 1 : 100
(19-17): Kasugamycin	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
(19-18): Phthalide	10 : 1 bis 1 : 150	5 : 1 bis 1 : 100
(19-19): Ferimzone	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
(19-20): Tricyclazole	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
(19-21): N-({4-[(Cyclopropylamino)-carbonyl]phenyl}sulfonyl)-2-methoxybenzamid	10 : 1 bis 1 : 150	5 : 1 bis 1 : 100
(19-22): 2-(4-Chlorphenyl)-N-{2-[3-methoxy-4-(prop-2-in-1-yloxy)phenyl]ethyl}-2-(prop-2-in-1-yloxy)-acetamid	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20

Tabelle 22: Mischungsverhältnisse

Mischpartner	bevorzugtes Mischungsverhältnis	besonders bevorzugtes Mischungsverhältnis
Gruppe (20): (Thio)Harnstoff-Derivate	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
Gruppe (21): Amide	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
Gruppe (22): Triazolopyrimidine	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
Gruppe (23): Iodochromone	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20
Gruppe (24): Biphenylcarboxamide	50 : 1 bis 1 : 50	10 : 1 bis 1 : 20

Das Mischungsverhältnis ist in jedem Fall so zu wählen, dass eine synergistische Mischung erhalten wird. Die Mischungsverhältnisse zwischen der Verbindung der Formel (I) und einer Verbindung aus einer der Gruppen (2) bis (24) kann auch zwischen den einzelnen Verbindungen einer Gruppe variieren.

5

Die erfindungsgemäßen Wirkstoffkombinationen besitzen sehr gute fungizide Eigenschaften und lassen sich zur Bekämpfung von phytopathogenen Pilzen, wie Plasmödiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes usw. einsetzen.

10

Die erfindungsgemäßen Wirkstoffkombinationen eignen sich besonders gut zur Bekämpfung von *Erysiphe graminis*, *Pyrenophora teres* und *Leptosphaeria nodorum*.

Beispielhaft, aber nicht begrenzend, seien einige Erreger von pilzlichen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:

15

Pythium-Arten, wie z.B. *Pythium ultimum*; *Phytophthora*-Arten, wie z.B. *Phytophthora infestans*; *Pseudoperonospora*-Arten, wie z.B. *Pseudoperonospora humuli* oder *Pseudoperonospora cubensis*; *Plasmopara*-Arten, wie z.B. *Plasmopara viticola*; *Bremia*-Arten, wie z.B. *Bremia lactucae*; *Peronospora*-Arten, wie z.B. *Peronospora pisi* oder *P. brassicae*; *Erysiphe*-Arten, wie z.B. *Erysiphe graminis*; *Sphaerotheca*-Arten, wie z.B. *Sphaerotheca fuliginea*; *Podosphaera*-Arten, wie z.B. *Podosphaera leucotricha*; *Venturia*-Arten, wie z.B. *Venturia inaequalis*; *Pyrenophora*-Arten, wie z.B. *Pyrenophora teres* oder *P. graminea* (Konidienform: Drechslera, Syn: Helminthosporium); *Cochliobolus*-Arten, wie z.B. *Cochliobolus sativus* (Konidienform: Drechslera, Syn: Helminthosporium); *Uromyces*-Arten, wie z.B. *Uromyces appendiculatus*; *Puccinia*-Arten, wie z.B. *Puccinia recondita*; *Sclerotinia*-Arten, wie z.B. *Sclerotinia sclerotiorum*; *Tilletia*-Arten, wie z.B. *Tilletia caries*; *Ustilago*-Arten, wie z.B. *Ustilago nuda* oder *Ustilago avenae*; *Pellicularia*-Arten, wie z.B. *Pellicularia sasakii*; *Pyricularia*-Arten, wie z.B. *Pyricularia oryzae*; *Fusarium*-Arten, wie z.B. *Fusarium culmorum*; *Botrytis*-Arten, wie z.B. *Botrytis cinerea*; *Septoria*-Arten, wie z.B. *Septoria nodorum*; *Leptosphaeria*-Arten, wie z.B. *Leptosphaeria nodorum*; *Cercospora*-Arten, wie z.B. *Cercospora canescens*; *Alternaria*-

25

Arten, wie z.B. *Alternaria brassicae*; Pseudocercospora-Arten, wie z.B. *Pseudocercospora herpotrichoides*, Rhizoctonia-Arten, wie z.B. *Rhizoctonia solani*.

Die gute Pflanzenverträglichkeit der Wirkstoffkombinationen in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von ganzen Pflanzen (oberirdische Pflanzenteile und Wurzeln), von Pflanz- und Saatgut, und des Bodens. Die erfundungsgemäßen Wirkstoffkombinationen können zur Blattapplikation oder auch als Beizmittel eingesetzt werden.

Die gute Pflanzenverträglichkeit der verwendbaren Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung des Saatguts. Die erfundungsgemäßen Wirkstoffe können somit als Beizmittel eingesetzt werden.

Ein großer Teil des durch phytopathogene Pilze verursachten Schadens an Kulturpflanzen entsteht bereits durch den Befall des Saatguts während der Lagerung und nach dem Einbringen des Saatguts in den Boden sowie während und unmittelbar nach der Keimung der Pflanzen. Diese Phase ist besonders kritisch, da die Wurzeln und Sprosse der wachsenden Pflanze besonders empfindlich sind und bereits ein geringer Schaden zum Absterben der ganzen Pflanze führen kann. Es besteht daher ein insbesondere großes Interesse daran, das Saatgut und die keimende Pflanze durch den Einsatz geeigneter Mittel zu schützen.

20

Die Bekämpfung von phytopathogenen Pilzen, die Pflanzen nach dem Auflaufen schädigen, erfolgt in erster Linie durch die Behandlung des Bodens und der oberirdischen Pflanzenteile mit Pflanzenschutzmitteln. Aufgrund der Bedenken hinsichtlich eines möglichen Einflusses der Pflanzenschutzmittel auf die Umwelt und die Gesundheit von Menschen und Tieren gibt es Anstrengungen, die Menge der ausgebrachten Wirkstoffe zu vermindern.

Die Bekämpfung von phytopathogenen Pilzen durch die Behandlung des Saatguts von Pflanzen ist seit langem bekannt und ist Gegenstand ständiger Verbesserungen. Dennoch ergeben sich bei der Behandlung von Saatgut eine Reihe von Problemen, die nicht immer zufriedenstellend gelöst werden können. So ist es erstrebenswert, Verfahren zum Schutz des Saatguts und der keimenden Pflanze zu entwickeln, die das zusätzliche Ausbringen von Pflanzenschutzmitteln nach der Saat oder nach dem Auflaufen der Pflanzen überflüssig machen oder zumindest deutlich verringern. Es ist weiterhin erstrebenswert, die Menge des eingesetzten Wirkstoffs dahingehend zu optimieren, dass das Saatgut und die keimende Pflanze vor dem Befall durch phytopathogene Pilze bestmöglich geschützt wird, ohne jedoch die Pflanze selbst durch den eingesetzten Wirkstoff zu schädigen. Insbesondere sollten Verfahren zur Behandlung von Saatgut auch die intrinsischen fungiziden Eigenschaften transgener

Pflanzen einbeziehen, um einen optimalen Schutz des Saatguts und der keimenden Pflanze bei einem minimalen Aufwand an Pflanzenschutzmitteln zu erreichen.

Die vorliegende Erfindung bezieht sich daher insbesondere auch auf ein Verfahren zum Schutz von Saatgut und keimenden Pflanzen vor dem Befall von phytopathogenen Pilzen, indem das Saatgut mit einem erfindungsgemäßen Mittel behandelt wird.

Die Erfindung bezieht sich ebenfalls auf die Verwendung der erfindungsgemäßen Mittel zur Behandlung von Saatgut zum Schutz des Saatguts und der keimenden Pflanze vor phytopathogenen Pilzen.

Weiterhin bezieht sich die Erfindung auf Saatgut, welches zum Schutz vor phytopathogenen Pilzen mit einem erfindungsgemäßen Mittel behandelt wurde.

Einer der Vorteile der vorliegenden Erfindung ist es, dass aufgrund der besonderen systemischen Eigenschaften der erfindungsgemäßen Mittel die Behandlung des Saatguts mit diesen Mitteln nicht nur das Saatgut selbst, sondern auch die daraus hervorgehenden Pflanzen nach dem Auflaufen vor phytopathogenen Pilzen schützt. Auf diese Weise kann die unmittelbare Behandlung der Kultur zum Zeitpunkt der Aussaat oder kurz danach entfallen.

Ebenso ist es als vorteilhaft anzusehen, dass die erfindungsgemäßen Mischungen insbesondere auch bei transgenem Saatgut eingesetzt werden können.

Die erfindungsgemäßen Mittel eignen sich zum Schutz von Saatgut jeglicher Pflanzensorte, die in der Landwirtschaft, im Gewächshaus, in Forsten oder im Gartenbau eingesetzt wird. Insbesondere handelt es sich dabei um Saatgut von Getreide (wie Weizen, Gerste, Roggen, Hirse und Hafer), Mais, Baumwolle, Soja, Reis, Kartoffeln, Sonnenblume, Bohne, Kaffee, Rübe (z.B. Zuckerrübe und Futterrübe), Erdnuss, Gemüse (wie Tomate, Gurke, Zwiebeln und Salat), Rasen und Zierpflanzen. Besondere Bedeutung kommt der Behandlung des Saatguts von Getreide (wie Weizen, Gerste, Roggen und Hafer), Mais und Reis zu.

Im Rahmen der vorliegenden Erfindung wird das erfindungsgemäße Mittel alleine oder in einer geeigneten Formulierung auf das Saatgut aufgebracht. Vorzugsweise wird das Saatgut in einem Zustand behandelt, in dem so stabil ist, dass keine Schäden bei der Behandlung auftreten. Im Allgemeinen kann die Behandlung des Saatguts zu jedem Zeitpunkt zwischen der Ernte und der Aussaat erfolgen.

Üblicherweise wird Saatgut verwendet, das von der Pflanze getrennt und von Kolben, Schalen, Stängeln, Hülle, Wolle oder Fruchtfleisch befreit wurde. So kann zum Beispiel Saatgut verwendet

werden, das geerntet, gereinigt und bis zu einem Feuchtigkeitsgehalt von unter 15 Gew.-% getrocknet wurde. Alternativ kann auch Saatgut verwendet werden, das nach dem Trocknen z.B. mit Wasser behandelt und dann erneut getrocknet wurde.

5 Im Allgemeinen muss bei der Behandlung des Saatguts darauf geachtet werden, dass die Menge des auf das Saatgut aufgebrachten erfundungsgemäßen Mittels und/oder weiterer Zusatzstoffe so gewählt wird, dass die Keimung des Saatguts nicht beeinträchtigt bzw. die daraus hervorgehende Pflanze nicht geschädigt wird. Dies ist vor allem bei Wirkstoffen zu beachten, die in bestimmten Aufwandsmengen phytotoxische Effekte zeigen können.

10

Die erfundungsgemäßen Mittel können unmittelbar aufgebracht werden, also ohne weitere Komponenten zu enthalten und ohne verdünnt worden zu sein. In der Regel ist es vorzuziehen, die Mittel in Form einer geeigneten Formulierung auf das Saatgut aufzubringen. Geeignete Formulierungen und Verfahren für die Saatgutbehandlung sind dem Fachmann bekannt und werden z.B. in den folgenden Dokumenten beschrieben: US 4,272,417 A, US 4,245,432 A, US 4,808,430 A, US 5,876,739 A, US 15 2003/0176428 A1, WO 2002/080675 A1, WO 2002/028186 A2.

Die erfundungsgemäßen Wirkstoffkombinationen eignen sich auch zur Steigerung des Ernteertrages. Sie sind außerdem mindertoxisch und weisen eine gute Pflanzenverträglichkeit auf.

20

Erfundungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder 25 durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stängel, Stämme, Blüten, Fruchtkörper, 30 Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.

Die erfundungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt 35 oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behand-

lungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen.

Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Der Begriff „Teile“ bzw. „Teile von Pflanzen“ oder „Pflanzenteile“ wurde oben erläutert.

Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt.

Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch über-additive („synergistische“) Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernterträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.

25

Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften („Traits“) verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernterträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide

Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Raps sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle und Raps besonders hervorgehoben werden. Als Eigenschaften („Traits“) werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus *Bacillus thuringiensis* (z.B. durch die Gene CryIA(a), CryIA(b), CryIA(c), CryIIA, CryIIIA, CryIIB2, Cry9c Cry2Ab, Cry3Bb und CryIF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im folgenden „Bt Pflanzen“). Als Eigenschaften („Traits“) werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, beispielsweise Imidazolinonen, Sulfonylharnstoffen, Glyphosate oder Phosphinotricin (z.B. „PAT“-Gen). Die jeweils die gewünschten Eigenschaften („Traits“) verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für „Bt Pflanzen“ seien Maissorten, Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucotn® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), IMI® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften („Traits“).

25

Die erfindungsgemäßen Wirkstoffkombinationen können in Abhängigkeit von ihren jeweiligen physikalischen und/oder chemischen Eigenschaften in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Stäubermittel, Schäume, Pasten, lösliche Pulver, Granulate, Aerosole, Suspensions-Emulsions-Konzentrate, Wirkstoff-imprägnierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe bzw. der Wirkstoffkombinationen mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von

oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln.

Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im Wesentlichen infrage: Aromaten, wie Xylol, Toluol oder Alkynaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylen oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.

Mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Butan, Propan, Stickstoff und Kohlendioxid.

Als feste Trägerstoffe kommen infrage: z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate. Als feste Trägerstoffe für Granulate kommen infrage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnusschalen, Maiskolben und Tabakstängel. Als Emulgier- und/oder schaumerzeugende Mittel kommen infrage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäureester, Polyoxyethylen-Fettalkoholether, z.B. Alkylarylpolyglycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate. Als Dispergiermittel kommen infrage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurenährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen zum Bekämpfen tierischer Schädlinge wie Insekten und Akariden kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen. Die Anwendung geschieht in einer den Anwendungsformen angepassten üblichen Weise.

Die Formulierungen zur Bekämpfung unerwünschter phytopathogener Pilze enthalten im Allgemeinen zwischen 0,1 und 95 Gew.-% Wirkstoffe, vorzugsweise zwischen 0,5 und 90 %.

10 Die erfindungsgemäßen Wirkstoffkombinationen können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, emulgierbare Konzentrate, Emulsionen, Suspensionen, Spritzpulver, lösliche Pulver, Stäubemittel und Granulate, angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen (drenchen), Tröpfchenbewässerung, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreiche, 15 Verstreichen, Trockenbeizen, Feuchtbeizen, Nassbeizen, Schlämmbeizen, Inkrustieren usw.

Die erfindungsgemäßen Wirkstoffkombinationen können in handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Bakteriziden, Akariziden, Nematiziden, 20 Fungiziden, wachstumsregulierenden Stoffen oder Herbiziden vorliegen.

Beim Einsatz der erfindungsgemäßen Wirkstoffkombinationen können die Aufwandmengen je nach Applikationsart innerhalb eines größeren Bereichs variiert werden. Bei der Behandlung von Pflanzenteilen liegen die Aufwandmengen an Wirkstoffkombination im allgemeinen zwischen 0,1 25 und 10 000 g/ha, vorzugsweise zwischen 10 und 1 000 g/ha. Bei der Saatgutbehandlung liegen die Aufwandmengen an Wirkstoffkombination im allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Aufwandmengen an Wirkstoffkombination im allgemeinen zwischen 0,1 und 10 000 g/ha, vorzugsweise zwischen 1 und 5 000 g/ha.

30 Die Wirkstoffkombinationen können als solche, in Form von Konzentraten oder allgemein üblichen Formulierungen wie Pulver, Granulate, Lösungen, Suspensionen, Emulsionen oder Pasten angewendet werden.

35 Die genannten Formulierungen können in an sich bekannter Weise hergestellt werden, z.B. durch Vermischen der Wirkstoffe mit mindestens einem Lösungs- bzw. Verdünnungsmittel, Emulgator, Dis-

pergier- und/oder Binde- oder Fixiermittels, Wasser-Repellent, gegebenenfalls Sikkative und UV-Stabilisatoren und gegebenenfalls Farbstoffen und Pigmenten sowie weiteren Verarbeitungshilfsmitteln.

Die gute fungizide Wirkung der erfindungsgemäßen Wirkstoffkombinationen geht aus den nachfolgenden Beispielen hervor. Während die einzelnen Wirkstoffe in der fungiziden Wirkung Schwächen aufweisen, zeigen die Kombinationen eine Wirkung, die über eine einfache Wirkungssummierung hinausgeht.

Ein synergistischer Effekt liegt bei Fungiziden immer dann vor, wenn die fungizide Wirkung der

Wirkstoffkombinationen größer ist als die Summe der Wirkungen der einzeln applizierten Wirkstoffe.

Die zu erwartende fungizide Wirkung für eine gegebene Kombination zweier Wirkstoffe kann nach S.R. Colby („Calculating Synergistic and Antagonistic Responses of Herbicide Combinations“, Weeds 1967, 15, 20-22) wie folgt berechnet werden:

15

Wenn

X den *Wirkungsgrad* beim Einsatz des Wirkstoffes A in einer Aufwandmenge von m g/ha bedeutet,

Y den *Wirkungsgrad* beim Einsatz des Wirkstoffes B in einer Aufwandmenge von n g/ha bedeutet und

E den *Wirkungsgrad* beim Einsatz der Wirkstoffe A und B in Aufwandmengen von m und n g/ha bedeutet,

dann ist
$$E = X + Y - \frac{X \times Y}{100}$$

25 Dabei wird der Wirkungsgrad in % ermittelt. Es bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Ist die tatsächliche fungizide Wirkung größer als berechnet, so ist die Kombination in ihrer Wirkung überadditiv, d.h. es liegt ein synergistischer Effekt vor. In diesem Fall muss der tatsächlich beobachtete Wirkungsgrad größer sein als der aus der oben angeführten Formel errechnete Wert für den erwarteten Wirkungsgrad (E).

Die Erfindung wird durch die folgenden Beispiele veranschaulicht. Die Erfindung ist jedoch nicht auf die Beispiele limitiert.

Anwendungsbeispiele

In den nachfolgend aufgeführten Anwendungsbeispielen wurden jeweils Mischungen von folgenden Carboxamiden der allgemeinen Formel (I) (Gruppe 1) mit den jeweils angegebenen Mischungspartnern (Strukturformeln siehe oben) getestet.

Eingesetzte Carboxamide der Formel (I):

Beispiel A**Erysiphe-Test (Gerste) / kurativ**

5 Lösungsmittel : 50 Gewichtsteile N,N-Dimethylacetamid
 Emulgator : 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtteil Wirkstoff oder Wirkstoffkombination mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

10

Zur Prüfung auf kurative Wirksamkeit werden junge Pflanzen mit Sporen von *Erysiphe graminis f.sp. hordei* bestäubt. 48 Stunden nach der Inokulation werden die Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht.

15 Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von ca. 80 % aufgestellt, um die Entwicklung von Mehltäupusteln zu begünstigen.

20 6 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfindungsgemäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.

Tabelle A
Erysiphe-Test (Gerste) / kurativ

Wirkstoffe	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %	
		gef.*	ber.**
(1-8)	25	0	
(1-2)	25	0	
(3-15) Prothioconazole	25	22	
(1-8) + (3-15) Prothioconazole (1:1)	25 + 25	67	22
(1-2) + (3-15) Prothioconazole (1:1)	25 + 25	67	22

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

Beispiel B**Pyrenophora teres-Test (Gerste) / kurativ**

Lösungsmittel : 50 Gewichtsteile N,N-Dimethylacetamid

5 Emulgator : 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff oder Wirkstoffkombination mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

10

Zur Prüfung auf kurative Wirksamkeit werden junge Pflanzen mit einer Konidiensuspension von *Pyrenophora teres* besprüht. Die Pflanzen verbleiben 48 Stunden bei 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine. Anschließend werden die Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht.

15

Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von ca. 80 % aufgestellt.

12 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der 20 demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfundungsge-mäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.

Tabelle B
Pyrenophora teres-Test (Gerste) / kurativ

Wirkstoffe	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %	
		gef.*	ber.**
(1-8)	25	14	
(1-2)	62,5 25	71 29	
(1-15)	25	14	
(2-2) Fluoxastrobin	25	0	
(3-17) Tebuconazole	25	29	
(2-11) Picoxystrobin	125	86	
(3-12) Epoxyconazole	125	57	
(6-7) Carpropamid	125	14	
(6-11) 3,4-Dichlor-N-(2-cyanophenyl)-isothiazol-5-carboxamid	125	43	
(1-8) + (2-2) Fluoxastrobin (1:1)	25 + 25	57	14
(1-8) + (3-17) Tebuconazole (1:1)	25 + 25	57	39
(1-2) + (2-2) Fluoxastrobin (1:1)	25 + 25	43	29
(1-2) + (3-17) Tebuconazole (1:1)	25 + 25	57	50
(1-2) + (2-11) Picoxystrobin (1:2)	62,5 + 125	100	96
(1-2) + (3-12) Epoxyconazole (1:2)	62,5 + 125	93	88
(1-2) + (6-7) Carpropamid (1:2)	62,5 + 125	86	75
(1-2) + (6-11) 3,4-Dichlor-N-(2-cyanophenyl)-isothiazol-5-carboxamid (1:2)	62,5 + 125	86	83
(1-15) + (2-2) Fluoxastrobin (1:1)	25 + 25	57	14
(1-15) + (3-17) Tebuconazole (1:1)	25 + 25	43	39

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

Beispiel C**Erysiphe-Test (Gerste) / protektiv**

Lösungsmittel : 50 Gewichtsteile N,N-Dimethylacetamid
5 Emulgator : 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff oder Wirkstoffkombination mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

10

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht.

15

Nach Antrocknen des Spritzbelags werden die Pflanzen mit Sporen von *Erysiphe graminis f.sp. hordei* bestäubt.

Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von ca. 80 % aufgestellt, um die Entwicklung von Mehltaupusteln zu begünstigen.

20

6 Tage nach der Inkulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

25

Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfindungsmaßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.

Tabelle C
Erysiphe-Test (Gerste) / protektiv.

Wirkstoffe	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %	
		gef.*	ber.**
(1-8)	12,5	11	
(1-2)	12,5	0	
(1-15)	12,5	0	
(1-13)	12,5	0	
(2-4) Trifloxystrobin	12,5	78	
(3-15) Prothioconazole	12,5	67	
(1-8) + (2-4) Trifloxystrobin (1:1)	12,5 + 12,5	94	80
(1-2) + (2-4) Trifloxystrobin (1:1)	12,5 + 12,5	94	78
(1-15) + (2-4) Trifloxystrobin (1:1)	12,5 + 12,5	94	78
(1-15) + (3-15) Prothioconazole (1:1)	12,5 + 12,5	78	67
(1-13) + (2-4) Trifloxystrobin (1:1)	12,5 + 12,5	94	78

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

Beispiel D**Leptosphaeria nodorum-Test (Weizen) / kurativ**

5 Lösungsmittel : 50 Gewichtsteile N,N-Dimethylacetamid
 Emulgator : 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff oder Wirkstoffkombination mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

10 Zur Prüfung auf kurative Wirksamkeit werden junge Pflanzen mit einer Konidiensuspension von *Leptosphaeria nodorum* besprüht. Die Pflanzen verbleiben 48 Stunden bei 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine und werden dann mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht.

15 Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 15°C und einer relativen Luftfeuchtigkeit von ca. 80 % aufgestellt.

20 8 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfundungsge-mäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.

25

Tabelle D
Leptosphaeria nodorum-Test (Weizen) / kurativ

Wirkstoffe	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %	
		gef.*	ber.**
(1-13)	25	0	
(2-2) Fluoxastrobin	25	29	
(3-17) Tebuconazole	25	29	
(1-13) + (2-2) Fluoxastrobin (1:1)	25 + 25	43	29
(1-13) + (3-17) Tebuconazole (1:1)	25 + 25	43	29

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

Beispiel E**Leptosphaeria nodorum-Test (Weizen) / protektiv**

Lösungsmittel : 50 Gewichtsteile N,N-Dimethylacetamid

5 Emulgator : 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff oder Wirkstoffkombination mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

10

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelags werden die Pflanzen mit einer Sporensuspension von *Leptosphaeria nodorum* besprüht. Die Pflanzen verbleiben 48 Stunden bei 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine.

15

Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 15°C und einer relativen Luftfeuchtigkeit von ca. 80 % aufgestellt.

20

11 Tage nach der Inkokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfundungsge-mäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.

25

Tabelle E
Leptosphaeria nodorum-Test (Weizen) / protektiv

Wirkstoffe	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %	
		gef.*	ber.**
(1-13)	25	13	
(3-15) Prothioconazole	25	13	
(1-13) + (3-15) Prothioconazole (1:1)	25 + 25	38	24

* gef = gefundene Wirkung

** ber = nach der Colby-Formel berechnete Wirkung

Beispiel F**Puccinia recondita-Test (Weizen) / kurativ**

Lösungsmittel: 50 Gewichtsteile N,N-Dimethylacetamid

5 Emulgator: 1 Gewichtsteile Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

10

Zur Prüfung auf kurative Wirksamkeit werden junge Pflanzen mit einer Kondens-suspension von *Puccinia recondita* besprüht. Die Pflanzen verbleiben 48 Stunden bei 20°C und 100 % relativer Luftfeuchte in einer Inkubationskabine. Anschließend werden die Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht.

15

Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von ca. 80 % aufgestellt, um die Entwicklung von Rostpusteln zu begünstigen.

20 8 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfindungsgemäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.

25

Tabelle F
Puccinia recondita-Test (Weizen) / kurativ

Wirkstoffe	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %	
		gef.*	ber.**
(1-2)	62,5	94	
(2-9) Kresoxim-methyl	62,5	0	
(19-10) Spiroxamine	62,5	0	
(14-2) Prochloraz	62,5	0	
(16-2) Fludioxonil	62,5	0	
(6-14) Pentiopyrad	62,5	44	
(1-2) + (2-9) Kresoxim-methyl (1:1)	62,5 + 62,5	100	94
(1-2) + (19-10) Spiroxamine (1:1)	62,5 + 62,5	100	94
(1-2) + (14-2) Prochloraz (1:1)	62,5 + 62,5	100	94
(1-2) + (16-2) Fludioxonil (1:1)	62,5 + 62,5	100	94
(1-2) + (6-14) Pentiopyrad (1:1)	62,5 + 62,5	100	97

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

Beispiel G**Sphaerotheca fuliginea-Test (Gurke) / protektiv**

Lösungsmittel: 24,5 Gewichtsteile Aceton

5 24,5 Gewichtsteile Dimethylacetamid

Emulgator: 1 Gewichtsteil Alkyl-Aryl-Polyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension von *Sphaerotheca fuliginea* inkuliert. Die Pflanzen werden dann bei ca. 23°C und einer relativen Luftfeuchtigkeit von ca. 70% im Gewächshaus aufgestellt.

7 Tage nach der Inkulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, dass kein Befall beobachtet wird.

20

Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfindungsgemäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.

Tabelle G
Sphaerothecea fuliginea-Test (Gurke) / protektiv

Wirkstoffe	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %	
		gef.*	ber.**
(1-2)	4 2 1 0,5	20 30 18 0	
(1-13)	1	10	
(2-1) Azoxystrobin	4	50	
(2-2) Fluoxastrobin	2	37	
(2-4) Trifloxystrobin	1	20	
(3-3) Propiconazole	1	37	
(3-15) Prothioconazole	1	43	
(3-17) Tebuconazole	2	10	
(3-21) Bitertanol	2	20	
(4-2) Tolyfluanid	10	0	
(6-2) Boscalid	1	10	
(6-6) Fenhexamid	10	0	
(7-1) Mancozeb	10	0	
(7-4) Propineb	5	0	
(9-3) Pyrimethanil	10	0	
(12-4) Iprodione	10	0	
(19-2) Chlorothalonil	10	0	
(19-10) Spiroxamine	10	0	
(22-1) 5-Chlor-N-[(1 <i>S</i>)-2,2,2-trifluor-1-methyl-ethyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amin	1	22	
(22-2) 5-Chlor-N-[(1 <i>R</i>)-1,2-dimethylpropyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amin	1	22	
(1-2) + (2-1) Azoxystrobin (1:1)	4 + 4	80	60
(1-2) + (2-2) Fluoxastrobin (1:1)	2 + 2	88	56
(1-2) + (2-4) Trifloxystrobin (1:1)	1 + 1	72	34
(1-13) + (2-4) Trifloxystrobin (1:1)	1 + 1	60	28
(1-2) + (3-3) Propiconazole (1:1)	1 + 1	77	48
(1-13) + (3-3) Propiconazole (1:1)	1 + 1	63	43

Tabelle G
Sphaerotheca fuliginea-Test (Gurke) / protektiv

Wirkstoffe	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %	
		gef.*	ber.**
(1-2) + (3-15) Prothioconazole (1:1)	1 + 1	90	53
(1-2) + (3-17) Tebuconazole (1:1)	2 + 2	80	37
(1-2) + (3-21) Bitertanol (1:1)	2 + 2	75	44
(1-2) + (4-2) Tolyfluanid (1:10)	1 + 10	87	18
(1-2) + (6-2) Boscalid (1:1)	1 + 1	65	26
(1-2) + (6-6) Fenhexamid (1:10)	1 + 10	85	18
(1-2) + (7-1) Mancozeb (1:10)	1 + 10	94	18
(1-2) + (7-4) Propineb (1:10)	0,5 + 5	69	0
(1-2) + (9-3) Pyrimethanil (1:10)	1 + 10	83	18
(1-2) + (12-4) Iprodione (1:10)	1 + 10	91	18
(1-2) + (19-2) Chlorothalonil (1:10)	1 + 10	98	18
(1-2) + (19-10) Spiroxamine (1:10)	1 + 10	100	18
(1-2) + (22-1) 5-Chlor-N-[<i>(1S)</i> -2,2,2-trifluor-1-methylethyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amin (1:1)	1 + 1	94	36
(1-2) + (22-2) 5-Chlor-N-[<i>(1R)</i> -1,2-dimethyl-propyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amin (1:1)	1 + 1	91	36

* gef. = gefundene Wirkung

** bér. = nach der Colby-Formel berechnete Wirkung

Beispiel H**Alternaria solani-Test (Tomate) / protektiv.**

Lösungsmittel: 24,5 Gewichtsteile Aceton

5 24,5 Gewichtsteile Dimethylacetamid

Emulgator: 1 Gewichtsteil Alkyl-Aryl-Polyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension von *Alternaria solani* inkuliert. Die Pflanzen werden dann in einer Inkubationskabine bei ca. 20°C und 100% relativer Luftfeuchtigkeit aufgestellt.

15 3 Tage nach der Inkulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, dass kein Befall beobachtet wird.

20

Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfindungsgemäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.

Tabelle H
Alternaria solani-Test (Tomate) / protektiv

Wirkstoffe	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %	
		gef.*	ber.**
(1-2)	2 1	23 3	
(1-13)	2	0	
(2-3)	2 1	32 39	
(2-12) Pyraclostrobin	2	37	
(8-5) Benalaxy1-M	2	0	
(8-4) Metalaxy1-M	2	0	
(1-2) + (2-3) (1:1)	1+1	66	41
(1-13) + (2-3) (1:1)	2+2	76	32
(1-2) + (2-12) Pyraclostrobin (1:1)	2+2	64	52
(1-13) + (2-12) Pyraclostrobin (1:1)	2+2	79	37
(1-2) + (8-5) Benalaxy1-M (1:1)	2+2	75	23
(1-2) + (8-4) Metalaxy1-M (1:1)	2+2	81	23

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

Beispiel I**Phytophthora infestans-Test (Tomate) / protektiv**

Lösungsmittel: 24,5 Gewichtsteile Aceton

5. 24,5 Gewichtsteile Dimethylacetamid

Emulgator: 1 Gewichtsteil Alkyl-Aryl-Polyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension von *Phytophthora infestans* inkuliert. Die Pflanzen werden dann 15 in einer Inkubationskabine bei ca. 20°C und 100% relativer Luftfeuchtigkeit aufgestellt.

3 Tage nach der Inkulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, dass kein Befall beobachtet wird.

20

Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfindungsge-mäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.

Tabelle I
Phytophthora infestans-Test (Tomate) / protektiv

Wirkstoffe	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %	
		gef.*	ber.**
(1-2)	25 10 2 1 0,5	0 5 0 18 7	
(5-1) Iprovalicarb	10	64	
(7-1) Mancozeb	2 1 0,5	73 52 33	
(17-1) Fosetyl-Al	500	45	
(19-13) Fenamidone	2	47	
(5-3) Benthiavalicarb	2	50	
(24-1) <i>N</i> -(3',4'-Dichlor-5-fluor-1,1'-biphenyl-2-yl)-3-(difluormethyl)-1-methyl-1 <i>H</i> -pyrazol-4-carboxamid	2 1 0,5	0 0 0	
(1-2) + (5-1) Iprovalicarb (1:1)	10 + 10	90	66
(1-2) + (7-1) Mancozeb (1:10)	2 + 20 1 + 10 0,5 + 5	84 80 68	73 61 38
(1-2) + (17-1) Fosetyl-Al (1:20)	25 + 500	65	45
(1-2) + (19-3) Fenamidone (1:1)	2 + 2	70	47
(1-2) + (5-3) Benthiavalicarb (1:1)	2 + 2	80	50
(1-2) + (24-1) <i>N</i> -(3',4'-Dichlor-5-fluor-1,1'-biphenyl-2-yl)-3-(difluormethyl)-1-methyl-1 <i>H</i> -pyrazol-4-carboxamid (1:1)	2 + 2 1 + 1 0,5 + 0,5	90 65 67	0 18 7

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

Beispiel J**Plasmopara viticola-Test (Rebe) / protektiv**

Lösungsmittel: 24,5 Gewichtsteile Aceton
 5 24,5 Gewichtsteile Dimethylacetamid
 Emulgator: 1 Gewichtsteil Alkyl-Aryl-Polyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension von *Plasmopara viticola* inkuliert und verbleiben dann 1 Tag in einer Inkubationskabine bei ca. 20°C und 100% relativer Luftfeuchtigkeit. Anschließend werden die Pflanzen 15 4 Tage im Gewächshaus bei ca. 21°C und ca. 90% Luftfeuchtigkeit aufgestellt. Die Pflanzen werden dann angefeuchtet und 1 Tag in eine Inkubationskabine gestellt:

6 Tage nach der Inkulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, dass kein Befall beobachtet wird.

Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfindungsgemäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.

25 Tabellé J
Plasmopara viticola-Test (Rebe) / protektiv

Wirkstoffe	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %	
		gef.*	ber.**
(1-2)	50 25	0 0	
(17-1) Fosetyl-Al	1000 500	58 33	
(1-2) + (17-1) Fosetyl-Al (1:20)	50 + 1000 25 + 500	83 58	58 33

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

Beispiel K**Botrytis cinerea - Test (Bohne) / protektiv**

Lösungsmittel: 24,5 Gewichtsteile Aceton

5 24,5 Gewichtsteile Dimethylacetamid

Emulgator: 1 Gewichtsteil Alkyl-Aryl-Polyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

10 Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden auf jedes Blatt 2 kleine mit *Botrytis cinerea* bewachsene Agarstückchen aufgelegt. Die inkulierten Pflanzen werden 15 in einer abgedunkelten Kammer bei ca. 20°C und 100% relativer Luftfeuchtigkeit aufgestellt.

20 2 Tage nach der Inkulation wird die Größe der Befallsflecken auf den Blättern ausgewertet. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, dass kein Befall beobachtet wird.

Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfindungsgemäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.

Tabelle K
Botrytis cinerea - Test (Bohne) / protektiv

Wirkstoffe	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %	
		gef.*	ber.**
(1-2)	20	66	
	10	64	
	5	33	
(12-4) Iprodione	20	47	
	10	54	
	5	13	
(1-2) + (12-4) Iprodione (1:1)	20 + 20	94	82
	10 + 10	91	83
	5 + 5	72	42

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

Beispiel L**Pyricularia oryzae -Test (in vitro) / Mikrotiterplatten**

5 Der Microtest wird in Mikrotiterplatten mit Potato-Dextrose Broth (PDB) als flüssigem Versuchsmedium durchgeführt. Die Anwendung der Wirkstoffe erfolgt als technisches a.i., gelöst in Aceton. Zur Inokulation wird eine Sporensuspension von *Pyricularia oryzae* verwendet. Nach 3 Tagen Inkubation bei Dunkelheit und unter Schütteln (10 Hz) wird die Lichtdurchlässigkeit in jeder gefüllten Kavität der Mikrotiterplatten mit Hilfe eines Spectrophotometers ermittelt.

10

Dabei bedeutet 0 % ein Wirkungsgrad, der dem Wachstum in den Kontrollen entspricht; während ein Wirkungsgrad von 100 % bedeutet, dass kein Pilzwachstum beobachtet wird.

15 Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfundungsge-mäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.

Tabelle L
Pyricularia oryzae -Test (in vitro) / Mikrotiterplatten

Wirkstoffe	Aufwandmenge an Wirkstoff in ppm	Wirkungsgrad in %	
		gef.*	ber.**
(1-2)	3	17	
(14-3) Triazoxide	3	3	
(1-2) + (14-3) Triazoxide (1:1)	3 + 3	53	20

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

Beispiel M**Rhizoctonia solani -Test (in vitro) / Mikrotiterplatten**

5 Der Microtest wird in Mikrotiterplatten mit Potato-Dextrose Broth (PDB) als flüssigem Versuchsmedium durchgeführt. Die Anwendung der Wirkstoffe erfolgt als technisches a.i., gelöst in Aceton. Zur Inokulation wird eine Myzelsuspension von *Rhizoctonia solani* verwendet. Nach 5 Tagen Inkubation bei Dunkelheit und unter Schütteln (10 Hz) wird die Lichtdurchlässigkeit in jeder gefüllten Kavität der Mikrotiterplatten mit Hilfe eines Spectrophotometers ermittelt.

10

Dabei bedeutet 0 % ein Wirkungsgrad, der dem Wachstum in den Kontrollen entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Pilzwachstum beobachtet wird.

Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfundungsge-
15 mäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.

Tabelle M
Rhizoctonia solani -Test (in vitro) / Mikrotiterplatten

Wirkstoffe	Aufwandmenge an Wirkstoff in ppm	Wirkungsgrad in %	
		gef.*	ber.**
(1-2)	1 0,003	40 30	
(11-2) Propamocarb	1	7	
(20-1) Pencycuron	1	54	
(24-1) N-(3',4'-Dichlor-5-fluor-1,1'-biphenyl-2-yl)-3-(difluormethyl)-1-methyl-1 <i>H</i> -pyrazol-4-carboxamid	0,003	50	
(1-2) + (11-2) Propamocarb (1:1)	1 + 1	78	44
(1-2) + (20-1) Pencycuron (1:1)	1 + 1	91	72
(1-2) + (24-1) N-(3',4'-Dichlor-5-fluor-1,1'-biphenyl-2-yl)-3-(difluormethyl)-1-methyl-1 <i>H</i> -pyrazol-4-carboxamid (1:1)	0,003 + 0,003	92	65

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

Beispiel N**Gibberella zae-Test (in vitro) / Mikrotiterplatten**

5 Der Microtest wird in Mikrotiterplatten mit Potato-Dextrose Broth (PDB) als flüssigem Versuchsmittel durchgeführt. Die Anwendung der Wirkstoffe erfolgt als technisches a.i., gelöst in Aceton. Zur Inkulation wird eine Sporensuspension von *Gibberella zae* verwendet. Nach 3 Tagen Inkubation bei Dunkelheit und unter Schütteln (10 Hz) wird die Lichtdurchlässigkeit in jeder gefüllten Kavität der Mikrotiterplatten mit Hilfe eines Spectrophotometers ermittelt.

10

Dabei bedeutet 0 % ein Wirkungsgrad, der dem Wachstum in den Kontrollen entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Pilzwachstum beobachtet wird.

15

Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfundungsge-
mäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.

Tabelle N
Gibberella zae-Test (in vitro) / Mikrotiterplatten

Wirkstoffe	Aufwandmenge an Wirkstoff in ppm	Wirkungsgrad in %	
		gef.*	ber.**
(1-2)	0,3	39	
(19-3) Fenamidone	0,3	15	
(1-2) + (19-3) Fenamidone (1:1)	0,3 + 0,3	70	48

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

Beispiel O**Botrytis cinerea -Test (in vitro) / Mikrotiterplatten**

5 Der Microtest wird in Mikrotiterplatten mit Potato-Dextrose Broth (PDB) als flüssigem Versuchsmittel durchgeführt. Die Anwendung der Wirkstoffe erfolgt als technisches a.i., gelöst in Aceton. Zur Inkubation wird eine Sporensuspension von *Botrytis cinerea* verwendet. Nach 7 Tagen Inkubation bei Dunkelheit und unter Schütteln (10 Hz) wird die Lichtdurchlässigkeit in jeder gefüllten Kavität der Mikrotiterplatten mit Hilfe eines Spectrophotometers ermittelt.

10

Dabei bedeutet 0 % ein Wirkungsgrad, der dem Wachstum in den Kontrollen entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Pilzwachstum beobachtet wird.

Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfundungsge-
15 mäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.

Tabelle O
Botrytis cinerea -Test (in vitro) / Mikrotiterplatten

Wirkstoffe	Aufwandmenge an Wirkstoff in ppm	Wirkungsgrad in %	
		gef.*	ber.**
(1-2)	3	35	
(10-3) Carbendazim	3	86	
(1-2) + (10-3) Carbendazim (1:1)	3 + 3	97	91

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

Patentansprüche

1. Synergistische fungizide Wirkstoffkombinationen enthaltend ein Carboxamid der allgemeinen Formel (I) (Gruppe 1)

5.

in welcher

R¹ für Wasserstoff, Halogen, C₁-C₃-Alkyl oder C₁-C₃-Halogenalkyl mit 1 bis 7 Fluor-, Chlor- und/oder Bromatomen steht,

A für einen der folgenden Reste A1 bis A8 steht:

10.

R² für C₁-C₃-Alkyl steht,

R³ für Wasserstoff, Halogen, C₁-C₃-Alkyl oder C₁-C₃-Halogenalkyl mit 1 bis 7 Fluor-, Chlor- und/oder Bromatomen steht,

R⁴ für Wasserstoff, Halogen oder C₁-C₃-Alkyl steht,

15.

R⁵ für Halogen, C₁-C₃-Alkyl oder C₁-C₃-Halogenalkyl mit 1 bis 7 Fluor-, Chlor- und/oder Bromatomen steht,

R⁶ für Wasserstoff, Halogen, C₁-C₃-Alkyl, Amino, Mono- oder Di(C₁-C₃-alkyl)amino steht,

20.

R⁷ für Wasserstoff, Halogen, C₁-C₃-Alkyl oder C₁-C₃-Halogenalkyl mit 1 bis 7 Fluor-, Chlor- und/oder Bromatomen steht,

R⁸ für Halogen, C₁-C₃-Alkyl oder C₁-C₃-Halogenalkyl mit 1 bis 7 Fluor-, Chlor- und/oder Bromatomen steht,

R⁹ für Halogen, C₁-C₃-Alkyl oder C₁-C₃-Halogenalkyl mit 1 bis 7 Fluor-, Chlor- und/oder Bromatomen steht,

R^{10}

für Wasserstoff, Halogen, C₁-C₃-Alkyl oder C₁-C₃-Halogenalkyl mit 1 bis 7 Fluor-, Chlor- und/oder Bromatomen steht,

und mindestens einen Wirkstoff, der aus den folgenden Gruppen (2) bis (24) ausgewählt ist:

5

Gruppe (2) Strobilurine der allgemeinen Formel (II)

in welcher

A¹ für eine der Gruppen

10

steht,

A² für NH oder O steht,

A³ für N oder CH steht,

L für eine der Gruppen

15

steht, wobei die Bindung, die mit einem Stern (*) markiert ist an den Phenylring gebunden ist,

 R^{11}

für jeweils gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Chlor, Cyano, Methyl oder Trifluormethyl substituiertes Phenyl, Phenoxy oder Pyridinyl, oder für 1-(4-Chlorphenyl)-pyrazol-3-yl oder für 1,2-Propandion-bis(O-methyloxim)-1-yl steht,

20

 R^{12}

für Wasserstoff oder Fluor steht;

Gruppe (3) Triazole der allgemeinen Formel (III)

in welcher

- Q für Wasserstoff oder SH steht;
- m für 0 oder 1 steht;
- R¹³ für Wasserstoff, Fluor, Chlor, Phenyl oder 4-Chlor-phenoxy steht;
- R¹⁴ für Wasserstoff oder Chlor steht;
- A⁴ für eine direkte Bindung -CH₂- , -(CH₂)₂- oder -O- steht,
außerdem für *-CH₂-CHR¹⁷- oder *-CH=CR¹⁷- steht, wobei die mit * markierte Bindung mit dem Phenylring verknüpft ist, und R¹⁵ und R¹⁷ dann zusammen für -CH₂-CH₂-CH[CH(CH₃)₂]- oder -CH₂-CH₂-C(CH₃)₂- stehen;
- A⁵ für C oder Si (Silizium) steht;
außerdem für -N(R¹⁷)- steht und A⁵ außerdem zusammen mit R¹⁵ und R¹⁶ für die Gruppe C=N-R¹⁸ steht, wobei R¹⁷ und R¹⁸ dann zusammen für die Gruppe

stehen, wobei die mit * markierte Bindung mit R¹⁷ verbunden ist,

- R¹⁵ für Wasserstoff, Hydroxy oder Cyano steht;
- R¹⁶ für 1-Cyclopropylethyl, 1-Chlorcyclopropyl, C₁-C₄-Alkyl, C₁-C₆-Hydroxyalkyl, C₁-C₄-Alkylcarbonyl, C₁-C₂-Halogenalkoxy-C₁-C₂-alkyl, Trimethylsilyl-C₁-C₂-alkyl, Monofluorphenyl, oder Phenyl steht;
- R¹⁵ und R¹⁶ außerdem zusammen für -O-CH₂-CH(R¹⁸)-O-, -O-CH₂-CH(R¹⁸)-CH₂- oder -O-CH-(2-Chlorphenyl)- stehen;
- R¹⁸ für Wasserstoff, C₁-C₄-Alkyl oder Brom steht;

Gruppe (4) Sulfenamide der allgemeinen Formel (IV)

in welcher R¹⁹ für Wasserstoff oder Methyl steht;

25

Gruppe (5) Valinamide ausgewählt aus

- (5-1) Iprovalicarb
- (5-2) N¹-[2-(4-([3-(4-chlorophenyl)-2-propynyl]oxy)-3-methoxyphenyl)ethyl]-N²-
(methylsulfonyl)-D-valinamid
- (5-3) Benthiavalicarb

30

Gruppe (6) Carboxamide der allgemeinen Formel (V)

in welcher

5 X für 2-Chlor-3-pyridinyl, für 1-Methylpyrazol-4-yl, welches in 3-Position durch Methyl oder Trifluormethyl und in 5-Position durch Wasserstoff oder Chlor substituiert ist, für 4-Ethyl-2-ethylamino-1,3-thiazol-5-yl, für 1-Methyl-cyclohexyl, für 2,2-Dichlor-1-ethyl-3-methyl-cyclopropyl, für 2-Fluor-2-propyl, oder für Phenyl steht, welches einfach bis dreifach, gleich oder verschieden durch Chlor oder Methyl substituiert ist, steht,

10 X außerdem für 3,4-Dichlor-isothiazol-5-yl, 5,6-Dihydro-2-methyl-1,4-oxathiin-3-yl, 4-Methyl-1,2,3-thiadiazol-5-yl, 4,5-Dimethyl-2-trimethylsilyl-thiophen-3-yl, 1-Methyl-pyrrol-3-yl, welches in 4-Position durch Methyl oder Trifluormethyl und in 5-Position durch Wasserstoff oder Chlor substituiert ist, steht,

15 Y für eine direkte Bindung, gegebenenfalls durch Chlor, Cyano oder Oxo substituiertes C₁-C₆-Alkandiyl (Alkylen) oder Thiophendiyl steht,

Y außerdem für C₂-C₆-Alkendiyl (Alkenylen) steht,

20 Z für Wasserstoff oder die Gruppe

steht,

Z außerdem für C₁-C₆-Alkyl steht,

A⁶ für CH oder N steht,

R²⁰ für Wasserstoff, Chlor, durch gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Chlor oder Di(C₁-C₃-alkyl)aminocarbonyl substituiertes Phenyl steht,

R²⁰ außerdem für Cyano oder C₁-C₆-Alkyl steht,

R²¹ für Wasserstoff oder Chlor steht,

R²² für Wasserstoff, Chlor, Hydroxy, Methyl oder Trifluormethyl steht,

R²² außerdem für Di(C₁-C₃-alkyl)aminocarbonyl steht,

R²⁰ und R²¹ außerdem gemeinsam für *-CH(CH₃)-CH₂-C(CH₃)₂- oder *-CH(CH₃)-O-C(CH₃)₂- steht, wobei die mit * markierte Bindung mit R²⁰ verknüpft ist.

Gruppe (7) Dithiocarbamate ausgewählt aus

(7-1) Mancozeb
 (7-2) Maneb

(7-3) Metiram

(7-4) Propineb

(7-5) Thiram

(7-6) Zineb

5 (7-7) Ziram

Gruppe (8) Acylalanine der allgemeinen Formel (VI)

in welcher

10 * ein Kohlenstoffatom in der R- oder der S-Konfiguration, bevorzugt in der S-Konfiguration, kennzeichnet;

R²³ für Benzyl, Furyl oder Methoxymethyl steht;

Gruppe (9): Anilino-pyrimidine der allgemeinen Formel (VII)

15

in welcher

R²⁴ für Methyl, Cyclopropyl oder 1-Propinyl steht;

Gruppe (10): Benzimidazole der allgemeinen Formel (VIII)

20

in welcher

R²⁵ und R²⁶ jeweils für Wasserstoff oder zusammen für -O-CF₃-O- stehen;

R²⁷ für Wasserstoff, C₁-C₄-Alkylaminocarbonyl oder für 3,5-Dimethylisoxazol-4-ylsulfonyl steht;

25 R²⁸ für Chlor, Methoxycarbonylamino, Chlorphenyl, Furyl oder Thiazolyl steht;

Gruppe (11): Carbamate der allgemeinen Formel (IX)

in welcher

R²⁹ für n- oder iso-Propyl steht,

R³⁰ für Di(C₁-C₂-alkyl)amino-C₂-C₄-alkyl oder Diethoxyphenyl steht,

5 wobei auch Salze dieser Verbindungen eingeschlossen sind;

Gruppe (12): Dicarboximide ausgewählt aus

(12-1) Captafol

(12-2) Captan

10 (12-3) Folpet

(12-4) Iprodione

(12-5) Procymidone

(12-6) Vinclozolin

15 Gruppe (13): Guanidine ausgewählt aus

(13-1) Dodine

(13-2) Guazatine

(13-3) Iminoctadine triacetate

(13-4) Iminoctadine tris(albesilate)

20

Gruppe (14): Imidazole ausgewählt aus

(14-1) Cyazofamid

(14-2) Prochloraz

(14-3) Triazoxide

25 (14-4) Pefurazoate

Gruppe (15): Morpholine der allgemeinen Formel (X)

in welcher

30 R³¹ und R³² unabhängig voneinander für Wasserstoff oder Methyl stehen,

R^{33} für C_1-C_{14} -Alkyl (bevorzugt $C_{12}-C_{14}$ -Alkyl), C_5-C_{12} -Cycloalkyl (bevorzugt $C_{10}-C_{12}$ -Cycloalkyl), Phenyl- C_1-C_4 -alkyl, welches im Phenylteil durch Halogen oder C_1-C_4 -Alkyl substituiert sein kann, oder für Acryl, welches durch Chlorphenyl und Dimethoxyphenyl substituiert ist, steht;

5

Gruppe (16): Pyrrole der allgemeinen Formel (XI)

in welcher

R^{34} für Chlor oder Cyano steht,

R^{35} für Chlor oder Nitro steht,

R^{36} für Chlor steht,

R^{35} und R^{36} außerdem gemeinsam für $-O-CF_2-O-$ stehen;

10

Gruppe (17): Phosphonate ausgewählt aus

15

(17-1) Fosetyl-Al

(17-2) Phosphonsäure;

Gruppe (18): Phenylethanamide der allgemeinen Formel (XII)

20

in welcher

R^{37} für unsubstituiertes oder durch Fluor, Chlor, Brom, Methyl oder Ethyl substituiertes Phenyl, 2-Naphthyl, 1,2,3,4-Tetrahydronaphthyl oder Indanyl steht;

Gruppe (19): Fungizide ausgewählt aus

25

(19-1) Acibenzolar-S-methyl

(19-2) Chlorothalonil

(19-3) Cymoxanil

(19-4) Edifenphos

(19-5) Famoxadone

30

(19-6) Fluazinam

(19-7) Kupferoxychlorid
 5 (19-8) Kupferhydroxid
 (19-9) Oxadixyl
 (19-10) Spiroxamine
 (19-11) Dithianon
 (19-12) Metrafenone
 (19-13) Fenamidone
 (19-14) 2,3-Dibutyl-6-chlor-thieno[2,3-d]pyrimidin-4(3H)on
 (19-15) Probenazole
 10 (19-16) Isoprothiolane
 (19-17) Kasugamycin
 (19-18) Phthalide
 (19-19) Ferimzone
 (19-20) Tricyclazole
 15 (19-21) N-((4-[(Cyclopropylamino)carbonyl]phenyl)sulfonyl)-2-methoxybenzamid
 (19-22) 2-(4-Chlorphenyl)-N-{2-[3-methoxy-4-(prop-2-in-1-yloxy)phenyl]ethyl}-2-(prop-2-in-1-yloxy)acetamid

Gruppe (20): (Thio)Harnstoff-Derivate ausgewählt aus

20 (20-1) Pencycuron
 (20-2) Thiophanate-methyl
 (20-3) Thiophanate-ethyl

Gruppe (21): Amide der allgemeinen Formel (XIII)

25

in welcher

A⁷ für eine direkte Bindung oder -O- steht,
 A⁸ für -C(=O)NH- oder -NHC(=O)- steht,
 R³⁸ für Wasserstoff oder C₁-C₄-Alkyl steht,
 30 R³⁹ für C₁-C₆-Alkyl steht;

Gruppe (22): Triazolopyrimidine der allgemeinen Formel (XIV)

in welcher

R⁴⁰ für C₁-C₆-Alkyl oder C₂-C₆-Alkenyl steht,

R⁴¹ für C₁-C₆-Alkyl steht,

5 R⁴⁰ und R⁴¹ außerdem gemeinsam für C₄-C₅-Alkandiyl (Alkylen) stehen, welches einfach oder zweifach durch C₁-C₆-Alkyl substituiert ist,

R⁴² für Brom oder Chlor steht,

R⁴³ und R⁴⁷ unabhängig voneinander für Wasserstoff, Fluor, Chlor oder Methyl stehen,

R⁴⁴ und R⁴⁶ unabhängig voneinander für Wasserstoff oder Fluor stehen,

10 R⁴⁵ für Wasserstoff, Fluor oder Methyl steht,

Gruppe (23): Iodochromone der allgemeinen Formel (XV)

in welcher

15 R⁴⁸ für C₁-C₆-Alkyl steht,

R⁴⁹ für C₁-C₆-Alkyl, C₂-C₆-Alkenyl oder C₂-C₆-Alkinyl steht;

Gruppe (24): Biphenylcarboxamide der allgemeinen Formel (XVI)

20 in welcher

R⁵⁰ für Wasserstoff oder Fluor steht,

R⁵¹ für Fluor, Chlor, Brom, Methyl, Trifluormethyl, Trifluormethoxy, -CH=N-OMe oder -C(Me)=N-OMe steht;

R⁵² für Wasserstoff, Fluor, Chlor, Brom, Methyl oder Trifluormethyl steht,

25 Het für einen der folgenden Reste Het1 bis Het7 steht:

R^{53} für Iod, Methyl, Difluormethyl oder Trifluormethyl steht,
 R^{54} für Wasserstoff, Fluor, Chlor oder Methyl steht,
 R^{55} für Methyl, Difluormethyl oder Trifluormethyl steht,
 R^{56} für Chlor, Brom, Iod, Methyl, Difluormethyl oder Trifluormethyl steht,
 R^{57} für Methyl oder Trifluormethyl steht.

2. Wirkstoffkombinationen gemäß Anspruch 1 enthaltend ein Carboxamid der allgemeinen
 10 Formel (I) gemäß Anspruch 1 (Gruppe 1), in welcher

R^1 für Wasserstoff, Fluor, Chlor, Methyl, Ethyl, n-, iso-Propyl, Monofluormethyl, Di-
 fluormethyl, Trifluormethyl, Monochlormethyl, Dichlormethyl oder Trichlormethyl
 steht,

A für einen der folgenden Reste A1 bis A5 steht:

15 R^2 für Methyl, Ethyl, n- oder iso-Propyl steht,
 R^3 für Iod, Methyl, Difluormethyl oder Trifluormethyl steht,
 R^4 für Wasserstoff, Fluor, Chlor oder Methyl steht,
 R^5 für Chlor, Brom, Iod, Methyl, Difluormethyl oder Trifluormethyl steht,
 R^6 für Wasserstoff, Chlor, Methyl, Amino oder Dimethylamino steht,
 R^7 für Methyl, Difluormethyl oder Trifluormethyl steht,
 R^8 für Brom oder Methyl steht,
 R^9 für Methyl oder Trifluormethyl steht.

3. Wirkstoffkombinationen gemäß Anspruch 1, wobei die Wirkstoffe der Gruppen (2) bis (24) aus der folgenden Liste ausgewählt sind:

(2-1) Azoxystrobin
(2-2) Fluoxastrobin
5 (2-3) (2E)-2-(2-{[6-(3-Chlor-2-methylphenoxy)-5-fluor-4-pyrimidinyl]oxy}phenyl)-2-(methoxyimino)-N-methylethanamid
(2-4) Trifloxystrobin
(2-5) (2E)-2-(Methoxyimino)-N-methyl-2-(2-{{(1E)-1-[3-(trifluormethyl)phenyl]ethyliden}amino}oxy)methylphenyl)ethanamid
10 (2-6) (2E)-2-(Methoxyimino)-N-methyl-2-{2-[(E)-{(1-[3-(trifluormethyl)phenyl]ethoxy}imino)methyl]phenyl}ethanamid
(2-7) Orysastrobin
(2-8) 5-Methoxy-2-methyl-4-(2-{{(1E)-1-[3-(trifluormethyl)phenyl]ethyliden}amino}oxy)methylphenyl)-2,4-dihydro-3H-1,2,4-triazol-3-on
15 (2-9) Kresoxim-methyl
(2-10) Dimoxystrobin
(2-11) Picoxystrobin
(2-12) Pyraclostrobin
(2-13) Metominostrobin
20 (3-1) Azaconazole
(3-2) Etaconazole
(3-3) Propiconazole
(3-4) Difenoconazole
(3-5) Bromuconazole
25 (3-6) Cyproconazole
(3-7) Hexaconazole
(3-8) Fenconazole
(3-9) Myclobutanil
(3-10) Tetraconazole
30 (3-11) Flutriafol
(3-12) Epoxiconazole
(3-13) Flusilazole
(3-14) Simeconazole
(3-15) Prothioconazole
35 (3-16) Fenbuconazole
(3-17) Tebuconazole

(3-18) Ipconazole
(3-19) Metconazole
(3-20) Triticonazole
(3-21) Bitertanol
5 (3-22) Triadimenol
(3-23) Triadimefon
(3-24) Fluquinconazole
(3-25) Quinconazole
(4-1) Dichlofuanid
10 (4-2) Tolylfuanid
(5-1) Iprovalicarb
(5-3) Benthiavalicarb
(6-1) 2-Chloro-N-(1,1,3-trimethyl-indan-4-yl)-nicotinamid
(6-2) Boscalid
15 (6-3) Furametpyr
(6-4) 1-Methyl-3-trifluormethyl-1H-pyrazol-4-carbonsäure-(3-p-tolyl-thiophen-2-yl)-amid
(6-5) Ethaboxam
(6-6) Fenhexamid
(6-7) Carpropamid
20 (6-8) 2-Chlor-4-(2-fluor-2-methyl-propionylamino)-N,N-dimethyl-benzamid
(6-9) Picobenzamid
(6-10) Zoxamide
(6-11) 3,4-Dichlor-N-(2-cyanophenyl)isothiazol-5-carboxamid
(6-12) Carboxin
25 (6-13) Tiadinil
(6-14) Pentiopyrad
(6-15) Silthiofam
(6-16) N-[2-(1,3-Dimethylbutyl)phenyl]-1-methyl-4-(trifluormethyl)-1H-pyrrol-3-carboxamid
(7-1) Mancozeb
30 (7-2) Maneb
(7-3) Metiram
(7-4) Propineb
(7-5) Thiram
(7-6) Zineb
35 (7-7) Ziram
(8-1) Benalaxyll

- (8-2) Furalaxyd
- (8-3) Metalaxyd
- (8-4) Metalaxyd-M
- (8-5) Benalaxyd-M
- 5 (9-1) Cyprodinil
- (9-2) Mepanipyrim
- (9-3) Pyrimethanil
- (10-1) 6-Chlor-5-[(3,5-dimethylisoxazol-4-yl)sulfonyl]-2,2-difluor-5H-[1,3]dioxolo[4,5-f]-benzimidazol
- 10 (10-2) Benomyl
- (10-3) Carbendazim
- (10-4) Chlorfenazole
- (10-5) Fuberidazole
- (10-6) Thiabendazole
- 15 (11-1) Diethofencarb
- (11-2) Propamocarb
- (11-3) Propamocarb-hydrochloride
- (11-4) Propamocarb-Fosetyl
- (12-1) Captafol
- 20 (12-2) Captan
- (12-3) Folpet
- (12-4) Iprodione
- (12-5) Procymidone
- (12-6) Vinclozolin
- 25 (13-1) Dodine
- (13-2) Guazatine
- (13-3) Iminoctadine triacetate
- (14-1) Cyazofamid
- (14-2) Prochloraz
- 30 (14-3) Triazoxide
- (14-4) Pefurazoate
- (15-1) Aldimorph
- (15-2) Tridemorph
- (15-3) Dodemorph
- 35 (15-4) Fenpropimorph
- (15-5) Dimethomorph

- (16-1) Fenpiclonil
- (16-2) Fludioxonil
- (16-3) Pyrrolnitrine
- (17-1) Fosetyl-Al
- 5 (17-2) Phosphonic acid
- (18-1) 2-(2,3-Dihydro-1H-inden-5-yl)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2-(methoxyimino)acetamid
- (18-2) N-[2-(3,4-Dimethoxyphenyl)ethyl]-2-(methoxyimino)-2-(5,6,7,8-tetrahydronaphthalen-2-yl)acetamid
- 10 (18-3) 2-(4-Chlorophenyl)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2-(methoxyimino)acetamid
- (18-4) 2-(4-Bromophenyl)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2-(methoxyimino)acetamid
- (18-5) 2-(4-Methylphenyl)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2-(methoxyimino)acetamid
- (18-6) 2-(4-Ethylphenyl)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2-(methoxyimino)acetamid
- (19-1) Acibenzolar-S-methyl
- 15 (19-2) Chlorothalonil
- (19-3) Cymoxanil
- (19-4) Edifenphos
- (19-5) Famoxadone
- (19-6) Fluazinam
- 20 (19-7) Kupferoxychlorid
- (19-9) Oxadixyl
- (19-10) Spiroxamine
- (19-11) Dithianon
- (19-12) Metrafenone
- 25 (19-13) Fenamidone
- (19-14) 2,3-Dibutyl-6-chlor-thieno[2,3-d]pyrimidin-4(3H)on
- (19-15) Probenazole
- (19-16) Isoprothiolane
- (19-17) Kasugamycin
- 30 (19-18) Phthalide
- (19-19) Ferimzone
- (19-20) Tricyclazole
- (19-21) N-({4-[(Cyclopropylamino)carbonyl]phenyl}sulfonyl)-2-methoxybenzamid
- (19-22) 2-(4-Chlorophenyl)-N-{2-[3-methoxy-4-(prop-2-in-1-yloxy)phenyl]ethyl}-2-(prop-2-in-1-yloxy)acetamid
- 35 (20-1) Pencycuron

(20-2) Thiophanate-methyl
(20-3) Thiophanate-ethyl
(21-1) Fenoxanil
(21-2) Diclocymet

5 (22-1) 5-Chlor-N-[*(1S)*-2,2,2-trifluor-1-methylethyl]-6-(2,4,6-trifluorphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amin
(22-2) 5-Chlor-N-[*(1R)*-1,2-dimethylpropyl]-6-(2,4,6-trifluorphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amin
10 (22-3) 5-Chlor-6-(2-chlor-6-fluorphenyl)-7-(4-methylpiperidin-1-yl)[1,2,4]triazolo[1,5-a]pyrimidin
(22-4) 5-Chlor-6-(2,4,6-trifluorphenyl)-7-(4-methylpiperidin-1-yl)[1,2,4]triazolo[1,5-a]pyrimidin

15 (23-1) 2-Butoxy-6-iod-3-propyl-benzopyran-4-on
(23-2) 2-Ethoxy-6-iod-3-propyl-benzopyran-4-on
15 (23-3) 6-Iod-2-propoxy-3-propyl-benzopyran-4-on
(23-4) 2-But-2-inyloxy-6-iod-3-propyl-benzopyran-4-on
(23-5) 6-Iod-2-(1-methyl-butoxy)-3-propyl-benzopyran-4-on
(23-6) 2-But-3-enyloxy-6-iod-benzopyran-4-on
(23-7) 3-Butyl-6-iod-2-isopropoxy-benzopyran-4-on

20 (24-1) *N*-(3',4'-Dichlor-5-fluor-1,1'-biphenyl-2-yl)-3-(difluormethyl)-1-methyl-1*H*-pyrazol-4-carboxamid
(24-2) 3-(Difluormethyl)-*N*-{3'-fluor-4'-[(*E*)-(methoxyimino)methyl]-1,1'-biphenyl-2-yl}-1-methyl-1*H*-pyrazol-4-carboxamid
25 (24-3) 3-(Trifluormethyl)-*N*-{3'-fluor-4'-[(*E*)-(methoxyimino)methyl]-1,1'-biphenyl-2-yl}-1-methyl-1*H*-pyrazol-4-carboxamid
(24-4) *N*-(3',4'-Dichlor-1,1'-biphenyl-2-yl)-5-fluor-1,3-dimethyl-1*H*-pyrazol-4-carboxamid
(24-5) *N*-(4'-Chlor-3'-fluor-1,1'-biphenyl-2-yl)-2-methyl-4-(trifluormethyl)-1,3-thiazol-5-carboxamid
30 (24-6) *N*-(4'-Chlor-1,1'-biphenyl-2-yl)-4-(difluormethyl)-2-methyl-1,3-thiazol-5-carboxamid
(24-7) *N*-(4'-Brom-1,1'-biphenyl-2-yl)-4-(difluormethyl)-2-methyl-1,3-thiazol-5-carboxamid
(24-8) 4-(Difluormethyl)-2-methyl-*N*-[4'-(trifluormethyl)-1,1'-biphenyl-2-yl]-1,3-thiazol-5-carboxamid

4. Wirkstoffkombinationen gemäß Anspruch 1 enthaltend das Carboxamid (1-8) 5-Fluor-1,3-dimethyl-*N*-[2-(1,3,3-trimethylbutyl)phenyl]-1*H*-pyrazol-4-carboxamid (Gruppe 1) und min-

35

destens einen Wirkstoff, der aus den folgenden Gruppen (2) bis (24) gemäß Anspruch 1 ausgewählt ist.

5. Wirkstoffkombinationen gemäß Anspruch 1 enthaltend das Carboxamid (1-8) 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1*H*-pyrazol-4-carboxamid (Gruppe 1) und mindestens einen Wirkstoff, der aus den folgenden Gruppen (2) bis (24) gemäß Anspruch 3 ausgewählt ist.
10. 6. Wirkstoffkombinationen gemäß Anspruch 1 enthaltend das Carboxamid (1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1*H*-pyrazol-4-carboxamid (Gruppe 1) und mindestens einen Wirkstoff, der aus den folgenden Gruppen (2) bis (24) gemäß Anspruch 1 ausgewählt ist.
15. 7. Wirkstoffkombinationen gemäß Anspruch 1 enthaltend das Carboxamid (1-2) N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1*H*-pyrazol-4-carboxamid (Gruppe 1) und mindestens einen Wirkstoff, der aus den folgenden Gruppen (2) bis (24) gemäß Anspruch 3 ausgewählt ist.
20. 8. Wirkstoffkombinationen gemäß Anspruch 1 enthaltend das Carboxamid (1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid (Gruppe 1) und mindestens einen Wirkstoff, der aus den folgenden Gruppen (2) bis (24) gemäß Anspruch 1 ausgewählt ist.
25. 9. Wirkstoffkombinationen gemäß Anspruch 1 enthaltend das Carboxamid (1-15) N-[2-(1,3-Dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid (Gruppe 1) und mindestens einen Wirkstoff, der aus den folgenden Gruppen (2) bis (24) gemäß Anspruch 3 ausgewählt ist.
30. 10. Wirkstoffkombinationen gemäß Anspruch 1 enthaltend das Carboxamid (1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid (Gruppe 1) und mindestens einen Wirkstoff, der aus den folgenden Gruppen (2) bis (24) gemäß Anspruch 1 ausgewählt ist.
11. 11. Wirkstoffkombinationen gemäß Anspruch 1 enthaltend das Carboxamid (1-13) N-[2-(1,3-Dimethylbutyl)phenyl]-2-iodbenzamid (Gruppe 1) und mindestens einen Wirkstoff, der aus den folgenden Gruppen (2) bis (24) gemäß Anspruch 3 ausgewählt ist.
35. 12. Verwendung von Wirkstoffkombinationen gemäß Anspruch 1 zum Bekämpfung von unerwünschten phytopathogenen Pilzen.

13. Verwendung von Wirkstoffkombinationen gemäß Anspruch 1 zur Behandlung von Saatgut.
14. Verwendung von Wirkstoffkombinationen gemäß Anspruch 1 zur Behandlung von
5 transgenen Pflanzen.
15. Verwendung von Wirkstoffkombinationen gemäß Anspruch 1 zur Behandlung von Saatgut
transgener Pflanzen.
- 10 16. Saatgut, welches mit einer Wirkstoffkombination gemäß Anspruch 1 behandelt wurde.
- 15 17. Verfahren zum Bekämpfen von unerwünschten phytopathogenen Pilzen, dadurch gekenn-
zeichnet, dass man Wirkstoffkombinationen gemäß Anspruch 1 auf die unerwünschten
phytopathogenen Pilze und/oder deren Lebensraum und/oder Saatgut aus bringt.
18. Verfahren zum Herstellen von fungiziden Mitteln, dadurch gekennzeichnet, dass man Wirk-
stoffkombinationen gemäß Anspruch 1 mit Streckmitteln und/ oder oberflächenaktiven
Stoffen vermischt.

THIS PAGE BLANK (USPTO)

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
12. Mai 2005 (12.05.2005)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2005/041653 A3 not Sk

(51) Internationale Patentklassifikation⁷: A01N 37/22, 43/08, 43/10, 43/32, 43/36, 43/40, 43/56, 43/78 // (A01N 37/22, 43:08, 43:10, 43:32, 43:36, 43:40)

(74) Gemeinsamer Vertreter: BAYER CROPSCIENCE AKTIENGESELLSCHAFT; Law and Patents, Patents and Licensing, 51368 Leverkusen (DE).

(21) Internationales Aktenzeichen: PCT/EP2004/011403

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(22) Internationales Anmeldedatum:

12. Oktober 2004 (12.10.2004)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
10349501.0 23. Oktober 2003 (23.10.2003) DE

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BAYER CROPSCIENCE AKTIENGESELLSCHAFT (DE/DE); Alfred-Nobel-Str. 50, 40789 Monheim (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): WACHENDORFF-NEUMANN, Ulrike [DE/DE]; Oberer Markenweg 85, 56566 Neuwied (DE). DAHMEN, Peter [DE/DE]; Altebrücker Str. 61, 41470 Neuss (DE). DUNKEL, Ralf [DE/DE]; Krischer Str. 22, 40789 Monheim (DE). ELBE, Hans-Ludwig [DE/DE]; Dasnöckel 59, 42329 Wuppertal (DE). RIECK, Heiko [DE/FR]; 9 rue Clajude Monet, F-69110 Ste Foy les Lyon (FR). SUTY-HEINZE, Anne [FR/DE]; Schlieper Str. 29, 40764 Langenfeld (DE).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

(88) Veröffentlichungsdatum des internationalen Recherchenberichts:

28. Juli 2005

BCS 033016

[Fortsetzung auf der nächsten Seite]

(54) Title: SYNERGISTIC FUNGICIDAL ACTIVE COMBINATIONS

WO 2005/041653 A3

(54) Bezeichnung: SYNERGISTISCHE FUNGIZIDE WIRKSTOFFKOMBINATIONEN

(57) Abstract: The novel active ingredient combinations made of a carboxamide of general formula (I) (group 1) (I) wherein A, R1 and R2 have the meaning cited in the description, and active ingredient groups (2) (24) which are disclosed in the description, have excellent fungicidal characteristics.

(57) Zusammenfassung: Die neuen Wirkstoffkombinationen aus einem Carboxamid der allgemeinen Formel (I) (Gruppe 1) (I) in welcher A, R1 und R2 die in der Beschreibung angegebenen Bedeutungen haben, und den in der Beschreibung aufgeführten Wirkstoffgruppen (2) bis (24) besitzen sehr gute fungizide Eigenschaften.

WO 2005/041653 A3

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/011403

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 A01N37/22 A01N43/08 A01N43/10 A01N43/32 A01N43/36
 A01N43/40 A01N43/56 A01N43/78
 //((A01N37/22,A01N43:08,A01N43:10,A01N43:32,A01N43:36,A01N43:40

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 2001 072507 A (MITSUI CHEMICALS INC) 21 March 2001 (2001-03-21)	1-3,12, 13,16-18
Y	An automated computer translation of this Japanese publication can be found on the website of the Japanese Patent Office: http://www.ipdl.ncipi.go.jp/homepg_e.ipdl the whole document	1-18.
Y	WO 02/38542 A (SYNGENTA PARTICIPATIONS AG; WALTER, HARALD) 16 May 2002 (2002-05-16) - Gruppen (a) bis (e) page 4 - page 7 page 11 page 22 - page 25 page 27; example 2 page 31; table 1; compounds 1.1, 1.15,1.24	1-3,12, 13,16-18

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

3 June 2005

Date of mailing of the international search report

16/06/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Romano-Götsch, R

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/011403

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 03/010149 A (BAYER AKTIENGESELLSCHAFT; ELBE, HANS-LUDWIG; RIECK, HEIKO; DUNKEL, RAL) 6 February 2003 (2003-02-06) page 36, line 6 – page 39, line 33 page 47; compounds I-1 page 55; compounds I-21 page 44, line 30 – page 46, line 13 page 75; table C -----	1-7, 12-18
Y	EP 0 824 099 A (MITSUI CHEMICALS, INC) 18 February 1998 (1998-02-18) page 4, line 16 – line 45 page 12, line 56 – page 13, line 34 page 14, line 22 – line 32; examples 2,3 -----	1-3,12, 13,16-18
P,Y	WO 2004/005242-A (BAYER CROPSCIENCE AG; ELBE, HANS-LUDWIG; RIECK, HEIKO; DUNKEL, RALF; R) 15 January 2004 (2004-01-15) page 13, line 10 – page 15, line 13 page 20, line 1 – page 21, line 20; examples 2,3 page 37 – page 38 -----	1-3,8-18

BEST AVAILABLE COPY

INTERNATIONAL SEARCH REPORT

Information on patent family members.

International Application No

PCT/EP2004/011403

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
JP 2001072507	A	21-03-2001	NONE		
WO 0238542	A	16-05-2002	AU 2366802 A	21-05-2002	
			BR 0115200 A	17-02-2004	
			CA 2426033 A1	16-05-2002	
			CN 1484637 A	24-03-2004	
			EG 23122 A	28-04-2004	
			WO 0238542 A1	16-05-2002	
			EP 1341757 A1	10-09-2003	
			HU 0302471 A2	28-11-2003	
			JP 2004513163 T	30-04-2004	
			MX PA03004016 A	12-02-2004	
			PL 362930 A1	02-11-2004	
			ZA 200303012 A	20-05-2004	
WO 03010149	A	06-02-2003	DE 10136065 A1	13-02-2003	
			BR 0211482 A	17-08-2004	
			CN 1533380 A	29-09-2004	
			WO 03010149 A1	06-02-2003	
			EP 1414803 A1	06-05-2004	
			HU 0401478 A2	29-11-2004	
			JP 2005501044 T	13-01-2005	
			MX PA04000622 A	20-04-2004	
			PL 365036 A1	27-12-2004	
			US 2004204470 A1	14-10-2004	
			ZA 200400434 A	21-01-2005	
EP 0824099	A	18-02-1998	JP 10251240 A	22-09-1998	
			CA 2213111 A1	15-02-1998	
			CN 1338452 A	06-03-2002	
			CN 1178791 A ,C	15-04-1998	
			DE 69708004 D1	13-12-2001	
			DE 69708004 T2	18-04-2002	
			EP 0824099 A1	18-02-1998	
			ES 2164972 T3	01-03-2002	
			JP 10310577 A	24-11-1998	
			US 5965774 A	12-10-1999	
			US 5914344 A	22-06-1999	
WO 2004005242	A	15-01-2004	DE -10229595 A1	15-01-2004	
			AU 2003245975 A1	23-01-2004	
			BR 0312407 A	26-04-2005	
			CA 2491368 A1	15-01-2004	
			WO 2004005242 A1	15-01-2004	
			EP 1519913 A1	06-04-2005	

BEST AVAILABLE COPY

THE DRAFT BLANK (USPTO)

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/011403

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
 IPK 7 A01N37/22 A01N43/08 A01N43/10 A01N43/32 A01N43/36
 A01N43/40 A01N43/56 A01N43/78
 //((A01N37/22,A01N43:08,A01N43:10,A01N43:32,A01N43:36,A01N43:40

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 A01N

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	JP 2001 072507 A (MITSUI CHEMICALS INC) 21. März 2001 (2001-03-21)	1-3,12, 13,16-18
Y	An automated computer translation of this Japanese publication can be found on the website of the Japanese Patent Office: http://www.ipdl.ncipi.go.jp/homepg_e.ipdl das ganze Dokument	1-18
Y	WO 02/38542 A (SYNGENTA PARTICIPATIONS AG; WALTER, HARALD) 16. Mai 2002 (2002-05-16) - Gruppen (a) bis (e) Seite 4 - Seite 7 Seite 11 Seite 22 - Seite 25 Seite 27; Beispiel 2 Seite 31; Tabelle 1; Verbindungen 1.1, 1.15,1.24	1-3,12, 13,16-18
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *8* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

3. Juni 2005

16/06/2005

Name und Postanschrift der internationalen Recherchenbehörde
 Europäisches Patentamt, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Romano-Götsch, R

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/011403

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	WO 03/010149 A (BAYER AKTIENGESELLSCHAFT; ELBE, HANS-LUDWIG; RIECK, HEIKO; DUNKEL, RALF) 6. Februar 2003 (2003-02-06) Seite 36, Zeile 6 – Seite 39, Zeile 33 Seite 47; Verbindungen I-1 Seite 55; Verbindungen I-21 Seite 44, Zeile 30 – Seite 46, Zeile 13 Seite 75; Tabelle C -----	1-7, 12-18
Y	EP 0 824 099 A (MITSUI CHEMICALS, INC) 18. Februar 1998 (1998-02-18) Seite 4, Zeile 16 – Zeile 45 Seite 12, Zeile 56 – Seite 13, Zeile 34 Seite 14, Zeile 22 – Zeile 32; Beispiele 2,3 -----	1-3,12, 13,16-18
P,Y	WO 2004/005242 A (BAYER CROPSCIENCE AG; ELBE, HANS-LUDWIG; RIECK, HEIKO; DUNKEL, RALF; R) 15. Januar 2004 (2004-01-15) Seite 13, Zeile 10 – Seite 15, Zeile 13 Seite 20, Zeile 1 – Seite 21, Zeile 20; Beispiele 2,3 Seite 37 – Seite 38 -----	1-3,8-18

BEST AVAILABLE COPY

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/011403

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
JP 2001072507	A	21-03-2001	KEINE	
WO 0238542	A	16-05-2002	AU 2366802 A BR 0115200 A CA 2426033 A1 CN 1484637 A EG 23122 A WO 0238542 A1 EP 1341757 A1 HU 0302471 A2 JP 2004513163 T MX PA03004016 A PL 362930 A1 ZA 200303012 A	21-05-2002 17-02-2004 16-05-2002 24-03-2004 28-04-2004 16-05-2002 10-09-2003 28-11-2003 30-04-2004 12-02-2004 02-11-2004 20-05-2004
WO 03010149	A	06-02-2003	DE 10136065 A1 BR 0211482 A CN 1533380 A WO 03010149 A1 EP 1414803 A1 HU 0401478 A2 JP 2005501044 T MX PA04000622 A PL 365036 A1 US 2004204470 A1 ZA 200400434 A	13-02-2003 17-08-2004 29-09-2004 06-02-2003 06-05-2004 29-11-2004 13-01-2005 20-04-2004 27-12-2004 14-10-2004 21-01-2005
EP 0824099	A	18-02-1998	JP 10251240 A CA 2213111 A1 CN 1338452 A CN 1178791 A ,C DE 69708004 D1 DE 69708004 T2 EP 0824099 A1 ES 2164972 T3 JP 10310577 A US 5965774 A US 5914344 A	22-09-1998 15-02-1998 06-03-2002 15-04-1998 13-12-2001 18-04-2002 18-02-1998 01-03-2002 24-11-1998 12-10-1999 22-06-1999
WO 2004005242	A	15-01-2004	DE 10229595 A1 AU 2003245975 A1 BR 0312407 A CA 2491368 A1 WO 2004005242 A1 EP 1519913 A1	15-01-2004 23-01-2004 26-04-2005 15-01-2004 15-01-2004 06-04-2005

BEST AVAILABLE COPY

THIS PAGE BLANK (USPTO)