DATABASES, CATEGORIES AND FUNCTORS

INTRODUCTION TO CATEGORY THEORY

LET'S LOOK AT A DATABASE

Employee	WorksIn	Manager
1	101	2
2	101	3
3	102	3

Department	Secretary
101	2
102	3

LET'S LOOK AT A DATABASE

Employee	WorksIn	Manager
1	101	2
2	101	3
3	102	3

Department	Secretary
101	2
102	3

Schemas

EMPLOYEES

Employee: EmployeeID

WorksIn: DepartmentID

Manager: EmployeeID

DEPARTMENTS

Department: DepartmentID

Secretary: EmployeeID

DATABASE SCHEMA AS A GRAPH

EMPLOYEES

Employee: EmployeeID

WorksIn: DepartmentID

Manager: EmployeeID

DEPARTMENTS

Department: DepartmentID

Secretary: EmployeeID

DATABASE SCHEMA AS A GRAPH

EMPLOYEES

Employee: EmployeeID

WorksIn: DepartmentID

Manager: EmployeeID

DEPARTMENTS

Department: DepartmentID

Secretary: EmployeeID

Each ID column becomes a node (vertex)

Employee

Department

DATABASE SCHEMA AS A GRAPH

EMPLOYEES

Employee: EmployeeID

WorksIn: DepartmentID

Manager: EmployeeID

DEPARTMENTS

Department: DepartmentID

Secretary: EmployeeID

Each non-ID column becomes an edge

DATABASE SCHEMA AS A GRAPH: IMPOSING EXTRA RULES

EMPLOYEES

Employee: EmployeeID

WorksIn: DepartmentID

Manager: EmployeeID

DEPARTMENTS

Department: DepartmentID

Secretary: EmployeeID

Each non-ID column becomes an edge

Department.Secretary.Department = Department Employee.Manager.WorksIn = Employee.WorksIn

ANOTHER EXAMPLE

How does one migrate data between two databases?

DATABASE SCHEMA AS A GRAPH: SO WHAT?

Department.Secretary.Department = Department Employee.Manager.WorksIn = Employee.WorksIn

THESE PICTURES ARE CATEGORIES

ARROW IS FUNCTOR

Partial order

Partial order

COLLECTION OF OBJECTS

Happy, Neutral, Sad, Angry

EVERY PAIR OF OBJECTS HAS A "RELATIONSHIP"

Sad, Neutral: ≤

Neutral, Happy: ≤

Sad, Angry: Nothing

NOTHING IS ALSO A "RELATIONSHIP"

COLLECTION OF OBJECTS

COLLECTION OF OBJECTS

EVERY PAIR OF OBJECTS A AND B HAS A "RELATIONSHIP": MORPHISM BETWEEN A AND B

Set of morphisms between C1 and C2 = {f1, f2}

COLLECTION OF OBJECTS

EVERY PAIR OF OBJECTS A AND B HAS A "RELATIONSHIP": MORPHISM BETWEEN A AND B

Set of morphisms between C1 and C2 = {f, g}

TWO CONSECUTIVE MORPHISMS CAN BE COMPOSED TOGETHER

Composition of morphisms f and h = A morphism between C1 and C3

COLLECTION OF OBJECTS

THERE IS A SPECIAL MORPHISM BETWEEN AN ELEMENT AND ITSELF: MORPHISM (C1, C1) = IDENTITY MORALISM OF C1

$$id_{c1}$$
; $f = f$
f; $id_{c2} = f$

MORPHISMS ARE ASSOCIATIVE

(f1; f2); f3 = f1; (f2; f3)

Partial order

COLLECTION OF OBJECTS

Happy, Neutral, Sad, Angry

EVERY PAIR OF OBJECTS HAS A MORPHISM

Sad, Neutral: {≤}

Neutral, Happy: {≤}

Sad, Angry: Ø

PARTIAL ORDERS HAVE ONLY ONE KIND OF MORPHISM: ≤

 $Id_{sad} = Morphism (Sad, Sad) = \{\leq\}$

Morphism (Sad, Neutral); Morphism (Neutral, Happy) = Morphism (Sad, Happy)

Sad ≤ Neutral and Neutral ≤ Happy implies Sad ≤ Happy

WHEN YOU THINK OF OBJECTS IN A CATEGORY, YOU DON'T CARE WHAT'S INSIDE EACH OBJECT.

YOU ONLY CARE ABOUT RELATIONSHIPS BETWEEN OBJECTS

CATEGORY WITH A SINGLE OBJECT

How many morphisms does it have?

$$s = s$$
; $id_z = id_z$; s
 s ; s
 s ; s ; s
 s ; s ; s ; s

Define a; b = a + bHow many morphisms does it have?

CATEGORY WITH A SINGLE OBJECT: WE CAN CONSTRAIN MORPHISMS

How many morphisms does it have?

$$s = s ; id_z = id_z ; s$$

 $s ; s = s$
 $s ; s ; s = s ; s = s$

Thus it has only two morphisms: idz and s

CATEGORY WITH A SINGLE OBJECT: WE CAN CONSTRAIN MORPHISMS

s; s = s

How many morphisms does it have?

$$s = s ; id_z = id_z ; s$$

 $s ; s = s$
 $s ; s = s ; s = s$

Thus it has only two morphisms: idz and s

It is easy to see that f; f = f

In other words, f(f(x)) = f(x)

WHAT IS A CATEGORY? PERMUTATION GROUP AS A CATEGORY

{f1, f2, f3, f4, f5, f6} is a group of permutations

WHAT IS A CATEGORY? PERMUTATION GROUP AS A CATEGORY

{f1, f2, f3, f4, f5, f6} is a group of permutations

WHAT IS A CATEGORY? PERMUTATION GROUP AS A CATEGORY

Category with one object and six morphisms

Category of English words: E

Category of Chinese words: C

F

Category of English words: E Category of Chinese words: C

MAP EVERY OBJECT IN E TO AN OBJECT IN C

Category of English words: E Category of Chinese words: C

MAP EVERY MORPHISM IN E TO A MORPHISM IN C

F

Category of English words: E Category of Chinese words: C

A FUNCTOR BASICALLY MAPS EACH OBJECT/MORPHISM FROM ONE CATEGORY TO AN OBJECT/
MORPHISM IN ANOTHER CATEGORY

BUT THERE ARE TWO RULES

Category of English words: E Category of Chinese words: C

 $F(ID_{Happy}) = ID_{F(Happy)}$ Same rule applies for each object and its identity morphism

Category of English words: E

Category of Chinese words: C

Is $F(ID_{Happy}) = ID_{F(Happy)}$? $F(ID_{Happy}) = id_{200} but$ $ID_{(F(Happy))} = id_{200} deg$ Hence this mapping is not a valid functor

Category of English words: E Category of Chinese words: C

F(f;g) = F(f); F(g)

Same rule applies for each object and its identity morphism

Category of English words: E

Category of Chinese words: C

F(f;g) = F(f); F(g)

Same rule applies for each object and its identity morphism

FUNCTORS BETWEEN PARTIAL ORDERS ARE MONOTONE FUNCTIONS

FUNCTOR: ONE MORE EXAMPLE

THANK YOU