3.1 Équations du second degré à coefficients réels

3.1.1 Équations du type $az^2 + bz + c = 0$, $a \neq 0$

Propriété 1.3.

Soit l'équation du second degré $az^2 + bz + c = 0$ avec $a \neq 0$, b et c des réels.

Cette équation admet toujours des solutions dans l'ensemble des nombres complexes C.

À l'aide de son discriminant $\Delta = b^2 - 4ac$, on distingue trois cas :

- 1. Si $\Delta = 0$, il existe une unique solution : $z = -\frac{b}{2a}$.
- 2. Si $\Delta > 0$, il existe deux solutions réelles : $z = \frac{-b \pm \sqrt{\Delta}}{2a}$.
- 3. Si $\Delta < 0$, il existe deux solutions complexes conjuguées : $z = \frac{-b \pm i\sqrt{|\Delta|}}{2a}$.
- **Application 1.3.** Résoudre dans \mathbb{C} l'équation $z^2 2z + 5 = 0$.

3.1.2 Cas particulier : équations du type $z^2=a,\ a\neq 0$

Propriété 2.3.

L'équation $z^2 = a$ admet toujours deux solutions dans \mathbb{C} :

- 1. Si a > 0, les solutions sont les *réels* :
- 2. Si a < 0, les solutions sont les *imaginaires purs* :
- **Description 2.3.** Résoudre dans \mathbb{C} l'équation $z^2 + 16 = 0$.

3.1.3 Factorisation d'un polynôme du second degré

Propriété 3.3.

Soient a, b et c trois réels avec $a \neq 0$.

On considère le polynôme P tel que, pour tout z de \mathbb{C} , on ait : $P(z) = az^2 + bz + c$.

On note z_1 et z_2 les solutions dans \mathbb{C} de l'équation P(z) = 0, avec éventuellement $z_1 = z_2$ si $\Delta = 0$. Alors pour tout z de \mathbb{C} , on a :

$$P(z) = a(z - z_1)(z - z_2)$$

Parameter Application 3.3. Factoriser dans \mathbb{C} , $P(z) = z^2 - 4z + 8$.

3.2 Factorisation des polynômes

3.2.1 Fonction polynôme

Définitions.

1. Soient n un entier naturel et $a_0, a_1, a_2, \dots a_n$ des réels (éventuellement complexes) avec $a_n \neq 0$.

Une fonction polynôme ou polynôme P est une fonction définie sur $\mathbb C$ pouvant s'écrire, pour tout complexe z, sous la forme :

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$

2. On appelle $polynôme \ nul$ le polynôme P tel que pour tout complexe z,

$$P(z) = 0$$

- 3. Si P n'est pas le polynôme nul, n est le degré de P.
- 4. On appelle racine de P tout nombre complexe z_0 tel que :

$$P(z_0) = 0$$

- **Description 4.3.** Soit P le polynôme défini sur \mathbb{C} par $P(z)=z^3-(1+\mathrm{i})z^2+z-1-\mathrm{i}$.
 - 1. Quel est le degré de P?
 - 2. Montrer que i est racine de P.

Propriété 4.3. Admise

Un polynôme est le polynôme nul si et seulement si tous ses coefficients sont nuls.

3.2.2 Factorisation par $z - \alpha$

Définition 1.3.

On dit qu'un polynôme P est factorisable (ou divisible) par $z-\alpha$ s'il existe un polynôme Q tel que pour tout complexe z:

$$P(z) = (z - \alpha)Q(z)$$

- **Application 5.3.** Soit le polynôme P défini dans \mathbb{C} par : $P(z) = z^3 12z^2 + 48z 128$.
 - 1. Montrer que 8 est une racine de P.
 - 2. En déduire les réels a et b tels que $P(z)=(z-8)(z^2+az+b)$.
 - 3. En déduire l'ensemble des racines de P.

Propriété 5.3.

Soit a un nombre complexe.

Pour tout complexe z et tout entier naturel non nul, $z^n - a^n$ est factorisable par z - a et :

$$z^{n} - a^{n} = (z - a)(z^{n-1} + az^{n-2} + a^{2}z^{n-2} + \dots + a^{n-2}z + a^{n-1}) = (z - a)\left(\sum_{k=0}^{n-1} a^{k}z^{n-1-k}\right)$$

Parameter Application 6.3. Soit $P(z) = z^3 - 27$. Factoriser P dans \mathbb{C} .

Propriété 6.3.

Le polynôme P est factorisable par z-a si et seulement si a est une racine de P.

Application 7.3. Soit $P(z) = z^3 - 3z^2 + 4z - 12$ avec $z \in \mathbb{C}$. Démontrer que P(z) est factorisable par z + 2i puis factoriser au maximum P(z).

3.2.3 Polynôme et racines

Propriété 7.3.

Un polynôme non nul de degré n admet $au\ plus\ n$ racines distinctes.