Probability-2021 期末测试 II

注意事项:

- 闭卷测试。禁止使用计算器、手机等电子设备。请提前静音手机。
- 间隔座位。邻桌无人。
- 测试时间 100 分钟: 10: 00 11: 40 am. 不可提前交卷。
- 学号姓名。答题纸上明确标注学号和姓名。请将学生卡作为准考证放在桌面左上角,以供查验。

1 Version A

Exercise I 基本题

- I. 请复述随机变量的定义。
- 2. 请复述 Borel-Cantelli 引理。
- 3. 请完整写出强大数定律。
- 4. 请完整写出中心极限定理。

Exercise 2 假设 $\{X_n\}_{n>1}$ 是一列**非负**随机变量,且存在 $0 < \alpha < \beta < \infty$ 使得

$$\mathbf{E}[X_n^{\alpha}] \to 1, \quad \mathbf{E}[X_n^{\beta}] \to 1.$$

(注意:可以承认并使用问题 $1, \dots, k$ 的结果来回答第k+1题。)

- I. 请证明 $\mathbf{E}[X_n^{\frac{\alpha+\beta}{2}}] \to 1$. (提示: 可使用 Jensen 不等式或者 Cauchy-Schwartz 不等式)
- 2. 请证明 $X_n^{\alpha/2} X_n^{\beta/2}$ 依概率收敛到零。
- 3. 请证明 $\{X_n\}_{n\geq 1}$ 的紧性 (Tightness), 即

$$\limsup_{M\to\infty}\limsup_{n\to\infty}\mathbf{P}(|X_n|\geq M)=0.$$

- 4. 如果一个子列 $\{X_{n_k}\}_{k>1}$ 依分布收敛到 X, 那么 $\mathbf{P}(X \in \{0,1\}) = 1$ 。
- 5. 请证明 (提示:可用 Cauchy-Schwartz 不等式)

$$\limsup_{M\to\infty}\limsup_{n\to\infty}\mathbf{E}[X_n^\alpha;X_n\geq M]=0$$

- 6. 如果一个子列 $\{X_{n_k}\}_{k>1}$ 依分布收敛到 X, 那么
 - (a) 对于任意的固定常数 M>0,请证明 $\mathbf{E}[(X_{n_k}\wedge M)^{\alpha}]\to \mathbf{E}[(X\wedge M)^{\alpha}]$. (提示: Helly-Bray 定理)

- (b) 请证明 $\mathbf{E}[X^{\alpha}] = 1$. (提示:问题 5)
- 7. 如果一个子列 $\{X_{n_k}\}_{k>1}$ 依分布收敛到 X, 那么 $X \stackrel{a.s.}{=} 1$ 。
- 8. 问题 2 和问题 7 说明 X_n 依分布收敛于 1。基于此,请证明 X_n 依**概率**收敛 到 1。

$$R = \sqrt{X^2 + Y^2}, X = R\cos(\Theta), Y = R\sin(\Theta).$$

- I. 请计算 (R,Θ) 的联合密度函数,并证明 R与 Θ 独立。
- 2. 请计算 $Z = \frac{X}{V}$ 的分布。
- 3. 请证明 R 与 Z 是独立的。
- 4. 请计算 $\mathbf{E}[R^2|X=x]$.

Exercise 4 假设 X 和 Y 是独立的随机变量,使得 X 满足参数为 α 的几何分布, Y 满足参数为 β 的几何分布。

- I. 请计算 X + Y 的母函数 (generating function)。
- 2. 请证明

$$\mathbf{P}(X+Y=z) = \frac{\alpha\beta}{\alpha-\beta} \{ (1-\beta)^{z-1} - (1-\alpha)^{z-1} \}, \forall z \ge 2.$$

Exercise 5 设 X_1, \dots, X_n 是独立同分布的随机变量,其分布均为参数为 1 的指数分布。其对应的单调增的顺序统计量为 $X_{(1)} \leq X_{(2)} \leq \dots \leq X_{(n)}$.

- I. 请计算顺序统计量的联合分布密度函数。
- 2. 请计算X(k)的边缘分布密度函数。
- 3. 令 $Y_1 = nX_{(1)}, Y_r = (n+1-r)(X_{(r)}-X_{(r-1)}), \forall 1 < r \leq n$. 请证明 Y_1, \cdots, Y_n 的独立性并计算它们的联合分布密度。
- 4. 请计算 $\mathbf{E}[X_{(n)} X_{(n-1)}|X_{(1)}]$. (提示: 问题3)
- 5. 请计算 $\mathbf{E}[X_{(n)}|X_{(1)}]$.

备注:

• 对于自然数取值的随机变量 X, 其母函数定义为

$$g_X(s) := \mathbf{E}[s^X], \forall s \in [0, 1].$$

• Cauchy-Schwartz 不等式: 对于任意的随机变量 X 和 Y, 对于满足 $\frac{1}{p} + \frac{1}{q} = 1$ 的正常数 p,q,

$$\mathbf{E}[|XY|] \le \mathbf{E}[|X|^p]^{\frac{1}{p}} \mathbf{E}[|Y|^q]^{\frac{1}{q}}.$$

2 Version B

Exercise 6 基本题

- I. 请复述随机变量的定义。
- 2. 请复述分布函数的三个基本性质。
- 3. 请复述 Helly-Bray 定理。
- 4. 请完整写出强大数定律,中心极限定理。

Exercise 7 设 $\{X_n\}_{n\geq 1}$ 是单调增的非负随机变量序列,且存在 $\alpha>0, 0\leq \beta<2\alpha, a, B\in(0,\infty)$ 使得,

$$\frac{\mathbf{E}[X_n]}{n^{\alpha}} \to a \in (0, \infty); \quad Var(X_n) \le Bn^{2\beta},$$

I. 请证明 $\forall \delta > 0$,

$$\mathbf{P}(|X_n - \mathbf{E}[X_n]| \ge \delta n^a) \to 0.$$

2. 由此推出

$$\frac{X_n}{n^{\alpha}} \stackrel{\mathbf{P}}{\to} a.$$

3. 设 $\gamma=rac{2}{2lpha-eta}$ 且 $n_k=\lfloor k^\gamma
floor$ 。请用 Borel-Cantelli 引理证明

$$\frac{X_{n_k}}{n_k^{\alpha}} \stackrel{a.s.}{\to} a.$$

4. 请利用 $\{X_n\}_{n>1}$ 的单调性证明

$$\frac{X_n}{n^a} \stackrel{a.s.}{\to} a.$$

Exercise 8 设 $\{X_n\}_{n\geq 1}$ 是一列随机变量。请证明

- I. 若 X_n 依概率收敛到 X, 那么 X_n 依分布收敛到 X.
- 2. 若 X_n 依分布收敛到常数1,那么 X_n 依概率收敛到1.
- 3. 若 $\{X_n\}_{n\geq 1}$ 是一个列独立的随机变量,那么 $\sup_n X_n < \infty$, a.s. 当且仅当 $\sum_n \mathbf{P}(X_n > A) < \infty$ 对于某个实数 A 成立.

Exercise 9 设 X_1, \dots, X_n 是独立同分布的随机变量,其分布均为参数为 2 的指数分布。其对应的单调增的顺序统计量为 $X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}$.

- I. 请计算顺序统计量的联合分布。
- 2. 请计算 $X_{(k)}$ 的边缘分布。

- 3. 令 $Y_1=nX_{(1)}, Y_r=(n+1-r)(X_{(r)}-X_{(r-1)}), \forall 1< r\leq n$. 请证明 Y_1,\cdots,Y_n 的独立性。
- 4. 请计算 $\mathbf{E}[X_{(n)}-X_{(n-1)}|X_{(1)}]$. (提示:可以使用 3 的结论。)
- 5. 请计算 $\mathbf{E}[X_{(n)}|X_{(1)}]$.

Exercise 10 假设 X 是一个连续随机变量,且满足期望为 $\mu=0$,中位数为 m,方差为 $\sigma^2=1$ 。中位数满足 $\mathbf{P}(X\geq m)\geq \frac{1}{2}$ 且 $\mathbf{P}(X\leq m)\geq \frac{1}{2}$ 。那么,

$$(\mu - m)^2 < \sigma^2$$
.

I. 我们采用反证法。不妨假定m>1。那么

$$\mathbf{E}[X; X \geq m] \geq 1/2 \, \, \underline{\mathbb{L}} \mathbf{E}[X; X < m] \leq -1/2$$

- 2. 进一步, 证明 $\mathbf{E}[X^2; X \ge m] \ge 1/2$ 且 $\mathbf{E}[X^2; X < m] \le 1/2$ 。
- 3. 请证明 $\mathbf{E}[X; X < m] = -1/2$ (提示: Cauchy-Schwartz 不等式)。
- 4. 请证明 $\mathbf{E}[X; X \ge m] = 1/2$ 且由此推出矛盾。

备注:

• 对于自然数取值的随机变量 X, 其母函数定义为

$$g_X(s) := \mathbf{E}[s^X], \forall s \in [0, 1].$$

• Cauchy-Schwartz 不等式: 对于任意的随机变量 X 和 Y, 对于满足 $\frac{1}{p} + \frac{1}{q} = 1$ 的正常数 p,q,

$$\mathbf{E}[|XY|] \le \mathbf{E}[|X|^p]^{\frac{1}{p}} \mathbf{E}[|Y|^q]^{\frac{1}{q}}.$$