Lab 2: Resonant Air Columns

Learning Goals	Concepts
 Understand the boundary conditions and node structure of waves. Compare a measured value to an expected value and identify error sources. 	ResonanceSpeed of soundBoundary conditions
Vocab & Notation	
Standing wave Sound wave	e • Longitudinal wave
Amplitude Node	• Antinode
Sound quality Displacement	ent wave • Pressure wave
Equations	
$\lambda = 2 X_2 - X_1 (1)$	$v = \lambda f$ (2)
$v = 331 \sqrt{\frac{T}{273}} \text{ m/s} (3)$	$f = \frac{1}{\lambda}$

Theory Outline

- Transverse representation of sound *Transverse Representation*
- Standing wave constructive interference *Resonance*
 - Volume increases
- Boundary conditions and nodes
 - o Open tube
 - Closed tube
- Resonance point conditions 1/4 Wavelength & 3/4 Wavelength
- Calculating the speed of sound
 - Wavelength Equation 1
 - Speed *Equation 2*
- Expected speed of sound value Equation 3

Procedure Outline

- Check the reservoir is filled with water
- Select a tuning fork
- Calculate the expected resonance points
- Measure at least two resonance points (volume increases)
- Repeat with two more tuning forks
- Calculations: predicted resonance points, wavelengths, measured speeds of sound, expected speed of sound

Diagrams

Transverse Representation

Resonance

Open Tube

Closed Tube

1/4 Wavelength & 3/4 Wavelength

