

AUTHOR INDEX OF VOLUME 84*

- Altiero, N., see Liu, N. (2) 211–226
Alves, J.L.D., see Coutinho, A.L.G.A. (2) 129–145
Amini, S. and P.J. Harris, A comparison between various boundary integral formulations of the exterior acoustic problem (1) 59–75

Chang, C.L. and B.-N. Jiang, An error analysis of least-squares finite element method of velocity–pressure–vorticity formulation for Stokes problem (3) 247–255
Coutinho, A.L.G.A., J.L.D. Alves, N.F.F. Ebecken and L.M. Troina, Conjugate gradient solution of finite element equations on the IBM 3090 vector computer utilizing polynomial preconditions (2) 129–145

Demkowicz, L., J.T. Oden and W. Rachowicz, A new finite element method for solving compressible Navier–Stokes equations based on an operator splitting method and $h\text{-}p$ adaptivity (3) 275–326
Dilintas, G. and P. Laurent-Gengoux, Computing stress intensity factors in anisotropic solids by finite element methods (2) 111–127

Ebecken, N.F.F., see Coutinho, A.L.G.A. (2) 129–145
Evans, D.J. and M.S. Sahimi, The solution of nonlinear parabolic partial differential equations by the alternating group explicit (AGE) method (1) 15–42

Farhat, C. and N. Sobh, A consistency analysis of a class of concurrent transient implicit/explicit algorithms (2) 147–162
Fitzsimons, C.J., J.J.H. Miller, S. Wang and C.H. Wu, Hexahedral finite elements for the stationary semiconductor device equation (1) 43–57
Friedman, M.B., see Luo, J.-C. (2) 193–209

Hansbo, P. and A. Szepessy, A velocity–pressure streamline diffusion finite element method for the incompressible Navier–Stokes equations (2) 175–192
Harris, P.J., see Amini, S. (1) 59–75
Hughes, T.J.R., see Hulbert, G.M. (3) 327–348
Hulbert, G.M. and T.J.R. Hughes, Space-time finite element methods for second-order hyperbolic equations (3) 327–348

* The issue number is given in front of the page numbers.

- Ioakimidis, N.I., Application of the conformal mapping and the complex path-independent integrals to the location of elliptical holes and inclusions in plane elasticity problems (1) 1 - 14
- Jiang, B.-N., see Chang, C.L. (3) 247 - 255
- Kuo, Y.H., see Lee, S.Y. (2) 163 - 173
- Laurent-Gengoux, P., see Dilintas, G. (2) 111 - 127
- Lee, S.Y. and Y.H. Kuo, Divergence-type stability of a non-uniform column (2) 163 - 173
- Liu, N., N. Altiero and U. Sur, An alternative integral approach applied to kinked cracks in finite plane bodies (2) 211 - 226
- Luehr, C.P. and M.B. Rubin, The significance of projection operators in the spectral representation of symmetric second order tensors (3) 243 - 246
- Luo, J.-C. and M.B. Friedman, A parallel computational model for the finite element method on a memory-sharing multiprocessor computer (2) 193 - 209
- Miller, J.J.H., see Fitzsimons, C.J. (1) 43 - 57
- Oden, J.T., see Demkowicz, L. (3) 275 - 326
- Rachowicz, W., see Demkowicz, L. (3) 275 - 326
- Rippa, S. and B. Schiff, Minimum energy triangulations for elliptic problems (3) 257 - 274
- Rolfes, R., see Stein, E. (1) 77 - 95
- Rubin, M.B., see Luehr, C.P. (3) 243 - 246
- Sahimi, M.S., see Evans, D.J. (1) 15 - 42
- Saigal, S., Iteration schemes for improved convergence in boundary element reanalysis (1) 97 - 107
- Schiff, B., see Rippa, S. (3) 257 - 274
- Sobh, N., see Farhat, C. (2) 147 - 162
- Stein, E. and R. Rolfes, Mechanical conditions for stability and optimal convergence of mixed finite elements for linear plane elasticity (1) 77 - 95
- Sur, U., see Liu, N. (2) 211 - 226
- Szepessy, A., see Hansbo, P. (2) 175 - 192
- Tin-Loi, F., see Wakefield, R.R. (3) 229 - 242
- Troina, L.M., see Coutinho, A.L.G.A. (2) 129 - 145
- Wakefield, R.R. and F. Tin-Loi, Large scale nonholonomic elastoplastic analysis using a linear complementary formulation (3) 229 - 242
- Wang, S., see Fitzsimons, C.J. (1) 43 - 57
- Wu, C.H., see Fitzsimons, C.J. (1) 43 - 57

SUBJECT INDEX OF VOLUME 84*

Boundary element methods

- A comparison between various boundary integral formulations of the exterior acoustic problem, S. Amini and P.J. Harris (1) 59–75
Iteration schemes for improved convergence in boundary element reanalysis, S. Saigal (1) 97–107
An alternative integral equation approach applied to kinked cracks in finite plane bodies, N. Liu, N. Altiero and U. Sur (2) 211–226

Conformal mapping

- Application of the conformal mapping and the complex path-independent integrals to the location of elliptical holes and inclusions in plane elasticity problems, N.I. Ioakimidis (1) 1–14

Design of programs

- Conjugate gradient solution of finite element equations on the IBM 3090 vector computer utilizing polynomial preconditioners, A.L.G.A. Coutinho, J.L.D. Alves, N.F.F. Ebecken and L.M. Troina (2) 129–145

Dynamics

- Space-time finite element methods for second-order hyperbolic equations, G.M. Hulbert and T.J.R. Hughes (3) 327–348

Elasticity

- Application of the conformal mapping and the complex path-independent integrals to the location of elliptical holes and inclusions in plane elasticity problems, N.I. Ioakimidis (1) 1–14
Mechanical conditions for stability and optimal convergence of mixed finite elements for linear plane elasticity, E. Stein and R. Rolfes (1) 77–95
Iteration schemes for improved convergence in boundary element reanalysis, S. Saigal (1) 97–107

* The issue number is given in front of the page numbers.

- Computing stress intensity factors in anisotropic solids by finite element methods, G. Dilintas and P. Laurent-Gengoux (2) 111–127
- Space-time finite element methods for second-order hyperbolic equations, G.M. Hulbert and T.J.R. Hughes (3) 327–348
- Electromagnetic fields*
- Hexahedral finite elements for the stationary semiconductor device equation, C.J. Fitzsimons, J.J.H. Miller, S. Wang and C.H. Wu (1) 43–57
- Finite difference methods*
- The solution of nonlinear parabolic partial differential equations by the alternating group explicit (AGE) method, D.J. Evans and M.S. Sahimi (1) 15–42
- Finite element and matrix methods*
- Hexahedral finite elements for the stationary semiconductor device equation, C.J. Fitzsimons, J.J.H. Miller, S. Wang and C.H. Wu (1) 43–57
- Mechanical conditions for stability and optimal convergence of mixed finite elements for linear plane elasticity, E. Stein and R. Rolfs (1) 77–95
- Computing stress intensity factors in anisotropic solids by finite element methods, G. Dilintas and P. Laurent-Gengoux (2) 111–127
- Conjugate gradient solution of finite element equations on the IBM 3090 vector computer utilizing polynomial preconditioners, A.L.G.A. Coutinho, J.L.D. Alves, N.F.F. Ebecken and L.M. Troina (2) 129–145
- A consistency analysis of a class of concurrent transient implicit/explicit algorithms, C. Farhat and N. Sobh (2) 147–162
- A velocity–pressure streamline diffusion finite element method for the incompressible Navier–Stokes equations, P. Hansbo and A. Szepessy (2) 175–192
- A parallel computational model for the finite element method on a memory-sharing multiprocessor computer, J.-C. Luo and M.B. Friedman (2) 193–209
- An error analysis of least-squares finite element method of velocity–pressure–vorticity formulation for Stokes problem, C.L. Chang and B.-N. Jiang (3) 247–255
- Minimum energy triangulations for elliptic problems, S. Rippa and B. Schiff (3) 257–274
- A new finite element method for solving compressible Navier–Stokes equations based on an operator splitting method and h - p adaptivity, L. Demkowicz, J.T. Oden and W. Rachowicz (3) 275–326
- Space-time finite element methods for second-order hyperbolic equations, G.M. Hulbert and T.J.R. Hughes (3) 327–348

Fluid mechanics

- A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations, P. Hansbo and A. Szepesty (2) 175-192

Fracture mechanics

- Computing stress intensity factors in anisotropic solids by finite element methods, G. Dilintas and P. Laurent-Gengoux (2) 111-127
- An alternative integral equation approach applied to kinked cracks in finite plane bodies, N. Liu, N. Altiero and U. Sur (2) 211-226

Incompressible and near incompressible media

- An error analysis of least-squares finite element method of velocity-pressure-vorticity formulation for Stokes problem, C.L. Chang and B.-N. Jiang (3) 247-255

Least squares method

- An error analysis of least-squares finite element method of velocity-pressure-vorticity formulation for Stokes problem, C.L. Chang and B.-N. Jiang (3) 247-255

Matrix calculus

- The significance of projection operators in the spectral representation of symmetric second order tensors, C.P. Luehr and M.B. Rubin (3) 243-246

Nonlinear mechanics

- A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations, P. Hansbo and A. Szepesty (2) 175-192
- Large scale nonholonomic elastoplastic analysis using a linear complementarity formulation, R.R. Wakefield and F. Tin-Loi (3) 229-242

Numerical solution procedures

- The solution of nonlinear parabolic partial differential equations by the alternating group explicit (AGE) method, D.J. Evans and M.S. Sahimi (1) 15-42
- Conjugate gradient solution of finite element equations on the IBM 3090 vector computer utilizing polynomial preconditioners, A.L.G.A. Coutinho, J.L.D. Alves, N.F.F. Ebecken and L.M. Troina (2) 129-145
- Large scale nonholonomic elastoplastic analysis using a linear complementarity formulation, R.R. Wakefield and F. Tin-Loi (3) 229-242

Plasticity

Large scale nonholonomic elastoplastic analysis using a linear complementarity formulation, R.R. Wakefield and F. Tin-Loi

(3) 229–242

Solutions of differential equations

Divergence-type stability of a non-uniform column, S.Y. Lee and Y.H. Kuo

(2) 163–173

Solutions of integral equations (singularity method)

An alternative integral equation approach applied to kinked cracks in finite plane bodies, N. Liu, N. Altiero and U. Sur

(2) 211–226

Stability in structural mechanics

Mechanical conditions for stability and optimal convergence of mixed finite elements for linear plane elasticity, E. Stein and R. Rolfs

(1) 77–95

Systems of linear and nonlinear simultaneous equations

A parallel computational model for the finite element method on a memory-sharing multiprocessor computer, J.-C. Luo and M.B. Friedman

(2) 193–209

Supersonic flow

A new finite element method for solving compressible Navier–Stokes equations based on an operator splitting method and $h\text{-}p$ adaptivity, L. Demkowicz, J.T. Oden and W. Rachowicz

(3) 275–326

Viscous flow

A velocity–pressure streamline diffusion finite element method for the incompressible Navier–Stokes equations, P. Hansbo and A. Szepessy

(2) 175–192

A new finite element method for solving compressible Navier–Stokes equations based on an operator splitting method and $h\text{-}p$ adaptivity, L. Demkowicz, J.T. Oden and W. Rachowicz

(3) 275–326

Wave motion

A comparison between various boundary integral formulations of the exterior acoustic problem, S. Amini and P.J. Harris

(1) 59–75

