1	[1 [11	Concidoro o coguint	to excepte de	um prod	trama oscrito om	accombly a s
1.	[1,5 valores] - Considere o seguinte excerto de um programa escrito em <i>assembly</i> e a executar numa máquina com cache:						
	ciclo	mov. add. cmp.	1 0(%ebx), %edx 1 \$10, 0(%ebx) 1 \$4, %ebx 1 \$0, %edx ciclo				
	seguin array f 3% e a	tes valo or 0. A f i de dad	o registo %ebx apo res: -10, 30, 1024, - requência do relógio os de 5%. Sabendo <i>enalty</i> (expressa em	33, 0. Note q o é de 2 GHz, que o tempo	ue o ciclo o CPI _{CPU} é	termina quando d 2, a <i>miss rate</i> de i	o valor lido do nstruções é de
			$mp_{T} = 150 \text{ ns}$			$mp_{T} = 50 \text{ ns}$	
			<i>mp</i> _T = 200 ns			$mp_T = 100 \text{ ns}$	
3.	"A técnica de <i>pipelining</i> , relativamente a uma arquitectura sequencial de ciclo única acelera o desempenho de um processador pois resulta numa diminuição do CPI, uma vez que mais do que uma instrução se encontra em execução em cada ciclo." resulta numa diminuição do número de instruções executadas, uma vez que algumas instruções são internamente transformadas em NOPS" resulta numa diminuição do período do relógio, uma vez que este deve ser apenas tão longo quanto o estágio mais demorado do <i>pipeline</i> ." resulta num aumento da frequência devido a ciclos de <i>stalling</i> causados por dependências de dados e/ou controlo." [1.5 valores] - Complete a afirmação abaixo: "O programa for (i=0 ; i <n *="" 2;="" ;="" []."="" []."<="" a="" a[i]="b[100*i]" acessos="" b="" de="" espacial="" exibe="" explorar="" hierarquia="" i++)="" i."="" localidade="" memória="" nos="" permite="" pois="" temporal="" th=""></n>						
Nor	ne:					Número:	

Arquitectura de Computadores Teste tipo MiEl 1º teste							
4.	4. [1,5 valores] - Quantos <i>bits</i> tem a <i>tag</i> de uma hierarquia de memória (S=1024, E=8, B=12 m=32)?						
		<i>t</i> = 15		t= 17			
		<i>t</i> = 10		t=12			
5.	[2.0 valores] A tabela abaixo apresenta na coluna da esquerda uma sequência de endereços (m=4) de acesso à memória gerados por um determinado programa. As 3 colunas seguintes referem-se a um modo de mapeamento numa cache que usa o algoritmo de substituição LRU. Preencha-as indicando em que set/linha (dentro do set) mapeia cada endereço, qual a tag associada a essa linha depois deste acesso e indicando se se trata de um cold miss, colisão ou de um hit. Considere a cache inicialmente fria.						
	Addr	(S=2,E=2,B=2,m=4)	tag	cold miss/hit/colisão			
	1						
	13						
	0						
	6						
	8						
6.	de inteiros. A ma	erto de código abaixo calculatriz tem ALTURA * LARGURA (col=0 ; col <largura (lin="0" +="matriz[lin*LARGURA" ;="" ;<="" <="" altura="" lin="" r="" soma="" td=""><td>A elementos. col++) { A ; lin++) {</td><td>os elementos de uma matriz</td></largura>	A elementos. col++) { A ; lin++) {	os elementos de uma matriz			
Ree	escreva o prograr	na para que seia possível e	explorar de forma	mais eficaz a hierarquia da			

Reescreva o programa para que seja possível explorar de forma mais eficaz a hierarquia da memória, **justificando** a sua resposta.

Nome: ______ Número: _____