${\bf Homework}~{\bf 6-Algebraic~Structures}$

Ch 7: 7.2, 7.4, 7.5, 7.9, 7.10, 8.3, 8.4, 8.5, M.5, M.6 Pre-lect: 5.1	Blake Griffith
Exercise (7.7.2). Let $G_1 \subset G_2$ be groups whose orders are dividet H_1 be a Sylow p-subgroup of G_1 . Prove that there is a Sylow H_2 of G_2 such that $H_1 = H_2 \cap G_1$.	~
Proof. Put a tautology here.	
Exercise (7.7.4). 1. Prove that no simple group has order and q are prime.	er pq, where p
2. Prove that no simple group has order p^2q , where p and q	q are prime.
Proof.	
Exercise (7.7.5). Find Sylow 2-subgroups of D_{10} .	
Proof.	
Exercise (7.7.9). Classify groups of order (1) 33 (2) 18.	
Proof.	
Exercise (7.7.10). Prove that the only simple groups of ord groups of prime order.	ler $_{\it i}60$ are the
Proof.	
Exercise (7.8.3). Determine the class equations of the groups	s of order 12.
Proof.	
Exercise (7.8.4). Prove that a group of order $n = 2p$, where p either cyclic or dihedral.	o is a prime, is
Proof.	

Exercise (7.8.5). Let G be a nonabelian group of order 28 whose sylow 2 subgroups are cyclic.

- 1. Determine the numbers of sylow 2 subgroups and sylow 7 subgroups.
- 2. Prove that there is at most one isomorphism class of such groups.
- 3. Determine the numbers of elements of each order, and the class equation of G.

Proof.	

Exercise (7.M.5). Let H and N be subgroups of a group G, and assume that N is a normal subgroup.

- 1. Determine the kernels of the restrictions of the canonical homomorphism $\pi: G \to G/N$ of the subgroups H and HN.
- 2. Applying First Isomorphism Theorem to these restrictions, prove the Second Isomorphism Theorem: $H/(H \cap N)$ is isomorphic to (HN)/N.

Proof. \Box

Exercise (7.M.6). Let H and N be normal subgroups of a group G such that $H \supset N$. Let $\overline{H} = H/N$ and $\overline{G} = G/N$.

- 1. Prove that \overline{H} is a normal subgroup of \overline{G} .
- 2. Use the composed homomorphism $G \to \overline{G} \to \overline{G}/\overline{H}$ to prove the Third Isomorphism Theorem: G/H is isomorphic to $\overline{G}/\overline{H}$.

Proof. \Box