GEOMETRIE ŞI ALGEBRĂ LINIARĂ

Curs 11 Varietăți liniare. Paralelism, perpendicularitate.

• Ecuații ale planului

După cum am definit în cursul anterior, un plan este o varietate liniară cu spațiul director de dimensiune 2.

Fie $v, w \in \mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}$, doi vectori liniar independenți. Planul ce trece prin $p \in \mathbb{R}^n$ și are spațiul director $W = \langle v, w \rangle$ este L = p + W. Deci $(\forall) x \in L, x = p + sv + tw$ cu $s, t \in \mathbb{R}, L = \{p + sv + tw \mid s, t \in \mathbb{R}\}.$

Putem să scriem ecuațiile parametrice:

$$x_1 = p_1 + sv_1 + tw_1, x_2 = p_2 + sv_2 + tw_2, \dots, x_n = p_n + sv_n + tw_n; s, t \in \mathbb{R}.$$

Ecuațiile planului L(p,q,r), ce trece prin trei puncte necoliniare $p,q,r \in \mathbb{R}^n$. Vectorii q-p şi r-p din spațiul vectorial \mathbb{R}^n sunt liniar independenți (pentru că punctele p,q,r sunt necoliniare), şi deci generează un subspațiu vectorial de dimensiune 2.

 $L(p,q,r)=p+< q-p, r-p>=\{p+s(q-p)+t(r-p)\mid s,t\in\mathbb{R}\}=\{(1-s-t)p+sq+tr\mid s,t\in\mathbb{R}\}.$ Vedem că avem din nou o combinație liniară convexă (suma coeficienților este 1) .

Ecuațiile parametrice sunt în acest caz

$$x_1 = (1 - s - t)p_1 + sq_1 + tr_1,$$

 $x_2 = (1 - s - t)p_2 + sq_2 + tr_2,$...,
 $x_n = (1 - s - t)p_n + sq_n + tr_n;$ $s, t \in \mathbb{R}.$

• Ecuații ale hiperplanului

Un hiperplan este o varietate liniară de dimensiune n-1 în \mathbb{R}^n .

Considerăm $v_1, v_2, \ldots, v_{n-1}, n-1$ vectori liniar independenți în \mathbb{R}^n . Hiperplanul ce trece prin $p \in \mathbb{R}^n$ și are spațiul director $W = \langle v_1, v_2, \ldots, v_n \rangle$, este L = p+W, de unde $L = \{p+t_1v_1+t_2v_2+\ldots+t_{n-1}v_{n-1} \mid t_1, t_2, \ldots, t_{n-1} \in \mathbb{R}\}$. Scriem $v_j, 1 \leq j \leq n-1$

în coordonate,
$$v_j = \begin{pmatrix} v_{1,j} \\ v_{2,j} \\ \vdots \\ v_{n,j} \end{pmatrix} \in \mathbb{R}^n$$
. Primul indice reprezintă coordonata iar al doilea

indice reprezintă indicele vectorului.

Deci $x \in L \Leftrightarrow x = p + t_1 v_1 + t_2 v_2 + \ldots + t_{n-1} v_{n-1}$, pentru anumiţi $t_1, t_2, \ldots, t_{n-1} \in \mathbb{R}$. Ecuaţiile parametrice sunt în acest caz

$$\begin{cases} x_1 = p_1 + t_1 v_{1,1} + t_2 v_{1,2} + \ldots + t_{n-1} v_{1,n-1}, \\ x_2 = p_2 + t_2 v_{2,1} + t_2 v_{2,2} + \ldots + t_{n-1} v_{2,n-1}, \\ x_n = p_n + t_2 v_{n,1} + t_2 v_{n,2} + \ldots + t_{n-1} v_{n,n-1} & t_1, t_2, \ldots t_{n-1} \in \mathbb{R}. \end{cases}$$

Pentru a obţine ecuaţia implicită ne uităm la sistemul ecuaţiilor parametrice. Pentru t_1, \ldots, t_{n-1} găsim x_1, \ldots, x_n . Date x_1, \ldots, x_n , coordonatele unui punct din hiperplan, găsim parametrii $t_1, \ldots t_{n-1}$, care îl definesc. Deci gândind sistemul în funcţie de variabilele $t_1, \ldots t_{n-1}$, acesta este compatipil dacă şi numai dacă matricea formată din vectorii v_1, \ldots, v_{n-1} are acelaşi rang cu matricea extinsă. Vectorii $v_1, \ldots v_{n-1}$ sunt liniar independenţi, deci rangul matricii din $\mathcal{M}_{n,n-1}(\mathbb{R})$ formată cu aceşti vectori are rang n-1. Deci matricea extinsă are rang n-1, adică

$$\begin{vmatrix} x_1 - p_1 & v_{1,1} & v_{1,2} & \dots & v_{1,n-1} \\ x_2 - p_2 & v_{2,1} & v_{2,2} & \dots & v_{2,n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_n - p_n & v_{n,1} & v_{n,2} & \dots & v_{n,n-1} \end{vmatrix} = 0, \text{ ceea ce reprezintă ecuația implicită a hiper-}$$

palnului. Ceea ce trebuie reținut este că petru un hiperplan avem o singură ecuație cu n necunoscute.

Propoziția 1. Dacă $\{L_i\}_{i\in I}$ este o familie de varietăți liniare în \mathbb{R}^n , atunci $\bigcap_{i\in I} L_i$ este o varietate liniară. Fie W_i spațiul director pentru $L_i, i\in I$. Dacă $\bigcap_{i\in I} L_i \neq \emptyset$ atunci spațiul director al intersecției $\bigcap_{i\in I} L_i$ este $\bigcap_{i\in I} W_i$. În acest caz $\dim(\bigcap_{i\in I} L_i) = \dim(\bigcap_{i\in I} W_i)$.

Paralelism

Definiția 2. Fie L_1 și L_2 varietăți liniare având subspațiile directoare W_1 și W_2 . Spunem că L_1 este paralelă cu L_2 și notăm $L_1||L_2$ dacă $W_1 \subseteq W_2$ sau $W_2 \subseteq W_1$.

Propoziția 3. Fie $L_1||L_2|$ două varietăți liniare paralele. Atunci $L_1 \cap L_2 = \emptyset$ sau $L_1 \subseteq L_2$ sau $L_2 \subseteq L_1$.

Demonstrație: Scriem $L_i = p_i + W_i, i = 1, 2$. Presupunem $L_1 \cap L_2 \neq \emptyset$. Fie $x \in L_1 \cap L_2$. Din definiția paralelismului varietăților liniare, $W_1 \subseteq W_2$ sau $W_2 \subseteq W_1$, deci $x + W_1 \subseteq x + W_2$ sau $x + W_2 \subseteq x + W_1$, adică $L_1 \subseteq L_2$ sau $L_2 \subseteq L_1$.

Exemplul 4. Fie $L_1 = \{ v \in \mathbb{R}^3 \mid x_1 = 1, x_2 = 1 \}$ drepta verticală ce trece prin ${}^t(1,1,0) \in \mathbb{R}^3$ şi $L_2 = \{ v \in \mathbb{R}^3 \mid x_1 = 0, x_3 = 0 \}$, axa Ox_2 din \mathbb{R}^3 . W_1 este axa Ox_1 iar $W_2 = L_2$. $L_1 \cap L_2 = \emptyset$, dar $L_1 \not \mid L_2$ pentru că nu avem nu avem nici o incluziune între W_1 şi W_2 ..

Postulatul lui Euclid Printr-un punct $p \in \mathbb{R}^n$, există o unică varietate liniară care trece prin p, este paralelă cu o varietate liniară dată L și are dimensiunea varietății L.

Poziția relativă a două drepte în \mathbb{R}^n , $n \ge 3$.

Considerăm $L = p + \langle v \rangle$ și $L' = p' + \langle v' \rangle$, două drepte în \mathbb{R}^n . Avem $L \cap L' \neq \emptyset$ dacă există $t, t' \in \mathbb{R}$ a.î. p + tv = p' + t'v', adică $p - p' \in \langle v, v' \rangle$, sau sistemul tv - t'v' = p' - p, în t și t' are soluție, adică este compatibil.

Considerăm matricele
$$A = \begin{pmatrix} v_1 & -v_1' \\ \vdots & \vdots \\ v_n & -v_n' \end{pmatrix}$$
 și $\overline{A} = \begin{pmatrix} v_1 & -v_1' & p_1' - p_1 \\ \vdots & \vdots & \vdots \\ v_n & -v_n' & p_n' - p_n \end{pmatrix}$.

Deci L şi L' se intersectează dacă şi numai dacă $\operatorname{rang}(A) = \operatorname{rang}(\overline{A})$.

L||L'| dacă și numai dacă < v > = < v' >(sunt spații de dimensiuni egale cu 1), adică v este multiplu nenul de v', adică rang(A) = 1.

Am obţinut:

- dacă $\operatorname{rang}(A) = \operatorname{rang}(\overline{A}) = 1$ atunci dreptele L și L' coincid,
- dacă rang(A) = 1, rang $(\overline{A}) = 2$ atunci dreptele sunt paralele distincte (nu se intersectează),
- dacă rang $(A) = \text{rang}(\overline{A}) = 2$ atunci dreptele se intersectează într-un unic punct. Cazurile de mai sus au loc și pentru n = 2, adică în plan. Următorul caz poate avea loc numai pentru $n \ge 3$.
- dacă rang(A) = 2, rang $(\overline{A}) = 3$ atunci dreptele sunt neconcurente şi neparalele (necoplanare). Este cazul dreptelor din **exemplul 4**.

Putem considera cazul particular a două linii în \mathbb{R}^3 . Fie acestea

$$L: \left\{ \begin{array}{ll} a_1x_1+a_2x_2+a_3x_3&=&\alpha\\ b_1x_1+b_2x_2+b_3x_3&=&\beta \end{array} \right.$$
 şi $L': \left\{ \begin{array}{ll} a_1'x_1+a_2'x_2+a_3'x_3&=&\alpha'\\ b_1'x_1+b_2'x_2+b_3'x_3&=&\beta' \end{array} \right.$ Avem linii deci un parametru pentru fiecare linie, adică numărul variabilelor secundare este 1 pentru fiecare sistem. Rangul matricii fiecărui sistem așadar 2.

Considerăm sitemul dat de cele patru ecuații cu necunoscutele x_1, x_2, x_3 . Notăm cu B, \overline{B} matricea, respectiv matricea extinsă a sistemului. Dreptele L și L' se intersectează dacă și numai dacă sistemul ce are matricea B este compatibi adică rang $(B) = \text{rang}(\overline{B})$ și sunt paralele dacă rang(B) = 2.

Obţinem cazurile.

- $\operatorname{rang}(B) = \operatorname{rang}(\overline{B}) = 2$ dreptele coincid,
- $\operatorname{rang}(B) = 2, \operatorname{rang}(\overline{B}) = 3$, dreptele sunt paralele, distincte,
- $\operatorname{rang}(B) = \operatorname{rang}(\overline{B}) = 3$, dreptele sunt concutente într-un singur punct,
- $\operatorname{rang}(B) = 3, \operatorname{rang}(\overline{B}) = 4$, dreptele sunt neconcurente și neparalele; sunt necoplanare (cazul din **exemplul 4**).

Dacă cele două drepte le considerăm în plan, atunci reptele pot fi confundate, paralele distincte sau concurente într-un unic punct.

Poziția relativă a două plane în \mathbb{R}^3 .

Un plan în \mathbb{R}^3 este de fapt un hiperplan, și este descris de o singură ecuație.

Fie $\pi_1 = \{ v \in \mathbb{R}^3 \mid a_1 x_1 + a_2 x_2 + a_3 x_3 = \alpha \}$ şi $\pi_2 = \{ v \in \mathbb{R}^3 \mid a_1' x_1 + a_2' x_2 + a_3' x_3 = \alpha' \},$

Considerăm sistemul $\begin{cases} a_1x_1 + a_2x_2 + a_3x_3 = \alpha \\ a'_1x_1 + a'_2x_2 + a'_3x_3 = \alpha' \end{cases} \text{ cu matricea } C = \begin{pmatrix} a_1 & a_2 & a_3 \\ a'_1 & a'_2 & a'_3 \end{pmatrix}$ și matricea extinsă $\overline{C} = \begin{pmatrix} a_1 & a_2 & a_3 & \alpha \\ a'_1 & a'_2 & a'_3 & \alpha' \end{pmatrix}$.

Planele sunt paralele dacă rang(C) = 1 și se intersectează dacă și numai dacă sistemul este compatibil, adică $\operatorname{rang}(C) = \operatorname{rang}(C)$.

Obtinem următoarele cazuri:

- $\operatorname{rang}(C) = \operatorname{rang}(C) = 1$, planele coincid,
- rang(C) = 1 si rang $(\overline{C}) = 2$, planele sunt paralele, distincte,
- $\operatorname{rang}(C) = \operatorname{rang}(\overline{C}) = 2$, planele se intersectează. Dimensiunea intersecției este numărul variabilelor secundare = 1, adică planele se intersectează după o dreaptă.

Poziția relativă dintre o dreaptă și un hiperplan în \mathbb{R}^n

Cum poate sta o dreaptă față de un plan (care este un hiperplan) în \mathbb{R}^3 ? Poate fi conținută în plan, poate fi paralelă cu acesta, sau poate să se intersecteze într-un unic punct. Același lucru este valabil pentru o dreaptă și un hiperplan în \mathbb{R}^n .

Să demonstrăm acest lucru. Fie dreapta $L = p + \langle v \rangle$, cu $p \in \mathbb{R}^n$ şi $v \in \mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}$ şi hiperplanul $H = \{x \in \mathbb{R}^n \mid a_1x_1 + a_2x_2 + \ldots + a_nx_n = \alpha\}$. Ştim că pentru orice $x \in L$, coordonatele satisfac ecuațiile $x_i = p_i + tv_i, 1 \leq i \leq n$. Considerăm

sistemul
$$\begin{cases} x_1 - tv_1 &= p_1\\ & \dots\\ x_n - tv_n &= p_n\\ a_1x_1 + a_2x_2 + \dots + a_nx_n &= \alpha \end{cases}$$
. Este un sistem cu $n+1$ ecuații în

n+1 variabile, x_1, \ldots, x_n, t . Considerăm t necunoscută. Dacă $L \cap H = \{z\}$, atunci trebuie să existe $t_0 \in \mathbb{R}$ a.î. $z = p + t_0 v \in H$. Deci soluția sistemului dacă există este un n + 1- uplu $(z_1, ..., z_n, t_0)$

Sistemul este compatibil dacă şi numai dacă $\operatorname{rang}(A) = \operatorname{rang}(A)$.

Pentru a compara cele două ranguri ajungem să comparăm rangurile a două matrice 1×1 și 1×2 . Astfel comparăm rang $(a_1v_1 + a_2v_2 + \ldots + a_nv_n)$ cu $\operatorname{rang}(a_1v_1 + a_2v_2 + \ldots + a_nv_n, \alpha - a_1p_1 - a_2p_2 + \ldots + a_np_n).$

Obtinem:

- $\operatorname{rang}(a_1v_1 + a_2v_2 + \ldots + a_nv_n) = \operatorname{rang}(a_1v_1 + a_2v_2 + \ldots + a_nv_n, \alpha a_1p_1 a_2p_2 + \ldots + a_nv_n)$ $\ldots + a_n p_n = 0$ atunci sistemul este compatibil şi $L \subset H$.
- $\operatorname{rang}(a_1v_1 + a_2v_2 + \ldots + a_nv_n) = 0 < \operatorname{rang}(a_1v_1 + a_2v_2 + \ldots + a_nv_n, \alpha a_1p_1 a_1v_1 + a_2v_2 + \ldots + a_nv_n) = 0$ $a_2p_2+\ldots+a_np_n=1$ Sistemul este incompatibil, $L\cap H=\emptyset$
- $\operatorname{rang}(a_1v_1 + a_2v_2 + \ldots + a_nv_n) = \operatorname{rang}(a_1v_1 + a_2v_2 + \ldots + a_nv_n, \alpha a_1p_1 a_2p_2 + \ldots + a_nv_n)$ $\ldots + a_n p_n = 1$, sistemul este compatibil, are soluție unică. $L \cap H = \{z\}$.

Perpendicularitatea varietăților liniare

Definiția 5. Fie L_1 și L_2 două varietăți liniare în \mathbb{R}^n cu subspațiile directoare W_1 și respectiv W_2 . L_1 și L_2 se numesc perpendiculare dacă $W_1 \perp W_2$. L_1 și L_2 se numesc normale dacă $W_1^{\perp} = W_2$

De exemplu două linii în spațiu pot fi perpendiculare, dar nu normale. Complementul ortogonal al unei drepte în \mathbb{R}^3 este un plan!

Fie $L_1 = p_1 + \langle v_1 \rangle$ şi $L_2 = p_2 + \langle v_2 \rangle$ două drepte în \mathbb{R}^n . Prin definiție $L_1 \perp L_2 \Leftrightarrow v_1 \perp v_2 \Leftrightarrow \langle v_1, v_2 \rangle = 0$, unde \langle , \rangle este produsul scalar canonic în \mathbb{R}^n . Fie $L = p + \langle v \rangle$ o linie şi $H = \{x \in \mathbb{R}^n \mid a_1x_1 + a_2x_2 + \ldots + a_nx_n = \alpha\}$ un hiperplan în \mathbb{R}^n . Spațiu director al dreptei este $\langle v \rangle$ iar spațiul director al hipelplanului este $W = \{x \in \mathbb{R}^n \mid a_1x_1 + a_2x_2 + \ldots + a_nx_n = 0\}$. Spațiu ortogonal al lui $W, W^{\perp} = \{z \in \mathbb{R}^n \mid \langle z, x \rangle = 0, (\forall) x \in W\}$. L și H sunt normale $\Leftrightarrow W^{\perp} = \langle v \rangle \Leftrightarrow v$ este proporțional cu $t(a_1, a_2, \ldots, a_n)$.

Definiția 6. Fie $p, q \in \mathbb{R}^n$. Distanța între p și $q, d(p,q) = ||p-q|| = \sqrt{\langle p-q, p-q \rangle}$.

Distanța se poate defini în același mod pe orice spațiu euclidian. În cazul particular de mai sus, în care lucrăm cu produsul scalar canonic pe \mathbb{R}^n , distanța este distanța euclidiană, anume pentru $p,q \in \mathbb{R}^n$, $d(p,q) = \sqrt{\sum_{i=1}^n (p_i - q_i)^2}$. Este lungimea diagonalei paralelipipedului cu laturile de lungimi $p_i - q_i$.

Distanța satisface următoarele proprietăți.

- $d(p,q) \geqslant 0$ și $d(p,q) = 0 \Leftrightarrow p = q$
- d(p,q) = d(q,p), pentru $(\forall)p, q \in \mathbb{R}^n$
- $d(p,q) \leq d(p,r) + d(r,q)$ pentru $(\forall)p,q,r \in \mathbb{R}^n$.

Fie L=p+< v> și L'=p'+< v'> două drepte în \mathbb{R}^n . Cosinusul unghiului θ dintre aceste dreptele L și L' este $\cos(\theta)=\frac{< v,v'>}{||v||\cdot||v'||}$.

Remarcă 7. Să aflăm o formulă pentru distanţa de la un punct $p \in \mathbb{R}^n$ la un hiperplan $H = \{x \in \mathbb{R}^n \mid a_1x_1 + \ldots + a_nx_n = \alpha\}$. Normala la H, după cum am văzut mai sus, are vectorul director $a = {}^t(a_1, \ldots, a_n) \in \mathbb{R}^n$. $d(p, H) = \min_{q \in H} d(p, q)$. Această distanţă minimă se realizează pe normala de la p la H. Notăm n(p) normala la H ce trece prin p. Fie $\{q_0\} = n(p) \cap H$. Avem $d(p, H) = d(p, q_0)$.

Cu aceste observații obținem formula

$$d(p, H) = \frac{|a_1p_1 + a_2p_2 + \ldots + a_np_n - \alpha|}{||a||}$$

Definiția 8. Se numește reper al unui spațiu vectorial V o bază ordonată a lui V. Într-un spațiu euclidian un reper se numește ortonormat dacă baza este ortonormată.

O remarcă importantă este că spre deosebire de spațiul vectorial V, în avem un punct special, anume 0_V (elementul neutru pentru adunarea vectorilor), în spațiul V, nespecificând că este un spațiu vectorial, toate punctele sunt la fel.

În \mathbb{R}^n avem reperul format din baza canonică $\mathcal{B} = \{e_1, e_2, \dots, e_n\}$. Matricea formată cu vectorii din \mathcal{B} este matricea I_n care are determinantul 1. Matricea $M_{\mathcal{B}',\mathcal{B}}$ de trecere de la reperul canonic \mathcal{B} la un alt reper \mathcal{B}' este inversabilă, și are determinantul pozitiv sau negativ. Vom spune că reperul este pozitiv dacă $\det(M_{\mathcal{B}',\mathcal{B}}) > 0$, altfel negativ. De exemplu reperul $\mathcal{B}' = \{e_2, e_1, e_3, \dots, e_n\}$ este negativ pentru că am permutat primele două coloane din I_n între ele și astfel $\det(M_{\mathcal{B}',\mathcal{B}}) = -1$.

În cele ce urmează vom lucra în \mathbb{R}^3 . Un triplet de vectori $\{u, v, w\} \subset \mathbb{R}^3$ este pozitiv, dacă un observator situat pe w vede unghiul de la u spre v în sens trigonometric (invers acelor de ceasornic). În caz contrar reperul este negativ. Considerăm un reper ortonormat pe care îl vom nota $\mathcal{B} = \{i, j, k\}$, (de exemplu reperul canonic $\{e_1, e_2, e_3\} \subset \mathbb{R}^3$).

Definiția 9. Fie $u, v \in \mathbb{R}^3$. Produsul vectorial, notat cu $u \times v$ este vectorul din \mathbb{R}^3 cu proprietățile

- $u \times v \perp < u, v > ($ planul generat de $u \neq v$
- reperul $(u, v, u \times v)$ este pozitiv
- $||u \times v||$ este egală cu aria paralelogramului construit cu vectorii u şi v, mai precis $||u \times v|| = ||u|| \cdot ||v|| \sin(u, v)$.

Observația 10. Fie n vectorul unitar perpendicular pe planul generat de vectorii $u, v \in \mathbb{R}^3$, $a.\hat{i}$. (u, v, n) este un reper pozitiv. Atunci $u \times v = ||u|| \cdot ||v|| \sin(u, v)$ n.

Propoziția 11. Pentru $u, u', v, v' \in \mathbb{R}^3$ și pentru $\alpha, \beta \in \mathbb{R}$ sunt adevărate:

- $u \times v = 0$ dacă u, v sunt coliniari (paralelogramul este degenerat),
- $v \times u = -u \times v$,
- $\times : \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ este aplicație biliniară: $(\alpha u + \beta u') \times v = \alpha u \times v + \beta u' \times v$ şi $u \times (\alpha v + \beta v') = \alpha u \times v + \beta u \times v'$

Teorema 12. Fie $\mathcal{B} = \{i, j, k\}$ o bază ortonormată pozitivă în \mathbb{R}^3 . Pentru $u, v \in \mathbb{R}^3$, $u \times v = \begin{vmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$.

Definiția 13. Fie, $u, v, w \in \mathbb{R}^3$. Produsul mixt al vectorilor u, v, w, se notează (u, v, w) și este definit prin $(u, v, w) = \langle u, v \times w \rangle \in \mathbb{R}$.

Observația 14. Din proprietățile produsului scalar și a celui vectorial rezultă că produsul mixt $(,,): \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}$ este liniar în fiecare argument.

Teorema 15. Fie $\mathcal{B} = \{i, j, k\}$ o bază ortonormată pozitivă în \mathbb{R}^3 . Pentru $u, v, w \in \mathbb{R}^3$, avem

$$\bullet \ (u, v, w) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix},$$

- (u, v, w) = -(v, u, w); semnul nu se schimbă la permutări ciclice (u, v, w) = (v, w, u),
- dacă u, v, w sunt necoplanari, atunci |(u, v, w)| reprezintă volumul paralelipipedului construit cu vectorii u, v și w,
- $(u, v, w) = 0 \Leftrightarrow u, v, w \text{ sunt coplanari.}$

Folosind produsul mixt se poate da o formulă pentru distanţa între două drepte necoplanare (vectorii directori sunt liniar independenţi). Fie $L_1=q_1+< v_1>$ şi $L_2=q_2+< v_2>$ cele două drepte, unde $q_1,q_2\in\mathbb{R}^3$ şi $v_1,v_2\in\mathbb{R}^3$ sunt vectori liniar independenţi. $d(L_1,L_2)=\min_{P_1\in L_1,P_2\in L_2}\{d(P_1,P_2)\}$. Bineînţeles, $d(L_1,L_2)$ se atinge pe perpendiculara comună n a dreptelor L_1 şi L_2 . Fie $\{A\}=L_1\cap n$ şi $\{B\}=L_2\cap n$. $d(L_1,L_2)=d(A,B)$. AB este înălţimea paralelipipedului format cu muchiile q_1q_2,v_1,v_2 . Lungimea acestei înălţimi este volumul paralelipipedului împărţit la aria bazei, paralelogramul de laturi v_1,v_2 . Menţionând că $q_1q_2=q_2-q_1$, avem $d(L_1,L_2)=\frac{(q_1q_2,v_1,v_2)}{\|v_1\times v_2\|}=\frac{(q_2-q_1,v_1,v_2)}{\|v_1\times v_2\|}$.

Izometrii

Definiția 16. Se numețe *izometrie* $\phi : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ cu proprietatea că pentru $(\forall)p,q \in \mathbb{R}^n, d(\phi(p),\phi(q)) = d(p,q).$

Este ușor de arătat că:

- Orice izometrie este o aplicație injectivă.
- Orice izometrie $\phi: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ transformă varietăți liniare în varietăți liniare de aceeași dimensiune.
 - Izometriile $\phi: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ formează grup cu operația de compunere a aplicațiilor.

Teorema 17. $\phi: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ este izometrie dacă și numai dacă există un reper ortonormat \mathcal{B} în \mathbb{R}^n , $\phi: \mathbb{R}^n \longrightarrow \mathbb{R}^n$, $\phi(x) = A \cdot x + b$, unde $A \in O_n(\mathbb{R})$ și $b \in \mathbb{R}^n$.

Translaţia cu $b \in \mathbb{R}^n$, $\phi_b : \mathbb{R}^n \longrightarrow \mathbb{R}^n$, $\phi(x) = x + b$, corespunzătoare matricei I_n în reperul canonic, este izometrie.

Considerăm $A \in O_n(\mathbb{R})$, atunci $\phi : \mathbb{R}^n \longrightarrow \mathbb{R}^n$, definită prin $\phi(x) = Ax$ este o izometrie. Pentru $A \in SO_n(\mathbb{R})$, avem rotații.

Să mai menționăm simetria față de o varietate liniară, $L \subset \mathbb{R}^n$. Notăm $s_L : \mathbb{R}^n \longrightarrow \mathbb{R}^n$. $s_L(p) = p'$, unde p' se obține astfel: considerăm varietatea normală la L ce trece prin p, $L^{\perp}(p)$ și $\{q\} = L \cap L^{\perp}(p)$. p' simetricul lui p față de q pe dreapta pq, sau q este mijlocul segmentului [p,p']. Deci $q = \frac{p+p'}{2} \Leftrightarrow p' = 2q - p$. Punctul $q = \operatorname{pr}_L(p)$, proiecția lui p pe L. Deci $s_L(p) = 2\operatorname{pr}_L(p) - \operatorname{id}_{\mathbb{R}^n}(p)$, $(\forall)p \in \mathbb{R}^n \Leftrightarrow s_L = 2\operatorname{pr}_L - \operatorname{id}_{\mathbb{R}^n}$.

Pentru $L = \{x \in \mathbb{R}^n \mid a_1x_1 + \ldots + a_nx_n = \alpha\}$, un hiperplan , atunci pentru $p \in \mathbb{R}_n$, $s_L(p) = p + 2\frac{\alpha - \langle a,p \rangle}{||a||^2}a$. Dacă hiperplanul trece prin origine $(\alpha = 0)$, atunci $s_L(p) = p - 2\frac{\langle a,p \rangle}{||a||^2}a$. Se demonstrează în acest caz că matricea $A = M_{\mathcal{B}}(s_L)$ într-un reper ortonormat pozitiv \mathcal{B} are $\det(A) = -1$.