STT 4660 Homework #3

Timothy Stubblefield

September 23, 2020

1.27

- a) We need to find the regression function for the Muscle Mass dataset.
 - 1) By using SAS, I obtained the regression function for Muscle Mass, which is

$$\hat{y} = 156.34656 - 1.19000x$$

- 2) The linear regression function seems to give a decent fit. The $R^2 = 0.7501$ which means only 75 percent of the points are explained by the model. In general, we would want the R^2 to be a little higher, but it isn't noticeably low either.
- 3) Overall, the model supports the anticipation that muscle mass decreases with age since it shows that on average, for each year a person increases in age, their muscle mass measure decreases by about 1.21.
 - 4) Below is the plot for the regression line from R,

Muscle Mass vs Age

- 5) Upon viewing the regression line for the data, we can visually see that the \mathbb{R}^2 value is a bit low and it seems that perhaps another model could fit the data better.
- b) Now we want to solve the following problems.
 - 1) Well, we want a point estimate for muscle mass of women differing by one year in age. From the regression model, we calculated that $b_1 = -1.19000$ which can be used to estimate β_1 . Thus, if we were to find a point estimate of two women differing in age by one year, that could be represented as such,

$$W_1: y_x = 156.34656 - 1.19000x$$

$$W_2: y_{x+1} = 156.34656 - 1.19000(x+1)$$

Now, compute $W_2 - W_1$, yielding,

$$W_2 - W_1 = 156 - 1.19000x - 1.19000 - (156.34656 - 1.19000x)$$

$$W_2 - W_1 = -1.19000$$

Thus, on average, as a woman's age increases by 1 year, her muscle mass decreases by 1.19000 units.

2) Now we want a point estimate for X=60. Thus, we use the regression model, that is,

$$\hat{y} = 156.34656 - 1.19000x$$

So,

$$\hat{y}_{60} = 156.34656 - 1.19000(60)$$
$$\hat{y}_{60} = 156.34656 - 71.4$$
$$\hat{y}_{60} = 84.94656$$

3) Now, we want to find the residual for the eighth case. For the eighth case, we have the following data,

$$X_8 = 41$$
 $Y_8 = 112$

So, $Y_8 = 112$ occurs when x = 41, thus that means,

$$y_8 = y(41) = 112$$

Now, use the regression model to find \hat{y}_8 , as such,

$$\hat{y}_8 = 156.34656 - 1.19000(41)$$
$$\hat{y}_8 = 156.34656 - 44.69$$
$$\hat{y}_8 = 111.65656$$

Hence, the eighth residual will be $e_8 = y_8 - \hat{y}_8$. Evaluate e_8 as such,

$$e_8 = 112 - 111.65656$$

 $e_8 = 0.34344$

4) Finally, let's find a point estimate for σ^2 . To find a point estimate for σ^2 , we will use MSE. The formula for MSE is,

$$MSE = \hat{\sigma}^2 = \frac{SSE}{n-2}$$

Previously, we used SAS to generate the regression model. Well, SAS also computed MSE along with other metrics. Thus, our point estimate for σ^2 is,

$$MSE = \hat{\sigma}^2 = 66.80082$$

2.2

- 1. Well, in the hypothesis test, the analyst concluded $H_0: \beta_1 \leq 0$ for the regression model $\hat{y} = \beta_0 + \beta_1 x$
- 2. In order for their to be no linear relationship between X and Y, the analyst would have to conclude that $\beta_1=0$
- 3. If $\beta_1 = 0$, that reduces the linear regression function to

$$\hat{y} = \beta_0$$

- 4. However, since the analyst concluded $H_0: \beta_1 \leq 0$, that means that either $\beta_1 < 0$ or $\beta_1 = 0$.
- 5. Therefore, if $\beta_1 = 0$, then there would be no relationship between X and Y, but if $\beta_1 < 0$ then X and Y have a negative relationship.
- 6. Thus, with the concluded hypothesis, the relationship between X and Y is inconclusive since it could be negative or none depending on the value of β_1 .

2.3

1. So the student's estimated regression function is,

$$\hat{Y} = 350.7 - 0.18X$$

- 2. However, the student was studying the relationship between advertising costs(X) and sales(Y), which means we would not expect a negative relationship since usually the more money you spend on advertising, the more sales you have.
- 3. We also know that the Two sided p-value for the estimated slope is 0.91.
- 4. Based on the results for the regression line, the hypothesis test must have been,

$$H_0: \beta_1 = 0$$

$$H_a: \beta_1 = -0.18$$

5. Now, since p-value = 0.91, that means that,

$$p-value > \alpha$$

since we would never choose an $\alpha > 0.91$ because that would be a 9 percent confidence interval or less, which is useless.

6. Thus, the student should not reject H_0 , however they incorrectly rejected H_0 and concluded H_a . As a result, the student is claiming that more advertising reduces sales, which is not a correct conclusion.

2.6

- a) We want to estimate β_1 with a 95 percent confidence interval for Airfreight Breakage.
 - 1) Using SAS (and from Problem 1.21), I generated the regression function for Airfreight Breakage. The regression function is,

$$\hat{y} = 10.2 + 4x$$

So, $b_0 = 10.2$ and $b_1 = 4$

2) From the notes, we know that the $100(1-\alpha)$ confidence interval for b_1 is,

$$b_1 \pm t_{\alpha/2}(n-2) * S_{b_1}$$

3) However, first we must calculate S_{b_1} with the following formula,

$$S_{b_1}^2 = \frac{\hat{\sigma}^2}{S_{xx}}$$

where $\hat{\sigma}^2 = MSE$

4) From Problem 1.21, we have the following results,

$$MSE = \hat{\sigma}^2 = 2.2$$

$$S_{xx} = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2 = 10$$

5) Now, we can use the results from (4) to find S_{b_1} like so,

$$S_{b_1}^2 = \frac{2.2}{10}$$

$$S_{b_1}^2 = 0.22$$

6) And, now we can compute S_{b_1} as such,

$$S_{b_1} = \sqrt{S_{b_1}^2} = \sqrt{0.22}$$

$$S_{b_1} = 0.469041576$$

- 7) Now, we need to calculate $t_{\alpha/2}(n-2)$
- 8) Since we want the 95 percent Confidence Interval, so

$$\alpha = 0.05$$
 $\frac{\alpha}{2} = 0.025$ $n = 10$

9) Now, use α to find the t-value (in a two sided test),

$$t_{\alpha/2}(n-2) = t_{0.025}(10-2)$$

$$t_{\alpha/2}(n-2) = t_{0.025}(8)$$

10) Using R, I calcuated the t-value,

$$t_{0.025}(8) = 2.306004$$

11) So, substitute in values to the formula find the confidence interval,

$$b_1 \pm t_{\alpha/2}(n-2) * S_{b_1}$$

$$4 \pm t_{0.025}(8) * S_{b_1}$$

$$4 \pm 2.306004 * 0.469041576$$

$$4 \pm 1.08161175$$

12) Thus, the 95 percent confidence interval for β_1 is,

- 13) Therefore, we a 95 percent confident that β_1 lies in the range of (2.91838825, 5.08161175).
- b) Now, we want to do a t-test along with hypothesis testing to determine if there is a relationship between X and Y.
 - 1) So, first since we want to test whether or not X and Y are related, our hypothesis test situation will be,

$$H_0:\beta_1=0$$

$$H_a: \beta_1 \neq 0$$

- 2) If we conclude H_0 , then there is evidence to show that there is not likely a relationship between X and Y, but it we conclude H_a , then the evidence shows that there is likely a relationship between X and Y.
- 3) Now, we calculate the t-value with the formula,

$$t = \frac{b_1 - \beta_{10}}{S_{b_1}}$$

4) From Problem 2.6 (b), we know that,

$$b_1 = 4, S_{b_1} = 0.469041576$$

And, we are testing against to see if $\beta_1 = 0$, so $\beta_{10} = 0$

5) Substitute in the above values to calculate t-value,

$$t_{obs} = \frac{4-0}{0.469041576}$$

$$t_{obs} = \frac{4}{0.469041576}$$

$$t_{obs} = 8.528028654$$

6) From R, I computed the p-value using the following code,

- 7) The computed p-value is 0.04653987
- 8) Compare the p-value to α ,

$$p-value = 0.04653987 < 0.05 = \alpha$$

Thus, reject H_0 and conclude H_a

- 9) Hence, there is strong evidence to suggest that there is a relationship between X and Y.
- c) Finally, we want to find a 95 percent confidence interval for β_0 and interpret it.
 - 1) From the notes, we have that a $100(1 \alpha)$ percent confidence level for β_0 is,

$$b_0 \pm t_{\alpha/2}(n-2) * S_{b_0}$$

2) Now, we need to compute S_{b_0} , so we use the formula,

$$S_{b_0}^2 = \hat{\sigma}^2 (\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}})$$

- 3) Recall that $\hat{\sigma}^2 = MSE = \frac{SSE}{n-2}$ from the notes.
- 4) From Problem 1.25 (b) in Homework 2, I calculated the MSE, that is,

$$\hat{\sigma}^2 = MSE = 2.2$$

5) From the same Homework, I calculated S_{xx} , that is,

$$S_{xx} = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2 = 10$$

And n = 10, $\bar{x} = 1$, and $b_0 = 10.2$

6) Now, we just substitute each of these values into the formula for $S_{b_0}^2$, yielding,

$$S_{b_0}^2 = 2.2(\frac{1}{10} + \frac{1^2}{10})$$

$$S_{b_0}^2 = 2.2(\frac{1}{10} + \frac{1}{10})$$

$$S_{b_0}^2 = 2.2(\frac{1}{5})$$

$$S_{b_0}^2 = 0.44$$

7) Now, take the square root of $S_{b_0}^2$ and get,

$$S_{b_0} = \sqrt{0.44} = 0.6633249581$$

8) Since we are using a 95 percent confidence interval, with n=10, we have the same t-value as the confidence interval from 2.6 (a),

$$t_{\alpha/2}(n-2) = t_{0.025}(8) = 2.306004$$

9) Finally, we have the necessary values to compute the confidence interval of β_0 , as such,

$$b_0 \pm t_{\alpha/2}(n-2) * S_{b_0}$$

 $10.2 \pm 2.306004 * 0.6633249581$

 10.2 ± 1.529630007

10) Thus, the 95 percent confidence interval for β_0 is,

 $\left(8.670369993,11.72963001\right)$

11) Therefore, we are 95 percent confident that β_0 lie in the range of (8.670369993, 11.72963001).