Slides Semana 3

VALOR ESPERADO OU ESPERANÇA MATEMÁTICA

Integral de Riemann (Bônus)

Fonte: APOSTILA-(Calculo 1). Preparado pelas professoras Marcia Federson e Gabriela Planas.

Definição: Seja $[a,b]\subset\mathbb{R}$ um intervalo limitado e fechado. Dizemos que

$$\mathcal{P}: a = x_0 < x_1 < x_2 < \cdots < x_n = b$$

onde $n \in \mathbb{N}$, é uma **partição** ou **divisão** de [a,b]. Neste caso, escrevemos $\mathcal{P}=(x_i)$.

Uma partição \mathcal{P} de [a,b] divide o intervalo em n intervalos.

$$a = x_0 x_1 \quad x_2 \quad x_{i-1} x_i \quad x_{n-1} \quad b = x_n \quad x$$

Para cada $i=1,\ldots,n$, definimos $\Delta x_i=x_i-x_{i-1}$ que é o "tamanho" ou comprimento do intervalo $[x_{i-1}\ ,\ x_i]$. Definimos, também,

$$\Delta_{\mathcal{P}} = \max_{1 \leq i \leq n} \Delta x_i$$

que é o ``tamanho máximo" ou comprimento máximo que um intervalo $[x_{i-1} \ , \ x_i]$ pode ter.

Sejam $f:[a,b]\to\mathbb{R}$ e $\mathcal{P}=(x_i)$ uma partição de [a,b]. Para cada índice i seja c_i um número em $[x_{i-1}\ ,\ x_i]$ escolhido arbitrariamente.

Consideremos a figura seguinte.

Definição: A **soma de Riemann** de f em relação a ${\mathcal P}$ é dada por

$$\sum_{i=1}^n f(c_i) \Delta x_i.$$

Observação: A soma de Riemann é igual a soma das áreas dos retângulos que estão acima do eixo x menos a soma das áreas dos retângulos que estão abaixo do eixo x. Portanto a soma de Riemann é a diferença entre a soma das áreas dos retângulos que estão acima do eixo x e a soma das áreas dos retângulos que estão abaixo do eixo x.

Consideremos a figura seguinte

Sejam f uma função contínua definida em [a,b] e $\mathcal{P}=(x_i)$ uma partição tal que $\Delta_{\mathcal{P}}=\max_{1\leq i\leq n}\Delta x_i$ seja suficientemente pequeno. Então a área $A=A_2-A_1$, pode ser aproximada pela soma de Riemann

$$\sum_{i=1}^n f(c_i) \Delta x_i,$$

ou seja,

$$Approx \sum_{i=1}^n f(c_i) \Delta x_i \; .$$

Fazendo $\Delta_{\mathcal{P}} \longrightarrow 0$, temos

$$\sum_{i=1}^n f(c_i) \Delta x_i \ \longrightarrow \ A$$

e, portanto,

$$\lim_{\Delta_{\mathcal{P}} \longrightarrow 0} \sum_{i=1}^n f(c_i) \Delta x_i = A.$$

Definição: Uma função $f:[a,b] o \mathbb{R}$ é **Riemann integrável** ou simplesmente **integrável**, se existir um número $A \in \mathbb{R}$ tal que

$$\lim_{\Delta_P \mathcal{P}0} \sum_{i=1}^n f(c_i) \Delta x_i = A$$

em que \${P} = (x_i) \$ é uma partição de [a,b] e $c_i \in [x_{i-1} \ , \ x_i]$.

Definição: (Escrevendo o limite acima com ε 's e δ 's temos) Uma função $f:[a,b]\to\mathbb{R}$ será dita **integrável**, se existir $A\in\mathbb{R}$ tal que para todo $\varepsilon>0$, exista $\delta>0$ tal que

$$\left|\sum_{i=1}^n f(c_i) \Delta x_i - A
ight| < arepsilon$$

para toda partição de [a,b] com $\Delta_{\mathcal{P}}<\delta,$ qualquer que seja a escolha de $c_i\in[x_{i-1}\ ,\ x_i].$ Neste caso, escrevemos

$$A = \int_{a}^{b} f(x) \, dx$$

que é chamada **integral definida** ou simplesmente **integral** de f em relação a x,, no intervalo [a,b].

Propriedades da Integral de Riemann

Sejam $f,g:[a,b] o \mathbb{R}$ funções integráveis. Valem as seguintes propriedades

- · A integral é única, isto é, f tem no máximo uma integral definida.
- · A integral é **linear**, isto é, para todo $k \in \mathbb{R}$, a função f + kg é integrável e

$$\int_a^b (f+kg)(x) \ dx = \int_a^b \left[f(x) + kg(x)
ight] \ dx = \int_a^b f(x) \ dx + k \int_a^b g(x) \ dx \, .$$

A integral é positiva, isto é, se $f(x)\geq 0$, para todo $x\in [a,b]$, então $\int_a^b f(x)\ dx\geq 0$. Em particular, se $g(x)\leq f(x)$ para todo $x\in [a,b]$, então

$$\int_a^b g(x) \ dx \le \int_a^b f(x) \ dx$$
 .

` A integral é aditiva, isto é, se existirem as integrais $\int_a^c f(x)\ dx$ e $\int_c^b f(x)\ dx$, com $c\in [a,b]$, então existirá a integral $\int_a^b f(x)\ dx$ e

$$\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_c^b f(x) \ dx \ .$$

Isto quer dizer que se f for integrável em todos os subintervalos de um intervalo [a,b], então f será integrável em [a,b]. Em particular, quando c=a, teremos $\int_a^a f(x) \ dx=0$.

Teorema [Primeiro Teorema Fundamental do Cálculo]: Seja f uma função contínua em [a,b], então a função g definida por

$$g(x) = \int_a^x f(t) \ dt, \qquad a \le x \le b$$

é diferenciável em (a,b) e $g^{\prime}(x)=f(x)$.

Exemplo: Ache a derivada da função $g(x)=\int_0^x\sqrt{1+t^2}\ dt$. Note que $f(t)=\sqrt{1+t^2}$ é contínua, então, pelo teorema anterior $g'(x)=\sqrt{1+x^2}$.

Uma **primitiva** ou **antiderivada** de f em um intervalo I é uma função derivável em I tal que $F'(x)=f(x), \ {\rm para}\ {\rm todo}\ x\in I$.

Fórmulas de algumas primitivas:

$$(a) \int c \, dx = cx + k; \qquad (b) \int e^x \, dx = e^x + k;$$

$$(c) \int x^{\alpha} \, dx = \frac{x^{\alpha+1}}{\alpha+1}, \, \alpha \neq -1; \qquad (d) \int \cos x \, dx = \sin x + k;$$

$$(e) \int \frac{1}{x} \, dx = \ln x + k \quad x > 0; \qquad (f) \int \frac{1}{x} \, dx = \ln(-x) + k \quad x < 0;$$

$$(g) \int \sin x \, dx = -\cos x + k; \qquad (h) \int \sec^2 x \, dx = \tan x + k;$$

$$(i) \int \sec x \, dx = \ln|\sec x + \tan x| + k; \qquad (j) \int \tan x \, dx = -\ln|\cos x| + k;$$

$$(k) \int \sec x \, dx = \sec x + k; \qquad (l) \int \frac{1}{1+x^2} \, dx = \arctan x + k;$$

Regra da Substituição para integrais:

$$\int f(g(x))g'(x)\ dx = \int f(u)\ du$$

Exemplo: Encontre $\int 2x\sqrt{1+x^2}\,dx$. Note que se fazemos a substituição $u=1+x^2$, então sua diferencial é du=2xdx. Pela Regra da Substituição,

$$\int 2x\sqrt{1+x^2}\,dx = \int \sqrt{1+x^2}2x\,dx = \int \sqrt{u}\,du = rac{2}{3}u^{3/2} + k = rac{2}{3}(1+x^2)^{3/2} + k.$$

Regra da Substituição para Integrais Definidas. Se g' for contínua em [a,b] e f for contínua na variação de u=g(x), então

$$\int_a^b f(g(x))g'(x)\,dx = \int_{g(a)}^{g(b)} f(u)\,du.$$

Exemplo: Calcule $\int_{1/2}^1 \sqrt{2x-1}\ dx$. Fazendo u=2x-1, temos $du=2\ dx$ ou $\frac12\ du=dx$. Quando $x=1/2,\ u=0$; quando $x=1,\ u=1$. Assim,

$$\int_{1/2}^1 \sqrt{2x-1} \ dx = \int_0^1 \sqrt{u} \frac{1}{2} \ du = \frac{1}{2} \int_0^1 \sqrt{u} \ du = \frac{1}{2} \frac{2}{3} u^{3/2} \Big|_0^1 = \frac{1}{3}.$$

fórmula de integração por partes:

$$\int f(x)g'(x)\ dx = f(x)g(x) - \int f'(x)g(x)dx,$$

Notação alternativa: Tomando ,u=f(x), e v=g(x), temos

$$du = f'(x) dx$$
 e $dv = g'(x) dx$

e podemos re-escrever () como

$$\int u\,dv = uv - \int v\,du$$

Exemplo: Calcule $\int x \sin x \, dx$. Suponha f(x) = x e $g'(x) = \sin x$. Então, f'(x) = 1 e $g(x) = -\cos x$. Assim

$$\int x \sin x \, dx = x(-\cos x) - \int 1(-\cos x) \, dx = -x \cos x + \sin x + k.$$

Centro de Massa

Consideremos uma fina placa (chamada de $l\hat{a}mina$) com densidade uniforme ρ que ocupa uma região A do plano. Desejamos encontrar o ponto P no qual a placa se equilibra horizontalmente. Esse ponto é chamado centro de massa da placa ou centro de A. Suponha que a região A seja da forma

$$A = \left\{ (x,y) \in \mathbb{R}^2 \; ; \; a \leq x \leq b \, , \; 0 \leq y \leq f(x)
ight\} \, ,$$

em que f é uma função definida e contínua em [a,b], com $f(x)\geq 0$, para todo $x\in [a,b]$.

Seja $\mathcal{P}=(x_i)$ uma partição de [a,b] e escolhamos o ponto c_i como sendo ponto médio do intervalo $[x_{i-1}\,,\,x_i],$ que é $c_i=\frac{x_i+x_{i-1}}{2}.$ Isto determina uma aproximação poligonal a A.

O centro de massa do retângulo hachurado R_i na figura seguinte é seu centro $\left(c_i\,,\,rac{f(c_i)}{2}
ight)$.

Sua área é $f(c_i)\Delta x_i$; assim sua massa é

$$m_i =
ho \underbrace{\Delta x_i}_{ ext{base}} \underbrace{f(c_i)}_{ ext{altura}}$$

O centro de massa dos retângulos $R_1\,,\,R_2\,\ldots\,R_n$ será dado por

$$egin{array}{lll} egin{array}{lll} egin{array} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{ll$$

Daí, fazendo $\Delta_{\mathcal{P}} = \max_{1 \leq i \leq n} \Delta x_i o 0$, obtemos o **centro de massa** da região A

$$egin{array}{lll} (x_c,y_c) &=& \left(rac{\int_a^b x \, f(x) \, dx}{\int_a^b f(x) \, dx} \, , \, rac{rac{1}{2} \, \int_a^b \, f^2(x) \, dx}{\int_a^b f(x) \, dx}
ight) \ &=& \left(rac{1}{rpha {
m rea } \, A} \int_a^b x \, f(x) \, dx \, , \, rac{1}{rpha {
m rea } \, A} rac{1}{2} \, \int_a^b \, f^2(x) \, dx
ight). \end{array}$$

Exemplo: Calcule o centro de massa da região limitada pelas curvas $y=\cos x, y=0, \ x=0$ e $x=\pi/2$. A área da região é: Área $A=\int_0^{\pi/2}\cos x\,dx=\sin x\big|_0^{\pi/2}=1$; assim,

$$egin{aligned} x_c &= rac{1}{rpha {
m rank}} \int_0^{\pi/2} x \, f(x) \, dx = \int_0^{\pi/2} x \, \cos x \, dx = x \sin x ig|_0^{\pi/2} - \int_0^{\pi/2} \sin x \, dx = rac{\pi}{2} - 1, \ &y_c &= rac{1}{rpha {
m rank}} rac{1}{2} \int_0^{\pi/2} f^2(x) \, dx = rac{1}{2} \int_0^{\pi/2} \cos^2 x \, dx = rac{1}{4} \int_0^{\pi/2} (1 + \cos(2x)) \, dx \ &= rac{1}{4} igg(x + rac{1}{2} {
m sen} \, (2x) igg) igg|_0^{\pi/2} = rac{\pi}{8}. \end{aligned}$$

Portanto o centro de massa é $\left(\frac{\pi}{2}-1,\frac{\pi}{8}\right)$.

Valos esperado

- · O valor esperado ou **centro de massa** é um parâmetro μ de uma medida de probabilidade, função de distribuição, ou função probabilidade, também conhecido como média.
- · Um operador linear em um conjunto de variáveis aleatórias que retorna um valor típico da variável aleatória interpretado como uma medida de localização da variável aleatória.
- · média do resultado de repetidos experimentos independentes no longo prazo.
- · preço justo de um jogo com pagamentos descritos por X.

Definição (Valor esperado caso discreto) Se X é uma variável aleatória discreta assumindo valores $\{x_1,x_2,x_3,\ldots\}$ com probabilidade $\{p_1,p_2,p_3,\ldots\}$, i.e., $p_j=P(X=x_j)$ respectivamente. A variável aleatória X possui valor esperado se $\sum_i |x_i| \, p_i < \infty$. Logo, sua esperança é dada pela fórmula

$$E(X) = \sum_{i: x_i < 0} x_i p_i + \sum_{i: x_i \geq 0} x_i p_i,$$

desde que pelo menos um dos somatórios seja finito. Em caso os dois somatórios não sejam finitos, a esperança não existe.

Nota: Integrabilidade é equivalente à integrabilidade absoluta, i.e., $\mathrm{E}(g(X)) < \infty$ (existe), se, e somente se, $|\mathrm{E}(g(X))| < \infty$. Em particular se $\mathrm{E}(X) < \infty$, a variável aleatória X é integrável.

Exemplo: Considere que um dado é lançado 1000 vezes. Uma maneira de calcular este resultado médio seria somar todos os resultados e dividir por 1000. Uma maneira alternativa seria calcular a fração p(k) de todos os lançamentos que tiveram resultado igual a k e calcular o resultado médio através da soma ponderada:

$$1p(1) + 2p(2) + 3p(3) + 4p(4) + 5p(5) + 6p(6)$$
.

Quando o número de lançamentos se torna grande as frações de ocorrência dos resultados tendem a probabilidade de cada resultado.

Intuitivamente, E(X) é uma 'média' dos valores que a variável aleatória X assume, sendo cada um desses valores ponderados pela probabilidade da variável aleatória X assumir tal valor.

Exemplo: Uma companhia de seguros determina o <u>prêmio</u> anual do seguro de vida de maneira a obter um lucro esperado de 1% do valor que o segurado recebe em caso de morte. Encontre o valor do prêmio anual para um seguro de vida no valor de R\$200 mil assumindo que a probabilidade do cliente morrer naquele ano é 0.02.

 $\cdot \;\; A$: prêmio anual e X: lucro da companhia no ano para o cliente

Então,

$$X = \left\{ egin{array}{ll} A, & ext{se o cliente sobrevive} \ A-200000, & ext{se o cliente morre} \end{array}
ight.$$

- $\cdot \ \mathbb{E}(X) = A \times P(ext{sobreviver}) + (A 200000) \times P(ext{morrer})$
- \cdot $\;\mathbb{E}(X)=A imes 0.98+(A-200000) imes 0.02,$ logo $\mathbb{E}(X)=A-4000$

Companhia quer lucro esperado de 1% do valor recebido em caso de morte: R\$2000. Neste caso, $\mathbb{E}(X)=2000=A-4000$. Portanto, A=R\$6000 é o valor do prêmio anual.

Exemplo: Se $X \in \{1,2,\ldots,n\}$ for uma variável aleatória com distribuição de probabilidade aleatória uniforme com parâmetro n, temos que sua esperança é dada por: Onde utilizamos a fórmula da soma dos primeiros n termos de uma progressão aritmética.

Exemplo: Seja X uma variável aleatória com valores em \mathbb{Z} . Suponhamos que

$$p_j = P(X=j) = \left\{ egin{array}{l} rac{c}{j^2} & ext{se } j
eq 0, \ 0 & ext{se } j = 0, \end{array}
ight.$$

em que c>0 é uma constante tal que $\sum_j rac{c}{j^2}=1$. Logo, o valor esperado de X não existe. De fato

$$\sum_{j} |j| P(X=j) = \infty.$$

Definição: (Valor esperado caso absolutamente contínuo) Seja X uma variável aleatória real com função de densidade f. Dizemos que X possui valor esperado se $\int_{-\infty}^{\infty} |x| \, f(x) dx < \infty$. Em tal situação se define o valor esperado de X como:

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx.$$

Nota: Se X é uma variável aleatória real cujo valor esperado existe, então

$$E(X) = \int_0^\infty (1 - F(x)) dx - \int_{-\infty}^0 F(x) dx,$$

em que F denota a função de distribuição da variável aleatória $X. \,$

Exemplo: Seja X uma variável aleatória com função de densidade f(x)=2x, para $x\in(0,1)$ sendo zero fora desse intervalo. O valor esperado de X é

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{1} x \, 2x \, dx = \left. rac{2}{3} x^{3}
ight|_{0}^{1} = rac{2}{3}.$$

Exemplo: Seja X uma variável aleatória com função de densidade

$$f(x)=rac{lpha}{\pi(lpha^2+x^2)};\;x\in\mathbb{R}\;\mathrm{e}\;lpha>0\;\mathrm{constante}.$$

$$\int_{-\infty}^{\infty} |x| f(x) dx = rac{2lpha}{\pi} \int_{0}^{\infty} rac{x}{lpha^2 + x^2} dx = \infty,$$

isto é, o valor esperado de X não existe.

Esperança de funções de variáveis aleatórias: Seja X uma variável aleatória e seja $g(\cdot)$ uma função real tal que g(X) é uma variável aleatória. O valor esperado de g(X), denotado por E(g(X)), é definido como:

 $E(g(X)) = \sum_{i=1}^{\infty} g(x_i) \mathbb{P}(X = x_i),$

se X é uma variável aleatória discreta que assume os valores x_1, x_2, \ldots

 $E(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx,$

se X é uma variável aleatória contínua com função densidade $f_X(x)$.

Propriedades do valor esperado: Sejam X, X_1, \ldots, X_n variáveis aleatórias. Temos que:

- · Se $P(X \geq 0) = 1$ e E(X) existe, então, $E(X) \geq 0$.
- · $E(\alpha) = \alpha$ para toda constante α .
- · Se X é limitada, isto é, se existe uma constante $0 < M < \infty$, tal que $P(|X| \leq M) = 1$ então E(X) existe.
- · (Linearidade) Se α e β são constantes e se g e h são funções tais que E(g(X)) e E(h(X)) existem então $E(\alpha g(X) + \beta h(X))$ existe e tem-se que:

$$E(\alpha g(X) + \beta h(X)) = \alpha E(g(X)) + \beta E(h(X)).$$

podendo esse resultado ser estendido para a soma de n variáveis aleatórias, isto é,

$$E(X_1+\ldots+X_n)=E(X_1)+\cdots+E(X_n)=\sum_{i=1}^n E(X_i).$$

· Sejam g e h funções tais que E(g(X)) e E(h(X)) existem. Se $g(x) \leq h(x)$ para todo x então, $E(g(X)) \leq E(h(X))$. Em particular tem-se que $|E(X)| \leq E|X|$.

· Se $g(x) = x^r$, com r inteiro positivo, então $\mu'_r = \mathbf{E} X^r$, se existir é chamado de momento ao redor de zero de ordem r ou r-ésimo **momento ao redor de zero** da variável aleatória X e neste caso

$$\mu_r' = E(X^r) = \int_{-\infty}^{\infty} x^r f(x) dx ext{ (caso continuo)}; \qquad \sum_{j=1}^{\infty} x_j^r p_j ext{ (caso discreto)}$$

· Seja $g(x)=(x-\gamma)^r$, em que γ é um número real e r é um inteiro positivo, então se $\mathrm{E}(X-\gamma)^r$ é chamado **momento de ordem** r **ao redor de** γ . Em particular, se $\gamma=\mathrm{E}X$, então

$$\mu_r = \mathrm{E}(X - \mathrm{E}X)^r$$

é chamado de **momento central de ordem** n. Quando r=2 temos que

$$\mu_2 = \mathrm{Var}(X) = \mathrm{E}(X - \mathrm{E}X)^2 = \mathrm{E}(X^2) - \mathrm{E}(X)^2$$

é a variância e

$$\sigma=\sqrt{\mu_2}$$

é o **erro padrão** (estas quantidades são medidas de dispersão da variável aleatória ao redor de sua média).

Variância

Considere as seguintes v.a.'s:

U=0, com probabilidade 1

$$V = \left\{ egin{array}{ll} -1, & {
m com \ prob. \ 1/2} \\ 1, & {
m com \ prob. \ 1/2} \end{array}
ight. \quad {
m e} \quad W = \left\{ egin{array}{ll} -10, & {
m com \ prob. \ 1/2} \\ 10, & {
m com \ prob. \ 1/2} \end{array}
ight.$$

Claramente, para estas três variáveis aleatórias seus respectivos valores esperados são:

$$E(U) = E(V) = E(W) = 0$$

No entanto, claramente os valores que as três variáveis assumem são bem diferentes (dispersos)

A variância é uma medida quantitativa do quanto os dados estão dispersos em torno de sua média.

Definiçao: Seja X uma variável aleatória e $\mu=E(X)$ seu respectivo valor esperado. Temos que a variância de X, denotada por σ^2 ou Var(X), é definida por

$$\sigma^2 = Var(X) = E(X - E(X))^2.$$

Das propriedades do valor esperado é fácil ver que

$$Var(X) = E(X - E(X))^2 = E(X^2 - 2XE(X) + (E(X))^2)$$

 $= E(X^2) - 2E(XE(X)) + (E(X))^2$
 $= E(X^2) - 2E(X)E[X) + (E(X))^2$
 $= E(X^2) - 2(E(X))^2(E(X))^2$
 $= E(X^2) - (E(X))^2,$

Propriedades da variância. Seja X uma variável aleatória com $E(X)<\infty$, seja α um número real. Então

- · $Var(X) \geq 0$.
- · $Var(\alpha) = 0$, para toda constante α .
- $Var(\alpha X) = \alpha^2 Var(X).$
- $Var(X + \alpha) = Var(X)$
- · Sejam X, X_1, \dots, X_n variáveis aleatória *independentes* então

$$Var\Big(\sum_{i=1}^n X_i\Big) = \sum_{i=1}^n Var(X_i).$$

Exemplo: Considere uma variável aleatória X tal que

$$P(X=m-a) = P(X=m+a) = rac{1}{2}$$
 $\Rightarrow E(X^k) = rac{1}{2}[(m-a)^k + (m+a)^k].$ $E(X) = m, E(X^2) = rac{1}{2}[2m^2 + 2a^2] = m^2 + a^2, Var(X) = a^2.$

Este exemplo, mostra que podemos encontrar uma variável aleatória bem simples possuindo qualquer esperança e variância predeterminadas.

Exemplo (Caso discreto): O tempo T, em minutos, necessário para um operário processar certa peça é uma v.a. com a seguinte distribuição de probabilidade:

T	2	3	4	5	6	7
P(T=t)	0.1	0.1	0.3	0.2	0.2	0.1

- 1. Calcule o tempo médio de processamento.
- 2. Cada peça processada paga ao operador \$2.00 mas, se ele processa a peça em menos de 6 minutos, ganha \$0.50 por minuto poupado. Por exemplo, se ele processa a peça em 4 minutos, ganha um bônus de \$1.00. Encontre a distribuição, a média e a variância da v.a. S: quantia paga por peça.

Fonte: Morettin & Bussab, Estatística Básica 5^a edição, pág 140.

1. Tempo médio de processamento

$$E(T) = \sum_{t=2}^{7} tP(T=t)$$

= $2 \times 0.1 + 3 \times 0.1 + 4 \times 0.3 + 5 \times 0.2 + 6 \times 0.2 + 7 \times 0.1 = 4.6$

2. Podemos trocar os valores na tabela do tempo, pelo total ganho por peça. Note, contudo, que o operário receberá \$2.00 no evento $\{T=6\} \cup \{T=7\}$, logo somamos suas probabilidades. Seja S a v.a. "ganho final".

S	\$4.00	\$3.50	\$3.00	\$2.50	\$2.00
P(S=s)	0.1	0.1	0.3	0.2	0.3

Obtemos a média e a variância de S através da definição:

$$E(S) = \sum_{s} sP(S=s)$$

= $4 \times 0.1 + 3.5 \times 0.1 + 3 \times 0.3 + 2.5 \times 0.2 + 2 \times 0.3 = 2.75$

$$E(S^2) = \sum_s s^2 P(S=s)$$
 = $16 \times 0.1 + 12.25 \times 0.1 + 9 \times 0.3 + 6.25 \times 0.2 + 4 \times 0.3 = 7.975$

Então,

$$Var(S) = 7.975 - (2.75)^2 = 0.4125$$

Exemplo: Para a seguinte função de densidade f_X , calcular E(X) e Var(X):

$$f_X(x) = egin{cases} x & 0 \leq x < 1, \ 2-x & 1 \leq x \leq 2, \ 0 & ext{caso contrário.} \end{cases}$$

Note que
$$E(X)=\int_{-\infty}^{\infty}xf_X(x)dx=\int_0^1x^2dx+\int_1^2x(2-x)dx=1,$$

Note que pela definição de momento central de uma variável aleatória para r=2 temos

$$Var(X) = \int_{-\infty}^{\infty} [x - E(X)]^2 f_X(x) dx = \int_{-\infty}^{\infty} (x - 1)^2 f_X(x) dx = \frac{1}{6}.$$

Exemplo (Caso contínuo): Voltando para o nosso exemplo da distribuição triangular (caso contínuo) em que a função de densidade é da forma

$$f_X(x) = \left\{ egin{array}{lll} 0 & ext{se} & x < 0, \ 4x & ext{se} & 0 \leq x \leq 1/2, \ 4(1-x) & ext{se} & 1/2 \leq x \leq 1, \ 0 & ext{se} & x > 1. \end{array}
ight.$$

Calcule a esperança, a variância e a f.d.a. da variável aleatória X com a densidade triangular em [0,1].

Fonte: Morettin & Bussab, Estatística Básica 5^a edição, pág 171.

$$egin{align} E(X) &= \int_{-\infty}^{\infty} \!\! x f_X(x) dx = \int_0^{1/2} \!\! x 4x dx + \int_{1/2}^1 \!\! x 4(1-x) dx \ &= \left[rac{4x^3}{3}
ight]_0^{1/2} + \left[rac{2}{3} x^2 (3-2x)
ight]_{1/2}^1 = rac{1}{2}. \end{split}$$

Por outro lado,

$$egin{align} ext{Var}(X) &= \int_{-\infty}^{\infty} (x - \mathbb{E}(X))^2 f_X(x) dx \ &= \int_{0}^{1/2} \left(x - rac{1}{2}
ight)^2 4x dx + \int_{1/2}^{1} \left(x - rac{1}{2}
ight)^2 4(1 - x) dx \ &= \left[x^4 - rac{4}{3} x^3 + rac{1}{2} x^2
ight]_{0}^{1/2} + \left[-x^4 + rac{8}{3}^3 - rac{5}{2} x^2 + x
ight]_{1/2}^{1} \ &= rac{1}{24}. \end{split}$$