RÉPUBLIQUE DU CAMEROUN

REPUBLIC OF CAMEROON

Peace - Work - Fatherland

Université de Dschang

University of Dschang

Scholae Thesaurus Dschangensis Ibi Cordum

BP 96, Dschang (Cameroun) - Tél./Fax (237) 233 45 13 81

INSTITUT UNIVERSITAIRE DE TECHNOLOGIE FOTSO VICTOR DE BANDJOUN

FOTSO VICTOR UNIVERSITY INSTITUTE OF TECHNOLOGY

Département de Génie Electrique Departement of Electrical Engineering

BP 134, Bandjoun – Tél./Fax (237) 699 31 61 30 / 670 64 23 92 Website: http://www.univ-dschang.org/iutfy/

E-mail: iutfv-bandjoun@univ-dschang.org

N° / /UDs/IUT-FV/D/DGE

TRAVAUX DIFIGES N° 2 CIRCUITS LINEAIRES DUT GE1 : A

DISTANCE EN CONFINEMENT

Exercice 1

Exercice 2

S'inspirer de l'exercice 1 (extrapolation) pour déterminer graphiquement la valeur de V_{seuil} (courbe (2)).

Déterminer V_F pour $I_F = 200$ mA puis 400 mA.

Exercice 3

- 1. Diode au silicium
- a) Remplir le tableau suivant :

V_1		V ₂		État de D ₂	V _s	
(V)	NL	(V)	NL		(V)	NL
0 V	OL	0 V	OL			market .
0 V	OL	5V	1L			
5 V	1 L	0 V	OL			
5 V	1L	5 V	1L			

Les colonnes bleues font apparaître le niveau logique (NL) correspondant à la tension (type TTL). Pour les calculs de V_S , on tiendra compte de la chute de tension des diodes.

- b) À quelle porte logique connue appartient cette table de vérité ? Quelle est la valeur de la tension V_{OH} ?
- 2. Diodes Schottky

On remplace les diodes au silicium par des diodes SCHOTTKY ayant une tension de seuil de 0,3 V.

- a) Que devient la tension V_{OH} ? Les diodes Schottky sont réputées plus rapides que les diodes au silicium.
- b) Qu'implique cette remarque sur le comportement en haute fréquence d'une porte logique à base de diode au silicium par rapport à une porte à base de diode Schottky?
- c) Remplir le tableau de la question 1 avec ce montage :

d) À quelle type de porte logique appartient la nouvelle table de vérité? Vous comprenez maintenant pourquoi les portes logiques nécessite une alimentation continue V_{cc} .