Тест по "Материалознание" примерен вариант 3

Група	Име	Фамилия	Факултетен номер	Дата

Раздел	I	П	Ш	IV	Общо
Точки (тах)	32	33	10	25	100
Получени точки					

І. ЕЛЕКТРОПРОВОДИМОСТ В ДИЕЛЕКТРИЧНИ МАТЕРИАЛИ

- 1. След установяване на всички видове поляризации, поляризационният ток I_{non} :
 - а) се установява на някаква постоянна стойност;
 - б) става равен на нула;
 - в) продължава да нараства.
- 2. Ако зависимостта на поляризационния ток от времето (времедиаграмата на поляризационния ток) в диелектрик при постоянно електрическо поле има вида показан на фиг. 1, то опишете елементите от графиката:

 3 т.

Γ-

4. Връзката между утечния ток I_{y_T} и изолационното съпротивление R_{u_3} на диелектрик се дава с израза:

$$(a) R_{u3} = \frac{U}{I_{vm}};$$

б)
$$R_{us} = \frac{I_{ym}}{II}$$
;

$$R_{us} = \frac{I}{I_{ym}}.$$

Опишете елементите във вярната формула и дайте дименсиите им.

5. Изолационното съпротивление R_{us} на диелектрика е омично по своята природа т. е.: 1 т.

- а) зависи от времето;
- б) зависи от честотата на приложеното напрежение;
- в) не зависи от времето и честотата на приложеното напрежение.

8. Общия ток през диелектрик без загуби, поставен в променливо електрическо поле е $I=I_{nos}+I_{ym}=I_{m}\cos\omega t+I_{ym}\sin\omega t$. Опишете елементите във формулата.

- 9. Ако диелектрик без загуби поставен между два електрода (идеален кондензатор) се включи в електрическа верига то той ще: 1 т.
 - а) ограничава протичането на постоянен, но не и на променлив ток;
 - б) ограничава протичането на променлив, но не и на постоянен ток;
 - в) ограничава протичането на постоянен и на променлив ток.
- 10. Проводимостта на газовете се определя от волт-амперната им характеристика, която е показана на фиг. 2. Нанесете необходимите означения и посочете областите с нормална и ударна йонизация върху графиката. 4 т.

11. Кои течности имат най-висока проводимост:

1 т.

- а) полярните;
- б) неполярните;
- в) силно полярните.
- 12. Проводимостта на твърди диелектрици с йонна структура се обуславя основно от:
 - а) движение на собствени йони;
 - б) движение на свободни електрони;
 - в) нито един от изброените случаи.

ІІ. МАГНИТНИ СВОЙСТВА НА МАТЕРИАЛИТЕ

- 1. Индукцията B, създадена от магнитно поле с интензитет H във вакуум, се изчислява съгласно израза: 3 т.
 - a) $B = \mu_0 \mu_r H$;
 - б) $B = \mu H$;
 - $\mathbf{B)} B = \mu_0 H .$

Опишете елементите във вярната формула и дайте дименсиите им.

2. Начертайте зависимостите на намагнитването от интензитета на приложеното магнитно поле - M = f(H) за диамагнетици, парамагнетици и феромагнетици. 5 т.

3. Домените са области, в които:

- 1 T.
- а) всички спинови магнитни моменти са еднопосочно ориентирани, поради което магнитният момент на областта е голям;
- б) всички спинови магнитни моменти са еднопосочно ориентирани, поради което магнитният момент на областта е малък;
- в) всички магнитни моменти на ядрата са еднопосочно ориентирани, поради което магнитният момент на областта е голям.
- 4. При прилагане на външно магнитно поле с малък интензитет в магнитния материал: 1 т.
- а) се получава ориентиране на векторите на магнитните моменти на домените по посока на полето;
- б) започва увеличаване на размерите на домените, които имат магнитен момент сключващ остър ъгъл с посоката на полето;
- в) започва увеличаване на размерите на домените, които имат магнитен момент сключващ тъп ъгъл с посоката на полето.

5. На фиг. 3 е показана кривата на първоначалното намагнитване. Означете върху нея основните й области и обяснете процесите, които настъпват в първата от тях. 4 т.

6. Импулснат магнитна проницаемост се изразява чрез формулата $\mu_{rrev} =$ и се използва, когато: 4 т.

- а) магнитното поле е синусоидално;
- б) магнитното поле е импулсно;
- в) магнитното поле е постоянно.

Опишете елементите във формулата.

7. Начертайте граничен хистерезисен цикъл в магнитен материал и дефинирайте основните му параметри. 6 т.

8. Избройте трите вида загуби в магнитните материали. 4 т.

--

9. Тангенса на ъгъла на магнитните загуби $\operatorname{tg} \delta_M$ се определя от израза: 3 т.

a)
$$tg\delta_M = \frac{\mu_r}{\mu_r''}$$
;

B)
$$tg\delta_M = \frac{\mu_r''}{\mu_0}$$
.

Опишете елементите във вярната формула.

- 10. Температура на Кюри е тази:
 - а) над която материалите губят доменната си структура;
 - б) под която материалите губят доменната си структура;
 - в) константа, еднаква за всички материали.
- 11. Магнитнотвърдите материали имат голяма магнитна енергия, поради което:
 - а) запазват намагнитеното си състояние дълго време;
 - б) лесно се размагнитват;
 - в) лесно се намагнитват.

ІІІ. ПРОВОДНИКОВИ МАТЕРИАЛИ

- 2. Безоловните меки припои намират по-голямо приложени от оловните поради:
 - а) по-ниската си температура на топене;
 - б) по-добрата корозоустойчивост;
 - в) по-високата механична якост на спойката;
- г) законодателна забрана за използване на оловото в електронното производство.
- 3. Основното свойство на благородните метали, определящо приложението им в електронните апаратури е: 1 т.
 - а) има ниско специфично съпротивление;
 - б) има висока топлопроводност;
 - в) има малко тегло;
 - г) има добра корозоустойчивост.
- 4. Основните изисквания към резистивните сплави са:
 - а) малка стойност на специфичното им съпротивление;
 - б) голяма стойност на специфичното им съпротивление;
- в) отрицателна стойност на относителния температурен коефициент на диелектричната проницаемост α_0 ;
- г) положителна стойност на относителния температурен коефициент на диелектричната проницаемост α_{ρ} ;

4 т.

1 т.

- д) нулева стойност на относителния температурен коефициент на диелектричната проницаемост $\alpha_{\rm p}$;
 - е) стабилност на параметрите във времето;
 - ж) малко термо е. д. н. спрямо медта;
 - з) голямо термо е. д. н. спрямо медта;

Въпросът има повече от един верен отговор.

IV. КОНДЕНЗАТОРИ

- 1. Кои от изброените електронни градивни елементи са пасивни? 3 т.
 - а) резистори;
 - б) кондензатори;
 - в) транзистори;
 - г) диоди;
 - д) бобини;
 - е) тиристори.

Въпросът може да има повече от един верен отговор.

2. Начертайте волт-амперната характеристика на линеен електронен елемент.

- 3. Кондензаторите намират приложение:
 - а) за честотни и фазови коректори;
 - б) за измерване на температури от -55°C до +1000°C;
 - в) като блокиращи и разделителни елементи;
 - г) за изграждане на трептящи кръгове
 - д) като постоянни и променливи резистивни делители.

Въпросът може да има повече от един верен отговор.

4. Капацитетът на всеки кондензатор зависи:

1 т.

3 т.

3 т.

- а) само от диелектричната проницаемост на диелектрика между електродите, а не и от геометричните му размери;
- б) от геометричните размери и от диелектричната проницаемост на диелектрика между електродите;
 - в) от геометричните размери и свойствата на материала на електродите.

5. Изпитвателно напрежение на кондензатора е винаги:

1 т.

- а) по-малко от номиналното напрежение;
- б) по-голямо от номиналното напрежение;
- в) равно на номиналното напрежение.
- 6. Температурният коефициент на капацитета на кондензатора α_C се определя от израза $\alpha_C = \frac{C_2 C_1}{C_3(T_2 T_1)}$, за:
 - а) кондензатори с линейна зависимост C = f(T);
 - б) кондензатори с нелинейна зависимост C = f(T);
 - в) за всички кондензатори.

Опишете елементите във формулата и дайте дименсиите им.

7. Имайки предвид дадената на фиг. 4 еквивалентна схема на кондензатор, то коефициентът на загубите на енергия в него, може да се представи като

 $tg\delta = tg\delta_{\scriptscriptstyle M} + tg\delta_{\scriptscriptstyle U3} + tg\delta_{\scriptscriptstyle \partial}$, където $tg\delta_{\scriptscriptstyle M} = \omega r_{\scriptscriptstyle M}C$ и $tg\delta_{\scriptscriptstyle U3} = \frac{1}{\omega R_{\scriptscriptstyle U3}C}$. Опишете елементите във формулите и върху еквивалентната схема.

- 8. Параметрите, типични за електролитните кондензатори са:
 - а) пулсиращ ток;
 - б) спектрална характеристика;
 - в) съпротивление на тъмно;
 - г) утечен ток;
 - д) коефициент на нелинейност;
 - е) шум от преместване на подвижния контакт.

Въпросът може да има повече от един верен отговор.

- 9. Оксидният слой в електролитните кондензатори може да е с малка дебелина поради това, че притежава:
 - а) малки диелектрични загуби;
 - б) голяма диелектрична проницаемост;
 - в) голяма диелектрична якост.

3 т.