

Grafos

- É uma estrutura de dados que possui a maior aplicabilidade em problemas comerciais;
- A Teoria dos Grafos foi criada pelo matemático Leonhard Euler em 1736 na solução do problema das Sete pontes de Königsberg (atual Kaliningrado):
 Seria possível passar pelas sete pontes sem repetir nenhuma ponte?

Árvores (uma raíz) x Grafos

Aplicações: Rotas

Aplicações: Mapa Aéreo

Aplicações: Projeto de Circuitos Eletrônicos

Aplicações: Redes de Computadores

Aplicações: Redes Sociais

Aplicações: Malha Ferroviária

Terminologias

• Grafos Orientados e Ponderados

Terminologias

Nós e Arestas

- Um nó representa algum objeto do mundo real
- Uma aresta faz a ligação entre os nós

Representação

- Matriz de adjacência
- Lista de adjacências

Busca em Profundidade

- Algoritmo utilizado para fazer uma busca por um determinado nó ou travessia por todos os nós do grafo;
- Inicia a partir de um nó qualquer (raíz) e explora tanto quanto possível cada uma de suas arestas;
- Utiliza uma estrutura do tipo Pilha como auxiliar

Busca em Largura

 Algoritmo utilizado para fazer uma busca por um determinado nó ou travessia por todos os nós do grafo;

 Começa por um nó especificado pelo usuário. O algoritmo visita esse nó, depois visita todos os adjacentes do nó, depois todos os vizinhos dos vizinhos, e

assim por diante.

Busca Gulosa

- Utiliza conhecimento específico sobre o problema (heurística);
- Visa encontrar soluções mais eficientes que as buscas cegas (profundidade e largura);
- Utiliza um função de avaliação para cada nó;
- Expande o nó que tem a função de avaliação mais baixa.

Busca A-Estrela (A*)

- Exclusivo para buscar o caminho de um vértice inicial até um vértice final;
- Pode utilizar vários conhecimentos específicos sobre o problema (heurística);
- Visa encontrar soluções mais eficientes que a busca Gulosa e as buscas cegas (profundidade e largura);
- Utiliza mais de um parâmetro na função de avaliação para cada nó;
- Expande o nó que tem a função de avaliação mais baixa.

Algoritmo de Dijkstra

- Encontra o caminho mais curto a partir de um nó especificado até todos os outros;
- Descobrir a maneira mais barata de se deslocar de um nó A até todas os outros;
- Não faz uso de Heurística;

