Kamil Świerad

Rozwiązywanie układów równań metodami iteracyjnymi MOwNiT 2

Do obliczeń użyłem języka c++, na systemie operacyjnym Ubuntu kompilując przy użyciu g++. Procesor komputer to Intel® Core™ i5-6300HQ CPU @ 2.30GHz × 4, a ilość pamięci RAM to 16GB. Program wykorzystany do przeprowadzenia eksperymentów był napisany przez mnie oraz wykorzystywał bibliotekę Armadillo.

1) Pierwsze zadanie polegało na rozwiązaniu podanego układu

$$\begin{cases} a_{i,i} = 7 \\ a_{i,j} = \frac{1}{n-i-j-0.5} \ dla \ i \neq j \end{cases}$$

metodą iteracyjną Jakobiego przy dwóch różnych kryteriach stopu:

1.
$$||x^{(i+1)} - x^{(i)}|| < \rho$$

$$2. \quad \left\| Ax^{(i)} - b \right\| < \rho$$

Eksperyment polegał no załączeniu skryptu który wykonywał program dla różnych parametrów:

Wielkość macierzy - {5,10,25,50,100,250,500,1000,2500}

Wektor początkowy to wektor prawidłowy pomnożony przez - {-100, -1, 0, 1, 100} Wartość ρ - {1e-2, 1e-5, 1e-9}

norm w tabelach oznacza normę maximum policzoną z różnicy wektora otrzymanego w metodzie oraz wektora właściwego.

N oznacza wielkość macierzy.

S oznacza wartość przez którą był mnożony wektor prawidłowy aby uzyskać wektor poczatkowy.

I oznacza ilość iteracji programu.

Tabela 1.1 Wybrane wartości dla przeprowadzonych eksperymentów ilustrujące zależność wyniku eksperymentu w zależności od rozmiaru (dla pierwszego warunku stopu)

N Q S		S	norm	1	Czas [ms]	
5	0.01	0	0.004699662894	7	0.047	
10	0.01	0	0.00230726919	8	0.094	
50	0.01	0	0.002290633909	8	1.26	
250	0.01	0	0.002283339276	8	37.642	
1000	0.01	0	0.002278330232	8	510.534	
2500	0.01	0	0.002279317051	8	1921.818	
5	1,00E-0 5	0	4.44995316e-06	16	0.141	
10	1,00E-0 5	0	1.733109346e-06	17	0.268	
50	1,00E-0 5	0	1.830949179e-06	17	3.167	
250	1,00E-0 5	0	1.824974214e-06	17	75.522	
1000	1,00E-0 5	0	1.825070423e-06	17	735.91	
2500	1,00E-0 5	0	1.827194379e-06	17	3982.742	
5	0.01	-100	0.004063300922	13	0.137	
10	0.01	-100	0.002116028386	14	0.198	
50	0.01	-100	0.002091351523	14	2.133	
250	0.01	-100	0.002081223508	14	57.828	
1000	0.01	-100	0.002077729341	14	623.685	
2500	0.01	-100	0.002078493814	14	2968.76	

Tabela 1.2 Tabela analogiczna do tabeli 1.1, ale dla drugiego warunku stopu.

N	Q	S	norm I		Czas [ms]
5	0.01	0	0.0009626983953	9	0.076
10	0.01	0	0.0009407513546 9		0.11
50	0.01	0	0.0009086809031	9	1.453
250	0.01	0	0.0009031357572	9	42.746
1000	0.01	0	0.0009000030549	9	735.343
2500	0.01	0	0.0008988540142 9		4493.606

Dobrze widać na przedstawionych tabelach że rozmiar ma wpływ tylko i wyłącznie na czas wykonania i błąd otrzymanego rozwiązania czy ilość iteracji nie zależy rozmiaru macierzy.

Tabela 2.1 Wybrane wartości dla przeprowadzonych eksperymentów ilustrujące zależność wyniku eksperymentu w zależności od ϱ (dla pierwszego warunku stopu)

N	Q	S	norm	1	Czas [ms]	
100	0.01	0	0.002266325372		5.439	
100	1,00E-0 5	0	1.776014003e-06	17	12.229	
100	1,00E-0 9	0	3.586556607e-10	28	10.995	
1000	0.01	0	0.002278330232	8	510.534	
1000	1,00E-0 5	0	1.825070423e-06	17	735.91	
1000	1,00E-0 9	0	3.616047461e-10	28	972.925	
100	0.01	100	0.002023030927	14	11.341	
100	1,00E-0 5	100	3.847436145e-06	22	15.537	
100	1,00E-0 9	100	3.321771747e-10	34	26.218	
1000	0.01	100	0.002036586186	14	632.925	
1000	1,00E-0 5	100	3.876761815e-06	06 22		
1000	1,00E-0 9	100	3.351632305e-10	632305e-10 34		

Tabela 2.2 Tabela analogiczna do tabeli 2.1, ale dla drugiego warunku stopu.

N	Q	S	norm I		Czas [ms]
100	0.01	0	0.0009166737138	9	24.347
100	1,00E-0 5	0	8.891128326e-07	18	
100	1,00E-0 9	0	7.54509788e-11 30		59.21
100	0.01	100	0.0008257748135	15	10.973
100	1,00E-0 5	100	8.059044938e-07	24	17.296
100	1,00E-0	100	7.023071014e-11	36	57.426

9		

Na powyższych danych widać że ϱ wpływa na dokładność, zwiększając ją, a co za tym idzie także na ilość iteracji oraz na czas wykonania.

Tabela 3.1 Wybrane wartości dla przeprowadzonych eksperymentów ilustrujące zależność wyniku eksperymentu w zależności od S (dla pierwszego warunku stopu)

N	N Q S		norm	1	Czas [ms]
100	0.01	-100	0.002063900239	14	10.563
100	0.01	100	0.002023030927	14	11.341
100	0.01	1	1.554312234e-15	1	1.794
100	0.01	-1	0.001833347428	9	6.986
100	0.01	0	0.002266325372	8	5.439
100	1,00E-0 5	-100	3.925162128e-06	22	16.023
100	1,00E-0 5	100	3.847436145e-06	3.847436145e-06 22	
100	1,00E-0 5	1	1.554312234e-15	1	1.622
100	1,00E-0 5	-1	1.778225669e-06	18	12.857
100	1,00E-0 5	0	1.776014003e-06	17	12.229
1000	1,00E-0 5	-100	3.95508023e-06	22	861.709
1000	1,00E-0 5	100	3.876761815e-06	22	813.615
1000	1,00E-0 5	1	5.551115123e-15 1		200.997
1000	1,00E-0 5	-1	1.791046377e-06 18		728.121
1000	1,00E-0	0	1.825070423e-06	17	735.91

_		
5		
J		

Tabela 3.2 Tabela analogiczna do tabeli 3.1, ale dla drugiego warunku stopu.

N	Q	S	norm	I	Czas [ms]
100	1,00E-0 5	-100	8.221853925e-07	24	17.315
100	1,00E-0 5	100	8.059044938e-07	24	17.296
100	1,00E-0 5	1	1.554312234e-15	1	1.628
100	1,00E-0 5	-1	7.576977534e-07	19	14.631
100	1,00E-0 5	0	8.891128326e-07	18	13.231
1000	1,00E-0 5	-100	8.286127894e-07	24	2107.28
1000	1,00E-0 5	100	8.122046249e-07	24	2070.204
1000	1,00E-0 5	1	5.551115123e-15	1	213.192
1000	1,00E-0 5	-1	7.787079004e-07	19	1587.024
1000	1,00E-0 5	0	8.955231904e-07	18	1512.645

Na powyższych danych widać że wektor startowy nie wpływa na błąd (poza wypadkiem gdy wektor startowy pokrywa się z faktycznym), ale wpływa na liczbę iteracji, a co za tym idzie, wpływa także na czas wykonania.

Porównując dane z tabel x.1 i x.2 można także zauważyć że zastosowanie drugiego kryterium stopu nieznacznie (o ok. 1 miejsca po przecinku) dokładność rozwiązania, zwiększając nieco ilość iteracji, jednak ogólny czas wykonania zwiększa się znacząco.

2) Drugie zadanie to policzenie promienia spektralnego macierzy iterowanej dla macierzy dla których były znajdowane rozwiązania.

Promień spektralny był poprzez obliczenie wartości własnych macierzy przy użyciu funkcji eig_gen z biblioteki Armadillo, a następnie wzięcie największej wartości spośród ich wartości bezwzględnych.

Tabela 4 Wartości promienia spektralnego dla kolejnych rozmiarów macierzy.

Wielkość Macierzy	Promień Spektralny
5	0.4672871171
10	0.4726828476
25	0.4749428809
50	0.4757765699
100	0.4761846079
250	0.4764304868
500	0.4765122109
1000	0.4765529695
1500	0.4765665405
2500	0.476577394

Widać że promień spektralny jest mniejszy niż 1, co oznacza że metoda Jacobiego jest zbieżna, co pokrywa się z otrzymanymi przez mnie wynikami eksperymentów.

3) Trzecie zadanie jest analogiczne do pierwszego, jednak przy użyciu metody SOR (Succesive Over-Relaxation)

Eksperyment polegał no załączeniu skryptu który wykonywał program dla różnych parametrów:

Wielkość macierzy - {5,10,25,50,100,250,500,1000,1500,2500}

Wektor początkowy to wektor prawidłowy pomnożony przez - {-100, -1, 0, 1, 100} Wartość ρ - {1e-3, 1e-5, 1e-10}

wartość ω {0.01, 0.3, 0.5, 0.9, 0.95, 1.05, 1.1, 1.2, 1.4, 1.8, 1.99}

norm w tabelach oznacza normę maximum policzoną z różnicy wektora otrzymanego w metodzie oraz wektora właściwego.

N oznacza wielkość macierzy.

S oznacza wartość przez którą był mnożony wektor prawidłowy aby uzyskać wektor początkowy.

I oznacza ilość iteracji programu.

Tabela 5.1 Wybrane wartości dla przeprowadzonych eksperymentów ilustrujące zależność wyniku eksperymentu w zależności od rozmiaru (dla pierwszego warunku stopu)

N	Q	S	ω	norm	Ι	Czas [ms]
5	1,00E-10	0	1.05	6.822653553e-12	12	0.126

1,00E-10	0	1.05	2.219824324e-11	14	0.351
1,00E-10	0	1.05	4.037881141e-12	16	1.812
1,00E-10	0	1.05	9.136913448e-12	16	52.368
1,00E-10	0	1.05	8.97304453e-12	16	618.838
1,00E-10	0	1.05	1.038558128e-11	16	2669.074
0.001	0	1.1	2.887054931e-05	6	0.014
0.001	0	1.1	1.951454203e-05	6	0.058
0.001	0	1.1	1.622419982e-05	6	0.881
0.001	0	1.1	1.489141617e-05	6	19.696
0.001	0	1.1	0.0001464774364	5	383.662
0.001	0	1.1	0.0001478909122	5	1081.602
0.001	-100	1.1	4.14062709e-05	8	0.026
0.001	-100	1.1	4.791843622e-05	8	0.037
0.001	-100	1.1	9.791202932e-05	8	1.128
0.001	-100	1.1	0.0001060483193	8	26.132
0.001	-100	1.1	0.0001026823625	8	482.838
0.001	-100	1.1	0.0001046471659	8	1554.074
	1,00E-10 1,00E-10 1,00E-10 1,00E-10 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	1,00E-10 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 -100 0.001 -100 0.001 -100 0.001 -100 0.001 -100	1,00E-10 0 1.05 0.001 0 1.1 0.001 0 1.1 0.001 0 1.1 0.001 0 1.1 0.001 0 1.1 0.001 0 1.1 0.001 -100 1.1 0.001 -100 1.1 0.001 -100 1.1 0.001 -100 1.1 0.001 -100 1.1	1,00E-10 0 1.05 4.037881141e-12 1,00E-10 0 1.05 9.136913448e-12 1,00E-10 0 1.05 8.97304453e-12 1,00E-10 0 1.05 1.038558128e-11 0.001 0 1.1 2.887054931e-05 0.001 0 1.1 1.951454203e-05 0.001 0 1.1 1.489141617e-05 0.001 0 1.1 0.0001464774364 0.001 0 1.1 0.0001478909122 0.001 -100 1.1 4.14062709e-05 0.001 -100 1.1 4.791843622e-05 0.001 -100 1.1 9.791202932e-05 0.001 -100 1.1 0.0001060483193 0.001 -100 1.1 0.0001026823625	1,00E-10 0 1.05 4.037881141e-12 16 1,00E-10 0 1.05 9.136913448e-12 16 1,00E-10 0 1.05 8.97304453e-12 16 1,00E-10 0 1.05 1.038558128e-11 16 0.001 0 1.1 2.887054931e-05 6 0.001 0 1.1 1.951454203e-05 6 0.001 0 1.1 1.622419982e-05 6 0.001 0 1.1 1.489141617e-05 6 0.001 0 1.1 0.0001464774364 5 0.001 0 1.1 0.0001478909122 5 0.001 -100 1.1 4.791843622e-05 8 0.001 -100 1.1 9.791202932e-05 8 0.001 -100 1.1 0.0001060483193 8 0.001 -100 1.1 0.0001026823625 8

Tabela 5.2 Tabela analogiczna do tabeli 5.1, ale dla drugiego warunku stopu.

N	Q	S	ω	norm	I	Czas [ms]
5	1,00E-10	0	1.05	6.822653553e-12	12	0.144
10	1,00E-10	0	1.05	3.463895837e-12	15	0.407
50	1,00E-10	0	1.05	1.357092216e-11	15	1.72
250	1,00E-10	0	1.05	9.136913448e-12	16	57.793
1000	1,00E-10	0	1.05	8.97304453e-12	16	1021.175
2500	1,00E-10	0	1.05	1.038558128e-11	16	3561.711

Podobnie jak w metodzie Gaussa, rozmiar właściwie wpływa tylko na czas na wykonania.

Tabela 6.1 Wybrane wartości dla przeprowadzone eksperymenty ilustrujące zależność wyniku eksperymentu w zależności od S oraz ϱ (dla pierwszego warunku stopu)

N	Q	S	ω	norm	I	Czas [ms]
100	1,00E-10	1	1.1	8.881784197e-16	1	0.17
100	1,00E-10	-1	1.1	2.086286699e-11	15	3.86
100	1,00E-10	-100	1.1	8.046230349e-12	18	3.521

100	1,00E-10	100	1.1	7.886358233e-12	18	3.348
100	1,00E-10	0	1.1	1.043165554e-11	15	3.856
100	0.001	1	1.1	8.881784197e-16	1	0.673
100	0.001	0	1.1	0.00012391678	5	2.182
100	0.001	-1	1.1	2.73687715e-05	6	2.808
100	0.001	100	1.1	7.575707415e-05	8	3.982
100	0.001	-100	1.1	7.728752009e-05	8	4.211
100	1,00E-05	-100	1.1	5.382406982e-07	11	5.51
100	1,00E-05	100	1.1	2.829064927e-06	10	5.041
100	1,00E-05	0	1.1	7.65222971e-07	8	4.073
100	1,00E-05	1	1.1	8.881784197e-16	1	0.621
100	1,00E-05	-1	1.1	1.530445942e-06	8	3.029

Tabela 6.2 Tabela analogiczna do tabeli 6.1, ale dla drugiego warunku stopu.

N	Q	S	ω	norm	I	Czas [ms]
100	1,00E-05	-100	1.1	5.382406982e-07	11	5.732
100	1,00E-05	100	1.1	5.275824664e-07	11	5.816
100	1,00E-05	0	1.1	7.65222971e-07	8	19.836
100	1,00E-05	1	1.1	8.881784197e-16	1	0.663
100	1,00E-05	-1	1.1	1.530445942e-06	8	3.167
100	0.001	1	1.1	8.881784197e-16	1	0.807
100	0.001	0	1.1	0.00012391678	5	13.564
100	0.001	-1	1.1	2.73687715e-05	6	3.179
100	0.001	100	1.1	7.575707415e-05	8	4.353
100	0.001	-100	1.1	7.728752009e-05	8	4.374

Z zaprezentowanych tabeli można wyciągnąć analogiczne wnioski jak przy metodzie Jakobiego, czyli że ϱ wpływa na dokładność wyniku, a co za tym idzie na ilość iteracji i czas wykonania, a wektor startowy wpływa na ilość iteracji bez wpływu na dokładność wyniku(poza wektorem właściwym).

Przy analizowaniu wyników eksperymentu ze względu na ω , warto wspomnieć że dla danej macierzy dla której metoda jest zbieżna istnieje ω_{opt} którego wzór wygląda następująco:

$$ω_{opt} = 1 + \left(\frac{μ}{1 + \sqrt{1 - μ^2}}\right)^2$$
 gdzie μ to promień spektralny macierzy iteracji metody Jakobiego, podstawiając pod μ= 0.47 otrzymujemy $ω_{opt} = 1.06979$

Tabela 7.1 Wybrane wartości dla przeprowadzone eksperymenty ilustrujące zależność wyniku eksperymentu w zależności od ω (dla pierwszego warunku stopu)

N	Q	S	ω	norm	I	Czas [ms]
1000	1,00E-10	0	0.01	1.889569523e-08	3043	56821.799
1000	1,00E-10	0	0.3	4.151698985e-10	102	1952.541
1000	1,00E-10	0	0.5	2.11302309e-10	56	1504.936
1000	1,00E-10	0	0.9	1.97657446e-11	23	480.93
1000	1,00E-10	0	0.95	1.237121516e-11	20	514.018
1000	1,00E-10	0	1.05	8.97304453e-12	16	618.838
1000	1,00E-10	0	1.1	2.30726549e-11	15	553.469
1000	1,00E-10	0	1.2	1.747002543e-11	18	467.205
1000	1,00E-10	0	1.4	2.670308419e-11	28	628.268
1000	1,00E-10	0	1.8	5.013256477e-11	110	2239.6
1000	1,00E-10	0	1.99	8.63419336e-11	2464	46024.26
1000	1,00E-10	100	0.01	1.88550876e-08	3916	72785.031
1000	1,00E-10	100	0.3	4.78448503e-10	126	2545.606
1000	1,00E-10	100	0.5	1.622249002e-10	69	1570.732
1000	1,00E-10	100	0.9	2.34285924e-11	27	565.834
1000	1,00E-10	100	0.95	2.937350363e-11	23	532.422
1000	1,00E-10	100	1.05	1.071409628e-11	19	687.188
1000	1,00E-10	100	1.1	3.166977791e-11	18	462.39
1000	1,00E-10	100	1.2	1.458100307e-11	22	579.213
1000	1,00E-10	100	1.4	2.188715875e-11	34	703.266
1000	1,00E-10	100	1.8	5.046496554e-11	131	2643.877
1000	1,00E-10	100	1.99	8.743239466e-11	2923	54448.689

Tabela 7.2 Tabela z tymi samymi eksperymentami co tabela 7.1, ale dla drugiego warunku stopu

N	Q	S	ω	norm	I	Czas [ms]
1000	1,00E-10	0	0.01	2.728794968e-11	4285	290607.466
1000	1,00E-10	0	0.3	2.570299529e-11	117	8295.343

					T	
1000	1,00E-10	0	0.5	2.243849551e-11	62	4156.572
1000	1,00E-10	0	0.9	6.614930825e-12	24	1758.256
1000	1,00E-10	0	0.95	1.237121516e-11	20	1311.154
1000	1,00E-10	0	1.05	8.97304453e-12	16	1021.175
1000	1,00E-10	0	1.1	7.385869694e-12	16	1220.373
1000	1,00E-10	0	1.2	8.280487407e-12	19	1440.263
1000	1,00E-10	0	1.4	1.4695134e-11	29	2190.892
1000	1,00E-10	0	1.8	1.280309192e-11	116	8428.857
1000	1,00E-10	0	1.99	2.116617992e-11	2617	188213.109
1000	1,00E-10	100	0.01	2.726197046e-11	5158	367119.092
1000	1,00E-10	100	0.3	2.444433544e-11	142	10237.552
1000	1,00E-10	100	0.5	1.720612541e-11	75	5087.836
1000	1,00E-10	100	0.9	7.591705042e-12	28	2073.135
1000	1,00E-10	100	0.95	8.835043808e-12	24	1348.886
1000	1,00E-10	100	1.05	1.071409628e-11	19	1247.801
1000	1,00E-10	100	1.1	8.351319636e-12	19	1408.583
1000	1,00E-10	100	1.2	4.401701226e-12	23	1844.132
1000	1,00E-10	100	1.4	7.579714634e-12	35	2660.82
1000	1,00E-10	100	1.8	1.724154153e-11	137	10308.204
1000	1,00E-10	100	1.99	2.246858255e-11	3076	225932.071

Analizując tabelę 7.1 oraz 7.2 można zauważyć że dla wykonanych eksperymentów najmniej iteracji (a co za tym idzie najkrótszy czas), był dla wartości ω równej 1.1 lub 1.05, co zgadza się z teoretycznym obliczeniem ω_{opt} równego ok. 1.07, dla wartości mniejszych lub większych od optymalnej ilość iteracji rośnie, a co za tym idzie zwiększa się także czas wykonania.

Porównując tabelę 7.1 oraz 7.2 można także zauważyć że zastosowanie drugiego warunku stopu daje małe korzyści widoczne jako zwiększona precyzja wyniku, zwiększając nieznacznie (lub dla krańcowych ω znacznie) liczbę iteracji, jednak znacznie zwiększając czas wykonania.