已优化 第6次作业	
面面2 温量堆 202/210976	
1年:原问题来覆盖椭就对日本日的最小超过方体等价本	
四优化问题	
max (X)∞	
$S.t. \chi^{T}Q\chi \leq $	
对于XER1,原问题可以分解的1个子问题	
$\max_{i} \chi_{i}$ $i = 1, 2, -\infty, n$	
S.t. X7.0%≤ 我们再对这N个最优值取 max, 就得到原问起最优值。	
我们只要们,我们是不 "~~ " " " " " " " " " " " " " " " " " "	
対 $Q = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 3 \end{pmatrix}$ 得 広 我 $\partial X _{\infty} \leq 1$.	
(123/	
代码在同名 ipynb 文件下	
2. 备约	
(1) 2f x ∈ R², 取本准单位正方形 X 0 ≤ . M.	
四个J系知为 X((1,1), X2((,1), X3(-1,1), X4(-1,-1)	
M首 min x-x1 2+ x-x12+ x-x3 2+ x-x4 2	
631/18 (2.1) P 1.05% X 21 T.	
解學 $\chi = (0,0)$ 最小距离为 $4\sqrt{12}$	
·	
(1) 对于这个问题,我们可以分两种情况讨论:	
(2) 对于这个问题,我们可以分两种情况讨论: ①一个点连接了3个了点点,另一个点连接了1个顶点	
(2) 对于这个问题,我们可以分两种情况讨论: ①一个点连接了3个了原点,另一个点连接了1个顶点 ②两个点各连接2个顶点	
(2) 对于这个问题,我们可以分两种情况讨论: ①一个点连接了3个了点点,另一个点连接了1个顶点	

 χ_{4} χ_{ι} 双抒情况 D, 不失一般性 取点 a 连接 X, X, X3 点b连接 X4. 根据三角不等式,恒有 $|\chi_{4}-a|_{2} \leq |b-a|_{2} + |\chi_{4}-b|_{2}$ 放作項 | 1/2-1/2/2-1/2/2-1/2+16-1/2+124-6| 7/ | X,-a|2+ | X2-a|2+ | X3-a|2+ | X4-a|2 故问题也轻化为上一问,答案是7.12 χ_{\prime} 对计情况(1),不关一般性 取点 a 连接 X1, X1; 点 b 连接 X3, X4. 明白优化问题 min Llab) = |a-b|2+ |a-x, |2+ |d-x2|2+ |b-X3|2+ |b-X4/2 χ_{1} $= \int (x_a - x_b)^{\frac{1}{2}} (y_a - y_b)^{\frac{1}{2}} + \sum_{i=1}^{n} \int (x_a - x_i)^{\frac{1}{2}} (y_a - y_i)^{\frac{1}{2}} + \sum_{i=1}^{n} \int (x_b - x_i)^{\frac{1}{2}} (y_b - y_i)^{\frac{1}{2}}$ $\frac{\partial L}{\partial a} = \frac{a - b}{|a - b|_2} + \frac{a - \chi_1}{|a - \chi_1|_2} + \frac{a - \chi_2}{|a - \chi_2|_2} = 0$ $\frac{\partial L}{\partial b} = \frac{b-a}{|a-b|_{1}} + \frac{b-\chi_{3}}{|b-\chi_{3}|_{L}} + \frac{b-\chi_{4}}{|b-\chi_{4}|_{L}} = 0$ 解得 a(1-3,0) b(至-1,0) 最优值为 215+2