This is the Answer Key for Module 8 Version MU.

36. Which of the following intervals describes the Domain of the function below?

$$f(x) = -\log_2(x+3) + 5$$

The solution is $(-3, \infty)$

- A. $(a, \infty), a \in [-4.22, -1.46]$
 - * This is the solution.
- B. $[a, \infty), a \in [-5.89, -4.56]$

Distractor 3: This corresponds to using the negative vertical shift AND including the endpoint.

C. $(-\infty, a), a \in [2.14, 3.83]$

Distractor 2: This corresponds to using negative of the horizontal shift. Remember: the general for is a*log(x-h)+k.

D. $(-\infty, a], a \in [4.48, 6.12]$

Distractor 1: This corresponds to using the vertical shift when shifting the Domain AND including the endpoint.

E. $(-\infty, \infty)$

Distractor 4: This corresponds to thinking of the Range of the log function (or the domain of the exponential function).

General Comments: The domain of a basic logarithmic function is $(0, \infty)$ and the Range is $(-\infty, \infty)$. We can use shifts when finding the Domain, but the Range will always be all Real numbers.

37. Which of the following intervals describes the Domain of the function below?

$$f(x) = -e^{x-5} - 3$$

The solution is $(-\infty, \infty)$

A.
$$(-\infty, a), a \in [-6, -2]$$

Distractor 3: This corresponds to using the correct vertical shift *if we wanted the Range* AND including the endpoint.

B. $(a, \infty), a \in [0, 4]$

Distractor 2: This corresponds to using the negative vertical shift AND flipping the Range interval.

C. $(-\infty, a], a \in [-6, -2]$

Distractor 4: This corresponds to using the correct vertical shift *if we wanted the Range*.

D. $[a, \infty), a \in [0, 4]$

Distractor 1: This corresponds to using the negative vertical shift AND flipping the Range interval AND including the endpoint.

- E. $(-\infty, \infty)$
 - * This is the solution.

General Comments: Domain of a basic exponential function is $(-\infty, \infty)$ while the Range is $(0, \infty)$. We can shift these intervals [and even flip when a < 0!] to find the new Domain/Range.

38. Solve the equation for x and choose the interval that contains the solution (if it exists).

$$\log_5(-4x+7) + 4 = 3$$

The solution is x = 1.7

A. $x \in [1.91, 2.49]$

Corresponds to reversing the base and exponent when converting.

B. $x \in [-29.73, -29.05]$

Corresponds to ignoring the vertical shift when converting to exponential form.

C. $x \in [-2.02, -0.88]$

Corresponds to reversing the base and exponent when converting and reversing the value with x.

- D. $x \in [0.79, 1.76]$
 - * This is the solution!
- E. There is no Real solution to the equation.

Corresponds to believing a negative coefficient within the log equation means there is no Real solution.

General Comments: First, get the equation in the form $\log_b{(cx+d)} = a$. Then, convert to $b^a = cx + d$ and solve.

39. Solve the equation for x and choose the interval that contains x (if it exists).

$$7 = \ln \sqrt{\frac{25}{e^x}}$$

The solution is x = -10.781000

A. $x \in [-6, -5]$

Distractor 2: This corresponds to leaving 1/2 in front of the log.

B. $x \in [2, 8]$

Distractor 3: This corresponds to leaving 1/2 in front of the log AND getting the negative of the solution.

- C. $x \in [-14, -9]$
 - * This is the real solution
- D. $x \in [10, 13]$

Distractor 1: This corresponds to getting the negative of the solution.

E. There is no solution to the equation.

This corresponds to believing the exponential functional cannot be solved.

General comments: After using the properties of logarithmic functions to break up the right-hand side, use ln(e) = 1 to reduce the question to a linear function to solve. You can put ln(25) into a calculator if you are having trouble.

40. Solve the equation for x and choose the interval that contains the solution (if it exists).

$$5^{3x+3} = 16^{2x+5}$$

The solution is x = -12.603

A. $x \in [0.2, 1.28]$

Correponds to ignoring that the bases are different.

B. $x \in [-2.5, -1.56]$

Corresponds to ignoring that the basses are different and reversing that solution.

C. $x \in [-0.46, 0.43]$

Corresponds to getting the negative of the actual solution.

- D. $x \in [-12.79, -12.25]$
 - * This is the solution!
- E. There is no Real solution to the equation.

Corresponds to believing there is no solution since the bases are not powers of each other.

General Comments: This question was written so that the bases could not be written the same. You will need to take the log of both sides.

3