

CSC3100 Data Structures Lecture 21: Graph shortest path

Li Jiang
School of Data Science (SDS)
The Chinese University of Hong Kong, Shenzhen

- We focus on weighted graphs
- Graphs with non-negative weights
 - Single-Source Shortest Path: Dijkstra's algorithm
- All-Pair Shortest Path: Floyd's algorithm
- Graphs with negative weights
 - Bellman-Ford algorithm

Weighted graphs

- In real world graphs, each edge may have a weight
 - On road networks, the weight of each edge (a road segment) may be the distance between two road junctions or the travel time from one junction to another
 - In navigation systems, e.g., Google Map, we may want to find the path with minimum travel time between two locations

Shortest path problems

- How can we find the shortest route between two points on a road map?
- Model the problem as a graph problem:
 - Road map is a weighted directed graph:

vertices = cities edges = road segments between cities edge weights = road distances $w(v_1, v_2) = 4$ $w(v_1, v_3) = 7$

4

Shortest path problems

Input:

- Directed graph G = (V, E)
- Weight function w : E → \mathbf{R}
- Weight of path $p = \langle v_0, v_1, \dots, v_k \rangle$ $w(p) = \sum_{i=1}^k w(v_{i-1}, v_i)$

Shortest-path weight from u to v:

$$\delta(u, v) = \min \begin{cases} w(p) : u \stackrel{p}{\leadsto} v & \text{if there exists a path from } u \text{ to } v \end{cases}$$
otherwise

Note: there might be <u>multiple shortest</u> paths from u to v

Variants of shortest path

Single-source shortest paths

• $G = (V, E) \Rightarrow$ find a shortest path from a given source vertex s to each vertex $v \in V$

Single-destination shortest paths

- Find a shortest path to a given destination vertex t from each vertex v
- \circ Reversing the direction of each edge \Rightarrow single-source

Single-pair shortest path

Find a shortest path from u to v for given vertices u and v

All-pairs shortest-paths

 Find a shortest path from u to v for every pair of vertices u and v

Optimal substructure theorem

Given:

- A weighted, directed graph G = (V, E)
- A weight function w: $E \rightarrow \mathbf{R}$,

- A subpath of p: $p_{i,j} = \langle v_i, v_{i+1}, \dots, v_j \rangle$, with $1 \le i \le j \le k$

Then: p_{ij} is a shortest path from v_i to v_j

Proof:
$$p = v_1 \stackrel{p_{1i}}{\leadsto} v_i \stackrel{p_{ij}}{\leadsto} v_j \stackrel{p_{jk}}{\leadsto} v_k$$

$$w(p) = w(p_{1i}) + w(p_{ij}) + w(p_{jk})$$

Assume $\exists p_{ij}'$ from v_i to v_j with $w(p_{ij}') < w(p_{ij})$

$$\Rightarrow$$
 w(p') = w(p_{1i}) + w(p_{ij}') + w(p_{jk}) < w(p) contradiction!

Triangle inequality

For all $(u, v) \in E$, we have: $\delta(s, v) \le \delta(s, u) + \delta(u, v)$

Proof?

If u is on the shortest path to v we have the equality sign

- Can shortest paths contain cycles?
- Negative-weight cycles No!
 - Shortest path is not well defined
- Positive-weight cycles: No!
 - By removing the cycle, we can get a shorter path

- A simple case: unweighted graph
 - How to find the shortest path? Use BFS!
- A simple algorithm
 - 1. Mark the starting vertex, s
 - 2. Find and mark all unmarked vertices adjacent to s
 - 3. Find and mark all unmarked vertices adjacent to the marked vertices
 - 4. Repeat Step 3 until all vertices are marked
- For each vertex, keep track of
 - · whether the adjacent vertex has been marked
 - its distance from s(d_v)
 - previous vertex of the path from $s(p_v)$


```
/* Pseudocode for unweighted shortest-path algorithm with O(|E| + |V|) time*/
void unweighted(Vertex s) {
    Queue < Vertex > q = new Queue < Vertex > ();
    for each vertex v \{d_v = INFINITY;\}
    d_s = 0;
    q.enqueue(s);
    while(!q.isEmpty()){
          Vertex v = q.dequeue();
         for each Vertex w adjacent to v
             if(dw == INFINITY){
                  d_{w} = d_{v} + 1;
                   p_w = v;
                   q.enqueue(w);
                                     Running time is O(|E| + |V|)
```


v	Known	d_v	p_v
v_1	F	∞	0
v_2	F	∞	0
<i>v</i> ₃	F	0	0
v_4	F	∞	0
v_5	\mathbf{F}	∞	0
v_6	F	∞	0
<i>v</i> ₇	F	∞	0

	Initial State		
v	Known	d_v	p_{v}
v_1	\mathbf{F}	8	0
v_2	F	∞	0
<i>v</i> ₃	F	0	0
<i>v</i> ₄	F	œ	0
<i>v</i> ₅	F	8	0
<i>v</i> ₆	F	∞	0
<i>v</i> ₇	F	œ	0
Q		<i>v</i> ₃	

	v ₃ Dequeued		
v	Known	d_v	p_{v}
v_1	F	1	<i>v</i> ₃
v_2	F	8	0
<i>v</i> ₃	T	0	0
v_4	\mathbf{F}	8	0
<i>v</i> ₅	F	8	0
v_6	F	1	<i>v</i> ₃
<i>v</i> ₇	F	oc	0
Q	<i>v</i> ₁ , <i>v</i> ₆		

	v ₁ Dequeued		
v	Known	d_v	p_{v}
v_1	T	1	v_3
v_2	\mathbf{F}	2	v_1
<i>v</i> ₃	T	0	0
v_4	F	2	v_1
v_5	\mathbf{F}	8	0
v_6	F	1	<i>v</i> ₃
<i>v</i> ₇	\mathbf{F}	8	0
Q	v_6, v_2, v_4		

	v ₆ Dequeued		
v	Known	d_v	p_{v}
v_1	T	1	v_3
v_2	\mathbf{F}	2	v_1
<i>v</i> ₃	T	0	0
v_4	F	2	v_1
v_5	F	œ	0
v_6	T	1	<i>v</i> ₃
<i>v</i> ₇	F	œ	0
Q	v_2, v_4		

	v ₂ Dequeued		
v	Known	d_v	p_{ν}
v_1	T	1	v_3
v_2	T	2	v_1
<i>v</i> ₃	T	0	0
<i>v</i> ₄	F	2	v_1
v ₅	F	3	v_2
v_6	T	1	<i>v</i> ₃
<i>v</i> ₇	F	œ	0
Q	<i>v</i> ₄ , <i>v</i> ₅		

	v ₄ Dequeued		
v	Known	d_v	p_{v}
v_1	T	1	<i>v</i> ₃
v_2	T	2	v_1
<i>v</i> ₃	T	0	0
v_4	T	2	v_1
<i>v</i> ₅	\mathbf{F}	3	v_2
<i>v</i> ₆	T	1	<i>v</i> ₃
<i>v</i> ₇	F	3	<i>v</i> ₄
Q	v_5, v_7		

	v ₅ Dequeued		
v	Known	d_v	p_{v}
v_1	T	1	v_3
v_2	T	2	v_1
v_3	T	0	0
<i>v</i> ₄	T	2	v_1
<i>v</i> ₅	T	3	v_2
<i>v</i> ₆	T	1	<i>v</i> ₃
<i>v</i> ₇	F	3	<i>v</i> ₄
Q	v_7		

	v ₇ Dequeued		
v	Known	d_v	p_{v}
v_1	T	1	v_3
v_2	T	2	v_1
<i>v</i> ₃	T	0	0
v_4	T	2	v_1
<i>v</i> ₅	T	3	v_2
<i>v</i> ₆	T	1	<i>v</i> ₃
<i>v</i> ₇	T	3	v_4
Q	empty		

- Dijkstra's algorithm for weighted graphs
 - A greedy algorithm, solving a problem by stages by doing what appears to be the best thing at each stage
 - Select a vertex u, which has the smallest d_u among all the unknown vertices, and declare that the shortest path from s to u is known
 - For each adjacent vertex, v, update $d_v = d_u + c_{u,v}$ if this new value for d_v is an improvement

Example of Dijkstra's algorithm

Given a graph, find the shortest path starting from v_1 :

Initial configuration

v	Known	d_v	p_{v}
v_1	0	0	0
v_2	0	00	0
v_3	0	∞	0
v_4	0	8	0
v_5	0	8	0
v_6	0	8	0
v_7	0	∞	0

After v₁ is declared known

v	Known	d_v	p_{v}
v_1	1	0	0
v_2	0	2	v_1
<i>v</i> ₃	0	œ	0
<i>v</i> ₄	0	1	v_1
v_5	0	œ	0
v_6	0	œ	0
<i>v</i> ₇	0	∞	0

After v₄ is declared known

v	Known	d_v	p_{ν}
v_1	1	0	0
v_2	0	2	v_1
<i>v</i> ₃	0	3	<i>v</i> ₄
<i>v</i> ₄	1	1	v_1
<i>v</i> ₅	0	3	v_4
<i>v</i> ₆	0	9	<i>v</i> ₄
<i>v</i> ₇	0	5	v_4

After v_2 is declared known

ν	Known	d_v	p_v
v_1	1	0	0
v_2	1	2	v_1
<i>v</i> ₃	0	3	v_4
<i>v</i> ₄	1	1	v_1
<i>v</i> ₅	0	3	v_4
v_6	0	9	v_4
<i>v</i> ₇	0	5	<i>v</i> ₄

After v_5 and then v_3 are declared known

ν	Known	d_v	p_{v}
v_1	1	0	0
v_2	1	2	v_1
<i>v</i> ₃	1	3	<i>v</i> ₄
<i>v</i> ₄	1	1	v_1
<i>v</i> ₅	1	3	<i>v</i> ₄
<i>v</i> ₆	0	8	<i>v</i> ₃
<i>v</i> ₇	0	5	<i>v</i> ₄

After v₇ is declared known

v	Known	d_v	p_v
v_1	1	0	0
v_2	1	2	v_1
<i>v</i> ₃	1	3	v_4
v_4	1	1	v_1
<i>v</i> ₅	1	3	v_4
v_6	0	6	v_7
<i>v</i> ₇	1	5	v_4

After v₆ is declared known

v	Known	d_v	p_{v}
v_1	1	0	0
v_2	1	2	v_1
v_3	1	3	v_4
<i>v</i> ₄	1	1	v_1
<i>v</i> ₅	1	3	<i>v</i> ₄
v_6	1	6	<i>v</i> ₇
<i>v</i> ₇	1	5	<i>v</i> ₄

Initialization

Alg.: INITIALIZE-SINGLE-SOURCE(V, s)

- 1. for each $v \in V$
- 2. do $d[v] \leftarrow \infty$
- $p[v] \leftarrow NIL$
- 4. $d[s] \leftarrow 0$

All the shortest-paths algorithms start with INITIALIZE-SINGLE-SOURCE

Relaxation step

Relaxing an edge (u, v) = testing whether we can improve the shortest path to v found so far by going through u

If d[v] > d[u] + w(u, v)we can improve the shortest path to v

 \Rightarrow d[v] = d[u] + w(u, v)

 $\Rightarrow p[v] \leftarrow u$

After relaxation: d[v] = d[u] + w(u, v)

⊌ Dijkstrα(G, w, s)

```
INITIALIZE-SINGLE-SOURCE(V, s) \leftarrow \Theta(V)
2. S ← Ø
     Q \leftarrow V[G] \leftarrow O(V) build min-heap
      while Q \neq \emptyset \leftarrow \text{Executed O(V) times}
do u \leftarrow \text{EXTR} A C T - M I N (Q) \leftarrow O(log V)
5.
       \mathsf{S} \leftarrow \mathsf{S} \cup \{\mathsf{u}\}
6.
           for each vertex v \in Adj[u] \leftarrow O(E) times (total)
7.
                      do RELAX(u, v, w)
8.
                      Update Q(DECREASE_KEY) \leftarrow O(logV)
9.
```

Running time: O(VlogV + ElogV) = O(ElogV)

Show the steps of Dijkstra's algorithm

Dijkstra (G, w, s)

Example (cont.)

Example (cont.)

Correctness of Dijkstra's algorithm

Theorem: For each vertex $u \in V$, we must have $d[u] = \delta(s, u)$ at the time when u is added to S

Proof:

- Assume that u is the first vertex for which $d[u] \neq \delta(s, u)$ when added to S
 - For each vertex v in S, $d[v] = \delta(s, v)$
 - Vertex u has the highest priority in Q: <u, ...> (i.e., d[u] <...)

Correctness of Dijkstra's algorithm

0: If we have a path P' with smaller distance from s to u than d[u], then $\delta(s, u) < d[u]$

1: Let v' be the last vertex in P' such that it is in S, and let u' be the next vertex of v'

2: According to the algorithm, u' must be in the priority queue Q

3: We know $d[u'] < \delta(s, u)$ and further get $d[u'] < \delta(s, u) < d[u]$

4. However, from the assumption, we have d[u] < d[u'], so contradiction!

- ▶ Given a directed graph G=(V,E) where each edge (u, v) has an associated value r(u,v), which is a real number in the range $0 \le r(u,v) \le 1$ that represents the reliability of a communication channel from vertex u to vertex v
 - We interpret r(u,v) as the probability that the channel from u to v will not fail, and we assume that these probabilities are independent
 - Give an efficient algorithm to find the most reliable path between two given vertices

- Solution 1: modify Dijkstra's algorithm
 - r(u,v) = Pr(channel from u to v will not fail)
 - Assuming that the probabilities are independent, the reliability of a path $p = \langle v_1, v_2, ..., v_k \rangle$ is: $r(v_1, v_2) r(v_2, v_3) ... r(v_{k-1}, v_k)$
 - · Find the channel with the highest reliability, i.e.,

$$\max_{p} \prod_{(u,v)\in p} r(u,v)$$

Exercise 1 (cont.)

But Dijkstra's algorithm computes

$$\min_{p} \sum_{(u,v)\in p} w(u,v)$$

Perform relaxation as follows: if d[v] < d[u] w(u,v) then d[v] = d[u] w(u,v)

Use "EXTRACT_MAX" instead of "EXTRACT_MIN"

Exercise 1 (cont.)

- Solution 2: use Dijkstra's algorithm without any modifications!
 - Goal

$$\max_{p} \prod_{(u,v)\in p} r(u,v)$$

Take the Ig

$$\lg(\max_{p} \prod_{(u,v)\in p} r(u,v)) = \max_{p} \sum_{(u,v)\in p} \lg(r(u,v))$$

Turn this into a minimization problem by taking the negative:

$$-\min_{p} \sum_{(u,v)\in p} \lg(r(u,v)) = \min_{p} \sum_{(u,v)\in p} -\lg(r(u,v))$$

Run Dijkstra's algorithm using

$$w(u, v) = -\lg(r(u, v))$$

Recommended reading

- Reading materials
 - Textbook Chapters 24&25
- Next lecture
 - All pairs shortest path