# 1 Sortieren

## 1.1 Einführung

Das Sortierproblem

• Ausgangspunkt: Folge von Datensätzen  $D_1, D_2, \cdots, D_n$ 

$$D_1 D_2 \cdots D_n$$

- zu sortierende Elemente heißen auch Schlüssel(werte)
- Ziel: Datensätze so anzuordnen, dass die Schlüsselwerte sukzessive ansteigen (oder absteigen)
- Bedingung: Schlüssel(werte) müssen vergleichbar sein

Durchführung:

- Eingabe: Sequenz von Schlüsselwerten  $\{a_1, a_2, \dots, a_n\}$
- Eingabe ist eine **Instanz** des Sortierproblems
- Ausgabe: Permutation  $\{a_1',a_2',\dots,a_n'\}$  derselben Folge mit Eigenschaft  $a_1'\leq \dots \leq a_n'$
- Algorithmus **korrekt**, wenn dieser das Problem für alle Instanzen löst

## 1.2 Arrays

Reihung (Feld) fester Länge von Daten des gleichen Typs



ABBILDUNG 1: beispielhafte Darstellung eines Arrays

- A: Bezeichnung des Arrays mit dem Namen "A"
- A[i]: Zugiff auf das (i + 1)-te Element des Arrays

Beispiel: A[2] = 17

⇒ Arrays erlauben effizienten Zugriff auf Elemente: konstanter Aufwand

## 1.3 Exkurs: Totale Ordnung

Sei M eine nicht leere Menge und  $\leq \subseteq M \times M$  eine binäre Relation auf M.

Das Paar  $(M, \leq)$  heißt genau dann eine totale Relation auf der Menge M, wenn folgende Eigenschaften erfüllt sind:

- Reflexivität:  $\forall x \in M : x \leq x$
- Transitivität:  $\forall x,y,z\in M: x\leq y \land y\leq z \Rightarrow x\leq z$
- Antisymmetrie:  $\forall x, y \in M : x \leq y \land y \leq x \Rightarrow x = y$
- Totalität:  $\forall x, y \in M : x \leq y \lor y \leq x$

#### Beispiele:

- ullet  $\leq$  Ordnung auf natürlichen Zahlen
- Lexikographische Ordnung  $\leq_{lex}$  ist eine totale Ordnung

## 1.4 Vergleichskriterien von Suchalgorithmen

- Berechnungsaufwand:  $\mathcal{O}(n)$
- Effizienz: Best Case vs. Average Case vs Worst Case
- · Speicherbedarf:
  - in-Place (in situ): zusätzlicher Speicher von der Eingabegröße unabhängig
  - out-of-place: Speichermehrbedarf von Eingabegröße abhängig
- Stabilität: stabile Verfahren verändern die Reihenfolge von äquivalenten Elementen nicht
- Anwendung als Auswahlfaktor:
  - Hauptoperationen beim Sortieren: Vergleichen und Vertauschen
  - Anwendung spielt eine enorme Rolle:
    - \* Verfahren mit vielen Vertauschungen und wenig Vergleichen, wenn Vergleichen teuer
    - \* Verfahren mit wenig Vertauschungen und vielen Vergleichen, wenn Umsortieren teuer

## 1.5 Analyse von Algorithmen (I)

#### • Schleifeninvariante (SIV):

- Sonderform der Invariante
- Am Anfang/Ende jedes Schleifendurchlaufs und vor/nach jedem Schleifendurchlauf gültig
- Wird zur Feststellung der Korrektheit von Algorithmen verwendet
- Eigenschaften:
  - \* Initialisierung: Invariante ist vor jeder Iteration wahr
  - \* Fortsetzung: Wenn SIV vor der Schleife wahr ist, dann auch bis Beginn der nächsten Iteration
  - \* Terminierung: SIV liefert bei Schleifenabbruch, helfende Eigenschaft für Korrektheit
- Beispiel für Umsetzung: Insertion Sort SIV

## · Laufzeitanalyse:

- Aufstellung der Kosten und Durchführungsanzahl für jede Zeile des Quelltextes
- Beachte: Bei Schleifen wird auch der Aufruf gezählt, der den Abbruch einleitet
- Beispiel für Umsetzung: Insertion Sort Laufzeit
- Zusätzliche Überprüfung des Best Case, Worst Case und Average Case

## • Effizienz von Algorithmen:

- Effizienzfaktoren
  - \* Rechenzeit (Anzahl der Einzelschritte)
  - \* Kommunikationsaufwand
  - \* Speicherplatzbedarf
  - \* Zugriffe auf Speicher
- Laufzeit hängt von versch. Faktoren ab
  - \* Länge der Eingabe
  - \* Implementierung der Basisoperationen
  - \* Takt der CPU

## 1.6 Analyse von Algorithmen (II)

#### Komplexität:

- Abstrakte Rechenzeit T(n) ist abhängig von den Eingabedaten
- Übliche Betrachtungsweise der Rechenzeit ist asymptotische Betrachtung

#### · Asymptotik:

- Annäherung an einer sich ins Unendliche verlaufende Kurve
- z.B.:  $f(x) = \frac{1}{x} + x$  | Asymptote: g(x) = x |  $(\frac{1}{x}$  läuft gegen Null)

## • Asymptotische Komplexität:

- Abschätzung des zeitlichen Aufwands eines Algorithmus in Abhängigkeit einer Eingabe
- Beispiel für Umsetzung: Insertion Sort Laufzeit  $\Theta$

#### · Asymptotische Notation:

- Betrachtung der Laufzeit T(n) für sehr große Eingaben  $n \in \mathbb{N}$
- Komplexität ist unabhängig von konstanten Faktoren und Summanden
- Nicht berücksichtigt: Rechnergeschwindigkeit / Initialisierungsaufwände
- Komplexitätsmessung via Funktionsklasse ausreichend
  - \* Verhalten des Algorithmus für große Problemgrößen
  - \* Veränderung der Laufzeit bei Verdopplung der Problemgröße

## • Gründe für die Nutzung der theoretischen Betrachtung statt der Messung der Laufzeit

- Vergleichbarkeit
  - \* Laufzeit abhängig von konkreter Implementierung und System
  - \* Theoretische Betrachung ist frei von Abhängigkeiten und Seiteneffekten
  - \* Theoretische Betrachtung lässt direkte Vergleichbarkeit zu
- Aufwand
  - \* Wieviele Testreihen?
  - \* In welcher Umgebung?
  - \* Messen führt in der Ausführung zu hohem, praktischen Aufwand
- Komplexitätsfunktion
  - \* Wachstumsverhalten ausreichend
  - \* Praktische Evaluation mit Zeiten nur für Auswahl von Systemen möglich
  - \* Theoretischer Vergleich (Funktionsklassen) hat ähnlichen Erkenntnisgewinn

## 1.7 Analyse von Algorithmen (III)

#### Θ-Notation

- $-\Theta$ -Notation beschränkt eine Funktion asymptotisch von oben und unten
- Funktionen  $f,g:\mathbb{N}\to\mathbb{R}_{>0}$  ( $\mathbb{N}$ : Eingabelänge,  $\mathbb{R}$ : Zeit)



Für alle n größer gleich  $n_0$ 

- $-\Theta(g)$  enthält alle f, die genauso schnell wachsen wie g
- Schreibweise:  $f \in \Theta(g)$  (korrekt), manchmal auch  $f = \Theta(g)$
- g(n) ist eine asymptotisch scharfe Schranke von f(n)
- $f(n) = \Theta(g(n))$  gilt, wenn f(n) = O(g(n)) und  $f(n) = \Omega(g(n))$  erfüllt sind



ABBILDUNG 2: Veranschaulichung

- \* z.B.:  $f(n) = \frac{1}{2}n^2 3n \mid f(n) \in \Theta(n^2)$ ?
- \* Aus  $\Theta(n^2)$  folgt, dass  $g(n) = n^2$
- \* Vorgehen:
  - · Finden eines  $n_0$  und  $c_1, c_2$ , sodass
  - $c_1 * g(n) \le f(n) \le c_2 * g(n)$  erfüllt ist
  - · Konkret:  $c_1 * n^2 \le \frac{1}{2}n^2 3n \le c_2 * n^2$
  - · Division durch  $n^2$ :  $c_1 \leq \frac{1}{2} \frac{3}{n} \leq c_2$
  - · Ab n=7 positives Ergebnis:  $0,0714 \mid n_0=7$
  - · Deswegen setzen wir  $c_1 = \frac{1}{14}$
  - · Für  $n \to \infty: 0,5 \mid c_2 = 0,5$
  - · Natürlich auch andere Konstanten möglich

#### • O-Notation

- O-Notation beschränkt eine Funktion asymptotisch von oben



Für alle n größer gleich  $n_0$ 

- O(g) enthält alle f, die höchstens so schnell wie g wachsen
- Schreibweise: f = O(g)
- $f(n) = \Theta(g) \rightarrow f(n) = O(g) \ | \ \Theta(g(n)) \subseteq O(g(n))$
- Ist f in der Menge  $\Theta(g)$ , dann auch in der Menge O(g)



\* z.B.:  $f(n) = n + 2 \mid f(n) = O(n)$ ?

\* Ja f(n) ist Teil von O(n) für z.B. c=2 und  $n_0=2$ 

ABBILDUNG 3: Veranschaulichung

#### • *O*-Notation Rechenregeln

- Konstanten:
  - \*  $f(n) = a \text{ mit } a \in \mathbb{R} \text{ konstante Funktion} \rightarrow f(n) = O(1)$
  - \* z.B.  $3 \in O(1)$
- Skalare Multiplikation:

\* 
$$f = O(g)$$
 und  $a \in \mathbb{R} \to a * f = O(g)$ 

- Addition:

\* 
$$f_1 = O(g_1)$$
 und  $f_2 = O(g_2) \rightarrow f_1 + f_2 = O(max\{g_1, g_2\})$ 

- Multiplikation:

\* 
$$f_1 = O(g_1)$$
 und  $f_1 = O(g_2) \to f_1 * f_2 = O(g_1 * g_2)$ 

#### • $\Omega$ -Notation

–  $\Omega$ -Notation beschränkt eine Funktion asymptotisch von unten



Für alle n größer gleich  $n_0$ 

- $\Omega$ -Notation enthält alle f, die mindestens so schnell wie g wachsen
- Schreibweise:  $f = \Omega(g)$



ABBILDUNG 4: Veranschaulichung

### Komplexitätsklassen

–  $\,n\,$  ist hier die Länge der Eingabe

| Klasse             | Bezeichnung   | Beispiel               |  |
|--------------------|---------------|------------------------|--|
| 0(1)               | Konstant      | Einzeloperation        |  |
| $\Theta(\log n)$   | Logarithmisch | hmisch Binäre Suche    |  |
| $\Theta(n)$        | Linear        | Sequentielle Suche     |  |
| $\Theta(n \log n)$ | Quasilinear   | Sortieren eines Arrays |  |
| $\Theta(n^2)$      | Quadratisch   | Matrixaddition         |  |
| $\Theta(n^3)$      | Kubisch       | Matrixmultiplikation   |  |
| $\Theta(n^k)$      | Polynomiell   |                        |  |
| $\Theta(2^n)$      | Exponentiell  | Travelling-Salesman*   |  |
| $\Theta(n!)$       | Faktoriell    | Permutationen          |  |

– Ausführungsdauer, falls eine Operation n genau  $1\mu s$  dauert

| Eingabe- $$ größe $n$ | $log_{10}n$ | n     | $n^2$           | $n^3$     | 2 <sup>n</sup>        |
|-----------------------|-------------|-------|-----------------|-----------|-----------------------|
| 10                    | 1µs         | 10µs  | 100µs           | 1ms       | ~1ms                  |
| 100                   | 2µs         | 100µs | 10ms            | 1s        | ~4x10 <sup>16</sup> y |
| 1000                  | 3µs         | 1ms   | 1s              | 16min 40s | ?                     |
| 10000                 | 4µs         | 10ms  | 1min 40s        | ~11,5d    | ?                     |
| 100000                | 5µs         | 100ms | 2h 46min<br>40s | ~31,7y    | ?                     |

## • Asymptotische Notationen in Gleichungen

$$-2n^2+3n+1=2n^2+\Theta(n)$$

–  $\Theta(n)$  fungiert hier als Platzhalter für eine beliebige Funktion f(n) aus  $\Theta(n)$ 

- z.B.: 
$$f(n) = 3n + 1$$

#### • o-Notation

- o-Notation stellt eine echte obere Schranke dar
- Ausschlaggebend ist, dass es für alle  $c \in \mathbb{R}_{>0}$  gelten muss
- Außerdem < statt ≤</p>

- z.B.: 
$$2n = o(n^2)$$
 und  $2n^2 \neq o(n^2)$ 

$$o(g) = \{ f : \underbrace{\forall c \in \mathbb{R}_{>0}}, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, 0 \le f(n) < cg(n) \}$$

Gilt für **alle** Konstanten c>0. In  $\mathcal O ext{-Notation}$  gilt es für eine Konstante c>0

#### • $\omega$ -Notation

- $\omega$ -Notation stellt eine echte untere Schranke dar
- Ausschlaggebend ist, dass es für alle  $c\in\mathbb{R}{>0}$  gelten muss
- Außerdem > statt ≥

- z.B.: 
$$\frac{n^2}{2} = \omega(n)$$
 und  $\frac{n^2}{2} \neq \omega(n^2)$ 

$$\omega(g) = \{ f : \forall c \in \mathbb{R}_{>0}, \exists n_0 \in \mathbb{N} \forall n \ge n_0, 0 \le cg(n) < f(n) \}$$

## **1.8 Insertion Sort** (Sortieren durch Einfügen)

#### Idee

- Halte die linke Teilfolge sortiert
- Füge nächsten Schlüsselwert hinzu, indem es an die korrekte Position eingefügt wird
- Wiederhole den Vorgang bis Teilfolge aus der gesamten Liste besteht

#### Code

```
Insertion-Sort(A)

1  FOR j = 1 TO A.length - 1
2  key = A[j]
3  // Füge A[j] in die sortierte Sequenz A[0...j-1] ein
4  i = j - 1
5  WHILE i >= 0 and A[i] > key
6   A[i + 1] = A[i]
7  i = i - 1
8  A[i + 1] = key
```

#### Schleifeninvariante von Insertion Sort

- Zu Beginn jeder Iteration der for-Schleife besteht die Teilfolge A[0...j-1] aus den Elementen der ursprünglichen Teilfolge A[0...j-1] enthaltenen Elementen, allerdings in sortierter Reihenfolge.

#### Korrektheit von Insertion Sort

- Initialisierung:
  - \* Beginn mit j=1, also Teilfeld A[0...j-1] besteht nur aus einem Element A[0]. Dies ist auch das ursprüngliche Element und Teilfeld ist sortiert.
- Fortsetzung:
  - \* Zu zeigen ist, dass die Invariante bei jeder Iteration erhalten bleibt. Ausführungsblock der for-Schleife sorgt dafür, dass A[j-1], A[j-2],... je um Stelle nach rechts geschoben werden bis A[j] korrekt eingefügt wurde. Teilfeld A[0...j] besteht aus ursprünglichen Elementen und ist sortiert. Inkrementieren von j erhält die Invariante.
- Terminierung:
  - \* Abbruchbedingung der for-Schleife, wenn j > A.length 1. Jede Iteration erhöht j. Dann bei Abbruch ist j = n und einsetzen in Invariante liefert das Teilfeld A[0...n-1] welches aus den ursprünglichen Elementen besteht und sortiert ist. Teilfeld ist gesamtes Feld.
- Algorithmus Insertion Sort arbeitet damit korrekt.

## • Laufzeitanalyse von Insertion Sort

| Zeile       | Kosten         | Anzahl                       |
|-------------|----------------|------------------------------|
| 1           | $c_1$          | n                            |
| 2<br>3<br>4 | $_{0}^{c_{2}}$ | n-1                          |
| 3           |                | n-1                          |
| 4           | $c_4$          | n-1                          |
| 5           | $c_5$          | $\sum_{j=1}^{n-1} t_j$       |
| 6           | $c_6$          | $\sum_{j=1}^{n-1} (t_j - 1)$ |
| 7           | $c_7$          | $\sum_{j=1}^{n-1} (t_j - 1)$ |
| 8           | $c_8$          | n-1                          |
| •           | ( )            | . /                          |

- \* Festlegung der Laufzeit für jede Zeile
- \* Jede Zeile besitzt gewissen Kosten  $c_i$
- \* Jede Zeile wird x mal durchgeführt
- \* Laufzeit = Anzahl \* Kosten jeder Zeile
- \* Schleifen: Abbruchüberprüfung zählt auch
- \*  $t_i$ : Anzahl der Abfragen der While-Schleife

Laufzeit: 
$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=1}^{n-1} t_j + c_6 \sum_{j=1}^{n-1} (t_j - 1) + c_7 \sum_{j=1}^{n-1} (t_j - 1) + c_8 (n-1)$$

- Warum n in Zeile 1?
  - \* Die Überprüfung der Fortführungsbedingung beinhaltet auch die letze Überprüfung
  - \* Quasi die Überprüfung, durch die die Schleife abbricht
- Warum  $\sum_{i=1}^{n-1}$  in Zeile 5?
  - \* Aufsummierung aller einzelnen  $t_i$  über die Anzahl der Schleifendurchläufe
  - \* Diese ist allerdings n-1 und nicht n, da die Abbruchüberprüfung dort auch enthalten ist
- Warum  $t_j 1$  in Zeile 6?
  - \* Selbes Argument wie oben, bei  $t_i$  ist die Abbruchüberprüfung enthalten
  - \* Deswegen wird die while-Schleife nur  $t_i 1$ -mal ausgeführt
- Best Case
  - \* zu sortierendes Feld ist bereits sortiert
  - \*  $t_i$  wird dadurch zu 1, da die While-Schleife immer nur einmal prüft (Abbruch)
  - \* Die zwei Zeilen innerhalb der While-Schleife werden nie ausgeführt
  - \* Durch Umformen ergibt sich, dass die Laufzeit eine lineare Funktion in n ist
- Worst Case
  - \* zu sortierendes Feld ist umgekehrt sortiert
  - \*  $t_j$  wird dadurch zu j+1, da die While-Schleife immer die gesamte Länge prüft
  - \* Durch Umformen ergibt sich, dass die Laufzeit eine quadratische Funktion in n ist  $(n^2)$
- Average Case
  - \* im Mittel gut gemischt
  - \*  $t_i$  wird dadurch zu j/2
  - \* Die Laufzeit bleibt aber eine quadratische Funktion in n ( $n^2$ )
- Asymptotische Laufzeitbetrachtung  $\Theta$ 
  - T(n) lässt sich als quadratische Funktion  $an^2 + bn + c$  betrachten
  - Terme niedriger Ordnung sind für große n irrelevant
  - Deswegen Vereinfachung zu  $n^2$  und damit  $\Theta(n^2)$

## 1.9 Bubble Sort

#### Idee

- Vergleiche Paare von benachbarten Schlüsselwerten
- Tausche das Paar, falls rechter Schlüsselwert kleiner als linker

#### Code

## • Analyse von Bubble Sort

- Anzahl der Vergleiche:
  - \* Es werden stets alle Elemente der Teilfolge miteinander verglichen
  - \* Unabhängig von der Vorsortierung sind Worst und Best Case identisch
- Anzahl der Vertauschungen:
  - \* Best Case: 0 Vertauschungen
  - \* Worst Case:  $\frac{n^2-n}{2}$  Vertauschungen
- Komplexität:
  - \* Best Case:  $\Theta(n)$
  - \* Average Case:  $\Theta(n^2)$
  - \* Worst Case:  $\Theta(n^2)$

## 1.10 Selection Sort

- Idee
  - Sortieren durch direktes Auswählen
  - MinSort: "wähle kleines Element in Array und tausche es nach vorne"
  - MaxSort: "wähle größtes Element in Array und tausche es nach vorne"
- · Code MinSort

## 1.11 Divide-And-Conquer Prinzip

- Anderer Ansatz im Gegensatz zu z.B. InsertionSort (inkrementelle Herangehensweise)
- Laufzeit ist im schlechtesten Fall immer noch besser als InsertionSort
- Prinzip: Zerlege das Problem und löse es direkt oder zerlege es weiter
- Divide:
  - Teile das Problem in mehrere Teilprobleme auf
  - Teilprobleme sind Instanzen des gleichen Problems
- Conquer:
  - Beherrsche die Teilprobleme rekursiv
  - Falls Teilprobleme klein genug, löse sie auf direktem Weg
- Combine:
  - Vereine die Lösungen der Teilprobleme zu Lösung des ursprünglichen Problems

## 1.12 Merge Sort

#### • Idee

- Divide: Teile die Folge aus n Elementen in zwei Teilfolgen von je  $\frac{n}{2}$  Elemente auf
- Conquer: Sortiere die zwei Teilfolgen rekursiv mithilfe von MergeSort
- Combine: Vereinige die zwei sortierten Teilfolgen, um die sortierte Lösung zu erzeugen

#### Code

```
MERGE-SORT(A,p,r)

1  IF p < r
2    q = [(p+r)/2] // Teilen in 2 Teilfolgen
3    MERGE-SORT(A,p,q) // Sortieren der beiden Teilfolgen
4    MERGE-SORT(A,q+1,r)
5    MERGE(A,p,q,r) // Vereinigung der beiden sortierten Teilfolgen</pre>
```

```
MERGE(A,p,q,r)
  n_1 = q - p + 1
  Let L[\emptyset \dots n_1] and R[\emptyset \dots n_2] be new arrays
  FOR i = 0 TO n_1 - 1 // Auffüllen der neu erstellten Arrays
    L[i] = A[p + i]
  FOR j = 0 TO n_2 - 1
     R[j] = A[q + j + 1]
  \mathsf{L}[n_1] = \infty // Einfügen des Sentinel-Wertes
  R[n_2] = \infty
  i = 0
10
  j = 0
11
  FOR k = p TO r // Eintragweiser Vergleich der Elemente
     IF L[i] \leq R[j]
         A[k] = L[i] // Sortiertes Zurückschreiben in Original-Array
14
         i = i + 1
15
     ELSE
16
         A[k] = R[j]
17
          j = j + 1
```

### · Korrektheit von MergeSort

#### - Schleifeninvariante

Zu Beginn jeder Iteration der for-Schleife (Letztes for in Methode MERGE) enthält das Teilfeld A[p...k-1] die k-p kleinsten Elemente aus L[0... $n_1$ ] und R[0... $n_2$ ] in sortierter Reihenfolge. Weiter sind L[i] und R[i] die kleinsten Elemente ihrer Arrays, die noch nicht zurück kopiert wurden.

#### - Initialisierung

Vor der ersten Iteration gilt k=p. Daher ist A[p...k-1] leer und enthält 0 kleinste Elemente von L und R. Wegen i=j=0 sind L[i] und R[i] die kleinsten Elemente ihrer Arrays, die noch nicht zurück kopiert wurden.

#### - Fortsetzung

Müssen zeigen, dass Schleifeninvariante erhalten bleibt. Dafür nehmen wir an, dass  $L[i] \leq R[j]$ . Dann ist L[i] kleinstes Element, welches noch nicht zurück kopiert wurde. Da Array A[p...k-1] die k-p kleinsten Elemente enthält, wird der Array A[p...k] die k-p+1 kleinsten Elemente enthalten, nachdem der Wert nach der Durchführung von A[k]=L[i] kopiert wurde. Die Erhöhung der Variablen k und i stellt die Schleifeninvariante für die nächste Iteration wieder her. Wenn L[i]>R[j] dann analoges Argument in der ELSE-Anweisung.

#### - Terminierung

Beim Abbruch gilt k=r+1. Durch die Schleifeninvariante enthält A[p...r] die kleinste Elemente von  $L[0...n_1]$  und  $R[0...n_2]$  in sortierter Reihenfolge. Alle Elemente außer der Sentinels wurden komplett zurück kopiert. MergeSort ist außerdem ein stabiler Algorithmus.

#### · Analyse von MergeSort

- Ziel: Bestimme Rekursionsgleichung für Laufzeit T(n) von n Zahlen im schlechtesten Fall
- Divide: Berechnung der Mitte des Feldes: Konstante Zeit  $\Theta(1)$
- Conquer: Rekursives Lösen von zwei Teilproblemen der Größe  $\frac{n}{2}$ : Laufzeit von 2  $T(\frac{n}{2})$
- Combine: MERGE auf einem Teilfeld der Länge n: Lineare Zeit  $\Theta(n)$

$$T(n) = \begin{cases} \Theta(1) & \text{falls } n = 1 \\ 2 \ T(\frac{n}{2}) + \Theta(n) & \text{falls } n > 1 \end{cases}$$

- Lösen der Rekursionsgleichung mithilfe eines Rekursionsbaums

$$T(n) = \begin{cases} c & \text{falls } n = 1, \\ 2T(\frac{n}{2}) + cn & \text{falls } n > 1 \end{cases}$$



- \* Verwenden der Konstante c statt  $\Theta(1)$
- st cn stellt den Aufwand an der ersten Ebene dar
- \* Der addierte Aufwand jeder Stufe (aller Knoten) ist auch cn
- \* Die Azahl der Ebenen lässt sich mithilfe von lg(n) + 1 bestimmen (2-er Logarithmus)
- \* Damit ergibt sich für die Laufzeit:  $cn \cdot lg(n) + cn$
- \* Für  $\lim_{n\to\infty}$  wird diese zu  $n \cdot lg(n)$
- \* Laufzeit beträgt damit  $\Theta(n \cdot lg(n))$
- \* Laufzeit von MergeSort ist in jedem Fall gleich

## 1.13 Quicksort

#### • Idee

- Pivotelement:

Wahl eines Pivotelement x aus dem Array

- Divide:

Zerlege den Array A[p...r] in zwei Teilarrays A[p...q-1] und A[q+1...r], sodass jedes Element von A[p...q-1] kleiner oder gleich A[q] ist, welches wiederum kleiner oder gleich jedem Element von A[q+1...r] ist. Berechnen Sie den Index q als Teil vom Partition Algorithmus.

- Conquer:

Sortieren beider Teilarrays A[p...q-1] und A[q+1...r] durch rekursiven Aufruf von Quicksort.

Combine.

Da die Teilarrays bereits sortiert sind, ist keine weitere Arbeit nötig um diese zu vereinigen. A[p...r] ist nun sortiert.

#### Code

```
QUICKSORT(A,p,r)

IF p < r // Überprüfung, ob Teilarray leer ist

q = PARTITION(A,p,r)

QUICKSORT(A,p,q-1)

QUICKSORT(A,q+1,r)
```

#### · Korrektheit von Quicksort

- Schleifeninvariante:

Zu Beginn jeder Iteration der for-Schleife gilt für den Arrayindex k folgendes:

- (a) Ist  $p \le k \le i$ , so gilt A[k]  $\le x$
- (b) Ist  $i + 1 \le k \le j 1$ , so gilt A[k] > x
- (c) Ist k = r, so gilt A[k] = x
- Initialisierung:

Vor der ersten Iteration gilt i=p-1 und j=p. Da es keine Werte zwischen p und j gibt und es auch keine Werte zwischen i+1 und j-1 gibt, sind die ersten beiden Eigenschaften trivial erfüllt. Die Zuweisung in x=A[r] sorgt für die Erfüllung der dritten Eigenschaft.

- Fortsetzung:

Zwei mögliche Fälle durch IF A[j]  $\leq x$ . Wenn A[j] > x, dann inkrementiert die Schleife nur den Index j. Dann gilt Bedingung 2 für A[j-1] und alle anderen Einträge bleiben unverändert. Wenn A[j]  $\leq x$ , dann wird Index i inkrementiert und die Einträge A[i] und A[j] getauscht und schließlich der Index j erhöht. Wegen des Vertauschens gilt A[i]  $\leq x$  und Bedingung 1 ist erfüllt. Analog gilt A[j-1] > x, da das Element welches mit A[j-1] vertauscht wurde wegen der Invariante gerade größer als x ist.

- Terminierung:

Bei der Terminierung gilt, dass j=r. Daher gilt, dass jeder Eintrag des Arrays zu einer der drei durch die Invariante beschriebenen Mengen gehört.

#### · Performanz von Quicksort

- Abhängig von der **Balanciertheit** der Teilarrays
  - \* Definition Balanciert: ungefähr gleiche Anzahl an Elementen
  - \* Teilarrays balanciert: Laufzeit asymptotisch so schnell wie MergeSort
  - \* Teilarrays unbalanciert: Laufzeit kann so langsam wie InsertionSort laufen
- Zerlegung im schlechtesten Fall
  - \* Partition zerlegt Problem in ein Teilproblem mit n-1 Elementen und eins mit 0 Elementen
  - \* Unbalancierte Zerlegung mit Kosten  $\Theta(n)$  zieht sich durch gesamte Rekursion
  - \* Aufruf auf Feld der Größe 0:  $T() = \Theta(1)$
  - \* Laufzeit (rekursiv):
    - $T(n) = T(n-1) + T(0) + \Theta(n) = T(n-1) + \Theta(n)$
    - · Insgesamt folgt:  $T(n) = \Theta(n^2)$
- Zerlegung im besten Fall
  - \* Problem wird so balanciert wie möglich zerlegt
  - \* Zwei Teilprobleme mit maximaler Größe von  $\frac{n}{2}$
  - \* Zerlegung kostet  $\Theta(n)$
  - \* Laufzeit (rekursiv):
    - $T(n) \le 2T(\frac{n}{2}) + \Theta(n)$
    - · Laufzeit beträgt: O(n lg(n))
  - \* Solange die Aufteilung konstant bleibt, bleibt die Laufzeit  $O(n \lg(n))$

## 1.14 Laufzeitanalyse von rekursiven Algorithmen

## • Analyse von Divide-And-Conquer Algorithmen

- -T(n) ist Laufzeit eines Problems der Größe n
- Für kleines Problem benötigt die direkte Lösung eine konstante Zeit  $\Theta(1)$
- Für sonstige n gilt:
  - $\ast\,$  Aufteilen eines Problems führt zu a Teilproblemen
  - \* Jedes dieser Teilprobleme hat die Größe  $\frac{1}{h}$  der Größe des ursprünglichen Problems
  - \* Lösen eines Teilproblems der Größe  $\frac{n}{b}$ :  $T(\frac{n}{b})$
  - \* Lösen a solcher Probleme:  $a T(\frac{n}{h})$
  - \* D(n): Zeit um das Problem aufzuteilen (Divide)
  - \* C(n): Zeit um Teillösungen zur Gesamtlösung zusammenzufügen (Combine)

$$T(n) = \begin{cases} \Theta(1) & \text{falls } n \le c \\ a \ T(\frac{n}{b}) + D(n) + C(n) & \text{sonst} \end{cases}$$

#### · Subsitutionsmethode

- Idee: Erraten einer Schranke und Nutzen von Induktion zum Beweis der Korrektheit
- Ablauf:
  - (a) Rate die Form der Lösung (Scharfes Hinsehen oder kurze Eingaben ausprobieren/einsetzen)
  - (b) Anwendung von vollständiger Induktion zum Finden der Konstanten und Beweis der Lösung

#### - Beispiel

- \* Betrachten von MergeSort:
  - $T(1) \leq c$

$$T(n) \leq T(\left|\frac{n}{2}\right|) + T(\left[\frac{n}{2}\right]) + cn$$

\* Ziel:

Obere Abschätzung  $T(n) \leq g(n)$  mit g(n) ist eine Funktion, die durch eine geschlossene Formel dargestellt werden kann.

Wir "raten":  $T(n) \le 4cn \ lg(n)$  und nehmen dies für alle n' < n an und zeigen es für n.

- \* Induktion:
  - · lg steht hier für  $log_2$
  - · n = 1:  $T(1) \le c$

$$n = 2$$
:  $T(2) \le T(1) + T(1) + 2c$   
 $\le 4c \le 8c$   
 $T(2) = 4c * 2 lg(2) = 8c$ 

- \* Hilfsbehauptungen:
  - $\cdot (1): \left| \frac{n}{2} \right| + \left[ \frac{n}{2} \right] = n$
  - (2):  $\left| \frac{n}{2} \right| \le \frac{n}{2} \le \frac{2}{3}n$
  - (3):  $log_c(\frac{a}{b}) = log_c(a) log_c(b)$
  - (4):  $log_c(a * b) = log_c(a) + log_c(b)$
- \* Induktionsschritt:
  - · Annahme: n > 2 und sei Behauptung wahr für alle n' < n.

$$\begin{split} \mathsf{T}(\mathsf{n}) & \leq T(\left\lfloor \frac{n}{2} \right\rfloor) + T(\left\lceil \frac{n}{2} \right\rceil) + cn \\ & \leq 4c \left\lfloor \frac{n}{2} \right\rfloor \ lg(\left\lfloor \frac{n}{2} \right\rfloor) + 4c \left\lceil \frac{n}{2} \right\rceil \ lg(\left\lceil \frac{n}{2} \right\rceil) + cn \\ (\mathsf{HB}) & \leq 4c \cdot lg(\frac{2}{3}n) \cdot \left(\left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{2} \right\rceil + cn \\ & \leq 4c \cdot lg(\frac{2}{3}n) \cdot n + cn \\ (\mathsf{HB}) & \leq 4cn \cdot \left(lg(\frac{2}{3}) + lg(n)\right) + cn \\ & = 4cn \cdot lg(n) + 4cn \cdot lg(\frac{2}{3}) \\ & = 4cn \cdot lg(n) + cn(1 + 4 \cdot (lg(2) - lg(3))) \\ & \leq 4cn \cdot lg(n) \\ & \Rightarrow \Theta(n \ lg(n)) \end{split}$$

#### Rekursionsbaum

- Idee: Stellen das Ineinander-Einsetzen als Baum dar und Analyse der Kosten
- Ablauf:
  - (a) Jeder Knoten stellt die Kosten eines Teilproblems dar
    - \* Die Wurzel stellt die zu analysierenden Kosten T(n) dar
    - \* Die Blätter stellen die Kosten der Basisfälle dar (z.B. T(0))
  - (b) Berechnen der Kosten innerhalb jeder Ebene des Baums
  - (c) Die Gesamtkosten sind die Summe über die Kosten aller Ebenen
- Rekursionsbaum ist nützlich um Lösung für Subsitutionsmethode zu erraten

- Beispiel:  $T(n) = 3T(\lfloor \frac{n}{4} \rfloor) + \Theta(n^2)$ 
  - \* Vorüberlegungen:

$$\Rightarrow T(n) = 3T(\frac{n}{4}) + cn^2 \ (c > 0)$$

- · Je Abstieg verringert sich die Größe des Problems um den Faktor 4.
- · Erreichen der Randbedingung ist vonnöten, die Frage ist wann dies geschieht.
- · Größe Teilproblem bei Level i:  $\frac{n}{4^i}$
- · Erreichen Teilproblem der Größe 1, wenn  $\frac{n}{4^i}=1$ , d.h. wenn  $i=log_4(n)$   $\Rightarrow$  Baum hat also  $log_4n+1$  Ebenen
- \* Kosten pro Ebene:
  - · Jede Ebene hat 3-mal soviele Knoten wie darüber liegende
  - · Anzahl der Knoten in Tiefe i ist  $3^i$
  - · Kosten  $c(\frac{n}{4^i})^2$  ,  $i=0...log_4n-1$
  - · Anzahl · Kosten =  $3^i \cdot c(\frac{n}{4^i})^2 = (\frac{3}{16})^i \cdot cn^2$
- \* Unterste Ebene:
  - $\cdot \ 3^{log_4(n)} = nlog_4(3)$  Knoten
  - · Jeder Knoten trägt T(1) Kosten bei
  - · Kosten unten:  $n^{log_4(3)} \cdot T(1) = \Theta(n^{log_4(3)})$
- \* Addiere alle Kosten aller Ebenen:

$$\begin{split} \cdot \ T(n) &= cn^2 + \tfrac{3}{16}cn^2 + (\tfrac{3}{16})^2cn^2 + ... + (\tfrac{3}{16})^{log_4n-1}cn^2 + \Theta(n^{log_4(3)}) \\ &= \sum_{i=0}^{log_4n-1} (\tfrac{3}{16})^icn^2 + \Theta(n^{log_4^3}) \\ &= \tfrac{(\tfrac{3}{16}^{log_4n})-1}{\tfrac{3}{20}-1} \cdot cn^2 + \Theta(n^{log_43}) \text{ (Verwendung der geometrischen Reihe)} \end{split}$$

· Verwendung einer unendlichen fallenden geometrischen Reihe als obere Schranke:

$$\begin{split} T(n) &= \sum_{i=0}^{log_4n-1} (\frac{3}{16})^i \cdot cn^2 + \Theta(n^{log_43}) \\ &< \sum_{i=0}^{\infty} (\frac{3}{16})^i \cdot cn^2 + \Theta(n^{log_43}) \\ &= \frac{1}{1-\frac{3}{16}} \cdot cn^2 + \Theta(n^{log_43}) \\ &= \frac{16}{13} \cdot cn^2 + Theta(n^{log_43}) = O(n^2) \end{split}$$

- \* Jetzt Subsitutionsmethode:
  - · Zu zeigen:  $\exists d > 0 : T(n) < dn^2$
  - · Induktionsanfang:

$$T(n) = 3 \cdot T(\lfloor \frac{1}{4} \rfloor) + c \cdot 1^{2}$$
$$= 3 \cdot T(0) + c = c$$

· Induktionsschritt:

$$\begin{split} T(n) &\leq 3 \cdot T(\left\lfloor \frac{n}{4} \right\rfloor) + cn^2 \\ &\leq 3 \cdot d(\left\lfloor \frac{n}{4} \right\rfloor)^2 + cn^2 \\ &\leq 3d(\frac{n}{4})^2 + cn^2 \\ &= \frac{3}{16}dn^2 + cn^2 \\ &\leq dn^2 \text{, falls } d \geq \frac{16}{13}c \end{split}$$

#### Mastertheorem

#### - Idee:

Seien  $a \geq 1$  und b > 1 Konstanten. Sei f(n) eine positive Funktion und T(n) über den nichtnegativen ganzen Zahlen über die Rekursionsgleichung  $T(n) = a \ T(\frac{n}{b}) + f(n)$  defininiert, wobei wir  $\frac{n}{b}$  so interpretieren, dass damit entweder  $\left\lfloor \frac{n}{b} \right\rfloor$  oder  $\left\lceil \frac{n}{b} \right\rceil$  gemeint ist. Dann besitzt T(n) die folgenden asymptotischen Schranken (a und b werden aus f(n) gelesen):

- (a) Gilt  $f(n) = O(n^{\log_b(a-\epsilon)})$  für eine Konstante  $\epsilon > 0$ , dann  $T(n) = \Theta(n^{\log_b(a)})$
- (b) Gilt  $f(n) = \Theta(n^{log_b(a)})$ , dann gilt  $T(n) = \Theta(n^{log_b(a)}lg(n))$
- (c) Gilt  $f(n) = \Omega(n^{\log_b(a+\epsilon)})$  für eine Konstante  $\epsilon > 0$  und a  $f(\frac{n}{b}) \le c$  f(n) für eine Konstante c < 1 und hinreichend großen n, dann ist  $T(n) = \Theta(f(n))$

### - Erklärung:

- \* In jedem der 3 Fälle wird die Funktion f(n) mit  $n^{log_b(a)}$  verglichen
  - (a) Wenn f(n) polynomial kleiner ist als  $n^{log_b(a)}$ , dann  $T(n) = \Theta(n^{log_b(a)})$
  - (b) Wenn f(n) und  $n^{log_b(a)}$  die gleiche Größe haben, gilt  $T(n) = \Theta(n^{log_b(a)}lg(n))$
  - (c) Wenn f(n) polynomial größer als  $n^{\log_b(a)}$  und a  $f(\frac{n}{b}) \leq c$  f(n) erfüllt, dann  $T(n) = \Theta(f(n))$
- \* (polynomial größer/kleiner: um Faktor  $n^{\epsilon}$  asymptotisch größer/kleiner)

## - Nicht abgedeckte Fälle:

- \* Wenn einer dieser Fälle eintritt, kann das Mastertheorem nicht angewendet werden
  - (a) Wenn f(n) kleiner ist als  $n^{\log_b(a)}$ , aber nicht polynomial kleiner
  - (b) Wenn f(n) größer ist als  $n^{log_b(a)}$ , aber nicht polynomial größer
  - (c) Regularitätsbedingung  $a f(\frac{n}{h}) \le c f(n)$  wird nicht erfüllt
  - (d) a oder b sind nicht konstant (z.B.  $a = 2^n$ )

- Beispiel:

\* 
$$T(n) = 9T(\frac{n}{3}) + n$$
  
•  $a = 9, b = 3, f(n) = n$   
•  $log_b(a) = log_3(9) = 2$   
•  $f(n) = n = O(n^{log_b(a-\epsilon)})$   
=  $O(n^{2-\epsilon})$ 

· Ist diese Gleichung für ein  $\epsilon>0$  erfüllt?  $\Rightarrow \epsilon=1$ 

• 1. Fall 
$$\Rightarrow T(n) = \Theta(n^2)$$

\* 
$$T(n) = T(\frac{2n}{3}) + 1$$

$$a = 1, b = \frac{3}{2}, f(n) = 1$$

$$\cdot \log_{\frac{3}{2}} 1 = 0$$

$$f(n) = 1 = O(n^{log_b(a)})$$
$$= O(n^0)$$
$$= O(1)$$

· 2.Fall 
$$\Rightarrow T(n) = \Theta(1 * lg(n)) = \Theta(lg(n))$$

\* 
$$T(n) = 3(T^{\frac{n}{4}}) + n lg(n)$$

· 
$$a = 3, b = 4, f(n) = n \lg(n)$$

$$n^{\log_b(a)} = n^{\log_4(3)} < n^{0.793}$$

·  $\epsilon = 0.1$  im Folgenden

$$f(n) = n \ lg(n) \ge n \ge n^{0.793 + 0.1} \ge n^{0.793}$$

· 3.Fall 
$$\Rightarrow f(n) = \Omega(n^{log_b(a+0.1)})$$

$$\cdot af(\frac{n}{b}) = 3f(\frac{n}{4}) = 3(\frac{n}{4}) lg(\frac{n}{4}) \le \frac{3}{4}n lg(n)$$

· Damit ist auch die Randbedingung erfüllt und  $T(n) = \Theta(n \ lg(n))$ 

-----

| Grundlegende Datenstrukturen | Fortgeschrittene Datenstrukturen | Randomisierte Datenstrukturen |
|------------------------------|----------------------------------|-------------------------------|
| Stacks                       | Rot-Schwarz-Bäume                | Skip Lists                    |
| Verkettete Listen            | AVL-Bäume                        | Hash Tables                   |
| Queues                       | Splay-Bäume                      | Bloom-Filter                  |
| Bäume                        | Heaps                            |                               |
| Binäre Suchbäume             | B-Bäume                          |                               |

Tabelle 1: Übersicht Datenstrukturen