TOSHIBA MOS MEMORY PRODUCTS

1 MEGA BIT (131,072 WORD×8 BIT) CMOS U.V. ERASABLE AND ELECTRICALLY PROGRAMMABLE READ ONLY MEMORY SILICON STACKED GATE MOS

TC571000D-17, -20, -200, -25 TC571001D-17, -20, -200, -25

DESCRIPTION

The TC571000D/TC571001D is a 131,072 word x 8 bit CMOS ultraviolet light erasable and electrically programmable read only memory.

The TC571000D is JEDEC standard pin configuration and the TC571001D is compatible with 28 pin 1M bit Mask ROM. Both products are packed in 32 pin standard cerdip package. TC571000D/TC571001D is fabricated with the CMOS technology. Advanced circuit techniques

provide both high speed and low power features with a maximum operating current of 30mA/5.9MHz and access time of 170ns/200ns/250ns.

The programming times of the TC571000D/TC571001 D except overhead times of EPROM programmer is only 14 seconds by using the high speed programming algorithm.

FEATURES

 Peripheral circuit: CMOS Memory cell : N-MOS

Access Time

	-17	-20	-25	200
Vcc		5V ± 5%		5∨ ± 10%
Temp	-40 ~ 85°C			0 ~ 70°C
t ACC	170ns	200ns	250ns	200ns

Low power dissipation

Active : 30mA/5.9MHzStandby: $100\mu\text{A}$ (Ta = 85° C) Single 5V power supply

Wide operating temperature range: −40 ~ 85°C

Full static operation

• High speed programming operation: tpw 0.1ms

Input and output TTL compatible
JEDEC standard 32 pin: TC571000D
1M MROM compatible: TC571001D

Standard 32 pin DIP cerdip package

PIN CONNECTION (TOP VIEW)

			r	/ 7	
VPP [32 II VCC	VPP 🗓 1	32 D VCC	
A16 [2	31 P P P M	ᅙᇎ 디 2	37 1 LGM	
A15 [3	30 D NC	A15 [3	30 ⊅ NC	A.
A12 [4	29 A14	A12 04	29 A 14	A.
A7 (5	28 1 A13	A7 🕻 5	29 A 13	1
A6	6	27 A8	A6 [6	27 D A8	
A5 1	7	26 A9	A5 🛘 7	26 J A9	
	da 🖠	25 All	A4 I 8	25) All	
A3	d 9	24] OE	A3 🕻 9	24. DA16	
A2	10	23 A10	A2 [10	23 J A10	
Al :	11	22 I CE	VI qI.	22 D CE	
AO:	12	21 D D7	AO 🗗 12	21 D7	
DO	13	20 J D6	DO 1 13	20 D D6	
Dl	d 14.	19 D D5	D1 0 14	19 D5	
D2	15	18 1 D4	D2 0 15	13 D4	
GND	16	17 1 D3	91 D G 16	17 D D3	G
	TC5710	000D	TC571	001D	

/			
(1)	lefere	nce	:)
A15 d	$\overline{}$		vcc
A12 C	2	27	A14
A7 [3	26	1 A13
A6 C	4	25	8A [
A5 [5	24	3 A 9
A4 0		23	1 All
A3 D		22	1 A 16
A2 C		21	D A 10
Al C		20	CE
AO I		19	דם ב
DO [11	18	li D6
D1 [12	17	D D5
D2 (13	16	D4
GND (14	15	D3
Ç	IM Mas	sk 1	ROM)

PIN NAMES

A0 ~ A16	Address Inputs
D0 ~ D7	Output (Inputs)
CE	Chip Enable Input
ŌĒ	Output Enable Input
FGM	Program Control Input
Vcc	Power Supply Voltage
V _{PP}	Program Supply Voltage
GND	Ground
NC	No Connection

BLOCK DIAGRAM

MODE SELECTION

PIN	PGM	CE	ŌE	V _{PP}	Vcc	00 ~ 07	POWER	
Read	H	L	L			Data Out		
Output Deselect	*	*	Н	5V	5V	High Impedance	- Active	
Standby	y * H *		High Impedance	Standby				
Program	L	L	Н			Data In		
December Inhibit	*	Н	*	12.75V	6.25V	High Impedance		
Program Inhibit	Н	L	Н	12.750	6.25V	High Impedance	- Active	
Program Verify	Н	L	L	1		Data Out		
	* : H or !	-	1		1			

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
Vcc	Power Supply Voltage	−0.6 ~ 7.0	V
V _{PP}	Program Supply Voltage	0.6 ∼ 14.0	V
VIN	Input Voltage	-0.6 ~ 7.0	V
V _{I/O}	Input/Output Voltage	$-0.6 \sim V_{CC} + 0.5$	V
P _D	Power Dissipation	1.5	W
TSOLDER	Soldering Temperature • Time	260•10	°C•sec
T_{STG}	Storage Temperature	− 65 ~ 125	°C
T _{OPR}	Operating Temperature	−40 ~ 85	°C

READ OPERATION

D.C. RECOMMENDED OPERATING CONDITIONS

CVMDOL	DADAMETER	TC571000	TC571000D/1001D-17, -20, -25			TC571000D/1001D-200			
SYMBOL	PARAMETER	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNIT	
V _{IH}	Input High Voltage	2.2	_	V _{CC} + 0.3	2.2		V _{CC} + 0.3		
VIL	Input Low Voltage	0.3		0.8	0.3		0.8	\ \/	
Vcc	V _{CC} Power Supply Voltage	4.75	5.00	5.25	4.50	5.00	5.50	ľ	
V _{PP}	V _{PP} Power Supply Voltage	V _{CC} - 0.6	Vcc	$V_{CC} + 0.6$	$V_{CC} - 0.6$	Vcc	V _{CC} + 0.6		

D.C. AND OPERATING CHARACTERISTICS (Ta = -40 ~ 85°C)

SYMBOL	PARAMETER	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
ILI	Input Current	$V_{IN} = 0 \sim V_{CC}$			±10	μΑ
Icco1	0	CE = 0V f = 5.9 MHz			30	mA
Icco2	Operating Current	$I_{OUT} = 0 \text{ mA}$ $f = 1 \text{ MHz}$		T -	10	mA
CCS1	- Standby Current	CE = V _{IH}		_	1	mA
1 _{CCS2}	- Standby Current	$\overline{CE} = V_{CC} - 0.2V$		-	100	μA
V _{OH}	Output High Voltage	$I_{OH} = -400 \mu\text{A}$	2.4		_	V
VoL	Output Low Voltage	I _{OL} = 2.1 mA		_	0.4	V
l PP1	V _{PP} Current	$V_{PP} = V_{CC} \pm 0.6V$			±10	μΑ
1 LO	Output Leakage Current	V _{OUT} = 0.4V ~ ∨		_	10	μΑ

 $Ta = 0 \sim 70^{\circ} C$ for TC571000D/1001D-200

A.C. CHARACTERISTICS (Ta = $-40 \sim 85^{\circ}$ C, $V_{PP} = V_{CC} \pm 0.6V$)

SYMBOL	PARAMETER		TC571000D/ 1001D-17		TC571000D/ 1001D-20, -200		TC571000D/ 1001D-25	
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1
t _{ACC}	Address Access Time	_	170		200		250	
t _{CE}	CE to Output Valid	_	170		200		250	1
t _{OE}	OE to Output Valid		70	-	70		100	
[†] PGM	PGM to Output Valid		70	_	70		100	ns
t _{DF1}	CE to Output in High-Z	0	60	0	60	0	90	7 115
t _{DF2}	OE to Output in High-Z	0	60	0	60	0	90	
t _{DF3}	PGM to Output in High-Z	0	60	0	60	0	90	
ton	Output Data Hold Time	0	-	0		0		7

 $Ta = 0 \sim 70^{\circ} C \text{ for TC571000D/1001D-200}$

A.C. TEST CONDITIONS

Output Load : 1 TTL Gate and $C_L = 100pF$

Input Pulse Rise and Fall Times : 10ns Max.
Input Pulse Levels : 0.45V to 2.4V

Timing Measurement Reference Level: Inputs 0.8V and 2.2V Outputs 0.8V and 2.0V

CAPACITANCE * (Ta = 25°C, f = 1MHz)

SYMBOL	PARAMETER	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
CIN	Input Capacitance	V _{IN} = 0V	_	4	8	_
C _{OUT}	Output Capacitance	V _{OUT} = 0V		10	12	p⊦

^{*} This parameter is periodically sampled and is not 100% tested.

TIMING WAVEFORMS (READ)

HIGH SPEED PROGRAM OPERATION

D.C. RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
VIH	Input High Voltage	2.2	-	V _{CC} + 1.0	
VIL	Input Low Voltage	-0.3	_	0.8	\/
V _{CC}	V _{CC} Power Supply Voltage	6.00	6.25	6.50	ľ
V _{PP}	V _{PP} Power Supply Voltage	12.50	12.75	13.00	

D.C. AND OPERATING CHARACTERISTICS (Ta = $25 \pm 5^{\circ}$ C, V_{CC} = 6.25 ± 0.25 V, V_{PP} = 12.75 ± 0.25 V)

SYMBOL	PARAMETE:R	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Tra	Input Current	$V_{IN} = 0 \sim V_{CC}$			±10	μΑ
V _{OH}	Output High Voltage	$I_{OH} = -400 \mu A$	2.4	_		V
Vol	Output Low Voltage	I _{OL} = 2.1 mA			0.4	V
Icc	V _{CC} Supply Current	_			30	mA
I _{PP2}	V _{PP} Supply Current	V _{PP} = 13.0V	_	-	50	mA
V _{ID}	A9 Auto Select Voltage		11.5	12.0	12.5	V

A.C. PROGRAMMING CHARACTERISTICS (Ta = $25 \pm 5^{\circ}$ C, $V_{CC} = 6.25 \pm 0.25$ V, $V_{PP} = 12.75 \pm 0.25$ V)

SYMBOL	PARAMETER	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
t _{AS}	Address Setup Time	_	2			μs
[†] AH	Address Hold Time	_	2		***	μs
tces	CE Setup Time		2		_	μs
tCEH	CE Hold Time	_	2	_	-	μs
t _{DS}	Data Setup Time	_	2			μs
t _{DH}	Data Hold Time	_	2	_		μ s
tvs	V _{PP} Setup Time	_	2	-	-	μs
tpw	Program Pulse Width	-	0.095	0.1	0.105	ms
toE	OE to Output Valid	-	- 0.095 0.1 0.105 - - - 100		100	ns
t _{DF2}	OE to Output in High-Z	CE = VIL	-	_	90	ns

A.C. TEST CONDITIONS

Output Load : 1 TTL Gate and C_L (100pF)

Input Pulse Rise and Fall Time : 10ns Max.
Input Pulse Levels : 0.45V and 2.4V

Timing Measurement Reference Level: Input 0.8V and 2.2V, Output 0.8V and 2.0V

HIGH SPEED PROGRAM OPERATION

TIMING CHART

- NOTE: 1. V_{CC} must be applied simultaneously or before V_{PP} and cut off simultaneously or after V_{PP} .
 - 2. Removing the device from socket and setting the device in socket with $V_{PP} = 12.75V$ may cause permanent damage to the device.
 - 3. The V_{PP} supply voltage is permitted up to 14V for program operation, so the voltage over 14V should not be applied to the V_{PP} terminal. When the switching pulse voltage is applied to the V_{PP} terminal, the overshoot voltage of its pulse should not be exceeded 14V.

ERASURE CHARACTERISTICS

The TC571000D/571001D's erasure is achieved by applying shortwave ultraviolet light which has a wavelength of 2537Å (Angstroms) to the chip through the transparent window. Then integrated dose (Ultraviolet light intensity [W/cm²] x exposure time [sec.]) for erasure should be a minimum of 15 [W·sec/cm²]. sec/cm²].

When the Toshiba sterilizing lamp GL-15 is used and the device is exposed at a distance of 1cm from the lamp surface, the erasure will be achieved within 60 minutes. And using commercial lamps whose

OPERATION INFORMATION

The TC571000D/TC571001D's six operation modes are listed in the following table. Mode selec-

ultraviolet light intensity is a 12000 [μ W/cm²] will reduce the exposure time to about 20 minutes. (In this case, the integrated dose is 12000 [μ W/cm²] x (20 x 60) [sec] \cong 15 [W·sec/cm²].)

The TC571000D/TC571001D's erasure begins to occur when exposed to light with wavelength shorter than 4000Å. The sunlight and the flourescent lamps will include 3000 ~ 4000Å wavelength components. Therefore when used under such lighting for extended periods of time, the opeque seals — Toshiba EPROM Protect Seal AC901 — are available.

tion can be achieved by applying TTL level signal to all inputs.

		PGM	CE	ŌĒ	VPP	Vcc	$0_0 \sim 0_7$	POWER	
READ	Read	Н	L	L			Data Out	Active	
OPERATION	Output Deselect	*	*	Н	5V	5V	High Impedance	Active	
$(Ta = -40 \sim 85^{\circ}C)$	Standby	*	Н	*			High Impedance	Standby	
	Program	L	L	Н			Data In	Active	
PROGRAM	ON Program Inhibit	*	Н	*	10751	0.05)/	High Impedance		
OPERATION (Ta = 25 ± 5°C)		Н	L	Н	12.75V	6.25V	High Impedance		
(1a = 25 ± 5 C)	Program Verify	н	L	L	1		Data Out		

Note: H; VIH, L; VIL, *; VIH or VIL

READ MODE

The TC571000D/TC571001D has three control functions. The chip enable (\overline{CE}) controls the operation power and should be used for device selection. The output enable (\overline{OE}) and the program control (\overline{PGM}) control the output buffers, independent of device selection.

Assuming in that $\overline{CE} = \overline{OE} = V_{IL}$ and $\overline{PGM} = V_{IH}$, the output data is valid at the output after address access time from stabilizing of a laddresses.

The $\overline{\text{CE}}$ to output valid (t_{CE}) is equal to the address access time (t_{ACC}).

Assuming that $\overline{CE} = V_{1L}$, $\overline{PGM} = V_{1H}$ and all addresses are valid, the output data is valid at the outputs after t_{OE} from the falling edge of \overline{OE} .

And assuming that $\overline{CE} = \overline{OE} = V_{1L}$ and all addresses are valid, the output data is valid at the outputs after t_{PGM} from the rising edge of \overline{PGM} .

OUTPUT DESELECT MODE

Assuming that $\overline{CE} = V_{IH}$ or $\overline{CIE} = V_{IH}$, the outputs will be in a high impedance state. So two or more ROMs can be connected together on a common bus line.

When \overline{CE} is decoded for device selection, all deselected devices are in low power standby mode.

STANDBY MODE

The TC571000D/TC571001D has a low power standby mode controlled by the \overline{CE} signal. By applying a high level to the \overline{CE} input, the TC571000 D/TC571001D is placed in the standby mode which reduce the operating current to $100\,\mu\text{A}$ by applying MOS-high level (V_{CC}) and then the outputs are in a high impedance state, independent of the \overline{OE} inputs.

PROGRAM MODE

Initially, when received by customers, all bits of the TC571000D/TC571001D are in the "1" state which is erased state.

Therefore the program operation is to introduce

"0's" data into the desired bit locations by electrically programming.

The levels required for all inputs are TTL. The TC571000D/TC571001D can be programmed any location at anytime —— either individually, sequentially, or at random.

PROGRAM VERIFY MODE

The verify mode is to check that the desited data is correctly programmed on the programmed bits.

The verify is accomplished with \overline{OE} and \overline{CE} at V_{11} and \overline{PGM} at V_{1H} .

PROGRAM INHIBIT MODE

Under the condition that the program voltage (+12.75V) is applied to V_{PP} terminal, a high level \overline{CE} or \overline{PGM} input inhibits the TC571000D/TC571001D from being programmed. Programming of two or more EPROMS in parallel with different data is easily accomplished. That is, all inputs except for \overline{CE} or \overline{PGM} may be commonly connected, and a TTL low level program pulse is applied to the \overline{CE} and \overline{PGM} of the desired device only and TTL high level signal is applied to the other devices.

HIGH SPEED PROGRAM OPERATION

The device is set up in the high speed programming mode when the programming voltage (+12.75V) is applied to the V_{PF} terminal with V_{CC} = 6.25V and $\overline{PGM} = V_{IH}$.

The programming is achieved by applying a single TTL low level 0.1 ms pulse the PGM input after addresses and data are stable. Then the programmed data is verified by using Program Verify Mode.

If the programmed data is not correct, another program pulse of 0.1 ms is applied and then programmed data is verified. This should be repeated until the program operates correctly (max. 25 times).

When programming has been completed, the data in all addresses should be verified with $V_{CC} = V_{PP} = 5V$.

HIGH SPEED PROGRAM OPERATION

• FLOW CHART

ELECTRIC SIGNATURE MODE

Electric signature mode allows to read out a code from TC571000D/TC571001D which identifies it's manufacturer and device type.

The programming equipment may read out manufacturer code and device code from TC571000D/TC571001D by using this mode before program operation and automatically set program voltage $\{V_{PP}\}$ and algorithm.

Electric Signature mode is set up when 12V is applied to address line A9 and the rest of address lines is set to $V_{\rm IL}$ in read operation. Data output in this conditions is manufacturer code. Device code is identified when address A0 is set to $V_{\rm IH}$. These two codes possess an odd parity with the parity bit of MSB (07). The following table shows electric signature of TC571000D/TC571001D.

SIGNATURE	PINS	A ₀	0,	06	05	04	03	02	01	00	HEX. DATA
Manufacture Code		$V_{ L}$	1	0	0	1	1	0	0	0	98
Device Code	TC571000D	V _{IH}	1	0	0	0	0	1	1	0	86
Device code	TC571001D		0	0	0	0	0	1	1	1	07

Notes: $A9 = 12V \pm 0.5V$

A1 \sim A8, A10 \sim A16, \overline{CE} , \overline{OE} = V_{IL}

PGM = VIH

OUTLINE DRAWINGS

Unit in mm

- NOTE 1. Each lead pitch is 2.54mm. All leads are located within 0.25mm of their true longitudinal position with respect No. 1 and No. 32 leads.
 - 2. This value is measured at the end of leads.
 - 3. All dimensions are in millimeters.