Algebraic Geometry - Homework

Name: Hao Xiao

School: Soochow University

1. Homework #1

Homework 1.1. Let $U_1 = \{[z_0, z_1] \in \mathbb{P}^1 : z_1 \neq 0\}$ where \mathbb{P}^1 is the projective space of \mathbb{C}^2 and $[z_0, z_1]$ is the homogeneous coordinate. Prove that

$$\varphi_1: U_1 \to \mathbb{C},$$

$$[z_0, z_1] \mapsto w = z_0/z_1$$

is a homeomorphism.

Proof. Since for all $z_0, z_1, z'_0, z'_1 \in \mathbb{C}$ with $z_1, z'_1 \neq 0$, $[z_0, z_1] = [z'_0, z'_1] \Leftrightarrow [z_0/z_1, 1] = [z'_0/z'_1, 1] \Leftrightarrow z_0/z_1 = z'_0/z'_1$. For each open set $V \in \mathbb{C}$, $\varphi_1^{-1}(V)$ is the collection of equivalent classes of all elements in V. By the definition of quotient topology, $\varphi_1^{-1}(V)$ automatically is open. So φ_1 is well-defined, continuous, one-to-one, and onto. Note that φ_1^{-1} is given by $\varphi_1^{-1}(z) = \pi(z, 1)$ for each $z \in \mathbb{C}$ where π is the projection from \mathbb{C}^2 to \mathbb{P}^1 . So φ_1^{-1} is continuous. Hence, φ_1 is a homeomorphism.

Homework 1.2. Let f be a holomorphic function on \mathbb{C}^n and grad f has no zero on \mathbb{C}^n , that is, rank $(\partial f/\partial z_1, \dots, \partial f/\partial z_n) = 1$ on X. Prove that $X = \{(z_1, \dots, z_n) \in \mathbb{C}^n : f(z_1, \dots, z_n) = 0\}$ is a complex manifold.

Proof. Assume that $X \neq \emptyset$. For $\alpha = (\alpha_1, \cdots, \alpha_n) \in X$, assume that $f_{z_1}(\alpha) \neq 0$. Then by implicit function theorem, there exists an open set $U'_{\alpha} \subset \mathbb{C}^n$ containing α and an open set $W_{\alpha} \subset \mathbb{C}^{n-1}$ together with a holomorphic function $g_{\alpha}: W_{\alpha} \to \mathbb{C}$ such that $f(z_1, \cdots, z_n) = 0$ on $U'_{\alpha} \Leftrightarrow z_1 = g_{\alpha}(z_2, \cdots, z_n)$ on W_{α} . Let $U_{\alpha} = \{(z_1, \cdots, z_n) \in U'_{\alpha}: f(z_1, \cdots, z_n) = 0\}$ and $\varphi_{\alpha}: U_{\alpha} \to \varphi_{\alpha}(U_{\alpha}) \subset \mathbb{C}^{n-1}$ by $(z_1, z_2, \cdots, z_n) = (g_{\alpha}(z_2, \cdots, z_n), z_2, \cdots, z_n) \mapsto (z_2, \cdots, z_n)$. It's obvious that φ_{α} is a homeomorphism. Clearly, all U_{α} covers X.

For arbitrary $\alpha, \beta \in X$ with $U_{\alpha} \cap U_{\beta} \neq \emptyset$, assume $f_{z_1}(\alpha) \neq 0$ and $f_{z_i}(\beta) \neq 0$. If i = 1, then it's trivial that $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ is a biholomorphism. So we may assume that i = 2, then the homeomorphism $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ is given by

$$(z_2,\cdots,z_n)\mapsto(z_1,z_3,\cdots,z_n)=(g_\alpha(z_2,\cdots,z_n),z_3,\cdots,z_n).$$

So $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$ is holomorphic since g_{α} is holomorphic. Similarly, $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$ is holomorphic and then $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ is a biholomorphism.

Since $X \subset C^n$, so the subspace topology is obviously Hausdorff and second countable. Hence, X is a complex manifold.

Homework 1.3. Let Γ be a full rank lattice. Prove that \mathbb{C}^n/Γ is a complex manifold.

Proof. Suppose Γ is generated by linearly independent elements $\alpha_1, \dots, \alpha_{2n} \in \mathbb{C}^n$, then $\Gamma = \{k_1\alpha_1 + \dots + k_{2n}\alpha_{2n} : k_1, \dots, k_{2n} \in \mathbb{Z}\}.$

Let $m \in \{1, \dots, 2n\}$ and $I = \{i_k\}_{k=1}^{2n}$ be a rearrangement of $\{k\}_{k=1}^{2n}$. Let $U_I^m = \{[k_1\alpha_1 + \dots + k_{2n}\alpha_{2n}]: 0 < k_{i_1}, \dots, k_{i_m} < 1, 1/4 < k_{i_{m+1}}, \dots, k_{i_n} < 5/4\}$. Then the union of U_I^m for all m, I obviously covers \mathbb{C}^n/Γ . Let $\varphi_I^m : U_I^m \to \varphi(U_I^m) \subset \mathbb{C}^n$ be defined by

$$[k_1\alpha_1 + \dots + k_{2n}\alpha_{2n}] \mapsto k_1\alpha_1 + \dots + k_{2n}\alpha_{2n}.$$

Since α_i 's are linearly independent, it's clear that $\varphi_I^m(U_I^m)$ is an open subset of \mathbb{C}^n and φ_I^m is a homeomorphism.

For all m, m', I, I' with $U_I^m \cap U_{I'}^{m'} \neq \emptyset$, it's easy to see that

$$\varphi_{U_{I'}^{m'}} \circ \varphi_{U_{I'}^{m}}^{-1} : \varphi_{U_{I}^{m}}(U_{I}^{m} \cap U_{I'}^{m'}) \to \varphi_{U_{I'}^{m'}}(U_{I}^{m} \cap U_{I'}^{m'})$$

is an identity map and, also, $\varphi_{U_I^m}(U_I^m\cap U_{I'}^{m'})=\varphi_{U_{I'}^{m'}}(U_I^m\cap U_{I'}^{m'})$ by the construction of U_I^m and $U_{I'}^{m'}$. Hence, $\varphi_{U_{I'}^{m'}}\circ\varphi_{U_I^m}^{-1}$ is a biholomorphism.

Since the quotient topology on \mathbb{C}^n/Γ is inherited from \mathbb{C}^n under Γ , then \mathbb{C}^n/Γ is Hausdorff and second countable. Thus, \mathbb{C}^n/Γ is a complex manifold.

2. Homework #2

Homework 2.1. Prove that \mathbb{P}^n is compact.

Proof. Since S^{2n+1} is the unit sphere in \mathbb{C}^n , let $f:\mathbb{C}^{n+1}\setminus\{0\}\to\mathbb{P}^n$ be defined by $z\mapsto[z]$, and then $g:=f|_{S^{2n+1}}:S^{2n+1}\to\mathbb{P}^n$ is the restriction of f to S^{2n+1} . By the derivation of \mathbb{P}^n , the topology on \mathbb{P}^n is induced by f. Then f is a quotient map and so it's continuous. Thus, g is continuous.

For each $[z_0, z_1, \cdots, z_n] \in \mathbb{P}^n$, assume that $z_0 \neq 0$, then $(z_0/c, z_1/c, \cdots, z_n/c) \in S^{2n+1}$ and

$$g\left(\frac{z_0}{c}, \frac{z_1}{c}, \cdots, \frac{z_n}{c}\right) = f\left(\frac{z_0}{c}, \frac{z_1}{c}, \cdots, \frac{z_n}{c}\right) = \left[\frac{z_0}{c}, \frac{z_1}{c}, \cdots, \frac{z_n}{c}\right] = \left[z_0, z_1, \cdots, z_n\right].$$

So g is onto. Note that S^{2n+1} is compact. Thus, $\mathbb{P}^n = g(S^{2n+1})$ is compact.

3. Homework #3

Homework 3.1. Given an open cover $\{U_{\alpha}\}$ of the complex manifold X and a collection of $g_{\alpha\beta}$'s which are holomorphic functions from $U_{\alpha} \cap U_{\beta}$ to $GL(r,\mathbb{C})$ satisfying $g_{\alpha\alpha} = 1$, $g_{\alpha\beta} = g_{\beta\alpha}^{-1}$ on $U_{\alpha} \cap U_{\beta}$, and $g_{\alpha\beta}g_{\beta\gamma}g_{\gamma\alpha} = 1$ on $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$. Construct a holomorphic vector bundle E over X:

$$E = \coprod_{\alpha} U_{\alpha} \times \mathbb{C}^r / \sim$$

where $(x, v_{\alpha}) \sim (y, v_{\beta})$ iff x = y and $v_{\alpha} = g_{\alpha\beta}v_{\beta}$.

- (a) Show that \sim is an equivalent relationship.
- (b) Prove that E is a well-defined holomorphic vector bundle over X.
- (c) Consider the Cartier divisor $\{(U_{\alpha}, f_{\alpha})\}$ and let $g_{\alpha\beta} = f_{\alpha}/f_{\beta}$. Show that how this Cartier divisor induces a line bundle uniquely.

Solution. (a) For each $x \in U_{\alpha}$, since x = x and $v_{\alpha} = v_{\alpha} = g_{\alpha\alpha}v_{\alpha}$, we have $(x, v_{\alpha}) \sim (x, v_{\alpha})$.

If $(x, v_{\alpha}) \sim (y, v_{\beta})$ where $x \in U_{\alpha}$ and $y \in U_{\beta}$, then x = y and $v_{\alpha} = g_{\alpha\beta}v_{\beta}$. Hence y = x and $v_{\beta} = g_{\alpha\beta}^{-1} = g_{\beta\alpha}v_{\alpha}$, which implies that $(y, v_{\beta}) \sim (x, v_{\alpha})$.

If $(x, v_{\alpha}) \sim (y, v_{\beta})$ and $(y, v_{\beta}) \sim (z, v_{\gamma})$, then x = y = z, $v_{\alpha} = g_{\alpha\beta}v_{\beta}$, and $v_{\beta} = g_{\beta\gamma}v_{\gamma}$. Thus we derive x = z, $v_{\alpha} = g_{\alpha\beta}g_{\beta\gamma}v_{\gamma} = g_{\alpha\gamma}v_{\gamma}$. So $(x, v_{\alpha}) \sim (z, v_{\gamma})$.

In all, we have shown that \sim is indeed an equivalent relationship.

(b) Given any $x \in X$, there exists an open set U_{α} containing x since $\{U_{\alpha}\}$ is an open cover of X. Denote the element of $\coprod_{\alpha} U_{\alpha} \times \mathbb{C}^{r} / \sim \text{by } [(x,v)] \text{ where } (x,v) \in \coprod_{\alpha} U_{\alpha} \times \mathbb{C}^{r}$.

Define $\pi: \coprod_{\alpha} U_{\alpha} \times \mathbb{C}^{r} / \sim X = \coprod_{\alpha} U_{\alpha}$ by $[(x, v_{\alpha})] \mapsto x$ and define $h_{\alpha}: U_{\alpha} \times \mathbb{C}^{r} \to \pi^{-1}(U_{\alpha})$ by $(x, v_{\alpha}) \mapsto [(x, v_{\alpha})]$. It's clear that h_{α} is continuous. Also, it's revealed that h_{α} is a surjection. This is because for each $[(x, v_{\beta})] \in \pi^{-1}(U_{\alpha})$ there exists a transition function $g_{\alpha\beta}$ such that $(x, g_{\alpha\beta}(x)v_{b}) = (x, v_{\alpha})$ and then $[(x, v_{\beta})] = [(x, v_{\alpha})]$. Suppose $h_{\alpha}(x_{1}, v_{\alpha_{1}}) = h_{\alpha}(x_{2}, v_{\alpha_{2}})$, then $[(x_{1}, v_{\alpha_{1}})] = [(x_{2}, v_{\alpha_{2}})]$. So $(x_{1}, v_{\alpha_{1}}) \sim (x_{2}, v_{\alpha_{2}}) \Rightarrow x_{1} = x_{2}$ and $v_{\alpha_{1}} = g_{\alpha_{1}\alpha_{2}}v_{\alpha_{2}}$, which implies that h_{α} is an injection. Now we have shown that h_{α} is bijective. And by the derivation of the quotient topology on $\pi^{-1}(U_{\alpha})$, h_{α} appears to be a one-to-one correspondence of open sets. Hence it's an homeomorphism. So E is a well-defined holomorphic vector bundle over X since α is arbitrary.

(c) Since $g_{\alpha\beta}g_{\beta\gamma}g_{\gamma\alpha} = 1$, $g_{\gamma\alpha}^{-1} = g_{\alpha\gamma} = g_{\alpha\beta}g_{\beta\gamma}$. Define the relationship for $(x, f_{\alpha}(x)) \in U_{\alpha} \times \mathbb{C}$ and $(y, f_{\beta}(y)) \in U_{\beta} \times \mathbb{C}$ that $(x, f_{\alpha}(x)) \sim (y, f_{\beta}(y))$ iff x = y and $f_{\alpha}(x) = g_{\alpha\beta}f_{\beta}(y)$. By (a), \sim is an equivalent relationship. So $\coprod_{\alpha} (U_{\alpha}, f_{\alpha}) / \sim$ is a holomorphic vector bundle as well as a line bundle which is uniquely determined by the Cartier divisor under \sim .

4. Homework #4

Homework 4.1. Suppose $L_1, L_2 \in Pic(X)$. Show that $L_1 \otimes L_2$ is a line bundle.

Proof. Since L_1, L_2 are line bundles, for any $b \in X$ and its neighborhood U_b , there exists s_1 as the only basis of sections on U_b of L_1 and s_2 as the only basis of sections on U_b of L_2 . Therefore, $s_1 \otimes s_2$ is exactly the basis of sections on U_b . So $L_1 \otimes L_2$ is a line bundle.

Homework 4.2. Let L_1, L_2 be line bundles generated by $\{U_{\alpha}, g_{\alpha\beta}^1\}$ and $\{U_{\alpha}, g_{\alpha\beta}^2\}$ respectively. Show that the transition functions of $L_1 \otimes L_2$ are $\{g_{\alpha\beta}^1 g_{\alpha\beta}^2\}$.

Proof. Suppose $s_1^{\alpha} \otimes s_2^{\alpha}$ is a local basis of sections on U_{α} and $s_1^{\beta} \otimes s_2^{\beta}$ is a local basis of sections on U_{β} . It's known that $s_1^{\alpha} = g_{\alpha\beta}^1 s_1^{\beta}$ and $s_2^{\alpha} = g_{\alpha\beta}^2 s_2^{\beta}$. So $s_1^{\alpha} \otimes s_2^{\alpha} = g_{\alpha\beta}^1 s_1^{\beta} \otimes g_{\alpha\beta}^2 s_2^{\beta} = g_{\alpha\beta}^1 g_{\alpha\beta}^2 s_1^{\beta} \otimes s_2^{\beta}$. Hence, the transition functions of $L_1 \otimes L_2$ are $g_{\alpha\beta}^1 g_{\alpha\beta}^2$'s.

5. Homework #5

Homework 5.1. Let $S \subset X$ be a subvariety and $\mathcal{L}_S(U) = \{ f \in \mathcal{O}_X(U) : f|_{S \cap U} = 0 \}$. Prove that \mathcal{L}_S is a sheaf.

Proof. For each $U \subset V$, the restriction $\gamma_{VU} : \mathcal{L}_S(V) \to \mathcal{L}_S(U)$ is a homomorphism. In fact, for all holomorphic functions f, g vanishing on $V \cap S$, $\gamma_{VU}(f+g) = f|_U + g|_U$ vanishes on $U \cap S$. Also, $\gamma_{VU}(f+g) = f|_U + g|_U = \gamma_{VU}(f) + \gamma_{VU}(g)$.

For all $U \subset V \subset W$, a holomorphic function f vanishing on $W \cap S$ also vanishes on $U \cap S$ and $V \cap S$. Thus $\gamma_{WU}(f) = f|_U$, $\gamma_{VU} \circ \gamma_{WV} = \gamma_{VU}(f|_V)$, and $f|_V$ vanishing on $V \cap S$ also vanishes on $U \cap S$. So $\gamma_{VU}(f|_V) = f|_U = \gamma_{WV}(f) = \gamma_{VU} \circ \gamma_{WV}(f) \Rightarrow \gamma_{WV} = \gamma_{VU} \circ \gamma_{WV}$.

For a collection of open sets $U_{\alpha} \subset X$ ($\alpha \in I$) with $U = \bigcup_{\alpha \in I} U_{\alpha}$. If $h \in \mathcal{O}(U)$ and $\gamma_{UU_{\alpha}}(h) = 0$, then h vanishes on $U_{\alpha} \cap S$ for all $\alpha \in I$. So h vanishes on $\bigcup_{\alpha \in I} (U_{\alpha} \cap S) = U \cap S \Rightarrow h = 0$.

For $U = \bigcup_{\alpha \in I} U_{\alpha}$ define $h : U_{\alpha} \to \mathbb{C}$ such that $h(x) = f_{\alpha}(x)$ for all $x \in U_{\alpha}$. Since $\gamma_{U_{\alpha},U_{\alpha}\cap U_{\beta}}(f_{\alpha}) = \gamma_{U_{\beta},U_{\alpha}\cap U_{\beta}}(f_{\beta})$, then h is holomorphic on U. Given a fixed $\alpha \in I$, $\gamma_{UU_{\alpha}}(h) = f_{\alpha}$. And it's obvious that $\mathcal{F}(\emptyset) = 0$ and $\gamma_{VU} = \mathbb{1}$.

In all, we have shown that \mathcal{L}_S is indeed a sheaf.

Homework 5.2. Consider the sheaf morphism $\varphi : \mathcal{F} \to \mathcal{G}$. This induces a morphism $\varphi_p : \mathcal{F}_p \to \mathcal{G}_p, (U, f) \mapsto (U, \varphi_U(f))$ for each $p \in X$. Show that φ_p is well-defined.

Proof. If $(U,f) \sim (V,g)$ where $(U,f) \in \mathcal{F}_p$ and $(V,g) \in \mathcal{F}_p$, then $\varphi_p^1(f) = f' \in \mathcal{O}_{\mathcal{G}}(U)$, $\varphi_p(U,f) = (U,f')$, $\varphi_p^2(g) = g' \in \mathcal{O}_{\mathcal{G}}(V)$, and $\varphi_p(V,g) = (V,g')$. For any $U \subset X$, $f \in \mathcal{O}(U)$, and $W \subset U$, $\gamma_{UW}^{\mathcal{F}}(f) = f|_W$. Since there exists a homomorphism from $\mathcal{F}(W)$ to $\mathcal{G}(W)$, denoted φ_{pW}^1 , then $\varphi_p^1(f|_W) = f'|_W$. Also, $\gamma_{UW}^{\mathcal{G}} \circ \varphi_p^1(f) = f'|_W = \varphi_p^2 \circ \gamma_{UW}^{\mathcal{F}}(f)$, $\gamma_{UW}^{\mathcal{G}} \circ \varphi_p^1(g) = g'|_W = \varphi_p^2 \circ \gamma_{UW}^{\mathcal{F}}(g)$, and $f|_W = g|_W$. So $f'|_W = \varphi_p^2(f|_W) = \varphi_p^2(g|_W) = g'|_W$. Therefore, $(U,f') \sim (V,g')$ and φ_p is well-defined.

Homework 5.3. Prove that φ defined in Homework 5.2 is injective iff for each $U \subset X$, $\varphi_U : \mathfrak{F}(\mathfrak{U}) \to \mathfrak{G}(U)$ is injective.

Proof. \Leftarrow) Suppose φ_U is injective. If $\varphi_p : \mathcal{F}_p \to \mathcal{G}_p$ is injective, then φ is injective. The aim is to prove that φ_p is injective.

- [(U,f)] is the equivalent class of (U,f) in \mathcal{F}_p , and let $\varphi_p([(U,f)]) = [(U,f')]$ where [(U,f')] is the equivalent class of (U,f') in \mathcal{G}_p . Since there exists (V,g) such that $\varphi_p([(V,g)]) = [(V,g')] = [(U,f')]$ and [(V,g')] = [(U,f')], then $(V,g') \sim (U,f')$. So there is $W \subset U \cap V$ containing p such that $f'|_W = g'|_W$. Since φ_U is injective for any open set $U \subset X$, $f|_W = \varphi_{pW}^{-1}(f'|_W) = \varphi_{pW}^{-1}(g'|_W) = g|_W$. Hence $(U,f) \sim (V,g)$ and [(U,f)] = [(V,g)]. So φ_p is injective.
- \Rightarrow) Suppose φ is injective, then φ_p is injective. The aim is to prove that φ_U is injective. Suppose f,g are arbitrary holomorphic functions on U. If $\varphi_U(f)=f'=g'=\varphi_U(g)$, then $(U,f')\sim (U,g')$. For each $p\in U$, since φ_p is injective, $\varphi_p^{-1}([(U,f')])=[(U,f)]=[(U,g)]=\varphi_p^{-1}([(U,g')])$. So $(U,f)\sim (U,g)$ and there exists $W_p\subset U$ containing p such that $f|_{W_p}=g|_{W_p}$. Hence f=g on $U=\cup_{p\in U}W_p$ since p is optional and then φ_U is injective. \square