CNNs From Scratch

Advay Singh

_ CONTENTS

0.1.	Introduction	4
0.2.	Image Processing	4
0.3.	Fully-Connected Multi Layer Perception	4
0.4.	Efficiency Testing	10
0.5.	Application in Full-Stack Web Application	10

4 CONTENTS

0.1. Introduction

0.2. Image Processing

0.2.1. Convolution.

0.2.2. Pooling.

0.3. Fully-Connected Multi Layer Perception

Now, with our inputs in place, will begin discussion regarding the a Fully-Connected Multi Layer Perception.

- (1) $x_i = ith \text{ input}$
- (2) $w_{ij}^k = \text{weight from } ith \text{ input to } jth \text{ output in the } kth \text{ layer}$
- (3) $b_{ii}^k = \text{bias from } ith \text{ input to } jth \text{ output in the } kth \text{ layer}$
- (4) $z_i^k = jth$ input for activation at layer k
- (5) $\alpha_j^k = jth$ activated val at layer k
- (6) $y_i = ith \text{ true label}$
- (7) l = number of hidden layers
- (8) $n^k = \text{number of activations for layer } k$
- (9) $Y_i = ith$ predicted output
- (10) $E_i = ith \text{ error}$
- (11) $\Delta w = \text{change to weights}$
- (12) $\Delta b = \text{change to biases}$
- (13) a = learning rate.
- **0.3.1. Forward Propagation.** The x and y are both lists of inputs and labels respectively. Other terms, require derivation.
- 0.3.1.1. Weights and Biases. Weights and Biases are both 2-dimensional arrays. Note that there are multiple of these, intact, l+1 of each in a Fully-Connected Neural Network.

Initially, these arrays are filled with random values which are eventually redfined through gradient-decent. The length of these arrays can be determined through matrix multiplication. The matrix w^k 's aXb where $a = n^{k-1}$ and $b = n^k$. For this, the initial layer k-1 is reshaped to $n^{k-1} \cdot 1$ and k is reshaped $1 \cdot n^k$. It's a similar process for the biases. $0.3.1.2.\ Zs\ (Activation\ Inputs).$ With the weights biases, and inputs inplace, we may derive our zs.

(14)
$$z_j^k = \sum_{i} x_i^{k-1} w_{ij}^k.$$

Note we need not derive zs for $k \geq l$.

0.3.1.3. Activation Function. There are many activation functions. ReLU, Sigmoid, and TanH to name a few. The following defines the **Sigmoid Activation Function**, $\sigma(z): \mathbb{R} \to (0,1)$. The reason for these function is to **introduce non-linearity** in the dataset. The more hidden layers there are, the more complex problems the CNN is capable of solving. The cost? Increased computation time.

(15)
$$\alpha_j^k = \sigma(z_j^k) = \frac{1}{1 + e^{-(z_j^k)}}.$$

Note that $\forall \alpha, \alpha \in (0,1)$. Such normalization is often seen in activation functions. However, the purpose is the non-linear nature of the sigmoid graph.

We also have the **ReLU** activation function: R'(x) =

$$\begin{cases} 0 & x < 0 \\ x & x \ge 0. \end{cases}$$

More on this as we compute their derivatives.

0.3.1.4. Softmax Activation Function. Because $\forall \alpha, \alpha \in (0,1)$ it's impossible to use them to predict values outside that range or non-numerical objects. In the latter case, we apply **Softmax** to the z^l list while a simple regression activation function often suffices for numerical classifications.

(16)
$$Y_i = S(x_i) = \frac{e^{x_i}}{\sum_{j=1}^{n^j} e^{x_j}}.$$

Due to the Softmax function, $\forall Y_i, Y_i \in (0,1)$ meaning that $S(x) : \mathbb{R} \to [0,1]$. To compare this to y_i , we convert $\forall y_i \in \{0,1\}$. Where only the true classification $y_{true} = 1$ while every other $y_i = 0$.

With this, we have the forward propagation function can be generated. The inputs for the function are x, the inputs and true labels. The outputs: Y an array of the predicted outputs. Additionally, other functors and parameters can be used, including which activation function, etc.

CONTENTS

- **0.3.2.** Back Propagation & Gradient Decent. Firstly, we must convert the labels y_i to values $\in \{0, 1\}$
- 0.3.2.1. Error Function. The error function compares $Y_i \wedge y_i$ and is responsible for generating $\Delta w \wedge \Delta b$ for gradient decent. For this, we define a cost function.

(17)
$$E_i = C(i) = \frac{(Y_i - y_i)^2}{2}$$

In our computations, we use

6

(18)
$$E_{tot} = C(n^l) = \sum_{i}^{n^l} \frac{(Y_i - y_i)^2}{2}$$

Therefore, through each iteration, we derive $\Delta w_{ji}^l \wedge \Delta b_{ji}^l$ based on E_i . And update the w and b through back propagation. Iterating through the training set is considered one **epoch**. Notably, every epoch increases accuracy for regular gradient decent, however, **Stochastic Gradient Decent**'s accuracy plateaus over time. More on the later.

0.3.2.2. Calculating Δw And Δb . Firstly, we begin with our final layer. $\frac{\delta E_i}{\delta w_i j}$ and $\frac{\delta E_i}{\delta b_i j}$. Breaking down the function:

(19)
$$\frac{\delta E_i}{\delta w i j} = \frac{\delta E_i}{\delta S(z_i)} \cdot \frac{\delta S(z_i)}{\delta z_i^l} \cdot \frac{\delta z_i^l}{\delta w_{ij}}.$$

Hence we derive all the parts.

(20)
$$\frac{\delta E_i}{\delta S(x_i)} = \frac{\delta}{\delta S(x_i)} \frac{(Y_i - y_i)^2}{2}$$

(21)
$$= \frac{\delta}{\delta S(x_i)} \frac{(S(x_i) - y_i)^2}{2}$$

$$= (S(x_i) - y_i)$$

$$(23) = (Y_i - y_i).$$

Note that for our purposes, x_i refers to z_i^l . For the following calculation, l is implicit for z_i because we are deriving for the final layer.

(24)
$$\frac{S(z_i)}{\delta z_i} = S(z_i)(1 - S(Z_i)).$$

 $J_{softmax}$ is known as the **Jacobian Matrix** and as modeled like such

$$\begin{bmatrix} \frac{\delta S(1)}{z_1} & \frac{\delta S(1)}{\delta z_2} & \dots & \frac{\delta S(1)}{\delta z_i} \\ \frac{\delta S(2)}{\delta z_1} & \frac{\delta S(2)}{\delta z_2} & \dots & \frac{\delta S(2)}{\delta z_i} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\delta S(i)}{\delta z_1} & \frac{\delta S(i)}{\delta z_2} & \dots & \frac{\delta S(i)}{\delta z_i} \end{bmatrix}$$

where $i = n^l$. We will derive the $S(x_i)$ function later.

Now we derive Δw for the final layer (layer going from jth input to ith output.

(25)
$$\frac{\delta z_i}{\delta w_{ij}} = \frac{\delta}{\delta w_{ij}} \sum_{p=0}^{n^{i-1}} x_p w_i p + b_i p$$

Note that for $f(w) = \frac{\delta}{\delta w_{ij}} \sum_{p}^{n^{i-1}} x_p w_i p + b_i p$, $(p = j) \iff f(z) = x_j$ and $(j \neq i \iff f(z) = 0)$. Therefore,

(26)
$$\frac{\delta}{\delta w_{ij}} \sum_{p}^{n^{i-1}} x_p w_i p + b_i p = x_j$$

Note that the $\frac{\delta E_i}{\delta S(x_i)} \cdot \frac{\delta S(x_i)}{\delta z_i^l}$ remain the same for Δb , however, $\frac{\delta z_i}{\delta b_{ij}} = 1$. So we have

(27)
$$\Delta w_{ij} = \frac{\delta E_i}{\delta w_{ij}} = (Y_i - y_i) \cdot S(z_i)(1 - S(z_i)) \cdot x_j$$

(28)
$$\Delta b_{ij} = \frac{\delta E_i}{\delta b_{ij}} = (Y_i - y_i) \cdot S(z_i)(1 - S(z_i)).$$

0.3.2.3. Softmax Derivative and Jacobin Matrix. Our goal in this segment is to define $\frac{dS(z_i)}{dz_i}$. Firstly,

(29)
$$\frac{\delta \ln(S(z_i))}{\delta z_i} = \frac{1}{S(z_i)} \frac{\delta S(z_i)}{\delta z_i}.$$

Hence, we initially compute $\frac{\delta \ln(S(z_i))}{\delta z_i}$.

(30)
$$\frac{\delta \ln(S(z_i))}{\delta z_i} = \frac{\delta}{\delta z_i} \ln(\frac{e^{z_i}}{\sum_{j}^{n^j} e^{z_j}})$$

(31)
$$= \frac{\delta}{\delta z_i} \ln(e^{z_i}) - \frac{\delta}{\delta z_i} \ln(\sum_{j=1}^{n^j} e^{z_j})$$

(32)
$$= 1 - \frac{1}{\sum_{j}^{n^{j}} e^{z_{j}}} \frac{\delta}{\delta z_{i}} (\sum_{j}^{n^{j}} e^{z_{j}}).$$

Note that for $g(z) = \frac{\delta}{\delta z_i} (\sum_j^{n^j} e^{z_j}), (j=i) \iff g(z) = 1 \text{ and } (j \neq i \iff g(z) = 0).$ Therefore,

(33)
$$\frac{\delta \ln(S(z_i))}{\delta z_i} = 1 - S(z_i).$$

And so we have that

(34)
$$\frac{\delta S(z_i)}{\delta z_i} = S(z_i) \frac{\delta \ln(S(z_i))}{\delta z_i}$$

$$= S(z_i)(1 - S(z_i)).$$

There is also an idea of **Temperature** T which adds another layer of non-linearity to S. A smaller temperature favors greater z_i and vice-versa.

(36)
$$Y_i = S(x_i) = \frac{e^{\frac{x_i}{t}}}{\sum_{j}^{n^j} e^{\frac{x_j}{t}}}$$

0.3.2.4. Activation Function Derivative. The derivative of the activation function plays a similar role as the Softmax function derivative, just for

earlier, hidden layers. For now, we will be focusing on the Sigmoid function.

(37)
$$\frac{\delta}{\delta z_i} \alpha_i = \frac{\delta}{\delta z_i} \sigma(z_i)$$

$$= \frac{\delta}{\delta z_i} \frac{1}{1 + e^{-(z_i)}}$$

(39)
$$= \frac{\delta}{\delta z_i} (1 + e^{-(z_i)})^{-1}$$

(40)
$$= \frac{-1}{(1 + e^{-(z_i)})^2} \frac{\delta}{\delta z_i} e^{-(z_i)}$$

(41)
$$= \frac{-1}{(1+e^{-(z_i)})^2} - e^{-(z_i)}$$

(42)
$$= \frac{e^{-(z_i)}}{(1 + e^{-(z_i)})^2}$$

(43)
$$= \frac{1}{1 + e^{-(z_i)}} \cdot \frac{e^{-(z_i)}}{1 + e^{-(z_i)}}$$

(44)
$$= \frac{1}{1 + e^{-(z_i)}} \cdot \left(1 - \frac{1}{1 + e^{-(z_i)}}\right)$$

$$= \sigma(z_i)(1 - \sigma(z_i)).$$

Look familiar? It's the same as S.

Notably, calculating the derivative of the ReLU function is much simpler. R'(x) =

$$\begin{cases} 0 & x < 0 \\ 1 & x \ge 0. \end{cases}$$

Computationally, this often yields a much greater $\Delta w \wedge \Delta b$ allowing for a much faster back propagation process. Hence, we can now proceed to

calculate $\Delta w \wedge \Delta b$ for the hidden layers (layers < l). The following computes δw_{ji}^1 in a Neural Network with two layers (l = 2) with p inputs.

(46)
$$\frac{\delta E_i}{\delta w_{jp}^1} = \frac{\delta E_i}{\delta S(z_i^l)} \cdot \frac{\delta S(z_i^l)}{\delta z_i^l} \cdot \frac{\delta z_i^l}{\delta w_{jp}^1}$$

(47)
$$= \frac{\delta E_i}{\delta S(z_i^l)} \cdot \frac{\delta S(z_i^l)}{\delta z_i^l} \cdot w_{ij}^l \cdot \frac{\delta a_j^1}{\delta w_{jp}^1}$$

(48)
$$= \frac{\delta E_i}{\delta S(z_i^l)} \cdot \frac{\delta S(z_i^l)}{\delta z_i^l} \cdot w_{ij}^l \cdot \frac{\delta \sigma(z_j^1)}{\delta z_j^1} \cdot \frac{\delta z_j^1}{\delta w_{jp}^1}$$

(49)
$$= (Y_i - y_i) \cdot S(z_i^2)(1 - S(z_i^2)) \cdot w_{ij}^2 \cdot \sigma(z_j^1)(1 - \sigma(z_j^1)) \cdot x_p.$$

This way, we can also obtain Δb .

10 CONTENTS

$$(50) \qquad \frac{\delta E_i}{\delta b_{jp}^1} = \frac{\delta E_i}{\delta S(z_i^l)} \cdot \frac{\delta S(z_i^l)}{\delta z_i^l} \cdot \frac{\delta z_i^l}{\delta b_{jp}^1}$$

(51)
$$= \frac{\delta E_i}{\delta S(z_i^l)} \cdot \frac{\delta S(z_i^l)}{\delta z_i^l} \cdot w_{ij}^l \cdot \frac{\delta a_j^1}{\delta b_{jp}^1}$$

$$(52) \qquad = \frac{\delta E_i}{\delta S(z_i^l)} \cdot \frac{\delta S(z_i^l)}{\delta z_i^l} \cdot w_{ij}^l \cdot \frac{\delta \sigma(z_j^1)}{\delta z_j^1} \cdot \frac{\delta z_j^1}{\delta b_{jp}^1}$$

(53)
$$= (Y_i - y_i) \cdot S(z_i^2) (1 - S(z_i^2)) \cdot w_{ij}^2 \cdot \sigma(z_i^1) (1 - \sigma(z_i^1)).$$

Now that we know how to compute $\Delta w \wedge \Delta b$ for all matrices, it's essential to understand how to automate the process for any computational application.

0.3.2.5. Stochastic Gradient Decent. The learning rate a has an impact but can cause for less overall accuracy.

0.4. Efficiency Testing

0.5. Application in Full-Stack Web Application