Advanced Movements Flocking

Manuel Ladebeck

16.05.2005

Inhalt

- 1. Was ist "Flocking"?
- 2. Classic (Basic) Flocking
- 3. Obstacle Avoidance
- 4. Follow the leader
- 5. Demo
- 6. Anmerkungen/Ausblick
- 7. Quellen

Was ist "Flocking"?

- Es sieht unnatürlich aus, wenn jeder in einer Gruppe von Einheiten nur seinen eigenen Weg geht
- Gruppenmitglieder sollten Einfluss auf die Bewegung haben
- Flocking ist ein Verfahren, um Gruppendynamik zu simulieren

Wozu Flocking?

Vielerlei Anwendungsgebiete:

- Schwarm von Vögeln
- Fische
- Militärische Einheiten
- Menschenmassen
- usw.

Geschichte des Flockings

Die Idee und erste Umsetzung stammt von Craig Reynolds, erstmals veröffentlicht in seinem 1987 erschienenem Paper "Flocks, Herds, and Schools: A Distributed Behavioral Model".

Dieses Paper präsentiert einen Algorithmus, der zu sehr natürlichem Bewegungsverhalten führt.

Classic Flocking

- Idee von Reynolds:
- Eigene Bewegung wird von Nachbarn beeinflusst
- Prägte den Begriff "Boids"
- Sehr natürliche Bewegung durch folgende 3 Regeln:
- ✓ Separation (Abstand)
- ✓ Alignment (Ausrichtung)
- ✓ Cohesion (Zusammenbleiben)

Separation

 Steuere so, dass du nicht mit deinen Nachbarn kollidierst

Alignment

 Steuere so, dass deine Ausrichtung dem Durchschnitt deiner Nachbarn entspricht

Cohesion

 Steuere in Richtung der durchschnittlichen Position deiner Nachbarn

Voraussetzungen

- Jede Einheit muss steuern können, z.B. über einen Geschwindigkeits- und Richtungsvektor (siehe Vortrag "Chasing and Evading")
- Die drei aus den Regeln resultierenden Kräfte müssen zueinander gewichtet werden
- Jede Einheit muss ihre Nachbarn kennen

Erkennen der Nachbarn

- Jede Einheit hat einen Wahrnehmungsbereich, bestimmt durch einen Radius und einen Winkel
- Anpassbar, je nach gewünschtem Verhalten
- Jedoch: zu großer Winkel führt zu unnatürlichem Verhalten!

Radius und Winkel

- Großer Radius =>
 Gruppe tendiert dazu enger
 zusammenzubleiben
- Kleiner Radius => Es bilden sich mehrere kleine Splittergruppen
- Winkel: siehe Grafik

270°

45°

Feintuning

- Erfordert Feintuning durch Trail and Error
- Keine einzelne Kraft darf dauerhaft dominieren

⇒Intelligente Gewichtung der Kräfte vonnöten

Zwischenbilanz

- Das leistet der Basic Flocking Algorithmus bisher:
- Natürliche Bewegung von beliebig großen Gruppen
- Anpassbar durch Sichtbereich
- Doch in den meisten Spielen gibt es Hindernisse, wie gehen wir damit um?

Obstacle Avoidance

- Simpel einzubauen, da: einfach eine weitere Steuerungskraft
- Grundidee: Jede Einheit erhält einen "Fühler", um Hindernisse vor der Kollision zu entdecken
- Der Fühler ist ein Vektor

Obstacle Avoidance (2)

- Stößt der Vektor auf ein Hindernis, berechnet man eine Steuerungskraft weg vom Hindernis
- Funktioniert gut, aber vermeidet nicht 100% aller Kollisionen

Obstacle Avoidance (3)

 Breitere Einheiten brauchen möglicherweise mehrere Fühler, sonst:

 Menge von anderen Ansätze zur Kollisionserkennung sind möglich

Follow the leader

- Idee: Es gibt einen Anführer der Gruppe, der nicht der Gruppendynamik unterliegt
- Alle anderen Gruppenmitglieder unterliegen einer weiteren Steuerungskraft, die sie dem Anführer folgen lässt

Follow the leader (2)

Viele praktische Anwendungsgebiete in Videospielen:

- Flugsimulationen => Wingmen
- Taktikshooter => Kompanie, die einem Anführer durch den Dschungel folgt

Follow the leader (3)

 Der Anführer selbst unterliegt wiederum einer beliebigen Anzahl von Steuerkräften

Beispielsweise:

- Ziel verfolgen (chase/intercept)
- Fliehen (evade)
- Punkt (x,y) erreichen

Flocking – Eine Implementierung

- Implementierung der vorgestellten Konzepte
- Umfasst den Basic Flocking Algorithmus, sowie Obstacle Avoidance und Follow-the-leader

Zeige Flocking Demo

Kommerzielle Spiele mit Flocking

"Half-Life" nutzt
 Flocking zur
 Bewegung der
 Marines, die den
 Spieler auf
 verschiedene Arten
 koordiniert
 angreifen

Kommerzielle Spiele mit Flocking (2)

"Enemy Nations" verwendet modifizierte Flocking Algorithmen, um die Bewegung und Formationen von Einheitengruppen zu koordinieren

Kommerzielle Spiele mit Flocking (3)

"Unreal" nutzt
 Flocking für
 verschiedene
 Monster, sowie
 Fische und Vögel

Zusammenfassung

- Flocking Algorithmen liefern auf relativ einfache Art eine natürliche Gruppenbewegung und tragen damit zur Glaubhaftigkeit der Spielewelt bei
- Leicht erweiterbar und anpassbar
- In vielen verschiedenen Spielen einsetzbar

Anmerkungen

- Straight-forward Implementierung hat Laufzeit O(n²)
- Kann optimiert werden, z.B. durch Verwendung einer Datenstruktur, bei der die Einheiten nach ihrer Position sortiert sind
- Mit solchen Optimierungen und moderner Hardware können riesige Gruppen simuliert werden
- Es gibt kein Allround Algorithmus, sollte stets an das jeweilige Problem angepasst werden

Ausblick

- Höherer Stellenwert der KI in Zukunft => Flocking Algorithmen können noch mehr Verwendung finden
- Filmindustrie => Computer animierte Filme boomen

Quellen

 Craig Reynolds: Flocks, Herds, and Schools: A Distributed Behavioral Model

http://www.cs.toronto.edu/~dt/siggraph97-course/cwr87/

- Boids: http://www.red3d.com/cwr/boids/
- AI for Game Developers by David M. Bourg, Glenn Seeman
- http://drhuxtable0.tripod.com/ HL screenshot
- http://www.enemynations.com/ EN screenshot
- http://www.oreilly.com/catalog/ai/ AIDemo Source Code