WORKSHEET 2

ADRIAN PĂCURAR

Problem 1. Consider the function $f(x) = x^2 + 6x^2 + 11$.

(a) Complete the square and write the function in the form $(x-a)^2 + b$.

(b) Sketch the graph of $g(x) = x^2$ and the function f(x) from part (a).

(c) Explain what transformations would one perform on the graph of x^2 to obtain the graph of f(x) from question (a).

(d) Consider the function $f(x) = x^2 + 6x + 11$ as above. Let P be the point (-3, 2). Compute the **slope of the secant line** between P and each of Q(-4, 3) and R(-2, 3).

$$m_{PQ} =$$

$$m_{PR} =$$

- (e) Draw the corresponding secants on the graph on the previous page, and **estimate the slope of the tangent** to the curve at the point *P*. Draw the tangent to the curve.
- (f) Write the equation of the tangent line at the point x = -3.

Problem 2. Let $f(x) = \frac{1}{x}$. Assuming that $h \neq 0$, find and simplify $\frac{f(x+h) - f(x)}{h}$.

Problem 3. Consider the function g(x) = |x+1| + 2.

(a) Write the function as a piecewise function:

$$g(x) = \begin{cases} & \\ & \end{cases}$$

when x < -1

when $x \ge -1$

(b) Draw the graph of g(x) on the axes below:

(c) Do you notice any geometric differences between the graphs of f(x) from Problem 1 at the point (-3,2) and g(x) (Problem 3) at the point (-1,2)?

Problem 4. Plot and label the functions $f(x) = \sin x$ and $g(x) = \cos x$. Label the x-axis with the appropriate multiples of π . What is the domain and range of the sine and cosine functions?

Problem 5. Fill in the following table of values of the given trigonometric functions:

θ	0	π	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$
$\cos(\theta)$						
$\sin(\theta)$						
$\tan(\theta)$						
$\sec(\theta)$						
$\csc(\theta)$						
$\cot(\theta)$						

Problem 6. Solve $4^{x-2} = 8$. Be sure your answer is simplified.