Physics I : Classical theory

Written by Ikhan Choi Solved by Ikhan Choi

May 23, 2019

Contents

1	Classical mechanics 1.1 Newtonian mechanics	2 3
2	Electromagnetism	5
3	Relativity theory	6
4	Statistical mechanics	7
5	Fluid dynamics 5.1 Quantum mechanics	8
	5.2 Particle physics	10

Classical mechanics

1.1 Newtonian mechanics

Uniformly accelerated motion

Problem 1.1. Take x-axis to be the horizontal earth and y-axis to be vertical. A boy is on the earth, and let the position of the boy be (0,0). A bird in the sky (l,h) get a shot at time t=0 and falls freely. Almost simultaneously, The boy throw a small rock with the initial velocity v_0 and the angle θ from the earth. Let q be the gravitational acceleration.

- (1) Find the time t at which the rock reaches a vertical line x = l.
- (2) At this time, find the y-coordinate of the rock and the bird y_r , y_{bird} .
- (3) They collided. Find θ .
- (4) Find the condition for v_0 to make them collide each other.
- (5) Show that if you are a bird, a rock is in a uniform rectilinear motion. Find the time for collision after throwing.

Solution.

(1) The horizontal component of the velocity is $v_0 \cos \theta$. Therefore, the time traveling the length l is

$$t = \boxed{\frac{l}{v_0 \cos \theta}}.$$

(2) Let t be the answer of the previous problem. Their accelerations are -g. Therefore,

$$y_{rock} = \frac{1}{2}(-g)t^2 + (v_0 \sin \theta)t + (0) =$$

and

$$y_{bird} = \frac{1}{2}(-g)t^2 + (0)t + (h) = .$$

(3)

In Hamiltonian mechanics, the phase space M is defined to be cotangent bundle of a configuration manifold. According to Newton's principle of determinacy, a particle at a specific time corresponds to a point in M, and the point contains all informations of a particle. A function on M is a physical quantity, such as position, momentum, angular momentum, etc. Especially, positions and momenta with respect to each dimension provide with canonical coordinate functions on M. Therefore, every function on M can be realized by a function of positions and momenta.

A $Hamiltonian\ function\ H$ is also just a function on M. In physics, if a Hamiltonian function is given, the equation of motion is generated. In other words, Hamiltonian function defines a physical problem.

Definition 1.1.1 (Hamilton's equations of motion). For a Hamiltonian function H, Hamilton's equations of motion are given by

$$\dot{x} = \frac{\partial H}{\partial p}, \qquad \dot{p} = -\frac{\partial H}{\partial x}.$$

Using the Poisson bracket, the equations can be represented by

$$\frac{df}{dt} = \{f, H\} + \frac{\partial f}{\partial t}.$$

Problem 1.2 (Harmonic oscillator). Let $M = T^*\mathbb{R}$ and

$$H(x,p) = \frac{p^2}{2m} + \frac{1}{2}kx^2.$$

This Hamiltonian function defines a problem of 1-dimensional harmonic oscillator. The equations of motion are

$$\dot{x} = \frac{\partial H}{\partial p} = \frac{p}{m}, \qquad \dot{p} = -\frac{\partial H}{\partial x} = -kx.$$

Therefore, we get the familiar equation for a harmonic oscillator

Solution.

- (1) Here is the proof.
- (2) Here is a proof.

If H has a symmetry under transformations in time, namely, H does not depend on t explicitly, then

A problem that H is explicitly independent on p is difficult to occur physically.

${\bf Electromagnetism}$

Relativity theory

Statistical mechanics

Fluid dynamics

5.1 Quantum mechanics

Problem 1.1 (Hydrogen atom). Hydrogen hydrogen

5.2 Particle physics

Problem 2.1 (Yukawa potential). The wave equation for a massive field is given by the Klein-Gordon equation

$$(\Box + m^2)u(t, x) = 0,$$

where m is mass.

(1) Derive the Yukawa potential

$$u(x) = k \frac{e^{-\frac{r}{m}}}{r}$$

where r = |x|, as a Green function by assuming static case.

- (2) Letting m = 0, discuss the relation with Coulomb potential.
- (3) By taking Fourier transform.
- (4) Find an approximate range of strong nuclear force and mass of pion.

Problem 2.2 (Negative energy solution and antiparticles). Dirac's interpretation.

negative energy solution of the Klein-Gordon equation time reversal?

Problem 2.3 (Polarization of photon field).

Problem 2.4 (Aharonov-Bohm effect).