report

Python과 R의 기능 비교

Team) 이순규(Leader) 오준서 임성현

내용

너론		4
로 론		5
1.	empty	5
2.	sum	7
3.	mean	9
4.	zeros	11
5.	var	14
6.	min	16
7.	max	18
8.	cumsum	20
9.	random	22
10	. sqrt	24
11.	. Sort	27
12	. Append(Array)	28
13	. delete(numpy)	30
14	. copy(numpy)	32
15	. arange(numpy)	34
16	. read_csv(pandas)	36
17	. unique(numpy)	37
18	. dtype(numpy)	38
19	. slicing	40
20	. dataframe(pandas)	41
21	. dim	42

22.	size	.44
23.	values	.44
24.	head	.46
25.	tail	. 47
26.	shape	. 48
27.	T(Transpose)	.49
28.	describe	. 50
29.	notnull	. 52
30.	get_dummies()	. 53
결론		. 54
찬고자료		

서론

Numpy와 Pandas 패키지는 데이터 분석에 유용하게 사용되는 패키지 중 하나이다. 아래는 Numpy와 Pandas에 대한 간략한 설명이다.

Numpy:

- 빠르고 효율적인 다차원의 배열인 ndarray 지원
- 배열 또는 배열 간의 수학 연산을 사용하여 요소별 계산을 수행
- 배열을 기반으로 한 데이터 셋을 디스크에 읽고 쓸 수 있는 도구
- 선형 대수 연산, 푸리에 변환, 난수 생성 지원

Pandas:

- NumPy의 배열과 관계형 DB의 유연한 데이터 조작 기능 지원
- 정교한 인덱싱 기능 제공(인덱스 변경, 슬라이싱, 다이스, 집계 등등)

※ 참고사항

1~15: numpy

16~30: pandas

1. empty

기능)

numpy: 항목을 초기화하지 않고 지정된 모양과 형식의 새 배열을 생성하는 함수

pandas, R: 데이터 프레임안에 데이터가 비어있는지 확인하는 함수

비교)

numpy: 지정된 열과 행의 형식으로 새 배열을 생성한다.

pandas, R: 데이터 프레임안에 데이터가 있는지 확인한다.

단, R은 데이터 프레임이 아니고, 일반적인 데이터 일 경우 NA로 표기된다. 또한 pandas와 함수 비교를 위해서 데이터 프레임을 생성해야 한다.

정리)

numpy를 제외한 두 곳의 쓰임은 같은 것을 볼 수 있었다. 하지만 R과 pandas를 비교할 경우 같은 데이터 프레임을 만들어야 하고, numpy와 같이 일반적인 데이터 형식으로 비교할 경우 NA값이 출력됐다.

예시)

Python 코드

```
>>> df
A
0 NaN
>>> df.empty
False
>>> df.dropna().empty # NA 를 삭제하면 인덱스가 비워진 상태로 출력
True
```

```
> install.packages('plyr') # empty 함수를 쓰기 위한 패키지 설치
> library(plyr)
> # numpy 비교
> empty(data1)
[1] NA
> empty(data2)
[1] FALSE
> # pandas 비교
> empty(df)
[1] FALSE
```

2. sum

기능)

: 각 데이터 안에 있는 원소들의 합 값을 출력한다.

정리)

R에서는 NA 값의 처리가 필요하다는 것으로 보아 자동적으로 NA값이 처리되는 numpy 와 pandas의 sum함수 쓰임이 우수하다.

예시)

```
python code numpy)
>>> np.sum(data1) # 데이터 안에 들어있는 모든 원소의 합 추출 함수
10.5
>>> np.sum(data2)
python code pandas)
>>> df
  one two
a 1.40 NaN
b 7.10 -4.5
c NaN NaN
d 0.75 -1.3
>>> df.sum()
one 9.25
two -5.80
dtype: float64
>>> df.sum('index')
one 9.25
two -5.80
dtype: float64
>>> df.sum('columns') # nan = 0 으로 자동변환
    1.40
    2.60
b
```

```
c 0.00
d -0.55
dtype: float64
```

```
> # numpy 비교
> sum(data1)
[1] 10.5
> sum(data2)
[1] 36
> # pandas 비교
> sum(df$own, na.rm = T)
[1] 9.25
> sum(df$two, na.rm = T)
[1] -5.8
> rowSums(df, na.rm = T)
a b c d
1.40 2.60 0.00 -0.55
```

3. mean

기능)

: 각 데이터 안에 있는 원소들의 평균 값을 출력한다.

비교)

R에서는 NA값의 처리가 필요하다. 따라서, 자동적으로 NA값이 처리되는 numpy와 pandas에서의 mean()함수 쓰임이 우수하다고 볼 수 있다.

예시)

```
python code numpy)
>>> np.mean(data1) # 데이터 안에 있는 모든 원소의 평균
2.625
>>> np.mean(data2)
4.5
python code pandas)
>>> df.mean()
one 3.083333
two -2.900000
dtype: float64
>>> df.mean('index')
    3.083333
one
two -2.900000
dtype: float64
>>> df.mean('columns')
a 1.400
   1.300
     NaN
d -0.275
dtype: float64
```

```
> # numpy 비교
> mean(data1)
[1] 2.625
> mean(data2)
[1] 4.5
> # pandas 비교
> mean(df$own, na.rm = T)
[1] 3.083333
> mean(df$two, na.rm = T)
[1] -2.9
> rowMeans(df, na.rm = T)
        b
           c
                     d
  a
1.400 1.300 NaN -0.275
```

4. zeros

기능)

: 모든 데이터 값을 0으로 채운 배열을 생성한다.

비교)

numpy: 지정한 행/열/차원의 모양으로 값을 0으로 채워 생성한다.

pandas, R: 매트릭스 형태로 영행렬을 생성하며, 3차원 이상의 배열 생성은 불가하다.

정리)

R 에서는 3차원 이상의 영행렬을 생성하려면 2차원으로 생성한 뒤 다시 배열을 생성해야 한다. 그러나, numpy에서는 바로 3차원 영행렬 생성이 가능하므로 함수의 쓰임은 numpy가 우수하다.

또한, pandas의 데이터 프레임은 3차원 구조를 지원하지 않기 때문에 3차원으로 변형 시 데이터 프레임 구조가 달라질 수 있으므로 주의해야 한다.

예시)

```
python code numpy)
>>> np.zeros(10) # 주어진 길이나 모양에 0 이라는 값으로 배열 생성
array([0., 0., 0., 0., 0., 0., 0., 0., 0.])
>>> np.zeros((3, 6))
array([[0., 0., 0., 0., 0., 0.],
     [0., 0., 0., 0., 0., 0.]
     [0., 0., 0., 0., 0., 0.]])
>>> np.zeros((2, 3, 2))
array([[[0., 0.],
      [0., 0.],
      [0., 0.]],
      [[0., 0.],
      [0., 0.],
       [0., 0.]])
python code pandas)
>>> a = pd.DataFrame(np.zeros(10))
```

```
>>> b = pd.DataFrame(np.zeros((3, 6)))
>>> c = pd.DataFrame(np.zeros(2,3,2)) # 3차원 부터는 출력의 지원이
안된다.
>>> Traceback (most recent call last):
 >>> File "<input>", line 1, in <module>
>>> TypeError: Cannot interpret '3' as a data type
>>> a
   0
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
5 0.0
6 0.0
7 0.0
8 0.0
9 0.0
>>> b
0 1 2 3 4 5
0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0
```

```
> install.packages('phonTools') # zeros 함수를 쓰기위한 패키지 설치
> library(phonTools)
> zeros(10)
[1] 0 0 0 0 0 0 0 0 0 0
> zeros(3, 6)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 0 0 0 0 0 0
[2,] 0 0 0 0 0 0
```

[3,] 0 0 0 0 0

> zeros(2, 3, 2) # 3 차원 지원 출력이 안됨, 에러발생

Error in zeros(2, 3, 2) : unused argument (2)

5. var

기능)

: 각 데이터 안에 있는 원소들의 분산 값을 출력한다.

비교)

R에서 분산을 구하기 위해선 NA 값의 처리가 필요하다. 반면, 자동적으로 NA값이 처리되는 numpy와 pandas는 R보다 함수 쓰임이 우수하다고 볼 수 있다.

예시)

```
python code numpy)
>>> np.var(data1, ddof=1) # 데이터 안에 있는 원소들의 분산 값 / ddof=1
(표준편차를 계산할 때, n-1로 나누라는 의미)
1.2291666666666667
>>> np.var(data2, ddof=1) #
https://www.abbreviationfinder.org/ko/acronyms/ddof.html#aim
6.0
python code pandas)
>>> df.var()
     12.205833
one
       5.120000
two
dtype: float64
>>> df.var('index')
     12.205833
one
      5.120000
two
dtype: float64
>>> df.var('columns')
        NaN
а
    67.28000
b
        NaN
     2.10125
d
dtype: float64
```

```
> # numpy 비교
> var(data1)
[1] 1.229167
> var(data2)
[1] 6
> # pandas 비교
> var(df$own, na.rm = T)
[1] 12.20583
> var(df$two, na.rm = T)
[1] 5.12
> apply(df, 1, var, na.rm = TRUE)
a b c d
NA 67.28000 NA 2.10125
```

6. min

기능)

: 각 데이터 안에 있는 원소들 중 최소 값을 출력한다.

비교)

R에서는 NA 값의 처리가 필요하다는 것으로 보아 자동적으로 NA값이 처리되는 numpy 와 pandas에서의 min 함수 쓰임이 우수하다.

예시)

```
python code numpy)
>>> np.min(data1)
1.5
>>> np.min(data2)
python code pandas)
>>> df.min()
    0.75
one
two -4.50
dtype: float64
>>> df.min('index')
one 0.75
two -4.50
dtype: float64
>>> df.min('columns')
a 1.4
b -4.5
c NaN
d -1.3
dtype: float64
```

```
> # numpy 비교
```

```
> min(data1) # 데이터 안에 있는 원소중 제일 작은 값
[1] 1.5
> min(data2)
[1] 1
> # pandas 비교
> min(df$own, na.rm = T)
[1] 0.75
> min(df$two, na.rm = T)
[1] -4.5
> apply(df, 1, min, na.rm = TRUE)
a b c d
1.4 -4.5 Inf -1.3
```

7. max

기능)

: 각 데이터 안에 있는 원소들 중 최대 값을 출력한다.

비교)

R 에서는 NA 값의 처리가 필요하다는 것으로 보아 자동적으로 NA값이 처리되는 numpy와 pandas에서의 max 함수 쓰임이 우수하다.

예시)

python code numpy)

```
>>> np.max(data1)
4.0
>>> np.max(data2)
python code pandas)
>>> df.max()
one 7.1
two -1.3
dtype: float64
>>> df.max('index')
one 7.1
two -1.3
dtype: float64
>>> df.max('columns')
a 1.40
   7.10
    NaN
d 0.75
dtype: float64
```

```
> # numpy 비교
> max(data1) # 데이터 안에 있는 원소중 제일 큰 값
[1] 4
> max(data2)
[1] 8
> # pandas 비교
> max(df$own, na.rm = T)
[1] 7.1
> max(df$two, na.rm = T)
[1] -1.3
> apply(df, 1, max, na.rm = TRUE)
a b c d
1.40 7.10 -Inf 0.75
```

8. cumsum

기능)

: 각 데이터 안에 있는 원소들의 값을 누적치 합의 값으로 출력한다.

비교)

R에서는 NA 값의 처리가 필요했으나, numpy와 pandas는 자동적으로 NA값을 처리해주기 때문에 사용성 측면에서는 R보다 우수하다고 볼 수 있다.

예시)

python code numpy)

```
>>> np.cumsum(data1) # 데이터 안에 있는 원소들의 누적 합의 추출 함수
(sum 과는 별개)
array([ 1.5, 5.5, 7.5, 10.5])
>>> np.cumsum(data2)
array([ 1, 3, 6, 10, 15, 21, 28, 36], dtype=int32)
python code pandas)
>>> df
   one two
a 1.40 NaN
b 7.10 -4.5
c NaN NaN
d 0.75 -1.3
>>> df.cumsum('index')
   one two
a 1.40 NaN
b 8.50 -4.5
c NaN NaN
d 9.25 -5.8
>>> df.cumsum('columns')
   one
        two
a 1.40 NaN
b 7.10 2.60
```

```
c NaN NaN
d 0.75 -0.55
```

```
> # numpy 비교
> cumsum(data1) # 데이터 안에 있는 원소들의 누적 합
[1] 1.5 5.5 7.5 10.5
> cumsum(data2)
[1] 1 3 6 10 15 21 28 36
> # pandas 비교 na 값을 전처리 해야함 그래야 비교가능
> is.na(df)
  own two
a FALSE TRUE
b FALSE FALSE
c TRUE TRUE
d FALSE FALSE
> df1 <- na.omit(df)</pre>
> cumsum(df1$own)
[1] 7.10 7.85
> cumsum(df1$two)
[1] -4.5 -5.8
> apply(df1, 1, cumsum)
    b d
own 7.1 0.75
two 2.6 -0.55
```

9. random

기능)

: 난수를 생성한다.

비교)

R에서의 난수 생성은 1차원으로만 가능하다. 반면, numpy와 pandas에서는 다차원 난수의 생성이 가능하므로, numpy와 pandas에서의 함수 쓰임이 더 우수하다고 볼 수 있다.

예시)

python code numpy)

```
> # numpy 비교
> sqrt(data1)
[1] 1.224745 2.000000 1.414214 1.732051
> sqrt(data2)
, , 1
        [,1]        [,2]        [,3]        [,4]
[1,] 1 1.414214 1.732051 2
, , 2
        [,1]        [,2]        [,3]        [,4]
[1,] 2.236068 2.44949 2.645751 2.828427
> # pandas 비교
> sqrt(df$own)
```

10.sqrt

기능)

: 각 데이터 안에 있는 원소들의 값을 제곱근의 값으로 출력한다.

비교)

R과 pandas에서는 NA 값의 처리가 필요하다. 반면, numpy에서는 자동적으로 NA값이 처리되기 때문에 좀 더 간편하게 제곱근을 구할 수 있다.

예시)

python code

```
numpy)
>>> np.sqrt(data1)
array([1.22474487, 2. , 1.41421356, 1.73205081])
>>> np.sqrt(data2)
array([[1. , 1.41421356, 1.73205081, 2.
      [2.23606798, 2.44948974, 2.64575131, 2.82842712]])
python code pandas)
>>> df.dropna(axis=0)
  one two
b 7.10 -4.5
d 0.75 -1.3
>>> df.dropna(axis=1)
Empty DataFrame
Columns: []
Index: [a, b, c, d]
>>> df.transform('sqrt')
      one two
a 1.183216 NaN
b 2.664583 NaN
     NaN NaN
d 0.866025 NaN
```

```
pandas)
>>> df.dropna(axis=0)
    one two
b 7.10 -4.5
d 0.75 -1.3
>>> df.dropna(axis=1)
Empty DataFrame
Columns: []
Index: [a, b, c, d]
>>> df.transform('sqrt')
    one two
a 1.183216 NaN
b 2.664583 NaN
c NaN NaN
d 0.866025 NaN
```

```
> # numpy 비교
> sqrt(data1)
[1] 1.224745 2.000000 1.414214 1.732051
> sqrt(data2)
, , 1
        [,1] [,2] [,3] [,4]
[1,] 1 1.414214 1.732051 2
, , 2
        [,1] [,2] [,3] [,4]
[1,] 2.236068 2.44949 2.645751 2.828427
> # pandas 비교
> sqrt(df$own)
[1] 1.1832160 2.6645825 NA 0.8660254
> sqrt(df$two)
```

11.Sort

비교)

Numpy: axis, kind, order 옵션이 있다.

- Axis : 기본값은 -1이며, 오름차순으로 배열을 정렬한다.
- kind : quicksort, mergesort, heapsort, stable 옵션이 있으며 정렬 알고리즘을 선택한다.
- order : 배열의 필드가 정의된 경우 먼저 비교할 필드를 지정하는데 사용한다.

Pandas: 데이터프레임으로 변환하고 기본 내장함수인 sort_values 함수를 적용한다.

R: R에서는 기본 내장함수인 sort를 사용한다.

정리)

파이썬에서는 정렬 알고리즘 선택이 가능하기 때문에 좀더 세세한 커스텀이 가능했으나, 자료형에 영향을 많이 받아서 다루기가 어려웠고, R에서는 자료형에 영향없이 자동으로 정렬이 가능했다.

예시)

Python Code

```
Numpy)
sortData1 = np.sort(data1)
sortData1
array([1.5, 2. , 3. , 4. ])
```

```
data1
## [1] 1.5 4.0 2.0 3.0

x11 <- sort(data1)
x11
## [1] 1.5 2.0 3.0 4.0</pre>
```

12.Append(Array)

비교)

Numpy: 내장 함수인 append 와는 다르게 numpy로 만든 배열은 차원의 수가 맞지 않으면 이어 붙일 수 없다.

Pandas: 데이터 프레임에 대한 결합이므로 여기서는 다루지 않음.

R: 다차원 배열을 append 할 경우 1차원으로 바뀌며 순차적으로 append를 실행한다. 2 차원 이상의 배열을 유지하려면 배열을 새로 생성하면 된다.

정리)

공통적으로 Python과 R 모두 컬럼의 개수가 다른 배열을 이어 붙이기 위해서는 우선적으로 컬럼 수를 맞춰주어야 한다.

R 에서는 Python과 같은 append() 를 이용할 경우 다차원의 배열이 1차원으로 변한다. 따라서, 차원을 유지하려면 배열을 새로 생성해서 비교적 간단하게 해결할 수 있다.

예시)

Python Code

```
data1 <- array(c(1.5, 4, 2, 3))
data2 <- array(c(1:8),c(1,4,2))
data1
## [1] 1.5 4.0 2.0 3.0
data2
## , , 1
##
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
##
## , , 2
##
## [,1] [,2] [,3] [,4]
## [1,] 5 6 7 8
append1 <- append(data1,data2)</pre>
append2 <- array(c(c(data2,data2)),c(1,4,4))</pre>
append1
## [1] 1.5 4.0 2.0 3.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 #1 차원으로 변함!
append2
## , , 1
##
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
##
## , , 2
## [,1] [,2] [,3] [,4]
## [1,] 5 6 7 8
##
## , , 3
##
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
##
## , , 4
##
## [,1] [,2] [,3] [,4]
## [1,] 5 6 7 8
```

13.delete(numpy)

비교)

Numpy: 특정 요소, 행/열 등을 삭제할 수 있었다.

R: 3차원 배열에서 컬럼 삭제 시 행과 열이 바뀌어 불편한 점이 있었다.

정리)

delete 함수에서는 파이썬이 R보다 조금 더 직관적으로 동작했다.

예시)

Python Code

R Code

```
data1 <- array(c(1.5, 4, 2, 3))
data2 <- array(c(1:8),c(1,4,2))

data2
## , , 1
##
## [,1] [,2] [,3] [,4]</pre>
```

```
## [1,] 1 2 3 4
##
## , , 2
##
## [,1] [,2] [,3] [,4]
## [1,] 5 6 7 8

data2[,,-1]
## [1] 5 6 7 8

t(data2[,-c(2,4),])
## [,1] [,2]
## [1,] 1 3
## [2,] 5 7

data2[!data2 %in% c(1,3,5)]
## [1] 2 4 6 7 8
```

14.copy(numpy)

비교)

numpy: 얕은 복사이기 때문에 x의 데이터 내용이 data2로 바뀌어도 기존에 복사했던 data1의 데이터를 갖고 있는다.

R: copy()를 사용하기 위해서는 data.table 패키지를 설치해야 한다.

정리)

둘다 얕은 복사와 깊은 복사의 문법 차이는 있었으나 기능상 큰 차이는 없었다.

예시)

Python Code

```
x = data1
y = np.copy(data1)

x == data1
True
y == data1
array([ True, True, True, True])

x = data2
x == data1
False
y == data1
array([ True, True, True, True])
```

R Code

```
x = data1
y = copy(x)

x == data1
y == data1
```

x = data2

x == data1 # 변수내용이 data2로 바뀌자 오류발생

y == data1

15.arange(numpy)

비교)

numpy: 내장 함수인 range와 동일한 기능이지만, 결과는 list가 아닌 ndarray로 생성한 다는 차이가 있다.

R: R에서 range는 단지 최대, 최소값만 나타내며, 파이썬처럼 정해진 규칙대로 배열을 생성하려면 seq()를 사용한다.

정리)

Python과 R 에서의 range()는 이름은 같으나 서로 다른 기능을 하는 함수이고, 동일한 기능을 보여주는 seq와 비교해봤을 때 큰 차이는 느끼지 못했다.

예시)

Python Code

```
>>> np.arange(3)
array([0, 1, 2])
>>> np.arange(3.0)
array([0., 1., 2.])
>>> np.arange(3,7)
array([3, 4, 5, 6])
>>> np.arange(3,7,2)
array([3, 5])
```

R Code

```
range(1,3,6)
## [1] 1 6
range(1.0:3.0,0.1)
## [1] 0.1 3.0
seq(1,3,by=1)
## [1] 1 2 3
```

```
seq(1.0,3.0,by=1.0) # 소수단위는 생성하지 않는다.
## [1] 1 2 3
seq(3.0,6.5) # by 옵션 미설정시 기본값은 1이다.
## [1] 3 4 5 6
seq(3,6,2)
## [1] 3 5
```

16.read_csv(pandas)

기능)

: 외부의 csv 파일을 불러온다.

비교)

25mb 분량의 csv파일을 다운로드 했을 때, Python의 pandas 패키지가 R보다 더 빠르게 작동했다.

17.unique(numpy)

기능)

: 배열 내 중복된 요소를 제거한다.

정리)

numpy에서는 숫자형이 아닌 자료에 unique()를 사용하면 데이터 타입이 따로 표기가 되어 나왔고, R에서는 자료형에 상관없이 중복요소를 제거했다.

예시)

Python Code

```
names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe',
    'Joe'])
np.unique(names)
array(['Bob', 'Joe', 'Will'], dtype='<U4')
ints = np.array([3, 3, 3, 2, 2, 1, 1, 4, 4])
np.unique(ints)
array([1, 2, 3, 4])</pre>
```

R Code

```
names = c('Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe')
unique(names)

## [1] "Bob" "Joe" "Will"

ints = c(3, 3, 3, 2, 2, 1, 1, 4, 4)
unique(ints)

## [1] 3 2 1 4

mix <- c(c(3, 3, 3, 2, 2, 1, 1, 4, 4),c('Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'))
unique(mix)

## [1] "3" "2" "1" "4" "Bob" "Joe" "Will"</pre>
```

18.dtype(numpy)

기능)

: 데이터의 타입을 알려준다.

정리)

자료형의 표현방식에 큰 차이가 있었다.

예시)

```
npdata1 = np.array(data1)
npdata1.dtype
dtype('float64')
npdata2 = np.array(data2)
npdata2.dtype
dtype('int32')
```

R Code

```
data1 <- c(1.5, 4, 2, 3)
data1
## [1] 1.5 4.0 2.0 3.0
vec1 <- c(1:8)
data2 <- array(vec1, c(1, 4, 2))</pre>
data2
## , , 1
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
##
## , , 2
## [,1] [,2] [,3] [,4]
## [1,] 5 6 7 8
mode(data1)
## [1] "numeric"
mode(data2)
```

```
## [1] "numeric"

typeof(data1)

## [1] "double"

typeof(data2)

## [1] "integer"
```

19.slicing

기능)

: 배열 내에서 특정 요소를 추출한다.

비교)

Python과 R 둘 다 슬라이싱하는 방법 및 기능이 모두 동일했다. 그러나 R에서는 차원이 맞지 않거나 슬라이싱 범위를 구체적으로 적지 않으면 에러가 발생했다. Python에서는 arrayp[1:] 와 같이 슬라이싱의 end지점을 지정하지 않으면 끝까지 자동으로 출력해준다는 점에서 사용성이 좀 더 우수했다.

Python Code

```
arr = np.array([1, 2, 3, 4, 5, 6, 7])
print(arr[1:5])
[2 3 4 5]
```

R Code

```
# 19. slicing
arr <- array(c(1, 2, 3, 4, 5, 6, 7))
print(arr[1:5])
## [1] 1 2 3 4 5</pre>
```

20.dataframe(pandas)

기능)

: 데이터 프레임을 생성한다.

비교)

pandas: 형식: pd.DataFrame(data, index, columns, dtype, copy)
ndarray, series, map, lists, dict, 상수 및 다른 DataFrame까지 변수의 형태로 가질 수 있다.

R: 형식: DF <- data.frame(vector1, vector2, matrix1,)
하나의 열을 추출할 땐 벡터형태로 추출하고, 두 개 이상의 열을 추출할 땐 데이터 프 레임 형태로 추출한다.

정리)

여러 자료형을 하나로 묶을 수 있는 2차원의 데이터 구조란 점은 동일했다. 그러나, Python의 pandas 데이터 프레임은 멀티 인덱싱 또는 멀티 컬럼 설정이 가능했다는 부분에서 차이가 있었다.

21.dim

기능)

: 데이터의 차원을 보여주는 기능이다.

비교)

Pandas: R과는 다르게 데이터의 차원자체만을 보여줄 수 있는 기능이 있다.

R: 차원만을 보여주는 함수가 없어 dim()함수를 이용하여 확인할 수 있다.

예시)

Python 코드

```
# 공통 데이터 생성

data = {'a' : [1,2,3], 'b' : [4,5,6]}
c = pd.Series([1,2,pd.NA,4], index=(1,2,3,4))
print(c); print(data)

df = pd.DataFrame(data, index=(1,2,3))
print(df)

# ndim ; 데이터의 차원을 보여준다.
print(df.ndim)
## 2
```

```
# 공통 데이터 생성

a = c(1,2,3)

b = c(4,5,6)

df = data.frame(a, b)

df

c = c(1,2,NA,4)

# pandas 비교
```

```
# dim ; 데이터의 차원만 따로 보여주는 기능을 찾지 못해 dim 으로 대체 dim(df) ## [1] 3 2
```

22.size

기능)

: 데이터의 원소의 개수를 알려주는 기능이다.

비교)

Pandas: 데이터의 원소의 개수를 간단한 메서드를 통해 알아볼 수 있다.

R: nrow() * ncol()의 함수를 이용하여 행과 열을 곱하거나, table() 함수를 이용하여 데이터 원소를 확인할 수 있다.

예시)

Python 코드

```
# size ; 데이터 원소의 수
print(df.size)
## 6
```

R 코드

```
# pandas 비교
# nrow() * ncol() ; 전체 데이터의 원소의 수 or table() 함수 사용
nrow(df) * ncol(df)
## [1] 6
```

23. values

기능)

: 데이터의 구조를 array 구조로 변경하는 기능이다.

비교)

Pandas: R과는 비교적 쉽게 데이터 구조를 변경할 수 있는 장점이 있다.

R: array() 함수를 데이터 프레임 객체에 사용할 때 데이터 프레임을 구성하는 컬럼이나 벡터등을 이용하여 구조를 변경해야하는 불편함이 있다.

예시)

Python 코드

```
# values
print(df.values)
## [[1 4]
      [2 5]
      [3 6]]
```

```
# pandas 비교
# array(); array 구조로 변경
# array(c(a,b), dim = c(3,2,1))
## [,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
```

24.head

기능)

: 데이터의 앞의 5개의 자료를 보여준다.

비교)

Pandas: 데이터의 앞의 5개의 자료를 보여준다.

R: head() 함수는 Pandas.head()와는 다르게 데이터의 앞의 6개의 자료를 보여준다.

예시)

Python 코드

```
# head
print(df.head()); Python MHC head()는 앞의 5개의 데이터를 보여준다.
## a b
1 1 4
2 2 5
3 3 6
```

```
# pandas 비교
# head(); R 에서는 head()는 앞의 6개의 데이터를 보여준다.
# head(df)
## a b
1 1 4
2 2 5
3 3 6
```

25.tail

기능)

: 데이터의 뒤의 5개의 자료를 보여준다.

비교)

Pandas: 데이터의 뒤의 5개의 자료를 보여준다.

R: tail() 함수는 Pandas.head()와는 다르게 데이터의 뒤의 6개의 자료를 보여준다.

예시)

Python 코드

```
# tail
print(df.tail()); Python M/A는 tail()는 뒤의 5개의 데이터를 보여준다.
## a b
1 1 4
2 2 5
3 3 6
```

```
# pandas 비교
# tail(); R 에서는 tail()는 뒤의 6개의 데이터를 보여준다.
# tail(df)
## a b
1 1 4
2 2 5
3 3 6
```

26.shape

기능)

: 데이터의 행과 열을 확인할 수 있는 기능이다.

비교)

Pandas, R: 데이터의 행과 열을 확인할 수 있는 기능으로 동일하다.

예시)

Python 코드

```
# shape
print(df.shape) ; 데이터의 행과 열을 확인
## (3, 2)
```

```
# pandas 비교
# dim() ; 데이터의 행과 열을 확인
# dim(df)
##[1] 3 2
```

27.T(Transpose)

기능)

: 데이터의 행과 열을 전치시켜주는 기능이다.

Pandas, R: 데이터의 행과 열을 전치시켜주는 기능으로 동일하다.

예시)

Python 코드

```
# T
print(df.T); 데이터의 행과 열을 전치
## 1 2 3
a 1 2 3
b 4 5 6
```

```
# pandas 비교
# t(); 데이터의 행과 열을 전치
# t(df)
##[,1] [,2] [,3]
a 1 2 3
b 4 5 6
```

28.describe

기능)

: 데이터의 요약통계를 확일할 수 있는 기능이다.

비교)

Pandas: 데이터의 요약통계를 확인할 수 있으며, R과 다른 점은 표준편차를 추가적으로 알려주며, 이때 ddof라는 옵션이 기본값이 0으로 설정되어 모표준편차를 사용 한다는 차이점과 원소의 개수도 알려주는 기능이 다르다는 점이 있다.

R: summary() 함수를 이용하여 요약통계를 확인할 수 있으며, 파이썬과 다른 점은 R은 표본분산 및 표본표준편차를 사용하고 파이썬과 다르게 각 요약통계에서 원소의 개수를 알려주지는 않는다.

예시)

Python 코드

```
# describe

print(df.describe()); 데이터의 요약통계 확인

## a b

count 3.0 3.0

mean 2.0 5.0

std 1.0 1.0

min 1.0 4.0

25% 1.5 4.5

50% 2.0 5.0

75% 2.5 5.5

max 3.0 6.0
```

```
# pandas 비교
# summary() ; 데이터의 요약통계 확인
```

```
# summary(df)

## a b

Min. :1.0 Min. :4.0

1st Qu.:1.5 1st Qu.:4.5

Median :2.0 Median :5.0

Mean :2.0 Mean :5.0

3rd Qu.:2.5 3rd Qu.:5.5

Max. :3.0 Max. :6.0
```

29.notnull

기능)

: 결측치를 없애주는 기능이다.

비교)

pandas, R: 결측치를 없애주는 기능으로 동일하다.

예시)

Python 코드

```
# pandas 비교
# na.omit; 데이터의 NA 값 등의 결측치를 없애는 기능
# na.omit(c)
##[1] 1 2 4; 결측치를 제거한 결과값
attr(,"na.action")
[1] 3; 결측치가 존재했던 위치
attr(,"class")
[1] "omit"
```

30.get_dummies()

기능)

: 데이터프레임의 컬럼의 원소 빈도수를 확인하는 기능이다.

비교)

pandas, R: 데이터프레임의 특정 컬럼의 원소 빈도수를 확인하는 기능으로 동일하다.

예시)

Python 코드

```
# get_dummies

pd.get_dummies(df['a']); 데이터프레임 df의 a 컬럼 원소의 빈도수 확인

## 1 2 3

1 1 0 0

2 0 1 0

3 0 0 1
```

```
# pandas 비교
# table(); 데이터프레임 df의 a 컬럼 원소의 빈도수 확인
# table(df$a)
##1 2 3
1 1 1
```

대체적으로 NA값의 자동처리 부분에서는 numpy가 우수한 모습을 보였고, 자료형에 따른 데이터의 처리는 R에서 우수한 모습을 보였다.

속도면에서는 Python의 numpy/pandas로 생성한 자료구조들이 약간씩 앞서 있었고, 멀티 인덱싱을 통한 색인 부분에서도 Python이 전체적으로 나은 모습을 보였다.

결론적으로, 직관적이고 간결한 문법을 통한 간편한 사용성 및 자료형의 손쉬운 전처리를 원한다면 R이 우수했고, 멀티인덱싱 및 C언어 기반의 패키지를 통한 빠른 대용량 데이터 처리는 Python이 더 우수하다고 느껴졌다. 그러나, Python과 R에 있는 모든 옵션을 사용해 본 것은 아니기 때문에 객관적인 비교는 어려웠다.

참고자료

서론 NumPy / Pandas 설명

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxwdGhlc2 9ufGd4OjlzZmYyZjQxMDJiNDg3ZDU

Numpy append

https://076923.github.io/posts/Python-numpy-14/

pandas empty

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.empty.html

결론

https://www.datacamp.com/community/tutorials/r-or-python-for-data-analysis?utm_source=adwords_ppc&utm_medium=cpc&utm_campaignid=12492439802&utm_adgroupid=122563403961&utm_device=c&utm_keyword=python%20and%20r&utm_matchtype=b&utm_network=g&utm_adposition=&utm_creative=504158804833&utm_targetid=aud-299261629654:kwd-

305517187105&utm_loc_interest_ms=&utm_loc_physical_ms=1009846&gclid=Cj0KCQiAoY

PBhCNARIsABcz770WQKYwiwmynQwkKEDo4Ejuds0iWYx1zrqMy_iobRJbSKxoTEPr_3UaAjXa EALw_wcB