

Mechanical Adaptivity as a Process: Implications to New Materials and Material System Design

*Matt Smith, Hilmar Koerner, Conner Stone, Robert Strong,
Kyungmin Lee, Timothy J. White, David Wang, Loon-Seng Tan
Richard A. Vaia*

*Functional Materials Division
Materials and Manufacturing Directorate*

Funding: Air Force Office of Scientific Research
AFRL Materials & Manufacturing Directorate

Report Documentation Page			Form Approved OMB No. 0704-0188	
<p>Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.</p>				
1. REPORT DATE AUG 2011	2. REPORT TYPE	3. DATES COVERED 00-00-2011 to 00-00-2011		
Mechanical Adaptivity as a Process: Implications to New Materials and Material System Design			5a. CONTRACT NUMBER	
			5b. GRANT NUMBER	
			5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)			5d. PROJECT NUMBER	
			5e. TASK NUMBER	
			5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory, Functional Materials Division, Materials and Manufacturing Directorate, Wright Patterson AFB, OH, 45433			8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited				
13. SUPPLEMENTARY NOTES Presented at the 2nd Multifunctional Materials for Defense Workshop in conjunction with the 2012 Annual Grantees'/Contractors' Meeting for AFOSR Program on Mechanics of Multifunctional Materials & Microsystems Held 30 July - 3 August 2012 in Arlington, VA. Sponsored by AFRL, AFOSR, ARO, NRL, ONR, and ARL.				
14. ABSTRACT				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT Same as Report (SAR)	18. NUMBER OF PAGES 24
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified		
19a. NAME OF RESPONSIBLE PERSON				

What is Mechanical Adaptivity?

Energy Transduction Process Producing Force or Motion

- Conversion of Energy to Work
- Store Mechanical Energy and Release
- Combination

Mechanical Design Analogy:

Simple Machines

Mechanical Design

Advanced Functions

Building Blocks

Materials that display:

- 1) Autonomous behavior
- 2) Respond to multiple stimuli
- 3) 3D, rapid actuation

Knowledge & Predictive Models

Accurate math models enable predictive design

Fabrication of Architecture: Greater than sum of the parts

Architecture design with responsive materials leading to enhanced functionality

Program Status

Building Blocks

HT Thermal Shape Memory

w/ L-S Tan, AFRL

Predictive Models

PhotoChem-Mechanical

w/ T. White & L-S Tan, AFRL

Autonomic Chemo-Mechanical

w/ A. Balazs, UPitt
M. Smith, Hope C.

Fabrication of Devices

w/ T. White & M. Smith, Hope C.

Photo Mechanical: Aerospace Applications

Beam Steering

Tabiryan et al BEAM
Unpublished. Bunning,
Optics Express, 2009.
Tabiryan & White
Optic Express 2010

Tuning Receivers and Packages

3D Photovoltaics

Nuzzo et al., PNAS 106
2009

Vaia et al 2012

John Hart, Davor Copic,
University of Michigan

Remote & Focused Trigger

PhotoChem-Mechanical Response: Azo

Isomerization:

"Glassy" Networks: Azo & LC

Elastomers: LC-Azo

Tuning Photo-Mechanical Response with Process History

Photo-Plastic (Photo Set, Photo Hardening)
Remove light, retain shape

Photo-Elastic (Photo Recovery)
Remove light, recovery original shape

Glass Structure

Molecular Dynamics

- Isotropic trans distribution
- 442 illumination:
 - trans rotation + 3-5 % cis
 - RQ > SQ
 - Reversible & $\perp E$
- Dark state:
 - RQ partial recovery consistent with cis, trans enhancement
 - SQ initial state recovery

Relative Abs: Trans Isomer (355 nm)

RQ

SQ

Glass Energy Landscape for Photo Chemical to Mechanical Transduction

Configuration space

Photon to Isomerization

Internal Energy Storage & Recovery

Recovery Rates

Implications & Next Steps

Distribution of local “activation volume” controls first step for molecular to macroscopic transduction

- Molecular structure *and* process history
- Fraction of successful photon-to-isomerization events
- Fraction of trapped events
- Rate of recovery of events

Material System Architecture to Optimize Speed and Efficiency

- $D_U \sim r$ (isomerization) I (x) E (x)
- Local anisotropy – LCs v. semi-rigid v. flexible chains
- Network structure, secondary relaxations, local of “hinge”
- Photochemistry: rotation v. cis formation

Autonomic Chem-Mechanical Systems: Responsive Hydrogels & Chemical Oscillators

Responsive Hydro-gels

Chemical Oscillator

Stirred BZ reaction

BZ Reaction

Autonomic Chem-Mechanical Systems

pNIPAAm-co-Ru(vbpy)

R. Yoshida

M. Smith

Maeda et al. Int. J. Mol. Sci. 2010

Tabata et al. Sensor Actuat. A. 2002

Heterogeneous Chem-Mechanical Design

Heterogeneous Autonomic Systems = Composite w/ Active & Inactive Regions

- Homogenous Autonomic Gel = Strain Generator Unit
- Amplify Motion through mechanical architecture
- Coupled feedback through
 - Chemical Concentration gradients
 - Mechanical-Chem interactions

Potential routes for control

Coupled Oscillator patches:
2D patterning allows for phase control of OSC

Patterning Structure and Active Regions

Structured Heterogeneous Gels

Physical Composite

Monolithic Composite

Assembly - arrange premade, discrete homogenous units

- Adv: Flexibility in design
- Dis: minimal mechanical coupling, weak structures, very slow, poor reproducibility

Showalter et al. *Science* 323 2009
Steinbock et al. *Science*, 269 1995

Steinbock et al. *J. Phys. Chem.* 100 1996

Photopoly - in plane patterning of monomer mixture

- Adv: Precision control to micron scale
- Dis: catalyst photo sensitive, limited flexibility (new form for new app)

Yashin, et al
J.Mater.Chem.,
2012

Ø 600 µm Ø 900 µm
Wave propagation

Van Vliet, *Adv. Func. Mater.*, 2012

Postfunctionalization - separate form from pattern (add catalyst & x-linking later)

- Adv: Flexible for 2D (on-demand stamping), Pattern 3D structures
- Dis: Completeness of reaction, profiles dependent on diffusion

Jacobsen et al. *Adv. Mater.* 19 2007

Vaia, Smith, *SPIE* 2012

Additive Manufacturing – printing 3D (involve postfunctionalization, thermo-gelling, etc..)

- Adv: 3D structures (additive manufacturing)
- Dis: Resolution limits, processing variables

Vaia, et al 2012

Postfunctionalization: Polyacrylamide

95.5% AAm
2.5% APMA
2% MBA

Initiate:
APS, TEMED
Cast in mold

Polymer **or**
Swollen Network

Immerse in
BZ Soln

0.08M Sodium
Bromate
0.04M Malonic Acid
0.7M Nitric Acid

Literature: Typical strains = 2-20%

Patterning poly(AAm-co-APMA)

Process: stamping

Gel Cross Section - Ru Gradient

Chemical wave periods: 4-10min

Current Challenge: Improve control over diffusion and pattern size

BZ-Gelatin for Thermogelling

Thermogel

- physically crosslinked (H-bonds, crystals)
- melts above a critical temperature

Ru conc:
0.04-0.05%

Chemical
wave periods
2-6min

Type A BZ Gelatin

0.08M Na Bromate
0.04M Malonic Acid
0.7M Nitric Acid

Additive Mfg: Patterned Gelatin

Adjacent Patches: Effects of Spacing

Summary

1 patch

- Period = 2039 ± 251

2 close patches

- Inner spacing = $117 \pm 13\mu\text{m}$
- Period = 1613 ± 244
- Ave diff in period: 0-34s

2 far patches

- Inner spacing = $628 \pm 160\mu\text{m}$
- Short (clamp) = 1547 ± 332
- Long (free end) = 1962 ± 429
- Ave diff in period: 120-751s

Synchrony Comparison to Simulation

Out-of-phase Sync

No Mechanical Coupling

With Mechanical Coupling

Balazs Group Simulation

Putting Blocks Together: Three Patch Actuator

Cut actuator from
patterned sheet

Gradient in Ru leads to gradient in strain upon swell-deswell

5x1x0.4mm
cantilever
Period: 30 min.

0.08M Sodium Bromate
0.02M Malonic Acid
0.7M Nitric Acid

1 patch cantilever

- Amp $38.6 \pm 7.4 \mu\text{m}$
- Period = $1369 \pm 107 \mu\text{m}$

3 patch cantilever

- Amp $162 \pm 36 \mu\text{m}$
- Period = $1587 \pm 410 \mu\text{m}$

Pattern design and mechanics leads to cooperative swell-deswell with motion amplification of 15x over cube

FEA Modeling

Apply temp locally to impart 1.5% strain in patch

Half of the cantilever is modeled

- Max principal strain outside patch: 2.3%
- Max principal strain drops to zero beyond ~300um, <0.5% after 200um
 - Within these distances we expect mechanical effects on coupling

- 1 patch tip displacement = 42um
- 3 patch tip displacement = 191um

Experimental = 38.6um
Experimental = 162um

FEA: Optimal Stain Generator Profile

- Apply 1.5% strain
- Tip displacement = 42.3um

Tip displacement = 28.7um

Tip displacement = 44.1um

Tip displacement = 30.4um

Which shapes give greatest degree deflections?

Which shapes lead to greatest coupling through strain?

How do varying material properties affect behavior?

Next Step: Heterogeneous Autonomic Gels

Patterning: Additive Mfg, 2D Stamping, 3D microtrusses, 3D BZ colloid mixtures

Puopolo, Vaidyanathan OSU

Jacobsen et al. *Adv. Mater.* 19 2007

Mechanical Design: Bi- / meta- stability for speed; wave interference

Philipp Bruckbauer

Thin Film Solids,
516, 2008, 4070

Model Validation: crosslink network, transduction, material properties

Balazs et al.

Program Status

Building Blocks

HT Thermal Shape Memory

W/ L-S Yan, AFRL

PhotoChem-Mechanical

Goal: Develop responsive material building blocks & fabrication to establish design tools for functional material systems

Predictive Models

w/ A. Balazs, UPitt
M. Smith, Hope C.

Fabrication of Devices

w/T. White & M. Smith, Hope C.

