Class10: Structural Bioinformatics pt1

McKenzie Mai (A1664664)

What is in the PDB database

The main repository of biomolecular structure info is the PDB < www.rcsb.org >.

Let's see what this database contains:

```
stats <- read.csv("pdb_stats.csv", row.names=1)
stats</pre>
```

	X.ray	EM	NMR	Multiple.methods	Neutron	Other
Protein (only)	161,663	12,592	12,337	200	74	32
Protein/Oligosaccharide	9,348	2,167	34	8	2	0
Protein/NA	8,404	3,924	286	7	0	0
Nucleic acid (only)	2,758	125	1,477	14	3	1
Other	164	9	33	0	0	0
Oligosaccharide (only)	11	0	6	1	0	4
	Total					
Protein (only)	186,898					
Protein/Oligosaccharide	11,559					
Protein/NA	12,621					
Nucleic acid (only)	4,378					
Other	206					
Oligosaccharide (only)	22					

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

```
as.numeric(stats$X.ray)
```

Warning: NAs introduced by coercion

[1] NA NA NA NA 164 11

We got to get rid of the commas. Can you find a function to get rid of the commas?

```
x <- stats$X.ray
sum(as.numeric(gsub(",","", x)))</pre>
```

[1] 182348

I am going to turn this into a function and then use apply() to work on the entire table of data

```
sumcomma <- function(x) {
  sum(as.numeric(gsub(",","", x)))
}
sumcomma(stats$X.ray)</pre>
```

[1] 182348

```
n.total <- sumcomma(stats$Total)
n.total</pre>
```

[1] 215684

```
sumcomma(stats$EM)
```

[1] 18817

```
apply(stats, 2, sumcomma)
```

X.ray	EM	NMR	Multiple.methods
182348	18817	14173	230
Neutron	Other	Total	
79	37	215684	

apply(stats, 2, sumcomma)/ sumcomma(stats\$Total)

X.ray	EM	NMR	${\tt Multiple.methods}$
0.8454405519	0.0872433746	0.0657118748	0.0010663749
Neutron	Other	Total	
0.0003662766	0.0001715473	1.0000000000	

Q2: What proportion of structures in the PDB are protein?

Q3: Type HIV in the PDB website search box on the home page and determine how many HIV-1 protease structures are in the current PDB?

In UniProt there are 248,805,733 entries which compared to PDB protein entries (186, 898) means there are only $\sim 7\%$ of known sequences 248,805,733 - 186,898

```
186898/248805733 * 100
```

[1] 0.07511804

Visualizing the HIV-1 protein strucutre

Mol* ("mol-star") viewer is now everywhere. The homepage is here: https://molstar.org/viewer I want to insert my image from Mol* here

Working with bio3d package

```
library(bio3d)

pdb <- read.pdb("1hsg")

Note: Accessing on-line PDB file
pdb</pre>
```


Figure 1: My first molecular image

```
Call: read.pdb(file = "1hsg")

Total Models#: 1
   Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)

Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
   Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)

Non-protein/nucleic Atoms#: 172 (residues: 128)
   Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]

Protein sequence:
   PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
   QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
   ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP
   VNIIGRNLLTQIGCTLNF
```

+ attr: atom, xyz, seqres, helix, sheet, calpha, remark, call

head(pdb\$atom)

```
type eleno elety alt resid chain resno insert
                                                         Х
                                                                 у
                                                                       z o
1 ATOM
           1
                  N < NA >
                           PRO
                                    Α
                                          1
                                               <NA> 29.361 39.686 5.862 1 38.10
                                               <NA> 30.307 38.663 5.319 1 40.62
2 ATOM
           2
                 CA <NA>
                           PRO
                                    Α
                                          1
3 ATOM
           3
                  C <NA>
                           PRO
                                    Α
                                          1
                                               <NA> 29.760 38.071 4.022 1 42.64
4 ATOM
                  O <NA>
                           PRO
                                               <NA> 28.600 38.302 3.676 1 43.40
           4
                                          1
                                    Α
5 ATOM
           5
                 CB <NA>
                           PRO
                                          1
                                               <NA> 30.508 37.541 6.342 1 37.87
                                    Α
           6
                                          1
                                               <NA> 29.296 37.591 7.162 1 38.40
6 ATOM
                 CG <NA>
                           PRO
                                    Α
  segid elesy charge
   <NA>
            N
                 <NA>
2
   <NA>
            C
                 <NA>
  <NA>
3
            C
                <NA>
  <NA>
            0
                 <NA>
            С
5
  <NA>
                 <NA>
  <NA>
            С
                 <NA>
  pdbseq(pdb)[25]
25
"D"
```

Predicting functional motions of a single structure

We can do a bioinformatics prediction of functional motions (i.e. flexibility/dynamics):

```
pdb <- read.pdb("6s36")

Note: Accessing on-line PDB file
  PDB has ALT records, taking A only, rm.alt=TRUE

pdb

Call: read.pdb(file = "6s36")

Total Models#: 1</pre>
```

```
Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)
    Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
    Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
    Non-protein/nucleic Atoms#: 244 (residues: 244)
    Non-protein/nucleic resid values: [ CL (3), HOH (238), MG (2), NA (1) ]
  Protein sequence:
     MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
     DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI
     VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG
     YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
+ attr: atom, xyz, seqres, helix, sheet,
       calpha, remark, call
  m <- nma(pdb)
Building Hessian...
                           Done in 0.022 seconds.
Diagonalizing Hessian... Done in 0.464 seconds.
  plot(m)
```


mktrj(m, file="adk_m7.pdb")