Introduction to Optical knots

Basic definitions

Knot - It is a closed, non-self-intersecting curve embedded in three dimensions.

Braid - A braid in n strands is defined as a set of *n* non-intersecting smooth lines joining two parallel planes.

Alexander's Theorem: "Every oriented knot or link can be represented by a closed braid"

Lemniscate Knots

This notebook stands as an implementation of the work by Bode et al. [1] on the properties of the lemniscate knots.

In the transverse plane to the braids height, the *s* strands trace a lemniscate curve - a (1, l) Lissajous Curve parametrized by $h \in [0, 2\pi]$. Therefore, we can write the parametric curve for the j-th strand as

$$S_{j}^{s,r,l}(h; a, b) = \left(a \cos\left[\frac{1}{s} \left\{ rh + 2 \pi(j-1) \right\} \right], \frac{b}{l} \sin\left[\frac{l}{s} \left\{ rh + 2 \pi(j-1) \right\} \right], h \right)$$

where $a, b \in \mathbb{R}$ are stretching factors. The closure of the braid is parametrized as

$$\left(\cos[h] \left\{ R + a \cos\left[\frac{1}{s} \left\{ rh + 2 \pi(j-1) \right\} \right] \right\}, \sin[h] \left\{ R + a \cos\left[\frac{1}{s} \left\{ rh + 2 \pi(j-1) \right\} \right] \right\}, \left\{ \frac{b}{i} \sin\left[\frac{i}{s} \left\{ rh + 2 \pi(j-1) \right\} \right] \right\} \right)$$

In[310]:= GraphicsGrid[{{SDia[2, 3, 1, 1, 1], BraidOnTorus2[S[2, 3, 1, 0.5, 0.5]]}}, $\{SDia[3, 3, 2, 1, 1], BraidOnTorus2[S[3, 3, 2, 0.5, 0.5]]\}\}, Spacings \rightarrow 50]$

Out[310]=

The braid can represented by the family of complex polynomials $p_h^{s,r,\prime}(u)$ with $u \in \mathbb{C}$, that have roots $Z_i^{s,r,l}(h)$ given in the intersection of the parametrized braid with the horizontal plan so

$$p_h^{s,r,l}(u) = \prod_{i=1}^s \left[u - Z_i^{s,r,l}(h) \right]$$

where we had parametrized $Z_j^{s,r,l}(h) = a \cos\left[\frac{1}{s}\left\{rh + 2\pi(j-1)\right\}\right] + i\frac{b}{l} \sin\left[\frac{l}{s}\left\{rh + 2\pi(j-1)\right\}\right]$. The semiholomorphic map $f(u, v, \overline{v})$ with knotted zero line is fond by the replacements, in $p_h^{s,r,l}(u)$, $\exp(ih) \rightarrow v$ and $\exp(-ih) \rightarrow \overline{v}$. The mapping to the complex plane can be obtained by considering the substitutions

$$U \to \frac{\rho^2 - 1}{\rho^2 + 1}, \qquad V \to \frac{2\,\rho\,\exp[i\phi]}{\rho^2 + 1}, \qquad \overline{V} \to \frac{2\,\rho\,\exp[-i\phi]}{\rho^2 + 1}$$

From here, we can obtained the complex polynomial in the complex plane from the numerator of $p_h^{s,r,l}(u, v, \overline{v}) \rightarrow p_h^{s,r,l}(\rho, \phi).$

In[315]:= Expand[Numerator[Pol[2, 3, 1, 1, 1]]]] (*Trefoil*)

Out[315]=
$$1 - \rho^2 - 8 e^{3 i \phi} \rho^3 - \rho^4 + \rho^6$$

The knotted field can be constructed as the product of the later polynomial and a Gaussian envelope

$$\boldsymbol{E}(\boldsymbol{r}) = \text{Exp}\left[-\frac{r^2}{w_0^2}\right] \text{Numerator}\left[p_h^{s,r,l}(r, \boldsymbol{\phi})\right]$$

In[325]:= IntPhase[Expand[Numerator[Pol[2, 3, 1, 1, 1]]]]

The evolution of the electric field as it propagates can be obtained by means of the Fresnel Propagator [2, 3]. (Still has to be implemented properly)

The singular points of the field at any plane z can be obtained by calculating the intersections of the curves when $Re[\mathbf{E}(\mathbf{r})] = Im[\mathbf{E}(\mathbf{r})] = 0$

In[373]:= Intersections [Expand [Numerator [Pol [2, 3, 1, 1, 1]]]]

Out[337]= \$Aborted

Examples

Trefoil knot

Cinquefoil

Borromean rings

Hopf Link

References

1. Bode, Benjamin, Mark R. Dennis, David Foster, and Robert P. King. "Knotted fields and explicit fibrations for lemniscate knots." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, no. 2202 (2017): 20160829.

- 2. Goodman, Joseph W.. Introduction to Fourier optics. United States: W. H. Freeman, 2005.
- 3. Breckinridge, J., D. Voelz, and J. B. Breckinridge. "Computational Fourier Optics: A MATLAB Tutorial." (2011).

Functions

Preamble

```
SetDirectory@NotebookDirectory[];
In[295]:=
       (*Creates a list of n colors*)
       Colors[n_] := With[{partL = Ceiling[Sqrt[n]]},
         DeleteCases[Flatten[Transpose[Partition[Table[Lighter[Darker[Hue[c], .1], .25],
               {c, 0, 1 - 1 / n, 1 / n}], partL, partL, 1, 0]]], 0]]
       (*Extra nice Custom colors*)
       FunkyT = RGBColor[188 / 255, 224 / 255, 225 / 255];
       Pantone2459 = RGBColor[1 / 255, 181 / 255, 174 / 255];
       Pantone218 = RGBColor[206 / 255, 102 / 255, 161 / 255];
      Pantone199 = RGBColor[227 / 255, 56 / 255, 109 / 255];
       Pantone149 = RGBColor[243 / 255, 194 / 255, 66 / 255];
       PantoneProceBlue = RGBColor [63 / 255, 143 / 255, 205 / 255];
       Pantone7664 = RGBColor[104 / 255, 48 / 255, 120 / 255];
       (*Colouring the braids*)
       ColorBraids = {Pantone2459, Pantone199, Pantone149, PantoneProceBlue, Pantone7664};
```

Lemniscate Knots calculations

```
In[386]:=
                                                                       (* Creation of the Braid representation *)
                                                                    SDia[s_, r_, l_, a_, b_] := Module [{A, B, C, DD, DD2, KK},
                                                                                                       (*Braids*)
                                                                                                   A = Table \bigg[ Parametric Plot 3D \bigg[ \bigg\{ a \, Cos \bigg[ \frac{r \, h \, + 2 \, \pi \, \left( j - 1 \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{1} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, h \bigg\} \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, \right)}{s} \hspace{0.1cm} \bigg] \, , \, \frac{b}{s} \, Sin \bigg[ \frac{1 \, \left( \, r \, h \, + 2 \, \pi \, \left( j - 1 \right) \, 
                                                                                                                                                     {h, 0, 2 Pi}, PlotStyle → {Opacity[0.6], Lighter[ColorBraids[j], 0.1]},
                                                                                                                                                     PlotPoints → 100, ImagePadding → {{Automatic, Automatic}, {None, None}},
                                                                                                                                                   Method → {"ShrinkWrap" → True} ] /. Line[pts_, rest___] :>
                                                                                                                                                     {CapForm → None, Specularity[White, 50], Tube[pts, 0.08, rest]}, {j, 1, s}];
                                                                                                         (*Final dots*)
                                                                                                    DD = Graphics \\ 3D \Big[ Table \Big[ \Big\{ ColorBraids [[j]], \\ Specularity [White, 50], \\ Sphere \Big[ Simplify \Big[ ColorBraids [[j]], \\ Specularity [[White, 50]], \\ Sphere \Big[ Simplify [[Mainle of the colorBraids [[mainle of the colorBr
```

```
\left\{a \cos \left[\frac{r h + 2 \pi (j-1)}{s}\right], \frac{b}{1} \sin \left[\frac{1 (r h + 2 \pi (j-1))}{s}\right], h\right\} / . \{h \to 0\}, 0.1\right\},
        {j, 1, s} , ImagePadding → {{Automatic, Automatic}, {None, None}},
      Method → {"ShrinkWrap" → True} |;
    DD2 = Graphics3D Table ColorBraids[j], Specularity[White, 50], Sphere Simplify
            \left\{a \cos \left[\frac{r h + 2 \pi (j-1)}{s}\right], \frac{b}{1} \sin \left[\frac{1 (r h + 2 \pi (j-1))}{s}\right], h\right\} /. \{h \to 2 \pi\}\right\}, 0.1\right\},
        \{j, 1, s\}, ImagePadding \rightarrow \{\{Automatic, Automatic\}, \{None, None\}\},\
      Method → {"ShrinkWrap" → True} |;
    KK = Graphics3D[{EdgeForm[], Opacity[0.2], White,
        Cylinder[{{0, 0, -0.1}, {0, 0, 2\pi + 0.1}}, 1.2]}, Lighting \rightarrow "Neutral",
       Boxed → False, ImagePadding → {{Automatic, Automatic}, {None, None}},
      Method → {"ShrinkWrap" → True}];
    (*Top and bottom leminscates*)
    B = ParametricPlot3D[Simplify[{a Cos[x], b / 1 Sin[1x], 0}],
       {x, 0, 2π}, PlotStyle → Directive[Darker[Gray, 0.8], Thickness[0.02]],
      PlotPoints → 100, ImagePadding → {{Automatic, Automatic}, {None, None}},
      Method → {"ShrinkWrap" → True}];
    C = ParametricPlot3D[Simplify[{a Cos[x], b/lSin[lx], 2π}],
       \{x, 0, 2\pi\}, PlotStyle \rightarrow Directive[Darker[Gray, 0.8], Thickness[0.02]],
      PlotPoints → 100, ImagePadding → {{Automatic, Automatic}, {None, None}},
      Method → {"ShrinkWrap" → True}];
    Show[A, B, C, DD, DD2, KK, Boxed → False,
     BoxStyle → {Thick}, Axes → False, Lighting → "Neutral", PlotRange → All,
     ViewPoint \rightarrow {1.5445548132437892`, -2.864728779434567`, 0.926109847245335`},
     ViewVertical \rightarrow \{0.3340710941969182^{\circ}, -0.6239446032271305^{\circ}, 0.7064627634389605^{\circ}\},
     ImagePadding → {{Automatic, Automatic}, {None, None}},
     Method → {"ShrinkWrap" → True}] |;
(*Parametric equation of the Braids*)
  Table \left[\left\{a \cos \left[\frac{r h + 2 \pi (j-1)}{s}\right], \frac{b}{1} \sin \left[\frac{1 (r h + 2 \pi (j-1))}{s}\right], h\right\}, \{j, 1, s\}\right];
(*Torus*)
Tor [\theta_{-}, \phi_{-}, R_{-}, r_{-}] :=
  \{R \cos[\theta], R \sin[\theta], \theta\} + \{r \cos[\theta] \cos[\phi], r \cos[\phi] \sin[\theta], r \sin[\phi]\};
(*Closing the Braid on a torus*)
BraidOnTorus2[H ] := Module[{A, B, C, DD},
```

```
A = ParametricPlot3D[Tor[\theta, \phi, 1, 0.5], {\theta, 0, 2\pi}, {\phi, 0, 2\pi},
      Boxed \rightarrow False, Axes \rightarrow False, PlotPoints \rightarrow {70, 70}, Mesh \rightarrow None,
     PlotStyle → {Opacity[0.5], LightGray, Specularity[White, 500]},
      Lighting → "Neutral", ImagePadding → {{Automatic}, Automatic}, {None, None}},
      Method → {"ShrinkWrap" → True}];
   B = Show[Table[ParametricPlot3D[{(1+H[j]][1]) Cos[h], (1+H[j][[1]) Sin[h], H[j][[2]]},
          \{h, 0, 2\pi\}, PlotStyle \rightarrow \{0\text{pacity}[0.6], \text{Lighter}[\text{ColorBraids}[]], 0.2]\},
          PlotPoints → 100, ImagePadding → {{Automatic, Automatic}, {None, None}},
          Method → {"ShrinkWrap" → True}] /. Line[pts , rest ] :> {CapForm → None,
           Specularity[White, 100], Tube[pts, 0.05, rest]}, {j, 1, Dimensions[H][1]]}];
   Show[A, B]]
Z[j_{n}, a_{n}, b_{n}, r_{n}, s_{n}] := \frac{a}{2} \left( vv^{r/s} Exp[i 2\pi (j-1) / s] + vp^{r/s} Exp[i 2\pi (j-1) / s] \right) +
   \frac{b}{2} \left( vv^{r/s} \exp[i 2\pi (j-1) / s] - vp^{r/s} \exp[i 2\pi (j-1) / s] \right);
Pol[s_, r_, l_, a_, b_] := Block[{p, vv, vp, u},
    p = Product[u - Z[j, a, b, r, s], {j, 1, s}];
    Return [FullSimplify [p /. \left\{ u \rightarrow \frac{\rho^2 - 1}{\rho^2 + 1}, vv \rightarrow \frac{2 \rho \operatorname{Exp}\left[\dot{\mathbb{I}} \phi\right]}{\rho^2 + 1}, vp \rightarrow \frac{2 \rho \operatorname{Exp}\left[-\dot{\mathbb{I}} \phi\right]}{\rho^2 + 1} \right\} ]]];
KnotBeam[H_, x_, y_, w_, k_] := Block[
    \{r = Sqrt[x^2 + y^2] / k, \phi = ArcTan[x, y]\}, Exp[-r^2 / w^2] Expand[H /. {<math>\rho \rightarrow r}]];
IntPhase[H ] := Module[{E, FF, A, B},
   FF = KnotBeam[H, x, y, 1.7, 0.4];
   A = DensityPlot[Abs[FF]^2, \{x, -2, 2\}, \{y, -2, 2\}, Exclusions \rightarrow None,
      PlotPoints \rightarrow 100, RegionFunction \rightarrow Function [{x, y}, Sqrt[x^2 + y^2] \leq 2],
      PlotRange → All, MaxRecursion → 1, ColorFunction → ColorData["AvocadoColors"],
      PlotRange → All, ColorFunctionScaling → True, Frame → None];
   B = DensityPlot[Arg[FF], \{x, -2, 2\}, \{y, -2, 2\}, Exclusions \rightarrow None, PlotPoints \rightarrow 100,
      RegionFunction \rightarrow Function[{x, y}, Sqrt[x^2 + y^2] \leq 2], MaxRecursion \rightarrow 2,
      PlotRange \rightarrow All, ColorFunction \rightarrow (Lighter [Hue [Rescale [#, {0, 2\pi}, {0, 1}]], 0.2] &),
      PlotRange → All, ColorFunctionScaling → False, Frame → None];
   Return[GraphicsRow[{A, B}, Spacings → 0]]]
Intersections[H_] := Module[{RealPart, ImagPart, Contour1, FF, A, Intections},
   RealPart = Re[KnotBeam[H, x, y, 1.7, 0.4]];
   ImagPart = Im[KnotBeam[H, x, y, 1.7, 0.4]];
   Contour1 = ContourPlot[{RealPart == 0, ImagPart == 0},
      \{x, -2, 2\}, \{y, -2, 2\}, ContourStyle \rightarrow \{Red, Blue\},
      RegionFunction \rightarrow Function[{x, y}, Sqrt[x^2 + y^2] \leq 2], Frame \rightarrow None];
```

```
Intections = plot // Normal // Cases[#, Line[_], Infinity] & // Subsets[#, {2}] & //
   Map@Apply@RegionIntersection // DeleteCases[_EmptyRegion];
FF = KnotBeam[H, x, y, 1.7, 0.4];
A = DensityPlot[Arg[FF], \{x, -2, 2\}, \{y, -2, 2\}, Exclusions \rightarrow None, PlotPoints \rightarrow 100,
  RegionFunction \rightarrow Function[{x, y}, Sqrt[x^2 + y^2] \leq 2], MaxRecursion \rightarrow 2,
  PlotRange \rightarrow All, ColorFunction \rightarrow (Lighter[Hue[Rescale[#, {0, 2 \pi}, {0, 1}]], 0.2] &),
  PlotRange → All, ColorFunctionScaling → False, Frame → None];
Show[A, Contour1, Graphics[{Black, PointSize@Large, Intections}]]]
```

Out[386]= Null⁴