

Chương 3 -Các cổng logic & Đại số Boolean

Th.S Đặng Ngọc Khoa Khoa Điện - Điện Tử

1

Hằng số Boolean và biến

- Khác với các đại số khác, các hằng và biến trong đại số Boolean chỉ có hai giá tri: 0 và 1
- Trong đại số Boolean không có: phân số, số âm, lũy thừa, căn số, ...
- Đại số Boolean chỉ có 3 toán tử:
 - Cộng logic, hay còn gọi toán tử OR
 - Nhân logic, hay còn gọi toán tử AND
 - Bù logic, hay còn gọi toán tử NOT

 Giá trị 0 và 1 trong đại số Boolean mang ý nghĩa miêu tả các trạng thái hay mức logic

Logic 0	Logic 1
False	True
Off	On
Low	High
No	Yes
Open switch	Closed switch

Bảng chân trị

Bảng chân trị miêu tả mối quan hệ giữa giá trị các ngõ vào và ngõ ra. Ví dụ:

ļ	.↓	↓
A	В	×
0	0	1
0	1	0
1	0	1
1	1	0

Α	В	C	X
0	0	0	0
0000	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0 0
1	0	1	0
1	1	0	0
1	1	1	1

Α	В	С	D	X
0	0	0		X 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1	0
1	1	1	1	1

Miêu tả đại số mạch logic

- Bất kỳ mạch logic nào cũng có thể được xây dựng từ 3 cổng logic cơ bản: AND, OR và NOT.
- Ví dụ:
 - x = AB + C
 - x = (A+B)C
 - x = (A+B)
 - x = ABC(A+D)

Xác định giá trị ngõ ra

- Cho mạch có biểu thức $\mathbf{x} = \overline{\mathbf{ABC}}(\overline{\mathbf{A}+\mathbf{D}})$
- Xác định giá trị ngô ra x khi A=0, B=1, C=1, D=1
- Giá trị ngô ra có thể được xác định

- Hãy thiết kế một mạch logic được xác định bởi biểu thức: y = AC + BC + ABC
- Khi một mạch được định nghĩa bởi biểu thức logic, ta có thể thiết kế mạch logic trực tiếp từ biểu thức đó.
- Biểu thức gồm 3 thành phần OR với nhau.
- Ngô vào của cổng OR là ngô ra của các cổng AND

Các định lý nhiều biến

Luật giao hoán

$$x * y = y * x$$

 $x + y = y + x$

Luật kết hợp

$$(x * y) * z = x * (y * z)$$

 $(x + y) + z = x + (y + z)$

41

Các định lý nhiều biến (tt)

Luật phân phối

$$x * (y + z) = xy + xz$$

 $(x + y)(w + z) = xw + xz + yw + yz$

Luật hoàn nguyên

$$\overline{\overline{x}} = x$$

Một số công thức thường dùng

- a) $x.y + x.\overline{y} = x$
- b) $x + x \cdot y = x$
- c) $x + \overline{x} \cdot y = x + y$

13

Định lý DeMORGAN

Định lý DeMORGAN 2 biến

$$\frac{\overline{x.y} = \overline{x} + \overline{y}}{x + y} = \overline{x.y}$$

Định lý DeMorGAN nhiều biến

$$\overline{x.y.z.w} \dots = \overline{x} + \overline{y} + \overline{z} + \overline{w} \dots$$

 $\overline{x + y + z} + \dots = \overline{x}.\overline{y}.\overline{z}.\dots$

Miêu tả cổng logic (tt)

- Khi một ngõ vào hay ngõ ra trên cổng logic có ký hiệu vòng tròn thì ngõ vào hay ngõ ra đó được gọi là tích cực mức thấp.
- Trường hợp ngược lại, không có vòng tròn, thì gọi là tích cực mức cao.

