# Lecture 6. Convolutional neural network

Al in Genetics ZOO6927 / BOT6935 / ZOO4926

## 1. CNN intuitions

#### **Lesson Overview**

- Biology of Vision
- Image Basics
- Vocabulary







Torsten Wiesel

David Hubel











#### Original Image





#### Vertical Edge Detection





## Why do we need Convolutional Neural Networks?



#### **CNN Domains**

Classification



Cat

Classification and Localization



Cat

**Object Detection** 



Kid, cat, dog

Instance Segmentation



Kid, cat, dog











## Google Al Glossary



https://developers.google.com/machine-learning/glossary



## 2. CNN anatomy

#### **Lesson Overview**

- Quick Review
- Filters and Images
- Convolution
- Stride, Padding, Pooling











#### Simple filter for deteriming the yellowness of a pixel



















#### Using larger kernels





### Convolution

Input

0 1 2-1 4 9-1 5 1 80 1 7 1 20 5 -1 2 3 1 3 1 3 0 2 6 8 4 5 2 9 4

Filter or Kernel

 1
 0
 -1

 1
 0
 -1

 1
 0
 -1

Output

| -5 | -4 |  |
|----|----|--|
|    |    |  |
|    |    |  |
|    |    |  |

 $9 \times 1 + 5 \times 1 + 2 \times 1 + 0 \times 0 + 8 \times 0 + 2 \times 0 + 2 \times -1 + 8 \times -1 + 5 \times -1$ 



| 0 | 0   | 0   | 0   | 0   | 0   |  |
|---|-----|-----|-----|-----|-----|--|
| 0 | 156 | 155 | 156 | 158 | 158 |  |
| 0 | 153 | 154 | 157 | 159 | 159 |  |
| 0 | 149 | 151 | 155 | 158 | 159 |  |
| 0 | 146 | 146 | 149 | 153 | 158 |  |
| 0 | 145 | 143 | 143 | 148 | 158 |  |
|   |     |     |     |     |     |  |

| 0 | 0   | 0   | 0   | 0   | 0   |  |
|---|-----|-----|-----|-----|-----|--|
| 0 | 167 | 166 | 167 | 169 | 169 |  |
| 0 | 164 | 165 | 168 | 170 | 170 |  |
| 0 | 160 | 162 | 166 | 169 | 170 |  |
| 0 | 156 | 156 | 159 | 163 | 168 |  |
| 0 | 155 | 153 | 153 | 158 | 168 |  |
|   |     |     |     |     |     |  |

| 0 | 0   | 0   | 0   | 0   | 0   |  |
|---|-----|-----|-----|-----|-----|--|
| 0 | 163 | 162 | 163 | 165 | 165 |  |
| 0 | 160 | 161 | 164 | 166 | 166 |  |
| 0 | 156 | 158 | 162 | 165 | 166 |  |
| 0 | 155 | 155 | 158 | 162 | 167 |  |
| 0 | 154 | 152 | 152 | 157 | 167 |  |
|   |     |     |     |     |     |  |

Input Channel #1 (Red)

Input Channel #2 (Green)

Input Channel #3 (Blue)

| -1 | -1 | 1  |
|----|----|----|
| 0  | 1  | -1 |
| 0  | 1  | 1  |



Kernel Channel #3

Kernel Channel #1

Kernel Channel #2 
$$-498$$

164 + 1 = -25

Bias = 1

|     | (   | Jutp | ut   |  |
|-----|-----|------|------|--|
| -25 |     |      | 2 \$ |  |
|     |     |      |      |  |
|     |     |      |      |  |
|     |     |      |      |  |
| 535 | 589 |      |      |  |





## Stride

| 3 | 0 | 1 | 2 | 7 | 4 |
|---|---|---|---|---|---|
| 1 | 5 | 8 | 9 | 3 | 1 |
| 2 | 7 | 2 | 5 | 1 | 3 |
| 0 | 1 | 3 | 1 | 7 | 3 |
| 4 | 2 | 1 | 6 | 2 | 8 |
|   | l |   | l |   |   |

| 3 | 0 | 1 | 2 | 7 | 4 | 6 |
|---|---|---|---|---|---|---|
| 1 | 5 | 8 | 9 | 3 | 1 | 5 |
| 2 | 7 | 2 | 5 | 1 | 3 | 4 |
| 0 | 1 | 3 | 1 | 7 | 3 | 8 |
| 4 | 2 | 1 | 6 | 2 | 8 | 7 |
| 2 | 4 | 5 | 2 | 3 | 9 | 1 |

Stride of 1

Stride of 2







## **Padding**

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 3 | 0 | 1 | 2 | 7 | 4 | 0 |
| 0 | 1 | 5 | 8 | 9 | 3 | 1 | 0 |
| 0 | 2 | 7 | 2 | 5 | 1 | 3 | 0 |
| 0 | 0 | 1 | 3 | 1 | 7 | 3 | 0 |
| 0 | 4 | 2 | 1 | 6 | 2 | 8 | 0 |
| 0 | 2 | 4 | 5 | 2 | 3 | 9 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |











## **Max Pooling**

Input Image

| 6 | 8 | 6 | 1 |
|---|---|---|---|
| 1 | 2 | 7 | 4 |
| 9 | 8 | 1 | 2 |
| 8 | 9 | 3 | 2 |

Max pooling with Stride 2

MAX

Result

8 7 9 3



## **Max Pooling**





## **Average Pooling**

#### Input Image

| 6 | 8 | 6 | 1 |
|---|---|---|---|
| 1 | 2 | 7 | 4 |
| 9 | 8 | 1 | 2 |
| 8 | 9 | 3 | 2 |

Max pooling with Stride 2

AVG

Result

4.25 4.50 8.50 2.67







| Problem Type                  | Activation Function for Last Layer | Output                                                                                                                              |
|-------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Regression                    | None (or identity function)        | A numerical number that can take any value                                                                                          |
| Binary<br>classification      | sigmoid                            | A numerical number ranging from 0 to 1 corresponding to the probability of the observation.                                         |
| Multi-class<br>classification | softmax                            | Multiple numerical numbers (depending on the number of classes) ranging from 0 to 1 corresponding to the probability of each class. |

