Name	
Surname	

OPTOELECTRONICS

Exam 1

Grade:

Problem 1	Problem 2	
a)	a)	
b)	b)	
c)	c)	
	d)	

Questions		
1)	5)	9)
2)	6)	10)
3)	7)	11)
4)	8)	12)

Problem 1 (4 pts).

We have a SLED with an emitting square surface of 0.09 mm^2 That we want to inject into a 175/62.5 μm fiber with numerical aperture 0.2. The device allows a distance between the fiber and the surface of the SLED of 3.5 cm.

- a) Determine the type of lens required, the focal, and the position of the lens (2.5 pts)
- b) Draw the system and do the ray tracing (1pts)
- c) Determine the number of modes for a STEP and a GRIN fiber with the mentioned characteristics if the SLED emits at 1.05 μm (0.5pts)

(TIP: The SLED is symmetrical, there is no problem if the image is flipped)

Problem 2. (7pts)

We have an p-n homojunction based on GaAs, that we want to use as a detector.

- a) Determine the intrinsic carrier density and the potential bias \boldsymbol{V}_D using the provided values. (2pts)
- b) Determine the external potential required so 95% of the light is absorb in the depletion region. (Neglect absorption in the p or n regions) (2pts)
- c) Calculate the efficiency of this detector knowing that the maximum theoretical responsibility is 0.33. (1pts)
- d) We have two possible light sources, GaAs and InP, calculate the most intense wavelength of emission for each one at room temperature. If the proportionality constant α_{emi} is equal for both semiconductors, discuss which one is going to create more current in the detector. (2pt)

T = 300 K	$m_e = 0.07 m_e^0$	$m_h = 0.56 m_e^0$
$\alpha = 0.7 \ mm^{-1}$	$N_d = 5 * 10^{21} m^{-3}$	$N_a = 5 * 10^{23} m^{-3}$
	$\mu_e = 0.85 m^2 \cdot V^{-1} \cdot s^{-1}$	$\mu_h = 0.04 \ m^2 \cdot V^{-1} \cdot s^{-1}$
	$E_q(GaAs) = 1.43 \text{ eV}$	$E_q(InP) = 1.27 \ eV$

Name	
Surname	

Questions. (0.75 pts each, 12 in total)

- 1. After a given lens the beam rays converge. The image will be
 - a) Always virtual
 - b) Always real
 - c) Real only if the lens is convergent
 - d) Real only if the object is virtual
- 2. A planar monochromatic beam crosses the interface between two media with the same refractive index for that given wavelength $n_1=n_2$, but opposite dispersion regime (one is anomalous and the other is normal dispersion). The beam direction will remain constant, $\theta_1=\theta_2,...$
 - a) Only if the first medium has anomalous dispersion and the second normal dispersion
 - b) Only if the first medium has normal dispersion and the second anomalous dispersion
 - c) Always
 - d) Never
- 3. The reflected beam obtained at the Brewster angle will be:
 - a) Always linear polarized
 - b) Always perpendicular to the plane of propagation
 - c) Both a) and b)
 - d) Neither a) nor b)
- 4. Two given fields such as $\overrightarrow{E_1}$ and $\overrightarrow{E_2} = \overrightarrow{E_1} e^{i\phi}$ interfere at a given plane. This interference
 - a) Always constructive if $\phi = 0$ and destructive if $\phi = \pi$
 - b) Always constructive if both waves are spherical
 - c) Always destructive if both waves are planar
 - d) It depends on the plane of observation
- 5. Given injection only in the center of a generic circular GRIN fiber, which is the relation between the parameter g and the numerical aperture of that fiber.
 - a) The numerical aperture is linear with g, $NA \propto g$
 - b) The numerical aperture is quadratic with g, $NA \propto g^2$
 - c) The numerical aperture is inversely proportional to g, $NA \propto g^{-1}$
 - d) The numerical aperture is independent of g
- 6. Mark the true affirmation
 - a) Single mode optical fiber have always one mode independently of the signal wavelength

- b) Optical fibers are very sensitive to external electric fields
- c) Given a STEP and a GRIN fibers with the same parameters, the GRIN fiber will have less modes at any given wavelength
- d) A drawback in optical fibers is their huge signal attenuation

7. The band-gap in an homojunction

- a) Is determined by the dopant concentrations
- b) Is greater in the depletion region
- c) Is smaller in the depletion region
- d) Is constant

8. The internal quantum efficiency

- a) Is only determined by the lifetime of holes and electrons
- b) Is only determined by the physical structure of the device
- c) Is a combination of the internal and external efficiencies
- d) This parameter does not exist

9. Mark the correct one.

- a) Surface and edge emitting LEDs have always the same efficiency
- b) Edge emitting LEDs have a linear response over a wide range.
- c) Injection laser diodes produce mainly incoherent light
- d) The difference between SLED, ELED and ILD is the wavelength emitted

10. In order to reduce the gain coefficient threshold, you can:

- a) Increase the longitudinal length
- b) Reduce the transmission in the edge faces
- c) Either a) and/or b)
- d) Neither a) nor b)

11. What is the main difference between photodiodes and photoconductors?

- a) The photodiodes require an external potential but the photoconductors not
- b) The photodiodes can detect high energy photons but the photoconductors not
- c) The photodiodes involve at least two differently dopped semiconducntors but the photoconductors only one
- d) The photodiodes are forward biased and photoconductors are reverse biased

12. Photodiodes are not sensitive to what kind of noise

- a) Shot noise
- b) Thermal noise
- c) Dark noise
- d) They are sensitive to all of them

Data.

$$e = -1.6 * 10^{-19} C$$

$$m_e^0 = 9.11 * 10^{-31} kg$$

$$\epsilon_0 = 8.854 * 10^{-12} F \cdot m^{-1}$$

$$\mu_0 = 1.257 * 10^{-6} N \cdot A^{-2}$$

$$h = 6.626 * 10^{-34} J \cdot s$$

$$c_0 = 3 * 10^8 m \cdot s^{-1}$$

$$k = 1.381 * 10^{-23} J \cdot K^{-1}$$

$$N_A = 6.022 * 10^{23}$$

Equations.

Snell's Law

$$n_1 sin\theta_1 = n_2 sin\theta_2$$

Thin lens

$$\frac{1}{q} - \frac{1}{p} = \frac{1}{f}$$

Magnification

$$M = \frac{h'}{h} = \frac{n_1}{n_2} \frac{q}{p}$$

Brewster eq.

$$\theta_B = \arctan \frac{n_2}{n_1}$$

Fresnel coeffs.

$$\begin{split} r_{\perp} &= \frac{n_{1}cos\theta_{1} - n_{2}cos\theta_{2}}{n_{1}cos\theta_{1} + n_{2}cos\theta_{2}} = \frac{\tan(\theta_{1} - \theta_{2})}{\tan(\theta_{1} + \theta_{2})} \\ t_{\perp} &= \frac{2n_{1}cos\theta_{1}}{n_{1}cos\theta_{1} + n_{2}cos\theta_{2}} \\ r_{||} &= \frac{n_{2}cos\theta_{1} - n_{1}cos\theta_{2}}{n_{1}cos\theta_{2} + n_{2}cos\theta_{1}} = -\frac{\sin(\theta_{1} - \theta_{2})}{\sin(\theta_{1} + \theta_{2})} \\ r_{||} &= \frac{2n_{1}cos\theta_{1}}{n_{1}cos\theta_{2} + n_{2}cos\theta_{1}} \end{split}$$

Current carrier densities

$$n_0 = N_c e^{-\frac{E_c - E_F}{kT}}$$

$$N_c = 2\left(2\pi m_e \frac{kT}{h^2}\right)^{3/2}$$

$$p_0 = N_v e^{\frac{E_v - E_F}{kT}}$$

$$N_v = 2 \left(2\pi m_h \frac{kT}{h^2}\right)^{3/2}$$

$$n_{p0} = N_d e^{\frac{-eV_D}{kT}}$$

$$p_{n0} = N_a e^{\frac{-eV_D}{kT}}$$

Diffusion parameters

$$D_{h/e} = \frac{\mu_{h/e}kT}{e}$$

$$L_{h/e} = \sqrt{D_{h/e}\tau_{h/e}}$$

Power emission

$$P = \alpha_{emi} (E_{ph} - E_g) e^{-\frac{(E_{ph} - E_g)}{kT}}$$

Gain

$$G = R_1 R_2 e^{2(g - \alpha_{eff})L}$$

ILD Efficiency

$$\eta = \eta_{int}\eta_{ext} = \eta_{int} \frac{\left(g_{th} - \alpha_{eff}\right)}{g_{th}}$$

Responsibility

$$\Re = \frac{I_p}{P_{in}} = \eta \frac{e}{h\nu} = \eta \frac{e}{hc} \lambda$$

Depletion region width

$$w = \sqrt{\frac{2\epsilon}{e}(V_d + V)\left(\frac{1}{N_a} + \frac{1}{N_d}\right)}$$