Again, by assuming finiteness of the Tate-Shafarevich group, the non-degenerate alternating pairing on $\coprod(E_{D'})[3]$ implies that this group is of even dimension as an \mathbb{F}_3 -vector space and we obtain the congruence relation

(13)
$$r(E_{D'}) \equiv r(\mathcal{S}_3(E_{D'})) \equiv r(\mathcal{S}_\phi(E_{D'})) + r(\mathcal{S}_{\hat{\phi}}(\hat{E}_D)) \equiv 1 \mod 2.$$

The last two equivalences follow from (11) and Proposition 3.1.

4. The Escalatory Case and No Integral Points

In the previous section we established that the elliptic curves $E_{D'}$ have odd rank. In this section, we will define a subfamily of these curves and show that this subfamily cannot have integral points.

Let us first recall a classical result of Scholz regarding the rank of the 3-part of the ideal class group of quadratic number fields. The interested reader may refer to [18], Section 10.2] for more details on Scholz's Theorem.

Let
$$d > 1$$
 be square-free. Let $F = \mathbb{Q}(\sqrt{d})$ and $K = \mathbb{Q}(\sqrt{-3d})$. If $3|d$ then let $K = \mathbb{Q}(\sqrt{-d/3})$. Then $r_F \le r_K \le r_F + 1$.

Definition 4.2. With notation as in Theorem 4.1, we define as escalatory the case where $r_K = r_F + 1$ and as non-escalatory the case where $r_K = r_F$.

The terms escalatory and non-escalatory are used for example in [9], Chapter 4]. Specifically, in Section 4.10 of [9], it is shown that in the case of negative fundamental discriminant d, the escalatory case is equivalent to the non-existence of cubic fields of discriminant 3^4d . Translating this to our notation, we have

Remark 4.3. If $r_3(D) = r_3(D') + 1$ then there are no cubic fields of discriminant 3^4D .

We will not explain in this paper the proof of this result. We only need to mention that the proof requires the use of the so-called 3-virtual units, which we also use here and we define right before Proposition 4.8 These 3-virtual units live in the quadratic resolvent $K_{D'}$ and give rise to cubic extensions of K_D . The interested reader will find all the necessary theory in 9, Chapter 4 and 6, Section 5.2.2, and may find more on the relation between 3-virtual units, ideal class groups and elliptic curves in 1.

Before we go on to prove that the subfamily of elliptic curves $E_{D'}$ with $r_3(D) = r_3(D') + 1$ have no integral points, let us show the relation between the non-escalatory case $r_3(D) = r_3(D')$ and the existence of a cubic field of discriminant 3^4D , via elliptic curves, with the following example. Let us note that the discriminant D = -1355 of the example does not belong to the set of discriminants that we consider in this paper, since $-1355 \equiv 1 \mod 3$. This is not important though since it does not affect the purpose of the example.

Example 4.4. Consider the negative fundamental discriminant D = -1355. We have $r_3(D) = r_3(D') = 1$ and so we are in the non-escalatory case. To show the existence of a cubic field of discriminant equal to 3^4D , which is