Estudo e proposta de ferramenta para comunicação em ambientes de desastres

Eduardo K. Veiga¹, Érico M. H. do Amaral¹

¹Engenharia de Computação – Universidade Federal do Pampa (UNIPAMPA) Caixa Postal 96413-170 – Bagé – RS – Brasil

edu@bsd.com.br,ericohoff@unipampa.edu.br

Resumo. Este trabalho apresenta um estudo sobre gerenciamento de desastres e propõe a elaboração de uma aplicação para dispositivos móveis que possa auxiliar a comunicação das equipes de resgate durante uma operação de resposta a um incidente de desastre. Para isso, estudou-se tecnologias de comunicação sem fio que permitam uma comunicação entre dispositivos sem depender de uma infraestrutura.

Abstract. This work presents a study about disaster management and proposes a mobile device aplication development that can help the communication of rescue teams during response operations to a disaster incident. For that, was studied wireless communication technologies which allows device to device communications without an infrastructure.

1. Introdução

Desastres são eventos que ocorrem quando um adversidade física de origem natural, como terremotos, tsunamis e furacões, ou causada pela ação humana, como guerras, terrorismo e acidentes industriais, provoca, direta ou indiretamente, danos extensos à propriedade, faz um grande número de vítimas, ou ambos [Loureiro 2012].

Com a finalidade de auxiliar e resgatar vítimas e minimizar danos ao patrimônio público e privado da região atingida, equipes de resgate são mobilizadas para o local. Essas equipes são formadas por vários profissionais, tais como: médicos, bombeiros, policiais, enfermeiros, motoristas, dentre outros. É evidente que, para trabalharem em conjunto, tais equipes necessitam de um modelo padronizado de ação, que damos o nome de gerência de desastres [Carrillo et al. 2012].

Um modelo de gerência de desastres serve para sistematizar a forma de atuação e organização de um centro de operações de emergência. Descreve como a operação deve ser conduzida, quem e como deve comandar a mesma e quais as funções que cada profissional deve desempenhar [Lopes 2009].

Outra necessidade em operações de emergência é a comunicação entre todas as partes envolvidas, o comando, os agentes, a população afetada e a mídia. Ferramentas tradicionais de comunicação demandam uma grande infraestrutura composta por fios, antenas, servidores, satélites que irão tornar possível o funcionamento das mesmas [Gomes 2009]. Como a infraestrutura local pode estar danificada, a comunicação entre as partes deve se dar por meio de uma tecnologia que não necessite utilizar a infraestrutura local da região.

Dispositivos móveis como *smartphones* e *notebooks* possuem a capacidade de se interconectarem em redes sem fio por meio de uma topologia dinâmica e temporária sem a necessidade de utilizarem servidores e pontos de acesso fixos. Esse tipo de rede é chamado *Mobile Ad Hoc Network*(MANETs) [Fernandes et al. 2006]. Nessas redes, cada dispositivo participante (também chamado de nó) funciona como um roteador, recebendo e enviando pacotes de dados de outros nós.

O Objetivo do trabalho é desenvolver um estudo sobre centro de operações de emergência, seu funcionamento, organização e propor a implementação de uma aplicação de comunicação para dispositivos móveis que possa auxiliar a comunicação entre pessoas que se encontrem dentro da região de desastre.

2. Gerenciamento de desastres

O modelo de gerenciamento de desastes estudado para este projeto é conhecido como sistema de comando de operações(SCO). Ele serve para comandar, controlar e coordenar as operações de resposta em situações críticas, fornecendo um meio de articular os esforços de agências individuais, atuando com objetivo de estabilizar uma situação crítica e proteger vidas, propriedades e meio ambiente [Lopes 2009].

O SCO possui uma estrutura modular e flexível onde há uma estrutura padrão com funções previamente definidas, que são ativadas somente de acordo com a demanda da operação. Nessa estrutura, há uma unidade central, que deve ser instalada em local seguro pela primeira pessoa da equipe de resgate que chegar próximo ao incidente. Esta é o comando da operação e tem o poder de criar novas unidades com base nas necessidades da mesma. Cada unidade trabalha com um objetivo claro e uma função bem definida. Ao longo da operação, o comando pode ser transferido para um profissional mais capacitado [Oliveira 2009].

As unidades criadas pelo comando podem criar subunidades, se necessário. Por exemplo, unidade de operações pode criar seções de bombeiros, policiais ou operações aéreas. A unidade de administração pode criar seu setor de compras, vendas e análise de custos. A Figura 1 ilustra um possível organograma do SCO.

Figura 1. Organograma do SCO Fonte: [Oliveira 2008]

Com base na organização do SCO, procurou-se estabelecer que tecnologias seriam necessárias para manter uma comunicação constante durante uma operação de resgate. Deveria ser uma tecnologia disponível em smartphones comuns e que possibilitasse a comunicação sem a necessidade de uma infraestrutura prévia.

3. Wi-Fi Direct

O Padrão *Wi-Fi Direct* é uma tecnologia que possibilita criar redes *ad-hoc* entre dispositivos *Wi-Fi* com a mesma facilidade encontrada em conexões *Bluetooth* [Machado et al. 2014]. Os dispositivos que implementam *Wi-Fi Direct* comunicam-se estabelecendo grupos P2P, equivalentes às redes tradicionais *Wi-Fi* com infraestrutura pré-definida. Um dispositivo que se torna o proprietário de um grupo é chamado de *P2P Group Owner* (P2P GO) e o dispositivo que atua como cliente é chamado de *P2P Client*. Tudo sendo atribuído de forma dinâmica e automática [Machado et al. 2014]. Por outro lado, os dispositivos que não implementam o padrão ainda podem se comunicar na rede como *Legacy Clients*, enxergando o *P2P GO* como um AP comum [Joh e Ryoo 2014]. Outros podem servir de *bridge*, conectando dois *P2P Groups*.

4. Desenvolvimento do protótipo

Em testes realizados com o uso da tecnologia *Wi-Fi Direct*, a mesma conseguiu manter conexões em uma distância de até 82,5 metros em uma taxa de até 11Mbps, conforme ilustrado na figura 2. Os dispositivos utilizados no teste foram dois smartphones *Android*: um *Galaxy Nexus* da Samsung com *Android* 4.3 e um *Prime Plus* da LG, com *Android* 5.0.2. Os dispositivos foram colocados a uma distância de um metro um do outro enquantro trocavam mensagens por meio de uma conexão *Wi-Fi Direct*. Media-se a taxa de transmissão de dados e a latência e, em caso de sucesso, aumentava-se a distância em mais um metro. O procedimento foi repetido até que as mensagens do emissor passaram a não ser recebidas pelo destinatário. Em quase todo o teste, a latência manteve-se na faixa de 20ms e somente começou a aumentar, chegando até quase 1s, a uma distância de 60m.

Figura 2. Gráfico da taxa de transferência de dados do *Wi-Fi Direct* pela distância Fonte: Criação própria

Com base nesses testes, concluiu-se que o protocolo *Wi-Fi Direct* atende aos propósitos do trabalho e, utilizando o mesmo, foi desenvolvido um protótipo que é capaz de enviar mensagens de texto entre dispositivos. É uma aplicação simples que ainda não é capaz de interconectar *P2P Groups* diferentes e nem possui uma interface de usuário intuitiva que traga recursos úteis àqueles que a utilizam em uma situação de desastre.

5. Resultados

O desenvolvimento do aplicativo ainda está em um ponto inicial. O protótipo serve apenas como exemplo para testar a viabilidade da ferramenta, porém já é capaz de interconectar dispositivos por meio de uma rede sem infraestrutura e permite que os mesmos troquem mensagens de texto. Até o momento, a aplicação funciona no raio de um *P2P Group* e não é capaz de lidar com múltiplos saltos para interligar dispositivos que não estejam no raio de alcance do *P2P Group*. O próximo passo do desenvolvimento será propor uma solução para interligar os *P2P Groups*, ampliando a capacidade da rede, e desenvolver ferramentas gráficas para a comunicação baseadas nas necessidades das equipes de resgate.

Referências

- Carrillo, G., Nichols, C. A., Douglas-Greaves, K., e Maama, T. (2012). *Introduction to Disaster Management*. Vancouver: Virtual University for Small States of the Commonwealth.
- Fernandes, N. C., Moreira, M. D., Velloso, P. B., Costa, L., e Duarte, O. (2006). Ataques e mecanismos de segurança em redes ad hoc. In *Minicursos do Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais* (SBSeg'2006), pages 49–102.
- Gomes, F. d. C. (2009). Infraestrutura de comunicação para a governança e o desenvolvimento: o cinturão digital do ceará. *Congresso Consad de Gestão Pública*.
- Joh, H. e Ryoo, I. (2014). A hybrid wi-fi p2p with bluetooth low energy for optimizing smart device's communication property. *Peer-to-Peer Networking and Applications*, pages 1–11.
- Lopes, D. (2009). Construindo Comunidades Mais Seguras: preparando para a ação cidadã em defesa civil. UFSC/CEPED.
- Loureiro, R. (2012). *Resgate em Estruturas Colapsadas*. Corpo de Bombeiros Militar do Estado do Rio de Janeiro, Rio De Janeiro:Corpo de Bombeiros Militar do Estado do Rio de Janeiro.
- Machado, F. A. O., Pinto, A. V., e Teixeira, M. M. (2014). Uma rede de compartilhamento de conteúdo multimídia em dispositivos móveis baseados na plataforma android. In *Anais do II Workshop de Comunicação em Sistemas Embarcados Críticos WoCCES 2014*, Florianópolis.
- Oliveira, A. (2008). Análise da utilização do sistena de comando em operações (sco) no gerenciamento de situações críticas pela coordenadoria estadual de defesa civil de minas gerais.
- Oliveira, M. (2009). Livro Texto do Projeto Gerenciamento de Desastres Sistema de Comando de Operaçções. Ministério da Integração Nacional, Florianópolis:Ministério da Integração Nacional.