Multiclass Classification

Motivation

- We have seen linear models for binary classification
- Learning algorithms for linear models
 - Perceptron, Pocket, Adaline, Logistic Regression
- In all cases, the prediction is simple
 - Given an example x, y = sgn(wTx)
 - Output is a single bit (0 or 1), (-1 or 1)
- What if our data contains k > 2 classes $(y \in \{1, 1, 2, ... k\})$?
 - Combining binary classifiers
 - 1. One-vs-all
 - 2. one-vs-one
 - 3. Error correcting codes

What is multiclass classification?

- An instance can belong to one of k classes
- Training data: Instance with class label (a number from 1 to k)
- Prediction: Given a new input, predict the class label

Each input belongs to exactly one class. Not more, not less.

- Otherwise, the problem is not multiclass classification
- If an input can be assigned multiple labels (think tags for emails rather than folders), it is called *multi-label classification*

Example applications: computer vision

• Input: 2D hand-written character; Output: which character?

Example applications: computer vision

• Input: 3D object; Output: which of a set of categories of objects is it?

Binary to multiclass

- Can we use a binary classifier to construct a multiclass classifier?
 - Decompose the prediction into multiple binary decisions
- How to decompose?
 - One-vs-all
 - All-vs-all
 - Error correcting codes

General setting

- Instances: $x \in \mathbb{R}^n$
 - The inputs are represented by their feature vectors
- Output $y \in \{1, 2, ..., k\}$
 - These classes represent domain-specific labels
- Learning: Given a dataset $S = \{(x_i, y_i)\}_{i=1}^m$
 - Need to specify a learning algorithm that takes uses D to construct a function that can predict y given x
 - Goal: find a predictor that does well on the training data and has low generalization error

- Prediction: Given an example x and the learned hypothesis
 - Compute the class label for x

One-vs-all classification

Assumption: Each class individually separable from *all* the others

- Learning: Given a dataset $S = \{(x_i, y_i)\}_{i=1}^m$ Note: $x_i \in \mathbb{R}^n, \ y_i \in \{1, 2, ..., k\}$
 - Decompose into k binary classification tasks
 - For class $c \in \{1, 2, ..., k\}$, construct a binary classification task as:
 - Positive examples: Elements of *S* with label *c*
 - Negative examples: All other elements of S
 - Train k binary classifiers $w_1, w_2, \dots w_k$ using any learning algorithm we have seen
- Prediction: Winner Takes All $y = \underset{i=1,...,k}{\operatorname{argmax}} w_i^T x$

Visualizing One-vs-all

One-vs-all may not always work

- Black boxes are not separable with a single binary classifier
- The decomposition will not work for these cases!

$$\mathbf{W_{re}}^{\mathsf{T}}\mathbf{X} > 0$$
 for red input s

One-vs-all classification: Summary

- Easy to learn
 - Use any binary classifier learning algorithm
- Problems
 - No theoretical justification
 - Calibration issues
 - We are comparing scores produced by K classifiers trained independently. No reason for the scores to be in the same numerical range!
 - Might not always work
 - Yet, works fairly well in many cases, especially if the underlying binary classifiers are well tuned

One-vs-One classification

- Assumption: Every pair of classes is separable
- Learning: Given a dataset $S = \{(x_i, y_i)\}_{i=1}^m$,
 - Note: $x_i \in \mathbb{R}^n$, $y_i \in \{1, 2, ..., k\}$
 - For every pair of labels (i, j), create a binary classifier with:
 - Positive examples: All examples with label i
 - Negative examples: All examples with label j
 - Train $\binom{k}{2} = \frac{k(k-1)}{2}$ classifiers in all
- Prediction: More complex, each label get k-1 votes
 - How to combine the votes? Many methods
 - Majority: Pick the label with maximum votes
 - Organize a tournament between the labels

All-vs-all classification

- Every pair of labels is linearly separable here
 - When a pair of labels is considered, all others are ignored

- Problems with this approach?
 - $O(k^2)$ weight vectors to train and store
 - Size of training set for a pair of labels could be very small, leading to overfitting
 - Prediction is often ad-hoc and might be unstable Eg: What if two classes get the same number of votes? For a tournament, what is the sequence in which the labels compete?

Error correcting output codes (ECOC)

- Each binary classifier provides one bit of information
- With K labels, we only need log₂K bits
 - One-vs-all uses K bits (one per classifier)
 - All-vs-all uses O(K²) bits
- Can we get by with O(log K) classifiers?
 - Yes! Encode each label as a binary string
 - Or alternatively, if we do train more than O(log K) classifiers, can we use the redundancy to improve classification accuracy?

Using log₂K classifiers

- Learning:
 - Represent each label by a bit string
 - Train one binary classifier for each bit
- Learning:
 - Use the predictions from all the classifiers to create a logoN bit string that uniquely decides the output

- What could go wrong here?
 - Even if one of the classifiers makes a mistake, final prediction is wrong!
 - How do we fix this problem?

#	Code				
0	0	0	0		
1	0	0	1		
2	0	1	0		
3	0	1	1		
4	1	0	0		
5	1	0	1		
6	1	1	0		
7	1	1	1		

8 classes, code-length

Error correcting output code

Answer: Use redundancy

- Assign a binary string with each label
 - Could be random
 - Length of the code word $L \ge \log_2 K$ is a parameter
- Train one binary classifier for each bit
 - Effectively, split the data into random dichotomies
 - We need only $\log_2 K$ bits
 - Additional bits act as an error correcting code
- One-vs-all is a special case.
 - How?

#	Code				
0	0	0	0	0	0
1	0	0	1	1	0
2	0	1	0	1	1
3	0	1	1	0	1
4	1	0	0	1	1
5	1	0	1	0	0
6	1	1	0	0	0
7	1	1	1	1	1

8 classes, code-length = 5

How to predict?

Prediction

- Run all L binary classifiers on the example
- Gives us a predicted bit string of length L
- Output = label whose code word is "closest" to the prediction
- Closest defined using Hamming distance
 - Longer code length is better, better errorcorrection

Example

- Suppose the binary classifiers here predict 11010
- The closest label to this is 6, with code word 11000

#	Code						
0	0	0	0	0	0		
1	0	0	1	1	0		
2	0	1	0	1	1		
3	0	1	1	0	1		
4	1	0	0	1	1		
5	1	0	1	0	0		
6	1	1	0	0	0		
7	1	1	1	1	1		

8 classes, code-length = 5

Summary: Decomposition for multiclass classification methods

General idea

- Decompose the multiclass problem into many binary problems
- We know how to train binary classifiers
- Prediction depends on the decomposition
 - Constructs the multiclass label from the output of the binary classifiers

Learning optimizes local correctness

- Each binary classifier does not need to be globally correct
 - That is, the classifiers do not need to agree with each other
- The learning algorithm is not even aware of the prediction procedure!

Poor decomposition gives poor performance

- Difficult local problems, can be "unnatural"
 - Eg. For ECOC, why should the binary problems be separable?