Билет 17

Aвтор1, ..., AвторN

20 июня 2020 г.

Содержание

0.1	Билет 17: индуцированная метрика.	Открытые и замкнутые множества в про-
	странстве и в подпространстве	

Билет 17 СОДЕРЖАНИЕ

0.1. Билет 17: Индуцированная метрика. Открытые и замкнутые множества в пространстве и в подпространстве.

Определение 0.1.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $Y \subset X$.

Тогда пара $\langle Y, \rho|_{Y\times Y}\rangle$ называется метрическим подпростраством X.

Далее, при разговое о подпростравах обычно будет указываться только множество, а метрика использоваться та-же что и для основного пространства.

Теорема 0.1.

Пусть (X, ρ) - метрическое пространство, Y - его подпространство.

 $A\subset Y$ открыто в Y тогда и только тогда, когда $\exists G$ открытое в X, такое, что $A=G\cap Y$

Доказательство.

Hеобходимость (\Longrightarrow):

$$A$$
 - открыто в $Y\implies \forall a\in A\quad \exists r_a>0\quad B^Y_{r_a}(a)\subset A$
$$\implies A=\bigcup_{a\in A}B^Y_{r(a)}(A)\subset\bigcup_{a\in A}B^X_{r(a)}(a)=:G$$

G - подходящее множество - оно открыто как объединение открытых, покажем что $A = G \cap Y$:

$$B_r^Y(x) = B_r^X(x) \cap Y.$$

$$G \cap Y = Y \cap \bigcup_{a \in A} B_{r(a)}^X(a) = \bigcup_{a \in A} B_{r(a)}^Y(a) = A.$$

Достаточность (\iff):

Пусть $A = G \cap Y$. Возьмём $a \in A$.

$$G$$
 открыто в $X \implies \exists r>0 \quad B_r^X(a) \subset G$ $\implies B_r^X(a) \cap Y \subset G \cap Y$ $\implies B_r^Y(a) \subset A$ $\implies A$ открыто в Y

Теорема 0.2.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, Y - его подпространство.

 $A \subset Y$ замкнуто тогда и только тогда, когда $\exists F$ замкнутое в X, такое, что $A = F \cap Y$.

Доказательство.

 $F:=X\backslash G$, где G - открытое в X такое, что $G\cap Y=Y\backslash A$ существование которого экивалентно открытости $Y\backslash A\iff$ замкнутости A.

$$F \cap Y = (X \setminus G) \cap Y$$

$$= (X \cap Y) \setminus G$$

$$= Y \setminus G$$

$$= Y \setminus (G \cap Y)$$

$$= Y \setminus (Y \setminus A)$$

$$= A$$

see Ann for examples, p.28X = \R ,