HWs

Eric Liu

CONTENTS

<u> </u>	HAPTER I GENERAL ANA	LYSIS HW PAGE 3_
1.1	HW1	3
1.2	HW2	17
1.3	Brunn-Minkowski Inequality	24
Сн	HAPTER 2 COMPLEX ANA	LYSIS HW PAGE 27
2.1	HW1	27
2.2	Exercise 1	30
2.3	HW2	32
2.4	Exercises 2	38
2.5	Exercise 3	40
Сн	HAPTER 3 PDE INTRO H	W Page 43
3.1	1.2 First Order Linear Equations	43
3.2	1.4 Initial and Boundary Condition	48
3.3	1.5 Well Posed Problems	49
3.4	1.6 Types of Second-Order Equations	52
3.5	2.1 The Wave Equation	55
3.6	2.2 Causality and Energy	63
3.7	2.3 The Diffusion Equation	65
3.8	2.4 Diffusion on the whole line	70
3.9	3.1 Diffusion on the half line	76
3.10	3.2 Reflection of waves	80

\mathbb{C}	HAPTER 4	PDE HW	Page 81_
4.1	PDE HW 1		81
4.2	PDE HW 2		84
4.3	PDE HW 3		85
4.4	PDE HW 4		87
\mathbf{C}	HAPTER 5	DIFFERENTIAL GEOMETRY HW	PAGE 90_
5.1	HW1		90
5.2	Appendix		96
5.3	Example: S^1, \mathbb{R}	$\setminus \mathbb{Z}$ diffeomorphism	97

Chapter 1

General Analysis HW

1.1 HW1

Question 1

Show \mathbb{R}^n is complete.

Proof. Let \mathbf{x}_k be an arbitrary Cauchy sequence in \mathbb{R}^n . We are required to show \mathbf{x}_k converge in \mathbb{R}^n . For each k, denote \mathbf{x}_k by $(x_{(1,k)}, \ldots, x_{(n,k)})$. We claim that for each $i \in \{1, \ldots, n\}$

$$x_{(i,k)}$$
 is a Cauchy sequence

Fix i and $\epsilon > 0$. To show $x_{(i,k)}$ is a Cauchy sequence, we are required to find $N \in \mathbb{N}$ such that for all $r, m \geq N$ we have

$$\left| x_{(i,r)} - x_{(i,m)} \right| \le \epsilon$$

Because \mathbf{x}_k is a Cauchy sequence in \mathbb{R}^n , we know there exists $N \in \mathbb{N}$ such that for all $r, m \geq N$, we have

$$|\mathbf{x}_r - \mathbf{x}_m| < \epsilon$$

Fix such N and arbitrary $r, m \geq M$. Observe

$$|x_{(i,r)} - x_{(i,m)}| \le \sqrt{\sum_{j=1}^{n} |x_{(j,r)} - x_{(j,m)}|^2} = |\mathbf{x}_r - \mathbf{x}_m| < \epsilon$$

We have proved that for each $i \in \{1, ..., n\}$, the real sequence $x_{(i,k)}$ is Cauchy. We now claim that for each $i \in \{1, ..., n\}$, we have

$$\limsup_{r \to \infty} x_{(i,r)} \in \mathbb{R} \text{ and } \lim_{k \to \infty} x_{(i,k)} = \limsup_{r \to \infty} x_{(i,r)}$$

Again fix i. Because $x_{(i,k)}$ is a Cauchy sequence, we know there exists some N such that for all $r, m \geq N$, we have

$$\left| x_{(i,r)} - x_{(i,m)} \right| < 1$$

This implies that for all $r \geq N$, we have

$$x_{(i,r)} < x_{(i,N)} + 1 (1.1)$$

Equation 1.1 then tell us

$$x_{(i,N)} + 1$$
 is an upper bound of $\{x_{(i,r)} : r \ge N\}$

Then by definition of sup, we have

$$\sup\{x_{(i,r)} : r \ge N\} \le x_{(i,N)} + 1 \in \mathbb{R}$$

This then implies $\limsup_{r\to\infty} x_{(i,r)} \in \mathbb{R}$. We now prove

$$\lim_{k \to \infty} x_{(i,k)} = \limsup_{r \to \infty} x_{(i,r)} \tag{1.2}$$

Fix $\epsilon > 0$. We are required to find N such that

$$\forall k \ge N, \left| x_{(i,k)} - \limsup_{r \to \infty} x_{(i,r)} \right| \le \epsilon$$

Because $\{x_{(i,k)}\}_{k\in\mathbb{N}}$ is a Cauchy sequence, we can let N_0 satisfy

$$\forall k, m \ge N_0, |x_{(i,k)} - x_{(i,m)}| < \frac{\epsilon}{2}$$

Because $\sup\{x_{(i,k)}:k\geq N'\} \setminus \limsup_{r\to\infty} x_{(i,r)}$ as $N'\to\infty$, we know there exists $N_1>N_0$ such that

$$\limsup_{r \to \infty} x_{(i,r)} - \frac{\epsilon}{2} < \sup\{x_{(i,k)} : k \ge N_0\} \le \limsup_{r \to \infty} x_{(i,r)} + \frac{\epsilon}{2}$$

Then because $\limsup_{r\to\infty} x_{(i,r)} - \frac{\epsilon}{2}$ is strictly smaller than the smallest upper bound of $\{x_{(i,k)}: k \geq N_1\}$, we see $\limsup_{n\to\infty} x_{(i,r)} - \frac{\epsilon}{2}$ is not an upper bound of $\{x_{(i,k)}: k \geq N_1\}$. This implies the existence of some N such that $N \geq N_1$ and

$$\limsup_{r \to \infty} x_{(i,r)} - \frac{\epsilon}{2} < x_{(i,N)} \le \limsup_{r \to \infty} x_{(i,r)} + \frac{\epsilon}{2}$$

Now observe that for all $k \geq N$, because $N \geq N_1 \geq N_0$

$$\limsup_{r \to \infty} x_{(i,r)} - \epsilon < x_{(i,N)} - \frac{\epsilon}{2} < x_{(i,k)} < x_{(i,N)} + \frac{\epsilon}{2} \leq \limsup_{r \to \infty} x_{(i,r)} + \epsilon$$

This implies for all $k \geq N$, we have

$$\left| x_{(i,k)} - \limsup_{r \to \infty} x_{(i,r)} \right| \le \epsilon$$

We have just proved Equation 1.2. Lastly, to close out the proof, we show

$$\lim_{k \to \infty} \mathbf{x}_k = \left(\lim_{k \to \infty} x_{(1,k)}, \dots, \lim_{k \to \infty} x_{(n,k)}\right)$$
(1.3)

Fix $\epsilon > 0$. For each $i \in \{1, \ldots, n\}$, let N_i satisfy

$$\forall r \ge N_i, \left| x_{(i,r)} - \lim_{k \to \infty} x_{(i,k)} \right| \le \frac{\epsilon}{\sqrt{n}}$$

Observe that for all $r \ge \max_{i \in \{1,...,n\}} N_i$, we have

$$\left| \mathbf{x}_r - \left(\lim_{k \to \infty} x_{(1,k)}, \dots, \lim_{k \to \infty} x_{(n,k)} \right) \right| = \sqrt{\sum_{i=1}^n \left| x_{(i,r)} - \lim_{k \to \infty} x_{(i,k)} \right|^2}$$

$$\leq \sqrt{\sum_{i=1}^n \frac{\epsilon^2}{n}} = \epsilon$$

We have proved Equation 1.3.

Question 2

Show \mathbb{Q} is dense in \mathbb{R} .

Proof. Fix $x \in \mathbb{R}$ and $\epsilon > 0$. To show \mathbb{Q} is dense in \mathbb{R} , we have to find $q \in \mathbb{Q}$ such that $|x - q| < \epsilon$.

Let $m \in \mathbb{N}$ satisfy $\frac{1}{m} < \epsilon$. Let n be the largest integer such that $n \leq mx$. Because n is the largest integer such that $n \leq mx$, we know mx - n < 1, otherwise we can deduce $n + 1 \leq mx$, which is impossible, since n + 1 is an integer and n is the largest integer such that $n \leq mx$. We now see that

$$\frac{n}{m} \in \mathbb{Q} \text{ and } \left| x - \frac{n}{m} \right| = \frac{mx - n}{m} < \frac{1}{m} < \epsilon$$

Theorem 1.1.1. (Distance Formula) Given two subsets A, B of a metric space, we have

$$d(A,B) = \inf_{b \in B} d(A,b)$$

Proof. Fix arbitrary $b \in B$. It is clear that

$$d(A,B) \le d(A,b)$$

It then follows $d(A, B) \leq \inf_{b \in B} d(A, b)$. Fix arbitrary $a \in A$ and $b_0 \in B$. Observe that

$$d(a,b_0) \ge d(A,b_0) \ge \inf_{b \in B} d(A,b)$$

It then follows $\inf_{b \in B} d(A, b) \leq d(A, B)$.

Question 3

Let E_1, E_2 be non-empty sets in \mathbb{R}^n with E_1 closed and E_2 compact. Show that there are points $x_1 \in E_1$ and $x_2 \in E_2$ such that

$$d(E_1, E_2) = |x_1 - x_2|$$

Deduce that $d(E_1, E_2)$ is positive if such E_1, E_2 are disjoint.

Proof. Because

- (a) $f(x) \triangleq d(E_1, x)$ is a continuous function on \mathbb{R}^n .
- (b) E_2 is compact.

It now follows by EVT there exists some $x_2 \in E_2$ such that

$$d(E_1, x_2) = \min_{x \in E_2} d(E_1, x) = \inf_{x \in E_2} d(E_1, x) = d(E_1, E_2)$$

where the last equality is proved above. We can now reduce the problem into finding x_1 in E_1 such that

$$d(x_1, x_2) = d(E_1, x_2)$$

For each $n \in \mathbb{N}$, let t_n satisfy

$$t_n \in E_1 \text{ and } d(t_n, x_2) < d(E_1, x_2) + \frac{1}{n}$$

Clearly, t_n is a bounded sequence. Then by Bolzano-Weierstrass Theorem, there exists a convergence subsequence t_{n_k} . Now, because E_1 is closed, we know

$$x_1 \triangleq \lim_{k \to \infty} t_{n_k} \in E_1$$

It then follows from the function $f(x) \triangleq d(x, x_2)$ being continuous on \mathbb{R}^n such that

$$d(x_1, x_2) = \lim_{k \to \infty} d(t_{n,k}, x_2) = d(E_1, x_2)$$

Question 4

Prove that the distance between two nonempty, compact, disjoint sets in \mathbb{R}^n is positive.

Proof. The proof follows from the result in last question while acknowledging compact is closed.

Question 5

Prove that if f is continuous on [a, b], then f is Riemann-integrable on [a, b].

Proof. Let $\overline{\int_a^b} f dx$ and $\underline{\int_a^b} f dx$ respectively denote the upper and lower Darboux sums. We prove that

$$\overline{\int_{a}^{b}} f dx = \int_{a}^{b} f dx$$

Fix ϵ . We reduce the problem into proving the existence of some partition $\{a = x_0, x_1, \dots, x_n = b\}$ such that

$$\sum_{i=1}^{n} \left[M_i - m_i \right] (x_i - x_{i-1}) \le \epsilon$$

where

$$M_i \triangleq \sup_{t \in [x_{i-1}, x_i]} f(t) \text{ and } m_i \triangleq \inf_{t \in [x_{i-1}, x_i]} f(t)$$

Because f is continuous on the compact interval [a, b], we know f is uniformly continuous on [a, b]. Let δ satisfy

$$|x-y| < \delta \text{ and } x, y \in [a,b] \implies |f(x)-f(y)| < \frac{\epsilon}{b-a}$$

Let n satisfy $\frac{b-a}{n} < \delta$. We claim the partition

$$\{a = x_0, x_1, \dots, x_n = b\}$$
 where $x_i \triangleq a + \frac{i(b-a)}{n}$ suffices

Now, by EVT, we know that for each i, there exists some $t_{i,M}, t_{i,m} \in [x_{i-1}, x_i]$ such that

$$f(t_{i,m}) = m_i$$
 and $f(t_{i,M}) = M_i$

Then because

$$|t_{i,m} - t_{i,M}| \le x_i - x_{i-1} \le \frac{b-a}{n} < \delta$$

We know $M_i - m_i < \frac{\epsilon}{b-a}$. This now give us

$$\sum_{i=1}^{n} \left[M_i - m_i \right] (x_i - x_{i-1}) < \sum_{i=1}^{n} \frac{\epsilon}{(b-a)} (x_i - x_{i-1})$$

$$= \frac{\epsilon}{b-a} \sum_{i=1}^{n} (x_i - x_{i-1})$$

$$= \frac{\epsilon}{b-a} (b-a) = \epsilon$$

Question 6

Find $\limsup_{n\to\infty} E_n$ and $\liminf_{n\to\infty} E_n$ where

$$E_n \triangleq \begin{cases} \left[\frac{-1}{n}, 1\right] & \text{if } n \text{ is odd} \\ \left[-1, \frac{1}{n}\right] & \text{if } n \text{ is even} \end{cases}$$

Proof. Fix arbitrary $n \in \mathbb{N}$. Let $p, q \geq n$ respectively be odd and even. We see

$$[0,1] \subseteq E_p$$
 and $[-1,0] \subseteq E_q$

This now implies

$$[-1,1] \subseteq \bigcup_{k \ge n} E_k$$

Then because n is arbitrary, it follows

$$\limsup_{n \to \infty} E_n = \bigcap_{n=1}^{\infty} \bigcup_{k \ge n} E_k = [-1, 1]$$

Again, fix arbitrary $n \in \mathbb{N}$ and $\epsilon > 0$. Let p, q respectively be even and odd integers greater than $\max\{n, \frac{1}{\epsilon}\}$. We now see

$$\epsilon \not\in [-1, \frac{1}{p}] = E_p \text{ and } -\epsilon \not\in [\frac{-1}{q}, 1] = E_q$$

Because ϵ is arbitrary and clearly $0 \in E_k$ for all k, we now see

$$\bigcap_{k \ge n} E_k = \{0\}$$

Then because n is arbitrary, we see

$$\liminf_{n \to \infty} E_n = \bigcup_{n=1}^{\infty} \bigcap_{k \ge n} E_k = \{0\}$$

Question 7

Show that

$$(\limsup_{n\to\infty} E_n)^c = \liminf_{n\to\infty} (E_n)^c$$

and

$$E_n \searrow E \text{ or } E_n \nearrow E \implies \limsup_{n \to \infty} E_n = \liminf_{n \to \infty} E_n = E$$

Proof. Fix arbitrary $x \in (\limsup_{n \to \infty} E_n)^c$. We can deduce

$$\exists n, x \not\in \bigcup_{k \ge n} E_k$$

This implies

$$\exists n, x \in \bigcap_{k \ge n} E_k^c$$

Then we see

$$x\in\bigcup_{n=1}^{\infty}\bigcap_{k\geq n}E_k^c=\liminf_{n\to\infty}E_n^c$$

We have proved $(\limsup_{n\to\infty} E_n)^c \subseteq \liminf_{n\to\infty} E_n^c$. We now prove the converse. Fix arbitrary $x\in \liminf_{n\to\infty} E_n^c$. We can deduce

$$\exists n, x \in \bigcap_{k \ge n} E_k^c$$

This implies

$$\exists n, x \not\in \bigcup_{k \ge n} E_k$$

Then we see

$$x \notin \bigcap_{n=1}^{\infty} \bigcup_{k>n} E_k = \limsup_{n \to \infty} E_n$$

Theorem 1.1.2. (Equivalent Definition for Limit Superior) If we let E be the set of subsequential limits of a_n

$$E \triangleq \{L \in \overline{\mathbb{R}} : L = \lim_{k \to \infty} a_{n_k} \text{ for some } n_k\}$$

The set E is non-empty and

$$\max E = \limsup_{n \to \infty} a_n$$

Proof. Let $n_1 \triangleq 1$. Recursively, because

$$\sup_{j \ge n_k} a_k \ge \limsup_{n \to \infty} a_n > \limsup_{n \to \infty} a_n - \frac{1}{k} \text{ for each } k$$

We can let n_{k+1} be the smallest number such that

$$a_{n_{k+1}} > \limsup_{n \to \infty} a_n - \frac{1}{k}$$

It is straightforward to check $a_{n_k} \to \limsup_{n \to \infty} a_n$ as $k \to \infty$. Note that no subsequence can converge to $\limsup_{n \to \infty} a_n + \epsilon$ because there exists N such that $\sup_{k \ge N} a_k < \limsup_{n \to \infty} a_n + \epsilon$.

Question 8

Show that

$$\limsup_{n \to \infty} (-a_n) = -\liminf_{n \to \infty} a_n$$

Proof. Note that $-a_{n_k}$ converge if and only if a_{n_k} converge. Then if we respectively define E and E^- to be the set of subsequential limits of a_n and $-a_n$, we see

$$E^- = \{ -L \in \mathbb{R} : L \in E \}$$

We now see

$$\lim_{n \to \infty} \sup(-a_n) = \max E^- = -\min E = -\liminf_{n \to \infty} a_n$$

Question 9

Show that

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n \tag{1.4}$$

Proof. Fix arbitrary ϵ . Let N_a, N_b respectively satisfy

$$\sup_{n \geq N_a} a_n \leq \limsup_{n \to \infty} a_n + \frac{\epsilon}{2} \text{ and } \sup_{n \geq N_b} b_n \leq \limsup_{n \to \infty} b_n + \frac{\epsilon}{2}$$

Let $N \triangleq \max\{N_a, N_b\}$. We now see that

$$\limsup_{n \to \infty} (a_n + b_n) \le \sup_{n \ge N} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n + \epsilon$$

The result then follows from ϵ being arbitrary.

Question 10

$$a_n, b_n$$
 is bounded non-negative $\implies \limsup_{n \to \infty} (a_n b_n) \le (\limsup_{n \to \infty} a_n) (\limsup_{n \to \infty} b_n)$ (1.5)

Proof. There are three cases we should consider

- (a) Both $\limsup_{n\to\infty} a_n$ and $\limsup_{n\to\infty} b_n$ equal 0.
- (b) Between $\limsup_{n\to\infty} a_n$ and $\limsup_{n\to\infty} b_n$, only one of them equals 0.
- (c) Neither $\limsup_{n\to\infty} a_n$ nor $\limsup_{n\to\infty} b_n$ equals to 0.

In the first case, because a_n, b_n are both non-negative, we can deduce

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0$$

which implies

$$\limsup_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n b_n = 0 = \lim_{n \to \infty} a_n \lim_{n \to \infty} b_n$$

For second case, WOLG, suppose $\limsup_{n\to\infty} a_n = 0$. Fix arbitrary ϵ . We can let N satisfy

$$\sup_{n \ge N} a_n < \frac{\epsilon}{\sup_{n \in \mathbb{N}} b_n}$$

Since for all $n \geq N$, we have

$$a_n b_n \le \frac{b_n \epsilon}{\sup_{k \in \mathbb{N}} b_k} \le \epsilon$$

We now see

$$\limsup_{n \to \infty} (a_n b_n) \le \sup_{n \ge N} a_n b_n \le \epsilon$$

The result

$$\limsup_{n\to\infty} a_n b_n = 0 = \limsup_{n\to\infty} a_n \limsup_{n\to\infty} b_n$$

then follows from ϵ being arbitrary.

Lastly, for the last case, let N_a, N_b respectively satisfy

$$\sup_{n \ge N_a} a_n \le \limsup_{n \to \infty} a_n \sqrt{1 + \epsilon} \text{ and } \sup_{n \ge N_b} b_n \le \limsup_{n \to \infty} b_n \sqrt{1 + \epsilon}$$

Let $N \triangleq \max\{N_a, N_b\}$, because for each $n \geq N$, we have

$$a_n b_n \le (\sup_{k \ge N_a} a_k)(\sup_{k \ge N_b} b_k) \le (1 + \epsilon)(\limsup_{n \to \infty} a_n)(\limsup_{n \to \infty} b_n)$$

It then follows that

$$\limsup_{n \to \infty} (a_n b_n) \le \sup_{n \ge N} (a_n b_n) \le (1 + \epsilon) (\limsup_{n \to \infty} a_n) (\limsup_{n \to \infty} b_n)$$

The result then follows from ϵ being arbitrary.

Question 11

Show that if either a_n or b_n converge, the equalities in Equation 1.4 and Equation 1.5 both hold true.

Proof. WOLG, suppose $\lim_{n\to\infty} a_n = L \in \mathbb{R}$. We then see

$$(a_{n_k} + b_{n_k})$$
 converge $\iff b_{n,k}$ converge

Let $E_{a,b}$ and E_b respectively be the set of subsequential limits of $(a_n + b_n)$ and b_n . We now have

$$E_{a,b} = \{L + L_b \in \mathbb{R} : L_b \in E_b\}$$

This give us

$$\limsup_{n \to \infty} (a_n + b_n) = \max E_{a,b} = L + \max E_b = \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

Now, additionally, suppose a_n, b_n are both bounded and nonnegative. Again because

$$a_{n_k}b_{n,k}$$
 converge $\iff b_{n,k}$ converge

We see

$$E_{a,b} = \{L(L_b) \in \mathbb{R} : L_b \in E_b\}$$

This give us

$$\limsup_{n \to \infty} (a_n b_n) = \max E_{a,b} = L \max E_b = (\limsup_{n \to \infty} a_n) (\limsup_{n \to \infty} b_n)$$

Question 12

Give example for which inequality in Equation 1.4 and Equation 1.5 are not equalities.

Proof. If

$$a_n \triangleq \begin{cases} 1 & \text{if } n \text{ is odd} \\ -1 & \text{if } n \text{ is even} \end{cases}$$
 and $b_n \triangleq \begin{cases} -1 & \text{if } n \text{ is odd} \\ 1 & \text{if } n \text{ is even} \end{cases}$

we have

$$\limsup_{n \to \infty} (a_n + b_n) = 0 < 2 = \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

Let L > 1 and

$$a_n \triangleq \begin{cases} L - \frac{1}{k} & \text{if } n = 2k - 1\\ (L - \frac{1}{k})^{-1} & \text{if } n = 2k \end{cases}$$
 and $b_n \triangleq \begin{cases} (L - \frac{1}{k})^{-1} & \text{if } n = 2k - 1\\ (L - \frac{1}{k}) & \text{if } n = 2k \end{cases}$

We have

$$\limsup_{n \to \infty} a_n b_n = 1 < L^2 = \limsup_{n \to \infty} a_n \limsup_{n \to \infty} b_n$$

Question 13

Give an example of a decreasing sequence of nonempty closed sets in \mathbb{R}^n whose intersection is empty.

Proof.

$$F_n \triangleq [n, \infty)$$
 suffices

Question 14

Given an example of two disjoint, nonempty closed sets in E_1 and E_2 in \mathbb{R}^n for which $d(E_1, E_2) = 0$.

Proof. Let

$$E_1 \triangleq \{n - \frac{1}{n} \in \mathbb{R} : n \in \mathbb{N} \text{ and } n \geq 2\} \text{ and } E_2 \triangleq \{n - \frac{1}{2n} \in \mathbb{R} : n \in \mathbb{N} \text{ and } n \geq 2\}$$

To see $E_1 \cap E_2 = \emptyset$, suppose $n - \frac{1}{n} = k - \frac{1}{2k}$ where n, k are two natural numbers greater than 2. We then see $\frac{1}{n} - \frac{1}{2k} = n - k$, which is impossible, since

$$\left| \frac{1}{n} - \frac{1}{2k} \right| < \max\{\frac{1}{2k}, \frac{1}{n}\} < 1$$

The fact E_1, E_2 are closed follows from both of them being totally disconnected. Now observe that for all ϵ , there exists large enough n such that

$$(n+\frac{1}{n})-(n+\frac{1}{2n})<\frac{1}{n}<\epsilon$$

This implies $d(E_1, E_2) = 0$.

Question 15

If f is defined and uniformly continuous on E, show there is a function \overline{f} defined and continuous on \overline{E} such that $\overline{f} = f$ on E.

Proof. Define \overline{f} on E by $\overline{f} = f$. For each $x \in \overline{E} \setminus E$, associate x with a sequence $t_{n,x}$ in E converging to x. We now claim that for each $x \in \overline{E} \setminus E$ the limit

$$\lim_{n\to\infty} f(t_{n,x}) \text{ converge in } \mathbb{R}$$

Fix ϵ . Because f is uniformly continuous on E, we know there exists δ such that

$$a, b \in E \text{ and } |a - b| \le \delta \implies |f(a) - f(b)| < \epsilon$$

Because $t_{n,x}$ converge, we know $t_{n,x}$ is Cauchy, then we know there exists N such that $|t_{n,x}-t_{m,x}|<\delta$ for all n,m>N, we then see that for all n,m>N, we have

$$|f(t_{n,x}) - f(t_{m,x})| < \epsilon$$

This implies $\{f(t_{n,x})\}_{n\in\mathbb{N}}$ is a Cauchy sequence in \mathbb{R} , thus converge in \mathbb{R} .

Define

$$\overline{f}(x) \triangleq \lim_{n \to \infty} f(t_{n,x}) \text{ for all } x \in \overline{E} \setminus E$$

We are required to show \overline{f} is also continuous on $\overline{E} \setminus E$. Fix ϵ and $x \in \overline{E} \setminus E$. Let δ satisfy

$$a, b \in E \text{ and } |a - b| \le \delta \implies |f(a) - f(b)| < \frac{\epsilon}{3}$$

We claim

$$\sup_{t \in B_{\frac{\delta}{2}}(x) \cap \overline{E}} \left| \overline{f}(t) - \overline{f}(x) \right| \le \epsilon$$

Fix $t \in B_{\frac{\delta}{2}}(x) \cap \overline{E}$. There are two possibilities

- (a) $t \in E$
- (b) $t \in \overline{E} \setminus E$

If $t \in E$, let n satisfy

$$|f(t_{n,x}) - \overline{f}(x)| < \frac{\epsilon}{3} \text{ and } |t_{n,x} - x| < \frac{\delta}{2}$$

Because

$$|t_{n,x} - t| \le |t_{n,x} - x| + |t - x| < \delta$$

we can deduce $|f(t_{n,x}) - f(t)| < \frac{\epsilon}{3}$. This now give us

$$\left| f(t) - \overline{f}(x) \right| \le \left| f(t_{n,x}) - f(t) \right| + \left| f(t_{n,x}) - \overline{f}(x) \right| < \epsilon$$

If $t \in \overline{E} \setminus E$. Write y = t and let $t_{n,y}$ be the associated sequence in E. Because $y \in B_{\frac{\delta}{2}}(x)$, we know there exists $t_{n,y}$ such that

$$t_{n,y} \in B_{\frac{\delta}{2}}(x)$$
 and $|f(t_{n,y}) - \overline{f}(y)| < \frac{\epsilon}{3}$

Again, let m satisfy

$$t_{m,x} \in B_{\frac{\delta}{2}}(x)$$
 and $|f(t_{m,x}) - \overline{f}(x)| < \frac{\epsilon}{3}$

We know $|t_{n,y}-t_{m,x}| \leq \delta$ because they both belong to $B_{\frac{\delta}{2}}(x)$. We can now deduce

$$\left|\overline{f}(y) - \overline{f}(x)\right| = \left|\overline{f}(y) - f(t_{n,y})\right| + \left|f(t_{n,y}) - f(t_{m,x})\right| + \left|f(t_{m,x}) - \overline{f}(x)\right| < \epsilon$$

which finish the proof.

Question 16

If f is defined and uniformly continuous on a bounded set E, show that f is bounded on E.

Proof. By last question, we can extend f to a continuous \overline{f} onto \overline{E} . Now because \overline{E} is compact and $|\overline{f}|$ is continuous on \overline{E} , by EVT, there exists $a \in \overline{E}$ such that

$$\sup_{x \in E} |f(x)| \le \max_{x \in \overline{E}} |f(x)| = f(a)$$

1.2 HW2

Question 17

Construct a two-dimensional Cantor set in the unit square $[0,1]^2$ as follows. Subdivide the square into nine equal parts and keep only the four closed corner squares, removing the remaining region (which form a cross). Then repeat this process in a suitably scaled version for the remaining squares, ad infinitum. Show that the resulting set is perfect, has plane measure zero, and equals $\mathcal{C} \times \mathcal{C}$.

Proof. Let $C'_n \subseteq \mathbb{R}^2$ be the result after the *n*th stage of removal, and let $C_n \subseteq \mathbb{R}$ be the result after the *n*th stage of removal in the construction of the classical ternary Cantor set. It is clear that

$$C'_n = C_n \times C_n$$
 for all n

It then follows

$$\bigcap_{n} \mathcal{C}'_{n} = \bigcap_{n} \mathcal{C}_{n} \times \mathcal{C}_{n} = \mathcal{C} \times \mathcal{C}$$

The fact that $\mathcal{C} \times \mathcal{C}$ has plane measure zero follows from Lemma 1.2.1. Fix $(a, b) \in \mathcal{C} \times \mathcal{C}$. Because \mathcal{C} is perfect, there exists some $b' \in \mathcal{C}$ such that

$$0 < |b' - b| < \epsilon$$

To see that C' is perfect, one see that

$$(a,b) \neq (a,b')$$
 and $(a,b') \in \mathcal{C}' \times \mathcal{C}'$ and $|(a,b) - (a,b')| = |b'-b| < \epsilon$

Question 18

Construct a subset of [0,1] in the same manner as the Cantor set, except that at the kth stage, each interval removed has length $\delta 3^{-k}$, $0 < \delta < 1$. Show that the resulting set is perfect, has measure $1 - \delta$, and contains no intervals.

Proof. Let $C'_n \subseteq \mathbb{R}$ be the result after the *n*th stage of removal according to the description. Clearly, each C'_n has 2^n amount of connected component, we then can compute the length of $C' \triangleq \bigcap C'_n$ to be

$$1 - \sum_{k=1}^{\infty} 2^{k-1} \delta 3^{-k} = 1 - \frac{\frac{\delta}{3}}{1 - \frac{2}{3}} = 1 - \delta$$

Since each C'_n has 2^n amount of connected component of equal length and $C'_n \subseteq [0, 1]$, we know the length of each connected component of C'_n must not be greater than $\frac{1}{2^n}$. It then follows that no interval [a, a + h] can be contained by all C'_n because if [a, a + h] is a subset of some connected component of C'_k of some k, then the measure h = |[a, a + h]| must be smaller than $\frac{1}{2^k}$, which is false when k is large enough.

Question 19

If E_k is a sequence of sets with $\sum |E_k|_e < \infty$, show that $\limsup_{n \to \infty} E_n$ has measure zero.

Proof. Note that

$$\sum_{k=N}^{\infty} |E_k|_e = \left(\sum_{k=1}^{\infty} |E_k|_e - \sum_{k=1}^{N-1} |E_k|_e\right) \to 0 \text{ as } N \to \infty$$

and note for all N we have

$$\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k \subseteq \bigcup_{k=N}^{\infty} E_k$$

Then for arbitrary ϵ , if we let N satisfy $\sum_{k=N}^{\infty} |E_k|_e < \epsilon$, we see that

$$\left|\limsup_{n\to\infty} E_n\right|_e = \left|\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k\right|_e \le \left|\bigcup_{k=N}^{\infty} E_k\right|_e \le \sum_{k=N}^{\infty} |E_k|_e < \epsilon$$

Question 20

If E_1, E_2 are measurable, show that

$$|E_1 \cup E_2| + |E_1 \cap E_2| = |E_1| + |E_2|$$

Proof. Observe the following expression of each set in disjoint union

(a)
$$E_1 = (E_1 \setminus E_2) \sqcup (E_1 \cap E_2)$$

(b)
$$E_2 = (E_2 \setminus E_1) \sqcup (E_1 \cap E_2)$$

(c)
$$E_1 \cup E_2 = (E_1 \setminus E_2) \sqcup (E_1 \cap E_2) \sqcup (E_2 \setminus E_1)$$

It now follows

$$|E_1 \cup E_2| + |E_1 \cap E_2| = |E_1 \setminus E_2| + |E_1 \cap E_2| + |E_1 \cap E_2| + |E_2 \setminus E_1|$$

= $|E_1| + |E_2|$

Lemma 1.2.1. Given two subsets Z_1, Z_2 of \mathbb{R} , if $|Z_1| = 0$, then $|Z_1 \times Z_2| = 0$.

Proof. Let $A_n \triangleq [n, n+1)$. Because

$$Z_1 \times Z_2 = \bigsqcup_{n \in \mathbb{Z}} Z_1 \times (A_n \cap Z_2)$$

To show $|Z_1 \times Z_2| = 0$, we only have to $|Z_1 \times (A_n \cap Z_2)| = 0$ for all $n \in \mathbb{Z}$. In other words, we can WOLG suppose Z_2 is bounded.

Now, fix ϵ . We are required to find an countable closed cube cover $Q_n \times C_n$ for $Z_1 \times Z_2$ such that $\sum_n |Q_n \times C_n| < \epsilon$. Let $C_n = C$ for all n where C is a compact interval containing Z_2 , and let Q_n be a countable compact interval cover for Z_1 such that $\sum |Q_n| < \frac{\epsilon}{|C|}$. It then follows $\sum_n |Q_n \times C_n| = \sum_n |Q_n| |C| < \epsilon$.

Theorem 1.2.2. (Product of Finite Measure Set) If E_1 and E_2 are measurable subset of \mathbb{R} and $|E_1|, |E_2| < \infty$, then $E_1 \times E_2$ is measurable in \mathbb{R}^2 and

$$|E_1 \times E_2| = |E_1| |E_2|$$

Proof. Write $E_1 \triangleq H_1 \sqcup Z_1$ and $E_2 \triangleq H_2 \sqcup Z_2$ where $H_1, H_2 \in F_\sigma$ and $|H_1| = |E_1|$ and $|H_2| = |E_2|$. Now observe

$$E_1 \times E_2 = (H_1 \times H_2) \cup (Z_1 \times E_2) \cup (E_1 \times Z_2)$$

Note that if we write $H_1 = \bigcap F_{1,n}$ and $H_2 = \bigcap F_{2,n}$, we see $H_1 \times H_2 = \bigcap F_{1,n} \times F_{2,n} \in F_{\sigma}$ in \mathbb{R}^2 , it now follows from Lemma 1.2.1 that $E_1 \times E_2$ is measurable.

Now, let S_n be a decreasing sequence of open set containing E_1 such that $|S_n \setminus E_1| < \frac{1}{n}$, and let T_n be a decreasing sequence of open set containing E_2 such that $|T_n \setminus E_2| < \frac{1}{n}$. In other words,

$$E_1 = S \setminus Z_1 \text{ and } E_2 = T \setminus Z_2 \text{ where } \begin{cases} S \triangleq \bigcap S_n \\ T \triangleq \bigcap T_n \\ |Z_1| = |Z_2| = 0 \end{cases}$$

We now have

$$S \times T = (E_1 \times E_2) \cup (Z_1 \times E_2) \cup (E_1 \times Z_2)$$

This then implies $|S \times T| = |S \times T|_e \le |E_1 \times E_2|_e + |Z_1 \times E_2|_e + |E_1 \times Z_2|_e = |E_1 \times E_2|$, where the last inequality follows from Lemma 1.2.1. The reverse inequality is clear, since $E_1 \times E_2 \subseteq S \times T$. We have proved $|E_1 \times E_2| = |S \times T|$.

Now, for each n, write

$$S_n = \bigcup_{k \in \mathbb{N}} I_{k,S_n}$$
 and $T_n = \bigcup_{k \in \mathbb{N}} I_{k,T_n}$

where $(I_{k,S_n})_k$ and $(I_{k,T_n})_k$ are non-overlapping compact interval. It then follows that

$$|S_n \times T_n| = \sum_{i,j} |I_{i,S_n} \times I_{j,T_n}| = \sum_{i,j} |I_{i,S_n}| \times |I_{j,T_n}| = \sum_i |I_{i,S_n}| \sum_j |I_{j,T_n}| = |S_n| |T_n|$$

Write $S \triangleq \bigcap_{n \in \mathbb{N}} S_n$ and $T \triangleq \bigcap_{n \in \mathbb{N}} T_n$. Because

- (a) Each $S_n \times T_n$ is open.
- (b) $|S_n \times T_n| = |S_n| |T_n|$ is bounded $(: |S_n| \setminus |E_1| < \infty)$.
- (c) $S_n \times T_n \setminus S \times T$

We can now deduce

$$|E_1 \times E_2| = |S \times T| = \lim_{n \to \infty} |S_n \times T_n|$$
$$= \lim_{n \to \infty} |S_n| |T_n|$$
$$= |E_1| |E_2|$$

Question 21

If E_1 and E_2 are measurable subset of \mathbb{R} , then $E_1 \times E_2$ is a measurable subset of \mathbb{R}^2 and $|E_1 \times E_2| = |E_1| |E_2|$

Proof. Define

$$A_n \triangleq \{x \in \mathbb{R} : n \le x < n+1\}$$

Because

$$E_1 = \bigcup_{n \in \mathbb{Z}} E_1 \cap A_n \text{ and } E_2 = \bigcup_{k \in \mathbb{Z}} E_2 \cap A_k$$

We can deduce

$$E_1 \times E_2 = \bigcup_{n,k \in \mathbb{Z}} (E_1 \cap A_n) \times (E_2 \cap A_k)$$

Note that Theorem 1.2.2 tell us $(E_1 \cap A_n) \times (E_2 \cap A_k)$ is measurable, which implies $E_1 \times E_2$ is measurable. Theorem 1.2.2 also tell us $|(E_1 \cap A_n) \times (E_2 \cap A_k)| = |E_1 \cap A_n| |E_2 \cap A_k|$, which allow us to deduce

$$|E_1 \times E_2| = \sum_{n,k \in \mathbb{Z}} |(E_1 \cap A_n) \times (E_2 \cap A_k)| = \sum_{n,k \in \mathbb{Z}} |E_1 \cap A_n| |E_2 \cap A_k|$$
$$= \sum_{n \in \mathbb{Z}} |E_1 \cap A_n| \sum_{k \in \mathbb{Z}} |E_2 \cap A_k| = |E_1| |E_2|$$

Question 22

Give an example that shows that the image of a measurable set under a continuous transformation may not be measurable. See also Exercise 10 of Chapter 7.

Proof. Consider the Cantor-Lebesgue function denoted by $f:[0,1] \to [0,1]$ and denote the classical ternary Cantor set by \mathcal{C} . Let V be a Vitali set contained by [0,1]. Because $f(\mathcal{C}) = [0,1]$, we know there exists $E \subseteq \mathcal{C}$ such that f(E) = V. Such E is measurable since $|E|_e \leq |\mathcal{C}| = 0$, yet its continuous image V = f(E) is by definition non-measurable.

Question 23

Show that there exists disjoint E_1, E_2, \ldots such that $|\bigcup E_k|_e < \sum |E_k|_e$ with strict inequality.

Proof. Let V be a Vitali Set contained by [0,1]. Enumerate $[0,1] \cap \mathbb{Q}$ by x_n . Define

$$E_n \triangleq \{v + x_n \in \mathbb{R} : v \in V\}$$
 for all n

The sequence E_n is disjoint, since if $p \in E_n \cap E_m$, then there exists some pair v_n, v_m belong to V such that

$$v_n + x_n = p = v_m + x_m (1.6)$$

which is impossible, since Equation 1.6 implies that $v_n \neq v_m$ and v_n, v_m are of difference of a rational number.

Now, note that for arbitrary n and $v \in V$, because $v \in V \subseteq [0,1]$ and $x_n \in [0,1]$, we have $v + x_n \in [0, 2]$. This implies

$$\bigsqcup_{n} E_n \subseteq [0,2] \text{ and } \left| \bigsqcup_{n} E_n \right|_e \le 2$$

Because V is non-measurable by definition, we know $|V|_e > 0$, and since outer measure is translation invariant, we can now deduce

$$\sum_{n} |E_n|_e = \sum_{n} |V|_e = \infty > 2 \ge \left| \bigsqcup_{n} E_n \right|_e$$

Question 24

Show that there exists decreasing sequence E_k of sets such that

- (a) $E_k \searrow E$. (b) $|E_k|_e < \infty$. (c) $\lim_{k \to \infty} |E_k|_e > |E|_e$

Proof. Let V be a Vitali Set contained by [0,1]. Enumerate $[0,1] \cap \mathbb{Q}$ by x_n . Define

$$V + x_n \triangleq \{v + x_n \in \mathbb{R} : v \in V\}$$

In last question, we have proved that $V + x_n$ is pairwise disjoint. Define for all $n \in \mathbb{N}$

$$E_n \triangleq \bigsqcup_{k > n} V + x_k$$

Observe that

$$E_k \searrow \bigcap E_n = \varnothing$$

which implies $|\bigcap E_n|_e = 0$, but

$$\lim_{n \to \infty} |E_n|_e = \lim_{n \to \infty} \left| \bigsqcup_{k > n} V + x_k \right| \ge \lim_{n \to \infty} |V + x_n| = |V| > 0$$

Question 25

Let Z be a subset of \mathbb{R} with measure zero. Show that the set $\{x^2 : x \in Z\}$ also has measure zero.

Proof. Fix $Z_n \triangleq Z \cap [-n, n]$. Since

$$\left| \{x^2 : x \in Z\} \right| \le \sum_{n=1}^{\infty} \left| \{x^2 : x \in Z_n\} \right|_e$$

We only have to prove

$$\left|\left\{x^2:x\in Z_n\right\}\right|_e=0 \text{ for all } n$$

Fix ϵ, n . Let I_k be a compact interval cover of Z_n such that $\sum |I_k| < \frac{\epsilon}{2n}$. We shall suppose $I_k \subseteq [-n, n]$, since if not, we can just let $I'_k \triangleq I_k \cap [-n, n]$.

Now, define

$$I_k^2 \triangleq \{x^2 : x \in I_k\}$$

Clearly, I_k^2 are all compact intervals, and if we write $I_k \triangleq [a_k, b_k]$, we have the following inequalities

$$\begin{cases} 0 \le a_k \le b_k \implies |I_k^2| = b_k^2 - a_k^2 = |I_k| (b_k + a_k) \le 2n |I_k| \\ a_k \le 0 \le b_k \implies |I_k^2| = \max\{a_k^2, b_k^2\} \le (b_k - a_k)^2 = |I_k| (b_k - a_k) \le 2n |I_k| \\ a_k \le b_k \le 0 \implies |I_k^2| = a_k^2 - b_k^2 = |I_k| (-a_k - b_k) \le 2n |I_k| \end{cases}$$

Note that $\{I_k^2\}_{k\in\mathbb{N}}$ is a compact interval cover of $\{x^2:x\in Z_n\}$, we now see

$$\left| \left\{ x^2 : x \in Z_n \right\} \right|_e \le \sum_k \left| I_k^2 \right| \le 2n \sum_k \left| I_k \right| < \epsilon$$

1.3 Brunn-Minkowski Inequality

Abstract

This HW assignment require us to prove Brunn-Minkowski Inequality.

We first introduce some notation. Given two sets $A, B \subseteq \mathbb{R}^d$ and a point $p \in \mathbb{R}^d$, we write

$$A + p \triangleq \{a + p \in \mathbb{R}^d : a \in A\}$$

and write

$$A + B \triangleq \{a + b \in \mathbb{R}^d : a \in A \text{ and } b \in B\}$$

Note that elementary set theory tell us

$$(A+p) + (B+q) = (A+B) + (p+q)$$
(1.7)

Theorem 1.3.1. (Brunn-Minkowski Inequality for Bricks) Suppose A, B are two bricks, i.e., A is of the form $\prod_{j=1}^{d} [x_j, y_j]$ and so is B, then we have

$$|A|^{\frac{1}{d}} + |B|^{\frac{1}{d}} \le |A + B|^{\frac{1}{d}}$$

Proof. Because Lebesgue measure is translation invariant, by Equation 1.7, we can WOLG suppose

$$A = \prod_{j=1}^{d} [0, a_j]$$
 and $B = \prod_{j=1}^{d} [0, b_j]$

It is clear that

$$A + B = \prod_{j=1}^{d} [0, a_j + b_j]$$

Now, by direct computation, we know that

$$|A + B| = \prod_{j=1}^{d} (a_j + b_j)$$
 and $|A| = \prod_{j=1}^{d} a_j$ and $|B| = \prod_{j=1}^{d} b_j$

Note that by AM-GM inequality, we have

$$\frac{|A|^{\frac{1}{d}}}{|A+B|^{\frac{1}{d}}} = \left(\prod_{j=1}^{n} \frac{a_j}{a_j + b_j}\right)^{\frac{1}{n}} \le \frac{1}{d} \sum_{j=1}^{d} \frac{a_j}{a_j + b_j}$$

Similarly by AM-GM inequality, we have

$$\frac{|B|^{\frac{1}{d}}}{|A+B|^{\frac{1}{d}}} = \left(\prod_{j=1}^{n} \frac{b_j}{a_j + b_j}\right)^{\frac{1}{n}} \le \frac{1}{d} \sum_{j=1}^{d} \frac{b_j}{a_j + b_j}$$

Adding two inequalities together, now have

$$\frac{|A|^{\frac{1}{d}} + |B|^{\frac{1}{d}}}{|A + B|^{\frac{1}{d}}} \le \frac{1}{d} \sum_{j=1}^{d} \frac{a_j + b_j}{a_j + b_j} = 1$$

The result then follows from multiplying both side with $|A + B|^{\frac{1}{d}}$.

Theorem 1.3.2. (Brunn-Minkowski Inequality for finite union of non-overlapping of bricks) Suppose A is a union of a finite collection of non-overlapping brick and so is B. We have

$$|A|^{\frac{1}{d}} + |B|^{\frac{1}{d}} \le |A + B|^{\frac{1}{d}}$$

Proof. We prove by induction on the sum k of the amount of bricks consisting A and the amount of bricks consisting B. The base case k = 2 have been proved by Theorem 1.3.1. Suppose the proposition hold true when $k \le r$. Let k = r + 1. Because the bricks consisting of A are non-overlapping, by a translation (and renaming axis if necessary), we can suppose

 $A^+ \triangleq A \cap \{\mathbf{x} \in \mathbb{R}^d : x_1 \geq 0\}$ is a union of a collection of non-overlapping bricks with amount at least one fewer than A.

This is true since if we write $A = A_1 \cup \cdots \cup A_m$, then by translation and remaining axis, we can suppose A_1 lies in only one of the closed subspaces $\{\mathbf{x} \in \mathbb{R}^d : x_1 \geq 0\}$, $\{\mathbf{x} \in \mathbb{R}^d : x_1 \leq 0\}$ and A_2 lies in another, and since for all $n \geq 3$, $A_n \cap \{\mathbf{x} \in \mathbb{R}^d : x_1 \geq 0\}$ is either also a brick or empty. With similar reason, we now see

 $A^- \triangleq A \cap \{\mathbf{x} \in \mathbb{R}^d : x_1 \leq 0\}$ is a union of a collection of non-overlapping bricks with amount at least one fewer than A.

Now, note that $h: \mathbb{R} \to \mathbb{R}$ defined by

$$h(t) \triangleq \left| \left(B + (t, 0, \dots, 0) \right) \cap \left\{ \mathbf{x} \in \mathbb{R}^d : x_1 \ge 0 \right\} \right|$$

is clearly a continuous function. (h can be expressed as a finite sum of continuous function $\sum_{k=1}^{p} h_k^p$ if B consist of p-amount of bricks)

We then can translate B to let B satisfy

$$\frac{|A^+|}{|A|} = \frac{|B^+|}{|B|} \text{ where } B^+ \triangleq B \cap \{\mathbf{x} \in \mathbb{R}^d : x_1 \ge 0\}$$
 (1.8)

Define $B^- \triangleq B \cap \{\mathbf{x} \in \mathbb{R}^d : x_1 \leq 0\}$. With similar reason stated above, we know B^+ and B^- are both union of collection of non-overlapping bricks with amount not greater than B.

At this point, one should note that the sum of the amount of bricks consisting A^+ (resp. A^-) and the amount bricks consisting B^+ (resp. B^-) is at least one fewer than the sum r+1 of the sum of the amount of bricks consisting A and the amount bricks consisting B. Then because the proposition hold true when $k \leq r$, we now have

$$|A^+|^{\frac{1}{d}} + |B^+|^{\frac{1}{d}} \le |A^+ + B^+|^{\frac{1}{d}} \text{ and } |A^-|^{\frac{1}{d}} + |B^-|^{\frac{1}{d}} \le |A^- + B^-|^{\frac{1}{d}}$$

Note that for each \mathbf{x} in the interior of $A^+ + B^+$, we must have $x_1 > 0$, and for each \mathbf{y} in the interior of $A^- + B^-$, we must have $y_1 < 0$. This implies that $(A^+ + B^+)$ and $(A^- + B^-)$ are non-overlapping. Now, because

$$A + B = (A^{+} + B^{+}) \cup (A^{-} + B^{-})$$

if we define $\rho \triangleq \frac{|A^+|}{|A|}$, from Equation 1.8 we can finally deduce

$$|A+B| = |A^{+} + B^{+}| + |A^{-} + B^{-}|$$

$$\geq \left(|A^{+}|^{\frac{1}{d}} + |B^{+}|^{\frac{1}{d}} \right)^{d} + \left(|A^{-}|^{\frac{1}{d}} + |B^{-}|^{\frac{1}{d}} \right)^{d}$$

$$(\because \frac{|A^{-}|}{|A|} = \frac{|B^{-}|}{|B|} = 1 - \rho) = \left((\rho |A|)^{\frac{1}{d}} + (\rho |B|)^{\frac{1}{d}} \right)^{d} + \left(((1-\rho)|A|)^{\frac{1}{d}} + ((1-\rho)|B|)^{\frac{1}{d}} \right)^{d}$$

$$= \left(\rho^{\frac{1}{d}} (|A|^{\frac{1}{d}} + |B|^{\frac{1}{d}}) \right)^{d} + \left((1-\rho)^{\frac{1}{d}} (|A|^{\frac{1}{d}} + |B|^{\frac{1}{d}}) \right)^{d}$$

$$= (\rho + 1 - \rho) (|A|^{\frac{1}{d}} + |B|^{\frac{1}{d}})^{d}$$

$$= (|A|^{\frac{1}{d}} + |B|^{\frac{1}{d}})^{d}$$

This then give us the desired

$$|A + B|^{\frac{1}{d}} \ge |A|^{\frac{1}{d}} + |B|^{\frac{1}{d}}$$

Chapter 2

Complex Analysis HW

2.1 HW1

Theorem 2.1.1.

$$(1+i)^n, \frac{(1+i)^n}{n}, \frac{n!}{(1+i)^n}$$
 all diverge as $n \to \infty$

Proof. Note that

$$|(1+i)^n| = 2^{\frac{n}{2}} \to \infty \text{ as } n \to \infty$$

This implies (1+i) is unbounded, thus diverge.

Note that

$$\left| \frac{(1+i)^n}{n} \right| = \frac{(\sqrt{2})^n}{n}$$

Observe

$$\frac{(\sqrt{2})^n}{n} = \frac{[(\sqrt{2}-1)+1]^n}{n} = \frac{\sum_{k=0}^n \binom{n}{k} (\sqrt{2}-1)^k}{n}$$
$$\geq \frac{\binom{n}{2} (\sqrt{2}-1)^2}{n} = (n-1) [\frac{(\sqrt{2}-1)^2}{2}] \to \infty \text{ as } n \to \infty$$

This implies $\frac{(1+i)^n}{n}$ is unbounded, thus diverge.

Note that

$$\left| \frac{n!}{(1+i)^n} \right| = \frac{n!}{(\sqrt{2})^n}$$

Note that for all $k \geq 8$, we have

$$\frac{k}{\sqrt{2}} \ge \frac{\sqrt{8}}{\sqrt{2}} = 2$$

This implies

$$\frac{n!}{(\sqrt{2})^n} = \prod_{k=1}^n \frac{k}{\sqrt{2}} = \frac{7!}{(\sqrt{2})^7} \prod_{k=8}^n \frac{k}{\sqrt{2}} \ge \frac{7!}{(\sqrt{2})^7} \prod_{k=8}^n 2 \ge \frac{7!2^{n-8+1}}{(\sqrt{2})^7} \to \infty$$

which implies $\frac{n!}{(1+i)^n}$ is unbounded, thus diverge.

Theorem 2.1.2.

$$n!z^n$$
 converge $\iff z=0$

Proof. If z=0, then $n!z^n=0$ for all n, which implies $n!z^n\to 0$. Now, suppose $z\neq 0$. Let $M\in\mathbb{N}$ satisfy $|z|>\frac{1}{M}$. Observe

$$|n!z^n| = \left| \prod_{k=1}^n kz \right| = \left| \prod_{k=1}^{2M-1} kz \right| \left| \prod_{k=2M}^n kz \right| \ge \left| \prod_{k=1}^{2M-1} kz \right| \left| \prod_{k=2M}^n 2Mz \right| \ge \left| \prod_{k=1}^{2M-1} kz \right| 2^{n-2M+1} \to \infty$$

This implies $n!z^n$ is unbounded, thus diverge.

Theorem 2.1.3.

$$u_n \to u \implies v_n \triangleq \sum_{k=1}^n \frac{u_k}{n} \to u$$

Proof. Because

$$\sum_{k=1}^{n} \frac{u_k}{n} = \sum_{k \le \sqrt{n}} \frac{u_k}{n} + \sum_{\sqrt{n} < k \le n} \frac{u_k}{n}$$

It suffices to prove

$$\sum_{k \le \sqrt{n}} \frac{u_k}{n} \to 0 \text{ and } \sum_{\sqrt{n} < k \le n} \frac{u_k}{n} \to u \text{ as } n \to \infty$$

Because u_n converge, we can let M bound $|u_n|$. Observe

$$\left| \sum_{k \le \sqrt{n}} \frac{u_k}{n} \right| \le \sum_{k \le \sqrt{n}} \left| \frac{u_k}{n} \right| \le \sum_{k \le \sqrt{n}} \frac{M}{n} \le \frac{M\sqrt{n}}{n} = \frac{M}{\sqrt{n}} \to 0 \text{ as } n \to 0 \text{ (done)}$$

Because

$$\sum_{\sqrt{n} < k \le n} \frac{u_k}{n} = \frac{n - \lceil \sqrt{n} \rceil + 1}{n} \sum_{\sqrt{n} < k \le n} \frac{u_k}{n - \lceil \sqrt{n} \rceil + 1}$$

and

$$\lim_{n \to \infty} \frac{n - \lceil \sqrt{n} \rceil + 1}{n} = 1$$

We can reduce the problem into proving

$$\lim_{n \to \infty} \sum_{\sqrt{n} < k \le n} \frac{u_k}{n - \lceil \sqrt{n} \rceil + 1} = u$$

Fix ϵ . Let N satisfy that for all $n \geq N$, we have $|u_n - u| < \epsilon$. Then for all $n \geq N^2$, we have

$$\left| \left(\sum_{\sqrt{n} < k \le n} \frac{u_k}{n - \lceil \sqrt{n} \rceil + 1} \right) - u \right| = \left| \sum_{\sqrt{n} < k \le n} \frac{u_k - u}{n - \lceil \sqrt{n} \rceil + 1} \right|$$

$$\leq \sum_{\sqrt{n} < k \le n} \frac{|u_k - u|}{n - \lceil \sqrt{n} \rceil + 1}$$

$$\leq \sum_{\sqrt{n} < k \le n} \frac{\epsilon}{n - \lceil \sqrt{n} \rceil + 1} = \epsilon \text{ (done)}$$

2.2 Exercise 1

Let R be a complex algebra with 1_A and $a \in R$. Given a complex polynomial

$$f(Z) = a_0 + a_1 Z + \dots + a_n Z^n,$$

we define the evaluation of f at a by

$$f(a) = a_0 1_A + a_1 a + \dots + a_n a^n.$$

Question 26

Let $R = \mathbb{C}$ and a = 1 + i. Given $f(Z) = Z^3$. Evaluate f(a).

Proof.
$$f(a) = (1+i)^3 = 2i(1+i) = -2 + 2i$$

Question 27

Let $R = M_{2\times 2}(\mathbb{C})$ be the algebra of 2×2 complex matrices. Take

$$a = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

and g(Z) = 3 + 2Z. Evaluate g(a).

Proof.

$$g(a) = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} + \begin{bmatrix} 2 & -2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 5 & -2 \\ 2 & 5 \end{bmatrix}$$

Question 28

Let R be the algebra of complex valued periodic functions of period 2π , i.e., $a \in R$ is a continuous function $a : \mathbb{R} \to \mathbb{C}$ so that $a(x+2\pi) = a(x)$. Let $e(x) = \cos x + i \sin x$ and

$$h(Z) = 1 + Z + Z^2 + \dots + Z^9.$$

Find h(e).

Proof. Note that

$$(\cos x + i\sin x)(\cos y + i\sin y) = (\cos x\cos y - \sin x\sin y) + i(\sin x\cos y + \cos x\sin y)$$
$$= \cos(x+y) + i\sin(x+y)$$
$$30$$

This give us

$$h(e) = \sum_{k=0}^{9} \cos(kx) + i\sin(kx)$$

2.3 HW2

Theorem 2.3.1. (Root Test is Stronger Than Ratio Test)

$$\liminf_{n\to\infty} \left| \frac{z_{n+1}}{z_n} \right| \le \liminf_{n\to\infty} \sqrt[n]{|z_n|} \le \limsup_{n\to\infty} \sqrt[n]{|z_n|} \le \limsup_{n\to\infty} \left| \frac{z_{n+1}}{z_n} \right|$$

Proof. Fix ϵ and WOLG suppose $\liminf_{n\to\infty}\left|\frac{z_{n+1}}{z_n}\right|>0$. We prove

$$\liminf_{n \to \infty} \sqrt[n]{|z_n|} \ge \liminf_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right| - \epsilon$$

Let $\alpha \in \mathbb{R}$ satisfy

$$\liminf_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right| - \epsilon < \alpha < \liminf_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right|$$

Let N satisfy

For all
$$n \ge N$$
, $\left| \frac{z_{n+1}}{z_n} \right| > \alpha$

We then see

$$\sqrt[N+n]{|z_{N+n}|} \ge \sqrt[N+n]{|z_N| \alpha^n} = \alpha \left(\frac{|z_N|^{\frac{1}{N+n}}}{\alpha^{\frac{N}{N+n}}}\right) \to \alpha \text{ as } n \to \infty \text{ (done)}$$

The proof for the other side is similar.

Question 29

Find the radius of convergence of the following series:

- (a) $\sum \frac{z^n}{n}$.

- (c) $\sum n! z^n$. (d) $\sum n^k z^n$ where k is a positive integer.
- (e) $\sum z^{n!}$.

Proof. We know

$$n^{\frac{1}{n}} = e^{\frac{\ln n}{n}} \to 1 \text{ as } n \to \infty$$

$$(2.1)$$

Equation 2.1 implies $n^{\frac{-1}{n}} \to 1$ as $n \to \infty$ and that $\sum \frac{z^n}{n}$ has radius of convergence 1. Equation 2.1 also implies $n^{\frac{k}{n}} \to 1$ and $\sum n^k z^n$ has radius of convergence 1.

We know

$$\lim_{n \to \infty} \frac{(n+1)!}{n!} = \infty$$

Then Theorem 2.3.1 tell us

$$\lim_{n \to \infty} (n!)^{\frac{1}{n}} = \infty \tag{2.2}$$

which implies that $\sum n!z^n$ has radius of convergence 0 and $\sum \frac{z^n}{n!}$ has radius of convergence ∞ . Note that

$$\sum z^{n!} = \sum a_n z^n \text{ where } a_n = \begin{cases} 1 & \text{if } n = k! \text{ for some } k \\ 0 & \text{otherwise} \end{cases}$$

It is then clear that

$$\limsup_{n\to\infty} (a_n)^{\frac{1}{n}} = 1$$

and the radius is 1.

Question 30

The 0th order Bessel function $J_0(z)$ is defined by the power series

$$J_0(z) = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(n!)^2} \frac{z^n}{2n}$$

Find its radius of convergence.

Proof. Equation 2.1 and Equation 2.2 tell us

$$\lim_{n \to \infty} (2n(n!)^2)^{\frac{1}{n}} = \infty$$

which implies that the radius of convergence of $J_0(z)$ is ∞ .

Theorem 2.3.2. (Abel's Test for Power Series) Suppose $a_n \to 0$ monotonically and $\sum a_n z^n$ has radius of convergence R.

The power series
$$\sum a_n z^n$$
 at least converge on $\overline{D_R(0)} \setminus \{R\}$

Proof. Note that

$$\sum \frac{a_n}{R^n} z^n$$
 has radius of convergence R

Fix $z \in \overline{D_R(0)} \setminus \{R\}$. Note that

$$\left| \sum_{n=0}^{\infty} \frac{z^n}{R^n} \right| = \left| \frac{1 - \left(\frac{z}{R}\right)^{N+1}}{1 - \frac{z}{R}} \right| \le \frac{2}{\left| 1 - \frac{z}{R} \right|} \text{ for all } N$$

It then follows from Dirichlet's Test that $\sum a_n(\frac{z}{R})^n$ converge.

Question 31

Suppose that $\sum a_n z^n$ has radius of convergence R and let C be the circle $\{z \in \mathbb{C} :$ |z|=R. Prove or disprove

(a) If $\sum a_n z^n$ converge at every point on C, except possibly one, then it converges absolutely every where on C

Proof. Consider $a_n \triangleq \frac{1}{n}$ for all $n \in \mathbb{N}$ and $a_0 \triangleq 1$. Then $\sum a_n z^n$ has convergence radius 1. Since $a_n \searrow 0$, it follows from Theorem 2.3.2, $\sum a_n z^n$ converge everywhere on $C \setminus \{1\}$. Observe that when z = 1, the series is just harmonic series, which diverge.

Question 32

If $\sum a_n z^n$ has radius of convergence R, find the radius of convergence of

- (a) $\sum n^3 a_n z^n$. (b) $\sum a_n z^{3n}$.
- (c) $\sum a_n^3 z^n$

Proof. Since $(n^3)^{\frac{1}{n}} \to 1$, we know $\sum n^3 a_n z^n$ also had radius of convergence R. We claim that the series $\sum a_n z^{3n}$ has convergence radius $R^{\frac{1}{3}}$. If $|z| < R^{\frac{1}{3}}$, then $|z^3| < R$ and thus

$$\sum a_n(z^3)^n$$
 converge

and if $|z| > R^{\frac{1}{3}}$, then $|z^3| > R$ and

$$\sum a_n(z^3)^n$$
 diverge

We have proved that $\sum a_n z^{3n}$ has convergence radius $R^{\frac{1}{3}}$.

Note that given a sub-sequence $|a_{n_k}|^{\frac{1}{n_k}}$,

 $|a_{n_k}|^{\frac{1}{n_k}}$ converge in extended reals if and only if $|a_{n_k}|^{\frac{3}{n_k}}$ converge in extended reals and if the former converge to L, then the latter converge to L^3 . It now follows that

$$\limsup_{n \to \infty} |a_n^3| = (\limsup_{n \to \infty} |a_n|)^3 = \frac{1}{R^3}$$

It now follows that $\sum a_n^3 z^n$ has convergence radius \mathbb{R}^3 .

Theorem 2.3.3. (Summation by Part)

$$f_n g_n - f_m g_m = \sum_{k=m}^{n-1} f_k \Delta g_k + g_k \Delta f_k + \Delta f_k \Delta g_k$$
$$= \sum_{k=m}^{n-1} f_k \Delta g_k + g_{k+1} \Delta f_k$$

Proof. The proof follows induction which is based on

$$f_m g_m + f_m \Delta g_m + g_m \Delta f_m + \Delta f_m \Delta g_m = f_{m+1} g_{m+1}$$

Question 33

Prove that, for $z \neq 1$

$$\sum_{n=1}^{k} \frac{z^n}{n} = \frac{z}{1-z} \left(\sum_{n=1}^{k-1} \frac{1}{n(n+1)} - \sum_{n=1}^{k-1} \frac{z^n}{n(n+1)} + \frac{1-z^k}{k} \right)$$

Show that the series $\sum \frac{z^n}{n}$ and $\sum \frac{z^n}{n(n+1)}$ have radius of convergence 1; that the latter series converge everywhere on |z|=1, while the former converges everywhere on |z|=1 except z=1.

Proof. We prove by induction. The base case k=1 is trivial. Suppose the equality hold when k=m. The difference of the left hand side is clearly $\frac{z^{m+1}}{m+1}$, and the difference of the

right hand side is

$$\frac{z}{1-z} \left(\frac{1}{m(m+1)} - \frac{z^m}{m(m+1)} + \frac{1-z^{m+1}}{m+1} - \frac{1-z^m}{m} \right)$$

$$= \frac{z}{1-z} \cdot \frac{1-z^m + m - mz^{m+1} + (m+1)z^m - (m+1)}{m(m+1)}$$

$$= \frac{z}{1-z} \cdot \frac{-mz^{m+1} + mz^m}{m(m+1)} = \frac{z(z^m - z^{m+1})}{(1-z)(m+1)} = \frac{z^{m+1}}{m+1}$$

The fact that both series have radius of convergence 1 follows from $n^{\frac{1}{n}} \to 1$. Both of them converge on $\overline{D_1(0)} \setminus \{1\}$ by Theorem 2.3.2. The former clearly diverge at z=1, since it would be a harmonic series, and the latter converge at z=1 by comparison test with $\frac{1}{n(n+1)} \leq \frac{1}{n^2}$ for all $n \in \mathbb{N}$.

Question 34

Suppose that the power series $\sum a_n z^n$ has a recurring sequence of coefficients; that is $a_{n+k} = a_n$ for some fixed positive integer k and all n. Prove that the series converge for |z| < 1 to a rational function $\frac{p(z)}{q(z)}$ where p, q are polynomials, and the roots of q are all on the unit circle. What happens if $a_{n+k} = \frac{a_n}{k}$ instead?

Proof. Let

$$L^{-} \triangleq \min\{|a_0|, \dots, |a_{k-1}|\} \text{ and } L^{+} \triangleq \max\{|a_0|, \dots, |a_{k-1}|\}$$

We see that

$$1 = \liminf_{n \to \infty} (L^{-})^{\frac{1}{n}} \le \lim_{n \to \infty} |a_n|^{\frac{1}{n}} \le \limsup_{n \to \infty} (L^{+})^{\frac{1}{n}} = 1$$

It then follows that $\sum a_n z^n$ has convergence radius 1. Now observe that for |z| < 1, we have

$$z^{k} \sum_{n=0}^{\infty} a_{n} z^{n} = \sum_{n=k}^{\infty} a_{n} z^{n} = \sum_{n=0}^{\infty} a_{n} z^{n} - \sum_{n=0}^{k-1} a_{n} z^{n}$$

This now implies

$$\sum_{n=0}^{\infty} a_n z^n = \frac{\sum_{n=0}^{k-1} a_n z^n}{1 - z^k}$$

Since $q(z) = 1 - z^k$, clearly the roots are all on the unit circle. Suppose now $b_n \triangleq a_n$ for all n < k and $b_{n+k} \triangleq \frac{b_n}{k}$ for all $n \geq k$. We then have

$$b_n = \frac{a_n}{k^{q(n)}}$$
 where q is the largest integer such that $qk \leq n$

Note that n - q(n) is always smaller than k. It then follows that

$$(k^{q(n)})^{\frac{1}{n}} = k^{\frac{q(n)}{n}} = k \cdot k^{\frac{q(n)-n}{n}} \to k$$

We then see that

$$\limsup_{n \to \infty} |b_n|^{\frac{1}{n}} = \frac{\limsup_{n \to \infty} |a_n|^{\frac{1}{n}}}{k} = \frac{1}{k}$$

It then follows that $\sum b_n z^n$ has convergence radius k. Now observe that for |z| < k, we have

$$z^{k} \sum_{n=0}^{\infty} b_{n} z^{n} = \sum_{n=0}^{\infty} b_{n} z^{n+k} = \frac{1}{k} \sum_{n=k}^{\infty} b_{n} z^{n} = \frac{1}{k} \left(\sum_{n=0}^{\infty} b_{n} z^{n} - \sum_{n=0}^{k-1} b_{n} z^{n} \right)$$

This now implies

$$\sum_{n=0}^{\infty} b_n z_n = \frac{\sum_{n=0}^{k-1} b_n z^n}{k(\frac{1}{k} - z^k)}$$

2.4 Exercises 2

Let (M, d) be a metric space, $x \in M$ and F a subset of M.

Question 35

Prove that the following statements are equivalent

- (a) There exists a sequence $\{x_n\}$ in F with $x_n \neq x$ so that $\lim_{n\to\infty} x_n = x$.
- (b) For any ϵ , the intersection of $B'_{\epsilon}(x) \triangleq \{y \in M : 0 < d(x,y) < \epsilon\}$ and F are non-empty.

Proof. If (a) is true, then for all ϵ there exists some $x_n \in F$ such that $d(x_n, x) < \epsilon$. Because $x_n \neq x$, we know that $0 < d(x_n, x)$. This now implies $x_n \in B'_{\epsilon}(x) \cap F$.

If (b) is true, then for all n, we simply select a point in $x_n \in B'_{\frac{1}{n}}(x) \cap F$. After such selection, we see that $x_n \neq x$ and for all ϵ , if $n > \frac{1}{\epsilon}$, then $x_n \in B'_{\epsilon}(x) \cap F$.

Question 36

Prove that the following statements are equivalent

- (a) F contain all its limit point.
- (b) $U = M \setminus F$ is open.

Proof. If (a) is true, then for all $p \in U$, we know that p is not a limit point of F, then from the first question, we know that there exists ϵ such that $B'_{\epsilon}(x) \cap F = \emptyset$. Because $x \in U = M \setminus F$ also does not belong x, we also know that $B_{\epsilon}(x) \cap F = \emptyset$. This then implies that $B_{\epsilon}(x) \subseteq U$, since $U = M \setminus F$. We have proved that U is open.

If (b) is true, then for arbitrary $p \notin F$, we know there exists some ϵ such that $B_{\epsilon}(x)$ is disjoint with F. Because $B'_{\epsilon}(x)$ is a subset of $B_{\epsilon}(x)$, we can deduce that $B_{\epsilon}(x) \cap F = \emptyset$, which from the first question implies that p is not a limit point of F. Because p is arbitrary selected from $M \setminus F$, we have proved that none of the points in $M \setminus F$ is a limit point of F. This implies that if F has any limit point, then F must contain that limit point.

Question 37

Prove the following statements

(a) M and \varnothing are closed.

- (b) The intersection of any family of closed subsets of M is closed.
- (c) The union of finitely many closed subsets of M is closed.

Proof. It is clear that M is open and trivially true that \varnothing is open. It then follows from the second question that M and \varnothing are both closed.

Let $\{F_{\alpha}\}$ be a collection of closed subsets of M. Arbitrary select a limit point x of $\bigcap F_{\alpha}$. Let $\{x_n\}$ be a sequence in $\bigcap F_{\alpha}$ with $x_n \neq x$ so that $\lim_{n\to\infty} x_n = x$. Arbitrary select β . Note that $\{x_n\}$ is also a sequence in F_{β} that converge to x with $x_n \neq x$. This now implies that x is a limit point of F_{β} . Then because F_{β} is closed, we see that $x \in F_{\beta}$. Now, since β is arbitrary selected, we see $x \in \bigcap_{\alpha} F_{\alpha}$. Because x is arbitrary, we have proved $\bigcap F_{\alpha}$ contained all its limit points.

Let $\{F_1, \ldots, F_N\}$ be a collection of closed subsets of M. Let x be an arbitrary limit point of $\bigcup_{n=1}^N F_n$. Let $\{x_n\}$ be a sequence in $\bigcup_{n=1}^N F_n$ with $x_n \neq x$ converging to x. It is clear that there must exists some $j \in \{1, \ldots, N\}$ such that F_j contain infinite terms of $\{x_n\}$, i.e., there exists a subsequence x_{n_k} such that $x_{n_k} \in F_j$ for all k. Because $\lim_{k \to \infty} x_{n_k} = \lim_{n \to \infty} x_n = x$, we now see that x is a limit point of F_j . It then follows from F_j being closed that $x \in F_j \subseteq \bigcup_{n=1}^N F_n$. Because x is arbitrary, we have proved that $\bigcup_{n=1}^N F_n$ is closed.

2.5 Exercise 3

Question 38

Provide a counterexample to the following statement: Suppose

$$f(z) = u(x, y) + iv(x, y)$$

is defined in a neighborhood of $z_0 = a + ib$. If the partial derivatives of u and v exist at (a,b) and satisfy the Cauchy-Riemann equations $u_x(a,b) = v_y(a,b)$ and $u_y(a,b) = -v_x(a,b)$, then f is holomorphic at z_0 .

Proof. WOLG, let a = b = 0 and define

$$u(x,y) \triangleq \begin{cases} x & \text{if } y = 0 \\ y & \text{if } x = 0 \\ 0 & \text{if otherwise} \end{cases} \text{ and } v(x,y) \triangleq \begin{cases} -x & \text{if } y = 0 \\ y & \text{if } x = 0 \\ 0 & \text{if otherwise} \end{cases}$$

It is clear that

$$u_x = 1 = v_y$$
 and $u_y = 1 = -v_x$ at $(0,0)$

but

$$\lim_{t \to 0; t \in \mathbb{R}} \frac{f(t) - f(0)}{t - 0} = \lim_{t \to 0; t \in \mathbb{R}} \frac{t - it}{t} = 1 - i$$

together with

$$\lim_{t \to 0; t \in \mathbb{R}} \frac{f(t+it) - f(0)}{t+it} = \lim_{t \to 0; t \in \mathbb{R}} \frac{0}{t+it} = 0$$

shows that f is not holomorphic at (0,0).

Question 39

Let $f:[a,b]\to\mathbb{R}$ be a continuous function. Suppose that f is differentiable at (a,b) and that f'(x)=0 for all $x\in(a,b)$. Prove that f is a constant function.

Proof. Assume $f(x) \neq f(y)$ for some $x \neq y \in [a, b]$. By MVT, we then see there exists some t between x, y (thus $t \in (a, b)$) such that $f'(t) = \frac{f(y) - f(x)}{y - x} \neq 0$, which is impossible. CaC

Question 40

Let $B = B_R(x_0)$ be the open ball in \mathbb{R}^n centered at x_0 with radius R > 0. Prove that if $f: B \to \mathbb{R}$ is a differentiable function such that $\nabla f = 0$ on B, then f is a constant function.

Proof. Let \mathbf{x}, \mathbf{y} be two points in B. We are required to show $f(\mathbf{x}) = f(\mathbf{y})$. Define $g: [0,1] \to B$ by

$$g(t) \triangleq f(\mathbf{x} + t(\mathbf{y} - \mathbf{x}))$$

Note that g is well-defined since B is convex. Because f is differentiable, we have

$$g'(t) = \nabla f(\mathbf{x} + y(\mathbf{y} - \mathbf{x})) \cdot (\mathbf{y} - \mathbf{x}) = 0$$

It then follows from the last question that

$$f(\mathbf{y}) = g(1) = g(0) = f(\mathbf{x})$$

Question 41

Let U be an open subset of \mathbb{R}^n . A function $f:U\to\mathbb{R}$ is called **locally constant** if, for each $x\in U$, there exists an open neighborhood W of x such that $W\subseteq U$ and $f:W\to\mathbb{R}$ is constant on W. Prove that f is locally constant function if and only if $\nabla f=0$ on U.

Proof. The if part follows from the last question by taking some small enough r such that $B_r(x) \subseteq W$. We now prove the only if part. Fix arbitrary $x \in U$. Because f is locally constant at x, we know there exists some $B_r(x)$ such that f is constant on $B_r(x)$. Therefore, we can let $c \in \mathbb{R}$ satisfy

$$f(y) = c$$
 for all $y \in B_r(x)$

To see $\nabla f(x) = 0$, just observe that for arbitrary axis **j**

$$f_{\mathbf{j}}(x) = \lim_{t \to 0} \frac{f(x+t\mathbf{j}) - f(x)}{t} = 0$$

since $f(x + t\mathbf{j}) = c = f(x)$ as long as |t| < r. Because \mathbf{j} is arbitrary, it then follows that $\nabla f(x) = 0$, and because x is arbitrary selected from U, we have proved ∇f is 0 on U.

Question 42

Let D be an open, connected subset of \mathbb{R}^n . Prove that if $f:D\to\mathbb{R}$ is a locally constant function, then f is a constant function.

Chapter 3

PDE intro HW

3.1 1.2 First Order Linear Equations

(Principle of Geometric Method) Given a first order homogeneous linear PDE with the form

$$u_x + g(x, y)u_y = 0$$

We know if a curve $\gamma(x) = (x, y)$ satisfy

$$\gamma'(x) = c_x(1, g(x, y))$$
 for some c_x

Then

$$(u \circ \gamma)'(x) = 0$$
 for all x

Since

$$\gamma'(x) = (1, \frac{dy}{dx})$$

To find γ , we only wish to solve

$$\frac{dy}{dx} = g(x, y)$$

Question 43

Solve

$$(1+x^2)u_x + u_y = 0$$

Proof. The ODE

$$\frac{dy}{dx} = \frac{1}{1+x^2}$$

has general solution $y = \arctan x + C$, so

$$u(x,y) = f(y - \arctan x)$$

Question 44

Solve

$$\begin{cases} yu_x + xu_y = 0\\ u(0,y) = e^{-y^2} \end{cases}$$

In which region of the xy plane is the solution uniquely determined?

Proof. We are required to solve the ODE

$$\frac{dy}{dx} = \frac{x}{y}$$

Separating the variables and integrate

$$\int yy'dx = \int xdx \implies \frac{y^2}{2} = \frac{x^2}{2} + C$$

This now implies

$$u(x,y) = f(y^2 - x^2)$$

Initial Condition then give us

$$u = e^{x^2 - y^2}$$

Question 45

Solve the equation

$$u_x + u_y = 1$$

Proof. Clearly $u = \frac{x}{2} + \frac{y}{2}$ is a solution. We now solve the PDE

$$v_x + v_y = 0$$

Solving the ODE

$$\frac{dy}{dx} = 1$$

we have

$$y = x + C$$

Thus the general solution is

$$u = \frac{x}{2} + \frac{y}{2} + f(y - x)$$

Question 46

Solve

$$\begin{cases} u_x + u_y + u = e^{x+2y} \\ u(x,0) = 0 \end{cases}$$

Proof. Let $\gamma(x) = x + C$, we have

$$(u \circ \gamma)' + (u \circ \gamma) = e^{3x + 2C}$$

We now solve the ODE

$$y' + y = e^{3x + 2C}$$

The particular solution is clearly

$$y = \frac{1}{4}e^{3x + 2C}$$

Thus the general solution is

$$y = \frac{e^{3x+2C}}{4} + \tilde{C}e^{-x}$$

We then now know

$$(u \circ \gamma)(x) = \frac{e^{3x+2C}}{4} + \tilde{C}e^{-x}$$
(3.1)

In other words,

$$u(x, x + C) = \frac{e^{3x+2C}}{4} + \tilde{C}e^{-x}$$

Putting in the initial conditions, we have

$$0 = u(-C, 0) = \frac{e^{-C}}{4} + \tilde{C}e^{C}$$

This implies

$$\tilde{C} = \frac{-e^{-2C}}{4}$$

Putting the back into Equation 3.1, we have

$$u(x, x + C) = \frac{e^{3x+2C} - e^{-x-2C}}{4}$$

So

$$u(x,y) = \frac{e^{3x+2(y-x)} - e^{-x-2(y-x)}}{4}$$

Question 47

Use the coordinate method to solve the equation

$$u_x + 2u_y + (2x - y)u = 2x^2 + 3xy - 2y^2$$

Proof. Let

$$\begin{cases} \xi \triangleq 2x - y \\ \eta \triangleq x + 2y \end{cases}$$

We see

$$\begin{cases} u_{\xi} = \frac{2}{5}u_x - \frac{1}{5}u_y \\ u_{\eta} = \frac{1}{5}u_x + \frac{2}{5}u_y \end{cases}$$

We then can rewrite

$$5u_{\eta} + \xi u = \xi \eta \tag{3.2}$$

which clearly have particular solution

$$u=\eta-\frac{5}{\xi}$$

To solve the linear homogeneous PDE

$$5u_{\eta} + \xi u = 0$$

Observe that for all fixed ξ , the PDE is just an ODE whose solution is exactly $u = C_{\xi}e^{\frac{-\xi\eta}{5}}$. We now know the general solution for PDE 3.2 is exactly

$$u = \eta - \frac{5}{\xi} + f(\xi)e^{\frac{-\xi\eta}{5}}$$

Then

$$u = x + 2y - \frac{5}{2x - y} + e^{\frac{-(2x - y)(x + 2y)}{5}} f(2x - y)$$

3.2 1.4 Initial and Boundary Condition

Question 48

Find a solution of

$$\begin{cases} u_t = u_{xx} \\ u(x,0) = x^2 \end{cases}$$

Proof. Clearly $u = x^2 + 2t$ suffices.

3.3 1.5 Well Posed Problems

Given a vector field $F: \mathbb{R}^3 \to \mathbb{R}^3$, Divergence Theorem shows

$$\iiint_D \nabla \cdot F dV = \iint_{\text{bdy } D} F \cdot \mathbf{n} dS$$

Then if F is the gradient of some scalar field $f: \mathbb{R}^3 \to \mathbb{R}$, we have

$$\iiint_D \Delta f dV = \iint_{\text{bdy } D} \frac{\partial f}{\partial \mathbf{n}} dS$$

Question 49

Consider the ODE

$$\begin{cases} u'' + u = 0 \\ u(0) = 0 \text{ and } u(L) = 0 \end{cases}$$

Is the solution unique? Does the answer depend on L?

Proof. We know the general solution space is exactly spanned by $\cos x$ and $\sin x$. Because

- (a) u(0) = 0.
- (b) $\sin 0 = 0$
- $(c) \cos 0 = 1$

we know the solution of our original ODE must be of the form

$$u(x) = C \sin x$$

This implies that the solution is unique if and only if $2\pi \not\equiv L \pmod{2\pi}$

Question 50

Consider the ODE

$$\begin{cases} u'' + u' = f \\ u'(0) = u(0) = \frac{1}{2}(u'(l) + u(l)) \end{cases}$$

where f is given.

- (a) Is the solution unique?
- (b) Does a solution necessarily exist, or is there a condition that f must satisfy for

existence?

Proof. The solution space of linear homogeneous ODE u'' + u' = 0 is spanned by e^{-x} and constant. If we add in the initial condition u'(0) = u(0), then the solution space become the subspace spanned by $e^{-x} - 2$. One can check that if $u \in \text{span}(e^{-x} - 2)$, then

$$u(0) = \frac{1}{2}(u'(l) + u(l))$$
 for all $l \in \mathbb{R}$

We now know the solution of the original ODE is not unique, since any solution added by $e^{-x} - 2$ is again a solution.

Integrating both side on [0, l], we see that given the boundary conditions, f must satisfy

$$\int_0^l f(x)dx = \int_0^l u'' + u'dx$$
$$= u(l) + u'(l) - u(0) - u'(0) = 0$$

Question 51

Consider the Neumann problem

$$\Delta u = f(x, y, z)$$
 in D and $\frac{\partial u}{\partial n} = 0$ on bdy D

- (a) What can we add to any solution to get another solution?
- (b) Use the divergence Theorem and the PDE to show that

$$\iiint_D f(x, y, z) dx dy dz = 0$$

is a necessary condition for the Neumann problem to have a solution.

Proof. Clearly, constants suffices, and observe

$$\iiint_D f dx dy dx = \iiint_D \Delta u dx dy dz = \iiint_D \nabla \cdot (\nabla u) dx dy dz = \iint_{\text{bdy } D} \nabla u \cdot \mathbf{n} dS = 0$$

Question 52

Consider the equation

$$u_x + yu_y = 0$$

with the boundary condition $u(x,0) = \phi(x)$.

- (a) $\phi(x) = x \implies$ no solution exists
- (b) $\phi(x) = 1 \implies$ multiple solutions exist.

Proof. Using the geometric method, we see the characteristic curve is exactly $y = \tilde{C}e^x$. Thus the general solution is of the form

$$u(x,y) = f(e^{-x}y)$$

The boundary condition implies

$$\phi(x) = u(x,0) = f(0)$$

The result then follows.

3.4 1.6 Types of Second-Order Equations

Consider the constant coefficient Linear PDE

$$u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy} + a_1u_x + a_2u_y + a_0u = 0$$

Ignoring the term with order less than 2, we have

$$u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy} = 0$$

Or equivalently

$$(\partial_x + a_{12}\partial_y)^2 u + (a_{22} - a_{12}^2)\partial_{yy} u = 0$$

Now, if we set

$$x \triangleq \xi \text{ and } y \triangleq a_{12}\xi + (|a_{22} - a_{12}^2|)^{\frac{1}{2}}\eta$$

we see that

$$\begin{cases} a_{22} - a_{12}^2 > 0 \implies u_{\xi\xi} + u_{\eta\eta} = 0 & \text{(Elliptic)} \\ a_{22} - a_{12}^2 = 0 \implies u_{\xi\xi} = 0 & \text{(Parabolic)} \\ a_{22} - a_{12}^2 < 0 \implies u_{\xi\xi} - u_{\eta\eta} = 0 & \text{(Hyperbolic)} \end{cases}$$

More generally, if we are given

$$a_{11}u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy} = 0$$

then the discriminant is exactly

$$a_{11}a_{22} - a_{12}^2$$

Question 53

What is the type of each of the following equations.

- (a) $u_{xx} u_{xy} + u_{yy} + \dots + u = 0.$
- (b) $9u_{xx} + 6u_{xy} + u_{yy} + u_x = 0$

Proof. The discriminant for (a) and (b) are respectively $\frac{3}{4}$ are 0, thus elliptic and parabolic.

Question 54

Find the regions in the xy plane where the equation

$$(1+x)u_{xx} + 2xyu_{xy} - y^2u_{yy} = 0$$

is elliptic, hyperbolic, or parabolic. Sketch them.

Proof. The discriminant is exactly

$$(xy)^{2} - (1+x)(-y^{2}) = x^{2}y^{2} + xy^{2} + y^{2}$$
$$= y^{2}(x^{2} + x + 1)$$
$$= y^{2}[(x + \frac{1}{2})^{2} + \frac{3}{4}]$$

It then follows that the equation is parabolic if and only if y = 0, and hyperbolic if and only if $y \neq 0$.

Question 55

Reduce the elliptic equation

$$u_{xx} + 3u_{yy} - 2u_x + 24u_y + 5u = 0$$

to the form

$$v_{xx} + v_{yy} + cv = 0$$

by a change of dependent variable

$$u \triangleq ve^{\alpha x + \beta y}$$

then a change of scale

$$y' = \gamma y$$

Proof. The original elliptic equation can be written in the form

$$e^{\alpha x + \beta y} \left[v_{xx} + 2\alpha v_x + \alpha^2 v + 3(v_{yy} + 2\beta v_y + \beta^2 v) - 2(v_x + \alpha v) + 24(v_y + \beta v) + 5v \right] = 0$$

which implies

$$v_{xx} + 3v_{yy} + (2\alpha - 2)v_x + (6\beta + 24)v_y + (\alpha^2 + 3\beta^2 - 2\alpha + 24\beta + 5)v = 0$$
53

Letting $\alpha \triangleq 1$ and $\beta \triangleq -4$, we see

$$v_{xx} + 3v_{yy} + \tilde{c}v = 0$$

Letting $y \triangleq \sqrt{3}y'$, we then see

$$v_{xx} + v_{y'y'} + \tilde{c}v = 0$$

Question 56

Consider the equation $3u_y + u_{xy} = 0$.

- (a) What is its type?
- (b) Find the general solution. (Hint: Substitute $v = u_y$).
- (c) With the auxiliary conditions $u(x,0) = e^{-3x}$ and $u_y(x,0) = 0$, does a solution exist? Is it unique?

Proof. Since the discriminant is exactly $\frac{-1}{4}$, the type is hyperbolic. Letting $v \triangleq u_y$, we see

$$3v + v_x = 0$$

This PDE on each horizontal line is an ODE and thus have the solution

$$u_y = v = f(y)e^{-3x}$$

Then u must be of the form

$$u = F(y)e^{-3x} + g(x)$$

Applying the initial condition $u_y(x,0) = 0$, we see

$$f(0)e^{-3x} = u_y(x,0) = 0$$

which implies f(0) = 0. Now apply another initial condition $u(x, 0) = e^{-3x}$.

$$F(0)e^{-3x} + q(x) = u(x,0) = e^{-3x}$$

We then see the solutions exist and are not unique, since

$$\begin{cases} F(y) = 1 \\ g(x) = 0 \end{cases} \text{ and } \begin{cases} F(y) = y^2 \\ g(x) = e^{-3x} \end{cases}$$

are both solutions.

3.5 2.1 The Wave Equation

Abstract

In this section, $c \in \mathbb{R}^*$.

Theorem 3.5.1. (General Solution of The Wave Equation) The general solution of the wave equation

$$u_{tt} = c^2 u_{xx}$$

is of the form

$$u = f(x + ct) + g(x - ct)$$

Proof. Observe that

$$0 = u_{tt} - c^2 u_{xx} = (\partial_t + c\partial_x)(\partial_t - c\partial_x)u$$

If we let $v = u_t - cu_x$, then we must have $v_t + cv_x = 0$. We know the general solution of v is v = g(x - ct). We have reduce the problem into solving

$$u_t - cu_x = g(x - ct) (3.3)$$

Now observe that for all $w: \mathbb{R} \to \mathbb{R}$

$$(\partial_t - c\partial_x)(w(x - ct)) = 2cw'(x - ct)$$

We then see the particular solution for Equation 3.3 is

$$u = \frac{1}{2c}G(x - ct)$$

and the general solution is then

$$u = f(x + ct) + \frac{1}{2c}G(x - ct)$$

Theorem 3.5.2. (IVP for The Wave Equation) The Initial Value Problem

$$\begin{cases} u_{tt} = c^2 u_{xx} \\ u(x,0) = \phi(x) \\ u_t(x,0) = \psi(x) \end{cases}$$

has exactly one solution

$$u(x,t) = \frac{1}{2} [\phi(x+ct) + \phi(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) ds$$

Proof. Write u(x,t) = f(x+ct) + g(x-ct). By initial condition, we know

$$f(x) + g(x) = \phi(x)$$
 and $f'(x) - g'(x) = \frac{\psi(x)}{c}$

Differentiating the former, we also have

$$f'(x) + g'(x) = \phi'(x)$$

This then give us

$$f'(x) = \frac{\phi'(x)}{2} + \frac{\psi(x)}{2c}$$
 and $g'(x) = \frac{\phi'(x)}{2} - \frac{\psi(x)}{2c}$

It now follows that

$$f(s) = \frac{\phi(s)}{2} + \frac{1}{2c} \int_0^s \psi(x) dx + A \text{ and } g(s) = \frac{\phi(s)}{2} - \frac{1}{2c} \int_0^s \psi(x) dx + B$$

Note that since $f(x) + g(x) = \phi(x)$, we know B = -A.

We now have

$$u(x,t) = f(x+ct) + g(x-ct) = \frac{\phi(x+ct) + \phi(x-ct)}{2} + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(x) dx$$

Question 57

Solve

$$\begin{cases} u_{tt} = c^2 u_{xx} \\ u(x,0) = e^x \\ u_t(x,0) = \sin x \end{cases}$$

Proof. Let

$$u \triangleq f(x+ct) + g(x-ct)$$

Plugging the initial conditions, we know

$$\begin{cases} f(x) + g(x) = e^x \\ f'(x) - g'(x) = \frac{\sin x}{c} \end{cases}$$

This give us

$$f'(x) = \frac{e^x + \frac{\sin x}{c}}{2}$$
 and $g'(x) = \frac{e^x - \frac{\sin x}{c}}{2}$

Then by FTC, we have

$$\begin{cases} f(x) = \frac{e^x - \frac{\cos x}{c}}{\frac{2}{c}} + f(0) - \frac{1}{2} + \frac{1}{2c} \\ g(x) = \frac{e^x + \frac{\cos x}{c}}{2} + g(0) - \frac{1}{2} - \frac{1}{2c} \end{cases}$$

Note that $f(0) + g(0) = e^0 = 1$, which cancel the constant terms in u, i.e.

$$u = f(x + ct) + g(x - ct)$$

$$= \frac{e^{x+ct} + e^{x-ct} + \frac{-\cos(x+ct) + \cos(x+ct)}{c}}{2}$$

Question 58

If both ϕ and ψ are odd functions of x, show that the solution of u(x,t) of the wave equation is also odd in x for all t.

Proof. Suppose

$$u = f(x + ct) + g(x - ct)$$

We have

$$\begin{cases} f + g = \phi \\ f' - g' = \frac{\psi}{c} \end{cases}$$

This give us

$$f' = \frac{\phi' + \frac{\psi}{c}}{2}$$
 and $g' = \frac{\phi' - \frac{\psi}{c}}{2}$

and

$$\begin{cases} f(x) = \frac{1}{2} \int_0^x (\phi' + \frac{\psi}{c}) ds + f(0) \\ g(x) = \frac{1}{2} \int_0^x (\phi' - \frac{\psi}{c}) ds + g(0) \end{cases}$$

that is

$$\begin{cases} f(x) = f(0) + \frac{1}{2} \left[\phi(x) - \phi(0) \right] + \frac{1}{2c} \int_0^x \psi(s) ds \\ g(x) = g(0) + \frac{1}{2} \left[\phi(x) - \phi(0) \right] - \frac{1}{2c} \int_0^x \psi(s) ds \end{cases}$$

Noting $f + g = \phi$, we now have

$$u(x,t) = f(x+ct) + g(x-ct)$$

$$= \frac{\phi(x+ct) + \phi(x-ct)}{2} + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) ds$$

and

$$u(-x,t) = \frac{\phi(-x+ct) + \phi(-x-ct)}{2} + \frac{1}{2c} \int_{-x-ct}^{-x+ct} \psi(s) ds$$

$$= \frac{-\phi(x-ct) - \phi(x+ct)}{2} - \frac{1}{2c} \int_{x+ct}^{x-ct} \psi(-u) du \quad (\because u = -s)$$

$$= \frac{-\phi(x-ct) - \phi(x+ct)}{2} + \frac{1}{2c} \int_{x+ct}^{x-ct} \psi(u) du \quad (\because \psi \text{ is odd })$$

$$= \frac{-\phi(x-ct) - \phi(x+ct)}{2} - \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(u) du = -u(x,t)$$

Question 59

A spherical wave is a solution of the three-dimensional wave equation of the form u(r,t), where r is the distance to the origin (the spherical coordinate). The wave equation takes the form

$$u_{tt} = c^2 \left(u_{rr} + \frac{2}{r} u_r \right)$$

- (a) Change variables v = ru to get the equation for $v : v_{tt} = c^2 v_{rr}$.
- (b) Solve for v and thereby solve the spherical wave equation.
- (c) Solve it with the initial condition $u(r,0) = \phi(r)$, $u_t(r,0) = \psi(r)$, taking both $\phi(r)$ and $\psi(r)$ to be even functions of r.

Proof. If we let v = ru, then

$$v_{tt} = ru_{tt}$$
 and $v_{rr} = ru_{rr} + 2u_r$

This then give us

$$v_{tt} = ru_{tt} = rc^2 \left(u_{rr} + \frac{2}{r}u_r \right) = c^2 (ru_{rr} + 2u_r) = c^2 v_{rr}$$

The general solution of v is

$$v = f(r + ct) + g(r - ct)$$

and thus

$$u(r,t) = \frac{f(ct+r) + g(r-ct)}{r}$$

Plugging the initial conditions, we have

$$\frac{f(r) + g(r)}{r} = u(r, 0) = \phi(r) \text{ and } \frac{c[f'(r) - g'(r)]}{r} = u_t(r, 0) = \psi(r)$$

In other words,

$$\begin{cases} f(r) + g(r) = r\phi(r) \\ f'(r) - g'(r) = \frac{r\psi(r)}{c} \end{cases}$$

Differentiating the first equation, we have

$$f'(r) + g'(r) = \phi(r) + r\phi'(r)$$

We now can solve f', g'

$$f'(r) = \frac{\phi(r) + r\phi'(r) + \frac{r\psi(r)}{c}}{2}$$
 and $g'(r) = \frac{\phi(r) + r\phi'(r) - \frac{r\psi(r)}{c}}{2}$

We now have

$$f(r) = f(1) + \int_{1}^{r} f'(s)ds$$

= $f(1) + \left[\frac{s\phi(s)}{2}\right]_{s=1}^{r} + \frac{1}{2c} \int_{1}^{r} s\psi(s)ds$

and

$$g(r) = g(1) + \int_{1}^{r} g'(s)ds$$

= $g(1) + \left[\frac{s\phi(s)}{2}\right]_{s=1}^{r} - \frac{1}{2c} \int_{1}^{r} s\psi(s)ds$

Noting that $f(1) + g(1) = 1\phi(1)$, we can cancel these terms and get

$$\begin{split} u(r,t) &= \frac{f(r+ct) + g(r-ct)}{r} \\ &= \frac{(r+ct)\phi(r+ct) + (r-ct)\phi(r-ct)}{2r} + \frac{1}{2cr} \int_{1}^{r+ct} s\phi(s)ds - \frac{1}{2cr} \int_{1}^{r-ct} s\phi(s)ds \\ &= \frac{(r+ct)\phi(r+ct) + (r-ct)\phi(r-ct)}{2r} + \frac{1}{2cr} \int_{r-ct}^{r+ct} s\phi(s)ds \end{split}$$

Question 60

Solve

$$\begin{cases} u_{xx} + u_{xt} - 20u_{tt} = 0 \\ u(x,0) = \phi(x) \\ u_t(x,0) = \psi(x) \end{cases}$$

Proof. The PDE can be write in the form of

$$(\partial_x + 5\partial_t)(\partial_x - 4\partial_t)u = 0$$

which have the general solution

$$u(x,t) = f(5x-t) + g(4x+t)$$

We now see

$$f(5x) + g(4x) = \phi(x)$$
 and $-f'(5x) + g'(4x) = \psi(x)$

This then give us

$$f'(5x) = \frac{(\phi' - 4\psi)(x)}{9}$$
 and $g'(4x) = \frac{(\phi' + 5\psi)(x)}{9}$

and thus

$$f(x) = f(0) + \int_0^x f'(s)ds$$

$$= f(0) + \int_0^x \frac{(\phi' - 4\psi)(\frac{s}{5})}{9} ds$$

$$= f(0) + \frac{5}{9} \left[\phi(\frac{x}{5}) - \phi(0)\right] - \frac{4}{9} \int_0^x \psi(\frac{s}{5}) ds$$

and similarly

$$\begin{split} g(x) &= g(0) + \int_0^x g'(s) ds \\ &= g(0) + \int_0^x \frac{(\phi' + 5\psi)(\frac{s}{4})}{9} ds \\ &= g(0) + \frac{4}{9} \Big[\phi(\frac{x}{4}) - \phi(0) \Big] + \frac{5}{9} \int_0^x \psi(\frac{s}{4}) ds \end{split}$$

Noting that $f(0) + g(0) = u(0,0) = \psi(0)$, we now have

$$u(x,t) = f(5x-t) + g(4x+t)$$

$$= \frac{5\phi(\frac{5x-t}{5}) + 4\phi(\frac{4x+t}{4})}{9} - \frac{4}{9} \int_0^{5x-t} \psi(\frac{s}{5}) ds + \frac{5}{9} \int_0^{4x+t} \psi(\frac{s}{4}) ds$$

Question 61

Find the general solution of

$$3u_{tt} + 10u_{xt} + 3u_{xx} = \sin(x+t)$$

Proof. Clearly, we can rewrite the equation to be

$$(3\partial_x + \partial_t)(\partial_x + 3\partial_t)u = \sin(x+t)$$

If we let $v = u_x + 3u_t$, then we have

$$3v_x + v_t = \sin(x+t)$$

Define

$$\gamma(x) \triangleq (x, \frac{x}{3} + c)$$

We then see

$$(v \circ \gamma)'(x) = \frac{\sin(x + \frac{x}{3} + c)}{3}$$

which implies

$$v(x, \frac{x}{3} + c) = v \circ \gamma(x) = \frac{\cos(\frac{4x}{3} + c)}{-4} + C_c$$

and thus

$$v(x,t) = \frac{\cos(\frac{4x}{3} + t - \frac{x}{3})}{-4} + f(t - \frac{x}{3})$$
$$= \frac{\cos(x+t)}{-4} + f(3t-x)$$

It remains to solve

$$u_x + 3u_t = \frac{\cos(x+t)}{-4} + f(3t-x)$$
61

Now define

$$\gamma(x) \triangleq (x, 3x + c)$$

We then see

$$(u \circ \gamma)'(x) = \frac{\cos(4x+c)}{-4} + f(8x+3c)$$

which implies

$$u(x, 3x + c) = \frac{\sin(4x + c)}{-16} + \frac{F(8x + 3c)}{8} + u(0, c) + f(c)$$

and thus

$$u(x,t) = \frac{\sin(x+t)}{-16} + \tilde{F}(-x+3t) + g(t-3x)$$

where g is the initial condition.

3.6 2.2 Causality and Energy

Question 62

Show that the wave equation has the following invariant properties

- (a) Any translate u(x-y,t) where y is fixed, is also a solution.
- (b) Any derivative, say u_x , is also a solution.
- (c) The dilated function u(ax, at) is also a solution.

Proof. The first property follows from direct computation, the second property follows from $0_x = 0$ and the third property follows from observing $v \triangleq u(ax, at)$ satisfy $v_{tt} = a^2 u_{tt} = a^2 c^2 u_{xx} = v_{xx}$.

Question 63

If u(x,t) satisfy the wave equation $u_{tt} = u_{xx}$, prove the identity

$$u(x+h,t+k) + u(x-h,t-k) = u(x+k,t+h) + u(x-k,t-h)$$

Proof. Define $\phi, \psi : \mathbb{R} \to \mathbb{R}$ by

$$\phi(x) \triangleq u(x,0)$$
 and $\psi(x) \triangleq u_t(x,0)$

We then know that

$$u(x,t) = \frac{\phi(x+t) + \phi(x-t)}{2} + \frac{1}{2} \int_{x-t}^{x+t} \psi(s) ds$$

$$\triangleq \frac{A(x,t) + B(x,t) + C(x,t)}{2}$$

where

$$\begin{cases} A(x,t) \triangleq \phi(x+t) \\ B(x,t) \triangleq \phi(x-t) \\ C(x,t) \triangleq \int_{x-t}^{x+t} \psi(s) ds \end{cases}$$

The proof then follows from

$$A(x+h,t+k) = A(x+k,t+h)$$
 and $A(x-h,t-k) = A(x-k,t-h)$
 $B(x+h,t+k) = B(x-k,t-h)$ and $B(x-h,t-k) = B(x+k,t+h)$
 $C(x+h,t+k) = C(x+k,t+h)$ and $C(x-h,t-k) = C(x-k,t-h)$

Question 64

Suppose that we have the PDE of damped string

$$\begin{cases} \rho u_{tt} - T u_{xx} + r u_t = 0 \text{ where } r > 0 \\ u(x,0) = 0 \text{ if } |x| > N \end{cases}$$

Show that if we define the energy E(t) of this system by

$$E(t) = \int_{-\infty}^{\infty} (\rho u_t^2 + T u_x^2) dx$$

Then the energy decrease as time goes.

Proof. Because u is smooth, we have

$$E'(t) = \int_{-\infty}^{\infty} (\rho u_t^2 + T u_x^2)_t dx$$

$$= \int_{-\infty}^{\infty} (2\rho u_t u_{tt} + 2T u_x u_{xt}) dx$$

$$= \int_{-\infty}^{\infty} [2u_t (T u_{xx} - r u_t) + 2T u_x u_{xt}] dx$$

$$= \int_{-\infty}^{\infty} [2T (u_t u_x)_x - 2r u_t^2] dx$$

$$= 2T u_t t_x \Big|_{x=0}^{\infty} - \int_{-\infty}^{\infty} 2r u_t^2$$

$$= -\int_{-\infty}^{\infty} 2r u_t^2 \le 0$$

3.7 2.3 The Diffusion Equation

In this section, we shall first set

$$\Omega \triangleq (0, l) \text{ and } \Gamma \triangleq \Omega \times \{0\} \cup \partial \Omega \times [0, T]$$

and write

$$\Omega_T \triangleq \Omega \times (0,T)$$

We suppose $u: \overline{\Omega_T} \to \mathbb{R}$ satisfy

$$u \in C^2(\Omega \times (0,T])$$

If u achieve a maximum on $\Omega \times (0,T]$, then at that point u must have

$$u_t \geq 0$$
 and $u_{xx} \leq 0$

Theorem 3.7.1. (Weak Maximum Principle) If

$$u_t - k u_{xx} \le 0 \text{ on } \Omega \times (0, T] \tag{3.4}$$

then u must achieve its maximum at Γ .

Proof. Because Γ is compact, we know there exists a maximum M of u on Γ . Fix ϵ and define $v:\overline{\Omega_T}\to\mathbb{R}$

$$v(x,t) \triangleq u(x,t) + \epsilon x^2$$

Because

$$u(x,t) \le \max_{\overline{\Omega_T}} v - \epsilon x^2 \text{ for all } (x,t) \in \overline{\Omega_T}$$

we can reduce the problem into proving

$$\max_{\overline{\Omega_T}} v \le M + \epsilon l^2 \text{ for all } p \in F$$

From Equation 3.4, we can deduce

$$v_t - kv_{xx} = u_t - ku_{xx} - 2k\epsilon < 0$$

Because v is continuous, we know v attain its maximum at some point. Now, with diffusion inequality, we can deduce

(a) The maximum of v must not be in Ω_T , otherwise at that point $v_t = 0$ and $v_{xx} \leq 0$ yield a contradiction.

(b) The maximum of v must also not be in the top edge $\partial \Omega_T \setminus \Gamma$, otherwise $v_t \geq 0$ and $v_{xx} \leq 0$ yield a contradiction.

We have proved that v can only attain maximum at some point $(x_0, t_0) \in F_0$, and it follows that

$$\max_{(x,t)\in F} v(x,t) = v(x_0,t_0) = u(x_0,t_0) + \epsilon x_0^2 \le M + \epsilon l^2 \text{ (done)}$$

Corollary 3.7.2. (Weak Minimum Principle) The minimum of u must also happen on F_0 .

Now, consider the Dirichlet's problem

$$\begin{cases} u_t - ku_{xx} = f(x,t) \text{ for } 0 < x < l \text{ and } t > 0 \\ u(x,0) = \phi(x) \text{ for } 0 \le x \le l \\ u(0,t) = g(t) \text{ and } u(l,t) = h(t) \text{ for } t \ge 0 \end{cases}$$
(3.5)

Note that for all T, because the difference w of two solution u_1, u_2 for Dirichlet's function must satisfy

$$\begin{cases} w_t = k w_{xx} \text{ on } \overline{\Omega_T} \setminus \Gamma \\ w(x,0) = w(0,t) = 0 \text{ for any } 0 \le x \le l \text{ and } 0 \le t \le T \end{cases}$$

By minimum and maximum principle we can deduce w = 0 on Ω , and thus $u_1 = u_2$ on F. It then follows that $u_1 = u_2$ on $[0, l] \times [0, \infty)$.

Theorem 3.7.3. (Uniqueness for the Dirichlet's problem for the diffusion equation with Energy Method) If $u_1, u_2 : [0, l] \times [0, \infty)$ are both solution of the Dirichlet's problem, then $u_1 = u_2$.

Proof. Define $w:[0,l]\times[0,\infty)\to\mathbb{R}$ by $w=u_1-u_2$. Multiplying w with (w_t-kw_{xx}) , we see that for all $x\in(0,l)$ and t>0,

$$0 = (w_t - kw_{xx})w = \left(\frac{w^2}{2}\right)_t + (-kw_x w)_x + kw_x^2$$

Because w(0,t)=w(l,t)=0 for all t, it follows that for all t>0

$$0 = \int_0^l \left[\left(\frac{w^2}{2} \right)_t + (-kw_x w)_x + kw_x^2 \right] dx$$
$$= \int_0^l \left[\left(\frac{w^2}{2} \right)_t + kw_x^2 \right] dx$$

which implies

$$I'(t) \leq 0$$
 if we define $I: [0, \infty) \to \mathbb{R}$ by $I(t) \triangleq \int_0^l \left(\frac{w^2}{2}\right) dx$

Because I(0) = 0 by definition and I(t) are integrals of non-negative functions, we can deduce I is identically 0. The desired result w(x,t) = 0 for all $x,t \in [0,l] \times [0,\infty)$ then follows.

Now, consider Dirichlet's problem with different initial conditions $\phi_1, \phi_2 : [0, l] \to \mathbb{R}$, and suppose $u_1, u_2 : [0, l] \times [0, \infty)$ are corresponding solutions. The maximum and minimum principle give us a L^{∞} estimation for stability

$$\max_{[0,l]\times[0,\infty)} |u_1 - u_2| \le \max_{[0,l]} |\phi_1 - \phi_2|$$

While the energy method give us a L^2 estimation for stability: For all $t \geq 0$,

$$\int_0^l \left(\frac{w^2(x,t)}{2}\right) dx = I(t) \le I(0) = \int_0^l \left(\frac{w^2(x,0)}{2}\right) = \int_0^l \frac{(\phi_1 - \phi_2)^2}{2} dx$$

Question 65

Consider the diffusion equation

$$\begin{cases} u_t = u_{xx} \text{ on } (0,1) \times (0,\infty) \\ u(0,t) = u(1,t) = 0 \text{ for all } t > 0 \\ u(x,0) = 1 - x^2 \end{cases}$$

- (a) Show that u(x,t) > 0 for all $(x,t) \in (0,1) \times (0,\infty)$.
- (b) Define $\mu:(0,\infty)\to\mathbb{R}$ by $\mu(t)\triangleq\max_{x\in[0,1]}u(x,t)$. Show that μ is a decreasing function.

Proof. The proof of (a) follows from a loose application of the strong minimum principle.

The proof of (b) follows from noting $v(x,t) \triangleq u(x,t+t_0) : [0,1] \times [0,\infty)$ also is a solution of the diffusion equation and application of maximum principle on v.

Question 66

Consider the Dirichlet's problem

$$\begin{cases} u_t = u_{xx} \text{ on } (0,1) \times (0,\infty) \\ u(0,t) = u(1,t) = 0 \text{ for all } t \ge 0 \\ u(x,0) = 4x(1-x) \end{cases}$$

Show that

- (a) 0 < u(x,t) < 1 for all t > 0 and 0 < x < 1.
- (b) u(x,t) = u(1-x,t) for all $t \ge 0$ and $0 \le x \le 1$.
- (c) Use the energy method to show that $\int_0^1 u^2 dx$ is a strictly decreasing function of t.

Proof. (a) follows from application of strong maximum and minimum principle. (b) follows from uniqueness of Dirichlet's problem and the observation that u(1-x,t) is also a solution.

The energy method give us

$$\frac{d}{dt} \int_0^1 \frac{u^2}{4} dx = -\int_0^1 u_x^2 dx \le 0 \text{ for all } t > 0$$

and (c) follows.

Question 67

Verify that

$$u = -2xt - x^2$$
 is a solution of $u_t = xu_{xx}$

and find the location of maximum of t in the close rectangle $\{-2 \le x \le 2, 0 \le t \le 1\}$.

Proof. Write

$$u = -(x+t)^2 + t^2$$

It follows that the maximum occurs at t = -x = 1.

$\overline{\text{Question }}68$

Prove the comparison principle for the diffusion equation: If u and v are two solutions

and

$$u \le v$$
 for $t = 0, x = 0, x = l$

then

$$u \le v$$
 on $[0, l] \times [0, \infty)$

Proof. This follows from application of the minimum principle on v-x.

Question 69

Suppose

$$\begin{cases} u_t - ku_{xx} = f \\ v_t - kv_{xx} = g \end{cases} \text{ and } f \le g$$

and suppose

$$u \le v$$
 at $x = 0, x = l$ and $t = 0$

Prove that

$$u \le v \text{ on } [0, l] \times [0, \infty)$$

Proof. Let $w \triangleq u - v : \overline{\Omega_T} \to \mathbb{R}$. It is clear that

$$w_t - kw_{xx} \le 0 \text{ on } \overline{\Omega_T} \setminus \Gamma$$

It then follows that w attain its maximum on Γ , which must not be greater than 0.

3.8 2.4 Diffusion on the whole line

In this section, we are concerned with solving the following initial value problem (**Cauchy problem**)

$$\begin{cases} u_t = k u_{xx} \text{ on } \mathbb{R} \times (0, \infty) \\ \lim_{t \to 0} u(x, t) = \phi(x) \text{ for all specified } x \end{cases}$$

We shall mostly express our answer with function erf : $\mathbb{R} \to \mathbb{R}$

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-p^2} dp$$

Theorem 3.8.1. (Solution of Dirac Initial Condition) If ϕ is defined to be

$$\phi(x) \triangleq \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x < 0 \end{cases}$$

then a solution is

$$Q(x,t) = \frac{1}{2} + \frac{\operatorname{erf}(\frac{x}{\sqrt{4kt}})}{2}$$
(3.6)

Proof. Note that our version of diffusion equation admits dilated solutions. This inspire us to guess

$$Q(x,t) \triangleq g\left(\frac{x}{\sqrt{4kt}}\right)$$

Direct computation yields

$$Q_t = \frac{-x}{2\sqrt{4kt^{\frac{3}{2}}}}g'\left(\frac{x}{\sqrt{4kt}}\right) \text{ and } Q_{xx} = g''\left(\frac{x}{\sqrt{4kt}}\right)\frac{1}{4kt}$$

If we let $p = \frac{x}{\sqrt{4kt}}$, we now have

$$Q_t = \frac{-pg'(p)}{2t}$$
 and $Q_{xx} = \frac{g''(p)}{4kt}$

Plugging this back to diffusion equation and canceling the common terms, we have

$$\frac{g''(p)}{2} + pg'(p) = 0$$

The general solution to this ODE is

$$g(p) = c_1 \operatorname{erf}(p) + c_2$$
70

In other words,

$$Q(x,t) = c_1 \operatorname{erf}(\frac{x}{\sqrt{4kt}}) + c_2$$

Plugging this back to the initial condition, we see

$$Q(x,t) = \frac{1 + \operatorname{erf}(\frac{x}{\sqrt{4kt}})}{2}$$

Differentiating Equation 3.6 with respect to x, we have another solution

$$S(x,t) \triangleq \frac{1}{2\sqrt{\pi kt}} e^{-\frac{x^2}{4kt}}$$

Solution S is often called the **fundamental solution**, since for all initial condition ϕ that have compact support, we gain a solution to the initial value problem by

$$u(x,t) \triangleq (S * \phi)(x,t)$$

where

$$(S * \phi)(x,t) = \int_{\mathbb{R}} S(x - y, t)\phi(y)dy$$

This is true because if we define F(x, y, t) = Q(x - y, t), we have

$$u(x,t) = \int_{\mathbb{R}} F_x(x,y,t)\phi(y)dy$$

$$= \int_{\mathbb{R}} -F_y(x,y,t)\phi(y)dy$$

$$= -F(x,y,t)\phi(y)|_{y=-\infty}^{\infty} + \int_{\mathbb{R}} F(x,y,t)\phi'(y)dy$$

$$= \int_{\mathbb{R}} Q(x-y,t)\phi'(y)dy$$

and thus

For all
$$x$$
, $\lim_{t\to 0} u(x,t) = \int_{\mathbb{R}} \lim_{t\to 0} Q(x-y,t)\phi'(y)dy$
$$= \int_{-\infty}^{x} \phi'(y)dy = \phi(x)$$

Solve the diffusion equation with the initial condition

$$\phi(x) \triangleq \begin{cases} 1 & \text{if } |x| < l \\ 0 & \text{if } |x| > l \end{cases}$$

Proof. Define

$$F(x, y, t) \triangleq Q(x - y, t)$$

The solution is exactly

$$u(x,t) = (S * \phi)(x,t)$$

$$= \int_{\mathbb{R}} S(x-y,t)\phi(y)dy$$

$$= \int_{-l}^{l} S(x-y,t)dy$$

$$= \int_{-l}^{l} F_x(x,y,t)dy$$

$$= \int_{-l}^{l} -F_y(x,y,t)dy = F(x,y,t)\Big|_{y=l}^{-l} = Q(x+l,t) - Q(x-l,t) = \frac{\text{erf}(\frac{x+l}{\sqrt{4kt}}) - \text{erf}(\frac{x-l}{\sqrt{4kt}})}{2}$$

Question 71

Solve the diffusion equation with the initial condition

$$\phi(x) \triangleq \begin{cases} e^{-x} & \text{for } x > 0\\ 0 & \text{for } x < 0 \end{cases}$$

Proof. Define

$$F(x, y, t) \triangleq Q(x - y, t)$$

The solution is exactly

$$u(x,t) = (S * \phi)(x,t)$$

$$= \int_{\mathbb{R}} S(x - y, t)\phi(y)dy$$

$$= \int_{0}^{\infty} e^{-y}S(x - y, t)dy$$

$$= \frac{1}{2\sqrt{t\pi k}} \int_{0}^{\infty} e^{\frac{-(x-y)^{2}}{4kt} - y}dy$$

$$= \frac{1}{2\sqrt{t\pi k}} \int_{0}^{\infty} e^{\frac{-(y-(x-2kt))^{2} + (x-2kt)^{2} - x^{2}}{4kt}}dy$$

$$= \frac{e^{kt-x}}{2\sqrt{t\pi k}} \int_{0}^{\infty} e^{\frac{-(y-(x-2kt))^{2}}{4kt}}dy$$

$$= \frac{e^{kt-x}}{\sqrt{\pi}} \int_{\frac{2kt-x}{2\sqrt{kt}}}^{\infty} e^{-s^{2}}ds \quad (\because s = \frac{y - (x-2kt)}{2\sqrt{kt}})$$

$$= \frac{e^{kt-x}}{\sqrt{\pi}} \left(\frac{\sqrt{\pi}}{2} - \frac{\sqrt{\pi}}{2}\operatorname{erf}(\frac{2kt-x}{2\sqrt{kt}})\right)$$

$$= \frac{e^{kt-x}}{2} \left[1 - \operatorname{erf}\left(\frac{2kt-x}{2\sqrt{kt}}\right)\right]$$

Question 72

Show that for any fixed $\delta > 0$

$$\max_{\delta \le |x| < \infty} S(x, t) \to 0 \text{ as } t \to 0$$

Proof.

Question 73

Let $\phi(x)$ be a continuous function such that $|\phi(x)| \leq Ce^{ax^2}$. Show that formula

$$u(x,t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{\frac{-(x-y)^2}{4kt}} \phi(y) dy$$

for diffusion equation make sense for $0 < t < \frac{1}{4ak}$ but not necessarily for larger t.

Prove the uniqueness of the diffusion problem with Neumann boundary conditions:

$$u_t - ku_{xx} = f(x,t) \text{ for } 0 < x < l, t > 0$$

 $u(x,0) = \phi(x)$
 $u_x(0,t) = g(t) \text{ and } u_x(l,t) = h(t)$

Proof.

Question 75

Solve the diffusion equation with constant dissipation:

$$u_t - ku_{xx} + bu = 0$$
 for $-\infty < x < \infty$
 $u(x,0) = \phi(x)$

where b>0 is a constant. (Hint: Make the change of variables $u(x,t)=e^{-bt}v(x,t)$)

Proof.

Question 76

Solve the diffusion equation with variable dissipation:

$$u_t - ku_{xx} + bt^2u = 0$$
 for $-\infty < x < \infty$
 $u(x,0) = \phi(x)$

where b > 0 is a constant. (Hint: Make the change of variables $u(x,t) = e^{\frac{-bt^3}{3}}v(x,t)$)

Proof.

Question 77

Solve the hear equation with convection:

$$u_t - ku_{xx} + Vu_x = 0$$
 for $-\infty < x < \infty$
 $u(x,0) = \phi(x)$

(Hint: Go to a moving frame of reference by substituting y=x-Vt)

Show that $S_x(x, y, t) \triangleq S(x, t)S(y, t)$ satisfy the diffusion equation $S_t = k(S_{xx} + S_{yy})$.

Deduce that $S_2(x, y, t)$ is the source function for two-dimensional diffusion.

3.9 3.1 Diffusion on the half line

Consider the following **Dirichlet problem**

$$\begin{cases} v_t - k v_{xx} = 0 \text{ for } 0 < x < \infty, 0 < t < \infty \\ \lim_{t \to 0} v(x, t) = \phi(x) \text{ for } 0 < x < \infty \\ v(0, t) = 0 \text{ for } 0 < t < \infty \end{cases}$$

where $\phi: \mathbb{R}^+ \to \mathbb{R}$. Define $\phi_{\text{odd}}: \mathbb{R} \to \mathbb{R}$ by

$$\phi_{\text{odd}}(x) \triangleq \begin{cases} \phi(x) & \text{if } x > 0\\ 0 & \text{if } x = 0\\ -\phi(x) & \text{if } x < 0 \end{cases}$$

It then follows that ϕ_{odd} is an odd function, and we can solve the Cauchy problem with respect to this initial condition ϕ_{odd} and have the solution

$$u(x,t) \triangleq \int_{-\infty}^{\infty} S(x-y,t)\phi_{\mathrm{odd}}(y)dy$$

Now, because

$$S(x,t) = \frac{1}{2\sqrt{\pi kt}}e^{\frac{-x^2}{4kt}}$$
 is clearly even in x

We can deduce

$$u(-x,t) = \int_{-\infty}^{\infty} S(-x-y,t)\phi_{\text{odd}}(y)dy$$

$$= -\int_{-\infty}^{\infty} S(-x-y,t)\phi_{\text{odd}}(-y)dy$$

$$= -\int_{-\infty}^{\infty} S(x+y,t)\phi_{\text{odd}}(-y)dy$$

$$= \int_{-\infty}^{\infty} S(x-z)\phi_{\text{odd}}(z)dz = -u(x,t) \quad (\because z = -y)$$

In other words, we have deduced that u is an odd function in x. It then follows that u(0,t)=-u(-0,t)=0. Then we see that the restriction $v\triangleq u|_{(\mathbb{R}^+)^2}$ form a solution of the Dirichlet problem. In particular, we can express v in a form without usage of ϕ_{odd}

if we consider

$$u(x,t) = \int_{-\infty}^{\infty} S(x-y,t)\phi_{\text{odd}}(y)dy$$

$$= \int_{0}^{\infty} S(x-y,t)\phi(y)dy + \int_{-\infty}^{0} S(x-y,t)(-\phi(-y))dy$$

$$= \int_{0}^{\infty} [S(x-y,t) - S(x+y,t)]\phi(y)dy$$

$$= \frac{1}{\sqrt{4\pi kt}} \int_{0}^{\infty} [e^{\frac{-(x-y)^{2}}{4kt}} - e^{\frac{-(x+y)^{2}}{4kt}}]\phi(y)dy$$

Now, consider the following Neumann problem

$$\begin{cases} w_t - k w_{xx} = 0 \text{ for } 0 < x < \infty, 0 < t < \infty \\ \lim_{t \to 0} w(x, t) = \phi(x) \text{ for } 0 \le x < \infty \\ w_x(0, t) = 0 \text{ for } 0 < t < \infty \end{cases}$$

where $\phi: \mathbb{R}^+ \to \mathbb{R}$. Define $\phi_{\text{even}}: \mathbb{R} \to \mathbb{R}$ by

$$\phi_{\text{even}}(x) \triangleq \begin{cases} \phi(x) & \text{if } x \ge 0\\ \phi(-x) & \text{if } x \le 0 \end{cases}$$

It then follows that ϕ_{even} is an even function, and we can solve the Cauchy problem with respect to this initial condition ϕ_{even} and have the solution

$$u(x,t) \triangleq \int_{-\infty}^{\infty} S(x-y,t)\phi_{\text{even}}(y)dy$$

Again because S is even in x, we can deduce

$$u(-x,t) = \int_{-\infty}^{\infty} S(-x-y,t)\phi_{\text{even}}(y)dy$$

$$= \int_{-\infty}^{\infty} S(-x-y,t)\phi_{\text{even}}(-y)dy$$

$$(\because z = -y) = -\int_{-\infty}^{\infty} S(-x+z,t)\phi_{\text{even}}(z)dz = u(x,t)$$

Now, we have proved that u is even in x. This then give $u_x(0,t) = 0$, and solve the **Neumann problem** by letting $w \triangleq u|_{(\mathbb{R}^+)^2}$

Solve

$$u_t = ku_{xx}$$

$$u(x,0) = e^{-x}$$

$$u(0,t) = 0$$

on the half line $0 < x < \infty$

Proof.

Question 80

Solve

$$u_t = ku_{xx}$$
$$u(x,0) = 0$$
$$u(0,t) = 1$$

on the half line $0 < x < \infty$.

Proof.

Question 81

Consider the following problem with a Robin boundary condition:

$$u_t = ku_{xx}$$
 on the half line $0 < x < \infty$
 $u(x,0) = x$
 $u_x(0,t) - 2u(0,t) = 0$

Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) \triangleq \begin{cases} x & \text{if } x \ge 0\\ x + 1 - e^{2x} & \text{if } x < 0 \end{cases}$$

and let

$$v(x,t) \triangleq \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{\frac{-(x-y)^2}{4kt}} f(y) dy$$

(a) What PDE and initial condition does v(x,t) satisfy for $-\infty < x < \infty$?

- (b) Let $w = v_x 2v$. What PDE and initial condition does w(x, t) satisfy $-\infty < x < \infty$?
- (c) Show that f'(x) 2f(x) is an odd function.
- (d) Show that w is an odd function of x.
- (e) Deduce that u satisfy the Robin condition.

Proof.

Question 82

Generalize the method of the last exercises to the case of general initial data $\phi(x)$ and arbitrary constant coefficient for u(0,t) in the boundary condition.

3.10 3.2 Reflection of waves

We now consider the Dirichlet's problem for wave on the half line $(0, \infty)$

DE:
$$v_{tt} - c^2 v_{xx} = 0$$
 for $0 < x < \infty, -\infty < t < \infty$

IC:
$$v(x,0) = \phi(x), v_t(x,0) = \psi(x)$$
 for $0 < x < \infty$

BC:
$$v(0,t) = 0$$
 for $-\infty < t < \infty$

One can check that if we again extend $\phi, \psi : \mathbb{R}^+ \to \mathbb{R}$ to odd function $\phi_{\text{odd}}, \psi_{\text{odd}} : \mathbb{R} \to \mathbb{R}$

$$\phi_{\text{odd}}(x) \triangleq \begin{cases} \phi(x) & \text{if } x > 0 \\ 0 & \text{if } x = 0 \text{ and } \psi_{\text{odd}}(x) \triangleq \begin{cases} \psi(x) & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -\psi(-x) & \text{if } x < 0 \end{cases}$$

and solve the Cauchy's problem for wave on the whole line with respect to them

$$u(x,t) \triangleq \frac{\phi_{\text{odd}}(x+ct) + \phi_{\text{odd}}(x-ct)}{2} + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi_{\text{odd}}(y) dy$$

then its restriction $v \triangleq u|_{[0,\infty)\times\mathbb{R}}$ is again a solution to the Dirichlet's problem for wave on the half line, where the boundary condition follows from u being odd in x as easily checked.

Consider also the Neumann problem

DE:
$$v_{tt} - c^2 v_{xx} = 0$$
 for $0 < x < \infty, -\infty < t < \infty$

IC:
$$v(x,0) = \phi(x), v_t(x,0) = \psi(x) \text{ for } 0 < x < \infty$$

BC:
$$v_x(0,t) = 0$$
 for $-\infty < t < \infty$

Chapter 4

PDE HW

4.1 PDE HW 1

Theorem 4.1.1.

Show $u \mapsto u_x + uu_y$ is non-linear

Proof. See that

$$2u \mapsto 2u_x + 4uu_y \neq 2(u_x + uu_y) \tag{4.1}$$

Theorem 4.1.2.

Solve
$$(1+x^2)u_x + u_y = 0$$

Proof. The characteristic curve has the derivative

$$\frac{dy}{dx} = \frac{1}{1+x^2}$$

The solution to this ODE is

$$y = \arctan x + C$$

We now see that the solution to the PDE in Equation 4.1 is

 $u = f((\arctan x) - y)$ where $f : \mathbb{R} \to \mathbb{R}$ is an arbitrary smooth function

A characteristic curve is as followed.

Theorem 4.1.3.

Solve
$$au_x + bu_y + cu = 0$$
 (4.2)

Proof. Fix

$$\begin{cases} x' \triangleq ax + by \\ y' \triangleq bx - ay \end{cases}$$

This map is clearly a diffeomorphism. Compute

$$\begin{cases} u_x = \frac{\partial u}{\partial x'} \frac{\partial x'}{\partial x} + \frac{\partial u}{\partial y'} \frac{\partial y'}{\partial x} = a u_{x'} + b u_{y'} \\ u_y = \frac{\partial u}{\partial x'} \frac{\partial x'}{\partial y} + \frac{\partial u}{\partial y'} \frac{\partial y'}{\partial y} = b u_{x'} - a u_{y'} \end{cases}$$

Plugging it back into the PDE in Equation 4.2, we have

$$cu + (a^2 + b^2)u_{x'} = 0 (4.3)$$

If $c = a^2 + b^2 = 0$, then all smooth functions are solution. If $a^2 + b^2 = 0$ but $c \neq 0$, then clearly the only solution is $u = \tilde{0}$. If $a^2 + b^2 \neq 0$ but c = 0, then $u_{x'} = \tilde{0}$, which implies u = f(y') where y' = bx - ay and f can be arbitrary smooth function.

Now, suppose $a^2 + b^2 \neq 0 \neq c$, note that the PDE in Equation 4.3 is just an ODE of the form

$$y + \frac{a^2 + b^2}{c}y' = 0$$

The general solution to this ODE is

$$y = Ce^{\frac{-ct}{a^2 + b^2}}$$

In other words, the general solution of the PDE in Equation 4.3 is

$$u = Ce^{\frac{-cx'}{a^2+b^2}} = Ce^{\frac{-c(ax+by)}{a^2+b^2}}$$

4.2 PDE HW 2

Question 83

Consider hear flow in a long circular cylinder where the temperature depends only on t and on the distance r to the axis of the cylinder. Here $r = \sqrt{x^2 + y^2}$ is the cylindrical coordinate. From the three dimensional hear equation derive the equation $u_t = k(u_{rr} + \frac{u_r}{r})$

Proof. Write the three dimensional hear equation by

$$u_t = k\Delta u$$

Note that the Laplacian Δu when written in cylindrical coordinate is

$$\Delta u = u_{rr} + \frac{u_r}{r} + \frac{u_{\theta\theta}}{r^2} + u_{zz}$$

Because the premise says that u is constant in z and θ , we know $u_{\theta\theta} = u_{zz} = 0$

$$\Delta u = u_{rr} + \frac{u_r}{r}$$

This give us

$$u_t = k(u_{rr} + \frac{u_r}{r})$$

4.3 PDE HW 3

Question 84

Find a solution of

$$\begin{cases} u_t = u_{xx} \\ u(x,0) = x^2 \end{cases}$$

Proof. Clearly $u = x^2 + 2t$ suffices.

Question 85

Consider the ODE

$$\begin{cases} u'' + u' = f \\ u'(0) = u(0) = \frac{1}{2}(u'(l) + u(l)) \end{cases}$$

where f is given.

- (a) Is the solution unique?
- (b) Does a solution necessarily exist, or is there a condition that f must satisfy for existence?

Proof. The solution space of linear homogeneous ODE u'' + u' = 0 is spanned by e^{-x} and constant. If we add in the initial condition u'(0) = u(0), then the solution space become the subspace spanned by $e^{-x} - 2$. One can check that if $u \in \text{span}(e^{-x} - 2)$, then

$$u(0) = \frac{1}{2}(u'(l) + u(l))$$
 for all $l \in \mathbb{R}$

We now know the solution of the original ODE is not unique, since any solution added by $e^{-x} - 2$ is again a solution.

Integrating both side on [0, l], we see that given the boundary conditions, f must satisfy

$$\int_0^l f(x)dx = \int_0^l u'' + u'dx$$
$$= u(l) + u'(l) - u(0) - u'(0) = 0$$

Find the regions in the xy plane where the equation

$$(1+x)u_{xx} + 2xyu_{xy} - y^2u_{yy} = 0$$

is elliptic, hyperbolic, or parabolic. Sketch them.

Proof. The discriminant is exactly

$$(xy)^{2} - (1+x)(-y^{2}) = x^{2}y^{2} + xy^{2} + y^{2}$$
$$= y^{2}(x^{2} + x + 1)$$
$$= y^{2}[(x + \frac{1}{2})^{2} + \frac{3}{4}]$$

It then follows that the equation is parabolic if and only if y = 0, and hyperbolic if and only if $y \neq 0$.

86

4.4 PDE HW 4

Question 87

Solve

$$\begin{cases} u_{tt} = c^2 u_{xx} \\ u(x,0) = e^x \\ u_t(x,0) = \sin x \end{cases}$$

Proof. Let

$$u \triangleq f(x+ct) + g(x-ct)$$

Plugging the initial conditions, we know

$$\begin{cases} f(x) + g(x) = e^x \\ f'(x) - g'(x) = \frac{\sin x}{c} \end{cases}$$

This give us

$$f'(x) = \frac{e^x + \frac{\sin x}{c}}{2}$$
 and $g'(x) = \frac{e^x - \frac{\sin x}{c}}{2}$

Then by FTC, we have

$$\begin{cases} f(x) = \frac{e^x - \frac{\cos x}{c}}{2} + f(0) - \frac{1}{2} + \frac{1}{2c} \\ g(x) = \frac{e^x + \frac{\cos x}{c}}{2} + g(0) - \frac{1}{2} - \frac{1}{2c} \end{cases}$$

Note that $f(0) + g(0) = e^0 = 1$, which cancel the constant terms in u, i.e.

$$u = f(x+ct) + g(x-ct)$$

$$= \frac{e^{x+ct} + e^{x-ct} + \frac{-\cos(x+ct) + \cos(x-ct)}{c}}{2}$$

Solve

$$\begin{cases} u_{xx} + u_{xt} - 20u_{tt} = 0 \\ u(x,0) = \phi(x) \\ u_t(x,0) = \psi(x) \end{cases}$$

Proof. The PDE can be write in the form of

$$(\partial_x + 5\partial_t)(\partial_x - 4\partial_t)u = 0$$

which have the general solution

$$u(x,t) = f(5x - t) + g(4x + t)$$

We now see

$$f(5x) + g(4x) = \phi(x)$$
 and $-f'(5x) + g'(4x) = \psi(x)$

This then give us

$$f'(5x) = \frac{(\phi' - 4\psi)(x)}{9}$$
 and $g'(4x) = \frac{(\phi' + 5\psi)(x)}{9}$

and thus

$$f(x) = f(0) + \int_0^x f'(s)ds$$

$$= f(0) + \int_0^x \frac{(\phi' - 4\psi)(\frac{s}{5})}{9}ds$$

$$= f(0) + \frac{5}{9} \left[\phi(\frac{x}{5}) - \phi(0)\right] - \frac{4}{9} \int_0^x \psi(\frac{s}{5})ds$$

and similarly

$$g(x) = g(0) + \int_0^x g'(s)ds$$

$$= g(0) + \int_0^x \frac{(\phi' + 5\psi)(\frac{s}{4})}{9} ds$$

$$= g(0) + \frac{4}{9} \left[\phi(\frac{x}{4}) - \phi(0) \right] + \frac{5}{9} \int_0^x \psi(\frac{s}{4}) ds$$

Noting that $f(0) + g(0) = u(0,0) = \psi(0)$, we now have

$$u(x,t) = f(5x-t) + g(4x+t)$$

$$= \frac{5\phi(\frac{5x-t}{5}) + 4\phi(\frac{4x+t}{4})}{9} - \frac{4}{9} \int_0^{5x-t} \psi(\frac{s}{5}) ds + \frac{5}{9} \int_0^{4x+t} \psi(\frac{s}{4}) ds$$

Chapter 5

Differential Geometry HW

5.1 HW1

Abstract

In this HW, we give precise definition to \mathbb{P}^n and $\mathbb{R}P^n$, and we rigorously show

- (a) $\mathbb{R}P^n$ has a smooth structure.
- (b) \mathbb{P}^n is homeomorphic to $\mathbb{R}P^n$
- (c) \mathbb{P}^n has a smooth structure.

We also solved the other two questions. Note that in this PDF, brown text is always a clickable hyperlink reference.

Define an equivalence relation on $\mathbb{R}^{n+1} \setminus \{\mathbf{0}\}$ by

$$\mathbf{x} \sim \mathbf{y} \iff \mathbf{y} = \lambda \mathbf{x} \text{ for some } \lambda \in \mathbb{R}^*$$

Let $\mathbb{R}P^n \triangleq (\mathbb{R}^{n+1} \setminus \{0\}) \setminus \sim$ be the quotient space and let

$$V_i \triangleq \{\mathbf{x} \in \mathbb{R}^{n+1} : \mathbf{x}^i \neq 0\}$$
 for each $1 \leq i \leq n+1$

By definition, it is clear that

either
$$\pi^{-1}(\pi(\mathbf{x})) \subseteq V_i$$
 or $\pi^{-1}(\pi(\mathbf{x})) \subseteq V_i^c$

Then if we define $\phi_i: V_i \to \mathbb{R}^n$ by

$$\phi_i(\mathbf{x}) \triangleq \left(\frac{\mathbf{x}^1}{\mathbf{x}^i}, \dots, \frac{\mathbf{x}^{i-1}}{\mathbf{x}^i}, \frac{\mathbf{x}^{i+1}}{\mathbf{x}^i}, \dots, \frac{\mathbf{x}^{n+1}}{\mathbf{x}^i}\right)$$

because $\pi(\mathbf{x}) = \pi(\mathbf{y}) \implies \phi_i(\mathbf{x}) = \phi_i(\mathbf{y})$, we can well induce a map

$$\Phi_i: U_i \triangleq \pi(V_i) \subseteq \mathbb{R}P^n \to \mathbb{R}^n; \pi(\mathbf{x}) \mapsto \phi_i(\mathbf{x})$$

Note that one has the equation

$$\Phi_i(\pi(\mathbf{x})) = \phi_i(\mathbf{x}) \text{ for all } \mathbf{x} \in V_i$$

Theorem 5.1.1. (Real Projective Space with a differentiable atlas) We have

 $\mathbb{R}P^n$ with atlas $\{(U_i, \Phi_i) : 1 \leq i \leq n+1\}$ is a differentiable manifold

Proof. We are required to prove

- (a) (U_i, Φ_i) are all charts.
- (b) $\{(U_i, \Phi_i) : 1 \le i \le n+1\}$ form a differentiable atlas.
- (c) $\mathbb{R}P^n$ is Hausdorff.
- (d) $\mathbb{R}P^n$ is second-countable.

Because $\pi^{-1}(U_i) = V_i$ and V_i is clearly open in $\mathbb{R}^{n+1} \setminus \{\mathbf{0}\}$, we know $U_i \subseteq \mathbb{R}P^n$ is open. Note that clearly, $\Phi_i(U_i) = \mathbb{R}^n$. To show (U_i, Φ_i) is a chart, it remains to show that Φ_i is a homeomorphism between U_i and \mathbb{R}^n . It is straightforward to check Φ_i is one-to-one on U_i . This implies Φ_i is a bijective between U_i and \mathbb{R}^n .

Fix open $E \subseteq \mathbb{R}^n$. We see

$$\pi^{-1}(\Phi_i^{-1}(E)) = \phi_i^{-1}(E)$$

Then because $\phi_i: V_i \to \mathbb{R}^n$ is clearly continuous, we see $\phi_i^{-1}(E)$ is open in $\mathbb{R}^{n+1} \setminus \{\mathbf{0}\}$, and it follows from definition of quotient topology $\Phi_i^{-1}(E) \subseteq \mathbb{R}P^n$ is open. Then because U_i is open in $\mathbb{R}P^n$, we see $\Phi_i^{-1}(E)$ is open in U_i . We have proved $\Phi_i: U_i \to \mathbb{R}^n$ is continuous.

Define $\Psi_i: \mathbb{R}^n \to V_i$ by

$$\Psi(\mathbf{x}^1,\ldots,\mathbf{x}^n) = (\mathbf{x}^1,\ldots,\mathbf{x}^{i-1},1,\mathbf{x}^i,\ldots,\mathbf{x}^n)$$

Observe that for all $\mathbf{x} \in \Phi_i(U_i)$, we have

$$\Phi_i^{-1}(\mathbf{x}) = \pi(\Psi_i(\mathbf{x}))$$

It then follows from $\Psi_i: \mathbb{R}^n \to V_i$ and $\pi: \mathbb{R}^{n+1} \setminus \{\mathbf{0}\} \to \mathbb{R}P^n$ are continuous that $\Phi_i^{-1}: \mathbb{R}^n \to \mathbb{R}P^n$ is continuous.

We have proved that (Ψ_i, U_i) are all charts. Now, because V_i clearly cover \mathbb{R}^{n+1} , we know U_i also cover $\mathbb{R}P^n$. We have proved $\{(U_i, \Phi) : 1 \leq i \leq n+1\}$ form an atlas. The fact $\mathbb{R}P^n$ is second-countable follows.

Fix $(\mathbf{x}_1, \dots, \mathbf{x}_n) \in \Phi_i(U_i \cap U_j)$. We compute

$$\Phi_{j} \circ \Phi_{i}^{-1}(\mathbf{x}^{1}, \dots, \mathbf{x}^{n}) = \Phi_{j} \left(\left[(\mathbf{x}^{1}, \dots, \mathbf{x}^{i-1}, 1, \mathbf{x}^{i}, \mathbf{x}^{i+1}, \dots, \mathbf{x}^{n}) \right] \right) \\
= \begin{cases}
\left(\frac{\mathbf{x}^{1}}{\mathbf{x}^{j}}, \dots, \frac{\mathbf{x}^{j-1}}{\mathbf{x}^{j}}, \frac{\mathbf{x}^{j+1}}{\mathbf{x}^{j}}, \dots, \frac{\mathbf{x}^{i-1}}{\mathbf{x}^{j}}, \frac{\mathbf{x}^{i}}{\mathbf{x}^{j}}, \dots, \frac{\mathbf{x}^{n}}{\mathbf{x}^{j}} \right) & \text{if } j < i \\
\left(\frac{\mathbf{x}^{1}}{\mathbf{x}^{j-1}}, \dots, \frac{\mathbf{x}^{i-1}}{\mathbf{x}^{j-1}}, \frac{1}{\mathbf{x}^{j-1}}, \frac{\mathbf{x}^{i}}{\mathbf{x}^{j-1}}, \dots, \frac{\mathbf{x}^{j-2}}{\mathbf{x}^{j-1}}, \frac{\mathbf{x}^{j}}{\mathbf{x}^{j-1}}, \dots, \frac{\mathbf{x}^{n}}{\mathbf{x}^{j-1}} \right) & \text{if } j > i
\end{cases}$$

This implies our atlas is indeed differentiable.

Before we prove $\mathbb{R}P^n$ is Hausdorff, we first prove that $\pi: \mathbb{R}^{n+1} \setminus \{\mathbf{0}\} \to \mathbb{R}P^n$ is an open mapping. Let $U \subseteq \mathbb{R}^{n+1} \setminus \{\mathbf{0}\}$ be open. Observe that

$$\pi^{-1}(\pi(U)) = \{ t\mathbf{x} \in \mathbb{R}^{n+1} : t \neq 0 \text{ and } \mathbf{x} \in U \}$$

Fix $t_0 \mathbf{x} \in \pi^{-1}(\pi(U))$. Let $B_{\epsilon}(\mathbf{x}) \subseteq U$. Observe that

$$B_{|t_0|\epsilon}(t_0\mathbf{x}) \subseteq t_0B_{\epsilon}(\mathbf{x}) \subseteq t_0U \subseteq \pi^{-1}(\pi(U))$$

This implies $\pi^{-1}(\pi(U))$ is open. (done)

Now, because π is open, to show $\mathbb{R}P^n$ is Hausdorff, we only have to show

$$R_{\pi} \triangleq \{(\mathbf{x}, \mathbf{y}) \in (\mathbb{R}^{n+1} \setminus \{\mathbf{0}\})^2 : \pi(\mathbf{x}) = \pi(\mathbf{y})\}$$
 is closed

Define $f: (\mathbb{R}^{n+1} \setminus \{\mathbf{0}\})^2 \to \mathbb{R}$ by

$$f(\mathbf{x}, \mathbf{y}) \triangleq \sum_{i \neq j} (\mathbf{x}^i \mathbf{y}^j - \mathbf{x}^j \mathbf{y}^i)^2$$

Note that f is clearly continuous and $f^{-1}(0) = R_{\pi}$, which finish the proof.

Alternatively, we can characterize $\mathbb{R}P^n$ by identifying the antipodal pints on $S^n \triangleq \{\mathbf{x} \in \mathbb{R}^{n+1} : |\mathbf{x}| = 1\}$ as one point

$$\mathbf{x} \sim \mathbf{y} \iff \mathbf{x} = \mathbf{y} \text{ or } \mathbf{x} = -\mathbf{y}$$

and let $\mathbb{P}^n \triangleq S^n \setminus \infty$ be the quotient space.

Theorem 5.1.2. (Equivalent Definitions of Real Projective Space)

 $\mathbb{R}P^n$ and \mathbb{P}^n are homeomorphic

Proof. Define $F: \mathbb{P}^n \to \mathbb{R}P^n$ by

$$\{\mathbf{x}, -\mathbf{x}\} \mapsto \{\lambda \mathbf{x} : \lambda \in \mathbb{R}^*\}$$

It is straightforward to check that F is well-defined and bijective. Define $f: S^n \to \mathbb{R}P^n$ by

$$f = \pi \circ \mathbf{id}$$

where $id: S^n \to \mathbb{R}^{n+1} \setminus \{0\}$ and $\pi: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}P^n$ are continuous. Check that

$$f = F \circ p$$

where $p: S^n \to \mathbb{P}^n$ is the quotient mapping. It now follows from the universal property that F is continuous, and since \mathbb{P}^n is compact and $\mathbb{R}P^n$ is Hausdorff, it also follows that F is a homeomorphism between $\mathbb{R}P^n$ and \mathbb{P}^n .

Knowing that $F: \mathbb{P}^n \to \mathbb{R}P^n$ is a homeomorphism and $\mathbb{R}P^n$ is a smooth manifold, we see that \mathbb{P}^n is Hausdorff and second-countable, and if we define the atlas

$$\{(F^{-1}(U_i), \Phi_i \circ F) : 1 \le i \le n+1\}$$

We see this atlas is indeed smooth, since

$$(\Phi_i \circ F) \circ (\Phi_j \circ F)^{-1} = \Phi_i \circ \Phi_i^{-1}$$

Question 89

Let X be a set equipped with

- (a) a collection $(U_{\alpha})_{{\alpha}\in I}$ of subsets that covers X.
- (b) a collection of bijection $\phi_{\alpha}: U_{\alpha} \to \phi_{\alpha}(U_{\alpha})$ that maps U_{α} to an open subset $\phi_{\alpha}(U_{\alpha})$ of \mathbb{R}^n .
- (c) For each $\alpha, \beta \in I$, the set $\phi_{\alpha}(U_{\alpha} \cap U_{\beta})$ is open.
- (d) For each $\alpha, \beta \in I$, $\phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\beta} \cap U_{\alpha}) \to \phi_{\beta}(U_{\alpha}, U_{\beta})$ is smooth.

Give X a topology so that X is a smooth manifold.

Proof. If we define $E \subseteq X$ is open if and only if

$$\phi_{\alpha}(U_{\alpha} \cap E)$$
 is open for all α

we see that given arbitrary collection of open sets $(E_j)_{j\in J}$, we have

$$\phi_{\alpha}(U_{\alpha} \cap \bigcup_{j \in J} E_j) = \bigcup_{j \in J} \phi_{\alpha}(U_{\alpha} \cap E_j) \text{ for all } \alpha \in I$$

thus open sets are closed under union, and given two open sets E_1, E_2 , we have

$$\phi_{\alpha}(U_{\alpha} \cap E_1 \cap E_2) \subseteq \phi_{\alpha}(U_{\alpha} \cap E_1) \cap \phi_{\alpha}(U_{\alpha} \cap E_2)$$
 for all $\alpha \in I$

Note that if $\mathbf{x} \in \phi_{\alpha}(U_{\alpha} \cap E_1) \cap \phi_{\alpha}(U_{\alpha} \cap E_2)$, then there exists $p_1 \in U_{\alpha} \cap E_1$ and $p_2 \in U_{\alpha} \cap E_2$ such that $\phi_{\alpha}(p_1) = \phi_{\alpha}(p_2) = \mathbf{x}$. Because ϕ_{α} is one-to-one, we can deduce $p_1 = p_2 \in E_2$, it then follows

$$\mathbf{x} = \phi(p_1) \in \phi_{\alpha}(U_{\alpha} \cap E_1 \cap E_2)$$

We now see

$$\phi_{\alpha}(U_{\alpha} \cap E_1) \cap \phi_{\alpha}(U_{\alpha} \cap E_2) \subseteq \phi_{\alpha}(U_{\alpha} \cap E_1 \cap E_2)$$
 for all $\alpha \in I$

We have proved that our topology on X is well-defined.

Note that U_{α} is open in X follows from premise (c). Thus, if some $E \subseteq U_{\alpha}$ is open in U_{α} , then E is open in X and $\phi_{\alpha}(E) = \phi_{\alpha}(U_{\alpha} \cap E)$ is open. We have proved that $\phi_{\alpha}: U_{\alpha} \to \phi_{\alpha}(U_{\alpha})$ is an open mapping. The fact that $\phi_{\alpha}: U_{\alpha} \to \phi_{\alpha}(U_{\alpha})$ is continuous trivially follows from

- (a) U_{α} is open in X.
- (b) our definition of topology on X.
- (c) $\phi_{\alpha}: U_{\alpha} \to \phi_{\alpha}(U_{\alpha})$ is a bijection.

We have proved that $(U_{\alpha}, \phi_{\alpha})$ are indeed charts. The fact that they form a smooth atlas follows from premise (a) and (d).

Question 90

Let \mathbb{R} be the real line with the differentiable structure given by the maximal atlas of the chart $(\mathbb{R}, \varphi = id : \mathbb{R} \to \mathbb{R})$, where id is the identity map, and let \mathbb{R}' be the real line with the differentiable structure given by the maximal atlas of the chart $(\mathbb{R}', \psi : \mathbb{R}' \to \mathbb{R})$, where $\psi(x) = x^{1/3}$.

- (a) Show that these two differentiable structures are distinct.
- (b) Show that there is a diffeomorphism between \mathbb{R} and \mathbb{R}' . (Hint: The identity map $\mathbb{R} \to \mathbb{R}$ is not the desired diffeomorphism.)

Proof. To see these two smooth structure are distinct. Observe

$$\mathbf{id}^{-1} \circ \psi : \mathbb{R} \to \mathbb{R}; x \mapsto x^{\frac{1}{3}} \text{ is not smooth at } 0$$

We claim $\phi: \mathbb{R} \to \mathbb{R}'$ defined by

$$\phi(x) \triangleq x^3$$
 is a diffeomorphism

It is clear that ϕ is a homeomorphism. To see ϕ is a smooth mapping from \mathbb{R} to \mathbb{R}' , observe that

$$\psi \circ \phi \circ \mathbf{id}^{-1}(x) = x$$

To see ϕ^{-1} is a smooth mapping from \mathbb{R}' to \mathbb{R} , observe that

$$\mathbf{id} \circ \phi \circ \psi^{-1}(x) = x$$

We have proved that ϕ is a diffeomorphism between \mathbb{R} and \mathbb{R}' .

5.2 Appendix

Theorem 5.2.1. (Homeomorphism between Compact Space and Hausdorff Space) Suppose

- (a) X is compact.
- (b) Y is Hausdorff.
- (c) $f: X \to Y$ is a continuous bijective function.

Then

f is a homeomorphism between X and Y

Proof. Because closed subset of compact set is compact and continuous function send compact set to compact set, we see for each closed $E \subseteq X$, $f(E) \subseteq Y$ is compact. The result then follows from $f(E) \subseteq Y$ being closed since Y is Hausdorff.

Theorem 5.2.2. (Hausdorff and Quotient) If $\pi: X \to Y$ is an open mapping, and we define

$$R_{\pi} \triangleq \{(x,y) \in X^2 : \pi(x) = \pi(y)\}$$

Then

 R_{π} is closed $\iff Y$ is Hausdorff

Proof. Suppose R_{π} is closed. Fix some x, y such that $\pi(x) \neq \pi(y)$. Because R_{π} is closed, we know there exists open neighborhood U_x, U_y such that $U_x \times U_y \subseteq (R_{\pi})^c$. It is clear that $\pi(U_x), \pi(U_y)$ are respectively open neighborhood of $\pi(x)$ and $\pi(y)$. To see $\pi(U_x)$ and $\pi(U_y)$ are disjoint, assume that $\pi(a) \in \pi(U_x) \cap \pi(U_y)$. Let $a_x \in U_x$ and $a_y \in U_y$ satisfy $\pi(a_x) = \pi(a) = \pi(a_y)$, which is impossible because $(a_x, a_y) \in (R_{\pi})^c$. CaC

Suppose Y is Hausdorff. Fix some x, y such that $\pi(x) \neq \pi(y)$. Let U_x, U_y be open neighborhoods of $\pi(x), \pi(y)$ separating them. Observe that $(x, y) \in \pi^{-1}(U_x) \times \pi^{-1}(U_y) \subseteq (R_\pi)^c$

5.3 Example: $S^1, \mathbb{R} \setminus \mathbb{Z}$ diffeomorphism

Equip $S^1 \triangleq \{(x,y) \in \mathbb{R}^2 : |(x,y)| = 1\}$ with the standard four projection chart smooth atlas as one of them being

$$V \triangleq \{(x,y) \in \mathbb{R}^2 : y > 0\} \text{ and } \phi_V : V \to \mathbb{R}; (x,y) \mapsto x$$

Let $p: \mathbb{R} \to \mathbb{R} \setminus \mathbb{Z}$ be the quotient map and let

$$U_0 \triangleq p((0,1))$$
 and $U_1 \triangleq p((\frac{-1}{2},\frac{1}{2}))$

which are both open as one can readily check. Define $\phi_0: U_0 \to (0,1)$ by

$$\phi_0(p(t)) \triangleq t_0 \text{ where } t_0 \in (0,1) \text{ and } p(t_0) = p(t)$$

and $\phi_1: U_1 \to (-\frac{1}{2}, \frac{1}{2})$ by

$$\phi_1(p(t)) \triangleq t_0 \text{ where } t_0 \in (-\frac{1}{2}, \frac{1}{2}) \text{ and } p(t_0) = p(t)$$

Clearly, the function $G: \mathbb{R} \setminus \mathbb{Z} \to S^1$ well-defined by $G(p(x)) \triangleq (\cos 2\pi x, \sin 2\pi x)$ is a homeomorphism, as one can check that

- (a) G is a continuous bijection. (Using Universal property of quotient map)
- (b) $\mathbb{R} \setminus \mathbb{Z}$ is compact. (by finite sub-cover definition)
- (c) S^1 is Hausdorff.

We now compute that $\phi_V \circ G \circ \phi_0^{-1}$ is defined on whole (0,1), and is exactly

$$\phi_V \circ G \circ \phi_0^{-1}(t) \triangleq \cos 2\pi t \text{ smooth}$$