Chapter 9- Solutions

- 1. Solute + Solvent → Solution
- 2. Weight percent = <u>Weight of the solute</u> X 100
 Weight of solute + Weight of solvent
- 3. Solubility of NaCl = $\frac{\text{Mass of NaCl}}{\text{Mass of water}}$ X 100

Chapter 10 - Atoms and Molecules

1) Relative molecular mass of a gas = $\frac{\text{Mass of 1 molecule of the gas or vapour}}{\text{Mass of 1 atom of hydrogen}}$

For eg - Relative molecular mass of Oxygen = $2 \times 16 = 32$

- 2) 2 x Vapour density = Relative molecular mass
- 3) Avogadro number = 6.023×10^{23}
- 4) Number of moles = <u>Given Mass</u>

Atomic Mass

For eg: Calculate the number of moles in 81g of aluminium.

Ans: Number of moles = 81 = 3 moles of aluminium

27

5) mass = atomic mass x number of moles

For eg: Calculate the mass of 0.5 mole of iron.

Ans: mass = $= 55.9 \times 0.5 = 27.95 \text{ g}$

6) Number of moles = Given Mass

Molecular Mass

For eg: Calculate the number of moles in 90g of water.

Ans: molecular mass of water = $2 \times 1 + 16 = 18g$

Number of moles = 90 = 5 moles

18

7) Number of moles = $\underline{\text{No. of Atoms}}$

6.023 X 10²³

8) Number of moles = No. of Molecules

6.023 X 10²³

For eg: Calculate the number of molecules in 11g of CO₂.

Ans: molecular mass of $CO_2 = 12 + 2X16 = 44g$

11= No. Of molecules

44 6.023 X 10²³

No. Of molecules = $6.023 \times 10^{23} \times 11 = 1.51 \times 10^{23}$ molecules

9) Mass of a substance = $\frac{\text{molecular mass x number of particles/molecules}}{6.023 \times 10^{23}}$

For eg: Calculate the mass of 18.069 x 10²³ molecules of SO₂

Ans : molecular mass $SO_2 = 1 \ X \ 32 + 2 \ X \ 16 = 64g$ Mass of $SO_2 = \underline{64 \times 18.069 \times 10^{23}} = 192 \ g$ $6.023 \ X \ 10^{23}$

10) Number of moles = Number of molecules

Avogadro number

For eg: Calculate the number of moles for a substance containing 3.0115×10^{23} molecules in it.

Ans : Number of moles = $\frac{3.0115 \times 10^{23}}{6.023 \times 10^{23}}$ = 0.5 moles

Chapter 11 - Chemical Reactions

• $p^{H} = -log [H^{+}]$

For eg: The hydrogen ion concentration of a solution is 0.001M. What is the p^{H} of the solution?

$$\begin{aligned} \text{Ans}: p^{\text{H}} &= -\log_{10} \ (0.001) \\ p^{\text{H}} &= -\log_{10} \ (10^{\text{-}3} \) \\ &= - \ (\text{-}3) \ \log_{10} \ 10 \ [\log \ 10 \ =1] \\ p^{\text{H}} &= 3 \end{aligned}$$

- $p^H + p^{OH} = 14$
- $p^{OH} = -log_{10} [OH-]$

For eg: The hydroxide ion concentration of a solution is 0.001M. What is the p^H of the solution?

```
Ans : p^{OH} = -log_{10} (10<sup>-3</sup>)

p^{OH} = 3

p^{H} = 14 - p^{OH}

p^{H} = 14 - 3 = 11
```

Atomic Number and Their Atomic Mass

	<u>Element</u>	<u>Symbol</u>	Atomic Mass
1.	Hydrogen	Н	1
2.	Helium	Не	4
3.	Lithium	Li	7
4.	Beryillium	Ве	9
5.	Boron	В	11
6.	Carbon	С	12
7.	Nitrogen	N	14
8.	Oxygen	0	16
9.	Fluorine	F	19
10.	Neon	Ne	20
11.	Sodium	Na	23
12.	Magnesium	Mg	24
13.	Aluminium	Al	27
14.	Silicon	Si	28
15.	Phosphorus	Р	31
16.	Sulphur	S	32
17.	Chlorine	Cl	35
18.	Argon	Ar	40
19.	Potassium	K	39
20.	Calcium	Ca	40

Hi He Lies Because Boys Can Not Operate Fire New Nations Might Also Sign Peace Security Clause Army King Can