SEQUENCE LISTING

```
<110> ERIKSSON, Ulf
     AASE, Karin
     LI, Xuri
     PONTEN, Annica
     UUTELA, Marko
     ALITALO, Kari
     OESTMAN, Arne
     HELDIN, Carl-Henrik
<120> PLATELET DERIVED GROWTH FACTOR D, DNA CODING THEREFOR AND USES THEREOF
<130> 1064/44833C2
<150> US 60/107,852
<151> 1998-11-10
<150> US 60/113,997
<151> 1998-12-28
<150> US 60/150,604
<151> 1999-08-26
<150> US 60/157,108
<151> 1999-10-04
<150> US 60/157,756
<151> 1999-10-05
<150> US 09/438,046
<151> 1999-11-10
<150> US 09/691,200
<151> 2000-10-19
<160> 42
<170> PatentIn version 3.1
<210> 1
```

A CONTROL OF THE PARTY OF THE P

Han there can

The state of the s

<211> 360

<400> 1
aattgtggct gtggaactgt caactggagg tcctgcacat gcaattcagg gaaaaccgtg 60
aaaaagtatc atgaggtatt acagtttgag cctggccaca tcaagaggag gggtagagct 120
aagaccatgg ctctagttga catccagttg gatcaccatg aacgatgtga ttgtatctgc 180
agctcaagac cacctcgata agagaatgtg cacatcctta cattaagcct gaaagaacca 240
ttagtttaag gagggtgaga taagagaccc ttttcctacc agcaaccaga cttactacta 300
gcctgcaatg caatgaacac aagtggttgc tgagtctcag ccttgctttg ttaatgccat 360

<210> 2

<211> 66

<212> PRT

<213> Homo sapiens

<400> 2

Asn Cys Gly Cys Gly Thr Val Asn Trp Arg Ser Cys Thr Cys Asn Ser 1 5 10 15

Gly Lys Thr Val Lys Lys Tyr His Glu Val Leu Gln Phe Glu Pro Gly
20 25 30

His Ile Lys Arg Arg Gly Arg Ala Lys Thr Met Ala Leu Val Asp Ile 35 40 45

Gln Leu Asp His His Glu Arg Cys Asp Cys Ile Cys Ser Ser Arg Pro 50 55 60

Pro Arg 65

<210> 3

<211> 690

<212> DNA

<213> Homo sapiens

<400> ggaagatttc caacccgcag caqcttcaga gaccaactgg aatctgtcac aagctctgtt 60 tcagggtate cctataacte tecateagta acggatecea etetgattge ggatgetetg 120 gacaaaaaaa ttgcagaatt tgatacagtg gaagatctgc tcaagtactt caatccagag 180 tcatggcaag aagatcttga gaatatgtat ctggacaccc ctcggtatcg aggcaggtca 240 taccatgacc ggaagtcaaa agttgacctg gataggctca atgatgatgc caagcgttac 300 agttgcactc ccaggaatta ctcggtcaat ataagagaag agctgaagtt ggccaatgtg 360 gtettettte caegttgeet cetegtgeag egetgtggag gaaattgtgg etgtggaact 420 gtcaaactgg agtcctgcac atgcaattca gggaaaaccg tgaaaaagta tcatgaggta 480 ttacagtttg agcctggcca catcaagagg aggggtagag ctaagaccat ggctctagtt 540 gacatccagt tggatcacca tgaacgatgc gattqtatct gcaqctcaag accacctcga 600 taagagaatg tgcacatcct tacattaagc ctgaaagaac ctttagttta aggagggtga 660 gataagagac ccttttccta ccagcaaccc 690

<210> 4

<211> 200

<212> PRT

<213> Homo sapiens

<400> 4

Gly Arg Phe Pro Thr Arg Ser Ser Phe Arg Asp Gln Leu Glu Ser Val 1 5 10 15

Thr Ser Ser Val Ser Gly Tyr Pro Tyr Asn Ser Pro Ser Val Thr Asp 20 25 30

Pro Thr Leu Ile Ala Asp Ala Leu Asp Lys Lys Ile Ala Glu Phe Asp 35 40 45

Thr Val Glu Asp Leu Leu Lys Tyr Phe Asn Pro Glu Ser Trp Gln Glu

Asp Leu Glu Asn Met Tyr Leu Asp Thr Pro Arg Tyr Arg Gly Arg Ser 65 70 75 80

Tyr His Asp Arg Lys Ser Lys Val Asp Leu Asp Arg Leu Asn Asp Asp 85 90 95

Ala Lys Arg Tyr Ser Cys Thr Pro Arg Asn Tyr Ser Val Asn Ile Arg 100 105 110

Glu Glu Leu Lys Leu Ala Asn Val Val Phe Phe Pro Arg Cys Leu Leu 115 120 125

Val Gln Arg Cys Gly Gly Asn Cys Gly Cys Gly Thr Val Lys Leu Glu 130 135 140

Ser Cys Thr Cys Asn Ser Gly Lys Thr Val Lys Lys Tyr His Glu Val 145 150 155 160

Leu Gln Phe Glu Pro Gly His Ile Lys Arg Arg Gly Arg Ala Lys Thr \$165\$

Met Ala Leu Val Asp Ile Gln Leu Asp His His Glu Arg Cys Asp Cys 180 185 190

Ile Cys Ser Ser Arg Pro Pro Arg 195 200

<210> 5

<211> 1934

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(966)

<223>

<40	0>	5															
ttg Leu 1	tac Tyr	cga Arg	aga Arg	gat Asp 5	gag Glu	acc Thr	atc Ile	cag Gln	gtg Val 10	aaa Lys	gga Gly	aac Asn	ggc Gly	tac Tyr 15	gtg Val	4.8	3
cag Gln	agt Ser	cct Pro	aga Arg 20	ttc Phe	ccg Pro	aac Asn	agc Ser	tac Tyr 25	ccc Pro	agg Arg	aac Asn	ctg Leu	ctc Leu 30	ctg Leu	aca Thr	96	5
tgg Trp	cgg Arg	ctt Leu 35	cac His	tct Ser	cag Gln	gag Glu	aat Asn 40	aca Thr	cgg Arg	ata Ile	cag Gln	cta Leu 45	gtg Val	ttt Phe	gac Asp	144	1
aat Asn	cag Gln 50	ttt Phe	gga Gly	tta Leu	gag Glu	gaa Glu 55	gca Ala	gaa Glu	aat Asn	gat Asp	atc Ile 60	tgt Cys	agg Arg	tat Tyr	gat Asp	192	2
ttt Phe 65	gtg Val	gaa Glu	gtt Val	gaa Glu	gat Asp 70	ata Ile	tcc Ser	gaa Glu	acc Thr	agt Ser 75	acc Thr	att Ile	att Ile	aga Arg	gga Gly 80	240)
cga Arg	tgg Trp	tgt Cys	gga Gly	cac His 85	aag Lys	gaa Glu	gtt Val	cct Pro	cca Pro 90	agg Arg	ata Ile	aaa Lys	tca Ser	aga Arg 95	acg Thr	288	3
aac Asn	caa Gln	att Ile	aaa Lys 100	atc Ile	aca Thr	ttc Phe	aag Lys	tcc Ser 105	gat Asp	gac Asp	tac Tyr	ttt Phe	gtg Val 110	gct Ala	aaa Lys	336	ŝ
cct Pro	gga Gly	ttc Phe 115	aag Lys	att Ile	tat Tyr	tat Tyr	tct Ser 120	ttg Leu	ctg Leu	gaa Glu	gat Asp	ttc Phe 125	caa Gln	ccc Pro	gca Ala	384	Į
gca Ala	gct Ala 130	tca Ser	gag Glu	acc Thr	aac Asn	tgg Trp 135	gaa Glu	tct Ser	gtc Val	aca Thr	agc Ser 140	tct Ser	att Ile	tca Ser	GJA aaa	432	?
gta Val 145	tcc Ser	tat Tyr	aac Asn	tct Ser	cca Pro 150	tca Ser	gta Val	acg Thr	gat Asp	ccc Pro 155	act Thr	ctg Leu	att Ile	gcg Ala	gat Asp 160	480)
gct Ala	ctg Leu	gac Asp	aaa Lys	aaa Lys 165	att Ile	gca Ala	gaa Glu	ttt Phe	gat Asp 170	aca Thr	gtg Val	gaa Glu	gat Asp	ctg Leu 175	ctc Leu	528	}
aag Lys	tac Tyr	ttc Phe	aat Asn 180	cca Pro	gag Glu	tca Ser	tgg Trp	caa Gln 185	gaa Glu	gat Asp	ctt Leu	gag Glu	aat Asn 190	atg Met	tat Tyr	576	5
ctg Leu	gac Asp	acc Thr 195	cct Pro	cgg Arg	tat Tyr	cga Arg	ggc Gly 200	agg Arg	tca Ser	tac Tyr	cat His	gac Asp 205	cgg Arg	aag Lys	tca Ser	624	Į
aaa Lys	gtt Val	gac Asp	ctg Leu	gat Asp	ag g Arg	ctc Leu	aat Asn	gat Asp	gat Asp	gcc Ala	aag Lys	cgt Arg	tac Tyr	agt Ser	tgc Cys	672	?

210 215 220

act ccc agg aat tac tcg gtc aat ata aga gaa gag ctg aag ttg gcc Thr Pro Arg Asn Tyr Ser Val Asn Ile Arg Glu Glu Leu Lys Leu Ala 225 230 235 240	L
Asn Val Val Phe Pro Arg Cys Leu Leu Val Gln Arg Cys Gly Gly 245	768
aat tgt ggc tgt gga act gtc aac tgg agg tcc tgc aca tgc aat tca Asn Cys Gly Cys Gly Thr Val Asn Trp Arg Ser Cys Thr Cys Asn Ser 260 265 270	816
ggg aaa acc gtg aaa aag tat cat gag gta tta cag ttt gag cct ggc Gly Lys Thr Val Lys Lys Tyr His Glu Val Leu Gln Phe Glu Pro Gly 275 280 285	864
cac atc aag agg agg ggt aga gct aag acc atg gct cta gtt gac atc His Ile Lys Arg Arg Gly Arg Ala Lys Thr Met Ala Leu Val Asp Ile 290 295 300	
cag ttg gat cac cat gaa cga tgc gat tgt atc tgc agc tca aga cca Gln Leu Asp His His Glu Arg Cys Asp Cys Ile Cys Ser Ser Arg Pro 305 310 315 320	•
cct cga taagagaatg tgcacatcct tacattaagc ctgaaagaac ctttagttta Pro Arg	1016
aggagggtga gataagagac cetttteeta ecageaacca aaettaetae tageetge	aa 1076
tgcaatgaac acaagtggtt gctgagtctc agccttgctt tgttaatgcc atggcaag	ta 1136
gaaaggtata tcatcaactt ctatacctaa gaatatagga ttgcatttaa taatagtg	tt 1196
tgaggttata tatgcacaaa cacacaga aatatattca tgtctatgtg tatataga	tc 1256
aaatgttttt tttggtatat ataaccaggt acaccagagc ttacatatgt ttgagtta	ga 1316
ctcttaaaat cctttgccaa aataagggat ggtcaaatat atgaaacatg tctttaga	aa 1376
atttaggaga taaatttatt tttaaatttt gaaacacaaa acaattttga atcttgct	ct 1436
cttaaagaaa gcatcttgta tattaaaaat caaaagatga ggctttctta catataca	tc 1496
ttagttgatt attaaaaaag gaaaaaggtt tccagagaaa aggccaatac ctaagcat	tt 1556
tttccatgag aagcactgca tacttaccta tgtggactgt aataacctgt ctccaaaa	.cc 1616
atgccataat aatataagtg ctttagaaat taaatcattg tgttttttat gcattttg	rct 1676
gaggcatcct tattcattta acacctatct caaaaactta cttagaaggt tttttatt	at 1736
agtcctacaa aagacaatgt ataagctgta acagaatttt gaattgtttt tctttgca	aa 1796
acccctccac aaaagcaaat cctttcaaga atggcatggg cattctgtat gaaccttt	.cc 1856

agat	iggt	gtt (cagt	gaaaq	ga to	gtgg	gtagt	t tga	agaa	ctta	aaaa	agtga	aac a	attga	aacat	1916
cgad	cgtaa	act q	ggaaa	accg												1934
<210)> (6														
<211	L> 3	32 2														
<212	2> 1	PRT														
<213> Homo sapiens																
<400)> (6														
Leu 1	Tyr	Arg	Arg	Asp 5	Glu	Thr	Ile	Gln	Val 10	Lys	Gly	Asn	Gly	Tyr 15	Val	
Gln	Ser	Pro	Arg 20	Phe	Pro	Asn	Ser	Tyr 25	Pro	Arg	Asn	Leu	Leu 30	Leu	Thr	
Trp	Arg	Leu 35	His	Ser	Gln	Glu	Asn 40	Thr	Arg	Ile	Gln	Leu 45	Val	Phe	Asp	
Asn	G 1n 50	Phe	G1y	Leu	Glu	Glu 55	A1a	Glu	Asn	Asp	I1e 60	Cys	Arg	Tyr	Asp	
Phe 65	Val	Glu	Val	Glu	Asp 70	Ile	Ser	Glu	Thr	Ser 75	Thr	Ile	Ile	Arg	Gly 80	
Arg	Trp	Суѕ	Gly	His 85	Lys	Glu	Val	Pro	Pro 90	Arg	Ile	Lys	Ser	Arg 95	Thr	
Asn	Gln	Ile	Lys 100	Ile	Thr	Phe	Lys	Ser 105	Asp	Asp	Tyr	Phe	Val 110	Ala	Lys	
Pro	Gly	Phe 11 5	Lys	Ile	Tyr	Tyr	Ser 120	Leu	Leu	Glu	Asp	Phe 125	G1n	Pro	Ala	
Ala	A1a 130	Ser	Glu	Thr	Asn	Trp 135	Glu	Ser	Val	Thr	Ser 140	Ser	Ile	Ser	Gly	

Ala Leu Asp Lys Lys Ile Ala Glu Phe Asp Thr Val Glu Asp Leu Leu 165 170 175

Lys Tyr Phe Asn Pro Glu Ser Trp Gln Glu Asp Leu Glu Asn Met Tyr 180 185 190

Leu Asp Thr Pro Arg Tyr Arg Gly Arg Ser Tyr His Asp Arg Lys Ser 195 200 205

Lys Val Asp Leu Asp Arg Leu Asn Asp Asp Ala Lys Arg Tyr Ser Cys 210 215 220

Thr Pro Arg Asn Tyr Ser Val Asn Ile Arg Glu Glu Leu Lys Leu Ala 225 230 235 240

Asn Val Val Phe Phe Pro Arg Cys Leu Leu Val Gln Arg Cys Gly Gly 245 250 255

Asn Cys Gly Cys Gly Thr Val Asn Trp Arg Ser Cys Thr Cys Asn Ser 260 265 270

Gly Lys Thr Val Lys Lys Tyr His Glu Val Leu Gln Phe Glu Pro Gly 275 280 285

His Ile Lys Arg Arg Gly Arg Ala Lys Thr Met Ala Leu Val Asp Ile 290 295 300

Gln Leu Asp His His Glu Arg Cys Asp Cys Ile Cys Ser Ser Arg Pro 305 310 315 320

Pro Arg

<210> 7

<211> 2253

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (176)..(1288)

<223>

<400> 7	**************************************			
			cggcgattag cacagcgac	
cgggccagcg c	agggcgagc gcagg	cggcg agagcgcagg	gcggcgcggc gtcggtccc	g 120
ggagcagaac c	cggcttttt cttgg	agcga cgctgtctct	agtcgctgat cccaa atg Met 1	
His Arg Leu			gca aac ttt tgc agc Ala Asn Phe Cys Ser 15	226
tgt cgg gac Cys Arg Asp 20	act tct gca acc Thr Ser Ala Thr	ccg cag agc gca Pro Gln Ser Ala 25	tcc atc aaa gct ttg Ser Ile Lys Ala Leu 30	274
cgc aac gcc Arg Asn Ala . 35	aac ctc agg cga Asn Leu Arg Arg 40	gat gag agc aat Asp Glu Ser Asn	cac ctc aca gac ttg His Leu Thr Asp Leu 45	322
tac cga aga Tyr Arg Arg 50	gat gag acc atc Asp Glu Thr Ile 55	cag gtg aaa gga Gln Val Lys Gly 60	aac ggc tac gtg cag Asn Gly Tyr Val Gln 65	370
			ctg ctc ctg aca tgg Leu Leu Thr Trp 80	418
Arg Leu His	tct cag gag aat Ser Gln Glu Asn 85	aca cgg ata cag Thr Arg Ile Gln 90	cta gtg ttt gac aat Leu Val Phe Asp Asn 95	466
cag ttt gga Gln Phe Gly 100	tta gag gaa gca Leu Glu Glu Ala	gaa aat gat atc Glu Asn Asp Ile 105	tgt agg tat gat ttt Cys Arg Tyr Asp Phe 110	514
gtg gaa gtt Val Glu Val 115	gaa gat ata tcc Glu Asp Ile Ser 120	Glu Thr Ser Thr	att att aga gga cga Ile Ile Arg Gly Arg 125	562
tgg tgt gga Trp Cys Gly	cac aag gaa gtt His Lys Glu Val 135	cct cca agg ata Pro Pro Arg Ile 140	aaa tca aga acg aac Lys Ser Arg Thr Asn 145	610
caa att aaa Gln Ile Lys	atc aca ttc aag Ile Thr Phe Lys 150	tcc gat gac tac Ser Asp Asp Tyr 155	ttt gtg gct aaa cct Phe Val Ala Lys Pro 160	658

gga th Gly Ph	tc aaq he Lys	att Ile 165	tat Tyr	tat Tyr	tct Ser	ttg Leu	ctg Leu 170	gaa Glu	gat Asp	ttc Phe	caa Gln	ccc Pro 175	gca Ala	gca Ala	706
gct to Ala Se	ca gaç er Glu 180	Thr			-		-		_					_	754
Ser T	at aad yr Asr 95	tct Ser	cca Pro	tca Ser	gta Val 200	acg Thr	gat Asp	ccc Pro	act Thr	ctg Leu 205	att Ile	gcg Ala	gat Asp	gct Ala	802
	ac aaa sp Lys														850
	tc aat he Asr														898
	ec ect hr Pro														946
	ac cto sp Let 260	ı Asp				_	_	_	_	_		_			994
Pro A	gg aat rg As r 75		_	_			_	_		_	_	_	_		1042
	tc tto														1090
	gc tgt ly Cys														1138
	cc gto		_				_		-						1186
	ag agg ys Arg 340	g Arg													1234
Leu A	at cad sp His														1282
cga ta Arg 370	aa gaq	gaatg	tgc (acat	cctt	ac at	ttaaq	gcct	g aaa	agaad	cctt	tagt	tttaa	agg	1338
agggt	gagat	aaga	gacc	ct t	ttcc	tacca	a gca	aacc	aaac	ttad	ctac	tag (cctg	caatgc	1398

aatgaacaca agtggttgct gagtctcagc cttgctttgt taatgccatg gcaagtagaa 1458 aggtatatca tcaacttcta tacctaagaa tataggattg catttaataa tagtgtttga 1518 ggttatatat gcacaaacac acacagaaat atattcatgt ctatgtgtat atagatcaaa 1578 tgtttttttt ggtatatata accaggtaca ccagagctta catatgtttg agttagactc 1638 ttaaaatcct ttgccaaaat aagggatggt caaatatatg aaacatgtct ttagaaaatt 1698 taggagataa atttattttt aaattttgaa acacaaaaca attttgaatc ttgctctctt 1758 aaagaaagca tettgtatat taaaaatcaa aagatgagge tttettacat atacatetta 1818 gttgattatt aaaaaaggaa aaaggtttcc agagaaaagg ccaataccta agcatttttt 1878 ccatgagaag cactgcatac ttacctatgt qqactgtaat aacctgtctc caaaaccatq 1938 ccataataat ataagtgctt tagaaattaa atcattgtgt tttttatgca ttttgctgag 1998 2058 cctacaaaag acaatgtata agctgtaaca gaattttgaa ttgtttttct ttgcaaaacc 2118 cctccacaaa agcaaatcct ttcaagaatg gcatgggcat tctgtatgaa cctttccaga 2178 tggtgttcag tgaaagatgt gggtagttga gaacttaaaa agtgaacatt gaaacatcga 2238 cgtaactgga aaccg 2253

<210> 8

<211> 370

<212> PRT

<213> Homo sapiens

<400> 8

Ser Cys Arg Asp Thr Ser Ala Thr Pro Gln Ser Ala Ser Ile Lys Ala 20 25 30

Leu Arg Asn Ala Asn Leu Arg Arg Asp Glu Ser Asn His Leu Thr Asp 35 40 45

Leu Tyr Arg Arg Asp Glu Thr Ile Gln Val Lys Gly Asn Gly Tyr Val

50 55 60

Gln Ser Pro Arg Phe Pro Asn Ser Tyr Pro Arg Asn Leu Leu Leu Thr 65 70 75 80

Trp Arg Leu His Ser Gln Glu Asn Thr Arg Ile Gln Leu Val Phe Asp 85 90 95

Asn Gln Phe Gly Leu Glu Glu Ala Glu Asn Asp Ile Cys Arg Tyr Asp $100 \hspace{1.5cm} 105 \hspace{1.5cm} 105$

Phe Val Glu Val Glu Asp Ile Ser Glu Thr Ser Thr Ile Ile Arg Gly 115 120 125

Asn Gln Ile Lys Ile Thr Phe Lys Ser Asp Asp Tyr Phe Val Ala Lys 145 150 155 160

Pro Gly Phe Lys Ile Tyr Tyr Ser Leu Leu Glu Asp Phe Gln Pro Ala 165 170 175

Ala Ala Ser Glu Thr Asn Trp Glu Ser Val Thr Ser Ser Ile Ser Gly
180 185 190

Val Ser Tyr Asn Ser Pro Ser Val Thr Asp Pro Thr Leu Ile Ala Asp 195 200 205

Ala Leu Asp Lys Lys Ile Ala Glu Phe Asp Thr Val Glu Asp Leu Leu 210 215 220

Lys Tyr Phe Asn Pro Glu Ser Trp Gln Glu Asp Leu Glu Asn Met Tyr 225 230 235 240

Leu Asp Thr Pro Arg Tyr Arg Gly Arg Ser Tyr His Asp Arg Lys Ser 245 250 255

Lys Val Asp Leu Asp Arg Leu Asp Asp Asp Ala Lys Arg Tyr Ser Cys 260 265 270

Thr Pro Arg Asn Tyr Ser Val Asn Ile Arg Glu Glu Leu Lys Leu Ala 275 280 285

Asn Val Val Phe Phe Pro Arg Cys Leu Leu Val Gln Arg Cys Gly Gly 290 295 300

Asn Cys Gly Cys Gly Thr Val Asn Trp Arg Ser Cys Thr Cys Asn Ser 305 310 315 320

Gly Lys Thr Val Lys Lys Tyr His Glu Val Leu Gln Phe Glu Pro Gly 325 330 335

His Ile Lys Arg Arg Gly Arg Ala Lys Thr Met Ala Leu Val Asp Ile 340 345 350

Gln Leu Asp His His Glu Arg Cys Asp Cys Ile Cys Ser Ser Arg Pro 355 360 365

Pro Arg 370

<210> 9

<211> 4

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> A putative proteolytic site found at residues
 255-258 of SEQ ID NO:8 (PDGF-D)

<400> 9

Arg Lys Ser Lys

<210> 10

<211> 91

<212> PRT

<400> 11

<213> Homo sapiens <220> <221> misc_feature <223> PDGF/VEGF-homology domain of PDGF-D <400> 10 Cys Thr Pro Arg Asn Tyr Ser Val Asn Ile Arg Glu Glu Leu Lys Leu 5 Ala Asn Val Val Phe Phe Pro Arg Cys Leu Leu Val Gln Arg Cys Gly 25 20 Gly Asn Cys Gly Cys Gly Thr Val Lys Leu Glu Ser Cys Thr Cys Asn 35 45 Ser Gly Lys Thr Val Lys Lys Tyr His Glu Val Leu Gln Phe Glu Pro 55 50 Gly His Ile Lys Arg Arg Gly Arg Ala Lys Thr Met Ala Leu Val Asp 70 Ile Gln Leu Asp His His Glu Arg Cys Asp Cys <210> 11 <211> 88 <212> PRT <213> Homo sapiens <220> <221> misc feature <223> PDGF/VEGF-homology domain of PDGF-C

Cys Thr Pro Arg Asn Phe Ser Val Ser Ile Arg Glu Glu Leu Lys Arg 1 5 10 15

Thr Asp Thr Ile Phe Trp Pro Gly Cys Leu Leu Val Lys Arg Cys Gly
20 25 30

Pro Ser Lys Val Thr Lys Lys Tyr His Glu Val Leu Gln Leu Arg Pro 50 55 60

Lys Thr Gly Val Arg Gly Leu His Lys Ser Leu Thr Asp Val Ala Leu 65 70 75 80

Glu His His Glu Glu Cys Asp Cys 85

<210> 12

<211> 84

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> PDGF/VEGF-homology domain of PDGF-A

<400> 12

Cys Lys Thr Arg Thr Val Ile Tyr Glu Ile Pro Arg Ser Gln Val Asp $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Pro Thr Ser Ala Asn Phe Leu Ile Trp Pro Pro Cys Val Glu Val Lys 20 25 30

Arg Cys Thr Gly Cys Cys Asn Thr Ser Ser Val Lys Cys Gln Pro Ser 35 40 45

Arg Val His His Arg Ser Val Lys Val Ala Lys Val Glu Tyr Val Arg 50 55 60

Lys Lys Pro Lys Leu Lys Glu Val Gln Val Arg Leu Glu Glu His Leu 65 70 75 80

Glu Cys Ala Cys

<210> 13

<211> 84

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> PDGF/VEGF-homology domain of PDGF-B

<400> 13

Arg Thr Asn Ala Asn Phe Leu Val Trp Pro Pro Cys Val Glu Val Gln 20 25 30

Arg Cys Ser Gly Cys Cys Asn Asn Arg Asn Val Gln Cys Arg Pro Thr 35 40 45

Gln Val Gln Leu Arg Pro Val Gln Val Arg Lys Ile Glu Ile Val Arg 50 55 60

Lys Lys Pro Ile Phe Lys Lys Ala Thr Val Thr Leu Glu Asp His Leu 65 70 75 80

Ala Cys Lys Cys

* <210> 14 <211> 79 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> PDGF/VEGF-homology domain of VEGF-165 <400> 14 Cys His Pro Ile Glu Thr Leu Val Asp Ile Phe Gln Glu Tyr Pro Asp 5 Glu Ile Glu Tyr Ile Phe Lys Pro Ser Cys Val Pro Leu Met Arg Cys 20 25 Gly Gly Cys Cys Asn Asp Glu Gly Leu Glu Cys Val Pro Thr Glu Glu 35 Ser Asn Ile Thr Met Gln Ile Met Arg Ile Lys Pro His Gln Gly Gln 50 55 His Ile Gly Glu Met Ser Phe Leu Gln His Asn Lys Cys Glu Cys <210> 15 <211> 79 <212> PRT <213> Homo sapiens <220> <221> misc feature <223> PDGF/VEGF-homology domain of PlGF-2

<400> 15

Glu Val Glu His Met Phe Ser Pro Ser Cys Val Ser Leu Leu Arg Cys 20 25 30

Thr Gly Cys Cys Gly Asp Glu Asp Leu His Cys Val Pro Val Glu Thr 35 40 45

Ala Asn Val Thr Met Gln Leu Leu Lys Ile Arg Ser Gly Asp Arg Pro 50 55 60

Ser Tyr Val Glu Leu Thr Phe Ser Gln His Val Arg Cys Glu Cys 65 70 75

<210> 16

<211> 78

<212> PRT

<213> Homo sapiens

<220>

<221> misc feature

<223> PDGF/VEGF-homology domain of VEGF-B167

<400> 16

Cys Gln Pro Arg Glu Val Val Pro Leu Thr Val Glu Leu Met Gly
1 5 10 15

Thr Val Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys 20 25 30

Gly Gly Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln 35 40

His Gln Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln

50 55 60

Leu Gly Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys 65 70 75

<210> 17

<211> 81

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> PDGF/VEGF-homology domain of VEGF-C

<400> 17

Cys Met Pro Arg Glu Val Cys Ile Asp Val Gly Lys Glu Phe Gly Val 1 5 10 15

Ala Thr Asn Thr Phe Phe Lys Pro Pro Cys Val Ser Val Tyr Arg Cys 20 25 30

Gly Gly Cys Cys Asn Ser Glu Gly Leu Gln Cys Met Asn Thr Ser Thr 35 40 45

Ser Tyr Leu Ser Lys Thr Leu Phe Glu Ile Thr Val Pro Leu Ser Gln 50 55 60

Gly Pro Lys Pro Val Thr Ile Ser Phe Ala Asn His Thr Ser Cys Arg 65 70 75 80

Cys

<210> 18

<211> 81

<212> PRT

<213> Homo sapiens <220> <221> misc feature <223> PDGF/VEGF-homology domain of VEGF-D <400> 18 Cys Ser Pro Arg Glu Thr Cys Val Glu Val Ala Ser Glu Leu Gly Lys 5 Thr Thr Asn Thr Phe Phe Lys Pro Pro Cys Val Asn Val Phe Arg Cys 25 Gly Gly Cys Cys Asn Glu Glu Gly Val Met Cys Met Asn Thr Ser Thr 35 Ser Tyr Ile Ser Lys Gln Leu Phe Glu Ile Ser Val Pro Leu Thr Ser 50 55 Val Pro Glu Leu Val Pro Val Lys Ile Ala Asn His Thr Gly Cys Lys Cys <210> 19 <211> 118 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> CUB domain of PDGF-D

<400> 19

Asp Glu Thr Ile Gln Val Lys Gly Asn Gly Tyr Val Gln Ser Pro Arg 1 5 10 15

Phe Pro Asn Ser Tyr Pro Arg Asn Leu Leu Leu Thr Trp Arg Leu His 20 25 30

Ser Gln Glu Asn Thr Arg Ile Gln Leu Val Phe Asp Asn Gln Phe Gly 35 40 45

Leu Glu Glu Ala Glu Asn Asp Ile Cys Arg Tyr Asp Phe Val Glu Val 50 55 60

Glu Asp Ile Ser Glu Thr Ser Thr Ile Ile Arg Gly Arg Trp Cys Gly 65 70 75 80

His Lys Glu Val Pro Pro Arg Ile Lys Ser Arg Thr Asn Gln Ile Lys 85 90 95

Ile Thr Phe Lys Ser Asp Asp Tyr Phe Val Ala Lys Pro Gly Phe Lys 100 105 110

Ile Tyr Tyr Ser Leu Leu 115

<210> 20

<211> 113

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> CUB domain 1 of BMP-1

<400> 20

Cys Gly Glu Thr Leu Gln Asp Ser Thr Gly Asn Phe Ser Ser Pro Glu 1 5 10 15

Tyr Pro Asn Gly Tyr Ser Ala His Met His Cys Val Trp Arg Ile Ser 20 25 30

Val Thr Pro Gly Glu Lys Ile Ile Leu Asn Phe Thr Ser Leu Asp Leu 35 40 45

Tyr Arg Ser Arg Leu Cys Trp Tyr Asp Tyr Val Glu Val Arg Asp Gly 50 55 60

Phe Trp Arg Lys Ala Pro Leu Arg Gly Arg Phe Cys Gly Ser Lys Leu 65 70 75 80

Pro Glu Pro Ile Val Ser Thr Asp Ser Arg Leu Trp Val Glu Phe Arg 85 90 95

Ser Ser Ser Asn Trp Val Gly Lys Gly Phe Phe Ala Val Tyr Glu Ala 100 105 110

Ile

<210> 21

<211> 112

<212> PRT

<213> Homo sapiens

<220>

<221> misc feature

<223> CUB domain 2 of BMP-1

<400> 21

Tyr Pro Asp Asp Tyr Arg Pro Ser Lys Val Cys Ile Trp Arg Ile Gln 20 25 30

Val Ser Glu Gly Phe His Val Gly Leu Thr Phe Gln Ser Phe Glu Ile

-4

the man the transmitted to the t

35

40

45

Glu Arg Met Asp Ser Cys Ala Tyr Asp Tyr Leu Glu Val Arg Asp Gly 50 60

His Ser Glu Ser Ser Thr Leu Ile Gly Arg Tyr Cys Gly Tyr Glu Lys 65 70 75 80

Pro Asp Asp Ile Lys Ser Thr Ser Ser Arg Leu Trp Leu Lys Phe Val 85 90 95

Ser Asp Gly Ser Ile Asn Lys Ala Gly Phe Ala Val Asn Phe Phe Lys 100 105 110

<210> 22

<211> 113

<212> PRT

<213> Homo sapiens

<220>

<221> misc feature

<223> CUB domain 3 of BMP-1

<400> 22

Cys Gly Gly Phe Leu Thr Lys Leu Asn Gly Ser Ile Thr Ser Pro Gly 1 5 10 15

Trp Pro Lys Glu Tyr Pro Pro Asn Lys Asn Cys Ile Trp Gln Leu Val 20 25 30

Ala Pro Thr Gln Tyr Arg Ile Ser Leu Gln Phe Asp Phe Phe Glu Thr 35 40 45

Glu Gly Asn Asp Val Cys Lys Tyr Asp Phe Val Glu Val Arg Ser Gly 50 60

Leu Thr Ala Asp Ser Lys Leu His Gly Lys Phe Cys Gly Ser Glu Lys 65 70 75 80

Pro Glu Val Ile Thr Ser Gln Tyr Asn Asn Met Arg Val Glu Pro Lys 85 90 95

Ser Asp Asn Thr Val Ser Lys Lys Gly Phe Lys Ala His Phe Phe Ser 100 105 110

Glu

<210> 23

<211> 113

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> CUB domain 1 of Neuropilin

<400> 23

Gly Asp Thr Ile Lys Ile Glu Ser Pro Gly Tyr Leu Thr Ser Pro Gly 1 $$ 5 $$ 10 $$ 15

Tyr Pro His Ser Tyr His Pro Ser Glu Lys Cys Glu Trp Leu Ile Gln 20 25 30

Ala Pro Asp Pro Tyr Gln Arg Ile Met Ile Asn Phe Asn Pro His Phe 35 40 45

Asp Leu Glu Asp Arg Asp Cys Lys Tyr Asp Tyr Val Glu Val Phe Asp 50 55 60

Gly Glu Asn Glu Asn Gly His Phe Arg Gly Lys Phe Cys Gly Lys Ile
65 70 75 80

Ala Pro Pro Pro Val Val Ser Ser Gly Pro Phe Leu Phe Ile Lys Phe 85 90 95

Val Ser Asp Tyr Glu Thr His Gly Ala Gly Phe Ser Ile Arg Tyr Glu 100 105 110

Ile

<210> 24

<211> 119

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> CUB domain 2 of Neuropilin

<400> 24

Cys Ser Gln Asn Tyr Thr Thr Pro Ser Gly Val Ile Lys Ser Pro Gly 1 $$ 5 $$ 10 $$ 15

Phe Pro Glu Lys Tyr Pro Asn Ser Leu Glu Cys Thr Tyr Ile Val Phe 20 25 30

Ala Pro Lys Met Ser Glu Ile Ile Leu Glu Phe Glu Ser Phe Asp Leu 35 40 45

Glu Pro Asp Ser Asn Pro Pro Gly Gly Met Phe Cys Arg Tyr Asp Arg 50 55 60

Leu Glu Ile Trp Asp Gly Phe Pro Asp Val Gly Pro His Ile Gly Arg 65 70 75 80

Tyr Cys Gly Gln Lys Thr Pro Gly Arg Ile Arg Ser Ser Ser Gly Ile 85 90 95

Leu Ser Met Val Phe Tyr Thr Asp Ser Ala Ile Ala Lys Glu Gly Phe 100 105 110

```
Ser Ala Asn Tyr Ser Val Leu
        115
<210>
      25
<211>
      15
<212>
      PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<222>
       (2)..(2)
<223> can be any amino acid residue
<220>
<221>
      MISC FEATURE
<222>
       (7)..(7)
<223> can be any amino acid residue
<400> 25
Pro Xaa Cys Leu Leu Val Xaa Arg Cys Gly Gly Asn Cys Gly Cys
                5
<210> 26
<211>
       20
<212>
       DNA
<213> Artificial Sequence
<220>
       Description of Artificial Sequence: Forward PCR primer used to am
       plify a 327 bp DNA fragment from a human fetal lung cDNA library
<400> 26
gtcgtggaac tgtcaactgg
                                                                       20
```

<210>

27

```
<211>
       20
<212>
       DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Reverse PCR primer used to a
       mplify a 327 bp DNA fragment from a human fetal lung cDNA library
<400> 27
ctcagcaacc acttgtgttc
                                                                      20
<210>
       28
<211>
       27
<212>
      DNA
<213> Artificial Sequence
<220>
       Description of Artificial Sequence: Adaptor primer 1 (Clontech)
       used to amplify the sequence found at the 5' end of PDGF-D
<400> 28
ccatcctaat acgactcact atagggc
                                                                      27
<210>
      29
<211>
      29
<212> DNA
<213> Artificial Sequence
<220>
<223>
       Description of Artificial Sequence: Adaptor primer 2 (Clontech)
       used to amplify the sequence found at the 5' end of PDGF-D
<400> 29
agtgggatcc gttactgatg gagagttat
                                                                      29
```

```
<210>
       30
<211>
       26
<212>
       DNA
<213> Artificial Sequence
<220>
       Description of Artificial Sequence: Forward PCR primer used to am
       plify a 429 bp DNA fragment (nucleotides 556 to 966 of SEQ ID NO:
       5) of PDGF-D
<400> 30
cccaagcttg aagatcttga gaatat
                                                                      26
<210>
       31
<211>
       22
<212>
       DNA
<213> Artificial Sequence
<220>
<223>
      Description of Artificial Sequence: Reverse PCR primer used to am
       plify a 429 bp DNA fragment (nucleotides 556 to 966 of SEQ ID NO:
       5) of PDGF-D
<400> 31
tgctctagat cgaggtggtc tt
                                                                      22
<210> 32
<211> 345
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Amino acid sequence for PDGF-C
```

<400> 32

Met Ser Leu Phe Gly Leu Leu Val Thr Ser Ala Leu Ala Gly Gln 1 5 10 15

Arg Arg Gly Thr Gln Ala Glu Ser Asn Leu Ser Ser Lys Phe Gln Phe 20 25 30

Ser Ser Asn Lys Glu Gln Asn Gly Val Gln Asp Pro Gln His Glu Arg 35 40 45

Ile Ile Thr Val Ser Thr Asn Gly Ser Ile His Ser Pro Arg Phe Pro 50 55 60

His Thr Tyr Pro Arg Asn Thr Val Leu Val Trp Arg Leu Val Ala Val 65 70 75 80

Glu Glu Asn Val Trp Ile Gln Leu Thr Phe Asp Glu Arg Phe Gly Leu 85 90 95

Glu Asp Pro Glu Asp Asp Ile Cys Lys Tyr Asp Phe Val Glu Val Glu 100 105 110

Glu Pro Ser Asp Gly Thr Ile Leu Gly Arg Trp Cys Gly Ser Gly Thr 115 120 125

Val Pro Gly Lys Gln Ile Ser Lys Gly Asn Gln Ile Arg Ile Arg Phe 130 135 140

Val Ser Asp Glu Tyr Phe Pro Ser Glu Pro Gly Phe Cys Ile His Tyr 145 150 155 160

Asn Ile Val Met Pro Gln Phe Thr Glu Ala Val Ser Pro Ser Val Leu 165 170 175

Pro Pro Ser Ala Leu Pro Leu Asp Leu Leu Asn Asn Ala Ile Thr Ala 180 185 190

Phe Ser Thr Leu Glu Asp Leu Ile Arg Tyr Leu Glu Pro Glu Arg Trp 195 200 205 Gln Leu Asp Leu Glu Asp Leu Tyr Arg Pro Thr Trp Gln Leu Leu Gly 210 215 220

Lys Ala Phe Val Phe Gly Arg Lys Ser Arg Val Val Asp Leu Asn Leu 225 230 235 240

Leu Thr Glu Glu Val Arg Leu Tyr Ser Cys Thr Pro Arg Asn Phe Ser 245 250 255

Val Ser Ile Arg Glu Glu Leu Lys Arg Thr Asp Thr Ile Phe Trp Pro 260 265 270

Gly Cys Leu Leu Val Lys Arg Cys Gly Gly Asn Cys Ala Cys Cys Leu 275 280 285

His Asn Cys Asn Glu Cys Gln Cys Val Pro Ser Lys Val Thr Lys Lys 290 295 300

Tyr His Glu Val Leu Gln Leu Arg Pro Lys Thr Gly Val Arg Gly Leu 305 310 315 320

His Lys Ser Leu Thr Asp Val Ala Leu Glu His His Glu Glu Cys Asp 325 330 335

Cys Val Cys Arg Gly Ser Thr Gly Gly 340 345

<210> 33

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward PCR primer for the cD NA encoding amino acid residues 24-370 of SEQ ID NO:8 (PDGF-D)

<220>

<221> misc_feature

<223> Primer includes a XbaI site for in frame cloning

<400> gatatct	33 taga agcaaccccg cagagc	26
<210>	34	
<211>	46	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Reverse PCR primer for amplation of the cDNA encoding amino acid residues 24-370 of SEQ II O:8 (PDGF-D)	Lic D N
<220>		
<221>	misc_feature	
<223>	Primer includes an EcoRI site and sequences encoding for a C-teinal 6X His tag preceded by an enterokinase site	erm
	34 attc taaatggtga tggtgatgat gtcgaggtgg tcttga	46
<210>	35	
<211>	1252	
<212>	DNA	
<213>	Murinae gen. sp.	
<400> atgcaa	35 egge tegttttagt etecattete etgtgegega aetttagetg etateeggae	60
actttt	gcga ctccgcagag agcatccatc aaagctttgc gcaatgccaa cctcaggaga	120
gatgag	agca atcacctcac agacttgtac cagagagagg agaacattca ggtgacaagc	180
aatggc	catg tgcagagtcc tcgcttcccg aacagctacc caaggaacct gcttctgaca	240
tggtgg	otcc gttcccagga gaaaacacgg atacaactgt cctttgacca tcaattcgga	300
ctagag	gaag cagaaaatga catttgtagg tatgactttg tggaagttga agaagtctca	360

gagagcagca ctgttgtcag aggaagatgg tgtggccaca aggagatccc tccaaggata 420 acgtcaagaa caaaccagat taaaatcaca tttaagtctq atgactactt tqtqqcaaaa 480 cctggattca agatttatta ttcatttqtq qaaqatttcc aaccqqaaqc aqcctcaqaq 540 accaactggg aatcagtcac aagctctttc tctggggtgt cctatcactc tccatcaata 600 acggacccca eteteactgc tgatgccetg gacaaaactg tegcagaatt egataccgtg 660 gaagatctac ttaagcactt caatccagtg tcttggcaag atgatctgga gaatttgtat 720 ctggacaccc ctcattatag aggcaggtca taccatgatc ggaagtccaa agtggacctg 780 gacaggetea atgatgatgt caagegttac agttgcacte ecaggaatea etetgtgaac 840 ctcagggagg agctgaagct gaccaatgca gtcttcttcc cacgatgcct cctcgtgcag 900 cgctgtggtg gcaactgtgg ttgcggaact gtcaactgga agtcctgcac atgcagctca 960 gggaagacag tgaagaagta tcatgaggta ttgaagtttg agcctggaca tttcaagaga 1020 aggggcaaag ctaagaatat ggctcttgtt gatatccagc tggatcatca tgaqcgatgt 1080 gactgtatct gcagctcaag accacctcga taaaacacta tgcacatctg tactttgatt 1140 atgaaaggac ctttaggtta caaaaaccct aagaagcttc taatctcagt gcaatgaatg 1200 1252 catatggaaa tgttgctttg ttagtgccat ggcaagaaga agcaaatatc at

<210> 36

<211> 370

<212> PRT

<213> Murinae gen. sp.

<400> 36

Met Gln Arg Leu Val Leu Val Ser Ile Leu Leu Cys Ala As
n Phe Ser 1 10 15

Cys Tyr Pro Asp Thr Phe Ala Thr Pro Gln Arg Ala Ser Ile Lys Ala 20 25 30

Leu Arg Asn Ala Asn Leu Arg Arg Asp Glu Ser Asn His Leu Thr Asp 35 40 45

Leu Tyr Gln Arg Glu Glu Asn Ile Gln Val Thr Ser Asn Gly His Val

50 55 60

Gln 65	Ser	Pro	Arg	Phe	Pro 70	Asn	Ser	Tyr	Pro	Arg 75	Asn	Leu	Leu	Leu	Thr 80
Trp	Trp	Leu	Arg	Ser 85	Gln	Glu	Lys	Thr	Arg 90	Ile	Gln	Leu	Ser	Phe 95	Asp
His	Gln	Phe	Gly 100	Leu	Glu	Glu	Ala	Glu 105	Asn	Asp	Ile	Cys	Arg 110	Tyr	Asp
Phe	Val	Glu 115	Val	Glu	Glu	Val	Ser 120	Glu	Ser	Ser	Thr	Val 125	Val	Arg	Gly
Arg	Trp 130	Cys	Gly	His	Lys	Glu 135	Ile	Pro	Pro	Arg	Ile 140	Thr	Ser	Arg	Thr
Asn 145	Gln	Ile	Lys	Ile	Thr 150	Phe	Lys	Ser	Asp	Asp 155	Tyr	Phe	Val	Ala	Lys 160
Pro	Gly	Phe	Lys	Ile 165	Tyr	Tyr	Ser	Phe	Val 170	Glu	Asp	Phe	Gln	Pro 175	Glu
Ala	Ala	Ser	Glu 180	Thr	Asn	Trp	Glu	Ser 185	Val	Thr	Ser	Ser	Phe 190	Ser	Gly
Val	Ser	Tyr 195	His	Ser	Pro	Ser	Ile 200	Thr	Asp	Pro	Thr	Leu 205	Thr	Ala	Asp
Ala	Leu 210	Asp	Lys	Thr	Val	Ala 215	Glu	Phe	Asp	Thr	Val 220	Glu	Asp	Leu	Leu
Lys 225	His	Phe	Asn	Pro	Val 230	Ser	Trp	Gln	Asp	Asp 235	Leu	Glu	Asn	Leu	Tyr 240
Leu	Asp	Thr	Pro	His 245	Tyr	Arg	Gly	Arg	Ser 250	Tyr	His	Asp	Arg	Lys 255	Ser
Lys	Val	Asp	Leu 260	Asp	Arg	Leu	Asn	Asp 265	Asp	Val	Lys	Arg	Tyr 270	Ser	Cys

Thr Pro Arg Asn His Ser Val Asn Leu Arg Glu Glu Leu Lys Leu Thr 275 280 280

Asn	Ala	Val	Phe	Phe	Pro	Arg	Cys	Leu	Leu	Val	Gln	Arg	Cys	Gly	Gly
	290					295					300			_	_

Asn Cys Gly Cys Gly Thr Val Asn Trp Lys Ser Cys Thr Cys Ser Ser 305 310 315 320

Gly Lys Thr Val Lys Lys Tyr His Glu Val Leu Lys Phe Glu Pro Gly 325 330 335

His Phe Lys Arg Arg Gly Lys Ala Lys Asn Met Ala Leu Val Asp Ile $340 \hspace{1cm} 345 \hspace{1cm} 350$

Gln Leu Asp His His Glu Arg Cys Asp Cys Ile Cys Ser Ser Arg Pro $355 \hspace{1.5cm} 360 \hspace{1.5cm} 365$

Pro Arg 370

<210> 37

<211> 1234

<212> DNA

<213> Murinae gen. sp.

<400> 37 atgcaacggc togttttagt ctccattctc ctgtgcgcga actttagctg ctatccggac 60 acttttgcga ctccgcagag agcatccatc aaagctttgc gcaatgccaa cctcaggaga 120 gatgacttgt accagagaga ggagaacatt caggtgacaa gcaatggcca tgtgcagagt 180 cctcgcttcc cgaacagcta cccaaggaac ctgcttctga catggtggct ccgttcccaq 240 gagaaaacac ggatacaact gtcctttgac catcaattcg gactagagga agcagaaaat 300 gacatttgta ggtatgactt tgtggaagtt gaagaagtct cagagagcag cactgttgtc 360 agaggaagat ggtgtggcca caaggagatc cctccaagga taacgtcaag aacaaaccag 420 attaaaatca catttaagtc tgatgactac tttgtggcaa aacctggatt caagatttat 480 tattcatttg tggaagattt ccaaccggaa gcagcctcag agaccaactg ggaatcagtc 540 acaagetett tetetggggt gteetateae tetecateaa taaeggaeee caeteteaet 600

gctgatgccc tggacaaaac tgtcgcagaa ttcgataccg tggaagatct acttaagcac 660 ttcaatccag tgtcttggca agatgatctg gagaatttgt atctggacac ccctcattat 720 agaggcaggt cataccatga tcggaagtcc aaagtggacc tggacaggct caatgatgat 780 gtcaagcgtt acagttgcac tcccaggaat cactctgtga acctcaggga ggagctgaag 840 ctgaccaatg cagtcttctt cccacgatgc ctcctcgtgc agcgctgtgg tggcaactgt 900 ggttgcggaa ctgtcaactg gaagtcctgc acatgcagct cagggaagac agtgaagaag 960 tatcatgagg tattgaagtt tgagcctgga catttcaaga gaaggggcaa agctaagaat 1020 atggctcttg ttgatatcca gctggatcat catgagcgat gtgactgtat ctgcagctca 1080 agaccacctc gataaaacac tatgcacatc tgtactttga ttatgaaagg acctttaggt 1140 tacaaaaaacc ctaagaagct tctaatctca gtgcaatgaa tgcatatgga aatgttgctt 1200 tgttagtgcc atggcaagaa gaagcaaata tcat 1234

<210> 38

<211> 364

<212> PRT

<213> Murinae gen. sp.

<400> 38

Met Gln Arg Leu Val Leu Val Ser Ile Leu Leu Cys Ala Asn Phe Ser 1 $$ 5 $$ 10 $$ 15

Cys Tyr Pro Asp Thr Phe Ala Thr Pro Gln Arg Ala Ser Ile Lys Ala 20 25 30

Leu Arg Asn Ala Asn Leu Arg Arg Asp Asp Leu Tyr Gln Arg Glu Glu 35 40 45

Asn Ile Gln Val Thr Ser Asn Gly His Val Gln Ser Pro Arg Phe Pro 50 55 60

Asn Ser Tyr Pro Arg Asn Leu Leu Thr Trp Trp Leu Arg Ser Gln 65 70 75 80

Glu Lys Thr Arg Ile Gln Leu Ser Phe Asp His Gln Phe Gly Leu Glu 85 90 95 Glu Ala Glu Asn Asp Ile Cys Arg Tyr Asp Phe Val Glu Val Glu Glu 100 105 110

Val Ser Glu Ser Ser Thr Val Val Arg Gly Arg Trp Cys Gly His Lys
115 120 125

Glu Ile Pro Pro Arg Ile Thr Ser Arg Thr Asn Gln Ile Lys Ile Thr 130 135 140

Phe Lys Ser Asp Asp Tyr Phe Val Ala Lys Pro Gly Phe Lys Ile Tyr 145 150 155 160

Tyr Ser Phe Val Glu Asp Phe Gln Pro Glu Ala Ala Ser Glu Thr Asn 165 170 175

Trp Glu Ser Val Thr Ser Ser Phe Ser Gly Val Ser Tyr His Ser Pro 180 185 190

Ser Ile Thr Asp Pro Thr Leu Thr Ala Asp Ala Leu Asp Lys Thr Val 195 200 205

Ala Glu Phe Asp Thr Val Glu Asp Leu Leu Lys His Phe Asn Pro Val 210 215 220

Ser Trp Gln Asp Asp Leu Glu Asn Leu Tyr Leu Asp Thr Pro His Tyr 225 230 235 240

Arg Gly Arg Ser Tyr His Asp Arg Lys Ser Lys Val Asp Leu Asp Arg 245 250 255

Leu Asn Asp Asp Val Lys Arg Tyr Ser Cys Thr Pro Arg Asn His Ser 260 265 270

Val Asn Leu Arg Glu Glu Leu Lys Leu Thr Asn Ala Val Phe Pro 275 280 285

Arg Cys Leu Leu Val Gln Arg Cys Gly Gly Asn Cys Gly Cys Gly Thr 290 295 300

Val Asn Trp Lys Ser Cys Thr Cys Ser Ser Gly Lys Thr Val Lys Lys 305 310 315 320

Tyr His Glu Val Leu Lys Phe Glu Pro Gly His Phe Lys Arg Gly 325 330 335

Lys Ala Lys Asn Met Ala Leu Val Asp Ile Gln Leu Asp His His Glu 340 345 350

Arg Cys Asp Cys Ile Cys Ser Ser Arg Pro Pro Arg 355 360

<210> 39

<211> 768

<212> DNA

<213> Murinae gen. sp.

<400> 39 60 atgcaacggc tcgttttagt ctccattctc ctgtgcgcga actttagctg ctatccggac acttttgcga ctccgcagag agcatccatc aaagctttgc gcaatgccaa cctcaggaga 120 180 gatgacttgt accaqagaga ggagaacatt caggtgacaa gcaatggcca tgtgcagagt cctcgcttcc cgaacagcta cccaaggaac ctgcttctga catggtggct ccgttcccag 240 gagaaaacac ggatacaact gtcctttgac catcaattcg gactagagga agcagaaaat 300 gacatttgta ggtatgactt tgtggaagtt gaagaagtct cagagagcag cactgttgtc 360 agaggaagat ggtgtggcca caaggagatc cctccaagga taacgtcaag aacaaaccag 420 attaaaatca catttaagtc tgatgactac tttgtggcaa aacctggatt caagatttat 480 tattcatttg tggaagattt ccaaccggaa gcagcctcag agaccaactg ggaatcagtc 540 acaagctett tetetggggt gteetateae tetecateaa taacggacce cacteteaet 600 gctgatgccc tggacaaaac tgtcgcagaa ttcgataccg tggaagatct acttaagcac 660 ttcaatccag tgtcttggca agatgatctg gagaatttgt atctggacac ccctcattat 720 agaggcaggt cataccatga tcggaagtcc aaaggtattg aagtttga 768

<210> 40

<211> 255

<212> PRT

<213> Murinae gen. sp.

<400> 40

Met Gln Arg Leu Val Leu Val Ser Ile Leu Leu Cys Ala Asn Phe Ser $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Cys Tyr Pro Asp Thr Phe Ala Thr Pro Gln Arg Ala Ser Ile Lys Ala 20 25 30

Leu Arg Asn Ala Asn Leu Arg Arg Asp Asp Leu Tyr Gln Arg Glu Glu 35 40 45

Asn Ile Gln Val Thr Ser Asn Gly His Val Gln Ser Pro Arg Phe Pro 50 55 60

Asn Ser Tyr Pro Arg Asn Leu Leu Leu Thr Trp Trp Leu Arg Ser Gln 65 70 75 80

Glu Lys Thr Arg Ile Gln Leu Ser Phe Asp His Gln Phe Gly Leu Glu 85 90 95

Glu Ala Glu As
n Asp Ile Cys Arg Tyr Asp Phe Val Glu Val Glu Glu 100 \$105\$

Val Ser Glu Ser Ser Thr Val Val Arg Gly Arg Trp Cys Gly His Lys 115 120 125

Glu Ile Pro Pro Arg Ile Thr Ser Arg Thr Asn Gln Ile Lys Ile Thr 130 135 140

Phe Lys Ser Asp Asp Tyr Phe Val Ala Lys Pro Gly Phe Lys Ile Tyr 145 150 155 160

Tyr Ser Phe Val Glu Asp Phe Gln Pro Glu Ala Ala Ser Glu Thr Asn 165 170 175

Trp Glu Ser Val Thr Ser Ser Phe Ser Gly Val Ser Tyr His Ser Pro 180 185 190

Ser Ile Thr Asp Pro Thr Leu Thr Ala Asp Ala Leu Asp Lys Thr Val 195 200 205

Ala G 2	10	Phe	Asp	Thr	Val	Glu 215	Asp	Leu	Leu	Lys	His 220	Phe	Asn	Pro	Val	
Ser T 225	rp	Gln	Asp	Asp	Leu 230	Glu	Asn	Leu	Tyr	Leu 235	Asp	Thr	Pro	His	Tyr 240	
Arg G	ly	Arg	Ser	Tyr 245	His	Asp	Arg	Lys	Ser 250	Lys	Gly	Ile	Glu	Val 255		
<210>	. ,	41														
<211>		19														
<212>	- 1	DNA														
<213>	• 1	Muri	nae (gen.	sp.											
<400> caaat			ggct	cgtt	t											19
<210>	•	42														
<211>	•	24														
<212>	•	DNA														
<213>	•]	Muri	nae (gen.	sp.											
<400>		42	+ a+ +	a++~	a a	+ ~ ~										24
gatat	ーしし	ycı	LULL	ullg	uu a	Lyg										Z4