Q1	Corrigé	Note
1	Pour $t = 0$, A $(-1, 3, 1)$ un point de (d) . Soit $M(x, y, z)$ un point de (Q) ; donc $\overrightarrow{OM} \cdot \left(\overrightarrow{OA} \wedge \overrightarrow{v_d}\right) = 0 \Leftrightarrow (Q)$: $x + y - 2z = 0$.	0.5
2 a	H (x _H , y _H , z _H) est un point de (d) tel que (OH) soit perpendiculaire à (d); donc $\begin{cases} H \in (d) \\ \overrightarrow{OH} \cdot \overrightarrow{v_d} = 0 \end{cases}$	1
2 b	t-1+t+3+t+1=0, donc t = -1 et H(-2, 2, 0). OH = $\sqrt{(-2)^2 + 2^2} = 2\sqrt{2}$.	0.5
3a	(2m - 1) (-2) -2m + 0+6m - 2 = 0 Les coordonnées de H vérifient l'équation de (P); donc H appartient à(P). Ou A appartient à (P) et H appartient à (P).	0.5
3b	(2m-1)(t-1) - m(t+3) + (1-m)(t+1) + 6m-2 = 2 m t - 2m - t + 1 - m t - 3 m + t + 1 - m t - m + 6 m - 2 = 0. Donc (d) est contenue dans (P).	0.5
3c	$d = \frac{ 6m-2 }{\sqrt{(2m-1)^2 + m^2 + (1-m)^2}} = \frac{ 6m-2 }{\sqrt{6m^2 - 6m + 2}}.$	0.5
4	(OH) est perpendiculaire au plan (P) Si d= OH, donc $2\sqrt{2} = \frac{ 6m-2 }{\sqrt{(2m-1)^2 + m^2 + (1-m)^2}}$, d'où $12(m^2 - 2m + 1) = 0$ par suite m = 1.	0.5

Q2	Corrigé	N
	$p(S/E) = p(\text{les deux pratiquent le basketball ou les deux pratiquent le Tennis}) = \frac{C_6^2 + C_3^2}{C_{10}^2} = \frac{2}{5}$	1
A1a	$p(E \cap S) = p(E) \times p(S/E) = \frac{1}{2} \times \frac{2}{5} = \frac{1}{5}.$	
A1b	$P(S) = P(S \cap E) + P(S \cap \overline{E}) = \frac{1}{5} + \frac{1}{2} \times \frac{C_4^2 + C_4^2 + C_2^2}{C_{10}^2} = \frac{1}{5} + \frac{13}{90} = \frac{31}{90}.$	1
A2	$p(E/\overline{S}) = \frac{p(E \cap \overline{S})}{p(\overline{S})} = \frac{p(E) - P(E \cap S)}{1 - p(S)} = \frac{\frac{1}{2} - \frac{1}{5}}{1 - \frac{31}{90}} = \frac{\frac{3}{10}}{\frac{59}{90}} = \frac{27}{59}.$	0.5
B1	P(3 élèves pratiquent le même sport)= $\frac{C_5^3 + C_{10}^3 + C_5^3}{C_{20}^3} = \frac{7}{57}$	0.5
B2	$X(\Omega) = \{ 1, 2, 3 \} \text{ puisque les élèves peuvent pratiquer le même sport ou deux sports, ou trois sports distincts.}$ $p(X=3) = \frac{C_5^1 \times C_{10}^1 \times C_5^1}{C_{20}^3} = \frac{25}{114} \; ; \; P(X=1) = \frac{7}{57} ; \; P(X=2) = 1 - p(X=1) - p \; (X=3) = \frac{25}{38}.$	1

Q3	Corrigé	N
1a	$z' = -1 - \sqrt{3} + (1 + \sqrt{3})i$. D'où y' = -x', donc M' décrit la droite d'équation y = -x.	0.5

1b	M appartient à la droite d'équation $y = x$ et M' appartient à la droite d'équation $y = -x$, donc le	0.5
	triangle OMM' est rectangle en O. Ou \overrightarrow{OM} . $\overrightarrow{OM}' = 0$ par suite OM et OM sont perpendiculaires.	0.5
2a	$z'+2=(1+i\sqrt{3})z$; $ z'+2 = 2z =2 z $.	0.5
2b	M appartient au cercle de centre O et de rayon 2, d'où $ \mathbf{z} = 2$; donc $ \mathbf{z}' + 2 = 4$ d'où	1
	$\ \overrightarrow{IM'}\ $ = 4, donc M' décrit le cercle de centre I et de rayon 4.	
3a	$x' = x - \sqrt{3} y - 2$ et $y' = y + x \sqrt{3}$.	0.5
3b	Si y + x $\sqrt{3}$ = 0, alors y' = 0, d'où z' est un réel, donc M' décrit l'axe des abscisses.	1

Q4	Corrigé	N
1a	$\lim_{x \to -\infty} f(x) = -\infty \text{ et } \lim_{x \to -\infty} [f(x) - (x-1)] = \lim_{x \to -\infty} [3 - \frac{3}{1 + e^x}] = \lim_{x \to -\infty} \frac{3e^x}{1 + e^x} = 0$ Donc la droite (d ₁) d'équation y = x -1 est asymptote à (C). $f(x) - (x-1) = \frac{3e^x}{1 + e^x} > 0 \text{ ; donc (C) est au-dessus de (d1)}.$	1
1b	$\lim_{x \to +\infty} f(x) = +\infty \text{ et } \lim_{x \to +\infty} [f(x) - (x+2)] = \lim_{x \to +\infty} -\frac{3}{1+e^x} = 0.$ Donc la droite (d ₂) d'équation y = x + 2 est asymptote à (C). $f(x) - (x+2) = \frac{-3}{1+e^x} < 0; \text{ (C) est en dessous de (d2)}.$	1
2	0 centre du domaine et $f(2a-x) + f(x) = f(-x) + f(x) = 1$ donc I est centre de symétrie de (C).	1
3	$f'(x) = 1 + \frac{3e^{x}}{(1 + e^{x})^{2}} \qquad f'(x) > 0 \text{ pour tout } x;$ $\frac{x}{f'(x)} + \infty$ $f'(x) = 1 + \frac{3e^{x}}{(1 + e^{x})^{2}} \qquad f'(x) > 0 \text{ pour tout } x;$ $\frac{f'(x)}{f(x)} - \infty$	1
4		1
5a	$f(x) = x + 2 - \frac{3}{1 + e^x} = x + 2 - \frac{3}{1 + e^x} \times \frac{e^{-x}}{e^{-x}} = x + 2 - \frac{3e^{-x}}{1 + e^{-x}}.$	0.5
5b	$A(\lambda) = \int_{0}^{\lambda} [(x+2) - (x+2 - \frac{3e^{-x}}{1 + e^{-x}})] dx = \int_{0}^{\lambda} \frac{3e^{-x}}{1 + e^{-x}} dx = \left[-3\ln(1 + e^{-x}) \right]_{0}^{\lambda}$ = $-3\ln(1 + e^{-\lambda}) + 3\ln 2$ d'où $\lim_{\lambda \to +\infty} A(\lambda) = 3\ln 2$.	1.5
ба	$f(\ln 2) = \ln 2 + 2 - \frac{3}{1 + e^{\ln 2}} = \ln 2 + 2 - 1 = 1 + \ln 2$ Donc g (1+ln2) = ln 2 et E (1+ ln 2; ln 2) est un point de (G).	0.5
6b	La pente de la tangente à (G) au point E est: g' $(1 + \ln 2) = \frac{1}{f'(\ln 2)} = \frac{1}{1 + \frac{3 \times 2}{(2 + 1)^2}} = \frac{3}{5}$.	0.5