SONG ZHANG

✓ song.zhang@utah.edu

Education

University of Utah Sep. 2022 - NowSalt Lake City, UT

PhD in Computing

University of Utah Sep. 2020 - May 2022

Master of Science in Computer Science Salt Lake City, UT

New York Institute of Technology Sep. 2016 - May 2020

Bachelor of Science in Computer Science New York, NY

Projects

ReSTIR Shadow Maps (research project) | C++, Falcor, Slang

Sep. 2022

- The project goal is to extend ReSTIR algorithm to handle the shadows in many-light scene without hardware ray tracing support.
- Using ReSTIR sampling results as guidance to pick most important lights in the scene and only render shadow maps for those lights.

Using ReSTIR for Area Light Soft Shadows (research project) | C++, Falcor, Slang

Sep. 2021

- Modified origin Percent-Closer Soft Shadows (PCSS) method by changing the final PCF step.
- Integrated this new PCSS method with ReSTIR for shadow approximation.
- Some comparison tests are being done with other shadow mapping methods like Variance Shadow Map (VSM), Exponential Shadow Map (ESM), and Moment Shadow Map (MSM).

Real-time Area Light Implementation with Linear Transformed Cosines | C+++, OpenGL

Feb. 2021

- Realized four types of area lights rectangular, cylindrical, elliptic and ellipsoid using the techniques described in the LTC paper.
- Designed two scenes using ImGui and OpenGL:
 - * In the first scene, users can adjust the coefficients of each light as well as the properties of plane material to see how those changes will affect the final rendering.
 - * In the second scene, many dynamic area lights were randomly generated to show their interaction with the GGX material plane.

BRDF Visualization System $\mid C++, Falcor$

Feb. 2021

- Using Falcor designed a real-time interactive BRDF visualization system, in which the BRDF Lobe was constructed using SDF with ray marching.
- The entire system implements UE4's BRDF material and provides a material ball to show the final render results.

GPU Ray Tracing $\mid C++, Cuda$

Feb. 2021

- Using CUDA to transfer the computation of each Ray from CPU to GPU and achieving a 17.4x speedup in rendering.
- The final rendered image implements 3 spherical materials: Lambertian, Metal and Glass with a depth of field effect.

Unity Cross-platform Standalone VR basketball Game | C#, Unity

Sep. 2020

- Implemented VR basketball game running on Vive Index, Oculus and Windows Mixed Reality using UnityXR API.
- Participated in the implementation of character movement, picking and throwing the ball.
- Built appropriate textures, materials, sound and physics models for each object in the scene.

Technical Skills

Technologies: Computer Graphics, Real-time Rendering, Physically-based Rendering

Languages: C/C++, Python, C#, Javascript Developer Tools: VS & VS Code, Unity, Git Frameworks: Falcor, DirectX, OpenGL, CUDA