RHEM Equation Summary

Updated: 07/02/2014

```
Ft (friction factor)
```

```
Ft = 10^{-0.109+(1.425*littercover)+(0.442*rockcover)+(1.764*(basalcover+ cryptogams))+2.068S}
```

Ke (Green-Ampt Hydraulic Conductivity)

```
Sand Keb = 24 * \{exp^{0.3483} * (basalcover + littercover)\}
```

Loamy Sand Keb = $10 * \{exp^{0.8755} * (basalcover + littercover)\}$

Sandy Loam Keb = $5 * \{exp^{1.1632} * (basalcover + littercover)\}$

Loam Keb = $2.5 * \{exp^{1.5686} * (basalcover + littercover)\}$

Silt Loam Keb = $1.2 * \{exp^{2.0149} * (basalcover + littercover)\}$ Silt Keb = $1.2 * \{exp^{2.0149} * (basalcover + littercover)\}$

Sandy Clay Loam Keb = $0.80 * \{exp^{2.1691} * (basalcover + littercover)\}$

Clay Loam Keb = $0.50 * \{exp^{2.3026} * (basalcover + littercover)\}$

Silty Clay Loam Keb = $0.40 * \{exp^{2.1691} * (basalcover + littercover)\}$

Sandy Clay Keb = $0.30 * \{exp^{2.1203} * (basalcover + littercover)\}$

Silty Clay Keb = $0.25 * \{exp^{1.7918} * (basalcover + littercover)\}$

Clay Keb = $0.2 * \{exp^{1.3218} * (basalcover + littercover)\}$

Shrub Vegetation Community

Ke = Keb * 1.2

Sod Grass Vegetation Community

Ke = Keb * 0.8

Bunch Grass Vegetation Community

Ke = Keb * 1.0

Forbs Vegetation Community

Ke = Keb * 1.0

Kss (Splash and Sheet erosion parameter)

Shrub Vegetation Community

```
Kss = 2.6 * \{10^{14.00836} - (1.17804 * rockcover) - (0.98196 * (littercover + canopycover))\}
```

Sod Grass Vegetation Community

```
Kss = 2.6 * {10^ [3.13334 - (0.20055 * canopycover) - (0.50550 * littercover)]}
```

then: Kss = (Kss/1.5)

Bunch Grass Vegetation Community

```
Kss = 2.6 * \{10^{13.3334} - (0.20055 * canopycover) - (0.50550 * littercover) \}
```

Forbs Vegetation Community

$$Kss = 2.6 * \{10^{13.13334} - (0.20055 * canopycover) - (0.50550 * littercover) \}$$

 α (degrees) = atan(slope)

Slope Steepness Factor = $(2.96*(\sin(\alpha)^{0.79}) + 0.56)$

Kss for all cases is multiplied by the factors 1.3 and 2.0 (2.6) in order to account for the bias in the log transformation and calibration and for the Slope Steepness factor:

[Duan, Naihua. 1983. Smearing Estimate: A Nonparametric Retransformation Method, *Journal of the American Statistical Association*, Vol., 78, No. 3838. (Sep., 1983), pp. 605-610.]

[Foster,G. R. 1982. Modeling the Erosion Process. In C.T. Haan, H. P. Johnson, D. L. Brakensiek(Eds.), Hydrologic Modeling of Small Watershed (297-380), American Society of Agricultural Engineers, St. Joseph, Michigan.]