## Instructions for Paper Submissions to AISTATS 2021

#### Anonymous Author Anonymous Institution

#### Abstract

In this paper, we propose a new variant of AMSGrad (Reddi et al. 2018), a popular adaptive gradient based optimization algorithm widely used for training deep neural networks. Our algorithm adds prior knowledge about the sequence of consecutive minibatch gradients and leverages its underlying structure making the gradients sequentially predictable. By exploiting the predictability and ideas from Optimistic Online Learning, the proposed algorithm can accelerate the convergence and increase sample efficiency. After establishing a tighter upper bound under some convexity conditions on the regret, we offer a complimentary view of our algorithm which generalizes the offline and stochastic version of nonconvex optimization. In the nonconvex case, we establish a non-asymptotic convergence bound independently of the initialization of the method. We illustrate the practical speedup on several deep learning models through numerical experiments.

#### 1 Introduction

Deep learning models have been successful in several applications, from robotics (e.g. (Levine et al. 2017)), computer vision (e.g (He et al. 2016; Goodfellow et al. 2014)), reinforcement learning (e.g. (Mnih et al. 2013)) and natural language processing (e.g. (Graves et al. 2013)). With the sheer size of modern datasets and the dimension of neural networks, speeding up training is of utmost importance. To do so, several algorithms have been proposed in recent years, such as AMSGRAD (Reddi et al. 2018), ADAM (Kingma and Ba 2015), RMSPROP (Tiele-

Preliminary work. Under review by AISTATS 2021. Do not distribute.

man and Hinton 2012), ADADELTA (Zeiler 2012), and NADAM (Dozat 2016).

All the prevalent algorithms for training deep networks mentioned above combine two ideas: the idea of adaptivity from Adagrad (Duchi et al. 2011; McMahan and Streeter 2010) and the idea of momentum from Nesterov's Method (Nesterov 2004) or HEAVY BALL method (Polyak 1964). ADAGRAD is an online learning algorithm that works well compared to the standard online gradient descent when the gradient is sparse. Its update has a notable feature: it leverages an anisotropic learning rate depending on the magnitude of gradient in each dimension which helps in exploiting the geometry of the data. On the other hand, Nesterov's Method of Heavy Ball Method (Polyak 1964) is an accelerated optimization algorithm which update not only depends on the current iterate and current gradient but also depends on the past gradients (i.e. momentum). State-of-the-art algorithms like AMSGRAD (Reddi et al. 2018) and ADAM (Kingma and Ba 2015) leverage these ideas to accelerate the training of nonconvex objective functions such as deep neural networks losses.

In this paper, we propose an algorithm that goes further than the hybrid of the adaptivity and momentum approach. Our algorithm is inspired by Optimistic Online learning (Chiang et al. 2012; Rakhlin and Sridharan 2013; Syrgkanis et al. 2015; Abernethy et al. 2018; Mertikopoulos et al. 2018), which assumes that, in each round of online learning, a predictable process of the gradient of the loss function is available. Then an action is played exploiting these predictors. By capitalizing on this (possibly) arbitrary process, algorithms in Optimistic Online learning enjoy smaller regret than the ones without gradient predictions. We combine the Optimistic Online learning idea with the adaptivity and the momentum ideas to design a new algorithm — OPT-AMSGRAD.

A single work along that direction stands out. Daskalakis et al. (2018) develop OPTIMISTIC-ADAM leveraging optimistic online mirror descent (Rakhlin and Sridharan 2013). Yet, OPTIMISTIC-ADAM is specifically designed to optimize two-player games, e.g.

GANs (Goodfellow et al. 2014) which is in particular a two-player zero-sum game. There have been some related works in Optimistic Online Learn-ING (Chiang et al. 2012; Rakhlin and Sridharan 2013; Syrgkanis et al. 2015) showing that if both players use an Optimistic type of update, then accelerating the convergence to the equilibrium of the game is possible. Daskalakis et al. (2018) build on these related works and show that Optimistic-Mirror-Descent can avoid the cycle behavior in a bilinear zero-sum game accelerating the convergence. In contrast, in this paper, the proposed algorithm is designed to accelerate nonconvex optimization (e.g. empirical risk minimization). To the best of our knowledge, this is the first work exploring towards this direction and bridging the unfilled theoretical gap at the crossroads of online learning and stochastic optimization. The contributions of this paper are as follows:

- We derive an optimistic variant of AMSGRAD borrowing techniques from online learning procedures. Our method relies on (I) the addition of prior knowledge in the sequence of the model parameter estimations alleviating a predictable process able to provide guesses of gradients through the iterations and (II) the construction of a double update algorithm done sequentially. We interpret this two-projection step as the learning of the global parameter and of an underlying scheme which makes the gradients sequentially predictable.
- We focus on the theoretical justifications of our method by establishing novel non-asymptotic and global convergence rates in both convex and non-convex cases. Based on convex regret minimization and nonconvex stochastic optimization views, we prove, respectively, that our algorithm suffers regret of  $\mathcal{O}(\sqrt{\sum_{t=1}^{T} \|g_t m_t\|_{\psi_{t-1}}^2})$  and achieves a convergence rate  $\mathcal{O}(\sqrt{d/T} + d/T)$ , where  $g_t$  is the gradient and  $m_t$  is its prediction.

The proposed algorithm not only adapts to the informative dimensions, exhibits momentum, but also exploits a good guess of the next gradient to facilitate acceleration. Besides the global analysis of OPT-AMSGRAD, we conduct experiments and show that the proposed algorithm not only accelerates the training procedure, but also leads to better empirical generalization performance.

Section 2 is devoted to introductory notions on online learning for regret minimization and adaptive learning methods for nonconvex stochastic optimization. We introduce in Section 3 our new algorithm, namely OPT-AMSGRAD and provide a comprehensive global

analysis in both convex/online and nonconvex/offline settings in Section 4. We illustrate the benefits of our method on several finite-sum nonconvex optimization problems in Section 5. The supplementary material of this paper is devoted to the proofs of our theoretical results.

**Notations:** We follow the notations of adaptive optimization (Kingma and Ba 2015; Reddi et al. 2018). For any  $u, v \in \mathbb{R}^d$ , u/v represents the element-wise division,  $u^2$  the element-wise square,  $\sqrt{u}$  the element-wise square-root. We denote  $g_{1:T}[i]$  as the sum of the  $i_{th}$  element of  $g_1, \ldots, g_T \in \mathbb{R}^d$  and  $\|\cdot\|$  as the Euclidean norm.

#### 2 Preliminaries

Optimistic Online learning. The standard setup of Online Learning is that, in each round t, an online learner selects an action  $w_t \in \Theta \subseteq \mathbb{R}^d$ , observes  $\ell_t(\cdot)$  and suffers the associated loss  $\ell_t(w_t)$  after the action is committed. The goal of the learner is to minimize the regret,

$$\mathcal{R}_T(\{w_t\}) := \sum_{t=1}^T \ell_t(w_t) - \sum_{t=1}^T \ell_t(w^*) ,$$

which is the cumulative loss of the learner minus the cumulative loss of some benchmark  $w^* \in \Theta$ . The idea of Optimistic Online learning (e.g. (Chiang et al. 2012; Rakhlin and Sridharan 2013; Syrgkanis et al. 2015; Abernethy et al. 2018)) is as follows. In each round t, the learner exploits a guess  $m_t(\cdot)$  of the gradient  $\nabla \ell_t(\cdot)$  to choose an action  $w_t^{-1}$ . Consider the Follow-the-Regularized-Leader (FTRL, (Hazan 2016)) online learning algorithm which update reads

$$w_t = \arg\min_{w \in \Theta} \langle w, L_{t-1} \rangle + \frac{1}{\eta} \mathsf{R}(w) ,$$

where  $\eta$  is a parameter,  $\mathsf{R}(\cdot)$  is a 1-strongly convex function with respect to a given norm on the constraint set  $\Theta$ , and  $L_{t-1} := \sum_{s=1}^{t-1} g_s$  is the cumulative sum of gradient vectors of the loss functions up to round t-1. It has been shown that FTRL has regret at most  $\mathcal{O}(\sqrt{\sum_{t=1}^T \|g_t\|_*^2})$ . The update of its optimistic variant, noted Optimistic-FTRL and developed in (Syrgkanis et al. 2015) reads

$$w_t = \arg\min_{w \in \Theta} \langle w, L_{t-1} + m_t \rangle + \frac{1}{\eta} \mathsf{R}(w) , \qquad (1)$$

where  $\{m_t\}_{t>0}$  is a predictable process incorporating (possibly arbitrarily) knowledge about the sequence of

<sup>&</sup>lt;sup>1</sup>Imagine that if the learner would have known  $\nabla \ell_t(\cdot)$  (*i.e.*, exact guess) before committing its action, then it would exploit the knowledge to determine its action and consequently minimize the regret.

gradients  $\{g_t := \nabla \ell_t(w_t)\}_{t>0}$ . Under the assumption that loss functions are convex, it has been shown in (Syrgkanis et al. 2015) that the regret of Optimistic-FTRL is at most  $\mathcal{O}(\sqrt{\sum_{t=1}^{T} \|g_t - m_t\|_*^2})$ .

Remark: Note that the usual worst-case bound is preserved even when the predictors  $\{m_t\}_{t>0}$  do not predict well the gradients. Indeed, if we take the example of Optimistic-FTRL, the bound reads  $\sqrt{\sum_{t=1}^{T} \|g_t - m_t\|_*^2} \leq 2 \max_{w \in \Theta} \|\nabla \ell_t(w)\| \sqrt{T} \text{ which is equal to the usual bound up to a factor 2 (Rakhlin and })$ Sridharan 2013). Yet, when the predictors  $\{m_t\}_{t>0}$ are well designed, the regret will be lower. We will have a similar argument when comparing OPT-AMSGRAD and AMSGRAD regret bounds in Section 4.1.

We emphasize, in Section 3, the importance of leveraging a good guess  $m_t$  for updating  $w_t$  in order to get a fast convergence rate (or equivalently, small regret) and introduce in Section 5 a simple predictable process  $\{m_t\}_{t>0}$  leading to empirical acceleration on various applications.

Adaptive optimization methods. Adaptive optimization has been popular in various deep learning applications due to their superior empirical performance. ADAM (Kingma and Ba 2015), a popular adaptive algorithm, combines momentum (Polyak 1964) and anisotropic learning rate of AdaGrad (Duchi et al. 2011). More specifically, the learning rate of Ada-GRAD at time t for dimension j is proportional to the inverse of  $\sqrt{\sum_{s=1}^{t} g_s[j]^2}$ , where  $g_s[j]$  is the j-th element of the gradient vector  $g_s$  at time s.

This adaptive learning rate helps accelerating the convergence when the gradient vector is sparse (Duchi et al. 2011) but, when applying AdaGrad to train deep neural networks, it is observed that the learning rate might decay too fast (Kingma and Ba 2015). Therefore, Kingma and Ba (2015) propose Adam that uses a moving average of the gradients divided by the square root of the second mo-

### Algorithm 1 AMSGRAD (Reddi et al. 2018)

- 1: Required: parameter  $\beta_1, \beta_2, \text{ and } \eta_t.$
- Init:  $w_1 \in \Theta \subseteq$  $\mathbb{R}^d$  and  $v_0 = \epsilon 1 \in \mathbb{R}^d.$
- 3: for t = 1 to T do
- mini-batch Get stochastic gradient  $g_t$
- $\begin{array}{lll}
  \theta_t &=& \beta_1 \theta_{t-1} + (1 \beta_1) g_t, \\
  v_t &=& \beta_2 v_{t-1} + (1 \beta_2) g_t^2, \\
  \hat{\eta}_t &=& \gamma_t \gamma_t^2
  \end{array}$
- $\hat{v}_t = \max(\hat{v}_{t-1}, v_t).$   $w_{t+1} = w_t \eta_t \frac{\theta_t}{\sqrt{\hat{v}_t}}.$ (element-wise division)
- 9: end for

ment of the moving average (element-wise multiplication), for updating the model parameter w. A variant, called AMSGRAD and detailed in Algorithm 1, has been developed in (Reddi et al. 2018) to fix ADAM failures. The difference between ADAM and AMSGRAD lies in Line 7 of Algorithm 1. The AMSGRAD algorithm (Reddi et al. 2018) applies the max operation on the second moment to guarantee a non-increasing learning rate  $\eta_t/\sqrt{\hat{v}_t}$ , which helps for the convergence (i.e. average regret  $\mathcal{R}_T/T \to 0$ ).

#### OPT-AMSGrad Algorithm

We formulate in this section the proposed optimistic acceleration of AMSGrad, namely OPT-AMSGRAD, and detailed in Algorithm 2. It combines the idea of adaptive optimization with optimistic learning. At each iteration, the learner computes a gradient vector  $g_t := \nabla \ell_t(w_t)$  at  $w_t$  (line 4), then it maintains an exponential moving average of  $\theta_t \in \mathbb{R}^d$  (line 5) and  $v_t \in \mathbb{R}^d$ (line 6), which is followed by the max operation to get  $\hat{v}_t \in \mathbb{R}^d$  (line 7). The learner first updates an auxiliary variable  $\tilde{w}_{t+1} \in \Theta$  (line 8) and then computes the next model parameter  $w_{t+1}$  (line 9). Observe that the proposed algorithm does not reduce to AMSGRAD when  $m_t = 0$ , contrary to the optimistic variant of FTRL. Furthermore, combining line 8 and line 9 yields the following single update  $w_{t+1} = \tilde{w}_t - \eta_t(\theta_t + h_{t+1})/\sqrt{\hat{v}_t}$ .

Compared to AMSGRAD, the algorithm is characterized by a two-level update that interlinks some auxiliary state  $\tilde{w}_t$  and the model parameter state,  $w_t$ , similarly to the Optimistic Mirror Descent algorithm developed in (Rakhlin and Sridharan 2013). It leverages the auxiliary variable (hidden model) to update and commit  $w_{t+1}$ , which exploits the guess  $m_{t+1}$ , see Figure 1. In the following analysis, we show that the interleaving actually leads to some cancellation in the regret bound. Such two-levels method where the guess  $m_t$  is equal to the last known gradient  $g_{t-1}$  has been exhibited recently in (Chiang et al. 2012). The gradient prediction process plays an important role as discussed in Section 5. The proposed OPT-AMSGRAD inherits three properties: (i) Adaptive learning rate of each dimension as AdaGrad (Duchi et al. 2011) (line 6, line 8 and line 9). (ii) Exponential moving average of the past gradients as Nesterov's method (Nesterov 2004) and the HEAVY-BALL method (Polyak 1964) (line 5). (iii) Optimistic update that exploits prior knowledge of the next gradient vector as in optimistic online learning algorithms (Chiang et al. 2012; Rakhlin and Sridharan 2013; Syrgkanis et al. 2015) (line 9). The first property helps for acceleration when the gradient has a sparse structure. The second one is from the long-established idea of momentum which can also help for acceleration. The last one can lead to an acceleration when the prediction of the next gradient is good as mentioned above when introducing the regret bound for the Optimistic-FTRL algorithm. This property will be elaborated whilst establishing the theoretical analysis of OPT-AMSGRAD.

#### Algorithm 2 OPT-AMSGRAD

- 1: Required: parameter  $\beta_1, \beta_2, \epsilon, \text{ and } \eta_t.$
- 2: Init:  $w_1 = w_{-1/2} \in \Theta \subseteq$  $\mathbb{R}^d$  and  $v_0 = \epsilon 1 \in \mathbb{R}^d$ .
- 3: **for** t = 1 to T **do**
- mini-batch stochastic gradient  $g_t$ at  $w_t$ .
- $\theta_t = \beta_1 \theta_{t-1} + (1$ 5:  $\beta_1)g_t$ .
- 6:  $v_t = \beta_2 v_{t-1} + (1 - \alpha_t)^2$
- 7:
- $\hat{v}_t = \max(\hat{v}_{t-1}, v_t).$   $\tilde{w}_{t+1} = \tilde{w}_t \eta_t \frac{\theta_t}{\sqrt{\hat{v}_t}}.$
- $w_{t+1} = \tilde{w}_{t+1} \eta_t \frac{h_{t+1}}{\sqrt{\hat{v}_t}}$ where  $h_{t+1}$  $\beta_1 \theta_{t-1} + (1 - \beta_1) m_{t+1}$ with  $m_{t+1}$  the guess of  $g_{t+1}$ .

10: end for



Figure 1: OPT-AMSGRAD Underlying Structure.

## Global Convergence Analysis of OPT-AMSGrad

More notations. We denote the Mahalanobis norm  $\|\cdot\|_H := \sqrt{\langle \cdot, \overline{H} \cdot \rangle}$  for some positive semidefinite (PSD) matrix H. We let  $\psi_t(x) := \langle x, \operatorname{diag}\{\hat{v}_t\}^{1/2}x \rangle$  for a PSD matrix  $H_t^{1/2} := \operatorname{diag}\{\hat{v}_t\}^{1/2}$ , where  $\operatorname{diag}\{\hat{v}_t\}$  represents the diagonal matrix which  $i_{th}$  diagonal element is  $\hat{v}_t[i]$ defined in Algorithm 2. We define its corresponding Mahalanobis norm  $\|\cdot\|_{\psi_t} := \sqrt{\langle \cdot, \operatorname{diag}\{\hat{v}_t\}^{1/2} \cdot \rangle}$ , where we abuse the notation  $\psi_t$  to represent the PSD matrix  $H_t^{1/2} := \operatorname{diag}\{\hat{v}_t\}^{1/2}$ . Note that  $\psi_t(\cdot)$  is 1-strongly convex with respect to the norm  $\|\cdot\|_{\psi_{\tau}}$ . A consequence of 1-strongly convexity of  $\psi_t(\cdot)$  is that  $B_{\psi_t}(u,v) \geq$  $\frac{1}{2}||u-v||_{\psi_t}^2$ , where the Bregman divergence  $B_{\psi_t}(u,v)$ is defined as  $B_{\psi_t}(u,v) := \psi_t(u) - \psi_t(v) - \langle \psi_t(v), u - v \rangle$ with  $\psi_t(\cdot)$  as the distance generating function. We also define the corresponding dual norm  $\|\cdot\|_{\psi_*^*} :=$  $\sqrt{\langle \cdot, \operatorname{diag}\{\hat{v}_t\}^{-1/2} \cdot \rangle}$ .

#### 4.1 Convex Regret Analysis

In this section, we assume convexity of  $\{\ell_t\}_{t>0}$  and that  $\Theta$  has a bounded diameter  $D_{\infty}$ , which is a standard assumption for adaptive methods (Reddi et al. 2018; Kingma and Ba 2015) and is necessary in regret analysis.

**Theorem 1.** Suppose the learner incurs a sequence of convex loss functions  $\{\ell_t(\cdot)\}$ . Then, OPT-AMSGRAD (Algorithm 2) has regret

$$\mathcal{R}_T \leq \frac{B_{\psi_1}(w^*, \tilde{w}_1)}{\eta_1} + \sum_{t=1}^T \frac{\eta_t}{2} \|g_t - \tilde{m}_t\|_{\psi_{t-1}^*}^2 + \frac{D_{\infty}^2}{\eta_{\min}} \sum_{i=1}^d \hat{v}_T^{1/2}[i] + D_{\infty}^2 \beta_1^2$$

where  $\tilde{m}_{t+1} = \beta_1 \theta_{t-1} + (1 - \beta_1) m_{t+1}$ ,  $g_t := \nabla \ell_t(w_t)$ ,  $\eta_{\min} := \min_t \eta_t$  and  $D_{\infty}^2$  is the diameter of the bounded set  $\Theta$ . The result holds for any benchmark  $w^* \in \Theta$  and any step size sequence  $\{\eta_t\}_{t>0}$ .

Corollary 1. Suppose  $\beta_1 = 0$  and  $\{v_t\}_{t>0}$  is a monotonically increasing sequence, then we obtain the following regret bound for any  $w^* \in \Theta$  and sequence of stepsizes  $\{\eta_t = \eta/\sqrt{t}\}_{t>0}$ :

$$\mathcal{R}_T \leq \frac{B_{\psi_1}}{\eta_1} + \frac{\eta\sqrt{1+\log T}}{\sqrt{1-\beta_2}} \sum_{i=1}^d \|(g-m)_{1:T}[i]\|_2 + \frac{D_{\infty}^2}{\eta_{\min}} \sum_{i=1}^d \left[ (1-\beta_2) \sum_{i=1}^d \left[$$

where  $B_{\psi_1} := B_{\psi_1}(w^*, \tilde{w}_1), g_t := \nabla \ell_t(w_t)$  and  $\eta_{\min} :=$ 

We can compare the bound of Corollary 1 with that of AMSGRAD (Reddi et al. 2018) with  $\eta_t = \eta/\sqrt{t}$ :

$$\mathcal{R}_T \le \frac{\eta\sqrt{1+\log T}}{\sqrt{1-\beta_2}} \sum_{i=1}^d \|g_{1:T}[i]\|_2 + \frac{\sqrt{T}}{2\eta} D_\infty^2 \sum_{i=1}^d \hat{v}_T[i]^2.$$
(2)

For convex regret minimization, Corollary 1 yields a regret of  $\mathcal{O}(\sqrt{\sum_{t=1}^{T} \|g_t - m_t\|_{\psi_{t-1}^*}^2})$  with an access to an arbitrary predictable process  $\{m_t\}_{t>0}$  of the minibatch gradients. We notice from the second term in Corollary 1 compared to the first term in (2) that better predictors lead to lower regret. The construction of the predictions  $\{m_t\}_{t>0}$  is thus of utmost importance for achieving optimal acceleration and can be learned through the iterations (Rakhlin and Sridharan 2013). In Section 5, we derive a basic, yet effective, gradients prediction algorithm, see Algorithm 3, embedded in OPT-AMSGRAD.

#### Finite-Time Analysis in the Nonconvex Case

We discuss the offline and stochastic nonconvex optimization properties of our online framework. As stated in the Introduction, this paper is about solving optimization problems instead of solving zero-sum games. Classically, the optimization problem we are tackling reads:

$$\min_{w \in \Theta} f(w) := \mathbb{E}[f(w, \xi)] = n^{-1} \sum_{i=1}^{n} \mathbb{E}[f(w, \xi_i)], \quad (3)$$

for a fixed batch of n samples  $\{\xi_i\}_{i=1}^n$ . The objective function  $f(\cdot)$  is (potentially) nonconvex and has Lipschitz gradients. Set the terminating number,  $T \in \{0, \ldots, T_{\mathsf{M}} - 1\}$ , as a discrete r.v. with:

$$P(T = \ell) = \frac{\eta_{\ell}}{\sum_{j=0}^{T_{\mathsf{M}} - 1} \eta_{j}} , \qquad (4)$$

where  $T_{\mathsf{M}}$  is the maximum number of iteration. The random termination number (4) is inspired by (Ghadimi and Lan 2013) and is widely used for nonconvex optimization. Assume the following:

**H1.** For any t > 0, the estimated parameter  $w_t$  stays within a  $\ell_{\infty}$ -ball. There exists a constant W > 0 such that  $||w_t||_{\infty} \leq W$  almost surely.

**H2.** The function f is L-smooth (has L-Lipschitz gradients) w.r.t. the parameter w. There exists some constant L > 0 such that for  $(w, \vartheta) \in \Theta^2$ ,  $f(w) - f(\vartheta) - \nabla f(\vartheta)^\top (w - \vartheta) \le \frac{L}{2} \|w - \vartheta\|^2$ .

We assume that the optimistic guess  $m_t$  at iteration t and the true gradient  $g_t$  are correlated:

**H3.** There exists a constant  $a \in \mathbb{R}$  such that for any t > 0,  $0 < \langle m_t | g_t \rangle \le a ||g_t||^2$ .

We make a classical assumption in nonconvex optimization (Ghadimi and Lan 2013) on the magnitude of the gradient:

**H4.** There exists a constant M > 0 such that for any w and  $\xi$ , it holds  $\|\nabla f(w, \xi)\| < M$ .

We now derive important auxiliary Lemmas for our global analysis. The first one ensures bounded norms of quantities of interests (resulting from the bounded stochastic gradient assumption):

**Lemma 1.** Assume H4, then the quantities defined in Algorithm 2 satisfy for any  $w \in \Theta$  and t > 0,  $\|\nabla f(w_t)\| < M$ ,  $\|\theta_t\| < M$  and  $\|\hat{v}_t\| < M^2$ .

We now formulate the main result of our paper yielding a finite-time upper bound of the suboptimality condition  $\mathbb{E}\left[\|\nabla f(w_T)\|^2\right]$  (set as the convergence criterion of interest, see (Ghadimi and Lan 2013)):

**Theorem 2.** Assume H1-H4,  $\beta_1 < \beta_2 \in [0,1)$  and a sequence of decreasing stepsizes  $\{\eta_t\}_{t>0}$ , then the following result holds:

$$\mathbb{E}\left[\|\nabla f(w_T)\|_2^2\right] \leq \tilde{C}_1 \sqrt{\frac{d}{T_\mathsf{M}}} + \tilde{C}_2 \frac{1}{T_\mathsf{M}} ,$$

where T is a random termination number distributed according (4). The constants are defined as:

$$\tilde{C}_{1} = \frac{\mathsf{M}}{(1 - a\beta_{1}) + (\beta_{1} + a)} \left[ \frac{a(1 - \beta_{1})^{2}}{1 - \beta_{2}} + 2L \frac{1}{1 - \beta_{2}} + \Delta f + \frac{4L}{(1 - \beta_{1})^{2}} \right]$$

$$\tilde{C}_{2} = \frac{(a\beta_{1}^{2} - 2a\beta_{1} + \beta_{1})\mathsf{M}^{2}}{(1 - \beta_{1})((1 - a\beta_{1}) + (\beta_{1} + a))} \mathbb{E}\left[ \left\| \hat{v}_{0}^{-1/2} \right\| \right] \quad where \quad \Delta f = f(1 - \beta_{1})$$

The bound for our OPT-AMSGrad method matches the complexity bound of  $\mathcal{O}(\sqrt{d/T_{\text{M}}}+1/T_{\text{M}})$  of (Ghadimi and Lan 2013) for SGD considering the dependence of T only, and of (Zhou et al. 2018) for AMS-Grad method.

#### 4.3 Checking H1 for a Deep Neural Network

As boundedness assumption H1 is generally hard to verify, we now show, for illustrative purposes, that the weights of a fully connected feed forward neural network stay in a bounded set when being trained using our method. The activation function for this section will be sigmoid function and we use a  $\ell_2$  regularization. We consider a fully connected feed forward neural network with L layers modeled by the function  $\mathsf{MLN}(w,\xi): \Theta^d \times \mathbb{R}^p \to \mathbb{R}$  defined as:

$$\mathsf{MLN}(w,\xi) = \sigma\left(w^{(L)}\sigma\left(w^{(L-1)}\dots\sigma\left(w^{(1)}\xi\right)\right)\right) ,$$
(5)

where  $w = [w^{(1)}, w^{(2)}, \dots, w^{(L)}]$  is the vector of parameters,  $\xi \in \mathbb{R}^p$  is the input data and  $\sigma$  is the sigmoid activation function. We assume a p dimension input data and a scalar output for simplicity. In this setting, the stochastic objective function (3) reads

$$f(\boldsymbol{w}, \boldsymbol{\xi}) = \mathcal{L}(\mathsf{MLN}(\boldsymbol{w}, \boldsymbol{\xi}), \boldsymbol{y}) + \frac{\lambda}{2} \left\| \boldsymbol{w} \right\|^2 \; ,$$

where  $\mathcal{L}(\cdot, y)$  is the loss function (e.g., cross-entroy), y are the true labels and  $\lambda > 0$  is the regularization parameter. We establish that assumption H1 is satisfied with a neural network as in (5):

**Lemma 2.** Given the multilayer model (5), assume the boundedness of the input data and of the loss function, i.e., for any  $\xi \in \mathbb{R}^p$  and  $y \in \mathbb{R}$  there is a constant T > 0 such that  $\|\xi\| \le 1$  a.s. and  $|\mathcal{L}'(\cdot, y)| \le T$  where  $\mathcal{L}'(\cdot, y)$  denotes its derivative w.r.t. the parameter. Then for each layer  $\ell \in [1, L]$ , there exist a constant  $A_{(\ell)}$  such that  $\|w^{(\ell)}\| \le A_{(\ell)}$ 

#### 5 Numerical Experiments

#### 5.1 Gradient Estimation

Based on the analysis in the previous section, we understand that the choice of the prediction  $m_t$  plays

an important role in the convergence of OPTIMISTIC-AMSGRAD. Some classical works in gradient prediction methods include ANDERSON acceleration (Walker and Ni. 2011), MINIMAL POLYNOMIAL EXTRAPOLATION (Cabay and Jackson 1976) and REDUCED RANK EXTRAPOLATION (Eddy 1979). These methods aim at finding a fixed point  $g^*$  and assume that  $\{g_t \in \mathbb{R}^d\}_{t>0}$  has the following linear relation:

$$g_t - g^* = A(g_{t-1} - g^*) + e_t,$$
 (6)

where  $e_t$  is a second order term satisfying  $||e_t||_2 = \mathcal{O}(||g_{t-1} - g^*||_2^2)$  and  $A \in \mathbb{R}^{d \times d}$  is an unknown matrix, see (Scieur et al. 2016) for details and results. For our numerical experiments, we run OPT-AMSGRAD using Algorithm 3 to construct the sequence  $\{m_t\}_{t>0}$  which is based on estimating the limit of a sequence using the last iterates (Brezinski and Zaglia 2013). Specifically,

Algorithm 3 Regularized atit-Approximated Minimal eration Polynomial Extrapolation t,  $m_t$ (Scieur et al. 2016) is obtained 1: Input: sequence  $\{g_s\}$  $\mathbb{R}^d$  $_{s=0}^{s=r-1}$ , parameter  $\lambda > 0$ . by (a) 2: Compute matrix  $U = [g_1 - g_0, \dots, g_r - g_{r-1}] \in \mathbb{R}^{d \times r}$ . calling Algo-3: Obtain z by solving  $(U^{\top}U +$ rithm 3  $\lambda I)z = \mathbf{1}.$ with 4: Get  $c = z/(z^{\top} \mathbf{1})$ .  $\mathbf{a}$ se-5: **Output:**  $\sum_{i=0}^{r-1} c_i g_i$ , the apquence proximation of the fixed point of  $g^*$ . past gra-

 $\{g_{t-1},g_{t-2},\ldots,g_{t-r}\}$  as input yielding the vector  $c=[c_0,\ldots,c_{r-1}]$  and (b) setting  $m_t:=\sum_{i=0}^{r-1}c_ig_{t-r+i}$ . To understand why the output from the extrapolation method may be a reasonable estimation, assume that the update converges to a stationary point (i.e.  $g^*:=\nabla f(w^*)=0$  for the underlying function f). Then, we might rewrite (6) as  $g_t=Ag_{t-1}+\mathcal{O}(\|g_{t-1}\|_2^2)u_{t-1}$ , for some unit vector  $u_{t-1}$ . This equation suggests that the next gradient vector  $g_t$  is a linear transform of  $g_{t-1}$  plus an error vector that may not be in the span of A. If the algorithm converges to a stationary point, the magnitude of the error will converge to zero.

dients,

Computational cost: This extrapolation step consists in: (a) Constructing the linear system  $(U^{\top}U)$  which cost can be optimized to  $\mathcal{O}(d)$ , since the matrix U only changes one column at a time. (b) Solving the linear system which cost is  $\mathcal{O}(r^3)$ , and is negligible for a small r used in practice. (c) Outputting a weighted average of previous gradients which cost is  $\mathcal{O}(r \times d)$  yielding a computational overhead of  $\mathcal{O}((r+1)d+r^3)$ . Yet, steps (a) and (c) are paralleliz-

able in the final implementation.

#### 5.2 Classification Experiments

In this section, we provide experiments on classification tasks with various neural network architectures and datasets to demonstrate the effectiveness of OPT-AMSGRAD.

**Methods.** We consider two baselines. The first one is the original AMSGRAD. The hyper-parameters are set to be  $\beta_1 = 0.9$  and  $\beta_2 = 0.999$ , see (Reddi et al. 2018). The other benchmark method is the Optimistic-Adam+ $\hat{v}_t$  (Daskalakis et al. 2018), which details are given in the supplementary material. We use cross-entropy loss, a mini-batch size of 128 and tune the learning rates over a fine grid and report the best result for all methods. For OPT-AMSGRAD, we use  $\beta_1 = 0.9$  and  $\beta_2 = 0.999$  and the best step size  $\eta$ of AMSGRAD for a fair evaluation of the optimistic step. OPT-AMSGRAD has an additional parameter r that controls the number of previous gradients used for gradient prediction. We use r = 5 past gradient for empirical reasons, see Section 5.3. The algorithms are initialized at the same point and the results are averaged over 5 repetitions.

Datasets. Following Reddi et al. (2018) and Kingma and Ba (2015), we compare different algorithms on MNIST, CIFAR10, CIFAR100, and IMDB datasets. For MNIST, we use two noisy variants namely MNISTback-rand and MNIST-back-image from Larochelle et al. (2007). They both have 12 000 training samples and 50 000 test samples, where random background is inserted to the original MNIST hand-written digit images. For MNIST-back-rand, each image is inserted with a random background, which pixel values are generated uniformly from 0 to 255, while MNISTback-image takes random patches from a black and white noisy background. The input dimension is 784  $(28 \times 28)$  and the number of classes is 10. CIFAR10 and CIFAR100 are popular computer-vision datasets of 50000 training images and 10000 test images, of size  $32 \times 32$ . The *IMDB* movie review dataset is a binary classification dataset with 25 000 training and testing samples respectively. It is a popular datasets for text classification.

Network architectures. We adopt a multi-layer fully connected neural network with hidden layers of 200 then 100 neurons (using ReLU activations and Softmax output) on MNIST variants. For CIFAR datasets, we adopt ALL-CNN network proposed by (Springenberg et al. 2015), built with convolutional blocks and dropout layers. In addition, we also apply residual networks, Resnet-18 and Resnet-50 (He et al. 2016), which have achieved state-of-the-art re-



Figure 2: Training loss vs. Number of iterations for fully connected NN, CNN, LSTM and ResNet.



Figure 3: MNIST-back-image + CNN, CIFAR10 + Res-18 and CIFAR100 + Res-50 . We compare three methods in terms of training (cross-entropy) loss and accuracy, testing loss and accuracy.

sults. For the texture IMDB dataset, we consider a Long-Short Term Memory (LSTM) network (Gers et al. 1999) including a word embedding layer with 5 000 input entries representing most frequent words embedded into a 32 dimensional space. The output of the embedding layer is passed to 100 LSTM units then connected to 100 fully connected ReLU layers.

**Results.** Firstly, to illustrate the acceleration effect of OPT-AMSGRAD at early stage, we provide the training loss against number of iterations in Figure 2. We clearly observe that on all datasets, the proposed OPT-AMSGRAD converges faster than the other competing methods since fewer iterations are required to achieve the same precision, validating one of the main edges of OPT-AMSGRAD. We are also curious about the long-term performance and generalization of the proposed method in test phase. In Figure 3, we plot the results when the model is trained until the test accuracy stabilizes. We observe: (1) in the long term, OPT-AMSGRAD algorithm may converge to a better point with smaller objective function value, and (2) in these three applications, the proposed OPT-AMSGRAD also outperforms the competing methods in terms of test accuracy.

#### 5.3 Choice of parameter r



Figure 4: Training loss w.r.t. r.

r is important in our algorithm, we compare Figure 4 the performance under different values r=3,5,10 on two datasets. From the results we see that the choice of r does not have significant impact on the training loss. Taking into consideration both quality of gradient prediction and computational cost, r=5 is a good choice for most applications. We remark that, empirically, the performance comparison among r=3,5,10 is not absolutely consistent (i.e. more means better) in all cases. One possible reason is that for deep neural networks, the high diversity of computed gradients through the iterations, due to the highly nonconvex loss, makes them inefficient for sequentially building the predictable process  $\{m_t\}_{t>0}$ . Thus, only recent ones  $(r \leq 5)$  are used.

#### 6 Conclusion

In this paper, we propose OPT-AMSGRAD, which combines optimistic online learning and AMSGRAD to improve sample efficiency and accelerate the process of training, in particular for deep neural networks. Given a good gradient prediction process, we demonstrate that the regret can be smaller than that of standard AMSGRAD. We also establish finite-time convergence bound on the second order moment of the gradient of the objective function matching that of state-of-the-art algorithms. Experiments on various deep learning problems demonstrate the effectiveness of the proposed algorithm in accelerating the empirical risk minimization procedure and empirically show better generalization properties of OPT-AMSGRAD.

#### 7 Broader Impact

Broader Impact discussion is not applicable for this paper given the generality of both methods and numerical examples presented.

#### References

- J. Abernethy, K. A. Lai, K. Y. Levy, and J.-K. Wang. Faster rates for convex-concave games. *COLT*, 2018.
- N. Agarwal, B. Bullins, X. Chen, E. Hazan, K. Singh, C. Zhang, and Y. Zhang. Efficient full-matrix adaptive regularization. *ICML*, 2019.
- C. Brezinski and M. R. Zaglia. Extrapolation methods: theory and practice. *Elsevier*, 2013.
- S. Cabay and L. Jackson. A polynomial extrapolation method for finding limits and antilimits of vector sequences. SIAM Journal on Numerical Analysis, 1976.
- X. Chen, S. Liu, R. Sun, and M. Hong. On the convergence of a class of adam-type algorithms for non-convex optimization. *ICLR*, 2019a.
- Z. Chen, Z. Yuan, J. Yi, B. Zhou, E. Chen, and T. Yang. Universal stagewise learning for nonconvex problems with convergence on averaged solutions. *ICLR*, 2019b.
- C.-K. Chiang, T. Yang, C.-J. Lee, M. Mahdavi, C.-J. Lu, R. Jin, and S. Zhu. Online optimization with gradual variations. COLT, 2012.
- C. Daskalakis, A. Ilyas, V. Syrgkanis, and H. Zeng. Training gans with optimism. *ICLR*, 2018.
- A. Défossez, L. Bottou, F. Bach, and N. Usunier. On the convergence of adam and adagrad. arXiv preprint arXiv:2003.02395, 2020.
- T. Dozat. Incorporating nesterov momentum into adam. *ICLR (Workshop Track)*, 2016.
- J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. *Journal of Machine Learning Research* (*JMLR*), 2011.
- R. Eddy. Extrapolating to the limit of a vector sequence. Information linkage between applied mathematics and industry, Elsevier, 1979.
- F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction with lstm. 1999.
- S. Ghadimi and G. Lan. Stochastic first-and zerothorder methods for nonconvex stochastic programming. SIAM Journal on Optimization, 23(4):2341– 2368, 2013.
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. NIPS, 2014.

- A. Graves, A. rahman Mohamed, and G. Hinton. Speech recognition with deep recurrent neural networks. ICASSP, 2013.
- E. Hazan. Introduction to online convex optimization. Foundations and Trends in Optimization, 2016.
- K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. *CVPR*, 2016.
- D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. *ICLR*, 2015.
- H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical evaluation of deep architectures on problems with many factors of variation. *ICML*, 2007.
- S. Levine, C. Finn, T. Darrell, and P. Abbeel. Endto-end training of deep visuomotor policies. NIPS, 2017.
- X. Li and F. Orabona. On the convergence of stochastic gradient descent with adaptive stepsizes. AIS-TAT, 2019.
- H. B. McMahan and M. J. Streeter. Adaptive bound optimization for online convex optimization. COLT, 2010.
- P. Mertikopoulos, B. Lecouat, H. Zenati, C.-S. Foo, V. Chandrasekhar, and G. Piliouras. Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile. arXiv preprint arXiv:1807.02629, 2018.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing atari with deep reinforcement learning. NIPS (Deep Learning Workshop), 2013.
- M. Mohri and S. Yang. Accelerating optimization via adaptive prediction. *AISTATS*, 2016.
- Y. Nesterov. Introductory lectures on convex optimization: A basic course. *Springer*, 2004.
- B. T. Polyak. Some methods of speeding up the convergence of iteration methods. *Mathematics and Mathematical Physics*, 1964.
- S. Rakhlin and K. Sridharan. Optimization, learning, and games with predictable sequences. In Advances in Neural Information Processing Systems, pages 3066–3074, 2013.
- S. J. Reddi, S. Kale, and S. Kumar. On the convergence of adam and beyond. ICLR, 2018.
- D. Scieur, A. d'Aspremont, and F. Bach. Regularized nonlinear acceleration. *NIPS*, 2016.
- J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for simplicity: The all convolutional net. *ICLR*, 2015.

- V. Syrgkanis, A. Agarwal, H. Luo, and R. E. Schapire. Fast convergence of regularized learning in games. NIPS, 2015.
- T. Tieleman and G. Hinton. Rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.
- P. Tseng. On accelerated proximal gradient methods for convex-concave optimization. 2008.
- H. F. Walker and P. Ni. Anderson acceleration for fixed-point iterations. SIAM Journal on Numerical Analysis, 2011.
- R. Ward, X. Wu, and L. Bottou. Adagrad stepsizes: Sharp convergence over nonconvex landscapes, from any initialization. *ICML*, 2019.
- Y. Yan, T. Yang, Z. Li, Q. Lin, and Y. Yang. A unified analysis of stochastic momentum methods for deep learning. arXiv preprint arXiv:1808.10396, 2018.
- M. Zaheer, S. Reddi, D. Sachan, S. Kale, and S. Kumar. Adaptive methods for nonconvex optimization. NeurIPS, 2018.
- M. D. Zeiler. Adadelta: An adaptive learning rate method. arXiv:1212.5701, 2012.
- D. Zhou, Y. Tang, Z. Yang, Y. Cao, and Q. Gu. On the convergence of adaptive gradient methods for nonconvex optimization. *arXiv:1808.05671*, 2018.
- F. Zou and L. Shen. On the convergence of adagrad with momentum for training deep neural networks.  $arXiv:1808.03408,\ 2018.$

#### Proof of Theorem 1

**Theorem.** Suppose the learner incurs a sequence of convex loss functions  $\{\ell_t(\cdot)\}$ . Then, OPT-AMSGRAD (Algorithm 2) has regret

$$\mathcal{R}_T \leq \frac{B_{\psi_1}(w^*, \tilde{w}_1)}{\eta_1} + \sum_{t=1}^T \frac{\eta_t}{2} \|g_t - \tilde{m}_t\|_{\psi_{t-1}^*}^2 + \frac{D_{\infty}^2}{\eta_{\min}} \sum_{i=1}^d \hat{v}_T^{1/2} [E] + \underbrace{D_{\infty}^2}_{t} \underbrace{\partial_1^{21}}_{t} \sum_{t=1}^T \inf_{t \in \mathcal{T}} \underbrace{(13)}_{t-1} \underbrace{\psi_{t-1}^*}_{t-1}, \text{we obtain}$$

where  $\tilde{m}_{t+1} = \beta_1 \theta_{t-1} + (1 - \beta_1) m_{t+1}, g_t := \nabla \ell_t(w_t),$  $\eta_{\min} := \min_t \eta_t \text{ and } D_{\infty}^2 \text{ is the diameter of the bounded}$ set  $\Theta$ . The result holds for any benchmark  $w^* \in \Theta$  and any step size sequence  $\{\eta_t\}_{t>0}$ .

**Proof** Beforehand, we denote:

$$\tilde{g}_t = \beta_1 \theta_{t-1} + (1 - \beta_1) g_t, 
\tilde{m}_{t+1} = \beta_1 \theta_{t-1} + (1 - \beta_1) m_{t+1},$$
(7)

where we recall that  $g_t$  and  $m_{t+1}$  are respectively the gradient  $\nabla \ell_t(w_t)$  and the predictable guess. By regret decomposition, we have that

$$\mathcal{R}_{T} := \sum_{t=1}^{T} \ell_{t}(w_{t}) - \min_{w \in \Theta} \sum_{t=1}^{T} \ell_{t}(w) + \frac{1}{\eta_{t}} \left( \underbrace{B_{\psi_{t-1}}(\tilde{w}_{t+1}, \tilde{w}_{t}) - B_{\psi_{t}}(\tilde{w}_{t+1}, \tilde{w}_{t})}_{A_{1}} - \underbrace{\frac{1}{2}} \left( \underbrace{B_{\psi_{t-1}}(\tilde{w}_{t+1}, \tilde{w}_{t}) - B_{\psi_{t}}(\tilde{w}^{*}, \tilde{w}_{t})}_{A_{1}} - \underbrace{\frac{1}{2}} \left( \underbrace{B_{\psi_{t-1}}(\tilde{w}_{t+1}, \tilde{w}_{t}) - B_{\psi_{t}}(\tilde{w}^{*}, \tilde{w}_{t})}_{A_{2}} - \underbrace{\frac{1}{2}} \left( \underbrace{B_{\psi_{t}}(w^{*}, \tilde{w}_{t}) - B_{\psi_{t}}(w^{*}, \tilde{w}_{t+1})}_{A_{2}} \right) \right) \right\}, \tag{15}$$

$$= \sum_{t=1}^{T} \langle w_{t} - \tilde{w}_{t+1}, g_{t} - \tilde{m}_{t} \rangle + \langle w_{t} - \tilde{w}_{t+1}, \tilde{m}_{t} \rangle + \langle \tilde{w}_{t+1} - w^{*}, g_{t} \rangle + \langle w_{t+1} - w^{*}, g_{t} \rangle - \underbrace{g_{t}}_{T} - \underbrace{g_{t}}$$

Recall the notation  $\psi_t(x)$  and the Bregman divergence  $B_{\psi_{\star}}(u,v)$  defined Section 4. We exploit a useful inequality (which appears in e.g., (Tseng 2008)). For any update of the form  $\hat{w} = \arg\min_{w \in \Theta} \langle w, \theta \rangle + B_{\psi}(w, v)$ , it holds that

$$\langle \hat{w} - u, \theta \rangle \le B_{\psi}(u, v) - B_{\psi}(u, \hat{w}) - B_{\psi}(\hat{w}, v)$$
 for any  $u \in \Theta$ .

(9)

For  $\beta_1 = 0$ , we can rewrite the update on line 8 of (Algorithm 2) as

$$\tilde{w}_{t+1} = \arg\min_{w \in \Theta} \eta_t \langle w, \tilde{g}_t \rangle + B_{\psi_t}(w, \tilde{w}_t) . \tag{10}$$

By using (9) for (10) with  $\hat{w} = \tilde{w}_{t+1}$  (the output of the minimization problem),  $u = w^*$  and  $v = \tilde{w}_t$ , we have

$$\langle \tilde{w}_{t+1} - w^*, \tilde{g}_t \rangle \le \frac{1}{\eta_t} \left[ B_{\psi_t}(w^*, \tilde{w}_t) - B_{\psi_t}(w^*, \tilde{w}_{t+1}) - B_{\psi_t}(w^*, \tilde{w}_{t+1}) \right]$$

$$\tag{11}$$

We can also rewrite the update on line 9 of (Algorithm 2) at time t as

$$w_{t+1} = \arg\min_{w \in \Theta} \eta_{t+1} \langle w, \tilde{m}_{t+1} \rangle + B_{\psi_t}(w, \tilde{w}_{t+1}) .$$
(12)

and, by using (9) for (12) (written at iteration t), with  $\hat{w} = w_t$  (the output of the minimization problem),  $u = \tilde{w}_{t+1}$  and  $v = \tilde{w}_t$ , we have

$$\langle w_t - \tilde{w}_{t+1}, \tilde{m}_t \rangle \le \frac{1}{\eta_t} \Big[ B_{\psi_{t-1}}(\tilde{w}_{t+1}, \tilde{w}_t) - B_{\psi_{t-1}}(\tilde{w}_{t+1}, w_t) - B_{\psi_{t-1}}(w_t) \Big]$$
(13)

$$\mathcal{R}_T \stackrel{(8)}{\leq} \sum_{t=1}^T \langle w_t - \tilde{w}_{t+1}, g_t - \tilde{m}_t \rangle + \langle w_t - \tilde{w}_{t+1}, \tilde{m}_t \rangle + \langle \tilde{w}_{t+1} - w^*, \tilde{g}_t \rangle - \langle \tilde{w}_{t+1}, \tilde{w}_t \rangle = \langle \tilde{w}_{t+1}, \tilde{w}_t \rangle - \langle \tilde{w}_{t+1}, \tilde{w}_t \rangle + \langle \tilde{w}_t, \tilde{w}_t$$

$$\stackrel{(11),(13)}{\leq} \sum_{t=1}^{T} \|w_t - \tilde{w}_{t+1}\|_{\psi_{t-1}} \|g_t - \tilde{m}_t\|_{\psi_{t-1}^*} + \|\tilde{w}_{t+1} - w^*\|_{\psi_{t-1}} \|g_t - \tilde{m}_t\|_{\psi_{t-1}^*}$$

$$+ \frac{1}{\eta_t} \left[ B_{\psi_{t-1}}(\tilde{w}_{t+1}, \tilde{w}_t) - B_{\psi_{t-1}}(\tilde{w}_{t+1}, w_t) - B_{\psi_{t-1}}(w_t, \tilde{w}_t) + B_{\psi_t}(w^*, \tilde{w}_t) - B_{\psi_t}(w^*, \tilde{w}_{t+1}) - B_{\psi_t}(\tilde{w}_{t+1}, \tilde{w}_t) \right],$$
(14)

which is further bounded by

$$\mathcal{R}_{T} \leq \sum_{t=1}^{T} \left\{ \frac{1}{2\eta_{t}} \| w_{t} - \tilde{w}_{t+1} \|_{\psi_{t-1}}^{2} + \frac{\eta_{t}}{2} \| g_{t} - m_{t} \|_{\psi_{t-1}^{*}}^{2} + \| \tilde{w}_{t+1} - w^{*} \|_{\psi_{t}} \right. \\ + \frac{1}{\eta_{t}} \left( \underbrace{B_{\psi_{t-1}}(\tilde{w}_{t+1}, \tilde{w}_{t}) - B_{\psi_{t}}(\tilde{w}_{t+1}, \tilde{w}_{t})}_{A_{1}} - \frac{1}{2} \| \tilde{w}_{t+1} - w_{t} \|_{\psi}^{2} \right. \\ + \underbrace{B_{\psi_{t}}(w^{*}, \tilde{w}_{t}) - B_{\psi_{t}}(w^{*}, \tilde{w}_{t+1})}_{A_{2}} \right) \right\},$$

$$(15)$$

by Young's inequality and the 1-strongly convex of  $\psi_{t-1}(\cdot)$  with respect to  $\|\cdot\|_{\psi_{t-1}}$  which yields that  $B_{\psi_{t-1}}(\tilde{w}_{t+1}, w_t) \ge \frac{1}{2} \|\tilde{w}_{t+1} - w_t\|_{\psi_t}^2 \ge 0.$ 

To proceed, notice that

$$A_{1} := B_{\psi_{t-1}}(\tilde{w}_{t+1}, \tilde{w}_{t}) - B_{\psi_{t}}(\tilde{w}_{t+1}, \tilde{w}_{t})$$

$$= \langle \tilde{w}_{t+1} - \tilde{w}_{t}, \operatorname{diag}(\hat{v}_{t-1}^{1/2} - \hat{v}_{t}^{1/2})(\tilde{w}_{t+1} - \tilde{w}_{t}) \rangle \leq 0 ,$$
(16)

as the sequence  $\{\hat{v}_t\}$  is non-decreasing. And that

$$A_2 := B_{\psi_t}(w^*, \tilde{w}_t) - B_{\psi_t}(w^*, \tilde{w}_{t+1}) = \langle w^* - \tilde{w}_{t+1}, \operatorname{diag}(\hat{v}_{t+1}^{1/2} - \hat{v}_t^{1/2}) \rangle$$

$$\leq (\max_i (w^*[i] - \tilde{w}_{t+1}[i])^2) \cdot (\sum_{i=1}^d v_i^{1/2} - v_i^{1/2}) \rangle$$

(17)

Therefore, by (15),(17),(16), we have

$$\langle \tilde{w}_{t+1} - w^*, \tilde{g}_t \rangle \leq \frac{1}{\eta_t} \left[ B_{\psi_t}(w^*, \tilde{w}_t) - B_{\psi_t}(w^*, \tilde{w}_{t+1}) - B_{\psi_t}(\mathcal{R}_{T1} \leq \tilde{w}_{t+1}^{D_{\infty}^2} \sum_{i=1}^d \hat{v}_T^{1/2}[i] + \frac{B_{\psi_1}(w^*, \tilde{w}_1)}{\eta_1} + \sum_{t=1}^T \frac{\eta_t}{2} \|g_t - \tilde{m}_t\|_{\psi_{t-1}^*}^2 + D_{\infty}^2 \beta_{T1}^2 \right]$$

since  $||g_t - \tilde{g}_t||_{\psi_{t-1}^*} = ||g_t - \beta_1 \theta_{t-1} - (1 - \beta_1) g_t||_{\psi_{t-1}^*} =$  $\beta^2 \|g_t - \theta_{t-1}\|_{\psi_{t-1}^*}$ . This completes the proof.

#### В Proof of Corollary 1

Corollary. Suppose  $\beta_1 = 0$  and  $\{v_t\}_{t>0}$  is a monotonically increasing sequence, then we obtain the following regret bound for any  $w^* \in \Theta$  and sequence of stepsizes  $\{\eta_t = \eta/\sqrt{t}\}_{t>0}$ :

$$\mathcal{R}_T \leq \frac{B_{\psi_1}}{\eta_1} + \frac{\eta \sqrt{1 + \log T}}{\sqrt{1 - \beta_2}} \sum_{i=1}^d \|(g - m)_{1:T}[i]\|_2 + \frac{D_{\infty}^2}{\eta_{\min}} \sum_{i=1}^d \left[ \frac{where \ \tilde{\theta}_t}{\eta_{t+1}} - \beta_2 \right] \sum_{s=1}^{t+1} \beta_2^{T-s} g_s^2[i] \right]^{\frac{1}{2}} \tilde{g}_t = g_t - \beta_1 m_t + \beta_1 g_{t-1} + \beta_1 g_{t-1}$$

where  $B_{\psi_1} := B_{\psi_1}(w^*, \tilde{w}_1), g_t := \nabla \ell_t(w_t) \text{ and } \eta_{\min} :=$ 

**Proof** Recall the bound in Theorem 1:

Proof Recall the bound in Theorem 1: 
$$\overline{w}_{t+1} - \overline{w}_t = \frac{1}{1 - \beta_1} (w_{t+1} - \tilde{w}_t) - \frac{\beta_1}{1 - \beta_1} (w_t - \tilde{w}_{t-1})$$

$$\mathcal{R}_T \leq \frac{B_{\psi_1}(w^*, \tilde{w}_1)}{\eta_1} + \sum_{t=1}^T \frac{\eta_t}{2} \|g_t - \tilde{m}_t\|_{\psi_{t-1}^*}^2 + \frac{D_{\infty}^2}{\eta_{\min}} \sum_{i=1}^d \hat{v}_T^{1/2}[i] + D_{\infty}^2 \beta_1^2 \sum_{t=1}^T \|g_t \frac{1}{1 - \beta_1} \theta_{t\eta_t} \hat{v}_{t-1}^{1/2}(\theta_t + h_{t+1}) + \frac{\beta_1}{1 - \beta_1} \eta_{t-1} \hat{v}_{t-1}^{-1/2}(\theta_{t-1} + h_{t+1})$$

The second term reads:

$$\sum_{t=1}^{T} \frac{\eta_{t}}{2} \|g_{t} - m_{t}\|_{\psi_{t-1}^{*}}^{2} + \eta_{T} \sum_{i=1}^{d} \frac{(g_{T}[i] - m_{T}[i])^{2}}{\sqrt{v_{T-1}[i]}} + \frac{\beta_{1}}{1 - \beta_{1}} \eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1}\theta_{t-2}) + \frac{\beta_{1}}{1 - \beta_{1}} \eta_{t-1} \hat{v}_{t-1}^{-1/2} (1 - \beta_{1})^{2} \\
= \sum_{t=1}^{T-1} \frac{\eta_{t}}{2} \|g_{t} - m_{t}\|_{\psi_{t-1}^{*}}^{2} + \eta_{T} \sum_{i=1}^{d} \frac{(g_{T}[i] - m_{T}[i])^{2}}{\sqrt{v_{T-1}[i]}} & \text{Denote } \tilde{\theta}_{t} = \theta_{t} + \beta_{1}\theta_{t-1} \text{ and } \tilde{g}_{t} = g_{t} - \beta_{1}m_{t} + \beta_{1}g_{t-1} + m_{t+1}. \text{ Notice that } \tilde{\theta}_{t} = \beta_{1}\tilde{\theta}_{t-1} + (1 - \beta_{1})(g_{t} + \beta_{1}g_{t-1}). \\
= \sum_{t=1}^{T-1} \frac{\eta_{t}}{2} \|g_{t} - m_{t}\|_{\psi_{t-1}^{*}}^{2} + \eta \sum_{i=1}^{d} \frac{(g_{T}[i] - m_{T}[i])^{2}}{\sqrt{T((1 - \beta_{2}) \sum_{s=1}^{T-1} \beta_{2}^{T-1-s} \frac{w_{t+1} - w_{t}}{(g_{s}[i] - m_{s}[i])^{2}}}} \tilde{\theta}_{t-1} \left[ \eta_{t-1} \hat{v}_{t-1}^{-1/2} - \eta_{t} \hat{v}_{t}^{-1/2} \right] - \eta_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t}. \\
\leq \eta \sum_{i=1}^{d} \sum_{t=1}^{T} \frac{(g_{t}[i] - m_{t}[i])^{2}}{\sqrt{t((1 - \beta_{2}) \sum_{s=1}^{t-1} \beta_{2}^{t-1-s}(g_{s}[i] - m_{s}[i])^{2}}}. \tag{20}$$

To interpret the bound, let us make a rough approximation such that  $\sum_{s=1}^{t-1} \beta_2^{t-1-s} (g_s[i] - m_s[i])^2 \simeq$  $(g_t[i] - m_t[i])^2$ . Then, we can further get an upperbound as

$$\sum_{t=1}^{T} \frac{\eta_{t}}{2} \|g_{t} - m_{t}\|_{\psi_{t-1}^{*}}^{2} \leq \frac{\eta}{\sqrt{1-\beta_{2}}} \sum_{i=1}^{d} \sum_{t=1}^{T} \frac{|g_{t}[i] - m_{t}[i]|}{\sqrt{t}} \leq \frac{\eta\sqrt{1+\log T}}{\sqrt{1-\beta_{2}}} \sum_{i=1}^{d} \frac{\|\hat{v}_{t}^{-1/2}\theta_{t}\|_{2}^{2}}{\|(g-m)_{2}^{2}\|_{T}^{2}} \leq \frac{\eta^{2}dT_{\mathsf{M}}(1-\beta_{1})}{\|\frac{1}{2} - \beta_{2}(1-\gamma)\|_{2}^{2}}$$

where the last inequality is due to Cauchy-Schwarz.

following holds:

**Lemma 4.** Assume  $H_4$ , a strictly positive and a se-

quence of constant stepsizes  $\{\eta_t\}_{t>0}$ ,  $\beta_{\in}[0,1]$ , then the

$$\leq \frac{\eta\sqrt{1+\log T}}{\sqrt{1-\beta_2}} \sum_{i=1}^{T_{\mathsf{M}}} \left\| \hat{v}_t^{-1/2} \theta_t \right\|_{2T_{\mathsf{M}}^2[i]}^2 \leq \frac{\eta^2 dT_{\mathsf{M}}(1-\beta_1)}{\left[\frac{1}{2}, -\beta_2\right)(1-\gamma)} \ . \tag{21}$$

**Proof** We denote by index  $p \in [1, d]$  the dimension of each component of vectors of interest. Noting that for any t > 0 and dimension p we have  $\hat{v}_{t,p} \geq v_{t,p}$ , then:

#### $\mathbf{C}$ **Proofs of Auxiliary Lemmas**

Following (Yan et al. 2018) and their study of the SGD with Momentum we denote for any t > 0:

$$\overline{w}_t = w_t + \frac{\beta_1}{1 - \beta_1} (w_t - \tilde{w}_{t-1}) = \frac{1}{1 - \beta_1} w_t - \frac{\beta_1}{1 - \beta_1} \tilde{w}_{t-1} .$$
(18)

$$\eta_t^2 \mathbb{E} \left[ \left\| \hat{v}_t^{-1/2} \theta_t \right\|_2^2 \right] = \eta_t^2 \mathbb{E} \left[ \sum_{p=1}^d \frac{\theta_{t,p}^2}{\hat{v}_{t,p}} \right] \\
\leq \eta_t^2 \mathbb{E} \left[ \sum_{i=1}^d \frac{\theta_{t,p}^2}{v_{t,p}} \right] \\
\leq \eta_t^2 \mathbb{E} \left[ \sum_{i=1}^d \frac{\left( \sum_{r=1}^t (1 - \beta_1) \beta_1^{t-r} g_{r,p} \right)^2}{\sum_{r=1}^t (1 - \beta_2) \beta_2^{t-r} g_{r,p}^2} \right] , \tag{22}$$

**Lemma 3.** Assume a strictly positive and non increasing sequence of stepsizes  $\{\eta_t\}_{t>0}$ ,  $\beta_1 < \beta_2 \in$ [0, 1), then the following holds:

$$\overline{w}_{t+1} - \overline{w}_t \le \frac{\beta_1}{1 - \beta_1} \tilde{\theta}_{t-1} \left[ \eta_{t-1} \hat{v}_{t-1}^{-1/2} - \eta_t \hat{v}_t^{-1/2} \right] - \eta_t \hat{v}_t^{-1/2} \tilde{g}_t ,$$

$$\vec{w}_{t+1} - \overline{w}_t \le \frac{\beta_1}{1 - \beta_1} \tilde{\theta}_{t-1} \int_0^1 d\tilde{q}_t = q_t - \beta_1 m_t + \beta_1 q_{t-1} + \beta_1 q_{t-1}$$

$$\sum_{1} \begin{bmatrix} where \ \tilde{\theta}_{t} = T\theta_{t} + \beta_{1}\theta_{t-1} \\ h_{t+1}^{T} \cdot \beta_{2} \end{bmatrix} \sum_{s=1}^{t+1} \beta_{2}^{T-s} g_{s}^{2}[i] \end{bmatrix}^{\frac{1}{2}} d^{\frac{1}{2}} \tilde{g}_{t} = g_{t} - \beta_{1}m_{t} + \beta_{1}g_{t-1} + \beta_{2}g_{t-1} + \beta_{3}g_{t-1} + \beta_{4}g_{t-1} + \beta_{5}g_{t-1} + \beta$$

**Proof** By definition (18) and using the Algorithm updates, we have:

 $= -\frac{1}{1-\beta_t} \eta_t \hat{v}_t^{-1/2} (\theta_t + \beta_1 \theta_{t-1}) - \frac{1}{1-\beta_1} \eta_t \hat{v}_t^{-1/2} (1-\beta_1) r$ 

where the last inequality is due to initializations. Denote  $\gamma = \frac{\beta_1}{\beta_2}$ . Then,

$$\eta_t^2 \mathbb{E} \left[ \left\| \hat{v}_t^{-1/2} \theta_t \right\|_2^2 \right] \leq \frac{\eta_t^2 (1 - \beta_1)^2}{1 - \beta_2} \mathbb{E} \left[ \sum_{i=1}^d \frac{\left( \sum_{r=1}^t \beta_1^{t-r} g_{r,p} \right)^2}{\sum_{r=1}^t \beta_2^{t-r} g_{r,p}^2} \right] \frac{\text{quence of decreasing stepsizes } \{\eta_t\}_{t>0}, \text{ then the following result holds:} \\
\stackrel{(a)}{\leq} \frac{\eta_t^2 (1 - \beta_1)}{1 - \beta_2} \mathbb{E} \left[ \sum_{i=1}^d \frac{\sum_{r=1}^t \beta_1^{t-r} g_{r,p}^2}{\sum_{r=1}^t \beta_2^{t-r} g_{r,p}^2} \right] \qquad \mathbb{E} \left[ \left\| \nabla f(w_T) \right\|^2 \right] \leq \tilde{C}_1 \sqrt{\frac{d}{T_{\mathsf{M}}}} + \tilde{C}_2 \frac{1}{T_{\mathsf{M}}}, \tag{27} \\
\text{where $T$ is a random termination number distributed} \\
\leq \frac{\eta_t^2 (1 - \beta_1)}{1 - \beta_2} \mathbb{E} \left[ \sum_{i=1}^d \sum_{r=1}^t \gamma^{t-r} \right] = \frac{\eta_t^2 d(1 - aggr) dista^t to}{1 - \frac{b_2 ws}{2}} \mathbb{E} \left[ \sum_{r=1}^t \gamma^{t-r} \right], \tag{28}$$

where (a) is due to  $\sum_{r=1}^{t} \beta_1^{t-r} \leq \frac{1}{1-\beta_1}$ . Summing from t=1 to  $t=T_{\mathsf{M}}$  on both sides yields:

$$\sum_{t=1}^{T_{\mathsf{M}}} \eta_t^2 \mathbb{E} \left[ \left\| \hat{v}_t^{-1/2} \theta_t \right\|_2^2 \right] \leq \frac{\eta_t^2 d (1 - \beta_1)}{1 - \beta_2} \mathbb{E} \left[ \sum_{t=1}^{T_{\mathsf{M}}} \sum_{r=1}^t \gamma^{t-r} \right] \\
\leq \frac{\eta^2 d T (1 - \beta_1)}{1 - \beta_2} \mathbb{E} \left[ \sum_{t=t}^t \gamma^{t-r} \right] \\
\leq \frac{\eta^2 d T (1 - \beta_1)}{(1 - \beta_2)(1 - \gamma)} , \tag{24}$$

where the last inequality is due to  $\sum_{r=1}^{t} \gamma^{t-r} \leq \frac{1}{1-\gamma}$ by definition of  $\gamma$ .

#### C.1Proof of Lemma 1

**Lemma.** Assume assumption  $H_4$ , then the quantities defined in Algorithm 2 satisfy for any  $w \in \Theta$  and t > 0:

$$\|\nabla f(w_t)\| < \mathsf{M}, \quad \|\theta_t\| < \mathsf{M}, \quad \|\hat{v}_t\| < \mathsf{M}^2.$$

**Proof** Assume assumption H4 we have:

$$\|\nabla f(w)\| = \|\mathbb{E}[\nabla f(w, \xi)]\| < \mathbb{E}[\|\nabla f(w, \xi)\|] < \mathsf{M}$$
.

By induction reasoning, since  $\|\theta_0\| = 0 \le M$  and suppose that for  $\|\theta_t\| \leq M$  then we have

$$\|\theta_{t+1}\| = \|\beta_1 \theta_t + (1 - \beta_1) g_{t+1}\| \le \beta_1 \|\theta_t\| + (1 - \beta_1) \|g_{t+1}\|$$
(25)

**Theorem.** Assume H2-H4,  $(\beta_1, \beta_2) \in [0, 1]$  and a sequence of decreasing stepsizes  $\{\eta_t\}_{t>0}$ , then the following result holds:

$$\mathbb{E}[\|\nabla f(w_T)\|^2] \le \tilde{C}_1 \sqrt{\frac{d}{T_{\mathsf{M}}}} + \tilde{C}_2 \frac{1}{T_{\mathsf{M}}} , \qquad (27)$$

where T is a random termination number distributed

$$\tilde{C}_1 = C_1 + \frac{\mathsf{M}}{(1 - a\beta_1) + (\beta_1 + a)} \left[ \frac{a(1 - \beta_1)^2}{1 - \beta_2} + 2L \frac{1}{1 - \beta_2} \right]$$

$$C_{1} = \frac{\mathsf{M}}{(1 - a\beta_{1}) + (\beta_{1} + a)} \Delta f + \frac{4L\left(\frac{\beta_{1}}{1 - \beta_{1}}\right)^{2} \mathsf{M}}{(1 - a\beta_{1}) + (\beta_{1} + a)} \frac{(1 + \beta_{1}^{2})(1 - \beta_{2})}{(1 - \beta_{2})(1 - \gamma_{1})} \tilde{C}_{2} = \frac{\mathsf{M}}{(1 - \beta_{1})\left((1 - a\beta_{1}) + (\beta_{1} + a)\right)} \tilde{\mathsf{M}}^{2} \mathbb{E}[\|\hat{v}_{0}^{-1/2}\|]$$

$$(28)$$

**Proof** Using H2 and the iterate  $\overline{w}_t$  we have:

$$f(\overline{w}_{t+1}) \leq f(\overline{w}_t) + \nabla f(\overline{w}_t)^{\top} (\overline{w}_{t+1} - \overline{w}_t) + \frac{L}{2} \|\overline{w}_{t+1} - \overline{w}_t\|^2$$

$$\leq f(\overline{w}_t) + \underbrace{\nabla f(w_t)^{\top} (\overline{w}_{t+1} - \overline{w}_t)}_{A}$$

$$+ \underbrace{(\nabla f(\overline{w}_t) - \nabla f(w_t))^{\top} (\overline{w}_{t+1} - \overline{w}_t)}_{B} + \frac{L}{2} \|\overline{w}_{t+1} - \overline{w}_t\|.$$
(29)

**Term A**. Using Lemma 3, we have that:

$$\nabla f(w_t)^{\top} (\overline{w}_{t+1} - \overline{w}_t) \leq \nabla f(w_t)^{\top} \left[ \frac{\beta_1}{1 - \beta_1} \tilde{\theta}_{t-1} \left[ \eta_{t-1} \hat{v}_{t-1}^{-1/2} - \eta_t \hat{v}_t^{-1/2} \right] \right]$$

$$\leq \frac{\beta_1}{1 - \beta_1} \|\nabla f(w_t)\| \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} - \eta_t \hat{v}_t^{-1/2} \|\|\tilde{\theta}_{t-1}\| \|\tilde{\theta}_{t-1}\| \|\tilde{\theta}_{t-$$

where the inequality is due to trivial inequality for positive diagonal matrix. Using Lemma 1 and assumption H3 we obtain:

$$\nabla f(w_t)^{\top}(\overline{w}_{t+1} - \overline{w}_t) \le \frac{\beta_1(1+\beta_1)}{1-\beta_1} \mathsf{M}^2[\|\eta_{t-1}\hat{v}_{t-1}^{-1/2}\| - \|\eta_t\hat{v}_t^{-1/2}\|] - \nabla f(w_t)^{\top}(\overline{w}_{t+1} - \overline{w}_t) \le \frac{\beta_1(1+\beta_1)}{1-\beta_1} \mathsf{M}^2[\|\eta_{t-1}\hat{v}_{t-1}^{-1/2}\| - \|\eta_t\hat{v}_t^{-1/2}\|] - \nabla f(w_t)^{\top}(\overline{w}_{t+1} - \overline{w}_t) \le \frac{\beta_1(1+\beta_1)}{1-\beta_1} \mathsf{M}^2[\|\eta_{t-1}\hat{v}_{t-1}^{-1/2}\| - \|\eta_t\hat{v}_t^{-1/2}\|] - \nabla f(w_t)^{\top}(\overline{w}_{t+1} - \overline{w}_t) \le \frac{\beta_1(1+\beta_1)}{1-\beta_1} \mathsf{M}^2[\|\eta_{t-1}\hat{v}_{t-1}^{-1/2}\| - \|\eta_t\hat{v}_t^{-1/2}\|] - \nabla f(w_t)^{\top}(\overline{w}_{t+1} - \overline{w}_t) \le \frac{\beta_1(1+\beta_1)}{1-\beta_1} \mathsf{M}^2[\|\eta_{t-1}\hat{v}_{t-1}^{-1/2}\| - \|\eta_t\hat{v}_t^{-1/2}\|] - \nabla f(w_t)^{\top}(\overline{w}_{t+1} - \overline{w}_t) \le \frac{\beta_1(1+\beta_1)}{1-\beta_1} \mathsf{M}^2[\|\eta_{t-1}\hat{v}_{t-1}^{-1/2}\| - \|\eta_t\hat{v}_t^{-1/2}\|] - \nabla f(w_t)^{\top}(\overline{w}_{t+1} - \overline{w}_t) \le \frac{\beta_1(1+\beta_1)}{1-\beta_1} \mathsf{M}^2[\|\eta_{t-1}\hat{v}_{t-1}^{-1/2}\| - \|\eta_t\hat{v}_t^{-1/2}\|] - \nabla f(w_t)^{\top}(\overline{w}_{t+1} - \overline{w}_t) \le \frac{\beta_1(1+\beta_1)}{1-\beta_1} \mathsf{M}^2[\|\eta_{t-1}\hat{v}_{t-1}^{-1/2}\| - \|\eta_t\hat{v}_t^{-1/2}\|] - \nabla f(w_t)^{\top}(\overline{w}_{t+1} - \overline{w}_t) \le \frac{\beta_1(1+\beta_1)}{1-\beta_1} \mathsf{M}^2[\|\eta_{t-1}\hat{v}_{t-1}^{-1/2}\| - \|\eta_t\hat{v}_t^{-1/2}\|] + \frac{\beta_1(1+\beta_1)}{1-\beta_1} \mathsf{M}^2[\|\eta_{t-1}\hat{v}_{t-1}^{-1/2}\| - \|\eta_t\hat{v}_t^{-1/2}\| - \|\eta_t\hat{v}_t^{-1/2$$

 $\|\theta_{t+1}\| = \|\beta_1\theta_t + (1-\beta_1)\,g_{t+1}\| \le \beta_1\,\|\theta_t\| + (1-\beta_1)\,\|g_{t+1}\| \le \mathsf{M} \ .$  where we have used the fact that  $\eta_t\hat{v}_t^{-1/2}$  is a diagonal matrix such that  $\eta_{t-1}\hat{v}_{t-1}^{-1/2} \succcurlyeq \eta_t\hat{v}_t^{-1/2} \succcurlyeq 0$  (decreasing stepsize and max operator). Also note that:

$$\begin{split} \|\hat{v}_{t+1}\| &= \left\|\beta_2 \hat{v}_t + (1-\beta_2) \, g_{t+1}^2 \right\| \leq \beta_2 \, \|\hat{v}_t\| + (1-\beta_1) \, \left\|g_{t+1}^2 \right\| \underbrace{\nabla f (\mathbf{p}_t)^\top \eta_t \hat{v}_t^{-1/2} \tilde{g}_t}_{t} = -\nabla f(w_t)^\top \eta_{t-1} \hat{v}_{t-1}^{-1/2} \bar{g}_t - \nabla f(w_t)^\top \left[\eta_t \hat{v}_t^{-1/2} - \nabla f(w_t)^\top \eta_{t-1} \hat{v}_{t-1}^{-1/2} \tilde{g}_t - \nabla f(w_t)^\top \eta_t \hat{v}_t^{-1/2} - \nabla f(w_t)^\top \eta_{t-1} \hat{v}_{t-1}^{-1/2} \tilde{g}_t + (1-\alpha\beta_1) \mathsf{M}^2 [\|\eta_{t-1} \hat{v}_t - \nabla f(w_t)^\top \eta_t \hat{v}_t^{-1/2} (\beta_1 g_{t-1} + m_{t+1}) \right], \end{split}$$

where we have used Lemma 1 on  $||g_t||$  and where that  $\tilde{g}_t = \bar{g}_t + \beta_1 g_{t-1} + m_{t+1} = g_t - \beta_1 m_t + \beta_1 g_{t-1} + m_{t+1}.$ Plugging (31) into (30) yields:

$$\nabla f(w_{t})^{\top}(\overline{w}_{t+1} - \overline{w}_{t}) \qquad \qquad \overline{2} \|w_{t+1} - w_{t}\| \leq \overline{2} \left[ \overline{1 - \beta_{1}} \|w_{t-1} - w_{t}\| + \|\eta_{t}v_{t}\|^{2} \overline{g}_{t} \right]$$

$$\leq -\nabla f(w_{t})^{\top} \eta_{t-1} \hat{v}_{t-1}^{-1/2} \overline{g}_{t} + \frac{1}{1 - \beta_{1}} (a\beta_{1}^{2} - 2a\beta_{1} + \beta_{1}) \mathsf{M}^{2} [\|\eta_{t-1} \hat{v}_{t-1}^{-1/2}\| - \|\eta_{\underline{e}} \hat{v}_{t} \overline{L}\|^{2} \|\eta_{t}\|^{2} \overline{g}_{t}\|^{2} + 2L \left( \frac{\beta_{1}}{1 - \beta_{1}} \right)^{2} \|\tilde{w}_{t-1} - w_{t}\|^{2} .$$

$$-\nabla f(w_{t})^{\top} \eta_{t} \hat{v}_{t}^{-1/2} (\beta_{1} g_{t-1} + m_{t+1}) . \tag{38}$$

**Term B.** By Cauchy-Schwarz (CS) inequality we have:

$$\left(\nabla f(\overline{w}_t) - \nabla f(w_t)\right)^{\top} \left(\overline{w}_{t+1} - \overline{w}_t\right) \le \|\nabla f(\overline{w}_t) - \nabla f(w_t)\| \|\overline{v}_t\|$$
(33)

Using smoothness assumption H2:

$$\|\nabla f(\overline{w}_t) - \nabla f(w_t)\| \le L\|\overline{w}_t - w_t\|$$

$$\le L \frac{\beta_1}{1 - \beta_1} \|w_t - \tilde{w}_{t-1}\|.$$
(34)

By Lemma 3 we also have:

$$\overline{w}_{t+1} - \overline{w}_{t} = \frac{\beta_{1}}{1 - \beta_{1}} \tilde{\theta}_{t-1} \left[ \eta_{t-1} \hat{v}_{t-1}^{-1/2} - \eta_{t} \hat{v}_{t}^{-1/2} \right] - \eta_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t}^{\text{as follows}}$$

$$\mathbb{E} \left[ \nabla f(w_{t})^{\top} \bar{g}_{t} \right] = \mathbb{E} \left[ \nabla f(w_{t})^{\top} (g_{t} - \beta_{1} m_{t}) \right] = (1 - \beta_{1}) \tilde{\theta}_{t-1} + (1 - \beta_{1}) \tilde{\theta}_{t-1}^{-1/2} \left[ I - (\eta_{t} \hat{v}_{t}^{-1/2}) (\eta_{t-1} \hat{v}_{t-1}^{-1/2})^{-1} \right] - \eta_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t}$$

$$= \frac{\beta_{1}}{1 - \beta_{1}} \left[ I - (\eta_{t} \hat{v}_{t}^{-1/2}) (\eta_{t-1} \hat{v}_{t-1}^{-1/2})^{-1} \right] (\tilde{w}_{t-1} - w_{t})_{T-1} \tilde{\eta}_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t} ,$$

$$(35) \qquad \frac{1}{M} \sum_{t=1}^{M} \left[ (1 - a\beta_{1}) \eta_{t-1} + (\beta_{1} + a) \eta_{t}) \| \nabla f(w_{t}) \|^{2} \leq 1 + (1 - \alpha_{1}) \tilde{\eta}_{t} + (1 - \alpha_{2}) \tilde{\eta}_{t} + (1 -$$

where the last equality is due to  $\tilde{\theta}_{t-1}\eta_{t-1}\hat{v}_{t-1}^{-1/2} =$  $\tilde{w}_{t-1} - w_t$  by construction of  $\tilde{\theta}_t$ . Taking the norms on both sides, observing  $||I - (\eta_t \hat{v}_t^{-1/2})(\eta_{t-1} \hat{v}_{t-1}^{-1/2})^{-1}|| \le$ 1 due to the decreasing stepsize and the construction of  $\hat{v}_t$  and using CS inequality yield:

$$\|\overline{w}_{t+1} - \overline{w}_t\| \le \frac{\beta_1}{1 - \beta_1} \|\tilde{w}_{t-1} - w_t\| + \|\eta_t \hat{v}_t^{-1/2} \tilde{g}_t\|.$$
(36)

We recall Young's inequality with a constant  $\delta \in (0,1)$ as follows:

$$\langle X | Y \rangle \le \frac{1}{\delta} ||X||^2 + \delta ||Y||^2 .$$

Plugging (34) and (36) into (33) returns:

The last term  $\frac{L}{2} \| \overline{w}_{t+1} - \overline{w}_t \|$  can be upper bounded using (36):

$$\frac{L}{2} \|\overline{w}_{t+1} - \overline{w}_t\|^2 \le \frac{L}{2} \left[ \frac{\beta_1}{1 - \beta_1} \|\tilde{w}_{t-1} - w_t\| + \|\eta_t \hat{v}_t^{-1/2} \tilde{g}_t\| \right]$$

Plugging (32), (37) and (38) into (29) and taking the expectations on both sides give:

$$(\nabla f(\overline{w}_{t}) - \nabla f(w_{t}))^{\top} (\overline{w}_{t+1} - \overline{w}_{t}) \leq \|\nabla f(\overline{w}_{t}) - \nabla f(w_{t})\| \|\overline{w}\mathbb{E}\left[f(\overline{w}_{t}\|_{+1}) + \frac{1}{1-\beta_{1}}\tilde{\mathsf{M}}^{2}\|\eta_{t}\hat{v}_{t}^{-1/2}\| - \left(f(\overline{w}_{t}) + \frac{1}{1-\beta_{1}}\tilde{\mathsf{M}}^{2}\|\eta_{t-1}\hat{v}_{t-1}^{-1/2}\| \right)\right]$$
Using smoothness assumption H2:
$$\leq \mathbb{E}\left[-\nabla f(w_{t})^{\top}\eta_{t-1}\hat{v}_{t-1}^{-1/2}\bar{g}_{t} - \nabla f(w_{t})^{\top}\eta_{t}\hat{v}_{t}^{-1/2}(\beta_{1}g_{t-1} + m_{t+1})\right]$$

$$\|\nabla f(\overline{w}_{t}) - \nabla f(w_{t})\| \leq L\|\overline{w}_{t} - w_{t}\|$$

$$\leq L\|\frac{\beta_{1}}{\|w_{t} - \hat{v}_{t}\|}\|w_{t} - \hat{v}_{t}\|$$

$$\leq L\|\eta_{t}\hat{v}_{t}^{-1/2}\tilde{g}_{t}\|^{2} + 4L\left(\frac{\beta_{1}}{1-\beta_{1}}\right)^{2}\|\tilde{w}_{t-1} - w_{t}\|^{2},$$

$$\leq L\|\eta_{t}\hat{v}_{t}^{-1/2}\tilde{g}_{t}\|^{2} + 4L\left(\frac{\beta_{1}}{1-\beta_{1}}\right)^{2}\|\tilde{w}_{t-1} - w_{t}\|^{2},$$

where  $\tilde{\mathsf{M}}^2 = (a\beta_1^2 - 2a\beta_1 + \beta_1)\mathsf{M}^2$ . Note that the expectation of  $\tilde{g}_t$  conditioned on the filtration  $\mathcal{F}_t$  reads

$$= \frac{1}{1 - \beta_{1}} \theta_{t-1} \left[ \eta_{t-1} \hat{v}_{t-1}^{1/2} - \eta_{t} \hat{v}_{t}^{1/2} \right] - \eta_{t} \hat{v}_{t}^{1/2} \tilde{g}_{t}^{\text{gris follows}} \\ \mathbb{E} \left[ \nabla f(w_{t})^{\top} \bar{g}_{t} \right] = \mathbb{E} \left[ \nabla f(w_{t})^{\top} (g_{t} - \beta_{1} m_{t}) \right] = (1 - a\beta_{1}) \|\nabla f(w_{t})\|^{2} .$$

$$= \frac{\beta_{1}}{1 - \beta_{1}} \tilde{\theta}_{t-1} \eta_{t-1} \hat{v}_{t-1}^{-1/2} \left[ I - (\eta_{t} \hat{v}_{t}^{-1/2}) (\eta_{t-1} \hat{v}_{t-1}^{-1/2})^{-1} \right] - \eta_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t}$$
(39)

$$\mathbb{E}\left[f(\overline{w}_{1}) + \frac{1}{1-\beta_{1}}\tilde{\mathsf{M}}^{2}\|\eta_{0}\hat{v}_{0}^{-1/2}\| - \left(f(\overline{w}_{T_{\mathsf{M}}+1}) + \frac{1}{1-\beta_{1}}\tilde{\mathsf{M}}^{2}\|\eta_{T_{\mathsf{M}}}\hat{v}_{T_{\mathsf{M}}}^{-1/2}\right) + 2L\sum_{t=1}^{T_{\mathsf{M}}}\mathbb{E}\left[\|\eta_{t}\hat{v}_{t}^{-1/2}\tilde{g}_{t}\|^{2}\right] + 4L\left(\frac{\beta_{1}}{1-\beta_{1}}\right)^{2}\sum_{t=1}^{T_{\mathsf{M}}}\mathbb{E}\left[\|\tilde{w}_{t-1} - w_{t}\|^{2}\right] \\
\leq \mathbb{E}\left[\Delta f + \frac{1}{1-\beta_{1}}\tilde{\mathsf{M}}^{2}\|\eta_{0}\hat{v}_{0}^{-1/2}\|\right] + 2L\sum_{t=1}^{T_{\mathsf{M}}}\mathbb{E}\left[\|\eta_{t}\hat{v}_{t}^{-1/2}\tilde{g}_{t}\|^{2}\right] \\
+ 4L\left(\frac{\beta_{1}}{1-\beta_{1}}\right)^{2}\sum_{t=1}^{T_{\mathsf{M}}}\mathbb{E}\left[\|\tilde{w}_{t-1} - w_{t}\|^{2}\right], \tag{40}$$

where we denote  $\Delta f := f(\overline{w}_1) - f(\overline{w}_{T_M+1})$ . We note that by definition of  $\hat{v}_t$ , and a constant learning rate  $\eta_t$ , we have

$$\begin{split} \left(\nabla f(\overline{w}_{t}) - \nabla f(w_{t})\right)^{\top} \left(\overline{w}_{t+1} - \overline{w}_{t}\right) \leq & L \frac{\beta_{1}}{1 - \beta_{1}} \|\eta_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t}\| \|\psi_{t} \tilde{w}_{t-1} \psi_{t}\|^{2} = \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + h_{t})\|^{2} \\ & + L \left(\frac{\beta_{1}}{1 - \beta_{1}}\right)^{2} \|\tilde{w}_{t-1} - w_{t}\|^{2} \,. \end{split} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1} \theta_{t-2} + (1 - \beta_{1}) m_{t})\|^{2} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1} \theta_{t-2} + (1 - \beta_{1}) m_{t})\|^{2} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1} \theta_{t-2} + (1 - \beta_{1}) m_{t})\|^{2} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1} \theta_{t-2} + (1 - \beta_{1}) m_{t})\|^{2} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1} \theta_{t-2} + (1 - \beta_{1}) m_{t})\|^{2} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1} \theta_{t-2} + (1 - \beta_{1}) m_{t})\|^{2} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1} \theta_{t-2} + (1 - \beta_{1}) m_{t})\|^{2} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1} \theta_{t-2} + (1 - \beta_{1}) m_{t})\|^{2} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1} \theta_{t-2} + (1 - \beta_{1}) m_{t})\|^{2} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1} \theta_{t-2} + (1 - \beta_{1}) m_{t})\|^{2} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1} \theta_{t-2} + (1 - \beta_{1}) m_{t})\|^{2} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1} \theta_{t-2} + (1 - \beta_{1}) m_{t})\|^{2} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1} \theta_{t-2} + (1 - \beta_{1}) m_{t})\|^{2} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1} \theta_{t-2} + (1 - \beta_{1}) m_{t})\|^{2} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1} \theta_{t-2} + (1 - \beta_{1}) m_{t})\|^{2} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1} \theta_{t-2} + (1 - \beta_{1}) m_{t})\|^{2} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1} \theta_{t-2} + (1 - \beta_{1}) m_{t})\|^{2} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1} \theta_{t-2} + (1 - \beta_{1}) m_{t})\|^{2} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1} \theta_{t-2} + (1 - \beta_{1}) m_{t})\|^{2} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1} \theta_{t-2} + (1 - \beta_{1}) m_{t})\|^{2} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_{1}) \|^{2} \\ \leq & \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t$$

Applying Young's inequality with  $\delta \to \frac{\beta_1}{1-\beta_1}$  on the product  $\|\eta_t \hat{v}_t^{-1/2} \tilde{g}_t\| \|w_t - \tilde{w}_{t-1}\|$  yields:

Using Lemma 4 we have 
$$T_{M}$$

$$\text{product } \| \eta_t \hat{v}_t^{-1/2} \tilde{g}_t \| \| w_t - \tilde{w}_{t-1} \| \text{ yields:} \qquad \sum_{t = 1 \atop |\mathcal{S}_1|}^{IM} \mathbb{E} \left[ \| \tilde{w}_{t-1} - w_t \|^2 \right]$$

$$(\nabla f(\overline{w}_t) - \nabla f(w_t))^{\top} (\overline{w}_{t+1} - \overline{w}_t) \leq L \| \eta_t \hat{v}_t^{-1/2} \tilde{g}_t \|^2 + 2L \left( \frac{1}{2} \underbrace{\beta_1}^{IM} + \frac{1}{2} \underbrace{\beta_1^2}_{1} \underbrace{\beta_1^2}_{1$$

And thus, setting the learning rate to a constant value  $\eta$  and injecting in (40) yields:

$$\mathbb{E}[\|\nabla f(w_T)\|^2] = \frac{1}{\sum_{j=1}^{T_{\rm M}} \eta_j} \sum_{t=1}^{T_{\rm M}} \eta_t \|\nabla f(w_t)\|^2$$

$$\leq \frac{\mathsf{M}}{(1-a\beta_1) + (\beta_1+a)} \frac{1}{\sum_{j=1}^{T_{\rm M}} \eta_j} \mathbb{E}\left[\Delta f + \frac{1}{1-\beta_1} \tilde{\mathsf{M}}^2 \|\eta_0 \hat{v}_0^{-T^2}\right]^{-T^2} \mathbb{E}\left[0 \text{ such that:} \\ \|\xi\| \leq 1 \text{ a.s. and} \|\mathcal{L}'(\cdot,y)\| \leq T \text{ , (41)} \\ + \frac{4L\left(\frac{\beta_1}{1-\beta_1}\right)^2 \mathsf{M}}{(1-a\beta_1) + (\beta_1+a)} \frac{1}{\sum_{j=1}^{T_{\rm M}} \eta_j} (1+\beta_1^2) \frac{\eta^2 dT_{\mathsf{M}}(1-\beta_1)}{(1-\beta_2)(1-\gamma)} \right]$$

$$+ \frac{\mathsf{M}}{(1-a\beta_1) + (\beta_1+a)} \frac{1}{\sum_{j=1}^{T_{\rm M}} \eta_j} (1-\beta_1)^2 \sum_{t=1}^{T_{\rm M}} \mathbb{E}[\|\eta_{t-1} \hat{v}_{t-1}^{-1/2} m_t\|]$$

$$+ \frac{2L\mathsf{M}}{(1-a\beta_1) + (\beta_1+a)} \frac{1}{\sum_{j=1}^{T_{\rm M}} \eta_j} \sum_{t=1}^{T_{\rm M}} \mathbb{E}[\|\eta_t \hat{v}_t^{-1/2} \tilde{g}_t\|^2] \text{ , Proof For any index } \ell \in [1, L] \text{ we denote the output of layer } \ell \text{ boundedness of the input data and of the loss function, i.e., for any  $\xi \in \mathbb{R}^p$  and  $y \in \mathbb{R}$  there is a constant  $\xi \in \mathbb{R}^p$  and  $\xi \in \mathbb{R}^p$  and$$

where T is a random termination number distributed according (4). Setting the stepsize to  $\eta = \frac{1}{\sqrt{dT_{\rm M}}}$  yields

$$\mathbb{E}[\|\nabla f(w_T)\|^2] \le C_1 \sqrt{\frac{d}{T_{\mathsf{M}}}} + C_2 \frac{1}{T_{\mathsf{M}}} + D_1 \frac{\eta}{T_{\mathsf{M}}} \sum_{t=1}^{T_{\mathsf{M}}} \mathbb{E}[\|\hat{v}_{t-1}^{-1/2} - \hat{v}_{t-1}\|^2]$$

where

$$\begin{split} C_1 &= \frac{\mathsf{M}}{(1-a\beta_1) + (\beta_1 + a)} \Delta f + \frac{4L \left(\frac{\beta_1}{1-\beta_1}\right)^2 \mathsf{M}}{(1-a\beta_1) + (\beta_1 + a)} \\ C_2 &= \frac{\mathsf{M}}{(1-\beta_1) \left((1-a\beta_1) + (\beta_1 + a)\right)} \tilde{\mathsf{M}}^2 \mathbb{E}[\|\hat{v}_0^{-1/2}\|] \;. \end{split}$$

Simple case as in (Zhou et al. 2018): if  $\beta_1 = 0$ then  $\tilde{g}_t = g_t + m_{t+1}$  and  $g_t = \theta_t$ . Also using Lemma 4 we have that:

$$\sum_{t=1}^{T_{\mathsf{M}}} \eta_t^2 \mathbb{E}\left[ \left\| \hat{v}_t^{-1/2} g_t \right\|_2^2 \right] \leq \frac{\eta^2 dT_{\mathsf{M}}}{(1-\beta_2)} \ ;$$

which leads to the final bound:

$$\mathbb{E}[\|\nabla f(w_T)\|^2] \le \tilde{C}_1 \sqrt{\frac{d}{T_\mathsf{M}}} + \tilde{C}_2 \frac{1}{T_\mathsf{M}} ,$$

where

$$\tilde{C}_{1} = C_{1} + \frac{\mathsf{M}}{(1 - a\beta_{1}) + (\beta_{1} + a)} \left[ \frac{a(1 - \beta_{1})^{2}}{1 - \beta_{2}} + 2L \frac{1}{1 - \beta_{2}} \right]$$

$$\tilde{C}_{2} = C_{2} = \frac{\mathsf{M}}{(1 - \beta_{1})((1 - a\beta_{1}) + (\beta_{1} + a))} \tilde{\mathsf{M}}^{2} \mathbb{E}[\|\hat{v}_{0}^{-1/2}\|]$$

## Proof of Lemma 2 (Boundedness of the iterates)

**Lemma.** Given the multilayer model (5), assume the boundedness of the input data and of the loss function,

$$\|\xi\| \le 1$$
 a.s.  $and|\mathcal{L}'(\cdot, y)| \le T$ , (41)

stant  $A_{(\ell)}$  such that:

$$||w^{(\ell)}|| \le A_{(\ell)} .$$

**Proof** For any index  $\ell \in [1, L]$  we denote the output of layer  $\ell$  by

$$h^{(\ell)}(w,\xi) = \sigma\left(w^{(\ell)}\sigma\left(w^{(\ell-1)}\dots\sigma\left(w^{(1)}\xi\right)\right)\right)$$
.

Given the sigmoid assumption we have  $\|h^{(\ell)}(w,\xi)\| \leq 1$  for any  $\ell \in [1, L]$  and any  $(w, \xi) \in \mathbb{R}^d \times \mathbb{R}^p$ . We also  $\mathbb{E}[\|\nabla f(w_T)\|^2] \leq C_1 \sqrt{\frac{d}{T_\mathsf{M}}} + C_2 \frac{1}{T_\mathsf{M}} + D_1 \frac{\eta}{T_\mathsf{M}} \sum_{t=1}^{T_\mathsf{M}} \mathbb{E}[\|\hat{v}_{t-1}^{-1/2} m_t^{\mathsf{regall}}\| D_2 T_{\mathsf{M}}^{\mathsf{pat}} \sum_{t=1}^{\eta} \mathbb{E}[\|\hat{v}_{t-1}^{-1/2} m_t^{\mathsf{regall}}\| D_2 T_{\mathsf{M}}^{\mathsf{pat}} \sum_{t=1}^{\eta} \mathbb{E}[\|\hat{v}_{t-1}^{-1/2} m_t^{\mathsf{pat}}\|]$  Observe that at the last

where 
$$\|\nabla_{w^{(L)}\|\mathcal{L}(\mathsf{MLN}(w,\xi),y)} = \|\mathcal{L}'(\mathsf{MLN}(w,\xi),y)\nabla_{w^{(L)}}\mathsf{MLN}(w,\xi)\|$$

$$C_{1} = \frac{\mathsf{M}}{(1-a\beta_{1}) + (\beta_{1}+a)}\Delta f + \frac{4L\left(\frac{\beta_{1}}{1-\beta_{1}}\right)^{2}\mathsf{M}}{(1-a\beta_{1}) + (\beta_{1}+a)}\frac{(1+\beta_{1}^{2})(1-\beta_{1})}{(1-\beta_{2})(1-\gamma)}, \qquad = \|\mathcal{L}'(\mathsf{MLN}(w,\xi),y)\nabla_{w^{(L)}}\mathsf{MLN}(w,\xi)\|$$

$$C_{2} = \frac{\mathsf{M}}{(1-a)(1-a)(1-a)(1-a)(1-a)}\tilde{\mathsf{M}}^{2}\mathbb{E}[\|\hat{v}_{0}^{-1/2}\|]. \qquad (42)$$

where the last equality is due to mild assumptions (41)and to the fact that the norm of the derivative of the sigmoid function is upperbounded by 1/4.

From Algorithm 2, and with  $\beta_1 = 0$  for the sake of notation, we have for iteration index t > 0:

$$||w_t - \tilde{w}_{t-1}|| = || - \eta_t \hat{v}_t^{-1/2} (\theta_t + h_{t+1})|| = ||\eta_t \hat{v}_t^{-1/2} (g_t + m_{t+1})||$$
  
$$\leq \hat{\eta} ||\hat{v}_t^{-1/2} g_t|| + \hat{\eta} a ||\hat{v}_t^{-1/2} g_{t+1}||$$

where  $\hat{\eta} = \max_{t>0} \eta_t$ . For any dimension  $p \in [1, d]$ , using assumption H3, we note that

$$\sqrt{\hat{v}_{t,p}} \ge \sqrt{1 - \beta_2} g_{t,p}$$
 and  $m_{t+1} \le a \|g_{t+1}\|$ .

$$\tilde{C}_{1} = C_{1} + \frac{\mathsf{M}}{(1 - a\beta_{1}) + (\beta_{1} + a)} \left[ \frac{a(1 - \beta_{1})^{2}}{1 - \beta_{2}} + 2L \frac{1}{1 - \beta_{2}} \right]^{\text{Thus:}}, \\ \|w_{t} - \tilde{w}_{t-1}\| \leq \hat{\eta} \left( \|\hat{v}_{t}^{-1/2} g_{t}\| + a \|\hat{v}_{t}^{-1/2} g_{t+1}\| \right) \leq \hat{\eta} \frac{a + 1}{\sqrt{1 - \beta_{2}}}.$$

$$\tilde{C}_{2} = C_{2} = \frac{\mathsf{M}}{(1 - a) \times (1 - a) \times (2 - b) \times (2 - b)} \tilde{\mathsf{M}}^{2} \mathbb{E}[\|\hat{v}_{0}^{-1/2}\|].$$

In short there exist a constant B such that  $||w_t|$  $|\tilde{w}_{t-1}|| \leq B.$ 

**Proof by induction:** As in (Défossez et al. 2020), we will prove the containment of the weights by induction.

Suppose an iteration index T and a coordinate i of the last layer L such that  $w_{T,i}^{(L)} \geq \frac{T}{4\lambda} + B$ . Using (42), we have

$$\nabla_i f(w_t^{(L)}, \xi) \ge -\frac{T}{4} + \lambda \frac{T}{\lambda 4} \ge 0$$
,

where  $f(w,\xi) = \mathcal{L}(\mathsf{MLN}(w,\xi),y) + \frac{\lambda}{2} \|w\|^2$  and is the loss of our MLN. This last equation yields  $\theta_{T,i}^{(L)} \geq 0$  (given the algorithm and  $\beta_1 = 0$ ) and using the fact that  $\|w_t - \tilde{w}_{t-1}\| \leq B$  we have

$$0 \le w_{T-1,i}^{(L)} - B \le w_{T,i}^{(L)} \le w_{T-1,i}^{(L)},$$
 (43)

which means that  $|w_{T,i}^{(L)}| \leq w_{T-1,i}^{(L)}$ . So if the first assumption of that induction reasoning holds, i.e.,  $w_{T-1,i}^{(L)} \geq \frac{T}{4\lambda} + B$ , then the next iterates  $w_{T,i}^{(L)}$  decreases, see (43) and go below  $\frac{T}{4\lambda} + B$ . This yields that for any iteration index t>0 we have

$$w_{T,i}^{(L)} \le \frac{T}{4\lambda} + 2B ,$$

since B is the biggest jump an iterate can do since  $||w_t - \tilde{w}_{t-1}|| \leq B$ . Likewise we can end up showing that

$$|w_{T,i}^{(L)}| \le \frac{T}{4\lambda} + 2B ,$$

meaning that the weights of the last layer at any iteration is bounded in some matrix norm.

Now that we have shown this boundedness property for the last layer L, we will do the same for the previous layers and conclude the verification of assumption  $\rm H1$  by induction.

For any layer  $\ell \in [1, L-1]$ , we have:

$$\nabla_{w^{(\ell)}} \mathcal{L}(\mathsf{MLN}(w,\xi),y) = \mathcal{L}'(\mathsf{MLN}(w,\xi),y) \begin{pmatrix} \begin{pmatrix} \ell+1 \\ j=1 \end{pmatrix} \\ \sigma' \left( w^{(j)} h^{(j-1)} \\ w_{t+1} w \neq s \end{pmatrix} \text{ arg } \min_{w \in \mathcal{U}} h^{(\ell-1)} \\ w_{t+1} w \neq s \end{pmatrix} \text{ is a 1-strongly convex loss function with} \\ (44) \text{ respect to some norm } \| \cdot \|_{(t)} \text{ that may be differ-}$$

This last quantity is bounded as long as we can prove that for any layer  $\ell$  the weights  $w^{(\ell)}$  are bounded in some matrix norm as  $\|w^{(\ell)}\|_F \leq F_\ell$  with the Frobenius norm. Suppose we have shown  $\|w^{(r)}\|_F \leq F_r$  for any layer  $r > \ell$ . Then having this gradient (44) bounded we can use the same lines of proof for the last layer L and show that the norm of the weights at the selected layer  $\ell$  satisfy

$$||w^{(\ell)}|| \le \frac{T \prod_{t>\ell} F_t}{4^{L-\ell+1}} + 2B$$
.

Showing that the weights of the previous layers  $\ell \in [1, L-1]$  as well as for the last layer L of our fully connected feed forward neural network are bounded at each iteration, leads by induction, to the boundedness (at each iteration) assumption we want to check.  $\square$ 

# F Comparison to some related methods

#### Comparison to nonconvex optimization works.

Recently, (Zaheer et al. 2018; Chen et al. 2019a; Ward et al. 2019; Zhou et al. 2018; Zou and Shen 2018; Li and Orabona. 2019) provide some theoretical analysis of ADAM-type algorithms when applying them to smooth nonconvex optimization problems. For example, (Chen et al. 2019a) provides a bound, which is  $\min_{t \in [T]} \mathbb{E}[\|\nabla f(w_t)\|^2] = \mathcal{O}(\log T/\sqrt{T})$ . Yet, this data independent bound does not show any advantage over standard stochastic gradient descent. Similar concerns appear in other papers.

To get some adaptive data dependent bound that are in terms of the gradient norms observed along the trajectory) when applying OPT-AMSGRAD to nonconvex optimization, one can follow the approach of (Agarwal et al. 2019) or (Chen et al. 2019b). They provide ways to convert algorithms with adaptive data dependent regret bound for convex loss functions (e.g. ADAGRAD) to the ones that can find an approximate stationary point of nonconvex loss functions. Their approaches are modular so that simply using OPT-AMSGRAD as the base algorithm in their methods will immediately lead to a variant of OPT-AMSGRAD that enjoys some guarantee on nonconvex optimization. The variant can outperform the ones instantiated by other Adam-type algorithms when the gradient prediction  $m_t$  is close to  $q_t$ . The details are omitted since this is a straightforward application.

Comparison to AO-FTRL (Mohri and Yang 2016). In (Mohri and Yang 2016), the authors propose AO-FTRL, which has the update of the form  $w_{t+1}^{-1}(w,\xi)$  are  $\lim_{w\in \mathbb{N}} \lim_{w\in \mathbb{N}} \|g_s\|^{\top} \|g_$ 

Comparison to Optimistic-Adam (Daskalakis et al. 2018). We are aware that (Daskalakis et al. 2018) proposed one version of optimistic algorithm for ADAM, which is called Optimistic-Adam in their paper. A slightly modified version is summarized in Algorithm 4. Here, Optimistic-Adam+ $\hat{v}_t$  is Optimistic-Adam in (Daskalakis et al. 2018) with the additional max operation  $\hat{v}_t = \max(\hat{v}_{t-1}, v_t)$  to guarantee that the weighted second moment is monotone

increasing.

#### Algorithm 4 Optimistic-Adam (Daskalakis ET AL. 2018) + $\hat{v}_t$ .

- 1: Required: parameter  $\beta_1$ ,  $\beta_2$ , and  $\eta_t$ .
- 2: Init:  $w_1 \in \Theta$  and  $\hat{v}_0 = v_0 = \epsilon 1 \in \mathbb{R}^d$ .
- 3: for t = 1 to T do
- Get mini-batch stochastic gradient vector  $g_t \in$  $\mathbb{R}^d$  at  $w_t$ .
- $\theta_t = \beta_1 \theta_{t-1} + (1 \beta_1) g_t.$
- $v_t = \beta_2 v_{t-1} + (1 \beta_2) g_t^2.$
- $$\begin{split} \hat{v_t} &= \max(\hat{v}_{t-1}, v_t). \\ w_{t+1} &= \Pi_k [w_t 2\eta_t \frac{\theta_t}{\sqrt{\hat{v}_t}} + \eta_t \frac{\theta_{t-1}}{\sqrt{\hat{v}_{t-1}}}]. \end{split}$$
- 9: end for

We want to emphasize that the motivations are different. Optimistic-Adam in their paper is designed to optimize two-player games (e.g. GANs (Goodfellow et al. 2014)), while the proposed algorithm in this paper is designed to accelerate optimization (e.g. solving empirical risk minimization quickly). (Daskalakis et al. 2018) focuses on training GANs (Goodfellow et al. 2014). GANs is a two-player zero-sum game. There have been some related works in Optimistic Online Learning like (Chiang et al. 2012; Rakhlin and Sridharan 2013; Syrgkanis et al. 2015)) showing that if both players use some kinds of Optimisticupdate, then accelerating the convergence to the equilibrium of the game is possible. (Daskalakis et al. 2018) was inspired by these related works and showed that Optimistic-Mirror-Descent can avoid the cvcle behavior in a bilinear zero-sum game, which accelerates the convergence. Furthermore, (Daskalakis et al. 2018) did not provide theoretical analysis of OPTIMISTIC-ADAM.

#### $\mathbf{G}$ Additional Remarks and Runs on the Gradient Prediction Process

Two illustrative examples. We provide two toy examples to demonstrate how OPT-AMSGRAD works with the chosen extrapolation method. First, consider minimizing a quadratic function  $H(w) := \frac{b}{2}w^2$ with vanilla gradient descent method  $w_{t+1} = w_t \eta_t \nabla H(w_t)$ . The gradient  $g_t := \nabla H(w_t)$  has a recursive description as  $g_{t+1} = bw_{t+1} = b(w_t - \eta_t g_t) =$  $g_t - b\eta_t g_t$ . So, the update can be written in the form of  $g_t = Ag_{t-1} + \mathcal{O}(\|g_{t-1}\|_2^2)u_{t-1}$ , with  $A = (1-b\eta)$  and  $u_{t-1} = 0$  by setting  $\eta_t = \eta$  (constant step size). Therefore, the extrapolation method should predict well.



Figure 5: (a): The iterate  $w_t$ ; the closer to the optimal point 0 the better. (b): A scaled and clipped version of  $m_t$ :  $w_t - w_{t-1/2}$ , which measures how the prediction of  $m_t$  drives the update towards the optimal point. In this scenario, the more negative the better. (c): Distance to the optimal point -1. The smaller the better. (d): A scaled and clipped version of  $m_t$ :  $w_t - w_{t-1/2}$ , which measures how the prediction of  $m_t$  drives the update towards the optimal point. In this scenario, the more negative the better.

Specifically, consider optimizing  $H(w) := w^2/2$  by the following three algorithms with the same step size. One is Gradient Descent (GD):  $w_{t+1} = w_t - \eta_t g_t$ , while the other two are OPT-AMSGRAD with  $\beta_1 = 0$  and the second moment term  $\hat{v}_t$  being dropped:  $w_{t+\frac{1}{n}} =$  $\Pi_{\Theta}[w_{t-\frac{1}{2}} - \eta_t g_t], w_{t+1} = \Pi_{\Theta}[w_{t+\frac{1}{2}} - \eta_{t+1} m_{t+1}]. \text{ We}$ denote the algorithm that sets  $m_{t+1}^2 = g_t$  as Opt-1, and denote the algorithm that uses the extrapolation method to get  $m_{t+1}$  as Opt-extra. We let  $\eta_t = 0.1$  and the initial point  $w_0 = 5$  for all the three methods. The simulation results are on Figure 5 (a) and (b). Subfigure (a) plots update  $w_t$  over iteration, where the updates should go towards the optimal point 0. Subfigure (b) is about a scaled and clipped version of  $m_t$ , defined as  $w_t - w_{t-1/2}$ , which can be viewed as  $-\eta_t m_t$ if the projection (if exists) is lifted. Sub-figure (a) shows that Opt-extra converges faster than the other methods. Furthermore, sub-figure (b) shows that the prediction by the extrapolation method is better than the prediction by simply using the previous gradient. The sub-figure shows that  $-m_t$  from both methods all point to 0 in all iterations and the magnitude is larger for the one produced by the extrapolation method after iteration 2. <sup>2</sup>

Now let us consider another problem: an online learning problem proposed in (Reddi et al. 2018) <sup>3</sup>. Assume the learner's decision space is  $\Theta = [-1, 1]$ , and the loss function is  $\ell_t(w) = 3w$  if  $t \mod 3 = 1$ , and  $\ell_t(w) = -w$  otherwise. The optimal point to minimize the cumulative loss is  $w^* = -1$ . We let  $\eta_t = 0.1/\sqrt{t}$ and the initial point  $w_0 = 1$  for all the three methods. The parameter  $\lambda$  of the extrapolation method is set to  $\lambda = 10^{-3} > 0$ . The results are on Figure 5 (c) and (d). Sub-figure (c) shows that Opt-extra converges faster than the other methods while Opt-1 is not better than GD. The reason is that the gradient changes from -1to 3 at  $t \mod 3 = 1$  and it changes from 3 to -1 at  $t \mod 3 = 2$ . Consequently, using the current gradient as the guess for the next clearly is not a good choice, since the next gradient is in the opposite direction of the current one. Sub-figure (d) shows that  $-m_t$  by the extrapolation method always points to  $w^* = -1$ , while the one by using the previous negative direction points to the opposite direction in two thirds of rounds. It shows that the extrapolation method is much less affected by the gradient oscillation and always makes the prediction in the right direction, which suggests that the method can capture the aggregate effect.

<sup>&</sup>lt;sup>2</sup>The extrapolation needs at least two gradients for prediction. Thus, in the first two iterations,  $m_t = 0$ .

<sup>&</sup>lt;sup>3</sup>(Reddi et al. 2018) uses this example to show that ADAM (Kingma and Ba 2015) fails to converge.