ElGamal加密方案的IND-CPA安全性证明

- DDH问题: 给定一大素数p阶群 \mathbb{G} , g, g^a , $g^b \in \mathbb{G}$. 令 $\beta \in \{0,1\}$ 为一个随机比特。若 $\beta = 1$,令 $Z = g^{ab}$; 若 $\beta = 0$,令Z为群 \mathbb{G} 中的一个随机元素。那么DDH问题就是: 给定 (g,g^a,g^b,Z) ,输出 β 的猜测 β' . 若 $|\Pr[\beta'=\beta]-1/2| \geq \epsilon$,则我们就说一个算法具有优势 ϵ 解决群 \mathbb{G} 中的DDH问题。
- 若不存在t时间的算法能够以优势 ϵ 来解决群 \mathbb{G} 中的DDH问题,则称群 \mathbb{G} 的DDH问题是 (t,ϵ) 困难的。

Theorem

若群 \mathbb{G} 上的DDH问题是困难的,则ElGamal方案是IND-CPA安全的。

双线性映射

- G和 G_T 是两个阶为素数p的乘法循环群, g是G的生成元。
- 如果映射e: $G \times G \to G_T$ 具有以下性质,则该映射是双线性映射。
 - 双线性: 对于所有 $a,b \in Z_p$, $g,h \in G$, 都有 $e(g^a,h^b) = e(g,h)^{ab}$
 - 非退化性: $e(g,h) \neq 1$, 即如果g和h是G的生成元, 则e(g,h)是 G_T 的生成元
 - 可计算性: 对于所有 $g,h \in G$,存在计算e(g,h)的有效算法
- 双线性映射具有性质:
 - 对于所有 $u_1, u_2, h \in G$,都有 $e(u_1 \cdot u_2, h) = e(u_1, h) \cdot e(u_2, h)$

困难问题假设

- 计算Diffie-Hellman问题(Computational Diffie-Hellman,CDH)
 - 给定 (g, g^a, g^b) , 计算 g^{ab} , 其中 $a, b \in Z_p^*$ 。
- 判定Diffie-Hellman问题(Decisional Diffie-Hellman,DDH)
 - 给定 (g, g^a, g^b, g^c) , 判断 $g^c \stackrel{?}{=} g^{ab}$, 其中 $a, b, c \in Z_p^*$ 。
- 计算双线性Diffie-Hellman问题(Computational Bilinear Diffie-Hellman, CBDH)
 - 给定 (g,g^a,g^b,g^c) , 计算 $e(g,g)^{abc}$, 其中 $a,b,c \in Z_p^*$ 。
- 判定双线性Diffie-Hellman问题(Decisional Bilinear Diffie-Hellman, DBDH)
 - 给定 (g,g^a,g^b,g^c,Z) , 判断 $Z\stackrel{?}{=}e(g,g)^{abc}$, 其中 $a,b,c\in Z_p^*,Z\in G_T$ 。