Group Project - Neural Networks

Naeem Nowrouzi, Sardar Singh, Naby Diop May 10, 2018

```
library(Matrix)
library(foreach)
library(ISLR)
library(leaps)
library(CosmoPhotoz)
library(glmnet)
library(deepnet)
library(neuralnet)
library(pls)
library(tree)
library(randomForest)
# The dataset from the CosmoPhotoz package consists of measurements of astronomical
# photometric bands and redshifts. We seek to predict the value of redshift for a given
# galaxy, given the other measurements.
data("PHATOtrain")
data("PHATOtest")
# combine observations
phat0=rbind.data.frame(PHAT0train, PHAT0test)
dim(phat0)
## [1] 169520
                  12
names(phat0)
  [1] "redshift" "up"
                              "gp"
                                          "rp"
                                                                "zp"
## [7] "Y"
                   "J"
                              "H"
                                          "K"
                                                                "IRAC 2"
                                                     "IRAC 1"
length(names(phat0))
## [1] 12
sum(is.na(phat0)) # no missing data
## [1] 0
# Next, we sample from the larger phatO dataset to get the training and test sets.
train.amount = 2500
test.amount = 1000
set.seed(1)
train.index = sample(1:nrow(PHATOtrain), train.amount)
test.index = sample(1:nrow(PHATOtest), test.amount)
phatzero.train = PHATOtrain[train.index,]
phatzero.test = PHATOtest[test.index,]
```

```
# Fit a simple linear regression on the training set
lm.fit=lm(redshift~., data=phatzero.train)
summary(lm.fit)
##
## Call:
## lm(formula = redshift ~ ., data = phatzero.train)
## Residuals:
      Min
              1Q
                 Median
                             3Q
                                    Max
## -0.27105 -0.05455 -0.00499 0.05193 0.80638
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## up
           -0.181200 0.006720 -26.965 < 2e-16 ***
            0.015211 0.015086 1.008 0.313418
## gp
            ## rp
            ## ip
## zp
            ## Y
            ## J
## H
            ## K
            -1.047835 0.023119 -45.324 < 2e-16 ***
## IRAC_1
            ## IRAC_2
            0.063697
                      0.003830 16.630 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.08725 on 2488 degrees of freedom
## Multiple R-squared: 0.8655, Adjusted R-squared: 0.8649
## F-statistic: 1455 on 11 and 2488 DF, p-value: < 2.2e-16
# We see in the summary of the model that some of the predictors are statistically
# significant. The adjusted R-squared is about 0.86 which suggests that the relationship
# might be linear. The residuals suggest that the normal distribution assumption of the
# model is correct. The residual standard error is quite low at 0.087.
# Compute the test error for linear regression
pred.lm = predict(lm.fit, phatzero.test)
error.lm = mean((phatzero.test$redshift - pred.lm)^2)
error.lm
## [1] 0.007340993
# Fit a Ridge regression on the data
xmatrix.train = model.matrix(redshift~., data=phatzero.train)
xmatrix.test = model.matrix(redshift~., data=phatzero.test)
fit.ridge = cv.glmnet(xmatrix.train, phatzero.train$redshift, alpha=0)
lambda.ridge = fit.ridge$lambda.min
pred.ridge = predict(fit.ridge, s=lambda.ridge, newx=xmatrix.test)
error.ridge = mean((phatzero.test$redshift - pred.ridge)^2)
```

```
error.ridge
## [1] 0.01520708
# Fit a Lasso model on the trainin data
fit.lasso = cv.glmnet(xmatrix.train, phatzero.train$redshift, alpha=1)
lambda.lasso = fit.lasso$lambda.min
# get the predicted values on the test set
predict.lasso = predict(fit.lasso, s=lambda.lasso, newx=xmatrix.test)
# Compute the test MSE
error.lasso = mean((phatzero.test$redshift - predict.lasso)^2)
error.lasso
## [1] 0.007304559
# Fit a PCR model
set.seed(1)
fit.pcr = pcr(redshift~., data=phatzero.train, scale=TRUE, validation="CV")
# Get the predicted values on the test set
predict.pcr = predict(fit.pcr, phatzero.test, ncomp=length(names(phat0))-1)
# Get the test MSE.
error.pcr = mean((phatzero.test$redshift - predict.pcr)^2)
error.pcr
## [1] 0.007340993
# Fit a Partial Least Square to the data
set.seed(1)
fit.pls=plsr(redshift~., data=phatzero.train, scale=TRUE, validation="CV")
# Get the predicted values on the test set
predict.pls = predict(fit.pls, phatzero.test, ncomp=length(names(phat0))-1)
# Get the test MSE
error.pls = mean((phatzero.test$redshift - predict.pls)^2)
error.pls
## [1] 0.007340993
# Regression Trees
set.seed(1)
reg.tree.phat0 = tree(redshift~., data=phat0, subset=train.index)
summary(reg.tree.phat0)
##
## Regression tree:
## tree(formula = redshift ~ ., data = phat0, subset = train.index)
## Variables actually used in tree construction:
                                           "IRAC_2" "ip"
                                                             "K"
## [1] "IRAC 1" "rp"
                         "gp"
                                  "up"
## Number of terminal nodes: 14
## Residual mean deviance: 0.01726 = 42.9 / 2486
## Distribution of residuals:
      Min. 1st Qu. Median
##
                                Mean 3rd Qu.
                                                    Max.
```

```
## -0.48480 -0.09278 -0.01300 0.00000 0.08196 0.53550
# Plot the tree
plot(reg.tree.phat0)
text(reg.tree.phat0, pretty=0)
               rp < 22.946
gp < 22.7075
# The tree has 14 terminal nodes. We should prune the tree, but we shall obtain
# error measurements for both the unpruned and pruned trees.
# error for the unpruned tree
unpruned.pred = predict(reg.tree.phat0, newdata=phatzero.test)
error.unpruned = mean((unpruned.pred - phatzero.test$redshift)^2)
error.unpruned
## [1] 0.01932991
# Determine the oprtimal tree size by cross-validation.
```

cv.phat0=cv.tree(reg.tree.phat0)

plot(cv.phat0\$size, cv.phat0\$dev, type="b")


```
##Determine the optimal tree size
cv.phat0$size[which.min(cv.phat0$dev)]
## [1] 14
# 14 terminal nodes, that is, all of the variables included, gives the lowest
# deviance (or sum of squared errors). Thus we do not need to prune the tree.#
prune.phat0 = prune.tree(reg.tree.phat0, best=cv.phat0$size[which.min(cv.phat0$dev)])
# error for pruned tree
pruned.pred = predict(prune.phat0, newdata=phatzero.test)
error.pruned = mean((pruned.pred - phatzero.test$redshift)^2)
error.pruned
## [1] 0.01932991
# We also see that the pruned tree has a larger test MSE.
# Scale data for neural network method
train.max.scale = apply(phatzero.train, 2, max)
train.min.scale = apply(phatzero.train, 2, min)
train.scaled = as.data.frame(scale(phatzero.train, center=train.min.scale,
                                   scale=train.max.scale - train.min.scale))
test.max.scale = apply(phatzero.test, 2, max)
test.min.scale = apply(phatzero.test, 2, min)
test.scaled = as.data.frame(scale(phatzero.test, center=test.min.scale,
                                  scale=test.max.scale - test.min.scale))
```

First we try a simple single hidden-layer (with 5 neurons) model together

```
# with the logistic activation function and back-propogation algorithm.
# Create the formula for the model
n = names(train.scaled)
formula.nn = as.formula(paste("redshift ~", paste(n[!n %in% "redshift"], collapse = "+")))
# Fit the model on the training data.
set.seed(3)
NNO = neuralnet(formula = formula.nn, data = train.scaled, hidden = 5, threshold = 0.1,
                stepmax = 1e5, act.fct = "logistic", linear.output=T)
nnet.fit.err <- NNO$result.matrix[1,1]</pre>
nnet.fit.err
## [1] 1.604277939
# The error in the result summary is about 1.60 which is low. However, when we
# compute the training error below manually we get a much smaller number, 0.0013
# train error
train.fitted.values <- neuralnet::compute(NNO, train.scaled[,2:12])</pre>
trainerrorNNO <- mean((train.scaled$redshift - train.fitted.values$net.result)^2)</pre>
trainerrorNNO
## [1] 0.001283422351
# The train error is about 0.0013 ##
# We now obtain the test error ##
# Get the predicted values on the test set and scale them back.
pred.NNO.scaled = neuralnet::compute(NNO, test.scaled[,2:12])
NNO.preds.scaledback = pred.NNO.scaled$net.result*(max(phatzero.test$redshift) -
                                                      min(phatzero.test$redshift))+
 min(phatzero.test$redshift)
# Compute the test MSE
NNO.test.mse = mean((phatzero.test$redshift - NNO.preds.scaledback)^2)
NNO.test.mse
## [1] 0.0152825406
# We see that the test error is about 0.015, which is quite low.
# We now make the network slightly more complex by adding a second layer
# containing 3 nodes and using the "tanh" activation function which in this
# case gives lower error than when we use the "logistic" function, other things being equal.
set.seed(3)
NN1 = neuralnet(formula = formula.nn, data = train.scaled, hidden = c(5,3),
                threshold = 0.1, stepmax = 1e5, act.fct = "tanh", linear.output=TRUE)
NN1.fit.err <- NN1$result.matrix[1,1]</pre>
NN1.fit.err
```

[1] 0.8905823958

```
# The fit error given by the result summary is about 0.89.
train.fitted.values <- neuralnet::compute(NN1, train.scaled[,2:12])</pre>
trainerrorNN1 <- mean((train.scaled$redshift - train.fitted.values$net.result)^2)</pre>
trainerrorNN1
## [1] 0.0007124659167
# The train error is very low at about 0.0007.
# We now obtain the test error
# Get the predicted values on the test set and scale them back.
pred.NN1.scaled = neuralnet::compute(NN1, test.scaled[,2:12])
# Scale back
NN1.preds.scaledback = pred.NN1.scaled$net.result*(max(phatzero.test$redshift) -
                                                      min(phatzero.test$redshift)) +
  min(phatzero.test$redshift)
# Compute the test MSE
NN1.test.mse = mean((phatzero.test$redshift - NN1.preds.scaledback)^2)
NN1.test.mse
## [1] 0.0139118008
# We see that the test MSE is 0.014 in this case, which is slightly lower than the
# previous simpler network.
# Lastly, we try yet another more complex network consisting of three layers, of 7,5,3 nodes,
# respectively, using the "tanh" activation function.
set.seed(3)
NN2 = neuralnet(formula = formula.nn, data = train.scaled, hidden = c(7,5,3),
                threshold = 0.1, stepmax = 1e5, act.fct = "tanh", linear.output=TRUE)
NN2.fit.err <- NN2$result.matrix[1,1]</pre>
NN2.fit.err
## [1] 0.5725076711
# The fit error given by the result summary is about 0.6, lower than the previous two
# configurations (and lower than when we use the "logistic" activation function)
## train error
train.fitted.values <- neuralnet::compute(NN2, train.scaled[,2:12])</pre>
trainerrorNN2 <- mean((train.scaled$redshift - train.fitted.values$net.result)^2)</pre>
trainerrorNN2
## [1] 0.0004580061369
# The manually computed train error is about 0.0004, also lower than the previous two networks.
# We now obtain the test error
# Get the predicted values on the test set and scale them back
pred.NN2.scaled = neuralnet::compute(NN2, test.scaled[,2:12])
# Scale back
```

```
NN2.preds.scaledback = pred.NN2.scaled$net.result*(max(phatzero.test$redshift) -
                                                    min(phatzero.test$redshift)) +
 min(phatzero.test$redshift)
# Compute the test MSE
NN2.test.mse = mean((phatzero.test$redshift - NN2.preds.scaledback)^2)
NN2.test.mse
## [1] 0.04564603961
# We see that the test MSE for this more complicated model is 0.04, which is slightly higher
# than the previous two simpler networks.
# plot the netwrosk
par(mfrow=c(3,1))
plot(NNO, rep="best")
up
gp
rp
ip
zp
                                      1.42749
                                                       redshift
Η
Κ
IRAC_1
IRAC_2
                 Error: 1 601070 Ctono: 10016
```

plot(NN1, rep="best")

Error: 0 000502 Ctono: 22607

plot(NN2, rep="best")

Error: 0 572500 Ctono: 0201

```
# Plot the three neural networks against the observed test responses to asses
par(mfrow=c(2,2))
plot(NNO.preds.scaledback, phatzero.test$redshift, col='red',
     main='True vs Predicted Values for NNO',pch=18,cex=0.7)
abline(0,1,lwd=2)
legend('bottomright',legend='NN',pch=18,col='red', bty='n')
plot(NN1.preds.scaledback, phatzero.test$redshift ,col='red',
     main='True vs Predicted values for NN1',pch=18,cex=0.7)
abline(0,1,1wd=2)
legend('bottomright',legend='NN',pch=18,col='red', bty='n')
plot(NN2.preds.scaledback, phatzero.test$redshift,col='red',
     main='True vs Predicted values for NN2',pch=18,cex=0.7)
abline(0,1,lwd=2)
legend('bottomright',legend='NN',pch=18,col='red', bty='n')
# We see that the first two plots corresponding to the first and second networks with
# very low test MSE's indicate that the predicted values are close to actual values.
# Comparing all methods via a boxplot of the errors
error.all = c(error.lasso, error.pcr, error.pls, error.ridge,
              error.unpruned, error.pruned, NN1.test.mse)
```


1.0 0.0 0.0 0.5 1.0 1.5

NN1.preds.scaledback

True vs Predicted values for NN2

NN2.preds.scaledback

barplot(error.all, col="orange" ,xlab="Error Names", ylab="Error Measurements", ylim = c(0,0.025))

which.min(error.all)

Lasso

##

We see that the Lasso, PCR, and PLS models produce the lowest test MSEs, all
very close, with Lasso being slightly lower than the other two, and so the lowest
in all models. The neural network with 2 hidden layers and the "tanh" activation function
produces the next lowest test MSE, and so outperforms Ridge and tree regressions.

"