EFFECT OF SHOT PEENING ON THE MECHANICAL BEHAVIOUR OF THE MULTI PASS FRICTION STIR WELDED ALUMINIUM ALLOYS

A project report submitted in partial fulfilment of the requirements

for the award of degree of

BACHELOR OF TECHNOLOGY

in

MECHANICAL ENGINEERING

by

A. NAGA SAI (20K65A0301)

R.VV. NAGENDRA KUMAR (20K65A0334)

S. PAVAN TEJA (20K65A0339)

T. MANIKANTA (19K65A0367)

Under the esteemed guidance of

Mr. P. RAJENDRA BABU M. Tech

Assistant Professor

DEPARTMENT OF MECHANICAL ENGINEERING SASI INSTITUTE OF TECHNOLOGY & ENGINEERING

(Approved by AICTE, New Delhi, Permanently Affiliated to JNTUK, Kakinada and Accredited by NAAC with 'A' Grade, and NBA Ranked as "A" Grade by Govt. of A.P., Recognized by UGC 2(f) &12(B))
Kadakatla, TADEPALLIGUDEM–534101

Academic Year 2022-23

Accredited by NAAC with "A" Grade,
Recognised by UGC under section 2(f) &12(B)
Approved by AICTE - New Delhi
Permanently Affiliated to JNTUK, SBTET,
Ranked as "A" Grade by Govt. of A.P.,

Department of Mechanical Engineering

CERTIFICATE

This is to certify that the project work entitled "EFFECT OF SHOT PEENING ON THE MECHANICAL BEHAVIOUR OF THE MULTI PASS FRICTION STIR WELDED ALUMINIU ALLOYS" is being submitted by A.NAGA SAI (20K65A0301), R.VV.NAGENDRA KUMAR (20K65A0334), S.PAVAN TEJA (20K65A0339), and T.MANIKANTA(19K65A0367) in partial fulfilment for the award of Degree of Bachelor of Technology in Mechanical Engineering to the Jawaharlal Nehru Technological University Kakinada, Kakinada during the academic year 2022-23 is a record of bonafide work carried out by them under our guidance and supervision.

Project Guide

Head of Department

Mr. P. Rajendra Babu

Mr. B. Krishna Murthy

Assistant Professor

Assistant Professor

External Examiner

ii

ACKNOWLEDGEMENT

We express our deep sense of gratitude to our beloved Director, **Dr. K. Bhanu Prasad** for his valuable guidance and for permitting us to carry out this project.

We would like to carry the opportunity to thank **Prof. Mohammed Ismail**, Principle for providing a great support in successful completion of our project.

We express our deep sense of gratitude to **Mr. B. Krishna Murthy**, Assistant Professor and Head of the Department for the valuable guidance and suggestions, the keen interest shown, thorough encouragement extended throughout project work.

We take immense pleasure to express our deep sense of gratitude to our beloved Guide, **Mr. P. Rajendra Babu**, Assistant Professor for his valuable suggestions and rare insights, constant encouragement, and inspiration throughout the project work.

We are grateful to our project coordinator and thanks to all teaching and nonteaching staff members who contributed to the successful completion of our project work.

With gratitude,

A. NAGA SAI (20K65A0301)

R.VV. NAGENDRA KUMAR (20K65A0334)

S. PAVAN TEJA (20K65A0339)

T. MANIKANTA (19K65A0367)

SASI INSTITUTE OF TECHNOLOGY & ENGINEERING

KADAKATLA TADEPALLIGUDEM - 534 (01, W.G.Dt., A.P.)

Institute Vision and Mission

VISION

Confect as a premier institute for professional education by creating technocrats who can address the society's needs through inventions and innovations.

MISSION

- Partake in the national growth of technological, industrial arena with societal responsibilities.
- 2. Provide an environment that promotes productive research.
- Meet stakeholders' expectations through continued and sustained quality improvements.

Principal

Accredited by NAAC with "A" Grade
Recognised by UGC under section 2(f) &12(B)
Approved by AICTE - NEW Delhi
Permanently Affiliated to JNTUK, SBTET
Ranked as "A" Grade by Govt. of A.P.

Department of Mechanical Engineering Academic Year 2022-23

DEPARTMENT OF MECHANICAL ENGINEERING - VISION AND MISSION

Vision

To be a recognized department in providing professional education, producing well-qualified mechanical engineers to serve the society.

Mission

- Provide high quality education in Mechanical Engineering to cater the needs of industry and society.
- 2. Provide sustained conducive research-based learning environment.
- Organize / participate in collaborated trainings related to managerial, interpersonal and leadership skills.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

Graduates of B.Tech. Mechanical Engineering program will be able to

PEO1. Demonstrate academic excellence, managerial skills for a successful professional career with lifelong learning

PEO2.Exhibit professional attitude, interpersonal and leadership skills

PEO3. Take up technical roles with professional ethics, innovativeness and social commitment

BI Controll

INSTITUTE OF Recognised by UGC under section 2(f) &12(B)
TECHNOLOGY & Approved by AICTE - NEW Delhi
Permanently Affiliated to JNTUK, SBTET
Ranked as "A" Grade by Govt. of A.P.

Department of Mechanical Engineering
Academic Year 2022-23

PROGRAMOUTCOMES

- Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- Problem Analysis: Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- Design/ Development of Solutions: Design solutions for complex engineering problems
 and design system components or processes that meet specified needs with appropriate
 consideration for public health and safety, cultural, societal and environmental
 considerations.
- Conduct investigations of complex problems using research based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
- Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an under-standing of the limitations.
- The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
- Environment and Sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- 9. **Individual and Team Work:** Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.
- 11. Project Management and Finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long Learning:** Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES

PSOLThermal & Production engineering Practice: Ability to specify, fabricate, test, operate, or document the thermal & production systems or processes

PSO2. Design using Solid Works & AutoCAD: Ability to analyze, design, develop, implement, engine components.

HOD

CONTENTS	Page
	no.
Certificate	ii
Acknowledgement	iii
Institute Vision and Mission	iv
Department Vision and Mission, PEOs	v
POs, PSOs	vi
List of Figures	x- xi
List of Tables	xii
Abstract	xiii
Chapter 1: Introduction	1-28
1.1 Tailor Welded Blanks	1
1.2 History of TWBs	1-2
1.3 Advantages of TWBs	2-3
1.4 Applications of TWBs	3-4
1.5 About Friction Stir Welding	4
1.6 History of FSW	5
1.7 Experimental Setup of FSW	5-6
1.8 Working Principle of FSW	6-7
1.9 Weld Zones in FSW	7
1.10 Welding Parameters	7
1.10.1 Tool rotation and Transverse speed	8
1.10.2. Tool tilt angle and Plunge depth	8
1.10.3. Tool Design	9
1.11 Number of Passes	9-10
1.11.1 Single Pass	9
1.11.2 Double Pass	10
1.12 Advantages of FSW	10
1.13 Applications of FSW	10
1.14 Mechanical Properties	11-13
1.14.1 Ultimate tensile strength	11
1.14.2 Yield strength	11

1.14.3 Tensile elongation	12
1.14.4 Hardness	12
1.14.5 Microhardness	12
1.14.6 Joint Efficiency	12
1.14.7 Notched tensile strength	13
1.14.8 Notched strength ratio	13
1.15 Introduction to Shot Peening	13
1.16 Working Principle	14
1.17 Shot Peening Methods and Media	14-15
1.18 Measuring the Effects of Shot Peening	15-16
1.19 Difference Between Shot Blasting and Shot Peening	16
1.20 Advantages	16
1.21 Limitations	17
1.22 Applications	17-18
1.23 Shot Peening Addresses Fatigue Cracking and Residual	18-19
Stress	
1.24 About Problem Areas Below the Surface	19-20
1.25 Introduction to Materials	20-23
1.26 2xxx Series	23
1.27 6xxx Series	23-24
1.28 Composition Of 2xxx Series	24
1.29 Composition Of 6xxx Series	24-25
1.30 Temper Designation System for Heat Treatable	25-28
Aluminium Alloys	
Chapter 2: Literature Review	29-33
Chapter 3: Work plan	34-35
Chapter 4: Methodology	36-44
4.1 Friction Stir Welding	36
4.2 Tool Pin Profile Used	37
4.3 Preparation of TWBS	38
4.4 Shot Peening	39
4.5 Experimental Setup	40
4.6 Shot Peening Parameters	41

4.7 Experimental Process of Mechanical Properties	42-44
4.7.1 Ultimate Tensile Strength	42
4.7.2 Yield Strength	42
4.7.3 Tensile Elongation	42
4.7.4 Micro Hardness	43
4.7.5 Joint Efficiency	43
4.7.6 Notched Tensile Strength	43
4.7.7 Notched Strength Ratio	43-44
Chapter 5: Results	
5.1 Tensile Properties Before Shot Peening	45-46
5.1.1 Graphs Plotted for Mechanical Properties	49
Before Shot Peening	
5.2 Tensile Properties After Shot Peening	50-51
5.2.1 Graphs Plotted for Mechanical Properties	54
After Shot Peening	
Chapter 6: Discussions	56-59
6.1 Influence of Shot Peening on the Multi Pass Friction Stir	56
Welded Aluminium Alloys	
6.2 Effect of Shot Peening on Mechanical Properties	57
6.2.1 Ultimate Tensile Strength	57
6.2.2 Tensile Elongation	57
6.2.3 Joint Efficiency	58
6.2.4 Notched Tensile Strength	58
6.2.5 Notched Strength Ratio	58
6.2.6 Microhardness	59
Chapter 7: Conclusion	60-61
References	62-63
Appendix-A	xiv
Appendix-B	xv-xvi
Appendix-C	xviii
Appendix-D	xix

List of Figures:

Fig. No.	Figure name	Page no
1.1	Schematic Diagram of Tailor Welded Blanks	1
1.2	Schematic Diagram of Friction Stir Welding	4
1.3	Friction Stir Welding Experimental Setup	6
1.4	Schematic Diagram of Friction Stir Welding Process	6
1.5	Schematic Diagram of Weld Zones In FSW	7
1.6	Photograph of Welding Tool	8
1.7	Tool Pin Profiles	9
1.8	Stress-Strain Graph of Ductile Materials	11
1.9	The Schematic Representation of Shot Peening Process	13
1.10	Working Principle of Shot Peening Process	14
1.11	Different Types of Shot Peening Balls	19
3.1	Work Plan	34
4.1	Photograph of the FSW machine and workpieces arranged on a table using specially designed fixtures	37
4.2	Dimensions and photograph of Straight Square (SS) tool pin profile	38
4.3	Dimensions and photographs of TWB'S	38
4.4	Different combination of weld coupons	39
4.5	ASTM E8 Standard Specimen Diagrams	40
4.6	Experimental Setup for Shot Peening	40
4.7	Shot Peening Balls	41
4.8	Stand-off Distance	41
4.9	Work Holding Device	41
5.1.1	Ultimate Tensile Strength	49

5.1.2	Yield Strength	49
5.1.3	Tensile Elongation	49
5.1.4	Micro Hardness	49
5.1.5	Joint Efficiency	49
5.1.6	Notched Tensile Strength	49
5.1.7	Notched Strength Ratio	49
5.2.1	Ultimate Tensile Strength	54
5.2.2	Yield Strength	54
5.2.3	Tensile Elongation	54
5.2.4	Micro Hardness	54
5.2.5	Joint Efficiency	54
5.2.6	Notched Tensile Strength	54
5.2.7	Notched Strength Ratio	54

List of Tables:

Table. No.	Table name	Page no.
4.1	Chemical composition of base materials (in weight %)	36
4.2	Mechanical properties of base materials	37
5.1.1	Mechanical Properties Before Shot Peening (Plane)	47
5.1.2	Mechanical Properties Before Shot Peening (Notched)	48
5.2.1	Mechanical Properties After Shot Peening (Plane)	52
5.2.2	Mechanical properties after shot peening (Notched)	53
5.3	Differences Between before and after Shot Peening Test	55
	Specimens	

ABSTRACT

Friction stir welding (FSW) is a technique for solid state joining in which the

joint is created below the melting point of the base metal. FSW research activities have

recently shown interest in high melting-point materials as well as soft materials. The

joint quality is influenced by several distinct factors. One of those factors is tensile

residual stresses. Tensile residual stresses are induced during friction stir welding,

which has been extensively researched. Unavoidably, friction stir welding produces

residual stress, which promotes the initiation and propagation of cracks over the usable

area of the welded structure. We must employ surface enhancement approaches to

prevent this. Shot peening and laser peening are the two surface enhancement methods.

The purpose of this study is to review how surface improvement techniques affect the

mechanical characteristics, the development of fatigue cracks, and the corrosion

resistance of the weld joint.

Keywords: Friction stir welding (FSW), Residual stresses, Shot peening, Laser

peening. Surface enhancement.

Expected Outcomes:

PO1: Engineering knowledge

PO2: Problem analysis

PO3: Design/development of solutions

PO4: Conduct investigations of complex problems

PO5: Individual and team work

PO6: Communication

PO7: Project management and finance

PO8: Life-long learning

PSO₁

PDO 2

xiii