



## **Data Sheet**

## SCL3300-D01 3-axis inclinometer with angle output and digital SPI interface

#### **Features**

- 3-axis (XYZ) inclinometer
- User selectable measurement modes: 3000 LSB/g with 70 Hz LPF 6000 LSB/g with 40 Hz LPF 12000 LSB/g with 10 Hz LPF
- Angle output resolution 0.0055°/LSB
- -40°C...+125°C operating range
- 3.0V...3.6V supply voltage
- SPI digital interface
- Ultra-low 0.001 °/√Hz noise density
- Excellent offset stability
- Size 8.6 x 7.6 x 3.3 mm (l × w × h)
- Proven capacitive 3D-MEMS technology

#### **Applications**

SCL3300-D01 is targeted at applications demanding high stability and accuracy with tough environmental requirements.

Typical applications include:

- Leveling
- Tilt sensing
- Machine control
- Structural health monitoring
- Inertial measurement units (IMUs)
- Robotics
- Positioning and guidance systems

#### Overview

The SCL3300-D01 is a high performance inclinometer sensor component. It is a three-axis inclinometer sensor with angle output based on Murata's proven capacitive 3D-MEMS technology. Signal processing is done in a mixed signal ASIC with flexible SPI digital interface. Sensor element and ASIC are packaged into 12 pin pre-molded plastic housing that guarantees reliable operation over product's lifetime.

The SCL3300-D01 is designed, manufactured and tested for high stability, reliability and quality requirements. The component has extremely stable output over wide range of temperature and vibration. The component has several advanced self-diagnostics features, is suitable for SMD mounting and is compatible with RoHS and ELV directives.





#### **TABLE OF CONTENTS** Introduction......4 Specifications ......4 2.1 Abbreviations 4 2.2 General Specifications......4 2.3 2.4 2.5 2.6 Absolute Maximum Ratings.......7 2.7 Pin Description ......8 2.8 Performance characteristics 9 2.9 2.9.1 2.9.2 2.10 2.11 2.11.1 General Product Description ......14 3.1 Component Operation, Reset and Power Up ......15 4.1 4.2 Component Interfacing .......17 5.1.1 General 17 5.1.2 Protocol 17 5.1.3 SPI frame 19 5.1.4 Operations 20 5.1.5 5.2 6.1 Sensor Data Block 24 6.1.1 6.1.2



|   | 6.1   | .3 Example of Angle Data Conversion                          | . 27 |
|---|-------|--------------------------------------------------------------|------|
|   | 6.2   | STO                                                          |      |
|   | 6.2   | .1 Example of Self-Test Analysis                             |      |
|   | 6.3   | STATUS                                                       | 30   |
|   | 6.4   | Error Flag Block                                             | 31   |
|   | 6.4.1 | ERR_FLAG1                                                    | 31   |
|   | 6.4.2 | ERR_FLAG2                                                    | 32   |
|   | 6.5   | CMD                                                          | 33   |
|   | 6.6   | ANG_CTRL                                                     | . 34 |
|   | 6.7   | WHOAMI                                                       | . 34 |
|   | 6.8   | Serial Block                                                 | . 35 |
|   | 6.8   | .1 Example of Resolving Serial Number                        | . 35 |
|   | 6.9   | SELBANK                                                      | . 37 |
| 7 | App   | plication information                                        | . 37 |
|   | 7.1   | Application Circuitry and External Component Characteristics | . 37 |
|   | 7.2   | Assembly Instructions                                        | . 39 |
| 3 | Fre   | equently Asked Questions                                     | . 39 |
| 9 | Orc   | der Information                                              | . 40 |

#### 1 Introduction

This document contains essential technical information about the SCL3300-D01 sensor including specifications, SPI interface descriptions, user accessible register details, electrical properties and application information. This document should be used as a reference when designing in SCL3300-D01 component.

### 2 Specifications

#### 2.1 Abbreviations

| ASIC | Application Specific Integrated Circuit |
|------|-----------------------------------------|
| SPI  | Serial Peripheral Interface             |
| RT   | Room Temperature, +23 °C                |
| FS   | Full Scale                              |
| CSB  | Chip Select                             |
| SCK  | Serial Clock                            |
| MOSI | Master Out Slave In                     |
| MISO | Master In Slave Out                     |
| MCU  | Microcontroller                         |
| STO  | Self-test Output                        |

### 2.2 General Specifications

General specifications for SCL3300-D01 component are presented in Table 1. All analog voltages are related to the potential at AVSS and all digital voltages are related to the potential at DVSS.

Table 1 General specifications

| Parameter                                                                                                                                      | Condition                                                | Min | Тур        | Max | Units |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----|------------|-----|-------|
| Supply voltage: VDD, DVIO                                                                                                                      |                                                          | 3.0 | 3.3        | 3.6 | V     |
| Current consumption: I_VDD                                                                                                                     | Temperature range -40 +125 °C Standard operation  Mode 4 |     | 1.2<br>2.1 |     | mA    |
| Current consumption: I_VDD in power down mode  Temperature range -40 +125 °C Power down mode (PD) Typical value is at room temperature (+23°C) |                                                          |     | 3          | 10  | μΑ    |



### 2.3 Performance Specifications for Inclinometer

Table 2 Inclinometer performance specifications. Supply voltage VDD = 3.3 V and room temperature (RT) +23 °C unless otherwise specified. Definition of gravitational acceleration:  $g = 9.819 \text{ m/s}^2$ .

| Parameter                             | Condition                                                              | Min          | Nom                        | Max              | Unit              |
|---------------------------------------|------------------------------------------------------------------------|--------------|----------------------------|------------------|-------------------|
| Measurement range                     | Mode 1<br>Mode 2<br>Mode 3, Mode 4 <sup>(A)</sup>                      |              | 1.8<br>3.6<br>-            |                  | g                 |
| ivicasurement range                   | Mode 1<br>Mode 2<br>Mode 3, Mode 4 <sup>(A)</sup>                      |              | ±90<br>±90<br>±10          |                  | o                 |
| Offset error (B                       | -40°C +125°C                                                           | -20<br>-1.15 |                            | 20<br>1.15       | mg<br>°           |
| Offset temperature drift (C           | -40°C +125°C<br>X, Y                                                   | -10<br>-0.57 |                            | 10<br>0.57       | mg<br>°           |
| Onset temperature unit                | -40°C +125°C<br>Z                                                      | -15<br>-0.86 |                            | 15<br>0.86       | mg<br>°           |
|                                       | Mode 1<br>Mode 2<br>Mode 3, Mode 4                                     |              | 6000<br>3000<br>12000      |                  | LSB/g             |
| Sensitivity (acceleration output)     | Mode 1<br>Mode 2<br>Mode 3, Mode 4                                     |              | 105<br>52<br>209           |                  | LSB/°             |
|                                       | valid only between 01° (D                                              |              |                            |                  |                   |
| Sensitivity (inclination output)      | All modes                                                              |              | 182                        |                  | LSB/°             |
| Sensitivity error (B                  | -40°C +125°C<br>Mode 1                                                 | -0.7         |                            | 0.7              | %                 |
| Sensitivity temperature drift (C      | -40°C +25°C<br>Mode 1                                                  | -0.3         |                            | 0.3              | %                 |
| Linearity error (E                    | -1g +1g range                                                          |              | TBD                        |                  | mg                |
| Integrated noise (RMS, accelerometer) | Mode 3, X, Y, Z channels<br>Mode 4, X, Z channels<br>Mode 4, Y channel |              | 0.13<br>0.08<br>0.06       |                  | mg <sub>RMS</sub> |
| Noise density (F                      | Mode 3, X, Y, Z channels<br>Mode 4, X, Z channels<br>Mode 4, Y channel |              | 32<br>20<br>15             |                  | μg/√Hz            |
| Noise density                         | Mode 3, X, Y, Z channels<br>Mode 4, X, Z channels<br>Mode 4, Y channel |              | 0.0018<br>0.0012<br>0.0009 |                  | °/√Hz             |
| Cross axis sensitivity (G             | per axis                                                               | -1           |                            | 1                | %                 |
| A month of a manager                  | Mode 1                                                                 |              | 40                         |                  | Hz                |
| Amplitude response, -3dB frequency    | Mode 2                                                                 |              | 70                         |                  | Hz                |
| - 17                                  | Mode 3, Mode 4                                                         |              | 10                         |                  | Hz                |
| Power on start-up time                |                                                                        |              |                            | 15 <sup>(H</sup> | ms                |
| ODR                                   |                                                                        |              | 2000                       |                  | Hz                |

Min/Max values are ±3 sigma variation limits from test population at the minimum. Min/Max values are not guaranteed.

A) Inclination mode. Dynamic range is dependent on orientation in gravity.

B) Includes calibration error, temperature, supply voltage and drift over lifetime.



- C) Deviation from value at room temperature (RT).
- D) Angle calculated using 1g \* SIN(θ), where θ is the inclination angle relative to the 0g position. Due to characteristics of sine function sensitivity is inversely proportional to inclination angle. Reported values are valid only between 0° to ±1°.
- E) Straight line through specified measurement range end points.
- F) SPI communication may affect the noise level. Used SPI clock should be carefully validated. Recommended SPI clock is 2 MHz 4 MHz to achieve the best performance; see section 2.9.2 SPI AC Characteristics for details.
- G) Cross axis sensitivity is the maximum sensitivity in the plane perpendicular to the measuring direction. X-axis output cross axis sensitivity (cross axis for Y and Z-axis outputs are defined correspondingly):
  - Cross axis for Y axis = Sensitivity Y / Sensitivity X
  - Cross axis for Z axis = Sensitivity Z / Sensitivity X
- H) Power on start-up time is specified according to recommended start-up sequence; see section 4.2 Start-up sequence for details.



### 2.4 Performance Specification for Temperature Sensor

Table 3 Temperature sensor performance specifications.

| Parameter                      | Condition          | Min. | Тур  | Max. | Unit   |
|--------------------------------|--------------------|------|------|------|--------|
| Temperature signal range       |                    | -50  |      | +150 | °C     |
| Temperature signal sensitivity | Direct 16-bit word |      | 18.9 |      | LSB/°C |
| Temperature signal offset      | °C output          | -10  |      | 10   | °C     |

Temperature is converted to °C with following equation:

Temperature [°C] = 
$$-273 + (TEMP / 18.9)$$
,

where TEMP is temperature sensor output register content in decimal format.

### 2.5 Specification for Angle Outputs

Angles are converted to degrees with following equation:

Angle [°] = ANG\_% / 
$$2^14 * 90$$
,

where ANG\_% is angle output register (ANG\_X, ANG\_Y, ANG\_Z) content in decimal format.

#### 2.6 Absolute Maximum Ratings

Within the maximum ratings (Table 4), no damage to the component shall occur. Parametric values may deviate from specification, yet no functional failure shall occur.

Table 4. Absolute maximum ratings.

| Symbol   | Description                                       | Min.       | Тур | Max.     | Unit     |
|----------|---------------------------------------------------|------------|-----|----------|----------|
| VDD      | Supply voltage analog circuitry                   |            |     | 4.3      | <b>V</b> |
| DIN/DOUT | Maximum voltage at digital input and output pins  |            |     | DVIO+0.3 | <b>V</b> |
| Topr     | Operating temperature range                       | -40        |     | +125     | Ô        |
| Tstg     | Storage temperature range                         | -40        |     | +150     | °C       |
| ESD_HBM  | ESD according Human Body Model (HBM)<br>Q100-002  | -2000      |     | 2000     | <b>V</b> |
| ESD_CDM  | ESD according Charged Device Model (CDM) Q100-011 | -1000      |     | 1000     | ٧        |
| US       | Ultrasonic agitation (cleaning, welding, etc.)    | Prohibited |     |          |          |



## 2.7 Pin Description

The pinout for SCL3300-D01 is presented in Figure 1.



Figure 1 Pinout for SCL3300-D01.

Table 5 SCL3300-D01 pin descriptions.

| Pin# | Name     | Туре    | Description                                                                                                 |
|------|----------|---------|-------------------------------------------------------------------------------------------------------------|
| 1    | AVSS     | GND     | Analog reference ground, connect externally to GND                                                          |
| 2    | A_EXTC   | AOUT    | External capacitor connection for analog core                                                               |
| 3    | RESERVED | -       | Factory use only, connect externally to GND                                                                 |
| 4    | VDD      | SUPPLY  | Analog Supply voltage                                                                                       |
| 5    | CSB      | DIN     | Chip Select of SPI Interface, 3.3V logic compatible Schmitt-trigger input                                   |
| 6    | MISO     | DOUT    | Data Out of SPI Interface                                                                                   |
| 7    | MOSI     | DIN     | Data In of SPI Interface, 3.3V logic compatible Schmitt-trigger input                                       |
| 8    | SCK      | DIN     | CLK signal of SPI Interface                                                                                 |
| 9    | DVIO     | SUPPLY  | SPI interface Supply Voltage                                                                                |
| 10   | D_EXTC   | AOUT    | External capacitor connection for digital core                                                              |
| 11   | DVSS     | GND     | Digital reference ground, connect externally to GND. Must never be left floating when component is powered. |
| 12   | EMC_GND  | EMC GND | EMC ground pin, connect externally to GND                                                                   |



## 2.8 Performance characteristics





Figure 2 Example noise spectrum of X-channel in mode 4

Figure 3 Example noise spectrum of Y-channel in mode 4



## 2.9 Digital I/O Specification

### 2.9.1 SPI DC Characteristics

Table 6 describes the DC characteristics of SCL3300-D01 sensor SPI I/O pins. Supply voltage is 3.3 V unless otherwise specified. Current flowing into the circuit has a positive value.

Table 6 SPI DC Characteristics

| Symbol            | Remark                    |                   | Min.      | Тур  | Max.      | Unit |
|-------------------|---------------------------|-------------------|-----------|------|-----------|------|
|                   | •                         |                   |           |      | •         |      |
| Serial Clock      | k SCK (Pull Down)         |                   |           |      |           |      |
| I <sub>PD</sub>   | Pull-down current         | Vin = 3.0 - 3.6 V | 7.5       | 16.5 | 36        | uA   |
| V <sub>IH</sub>   | Input voltage '1'         | Input voltage '1' |           |      | DVIO      | V    |
| V <sub>IL</sub>   | Input voltage '0'         | Input voltage '0' |           |      | 0.33*DVIO | V    |
|                   |                           |                   |           |      | •         |      |
| Chip Select       | CSB (Pull Up), low active | )                 |           |      |           |      |
| I <sub>PU</sub>   | Pull-up current           | Vin = 0           | 7.5       | 16.5 | 36        | uA   |
| V <sub>IH</sub>   | Input voltage '1'         | •                 | 0.67*DVIO |      | DVIO      | V    |
| V <sub>IL</sub>   | Input voltage '0'         |                   | 0         |      | 0.33*DVIO | V    |
|                   |                           |                   |           |      |           |      |
| Serial Data       | Input MOSI (Pull Down)    |                   |           |      |           |      |
| $I_{PD}$          | Pull-down current         | Vin = 3.0 - 3.6 V | 7.5       | 16.5 | 36        | uA   |
| V <sub>IH</sub>   | Input voltage '1'         |                   | 0.67*DVIO |      | DVIO      | V    |
| V <sub>IL</sub>   | Input voltage '0'         |                   | 0         |      | 0.33*DVIO | V    |
|                   |                           |                   |           |      |           |      |
| Serial Data       | Output MISO (Tri State)   |                   |           |      |           |      |
| V <sub>OH</sub>   | Output high voltage       | I > -1 mA         | DVIO-0.5V |      |           | V    |
| V <sub>OL</sub>   | Output low voltage        | I < 1 mA          |           |      | 0.5       | V    |
| I <sub>LEAK</sub> | Tri-state leakage         | 0 < VMISO < 3.3 V | -1        | 0    | 1         | uA   |
|                   | Maximum Capacitive        | load              |           |      | 50        | pF   |

### 2.9.2 SPI AC Characteristics

The AC characteristics of SCL3300-D01 are defined in Figure 4 and Table 7.



Figure 4 Timing diagram of SPI communication.

Table 7 SPI AC electrical characteristics.

| Symbol                | Description                                                      | Min.                | Тур                                   | Max.     | Unit |
|-----------------------|------------------------------------------------------------------|---------------------|---------------------------------------|----------|------|
| T <sub>LS1</sub>      | Time from CSB (10%) to SCK (90%)                                 | T <sub>per</sub> /2 |                                       |          | ns   |
| T <sub>LS2</sub>      | Time from SCK (10%) to CSB (90%)                                 | T <sub>per</sub> /2 |                                       |          | ns   |
| T <sub>CL</sub>       | SCK low time                                                     | T <sub>per</sub> /2 |                                       |          | ns   |
| T <sub>CH</sub>       | SCK high time                                                    | T <sub>per</sub> /2 |                                       |          | ns   |
| $f_{SCK} = 1/T_{per}$ | SCK Frequency *                                                  | 0.1                 | 2                                     | 8        | MHz  |
| T <sub>SET</sub>      | Time from changing MOSI (10%, 90%) to SCK (90%). Data setup time | T <sub>per</sub> /4 |                                       |          | ns   |
| T <sub>HOL</sub>      | Time from SCK (90%) to changing MOSI (10%, 90%). Data hold time  | T <sub>per</sub> /4 |                                       |          | ns   |
| T <sub>VAL1</sub>     | Time from CSB (10%) to stable MISO (10%, 90%)                    |                     | 120                                   |          | ns   |
| T <sub>LZ</sub>       | Time from CSB (90%) to high impedance state of MISO              |                     | 110                                   |          | ns   |
| T <sub>VAL2</sub>     | Time from SCK (10%) to stable MISO (10%, 90%)                    |                     | 110                                   |          | ns   |
| T <sub>LH</sub>       | Time between SPI cycles, CSB at high level (90%)                 | 10                  | · · · · · · · · · · · · · · · · · · · | <u> </u> | us   |

<sup>\*</sup> SPI communication may affect the noise level. Used SPI clock should be carefully validated. Recommended SPI clock is 2 MHz - 4 MHz to achieve the best performance.

#### 2.10 Measurement Axis and Directions



Figure 5 SCL3300-D01 measurement directions.

Table 8 SCL3300-D01 accelerometer measurement directions.



## 2.11 Package Characteristics

## 2.11.1 Package Outline Drawing



Figure 6 Package outline. The tolerances are according to ISO2768-f (see Table 9).

Table 9 Limits for linear measures (ISO2768-f).

| Talanana alaa   | Limits in mm for nominal size in mm |              |               |  |  |  |
|-----------------|-------------------------------------|--------------|---------------|--|--|--|
| Tolerance class | 0.5 to 3                            | Above 3 to 6 | Above 6 to 30 |  |  |  |
| f (fine)        | ±0.05                               | ±0.05        | ±0.1          |  |  |  |



#### 2.12 PCB Footprint



Figure 7 Recommended PWB pad layout for SCL3300-D01. All dimensions are in mm. The tolerances are according to ISO2768-f (see Table 9).

## 3 General Product Description

The SCL3300-D01 sensor includes acceleration sensing element and Application-Specific Integrated Circuit (ASIC). Figure 8 contains an upper level block diagram of the component.



Figure 8. SCL3300-D01 component block diagram.



The sensing elements are manufactured using Murata proprietary High Aspect Ratio (HAR) 3D-MEMS process, which enables making robust, extremely stable and low noise capacitive sensors.

The acceleration sensing element consists of four acceleration sensitive masses. Acceleration causes capacitance change that is converted into a voltage change in the signal conditioning ASIC.

## 3.1 Factory Calibration

SCL3300-D01 sensors are factory calibrated. No separate calibration is required in the application. Calibration parameters are stored to non-volatile memory during manufacturing. The parameters are read automatically from the internal non-volatile memory during the start-up.

Assembly can cause offset/bias errors to the sensor output. If best possible accuracy is required, system level offset/bias calibration (zeroing) after assembly is recommended. Offset calibration is recommended to be performed not earlier than 12 hours after reflow. It should be noted that accuracy can be improved with longer stabilization time.

## 4 Component Operation, Reset and Power Up

#### 4.1 Component Operation

Sensor ODR in normal operation mode is 2000 Hz. Registers are updated in every 0.5 ms and if all data is not read the full noise performance of sensor is not met.

In order to achieve optimal performance, it is recommended that during normal operation acceleration outputs ACCX, ACCY, ACCZ are read in every cycle using sensor ODR. It is necessary to read STATUS register only if return status (RS) indicates error.

## 4.2 Start-up sequence

Table 10 Start-Up Sequence

| Step | Procedure                                          | RS*  | Function                                  | Note                                                                                                                                                                                                            |                                                                          |
|------|----------------------------------------------------|------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 1    | Set<br>VDD 3.0 - 3.6 V<br>DVIO 3.0 - 3.6 V         |      | Startup the device                        | VDD and DVIO don't need to rise at the same time                                                                                                                                                                |                                                                          |
| 2    | Wait 10 ms                                         |      | Memory reading<br>Settling of signal path |                                                                                                                                                                                                                 |                                                                          |
|      |                                                    |      |                                           | Mode 1<br>(default)                                                                                                                                                                                             | 1.8g full-scale<br>40 Hz 1st order low<br>pass filter                    |
|      |                                                    |      |                                           | Mode 2                                                                                                                                                                                                          | 3.6g full-scale<br>70 Hz 1st order low<br>pass filter                    |
| 3    | Set Measurement mode**                             | '11' | Select operation mode                     | Mode 3                                                                                                                                                                                                          | Inclination mode<br>10 Hz 1st order low<br>pass filter                   |
|      |                                                    |      |                                           | Mode 4                                                                                                                                                                                                          | Inclination mode<br>10 Hz 1st order low<br>pass filter<br>Low noise mode |
| 4    | Wait 5 ms                                          |      | Settling of signal path                   |                                                                                                                                                                                                                 |                                                                          |
| 5    | Read STATUS                                        | '11' | Clear status summary                      | Reset status su                                                                                                                                                                                                 | ımmary                                                                   |
| 6    | Read STATUS                                        | '11' | Read status summary                       | SPI response to step 5  Read status summary. Due to SPI off- frame protocol response is before STATUS has been cleared.                                                                                         |                                                                          |
| 7    | Read STATUS<br>(or any other valid<br>SPI command) | '01' | Ensure successful start-up                | SPI response to step 6.  First response where STATUS has been cleared. RS bits should be '01' to indicate proper start-up. Otherwise start-up has not been done correctly. See 6.3 STATUS for more information. |                                                                          |
| 8    | Write ANG_CTRL                                     | '01' | Enable angle outputs                      | See section 6.6                                                                                                                                                                                                 | for more information.                                                    |

<sup>\*</sup> RS bits in returned SPI response during normal start-up. See 5.1.5 Return Status for more information.
\*\* if not set, mode1 is used.



#### 4.3 Operation modes

SCL3300-D01 provides four user selectable operation modes.

Table 11 Operation mode description

| Mode | Acceleration output |                      |                   | Inclination output | Acceleration and Inclination output      |
|------|---------------------|----------------------|-------------------|--------------------|------------------------------------------|
| Mode | Full-scale          | Sensitivity<br>LSB/g | Sensitivity °/g * | Sensitivity °/g    | 1 <sup>st</sup> order low<br>pass filter |
| 1    | ± 1.8 g             | 6000                 | 105               | 182                | 40 Hz                                    |
| 2    | ± 3.6 g             | 3000                 | 52                | 182                | 70 Hz                                    |
| 3    | Inclination mode**  | 12000                | 209               | 182                | 10 Hz                                    |
| 4    | Inclination mode**  | 12000                | 209               | 182                | 10 Hz                                    |

<sup>\*</sup> Angle calculated using 1g \* SIN( $\theta$ ), where  $\theta$  is the inclination angle relative to the 0g position. Due to characteristics of sine function sensitivity is inversely proportional to inclination angle. Reported values are valid only between 0° to ±1°.

### 5 Component Interfacing

#### 5.1.1 General

SPI communication transfers data between the SPI master and registers of the SCL3300-D01 ASIC. The SCL3300-D01 always operates as a slave device in master-slave operation mode. 3-wire SPI connection is not supported.

Table 12 SPI interface pins

| Pin  | Pin Name                 | Communication |               |         |
|------|--------------------------|---------------|---------------|---------|
| CSB  | Chip Select (active low) | MCU           | $\rightarrow$ | SCL3300 |
| SCK  | Serial Clock             | MCU           | $\rightarrow$ | SCL3300 |
| MOSI | Master Out Slave In      | MCU           | $\rightarrow$ | SCL3300 |
| MISO | Master In Slave Out      | SCL3300       | $\rightarrow$ | MCU     |

#### 5.1.2 Protocol

The SPI is a 32-bit 4-wire slave configured bus. Off-frame protocol is used so each transfer consists of two phases. A response to the request is sent within next request frame. The response concurrent to the request contains the data requested by the previous command. The first bit in a sequence is an MSB.

The SPI transmission is always started with the falling edge of chip select, CSB. The data bits are sampled at the rising edge of the SCK signal. The data is captured on the rising edge (MOSI line) of the SCK and it is propagated on the falling edge (MISO line) of the SCK. This equals to SPI Mode 0 (CPOL = 0 and CPHA = 0).

<sup>\*\*</sup> Inclination mode. Dynamic range is dependent on orientation in gravity.



NOTE: For sensor operation, time between consecutive SPI requests (i.e. CSB high) must be at least 10  $\mu$ s. If less than 10  $\mu$ s is used, output data will be corrupted.



Figure 9 SPI Protocol



#### 5.1.3 SPI frame

The SPI Frame is divided into four parts:

- 1. Operation Code (OP), consisting of Read/Write (RW) and Address (ADDR)
- 2. Return Status (RS, in MISO)
- 3. Data (D)
- 4. Checksum (CRC)

See Figure 10 and Table 13 Table 13 SPI Frame Specification for more details. For allowed SPI operating commands see Table 14.



Figure 10 SPI Frame

Table 13 SPI Frame Specification

| Name | Bits    | Description                 | MISO / MOSI                                                                                      |                              |                       |
|------|---------|-----------------------------|--------------------------------------------------------------------------------------------------|------------------------------|-----------------------|
| OP   | [31:26] | Operation code<br>RW + ADDR | OP [5] = RW<br>OP [4:0] = ADDR                                                                   | Read = 0 / V<br>Register add |                       |
| RS   | [25:24] | Return status               | MISO '00' - Startup in progress '01' - Normal operation, r '10' - Self-test running '11' - Error |                              | MOSI<br>'00' – Always |
| D    | [23:8]  | Data                        | Returned data / data to v                                                                        | vrite                        |                       |
| CRC  | [7:0]   | Checksum                    | See section 5.2                                                                                  |                              |                       |

Return Status (RS) shows error (i.e. '11') when an error flag (or flags) is active in, or if previous MOSI-command had incorrect CRC.



## 5.1.4 Operations

Allowed operation commands are shown in Table 14. No other commands are allowed.

Table 14 Operations and their equivalent SPI frames

| rable 14 Operations and the  |      |      |      | arrico |      |      |      |      |      | ODLE          |
|------------------------------|------|------|------|--------|------|------|------|------|------|---------------|
| Operation                    | Bank |      |      |        |      |      |      |      |      | SPI Frame Hex |
| Read ACC_X                   | 0 1  | 0000 | 0100 | 0000   | 0000 | 0000 | 0000 | 1111 | 0111 | 040000F7h     |
| Read ACC_Y                   | 0 1  | 0000 | 1000 | 0000   | 0000 | 0000 | 0000 | 1111 | 1101 | 080000FDh     |
| Read ACC_Z                   | 0 1  | 0000 | 1100 | 0000   | 0000 | 0000 | 0000 | 1111 | 1011 | 0C0000FBh     |
| Read STO (self-test output)  | 0 1  | 0001 | 0000 | 0000   | 0000 | 0000 | 0000 | 1110 | 1001 | 100000E9h     |
| Enable ANGLE outputs         | 0    | 1011 | 0000 | 0000   | 0000 | 0001 | 1111 | 0110 | 1111 | B0001F6Fh     |
| Read ANG_X                   | 0    | 0010 | 0100 | 0000   | 0000 | 0000 | 0000 | 1100 | 0111 | 240000C7h     |
| Read ANG_Y                   | 0    | 0010 | 1000 | 0000   | 0000 | 0000 | 0000 | 1100 | 1101 | 280000CDh     |
| Read ANG_Z                   | 0    | 0010 | 1100 | 0000   | 0000 | 0000 | 0000 | 1100 | 1011 | 2C0000CBh     |
| Read Temperature             | 0 1  | 0001 | 0100 | 0000   | 0000 | 0000 | 0000 | 1110 | 1111 | 140000EFh     |
| Read Status Summary          | 0 1  | 0001 | 1000 | 0000   | 0000 | 0000 | 0000 | 1110 | 0101 | 180000E5h     |
| Read ERR_FLAG1               | 0    | 0001 | 1100 | 0000   | 0000 | 0000 | 0000 | 1110 | 0011 | 1C0000E3      |
| Read ERR_FLAG2               | 0    | 0010 | 0000 | 0000   | 0000 | 0000 | 0000 | 1100 | 0001 | 200000C1h     |
| Read CMD                     | 0    | 0011 | 0100 | 0000   | 0000 | 0000 | 0000 | 1101 | 1111 | 340000DFh     |
| Change to mode 1             | 0    | 1011 | 0100 | 0000   | 0000 | 0000 | 0000 | 0001 | 1111 | B400001Fh     |
| Change to mode 2             | 0    | 1011 | 0100 | 0000   | 0000 | 0000 | 0001 | 0000 | 0010 | B4000102h     |
| Change to mode 3             | 0    | 1011 | 0100 | 0000   | 0000 | 0000 | 0010 | 0010 | 0101 | B4000225h     |
| Change to mode 4             | 0    | 1011 | 0100 | 0000   | 0000 | 0000 | 0011 | 0011 | 1000 | B4000338h     |
| Set power down mode          | 0    | 1011 | 0100 | 0000   | 0000 | 0000 | 0100 | 0110 | 1011 | B400046Bh     |
| Wake up from power down mode | 0    | 1011 | 0100 | 0000   | 0000 | 0000 | 0000 | 0001 | 1111 | B400001Fh     |
| SW Reset                     | 0    | 1011 | 0100 | 0000   | 0000 | 0010 | 0000 | 1001 | 1000 | B4002098h     |
| Read WHOAMI                  | 0    | 0100 | 0000 | 0000   | 0000 | 0000 | 0000 | 1001 | 0001 | 40000091h     |
| Read SERIAL1                 | 1    | 0110 | 0100 | 0000   | 0000 | 0000 | 0000 | 1010 | 0111 | 640000A7h     |
| Read SERIAL2                 | 1    | 0110 | 1000 | 0000   | 0000 | 0000 | 0000 | 1010 | 1101 | 680000ADh     |
| Read current bank            | 0 1  | 0111 | 1100 | 0000   | 0000 | 0000 | 0000 | 1011 | 0011 | 7C0000B3h     |
| Switch to bank #0            | 0 1  | 1111 | 1100 | 0000   | 0000 | 0000 | 0000 | 0111 | 0011 | FC000073h     |
| Switch to bank #1            | 0 1  | 1111 | 1100 | 0000   | 0000 | 0000 | 0001 | 0110 | 1110 | FC00016Eh     |

#### 5.1.5 Return Status

SPI frame Return Status bits (RS bits) indicate the functional status of the sensor. See Table 15 for RS definitions.

Table 15 Return Status definitions

| RS [1] | RS [0] | Description                |  |  |  |
|--------|--------|----------------------------|--|--|--|
| 0      | 0      | Startup in progress        |  |  |  |
| 0      | 1      | Normal operation, no flags |  |  |  |
| 1      | 0      | Reserved                   |  |  |  |
| 1      | 1      | Error                      |  |  |  |

The priority of the return status states is from high to low:  $00 \rightarrow 11 \rightarrow 01$ 

Return Status (RS) shows error (i.e. '11') when an error flag (or flags) is active in Status Summary register, or if previous MOSI-command had incorrect frame CRC. See Table 26 for description of the Status Summary register.

### 5.2 Checksum (CRC)

For SPI transmission error detection a Cyclic Redundancy Check (CRC) is implemented, for details see Table 16.

Table 16 SPI CRC definition

| Parameter | Value                                  |
|-----------|----------------------------------------|
| Name      | CRC-8                                  |
| Width     | 8 bit                                  |
| Poly      | 1Dh (generator polynom: X8+X4+X3+X2+1) |
| Init      | FFh (initialization value)             |
| XOR out   | FFh (inversion of CRC result)          |

The CRC value used in system level software has to be initialized with FFh to ensure a CRC failure in case of stuck-at-0 and stuck-at-1 error on the SPI bus. C-programming language example for CRC calculation is presented in Figure 11. It can be used as is in an appropriate programming context.

```
// Calculate CRC for 24 MSB's of the 32 bit dword
// (8 LSB's are the CRC field and are not included in CRC calculation)
uint8_t CalculateCRC(uint32_t Data)
  uint8_t BitIndex;
  uint8_t BitValue;
  uint8_t CRC;
  CRC = 0xFF;
  for (BitIndex = 31; BitIndex > 7; BitIndex--)
    BitValue = (uint8_t)((Data >> BitIndex) & 0x01);
    CRC = CRC8(BitValue, CRC);
  CRC = (uint8_t)~CRC;
  return CRC;
static uint8_t CRC8(uint8_t BitValue, uint8_t CRC)
  uint8_t Temp;
  Temp = (uint8 t)(CRC & 0x80);
  if (BitValue == 0x01)
    Temp ^= 0x80;
  }
  CRC <<= 1;
  if (Temp > 0)
    CRC ^= 0x1D;
  }
  return CRC;
```

Figure 11 C-programming language example for CRC calculation

In case of wrong CRC in MOSI write/read, RS bits "11" are set in the next SPI response, STATUS register is not changed, and write command is discarded. If CRC in MISO SPI response is incorrect, communication failure occurred.

CRC calculation example:

```
Read ACC_X register (04h)

SPI [31:8] = 040000h → CRC = F7h

SPI [7:0] = F7h

SPI frame = 040000F7h
```

#### 6 Register Definition

SCL3300-D01 contains two user switchable register banks. Default register bank is #0. One should have register bank #0 always active, unless data from bank #1 is required. After reading data from bank #1 is finished, one should switch back to bank #0 to ensure no accidental read / writes in unwanted registers. See 6.9 SELBANK for more information for selecting active register bank. Table 17 shows overview of register banks and register addresses.



Table 17 Register address space overview

| Addr  | Read/ | Registe     | er Bank     | Description                                         |
|-------|-------|-------------|-------------|-----------------------------------------------------|
| (hex) | Write | #0          | #1          | Description                                         |
| 01h   | R     | ACC_X       | ACC_X       | X-axis acceleration output in 2's complement format |
| 02h   | R     | ACC_Y       | ACC_Y       | Y-axis acceleration output in 2's complement format |
| 03h   | R     | ACC_Z       | ACC_Z       | Z-axis acceleration output in 2's complement format |
| 04h   | R     | STO         | STO         | Self-test output in 2's complement format           |
| 05h   | R     | TEMPERATURE | TEMPERATURE | Temperature sensor output in 2's complement format  |
| 06h   | R     | STATUS      | STATUS      | Status Summary combining ERR_FLAG1 and ERR_FLAG2    |
| 07h   | R     | ERR_FLAG1   | reserved    | Error flags group1                                  |
| 08h   | R     | ERR_FLAG2   | reserved    | Error flags group2                                  |
| 09h   | -     | ANG_X       | reserved    | X-axis angle output in 2's complement format        |
| 0Ah   | -     | ANG_Y       | reserved    | Y-axis angle output in 2's complement format        |
| 0Bh   | -     | ANG_Z       | reserved    | Z-axis angle output in 2's complement format        |
| 0Ch   | -     | ANG_CTRL    | reserved    | Enable angle outputs                                |
| 0Dh   | R/W   | MODE        | reserved    | Sets operation mode, SW Reset and Power down mode   |
| 0Eh   | -     | reserved    | reserved    | -                                                   |
| 0Fh   | -     | reserved    | reserved    | -                                                   |
| 10h   | R     | WHOAMI      | reserved    | 8-bit register for component identification         |
| 11h   | -     | reserved    | reserved    | -                                                   |
| 12h   | -     | reserved    | reserved    | -                                                   |
| 13h   | -     | reserved    | reserved    | -                                                   |
| 14h   | -     | reserved    | reserved    | -                                                   |
| 15h   | -     | reserved    | reserved    | -                                                   |
| 16h   | -     | reserved    | reserved    | -                                                   |
| 17h   | -     | reserved    | reserved    | -                                                   |
| 18h   | -     | reserved    | reserved    | -                                                   |
| 19h   | R     | reserved    | SERIAL1     | Component serial part 1                             |
| 1Ah   | R     | reserved    | SERIAL2     | Component serial part 2                             |
| 1Bh   | -     | reserved    | Factory Use | -                                                   |
| 1Ch   | -     | reserved    | Factory Use | -                                                   |
| 1Dh   | -     | reserved    | Factory Use | -                                                   |
| 1Eh   | -     | reserved    | reserved    | -                                                   |
| 1Fh   | R/W   | SELBANK     | SELBANK     | Switch between active register banks                |

User should not access Reserved nor Factory Use registers. Power-cycle, reset and power down mode will reset all written settings.



### 6.1 Sensor Data Block

Table 18 Sensor data block description

| Bank | Addr | Name        | No. of bits | Read /<br>Write | Description                                                                                  |
|------|------|-------------|-------------|-----------------|----------------------------------------------------------------------------------------------|
| 0 1  | 01h  | ACC_X       | 16          | R               | X-axis acceleration output in 2's complement format                                          |
| 0 1  | 02h  | ACC_Y       | 16          | R               | Y-axis acceleration output in 2's complement format                                          |
| 0 1  | 03h  | ACC_Z       | 16          | R               | Z-axis acceleration output in 2's complement format                                          |
| 0 1  | 05h  | TEMPERATURE | 16          | R               | Temperature sensor output in 2's complement format. See section 2.4 for conversion equation. |
| 0    | 09h  | ANG_X       | 16          | R               | X-axis angle output in 2's complement format<br>See section 0 for conversion equation.       |
| 0    | 0Ah  | ANG_Y       | 16          | R               | Y-axis angle output in 2's complement format<br>See section 0 for conversion equation.       |
| 0    | 0Bh  | ANG_Z       | 16          | R               | Z-axis angle output in 2's complement format<br>See section 0 for conversion equation        |

Table 19 Sensor data block operations

| Table 10 Censor data block operations |                                         |               |  |  |  |  |  |
|---------------------------------------|-----------------------------------------|---------------|--|--|--|--|--|
| Operation                             | SPI Frame                               | SPI Frame Hex |  |  |  |  |  |
| Read ACC_X                            | 0000 0100 0000 0000 0000 0000 1111 0111 | 040000F7h     |  |  |  |  |  |
| Read ACC_Y                            | 0000 1000 0000 0000 0000 0000 1111 1101 | 080000FDh     |  |  |  |  |  |
| Read ACC_Z                            | 0000 1100 0000 0000 0000 0000 1111 1011 | 0C0000FBh     |  |  |  |  |  |
| Read Temperature                      | 0001 0100 0000 0000 0000 0000 1110 1111 | 140000EFh     |  |  |  |  |  |
| Read ANG_X                            | 0010 0100 0000 0000 0000 0000 1100 0111 | 240000C7h     |  |  |  |  |  |
| Read ANG_Y                            | 0010 1000 0000 0000 0000 0000 1100 1101 | 280000CDh     |  |  |  |  |  |
| Read ANG_Z                            | 0010 1100 0000 0000 0000 0000 1100 1011 | 2C0000CBh     |  |  |  |  |  |



### **6.1.1 Example of Acceleration Data Conversion**

For example, if ACC\_X register read results: ACC\_X = 0500DC1Ch, the register content is converted to acceleration rate as follows:

| OP[31<br>RS[25 | + |   | Data[ | 23:8] |   | CRC[ | 7:0] |
|----------------|---|---|-------|-------|---|------|------|
| 0              | 5 | 0 | 0     | D     | C | 1    | С    |

```
OP + RS
      05h = 0000 \ 0101b
            0000 01b
                                = OP code = Read ACC_X
            01b
                                = return status (RS bits) = no error
Data = ACC_X register content
      00DCh
            00DCh → 220d
                                = in 2's complement format
            Acceleration:
            = 220 LSB / sensitivity(mode1)
            = 220 LSB / 2700 LSB/g
            = 0.081 g
CRC
      1Ch
          CRC of 0500DCh, see section 5.2
```



### **6.1.2 Example of Temperature Data Conversion**

For example, if TEMPERATURE register read results: TEMPERATURE = 15161E0Ah, the register content is converted to temperature as follows:

|   | OP[31<br>RS[25 | + - |   | Data[ | 23:8] |   | CRC[ | 7:0] |
|---|----------------|-----|---|-------|-------|---|------|------|
| Ī | 1              | 5   | 1 | 6     | 1     | E | 0    | Α    |

OP + RS

```
Data = TEMPERATURE register content

161Eh

161Eh → 5662d = in 2's complement format

Temperature:

= -273 + (5662 / 18.9)

= +26.6°C
```

CRC

0Ah

CRC of 15161Eh, see section 5.2



### 6.1.3 Example of Angle Data Conversion

Angle outputs must be enabled before angles can be read from registers. See section 6.6 for details.

For example, if ANG\_X register read results: ANG\_X = 15161E0Ah, the register content is converted to angle (degrees) as follows:

| OP[31<br>RS[25 | + - |   | Data[ | 23:8] |   | CRC[ | 7:0] |
|----------------|-----|---|-------|-------|---|------|------|
| 2              | 5   | 0 | F     | 8     | 8 | 2    | 5    |

```
OP + RS

25h = 0010 0101b
0010 01b = OP code = Read ANG_X
01b = return status (RS bits) = no error

Data = ANG_X register content
0F88h
0F88h → 3976d
Angle in degrees:
= 3976/2^14*90
= 21.84°

CRC
25h
```

CRC of 250F88h, see section 5.2

#### 6.2 STO

Table 20 STO (self-test output) description

| Bank | Addr | Name | No. of bits | Read /<br>Write | Description                               |
|------|------|------|-------------|-----------------|-------------------------------------------|
| 0 1  | 04h  | STO  | 16          | R               | Self-test output in 2's complement format |

Table 21 STO operation

| Operation                   | SPI Frame                               | SPI Frame Hex |  |  |
|-----------------------------|-----------------------------------------|---------------|--|--|
| Read STO (self-test output) | 0001 0000 0000 0000 0000 0000 1110 1001 | 100000E9h     |  |  |

If self-test option is desired in application, following guidelines should be taken into account. STO is used to monitor if accelerometer is functioning correctly. It provides information on signal saturation during vibration and shock events. STO should be read continuously in the normal operation sequence after XYZ acceleration readings.

STO threshold monitoring should be implemented on application software. Failure thresholds and failure tolerant time of the system are application specific and should be carefully validated. Monitoring can be implemented by counting the subsequent "STO signal exceeding threshold" —events. Examples for STO thresholds are shown in Table 22.



Failure-tolerant time, e.g. event counter how many times threshold is exceeded

Component failure can be suspected if the STO signal exceeds the threshold level continuously after performing component hard reset in static (no vibration) condition.

Table 22 Examples for STO Thresholds

| Mode | Full-scale | Examples for STO thresholds |
|------|------------|-----------------------------|
| 1    | TBD        |                             |
| 2    | TBD        |                             |
| 3    | TBD        |                             |
| 4    | TBD        |                             |



### 6.2.1 Example of Self-Test Analysis

For example, if STO register read results: STO = 1100017Bh, the register value can be converted as follows:

| OP[31<br>RS[25 | + - |   | Data[ | CRC[ | 7:0] |   |   |
|----------------|-----|---|-------|------|------|---|---|
| 1              | 1   | 0 | 0     | 0    | 1    | 7 | В |

```
OP + RS

11h = 0001 0001b
0001 00b = OP code = Read STO
01b = return status (RS bits) = no error

Data = STO register content
0001h
0001h → 1d = in 2's complement format
Self-test reading:
= 1
See Table 11 for recommended STO threshold values

CRC
7Bh
CRC of 110001h, see section 5.2
```

### 6.3 STATUS

### Table 23 STATUS description

| Bank | Addr | Name   | No. of bits | Read /<br>Write | Description                                      |
|------|------|--------|-------------|-----------------|--------------------------------------------------|
| 0 1  | 06h  | STATUS | 16          | R               | Status Summary combining ERR_FLAG1 and ERR_FLAG2 |

### Table 24 STATUS operation

| Operation           | SPI Frame                               | SPI Frame Hex |  |  |
|---------------------|-----------------------------------------|---------------|--|--|
| Read Status Summary | 0001 1000 0000 0000 0000 0000 1110 0101 | 180000E5h     |  |  |

## Table 25 STATUS register

| D45 | D44 | D40   | D40  | l.  | D40 | D0    | Б0    | D7  | D0  | D.       | <b>D</b> 4 | Б0  | Б0 | D4          | D0             | D:1  |
|-----|-----|-------|------|-----|-----|-------|-------|-----|-----|----------|------------|-----|----|-------------|----------------|------|
| D15 | D14 | D13   | D12  | D11 | D10 | D9    | D8    | D7  | D6  | D5       | D4         | D3  | D2 | D1          | D0             | Bit  |
|     |     | Resei | rved |     |     | DIGI1 | DIGI2 | CLK | SAT | TEMP_SAT | PWR        | MEM | PD | MODE_CHANGE | PIN_CONTINUITY | Read |

## Table 26 STATUS register bit description

| Bit | Name           | Description                         | Required action/explanation                                                                                                             |  |  |  |
|-----|----------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 9   | DIGI1          | Digital block error type 1          | SW or HW reset needed                                                                                                                   |  |  |  |
| 8   | DIGI2          | Digital block error type 2          | SW or HW reset needed                                                                                                                   |  |  |  |
| 7   | CLK            | Clock error                         | SW or HW reset needed                                                                                                                   |  |  |  |
| 6   | SAT            | Signal saturated in signal path     | Acceleration too high and acceleration reading not usable. Component failure possible. All acceleration and STO output data is invalid. |  |  |  |
| 5   | TEMP_SAT       | Temperature signal path saturated   | External temperature too high or low. Component failure possible                                                                        |  |  |  |
| 4   | PWR            | Voltage level failure               | External voltages too high or low. Component failure possible. SW or HW reset needed.                                                   |  |  |  |
| 3   | MEM            | Error in non-volatile memory        | Memory check failed. Possible component failure  SW or HW reset needed.                                                                 |  |  |  |
| 2   | PD             | Device in power down mode           | If power down is not requested.  SW or HW reset needed                                                                                  |  |  |  |
| 1   | MODE_CHANGE    | Operation mode changed              | If mode change is not requested.  SW or HW reset needed                                                                                 |  |  |  |
| 0   | PIN_CONTINUITY | Component internal connection error | Possible component failure                                                                                                              |  |  |  |

Rev. 1

Software (SW) reset is done with SPI operation (see 5.1.4). Hardware (HW) reset is done by power cycling the sensor. If these do not reset the error, then possible component error has occurred and system needs to be shut down and part returned to supplier.

### 6.4 Error Flag Block

Table 27 Error flag block description

| Bank | Addr | Register Name | No. of bits | Read /<br>Write | Description |
|------|------|---------------|-------------|-----------------|-------------|
| 0    | 07h  | ERR_FLAG1     | 16          | R               | Error flags |
| 0    | 08h  | ERR_FLAG2     | 16          | R               | Error flags |

### Table 28 Error flag block operations

| Operation      | SPI Frame                               | SPI Frame Hex |  |  |
|----------------|-----------------------------------------|---------------|--|--|
| Read ERR_FLAG1 | 0001 1100 0000 0000 0000 0000 1110 0011 | 1C0000E3      |  |  |
| Read ERR_FLAG2 | 0010 0000 0000 0000 0000 0000 1100 0001 | 200000C1h     |  |  |

STATUS register contains combination of the information in the ERR\_FLAG1 and ERR\_FLAG2 registers; if there is an error, it is reflected in STATUS. ERR\_FLAG registers can be used to further assess reason for error. Note that reading ERR\_FLAG registers does not reset error flags in STATUS register nor reset RS bits.

#### 6.4.1 ERR\_FLAG1

Table 29 ERR\_FLAG1 register

|     |      |      |     | - 5     |     |    |    |    |      |      |    |    |    |    |     |      |
|-----|------|------|-----|---------|-----|----|----|----|------|------|----|----|----|----|-----|------|
| D15 | D14  | D13  | D12 | D11     | D10 | D9 | D8 | D7 | D6   | D5   | D4 | D3 | D2 | D1 | D0  | Bit  |
|     | Rese | rved |     | ADC_SAT |     |    |    |    | AFE_ | _SAT |    |    |    |    | MEM | Read |

#### Table 30 ERR\_FLAG1 register bit description

| Bit   | Name     | Description                  |
|-------|----------|------------------------------|
| 15:12 | Reserved | Reserved                     |
| 11    | ADC_SAT  | Signal saturated at A2D      |
| 10:1  | AFE_SAT  | Signal saturated at C2V      |
| 0     | MEM      | Error in non-volatile memory |

## 6.4.2 ERR\_FLAG2

### Table 31 ERR\_FLAG2 register

|          |        | _        |      | _   |          |             |    |            |          |      |      |      |        |          |     |      |
|----------|--------|----------|------|-----|----------|-------------|----|------------|----------|------|------|------|--------|----------|-----|------|
| D15      | D14    | D13      | D12  | D11 | D10      | D9          | D8 | D7         | D6       | D5   | D4   | D3   | D2     | D1       | D0  | Bit  |
| Reserved | D_EXTC | A_AEXT_C | AGND | VDD | Reserved | MODE_CHANGE | PD | MEMORY_CRC | Reserved | APWR | DPWR | REFV | APWR_2 | TEMP_SAT | CLK | Read |

### Table 32 ERR FLAG2 register bit description

| 1 4510 02 | ERR_FLAGZ register bit descript | ) I                                 |  |  |  |  |  |
|-----------|---------------------------------|-------------------------------------|--|--|--|--|--|
| Bit       | Name                            | Description                         |  |  |  |  |  |
| 15        | Reserved                        | Reserved                            |  |  |  |  |  |
| 14        | D_EXT_C                         | External capacitor connection error |  |  |  |  |  |
| 13        | A_EXT_C                         | External capacitor connection error |  |  |  |  |  |
| 12        | AGND                            | Analog ground connection error      |  |  |  |  |  |
| 11        | VDD                             | Supply voltage error                |  |  |  |  |  |
| 10        | Reserved                        | Reserved                            |  |  |  |  |  |
| 9         | MODE_CHANGE                     | Operation mode changed by user      |  |  |  |  |  |
| 8         | PD                              | Device in power down mode           |  |  |  |  |  |
| 7         | MEMORY_CRC                      | Memory CRC check failed             |  |  |  |  |  |
| 6         | Reserved                        | Reserved                            |  |  |  |  |  |
| 5         | APWR                            | Analog power error                  |  |  |  |  |  |
| 4         | DPWR                            | Digital power error                 |  |  |  |  |  |
| 3         | VREF                            | Reference voltage error             |  |  |  |  |  |
| 2         | APWR_2                          | Analog power error                  |  |  |  |  |  |
| 1         | TEMP_SAT                        | Temperature signal path saturated   |  |  |  |  |  |
| 0         | CLK                             | Clock error                         |  |  |  |  |  |

#### 6.5 CMD

Table 33 CMD description

| Bank | Addr | Register Name | No. of bits | Read /<br>Write | Description                                       |
|------|------|---------------|-------------|-----------------|---------------------------------------------------|
| 0    | 0Dh  | CMD           | 16          | R/W             | Sets operation mode, SW Reset and Power down mode |

#### Table 34 CMD operations

| Command                      | SPI Frame                               | SPI Frame hex |
|------------------------------|-----------------------------------------|---------------|
| Read CMD                     | 0011 0100 0000 0000 0000 0000 1101 1111 | 340000DFh     |
| Change to mode1              | 1011 0100 0000 0000 0000 0000 0001 1111 | B400001Fh     |
| Change to mode2              | 1011 0100 0000 0000 0000 0001 0000 0010 | B4000102h     |
| Change to mode3              | 1011 0100 0000 0000 0000 0010 0010 0101 | B4000225h     |
| Change to mode4              | 1011 0100 0000 0000 0000 0011 0011 1000 | B4000338h     |
| Set power down mode          | 1011 0100 0000 0000 0000 0100 0110 1011 | B400046Bh     |
| Wake up from power down mode | 1011 0100 0000 0000 0000 0000 0001 1111 | B400001Fh     |
| SW Reset                     | 1011 0100 0000 0000 0010 0000 1001 1000 | B4002098h     |

#### Table 35 CMD register

| D15 | D14 | D13 | D12      | D11 | D10 | D9 | D8 | D7          | D6          | D5     | D4          | D3          | D2 | D1    | D0 | Bit  |
|-----|-----|-----|----------|-----|-----|----|----|-------------|-------------|--------|-------------|-------------|----|-------|----|------|
|     |     |     | Reserved |     |     |    |    | Factory use | Factory use | SW_RST | Factory use | Factory use | PD | NO CI | 2  | Read |

### Table 36 CMD register bit description

| Bit  | Name        | Description         |
|------|-------------|---------------------|
| 15:8 | Reserved    | Reserved            |
| 7    | Factory use | Factory use         |
| 6    | Factory use | Factory use         |
| 5    | SW_RST      | Software (SW) Reset |
| 4    | Factory use | Factory use         |
| 3    | Factory use | Factory use         |
| 2    | PD          | Power Down          |
| 1:0  | MODE        | Operation Mode      |

Sets operation mode of the SCL3300-D01. After power-off, reset (SW or HW), power down mode or unintentional power-off, normal start-up sequence must be followed. Note: mode will be set to default mode1.

Operation modes are described in section 4.3.

Changing mode will set Status Summary bit 1 to high, setting / waking up from power down mode will set Status Summary bit 2 to high (see 6.3.) Thus RS bits will show '11' (see 5.1.5.)

Note: User must not configure other than given valid commands, otherwise power-off, reset or power down is required.

### 6.6 ANG\_CTRL

#### Table 37 ANG CTRL description

| В | ank | Addr | Register Name | No. of bits | Read /<br>Write | Description           |
|---|-----|------|---------------|-------------|-----------------|-----------------------|
|   | 0   | 0Ch  | ANG_CTRL      | 16          | W               | Enable angle outputs. |

#### Table 38 ANG CTRL operations

| Command              | SPI Frame                               | SPI Frame hex |
|----------------------|-----------------------------------------|---------------|
| Enable Angle Outputs | 1011 0000 0000 0000 0001 1111 0110 1111 | B0001F6Fh     |

#### Table 39 ANG\_CTRL register

|   |     |     | _   |     | •     |         |      |    |    |    |    |      |    |                               |    |       |       |
|---|-----|-----|-----|-----|-------|---------|------|----|----|----|----|------|----|-------------------------------|----|-------|-------|
| ĺ | D15 | D14 | D13 | D12 | D11   | D10     | D9   | D8 | D7 | D6 | D5 | D4   | D3 | D2                            | D1 | D0    | Bit   |
|   |     | •   | •   | -   | Not L | lsed [1 | 5:5] | -  |    |    |    | Enab |    | le Out <sub>l</sub><br>'11111 |    | :0] = | Write |

ANG\_CTRL is a 5-bit registers to control angle outputs. Default value for register is 00h. Angle outputs are enabled by writing 1Fh to ANG\_CTRL.

### 6.7 WHOAMI

#### Table 40 WHOAMI description

| Ban | k Addr | Register Name | No. of bits | Read /<br>Write | Description                                 |
|-----|--------|---------------|-------------|-----------------|---------------------------------------------|
| 0   | 10h    | WHOAMI        | 8           | R               | 8-bit register for component identification |

#### Table 41 WHOAMI operations

| Operation   | SPI Frame                               | SPI Frame Hex |
|-------------|-----------------------------------------|---------------|
| Read WHOAMI | 0100 0000 0000 0000 0000 0000 1001 0001 | 40000091h     |

#### Table 42 WHOAMI register

|     |                 |     | _   |     |     |    |    |    |    |      |         |      |       |    |    |       |
|-----|-----------------|-----|-----|-----|-----|----|----|----|----|------|---------|------|-------|----|----|-------|
| D15 | D14             | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5   | D4      | D3   | D2    | D1 | D0 | Bit   |
|     |                 |     |     |     |     |    |    | -  | -  | -    | -       | -    | -     | -  | -  | Write |
|     | Not Used [15:8] |     |     |     |     |    |    |    |    | ompo | nent II | 7:0] | = C1h |    | •  | Read  |

WHOAMI is a 8-bit register for component identification. Returned value is C1h.

Note: as returned value is fixed, this can be used to ensure SPI communication is working correctly.



#### 6.8 Serial Block

Table 43 Serial block description

|   |      |      | •             |             |                 |                         |
|---|------|------|---------------|-------------|-----------------|-------------------------|
|   | Bank | Addr | Register Name | No. of bits | Read /<br>Write | Description             |
|   | 1    | 19h  | SERIAL1       | 16          | R               | Component serial part 1 |
| Ī | 1    | 1Ah  | SERIAL2       | 16          | R               | Component serial part 2 |

#### Table 44 Serial block operations

| Operation    | SPI Frame                               | SPI Frame Hex |  |
|--------------|-----------------------------------------|---------------|--|
| Read SERIAL1 | 0110 0100 0000 0000 0000 0000 1010 0111 | 640000A7h     |  |
| Read SERIAL2 | 0110 1000 0000 0000 0000 0000 1010 1101 | 680000ADh     |  |

Serial Block contains sensor serial number in two 16 bit registers in register bank #1, see 6.5 CMD for information how to switch register banks. The same serial number is also written on top of the sensor.

The following procedure is recommended when reading serial number:

- 1. Change active register bank to #1
- 2. Read registers 19h and 1Ah
- 3. Change active register back to bank #0
- 4. Resolve serial number:
  - 1. Combine result data from 1Ah[16:31] and 19h[0:15]
  - 2. Convert HEX to DEC
  - 3. Add letters "B33" to end

### 6.8.1 Example of Resolving Serial Number

1 Change active register bank to #1

SPI Request SWITCH\_TO\_BANK\_1

Request: FC00016E

Response: XXXXXXXX, response to previous command

2. Read registers 19h and 1Ah

SPI Request READ\_SERIAL1:

Request: 640000A7

Response: FD0001E1, response to switch command

SPI Request READ\_SERIAL2:

Request: 680000AD

Response: 65F7DA19, response to serial1, data: F7DA



3. Change active register back to bank #0

SPI Request SWITCH\_TO\_BANK\_0

Request: FC000073

Response: 693CE54F, response to serial2, data: 3CE5

4. Resolve serial number

1. Combined Serial number: 3CE5F7DA

HEX to DEC: 1021704154
 Add "B33": 1021704154B33

→ Full Serial number: 1021704154B33



#### 6.9 SELBANK

Table 45 SELBANK description

| Bank | Addr | Register Name | No. of bits | Read /<br>Write | Description                          |
|------|------|---------------|-------------|-----------------|--------------------------------------|
| 0 1  | 1Fh  | SELBANK       | 16          | R               | Switch between active register banks |

#### Table 46 SELBANK operations

| Command           | SPI Frame                               | SPI Frame hex |
|-------------------|-----------------------------------------|---------------|
| Read current bank | 0111 1100 0000 0000 0000 0000 1011 0011 | 7C0000B3h     |
| Switch to bank #0 | 1111 1100 0000 0000 0000 0000 0111 0011 | FC000073h     |
| Switch to bank #1 | 1111 1100 0000 0000 0000 0001 0110 1110 | FC00016Eh     |

SELBANK is used to switch between memory banks #0 and #1. It's recommended to keep memory bank #0 selected unless register from bank #1 is required, for example, reading serial number of sensor. After using bank #1 user should switch back to bank #0.

### 7 Application information

### 7.1 Application Circuitry and External Component Characteristics

See Figure 12 and Table 47 for specification of the external components. The PCB layout example is shown in Figure 13.



Figure 12 Application schematic.



Table 47 External component description for SCL3300-D01.

| Symbol | Description                                                                                                                                                           |     | Min. | Nom. | Max.       | Unit     |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|------|------------|----------|
| C1     | Decoupling capacitor between VDD and GND  Recommended component: Murata GCM155R71C104KA55, 0402, 16V, X7R  Please confirm capacitor availability from www.murata.com  | ESR | 70   | 100  | 130<br>100 | nF<br>mΩ |
| C2     | Decoupling capacitor between A_EXTC and GND Recommended component: Murata GCM155R71C104KA55, 0402, 16V, X7R Please confirm capacitor availability from www.murata.com | ESR | 70   | 100  | 130<br>100 | nF<br>mΩ |
| C3     | Decoupling capacitor between D_EXTC and GND Recommended component: Murata GCM155R71C104KA55, 0402, 16V, X7R Please confirm capacitor availability from www.murata.com | ESR | 70   | 100  | 130<br>100 | nF<br>mΩ |
| C4     | Decoupling capacitor between DVIO and GND  Recommended component: Murata GCM155R71C104KA55, 0402, 16V, X7R Please confirm capacitor availability from www.murata.com  | ESR | 70   | 100  | 130<br>100 | nF<br>mΩ |



Figure 13. Application PCB layout.

General circuit diagram and PCB layout recommendations for SCL3300-D01:

- 1. Connect decoupling SMD capacitors (C1 C4) right next to respective component pins.
- 2. Place ground plate under component.
- 3. Do not route signals or power supplies under the component on top layer.
- 4. Ensure good ground connection of DVSS, AVSS and EMC\_GND pins



#### 7.2 Assembly Instructions

The Moisture Sensitivity Level of the component is Level 3 according to the IPC/JEDEC JSTD-020C. The part is delivered in a dry pack. The manufacturing floor time (out of bag) at the customer's end is 168 hours.

Usage of PCB coating materials may penetrate component lid and affect component performance. PCB coating is not allowed.

Sensor components shall not be exposed to chemicals which are known to react with silicones, such as solvents. Sensor components shall not be exposed to chemicals with high impurity levels, such as CI-, Na+, NO3-, SO4-, NH4+ in excess of >10 ppm. Flame retardants such as Br or P containing materials shall be avoided in close vicinity of sensor component. Materials with high amount of volatile content should also be avoided.

If heat stabilized polymers are used in application, user should check that no iodine, or other halogen, containing additives are used.

For additional assembly related details please refer to technical note Assembly instructions of Dual Flat Lead Package (DFL).

APP 2702 Rev.2 Assembly\_Instructions\_for\_DFL\_Package

### 8 Frequently Asked Questions

- How can I be sure SPI communication is working?
  - Read register WHOAMI (10h), the response should be C1h.
- Why do I get wrong results when I read data?
  - SCL3300-D01 uses off-frame protocol (see 5.1.2 Protocol), make sure to utilize this correctly.
  - o Confirm time between SPI requests (CSB high) is at least 10 μs.
  - Ensure SCL3300-D01 is correctly started (see 4.2 Start-up sequence).
  - Read RS bits (see 5.1.5 Return Status), if error is shown read Status Summary (see 6.3 STATUS) for further information.
  - Confirm correct sensitivity is used for current operation mode (see 4.3 Operation modes)
- Why all angle outputs read only zeroes?
  - Ensure that angle outputs are enabled after startup (see 4.2 Start-up sequence and 6.6 ANG\_CTRL)



# 9 Order Information

| Order Code      | Description                                    | Packing | Qty     |
|-----------------|------------------------------------------------|---------|---------|
| SCL3300-D01-004 | 3-axis inclinometer with digital SPI interface | Bulk    | 4pcs    |
| SCL3300-D01-1   | 3-axis inclinometer with digital SPI interface | T&R     | 100pcs  |
| SCL3300-D01-10  | 3-axis inclinometer with digital SPI interface | T&R     | 1000pcs |



## **Document Change Control**

| Authors                            |
|------------------------------------|
| Antti Miettinen                    |
| Department/Role                    |
| Product Division / Product Manager |

| Rev. | Date       | Change Description | Author | Reviewed by | ECN |
|------|------------|--------------------|--------|-------------|-----|
| 1    | 13.11.2018 | Initial Release    | APM    | ANFI, SRA   |     |
|      |            |                    |        |             |     |
|      |            |                    | i e    |             |     |
|      |            |                    |        |             |     |
|      |            |                    |        |             |     |