1.	When performing logistic regression on sentiment analysis, you represented each tweet as a vector of ones and zeros. However your model did not work well. Your training cost was reasonable, but your testing cost was just not acceptable. What could be a possible reason?	1 / 1 punto
	The vector representations are sparse and therefore it is much harder for your model to learn anything that could generalize well to the test set.	
	You probably need to increase your vocabulary size because it seems like you have very little features.	
	O Logistic regression does not work for sentiment analysis, and therefore you should be looking at other models.	
	O Sparse representations require a good amount of training time so you should train your model for longer	
	Correcto This is correct.	
2.	Which of the following are examples of text preprocessing?	1 / 1 punto
	Stemming, or the process of reducing a word to its word stem.	
	Correcto This is correct.	
	Lowercasing, which is the process of removing changing all capital letter to lower case.	
	Correcto This is correct.	
	Removing stopwords, punctuation, handles and URLs	

⊘ Correcto

This is correct.

☐ Adding new words to make sure all the sentences make sense

3.	The sigmoid function is defined as $h(x^{(i)}, \theta) =$	$\frac{1}{1+e^{-\theta^T x^{(i)}}}$. Which of the
	following is true.	

1 / 1 punto

- O Large positive values of $\theta^T x^{(i)}$ will make $h(x^{(i)}, \theta)$ closer to 1 and large negative values of $\theta^T x^{(i)}$ will make $h(x^{(i)}, \theta)$ close to -1.
- **(a)** Large positive values of $\theta^T x^{(i)}$ will make $h(x^{(i)}, \theta)$ closer to 1 and large negative values of $\theta^T x^{(i)}$ will make $h(x^{(i)}, \theta)$ close to 0.
- O Small positive values of $\theta^T x^{(i)}$ will make $h(x^{(i)}, \theta)$ closer to 1 and large positive values of $\theta^T x^{(i)}$ will make $h(x^{(i)}, \theta)$ close to 0.
- O Small positive values of $\theta^T x^{(i)}$ will make $h(x^{(i)}, \theta)$ closer to 0 and large negative values of $\theta^T x^{(i)}$ will make $h(x^{(i)}, \theta)$ close to -1.

✓ Correcto

This is correct.

4. The cost function for logistic regression is defined as $J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h\left(x^{(i)}, \theta\right) + (1-y^{(i)}) \log \left(1-h\left(x^{(i)}, \theta\right)\right) \right]$. Which of the following is true about the cost function above. Mark all the correct ones.

1 / 1 punto

- When $y^{(i)} = 1$, as $h(x^{(i)}, \theta)$ goes close to 0, the cost function approaches ∞ .
 - **⊘** Correcto

This is correct.

- When $y^{(i)} = 1$, as $h(x^{(i)}, \theta)$ goes close to 0, the cost function approaches 0.
- When $y^{(i)} = 0$, as $h(x^{(i)}, \theta)$ goes close to 0, the cost function approaches 0.
 - ✓ Correcto

This is correct.

- When $y^{(i)} = 0$, as $h(x^{(i)}, \theta)$ goes close to 0, the cost function approaches ∞ .
- **5.** For what value of $\theta^T x$ in the sigmoid function does $h(x^{(i)}, \theta) = 0.5$.

repeat

	 Initialize parameters, get gradient, update, get loss, classify/predict, repeat 	
	Correcto This is correct.	
8.	Assuming we got the classification correct, where $y^{(i)}=1$ for some specific example i. This means that $h(x^{(i)},\theta)>0.5$. Which of the following has to hold:	1 / 1 punto
	Our prediction, $h(x^{(i)}, \theta)$ for this specific training example is exactly equal to its corresponding label $y^{(i)}$.	
	Our prediction, $h(x^{(i)},\theta)$ for this specific training example is less than ($1-y^{(i)}$).	
	Our prediction, $h(x^{(i)}, \theta)$ for this specific training example is less than $(1 - h(x^{(i)}, \theta))$.	
	Our prediction, $h(x^{(i)}, \theta)$ for this specific training example is greater than $(1 - h(x^{(i)}, \theta))$.	
	Correcto This is correct.	
9.	What is the purpose of gradient descent? Select all that apply.	1 / 1 punto
	Gradient descent allows us to learn the parameters θ in logistic regression as to minimize the loss function J.	
	Correcto This is correct.	
	$\hfill\Box$ Gradient descent allows us to learn the parameters θ in logistic regression as to maximize the loss function J.	
	Gradient descent, $\mathit{grad_theta}$ allows us to update the parameters θ by computing $\theta = \theta - \alpha * \mathit{grad_theta}$	
	Correcto This is correct.	

1 / 1 punto