

## Universidad Nacional de San Agustin

## ESCUELA PROFESIONAL DE CIENCIA DE LA COMPUTACIÓN

## COMPUTACIÓN MOLECULAR BIOLÓGICA

# Uso del análisis de textura de imágenes para encontrar similitudes en la secuencia de ADN

#### Alumnos:

Alberto Visa Flores Sergio Arcos Ponce Gustavo Leon Paredes Alfred Guardia Zenteno

#### Docente:

Mg. Vicente Machaca

18 de agosto de 2020

## ${\bf \acute{I}ndice}$

| 1. | Introducción                                                         | 2        |
|----|----------------------------------------------------------------------|----------|
| 2. | GLCM                                                                 | 2        |
| 3. | Transformar una secuencia de ADN en un vector digital                | 3        |
| 4. | Características basadas en la matriz de co-ocurrencia<br>4.1. Codigo | <b>3</b> |
| 5. | Resultados                                                           | 8        |
| 6. | Conclusiones                                                         | 9        |
| 7. | Repositorio                                                          | 9        |

## 1. Introducción

El análisis de similitud de secuencia es la técnica básica para construir árboles filogenéticos, que analizan las funciones de los genes y predicen las estructuras de las proteínas. La alineación de secuencia es la más utilizada y método de análisis de similitud intuitivo. Muchas secuencias de alineación.

### 2. GLCM

Para calcular eficazmente las propiedades del ADN secuencias y para realizar análisis de similitud, proponemos un método basado en la teoría de la matriz de co-ocurrencia de niveles de gris (GLCM), que es un método estadístico bien conocido y de uso común método en el análisis de la textura de la imagen. Definir y especificar valores de características para cada secuencia es útil para encontrar secuencias similares en bases de datos, especialmente cuando el La base de datos es muy grande y una comparación de secuencia uno por uno es pérdida de tiempo. GLCM puede definir y calcular características relacionadas con cada secuencia; estas características también pueden indicar similitudes entre secuencias. Por lo tanto, las características definidas pueden ser los valores clave en cada secuencia. Al ingresar una secuencia y encontrar sus secuencias similares, todo lo que se requiere es calcular su valor de característica y secuencias de salida que tienen valores de características similares a los de la secuencia de entrada. Esto puede ahorrar mucho tiempo de búsqueda en la base de datos.



Figura 1: GLCM

## 3. Transformar una secuencia de ADN en un vector digital

Una secuencia de ADN está representada por una cadena que comprende A (adenina), C (citosina), G (guanina) y T (timina). En este documento, definir un método para transformar cada secuencia de ADN en un vector digital, que luego se puede utilizar para calcular la matriz de co-ocurrencia en la figura1 En el método propuesto, el procedimiento consiste en utilizar primero números enteros 1, 2, 3 y 4 para representar las cuatro bases A, C, G y T respectivamente. En segundo lugar, el número de cada carácter en la secuencia de ADN se suma al valor entero anterior.

## 4. Características basadas en la matriz de co-ocurrencia

Las características utilizadas fueron entropía, contraste, energía, correlación, y homogeneidad.

Entropia:

Entropy = 
$$-\sum_{i=1}^{L} \sum_{j=1}^{L} p(i, j) Ln(p(i, j)),$$

Contraste:

Contrast = 
$$\sum_{i=1}^{L} \sum_{j=1}^{L} (i-j)^2 p(i, j)$$
,

Energia:

Energy = 
$$\sum_{i=1}^{L} \sum_{j=1}^{L} p(i, j)^2$$
,

Correlacion:

Correlation = 
$$\sum_{i=1}^{L} \sum_{j=1}^{L} \left( \frac{(i-\mu_i)(j-\mu_j)p(i,j)}{\sigma_i \sigma_j} \right)$$
,

#### Homogeneidad:

$$Homogeneity = \sum_{i=1}^{L} \sum_{i=1}^{L} \left( \frac{p(i,j)}{1 + |i-j|} \right),$$

#### 4.1. Codigo

```
from google.colab import drive
2 import re
3 import numpy as np
  import re
  def string_to_array(my_string):
      my\_string = my\_string.lower()
      my_string = re.sub('[^acgt]', 'z', my_string)
      my_array = np.array(list(my_string))
      return my_array
  from sklearn.preprocessing import LabelEncoder
  def ordinal_encoder(my_array):
11
      label_encoder = LabelEncoder()
12
      label_encoder.fit(np.array(['a','c','g','t','z']))
13
      integer_encoded = label_encoder.transform(my_array)
      float_encoded = integer_encoded.astype(float)
      float\_encoded[float\_encoded == 0] = 0 \# A
      float_encoded [float_encoded == 1] = 1 # C
17
      float_encoded [float_encoded == 2] = 2 # G
18
      float\_encoded[float\_encoded == 3] = 3 \# T
19
      float_encoded[float_encoded == 4] = 4 # anything else, z
20
      return float_encoded
21
  from sklearn.preprocessing import OneHotEncoder
22
  def one_hot_encoder(my_array):
23
      integer_encoded = label_encoder.transform(my_array)
24
      onehot_encoder = OneHotEncoder(sparse=False, dtype=int, n_values=5)
      integer_encoded = integer_encoded.reshape(len(integer_encoded), 1)
      onehot_encoded = onehot_encoder.fit_transform(integer_encoded)
      onehot\_encoded = np.delete(onehot\_encoded, -1, 1)
28
      return onehot_encoded
29
  def glcm(m_array):
30
    a=np.amax(m_array)
31
    a=int(a)
32
    template=np.zeros ((a+1,a+1))
    for i in range (m_array.shape [0]):
34
      for j in range (m_{array.shape}[1]-1):
        if m_{array}[i][j]! = -1. and m_{array}[i][j+1]! = -1.:
36
           template[int(m_array[i][j])][int(m_array[i][j+1])] += 1
37
```

```
return template
  def glcm_vect(m_array):
39
    template=np.zeros((4,4))
    for i in range (m_{array.shape}[0]-1):
41
      template[int(m_array[i])][int(m_array[i+1])] += 1
42
    return template
43
44
  def contrast(matriz_g):
45
    resultado=0
46
    for i in range (matriz_g.shape [0]):
      for j in range (matriz_g.shape[1]):
48
         resultado+=((i-j)**2)*matriz_g[i][j]
49
    return resultado
  def energy(matriz_g):
51
    resultado=0
    for i in range(matriz_g.shape[0]):
53
      for j in range (matriz_g.shape[1]):
        resultado+=matriz_g[i][j]
    return resultado
56
  def entropy(matriz_g):
57
    a=np.log(matriz_g)
58
    resultado=np.sum(a)
59
    return resultado
60
  from skimage. feature import greycomatrix, greycoprops
62
  from multiprocessing import Pool
  def glcm_props(patch):
64
      1f = []
65
      props = ['entropy', 'contrast', 'homogeneity', 'energy', '
66
      correlation']
67
      #para que vaya a la derecha np.pi/4
68
      glcm = greycomatrix (patch, [1], [np.pi/4], 256, symmetric=True,
69
      normed=True)
      for f in props:
           lf.append(greycoprops(glcm, f)[0,0])
71
72
      a = []
      for f in props:
74
           a.append( greycoprops(glcm, f)[0,0])
      return a
76
  from Bio import SeqIO
79 data=[]
```

```
80 for seq_record in SeqIO.parse('/content/drive/My Drive/molecular/
      example.fa', "fasta"):
       a=str (seq_record.seq)
81
       montar=string_to_array(a)
82
       montar=ordinal_encoder (montar)
83
       ggg=np.array(montar)
84
       m_glcm=glcm_vect (ggg)
85
       a = []
86
       if int (ggg.shape [0]\%4)!=0:
87
         new_cont = (int(ggg.shape[0]//4)+1)*4
88
         a=np.zeros(int(new_cont-ggg.shape[0]))
89
       ggg=np.append(ggg,a)
90
       f=ggg.shape[0]
91
       gope =np.array(ggg).reshape(int(f/4),4)
92
       a=glcm (gope)
93
       a=a.astype(np.uint8)
94
       gope=gope.astype(np.uint8)
95
       data.append(glcm_props(gope))
96
   for seq_record in SeqIO.parse('/content/drive/My Drive/molecular/
97
      Macaca_fascicularis_chromosome10.fa', "fasta"):
       a=str (seq_record.seq)
98
       montar=string_to_array(a)
99
       montar=ordinal_encoder (montar)
100
       ggg=np.array(montar)
       #m_glcm=glcm_vect(ggg)
102
       a = []
       if int (ggg.shape [0]\%4)!=0:
         new_cont = (int(ggg.shape[0]//4)+1)*4
         a=np.zeros(int(new_cont-ggg.shape[0]))
106
       ggg=np.append(ggg,a)
       f=ggg.shape[0]
108
       gope =np. array (ggg). reshape (int(f/4), 4)
       a=glcm (gope)
       a=a.astype(np.uint8)
       gope=gope.astype(np.uint8)
       data.append(glcm_props(gope))
113
   print(data)
114
115
  for seq_record in SeqIO.parse('/content/drive/My Drive/molecular/
116
      Macaca_mulatta_nonchromosomal.fa', "fasta"):
       a=str (seq_record.seq)
117
       montar=string_to_array(a)
118
       montar=ordinal_encoder (montar)
119
       ggg=np.array(montar)
120
       #m_glcm=glcm_vect(ggg)
121
```

```
a = []
122
       if int (ggg.shape[0]\%4)!=0:
123
         new_cont = (int(ggg.shape[0]//4)+1)*4
         a=np.zeros(int(new_cont-ggg.shape[0]))
       ggg=np.append(ggg,a)
126
       f=ggg.shape[0]
127
       gope =np. array (ggg). reshape (int (f/4), 4)
128
       a=glcm (gope)
       a=a.astype(np.uint8)
130
       gope=gope.astype(np.uint8)
131
       data.append(glcm_props(gope))
132
   for seq_record in SeqIO.parse('/content/drive/My Drive/molecular/
134
      Macaca_mulatta_nonchromosomal.fa', "fasta"):
       a=str (seq_record.seq)
       montar=string_to_array(a)
136
       montar=ordinal_encoder (montar)
137
       ggg=np.array(montar)
138
       #m_glcm=glcm_vect(ggg)
139
       a = []
140
       if int (ggg.shape[0]\%4)!=0:
         new\_cont = (int(ggg.shape[0]//4)+1)*4
142
         a=np.zeros(int(new_cont-ggg.shape[0]))
143
       ggg=np.append(ggg,a)
       f=ggg.shape[0]
145
       gope =np.array(ggg).reshape(int(f/4),4)
146
       a=glcm (gope)
147
       a=a.astype(np.uint8)
148
       gope=gope.astype(np.uint8)
149
       data.append(glcm_props(gope))
```

## 5. Resultados



Figura 2: entropy vs contrast



Figura 3: homogeneity vs entropy



Figura 4: contrast vs homogeneity

## 6. Conclusiones

- Con este metodo podemos ver de manera grafica la similitud que hay entre una secuencia y otra.
- Se utiliza GLCM para sacar una matriz de texturas para cada secuencia, realizando las operaciones de entropia, contraste, energia, correlación, homogeneidad.

## 7. Repositorio

https://github.com/widcatd/molecular\_glcm

## Referencias

[1] Weiyang Chena, Bo Liao , Weiwei Li ,2018, Use of image texture analysis to find DNA sequence similarities,doi:10.1016/j.jtbi.2018.07.001