NoSQL

Master Professionnel en Systèmes d'Information

Option Ingénierie des Systèmes d'Information

Octobre 2019

SOMMAIRE

- I. Les origines du Big Data
- II. Le mouvement NoSQL
- III. MongoDB
- IV. Neo4j

NoSQL

I. Les origines du Big Data

Les origines du Big data

Un d'éluge d'information

- Une minute sur Internet
- Format d'encodage des données
- Unités de mesure
- Quelques chiffres

Les « 3V » du Big Data

- Le Big Data
- Modèle des « 3V »
- Les applications du Big Data

Les avancées technologiques

- De nouveaux besoins
- Les nouveaux services et architectures
- Les nouveaux modèles de données

Une minute sur Internet

Format d'encodage des données

- Les données (texte, image, son) sont codées en binaire.
- Suite de bits (0 ou 1).
- Normes de codage des jeux de caractères:
 - Norme ASCII: 7 bits pour un caractère
 - Norme ISO/CEI 646 : 8 bits = 1 octet pour un caractère
 - Norme Unicode UTF-8 : variable de 1 à 4 octets pour un caractère.

Unités de mesure

Unités de mesure

Multiples de l'octet : préfixes décimaux du SI et mésusages

Nom	Symbole	Valeur	Mésusage ^a
kilooctet	Ko	10 ³	2 ¹⁰
mégaoctet	Мо	10 ⁶	2 ²⁰
gigaoctet	Go	10 ⁹	2 ³⁰
téraoctet	То	10 ¹²	2 ⁴⁰
pétaoctet	Po	10 ¹⁵	2 ⁵⁰
exaoctet	Eo	10 ¹⁸	2 ⁶⁰
zettaoctet	Zo	10 ²¹	2 ⁷⁰
yottaoctet	Yo	10 ²⁴	280

Multiples de l'octet : préfixes binaires

Nom	Symbole	Valeur
kibioctet	Kio	2 ¹⁰
mébioctet	Mio	2 ²⁰
gibioctet	Gio	2 ³⁰
tébioctet	Tio	2 ⁴⁰
pébioctet	Pio	2 ⁵⁰
exbioctet	Eio	2 ⁶⁰
zébioctet	Zio	2 ⁷⁰
yobioctet	Yio	2 ⁸⁰

Quelques chiffres

- En 1992, **100 Go / jour**
- En 2013, **29.000 Go / seconde**
- En 2016, 90% des données existantes avaient été créées au cours des deux années précédentes.

Le Big Data

- Le terme « Big Data » que l'on peut traduire par « mégadonnées » ou « données massives », fait référence à cette explosion des données.
- Il se caractérise par le modèle dit des « 3V »,
 - Volume,
 - Variété,
 - Vélocité

- Le Volume fait référence à la quantité d'informations, trop volumineuse pour être acquise, stockée, traitée, analysée et diffusée par des outils standards.
- Ce caractère peut s'interpréter comme le traitement d'objets informationnels de grande taille ou de grandes collections d'objets

- La Variété fait référence à l'hétérogénéité des formats, de types, et de qualité des informations.
- Ces informations peuvent présenter des formes complexes du fait qu'elles trouvent leurs origines:
 - dans des capteurs (température, vitesse du vent, hygrométrie, tours/mn, luminosité...),
 - dans des messages échangés (e-mails, médias sociaux,échanges d'images, de vidéos, musique),
 - Sur les sites Web

- Modèle des « 3V »
 - La Variété
 - Différents niveaux de structuration des données

Niveau de structuration	Modèle de données	Exemples
Structuré	Système de données relationnel objet/colonne	Base de données d'entreprise
Semi-structuré	XML, JSON, CSV, logs	API Google, API Twitter, web, logs
Non structuré	Texte, image, vidéo	web, e-mails, documents

- La Vélocité fait référence à l'aspect dynamique et/ou temporel des données, à leur délai d'actualisation et d'analyse.
- Les données ne sont plus traitées, analysées, en différé, mais en temps réel ou quasi réel. Elles sont produites en flots continus, sur lesquels des décisions en temps réel peuvent être prises.
- Ce sont les données notamment issues de capteurs, nécessitant un traitement rapide pour une réaction en temps réel.

- Les applications du Big Data
 - Analyser les données en mouvement
 - Le suivi en temps réel et à forte réactivité de clients (commerce de détail, téléassistance)
 - Traiter un volume conséquent de données
 - Détection de fraudes, repérage de clients indélicats ou manipulateurs
 - Découvrir et expérimenter
 - Profilage de nouveaux comportements
 - Expérimenter l'impact d'un nouveau produit, son ressenti.
 - L'analyse prédictive et l'intelligence Artificielle

De nouveaux besoins

- Essentiellement en termes de capacité de stockage et de calcul.
- Accompagnés par une baisse des coûts

- Les nouveaux services et architectures
 - Le Cloud Computing a grandement facilité l'accès aux infrastructures
 - Ressources ajustables
 - Facturation à la consommation
 - Capacité de stockage illimitée
 - Les architectures distribuées pour le traitement et le stockage.
 - Exemple : La plateforme **Hadoop** avec
 - Son système de fichiers distribués HDFS,
 - Son Modèle de calcul distribué MapReduce

Les nouveaux services et architectures

Les nouveaux modèles de données

- Les SGDB (MySQL, SQL Server ou Oracle) basés sur le modèle relationnel, ne peuvent pas répondre aux exigeances (les 3V) du Big Data.
- Les données doivent être stockées autrement que sous forme de tables, afin que leur traitement puisse répondre aux exigeances du Big Data
- Les Bases de données NoSQL répondent mieux à ces exigences. Elles ont été introduites par les géants du Web, Google, Amazon, Facebook.

Les nouveaux modèles de données

- Les bases de données NoSQL (Not Only SQL) se caractérisent par les propriétés suivantes :
 - Forte distribution des données
 - « Schema-less » ou schéma dynamique
- Elles se divisent en quatre catégories
 - Modèle orienté clé/valeur
 - Modèle orienté colonne
 - Modèle orienté document
 - Modèle orienté graphe

Les nouveaux modèles de données

