

Introduction to RNA-Seq – Quality Control

Wandrille Duchemin

"Raw data": FASTQ format

- FASTQ format stores sequences and "Phred" quality score in a single file
 - Sequence header starts with @
 - Quality header usually starts with +
- Paired data: two separate files for forward and reverse with same ordering

FastQ header

FASTQ Header

- Depends on sequencing technology used, changed several times by Illumina and others
 - Chastity filter switched (now N is good)
 - Representation of paired reads modified

@HWI-ST143:498:D0T4GACXX:7:1101:1474:2111 2:N:0:TGACCA

@HWI-ST143:498:D0T4GACXX:7:1101:1474:2111#TGACCA/2

Phred Quality Scores

- ASCII encoded
- Represents probability (p) that base call is incorrect
 - Quality (Q) = -10 $\log_{10}(p)$

P-value	Phred	Probability of incorrect base call	Base call accuracy
1E-01	10	1 in 10	90%
1E-02	20	1 in 100	99%
1E-03	30	1 in 1000	99.9%
1E-04	40	1 in 10,000	99.99%

Phred Quality Scores

Sanger, Illumina v1.3 to 1.7 (ASCII_BASE=64)

Q	ASCII	P	Q	ASCII	P	Q	ASCII	Р	Q	ASCII	P
1	Α	0.79433	12	L	0.06310	23	W	0.00501	34	b	0.00040
2	В	0.63096	13	M	0.05012	24	X	0.00398	35	c	0.00032
3	C	0.50119	14	N	0.03981	25	Υ	0.00316	36	d	0.00025
4	D	0.39811	15	0	0.03162	26	Z	0.00251	37	e	0.00020
5	E	0.31623	16	P	0.02512	27	[0.00200	38	f	0.00016
6	F	0.25119	17	Q	0.01995	28	\	0.00158	39	g	0.00013
7	G	0.19953	18	R	0.01585	29]	0.00126	40	h	0.00010
8	H	0.15849	19	S	0.01259	30	^	0.00100			
9	I	0.12589	20	T	0.01000	31	_	0.00079			
10	J	0.10000	21	U	0.00794	32	~	0.00063			
11	K	0.07943	22	V	0.00631	33	a	0.00050			

Illumina v1.8 and later (ASCII_BASE=33)

Q	ASCII	Р									
1	"	0.79433	12	-	0.06310	23	8	0.00501	34	C	0.00040
2	#	0.63096	13		0.05012	24	9	0.00398	35	D	0.00032
3	\$	0.50119	14	/	0.03981	25	:	0.00316	36	E	0.00025
4	%	0.39811	15	0	0.03162	26	;	0.00251	37	F	0.00020
5	&	0.31623	16	1	0.02512	27	<	0.00200	38	G	0.00016
6		0.25119	17	2	0.01995	28	=	0.00158	39	H	0.00013
7	(0.19953	18	3	0.01585	29	>	0.00126	40	I	0.00010
8)	0.15849	19	4	0.01259	30	?	0.00100	41	J	0.00008
9	*	0.12589	20	5	0.01000	31	@	0.00079			
10	+	0.10000	21	6	0.00794	32	Α	0.00063			
11	,	0.07943	22	7	0.00631	33	В	0.00050			

Quality Control using FastQC

- FastQC aims to provide a QC report which can spot problems which originate either in the sequencer or in the starting library material
- Generates an HTML report with various metrics
- Supported file formats:
 - FASTQ (can be gzip compressed), SAM, BAM

PRACTICAL

Go to the website and do the fastQC practical

Per Base Sequence Quality

Per Sequence Quality Scores

Per Base Sequence Content

Per Base GC Content

Per Sequence GC Content

Per Sequence GC Content

Duplicate Sequences

Overrepresented Sequences

MultiQC Reports

- Generally, you will be interested in how the QC metrics of all your samples compare with each other
- The software MultiQC will combine your per sample FastQC reports into a single report

PRACTICAL

Go to the website and do the multiQC practical

REFERENCES

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

P. Ewels, et al. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics (2016). doi: 10.1093/bioinformatics/btw354

http://multiqc.info

Swiss Institute of Bioinformatics

Contributors:

Wandrille Duchemin Geoffrey Fucile Walid Gharib Pablo Escobar Lopez Mihaela Zavolan

