a) Calculate the current i_1 , i_2 , i_R , i_B , i_{RC} . Determine the total power dissipation of the following DTL gate. Given, $V_x=V_y=5V$ (Logic high) and $V_x=V_y=0.2V$ (Logic low). Given, $V_{(Diode)on}=0.7V$; $V_{BE\ (SAT)}=0.8V$ and $V_{CE\ (SAT)}=0.2V$. [10]

For Ux = Uy = 5 V;

11)
$$l_{1} = \frac{5-2.2}{4} = 0.7mA$$

$$(11)(2=(1=0.7mA)$$

$$vij)$$
 Power = $vec(i_1 + ipc)$ = $\frac{5-0}{4}$ = $\frac{5}{12}$

181

es and

m die

116

1. In the TTL circuit below, the transistors parameters is β =25, β_R =0.2. Calculate the maximum fan out for (a) Vx=Vy=5V and (b) V_X=V_Y=0.1V and V₀=3.1 V. Given rated maximum collector current, I_{CO(rated)} = 16mA. V_{BC(ON)}= 0.7V, V_{BE(sat)}= 0.8V, V_{CE(SAT)}= 0.1V, V_{D1(ON)}= 0.7V. [15]

1)
$$(LH - lE 3 = N \cdot lLH)'$$

11) $.: N = \frac{iE3}{iLH1'} = \frac{(B3[1+6\cdot B])}{(LH1')}$

11) $lB3 = \frac{Vec - VB3}{R_2}$

11) $VB3 = VBE3 + VD1 + Vo$
 $.: VB3 = o \cdot 8 + o \cdot 7 + 3 \cdot 1 = 4 \cdot 6V$

12) $VB3 = \frac{5 - 46}{1 \cdot 6} = o \cdot 25 \text{ mA}$

13) $VB3 = \frac{5 - 46}{1 \cdot 6} = o \cdot 25 \text{ mA}$

14) $VB3 = \frac{1}{2} \cdot \frac{1}{2$