

Foundations of Certified Programming Language and Compiler Design

Dr.-Ing. Sebastian Ertel

Composable Operating Systems Group, Barkhausen Institute

Outline

ecture	Logic Propositional and first-order logic	Formalisms	PL
2	Tropositional and mot order logic		Functional programming
3		Syntax and Semantics	
4			The untyped lambda calculus
5		Types	
6			The typed lambda calculus
7			Polymorphism
8		Curry-Howard	
9			Higher-order types
10			Dependent types

Main Goals

Remember evaluation may get stuck, i.e., fail at runtime! (succ true)

Desirable goal The compiler *verifies* statically (i.e, at compile-time,) that my program does not get stuck.

Let's enter the world of types and

- learn how to define a type system based upon which
- we can prove that evaluation of typed terms cannot get stuck.

Syntax of Arithmetic Expression with Booleans

Syntax

Additional Syntax

Examples


```
Terms if iszero 0 then succ 0 else 0, pred (succ 0), true, 0, \ldots "Other terms" if 0 then succ 0 else 0, succ true, Boolean values true, false Numeric Values 0, succ 0, succ succ 0, \ldots
```

Semantics

$$\begin{array}{c} t_1 \longrightarrow t_1' \\ \hline \text{if } t_1 \text{ then } t_2 \text{ else } t_3 \longrightarrow \text{if } t_1' \text{ then } t_2 \text{ else } t_3 \end{array} \end{array} \overset{\text{E-IF}}{} \\ \hline \text{if true then } t_2 \text{ else } t_3 \longrightarrow t_2 \end{array} \overset{\text{E-IFTRUE}}{} \\ \hline \frac{t \longrightarrow t'}{\text{succ } t \longrightarrow \text{succ } t'} \overset{\text{E-Succ}}{} \\ \hline \frac{pred \left(\text{succ } nv \right) \longrightarrow nv}{} \overset{\text{E-PREDSucc}}{} \\ \hline \frac{t \longrightarrow t'}{\text{pred } 0 \longrightarrow 0} \overset{\text{E-PREDZERO}}{} \\ \hline \frac{t \longrightarrow t'}{\text{iszero } t \longrightarrow \text{iszero } t'} \overset{\text{E-IsZero1}}{} \\ \hline \frac{\text{iszero } 0 \longrightarrow \text{true}}{} \overset{\text{E-IsZero2}}{} \\ \hline \end{array}$$

Examples


```
Terms in \longrightarrow if iszero 0 then succ 0 else 0, pred (succ 0), true, 0, ...

Stuck terms if 0 then succ 0 else 0, succ true,

Boolean values true, false

Numeric Values 0, succ 0, succ succ 0, ...
```

Types

- Let's introduce two types, Nat or Bool, to classify the terms of our example language.
- To refer to types in general, we use metavariables S,T,U.
- We say "a term t has type T" and mean that t evaluates to a value of type T.

The Typing Relation

New syntactic forms:

New Typing Rules:

Examples


```
Terms in \longrightarrow if iszero 0 then succ 0 else 0, pred (succ 0), true, \theta, ...

Stuck terms if 0 then succ 0 else 0, succ true,

Boolean values true, false

Numeric Values 0, succ 0, succ succ 0, ...

Typed terms if iszero 0 then succ 0 else 0: Nat, pred (succ 0): Nat, true: Bool, 0: Nat...
```

The Typing Relation

Definition (Typing Relation)

Formally, the *typing relation* (for our example language) is the smallest binary relation between terms and types satisfying all instances of the associated rules.

Definition (Well-typedness)

A term t is *typable* (or *well-typed*) if there is some T such that t : T.

Calculating Types Lemma

• Recursive definition to calculate the type of a term for each syntactic form:

Lemma (Inversion of the typing relation)

```
1. If 0:R then R=\mathit{Nat}.
```

- 2. If succ t : R then t : Nat and R = Nat.
- 3. If pred t : R then t : Nat and R = Nat.
- 4. If true: R then R = Bool.
- 5. If false: R then R = Bool.
- 6. If if t_1 then t_2 else $t_3 : R$ then $t_1 : Bool, t_2 : R$ and $t_3 : R$.
- 7. If iszerot: R then t: Nat and R = Bool

Calculating Types Proof

Proof.

Immediate from the typing relation.

Typing Derivations

$$\frac{\text{true}: \texttt{Bool}}{\text{if true then } 0 \in \texttt{lse succ } 0: \texttt{Nat}} \xrightarrow{\texttt{T-ZERO}} \frac{\overline{0: \texttt{Nat}}}{\text{succ } 0: \texttt{Nat}} \xrightarrow{\texttt{T-Succ }} \text{T-Succ }$$

Typing statements are formal assertions about the typing of the program.

Typing rules are implications between statements.

Typing derivations are deducations based on typing rules.

Theorem (Uniqueness of Types)

Each term t has at most one type. That is, if t is typable, then its type is unique and there is only one derivation of this typing from the inference rules.

Proof.

Structural induction on t with applications of the inversion lemma and the induction hypotheses.

Safety

- Well-typed terms do not "go wrong".
- Safety is also called soundness.
- Safety = Progress + Preservation

Definition (Progress)

A well-typed term is not stuck (either it is a value or it can take a step according to the evaluation rules.)

Definition (Preservation)

If a well-typed term takes a step of evaluation, then the resulting term is also well-typed.¹

¹In most systems, the resulting term has the same type.

Canonical Forms Lemma

When proving progress, it is helpful to identify the well-typed terms that are values for the types in our language.

Lemma (Canonical Forms)

- 1. If v: Bool is a value (of type Bool) then $v = true \lor v = false$.
- 2. If v : Nat is a value (of type Nat) then $v=0 \lor v=\mathit{succ}\,v_1$ where v_1 : Nat is a value.

Examples


```
Terms in → if iszero 0 then succ 0 else 0, pred (succ 0), true, 0,...

Stuck terms if 0 then succ 0 else 0, succ true,

Boolean values true, false

Numeric Values 0, succ 0, succ succ 0,...

Typed terms if iszero 0 then succ 0 else 0: Nat, pred (succ 0): Nat, true: Bool, 0: Nat...

Canonical forms true: Bool, false: Bool, 0: Nat, succ 0: Nat, succ succ 0: Nat,...
```

Canonical Forms Proof

- Remember what we do: We connect terms that are defined as values to types.
- Mind the difference between the value definition succ nv and the term definition succ t!

Proof.

- Values/(valued terms): true, false, 0, succ n where n is a numeric value.
- Applying the inversion lemma to connect values(/terms) to types, we get:
 - 1. the only boolean-typed terms that are values are: true: Bool, false: Bool
 - 2. the only numeric-typed terms that are values are: 0, succ n where n is a value of type Nat

Progress Theorem

Theorem (Progress)

If t: T then either t is a value or there exists a t' such that $t \longrightarrow t'$.

Progress Proof

- The proof is by induction on the typing derivation for t:T.
- Cases:

Case	Rule with $t:T$	Proof
T-TRUE	true: Bool T-TRUE	Immediate.
T-FALSE	false: Bool T-False	Immediate.
T-ZERO	O: Nat T-ZERO	Immediate.

Proof

- The proof is by induction on the typing derivation for t:T.
- Cases:

Case T-IF

Rule with t:T

$$rac{t_1: exttt{Bool} \quad t_2: exttt{T} \quad t_3: exttt{T}}{ exttt{if} \ t_1 \ exttt{then} \ t_2 \ exttt{else} \ t_3: T}$$
 T-IF

Proof

By induction hypothesis:

1) If t_1 is a value then

by the Canonical Forms lemma: $t_1 = \mathtt{true}$ or $t_1 = \mathtt{false}.$

By E-IFTrue or E-IFFalse we have $t \longrightarrow t'$ where $t'=t_2$ or $t'=t_3$.

2) If $t_1 \longrightarrow t_1'$ then

by E-IF $t \longrightarrow t'$ where $t' = \text{if } t'_1 \text{ then } t_2 \text{ else } t_3.$

Proof

- The proof is by induction on the typing derivation for t:T.
- Cases:

Case Rule with t:TT-Succ $\frac{t_1: \text{Nat}}{\text{succ } t_1: \text{Nat}}$ T-Succ

Proof

By induction hypothesis:

1) If t_1 is a value then

by the Canonical Forms lemma: $t_1 = 0$ or $t_1 = \sec nv$.

By the syntax definition of values (nv :=) we have that $t = succ t_1$ is a value.

2) If $t_1 \longrightarrow t_1'$ then

by E-Succ we have $t \longrightarrow t'$ where $t' = \operatorname{succ} t'_1$.

Progress Proof

- The proof is by induction on the typing derivation for t:T.
- Cases:

Case Rule with t:TT-PRED $\displaystyle \frac{t_1: \mathtt{Nat}}{\mathtt{pred}\; t_1: \mathtt{Nat}}$ T-PRED

Proof

By induction hypothesis:

1) If t_1 is a value then

by the Canonical Forms lemma: $t_1=0$ or $t_1=\sec nv$ (because t_1 : Nat) such that

either E-PREDZERO or E-PREDSUCC applies.

2) If $t_1 \longrightarrow t_1'$ then

by E-PRED $t \longrightarrow \mathtt{pred}\ t_1'.$

Progress Proof

• The proof is by induction on the typing derivation for t:T.

Cases:

```
Case Rule with t:T Proof

T-IsZERO t_1: \mathbb{N}at By induction hypothesis: ... homework.
```

ш

Preservation Theorem

Theorem (Preservation)

If t: T and $t \longrightarrow t'$ then t': T.

Preservation

Proof

- The proof is by induction on the typing derivation for t:T.
- Cases:

Case	Rule with $t:T$	Proof
T-TRUE	true: Bool T-TRUE	t is a value such that there is no t^{\prime} and the theorem holds.
T-FALSE	false: Bool T-FALSE	t is a value such that there is no t^\prime and the theorem holds.
T-ZERO	O: Nat T-ZERO	t is a value such that there is no t^\prime and the theorem holds.

Preservation

Proof

- The proof is by induction on the typing derivation for t:T.
- Cases:

Case	Rule with $oldsymbol{t}$: T		
T-IF	$t_1: exttt{Bool} t_2: exttt{T} t_3: exttt{T}$		
	if t_1 then t_2 else $t_3:T$		

Proof

We assume subderivations for t_1, t_2, t_3 . 3 possible evaluation rules for t:

- 1) By E-IFTRUE we know that $t_1 = \mathtt{true}$ such that $t \longrightarrow t_2$. By T-IF we have that $t_2 : T$.
- **2)** By E-IFFALSE we know that $t_1 = \mathtt{false}$ such that $t \longrightarrow t_3$. By T-IF we have that $t_3 : T$.
- **3)** By E-IF we know that $t_1 \longrightarrow t_1'$ such that $t \longrightarrow t'$ where $t' = \text{if } t_1'$ then t_2 else t_3 .

By T-IF we have that $t_2:T,t_3:T$.

Preservation Proof

- The proof is by induction on the typing derivation for t:T.
- Cases:

Case	Rule with $t:T$	Proof
T-Succ	$rac{t_1: \mathtt{Nat}}{\mathtt{succ}\; t_1: \mathtt{Nat}}$ T-Succ	We assume a subderivation of t_1 . One possible rule exists:
		By E-Succ we know that $t \longrightarrow t'$ where $t' = \operatorname{succ} t_1'$.
		By induction hypothesis, we have that $t_1 \longrightarrow t_1'$ with $t_1': \mathtt{Nat}.$
		By T-Succ on succ t_1^\prime , we have that t^\prime : Nat ,i.e., t^\prime : T

Preservation Proof

- The proof is by induction on the typing derivation for t:T.
- Cases:

Case	Rule with $oldsymbol{t}{:}T$	Proof
T-PRED	$rac{t_1: \mathtt{Nat}}{\mathtt{pred}\ t_1: \mathtt{Nat}}$ T-PRED	Homework.
T-IsZero	$rac{t_1: exttt{Nat}}{ exttt{iszero}\ t_1: exttt{Bool}}$ T-Is Z ero	Homework.

What we have learned

We have entered the world of types, i.e., compile-time verification:

- We know what a typing relation is: it prevents runtime errors, i.e., stuck evaluation.
- We know how to connect terms and types.
- · We understand how to prove the first vital property of a typed language at compile-time: safety.