绝密 ★ 考试结束前

全国 2020 年 8 月高等教育自学考试

概率论与数理统计(二)试题

课程代码:02197

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分

注意事项:

- 1. 答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔 填写在答题纸规定的位置上。
- 2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。如需改动,用橡 皮擦干净后,再选涂其他答案标号。不能答在试题卷上。
- 一、单项选择题: 本大题共 10 小题, 每小题 2 分, 共 20 分。在每小题列出的备选项中只 有一项是最符合题目要求的, 请将其选出。
- 1. 将一枚骰子连掷两次,事件A表示"两次均出现1点",则P(A)=
 - A. $\frac{1}{36}$
- B. $\frac{1}{18}$ C. $\frac{1}{6}$
- D. $\frac{1}{3}$
- 2. 设事件 A 与 B 相互独立,且 $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{4}$,则 $P(\overline{AB}) = \frac{1}{4}$
 - A. $\frac{1}{12}$
- B. $\frac{1}{4}$ C. $\frac{1}{3}$
- 3. 设A与B互为对立事件,且P(A)>0,P(B)>0,则下列结论不成立的是
 - A. P(B) = 1 P(A)

B. P(A|B) = 0

C. $P(A|\overline{B}) = 1$

- D. $P(\overline{A \cup B}) = 1$
- 4. 设随机变量 $X \sim N(-1,2^2)$, $\Phi(x)$ 为标准正态分布函数,则 $P\{-1 < X \le 2\}$ =
 - A. $\Phi(2) \Phi(-1)$

B. $\Phi\left(\frac{3}{2}\right) - \frac{1}{2}$

C. $\Phi\left(\frac{3}{2}\right)$

D. $\Phi(3) - \frac{1}{2}$

浙 02197# 概率论与数理统计(二)试题 第1页(共4页)

5. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} ce^{-2x}, & x > 0, \\ 0, & x \le 0. \end{cases}$ 则常数 c =

- A. -2
- B. $-\frac{1}{2}$ C. $\frac{1}{2}$
- D. 2

6. 设随机变量 X 与 Y 相互独立, $\frac{X \mid -2 \mid -1 \mid 0}{P \mid 0.3 \mid 0.3 \mid 0.4}$, $\frac{Y \mid -0.5 \mid 1 \mid 3}{P \mid 0.5 \mid 0.25 \mid 0.25}$,

则 $P{X = -2 | Y = 1} =$

- A. 0.25
- B. 0.3
- C. 0.4
- D. 0.5

7. 设X与Y为随机变量,C是任意常数,则下列结论一定成立的是

- A. D(XY) = D(X)D(Y)
- B. D(X Y) = D(X) D(Y)
- C. D(X-Y+C) = D(X-Y) D. D(X-Y) = D(X) + D(Y)

8. 设随机变量 X 与 Y 相互独立,且 $X \sim N(2,3^2)$, $Y \sim N(3,4^2)$,则 D(2X - Y + 1) =

- A. 8
- B. 20
- C. 52

9. 设总体 X 服从区间 $[0,3\theta]$ 上的均匀分布,未知参数 $\theta > 0$, \overline{X} 为样本均值,则 θ 的 矩估计是

- A. $\frac{1}{3}\overline{X}$ B. $\frac{2}{3}\overline{X}$ C. $\frac{3}{2}\overline{X}$

- D. $3\bar{X}$

10. 设 $X_1, X_2, \dots, X_n (n > 1)$ 为来自正态总体 $N(\mu, \sigma^2)$ 的样本,其中 σ^2 未知, \bar{X} 和 S^2 分别 是样本均值和样本方差,对于检验假设 $H_0: \mu = \mu_0; H_1: \mu \neq \mu_0$, 当显著性水平为 α 时 H_o 的拒绝域为

A. $\left\{ \left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| > u_{\frac{\alpha}{2}} \right\}$

B. $\left\{ \left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| < u_{\underline{\alpha}} \right\}$

- C. $\left\{ \left| \frac{\overline{X} \mu_0}{S / \sqrt{n}} \right| > t_{\frac{\alpha}{2}}(n-1) \right\}$
- D. $\left\{ \left| \frac{\overline{X} \mu_0}{S / \sqrt{n}} \right| < t_{\underline{\alpha}} (n-1) \right\}$

非选择题部分

注意事项:

用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

- 二、填空题:本大题共15小题,每小题2分,共30分。
- 11. 设 A, B 为随机事件,且 $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{4}$, $P(AB) = \frac{1}{8}$,则 $P(A \cup B) = \underline{\hspace{1cm}}$
- 12. 设某电梯从第一层升到第12层,在第一层时电梯内共有10位乘客,每位乘客从第 2 层到第 12 层每层离开电梯是等可能的,事件 A表示"这 10 位乘客在同一层离开 电梯",则 $P(A) = _____.$
- 13. 设P(A) = 0.7,P(A B) = 0.3,则 $P(\overline{AB}) =$ ______.
- 14. 设随机变量 X 服从区间[1,5] 上的均匀分布,则P{2 < X ≤ 3} = ...
- 15. 设随机变量 X 的分布函数为 F(x), 且 F(3) = 0.8, F(0) = 0, 则 $P\{0 < X \le 3\} =$ _____.
- 16. 设二维随机变量(X,Y)的分布律为

Y	-1	0	1
-1	$\frac{1}{6}$	$\frac{2}{6}$	<u>1</u>
1	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{6}$

17. 设随机变量 X 与 Y 相互独立, X 和 Y 的概率密度分别为 $f_X(x) = \begin{cases} 2e^{-2x}, & x > 0, \\ 0, & x < 0, \end{cases}$

 $f_{Y}(y) = \begin{cases} \frac{1}{5}, & 0 \le y \le 5, \\ 0, & \text{则当 } x > 0, \ 0 \le y \le 5 \text{ 时,}(X,Y) \text{ 的概率密度 } f(x,y) = _____. \end{cases}$

- 18. 设随机变量 X 与 Y 相互独立, X 和 Y 的概率密度分别为 $f_X(x) = \begin{cases} 3e^{-3x}, & x > 0, \\ 0, & x \le 0. \end{cases}$ $f_{\gamma}(y) = \begin{cases} 4e^{-4y}, & y > 0, \\ 0, & v \le 0, \end{cases} \quad \text{If } P\{0 \le X \le 1, \ 0 \le Y \le 2\} = \underline{\qquad}.$
- 19. 设随机变量 $X \sim B(6,0.2)$, 则 D(-2X+3) =_____
- 20. 设随机变量 X 服从区间[0,1]上的均匀分布,则由切比雪夫不等式可得

$$P\left\{\left|X-\frac{1}{2}\right|\geq\frac{1}{3}\right\}\leq\underline{\qquad}.$$

21. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 为来自 X 的样本, \bar{X} 为样本均值, S^2 为样本 方差,则 $\frac{\bar{X}-\mu}{S/\sqrt{n}}$ ~_____.

浙 02197# 概率论与数理统计(二)试题 第 3 页(共 4 页)

- 22. 设 X_1, X_2, X_3, X_4 为来自总体 X 的样本,且 $X \sim N(\mu, 3^2)$, \bar{X} 为样本均值,则 $E(\bar{X} \mu)^2 =$ ______.
- 23. 设 X_1, X_2, \dots, X_9 为来自正态总体N(0,1)的样本,则 $\sum_{i=1}^9 X_i^2$ 服从的分布是______.
- 24. 设 X_1, X_2, \dots, X_n 为来自正态总体 $N(\mu, \sigma_0^2)$ 的样本, σ_0^2 已知, S^2 为样本方差,则 $E(S^2)$ = .
- 25. 设某个检验假设的拒绝域为W,当原假设 H_0 成立时,样本 $(X_1, X_2, \dots, X_n) \in W$ 的概率为0.1,则犯第一类错误的概率为______.
- 三、计算题:本大题共2小题,每小题8分,共16分。
- 26. 设 $P(\overline{A}) = 0.3$, P(B) = 0.4, $P(A\overline{B}) = 0.5$.求: $P(B|(A \cup \overline{B}))$.
- 27. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{3}{16}x^2, & -2 \le x \le 2, \\ 0, & 其他. \end{cases}$

求: (1) E(X), D(X); (2) $P\{|X-E(X)| < D(X)\}$.

- 四、综合题: 本大题共2小题, 每小题12分, 共24分。
- 28. 设二维随机变量(X,Y)的分布律为

Y	0	1
0	$\frac{2}{25}$	b
1	а	$\frac{3}{25}$
2	$\frac{1}{25}$	$\frac{3}{25}$ $\frac{2}{25}$

 $\mathbb{H} P\{Y=1 | X=0\} = \frac{3}{5}.$

- (1) 求常数 a,b; (2) 求 (X,Y) 关于 X,Y 的边缘分布律; (3) 判断 X 与 Y 的独立性.
- 29. 设二维随机变量 $(X,Y) \sim N(0,1,1^2,2^2,\rho)$.

求: (1) 当 $\rho = 0$ 时, E(X-2Y+1), D(X-2Y+1);

(2)
$$\stackrel{.}{=} \rho = -\frac{1}{2}$$
 $\text{ if } E(Y^2 - XY), D(X - 2Y).$

- 五、应用题: 10分。
- 30. 设某产品长度(单位: mm)服从正态分布 $N(\mu, \sigma^2)$,现随机抽取该产品 36 件,测其长度并算得样本均值 $\bar{x}=2050$,样本标准差 s=250 .可否认为这批产品的平均长度为 2000(mm)?(附: $\alpha=0.1,t_{0.05}(35)=1.6896$)

浙 02197# 概率论与数理统计(二)试题 第 4 页(共 4 页)

绝密★启用前

2020 年 8 月高等教育自学考试全国统一命题考试

概率论与数理统计(二)试题答案及评分参考

(课程代码 02197)

- 一、单项选择题:本大题共 10 小题,每小题 2 分,共 20 分。
- 1. A
- 2. D
- 3. D
- 4. B
- 5. D
- 6. B
- 7. C
- 8. C
- 9. B
- 10. C
- 二、填空题: 本大题共 15 小题, 每小题 2 分, 共 30 分。
- 11. $\frac{5}{8}$
- 12. $\frac{1}{11^9}$

绝密★启用前

2020年8月高等教育自学考试全国统一命题考试

概率论与数理统计(二)试题答案及评分参考

(课程代码 02197)

- 、单项选择题:本大题共 10 小题,每小题 2 分,共 20 分。

1. A

3. D 8. C

4. B 5. D 9. B 10. C

6. B

7. C

二、填空题:本大题共15小题,每小题2分,共30分。

11. $\frac{5}{8}$ 12. $\frac{1}{11^9}$ 13. 0.6 14. $\frac{1}{4}$

15. 0.8 16. $\frac{1}{3}$ 17. $\frac{2}{5}e^{-2x}$ 18. $(1-e^{-3})(1-e^{-8})$

19. 3.84 20. $\frac{3}{4}$ 21. t(n-1) 22. $\frac{9}{4}$

23. $\chi^2(9)$ 24. σ_0^2 25. 0.1

三、计算题: 本大题共2小题, 每小题8分, 共16分。

26. $\mathbf{P}\left(B\big|(A\cup\overline{B})\right) = \frac{P\left(B(A\cup\overline{B})\right)}{P(A\cup\overline{B})} = \frac{P\left(AB\right)}{P(A\cup\overline{B})},$

……2分

 $P(A \cup \overline{B}) = P(A) + P(\overline{B}) - P(A\overline{B}) = 0.8$,

 $P(A\overline{B}) = P(A - AB) = P(A) - P(AB)$,

-----4分

 $P(AB) = P(A) - P(A\overline{B}) = 0.2,$

 $P(B|(A\cup \overline{B})) = 0.25$.

……8分

27. \Re (1) $E(X) = \int_{-2}^{2} \frac{3}{16} x^3 dx = 0$, $E(X^2) = \int_{-2}^{2} \frac{3}{16} x^4 dx = \frac{12}{5}$,

 $D(X) = E(X^2) - [E(X)]^2 = \frac{12}{5};$

(2) $P\{|X-E(X)| < D(X)\} = P\{|X| < \frac{12}{5}\} = 1.$

概率论与数理统计(二)试题答案及评分参考第1页(共2页)

四、综合题:本大题共2小题,每小题12分,共24分。

又
$$a+b+\frac{8}{25}=1$$
,得 $a=\frac{14}{25}$, $b=\frac{3}{25}$;4 分

(2)
$$\frac{X \mid 0 \quad 1 \quad 2}{P \mid \frac{5}{25} \quad \frac{17}{25} \quad \frac{3}{25}}, \frac{Y \mid 0 \quad 1}{P \mid \frac{17}{25} \quad \frac{8}{25}}; \dots 8$$
8 $\%$

(3) 由于
$$P{X = 0, Y = 0} = \frac{2}{25}$$
,

$$P{X = 0} \cdot P{Y = 0} = \frac{5}{25} \cdot \frac{17}{25} = \frac{17}{125}$$

$$P\{X=0,Y=0\} \neq P\{X=0\} \cdot P\{Y=0\}$$
,

29. 解 (1) 当 $\rho = 0$ 时, X 与Y 独立,

$$E(X-2Y+1) = E(X)-2E(Y)+1=-1$$
,

$$D(X-2Y+1) = D(X) + 4D(Y) = 17$$
;4 $\frac{1}{2}$

(2) $E(Y^2) = D(Y) + [E(Y)]^2 = 5$,

$$\operatorname{Cov}(X,Y) = \rho_{XY} \sqrt{D(X)} \sqrt{D(Y)} = -1$$
,

$$E(XY) = \text{Cov}(X, Y) + E(X)E(Y) = -1$$
, $\cdots 8 \, \text{$\frac{1}{2}$}$

$$E(Y^2 - XY) = E(Y^2) - E(XY) = 6$$
,10 $\%$

$$D(X - 2Y) = D(X) + 4D(Y) - 4Cov(X, Y) = 21$$
.12 $\frac{1}{2}$

五、应用题: 10分。

30. 解 假设 $H_0: \mu = \mu_0; H_1: \mu \neq \mu_0$,

取检验统计量
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
 , 当 $|t| > t_{\frac{\alpha}{2}}(n-1)$ 时,拒绝 H_0 ; ······4 分

由题意可知 $\bar{x} = 2050$, s = 250, n = 36, $\mu_0 = 2000$,

由于 $|t| < t_{0.05}(35)$,故接受 H_0 ,

即可以认为这批产品的平均长度为 2000 mm. ·····10 分

概率论与数理统计(二)试题答案及评分参考第2页(共2页)