Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа № 4 «Аппроксимация функции методом наименьших квадратов»

По дисциплине «Вычислительная математика» Вариант 12

Выполнила:

Студентка группы Р3217

Русакова Е.Д.

Преподаватель:

Малышева Т.А.

Санкт-Петербург

Оглавление

Цель работы:	3
Задание:	3
Задание для варианта 12:	4
Рабочие формулы:	4
Вычислительная часть:	5
Линейное приближение:	5
Квадратичное приближение:	6
Графики исходной функции и полученных приближений:	7
Программная реализация:	7
Описание разработанной программы:	7
Исходный код программы:	7
AbstractApproximation.java — класс с общими вычислениями	8
LinearApproximation.java — линейная аппроксимация	10
QuadraticApproximation.java — квадратичная аппроксимация	10
CubicApproximation.java — кубическая аппроксимация	11
PowerApproximation.java — степенная аппроксимация	12
LogarithmicApproximation.java — логарифмическая аппроксимация	13
ExponentialApproximation.java — экспоненциальная аппроксимация	14
Примеры работы программы:	15
Пример 1	15
Пример 2	17
Пример 3	19
Вывол:	20

Цель работы:

Найти функцию, являющуюся наилучшим приближением заданной табличной функцией по методу наименьших квадратов

Задание:

Вычислительная реализация задачи

Вычислительная часть лабораторной работы должна быть представлена только в отчете.

Задание:

- 1. Сформировать таблицу табулирования заданной функции на указанном интервале (см. табл. 1)
- 2. Построить линейное и квадратичное приближения по 11 точкам заданного интервала;
- 3. Найти среднеквадратические отклонения для каждой аппроксимирующей функции. Ответы дать с тремя знаками после запятой;
- 4. Выбрать наилучшее приближение;
- 5. Построить графики заданной функции, а также полученные линейное и квадратичное приближения;
- 6. Привести в отчете подробные вычисления.

Программная реализация задачи

Для исследования использовать:

- линейную функцию,
- полиномиальную функцию 2-й степени,
- полиномиальную функцию 3-й степени,
- экспоненциальную функцию,
- логарифмическую функцию,
- степенную функцию.

Методика проведения исследования:

- 1. Вычислить меру отклонения: $S = \sum_{i=1}^{n} [\varphi(x_i) y_i]^2$ для всех исследуемых функций;
- 2. Уточнить значения коэффициентов эмпирических функций, минимизируя функцию S;
- 3. Сформировать массивы предполагаемых эмпирических зависимостей ($\varphi(x_i), \varepsilon_i$);
- Определить среднеквадратичное отклонение для каждой аппроксимирующей функции. Выбрать наименьшее значение и, следовательно, наилучшее приближение;
- 5. Построить графики полученных эмпирических функций.

Задание:

- 1. Предусмотреть ввод исходных данных из файла/консоли (таблица y = f(x) должна содержать от 8 до 12 точек);
- Реализовать метод наименьших квадратов, исследуя все указанные функции;
- 3. Предусмотреть вывод результатов в файл/консоль: коэффициенты аппроксимирующих функций, среднеквадратичное отклонение, массивы значений $x_i, y_i, \varphi(x_i), \varepsilon_i$;
- Для линейной зависимости вычислить коэффициент корреляции Пирсона;
- 5. Вычислить коэффициент детерминации, программа должна выводить соответствующее сообщение в зависимости от полученного значения R^2 ;
- Программа должна отображать наилучшую аппроксимирующую функцию;
- 7. Организовать вывод графиков функций, графики должны полностью отображать весь исследуемый интервал (с запасом);
- 8. Программа должна быть протестирована при различных наборах данных, в том числе и некорректных;

Задание для варианта 12:

Для вычислительной реализации задачи:

$$y = \frac{4x}{x^4 + 12}$$
, $x \in [-2,0]$, $h = 0.2$

Рабочие формулы:

Мера отклонения – сумма квадратов отклонений:

$$S = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (\varphi(x_i) - y_i)^2$$

Система уравнений для поиска коэффициентов приближенной функции:

$$\begin{cases} \frac{\partial S}{\partial a_0} = 0 \\ \frac{\partial S}{\partial a_1} = 0 \\ \frac{\partial S}{\partial a_n} = 0 \\ \frac{\partial S}{\partial a_n} = 0 \end{cases} \Rightarrow \begin{cases} a_0 n + a_1 \sum_{i=1}^n x_i + \dots + a_{m-1} \sum_{i=1}^n x_i^{m-1} + a_m \sum_{i=1}^n x_i^m = \sum_{i=1}^n y_i \\ a_0 \sum_{i=1}^n x_i + a_1 \sum_{i=1}^n x_i^2 + \dots + a_{m-1} \sum_{i=1}^n x_i^m + a_m \sum_{i=1}^n x_i^{m+1} = \sum_{i=1}^n x_i y_i \\ \dots & n \end{cases}$$

Коэффициент корреляции:

$$r = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2 \sum_{i=1}^n (y_i - ar{y})^2 2}}$$
, где $ar{x} = rac{\sum_{i=1}^n x_i}{n}$, $ar{y} = rac{\sum_{i=1}^n y_i}{n}$

Среднеквадратичное отклонение:

$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (\varphi(x_i) - y_i)^2}{n}}$$

Достоверность аппроксимации:

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \varphi_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{\varphi})^{2}}, \quad \bar{\varphi} = \frac{1}{n} \sum_{i=1}^{n} \varphi_{i}$$

Вычислительная часть:

Таблица табулирования заданной функции $y = \frac{4x}{x^4 + 12}$ на интервале $x \in [-2,0]$

n	1	2	3	4	5	6	7	8	9	10	11
x_i	-2,0	-1,8	-1,6	-1,4	-1,2	-1,0	-0,8	-0,6	-0,4	-0,2	0,0
y_i	-0,286	-0,320	-0,345	-0,353	-0,341	-0,308	-0,258	-0,198	-0,133	-0,067	0,000

$$SX = \sum_{i=1}^{n} x_i = -11;$$
 $SX^2 = \sum_{i=1}^{n} x_i^2 = 15.4;$ $SX^3 = \sum_{i=1}^{n} x_i^3 = -24.2;$ $SX^4 = \sum_{i=1}^{n} x_i^4 = 40.533;$ $SY = \sum_{i=1}^{n} y_i = -2.608;$ $SXY = \sum_{i=1}^{n} x_i y_i = 3.303;$ $SX^2Y = \sum_{i=1}^{n} x_i^2 y_i = -4.815$

Линейное приближение:

$$\varphi(x) = ax + b$$

$$S = \sum_{i=1}^{n} (ax_i + b - y_i)^2$$

$$\begin{cases} \frac{\partial S}{\partial a} = 0 \\ \frac{\partial S}{\partial b} = 0 \end{cases} \Rightarrow \begin{cases} a * SX^2 + b * SX = SXY \\ a * SX + b * n = SY \end{cases}$$

По правилу Крамера:

$$\Delta = SX^2 * n - SX * SX = 15,4 * 11 - (-11)^2 = 48,4$$

$$\Delta_1 = SXY * n - SX * SY = 3,303 * 11 - (-11) * (-2,608) = 7,645$$

$$\Delta_2 = SX^2 * SY - SX * SXY = 15,4 * (-2,608) - (-11) * 3,303 = -3,8302$$

$$a = \frac{\Delta_1}{\Delta} = \frac{7,645}{48,4} = 0,158$$

$$b = \frac{\Delta_2}{\Delta} = \frac{-3,8302}{48,4} = -0,079$$

$$\varphi(x) = 0,158x - 0,079$$

Среднеквадратичное отклонение:

$$\delta_1 = \sqrt{\frac{\sum_{i=1}^n (\varphi(x_i) - y_i)^2}{n}} = \sqrt{\frac{0,039}{11}} = 0,0595$$

Квадратичное приближение:

$$\varphi(x) = a_0 + a_1 x + a_2 x^2$$

$$S = \sum_{i=1}^{n} (a_0 + a_1 x_i + a_2 x_i^2 - y_i)^2$$

$$\begin{cases} a_0 * n + a_1 * SX + a_2 * SX^2 = SY \\ a_0 * SX + a_1 * SX^2 + a_2 * SX^3 = SXY \\ a_0 * SX^2 + a_1 * SX^3 + a_2 * SX^4 = SX^2Y \end{cases} \Rightarrow \begin{cases} 11 * a_0 - 11 * a_1 + 15, 4 * a_2 = -2,608 \\ -11 * a_0 + 15, 4 * a_1 - 24, 2 * a_2 = 3,303 \\ 15, 4 * a_0 - 24, 2 * a_1 + 40,533 * a_2 = -4,815 \end{cases}$$

По правилу Крамера:

$$\Delta = \begin{vmatrix} 11 & -11 & 15,4 \\ -11 & 15,4 & -24,2 \\ 15,4 & -24,2 & 40,533 \end{vmatrix} = 66,4532$$

$$\Delta_1 = \begin{vmatrix} -2,608 & -11 & 15,4 \\ 3,303 & 15,4 & -24,2 \\ -4,815 & -24,2 & 40,533 \end{vmatrix} = 1,3099834$$

$$\Delta_2 = \begin{vmatrix} 11 & -2,608 & 15,4 \\ -11 & 3,303 & -24,2 \\ 15,4 & -4,815 & 40,533 \end{vmatrix} = 32,392745$$

$$\Delta_3 = \begin{vmatrix} 11 & -11 & -2,608 \\ -11 & 15,4 & 3,303 \\ 15,4 & -24,2 & -4,815 \end{vmatrix} = 10,94808$$

$$a_0 = \frac{\Delta_1}{\Delta} = \frac{1,3099834}{66,4532} = 0,0197$$

$$a_1 = \frac{\Delta_2}{\Delta} = \frac{32,392745}{66,4532} = 0,487$$

$$a_2 = \frac{\Delta_3}{\Delta} = \frac{10,94808}{66,4532} = 0,165$$

$$\varphi(x) = 0.0197 + 0.487 * x + 0.165 * x^2$$

Среднеквадратичное отклонение:

$$\delta_2 = \sqrt{\frac{\sum_{i=1}^n (\varphi(x_i) - y_i)^2}{n}} = \sqrt{\frac{0,002}{11}} = 0,0135$$

 $\delta_2 < \delta_1$, следовательно, квадратичная аппроксимация является более точной.

Графики исходной функции и полученных приближений:

Красный — исходная функция, синий — линейная аппроксимация, фиолетовый — квадратичная аппроксимация.

Программная реализация:

Описание разработанной программы:

Разработанная программа позволяет найти 6 приближенных к исходной, функций, различного вида. Пользователь вводит исходные значения точек с клавиатуры или из файла. Программа находит аппроксимированные функции, меры отклонений, среднеквадратичное отклонение, достоверность для каждой аппроксимации и коэффициент корреляции для линейной аппроксимации, и определяет наилучшую аппроксимацию по значениям среднеквадратичных отклонений. Также программа строит графики исходной и полученных функций и выводит все результаты на экран или в файл по выбору пользователя.

Исходный код программы:

Полный код программы выложен на Github и доступен по ссылке <u>lenapochemy/comp-math-lab4:</u> вычмат лаба 4 аппроксимация по мнк (github.com)

Далее приведен код классов, которые отвечают за нахождение приближенных функций, и код абстрактного класса, в котором вычисляются общие для всех видов функций характеристики.

AbstractApproximation.java - класс с общими вычислениями

```
package approximations;
import java.io.FileWriter;
import java.io.IOException;
import java.math.BigDecimal;
import java.math.RoundingMode;
import java.util.function.DoubleFunction;
public abstract class AbstractApproximation {
    public final double[] x, y;
    public final int n;
    public double[] phi, eps; //значения аппроксимирующей функции и
отклонения
   public double S, standardDeviation, R2;
   public final DoubleFunction<Double> phiFunc; //аппроксимирующая функция
   public final boolean outputMode, negativeData;
   public final FileWriter file;
   public String name, coef, type;
   public AbstractApproximation(int n, double[] x, double[] y, String
name,String type, boolean outputMode, FileWriter file, boolean negativeData) {
        this.outputMode = outputMode;
        this.negativeData = negativeData;
        this.file = file;
        this.n = n;
        this.x = x;
        this.y = y;
        this.name = name;
        this.type = type;
        writeResult("\n----");
        writeResult(name + ": " + type + "\n");
        this.phiFunc = findFunc();
        if (negativeData) {
            writeResult("Данная аппроксимация не возможна с отрицательными
числами");
        } else {
            phi = new double[n];
            eps = new double[n];
            S = 0;
            double phi sr = 0;
            for (int i = 0; i < n; i++) {</pre>
               phi[i] = phiFunc.apply(x[i]);
               eps[i] = phi[i] - y[i];
               S += eps[i] * eps[i];
               phi sr += phi[i];
            standardDeviation = Math.sqrt(S / n); //CKO
            phi sr = phi sr / n; //phi среднее
            double sum1 = 0, sum2 = 0;
            for (int i = 0; i < n; i++) {</pre>
                sum1 += Math.pow((y[i] - phi[i]), 2);
               sum2 += Math.pow((y[i] - phi sr), 2);
            R2 = 1 - sum1 / sum2; //достоверность
```

```
printAllResults();
   public abstract DoubleFunction<Double> findFunc();
   public void printAllResults() {
        writeResult("Коэффициенты: " + coef);
        writeResult("Мера отклонения: " + S);
        writeResult("Среднеквадратичное отклонение: " + standardDeviation);
        String accuracy;
        if(R2 >= 0.95) {
            ассигасу = "Высокая точность аппроксимации";
        else if (R2 >= 0.75) {
            accuracy = "Удовлетворительная точность аппроксимации";
        } else if (R2 >= 0.5) {
            ассигасу = "Слабая точность аппроксимации";
        } else {
            ассигасу = "Недостаточная точность аппроксимации";
        writeResult("Достоверность аппроксимации: " + R2 + " -> " + accuracy
+ "\n");
        String res = String.format("%-6s|", "x i");
        for (int i = 0; i < n; i++) {</pre>
            res += String.format(" %-20s|", rounding(x[i]));
        writeResult(res);
        res = String.format("%-6s|", "y i");
        for (int i = 0; i < n; i++) {</pre>
            res += String.format(" %-20s|", rounding(y[i]));
        writeResult(res);
        res = String.format("%-6s|", "phi i");
        for (int i = 0; i < n; i++) {</pre>
            res += String.format(" %-20s|", rounding(phi[i]));
        writeResult(res);
        res = String.format("%-6s|", "eps i");
        for(int i = 0; i < n; i++) {</pre>
            res += String.format(" %-20s|", rounding(eps[i]));
        writeResult(res);
   private double rounding(double number) {
        BigDecimal help = new BigDecimal(number);
        help = help.setScale(15, RoundingMode.HALF UP);
        return help.doubleValue();
   public void writeResult(String string) {
        if (outputMode) {
            System.out.println(string);
        } else {
            try {
                file.write(string + "\n");
            } catch (IOException e) {
                System.out.println("Проблемы с файлом");
        }
    }
```

}

LinearApproximation.java – линейная аппроксимация

```
package approximations;
import java.io.FileWriter;
import java.util.function.DoubleFunction;
public class LinearApproximation extends AbstractApproximation{
    public double r;
   public LinearApproximation(int n, double[] x, double[] y, boolean outputMode,
        super(n, x, y, "Линейная аппроксимация", "ax+b", outputMode, file, false);
        double x sr = 0;
        double y sr = 0;
        for(int i = 0; i < n; i++) {</pre>
            x_sr += x[i];
           y_sr += y[i];
        x sr = x sr / n;
        y_sr = y_sr / n;
        double s1 = 0, s2 = 0, s3 = 0;
        for(int i = 0; i < n; i++) {</pre>
            s1 += (x[i] - x_sr) * (y[i] - y_sr);
            s2 += Math.pow((x[i] - x_sr), 2);
           s3 += Math.pow((y[i] - y_sr), 2);
        r = s1 / Math.sqrt(s2 * s3);
        writeResult("\nКоэффициент корреляции: " + r);
    }
    @Override
    public DoubleFunction<Double> findFunc() {
        double sx = 0, sx2 = 0, sy = 0, sxy = 0;
        for (int i = 0; i < n; i++) {</pre>
            sx += x[i];
           sx2 += x[i] * x[i];
           sy += y[i];
           sxy += x[i] * y[i];
        }
        double det = sx2 * n - sx * sx;
        double det1 = sxy * n - sx * sy;
        double det2 = sx2 * sy - sx * sxy;
        double a = det1 / det;
        double b = det2 / det;
        coef = "a = " + a + " b = " + b;
        return x -> a * x + b;
    }
```

QuadraticApproximation.java - квадратичная аппроксимация

```
package approximations;
import utils.Det;
import java.io.FileWriter;
```

```
import java.util.function.DoubleFunction;
public class QuadraticApproximation extends AbstractApproximation{
   public QuadraticApproximation(int n, double[] x, double[] y, boolean outputMode,
FileWriter file) {
       super(n, x, y, "Квадратичная аппроксимация", "a2*x²+a1*x+a0", outputMode,
file, false);
   }
   @Override
   public DoubleFunction<Double> findFunc() {
        double sx = 0, sx2 = 0, sx3 = 0, sx4 = 0, sy = 0, sxy = 0, sx2y = 0;
        for (int i = 0; i < n; i++) {</pre>
            sx += x[i];
           sx2 += x[i] * x[i];
           sx3 += Math.pow(x[i], 3);
           sx4 += Math.pow(x[i], 4);
           sy += y[i];
           sxy += x[i] * y[i];
           sx2y += x[i] * x[i] * y[i];
        double det = Det.determinant(new double[][]{{n, sx, sx2},
                                                     {sx, sx2, sx3},
                                                     \{sx2, sx3, sx4\}\});
        double det1 = Det.determinant(new double[][]{{sy, sx, sx2},
                                                     {sxy, sx2, sx3},
                                                     {sx2y, sx3, sx4}});
        double det2 = Det.determinant(new double[][]{{n, sy, sx2},
                                                     {sx, sxy, sx3},
                                                     {sx2, sx2y, sx4}});
        double det3 = Det.determinant(new double[][]{{n, sx, sy},
                                                    \{sx, sx2, sxy\},\
                                                     \{sx2, sx3, sx2y\}\});
        double a0 = det1 / det;
        double a1 = det2 / det;
        double a2 = det3 / det;
        coef = "a2 = " + a2 + " a1 = " + a1 + " a0 = " + a0;
        return x -> a0 + a1 * x + a2 * x * x;
   }
CubicApproximation.java - кубическая аппроксимация
package approximations;
import utils.Det;
import java.io.FileWriter;
import java.util.function.DoubleFunction;
public class CubicApproximation extends AbstractApproximation{
   public CubicApproximation(int n, double[] x, double[] y, boolean outputMode,
FileWriter file) {
       super(n, x, y, "Кубическая аппроксимация", "a3*x³+a2*x²+a1*x+a0", outputMode,
file, false);
  }
```

```
@Override
    public DoubleFunction<Double> findFunc() {
        double sx = 0, sx2 = 0, sx3 = 0, sx4 = 0, sx5 = 0, sx6 = 0, sy = 0, sxy = 0,
sx2y = 0, sx3y = 0;
        for (int i = 0; i < n; i++) {</pre>
            sx += x[i];
            sx2 += x[i] * x[i];
            sx3 += Math.pow(x[i], 3);
            sx4 += Math.pow(x[i], 4);
            sx5 += Math.pow(x[i], 5);
            sx6 += Math.pow(x[i], 6);
            sy += y[i];
            sxy += x[i] * y[i];
            sx2y += x[i] * x[i] * y[i];
            sx3y += Math.pow(x[i], 3) * y[i];
        double det = Det.determinant(new double[][]{
                \{n, sx, sx2, sx3\},
                \{sx, sx2, sx3, sx4\},
                \{sx2, sx3, sx4, sx5\},
                {sx3, sx4, sx5, sx6}});
        double det1 = Det.determinant(new double[][]{
                \{sy, sx, sx2, sx3\},
                {sxy, sx2, sx3, sx4},
                \{sx2y, sx3, sx4, sx5\},
                {sx3y, sx4, sx5, sx6}});
        double det2 = Det.determinant(new double[][]{
                \{n, sy, sx2, sx3\},
                {sx, sxy, sx3, sx4},
                {sx2, sx2y, sx4, sx5},
                 \{sx3, sx3y, sx5, sx6\}\});
        double det3 = Det.determinant(new double[][]{
                \{n, sx, sy, sx3\},
                \{sx, sx2, sxy, sx4\},
                \{sx2, sx3, sx2y, sx5\},
                \{sx3, sx4, sx3y, sx6\}\});
        double det4 = Det.determinant(new double[][]{
                \{n, sx, sx2, sy\},\
                \{sx, sx2, sx3, sxy\},\
                \{sx2, sx3, sx4, sx2y\},
                \{sx3, sx4, sx5, sx3y\}\});
        double a0 = det1 / det;
        double a1 = det2 / det;
        double a2 = det3 / det;
        double a3 = det4 / det;
        coef = "a3 = " + a3 + " a2 = " + a2 + " a1 = " + a1 + " a0 = " + a0;
        return x -> a0 + a1 * x + a2 * x * x + a3 * x * x * x;
PowerApproximation.java - степенная аппроксимация
package approximations;
```

```
import utils.Det;
import java.io.FileWriter;
import java.util.function.DoubleFunction;
```

```
public PowerApproximation(int n, double[] x, double[] y, boolean outputMode,
FileWriter file, boolean negativeData) {
        super(n, x, y, "Степенная аппроксимация", "a*x^b", outputMode, file,
negativeData);
   @Override
    public DoubleFunction<Double> findFunc() {
        if(!negativeData) {
            double sx = 0, sx2 = 0, sy = 0, sxy = 0;
            for (int i = 0; i < n; i++) {</pre>
                double xi = Math.log(x[i]);
                double yi = Math.log(y[i]);
                sx += xi;
                sx2 += xi * xi;
                sy += yi;
                sxy += xi * yi;
            double det = Det.determinant(new double[][]{{n, sx}, {sx, sx2}});
            double det1 = Det.determinant(new double[][]{{sy, sx}, {sxy, sx2}});
            double det2 = Det.determinant(new double[][]{{n, sy}, {sx, sxy}});
            double a = Math.exp(det1 / det);
            double b = det2 / det;
            coef = "a = " + a + " b = " + b;
            return x -> a * Math.pow(x, b);
        } else return null;
LogarithmicApproximation.java – логарифмическая аппроксимация
package approximations;
import utils.Det;
import java.io.FileWriter;
import java.util.function.DoubleFunction;
public class LogarithmicApproximation extends AbstractApproximation{
   public LogarithmicApproximation(int n, double[] x, double[] y, boolean outputMode,
FileWriter file, boolean negativeData) {
       super(n, x, y, "Логарифмическая аппроксимация", "a*ln(x)+b", outputMode, file,
negativeData);
   }
   @Override
    public DoubleFunction<Double> findFunc() {
        if(!negativeData) {
            double sx = 0, sx2 = 0, sy = 0, sxy = 0;
            for (int i = 0; i < n; i++) {</pre>
                double xi = Math.log(x[i]);
                double yi = y[i];
                sx += xi;
                sx2 += xi * xi;
                sy += yi;
```

sxy += xi * yi;

```
}
            double det = Det.determinant(new double[][]{{n, sx}, {sx, sx2}});
            double det1 = Det.determinant(new double[][]{{sy, sx}, {sxy, sx2}});
            double det2 = Det.determinant(new double[][]{{n, sy}, {sx, sxy}});
            double b = det1 / det;
            double a = det2 / det;
            coef = "a = " + a + " b = " + b;
            return x -> a * Math.log(x) + b;
        } else return null;
    }
Exponential Approximation. java - экспоненциальная аппроксимация
package approximations;
import utils.Det;
import java.io.FileWriter;
import java.util.function.DoubleFunction;
public class ExponentialApproximation extends AbstractApproximation{
   public ExponentialApproximation(int n, double[] x, double[] y, boolean outputMode,
FileWriter file, boolean negativeData) {
       super(n, x, y, "Экспоненциальная аппроксимация", "a*e^(bx)", outputMode, file,
negativeData);
   }
   @Override
    public DoubleFunction<Double> findFunc() {
        if(!negativeData) {
            double sx = 0, sx2 = 0, sy = 0, sxy = 0;
            for (int i = 0; i < n; i++) {</pre>
                double xi = x[i];
                double yi = Math.log(y[i]);
                sx += xi;
                sx2 += xi * xi;
                sy += yi;
                sxy += xi * yi;
            }
            double det = Det.determinant(new double[][]{{n, sx}, {sx, sx2}});
            double det1 = Det.determinant(new double[][]{{sy, sx}, {sxy, sx2}});
            double det2 = Det.determinant(new double[][]{{n, sy}, {sx, sxy}});
            double a = Math.exp(det1 / det);
            double b = det2 / det;
            coef = "a = " + a + " b = " + b;
            return x -> a * Math.exp(b * x);
```

} return null;

}

Примеры работы программы: Пример 1


```
### Case | First | Part | Part
```


Пример 2

```
Вы хотите вводить данные с клавиатуры или из файла? (k/f) f
Введите путь к файлу:
                                                                 ≡ data1 ×
Введите количество точек от 7 до 12: 7
Введите исходные точки парами (х, у) через пробел
                                                                        -1.1 2.73
                                                                        2.3 5.12
                                                                        3.7 7.74
                                                                        4.5 8.91
4.5 8.91
5.4 10.59
                                                                        5.4 10.59
                                                                        6.8 12.75
7.5 13.43
                                                                        7.5 13.43
Результаты вывести на экран или в записать в файл? (s/f) f
Введите путь к файлу:
```

```
### Real | First | Fir
```


Пример 3

```
Вы хотите вводить данные с клавиатуры или из файла? (k/f) f
Введите путь к файлу:

C:\Users\Elena\IdeaProjects\compMath\lab4\src\files\data4

Введите количество точек от 7 до 12: 7

Введите исходные точки парами (x, y) через пробел

1 1
2 4
3 9
4 16
5 25
6 36
7 49
Результаты вывести на экран или в записать в файл? (s/f) f
Введите путь к файлу:

C:\Users\Elena\IdeaProjects\compMath\lab4\src\files\res4

■ data

data

1

2 d
3
4
4
5
5
6
6
7
7
8
```

```
= data4 × ≡ res4

1 7
2 1 1
3 2 4
4 3 9
5 4 16
6 5 25
7 6 36
8 7 49
```

Линейная аппроксима	ция: ax+b						
Коэффициенты: а = 8							
Мера отклонения: 84							
	отклонение: 3.464101615						
Достоверность аппро	ксимации: 0.95522388059	770149 -> Высокая точно	сть аппроксимации				
x_i 1.0	2.0	3.0	4.0	5.0	6.0	7.0	
y_i 1.0	4.0	9.0	16.0	25.0	36.0	49.0	
phi_i -4.0	4.0	12.0	20.0	28.0	36.0	44.0	
eps_i -5.0	0.0	3.0	4.0	3.0	0.0	-5.0	
Коэффициент корреля	ции: 0.9773555548504418						
Квадратичная аппрок	симация: a2*x²+a1*x+a0						
	1.0 a1 = 0.0 a0 = 0.0						
Мера отклонения: 0.							
Мера отклонения: 0. Среднеквадратичное	0 отклонение: 0.0	og Talliagti aggnavalmal					
Мера отклонения: 0. Среднеквадратичное		зя точность аппроксимац					
Мера отклонения: 0. Среднеквадратичное	0 отклонение: 0.0	ая точность аппроксимац 3.0	ии	5.0	1 6.0	7.0	
Мера отклонения: 0. Среднеквадратичное Достоверность аппро	0 отклонение: 0.0 ксимации: 1.0 -> Высока			5.0 25.0	6.0 36.0	7.0 49.0	
Мера отклонения: 0. Среднеквадратичное Достоверность аппро	0 отклонение: 0.0 ксимации: 1.0 -> Высока 2.0	3.0					
Мера отклонения: 0. Среднеквадратичное Достоверность аппро х_i 1.0 y_i 1.0	0 отклонение: 0.0 ксимации: 1.0 -> Высока 2.0 4.0	3.0 9.0	4.0 16.0	25.0	36.0	49.0	
Мера отклонения: 0. Среднеквадратичное Достоверность аппро х_i 1.0 y_i 1.0 phi_i 1.0	0 отклонение: 0.0 ксимации: 1.0 -> Высока 2.0 4.0 4.0	3.0 9.0 9.0	4.0 16.0 16.0	25.0 25.0	36.0 36.0	49.0 49.0	
Мера отклонения: 0. Среднеквадратичное Достоверность аппро x_i 1.0 y,i 1.0 phi_i 1.0 eps_i 0.0	0 Отклонение: 0.0 ксимации: 1.0 -> Высока 2.0 4.0 4.0 0.0	3.0 9.0 9.0 0.0	4.0 16.0 16.0	25.0 25.0	36.0 36.0	49.0 49.0	
Мера отклонения: 0. Среднеквадратичное Достоверность аппро x_i 1.0 y,i 1.0 phi_i 1.0 eps_i 0.0	0 отклонение: 0.0 ксимации: 1.0 -> Высока 2.0 4.0 4.0	3.0 9.0 9.0 0.0	4.0 16.0 16.0	25.0 25.0	36.0 36.0	49.0 49.0	
Мера отклонения: 0. Среднеквадратичное Достоверность аппро х_1 1.0 y_1 1.0 phi_1 1.0 eps_1 0.0	0 Отклонение: 0.0 ксимации: 1.0 -> Высока 2.0 4.0 0.0 0.0	3.0 9.0 9.0 0.0	4.0 16.0 16.0	25.0 25.0	36.0 36.0	49.0 49.0	
Мера отклонения: 0. Среднеквадратичное Достоверность аппро х_1 1.0 у_1 1.0 phi_1 1.0 eps_1 0.0	0 Отклонение: 0.0 ксимации: 1.0 -> Высока 2.0 4.0 4.0 0.0 0.0	3.0 9.0 9.0 0.0	4.0 16.0 16.0	25.0 25.0	36.0 36.0	49.0 49.0	
Мера отклонения: 0. Среднеквадратичное Достоверность аппро х_1 1.0 y_1 1.0 eps_1 0.0	0 Отклонение: 0.0 ксимации: 1.0 -> Высока 2.0 4.0 4.0 0.0 0.0 0.0	3.0 9.0 9.0 0.0	4.0 16.0 16.0	25.0 25.0	36.0 36.0	49.0 49.0	
Мера отклонения: 0. Среднеквадратичное Достоверность аппро х_1 1.0 y_1 1.0 phi_1 1.0 eps_1 0.0 Кубическая аппрокси Козффициенты: а3 = Мера отклонения: 0. Среднеквадратичное Среднеквадратичное	0 Отклонение: 0.0 ксимации: 1.0 -> Высока 2.0 4.0 4.0 0.0 0.0 0.0 0.0 0.0 a2 = 1.0 a1 = 0.0 a 0 0 отклонение: 0.0	3.0 9.0 9.0 0.0	4.0 16.0 16.0 0.0	25.0 25.0	36.0 36.0	49.0 49.0	
Мера отклонения: 0. Среднеквадратичное Достоверность аппро х_1 1.0 y_1 1.0 phi_1 1.0 eps_i 0.0 Кубическая аппрокси Козффициенты: а3 = Мера отклонения: 0. Среднеквадратичное Среднеквадратичное	0 Отклонение: 0.0 ксимации: 1.0 -> Высока 2.0 4.0 4.0 0.0 0.0 0.0	3.0 9.0 9.0 0.0	4.0 16.0 16.0 0.0	25.0 25.0	36.0 36.0	49.0 49.0	
Мера отклонения: 0. Среднеквадратичное Достоверность аппро х_1 1.0 y_1 1.0 phi_1 1.0 eps_i 0.0 Кубическая аппрокси Козффициенты: а3 = Мера отклонения: 0. Среднеквадратичное Среднеквадратичное	0 Отклонение: 0.0 ксимации: 1.0 -> Высока 2.0 4.0 4.0 0.0 0.0 0.0 0.0 0.0 a2 = 1.0 a1 = 0.0 a 0 0 отклонение: 0.0	3.0 9.0 9.0 0.0	4.0 16.0 16.0 0.0	25.0 25.0	36.0 36.0	49.0 49.0	
Мера отклонения: 0. Среднеквадратичное Достоверность аппро х_1 1.0 y_1 1.0 phi_1 1.0 eps_1 0.0 Кубическая аппрокси Коэффициенты: а3 = Мера отклонения: 0. Среднеквадратичное Достоверность аппро	0 отклонение: 0.0 ксимации: 1.0 -> Высока 4.0 4.0 0.0 0.0 	3.0 9.0 9.0 0.0 0.0 10 = 0.0	4.0 16.0 16.0 0.0	25.0 25.0 0.0	36.0 36.0 0.0	49.0 49.0 0.0	
Мера отклонения: 0. Среднеквадратичное Достоверность аппро х_1 1.0 γ_1 1.0 phi_1 1.0 eps_1 0.0	0 ОТКЛОНЕНИЕ: 0.0 КСИМАЦИИ: 1.0 -> ВЫСОКА 4.0 4.0 0.0 0.0 МАЦИЯ: a3*x³+a2*x²+a1*) 0.0 a2 = 1.0 a1 = 0.0 a ОТКЛОНЕНИЕ: 0.0 КСИМАЦИИ: 1.0 -> ВЫСОКА	3.0 9.0 9.0 0.0 0.0 0 = 0.0	4.0 16.0 16.0 0.0	25.0 25.0 0.0	36.0 36.0 0.0	49.0 49.0 0.0	

Вывод:

При выполнении лабораторной работы я познакомилась с методом наименьших квадратов для нахождения приближенных функций.