Dimensionality Reduction

Course: Data Mining

Professor: Dr. Tahaei

Herbod Pourali, Ilya Farhangfar

Problem 1. In a two-class classification problem with two features, each class has two data points:

$$\omega_1: \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \omega_2: \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix}.$$

- (a) Compute the mean vector and covariance matrix, then use PCA to reduce the data to a one-dimensional space. Analyze the class separability in the reduced space. Solve the problem for both principal directions.
- (b) In part (a), propose a vector that, if added to all data points, ensures that the first principal component does not change.

Solution: (a) To calculate the mean vector, the mean of all data points, irrespective of their class, must be computed:

$$\bar{x} = \frac{1}{4} \left(\begin{bmatrix} 4\\1 \end{bmatrix} + \begin{bmatrix} 1\\0 \end{bmatrix} + \begin{bmatrix} 2\\5 \end{bmatrix} + \begin{bmatrix} 3\\4 \end{bmatrix} \right) = \begin{bmatrix} 2.5\\2.5 \end{bmatrix}.$$

Next, the covariance matrix must be calculated:

$$\tilde{X} = \begin{bmatrix} 4 - 2.5 & 1 - 2.5 \\ 1 - 2.5 & 0 - 2.5 \\ 2 - 2.5 & 5 - 2.5 \\ 3 - 2.5 & 4 - 2.5 \end{bmatrix} = \begin{bmatrix} 1.5 & -1.5 \\ -1.5 & -2.5 \\ -0.5 & 2.5 \\ 0.5 & 1.5 \end{bmatrix}.$$

$$S = \frac{1}{N} \tilde{X}^T \tilde{X} = \frac{1}{4} \begin{bmatrix} 5 & 1 \\ 1 & 17 \end{bmatrix}.$$

Now, the eigenvectors and eigenvalues of the covariance matrix must be determined:

$$Sv = \lambda v$$

The eigenvalues are:

$$\lambda_1 = -\sqrt{37} + 11, \quad \lambda_2 = \sqrt{37} + 11$$

The corresponding eigenvectors are:

$$v_1 = \begin{bmatrix} -\sqrt{37} - 6 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} \sqrt{37} - 6 \\ 1 \end{bmatrix}.$$

Now, project the data onto the first principal direction:

$$X' = XA = Xv_1$$

Using a numerical approximation:

$$\sqrt{37} \approx 6.08$$
.

Projecting the data onto the first principal direction:

$$X' = \begin{bmatrix} 4 & 1 \\ 1 & 0 \\ 2 & 5 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0.08 \\ 1 \end{bmatrix} = \begin{bmatrix} 1.32 \\ 0.08 \\ 5.16 \\ 4.24 \end{bmatrix}.$$

As is evident, the two classes are separable. Now, repeat this process for the second principal direction:

Project the data onto the second principal direction:

$$X' = XA = Xv_2$$

$$X' = \begin{bmatrix} 4 & 1 \\ 1 & 0 \\ 2 & 5 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} -12.08 \\ 1 \end{bmatrix} = \begin{bmatrix} -47.32 \\ -12.08 \\ -19.16 \\ -32.24 \end{bmatrix}.$$

As you can see, the two classes are not separable.

Projection of Data onto 1D Space

Here we show the projection of two classes onto a 1D space after dimension reduction.

Original 2D Plot

The following plot shows the original data points from the two classes.

Original 2D Data Representation

1D Projection of Data

After applying PCA, the data is projected onto a 1D space. The plot below shows the projection of the two classes onto this 1D space.

1D Projection of Data onto v_2

1D Projection of Data onto v_1

Part (b): We show that adding any arbitrary vector **a** from the eigenspace to all the data points keeps the first principal component (PC) unchanged.

Let \bar{X}_{new} be the new data after adding the vector **a** to each data point:

$$\bar{X}_{\text{new}} = \frac{1}{n} \sum_{i=1}^{n} (x_i + \mathbf{a}) = \bar{X} + \mathbf{a}$$

Therefore, the covariance of the new data becomes:

$$\operatorname{Cov}(X_{\text{new}}) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i + \mathbf{a} - \bar{X}_{\text{new}}) (x_i + \mathbf{a} - \bar{X}_{\text{new}})^T$$
$$= \frac{1}{n-1} \sum_{i=1}^{n} (x_i + \mathbf{a} - \bar{X} - \mathbf{a}) (x_i + \mathbf{a} - \bar{X} - \mathbf{a})^T$$
$$= \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{X}) (x_i - \bar{X})^T$$

Thus, we have:

$$Cov(X_{new}) = Cov(X)$$

Problem 2. Consider a set of points $x^{(1)}, \ldots, x^{(m)}$. Assume that the data are normalized and have zero mean and unit variance in each dimension. Furthermore, assume that $f_u(x)$ is the projection of the point x in the direction of the vector u. In other words, we have:

$$V = \{au : a \in \mathbb{R}\}$$

then:

$$f_u(x) = \arg\min_{v \in V} ||x - v||^2$$

Show that the vector \mathbf{u} which minimizes the MSE error between the points and their projections is the first principal component (PC1). In other words, show that:

$$\arg\min_{u:u^{\top}u=1} \frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - f_u(x^{(i)})\|^2$$

Solution: (b)

$$f_u(x) = \arg\min ||x - au||^2$$
 where $v = au$

$$\frac{\partial \|x - au\|^2}{\partial a} = \frac{\partial}{\partial a} \left((x - au)^T (x - au) \right)$$

$$= \frac{\partial}{\partial a} \left(x^T x - 2au^T x + a^2 u^T u \right)$$

$$= -2u^T x + 2au^T u = 0$$

$$\Rightarrow a = \frac{u^T x}{u^T u}$$

$$f_u(x) = au = \frac{u^T x}{u^T u} u$$

Now, let's rewrite the expression:

$$\arg\min_{\|u\|=1} \sum_{i=1}^{m} \|x^{(i)} - f_u(x^{(i)})\|^2$$

$$= \arg\min_{\|u\|=1} \sum_{i=1}^{m} \|x^{(i)} - uu^T x^{(i)}\|^2$$

$$= \arg\min_{\|u\|=1} \sum_{i=1}^{m} (x^{(i)} - uu^T x^{(i)})^T (x^{(i)} - uu^T x^{(i)})$$

$$= \arg\min_{\|u\|=1} \sum_{i=1}^{m} ((x^{(i)})^T x^{(i)} - u^T x^{(i)} (x^{(i)})^T u)$$

$$= \arg\min_{\|u\|=1} \sum_{i=1}^{m} ((x^{(i)})^T x^{(i)} - 2(u^T x^{(i)})^2 + (u^T x^{(i)})^2)$$

$$= \arg\min_{\|u\|=1} \sum_{i=1}^{m} -(u^T x^{(i)})^2$$

$$= \arg\max_{\|u\|=1} \sum_{i=1}^{m} (u^T x^{(i)})^2$$

$$= \arg\max_{\|u\|=1} \sum_{i=1}^{m} (u^T x^{(i)})^2$$

$$= \arg\max_{\|u\|=1} u^T \left(\sum_{i=1}^{m} x^{(i)} (x^{(i)})^T\right) u$$

To solve this, we use the method of Lagrange multipliers:

$$\arg\max_{\|u\|=1} u^T \Sigma u$$

Using Lagrange multipliers:

$$L(u,\lambda) = u^T \Sigma u - \lambda (u^T u - 1)$$

To solve this equation, we compute the derivative of the Lagrangian:

$$\frac{\partial L(u,\lambda)}{\partial u} = 2\Sigma u - 2\lambda u = 0 \quad \Rightarrow \quad \Sigma u = \lambda u$$

Thus, we can conclude that the solution to this problem is the eigenvectors of the matrix Σ .

$$u^T \Sigma u = u^T \lambda u = \lambda u^T u = \lambda$$

As a result, this optimal value corresponds to the eigenvectors of the matrix Σ , which is equivalent to the first principal component in PCA.