

Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH)

Analyse eines Forschungsthemas INF-D-960

Texterkennung in topographischen Karten: Untersuchungen mit dem Deep-Learning-Framework Keras in einer HPC-Systemumgebung

Jan Stephan

Betreuender Hochschullehrer: Prof. Dr. Wolfgang E. Nagel

Betreuer: Dr. Peter Winkler

02. Oktober 2018

Gliederung

- Einleitung
 - Motivation
 - Forschungsstand
 - Ziel
- Daten und Methoden
 - Reale und künstliche Daten
 - Bilderkennung
 - Textklassifizierung
 - Umsetzung auf dem Taurus
- Ergebnisse
 - Trainings- und Validierungsdaten
 - Erkennungsrate und Losses
 - Performance
- Ausblick

Motivation

- Analyse historischer topographischer Karten
 - Raum- und Landschaftsplanung
 - Ziel: automatisierte Texterkennung
- Methode: Optical Character Recognition (OCR)
 - Automatisierte Erkennung von Kennzeichen
 - Digitalisierung von Büchern
 - Informationsextraktion aus nicht digitalisierten Dokumenten
- Problem: "Informationsflut"

Forschungsstand

Vorstellen?

Ziel

- Texterkennung und -extraktion in topographischen Karten
- Ausführung auf dem Taurus
- Skalierungsverhalten des Netzes

Daten und Methoden

Reale und künstliche Daten

- Training mittels künstlicher Daten
- zufällige Breite und Höhe
- Datengenerator des ScaDS-Projekts

Bilderkennung - Daten

- Beschränkung auf 6 Zeichen pro Wort
- Skalierung der Eingangsdaten
 - 192 x 64
- Greyscale
- float32

Bilderkennung - Netzwerk

TODO: Model plot

Textklassifizierung - CTC

W W W & e & h h d d & e e & l l

Wehde 1

Wehdel

Connectionist Temporal Classifier (CTC)

(Graves et al., 2006)

Textklassifizierung - CTC

- Nicht nativ in Keras enthalten
- Teil von TensorFlows tf.keras.backend
- Training: ctc_batch_cost (ersetzt Loss-Funktion)
- Inferenz: ctc_decode

Umsetzung auf dem *Taurus*

- Training und Inferenz: gpu2-Partition
 - 4 NVIDIA Tesla K80
 - 62 GiB Arbeitsspeicher
- Datengenerator: beliebiger CPU-Knoten
 - in der Regel sandy-Partition
 - 16 CPU-Kerne
 - 30 GiB Arbeitsspeicher
- SCS5-Modulumgebung (Training und Inferenz)
 - Keras 2.2.0-foss-2018a-Python-3.6.4
 - OpenCV 3.4.1-foss-2018a-Python-3.6.4
- venv (Datengenerator)
 - /projects/p_scads/keras/new_venv2

Ergebnisse

Erkennungsrate

- Wordscore W
 - 0 oder 1
- Charscore C
 - korrekte Buchstaben / Wortlänge
 - zwischen 0 und 1
- Wenn W = 1, dann C = 1
- Wenn C < 1, dann W = 0
- Beispiele:
 - Real: "Bramel". Erkannt: "Bramel". W = C = 1
 - Real: "Tannen". Erkannt: "Taunen". W = 0, C = 0.8333
- Sonderfall:
 - Real: "Wehdel". Erkannt: "NWehdel". W = C = 0

Overfitting

- allgemeines ML-Problem
- CTC besonders anfällig
- Kriterium: Validierungsloss

Trainings- und Validierungsdaten

- Zwei Datensätze für das Training
 - Wortlänge 6 Buchstaben
 - wl6_120k: 120.164 generierte Bilder
 - wl6_250k: 250.000 generierte Bilder
- Zwei Datensätze für die Validierung
 - Wortlänge 6 Buchstaben
 - wl6_1000: 1.000 generierte Bilder
 - wl6_real: 27 reale Bilder (aus Kartenmaterial ausgeschnitten)
- Validierung der Netzwerke in drei Schritten
 - 1. Trainingsdatensatz
 - 2. Validierungsdatensatz: wl6_1000
 - Validierungsdatensatz: wl6_real

Loss & Genauigkeit: wl6_120k

Loss & Genauigkeit: w16_250k

Erkennungsrate

Charscores

Beispiel: Haaren

wl6_120k: "Haaren"

wl6_250k: "Haaren"

W = 1

C = 1

W = 1

C = 1

Beispiel: Ostiem

wl6_120k: "Ostion"

wl6_250k: "Ostiem"

W = 0

W = 1

C = 0

C = 1

Beispiel: Aachen

wl6_120k: "gAacli"

wl6_250k: "Aatiz"

W = 0

W = 0

C = 0

C = 0.3333

Beispiel: Neuhof

wl6_120k: "gNeuhof"

14/ 0

W = 0

W = 0

$$C = 0$$

C = 0.8333

wl6_250k: "Neuhol"

Performance - Training

	Gesamtlaufzeit	Epochenlaufzeit
wl6_120k	4h 20min 54s	10min 39s
wl6_250k	9h 3min 22s	21min 44s

Performance - Inferenz

	Gesamtlaufzeit	Laufzeit pro Bild
wl6_120k	19min 25s	9,7ms
wl6_250k	40min 17s	9,7ms

Fazit und Ausblick

Entwicklungsstand

- Texterkennung und -extraktion aus topographischen Karten ist möglich
- Vorbedingung: Trainingsdaten in guter Qualität und hoher Menge
- einfache GPU-Nutzung

Qualität der Trainingsdaten

Ab € 500,99 inkl. MwSt.

historisch genaue Trainingsdaten schwierig

Ab € 418,88 inkl. MwSt.

- Verbesserung durchOriginalschriftarten wahrscheinlich
 - Roemisch
 - Kursivschrift

grosse

Apeler

Qualität der Trainingsdaten

- Anderer Ansatz: Trennung von Vorder- und Hintergrund (ScaDS Leipzig)
- Problem: Einbruch der Erkennungsrate (große Datensätze)

Variable Wortlängen

- Netzwerk grundsätzlich geeignet
- Problem: feste Bildbreite für variablen Text

Performance-Verbesserungen

- Training auch auf einer GPU dauert sehr lange
- Multi-GPU mit Keras prinzipiell möglich
- Problem: erhoffter Speedup bleibt aus

Weitere Arbeiten

- Nutzbarkeit von Transfer Learning?
- verbesserte Score-Berechnung (Sonderfälle!)

Vielen Dank!

Quellen

A. Graves, S. Fernández, F. Gomez, J. Schmidhuber: *Connectionist Temporal Classification*: *Labelling Unsegmented Data with Recurrent Neural Networks*. In: Proceedings of the 23rd International Conference on Machine Learning, 2006. S. 369 – 376

B. Shi, X. Bai, C. Yao: *An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition*. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 39, Nov. 2017. S. 2298 – 2304

E. Schölzel: genSet3.py, 2017. Unveröffentlicht.

