The anatomy of an order-preserving k-mer dictionary

Giulio Ermanno Pibiri

Ca' Foscari University of Venice

@giulio_pibiri

@jermp

RIKEN-AIP Tutorial: Compressed Data Structures for Advanced Data Analysis Tokyo, Japan, 2 July 2025

Agenda

- 1. Context, motivations, and problems
- 2. Tools:
 - Spectrum-preserving string sets
 - Minimizers
 - Minimal perfect hashing
- 3. Sparse and skew hashing of k-mers

1. Context, motivations, and problems

Massive DNA Collections

- Peta bytes of data available:
 - ENA (European Nucleotide Archive)
 - SRA (Sequence Read Archive)
 - RefSeq (Reference Sequence Database)
 - Ensembl
- For example: as of June 2025, ENA has 5.7 billions of assembled sequences, for 30 trillion bases.
 - https://www.ebi.ac.uk/ena/browser/about/statistics
- These collections are paving the way to answer fundamental questions regarding biology and evolution.

k-mers

• Q. But how do we exploit such potential?

We need efficient methods to index and search data at this scale.

 One popular strategy: "reduce" a DNA sequence to a set of short substrings of fixed length k — the so-called k-mers.

ACGGTAGAACCGA
CGGTAGAACCGAT
GGTAGAACCGAT
GGTAGAACCGATT
GTAGAACCGATTC
TAGAACCGATTCA
AGAACCGATTCA
AGAACCGATTCAA
AGAACCGATTCAA
GAACCGATTCAAA
AACCGATTCAAA

∴...

k-mer applications

- Software tools based on k-mers are predominant in bioinformatics.
- Many applications:
 - genome assembly
 - variant calling
 - pan-genome analysis
 - meta-genomics
 - sequence comparison/alignment

. . .

A world of k-mer indexes

- Huge research effort produced many types of indexes based on k-mers, with different:
 - representations (hashing, BWT-based, exact vs. approximate),
 - features (e.g., static vs. dynamic),
 - space/time trade-offs,
 - types of supported queries, etc.
- Recent surveys on this topic:
 - Data Structures based on *k*-mers for Querying Large Collections of Sequencing Data Sets Marchet et al., Genome Research, 2020.
 - Data Structures to Represent a Set of *k*-long DNA Sequences Chikhi et al., ACM Computing Surveys, 2021.

The k-mer dictionary problem

• We are given a large DNA string S (e.g., a genome or a pan-genome) and let K be the set of all its n distinct k-mers.

Example: The human genome (GRCh38) has >2.5B distinct k-mers for k=31.

- Problem. We want to build a dictionary for K so that the following operations are efficient:
 - Lookup(x) returns $1 \le i \le n$ if the k-mer $x \in K$ or \bot otherwise;
 - return the k-mer x = Access(i) if $1 \le i \le n$.
- Other operations of interest are streaming queries, iteration, navigational queries.

Do we need an ad-hoc solution?

- The algorithmic literature about *(compressed) string dictionaries* is rich of solutions [Martínez-Prieto et al., 2016] (e.g., Front-Coding, path-decomposed tries, double-array tries).
- But they are relevant for "generic strings":
 - variable-length,
 - larger alphabets (e.g., ASCII),
 - (usually) no particular properties of the strings to aid compression.
- Since k-mers are extracted *consecutively* from DNA, a k-mer following another one shares k-1 bases (very low entropy).

```
ACGGTAGAACCGA

CGGTAGAACCGAT

GGTAGAACCGATT

GTAGAACCGATTC

TAGAACCGATTC

TAGAACCGATTC

TAGAACCGATTC

TAGAACCGATTC

GTAGAACCGATTC

TAGAACCGATTCA

CGGTAGAACCGATTCA

Example for k=13.
```

2. Tools

- de Bruijn graph. A (node centric) de Bruijn graph (dBG) of order k for a sequence S is a directed graph where nodes are the distinct k-mers of S and there exists a directed edge from x to y if x[2..k] = y[1..k-1].
- Fact. Equivalence between a set of k-mers and a de Bruijn graph.

this is an example of a spectrum-preserving string set (see next)

Spectrum-preserving string sets

- k-mer spectrum. The spectrum of S, say spect(S), is the set of all the distinct k-mers of S.
- Spectrum-preserving string set (SPSS). A SPSS for S is a set of strings $\mathcal{U} = \{U_1, ..., U_m\}$ such that $spect(S) = spect(U_1) \cup \cdots \cup spect(U_m)$. Usually $spect(U_i) \cap spect(U_j) = \emptyset$ for any $i \neq j$.
- For example, the set of unitigs or "stitched" unitigs of the dBG of S are possible SPSS for S.

Spectrum-preserving string sets

- k-mer spectrum. The spectrum of S, say spect(S), is the set of all the distinct k-mers of S.
- Spectrum-preserving string set (SPSS). A SPSS for S is a set of strings $\mathcal{U} = \{U_1, ..., U_m\}$ such that $spect(S) = spect(U_1) \cup \cdots \cup spect(U_m)$. Usually $spect(U_i) \cap spect(U_j) = \emptyset$ for any $i \neq j$.
- For example, the set of unitigs or "stitched" unitigs of the dBG of S are possible SPSS for S.
- In general, we want to **minimise** the cumulative length of \mathcal{U} , i.e., the number of characters in the strings of \mathcal{U} .
- A general framework: compute a minimum-size path cover for the (compacted) dBG of S. Usually the cover is disjoint-node, so that each k-mer of S appears exactly once in \mathcal{U} .

Spectrum-preserving string sets

- Many SPSS available in the literature:
 - unitigs (folklore);
 - stitched unitigs [Rahman and Medvedev, 2020];
 - simplitigs [Brinda et al., 2020];
 - eulertigs [Schmidt and Alanko, 2022, 2023] (optimal: smallest num. of characters);
 - matchtigs [Schmidt, Khan, Alanko, P., Tomescu, 2023];
 - masked super strings [Brinda et al., 2025].
- Some of them have slightly different properties.
- For example: unitigs, stitched unitigs, simplitigs, and eulertigs do not allow repetitions of k-mers, whereas matchtigs and masked super strings do.

de Bruijn graphs and spectrum-preserving string sets

- BCALM2 [Chikhi et al., 2016]
- TwoPaCo [Minkin et al., 2017]
- Cuttlefish1 [Khan and Patro, 2021]
- Cuttlefish2 [Khan et al., 2022]
- GGCAT [Cracco and Tomescu, 2023]
- Cuttlefish3 [Khan, Dhulipala and Patro, 2025]

de Bruijn graphs and spectrum-preserving string sets

A long DNA sequence

- BCALM2 [Chikhi et al., 2016]
- TwoPaCo [Minkin et al., 2017]
- Cuttlefish1 [Khan and Patro, 2021]
- Cuttlefish2 [Khan et al., 2022]
- GGCAT [Cracco and Tomescu, 2023]
- Cuttlefish3 [Khan, Dhulipala and Patro, 2025]

A collection of DNA strings with no duplicate k-mers: this is a natural basis for a space-efficient k-mer dictionary

Indexing SPSS

- Now that we have an SPSS where each k-mer of S appears once, the question is:
 - Q. How do we index it so that Lookup and Access are efficient?

Indexing SPSS

- Now that we have an SPSS where each k-mer of S appears once, the question is:
 - Q. How do we index it so that Lookup and Access are efficient?

- Possible answers:
 - Compute the **BWT** of the strings in the SPSS.
 - We are going to see a solution based on **hashing**. (We need two more tools.)

• Consider each k-mer x of S: sample one m-mer of x out of its k-m+1 m-mers and call it the "representative" of x — or its *minimizer*.

Example for k = 10 and m = 7.

ACGGTAGAACCGATTCAAATTCGAT...

ACGGTAGAACCGAGGTAGAACCGATAGAACCGATTAGAACCGATTCAACCGATTCA

...

• Consider each k-mer x of S: sample one m-mer of x out of its k-m+1 m-mers and call it the "representative" of x or its *minimizer*.

- We would like to sample the same minimizer from consecutive k-mers so that the set of distinct minimizers forms a succinct sketch for S.
- This reduces the memory footprint and comput.
 time of countless applications in Bioinformatics.

Example for k = 10 and m = 7.

ACGGTAGAACCGATTCAAATTCGAT...

```
ACGGTAGAACCGATAGAACCGATAGAACCGATTAGAACCGATTCAACCGATTCA
```

•••

- Q. How do we compare different sampling algorithms?
 - A. We define the *density* of a sampling algorithm as the fraction between the number of (distinct) minimizers and the total number of m-mers of S (i.e., |S| m + 1).

The lower the density, the better!

- Q. How do we compare different sampling algorithms?
 - A. We define the *density* of a sampling algorithm as the fraction between the number of (distinct) minimizers and the total number of m-mers of S (i.e., |S| m + 1).

The lower the density, the better!

• Call w = k - m + 1. Since the same m-mer cannot be a minimizer for more than w consecutive k-mers, we immediately have a **lower bound** of 1/w on the density of any sampling algorithm.

TAGAACCGAT AGAACCGATT GAACCGATTC AACCGATTCA

Example for w = 4 and m = 7.

The "folklore" minimizer

- Minimizer. [Schleimer et al. 2003, Roberts et al., 2004] Given a k-mer x and an order \mathcal{O} over all m-mers, the *minimizer* of length $m \leq k$ is the (leftmost) smallest m-mer of x according to \mathcal{O} .
- Example. Given x = ACGGTAGAACCGA (k = 13) and m = 4:

```
h(ACGG) = 9842978325
ACGG
                h(CGGT) = 817612312
 CGGT
                 h(GGTA) = 8265731 \leftarrow smallest hash code
  GGTA
                   h(GTAG) = 478491248
   GTAG
                    h(TAGA) = 17491411
    TAGA
                     h(AGAA) = 17148914
                                                      In this case, the density is
     AGAA
                      h(GAAC) = 91815379
                                                      2/(w+1): almost a factor
      GAAC
                       h(AACC) = 645793914
       AACC
                                                      of 2 away from the lower
        ACCG
                        h(ACCG) = 918417644
                                                      bound for large w.
                         h(CCGA) = 814188124
```

 \mathcal{O} is the *lexicographic* order.

 \mathcal{O} is defined by a random hash function h.

Density by varying m

- Iower bound (improved, 2024)
- minimizer (2004)
- miniception (2020)
- double-decyclying (2023)

- Example for w = 24, so k = 24 + m 1.
- Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.
- https://github.com/jermp/minimizers

Density by varying m

- **-** lower bound (improved, 2024)
- minimizer (2004)
- miniception (2020)
- double-decyclying (2023)
- mod-minimizer (2024)

[Groot Koerkamp and P., 2024]

- Example for w = 24, so k = 24 + m 1.
- Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.
- https://github.com/jermp/minimizers

Density by varying m

- - lower bound (improved, 2024)
- minimizer (2004)
- miniception (2020)
- double-decyclying (2023)
- mod-minimizer (2024)
- open-closed mod-minimizer (2025)

[Groot Koerkamp and P., 2024] [Groot Koerkamp, Liu, and P., 2025]

- Example for w = 24, so k = 24 + m 1.
- Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.
- https://github.com/jermp/minimizers

Minimal Perfect Hashing

MPHF. Given a set X of n distinct keys, a function f that bijectively maps the keys of X into the range $\{1, ..., n\}$ is called a minimal perfect hash function (MPHF) for X.

Minimal Perfect Hashing

MPHF. Given a set X of n distinct keys, a function f that bijectively maps the keys of X into the range $\{1, ..., n\}$ is called a minimal perfect hash function (MPHF) for X.

- Space lower bound of $\log_2(e) \approx 1.443$ bits/key [Mehlhorn, 1982].
- Many approaches available (see next).
- Most of them have:
 - Constant-time evaluation.
 - Expected linear-time construction.
 - Take 1.8 3 bits/key.

Modern Minimal Perfect Hashing: A Survey Lehmann, Mueller, P., Sanders, Vigna, Walzer, 2025 https://arxiv.org/pdf/2506.06536

Minimal Perfect Hashing

The "PTHash family"

- The **fastest** functions for lookup time: 30-50 ns/key.
- Also very fast to build and space-efficient: they take from 1.7 to 3.0 bits/key.
 - PTHash/PHOBIC [P. and Trani, 2021, 2023; Hermann et al., 2024]

https://github.com/jermp/pthash

- PtrHash [Groot Koerkamp, 2025]
- PHast [Beling and Sanders, 2025]

3. Sparse and skew hashing of k-mers

Super-k-mers

• Property. Consecutive k-mers are likely to have the same minimizer.

```
Example for k=13 and m=4:

ACGGTAGAACCGATTCAAATTCGATCGATTAATTAGAGCGATAAC...

ACGGTAGAACCGAT

GGTAGAACCGATT

GTAGAACCGATTC

TAGAACCGATTCA

AGAACCGATTCA

AGAACCGATTCAA

AGACCGATTCAAA

GAACCGATTCAAA

AACCGATTCAAAT

...
```

• Super-k-mer. Given a string, a super-k-mer is a maximal sequence of consecutive k-mers having the same minimizer.

Super-k-mers

- Observation 1. Since minimizers are sparse, there are far fewer super-k-mers than k-mers approx. (k m + 2)/2 times less for random minimizers \rightarrow sparse indexing.
- Observation 2. A super-k-mer of length s is a space-efficient representation of the set of its constituent s k + 1 k-mers: 2s/(s k + 1) vs. 2k bits/k-mer. If s is sufficiently large and/or we have long chains of super-k-mers, the cost becomes approx. 2 bits/k-mer.

This **chain** is of length 31 and costs 2x31=62 bits for 19 k-mers (**3.26** bits/k-mer).

Sparse hashing

- Q. How to index super-k-mers?
- Do **not** break the chains of super-k-mers to avoid wasting 2(k-1) bits per super-k-mer.
- Locate super-k-mers with an array of offsets into the strings, indexed by a minimal perfect hash function (MPHF) on the minimizers.
- Upon Lookup(x): if μ is the minimizer of x, locate and scan the "bucket" of μ the set of super-k-mers that have minimizer μ .

 $\mu = ATCCTGAA$

Sparse hashing — Example

A collection of **4** stitched unitigs: 285 k-mers for k=31, N=408 bases in total

24 minimizers, for m = 8

TCGTCAAA: 29 CATCCCAA: 172 ATCGTCAA: 20 **GACTCTAA:** 50 329 AACCTGAA: 0 246 ATCCTGAA: 9 255 offsets GAACATCA: 364 GCAGGATA: 105 AGGGGCTA: 30 CTTGTTTA: 319 GAGCGTTA: 208 TTTAAAGA: 323 CTTCTAGA: 169 GGCTACCC: 33 CGTTATCC: 211 AGCACTTC: 189 AAGATCGC: 119 AACTATAT: 353 CCTTCTTT: 97 TTCAGGTT: 89 ACGGATGT: 143 ACAGGGGT: 310 TGTCAAAG: 266 307 TAATTCTG: 157

Data structure

The order of the k-mers in the SPSS is preserved

- Lookup: $\Sigma^k \to \{1,...,n\}$, where $1 \le \text{Lookup}(x) \le n$ if $x \in \text{SPSS}(S)$ and $\text{Lookup}(x) = \bot$ if $x \notin \text{SPSS}(S)$.
- So the hash code i = Lookup(x) can be directly used to **associate** some satellite information to the k-mer x, e.g., its abundance, color set, etc.
- Order-Preserving Property. If x[2..k] = y[1..k-1], i.e., y is the "successor" of x, then: Lookup(y) = Lookup(x) + 1.
- Any order on the strings of SPSS(S) uniquely determines an order i = 1, ..., n for the k-mers $x_i \in SPSS(S)$, thus: Lookup(x_i) = i.

The order of the k-mers in the SPSS is preserved

- Lookup: $\Sigma^k \to \{1,...,n\}$, where $1 \le \text{Lookup}(x) \le n$ if $x \in \text{SPSS}(S)$ and $\text{Lookup}(x) = \bot$ if $x \notin \text{SPSS}(S)$.
- So the hash code i = Lookup(x) can be directly used to **associate** some satellite information to the k-mer x, e.g., its abundance, color set, etc.
- Order-Preserving Property. If x[2..k] = y[1..k-1], i.e., y is the "successor" of x, then: Lookup(y) = Lookup(x) + 1.
- Any order on the strings of SPSS(S) uniquely determines an order i = 1, ..., n for the k-mers $x_i \in SPSS(S)$, thus: Lookup(x_i) = i.
- This property makes compression of satellite information easy and effective.
 We will see another example on 4th July.

Skew hashing

• Problem. Some buckets can be very large.

For example on the human genome (GRCh38), for k=31 and m=20: largest bucket size can be as large as 3.6×10^4 .

• Property. Minimizers have a (very) skew distribution for sufficiently-long length m.

Bucket size distribution (%) for k = 31 and the first $n = 10^9$ k-mers of the human genome, by varying minimizer length m.

size / m	11	12	13	14	15	16	17	18	19	20	21
1	13.7	19.8	29.7	42.4	61.5	79.5	89.8	94.4	96.3	97.1	97.5
2	7.5	10.6	14.4	17.7	19.4	13.6	7.3	3.9	2.4	1.7	1.4
3	5.2	7.3	8.8	10.4	8.4	3.7	1.4	0.8	0.5	0.4	0.4
4	4.0	5.5	6.0	7.0	4.1	1.3	0.5	0.3	0.2	0.2	0.2
5	3.2	4.4	4.5	5.0	2.2	0.6	0.3	0.2	0.1	0.1	0.1

On the **full** human genome (GRCh38), for k=31 and m=20: 2,505,445,761 k-mers 421,845,806 minimizers 388,018,280 (91.98%) only appear **once!**

Skew hashing

- We fix an integer ℓ : by virtue of the skew distribution, the fraction of buckets having more than 2^{ℓ} super-k-mers is **small**.
- So, we can afford a MPHF over the set of k-mers that belong to such super-k-mers. The output of the MPHF for a k-mer x is the **identifier** of the super-k-mer where x is present.
- Upon Lookup, we will scan one super-k-mer only.

Bucket size distribution (%) for k = 31 and the first $n = 10^9$ k-mers of the human genome, by varying minimizer length m.

size / m											
1	13.7	19.8	29.7	42.4	61.5	79.5	89.8	94.4	96.3	97.1	97.5
2	7.5	10.6	14.4	17.7	19.4	13.6	7.3	3.9	2.4	1.7	1.4
3	5.2	7.3	8.8	10.4	8.4	3.7	1.4	0.8	0.5	0.4	0.4
4	4.0	5.5	6.0	7.0	4.1	1.3	0.5	0.3	0.2	0.2	0.2
1 2 3 4 5	3.2	4.4	4.5	5.0	2.2	0.6	0.3	0.2	0.1	0.1	0.1

For $\ell=2$, just 100.0-(97.1+1.7+0.4+0.2)%=0.6% of buckets with more than $2^{\ell=2}=4$ super-k-mers.

Skew hashing — Example

Example for $\ell = 3$.

Implementation and results

• These ideas have been implemented in a software tool (C++17):

https://github.com/jermp/sshash

New benchmarks

https://github.com/jermp/sshash/tree/master/benchmarks

Ubuntu 18.04.6; gcc 9.4; Intel Xeon W-2245 CPU @ 3.90GHz; Results taken on 18/06/2025

Whole genome	Space		Building time (8 threads, 16 GB of RAM)	Positive random Lookup	Negative random Lookup	Streaming Lookup high-hit			
	bits/kmer	total GB	m:ss	ns/kmer	ns/kmer	ns/kmer	hit-rate (%)	extension-rate (%)	
k = 31									
Cod, regular, m = 20	7.79	0.49	0:28	1124	1078	87	0.1		
Cod, canonical, m = 19	8.76	0.55	0:40	899	631	69	81	94	
Kestrel, regular, m = 20	7.44	1.07	0:50	1099	1220	130	70		
Kestrel, canonical, m = 19	8.43	1.21	1:06	873	701	97	76	98	
Human, regular, m = 21	8.65	2.71	2:12	1584	1365	208			
Human, canonical, m = 20	9.70	3.04	2:50	1204	764	143	92	92	
k = 63									
Cod, regular, m = 24	4.24	0.29	0:25	1311	1058	344		40	
Cod, canonical, m = 23	4.84	0.34	0:30	1140	730	280	69	49	
Kestrel, regular, m = 24	3.73	0.54	0:27	1135	1233	244	64	40	
Kestrel, canonical, m = 23	4.23	0.61	0:40	1008	811	230	64	49	
Human, regular, m = 25 4.6		4.63 1.60		1658	1372	491	O.F.	46	
Human, canonical, m = 24	5.31	1.84	2:24	1357	875	387	85	46	

To sum up

- SSHash is an order-preserving k-mer dictionary.
- Three important tools:
 - 1. spectrum-preserving string sets;
 - 2. minimizers; and
 - 3. minimal perfect hashing.
- Ingredients:
 - Sparse indexing to obtain good space effectiveness;
 - Skew hashing to guarantee fast lookup for "heavy" buckets.
- Code in C++17 is available at: https://github.com/jermp/sshash.

Extensions

- k-mer abundances [P. 2022, 2023]
- **sequence membership**: a sequence *S* is considered as present in the dictionary if at least a given fraction of its k-mers is found in the dictionary [Schmidt, Khan, Alanko, P., Tomescu, 2023]
- reference indexing: store also positional information for each k-mer [Fan, Khan, P., Patro, 2023]
- colored de Bruijn graphs: annotate each k-mer with the set of its "colors" (i.e., the references where it appears) [Fan, Khan, Singh, P., Patro, 2023, 2024; Fan, P., Patro, 2024; Campanelli, P., Fan, Patro, 2024; Campanelli, P., Patro, 2025]

Extensions

- k-mer abundances [P. 2022, 2023]
- **sequence membership**: a sequence *S* is considered as present in the dictionary if at least a given fraction of its k-mers is found in the dictionary [Schmidt, Khan, Alanko, P., Tomescu, 2023]
- reference indexing: store also positional information for each k-mer [Fan, Khan, P., Patro, 2023]
- colored de Bruijn graphs: annotate each k-mer with the set of its "colors" (i.e., the references where it appears) [Fan, Khan, Singh, P., Patro, 2023, 2024; Fan, P., Patro, 2024; Campanelli, P., Fan, Patro, 2024; Campanelli, P., Patro, 2025]