

LibreFace: An Open-Source Toolkit for Deep Facial Expression Analysis

César Barbosa Orientador: Flávio L. Coutinho

2025

Dados do artigo

- Autores: Di Chang, Yufeng Yin, Zongjian Li, Minh Tran, Mohammad
 Soleymani
- Título: LibreFace: An Open-Source Toolkit for Deep Facial Expression
 Analysis
- Periódico: 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
- Ano de publicação: 2024

Fonte: LibreFace. Disponível em: https://github.com/ihp-lab/LibreFace.

Local Disk

Streaming

Database

Monitor

Objetivo do artigo

O principal objetivo é introduzir o LibreFace, um toolkit open-source voltado para a análise profunda de expressões faciais. As três funcionalidades principais são:

- Detecção de Unidades de Ação Facial (AUs);
- Estimativa da intensidade dessas AUs;
- Reconhecimento de Expressões Faciais (FER).

O artigo também compara a eficiência do LibreFace com ferramentas já estabelecidas, como OpenFace 2.0 e AFFDEX, demonstrando superioridade em desempenho e uso de recursos computacionais, especialmente em CPUs.

Breve descrição das técnicas de IC

O LibreFace emprega técnicas de ponta em Inteligência Computacional, incluindo:

- Redes neurais profundas pré-treinadas, como ResNet, Swin Transformer e MAE (Masked Autoencoder);
- Transfer learning para aproveitar o conhecimento de modelos treinados em grandes conjuntos de dados e adaptá-los a tarefas específicas de detecção facial;
- Fine-tuning dos modelos para obter maior precisão na detecção de AUs e FER.

Conjuntos de dados utilizados

Os autores utilizaram seis bases de Esses datasets abrangem expressões dados para treinar e avaliar os modelos: faciais em diferentes contextos, com

- EmotioNet
- AffectNet
- FFHQ
- DISFA
- BP4D
- RAF-DB

faciais em diferentes contextos, com variação de intensidade, pose e iluminação.

4.1. Esses dados estão disponíveis?

Sim, todos os conjuntos de dados utilizados no artigo são públicos e acessíveis para fins de pesquisa.

Códigos

O projeto LibreFace está disponível no GitHub com código-fonte completo, o que possibilita testes e adaptações.

Durante a configuração local do projeto, alguns problemas técnicos foram enfrentados:

- O arquivo requirements.txt estava ausente e foi recriado manualmente;
- Bibliotecas como cv2, torch e o módulo inference não eram importadas corretamente os erros foram corrigidos individualmente;
- Os modelos .pth não estavam nas pastas corretas estão sendo reorganizados;
- A instalação do pacote dlib gerou erros essa dependência está sendo ignorada por enquanto.
- 5.1. Esses códigos estão disponíveis?

Sim, estão disponíveis no GitHub: https://github.com/MinhNLP/LibreFace

Resultados

Os resultados obtidos pelos autores foram bastante expressivos:

- Correlação de Pearson (PCC) de 0,63 na estimativa da intensidade das AUs no dataset
 DISFA o que representa um ganho de 7% em relação ao OpenFace 2.0;
- A velocidade de inferência em CPU foi duas vezes mais rápida que o OpenFace 2.0;
- No reconhecimento de expressões faciais (FER), o LibreFace apresentou desempenho competitivo mesmo com modelos leves.
- 6.1. Houve comparação com outras técnicas, além da proposta pelos autores?
- Sim. O LibreFace foi comparado com:
- OpenFace 2.0
- AFFDEX
- Outros métodos baseados em CNNs e Transformers, demonstrando desempenho superior ou equivalente em várias métricas.

Ideia para o projeto

A proposta do projeto é implementar uma versão simplificada do LibreFace, focada em:

- Detecção facial em tempo real com webcam (OpenCV);
- Estimativa de emoções com um modelo leve pré-treinado;
- Comparação com outras abordagens como MediaPipe ou Haarcascade;
- Interface gráfica opcional (Tkinter ou Streamlit);
- Documentação técnica e vídeo demonstrativo.

7.1. Etapa preliminar

- Clonagem do repositório original;
- Criação do ambiente virtual (venv);
- Instalação manual de bibliotecas (torch, opency-python, entre outras);
- Correção de erros de importação (cv2, inference, torch);
- Estrutura básica do projeto funcionando, com documentação de instalação.

Ideia para o projeto

7.2. Etapa final

- Ajuste e verificação dos modelos .pth;
- Ignorar o dlib e isolar dependências problemáticas;
- Detecção facial com webcam funcionando;
- Implementar predição de emoção com modelo leve (fer2013 resnet18.pth);
- Mostrar rótulos de emoção na tela;
- Comparar desempenho com ferramentas alternativas;
- Criar interface gráfica (opcional);
- Finalizar documentação, vídeo e entrega até 18 de junho.

Cronograma

Semana	Período	Atividades
Semana 1	28/abr – 04/mai	 Finalizar correção de erros de importação Investigar caminhos dos modelos `.pth` e baixar os que faltam Testar se a inferência básica roda com ao menos um modelo
Semana 2	05/mai – 11/mai	 Validar execução de modelos `.pth` com entrada de imagens de teste Documentar instalação e execução básica (passo a passo funcional) Ignorar `dlib` e isolar suas dependências
Semana 3	12/mai – 18/mai	- Começar script de detecção facial com webcam (OpenCV) - Testar captura de vídeo em tempo real
Semana 4	19/mai – 25/mai	- Integrar modelo leve de predição de emoção (ex.: `fer2013_resnet18.pth`) - Mostrar rótulo da emoção
Semana 5	26/mai – 01/jun	- Refinar funcionamento geral do script - Incluir captura de logs, screenshots ou salvar frames (opcional) - Iniciar rascunho do relatório técnico com base nas etapas anteriores
Semana 6	02/jun – 08/jun	 Testar ferramentas alternativas (ex.: MediaPipe ou Haarcascade) Implementar comparação simples com a ferramenta escolhida Consolidar resultados parciais no relatório
Semana 7	09/jun – 15/jun	- Criar interface gráfica básica com Tkinter (opcional) - Finalizar o relatório técnico (incluindo dificuldades e soluções) - Preparar vídeo de demonstração (script, gravação ou edição)
Semana 8	16/jun – 18/jun	- Revisar tudo: código, relatório, vídeo e instruções - Gerar versão final dos arquivos - Entrega oficial do projeto no dia 18/jun

LibreFace: An Open-Source Toolkit for Deep Facial Expression Analysis

César Barbosa Orientador: Flávio L. Coutinho

2025

