

# Velocity Estimation from Doppler Radar

Kristján Guðjónsson (s232738), Sölvi Björnsson (232722), Þór Guðjónsson (s232411), Þórir Lárusson (s232715) 02456 Deep Learning Technical University of Denmark

### Introduction

Accurate velocity estimation of a golf ball is crucial for golf analytics and simulations. Using **Doppler** radar signals and spectrogram analysis, CNN models are able to predict velocity with more accuracy than previous methods (refrenca mark/supervisorinn)

#### The Data

The main data used for training the models are stacked spectrograms, 4 power and 2 phase spectrograms, along with the target radial velocity. It was derived from the Short-Time Fourier Transform.

### Main Objective

Improve baseline models accuracy with the limitation of not adding to the model complexity (total number of model parameters) and/or make it simpler (fewer parameters).



#### The Baseline Model









### Methods and Model Improvements

#### The proposed method

- Start out simple, change optimizer, fine tune learning rate → take out layers, fewer nodes...
- Add regularization techniques like dropout and batch normalization to regularize and stabilize the training

1024 --> 512

Removing batch normalization

+ Dropout (0.3)

Reducing nr. of parameters

Coarse grid search used in hyperparameter tuning

Baseline: SGD Ir = 1e-5 batch size = 8 RMSE = 1.58

Trial and error...

**Performance Metrics** 

- Loss curves
- Statistical tests
- T-tests

-> wd = 5e-7 and batch size = 3

No batch normalization witl

Wilcoxon signed-rank test

### Results

| Model           | Optimizer | Learning<br>Rate | Batch<br>Size | Batch<br>Norm | Dropout | ReLU | Min<br>RMSE | Total<br>Parameters | Hidden<br>Layers | T-Test<br>(P-value) | Wilcoxon<br>(P-value) |
|-----------------|-----------|------------------|---------------|---------------|---------|------|-------------|---------------------|------------------|---------------------|-----------------------|
| BaseLine        | SGD       | 1e-5             | 10            | No            | No      | Yes  | 1.58        | 38,414,929          | 6                |                     |                       |
| Best performing | Adam      | 1e-4             | 16            | No            | 0.3     | Yes  | 1.21        | 38,414,929          | 6                | 1.61e-5             | 4.45e-44              |
| Simpler model   | Adam      | 1e-4             | 32            | Yes           | 0.3     | Yes  | 1.43        | 23,081,009          | 6                | 2.96e-10            | 1.57e-21              |
| Last model      | Adam      | 1e-4             | 16            | No            | 0.3     | Yes  | 1.20        | 24,292,177          | 7                | 5.302e-4            | 5.11e-41              |
|                 |           |                  |               |               |         |      |             |                     |                  |                     |                       |

- Succesfully achieved main objective:
- 1. Better performing model than the baseline
- 2. Simpler model with as good or better performance than the baseline
- 3. Simpler and better model performance than previous models and the baseline

## **Best Models**

#### Better performing model







RMSE = 1.21 with fewer nr.









X Min Test Loss (RMSE: 1.20)





