Convex Optimization II

Lecture 4: Convex Sets

Hamed Shah-Mansouri

Department of Electrical Engineering Sharif University of Technology

1400-2

1/18

MOTIVATION

- The watershed between tractable and intractable problems is not linearity, but convexity.
- Only the very basic concepts and results in convex sets are covered without proofs.
- This lecture and the next two lectures on convex functions and problems are primarily mathematical, but a wide range of applications will soon follow.

References

- All materials and figures in this lecture are from [1].
 - [1] S. Boyd and L. Vandenberghe, *Convex Optimization*, first edition, Cambridge University Press, 2004.
- Thanks to Prof. Vincent Wong and Prof. Stephen Boyd for all the slides used in this lecture.

◆□▶◆御▶◆意≯◆意≯・意

LINE AND AFFINE SET

line through x_1 , x_2 : all points

$$x = \theta x_1 + (1 - \theta) x_2 \qquad (\theta \in \mathbf{R})$$

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{x \mid Ax = b\}$

(conversely, every affine set can be expressed as solution set of system of linear equations)

LINE SEGMENT AND CONVEX SET

line segment between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2$$

with $0 \le \theta \le 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

examples (one convex, two nonconvex sets)

CONVEX COMBINATION AND CONVEX HULL

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with
$$\theta_1 + \cdots + \theta_k = 1$$
, $\theta_i \ge 0$

convex hull conv S: set of all convex combinations of points in S

CONE AND CONVEX CONE

- A set C is called a **cone**, if for every $x \in C$ and $\theta > 0$, we have $\theta x \in C$.
- A set C is a **convex cone** if it is convex and a cone, which means that for any $x_1, x_2 \in C$ and $\theta_1, \theta_2 \ge 0$, we have

$$\theta_1 x_1 + \theta_2 x_2 \in C$$

- A point of the form $\theta_1 x_1 + \cdots + \theta_k x_k$ with $\theta_1, \dots, \theta_k \ge 0$ is called a conic combination of x_1, \dots, x_k .
- A set C is a convex cone if and only if it contains all conic combinations of its elements.

HYPERPLANE AND HALFSPACE

hyperplane: set of the form $\{x \mid a^T x = b\}$ $(a \neq 0)$

halfspace: set of the form $\{x \mid a^T x \leq b\}$ $(a \neq 0)$

- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

→□→→□→→□→ □ →○○

POLYHEDRA

solution set of finitely many linear inequalities and equalities

$$Ax \leq b$$
, $Cx = d$

 $(A \in \mathbf{R}^{m \times n}, \ C \in \mathbf{R}^{p \times n}, \ \preceq \text{ is componentwise inequality})$

polyhedron is intersection of finite number of halfspaces and hyperplanes

EUCLIDEAN BALL

• A Euclidean ball with center $x_c \in \mathbf{R}^n$ and radius r > 0

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\}$$

= \{x \left| (x - x_c)^T (x - x_c) \left| r^2\}
= \{x_c + ru \left| ||u||_2 \left| 1\}.

- $B(x_c, r)$ consists of all points within a distance r of the center x_c .
- A Euclidean ball is a convex set.

NORM BALLS AND NORM CONES

norm: a function $\|\cdot\|$ that satisfies

- $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
- $||tx|| = |t| \, ||x||$ for $t \in \mathbf{R}$
- $||x + y|| \le ||x|| + ||y||$

notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{\text{symb}}$ is particular norm norm ball with center x_c and radius r: $\{x\mid \|x-x_c\|\leq r\}$

norm cone: $\{(x,t) \mid ||x|| \le t\}$

Euclidean norm cone is called secondorder cone

norm balls and cones are convex

HOW TO INVESTIGATE CONVEXITY OF A SET

practical methods for establishing convexity of a set ${\cal C}$

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, \dots) by operations that preserve convexity
 - intersection
 - · affine functions
 - perspective function
 - linear-fractional functions

OPERATIONS THAT PRESERVE CONVEXITY INTERSECTION

the intersection of (any number of) convex sets is convex

example:

$$S = \{ x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3 \}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \dots + x_m \cos mt$

for m=2:

OPERATIONS THAT PRESERVE CONVEXITY AFFINE FUNCTION

suppose
$$f: \mathbf{R}^n \to \mathbf{R}^m$$
 is affine $(f(x) = Ax + b \text{ with } A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m)$

• the image of a convex set under f is convex

$$S \subseteq \mathbf{R}^n \text{ convex} \quad \Longrightarrow \quad f(S) = \{f(x) \mid x \in S\} \text{ convex}$$

ullet the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbf{R}^m$$
 convex $\implies f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\}$ convex

examples

- scaling, translation, projection
- solution set of linear matrix inequality $\{x \mid x_1A_1 + \cdots + x_mA_m \leq B\}$ (with $A_i, B \in \mathbf{S}^p$)
- hyperbolic cone $\{x \mid x^T P x \leq (c^T x)^2, \ c^T x \geq 0\}$ (with $P \in \mathbf{S}^n_+$)

Hamed Shah-Mansouri (Sharif) Convex Ontimization II 13/18

OPERATIONS THAT PRESERVE CONVEXITY PERSPECTIVE AND LINEAR-FRACTIONAL FUNCTION

perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$P(x,t) = x/t,$$
 dom $P = \{(x,t) \mid t > 0\}$

images and inverse images of convex sets under perspective are convex

linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d},$$
 dom $f = \{x \mid c^T x + d > 0\}$

images and inverse images of convex sets under linear-fractional functions are convex

OPERATIONS THAT PRESERVE CONVEXITY LINEAR-FRACTIONAL FUNCTION

$$f(x) = \frac{1}{x_1 + x_2 + 1}x$$

SEPARATING HYPERPLANE THEOREM

if C and D are disjoint convex sets, then there exists $a \neq 0$, b such that

$$a^Tx \leq b \text{ for } x \in C, \qquad a^Tx \geq b \text{ for } x \in D$$

the hyperplane $\{x \mid a^T x = b\}$ separates C and D

strict separation requires additional assumptions ($e.g.,\ C$ is closed, D is a singleton)

SUPPORTING HYPERPLANE THEOREM

supporting hyperplane to set C at boundary point x_0 :

$$\{x \mid a^T x = a^T x_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

SUMMARY

- Definition of line, line segment, affine set, convex set, convex combination, convex hull, and convex cone.
- Definition of hyperplane, halfspace, and polyhedron.
- Operations that preserve convexity.
- Separating hyperplane theorem and supporting hyperplane theorem.
- Convexity is the watershed between easy and hard optimization problems. Recognize convexity.
- Reading: Sections 2.1 2.3, and 2.5 in [1] by Boyd and Vandenberghe.