

# Deep Learning for Physicists

Lecture #4: Fully-connected neural networks

Kosmas Kepesidis

#### Outline

- Summary of terms so far
- Fully-connected neural networks
  - Fully-connected network with N layers
  - Regression example: earthquake epicenter
  - Classification example: image classification
  - · Challenges of training
  - Residuals learning
  - Batch normalization
  - Self-normalization

- Neural networks are models representing functions/mappings
- Network parameters are adapted to serve specific tasks
- Input variables are usually referred to as input features
- The **output** of a network is a **prediction**
- Tasks neural networks are used for, include classification (discrete target) and regression (continuous target)

- Building blocks of neural networks: layers of nodes
- At each node, two operations are performed: affine mapping and nonlinear activation function
- The type and morphology of a network is summarized by the so-called hyperparameters
- More abstract or complex features are generated by hidden layers feature hierarchy

- **Learning** is the procedure that leads to a neural network, capable of performing a particular task
- Training is the tuning of the network's parameters (W,  $\vec{b}$ ) by minimizing an objective function
- Individual adaptation of each parameter is achieved by gradients  $\frac{\partial \mathcal{L}}{\partial W_i}$  through backpropagation and stochastic gradient descent

- **Data** in physics could be of various types: sequences of measurements, images, vectors, heterogeneous variable sets
- Data should be appropriately **preprocessed** (scaling, normalization, etc.), before inserted into a neural network
- Labeled data include a target variable (label) along with the input data:
   supervised learning

- For obtaining statistically-meaningful results, the networks predictions are validated and tested on unseen data
- The data set is typically split into three sets: **train**, **validation** and **test** sets
- The train set is used multiple times during optimization: epochs
- Each training step is done on sub-samples of data called minibatches and the performance is measured on the validation set
- Final statistical evaluation of networks performance is done on the left-out test set

Fully-connected neural networks

### Fully-connected network with N layers

- Traditional neural networks consist of fully-connected layers
- By adding many layers consecutively, the power of deep learning can be exploited
- We start our investigation of deep learning methods with two examples: a regression and a classification task
  - ➤ M. Erdmann et al., Deep Learning for Physics Research (2021)



- Task: teach a network to identify the location of the epicenter of earthquakes
- A data set of 1000 simulated earthquakes (black dots) is used, while the arrival time of compression waves  $t_p$  and shear waves is recorded by four hypothetical stations (red dots)



| i                | x/km                          | y/km                           | $t_p^{(1)}/s$                | $t_s^{(1)}/\mathrm{s}$       | $t_p^{(2)}/s$                | $t_s^{(2)}/\mathrm{s}$        | $t_p^{(3)}/\mathrm{s}$       | $t_{\rm s}^{(3)}/{\rm s}$    | $t_p^{(4)}/s$                | $t_s^{(4)}/\mathrm{s}$       |
|------------------|-------------------------------|--------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| 1<br>2<br>3<br>4 | -15.5<br>3.8<br>-0.2<br>-16.4 | -34.6<br>-7.7<br>29.1<br>-25.4 | 6.52<br>3.31<br>3.17<br>5.23 | 9.00<br>4.51<br>4.31<br>7.21 | 7.25<br>2.59<br>3.00<br>6.22 | 10.32<br>3.79<br>4.37<br>8.87 | 3.39<br>1.79<br>5.54<br>2.17 | 4.98<br>2.75<br>8.00<br>3.27 | 5.06<br>0.95<br>5.77<br>4.37 | 7.06<br>1.30<br>8.06<br>6.09 |
|                  |                               |                                |                              |                              |                              |                               |                              |                              |                              |                              |

- Labels: earthquake locations  $(\hat{x}, \hat{y})$
- Input data: information on arrival times of two types of waves for each station
- Network should learn to predict locations based on arrival times



| i                | x/km                          | y/km                           | $t_p^{(1)}/s$                | $t_s^{(1)}/\mathrm{s}$       | $t_p^{(2)}/s$                | $t_s^{(2)}/\mathrm{s}$        | $t_p^{(3)}/\mathrm{s}$       | $t_{\rm s}^{(3)}/{\rm s}$    | $t_p^{(4)}/s$                | $t_s^{(4)}/\mathrm{s}$       |
|------------------|-------------------------------|--------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| 1<br>2<br>3<br>4 | -15.5<br>3.8<br>-0.2<br>-16.4 | -34.6<br>-7.7<br>29.1<br>-25.4 | 6.52<br>3.31<br>3.17<br>5.23 | 9.00<br>4.51<br>4.31<br>7.21 | 7.25<br>2.59<br>3.00<br>6.22 | 10.32<br>3.79<br>4.37<br>8.87 | 3.39<br>1.79<br>5.54<br>2.17 | 4.98<br>2.75<br>8.00<br>3.27 | 5.06<br>0.95<br>5.77<br>4.37 | 7.06<br>1.30<br>8.06<br>6.09 |
|                  |                               |                                |                              |                              |                              |                               |                              |                              |                              |                              |

- Preprocessing: normalize all measurements using the largest time recorder
- Network inputs:  $\vec{t}^T = \begin{pmatrix} t_p^1 & t_s^1 & t_p^2 & t_s^2 & t_p^3 & t_s^3 & t_p^4 & t_s^4 \end{pmatrix}$
- Network architecture: k=3 hidden layers with m=64 nodes in each layer

$$\vec{z}_0 = \sigma(\mathbf{W}_0 \ \vec{t} + \vec{b}_0)$$
  $\vec{z}_1 = \sigma(\mathbf{W}_1 \ \vec{t} + \vec{b}_1)$   $\vec{z}_2 = \sigma(\mathbf{W}_2 \ \vec{t} + \vec{b}_2)$ 

Network output: two nodes (latitude, longitude)

$$\vec{z} = \begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{W}_3 \ \vec{z}_2(\vec{z}_1(\vec{z}_0(\vec{t})))$$

 $\triangleright$  Where  $W_3$  is the  $2 \times m$  matrix containing the weights from the last hidden layer to the two output nodes

• For optimizing the adjustable parameters  ${\bf W}$  and  $\vec{b}$ , we use the mean squared error (MSE) as our objective function

$$\mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} [(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2]$$

- MSE is calculated using only a minibatch
  - $\triangleright$  we assume a minibatch of size n=32
- Initialization of **W** is done by sampling from a normal distribution with standard deviation:  $\sigma = \sqrt{2/(n_{in} + n_{out})}$  (Glorot / Xavier normal)
- While we set  $\vec{b}$  to zero





- ➤ Network training with 19k simulated earthquakes
- ➤ Validation with 1k data
- ➤ Performance improves with number of epochs
- ➤ Model testing: mean distance between true and predicted locations is about 70m!

## Classification example: image classification

- Input: black-and-white  $32 \times 32$  images of spiral galaxies arranged into a vector  $\vec{x}_i$  of size  $n = 32 \times 32 = 1024$
- Target variable: rotational orientation of the spirals
- Vector of each image is fed to the 1024 nodes of the input layer
- Architecture: similar to previous example (regression) main differences:
  - ➤ Different size of input layer
  - > Predict classes instead of continuous variables



#### Classification example: image classification

- Two possibilities for output layer:
  - 1. Single node: scalar output turned into probability using sigmoid activation function (z>0.5 and z<0.5)
  - 2. Two nodes connected in such a way that resulting values  $z_1$  and  $z_2$  are normalized to  $z_1+z_2=1$ 
    - ➤ We go for the second option in this example!

# Classification example: image classification

• Softmax function: 
$$\vec{z} = \begin{pmatrix} \hat{z}_1 \\ \hat{z}_2 \end{pmatrix} = \frac{1}{e^{z_1} + e^{z_2}} \begin{pmatrix} e^{z_1} \\ e^{z_2} \end{pmatrix}$$

- Target variable (galaxy orientation):  $\vec{y}_j^T = (y_1 \ y_2) = \begin{cases} (1 \ 0) \ Right \\ (0 \ 1) \ Left \end{cases}$ > Known as **one-hot-encoding**
- Objective function (cross-entropy):  $\mathcal{L} = -\frac{1}{m} \sum_{i=1}^{m} (\mathcal{Y}_{i,1} \quad \mathcal{Y}_{i,2}) \begin{pmatrix} \log(\vec{z}_1(\vec{x}_i)) \\ \log(\vec{z}_2(\vec{x}_i)) \end{pmatrix}$

- Example: Parameter update in multi-layer network
  - Consider:
    - ANN with three layers and one node per layer
    - Linear-mapping activation function:  $\sigma(x) = x$ , b = 0
  - At iteration m, we have:
    - Prediction at iteration  $m: z^{[m]} = x W_1^{[m]} W_2^{[m]} W_3^{[m]}$
    - Objective function (MSE):  $\mathcal{L} = [\hat{z}(x) z^m(x)]^2$
    - Gradient of  $W_1$ : $g_1 = \frac{\partial \mathcal{L}}{\partial W_1} = 2[\hat{z}(x) x \ W_1^{[m]} \ W_2^{[m]} \ W_3^{[m]}] \ W_2^{[m]} \ W_3^{[m]}$ 
      - > Gradients depend on all other weights
      - > Depending on numerical values, gradients could tend to zero or infinity:
        - > vanishing or exploding gradient prevents successful training

- Example: Parameter update in multi-layer network
  - Consider:
    - ANN with three layers and one node per layer
    - Linear-mapping activation function:  $\sigma(x) = x$ , b = 0
  - At iteration m+1: parameters are updated according to respective gradients  $g_i$  and other parameters
    - Coordinating all parameter updates is usually not performed due to comp. inefficiency
    - Instead we assume the network's overall update can be factorized into independent updates of the individual parameters
    - Resulting in unplanned shifts in the network activations internal covariate shifts

- Example: Parameter update in multi-layer network
  - Factorization assumption leads to additional challenge: How to choose appropriate learning rate  $\alpha$
  - Problem can be evident by expanding m+1 iteration in terms of Taylor on  $\alpha$ :

$$z^{m+1} = x W_1^{[m+1]} W_2^{[m+1]} W_3^{[m+1]} = x (W_1^{[m]} + \alpha g_1^{[m]}) (W_2^{[m]} + \alpha g_2^{[m]}) (W_3^{[m]} + \alpha g_3^{[m]})$$

$$z^{m+1} = \dots - x \alpha g_1^{[m]} W_2^{[m]} W_3^{[m]} + \dots$$

- Choice of an appropriate learning rate  $\alpha$  is challenging:
  - > it depends on the parameters of the deeper layers
  - > parameters and their gradients areall interconnected

- Example: Parameter update in multi-layer network
  - Above example is oversimplification in reality use nonlinear activation functions
  - Activation functions with saturation, such as sigmoid functions, can naturally lead to vanishing gradients
    - $\triangleright$  The fact that for sigmoid  $\sigma(x) < 1$  could potentially result into  $\sigma^n(x) \to 0$
  - Ways to stabilize training process:
    - 1. Residuals training and improved gradient propagation
      - ➤ Network architecture modified using **shortcuts**
    - 2. Batch normalization
      - ➤ Minibatch data transformed before entering subsequent layer
    - 3. Self-normalizing neural networks
      - > cause the activation averages and variances to converge to fixed points

### Residuals learning

- There is a hierarchy in the learning process:
  - $\triangleright$  First layers of a network try to learn a rough structure of the desired mapping f(x)
  - > The deeper layers learn small detailed modifications of the rough mapping
  - > An extreme case: deeper layers learn the identity mapping
  - ➤ More convenient approach: instead of learning something very close to the identity mapping, learn deviations form it

$$f(\vec{x}) = \mathbf{1}\vec{x} + \delta(\vec{x})$$

- $\triangleright$  Learn residuals:  $\delta = f 1$
- ➤ Mechanism to implement the identity mapping: **shortcut** 
  - ightharpoonup input  $\vec{x}$  is element-wise added to the mapping  $\delta(\vec{x})$

### Residuals learning

> For two layers we have:

$$z = \sigma(\mathbf{W}_2 \left[ \sigma \left( \mathbf{W}_1 \vec{x} + \vec{b}_1 \right) \right] + \vec{b}_2 + \vec{x})$$

- ➤ Shortcut method adds only negligible computational cost
- Number of parameters remains unchanged
- > If dimensions of  $\vec{x}$  and  $\delta(\vec{x})$  are different, an appropriate linear projector is used instead of the identity mapping:

$$f(\vec{x}) = \mathbf{W}_{S}\vec{x} + \delta(\vec{x})$$

➤ Shortcuts method has been successfully used in computer vision (ResNet, DenseNet)



#### Batch normalization

- Batch normalization refers to a re-parametrization method applied between network layers
  - $\triangleright$  for a minibatch m of size k, the outputs y (for each node) are collected and transformed as follows:

$$\mu_m = \frac{1}{k} \sum_{i=1}^k y_i$$
  $\sigma_m = \sqrt{\epsilon + \frac{1}{k} \sum_{i=1}^k (y_i - \mu_m)^2}$   $y_i' = \frac{y_i - \mu_m}{\sigma_m}$ 

> Additional step: re-enable dispersion and shift:

$$y_j' = \gamma_j \frac{y_i - \mu_m}{\sigma_m} + \beta_j$$

 $\triangleright$  Parameters  $\gamma_j$  and  $\beta_j$  help perform targeted changes of the averages and variances, not accessible through standard network design

S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep net-work training by reducing internal covariate shift, Proceedings of the 32ndInternational Conference on Machine Learning 37, pp. 448–456 (2015)

#### Batch normalization

- Advantages of batch normalization have been empirically demonstrated
  - 1. It accelerates training of very deep networks
  - 2. Ensures moderate parameter values and gradients
  - 3. Using batch normalization, the choice of learning rate "lpha" becomes less critical

- Stability of neural networks can be also achieved through engineered activation functions
- This allows for **self-normalizing networks**, defined through the requirement that mean and variance of the activation distribution of a layer can be mapped onto the corresponding mean and variance of the next layer
- Consider outputs of activations  $x_i$  of network layer j with n nodes:

$$\mu_j = \frac{1}{n} \sum_{i=1}^n x_i$$
  $\nu_j = \frac{1}{n} \sum_{i=1}^n (x_i - \mu_j)^2$ 

• Mapping of moments of layer j to j+1:  $\left(\frac{\mu_{j+1}}{v_{j+1}}\right) = K\left(\frac{\mu_j}{v_j}\right)$ 

- Idea of mapping *K*:
  - First specify affine mapping at each node i of layer j+1:  $y_i = \sum_k W_{jk} x_k + b_i$
  - For simplicity, assume input variables  $x_k$  and parameters  $W_{jk}$ ,  $b_i$  to be independent random variables
  - For large number of nodes in layer j+1, due to the central limit theorem, the affine mapping  $y_i$  follows normal distribution
  - > The affine mapping is followed by the activation function.

- Idea of mapping *K*:
  - The moments of the activation distribution, for j+1 layer, are calculated via integration (convolutions):

$$\mu_{j+1} = \int_{-\infty}^{\infty} \sigma(y) p_G(y) dy$$

$$\nu_{j+1} = \int_{-\infty}^{\infty} \sigma^2(y) p_G(y) dy - \mu_{j+1}^2$$

- $\triangleright$  Where  $p_G$  is normal (Gaussian) distribution
- > properties of the mapping K are determined by the properties of the activation function

- How to design  $\sigma(y)$ :
  - $\triangleright$  Aspects of  $\sigma(y)$  to keep in mind:
    - 1. Positive and negative values are needed for adjusting  $\mu_{i+1}$
    - 2. Gradients greater than 1 needed to increase  $v_{j+1}$
    - 3. Saturation needed to decrease  $v_{j+1}$
    - 4. Continuous curve needed for converging to fixed points of moments
  - > Suitable choice: **SELU** (scaled exponential linear unit)

SELU(x) = 
$$\lambda \begin{cases} x & \text{if } x > 0 \\ \alpha (e^x - 1) & \text{if } x \le 0 \end{cases}$$



- > which provides gradients with improved normalization capacities
- robust saturation regime to prevent a randomized on- and off-switching of activations



- How to design  $\sigma(y)$ :
  - $\triangleright$  Aspects of  $\sigma(y)$  to keep in mind:
    - 1. Positive and negative values are needed for adjusting  $\mu_{i+1}$
    - 2. Gradients greater than 1 needed to increase  $v_{i+1}$
    - 3. Saturation needed to decrease  $v_{i+1}$
    - 4. Continuous curve needed for converging to fixed points of moments
  - > Suitable choice: **SELU** (scaled exponential linear unit)

SELU(x) = 
$$\lambda \begin{cases} x & \text{if } x > 0 \\ \alpha (e^x - 1) & \text{if } x \le 0 \end{cases}$$





- > These parameters can be adjusted to fulfill requirements such as convergence toward fixed points
- For initialization based on standard normal distribution, typical values:  $\alpha = 1.6733$ ,  $\lambda = 1.0507$



#### Summary

- Fully-connected networks correspond to a standard network architecture suitable for different tasks
- For prediction of continuous values MSE is one choice of objective function
- For prediction of multidimensional continuous values, the last layer holds n output nodes
- For predicting categories (*classes*), the number of output values corresponds to the number of classes output values are further processed using the *softmax* function that guarantees their interpretation as probabilities
- The objective function of choice for classification is *cross-entropy*

#### Summary

- Training of *deep* neural networks is challenging
  - > Training needs to be robust against *vanishing/exploding* gradients
  - ➤ Challenges in selecting appropriate *learning rates*
  - ➤ Iterative updates of many parameters simultaneously, in an uncoordinated way, leads to problems known as *internal covariate shifts*
- Methods of network stabilization:
  - ➤ One way is to optimize networks by learning *residual* mappings by modifying the network architecture using *shortcuts*
  - Another way is to perform batch normalization, i.e. to re-normalize the outputs of a layer before it enters the next one
  - ➤ A third option is to use *self-normalizing networks*, where the distributions of activations are iteratively stabilized. This is achieved using a suitable choice of objective function (e.g. *SELU*)