

Print Name:		_
Last Name	First Name	
ID Number: M		
On my honor, I here	affirm that I have completed	this examination
independently, within	e allotted time, and within the ru	ıles set forth by the
Instructor. Further, I	ledge that I have upheld the U.G	C. Student Code of
Conduct rules on Acad	mic Integrity while completing ti	his examination. I
have not cheated, I ha	not plagiarized, and I have not g	given unauthorized
assistance to another	udent during the examination.	
Signature		
Date		

This is just a

MECH2020 Test#2

1. [15 pts]

The acceleration of a particle is defined by the relation $a = -k\sqrt{v}$, where k is a constant. Knowing that x = 0 and v = 81 m/s at t = 0 and that v = 36 m/s when x = 18 m, determine (a) the velocity of the particle when x = 20 m, (b) the time required for the particle to come to rest.

2. [15 pts]

An athlete pulls handle A to the left with a constant force of P = 100 N. Knowing that after the handle A has been pulled 30 cm its velocity is 3 m/s, determine the mass of the weight stack B.

3. [15 pts]

A 54-kg pilot flies a jet trainer in a half vertical loop of 1200-m radius so that the speed of the trainer decreases at a constant rate. Knowing that the pilot's apparent weights at Points A and C are 1680 N and 350 N, respectively, determine the force exerted on her by the seat of the trainer when the trainer is at Point B.

4. [15 pts]

The system shown is at rest when a constant 250-N force is applied to block A. Neglecting the masses of the pulleys and the effect of friction in the pulleys and between block A and the horizontal surface, determine (a) the velocity of block B after block A has moved 2 m, (b) the tension in the cable.

5. [20 pts]

The coefficient of restitution is 0.9 between the two 60-mm-diameter billiard balls A and B. Ball A is moving in the direction shown with a velocity of 1 m/s when it strikes ball B, which is at rest. Knowing that after impact B is moving in the x direction, determine (a) the angle θ , (b) the velocity of B after impact.

6. [20 pts]

The elevator E has a weight of 6600 lbs when fully loaded and is connected as shown to a counterweight W of weight of 2200 lb. Determine the power in hp delivered by the motor (a) when the elevator is moving down at a constant speed of 1 ft/s, (b) when it has an upward velocity of 1 ft/s and a deceleration of $0.18 \, \text{ft/s}^2$.