

COMP90024 Assignment 2 Big Data Analytics on the Cloud

Group 53

- Parsa Babadi Noroozi (1271605)
- Niket Singla (1288512)
- Jason Phan (1180106)
- Patipan Rochanapon (1117537)
- Liam Brennan (1269948)

Team 53 Introduction

Niket Singla 1288512	Liam Brennan 1269948	Parsa Babadi Noroozi 1271605	Patipan Rochanapon 1117537	Jason Phan 1180106
 Cluster setup Jupyter hub setup on K8 cluster Kafka setup EPA & BOM data ingestion Elasticsearch Data analysis API Jupyter frontend Unit test for all ingestion function and API endpoints 	 Crash and health risk processing backend Joined crash and SA2 analysis API Crash and health risk frontend visualisation Unit and end-to-end API endpoint testing 	 Crash and health risk data collection Crash and health risk elasticsearch ingestion Crash and health risk front end visualisation Crash and health risk analysis 	 Twitter, SA3, SUDO (SA3) Ingestion Twitter and SA3 coordinates mapping Join Twitter with SUDO (SA3) Twitter and SA3 Data Analysis 	 Twitter API routes SA3 data API routes Twitter and SA3 Data Analysis Twitter sentiment and age/income/education data visualisations Elasticsearch queries End to End testing for API endpoints

System Architecture

Following are the major components of our project deployed on MRC

- Cloud infrastructure, including necessary RAM, storage and processing capacity
- Kubernetes (K8s)
- Kafka
- Fission
- Elasticsearch & Kibana
- Jupyter notebook

Elasticsearch

Indexing: Efficient storage and retrieval of data.

Sharding & Replication: Distribution and replication of data across nodes for scalability and fault tolerance.

Ingest Pipelines: Preprocessing data before indexing using custom pipelines for parsing, enriching, and modifying documents.

Querying and Analysis: Retrieving and analyzing data using the Elasticsearch query DSL.

Data Collection

Data Collection via API

- Environment Protection Authority Victoria (EPA)
- Bureau of Meteorology (BOM)

SUDO Dataset

- SA3 Population, Highest Education, and Average Age & Income
- SA2 Health Risk Factors
- Combined SLA11 Premature Mortality & Fertility

Other External Datasets

- Crash Dataset
- SA2 & SA3 GeoJson Dataset
- Twitter Dataset

Backend

Twitter and SUDO (SA3)

- Mapping Twitter coordinates with SA3 polygons.
- Utilize Elasticsearch query with "geo_distance" filter to pinpoint nearest SA3 polygons for each Twitter coordinate
- Update Twitter index with "sa3_code_2021" to exclude non-Australian coordinates.
- Join Twitter and SUDO index by sa3_code_2021

SA3 Join **Twitter**

Road Crashes and SA2 Health Risks

- Road crash geolocations are joined using intersection gueries against SA2 district geometries
- Corresponding SA2 health risk data is incorporated as part of the joining process
- The final joined dataset combines crashes, health risks, and SA2 information together
- This dataset can be analysed using grouping and metric aggregation queries to extract insights

Data Analysis - Research Questions

Weather & Fertility/Mortality Rates

- Is there a relationship between air quality and temperature?
- Is there a relationship air quality, weather and mortality and fertility?

Crash & Alcohol Consumption

- How are car crashes distributed geographically within Victoria?
- How do risk factors such as alcohol consumption affect crash severity?
- Explore the densities of alcohol consumption and car crashes

Twitter

- Twitter Use vs. Population Counts
- Is there a relationship between happiness and income levels?
- Is there a relationship between happiness and education?
- Is there a relationship between happiness and age?

Questions

Thank you

Weather, Air Quality and Fertility-Mortality Data Analysis

Road Crashes and SA2 Health Risks

Exploring Crash Incidence

Swap right map out with new one after demo practice

Distribution of car crash locations

SA2 region crash incidence comparison

Road Crashes and SA2 Health Risks

Exploring Health Risk Influences

Crash severity (approximated by fatalities) vs alcohol consumption rate

Alcohol consumption rate vs crash severity (approximated by number of serious injuries)

Road Crashes and SA2 Health Risks

Exploring Health Risk Influences

SA2 alcohol consumption counts vs car crash distribution

Twitter Count VS Population

Is there a relationship between happiness and age?

Is there a relationship between happiness and education?

Is there a relationship between happiness and income levels?

