- Consider the following claim.
- There is a bipartite graph G = (L, R, E) such that
 - |L| = n• $|R| = 2^{\log^{-n}}$
 - Every subset of n/2 vertices of L has at least 2^{log n} n neighbors in R.
 - No vertex of R has more than 12log² n neighbors.
- We want to use the technique of proof by existence to show the above claim.

- There is a bipartite graph G = (L, R, E) such that
 - |L| = n, $|R| = 2^{\log^2 n}$. Every subset of n/2 vertices of L has at least $2^{\log^2 n} n$ neighbors in R. No vertex of R has more than $12\log^2 n$ neighbors.
 - Let every vertex of L choose d neighbors in R independently and uniformly at random.
 - Choices are made with replacement.
 - Multiple edges are dropped in favor of one edge.

- There is a bipartite graph G = (L, R, E) such that
 - |L| = n, $|R| = 2^{\log^2 n}$. Every subset of n/2 vertices of L has at least $2^{\log^2 n} n$ neighbors in R. No vertex of R has more than $12\log^2 n$ neighbors.
 - Let every vertex of L choose d neighbors in R independently and uniformly at random.
 - Let us now estimate the degree of any vertex of R.
 - Let |R| = r.
 - We can think of the degree of a vertex v in R as the expectation of the random variable X that indicates how many vertices in L choose v as a neighbor.
 - Each neighbor in L makes d choices, so we have nd choices in all.

- There is a bipartite graph G = (L, R, E) such that
 - |L| = n, $|R| = 2^{\log^2 n}$. Every subset of n/2 vertices of L has at least $2^{\log^2 n} n$ neighbors in R. No vertex of R has more than $12\log^2 n$ neighbors.
 - Let every vertex of L choose d neighbors in R independently and uniformly at random.
 - Let |R| = r.
 - We can think of the degree of a vertex v in R as the expectation of the random variable X that indicates how many vertices in L choose v as a neighbor.
 - Each neighbor in L makes d choices, so we have nd choices in all.
 - Let Xi be a random variable if the ith choice is v.

- Let |R| = r.
- We can think of the degree of a vertex v in R as the expectation of the random variable X that indicates how many vertices in L choose v as a neighbor.
- Each neighbor in L makes d choices, so we have nd choices in all.
- Let Xi be a random variable if the ith choice is v.
- E[Xi] = 1/r.
- $X = \Sigma Xi$ and so $E[X] = \Sigma E[Xi] = nd/r$.
- Pick $d = r.2log^2 n / n$ so that $E[X] = 2log^2 n$.
- Now apply Chernoff bounds on X for the event $X >= 12\log^2 n$.
- Use Boole's inequality to bound the probability of the bad event for every v in R.

- There is a bipartite graph G = (L, R, E) such that
 - |L| = n, $|R| = 2^{\log^2 n}$. Every subset of n/2 vertices of L has at least $2^{\log^2 n} n$ neighbors in R.
 - Let every vertex of L choose d neighbors in R independently and uniformly at random.
 - We now move to property 1.
 - Let S be any subset of size n/2 from L.
 - Let T be any subset of R of size $2^{\log^2 n} n$.
 - Consider the event that all the neighbors of S are in T.
 - This happens with a probability of $[(2^{\log^2 n} n)/r]^{nd/2}$.

. Every subset of L of 5/3e < n/2 has $\gtrsim 2^{\log^2 n} - n$ nors in R. Solver to the second support of size $\frac{N}{2}$ in $\frac{1}{|R|}$ First any subset $\frac{1}{|R|}$ of $\frac{1}{|R|}$ $\frac{1}{|R|}$ $\frac{1}{|R|}$ $\frac{1}{|R|}$ $\frac{1}{|R|}$ $\frac{1}{|R|}$ $\frac{1}{|R|}$ 1+1=1R1-n # ways of thering $S = {n \choose n/2}$

$$Pr(E) \leq (2e)^{n/2} \frac{d = \frac{|R|}{|L|} |L|^{100} e^{2n}}{(2e)^{n/2}} \frac{d = \frac{|R|}{|L|} |L|^{100} e^{2n}}{(2e)^{n/2}} = (2e)^{n/2} \left(\frac{e^{2\log^2 n}}{n}\right)^n e^{-\frac{n^2}{2} |L|^{100} e^{2n}}$$

$$= (2e)^{n/2} \left(\frac{e^{2\log^2 n}}{n}\right)^n e^{-\frac{n^2}{2} |L|^{100} e^{2n}}$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

$$\leq e^{\frac{n}{2} + \frac{n}{2}} + n + n \log^2 n - n \log^2 n$$

- There is a bipartite graph G = (L, R, E) such that
 - |L| = n, $|R| = 2^{\log^2 n}$. Every subset of n/2 vertices of L has at least $2^{\log^2 n} n$ neighbors in R.
 - Let S be any subset of size n/2 from L.
 - Let T be any subset of R of size 2^{log²n} n.
 - Consider the event that all the neighbors of S are in T.
 - This happens with a probability of $[(r-n)/r]^{nd/2}$.
 - Now, consider all possible choices of S and T. The probability that for any S all its neighbors are in some T is upper bounded by:
 \[^r C_{n/2} \] .
 \[(r-n)/r \]
 \[^n C_{n/2} \].
 - We will now show that the above probability is strictly less than
 1.

- Now, consider all possible choices of S and T. The probability that for any S all its neighbors are in some T is upper bounded by: ${}^{n}C_{n/2}$. ${}^{r}C_{r-n}$. $[(r-n)/r]^{nd/2}$.
 - We will now show that the above probability is at most 1.
 - Use the (in)equalities
 - ${}^{n}C_{n-k} = {}^{n}C_{k}$ for k between 0 and n.
 - 'c_k is at most (en/k)^k.
 - (1+x) is at most e^x for any real number x.
 - The required probability is
 - $(2e)^{n/2}$. $(er/n)^n$. $(e)^{-n^2d/2r}$.
 - Recall that $d = 2log^2 n \cdot r/n$.

- Now, consider all possible choices of S and T. The probability that for any S all its neighbors are in some T is upper bounded by: ${}^{n}C_{n/2}$. ${}^{r}C_{r-n}$. $[(r-n)/r]^{nd/2}$.
 - We will now show that the above probability is at most 1.
 - Use the (in) equalities
 - ${}^{n}C_{n-k} = {}^{n}C_{k}$ for k between 0 and n.
 - 'c_k is at most (en/k)^k.
 - (1+x) is at most e^x for any real number x.
 - The required probability is
 - $(2e)^{n/2}$. $(er/n)^n$. $(e)^{-n^2d/2r}$.
 - Recall that $d = 2\log^2 n$. r/n and $\log r = \log^2 n$ to simplify.

Yet Another Example

- $E \times 1 > 1$ $E \times 2 \times 2$ $E \times 2 \times 2$

- Consider a Boolean formula in CNF.
 In CNF, each clause is a disjunction of literals
 The formula is a conjunction of clauses.
- Another name for CNF is Product-of-Sums.

Yet Another Example

- We show that for any set of m clauses, there is a truth assignment that satisfies at least m/2 clauses.
- Proof: Consider a random assignment of truth values to variables as T/F.
- Consider a clause C_i of k variables.
- C_i is not satisfied with probability 2^{-k}.
- Define a random variable Z_i that indicates the event Ci is satisfied.
- $E[Z_i] = Pr(C_i \text{ is satisfied}) = 1 2^{-k}$.
- Define Z as the number of clauses satisfied. $Z = \sum Z_i$.
- $E[Z] = E[\sum Z_i] = \sum E[Z_i] = m(1 2^{-k}) \ge m/2 \text{ as } k \ge 1.$