Caítulo 2: Códigos de Barras

Distancia del cuello de botella y Teorema de Isometría

Haydeé Peruyero

31 de agosto de 2023

Dado un intervalo I=(a,b], denotemos por $I^{-\delta}=(a-\delta,b+\delta]$ el intervalo obtenido de I al expandirlo por δ en ambos lados.

Dado un intervalo I=(a,b], denotemos por $I^{-\delta}=(a-\delta,b+\delta]$ el intervalo obtenido de I al expandirlo por δ en ambos lados.

Sea $\mathcal B$ un código de barras. Para $\varepsilon>0$, denotemos por $\mathcal B_\varepsilon$ el conjunto de todas las barras de $\mathcal B$ de longitud mayor que ε . Estamos forzando a no considerar las barras pequeñas.

Dado un intervalo I=(a,b], denotemos por $I^{-\delta}=(a-\delta,b+\delta]$ el intervalo obtenido de I al expandirlo por δ en ambos lados.

Sea $\mathcal B$ un código de barras. Para $\varepsilon>0$, denotemos por $\mathcal B_\varepsilon$ el conjunto de todas las barras de $\mathcal B$ de longitud mayor que ε . Estamos forzando a no considerar las barras pequeñas.

Un emparejamiento (match) entre dos multi-conjuntos finitos X, Y es una biyección $\mu: X' \to Y'$, donde $X' \subset X, Y' \subset Y$. En este caso, $X' = \text{coim } \mu, Y' = \text{im } \mu$, y decimos que los elementos de X' y Y' están emparejados (matched).

Dado un intervalo I=(a,b], denotemos por $I^{-\delta}=(a-\delta,b+\delta]$ el intervalo obtenido de I al expandirlo por δ en ambos lados.

Sea $\mathcal B$ un código de barras. Para $\varepsilon>0$, denotemos por $\mathcal B_\varepsilon$ el conjunto de todas las barras de $\mathcal B$ de longitud mayor que ε . Estamos forzando a no considerar las barras pequeñas.

Un emparejamiento (match) entre dos multi-conjuntos finitos X,Y es una biyección $\mu: X' \to Y'$, donde $X' \subset X, Y' \subset Y$. En este caso, $X' = \text{coim } \mu, Y' = \text{im } \mu$, y decimos que los elementos de X' y Y' están emparejados (matched).

Si un elemento aparece en un multi-conjunto varias veces, debemos tratar sus copias diferentes por separado ya que solo algunas de estas podrían estar emparejadas.

δ -emparejamiento entre códigos de barras

Definición 2.2.1: Un δ-emparejamiento entre dos códigos de barras \mathcal{B} y \mathcal{C} es un emparejamiento $\mu: \mathcal{B} \to \mathcal{C}$, tal que:

- 1. $\mathcal{B}_{2\delta} \subset \operatorname{coim} \mu$,
- 2. $\mathcal{C}_{2\delta}\subset\operatorname{im}\mu$,
- 3. Si $\mu(I) = J$, entonces $I \subset J^{-\delta}$, $J \subset I^{-\delta}$.

δ -emparejamiento entre códigos de barras

Definición 2.2.1: Un δ-emparejamiento entre dos códigos de barras \mathcal{B} y \mathcal{C} es un emparejamiento $\mu: \mathcal{B} \to \mathcal{C}$, tal que:

- 1. $\mathcal{B}_{2\delta} \subset \operatorname{coim} \mu$,
- 2. $\mathcal{C}_{2\delta}\subset\operatorname{im}\mu$,
- 3. Si $\mu(I) = J$, entonces $I \subset J^{-\delta}$, $J \subset I^{-\delta}$.

Ejercicio 2.2.2 Si \mathcal{B}, \mathcal{C} son δ -emparejados y si \mathcal{C}, \mathcal{D} son γ -emparejados, entonces \mathcal{B}, \mathcal{D} son $(\delta + \gamma)$ -emparejados.

Distancia de cuello de botella

Definición 2.2.3: La distancia de cuello de botella, $d_{bot}(\mathcal{B}, \mathcal{C})$, entre dos códigos de barras \mathcal{B}, \mathcal{C} está definida como el ínfimo sobre todas las δ para los cuales existe un δ -emparejamiento entre \mathcal{B} y \mathcal{C} .

Distancia de cuello de botella

Definición 2.2.3: La distancia de cuello de botella, $d_{bot}(\mathcal{B}, \mathcal{C})$, entre dos códigos de barras \mathcal{B}, \mathcal{C} está definida como el ínfimo sobre todas las δ para los cuales existe un δ -emparejamiento entre \mathcal{B} y \mathcal{C} .

Ejercicio 2.2.4: Dos códigos de barras \mathcal{B} y \mathcal{C} están δ -emparejados con un δ finito si y sólo si tienen el mismo número de rayos infinitos.

Distancia de cuello de botella

Definición 2.2.3: La distancia de cuello de botella, $d_{bot}(\mathcal{B}, \mathcal{C})$, entre dos códigos de barras \mathcal{B}, \mathcal{C} está definida como el ínfimo sobre todas las δ para los cuales existe un δ -emparejamiento entre \mathcal{B} y \mathcal{C} .

Ejercicio 2.2.4: Dos códigos de barras \mathcal{B} y \mathcal{C} están δ -emparejados con un δ finito si y sólo si tienen el mismo número de rayos infinitos.

Corolario 2.2.5: La distancia de cuello de botella d_{bot} es una distancia en el espacio de códigos de barras con la misma cantidad de rayos infinitos.

Ejemplo'

Consideremos los módulos de persistencia $\mathbb{F}(a,b]$ y $\mathbb{F}(c,d]$ de los intervalos $(a,b,c,d\in\mathbb{R})$ y sus códigos de barras correspondientes $\mathcal{B}=\{(a,b]\}$ y $\mathcal{C}=\{(c,d]\}$.

Ejemplo

Consideremos los módulos de persistencia $\mathbb{F}(a,b]$ y $\mathbb{F}(c,d]$ de los intervalos $(a,b,c,d\in\mathbb{R})$ y sus códigos de barras correspondientes $\mathcal{B}=\{(a,b]\}$ y $\mathcal{C}=\{(c,d]\}$.

Entonces existe ya sea un δ -emparejamiento vacío entre ellos para $\delta=\max\left(\frac{b-a}{2},\frac{d-c}{2}\right)$ (ya que entonces las longitudes de ambos intervalos no exceden 2δ), o un δ -emparejamiento $(a,b]\to(c,d]$ para $\delta=\max(|a-c|,|b-d|)$.

Ejemplo

Consideremos los módulos de persistencia $\mathbb{F}(a,b]$ y $\mathbb{F}(c,d]$ de los intervalos $(a,b,c,d\in\mathbb{R})$ y sus códigos de barras correspondientes $\mathcal{B}=\{(a,b]\}$ y $\mathcal{C}=\{(c,d]\}$.

Entonces existe ya sea un δ -emparejamiento vacío entre ellos para $\delta=\max\left(\frac{b-a}{2},\frac{d-c}{2}\right)$ (ya que entonces las longitudes de ambos intervalos no exceden 2δ), o un δ -emparejamiento $(a,b]\to(c,d]$ para $\delta=\max(|a-c|,|b-d|)$.

$$\mathsf{Asi}, \ d_{bot}(\mathcal{B}, \mathcal{C}) \leq \mathsf{min}\left(\,\mathsf{máx}\left(\tfrac{b-a}{2}, \tfrac{d-c}{2}\right), \mathsf{máx}(|a-c|, |b-d|)\right).$$

Teorema de Isometría

Teorema 2.2.8: La función $V \mapsto \mathcal{B}(V)$ es una isometría, i.e. para cualquiera dos módulos de persistencia V, W, tenemos que:

$$d_{int}(V, W) = d_{bot}(\mathcal{B}(V), \mathcal{B}(W))$$

Teorema de Isometría

Teorema 2.2.8: La función $V \mapsto \mathcal{B}(V)$ es una isometría, i.e. para cualquiera dos módulos de persistencia V, W, tenemos que:

$$d_{int}(V, W) = d_{bot}(\mathcal{B}(V), \mathcal{B}(W))$$

Nota: En el caso de que ambos $\mathcal{B}(V)$ y $\mathcal{B}(W)$ no tengan el mismo número de barras infinitas, entonces ambas distancias $d_{int}(V,W)$ y $d_{bot}(\mathcal{B},\mathcal{C})$ son infinitas por definición.

Teorema de Isometría

Teorema 2.2.8: La función $V \mapsto \mathcal{B}(V)$ es una isometría, i.e. para cualquiera dos módulos de persistencia V, W, tenemos que:

$$d_{int}(V, W) = d_{bot}(\mathcal{B}(V), \mathcal{B}(W))$$

Nota: En el caso de que ambos $\mathcal{B}(V)$ y $\mathcal{B}(W)$ no tengan el mismo número de barras infinitas, entonces ambas distancias $d_{int}(V,W)$ y $d_{bot}(\mathcal{B},\mathcal{C})$ son infinitas por definición.

Ejercicio 2.2.10: Probar que para cualesquiera dos códigos de barras \mathcal{B} y \mathcal{C} tenemos que $d_{bot}(\mathcal{B},\mathcal{C})=0$ si y sólo si $\mathcal{B}=\mathcal{C}$. Deducir que $d_{int}(V,W)=0$ si y sólo si V=W.

