LC 07 : Evolution spontanée d'un système chimique

Niveau: Lycée

<u>Prérequis</u>: Tableau d'avancement, réactions acido-basiques, potentiel standard, Loi de Kohlrausch

Notion de quotient réactionnel

Différentes concentrations d'acide acétique dilué dans l'eau

Mesure de Q

CH3COOH (aq)	+ H20 (I)	=	CH3COO- (aq)	+ H3O+ (aq)
C_0	excès		0	0
C ₀ - X _f	excès		X _f	X_{f}

$$Q_{r,eq} = \frac{x_f^2}{(C_0 - x_f)C^o} \qquad \sigma = \lambda_{H_3O^+}^o \left[H_3O^+ \right] + \lambda_{CH_3COO^-}^o \left[CH_3COO^- \right]$$

$$\sigma = \left(\lambda_{H_3O^+}^o + \lambda_{CH_3COO^-}^o\right) x_f$$

Récapitulatif:

Pour prévoir l'état **final** d'un système (si équilibre) :

$$Q_{r,eq} = K \circ (T)$$

Pour prévoir l'évolution spontanée d'un système :

La pile Daniell

Une demi-réaction redox à chaque électrode : production d'un courant

→ Dans quel sens les électrons traversent-ils la lampe ?

Etat final de la pile

Zn (s)	+ Cu ²⁺ (aq)	=	Zn ²⁺ (aq)	+ Cu (s)
\mathbf{n}_{Zn}	n_0		n_0	n_{Cu}
n_{Zn} - ξ_f	$n_{0-} \xi_f$		$n_0 + \xi_f$	$n_{Cu} + \xi_f$

Hypothèse : l'état final est un état d'équilibre, alors $\xi_f \simeq n_0$

$$_{\scriptscriptstyle
ightarrow\, ext{Mais si}}$$
 $n_{Zn}<\xi_f$

Alors il y a <u>rupture de l'équilibre</u> : il n'y a plus de zinc dans l'état final.

→ L'hypothèse d'équilibre était fausse

Fonctionnement sonde du conductimètre

Schéma d'une cellule conductimétrique.

- $G = \frac{I}{II}$ en S
- $\sigma = G \times k$ avec k constante de cellule en cm^{-1}

 $\lambda_{H_3O^+}^0 = 34.9 \ mS.m^2/mol \ {\rm et} \ \lambda_{CH_3COO^-}^0 = 4.1 \ mS.m^2/mol.$