

Discrete POWER & Signal **Technologies**

MPSH11

MMBTH11

NPN RF Transistor

This device is designed for common-emitter low noise amplifier and mixer applications with collector currents in the 100 µA to 10 mA range to 300 MHz, and low frequency drift common-base VHF oscillator applications with high output levels for driving FET mixers. Sourced from Process 47.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	25	V
V _{CBO}	Collector-Base Voltage	30	V
V _{EBO}	Emitter-Base Voltage	3.0	V
I _C	Collector Current - Continuous	50	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	Max		Units	
		MPSH11	*MMBTH11		
P _D	Total Device Dissipation Derate above 25°C	350 2.8	225 1.8	mW mW/°C	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125		°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357	556	°C/W	

^{*}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

²⁾ These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Max

Min

(continued)

Units

Electrical	l ('hara	Ctarietics
LICCUICA	Cilaia	CLEHOLIC

Parameter

TA = 25°C unless otherwise noted

Test Conditions

OFF CHARACTERISTICS						
$V_{(BR)CEO}$	Collector-Emitter Sustaining Voltage*	$I_C = 1.0 \text{ mA}, I_B = 0$	25		V	
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 100 \mu A, I_E = 0$	30		V	
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$	3.0		V	
I _{CBO}	Collector Cutoff Current	$V_{CB} = 25 \text{ V}, I_{E} = 0$		100	nA	
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 2.0 \text{ V}, I_{C} = 0$		100	nA	

ON CHARACTERISTICS

Symbol

h _{FE}	DC Current Gain	$I_C = 4.0 \text{ mA}, V_{CE} = 10 \text{ V}$	60		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_C = 4.0 \text{ mA}, I_B = 0.4 \text{ mA}$		0.5	V
V _{BE(on)}	Base-Emitter On Voltage	$I_C = 4.0 \text{ mA}, V_{CE} = 10 \text{ V}$		0.95	V

SMALL SIGNAL CHARACTERISTICS

f _T	Current Gain - Bandwidth Product	$I_C = 4.0 \text{ mA}, V_{CE} = 10 \text{ V},$	650		MHz
		f = 100 MHz			
C _{cb}	Collector-Base Capacitance	$V_{CB} = 10 \text{ V}, I_{E} = 0, f = 1.0 \text{ MHz}$		0.7	pF
C _{rb}	Common-Base Feedback Capacitance	$V_{CB} = 10 \text{ V}, I_{E} = 0, f = 1.0 \text{ MHz}$	0.6	0.9	pF
rb'C _c	Collector Base Time Constant	$I_C = 4.0 \text{ mA}, V_{CB} = 10 \text{ V},$		9.0	pS
		f = 31.8 MHz			

^{*}Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%

DC Typical Characteristics

(continued)

DC Typical Characteristics (continued)

Collector-Cutoff Current vs Ambient Temperature

AC Typical Characteristics

(continued)

Common Emitter Y Parameters

(continued)

Common Emitter Y Parameters (continued)

(continued)

Common Emitter Y Parameters (continued)

(continued)

AC Typical Characteristics

POWER DISSIPATION vs AMBIENT TEMPERATURE

Test Circuits

FIGURE 1: Unneutralized 200 MHz PG NF Test Circuit

(continued)

Test Circuits (continued)

FIGURE 2: 45 MHz Power Gain Circuit

FIGURE 3: 200 MHz Conversion Gain Test Circuit