FINANSIERING 1

3 timers skriftlig eksamen, 9-12, fredag 24/8 2018. Alle sædvanlige hjælpemidler (inkl. blyant) tilladt. Sættet er på 3 sider og indeholder 10 nummererede delspørgsmål, der indgår med lige vægt i bedømmelsen. Der anvendes . til at angive decimalpunkter.

Opgave 1

Betragt en 2-periode-model for kursen, S, på en aktie. Den mulige udvikling er fastlagt ved nedenstående gitter med **tidspunkter**, aktiekurser (i målt i kr.), dividender og sandsynligheder svarende til målet P. Desuden findes der et risikofrit aktiv (bankbogen) med en konstant rente, r, på 2% per periode (r = 0.02).

Spg. 1a

 $\overline{\mathbf{Vis}}$ at modellen er arbitrage-fri og komplet – specielt at alle 1-periodedelmodeller har risikoneutrale op-sandsynligheder på $\frac{3}{5}$.

Spg. 1b

Beregn Fwd(0,2) – dvs. tid 0-forwardprisen for en aktie-forwardkontrakt, der udløber på tid 2.

Spg. 1c

Bestem tid 0-prisen for en udløb-2, strike-100 europæisk call-option på aktien og angiv sammensætningen af den replikerende (aktie, bankbog)-portefølje.

Spg. 1d

Beregn tid 0-prisen på den til spg. 1c svarende europæiske put-option. **Holder** put-call-pariteten?

Spg. 1e

En agent investerer 100 kr. på tid 0 i en selvfinansierende (aktie, bankbog)-portefølje, der holdes indtil tid 2. Dette gøres således, at værdien af aktieinvesteringen på et hvilketsomhelst tidspunkt er 50 kr. **Angiv** hvor mange enheder af aktie og bankbog, agenten holder på tid 0 og tid 1, samt de mulige tid 2-værdier af porteføljen. **Hvad** er Q-forventningen til porteføljens tid 2-værdi, hvor som sædvanlig Q er martingalmålet?

Opgave 2

Betragt nedenstående model for mulige udviklinger i den korte rente (ρ) ; den indeholder som sædvanlig tidspunkter, niveauer og (betingede) sandsynligheder. Sandsynlighederne antages at være risiko-neutrale, altså at afspejle et martingalmål (Q).

 $\underline{\operatorname{Spg. 2a}}$ **Vis** at nulkuponobligationspriserne (naturligt ordnet) på tid 0 er givet ved (0.9804; 0.9595; 0.9272) og **angiv** tid 0-forward-renterne, f(0,t).

Spg. 2b

Betragt et 3-periode (N=3) annuitetslån – også kaldet en annuitetsobligation eller bare en annuitet – med en initial hovedstol $(F \text{ eller } H_0)$ på 100 og kuponrente (R) på 0.03 (dvs. 3%). **Beregn** dette låns tid 0-kurs og den tilhørende effektive rente.

Spg. 2c

Nu betragtes en variabelt forrentet version af annuiteten fra spg. 2b. Dette lån har den samme

afdragsprofil (altså samme afdragsbetalinger), men rentebetalingen er på (ethvert) tidspunkt $t \text{ lig } H_{t-1} * \rho(t-1)$, hvor H betegner hovedstol. **Vis** at tid 0-kursen på denne annuitet er 100.

Spg. 2d

Nu betragtes en såkaldt N-periode som-om-annuitet. Dette er et lån, hvor den resterende hovedstol udvikler sig efter $H_t = H_{t-1} * (1 + \rho(t)) - y(t)$, idet ydelserne, y(t), er bestemt ved

$$y(t) = H_{t-1} * \frac{\rho(t)(1+\rho(t))^{N-(t-1)}}{(1+\rho(t))^{N-(t-1)}-1},$$

dvs. som om man havde en annuitet, idet dog kuponrenten skiftes med den variable korte rente. For en som-om-annuitet med $H_0 = 100$ og N = 2, angiv da dens betalinger (i et træ) og **beregn** dens tid 0-kurs (som ikke eksakt er 100).

Opgave 3

Spg. 3a Som del af deres informations- og/eller reklamemateriale bruger AP Pension nedenstående figur.

Kommentér.