Introduction

- We have ℓ labeled examples (x^i, \tilde{y}^i) $i = 1, \dots, \ell$.
- We have u unlabeled examples x^j $j = 1, \ldots, u$.
- Goal: Find y^j !

In real-world projects:

- Easy to get data
- ullet Hard to get labels o Huge number of unlabeled data

We consider problems with 2 classes, labels $\{-1, +1\}$.

Paradigm: Similar features = Similar labels

- Define weights w_{ij} : similarity between labeled example i and unlabeled example j.
- Define weights \tilde{w}_{ij} : similarity between **unlabeled** examples i and j.

Solve the problem:

$$\min_{y \in \mathbb{R}^u} \left(\sum_{i=1}^{\ell} \sum_{j=1}^{u} w_{ij} (y^j - \tilde{y}^i)^2 + \frac{1}{2} \sum_{i=1}^{u} \sum_{j=1}^{u} \tilde{w}_{ij} (y^i - y^j)^2 \right)$$

- Term 1: Unlabeled examples similar to close labeled ones.
- Term 2: Similar unlabeled examples get similar labels.

How to choose weights?

- Use some similarity measures based on features.
- 1. Randomly generate a set of points in 2D and give labels to a small subset of those points.
- 2. Choose a proper similarity measure to define w_{ij} .
- 3. Consider the problem *.
- 4. Solve problem * with:
 - a) Gradient descent
 - b) Block with GS rule
 - c) Coordinate minimization

For (b) use blocks of dimension 1.

- 5. Choose a publicly available dataset and test the methods on this.
- 6. Analyze accuracy vs. runtime (plots).
- 7. Describe what you did in a PDF file.
- 8. Upload files on Moodle (see tile "Homework").

Free Tips

Gradient with respect to y^i :

$$\nabla_{y^i} f(y) = 2 \sum_{i \neq j} w_{ij} (y^i - \tilde{y}^j) + 2 \sum_{i \neq j} \tilde{w}_{ij} (y^i - y^j)$$

1