INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4519B MSI

Quadruple 2-input multiplexer

Product specification
File under Integrated Circuits, IC04

January 1995

Quadruple 2-input multiplexer

HEF4519B MSI

DESCRIPTION

The HEF4519B provides four multiplexing circuits with common select inputs (S_A , S_B); each circuit contains two inputs (A_n , B_n) and one output (O_n). It may be used to select four bits of information from one of two sources.

The 'A' inputs are selected when S_A is HIGH, the 'B' inputs when S_B is HIGH. When S_A and S_B are HIGH, the output (O_n) is the logical EXCLUSIVE-NOR of the A_n and B_n inputs $(O_n = A_n \odot B_n)$.

When S_A and S_B are LOW, the output (O_n) is LOW, independent of the multiplexer inputs $(A_n$ and $B_n)$.

The HEF4519B cannot be used to multiplex analogue signals. The outputs utilize standard buffers for best performance.

PINNING

S_A, S_B selects inputs (active HIGH)

 A_0 to A_3 multiplexer inputs B_0 to B_3 multiplexer inputs O_0 to O_3 multiplexer outputs

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

HEF4519BP(N): 16-lead DIL; plastic (SOT38-1) HEF4519BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF4519BT(D): 16-lead SO; plastic (SOT109-1)

(): Package Designator North America

Quadruple 2-input multiplexer

HEF4519B MSI

FUNCTION TABLE

	OUTPUT			
SA	S _B	An	B _n	On
L	L	Х	Х	L
Н	L	An	Х	A _n
L	Н	Х	B _n	B _n
Н	Н	L	L	Н
Н	Н	Н	L	L
Н	Н	L	Н	L
Н	Н	Н	Н	Н

Notes

- 1. H = HIGH state (the more positive voltage)
 - L = LOW state (the less positive voltage)
 - X = state is immaterial

Philips Semiconductors Product specification

Quadruple 2-input multiplexer

HEF4519B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
A_n , $B_n \rightarrow O_n$	5		95	190	ns	68 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	40	80	ns	29 ns + (0,23 ns/pF) C _L
	15		30	60	ns	22 ns + (0,16 ns/pF) C _L
	5		80	160	ns	53 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	40	80	ns	29 ns + (0,23 ns/pF) C _L
	15		30	60	ns	22 ns + (0,16 ns/pF) C _L
$S_A,S_B\to O_n$	5		95	190	ns	68 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	40	80	ns	29 ns + (0,23 ns/pF) C _L
	15		30	55	ns	22 ns + (0,16 ns/pF) C _L
	5		85	165	ns	58 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	40	80	ns	29 ns + (0,23 ns/pF) C _L
	15		30	60	ns	22 ns + (0,16 ns/pF) C _L
Output transition times	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L
	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	$1000 f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	$6000 f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	17 000 $f_i + \sum (f_0 C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_oC_L) = sum of outputs$
			V _{DD} = supply voltage (V)

APPLICATION INFORMATION

Some examples of applications for the HEF4519B are:

- 2-input multiplexers.
- True/complement selectors.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.