Тема по квантива информатика:

Алгоритъм за засичане и коригиране на грешки в квантови системи

Quantum Error Correction

Цветелин Цецков ФН:82130

10 февруари 2021 г.

Съдържание

1	Класически подход	2
2	Преход към квантова система 2.1 Кодировки на един кубит 2.2 За шума 2.3 Декодиране на състоянието	6
3	Недостатъци на метода	10
4	Кодировка на Шор	10
5	Заключение	11

Абстракт

При квантовите операции и пренос на състояния винаги е възможно да настъпи т.н. decoherence - от чисти състояния, представени с вектори, до нечисти състояния, представени от матрици на плътността. Или да останем в чисто състояние, но околната среда да "измери" състоянието вместо нас. Тогава спрямо Проекционният постулат системата ще премине със скок в ново състояние спрямо изчислителния базис.

1 Класически подход

Можем да заемем подход от един от първите подходи за корекции на грешки в класическите компютри - да повторим бит няколко пъти¹. Това не е проблем, ако нашето състояние е едно от базисните $|0\rangle$, $|1\rangle$, $|+\rangle$ или $|-\rangle$.

Ако кубитът, който кодираме е $|\psi\rangle\in\{\ |\ 0\rangle,\ |\ 1\rangle,\ |\ +\rangle,\ |\ -\rangle\,\}$. То нашата кодировка с повторение би изглеждала по следния начин:

$$|\phi\rangle = |\psi\rangle \otimes |\psi\rangle \otimes |\psi\rangle \tag{1}$$

Тази кодировка се основава на факта, че ако p е вероятността за обръщане на един бит при преноста(или изчислението). То вероятността за:

- 1 грешка е от порядъка на p.(1-p).(1-p) o p
- 2 грешки е от порядъка на $p.p.(1-p) \to p^2$
- 3 грешки е от порядъка на $p.p.p o p^3$

2 Преход към квантова система

Но обаче ако имаме произволно състояние $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, то за него не бихме могли да приложим $(1)^2$

Трябва да се измисли начин, по който да можем да поправяме грешки в кодировката без да се налага да измерваме системата, или поне не директно, защото тогава ще се приложи Проекционният постулат и ще загубим състоянието.

Вместо да правим:

$$|\phi\rangle = |\psi\rangle \otimes |\psi\rangle \otimes |\psi\rangle \tag{2}$$

2.1 Кодировки на един кубит

Една от най-простите кодировки би била да използваме помощни битове, за да запазим състоянието.

$$\begin{array}{c|cccc} |\psi\rangle & & & & |\psi\rangle \\ |0\rangle & & & & |ans_1\rangle \\ |0\rangle & & & & |ans_2\rangle \end{array}$$

Фигура 1: Примерно кодиране на неизвестно състояние $|\psi\rangle$

Ако $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, то след кодировката получаваме:

$$|\phi\rangle = \alpha |000\rangle + \beta |111\rangle \neq |\psi\rangle \otimes |\psi\rangle \otimes |\psi\rangle \tag{3}$$

Нека за пълнота приемем $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ и изпишем матрицата на кодировката.

¹Класическите Кодировки с повторение. Основен принци, на които е повторението на един и същи бит разчитайки на факта, че повече на брой грешки са по-малко вероятни.

²Защото е в сила Теоремата, че не можем да клонираме произволно състояние

Нека преди това да припомним матриците на трансформациите Както и операциите, които прилагаме към трансформациите, за да можем да ги приложим към нашия "квантов регистър"³

$$CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, SWAP = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(4)

Матриците на използваните операции в Фигура 1(на нея се вижда само CNOT операцията, но когато изпишем алгоритъма в явен вид ще стане ясно, че се ползва и SWAP операцията)

$$-U-W-$$

Фигура 2: Последнователно прилагане на операции

Тогава тази операция може да се замести с една единствена получена по правилото: R = W.U

$$-R = W.U$$

Фигура 3: Последнователно прилагане на операции

Когато обаче се случи да имаме операции, които действат само върху част от квантовия регистър:

$$-U$$
 $-W$

Фигура 4: Паралелно прилагане на операции

Тогава можем да заместим двете с трансформация която действа едновременно и на двата кубита по правилото: $R=U\otimes {}^{\mathbf{4}}W$

$$R = U \otimes W$$

Фигура 5: Паралелно прилагане на операции

Явен вид на кодировката Сега е необходимо да изпишем по-подробно предишната схема от Фигура 1 във Фигура 6.

Фигура 6: Примерно кодиране на неизвестно състояние $|\psi\rangle$

Това ще ни помогне да видим кои операции ще са ни необходими(ако построяваме и физически) и какви операции трябва да приложим между матриците на трансформациите. В случая

 $^{^{3}}$ В аналог с класическите компютри този термин ще бъде използван за съставна система от 2 или повече кубита

⁴C този символ означаваме тензорно произведение между 2 матрици. Още наричано произведение на Кронекер

 $^{^{6}}$ Използваме I като операцията идентитет - не осъществява никаква трансформация и има матрица $\left[\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right]$

множеството $\{I, CNOT, SWAP\}$ е напълно достатъчно, за да построим нашият алгоритъм. Така можем да изведем формула за нашата кодировка⁷:

$$ENCODE_1 = \underbrace{(SWAP \otimes I)}_{\text{Четвърта колона}} \cdot \underbrace{(I \otimes CNOT)}_{\text{Трета колона}} \cdot \underbrace{(SWAP \otimes I)}_{\text{Втора колона}} \cdot \underbrace{(CNOT \otimes I)}_{\text{Първа колона}}$$
 (5)

(5) представлява формула за изчисление на матрицата на нашата кодировка(за един кубит). Замествайки стойностите от (4) в нея получаваме "кодировъчната матрица":

От сега нататък $ENCODE_1$ ще бъде използвана като кодировка на 3 кубита по метода обяснен по-горе.

Интересното на тази кодировка е, че посредством тези CNOT операции, цялата система става "entangled" (преплетена). Именно от този феномен идва всеизветната фраза на Айнщайн - "spooky action at a distance тъй като ако измерим един кубит на системата веднага ще знаем стойността на другите два. [2]

Примерни изчисления с кодировъчната матрица Ще извършим кодировка на всеки от базисните вектори на състоянията и в правоъгълния базис 8 , и диагоналния 9

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \tag{7}$$

НЕ можем просто така да приложим $ENCODE_1$ върху $|0\rangle$, защотое само един кубит, докато $ENCODE_1$ действа върху 3. Затова конструираме състояние $|000\rangle = |0\rangle \otimes |0\rangle \otimes |0\rangle$

$$|000\rangle = |0\rangle \otimes |0\rangle \otimes |0\rangle = \begin{pmatrix} 1\\0\\0\\0\\0\\0\\0\\0\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0\\0\\0\\0\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\0\\0\\0\\0\\0\\0\\0 \end{pmatrix}$$
 (8)

⁷Избраното име на трансформацията идва от анг. "encode кодирам, от там и кодировка. Прието е да се изписват имената на трансформациите на латиница с латински букви, за да има консистентност поне между чертежи, докато текстовете са различни.

 $^{^{\}mathbf{8}}$ Прието е правоъгълният базис да се състои от $\{ \ |\ 1 \rangle,\ |\ 0 \rangle\ \}$

 $^{^{9}}$ Диагоналния базис се състои от $\{ \mid + \rangle, \mid - \rangle \}$, който може да се получи от правоъгълния по следния начин $|\pm \rangle = \frac{1}{\sqrt{2}} |0\rangle \pm \frac{1}{\sqrt{2}} |1\rangle$

Разглеждаме случая за |1>

$$|1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \tag{10}$$

Аналогично не можем да приложим кодировъчната матрица, затова конструираме състоянието $|4\rangle^{10}=|100\rangle=|1\rangle\otimes|0\rangle\otimes|0\rangle$

$$|4\rangle = |100\rangle = |1\rangle \otimes |0\rangle \otimes |0\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(11)$$

Сега за диагоналния базис:

$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \tag{13}$$

$$|+00\rangle = |+\rangle \otimes |0\rangle \otimes |0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0\\0\\0\\0\\0\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0\\0\\0\\0\\0\\0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0\\0\\0\\0\\0\\0 \end{pmatrix} = \frac{1}{\sqrt{2}} |000\rangle + \frac{1}{\sqrt{2}} |001\rangle \tag{14}$$

 $^{^{10}{}m C}$ цел по-кратък запис можем да използваме десетичния запис на квантовия регистър когато това е възможно, напр $|101\rangle=|5\rangle$

И последно случая:

$$|-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1 \end{pmatrix} \tag{16}$$

$$|-00\rangle = |-\rangle \otimes |0\rangle \otimes |0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1\\0\\0\\0\\0\\0 \end{pmatrix}$$
(17)

Интересно нещо, което можем да забележим е, че диагоналните базиси и $|0\rangle$ остават "същите докато само $|1\rangle$ променя стойността си(вж. (12))

2.2 За шума

Той може да бъде под най-различна форма и да "разстрои"нашето състояние по много начини. Може да бъде породен от множество фактори. Околната среда да "измери"нашето състояние и чрез проекционния посулат да загубим подготвеното състояние. Или пък от чисто състояние да го превърне в матрица на плътността, с която не е удобно да се работи за изчисления. Дори физическите трансформации, които прилагаме на кубита може да разстроят неговото състояние и да загубим нашите данни.

А относно каква форма могат да приемат тези изменения, те могат да бъдат

- 1. Обръщане на бит¹¹
- 2. Обръщане на фаза¹²
- 3. Линейна комбинация комбинация на 1 и 2

В известен смисъл построения $ENCODE_1$ ни защитава само от 1. Обаче ако се загледаме хубаво в обръщането на фазата можем да забележим, че обръщането на фазата в правоъгълния базис съответства на обръщане на бита в диагоналния, така че можем да продължим да изграждаме

 $^{^{11}}$ т.нар. bit-flip от класическите системи, където например дадена система $\alpha_1\alpha_2\alpha_3$ преминава в системата: $\alpha_1\overline{\alpha_2}\alpha_3$

¹²т. нар. phase-flip, когато състоянието $\alpha |0\rangle + \beta |0\rangle$ преминава в $\alpha |0\rangle - \beta |0\rangle$.

алгоритъма за корекция на грешки в правоъгълния базис и в последствие да го допълним и до диагонален базис, за да коригираме грешка и в него.

В крайната диаграма ще използваме следното означение за шума от околната среда и грешката по време на операциите

Фигура 7: Означението, че системата преминава през шум

2.3 Декодиране на състоянието

В общия случай получаваме неизвестно състояние

$$|\psi\rangle = \alpha_1 |0\rangle + \alpha_2 |1\rangle + \alpha_3 |2\rangle + \alpha_4 |3\rangle + \alpha_5 |4\rangle + \alpha_6 |5\rangle + \alpha_6 |6\rangle + \alpha_7 |7\rangle \tag{19}$$

След като знаем, че идващото състояние е получено чрез нашата кодировка, можем да сме сигурни, че е разложимо(или поне трябва да бъде). Затова можем да си го мислим като получено от даден кубит $|\phi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$

Но не можем просто да започнем да измерваме, тъй като ще загубим информацията заради проекционния постулат. Затова е необходимо отново да включим т.нар. ancilla bits¹³. Ще ги използваме да засечем грешките, които са възникнали и ще измерваме само тях, без да докосваме състоянието.

Фигура 8: Декодиране на полученото съсояние

Сега можем да разсъждаваме за $|x_1\rangle$ и $|x_2\rangle^{14}$.

$$|x_1,x_2\rangle = \begin{cases} |00
angle o |$$
 Не правим нищо. $|01
angle o \Pi$ рилагаме Pauli-X¹⁵на третия кубит. $|10
angle o \Pi$ рилагаме Pauli-X на втория кубит. $|11
angle o \Pi$ рилагаме Pauli-X на първия кубит.

верен резултат. Нека разпишем случаите и да се убедим:

1.
$$|x_1, x_2\rangle = |00\rangle : |x_1\rangle = 0 \to |\psi_1\rangle = |\psi_2\rangle \text{ if } |x_2\rangle = 0 \to |\psi_2\rangle = |\psi_3\rangle^{16}$$

2.
$$|x_1,x_2\rangle=|01\rangle:|x_1\rangle=0 \to |\psi_1\rangle=|\psi_2\rangle$$
, но $|x_2\rangle=1 \to |\psi_1\rangle\neq |\psi_3\rangle \to$ третия се различава от останалите

3.
$$|x_1,x_2\rangle=|01\rangle:|x_1\rangle=1\to |\psi_1\rangle\neq |\psi_2\rangle$$
 и $|x_2\rangle=0\to |\psi_1\rangle=|\psi_3\rangle\to$ втория се различава от останалите

 $^{^{13}}$ Бит, който не допринася за изчислението, а е необходим само за засичането и поправянето на грешки. Ancilla bit

¹⁴Тези разсъждения са взети от лекциите с цел пълнота на представянето.

 $^{^{15}}$ Pauli-X трансформацията, кръстена на Волфганг Паули. Представлява класическата NOT операция и има матрица $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

¹⁶Използваме $|\psi_i\rangle$ за означение на *i*-тия кубит в системата

4. $|x_1,x_2\rangle=|11\rangle:|x_1\rangle=1\rightarrow |\psi_1\rangle\neq |\psi_2\rangle$ и $|x_2\rangle=0\rightarrow |\psi_1\rangle\neq |\psi_3\rangle\rightarrow$ първия се различава от останалите

Ако измерим кое да е от гореспоменатите спрямо проекционния постулат $|\psi\rangle$ ще премине със скок в съответното състояние, което преполагаемо имаме.

Например, ако измерим $|00\rangle$ ще имаме информация, че всички битове са еднакви следователно ще имаме $\langle 000+111|\psi\rangle$, аналогично ако $|x_1,x_2\rangle=|01\rangle$ то ще знаем¹⁷, че първия и третия кубит на системата се различават и можем да проектираме $\langle 110+001|\psi\rangle$ и вече се вижда всъщност от къде идва решението за прилагане на Pauli-X към третия [1]. Аналогично и с останалите случаи: проектираме върху линейната комбинация, за която сме сигурни, че представлява състоянието на квантовия регистър.

Малка хитрина Можем да спестим няколко операции като всъщност се замислим какво ни трябва, а именно кубитът $|\phi\rangle = \alpha \, |0\rangle + \beta \, |1\rangle$ кодиран чрез $ENCODE_1$ и получен след шум като $|\psi\rangle$. Ако се интересуваме само от него можем да приложим операцията на Тофоли¹⁸ и в крайна сметка да елимираме участието на ancilla битове и да обръщаме само $|\psi\rangle$ (първия кубит в системата $|\psi\rangle$), ако е необходимо. И тогава нашият алгоритъм схематично ще изглежда така:

Фигура 9: Декодиране чрез операцията на Тофоли

Добавен бонус към това декодиране е, че правим по-малко операции, съответно намалява акумулирания шанс за грешка при прилагане на операциите.

Сега за целите на изложението е необходимо да изпишем алгоритъма в явен вид и да пресметнем неговата матрица. Разписваме схемата Фигура 9 и получаваме:

Фигура 10: Декодиране чрез операцията на Тофоли(разписна версия)

Въпреки, че опрацията на Тофоли е дефинирана при:

Фигура 11: Стандартната операция на Тофоли

 $^{^{17}}$ Под "знаем"
се има предвид, че можем да разсъждаваме за нещо като за дадено.

Но много лесно можем да рапределяме "контролите" 19, където поискаме чрез умножение по SWAP матрицата (отляво или отдясно) дадена в (4). Често това не се отразява експлицитно, защото се счита, че винаги можем да преномерираме кубитовете в края и да получим желания резултат. С цел експицитност на изложението ще извършвам и тези операции, тъй като това допринася за яснота на цялостното разбиране. В случая резултата е очевитен:

Фигура 12: Разписана модифицираната операция на Тофоли от Фигура 9

След като за стандартната трансформация използвахме CCNOT и нейните контроли са към "горните" кубитове, то логично можем да заключим, че можем да смятаме наименованието като всяка паралелна операция се поставя след "горната". Щом CCNOT е Controlled-Controlled-NOT, то най-логичното наименованите на получената матрица е NOTCC - NOT-Controlled-Controlled. След като имаме (4) и (20) можем да пресметнем матрицата на $DECODE_1$ операцията от Фигура 10

$$DECODE_1 = NOTCC.(SWAP \otimes I).(I \otimes CNOT).(SWAP \otimes I).(CNOT \otimes I)$$
 (21)

Сега извършваме операциите в (21) и получаваме:

Примерни изчисления с декодиращата матрица(проверка) Сега, за да се уверим, че наистина това е матрицата на декодирането ще я приложим към резултатите от: (9), (12), (15), (18)

 $DECODE_1$ приложено на резултата от (9)

$$DECODE_1. |000\rangle = |000\rangle \tag{23}$$

$$DECODE_1. |111\rangle = |100\rangle \tag{24}$$

¹⁹Контролите на една операция са изобразени като точки на схемите и служат за обозначаване на това, че дадена операция се контролира от кубитът в линията, където е точката.

 $^{^{20}}$ Прави ни впечатление, че всъщност матрицата на NOTCC не е много по-различна от тази на CCNOT, дори можем да забележим, че е просто "транспонирана по обратния диагонал"

$$DECODE_1. |+00\rangle = |+00\rangle \tag{25}$$

$$DECODE_1. |-00\rangle = |-00\rangle \tag{26}$$

Уверихме се, че декодира правилно изчислените състояния, какво ще получим обаче, ако получим системата $|\psi\rangle=|011\rangle$, бихме очаквали да има шум в първия кубит от системата (именно този, който ни интересува), затова прилагаме $DECODE_1$ и получаваме

$$DECODE_1. |011\rangle = |111\rangle \tag{27}$$

И както можем да забележим първия кубит се обръща и получаваме това, което сме очаквали. Нека разгледаме по-особен случай $|\psi\rangle=\alpha\,|010\rangle+\beta\,|101\rangle$

$$DECODE_1. |\psi\rangle = \alpha |010\rangle + \beta |110\rangle$$
 (28)

Както е видно системата не прие състоянието, което бихме очаквали при пълно декориране, в случая получихме частично декодиране(само върху първия кубит в системата).

3 Недостатъци на метода

Phase-flip errors Гореизложения метод(вж. Фигура 1 и Фигура 9) могат да засичат и коригират грешки от т. нар. тип "bit-flip errors но могат да настъпят и "phase-flip errors" Затова е необходимо разглеждане на втори алгоритъм именно за този вид грешки. Ако разгледаме какво всъщност представляват "phase-flip" грешките:

$$\alpha |0\rangle + \beta |1\rangle \stackrel{\text{Phase flip}}{\longleftrightarrow} \alpha |0\rangle - \beta |1\rangle$$
 (29)

В частност:

$$|+\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle \stackrel{\text{Phase flip}}{\longleftrightarrow} \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle = |-\rangle$$
 (30)

От (30) можем да забележим, че "phase-flip" грешката в правоъгълния базис може да се разглежда като "bit-flip" грешка в диагоналния. Следователно нашият алгоритъм трябва да "премине" от единия базис в другия. Можем да използваме квантовата Фурие трансформация²¹, но за целите на кодиране и декодиране можем да използваме опростена схема с Хадамар трансформацията.

Фигура 13: Схема за засичане и коригиране на phase-flip грешки

Отново сме се възползвали от идеята, че се интересуваме само от първия кубит на системата, а не от ancilla битовете. Матриците на $ENCODE_{phase}$ и $DECODE_{phase}$ могат тривиално да бъдат изписани от горната схема, чрез пресмятания подобни на (5) и (21)

4 Кодировка на Шор

[3]

 $^{^{21}}$ Квантовата Фурие трансформация ни позволява да преминаваме от единия базис в другия като ни предоставя формула за матрицата на трансформацията

История Кодировката разработена от Питър Шор. Чрез нея могат да се коригират произволни линейни комбинации грешки върху *единствен* кубит. Подхода е подобен на съвременни кодировки, а именно подхода на разделяне между логически и физически еденици. При кодировката на Шор един логически кубит(с който правим изчисления) се представя чрез 9 физически кубита. Той съчетава двете гореизложени схеми. Неговата схема изглежда така:

Фигура 14: Кодировка на Шор

Интересното, което може да се отбележи за тази кодировка е, че кубитовете на местата 0,3,6 се използват за засичане и коригиране на "phase-flip"грешки, а кубитовете по групи - (0,1,2), (3,4,5), (6,7,8) аналогично за "bit-flip"грешки. В общия случай кодировката на Шор може да се използва за грешки от вида на Фигура 7:

$$NOISE = c_1 \cdot I + c_2 \cdot \sigma_x + c_3 \cdot \sigma_y + c_4 \cdot \sigma_z \tag{31}$$

Където $c_1, c_2, c_3 \in \mathbb{C}$ и

$$\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

$$\sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
(32)

Съответно разглеждани: σ_x - bit-flip, σ_y - phase-flip, σ_z - и двете

5 Заключение

Настоящата разработка разгледа кодировки на един логически кубит и подходи за откриване и поправяне на единични грешки в системите на същия този логически кубит. Необходимо е да се отбележи, че тази област е обект на продължителни разработки, съответно изложените методи могат да търпят промени с течение на времето и да бъдат усъвършенствани.

Изчисленията и проверките на операциите бяха проведени на симулация на квантов компютър [4]. Също така матричните изчисления бяха улеснени от математическия модул на същата тази симулация.

Цитирани ресурси

- [1] Paul Adrien Maurice Dirac. *The Principles of Quantum Mechanics*. International series of monographs on physics. Clarendon Press, 1981. ISBN: 9780198520115.
- [2] Albert Einsten u Max Born. The Born-Einstein letters: Correspondence between Albert Einstein and Max and Hedwig Born from 1916-1955, with commentaries by Max Born. Macmillan, 1971. ISBN: 9788806379117.
- [3] Peter Shor. "Quantum Computing". B: (1998), c. 20. URL: http://www-math.mit.edu/~shor/papers/ICM.pdf.
- [4] Tsvetelin Tsetskov. Simulation-Q. URL: https://github.com/TsvetelinKostadinv/Simulation-Q.