A Precision Agriculture Technique for Optimum Irrigation in Tomato Plant

Pritam Gurung (PAS075BGE030)

Roshan Kafle (PAS075BGE033)

Samir Pahari (PAS075BGE035)

Sujan Adhikari (PAS075BGE043)

OBJECTIVES

To identify the suitable amount of Water or moisture for high productivity of tomato.

Study Area Map

STUDY AREA

METHODOLOGY

Soil Sample Collection

- Using handheld auger
 - From top soil
- From five different parts
 on the field

Soil Nutrition test

Table: Nutrient status of soil sample.

प्रदेश सरकार

कृषि व्यवस्था, कृषि तथा गरिवी निवारण सहकारी मन्त्रालय कथि विकास निर्देशनस्य माटो तथा मल परीक्षण प्रयोगशाला

फोन नं. ०६१-४६०१८७

But 2003/03/18 शिविर दर्ता नं

माटो जाँच सिफारिस प्रतिवेदन

45113 नमा प्रारवर तपाईले त्याउन भएको. .खेत / वारी जम्माको माटो जाँच (विश्लेषण) गर्दा तपसिल बमोजिमको नतिजा देखिएको जक्त निताका आधारमा तपसिलमा सिकारिस गरिए बगोनिमको कृषि चुन तथा प्रावृत्तिक मल एवं चिनो (🔝) लगाईएको कोलममा दिइस

मात्रा बचोजियको रासायनिक मलको प्रयोग गर्नु हुन अनुरोध छ। साथै यसमा संत्रान उपयोगी जानकारीहरू अध्ययन गर्नु हुन पनि अनुरोध छ विश्लेषण निरा पि.एच नाईटोजन फस्फोरस कि.सा./हे अमनीय तटस्य सारीय HIUH मध्यम अधिक कम मध्यम अधिक 10.9 39.90

सिफारिस गरिएको कृषि धून एवं मसम्बादको विवरण :

कि.या. प्रति रोपनीको दरले बानी लगाउन सन्दा कम्पीक्ट र/३ हप्ता लगाडि माटोमा रास्रो विस्यान हुँदा In. 4212 0.63

ब) प्रकृतिक मत (राप्ररो पाकेको कम्मोप्ट मत, गोठेमल, आदि) किन्ताम तल विष्युको मात्रामा प्रयोग गर्नुहोत्।

💚 १९०० कि या. वा ६० डोको प्रति रोपनी 🗌 १००० कि.सा. वा ४० डोको प्रति रोपनी 🗌 १०० कि.सा. वा २० डोको प्रति रोपनी 05 M

बानीको नाम	नाईट्रोज	न(कि.प्रा:/रो	पनी)		(कि.चा. /र			() कि.चा./रोप	- 14
चिनो सगाएको सिफारिस 🖘	अप	मध्यम	aftra	कम	मध्यम	विक	-		-
धान सिषित					1	MIGO	कम ।	मध्यम	লয়িক
धान असिचित	X.O	5.8	9.4	9.4	0,0%	0,85	9.4	0,0%	0,85
मके बर्च	1.0	9.4	O'AK	9.0	0,20	0.74	9.0	0,00	0.9%
मके हिर्जर	1.0	9.4	OW	9.4	0.0%	0,35	9.4	0.0%	0.15
गहुँ सिषित	Y.X	2. 2X	7.13	7.74	1.13	0,84	2.58	1.11	0,45
गर्ह असिचित	X.O	8.8	9.30	7.4	9.30	0,54	9.3	0,51	
भेदो जलत	7.8	9.7%	0.52	5.8	9.2%	0.61	9.0	0,00	0.88
हब् (मोरहनबाली)	₹.0	9.4	0,04	8.0	9.00	0,40	9.4	0,0%	0.74
खु (सुरीबाली)	1,0	1,0	9,40	1,0	9.40	0,00	150	9.00	0,85
रि, रायो	0,4	1.4	1.90	March	9.40	0.00	5.0	9.00	0,40
ो, उवा	1,0	9.4	0.04	5.0	9.00	0,40	9.0		0,40
।, उपा	7,0	9.0	0,10	50	9.00	0,40	9.4	0,00	0,7%
	9.1	0,0%	0,14	9.8	0.00	0.84		0,0%	0.15
दुवा, अतैची	8.8	9.78	0.4%	9.4	0,0%		9.0	0,10	0.3%
ल्	₹.¥	9.0%	9.55	2.8	9.78	0,14	5.8	9.74	0.4%
शेवामी	9.0	0,8	0.72	9.0		0,63	5.0	9.00	0,40
कारी बानी काउनी जात	¥.0	2.8	9.9%	Y.o	0,40	0.2%	9.0	0,40	0.24
कारी बाली साग र पात जात	1.4	9.0%	0,55	-		9.00	8,0	9.40	0,0%
कारी वासी जरे जात	9.0	0.8	0,72		9.00	0,10		9.04	0.34
प बाली		-	100.77	1	0,1	0.74		0,4	0.7%

क्षेत्रफल:- १ रोपनी करीब = १.५ कहा

१ हेक्टर = करीब २० रोपनी = कारब ३० कहा

भसको मात्रा:- १ कि.या. नाईट्रोजन = २.१७ कि.या. युरीया मत वयवा ४.७६ कि.या. एसोनियम सल्केट मत १ (क.श. महिद्वाना च र.२) कराम. पुरास । १ कि.श. फस्कोरस = २,९७ कि.श. हि.ए.पी.(DAP) मेंस (यहमा ०,३९ कि.श. नाईट्रोजन पनि समावेश मएको हुन्छ) अयवा ४.४४ कि.पा. सिंगन सुपर फोस्केट(SSP)

9 कि.ग्रा. पोटास = 9.६ कि.ग्रा. पोटास मल.(MOP) व्यवा २ कि.ग्रा. पोटासियम सल्फेट

ध्यान दिन् पर्ने कराहरू

(क) रासायनिक मल र कृषि चनको प्रयोग एकै साथ नगरी करक पारी मान प्रयोग गर्नहोला

 (ख) पि.एच.५.५. भन्दा कम भएको माटोमा सिफारिस गरिएको कृषि पुन एक प्रयोग नगरी पहिलो. वर्ष आधा र बोधो वर्ष आधा प्रयोग गर्नुहोला।

(ग) रासायनिक मलको प्रयोग गर्दा पोटास मल र फस्फोरस मल वाली लगाउने समयमा र नाईट्रोजन मल बालीको आवश्यकता अनुसार पटक पटक गरी प्रयोग गर

(घ) माटी सन्वन्धी केही बुक्तू पर्ने भएमा आफ्नो निजिकको कृषि सेवा केले. जिल्ला कृषि विकास कार्यालय वा क्षेत्रीय माटो परिक्षण प्रयोगशाला वा माटो व्यवस्थापन निर्देशनालयमा सम्पन्न राज्नुहोला ।

pH value	Nitrogen (%)	Phosphorus (kg/hec)	Potassium (kg/hec)
Normal = 7.1	Less= 0.04	Medium = 31.98	Medium = 139.92

Preparation of land

150kg of FYM was added along with 9.518kg urea,

2.68kg DAP and 3.17kg MOP.

Total 5 Plots each contains 3
subplots. (5*3 = 15 subplots)

Irrigation

Divided into different plot 25%,
50%, 75% and 100% field capacity.

Data Collection

Image Capturing

Soil Moisture

Fruit Yield

Image Capturing

By DSLR Camera

Figure: Sample image of leaf of tomato plants.

By Mobile Phone

Soil Moisture

Table: Moisture Data

Date	Plot A	Plot B	Plot C	Plot D	Plot E	Plot F	Plot G	Plot H	Plot I	Plot J	Plot K	Plot L	Plot M	Plot N	Plot O
4/30/2079	18.7	22.4	16.6	19.5	24.7	14.4	15.4	20.2	18.6	13.1	17.2	10.3	23.1	25.2	2 18.5
5/8/2079	22.3	23.1	18.5	22.7	29.3	15.3	19.7	24.6	24.3	22.5	19	14.9			
5/23/2079	16.6	18.8	21.2	14.7	13.8	9.9	12.9	20.5	13.9	12.6	22.4	20.3	16.3	11.1	20.2
6/2/2079	10.5	16.8	15.7	13.5	24.5	10.6	11.9	20.2	9	23.1	23.7	21.5	12.8	14.4	22.6
6/13/2079	15.5	20.3	19	17	20.3	12.9	17.3	18.4	13.8	16.4	13.4	20.5	11.5	14.6	19.7
6/27/2079	28.1	23.3	18	21.5	21.4	14.6	24	14	16.9	12.4	13.4	22.4	7.1	9.2	2 22.4
7/6/2079	16.6	18.8	21.2	14.7	13.8	9.9	12.9	20.5	13.9	12.6	22.4	20.3	16.3	11.1	20.2
7/14/2079	18.7	16.8	15.7	13.5	24.5	10.6	11.9	20.2	9	23.1	23.7	21.5	12.8	14.4	22.6
7/20/2079	20.2	23.1	20.3	16.3	11.1	15.3	19.7	24.6	29.3	22.5	19	14.9	13.8	22.4	18.7
7/30/2079	19.7	18.8	21.5	12.8	14.4	9.9	12.9	9.9	12.9	20.5	22.4	20.3	16.3	11.1	20.2
8/7/2079	15.5	20.3	7.1	17	20.3	12.9	17.3	18.4	24.5	16.4	13.4	20.5	11.5	14.6	19.7

Fruit yield

Date	Plot A	Plot B	Plot C	Plot D	Plot E	Plot F	Plot G	Plot H	Plot I	Plot J	Plot K	Plot L
6/29/2079	0.712	0.712	0.396	1.512	1.418	0.724	0.642	0.66	0.452	0.404	0.566	0.604
7/1/2079	0.76	1.478	1.29	2.654	2.654	1.48	0.438	1.316	1.884	0.896	2.502	2 0.752
7/5/2079	1.98	0.614	1.338	1.748	1.888	1.178	1.264	0.884	1.946	1.298	1.528	1.164
7/11/2079	1.556	2.216	2.636	5.443	3.646	3.556	2.558	2.78	1.484	1.894	1.814	1.946
7/15/2079	1.214	2.168	3.864	1.423	1.448	1.508	0.432	1.556	0.45	1.566	0.574	1.208
8/8/2079	1.86	1.29	0.498	0.934	1.838	0.288	1.186	1.888	0.15	1.864	0.62	0.428
Sum	8.082	8.478	10.022	13.714	12.892	8.734	6.52	9.084	6.366	7.922	7.604	6.102
		100%			75%			50%			25%	
		Field Capacity			Field Capacity			Field Capacity			Field Capacity	

DATA ARRANGEMENT

Data Splitting

Training Dataset (80%)

Inputs to train a model.

Testing Dataset (10%)

Inputs to predict or check the performance of the model.

Validation Dataset (10%)

Model hyper parameter tuning and create new function.

Pre - Processing

- RESIZING
- RESCALING DATA
 AUGMENTATION

CNN

*

Input

4	9	2	5	8	3
-	6	2	4	0	3
2	4	5	4	5	2
5	6	5	4	7	8
5	7	7	9	2	1
5	8	5	3	8	4

$$n_H x n_W = 6 x 6$$

Filter

1	0	-1
1	0	7
1	0	-1

Parameters:

Size: f = 3Stride: s = 1Padding: p = 0

Result

https://indoml.com

Filter

-1	-1	-1	-1	2	12
2	2	2	-1	2	9
1	-1	-1	-1	2	9

-1 -1 2 -1 2 -1 2 -1 -1 -1 2 -1 -1 -1 2

Horizontal Filter

Transfer Learning

MobileNet

ResNet50

VGG19

NASNet

MobileNetV2

DensNet

InceptionV3

Xception

Keras Application

for

Pre-trained Model

VGG16

Web App

TIMELINE

THANK YOU

