Билет 54

Aвтор1, ..., AвторN

22 июня 2020 г.

Содержание

0.1	билет 54: поточечная и равномерная сходимость последовательности функции.	
	Определение и примеры. Критерий равномерной сходимости. Следствия	1

Билет 54 COДЕРЖАНИЕ

0.1. Билет 54: Поточечная и равномерная сходимость последовательности функций. Определение и примеры. Критерий равномерной сходимости. Следствия.

Определение 0.1.

Пусть $f_n, f: E \to \mathbb{R}$ (тут можно и \mathbb{C}).

- 1. Последовательность f_n поточечно сходится к f на множестве E, если $\lim_{n\to\infty} f_n(x) = f(x)$ для всех $x\in E$.
- 2. Последовательность f_n равномерно сходится к f на множестве E, если

$$\forall \varepsilon > 0 \quad \exists N \quad \forall n \geqslant N \quad \forall x \in E \quad |f_n(x) - f(x)| \leqslant \varepsilon$$

Обозначение для равномерной сходимости: $f_n \rightrightarrows f$ (и как-то указывать на каком множестве эта равномерная сходимость: или словами после, или под стрлочками)

Замечание.

Запишем оба определения с помощью кванторов:

- 1. $\forall x \in E \quad \forall \varepsilon > 0 \quad \exists N \quad \forall n \geqslant N \quad |f_n(x) f(x)| \leqslant \varepsilon$
- 2. $\forall \varepsilon > 0 \quad \exists N \quad \forall n \geqslant N \quad \forall x \in E \quad |f_n(x) f(x)| \leqslant \varepsilon$

Получается, что в первом случае N зависит **и** от x, **и** от ε , а во втором - **только** от ε .

Замечание.

Из равномерной сходимости следует поточечная к той же функции. Действительно, если есть универсальный номер, зависящий только от ε , то он подходит и для конкретного x.

Пример.

Пусть
$$E = (0; 1)$$
 $f_n(x) = x^n$ $f(x) = 0$, тогда

 f_n поточечно сходится к f (какое-то число из (0,1) в n-ной степени стремится к нулю), однако равномернорной сходимости нет. Условие не выполняется даже для $\varepsilon=\frac{1}{2}$, поскольку $|x^n-0|<\frac{1}{2}$ не может выполняться при все $x\in(0;1)$ ни для какого n, поскольку x мы можем сколь угодно близко подвинуть к 1, и x^n будет сколь угодно близко к 1, в частности больше $\frac{1}{2}$. Мораль: из поточечной сходимости равномерная **не** следует.

Теорема 0.1 (Критерий равномерной сходимости).

Пусть $f_n, f: E \to \mathbb{R}$. Тогда

$$f_n \rightrightarrows f \Leftrightarrow \sup_{x \in F} |f_n(x) - f(x)| \to 0$$
 при $n \to \infty$

Доказательство.

"**←**" Запишем правый предел по определению:

$$\forall \varepsilon > 0 \quad \exists N \quad \forall n \geqslant N \quad \sup_{x \in E} |f_n(x) - f(x)| < \varepsilon$$

А для супремума верно следующее: $\forall x \in E \quad |f_n(x) - f(x)| \leq \sup_{x \in E} |f_n(x) - f(x)| < \varepsilon$, поэтому:

$$\forall \varepsilon > 0 \quad \exists N \quad \forall n \geqslant N \quad \forall x \in E \quad |f_n(x) - f(x)| < \varepsilon$$

Ничего не напоминает? Мне вот определение равномерной сходимости напоминает.

Билет 54 COДЕРЖАНИЕ

"⇒" Запишем определение равномерной сходимости:

$$\forall \varepsilon > 0 \quad \exists N \quad \forall n \geqslant N \quad \forall x \in E \quad |f_n(x) - f(x)| \leqslant \varepsilon$$

Синее означает то, что ε является верхней границей для всех $|f_n(x) - f(x)|$, а значит, sup таких разностей будет меньше или равен ε , отсюда:

$$\forall \varepsilon > 0 \quad \exists N \quad \forall n \geqslant N \quad \sup_{x \in E} |f_n(x) - f(x)| \leqslant \varepsilon$$

А это означает то, что sup стремится к нулю при $n \to \infty$ (по определению).

Следствие.

1. Если $|f_n(x) - f(x)| \le a_n$ при любых $x \in E$ и $\lim_{n \to \infty} a_n = 0$, то $f_n \Rightarrow 0$ на E.

Доказательство.

Если разность меньше a_n во всех точках, то $\sup_{x\in E}|f_n(x)-f(x)|\leqslant a_n\to 0$ при $n\to\infty$

2. Если $\exists x_n \in E$ такие, что $f_n(x) - f(x)$ не стремится к нулю, то равномерной сходимости нет.

Доказательство.

Это означает, что $\sup_{x \in E} |f_n(x) - f(x)| \ge |f_n(x) - f(x)| \ne 0$ при $n \to \infty$, а значит, нет стремления к нулю у супремума, критерий равномерной сходимости не выполняется, равномерной сходимости нет.

Пример.

Пусть E = (0;1) $f_n(x) = x^n$ f(x) = 0, возьмем $x_n = 1 - \frac{1}{n}$, но мы знаем это:

$$\left(1 - \frac{1}{n}\right)^n \to \frac{1}{e} \neq 0$$

Раз предел не 0, то равномерной сходимости нет. (Предел может быть только нулем, потому что поточечный предел 0 (иначе пределов было бы несколько, так как равномерная сходимость влекла бы предел к другой функции)). Пример закончился, его явно в билете нет, но пусть будет.