

cmos028fdsoi Technology

PDC vs MC Noise report for EG model

DK1.2_RF_mmW

Please use the bookmark to navigate

General information on PDC vs MC Noise report for EG models

- Maximum supply voltage is 1.8 V.
- Validity domain is defined as follows:
 - ✓ Drawn gate length varies from 150nm to 10um.
 - ✓ Drawn transistor width varies from 0.16um to 10um.
 - ✓ Device temperature varies from -40 °C to 125 °C.

Output parameters definitions

Model(s): egnfet_acc, egpfet_acc

egnfet_acc Electrical characteristics per geometry

egnfet_acc@ w=1.5e-6, l=0.15e-6, pre_layout_local=1, nf=2, sa=1.2e-07, sb=1.2e-07, devtype=PCELLwoWPE, as=9e-14, ad=9e-14, ps=1.74e-06, pd=1.74e-06, vbs=0, vdd=1.8, temp=25

	TT_Noisedev=4	TT_Noisedev=0	TT_Noisedev=2	PRO_MC_PARAM_	PRO_MC_PARAM_	PRO_MC_PARAM_
				TT_1_MC_AVG-3S	TT_1_MC_AVG	TT_1_MC_AVG+3S
logSi2@1Hz	-16.72	-15.66	-14.59	-16.73	-15.66	-14.59
[log10(A ² /Hz)]						
logSi2ovId2@1Hz	-8.12	-7.06	-5.99	-8.12	-7.06	-5.99
[log10(1/Hz)]		•				
logSv2@1Hz	-10.01	-8.94	-7.87	-10.01	-8.94	-7.87
[log10(V ² /Hz)]			1	•		

egpfet_acc Electrical characteristics per geometry

egpfet_acc@ w=1.5e-6, l=0.15e-6, pre_layout_local=1, nf=2, sa=1.2e-07, sb=1.2e-07, devtype=PCELLwoWPE, as=9e-14, ad=9e-14, ps=1.74e-06, pd=1.74e-06, vbs=0, vdd=1.8, temp=25

	TT_Noisedev=4	TT_Noisedev=0	TT_Noisedev=2	PRO_MC_PARAM_	PRO_MC_PARAM_	PRO_MC_PARAM_
				TT_1_MC_AVG-3S	TT_1_MC_AVG	TT_1_MC_AVG+3S
logSi2@1Hz	-17.88	-16.98	-16.07	-17.88	-16.98	-16.07
[log10(A²/Hz)]						
logSi2ovId2@1Hz	-8.48	-7.58	-6.68	-8.48	-7.58	-6.67
[log10(1/Hz)]				•		,
logSv2@1Hz	-10.1	-9.2	-8.3	-10.1	-9.2	-8.3
[log10(V ² /Hz)]		'		•	•	

egnfet_acc Electrical characteristics scaling

Scaling versus Length @ W/L=10&&W/nf<5um

egnfet_acc, logSi2@1Hz+log10(nf) vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

-- DK1.2_RF_mmW_TT_Noisedev=4

--- DK1.2_RF_mmW_TT_Noisedev=0

--- DK1.2_RF_mmW_TT_Noisedev=2

DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG-3S

--- DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG

--- DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG+3S

ST Confidential

egnfet_acc, logSi2ovId2@1Hz+log10(nf) vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

- -- DK1.2_RF_mmW_TT_Noisedev=4
- --- DK1.2_RF_mmW_TT_Noisedev=0
- DK1.2_RF_mmW_TT_Noisedev=2
- **DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG-3S**
- --- DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG
- **DK1.2** RF mmW PRO MC PARAM TT 1 MC AVG+3S

egnfet_acc, LogSv2@1Hz+log10(nf) vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

- --- DK1.2_RF_mmW_TT_Noisedev=4
- --- DK1.2_RF_mmW_TT_Noisedev=0
- DK1.2_RF_mmW_TT_Noisedev=2
- **DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG-3S**
- --- DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG
- DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG+3S

egpfet_acc **Electrical characteristics scaling**

Scaling versus Length @ W/L=10&&W/nf<5um

egpfet_acc, logSi2@1Hz+log10(nf) vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

DK1.2_RF_mmW_TT_Noisedev=4

DK1.2_RF_mmW_TT_Noisedev=0

DK1.2_RF_mmW_TT_Noisedev=2

DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG-3S

--- DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG

DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG+3S

egpfet_acc, logSi2ovId2@1Hz+log10(nf) vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

-- DK1.2_RF_mmW_TT_Noisedev=4

--- DK1.2_RF_mmW_TT_Noisedev=0

DK1.2_RF_mmW_TT_Noisedev=2

DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG-3S

--- DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG

■ DK1.2 RF mmW PRO MC PARAM TT 1 MC AVG+3S

egpfet_acc, LogSv2@1Hz+log10(nf) vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

- **DK1.2_RF_mmW_TT_Noisedev=4**
- --- DK1.2_RF_mmW_TT_Noisedev=0
- DK1.2_RF_mmW_TT_Noisedev=2
- **DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG-3S**
- --- DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG
- **DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG+3S**

ST Confidential

Annex

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model egnfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** ams_release = 2018.3
 - \times mc_runs = 500
 - \mathbf{X} iana = 5e-6 A
 - **x** temp = $25 \, ^{\circ}$ C
 - \mathbf{x} mc_sens = 0
 - \star f_ext = 100k Hz
 - **✗** sbenchlsf_release = Alpha
 - \mathbf{x} vbs = 0 V
 - **x** model_version = 1.2.c
 - X vds_ana = Vdd/4 V
 - **x** mc_nsigma = 3
 - \times vdd = 1.8 V
 - ✓ Sweep Parameters
 - ✓ Extra parameters

Sep 21, 2018

ST Confidential

$$\mathbf{x}$$
 eg_dev = 0

- Model egpfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** ams_release = 2018.3
 - **x** mc_runs = 500
 - \mathbf{X} iana = 2e-6 A
 - **x** temp = $25 \, ^{\circ}$ C
 - \mathbf{x} mc_sens = 0
 - \star f_ext = 100k Hz
 - **x** sbenchlsf_release = Alpha
 - \mathbf{x} vbs = 0 V
 - **x** model_version = 1.2.c
 - \mathbf{X} vds_ana = Vdd/4 V
 - **x** mc_nsigma = 3
 - \times vdd = 1.8 V
 - ✓ Sweep Parameters
 - ✓ Extra parameters
 - \angle eg_dev = 0

Sep 21, 2018