Chariot élévateur de bateaux ★★

C2-09

Pas de corrigé pour cet exercice.

L'objectif est d'obtenir un modèle dynamique du mécanisme de basculement à partir de la modélisation plane proposée sur la figure suivante.

Les solides pris en compte pour l'étude sont :

- ▶ l'ensemble $S_2=\{$ T3, T4, T5, T6, T7, T8, T9, T10, T11, B $\}$ en liaison pivot d'axe $\left(O_1,\overrightarrow{y_0}\right)$ par rapport au chariot 1 de centre de gravité G_{S_2} . Le moment d'inertie de l'ensemble S_2 par rapport à l'axe sera $\left(G_{S_2},\overrightarrow{y_1}\right)$ noté J_{S_2} et sa masse m_{S_2} . La liaison pivot entre l'ensemble S_2 et le chariot génère un couple résistant $\overrightarrow{C_\mu} = -\mu \dot{\alpha} \overrightarrow{y_0}$ et $\overrightarrow{O_1O_{G_{S_2}}} = x_{G_{S_2}} \overrightarrow{x_{T3}} + z_{G_{S_2}} \overrightarrow{z_{T3}}$;
- ▶ un vérin équivalent $V = \{T1, T2\}$ dont la tige est en liaison pivot d'axe $\left(A_1, \overrightarrow{y_0}\right)$ par rapport au chariot 1 et le corps en liaison pivot d'axe $\left(B_1, \overrightarrow{y_0}\right)$ par rapport à l'ensemble S_2 . La masse et l'inertie du vérin sont négligées. Le vérin développe un effort au cours du mouvement qui sera noté $\overrightarrow{F_V} = p(t)S\overrightarrow{z_{T2}}$ où p(t) est la différence de pression entre les deux chambres du vérin.

On pose $\overrightarrow{A_1B_1} = (\lambda_0 + \lambda) \overrightarrow{z_{T2}}$. Le paramétrage est tel que si $\alpha = 0$ alors $\lambda = 0$.

Question 1 Tracer le graphe des liaisons.

Question 2 En appliquant le théorème de l'énergie-puissance et en admettant que l'angle α est petit, montrer que $\alpha(t)$ et p(t) sont liés par l'équation différentielle suivante : $J_{\rm eq}\ddot{\alpha}(t) + \mu\dot{\alpha}(t) = \frac{Sp(t)}{k} + m_{S_2}gx_{G_{S_2}}$. Exprimer $J_{\rm eq}$.

Corrigé voir .