Assignment I

Machine Learning II 2021-2022 - UMONS Souhaib Ben Taieb

1

Solve Problem 1.5 in LFD..

Problem 1.5 The perceptron learning algorithm works like this: In each it eration t, pick a random $(\mathbf{x}(t), y(t))$ and compute the 'signal' $s(t) = \mathbf{w}^{\mathsf{T}}(t)\mathbf{x}(t)$. If $y(t) \cdot s(t) \leq 0$, update \mathbf{w} by

$$\mathbf{w}(t+1) \longleftarrow \mathbf{w}(t) + y(t) \cdot \mathbf{x}(t) ;$$

One may argue that this algorithm does not take the 'closeness' between s(t) and y(t) into consideration. Let's look at another perceptron learning algorithm: In each iteration, pick a random $(\mathbf{x}(t),y(t))$ and compute s(t). If $y(t)\cdot s(t)\leq 1$, update \mathbf{w} by

$$\mathbf{w}(t+1) \longleftarrow \mathbf{w}(t) + \eta \cdot (y(t) \quad s(t)) \cdot \mathbf{x}(t)$$
,

where η is a constant. That is, if s(t) agrees with y(t) well (their product is > 1), the algorithm does nothing. On the other hand, if s(t) is further from y(t), the algorithm changes $\mathbf{w}(t)$ more. In this problem, you are asked to implement this algorithm and study its performance.

- (a) Generate a training data set of size 100 similar to that used in Exercise 1.4. Generate a test data set of size 10,000 from the same process. To get g, run the algorithm above with $\eta=100$ on the training data set, until a maximum of 1,000 updates has been reached. Plot the training data set, the target function f, and the final hypothesis g on the same figure. Report the error on the test set.
- (b) Use the data set in (a) and redo everything with $\eta=1$.
- (c) Use the data set in (a) and redo everything with $\eta=0.01$.
- (d) Use the data set in (a) and redo everything with $\eta = 0.0001$.
- (e) Compare the results that you get from (a) to (d).

The algorithm above is a variant of the so called Adaline (Adaptive Linear Neuron) algorithm for perceptron learning.

Figure 1: Source: Abu-Mostafa et al. Learning from data. AMLbook.

Solve Problem 1.7 in LFD..

Problem 1.7 A sample of heads and tails is created by tossing a coin a number of times independently. Assume we have a number of coins that generate different samples independently. For a given coin, let the probability of heads (probability of error) be μ . The probability of obtaining k heads in N tosses of this coin is given by the binomial distribution:

$$P[k \mid N, \mu] = {N \choose k} \mu^k (1 - \mu)^{N-k}.$$

Remember that the training error ν is $\frac{k}{N}$.

- (a) Assume the sample size (N) is 10. If all the coins have $\mu=0.05$ compute the probability that at least one coin will have $\nu=0$ for the case of 1 coin, 1,000 coins, 1,000,000 coins. Repeat for $\mu=0.8$.
- (b) For the case N=6 and 2 coins with $\mu=0.5$ for both coins, plot the probability

$$P[\max_{i} |\nu_i - \mu_i| > \epsilon]$$

for ϵ in the range [0,1] (the \max is over coins). On the same plot show the bound that would be obtained using the Hoeffding Inequality . Remember that for a single coin, the Hoeffding bound is

$$P[|\nu - \mu| > \epsilon] \le 2e^{-2N\epsilon^2}.$$

[Hint: Use P[A or B] = P[A] + P[B] P[A and B] = P[A] + P[B] - P[A]P[B], where the last equality follows by independence, to evaluate $P[\max \ldots]$]

Figure 2: Source: Abu-Mostafa et al. Learning from data. AMLbook.

Solve Problem 2.6 in LFD.

Problem 2.6 Prove that for $N \ge d$,

$$\sum_{i=0}^{d} \binom{N}{i} \le \left(\frac{eN}{d}\right)^{d}.$$

We suggest you first show the following intermediate steps.

(a)
$$\sum_{i=0}^{d} {N \choose i} \leq \sum_{i=0}^{d} {N \choose i} \left(\frac{N}{d}\right)^{d-i} \leq \left(\frac{N}{d}\right)^{d} \sum_{i=0}^{N} {N \choose i} \left(\frac{d}{N}\right)^{i}.$$

(b)
$$\sum_{i=0}^{N} {N \choose i} \left(\frac{d}{N}\right)^i \le e^d$$
. [Hints: Binomial theorem; $\left(1+\frac{1}{x}\right)^x \le e$ for $x>0$.]

Hence, argue that $m_{\mathcal{H}}(N) \leq \left(\frac{eN}{d_{\mathrm{VC}}}\right)^{d_{\mathrm{VC}}}$.

Figure 3: Source: Abu-Mostafa et al. Learning from data. AMLbook.

Solve Problem 2.18 in LFD.

Problem 2.18 The VC dimension of the perceptron hypothesis set corresponds to the number of parameters (w_0, w_1, \cdots, w_d) of the set, and this observation is 'usually' true for other hypothesis sets. However, we will present a counter example here. Prove that the following hypothesis set for $x \in \mathbb{R}$ has an infinite VC dimension:

$$\mathcal{H} = \left\{ h_{\alpha} \mid h_{\alpha}(x) = (-1)^{\lfloor \alpha x \rfloor}, \text{ where } \alpha \in \mathbb{R} \right\},$$

where $\lfloor A \rfloor$ is the biggest integer $\leq A$ (the floor function). This hypothesis has only one parameter α but 'enjoys' an infinite VC dimension. [Hint: Consider x_1, \ldots, x_N , where $x_n = 10^n$, and show how to implement an arbitrary dichotomy y_1, \ldots, y_N .]

Figure 4: Source: Abu-Mostafa et al. Learning from data. AMLbook.

TURN IN

- A jupyter notebook with your solutions.
- DUE: March 14, 11:55pm (late submissions not allowed), loaded into Moodle.