Reinforcement Learning

Introduction & Passive Learning

Alan Fern

^{*} Based in part on slides by Daniel Weld

So far

- Given an MDP model we know how to find optimal policies (for moderately-sized MDPs)
 - Value Iteration or Policy Iteration
- Given just a simulator of an MDP we know how to select actions
 - Monte-Carlo Planning
- What if we don't have a model or simulator?
 - Like when we were babies . . .
 - Like in many real-world applications
 - All we can do is wander around the world observing what happens, getting rewarded and punished
- Enters reinforcement learning

Reinforcement Learning

- No knowledge of environment
 - Can only act in the world and observe states and reward
- Many factors make RL difficult:
 - Actions have non-deterministic effects
 - Which are initially unknown
 - Rewards / punishments are infrequent
 - Often at the end of long sequences of actions
 - How do we determine what action(s) were really responsible for reward or punishment? (credit assignment)
 - World is large and complex
- Nevertheless learner must decide what actions to take
 - We will assume the world behaves as an MDP

Pure Reinforcement Learning vs. Monte-Carlo Planning

- In pure reinforcement learning:
 - the agent begins with no knowledge
 - wanders around the world observing outcomes
- In Monte-Carlo planning
 - the agent begins with no declarative knowledge of the world
 - has an interface to a world simulator that allows observing the outcome of taking any action in any state
- The simulator gives the agent the ability to "teleport" to any state, at any time, and then apply any action
- A pure RL agent does not have the ability to teleport
 - Can only observe the outcomes that it happens to reach

Pure Reinforcement Learning vs. Monte-Carlo Planning

- MC planning is sometimes called RL with a "strong simulator"
 - I.e. a simulator where we can set the current state to any state at any moment
- Pure RL is sometimes called RL with a "weak simulator"
 - ▲ I.e. a simulator where we cannot set the state
- A strong simulator can emulate a weak simulator
 - ◆ So pure RL can be used in the MC planning framework
 - But not vice versa

Passive vs. Active learning

Passive learning

- The agent has a fixed policy and tries to learn the utilities of states by observing the world go by
- Analogous to policy evaluation
- Often serves as a component of active learning algorithms
- Often inspires active learning algorithms

Active learning

- The agent attempts to find an optimal (or at least good) policy by acting in the world
- Analogous to solving the underlying MDP, but without first being given the MDP model

Model-Based vs. Model-Free RL

- Model based approach to RL:
 - ◆ learn the MDP model, or an approximation of it
 - use it for policy evaluation or to find the optimal policy
- Model free approach to RL:
 - derive the optimal policy without explicitly learning the model
 - useful when model is difficult to represent and/or learn

We will consider both types of approaches

Small vs. Huge MDPs

- We will first cover RL methods for small MDPs
 - ▲ MDPs where the number of states and actions is reasonably small
 - ↑ These algorithms will inspire more advanced methods
- Later we will cover algorithms for huge MDPs
 - **^** Function Approximation Methods
 - Policy Gradient Methods
 - **▲** Least-Squares Policy Iteration

Example: Passive RL

- Suppose given a stationary policy (shown by arrows)
 - Actions can stochastically lead to unintended grid cell
- Want to determine how good it is

Objective: Value Function

Passive RL

- Estimate V^π(s)
- Not given
 - transition matrix, nor
 - reward function!
- Follow the policy for many epochs giving training sequences.

$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,4) +1$$

 $(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (3,4) +1$
 $(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2) -1$

- Assume that after entering +1 or -1 state the agent enters zero reward terminal state
 - So we don't bother showing those transitions

Approach 1: Direct Estimation

- Direct estimation (also called Monte Carlo)
 - Estimate $V^{\pi}(s)$ as average total reward of epochs containing s (calculating from s to end of epoch)
- Reward to go of a state s
 - the sum of the (discounted) rewards from that state until a terminal state is reached
- Key: use observed reward to go of the state as the direct evidence of the actual expected utility of that state
- Averaging the reward-to-go samples will converge to true value at state

Direct Estimation

 Converge very slowly to correct utilities values (requires a lot of sequences)

Doesn't exploit Bellman constraints on policy values

$$V^{\pi}(s) = R(s) + \beta \sum_{s'} T(s, a, s') V^{\pi}(s')$$

It is happy to consider value function estimates that violate this property badly.

How can we incorporate the Bellman constraints?

Approach 2: Adaptive Dynamic Programming (ADP)

- ADP is a model based approach
 - Follow the policy for awhile
 - Estimate transition model based on observations
 - Learn reward function
 - Use estimated model to compute utility of policy

- How can we estimate transition model T(s,a,s')?
 - Simply the fraction of times we see s' after taking a in state s.
 - NOTE: Can bound error with Chernoff bounds if we want

ADP learning curves

Approach 3: Temporal Difference Learning (TD)

 Can we avoid the computational expense of full DP policy evaluation?

• Can we avoid the $O(n^2)$ space requirements for storing the transition model estimate?

- Temporal Difference Learning (model free)
 - Doesn't store an estimate of entire transition function
 - Instead stores estimate of V^{π} , which requires only O(n) space.
 - Does local, cheap updates of utility/value function on a per-action basis

Approach 3: Temporal Difference Learning (TD)

For each transition of π from s to s', update $V^{\pi}(s)$ as follows:

$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(R(s) + \beta V^{\pi}(s') - V^{\pi}(s))$$
 updated estimate learning rate discount factor current estimates at s' and s

 Intuitively moves us closer to satisfying Bellman constraint

$$V^{\pi}(s) = R(s) + \beta \sum_{s'} T(s, a, s') V^{\pi}(s')$$

Why?

Aside: Online Mean Estimation

- Suppose that we want to incrementally compute the mean of a sequence of numbers (x₁, x₂, x₃,....)
 - ♠ E.g. to estimate the expected value of a random variable from a sequence of samples.

$$\hat{X}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} x_i$$

average of n+1 samples

Aside: Online Mean Estimation

- Suppose that we want to incrementally compute the mean of a sequence of numbers $(x_1, x_2, x_3, ...)$
 - E.g. to estimate the expected value of a random variable

from a sequence of samples.
$$\hat{X}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} x_i = \frac{1}{n} \sum_{i=1}^{n} x_i + \frac{1}{n+1} \left(x_{n+1} - \frac{1}{n} \sum_{i=1}^{n} x_i \right)$$

average of n+1 samples

Aside: Online Mean Estimation

- Suppose that we want to incrementally compute the mean of a sequence of numbers (x₁, x₂, x₃,....)
 - ♠ E.g. to estimate the expected value of a random variable from a sequence of samples.

$$\hat{X}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} x_i = \frac{1}{n} \sum_{i=1}^{n} x_i + \frac{1}{n+1} \left(x_{n+1} - \frac{1}{n} \sum_{i=1}^{n} x_i \right)$$

$$= \hat{X}_n + \frac{1}{n+1} \left(x_{n+1} - \hat{X}_n \right)$$
average of n+1 samples sample n+1 learning rate

 Given a new sample x_{n+1}, the new mean is the old estimate (for n samples) plus the weighted difference between the new sample and old estimate

Approach 3: Temporal Difference Learning (TD)

TD update for transition from s to s':

$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha (R(s) + \beta V^{\pi}(s') - V^{\pi}(s))$$
 updated estimate (noisy) sample of value at s based on next state s'

- So the update is maintaining a "mean" of the (noisy) value samples
- If the learning rate decreases appropriately with the number of samples (e.g. 1/n) then the value estimates will converge to true values! (non-trivial)

$$V^{\pi}(s) = R(s) + \beta \sum_{s'} T(s, a, s') V^{\pi}(s')$$

Approach 3: Temporal Difference Learning (TD)

TD update for transition from s to s':

$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha (R(s) + \beta V^{\pi}(s') - V^{\pi}(s))$$
learning rate (noisy) sample of utility based on next state

- Intuition about convergence
 - When V satisfies Bellman constraints then <u>expected</u> update is 0.

$$V^{\pi}(s) = R(s) + \beta \sum_{s'} T(s, a, s') V^{\pi}(s')$$

Can use results from stochastic optimization theory to prove convergence in the limit

The TD learning curve

- Tradeoff: requires more training experience (epochs) than ADP but much less computation per epoch
- Choice depends on relative cost of experience vs. computation

Passive RL: Comparisons

- Monte-Carlo Direct Estimation (model free)
 - Simple to implement
 - Each update is fast
 - Does not exploit Bellman constraints
 - Converges slowly
- Adaptive Dynamic Programming (model based)
 - Harder to implement
 - Each update is a full policy evaluation (expensive)
 - Fully exploits Bellman constraints
 - Fast convergence (in terms of updates)
- Temporal Difference Learning (model free)
 - Update speed and implementation similiar to direct estimation
 - Partially exploits Bellman constraints---adjusts state to 'agree' with observed successor
 - Not all possible successors as in ADP
 - Convergence in between direct estimation and ADP

Between ADP and TD

- Moving TD toward ADP
 - At each step perform TD updates based on observed transition and "imagined" transitions
 - Imagined transition are generated using estimated model

- The more imagined transitions used, the more like ADP
 - Making estimate more consistent with next state distribution
 - Converges in the limit of infinite imagined transitions to ADP
- Trade-off computational and experience efficiency
 - More imagined transitions require more time per step, but fewer steps of actual experience