OTHER QUESTIONS FROM SEMESTER END EXAMINATION

First Order Differential Equation

1999 Q. No. 4(a); 2001 Q. No. 4(a)

Show that the differentiation equation: $\sin hx \cos y dx - \cosh x \sin y dy = 0$ exact and solve it.

Solution: Given equation is

$$sinhx cosydx - coshx siny dy = 0 \qquad ...$$

Comparing (i) with Mdx + Ndy = 0 then we get,

M = sinhx cosy and N = - coshx siny

$$\frac{\partial M}{\partial y} = -\sinh x \sin y$$

and
$$\frac{\partial N}{\partial x} = -\sinh x \sin y$$

Thus,
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$
. So, the equation (i) is exact.

Therefore solution of (i) is

 $\int Mdx + \int (terms of N free from x) dy = C$

$$\Rightarrow$$
 $\int \sinh x \cos y \, dx + \int 0 \, dy = C$ [: N has no term which is not included

x]

$$\Rightarrow$$
 cosy $\int \sinh x \, dx = C$

This is required solution of (i)

2000 Q. No. 4(a); 2007 Fall Q. No. 4(a)

Solve the differential equation $y' + \frac{y}{x} = \frac{y^2}{x}$.

Solution: Given equation is

$$y' + \frac{y}{x} = \frac{y^2}{x}$$
 $\Rightarrow \frac{1}{y^2}y' + \frac{1}{xy} = \frac{1}{x}$ (i)

Put $\frac{1}{v} = u$ then $-\frac{1}{v^2}$ y' = u'. Then (i) becomes,

$$-u' + \frac{u}{x} = \frac{1}{x} \implies u' - \frac{u}{x} = -\frac{1}{x}$$
(ii)

This is a linear differential equation of first order. Its integrating factor is

1.F. =
$$e^{\int \left(-\frac{1}{x}\right) dx} = e^{-\log x} = e^{\log (x^{-1})} = x^{-1}$$

Now, multiplying (2) by IF and then integrating w.r. to x then we get

u.
$$x^{-1} = \int \left(-\frac{1}{x}\right) (x^{-1}) dx + C = -\int x^{-2} dx + C = -\frac{x^{-3}}{-3} + C = \frac{1}{3x^3} + C$$

$$\Rightarrow \frac{x^{-1}}{y} = \frac{1}{3x^3} + C$$

$$\Rightarrow \frac{1}{xy} = \frac{1}{3x^3} + C \Rightarrow 3x^2 = y(1 + 3Cx^2)$$

$\frac{2002 \text{ Set 1 \& 11; 2004 Spring; 2011 Fall O. No. 4(a)}}{\text{Solve } \frac{dy}{dx} + \frac{y}{x} \log y = \frac{y}{x^2} (\log y)^2.}$

Solve
$$\frac{dy}{dx} + \frac{y}{x} \log y = \frac{y}{x^2} (\log y)^2$$
.

$$\frac{dy}{dx} + \frac{y \log y}{x} = \frac{y (\log y)^2}{x^2}$$

$$\Rightarrow \frac{1}{y (\log y)^2} \frac{dy}{dx} + \frac{1}{x \log y} = \frac{1}{x^2}$$

Put
$$\frac{1}{\log y} = u$$
 then, $\frac{-1}{y(\log y)^2} \frac{dy}{dx} = \frac{du}{dx}$, so (i) becomes,

$$\frac{-du}{dx} + \frac{1}{x}u = \frac{1}{x^2}$$

$$\Rightarrow \frac{du}{dx} - \frac{u}{x} = \frac{-1}{x^2}$$

This is a linear differential equation of first order whose integrating factor is,

$$1.F. = e^{-J1/x} dx = e^{-\log x} = x^{-1}$$

Now, multiplying both sides of (ii) by I F and then integrating we get,

$$u.x^{-1} = \int \frac{x^{-1}}{x^2} dx + \frac{c}{2}$$

$$\Rightarrow \frac{u}{x^4} = -\int x^{-3} dx + \frac{x}{2} = -\frac{x^{-2}}{-2} + \frac{c}{2} = \frac{1}{2x^2} \frac{c}{2}$$

$$\Rightarrow 2u = \frac{1}{x^2} + c$$

$$\Rightarrow \frac{2}{\log y} = \frac{1}{x^2} + c$$

This is the solution of given equation.

2004 Fall; 2006 Fall Q. No. 4(a)

Solve: $y' + y \tan x = \sec x$

Solution: Given equation is

$$y' + y \tan x = \sec x$$
(i)

This is first order linear differential equation of first order.

Comparing (i) with y' + Py = Q then we get.

$$P = tanx$$
, $Q = seconds$

So, the integrating factor of (i) is

1.F. = $e^{\int P_x dx} = e^{\int (an \ x \ dx)} = e^{\int \log (an \ x)} = sec \ x$

Now, multiplying (i) by LF, and then taking integration w. r. t. x then,

Now, multiplying (1) by
$$x$$
.
 y . $\sec x = \int \sec^2 x \, dx + C$

$$= \tan x + C$$

$$\Rightarrow$$
 y = sin x + C. cos x

This is required solution of (i).

2006 Spring Q. No. 4(a)

Define the first order linear differential equations with suitable example an solve: $x \frac{dy}{dx} + y = y^2 \log x$.

Solution: See the definition.

For problem, see Q. 6, Exercise 6.5.

2008 Fall Q. No. 4(a)

Define order and degree of the differential equation with suitable example Check exactness condition of the differential equation: (2cosy + 4x²) dx=1 sin y dy, if it is not exact find integrating factor (IF) and then solve at b using IF.

Solution: See the definition.

For problem, see Q. A(vi), Exercise 6.3.

2008 Fall; 2010 Spring Q. No. 4(a)

Solve:
$$\frac{dy}{dx} + \frac{\sin 2y}{x} = x^3 \cos^2 y$$
.

Solution: Give differential equation is,

$$y' + \frac{\sin 2y}{x} = x^3 \cos^2 y \implies \sec^2 y \cdot y' + \frac{2\sin y \cos y}{\cos^2 y \cdot x} = x^3$$

$$\implies \sec^2 y \cdot y' + 2 \tan y \frac{1}{x} = x^3 \qquad \dots (i)$$

Put tany = u then sec^2y , y' = u', then (i) becomes

$$u' + \frac{2u}{x} = x^3$$
 (ii)

This is a linear differential equation of first order is a whose integrating factor $\frac{2002}{1+x^2}$: Solve: $\frac{dx}{1+x^2} + \frac{dy}{1+y^2} = 0$. I.F. = $e^{\int 2/x \, dx} = e^{2 \log x} = x^2$

Now, multiplying on both sides of (ii) by I.F. and then integrating we get.

u.
$$x^2 = \int x^3 \cdot x^2 dx + \frac{c}{6} = \frac{x^6}{6} + \frac{c}{6}$$

$$\Rightarrow$$
 $6x^2 \tan y = x^6 + c$.

This is the solution of given equation.

2009 Fall Q. No. 4(a)

perine order and degree of ordinary differential equation. Solve the initial value problem: $y^2 + \frac{y}{x} = x^2$; y(1) = 0.

Solution: For the first part see definition.

For second Part: Given equation is
$$y' + \frac{y}{x} = x^2 \qquad \dots \dots \dots (i)$$

with
$$y(1) = 0$$
(ii)

Clearly, the equation (i) is a linear differential equation of first order.

Comparing (i) with y' + Py = Q then we get

$$P = \frac{1}{x}$$
 and $Q = x^2$

So, the integrating factor of (i) is

1.F. =
$$e^{\int P dx} = e^{\int dx/x} = e^{\log x} = x$$

Now, multiplying (i) by I.F. and then taking integration w. r. t. x, then,

y.
$$x = \int x^3 dx + C = \frac{x^4}{4} + C$$
(iii

And by (ii), we have y(1) = 0. Then (iii) gives,

$$0 = \frac{1}{4} + C \implies C = -\frac{1}{4}$$

Then (iii) becomes,

$$y.x = \frac{x^4}{4} - \frac{1}{4}$$

$$\Rightarrow$$
 4xy = $x^4 - 1$.

This is required solution of (i).

SHORT QUESTIONS

2002: Solve:
$$\frac{dx}{1 + x^2} + \frac{dy}{1 + y^2} = 0$$
.
Solution: Here.

$$\frac{\mathrm{d}x}{1+x^2} + \frac{\mathrm{d}y}{1+y^2} = 0$$

$$\tan^{-1}(x) + \tan^{-1}(y) = C_1$$

$$\Rightarrow \tan^{-1}\left(\frac{x+y}{1-xy}\right) = C_1 \Rightarrow \frac{x+y}{1-xy} = \tan C_1$$

$$\Rightarrow x+y = C(1-xy)$$

$$\Rightarrow y(1+Cx) = C-x$$

$$\Rightarrow y = \frac{C-x}{1+Cx}$$

2002: What is meant by integrating factor. Write down the condition for differential equation Mdx + Ndy = 0 to be exact.

Solution: See the definition.

See the condition for exactness.

2003 Fall: Find integrating factor of $\frac{dy}{dx} + \frac{y}{x} = x$.

Solution: Given equation is

$$\frac{dy}{dx} + \frac{y}{x} = x \implies y' + \frac{y}{x} = x \qquad \dots (i)$$

Comparing (i) with y' + Py = Q then

$$P = \frac{1}{x}$$
 and $Q = x$

Now, the integrating factor of (i) is $I.F. = e^{\int P dx} = e^{\int dx/x} = e^{\log x/x} = x.$

$$I E = e^{\int P dx} - e^{\int dx/x} = e^{\log x} = x$$

Similar Question for Practice from Final Exam:

2000: Show that: $\frac{1}{x^2 + y^2}$ is an integrating factor of x dy - y dx = $\frac{1}{x^2}$

2006 Fall: Find integrating factor of $\frac{dy}{dx}$ + cotx y = cosx

2006 Spring: Find integrating factor of $\frac{dy}{dx}$ + y tanx = secx.

2009 Fall: Find integrating factor of $(xy^3 + y)x + 2(x^2y^2 + x + y^4) dy = 0$

OTHER SHORT QUESTIONS

2004 Fall: Show that the equation $2(y \sin 2x + \cos 2x) dx = \cos 2x dy$ is e^{xact} . Solution: Given that,

$$2(y \sin 2x + \cos 2x) dx = \cos 2x dy$$
 (

Comparing above equation with Mdx + Ndy = 0 then,

Chapter 6 | ODE First order |

$$M = 2(y \sin 2x + \cos 2x)$$
 and $-\cos 2x$

So.
$$\frac{\partial M}{\partial y} = 2 \sin 2x$$
 and $\frac{\partial N}{\partial x} = 2 \sin 2x$

Thus,
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$
. So, (i) is exact.

 $_{2004}$ Fall: Solve: $x\sqrt{1+y^2} dx + y\sqrt{1+x^2} dy = 0$. Solution: Given that,

$$x\sqrt{1+y^2} \, dx + y\sqrt{1+x^2} \, dy = 0$$

$$\Rightarrow \frac{y}{\sqrt{1+y^2}} \frac{dy}{dx} + \frac{x}{\sqrt{1+x^2}} = 0 \qquad(i)$$

Put, $1 + y^2 = u^2$ then $2y \frac{dy}{dx} = 2u \frac{du}{dx}$ $\Rightarrow y \frac{dy}{dx} = u \frac{du}{dx}$. So, (i) become,

$$\frac{u \, du}{u \, dx} + \frac{x}{\sqrt{1 + x^2}} = 0$$

$$\Rightarrow \frac{du}{dx} + \frac{x}{\sqrt{1+x^2}} = 0 \Rightarrow 1 + \frac{x}{\sqrt{1+x^2}} \frac{dx}{du} = 0 \qquad(ii)$$

Put $1 + x^2 = v^2$ then, $x \frac{dx}{du} = v \frac{dv}{du}$ so, equation (ii) becomes,

$$1 + \frac{v}{v} \frac{dx}{du} = 0 \implies 1 + \frac{dv}{du} = 0$$

$$\Rightarrow$$
 du + dv = 0

Integrating we get,

$$u + v = c$$

$$\Rightarrow \sqrt{1 + x^2} + \sqrt{1 + y^2} = c$$

2007 Fall: Solve: $\cos^2 x \frac{dy}{dx} + y = \tan x$.

Solution: Here,

$$\cos^{2}x \frac{dy}{dx} + y = \tan x$$

$$\Rightarrow \frac{dy}{dx} + \sec^{2}x \ y = \sec^{2}x \ \tan x \qquad \dots (i)$$

This is a linear differential equation of first order whose I.F. is,

1.F. =
$$e^{\int \sec^2 x} dx = e^{\tan x}$$

Now, multiplying (i) by I.F. and then integrating, we get,

$$y.e^{tanx} = \int e^{tanx} sec^2x tanx dx + c$$

Put tanx = u then $sec^2x dx = du$. So,

$$y.e^{tanx} = \int e^4 u \ du + c = 4e^4 - e^4 + c = tanx e^{tanx} - e^{tanx} + c$$

$$\Rightarrow$$
 y = tanx - 1 + c e^{tanx}

2008 Fall: Solve $(x + 1)y' = x(y^2 + 1)$.

Solution: Here,

$$(x + 1) y' = x (y^2 + 1)$$

$$\Rightarrow \frac{dy}{1+y^2} = \frac{x}{x+1} dx = \left(1 - \frac{1}{x+1} dx\right)$$

Integrating,

$$Tan^{-1}(y) = x - \log(x + 1) + c$$

2009 Spring: Solve: $\frac{dy}{dx} = (y - x)^2$.

Solution: Here, $\frac{dy}{dx} = (y - x)^2$

Put y - x = u, then, $\frac{dy}{dx} = \frac{dy}{dx}$. Then,

$$\frac{du}{dx} = u^2$$

$$\Rightarrow$$
 $u^{-2} du = dx$

Integrating we get,

$$\frac{u^{-1}}{-1} = x + c \Rightarrow \frac{1}{y - x} = -(x + c)$$
$$\Rightarrow \frac{1}{y - x} + x + c = 0$$