QF620 Stochastic Modelling in Finance

AY2024-25 Session 5 Examples

1 SDEs and Martingale

Example Use Itô's formula to derive the stochastic differential equations of the following processes, and determine which of them are martingales:

1.
$$X_t = W_t^2$$

2.
$$X_t = 2 + t + e^{W_t}$$

3.
$$X_t = W_t^2 + \tilde{W}_t^2$$
, where W_t and \tilde{W}_t are independent Brownian motions

4.
$$X_t = W_t^2 - t$$

5.
$$X_t = W_t^3$$

6.
$$X_t = e^{\theta W_t - \frac{\theta^2 t}{2}}$$

Solution: Let $X_t = f(t, W_t)$ and $0 \le s < t$. Recall Itô's formula:

$$dX_t = f_t dt + f_{W_t} dW_t + \frac{f_{W_t W_t}}{2} (dW_t)^2 = \left(f_t + \frac{f_{W_t W_t}}{2} \right) dt + f_{W_t} dW_t.$$

1.
$$f_t = 0$$
, $f_{W_t} = 2W_t$, $f_{W_tW_t} = 2 \Rightarrow dX_t = dt + 2W_t dW_t$

$$\mathbb{E}_{s}[X_{t}] = \mathbb{E}_{s}[W_{t}^{2}] = \mathbb{E}_{s}[(W_{t} - W_{s})^{2} + 2W_{t}W_{s} - W_{s}^{2}] = \underbrace{\mathbb{E}_{s}[(W_{t} - W_{s})^{2}]}_{=t-s} + 2\underbrace{\mathbb{E}_{s}[W_{t}W_{s}]}_{=W_{s}^{2}} - \underbrace{\mathbb{E}_{s}[W_{t}^{2}]}_{=W_{s}^{2}}$$

$$= t - s + W_s^2 \neq W_s^2 \Rightarrow X_t$$
 is not a martingale

Verification:
$$\mathbb{E}_s[dX_t] = \mathbb{E}_s[dt + 2W_t dW_t] = \underbrace{\mathbb{E}_s[dt]}_{=dt} + 2\underbrace{\mathbb{E}_s[W_t dW_t]}_{=0} = dt \neq 0$$

2.
$$f_t = 1$$
, $f_{W_t} = f_{W_t W_t} = e^{W_t} \Rightarrow dX_t = \left(1 + \frac{e^{W_t}}{2}\right) dt + e^{W_t} dW_t$

$$\mathbb{E}_s[X_t] = \mathbb{E}_s[2 + t + e^{W_t}] = 2 + t + \mathbb{E}_s[e^{(W_t - W_s) + W_s}] = 2 + t + e^{W_s} \underbrace{\mathbb{E}_s[e^{(W_t - W_s)}]}_{=e^{\frac{1}{2}(t-s)}}$$

$$=2+t+e^{W_s+\frac{1}{2}(t-s)}\neq 2+s+e^{W_s}\Rightarrow X_t$$
 is not a martingale

Verification:
$$\mathbb{E}_s[dX_t] = \mathbb{E}_s\left[\left(1 + \frac{e^{W_t}}{2}\right) dt + e^{W_t} dW_t\right] = \left[\left(1 + \frac{1}{2}e^{W_s + \frac{1}{2}(t-s)}\right) dt + e^{W_s + \frac{1}{2}(t-s)} dW_s\right] \neq 0$$

- 3. Similar to Q1, we have $dX_t = 2 dt + 2W_t dW_t + 2\tilde{W}_t d\tilde{W}_t$, $\mathbb{E}[X_t] = 2(t-s) + W_s^2 + \tilde{W}_s^2 \neq W_s^2 + \tilde{W}_s^2$, so X_t is not a martingale. To verify this, we have $\mathbb{E}_s[dX_t] = 2 dt \neq 0$.
- 4. Similar to Q1, we have $dX_t = 2W_t dW_t$, $\mathbb{E}[X_t] = t s + W_s^2 t = W_s^2 s$, so X_t is a martingale. To verify this, we have $\mathbb{E}_s[dX_t] = 2\mathbb{E}_s[W_t dW_t] = 0$.
- 5. $f_t = 0$, $f_{W_t} = 3W_t^2$, $f_{W_tW_t} = 6W_t \Rightarrow dX_t = 3W_t dt + 3W_t^2 dW_t$

$$\mathbb{E}_{s}[X_{t}] = \mathbb{E}_{s}[W_{t}^{3}] = \mathbb{E}_{s}[(W_{t} - W_{s} + W_{s})^{3}]$$

$$= \underbrace{\mathbb{E}_{s}[(W_{t} - W_{s})^{3}]}_{=0} + 3\underbrace{\mathbb{E}_{s}[(W_{t} - W_{s})^{2}W_{s}]}_{=3(t-s)W_{s}} - 3\underbrace{\mathbb{E}_{s}[(W_{t} - W_{s})W_{s}^{2}]}_{=0} + W_{s}^{3}$$

$$= 3(t-s)W_{s} + W_{s}^{3} \neq W_{s}^{3} \Rightarrow X_{t} \text{ is not a martingale}$$

Verification: $\mathbb{E}_s[dX_t] = \mathbb{E}_s[3W_t dt + 3W_t^2 dW_t] = 3W_s dt \neq 0$

6. $f_t = -\frac{\theta^2}{2}X_t$, $f_{W_t} = \theta X_t$, $f_{W_tW_t} = \theta^2 X_t \Rightarrow dX_t = \theta X_t dW_t$ Refer to page 25 of QF620 Session 3 slides for the proof that proves the martingale property. To verify this, we have $\mathbb{E}_s[dX_t] = \theta \mathbb{E}_s[X_t dW_t] = \theta X_s \underbrace{\mathbb{E}_s[dW_t]}_{=0} = 0$.