第 3 节 双曲线渐近线相关问题 (★★★)

强化训练

1. (2022 • 南京模拟 • ★★) 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的两条渐近线的夹角为 $\frac{\pi}{3}$,则此双曲线 的离心率为____.

答案: $\frac{2\sqrt{3}}{2}$ 或 2

解析: 双曲线的渐近线为 $y=\pm \frac{b}{a}x$,它们的夹角为 $\frac{\pi}{3}$ 有如图 1 和图 2 所示的两种情况,下面分别考虑,

若为图 1, 则 $\theta = \frac{\pi}{6}$, 所以 $\frac{b}{a} = \tan \frac{\pi}{6} = \frac{\sqrt{3}}{3}$, 从而 $a = \sqrt{3}b$, 故 $a^2 = 3b^2 = 3c^2 - 3a^2$,

整理得: $\frac{c^2}{a^2} = \frac{4}{3}$, 所以离心率 $e = \frac{c}{a} = \frac{2\sqrt{3}}{3}$;

若为图 2,则 $\theta = \frac{\pi}{3}$,所以 $\frac{b}{a} = \tan \frac{\pi}{3} = \sqrt{3}$,从而 $b = \sqrt{3}a$,故 $b^2 = c^2 - a^2 = 3a^2$,

整理得: $\frac{c^2}{a^2} = 4$,所以离心率 $e = \frac{c}{a} = 2$.

2. (2022 • 南京模拟 • ★★)椭圆 C_1 : $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 与双曲线 C_2 : $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的离心率之积为 1,则 C,的两条渐近线的倾斜角分别为()

- (A) $\frac{\pi}{6}$, $-\frac{\pi}{6}$ (B) $\frac{\pi}{3}$, $-\frac{\pi}{3}$ (C) $\frac{\pi}{6}$, $\frac{5\pi}{6}$ (D) $\frac{\pi}{3}$, $\frac{2\pi}{3}$

答案: D

解析: 先求渐近线斜率, 可通过离心率之积为1来寻找 a 和 b 的关系,

椭圆 C_1 的离心率 $e_1 = \frac{\sqrt{4-3}}{2} = \frac{1}{2}$,双曲线 C_2 的离心率 $e_2 = \frac{\sqrt{a^2 + b^2}}{a}$,由题意, $e_1 e_2 = \frac{1}{2} \cdot \frac{\sqrt{a^2 + b^2}}{a} = 1$,

化简得: $\frac{b}{a} = \sqrt{3}$, 所以 C_2 的渐近线斜率分别为 $\sqrt{3}$ 和 $-\sqrt{3}$, 故其倾斜角分别为 $\frac{\pi}{2}$, $\frac{2\pi}{2}$.

- 3. (★★) 已知直线 l: y = kx + m 和双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$,则" $k < -\frac{b}{a}$ 或 $k > \frac{b}{a}$ "是"直线 l与 双曲线 C 在同支有两个交点"的()

- (A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件

答案: B

解析:分析直线与双曲线的交点,可用渐近线来看,

先看充分性,如图 1 所示的直线 l 满足 $k > \frac{b}{a}$,但 l 与 C 没有交点,故充分性不成立;

再看必要性,如图 2,在 C 上任取一点 P,设 P 为 l 与 C 的一个交点,过 P 作渐近线的平行线 l_1 和 l_2 , 由图可知要使直线l与C在同支有另一交点,则l只能在从l绕点P逆时针旋转至l。的范围内扫动,

其斜率 k 必在 $(-\infty, -\frac{b}{a}) \cup (\frac{b}{a}, +\infty)$ 上,所以必要性成立,故选 B.

4. (2020・新课标 II 巻・★★★) 设 O 为坐标原点,直线 x = a 与双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的两条 渐近线分别交于 D, E 两点,若 ΔODE 的面积为 8,则 C 的焦距的最小值为 ()

- (A) 4
- (B) 8 (C) 16
- (D) 32

答案: B

解析:由题意,双曲线 C 的焦距 $2c = 2\sqrt{a^2 + b^2}$ ①,

要求最值,得先找a,b的关系,给了 $S_{\Delta ODE}$,如图,可通过联立方程求D,E坐标来算底边|DE|,高即为 a,

联立
$$\begin{cases} x = a \\ y = \pm \frac{b}{a} \end{cases}$$
 解得: $y = \pm b$, 所以 $|DE| = 2b$, $S_{\Delta ODE} = \frac{1}{2} |DE| \cdot a = ab$, 由题意, $S_{\Delta ODE} = 8$, 故 $ab = 8$,

在此条件下求①的最小值,可用不等式 $a^2 + b^2 \ge 2ab$,

由①可得 $2c = 2\sqrt{a^2 + b^2} \ge 2\sqrt{2ab} = 8$,当且仅当 $a = b = 2\sqrt{2}$ 时取等号,所以焦距的最小值为 8.

5. (2022 • 天津卷 • ★★) 已知抛物线 $y^2 = 4\sqrt{5}x$, F_1 , F_2 分别是双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右 焦点, 抛物线的准线过双曲线的左焦点 F_1 , 与双曲线的一条渐近线交于点A, 若 $\angle F_1F_2A = \frac{\pi}{4}$, 则双曲线的 标准方程为()

(A)
$$\frac{x^2}{10} - y^2 = 1$$
 (B) $x^2 - \frac{y^2}{16} = 1$ (C) $x^2 - \frac{y^2}{4} = 1$ (D) $\frac{x^2}{4} - y^2 = 1$

答案: C

解析: 抛物线的准线 $x = -\sqrt{5}$ 过双曲线的左焦点 $F_1 \Rightarrow$ 双曲线的半焦距 $c = \sqrt{5} \Rightarrow a^2 + b^2 = 5$ ①,

还差一个方程即可求出 a, b, 可再翻译 $\angle F_1F_2A = \frac{\pi}{4}$ 这个条件,翻译成 $\left|AF_1\right| = \left|F_1F_2\right|$ 较简单,故算 $\left|AF_1\right|$,

如图, $\angle F_1F_2A = \frac{\pi}{\Delta} \Rightarrow \Delta AF_1F_2$ 是等腰直角三角形,所以 $|AF_1| = |F_1F_2| = 2\sqrt{5}$,故 $A(-\sqrt{5}, 2\sqrt{5})$,

点 A 在渐近线 $y = -\frac{b}{a}x$ 上,所以 $2\sqrt{5} = -\frac{b}{a}\cdot(-\sqrt{5})$ ②,

联立①②解得: $\begin{cases} a=1 \\ b=2 \end{cases}$ 故双曲线的方程为 $x^2 - \frac{y^2}{4} = 1$.

6. (2018•天津卷•★★★) 已知双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的离心率为 2,过右焦点且垂直于 x 轴的 直线与双曲线交于 A, B 两点. 设 A, B 到双曲线的同一条渐近线的距离分别为 d_1 和 d_2 ,且 $d_1+d_2=6$,则 双曲线的方程为(

(A)
$$\frac{x^2}{4} - \frac{y^2}{12} = 1$$

(B)
$$\frac{x^2}{12} - \frac{y^2}{4} =$$

(C)
$$\frac{x^2}{3} - \frac{y^2}{9} =$$

(A)
$$\frac{x^2}{4} - \frac{y^2}{12} = 1$$
 (B) $\frac{x^2}{12} - \frac{y^2}{4} = 1$ (C) $\frac{x^2}{3} - \frac{y^2}{9} = 1$ (D) $\frac{x^2}{9} - \frac{y^2}{3} = 1$

答案: C

解析:如图,若能注意到F为AB中点,则可利用梯形的中位线将已知条件转化为F到渐近线的距离,注 意到 ΔOFC 是特征三角形,所以 |FC| 可快速求出,

由对称性, AB 中点为右焦点 F, $d_1 + d_2 = 6 \Rightarrow F$ 到渐近线的距离为 3,

而双曲线焦点到渐近线的距离为b,所以b=3,

又
$$e = \frac{c}{a} = \frac{\sqrt{a^2 + b^2}}{a} = \frac{\sqrt{a^2 + 9}}{a} = 2$$
,所以 $a = \sqrt{3}$,

故双曲线 *C* 的方程为 $\frac{x^2}{3} - \frac{y^2}{0} = 1$.

7. $(\star\star\star)$ 双曲线 $C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的右焦点为 F,过 F 作一条渐近线的垂线 l,垂足为 M,若 l 与另一条渐近线的交点是 N,且 $\overrightarrow{MN}=5\overrightarrow{MF}$,则 C 的离心率为 .

答案: $\frac{2\sqrt{10}}{5}$

解法 1: 如图, ΔMOF 是 C 的特征三角形, 先结合角平分线性质定理和 $\overrightarrow{MN} = 5\overrightarrow{MF}$ 求其它线段的长,

由题意,|MF|=b,|OM|=a,因为 $\overrightarrow{MN}=5\overrightarrow{MF}$,所以|MN|=5b,|FN|=4b,

由渐近线的对称性,OF 是 $\angle MON$ 的平分线,所以 $\frac{|OM|}{|ON|} = \frac{|MF|}{|FN|} = \frac{1}{4}$,故|ON| = 4|OM| = 4a,

接下来可利用 OM L MN, 由勾股定理建立方程求离心率,

在 ΔMON 中, $|OM|^2 + |MN|^2 = |ON|^2$, 所以 $a^2 + 25b^2 = 16a^2$, 整理得: $3a^2 = 5b^2$,

所以
$$3a^2 = 5c^2 - 5a^2$$
, 从而 $\frac{c^2}{a^2} = \frac{8}{5}$, 故离心率 $e = \frac{c}{a} = \frac{2\sqrt{10}}{5}$.

解法 2: 由题意,|MF|=b,|OM|=a,因为 $\overrightarrow{MN}=5\overrightarrow{MF}$,所以|MN|=5b,

接下来也可抓住 $\angle MON = 2\angle MOF$,利用二倍角公式来建立方程求离心率,

记
$$\angle MOF = \theta$$
 ,则 $\angle MON = 2\theta$,由图可知 $\tan \theta = \frac{|MF|}{|OM|} = \frac{b}{a}$, $\tan 2\theta = \frac{|MN|}{|OM|} = \frac{5b}{a}$,

因为
$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$
,所以 $\frac{5b}{a} = \frac{2 \cdot \frac{b}{a}}{1 - \frac{b^2}{a^2}}$,整理得: $3a^2 = 5b^2$,所以 $3a^2 = 5c^2 - 5a^2$,

整理得: $\frac{c^2}{a^2} = \frac{8}{5}$, 故离心率 $e = \frac{c}{a} = \frac{2\sqrt{10}}{5}$.

解法 3:由 MN 山一条渐近线可写出直线 MN 的方程,与两渐近线联立求 M、N 的坐标,将 \overline{MN} = $5\overline{MF}$ 翻译成坐标关系建立方程求离心率,

如图,F(c,0),渐近线 OM、ON 的方程分别为 $y = \frac{b}{a}x$, $y = -\frac{b}{a}x$,

因为
$$l \perp OM$$
,所以 l 的方程为 $y = -\frac{a}{b}(x-c)$,联立
$$\begin{cases} y = -\frac{a}{b}(x-c) \\ y = \frac{b}{a}x \end{cases}$$
解得: $y = \frac{ab}{c}$,即 $y_{M} = \frac{ab}{c}$ ①,

联立
$$\begin{cases} y = -\frac{a}{b}(x-c) \\ y = -\frac{b}{a}x \end{cases}$$
 解得: $y = -\frac{abc}{a^2 - b^2}$, 即 $y_N = -\frac{abc}{a^2 - b^2}$ ②,

因为 $\overrightarrow{MN} = 5\overrightarrow{MF}$,所以 $\overrightarrow{FN} = 4\overrightarrow{MF}$,而 $\overrightarrow{FN} = (x_N - c, y_N)$, $\overrightarrow{MF} = (c - x_M, -y_M)$,所以 $y_N = -4y_M$ ③,

将①②代入③可得 $-\frac{abc}{a^2-b^2} = -4 \cdot \frac{ab}{c}$, 整理得: $c^2 = 4a^2 - 4b^2$, 所以 $c^2 = 4a^2 - 4(c^2 - a^2)$,

从而 $5c^2 = 8a^2$,故 $\frac{c^2}{a^2} = \frac{8}{5}$,所以离心率 $e = \frac{c}{a} = \frac{2\sqrt{10}}{5}$.

【反思】在双曲线的渐近线有关问题中,利用渐近线与其它直线或曲线联立求交点,往往计算量较大,可 作为次选方案,首选分析几何关系求解.

8. $(2022 \cdot 珠海模拟 \cdot \star \star \star)$ 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点分别为 F_1 , F_2 ,点 A 在 C 的过第二、四象限的渐近线 l 上,且 $AF_2 \perp l$,若 $|BF_2| - |BF_1| = 2a$, $\overline{F_2B} + 2\overline{BA} = \overline{0}$,则 C 的离心率为()

(A)
$$\sqrt{2}$$

(B)
$$\sqrt{5}$$

(A)
$$\sqrt{2}$$
 (B) $\sqrt{5}$ (C) $\sqrt{6}$ (D) $2\sqrt{2}$ (D) $2\sqrt{2}$

(D)
$$2\sqrt{2}$$

答案: B

解析: 由 $\overrightarrow{F_2B} + 2\overrightarrow{BA} = \overrightarrow{0}$ 可得 $\overrightarrow{BF_2} = 2\overrightarrow{BA}$, 所以A为 BF_2 中点,

如图, $\triangle AOF_2$ 是C的一个特征三角形,结合A为中点,可构造中位线,计算 $|BF_1|$ 和 $|BF_2|$,

在 $\triangle AOF_2$ 中, $|AF_2|=b$, |OA|=a, 因为 O 是 F_1F_2 的中点,所以 $|BF_1|=2|OA|=2a$, $|BF_2|=2|AF_2|=2b$, 代入题干的 $|BF_2|-|BF_1|=2a$ 可得2b-2a=2a,所以b=2a,故 $b^2=c^2-a^2=4a^2$,

整理得: $\frac{c^2}{a^2} = 5$, 所以 C 的离心率 $e = \frac{c}{a} = \sqrt{5}$.

9. (2022•南昌模拟•★★★) 双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点分别为 F_1 , F_2 ,在 C 的渐 近线上存在一点 M,使 $\angle OMF_2 = 90^\circ$,且 M 在第一象限,若 $|MF_1| = 3|MF_2|$,则 C 的离心率为_____.

答案: $\frac{\sqrt{6}}{2}$

解析:如图, ΔMOF_2 是 C 的特征三角形,可由它的三边结合已知条件计算 $|MF_1|$,每边都用 a,b,c 表示后,可用双余弦法构造方程求离心率,

由题意,|OM| = a, $|MF_2| = b$, $|MF_1| = 3|MF_2| = 3b$, $|OF_1| = |OF_2| = c$,

曲图可知
$$\cos \angle MOF_2 = \frac{|OM|}{|OF_2|} = \frac{a}{c}$$
, $\cos \angle MOF_1 = \frac{|OM|^2 + |OF_1|^2 - |MF_1|^2}{2|OM| \cdot |OF_1|} = \frac{a^2 + c^2 - 9b^2}{2ac}$,

因为
$$\angle MOF_2 = \pi - \angle MOF_1$$
,所以 $\cos \angle MOF_2 = \cos(\pi - \angle MOF_1) = -\cos \angle MOF_1$,故 $\frac{a}{c} = -\frac{a^2 + c^2 - 9b^2}{2ac}$,

整理得:
$$3a^2+c^2-9b^2=0$$
,所以 $3a^2+c^2-9(c^2-a^2)=0$,从而 $\frac{c^2}{a^2}=\frac{3}{2}$,故离心率 $e=\frac{c}{a}=\frac{\sqrt{6}}{2}$.

10. $(2022 \cdot 新安模拟 \cdot \star \star \star)$ 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的一条渐近线与圆 $A: (x-a)^2 + y^2 = b^2$ 交于 P, Q 两点,O 为原点,若 Q 为 OP 中点,则 C 的离心率为()

(A)
$$\sqrt{2}$$
 (B) $\frac{3\sqrt{2}}{2}$ (C) $\frac{2\sqrt{3}}{3}$ (D) $\sqrt{3}$ (D) $\sqrt{3}$

答案: C

解析: 先画出图形, 尝试通过分析图形的几何特征来建立方程求离心率,

如图,|AP| = |AQ| = b,|OA| = a,注意到 $\tan \angle POA = \frac{b}{a} = \frac{|PA|}{|OA|}$,结合图形可得 $PA \perp OA$,

又Q为OP的中点,所以|OP|=2|AQ|=2b,接下来只需在 ΔPOA 中用勾股定理即可建立方程求离心率,

由
$$|OA|^2 + |PA|^2 = |OP|^2$$
可得 $a^2 + b^2 = 4b^2$,所以 $a^2 = 3b^2 = 3c^2 - 3a^2$,从而 $\frac{c^2}{a^2} = \frac{4}{3}$,故离心率 $e = \frac{c}{a} = \frac{2\sqrt{3}}{3}$.

(A)
$$y = \pm 3x$$
 (B) $y = \pm \sqrt{3}x$ (C) $y = \pm \frac{1}{3}x$ (D) $y = \pm \frac{1}{9}x$

答案: A

解析:如何翻译|PA|=|PB|?直接计算长度较麻烦,故设中点,用中线与底边垂直来翻译,

设A,B中点为Q,则 $PQ \perp AB$,垂直可用斜率之积等于-1来翻译,故联立直线方程求交点A,B坐标,

如图,双曲线的渐近线为 $y=\pm \frac{b}{a}x$,

联立
$$\begin{cases} y = 2x + t \\ y = \frac{b}{a}x \end{cases}$$
解得:
$$\begin{cases} x = \frac{at}{b - 2a} \\ y = \frac{bt}{b - 2a} \end{cases}$$
, 所以 $A(\frac{at}{b - 2a}, \frac{bt}{b - 2a})$,

联立
$$\begin{cases} y = 2x + t \\ y = -\frac{b}{a}x \end{cases}$$
解得:
$$\begin{cases} x = -\frac{at}{b+2a}, & \text{所以 } B(-\frac{at}{b+2a}, \frac{bt}{b+2a}), & \text{故 } AB \text{ 中点为 } Q(\frac{2a^2t}{b^2 - 4a^2}, \frac{b^2t}{b^2 - 4a^2}), \end{cases}$$

因为
$$|PA| = |PB|$$
,所以 $k_{PQ} \cdot k_{AB} = -1$,故 $\frac{b^2 t}{b^2 - 4a^2} - 0$ $\times 2 = -1$,

整理得: $b^2 = 9a^2$, 所以 $\frac{b}{a} = 3$, 故渐近线为 $y = \pm 3x$.

《一数•高考数学核心方法》

