- **1.** Алгоритм получает на вход натуральное число N > 1 и строит по нему новое число R следующим образом:
- 1) Строится двоичная запись числа N.
- 2) Подсчитывается количество нулей и единиц в полученной записи. Если их количество одинаково, в конец записи добавляется её последняя цифра. В противном случае в конец записи добавляется цифра, которая встречается реже.
- 3) Шаг 2 повторяется ещё два раза.
- 4) Результат переводится в десятичную систему счисления.

При каком наименьшем исходном числе N > 90 в результате работы алгоритма получится чётное число, которое не делится на 4?

- ${f 2.}$ На вход алгоритма подаётся натуральное число ${f N.}$ Алгоритм строит по нему новое число ${f R}$ следующим образом.
- 1. Строится двоичная запись числа N.
- 2. К этой записи дописываются справа ещё два разряда по следующему правилу:
- а) складываются все цифры двоичной записи, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;
- б) над этой записью производятся те же действия справа дописывается остаток от деления суммы цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R. Какое наибольшее число, меньшее 50, может быть получено в результате работы автомата?

- **3.** Автомат обрабатывает натуральное число N > 1 по следующему алгоритму:
- 1) Строится двоичная запись числа N.
- 2) В конец записи (справа) дописывается вторая справа цифра двоичной записи.
- 3) В конец записи (справа) дописывается вторая слева цифра двоичной записи.
- 4) Результат переводится в десятичную систему.

Пример. Дано число N = 11. Алгоритм работает следующим образом.

- 1) Двоичная запись числа N: 11 = 1011₂
- 2) Вторая справа цифра 1, новая запись 101112.
- 3) Вторая слева цифра 0, новая запись 1011102.
- 4) Десятичное значение полученного числа 46.

Для скольких значений N в результате работы алгоритма получится число, принадлежащее отрезку [150; 250]?

- **4.** Автоматическая фотокамера каждые 10 с создаёт черно-белое растровое изображение, содержащее 256 оттенков. Размер изображения 512×192 пикселей. Все полученные изображения и коды пикселей внутри одного изображения записываются подряд, никакая дополнительная информация не сохраняется, данные не сжимаются. Сколько Мбайтов нужно выделить для хранения всех изображений, полученных за сутки?
- **5.** Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город A по каналу связи за 75 секунд. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 2 раза выше и частотой дискретизации в 3 раза выше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б за 90 секунд. Во сколько раз пропускная способность канала в город Б больше пропускной способности канала в город А?
- 6. (ЕГЭ-2022) Для хранения сжатого произвольного растрового изображения размером 640 на 256 пикселей отведено 170 Кбайт памяти без учёта размера заголовка файла. Исходный файл изображения больше, чем сжатый, на 35% (считая размер сжатого файла за 100%). Для кодирования цвета каждого пикселя используется одинаковое количество бит, коды пикселей записываются в файл один за другим без промежутков. Какое максимальное количество цветов можно использовать в изображении?
- **7.** (А. Куканова) Настя составляет 6-буквенные слова из букв Т, Ь, Ю, Р, И, Н, Г, причём мягкий знак не может стоять в начале слова и после гласной. Все буквы слова различны. Сколько таких слов может составить Настя?
- **8.** Сколько существует чисел, делящихся на 5, десятичная запись которых содержит 6 цифр, причём все цифры различны и никакие две чётные и две нечётные цифры не стоят рядом.

- **9.** (А.Н. Носкин) Петя составляет шестибуквенные слова перестановкой букв слова ЧИУАУА. Сколько всего различных слов может составить Петя?
- **10.** Для регистрации на сайте некоторой страны пользователю требуется придумать пароль. Длина пароля ровно 11 символов. В качестве символов используются десятичные цифры и 12 различных букв местного алфавита, причём все буквы используются в двух начертаниях: как строчные, так и заглавные (регистр буквы имеет значение!). Под хранение каждого такого пароля на компьютере отводится минимально возможное и одинаковое целое количество байтов, при этом используется посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством битов. Определите объём памяти в байтах, который занимает хранение 60 паролей.
- 11. При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 6 символов и содержащий только символы из 7-буквенного набора A, B, E, K, M, H, O. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируются одинаковым и минимально возможным количеством бит. Кроме собственно пароля для каждого пользователя в системе хранятся дополнительные сведения, для чего отведено 10 байт. Определите объём памяти в байтах, необходимый для хранения сведений о 100 пользователях.
- 12. (Е. Джобс) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 10 символов, содержащий только символы из набора Н, Е, П, Р, И, Д, У, М, А, Л, десятичные цифры и специальные символы #, \$, @, _, %. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения. На хранение как пароля, так и дополнительных сведений отведено одинаковое для каждого пользователя целое количество байт. Известно, что для хранения пароля выделено в байтах РОВНО в 1,5 раза меньше памяти, чем для хранения дополнительных сведений. Какое минимальное количество байт необходимо выделить, чтобы сохранить информацию о 22 пользователях? В ответе запишите только целое число количество байт.
- **13.** (С.С. Поляков) Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

```
1. заменить (v, w)
2. нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Дана программа для исполнителя Редактор:

```
НАЧАЛО
ПОКА нашлось (111) ИЛИ нашлось (222)
заменить (111, 2)
заменить (222, 1)
КОНЕЦ ПОКА
КОНЕЦ
```

Какая строка получится в результате применения приведённой программы к строке вида 1...12...2 (2018 единиц и 2019 двоек)?

14. Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

```
    заменить (v, w)
    нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w, вторая проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то

команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Дана программа для исполнителя Редактор:

```
НАЧАЛО
ПОКА нашлось (111)
заменить (111, 2)
заменить (22, 1)
КОНЕЦ ПОКА
КОНЕЦ
```

Какая строка получится в результате применения приведённой выше программы к строке вида 1... 12...2, состоящей из 44 единиц и 21 двойки? В ответе запишите полученную строку.

15. Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки символов.

```
    заменить (v, w)
    нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор.

Дана программа для исполнителя Редактор:

```
НАЧАЛО
ПОКА нашлось (2222) ИЛИ нашлось (666)
ЕСЛИ нашлось (2222)
ТО заменить (2222, 6)
ИНАЧЕ заменить (666, 2)
КОНЕЦ ЕСЛИ
КОНЕЦ ПОКА
КОНЕЦ
```

Какая строка получится в результате применения приведённой выше программы к строке, состоящей из 166 идущих подряд цифр 2? В ответе запишите полученную строку.

- **16.** На рисунке представлена схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?
- **17.** (Д. Муфаззалов) На рисунке схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К, Л, М, Н. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. В ответе укажите первый в лексикографическом (алфавитном) порядке маршрут из города А в город Н, содержащий ровно восемь городов, включая города А и Н; города в маршруте указывайте заглавными буквами без разделителей.
- **18.** На рисунке схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К, Л, М, Н. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей, ведущих из города А в город Н и проходящих через пункт Г или через пункт К, но не через оба этих пункта?
- **19.** (В. Шелудько) Значение выражения $7^{103} + 20.7^{204} 3.7^{57} + 97$ записали в системе счисления с основанием 7. Сколько цифр 6 содержится в этой записи?
- **20.** Сколько единиц в двоичной записи числа $8^{502} 4^{211} + 2^{1536} 19$?
- **21.** Сколько единиц в двоичной записи числа $8^{1014} 2^{530} 12$?