Discrete Structures: Final Exam

Due on 23 July 2020

Professor Jensen Section 201

Brian Ton

Brian Ton Final Exam

Problem 1

Write the contrapositive of "If $a \nmid b$ and $a \mid c$, then $a \nmid (b+c)$."

Solution

If $a \mid (b+c)$ then $a \mid b$ or $a \nmid c$.

Explanation

Let p be the statement $a \nmid b$, q be the statement $a \mid c$, and r be the statement $a \nmid (b+c)$.

Symbolically, the original statement can thus be written as $(p \land q) \to r$. The contrapositive would then be $\neg r \to \neg (p \land q)$ which by De Morgan's law would be $\neg r \to (\neg p \lor \neg q)$, which in English would be "If $a \mid (b+c)$ then $a \mid b$ or $a \nmid c$."

Problem 2

Consider the function f from set X to set Y. Write the negation of the following definition for f to be one-to-one.

$$\forall x_1, x_2 \in X$$
, if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

Solution

 $\exists x_1, x_2 \in X$, such that $f(x_1) = f(x_2)$ and $x_1 \neq x_2$.

Explanation

Writing the original statement in full symbolic form, it becomes $\forall x_1, x_2 \in X, (f(x_1) = f(x_2) \to x_1 = x_2)$. Note that we use logical equivalences to find the negation.

$$\neg \forall x_1, x_2 \in X, (f(x_1) = f(x_2) \to x_1 = x_2) \equiv \exists x_1, x_2 \in X, \neg (f(x_1) = f(x_2) \to x_1 = x_2) \quad \text{(De Morgan's Law)}$$

$$\equiv \exists x_1, x_2 \in X, (f(x_1) = f(x_2) \land \neg (x_1 = x_2)) \quad (\neg (p \to q) \equiv p \land \neg q)$$

$$\equiv \exists x_1, x_2 \in X, (f(x_1) = f(x_2) \land (x_1 \neq x_2))$$

Putting this back to match the original statement, $\exists x_1, x_2 \in X$, such that $f(x_1) = f(x_2)$ and $x_1 \neq x_2$.

Problem 3

 $\sqrt{3}$ is irrational. Use proof by contradiction to prove the statement " $4\sqrt{3}-7$ is irrational."

Solution

Proof By Contradiction Assume $4\sqrt{3} - 7$ is rational.

By definition of a rational number, $4\sqrt{3}-7=\frac{p}{q}$ for some integers p and q. Hence, we can write $4\sqrt{3}=\frac{p}{q}+7$. This would mean that $4\sqrt{3}=\frac{p+7q}{q}$. Then, $\sqrt{3}=\frac{p+7q}{4q}$. Note that by closure of the integers under addition and multiplication, p+7q and 4q is an integer. However, this would mean that $\sqrt{3}$ can be written as the ratio of two integers, which would mean that it is rational by the definition of a rational number. This is a contradiction, by the given information. Hence, the initial assumption that $4\sqrt{3}-7$ is rational is false, meaning that $4\sqrt{3}-7$ is irrational.

Brian Ton Final Exam

Problem 4

A sequence $m_1, m_2, m_3, ...$ is defined by letting $m_1 = 1$ and $m_k = 2m_{k-1} + 1$, for all integers $k \ge 2$. Use induction to show that $m_n = 2^n - 1$, for all integers $n \ge 1$.

Solution

Proof By Induction

Base Case: Show that $m_1 = 2^n - 1$ for $n \ge 1$. By definition, $m_1 = 1$. Note that for n = 1, $2^1 - 1 = 2 - 1 = 1 = m_1$. This completes the basis step.

Inductive Hypothesis: Assume that $m_k = 2^k - 1$ for some fixed integer $k \ge 1$.

Inductive Step: By definition of the sequence:

$$m_{k+1} = 2m_k + 1$$

$$= 2(2^k - 1) + 1$$

$$= 2^{k+1} - 2 + 1$$

$$= 2^{k+1} - 1$$
(Inductive Hypothesis)

Hence, by induction, $m_n = 2^n - 1$.