



## **AOD425**

# P-Channel Enhancement Mode Field Effect Transistor

#### **General Description**

The AOD425 uses advanced trench technology to provide excellent  $R_{DS(ON)}$  and ultra-low low gate charge with a 25V gate rating. This device is suitable for use as load switch or in PWM applications. The device is ESD protected.

- -RoHS Compliant
- -Halogen Free\*

### **Features**

V<sub>DS</sub> (V) = -30V

 $I_D = -20A (V_{GS} = -10V)$ 

 $R_{DS(ON)}$  < 17m $\Omega$  ( $V_{GS}$  = -10V)

 $R_{DS(ON)} < 35m\Omega (V_{GS} = -5V)$ 

ESD Protected! 100% Rg Tested!





| Absolute Maximum Ratings | T <sub>A</sub> =25°C unless otherwise noted |
|--------------------------|---------------------------------------------|
|--------------------------|---------------------------------------------|

| Parameter                              |                       | Symbol                            | Maximum    | Units |
|----------------------------------------|-----------------------|-----------------------------------|------------|-------|
| Drain-Source Voltage                   |                       | $V_{DS}$                          | -30        | V     |
| Gate-Source Voltage                    |                       | $V_{GS}$                          | ±25        | V     |
| Continuous Drain                       | T <sub>C</sub> =25°C  |                                   | -40        |       |
| Current <sup>F</sup>                   | T <sub>C</sub> =100°C | I <sub>D</sub>                    | -30        | A     |
| Pulsed Drain Current C                 |                       | I <sub>DM</sub>                   | -70        |       |
| Continuous Drain                       | T <sub>A</sub> =25°C  |                                   | -9         | A     |
| Current                                | T <sub>A</sub> =70°C  | IDSM                              | -7         | ^     |
|                                        | T <sub>C</sub> =25°C  | P <sub>D</sub>                    | 50         | W     |
| Power Dissipation B                    | T <sub>C</sub> =100°C | T D                               | 25         | vv    |
|                                        | T <sub>A</sub> =25°C  | В                                 | 2.3        | W     |
| Power Dissipation A                    | T <sub>A</sub> =70°C  | —P <sub>DSM</sub>                 | 1.5        | T vv  |
| Junction and Storage Temperature Range |                       | T <sub>J</sub> , T <sub>STG</sub> | -55 to 175 | °C    |

| Thermal Characteristics       |              |                 |     |     |       |  |
|-------------------------------|--------------|-----------------|-----|-----|-------|--|
| Parameter                     |              | Symbol          | Тур | Max | Units |  |
| Maximum Junction-to-Ambient A | t ≤ 10s      | В               | 18  | 22  | °C/W  |  |
| Maximum Junction-to-Ambient A | Steady-State | $R_{\theta JA}$ | 44  | 55  | °C/W  |  |
| Maximum Junction-to-Case B    | Steady-State | $R_{\theta JC}$ | 2.4 | 3   | °C/W  |  |

#### Electrical Characteristics (T<sub>J</sub>=25°C unless otherwise noted)

| Symbol                                           | Parameter                                             | Conditions                                                         | Min  | Тур   | Max  | Units     |
|--------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------|------|-------|------|-----------|
| STATIC F                                         | PARAMETERS                                            |                                                                    |      |       |      |           |
| BV <sub>DSS</sub>                                | Drain-Source Breakdown Voltage                        | I <sub>D</sub> =-250uA, V <sub>GS</sub> =0V                        | -30  |       |      | V         |
| I <sub>DSS</sub> Zero Gate Voltage Drain Current | V <sub>DS</sub> =-30V, V <sub>GS</sub> =0V            |                                                                    |      | -1    |      |           |
|                                                  | T <sub>J</sub> =55°C                                  |                                                                    |      | -5    | μΑ   |           |
| $I_{GSS}$                                        | Gate-Body leakage current                             | $V_{DS}$ =0V, $V_{GS}$ = ±25V                                      |      |       | ±10  | uA        |
| $V_{GS(th)}$                                     | Gate Threshold Voltage                                | $V_{DS}=V_{GS} I_D=-250\mu A$                                      | -1.5 | -2.45 | -3.5 | V         |
| $I_{D(ON)}$                                      | On state drain current                                | V <sub>GS</sub> =-10V, V <sub>DS</sub> =-5V                        | -70  |       |      | Α         |
|                                                  |                                                       | V <sub>GS</sub> =-10V, I <sub>D</sub> =-20A                        |      | 13.5  | 17   |           |
| R <sub>DS(ON)</sub>                              | R <sub>DS(ON)</sub> Static Drain-Source On-Resistance | T <sub>J</sub> =125°0                                              |      | 18.5  | 24   | $m\Omega$ |
|                                                  |                                                       | $V_{GS}$ =-5V, $I_D$ =-20A                                         |      | 27    | 35   |           |
| g <sub>FS</sub>                                  | Forward Transconductance                              | $V_{DS}$ =-5V, $I_{D}$ =-20A                                       |      | 27    |      | S         |
| $V_{SD}$                                         | Diode Forward Voltage                                 | I <sub>S</sub> =-1A,V <sub>GS</sub> =0V                            |      | -0.72 | -1   | ٧         |
| Is                                               | Maximum Body-Diode Continuous Cu                      | rrent                                                              |      |       | -40  | Α         |
| DYNAMIC                                          | PARAMETERS                                            |                                                                    |      |       |      |           |
| C <sub>iss</sub>                                 | Input Capacitance                                     |                                                                    |      | 1760  | 2200 | pF        |
| C <sub>oss</sub>                                 | Output Capacitance                                    | $V_{GS}$ =0V, $V_{DS}$ =-15V, f=1MHz                               |      | 360   |      | pF        |
| C <sub>rss</sub>                                 | Reverse Transfer Capacitance                          |                                                                    |      | 255   |      | pF        |
| $R_g$                                            | Gate resistance                                       | $V_{GS}$ =0V, $V_{DS}$ =0V, f=1MHz                                 |      | 6.4   | 8    | Ω         |
| SWITCHI                                          | NG PARAMETERS                                         |                                                                    |      |       |      |           |
| Q <sub>g</sub> (10V)                             | Total Gate Charge                                     |                                                                    |      | 30    | 38   | nC        |
| Q <sub>g</sub> (4.5V)                            | Total Gate Charge                                     | V <sub>GS</sub> =-10V, V <sub>DS</sub> =-15V, I <sub>D</sub> =-20A |      | 11    |      | nC        |
| $Q_{gs}$                                         | Gate Source Charge                                    | V <sub>GS</sub> 10V, V <sub>DS</sub> 15V, I <sub>D</sub> 20A       |      | 7     |      | nC        |
| $Q_{gd}$                                         | Gate Drain Charge                                     |                                                                    |      | 8     |      | nC        |
| t <sub>D(on)</sub>                               | Turn-On DelayTime                                     |                                                                    |      | 11.5  |      | ns        |
| t <sub>r</sub>                                   | Turn-On Rise Time                                     | V <sub>GS</sub> =-10V, V <sub>DS</sub> =-15V,                      |      | 8     |      | ns        |
| t <sub>D(off)</sub>                              | Turn-Off DelayTime                                    | $R_L$ =0.75 $\Omega$ , $R_{GEN}$ =3 $\Omega$                       |      | 35    |      | ns        |
| t <sub>f</sub>                                   | Turn-Off Fall Time                                    |                                                                    |      | 18.5  |      | ns        |
| t <sub>rr</sub>                                  | Body Diode Reverse Recovery Time                      | I <sub>F</sub> =-20A, dI/dt=100A/μs                                |      | 24    | 30   | ns        |
| Q <sub>rr</sub>                                  | Body Diode Reverse Recovery Charge                    | e I <sub>F</sub> =-20A, dI/dt=100A/μs                              |      | 16    |      | nC        |
|                                                  | of P is measured with the device mounted or           |                                                                    |      |       |      |           |

A. The value of  $R_{\theta JA}$  is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with  $T_A$  =25°C. The Power dissipation  $P_{DSM}$  is based on t<10s  $R_{\theta JA}$  and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.

Rev1: Sep. 2008

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE

B. The power dissipation  $P_D$  is based on  $T_{J(MAX)}$ =175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C: Repetitive rating, pulse width limited by junction temperature T<sub>J(MAX)</sub>=175°C.

D. The R  $_{\theta JA}$  is the sum of the thermal impedence from junction to case R  $_{\theta JC}$  and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 us pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T<sub>J(MAX)</sub>=175°C. The SOA curve provides a single pulse rating.

G. The maximum current rating is limited by bond-wires.

H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T<sub>A</sub>=25°C.

<sup>\*</sup>This device is guaranteed green after data code 8X11 (Sep 1<sup>ST</sup> 2008).

#### TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS





Figure 2: Transfer Characteristics



Figure 3: On-Resistance vs. Drain Current and Gate Voltage



Figure 4: On-Resistance vs. Junction Temperature



Figure 5: On-Resistance vs. Gate-Source Voltage



Figure 6: Body-Diode Characteristics

#### TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS



Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

0.1

0.01

0.0001

0.001

0.00001

100

10

#### TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS







Figure 14: Current De-rating (Note B)



Figure 15: Single Pulse Power Rating Junction-to-Ambient (Note H)



Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

# Gate Charge Test Circuit & Waveform





# Resistive Switching Test Circuit & Waveforms





# Diode Recovery Test Circuit & Waveforms



