Department of Mathematics, IIT Madras Series & Matrices MA1020

Assignment-3 Matrix Operations & Linear Independence

- 1. Show that given any $n \in \mathbb{N}$ there exist matrices $A, B \in \mathbb{R}^{n \times n}$ such that $AB \neq BA$.
- 2. Let $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$. Compute A^n .
- 3. Let $A \in \mathbb{F}^{m \times n}$; $B \in \mathbb{F}^{n \times k}$; A_1, \dots, A_m be the rows of $A; B_1, \dots, B_k$ be the columns of B. Show that

 - (a) A_1B, \ldots, A_mB are the rows of AB. (b) AB_1, \ldots, AB_k are the columns of AB.
- 4. Let $A \in \mathbb{F}^{n \times n}$; I be the identity matrix of order n. Find the inverse of the $2n \times 2n$ matrix $\begin{bmatrix} I & A \\ 0 & I \end{bmatrix}$.
- 5. If A is a hermitian (symmetric) invertible matrix, then show that A^{-1} is hermitian (symmetric).
- 6. If A is a lower (upper) triangular invertible matrix, then A^{-1} is lower (upper) triangular.
- 7. Let $x, y \in \mathbb{F}^{1 \times n}$ (or in $\mathbb{F}^{n \times 1}$); $\alpha \in \mathbb{F}$. Prove the following:
 - (a) $||x + y||^2 + ||x y||^2 = 2(||x||^2 + ||y||^2)$. (Parallelogram Law)
 - (b) $|\langle x, y \rangle| \le ||x|| \, ||y||$. (Cauchy-Schwartz inequality)
 - (c) $||x + y|| \le ||x|| + ||y||$. (*Triangle inequality*)
 - (d) If $x \perp y$, then $||x + y||^2 = ||x||^2 + ||y||^2$. (Pythagoras' Law)
- 8. Show that each orthogonal 2×2 matrix is either a reflection or a rotation.
- 9. Let $u, v, w \in \mathbb{F}^{n \times 1}$. Show that $\{u, v, w\}$ is linearly independent iff $\{u+v, v+w, w+u\}$ is linearly independent.
- 10. Find linearly independent vectors from $U = \{(a, b, c) : 2a + 3b 4c = 0\}$ whose span is U.
- 11. The vectors $u_1 = (1, 1, 0), u_2 = (0, 1, 1), u_3 = (1, 0, 1)$ are linearly independent in \mathbb{F}^3 . Apply Gram-Schmidt Orthogonalization.
- 12. Let $A \in \mathbb{R}^{3\times 3}$ have the first two columns as $(1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})^T$ and $(1/\sqrt{2}, 0, -1/\sqrt{2})^T$. Determine the third column of A so that A is an orthogonal matrix.
- 13. Convert the following matrices into RREF and determine their ranks.

(a)
$$\begin{bmatrix} 5 & 2 & -3 & 1 & 7 \\ 1 & -3 & 2 & -2 & 11 \\ 3 & 8 & -7 & 5 & 8 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 5 & 2 & -3 & 1 & 30 \\ 1 & -3 & 2 & -2 & 11 \\ 3 & 8 & -7 & 5 & 8 \end{bmatrix}$$

- 14. Determine linear independence of $\{(1,2,2,1),\ (1,3,2,1),\ (4,1,2,2),\ (5,2,4,3)\}$ in $\mathbb{C}^{1\times 4}$.
- 15. Let $A \in \mathbb{R}^{3 \times 3}$ satisfy $A(a,b,c)^T = (a+b,2a-b-c,a+b+c)^T$. Determine A and also its rank.
- 16. Determine linearly independent vectors whose span is $U = \{(a, b, c, d, e) \in \mathbb{R}^5 : a = c = e, b + d = 0\}.$
- 17. Let $A \in \mathbb{F}^{m \times n}$ have rank r. Give reasons for the following:
 - (a) $rank(A) \le min\{m, n\}.$
 - (b) If n > m, then there exist $x, y \in \mathbb{F}^{n \times 1}$ such that $x \neq y$ and Ax = Ay.
 - (c) If n < m, then there exists $y \in \mathbb{F}^{m \times 1}$ such that for no $x \in \mathbb{F}^{n \times 1}$, Ax = y.
 - (d) If n = m, then as a map, A is one-one iff A is onto.