INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO

VINICIUS SOUSA LUCENA CHINAQUI

Sistema de Gestão de Academia

CAMPOS DO JORDÃO 2024

RESUMO

Este projeto visa desenvolver um sistema de gestão de academias utilizando um banco de dados relacional. O sistema armazenará informações sobre alunos, instrutores, treinos e pagamentos. Utilizando o modelo Entidade-Relacionamento (MER) e implementando o sistema em MySQL, espera-se melhorar a eficiência de armazenamento e recuperação de dados.

Palavras-Chave: Banco de Dados Relacional; Sistema de Gestão; Academia; MySQL; MER.

ABSTRACT

This project aims to develop a gym management system using a relational database.

The system will store information about students, instructors, training and payments.

Using the Entity-Relationship model (MER) and implementing the system in MySQL, it

is expected to improve the efficiency of data storage and retrieval.

Keywords: Relational Databases; Management System; Academy; MySQL; Mer

SUMÁRIO

1	INTRODUÇÃO	5
1.1	Objetivos	5
1.2	Justificativa	5
1.3	Aspectos Metodológicos	6
1.4	Aporte Teórico	6
2	METODOLOGIA	7
2.1	FERRAMENTAS UTILIZADAS	7
2.2	DESCRIÇÃO DO PROJETO DE DADOS	8
2.3	COLETA DAS REGRAS DE NEGÓCIOS	_ 9
3	RESULTADOS OBTIDOS	_ 10
3.1	DESCRIÇÃO DO PROJETO DE DADOS	_ 11
4	CONCLUSÃO	_ 13
5	REFERÊNCIAS BIBLIOGRÁFICAS	_ 14

1 INTRODUÇÃO

A administração eficaz de uma academia é um desafio que abrange o manejo de várias informações e dados que devem ser guardados, processados e consultados de maneira ordenada. Historicamente, academias utilizam métodos manuais ou planilhas para a gestão de dados, o que pode resultar em erros, retrabalho e complicações na obtenção de informações. Com o crescimento da quantidade de estudantes, planos de treino e pagamentos, fica cada vez mais complicado garantir a precisão e a agilidade desses procedimentos com sistemas convencionais.

1.1 Objetivos

Este trabalho tem por objetivo;

- Desenvolver um banco de dados relacional para o sistema de gestão de academias;
- Identificar requisitos funcionais e n\u00e3o funcionais;
- Modelar o banco de dados utilizando o MER.
- Implementar o banco de dados em MySQL.
- Testar a integridade e normalização das tabelas.

1.2 Justificativa

A administração eficiente de uma academia exige dados organizados, acessíveis e seguros. Ao serem mal administrados, esses dados podem gerar impactos adversos na empresa, como enganos na cobrança, problemas na gestão de programas de treinamento e obstáculos no suporte aos alunos. O uso de um banco de dados relacional possibilita a organização dessas informações de forma segura e escalável, além de reduzir o risco de falhas humanas. Com a automatização dos procedimentos administrativos, o sistema sugerido oferecerá uma operação mais rápida, eficaz e isenta de erros, favorecendo diretamente o desenvolvimento e a profissionalização da academia.

1.3 Aspectos Metodológicos

O projeto foi conduzido com base em uma pesquisa bibliográfica a respeito de bancos de dados relacionais, modelagem de dados e normalização, juntamente com a implementação prática do banco de dados utilizando MySQL e Pé de Galinha. O projeto passou pelas fases de coleta de requisitos, modelagem do banco de dados através do MER e criação das tabelas no SGBD. Além disso, foi executado o teste de integridade e normalização das tabelas, utilizando dados simulados para confirmar o funcionamento do sistema.

1.4 Aporte Teórico

A base teórica do projeto apoia-se nos princípios essenciais de bancos de dados relacionais, modelagem de dados e normalização, utilizando o modelo MER como fundamento para a organização do banco de dados. As principais referências incluem autores reconhecidos no campo, como C. J. Date e Abraham Silberschatz, cujas publicações oferecem a fundamentação teórica essencial para a criação do sistema de administração de academias.

2 METODOLOGIA

A execução deste projeto adotou uma metodologia organizada que incluiu estudo teórico e implementação prática. A abordagem foi segmentada em diversas fases fundamentais para assegurar a entrega de um Sistema de Gestão de Academia operacional, eficaz e seguro. Cada uma dessas fases foi meticulosamente planejada e implementada, empregando recursos e métodos adequados para assegurar o êxito do projeto.

2.1 Ferramentas Utilizadas

Notação MER (Modelo Entidade-Relacionamento): A notação MER foi empregada para ilustrar as entidades e suas interações no sistema. O MER possibilitou a visualização de maneira clara das tabelas, atributos e das relações entre as entidades como "Aluno", "Treino", "Instrutor" e "Pagamento". O modelo contribuiu para organizar o banco de dados de maneira lógica e intuitiva, tornando mais fácil a compreensão e a implementação das tabelas no SGBD.

Pé de Galinha (Diagrama de Fluxo de Dados): A ferramenta Pé de Galinha foi empregada para delinear o fluxo de dados entre as entidades e os processos do sistema. Este recurso foi fundamental para reconhecer as interações entre os usuários (como colaboradores e estudantes) e o sistema. O diagrama facilitou a compreensão das operações do sistema e a determinação de como as informações seriam tratadas, assegurando que o fluxo de dados fosse coerente e eficaz. O Pé de Galinha foi empregado para ilustrar graficamente o percurso dos dados no sistema, desde o registro de um aluno até a criação de relatórios de pagamentos.

2.2 Descrição do Projeto de Dados

O Projeto de Dados tem como objetivo organizar de forma lógica e eficaz as informações essenciais para o Sistema de Gestão de Academia. Para isso, foi empregado o Modelo Entidade-Relacionamento (MER), que possibilitou reconhecer as entidades principais e suas interações, assegurando a estrutura e a integridade das informações. O banco de dados foi elaborado para guardar as informações referentes aos alunos, professores, exercícios e pagamentos.

As principais **entidades** e suas **atribuições** são as seguintes:

Aluno

Atributos:

- ID_Aluno: Identificador único do aluno (chave primária).
- Nome: Nome completo do aluno.
- Data Nascimento: Data de nascimento do aluno.
- Telefone: Número de telefone do aluno.
- Email: Endereço de e-mail do aluno.

Instrutor

Atributos:

- ID_Instrutor: Identificador único do instrutor (chave primária).
- Nome: Nome completo do instrutor.
- Especialidade: Especialidade ou área de atuação do instrutor (exemplo: musculação, pilates, etc.).
- o Telefone: Número de telefone de contato do instrutor.

Treino

Atributos:

- ID_Treino: Identificador único do treino (chave primária).
- Descrição do treino ou exercício.
- o Duração do treino (em minutos).
- Tipo: Tipo de treino (exemplo: aeróbico, musculação, etc.).
- Instrutor_ID: Referência ao instrutor que ministra o treino (chave estrangeira).
- Aluno_ID: Referência ao aluno que participa do treino (chave estrangeira).

Atributos:

- ID_Pagamento: Identificador único do pagamento (chave primária).
- Data: Data do pagamento.
- Valor: Valor pago.
- Forma_Pagamento: Forma de pagamento (exemplo: cartão de crédito, boleto, etc.).
- Aluno ID: Referência ao aluno que efetuou o pagamento (chave estrangeira).
- Status: Se a mensalidade expirou ou não

2.3 Coleta das Regras De Negócios

A coleta das regras de negócios foi uma etapa fundamental para a criação do banco de dados, uma vez que essas regras definem como os dados devem ser geridos e tratados no sistema. As diretrizes de negócio foram reunidas com base nas exigências operacionais da academia e nas características que o sistema deveria apresentar.

Cadastro de Alunos

- Cada aluno deve ter um ID único, e ao se matricular, o sistema deve registrar o plano de treino atribuído ao aluno, além de permitir a atualização de informações como telefone, email e histórico de treinos.
- O sistema deve permitir que um aluno altere seus dados de contato (telefone, email) e outros dados pessoais, mas deve garantir que o ID do aluno seja imutável.

Cadastro de Instrutores

- Cada instrutor deve ter um ID único e um conjunto de especialidades definidas, o que determina os tipos de treino que ele pode ministrar.
- O sistema deve garantir que o instrutor tenha horários de disponibilidade que não se sobreponham a outros instrutores.

Planejamento de Treinos

- Cada treino deve ser associado a um instrutor e a um ou mais alunos.
- O treino deve ter informações sobre sua duração, tipo e a descrição dos exercícios. Um treino deve ser alocado em horários específicos e não pode se sobrepor a outro treino agendado para o mesmo instrutor.

Pagamentos

- Cada aluno pode realizar múltiplos pagamentos, mas cada pagamento deve estar vinculado a um único aluno.
- Os pagamentos devem ser registrados com a data, valor e forma de pagamento (exemplo: cartão de crédito, débito, transferência bancária, etc.).
- O sistema deve garantir que, ao realizar um pagamento, o aluno tenha sua matrícula renovada ou atualizada, dependendo do plano contratado.

Relatórios e Acessibilidade de Dados

- O sistema deve permitir que os funcionários da academia consultem relatórios de pagamentos, treinos realizados e alunos matriculados, garantindo que as informações sejam acessíveis de maneira eficiente e segura.
- Os relatórios devem ser gerados com base em filtros como datas, valores e tipos de treino, e podem ser exportados para formatos como PDF ou Excel.

3 RESULTADOS OBTIDOS

O modelo conceitual do banco de dados para o gerenciamento de academia foi desenvolvido utilizando o Draw.io. Ele inclui as seguintes entidades e relacionamentos principais:

Aluno está relacionado com **Treino** e **Pagamento**. Cada aluno pode ter múltiplos treinos e pagamentos, mas um pagamento está vinculado a um único aluno.

Aluno			
PK	ID ALUNO		
	Nome		
	CPF		
	Data_Nascimento		
	Telefone		
	Email		

Instrutor é associado a **Treino**. Cada treino é ministrado por um único instrutor, mas um instrutor pode ministrar vários treinos.

Instrutor		
PK	ID_INSTRUTOR	
	Nome	
	Especialização	
	Telefone	

Treino está relacionado com **Aluno**. Cada aluno pode participar de múltiplos treinos, e cada treino pode ter vários alunos participando.

3.1 Descrição do Projeto de Dados

A descrição do projeto de dados trata do layout e da organização do banco de dados, especificando as principais entidades, seus atributos e as relações entre elas. O sistema de banco de dados foi elaborado com o Modelo Entidade-Relacionamento (MER), visando estabelecer uma estrutura eficiente, escalável e de fácil manutenção.

1. Aluno

A tabela de Aluno armazena as informações pessoais dos alunos. Seus principais atributos são:

- o ID_Aluno (chave primária): Identificador único para cada aluno.
- Nome: Nome completo do aluno.
- Data_Nascimento: Data de nascimento do aluno.
- Telefone: Número de telefone para contato.
- o Email: Endereço de e-mail do aluno.
- o Plano: O plano de treino associado ao aluno.

2. Instrutor

A tabela de Instrutor armazena informações sobre os instrutores da academia. Seus principais atributos são:

- o ID_Instrutor (chave primária): Identificador único para cada instrutor.
- Nome: Nome completo do instrutor.
- Especialidade: A especialidade do instrutor (ex: musculação, pilates).
- Telefone: Número de telefone de contato.

3. Treino

A tabela de Treino contém informações sobre os treinos disponíveis na academia. Seus principais atributos são:

- o ID_Treino (chave primária): Identificador único para cada treino.
- Descrição do treino ou exercício.
- Duração do treino em minutos.
- Tipo: Tipo de treino (aeróbico, musculação, etc.).
- Instrutor_ID (chave estrangeira): Relaciona o treino com o instrutor responsável.
- Aluno_ID (chave estrangeira): Relaciona o treino com os alunos que o realizam.

4. Pagamento

A tabela de Pagamento armazena os registros de pagamentos efetuados pelos alunos. Seus principais atributos são:

- ID_Pagamento (chave primária): Identificador único para cada pagamento.
- Data: Data do pagamento.
- Valor: Valor pago pelo aluno.

- Forma_Pagamento: Forma utilizada para o pagamento (cartão de crédito, transferência bancária, etc.).
- Aluno_ID (chave estrangeira): Relaciona o pagamento ao aluno que efetuou o pagamento.

Relacionamentos:

- Aluno e Treino: Cada aluno pode participar de vários treinos, mas um treino pode ter vários alunos. Este é um relacionamento de muitos para muitos.
- Instrutor e Treino: Cada instrutor pode ministrar vários treinos, mas cada treino é ministrado por um único instrutor. Este é um relacionamento de um para muitos.
- Aluno e Pagamento: Cada aluno pode fazer múltiplos pagamentos, mas um pagamento é associado a um único aluno. Este é um relacionamento de um para muitos.

4 CONCLUSÃO

A criação do Sistema de Gestão de Academia fundamentado em banco de dados relacional atingiu suas metas principais, oferecendo uma solução eficaz e estruturada para a administração de dados essenciais, como alunos, instrutores, treinos e pagamentos. No decorrer do processo de desenvolvimento, diversas fases foram executadas, começando pela definição dos requisitos e seguindo até a implementação do banco de dados em MySQL e Pé de Galinha, incluindo a modelagem de dados através do Modelo Entidade-Relacionamento (MER) e no Draw.io. O sistema foi desenvolvido para assegurar a integridade, normalização e escalabilidade dos dados, satisfazendo requisitos funcionais e não funcionais.

O esquema conceitual do banco de dados foi bem organizado, com definição clara das entidades e de seus vínculos, o que torna a manutenção e a ampliação futura do sistema mais simples. A normalização das tabelas garante a remoção de redundâncias e a otimização na eficácia das consultas e operações no banco de dados. Adicionalmente, o uso de ferramentas como o Pé de Galinha contribuiu para mapear e visualizar o fluxo de dados, oferecendo uma compreensão nítida das interações entre as diversas entidades do sistema.

Nos testes, o sistema apresentou um bom desempenho nas operações de registro, atualização, pesquisa e pagamento, além de elaborar relatórios detalhados com informações precisas e relevantes. A validação do sistema utilizando dados simulados possibilitou reconhecer setores que podem ser melhorados, como a criação de uma interface gráfica para facilitar a utilização pelos colaboradores da academia.

Como propostas para aperfeiçoamentos futuros, ressalta-se a adição de recursos extras, como a conexão do sistema com aparelhos de supervisão de treinos e a automação de notificações para renovação de matrícula e quitação de mensalidades. Seria igualmente interessante ampliar a plataforma para celulares, oferecendo mais acessibilidade aos usuários.

5 REFERÊNCIAS BIBLIOGRÁFICAS

Documentação Draw.io. User Guide and Notation Standards. Disponível em: https://www.diagrams.net

GUEDES, Gerson L. F. Modelagem de Dados: Fundamentos e Técnicas. 1ª ed. São Paulo: Erica, 2015.

ISO/IEC 9075. Database Language SQL - SQL/Foundation (SQL:2016). International Organization for Standardization, 2016

DATE, C. J. An Introduction to Database Systems. 8. ed. Boston: Addison-Wesley, 2019.