МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по практической работе №3

по дисциплине «Операционные системы»

Тема: Исследование организации управления основной памятью

Студентка гр. 7383	Чемова К.A.
Преподаватель	Ефремов М.А

Санкт-Петербург 2019

Цель работы.

Для исследования организации управления памятью необходимо ориентироваться на тип основной памяти, реализованный в компьютере и способ организации, принятый в ОС. В лабораторной работе рассматривается нестраничная память и способ управления динамическими разделами. Для реализации управления памятью в этом случае строится список занятых и свободных участков памяти. Функции ядра, обеспечивающие управление основной памятью, просматривают и преобразуют этот список.

В лабораторной работе исследуются структуры данных и работа функций управления памятью ядра операционной системы.

Необходимые сведения для составления программы.

Учёт занятой и свободной памяти ведется при помощи списка блоков управления памятью МСВ (Memory Control Block). МСВ занимает 16 байт (параграф) и располагается всегда с адреса кратного 16 (адрес сегмента ОП) и находится в адресном пространстве непосредственно перед тем участком памяти, которым он управляет.

МСВ имеет следующую структуру:

Смещение	Длина поля (байт)	Содержимое поля	
00h	1	тип МСВ:	
		5Ah, если последний в списке,	
		4Dh, если не последний	
01h	2	Сегментный адрес PSP владельца участка	
		памяти, либо	
		0000h - свободный участок,	
		0006h - участок принадлежит драйверу	
		OS XMS UMB	
		0007h - участок является исключенной	
		верхней памятью драйверов	
		0008h - участок принадлежит MS DOS	

		FFFAh - участок занят управляющим блоком 386MAX UMB FFFDh - участок заблокирован 386MAX FFFEh - участок принадлежит 386MAX UMB
03h	2	Размер участка в параграфах
05h	3	Зарезервирован
08h	8	"SC" - если участок принадлежит MS DOS, то в нем системный код "SD" - если участок принадлежит MS DOS, то в нем системные данные

По сегментному адресу и размеру участка памяти, контролируемого этим МСВ можно определить местоположение следующего МСВ в списке.

Адрес первого МСВ хранится во внутренней структуре MS DOS, называемой "List of Lists" (список списков). Доступ к указателю на эту структуру можно получить, используя функцию f52h "Get List of Lists" int 21h. В результате выполнения этой функции ES:ВХ будет указывать на список списков. Слово по адресу ES:[ВХ-2] и есть адрес самого первого МСВ.

Размер расширенной памяти находится в ячейках 30h, 31h CMOS. CMOS это энергонезависимая память, в которой хранится информация о конфигурации ПЭВМ. Объем памяти составляет 64 байта. Размер расширенной памяти в Кбайтах можно определить обращаясь к ячейкам CMOS следующим образом:

mov AL, 30h; запись адреса ячейки CMOS

out 70h, AL

in AL, 71h ; чтение младшего байта

mov BL, AL ; размера расширенной памяти

mov AL, 31h; запись адреса ячейки CMOS

out 70h, AL

Постановка задачи.

- **Шаг 1.** Необходимо написать и отладить программный модуль типа .COM, выбирает и распечатывает следующую информацию:
 - 1. Количество доступной памяти.
 - 2. Размер расширенной памяти.
 - 3. Выводит цепочку блоков управления памятью.

Адреса при выводе представляются шестнадцатеричными числами. Объем памяти функциями управления памятью выводится в параграфах. Необходимо преобразовать его в байты и выводить в виде десятичных чисел. Последние восемь байт МСВ выводятся как символы, не следует преобразовывать их в шестнадцатеричные числа.

- **Шаг 2.** Далее необходимо изменить программу таким образом, чтобы она освобождала память, которую она не занимает. Для этого используйте функцию 4Ah прерывания 21h (пример в разделе «Использование функции 4AH»).
- **Шаг 3**. Затем необходимо изменить программу еще раз таким образом, чтобы после освобождения памяти, программа запрашивала 64Кб памяти функцией 48Н прерывания 21Н.
- **Шаг 4.** Далее нужно изменить первоначальный вариант программы, запросив 64Кб памяти функцией 48Н прерывания 21Н до освобождения памяти.
 - Шаг 5. Оформить отчёт и ответить на контрольные вопросы.

Процедуры, используемые в программе.

TETR_TO_HEX — Используется для перевода половины байта в шестнадцатеричную систему счисления.

BYTE_TO_HEX — Используется для перевода байта регистра AL в шестнадцатеричную систему счисления, помещая результат в AX.

WRD_TO_HEX – Используется для перевода двух байт регистра AX в шестнадцатеричную систему счисления, помещая результат в регистр DI.

BYTE_TO_DEC — Используется для перевода байта регистра AL в десятичную систему счисления, помещая результат в SI.

GET_MCB – Вывод таблицу МСВ PRINT – Вывод на экран.

Структуры данных.

Таблица 1 – Структуры данных

Название поля данных	Тип	Назначение
_avl_mem	db	Доступная память
_ext_mem	db	Расширенная память
_table_MCB	db	Таблица МСВ
result	Taт db	Строка для вывода

Результат работы.

На рис. 1 представлена работа программы, выполняющая шаг 1. Все доступные 648912 байт отдаются программе.

C:\>LAB3_	1.COM			
Ava i lable	memory, 1	3: 648912		
Extended	memory, Kl	3: 15420		
Address	Type MCB	PSP	Size, B	SD/SC
016F	4D	0008	16	
0171	4D	0000	64	DPMILOAD
0176	4D	0040	256	
0187	4D	0192	144	
0191	5A	0192	6 4 8912	LAB3_1

Рисунок 1 – Результат работы lab3_1.com

Был изменён исходный код программы: теперь программа освобождает не занимаемую ею память. Создается новый блок, который обозначен как свободный участок, размером 636016 байт. Результат работы представлен на рис.2.

C:\>LAB3_	-				
A∨ailable	e memory, B	: 6 4 8912			
Extended	memory, KB	: 15420			
Address	Type MCB	PSP	Size, B	SD/SC	
016F	4D	0008	16		
0171	4D	0000	64	DPMILOAD	
0176	4D	0040	256		
0187	4D	0192	144		
0191	4D	0192	12880	LAB3_2	
04B7	5A	0000	636016		

Рисунок 2 – Результат работы lab3_2.com

Код программы снова был изменён. Сначала, как и во втором случае, происходит освобождение памяти, затем программа запрашивает 64 Кбайт (65536 байт) памяти. На свободном участке создается новый блок, который следует за основным блоком программы и занимает 65536 байт. На рис. 3 представлен результат.

	_3.COM = memory, B: memory, KB:				
Address	Type MCB	PSP	Size, B	SD/SC	
016F	4D	0008	16		
0171	4D	0000	64	DPMILOAD	
0176	4D	0040	256		
0187	4D	0192	144		
0191	4D	0192	12992	LAB3_3	
04BE	4D	0192	65536	LAB3_3	
14BF	5A	0000	570352	#πtA&e▲	

Рисунок 3 – Результат работы lab3_3.com

Код программы снова был изменён. Происходит запрос 64 Кбайт до освобождения памяти. Однако выдаётся ошибка, так как запрос памяти происходит в тот момент, когда вся доступная память занята программой. Затем происходит освобождение памяти, аналогично второму случаю. Результат работы представлен на рис.4.

Memory al	4.COM memory, Ballocation er memory, KBa	ror!!!			
Address	Type MCB	PSP	Size, B	SD/SC	
016F	4D	0008	16		
0171	4D	0000	64	DPMILOAD	
0176	4D	0040	256		
0187	4D	0192	144		
0191	4D	0192	13584	LAB3_4	
04E3	5A	0000	635312		

Рисунок 4 – Результат работы lab3_4.com

Ответы на контрольные вопросы.

1) Что означает «доступный объём памяти»?

Доступный объём памяти — это максимальный объем памяти, в который можно загружать пользовательские программы.

2) Где МСВ блок Вашей программы в списке?

По адресу 0191h расположен блок MCB в первой программе.

По адресу 0191h расположен блок MCB, а по адресу 04B7 расположен блок освобожденной памяти в первой модификации.

По адресу 0191h расположен блок MCB, а по адресу 04BE расположен блок запрошенной памяти, а по 14BF – блок освобожденной памяти.

По адресу 0191h расположен блок MCB, а по адресу 04E3 — блок, обозначенный как пустой участок.

3) Какой размер памяти занимает программа в каждом случае?

- 1. 648912 байт, вся выделенная под программу память.
- 2. 648912 636016 16 = 12880 байт.
- 3. 648912 570352 65536 2*16 = 12992 байт.
- 4. Произошла ошибка выделения дополнительной памяти, $648912-635312-16=13584\ {\rm байт}.$

Вывод.

В ходе работы было проведено исследование структуры данных и работы функций управления памятью ядра операционной системы, а также рассмотрены нестраничная память и способы управления динамическими разделами.