Лабораторная работа 2

Введение в эволюционные вычисления

Выполнил Домницкий Е.А. М4130

Цель работы

Целью данной лабораторной работы является получение студентом представления об возможностях применения эволюционных алгоритмов для решения различных классов задач и программных средств для их разработки.

Оборудование и программное обеспечение

- Java JDK версии 1.8 и выше
- Watchmaker framework версии 0.7.1

BitsCount

Суть задачи в том, чтобы оптимизировать сумму элементов битовой строки заданной величины (максимизировать, иными словами, получить в результате эволюции популяцию строк с максимальным числом единиц). Сходиться должно к строке целиком из единиц. Было проанализировано количество итераций (поколений), необходимых для достижения оптимального решения на строках длиной 20, 50 и 100. Результаты представлены в таблице ниже.

Размерность	Run 1	Run 2	Run 3	Run 4	Run 5	Среднее
20	38	30	121	18	42	49.8
50	2772	3108	2882	1331	4362	2891
100	10866284	4511672	7889341	3256778	4796123	6264039.6

Задача коммивояжёра

Необходимо минимизировать путь, проходящий хотя бы 1 раз через все узлы графа (точки на карте).

Стандартные параметры:

[Evolution (pop: 300, gen: 100, elite: 3, Truncation Selection (50%))]

ROUTE: Vienna -> Berlin -> Helsinki -> Stockholm -> Copenhagen -> Amsterdam -> London -> Dublin -> Lisbon -> Madrid -> Paris -> Brussels -> Luxembourg -> Rome -> Athens -> Vienna

TOTAL DISTANCE: 10976.0km

(Search Time: 1.116 seconds)

[Evolution (pop: 500, gen: 100, elite: 3, Truncation Selection (50%))]

Популяция 500:

ROUTE: London -> Dublin -> Lisbon -> Madrid -> Rome -> Athens -> Vienna -> Berlin -> Helsinki ->

Stockholm -> Copenhagen -> Amsterdam -> Brussels -> Luxembourg -> Paris -> London

TOTAL DISTANCE: 10494.0km

(Search Time: 0.093 seconds)

Поколений 300:

[Evolution (pop: 300, gen: 300, elite: 3, Truncation Selection (50%))]

ROUTE: Amsterdam -> Brussels -> Luxembourg -> Paris -> London -> Dublin -> Lisbon -> Madrid -> Rome -> Athens -> Vienna -> Berlin -> Helsinki -> Stockholm -> Copenhagen -> Amsterdam

TOTAL DISTANCE: 10494.0km

(Search Time: 0.145 seconds)

Элитарных элементов 12:

[Evolution (pop: 300, gen: 100, elite: 12, Truncation Selection (50%))]

ROUTE: Lisbon -> Dublin -> London -> Paris -> Luxembourg -> Brussels -> Amsterdam ->

Copenhagen -> Stockholm -> Helsinki -> Berlin -> Vienna -> Athens -> Rome -> Madrid -> Lisbon

TOTAL DISTANCE: 10494.0km

(Search Time: 0.042 seconds)

Популяция 500, поколений 300, элитарных элементов 12:

[Evolution (pop: 500, gen: 300, elite: 12, Truncation Selection (50%))]

ROUTE: Copenhagen -> Amsterdam -> Brussels -> Luxembourg -> Paris -> London -> Dublin -> Lisbon -> Madrid -> Rome -> Athens -> Vienna -> Berlin -> Helsinki -> Stockholm -> Copenhagen

TOTAL DISTANCE: 10494.0km

(Search Time: 0.189 seconds)

Мона Лиза

В этой задаче необходимо аппроксимировать картинку с Моной Лизой при помощи цветных полигонов разных цветов, размеров и поворотов.

Решение	Итерация	Фитнесс	Кол-во полигонов и углов	Рисунок
плохое	5467	333079	19 п, 90 у	
среднее	17789	233730	37 п, 195 у	
хорошее	18945	204574	25 п, 225 у	

Ответы на вопросы:

- 1. Типы структур решений:
- Bits Counts бинарный
- Traveling salesman problem комбинаторный
- Mona Lisa комбинатрный
- 2. Решения в задачи коммивояжера закодированы в виде списка городов в определенном порядке (последовательность).
- 3. В задаче Mona Lisa генотип закодированное множество полигонов (список объектов ColouredPolygon), фенотип отрисованное изображение