

- 1 -
SEQUENCE LISTING

<110> Gurney et al.

<120> ALZHEIMER'S DISEASE SECRETASE, APP SUBSTRATES THEREFOR, AND USES THEREFOR

A3
<130> 28341/6280M

<140>

<141>

<150> 09/416,901

<151> 1999-10-13

<150> 60/155,493

<151> 1999-09-23

<150> 09/404,133

<151> 1999-09-23

<150> PCT/US99/20881

<151> 1999-09-23

<150> 60/101,594

<151> 1998-09-24

<160> 74

<170> PatentIn Ver. 2.0

<210> 1

<211> 1804

<212> DNA

<213> Homo sapiens

<400> 1

atgggcgcac tggccggggc gctgctgctg cctctgctgg cccagtggct cctgcgcgcc 60
gccccggagc tggcccccgc gccccttcacg ctgccccctcc gggtggccgc gcccacgaac 120
cgcgtagttg cgcccaacccc gggacccggg acccctgccc agcgccacgc cgacggcttg 180
gcccgtcgccc tggagcctgc cctggcggtcc cccgcggggc cggccaactt cttggccatg 240
gtagacaacc tgcaggggga ctctggccgc ggctactacc tggagatgct gatcgggacc 300
cccccgcaga agctacagat tctcggtgac actggaaagca gtaacttgc cgtggcagga 360
accccgcact cctacataga cacgtacttt gacacagaga ggtctagcac ataccgctcc 420
aagggttttgc acgtacacagt gaagtacaca caaggaagct ggacgggctt cgttggggaa 480
gacctcgtca ccatccccaa aggcttcaat acttctttc ttgtcaacat tgccactatt 540
tttgaatcag agaatttctt tttgcctggg attaaatgga atggaatact tggcctagct 600
tatgccacac ttgcaagcc atcaagtttct ctggagacct tcttcgactc cctggtgaca 660
caagcaaaca tcccoaacgt tttctccatg cagatgtgtg gagccggctt gcccgttgct 720
ggatctggga ccaacggagg tagtcttgc ttgggtggaa ttgaaccaag ttgtataaaa 780
ggagacatc ggtataacccc tattaaggaa gagtggtaact accagataga aattctgaaa 840
ttggaaatttgc gaggccaaag ccttaatctg gactgcagag agtataacgc agacaaggcc 900
atcgtggaca ttggcaccac gctgctgccc ctggcccaaa aggtgtttga tgcggtggtg 960
gaagctgtgg cccgcgcatac tctgatttca gaattctctg atggtttctg gactgggtcc 1020
cagctggcgt gctggacgaa ttcggaaacaca ccttggctt acttccctaa aatctccatc 1080
tacctgagag atgagaactc cagcaggtca ttccgttatca caatcctgcc tcagctttac 1140
attcagccca ttagtggggc cggcctgaat tatgaatgtt accgattcgg catttccccca 1200
tccacaaaatgc cgctggtgat cgggtgccacg gtatggagg gcttctacgt catcttcgac 1260
agagcccaaga agaggggtggg cttcgccagcg agccctgtg cagaaattgc aggtgtgca 1320
gtgtctgaaa ttccggggcc tttctcaaca gaggatgttag ccagcaactg tgccccgct 1380
cagtcttgc gcgagcccat tttgtggatt gtgtcctatg cgctcatgag cgtctgtgga 1440
gccatcctcc ttgtcttaat cgtcctgctg ctgctgcccgt tccgggtca gctcgcccc 1500

RECEIVED

JAN 10 2003

TECH CENTER 1600/2900

cgtgaccctg aggtcgtcaa tgatgagtcc tctctggta gacatcgctg gaaatgaata 1560
gccaggcctg acctaagca accatgaact cagctattaa gaaaatcaca tttccagggc 1620
agcagccggg atcgatggtg gcgcttctc ctgtgcccac ccgtcttcaa tctctgttct 1680
gtccccat gccttctaga ttcactgtct tttgattctt gattttcaag ctttcaaatac 1740
ctccctactt ccaagaaaaa taattaaaaa aaaaacttca ttctaaacca aaaaaaaaaa 1800
aaaa 1804

<210> 2
<211> 518
<212> PRT
<213> Homo sapiens

<400> 2
Met Gly Ala Leu Ala Arg Ala Leu Leu Leu Pro Leu Leu Ala Gln Trp
1 5 10 15

Leu Leu Arg Ala Ala Pro Glu Leu Ala Pro Ala Pro Phe Thr Leu Pro
20 25 30

Leu Arg Val Ala Ala Ala Thr Asn Arg Val Val Ala Pro Thr Pro Gly
35 40 45

Pro Gly Thr Pro Ala Glu Arg His Ala Asp Gly Leu Ala Leu Ala Leu
50 55 60

Glu Pro Ala Leu Ala Ser Pro Ala Gly Ala Ala Asn Phe Leu Ala Met
65 70 75 80

Val Asp Asn Leu Gln Gly Asp Ser Gly Arg Gly Tyr Tyr Leu Glu Met
85 90 95

Leu Ile Gly Thr Pro Pro Gln Lys Leu Gln Ile Leu Val Asp Thr Gly
100 105 110

Ser Ser Asn Phe Ala Val Ala Gly Thr Pro His Ser Tyr Ile Asp Thr
115 120 125

Tyr Phe Asp Thr Glu Arg Ser Ser Thr Tyr Arg Ser Lys Gly Phe Asp
130 135 140

Val Thr Val Lys Tyr Thr Gln Gly Ser Trp Thr Gly Phe Val Gly Glu
145 150 155 160

Asp Leu Val Thr Ile Pro Lys Gly Phe Asn Thr Ser Phe Leu Val Asn
165 170 175

Ile Ala Thr Ile Phe Glu Ser Glu Asn Phe Phe Leu Pro Gly Ile Lys
180 185 190

Trp Asn Gly Ile Leu Gly Leu Ala Tyr Ala Thr Leu Ala Lys Pro Ser
195 200 205

Ser Ser Leu Glu Thr Phe Phe Asp Ser Leu Val Thr Gln Ala Asn Ile
210 215 220

Pro Asn Val Phe Ser Met Gln Met Cys Gly Ala Gly Leu Pro Val Ala
225 230 235 240

Gly Ser Gly Thr Asn Gly Gly Ser Leu Val Leu Gly Gly Ile Glu Pro
245 250 255

Ser Leu Tyr Lys Gly Asp Ile Trp Tyr Thr Pro Ile Lys Glu Glu Trp
260 265 270

Tyr Tyr Gln Ile Glu Ile Leu Lys Leu Glu Ile Gly Gly Gln Ser Leu
275 280 285

Asn Leu Asp Cys Arg Glu Tyr Asn Ala Asp Lys Ala Ile Val Asp Ser
290 295 300

Gly Thr Thr Leu Leu Arg Leu Pro Gln Lys Val Phe Asp Ala Val Val
305 310 315 320

Glu Ala Val Ala Arg Ala Ser Leu Ile Pro Glu Phe Ser Asp Gly Phe
325 330 335

Trp Thr Gly Ser Gln Leu Ala Cys Trp Thr Asn Ser Glu Thr Pro Trp
340 345 350

Ser Tyr Phe Pro Lys Ile Ser Ile Tyr Leu Arg Asp Glu Asn Ser Ser
355 360 365

Arg Ser Phe Arg Ile Thr Ile Leu Pro Gln Leu Tyr Ile Gln Pro Met
370 375 380

Met Gly Ala Gly Leu Asn Tyr Glu Cys Tyr Arg Phe Gly Ile Ser Pro
385 390 395 400

Ser Thr Asn Ala Leu Val Ile Gly Ala Thr Val Met Glu Gly Phe Tyr
405 410 415

Val Ile Phe Asp Arg Ala Gln Lys Arg Val Gly Phe Ala Ala Ser Pro
420 425 430

Cys Ala Glu Ile Ala Gly Ala Ala Val Ser Glu Ile Ser Gly Pro Phe
435 440 445

Ser Thr Glu Asp Val Ala Ser Asn Cys Val Pro Ala Gln Ser Leu Ser
450 455 460

Glu Pro Ile Leu Trp Ile Val Ser Tyr Ala Leu Met Ser Val Cys Gly
465 470 475 480

Ala Ile Leu Leu Val Leu Ile Val Leu Leu Leu Leu Pro Phe Arg Cys
485 490 495

Gln Arg Arg Pro Arg Asp Pro Glu Val Val Asn Asp Glu Ser Ser Leu
500 505 510

Val Arg His Arg Trp Lys
515

<210> 3
<211> 2070
<212> DNA
<213> Homo sapiens

<400> 3
atggcccaag ccctgccctg gtcctgctg tggatggcg cggagtgct gcctgcccac 60
ggcacccagc acggcatccg gctgccctg cgcagcggcc tggggggcgc ccccctgggg 120
ctgcggctgc cccgggagac cgacgaagag cccgaggagc cggccggag gggcagctt 180
gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240

gtgggcagcc cccgcagac gctcaacatc ctggtgata cagggcagcag taactttca 300
gtgggtgctg ccccccaccc ttccctgcat cgctactacc agaggcagct gtcacgcaca 360
taccgggacc tccggaaggg tggatgtg ccctacaccc agggcaagtg ggaaggggag 420
ctgggcaccc acctgtaag catccccat ggccccaaacg tcactgtgcg tgccaaacatt 480
gctgcccata ctgaatcaga caagttctc atcaacggct ccaactggga aggcacatctg 540
gggctggct atgctgagat tgccaggct gacgactccc tggagcctt cttgactct 600
ctggtaaagc agaccacgt tcccaaccc ttctccctgc acctttgtgg tgctggcttc 660
cccctaacc agtctgaagt gctggcctt gtggagggg gcatgatcat tgaggtatc 720
gaccactcgc tgtacacagg cagtcctctgg tatacacca tccggcgga gtggattat 780
gaggtcatca ttgtcggtt ggagatcaat ggacaggatc tgaaaatgga ctgcaaggag 840
tacaactatg acaagagcat tgtggacagt ggcaccacca accttcgtt gccaagaaa 900
gtgtttgaag ctgcagtcaa atccatcaag gcagcctctt ccacggagaa gtccctgtat 960
ggttctggc taggagagca gctgggtgc tggcaagcag gcaccacccc ttgaaacatt 1020
ttcccaagtca tctcactcta cctaattggg gaggttacca accagtccctt ccgcacatcacc 1080
atccctccgc agcaataacct gcccgcagtg gaagatgtgg ccacgtccca agacgactgt 1140
tacaagttt ccacatcaca gtcatccacg ggcactgtt tggagctgt tataatggag 1200
ggcttctacg ttgttttgc tccccccca aaacgaattt gcttgcgtt cagcgcttgc 1260
catgtgcacg atgagttcag gacggcagcg gtggaaaggcc cttttgcac ctggacatg 1320
gaagactgtg gctacaacat tccacagaca gatgagtcaa ccctcatgac catagcttat 1380
gtcatggctg ccatotgcgc cctttcatg ctggcactct gcctcatggt gtgtcagtgg 1440
cgctgcctcc gtcgcctgcg ccaggcagcat gatgactttt ctgatgacat ctccctgtt 1500
aagtgaggag gcccattggc agaagataga gattttccctg gaccacaccc cctgtgttca 1560
cttggtcac aagtaggaga cacagatggc acctgtggcc agagcaccc agaccctcc 1620
ccacccacca aatgctctg ctttgcattt gaaaggaaaag gctggcaagg tgggttccag 1680
ggactgtacc tggtagaaac agaaaagaga agaaaagaagc actctgcgtt cggaaatact 1740
cttggtcacc tcaaattaa gtcggaaat tctgctgtt gaaacttcag ccctgaacct 1800
ttgtccacca ttccattttttt caaatggcaacc caaatggatcc ttcttttctt agtttcagaa 1860
gtactggcat cacacgcagg ttaccttggc gtgtgtccct gtggtaaccct ggcagagaaag 1920
agaccaagct tgtttccctg ctggccaaag tcagtaggag agatgcaca gtttgcattt 1980
tgcttttagag acagggactg tataaacaag cctaacattt gtgcaaagat tgccctttga 2040
ataaaaaaaaaaaaaaa 2070

<210> 4
<211> 501
<212> PRT
<213> Homo sapiens

<400> 4
Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp
180 185 190

Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro
195 200 205

Asn Leu Phe Ser Leu His Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln
210 215 220

Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile
225 230 235 240

Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg
245 250 255

Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln
260 265 270

Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val
275 280 285

Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala
290 295 300

Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp
305 310 315 320

Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr
325 330 335

Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val
340 345 350

Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg
355 360 365

Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala
370 375 380

Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu
385 390 395 400

Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala
405 410 415

Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu
420 425 430

Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro
435 440 445

Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala
450 455 460

Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys Gln Trp
465 470 475 480

Arg Cys Leu Arg Cys Leu Arg Gln Gln His Asp Asp Phe Ala Asp Asp
485 490 495

Ile Ser Leu Leu Lys
500

<210> 5
<211> 1977
<212> DNA
<213> Homo sapiens

<400> 5
atggcccaag ccctggccctg gtcctgctg tggatggcg cgggagtgct gcctgcccac 60
ggcaccaggc acggcatccg gtcggccctg cgacggcc tcggggcgcc cccctgggg 120
ctgcggctgc cccgggagac cgacgaagag cccgaggagc cggccggag gggcagctt 180
gtggagatgg tggacaacctt gaggggcaag tcggggcagg gctactacgt ggagatgacc 240
gtgggcagcc cccgcagac gtcacacatc ctggtgata caggcagcag taactttgca 300
gtgggtgctg ccccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 360
taccgggacc tccgaaaggg tggatgtg ccctacaccc agggcaagtg ggaaggggag 420
ctgggcaccc acctggtaag catccccat ggcccaacg tcactgtcg tgccaaacatt 480
gctgccatca ctgaatcaga caagttctc atcaacggct ccaactggga aggcattctg 540
gggctggcct atgctgagat tgccaggctt tggatgtcg gcttccctt caaccagtct 600
gaagtgtgg cctctgtcg aggagcatg atcattggag gtatcgacca ctgcgtgtac 660
acaggcagtc tctggataac acccatccgg cgggagtggtt attatgaggt gatcattgtg 720
cgggtggaga tcaatggaca ggtatctgaaa atggactgca aggagtacaa ctatgacaag 780
agcattgtgg acagtggcac caccacccctt cgttggccca agaaagtgtt tgaagctgca 840
gtcaaatcca tcaaggcagc ctccctccacg gagaagttcc ctgatggttt ctggcttagga 900
gagcagctgg tggatgtcgca agcaggccacc acccccttggaa acatttttcc agtcatctca 960
ctctaccta tggatgtggg taccacccat tcctccggca tcaccatctt tccgcagca 1020
tacctgcggc cagtggaa tggccggcact tcccaagacg actgttacaa gtttggccatc 1080
tcacagtcat ccacgggcac tggatgtggaa gctgttataca tggagggtt ctacgtgtc 1140
tttggatgtggg cccggaaacg aattggctt gctgtcgcc tttggccatgt gcacgtatgag 1200
ttcaggacgg cagcgggtggaa aggccctttt gtcaccttgg acatggaaaga ctgtggctac 1260
aacatccac agacagatga tcaacccctc atgaccatag cctatgtcat ggctggccatc 1320
tgcggccctt tcatgtgtcc actctgcctc atggatgtgtc agtggcgctg cctccgctgc 1380
ctgcgcgcagc agcatgtatga ctttgcgtat gacatctccc tgctgaagtg aggaggccca 1440
tggggcagaag atagagattt ccctggacca cacccctgg gttcaacttg gtcacaagta 1500
ggagacacag atggcacctg tggccagagc acctcaggac cctcccccacc caccaaatgc 1560
ctctgccttg atggagaagg aaaaggctgg caaggtgggt tccaggact gtacctgttag 1620
gaaacagaaa agagaagaaa gaagcactt gctggcgaaa atactttgg tcacctcaaa 1680
tttaagtgtgg gaaattctgc tggatgtggaa ttcagccctg aacctttgtc caccattcct 1740
ttaaattctc caacccaaag tattttttt ttcttagttt cagaagatact ggcatcacac 1800
gcagggttacc ttggcggtgtg tccctgtggt accctggcag agaagagacc aagcttgg 1860
ccctgtggc caaagtcaatggaggat gcacagttt gtcacatgtt tagagacagg 1920
gactgtataa acaaggctaa cattggtgca aagattgcctt ctggaaaaaaa aaaaaaaa 1977

<210> 6
<211> 476
<212> PRT
<213> Homo sapiens

<400> 6

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Leu Cys Gly
180 185 190

Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly
195 200 205

Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu
210 215 220

Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val
225 230 235 240

Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr
245 250 255

Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu
260 265 270

Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser
275 280 285

Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val
290 295 300

Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser
305 310 315 320

Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile
325 330 335

Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln
340 345 350

Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val
355 360 365

Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala
370 375 380

Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu
385 390 395 400

Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu
405 410 415

Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser Thr Leu Met Thr
420 425 430

Ile Ala Tyr Val Met Ala Ala Ile Cys Ala Leu Phe Met Leu Pro Leu
435 440 445

Cys Leu Met Val Cys Gln Trp Arg Cys Leu Arg Cys Leu Arg Gln Gln
450 455 460

His Asp Asp Phe Ala Asp Asp Ile Ser Leu Leu Lys
465 470 475

<210> 7
<211> 2043
<212> DNA
<213> Mus musculus

<400> 7

atggcccccag cgctgcactg gtcctgcta tgggtggct cggaaatgct gcctgcccag 60
ggAACCCATC tcggcatccg gctgcccctt cgcacggcc tggcaggccc acccctggc 120
ctgaggcgtgc cccggagac tgacgaggaa tcggaggagc ctggccggag aggcagctt 180
gtggagatgg tggacaacct gaggggaaag tccggccagg gctactatgt ggagatgacc 240
gtaggcagcc ccccacagac gctcaacatc ctggtgacca cggcagtag taactttgca 300
gtgggggctg ccccacaccc ttctcgcat cgctactacc agggcagct gtccagcaca 360
tatcgagacc tccggaaaggg tggatgtgc ccctacaccc agggcaagtgg 420
ctggccaccc acctggtag catccctcat ggccccaaacg tcactgtgc tgccaacatt 480
gctgcccata ctgaatcgga caagttcttc atcaatggtt ccaactggga gggcatccta 540
gggtggccat atgctgagat tggcaggccc gacgactttt tggagccctt ctttactcc 600
ctggtaaggc agacccacat tcccaacatc tttccctgc agctctgtgg cgctggcttc 660
cccctcaacc agaccgaggc actggcctcg gtgggaggga gcatgatcat tgggtattat 720
gaccactcgc tatacacggg cagtctctgg tacacaccca tccggccggg 780
gaagtgtata ttgtacgtgt gggaaatcaat ggtcaagatc tcaagatggc ctgcaaggag 840
tacaactacg acaagagcat tggacgactt gggaccacca accttcgctt gccaagaaaa 900
gtatgttgc agccgttcaaa gtccatcaag gcagcctctt cgacggagaa gttcccgat 960
ggcttttggc taggggagca gctgggtgtgc tggcaaggagc gcacgacccc ttggaaacatt 1020
ttcccactca tttcaactta cctcatgggt gaagtccatc atcagtccctt ccgcattacc 1080
atcccttcctc agcaatacct acggccgggt gaggacgtgg ccacgtccca agacgactgt 1140
tacaagttcg ctgtotcaca gtcattccacg ggcactgtt tggagccgt catcatggaa 1200
ggtttctat tcgtottcga tcgagcccgaa aagcgaattt gctttctgtt cagcgcttgc 1260
catgtgcacg atgagttcag gacggccggca gtggaaaggc cgtttcttac ggcagacatg 1320
gaagactgtg gctacaacat tcccccagaca gatgagtcaa cacttgcacatgcat 1380
gtcatggccg ccatgtgcgc cctttcatg ttgcactct gcctcatgtt atgtcagtgg 1440
cgctgcctgc gttgcgtcg ccaccagcac gatgactttt ctgatgacat ctccctgtctc 1500
aagtaaggag gtcgtgggc agatgatggc gacgcccctg gaccacatct ggtggttcc 1560
cttgggtcac atgagttggc gctatggat gtacactgtgg ccagagcacc tcaggaccct 1620
caccacactg ccaatgttc tggcgtgaca gaacagagaa atcaggcaag ctggattaca 1680
gggcttgac ctgttaggaca caggagaggg aaggaaggagcg ctgtctgtt gcaagat 1740
ccttaggcac cacaacttgc agttggaaat tttgtgttca gaaacttgcag ccctgaccct 1800
ctggcccgac tcctttagag tctccaaacct aaagtattct ttatgtccctt ccagaagttac 1860
tggcgtcata ctcaggctac ccggcatgtg tccctgtgtt accctggcag agaaaggcc 1920
aatctcattc cctgtggcc aaagtccagca gaagaagggtg aagtttgcctt gttgcttttag 1980
tgatagggac tgcagactca agcctacact ggtacaaaga ctgcgtctt agataaaca 2040
gaa 2043

<210> 8
<211> 501
<212> PRT
<213> Mus musculus

<400> 8
Met Ala Pro Ala Leu His Trp Leu Leu Leu Trp Val Gly Ser Gly Met
1 5 10 15

Leu Pro Ala Gln Gly Thr His Leu Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30

Gly Leu Ala Gly Pro Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45

Glu Glu Ser Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp
180 185 190

Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Ile Pro
195 200 205

Asn Ile Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln
210 215 220

Thr Glu Ala Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile
225 230 235 240

Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg
245 250 255

Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln
260 265 270

Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val
275 280 285

Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala
290 295 300

Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp
305 310 315 320

Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr
 325 330 335

Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val
340 345 350

Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg
 355 360 365

Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala
 370 375 380

Val Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu
385 390 395 400

Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala
405 410 415

Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu
 420 425 430

Gly Pro Phe Val Thr Ala Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro
 435 440 445

Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala
450 455 460

Ile	Cys	Ala	Leu	Phe	Met	Leu	Pro	Leu	Cys	Leu	Met	Val	Cys	Gln	Trp
465					470					475					480

Arg Cys Leu Arg Cys Leu Arg His Gln His Asp Asp Phe Ala Asp Asp
485 490 495

Ile Ser Leu Leu Lys
500

<210> 9
<211> 2088
<212> DNA
<213> *Homo sapiens*

<400> 9	atgctgcccg	gttggcact	gtccctgctg	gccgcctgga	cggctcgggc	gctggaggt	60
cccactgatg	gtaatgctgg	cctgctggct	gaacccccaga	ttgccatgtt	ctgtggcaga	120	
ctgaacatgc	acatgaatgt	ccagaatggg	aagtgggatt	cagatccatc	agggaccaaa	180	
acctgcattg	ataccaagga	aggcatcctg	cagtattgcc	aagaagtcta	ccctgaactg	240	
cagatcacca	atgtggtaga	agccaaccaa	ccagtgacca	tccagaactg	gtgcaagcgg	300	
ggccgcaagc	agtgcacagac	ccatccccac	tttgtgattc	cctaccgctg	cttagttggt	360	
gagtttgtaa	gtgatgccc	tctcggtcct	gacaagtgca	aatttttaca	ccaggagagg	420	
atggatgtt	gcaaaactca	tcttcaactgg	cacaccgtcg	ccaaagagac	atgcagttag	480	
aagagtacca	acttgcatg	ctacggcatg	ttgtcgccct	gcggaattgt	caagttccga	540	
ggggtagagt	tttgtgttgg	cccactggct	gaagaaaagt	acaatgtgga	ttctgctgat	600	
gcggagggagg	atgactcgga	tgtctggtgg	ggcggagcag	acacagacta	tgcagatggg	660	
agtgaagaca	aagttagtga	agtagcagag	gaggaagaag	tggctgaggt	ggaagagaa	720	
gaagccatg	atgacgagga	cgatgaggat	ggtgatgagg	tagaggaaga	ggctgagggaa	780	
ccctacgaag	aagccacaga	gagaaccacc	agcattgcca	ccaccaccac	caccaccaca	840	
gagtctgtgg	aagaggtgg	tcgaggcct	acaacagcag	ccagtagcccc	tgatgccgtt	900	
gacaagtatc	tcgagacacc	tggggatgag	aatgaacatg	cccatttcca	gaaagccaaa	960	
gagaggctt	aggccaaqca	ccqagaaqqa	atqtccttca	tcatqaaqqa	atqqaqaaq	1020	

gcagaacgtc	aagcaaagaa	cttgccctaaa	gctgataaga	aggcagttat	ccagcatttc	1080
caggagaaaag	tggaatcttt	ggaacaggaa	gcagccaaacg	agagacagca	gctgggtggag	1140
acacacatgg	ccagagtggaa	agccatgctc	aatgaccgccc	gccgcctggc	cctggagaac	1200
tacatcaccg	ctctgcaggc	tgttcctcct	ccgcctcgcc	acgtgttcaa	tatgctaaag	1260
aagtatgtcc	gcmcagaaca	gaaggacaga	cagcacaccc	taaagcattt	cgagcatgtg	1320
cgcatgttgg	atcccaagaa	agccgctcag	atccggtccc	aggttatgac	acacctccgt	1380
gtgatttatg	agcgcattgaa	tcagttcttc	tccctgtct	acaacgtgcc	tgcagtggcc	1440
gaggagattc	aggatgaagt	tgtatgagctg	cttcagaaag	agcaaaacta	ttcagatgac	1500
gtcttgccca	acatgatttag	tgaaccaagg	atcagttacg	gaaacgatgc	tctcatggca	1560
tctttgaccg	aaacgaaaac	caccgtggag	ctcccttcccg	tgaatggaga	gttcagcctg	1620
gacgatctcc	aggcgtggca	ttcttttggg	gctgactctg	tgccagccaa	cacagaaaac	1680
gaagttgagc	ctgttgatgc	ccgccccgt	ggcggaccgg	gactgaccac	tgcaggacgt	1740
tctgggttga	caaataatcaa	gacggaggag	atctctgaat	tgaagatgg	tgcagaattc	1800
cgacatgact	caggatata	agttcatcat	caaaaattgg	tggttcttgc	agaagatgtg	1860
ggttcaaaaca	aagggtgcaat	cattggactc	atgggtgggg	gtgtgtcat	agcgacagt	1920
atcgatcatca	ccttgggtgat	gctgaagaag	aaacagttaca	catccattca	tcatgggtgt	1980
gtggaggttgc	acgcccgtgt	caccccaagag	gagcgccacc	tgtccaagat	gcagcagaac	2040
ggctacgaaa	atccaaaccta	caagttcttt	gagcagatgc	agaacttag		2088

<210> 10
<211> 695
<212> PRT
<213> *Homo sapiens*

<400> 10
 Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
 1 5 10 15
 Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
 20 25 30
 Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
 35 40 45
 Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
 50 55 60
 Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
 65 70 75 80
 Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
 85 90 95
 Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
 100 105 110
 Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
 115 120 125
 Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
 130 135 140
 Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
 145 150 155 160
 Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
 165 170 175
 Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
 180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Val Val Val Arg
275 280 285

Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu
290 295 300

Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys
305 310 315 320

Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg
325 330 335

Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp
340 345 350

Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu
355 360 365

Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala
370 375 380

Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn
385 390 395 400

Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe
405 410 415

Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His
420 425 430

Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala
435 440 445

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu
450 455 460

Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala
465 470 475 480

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn
485 490 495

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser
500 505 510

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr
 515 520 525
 Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln
 530 535 540
 Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn
 545 550 555 560
 Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr
 565 570 575
 Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
 580 585 590
 Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val
 595 600 605
 His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys
 610 615 620
 Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val
 625 630 635 640
 Ile Val Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile
 645 650 655
 His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
 660 665 670
 His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys
 675 680 685
 Phe Phe Glu Gln Met Gln Asn
 690 695

```
<210> 11
<211> 2088
<212> DNA
<213> Homo sapiens
```

```

<400> 11
atgctccccg gttggcact gtcctgctg gccgcctgga cggctcgggc gctggaggt 60
cccactgatg gtaatgctgg cctgctggct gaacccccaga ttgcatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggacc 180
acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240
cagatcaccq atgtggtaga agccaaccaa ccagtgcacca tccagaactg gtgcaagcgg 300
ggccgcaagc agtgcaagac ccatccccac ttgtgtattc cctaccgctg cttagttgt 360
gagttgtaa gtgatgccct ttcgttccct gacaagtgc aatttttaca ccaggagagg 420
atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagttag 480
aagagtacca acttgcattt ctacggcatg ttgtgtccct gcggaaattga caagttccga 540
ggggtagagt ttgtgtttt cccactggct gaagaaaatg acaatgtgga ttctgtgtat 600
gcggaggagg atgactcgga tgtctgttgg ggccggacgc acacagacta tgcagatggg 660
agtgaagaca aagttagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720
gaagccatg atgacgagga cgatgaggat ggtgtatggg tagaggaaga ggctgaggaa 780
ccctacagaag aagccacaga gagaaccacc agcattgcac ccaccacca caccac 840
gagttgtgg aagaggtgtt tcgatccctt acaacacgcg ccagttcccc tgatgccgtt 900
gacaagatc tcgagacacc tggggatgg aatgaacatc cccatttcca gaaagccaaa 960
gagaggctt aggccaagca ccgagagaga atgtcccagg tcatgagaga atggaaagag 1020
gcagaacgtc aagcaaagaa cttgcctaaa gctgataaga aggcatgtat ccagcattc 1080
caggagaaaag tggaaatctt ggaacaggaa gcagccaaacq aqagacacqca gctqqtggq 1140

```

acacacatgg ccagagtgg aagccatgctc aatgaccgccc gccgcctggc cctggagaac 1200
tacatcaccc ctctgcaggc tgttcctcct cggcctcgac acgtgttcaa tatgctaaag 1260
aagtatgtcc gcgcagaaca gaaggacaga cagcacaccc taaagcattt cgagcatgtg 1320
cgcatgggtt atcccaagaa agccgctcag atccggtccc aggttatgac acacctccgt 1380
gtgattttagt agcgcatgaa tcagtctc tccctgctt acaacgtgcc tgcaatggcc 1440
gaggagattc aggatgaagt tcatgagctg cttagaaag agcaaaacta ttcaatgac 1500
gtcttgccca acatgattag tgaaccaagg atcagttacg gaaacgtgc tctcatgcca 1560
tctttgaccc aaacgaaaac caccgtggag ctccttcccg tgaatggaga gttcagcctg 1620
gacgatctcc agccgtggca ttctttggg gctgactctg tgccagccaa cacagaaaaac 1680
gaagttgagc ctgttcatgc ccgcctgtt gcccggag gactgaccac tcgaccaggt 1740
tctgggttga caaatatcaa gacggaggag atctctgaag tgaatctgga tgcaatattc 1800
cgacatgact caggatatga agttcatcat caaaaattgg ttttttttc agaagatgtg 1860
ggttcaaaca aaggtgcaat cattggactc atggtggcg gtttgc agcgacagtg 1920
atcgtcatca ccttgggtat gctgaagaag aaacagtaca catccattca tcatgggttg 1980
gtggaggtt acgcccgtt caccggagag gagcgcacc ttttcaatgat gcagcagaac 2040
ggctacgaaa atccaaaccta caagttttt gagcagatgc agaactag 2088

<210> 12

<211> 695

<212> PRT

<213> Homo sapiens

<400> 12

Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285

Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu
290 295 300

Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys
305 310 315 320

Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg
325 330 335

Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp
340 345 350

Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu
355 360 365

Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala
370 375 380

Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn
385 390 395 400

Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe
405 410 415

Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His
420 425 430

Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala
435 440 445

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu
450 455 460

Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala
465 470 475 480

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn
485 490 495

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser
500 505 510

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr
515 520 525

Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln
530 535 540

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn
545 550 555 560

Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr
565 570 575

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
580 585 590

Glu Val Asn Leu Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val
595 600 605

His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys
610 615 620

Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val
625 630 635 640

Ile Val Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile
645 650 655

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
660 665 670

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys
675 680 685

Phe Phe Glu Gln Met Gln Asn
690 695

<210> 13
<211> 2088
<212> DNA
<213> Homo sapiens

<400> 13
atgctgcccc gtttggcaact gtcctgtcg gccgcctggc cggctcgccc gctggaggta 60
cccaactgatg gtaatgtcg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180
acctgcattt ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300
ggccgcaagc agtcaagac ccatccccac tttgtgattc cctaccgctg ctagttgg 360
gagtttgtaa gtgatgcct tctcggttct gacaagtgc aattcttaca ccaggagagg 420
atggatgttt gcgaaactca tcttcaactgg cacaccgtcg ccaaagagac atgcagttag 480
aagagtacca acttgcattga ctacggcatg ttgctgccc gccaatttgc caagttccga 540
gggttagagt ttgtgtgttgc cccactggct gaagaaagtgc acaatgtgg aatctgttat 600
gccccggagg atgactcgga tgcgtgggtt ggcggagcag acacagacta tgcatgtgg 660
agtgaagaca aagtagttaga agtagcagag gaggagaag tggctgaggt ggaagaagaa 720
gaagccgatg atgacgagga cgtatggat ggtgtatggg tagaggaga ggctgaggaa 780
ccctacgaag aagccacaga gagaaccacc agcattgcc ccaccaccc caccaccaca 840
gagtctgtgg aagagggtgt tcgagttctt acaacacgcg ccagtacccc tgatgcgtt 900
gacaagtatc tcgagacacc tggggatgag aatgaacatg cccatttcca gaaagccaaa 960
gagaggcttgc aggccaaagc cccggagaga atgtcccagg tcatgagaga atggaaagag 1020
gcagaacgtc aagcaagaa cttgcctaaa gctgataaga aggcaggatcc ccaacatttc 1080
caggagaaag tggaaatctt ggaacaggaa gcagccaaacg agagacagca gctgggtggag 1140
acacacatgg ccagagtggc agccatgctc aatgaccggc gccgcctggc cctggagaac 1200
tacatcaccg ctctgcaggc tggcctctt cggcctcgcc acgtgttcaa tatgctaaag 1260
aagtatgtcc gcgcaagaaca gaaaggacaga cagcacaccc taaagcattt cgagcatgtg 1320
cgcatgggttgc atcccaagaa agccgctcag atccggtccc aggttatgac acacccgt 1380
gtgattttatg agcgcatgaa tcagtcttc tccctgtct acaacgtgcc tgcatggcc 1440
gaggagattc agatgaagt tgatgagctg cttcagaaag agcaaaaacta ttcagatgac 1500
gtcttggcca acatgattag tgaaccaagg atcagttacg gaaacgtac tctcatgcca 1560

tctttgaccg aaacgaaaac caccgtggag ctccttcccg tgaatggaga gttcagcctg 1620
gacgatctcc agccgtggca ttctttggg gctgactctg tgccagccaa cacagaaaaac 1680
gaagttgagc ctgttgc 1740
tctgggttga caaatatcaa gacggaggag atctctgaag tgaagatgga tgagaattc 1800
cgacatgact caggatatga agttcatcat caaaaattgg tggatgttgc agaagatgtg 1860
ggttcaaaca aaggtgcaat cattggactc atggggcg gtgtgtcat agcgacagtg 1920
atcttcatca ccttgggtgat gctgaagaag aaacagtaca catccattca tcatggtgtg 1980
gtggaggttg acgcccgtg caccaggag gagccacc tggccaagat gcagcagaac 2040
ggctacgaaa atccaaccta caagttctt gagcagatgc agaactag 2088

<210> 14
<211> 695
<212> PRT
<213> Homo sapiens

<400> 14
Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15
Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30
Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45
Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60
Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80
Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95
Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110
Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125
Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140
Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160
Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175
Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190
Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205
Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220
Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285

Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu
290 295 300

Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys
305 310 315 320

Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg
325 330 335

Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp
340 345 350

Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu
355 360 365

Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala
370 375 380

Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn
385 390 395 400

Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe
405 410 415

Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His
420 425 430

Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala
435 440 445

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu
450 455 460

Arg Met Asn Gln Ser Leu Ser Leu Tyr Asn Val Pro Ala Val Ala
465 470 475 480

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn
485 490 495

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser
500 505 510

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr
515 520 525

Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln
530 535 540

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn
545 550 555 560

Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr
565 570 575

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
580 585 590

Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val
595 600 605

His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys
610 615 620

Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val
625 630 635 640

Ile Phe Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile
645 650 655

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
660 665 670

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys
675 680 685

Phe Phe Glu Gln Met Gln Asn
690 695

<210> 15

<211> 2094

<212> DNA

<213> Homo sapiens

<400> 15

atgctgcccg gtttggcaact gtcctgtctg gcccctggaa cggctcgccc gctggaggta 60
cccaactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180
acctgcattt ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240
cagatcacca atgtggtaga agccaacccaa ccagtgacca tccagaactg gtgcaagcgg 300
ggccgcaagc agtcaagac ccatccccac tttgtgattt cctaccgctg cttagttgg 360
gagtttgtaa gtgatgccct tctcgttctt qacaagtgc aattcttaca ccaggagagg 420
atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagtgag 480
aagagtacca acttgcattga ctacggcatg ttgtgccc gccaatttga caagttccga 540
ggggtagagt ttgtgtgtt cccactggct gaagaaagtg acaatgtgga ttctgctgat 600
gcggaggagg atgactcgga tgtctgggtt ggcggagcag acacagacta tgcatgggg 660
agtgaagaca aagttagata agtagcagag gaggagaag tggctgaggt ggaagaagaa 720
gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780
ccctacgaaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca 840
gagtctgtgg aagaggttgt tcgagttctt acaacagcag ccagtacccc tgatgccgt 900
gacaagtatc tcgagacacc tggggatgag aatgaacatg cccatttcca gaaagccaaa 960
gagaggcttg aggccaagca ccgagagaga atgtcccagg tcatgagaga atgggaagag 1020
gcagaacgtc aagccaaagaa cttgcctaaa gctgataaga aggcaattt ccacgttcc 1080
caggagaaag tggaatctt ggaacaggaa gcagccaacg agagacagca gctgggtggag 1140
acacacatgg ccagagtgg agccatgttc aatgaccggc gccgcctggc cttggagaac 1200
tacatcaccg ctctgcaggc ttttcctt cggcctgtc acgtgttcaa tatgctaaag 1260
aagtatgtcc ggcgagaaca gaaggacaga cagcacaccc taaagcattt cgagcatgtg 1320
ccatgggtgg atcccaagaa agccgctcag atccggtccc agttatgac acacccctcg 1380
gtgattttatg agcgcatttgc tcaatgttctc tccctgtct acaacgtgcc tgcatggcc 1440
gaggagattt aggtatgtt tttatgttgc ctttcggaaag agcaaaacta ttcatgttgc 1500
gtcttggcca acatgattttt tgaaccaagg atcagttacg gaaacgttgc ttcatggcc 1560
tctttggccaa aaacgaaaac caccgtggag cttccctcccg tgaatggaga gttcagccctg 1620
gacgatctcc agccgtggca ttcttttggg gctgactctg tgccagccaa cacagaaaaac 1680

gaagttgagc ctgttcatgc ccgcctgct gcccggag gactgaccac tcgaccagg 1740
tctgggttga caaatatcaa gacggaggag atctctgaag tgaagatgga tgcagaattc 1800
cgacatgact caggatatga agttcatcat caaaaattgg tggctttgc agaagatgtg 1860
ggttcaaaca aaggtgcaat cattggactc atggtggcg gtgttgcata agcgacagt 1920
atcgcatca cttgggtat gctgaagaag aaacagtaca catccattca tcatggtgt 1980
gtggagggtt acgcccgtg caccggagag gagccacc tggccaagat gcagcagaac 2040
ggctacgaaa atccaaccta caagttctt gagcagatgc agaacaagaa gtag 2094

<210> 16
<211> 697
<212> PRT
<213> Homo sapiens

<400> 16
Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285

Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu
290 295 300

Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys
305 310 315 320

Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg
325 330 335

Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp
340 345 350

Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu
355 360 365

Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala
370 375 380

Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn
385 390 395 400

Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe
405 410 415

Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His
420 425 430

Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala
435 440 445

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu
450 455 460

Arg Met Asn Gln Ser Leu Ser Leu Tyr Asn Val Pro Ala Val Ala
465 470 475 480

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn
485 490 495

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser
500 505 510

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr
515 520 525

Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln
530 535 540

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn
545 550 555 560

Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr
565 570 575

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
580 585 590

Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val
595 600 605

His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys
610 615 620

Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val
625 630 635 640

Ile Val Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile
645 650 655

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
660 665 670

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys
675 680 685

Phe Phe Glu Gln Met Gln Asn Lys Lys
690 695

<210> 17

<211> 2094

<212> DNA

<213> Homo sapiens

<400> 17

atgctgccgg tttggcaact gtcctgctg gccgcctgga cggctcgccc gctggaggta 60
cccaactgatgt gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180
acctgcattt ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300
ggccgcaagc agtcaagac ccatccccac tttgtgattt cctaccgctg cttagttgg 360
gagtttgtaa gtgatgccc ttcgttccct gacaagtgc aattcttaca ccaggagagg 420
atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagtgag 480
aagagtacca actgcatga ctacggcatg ttgtgcctt gcggaattga caagttccga 540
ggggtagagt ttgtgttgc cccactggct gaagaaagtg acaatgtgga ttctgctgtat 600
gcggaggagg atgactcgga tgcgttggg ggcggagcag acacagacta tgcatgtgg 660
agtgaagaca aagttagaga agtagcagag gaggagaag tggctgaggt ggaagaagaa 720
gaagccgatg atgacgagga cgatgaggat ggtgtatgagg tagaggaaga ggctgaggaa 780
ccctacgaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca 840
gagtctgtgg aagagggtgt tcgagttccct acaacagcag ccagtacccc tgatgcccgtt 900
gacaagtatt tcgagacacc tggggatgag aatgaacatg cccatttcca gaaagccaaa 960
gagaggctt aggcaagca ccgagagaga atgtcccagg tcatgagaga atggaaagag 1020
gcagaacgtc aagcaagaa cttgcctaaa gctgataaga aggcaggatcc ctagatttc 1080
caggagaaag tggaatcttt ggaacaggaa gcagccaaacg agagacagca gctgggtggag 1140
acacacatgg ccagatggaa agccatgtc aatgaccggc gccgcctggc cttggagaac 1200
tacatcaccg ctctgcaggc ttgccttccct cggcctcgtc acgtgttcaa tatgctaaag 1260
aagtatgtcc gcgcagaaca gaaggacaga cagcacaccc taaagcattt cgagcatgtg 1320
cgcattgtgg atcccaagaa agccgctcag atccggtccc agttatgac acacctccgt 1380
gtgattttagt agcgcattgaa tcagtctctc tccctgctct acaacgtgcc tgcatgtggc 1440
gaggagattt agatgaaatg tgatgagctg cttcagaaag agcaaaacta ttcatgtgac 1500
gtcttggcca acatgattag tgaaccaagg atcagttacg gaaacgtgc tctcatgcca 1560
tctttgaccg aaacgaaaac caccgtggag ctccctcccg tgaatggaga gttcagcctg 1620
gacgatctcc agccgtggca ttctttggg gctgactctg tgccagccaa cacagaaaaac 1680
gaagttgagc ctgttgcattt cccgcctgct gccgaccgag gactgaccac tcgaccaggt 1740
tctgggttga caaatatcaa gacggaggag atctctgaa tgaatctgga tgcatgtgg 1800

cgacatgact caggatatga agttcatcat caaaaattgg tttttgc agaagatgtg 1860
ggttcaaaca aaggtgcaat cattggactc atggggcg gtgttgcata agcgacagtg 1920
atcgcatca cttgggtat gctgaagaag aaacagtaca catccattca tcatgggtg 1980
gtggagggtt acggccgtt caccaggag gagccacc tttccaaatgat gcagcagaac 2040
ggctacgaaa atccaaccta caagttctt gagcagatgc agaacaagaa gtag 2094

<210> 18
<211> 697
<212> PRT
<213> Homo sapiens

<400> 18
Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15
Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30
Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45
Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60
Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80
Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95
Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110
Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125
Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140
Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160
Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175
Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190
Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205
Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220
Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240
Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255
Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285

Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu
290 295 300

Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys
305 310 315 320

Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg
325 330 335

Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp
340 345 350

Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu
355 360 365

Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala
370 375 380

Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn
385 390 395 400

Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe
405 410 415

Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His
420 425 430

Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala
435 440 445

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu
450 455 460

Arg Met Asn Gln Ser Leu Ser Leu Tyr Asn Val Pro Ala Val Ala
465 470 475 480

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn
485 490 495

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser
500 505 510

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr
515 520 525

Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln
530 535 540

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn
545 550 555 560

Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr
565 570 575

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
580 585 590

Glu Val Asn Leu Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val
595 600 605

His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys
610 615 620

Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Val Ile Ala Thr Val
625 630 635 . 640

Ile Val Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile
645 650 655

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
660 665 670

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys
675 680 685

<210> 19
<211> 2094
<212> DNA
<213> *Homo sapiens*

<400> 19	atgctgcccg	gttggcact	gctcctgctg	gccgcctgga	cggctcgggc	gctggaggtta	60
cccactgtatg	gtaatgctgg	cctgctggct	gaacccccaga	ttgccatgtt	ctgtggcaga	120	
ctgaacatgc	acatgaatgt	ccagaatggg	aagtgggatt	cagatccatc	agggaccaaa	180	
acctgcattt	ataccaaggaa	aggcatcctg	cagtattgcc	aagaagtcta	ccctgaactg	240	
cagatcacca	atgtggtaga	agccaaccaa	ccagtgacca	tccagaactg	gtgcaagcgg	300	
ggccgcaagc	agtgcagac	ccatccccac	tttggatcc	cctaccgctg	cttagttgtt	360	
gagtttgtaa	gtgatgccc	tctcggtct	gacaagtgca	aattcttaca	ccaggagagg	420	
atggatgttt	gcgaaactca	tcttcactgg	cacacgctcg	ccaaagagac	atgcagtgg	480	
aagagtacca	acttgcattg	ctacggcatg	ttgctgcct	gccaatttga	caagttccga	540	
ggggtagagt	tttgtgttgg	ccccactggct	gaagaaatgt	acaatgtgga	ttctgtgtat	600	
gcggaggagg	atgactcgga	tgtctgggttgg	ggcggagcag	acacagacta	tgcagatggg	660	
agtgaagaca	aagttagtaga	agtagcagag	gaggagaaga	tggctgaggt	ggaagaagaaa	720	
gaagccgatg	atgacgagga	cgatgaggat	ggtgtatgggg	tagaggaaga	ggctgaggaa	780	
ccctacgaag	aagccacaga	gagaaccacc	agcattgcca	ccaccaccac	caccaccaca	840	
gagttctgtgg	aagaggtgg	tgcaggctct	acaacagcag	ccagttcccc	tgatgccgtt	900	
gacaagtatc	tcgagacacc	tggggatgg	aatgaacatg	cccatttcca	gaaagccaaa	960	
gagaggcttgg	aggccaagca	ccgagagaga	atgtcccagg	tcatgagaga	atggaaagag	1020	
gcagaacgtc	aagcaaagaa	cttgcctaaa	gctgataaga	aggcagttat	ccagcatttc	1080	
caggagaaaag	tggaatcttt	ggaacaggaa	gcagccaacg	agagacagca	gctgggtggag	1140	
acacacatgg	ccagagtgg	agccatgctc	aatgaccggc	gccgcctggc	cctggagaac	1200	
tacatcaccg	ctctgcaggc	tgttccctct	cggcctcgtc	acgtgttcaa	tatgctaaag	1260	
aagtatgtcc	gfcgagaaca	gaaggacaga	cagcacaccc	taaagcattt	cgagcatgtg	1320	
cgcattgtgg	atcccaagaa	agccgctcag	atccgggtccc	agtttatgac	acacctccgt	1380	
gtgattttatg	agcgcattgaa	tcagttctct	tccctgtct	acaacgtgccc	tgcagtggcc	1440	
gaggagatttgc	aggatgaagt	tgatgagctg	tttcagaaaag	agcaaaaacta	ttcagatgac	1500	
gtcttggccca	acatgattag	tgaaccaagg	atcagttacg	gaaacgtatgc	tctcatgcca	1560	
tctttgaccg	aaacgaaaac	caccgtggag	ttcttcccg	tgaatggaga	gttcagcctg	1620	
gacgatctcc	agccgtggca	ttcttttggg	gctgactctg	tgccagccaa	cacagaaaac	1680	
gaagttggac	ctgttgatgc	ccgcctgtct	ggcgaccgg	gactgaccac	tcgaccagg	1740	
tctgggttga	caaataatcaa	gacggaggag	atctctgaa	tgaagatggaa	tgcagaattt	1800	
cgacatgact	caggatatga	agttcatcat	caaaaattgg	ttttcttgc	agaagatgtg	1860	
ggttcaaaaca	aaggtgcaat	cattggactc	atgggtggcg	gtgtgtcat	agcgacatgt	1920	
atcttcatca	ctttgggtat	gctgaagaag	aaacagtaca	catccattca	tcatgggtgt	1980	
gtggagggttgc	acgcccgtgt	caccccccagag	gagcgccacc	tgtccaagat	gcagcagaac	2040	
ggctacgaaa	atccaaaccta	caagtctttt	gagcagatgc	agaacaagaa	gtag	2094	

<210> 20
<211> 697
<212> PRT
<213> Homo sapiens

<400> 20
Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15
Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30
Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45
Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60
Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80
Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95
Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110
Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125
Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140
Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160
Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175
Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190
Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205
Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220
Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240
Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255
Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270
Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285

Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu
290 295 300

Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys
305 310 315 320

Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg
325 330 335

Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp
340 345 350

Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu
355 360 365

Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala
370 375 380

Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn
385 390 395 400

Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe
405 410 415

Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His
420 425 430

Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala
435 440 445

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu
450 455 460

Arg Met Asn Gln Ser Leu Ser Leu Tyr Asn Val Pro Ala Val Ala
465 470 475 480

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn
485 490 495

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser
500 505 510

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr
515 520 525

Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln
530 535 540

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn
545 550 555 560

Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr
565 570 575

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
580 585 590

Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val
595 600 605

His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys
610 615 620

Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Val Ile Ala Thr Val
625 630 635 640

Ile Phe Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile
645 650 655

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
660 665 . . . 670

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys
675 680 685

Phe Phe Glu Gln Met Gln Asn Lys Lys
690 695

```
<210> 21
<211> 1341
<212> DNA
<213> Homo sapiens
```

<400> 21	atggctagca	tgactggtgg	acagcaaatg	ggtcgcggat	ccacccagca	cggcatccgg	60
	ctggccctgc	gcagcggcct	ggggggcgc	ccccctggggc	tgcggctgccc	ccgggagacc	120
	gacgaagagc	ccgaggagcc	cggccggagg	ggcagcttg	tggagatgg	ggacaacctg	180
	aggggcaga	cggggcaggg	ctactacgt	gagatgaccg	tgggcagccc	cccgcagacg	240
	ctcaacatcc	tggtgat	aggcagcagt	aactttgcag	tggtgtctgc	cccccacccc	300
	ttcctgcac	gctactacca	gaggcagctg	tccagcacat	accgggacct	ccggaagggt	360
	gtgtatgtc	cctacaccca	ggcaagtgg	gaaggggagc	tgggcaccga	cctgttaagc	420
	atccccatg	gccccaaacgt	cactgtgcgt	gccaacatg	ctgcacatcac	tgaatcagac	480
	aagtcttca	tcaacggc	caactggaa	ggcatcttg	ggctggccta	tgctgagatt	540
	gccaggcctg	acactccct	ggagccttc	tttgactctc	tggtaaagca	gaccacgt	600
	cccaaccc	tctccctgca	cctttgtgt	gtggcttcc	ccctcaacca	gtctgaatg	660
	ctggcctctg	tggagggag	catgatcatt	ggaggtatcg	accatcgct	gtacacaggc	720
	agtctctggt	atacacccat	ccggcggag	tggattatg	aggtcatcat	tgtcgggtg	780
	gagatcaatg	gacaggatct	gaaaatggac	tgcaaggagt	acaactatga	caagagc	840
	gtggacagt	gcaccaccaa	ccttcgttg	cccaagaaaag	tgttgaagc	tgca	900
	tccatcaagg	cagcctc	cacggagaag	tccctgtat	gttctggct	aggagagcag	960
	ctgggtgt	ggcaagcagg	caccaccc	tggAACATT	tcccagtcat	ctca	1020
	ctaattgggt	aggtaacaa	ccagtc	ccatcacca	tcctccgca	gcaatacctg	1080
	cggccagtgg	aagatgtgg	cacgtccaa	gacgactgtt	acaagtgg	catctcacag	1140
	tcatccacgg	gcactgttat	gggagctgtt	atcatggagg	gttctacgt	tgtctttgtat	1200
	cgggccc	aacgaattgg	ctttgtgtc	agcgcttgc	atgtgcacga	tgagttcagg	1260
	acggcagcgg	tgaaggccc	ttttgtcacc	ttggacatgg	aagactgtgg	ctacaacatt	1320
	ccacagacag	atgagtcatg	a				1341

<210> 22
<211> 446
<212> PRT
<213> *Homo sapiens*

<400> 22

Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Gly Ser Thr Gln
1 5 10 15

Gly Leu Arg Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly
35 40 45

Arg Arg Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser
50 55 60

Gly Gln Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr
65 70 75 80

Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala
85 90 95

Ala Pro His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser
100 105 110

Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly
115 120 125

Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly
130 135 140

Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp
145 150 155 160

Lys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala
165 170 175

Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp
180 185 190

Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu His Leu
195 200 205

Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val
210 215 220

Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly
225 230 235 240

Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile
245 250 255

Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys
260 265 270

Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu
275 280 285

Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala
290 295 300

Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln
305 310 315 320

Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val
325 330 335

Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile
340 345 350

Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr
355 360 365

Ser Gln Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly
370 375 380

Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp
385 390 395 400

Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His
405 410 415

Asp Glu Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp
420 425 430

Met Glu Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser
435 440 445

<210> 23

<211> 1380

<212> DNA

<213> Homo sapiens

<400> 23

atggctagca tgactgggtgg acagcaaatg ggtcgccgat cgatgactat ctctgactct 60
ccgcgtgaac aggacggatc caccacgac ggcacatccggc tgccccctgcg cagcggccctg 120
ggggcgcccg ccctggggct gcggtcgccc cgggagaccg acgaagagcc cgaggagccc 180
ggccggaggg gcagcttgc ggagatggtg gacaacctga ggggcaagtc ggggcaggggc 240
tactacgtgg agatgaccgt gggcagcccc cccgacacgc tcaacatcct ggtggataca 300
ggcagcagta actttgcagt ggggtgcgtcc ccccacccct tcctgcacatcg ctactaccag 360
aggcagctgt ccagcacata cccggacccctc cggaaagggtg tttatgtgcc ctacacccag 420
ggcaagtggg aaggggagct gggcaccgac ctggtaagca tccccatgg ccccaacgtc 480
actgtgcgtg ccaacattgc tgccatcaact gaatcagaca agttcttcat caacggctcc 540
aactggaaag gcattctggg gctggcctat gctgagattg ccaggcctga cgactccctg 600
gagcctttct ttgactctct ggtaaaggcag acccacgttc ccaacctctt ctccctgcac 660
ctttgtgggt ctggcttccc cctcaaccag tctgaagtgc tggcctctgt cggagggagc 720
atgatcattt gaggatcgatcc ccaactcgctg tacacaggca gtctctggta tacacccatc 780
cggcgggagt ggttatatga ggtcatcatt gtgcgggtgg agatcaatgg acaggatctg 840
aaaatggact gcaaggagta caactatgac aagacattg tggacatgg caccaccaac 900
cttcgtttgc ccaagaaagt gttgaagct gcactcaat ccatcaaggc agcctcttc 960
acggagaagt tccctgtatgg tttctggta ggagacggc tggatgtggc gcaaggcaggc 1020
accacccctt ggaacattttt cccagtcatc tcactctacc taatgggtga gtttaccaac 1080
cagtccctcc gcatcaccat cttccgcag caatacctgc ggccagtgaa agatgtggc 1140
acgtcccaag acgactgtta caagtttgcc atctcacatg catccacggg cactgttatg 1200
ggagctgtta tcatggaggg cttctacgtt gtctttgatc gggcccgaaa acgaattggc 1260
tttgcgtgtca ggcgttgcca tgcacatggat gagttcagga cggcagcggt ggaaggccct 1320
tttgcacact tggacatggaa agactgtggc tacaacattc cacagacaga ttagtcatga 1380

<210> 24

<211> 459

<212> PRT

<213> Homo sapiens

<400> 24

Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Gly Ser Met Thr
1 5 10 15

Ile Ser Asp Ser Pro Arg Glu Gln Asp Gly Ser Thr Gln His Gly Ile
20 25 30

Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg
35 40 45

Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly
50 55 60

Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly
65 70 75 80

Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile
85 90 95

Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His
100 105 110

Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg
115 120 125

Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu
130 135 140

Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val
145 150 155 160

Thr Val Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe
165 170 175

Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu
180 185 190

Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val
195 200 205

Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu His Leu Cys Gly Ala
210 215 220

Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser
225 230 235 240

Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp
245 250 255

Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg
260 265 270

Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn
275 280 285

Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro
290 295 300

Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser
305 310 315 320

Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys
325 330 335

Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu
340 345 350

Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu
355 360 365

Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp
370 375 380

Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met
385 390 395 400

Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg
405 410 415

Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe
420 425 430

Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu Asp
435 440 445

Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser
450 455

<210> 25

<211> 1302

<212> DNA

<213> Homo sapiens

<400> 25

atgactcgc atggatttcg tctgccactg cgtagcggtc tgggtgggtc tccactgggt 60
ctgcgtctgc cccgggagac cgacgaagag cccgaggagc cccggccggag gggcagctt 120
gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 180
gtgggcagcc ccccgagac gctcaacatc ctgggtggata caggcagcag taactttgca 240
gtgggtgctg cccccccaccc cttccctgcat cgctactacc agaggcagct gtccagcaca 300
taccgggacc tccggaaggg tggatgttgc ccctacaccc agggcaagtg ggaaggggag 360
ctgggcaccc acctggtaag catccccat ggcaccaacg tcactgtgcg tgccaaacatt 420
gtgccatca ctgaatcaga caagttcttc atcaacggct ccaactggga agccatcctg 480
gggctggcct atgctgagat tgccaggcct gacgactccc tggagccctt ctttgactct 540
ctggtaaagc agaccacgt tcccaaccc tcctccctgc acctttgtgg tgctggcttc 600
ccctcaacc agtctgaagt gctggcctt gtcggaggga gcatgatcat tggaggtatc 660
gaccactcgc tgcacacagg cagtctctgg tatacaccca tccggcggga tgggtattat 720
gaggtcatca ttgtgcgggt ggagatcaat ggacaggatc tgaaaatgga ctgcaaggag 780
tacaactatg acaagagcat tggacacgt ggcacccacca accttcgttt gccaaagaaa 840
gtgttgaag ctgcagtcaa atccatcaag gcacccctt ccacggagaa gtccctgtat 900
ggtttgcgc taggagagca gctgggtgc tggcaagcag gcaccacccc ttgaaacatt 960
ttcccagtca tctcaactcta cctaattggg gaggttacca accagtctt ccgcattacc 1020
atccttcgcg agcaataacct gcgccagtg gaagatgtgg ccacgtccca agacgactgt 1080
tacaagtttgcgc catctcaca gtcacccacg ggcactgtt tggagctgt tatcatggag 1140
ggcttctacg ttgtcttga tcggggcccgaa aacgaattt gctttgtgt cagcgcttgc 1200
catgtgcacg atgagttcag gacggcagcg gtggaaaggcc cttttgcac ctggacatg 1260
gaagactgtg gctacaacat tccacagaca gatgagtcat ga 1302

<210> 26

<211> 433

<212> PRT

<213> Homo sapiens

<400> 26

Met Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly
1 5 10 15

Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu
20 25 30

Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg
35 40 45

Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro
50 55 60

Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala
65 70 75 80

Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln
85 90 95

Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr
100 105 110

Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile
115 120 125

Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr
130 135 140

Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu
145 150 155 160

Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro
165 170 175

Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser
180 185 190

Leu His Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu
195 200 205

Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu
210 215 220

Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr
225 230 235 240

Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met
245 250 255

Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr
260 265 270

Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser
275 280 285

Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu
290 295 300

Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile
305 310 315 320

Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser
325 330 335

Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp
340 345 350

Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser
355 360 365

Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val
370 375 380

Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys
385 390 395 400

His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val
405 410 415

Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu
420 425 430

Ser

<210> 27
<211> 1278

<212> DNA

<213> Homo sapiens

<400> 27

atggcttagca tgactggtagg acagcaaatg ggtcgccat cgatgactat ctctgactct 60
ccgctggact ctggtatcga aaccgacgga tcctttgtgg agatggtaga caacctgagg 120
ggcaagtccgg ggcagggcta ctacgtggag atgaccgtgg gcagcccccc gcagacgctc 180
aacatcctgg tggatcacagg cagcagtaac tttgcagtgg gtgctgcccc ccaccccttc 240
ctgcatacgat actaccagag gcagctgtcc agcacatacc gggacctccg gaagggtgtg 300
tatgtgcccctt acacccaggaa caagtgggaa ggggagctgg gcaccgaccc ggtaaagcatac 360
cccccattggcc ccaacgtcac tggcgtgccc aacattgtgg ccatcaactga atcagacaag 420
ttcttcatacga acggctccaa ctggaaaggc atccctggggc tggcctatgc tgagattgccc 480
aggcctgacg actccctggaa gcctttctt gactctctgg taaaggcagac ccacgttccc 540
aaccttttccctt ccctgcaccc ttgtgtgtt ggtttccccca tcaaccagtc tgaagtgtg 600
gcctctgtcg gaggagcat gatcattggaa ggtatcgacc actcgctgtc cacaggcagt 660
ctctggatac caccatccg gcgggagttt tattatgagg tcatcattgt gcccggggag 720
atcaatggac aggatctgaa aatggactgc aaggagtaca actatgacaa gagcattgtg 780
gacagtggca ccaccaaccc tcgtttgccc aagaaaagtgt ttgaagctgc agtcaaattcc 840
atcaaggcag cctccctccac ggagaagttt cctgtatgggt tctggctagg agagcagctg 900
gtgtgtggc aaggcaggcac cacccttgg aacatttcc cagtcatactc actctaccta 960
atgggtgagg ttaccaacca gtccttccgc atcaccatcc ttccgcagca atacctgccc 1020
ccagtggaaatgtggccac gtcaccaagac gactgttaca agtttgcacccat ctcacagtca 1080
tcacacggca ctgttatggg agctgttatac atggagggtct tctacgttgc tttgatcgg 1140
gcccggaaaac gaattggctt tgctgtcagc gcttgcacatg tgacacgatga gttcaggacg 1200
gcagcgggtgg aaggcccttt tgcacccatg gacatggaaactgtggcta caacattcca 1260
cagacagatg agtcatga 1278

<210> 28

<211> 425

<212> PRT

<213> Homo sapiens

<400> 28

Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Gly Ser Met Thr
1 5 10 15

Ile Ser Asp Ser Pro Leu Asp Ser Gly Ile Glu Thr Asp Gly Ser Phe
20 25 30

Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr
35 40 45

Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val
50 55 60

Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe
65 70 75 80

Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu
85 90 95

Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu
100 105 110

Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val
115 120 125

Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn
130 135 140

Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala
145 150 155 160

Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln
165 170 175

Thr His Val Pro Asn Leu Phe Ser Leu His Leu Cys Gly Ala Gly Phe
180 185 190

Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile
195 200 205

Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr
210 215 220

Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu
225 230 235 240

Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp
245 250 255

Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys
260 265 270

Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu
275 280 285

Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln
290 295 300

Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu
305 310 315 320

Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln
325 330 335

Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys
340 345 350

Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala
355 360 365

Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg
370 375 380

Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr
385 390 395 400

Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly
405 410 415

Tyr Asn Ile Pro Gln Thr Asp Glu Ser
420 425

<210> 29
<211> 1362
<212> DNA
<213> Homo sapiens

<400> 29

atggcccaag ccctgcccctg gtcctgctg tggatggcg cggagtgct gcctgcccac 60
ggcacccagc acggcatccg gtcgcccctg cgacggcc tggggggcgc ccccctgggg 120
ctgcggctgc cccggagac cgacgaagag cccgaggagc cggccggag gggcagctt 180
gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240
gtggcagcc ccccgagac gtcacacatc ctggtgata cagggcagcag taactttgca 300
gtgggtgctg ccccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 360
taccgggacc tccgaaggg tggatgtg ccctacaccc agggcaagt ggaaggggag 420
ctgggcaccc acctggtaag catccccat ggcccaacg tcactgtcg tgccaaacatt 480
gctgcccata ctgaatcaga caagttcttc atcaacggct ccaactggga aggcatctg 540
gggctggcct atgctgagat tgccaggcct gacgactccc tggagccctt cttgactct 600
ctggtaaagc agaccacgt tcccaaccc ttcctccctgc acctttgtgg tgcggcttc 660
cccccctaacc agtctgaagt gtcggcctct gtcggaggga gcatgatcat tggaggtatc 720
gaccactcgc tgcacacagg cagtcctctgg tatacaccca tccggcgggg gttgtattat 780
gaggtcatca ttgtgcgggt ggagatcaat ggacaggatc tgaaaatgga ctgcaaggag 840
tacaactatc acaagagcat tggacact ggcaccacca accttcgttt gcccaagaaa 900
gtgtttaag ctgcagtcaa atccatcaag gcagcctct ccacggagaa gttccctgtat 960
ggtttctggc taggagagc gtcgggtgtc tggcaaggag gcaccacccc ttgaaacatt 1020
ttcccagtca tctcaactcta ctaatgggt gaggatcca accagtctt ccgcacatacc 1080
atccctccgc agcaataacct gggccagtg gaagatgtgg ccacgtccca agacgactgt 1140
tacaagttt ccacatcaca gtcacccacg ggcactgtt tggagactgt tatcatggag 1200
ggcttctacg ttgtcttga tcggggcccgaa aacgaattt gctttgtgt cagcgcttgc 1260
catgtgcacg atgagttcag gacggcagcg gtggaaaggcc ctttgcac ctggacatg 1320
gaagactgtg gtcacaaacat tccacagaca gatgagtcat ga 1362

<210> 30

<211> 453

<212> PRT

<213> Homo sapiens

<400> 30

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp
180 185 190

Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro
195 200 205

Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln
210 215 220

Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile
225 230 235 240

Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg
245 250 255

Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln
260 265 270

Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val
275 280 285

Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala
290 295 300

Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp
305 310 315 320

Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr
325 330 335

Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val
340 345 350

Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg
355 360 365

Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala
370 375 380

Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu
385 390 395 400

Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala
405 410 415

Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu
420 425 430

Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro
435 440 445

Gln Thr Asp Glu Ser
450

<210> 31
<211> 1380
<212> DNA

<213> Homo sapiens

<400> 31

atggcccaag ccctgccctg gtcctgctg tggatggcg cggagtgct gcctgcccac 60
ggcacccagc acggcatccg gctgccctg cgacgcccgc tggggggcgc ccccctgggg 120
ctggcgctgc cccggagac cgacgaagag cccgaggagc cggccggag gggcagctt 180
gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240
gtggcagcc ccccgagac gctcaacatc ctggtgata caggcagcag taactttgca 300
gtgggtgctg ccccccaccc cttccctgcat cgctactacc agaggcagct gtccagcaca 360
taccgggacc tccgaaaggg tggatgtg ccctacaccc agggcaagt ggaaggggag 420
ctgggcaccc acctgtaag catccccat gcccccaacg tcactgtcg tgccaacatt 480
gctgccatca ctgaatcaga caagttctc atcaacggct ccaactggga aggcacccctg 540
ggctggcct atgctgagat tgccaggct gacgactccc tggagccctt cttgactct 600
ctggtaaagc agaccacgt tcccaaccc tcctccctgc acctttgtgg tgctggctc 660
ccctcaacc agtctgaagt gctggcctt gtcggaggga gcatgatcat tggaggtatc 720
gaccactcgc tgcacacagg cagtctctgg tatacacca tccggggga gtggattat 780
gaggtcatca ttgtcggtt ggagatcaat ggacaggatc tgaaaatggg ctgcaaggag 840
tacaactatg acaagagcat tggatggcactt ggcacccacca accttcgttt gccaagaaaa 900
gttttgaag ctgcgtcaa atccatcaag gcagccctc ccacggagaa gttccctgtat 960
gtttctggc taggagagca gctgggtgtc tggcaaggag gcaccacccc ttggAACATT 1020
ttccctggc tctcactcta ctaatgggt gaggtacca accagtcctt ccgcaccc 1080
atccctccgc agcaataacct gcccggcagt gaaatgtgg ccacgtccca agacgactgt 1140
tacaagttt ccacatcaca gtcatccacg ggcactgtt tggagctgt tatcatggag 1200
ggcttctacg ttgtcttga tccggcccgaa aacgaaattt gctttgtgt cagcgcttgc 1260
catgtgcacg atgagttcag gacggcagcg gtggaaaggcc ctttgcac ctggacatg 1320
gaagactgtg gctacaacat tccacagaca gatgagtcac agcagcagca gcagcagtga 1380

<210> 32

<211> 459

<212> PRT

<213> Homo sapiens

<400> 32

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp
180 185 190

Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro
195 200 205

Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln
210 215 220

Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile
225 230 235 240

Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg
245 250 255

Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln
260 265 270

Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val
275 280 285

Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala
290 295 300

Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp
305 310 315 320

Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr
325 330 335

Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val
340 345 350

Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg
355 360 365

Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala
370 375 380

Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu
385 390 395 400

Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala
405 410 415

Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu
420 425 430

Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro
435 440 445

Gln Thr Asp Glu Ser His His His His His His His
450 455

<210> 33

<211> 25

<212> PRT
<213> Homo sapiens

<400> 33
Ser Glu Gln Gln Arg Arg Pro Arg Asp Pro Glu Val Val Asn Asp Glu
1 5 10 15
Ser Ser Leu Val Arg His Arg Trp Lys
20 25

<210> 34
<211> 19
<212> PRT
<213> Homo sapiens

<400> 34
Ser Glu Gln Leu Arg Gln Gln His Asp Asp Phe Ala Asp Asp Ile Ser
1 5 10 15
Leu Leu Lys

<210> 35
<211> 29
<212> DNA
<213> Homo sapiens

<400> 35
gtggatccac ccagcacggc atccggctg

29

<210> 36
<211> 36
<212> DNA
<213> Homo sapiens

<400> 36
gaaagcttc atgactcatc tgtctgtgga atgttg

36

<210> 37
<211> 39
<212> DNA
<213> Homo sapiens

<400> 37
gatcgatgac tatctctgac tctccgcgtg aacaggacg

39

<210> 38
<211> 39
<212> DNA
<213> Homo sapiens

<400> 38
gatccgtcct gttcacgcgg agagtcagag atagtcatc

39

<210> 39
<211> 77
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Hu-Asp2

<400> 39
cgccatccgg ctgcccctgc gtagcggtct gggtggtgct ccactgggtc tgcgtctgcc 60
ccgggagacc gacgaag 77

<210> 40
<211> 77
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Hu-Asp2

<400> 40
cttcgtcggt ctcccggggc agacgcagac ccagtggagc accacccaga ccgctacgca 60
ggggcagccg gatgccg 77

<210> 41
<211> 51
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Caspase 8
Cleavage Site

<400> 41
gatcgatgac tatctctgac tctccgctgg actctggtat cgaaaccgac g 51

<210> 42
<211> 51
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Caspase 8
Cleavage Site

<400> 42
gatccgtcgg tttcgataacc agagtccagc ggagagtcag agatagtcat c 51

<210> 43
<211> 32
<212> DNA
<213> Homo sapiens

<400> 43
aaggatcct tgtggagatg gtggacaacc tg 32

<210> 44
<211> 36
<212> DNA
<213> Homo sapiens

<400> 44
gaaagcttc atgactcatc tgtctgtgga atgttg 36

<210> 45
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: 6-His tag

<400> 45
gatcgcatca tcaccatcac catg 24

<210> 46
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: 6-His tag

<400> 46
gatccatggt gatggtagt atgc 24

<210> 47
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 47
gactgaccac tcgaccaggt tc 22

<210> 48
<211> 51
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 48
cgaattaaat tccagcacac tggctacttc ttgttctgca tctcaaagaa c 51

<210> 49
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 49
cgaattaaat tccagcacac tggcta 26

<210> 50
<211> 1287
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Hu-Asp2(b)
delta TM

<400> 50
atggcccaag ccctgccctg gctcctgctg tggatggcg cgggagtgct gcctgcccac 60
ggcacccagc acggcatccg gctgccccctg cgacgccccg tggggggcgc cccccctgggg 120
ctgcggctgc cccgggagac cgacgaagag cccgaggagc cccggccggag gggcagctt 180
gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240
gtggcagcc ccccgccagac gctcaacatc ctggtgata caggcagcag taactttgca 300
gtgggtgctg ccccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 360

taccgggacc tccggaaggg tggatgtg ccctacaccc agggcaagtg ggaaggggag 420
ctgggcaccc acctggtaag catccccat ggccccaacg tcactgtgcg tgccaacatt 480
gctgccatca ctgaatcaga caagttctc atcaacggct ccaactggga aggcattctg 540
ggctggccat atgctgagat tgccaggctt tgggtgctg gcttccccct caaccagtct 600
gaagtgtgg cctctgtcg aggagcatg atcattggag gtatcgacca ctcgctgtac 660
acaggcagtc tctgtatac acccatccgg cgggagtggt attatgaggt catcattgtg 720
cgggtggaga tcaatggaca ggtctgaaa atggactgca aggagtacaa ctatgacaa 780
agcattgtgg acagtggcac caccacccct cgttggccca agaaagtgtt tgaagctgca 840
gtcaaatcca tcaaggcagc ctcctccacg gagaagttcc ctgatgttt ctggcttagga 900
gagcagctgg tggctggca agcaggcacc accccttggaa acattttccc agtcatctca 960
ctctacctaa tgggtgaggt taccacccag tccttccgca tcaccatcct tccgcagcaa 1020
tacctgcggc cagtggaaga tggccacg tcccaagacg actgttacaa gttgcccattc 1080
tcacagtcat ccacgggcac tggatggaa gctgttatca tggagggctt ctacgttgac 1140
tttgatcgaa cccgaaaacg aattggctt gctgtcagcg cttgcccattgt gcacgatgag 1200
ttcaggacgg cagcgttgg aggcccttt gtcacccatgg acatggaaaga ctgtggctac 1260
aacattccac agacagatga gtcatga 1287

<210> 51
<211> 428
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Hu-Asp2(b)
delta TM

<400> 51
Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15
Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30
Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45
Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60
Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80
Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95
Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110
Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125
Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140
Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160
Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175
Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Leu Cys Gly
180 185 190

Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly
195 200 205

Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu
210 215 220

Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val
225 230 235 240

Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr
245 250 255

Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu
260 265 270

Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser
275 280 285

Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val
290 295 300

Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser
305 310 315 320

Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile
325 330 335

Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln
340 345 350

Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val
355 360 365

Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala
370 375 380

Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu
385 390 395 400

Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu
405 410 415

Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser
420 425

<210> 52
<211> 1305
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Hu-Asp2(b)
delta TM

<400> 52
atggcccaag ccctgccctg gtcctgctg tggatggcg cggagtgct gcctgcccac 60
ggcacccagc acggcatccg gctgccctg cgcacggcc tggggggcgc ccccctgggg 120
ctgcggctgc cccggagac cgacqaagag cccqaggagc cggccggag gggcagctt 180
gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240
gtgggcagcc ccccgagac gctcaacatc ctggtgata cagggcagcag taactttgca 300
gtgggtgctg ccccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 360
taccgggacc tccggaaggg ttgttatgtg ccctacaccc agggcaagtg ggaaggggag 420

ctgggcaccc acctggtaag catccccat ggccccaacg tcactgtgcg tgccaacatt 480
gctgccatca ctgaatcaga caagttcttc atcaacggct ccaactggga aggcattctg 540
gggctggcct atgctgagat tgccaggcgt tggctgtcg gcttccccct caaccagtct 600
gaagtgtgg cctctgtcgg agggagcatg atcattggag gtatcgacca ctcgctgtac 660
acaggcagtc tctggatac acccatccgg cgggagtggt attatgaggt catcattgtg 720
cgggtggaga tcaatggaca gatatctgaaa atggactgca aggagtacaa ctatgacaag 780
acattgtgg acatgggcac caccaacctt cgttgccc agaaagtgtt tgaagctgca 840
gtcaaatcca tcaaggcagc ctcctccacg gagaagttcc ctgatggtt ctggcttagga 900
gagcagctgg tggctggca agcaggcacc accccttggaa acatttccc agtcatctca 960
ctctacctaa tgggtgaggt taccacccag tccttccgca tcaccatcct tccgcagcaa 1020
tacctgcggc cagtggaaga tggccacg tcccaagacg actgttacaa gttgccatc 1080
tcacagtcat ccacgggcac tggatggga gctgttatca tggagggctt ctacgttgc 1140
tttgatcggg cccgaaaacg aattggctt gctgtcagcg cttgccatgt gcacgatgag 1200
ttcaggacgg cagcgttggaa aggcccttt gtcaccttgg acatggaga ctgtggctac 1260
aacattccac agacagatga gtcacagcag cagcagcagc agtga 1305

<210> 53

<211> 434

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Hu-Asp2(b)
delta TM

<400> 53

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Leu Cys Gly
180 185 190

Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly
195 200 205

Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu
210 215 220

Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val
225 230 235 240

Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr
245 250 255

Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu
260 265 270

Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser
275 280 285

Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val
290 295 300

Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser
305 310 315 320

Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile
325 330 335

Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln
340 345 350

Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val
355 360 365

Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala
370 375 380

Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu
385 390 395 400

Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu
405 410 415

Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser His His His His
420 425 430

His His

<210> 54
<211> 2310
<212> DNA
<213> Homo sapiens

<400> 54
atgctgcccc gttggcaact gtcctgctg gccgcctgga cggctcgccc gctggaggta 60
cccaactgatg gtaatgctgg cctgctggct gaacccaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180
acctgcattg ataccaagga aggcacatctg cagtattgcc aagaagtcta ccctgaactg 240
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300
ggccgcaaggc agtgcaagac ccatccccac tttgtgattc cctaccgctg cttagttgg 360

gagtttgtaa gtgatgccct ttcgttccct gacaagtgc aattcttaca ccaggagagg 420
atggatgttt gcgaaactca tttcaactgg cacaccgtcg ccaaagagac atgcagttag 480
aagagtacca acttgcatga ctacggcatg ttgtgtccct gcggattga caagttccga 540
gggttagagt ttgtgtttt cccactggct gaagaaagtg acaatgtggat ttctgtgtat 600
gcggaggagg atgactcgga tttctgtgg ggcggagcg acacagacta tgcatgtgg 660
agtgaagaca aagtagtaga agtagcagag gaggagaag tggctgaggt ggaagaagaa 720
gaagccgatg atgacgagga cgatgaggat ggtgtatggg tagaggaaga ggctgaggaa 780
ccctacgaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca 840
gagtctgtgg aagaggtgg tcgagagggt tgctctgaac aagccgagac gggccgtgc 900
cgagcaatga tctcccgctg gtactttgtat gtgactgaag ggaagtgtgc cccattctt 960
tacggcggat gtggcggcaa ccggaacaac tttgacacag aagagtactg catggccgtg 1020
tgtggcagcg ccatgtccca aagtttactc aagactaccc aggaacctct tgccgagat 1080
cctgttaaac ttcctacaac agcagccagt acccctgtat ccgttgacaa gtatctcgag 1140
acacctgggg atgagaatga acatgcccatttccagaaag ccaaagagag gcttgaggcc 1200
aagcaccgag agagaatgtc ccaggtcatg agagaatggg aagaggcaga acgtcaagca 1260
aagaacttgc ctaaagctga taagaaggca gttatccagc atttccagga gaaagtggaa 1320
tcttggaaac aggaagcagc caacgagaga cagcagctgg tggagacaca catggccaga 1380
gttggaaacca tgctcaatga ccggccggcc ctggccctgg agaactacat caccgctctg 1440
caggctgttc ctctccggcc tctgtcacgtt tcataatgc taaagaagta tttccggcga 1500
gaacacaagg acagacagca caccctaaag catttcgagc atgtgcgcatttggatccc 1560
aagaaaagccg ctcatccg gttcccgaggat atgacacacc tccgtgtat ttatgagcgc 1620
atgaatcagt ctctccctt gctctacaac gtgcctgcag tggccgagga gattcaggat 1680
gaagttgatg agctgcttca gaaagagcaa aactattcag atgacgtctt ggcacacatg 1740
attagtgaac caaggatcag ttacggaaac gatgcctca tgccatctt gaccgaaacg 1800
aaaaccaccc tggagcttcc tccctgtat ggagagttca gcctggacga tctccagccg 1860
tggcattctt ttggggctga ctctgtgcca gccaacacag aaaacgaagt tgagcctgtt 1920
gatgcccggcc ctgctccga ccgaggactg accactcgac caggttctgg gttgacaaat 1980
atcaagacgg aggagatctc tgaagtgaag atggatgcag aattccgaca tgactcagga 2040
tatgaagttc atcatcaaaa attgggtttc ttttcgagaag atgtgggttc aaacaaaggt 2100
gcaatcattt gactcatggt gggcggtgtt gtcatagcg cagtgatcgt catcaccttg 2160
gtgatgctga agaagaaaca gtacacatcc attcatcatg gtgtgggtga gtttgcgc 2220
gctgtcaccctt cagaggagcg ccacctgtcc aagatgcagc agaacggcta cgaaaatcca 2280
acctacaagt tctttgagca gatgcagaac 2310

<210> 55

<211> 770

<212> PRT

<213> Homo sapiens

<400> 55

Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285

Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile
290 295 300

Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe
305 310 315 320

Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr
325 330 335

Cys Met Ala Val Cys Gly Ser Ala Met Ser Gln Ser Leu Leu Lys Thr
340 345 350

Thr Gln Glu Pro Leu Ala Arg Asp Pro Val Lys Leu Pro Thr Thr Ala
355 360 365

Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp
370 375 380

Glu Asn Glu His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala
385 390 395 400

Lys His Arg Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala
405 410 415

Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp Lys Ala Val Ile
420 425 430

Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn
435 440 445

Glu Arg Gln Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met
450 455 460

Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu
465 470 475 480

Gln Ala Val Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys
485 490 495

Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe
500 505 510

Glu His Val Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser
515 520 525

Gln Val Met Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser
530 535 540

Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp
545 550 555 560

Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val
565 570 575

Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala
580 585 590

Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr Val Glu Leu Leu Pro
595 600 605

Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe
610 615 620

Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val
625 630 635 640

Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser
645 650 655

Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp
660 665 670

Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu
675 680 685

Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly
690 695 700

Leu Met Val Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu
705 710 715 720

Val Met Leu Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val
725 730 735

Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met
740 745 750

Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met
755 760 765

Gln Asn
770

<210> 56
<211> 2253
<212> DNA
<213> Homo sapiens

<400> 56

atgctgcccc gtttggcaact gtcctgctg gccgcctgga cggctgggc gctggaggta 60
cccaactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggacaaa 180
acctgcattt ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240
cagatcacca atgtgttaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300
ggccgcaagc agtcaagac ccattccccac tttgtgattt cctaccgctg cttagttgg 360
gagtttgtaa gtgatgccct tctcgccct gacaagtgc aattcttaca ccaggagagg 420
atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagttag 480
aagagtacca acttgcattga ctacggcatg ttgtgcctt gcggaattga caagttccga 540
ggggtagatg ttgtgtgtt cccactggct gaagaaagtgc acaatgtgg ttcgtctgtat 600
ggggaggagg atgactcgga tgcgtgggg ggcggagcag acacagacta tgcagatggg 660
agtcaagaca aagttagtaga agtagcagag gaggaaagaag tggctgaggt ggaagaagaa 720
gaagccatgtt atgacggaggat ggtgtatgggg tagaggaaga ggctgaggaa 780
ccctacgaag aagccacaga gagaaccacc agcattgcac ccaccaccac caccaccaca 840
gagtctgtgg aagagggtgg tgcagaggtt tgctctgaac aagccgagac gggggcgtgc 900
cgagcaatga tctcccgctg gtactttgtt gtgactgaag ggaagtgtgc cccattctt 960
tacggcggat gtggccgcaaa ccggaaacac tttgacacag aagagtactg catggccgtg 1020
tgtggcagcg ccatttctac aacagcagcc agtacccctg atgcgttga caagtatctc 1080
gagacacctg gggatgagaa tgaacatgcc catttccaga aagccaaaga gaggcttgag 1140
gccaaggcacc gagagagaat gtcccaggtc atgaagaaat gggaaagggc agaacgtcaa 1200
gcaaagaact tgcctaaagc tgataagaag gcagttatcc agcatttcca ggagaaagtg 1260
gaatctttgg aacaggaagc agccaacggc agacagcagc tggctggagac acacatggcc 1320
agagtggaaag ccatgctcaa tgaccggcgc cgcctggccc tggagaacta catcaccgct 1380
ctgcaggctg ttcctccctcg gcctcgtaac gtgtcaata tgctaaagaa gtatgtccgc 1440
gcagaacaga aggacagaca gcacaccata aagcatttgc agcatgtgcg catgggtggat 1500
cccaaggaaag ccgctccatg ccgggtcccaag gttatgacac acctccgtgt gatttatgag 1560
cgcattgtatc agtctctctc cctgtcttac aacgtgcctg cagtgccatc tgactctgtg 1620
gtatggatgtt atgagctgtc tcagaaagag caaaactatt cagatgacgt cttggccaaac 1680
atgattgtt aaccaaggat cagttacggg aacgatgtcc tcatgcccatt tttgaccgaa 1740
acggaaatccca ccgtggagct ctttccctgtt aatggagat tcagccttgcg ccatctccag 1800
ccgtggcatt cttttggggc tgactctgtg ccagccaaca cagaaaacga agttgagctt 1860
gttgatgccc gccctgtgc cgaccggagg ctgaccactc gaccagggttc tgggttgaca 1920
aatatcaaga cggaggagat ctctgaagtg aagatggatg cagaattccg acatgactca 1980
ggatatgaag ttcatcatca aaaattgggtt ttctttgcag aagatgtggg ttcaaacaaa 2040
ggtgcaatca ttggactcat ggtggggcgtt gttgtcatag cgacagtgtat cgtcatcacc 2100
ttgggtgatgc tgaagaagaa acagtacaca tccattcatc atgggtgtggt ggaggttgac 2160
gccgctgtca ccccaagagga ggcgcacccgt tccaagatgc agcagaacgg ctacgaaaat 2220
ccaaacctaca agttcttgcg cagatgcac aac 2253

<210> 57
<211> 751
<212> PRT
<213> Homo sapiens

<400> 57

Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285

Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile
290 295 300

Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe
305 310 315 320

Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr
325 330 335

Cys Met Ala Val Cys Gly Ser Ala Ile Pro Thr Thr Ala Ala Ser Thr
340 345 350

Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp Glu Asn Glu
355 360 365

His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala Lys His Arg
370 375 380

Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala Glu Arg Gln
385 390 395 400

Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile Gln His Phe
405 410 415

Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn Glu Arg Gln
420 425 430

Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met Leu Asn Asp
435 440 445

Arg Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu Gln Ala Val
450 455 460

Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys Tyr Val Arg
465 470 475 480

Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe Glu His Val
485 490 495

Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser Gln Val Met
500 505 510

Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser Leu Ser Leu
515 520 525

Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp Glu Val Asp
530 535 540

Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val Leu Ala Asn
545 550 555 560

Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala Leu Met Pro
565 570 575

Ser Leu Thr Glu Thr Lys Thr Val Glu Leu Leu Pro Val Asn Gly
580 585 590

Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe Gly Ala Asp
595 600 605

Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val Asp Ala Arg
610 615 620

Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu Thr
625 630 635 640

Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp Ala Glu Phe
645 650 655

Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu Val Phe Phe
660 665 670

Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly Leu Met Val
675 680 685

Gly Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu Val Met Leu
690 695 700

Lys Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val Glu Val Asp
705 710 715 720

Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met Gln Gln Asn
725 730 735

Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met Gln Asn
 740 745 750

<210> 58
<211> 2316
<212> DNA
<213> *Homo sapiens*

<210> 59
<211> 772
<212> PRT
<213> *Homo sapiens*

<400> 59
Met Leu Pro Gly Leu Ala Leu Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
 20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285

Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile
290 295 300

Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe
305 310 315 320

Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr
325 330 335

Cys Met Ala Val Cys Gly Ser Ala Met Ser Gln Ser Leu Leu Lys Thr
340 345 350

Thr Gln Glu Pro Leu Ala Arg Asp Pro Val Lys Leu Pro Thr Thr Ala
355 360 365

Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp
370 375 380

Glu Asn Glu His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala
385 390 395 400

Lys His Arg Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala
405 410 415

Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile
420 425 430

Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn
435 440 445

Glu Arg Gln Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met
450 455 460

Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu
465 470 475 480

Gln Ala Val Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys
485 490 495

Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe
500 505 510

Glu His Val Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser
515 520 525

Gln Val Met Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser
530 535 540

Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp
545 550 555 560

Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val
565 570 575

Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala
580 585 590

Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr Val Glu Leu Leu Pro
595 600 605

Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe
610 615 620

Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val
625 630 635 640

Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser
645 650 655

Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp
660 665 670

Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu
675 680 685

Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly
690 695 700

Leu Met Val Gly Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu
705 710 715 720

Val Met Leu Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val
725 730 735

Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met
740 745 750

Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met
755 760 765

Gln Asn Lys Lys
770

<210> 60
<211> 2259
<212> DNA
<213> Homo sapiens

<400> 60
atgctgcccc gttggcact gtcctgctg gccccttgg aaggctggc gctggaggta 60
cccaactgatg gtaatgctgg ctgctggct gaaccccaga ttgcctatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaa 180
acctgcattt ataccaagga aggcatctg cagtattgcc aagaagtcta ccctgaactg 240
cagatcacca atgtggtaga agccaacccaa ccagtgacca tccagaactg gtgcaagcgg 300
ggccgcaagc agtgcacagac ccatccccac tttgtgattt cctaccgtt ctttagttgg 360
gagtttggtaa gtgatgccc ttcgttccct gacaagtgc aattcttaca ccaggagagg 420
atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagttag 480
aagagttacca acttgcatga ctacggcatg ttgctgccc gcggaattga caagttccga 540
ggggtagatgt ttgtgtgtt cccactggct gaagaaagtgc acaatgttgc ttctgtgtat 600
gcccggaggat atgactcgga tgcgttggc ggcggggcgc acacagacta tgcagatggg 660
agtgaagaca aagttagtgc aagtgcacgc gaggaaaga 720
gaagccgatg atgacggaggat cgtggatgtt ggtgtatggc tagggaaa ggtggaggaa 780
ccctaccaag aagccacaga gagaacccacc acgttgcgc ccaccaccac caccaccaca 840
gagtctgtgg aagagggtgt tcgagagggtg tgctctgaac aagccgagac gggccgtgc 900
cgagcaatga tctcccgctg gtactttgtat gtgactgaag ggaagtgtgc cccattcttt 960
tacggcggat gtggccgaa ccggaaacaac tttgacacag aagagtactg catggccgtg 1020
tgtggcagcg ccatttcttac aacagcagcc agtacccctg atgccttgc caagtatctc 1080
gagacacctg gggatggaaa tgaacatgcc catttccaga aagccaaaga gaggcttgag 1140
gccaaggcacc gagagagaat gtcccggtc atgagagaat gggaaagaggc agaacgtcaa 1200
gcaaagaact tgcctaaagc tgataagaag gcagttatcc agcatttcca ggagaaagtgc 1260
gaatcttgg aacaggaagc agccaacgcg agacagcgc tggtaggagac acacatggcc 1320
agagtggaaat ccatgctcaa tgaccggccgc cgccctggccc tggagaacta catcaccgc 1380
ctgcaggctg ttccctctcg gcctcgatc gtgttcaata tgctaaagaa gtatgtccgc 1440
gcagaacaga aggacagaca gcacacccta aagcatttcg agcatgtgcg catggtgat 1500
cccaagaaat ccgtcgat ccgggtcccg gttatgacac acctccgtgt gatttatgag 1560
cgcatgaatc agtctctctc cctgtcttac aacgtgcctg cagtggccga ggagattcag 1620
gatgaaggatg atgagctgt tcagaaagag caaaactatt cagatgcgt ctggccaaac 1680
atgatttagtgc aaccaaggat cagttaacgc aacgtgcgc tcatgcctc ttgtggccaa 1740
acgaaaacca ccgtggatgt cttttccgtg aatggggatgt tcagccttggc cgtatctcccg 1800
ccgtggatgt cttttgggc tgactctgt ccagccaaaca cagaaaacga agttgagcc 1860
gttgatgccc gcccctgctgc cgaccggaggat ctgaccactc gaccagggttc tgggttgaca 1920
aatatcaaga cggaggatgt ctctgaatgt aagatggatgc cagaattccg acatgactca 1980
ggatatgaag ttcatcatca aaaattgggtt ttctttgcgc aagatgtggg ttcaaaacaaa 2040
ggtgcaatca ttggactcat ggtggccgtt gttgtcatag cgacagtgtat cgtcatcacc 2100
ttgggtatgatc tgaagaagaa acgtacaca tccattcatc atgggttgatggagttgac 2160
gccgctgtca ccccaagagga gcccacccctg tccaaagatgc agcagaacgg ctacgaaaat 2220
ccaaacccatca agttcttgc gcaatgcac aacaagaag 2259

<210> 61
<211> 753
<212> PRT
<213> Homo sapiens

<400> 61
Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15
Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30
Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45
Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60
Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80
Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95
Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110
Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125
Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140
Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160
Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175
Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190
Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205
Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220
Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240
Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255
Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270
Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285
Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile
290 295 300

Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe
305 310 315 320

Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr
325 330 335

Cys Met Ala Val Cys Gly Ser Ala Ile Pro Thr Thr Ala Ala Ser Thr
340 345 350

Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp Glu Asn Glu
355 360 365

His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala Lys His Arg
370 375 380

Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala Glu Arg Gln
385 390 395 400

Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile Gln His Phe
405 410 415

Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn Glu Arg Gln
420 425 430

Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met Leu Asn Asp
435 440 445

Arg Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu Gln Ala Val
450 455 460

Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys Tyr Val Arg
465 470 475 480

Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe Glu His Val
485 490 495

Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser Gln Val Met
500 505 510

Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser Leu Ser Leu
515 520 525

Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp Glu Val Asp
530 535 540

Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val Leu Ala Asn
545 550 555 560

Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala Leu Met Pro
565 570 575

Ser Leu Thr Glu Thr Lys Thr Val Glu Leu Leu Pro Val Asn Gly
580 585 590

Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe Gly Ala Asp
595 600 605

Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val Asp Ala Arg
610 615 620

Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu Thr
625 630 635 640

Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp Ala Glu Phe
645 650 655

Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu Val Phe Phe
660 665 670

Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly Leu Met Val
675 680 685

Gly Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu Val Met Leu
690 695 700

Lys Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val Glu Val Asp
705 710 715 720

Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met Gln Gln Asn
725 730 735

Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met Gln Asn Lys
740 745 750

Lys

<210> 62
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Peptide

<400> 62
Leu Glu Val Leu Phe Gln Gly Pro
1 5

<210> 63
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Peptide

<400> 63

Ser Glu Val Asn Leu Asp Ala Glu Phe Arg
1 5 10

<210> 64
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Peptide

<400> 64
Ser Glu Val Lys Met Asp Ala Glu Phe Arg
1 5 10

<210> 65
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Peptide

<400> 65
Arg Arg Gly Gly Val Val Ile Ala Thr Val Ile Val Gly Glu Arg
1 5 10 15

<210> 66
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Peptide

<400> 66
Asn Leu Asp Ala
1

<210> 67
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Peptide

<400> 67
Glu Val Lys Met Asp Ala Glu Phe
1 5

<210> 68
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Peptide

<400> 68
Gly Arg Arg Gly Ser
1 5

<210> 69
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Peptide

<400> 69

Thr Gln His Gly Ile Arg
1 5

<210> 70
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Peptide

<400> 70

Glu Thr Asp Glu Glu Pro
1 5

<210> 71
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Peptide

<400> 71

Met Cys Ala Glu Val Lys Met Asp Ala Glu Phe Lys Asp Asn Pro
1 5 10 15

<210> 72
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Peptide

<400> 72

Asp Ala Glu Phe Arg
1 5

<210> 73
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Peptide

<400> 73

Ser Glu Val Asn Leu
1 5

<210> 74
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic Peptide

<220>
<221> misc_feature
<222> (1)
<223> Xaa = Lys or Asn

<220>
<221> misc_feature
<222> (2)
<223> Xaa = Met or Leu

A3
cont.
<220>
<221> misc_feature
<222> (3)
<223> Xaa = Asp

<220>
<221> misc_feature
<222> (4)
<223> Xaa = Asp

<400> 74
Xaa Xaa Xaa Xaa
1
