MASTER (Nolds Disepons)

144MHz FM TRANSCEIVER

IC-2A/AT/E

MAINTENANCE MANUAL

MAMHS FM TRANSCEIVER

BYTALAS-II

MAINTENANCE MANUAL

TABLE OF CONTENTS

SECTION	1 SPECIPICATIONS	1 - 1
SECTION	2 OPERATING CONTROLS	2 - 1 ~ 3
SECTION	3 CIRCUIT DESCRIPTION	3 - 1 ~ 4
	3-1 RECEIVER CIRCUITS	3 - 1
	3-2 TRANSMITTER CIRCUITS	3 - 2
	3-3 PLL CIRCUITS	3 - 2 ~ 3
	3-4 OTHER CIRCUITS	3 - 4
SECTION	4 BLOCK DIAGRAM	4 - 1
SECTION	5 INSIDE VIEWS	5 - 1
SECTION	6 MECHANICAL PARTS AND DISASSEMBLY	6 - 1 ~ 4
	6-1 DISASSEMBLY OF THE CASES	6 - 1
	6-2 DISASSEMBLY OF UNITS	6 - 2
	6-3 TOP PANEL CONSTRUCTION AND PART NAMES	6 - 3
	6-4 VOL/SQL CONTROLS AND BNC CONNECTOR ASSEMBLY	6 - 3
	6-5 PTT SPRING ASSEMBLY	6 - 4
	6-6 UNIT BOTTOM ASSEMBLY	6 - 4
SECTION	7 MAINTENANCE AND ADJUSTMENT	7 - 1 ~ 9
	7-1 MEASURING INSTRUMENTS REQUIRED FOR ADJUSTMENT	7 - 1
	7-2 PRELIMINARY CHECKS	7 - 2
	7-3 PREPARATION AND PROCEDURE BEFORE SERVICING	7 - 2
	7-4 HOW TO CHECK	7 - 3
	7-5 BASIC ALIGNMENT PROCEDURE	7 - 6
SECTION	8 BOARD LAYOUT	8 - 1 ~ 4
SECTION	9 VOLTAGE CHARTS	9 - 1 ~ 8
SECTION	10 TROUBLE SHOOTING	10 - 1 ~ 4
SECTION	11 IC SPECIFICATIONS	11 - 1 ~ 3
SECTION	12 PARTS LIST	12 - 1 ~ 4
SECTION	13 SCHEMATIC DIAGRAM	13 - 1

ETPATRICO REPAIRATE

ECTION 2 CHOCOT DESCRIPTION
SETION 2 CHOCOT DESCRIPTION
3 1 ASSESSMENTER CINCLES

PROPERTY AND ALE

TO MACHINE IN TARTS AND DISAST

St. In St. (This residence of the state of

SEAL ROYDE MOD THE CHARLES AND JOSEPH A P.

submitted to the district of a

DER STREMMERTEN SMITTERS

T-S PROPER SHUDEPONE DIM POITABLEDING B-T

ASTONOGRA THEMSELA MIZEL Z.V.

TUDYAL ANCE & HOLTES

SECTION IN TROUBLE SECTIONS.

SECTION TO PARTICIPATION.

MARRIED DITAMINES ET MOTOSE

SECTION 1 SPECIFICATIONS

GENERAL

Number of Semiconductors : Transistors 43 (42) <41>

FET 3

IC 5 [6] (6) Diodes 21 (20)

Frequency Coverage : 144.000 ~ 147.995MHz: IC-2Au, IC-2Au, IC-2AT, IC-2Ei

144.000 ~ 145.995MHz: IC-2EDL

Frequency Resolution : 5KHz steps 800 channels or 400 channels

Frequency Control : Digital PLL synthesizer, with thumbwheel switches

Frequency Stability : Within ±1.5KHz

Usable Temperature : $-10^{\circ} \text{C} \sim 60^{\circ} \text{C} (14^{\circ} \text{F} \sim 140^{\circ} \text{F})$

Antenna Impedance : 50 ohms unbalanced

Power Supply Requirement : DC 8.4V; with attendant power pack IC-BP3, DC 6 \sim 12V

negative ground is acceptable

Current Drain at 8.4V : Transmitting

HIGH: 1.5W Approx. 550mA LOW: 0.15W Approx. 220mA

Receiving

At max audio output Approx. 130mA Squelched Approx. 20mA

Dimensions : 116.5mm (H) x 65mm (W) x 35mm (D) without power pack

Attendant power pack, IC-BP3 49mm (H) x 65mm (W) x 35mm (D)

Weight : 470g [490g] including power pack, IC-BP3 and flexible antenna

TRANSMITTER

Output Power : HIGH: 1.5W, LOW: 0.15W at 8.4V

Emission Mode : 16F₃

Modulation System : Variable reactance frequency modulation

Max. Frequency Deviation : ±5KHz

Spurious Emission : More than 60dB below carrier

Microphone : Built-in electret condenser microphone

Optional speaker-microphone (IC-HM9) can be used

Operating Mode : Simplex

Duplex ±600KHz from receive frequency

RECEIVER

Receiving System : Double-conversion superheterodyne

Modulation Acceptance : 16F₃

Intermediate Frequency : 1st: 10.695MHz 2nd: 455KHz

211d. 455KHZ

Sensitivity : More than 26dB S+N+D/N+D at $1\mu V$

Less than 0.5µV for 20dB noise quieting

Squelch Sensitivity : Less than $0.4\mu V$ Spurious response rejection ratio : More than 60dB

Selectivity : More than ± 7.5 KHz at -6dB point Less than ± 15 KHz at -60dB point

Audio Output Power : More than 300mW

Audio Output Impedance : 8 ohms

Note: [] Values for IC-2AT, () Values for IC-2Au and IC-2Ao, < > Values for IC-2EDL and IC-2Ei.

Specifications are approximate and are subject to change without notice or obligation.

SECTION 2 OPERATING CONTROLS

TOP PANEL

IC-2E

FRONT PANEL

REAR PANEL

1 ANTENNA CONNECTOR

Connect the supplied flexible antenna. An external antenna can be used, using a BNC connector.

2 TRANSMIT/BATTERY INDICATOR

Illuminates in the transmit mode. Also indicates the battery condition; during transmission. The voltage of Nickel-Cadmium batteries drops rapidly just before they are exhausted, so when this indicator goes out, be sure to immediately stop using it, and charge the batteries again.

3 SQUELCH CONTROL

Sets the squelch threshold level. To turn OFF the squelch function, rotate this control completely counterclockwise. To set the threshold level higher, rotate the control clockwise.

4 VOLUME CONTROL (and TONE CALL SWITCH)

Controls the audio output level in the receive mode. Clockwise rotation increases audio output.

TONE CALL SWITCH (IC-2E only)

Most repeaters require a 1750Hz Tone-burst for initial access. Depressing the VOLUME CONTROL knob for the required period for a repeater, puts the set in the transmit mode and the tone-burst generator actuates and you can access the repeater.

(5) EXTERNAL MIC JACK

When an external microphone is used, connect it to this jack. See the schematic for the proper hookup. When the external microphone is connected the built-in microphone does not function. The IC-HM9 optional speaker-microphone can also be used.

(6) EXTERNAL SPEAKER JACK

When an external speaker (or an earphone) is used, connect it to this jack. Use a speaker with an impedance of 8 ohms. When the external speaker is connected the built-in speaker does not function.

(7) POWER SWITCH

The ON/OFF switch controls the supplied power to the set.

(8) 5KHz SHIFT SWITCH

When the desired operating frequency has a 5KHz digit, set this switch in the +5KHz position, and add 5KHz to the indicated frequency on the thumbwheel switches.

(9) 10KHz THUMBWHEEL SWITCH

Sets 10KHz digit of the desired operating frequency.

10 100KHz THUMBWHEEL SWITCH

Sets 100KHz digit of the desired operating frequency.

(1) 1MHz THUMBWHEEL SWITCH

Sets 1MHz digit of the desired operating frequency. When you set a digit of a frequency that is out of the band, the set will work as follows:

Dimin	Actual working frequency band		
Digit	IC-2Au, IC-2Ao, IC-2AT, IC-2Eı	IC-2EDL	
0 .	144MHz	144MHz	
1	145	145	
2	146	144	
3	147	145	
4	144	144	
5	145	145	
6	146	144	
7	147	145	
8	144	144	
9	145	145	

12 PUSH TO TALK (PTT) SWITCH

For transmission, press this switch and talk into the microphone with normal voice. The internal microphone is of the electlet-condenser type and provides good pickup for all voice levels.

*TWO-TONE ENCODER PAD

IC-2AT has a standard two-tone encoder pad on the front panel. The pad can be used for autopatch, accessing to closed repeater, and/or other controls.

13 RF POWER SWITCH

Selects the RF output power HIGH 1.5 Watt (at 8.4V) or LOW 0.15 Watt (at 8.4V). In the LOW position, the current drain is decreased, to prolong the battery life.

(14) DUPLEX/SIMPLEX SWITCH

Selects the operation mode DUPLEX for repeater operation, or SIMPLEX for the same receive/transmit frequency operation.

(15) DUPLEX MODE SWITCH

In the DUPLEX mode, selects the transmitting frequency, 600KHz above or below the receiving frequency according to the desired repeater input frequency.

(6) CHARGER CONNECTOR

Connects to the output plug of the wall charger BC-25U/E or other power source.

(17) BATTERY CHARGE INDICATOR

Lights during battery charging.

3-1 RECEIVER CIRCUITS

3-1-1 ANTENNA SWITCHING CIRCUIT

Signals from the antenna connector are fed to the antenna switching circuit through Chebyshev low-pass filter consisting of L29, L30, C95, C97 and C98 in the PLL board.

The antenna switching circuit employs a quater wave switching circuit.

In the receive mode, switching diodes, D16 and D17 are turned OFF, and they make isolation against the transmitter circuit and matching circuit, and the incoming signals are fed to the RF amplifier.

3-1-2 RF AMPLIFIER AND FIRST MIXER

The signals from the switching circuit are fed to the cascode amplifier Q1 and Q2.

The amplified signals are fed to the gate of the first mixer Q3 through the band-pass filter L2 \sim L4, which reduces interference and intermodulation from out of the band signals.

To the source of Q3, a 133MHz signal is supplied from the PLL circuit to convert the RF signals into 10.695MHz first IF signals.

The first IF signals are taken from the drain of Q3 and fed to the IF circuit.

3-1-3 IF CIRCUIT

The first IF signals from Q3 are fed to the matched pair crystal filter FI1, then IF amplifiers Q4 and Q5.

The amplified signals are fed to IC1. IC1 is composed of the second local oscillator, second mixer, limiter amplifier, quadrature detector and active filter circuits.

The second local oscillator oscillates 10.240MHz with X1, and is fed to the second mixer with the first IF signals to convert into 455KHz second IF signals. The second IF signals are put out from Pin 3, and fed to external ceramic filter FI2 which has excellent selectivity, then fed to IC1 (Pin 5) again to amplify and detect.

The detected AF signals are put out from Pin 9.

3-1-4 AF AND SQUELCH CIRCUITS

The detected AF signals are put 6dB/Octave de-emphasis by integral circuit consisting of R17 and C26, and fed to AF power amplifier IC2 through the VOLUME control R1, to obtain enough power to drive the speaker.

Noise components put out from Pin 9 of IC1 are fed to IC1 (Pin 10) again through the SQUELCH control R2, which controls the squelch threshold level, filtered about 20KHz signal (noise) and put out from Pin 11.

This signal (noise) is rectified by Q13, integrated by R35, R36 and C36, and turns Q14 ON and turns OFF the regulator for AF power amplifier consisting of D3, Q15 and Q16.

This reduces the current drain of the set, in the standby condition. When a signal is received, noise is suppressed by the signal and turns Q14 OFF and the regulator is turned ON and supplies regulated voltage to the AF power amplifier, and incoming signal can be heard from the speaker.

In the transmit mode, a voltage is applied to Q14 and turns it ON, and turns the regulator OFF the same as in the standby condition.

3-2 TRANSMITTER CIRCUITS

3-2-1 MIC AMPLIFIER CIRCUIT

Audio signals from the microphone are fed to the limiter amplifier, consisting of $Q25 \sim Q28$, which has 6dB/Octave response between 300Hz and 3KHz.

The output of the limiter amplifier is similar to rectangular waves and includes harmonics.

These harmonics are eliminated by the low-pass filter Q29, which cuts 3KHz or higher.

Filtered signals are fed to the VCO in the PLL board to make modulation.

3-2-2 MULTIPLIER AND DRIVER CIRCUITS

The VCO oscillates a half of a transmitting frequency, thus the multiplier Q8 and Q9, multiplies it two times to obtain 144MHz transmitting frequency.

This 144MHz is fed to amplifiers Q11 and Q12 through band-pass filter L19, L20 and L21, L22 to obtain 200 milliwatts pure 144MHz signal. While switching from receive to transmit, Q10 is turned ON by the charged voltage of C69, until the charged voltage has been discharged, and this function cuts the bias voltage of Q11 \sim Q13.

This prevents transmission of unwanted signals.

3-2-3 POWER AMPLIFIER CIRCUIT

The output signals from Q12 is fed to the power amplifier Q13, and amplified to 1.5 watts. In the transmit mode, D16 and D17 are turned ON, and D17 makes L28 have high-impedance and D16 feeds the signals to the antenna through the low-pass filter.

3-3 PLL CIRCUITS

3-3-1 LOCAL OSCILLATOR CIRCUIT

The crystal oscillator Q6 oscillates 32.32625MHz with X2 for receive, 35.000MHz with X3 for simplex transmit, 35.150MHz with X4 for +600KHz and 34.850MHz with X5 for -600KHz duplex transmit, and the signal at two times this frequency is taken from the collector of Q7, and fed to the mixer of the PLL circuit.

In the receive mode, R+5V is applied to D10 through R23, L7, L11 and R27 and D10 is turned ON and selects X2.

In the simplex transmit mode, T+5V is applied to D11 through R24, L8, L12 and R28 and D11 is turned ON and selects X3.

In the +600KHz duplex transmit mode, T+5V is applied to D12 through R25, L9, L13 and R29 and D12 is turned ON and selects X4.

In the -600KHz duplex transmit mode, T+5V is applied to D13 through R26, L10, L14 and R30 and D13 is turned ON and selects X5.

When the operating frequency has a 5KHz digit, cathodes of D6 \sim D9 are grounded through the 5KHz SHIFT switch, and one of D6 \sim D9 is turned ON according to the operating mode. Thus, one of L7 \sim L10 is shunted accordingly and oscillating frequency is shifted 5KHz (on the operating frequency).

3-3-2 MIXER, LOW-PASS FILTER AND AMPLIFIER CIRCUITS

The output signals from the local oscillator circuit and the VCO signals fed through buffer amplifiers Q2 and Q3 are mixed by the mixer Q4. The output signals are fed to the low-pass filter to filter out only the signals below 5MHz, then fed to Q5 to be amplified to proper drive level (more than 3Vp-p) of the programmable divider IC1.

3-3-3 PROGRAMMABLE DIVIDER CIRCUIT

The input signals at Pin 2 of IC1 are divided by the BCD input signals from the thumbwheel switches at Pin $3 \sim 14$.

The programmable divider is also called the 1/N counter and the BCD value is N. The relationship between the operating frequency and the divide number N is:

N (divide number of programmable divider) = (Receive frequency (MHz) - 140) / 0.01

3-3-4 REFERENCE FREQUENCY GENERATOR CIRCUIT

Reference frequency generator IC3 consists of a crystal oscillator and a highspeed divider. X1 oscillates at 5.12MHz, which is divided by 1024. The 5KHz reference frequency is fed to phase detector IC2. This 5KHz reference frequency decides the variation step of the PLL output frequency.

3-3-5 PHASE DETECTOR AND LOOP FILTER CIRCUITS

Digital phase detector, IC2, detects the phase difference of the pulse signals of the 5KHz reference frequency and the output signal of the programmable divider, and proportionately puts out pulse signals at Pin 3, which becomes high impedance when the PLL is locked.

Pin 4 is for detecting the lock failures and changes to ground level according to the phase difference of the two pulse signals. When the lock fails, the pulse signal from Pin 4 is integrated by R2 and C15. When the integrated voltage exceeds the junction voltage of Q14's base, Q14 is turned ON and then Q7 in the MAIN board is turned ON.

The collector of Ω 7 is connected to the base of Ω 8, so the base voltage of Ω 8 becomes ground level, and Ω 8 and Ω 6 are shut off to prevent transmitting unwanted signals.

The loop filter, consisting of R4, R5, R6, C13 and C14, converts the pulse signal from Pin 3 into a DC voltage and decides the response time of the whole loop.

The output signals are fed to tuning diode D3 of the VCO circuit as the control voltage for the VCO frequency set.

3-3-6 VCO CIRCUIT

The VCO (Voltage-Controlled Oscillator) is a Colpitts circuit using Q1, and oscillates in 70MHz range.

The oscillator frequency is controlled by a DC voltage which is supplied from the loop filter to varactor diode D3.

In the receive mode, R+5V is applied to D4's anode through L1, and D4 is turned ON and shunts C20. Thus the free-run frequency of the VCO is lowered.

In the transmit mode, T+5V is applied to D4's cathode through D5 and L2, D4 is turned OFF, and C20 is inserted in the oscillator circuit in series. Thus the free-run frequency of the VCO is increased. In the same time, the VCO signal is frequency modulated by the audio signals from the microphone which are applied to the gate of Q1 and varies Q1's mutual conductance.

3-4 OTHER CIRCUITRY

3-4-1 POWER SUPPLY CIRCUIT

The regulated 5V is supplied to the main circuits, so that the set operates under a stable condition with as low a power voltage as possible.

The power supply voltage is fed to the AF power amplifier through the squelch switching circuit and to the 5V regulator consisting of Q17 \sim Q20 and zener diode D4. This regulated 5V is supplied to the PLL circuit.

In the transmit mode, the base of Q23 is grounded through R55, the microphone and the PTT switch, and Q23 is turned ON. Thus Q6 and Q8 are turned ON and T+5V is actuated, and supplied to the transmitter circuit. At the same time, T+5V turns Q12 ON, and the power supply voltage is applied to the MIC amplifier circuit through Q12.

In the receive mode, Q23 is turned OFF and the bias voltage of Q9 ON. Thus the R+5V is actuated and supplied to the PLL board to switch the local oscillator crystal and the driver transistors of the transmitter circuit.

At the same time, R+5V turns ON the voltage boost circuit consisting of Q10 and Q11, and +6V is supplied to the receiver circuit.

LED INDICATOR CIRCUIT

This LED is lit in the transmit mode, but when the power supply voltage becomes less than 5.5V, it will not be lit.

The power supply voltage is divided by R48 and R49, and applied to the base of Q21. The emitter of Q21 is connected to the regulated 5V source. When the power supply voltage is more than 5.5V, Q21 is turned OFF, Q22 is turned ON and T+5V is applied to the LED through Q22 and R50, and LED is lit.

3-4-2 TWO-TONE ENCODER CIRCUIT (IC-2AT only)

IC1 is a standard 12 key two-tone encoder which is compatible with any telephone system. When a key is pushed, IC1 oscillates 3.5795MHz with X1, and its signal is divided depending on the pushed key, and a pair of tones is put out from Pin 16. At this time, Pin 10 of IC1 puts out H-level signal, and this is used to mute the mic amplifier.

3-4-3 TONE-BURST GENERATOR CIRCUIT (IC-2E only)

When the TONE CALL switch is depressed, Q23's base is grounded through R55 and D6, and the set is turned in the transmit mode. At the same time, Q33's base is also grounded through R83, and Q33 is turned ON and supplies a voltage to IC3.

IC3 consists of a crystal oscillator and dividers. X2 oscillates at 7.168MHz, which is divided by 4096.

The 1750Hz tone is put out from Pin 4 of IC3 and fed to the mic amplifier circuit through R77, level adjust trimmer.

3/3

MAIN UNIT SIDE

PLL UNIT SIDE

SECTION 6 MECHANICAL PARTS AND DISASSEMBLY

6-1 DISASSEMBLY OF THE CASES

- 1. Turn the power switch off and remove the power pack.
- 2. Remove two screws (A) on the rear panel and four screws on the bottom as shown in the figure.

Remove the front panel as shown in the figure. At this time, be sure not to damage the engaged parts at the top (circled with dotted lines).

 $\ensuremath{\textcircled{1}}$ open the bottom slightly and $\ensuremath{\textcircled{2}}$ slide the front panel downwards.

4. Slide the PTT Button upward, and then remove the rear panel.

6-2 DISASSEMBLY OF UNITS

To see the printed sides of the PC boards, open the chassis by removing two screws © located above and below the PTT spring.

6-3 TOP PANEL CONSTRUCTION AND PART NAMES

6-4 VOL/SQL CONTROLS AND BNC CONNECTOR ASSEMBLY

6-5 PTT SPRING ASSEMBLY (HOW TO REPLACE PTT SPRING)

- 1. The PTT spring is soldered at its top as shown in the figure.
- 2. Remove the old spring by heating the soldered point.
- 3. Solder the hole at the top of the new spring.
- Make sure that the new spring is soldered on parallel to the chassis.

6-6 UNIT BOTTOM ASSEMBLY (BOTTOM VIEW)

(HOW TO REPLACE CONTACT SPRING)

- 1. Remove the sliding guide by removing the four screws as shown.
- 2. Remove the contact spring by removing the two screws as shown.
- 3. Set the new contact spring so that the split and of the spring is on the positive side and the other end on the negative side.
- 4. Tighten the two screws.

SECTION 7 MAINTENANCE AND ADJUSTMENT

7-1 MEASURING INSTRUMENTS REQUIRED FOR ADJUSTMENT

(1)	FREQUENCY COUNTER	FREQUENCY RANGE ACCURACY SENSITIVITY	BETTER THAN ±1 ppm
(2)	SIGNAL GENERATOR	FREQUENCY RANGE OUTPUT VOLTAGE	0.1MHz - 160MHz
(3)	MULTIMETER	50K Ω /Volt or better	
(4)	AC MILLIVOLTMETER	MEASURING RANGE	10mV - 2V
(5)	RF VOLTMETER	FREQUENCY RANGE	0.1 - 160MHz
, - ,		MEASURING RANGE	0.01 - 10V
(6)	RF WATTMETER (Terminated Type)	MEASURING RANGE	5 Watts
, ,		FREQUENCY RANGE	
		IMPEDANCE	
		SWR	LESS THAN 1.1
(7)	AF OSCILLATOR	OUTPUT FREQUENCY	200 - 3000Hz
		OUTPUT VOLTAGE	0 - 100mV
		DISTORTION	LESS THAN 0.1%
(8)	OSCILLOSCOPE	FREQUENCY RANGE	
		MEASURING RANGE	0.01 - 10V
(9)	FM DEVIATION METER	FREQUENCY RANGE	140 ~ 160MHz
		MEASURING RANGE	0 ~ ±10KHz
(10)	DIRECTIONAL COUPLER	FREQUENCY RANGE	140 ~ 160MHz
(11)	AMPERMETER	MEASURING RANGE	0 ~ 1A DC
(12)	DUMMY LOAD OR EXTERNAL		
	SPEAKER	IMPEDANCE	8 OHMS
(13)	VOLTAGE REGULATED POWER		
	SUPPLY	OUTPUT VOLTAGE	$5 \sim 11V$ DC (Adjustable)
		CAPACITY	1A OR MORE

7-2 PRELIMINARY CHECKS

7-2-1 TRANSMITTER OUTPUT CHECKS 50\(\Omega\) Power M. Power Supply 8.4V or Battery (IC-BP3)

- 1. Connect a 50 ohm RF wattmeter to the ANT connector.
- 2. Setting the IC-2A frequency 147.000MHz (IC-2E: 145.000MHz) and key the transmitter. Observe the RF power OUTPUT.
- 3. Power output should be 1.5 watts at rated input voltage.

7-2-2 RECEIVER CHECKS

Make all checks at 8.4V DC

1. Settings of controls and switches

Power switch

ON

Squelch Control

Minimum position

Dup/Simp Switch

Simp

Frequency

147.000MHz

(IC-2E: 145.000MHz)

- 2. Connect an AF voltmeter to the SP jack and set the SQL control fully counterclockwise.
- 3. Connect the RF output of a VHF signal generator to the ANT connector.
- Adjust the VOL control and the AF voltmeter range.
 Adjust the VOL control for a full scale reading on the AF voltmeter. Don't change the VOL control setting after this adjustment.
- 5. Set the signal generator to the receiving frequency and adjust the output level of the signal generator until the AF voltmeter shows a 20dB decrease in reading.
- 6. The signal/generator output voltage at this point is the 20dB quieting sensitivity.

7-3 PREPARATION AND PROCEDURE BEFORE SERVICING

- 1. Confirm defective operation and check to make sure setup or external sources are not the cause of the problem.
- 2. Proper tools and measuring instruments are required for repair and adjustment. Don't try to repair

- 3. Remove the transceiver case as shown on Page 6 1. Use a screw driver that fits the screw.
- 4. IC-2AT has two-tone oscillator at the front panel with wires connecting it to the main board. If you force the cover removing it, a wire could be broken.
- 5. To open the hinge chassis remove the two screws as shown on Page 6 2.
- 6. Attach an $8.0 \sim 11.0 \text{V DC}$ external power source to the battery clip or screw. Be sure to check the polarity.
- 7. In the case of a transmission problem, a dummy load should be connected to the antenna connector. In the case of a receiving problem, an antenna or signal generator is connected to the antenna connector. Be careful not to transmit into the signal generator.
- 8. Recheck for the suspected malfunction with the power switch on.
- 9. Check the defective circuit and measure the DC voltages of the collector, base and emitter of each transistor.
- 10. When checking a transmission problem, it is convenient to short circuit an accessory mic connector plug and insert it, turning on the transmitter.

7-4 HOW TO CHECK

7-4-1 RECEIVE

- 1. Check the frequency of P.L.L. unit when you are unable to receive with a strong signal present and noise present when turning up the AF volume.
- 2. When no noise is present at the speaker, check audio frequency amplifier or 5V regulator first.
- 3. Inject RF through a 0.01μ F capacitor from an FM signal generator modulated with 1KHz audio modulation (FM), to points (A) through (D) in order, check for receiver output.
 - (A) = 146.000MHz (IC-2E : 145.000MHz)
 - (B) = 146.000MHz (IC-2E: 145.000MHz)
 - (C) = 10.695MHz
 - (D) = 10.695MHz
- 4. Check (E) and (F) with an oscilloscope, for demodulated output in the audio frequency range.

7-4-2 TRANSMITTER

- 1. Check (A) through (G) in order with RF voltmeter.
- 2. When the transmitter output is low, check regulated power supply voltage first, do not turn coil trimmers.
- 3. When transmission is normal, RF is present and it is not possible to measure the DC voltage accurately with a voltmeter.

7-4-3 MODULATION

- 1. Put a signal into the EXT MIC connector (1KHz 40mV) with an AF oscillator or an external mic.
- 2. Check the AF voltages (A) through (E) in order with an oscilloscope.

7-4-4 P.L.L.

- 1. Check (A) with an oscilloscope. A lock failure is indicated by an instability or absence of the wave form. Check as follows:
- 2. Check the Frequency of the master oscillator (10.24MHz). If a 5KHz 5Vp-p squarewave is not observed at (B), measure DC voltage on Pin 5 of IC3 if no oscillation.
- 3. Wave measure the output of (C) and (D) with an oscilloscope.
- 4. Measure DC voltage of Q1, Q2, Q3, Q4 and Q5.
- 5. If the transmit or receive frequency differs from the display, check the voltage of A1 to C4 on the IC1 (BCD control lines from top switches).

BCD CHART

			104	(Hz			100	KHz			1M	lHz	
IN	IPUT BCD	1 A1	2 A2	4 A3	8 A4	1 B1	2 B2	4 B3	8 B4	1 C1	2 C2	4 C3	8 C4
	144.00	L	L	L	L	L	L	L	L	L	L	Н	L
	144.01	Ĥ	L	L	L	L	L	L	L	L	L	Н	L
	144.02	L	Н	L	L	L	L	L	L	L	L	Н	L
	144.03	Н	Н	L	L	L	L	L	L	L	L	Н	L
FREQUENCY												:	
Z	145.98	L	L	L	Н	Н	L	L	Н	Н	L	Н	L
2	145.99	Н	L	L	Н	Н	L	L	Н	Н	L	Н	L
Æ.	146.00	L	L	L	L	L	L	L	L	L	Н	Н	L
H.	146.01	Н	L	L	L	L	L	L	L	L	Н	Н	L
	146.11	Н	L	L	L	Н	L	L	L	L	Н	Н	L
	146.12	L	Н	L	L	Н	L	L	L	L	Н	Н	L
	147.00	L	L	L	L	L	L	L	L	Н	Н	Н	L
	147.50	L	L	L	L	Н	L.	Н	L	Н	Н	Н	Ĺ
	147.99	Н	L	L	Н	Н	L	L	Н	Н	H	Н	L

H = 5V L = 0V

7-5 BASIC ALIGNMENT PROCEDURE

7-5-1 P.L.L. CIRCUIT

A. Lock Adjustment

- 1. Connect the measuring instrument and set the control knobs as follows:
 - Connect an oscilloscope (10MHz band width) to R17.
 - Connect voltmeter between R5 and ground.
 - Set thumbwheel switches to 144.00MHz.

2. Procedure

When the circuit is operating normally, adjust coil L3. The P.L.L. will lock.

- Adjust the coil of L3, and the voltage of R5 varies between 0 ~ 5V, and P.L.L. should lock.
- Adjust L3 for 1V after lock.

Next, in Receive adjust L16 for maximum voltage (P-P value) on the oscilloscope and then during transmission adjust L15 to maximum. Repeat adjustment of L15, L16 several times. After that, confirm the following voltage of R5 (both transmission and receiving) 1V ±0.3V at 144MHz, and that the voltage of R17 (both transmission and receiving) is over 3Vp-p (over operating range of the radio). If the P.L.L. won't lock, check these voltages: R+5V, T+5V, 5V constant, and the P.L.L. LO and reference frequency oscillator for oscillation. Connect a counter to R37, and check the oscillation frequency of the V.C.O. during transmission.

If unlocked check that L3 can be adjusted as follows:

- Adjust L3 to 65MHz when the voltage of R5 is 0V.
- Adjust L3 to 70MHz when the voltage of R5 is 5V.

B. Reference Frequency Oscillator Check

- 1. Connect a counter through a capacitor to Pin 1 on IC3.
- 2. Confirm frequency is: 5.12MHz ±250Hz.

C. P.L.L. LO Frequency Adjustment

- 1. Connection of the measuring instruments and the setting of knob.
 - When adjusting the receiving frequency, connect the counter to R5 of the MAIN unit through a
 capacitor. After power adjustment, loosely couple the set to a counter with capability of more
 than 150MHz (with dummy load connected), so that the transmitting frequency can be obtained.
 - Set thumbwheel switches of the set to 146.000MHz (IC-2E: 145.000MHz).

2. First, adjust +5KHz and turn to 0KHz. Then check again, because these adjustments interact.

MODE	RX.	SIM/TX.	+600 DUP	-600 DUP
EKU- 44:	L 11	L 12	L 13	L 14
5KHz Adj. FREΩ.	135.310	146.005	146.605	145.405
THEQ.	IC-2E:134.310	145.005	145.605	144.405
01/11- 4-1	L 7	L 8	L 9	L 10
0KHz Adj.	135.305	146.000	146.600	145.400
FREQ.	IC-2E:134.305	145.000	145.600	144.400

3. Confirmation

Check each frequency (including band-edge): All frequencies should be within ±500Hz.

7-5-2 TRANSMISSION

A. Power Adjustment

- 1. Connection of measuring instruments and setting of the knobs.
 - Connect ANT to 50 ohm power meter.
 - Connect a voltmeter and variable power supply to the set.

CAUTION: - Applying over 10.8V can damage the P.A. transistor.

- Thumbwheel SW of 2A/2AT to be 146.00MHz. Duplex SW shall be in the SIMP position.
- Power SW shall be HI.

2. Procedure

- Adjust L19 through L22 of the PLL unit for maximum RF power output while pushing PTT SW.
- Set the RF Power switch at LOW, and adjust C86 for maximum RF output.
- Set the RF Power switch at HIGH, and adjust C85 for maximum RF output.
- Repeat above adjustment procedures until no readjustment of C85 and C86 is required when the RF Power is switched.
- Set RF Power switch at HIGH, and adjust C90 and C91 for maximum RF output.
- If the total current drain exceeds 500mA, adjust C91 to set the current at 500mA.
- In the HIGH power mode, readjust L21 and L22 for maximum RF output.

3. Confirmation

High Power (rated voltage)

More than 1.5W, less than 500mA current drain.

From 144 to 147.99MHz (IC-2E: 145.99MHz) - retune to bring band edge power to minimum if necessary.

Low Power (rated voltage)

150mW (+100% -50%), less than 330mA current drain.

High Power at 7.2V over 1W.

10.8V over 2.3W.

No abnormality in operation should be found if the supply voltage is varied from 5.5V to 10.8V.

B. Modulation Adjustment

1. Connecting the measuring instrument and the settings of the controls.

Connect ANT Connector to a deviation meter with a directional coupler or attenuator.

Deviation meter filter shall be a High Pass Filter 50Hz, L.P.F. 20KHz. De-emphasis OFF.

- Set thumbwheel SW to 146MHz (IC-2E: 145MHz),
- Set SIMP/DUP to SIMP.
- Set Power SW to HI.
- Connect an AF oscillator, with a millivoltmeter in parallel, to the mic input.

Insert a switch in series to allow on/off TX switching.

2. Procedure

Mic input shall be 1KHz 40mV RMS. During TX, adjust R71 on the main unit for 5KHz deviation.

3. Modulation check

Maximum deviation: With 1KHz 40mV shall be 5KHz ±10%.

Modulation sensitivity: Mic input voltage 4mV ±3dB at 1KHz. Deviation should be 3.5KHz.

S/N Ratio:

Connect the output of the deviation meter to a millivoltmeter. With no audio input to the mic input, take the voltmeter reading. Now insert 1KHz 40mV audio into the mic connector. Take the voltmeter reading. The ratio should be greater than 40dB.

4. Spurious Transmission

Connect spectrum analyzer with appropriate attenuation. Confirm nearby random spurious signals below fundamental frequency less than -60dB.

Measure the harmonic wave output, adjust RF-ATT until noise level just appears.

Should be less than -60dB below the fundamental frequency.

7-5-3 RECEIVER

A. LO Output Adjustment

 Adjust thumbwheel SW to 146MHz (IC-2E: 145MHz). Adjust L17, L18, for maximum output on an RF voltmeter attached to the source of Q3 in the main unit. Output voltage should be about 200mV.

B. RF IF DET Coil Adjustment.

- 1. The connecting point of measuring instrument and the setting of the knob.
 - Set thumbwheel to 146MHz (IC-2E: 145MHz).
 - Connect antenna to signal generator.
 - Connect SP terminal to EXT SP and AF millivoltmeter.

2. Procedure

Set RF voltage meter (minimum range) to Pin 16 on IC1 in the IF, adjust L1 through L5 maximum output while setting the input from the signal generator as low as possible. Then vary the input frequency from the signal generator $\pm 10 \text{KHz}$. Check if rippling (change in output level) occurs. If ripple is over 3dB, readjust L5.

Set signal generator output to -80dBm to -90dBm and deviation to 3.5KHz. Set signal generator frequency to speaker output maximum. After that, adjust L7 for maximum output.

3. Confirmation

Sensitivity should be less than $-8dB\mu$ for 20dB quieting.

C. 2nd LO Frequency Check

Connect a 10.24MHz amplifier to the counter, check the frequency of X1 (2nd OSC) with a loose couple. It should be: 10.240MHz ±400Hz.

D. Receiver Spurious Response

Connect a speaker and millivoltmeter to the EXT SP. Connect a 50 ohm dummy load to the antenna terminal. All RX spurious should be supressed less than 3dB, over entire frequency range.

E. Receive Audio Output

Connect to the EXP SP connector a millivoltmeter, oscilloscope, and a distortion meter. To the ANT terminal connect the signal generator and set the signal generator to -80 to -90dBm and deviation to 3.5KHz. Turn up AF VOL control. Read the millivoltmeter when the distortion is 10%.

MAIN UNIT

- (USA) → IC-2A/AT ONLY
- (EUR) → IC-2E ONLY

EF UNIT

■ SWITCH BOARD

BATTERY CONTACT BOARD

■ VR BOARD

■ FLEXIBLE BOARD

TOUCH TONE UNIT • IC-2AT ONLY

[TOUCH TONE UNIT] (IC-2AT only)

REF. NO.	DESCRIPTION	PART NO.
IC1	IC	S2559
X1	Crystal	3.579545MHz HC/43U
R1	Resistor	1M R10
C1 C2	Ceramic Ceramic	10P 50V 0.001 50V
J1	Connector	3024-04CH
	Key Switch	KHG
B1	PC Board	B-416C

TRANSISTORS VOLTAGE CHART

• Measuring instrument is a $50K\Omega/V$ multimeter.

			TRANSMIT			RECEIVE				
UNIT	NO.	BASE	COLLECTOR		BASE	COLLECTOR	EMITTER	REMARKS		
		or GATE	or DRAIN	SOURCE	or GATE	or DRAIN	SOURCE			
MAIN	Q 1	0	0	GND	0.75	1.9	GND	RF Amp		
	Q 2	0	0	0	2.2	5.5	1.9	RF Amp		
	Q 3	0	0	0	0	5.4	1.6	1st Mixer		
	Q 4	0	0	GND	0.7	0.9	GND	1st IF Amp		
	Q 5	0	0	0	1.6	2.2	0.9	1st IF Amp		
	Q 6	4.2	4.8	5.0	4.9	0	5.0	T/R Switch		
	Q 7	0	0.7	GND	0	0.3	GND	T/R Switch		
	Q 8	0.7	0	GND	0.3	4.1	GND	T/R Switch		
	Q 9	4.6	0	5.0	4.2	4.9	5.0	T/R Switch		
	Q10	. 0	7.8	0	4.9	7.8	4.4	T/R Switch		
	Q11	7.8	0	8.4	7.8	5.6	8.4	T/R Switch		
	Q12	4.8	7.9	4.2	0	8.4	0			
	Q13	0	0.5	0	3.7	1.5/0	2.8/3.4	Noise Detector SQL CLOSED/SQL OPENE		
	Q14	0.6	0	GND	0.6/0	0/8.2	GND	Squelch Control		
	Q15	0	7.8	0	0/8.2	7.8	0/7.6	Squelch Control		
	Q16	7.8	0	8.4	7.8	7.6/0	8.4	T/R Switch		
	Q17	0.6	8.4	2.0	0.5	8.4	2.0	Regulator		
	Q18	8.2	5.0	8.4	8.4	5.0	8.4	Regulator		
	Q19	0.6	8.2	GND	0.5	8.4	GND	Regulator		
	Q20	0.6	0.6	GND	0.6	0.5	GND			
	Q21	5.7	3.4	5.0	5.8	0	5.0	Indicator Control		
	Q22	3.4	4.0	4.2	0	0	0	Indicator Control		
	Q23	4.8	3.8	3.9	3.2	1.3	5.0			
	Q24	0.6	0	GND	0	4.9	GND	Mic Amp Mute Cont.		
	Q25	2.4	4.2	2.0	0	0	0	Mic Amp		
	Q26	2.6	3.6	2.0	0	0	0	Mic Amp		
	Q27	3.6	2.6	4.1	0	0	0	Mic Amp		
	Q28	0.6	2.0	GND	0	0	GND	Limiter		
	Q29	2.1	4.2	1.9	0	0	0	Low Pass Filter		
	Q30	0/4.9	4.4/7.7	2.6/4.9	0/0	0/7.8	0/0	T/R Switch IC-2A/AT or		
	Q31	4.4/8.3	8.4/6.1	4.0/8.4	0/8.4	8.4/0	0/8.4	T/R Switch IC-2A/AT or		
	Q32	0	0.6	GND	0	0.6	GND	IC-2A 2AT only		
	Q33	3.6	4.2	4.2	0	0	0	IC-2E only		
LL	Q 1	0	4.0	0.8	0	4.0	0.75	VCO, FM Mod.		
	Q 2	0.7	1.0	GND	0.7	1.0	GND	Buffer Amp		
	Q 3	1.6	2.9	1.0	1.6	2.9	1.0	Buffer Amp		
	Q 4	0.7	0.7	GND	0.7	0.7	GND	PLL Mixer		
	Q 5	1.4	3.4	0.9	1.4	3.4	0.9	Level Converter		
	Q 6	1.3	4.9	0.8	1.3	4.9	0.8	Multiplier		
	Q 7	0	0	1.5	2.0	4.4	1.7	Multiplier		
	Q 8	0.5	1.5	GND	0.5	1.7	GND	Buffer Amp		
	Q 9	1.8	4.4	1.5	0	0	1.7	Multiplier		
	Q10	0	1.2	GND	0.7	0	GND			
	Q11	1.1	8.0	0.5	0	8.4	0	Buffer Amp		
	Q12	0.55	8.4	0.1	0	8.4	0	Driver		
	Q13	1.2	8.4	GND	0	8.4	GND	Power Amp		
	Q14	4.6	0	5.0	4.6	0	5.0	T		

IC'S VOLTAGE CHART

• Measuring instrument is a 50K Ω /V multimeter.

IN TRANSMIT MODE

LIBUT	LINUT		PIN No.															DEMARKO		
UNIT	IC No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	REMARKS
MAIN	IC1	0	0	0	0	0	0	0	0	0	0	0	GND	0	0	GND	0			
MAIN	IC2	•0	0	0	0	GND	0	0	0	0										
MAIN	IC3	0.8	1.4	1.6	1.8	4.0	2.0	2.0	2.0	GND										IC-2E only
PLL	IC1	5.0	1.0	0	0	0	0	0	0	0	0	4.4	0	4.4	.0	0	0	0	GND	f = 145MHz
PLL	IC2	0	4.4	1.2	5.0	5.0	0	0	2.4	GND										
PLL	IC3	0.9	1.4	1.8	0	5.0	0	2.4	2.4	GND										
TOUCH TONE	IC1	6.1	5.7	6.1	6.1	6.1	GND	0	6.1	6.1	0	0	0	0	0	4.4	0			IC-2AT only

IN RECEIVE MODE

LINUT	10.11-		PIN No.															DEMARKS		
UNIT	IC No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	REMARKS
MAIN	IC1	4.2	5.0	5.3	5.6	0.9	0.9	1.1	5.6	2.9	2.0	2.1	GND	5.1	0	GND	2.0			
MAIN	IC2	6.1	4.3	7.6	3.6	GND	3.6	3.6	3.4	3.4					-					SQL OPEN
MAIN	IC3	0	0	0	0	0	0	0	0	GND										IC-2E only
PLL	IC1	5.6	1.0	0	0	0	0	0	0	0	0	4.4	0	4.4	0	0	0	0	GND	f = 145MHz
PLL	IC2	0	4.4	1.2	5.0	5.0	0	0	2.4	GND										
PLL	IC3	0.9	1.4	1.8	0	5.0	0	2.4	2.4	GND										
TOUCH TONE	IC1	0	0	0	0	0	GND	0	0	0	0	0	0	0	0	0	0	}		IC-2AT only

IC-2E MAIN UNIT VOLTAGE CHART (RECEIVE)

IC-2E MAIN UNIT VOLTAGE CHART (TRANSMIT)

IC-2A MAIN UNIT VOLTAGE CHART (TRANSMIT)

IC-2A MAIN UNIT VOLTAGE CHART (TRANSMIT)

PLL UNIT VOLTAGE CHART (TRANSMIT)

NO POWER ON

TC-9122P (BCD PROGRAMMABLE COUNTER)

MAXIMUM RATINGS ($Ta = 25^{\circ}C$)

SYMBOL	DESCRIPTION	RATINGS	UNIT
Vdd	Supply Voltage	10	V
Vin	Input Voltage	-0.3 ~ V _{DD} +0.3	V
Topr	Operating Temperature	−30 ~ 75	°C
Tstr	Storage Temperature	−55 ~ 125	°C

PIN CONNECTION

BLOCK DIAGRAM

MC-3357 (LOW POWER FM IF)

MAXIMUM RATINGS ($Ta = 25^{\circ}C$)

SYMBOL	DESCRIPTION	RATINGS	UNIT
Vcc	Supply Voltage (MAX)	12	VDC
Vcc	Operating Supply Voltage	4 to 8	VDC
VIN	Input Voltage	1.0	VRMS
TOPR	Operating Temperature	−30 ~ +70	°C
TSTG	Storage Temperature	−65 ~ +150	°C

BLOCK DIAGRAM

PIN CONNECTION

TC-5081 (PHASE COMPARATOR)

MAXIMUM RATINGS ($Ta = 25^{\circ}C$)

SYMBOL	DESCRIPTION	RATINGS	UNIT
V _{DD}	Supply Voltage	10	V
Vin	Input Voltage	-0.3 ~ V _{DD} +0.3	V
Topr	Operating Temperature	−30 ~ 75	°C
Tstr	Storage Temperature	−55 ~ 125	°C

PIN CONNECTION

TC-5082 (OSCILLATOR AND 10 STAGE DIVIDER)

MAXIMUM RATINGS (Ta = 25°C)

SYMBOL	DESCRIPTION	RATINGS	UNIT
VDD	Supply Voltage	10	V
Vin	Input Voltage	-0.3 ~ V _{DD} +0.3	V
TOPR	Operating Temperature	-30 ~ 75	°C
TSTR	Storage Temperature	55 ~ 125	°C

PIN CONNECTION

BA-526 (700mW AMPLIFIER)

MAXIMUM RATINGS ($Ta = 25^{\circ}C$)

SYMBOL	DESCRIPTION	RATINGS	UNIT
Vcc	Supply Voltage	9	V
Pd	Permissible Dissipation	700	mW
TOPR	Operating Temperature	−10 ~ +65	°C
Tstg	Storage Temperature	−30 ~ +125	°C

PIN CONNECTION

[EF UNIT]

[LI OIII]			
REF. NO.	DESCRIPTION	PART NO.	
D1	LED	SLC-26UR	
R1	Variable	VR10R10KA (IC-2A/AT) VN24R-5N4111-10KA (IC-2E)	
R2	Variable	VR10R10KB	
C1 C2 C3	Ceramic Ceramic Ceramic	470P 50V 470P 50V 15P 50V	
J1 J2 J3	Connector Connector Connector	BNC-RM HSJ0296-01-150 HSJ0289-01-050	
S1 S2 S3	Switch Switch Switch	A7MA-206-P2 HSW0567-01-310 HSW0567-01-310	
SP1	Speaker	45P30S	
	міс	EM-80	
B1 B2	PC Board PC Board	B-394C B-415A	

[MAIN UNIT]

REF. NO.	DESCRIPTION	PART NO.
IC1	IC	MC3357
IC2	IČ	BA526
IC3	IC	TC5082P (IC-2E only)
Q1	Transistor	2SC2026
02	Transistor	2SC2668-0
03	FET	2SK192-Y
Q4	Transistor	2SC2668-0
Q5	Transistor	2SC2668-0
Q6	Transistor	2SA1048-Y
Q7	Transistor	2SC2458-GR
Q8	Transistor	2SC2458-GR
Ω9	Transistor	2SA1048-Y
Q10	Transistor	2SC2458-GR
Q11	Transistor	2SA1048-Y
Q12	Transistor	2SC2458-GR
Q13	Transistor	2SA1048-Y
Q14	Transistor	2SC2458-GR
Q15	Transistor	2SC2458-GR
Q16	Transistor	2SB562-C
Q17	FET	2SK192-Y
Q18	Transistor	2SB562-C
Q19	Transistor	2SC2458-GR
Q20	Transistor	2SC2458-GR
Q21	Transistor	2SA1048-Y
Q22	Transistor	2SA1048-Y
Q23	Transistor	2SA1048-Y
Q24	Transistor	2SC2458-GR
		UC-2A/AT only)

[MAIN UNIT]

REF. NO.	DESCRIPTION	PART NO.
Q25	Transistor	2SC2458-GR
Q26	Transistor	2SC2458-GR
Q27	Transistor	2SA1048-Y
Q28	Transistor	2SC2458-GR
Q29	Transistor	2SC2458-GR
Q30	Transistor	2SC2458-GR
		(IC-2A/AT only)
Q31	Transistor	2SA1015-Y
		(IC-2A/AT only)
Q32	Transistor	2SC2458-GR
		(IC-2A/AT only)
Q33	Transistor	2SA1015-Y
		(IC-2E only)
D1	Diode	101555
D2	Diode	1S1555 1S1555
D3	Zener	WZ-081
D3	Zener	YZ-045B
D5	Diode	1S1555 (IC-2A/AT only)
D6	Diode	1S1555 (IC-2E only)
<i>D</i> 0	Diode	131955 (1C-2L Only)
FI1	Monolithic Xtal	10M15B9
	Filter	
FI2	Ceramic Filter	CFU455E2
X1	Crystal	10.240MHz HC18/T
X2	Crystal	7.168MHz HC18/T
	. , , , , , , , , , , , , , , , , , , ,	(IC-2E only)
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
L1	Coil	LS-160
L2	Coil	LS-160
L3	Coil	LS-160
L4	Coil	LS-160
L5	Coil	LS-159
L7	Coil	LS-158
R1	Resistor	10K-J ELR10
R2	Resistor	100K-J ELR10
R3	Resistor	100-J ELR10
R4	Deleted	
R5	Resistor	56-J R10
R6	Resistor	220-J ELR10
R7	Resistor	47K-J ELR10
R8	Resistor	2.7K-J ELR10
R9	Resistor	330K-J ELR10
R10	Resistor	10K-J ELR10
R11	Resistor	1.5K-J ELR10
R12	Resistor	1.5K-J ELR10
R13	Resistor	47K-J ELR10
R14	Resistor	22K-J ELR10
R15	Resistor	1K-J R10
R16	Resistor	330K-J ELR10
R17	Resistor	4.7K-J ELR10
R18	Resistor	5.6K-J ELR10
R19	Resistor	1K-J ELR10
R20	Resistor	2.2K-J ELR10
R22	Resistor	3.3K-J ELR10
R23	Resistor	1K-J ELR10
R24	Resistor	3.3K-J ELR10
R25	Resistor	10K-J ELR10
R26	Resistor	10K-J ELR10

[MAIN UNIT]

(IVIAIIN	UNIT		[MAIN ONT]							
REF. NO.	DESCRIPTION	PART NO.	REF. NO.	DESCRIPTION	PART NO.					
R27	Resistor	10K-J ELR10	C1	Ceramic	8P 50V					
R28	Resistor	4.7K-J ELR10	. C2	Ceramic	3P 50V					
R29	Resistor	47-J ELR10	C3	Ceramic	100P 50V					
R30	Resistor	68K-J ELR10	C4	Ceramic	470P 50V					
R31	Resistor	22K-J ELR10	C5	Ceramic	470P 50V					
R32	Resistor	10K-J ELR10	C6	Ceramic	10P 50V					
R34	Resistor	15K-J ELR10	C7	Ceramic	10P 50V					
R35	Resistor	10K-J ELR10	C8	Ceramic	0.35P 50V					
R36	Resistor	47K-J R10	C9	Ceramic	0.35P 50V					
R37	Resistor	22K-J ELR10	C10	Ceramic	8P 50V					
R38	Resistor	22K-J ELR10	C11	Barrier Lay						
R39	Resistor	330-J ELR10	C12		SS45X1E472M					
R40				Barrier Lay	SS45X1E472M					
	Resistor	3.3K-J ELR10	C14	Ceramic	4P 50V					
R41	Resistor	4.7K-J ELR10	C15	Ceramic	0.001 50V					
R42	Resistor	2.2-J ELR10	C16	Barrier Lay	SS45X1E472M					
R43	Resistor	2.7K-J ELR10	C17	Tantalum	10μF 6.3V					
R44	Thermistor	33D28	C18	Barrier Lay	SS45X1E472M					
R45	Resistor	470-J ELR10	C19	Ceramic	0.001 50V					
R46	Resistor	22K-J ELR10	C20	Ceramic	47P 50V					
R47	Resistor	470-J ELR10	C21	Ceramic	120P 50V					
R48	Resistor	220K-J ELR10	C22	Barrier Lay	0.1μF 12V					
R49	Resistor	56K-J ELR10	C23	Electrolytic	0.1μF 50V	AK				
R50	Resistor	330-J ELR10	C24	Ceramic	10P 50V	AK				
R51	Posietor	10K-J ELR10	C25			AIX				
				Barrier Lay	SS45X1E332M	A 1/				
R52	Resistor	33K-J ELR10	C26	Electrolytic	0.22μF 50V	AK				
R53	Resistor	100K-J ELR10	C27	Electrolytic	0.22μF 50V	AK				
		(IC-2A/AT only)	C28	Ceramic	0.001 50V					
R54	Resistor	150K-J ELR10	C29	Ceramic	0.001 50V					
		(IC-2A/AT only)	C30	Ceramic	0.001 50V					
R55	Resistor	2.2K-J ELR10	C31	Ceramic	33P 50V					
R56	Resistor	68K-J ELR10	C32	Ceramic	0.001 50V					
R57	Resistor	120K-J ELR10	C33	Electrolytic	4.7μF 35V	RC2				
R58	Resistor	470-J ELR10	C34	Ceramic	470P 50V					
R59	Resistor	4.7K-J ELR10	C35	Electrolytic	3.3µF 50V	RC2				
R60	Resistor	3.3K-J ELR10	C36	Electrolytic	0.47µF 50V	RC2				
R61	Resistor	2.2K-J ELR10	C37			RC2				
R62		10K-J ELR10		Electrolytic	1μF 50V					
no2	Resistor		C38	Electrolytic	1μF 50V	RC2				
		(IC-2A/AT)	C39	Electrolytic	10μF 16V	RC2				
		33K-J ELR10 (IC-2E)	C40	Ceramic	0.001 50V					
R63	Resistor	33-J ELR10	C41	Electrolytic	0.47μF 50V	RC2				
R64	Resistor	1K-J ELR10	C42	Electrolytic	10μF 16V	RC2				
R65	Resistor	2.2K-J ELR10	C43	Ceramic	0.001 50V					
		(IC-2A/AT)	C44	Electrolytic	100μF 10V	MS				
		4.7K-J ELR10 (IC-2E)	C45	Electrolytic	47μF 10V	MS				
R66	Resistor	2.2K-J ELR10	C46	Electrolytic	100μF 10V	MS				
R67	Resistor	22K-J ELR10	C47	Ceramic	0.001 50V					
R68	Resistor	1K-J ELR10	C48	Electrolytic	47μF 25V	MS				
R69	Resistor	82K-J ELR10	C49	Ceramic	470P 50V	1110				
R70	Resistor	47K-J ELR10				۸V				
		WHS512A 10K	C50	Electrolytic	0.22μF 50V	AK				
R71	Trimmer	1	C51	Ceramic	470P 50V	***				
R75	Resistor	3.9K-J R10	C52	Electrolytic	100μF 10V	MS				
		(IC-2A/AT only)	C53	Ceramic	470P 50V					
R76	Resistor	10K-J R10	C54	Electrolytic	100μF 10V	MS				
		(IC-2A/AT only)	C55	Electrolytic	10μF 16V	RC2				
R77	Trimmer	WHS512A 4.7K	C56	Electrolytic	0.47μF 50V	RC2				
		(IC-2A/AT)	C57	Electrolytic	10μF 16V	RC2				
		WHS512A 10K (IC-2E)	C58	Barrier Lay	SS45X1E103M					
R78	Resistor	47K-J ELR10	C59	Ceramic	470P 50V					
		(IC-2A/AT only)	C60	Ceramic	470P 50V					
R79	Resistor	33K-J ELR10								
			C61	Ceramic	470P 50V	DOG				
R80	Resistor	47K-J ELR10	C62	Electrolytic	1μF 50V	RC2				
R81	Resistor	1K-J ELR10	C63	Ceramic	0.001 50V					
R82	Resistor	2.2K-J ELR10	C64	Mylar	0.0027 50V					
R83	Resistor	22K-J ELR10	C65	Mylar	0.0047 50V					

[MAIN UNIT]

REF. NO.	DESCRIPTION	PART NO	
C67	Electrolytic	1μF 50V	RC2
C69	Electrolytic	0.1μF 50V (IC-2E only)	AK
C70	Barrier Lav	SS45X1E472M	
C71	Ceramic	10P 50V	
		(IC-2E only)	
C72	Ceramic	10P 50V	
		(IC-2E only)	
C73	Ceramic	47P 50V	
		(IC-2E only)	
C74	Electrolytic	10μF 16V	RC2
	F1 . 4 .1	(IC-2A/AT only)	
C75	Electrolytic	0.47μF 50V	RC2
C76	Ceramic	(IC-2A/AT only)	
C/6	Ceramic	470P 50V	
		(IC-2A/AT only)	
S1	Switch	TWN0301	
B1	PC Board	B-391C	

[PLL UNIT]

REF. NO.	DESCRIPTION	PART NO.
IC1	IC	TC9122P
IC2	IC	TC5081P
IC3	IC	TC5082P-GL
Q1	FET	2SK192-Y
Q2	Transistor	2SC2668-0
Q3	Transistor	2SC2668-0
Q4	Transistor	2SC2668-0
Q5	Transistor	2SC945-R
Ω6	Transistor	2SC2026
Q7	Transistor	2SC2668-0
Q8	Transistor	2SC2026
Q9	Transistor	2SC2668-0
Q10	Transistor	2SC2458-GR
Q11	Transistor	2SC383TM
Q12	Transistor	2SC2053
Q13	Transistor	2SC1947
Q14	Transistor	2SA1048-Y
D3	Varactor Diode	1SV50
D4	Diode	1SS53
D5	Diode	1S1555
D6	Diode	1SS53
D7	Diode	1SS53
D8	Diode	1SS53
D9	Diode	1SS53
D10	Diode	1SS53
D11	Diode	1SS53
D12	Diode	1SS53
D13	Diode	1SS53
D14	Diode	1S1555
D15	Diode	1S1209
D16	Diode	1SS53
D17	Diode	1SS53
D18	Diode	1S1555
V4	0	E 40000111- 11040/T
X1	Crystal	5.12000MHz HC18/T
X2	Crystal	32.32750MHz HC18/T
X3	Crystal	35 00125MHz HC18/T

[PLL UNIT]

[PLL UNIT]										
REF. NO.	DESCRIPTION	PART NO.								
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24 L25 L26 L27	Choke Choke Coil Choke Choke Choke Choke Coil Coil Coil Coil Coil Coil Coil Coil	LR-118 LR-77 LB-88 LW-20 220 L4 LR-79 LB-90 LB-89 LB-89 LB-89 LB-91 LB-91 LB-91 LS-160 LA-127 LA-134 LA-121 LR-78								
L28 L29 L30 L31 L32	Coil Coil Coil Choke Choke	LA-136 LA-135 LA-143 LR-77 LR-118								
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31	Deleted Resistor	47K-J ELR10 47K-J ELR10 10K-J ELR10 470-J R10 10K-J ELR10 10K-J ELR10 4.7K-J ELR10 220-J ELR10 220-J ELR10 22K-J ELR10 120K-J ELR10 120K-J ELR10 22-J ELR10 22-J ELR10 22-J ELR10 22-J ELR10 22-J ELR10 470-J ELR10 22-J ELR10 47K-J ELR10 47K-J ELR10 47K-J ELR10 47K-J ELR10 47K-J ELR10 22K-J ELR10 2.2K-J ELR10								

	REF. NO.	DESCRIPTION	PART NO.	REF. NO.	DESCRIPTION	PAF	RT NO.
	R33	Resistor	1K-J ELR10	C43	Ceramic	33P	50V
	R34	Resistor	33K-J ELR10	C44	Ceramic	33P	50V
	R35	Resistor	47-J ELR10	C46	Ceramic	68P	50V
	R36	Resistoe	4.7K-J ELR10	C47	Ceramic	68P	50V
	R37	Resistor	47-J ELR10	C48	Ceramic	56P	50V
	R38	Resistor	82K-J ELR10	C49	Ceramic	68P	50V
	R39	Resistor	33K-J ELR10	C50	Ceramic	0.001	50V
	R40	Resistor	82K-J ELR10	C51	Ceramic	0.001	50V
	R41	Resistor	47-J ELR10	C52	Ceramic	56P	50V
	R42	Resistor	10K-J ELR10	C53	Ceramic	22P	50V
	R43	Resistor	150-J ELR10	C54	Ceramic	56P	50V
	R44	Resistor	470-J ELR10	C55	Ceramic	0.001	50V
	R45	Resistor	27-J ELR10	C56	Ceramic	47P	50V
	R46	Resistor	47-J ELR10	C57	Ceramic	5P	50V
	R47	Resistor	47-J ELR10	C58	Ceramic	5P	50 V
	R48	Resistor	47-J ELR10	C59	Ceramic	0.001	50V
	R49	Resistor	2.2-J ELR10	C60	Ceramic	0.001	50V
	R50	Resistor	82-J ELR10	C61	Ceramic	47P	50V
	R52	Resistor	22-J ELR10	C62	Ceramic	12P	50V
Ì	R53	Resistor	330-J ELR10	C63	Ceramic	0.5P	50V
	R54	Resistor	15K-J ELR10	C64	Ceramic	0.001	50V
	R55	Deleted		C65	Ceramic	12P	50V
	R56	Resistor	100K-J ELR10	C66	Ceramic	0.001	50V
	R57	Resistor	2.2K-J ELR10	C67	Ceramic	470P	50V
				C68	Ceramic	0.001	50V
	C1	Ceramic	0.001 50V	C69	Electrolytic	4.7μF	35V RC2
	C2	Ceramic	0.001 50V	C70	Ceramic	10P	50V
	C3	Ceramic	0.001 50V	C71	Ceramic	0.35P	50V
	C4	Ceramic	0.001 50V	C72	Ceramic	10P	50V
	C5	Ceramic	0.001 50V	C73	Ceramic	0.001	50V
	C6	Ceramic	0.001 50V	C74	Ceramic	470P	50V
	C7	Ceramic	0.001 50V	C75	Ceramic	47P	50V
	C8	Ceramic	0.001 50V	C76	Ceramic	470P	50V
	C9	Ceramic	0.001 50V	C77	Ceramic	10P	50V
	C10	Ceramic	0.001 50V	C78	Ceramic	0.5P	50V
	C11	Ceramic	0.001 50V	C79	Ceramic	10P	50V
	C12	Ceramic	0.001 50V	C80	Ceramic	470P	50V
i	C13	Tantalum	CS15E1H 2R2M	C81	Ceramic	470P	50V
	C14	Barrier Lay	SS45X1E103M	C82	Ceramic	47P	50V
	C15	Electrolytic	10μF 16V F	RC2 C83	Ceramic	470P	50V
	C16	Ceramic	3P 50V	C84	Ceramic	470P	50V
	C17	Ceramic	470P 50V	C85	Trimmer	MCV50D1I	H200 max20P
	C18	Ceramic	470P 50V	C86	Trimmer	MCV50D1I	H100 max10P
	C20	Ceramic	51P 50V	C87	Ceramic	15P	50V
	C21	Electrolytic	100μF 10V N	MS C88	Electrolytic	1μF	50V RC2
ļ	C22	Ceramic	470P 50V	C89	Ceramic	470P	50V
	C23 ·	Ceramic	470P 50V	C90	Trimmer	MCV50D1	H100 max 10P
	C24	Ceramic	470P 50V	C91	Trimmer	MCV50V1I	H200 max20P
	C25	Ceramic		UJ) C92	Ceramic	470P	50V
	C26	Ceramic	1P 50V	C93	Ceramic	10P	50V
	C27	Ceramic	33P 50V (UJ) C94	Ceramic	100P	50V
	C28	Ceramic	3P 50V	C95	Ceramic	33P	50V
	C29	Ceramic	0.001 50V	C96	Ceramic	100P	50V
1	C30	Ceramic	0.001 50V	C97	Ceramic	2P	50V
ĺ	C31	Ceramic	12P 50V	C98	Ceramic	27P	50V
	C32	Ceramic	39P 50V	C100	Ceramic	470P	50V
	C33	Barrier Lay	SS45X1E472M	C102	Electrolytic	0.47μF	50V RC2
	C35	Ceramic	33P 50V				
	C36	Ceramic	0.001 50V	S1	Switch	HSW0567-0	01-310
	C37	Barrier Lay	SS45X1E472M	S2	Switch	HSW0567-0	01-310
	C38	Ceramic	0.001 50V	S3	Switch	HSW0567-0	
	C39	Electrolytic	100μF 10V N	MS			
	C40	Barrier Lay	SS45X1E472M	B1	PC Board	B-390D	
	C+0	Duillot Luy	0010711				

AC BATTERY CHARGER

BC-30

MAINTENANCE MANUAL

SPECIFICATIONS

Usable Temperature

Dimensions

Weight

Applicable Battery Packs IC-BP2, IC-BP3, IC-BP5

IC-BP4 (applies only with Nickel-Cadmium batteries inserted)

Number of Semiconductors Transistor 9
. IC 2

Diode 12

Power Supply Requirement 100/117/230V AC 50/60Hz

(Input voltage can be selected by changing internal wiring.)

Charging Current 600mA for IC-BP2 and IC-BP5

25mA for IC-BP3

45mA for IC-BP4 (Nickel-Cadmium inserted)

 0° C \sim +45° C for IC-BP3 and IC-BP4 +10° C $\sim~40^{\circ}$ C for IC-BP2 and IC-BP5

72mm(H) \times 172mm(W) \times 104mm(D)

Approx. 1.0kg

DESCRIPTION OF CONTROLS

- 1. Power Switch
 - When the charger is connected to a wall outlet, it turns the charger on.
- 2. Power Lamp Indicates power is on.
- Charge lamp Indicates charging is underway, goes out then charging of rapid-charge packs is completed.

- 4. Insertion slot for battery packs.
- 5. Charging terminal Correspond to the terminals on the bottom of the battery packs.
- 6. Microswitches.
 - Since the current and capacity for each battery pack is different, these microswitches select the proper factors for each one.

1. Remove the four screws which have retained the cover of the unit as shown in the figure.

2. Remove the cover from the chassis with taking care to donot make damage to the internal wirings as shown. When you wish to remove the PC Board, remove the four screws at each end of the board as shown in the figure.

This charger provides proper charging current for various battery packs which is selected by charging current selector on the bottom of the battery pack.

Also a constant charging current is provided by controlling conducting phase angle of the SCR in the circuit. It keeps the current constant even if various battery packs which have different output voltage, has been used.

1. CONDUCTING ANGLE CONTROL CIRCUIT

A gate pulse is used to control the thyristor (SCR) in the circuit. This gate pulse is a part of a full-wave rectified wave and its phase angle is controlled by a saw tooth pulse which is synchronized to the full-wave rectified wave.

The pulse falltime of the saw tooth pulse is controlled by an actual charging current, and it decides the phase angle of the gate pulse of between 40 degrees and 160 degrees.

The saw tooth pulse generate circuit consists of Q2, Q5 and C9.

A full-wave rectified voltage is applied to the base of $\Omega 2$ through R4 and turns $\Omega 2$ on at near its base line (D portion in the figure), and charges C9 to +9V which from regulator $\Omega 1$. When the rectified voltage exceeds +9V (out of D portion), $\Omega 2$ is turned off and the charged voltage of C9 is discharged through $\Omega 5$, and a saw tooth wave is generated across C9. This saw tooth pulse is fed to Pin 12 of IC2.

When the pulse voltage decreases less than gate's threshold voltage, Pin 11 of IC2 puts out H level voltage. This turns $\Omega4$ and $\Omega3$ on, and a portion of full-wave rectified voltage is fed to the gate of D6 SCR through $\Omega3$, and D6 is turned on.

When the SCR has been turned on, it holds this condition until the power source voltage becomes zero or its cathode is biased by reverse voltage. Thus, when the full-wave rectified voltage becomes less than +9V (D portion in the figure), the SCR will be turned off.

Rated charging current is decided by R37 \sim R42. R37 \sim R42 are selected by S3 \sim S5 which are turned on or off by a battery pack's charging current selector, and are in series with the charging battery.

A voltage across R37, R38 or R39 \sim R42 is integrated by R14 and C16, then fed to the base of Q6. Q5 and Q6 compose a differential amplifier. A reference voltage which is divided from +9V by R11 and R12, is applied to the base of Q5, thus the collector current of Q5 is varied by the base voltage of Q6, and controls discharging time of C9.

For example, when the charging current increases more than the specified charging current, Q6 collector current increases, Q5 collector current decreases, C9 discharging time becomes longer, the phase angle of D6 gate pulse delays (the pulse width becomes narrower), and the charging current decreases.

When the charging current decreases less than the specified charging current, the circuit functions the opposite way and keeps the charging current constant.

2. LOGIC CIRCUIT

The logic circuit is controlled by the charging current select switches S3 \sim S5, and the charging detector Q10. When charging IC-BP2 or IC-BP5, S5 is turned on by the charging current selector on the battery pack.

The charging current (600mA) flows through R39 \sim R42, and a voltage across these resistors is applied to the base of Q10 and turns it on. Thus, a gate input Pin 1 and 2 of IC2 becomes L level, its output Pin 3 H level. This puts out H level at Pin 4 of IC1, output of a flip-flop consisting of a gate of IC1 and a gate of IC2. Also Pin 10 of IC1 puts out H level and Pin 10 of IC2 L level.

This grounds the emitter of Q4 through R10 and Pin 10 of IC2, and Q3 is turned on during Pin 11 of IC2 is H level and charges the battery pack.

When the battery pack is fully charged, the built-in thermal switch in the pack is turned off and cuts off the ⊖ charging terminal. Thus, H level is applied to Pin 1 and 2 of IC2, Pin 5 of IC1 and the flip-flop is turned to reverse condition and Pin 4 of IC1 becomes L level. This puts out H level at Pin 10 of IC2 and turns Q4 off, and any charging current does not flow even if the thermal switch has been turned on when the battery pack is cooled.

When the battery pack is removed from the charger, S5 is turned off and Pin 5 of IC1 is grounded through S5. This resets the flip-flop for another charging.

When charging IC-BP3, S3 is turned on and the charging current (25mA) flows through R37.

Pin 5 and 8 of IC1 are grounded through S5, Pin 10 of IC2 is L level and Q4 emitter is grounded through R10. Thus, the charging current flows until the battery pack is removed from the charger.

When charging IC-BP4 inserted nickel-cadmium batteries S4 is turned on and the charging current (45mA) flows through R38. The logic circuit works the same as charging IC-BP3.

SPECIFICATIONS OF BATTERY PACKS

	IC-BP2	IC-BP3	IC-BP4	IC-BP4	IC-BP5
Cells [Capacity]	N-425A R (X 6) [400mAH]	N-250A A (X 7) [250mAH]	AA Size Alkaline (X 6)	AA Size Nickel- Cadmium (X 6)	N-425A R (X 9) [400mAH]
Voltage	7.2V	8.4V	9.0V	7.2V	10.8V
RF Output	, 1.0W	1.5W	1.5W	1.0W	2.3W
Charging	Rapid	Normal		Normal	Rapid
Charging Time	1 ~ 1.5H	15H		15H	1 ~ 1.5H
Suitable Charger	BC-30	BC-30 BC-25U IC-CP1		BC-30	BC-30
Charging Current	600mA	25mA		45mA	600mA
Ambient Temperature	+10°~+40°C	0°∼+45°C		0°~+45°C	+10°~+40°
Overcharge Protect	0	X		X	0
Current Selector					
Height	39m/m	39m/m	49m/m	49m/m	60m/m
Battery Replace	×	×	0	0	X

VOLTAGE CHART

TRANSISTOR

Note: Measuring instrument is a $50K\Omega/V$ multimeter.

BATTERY	N	o connectio	on	IC-	IC-BP3(25mA)			IC-BP4 (45mA)			IC-BP2/BP5 (600mA)		
Tr. NO.	BASE	COLLE- CTOR	EMI TTER	BASE	COLLE- CTOR	EMI TTER	BASE	COLLE- CTOR	EMI TTER	BASE	COLLE- CTOR	EMI TTER	
Q 1	9.8	18.0	9.2	9.8	14.5	9.1	9.8	14.5	9.2	9.8	13.0/20.0	9.2	
Q 2	9.4	2.9	9.2	9.4	6.2	9.1	9.4	6.2	9.2	9.4	5.2/4.4	9.2	
Q 3	16.5	15.0	17.0	16.0	2.7	3.2	16.0	2.4	2.6	14.0	5.0/7.8	14.0	
Q 4	9.1	16.5	8.5	1.75	16.0	1.65	1.6	16.0	1.7	3.6/4.8	14.0	3.3/4.4	
Q 5	0.9	2.4	0.32	1.0	6.0	0.45	1.0	6.2	0.45	1.0	4.9/3.9	0.44/0.42	
Q 6	0.7	9.2	0.32	1.05	9.1	0.45	1.0	9.2	0.45	1.0	9.1	0.44/0.42	
Q10	0	7.6	GND	0.75	0.1	GND	0.74	0.1	GND	0.75	0.1	GND	
Q11	0	9.0	GND	0.65	0.1	GND	0.65	0.1	GND	0	8.9	GND	
Q12	0	9.0	GND	0	9.0	GND	0	9.0	GND	0.65	0.1	GND	

IC

IC	Condition							PIN	NO.						
NO.	Condition	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	_	9.0	9.0	0	9.0	0	0	GND	0	0	9.0	0	9.0	9.0	9.0
	25mA	0	0	9.0	9.0	0	0	GND	0	9.0	9.0	9.0	0	9.0	9.0
IC1	45mA	0	0 .	9.0	9.0	0	0	GND	0	9.0	9.0	9.0	0	9.0	9.0
	600mA	9.0	9.0	0	9.0	9.0	0	GND	9.0	0	9.0	9.0	9.0	0	9.0
	CUT	9.0	9.0	0	0 .	9.0	9.0	GND	9.0	0	9.0	9.0	9.0	0	9.0
		0	0	9.0	0	9.0	9.0	GND	9.0	9.0	0	9.0	2.5	0	9.0
	25mA	0	0	9.0	0	9.0	9.0	GND	9.0	9.0	0	*1.0	*6.0	9.0	9.0
IC2	45mA	0	0	9.0	0	9.0	9.0	GND	9.0	9.0	0	*1.0	*5.0	9.0	9.0
	600mA	0.8	0.8	9.0	0	9.0	9.0	GND	9.0	9.0	0	*3.5	*5.0	9.0	9.0
	CUT	4.3	4.3	0	9.0	0	0	GND	0	9.0	9.0	6.0	4.2	9.0	9.0

^{*}Will be varied by battery voltage and/or charging conditions.

REF. NO.	D	DESCRIPTION		DESCRIPTION			
IC1	IC μPD4011		R29	Resistor	100K R25		
IC2	IC μPD4011		R30	Resistor	5.6K R25		
•			R31	Resistor	470K R25		
Q1	Transistor	2SC1815-O, Y, GL, BL	R32	Resistor	22K R25		
Q2	Transistor	2SA1015-Y	R33	Resistor	680 R25		
Q3	Transistor	2SA1015-Y	R34	Resistor	680 R25		
Q4	Transistor	2SC1740-Q, R, S, E	R35	Resistor	10K ELR25		
Q5	Transistor	2SC945-P	R36	Resistor	10K ELR25		
Q6	Transistor	2SC945-P	R37	Resistor	27 R25		
Q10	Transistor	2SC1740-Q, R, S, E	R38	Resistor	15 R25		
Q11	Transistor	2SC1740-Q, R, S, E	R39	Resistor	1 R25		
Q12	Transistor	2SC1740-Q, R, S, E	R40	Resistor	1 R25		
~			R41	Resistor	1 R25		
D1	Zener	XZ-096	R42	Resistor	1 R25		
D2	Diode	1S1555					
D3	Diode	GP-08B	C1	Electrolytic	47μF/25V		
D4	Diode	GP-08B	C2	Electrolytic	10μF/16V		
D5	Diode	1S1555	C3	Ceramic	470P		
D6	SCR	2P1M	C4	Electrolytic	100μF/10V		
D9	Diode	GP-08B	C5	Ceramic	0.0047		
D10	Diode	1S1555	C6	Ceramic	0.0047		
D11	Diode	1S1555	C7	Ceramic	0.0047		
D12	LED	LD-002R	C8	Ceramic	470P		
D12	Diode	1S1555	C9	Barrier Lay	0.047		
DIT	Brodo	151333	C10	Ceramic	470P		
L1	Choke	LW-16	C11	Ceramic	470P		
L2	Choke	LW-9	C13	Ceramic	470P		
L3	Choke	LW-9	C14	Ceramic	470P		
	CHOKE	Live	C15	Ceramic	470P		
R1	Resistor	820 ELR25	C16	Electrolytic	47μF 10V		
R2	Resistor	220 ELR25	C10	Electrolytic	22μ 16V		
R3	Resistor	33 ELR25	C20	Ceramic	470P		
	1	,		1			
R4	Resistor	22K ELR25	C21	Ceramic			
R5	Resistor	2.2K ELR25	C22	Electrolytic	2.2μ 50V		
R6	Resistor	3.3K ELR25	G1	G 14-1	CDIOC		
R7	Resistor	1K R25	S1	Switch	SDJ2S		
R8	Resistor	10K R25	S3	Switch	D2MS		
R9	Resistor	1K ELR25	S4	Switch	D2MS		
R10	Resistor	47K R25	S 5	Switch	D2MS		
R11	Resistor	22K ELR25		200	D 420D		
R12	Resistor	2.7K ELR25		PC Board	B-439B		
R13.	Resistor	1.5K ELR25			44040		
R14	Resistor	22K ELR25		HEATSINK	41912		
R15	Resistor	15K ELR25			a > 140 a 4		
R16	Resistor	680 ELR25		Fuse Holder	S-N5051		
R17	Resistor	820 ELR25					
R23	Resistor	10K ELR25		Fuse	2A		
R24	Resistor	100K ELR25					
R25	Resistor	10K ELR25	T1	Transformer	TP-25		
R26	Resistor	100K ELR25					
R27	Resistor	10K ELR25 .		Power Cord	OPC-013		
R28	Resistor	100K ELR25					

IC-2A/AT/E SCHEMATIC DIAGRAM

IC-ZE INDEPENDENT TONE

Cxina

0 0

PLL UNIT VOLTAGE CHART (TRANSMIT)

PLL UNIT VOLTAGE CHART (RECEIVE)

1)

