TP nº 1 : calculabilité, machines de Turing

1. Vrai / Faux

- 1. Un compilateur et un interpréteur créent tous les deux des fichiers exécutables et réutilisables.
- 2. Un nombre qui a une infinité de décimales n'est pas calculable.
- **3.** Une machine de Turing universelle peut simuler n'importe quelle machine de Turing.
- **4.** Une machine de Turing quelconque peut être assimilée à un programme informatique.
- **5.** Il existe des programmes dont la terminaison ou la non terminaison ne sont pas prouvables.

2. Calculabilité

Montrer qu'il n'existe pas de fonction Python prenant en entrée une fonction Python f, sans paramètre, et renvoyant True si et seulement si l'exécution f() de f s'arrête.

3. Inversion des 0 et des 1

Sans consulter l'exemple qui a été vu en cours, compléter la table de transition d'une machine de Turing permettant d'obtenir le complément à 1 d'un nombre binaire. La machine démarre dans l'état E1, les données étant à droite de la tête de lecture.

État	Lecture	Écriture	Déplacement	État suivant
E1	blanc	blanc	gauche	E2

4. Machine mystère

Soit une machine de Turing ayant la table de transition suivante. La machine démarre dans l'état E1, les données, en binaire, étant à droite de la tête de lecture.

État	Lecture	Écriture	Déplacement	État suivant
E1	blanc	blanc	gauche	E2
E2	0	0	gauche	E2
	1	1	gauche	E2
	blanc	0	gauche	Fin

- 1. Que fait cette machine?
- 2. Si les données binaires représentent un entier naturel, quelle opération vient d'être réalisée?

5. Ajouter 1

Aller sur le site web:

http://inriamecsci.github.io/#!/grains/machine-turing

Sélectionner le programme *Ajouter 1*. Expliquer en quoi la table de transition permet bien d'obtenir l'ajout de 1 sur un nombre entier binaire, dont les données sont à droite de la tête de lecture.

Remarque : ce site permet de voir une animation correspondant au fonctionnement de la machine de Turing. Observer le déroulement des trois programmes étudiés dans ce TP.