MATH H113: Honors Introduction to Abstract Algebra

2016-04-15

- Chinese Remainder Theorem
- Euclidean domains

Homework 4/22:

Sect. 7.6: 1, 3, 5c, 7

Sect. 8.1: 3, 7, 11

Sect. 8.2: 8 (Assume $D \neq \emptyset$ and $0 \notin D$)

Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem): Let R be a commutative ring with 1, and let A_1, \ldots, A_k be ideals in R.

- a. The map $\phi: R \to (R/A_1) \times \cdots \times (R/A_k)$ is a ring homomorphism and its kernel is $A_1 \cap \ldots \cap A_k$.
- b. Assume that A_i and A_j are comaximal $\forall i \neq j$. Then $A_1 \cap \ldots \cap A_k = A_1 A_2 \ldots A_k$, and ϕ induces an isomorphism $R/A_1 A_2 \ldots A_k = R/(A_1 \cap \ldots \cap A_k) \cong (R/A_1) \times \cdots \times (R/A_k)$.

(Non-)Proof: We proved the k=2 case already. The cases k>2 are proved by induction (see the book). It's also true for k=1 (easy), and for k=0 $(A_1 \ldots A_k = A_1 \cap \ldots A_k = R$ and $(R/A_1) \times \ldots \times (R/A_k) = (0)$).

Example: Find all residue classes $x \mod 21$ that satisfy $x^2 \equiv 4 \pmod{21}$.

We have $\mathbb{Z}/21\mathbb{Z} \cong (\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/7\mathbb{Z})$.

If $n \in \mathbb{Z}$ and $n^2 \equiv 4 \pmod{21}$ then $x^2 \equiv 4 \pmod{3}$ and $x^2 \equiv 4 \pmod{7}$. And conversely if $n^2 \equiv 4 \pmod{3}$ and $n^2 \equiv 4 \pmod{7}$ then $a = (\bar{n}, \bar{n}) \in (\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/7\mathbb{Z})$ satisfies $a^2 = (\bar{4}, \bar{4})$

 \therefore (applying ϕ^{-1}): $b = \bar{n} \in \mathbb{Z}/21\mathbb{Z}$ satisfies $b^2 = \bar{4} \in \mathbb{Z}/21\mathbb{Z}$.

Solve $x^2 \equiv 4 \pmod{3}$

 $0^2=0\not\equiv 4$

 $1^2 = 1 \equiv 4$

 $2^2=4\equiv 4$

Solutions are $1, 2 \pmod{3}$

Solve $x^2 \equiv 4 \pmod{7}$

n		0	1	2	3	4	5	6
n^2	$\mod 7$	0	1	4	2	2	4	1

Solutions are $2, 5 \pmod{7}$

$x \mod 3$	$x \mod 7$	$x \mod 21$
1	2	16
1	5	19
2	2	2
2	5	5

Slightly bigger example (part of Ex. 4 p. 248):

Solve for $x^2 \equiv x \pmod{30}$

 $\mathbb{Z}/30\mathbb{Z} \cong (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/5\mathbb{Z})$

all with solutions (0, 1) of $x^2 \equiv x \pmod{2, 3, 5}$

(If p is prime then $\mathbb{Z}/p\mathbb{Z}$ is a field, \therefore it's an integral domain.

So $x^2 = x$ in $\mathbb{Z}/p\mathbb{Z} \iff x(x-1) = 0 \iff x = 0 \lor x = 1$

$\frac{1}{n \mod 2}$	$n \mod 3$	$n \mod 5$	$n \mod 30$
0	0	0	0
0	0	1	6
0	1	0	10
0	1	1	16
1	0	0	15
1	0	1	21
1	1	0	25
1	1	1	1

General idea: to solve a given polynomial equation with integer coefficients mod $n = p_1^{a_1} \cdots p_r^{a_r}$ it's equivalent to solving it mod $p_i^{a_i} \, \forall i$ (assuming the p_i are all distinct).

Euclidean Domains

We'lls see that you can do the Euclidean algorithm in ring's other than \mathbb{Z} . Especially: F[x], where F is any field. For the rest of today's lecture, all rings are assumed to be commutative.

Definition: Let R be an integral domain. Then:

- a. A norm on R is a function $N: R \to \mathbb{N}$ such that N(0) = 0.
- b. A norm N on R is positive if N(r) > 0 for all $r \neq 0$.
- c. A norm N on R is Euclidean if for all $a, b \in R$ with $b \neq 0$ there are $q, r \in R$ such that a = qb + r and r = 0 or N(r) < N(b).

Example:
$$R = \mathbb{Z}$$
, $N(n) = |n|$
 $7 = 2 \cdot 3 + 1$ $N(1) = 1 < 3 = N(3)$
or
 $7 = 3 \cdot 3 - 2$ $N(-2) = 2 < 3 = N(3)$
(So we're dropping uniqueness)

Definition: A Euclidean domain is an integral domain with a Euclidean norm. **Examples:**

- 1. \mathbb{Z} is a Euclidean domain with N(n) = |n|
- 2. Similarly for $N(n) = \begin{cases} 0 & n = 0 \\ |n| 1 & n \neq 0 \end{cases}$
- 3. Similarly for $N(n) = 2^{|n|} 1$
- 4. $R = \{x + iy : x, y \in \mathbb{Z}\}$ (subring in \mathbb{C}) This is called the ring of Gaussian integers, $\mathbb{Z}[i]$. Let $N(x+iy) = x^2 + y^2 = |x+iy|^2$. This is a Euclidean norm on $\mathbb{Z}[i]$.

Proof: N maps $\mathbb{Z}[i]$ to \mathbb{N} and N(0) = 0. easy.

In the complex plane, $\mathbb{Z}[i]$ looks like: Let $\alpha, \beta \in \mathbb{Z}[i], \beta \neq 0$.

Let
$$\alpha, \beta \in \mathbb{Z}[i], \beta$$

 $\mathbb{Z}[i]$ is $(\cdot \text{ or } \star)$
 $\beta \mathbb{Z}[i] \subseteq \mathbb{Z}[i]$ is \star
 $\beta = 2 + i$
 $i\beta = -1 + 2i$

You can cover the plane with squares with vertices $(n+mi)\beta$, $(n+1+mi)\beta$, $n+(m+1)\beta$, $(n+1+(m+1)i)\beta$ \$. In each square, for any point inside that

square, the distance to the nearest vertex is at most $\frac{|\beta|}{\sqrt{2}}$ So given α , $\exists q \in \mathbb{Z}[i]$ such that $|q\beta - \alpha| \leq \frac{\beta}{\sqrt{2}}$ so $N(q\beta - \alpha) = N(\alpha + q\beta) \leq$ $(\frac{|\beta|^2}{2} < |\beta|^2 = N(\beta).$ That's the "division algorithm" for $\mathbb{Z}[i]$.

See picture

5. Let F be any field, and let R = F

Define
$$N(f(x)) = \begin{cases} \deg f & f(x) \neq 0 \\ 0 & f(x) = 0 \end{cases}$$

Then N is a Euclidean norm, so F[x] is a Euclidean domain. (See Ex. 8.4.14)

6. Let F be any field and let $N: F \to \mathbb{N}$ be any norm. Then N is a Euclidean

Given $a,b\in F$ with $b\neq 0,$ let $q=\frac{d}{b}$ and r=0 (a=qb+r).

Let R be an integral domain in which $N(r) = 0 \ \forall r$ is a Euclidean norm. Then R must be a field. Take any $b \in R$, $b \neq 0$, and let a = 1. Then

```
1=qb+r with q,r\in R and r=0 or N(r)< N(b)=0 (can't happen) \therefore 1-qb, so b is a unit \forall nonzero b\in R. R is a field
```

(R[x, y] is not a Euclidean domain)