

DBSCAN

- DBSCAN stands for <u>D</u>ensity-<u>b</u>ased <u>s</u>patial
 <u>c</u>lustering of <u>applications</u> with <u>n</u>oise.
- Let's review a brief history of the algorithm and then explore an intuition based approach to understanding how it works.

- DBSCAN Key Ideas
 - DBSCAN focuses on using **density** of points as its main factor for assigning cluster labels.
 - This creates the ability to find cluster segmentations that other algorithms have difficulty with.

Consider the following data set:

Cleary two "moon" shaped clusters:

But distance based clustering has issues:

Results of K-Means:

Results of DBSCAN:

- DBSCAN iterates through points and uses two key hyperparameters (epsilon and minimum number of points) to assign cluster labels.
- Unlike K-Means, it focuses on density as the main factor for cluster assignment of points.

- DBSCAN Key Hyperparameters:
 - Epsilon:
 - Distance extended from a point.
 - Minimum Number of Points:
 - Minimum number of points in an epsilon distance.

- DBSCAN Point Types:
 - Core
 - Border
 - Outlier

- DBSCAN Point Types:
 - Core:
 - Point with min.
 points in
 epsilon range
 (including
 itself).

 $\varepsilon = 1$ and Min Points = 3

- DBSCAN Point Types:
 - o Border:
 - In epsilon range of core point, but does not contain min. number of points.

$$\varepsilon = 1$$
 and Min Points = 3

- DBSCAN Point Types:
 - o Border:
 - In epsilon range of core point, but does not contain min. number of points.

$$\varepsilon = 1$$
 and Min Points = 3

- DBSCAN Point Types:
 - o Border:
 - In epsilon range of core point, but does not contain min. number of points.

- DBSCAN Point Types:
 - o Border:
 - In epsilon range of core point, but does not contain min. number of points.

 $\varepsilon = 1$ and Min Points = 3

- DBSCAN Point Types:
 - Outlier:
 - Can not be "reached" by points in a cluster assignment.

 $\varepsilon = 1$ and Min Points = 3

- DBSCAN Procedure:
 - Pick a random point not yet assigned.
 - Determine the point type.
 - Once a core point has been found, add all directly reachable points to the same cluster as core.
 - Repeat until all points have been assigned to a cluster or as an outlier.

- Epsilon Intuition:
 - Increasing epsilon allows more points to be core points which also results in more border points and less outlier points.
 - Imagine a huge epsilon, all points would be within the neighborhood and classified as the same cluster!

- Epsilon Intuition:
 - Decreasing epsilon causes more points not to be in range of each other, creating more unique clusters.
 - Imagine a tiny epsilon, the range would not extend far out enough to come into contact with any other points!

- Methods for finding an epsilon value:
 - Run multiple DBSCAN models varying epsilon and measure:
 - Number of Clusters
 - Number of Outliers
 - Percentage of Outliers

 Plot "elbow/knee" diagram comparing epsilon values:

- Min. Number of Samples Intuition:
 - Larger number causes more points to be considered unique outliers.
 - Imagine if min. number of samples was close to total number of points available, then very likely all points would become outliers.

- Choosing Min. Number of Samples:
 - Test multiple potential values and chart against number of outliers

labeled.

