Грищенко Юрій ІПС-32 Лабораторна робота №8

Постановка задачі: Впорядкована множина точок розглядається як простий многокутник. Чи можна побудвати опуклу оболонку простого многокутника за час, кращий за O(N log N)?

Опис алгоритму (алгоритм Лі):

Нехай p_1 — найлівіша вершина заданого простого многокутника q, а $(p_1,p_2,...p_N)$ - впорядкована циклічна послідовність його вершин.

Нехай внутрішня частина P залишається праворуч при обході його границі у вказаному порядку (тобто множина вершин многокутника орієнтована за годинниковою стрілкою).

Нехай p_M – найправіша вершина. Вершини p_1 та p_M будуть граничними точками опуклої оболонки многокутника q. Вони розбивають послідовність вершин многокутника на два ланцюги: один від p_1 до p_M , другий — від p_M до p_1 .

Достатньо дослідити побудову опуклої оболонки для ланцюга (p_1 , ... p_M) — верхньої оболонки.

Нехай $(q_1, q_2, ... q_R)$ — підпослідовність послідовності $(p_1, p_2, ... p_M)$, де $q_1 = p_1$ та $q_R = p_M$ — шукана опукла оболонка многокутника.

Кожне ребро q_iq_{i+1} є "кришкою" "кишені". Алгоритм проходить ланцюг та послідовно будує кришки усіх кишень.

Критичною будемо називати вершину, яка з останньою знайденою вершиною типу q утворює кишеню. Вони є кандидатами у вершини опуклої оболонки.

Рисунок 93. Ілюстрація просування по критичним вершинам

Позначимо через и вершину границі Р, яка передує qі.

Залежно від положення и відносно орієнтованого відрізка $p_M q_i$ можливі два випадки:

- **I.** Вершина и знаходиться праворуч q_мq або на ньому. Маємо 3 області, які визначаються:
- прямою, що проходить через точки q_{i-1} та q_i ;
- променем, який є продовженням відрізку q_iu;
- частиною границі многокутника Р, яка відповідає поточній кишені.
- **II.** Вершина и знаходиться ліворуч $p_M q_i$. У цьому випадку до розгляду додається четверта область.

Позначимо через v вершину, яка слідує за q_i на границі многокутника P. Ця вершина буде знаходитись в одній з вказаних областей розгляду.

1. Границя заходить в кишеню. Рухаємось по границі до тих пір, поки не досягнемо вершину w, яка знаходиться ззовні кишені.

2. Вершина v є критичною. Шукається опорна пряма з вершини v до ланцюга $(q_1, q_2, ... q_i)$. Можливо, будуть вилучені деякі $q_{i-1}, q_{i-2}, ...$. Тоді v — вершина опуклої оболонки.

3. Вершина v є критичною. Тоді v — вершина опуклої оболонки.

- **4.** Границя заходить всередину опуклої оболонки. Рухаємось по границі многокутника доти, поки не досягнемо першої вершини, яка має властивість:
 - належить області 3 або 2, і обробляється відповідно.
 - \circ співпадає з q_{M} , процедура завершується.

Складність алгоритму:

Після ініціалізації кожна вершина границі відвідується рівно один раз, перш ніж вона буде прийнята або виштовхнута. Обробка кожної вершини многокутника здійснюється за константний час. Послідовності (p_1 , ..., p_M) та (q_1 , ..., q_R) містять O(M) – елементів.

Нижня оболонка будується аналогічно.

Отже, опукла оболонка простого многокутника з N вершинами може бути побудована за оптимальний час $\Theta(N)$ при використанні пам'яті об'ємом $\Theta(N)$. Це швидше за задачу пошуку опуклої оболонки в загальному випадку (нижня межа — $\Omega(N \log N)$)

Реалізовано на мові Python.

Інтерфейс користувача:

Впорядкований набір точок простого прямокутника задається файлом points.txt. Програма у вікні показіє многокутник та опуклу оболонку (як верхню, так і нижню). У консоль виводиться debug-інформація.