数理逻辑基础 作业 3

练习 7. 2. 下面的公式那些恒为永真式?

$$3^{\circ} (q \vee r) \rightarrow (\neg r \rightarrow q)$$

$$4^{\circ} (p \wedge \neg q) \vee ((q \wedge \neg r) \wedge (r \wedge \neg p))$$

$$5^{\circ} (p \to (q \to r)) \to ((p \land \neg q) \lor r)$$

解: 3° $(q \vee r) \rightarrow (\neg r \rightarrow q)$ 是永真式, 以下是它的真值表.

 $4^{\circ}(p \wedge \neg q) \vee ((q \wedge \neg r) \wedge (r \wedge \neg p))$ 不是永真式, 以下是它的真值表.

 $5^{\circ} (p \to (q \to r)) \to ((p \land \neg q) \lor r)$ 不是永真式, 以下是它的真值表.

数理逻辑基础 作业 3 傅申 PB20000051

练习 7. 3. 以下结论是否正确? 为什么?

$$1^{\circ} \models p(x_1, \cdots, x_n) \Leftrightarrow \models p(\neg x_1, \cdots, \neg x_n)$$

$$2^{\circ} \vDash (p \to q) \leftrightarrow (p' \to q') \Rightarrow \vDash p \leftrightarrow p' \perp \exists \vdash q \leftrightarrow q'$$

解: 1° 正确, 证明如下.

(充分性) 因为 $\models p(x_1, \dots, x_n)$,用 $\neg x_1, \dots, \neg x_n$ 分别全部替换 $p(x_1, \dots, x_n)$ 中的 x_1, \dots, x_n ,由代换定理 有 $\models p(\neg x_1, \dots, \neg x_n)$

(必要性) 已知 $\models p(\neg x_1, \dots, \neg x_n)$, 用反证法, 假设存在 x_1, \dots, x_n 使得 $v(p(x_1, \dots, x_n)) = 0$, 则取 $x_1' = \neg x_1$, $\dots, x_n' = \neg x_n$, 因为 $v(\neg \neg q) = v(q)$, 所以 $v(\neg x_1') = v(x_1), \dots, v(\neg x_n') = v(x_n)$, 有

$$v(p(\neg x_1', \dots, \neg x_n')) = p(v(\neg x_1'), \dots, v(\neg x_n')) = p(v(x_1), \dots, v(x_n)) = v(p(x_1, \dots, x_n)) = 0$$

这与 $\models p(\neg x_1, \dots, \neg x_n)$ 矛盾, 所以不存在 x_1, \dots, x_n 使得 $v(p(x_1, \dots, x_n)) = 0$, 即 $\models p(x_1, \dots, x_n)$.

 2° 错误. 取 $p=q=x, p'=q'=\neg x$, 由同一律, $\models p \to q$, $\models p' \to q'$, 即 $v(p \to q) \equiv 1$, $v(p' \to q') \equiv 1$, 而 $(1 \leftrightarrow 1) = 1$, 所以 $\models (p \to q) \leftrightarrow (p' \to q')$, 但是显然 $v(p \leftrightarrow p') = v(x \leftrightarrow \neg x) \equiv 0$, $v(q \leftrightarrow q') \equiv 0$, 与题设不符, 所以题设错误.