Issued: Sep. 12, 2017

Due: Sep. 21, 2017

I. Reading Assignment:

- 1. Textbook Chapter 3
- 2. Learn more about "Mathematical Proofs" at $< en.wikipedia.org/wiki/Mathematical_proof >$ and < Supplemental Reading Introduction to Mathematical Arguments >.

II. Exercises:

Textbook Chapter 2

- 1. (20 points) 2.7
- 2. (10 points) 2.10
- 3. (10 points) 2.11
- 4. (10 points) Let the set E be formed by all extremal directions of the nonempty feasible domain $P = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0} \}$ of a standard form linear program.
 - (1) Show that, for any vector $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \in \mathbb{E}$ if and only if " $A\mathbf{d} = \mathbf{0}$ and $\mathbf{d} \geq \mathbf{0}$ ".
 - (2) Prove that E is a cone in \mathbb{R}^n .
 - (3) Prove that E is a convex subset of \mathbb{R}^n .
- 5. (18 points) In R^3 , define the set $F_3 = \{ \mathbf{x} \in R^3 \mid |x_1| + |x_3| \le x_2 \}$.
 - (1) Draw the graph of F_3 .
 - (2) Let the set B be formed by all boundary points of F_3 . Write down the mathematical expression of set B.
 - (3) Let the set I be formed by all interior points of F_3 . Write down the mathematical expression of set I.
 - (4) Find all extremal points of F_3 . Also find all vertices of F_3 .
 - (5) Prove that F_3 is a convex cone.
 - (6) What's the relation between F_3 and the nonnegative orthant $R_+^3 = \{ \mathbf{x} \in R^3 \mid x_j \ge 0, \text{ for } j = 1, 2, 3 \}$?

- 6. (16 pts) Let $P_1 = \{ \mathbf{x} \in \mathbb{R}^2 \mid 2x_1 4x_2 1 \le 0, \ 3x_1 x_2 + 3 \ge 0, \ x_1 \ge 0, \ x_2 \ge 0 \}.$
 - (a) Find all basic solutions of P_1 .
 - (b) Find all basic feasible solutions of P_1 .
 - (c) Find all extremal directions of P_1 .
 - (d) From the vertex $(0,0)^T$, find the moving directions to its adjacent vertices.
- 7. (16 pts) Let $P_2 = \{ \mathbf{x} \in \mathbb{R}^2 \mid 2x_1 2x_2 3 \le 0, 8x_1 x_2 + 4 \ge 0, x_1 \ge 0 \}.$
 - (a) Find all basic solutions of P_2 .
 - (b) Find all basic feasible solutions of P_2 .
 - (c) Find all extremal directions of P_2 .
 - (d) From the vertex $(0,4)^T$, find the moving directions to its adjacent vertices.