

Predicting Heart Disease Using Machine Learning

Digital Talent | SIB A
Jumat, 3 Desember 2021
Mentor: Rifyal Tumber

DATASET 11 - HEALTHCARE

Our Members

DIGITAL TALENT

Reza Sefti Damayanti

Pend. Teknologi Informasi - Universitas Bhinneka PGRI

Tiara Asa Wellana

Sistem Informasi - Universitas Indo Global Mandiri

Irsandi Nur Habibie Mukmin

Teknik Industri - Universitas Brawijaya

Maria Stefani Br Simbolon

Akuntansi - Universitas HKBP Nommemsen

Taufik Aji Putra

Statistika - Universitas Diponegoro

Project Steps

Objective

Penyakit jantung merupakan salah satu penyakit yang paling banyak diderita di dunia. Terkadang banyak penyakit jantung yang tidak dapat terdiagnosa lebih awal, sehingga pasien mengalami penyakit jantung ketika sudah parah dengan gejala yang muncul.

Dengan melakukan prediksi terhadap penyakit jantung, hal ini dapat meminimalisir terjadinya hal serupa. Oleh karena itu, akan dilakukan pendekatan model menggunakan Machine Learning untuk membantu dalam melakukan prediksi apakah pasien terindikasi terkena penyakit jantung atau tidak.

STAGE 1

Data Understanding

Understanding the Dataset

Dataset 11 - Healthcare

1	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
2	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
3	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
4	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
5	56	1	1	120	236	0	1	178	0	8.0	2	0	2	1
6	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
7	57	1	0	140	192	0	1	148	0	0.4	1	0	1	1
8	56	0	1	140	294	0	0	153	0	1.3	1	0	2	1
9	44	1	1	120	263	0	1	173	0	0	2	0	3	1
10	52	1	2	172	199	1	1	162	0	0.5	2	0	3	1
300	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
301	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
302	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
303	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
304	57	0	1	130	236	0	0	174	0	0	1	1	2	0

Deskripsi Dataset

Age

Menunjukkan umur dari masing-masing individu

Restecg

Hasil ECG

0 = Normal

1 = Kelainan gelombang ST-T

2= Hipertrofi

Ventrikel Kiri

Sex

Menunjukkan gender dari masing-masing individu

1 = male, 0 = female

Thalach

Detak jantung maksimal

Ср

Jenis Nyeri Dada yang dialami

1 = typical angina

2 = atypical angina

3 = non — anginal pain

4 = asymptotic

Chal

Nilai Cholestrol dalam satuan mg/dl

Trestbps

Menunjukkan nilai tekanan darah dari masing-masing individu dalam satuan mmHG

Fbs

Membandingkan nilai gula darah puasa dengan 120 mg/dl

Jika > 120mg/dl maka : 1 (true), lain : 0 (false)

1//.

Exang

Angina yang diinduksi oleh olahraga

Thal

Thalasemia

1,3 = normal6 = cacat tetap7 = cacat reversibel

Oldpeak

Depresi ST yang disebabkan oleh latihan relatif terhadap istirahat

Target

Diagnosis penyakit jantung

Slope

Latihan puncak segmen ST

1 = menanjak

2 = mendatar

3 = menurun

ca

Jumlah major vessel yang diwarnai oleh floursopy

STAGE 2

IDENTIFY ACTIVITIES

Describe what the activities should be done to get what to do on Stage 1

Import Library and Dataset to Notebook

Import Library Pandas, Lalu import dataset format CSV dengan source berasal dari raw data yang telah diunggah melalui Github. Link Google Collab: https://bit.ly/GoogleCollab_DMP

Aktivitas Selanjutnya yang perlu dilakukan

- Exploratory & Vizualization Data Analysis
- Data Preprocessing
- Modelling & Evaluation

STAGE 3

ANALYZE THE DATA

Exploratory & Data Visualization

____DioitalSkola

Data Exploration

data.dtypes

int64 age int64 sex int64 int64 trestbps chol int64 fbs int64 int64 restecg int64 thalach int64 exang oldpeak float64 int64 slope int64 ca thal int64 int64 target dtype: object

data.nuniq	ue()
age	41
sex	2
ср	4
trestbps	49
chol	152
fbs	2
restecg	3
thalach	91
exang	2
oldpeak	40
slope	3
ca	5
thal	4
target	2
dtype: int	54

data.shape

(303, 14)

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
               Non-Null Count Dtype
     Column
               303 non-null
                                int64
               303 non-null
                                int64
                                int64
               303 non-null
     trestbps 303 non-null
                                int64
     chol
                                int64
               303 non-null
               303 non-null
                                int64
               303 non-null
                                int64
     restecg
     thalach
               303 non-null
                                int64
               303 non-null
     exang
                                int64
     oldpeak
               303 non-null
                                float64
     slope
               303 non-null
                                int64
               303 non-null
                                int64
     ca
     thal
               303 non-null
                                int64
               303 non-null
                                int64
    target
dtypes: float64(1), int64(13)
memory usage: 33.3 KB
```

- Dapat dilihat bahwa data memiliki
 14 features dan 303 data input.
- Tipe data berupa integer dan float
- Feature data memiliki nilai unik yang jumlahnya tidak sama dengan data input sehingga semua feature dapat digunakan.

Data Exploration

data.describe()

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
count	303.00	303.00	303.00	303.00	303.00	303.00	303.00	303.00	303.00	303.00	303.00	303.00	303.00	303.00
mean	54.37	0.68	0.97	131.62	246.26	0.15	0.53	149.65	0.33	1.04	1.40	0.73	2.31	0.54
std	9.08	0.47	1.03	17.54	51.83	0.36	0.53	22.91	0.47	1.16	0.62	1.02	0.61	0.50
min	29.00	0.00	0.00	94.00	126.00	0.00	0.00	71.00	0.00	0.00	0.00	0.00	0.00	0.00
25%	47.50	0.00	0.00	120.00	211.00	0.00	0.00	133.50	0.00	0.00	1.00	0.00	2.00	0.00
50%	55.00	1.00	1.00	130.00	240.00	0.00	1.00	153.00	0.00	0.80	1.00	0.00	2.00	1.00
75%	61.00	1.00	2.00	140.00	274.50	0.00	1.00	166.00	1.00	1.60	2.00	1.00	3.00	1.00
max	77.00	1.00	3.00	200.00	564.00	1.00	2.00	202.00	1.00	6.20	2.00	4.00	3.00	1.00


```
[16] #Membedakan data yang kategorik dan kontinu
     categorical_val = []
     continous_val = []
     for column in data.columns:
         if len(data[column].unique()) <= 10:</pre>
             categorical_val.append(column)
         else:
             continous_val.append(column)
[17] categorical_val
     ['sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'ca', 'thal', 'target']
     continous_val
     ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']
```

Data Kategorik

- Sex
- Slope
- FbsCa
- Restecg Thal
- Exang
- Target

Data Numerik (Kontinu)

- Age
- Trestbps
- Chol
- Thalach
- Oldpeak

• Bagaimana hubungan variabel-variabel kategorik ['sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'ca', 'thal'] dengan variabel 'target'?

• Bagaimana hubungan variabel-variabel kategorik ['sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'ca', 'thal'] dengan variabel 'target'?

• Bagaimana hubungan variabel-variabel kategorik ['sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'ca', 'thal'] dengan variabel 'target'?

• Bagaimana hubungan variabel-variabel kontinu ['age', 'trestbps', 'chol', 'thalach', 'oldpeak'] dengan variabel 'target'?

Dapat dilihat bahwa penyakit jantung (Heart Disease) banyak diderita oleh berusia rentang 30-70+ orang yang tahun.

Secara visual dapat dilihat juga bahwa rentang usia 30-60 tahun lebih rentan terkena penyakit jantung disertai dengan max heart rate (thalach) yang tinggi.

Correlation (Heatmap)

(Continous Feature)

Semakin besar nilai korelasi/warna semakin gelap

Semakin menuju Korelasi Positif (+)

Semakin kecil nilai korelasi / warna semakin terang

Semakin Menuju Korelasi Negatif (-)

Correlation (Bar)

(Continous Feature)

Bagaimana korelasi antar variabel-variabel numerik dengan variabel "target"?

- trestbps (tekanan darah) and chol (kolestrol) adalah feature dengan korelasi terkecil.
- Semua variabel lainnya memiliki korelasi yang cukup.

Data Target

Dapat disimpulkan bahwa:

person with heart disease = 165 person without heart disease = 138

```
data.target.value_counts()
     165
     138
Name: target, dtype: int64
```


STAGE 4

DATA PREPROCESSING

Data akan di proses sedemikian rupa sehingga menghasilkan data yang bersih dan siap untuk dilanjutkan ke tahap selanjutnya.

Digital Skola

Missing Value & Duplicated Data

```
data.isna().sum()
age
sex
CD.
trestbps
chol
fbs
restecg
thalach
exang
oldpeak
slope
ca
thal
target
dtype: int64
```


- Dataset tidak memiliki missing value.
- Dataset memiliki data duplikat, tepatnya di index 164. Sehingga dilakukan penghapusan data duplikat.

DIGITAL TALENT | SIB-A

Penambahan Variabel Dummy

```
#Convert Catgorical Variables into Dummy

categorical_val.remove('target')

dataset = pd.get_dummies(data, columns = categorical_val)
```

Akan ada penambahan variabel dummy pada feature yang bersifat kategorikal.

Feature Scaling

Feature scaling menggunakan standar scaler diterapkan pada feature selain kategorikal kecuali feature target, dengan cara menghapus rata-rata dan melakukan scaling menjadi range tertentu.

	age	trestbps	chol	thalach	oldpeak 1
0	63	145	233	150	2.3
1	37	130	250	187	3.5
2	41	130	204	172	1.4
3	56	120	236	178	0.8
4	57	120	354	163	0.6
4	JI	120	JJ4	103	0.0

5443 1.087338
1.007330
3471 2.122573
7514 0.310912
9897 -0.206705
3939 -0.379244

Sebelum Feature Scaling Sesudah
Feature Scaling

Train-test split

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
y_train.value_counts()
     115
Name: target, dtype: int64
```

Mengatasi Imbalance (SMOTE)

```
from imblearn.over sampling import SMOTE
sm = SMOTE()
X_train_sm, y_train_sm = sm.fit_resample(X_train, y_train)
y train sm.value counts()
     115
     115
Name: target, dtype: int64
```


STAGE 5

DATA MODELLING

Modelling dilakukan untuk membuat dan menentukan model yang dapat membantu dalam melakukan prediksi penyakit jantung.

Logistic Regression

Logistic Regression adalah sebuah algoritma klasifikasi untuk mencari hubungan antara fitur (input) diskrit/kontinu dengan probabilitas hasil output diskrit tertentu.

Before SMOTE

Metrics Evaluation (Train)

Accuracy	85.78%
Precision	85.12%
Recall	89.56%
F-1 Score	87.28%

Metrics Evaluation (Test)

Accuracy	86.81%
Precision	89.36%
Recall	85.71%
F-1 Score	87.50%

Confusion Matrix: [[37 5] [7 42]]

Logistic Regression

After SMOTE

Metrics Evaluation (Train)

Accuracy	86.09%
Precision	84.29%
Recall	88.69%
F-1 Score	86.44%

[[96 19] [13 102]]

Confusion Matrix:

Metrics Evaluation (Test)

Accuracy	87.91%
Precision	91.30%
Recall	85.71%
F-1 Score	88.42%

Confusion Matrix: [[38 4] [7 42]]

auc_lr 0.9275996112730807

Support Vector Machine

Support Vector Machines (SVM) membuat model yang menetapkan titik data baru ke salah satu kategori yang diberikan. Dengan demikian, ini dapat dipandang sebagai pengklasifikasi linear biner non-probabilistik.

Support Vector Machine

Before SMOTE

Metrics Evaluation (Train)

Accuracy	91.94%
Precision	90.83%
Recall	94.78%
F-1 Score	92.76%

Confusion Matrix: [[85 11] [6 109]]

Metrics Evaluation (Test)

Accuracy	86.81%
Precision	89.36%
Recall	85.71%
F-1 Score	87.50%

Confusion Matrix: [[37 5] [7 42]]

Support Vector Machine

After SMOTE

Metrics Evaluation (Train)

Accuracy	90.43%
Precision	89.74%
Recall	91.30%
F-1 Score	90.51%

Confusion Matrix: [[103 12] 10 105]]

Metrics Evaluation (Test)

Accuracy	86.81%
Precision	89.36%
Recall	85.71%
F-1 Score	87.50%

Confusion Matrix: [[37 5] 7 42]]

auc_svm

0.9217687074829931

Decision Tree Classifier

Decision Tree Classifier membagi data menjadi himpunan bagian berdasarkan variabel inputnya. Algoritma ini merupakan jenis diagram alir yang membantu dalam proses pengambilan keputusan.

Decision Tree ini menjadi alat pendukung keputusan yang menggunakan grafik atau model seperti pohon. Grafik ini terdiri dari jumlah minimum ya/tidak pertanyaan dari sebuah pertanyaan, untuk menilai masing-masing probabilitasnya.

Before SMOTE

Metrics Evaluation (Train)

Accuracy	100.00%
Precision	100.00%
Recall	100.00%
F-1 Score	100.00%

Metrics Evaluation (Test)

Accuracy	80.22%
Precision	81.63%
Recall	81.63%
F-1 Score	81.63%

Confusion Matrix: [[33 9] [15 34]]

Decision Tree Classifier

After SMOTE

Metrics Evaluation (Train)

Accuracy	100.00%
Precision	100.00%
Recall	100.00%
F-1 Score	100.00%

Confusion Matrix: [0 115]]

Metrics Evaluation (Test)

Accuracy	78.02%
Precision	89.18%
Recall	67.34%
F-1 Score	76.74%

Confusion Matrix: [[38 4] [16 33]]

auc_dt 0.7397959183673468

Summary #1

Model Metrics		Before SMOTE		After SMOTE	
Model	Model Metrics	Train	Test	Train	Test
	Accuracy	85.78%	86.81%	86.09%	87.91%
Logistics Doguession	Precision	85.12%	89.36%	84.29%	91.30%
Logistics Regression	Recall	89.56%	86.71%	88.69%	85.71%
	F-1 Score	87.28%	87.5%	86.44%	88.42%
	Accuracy	91.94%	86.81%	90.43%	86.81%
SVM	Precision	90.83%	89.26%	89.74%	89.36%
SVIVI	Recall	94.78%	85.71%	91.30%	85.71%
	F-1 Score	92.76%	87.50%	90.51%	87.50%
	Accuracy	100.00%	80.22%	100.00%	78.02%
Decision Tues	Precision	100.00%	81.63%	100.00%	89.18%
Decision Tree	Recall	100.00%	81.63%	100.00%	67.34%
	F-1 Score	100.00%	8.63%	100.00%	76.74%

Model Terbaik

Summary #2

AUC (Logistic Regression) = 0.93 AUC (Support Vector Machine) = 0.92 AUC (Decision Tree) = 0.74

Hyperparameter Tuning

Model	Training Accuracy %	Testing Accuracy %
Tuned Logistic Regression (SMOTE)	88.26	89.01
Tuned Support Vectore Machine (SMOTE)	97.83	83.52
Tuned Decision Tree Classifier (SMOTE)	93.04	76.92

auc_lr 0.9237123420796891

auc_svm 0.9037900874635569

auc_dt 0.7993197278911565

#Summary 3

0.2

0.0

0.6

False Positive Rate

0.8

1.0

- AUC (Logistic Regression) = 0.92
- AUC (Support Vector Machine) = 0.90
- AUC (Decision Tree) = 0.80

Rekomendasi

Model terbaik adalah: Tuned Logistic Regression (SMOTE)

Model	Training Accuracy %	Testing Accuracy %
Tuned Logistic Regression (SMOTE)	88.26	89.01

Dengan menggunakan model terbaik, diharapkan bisa membantu dokter atau tim ahli kesehatan dalam memprediksi/mengklasifikasikan pasien berdasarkan feature/kriteria yang memungkinkan apakah pasien terindikasi mengalami penyakit jantung atau tidak, dengan lebih cepat dan dengan kemungkinan klasifikasi tepat sasaran yang besar.

Thank You!

