DEVOIR SUR TABLE n°2

Durée: 4 heures

L'usage de calculatrices est interdit

AVERTISSEMENT

La **présentation**, la lisibilité, l'orthographe, la qualité de la **rédaction**, **la clarté et la précision** des raisonnements entreront pour une **part importante** dans **l'appréciation des copies**. En particulier, les résultats non justifiés ne seront pas pris en compte. Les candidats sont invités à encadrer les résultats de leurs calculs.

Les problèmes sont indépendants

Problème 1

Partie I

Dans cette partie, on pose, pour $t \in \mathbb{R}$ et $n \in \mathbb{N}$: $R_n(t) = e^t - \sum_{k=0}^n \frac{t^k}{k!}$.

1. Montrer que R_n est une solution sur $\mathbb R$ de l'équation différentielle :

$$y'(t) - y(t) = \frac{t^n}{n!}$$
 (\mathscr{E})

2. Résoudre sur \mathbb{R} l'équation différentielle homogène associée $(\mathscr{E}_0):y'(t)-y(t)=0$ puis résoudre l'équation différentielle (\mathscr{E}) .

On exprimera les solutions à l'aide d'une intégrale qu'on ne cherchera pas à calculer.

- 3. En déduire que $\forall t \in \mathbb{R}, R_n(t) = e^t \int_0^t \frac{u^n}{n!} e^{-u} du$.
- 4. Montrer que, pour tout réel positif $t, |R_n(t)| \leq \frac{t^{n+1}e^t}{(n+1)!}$.
- 5. Si t est négatif, proposer une majoration de $|R_n(t)|$.
- 6. Justifier que pour tout $t \in \mathbb{R}$, $R_n(t) \underset{n \to +\infty}{\longrightarrow} 0$.
- 7. Retrouver, à l'aide de ce qui précède, le développement en série entière de la fonction exponentielle, en précisant son rayon de convergence.

Partie II

Soit g la fonction définie sur [0,1] par g(0)=0 et, pour tout $x\in]0,1], g(x)=x\ln(x)$.

1. (a) Étudier la continuité et les variations de la fonctions g, puis tracer sa courbe représentative sur [0,1]. On donne $\exp(-1) \approx 0,36$.

- (b) En déduire que $M = \sup_{x \in [0,1]} |g(x)|$ existe et donner sa valeur.
- 2. On définit la suite $(t_n)_{n\in\mathbb{N}}$ par $t_0\in]\frac{\mathrm{e}^{-1}}{3},\mathrm{e}^{-1}[$ et pour tout entier naturel n:

$$t_{n+1} = -g\left(t_n\right).$$

Montrer par récurrence que pour tout $n \in \mathbb{N}, t_n \in]0, e^{-1}[$, puis que $(t_n)_{n \in \mathbb{N}}$ est croissante.

3. Soient $a,b\in\mathbb{R}^2$ et une fonction f de classe \mathscr{C}^2 sur [a,b]. Montrer à l'aide d'une intégration par parties que :

$$f(b) = f(a) + f'(a)(b - a) + \int_{a}^{b} (b - t)f''(t)dt.$$

4. Montrer alors que, pour tout réel $x \in [t_0, e^{-1}]$:

$$|g(x) - g(e^{-1})| \le \frac{|x - e^{-1}|^2}{2t_0}$$

5. En déduire que, pour tout entier $n \in \mathbb{N}^*$,

$$\left| t_n - e^{-1} \right| \le \frac{\left| t_{n-1} - e^{-1} \right|^2}{2t_0}$$
 puis que $\left| t_n - e^{-1} \right| \le 2t_0 \left(\frac{e^{-1} - t_0}{2t_0} \right)^{2^n}$

6. Quelle est la limite de la suite $(t_n)_{n\in\mathbb{N}}$?

Partie III

On pose $I = \int_0^1 x^{-x} dx$ c'est-à-dire $I = \int_0^1 e^{-x \ln(x)} dx$.

- 1. Montrer que I est une intégrale convergente.
- 2. Montrer que, pour tout entier naturel non nul n:

$$I = \sum_{k=0}^{n} \left[\frac{(-1)^k}{k!} \int_0^1 x^k \ln^k x \, dx \right] + \int_0^1 \tilde{R}_n(x) dx$$

où on exprimera \widetilde{R}_n , à l'aide de la fonction R_n introduite en partie I.

- 3. Montrer que, pour tout entier naturel n, $\left| \int_0^1 \widetilde{R}_n(x) dx \right| \leqslant \frac{e^{1/e}}{e^{n+1}(n+1)!}$.
- 4. Pour tout couple d'entiers naturels (p,q), on pose $I_{p,q} = \int_0^1 x^p \ln^q x \, dx$.
 - (a) Montrer que $I_{p,q}$ est une intégrale convergente.
 - (b) Montrer que, pour tout couple d'entiers $(p,q) \in \mathbb{N} \times \mathbb{N}^*$,

$$I_{p,q} = -\frac{q}{p+1}I_{p,q-1}$$

- (c) Calculer $I_{p,0}$ puis exprimer $I_{p,q}$ en fonction de p et q.
- 5. Montrer en utilisant ce qui précède que $I = \sum_{n=1}^{+\infty} \frac{1}{n^n}$.

Partie IV

On propose de démontrer à nouveau l'égalité $\int_0^1 e^{-x \ln x} dx = \sum_{n=1}^{+\infty} \frac{1}{n^n}$ en utilisant, cette fois, le théorème d'intégration terme à terme. On pose $u_n = \frac{1}{n^n}$ pour $n \ge 1$.

- 1. Déterminer un équivalent de $\frac{u_{n+1}}{u_n}$.
- 2. En déduire que la série $\sum_{n\geq 1} \frac{1}{n^n}$ est convergente.
- 3. Rappeler le développement en série entière de la fonction exp sur \mathbb{R} puis exprimer pour tout $x \in]0;1], e^{-x \ln x}$ comme somme d'une série.
- 4. Appliquer soigneusement le théorème d'intégration terme à terme pour retrouver l'égalité

$$\int_0^1 e^{-x \ln x} dx = \sum_{n=1}^{+\infty} \frac{1}{n^n}.$$

Problème 2

Partie I - Un premier exemple

Soit f l'endomorphisme de \mathbb{R}^3 défini pour tout $(x,y,z)\in\mathbb{R}^3$ par :

$$f(x, y, z) = (3x - 4y + 8z, 5x - 6y + 10z, x - y + z).$$

- 1. Montrer que f est un endomorphisme de \mathbb{R}^3 .
- 2. Donner la matrice M de f dans la base canonique.
- 3. (a) Montrer que $\ker(f)$ est une droite vectorielle. On note u_1 le vecteur de $\ker(f)$ dont la **dernière** coordonnée est 1.
 - (b) Montrer que $\ker(f + \mathrm{id}_{\mathbb{R}^3})$ est un plan vectoriel. En donner une base (u_2, u_3) dont les vecteurs ont leur **première coordonnée** égale à 1.
 - (c) Montrer que (u_1, u_2, u_3) est une base de \mathbb{R}^3 et en déduire que $\mathbb{R}^3 = \ker(f) \oplus \ker(f + \mathrm{id}_{\mathbb{R}^3})$.
 - (d) Dans la base (u_1, u_2, u_3) , expliciter les coordonnées de $f(u_1)$, puis de $f(u_2)$ et enfin de $f(u_3)$. Donner également la matrice de f dans cette base (u_1, u_2, u_3) et en déduire que M est semblable à une matrice diagonale.

On explicitera la matrice de passage, mais on ne demande pas de calculer son inverse.

- 4. Soit $P = \{(x, y, z) \in \mathbb{R}^3 : x y + z = 0\}.$
 - (a) Montrer que P est un plan vectoriel. En donner une base.
 - (b) Montrer que P est stable par f.
 - (c) Déterminer un supplémentaire de P stable par f.

Partie II - Un second exemple

On considère dans cette partie l'espace vectoriel \mathbb{R}^4 et on note (e_1, e_2, e_3) sa base canonique. On note h l'endomorphisme de \mathbb{R}^4 dont la matrice dans la base canonique est :

$$M = \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{array}\right).$$

On rappelle que, pour tout endomorphisme φ , la notion φ^2 désigne $\varphi \circ \varphi$.

- 1. Soient $G_1 = \ker((h id_{\mathbb{R}^4})^2)$ et $G_2 = \ker((h 2id_{\mathbb{R}^4})^2)$.
 - (a) Calculer $(M I_4)^2$ et $(M 2I_4)^2$.
 - (b) Montrer que $G_1 = \text{Vect}(e_1, e_2)$ et $G_2 = \text{Vect}(e_3, e_4)$ puis que $\mathbb{R}^4 = G_1 \oplus G_2$.
- 2. (a) Calculer $(2M I_4)(M 2I_4)^2$.
 - (b) Soit $v \in \mathbb{R}^4$, et $(v_1, v_2) \in G_1 \times G_2$ tels que $v = v_1 + v_2$. Montrer que $v_1 = [(2h - \mathrm{id}_{\mathbb{R}^4}) \circ (h - 2\mathrm{id}_{\mathbb{R}^4})^2)](v)$.
- 3. Soit F un sous-espace vectoriel de \mathbb{R}^4 stable par h.

On pose $F_1 = F \cap G_1$ et $F_2 = F \cap G_2$.

- (a) Montrer que $F_1 + F_2 \subset F$.
- (b) Soit $u \in F$. Justifier qu'il existe un unique couple $(u_1, u_2) \in G_1 \times G_2$ tel que $u = u_1 + u_2$.
- (c) Montrer, à l'aide de Q.2.b, que $u_1 \in F$ puis que $u_2 \in F$.
- (d) En déduire que $F = F_1 + F_2$.
- (e) Montrer que que F_1 (resp. F_2) est un sous-espace vectoriel de G_1 (resp. de G_2) stable par h.
- 4. (a) Soit $u_1 \in G_1$ que l'on écrit $u_1 = \alpha e_1 + \beta e_2$ avec $\alpha, \beta \in \mathbb{R}$. Justifier pourquoi on peut écrire u_1 ainsi.

Résoudre l'équation vectorielle $h(u_1) = \lambda u_1$ en distinguant les cas $\lambda = 1$ et $\lambda \neq 1$.

En déduire qu'il n'y a qu'une seule droite incluse dans G_1 stable par h.

- (b) Faire de même avec G_2 .
- (c) En déduire tous les sous-espaces de \mathbb{R}^4 stables par h.

Partie III - Endomorphismes laissant stable tout sous-espace vectoriel

Soient E un espace vectoriel de dimension n et $f \in \mathscr{L}(E)$.

On suppose dans toute la question 1., que f laisse stables **tous** les sous-espace vectoriels de E.

1. (a) On note (v_1, \ldots, v_n) une base de E.

En considérant les droites $\mathrm{Vect}(v_i),$ montrer que :

$$\forall i \in \{1, \dots, n\}, \exists \lambda_i \in \mathbb{R}, \text{ tel que } f(v_i) = \lambda_i v_i.$$

- (b) Montrer que $\lambda_1 = \lambda_2 = \cdots = \lambda_n$. On pourra considérer $f(v_1 + \cdots + v_n)$ et la droite $Vect(v_1 + \cdots + v_n)$.
- (c) Montrer que f est une homothétie vectorielle.
- 2. Donner un exemple d'endomorphisme de \mathbb{R}^2 ne laissant stables que les deux sous-espaces vectoriels suivants : \mathbb{R}^2 et $\{0_{\mathbb{R}^2}\}$.