Introduction to Mechanical Measurements

Amit Agrawal IIT Bombay

Importance of Measurements in the Current times

- Primary source of coronavirus is respiratory droplets
- So how many droplets are coming out from an infected person? How many of them are likely to be breathed in by a neighboring person?
- · Need to know amount of air exhaled and inhaled
- Need information about droplet size and distribution
 - Larger droplets may get deposited on nearby surface, smaller droplets tend to move further away
- Temperature and humidity of air exhaled
- Amount of mixing between exhaled air and ambient air
- Presence of a breeze (speed and direction) can have a drastic effect

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

3

Three main approaches in Scientific Enquiry

- Measurement
 - Physical observation with numbers
- Theory
- Modeling / Simulation

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

Features of Theoretical Approach

- Study of a mathematical equation/model of the physical system
 - Eg. Navier-Stokes equations describe fluid flow
- Simplifying assumptions are sometimes made to reduce the mathematical complexities
 - Recall, flow in a tube/pipe
 - Navier-Stokes equations get simplified for this case
- Gives results of general use (rather than for restricted applications)
 - Velocity profile is parabolic
 - Pressure drops linearly

- Think of deposition in blood vessels, leading to various diseases

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

5

Features of Modeling Approach

- Capture the features of a physical system through model elements (mass, spring, damper, etc)
 - Add regular (instead of irregular) geometric elements in pipe
- Develop a mathematical model of the constructed system

- Requires only paper, computers, etc to solve
- Time delay in building physical models (for experimentation) and instrumenting it gets avoided

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

Features of Experimental Methods

- Simplifying assumptions may not be required (true behavior of the system can be studied)
 - Actual geometry of artery can be studied
 - Incoming flow can be made pulsatile (similar to pumping by the heart)
- Actual system or its scaled model (constructed using principles of similarity) studied
 - May have to make a scaled-up model of blood flow in artery
- Accurate measurements may require expensive instruments
 - Measure flow rate and pressure drop as a function of time
 - The characteristics of all measuring and recording equipments must be thoroughly understood, esp. their dynamic response
- Gives specific results for the system studied. So make measurements over the parameter range of interest
- · Use dimensional analysis for generalizing the results
- Considerable time required for design, construction and debugging of instruments

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

7

Types of Measurement Applications

 Monitoring of processes and operations: Refers to situations where measuring device is used to keep track of some quantity

(e.g. Speedometer to track speed of vehicle;

Thermometer, humidity meter, anemometer to keep track of temperature, humidity, wind speed of atmospheric condition.)

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

Types of Measurement Applications

(contd.)

 Control of processes and operations: Refers to an automatic feedback control system

(e.g. Thermostat in water geyser regulates water temperature in the geyser.

Oxygen sensor in car engine to measure amount of O₂ in exhaust; regulates air intake in the next intake cycle accordingly.)

Input energy and/or material Process

Controlled variable

Process

Measuring instrument

Desired value of controlled variable

Controlled variable

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

(

Types of Measurement Applications (contd.)

• Experimental engineering analysis: Engineering applications typically requires measurements.

(e.g. Acoustic design of a room – requires measurement of sound intensity/ reflection in the room.

Air conditioning requirement of a building – needs measurement of heat loss from the building, heat load on the building, etc.)

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

Types of Experimental-Analysis Problems

- Testing the validity of theoretical predictions based on simplifying assumptions; improvement of theory based on measured behavior
- Formulation of generalized empirical relationships in situations where no adequate theory exists
- Determination of material, component, and system parameters, variables and performance indices
- Study of phenomena with hopes of developing a theory
- Solution of mathematical equations by means of analogies

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay