Assignment - 4

Name	Ronald Jim Roy S		
Register number	210519205041		
Team size	4		
Team ID	PNT2022TMID25098		

Import libraries

```
import pandas as pd
import numpy as np
```

Read dataset

- ´	v1	v2	Unnamed: 2	Unnamed: 3	Unnamed: 4	0 +
	0 ham	Go until jurong point, crazy Available only	NaN	NaN	NaN	
	l ham	Ok lar Joking wif u oni	NaN	NaN	NaN	
	2 spam	Free entry in 2 a wkly comp to win FA Cup fina	NaN	NaN	NaN	
	3 ham	U dun say so early hor U c already then say	NaN	NaN	NaN	
	4 ham	Nah I don't think he goes to usf, he lives aro	NaN	NaN	NaN	

Data preprocessing

```
df.isnull().sum()
                     0
     v1
     v2
                      0
     Unnamed: 2 5522
     Unnamed: 3
                   5560
     Unnamed: 4
                   5566
     dtype: int64
df.drop(["Unnamed: 2" ,"Unnamed: 3","Unnamed: 4"],axis=1,inplace=True)
df.isnull().sum()
     v1
          0
     v2
          0
     dtype: int64
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['v1'] = le.fit_transform(df['v1'])
df['v2'] = le.fit_transform(df['v2'])
df.head()
```

```
v1 v2 

0 0 1079

1 0 3101

2 1 1000
```

```
X = df.v2
y = df.v1
le = LabelEn oder()
y = le.fit_t ansform(y)
y = y.reshap (-1,1)
```

```
from sklearn.model_selection import train_test_split

xtrain,xtest,ytrain,ytest = train_test_split(X,y,test_size=0.3,random_state=0)

xtrain.shape, xtest.shape

((3900,), (1672,))
```

Create model and add LSTM layers

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense

model = Sequential()
model.add(LSTM(50, input_shape=(60, 1),return_sequences=True))
model.add(LSTM(50,return_sequences=True))
model.add(LSTM(50,return_sequences=True))
model.add(LSTM(50,return_sequences=True))
model.add(Dense(1))
```

compile the model

```
model.compile(optimizer='adam', loss='mse',metrics=['accuracy'])
```

Fit the model

```
model.fit(xtrain,ytrain,batch_size=30,epochs=10)
```

```
Epoch 1/10
WARNING:tensorflow:Model was constructed with shape (None, 60, 1) for input KerasTensor(type_spec=TensorSpec(shape=(None, 60, 1),
WARNING:tensorflow:Model was constructed with shape (None, 60, 1) for input KerasTensor(type_spec=TensorSpec(shape=(None, 60, 1),
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
Epoch 6/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
Epoch 10/10
<keras.callbacks.History at 0x7f68c9823950>
4
```

Save the model

```
model.save('sms apam.h5')
```

Test the model

	Actual value	Predicted value
0	0	0
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0
6	0	0
7	0	0
8	0	0
9	1	0
10	0	0
11	0	0
12	0	0
13	1	0
14	0	0
15	0	0
16	1	0
17	0	0
18	0	0
19	0	0