Assignment 1

1. Modelling

Star Schema of Elon Musk's tweet, I have chosen to leave out all unnecessary attributes from the dataset. For our analysis we need the like count, sentiment score, and word count, as long as a time dimension to filter on dates.

The only relevant concept hierarchy is: All -> Year -> Month, for dates.

Star Schama regarding Report 1 - 4: Elon Tweets

Star schema for Flight data, all unnecessary information has been stripped. For the needed reports we only need air time, elapsed time, destination airport, and airline as relevant measures. Location has not been deemed relevant for this task and therefore has not received a dimension. We will only be looking at months within the dates, thus a hierarchy is irrelevant

Star Schema regarding report 5 - 8: Flights

2. OLAP Operations

For report one, two, and three, we will need the drill-down operation. Moving from *All*, to *Year* for report two and three, whilst drilling down further to *Month* for report one.

3. Implementation of the Cube

Report 1: The following query outputs our results:

```
select [Measures].[Like Count] on columns
  [Date].[Month] on rows
  from [Tweets Cube]
```

The resulting table can be collapsed as such, grouping months together. As the data does not cover the whole of April 2021, nor any following months, I have decided to add the average number of likes among January, February, and March from 2021 to April 2021 and the following months of that year. This average amount is 18.383.851.

	2010-2014	2015-2018	2019-2021	Total
January	31 612	2 247 308	29 129 118	31 408 038
February	14 680	4 508 322	33 250 541	37 773 543
March	13 746	2 567 275	28 071 166	30 652 187
April	23 951	2 456 166	31 085 978	33 566 095
May	26 787	4 694 987	35 687 780	40 409 554
June	27 129	4 876 657	30 991 163	35 894 949
July	11 911	4 513 322	35 462 040	39 987 273
August	72 627	2 766 137	30 096 108	32 934 872
September	32 769	2 917 212	27 277 866	30 227 847
October	31 896	7 792 027	28 837 940	36 661 863
November	31 199	5 975 390	29 389 834	35 396 423
December	28 819	6 305 184	34 763 212	41 097 215

We can then see –assuming the average added is an accurate assumption– that Elon usually gets more likes in **May**, and in **December**. The month with the most likes in total is **February 2021**.

Report 2: The following query outputs the tweet count for each year:

```
select [Measures].[Tweet Count] on columns
   [Date].[Year] on rows
   from [Tweets Cube]
```

The average number of tweets over ALL years is **1047** for each year, this however includes an outlier being 2010, where there was only one tweet made. If we exclude this the average number over all years is **1142**.

Excluding the year from our query would give us the total number of tweets –which could be divided by the amount of years to achieve an average–, therefore I have opted to include it to remove the outlier that is 2010.

Report 3: The following query gives us the word count for each year:

```
select [Measures].[Word Count] on columns
  [Date].[Year] on rows
  from [Tweets Cube]
```

Resulting in the following output:

	Word Count
2010	16
2011	800
2012	5031
2013	7199
2014	2980
2015	5060
2016	10402
2017	17080
2018	37476
2019	38596
2020	44854
2021	10063

Report 4: The following query outputs the average sentiment score per month:

```
select [Measures].[Average Sentiment] on columns
  [Date].[Month] on rows
  from [Tweets Cube]
```

Report 5: The following query gives us the flight with the longest air time:

```
select [Measures].[Air Time] on columns
  from [FlightsCube]
```

This gives us flight **51**, tail number **N375HA**, from JFK to HNL.

Report 6: The following query gives us the average elapsed time per airline:

```
select [Measures].[Elapsed Time] on columns
  [DimAirline] on rows
  from [FlightsCube]
```

With the following result:

	Elapsed Time
All	136,744
AS	179,202
AA	171,674
US	151,472
DL	142,703
NK	158,613
UA	191,021
HA	101,548
B6	170,566
00	99,743
EV	98,603
MQ	96,449
F9	154,016
WN	121,265
VX	208,214

Report 7: The following query gives us the number of flights per month:

```
select [Measures].[Flight Count] on columns
   [Date].[Month] on rows
   from [FlightsCube]
```

Giving us the following table, as we can see February had **426.191** flights.

		Flight Count
	2015 Jan	469 968
	2015 Feb	429 191
	2015 Mar	504 312
	2015 Apr	51 298

Report 8: Using the following query we get a spreadsheet we can further use max functions on it to find the airport with the most arrival flights:

```
select [Measures].[Flight Count] on columns
{[Date].[Month] * [DimAirport]} on rows
from [FlightsCube]
```

We then get the following results after a spreadsheet max operation:

Month	Arrival Flights	Airport
January	29 492	Atlanta International Airport (ATL)
February	27 366	Atlanta International Airport (ATL)
March	32 775	Atlanta International Airport (ATL)
April	3 317	Atlanta International Airport (ATL)