Class 21

Sec.2.9. DCT (dominated convergence thm)

Class 21

Sec.2.9. DCT (dominated convergence thm)

Question 1: $f_n \to f$, f_n integrable $\Rightarrow f$ integrable;

Question 2: $f_n \to f$, f_n , f integrable $\Rightarrow \int f_n - \int f$.

Thm. $\{f_n\}$, g integrable.

 $f_n \to f$ in meas. or a.e.

 $|f_n| \le g$ a.e. $\forall n$

 $\Rightarrow f$ integrable & $f_n \to f$ in mean. $(\Rightarrow \int f_n \to \int f)$

Note: a.e. or in meas. need extra condi. on $\{f_n\}$ $\ni f$ integrable & $\int f_n \to \int f$

condi 1. $\{f_n\}$ Cauchy in mean.

condi 2. DCT: $|f_n| \le g$ a.e. $\forall n$, where g integrable

condi 3. MCT: $0 \le f_n \uparrow f$ a.e.

Ex 1.
$$f_n(x) = \begin{cases} \frac{1}{x} & \text{if } \frac{1}{n} \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$
 for $x \in [0,1]$

Then f_n integrable

But $f_n(x) \to f(x)$ a.e. & in meas., but f not integrable (Ex.2.7.6)

Ex 2. (same as Ex.2.9.1) $f_n = n\chi[n-1/n,\pm]$ on [0,1]

Then $f_n \to 0$ a.e. & in measure on [0,1]

But
$$\int f_n = 1 \rightarrow \int 0 = 0$$

Pf: (I) Assume $f_n \to f$ in meas.

Check: $\{f_n\}$ Cauchy in mean.

Then Thm $2.8.2 \Rightarrow f$ integrable & $f_n \rightarrow f$ in mean.

Let
$$E = \bigcup_{n} \{x : f_n(x) \neq 0\}$$

Now for $\int_{E_k} |f_n - f_m|$

Let
$$G_{mn} = \left\{ x : \left| f_n(x) - f_m(x) \right| \ge \varepsilon_1 \right\}$$

$$\therefore \int_{E_k} \left| f_n - f_m \right| = \int_{E_k \setminus G_{mn}} \left| f_n - f_m \right| + \int_{E_k \cap G_{mn}} \left| f_n - f_m \right|$$

$$\le \varepsilon_1 u(E_k \cap G_{mn}) + \int_{E_k \cap G_{mn}} \left| f_m \right| + \int_{E_k \cap G_{mn}} \left| f_n \right|$$

$$\le \varepsilon_1 u(E_k) + 2 \int_{E_k \cap G_{mn}} g$$

 ε_2 if m, n large Reason: $f_n \to f$ in meas. $\Rightarrow \{f_n\}$ Cauchy in meas. $\Rightarrow u(G_{mn}) \to 0 \text{ as } m, n \to \infty$ $\Rightarrow \int_{G_{mn}}$ g small by abso. conti.

 $\Rightarrow \int |f_n - f_m|$ small if m, n large i.e., $\{f_n\}$ Cauchy in mean.

> $\{x: |f_n - f| \ge \varepsilon\} \subseteq \bigcup_{j \ge n} \{x: |f_j - f| \ge \varepsilon\} \equiv E_n.$ $\therefore u(\{x: |f_n - f| \ge \varepsilon\}) < u(E)$ (II) Assume $f_n \to f$ a.e. & $|f_n| \le g$ a.e., g intergable

Check:
$$u(E_n) \to 0$$
 as $n \to \infty$

Note:
$$E_n \downarrow \underset{n}{\frown} E_n \quad \because f_n \to f \text{ a.e.}$$

$$\Rightarrow u(\left\{x : f_n(x) \not\to f(x)\right\}) = 0$$

$$\qquad \qquad \bigcup f(x) \downarrow f(x)$$

$$\qquad \qquad \bigcap E_n$$

$$\Rightarrow u(\bigcap_{n} E_n) = 0$$

Need to check:
$$u(E_n) < \infty$$
 (Then $u(E_n) \downarrow u(\bigcap E_n) = 0$)

$$\therefore x \in E_n \Rightarrow \text{ for some } j \ge n, \ \varepsilon \le \left| f_j - f \right| \le \left| f_j \right| + \left| f \right| \le 2g \Rightarrow g \ge \frac{\varepsilon}{2} \text{ a.e.}$$

$$(\because \left| f_n \right| \le g \text{ a.e.} \Rightarrow \left| f \right| \le g \text{ a.e.})$$

$$\Rightarrow E_n$$
" \subseteq " $\left\{ x : g(x) \ge \frac{\varepsilon}{2} \right\}$

 $: g \text{ integrable} \Rightarrow \text{RHS has finite measure.}$

$$\Rightarrow u(E_n) < \infty$$

Homework: Ex.2.9.2-2.9.4

