Chapter 12

Quine McCluskey

12.1 Quine-McCluskey PI Table reduction and Petrick's method

This is not in the text-book. For additional reading, please refer to the linked resources on the website.

THE PROBLEM OF SIMPLIFYING TRUTH FUNCTIONS

W. V. QUINE, Harvard University

Minimization of Boolean Functions*

E. J. McCLUSKEY, Jr.

(Manuscript received June 26, 1956)

A systematic procedure is presented for writing a Boolean function as a minimum sum of products. This procedure is a simplification and extension of the method presented by W. V. Quine. Specific attention is given to terms which can be included in the function solely for the designer's convenience. 2 9 2 0 0 0 1 0 0 1 1 1 mple

y = + 4 yz

Definition 12.1 (Implicant). Given a function f of n variables, a product term P is an implicant of f if and only if for every combination of values of the n variables for which P = 1, f is also equal to 1.

Definition 12.2 (Prime Implicant). A prime implicant of a function f is an implicant which is no longer an implicant if any literal is removed from it.

There are 4 main steps in the Quine-McCluskey algorithm/PI Table reduction and Petrick's method:

- 1. Generate Prime Implicants
- 2. Construct Prime Implicant Table. PIs as columns, and minterms as rows (don't cares are excluded).
- 3. Reduce Prime Implicant Table by repeating following steps until they it cannot be reduced further
 - (a) Remove Essential Prime Implicants

wernt am

piggstym

- (b) Row Dominance: Remove dominating rows. (i.e. unnecessary minterms)
- (c) Column Dominance: Remove dominated columns. (i.e. remove unnecessary PIs)
- 4. Solve Prime Implicant Table by Petrick's method

12.1.1 Generate Prime Implicants

Example 12.1. Generate prime implicants of the function

$$\begin{array}{l} {\mathcal{X}_{51}} \, {\mathcal{X}_{41}} \, {\mathcal{X}_{33}} \, {\mathcal{X}_{23}} \, {\mathcal{X}_{1}} \\ F(\underline{A,B,C,D}) &= \sum m(0,2,4,6,7,8,10,12,13,14,16,18,19,29,\underline{30}) \end{array}$$

 $using\ Quine-McCluskey\ method$

Steps:

- 1. Start with writing minterms in binary format (include don't cares as minterms).
- 2. Create potential groups of minterms that can be combined (merged). The only minterms that can be combined differ only be single 1. Create a new list of combined minterms as n-1 literal implicants.
- 3. Check off the minterms that could be combined. Unchecked minterms are prime implicants (PIs).
- 4. Repeat the grouping process with n-1 literal implicants.

12.1.2 Prime Implicants table and reduction

Example 12.2. Reduce the prime implicants $\{\bar{B}\bar{D}, C\bar{D}, BD, BC, A\bar{D}, AB\}$ using prime implicants table.

How to find the smallest set of PIs that cover all the minterms

- 1. PI table reduction
- 2. Petrick's method

CHAPTER 12. QUINE MCCLUSKEY

simpler version

Example 12.4.

ABCD

that mintern Petrick's method $A\bar{C}$ \neq Prime implies an 12.5. Reduce the following PI table $\bar{C}\bar{D}$ $\bar{B}C$ $\bar{A}B$ $B\bar{C}$ $A\bar{B}$ $\bar{A}C$ 0 2 4 6 0000 + 0010 + 0100 + 0110 XXX $\overline{A}\overline{D} = \overline{A}\left(\overline{G}\overline{C} + \overline{B}\overline{C} + \overline{B}\overline{C} + \overline{G}\overline{C}\right)\overline{D}$ XXXXX- ABCO + X $X \\ X$ XXXmnteam O XXXXXXX2 monetrism

DC = ABCD = MZ + ABCD

94

What are the minterms covered by $\bar{A}\bar{D}$? How do I find Them 4-variable

AD = 0--0 0000 mo 0010 mz 00100 mz

A ((B+B)(C+Z))D

= ABCD+ABCD+ABCD+ABCD

$$\overline{B}\overline{D} = 1$$

Find the minterms covered by $\ensuremath{\,\,\overline{\!\mathcal D}}$

$$\overline{D}\overline{D} = (A + \overline{A}) \cdot \overline{B} \cdot ((+\overline{c}) \cdot \overline{D}$$

	T	AΒ	LΕ	\mathbf{I}_{A}										FOR	TH	E
					$\mathbf{T}_{\mathbf{R}}$	AN	SMI	ssio	N O	F '	Гав	$\mathbf{L}\mathbf{E}$	\mathbf{II}			
C)	2	4	8	16	6	10	12	18	7	11	13	14	19	29	30
3	X.	x	х	x		х	х	х					х			
5	ĸ	х	_		х				x							
Γ													x			x
L												X			x	- 1
ı									x					х		- 1
1								\mathbf{x}				X				- 1
1							X				х					- 1
ı						x				\mathbf{x}						- 1

Example 12.6.

12.1.3 Petrick's method

Example 12.7. Solve the Prime Implicant table using Petrick's method

					<u> </u>	
	$p_1 = \bar{A}C$	$p_2 = \bar{B}C$	$p_3 = \bar{A}B$	$p_4 = B\bar{C}$	$p_5 = A\bar{B}$	$p_6 = A\bar{C}$
3	X	X				
5			X	X		
γ	X		X			
g					X	X
11		X			X	
13				X		X