Assignment 4 Python programming

Assignment Date	25 Oct 2022
Student Name	Harinee K
Student Roll Number	923819104013
Maximum Marks	2 Marks

Question 1:

1. Importing Required Package

Solution:

import pandas as pd import numpy as np import seaborn as sbn import matplotlib.pyplot as plt

Question 2:

1. Loading the Dataset

Solution:

db = pd.read_csv('/Mall_Customers.
csv') Db

Output

Out[4]:		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40
		***		***	***	Circ
	195	196	Female	35	120	79
	196	197	Female	45	126	28
	197	198	Male	32	126	74
	198	199	Male	32	137	18
	199	200	Male	30	137	83

200 rows Ãf— 5 columns

Question 3:

1. Visualizations

1. UniVariate Analysis

1.Solution: plt.

hist(db['Annual Income (k\$)'])

Output:

3.1.2 Solution plt.hist(db['Age'])

3.1.3 Solution: sbn.

countplot(db['Age'])

Output:

3.1.4 Solution:

sbn. countplot(db['Gender'])

Output:

3.1.5 Solution:

plt.hist(db['Spending Score (1-100)'])

1. Bi-Variate Analysis

1. Solution:

plt.scatter(db['Spending Score (1-100)'],db['Annual Income (k\$)'])

Output:

3.2.2 Solution:

plt.scatter(db['Gender'],db['Annual Income (k\$)'])

3.2.3 Solution:

plt.scatter(db['Age'],db['Spending Score

(1-100)']) Output:

3.2.4 Solution:

plt.scatter(db['Age'],db['Annual Income

(k\$)']) Output:

3.2.5 Solution:

sbn.heatmap(db.corr(), annot =

True) Output:

3.2.6 Solution:

sbn.barplot(db['Gender'], db['Age'])

1. Multi-Variate Analysis

1. Solution:

sbn.lmplot("Spending Score (1-100)","Annual Income (k\$)", db, hue="Gender", fit_reg=False);

3.3.2 Solution:

sbn.

pairplot(db)

Question 4:

1 . Perform descriptive statistics on the dataset

1.Solution: db.describe()

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1,000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

4.2 Solution:

db.dtypes

Output:

int64
object
int64
int64
int64

4.3 Solution:

db.var()

Output:

10	CustomerID	3350.000000
1	Age	195.133166
	Annual Income (k\$)	689.835578
	Spending Score (1-100)	666.854271
	dtype: float64	

4.4 Solution:

db.skew()

CustomerID 0.000000
Age 0.485569
Annual Income (k\$) 0.321843
Spending Score (1-100) -0.047220
dtype: float64

4.5 Solution:

db.corr()

Output:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
CustomerID	1.000000	-0.026763	0.977548	0.013835
Age	-0.026763	1.000000	-0.012398	-0.327227
Annual Income (k\$)	0.977548	-0.012398	1.000000	0.009903
Spending Score (1-100)	0.013835	-0.327227	0.009903	1.000000

4.6 Solution:

db.std()

Output:

CustomerID	57.879185
Age	13.969007
Annual Income (k\$)	26.264721
Spending Score (1-100	0) 25.823522
dtype: float64	87

Question 5:

- 1. Check for Missing values and deal with them
- 1. Solution:

db.isna().sum()

```
CustomerID
 Gender
 Age
 Annual Income (k$)
  Spending Score (1-100) 0
 dtype: int64
5.2 Solution:
db.isna().sum().
sum() Output:
0
5.3 Solution:
db.duplicated().
sum() Output:
0
Question 6:
1. Find the outliers and replace them
 outliers
1.Solution: ig,ax=plt.subplots(figsize=(25,
5))
plt.subplot(1, 5, 2) sbn.boxplot(x=db['Age'])
plt.subplot(1, 5, 3) sbn.
boxplot(x=db['Annual Income (k$)'])
plt.subplot(1, 5, 4)
sbn.boxplot(x=db['Spending Score (1-100)'])
plt.subplot(1, 5, 1) sbn.
boxplot(x=db['CustomerID'])
```


6.2 Solution:

quantile = db.quantile(q = [0.25, 0.75]) quantile

Output:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
0.25	50.75	28.75	41.5	34.75
0.75	150.25	49.00	78.0	73.00

6.3 Solution:

quantile.

loc[0.75]

Output:

CustomerID	150.25
Age	49.00
Annual Income (k\$)	78.00
Spending Score (1-100)	73.00
Name: 0.75, dtype: float64	

6.4 Solution:

quantile. loc[0.25]

CustomerID	50.75
Age	28.75
Annual Income (k\$)	41.50
Spending Score (1-100)	34.75
Name: 0.25, dtype: float	64

6.5 Solution:

IQR = quantile.iloc[1] - quantile.
iloc[0] IQR

Output:

CustomerID	99.50
Age	20.25
Annual Income (k\$)	36.50
Spending Score (1-100)	38.25
dtype: float64	

6.6 Solution:

upper = quantile.iloc[1] + (1.5
*IQR) upper

Output:

CustomerID	299.500
Age	79.375
Annual Income (k\$)	132.750
Spending Score (1-100)	130.375
dtype: float64	

6.7 Solution:

lower = quantile.iloc[0] - (1.5* IQR) lower

CustomerID	-98.500
Age	-1.625
Annual Income (k\$)	-13.250
Spending Score (1-100)	-22.625
dtype: float64	

6.8 Solution:

db.mean()

Output:

CustomerID	100.50
Age	38.85
Annual Income (k\$)	60.56
Spending Score (1-100)	50.20
dtype: float64	

1. Solution:

db['Annual Income (k\$)'].

max() Output:

1.Solution: sbn.

boxplot(db['CustomerID'])

Output:

6.11 Solution:

sbn. boxplot(db['Age'])

6.12 Solution:

sbn.boxplot(db['Annual Income
(k\$)']) Output :

6.13 Solution:

sbn.boxplot(db['Spending Score (1-100)'])

Question 7:

1 . Check for Categorical columns and perform encoding

1.Solution: db.select_dtypes(include='object').

columns Output:

```
Index(['Gender'], dtype='object')
```

1. Solution:

db['Gender'].unique() Output:

```
1. Solution:
    array(['Male', 'Female'], dtype=object)
db['Gender'].replace({'Male':1,'Female':0},
inplace=True) db
```

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	1	19	15.00	39
1	2	1	21	15.00	81
2	3	0	20	16.00	6
3	4	0	23	16.00	77
4	5	0	31	17.00	40
	***	***			***
195	196	0	35	120.00	79
196	197	0	45	126.00	28
197	198	1	32	126.00	74
198	199	1	32	60.55	18
199	200	1	30	60.55	83

200 rows ÃfÂ- 5 columns

7.4 Solution:

db.head()

Output:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	1	19	15.0	39
1	2	1	21	15.0	81
2	3	0	20	16.0	6
3	4	0	23	16.0	77
4	5	0	31	17.0	40

Question 8:

1. Scaling the data

1. Solution:

from sklearn.preprocessing import
StandardScaler ss = StandardScaler().
fit_transform(db)

Question 9:

1 . Perform any of the clustering algorithms

1. Solution:

```
from sklearn.cluster import KMeans
TWSS = []
k = list(range(2,9))
```

for i in k: kmeans = KMeans(n_clusters = i , init = 'k means++') kmeans.fit(db) TWSS.append(kmeans.inertia_) TWSS

Output:

```
[381507.64738523855,
268062.55433747417,
191557.78099047023,
153327.3825004856,
119166.15727643928,
101296.86197582977,
85792.73210128325]
```

9.2 Solution:

plt.plot(k,TWSS, 'ro-') plt.xlabel('No of Clusters') plt. ylabel('TWSS')

9.3 Solution:

```
model = KMeans(n_clusters =
4) model.fit(db)
```

```
KMeans(n_clusters=4)
```

9.4 Solution:

mb = pd.Series(model. labels_) db['Cluster'] = mb db

Output:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
0	1	1	19	15.00	39	1
1	2	1	21	15.00	81	1
2	3	0	20	16.00	6	1
3	4	0	23	16.00	77	1
4	5	0	31	17.00	40	1
	464	***	***	View		***
195	196	0	35	120.00	79	2
196	197	0	45	126.00	28	0
197	198	1	32	126.00	74	2
198	199	1	32	60.55	18	0
199	200	1	30	60.55	83	2

200 rows Ãf— 6 columns

9.5 Solution:

mb=pd.Series(model. labels_) db.head(3)

3		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
	0	1	1	19	15.0	39	1
	1	2	1	21	15.0	81	1
	2	3	0	20	16.0	6	1

Question 10:

1 . Add the cluster data with the primary dataset

1. Solution:

db['Cluster']=kmeans.labels_ db.head()

Output:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
0	1	1	19	15.0	39	5
1	2	1	21	15.0	81	2
2	3	0	20	16.0	6	5
3	4	0	23	16.0	77	2
4	5	0	31	17.0	40	5

10.2 Solution:

db.tail()

Output:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
195	196	0	35	120.00	79	6
196	197	0	45	126.00	28	1
197	198	1	32	126.00	74	6
198	199	1	32	60.55	18	1
199	200	1	30	60.55	83	6

Question 11:

1 . Split the data into dependent and independent variables

1. Solution:

```
X=db.drop('Cluster',axis=1) Y=db['Cluster'] y=db['Cluster'] y
```

```
2
1
2
     5
3
    2
4
     5
195 6
196
    1
197
   6
198 1
199 6
Name: Cluster, Length: 200, dtype: int32
```

11.2 Solution:

from sklearn.model_selection **import** train_test_split X_train,X_test,y_train, y_test=train_test_split(X,Y,test_size=0.2,random_state=42)

print("Number transactions X_train dataset: ", X_train.shape) print("Number transactions y_train dataset: ", y_train.shape) print("Number transactions X_test dataset: ", X_test.shape) print("Number transactions y_test dataset: ", y_test.shape)

Output:

```
Number transactions X_train dataset: (160, 5)
Number transactions y_train dataset: (160,)
Number transactions X_test dataset: (40, 5)
Number transactions y_test dataset: (40,)
```

Question 12:

1 . Split the data into training and testing

1.Solution: X_train

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
79	80	0	49	54.0	42
197	198	1	32	126.0	74
38	39	0	36	37.0	26
24	25	0	54	28.0	14
122	123	0	40	69.0	58
	***	***		***	***
106	107	0	66	63.0	50
14	15	1	37	20.0	13
92	93	1	48	60.0	49
179	180	1	35	93.0	90
102	103	1	67	62.0	59

160 rows $\tilde{A}f\hat{A}$ — 5 columns

12.2 Solution:

X_test

	CustomeriD	Sender	Age	Annual Income (kl)	Spending Score (1-100)
95	96	1	24	6215	5.2
15	19	1	77	202	75
30	81	1	60	102	
'58	159	1	34	79.0	1
28	128	- 1	59	212	11
155	110	Ð	39	653	×
69	/a	. 6	32	480	47
70	171	- 1	40	673	12
74	175	0	52	880	ti
45	46	- 0	24	392	65
00	67	0	43	480	36
32	181	- 10	46	1902	15
65	166	. 0	36	85.0	16
78	79	0	23	540	52
36	187	D	54	101,0	34
:77	178	- 33	22	880	et
58	57	0	51	440	90
152	753	. 0	44	782	21
82	8 88	23	67	543	- 41
88	60	17.7	:19	480	55
24	125	- 9	23	70.0	25
16	. 17	0	35	21.0	35
'48	141	0	34	/63	22
22	94	0	40	602	46
65	bis.	1	111	48.0	55
68	65	1	70	463	58
04	115	0	21	543	51
67	na	ū	66	483	48
25	120	į.	31	702	27
32	133	0	23	773	34
9	10	b	30	193	21
18	10	- 1	52	210	25
55	58	- 1	47	453	41
75	76	- 4	26	540	54
50	151	54	43	78.0	17
04	105	7.5	49	620	58
35	186	0	29	732	
37	138	- 1	32	732	73
64	765	- 31	50	9 36	b
76	777	0	345	1940	

12.3 Solution:

y_train

12.14 Solution:

y_test Output:

```
95
15
      2
158
      7
128
      7
115
      0
69
      4
170
      1
174
      1
45
      2
66
      4
182
      1
165
      6
78
      0
186
      1
177
56
      4
152
      7
82
      4
68
124
      5
148
93
      0
65
      4
      4
60
84
67
125
      3
132
      7
9
      2
18
      5
55
      4
75
150
    7
104
135
      3
137
164
Name: Cluster, dtype: int32
```

Question 13:

1 . Build the Model

1. Solution:

from sklearn.linear_model import
LogisticRegression model=LogisticRegression()
model.fit(X_train,y_train)
from sklearn.linear_model import
LogisticRegression model=LogisticRegression()
model.fit(X_train,y_train)

```
LogisticRegression()
Question 14:
```

14. Train the Model

Solution: model.

score(X_train,y_train)

Output:

0.83125

Question 15:

15. Test the Model

Solution: model.

score(X_test,y_test)

Output:

0.675

Question 16:

1 . Measure the performance using Evaluation Metrics

1. Solution:

from sklearn.metrics import confusion_matrix,
classification_report y_pred=model.predict(X_test)
confusion_matrix(y_test,y_pred)

16.2 Solution:

print(classification_report(y_test,

y_pred)) Output:

	precision	recall	t1-score	support
0	0.62	0.83	0.71	6
1	0.45	1.00	0.62	5
2	0.60	1.00	0.75	3
3	0.75	1.00	0.86	3
4	1.00	0.55	0.71	11
5	1.00	1.00	1.00	3
6	0.50	0.50	0.50	2
7	1.00	0.14	0.25	7
accuracy			0.68	40
macro avg	0.74	0.75	0.68	40
weighted avg	0.80	0.68	0.64	40