Questions de cours

L'implication : définition, table de vérité, négation, contraposée **DÉFINITION**

Soient P et Q deux propositions.

La proposition $P \Longrightarrow Q$ (« P implique Q ») est fausse si P est vraie et si Qest fausse, vraie sinon.

 $\textit{Autrement dit: } (P \Longrightarrow Q) \Longleftrightarrow ((\neg P) \lor Q)$

Table de vérité

P	Q	$P \Rightarrow Q$
F	F	V
F	V	V
V	F	F
V	V	V

NÉGATION

$$\begin{array}{ccc} (\neg(P\Rightarrow Q)) & \Longleftrightarrow (\neg(\neg P\vee Q)) & \overset{\text{De Morgan}}{\Longleftrightarrow} & (\neg\neg P\wedge\neg Q) \\ & & & \longleftrightarrow & \hline (P\wedge\neg Q) \\ \end{array}$$

Contraposée

Énoncé :
$$(P \Longrightarrow Q) \Longleftrightarrow (\neg Q \Longrightarrow \neg P)$$

Preuve :
$$(\neg Q \Longrightarrow \neg P) \Longleftrightarrow (\neg \neg Q \lor \neg P) \overset{\text{double n\'egation}}{\Longleftrightarrow} (\neg P \lor Q) \Longleftrightarrow \boxed{P \Longrightarrow Q}$$

Preuve par récurrence sur
$$n$$
 de : $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$

Montrons par récurrence sur $n \in \mathbb{N}$ la propriété $P(n): \sum_{k=0}^{n} k = \frac{n(n+1)}{2}$

 $\underline{\text{Initialisation}}:P(0):0=\frac{0\times 1}{2}=0$ Vrai. Donc P est initialisée.

<u>Héredité</u> : Soit $n \in \mathbb{N}$ tel que P(n) est vérifiée. Montrons P(n+1) :

$$n+1+\sum_{k=0}^{n}k=n+1+\frac{n(n+1)}{2}$$

$$\Leftrightarrow \sum_{k=0}^{n+1} k = \frac{2n+2+n^2+n}{2} = \frac{n^2+3n+2}{2}$$

En factorisant en haut par n+1, on obtient bien :

$$\sum_{k=0}^{n+1} k = \frac{(n+1)(n+2)}{2}$$

Donc P(n+1) vérifiée, ainsi P est héréditaire.

Conclusion : D'après le principe de récurrence, puisque P est initialisée au rang 0 et héréditaire, elle est vraie pour tout $n \in \mathbb{N}$.

Montrer que toute fonction de \mathbb{R} dans \mathbb{R} écrit de manière unique comme somme d'une fonction paire et d'une fonction impaire (Notes chap. 1, point 14)

Procédons par Analyse-Synthèse:

Analyse:

Soit f une fonction de \mathbb{R} dans \mathbb{R} , et supposons qu'elle puisse s'écrire p+i avec p paire et i impaire. Alors, on a :

$$\begin{cases} f(x) = p(x) + i(x) & \textit{(1)} \\ f(-x) = p(x) - i(x) & \textit{(2)} \end{cases}$$

avec $\frac{1}{2}((1) + (2))$, on obtient :

$$\forall x \in \mathbb{R}, p(x) = \frac{f(x) + f(-x)}{2}$$

avec $\frac{1}{2}((1)-(2))$, on obtient :

$$\forall x \in \mathbb{R}, i(x) = \frac{f(x) - f(-x)}{2}$$

On peut vérifier que p est bien paire et que i est bien impaire.

L'analyse nous a donné une piste pour la question de l'existence, et nous a donné l'unicité de la décomposition annoncée.

Synthèse:

Soit f fonction de \mathbb{R} dans \mathbb{R} et p, i telles que

$$p(x) = \frac{f(x) + f(-x)}{2}$$
 et $i(x) = \frac{f(x) - f(-x)}{2}$

p est bien paire, et i est bien impaire, et f=p+i, ce qui montre l'existence de la décomposition annoncée.

On a bien l'existence et l'unicité de notre décomposition.

Un exemple vu plus tard dans l'année (si le colleur en demande un) :

$$e^x = \operatorname{ch}(x) + \operatorname{sh}(x)$$

avec ch et sh respectivement « cosinus hyperbolique » et « sinus hyperbolique » :

$$ch(x) = \frac{e^x + e^{-x}}{2}$$
 $sh(x) = \frac{e^x - e^{-x}}{2}$

Forme canonique et relations coefficients-racines pour un trinôme de degré 2

FORME CANONIQUE

Soit $p: x \mapsto ax^2 + bx + c$ un trinôme du second degré.

On factorise d'abord par a:

$$p(x) = a \bigg(x^2 + \frac{b}{a} x + \frac{c}{a} \bigg)$$

Puis, pour mettre sous la forme canonique, on fait apparaître le début d'un carré :

$$p(x) = a \left(\left(x + \frac{b}{2a} \right)^2 + \left(-\frac{b^2}{4a^2} + \frac{c}{a} \right) \right) = a \left(\left(x - \frac{-b}{2a} \right)^2 + \left(\frac{-b^2 + 4ac}{4a^2} \right) \right)$$

en posant $\alpha = -\frac{b}{2a}$ et $\beta = \frac{-b^2 + 4ac}{4a}$, on obtient la forme canonique d'un trinôme du second degré : $p(x) = a(x - \alpha)^2 + \beta$.

On sait alors que p admet un extremum en α , avec $p(\alpha) = \beta$.

RELATIONS COEFFICIENT-RACINE

Soit $p: x \mapsto ax^2 + bx + c = a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right)$ dont on suppose qu'il possède deux racines réelles x_1 et x_2 .

alors
$$p(x) = a(x - x_1)(x - x_2)$$

Donc

$$(x-x_1)(x-x_2) = x^2 - (x_1 + x_2)x + x_1x_2 = x^2 + \frac{b}{a}x + \frac{c}{a}$$

Ainsi, par identification, on obtient:

$$\begin{cases} x_1 + x_2 = -\frac{b}{a} \\ x_1 x_2 = \frac{c}{a} \end{cases}$$

D'où les relations coefficients-racines d'un trinôme du second degré.

Somme géométrique de raison q

Soit $q \in \mathbb{R}, n \in \mathbb{N}$ et $m \in \mathbb{N}$ tel que $m \leq n$.

• Si $q \neq 1$:

$$(1-q)\sum_{k=m}^{n}q^{k}=\sum_{k=m}^{n}q^{k}-\sum_{k=m}^{n}q^{k+1}=\sum_{k=m}^{n}\left(q^{k}-q^{k+1}\right)=q^{m}\sum_{k=0}^{n-m}\left(q^{k}-q^{k+1}\right)\;(\text{d\'ecalage})$$

C'est une somme télescopique, donc au final:

$$(1-q)\sum_{k=m}^n q^k = q^m \big(1-q^{n-m+1}\big) \Leftrightarrow \boxed{\sum_{k=m}^n q^k = q^m \frac{1-q^{n-m+1}}{1-q}}$$

• Si q = 1 le résultat est immédiat, c'est n - m + 1.

Théorèmes à citer

Posons P et Q deux propositions.

Double négation

la proposition $\neg\neg P$ est équivalente à P

Lois de De Morgan

Les lois de De Morgan sont les suivantes :

$$\neg(P \lor Q) \Longleftrightarrow \neg P \land \neg Q$$

$$\neg (P \land Q) \iff \neg P \lor \neg Q$$

Principe de contraposition

La proposition $P \Longrightarrow Q$ est équivalente à $\neg Q \Longrightarrow \neg P$.

Ainsi, on peut appliquer ce principe à un énoncé de la forme « $P\Longrightarrow Q$ » en « $\neg Q\Longrightarrow \neg P$ », ce qui est parfois plus facile.

Principe de double implication

La proposition $P \iff Q$ est équivalente à $P \implies Q \land Q \implies P$.

Ainsi, pour prouver $P \Longleftrightarrow Q$, on peut prouver séparément $P \Longrightarrow Q$ et $Q \Longrightarrow P$

Négation et quantificateurs

Soit P un prédicat à une variable sur E.

La négation de « $\forall x \in E, P(x)$ » est « $\exists x \in E, \neg P(x)$ »

La négation de « $\exists x \in E, P(x)$ » est « $\forall x \in E, \neg P(x)$ »

Autrement dit, pour nier une proposition, on doit changer les \exists en \forall , et les \forall en \exists .

Principe de récurrence

Soit P un prédicat sur \mathbb{N} . On suppose :

$$P(0)$$
 vraie (initialisation)

$$\forall n \in \mathbb{N}, P(n) \Longrightarrow P(n+1)$$
 (hérédité)

Alors: $\forall n \in \mathbb{N}, P(n)$ (P(n) est vraie pour tout naturel n)