

VigiWheels Project Team Tahani

Our vision.

Building the autonomous safety car of tomorrow.

Our Team.

Axel Pinel

Moad El Haddad

Raphael Tessier

Aishya Costa

Aissatou Sylla

Eduardo Garnica

Johann Courand

Table of contents

- **01** Product Description.
- 02 Features and Release.
- 03 Operational Requirements.
- 04 Project Planning and Organization.
- 05 Risk Management.
- 06 Conclusion and Question.

Product description

A connected autonomous vehicle **ensures the security** of an industrial building by performing the following tasks:

- Monitoring the building
- **Reading** sensors
- **Detecting** intruders/fires

January release objective

- Moving in a known indoor environment
- Reading manometer (pressure-gauge)
- Detecting intruders (unauthorized people)
- Detecting fires

Indoor Car Navigation

Guide the car from a point A to a point B and ensure positioning

Detecting and Avoiding Obstacles

Spot obstacles, stop or adapt trajectory

User Communication

Send important information and alert

Smart Patrol

Follow a default route, while looking to security elements

Instrument Reading

Detect and interpret manometer

Fire Detection

Spot fire along the patrol

Intruder Detection

Control authorization and detect abnormal event

Move in an indoor environment

- Move in a straight line over a specified distance
- Able to take a turn
- Maximum error 5%

Locate the car

- The car can be geolocated within a range of 25 cm
- Able to locate the car from the control room

Fixed obstacle detection

- Detect fixed obstacles within its trajectory and stop
- Detection of obstacles from 30cm

Moving obstacle detection

- The car is able to stop when it detects moving obstacles until its departure
- Detection of obstacles from 30 cm

Avoiding obstacles

The car can determine the size and position of an obstacle and adapt its trajectory to avoid them

Physical sensor detection

- Detect the presence of a sensor with its camera
- Detection within 1 meter range

Physical sensor value extraction

- Extract values from the sensor
- Reading with 0,5 bar precision
- Analyze if the sensor exceeds the threshold

Conduct a round inside the building along a predefined route in a specific order to detect manometers, stop, and identify fires, among other tasks.

Emergency alert

Send the emergency location In danger reports it sends the route section where it occurs even without waiting for the patrol to finish.

- Connected to fire alarm building system.
- Detection 90% by using machine learning technics
- Immediate alert upon detection

Intruder detection

Face recognition or pass reading (QR code)

No misidentification between authorized and unauthorized person

Abnormal event detection

Detection and report of any abnormal sound

Validation plan

- •Move in a straight line from point A to point B
- •Stop in case of obstacle detection

S2

- •Travel from point A to point B and locate itself
- •Capture images without processing them.

- •Smart patrol with list of tasks to complete during its patrol, including checking the pressure gauge, as well as sensitive areas for fire and intrusion
- •Perform processing of the pressure gauge images

S3

•Perform processing in the intrusion-sensitive area.

•Enhance its communication system including sending realtime data and automatic messages

S5

S4

- •Trigger an emergency stop signal in case of high pressure or detect a possible fire.
- •Activate audible alarm

1) Urgent tasks

a) Follow a predefined trajectory

The car can travel from one location to another following a specified path

b) Obstacle identification

The car identifies if an obstacle is fixed or mobile

c) Obstacle detection

The car stops when an obstacle is detected

d) Location

The car can be **geolocated** within a given range

2) Important tasks

a) Physical sensor detection

The car can detect objects around its perimeter using sensors

b) Physical sensor value extraction

The camera takes a scan of the reading

c) Emergency alert

Send a message to the user with the location of the emergency

d) Periodic patrol report

Send a report periodically to the user

3) Secondary tasks

a) Position transmission

The car sends its position when an alert is detected

b) Smart patrol

Establish a default route trajectory for indoor navigation within a building

c) Intruder detection

The car is able to distinguish intruders from employees.

d) Abnormal event detection Detection and report of any abnormal sound

4 features → 4 teams

Indoor Car Navigation

The car can move in a straight line

Detecting and Avoiding Obstacles

To be capable of detecting a basic obstacle and stopping the vehicle.

Instrument Reading

Prepare the data to train the AI model to recognize manometers

Fire detection

Find a solution to detect a fire start, using an infrared sensor. Develop the low-level driver and retrieve data from the sensor

Objectives		Tasks	
♣	Moving the car	 Moving in a straight line Movement with the console Make sure that we can move in a straight line Autonomous movement Velocity control/ Position control 	
13 35 11 11 11 11 11 11 11 11 11 11 11 11 11	Dataset manometer	 Build image dataset for labeling Start image labeling for one class (manometer) Prepare the data to train an AI model to recognize manometers 	
H	Detecting a basic obstacle	The car is able to detect fixed obstacles and stop	
	Fire detection	 Find the best sensor Study the sensor's technology and specifications. Implement a low-level driver for the sensor Process the sensor data to obtain the temperature of the area. 	

Proactive Risk Management

seek out and identify potential risks that may affect our organization

Analyzing

evaluate and assess risks to understand their potential impact and likelihood

Mitigating

implement strategies to reduce or minimize the potential negative impact of identified risks

High Criticality

Team issues	comprehensive documentation and regular knowledge sharing
Component shortage	Maintain a supply of spare parts
Lack of components	Early ordering to prevent delays due to insufficient components.

Moderate and Low Criticality

Modules incompatibility	Utilize effective version control systems integrate ROS to streamline module compatibility issues
Lack of skills	Allocate project tasks based on team members' expertise arrange training sessions with tutors
Misunderstanding of user requirements	Implement user-centered design principles to ensure alignment with user expectations.
Pandemic	flexible work arrangement that allows for remote work in case of unforeseen circumstances
Budget	estimate project costs and maintain a vigilant approach towards budget management

Your Thoughts, Please?