Frequentist Data Analysis

Prof. Pradeep Ravikumar pradeepr@cs.cmu.edu

Recall: Model-based ML

- Learning: From data to model
 - A model explains how the data was "generated"
 - E.g. given (symptoms, diseases) data, a model explains which symptoms arise from which diseases
- Inference: From model to knowledge
 - Given the model, we can then answer questions relevant to us
 - E.g. given (symptom, disease) model, given some symptoms, what is the disease?

Model Learning: Data to Model

- What are some general principles in going from data to model?
- What are the guarantees of these methods?

LET US CONSIDER THE EXAMPLE OF A SIMPLE MODEL

Your first consulting job

- A billionaire from the suburbs of Seattle asks you a question:
 - He says: I have a coin, if I flip it, what's the probability it will fall with the head up?
 - You say: Please flip it a few times:

Your first consulting job

- A billionaire from the suburbs of Seattle asks you a question:
 - He says: I have a coin, if I flip it, what's the probability it will fall with the head up?
 - You say: Please flip it a few times:

- You say: The probability is 3/5
- He says: Why???
- You say: Because... frequency of heads in all flips

Questions

Why frequency of heads?

- How good is this estimation?
 - ▶ Would you be willing to bet money on your guess of the probability?
 - ▶ Why not?

Model-based Approach

- First we need a model that would explain the experimental data
- What is the experimental data?
- Coin Flips

Model

- First we need a model that would capture the experimental data
- What is the experimental data?
- Coin Flips

Model

- A model for coin flips
 - ▶ Bernoulli Distribution
- X is a random variable with Bernoulli distribution when:
 - ➤ X takes values in {0,1}

▶
$$P(X = 1) = p$$

$$P(X = 0) = 1 - p$$

▶ Where p in [0,1]

Model

- X is a random variable with Bernoulli distribution when:
 - ➤ X takes values in {0,1}
 - P(X = 1) = p, P(X = 0) = 1 p, where p in [0,1]
 - \rightarrow X = 1 i.e. heads with probability p, and X = 0 i.e. tails with probability 1 p
- And we draw independent samples that are identically distributed from same distribution
 - flip the same coin multiple times

Bernoulli distribution

- $P(Heads) = \theta$, $P(Tails) = 1-\theta$
- Flips are i.i.d.:
 - Independent events
 - Identically distributed according to Bernoulli distribution

Choose θ that maximizes the probability of observed data

Review: Random Variables, Likelihood, Expectation

- Let us first briefly review some background concepts that are key to answering the question in previous slide
 - Random Variables
 - Likelihood
 - Expectation

Random Variables

- Given an experiment, the outcomes could be numerical
 - ▶ roll of a four-side die
 - ▶ instrument readings
- Or they could be non-numerical
 - selection of people for a committee
- What if for any {numerical or non-numerical} outcomes, we assign numerical values to them anyway
 - Random Variables

Intro to Random Variables

- An assignment of a value (number) to every possible outcome
- - discrete or continuous values

Random Variables

- Notation
 - ▶ Random variable X
 - Numerical Value x
- Examples
 - ▶ 1 Coin Toss. Define
 - + X(Heads) = 1 ; X(Tails) = 0

Probability mass function (PMF)

Notation:

$$p_X(x) = P(X = x)$$

= $P(\{\omega \in \Omega \text{ s.t. } X(\omega) = x\})$

How to compute a PMF

- collect all possible outcomes for which X is equal to x
- add their probabilities
- repeat for all x

Example I

Two independent throws of a fair tetrahedral die

F: outcome of first throw

S: outcome of second throw

X = min(F, S)

Example I

· Two independent throws of a fair tetrahedral die

F: outcome of first throw

S: outcome of second throw

X = min(F, S)

$$p_X(2) = 5/16$$

Example II

· Two independent throws of a fair tetrahedral die

F: outcome of first throw

S: outcome of second throw

X = max(F, S)

Example II

Two independent throws of a fair tetrahedral die

F: outcome of first throw

S: outcome of second throw

X = max(F, S)

Example III

- **Example:** X=number of coin tosses until first head
 - assume independent tosses,

$$\mathbf{P}(H) = p > 0$$

$$p_X(k) = P(X = k)$$

Example III

- **Example:** *X*=number of coin tosses until first head
 - assume independent tosses,

$$\mathbf{P}(H) = p > 0$$

$$p_X(k) = P(X = k)$$

= $P(TT \cdots TH)$

Geometric PMF

- **Example:** *X*=number of coin tosses until first head
 - assume independent tosses, P(H) = p > 0

$$p_X(k) = P(X = k)$$

$$= P(TT \cdots TH)$$

$$= (1-p)^{k-1}p, \qquad k = 1, 2, \dots$$

geometric PMF

Example IV

- ullet X: number of heads in n independent coin tosses
- P(H) = p
- Let n = 4

$$p_X(2) =$$

Example IV

- ullet X: number of heads in n independent coin tosses
- $\bullet \quad \mathbf{P}(H) = p$
- Let n = 4

$$p_X(2) = \mathbf{P}(HHTT) + \mathbf{P}(HTHT) + \mathbf{P}(HTTH) + \mathbf{P}(THHT) + \mathbf{P}(THHT) + \mathbf{P}(TTHH)$$

Binomial PMF

- X: number of heads in n independent coin tosses
- $\bullet \quad \mathbf{P}(H) = p$
- Let n = 4

$$p_X(2) = P(HHTT) + P(HTHT) + P(HTTH)$$

$$+P(THHT) + P(THTH) + P(TTHH)$$

$$= 6p^2(1-p)^2$$

$$= {4 \choose 2}p^2(1-p)^2$$

In general:

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, \qquad k = 0, 1, \dots, n$$

Expectation

• Definition:

$$\mathbf{E}[X] = \sum_{x} x p_X(x)$$

- Interpretations:
 - Center of gravity of PMF

Expectation

Definition:

$$\mathbf{E}[X] = \sum_{x} x p_X(x)$$

- Interpretations:
- Center of gravity of PMF

Given a bar with a weight $p\mathbf{x}(x)$ placed at each point x with $p\mathbf{x}(x) > 0$, the center of gravity c is the point at which the sum of the torques from the weights to its left are equal to the sum of the torques from the weights to its right.

$$\sum_{x} (x - c)p_X(x) = 0, \quad \text{or } c = \sum_{x} xp_X(x),$$

Expectation

• Definition:

$$\mathbf{E}[X] = \sum_{x} x p_X(x)$$

- Interpretations:
 - Center of gravity of PMF
 - Average in large number of repetitions of the experiment (to be substantiated later in this course)
- Example: Uniform on $0, 1, \ldots, n$

$$E[X] = 0 \times \frac{1}{n+1} + 1 \times \frac{1}{n+1} + \dots + n \times \frac{1}{n+1} =$$

Example

- You toss a fair coin multiple times, and you count the number of coin tosses till the first head appears. If this number is n, you receive 2^n dollars.
 - What is the expected amount that you will receive that you receive?
 - ▶ (How much would you be willing to play this game?)

Example

- You toss independently a fair coin, and you count the number of coin tosses till the first head appears. If this number is n, you receive 2^n dollars.
 - What is the expected amount that you will receive that you receive?
 - ▶ (How much would you be willing to play this game?)

$$\mathbf{E}[X] = \sum_{k=1}^{\infty} 2^k \cdot 2^{-k} = \sum_{k=1}^{\infty} 1 = \infty.$$

Would you be willing to pay any amount to play this game?

Joint PMFs

• $p_{X,Y}(x,y) = \mathbf{P}(X = x \text{ and } Y = y)$

у					
4	1/20	2/20	2/20		
3	2/20	4/20	1/20	2/20	
2		1/20	3/20	1/20	
1		1/20			
	1	2	3	4	X

$$\bullet \quad \sum_{x} \sum_{y} p_{X,Y}(x,y) = 1$$

Joint PMFs :: Marginals

• $p_{X,Y}(x,y) = P(X = x \text{ and } Y = y)$

y					
4	1/20	2/20	2/20		
3	2/20	4/20	1/20	2/20	
2		1/20	3/20	1/20	
1		1/20			
	1	2	3	4	X

$$p_X(x) = \sum_y p_{X,Y}(x,y)$$

Joint PMFs :: Conditional PMFs

• $p_{X,Y}(x,y) = P(X = x \text{ and } Y = y)$

y					
4	1/20	2/20	2/20		
3	2/20	4/20	1/20	2/20	
2		1/20	3/20	1/20	
1		1/20			
	1	2	3	4	X

•
$$p_{X|Y}(x \mid y) = P(X = x \mid Y = y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

Joint PMFs :: Conditional PMFs

• $p_{X,Y}(x,y) = P(X = x \text{ and } Y = y)$

•
$$p_{X|Y}(x \mid y) = P(X = x \mid Y = y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

$$\bullet \quad \sum_{x} p_{X|Y}(x \mid y) =$$

Conditional PMFs

•
$$p_{X|Y}(x \mid y) = P(X = x \mid Y = y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

Recap Example III

- Two coins are simultaneously tossed until one of them comes up a head and the other a tail. The first coin comes up with head with probability p, and the second with probability q.
 - ▶ Find the PMF of the number of tosses.

Example

- Two coins are simultaneously tossed until one of them comes up a head and the other a tail. The first coin comes up with head with probability p, and the second with probability q.
 - ▶ Find the PMF of the number of tosses.
 - → X = number of coin tosses, is geometric with prob.
 P({HT, TH}) = p(1-q) + q(1-p)

Example

- Two coins are simultaneously tossed until one of them comes up a head and the other a tail. The first coin comes up with head with probability p, and the second with probability q.
 - ▶ Find the PMF of the number of tosses.
 - What is the probability that the last toss of the first coin is a head?

Example

- Two coins are simultaneously tossed until one of them comes up a head and the other a tail. The first coin comes up with head with probability p, and the second with probability q.
 - Find the PMF of the number of tosses.
 - What is the probability that the last toss of the first coin is a head?

$$\mathbf{P}(HT | \{HT, TH\}) = \frac{p(1-q)}{p(1-q) + (1-q)p}.$$

Joint, Marginal, Conditional

$$p_X(x) = P(X = x)$$

 $p_{X,Y}(x,y) = P(X = x, Y = y)$
 $p_{X|Y}(x \mid y) = P(X = x \mid Y = y)$

$$p_X(x) = \sum_{y} p_{X,Y}(x,y)$$

$$p_{X,Y}(x,y) = p_X(x)p_{Y\mid X}(y\mid x)$$

Multiple Random Variables

 $p_{X,Y,Z}(x,y,z) = p_X(x)p_{Y\mid X}(y\mid x)p_{Z\mid X,Y}(z\mid x,y)$... Multiplication Rule

Independent Random Variables

$$p_{X,Y,Z}(x,y,z) = p_X(x)p_{Y\mid X}(y\mid x)p_{Z\mid X,Y}(z\mid x,y)$$
 ... Multiplication Rule

 Random variables X, Y, Z are independent if:

$$p_{X,Y,Z}(x,y,z) = p_X(x) \cdot p_Y(y) \cdot p_Z(z)$$
 for all x,y,z

Independent Random Variables

$$p_{X,Y,Z}(x,y,z) = p_X(x)p_{Y\mid X}(y\mid x)p_{Z\mid X,Y}(z\mid x,y)$$
 ... Multiplication Rule

 Random variables X, Y, Z are independent if:

$$p_{X,Y,Z}(x,y,z) = p_X(x) \cdot p_Y(y) \cdot p_Z(z)$$

for all x, y, z

EXAMPLE:

y	1				
4	1/20	2/20	2/20		
3	2/20	4/20	1/20	2/20	
2		1/20	3/20	1/20	
1		1/20			
	1	2	3	4	X

Independent?

Expectation

$$\mathbf{E}[X] = \sum_{x} x p_X(x)$$

$$\mathbf{E}[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$$

- In general: $\mathbf{E}[g(X,Y)] \neq g(\mathbf{E}[X],\mathbf{E}[Y])$
- $\mathbf{E}[\alpha X + \beta] = \alpha \mathbf{E}[X] + \beta$
- E[X + Y + Z] = E[X] + E[Y] + E[Z]
- \bullet If X, Y are independent:
 - $\mathbf{E}[XY] = \mathbf{E}[X]\mathbf{E}[Y]$
 - $\mathbf{E}[g(X)h(Y)] = \mathbf{E}[g(X)] \cdot \mathbf{E}[h(Y)]$

Bernoulli distribution

- P(Heads) = θ , P(Tails) = $1-\theta$
- Flips are i.i.d.:
 - Independent events
 - Identically distributed according to Bernoulli distribution

Choose θ that maximizes the probability of observed data