ОЦЕНКА СОБСТВЕННОГО ЗНАЧЕНИЯ ЛИНЕЙНОГО ОГРАНИЧЕННОГО ОПЕРАТОРА В БАНАХОВОМ ПРОСТРАНСТВЕ

И.Н. Нестеров¹ (Воронеж)

nesterovilyan@gmail.com

Рассмотрим линейный ограниченный оператор $\mathbb{A} \in \operatorname{End} X$, где X – банахово пространство, являющееся прямой суммой $X = X_1 \oplus X_2$ двух замкнутых подпространств X_1, X_2 , где $\dim X_1 = 1$ и $\operatorname{End} X$ – банахова алгебра линейных ограниченных операторов. Предполагается, что оператор \mathbb{A} задается операторной матрицей

$$\mathbb{A} = \begin{pmatrix} A & C \\ D & B \end{pmatrix},$$

т.е. $\mathbb{A}x=(Ax_1+Cx_2,Dx_1+Bx_2),$ где $x=x_1+x_2,\ Ax_1=ax_1,$ $a\in\mathbb{C},\ x_1\in\mathbb{X}_1,\ x_2\in\mathbb{X}_2.$

Представим оператор \mathbb{A} в виде $\mathbb{A}=\mathcal{A}-\mathcal{B}$, где оператор $\mathcal{A}\in \mathrm{End}\, \mathrm{X}$ задается матрицей $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$, а оператор $\mathcal{B}\in \mathrm{End}\, \mathrm{X}$ мат-

рицей $\begin{pmatrix} 0 & -C \\ -D & 0 \end{pmatrix}$. Всюду далее считаем что выполняется условие $\sigma(A)\cap\sigma(B)=\varnothing$ для спектров $\sigma(A)$ и $\sigma(B)$ операторов A и B.

Символом U обозначим пространство End X. Для любого оператора $X\in \mathbb{U}$ рассмотрим операторы $P_iXP_j\in \mathbb{U},\ i,j\in 1,2.$ Таким образом, оператор X задается матрицей:

$$X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix},$$

где оператор X_{ij} – сужение оператора $P_i X P_j$ на подпространство X_i с областью значений $X_i, i, j \in {1,2}$.

В соответствии с заданным разложением пространства X будем рассматривать два трансформатора: $\mathcal{J} \in \operatorname{End} U, \Gamma \in \operatorname{End} U$ [1].

Применив метод подобных операторов [1] получаем нелинейное уравнение

$$X = \mathcal{B}\Gamma X - \Gamma X \mathcal{J}(\mathcal{B}\Gamma X) - \mathcal{B} = \Phi(X), \tag{1}$$

¹© Нестеров И.Н., 2016

к которому применим указанные выше проекторы. Блоки X_{ij} , i,j=1,2, оператора X удовлетворяют уравнениям:

$$X_{11} = \mathcal{B}_{12} \Gamma X_{21}; \tag{2}$$

$$X_{21} = -(\Gamma X_{21})\mathcal{B}_{12}\Gamma X_{21} + \mathcal{B}_{21} = \Phi_1(X_{21}); \tag{3}$$

$$X_{22} = \mathcal{B}_{21} \Gamma X_{12}; \tag{4}$$

$$X_{12} = -(\Gamma X_{12})\mathcal{B}_{21}\Gamma X_{12} + \mathcal{B}_{12} = \Phi_2(X_{12}). \tag{5}$$

Теорема 1. Пусть выполнено неравенство

$$\gamma \|\mathcal{B}\| < \frac{1}{2},$$

где $\gamma = \|(aI - \mathcal{B})^{-1}\|$. Тогда нелинейные уравнения (5) и (3) имеют единственные решения X_{12}^0, X_{21}^0 в шаре с центром в точке \mathcal{B} и радиусом $\|\mathcal{B}\|$. X_{12}^0 и X_{21}^0 можно найти методом простых итераций.

Теорема 2. Пусть выполнено неравенство

$$d = 2\gamma^2 (b_{12}b_{21})^{\frac{1}{2}} < 1,$$

а также выполняются условия предыдущей теоремы. Тогда для решений X_{11}^0 и X_{21}^0 нелинейных уравнений (2), (3) имеют место следующие оценки:

$$||X_{11}^0|| \le \frac{2\gamma b_{12}b_{21}}{1 + (1 - 4\gamma^2 b_{21}b_{12})^{\frac{1}{2}}}, \quad ||X_{21}^0|| \le \frac{2b_{21}}{1 + (1 - 4\gamma^2 b_{21}b_{12})^{\frac{1}{2}}},$$

 $e\partial e \|\mathcal{B}_{ij}\| = b_{ij}, \ i, j = 1, 2.$

Теорема 3. Пусть выполнены условия теоремы 2. Тогда оператор \mathbb{A} имеет собственное значение $\lambda_1^0 = a - x_{11}^0$, где x_{11}^0 определяется из $X_{11}^0 x_1 = x_{11}^0 x_1$, $x_1 \in X_1$, причем имеет место оценка:

$$\left|x_{11}^{0}\right| = \left\|X_{11}^{0}\right\| \le \frac{2\gamma b_{12}b_{21}}{1 + (1 - 4\gamma^{2}b_{21}b_{12})^{\frac{1}{2}}} \le \frac{1}{2\gamma} - \frac{1 - (1 - 4\gamma^{2}b_{21}b_{12})^{\frac{1}{2}}}{4\gamma^{2}b_{21}b_{12}},$$

где
$$\gamma = \|(aI - \mathcal{B})^{-1}\|, b_{ij} = \|\mathcal{B}_{ij}\|, i, j = 1, 2.$$

Литература

1. Баскаков А. Г. Расщепление возмущённого дифференциального оператора с неограниченными операторными коэффициентами / А. Г. Баскаков // Фундамент. и прикл. матем., 8:1 (2002), 4–7