Tema 9.- Método de Mínimos Cuadrados

(Presentar obligatoriamente uno de los tres)

Ajuste de datos a diferentes polinomios (Brandt. Example 9.2)

1. Supongamos un experimento que estudia la dispersión elástica sobre un blanco de protones de mesones K negativos con energía fija. La distribución del coseno del ángulo de *scattering* en el sistema centro de masas es característica del momento angular de los posibles estados intermedios en el proceso de colisión. Si, en particular, la distribución se ajusta a un polinomio en $\cos\theta$, el orden del polinomio puede utilizarse para determinar el spin de los estados intermedios. Los datos que se obtienen son los siguientes:

$x_i = \cos \theta_i$	-0.9	-0.7	-0.5	-0.3	-0.1	0.1	0.3	0.5	0.7	0.9
y_i	81	50	35	27	26	60	106	189	318	520

- a) Ajustar los datos anteriores a polinomios de diferente grado r, desde r=0 hasta r=5. Construir una tabla con los valores de los parámetros obtenidos, el número de grados de libertad, el valor de χ^2 y la probabilidad $P(\chi^2, \nu)$. Tomar errores poissonianos. Comentar los resultados.
- b) Para el polinomio que mejor se ajuste, utilizar los valores de los parámetros obtenidos para generar 10000 experimentos idénticos utilizando un generador de números poissonianos. Realizar los ajustes y obtener la distribución de los valores de χ^2 y de $P(\chi^2, v)$. Comprobar que las distribuciones son correctas.
- c) Repetir el apartando anterior pero utilizando un polinomio de grado menor como función modelo. Comparar las distribuciones obtenidas con las del aparatado anterior.
- d) Repetir el apartado b) disminuyendo los errores en un factor 4.

Ajuste a un solo parámetro

2. Una determinada distribución viene dada por la función pdf:

$$f(x|\alpha) = \frac{1}{2}(1+\alpha x^2)$$

Donde $x = \cos \theta$ se restringe al intervalo [-1, 1]. Queremos ver cuantos sucesos debemos tomar para medir α con una determinada precisión para lo cual utilizamos muestras de sucesos generadas mediante Monte Carlo:

- a) Generar una muestra de sucesos Monte Carlo (n=1000) distribuidos según la ecuación anterior para $\alpha=0.9$.
- b) Representarla en forma de histograma y realizar un ajuste por mínimos cuadrados para estimar el valor del parámetro α .

- c) Utilizando los mismos datos del apartado anterior representar la función χ^2 en torno al mínimo y calcular $\sigma(\hat{\alpha})$ mediante el método gráfico de aumentar la función de χ^2 en una unidad.
- d) Repetir los apartados a) y b) Para muestras de n = 10000 y n = 100000. Estudiar como disminuye el error en el parámetro α .

Estimación del número de sucesos de una resonancia (Señal sobre fondo).

3. Consideremos un experimento donde observamos procesos de desintegración de una partícula de masa conocida, M_0 , y medimos la masa invariante M de los productos de la reacción. El número total de sucesos, N_t , contendrá, o bien sucesos señal, s(x), (gaussianos) correspondientes a las desintegraciones de la partícula, o bien sucesos de fondo, b(x), (background) debidos a trazas mal reconstruidas y que describiremos como una exponencial:

$$f(x;\alpha) = As(x) + Bb(x)$$

donde A es el número de sucesos señal y B es el número de sucesos de fondo. Una vez realizado el experimento queremos realizar una estimación de la masa de la resonancia, M_0 .

- a) Mediante simulación Monte Carlo generar 100000 sucesos de los cuales un tercio serán de señal y el resto de fondo. Utilizad los siguientes valores de los parámetros: $\mu = 5.0$, $\sigma = 0.25$ para la gaussiana de los sucesos señal, y $\tau = 3.0$ para la exponencial de los sucesos de fondo. Representar los resultados en un histogramas en el intervalo [0,10]
- b) Realizar mediante un ajuste por mínimos cuadrados (LS) una estimación de los cinco parámetros de la función.
- c) Repetir el ajuste para cuatro parámetros imponiendo que A = N B.
- d) Comparar y discutir los errores.
- e) Representar gráficamente los resultados.