Assignment 5 - Naive Bayes

Problem Statement:

You work in XYZ Company as a Python Data Scientist. The company officials have collected some data on diabetes based on years of experience and wish for you to create a model from it. Dataset: diabetes.csv

Tasks To Be Performed:

- 1. Load the dataset using pandas
- 2. Extract data from outcome column is a variable named Y
- 3. Extract data from every column except outcome column in a variable named X
- 4. Divide the dataset into two parts for training and testing in 70% and 30% proportion
- 5. Create and train Naïve Bayes Model on training set
- 6. Make predictions based on the testing set using the trained model
- 7. Check the performance by calculating the confusion matrix and accuracy score of the model
- In [1]: import pandas as pd
 from sklearn.model_selection import train_test_split
 from sklearn.metrics import *
 from sklearn.naive_bayes import GaussianNB
- In [2]: df = pd.read_csv(r"csv files/diabetes-3.csv")
 df.head()

. ∠] :		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
	0	6	148	72	35	0	33.6	0.627	50	1
	1	1	85	66	29	0	26.6	0.351	31	0
	2	8	183	64	0	0	23.3	0.672	32	1
	3	1	89	66	23	94	28.1	0.167	21	0
	4	0	137	40	35	168	43.1	2.288	33	1

- In [3]: X = df.drop(columns=['Outcome'])
 y = df['Outcome']
- In [4]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.30, random_state=2)
- In [5]: gnb = GaussianNB()
 gnb.fit(X_train,y_train)
- Out[5]: GaussianNB
 GaussianNB()
- In [6]: y_pred = gnb.predict(X_test)
- In [7]: confusion_matrix(y_test, y_pred)
- In [8]: accuracy_score(y_test, y_pred)

Out[8]: 0.7705627705627706

In []: