SIH-2024

Manish Raj

August 2024

1. Carbon Emissions Estimation

For each activity (e.g., excavation, transportation):

Total Emissions (CO
$$_2) = \sum (\text{Activity Data} \times \text{Emission Factor})$$

- **Activity Data**: The measurable quantity of each activity (e.g., fuel consumed, distance traveled, hours of operation).
- **Emission Factor**: The amount of CO_2 emitted per unit of activity (e.g., kg CO_2 per liter of diesel).

Example:

 CO_2 Emissions from diesel use = Liters of diesel used × Emission factor (kg CO_2 /liter)

2. Per Capita Emissions Estimation

$$\mbox{Per Capita Emissions (CO}_2) = \frac{\mbox{Total Emissions (CO}_2)}{\mbox{Number of People}}$$

- Total Emissions (CO_2): The sum of all emissions from various activities.
- **Number of People**: Total number of employees or residents associated with the mining operations.

3. Afforestation Offsets Calculation

Carbon Offset (CO_2) = Area of Land×Carbon Sequestration Rate (tons CO_2 /hectare/year)

- Area of Land: The amount of land dedicated to tree plantation.
- Carbon Sequestration Rate: The rate at which trees absorb CO₂, depending on tree species, soil type, and climate.

To calculate the area required for a target offset:

$$\label{eq:Required Area (hectares)} \begin{aligned} &\text{Required Area (hectares)} = \frac{\text{Total CO}_2 \text{ Emissions to Offset (tons/year)}}{\text{Carbon Sequestration Rate (tons CO}_2/\text{hectare/year)}} \end{aligned}$$

4. Carbon Credits Estimation

Carbon Credits (tons CO_2) = Emissions Reduced or Offset (tons CO_2)

- Market Value of Carbon Credits:

Market Value = Carbon Credits (tons CO₂)×Market Price (currency/ton CO₂)

- Emission Reduction Strategies: Can include adoption of cleaner technologies or afforestation, which reduce or offset emissions.

5. Energy Consumption Reduction

For alternative energy sources:

 $\label{eq:energy} \text{Energy Consumption Reduction (kWh)} = \sum (\text{Traditional Energy Use} - \text{Renewable Energy Use})$

- **Traditional Energy Use**: The energy used by conventional sources (e.g., coal, diesel).
- Renewable Energy Use: The energy provided by renewable sources (e.g., solar, wind).

6. Gap Analysis between Emissions and Carbon Sinks

 $Gap (tons CO_2) = Total Emissions (tons CO_2) - Total Carbon Sinks (tons CO_2)$

- Total Emissions: The total emissions calculated from various activities.
- **Total Carbon Sinks**: The total amount of CO_2 absorbed by carbon sinks (e.g., forests, soil).

7. Scalability and Emission Estimation for Different Mine Sizes

For scalability, the same emission estimation formula can be applied but adjusted based on the size of the mine:

 $\label{eq:adjusted_energy} \mbox{Adjusted Emissions (tons CO$_2$)} \times \mbox{Scaling Factor}$

- Scaling Factor: A ratio based on the size and type of the mine (e.g., larger mines may have a higher scaling factor).