Programming Assignment 1

Design and Implementation of Convolution Neural Network to Classify Images in the CIFAR-10 Dataset

Architecture -

Conv2D Layer 1:

Input shape: (32, 32, 3) – The input is a colour image with size 32x32 and 3 channels. Number of filters: 32. Kernel size: (3, 3). Activation: ReLU (Preferred over tanh for inner layers).

Parameters: Number of parameters = $(3 \times 3 \times 3 + 1) \times 32 = (27 + 1) \times 32 = 28 \times 32 = 896$

Conv2D Layer 2:

Input Shape: (30, 30, 32) – Output of the first convolution layer. Number of filters: 64 with 3 channels. Kernel size: (3,3). Activation: ReLU (Preferred over tanh for inner layers).

Parameters: Number of parameters = $(3 \times 3 \times 32 + 1) \times 64 = 18,496$

Conv2D Layer 3:

Input Shape: (28, 28, 64) – Output of the first convolution layer. Number of filters: 64 with 3 channels. Kernel size: (3,3). Activation: ReLU (Preferred over tanh for inner layers).

Parameters: Number of parameters = $(3 \times 3 \times 64 + 1) \times 128 = 73,856$

MaxPooling 2DLayer:

Pool Size: (2, 2), This layer has no learnable parameters, it is used to prevent overfitting.

Flatten Layer:

Input Shape: (14, 14, 128) - After applying Max Pooling. Output Shape: (14*14*128) = 25,088

Dense Layer:

Number of Parameters: (14, 14, 128). Number of Parameters: (14*14*128 + 1)*128 = 3,211,392. Activation: Tanh (experimented as it has negative value and provides for better convergence)

Dropout Layer 2:

Dropout has no learnable parameters.

Output Layer (Dense):

Input Size: 128. Output Size: 10. Activation: Softmax (for multiclass classification). Parameters = (128+1)*10 = 1290

Total Parameters:

896 (Conv 2D-1) + 18,496(Conv 2D-2) + 73,856(Conv 2D-3) + 25,088(Flatten Layer) + 3,211,392(Dense Layer) + 1290(Output Layer) + 512(Batch Normalization) = 3,306,442.

Model Performance:

Test loss: 0.9142 Test accuracy: 0.7125

Classification	Report:			
	precision	recall	f1-score	support
0	0.72	0.74	0.73	1000
1	0.86	0.82	0.84	1000
2	0.60	0.60	0.60	1000
3	0.52	0.57	0.55	1000
4	0.70	0.59	0.64	1000
5	0.63	0.63	0.63	1000
6	0.76	0.79	0.77	1000
7	0.72	0.79	0.75	1000
8	0.81	0.80	0.81	1000
9	0.84	0.80	0.82	1000
accuracy			0.71	10000
macro avg	0.72	0.71	0.71	10000
weighted avg	0.72	0.71	0.71	10000

Weighted F1 Score: 0.7131 Weighted Recall: 0.7125

Different Trials: I have initially tried with only 2 Convolution Layers, but later on settled with 3 Convolution Layers with 128 filters. I have also added a batch normalization layer at the end of convolution layers. At first I used Dense Layer with 128 output with tanh activation. I have also tried changing the dropout value in the dropout layers to a lesser value but there was high difference in the Validation Error and Training Error. I also tried the RMSProp and Adagrad optimizer but later on settled with ADAM optimizer as it was showing better convergence.

Results: The accuracy of the model that I have designed on the Test Data is 71.25%. It means it can classify roughly 71 images correctly out of 100 images.