Chapitre 3

Fonctions usuelles - Partie I

3.1 Valeur absolue - Fonction valeur absolue

Définition

Soit x un nombre réel. On appelle <u>valeur absolue de</u> x et on note |x| le nombre positif ou nul tel que

$$|x| = x \text{ si } x \ge 0, \quad |x| = -x \text{ si } x \le 0.$$

Propriétés

- $\blacksquare \ \forall \ x \in \mathbb{R}, \ |x| \ge 0 \ et \ |-x| = |x|$
- Valeur absolue d'un produit

$$\forall (x,y) \in \mathbb{R}^2, |xy| = |x||y|.$$

■ Valeur absolue d'un quotient

$$\forall (x,y) \in \mathbb{R} \times \mathbb{R}^*, \ \left| \frac{x}{y} \right| = \frac{|x|}{|y|}.$$

■ Valeur absolue d'une somme Elle n'est pas en général égale à la somme des valeurs absolues! Néanmoins, on a toujours

$$\forall (x,y) \in \mathbb{R}^2, \quad ||x| - |y|| \le |x+y| \le |x| + |y| \quad \textit{(inégalité triangulaire)}$$

et donc aussi

$$\forall (x,y) \in \mathbb{R}^2, ||x| - |y|| \le |x - y| \le |x| + |y|.$$

Proposition (Équations et inéquations avec des valeurs absolues)

- |x| = a
 - $si\ a < 0\ alors\ \mathcal{S} = \emptyset$
 - $si\ a = 0\ alors\ \mathcal{S} = \{0\}$
 - $si\ a > 0$ $alors\ \mathcal{S} = \{-a, a\}$
- $|x| \le a \ (avec \ a > 0)$

$$|x| \le a \Leftrightarrow -a \le x \le a \ donc \ \mathcal{S} = [-a, a]$$

 $\blacksquare |x| > a (avec \ a > 0)$

$$|x| > a \Leftrightarrow x > a \text{ ou } x < -a \text{ donc } S =]-\infty, -a[\cup]a, +\infty[$$

Définition

On appelle fonction valeur absolue la fonction définie $sur \mathbb{R}$ par

$$\forall x \in \mathbb{R}, \ f(x) = |x|.$$

Proposition

La fonction valeur absolue est paire.

La fonction valeur absolue est continue sur \mathbb{R} , dérivable sur \mathbb{R}^* , mais attention elle n'est pas dérivable en 0.

Courbe représentative

à faire

3.2 Fonction logarithme népérien

Définition

$$\begin{array}{cccc} \mathbb{R}_{+}^{*} & \to & \mathbb{R}_{+}^{*} \\ x & \mapsto & \frac{1}{x} \end{array} \quad est \ continue.$$

Elle admet donc une unique primitive qui prend la valeur 0 en 1.

Par définition, on appelle cette primitive logarithme népérien et on la désigne par <u>ln</u>.

Par définition, nous avons immédiatement les propriétés suivantes

Propriétés

- La fonction logarithme népérien est définie sur $]0; +\infty[$,
- La fonction logarithme népérien est continue sur $]0; +\infty[$,
- La fonction logarithme népérien est dérivable sur $]0;+\infty[$ et

$$\forall x \in]0; +\infty[, \quad \ln'(x) = \frac{1}{x}.$$

 $\ln \ln(1) = 0$

Une application du théorème de dérivation d'une fonction composée, nous permet d'obtenir le résultat suivant :

Proposition

Soit u une fonction définie sur un intervalle I à valeurs dans \mathbb{R}^* et dérivable sur I. Alors la fonction $\ln(u)$ est dérivable sur I et

$$(\ln(|u|))' = \frac{u'}{u}.$$

Soit a une constante strictement positive. Une application de ce résultat dans le cas particulier u(x) = ax nous donne

$$\forall x > 0, (\ln(ax))' = \frac{a}{ax} = \frac{1}{x}.$$

Nous en déduisons que les fonctions $x \mapsto \ln(ax)$ et $x \mapsto \ln(x)$ sont deux primitives de $x \mapsto \frac{1}{x}$ sur \mathbb{R}_+^* . Par conséquent, il existe une constante $C \in \mathbb{R}$ tel que

$$\forall x > 0, \ln(ax) = \ln(x) + C.$$

Or pour x=1, nous obtenons aussi que $\ln(a)=C$, d'où $\forall x>0$, $\ln(ax)=\ln(x)+\ln(a)$. Nous avons démontré le résultat suivant

Propriété fondamentale

$$\forall (a,b) \in (\mathbb{R}_+^*)^2, \ln(a \times b) = \ln(a) + \ln(b).$$

À partir de cette propriété fondamentale du logarithme népérien, il est maintenant possible d'obtenir d'autres propriétés :

■ Pour $a = \frac{1}{b}$, nous obtenons

$$\ln(\frac{1}{b} \times b) = \ln(1) = \ln(\frac{1}{b}) + \ln(b)$$

soit

Proposition

$$\forall b \in \mathbb{R}_+^*, \quad \ln \frac{1}{b} = -\ln (b).$$

 \blacksquare Par conséquent, pour a>0 et b>0 nous avons aussi

$$\ln\left(\frac{a}{b}\right) = \ln\left(a \times \frac{1}{b}\right) = \ln(a) + \ln\left(\frac{1}{b}\right) = \ln(a) - \ln(b)$$

d'où

Proposition

$$\forall (a,b) \in (\mathbb{R}_{+}^{*})^{2}, \quad \ln \frac{a}{b} = \ln (a) - \ln (b).$$

■ On montre aussi par récurrence que

Proposition

$$\forall (n, a) \in \mathbb{N} \times \mathbb{R}_{+}^{*}, \quad \ln(a^{n}) = n \ln(a).$$

Étude de la fonction logarithme népérien

Nous avons déjà vu que la fonction logarithme népérien est définie sur \mathbb{R}_+^* , continue et dérivable sur \mathbb{R}_+^* et que

$$\forall x > 0, \ln'(x) = \frac{1}{x} > 0.$$

Proposition

La fonction logarithme népérien est donc strictement croissante sur \mathbb{R}_+^* . On retiendra que

$$\forall (a,b) \in (\mathbb{R}_+^*)^2, \quad (a < b) \Rightarrow \ln(a) < \ln(b).$$

Nous avons aussi

Proposition (Limites)

$$\lim_{x\to +\infty} \ln\left(x\right) = +\infty, \quad \lim_{x\to 0^+} \ln\left(x\right) = -\infty.$$

Tableau de variation

x	0	1 +∞
$\ln'(x)$		+
$\ln(x)$		$-\infty$ $+\infty$

Courbe représentative

Proposition (Quelques limites utiles à connaitre)

$$\lim_{h\to 0}\frac{\ln\left(1+h\right)}{h}=1,\quad \lim_{x\to +\infty}\frac{\ln\left(x\right)}{x}=0,\quad \lim_{x\to 0^+}x\ln\left(x\right)=0.$$

3.3 Fonction exponentielle

La fonction logarithme népérien étant continue, strictement croissante de \mathbb{R}_+^* sur \mathbb{R} , elle définit une bijection de \mathbb{R}_+^* sur \mathbb{R} .

Définition

On appelle fonction exponentielle, notée $\underline{\exp}$, la bijection réciproque de la fonction logarithme népérien et on a par définition :

- $\blacksquare \ \forall \ a \in \mathbb{R}, \ \forall \ b \in \mathbb{R}_+^*, \ \exp(a) = b \Leftrightarrow a = \ln(b)$
- $\forall b \in \mathbb{R}_+^*, \ \exp(\ln(b)) = b$
- $\blacksquare \ \forall \ a \in \mathbb{R}, \ \ln(\exp(a)) = a$

<u>Définition</u>

En particulier, pour a=1, il existe un unique nombre réel noté \underline{e} tel que

$$ln(e) = 1 \ et \ \exp(1) = e.$$

On a $e \simeq 2,71828$ à 10^{-5} près par défaut.

On retiendra comme conséquence immédiate de la définition, les propriétés suivantes

Propriétés

- La fonction exponentielle est définie sur \mathbb{R} à valeurs dans \mathbb{R}_+^* .
- La fonction exponentielle est continue sur \mathbb{R} .
- La fonction exponentielle est strictement croissante sur \mathbb{R} .
- $\blacksquare \ \forall x \in \mathbb{R}, \quad \exp(x) > 0$
- $= \exp(0) = 1$

Étude de la fonction exponentielle

Proposition (Limites)

$$\lim_{x \to +\infty} \exp(x) = +\infty, \quad \lim_{x \to -\infty} \exp(x) = 0$$

Tableau de variation

Courbe représentative

Dérivabilité

La fonction logarithme étant dérivable avec une dérivée jamais nulle, il en résulte du théorème de dérivation de la fonction réciproque que

Théorème

La fonction exponentielle est dérivable sur \mathbb{R} et on a

$$\forall x \in \mathbb{R}, \quad \exp'(x) = \exp(x).$$

Soit $(a, b) \in \mathbb{R}^2$. Posons alors $\alpha = \exp(a)$ et $\beta = \exp(b)$, soit encore $a = \ln(\alpha)$ et $b = \ln(\beta)$. Nous avons alors

$$\ln(\alpha \times \beta) = \ln(\alpha) + \ln(\beta)$$

d'où

$$\ln(\exp(a) \times \exp(b)) = \ln(\exp(a)) + \ln(\exp(b)) = a + b.$$

Nous avons démontré le résultat suivant :

Propriété fondamentale

$$\forall (a,b) \in \mathbb{R}^2, \ \exp(a+b) = \exp(a) \times \exp(b).$$

À partir de cette propriété fondamentale de la fonction exponentielle, il est maintenant possible d'obtenir d'autres propriétés :

■ Si b = -a, on obtient

$$\exp(a - a) = \exp(0) = 1 = \exp(a) \times \exp(-a)$$

d'où

Proposition

$$\forall a \in \mathbb{R}, \quad \exp(-a) = \frac{1}{\exp(a)}.$$

 \blacksquare Par conséquent, pour $(a,b) \in \mathbb{R}^2$

$$\exp(a-b) = \exp(a+(-b)) = \exp(a) \times \exp(-b) = \frac{\exp(a)}{\exp(b)}$$

soit

Proposition

$$\forall (a,b) \in \mathbb{R}^2 \quad \exp(a-b) = \frac{\exp(a)}{\exp(b)}.$$

■ On montre aussi par récurrence que

Proposition

$$\forall (n, a) \in \mathbb{N} \times \mathbb{R}, \exp(na) = (\exp(a))^n.$$

Proposition (Quelques limites utiles à connaitre)

$$\lim_{h\to 0}\frac{\exp\left(h\right)-1}{h}=1,\quad \lim_{x\to +\infty}\frac{\exp\left(x\right)}{x}=+\infty,\quad \lim_{x\to -\infty}x\exp\left(x\right)=0.$$

Fonctions exponentielles de base a3.4

Définition

Soit a un réel strictement positif. Pour tout nombre réel x, on pose

$$a^x := \exp(x \ln(a)).$$

Remarque

En particulier pour a = e, on obtient

$$e^x = \exp(x)$$
.

On emploiera donc indifféremment les notations e^x et $\exp(x)$.

À partir de la définition, nous obtenons directement les propriétés suivantes :

Propriétés

Soit a un réel strictement positif.

- \bullet pour tout $(x,y) \in \mathbb{R}^2$, $a^{x+y} = a^x \times a^y$
- pour tout $(x,y) \in \mathbb{R}^2$, $a^{x-y} = \frac{a^x}{a^y}$ pour tout $(x,y) \in \mathbb{R}^2$, $(a^x)^y = a^{xy}$

Définition

La fonction $x \mapsto a^x = \exp(x \ln(a))$ est appelée fonction exponentielle de base a.

Remarque La fonction exponentielle $x \mapsto e^x = \exp(x)$ est donc la fonction exponentielle de base e.

Propriétés

Soit a un réel strictement positif, $a \neq 1$.

- \blacksquare La fonction exponentielle de base a est définie sur \mathbb{R} .
- La fonction exponentielle de base a est continue sur \mathbb{R} .
- lacksquare La fonction exponentielle de base a est dérivable sur $\mathbb R$ et

pour tout
$$x \in \mathbb{R}$$
, $(a^x)' = (\exp(x \ln(a)))' = \ln(a)a^x$

Limites

• si a > 1 alors

$$\lim_{x \to +\infty} a^x = +\infty \quad \text{et} \quad \lim_{x \to -\infty} a^x = 0.$$

• si 0 < a < 1 alors

$$\lim_{x \to +\infty} a^x = 0 \quad \text{et} \quad \lim_{x \to -\infty} a^x = +\infty.$$

Variations

- si a > 1 alors la fonction exponentielle de base a est croissante.
- si 0 < a < 1 alors la fonction exponentielle de base a est décroissante.

Courbe

3.5 Fonctions puissances

Définition

Soit m un nombre $\underline{r\acute{e}el}$ donné.

La fonction $x\mapsto x^m=e^{m\ln(x)}$ définie pour tout réel strictement positif x est appelée fonction puissance d'exposant m.

Remarque Attention, ici la définition est donnée pour un nombre m réel et pas seulement entier!

Voici quelques propriétés qui découlent de la définition :

Propriétés

- Les fonctions puissances sont définies sur $]0; +\infty[$,
- La fonction puissances sont continues sur $]0; +\infty[$,
- \blacksquare La fonction puissances sont dérivables sur]0; $+\infty$ [et

pour tout
$$x \in]0; +\infty[, (x^m)' = mx^{m-1}.$$

Propriétés

■ Soit m un nombre réel donné.

• pour tout $(x,y) \in (\mathbb{R}_+^*)^2$, $(xy)^m = x^m \cdot y^m$

• pour tout $(x,y) \in (\mathbb{R}_+^*)$, (xy)• pour tout $x \in \mathbb{R}_+^*$, $x^{-m} = \frac{1}{x^m}$ • pour tout $(x,y) \in (\mathbb{R}_+^*)^2$, $\left(\frac{x}{y}\right)^m$

■ Soient m et p deux nombres réels donnés.

• pour tout $x \in \mathbb{R}_+^*$, $x^{m+p} = x^m x^p$

• pour tout $x \in \mathbb{R}_+^*$, $(x^m)^p = x^{mp}$

$\underline{\text{Courbe}}$

Fonctions trigonométriques 3.6

3.6.1 Rappels de trigonométrie

Nous commencerons cette section par quelques rapides rappels de trigonométrie.

Le cercle trigonométrique

Dans toute la suite, le plan est muni d'un repère orthonormé direct $(O; \overrightarrow{OI}; \overrightarrow{OJ})$.

Définition

On appelle cercle trigonométrique, le cercle de centre O et de rayon 1 sur lequel on définit un sens de parcours appelé sens trigonométrique et qui correspond au sens inverse des aiguilles d'une montre.

12

Remarque

Le périmètre du cercle est 2π .

b Mesure d'un angle

On considère maintenant la droite Δ , tangente au cercle au point I. Pour un réel x repéré sur la droite Δ , on considère le point M que l'on obtiendrait sur le cercle par "enroulement" de Δ sur le cercle. On dit que M est **l'image** du réel x sur le cercle.

Exemples

Placer sur le cercle les points correspondant à π , $\frac{\pi}{2}$, $\frac{\pi}{3}$, $\frac{\pi}{4}$, $-\frac{\pi}{4}$ en partant de la remarque que le périmètre est 2π .

Remarque

Les réels x et $x+2k\pi,\,k\in\mathbb{Z},$ ont la même image.

<u>Définition</u>

On considère sur le cercle trigonométrique le point M image du réel x. On dit que x est une mesure en radians de l'angle orienté $(\overrightarrow{OI}; \overrightarrow{OM})$.

Remarques

 $\overrightarrow{\text{Si}}$ le réel x est une mesure de l'angle orienté $(\overrightarrow{OI};\overrightarrow{OM})$, alors l'ensemble des mesures de cet angle est :

$$\{x + 2k\pi; \ k \in \mathbb{Z}\}.$$

Si y est une mesure de l'angle orienté $(\overrightarrow{OI}; \overrightarrow{OM})$, alors il existe $k \in \mathbb{Z}$ tel que $y = x + 2k\pi$ ou encore $y \equiv x[2\pi]$.

Définition

On considère deux points \overrightarrow{A} et \overrightarrow{B} sur le cercle trigonométrique. Les mesures en radians de l'angle orienté $(\overrightarrow{OA}; \overrightarrow{OB})$ sont les réels y - x où x est une mesure de l'angle orienté $(\overrightarrow{OI}; \overrightarrow{OA})$ et y est une mesure de l'angle orienté $(\overrightarrow{OI}; \overrightarrow{OB})$

Définition

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls définissant un angle orienté $(\overrightarrow{u}; \overrightarrow{v})$. On les considère les points A et B sur le cercle trigonométrique tels que les vecteurs \overrightarrow{OA} et \overrightarrow{OB} soient respectivement colinéaires et de même sens que les vecteurs \overrightarrow{u} et \overrightarrow{OA} .

Les couples de vecteurs $(\overrightarrow{u}; \overrightarrow{v})$ et $(\overrightarrow{OA}; \overrightarrow{OB})$ définissent le même angle orienté et ont donc les mêmes mesures.

3.6.2 Cosinus et sinus d'un nombre réel

Définition

Dans le plan rapporté à un repère orthonormé, soit M l'image sur le cercle trigonométrique du réel x.

- lacksquare On appelle <u>cosinus de x</u>, noté <u>cos x</u>, l'abscisse du point M.
- lacksquare On appelle $\underline{sinus\ de\ x}$, noté $\underline{sin\ x}$, l'ordonnée du point M.

Les propriétés suivantes sont des conséquences immédiates de la définition :

Propriétés

- $pour tout x \in \mathbb{R}, -1 \le \sin(x) \le 1$
- $pour tout x \in \mathbb{R}, \quad \cos^2(x) + \sin^2(x) = 1$

Il est impératif de bien connaître la liste des valeurs particulières suivantes :

Valeurs particulières à connaitre

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1

Voici une seconde liste de propriétés :

Propriétés

- pour tout $(x,k) \in \mathbb{R} \times \mathbb{Z}$, $\cos(x+2k\pi) = \cos(x)$

- pour tout $x \in \mathbb{R}$, $\cos(x + \frac{\pi}{2}) = -\sin(x)$

```
■ pour tout x \in \mathbb{R}, \cos(\frac{\pi}{2} - x) = \sin(x)

■ pour tout (x, k) \in \mathbb{R} \times \mathbb{Z}, \sin(x + 2k\pi) = \sin(x)

■ pour tout x \in \mathbb{R}, \sin(-x) = -\sin(x)

■ pour tout x \in \mathbb{R}, \sin(x + \pi) = -\sin(x)

■ pour tout x \in \mathbb{R}, \sin(x + \frac{\pi}{2}) = \cos(x)

■ pour tout x \in \mathbb{R}, \sin(\frac{\pi}{2} - x) = \cos(x)
```

Il est aussi important de bien connaître les formules trigonométriques suivantes :

```
<u>Proposition</u> (Formules d'addition)
```

- $pour tout (a, b) \in \mathbb{R}^2, \quad \cos(a + b) = \cos(a)\cos(b) \sin(a)\sin(b)$
- $pour tout (a, b) \in \mathbb{R}^2, \quad \sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$
- $pour tout (a, b) \in \mathbb{R}^2, \quad \cos(a b) = \cos(a)\cos(b) + \sin(a)\sin(b)$

Dans le cas particulier a = b, nous obtenons alors

Proposition (Formules de duplication)

- pour tout $a \in \mathbb{R}$, $\cos(2a) = \cos^2(a) \sin^2(a) = 2\cos^2(a) 1 = 1 2\sin^2(a)$;
- \blacksquare pour tout $a \in \mathbb{R}$, $\sin(2a) = 2\sin(a)\cos(a)$;

Nous ajoutons une liste complémentaires de formules trigonométriques qui pourront s'avérer très utiles pour les étudiants souhaitant poursuivre leur cursus dans le domaine des mathématiques et/ou de la physique :

Proposition (Formules éventuellement à connaitre)

- pour tout $(a,b) \in \mathbb{R}^2$, $\sin(a)\sin(b) = \frac{1}{2}\left[\cos(a-b) \cos(a+b)\right]$
- pour tout $(a,b) \in \mathbb{R}^2$, $\sin(a)\cos(b) = \frac{1}{2}\left[\sin(a+b) + \sin(a-b)\right]$
- pour tout $(p,q) \in \mathbb{R}^2$, $\cos(p) + \cos(q) = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$;
- pour tout $(p,q) \in \mathbb{R}^2$, $\sin(p) + \sin(q) = 2\sin(\frac{p+q}{2})\cos(\frac{p-q}{2})$;
- pour tout $(p,q) \in \mathbb{R}^2$, $\cos(p) \cos(q) = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$;
- pour tout $(p,q) \in \mathbb{R}^2$, $\sin(p) \sin(q) = 2\cos\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$;

3.6.3 Fonction cosinus

Définition

On appelle fonction <u>cosinus</u> et on la désigne par <u>cos</u> la fonction : $\begin{bmatrix} \mathbb{R} & \to & [-1,1] \\ x & \mapsto & \cos(x) \end{bmatrix}$

Nous retrouvons alors les propriétés immédiates de la fonction cosinus :

Propriétés

- La fonction cosinus est définie sur \mathbb{R} à valeurs dans [-1,1].
- La fonction cosinus est 2π -périodique et paire.

Proposition

- La fonction cosinus est continue sur \mathbb{R} .
- lacksquare La fonction cosinus est dérivable sur $\mathbb R$ et

pour tout
$$x \in \mathbb{R}$$
, $\cos'(x) = -\sin(x)$.

Tableau de variation

x	0	$\frac{\pi}{2}$	π
$-\sin(x)$		_	
$\cos(x)$	1 _	0	-1

Courbe représentative

3.6.4 Fonction sinus

Définition

On appelle fonction <u>sinus</u> et on la désigne par <u>sin</u> la fonction : $\begin{pmatrix} \mathbb{R} & \to & [-1,1] \\ x & \mapsto & \sin(x) \end{pmatrix}$

Nous retrouvons alors les propriétés immédiates de la fonction sinus :

Propriétés

- La fonction sinus est définie sur \mathbb{R} à valeurs dans [-1,1].
- La fonction sinus est 2π -périodique et impaire.

Proposition

- La fonction sinus est continue sur \mathbb{R} .
- lacksquare La fonction sinus est dérivable sur $\mathbb R$ et

pour tout
$$x \in \mathbb{R}$$
, $\sin'(x) = \cos(x)$.

Tableau de variation

x	$0 \qquad \qquad \frac{\pi}{2} \qquad \qquad \pi$	
$\cos(x)$	+ 0 -	
$\sin(x)$		

Courbe représentative

3.6.5 Fonction tangente

<u>Définition</u>

Soit $x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi; \ k \in \mathbb{Z} \right\}$. On appelle <u>tangente de x</u> et on note <u>tan(x)</u> le nombre

$$\tan(x) = \frac{\sin(x)}{\cos(x)}.$$

Remarque

Attention à l'ensemble de définition!

Valeurs particulières à connaitre

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$\tan(x)$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	×	0	×	0

Propriétés

• pour tout $x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi; \ k \in \mathbb{Z} \right\}$ et tout $p \in \mathbb{Z}$,

$$\tan(x + p\pi) = \tan(x);$$

• pour tout $x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi; \ k \in \mathbb{Z} \right\}$

$$\tan(-x) = -\tan(x);$$

Proposition (Formules d'addition)

Pour tout $(a,b) \in \mathbb{R}^2$ tel que $a \not\equiv \frac{\pi}{2}[\pi], \ b \not\equiv \frac{\pi}{2}[\pi]$ et $a+b \not\equiv \frac{\pi}{2}[\pi],$

$$\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)};$$

• Pour tout $(a,b) \in \mathbb{R}^2$ tel que $a \not\equiv \frac{\pi}{2}[\pi]$, $b \not\equiv \frac{\pi}{2}[\pi]$ et $a - b \not\equiv \frac{\pi}{2}[\pi]$,

$$\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)};$$

Définition

On appelle fonction <u>tangente</u> et on la désigne par <u>tan</u>, la fonction $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi; k \in \mathbb{Z}\} \to \mathbb{R}$ $x \mapsto \tan(x)$

Propriétés

- La fonction tangente est définie sur $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi; k \in \mathbb{Z}\}$ à valeurs dans \mathbb{R} .
- La fonction tangente est π -périodique et impaire.

Proposition

- La fonction tangente est continue sur les intervalles] $-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi[$, $k \in \mathbb{Z}$. La fonction tangente est dérivable sur les intervalles] $-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi[$, $k \in \mathbb{Z}$ et

pour tout
$$x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi; \ k \in \mathbb{Z} \right\}, \quad \tan'(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x).$$

Tableau de variation

x	$0 \qquad \qquad \frac{\pi}{2}$
$\tan'(x)$	+
$\tan(x)$	0 +∞

Courbe représentative

3.7 Fonctions hyperboliques

Pour simplifier certains calculs et certains résultats par analogie avec les fonctions trigonométriques, on introduit aussi les **fonctions hyperboliques** : cosinus hyperbolique, sinus hyperbolique et tangente hyperbolique.

Définition

On appelle fonction <u>cosinus hyperbolique</u>, notée <u>ch</u>, <u>sinus hyperbolique</u>, notée <u>sh</u> et <u>tangente hyperbolique</u>, notée <u>th</u>, les fonctions respectivement définies sur \mathbb{R} par : pour tout $x \in \mathbb{R}$,

$$\operatorname{ch}(x) = \frac{e^x + e^{-x}}{2}, \quad \operatorname{sh}(x) = \frac{e^x - e^{-x}}{2}, \quad \operatorname{th}(x) = \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

Remarque

Pour faire l'analogie avec les fonctions trigonométriques, rappelons les formules d'Euler :

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}, \quad \sin(x) = \frac{e^{ix} - e^{-ix}}{2i}.$$

Propriétés (cosinus hyperbolique)

- La fonction cosinus hyperbolique est définie sur \mathbb{R} à valeurs dans $[1, +\infty[$.
- La fonction cosinus hyperbolique est paire : pour tout $x \in \mathbb{R}$, $\operatorname{ch}(-x) = \operatorname{ch}(x)$.
- La fonction cosinus hyperbolique est continue sur \mathbb{R} .
- La fonction cosinus hyperbolique est dérivable sur \mathbb{R} et

pour tout
$$x \in \mathbb{R}$$
, $\operatorname{ch}'(x) = \operatorname{sh}(x)$.

Propriétés (sinus hyperbolique)

- La fonction sinus hyperbolique est définie sur \mathbb{R} à valeurs dans \mathbb{R} .
- La fonction sinus hyperbolique est impaire : pour tout $x \in \mathbb{R}$, $\operatorname{sh}(-x) = -\operatorname{sh}(x)$.
- La fonction sinus hyperbolique est continue sur \mathbb{R} .
- La fonction sinus hyperbolique est dérivable sur \mathbb{R} et

pour tout
$$x \in \mathbb{R}$$
, $\operatorname{sh}'(x) = \operatorname{ch}(x)$.

Nous ajouterons ici la propriétés remarquable suivante (toujours remarquer l'analogie avec les fonctions trigonométriques!)

Propriétés

pour tout
$$x \in \mathbb{R}$$
, $\operatorname{ch}^2(x) - \operatorname{sh}^2(x) = 1$.

Propriétés (tangente hyperbolique)

- La fonction tangente hyperbolique est définie sur \mathbb{R} à valeurs dans] 1;1[.
- La fonction tangente hyperbolique est impaire : pour tout $x \in \mathbb{R}$, th(-x) = -th(x).
- La fonction tangente hyperbolique est continue sur \mathbb{R} .
- La fonction tangente hyperbolique est dérivable sur \mathbb{R} et

pour tout
$$x \in \mathbb{R}$$
, $\operatorname{th}'(x) = \frac{1}{\operatorname{ch}^2(x)} = 1 - \operatorname{th}^2(x)$.

Il est aussi possible d'établir des formules de trigonométrie hyperbolique. Par exemple, nous avons (toujours remarquer l'analogie avec les fonctions trigonométriques!) :

Proposition (Formules d'addition)

- pour tout $(a, b) \in \mathbb{R}^2$, $\operatorname{ch}(a+b) = \operatorname{ch}(a)\operatorname{ch}(b) + \operatorname{sh}(a)\operatorname{sh}(b)$
- pour tout $(a,b) \in \mathbb{R}^2$, $\operatorname{sh}(a+b) = \operatorname{sh}(a)\operatorname{ch}(b) + \operatorname{ch}(a)\operatorname{sh}(b)$
- pour tout $(a,b) \in \mathbb{R}^2$, $\operatorname{ch}(a-b) = \operatorname{ch}(a)\operatorname{ch}(b) \operatorname{sh}(a)\operatorname{sh}(b)$
- pour tout $(a, b) \in \mathbb{R}^2$, $\operatorname{sh}(a b) = \operatorname{sh}(a)\operatorname{ch}(b) \operatorname{ch}(a)\operatorname{sh}(b)$

Proposition (Formules de duplication)

- pour tout $a \in \mathbb{R}$, $\operatorname{ch}(2a) = \operatorname{ch}^2(a) + \operatorname{sh}^2(a) = 2\operatorname{ch}^2(a) 1 = 1 + 2\operatorname{sh}^2(x)$;
- pour tout $a \in \mathbb{R}$, $\operatorname{sh}(2a) = 2\operatorname{sh}(a)\operatorname{ch}(a)$;

Tableaux de variation

x	0	$+\infty$
sh(x)		+
$\operatorname{ch}(x)$	1	$+\infty$

x	0	$+\infty$
ch(x)		+
sh(x)	0	$+\infty$

x	0	$+\infty$
$\frac{1}{\operatorname{ch}^2(x)}$		+
th(x)	0	1

Courbes représentatives

