Image Classification Using CNN from Optimization Perspective

Farida Far Poor, Mohammad Mehdi Hosseini

Table of contents

- 1. Classification
- 2. Neural Network
- 3. Why CNN
- 4. Our Network Structure
- 5. Optimization Perspective
- 6. Experiments and Analysis

Classification

Classification:

- Design a model
- Look at many samples (providing data)
- Learn features (loss minimization)
- Label new unseen data

Classifier is

• a model that produces labels from a set of features of a data

Image classifier:

- Model
- Utilize Data (images)
- Train itself
- Label data

Classic Neural Network

Feed forward + Back-propagation

Classic Neural Network

Inside a node

Traditional Methods Drawbacks

Main problem in classification:

Feature extraction is

boring

time consuming

not exact

Features like: HOG, SIFT, HSV, RGB are understandable by human, not necessarily by the computers.

Other assistants:

Feature selection

Feature generation

Classic Neural Network

Painkillers

Question

Computers' understanding is not quite the same as humans,

Isn't it better let them do that?

Now, we know why we use convolutional neural networks

Convolutional Neural Network

Network Structure

3 convolutional layers

1 fully connected layer

Optimization Perspective

- Maximize Accuracy (Minimize Error)
 - Loss Function
 - Optimizer
 - Learning Rate
 - Activation function

Loss Function

√ Cross-entropy

✓ Hinge

Mean Squared Error (MSE)

General Form:

$$\boldsymbol{ heta}^* = rg \min_{oldsymbol{ heta}} f(oldsymbol{ heta})$$

MSE (suitable for regression):

$$f(oldsymbol{ heta}) = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i(oldsymbol{ heta}))^2$$

For example, in a 2D space:

$$\min_{w_0, w_1} \frac{1}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 \cdot x_i))^2$$

$$w1 \rightarrow slope \qquad w0 \rightarrow intercept$$

Cross-Entropy

General Form:

$$oldsymbol{ heta}^* = rg \min_{oldsymbol{ heta}} \mathcal{L}(oldsymbol{ heta})$$

Cross entropy (binary classifier):

$$ext{Loss} = -rac{1}{n}\sum_{i=1}^n \left(y_i \cdot \log(\hat{y}_i) + (1-y_i) \cdot \log(1-\hat{y}_i)
ight)$$

Categorical Cross Entropy (Multi-class classifier):

Loss =
$$-\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{C} y_{i,j} \cdot \log(\hat{y}_{i,j})$$

CE is a 0/1 classifier.

Hinge

General Form:

$$oldsymbol{ heta}^* = rg \min_{oldsymbol{ heta}} \mathcal{L}(oldsymbol{ heta})$$

Hinge (binary):

Hinge Loss =
$$\frac{1}{n} \sum_{i=1}^{n} \max (0, 1 - y_i \cdot f(\boldsymbol{x}_i))$$

Hinge with constraint:

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \left(\frac{1}{n} \sum_{i=1}^n \max \left(0, 1 - y_i \cdot f(\boldsymbol{x}_i; \boldsymbol{\theta}) \right) \right) + \lambda \|\boldsymbol{\theta}\|^2$$

Hinge loss is a -1/1 classifier.

Optimizers

Stochastic Gradient Descent (SGD)

$$heta_{t+1} = heta_t - \eta
abla J(heta_t; x^{(i)}, y^{(i)})$$

 θ_t \rightarrow Parameters at time t

 $\eta \rightarrow$ Learning rate

$$\nabla J(\theta_t; x^{(i)}, y^{(i)}) \rightarrow \text{Gradient}$$

Works better using batches.

Optimizers

ADAM

$$heta_{t+1} = heta_t - \eta rac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}$$

$$\hat{m}_t = rac{m_t}{1-eta_1^t}$$
 $\hat{v}_t = rac{v_t}{1-eta_2^t}$

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) \nabla J(\theta_t)$$

 $v_t = \beta_2 v_{t-1} + (1 - \beta_2) (\nabla J(\theta_t))^2$

How to choose learning rate?

Activation Function

Experiments

- Classification on two datasets:
 - Caltech 101
 - Cifar 100

- **■**Study network performance:
 - Different loss functions
 - Different optimizers
 - Different activation functions
 - The best learning rate

Baseline

Dataset: Caltech

Train-test ratio: 70-30%

Loss: categorical crossentropy

Optimizer: adam

Learning rate: 0.00003

Activation function: ReLU

Pooling: max

Batch size = 32

Epoch: 20

Datasets

1. Caltech 101

102 classes
9000 images
each class 40-800 images
different image size (200~300)

2. Cifar 100

100 classes 60000 images each class 600 images 32x32

Caltech Accuracy on Model Image Size: 256x256

Parameters ~ 15 M

CIFAR Accuracy on Model Image Size: 32x32

Parameters ~ 250 K

Learning Rate

Adam optimizer

Learning Rate (Caltech)

Adam optimizer

Learning Rate (Cifar)

Adam optimizer

Optimizer (Caltech)

Adam vs SGD

Almost similar results

Loss Function (Caltech)

Accuracy using different loss functions

Activation Function (Caltech)

Similar results

Question?

https://openai.com/dall-e-3