Case study: Monocle 3

 $\mathsf{R} \, /$

File	Functions
RcppExports.R	Needed for C++ integration
alignment.R	Data set alignment & batch effect correction
cell_data_set.R	Core classes (e.g. cell_data_set)
cluster_cells.R	Clustering cells in PCA, t-SNE, or UMAP space (e.g. louvain)
cluster_genes.R	Finding modules of co-regulated genes
expr_models.R	Regression modeling of gene expression data
find_markers.R	Finding biomarkers for cell types and clusters
generics.R	Implementations of standard BioC interfaces
graph_test.R	Tests for gene expression autocorrelation across cells
learn_graph.R	Inferring geometry of cell trajectories
load_cellranger_data.R	Importing 10X data
methods-cell_data_set.R	Core methods for cell_data_set objects
order_cells.R	Ordering cells in pseudotime
plotting.R	Many visualization functions
preprocess_cds.R	PCA, LSI
reduce_dimensions.R	Nonlinear embedding with t-SNE and UMAP
select_cells.R	Methods for selecting subsets of cells interactively
utils.R	Miscellaneous useful functions

Case study: Monocle 3

R/cell_data_set.R

```
new_cell_data_set <- function(expression_data,</pre>
                             cell_metadata = NULL,
                             gene metadata = NULL) {
assertthat::assert_that(class(expression_data) == "matrix" ||
                           is_sparse_matrix(expression_data),
                         msg = paste("Argument expression_data must be a",
                                     "matrix - either sparse from the",
                                     "Matrix package or dense"))
sce <- SingleCellExperiment(list(counts=methods::as(expression_data, "dgCMatrix")),</pre>
                             rowData = gene_metadata,
                             colData = cell metadata)
cds <- methods::new("cell_data_set",</pre>
           assays = SummarizedExperiment::Assays(
             list(counts=methods::as(expression_data, "dgCMatrix"))),
           colData = colData(sce),
           int_elementMetadata =int_elementMetadata(sce),
           int_colData = int_colData(sce),
           int_metadata = int_metadata(sce),
           metadata = metadata(sce),
           NAMES = NULL
           elementMetadata = elementMetadata(sce)[,0],
           rowRanges = rowRanges(sce))
metadata(cds)$cds_version <- Biobase::package.version("monocle3")</pre>
clusters <- stats::setNames(SimpleList(), character(0))</pre>
cds <- estimate_size_factors(cds)</pre>
cds
```