Establishment of Model

Technical term

1. Graph is weighted undirected connected simple dynamic graph

2. Dynamic graph is graph which edges can be modified by using 2 operations

Add an edge from u to v with weight w

- Delete an edge from u to v
- 3. Source node is a node which receives donations and has authority to distribute donations.
- 4. Expiration is state fulfilled demand of an object decrease to zero

Definition

- 1. Graph is 3-tuples (V, E, $\overline{I} = \langle \overline{I}_i \rangle$) such that
 - V is set of vertices
 - E is set of edges
 - I is vector of vector represent vehicles which travel to vertices, sorted by time during transportation process in ascending order
- 2. Vertex is 5-tuples (z, r, R, T, X) such that
 - $z \in \mathbb{R}_0^+$ is initial demand
 - $r \in \mathbb{R}^+$ is increasing demand rate
 - R: $\mathbb{R}_0^+ \to \mathbb{R}_0^+$ is function which R(0) = 0
 - $R: \mathbb{R}_0^+ \to \mathbb{R}_0^+$ is the vector represent time received donation
 - $X \in \mathbb{R}_0^+$ is total fulfilled demand
- 3. Vehicle is 3-tuples (s, l, b) such that
 - s is sink node index
 - $l \in \mathbb{R}_0^+$ is time during transportation process
 - $\mathbf{b} \in \mathbb{R}_0^+$ is total utility value
- 4. Object is pair (B, d) such that
 - $B \in \mathbb{R}^+$ is utility value per piece
 - $d \in \mathbb{R}^+$ is time before expiration since object appear in the model

Description

In the model, disaster area is represented by ${f m}$ sub graphs denoted by G_i ; $\forall i \leq m$. These sub graphs called G_0 . It has been guaranteed that in case of different sub graphs, there exist only edges between source node. There exist n types of donation. For each day, there are inputs which determined by user represent incoming donations for every source node.

General demand of node u at time t

Let $\Phi_{\mathbf{u}}(\mathbf{t}): \mathbb{R}_0^+ \to \mathbb{R}_0^+$ such that $\phi_{ij}(t) = r_{ij}t + z_{ij}$

Let $\Phi_{\mathbf{u}}(\mathbf{t}): \mathbb{R}_0^+ \to \mathbb{R}_0^+$ such that

$$\Phi_u(t) = \sum_{i=1}^{|h|} \int_0^{h_i - h_{i-1}} R_u(T) dT + \int_0^{t - h_{|h|}} R_u(T) dT$$
 Total demand of node u at time t

Let $\Phi_{\mathbf{u}}(\mathbf{t}): \mathbb{R}_0^+ \to \mathbb{R}_0^+$ such that

 $D_{ii}(t) = \phi_{ii}(t) + \Phi_{ii}(t)$

Objective

The objective of the model is to minimize $\lim_{t\to\infty} P(t)$ where

$$P(t) = \sum max^2(0, D_u(t) - X_u)$$