Final Project

Kathryn Ellestad

2025-04-28

Libraries

```
library(readxl)
## Warning: package 'readxl' was built under R version 4.4.3
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.4.3
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.4.3
## Warning: package 'purrr' was built under R version 4.4.3
## Warning: package 'dplyr' was built under R version 4.4.3
## Warning: package 'stringr' was built under R version 4.4.3
## Warning: package 'lubridate' was built under R version 4.4.3
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.4 v readr
                                   2.1.5
## v forcats 1.0.0
                       v stringr 1.5.1
## v lubridate 1.9.4
                       v tibble
                                   3.2.1
## v purrr
             1.0.4
                       v tidyr
                                   1.3.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(plotly)
```

Warning: package 'plotly' was built under R version 4.4.3

```
##
## Attaching package: 'plotly'
##
## The following object is masked from 'package:ggplot2':
##
##
       last plot
##
## The following object is masked from 'package:stats':
##
##
       filter
##
## The following object is masked from 'package:graphics':
##
##
       layout
```

Aesthetics

```
theme_set(
  theme_minimal(base_size = 14, base_family = "Georgia") +
      plot.title = element_text(face = "bold", color = "#f8f8f8", hjust = 0.5),
      plot.subtitle = element_text(color = "#cccccc", hjust = 0.5),
      axis.title.x = element_text(color = "#f8f8f8", margin = margin(t = 10)),
      axis.title.y = element_text(color = "#f8f8f8", margin = margin(r = 10)),
      axis.text.x = element_text(color = "#f8f8f8"),
      axis.text.y = element_text(color = "#f8f8f8"),
      panel.background = element_rect(fill = "#222222", color = NA),
      plot.background = element_rect(fill = "#222222", color = NA),
      panel.grid.major.x = element_line(color = "grey30"),
      panel.grid.major.y = element_line(color = "grey30"),
      panel.grid.minor = element blank(),
      legend.position = "none"
    )
)
pastel_colors <- c("Physical" = "#C3E2C2", "Eink" = "#D8C7FF")</pre>
```

Data

```
SleepandReadData <- read_excel("C:/Users/kathryne/OneDrive/School/Data211/Final Project/Reading and Sle
SleepandReadData <- SleepandReadData %>%
  mutate(Format = str_to_title(Format))
```

Hypothesis 1: Does the format I use significantly affect the minutes spent reading?

Hypothesis

 $\mu_e = \text{Average minutes spent reading eink}$

```
H_0: \mu_e = \mu_p H_a: \mu_e \neq \mu_p \texttt{t.test}(\texttt{MinutesReading ~ Format, data = SleepandReadData, alternative = "two.sided"}) \texttt{##} \texttt{##} \texttt{Welch Two Sample t-test}
```

```
## Welch Two Sample t-test
##

## data: MinutesReading by Format
## t = -0.8722, df = 11.854, p-value = 0.4004
## alternative hypothesis: true difference in means between group Eink and group Physical is not equal
## 95 percent confidence interval:
## -75.03211 32.17497
## sample estimates:
## mean in group Eink mean in group Physical
## 50.57143 72.00000
```

 μ_p = Average minutes spent reading physical

Conclusion:

p-value = $.4004 > \alpha = .05$, therefore with a 5% significance level, we fail to reject H_0 . There is not sufficient evidence to support the claim that the format used significantly affects the amount of minutes spent reading.

file:///C:\Users\kathryne\AppData\Local\Temp\Rtmp67jrss\file6dc02c2157cb\widget6dc04fb92ee1.html scr

Average Reading Time by Format

Hypothesis 2: Is the amount of sleep I get different based on the format I read before bed?

Hypothesis

```
\mu_e = Average sleep minutes after eink
\mu_p = Average sleep minutes after physical
H_0: \mu_e = \mu_p
H_a: \mu_e \neq \mu_p
t.test(TotalTimeAsleep ~ Format, data = SleepandReadData, alternative = "two.sided")
##
##
   Welch Two Sample t-test
##
## data: TotalTimeAsleep by Format
## t = -1.8106, df = 11.784, p-value = 0.09576
## alternative hypothesis: true difference in means between group Eink and group Physical is not equal
## 95 percent confidence interval:
## -213.96426
                  19.96426
## sample estimates:
##
       mean in group Eink mean in group Physical
##
                  295.4286
                                           392,4286
```

Conclusion:

p-value = $.09576 > \alpha = .05$, therefore with a 5% significance level, we fail to reject H_0 . There is not sufficient evidence to support the claim that the format chosen greatly affects the amount of sleep I get each night.

```
SummaryTable <- SleepandReadData %>%
  group_by(Format) %>%
  summarise(
    ave = mean(TotalTimeAsleep, na.rm = TRUE),
    se = sd(TotalTimeAsleep, na.rm = TRUE) / sqrt(n()),
    n = n(),
    tstar = qt(1 - 0.05/2, df = n() - 1)
)

SleepvsFormat <- ggplot(SummaryTable, aes(x = Format, y = ave, fill = Format)) +
  geom_col(width = 0.5, color = "white") +
  geom_errorbar(aes(ymin = ave - tstar * se, ymax = ave + tstar * se), width = 0.2, linewidth = 0.8) +
  geom_point(shape = 21, size = 4, color = "black", fill = "white", stroke = 1.2) +
  scale_fill_manual(values = pastel_colors) +
  labs(title = "Average Total Sleep by Format",y="Average Minutes Slept")

ggplotly(SleepvsFormat)</pre>
```

file:///C:\Users\kathryne\AppData\Local\Temp\Rtmp67jrss\file6dc03137d5b\widget6dc01b7655c5.html scre

Average Total Sleep by Format

Hypothesis 3: Does the format that I use affect the speed at which I read?

Hypothesis

```
\mu_e = Average pages per minute with eink.
\mu_p = Average pages per minute with physical
H_0: \mu_e = \mu_p
H_a: \mu_e \neq \mu_p
t.test(PagesPerMinute ~ Format, data = SleepandReadData, alternative = "two.sided")
##
##
  Welch Two Sample t-test
##
## data: PagesPerMinute by Format
## t = -0.60393, df = 8.2984, p-value = 0.562
## alternative hypothesis: true difference in means between group Eink and group Physical is not equal
## 95 percent confidence interval:
## -1.608408 0.937481
## sample estimates:
       mean in group Eink mean in group Physical
##
                                          1.878797
                  1.543333
```

Conclusion:

p-value = $.562 > \alpha = .05$, therefore with a 5% significance level, we fail to reject H_0 . There is not sufficient evidence to support the claim that the format used greatly affects reading speed.

file:///C:\Users\kathryne\AppData\Local\Temp\Rtmp67jrss\file6dc061b65400\widget6dc044665498.html scr

Average Pages Read by Format

Hypothesis 4: Does the format that I use affect how quickly I fall asleep?

Hypothesis

```
\mu_e = Average minutes to fall asleep after eink
\mu_p = Average minutes to fall asleep after physical
H_0: \mu_e = \mu_p
H_a: \mu_e \neq \mu_p
t.test(MinutesToSleep ~ Format, data = SleepandReadData, alternative = "two.sided")
##
##
  Welch Two Sample t-test
##
## data: MinutesToSleep by Format
## t = -0.92872, df = 6.0311, p-value = 0.3887
## alternative hypothesis: true difference in means between group Eink and group Physical is not equal
## 95 percent confidence interval:
## -112.57453
                  50.57453
## sample estimates:
       mean in group Eink mean in group Physical
                                          40.142857
##
                  9.142857
```

Conclusion:

p-value = .3887 > α = .05, therefore with a 5% significance level, we fail to reject H_0 . There is not sufficient evidence to support the claim that the format used greatly affects how long it takes to fall asleep.

```
TimetoSleepPlot <- ggplot(SleepandReadData, aes(x = Format, y = MinutesToSleep, fill = Format)) +
    geom_jitter(width = 0.2, size = 3.5, shape = 21, color = "black", stroke = 1.2) +
    stat_summary(fun = mean, geom = "point", shape = 23, size = 5, fill = "white", color = "black", strok
    stat_summary(fun.data = mean_se, geom = "errorbar", width = 0.2, linewidth = 1) +
    scale_fill_manual(values = pastel_colors) +
    labs(title = "Minutes to Fall Asleep by Format.\n (Note: one extreme outlier clipped for clarity)",y=
    coord_cartesian(ylim = c(0, 100))

ggplotly(TimetoSleepPlot)</pre>
```

 $\label{thm:condition} $$\# file:///C:\Users\kathryne\appData\Local\Temp\Rtmp67jrss\file6dc04e57724f\widget6dc072a0d2d.html screen scr$

Graphs

Scatter plot of amount of sleep and minutes read

Total Time Asleep vs Reading Time

Stacked/clustered bar chart of average sleep stage minutes by format

```
SleepStageAvg <- SleepandReadData %>%
  group_by(Format) %>%
  summarise(
    REM = mean(REM),
    Light = mean(Light),
    Deep = mean(Deep)
  ) %>%
  pivot_longer(cols = c(REM, Light, Deep), names_to = "Stage", values_to = "AvgMinutes")
StackedBars <- ggplot(SleepStageAvg, aes(x = Format, y = AvgMinutes, fill = Stage)) +</pre>
  geom_bar(stat = "identity") +
  scale_fill_manual(values = c("REM" = "#CBBBDD", "Light" = "#BFD8B8", "Deep" = "#FFD8BE")) +
  labs(title = "Average Minutes in Sleep Stages by Format",
       x = "Reading Format",
       y = "Average Minutes",
       fill = "Sleep Stage")
ggplotly(StackedBars)
```

 $\verb| ## file:///C:\Users\kathryne\AppData\Local\Temp\Rtmp67jrss\file6dc050aa2771\widget6dc030e4364.html screen with the second of the second o$

Average Minutes in Sleep Stages by Form

Line chart showing reading time by date

Reading Time Over Two Weeks

Bar chart showing average pages read by day of week

Average Pages Read by Day of Week

Day of Weel