Zespoły modeli predykcyjnych inne podejścia wykład 10

Jerzy Stefanowski Instytut Informatyki PP 2021

Akademia Innowacyjnych Zastosowań Technologii Cyfrowych (AI-TECH) projekt finansowany z środków Programu Operacyjnego Polska Cyfrowa POPC.03.02.00-00-0001/20

Plan wykładu

- Zróżnicowanie klasyfikatorów składowych
- Generalizacja stosowa (ang. stacking)
- Podejście tzw. mieszanki ekspertów (ang. mixture of experts)
- Podejścia zespołowe do danych silnie wieloklasowych
- Podsumowanie

Motywacje dla Stacking [ang.]

- Alternatywne podejścia do budowania złożonych klasyfikatorów
- Klasyfikatory bazowe często niejednorodne, uczone różnymi algorytmami
 - Lecz może być użyte do zastąpienia głosowania w zespołach bagging lub boosting
- Struktura wielopoziomowa z różnymi podejściami do rozstrzygania niejednoznaczności wskazań klasyfikatorów bazowych
- Koncepcja tzw. meta-uczenia się (wiedza z odpowiedzi innych klasyfikatorów)
- Możliwe dynamiczne modyfikowanie działania zespołu

Stacking – generalizacja stosowa

Obserwacje – niektóre przykłady mają wysokie prawdopodobieństwo złej klasyfikacji, a inne są częściej dobrze klasyfikowane.

Pytanie – czy można nauczyć się ogólniejszych **meta zasad**, jak dokonać korekty klasyfikacji pewnych modeli (lepiej niż głosowanie większościowe)

Wolpert – **generalizacja stosowa**:

- Wyjścia klasyfikatorów są wejściami dla kolejnych algorytmów (meta-uczących się), w celu nauczenia zasad korekty wcześniejszych predykcji.
- Możliwe jest łączenie wielu warstw algorytmów / klasyfikatorów

Stacked generalization [Wolpert 1992]

- Wykorzystaj ideę meta-uczenia
 - Predykcje tzw. base learners/model (level-0 models) przekazane na wejścia kolejnych tzw. meta learner (level-1 model)
- Metody uczenia bazowych modeli (poziom 0) są często różnymi algorytmami (podejścia niejednorodnych modeli)

 Różne rozwiązania idei meta-poziomu (poziom 1), np. tzw. combiner albo arbiter

Meta-uczenie -> tzw. combiner

Chan & Stolfo: Meta-learning [meta-uczenie]

- Dwa poziomy:
 - 1-level base classifiers
 - 2-level meta-classifier
- Różne algorytmy użyte do uczenia klasyfikatorów bazowych (zróżnicowanie klasyfikatorów)

Więcej patrz: Experiments on Multistrategy Learning by Meta-Learning. P.Chan, S.Stolfo 1993

Uczenie meta klasyfikatora

- Predykcje klasyfikatorów bazowych na zbiorze walidującym (ew. wewnętrzna ocena krzyżowa) wraz z właściwą etykietą – zbiór uczący meta-level (może być rozszerzony przez atrybuty z org. danych)
- Niezależny algorytm uczący meta-klasyfikator
- Celem jest wyuczenie korekty predykcji w b. złożony sposób niż głosowanie większościowe

Predykcja systemy złożonego combiner

Klasyfikacja nowego przykładu

Chan & Stolfo [95/97]: eksperymenty w architekturze ({CART,ID3,K-NN} → NBayes) / [dane biomedyczne] trafność lepsza niż pojedyncze klasyfikatory i ich złożenia poprzez głosowanie większościowe

Comparison of classification accuracy (%)

Data set	K-NN	C4.5	MODLEM	Combiner
acl	84.29	85.00	85.00	84.29
bupa	63.19	62.32	68.10	69.12
cleveland	52.10	53.14	54.46	55.66
glass	68.80	65.42	69.63	71.50
hsv	56.56	51.64	55.74	59.02
imidasolium	58.21	58.21	60.70	66.67
yeast	57.80	52.10	54.30	58.36

More in Nowaczyk, Stefanowski: On Using Rule Induction in Multiple Classifiers with a Combiner Aggregation Strategy. ISDA 2005.

Meta-uczenia : Naive Bayes / sprawdzano też inne

Ogólny przyrost trafności + lepiej niż pojedyncze klasyfikatory składowe

Inne eksperymenty [materialy njt.edu]

Breast Cancer Dataset

Method	Error (%)	Precision (%)	Recall (%)
NB	13.7	86	90
Linear SVM	12.5	92	92
Logistic Regression	10.7	93	95
Random Forest	5.35	95	98
Boosted Trees	3.57	95	95
Stacked Ensemble Classifier	1.78	98	98

Table: Comparison of performance of different classifiers using the Breast Cancer d

Przyrost miar oceny na 6 różnorodnych zbiorach danych, także w porównaniu do standardowych klasyfikatorów Więcej na linku podanym w ekursy

Stacking - rozszerzenia

- Wyjścia klasyfikatorów są rozkładami prawdopodobieństw
 [Witten 1999] / także meta-uczenie z odmianą regresyjną tzw.
 model tree [Dzeroski, Zenko 2004] złożenie 3 klasyfikatorów,
 ocena eksperymentalna na 30 zbiorach danych z UCI
- StackingC przeznaczony dla problemów wieloklasowych.
 Klasyfikatory bazowe ukierunkowane na rozpoznanie jednej z klas
- SCANN wykorzystanie przekształcenie wyjść poprzez analizę korespondencji i poszukiwanie bliskości w nowej przestrzeni – odmiana kNN jako finalna predykcja [Merz 1999]

Generalizacja stosowa - więcej

- Literatura naukowa –
 eksperymentalne doświadczenia
 z rozszerzaniem klasyfikatorów
 bagging zamiast
 niejednorodnych klasyfikatorów
 badawczych
- Wyższe poziomy mogą być także zespołem klasyfikatorów

Podejście arbitrażu

Inny sposób rozstrzygania niespójnych decyzji łączonych klasyfikatorów – tzw. arbiter trees - także wprowadzony przez Chan i Stolfo [1999]

- Zbiór uczący podzielony na k rozłącznych części
- Dla każdej pary klasyfikatorów uczymy specjalny klasyfikator arbiter do rozstrzygania niezgodności pomiędzy ich decyzjami (specjalne reguła arbitrażu – głosowanie trzech dla przykładu)
- Nowy arbiter (wyższego meta-poziomy) jest uczony z wyjść arbitrów niższego poziomu aż do finalnej decyzji arbitrażowej
- Konstruuje się strukturę drzewa podjęcia decyzji końcowej

Opis podejścia z algorytmem – książka L.Rokach: Pattern classification using ensemble methods (2009)

Mixture of experts

- Motywacja różne obszary przestrzeni cech pokrywane są przez różne modele / będącymi "ekspertami" od tych pod-problemów
- Ich predykcje (dla nowego / klasyfikowanego przykładu x) są "miękko" składane lub specjalny składnik (tzw. ang. gating network) wybiera najbardziej kompetentnych ekspertów dla danego obszaru i przykładu x
- Proces uczenia obejmuje zarówno modele bazowe jak i tzw. gating network
- Różne rozwiązania:
 - np. probabilistyczne modele generatywne
 - Sieci neuronowe -> soft max element
- Sieć neuronowa RBF może być prostą realizacją idei "mieszanki ekspertów"

Mieszanka ekspertów z dynamicznym wagowaniem ich predykcji

Tzw. gating network
Przykład – przypisanie
wag do predykcji
klasyfikatorów /
dostosowanych do
klasyfikowanego
przykładu x

$$y = \sum_{j=1}^{L} w_j(x) d_j(x)$$

Rozwiązanie kaskadowe

Cascade models:

Stwórz kaskadę modeli predykcyjnych (zróżnicowanych) w celu poradzenia sobie ze złożonymi zadaniami / specjalizują się w trudnościach Wykorzystaj kolejny model i jego predykcję d_j , jeśli poprzednicy są niepewni (ang. not sufficiently confident)

Kaskadowa sekwencja

- Bazowe klasyfikatory są dodawane sekwencyjnie
 - jeśli pewność predykcji pierwszego klasyfikatora jest duża, to jego decyzja jest uznawana za ostateczną
 - W innym przypadku decyzja jest przekazywana do kolejnego klasyfikatora, itd.
- Model kaskadowy znajduje zastosowanie w systemach czasu rzeczywistego, jeśli decyzja powinna być szybka, podjęta maksymalnie przez kilka klasyfikatorów

Miary pewności predykcji zespołu

W przypadku prostych złożeń (bagging, stacking, ...) ocenia się tzw. margines decyzji zespołu

- Różnica głosów za zwycięska i drugą klasą
 - Np. dla problemu 3 klasowego bagging z 17 drzewami ma rozkład predykcji: C1 – 10 głosów, C2 – 5 i C3 – 2 głosów -> margines 10-5=5
- Analogiczna różnica dla miar zagregowanych po prawdopodobieństwach lub innych "scores", także ważonych

Poczekaj do wykładu nt. aktywnego uczenia z techniką "Query by Committee", gdzie wykorzystuje się takie marginesy

Miary zróżnicowania

- Wiele propozycji patrz książka L.Kuncheva Combining Pattern Classifiers
- Rozważmy parę klasyfikatorów C_i oraz C_j (tzw. pairwise measures) + decyzje binarne (poprawny lub błędny)

	Cj jest poprawny	Cj jest błędny	
Ci jest poprawny	а	b	
Ci jest błędny	С	d	

- Q Statistics Q_{ii}=(ad-bc)/(ad+bc)
- Dodatnie wartości Q: jeśli przykłady są poprawnie klasyfikowane przez oba klasyfikatory, ujemne dla odwrotnych klasyfikacji.
 Maksymalne zróżnicowanie predykcji -> Q=0

Miary zróżnicowania klasyfikatorów

• Miary ang. disagreement i double fault $D_{ii} = b + c$ $DF_{ii} = d$

- oraz inne Kappa, korelacja odpowiedzi,...
 - Przegląd w książce Ludmila Kuncheva
- Dla T klasyfikatorów mamy T(T-1)/2 miar zróżnicowania par
- Najczęściej uśrednia się je do jednej globalnej wartości

Niesparowane miary zróżnicowania

Niech dla i-tego przykładu, e_i jest liczbą klasyfikatorów z *T*, które błędnie klasyfikują ten przykład, wtedy Entropia (0 – klasyfikatory podejmują te same decyzje, 1 są maksymalnie zróżnicowane):

$$E = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{T - (T/2)} \min\{e_i, T - e_i\}$$

Kohavi-Wolpert variance

$$KW = \frac{1}{nT^2} \sum_{i=1}^{n} e_i \cdot (T - e_i)$$

Dobre i złe zróżnicowanie klasyfikatorów składowych

- Postulat zróżnicowania (ang. diversity) łączonych klasyfikatorów ->
 nie mogą być zbyt podobne do siebie (mieć podobnych predykcji) + dostatecznej ich jakości (dla obserwacji z rozkładu przestrzeni cech, rozumianych że wystarczająco dużo klasyfikatorów powinno podjąć prawidłową predykcje)
 - Zbyt wiele miar zróżnicowania i brak uniwersalnej miary
- Tzw. złe zróżnicowanie (ang. bad diversity) pewna różnorodność klasyfikatorów może wpływać negatywnie na ich połączenie
- Więcej informacji w pozycjach:
 - "Good" and "bad" diversity in majority vote ensembles. G Brown, L
 Kuncheva MCS 2010

Wykorzystanie miar zróżnicowania

- Analiza budowy i działania nauczonych już zespołów
- Wykorzystanie do redukcji zbyt licznych zespołów (ang. ensemble pruning), tj. wyboru "najbardziej wartościowych" klasyfikatorów składowych i poprawy predykcji takiego złożenia kombinowanego
- Przegląd podejść [M.Woźniak]:
 - Rank-based pruning ustaleniu ranking klasyfikatorów z wykorzystaniem parowych miar zróżnicowania i wyboru najlepiej ocenianych
 - 2. Optimization based pruning sformułowanie problemu optymalizacji (łączone kryteria) i zastosowania podejść ewolucyjnych
 - 3. Clustering based pruning grupowanie podobnych klasyfikatorów i wybór ich reprezentantów

Więcej: M.Woźniak: Zespoły klasyfikatorów – aktualne kierunki badań (2015).

Specjalne zespoły dla problemów wieloklasowych

- Zadanie klasyfikacji do wielu klas (n >>2 kategorii)
- Część rzeczywistych danych klasy trudne do nauczenia (pojęcia o nieliniowych granicach i trudnych rozkładach w przestrzeni atrybutów)
- Często dekompozycja na podproblemy łatwiej się nauczyć
- Przykład problemy trzy klasowego (tzw. pairwise decision boundaries between each pairs of classes are simpler)

Dekompozycja binarna

Podejście z j. ang. one-against-one / pairwise coupling Rozważ wszystkie kombinacje dwóch klas i wyucz specjalizowane klasyfikatory binarne

Pairwise coupling - n2-classifier

Zespół złożony z $(n^2-n)/2$ binarnych klasyfikatorów (wszystkie połącznia par z n klas)

- Każda para klas (*i,j*), gdzie *i,j* ∈[1.. n], $i\neq j$, rozróżniana przez niezależny klasyfikator C_{ii}
- Uczenie C_{ij} tylko przykłady z klas i,j;
- Wszystkie klasyfikatory uczone tym samym algorytmem
- klasyfikator C_{ij} wskazuje dwie decyzje (1 or 0),

klasyfikatory C_{ij} and C_{ji} równoważne

$$C_{jj}(\mathbf{x}) = 1 - C_{ij}(\mathbf{x})$$

Własny rysunek z pracy hab. 2001

Zasady klasyfikacji w pairwise coupling

- Nowy przykład \mathbf{x} , przekazany na wszystkie klasyfikatory $C_{ij}(\mathbf{x})$ w strukturze n^2 (one against one)= konieczna reguła agregacji dla wypracowania decyzji i rozstrzygania konfliktów
- Najczęstsza reguła wybierz klasę, która wygrała w największej licznie porównać parami klas /odmiana majority voting/.
- Możliwe rozszerzenia:
 - Oszacuj wiarygodność klasyfikatora binarnego P_{ij} (np. w trakcie uczenia)
 - Reguła a weighted majority rule:
 Wybierz klasę "i" która maksymalizuje
 $\sum_{j=1,i\neq j}^{n} P_{ij} \cdot C_{ij}(x)$
- Wprowadź odpowiedź "nie wiem" lub zasadę dynamicznego ważenia głosów

Przykład oceny klasyfikatora n² z drzewa c4.5

Data set	Classification accuracy <i>DT</i> (%)	Classification accuracy n^2 (%)	Improvement n^2 vs. DT (%)
Automobile	85.5 ± 1.9	87.0 ± 1.9	1.5*
Cooc	54.0 ± 2.0	59.0 ± 1.7	5.0
Ecoli	79.7 ± 0.8	81.0 ± 1.7	1.3
Glass	70.7 ± 2.1	74.0 ± 1.1	3.3
Hist	71.3 ± 2.3	73.0 ± 1.8	1.7
Meta-data	47.2 ± 1.4	49.8 ± 1.4	2.6
Primary Tumor	40.2 ± 1.5	45.1 ± 1.2	4.9
Soybean-large	91.9 ± 0.7	92.4 ± 0.5	0.5*
Vowel	81.1 ± 1.1	83.7 ± 0.5	2.6
Yeast	49.1 ± 2.1	52.8 ± 1.8	3.7

Własna praca wspólnie z J.Jelonkiem

Inne zagadnienia

Inne warianty podstawowych algorytmów

- Modyfikacje bagging (Pasting small votes)
- Pośrednie modele (Arc-c4), inne boosting, gradient boosting
- Rotation Forest

ECOC – popularna wersja wieloklasowa

Agregacja odpowiedzi liczbowych (ang. numeric predictions)

- Zespoły specjalizowane dla trudnych danych
- •

Inne ciekawe wykorzystanie zespołów

Uogólnienia dla trudnych danych, np.

Niezbalansowanie klas (zwłaszcza uogólnienia bagging)

Zespoły klasyfikatorów dla **zmiennych strumieni danych** (wiele rozwiązań, nie tylko uogólnienia jak online bagging)

Klasyfikacja wielo-etykietowa (multi-labeled) – tzw. łańcuchy klasyfikatorów

Multi-view learning (lub odmiany self-learning) dla trybu uczenia częściowo-etykietowanego

Querry by committee w aktywnym uczeniu się

Więcej odpowiedzi, radzę książki

Odnośniki do literatury

- Intensywny rozwój od lat 90 poprzedniego wieku
- Wiele różnych propozycji
- Przykładowe pozycje:
 - L.Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, 2004 (large review + list of bibliography).
 - T.Dietterich, Ensemble methods in machine learning, 2000.
 - Using Correspondence Analysis to Combine Classifiers. C.Merz Machine Learning J. (1997)
 - Is Combining Classifiers with Stacking Better than Selecting the Best One? S.Dzeroski, B.Zenko, Machine Learning J. (2004)
 - G.Valentini, F.Masulli, Ensemble of learning machines, 2001
 [obszerna lista referencyjna]
 - R.Polikar, Ensemble based systems in decision making, IEEE
 Circuits and Systems Magazine, vol. 6, no. 3, pp. 21–45, 2006.
 - W Polsce przykładowo prace M.Woźniak i współpracownicy

Pytanie i komentarze?

Dalszy kontakt:

jerzy.stefanowski@cs.put.poznan.pl

http://www.cs.put.poznan.pl/jstefanowski/

