Конспект по матанализу в формате вопросов коллоквиума (лекции Кислякова Сергея Витальевича)

November 8, 2019

Contents

1	Вве	Введение				
	1.1	Прост	ейшие свойства вещественных чисел	4		
	1.2	Множ	ества в $\mathbb R$	5		
	1.3	Натур	альные числа	5		
		1.3.1	Аксиома Архимеда	5		
		1.3.2	Аксиома индукции	6		
		1.3.3	Неравенство Бернулли	6		
		1.3.4	Аксиома Кантора-Дедекинда	6		
		1.3.5	Иррациональность корня из двух	7		
		1.3.6	Существование рациональных и иррациональных чисел в каждом			
			невырожденном отрезке	8		
		1.3.7	Число е	8		
	1.4	Свойс	тва подмножеств $\mathbb R$	9		
		1.4.1	Грани	9		
		1.4.2	Связность отрезка	10		
		1.4.3	Предельные и изолированные точки	10		
		1.4.4	Теорема о вложенных отрезках	11		
		1.4.5	Теорема о компактности	11		
		1.4.6	Теорема о вложенных полуоткрытых отрезках	12		
		1.4.7	Десятичное разложение вещественного числа	12		
2	Пре	еделы		14		
	2.1	Основ	ные свойства пределов функций	14		
		2.1.1	Определение предела	14		
		2.1.2	Единственность предела	14		
		2.1.3	Теорема о пределе сужения	15		
		2.1.4	Предел постоянной функции и предел тождественного отображения	15		
		2.1.5	Предельный переход в неравенстве	15		
		2.1.6	Принцип двух полицейских	15		
		2.1.7	Предел линейной комбинации	16		
		2.1.8	Предел произведения стремящейся к нулю и ограниченной функций	16		
		2.1.9	Предел произведения имеющих предел функций	17		
		2.1.10	Предел частного	17		

	2.1.11	Сумма геометрической прогрессии	. 18		
		Предел монотонной функции			
		Предел композиции			
2.2	Критерий Коши				
	2.2.1	Критерий Коши	. 20		
2.3	Ряды		. 21		
	2.3.1	Понятие ряда. Теорема Лейбница	. 21		
2.4	Верхние и нижние пределы				
	2.4.1	Определение и свойства	. 22		
	2.4.2	Теорема об описании верхнего и нижнего предела	. 23		
2.5	Последовательности				
	2.5.1	Сходящиеся последовательности и их пределы	. 24		
	2.5.2	Вторая форма теоремы о компактности	. 25		
	2.5.3	Предел функции в терминах последовательности	. 26		
2.6	Бесконечные пределы				
	2.6.1	Бесконечные пределы	. 26		
2.7	Бесконечно большие и бесконечно малые				
	2.7.1	О и о. Соотношения транзитивности	. 27		
	2.7.2	Эквивалентные функции	. 28		
	2.7.3	Отношение эквивалентности и вычисление пределов	. 28		

[section]

Chapter 1

Введение

1.1 Простейшие свойства вещественных чисел

- 1. Алгебраические операции
 - (a) сложение $a, b \in \mathbb{R}$: сумма a + b определяется единственным образом
 - i. a + b = b + a (коммутативность)
 - іі. (a + b) + c = a + (b + c) (ассоциативность)
 - ііі. $\exists 0: a+0=a, \forall a \in \mathbb{R}$ (нейтральный по сложению)
 - iv. $\forall a \in \mathbb{R} \exists a' : a + a' = a' + a = 0$ (обратный по сложению)
 - (b) умножение $x,y\in\mathbb{R}$: произведение $x\cdot y$ определяется единственным образом
 - i. xy = yx (коммутативность)
 - іі. (xy)z = x(yz) (ассоциативность)
 - ііі. $\exists 1: x \cdot 1 = x, \forall x \in \mathbb{R}$ (нейтральный по умножению)
 - iv. x(a+b) = xa + xb (дистрибутивность)
 - v. $\forall x \neq 0 \in \mathbb{R} \exists y \stackrel{def}{=} x^{-1} : xy = 1$ (обратный по умножению)
- 2. Порядок на \mathbb{R}
 - **Def 1.** Упорядоченная пара $(u, v) = \{\{u\}, \{u, v\}\}$.
 - **Def 2.** Декартово произведение $X \times Y = \{(x, y) \mid \forall x \in X, y \in Y\}.$
 - **Def 3.** Отношение между элементами множеств X,Y $A\subset X\times Y$

Отношения порядка: a < b, a > b, a = b

(a)
$$\forall a,b \in \mathbb{R}: \begin{bmatrix} a=b\\ a>b \text{ (антисимметричность)}\\ a< b \end{bmatrix}$$

- (b) $a < b \land b < c \Rightarrow a < c$ (транзитивность)
- (c) $a < b \land c \in \mathbb{R} \Rightarrow a + c < b + c$
- (d) $a < b \land c > 0 \Rightarrow ac < bc$
- (e) $u < v \land x < y \Rightarrow u + x < v + y$

1.2 Множества в \mathbb{R}

Def 4 (Отрезки, интервалы, сегменты). $a, b \in \mathbb{R}, a \leq b$

$$[a,b] = \{a \in \mathbb{R} \mid a \leq x \leq b\} \text{(замкнутый отрезок)}$$

$$(a,b] = \{a \in \mathbb{R} \mid a < x \leq b\} \text{(открытый слева отрезок)}$$

$$[a,b) = \{a \in \mathbb{R} \mid a \leq x < b\} \text{(открытый справа отрезок)}$$

$$(a,b) = \{a \in \mathbb{R} \mid a < x < b\} \text{(открытый отрезок)}$$

Def 5 (Лучи). $a \in \mathbb{R}$

$$[a, +\infty) = \{x \in \mathbb{R} \mid x \ge a\}$$
$$(a, +\infty) = \{x \in \mathbb{R} \mid x > a\}$$
$$(-\infty, a] = \{x \in \mathbb{R} \mid x \le a\}$$
$$(-\infty, a) = \{x \in \mathbb{R} \mid x < a\}$$

Def 6.

Множество $A\subseteq\mathbb{R}$ ограничено сверху, если $\exists\ x\in\mathbb{R}: a\leq x\ \forall a\in A.$ Любое такое x -верхняя граница A.

Множество $A\subseteq\mathbb{R}$ ограничено снизу, если $\exists\ y\in\mathbb{R}: a\geq y\ \forall a\in A.$ Любое такое y -нижняя граница A.

 $//\pm\infty$ - не нижняя/верхняя граница.

Ограниченное множество - ограниченное сверху и снизу.

1.3 Натуральные числа

1.3.1 Аксиома Архимеда

Аксиома (Архимед). Множество натуральных чисел не ограниченно сверху.

Lemma.
$$x > 0 \Rightarrow \exists n \in \mathbb{N} : \frac{1}{n} < x$$

Proof. Предположим противное. $\forall n \in \mathbb{N} : x \leq \frac{1}{n}$. Тогда $\forall n : n < x^{-1}$, а это противоречит аксиоме Архимеда.

1.3.2 Аксиома индукции

Аксиома (индукции). Любое не пустое подмножество натуральных чисел имеет наименьший элемент.

Statement (Обоснование метода математической индукции). Пусть P_1, P_2, \ldots - последовательность суждений. Предположим, что

- 1. P_1 верно
- 2. Для любого $k: P_k \to P_{k+1}$

Tогда все условия P_i верны.

Proof. Рассмотрим множество $A = \{n \in \mathbb{N} \mid P_n \text{ - верно}\}$ и его дополнение $B = \mathbb{N} \setminus A$. Если не все P_i верны, то $B \neq \emptyset$. По аксиоме индукции существует наименьший элемент $l \in B$. Если $l \neq 1$, $l - 1 \notin B$. А тогда P_{l-1} - верно, из чего следует, что P_l - верно. То есть $l \notin B$. Противоречие. Иначе не выполнено первое условие. □

1.3.3 Неравенство Бернулли

Theorem 1.3.1 (Неравенство Бернулли). Пусть a > 1. Тогда $a^n \ge 1 + n(a-1)$, $n \in \mathbb{N}$

Proof. Индукция:

База: n = 1: $a \ge 1 + (a - 1)$

Переход: $n \to n+1$

Известно:

$$a^n \ge 1 + n(a-1).$$

Тогда:

$$a^{n+1} \ge a + n(a-1)a = (a-1) + 1 + n(a-1)a = 1 + (a-1)(1+na) \ge 1 + (a-1)(1+n)$$

Corollary. Множество $\{a^n \mid n \in \mathbb{N}\}$ для a > 1 не ограничено сверху.

Proof. Пусть $a^n \leq b$, $\forall n \in \mathbb{N}$. Тогда $1 + (a-1)n \leq b \Rightarrow n \leq \frac{b-1}{a-1}$. Противоречие

1.3.4 Аксиома Кантора-Дедекинда

Def 7. Щель – пара вещественных чисел (A,B), где $A,B \subset \mathbb{R} \land A \neq \emptyset \land B \neq \emptyset$, такая что всякое число из A не более любого из B.

Def 8. Число c лежит в щели (A,B), если $\forall a\in A,b\in B:a\leq c\leq b$

Def 9. Щель называется узкой, если она содержит ровно одно число.

Аксиома (Кантор, Дедекинд). В любой щели есть хотя бы одно вещественное число.

Statement. Квадратный корень из 2 существует и единственный.

Proof.

1. Существование

Рассмотрим множества:

$$A = \{a > 0 \mid a^2 < 2\}, B = \{b > 0 \mid b^2 > 2\}$$

Они образуют щель: $a^2 - b^2 = (a+b)(a-b) < 0$. По аксиоме Кантора-Дедекинда $\exists v: a \leq v \leq b \ \forall a \in A, \forall b \in B$. Тогда $v^2 = 2$.

Lemma. B множестве B нет наименьшего элемента. B множестве A нет наибольшего элемента.

Докажем, что $v^2 = 2$. Пусть $v^2 > 2 \lor b^2 < 2$. То есть $v \in A \lor v \in B$. Следовательно,

$$\left[egin{array}{ll} \exists v_1 \in A : v_1 > v \implies v$$
 - не в щели $\exists v_1 \in B : v_1 < v \implies v$ - не в щели

Противоречие.

2. Единственность

Возьмем $c \ge 0$: $c^2 = 2$. Пусть существует еще одно $c_1 \ge 0 \land c_1 \ne c$: $c_1^2 = 2$. Тогда

$$\begin{bmatrix} c < c_1 \\ c > c_1 \end{bmatrix} \Rightarrow 2 > 2$$

Опять противоречие.

1.3.5 Иррациональность корня из двух

Def 10. Квадратный корень из числа 2 – такое вещественное неотрицательное число c, для которого верно $c^2=2$.

Theorem 1.3.2. Квадратный корень из двух иррационален.

Proof. Пусть $\sqrt{2} \in \mathbb{Q}$. Тогда $\sqrt{2} = \frac{p}{q}$, $p,q \in \mathbb{N}$. Не умоляя общности, считаем эту дробь несократимой.

$$2 = \frac{p^2}{q^2} \Rightarrow 2q^2 = p^2 \Rightarrow 2 \mid p \Rightarrow 4 \mid p^2 \Rightarrow 2 \mid q$$

1.3.6 Существование рациональных и иррациональных чисел в каждом невырожденном отрезке

Def 11. $\langle u,v\rangle$ - любой отрезок с концами в $u,v \quad (u\leq v)$. Его длина $|\langle u,v\rangle|:=v-u$

Theorem 1.3.3. Пусть c > 0. Тогда на каждом отрезке вида (a,b), где a < b существует точка вида rc, где $r \in \mathbb{Q}$.

Proof. Заменим $c \to 1, a \to \frac{a}{c}, b \to \frac{b}{c}$. Теперь будем доказывать $a \le r \le b$. Существует $q \in \mathbb{N}: \frac{1}{q} < b - a$. Рассмотрим множество $\{\frac{p}{q} \mid p \in \mathbb{Z}\}$. Кроме того $\exists p: \frac{p}{q} \ge b$. Среди таких p существует наименьший p_0 .

таких
$$p$$
 существует наименьший p_0 . Возьмем $\frac{p_0-1}{q}=\frac{p_0}{q}-\frac{1}{q}\in(a,b)$

Corollary. На каждом отрезке вида (a, b), где a < b, существует рациональное число.

Theorem 1.3.4. На каждом отрезке вида (a, b), где a < b, существует иррациональное число.

Proof. По следствию из теоремы 1.3.3 $\exists r \in \mathbb{Q} : r \in \left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$. Тогда $r\sqrt{2} \in (a, b) \land r \notin \mathbb{Q}$.

1.3.7 Число *е*

Def 12. Рассмотрим последовательность $a_n = \sum_{k=0}^{n} \frac{1}{k!}$.

Число e – предел $\{a_n\}$.

Statement. $\{a_n\}$ - cxodumcs.

Proof.

$$1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \le 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{6} + \frac{1}{6} \cdot \frac{1}{2} + \frac{1}{6} \cdot \frac{1}{4} \dots + \frac{1}{6} \cdot \frac{1}{2^{n-2}} =$$

$$= 2.5 + \frac{1}{6} (1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-2}}) < 2.5 + \frac{1}{6} \cdot 2 \approx 2.8333$$

Theorem 1.3.5. e - uppayuonanbho.

Proof. 2 < e < 3

Пусть $e = \frac{p}{q}, \ p, q \in \mathbb{N}$. Тогда q > 1.

$$\begin{split} \frac{p}{q} &= \lim_{n \to \infty} \left((1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{q!}) + \frac{1}{(q+1)!} + \dots + \frac{1}{n!} \right) = \\ &= (1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{q!} + \lim_{n \to \infty} \left(\frac{1}{(q+1)!} + \dots + \frac{1}{n!} \right). \\ q! p &= S + \lim_{n \to \infty} \left(\frac{1}{(q+1)} + \frac{1}{(q+1)(q+2)} + \dots + \frac{1}{(q+1)\dots n} \right) = S + a. \end{split}$$

 $q!p\in\mathbb{Z},S\in\mathbb{N}.$ Обозначим предел за a. Докажем, что $a\notin\mathbb{Z}.$

Statement. 0 < a < 1

Proof.

$$\frac{1}{q+1} + \frac{1}{(q+1)(q+2)} + \dots + \frac{1}{(q+1)\dots n} \le \frac{1}{q+1} + \frac{1}{(q+1)^2} + \dots + \frac{1}{(q+1)^{n-q-1}}.$$

$$0 < a \le \frac{1}{q+1} + \frac{1}{1 - \frac{1}{q+1}} = \frac{1}{q+1-1} = \frac{1}{q} < 1.$$

1.4 Свойства подмножеств $\mathbb R$

1.4.1 Грани

Def 13 (supremum). Пусть $A \subset \mathbb{R}$ - ограничено сверху.

Точная верхняя грань (супремум) – наименьшая из всех его верхних границ.

Def 14 (infimum). Пусть $A \subset \mathbb{R}$ - ограничено снизу.

Точная нижняя грань (инфимум) – наибольшая из всех его верхних границ.

Theorem 1.4.1 (об описании точной верхней грани). Пусть $A \neq \emptyset$ и ограничено сверху. Следующие условия эквивалентны:

- 1. $x = \sup A$
- 2. x верхняя граница для A и $\forall \varepsilon > 0 \exists y \in A \cap (x \varepsilon, x]$

Proof.

 $1 \Rightarrow 2$

 $x=\sup A\Rightarrow x$ - верхняя граница. Пусть $\exists \varepsilon>0:A\cap(x-\varepsilon,x]=\varnothing$. Тогда $y\leq x-\varepsilon, \ \forall y\in A$. Но из этого следует, что $x-\varepsilon$ тоже наименьшая граница, которая меньше x. Следовательно, $x\neq\sup A$. Противоречие.

 $2 \Rightarrow 1$

x - верхняя граница, $\forall \varepsilon>0 \exists y\in A\cap (x-\varepsilon,x]$. Докажем, что x - наименьшая верхняя граница.

Пусть $\exists y < x : y$ - верхняя граница A. Рассмотрим (y,x]. Для него верно $\forall z \in (y,x] : z \notin A$. Но тогда x - не верхняя граница.

Theorem 1.4.2 (об описании точной нижней грани). Пусть $A \neq \emptyset$ и ограничено снизу. Следующие условия эквивалентны:

- 1. $x = \inf A$
- 2. x нижняя граница для A и $\forall \varepsilon > 0 \exists y \in A \cap [x, x + \varepsilon)$

1.4.2 Связность отрезка

Def 15. Замкнутое множество – множество, содержащее все свои предельные точки.

Note. Любое замкнутое, ограниченное, непустое множество содержит все свои грани.

Theorem 1.4.3 (о связности отрезка). Никакой замкнутый отрезок нельзя представить в виде объединения двух непустых непересекающихся замкнутых множеств.

Для любого отрезка $[a,b],\ a\leq b$: если $[a,b]=E\cup F\wedge E, F-$ замкнуты $\wedge E\neq\varnothing\wedge F\neq\varnothing,$ то $E\cap F\neq\varnothing.$

Proof. E, F замкнуты, значит и ограничены сверху. Предположим, что $E \cap F = \emptyset$. Не умоляя общности $x = \sup E < b$, тогда $(x,b] \in F$. С одной стороны, x - предельная точка для E, с другой стороны, предельная точка для F. Так как E, F - замкнуты, $x \in E \land x \in F$. Следовательно, $E \cap F \neq \emptyset$. Противоречие.

1.4.3 Предельные и изолированные точки

Def 16. Окрестность точки $x \in \mathbb{R}$ – любой открытый интервал вида $(x - \varepsilon, x + \varepsilon)$, где $\varepsilon > 0$.

Def 17. Проколотая окрестность точки $x \in \mathbb{R}$ – объединение двух открытых интервалов вида $(x - \varepsilon, x) \cup (x, x + \varepsilon)$

Def 18. Пусть $A \subset \mathbb{R}, u \in \mathbb{R}$.

u называется предельной точкой для A, если в любой проколотой окрестности точки u есть точки множества A.

$$\forall \varepsilon > 0 \quad \overset{\circ}{U}_{\varepsilon}(u) \cap A \neq \varnothing.$$

Examples.

- 1. \mathbb{Z} , \mathbb{N} не имеют предельных точек.
- 2. $\left\{\frac{1}{n} \mid n \in \mathbb{N}\right\}$ имеет одну предельную точку 0.
- 3. Для \mathbb{Q} все предельные точки \mathbb{R} .

Def 19. Все точки множества A, не являющиеся предельными, называются изолированными:

$$u\in A$$
 — изолированная, если $\exists\ arepsilon>0:\ U_{arepsilon}(u)\cap A=\{u\}\Leftrightarrow \stackrel{\circ}{U}_{arepsilon}(u)\cap A=\varnothing$

Examples.

- 1. $[1,2] \cup \{3\}$ имеет одну изолированную точку 3.
- 2. [1, 2] не имеет ни одной изолированной точки.

Lemma. Пусть A ограничено сверху (снизу), $y = \sup A$ ($y = \inf A$).

$$\left[egin{array}{l} y
otin A \Rightarrow y \end{array}
ight.$$
 - предельная точка A $y \in A$

1.4.4 Теорема о вложенных отрезках

Theorem 1.4.4 (о вложенных отрезках). $a \le b, I = \langle a, b \rangle$.

 $\{I_n\}_{n\in\mathbb{N}}$ - последовательность замкнутых отрезков $I_{n+1}\subseteq I_n$. Тогда у этих отрезков есть хотя бы одна общая точка.

Proof. Рассмотрим две последовательности концов отрезков:

$$a_1 \le a_2 \le a_3 \dots b_1 \ge b_2 \ge b_3 \dots$$

Заметим, что $a_k \leq b_j \ \forall k, j \in \mathbb{N}$. Тогда множества $A = \{a_k \mid k \in \mathbb{N}\}$ и $B = \{b_j \mid j \in \mathbb{N}\}$ образуют щель. По аксиоме Кантора-Дедекинда $\exists t \in \mathbb{R} : t \in (A, B)$.

$$a_k \le t \le b_j \forall j, k \in \mathbb{N}.$$

Возьмем k = j:

$$t \in [a_j, b_j], \ \forall j \in \mathbb{N}.$$

А эта точка принадлежит всем отрезкам.

Note. Эта точка единственна тогда и только тогда, когда $\forall \varepsilon>0$ $\exists n: |I_n|<\varepsilon$

Proof. Если такая точка единственная, (A,B) - узкая щель. То есть $\forall \varepsilon > 0 \; \exists k,j \in \mathbb{N} : b_j - a_k < \varepsilon$. Не умоляя общности, $j \geq k$. Тогда $b_j - a_j < \varepsilon$. В обратную сторону очевидно. □

1.4.5 Теорема о компактности

Theorem 1.4.5 (о компактности). Любое бесконечное ограниченное подмножество вещественных чисел имеет хотя бы одну предельную точку.

Proof. Пусть A - ограничено. Тогда $\exists a_1,b_1:a_1\leq x\leq b_1 \quad \forall x\in A$. Получаем $A\subset [a_1,b_1]$. Возьмем середину отрезка $c=\frac{b_1+a_1}{2}$. Теперь $I_2=\left\{\begin{array}{ll} [a_1,c] & \text{если } A\cap [a_1,c] \text{ - бесконечно} \\ [c,b_1] & \text{если } A\cap [c,b_1] \text{ - бесконечно} \end{array}\right.$ Будем аналогично делить пополам получаемый отрезок. Эти отрезки представляют собой последовательность вложенных замкнутых отрезков:

$$I_1 \supset I_2 \supset I_3 \ldots \supset I_n \supset \ldots$$

Причем $|I_n| = \frac{|I_1|}{2^{n-1}}$, $\forall n \in \mathbb{N}$. По теореме о вложенных отрезках $1.4.4 \ \forall n \in \mathbb{N} \exists ! x : x \in I_n$. Этот x и есть предельная точка для множества A.

$$\forall \varepsilon > 0 \ \exists n \in \mathbb{N} : |I_n| < \varepsilon \land x \in I_n \Rightarrow I_n \subset U_{\varepsilon}(x).$$
 Тогда $\exists y \in A \cap I_n : y \neq x.$

1.4.6 Теорема о вложенных полуоткрытых отрезках

Theorem 1.4.6 (о вложенных полуоткрытых отрезках). *Рассмотрим последовательность* вложенных полуоткрытых интервалов, среди которых существуют полуинтервалы сколь угодно малой длины:

$$J_1\supset J_2\ldots\supset J_n\supset\ldots, \qquad \operatorname{rde}\ J_n=[a_n,b_n).$$

$$T\operatorname{orda}\ \left[igcap_{n=1}^\infty J_n=\varnothing \atop \bigcap\limits_{n=1}^\infty J_n=\{x_0\}\Longleftrightarrow \exists n_0:b_{n_0}=b_{n_0+1}=b_{n_0+2}=\ldots \right]$$

Proof. Рассмотрим последовательность $I_n = [a_n, b_n]$. По теореме о вложенных отрезках $1.4.4 \, \exists! t \in \bigcap_{n=1}^{\infty} I_n$. Если $t \notin \bigcap_{n=1}^{\infty} J_n$, то $\exists n_0 : t \notin J_{n_0} \wedge t \in I_{n_0}$. А тогда $t = b_{n_0}$, которое совпадает совпадает со концами всех следующих интервалов. Иначе $t \in \bigcap_{n=1}^{\infty} J_n$ и правые концы одинаковы.

1.4.7 Десятичное разложение вещественного числа

Пусть $x \in [0,1)$. Разобьем полуинтервал на десять равных полуинтервалов $\{I_i\}$. Будем

Figure 1.1: Decimal decomposition

собирать десятичную запись:

- 1. i_1 номер интервала, куда попало x
- 2. i_2 номер интервала второго ранга результата разбиения каждого полуинтервала на 10 частей
- 3. И так далее

Получим $0.i_1i_2i_3...$ – десятичную запись числа x.

Note. Не существует десятичного представления, в котором с некоторого момента все девятки.

Theorem 1.4.7. Пусть (j_1, j_2, \ldots) - цифры от нуля до девяти. $\nexists n \in \mathbb{N} : j_k = 9 \ \forall k \geq n$. Тогда $\exists ! x \in [0,1)$ для которого $0.j_1j_2\ldots$ - десятичное представление.

Proof. Рассмотрим последовательность полуинтервалов $I_1 \supset I_2 \supset \dots$ По теореме 1.4.6 существует непустое пересечение, равное одной точке - и есть наше число.

Chapter 2

Пределы

2.1 Основные свойства пределов функций

2.1.1 Определение предела

Def 20. b – предел функции f в точке x_0 , если для любой окрестности U в точке b существует такая проколотая окрестность $\overset{\circ}{V}$ точки $x_0:f(\overset{\circ}{V}\cap A)\subset U$.

Def 21. b – предел функции f в точке x_0 , если

$$\forall \varepsilon > 0 \exists \stackrel{\circ}{V}(x_0) : \forall x \in \stackrel{\circ}{V} \cap A : |f(x) - b| < \varepsilon$$

Def 22. b – предел функции f в точке x_0 , если

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall x \in A \land x \neq x_0 \land |x - x_0| < \delta : |f(x) - b| < \varepsilon.$$

Если $x_0 = \infty$:

$$\forall \varepsilon > 0 \exists N > 0 : \forall x \in A \land x > N : |f(x) - b| < \varepsilon.$$

Note.

$$\lim_{x \to x_0} f(x) = b \iff \lim_{x \to x_0} |f(x) - b| = 0.$$

2.1.2 Единственность предела

Theorem 2.1.1. $f: A \to \mathbb{R}$, x - предельная точка для A. Если a, b - предельные для f в точке x_0 , то a = b.

Proof. Пусть $a \neq b$. Тогда существуют U_1, U_2 - не пересекающиеся окрестности точек a, b. Так как a, b - предельные,

$$\exists \overset{\circ}{V_1}(x_0) : f(\overset{\circ}{V_1} \cap A) \subset U_1$$

$$\exists \overset{\circ}{V_2}(x_0) : f(\overset{\circ}{V_2} \cap B) \subset U_2$$

Рассмотрим $\overset{\circ}{V}(x) = \overset{\circ}{V}_1(x) \cap \overset{\circ}{V}_2(x)$. $\exists y \in \overset{\circ}{V} \cap A : f(y) \in U_1 \wedge f(y) \in U_2 \Rightarrow U_1 \cap U_2 \neq \varnothing$. Противоречие.

2.1.3 Теорема о пределе сужения

Def 23. A' – множество всех предельных точек.

Theorem 2.1.2 (о пределе сужения). $f: A \to \mathbb{R}, x \in A', B \subset A'$ Пусть $x_1 \in B' \land z = \lim_{x_0} f$. Тогда $z = \lim_{x_0} (f \upharpoonright_B)$.

Proof. По условию
$$\forall U(z) \exists \stackrel{\circ}{V}: f(\stackrel{\circ}{V} \cap A) \subset U$$
, тем более $f(\stackrel{\circ}{V} \cap B) \subset U$.

Theorem 2.1.3 (частичное обращение теоремы о пределе сужения). Если $B = \overset{\circ}{W}_{\delta}(x_0) \wedge \exists \lim_{x_0} f \upharpoonright_{B} = z, \ mo \ \exists \lim_{x_0} f = z.$

Proof.
$$\forall U(z) \; \exists \; \overset{\circ}{V} \; (x_0) : f \upharpoonright_B (\overset{\circ}{V} \cap A \subset U \Leftrightarrow f((\overset{\circ}{V} \cap \overset{\circ}{W}_{\delta}) \cap A) \subset U.$$
 $\overset{\circ}{V} \cap \overset{\circ}{W}_{\delta}$ - тоже окрестность точки x_0 .

2.1.4 Предел постоянной функции и предел тождественного отображения

Statement.
$$f(x) = x \iff \lim_{x \to x_0} f(x) = x_0$$

Statement.
$$f(x) = c \iff \lim_{x \to x_0} f(x) = c$$

2.1.5 Предельный переход в неравенстве

Theorem 2.1.4 (Предельный переход в неравенстве). $f, g : A \to \mathbb{R}, x \in A'$. Предположим, что существуют пределы y f, g в точке x_0 равные соответственно a, b. Пусть a < b. Тогда существует проколотая окрестность $\overset{\circ}{V}(x_0) : f(x) < g(x) \quad \forall x \in \overset{\circ}{V} \cap A$.

Proof. Рассмотрим U_1, U_2 - не пересекающиеся окрестности точек a, b. Так как a, b - предельные,

$$\exists \overset{\circ}{V_1}(x_0) : f(\overset{\circ}{V_1} \cap A) \subset U_1$$

$$\exists \overset{\circ}{V_2}(x_0) : f(\overset{\circ}{V_2} \cap B) \subset U_2$$

Возьмем $\overset{\circ}{V}(x) = \overset{\circ}{V_1}(x) \cap \overset{\circ}{V_2}(x)$. Тогда $\forall x \in \overset{\circ}{V} \cap A : f(x) \in U_1 \wedge g(x) \in U_2 \Rightarrow f(x) < g(x)$.

2.1.6 Принцип двух полицейских

Theorem 2.1.5 (Принцип двух полицейских). $f, g, k : A \to \mathbb{R}, x_0 \in A$ Пусть $\lim_{x_0} f = \lim_{x_0} h = b, \ f(x) \le g(x) \le h(x) \quad \forall x \in A.$ Тогда $\lim_{x_0} g = b.$

 $\mathit{Proof.}\ \operatorname{Paccmotpum}\ \overset{\circ}{U}\ (b).$ Существуют проколотые окрестности

2.1.7 Предел линейной комбинации

Theorem 2.1.6 (Предел линейной комбинайии). $f, g: A \to \mathbb{R}, x_0 \in A', \alpha, \beta \in \mathbb{R}$ Пусть существуют пределы $\lim_{x_0} f = a, \lim_{x_0} g = b$.

$$h(x) = \alpha f(x) + \beta g(x), \quad x \in A.$$

 $Tor \partial a \lim_{x_0} h = \alpha a + \beta b$

Proof.

$$|\alpha f(x) = \beta g(x) - \alpha a - \beta b| =$$

$$= |\alpha (f(x) - a) + \beta (g(x) - b)| \le .$$

$$\le |\alpha||f(x) - a| + |\beta||g(x) - b|$$

Достаточно доказать, что $|\alpha||f(x) - a| + |\beta||g(x) - b| \to 0$. Будем считать, что $\alpha, \beta \neq 0$.

$$\forall \varepsilon > 0 \quad \exists \delta_1 > 0 : |f(x) - a| < \frac{\varepsilon}{2|\alpha|}, x_0 \in A, |x - x_0| < \delta_1, x \neq x_0 \\ \exists \delta_2 > 0 : |g(x) - b| < \frac{\varepsilon}{2|\beta|}, x_0 \in A, |x - x_0| < \delta_2, x \neq x_0$$

Теперь возьмем $\delta = \min(\delta_1, \delta_2)$. Тогда для $x \in A, |x - x_0| < \delta, x \neq x_0$:

$$|\alpha||f(x) - a| + |\beta||g(x) - b| \le |\alpha| \cdot \frac{\varepsilon}{2|\alpha|} + |\beta| \cdot \frac{\varepsilon}{2|\beta|} = \varepsilon.$$

2.1.8 Предел произведения стремящейся к нулю и ограниченной функций

Statement. $A \subset \mathbb{R}, \ f,g:A \to \mathbb{R}, \ x_0 \in A'$ $\Pi pednonoseum$, что $\lim_{x_0} f = 0$ и $\exists c \in \mathbb{R}: |g(x)| \leq c \forall x \in A$. Тогда $\lim_{x \to x_0} f(x)g(x) = 0$

Proof. Если c=0, утверждение очевидно (хотя оно и в любом случае очевидно). Будем считать, что c>0. Запишем определение предела f:

$$\forall \varepsilon : \exists \stackrel{\circ}{V}(x_0) : |f(x) - 0| = |f(x)| < \frac{\varepsilon}{c}, \quad \forall x \in \stackrel{\circ}{V} \cap A.$$

Тогда

$$|f(x)g(x)| < c|f(x)| \cdot c < \frac{\varepsilon}{c} \cdot c = \varepsilon, \quad \forall x \in \stackrel{\circ}{V} \cap A.$$

Следовательно, $\lim_{x \to x_0} f(x)g(x) = 0$.

2.1.9 Предел произведения имеющих предел функций

Statement. $A \subset \mathbb{R}, \ f, g : A \to \mathbb{R}, \ x_0 \in A', \ \lim_{x_0} f = a, \lim_{x_0} g = b$ $Tor \partial a \lim_{x \to x_0} f(x)g(x) = ab.$

Proof.

$$|f(x)g(x) - ab| = |f(x)g(x) - ag(x) + ag(x) - ab| \le \le |g(x)||f(x) - a| + |a||g(x) - b|$$

 $|g(x)| \le c$ в некоторой проколотой окрестности x_0 , а f(x) - a и g(x) - b стремятся к нулю в точке x_0 . Тогда можем применить утверждение 2.1.8:

$$|g(x)||f(x)-a| \xrightarrow{x\to x_0} 0$$
 $|a||g(x)-b| \xrightarrow{x\to x_0} 0$ \Rightarrow их сумма стремится к нулю при $x\to x_0$.

2.1.10 Предел частного

Statement. $A \subset \mathbb{R}, \ f, g : A \to \mathbb{R}, \ x_0 \in A', \ \lim_{x_0} f = a, \lim_{x_0} g = b, \ b \neq 0$ $Tor \partial a \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b}$

Proof.

Lemma. В условии утверждения функция g удалена от нуля в некоторой проколотой окресности $\stackrel{\circ}{V}(x_0)$. То есть $\exists c > 0 \ \forall x \in \stackrel{\circ}{V} \cap A : |g(x)| \ge c$

Proof. (леммы) $\forall \varepsilon > 0 \exists \stackrel{\circ}{U}(x_0) : |g(x) = b| < \varepsilon, \quad \forall x \in \stackrel{\circ}{U} \cap A.$ Возьмем $\varepsilon = \frac{|b|}{2}.$

$$|b| - |g(x)| \le |g(x) - b| \le \frac{|b|}{2} \Longrightarrow \frac{|b|}{2} \le |g(x)|.$$

 $\forall x \in \stackrel{\circ}{V}(x_0) \cap A$ (из леммы):

$$\begin{split} |\frac{f(x)}{g(x)} - \frac{a}{b}| &= \frac{|bf(x) - ag(x)|}{|bg(x)|} \leq \\ &\leq \frac{1}{c|b|} |(b - g(x))f(x) + (f(x) - a)g(x)| \leq \\ &\leq \frac{1}{|b|c} |g(x) - b| |f(x)| + |(f(x) - a)|g(x)| \longrightarrow 0 \end{split}.$$

2.1.11 Сумма геометрической прогрессии

Рассмотрим функцию $f(n) = \sum_{j=1}^{n} q^j = \frac{1-q^n}{1-q}, \quad q \in \mathbb{R}.$

 ${f Statement.}$ Ecnu~|q|<1,~mo~f(x)~uмеет предел, иначе не имеет предела.

Proof.

|q| < 1

Lemma.

$$q^{n+1} \stackrel{n \to \infty}{\longrightarrow} 0 \Longleftrightarrow |q|^n \stackrel{n \to \infty}{\longrightarrow} 0.$$

1. Proof.

$$\left(\frac{1}{|q|}\right)^n = \left(1 + \frac{1}{|q|} - 1\right)^n \ge 1 + n\left(\frac{1}{|q|} - 1\right).$$

Тогда

$$0 \le |q|^n \le \frac{1}{1 + n\left(\frac{1}{|q|} - 1\right)} \stackrel{n \to \infty}{\longrightarrow} 0.$$

Теперь найдем $\forall \varepsilon > 0 \ N \in \mathbb{N} \forall n > N : \frac{1}{\varepsilon} < 1 + n \left(\frac{1}{|q|} - 1 \right)$. Подойдет $N = \frac{1}{\varepsilon \left(\frac{1}{|q|} - 1 \right)}$.

Из леммы получаем: $f(n) = \frac{1-q^n}{1-q} \longrightarrow \frac{1}{1-q}$

2. q = -1

$$f(n) = \left\{ egin{array}{ll} 1, & 2 \mid n \\ 0, & 2 \nmid n \end{array}
ight.$$
 нет предела

- 3. q = 1, f(n) = n + 1 нет предела
- 4. q > 1

$$\lim f(n) = \lim \frac{1 - q^n}{1 - a} = \lim \frac{q^n - 1}{a - 1}.$$

Эта функция не имеет предела.

5. q < 1

$$|f(n)| = |\frac{q^n - 1}{q - 1}| \ge \frac{1}{|q - 1|}(|q|^n - 1).$$

Эта функция тоже не имеет предела.

2.1.12 Предел монотонной функции

Def 24. $f: A \to \mathbb{R}, A \cap \mathbb{R}$

f – (строго) возрастающая, если

$$x_1, x_2 \in A, x_1 < x_2 \Rightarrow f(x_1) \le f(x_2) \ (f(x_1) < f(x_2)).$$

f – (строго) убывающая, если

$$x_1, x_2 \in A, x_1 > x_2 \Rightarrow f(x_1) \ge f(x_2) \ (f(x_1) > f(x_2)).$$

f – (строго) монотонна, если (строго) возрастает или (строго) убывает.

Theorem 2.1.7 (о пределе монотонной функции). $f: A \to \mathbb{R}$ - монотонная и ограниченная функция на $A, x_0 \in A'$, (допускается $x_0 = \pm \infty$, то есть A - неограничено). Если f - возрастает и ограничена сверху или убывает и ограничена снизу, то $\exists \lim_{x \to x_0} f(x)$.

Proof. Пусть f - возрастает и ограничена сверху. $f(x) \leq M \ \forall x \in A$. $b = \sup\{f(x) \mid x \in A\}$. Докажем, что $b = \lim_{x \to x_0} f(x)$.

Пусть $\varepsilon > 0$. Рассмотрим $U_{\varepsilon}(b) = (b - \varepsilon, b + \varepsilon)$.

$$\exists y \in A : b - \varepsilon < f(y).$$

Тогда $\forall x \in A : y < x < x_0 \Rightarrow f(y) \le f(x) \le b$

Note. Доказали, что

$$\lim_{x_0} f = \sup_{x \in A} f(x).$$

Аналогично, если f убывает и ограничена снизу

$$\lim_{x_0} f = \inf_{x \in A} f(x).$$

2.1.13 Предел композиции

Def 25. $f:A\to\mathbb{R}, g:B\to\mathbb{R}, f(A)\subset B$. Тогда задана функция композиции $h=g\circ h$.

Theorem 2.1.8. Пусть $b = \lim_{x \to x_0} f(x) \wedge b \in B' \wedge \lim_{y \to b} g(y) = d$. Тогда $\lim_{x \to x_0} f \circ g(x) = d$, если хотя бы одно условие выполнено:

1. $f(x) \neq b$, $x \neq x_0$

2. $b \in B, g$ - непрерывна в точке b: d = g(b)

Proof. Пусть U окрестность точки d ; $\exists V(b)$:

$$y \in \stackrel{\circ}{V} \cap B \Rightarrow g(y) \in U.$$

$$\exists \stackrel{\circ}{W} (x_0) : x \in \stackrel{\circ}{W} \cap A \to f(x) \in V.$$

Пусть выполнено первое условие. Тогда $f(x) \in \stackrel{\circ}{V} \Rightarrow g(f(x))inU$. Пусть выполнено второе условие. Либо $f(x) \neq b$, тогда $g(f(x)) \in U$, либо f(x) = b, тогда $g(f(x)) = d \in U$

2.2 Критерий Коши

2.2.1 Критерий Коши

Theorem 2.2.1 (Критерий Коши). $f: A \to \mathbb{R}, A \subset \mathbb{R}, x_0 \in A'$. x - либо число, либо $\pm \infty$.

 Φ ункция f имеет предел в точке x_0 тогда и только тогда, когда выполняется условие Kouu:

$$\forall \varepsilon > 0 \exists \stackrel{\circ}{V}(x_0) : |f(x_1) - f(x_2)| < \varepsilon, \quad \forall x_1, x_2 \in \stackrel{\circ}{V} \cap A.$$

Proof. $1 \Rightarrow 2$.

 $2 \Rightarrow 1$.

$$\lim_{x \to x_0} f(x) \to a \in \mathbb{R} \Leftrightarrow \forall \varepsilon > 0 \exists \mathring{V}(x_0) : |f(x) - a| < \frac{\varepsilon}{2} \forall x \in \mathring{V} \cap A$$

$$\Rightarrow \forall x_1, x_2 \in \mathring{V} \cap A \Rightarrow |f(x_1) - f(x_2)| \le |f(x_1) - a| + |f(x_2) - a| < \varepsilon$$

Lemma. Если выполнено условие Коши, то f ограничено вблизи x_0 .

Proof. Применим условие : зафиксируем какую-то точку y из нашего множества. Это будет означать, что для всей окрестности x_0 выполнено $f(y) - \varepsilon \le f(x) \le f(y) + \varepsilon$, то есть f(x) ограничена.

От того, что мы в одной точке (которую выкололи из окрестности) добавим значение, ограниченность не испортится. Значит, не умоляя общности, f - ограничена.

Def 26. Пусть $g: B \to \mathbb{R}$ ограничена на $B, E \subset B$. Колебание f на E - это $\sup_{x \in E} g(x) - \inf_{x \in E} g(x) = osc_E(g)$

Если $\forall x,y \in E \ |g(x)-g(y)| \le \rho \Rightarrow osc_E(g) \le \rho$: $\forall \ x,y \in E-\rho < g(x)-g(y) \le g \Rightarrow g(x) \le g(y)+\rho \Rightarrow \sup_E g \le g(y)+\rho, \sup_E g-\rho \le g(y) \ \forall \ y \in E \Rightarrow \sup_E g-\rho$ - нижняя граница, $\inf_E g \ge \sup_E g-\rho$.

$$/sup - inf \le sup - (sup - \rho) = \rho$$

Еще одна полезная формула для колебаний:

$$osc_B(f) = \sup\{|f(x) - f(y)| \mid x, y \in B\}$$

. Доказали, что $|f(x)-f(y)| \leq \rho \; \forall \; x,y \in B \Rightarrow osc_B(f) \leq \rho.$ Пусть $d=osc_B(f); \, x,y \in B$

$$m = \inf_{z \in B} f(z) \le f(x) \le \sup_{z \in B} f(x) = M$$
$$\inf_{z \in B} f(z) \le f(y) \le \sup_{z \in B} f(x)$$

$$\Rightarrow |f(x) - f(y)| \le M - m = osc_B(f) = d$$

d - верхняя граница для множества чисел |f(x) - f(y)|, доказали, что она меньше всех верхних границ, значит она точная верхняя граница, что и надо.

f удовлетворяет условию Коши в $x_0: \forall \varepsilon > 0 \; \exists \; \stackrel{\circ}{V}(x_0): \; |f(x) - f(y)| < \varepsilon \; \forall x,y \in \stackrel{\circ}{V} \cap A.$ По лемме f ограничена.

Заведем вспомогательную функцию $g:A\to\mathbb{R}, x_0\in\mathbb{R},\pm\infty$ - предельная точка для $g,\ g$ ограничена на $A.\ \overset{\circ}{V}(x_0); m=m_{\overset{\circ}{V}}=m_{\overset{\circ}{V},g}=\inf_{x\in \overset{\circ}{V}\cap A}g(x); M=\sup_{x\in \overset{\circ}{V}\cap A}g(x).$ Всегда $m\le M$, заведем еще $\Gamma_{x_0}=\Gamma_{x_0,g}=m_{\overset{\circ}{V}}$ - множество inf по всем проколотым окрестностям, аналогично заведем множество sup.

//здесь мы просто смотрим на произвольную функцию и вводим терминологию

Пара $(\Gamma_{x_0}, \Delta_{x_0})$ образует щель. Если $\overset{\circ}{W} \subset \overset{\circ}{V} \Rightarrow m_{\overset{\circ}{W}} \geq m_{\overset{\circ}{V}}; M_{\overset{\circ}{W}} \leq M_{\overset{\circ}{V}}$. Пусть $a \in \Gamma, b \in \Delta$, $\exists \overset{\circ}{V}, \overset{\circ}{W} : a = m_{\overset{\circ}{V}}, b = M_{\overset{\circ}{W}}$. Пусть $\overset{\circ}{V} \subset \overset{\circ}{W}; a \leq M_{\overset{\circ}{V}} \leq b$. Воспользовались какими нужно неравенствами, которые тут есть, проверили, что щель.

Для нашей f это щель. $(\Gamma_{x_0,f},\Delta_{x_0,f})$ узкая щель. $\varepsilon>0;\ \exists\ \overset{\circ}{V}:\ |f(x)-f(y)|<\varepsilon\ \forall x,y\in \overset{\circ}{V}\cap A\Rightarrow M_{\overset{\circ}{V},f}-m_{\overset{\circ}{V},f}\leq \varepsilon,$ то есть там только одно число c.

$$\forall \stackrel{\circ}{V}(x_0) m_{\stackrel{\circ}{V},f} \leq c \leq M_{\stackrel{\circ}{V},f} . x \in \stackrel{\circ}{V} \cap A \Rightarrow m_{\stackrel{\circ}{V},f} \leq f(x) \leq M_{\stackrel{\circ}{V},f} \Rightarrow |f(x) - c| \leq |M - m| \leq \varepsilon.$$

$$\forall \varepsilon > 0 \exists \stackrel{\circ}{V}(x_0) : osc_{\stackrel{\circ}{V} \cap A}(f - c) \leq \varepsilon.$$

2.3 Ряды

2.3.1 Понятие ряда. Теорема Лейбница

Def 27. Рассмотрим последовательность $\{a_n\}_{n\in\mathbb{N}}$. Ряд – символ $\sum_{n=1}^{\infty} a_n$.

Частичные суммы ряда – последовательность $\{S_k\}_{k\in\mathbb{N}}, \quad S_k = \sum_{n=1}^k a_n.$

Говорят, что ряд $\sum_{n=1}^{\infty} y_n$ сходится, если последовательность его частичных сумм имеет предел. Иначе говорят, что ряд расходится.

Statement.

$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{\alpha}} - cxo \partial umc s \iff \sum_{n=1}^{\infty} 2^n \frac{1}{2^n (\log 2^n)^{\alpha}} = \sum_{n=1}^{\infty} \frac{1}{(\log 2)^{\alpha}} \cdot \frac{1}{n^{\alpha}}, \quad \alpha > 1.$$

Theorem 2.3.1 (Лейбниц). Пусть a_n - монотонно убывающая неотрицательная последовательност $0 \ge a_1 \ge a_2 \dots$. Тогда ряд $\sum_{n=1}^{\infty} a_n$ - сходится тогда и только тогда, когда $\sum_{n=1}^{\infty} 2^n a_{2^n}$ - сходится.

Proof.

 $\sum_{n=1}^{\infty} a_n$ - сходится. Достаточно доказать, что частичные суммы второго ряда ограничены.

$$S_k = a_1, +a_2 + \ldots + a_k, \quad k = 2^n$$

 $S_{2^n} = a_1 + a_2 + (a_3 + a_4) + (a_5 + a_6 + a_7 + a_8) + \ldots + (a_{2^{n-1}} + \ldots + a_{2^n})$

Заменим в каждой скобке на минимальный:

$$S_{2^n} \le a_2 \le 2a_4 + 4a_8 + \dots 2^{n-1}a_{2^n}.$$

Тогда

$$2a_2 + 4a_4 + \dots + 2^n a_{2^n} \le 2S_{2^n}.$$

Из чего следует, что $\sum_{n=1}^{\infty} 2^n a_{2^n}$ - сходится.

$$\sum_{n=1}^{\infty} 2^n a_{2^n}$$
 - сходится. Обозначим его сумму за $T.$ Тогда

$$a_1 + (a_2 + a_3) + (a_4 + a_5 + a_6 + a_7) + \ldots + (a_{2^n} + \ldots + a_{2^{n+1}-1}) \le a_1 + 2a_2 + 4a_4 + \ldots + 2a_{2^n} \le a_1 + T.$$

Theorem 2.3.2. Пусть s>0, тогда ряд $\sum_{n=1}^{\infty}\frac{1}{n^s}$ сходится при s>1 и расходится при $s\le 1$.

2.4 Верхние и нижние пределы

2.4.1 Определение и свойства

Def 28. $f: A \to \mathbb{R}$

$$a = \overline{\lim}_{x \to x_0} = \lim_{x \to x_0} \sup f(x)$$

$$b = \underline{\lim}_{x \to x_0} = \lim_{x \to x_0} \inf f(x).$$

Число a называется верхним пределом f в точке x_0 . Число b называется нижним пределом f в точке x_0 .

Property. 1. $\lambda \in \mathbb{R}$

$$\overline{\lim}_{x_0} \lambda f = \begin{cases} \lambda \overline{\lim}_{x_0} f, & \lambda \ge 0 \\ \lambda \underline{\lim}_{x_0} f, & \lambda < 0 \end{cases}.$$

$$\underline{\lim}_{x_0} \lambda f = \begin{cases} \lambda \underline{\underline{\lim}}_{x_0} f, & \lambda \ge 0 \\ \lambda \overline{\underline{\lim}}_{x_0} f, & \lambda < 0 \end{cases}.$$

2. Сумма двух функций $f,g:A\to\mathbb{R}$

$$\overline{\lim}_{x_0}(f+g) \le \overline{\lim}_{x_0}f + \overline{\lim}_{x_0}g.$$

 $Paccмompum\ x \in \stackrel{\circ}{V}(x_0) \cap A.$

$$\begin{split} (f+g)(x) &= f(x) + g(x) \leq M_{\overset{\circ}{V}}(f) + M_{\overset{\circ}{V}}(g) \Rightarrow \\ &\Rightarrow M_{\overset{\circ}{V}}(f+g) \leq M_{\overset{\circ}{V}} \leq M_{\overset{\circ}{V}}(f) + M_{\overset{\circ}{V}}(g). \end{split}$$

Tог ∂a

$$\overline{\lim_{x_0}}(f+g) \leq M_{\overset{\circ}{V}}(f) + M_{\overset{\circ}{V}}(g) - M_{\overset{\circ}{V}}(f)(g) + \overline{\lim_{x_0}}(f,g) \leq M_{\overset{\circ}{V}}.$$

/ Не дописано!!!

2.4.2 Теорема об описании верхнего и нижнего предела

Theorem 2.4.1 (Теорема об описании верхнего предела). Пусть f - ограниченная функция на множестве A. $x_0 \in A$. Число а является верхним пределом функции f в точке x_0 тогда и только тогда, когда выполнены условия:

1.
$$\forall \varepsilon > 0 \exists \stackrel{\circ}{V} (x_0)$$
:

$$\forall x \in \overset{\circ}{V} \cap A : f(x) < a + \varepsilon.$$

2.
$$\forall \varepsilon > 0 \ \forall \stackrel{\circ}{U}(x_0)$$
:

$$\exists x \in \overset{\circ}{U} \cap A : f(x) > a - \varepsilon.$$

Proof. Пусть 1 и 2 выполнены. $a \in \overline{\lim}_{x_0} f$.

Рассмотрим $\varepsilon>0$ и найдем для него $\check{V}.$

$$\overline{\lim}_{r_0} f \le M_{\stackrel{\circ}{V}} \le a + \varepsilon.$$

Тогда $\overline{\lim}_{x_0} \leq a$.

$$\forall \stackrel{\circ}{U}: M_{\stackrel{\circ}{U}} > a - \varepsilon \Rightarrow \overline{\lim}_{\stackrel{x_0}{U}} f \ge a + \varepsilon.$$

Так как ε любое, $\overline{\lim}_{x_0} f \ge a$

Теперь в обратную сторону. Пусть $a = \overline{\lim}_{x_0} f$.

$$a = \overline{\lim}_{x_0} f \Rightarrow a = \inf M_{\stackrel{\circ}{V}}(f).$$

$$\varepsilon > 0: \exists \stackrel{\circ}{V}: a \leq M_{\stackrel{\circ}{V}} < a + \varepsilon$$

$$M_{\stackrel{\circ}{V}} = \sup_{x \in \stackrel{\circ}{V} \cap A} f(x) \Rightarrow f(x) < a + \varepsilon \quad \forall x \in \stackrel{\circ}{V} \cap A.$$

Рассмотрим произвольную проколотую окрестность $\stackrel{\circ}{V}$ точки x_0 .

$$M_{\stackrel{\circ}{V}} \Rightarrow \exists x \in \stackrel{\circ}{V} \cap A : f(x) > a - \varepsilon.$$

Theorem 2.4.2 (Теорема об описании нижнего предела). Пусть f - ограниченная функция на множестве A. $x_0 \in A$. Число b является нижним пределом функции f в точке x_0 тогда и только тогда, когда выполнены условия:

1. $\forall \varepsilon > 0 \exists \stackrel{\circ}{V} (x_0)$:

$$\forall x \in \overset{\circ}{V} \cap A : f(x) > b - \varepsilon.$$

П

2. $\forall \varepsilon > 0 \ \forall \stackrel{\circ}{U}(x_0)$:

$$\exists x \in \overset{\circ}{U} \cap A : f(x) < b + \varepsilon.$$

Proof. Аналогично

2.5 Последовательности

2.5.1 Сходящиеся последовательности и их пределы

 $x: \mathbb{N} \to \mathbb{R}, \{x_n\}_{n \in \mathbb{N}}$ имеет единственную предельную точку $+\infty$.

Def 29. $\{x_n\}$ называется сходящейся, если существует конечный предел $\lim_{\infty} x_n$.

Statement. Пусть $\{x_n\}$ - последовательность, $b \in \mathbb{R}$. Следующие условия эквивалентны:

1. $\lim_{n \to \infty} x_n = b$

2. $\forall \varepsilon > 0 \exists A \subset \mathbb{N}$ - конечное $: \forall x \notin A : |x_n - b| < \varepsilon$

Proof. Запишем определение того, что $\lim_{\infty} x_n = b$:

$$\forall \varepsilon > 0 \exists N \in \mathbb{R} : |x_n - b| < \varepsilon \quad \forall n > N$$
 (2.1)

 $1\Rightarrow 2.$ Пусть 2.1 верно. Возьмем $A=\{1,\dots N\}$ - конечно. Следовательно, верно 2.

$$2 \Rightarrow 1$$
. Возьмем $N = \max\{A\}$, получим 1.

Def 30. Пусть $\varphi: \mathbb{N} \to \mathbb{N}$ - биекция. $y_n = x_{\varphi(n)}$ – перестановка $\{x_n\}$.

Corollary. Последовательность сходится тогда и только тогда, когда любая перестановка сходится.

Def 31. Пусть $\{n_k\}$ - строго возрастающая последовательность натуральных чисел. $\{y_k\}: y_k = y_{n_k}$ - подпоследовательность $\{x_n\}$

Statement. Если $\{x_n\}$ сходится κ b, то любая подпоследовательность тоже сходится κ b.

$$Proof.$$
 Аналогично 2.1.3.

2.5.2 Вторая форма теоремы о компактности

Lemma. $x \subseteq \mathbb{R}, x_0 \in \mathbb{R}$. Следующие условия эквивалентны:

- 1. x_0 предельная точка для X.
- 2. $\exists \{x_n\}_{n \in \mathbb{N}} : x_n \in X, x_n \neq x_0$. Более того $\{x_n\}$ можно выбрать такB что $x_k \neq x_j, i \neq j$.

 $Proof. \ 2 \Rightarrow 1. \$ Возьмем любую проколотую окрестность точки $x_0. \$ Хотим: $\stackrel{\circ}{V} \cap X \neq 0.$

$$\stackrel{\circ}{V} = (x - \varepsilon, x_0) \cup (x_0, x + \varepsilon).$$

$$\exists k : x_k \in V, x_k \neq x_0 \Rightarrow x_k \in \stackrel{\circ}{V}, x_k \in X.$$

 $1 \Rightarrow 2$. Теперь возьмем

$$V_n = (x_0 - \frac{1}{n}, x_0 + \frac{1}{n}), n \in \mathbb{N}.$$
$$\exists x_n \in X \cap V_n \land x_n \neq x_0.$$

Тогда $|x_n-x_0|<\frac{1}{n}$. По принципу двух полицейских $|x_n-x_0|\to 0$. Теперь сделаем все неравными: $x_1\in V_1\cap X, x_1\neq x_0$, дальше возьмем $\delta_1<\min(\frac{1}{n},|x_n-x_0|)$ и скажем, что $x_2\in (x_0-\delta,x_0+\delta)\cap X_1, x_2\neq x_1$ и так далее, $\delta_{n-1}\min(\frac{1}{n},|x_0-x_1|,\dots|x_0-x_{n-1}|,x_n\in (x_0-\delta_{n-1},x_0+\delta_{n-1}),x_n\neq x_0$

Theorem 2.5.1 (Вторая форма теоремы о компактности). Всякая ограниченная последовательность имеет сходящуюся подпоследовательность.

Proof. $\{x_n\}_{n\in\mathbb{N}}$ - ограниченная последовательность. Тогда $\exists M: |x_n| \leq M, \quad \forall n.$ Разберем два случая:

- 1. $\{x_n \mid n \in \mathbb{N}\}$ конечно, тогда какое-то значение принимается бесконечное число раз, тогда с некоторого момента все элементы равны. Возьмем эту последовательность, она сходится.
- 2. A бесконечно, но ограничено. Следовательно, есть предельная точка для A. Тогда по лемме 2.5.2 существует $\{a_k\} \in A, a_k \to b, a_k \neq a_l, k \neq l$.

Тогда $\forall k \exists ! n_k : a_k = x_{n_k}$, где номера n_k попарно различны, но не упорядочены. То есть $\{x_{n_k}\}$ - перестановка $\{x_n\}$, а значит тоже сходится.

2.5.3 Предел функции в терминах последовательности

Theorem 2.5.2. Пусть $A \subset \mathbb{R}, x_0 \in A', x_0 \in \mathbb{R}, f : A \to \mathbb{R}$. Следующие утверждения эквивалентни:

$$1. \lim_{x \to x_0} f(x) = a$$

2.
$$\forall \{a_n\} : a_n \in A, a_n \neq x_0, a_n \to x_0 \ f(a_n) \to a$$

Proof. $1 \Rightarrow 2$. Берем последовательность $a_n \in A, a_n \neq x_0$. Надо $f(a_n) \to b$.

$$\varepsilon > 0; \exists V(x_0) : x \in \overset{\circ}{V} \cap A \Rightarrow |f(x) - b| < \varepsilon.$$

Тогда

$$\exists N : a_n \in V \ \forall n > N \Rightarrow a_n \in \overset{\circ}{V} \ (a_n \neq x_0).$$

Получаем

$$|f(a_n) - b| < \varepsilon.$$

 $2 \Rightarrow 1$. От противного. Пусть первое условие не выполнено. Предположим, что $x_0 \in \mathbb{R}$.

$$\neg "a = \lim_{x_0} f" : \exists \varepsilon > 0 \forall \beta > 0 \exists x : |x - x_0| < \delta, x = x_0, x \in A, \quad |f(x) - a| \ge \varepsilon.$$

Возьмем

$$\delta_n = \frac{1}{n} \exists x_n : |x - x_n| < \frac{1}{n}, x_n \neq x_0, \in A.$$

Получаем, что $|f(x_n) - a| \ge \varepsilon$. С другой стороны, по принципу двух полицейских:

$$0 \le |x_n - x_0| < \frac{1}{n} \Longrightarrow x_n \to x_0.$$

Противоречие.

Случай $x_0 = \infty$.

$$\exists \varepsilon > 0 \forall M \exists x > M, x \in A : |f(x) - a| > \varepsilon$$

Возьмем $x_n > n, x_n \in A : |f(x_n) - b| \ge \varepsilon \Rightarrow x_n \to \infty.$

2.6 Бесконечные пределы

2.6.1 Бесконечные пределы

Def 32. $f: A \to \mathbb{R}, x_0 \in A'(x_0 \in \mathbb{R} \lor x_0 = \pm \infty)$. Говорят, что f имеет предел $+\infty(-\infty)$ в точке x_0 , если: $\forall U(\pm \infty)$ существует проколотая окрестность $\stackrel{\circ}{V}(x_0): f(x) \in U \forall x \in \stackrel{\circ}{V} \cap A$.

На языке неравенств: $\forall M \in \mathbb{R} \exists \stackrel{\circ}{V}(x_0) : f(x) > M \forall x \in \stackrel{\circ}{V} \cap A.$

Def 33. Говорят, что f стремиться к бесконечности в точке x_0 , если $\lim_{x\to x_0} |f(x)| = +\infty$. То есть $\forall M>0 \exists \stackrel{\circ}{V}(x_0): |f(x)|>M \forall x\in A\cap \stackrel{\circ}{V}$.

Statement. Пусть $f(x) \neq 0$ в проколотой окрестности x_0 . Следующие условия эквивалентны:

- 1. f стремиться κ бесконечности в точке x_0
- 2. $\lim_{x\to x_0} \frac{1}{f(x)} = 0$

Proof. $1 \Rightarrow 2$ (тогда дополнительное условие 2.6.1 можно не накладывать).

$$\varepsilon > 0M = \frac{1}{\varepsilon} : \exists \mathring{W}(x_0) : |f(x)| > \frac{1}{\varepsilon} \forall x \in \mathring{W} \cap A \Leftrightarrow \left| \frac{1}{f(x)} \right| < \varepsilon$$

 $2\Rightarrow 1$ (здесь условие 2.6.1 необходимо). $M>0, \varepsilon=\frac{1}{M}$. Тогда существует проколотая окрестность $\stackrel{\circ}{V}$ точки x_0 :

$$\left| \frac{1}{f(x)} \right| < \frac{1}{M}, x \in \stackrel{\circ}{V} \cap A \iff |f(x)| > M.$$

2.7 Бесконечно большие и бесконечно малые

2.7.1 О и о. Соотношения транзитивности

Def 34. $f: A \to \mathbb{R}, x_0 \in A'$.

f называется бесконечно малой в точке x_0 , если $\lim_{x\to x_0}|f(x)|=0$. f называется бесконечно большой в точке x_0 , если $\lim_{x\to x_0}|f(x)|=+\infty$.

Def 35. $f, g: A \to \mathbb{R}, x_0 \in A'$. Говорят, что g доминирует функцию f вблизи x_0 и пишут $f = O(g) \ (x \to x_0)$, если $\exists \stackrel{\circ}{U} (x_0), \exists C: |f(x)| \le C|g(x)| \quad \forall x \in \stackrel{\circ}{U}$.

Def 36. Функции f,g называются сравнимым вблизи x_0 , если $f = O(g) \land g = O(f)$. Обозначение: $f \asymp g$.

Property. $f = O(g) \land g = O(h) \Longrightarrow f = O(h)$

Proof.

$$\exists \overset{\circ}{U}(x_0), \exists c_1 : |f(x)| \le c_1 |g(x)| \quad \forall x \in \overset{\circ}{U}$$
$$\exists \overset{\circ}{V}(x_0), \exists c_1 : |g(x)| \le c_2 |h(x)| \quad \forall x \in \overset{\circ}{V} \cap A$$

Тогда $\forall x \in \stackrel{\circ}{V} \cap \stackrel{\circ}{U}$:

$$|f(x)| \le c_1 |g(x)| \le c_1 c_2 |h(x)| \Rightarrow |f(x)| \le c|h(x)|.$$

Note. Если g(x) не обращается в ноль вблизи x_0 , то $f(x) = O(g(x)) \iff \frac{f}{g}$ - ограниченная функция.

Def 37. $f,g:A\to \mathbb{R}, x_0\in A'$. Говорят, что f(x)=o(g(x)) вблизи $x_0,$ если $\forall \varepsilon>0$ $\exists \stackrel{\circ}{U}(x_0):$

$$|f(x)| \le \varepsilon |g(x)|, \quad \forall x \in \stackrel{\circ}{U} \cap A.$$

Note. Если g(x) не обращается в ноль вблизи x_0 , то $f(x) = o(g(x)) \iff \lim_{x_0} \frac{f}{g} = 0$ ограниченная функция.

2.7.2 Эквивалентные функции

Def 38. $f,g:A\to\mathbb{R}, x_0\in A'$. Говорят, что f,g эквивалентны вблизи x_0 , если f-g=o(g), при $x\to x_0$. Обозначение: $f\sim g$.

Note. Определение асимметрично!

Lemma. $f \sim g$, $npu \ x \rightarrow x_0 \Longrightarrow g \sim x_0$, $npu \ x \rightarrow x_0$

Proof. Проверим, что g = O(f) вблизи x_0 :

$$\varepsilon > 0 : \exists \stackrel{\circ}{V}(x_0) : |f(x) - g(x)| \le \varepsilon |g(x)| \quad \forall x \in \stackrel{\circ}{V} \cap A.$$

Возьмем $\varepsilon = \frac{1}{2}$:

$$|f(x)| - |g(x)| \le \frac{1}{2}|g(x)|.$$

$$\frac{1}{2}|g(x)| \le |f(x)|.$$
$$|g(x)| \le 2|f(x)|.$$

Note. Если $g(x) \neq 0$ вблизи $x_0, \, f \sim g \Longleftrightarrow \lim_{x \to x_0} rac{f(x)}{g(x)} = 1$

2.7.3 Отношение эквивалентности и вычисление пределов

Statement. Полезные преобразования для вычисления пределов:

1.
$$p(x) = \sum_{i=1}^{n} a_n x^n$$
, $a_n \neq 0$. $\Pi pu \ x \to +\infty : p(x) \sim a_n x^n$

2.
$$p(x) = (x - x_0)^l (b_0 + q(x)), \quad b \neq 0, q(x_0) = 0.$$
 Torda $p(x) \sim b_0 (x - x_0)^l$

3.
$$f(x) = \sqrt[n]{1+x} - 1 = \frac{1+x-1}{(\sqrt[n]{1+x})^{n-1}...+1} \sim \frac{x}{n} \to 0, \quad x \to x_0$$

Theorem 2.7.1. f, g не обращаются в нуль вблизи $x_0, f \sim f_1 \wedge g \sim g_1$ вблизи x_0 . Тогда fg, f_1g_1 одновременно имеют или не имеют предел в точке x_0 . Ели пределы существуют, то они равны.

Note. Аналогичная теорема верна для $\frac{f}{g}$ и $\frac{f_1}{g_1}$

Proof.

$$fg = f_1g_1$$
 $\underbrace{\frac{f}{f_1}\frac{g}{g_1}}_{ ext{этого равен1}}$.

$$rac{f}{g} = rac{f_1}{g_1}$$
 $rac{f}{f_1} rac{g_1}{g}$. предел этого равені