

Universidad Nacional de Colombia Facultad de Ciencias Análisis Funcional

Ejercicio 9 Sea $(E, \|\cdot\|)$ un espacio vectorial normado. Dado r > 0, considere $C = B(0, r) = \{y \in E : \|y\| < r\}$. Determine el funcional de Minkowski de C. **Ejercicio 12** Sea E un espacio vectorial normado.

- (i) Sea $W \subset E$ un subespacio propio de E y $x_0 \in E \setminus W$, tal que $d := dist(x_0, W) > 0$. Demuestre que existe $f \in E^*$ tal que f = 0 restricto a W, $f(x_0) = d$ y $||f||_{E^*} = 1$.
- (ii) Sea $W \subset E$ un subespacio propio cerrado de E y $x_0 \in E \setminus W$. Demuestre que existe $f \in E^*$ tal que f = 0 restricto a W y $f(x_0) \neq 0$.

Ejercicio 13 Sean $(E, \|\cdot\|)$ y $(F, \|\cdot\|)$ espacios de Banach.

- (i) Sea $K \subset E$ un subespacio cerrado de E. Definimos la relación sobre E dada por $x \sim_K y$ si y solo si $x y \in K$.
 - (a) Muestre que \sim_K es una relacion de equivalencia sobre E.

Demostración. Dado $x \in E$, como K es subespacio, $x - x = 0 \in K$, esto implica que $x \sim_K x$, mostrando así la reflexividad.

Dados $x, y \in E$, suponga que tenemos que $x \sim_K y$, luego $x - y \in K$, nuevamente como K es subespacio, es cerrado por multiplicación escalar, así $-(x - y) \in K$, pero -(x - y) = y - x, así por definición de la relación tenemos que $y \sim_K x$, mostrando así la simetría.

Por ultimo sean $x,y,z\in E$, con $x\sim_K y$ y y $y\sim_K z$, por definición $x-y\in K$ y $y-z\in K$, y como K es subespacio es cerrado para la suma, así tenemos que $(x-y)+(y-z)\in K$, pero (x-y)+(y-z)=x-z, así tenemos que $x\sim_K z$, así la relación es transitiva. Con esto podemos concluir que la relación es de equivalencia.

 $Q^{*}Q$

(b) Muestre que el espacio cociente E/K es un espacio de Banach con la norma

$$||x + K||_{E/K} = \inf_{k \in K} ||x - k||, \quad x \in E.$$

Es decir, debe verificar que el espacio cociente es un espacio vectorial, normado, cuya norma lo hace completo.

Demostración. Primero notemos que las operaciones definidas sobre el conjunto E/K son las siguientes

$$(x + K) + (y + K) = (x + y) + K,$$

 $\lambda(x + K) = \lambda x + K.$

Las propiedades de espacio vectorial para E/K, se heredan del hecho de que E ya es espacio vectorial, solo bastaría verificar que si están bien definidas estas operaciones. Si $x_1 + K = x_2 + K$ y $y_1 + K = y_2 + K$, tenemos que $x_1 - x_2 \in K$ y $y_1 - y_2 \in K$, pero como es subespacio la suma esta, así $(x_1 + y_1) - (x_2 + y_2) \in K$, así $(x_1 + y_1) + K = (x_2 + y_2) + K$, luego la suma esta bien definida. De manera similar, si $x_1 - x_2 \in K$, tenemos que al multiplicar por un escalar también esta en K, esto es $\lambda x_1 - \lambda x_2 \in K$, así $\lambda x_1 + K = \lambda x_2 + K$.

Ahora veamos que la norma definida en el enunciado, efectivamente es norma del espacio E/K. Primero esta norma esta bien definida ya que si x + K = y + K, eso quiere decir que $x - y \in K$, luego

$$\begin{split} \|x + K\| &= \inf_{k \in K} \|x - k\| \\ &= \inf_{k_1 \in K} \|x - (k_1 + x - y)\| \\ &= \inf_{k_1 \in K} \|y - k_1\| \\ &= \|y + K\|. \end{split}$$

Luego como $||x - k|| \ge 0$, para todo $k \in K$, es claro que

$$||x + K|| = \inf_{k \in K} ||x - k|| \ge 0,$$

ya que estamos tomando el ínfimo de un conjunto que esta acotado interiormente por 0 y $x \in E$ fue tomado arbitrariamente.

Ahora supongamos que x + K = 0 + W, luego $x \in W$, así tenemos que

$$0 \le \|x + K\| = \inf_{k \in K} \|x - k\| \le \|x - x\| = 0,$$

Mostrando que el neutro tiene norma 0. Ahora si suponemos que $\|x+K\|=0$, como la norma es un ínfimo tenemos que existe una sucesión de puntos $k_n \in K$ tal que $\|x-k_n\| \to 0$, esto quiere decir que la sucesión k_n converge a x, pero K es cerrado por hipótesis, así $x \in K$, esto quiere decir que x+K=0+K. Ahora si $\lambda=0$, es claro que $\|\lambda(x+K)\|=\|0+K\|=0=0$ · $\|x+K\|=|\lambda|\|x+K\|$

ΔÎΩ

(ii) Sea $T \in L(E, F)$ tal que existe c > 0 para el cual

$$\|\mathsf{T}x\|_{\mathsf{F}} \geq c\|x\|_{\mathsf{E}},$$

para todo $x \in E$. Si K denota el espacio nulo de T y R(T) el rango de T, muestre que

 $\overline{T}: E/K \to R(T)$ dada por $\overline{T}(x+K) = T(x), x \in E$, esta bien definida y es un isomorfismo. Esto es $\overline{T} \in L(E/K, R(T))$ y $\overline{T}^{-1} \in L(R(T), E/K)$.

Demostración. Como el dominio de \overline{T} son clases de equivalencia tenemos que mostrar que la aplicación esta bien definida. Consideremos x+K=y+K, es decir $x,y\in E$ son dos representantes distintos de la misma clase. Por definición $\overline{T}(x+K)=T(x)$ y $\overline{T}(y+K)=T(y)$, luego como T es lineal

$$\overline{T}(x+K) - \overline{T}(y+K) = T(x) - T(y)$$

$$= T(x-y).$$

Como supusimos que clases son iguales, eso quiere decir que $x - y \in K$, pero K es el espacio nulo de T, así T(x - y) = 0, mostrando así que

$$\overline{T}(x+K) = \overline{T}(y+K),$$

por lo tanto esta bien definida. Ahora la aplicación claramente es sobreyectiva ya que dado $y \in R(T)$, existe $x \in E$ tal que $y = T(x) = \overline{T}(x+K)$, así cada y tiene preimagen. Para la inyectividad se sigue un argumento muy parecido a mostrar que esta bien definida. Dados x+K, y+K, si $\overline{T}(x+K) = \overline{T}(y+K)$, esto quiere decir que T(x) = T(y), por linealidad T(x-y) = 0, así $x-y \in K$, concluyendo que x+K = y+K. Para ver que es isomorfismo faltaría mostrar que la aplicación y su inversa son lineales y acotadas. Primero \overline{T} es lineal ya que

$$\begin{split} \overline{T}((x+K) + \lambda(y+K)) &= \overline{T}((x+\lambda y) + K) \\ &= T(x+\lambda y) \\ &= T(x) + \lambda T(y) \\ &= \overline{T}(x+K) + \lambda \overline{T}(y+K). \end{split}$$

Note que se tiene por la linealidad de T. Ademas es acotada ya que

$$\begin{split} \|\overline{T}(x+K)\| &= \|T(x)\| \\ &\leq M\|x\| \\ &= M\|x-k+k\| \\ &\leq M\|x-k\| + M\|k\|. \end{split}$$

Donde M > 0, es una constante que depende de x. Esto se tiene ya que T es acotada, ahora por la monoticidad del ínfimo, podemos tomarlo sobre los $k \in K$, como el lado izquierdo no depende de k tenemos que

$$\begin{split} \|\overline{T}(x+K)\| & \leq \inf_{k \in K} \{M\|x-k\| + M\|k\|\} \\ & = M\inf_{k \in K} \|x-k\| + M\inf_{k \in K} \|k\| \\ & = M\inf_{k \in K} \|x-k\| \\ & = M\|x+K\|. \end{split}$$

Así hemos mostrado que es acotado. Ahora probemos las mismas dos propiedades para la aplicación \overline{T}^{-1} . Para la linealidad tenemos que dados $y_1, y_2 \in R(T)$, existen $x_1, x_2 \in E$, tales que $y_i = T(x_i) = \overline{T}(x_i + K)$, para i = 1, 2. Luego por la linealidad ya probada tenemos que

$$y_1 + \lambda y_2 = \overline{T}((x_1 + K) + \lambda(x_2 + K)),$$

como es biyectiva, aplicando \overline{T}^{-1} a ambos lados obtenemos

$$\overline{T}^{-1}(y_1 + \lambda y_2) = (x_1 + K) + \lambda(x_2 + K).$$

Pero por la manera en que tomamos y_1, y_2, y por la biyectividad sabemos que $\overline{T}^{-1}(y_i) = x_i + K$, para i = 1, 2. Así concluimos que

$$\overline{T}^{-1}(y_1 + \lambda y_2) = \overline{T}^{-1}(y_1) + \lambda \overline{T}^{-1}(y_2).$$

Para mostrar que es acotada usaremos una idea similar, si $y \in R(T)$, existe un $x \in E$ tal que $y = T(x) = \overline{T}(x + K)$, luego $\overline{T}^{-1}(y) = x + K$, asi tomando la norma de E/K obtenemos

$$\begin{split} \|\overline{\mathsf{T}}^{-1}(\mathsf{y})\| &= \|\mathsf{x} + \mathsf{K}\| \\ &= \inf_{\mathsf{k} \in \mathsf{K}} \|\mathsf{x} - \mathsf{k}\| \\ &\leq \|\mathsf{x}\|. \end{split}$$

Por hipotesis existe un c > 0, tal que $c||x|| \le ||T(x)||$, es decir $||x|| \le \frac{1}{c}||T(x)||$ así tenemos que

$$\|\overline{T}^{-1}(y)\| \le \frac{1}{c} \|T(x)\|.$$

Pero y = T(x), luego

$$\|\overline{T}^{-1}(y)\| \leq \frac{1}{c}\|y\|,$$

así hemos mostrado que el operador es acotado y por tanto hemos concluido que \overline{T} es un isomorfismo.

 $\Omega^{\hat{}}\Omega$

Ejercicio 15 Considere los espacios C([0,1]) y $C^1([0,1])$ ambos equipados con la norma del supremo $\|f\|_{L^{\infty}} = \sup_{x \in [0,1]} |f(x)|$. Definimos el operador derivada $D: C^1([0,1]) \to C([0,1])$ dado por $f \mapsto f'$.

Muestre que D es un operador no acotado, pero su grafico G(D) es cerrado.