Guia de execução do trabalho sobre a determinação das características eléctricas do transformador monofásico e análise das propriedades magnéticas do material do núcleo.

Objectivo do trabalho

Determinação das propriedades magnéticas do material do núcleo do transformador e determinação dos parâmetros do modelo de Steinmetz para o transformador.

Descrição do equipamento e métodos a utilizar

No estudo do transformador iremos utilizar transformadores comerciais de alimentação de baixa potência (<500 VA).

Na determinação da característica magnética do núcleo é obtida a relação corrente de magnetização- fluxo de indução no transformador. Será utilizada como fonte de tensão alternada um auto - transformador regulável e como equipamento de medida um osciloscópio e um sistema de aquisição de dados. O fluxo de indução no núcleo do transformador originado pela corrente que percorre o enrolamento primário será detectado através da força electromotriz gerada no enrolamento secundário. A corrente no enrolamento primário é medida através da queda de tensão numa resistência inserida no circuito, As perdas no núcleo serão determinadas a partir da área do ciclo de histerese do material para as condições normais de funcionamento.

Na determinação dos parâmetros do modelo de Steinmetz do transformador, serão realizados ensaios em vazio e em curto - circuito que permitirão a determinação dos parâmetros do modelo

Execução

<u>1</u> Determinação aproximada do número de espiras dos enrolamentos primário e secundário do transformador de alimentação:

Monte no transformador um enrolamento adicional com n_a=5 espiras e utilizando a montagem da figura anexa aplique sucessivamente 10 valores de tensão distintos ao circuito primário compreendidos entre 15V e 150V. A partir dos valores de tensão que

se desenvolvem nas 5 espiras e no secundário determine o número de espiras do primário e do secundário utilizando para o efeito uma regressão linear do dados obtidos.

2 Determinação da característica magnética do núcleo do transformador:

Utilize a montagem da figura anexa para obter a curva de magnetização do núcleo do transformador. Verifique se o transformador está bem dimensionado para a tensão normal de trabalho. Determine aproximadamente Bs (indução de saturação), Br(indução remanescente, Hc(campo coercivo), $\mu_{(incremental)} = dB/dH|_{B=0}$. Não se esqueça de recolher todos os dados necessários à determinação destes valores.

3 Ensaio em vazio do transformador:

A) Realize a montagem da figura anexa e imponha ao primário U_{1ef} =220V, determine; I_{1ef} , U_{2ef} , P_{10} =<u₁ $i_1>$ e P_{12} =<u₂ $i_1>$. Na determinação das potências P_{ij} será utilizado um sistema de recolha de dados através do osciloscópio digital utilizando os canais Y1 e Y2

em que Y1 mede aproximadamente a tensão u1 na posição a) e u2 na posição b), e Y2 mede a corrente i1 através da medida de tensão na resistência de 10Ω .

B) Altere a montagem impondo agora ao secundário a tensão apropriada U_{2ef} de modo a ser atingido um estado de magnetização máxima semelhante ao do caso anterior, determine; I_{2ef} , U_{1ef} , P_{20} =< u_2 i_2 > e P_{21} =< u_1 i_2 >.

A partir dos valores obtidos em A) calcule r_1 , λ_{11} , r_{fe} , $l_{11}*cos(\phi_{fe})$. A partir dos valores obtidos em B calcule r_2 , λ_{22} , r_{fe} , $l_{11}*cos(\phi_{fe})$. Comparando os valores obtidos para r_{fe} e $l_{11}*cos(\phi_{fe})$ nos dois casos, verifique se como se pretendia os estados de magnetização obtidos nos dois ensaios são semelhantes. Para efectuar os cálculos consulte a resolução do problema resolvido na aula prática que analisa a situação experimental descrita.

<u>4</u> Ensaio em curto – circuito do transformador:

- A) Utilizando a montagem da figura anexa e impondo I_{1ef} igual ao valor nominal do transformador, determine U_{1ef} e P_{10} =< u_1 i_1 >, determine a partir destes valores r1+r2' e $\lambda 11+\lambda 22$ '.
- B) Altere a montagem impondo agora o curto circuito ao primário e aplicando ao secundário um tensão U_{2ef} apropriada de modo a que I_{2ef} seja a corrente nominal do secundário. Determine U_{2ef} e P_{20} =<u $_2$ i $_2>$ e a partir destes valores r1'+r2 e λ 11'+ λ 22. Compare com os valores determinados em 4.A) e com os valores obtidos em 3. Quais serão os valores mais fidedignos, os obtidos em 3 ou em 4 ?

