10/045,901

In the Claims

21

1-48. (Canceled)

1	49. (New) A digital micro-mirror device (DMD) format conversion system for
2	outputting a stereoscopic encoded optical signal in a format readable within a display
3	system employing a DMD and a color wheel, said DMD format conversion system
4	comprising:
5	a 3D data formatter for receiving an input signal having stereoscopic image
6	information with an input frame rate and generates an output signal comprising
7	stereoscopic image information and control information having a self synchronized
8	output frame rate independent of and decoupled from the input frame rate;
9	a DMD data formatter for receiving the output signal having stereoscopic image
10	information and control information from the 3D data formatter and for outputting a
11	DMD output signal having stereoscopic image information and control information,
12	wherein the DMD output signal having stereoscopic image information
13	and control information, including a color wheel control signal indicative of
14	rotation rate and output digital micro-mirror device data indicative of micro-
15	mirror switching rates, wherein said color wheel control signal and output digital
16	micro-mirror device data are synchronized based on the output frame rate
17	generated by the 3D data formatter;
18	said digital micro-mirror device data formatter including
19	a dual port memory controller that converts the output signal having
20	stereoscopic image information and control information from the 3D data
21	formatter, with a full color image format, at the output frame rate into an image

10/045,901

22	stream having serial individual color images synchronized to the color wheel
23	control signal based on the output frame rate
24	a memory device;
25	a DMD data converter for formatting from the image stream into
26	output DMD data readable by a digital micro-mirror chip; and
27	a micro-controller for controlling the dual port memory controller based on the 3D
28	format.
1	50. (New) The DMD format conversion system as in claim 49, wherein said self
2	synchronized output frame rate is set or selected to reduce appearance of flicker.
1	51. (New) The DMD format conversion system as in claim 49, wherein the output
2	signal of the 3D data formatter is color sequential stereoscopic data.
1	52. (New) The DMD format conversion system as in claim 49, wherein the output
2	signal of the 3D data formatter is frame sequential stereoscopic data.
1	53. (New) A DMD projection system comprising:
2	the DMD format conversion system as in claim 49;
3	an illumination source including a lamp for transmitting light to condensing
4	optics, light from said condensing optics being transmitted to a rotating color wheel, the
5	rotating color wheel coupled to the DMD data formatter for receiving color wheel contro
6	signals indicative of rotation rate synchronized based on the output frame rate generated

10/045,901

- 7 by the 3D data formatter;
- 8 a digital micro-mirror chip for receiving the output DMD data and reflecting,
- 9 from micro-mirrors of the digital micro-mirror chip, light received from said color wheel;
- 10 and
- projection optics for projecting light reflected from said digital micro-mirror chip.
- 1 54. (New) The DMD projection system as in claim 53, wherein said color wheel
- 2 includes a 3D encoder system synchronized based on the output frame rate generated by
- 3 the 3D data formatter.
- 1 55. (New) A stereoscopic viewing system comprising the DMD projection system as
- 2 in claim 54 and an optical decoder for allowing a viewer to perceive stereoscopic images
- 1 56. (New) The stereoscopic viewing system as in claim 55, wherein the optical
- 2 decoder comprises passive polarizing lenses having one polarization state corresponding
- 3 to one eye and another polarization state corresponding to another eye.
- 1 57. (New) The stereoscopic viewing system as in claim 55,, wherein the optical
- 2 decoder comprises active shutter glasses.