MATH 7311 Homework 7

Andrea Bourque

November 2021

1 Problem 1

Let g be continuous on [-a,a], a>0. For n such that $\frac{1}{n}< a$, let $I_n=[-1/n,1/n]$ and let $\varphi_n=\frac{n}{2}\chi_{I_n}$. Show that $\lim_n\int g\varphi_nd\lambda=\lim_n\frac{n}{2}\int_{I_n}gd\lambda=g(0)$.

Proof. Note that for all n, $\int \varphi_n d\lambda = \frac{n}{2} \int_{I_n} d\lambda = 1$. Write f(x) = g(x) - g(0). Then $\int g \varphi_n d\lambda = \int f \varphi_n d\lambda + g(0) \int \varphi_n d\lambda = g(0) + \int f \varphi_n d\lambda$. Thus it suffices to show that $\lim_n \int f \varphi_n d\lambda = 0$. Let $\varepsilon > 0$. By continuity, there is $\delta > 0$ such that $|f(x)| < \varepsilon$ for $x \in [-\delta, \delta]$. Then for $n > 1/\delta$, $|f(x)| < \varepsilon$ for $x \in I_n$. Then $|\int f \varphi_n d\lambda| \leq \int |f| \varphi_n d\lambda \leq \int \varepsilon \varphi_n d\lambda = \varepsilon$ for $n > 1/\delta$, implying that $\lim_n \int f \varphi_n d\lambda = 0$.

2 Problem 2

Let $f_n(x) = \chi_{[-n,n]}(x) \sin(\pi x/n)$.

a) Find $f(x) = \lim_n f_n(x)$ and show that f_n converges uniformly on compact subsets of \mathbb{R} .

Proof. Let $\varepsilon > 0$. By continuity of sin, there is $\delta > 0$ such that $|\sin(x)| < \varepsilon$ for $|x| < \delta$. For any $x \in \mathbb{R}$, there is $n \in \mathbb{N}$ such that n > x and $|\pi x/n| < \delta$. Thus $|f_n(x)| < \varepsilon$, so $f_n(x) \to 0$ for all $x \in \mathbb{R}$.

Let A be a compact subset of \mathbb{R} . Then there is some $M \in \mathbb{R}$ such that $A \subset [-M,M]$. Then for all n > M and $x \in A$, $f_n(x) = \sin(\pi x/n)$. Let $\varepsilon > 0$. By continuity of sin, there is $\delta > 0$ such that $|\sin(x)| < \varepsilon$ for $|x| < \delta$. Thus let $n > M\pi/\delta$ and n > M. For any $x \in A$, $|x| \leq M$, so $|\pi x/n| \leq \pi M/n < \delta$, so $|\sin(\pi x/n)| < \varepsilon$. Thus f_n converges uniformly on A.

b) Does f_n converge uniformly to f on all of \mathbb{R} ?

Proof. No. For any $n \in \mathbb{N}$, we have $f_n(n/2) = 1$, so there is a point which is not arbitrarily close to 0 for all $n \in \mathbb{N}$.

c) Show that $\int_{\mathbb{R}} f d\lambda = \lim_n \int_{\mathbb{R}} f_n d\lambda$, but there is no integrable function g such that $|f_n(x)| \leq g(x)$ for almost all $x \in \mathbb{R}$.

Proof. Since f=0, $\int_{\mathbb{R}} f d\lambda=0$. For each n, $\int_{\mathbb{R}} f_n d\lambda=\int_{-n}^n \sin(\pi x/n) dx=\frac{n}{\pi}\int_{-\pi}^\pi \sin(u) du=0$. Thus $\int_{\mathbb{R}} f d\lambda=\lim_n \int_{\mathbb{R}} f_n d\lambda$. Now, suppose there is an integrable function g such that $|f_n(x)|\leq g(x)$ for

Now, suppose there is an integrable function g such that $|f_n(x)| \leq g(x)$ for almost all $x \in \mathbb{R}$. Fix some $n \in \mathbb{N}$. We know that $f_n(n/2) = 1$. For $1 > \varepsilon > 0$, there is $\frac{\pi}{2} > \delta > 0$ such that $\cos(\delta) > 1 - \varepsilon$. Then $f_n(n/2 \pm n\delta/\pi) = \sin(\pi/2 \pm \delta) = \cos(\delta) > 1 - \varepsilon$. Furthermore, for $|x| \leq n\delta/\pi$, $f_n(n/2+x) \geq f_n(n/2+n\delta/\pi)$. Thus $f_n(x) > 1 - \varepsilon$ for $x \in [n/2 - n\delta/\pi, n/2 + n\delta/\pi] = I_n$. Since $g(x) \geq |f_n(x)|$ for almost all x, this implies that $\int_{I_n} g d\lambda \geq (1 - \varepsilon) 2n\delta/\pi > 0$. Since this holds for all $n \in \mathbb{N}$, there are infinitely many non-zero contributions of size at least $(1 - \varepsilon) 2\delta/\pi$, which is a nonzero constant, to $\int |g|$, contradicting the fact that g is integrable.

3 Problem 3

Let f be real valued and measurable on a finite measure space X. Show that $\lim_n \int_X \cos^{2n}(\pi f(x)) d\mu = \mu(f^{-1}(\mathbb{Z})).$

Proof. Let $f_n(x) = \cos^{2n}(\pi f(x))$ and let $S = f^{-1}(\mathbb{Z})$. If $x \in S$, then $f_n(x) = 1$, since $\cos^2(\pi n) = 1$ for $n \in \mathbb{Z}$. Otherwise, $\cos^2(\pi f(x)) < 1$, so $f_n(x) \to 0$. Thus $f_n \to \chi_S$. The function g(x) = 1 is integrable on X, since $\int |g| = \mu(X) < \infty$. We have $f_n(x) \le 1$ for all n and x, so $|f_n(x) \le g(x)$ for all n and x. Thus by LDCT, $\lim_n \int_X f_n d\mu = \int_X \chi_S d\mu = \mu(S)$ as desired.

4 Problem 4

For each of the following, check if the limit exists. If so, find its value.

a)
$$\lim_{n \to \infty} (1 + \frac{x}{n})^{-n} \sin(x/n) d\lambda, n \ge 2.$$

Proof. The function is continuous, so we can evaluate the integral by standard calculus methods. Using u=x/n gives $n\int_0^\infty (1+x)^{-n}\sin(x)dx$. Using $|\int f| \le \int |f|$, we have $|\int_0^\infty (1+x)^{-n}\sin(x)| \le \int_0^\infty (1+x)^{-n}dx$, since $(1+x)^{-n} \ge 0$ for $x \in [0,\infty)$ and $|\sin(x)| \le 1$. $\int_0^\infty (1+x)^{-n}dx = \frac{1}{n}2^{-n+1}$ for $n \ge 2$. Thus $|\int_{[0,\infty)} (1+\frac{x}{n})^{-n}\sin(x/n)d\lambda| \le 2^{-n+1}$, implying that $\lim_n \int_{[0,\infty)} (1+\frac{x}{n})^{-n}\sin(x/n)d\lambda = 0$.

b)
$$\lim_n \int_{[0,n]} \frac{\sin(x)}{1+nx^2} d\lambda$$
.

Proof. We have $|\int_{[0,n]} \frac{\sin(x)}{1+nx^2} d\lambda| \leq \int_{[0,n]} \frac{1}{1+nx^2} d\lambda = \frac{1}{\sqrt{n}} \tan^{-1}(n\sqrt{n}) \leq \frac{\pi}{2\sqrt{n}}$. The first inequality follows $|\int f| \leq \int |f|$ and the fact that $|\sin(x)| \leq 1$ and $|1+nx^2| = 1+nx^2$. Since $1/(1+nx^2)$ is a continuous function, we can evaluate the Lebesgue integral using standard calculus. The last inequality follows from $\tan^{-1}(x) \leq \pi/2$. Since $\lim_n \frac{\pi}{2\sqrt{n}} = 0$, we have $\lim_n \int_{[0,n]} \frac{\sin(x)}{1+nx^2} d\lambda = 0$.