Sistemas binário, decimal e hexadecimal

1.2.1 Conversão de números nos sistemas decimal e binário

Números inteiros

Decomposição em potências da base

```
Decimal:
```

$$35 = 30+5 = 3x10^{1} + 5x10^{\circ}$$

 $2015 = 2000 + 0 + 10 + 5 = 2x10^{3} + 0x10^{2} + 1x10^{1} + 5x10^{\circ}$
Ex: $347 = 3x10^{2} + 4x10^{1} + 7x10^{\circ}$

Binária:

$$10 = 1x2^{1} + 0x2^{0}$$

$$101 = 1x2^{2} + 0x2^{1} + 1x2^{0}$$
Ex: $10111 = 1x2^{4} + 0x2^{3} + 1x2^{2} + 1x2^{1} + 1x2^{0}$

Conversão para a base decimal:

$$(10)2 = 1x2^1+0 = 2+0 = 2$$

 $(101)2 = 4+0+1 = 5$
Ex: $(10111) = 16+0+4+2+1=23$

Conversão para a base binária:

 $(10)10 \rightarrow 1010$ $(13)10 \rightarrow 1101$ $(17)10 \rightarrow 10001$ Ex: $(23)10 \rightarrow 10111$

Números fracionários

Decimal para binário:

$$(0.5)10 \rightarrow 0.1$$

 $(0.25)10 \rightarrow 0.01$
 $(0.125)10 \rightarrow 0.001$
 $(0.375)10 \rightarrow 0.011$
Ex: $(0.625)10 \rightarrow 0.101$

Falar de dízima periódica

```
(0.1)10 \rightarrow 0,00011001100110011... (dízima em 0011)
```

Ex: $(0.11)10 \rightarrow 0,0001110000...$

Curiosidade (relacionado à ATPS) Binário para decimal:

$(0.000111)2 \rightarrow 0,109375$

Inteiros em base Hexadecimal

 $0 \rightarrow 0$

...

- $9 \rightarrow 9$
- $A \rightarrow 10$
- $B \rightarrow 11$
- $C \rightarrow 12$
- $D \rightarrow 13$
- $\mathsf{E} \to \mathsf{14}$
- $F \rightarrow 15$

Decomposição em potências da base:

$$1A = 1x16^{1} + Ax16^{0} = 1x16^{1} + 10x16^{0}$$

$$7B3 = 7x16^2 + Bx16^1 + 3x16^0 = 6x16^2 + 11x16^1 + 3$$

Ex: $CB = Cx16^{1} + Bx16^{0}$

Ex: BEBE = $Bx16^3 + Ex16^2 + Bx16^1 + Ex16^0$

Decimal para Hex:

 $(16)10 \rightarrow 10$

 $(26)10 \to 1A$

 $(27)10 \rightarrow 1B$

Hex para decimal:

$$1A \rightarrow 1x16^{1} + Ax16^{0} = 1x16^{1} + 10x16^{0} = 16 + 10 = 26$$

$$7B3 \rightarrow 7x16^2 + 11x16^1 + 3x16^0 = 6x16^2 + 11x16^1 + 3 = 1792 + 176 + 3 = 1971$$

 $CB \rightarrow 12x16^{1} + 11x16^{0} = 192 + 11 = 203$

 $\mathsf{BEBE} \to \mathsf{Bx}16^{\mathsf{3}} + \mathsf{Ex}16^{\mathsf{2}} + \mathsf{Bx}16^{\mathsf{1}} + \mathsf{Ex}16^{\mathsf{0}} = 11\mathsf{x}4096 + 14\mathsf{x}256 + 11\mathsf{x}16 + 14$

= 45056 + 3584 + 176 + 14 **=** 48830

BABACA = 12237514