



| Schletter, Inc. |                                         | 20° Tilt w/ Seismic Design |
|-----------------|-----------------------------------------|----------------------------|
| HCV             | Standard PVMax Racking System           |                            |
|                 | Representative Calculations - ASCE 7-05 |                            |

### 1. INTRODUCTION



## 1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

### 1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

|             | <u>Maximum</u> |             | <u>Minimum</u> |
|-------------|----------------|-------------|----------------|
| Height =    | 1700 mm        | Height =    | 1550 mm        |
| Width =     | 1050 mm        | Width =     | 970 mm         |
| Dead Load = | 3.00 psf       | Dead Load = | 1.75 psf       |

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

### 1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005



Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

## 2. LOAD ACTIONS

#### 2.1 Permanent Loads

| $g_{MAX} =$        | 3.00 psf |
|--------------------|----------|
| g <sub>MIN</sub> = | 1.75 psf |

Self-weight of the PV modules.

## 2.2 Snow Loads

|                      | 30.00 psf | Ground Snow Load, $P_g =$               |
|----------------------|-----------|-----------------------------------------|
| (ASCE 7-05, Eq. 7-2) | 20.62 psf | Sloped Roof Snow Load, P <sub>s</sub> = |
|                      | 1.00      | I <sub>s</sub> =                        |
|                      | 0.91      | $C_s =$                                 |
|                      | 0.90      | $C_e =$                                 |

1.20

 $C_t =$ 

## 2.3 Wind Loads

| Design Wind Speed, V = | 110 mph | Exposure Category = C    |
|------------------------|---------|--------------------------|
| Height <               | 15 ft   | Importance Category = II |
|                        |         |                          |

Peak Velocity Pressure,  $q_z = 19.00 \text{ psf}$  Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

### **Pressure Coefficients**

| Ct+ <sub>TOP</sub>    | = | 1.050 (Propeure)                 |                                                                                                                   |
|-----------------------|---|----------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Cf+ BOTTOM            | = | 1.050<br>1.650 <i>(Pressure)</i> | Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are |
| Cf- TOP, OUTER PURLIN | = | -2.400                           | located in test report # 1127/0611-1e. Negative forces are                                                        |
| Cf- TOP, INNER PURLIN | = | -1.840 (Suction)                 | applied away from the surface.                                                                                    |
| Cf- BOTTOM            | = | -1.000                           | эрриг ангау нашина сангаса.                                                                                       |

### 2.4 Seismic Loads

| S <sub>S</sub> = | 2.50 | R = 1.25        | ASCE 7, Section 12.8.1.3: A maximum $S_s$ of 1.5         |
|------------------|------|-----------------|----------------------------------------------------------|
| $S_{DS} =$       | 1.67 | $C_S = 0.8$     | may be used to calculate the base shear, $C_s$ , of      |
| $S_1 =$          | 1.00 | $\rho = 1.3$    | structures under five stories and with a period, T,      |
| $S_{D1} =$       | 1.00 | $\Omega = 1.25$ | of 0.5 or less. Therefore, a $S_{ds}$ of 1.0 was used to |
| T <sub>a</sub> = | 0.05 | $C_{d} = 1.25$  | calculate C <sub>s</sub> .                               |



### 2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

## Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W <sup>M</sup> 1.54D + 1.3E + 0.2S <sup>R</sup> (ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2) 0.56D + 1.3E <sup>R</sup> 1.54D + 1.25E + 0.2S <sup>O</sup> 0.56D + 1.25E O

## Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W <sup>M</sup> (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E <sup>O</sup> 1.1785D + 0.65625E + 0.75S <sup>O</sup> 0.362D + 0.875E <sup>O</sup>

### 3. STRUCTURAL ANALYSIS

### 3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

### 3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

| <u>Purlins</u> | <b>Location</b> | <b>Diagonal Struts</b> | <b>Location</b> | Front Reactions Location |
|----------------|-----------------|------------------------|-----------------|--------------------------|
| M13            | Тор             | M3                     | Outer           | N7 Outer                 |
| M14            | Mid-Top         | M7                     | Inner           | N15 Inner                |
| M15            | Mid-Bottom      | M11                    | Outer           | N23 Outer                |
| M16            | Bottom          |                        |                 |                          |
|                |                 |                        |                 |                          |
| <u>Girders</u> | <b>Location</b> | Rear Struts            | <b>Location</b> | Rear Reactions Location  |
| M1             | Outer           | M2                     | Outer           | N8 Outer                 |
| M5             | Inner           | M6                     | Inner           | N16 Inner                |
| M9             | Outer           | M10                    | Outer           | N24 Outer                |
|                |                 |                        |                 |                          |
| Front Struts   | <b>Location</b> |                        |                 |                          |
| M4             | Outer           |                        |                 |                          |
| M8             | Inner           |                        |                 |                          |
| M12            | Outer           |                        |                 |                          |

<sup>&</sup>lt;sup>M</sup> Uses the minimum allowable module dead load.

<sup>&</sup>lt;sup>R</sup> Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

### 4. MEMBER DESIGN CALCULATIONS



#### 4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).



### 4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).





### 4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).



### 4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).





### 4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).



## 5. FOUNDATION DESIGN CALCULATIONS

## 5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

| <u>Maximum</u>       | <u>Front</u>   | Rear           |   |
|----------------------|----------------|----------------|---|
| Tensile Load =       | <u>1244.68</u> | <u>6181.61</u> | k |
| Compressive Load =   | 4521.54        | <u>4970.10</u> | k |
| Lateral Load =       | 330.02         | 2809.65        | k |
| Moment (Weak Axis) = | <u>0.66</u>    | 0.36           | k |



## 5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).



Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check  $M_0 =$ 155737.5 in-lbs Resisting Force Required = 2359.66 lbs A minimum 132in long x 34in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3932.77 lbs to resist overturning. Minimum Width = <u>34 in</u> in Weight Provided = 6778.75 lbs Sliding Force = 675.24 lbs Use a 132in long x 34in wide x 18in tall Friction = 0.4 Weight Required = 1688.09 lbs ballast foundation to resist sliding. Resisting Weight = 6778.75 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 675.24 lbs Cohesion = 130 psf Use a 132in long x 34in wide x 18in tall 31.17 ft<sup>2</sup> Area = ballast foundation. Cohesion is OK. Resisting = 3389.38 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required.

Length = 8 in

2500 psi

## Bearing Pressure

f'c =

 $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.83 \text{ ft}) = \\ \frac{34 \text{ in}}{6779 \text{ lbs}} \frac{35 \text{ in}}{6978 \text{ lbs}} \frac{36 \text{ in}}{7178 \text{ lbs}} \frac{37 \text{ in}}{7377 \text{ lbs}}$ 

| ASD LC             |             | 1.0D ·      | + 1.0S      |             |             | 1.0D+       | - 1.0W      |             | 1.0D + 0.75L + 0.75W + 0.75S |             |             | 0.6D + 1.0W |             |             |             |             |
|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Width              | 34 in       | 35 in       | 36 in       | 37 in       | 34 in       | 35 in       | 36 in       | 37 in       | 34 in                        | 35 in       | 36 in       | 37 in       | 34 in       | 35 in       | 36 in       | 37 in       |
| FA                 | 1514 lbs    | 1514 lbs    | 1514 lbs    | 1514 lbs    | 1698 lbs    | 1698 lbs    | 1698 lbs    | 1698 lbs    | 2283 lbs                     | 2283 lbs    | 2283 lbs    | 2283 lbs    | -592 lbs    | -592 lbs    | -592 lbs    | -592 lbs    |
| F <sub>B</sub>     | 1544 lbs    | 1544 lbs    | 1544 lbs    | 1544 lbs    | 2050 lbs    | 2050 lbs    | 2050 lbs    | 2050 lbs    | 2568 lbs                     | 2568 lbs    | 2568 lbs    | 2568 lbs    | -2966 lbs   | -2966 lbs   | -2966 lbs   | -2966 lbs   |
| $F_V$              | 171 lbs     | 171 lbs     | 171 lbs     | 171 lbs     | 1203 lbs    | 1203 lbs    | 1203 lbs    | 1203 lbs    | 1018 lbs                     | 1018 lbs    | 1018 lbs    | 1018 lbs    | -1350 lbs   | -1350 lbs   | -1350 lbs   | -1350 lbs   |
| P <sub>total</sub> | 9837 lbs    | 10036 lbs   | 10236 lbs   | 10435 lbs   | 10526 lbs   | 10725 lbs   | 10925 lbs   | 11124 lbs   | 11630 lbs                    | 11830 lbs   | 12029 lbs   | 12228 lbs   | 509 lbs     | 628 lbs     | 748 lbs     | 867 lbs     |
| M                  | 3829 lbs-ft | 3829 lbs-ft | 3829 lbs-ft | 3829 lbs-ft | 5035 lbs-ft | 5035 lbs-ft | 5035 lbs-ft | 5035 lbs-ft | 6330 lbs-ft                  | 6330 lbs-ft | 6330 lbs-ft | 6330 lbs-ft | 2332 lbs-ft | 2332 lbs-ft | 2332 lbs-ft | 2332 lbs-ft |
| е                  | 0.39 ft     | 0.38 ft     | 0.37 ft     | 0.37 ft     | 0.48 ft     | 0.47 ft     | 0.46 ft     | 0.45 ft     | 0.54 ft                      | 0.54 ft     | 0.53 ft     | 0.52 ft     | 4.59 ft     | 3.71 ft     | 3.12 ft     | 2.69 ft     |
| L/6                | 1.83 ft                      | 1.83 ft     | 1.83 ft     | 1.83 ft     | 1.83 ft     | 1.83 ft     | 1.83 ft     | 1.83 ft     |
| f <sub>min</sub>   | 248.6 psf   | 247.7 psf   | 246.9 psf   | 246.1 psf   | 249.6 psf   | 248.7 psf   | 247.8 psf   | 247.0 psf   | 262.4 psf                    | 261.1 psf   | 259.9 psf   | 258.7 psf   | 0.0 psf     | 0.0 psf     | 0.0 psf     | 0.0 psf     |
| f <sub>max</sub>   | 382.6 psf   | 377.9 psf   | 373.5 psf   | 369.2 psf   | 425.8 psf   | 419.9 psf   | 414.3 psf   | 409.0 psf   | 483.9 psf                    | 476.3 psf   | 469.1 psf   | 462.3 psf   | 130.9 psf   | 80.3 psf    | 69.8 psf    | 66.7 psf    |

Ballast Width

Maximum Bearing Pressure = 484 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 34in wide x 18in tall ballast foundation for an acceptable bearing pressure.



#### Seismic Design

## Overturning Check

 $M_0 = 2936.6 \text{ ft-lbs}$ 

Resisting Force Required = 2072.87 lbs S.F. = 1.67

Weight Required = 3454.79 lbs Minimum Width = 34 in in Weight Provided = 6778.75 lbs A minimum 132in long x 34in wide x 18in tall ballast foundation is required to resist overturning.

#### Bearing Pressure

| ASD LC             | 1          | .238D + 0.875 | iΕ         | 1.1785D + 0.65625E + 0.75S |            |            | 0.362D + 0.875E |            |            |  |
|--------------------|------------|---------------|------------|----------------------------|------------|------------|-----------------|------------|------------|--|
| Width              |            | 34 in         |            | 34 in                      |            |            | 34 in           |            |            |  |
| Support            | Outer      | Inner         | Outer      | Outer                      | Inner      | Outer      | Outer           | Inner      | Outer      |  |
| F <sub>Y</sub>     | 261 lbs    | 626 lbs       | 212 lbs    | 867 lbs                    | 2510 lbs   | 829 lbs    | 93 lbs          | 183 lbs    | 45 lbs     |  |
| F <sub>V</sub>     | 207 lbs    | 204 lbs       | 210 lbs    | 154 lbs                    | 149 lbs    | 163 lbs    | 208 lbs         | 205 lbs    | 209 lbs    |  |
| P <sub>total</sub> | 8653 lbs   | 9018 lbs      | 8604 lbs   | 8856 lbs                   | 10499 lbs  | 8818 lbs   | 2547 lbs        | 2637 lbs   | 2499 lbs   |  |
| М                  | 826 lbs-ft | 818 lbs-ft    | 834 lbs-ft | 622 lbs-ft                 | 620 lbs-ft | 651 lbs-ft | 823 lbs-ft      | 816 lbs-ft | 827 lbs-ft |  |
| е                  | 0.10 ft    | 0.09 ft       | 0.10 ft    | 0.07 ft                    | 0.06 ft    | 0.07 ft    | 0.32 ft         | 0.31 ft    | 0.33 ft    |  |
| L/6                | 0.47 ft    | 0.47 ft       | 0.47 ft    | 0.47 ft                    | 0.47 ft    | 0.47 ft    | 0.47 ft         | 0.47 ft    | 0.47 ft    |  |
| f <sub>min</sub>   | 221.5 psf  | 233.8 psf     | 219.4 psf  | 241.9 psf                  | 294.8 psf  | 238.7 psf  | 25.8 psf        | 29.1 psf   | 24.0 psf   |  |
| f <sub>max</sub>   | 333.8 psf  | 344.9 psf     | 332.7 psf  | 326.4 psf                  | 379.0 psf  | 327.2 psf  | 137.7 psf       | 140.1 psf  | 136.4 psf  |  |



Maximum Bearing Pressure = 379 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 34in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 34in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

## 5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.





### 6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.





### **6.2 Strut Connections**

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

| Front Strut               |            | Rear Strut                                                                                          |                    |
|---------------------------|------------|-----------------------------------------------------------------------------------------------------|--------------------|
| Maximum Axial Load =      | 3.478 k    | Maximum Axial Load =                                                                                | 4.244 k            |
| M12 Bolt Capacity =       | 12.808 k   | M12 Bolt Capacity =                                                                                 | 12.808 k           |
| Strut Bearing Capacity =  | 7.421 k    | Strut Bearing Capacity =                                                                            | 7.421 k            |
| Utilization =             | <u>47%</u> | Utilization =                                                                                       | <u>57%</u>         |
| Diagonal Strut            |            |                                                                                                     |                    |
| Maximum Axial Load =      | 1.944 k    |                                                                                                     |                    |
| M12 Bolt Shear Capacity = | 12.808 k   | Bolt and bearing capacities are accounting for                                                      | or double shear.   |
| Strut Bearing Capacity =  | 7.421 k    | (ASCE 8-02, Eq. 5.3.4-1)                                                                            |                    |
| Utilization =             | <u>26%</u> | ( )                                                                                                 |                    |
|                           | A 4        |                                                                                                     |                    |
|                           | 0          | Struts under compression are transfer from the girder. Single end of the strut and are subjections. | le M12 bolts are l |

n are shown to demonstrate the load Single M12 bolts are located at each subjected to double shear.

## 7. SEISMIC DESIGN

## 7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h<sub>sx</sub> = 40.12 in Allowable Story Drift for All Other Structures,  $\Delta$  = {  $0.020h_{sx}$ 0.802 in Max Drift,  $\Delta_{MAX}$  = 0.525 in  $0.525 \le 0.802$ , OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.



### APPENDIX A



## A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5** 

## Strong Axis:

## 3.4.14

$$L_{b} = 117 \text{ in}$$

$$J = 0.432$$

$$323.677$$

$$\left(Bc - \frac{\theta_{y}}{\theta_{b}}Fcy\right)^{\frac{1}{2}}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$$

$$\phi F_1 = 27.5 \text{ ksi}$$

## Weak Axis: 3.4.14

$$L_b = 117$$
 $J = 0.432$ 
205.839

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_1 = 28.7$$

#### 3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

## 3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 1.6Dp$$
 $A = 46.7$ 

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

## 3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_1 = 1.17 \varphi y Fcy$$

38.9 ksi

3.4.16.1 N/A for Weak Direction

### 3.4.18

$$h/t = 37.0588$$

 $\phi F_L =$ 

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\varphi F_L = \varphi b [Bbr - mDbr^* h/t]$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^4$$
  
2.155 in<sup>4</sup>

41.015 mm

$$Sx = 1.335 \text{ in}^3$$
  
 $M_{max}St = 2.788 \text{ k-ft}$ 

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

h/t = 32.195

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 23.1 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$
  
1.073 in<sup>4</sup>

$$x = 45.5 \text{ mm}$$
  
 $Sy = 0.599 \text{ in}^3$ 

$$Sy = 0.599 \text{ in}^3$$
  
 $M_{max}Wk = 1.152 \text{ k-ft}$ 



### Compression

### 3.4.9

$$b/t = 32.195 \\ S1 = 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = 25.1 \text{ ksi} \\ b/t = 37.0588 \\ S1 = 12.21 \\ S2 = 32.70 \\ \phi F_L = (\phi c k2^* \sqrt{(BpE))/(1.6b/t)} \\$$

### 3.4.10

Rb/t = 0.0  

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87  
S2 = 131.3  
 $\phi F_L = \phi y Fcy$   
 $\phi F_L = 33.25 \text{ ksi}$   

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

 $\phi F_L = 21.9 \text{ ksi}$ 

## A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

### Girder = BF0

### Weak Axis: Strong Axis: 3.4.14 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 =$ 29.2

## 3.4.16

3.4.16 b/t = 16.2 b/t = 7.4 
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$



3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = 1.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b [Bt \text{-}Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$CC = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 73.8$$

$$S2 = 73.8$$
  
 $\phi F_L = 1.3 \phi y F c y$   
 $\phi F_L = 43.2 \text{ ksi}$ 

$$\begin{aligned} \phi F_L St &= & 29.4 \text{ ksi} \\ lx &= & 984962 \text{ mm}^4 \\ & & 2.366 \text{ in}^4 \\ y &= & 43.717 \text{ mm} \end{aligned}$$

$$y = 43.717 \text{ mm}$$
  
 $Sx = 1.375 \text{ in}^3$   
 $M_{max}St = 3.363 \text{ k-ft}$ 

N/A for Weak Direction

S.4.16
$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

## Compression

## 3.4.9

$$b/t = 16.2$$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ 

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$
  
S1 = 12.21

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

## 3.4.10

$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

31.09 ksi

$$P_{max} = 58.55 \text{ kips}$$

 $\phi F_L =$ 

## A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition



Strut = 55x55

## Strong Axis:

#### 3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$1.6Dc$$
S1 = 0.51461

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

## Weak Axis:

### 3.4.14

$$L_{b} = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

## $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}$

## $\phi F_L = 31.4$

### 3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

### 3.4.16

b/t = 24.5  

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_I = 28.2 \text{ ksi}$$

### 3.4.16.1

A.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

## 3.4.16.1

N/A for Weak Direction

## 3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L St = 28.2 \text{ ksi}$$

 $\phi F_1 =$ 

Sx=

$$lx = 279836 \text{ mm}^4$$
  
 $0.672 \text{ in}^4$   
 $y = 27.5 \text{ mm}$ 

43.2 ksi

0.621 in<sup>3</sup>

$$M_{max}St = 1.460 \text{ k-ft}$$

## 3.4.18

h/t =

x =

Sy =

 $M_{max}Wk = 1.460 \text{ k-ft}$ 

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$by = 279836 \text{ mm}^4$$

0.672 in<sup>4</sup>

0.621 in<sup>3</sup>

27.5 mm

24.5

# SCHLETTER

## Compression

## 3.4.7 λ = 0.57371 0.81 in $S1^* = \frac{Bc - Fcy}{a}$ 1.6Dc\* S1\* = 0.33515 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ S2\* = 1.23671 $\phi cc = 0.87952$ $\phi F_L = \phi cc(Bc-Dc^*\lambda)$ $\phi F_L = 28.0279 \text{ ksi}$

### 3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

#### 3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

## A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

## $Strut = \underline{55x55}$

 $P_{max} =$ 

#### Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

# SCHLETTER

### 3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 
$$0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

## 3.4.18

h/t = 24.5  

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

#### $lx = 279836 \text{ mm}^4$ 0.672 in<sup>4</sup> 27.5 mm y = Sx= 0.621 in<sup>3</sup> $M_{max}St =$ 1.460 k-ft

## Compression

## 3.4.7

$$\begin{array}{lll} \lambda = & 2.00335 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.86047 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 7.50396 \text{ ksi} \end{array}$$

## 3.4.16

b/t = 24.5  

$$S1 = \frac{Bp - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_{1}Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_{L} = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_{L} = 28.2 \text{ ksi}$$

#### 3.4.16.1

N/A for Weak Direction

#### 3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\Phi_L = 1.3\Phi_Y + C_Y$$

$$\Phi_L = 43.2 \text{ ksi}$$

$$\Phi_L = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$X = 27.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$ 

0.621 in<sup>3</sup>

1.460 k-ft



### 3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

### 3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

## A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

## Strong Axis:

## 3.4.14

$$L_b = 55.91 \text{ in}$$

$$J = 0.942 \\ 87.2529$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.4 \text{ ksi}$$

# Weak Axis:

$$L_b = 55.91$$
  
 $J = 0.942$ 

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.4$$

### 3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$
  
 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$ 

$$\phi F_L = 28.2 \text{ ksi}$$

## 3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$



$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \begin{bmatrix} 1.6Dt \\ 1.1 \end{bmatrix}$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$S1 = 1.6Dt$$
  
 $S1 = 1.1$   
 $S2 = C_t$   
 $S2 = 141.0$   
 $\phi F_L = 1.17\phi y F c y$ 

$$\phi F_L = 38.9 \text{ ksi}$$

## 3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

 $\phi F_L = 1.3 \phi y F c y$ 

 $\phi F_L = 43.2 \text{ ksi}$ 

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max} St = 1.460 \text{ k-ft}$$

### 3.4.7

$$\begin{array}{lll} \lambda = & 1.29339 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.76107 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 15.9235 \text{ ksi} \end{array}$$

## 3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

## 3.4.16.1

N/A for Weak Direction

## 3.4.18

S.4.16
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi \varphi F cy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

## PVMax 60 Cell 2V 20° 110mph 30psf 9.75ft 7-05.xlsx | Page 16



## 3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left( \frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{$\phi$F}_L &= & \text{$\phi$F}_L \text{$\psi$F}_L \text{$\psi$F}$$

## **APPENDIX B**

## B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.



Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_

## **Basic Load Cases**

|   | BLC Description      | Category | X Gravity | Y Gravity | Z Gravity | Joint | Point | Distribut | .Area(MeS | Surface( |
|---|----------------------|----------|-----------|-----------|-----------|-------|-------|-----------|-----------|----------|
| 1 | Dead Load, Max       | DĽ       | _         | -1        | ,         |       |       | 4         | ,         | ,        |
| 2 | Dead Load, Min       | DL       |           | -1        |           |       |       | 4         |           |          |
| 3 | Snow Load            | SL       |           |           |           |       |       | 4         |           |          |
| 4 | Wind Load - Pressure | WL       |           |           |           |       |       | 4         |           |          |
| 5 | Wind Load - Suction  | WL       |           |           |           |       |       | 4         |           |          |
| 6 | Seismic - Lateral    | EL       |           |           | .8        |       |       | 8         |           |          |

## Member Distributed Loads (BLC 1 : Dead Load, Max)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | Υ         | -8.366                   | -8.366                 | 0                    | 0                  |
| 2 | M14          | Υ         | -8.366                   | -8.366                 | 0                    | 0                  |
| 3 | M15          | Υ         | -8.366                   | -8.366                 | 0                    | 0                  |
| 4 | M16          | Υ         | -8.366                   | -8.366                 | 0                    | 0                  |

## Member Distributed Loads (BLC 2 : Dead Load, Min)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | Υ         | -4.45                    | -4.45                  | 0                    | 0                  |
| 2 | M14          | Υ         | -4.45                    | -4.45                  | 0                    | 0                  |
| 3 | M15          | Υ         | -4.45                    | -4.45                  | 0                    | 0                  |
| 4 | M16          | Υ         | -4.45                    | -4.45                  | 0                    | 0                  |

## Member Distributed Loads (BLC 3: Snow Load)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | Υ         | -54.031                  | -54.031                | 0                    | 0                  |
| 2 | M14          | Υ         | -54.031                  | -54.031                | 0                    | 0                  |
| 3 | M15          | Υ         | -54.031                  | -54.031                | 0                    | 0                  |
| 4 | M16          | V         | -54 031                  | -54 031                | 0                    | 0                  |

## Member Distributed Loads (BLC 4: Wind Load - Pressure)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | V         | -55.629                  | -55.629                | 0                    | 0                  |
| 2 | M14          | ٧         | -55.629                  | -55.629                | 0                    | 0                  |
| 3 | M15          | ý         | -87.418                  | -87.418                | 0                    | 0                  |
| 4 | M16          | ٧         | -87.418                  | -87.418                | 0                    | 0                  |

## Member Distributed Loads (BLC 5: Wind Load - Suction)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | V         | 127.153                  | 127.153                | 0                    | 0                  |
| 2 | M14          | V         | 97.484                   | 97.484                 | 0                    | 0                  |
| 3 | M15          | V         | 52.98                    | 52.98                  | 0                    | 0                  |
| 4 | M16          | У         | 52.98                    | 52.98                  | 0                    | 0                  |

## Member Distributed Loads (BLC 6 : Seismic - Lateral)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | Z         | 6.693                    | 6.693                  | 0                    | 0                  |
| 2 | M14          | Ζ         | 6.693                    | 6.693                  | 0                    | 0                  |
| 3 | M15          | Ζ         | 6.693                    | 6.693                  | 0                    | 0                  |
| 4 | M16          | Ζ         | 6.693                    | 6.693                  | 0                    | 0                  |
| 5 | M13          | Ζ         | 0                        | 0                      | 0                    | 0                  |
| 6 | M14          | Z         | 0                        | 0                      | 0                    | 0                  |
| 7 | M15          | Z         | 0                        | 0                      | 0                    | 0                  |
| 8 | M16          | Z         | 0                        | 0                      | 0                    | 0                  |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_

## **Load Combinations**

|    | Description                   | S    | P | S | В | Fa   | В | Fa  | В | Fa  | В | Fa   | В | Fa | В | Fa | В | Fa | В | Fa | В | Fa | B | Fa |
|----|-------------------------------|------|---|---|---|------|---|-----|---|-----|---|------|---|----|---|----|---|----|---|----|---|----|---|----|
| 1  | LRFD 1.2D + 1.6S + 0.8W       | Yes  | Υ |   | 1 | 1.2  | 3 | 1.6 | 4 | .8  |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 2  | LRFD 1.2D + 1.6W + 0.5S       | Yes  | Υ |   | 1 | 1.2  | 3 | .5  | 4 | 1.6 |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 3  | LRFD 0.9D + 1.6W              | Yes  | Υ |   | 2 | .9   |   |     |   |     | 5 | 1.6  |   |    |   |    |   |    |   |    |   |    |   |    |
| 4  | LATERAL - LRFD 1.54D + 1.3E   | Yes  | Υ |   | 1 | 1.54 | 3 | .2  |   |     | 6 | 1.3  |   |    |   |    |   |    |   |    |   |    |   |    |
| 5  | LATERAL - LRFD 0.56D + 1.3E   | Yes  | Υ |   | 1 | .56  |   |     |   |     | 6 | 1.3  |   |    |   |    |   |    |   |    |   |    |   |    |
| 6  | LATERAL - LRFD 1.54D + 1.25   | Yes  | Υ |   | 1 | 1.54 | 3 | .2  |   |     | 6 | 1.25 |   |    |   |    |   |    |   |    |   |    |   |    |
| 7  | LATERAL - LRFD 0.56D + 1.25E  | Yes  | Υ |   | 1 | .56  |   |     |   |     | 6 | 1.25 |   |    |   |    |   |    |   |    |   |    |   |    |
| 8  |                               |      |   |   |   |      |   |     |   |     |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 9  | ASD 1.0D + 1.0S               | Yes  | Υ |   | 1 | 1    | 3 | 1   |   |     |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 10 | ASD 1.0D + 1.0W               | Yes  | Υ |   | 1 | 1    |   |     | 4 | 1   |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 11 | ASD 1.0D + 0.75L + 0.75W + 0  | Yes  | Υ |   | 1 | 1    | 3 | .75 | 4 | .75 |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 12 | ASD 0.6D + 1.0W               | Yes  | Υ |   | 2 | .6   |   |     |   |     | 5 | 1    |   |    |   |    |   |    |   |    |   |    |   |    |
| 13 | LATERAL - ASD 1.238D + 0.875E | Yes  | Υ |   | 1 | 1.2  |   |     |   |     | 6 | .875 |   |    |   |    |   |    |   |    |   |    |   |    |
| 14 | LATERAL - ASD 1.1785D + 0.65. | .Yes | Υ |   | 1 | 1.1  | 3 | .75 |   |     | 6 | .656 |   |    |   |    |   |    |   |    |   |    |   |    |
| 15 | LATERAL - ASD 0.362D + 0.875E | Yes  | Υ |   | 1 | .362 |   |     |   |     | 6 | .875 |   |    |   |    |   |    |   |    |   |    |   |    |

## **Envelope Joint Reactions**

|    | Joint   |     | X [lb]    | LC | Y [lb]    | LC | Z [lb]   | LC | MX [k-ft] | LC | MY [k-ft] | LC | MZ [k-ft] | LC |
|----|---------|-----|-----------|----|-----------|----|----------|----|-----------|----|-----------|----|-----------|----|
| 1  | N8      | max | 533.538   | 2  | 1176.486  | 2  | .817     | 1  | .004      | 1  | 0         | 1  | 0         | 1  |
| 2  |         | min | -682.884  | 3  | -1455.437 | 3  | -60.469  | 5  | 271       | 4  | 0         | 1  | 0         | 1  |
| 3  | N7      | max | .035      | 9  | 1225.255  | 1  | 428      | 12 | 0         | 12 | 0         | 1  | 0         | 1  |
| 4  |         | min | 156       | 2  | -272.813  | 3  | -253.862 | 4  | 508       | 4  | 0         | 1  | 0         | 1  |
| 5  | N15     | max | .025      | 9  | 3478.104  | 1  | 0        | 3  | 0         | 3  | 0         | 1  | 0         | 1  |
| 6  |         | min | -1.887    | 2  | -957.444  | 3  | -243.859 | 4  | 495       | 4  | 0         | 1  | 0         | 1  |
| 7  | N16     | max | 1988.04   | 2  | 3823.153  | 2  | 0        | 11 | 0         | 11 | 0         | 1  | 0         | 1  |
| 8  |         | min | -2161.266 | 3  | -4755.086 | 3  | -60.271  | 5  | 274       | 4  | 0         | 1  | 0         | 1  |
| 9  | N23     | max | .036      | 14 | 1225.255  | 1  | 8.898    | 1  | .019      | 1  | 0         | 1  | 0         | 1  |
| 10 |         | min | 156       | 2  | -272.813  | 3  | -247.985 | 4  | 498       | 4  | 0         | 1  | 0         | 1  |
| 11 | N24     | max | 533.538   | 2  | 1176.486  | 2  | 047      | 12 | 0         | 12 | 0         | 1  | 0         | 1  |
| 12 |         | min | -682.884  | 3  | -1455.437 | 3  | -60.993  | 5  | 273       | 4  | 0         | 1  | 0         | 1  |
| 13 | Totals: | max | 3052.917  | 2  | 12001.583 | 1  | 0        | 3  |           |    |           |    |           |    |
| 14 |         | min | -3527.81  | 3  | -9169.029 | 3  | -922.677 | 5  |           |    |           |    |           |    |

## **Envelope Member Section Forces**

|    | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC |
|----|--------|-----|-----|-----------|----|-------------|----|-------------|----|--------------|----|----------|----|----------|----|
| 1  | M13    | 1   | max | 93.962    | 1  | 494.573     | 1  | -6.365      | 12 | 0            | 3  | .224     | 1  | 0        | 4  |
| 2  |        |     | min | 4.667     | 12 | -725.496    | 3  | -157.238    | 1  | 014          | 2  | .011     | 12 | 0        | 3  |
| 3  |        | 2   | max | 93.962    | 1  | 346.298     | 1  | -5.042      | 12 | 0            | 3  | .091     | 4  | .67      | 3  |
| 4  |        |     | min | 4.667     | 12 | -510.552    | 3  | -120.818    | 1  | 014          | 2  | .005     | 12 | 455      | 1  |
| 5  |        | 3   | max | 93.962    | 1  | 198.023     | 1  | -3.718      | 12 | 0            | 3  | .048     | 5  | 1.106    | 3  |
| 6  |        |     | min | 4.667     | 12 | -295.609    | 3  | -84.398     | 1  | 014          | 2  | 038      | 1  | 75       | 1  |
| 7  |        | 4   | max | 93.962    | 1  | 49.748      | 1  | -2.394      | 12 | 0            | 3  | .025     | 5  | 1.31     | 3  |
| 8  |        |     | min | 4.667     | 12 | -80.666     | 3  | -47.978     | 1  | 014          | 2  | 11       | 1  | 885      | 1  |
| 9  |        | 5   | max | 93.962    | 1  | 134.278     | 3  | 737         | 10 | 0            | 3  | .005     | 5  | 1.281    | 3  |
| 10 |        |     | min | 4.667     | 12 | -98.526     | 1  | -20.991     | 4  | 014          | 2  | 142      | 1  | 858      | 1  |
| 11 |        | 6   | max | 93.962    | 1  | 349.221     | 3  | 24.862      | 1  | 0            | 3  | 005      | 12 | 1.019    | 3  |
| 12 |        |     | min | 3.554     | 15 | -246.801    | 1  | -16.096     | 5  | 014          | 2  | 135      | 1  | 671      | 1  |
| 13 |        | 7   | max | 93.962    | 1  | 564.165     | 3  | 61.282      | 1  | 0            | 3  | 004      | 12 | .524     | 3  |
| 14 |        |     | min | -5.603    | 5  | -395.076    | 1  | -14.048     | 5  | 014          | 2  | 088      | 1  | 323      | 1  |
| 15 |        | 8   | max | 93.962    | 1  | 779.108     | 3  | 97.702      | 1  | 0            | 3  | .001     | 10 | .185     | 1  |
| 16 |        |     | min | -16.724   | 5  | -543.351    | 1  | -12         | 5  | 014          | 2  | 046      | 4  | 203      | 3  |
| 17 |        | 9   | max | 93.962    | 1  | 994.051     | 3  | 134.122     | 1  | 0            | 3  | .124     | 1  | .854     | 1  |
| 18 |        |     | min | -27.845   | 5  | -691.626    | 1  | -9.952      | 5  | 014          | 2  | 056      | 5  | -1.164   | 3  |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|    | Member | Sec   |     | Axial[lb] | LC | y Shear[lb]                             | LC       |          |    |      |          |      | LC       |        | LC |
|----|--------|-------|-----|-----------|----|-----------------------------------------|----------|----------|----|------|----------|------|----------|--------|----|
| 19 |        | 10    | max | 93.962    | 1  | 839.901                                 | _1_      | -5.548   | 12 | .004 | 14       | .289 | 1_       | 1.683  | 1  |
| 20 |        |       | min | 4.667     | 12 | -1208.995                               | 3        | -170.542 | 1  | 014  | 2        | .007 | 12       | -2.357 | 3  |
| 21 |        | 11    | max | 93.962    | 1  | 691.626                                 | <u>1</u> | -4.224   | 12 | .014 | 2        | .124 | 1        | .854   | 1_ |
| 22 |        |       | min | 4.667     | 12 | -994.051                                | 3        | -134.122 | 1  | 0    | 3        | .002 | 12       | -1.164 | 3  |
| 23 |        | 12    | max | 93.962    | 1  | 543.351                                 | 1        | -2.9     | 12 | .014 | 2        | .044 | 4        | .185   | 1  |
| 24 |        |       | min | 4.667     | 12 | -779.108                                | 3        | -97.702  | 1  | 0    | 3        | 003  | 3        | 203    | 3  |
| 25 |        | 13    | max | 93.962    | 1  | 395.076                                 | 1        | -1.577   | 12 | .014 | 2        | .02  | 5        | .524   | 3  |
| 26 |        |       | min | 4.667     | 12 | -564.165                                | 3        | -61.282  | 1  | 0    | 3        | 088  | 1        | 323    | 1  |
| 27 |        | 14    | max | 93.962    | 1  | 246.801                                 | 1        | 253      | 12 | .014 | 2        | 0    | 15       | 1.019  | 3  |
| 28 |        |       | min | 3.293     | 15 | -349.221                                | 3        | -24.862  | 1  | 0    | 3        | 135  | 1        | 671    | 1  |
| 29 |        | 15    | max | 93.962    | 1  | 98.526                                  | 1        | 11.558   | 1  | .014 | 2        | 005  | 12       | 1.281  | 3  |
| 30 |        |       | min | -6.073    | 5  | -134.278                                | 3        | -16.803  | 5  | 0    | 3        | 142  | 1        | 858    | 1  |
| 31 |        | 16    | max | 93.962    | 1  | 80.666                                  | 3        | 47.978   | 1  | .014 | 2        | 003  | 12       | 1.31   | 3  |
| 32 |        |       | min | -17.193   | 5  | -49.748                                 | 1        | -14.755  | 5  | 0    | 3        | 11   | 1        | 885    | 1  |
| 33 |        | 17    | max | 93.962    | 1  | 295.609                                 | 3        | 84.398   | 1  | .014 | 2        | 0    | 3        | 1.106  | 3  |
| 34 |        |       | min | -28.314   | 5  | -198.023                                | 1        | -12.707  | 5  | 0    | 3        | 061  | 4        | 75     | 1  |
| 35 |        | 18    | max | 93.962    | 1  | 510.552                                 | 3        | 120.818  | 1  | .014 | 2        | .073 | 1        | .67    | 3  |
| 36 |        |       | min | -39.435   | 5  | -346.298                                | 1        | -10.659  | 5  | 0    | 3        | 065  | 5        | 455    | 1  |
| 37 |        | 19    | max | 93.962    | 1  | 725.496                                 | 3        | 157.238  | 1  | .014 | 2        | .224 | 1        | 0      | 1  |
| 38 |        |       | min | -50.555   | 5  | -494.573                                | 1        | -8.611   | 5  | 0    | 3        | 076  | 5        | 0      | 3  |
| 39 | M14    | 1     | max | 57.589    | 4  | 525.916                                 | 1        | -6.54    | 12 | .009 | 3        | .256 | 1        | 0      | 1  |
| 40 |        |       | min | 1.993     | 12 | -569.313                                | 3        | -162.212 | 1  | 012  | 1        | .012 | 12       | 0      | 3  |
| 41 |        | 2     | max | 46.468    | 4  | 377.641                                 | 1        | -5.217   | 12 | .009 | 3        | .13  | 4        | .528   | 3  |
| 42 |        |       | min | 1.993     | 12 | -405.796                                | 3        | -125.792 | 1  | 012  | 1        | .006 | 12       | 489    | 1  |
| 43 |        | 3     | max | 44.377    | 1  | 229.367                                 | 1        | -3.893   | 12 | .009 | 3        | .072 | 5        | .879   | 3  |
| 44 |        |       | min | 1.993     | 12 | -242.279                                | 3        | -89.372  | 1  | 012  | 1        | 016  | 1        | 818    | 1  |
| 45 |        | 4     | max | 44.377    | 1  | 81.092                                  | 1        | -2.569   | 12 | .009 | 3        | .039 | 5        | 1.053  | 3  |
| 46 |        | _     | min | 1.993     | 12 | -78.762                                 | 3        | -52.952  | 1  | 012  | 1        | 094  | 1        | 986    | 1  |
| 47 |        | 5     | max | 44.377    | 1  | 84.755                                  | 3        | -1.228   | 10 | .009 | 3        | .008 | 5        | 1.05   | 3  |
| 48 |        | ľ     | min | 1.993     | 12 | -67.183                                 | 1        | -31.468  | 4  | 012  | 1        | 131  | 1        | 994    | 1  |
| 49 |        | 6     | max | 44.377    | 1  | 248.273                                 | 3        | 19.888   | 1  | .009 | 3        | 005  | 12       | .869   | 3  |
| 50 |        |       | min | -7.368    | 5  | -215.458                                | 1        | -25.335  | 5  | 012  | 1        | 129  | 1        | 841    | 1  |
| 51 |        | 7     | max | 44.377    | 1  | 411.79                                  | 3        | 56.308   | 1  | .009 | 3        | 004  | 12       | .512   | 3  |
| 52 |        |       | min | -18.489   | 5  | -363.733                                | 1        | -23.287  | 5  | 012  | 1        | 088  | 1        | 527    | 1  |
| 53 |        | 8     | max | 44.377    | 1  | 575.307                                 | 3        | 92.728   | 1  | .009 | 3        | 0    | 10       | 0      | 15 |
| 54 |        |       | min | -29.61    | 5  | -512.008                                | 1        | -21.239  | 5  | 012  | 1        | 074  | 4        | 064    | 2  |
| 55 |        | 9     | max | 44.377    | 1  | 738.824                                 | 3        | 129.148  | 1  | .009 | 3        | .113 | 1        | .582   | 1  |
| 56 |        | Ť     | min | -40.73    | 5  | -660.283                                | 1        | -19.191  | 5  | 012  | 1        | 093  | 5        | 735    | 3  |
| 57 |        | 10    | max | 65.878    | 4  | 808.558                                 | 1        | -5.373   | 12 | .009 | 3        | .272 | 1        | 1.378  | 1  |
| 58 |        | '     | min | 1.993     | 12 | -902.341                                | 3        | -165.568 | 1  | 012  | 1        | .007 | 12       | -1.624 | 3  |
| 59 |        | 11    | max |           | 4  | 660.283                                 | 1        | -4.049   | 12 | .012 | <u> </u> | .131 | 4        | .582   | 1  |
| 60 |        |       | min | 1.993     | 12 | -738.824                                | 3        | -129.148 | 1  | 009  | 3        | .002 | 12       | 735    | 3  |
| 61 |        | 12    | max | 44.377    | 1  | 512.008                                 | 1        | -2.725   | 12 | .012 | 1        | .07  | 5        | 0      | 15 |
| 62 |        |       | min | 1.993     | 12 | -575.307                                | 3        | -92.728  | 1  | 009  | 3        | 007  | 1        | 064    | 2  |
| 63 |        | 13    | max | 44.377    | 1  | 363.733                                 | 1        | -1.402   | 12 | .012 | 1        | .037 | 5        | .512   | 3  |
| 64 |        |       | min | 1.993     | 12 | -411.79                                 | 3        | -56.308  | 1  | 009  | 3        | 088  | 1        | 527    | 1  |
| 65 |        | 14    | max | 44.377    | 1  | 215.458                                 | 1        | 055      | 3  | .012 | 1        | .006 | 5        | .869   | 3  |
| 66 |        |       | min | 1.993     | 12 | -248.273                                | 3        | -32.158  | 4  | 009  | 3        | 129  | 1        | 841    | 1  |
| 67 |        | 15    | max | 44.377    | 1  | 67.183                                  | 1        | 16.532   | 1  | .012 | 1        | 004  | 12       | 1.05   | 3  |
| 68 |        | .     | min | .634      | 15 | -84.755                                 | 3        | -25.482  | 5  | 009  | 3        | 131  | 1        | 994    | 1  |
| 69 |        | 16    | max | 44.377    | 1  | 78.762                                  | 3        | 52.952   | 1  | .012 | 1        | 002  | 12       | 1.053  | 3  |
| 70 |        | · · · | min | -10.129   | 5  | -81.092                                 | 1        | -23.434  | 5  | 009  | 3        | 094  | 1        | 986    | 1  |
| 71 |        | 17    | max | 44.377    | 1  | 242.279                                 | 3        | 89.372   | 1  | .012 | 1        | .002 | 3        | .879   | 3  |
| 72 |        |       | min | -21.25    | 5  | -229.367                                | 1        | -21.386  | 5  | 009  | 3        | 078  | 4        | 818    | 1  |
| 73 |        | 18    | max | 44.377    | 1  | 405.796                                 | 3        | 125.792  | 1  | .012 | 1        | .1   | 1        | .528   | 3  |
| 74 |        | '     | min | -32.37    | 5  | -377.641                                | 1        | -19.338  | 5  | 009  | 3        | 096  | 5        | 489    | 1  |
| 75 |        | 19    | max | 44.377    | 1  | 569.313                                 | 3        | 162.212  | 1  | .012 | 1        | .256 | 1        | 0      | 1  |
|    |        |       |     |           |    | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          |          | •  |      |          |      | <u> </u> |        |    |



Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec      |     | Axial[lb]      | LC | y Shear[lb] | LC |          |    |      |   |      |    | z-z Mome           |   |
|-----|--------|----------|-----|----------------|----|-------------|----|----------|----|------|---|------|----|--------------------|---|
| 76  |        |          | min | -43.491        | 5  | -525.916    | 1  | -17.29   | 5  | 009  | 3 | 115  | 5  | 0                  | 3 |
| 77  | M15    | 1        | max | 79.846         | 5  | 670.401     | 2  | -6.491   | 12 | .012 | 2 | .256 | 1  | 0                  | 2 |
| 78  |        |          | min | -46.57         | 1  | -309.234    | 3  | -162.194 | 1  | 008  | 3 | .012 | 12 | 0                  | 3 |
| 79  |        | 2        | max | 68.726         | 5  | 479.318     | 2  | -5.168   | 12 | .012 | 2 | .166 | 4  | .288               | 3 |
| 80  |        |          | min | -46.57         | 1  | -222.857    | 3  | -125.774 | 1  | 008  | 3 | .006 | 12 | 623                | 2 |
| 81  |        | 3        | max | 57.605         | 5  | 288.234     | 2  | -3.844   | 12 | .012 | 2 | .098 | 5  | .483               | 3 |
| 82  |        |          | min | -46.57         | 1  | -136.48     | 3  | -89.354  | 1  | 008  | 3 | 017  | 1  | -1.039             | 2 |
| 83  |        | 4        | max | 46.484         | 5  | 97.15       | 2  | -2.52    | 12 | .012 | 2 | .055 | 5  | .584               | 3 |
| 84  |        |          | min | -46.57         | 1  | -50.104     | 3  | -52.934  | 1  | 008  | 3 | 094  | 1  | -1.247             | 2 |
| 85  |        | 5        | max | 35.364         | 5  | 36.273      | 3  | -1.197   | 12 | .012 | 2 | .014 | 5  | .591               | 3 |
| 86  |        |          | min | -46.57         | 1  | -93.933     | 2  | -40.801  | 4  | 008  | 3 | 131  | 1  | -1.249             | 2 |
| 87  |        | 6        | max | 24.243         | 5  | 122.65      | 3  | 19.906   | 1  | .012 | 2 | 005  | 12 | .505               | 3 |
| 88  |        |          | min | -46.57         | 1  | -285.017    | 2  | -34.654  | 5  | 008  | 3 | 129  | 1  | -1.044             | 2 |
| 89  |        | 7        | max | 13.122         | 5  | 209.027     | 3  | 56.326   | 1  | .012 | 2 | 004  | 12 | .326               | 3 |
| 90  |        |          | min | -46.57         | 1  | -476.101    | 2  | -32.606  | 5  | 008  | 3 | 088  | 1  | 631                | 2 |
| 91  |        | 8        | max | 2.002          | 5  | 295.404     | 3  | 92.746   | 1  | .012 | 2 | 0    | 10 | .052               | 3 |
| 92  |        | <u> </u> | min | -46.57         | 1  | -667.184    | 2  | -30.558  | 5  | 008  | 3 | 099  | 4  | 027                | 1 |
| 93  |        | 9        | max | -2.383         | 12 | 381.781     | 3  | 129.166  | 1  | .012 | 2 | .113 | 1  | .814               | 2 |
| 94  |        | 1        | min | -46.57         | 1  | -858.268    | 2  | -28.51   | 5  | 008  | 3 | 128  | 5  | 314                | 3 |
| 95  |        | 10       | max | -2.383         | 12 | 1049.352    | 2  | -5.422   | 12 | .012 | 1 | .272 | 1  | 1.847              | 2 |
| 96  |        | 10       | min | - <u>46.57</u> | 1  | -468.157    | 3  | -165.586 | 1  | 012  | 2 | .007 | 12 | 775                | 3 |
| 97  |        | 11       |     | 3.579          | 5  | 858.268     | 2  | -4.098   | 12 | .008 | 3 | .165 | 4  | <u>775</u><br>.814 | 2 |
| 98  |        |          | max |                | 1  |             |    |          | 1  | 012  | 2 | .002 | 12 | 314                | 3 |
|     |        | 12       | min | <u>-46.57</u>  |    | -381.781    | 3  | -129.166 |    |      |   |      |    |                    |   |
| 99  |        | 12       | max | -2.383         | 12 | 667.184     | 2  | -2.774   | 12 | .008 | 3 | .095 | 5  | .052               | 3 |
| 100 |        | 40       | min | <u>-46.57</u>  | 1  | -295.404    | 3  | -92.746  | 1  | 012  | 2 | 007  | 1  | 027                | 1 |
| 101 |        | 13       | max | -2.383         | 12 | 476.101     | 2  | -1.451   | 12 | .008 | 3 | .051 | 5  | .326               | 3 |
| 102 |        | 4.4      | min | <u>-46.57</u>  | 1  | -209.027    | 3  | -56.326  | 1  | 012  | 2 | 088  | 1  | <u>631</u>         | 2 |
| 103 |        | 14       | max | -2.383         | 12 | 285.017     | 2  | 127      | 12 | .008 | 3 | .01  | 5  | .505               | 3 |
| 104 |        |          | min | <u>-46.57</u>  | 1  | -122.65     | 3  | -41.509  | 4  | 012  | 2 | 129  | 1  | <u>-1.044</u>      | 2 |
| 105 |        | 15       | max | -2.383         | 12 | 93.933      | 2  | 16.514   | 1  | .008 | 3 | 004  | 12 | .591               | 3 |
| 106 |        | 4.0      | min | <u>-51.249</u> | 4  | -36.273     | 3  | -34.803  | 5  | 012  | 2 | 131  | 1  | <u>-1.249</u>      | 2 |
| 107 |        | 16       | max | -2.383         | 12 | 50.104      | 3  | 52.934   | 1  | .008 | 3 | 002  | 12 | .584               | 3 |
| 108 |        | <b>.</b> | min | -62.37         | 4  | -97.15      | 2  | -32.755  | 5  | 012  | 2 | 094  | 1  | -1.247             | 2 |
| 109 |        | 17       | max | -2.383         | 12 | 136.48      | 3  | 89.354   | 1  | .008 | 3 | .002 | 3  | .483               | 3 |
| 110 |        |          | min | -73.49         | 4  | -288.234    | 2  | -30.707  | 5  | 012  | 2 | 104  | 4  | -1.039             | 2 |
| 111 |        | 18       | max | -2.383         | 12 | 222.857     | 3_ | 125.774  | 1  | .008 | 3 | .1   | 1  | .288               | 3 |
| 112 |        |          | min | -84.611        | 4  | -479.318    | 2  | -28.659  | 5  | 012  | 2 | 132  | 5  | 623                | 2 |
| 113 |        | 19       | max | -2.383         | 12 | 309.234     | 3  | 162.194  | 1  | .008 | 3 | .256 | 1  | 0                  | 2 |
| 114 |        |          | min | -95.732        | 4  | -670.401    | 2  | -26.611  | 5  | 012  | 2 | 162  | 5  | 0                  | 5 |
| 115 | M16    | 1        | max | 78.721         | 5  | 639.961     | 2  | -6.201   | 12 | .012 | 1 | .225 | 1  | 0                  | 2 |
| 116 |        |          | min | -99.849        | 1  | -286.633    | 3  | -157.47  | 1  | 011  | 3 | .01  | 12 | 0                  | 3 |
| 117 |        | 2        |     | 67.601         | 5  | 448.878     | 2  | -4.877   | 12 | .012 | 1 | .124 | 4  | .264               | 3 |
| 118 |        |          | min | -99.849        | 1  | -200.256    | 3  | -121.05  | 1  | 011  | 3 | .004 | 12 | 59                 | 2 |
| 119 |        | 3        | max | 56.48          | 5  | 257.794     | 2  | -3.554   | 12 | .012 | 1 | .072 | 5  | .434               | 3 |
| 120 |        |          | min | -99.849        | 1  | -113.88     | 3  | -84.63   | 1  | 011  | 3 | 037  | 1  | 973                | 2 |
| 121 |        | 4        | max | 45.359         | 5  | 66.71       | 2  | -2.23    | 12 | .012 | 1 | .04  | 5  | .51                | 3 |
| 122 |        |          | min | -99.849        | 1  | -27.503     | 3  | -48.21   | 1  | 011  | 3 | 109  | 1  | -1.148             | 2 |
| 123 |        | 5        | max | 34.239         | 5  | 58.874      | 3  | 845      | 10 | .012 | 1 | .011 | 5  | .493               | 3 |
| 124 |        | Ť        | min | -99.849        | 1  | -124.373    | 2  | -29.385  | 4  | 011  | 3 | 142  | 1  | -1.117             | 2 |
| 125 |        | 6        | max | 23.118         | 5  | 145.251     | 3  | 24.63    | 1  | .012 | 1 | 005  | 12 | .383               | 3 |
| 126 |        |          | min | -99.849        | 1  | -315.457    | 2  | -24.395  | 5  | 011  | 3 | 135  | 1  | 879                | 2 |
| 127 |        | 7        | max | 11.998         | 5  | 231.628     | 3  | 61.05    | 1  | .012 | 1 | 004  | 12 | .179               | 3 |
| 128 |        | +-       | min | -99.849        | 1  | -506.541    | 2  | -22.347  | 5  | 011  | 3 | 088  | 1  | 434                | 2 |
|     |        | 0        |     |                |    |             |    |          |    |      |   |      |    |                    |   |
| 129 |        | 8        | max | .877           | 5  | 318.004     | 3  | 97.47    | 1  | .012 | 1 | 0    | 10 | .219               | 2 |
| 130 |        | _        | min | <u>-99.849</u> | 1  | -697.624    | 2  | -20.299  | 5  | 011  | 3 | 067  | 4  | 119<br>1.079       | 3 |
| 131 |        | 9        | max | -4.658         | 12 | 404.381     | 3  | 133.89   | 1  | .012 | 1 | .123 | 1  | 1.078              | 2 |
| 132 |        |          | min | -99.849        | 1  | -888.708    | 2  | -18.251  | 5  | 011  | 3 | 086  | 5  | 51                 | 3 |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec |      | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC       | z-z Mome | . LC |
|-----|--------|-----|------|-----------|----|-------------|----|-------------|----|--------------|----|----------|----------|----------|------|
| 133 |        | 10  | max  | -4.658    | 12 | 1079.792    | 2  | -5.712      | 12 | .012         | 1  | .288     | 1        | 2.144    | 2    |
| 134 |        |     | min  | -99.849   | 1  | -490.758    | 3  | -170.31     | 1  | 011          | 3  | .008     | 12       | 995      | 3    |
| 135 |        | 11  | max  | 488       | 15 | 888.708     | 2  | -4.388      | 12 | .011         | 3  | .127     | 4        | 1.078    | 2    |
| 136 |        |     | min  | -99.849   | 1  | -404.381    | 3  | -133.89     | 1  | 012          | 1  | .003     | 12       | 51       | 3    |
| 137 |        | 12  | max  | -4.658    | 12 | 697.624     | 2  | -3.065      | 12 | .011         | 3  | .066     | 4        | .219     | 2    |
| 138 |        |     | min  | -99.849   | 1  | -318.004    | 3  | -97.47      | 1  | 012          | 1  | 002      | 1        | 119      | 3    |
| 139 |        | 13  | max  | -4.658    | 12 | 506.541     | 2  | -1.741      | 12 | .011         | 3  | .032     | 5        | .179     | 3    |
| 140 |        |     | min  | -99.849   | 1  | -231.628    | 3  | -61.05      | 1  | 012          | 1  | 088      | 1        | 434      | 2    |
| 141 |        | 14  | max  | -4.658    | 12 | 315.457     | 2  | 417         | 12 | .011         | 3  | .002     | 5        | .383     | 3    |
| 142 |        |     | min  | -99.849   | 1  | -145.251    | 3  | -32.63      | 4  | 012          | 1  | 135      | 1        | 879      | 2    |
| 143 |        | 15  | max  | -4.658    | 12 | 124.373     | 2  | 11.79       | 1  | .011         | 3  | 005      | 12       | .493     | 3    |
| 144 |        |     | min  | -99.849   | 1  | -58.874     | 3  | -25.089     | 5  | 012          | 1  | 142      | 1        | -1.117   | 2    |
| 145 |        | 16  | max  | -4.658    | 12 | 27.503      | 3  | 48.21       | 1  | .011         | 3  | 003      | 12       | .51      | 3    |
| 146 |        |     | min  | -99.849   | 1  | -66.71      | 2  | -23.041     | 5  | 012          | 1  | 109      | 1        | -1.148   | 2    |
| 147 |        | 17  | max  | -4.658    | 12 | 113.88      | 3  | 84.63       | 1  | .011         | 3  | 0        | 3        | .434     | 3    |
| 148 |        |     | min  | -99.849   | 1  | -257.794    | 2  | -20.993     | 5  | 012          | 1  | 085      | 4        | 973      | 2    |
| 149 |        | 18  | max  | -4.658    | 12 | 200.256     | 3  | 121.05      | 1  | .011         | 3  | .074     | 1        | .264     | 3    |
| 150 |        |     | min  | -100.631  | 4  | -448.878    | 2  | -18.945     | 5  | 012          | 1  | 098      | 5        | 59       | 2    |
| 151 |        | 19  | max  | -4.658    | 12 | 286.633     | 3  | 157.47      | 1  | .011         | 3  | .225     | 1        | 0        | 2    |
| 152 |        |     | min  | -111.752  | 4  | -639.961    | 2  | -16.897     | 5  | 012          | 1  | 117      | 5        | 0        | 5    |
| 153 | M2     | 1   | max  | 1098.655  | 1  | 2.072       | 4  | .878        | 1  | 0            | 3  | 0        | 3        | 0        | 1    |
| 154 |        |     | min  | -1299.396 | 3  | .508        | 15 | -57.144     | 4  | 0            | 4  | 0        | 1        | 0        | 1    |
| 155 |        | 2   | max  | 1099.034  | 1  | 2.039       | 4  | .878        | 1  | 0            | 3  | 0        | 1        | 0        | 15   |
| 156 |        |     | min  | -1299.112 | 3  | .5          | 15 | -57.473     | 4  | 0            | 4  | 015      | 4        | 0        | 4    |
| 157 |        | 3   | max  | 1099.413  | 1  | 2.005       | 4  | .878        | 1  | 0            | 3  | 0        | 1        | 0        | 15   |
| 158 |        |     | min  | -1298.827 | 3  | .492        | 15 | -57.803     | 4  | 0            | 4  | 029      | 4        | 001      | 4    |
| 159 |        | 4   |      | 1099.793  | 1  | 1.972       | 4  | .878        | 1  | 0            | 3  | 0        | 1        | 0        | 15   |
| 160 |        |     | min  | -1298.543 | 3  | .484        | 15 | -58.132     | 4  | 0            | 4  | 044      | 4        | 002      | 4    |
| 161 |        | 5   | max  | 1100.172  | 1  | 1.939       | 4  | .878        | 1  | 0            | 3  | 0        | 1        | 0        | 15   |
| 162 |        |     | min  | -1298.258 | 3  | .476        | 15 | -58.462     | 4  | 0            | 4  | 059      | 4        | 002      | 4    |
| 163 |        | 6   |      | 1100.551  | 1  | 1.905       | 4  | .878        | 1  | 0            | 3  | .001     | 1        | 0        | 15   |
| 164 |        |     | min  | -1297.974 | 3  | .468        | 15 | -58.791     | 4  | 0            | 4  | 074      | 4        | 003      | 4    |
| 165 |        | 7   | max  | 1100.93   | 1  | 1.872       | 4  | .878        | 1  | 0            | 3  | .001     | 1        | 0        | 15   |
| 166 |        |     | min  | -1297.69  | 3  | .46         | 15 | -59.121     | 4  | 0            | 4  | 089      | 4        | 003      | 4    |
| 167 |        | 8   | max  | 1101.31   | 1  | 1.839       | 4  | .878        | 1  | 0            | 3  | .002     | 1        | 0        | 15   |
| 168 |        |     | min  | -1297.405 | 3  | .453        | 15 | -59.45      | 4  | 0            | 4  | 105      | 4        | 004      | 4    |
| 169 |        | 9   | max  | 1101.689  | 1  | 1.805       | 4  | .878        | 1  | 0            | 3  | .002     | 1        | 0        | 15   |
| 170 |        |     | min  | -1297.121 | 3  | .445        | 15 | -59.78      | 4  | 0            | 4  | 12       | 4        | 004      | 4    |
| 171 |        | 10  | max  |           | 1  | 1.772       | 4  | .878        | 1  | 0            | 3  | .002     | 1        | 001      | 15   |
| 172 |        |     | min  | -1296.836 | 3  | .437        | 15 | -60.109     | 4  | 0            | 4  | 135      | 4        | 004      | 4    |
| 173 |        | 11  |      | 1102.447  | 1  | 1.738       | 4  | .878        | 1  | 0            | 3  | .002     | 1        | 001      | 15   |
| 174 |        |     | min  |           | 3  | .426        | 12 | -60.438     | 4  | 0            | 4  | 151      | 4        | 005      | 4    |
| 175 |        | 12  | max  | 1102.827  | 1  | 1.705       | 4  | .878        | 1  | 0            | 3  | .002     | 1        | 001      | 15   |
| 176 |        |     | min  | -1296.267 | 3  | .413        | 12 | -60.768     | 4  | 0            | 4  | 166      | 4        | 005      | 4    |
| 177 |        | 13  |      | 1103.206  | 1  | 1.672       | 4  | .878        | 1  | 0            | 3  | .003     | 1        | 001      | 15   |
| 178 |        |     | min  | -1295.983 | 3  | .4          | 12 | -61.097     | 4  | 0            | 4  | 182      | 4        | 006      | 4    |
| 179 |        | 14  |      | 1103.585  | 1  | 1.638       | 4  | .878        | 1  | 0            | 3  | .003     | 1        | 002      | 15   |
| 180 |        |     | min  |           | 3  | .387        | 12 | -61.427     | 4  | 0            | 4  | 197      | 4        | 006      | 4    |
| 181 |        | 15  |      | 1103.964  | 1  | 1.605       | 4  | .878        | 1  | 0            | 3  | .003     | 1        | 002      | 15   |
| 182 |        | l . | min  | -1295.414 | 3  | .374        | 12 | -61.756     | 4  | 0            | 4  | 213      | 4        | 007      | 4    |
| 183 |        | 16  |      | 1104.344  | 1  | 1.571       | 4  | .878        | 1  | 0            | 3  | .003     | 1        | 002      | 15   |
| 184 |        | T   |      | -1295.13  |    | .361        | 12 | -62.086     | 4  | 0            | 4  | 229      | 4        | 007      | 4    |
| 185 |        | 17  |      | 1104.723  | 1  | 1.538       | 4  | .878        | 1  | 0            | 3  | .004     | 1        | 002      | 15   |
| 186 |        | 1   | min  | -1294.845 | 3  | .348        | 12 | -62.415     | 4  | 0            | 4  | 245      | 4        | 007      | 4    |
| 187 |        | 18  |      | 1105.102  | 1  | 1.505       | 4  | .878        | 1  | 0            | 3  | .004     | 1        | 002      | 15   |
| 188 |        | 10  | min  | -1294.561 | 3  | .335        | 12 | -62.745     | 4  | 0            | 4  | 261      | 4        | 002      | 4    |
| 189 |        | 19  |      | 1105.482  | 1  | 1.471       | 4  | .878        | 1  | 0            | 3  | .004     | 1        | 002      | 15   |
| 109 |        | 13  | πιαλ | 1100.402  |    | 1.471       |    | .070        |    | U            | J  | .004     | <u> </u> | 002      | _ IJ |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|            | Member    | Sec |         | Axial[lb]                 | LC            | y Shear[lb]      |         | z Shear[lb]    | LC | Torque[k-ft] | LC               | y-y Mome | LC | z-z Mome | LC |
|------------|-----------|-----|---------|---------------------------|---------------|------------------|---------|----------------|----|--------------|------------------|----------|----|----------|----|
| 190        |           |     | min     | -1294.276                 | 3             | .321             | 12      | -63.074        | 4  | 0            | 4                | 277      | 4  | 008      | 4  |
| 191        | <u>M3</u> | 1   | max     | 480.988                   | 2             | 8.01             | 4       | 1.252          | 4  | 0            | 3                | 0        | 1  | .008     | 4  |
| 192        |           |     | min     | -616.776                  | 3             | 1.895            | 15      | .004           | 12 | 0            | 4_               | 02       | 4  | .002     | 15 |
| 193        |           | 2   | max     | 480.817                   | 2             | 7.24             | 4       | 1.792          | 4  | 0            | 3                | 0        | 1  | .005     | 4  |
| 194        |           |     | min     | -616.904                  | 3_            | 1.714            | 15      | .004           | 12 | 0            | 4_               | 019      | 4  | 0        | 12 |
| 195        |           | 3   | max     | 480.647                   | 2             | 6.47             | 4       | 2.333          | 4  | 0            | 3                | 0        | 1  | .003     | 2  |
| 196        |           |     | min     | -617.032                  | 3_            | 1.533            | 15      | .004           | 12 | 0            | 4_               | 018      | 4  | 0        | 3  |
| 197        |           | 4   | max     | 480.477                   | 2             | 5.7              | 4       | 2.873          | 4  | 0            | 3                | 0        | 1  | 0        | 2  |
| 198        |           | _   | min     | -617.16                   | 3_            | 1.352            | 15      | .004           | 12 | 0            | 4                | 017      | 4  | 002      | 3  |
| 199        |           | 5   | max     | 480.306                   | 2             | 4.93             | 4       | 3.414          | 4  | 0            | 3                | 0        | 1  | 0        | 15 |
| 200        |           |     | min     | -617.287                  | 3             | 1.171            | 15      | .004           | 12 | 0            | 4                | 016      | 4  | 003      | 3  |
| 201        |           | 6   | max     | 480.136                   | 2             | 4.16             | 4       | 3.954          | 4  | 0            | 3                | 0        | 1  | 001      | 15 |
| 202        |           | -   | min     | -617.415                  | 3             | .99              | 15      | .004           | 12 | 0            | 4_               | 014      | 4  | 005      | 6  |
| 203        |           | 7   | max     | 479.966                   | 2             | 3.39             | 4       | 4.495          | 4  | 0            | 3                | 0        | 1_ | 001      | 15 |
| 204        |           |     | min     | -617.543                  | 3             | .809             | 15      | .004           | 12 | 0            | 4_               | 012      | 4  | 006      | 6  |
| 205        |           | 8   | max     | 479.795                   | 2             | 2.62             | 4       | 5.035          | 4  | 0            | 3                | 0        | 1  | 002      | 15 |
| 206        |           |     | min     | -617.671                  | 3             | .628             | 15      | .004           | 12 | 0            | 4_               | 011      | 5  | 007      | 6  |
| 207        |           | 9   | max     | 479.625                   | 2             | 1.85             | 4       | 5.576          | 4  | 0            | 3                | 0        | 1  | 002      | 15 |
| 208        |           | 4.0 | min     | -617.798                  | 3             | .447             | 15      | .004           | 12 | 0            | 4                | 008      | 5  | 008      | 6  |
| 209        |           | 10  | max     | 479.454                   | 2             | 1.08             | 4       | 6.116          | 4  | 0            | 3                | 0        | 1  | 002      | 15 |
| 210        |           | 4.4 | min     | -617.926                  | 3             | .266             | 15      | .004           | 12 | 0            | 4_               | 006      | 5  | 009      | 6  |
| 211        |           | 11  | max     | 479.284                   | 2             | .387             | 2       | 6.657          | 4  | 0            | 3                | 0        | 1  | 002      | 15 |
| 212        |           | 40  | min     | -618.054                  | 3             | 063              | 3       | .004           | 12 | 0            | 4                | 003      | 5  | 009      | 6  |
| 213        |           | 12  | max     | 479.114                   | 2             | 096              | 15      | 7.198          | 4  | 0            | 3                | 0        | 1  | 002      | 15 |
| 214        |           | 40  | min     | -618.182                  | 3             | 513              | 3       | .004           | 12 | 0            | 4_               | 0        | 5  | 009      | 6  |
| 215        |           | 13  | max     |                           | 2             | 277              | 15      | 7.738          | 4  | 0            | 3                | .003     | 4  | 002      | 15 |
| 216        |           | 4.4 | min     | -618.309                  | 3             | -1.231           | 6       | .004           | 12 | 0            | 4_               | 0        | 12 | 009      | 6  |
| 217        |           | 14  | max     | 478.773                   | 2             | 458              | 15      | 8.279          | 4  | 0            | 3                | .006     | 4  | 002      | 15 |
| 218        |           | 4.5 | min     | -618.437                  | 3             | -2.001           | 6       | .004           | 12 | 0            | 4                | 0        | 12 | 008      | 6  |
| 219        |           | 15  | max     | 478.603                   | 2             | 639              | 15      | 8.819          | 4  | 0            | 3                | .01      | 4  | 002      | 15 |
| 220        |           | 4.0 | min     | -618.565                  | 3             | -2.771           | 6       | .004           | 12 | 0            | 4                | 0        | 12 | 007      | 6  |
| 221        |           | 16  | max     | 478.432                   | 2             | 82               | 15      | 9.36           | 4  | 0            | 3                | .014     | 12 | 001      | 15 |
| 222        |           | 47  | min     | -618.693                  | 3_            | -3.541           | 6       | .004           | 12 | 0            | 4                | 0        |    | 006      | 6  |
| 223        |           | 17  | max     | 478.262                   | 2             | -1.001           | 15      | 9.9            | 4  | 0            | 3                | .018     | 4  | 0        | 15 |
| 224        |           | 10  | min     | <u>-618.82</u><br>478.092 | 3             | -4.311<br>-1.182 | 6       | .004           | 12 | 0            | 4                | .022     | 12 | 004      | 6  |
| 225        |           | 18  | max     |                           | 2             |                  | 15      | 10.441         | 12 | 0            | 3                |          | 12 | 0        | 15 |
| 226<br>227 |           | 19  | min     | <u>-618.948</u>           | <u>3</u><br>2 | -5.081<br>-1.363 | 6<br>15 | .004<br>10.981 | 4  | 0            | <u>4</u><br>3    | .027     | 4  | 002<br>0 | 1  |
| 228        |           | 19  | max     | 477.921<br>-619.076       | 3             | -5.851           | 6       | .004           | 12 | 0            | 4                | 0        | 12 | 0        | 1  |
| 229        | M4        | 1   | min     | 1222.189                  | <u> </u>      |                  | 1       | 426            | 12 | 0            | _ <del>4</del> _ | .017     | 4  | 0        | 1  |
| 230        | IVI4      |     |         | -275.112                  |               | 0                | 1       | -252.619       |    | 0            | 1                | 0        | 12 |          | 1  |
| 231        |           | 2   |         | 1222.36                   | 1             | 0                | 1       | 426            | 12 | 0            | 1                | 0        | 12 | 0        | 1  |
| 232        |           |     | min     |                           | 3             | 0                | 1       | -252.767       |    | 0            | 1                | 012      | 4  | 0        | 1  |
| 233        |           | 3   |         | 1222.53                   | <u> </u>      | 0                | 1       | 426            | 12 | 0            | +                | 012      | 12 | 0        | 1  |
| 234        |           | 3   | min     |                           | 3             | 0                | 1       | -252.914       |    | 0            | 1                | 041      | 4  | 0        | 1  |
| 235        |           | 4   |         | 1222.7                    | <u> </u>      | 0                | 1       | 426            | 12 | 0            | 1                | 0        | 12 | 0        | 1  |
| 236        |           | -   | 1       | -274.729                  | 3             | 0                | 1       | -253.062       |    | 0            | 1                | 071      | 4  | 0        | 1  |
| 237        |           | 5   |         | 1222.871                  | <del></del>   | 0                | 1       | 426            | 12 | 0            | 1                | 0        | 12 | 0        | 1  |
| 238        |           | J   |         | -274.601                  | 3             | 0                | 1       | -253.21        | 4  | 0            | 1                | 1        | 4  | 0        | 1  |
| 239        |           | 6   |         | 1223.041                  | <u></u>       | 0                | 1       | 426            | 12 | 0            | 1                | 0        | 12 | 0        | 1  |
| 240        |           | 0   |         | -274.474                  | 3             | 0                | 1       | -253.357       | 4  | 0            | 1                | 129      | 4  | 0        | 1  |
| 241        |           | 7   |         | 1223.211                  | <u> </u>      | 0                | 1       | 426            | 12 | 0            | 1                | 0        | 12 | 0        | 1  |
| 241        |           |     | min     |                           | 3             | 0                | 1       | -253.505       |    | 0            | 1                | 158      | 4  | 0        | 1  |
| 243        |           | 8   | +       | 1223.382                  | <u> </u>      | 0                | 1       | 426            | 12 | 0            | 1                | 0        | 12 | 0        | 1  |
| 244        |           | 0   | min     |                           | 3             | 0                | 1       | -253.653       |    | 0            | 1                | 187      | 4  | 0        | 1  |
| 245        |           | 9   |         | 1223.552                  | <u> </u>      | 0                | 1       | 426            | 12 | 0            | 1                | 0        | 12 | 0        | 1  |
| 246        |           | 9   |         | -274.09                   | 3             | 0                | 1       | -253.8         | 4  | 0            | 1                | 216      | 4  | 0        | 1  |
| 240        |           |     | 1111111 | Z17.U3                    | J             | U                |         | -200.0         | -  | U            |                  | 210      | _  | U        |    |



Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec |       | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC       |
|-----|--------|-----|-------|-----------|----|-------------|----|-------------|----|--------------|----|----------|----|----------|----------|
| 247 |        | 10  | max   | 1223.722  | 1  | 0           | 1  | 426         | 12 | 0            | 1  | 0        | 12 | 0        | 1        |
| 248 |        |     | min   | -273.963  | 3  | 0           | 1  | -253.948    |    | 0            | 1  | 245      | 4  | 0        | 1        |
| 249 |        | 11  | max   | 1223.893  | 1  | 0           | 1  | 426         | 12 | 0            | 1  | 0        | 12 | 0        | 1        |
| 250 |        |     |       |           | 3  | 0           | 1  | -254.095    | 4  | 0            | 1  | 274      | 4  | 0        | 1        |
| 251 |        | 12  | max   | 1224.063  | 1  | 0           | 1  | 426         | 12 | 0            | 1  | 0        | 12 | 0        | 1        |
| 252 |        |     | min   | -273.707  | 3  | 0           | 1  | -254.243    | 4  | 0            | 1  | 304      | 4  | 0        | 1        |
| 253 |        | 13  | max   | 1224.233  | 1  | 0           | 1  | 426         | 12 | 0            | 1  | 0        | 12 | 0        | 1        |
| 254 |        |     | min   | -273.579  | 3  | 0           | 1  | -254.391    | 4  | 0            | 1  | 333      | 4  | 0        | 1        |
| 255 |        | 14  | max   | 1224.404  | 1  | 0           | 1  | 426         | 12 | 0            | 1  | 0        | 12 | 0        | 1        |
| 256 |        |     | min   | -273.452  | 3  | 0           | 1  | -254.538    | 4  | 0            | 1  | 362      | 4  | 0        | 1        |
| 257 |        | 15  | max   | 1224.574  | 1  | 0           | 1  | 426         | 12 | 0            | 1  | 0        | 12 | 0        | 1        |
| 258 |        |     | min   | -273.324  | 3  | 0           | 1  | -254.686    | 4  | 0            | 1  | 391      | 4  | 0        | 1        |
| 259 |        | 16  | max   | 1224.744  | 1  | 0           | 1  | 426         | 12 | 0            | 1  | 0        | 12 | 0        | 1        |
| 260 |        |     | min   | -273.196  | 3  | 0           | 1  | -254.834    | 4  | 0            | 1  | 42       | 4  | 0        | 1        |
| 261 |        | 17  | max   | 1224.915  | 1  | 0           | 1  | 426         | 12 | 0            | 1  | 0        | 12 | 0        | 1        |
| 262 |        |     | min   | -273.068  | 3  | 0           | 1  | -254.981    | 4  | 0            | 1  | 45       | 4  | 0        | 1        |
| 263 |        | 18  | max   | 1225.085  | 1  | 0           | 1  | 426         | 12 | 0            | 1  | 0        | 12 | 0        | 1        |
| 264 |        |     | min   | -272.941  | 3  | 0           | 1  | -255.129    | 4  | 0            | 1  | 479      | 4  | 0        | 1        |
| 265 |        | 19  | max   | 1225.255  | 1  | 0           | 1  | 426         | 12 | 0            | 1  | 0        | 12 | 0        | 1        |
| 266 |        |     | min   | -272.813  | 3  | 0           | 1  | -255.277    | 4  | 0            | 1  | 508      | 4  | 0        | 1        |
| 267 | M6     | 1   | max   | 3528.033  | 1  | 2.571       | 2  | 0           | 1  | 0            | 1  | 0        | 4  | 0        | 1        |
| 268 |        |     | min   | -4243.946 | 3  | 019         | 3  | -57.691     | 4  | 0            | 4  | 0        | 1  | 0        | 1        |
| 269 |        | 2   | max   | 3528.412  | 1  | 2.545       | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 3        |
| 270 |        |     | min   | -4243.661 | 3  | 038         | 3  | -58.021     | 4  | 0            | 4  | 015      | 4  | 0        | 2        |
| 271 |        | 3   | max   | 3528.791  | 1  | 2.519       | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 3        |
| 272 |        |     | min   | -4243.377 | 3  | 058         | 3  | -58.35      | 4  | 0            | 4  | 03       | 4  | 001      | 2        |
| 273 |        | 4   | max   | 3529.17   | 1  | 2.493       | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 3        |
| 274 |        |     | min   | -4243.092 | 3  | 077         | 3  | -58.68      | 4  | 0            | 4  | 045      | 4  | 002      | 2        |
| 275 |        | 5   | max   | 3529.55   | 1  | 2.467       | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 3        |
| 276 |        |     | min   | -4242.808 | 3  | 097         | 3  | -59.009     | 4  | 0            | 4  | 06       | 4  | 003      | 2        |
| 277 |        | 6   |       | 3529.929  | 1  | 2.441       | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 3        |
| 278 |        |     | min   | -4242.523 | 3  | 116         | 3  | -59.338     | 4  | 0            | 4  | 075      | 4  | 003      | 2        |
| 279 |        | 7   | max   | 3530.308  | 1  | 2.415       | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 3        |
| 280 |        |     | min   |           | 3  | 136         | 3  | -59.668     | 4  | 0            | 4  | 09       | 4  | 004      | 2        |
| 281 |        | 8   | max   | 3530.687  | 1  | 2.389       | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 3        |
| 282 |        |     | min   |           | 3  | 156         | 3  | -59.997     | 4  | 0            | 4  | 106      | 4  | 004      | 2        |
| 283 |        | 9   | max   | 3531.067  | 1  | 2.363       | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 3        |
| 284 |        |     | min   | -4241.67  | 3  | 175         | 3  | -60.327     | 4  | 0            | 4  | 121      | 4  | 005      | 2        |
| 285 |        | 10  | max   | 3531.446  | 1  | 2.337       | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 3        |
| 286 |        |     | min   | -4241.386 | 3  | 195         | 3  | -60.656     | 4  | 0            | 4  | 136      | 4  | 006      | 2        |
| 287 |        | 11  | max   | 3531.825  | 1  | 2.311       | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 3        |
| 288 |        |     | min   |           | 3  | 214         | 3  | -60.986     | 4  | 0            | 4  | 152      | 4  | 006      | 2        |
| 289 |        | 12  | max   | 3532.205  | 1  | 2.285       | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 3        |
| 290 |        |     | min   |           | 3  | 234         | 3  | -61.315     | 4  | 0            | 4  | 168      | 4  | 007      | 2        |
| 291 |        | 13  | max   | 3532.584  | 1  | 2.259       | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 3        |
| 292 |        |     | min   |           | 3  | 253         | 3  | -61.645     | 4  | 0            | 4  | 183      | 4  | 007      | 2        |
| 293 |        | 14  | max   | 3532.963  | 1  | 2.233       | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 3        |
| 294 |        |     | min   |           | 3  | 273         | 3  | -61.974     | 4  | 0            | 4  | 199      | 4  | 008      | 2        |
| 295 |        | 15  |       | 3533.342  | 1  | 2.207       | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 3        |
| 296 |        | ľ   | min   |           | 3  | 292         | 3  | -62.304     | 4  | 0            | 4  | 215      | 4  | 009      | 2        |
| 297 |        | 16  |       | 3533.722  | 1  | 2.181       | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 3        |
| 298 |        |     | min   |           | 3  | 312         | 3  | -62.633     | 4  | 0            | 4  | 231      | 4  | 009      | 2        |
| 299 |        | 17  |       | 3534.101  | 1  | 2.155       | 2  | 02.000      | 1  | 0            | 1  | 0        | 1  | 0        | 3        |
| 300 |        |     | min   |           | 3  | 331         | 3  | -62.963     | 4  | 0            | 4  | 247      | 4  | 01       | 2        |
| 301 |        | 18  |       | 3534.48   | 1  | 2.129       | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 3        |
| 302 |        | 10  | min   |           | 3  | 351         | 3  | -63.292     | 4  | 0            | 4  | 264      | 4  | 01       | 2        |
| 303 |        | 10  |       | 3534.859  |    | 2.103       | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 3        |
| JUJ |        | נון | IIIax | 0004.009  |    | 2.103       |    | U           |    | U            |    | U        |    | U        | <u> </u> |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec |        | Axial[lb] | LC       | y Shear[lb] | LC | z Shear[lb] | LC          | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC |
|-----|--------|-----|--------|-----------|----------|-------------|----|-------------|-------------|--------------|----|----------|----|----------|----|
| 304 |        |     | min    | -4238.826 | 3        | 37          | 3  | -63.621     | 4           | 0            | 4  | 28       | 4  | 011      | 2  |
| 305 | M7     | 1   | max    | 1831.017  | 2        | 8.019       | 6  | 1.116       | 4           | 0            | 1  | 0        | 1  | .011     | 2  |
| 306 |        |     | min    | -1941.315 | 3        | 1.882       | 15 | 0           | 1           | 0            | 4  | 02       | 4  | 0        | 3  |
| 307 |        | 2   |        | 1830.847  | 2        | 7.249       | 6  | 1.656       | 4           | 0            | 1  | 0        | 1  | .008     | 2  |
| 308 |        |     | min    | -1941.443 | 3        | 1.701       | 15 | 0           | 1           | 0            | 4  | 019      | 4  | 002      | 3  |
| 309 |        | 3   | max    | 1830.676  | 2        | 6.479       | 6  | 2.197       | 4           | 0            | 1  | 0        | 1  | .006     | 2  |
| 310 |        |     | min    | -1941.571 | 3        | 1.52        | 15 | 0           | 1           | 0            | 4  | 019      | 4  | 004      | 3  |
| 311 |        | 4   |        | 1830.506  | 2        | 5.709       | 6  | 2.737       | 4           | 0            | 1  | 0        | 1  | .003     | 2  |
| 312 |        |     | min    | -1941.699 | 3        | 1.339       | 15 | 0           | 1           | 0            | 4  | 017      | 4  | 005      | 3  |
| 313 |        | 5   |        | 1830.336  | 2        | 4.939       | 6  | 3.278       | 4           | 0            | 1  | 0        | 1  | .001     | 2  |
| 314 |        |     | min    | -1941.827 | 3        | 1.158       | 15 | 0.270       | 1           | 0            | 4  | 016      | 4  | 006      | 3  |
| 315 |        | 6   |        | 1830.165  | 2        | 4.169       | 6  | 3.818       | 4           | 0            | 1  | 0        | 1  | 0        | 2  |
| 316 |        |     | min    | -1941.954 | 3        | .977        | 15 | 0           | 1           | 0            | 4  | 015      | 4  | 007      | 3  |
| 317 |        | 7   |        | 1829.995  | 2        | 3.399       | 6  | 4.359       | 4           | 0            | 1  | 0        | 1  | 001      | 15 |
| 318 |        |     | min    | -1942.082 | 3        | .796        | 15 | 0           | 1           | 0            | 4  | 013      | 4  | 007      | 3  |
| 319 |        | 8   |        | 1829.825  | 2        | 2.629       | 6  | 4.899       | 4           | 0            | 1  | 0        | 1  | 002      | 15 |
| 320 |        |     | min    | -1942.21  | 3        | .552        | 12 | 0           | 1           | 0            | 4  | 011      | 4  | 008      | 3  |
| 321 |        | 9   |        | 1829.654  | 2        | 2.024       | 2  | 5.44        | 4           | 0            | 1  | 0        | 1  | 002      | 15 |
| 322 |        | -   | min    | -1942.338 | 3        | .252        | 12 | 0           | 1           | 0            | 4  | 009      | 4  | 002      | 4  |
| 323 |        | 10  |        | 1829.484  | 2        | 1.424       | 2  | 5.98        | 4           | 0            | 1  | 0        | 1  | 002      | 15 |
| 324 |        | 10  | min    | -1942.465 | 3        | 119         | 3  | 0.90        | 1           | 0            | 4  | 006      | 4  | 002      | 4  |
| 325 |        | 11  |        | 1829.314  | 2        | .824        | 2  | 6.521       | 4           | 0            | 1  | 006<br>0 | 1  | 009      | 15 |
|     |        |     |        | -1942.593 |          |             | 3  |             | 1           |              |    | 004      |    |          |    |
| 326 |        | 40  | min    | 1829.143  | 3        | 569         |    | 7,000       | <del></del> | 0            | 4  |          | 5  | 009      | 4  |
| 327 |        | 12  |        | -1942.721 | 2        | .224        | 2  | 7.062       | 4           | 0            | 1  | 0        | 1  | 002      | 15 |
| 328 |        | 40  | min    |           | 3        | -1.019      | 3  | 7 000       | 1_4         | 0            | 4  | 001      | 5  | 009      | 4  |
| 329 |        | 13  |        | 1828.973  | 2        | 29          | 15 | 7.602       | 4           | 0            | 1  | .002     | 4  | 002      | 15 |
| 330 |        |     | min    | -1942.849 | 3        | -1.469      | 3  | 0           | 1           | 0            | 4  | 0        | 1_ | 009      | 4  |
| 331 |        | 14  |        | 1828.803  | 2        | 471         | 15 | 8.143       | 4           | 0            | 1  | .005     | 4  | 002      | 15 |
| 332 |        |     | min    | -1942.976 | 3        | -1.991      | 4  | 0           | 1           | 0            | 4  | 0        | 1_ | 008      | 4  |
| 333 |        | 15  |        | 1828.632  | 2        | 652         | 15 | 8.683       | 4           | 0            | 1  | .009     | 4  | 002      | 15 |
| 334 |        |     | min    | -1943.104 | 3        | -2.761      | 4  | 0           | 1           | 0            | 4  | 0        | 1_ | 007      | 4  |
| 335 |        | 16  | max    | 1828.462  | 2        | 833         | 15 | 9.224       | 4           | 0            | 1_ | .013     | 4  | 001      | 15 |
| 336 |        |     | min    | -1943.232 | 3        | -3.531      | 4  | 0           | 1           | 0            | 4  | 0        | 1  | 006      | 4  |
| 337 |        | 17  | max    | 1828.292  | 2        | -1.014      | 15 | 9.764       | 4           | 0            | 1  | .017     | 4  | 001      | 15 |
| 338 |        |     | min    | -1943.36  | 3        | -4.301      | 4  | 0           | 1           | 0            | 4  | 0        | 1  | 004      | 4  |
| 339 |        | 18  | max    | 1828.121  | 2        | -1.195      | 15 | 10.305      | 4           | 0            | 1  | .021     | 4  | 0        | 15 |
| 340 |        |     | min    | -1943.487 | 3        | -5.071      | 4  | 0           | 1           | 0            | 4  | 0        | 1  | 002      | 4  |
| 341 |        | 19  | max    | 1827.951  | 2        | -1.376      | 15 | 10.845      | 4           | 0            | 1_ | .025     | 4  | 0        | 1  |
| 342 |        |     | min    | -1943.615 | 3        | -5.841      | 4  | 0           | 1           | 0            | 4  | 0        | 1  | 0        | 1  |
| 343 | M8     | 1   |        | 3475.038  | 1_       | 0           | 1  | 0           | 1           | 0            | 1  | .016     | 4  | 0        | 1  |
| 344 |        |     | min    | -959.744  | 3        | 0           | 1  | -245.916    | 4           | 0            | 1  | 0        | 1  | 0        | 1  |
| 345 |        | 2   |        | 3475.208  | 1_       | 0           | 1  | 0           | 1           | 0            | 1  | 0        | 1  | 0        | 1  |
| 346 |        |     | min    | -959.616  | 3        | 0           | 1  | -246.064    | 4           | 0            | 1  | 012      | 4  | 0        | 1  |
| 347 |        | 3   | max    | 3475.378  | 1        | 0           | 1  | 0           | 1           | 0            | 1  | 0        | 1  | 0        | 1  |
| 348 |        |     | min    | -959.488  | 3        | 0           | 1  | -246.211    | 4           | 0            | 1  | 041      | 4  | 0        | 1  |
| 349 |        | 4   | max    | 3475.549  | 1        | 0           | 1  | 0           | 1           | 0            | 1  | 0        | 1  | 0        | 1  |
| 350 |        |     |        | -959.361  | 3        | 0           | 1  | -246.359    | 4           | 0            | 1  | 069      | 4  | 0        | 1  |
| 351 |        | 5   |        | 3475.719  | 1        | 0           | 1  | 0           | 1           | 0            | 1  | 0        | 1  | 0        | 1  |
| 352 |        |     |        | -959.233  |          | 0           | 1  | -246.507    | 4           | 0            | 1  | 097      | 4  | 0        | 1  |
| 353 |        | 6   |        | 3475.889  | 1        | 0           | 1  | 0           | 1           | 0            | 1  | 0        | 1  | 0        | 1  |
| 354 |        |     | min    |           | 3        | 0           | 1  | -246.654    |             | 0            | 1  | 126      | 4  | 0        | 1  |
| 355 |        | 7   |        | 3476.06   | 1        | 0           | 1  | 0           | 1           | 0            | 1  | 0        | 1  | 0        | 1  |
| 356 |        |     |        | -958.977  | 3        | 0           | 1  | -246.802    |             | 0            | 1  | 154      | 4  | 0        | 1  |
| 357 |        | 8   |        | 3476.23   | 1        | 0           | 1  | 0           | 1           | 0            | 1  | 0        | 1  | 0        | 1  |
| 358 |        |     |        | -958.85   | 3        | 0           | 1  | -246.949    |             | 0            | 1  | 182      | 4  | 0        | 1  |
| 359 |        | 9   | max    |           | <u> </u> | 0           | 1  | 0           | 1           | 0            | 1  | 0        | 1  | 0        | 1  |
| 360 |        | 9   |        | -958.722  | 3        | 0           | 1  | -247.097    |             | 0            | 1  | 211      | 4  | 0        | 1  |
| 300 |        |     | 111111 | -300.122  | J        | U           |    | -241.031    | +           | U            |    | 411      | +  | U        |    |



Model Name

Schletter, Inc. HCV

.
Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec |     | Axial[lb]             |               |               |         |                |                | Torque[k-ft] |               | 1 -      | LC | _            |    |
|-----|--------|-----|-----|-----------------------|---------------|---------------|---------|----------------|----------------|--------------|---------------|----------|----|--------------|----|
| 361 |        | 10  |     | 3476.571              | _1_           | 0             | 1       | 0              | _1_            | 0            | 1             | 0        | 1  | 0            | 1  |
| 362 |        | 4.4 | min | -958.594              | 3             | 0             | 1       | -247.245       | 4_             | 0            | 1             | 239      | 4  | 0            | 1  |
| 363 |        | 11  |     | 3476.741              | 1_            | 0             | 1       | 0              |                | 0            | 1             | 0        | 1  | 0            | 1  |
| 364 |        | 40  |     | -958.466              | 3             | 0             | 1       | -247.392       | 4              | 0            | 1             | 267      | 4  | 0            | 1  |
| 365 |        | 12  |     | 3476.911              | 1_            | 0             | 1       | 0              | 1_             | 0            | 1             | 0        | 1  | 0            | 1  |
| 366 |        | 40  |     | -958.339              | 3             | 0             | 1       | -247.54        | 4              | 0            | 1_            | 296      | 4  | 0            | 1  |
| 367 |        | 13  |     | 3477.082              | 1_            | 0             | 1       | 0              | 1              | 0            | 1             | 0        | 1  | 0            | 1  |
| 368 |        | 4.4 | min | -958.211              | 3             | 0             | 1       | -247.688       | 4_             | 0            | 1_            | 324      | 4  | 0            | 1  |
| 369 |        | 14  |     | 3477.252              | 1_            | 0             | 1       | 0              | 1              | 0            | 1             | 0        | 1  | 0            | 1  |
| 370 |        | 4.5 | min | -958.083              | 3             | 0             | 1       | -247.835       | 4              | 0            | 1_            | 353      | 4  | 0            | 1  |
| 371 |        | 15  |     | 3477.422              | 1_            | 0             | 1       | 0              | 1              | 0            | 1             | 0        | 1  | 0            | 1  |
| 372 |        | 40  | min | -957.955              | 3             | 0             | 1       | -247.983       | 4              | 0            | 1_            | 381      | 4  | 0            | 1  |
| 373 |        | 16  |     | 3477.593              | 1_            | 0             | 1       | 0              |                | 0            | 1             | 0        | 1  | 0            | 1  |
| 374 |        | 4-7 |     | -957.828              | 3             | 0             | 1       | -248.131       | 4              | 0            | 1             | 41       | 4  | 0            | 1  |
| 375 |        | 17  |     | 3477.763              | 1_            | 0             | 1       | 0              | 1_             | 0            | 1             | 0        | 1  | 0            | 1  |
| 376 |        | 40  | min | -957.7                | 3             | 0             | 1       | -248.278       | 4              | 0            | 1_            | 438      | 4  | 0            | 1  |
| 377 |        | 18  |     | 3477.933              | 1_            | 0             | 1       | 0              | 1_             | 0            | 1             | 0        | 1  | 0            | 1  |
| 378 |        | 40  | min | -957.572              | 3             | 0             | 1       | -248.426       | 4              | 0            | 1_            | 467      | 4  | 0            | 1  |
| 379 |        | 19  |     | 3478.104              | 1_            | 0             | 1       | 0              | 1              | 0            | 1             | 0        | 1  | 0            | 1  |
| 380 | N440   | 4   |     | -957.444              | 3             | 0             | 1       | -248.573       | 4              | 0            | 1_            | 495      | 4  | 0            | 1  |
| 381 | M10    | 1   |     | 1098.655              | 1_            | 1.983         | 6       | 04             | 12             | 0            | 1_            | 0        | 1  | 0            | 1  |
| 382 |        |     | min | -1299.396             | 3             | .447          | 15      | -57.611        | 4              | 0            | 5             | 0        | 3  | 0            | 1_ |
| 383 |        | 2   |     | 1099.034              | 1_            | 1.949         | 6       | 04             | 12             | 0            | 1_            | 0        | 10 | 0            | 15 |
| 384 |        |     |     | -1299.112             | 3             | .439          | 15      | -57.941        | 4              | 0            | 5             | 015      | 4  | 0            | 6  |
| 385 |        | 3   | -   | 1099.413              | 1_            | 1.916         | 6       | 04             | 12             | 0            | 1_            | 0        | 12 | 0            | 15 |
| 386 |        | 4   | min | -1298.827             | 3             | .432          | 15      | -58.27         | 4              | 0            | 5             | 03       | 4  | 0            | 6  |
| 387 |        | 4   |     | 1099.793              | 1_            | 1.883         | 6       | 04             | 12             | 0            | 1_            | 0        | 12 | 0            | 15 |
| 388 |        | _   | min | -1298.543             | 3             | .424          | 15      | -58.599        | 4              | 0            | 5             | 045      | 4  | 001          | 6  |
| 389 |        | 5   |     | 1100.172              | 1             | 1.849         | 6       | 04             | 12             | 0            | 1_            | 0        | 12 | 0            | 15 |
| 390 |        |     | min | -1298.258             | 3             | .416          | 15      | -58.929        | 4              | 0            | 5             | 06       | 4  | 002          | 6  |
| 391 |        | 6   |     | 1100.551              | 1_            | 1.816         | 6       | 04             | 12             | 0            | 1_            | 0        | 12 | 0            | 15 |
| 392 |        | 7   | min | -1297.974             | 3             | .408          | 15      | -59.258        | 4              | 0            | 5             | 075      | 4  | 002          | 6  |
| 393 |        | 7   |     | 1100.93               | 1             | 1.782         | 6       | 04             | 12             | 0            | 1_            | 0        | 12 | 0            | 15 |
| 394 |        |     |     | -1297.69              | 3             | .4            | 15      | -59.588        | 4              | 0            | 5             | 09       | 4  | 003          | 6  |
| 395 |        | 8   | max | 1101.31<br>-1297.405  | 1             | 1.749         | 6       | 04             | 12             | 0            | 1             | 0        | 12 | 0            | 15 |
| 396 |        |     | min |                       | 3             | .392          | 15      | -59.917        | 4              | 0            | 5             | 105      | 4  | 003          | 6  |
| 397 |        | 9   |     | 1101.689<br>-1297.121 | 1             | 1.716         | 6       | 04             | 12             | 0            | 1             | 0        | 12 | 0            | 15 |
| 398 |        | 40  |     |                       | 3_            | .385          | 15      | -60.247        | 4              | 0            | <u>5</u><br>1 | 121      | 4  | 004          | 6  |
| 399 |        | 10  |     | 1102.068<br>-1296.836 | 1             | 1.682         | 6       | 04             | 12             | 0            |               | 0        | 12 | 0            | 15 |
| 400 |        | 11  |     |                       | 3             | .377          | 15      | -60.576        | 4              | 0            | 5             | 136      | 4  | 004          | 6  |
| 401 |        | 11  |     | 1102.447<br>-1296.552 | 1             | 1.649         | 6       | 04             | 12             | 0            | 1             | 152      | 12 | 001          | 15 |
| 402 |        | 12  | min | 1102.827              | 3             | .369          | 15      | -60.906        | <u>4</u><br>12 | 0            | <u>5</u><br>1 | 152      | 12 | 005          | 15 |
| 403 |        | 12  |     | -1296.267             | 1             | 1.615         | 6<br>15 | 04<br>-61.235  |                | 0            | 5             | 167      |    | 001          | 15 |
| 404 |        | 13  |     | 1103.206              | <u>3</u><br>1 | .361<br>1.582 | 6       | -01.235<br>04  | <u>4</u><br>12 | 0            | <u> </u>      | 167      | 12 | 005<br>001   | 15 |
| 406 |        | 13  |     | -1295.983             | 3             | .353          | 15      | 04<br>-61.565  | 4              | 0            | 5             | 183      | 4  | 001          | 6  |
|     |        | 14  |     | 1103.585              | <u>ာ</u><br>1 | 1.549         |         | 04             | 12             |              | <u>ວ</u><br>1 | 0        | 12 | 005<br>001   | 15 |
| 407 |        | 14  |     | -1295.698             | 3             | .345          | 6<br>15 | -61.894        | 4              | 0            | 5             | 199      | 4  | 001          | 6  |
| 409 |        | 15  |     | 1103.964              | <u>ာ</u><br>1 | 1.515         |         | -01.094<br>04  | 12             | 0            | <u>၁</u><br>1 | 0        | 12 | 006          | 15 |
|     |        | 15  |     | -1295.414             |               |               | 6<br>15 |                |                |              | 5             |          |    |              |    |
| 410 |        | 16  |     | 1104.344              | 3             | .337          | 15      | -62.224        | <u>4</u><br>12 | 0            | <u> </u>      | 215<br>0 | 12 | 006<br>- 001 | 15 |
| 411 |        | 10  |     |                       | 1             | 1.482         | 15      | 04             |                |              |               |          |    | 001          | 15 |
| 412 |        | 17  |     | -1295.13              | 3             | .33           | 15      | <u>-62.553</u> | <u>4</u><br>12 | 0            | <u>5</u><br>1 | 231      | 12 | 007          | 15 |
| 413 |        | 17  |     | 1104.723<br>-1294.845 | 1             | 1.448         | 6<br>15 | 04<br>-62.882  |                | 0            | 5             | 247      | 12 | 002          | 15 |
| 414 |        | 10  |     |                       | 3             | .322          |         |                | 4              | -            |               |          | 12 | 007          | 15 |
| 415 |        | 18  |     | 1105.102<br>-1294.561 | <u>1</u><br>3 | 1.415<br>.314 | 6<br>15 | 04<br>-63.212  | <u>12</u><br>4 | 0            | <u>1</u><br>5 | 263      | 12 | 002<br>007   | 15 |
| 416 |        | 10  | _   |                       |               |               |         |                |                |              |               |          | 12 |              | 15 |
| 417 |        | 19  | шах | 1105.482              | <u>1</u>      | 1.386         | 2       | 04             | 12             | 0            | _1_           | 0        | 12 | 002          | 15 |



Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

| 418         min         -1294.276         3         .306         15         -63.541         4         0         5        279         4           419         M11         1         max         480.988         2         7.955         6         1.211         4         0         1         0         12           420         min         -616.776         3         1.859         15        077         1         0         4        02         4           421         2         max         480.817         2         7.185         6         1.752         4         0         1         0         12           422         min         -616.904         3         1.678         15        077         1         0         4        019         4           423         3         max         480.647         2         6.415         6         2.292         4         0         1         0         12           424         min         -617.032         3         1.497         15        077         1         0         4        018         4         425         4         max         480.477 | 008 6<br>.008 6<br>.002 14<br>.005 2<br>0 12<br>.003 2<br>0 3<br>0 2<br>002 3<br>0 15<br>003 4<br>001 15 | .008 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------|
| 420         min -616.776         3         1.859         15        077         1         0         4        02         4           421         2         max 480.817         2         7.185         6         1.752         4         0         1         0         12           422         min -616.904         3         1.678         15        077         1         0         4        019         4           423         3         max 480.647         2         6.415         6         2.292         4         0         1         0         12           424         min -617.032         3         1.497         15        077         1         0         4        018         4           425         4         max 480.477         2         5.645         6         2.833         4         0         1         0         12           426         min -617.16         3         1.316         15        077         1         0         4        017         4           427         5         max 480.306         2         4.875         6         3.373         4         0         1   | .002 15<br>.005 2<br>0 17<br>.003 2<br>0 3<br>0 2<br>002 3<br>0 15<br>003 4                              |      |
| 421       2       max       480.817       2       7.185       6       1.752       4       0       1       0       12         422       min       -616.904       3       1.678       15      077       1       0       4      019       4         423       3       max       480.647       2       6.415       6       2.292       4       0       1       0       12         424       min       -617.032       3       1.497       15      077       1       0       4      018       4         425       4       max       480.477       2       5.645       6       2.833       4       0       1       0       12         426       min       -617.16       3       1.316       15      077       1       0       4      017       4         427       5       max       480.306       2       4.875       6       3.373       4       0       1       0       12         428       min       -617.287       3       1.135       15      077       1       0       4      016       4                                                                                                                   | .005 2<br>0 11<br>.003 2<br>0 3<br>0 2<br>002 3<br>0 11<br>003 4                                         | 002  |
| 422         min -616.904         3         1.678         15        077         1         0         4        019         4           423         3         max 480.647         2         6.415         6         2.292         4         0         1         0         12           424         min -617.032         3         1.497         15        077         1         0         4        018         4           425         4         max 480.477         2         5.645         6         2.833         4         0         1         0         12           426         min -617.16         3         1.316         15        077         1         0         4        017         4           427         5         max 480.306         2         4.875         6         3.373         4         0         1         0         12           428         min -617.287         3         1.135         15        077         1         0         4        016         4           429         6         max 480.136         2         4.105         6         3.914         4         0         1  | 0 13<br>.003 2<br>0 3<br>0 2<br>002 3<br>0 19<br>003 4                                                   | .002 |
| 422         min -616.904         3         1.678         15        077         1         0         4        019         4           423         3         max 480.647         2         6.415         6         2.292         4         0         1         0         12           424         min -617.032         3         1.497         15        077         1         0         4        018         4           425         4         max 480.477         2         5.645         6         2.833         4         0         1         0         12           426         min -617.16         3         1.316         15        077         1         0         4        017         4           427         5         max 480.306         2         4.875         6         3.373         4         0         1         0         12           428         min -617.287         3         1.135         15        077         1         0         4        016         4           429         6         max 480.136         2         4.105         6         3.914         4         0         1  | 0 13<br>.003 2<br>0 3<br>0 2<br>002 3<br>0 19<br>003 4                                                   | .005 |
| 423       3       max       480.647       2       6.415       6       2.292       4       0       1       0       12         424       min       -617.032       3       1.497       15      077       1       0       4      018       4         425       4       max       480.477       2       5.645       6       2.833       4       0       1       0       12         426       min       -617.16       3       1.316       15      077       1       0       4      017       4         427       5       max       480.306       2       4.875       6       3.373       4       0       1       0       12         428       min       -617.287       3       1.135       15      077       1       0       4      016       4         429       6       max       480.136       2       4.105       6       3.914       4       0       1       0       12         430       min       -617.415       3       .954       15      077       1       0       4      014       4                                                                                                                    | .003 2<br>0 3<br>0 2<br>002 3<br>0 19<br>003 4                                                           |      |
| 424         min         -617.032         3         1.497         15        077         1         0         4        018         4           425         4         max         480.477         2         5.645         6         2.833         4         0         1         0         12           426         min         -617.16         3         1.316         15        077         1         0         4        017         4           427         5         max         480.306         2         4.875         6         3.373         4         0         1         0         12           428         min         -617.287         3         1.135         15        077         1         0         4        016         4           429         6         max         480.136         2         4.105         6         3.914         4         0         1         0         12           430         min         -617.415         3         .954         15        077         1         0         4        014         4           431         7         max         479.966                 | 0 3<br>0 2<br>002 3<br>0 1!<br>003 4                                                                     | _    |
| 425       4       max       480.477       2       5.645       6       2.833       4       0       1       0       12         426       min       -617.16       3       1.316       15      077       1       0       4      017       4         427       5       max       480.306       2       4.875       6       3.373       4       0       1       0       12         428       min       -617.287       3       1.135       15      077       1       0       4      016       4         429       6       max       480.136       2       4.105       6       3.914       4       0       1       0       12         430       min       -617.415       3       .954       15      077       1       0       4      014       4         431       7       max       479.966       2       3.335       6       4.454       4       0       1       0       12         432       min       -617.543       3       .773       15      077       1       0       4      013       4                                                                                                                     | 0 2<br>002 3<br>0 15<br>003 4                                                                            |      |
| 426         min         -617.16         3         1.316         15        077         1         0         4        017         4           427         5         max         480.306         2         4.875         6         3.373         4         0         1         0         12           428         min         -617.287         3         1.135         15        077         1         0         4        016         4           429         6         max         480.136         2         4.105         6         3.914         4         0         1         0         12           430         min         -617.415         3         .954         15        077         1         0         4        014         4           431         7         max         479.966         2         3.335         6         4.454         4         0         1         0         12           432         min         -617.543         3         .773         15        077         1         0         4        013         4           433         8         max         479.795         2        | 002 3<br>0 19<br>003 4                                                                                   |      |
| 427       5       max       480.306       2       4.875       6       3.373       4       0       1       0       12         428       min       -617.287       3       1.135       15      077       1       0       4      016       4         429       6       max       480.136       2       4.105       6       3.914       4       0       1       0       12         430       min       -617.415       3       .954       15      077       1       0       4      014       4         431       7       max       479.966       2       3.335       6       4.454       4       0       1       0       12         432       min       -617.543       3       .773       15      077       1       0       4      013       4         433       8       max       479.795       2       2.565       6       4.995       4       0       1       0       12         434       min       -617.671       3       .592       15      077       1       0       4      011       4                                                                                                                     | 0 15<br>003 4                                                                                            |      |
| 428       min       -617.287       3       1.135       15      077       1       0       4      016       4         429       6       max       480.136       2       4.105       6       3.914       4       0       1       0       12         430       min       -617.415       3       .954       15      077       1       0       4      014       4         431       7       max       479.966       2       3.335       6       4.454       4       0       1       0       12         432       min       -617.543       3       .773       15      077       1       0       4      013       4         433       8       max       479.795       2       2.565       6       4.995       4       0       1       0       12         434       min       -617.671       3       .592       15      077       1       0       4      011       4         435       9       max       479.625       2       1.795       6       5.536       4       0       1       0       12 </td <td>003 4</td> <td></td>                                                                                       | 003 4                                                                                                    |      |
| 429       6       max       480.136       2       4.105       6       3.914       4       0       1       0       12         430       min       -617.415       3       .954       15      077       1       0       4      014       4         431       7       max       479.966       2       3.335       6       4.454       4       0       1       0       12         432       min       -617.543       3       .773       15      077       1       0       4      013       4         433       8       max       479.795       2       2.565       6       4.995       4       0       1       0       12         434       min       -617.671       3       .592       15      077       1       0       4      011       4         435       9       max       479.625       2       1.795       6       5.536       4       0       1       0       12                                                                                                                                                                                                                                         |                                                                                                          |      |
| 430       min       -617.415       3       .954       15      077       1       0       4      014       4         431       7       max       479.966       2       3.335       6       4.454       4       0       1       0       12         432       min       -617.543       3       .773       15      077       1       0       4      013       4         433       8       max       479.795       2       2.565       6       4.995       4       0       1       0       12         434       min       -617.671       3       .592       15      077       1       0       4      011       4         435       9       max       479.625       2       1.795       6       5.536       4       0       1       0       12                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                          |      |
| 431     7     max     479.966     2     3.335     6     4.454     4     0     1     0     12       432     min     -617.543     3     .773     15    077     1     0     4    013     4       433     8     max     479.795     2     2.565     6     4.995     4     0     1     0     12       434     min     -617.671     3     .592     15    077     1     0     4    011     4       435     9     max     479.625     2     1.795     6     5.536     4     0     1     0     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 005 4                                                                                                    |      |
| 432     min     -617.543     3     .773     15    077     1     0     4    013     4       433     8     max     479.795     2     2.565     6     4.995     4     0     1     0     12       434     min     -617.671     3     .592     15    077     1     0     4    011     4       435     9     max     479.625     2     1.795     6     5.536     4     0     1     0     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 002 1                                                                                                    |      |
| 433     8     max     479.795     2     2.565     6     4.995     4     0     1     0     12       434     min     -617.671     3     .592     15    077     1     0     4    011     4       435     9     max     479.625     2     1.795     6     5.536     4     0     1     0     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 006 4                                                                                                    |      |
| 434     min     -617.671     3     .592     15    077     1     0     4    011     4       435     9     max     479.625     2     1.795     6     5.536     4     0     1     0     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 002 1                                                                                                    |      |
| 435 9 max 479.625 2 1.795 6 5.536 4 0 1 0 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 002                                                                                                      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                          |      |
| 436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 009 4                                                                                                    |      |
| 437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 002 1                                                                                                    |      |
| 438 min -617.926 3 .23 15077 1 0 4006 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 009 4                                                                                                    |      |
| 439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 002 1                                                                                                    |      |
| 440 min -618.054 3063 3077 1 0 4003 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01 4                                                                                                     |      |
| 441 12 max 479.114 2132 15 7.157 4 0 1 0 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 002 1                                                                                                    |      |
| 442 min -618.182 3516 4077 1 0 4 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 009 4                                                                                                    |      |
| 443 13 max 478.943 2313 15 7.698 4 0 1 .003 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 002 1                                                                                                    |      |
| 444 min -618.309 3 -1.286 4077 1 0 4 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 009 4                                                                                                    |      |
| 445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 002 1                                                                                                    | 002  |
| 446 min -618.437 3 -2.056 4077 1 0 4 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 008 4                                                                                                    |      |
| 447   15 max 478.603 2675 15 8.779 4 0 1 .01 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 002 1                                                                                                    |      |
| 448 min -618.565 3 -2.826 4077 1 0 4 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 007 4                                                                                                    |      |
| 449   16 max 478.432   2  856   15   9.319   4   0   1   .013   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 001 1                                                                                                    |      |
| 450 min -618.693 3 -3.596 4077 1 0 4 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 006 4                                                                                                    | 006  |
| 451   17 max 478.262   2   -1.037   15   9.86   4   0   1   .017   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 001 1                                                                                                    | 001  |
| 452 min -618.82 3 -4.366 4077 1 0 4 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 004 4                                                                                                    | 004  |
| 453   18 max 478.092   2   -1.218   15   10.4   4   0   1   .022   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 1                                                                                                      | 0    |
| 454 min -618.948 3 -5.136 4077 1 0 4 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 002 4                                                                                                    | 002  |
| 455 19 max 477.921 2 -1.399 15 10.941 4 0 1 .026 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 1                                                                                                      | 0    |
| 456 min -619.076 3 -5.906 4077 1 0 4 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 1                                                                                                      | 0    |
| 457 M12 1 max 1222.189 1 0 1 9.239 1 0 1 .016 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 1                                                                                                      | 0    |
| 458 min -275.112 3 0 1 -247.688 4 0 1 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 1                                                                                                      | 0    |
| 459 2 max 1222.36 1 0 1 9.239 1 0 1 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 1                                                                                                      | 0    |
| 460 min -274.985 3 0 1 -247.836 4 0 1012 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 1                                                                                                      | 0    |
| 461 3 max 1222.53 1 0 1 9.239 1 0 1 .002 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 1                                                                                                      | 0    |
| 462 min -274.857 3 0 1 -247.983 4 0 1041 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 1                                                                                                      | 0    |
| 463 4 max 1222.7 1 0 1 9.239 1 0 1 .003 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 1                                                                                                      | 0    |
| 464 min -274.729 3 0 1 -248.131 4 0 1069 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 1                                                                                                      | 0    |
| 465 5 max 1222.871 1 0 1 9.239 1 0 1 .004 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 1                                                                                                      | 0    |
| 466 min -274.601 3 0 1 -248.278 4 0 1098 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 1                                                                                                      | 0    |
| 467 6 max 1223.041 1 0 1 9.239 1 0 1 .005 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 1                                                                                                      |      |
| 468 min -274.474 3 0 1 -248.426 4 0 1126 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 1                                                                                                      |      |
| 469 7 max 1223.211 1 0 1 9.239 1 0 1 .006 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 1                                                                                                      |      |
| 470 min -274.346 3 0 1 -248.574 4 0 1155 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 1                                                                                                      |      |
| 471 8 max 1223.382 1 0 1 9.239 1 0 1 .007 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 1                                                                                                      |      |
| 472 min -274.218 3 0 1 -248.721 4 0 1183 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 1                                                                                                      |      |
| 473 9 max 1223.552 1 0 1 9.239 1 0 1 .008 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          | 0    |
| 474 min -274.09 3 0 1 -248.869 4 0 1212 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0   1                                                                                                    | 0    |



Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|            | Member | Sec |     | Axial[lb] | LC             | y Shear[lb]         | LC | z Shear[lb]                   | LC       | Torque[k-ft] | LC       | y-y Mome    | LC | z-z Mome           | LC |
|------------|--------|-----|-----|-----------|----------------|---------------------|----|-------------------------------|----------|--------------|----------|-------------|----|--------------------|----|
| 475        |        | 10  | max | 1223.722  | 1              | 0                   | 1  | 9.239                         | 1        | 0            | 1        | .009        | 1  | 0                  | 1  |
| 476        |        |     | min | -273.963  | 3              | 0                   | 1  | -249.017                      | 4        | 0            | 1_       | 24          | 4  | 0                  | 1  |
| 477        |        | 11  | max | 1223.893  | 1              | 0                   | 1  | 9.239                         | 1        | 0            | 1        | .01         | 1  | 0                  | 1  |
| 478        |        |     | min | -273.835  | 3              | 0                   | 1  | -249.164                      | 4        | 0            | 1        | 269         | 4  | 0                  | 1  |
| 479        |        | 12  | max | 1224.063  | 1              | 0                   | 1  | 9.239                         | 1        | 0            | 1        | .011        | 1  | 0                  | 1  |
| 480        |        |     | min | -273.707  | 3              | 0                   | 1  | -249.312                      | 4        | 0            | 1        | 298         | 4  | 0                  | 1  |
| 481        |        | 13  | max | 1224.233  | 1              | 0                   | 1  | 9.239                         | 1        | 0            | 1        | .012        | 1  | 0                  | 1  |
| 482        |        |     | min | -273.579  | 3              | 0                   | 1  | -249.46                       | 4        | 0            | 1        | 326         | 4  | 0                  | 1  |
| 483        |        | 14  | max | 1224.404  | 1              | 0                   | 1  | 9.239                         | 1        | 0            | 1        | .013        | 1  | 0                  | 1  |
| 484        |        |     | min | -273.452  | 3              | 0                   | 1  | -249.607                      | 4        | 0            | 1        | 355         | 4  | 0                  | 1  |
| 485        |        | 15  | max | 1224.574  | 1              | 0                   | 1  | 9.239                         | 1        | 0            | 1        | .014        | 1  | 0                  | 1  |
| 486        |        |     | min | -273.324  | 3              | 0                   | 1  | -249.755                      | 4        | 0            | 1        | 384         | 4  | 0                  | 1  |
| 487        |        | 16  | max | 1224.744  | 1              | 0                   | 1  | 9.239                         | 1        | 0            | 1        | .015        | 1  | 0                  | 1  |
| 488        |        |     | min | -273.196  | 3              | 0                   | 1  | -249.902                      | 4        | 0            | 1        | 412         | 4  | 0                  | 1  |
| 489        |        | 17  | max | 1224.915  | 1              | 0                   | 1  | 9.239                         | 1        | 0            | 1        | .016        | 1  | 0                  | 1  |
| 490        |        |     | min | -273.068  | 3              | 0                   | 1  | -250.05                       | 4        | 0            | 1        | 441         | 4  | 0                  | 1  |
| 491        |        | 18  | max | 1225.085  | 1              | 0                   | 1  | 9.239                         | 1        | 0            | 1        | .018        | 1  | 0                  | 1  |
| 492        |        |     |     | -272.941  | 3              | 0                   | 1  | -250.198                      | 4        | 0            | 1        | 47          | 4  | 0                  | 1  |
| 493        |        | 19  | max | 1225.255  | 1              | 0                   | 1  | 9.239                         | 1        | 0            | 1        | .019        | 1  | 0                  | 1  |
| 494        |        |     | min | -272.813  | 3              | 0                   | 1  | -250.345                      | 4        | 0            | 1        | 498         | 4  | 0                  | 1  |
| 495        | M1     | 1   | max | 157.243   | 1              | 725.472             | 3  | 50.536                        | 5        | 0            | 1        | .224        | 1  | 0                  | 3  |
| 496        |        |     | min | -8.611    | 5              | -493.202            | 1  | -93.859                       | 1        | 0            | 3        | 076         | 5  | 014                | 2  |
| 497        |        | 2   | max |           | 1              | 724.462             | 3  | 51.777                        | 5        | 0            | 1        | .174        | 1  | .247               | 1  |
| 498        |        |     | min | -8.382    | 5              | -494.548            | 1  | -93.859                       | 1        | 0            | 3        | 049         | 5  | 382                | 3  |
| 499        |        | 3   | max | 370.72    | 3              | 557.292             | 1  | -1.865                        | 15       | 0            | 3        | .125        | 1  | .496               | 1  |
| 500        |        |     |     | -222.256  | 2              | -527.282            | 3  | -93.196                       | 1        | Ö            | 1        | 022         | 5  | 749                | 3  |
| 501        |        | 4   | max |           | 3              | 555.946             | 1  | -1.029                        | 15       | 0            | 3        | .076        | 1  | .202               | 1  |
| 502        |        |     |     | -221.766  | 2              | -528.292            | 3  | -93.196                       | 1        | 0            | 1        | 023         | 5  | 471                | 3  |
| 503        |        | 5   | max |           | 3              | 554.6               | 1  | 193                           | 15       | 0            | 3        | .026        | 1  | 004                | 15 |
| 504        |        |     | min | -221.276  | 2              | -529.301            | 3  | -93.196                       | 1        | 0            | 1        | 023         | 5  | 192                | 3  |
| 505        |        | 6   |     |           | 3              | 553.254             | 1  | .837                          | 5        | 0            | 3        | 001         | 12 | .088               | 3  |
| 506        |        | Ť   | min | -220.786  | 2              | -530.311            | 3  | -93.196                       | 1        | 0            | 1        | 028         | 4  | 394                | 2  |
| 507        |        | 7   | max | 372.19    | 3              | 551.908             | 1  | 2.078                         | 5        | 0            | 3        | 004         | 12 | .368               | 3  |
| 508        |        |     |     | -220.296  | 2              | -531.32             | 3  | -93.196                       | 1        | 0            | 1        | 072         | 1  | 675                | 2  |
| 509        |        | 8   | max | 372.557   | 3              | 550.562             | 1  | 3.32                          | 5        | 0            | 3        | 006         | 12 | .649               | 3  |
| 510        |        |     |     | -219.806  | 2              | -532.33             | 3  | -93.196                       | 1        | 0            | 1        | 121         | 1  | 966                | 1  |
| 511        |        | 9   | max |           | 3              | 46.816              | 2  | 47.98                         | 5        | 0            | 9        | .072        | 1  | .758               | 3  |
| 512        |        |     | min | -155.79   | 2              | .406                | 15 | -137.604                      | 1        | 0            | 3        | 121         | 5  | -1.101             | 1  |
| 513        |        | 10  | max | 383.165   | 3              | 45.47               | 2  | 49.221                        | 5        | 0            | 9        | 0           | 10 | .738               | 3  |
| 514        |        | 10  | min | -155.3    | 2              | 0                   | 5  | -137.604                      | 1        | 0            | 3        | 096         | 4  | -1.118             | 2  |
| 515        |        | 11  | max | 383.532   | 3              | 44.124              | 2  | 50.463                        | 5        | 0            | 9        | 004         | 12 | .719               | 3  |
| 516        |        |     |     | -154.81   | 2              | -1.681              | 4  | -137.604                      | 1        | 0            | 3        | 084         | 4  | -1.141             | 2  |
| 517        |        | 12  |     | 393.695   | 3              | 347.131             | 3  | 136.927                       | 5        | 0            | 2        | .12         | 1  | .626               | 3  |
| 518        |        | 14  |     | -97.661   | 10             | -626.782            | 2  | -91.074                       | 1        | 0            | 3        | 185         | 5  | -1.011             | 2  |
| 519        |        | 13  |     | 394.062   | 3              | 346.122             | 3  | 138.168                       | 5        | 0            | 2        | .072        | 1  | .443               | 3  |
| 520        |        | 13  |     | -97.253   | 10             | -628.128            | 2  | -91.074                       | 1        | 0            | 3        | 113         | 5  | 68                 | 2  |
| 521        |        | 14  |     | 394.429   | 3              | 345.112             | 3  | 139.41                        | 5        | 0            | 2        | .024        | 1  | .261               | 3  |
| 522        |        | 14  |     | -96.845   | 10             | -629.474            | 2  | -91.074                       | 1        | 0            | 3        | 04          | 5  | 36                 | 1  |
| 523        |        | 15  |     | 394.797   | 3              | 344.102             | 3  | 140.651                       | 5        | 0            | 2        | .034        | 5  | <u>36</u><br>.079  | 3  |
| 524        |        | 13  | min | -96.436   | 10             | -630.82             | 2  | -91.074                       | 1        | 0            | 3        | 025         | 1  | 042                | 1  |
| 525        |        | 16  |     | 395.164   | 3              | 343.093             | 3  | 141.893                       | 5        | 0            | 2        | .109        | 5  | 042<br>.317        | 2  |
| 526        |        | 10  | min | -96.028   | 10             | -632.166            | 2  | -91.074                       | 1        | 0            | 3        | 073         | 1  | 102                | 3  |
| 527        |        | 17  |     | 395.532   | 3              | 342.083             | 3  | 143.134                       | <u> </u> | 0            | 2        | .184        | 5  | 102<br>.651        | 2  |
| 528        |        | 17  |     | -95.62    |                | -633.512            | 2  | -91.074                       | <u> </u> | 0            | 3        | 121         | 1  | 283                | 3  |
|            |        | 18  | min | 16.668    | <u>10</u><br>5 |                     | 2  | - <del>91.074</del><br>-4.658 | 12       |              | <u> </u> |             |    | <u>283</u><br>.327 | 2  |
| 529<br>530 |        | 10  | max | -157.956  | <u>5</u><br>1  | 641.793<br>-285.678 | 3  | -4.658                        | 4        | 0            | 2        | .165<br>172 | 5  | 32 <i>1</i><br>14  | 3  |
|            |        | 10  |     |           |                |                     |    |                               |          |              |          |             |    |                    |    |
| 531        |        | 19  | max | 16.897    | 5              | 640.447             | 2  | -4.658                        | 12       | 0            | 5        | .117        | 5  | .011               | 3  |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|            | Member | Sec                                              |            | Axial[lb]      | LC             | y Shear[lb]         | LC | z Shear[lb]     | LC   | Torque[k-ft] | LC       | y-y Mome   | LC        | z-z Mome    | LC |
|------------|--------|--------------------------------------------------|------------|----------------|----------------|---------------------|----|-----------------|------|--------------|----------|------------|-----------|-------------|----|
| 532        |        |                                                  | min        | -157.467       | 1_             | -286.687            | 3  | -111.813        | 4    | 0            | 2        | 225        | 1         | 012         | 1  |
| 533        | M5     | 1                                                | max        | 341.075        | _1_            | 2417.915            | 3  | 88.536          | 5    | 0            | 1        | 0          | 1_        | .029        | 2  |
| 534        |        |                                                  | min        | 11.096         | 12             | -1671.889           | 1  | 0               | 1    | 0            | 4        | 167        | 4         | 0           | 3  |
| 535        |        | 2                                                | max        | 341.565        | 1              | 2416.905            | 3  | 89.778          | 5    | 0            | 1        | 0          | 1         | .91         | 1  |
| 536        |        |                                                  | min        | 11.341         | 12             | -1673.235           | 1  | 0               | 1    | 0            | 4        | 121        | 4         | -1.276      | 3  |
| 537        |        | 3                                                | max        | 1190.294       | 3              | 1690.536            | 1  | 38.105          | 4    | 0            | 4        | 0          | 1         | 1.753       | 1  |
| 538        |        |                                                  | min        | -780.29        | 2              | -1684.113           | 3  | 0               | 1    | 0            | 1        | 074        | 4         | -2.502      | 3  |
| 539        |        | 4                                                | max        | 1190.662       | 3              | 1689.19             | 1  | 39.346          | 4    | 0            | 4        | 0          | 1         | .861        | 1  |
| 540        |        |                                                  | min        | -779.8         | 2              | -1685.122           | 3  | 0               | 1    | 0            | 1        | 053        | 4         | -1.613      | 3  |
| 541        |        | 5                                                | max        | 1191.029       | 3              | 1687.844            | 1  | 40.588          | 4    | 0            | 4        | 0          | 1         | .012        | 9  |
| 542        |        |                                                  | min        | -779.31        | 2              | -1686.132           | 3  | 0               | 1    | 0            | 1        | 032        | 4         | 724         | 3  |
| 543        |        | 6                                                | max        | 1191.397       | 3              | 1686.498            | 1  | 41.829          | 4    | 0            | 4        | 0          | 1         | .166        | 3  |
| 544        |        |                                                  | min        | -778.821       | 2              | -1687.141           | 3  | 0               | 1    | 0            | 1        | 011        | 5         | 948         | 2  |
| 545        |        | 7                                                |            | 1191.764       | 3              | 1685.152            | 1  | 43.07           | 4    | 0            | 4        | .012       | 4         | 1.057       | 3  |
| 546        |        |                                                  | min        | -778.331       | 2              | -1688.151           | 3  | 0               | 1    | 0            | 1        | 0          | 1         | -1.81       | 1  |
| 547        |        | 8                                                |            | 1192.132       | 3              | 1683.806            | 1  | 44.312          | 4    | 0            | 4        | .035       | 4         | 1.948       | 3  |
| 548        |        |                                                  | min        | -777.841       | 2              | -1689.16            | 3  | 0               | 1    | 0            | 1        | 0          | 1         | -2.699      | 1  |
| 549        |        | 9                                                | +          | 1208.494       | 3              | 156.429             | 2  | 154.19          | 4    | 0            | 1        | 0          | 1         | 2.242       | 3  |
| 550        |        | <del>                                     </del> | min        | -645.234       | 2              | .407                | 15 | 0               | 1    | 0            | 1        | 168        | 4         | -3.056      | 1  |
| 551        |        | 10                                               |            | 1208.861       | 3              | 155.082             | 2  | 155.432         | 4    | 0            | 1        | 0          | 1         | 2.171       | 3  |
| 552        |        | 10                                               | min        | -644.744       | 2              | 0                   | 15 | 0               | 1    | 0            | 1        | 087        | 5         | -3.102      | 2  |
| 553        |        | 11                                               | +          | 1209.229       | 3              | 153.736             | 2  | 156.673         | 4    | 0            | 1        | 0          | 1         | 2.101       | 3  |
| 554        |        |                                                  | min        | -644.254       | 2              | -1.534              | 6  | 0               | 1    | 0            | 1        | 006        | 5         | -3.184      | 2  |
| 555        |        | 12                                               | +          | 1225.746       | 3              | 1092.64             | 3  | 192.23          | 4    | 0            | 1        | 0          | 1         | 1.844       | 3  |
| 556        |        | 12                                               | min        | -511.695       | 2              | -1931.704           | 2  | 0               | 1    | 0            | 4        | 265        | 4         | -2.85       | 2  |
| 557        |        | 13                                               |            | 1226.113       | 3              | 1091.63             | 3  | 193.472         | 4    | 0            | 1        | 0          | 1         | 1.268       | 3  |
| 558        |        | 13                                               | min        | -511.205       | 2              | -1933.05            | 2  | 0               | 1    | 0            | 4        | 163        | 4         | -1.83       | 2  |
| 559        |        | 14                                               |            | 1226.48        | 3              | 1090.621            | 3  | 194.713         | 4    | 0            | 1        | 103        | 1         | .692        | 3  |
| 560        |        | 14                                               | max<br>min | -510.715       | 2              | -1934.396           | 2  | 0               | 1    | 0            | 4        | 06         | 4         | 849         | 1  |
| 561        |        | 15                                               |            | 1226.848       | 3              | 1089.611            | 3  | 195.955         | 4    | 0            | 1        | .043       | 4         | .211        | 2  |
| 562        |        | 13                                               | min        | -510.225       | 2              | -1935.742           | 2  | 0               | 1    | 0            | 4        | 0          | 1         | 004         | 13 |
| 563        |        | 16                                               |            | 1227.215       | 3              | 1088.602            | 3  | 197.196         | 4    | 0            | 1        | .146       | 4         | 1.233       | 2  |
| 564        |        | 10                                               | min        | -509.735       | 2              | -1937.088           | 2  | 0               | 1    | 0            | 4        | .140       | 1         | 458         | 3  |
| 565        |        | 17                                               |            | 1227.583       | 3              | 1087.592            | 3  | 198.438         | 4    | 0            | 1        | .251       | 4         | 2.256       | 2  |
| 566        |        | 17                                               | min        | -509.245       | 2              | -1938.434           | 2  | 0               | 1    | 0            | 4        | .231       | 1         | -1.032      | 3  |
| 567        |        | 18                                               | max        | -11.668        | 12             | 2163.635            | 2  | 0               | 1    | 0            | 4        | .263       | 4         | 1.163       | 2  |
| 568        |        | 10                                               | min        | -341.117       | 1              | -980.809            | 3  | -32.777         | 5    | 0            | 1        | 0          | 1         | 54          | 3  |
| 569        |        | 19                                               | max        | -11.423        | 12             | 2162.289            | 2  | 0               | 1    | 0            | 4        | .246       | 4         | .024        | 1  |
| 570        |        | 19                                               | min        | -340.627       | 1              | -981.818            | 3  | -31.535         | 5    | 0            | 1        | .240       | 1         | 022         | 3  |
| 571        | M9     | 1                                                |            |                | 1              | 725.472             | 3  | 93.859          | 1    | 0            | 3        | 011        | 12        |             | 3  |
|            | IVI9   |                                                  | max        |                |                |                     |    |                 |      |              |          |            | -         | 014         |    |
| 572        |        | 2                                                | min        |                | 12             | -493.202<br>724.462 |    | 4.667           | 12   | 0            | 4        | 224        | 1         |             | 2  |
| 573<br>574 |        | 2                                                | max<br>min |                | <u>1</u><br>12 | 724.462<br>-494.548 | 3  | 93.859<br>4.667 | 12   | 0            | <u>3</u> | 009<br>174 | <u>12</u> | .247<br>382 | 3  |
|            |        | 3                                                |            | 6.61<br>370.72 |                |                     |    |                 |      |              |          |            |           |             |    |
| 575<br>576 |        | 3                                                | max        |                | 3              | 557.292             | 1  | 93.196          | 1 12 | 0            | 3        | 006        | <u>12</u> | .496        | 1  |
| <u>576</u> |        | 1                                                | min        |                | 2              | -527.282<br>FFF 046 | 3  | 4.624           |      | 0            |          | 125        | _         | 749         | 3  |
| 577        |        | 4                                                |            | 371.088        | 3_             | 555.946             | 1  | 93.196          | 1    | 0            | 1        | 004        | 12        | .202        | 1  |
| 578        |        | -                                                | min        | -221.766       | 2              | -528.292            | 3  | 4.624           | 12   | 0            | 3        | 076        | 1         | 471         | 3  |
| 579        |        | 5                                                |            | 371.455        | 3_             | 554.6               | 1  | 93.196          | 1    | 0            | 1        | 001        | 12        | 004         | 15 |
| 580        |        |                                                  |            | -221.276       | 2              | -529.301            | 3  | 4.624           | 12   | 0            | 3        | 032        | 4         | 192         | 3  |
| 581        |        | 6                                                |            | 371.823        | 3              | 553.254             | 1  | 93.196          | 1    | 0            | 1        | .023       | 1_        | .088        | 3  |
| 582        |        | -                                                | min        |                | 2              | -530.311            | 3  | 4.624           | 12   | 0            | 3        | 021        | 5         | 394         | 2  |
| 583        |        | 7                                                | max        |                | 3_             | 551.908             | 1  | 93.196          | 1    | 0            | 1        | .072       | 1_        | .368        | 3  |
| 584        |        | _                                                | min        |                | 2              | -531.32             | 3  | 4.624           | 12   | 0            | 3        | 014        | 5_        | 675         | 2  |
| 585        |        | 8                                                |            | 372.557        | 3              | 550.562             | 1  | 93.196          | 1    | 0            | 1        | .121       | 1_        | .649        | 3  |
| 586        |        | _                                                | min        | -219.806       | 2              | -532.33             | 3  | 4.624           | 12   | 0            | 3        | 007        | 5         | 966         | 1  |
| 587        |        | 9                                                | max        |                | 3              | 46.816              | 2  | 137.604         | 1    | 0            | 3        | 003        | 12        | .758        | 3  |
| 588        |        |                                                  | min        | -155.79        | 2              | .412                | 15 | 6.614           | 12   | 0            | 9        | 145        | 4         | -1.101      | 1  |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_

## **Envelope Member Section Forces (Continued)**

|     | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC |
|-----|--------|-----|-----|-----------|----|-------------|----|-------------|----|--------------|----|----------|----|----------|----|
| 589 |        | 10  | max | 383.165   | 3  | 45.47       | 2  | 137.604     | 1  | 0            | 3  | 0        | 1  | .738     | 3  |
| 590 |        |     | min | -155.3    | 2  | .006        | 15 | 6.614       | 12 | 0            | 9  | 095      | 4  | -1.118   | 2  |
| 591 |        | 11  | max | 383.532   | 3  | 44.124      | 2  | 137.604     | 1  | 0            | 3  | .073     | 1  | .719     | 3  |
| 592 |        |     | min | -154.81   | 2  | -1.635      | 6  | 6.614       | 12 | 0            | 9  | 06       | 5  | -1.141   | 2  |
| 593 |        | 12  | max | 393.695   | 3  | 347.131     | 3  | 168.256     | 4  | 0            | 3  | 006      | 12 | .626     | 3  |
| 594 |        |     | min | -97.661   | 10 | -626.782    | 2  | 4.234       | 12 | 0            | 2  | 226      | 4  | -1.011   | 2  |
| 595 |        | 13  | max | 394.062   | 3  | 346.122     | 3  | 169.498     | 4  | 0            | 3  | 003      | 12 | .443     | 3  |
| 596 |        |     | min | -97.253   | 10 | -628.128    | 2  | 4.234       | 12 | 0            | 2  | 137      | 4  | 68       | 2  |
| 597 |        | 14  | max | 394.429   | 3  | 345.112     | 3  | 170.739     | 4  | 0            | 3  | 001      | 12 | .261     | 3  |
| 598 |        |     | min | -96.845   | 10 | -629.474    | 2  | 4.234       | 12 | 0            | 2  | 047      | 4  | 36       | 1  |
| 599 |        | 15  | max | 394.797   | 3  | 344.102     | 3  | 171.981     | 4  | 0            | 3  | .043     | 4  | .079     | 3  |
| 600 |        |     | min | -96.436   | 10 | -630.82     | 2  | 4.234       | 12 | 0            | 2  | .001     | 12 | 042      | 1  |
| 601 |        | 16  | max | 395.164   | 3  | 343.093     | 3  | 173.222     | 4  | 0            | 3  | .134     | 4  | .317     | 2  |
| 602 |        |     | min | -96.028   | 10 | -632.166    | 2  | 4.234       | 12 | 0            | 2  | .003     | 12 | 102      | 3  |
| 603 |        | 17  | max | 395.532   | 3  | 342.083     | 3  | 174.463     | 4  | 0            | 3  | .226     | 4  | .651     | 2  |
| 604 |        |     | min | -95.62    | 10 | -633.512    | 2  | 4.234       | 12 | 0            | 2  | .006     | 12 | 283      | 3  |
| 605 |        | 18  | max | -6.446    | 12 | 641.793     | 2  | 99.948      | 1  | 0            | 2  | .223     | 4  | .327     | 2  |
| 606 |        |     | min | -157.956  | 1  | -285.678    | 3  | -80.085     | 5  | 0            | 3  | .008     | 12 | 14       | 3  |
| 607 |        | 19  | max | -6.201    | 12 | 640.447     | 2  | 99.948      | 1  | 0            | 2  | .225     | 1  | .011     | 3  |
| 608 |        |     | min | -157.467  | 1  | -286.687    | 3  | -78.844     | 5  | 0            | 3  | .01      | 12 | 012      | 1  |

## **Envelope Member Section Deflections**

|    | Member | Sec |     | x [in] | LC | y [in] | LC | z [in] | LC x Rotate [r | LC | (n) L/y Ratio | LC | (n) L/z Ratio | LC |
|----|--------|-----|-----|--------|----|--------|----|--------|----------------|----|---------------|----|---------------|----|
| 1  | M13    | 1   | max | 0      | 1  | .116   | 2  | .007   | 3 9.392e-3     | 2  | NC            | 1  | NC            | 1  |
| 2  |        |     | min | 546    | 4  | 021    | 3  | 003    | 2 -1.705e-3    | 3  | NC            | 1  | NC            | 1  |
| 3  |        | 2   | max | 0      | 1  | .297   | 3  | .034   | 1 1.077e-2     | 2  | NC            | 5  | NC            | 2  |
| 4  |        |     | min | 546    | 4  | 083    | 1  | 016    | 5 -1.748e-3    | 3  | 736.68        | 3  | 7122.526      | 1  |
| 5  |        | 3   | max | 0      | 1  | .554   | 3  | .081   | 1 1.216e-2     | 2  | NC            | 5  | NC            | 3  |
| 6  |        |     | min | 546    | 4  | 237    | 1  | 019    | 5 -1.791e-3    | 3  | 407.143       | 3  | 2924.091      | 1  |
| 7  |        | 4   | max | 0      | 1  | .71    | 3  | .122   | 1 1.354e-2     | 2  | NC            | 5  | NC            | 3  |
| 8  |        |     | min | 546    | 4  | 322    | 1  | 013    | 5 -1.835e-3    | 3  | 320.276       | 3  | 1938.485      | 1  |
| 9  |        | 5   | max | 0      | 1  | .746   | 3  | .143   | 1 1.492e-2     | 2  | NC            | 5  | NC            | 3  |
| 10 |        |     | min | 546    | 4  | 326    | 1  | 003    | 5 -1.878e-3    | 3  | 305.361       | 3  | 1653.718      | 1  |
| 11 |        | 6   | max | 0      | 1  | .664   | 3  | .138   | 1 1.63e-2      | 2  | NC            | 5  | NC            | 3  |
| 12 |        |     | min | 546    | 4  | 252    | 1  | .006   | 15 -1.921e-3   | 3  | 341.854       | 3  | 1716.174      |    |
| 13 |        | 7   | max | 0      | 1  | .489   | 3  | .108   | 1 1.769e-2     | 2  | NC            | 5  | NC            | 3  |
| 14 |        |     | min | 546    | 4  | 116    | 1  | .004   | 10 -1.964e-3   | 3  | 459.184       | 3  | 2194.861      | 1  |
| 15 |        | 8   | max | 0      | 1  | .267   | 3  | .062   | 1 1.907e-2     | 2  | NC            | 4  | NC            | 2  |
| 16 |        |     | min | 546    | 4  | .001   | 15 | 002    | 10 -2.007e-3   | 3  | 813.423       | 3  | 3834.819      | 1  |
| 17 |        | 9   | max | 0      | 1  | .21    | 2  | .022   | 3 2.045e-2     | 2  | NC            | 4  | NC            | 1  |
| 18 |        |     | min | 546    | 4  | .005   | 15 | 007    | 10 -2.05e-3    | 3  | 2481.496      | 2  | NC            | 1  |
| 19 |        | 10  | max | 0      | 1  | .27    | 2  | .021   | 3 2.183e-2     | 2  | NC            | 3  | NC            | 1  |
| 20 |        |     | min | 546    | 4  | 025    | 3  | 014    | 2 -2.093e-3    | 3  | 1513.721      | 2  | NC            | 1  |
| 21 |        | 11  | max | 0      | 12 | .21    | 2  | .022   | 3 2.045e-2     | 2  | NC            | 4  | NC            | 1  |
| 22 |        |     | min | 546    | 4  | .005   | 15 | 013    | 5 -2.05e-3     | 3  | 2481.496      | 2  | NC            | 1  |
| 23 |        | 12  | max | 0      | 12 | .267   | 3  | .062   | 1 1.907e-2     | 2  | NC            | 4  | NC            | 2  |
| 24 |        |     | min | 546    | 4  | .001   | 15 | 013    | 5 -2.007e-3    | 3  | 813.423       | 3  | 3834.819      | 1  |
| 25 |        | 13  | max | 0      | 12 | .489   | 3  | .108   | 1 1.769e-2     | 2  | NC            | 5  | NC            | 3  |
| 26 |        |     | min | 546    | 4  | 116    | 1  | 005    | 5 -1.964e-3    | 3  | 459.184       | 3  | 2194.861      | 1  |
| 27 |        | 14  | max | 0      | 12 | .664   | 3  | .138   | 1 1.63e-2      | 2  | NC            | 5  | NC            | 3  |
| 28 |        |     | min | 546    | 4  | 252    | 1  | .005   | 15 -1.921e-3   | 3  | 341.854       | 3  | 1716.174      | 1  |
| 29 |        | 15  | max | 0      | 12 | .746   | 3  | .143   | 1 1.492e-2     | 2  | NC            | 5  | NC            | 3  |
| 30 |        |     | min | 546    | 4  | 326    | 1  | .009   | 10 -1.878e-3   | 3  | 305.361       | 3  | 1653.718      | 1  |
| 31 |        | 16  | max | 0      | 12 | .71    | 3  | .122   | 1 1.354e-2     | 2  | NC            | 5  | NC            | 3  |
| 32 |        |     | min | 546    | 4  | 322    | 1  | .008   | 10 -1.835e-3   | 3  | 320.276       | 3  | 1938.485      | 1  |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|          | Member | Sec      |            | x [in]          | LC | y [in]             | LC | z [in]        | LC            | x Rotate [r           |               |               |               |                |   |
|----------|--------|----------|------------|-----------------|----|--------------------|----|---------------|---------------|-----------------------|---------------|---------------|---------------|----------------|---|
| 33       |        | 17       | max        | 0               | 12 | .554               | 3  | .081          | 1             | 1.216e-2              | 2             | NC            | 5_            | NC             | 3 |
| 34       |        |          | min        | 546             | 4  | 237                | 1  | .005          |               | -1.791e-3             | 3             | 407.143       | 3             | 2924.091       | 1 |
| 35       |        | 18       | max        | 0               | 12 | .297               | 3  | .034          | 1             | 1.077e-2              | 2             | NC            | _5_           | NC             | 2 |
| 36       |        | 40       | min        | <u>546</u>      | 4  | 083                | 1  | 0             |               | -1.748e-3             | 3             | 736.68        | 3             | 7122.526       |   |
| 37       |        | 19       | max        | 0               | 12 | .116               | 2  | .007          | 3             | 9.392e-3              | 2             | NC<br>NC      | 1_            | NC<br>NC       | 1 |
| 38       | N44.4  | 4        | min        | 546             | 4  | 021                | 3  | 003           | 2             | -1.705e-3             | 3             | NC<br>NC      | 1_            | NC<br>NC       | 1 |
| 39       | M14    | 1        | max        | 0               | 1  | .225               | 3  | .006          | 3             | 5.561e-3              | 1             | NC<br>NC      | 1_            | NC<br>NC       | 1 |
| 40       |        | 2        | min        | 422             | 1  | 364<br>37          | 2  | 003           |               | -4.036e-3             | 3             | NC<br>NC      | <u>1</u><br>5 | NC<br>NC       | 1 |
| 41       |        | 2        | max        | <u> </u>        | 4  | .537               | 3  | .024          | 1 5           | 6.659e-3              | <u>1</u>      | 725.038       | <u> </u>      | NC<br>OFFO 644 | 1 |
| 43       |        | 3        | min        | 422<br>0        | 1  | <u>685</u><br>.802 | 3  | 023<br>.065   | <u>5</u><br>1 | -4.905e-3<br>7.757e-3 | <u>3</u><br>1 | NC            | 5             | 9550.644<br>NC | 3 |
| 44       |        | 3        | max        | 422             | 4  | 964                | 1  | 028           | 5             | -5.775e-3             | 3             | 389.254       | 1             | 3665.7         | 1 |
| 45       |        | 4        | max        | <u>422</u><br>0 | 1  | <u>904</u><br>.986 | 3  | .104          | 1             | 8.855e-3              | 1             | NC            | 15            | NC             | 3 |
| 46       |        | 4        | min        | 422             | 4  | -1.167             | 1  | 019           | 5             | -6.644e-3             | 3             | 290.827       | 1             | 2272.759       |   |
| 47       |        | 5        | max        | 0               | 1  | 1.074              | 3  | .127          | 1             | 9.954e-3              | 1             | NC            | 15            | NC             | 3 |
| 48       |        |          | min        | 422             | 4  | -1.28              | 1  | 003           | 5             | -7.513e-3             | 3             | 255.058       | 1             | 1869.16        | 1 |
| 49       |        | 6        | max        | 0               | 1  | 1.065              | 3  | .125          | 1             | 1.105e-2              | 1             | NC            | 15            | NC             | 3 |
| 50       |        |          | min        | 422             | 4  | -1.301             | 1  | .007          |               | -8.382e-3             | 3             | 249.213       | 1             | 1894.949       |   |
| 51       |        | 7        | max        | 0               | 1  | .976               | 3  | <u></u><br>.1 | 1             | 1.215e-2              | 1             | NC            | 15            | NC             | 3 |
| 52       |        |          | min        | 422             | 4  | -1.246             | 1  | .004          | 10            | -9.252e-3             | 3             | 264.883       | 1             | 2383.199       |   |
| 53       |        | 8        | max        | 0               | 1  | .841               | 3  | .058          | 1             | 1.325e-2              | 1             | NC            | 15            | NC             | 2 |
| 54       |        |          | min        | 422             | 4  | -1.142             | 1  | 001           | 10            | -1.012e-2             | 3             | 299.991       | 1             | 4104.035       |   |
| 55       |        | 9        | max        | 0               | 1  | .71                | 3  | .031          | 4             | 1.435e-2              | 1             | NC            | 15            | NC             | 1 |
| 56       |        |          | min        | 422             | 4  | -1.035             | 1  | 006           | 10            | -1.099e-2             | 3             | 347.71        | 1             | 7474.654       | 4 |
| 57       |        | 10       | max        | 0               | 1  | .648               | 3  | .019          | 3             | 1.544e-2              | 1             | NC            | 5             | NC             | 1 |
| 58       |        |          | min        | 422             | 4  | 985                | 2  | 013           | 2             | -1.186e-2             | 3             | 376.571       | 1             | NC             | 1 |
| 59       |        | 11       | max        | 0               | 12 | .71                | 3  | .019          | 3             | 1.435e-2              | 1             | NC            | 15            | NC             | 1 |
| 60       |        |          | min        | 422             | 4  | -1.035             | 1  | 023           | 5             | -1.099e-2             | 3             | 347.71        | 1             | NC             | 1 |
| 61       |        | 12       | max        | 0               | 12 | .841               | 3  | .058          | 1             | 1.325e-2              | 1_            | NC            | 15            | NC             | 2 |
| 62       |        |          | min        | 422             | 4  | -1.142             | 1  | 027           | 5             | -1.012e-2             | 3             | 299.991       | 1_            | 4104.035       |   |
| 63       |        | 13       | max        | 0               | 12 | .976               | 3  | 1             | 1             | 1.215e-2              | 1             | NC            | 15            | NC             | 3 |
| 64       |        |          | min        | 422             | 4  | -1.246             | 1  | 017           | 5             | -9.252e-3             | 3             | 264.883       | _1_           | 2383.199       |   |
| 65       |        | 14       | max        | 0               | 12 | 1.065              | 3  | .125          | 1             | 1.105e-2              | _1_           | NC            | <u>15</u>     | NC             | 3 |
| 66       |        |          | min        | 422             | 4  | -1.301             | 1  | 0             |               | -8.382e-3             | 3             | 249.213       | _1_           | 1894.949       |   |
| 67       |        | 15       | max        | 0               | 12 | 1.074              | 3  | .127          | 1             | 9.954e-3              | 1_            | NC<br>OFF OFF | <u>15</u>     | NC<br>1000 10  | 3 |
| 68       |        | 10       | min        | 422             | 4  | -1.28              | 1  | .008          |               | -7.513e-3             | 3             | 255.058       | 1_            | 1869.16        | 1 |
| 69       |        | 16       | max        | 0               | 12 | .986               | 3  | .104          | 1             | 8.855e-3              | 1_            | NC<br>000,007 | 15            | NC             | 3 |
| 70       |        | 47       | min        | 422             | 4  | <u>-1.167</u>      | 1  | .007          | 10            |                       | 3             | 290.827       | _1_           | 2272.759       |   |
| 71       |        | 17       | max        | 0               | 12 | .802               | 3  | .065          | 1             | 7.757e-3              | 1             | NC<br>200 254 | 5             | NC<br>2665.7   | 3 |
| 72<br>73 |        | 10       | min<br>max | 422<br>0        | 12 | 964<br>.537        | 3  | .003<br>.032  | 10            | -5.775e-3<br>6.659e-3 | 3             | 389.254<br>NC | <u>1</u><br>5 | 3665.7<br>NC   | 1 |
| 74       |        | 10       | min        | 423             | 4  | 685                | 1  | 0             | 10            | -4.905e-3             |               | 725.038       | 1             | 7231.523       |   |
| 75       |        | 19       |            | <u>423</u><br>0 | 12 | .225               | 3  | .006          | 3             | 5.561e-3              | <u> </u>      | NC            | 1             | NC             | 1 |
| 76       |        | 13       | min        | 423             | 4  | 364                | 2  | 003           | 2             | -4.036e-3             | 3             | NC            | 1             | NC             | 1 |
| 77       | M15    | 1        | max        | 0               | 12 | .23                | 3  | .006          | 3             | 3.419e-3              | 3             | NC            | 1             | NC             | 1 |
| 78       | IVIIO  | <u>'</u> | min        | 351             | 4  | 364                | 2  | 003           | 2             | -5.74e-3              | 2             | NC            | 1             | NC             | 1 |
| 79       |        | 2        | max        | 0               | 12 | .43                | 3  | .024          | 1             | 4.158e-3              | 3             | NC            | 5             | NC             | 1 |
| 80       |        |          | min        | 351             | 4  | 75                 | 2  | 033           | 5             | -6.875e-3             | 2             | 606.257       | 2             | 6914.284       |   |
| 81       |        | 3        | max        | 0               | 12 | .603               | 3  | .065          | 1             | 4.897e-3              | 3             | NC            | 5             | NC             | 3 |
| 82       |        |          | min        | 351             | 4  | -1.079             | 2  | 04            | 5             | -8.009e-3             | 2             | 327.018       | 2             | 3654.639       |   |
| 83       |        | 4        | max        | 0               | 12 | .732               | 3  | .105          | 1             | 5.637e-3              | 3             | NC            | 15            | NC             | 3 |
| 84       |        |          | min        | 351             | 4  | -1.314             | 2  | 029           | 5             | -9.143e-3             | 2             | 246.308       | 2             | 2267.167       |   |
| 85       |        | 5        | max        | 0               | 12 | .808               | 3  | .127          | 1             | 6.376e-3              | 3             | NC            | 15            | NC             | 3 |
| 86       |        |          | min        | 351             | 4  | -1.433             | 2  | 007           | 5             | -1.028e-2             | 2             | 218.702       |               | 1864.758       |   |
| 87       |        | 6        | max        | 0               | 12 | .829               | 3  | .125          | 1             | 7.115e-3              | 3             | NC            | 15            | NC             | 3 |
| 88       |        |          | min        | 351             | 4  | -1.439             | 2  | .007          | 10            | -1.141e-2             | 2             | 217.644       | 2             | 1890.028       |   |
| 89       |        | 7        | max        | 0               | 12 | .804               | 3  | .1            | 1             | 7.854e-3              | 3             | NC            | 15            | NC             | 3 |



Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec |            | x [in]   | LC | y [in]     | LC | z [in]     | LC x Rotate [r             |               |                |    |                |   |
|-----|--------|-----|------------|----------|----|------------|----|------------|----------------------------|---------------|----------------|----|----------------|---|
| 90  |        |     | min        | 351      | 4  | -1.348     | 2  | .004       | 10 -1.255e-2               | 2             | 237.623        | 2  | 2375.083       |   |
| 91  |        | 8   | max        | 0        | 12 | .75        | 3  | .059       | 1 8.594e-3                 | 3             | NC             | 15 | NC             | 2 |
| 92  |        |     | min        | 351      | 4  | -1.201     | 2  | 0          | 10 -1.368e-2               | 2             | 279.518        | 2  | 4015.901       | 4 |
| 93  |        | 9   | max        | 0        | 12 | .691       | 3  | .039       | 4 9.333e-3                 | 3             | NC             | 15 | NC             | 1 |
| 94  |        |     | min        | 351      | 4  | -1.054     | 2  | 006        | 10 -1.481e-2               | 2             | 339.117        | 2  | 5916.259       | 4 |
| 95  |        | 10  | max        | 0        | 1  | .662       | 3  | .017       | 3 1.007e-2                 | 3             | NC             | 5  | NC             | 1 |
| 96  |        |     | min        | 351      | 4  | 984        | 2  | 012        | 2 -1.595e-2                | 2             | 377.209        | 1  | NC             | 1 |
| 97  |        | 11  | max        | 0        | 1  | .691       | 3  | .018       | 3 9.333e-3                 | 3             | NC             | 15 | NC             | 1 |
| 98  |        |     | min        | 351      | 4  | -1.054     | 2  | 031        | 5 -1.481e-2                | 2             | 339.117        | 2  | 7445.804       | 5 |
| 99  |        | 12  | max        | 0        | 1  | .75        | 3  | .059       | 1 8.594e-3                 | 3             | NC             | 15 | NC             | 2 |
| 100 |        |     | min        | 351      | 4  | -1.201     | 2  | 037        | 5 -1.368e-2                | 2             | 279.518        | 2  | 4079.629       | 1 |
| 101 |        | 13  | max        | 0        | 1  | .804       | 3  | .1         | 1 7.854e-3                 | 3             | NC             | 15 | NC             | 3 |
| 102 |        |     | min        | 351      | 4  | -1.348     | 2  | 024        | 5 -1.255e-2                | 2             | 237.623        | 2  | 2375.083       | 1 |
| 103 |        | 14  | max        | 0        | 1  | .829       | 3  | .125       | 1 7.115e-3                 | 3             | NC             | 15 | NC             | 3 |
| 104 |        |     | min        | 351      | 4  | -1.439     | 2  | 002        | 5 -1.141e-2                | 2             | 217.644        | 2  | 1890.028       | 1 |
| 105 |        | 15  | max        | 0        | 1  | .808       | 3  | .127       | 1 6.376e-3                 | 3             | NC             | 15 | NC             | 3 |
| 106 |        |     | min        | 351      | 4  | -1.433     | 2  | .008       | 10 -1.028e-2               | 2             | 218.702        | 2  | 1864.758       | 1 |
| 107 |        | 16  | max        | 0        | 1  | .732       | 3  | .105       | 1 5.637e-3                 | 3             | NC             | 15 | NC             | 3 |
| 108 |        |     | min        | 351      | 4  | -1.314     | 2  | .007       | 10 -9.143e-3               | 2             | 246.308        | 2  | 2267.167       | 1 |
| 109 |        | 17  | max        | 0        | 1  | .603       | 3  | .065       | 1 4.897e-3                 | 3             | NC             | 5  | NC             | 3 |
| 110 |        |     | min        | 351      | 4  | -1.079     | 2  | .004       | 10 -8.009e-3               | 2             | 327.018        | 2  | 3654.639       | 1 |
| 111 |        | 18  | max        | 0        | 1  | .43        | 3  | .042       | 4 4.158e-3                 | 3             | NC             | 5  | NC             | 1 |
| 112 |        |     | min        | 351      | 4  | 75         | 2  | 0          | 10 -6.875e-3               | 2             | 606.257        | 2  | 5600.254       | 4 |
| 113 |        | 19  | max        | 0        | 1  | .23        | 3  | .006       | 3 3.419e-3                 | 3             | NC             | 1  | NC             | 1 |
| 114 |        | 1.0 | min        | 351      | 4  | 364        | 2  | 003        | 2 -5.74e-3                 | 2             | NC             | 1  | NC             | 1 |
| 115 | M16    | 1   | max        | 0        | 12 | .108       | 1  | .005       | 3 6.061e-3                 | 3             | NC             | 1  | NC             | 1 |
| 116 | 14110  |     | min        | 142      | 4  | 076        | 3  | 003        | 2 -8.297e-3                | 1             | NC             | 1  | NC             | 1 |
| 117 |        | 2   | max        | 0        | 12 | .031       | 3  | .034       | 1 7.111e-3                 | 3             | NC             | 5  | NC             | 2 |
| 118 |        |     | min        | 142      | 4  | 16         | 2  | 025        | 5 -9.431e-3                | 1             | 893.069        | 2  | 7163.79        | 1 |
| 119 |        | 3   | max        | 0        | 12 | .115       | 3  | .023       | 1 8.162e-3                 | 3             | NC             | 5  | NC             | 3 |
| 120 |        | 1   | min        | 142      | 4  | 368        | 2  | 031        | 5 -1.057e-2                | 1             | 497.115        | 2  | 2930.67        | 1 |
| 121 |        | 4   | max        | 0        | 12 | .159       | 3  | .122       | 1 9.212e-3                 | 3             | NC             | 5  | NC             | 3 |
| 122 |        | + - | min        | 142      | 4  | 488        | 2  | 023        | 5 -1.17e-2                 | 1             | 396.312        | 2  | 1938.78        | 1 |
| 123 |        | 5   | max        | 0        | 12 | .157       | 3  | .143       | 1 1.026e-2                 | 3             | NC             | 5  | NC             | 3 |
| 124 |        | 1 5 |            | 142      | 4  | 502        | 2  | 008        | 5 -1.283e-2                | 1             | 386.884        | 2  | 1650.83        | 1 |
| 125 |        | 6   | min<br>max | 142<br>0 | 12 | .109       | 3  | .138       | 1 1.131e-2                 | 3             | NC             | 5  | NC             | 3 |
| 126 |        | 10  | min        | 142      | 4  | 414        | 2  | .006       | 15 -1.397e-2               | 1             | 452.793        | 2  | 1709.02        | 1 |
| 127 |        | 7   |            |          | 12 | .026       | 3  | .109       | 1 1.236e-2                 |               | NC             | 5  | NC             | 3 |
| 128 |        | +-  | max        | 0<br>142 | 4  | 246        | 2  | .005       |                            | <u>3</u><br>1 | 671.434        | 2  |                | 1 |
|     |        | 0   | min        |          |    |            |    |            |                            |               |                |    | 2176.397       |   |
| 129 |        | 8   | max        | 0        | 12 | .015       | 9  | .063       | 1 1.341e-2<br>10 -1.624e-2 | 3             | NC             | 2  | NC             | 2 |
| 130 |        |     | min        |          |    | 073        |    | 0          |                            |               | 1654.313       |    | 3760.78        |   |
| 131 |        | 9   | max        | 0        | 12 | .169       | 1  | .028       | 4 1.447e-2                 | 3             | NC<br>2707.00  | 4  | NC<br>0000 CEE | 1 |
| 132 |        | 40  | min        | 142      | 4  | 16         | 3  | 005        | 10 -1.737e-2               | 1_            | 2797.08        | 3  | 8336.655       |   |
| 133 |        | 10  | max        | 0        | 1  | .246       | 1  | .015       | 3 1.552e-2                 | 3             | NC<br>1000 004 | 5_ | NC<br>NC       | 1 |
| 134 |        | 1.4 | min        | 142      | 4  | <u>199</u> | 3  | <u>011</u> | 2 -1.851e-2                | 1_            | 1690.004       | 1_ | NC             | 1 |
| 135 |        | 11  | max        | 0        | 1  | .169       | 1  | .018       | 1 1.447e-2                 | 3             | NC             | 4  | NC             | 1 |
| 136 |        |     | min        | 142      | 4  | <u>16</u>  | 3  | 02         | 5 -1.737e-2                | 1_            | 2797.08        | 3  | NC             | 1 |
| 137 |        | 12  | max        | 0        | 1  | .015       | 9  | .063       | 1 1.341e-2                 | 3             | NC             | 3  | NC             | 2 |
| 138 |        |     | min        | 142      | 4  | 073        | 3  | 021        | 5 -1.624e-2                | 1_            | 1654.313       | 2  | 3760.78        | 1 |
| 139 |        | 13  | max        | 0        | 1  | .026       | 3  | .109       | 1 1.236e-2                 | 3             | NC             | 5_ | NC             | 3 |
| 140 |        |     | min        | 142      | 4  | 246        | 2  | 01         | 5 -1.51e-2                 | 1_            | 671.434        | 2  | 2176.397       | 1 |
| 141 |        | 14  | max        | 0        | 1  | .109       | 3  | .138       | 1 1.131e-2                 | 3             | NC             | 5_ | NC             | 3 |
| 142 |        |     | min        | 142      | 4  | 414        | 2  | .005       | 15 -1.397e-2               | 1             | 452.793        | 2  | 1709.02        | 1 |
| 143 |        | 15  | max        | 0        | 1  | .157       | 3  | .143       | 1 1.026e-2                 | 3             | NC             | 5  | NC             | 3 |
| 144 |        |     | min        | 142      | 4  | 502        | 2  | .01        | 10 -1.283e-2               | 1             | 386.884        | 2  | 1650.83        | 1 |
| 145 |        | 16  | max        | 0        | 1  | .159       | 3  | .122       | 1 9.212e-3                 | 3             | NC             | 5  | NC             | 3 |
| 146 |        |     | min        | 142      | 4  | 488        | 2  | .009       | 10 -1.17e-2                | 1             | 396.312        | 2  | 1938.78        | 1 |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|            | Member    | Sec |     | x [in]      | LC | y [in]         | LC | z [in]      | LC | x Rotate [r           | LC            | (n) L/y Ratio | LC            | (n) L/z Ratio  | LC |
|------------|-----------|-----|-----|-------------|----|----------------|----|-------------|----|-----------------------|---------------|---------------|---------------|----------------|----|
| 147        |           | 17  | max | 0           | 1  | .115           | 3  | .081        | 1  | 8.162e-3              | 3             | NC            | 5             | NC             | 3  |
| 148        |           |     | min | 142         | 4  | 368            | 2  | .005        | 10 | -1.057e-2             | 1             | 497.115       | 2             | 2930.67        | 1  |
| 149        |           | 18  | max | 0           | 1  | .031           | 3  | .037        | 4  | 7.111e-3              | 3             | NC            | 5             | NC             | 2  |
| 150        |           |     | min | 142         | 4  | 16             | 2  | .001        | 10 | -9.431e-3             | 1             | 893.069       | 2             | 6325.042       | 4  |
| 151        |           | 19  | max | 0           | 1  | .108           | 1  | .005        | 3  | 6.061e-3              | 3             | NC            | _1_           | NC             | 1  |
| 152        |           |     | min | 142         | 4  | 076            | 3  | 003         | 2  | -8.297e-3             | 1_            | NC            | 1             | NC             | 1  |
| 153        | M2        | 1_  | max | .006        | 1  | .005           | 2  | .007        | 1  | 1.332e-3              | 5_            | NC            | _1_           | NC             | 2  |
| 154        |           |     | min | 007         | 3  | 009            | 3  | 515         | 4  | -1.921e-4             | <u>1</u>      | NC            | 1_            | 107.513        | 4  |
| 155        |           | 2   | max | .006        | 1  | .004           | 2  | .007        | 1  | 1.421e-3              | 5             | NC            | 1_            | NC             | 2  |
| 156        |           |     | min | 007         | 3  | 009            | 3  | 473         | 4  | -1.793e-4             | _1_           | NC            | 1_            | 117.103        | 4  |
| 157        |           | 3   | max | .005        | 1  | .004           | 2  | .006        | 1  | 1.511e-3              | 5             | NC            | 1             | NC             | 2  |
| 158        |           | -   | min | 006         | 3  | 008            | 3  | 431         | 4  | -1.664e-4             | 1_            | NC            | 1_            | 128.499        | 4  |
| 159        |           | 4   | max | .005        | 1  | .003           | 2  | .005        | 1  | 1.6e-3                | 5             | NC<br>NC      | 1             | NC<br>440.474  | 1  |
| 160        |           | -   | min | 006         | 3  | 008            | 3  | 389         | 4  | -1.535e-4             | 1_            | NC            | 1_            | 142.171        | 4  |
| 161        |           | 5   | max | .005        | 1  | .002           | 2  | .005        | 1  | 1.689e-3              | 5_            | NC<br>NC      | 1             | NC<br>450.750  | 1  |
| 162        |           |     | min | 005         | 3  | 008            | 3  | 349         | 4  | -1.406e-4             | <u>1</u>      | NC<br>NC      | 1_            | 158.759        | 4  |
| 163        |           | 6   | max | .004        | 3  | .002           | 3  | .004        | 1  | 1.778e-3              | 5_1           | NC<br>NC      | <u>1</u><br>1 | NC             | 4  |
| 164        |           | 7   | min | 005         | 1  | 007            | 2  | 309         | 1  | -1.278e-4             | 1_            | NC<br>NC      | 1             | 179.152<br>NC  |    |
| 165<br>166 |           |     | max | .004        | 3  | .001           | 3  | .004        |    | 1.867e-3              | <u>5</u><br>1 |               | 1             |                | 1  |
| 167        |           | 8   | min | 005<br>.004 | 1  | 007<br>0       | 2  | 271<br>.003 | 1  | -1.149e-4<br>1.956e-3 | 5             | NC<br>NC      | 1             | 204.609<br>NC  | 1  |
| 168        |           | 0   | max | 004         | 3  | 006            | 3  | 234         | 4  | -1.02e-4              | 1             | NC            | 1             | 236.97         | 4  |
| 169        |           | 9   | max | .003        | 1  | <del>000</del> | 2  | .003        | 1  | 2.049e-3              | 4             | NC            | 1             | NC             | 1  |
| 170        |           | + = | min | 004         | 3  | 006            | 3  | 198         | 4  | -8.914e-5             | 1             | NC            | 1             | 279.001        | 4  |
| 171        |           | 10  | max | .003        | 1  | <u>.000</u>    | 2  | .002        | 1  | 2.143e-3              | 4             | NC            | 1             | NC             | 1  |
| 172        |           | 10  | min | 003         | 3  | 006            | 3  | 165         | 4  | -7.626e-5             | 1             | NC            | 1             | 335.033        | 4  |
| 173        |           | 11  | max | .003        | 1  | 0              | 15 | .002        | 1  | 2.237e-3              | 4             | NC            | 1             | NC             | 1  |
| 174        |           |     | min | 003         | 3  | 005            | 3  | 134         | 4  | -6.338e-5             | 1             | NC            | 1             | 412.149        | 4  |
| 175        |           | 12  | max | .002        | 1  | <u></u>        | 15 | .001        | 1  | 2.33e-3               | 4             | NC            | 1             | NC             | 1  |
| 176        |           |     | min | 003         | 3  | 005            | 3  | 106         | 4  | -5.051e-5             | 1             | NC            | 1             | 522.609        | 4  |
| 177        |           | 13  | max | .002        | 1  | 0              | 15 | .001        | 1  | 2.424e-3              | 4             | NC            | 1             | NC             | 1  |
| 178        |           |     | min | 002         | 3  | 004            | 3  | 08          | 4  | -3.763e-5             | 1             | NC            | 1             | 689.184        | 4  |
| 179        |           | 14  | max | .002        | 1  | 0              | 15 | 0           | 1  | 2.518e-3              | 4             | NC            | 1             | NC             | 1  |
| 180        |           |     | min | 002         | 3  | 003            | 3  | 058         | 4  | -2.476e-5             | 1             | NC            | 1             | 958.24         | 4  |
| 181        |           | 15  | max | .001        | 1  | 0              | 15 | 0           | 1  | 2.612e-3              | 4             | NC            | 1             | NC             | 1  |
| 182        |           |     | min | 002         | 3  | 003            | 3  | 039         | 4  | -1.188e-5             | 1             | NC            | 1             | 1436.783       | 4  |
| 183        |           | 16  | max | 0           | 1  | 0              | 15 | 0           | 1  | 2.706e-3              | 4             | NC            | 1             | NC             | 1  |
| 184        |           |     | min | 001         | 3  | 002            | 3  | 023         | 4  | -4.649e-7             | 3             | NC            | 1             | 2421.125       | 4  |
| 185        |           | 17  | max | 0           | 1  | 0              | 15 | 0           | 1  | 2.799e-3              | 4             | NC            | 1_            | NC             | 1_ |
| 186        |           |     | min | 0           | 3  | 002            | 3  | 011         | 4  | 3.627e-7              | 12            | NC            | 1             | 5012.969       | 4  |
| 187        |           | 18  | max | 0           | 1  | 0              | 15 | 0           | 1  | 2.893e-3              |               | NC            | _1_           | NC             | 1  |
| 188        |           |     | min | 0           | 3  | 0              | 3  | 003         | 4  | 1.014e-6              | 12            | NC            | 1             | NC             | 1  |
| 189        |           | 19  | max | 0           | 1  | 0              | 1  | 00          | 1_ | 2.987e-3              | _4_           | NC            | _1_           | NC             | 1  |
| 190        |           |     | min | 0           | 1  | 0              | 1  | 0           | 1  | 1.666e-6              | 12            | NC            | 1_            | NC             | 1  |
| 191        | <u>M3</u> | 1   | max | 0           | 1  | 0              | 1  | 0           | 1  | -5.372e-7             | <u>12</u>     | NC            | 1_            | NC             | 1  |
| 192        |           |     | min | 0           | 1  | 0              | 1  | 0           | 1  | -7.031e-4             | 4_            | NC            | 1_            | NC             | 1  |
| 193        |           | 2   | max | 0           | 3  | 0              | 15 | .014        | 4  | 9.533e-6              | _1_           | NC            | _1_           | NC             | 1  |
| 194        |           |     | min | 0           | 2  | 002            | 6  | 0           | 12 | -6.875e-5             | 5_            | NC            | 1_            | NC             | 1  |
| 195        |           | 3   | max | 0           | 3  | 0              | 15 | .028        | 4  | 5.698e-4              | 4_            | NC            | 1_            | NC             | 1  |
| 196        |           |     | min | 0           | 2  | 003            | 6  | 0           | 12 | 1.446e-6              | 12            | NC            | 1_            | NC             | 1  |
| 197        |           | 4   | max | 0           | 3  | 001            | 15 | .04         | 4  | 1.206e-3              | 4             | NC<br>NC      | 1             | NC<br>NC       | 1  |
| 198        |           | -   | min | 0           | 2  | 005            | 6  | 0           | 12 | 2.438e-6              | <u>12</u>     | NC<br>NC      | 1_            | NC<br>NC       | 1  |
| 199        |           | 5   | max | .001        | 3  | 001            | 15 | .052        | 4  | 1.843e-3              | 4             | NC<br>NC      | 1_            | NC<br>0004 F77 | 1  |
| 200        |           |     | min | 0           | 2  | 007            | 6  | 0           | 12 | 3.43e-6               | 12            | NC<br>NC      | 1_            | 8864.577       | 5  |
| 201        |           | 6   | max | .001        | 3  | 002            | 15 | .063        | 4  | 2.479e-3              | 4             | NC<br>NC      | 1             | NC<br>9339 003 | 1  |
| 202        |           | 7   | min | 001         | 2  | 009            | 6  | 074         | 12 | 4.422e-6              | <u>12</u>     | NC<br>NC      | 1_            | 8328.093       |    |
| 203        |           | 7   | max | .002        | 3  | 002            | 15 | .074        | 4  | 3.116e-3              | <u>4</u>      | NC            | <u>1</u>      | NC             | 1  |



Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec |     | x [in] | LC | y [in]          | LC | z [in]     |    |           |    | (n) L/y Ratio | LC  |          |   |
|-----|--------|-----|-----|--------|----|-----------------|----|------------|----|-----------|----|---------------|-----|----------|---|
| 204 |        |     | min | 001    | 2  | 01              | 6  | 0          | 12 | 5.413e-6  | 12 | 9090.639      | 6   | 8312.82  | 5 |
| 205 |        | 8   | max | .002   | 3  | 002             | 15 | .084       | 4  | 3.752e-3  | 4_ | NC            | _1_ | NC       | 1 |
| 206 |        |     | min | 002    | 2  | 011             | 6  | 0          | 12 | 6.405e-6  | 12 | 8122.363      | 6   | 8746.465 | 5 |
| 207 |        | 9   | max | .002   | 3  | 003             | 15 | .093       | 4  | 4.388e-3  | 4  | NC            | 1_  | NC       | 1 |
| 208 |        |     | min | 002    | 2  | 012             | 6  | 0          | 12 | 7.397e-6  | 12 | 7545.536      | 6   | 9693.93  | 5 |
| 209 |        | 10  | max | .003   | 3  | 003             | 15 | .102       | 4  | 5.025e-3  | 4  | NC            | 2   | NC       | 1 |
| 210 |        |     | min | 002    | 2  | 013             | 6  | 0          | 12 | 8.389e-6  | 12 | 7258.376      | 6   | NC       | 1 |
| 211 |        | 11  | max | .003   | 3  | 003             | 15 | .111       | 4  | 5.661e-3  | 4  | NC            | 2   | NC       | 1 |
| 212 |        |     | min | 002    | 2  | 013             | 6  | 0          | 12 | 9.381e-6  | 12 | 7218.105      | 6   | NC       | 1 |
| 213 |        | 12  | max | .003   | 3  | 003             | 15 | .12        | 4  | 6.298e-3  | 4  | NC            | 2   | NC       | 1 |
| 214 |        |     | min | 003    | 2  | 012             | 6  | 0          | 12 | 1.037e-5  | 12 | 7424.474      | 6   | NC       | 1 |
| 215 |        | 13  | max | .004   | 3  | 003             | 15 | .128       | 4  | 6.934e-3  | 4  | NC            | 1   | NC       | 1 |
| 216 |        |     | min | 003    | 2  | 012             | 6  | 0          | 12 | 1.136e-5  | 12 | 7921.718      | 6   | NC       | 1 |
| 217 |        | 14  | max | .004   | 3  | 002             | 15 | .137       | 4  | 7.571e-3  | 4  | NC            | 1   | NC       | 1 |
| 218 |        |     | min | 003    | 2  | 011             | 6  | 0          | 12 | 1.236e-5  | 12 | 8821.915      | 6   | NC       | 1 |
| 219 |        | 15  | max | .004   | 3  | 002             | 15 | .146       | 4  | 8.207e-3  | 4  | NC            | 1   | NC       | 1 |
| 220 |        |     | min | 003    | 2  | 009             | 6  | 0          | 12 | 1.335e-5  | 12 | NC            | 1   | NC       | 1 |
| 221 |        | 16  | max | .004   | 3  | 001             | 15 | .156       | 4  | 8.844e-3  | 4  | NC            | 1   | NC       | 1 |
| 222 |        |     | min | 003    | 2  | 008             | 1  | 0          | 12 | 1.434e-5  | 12 | NC            | 1   | NC       | 1 |
| 223 |        | 17  | max | .005   | 3  | 0               | 15 | .166       | 4  | 9.48e-3   | 4  | NC            | 1   | NC       | 1 |
| 224 |        |     | min | 004    | 2  | 006             | 1  | 0          | 12 | 1.533e-5  | 12 | NC            | 1   | NC       | 1 |
| 225 |        | 18  | max | .005   | 3  | 0               | 15 | .177       | 4  | 1.012e-2  | 4  | NC            | 1   | NC       | 1 |
| 226 |        |     | min | 004    | 2  | 005             | 1  | 0          | 12 | 1.632e-5  | 12 | NC            | 1   | NC       | 1 |
| 227 |        | 19  | max | .005   | 3  | 0               | 5  | .189       | 4  | 1.075e-2  | 4  | NC            | 1   | NC       | 1 |
| 228 |        |     | min | 004    | 2  | 003             | 1  | 0          | 12 | 1.731e-5  | 12 | NC            | 1   | NC       | 1 |
| 229 | M4     | 1   | max | .003   | 1  | .004            | 2  | 0          | 12 | 2.057e-5  | 1  | NC            | 1   | NC       | 3 |
| 230 |        |     | min | 0      | 3  | 005             | 3  | 189        | 4  | -5.479e-4 | 4  | NC            | 1   | 131.336  | 4 |
| 231 |        | 2   | max | .003   | 1  | .003            | 2  | 0          | 12 | 2.057e-5  | 1  | NC            | 1   | NC       | 2 |
| 232 |        |     | min | 0      | 3  | 005             | 3  | 174        | 4  | -5.479e-4 | 4  | NC            | 1   | 142.906  | 4 |
| 233 |        | 3   | max | .003   | 1  | .003            | 2  | 0          | 12 | 2.057e-5  | 1  | NC            | 1   | NC       | 2 |
| 234 |        |     | min | 0      | 3  | 005             | 3  | 158        | 4  | -5.479e-4 | 4  | NC            | 1   | 156.669  | 4 |
| 235 |        | 4   | max | .002   | 1  | .003            | 2  | 0          | 12 | 2.057e-5  | 1  | NC            | 1   | NC       | 2 |
| 236 |        |     | min | 0      | 3  | 005             | 3  | 143        | 4  | -5.479e-4 | 4  | NC            | 1   | 173.198  | 4 |
| 237 |        | 5   | max | .002   | 1  | .003            | 2  | 0          | 12 | 2.057e-5  | 1  | NC            | 1   | NC       | 2 |
| 238 |        |     | min | 0      | 3  | 004             | 3  | 128        | 4  | -5.479e-4 | 4  | NC            | 1   | 193.267  | 4 |
| 239 |        | 6   | max | .002   | 1  | .003            | 2  | 0          | 12 | 2.057e-5  | 1  | NC            | 1   | NC       | 2 |
| 240 |        |     | min | 0      | 3  | 004             | 3  | 114        | 4  | -5.479e-4 | 4  | NC            | 1   | 217.951  | 4 |
| 241 |        | 7   | max | .002   | 1  | .002            | 2  | 0          | 12 | 2.057e-5  | 1  | NC            | 1   | NC       | 2 |
| 242 |        |     | min | 0      | 3  | 004             | 3  | 1          | 4  | -5.479e-4 | 4  | NC            | 1   | 248.779  | 4 |
| 243 |        | 8   | max | .002   | 1  | .002            | 2  | 0          | 12 | 2.057e-5  | 1  | NC            | 1   | NC       | 2 |
| 244 |        |     | min | 0      | 3  | 003             | 3  | 086        |    | -5.479e-4 | 4  | NC            | 1   | 287.977  | 4 |
| 245 |        | 9   | max | .002   | 1  | .002            | 2  | 0          | 12 |           | 1  | NC            | 1   | NC       | 2 |
| 246 |        |     | min | 0      | 3  | 003             | 3  | 073        | 4  | -5.479e-4 | 4  | NC            | 1   | 338.898  | 4 |
| 247 |        | 10  | max | .001   | 1  | .002            | 2  | 0          | 12 | 2.057e-5  | 1  | NC            | 1   | NC       | 1 |
| 248 |        | 1.0 | min | 0      | 3  | 003             | 3  | 061        | 4  | -5.479e-4 | 4  | NC            | 1   | 406.783  | 4 |
| 249 |        | 11  | max | .001   | 1  | .002            | 2  | 0          | 12 | 2.057e-5  | 1  | NC            | 1   | NC       | 1 |
| 250 |        |     | min | 0      | 3  | 002             | 3  | 05         | 4  | -5.479e-4 | 4  | NC            | 1   | 500.207  | 4 |
| 251 |        | 12  | max | .001   | 1  | .001            | 2  | 0          | 12 | 2.057e-5  | 1  | NC            | 1   | NC       | 1 |
| 252 |        | 12  | min | 0      | 3  | 002             | 3  | 039        | 4  | -5.479e-4 | 4  | NC            | 1   | 634.003  | 4 |
| 253 |        | 13  | max | 0      | 1  | .002            | 2  | <u>039</u> | 12 | 2.057e-5  | 1  | NC            | 1   | NC       | 1 |
| 254 |        | 10  | min | 0      | 3  | 002             | 3  | 03         | 4  | -5.479e-4 | 4  | NC            | 1   | 835.707  | 4 |
| 255 |        | 14  | max | 0      | 1  | .002            | 2  | <u>05</u>  | 12 | 2.057e-5  | 1  | NC            | 1   | NC       | 1 |
| 256 |        | 17  | min | 0      | 3  | 002             | 3  | 021        | 4  | -5.479e-4 | 4  | NC            | 1   | 1161.338 |   |
| 257 |        | 15  | max | 0      | 1  | <u>002</u><br>0 | 2  | 0          | 12 | 2.057e-5  | 1  | NC            | 1   | NC       | 1 |
| 258 |        | 13  | min | 0      | 3  | 001             | 3  | 014        | 4  | -5.479e-4 | 4  | NC            | 1   | 1740.039 |   |
| 259 |        | 16  | 1   | 0      | 1  | <u>001</u><br>0 | 2  | 014<br>0   | 12 | 2.057e-5  | 1  | NC<br>NC      | 1   | NC       | 1 |
| 260 |        | 10  | max |        | 3  | 0               | 3  |            |    |           |    | NC<br>NC      | 1   | 2928.844 | _ |
| 200 |        |     | min | 0      | J  | U               | J  | 008        | 4  | -5.479e-4 | 4  | INC           |     | 2920.044 | 4 |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member    | Sec |            | x [in]      | LC  | y [in]    | LC | z [in]           | LC  | x Rotate [r    | LC            | (n) L/y Ratio | LC            | (n) L/z Ratio  | LC |
|-----|-----------|-----|------------|-------------|-----|-----------|----|------------------|-----|----------------|---------------|---------------|---------------|----------------|----|
| 261 |           | 17  | max        | 0           | 1   | 0         | 2  | 0                | 12  | 2.057e-5       | 1_            | NC            | 1_            | NC             | 1  |
| 262 |           |     | min        | 0           | 3   | 0         | 3  | 004              | 4   | -5.479e-4      | 4             | NC            | 1             | 6051.695       | 4  |
| 263 |           | 18  | max        | 0           | 1   | 0         | 2  | 0                | 12  | 2.057e-5       | 1             | NC            | 1             | NC             | 1  |
| 264 |           |     | min        | 0           | 3   | 0         | 3  | 001              | 4   | -5.479e-4      | 4             | NC            | 1             | NC             | 1  |
| 265 |           | 19  | max        | 0           | 1   | 0         | 1  | 0                | 1   | 2.057e-5       | 1_            | NC            | 1_            | NC             | 1  |
| 266 |           |     | min        | 0           | 1   | 0         | 1  | 0                | 1   | -5.479e-4      | 4             | NC            | 1             | NC             | 1  |
| 267 | M6        | 1   | max        | .019        | 1   | .02       | 2  | 0                | 1   | 1.399e-3       | 4             | NC            | 4             | NC             | 1  |
| 268 |           |     | min        | 023         | 3   | 028       | 3  | 519              | 4   | 0              | 1             | 1962.926      | 3             | 106.563        | 4  |
| 269 |           | 2   | max        | .018        | 1   | .018      | 2  | 0                | 1   | 1.487e-3       | 4             | NC            | 4             | NC             | 1  |
| 270 |           |     | min        | 021         | 3   | 027       | 3  | 477              | 4   | 0              | 1             | 2080.325      | 3             | 116.07         | 4  |
| 271 |           | 3   | max        | .017        | 1   | .016      | 2  | 0                | 1   | 1.574e-3       | 4             | NC            | 4_            | NC             | 1  |
| 272 |           |     | min        | 02          | 3   | 025       | 3  | 435              | 4   | 0              | 1             | 2212.65       | 3             | 127.367        | 4  |
| 273 |           | 4   | max        | .016        | 1   | .015      | 2  | 0                | 1   | 1.662e-3       | 4             | NC            | 4             | NC             | 1  |
| 274 |           |     | min        | 019         | 3   | 023       | 3  | 393              | 4   | 0              | 1             | 2362.917      | 3             | 140.92         | 4  |
| 275 |           | 5   | max        | .015        | 1   | .013      | 2  | 0                | 1   | 1.749e-3       | 4             | NC            | 4             | NC             | 1  |
| 276 |           |     | min        | 018         | 3   | 022       | 3  | 352              | 4   | 0              | 1_            | 2535.009      | 3             | 157.366        | 4  |
| 277 |           | 6   | max        | .014        | 1   | .012      | 2  | 0                | 1   | 1.837e-3       | 4             | NC            | _1_           | NC             | 1  |
| 278 |           |     | min        | 016         | 3   | 02        | 3  | 312              | 4   | 0              | 1_            | 2734.001      | 3             | 177.583        | 4  |
| 279 |           | 7   | max        | .013        | 1   | .01       | 2  | 0                | 1   | 1.924e-3       | 4             | NC            | 1_            | NC             | 1  |
| 280 |           |     | min        | 015         | 3   | 019       | 3  | 273              | 4   | 0              | 1_            | 2966.664      | 3             | 202.822        | 4  |
| 281 |           | 8   | max        | .011        | 1   | .009      | 2  | 0                | 1   | 2.012e-3       | _4_           | NC            | _1_           | NC             | 1  |
| 282 |           |     | min        | 014         | 3   | 017       | 3  | 236              | 4   | 0              | 1_            | 3242.227      | 3             | 234.907        | 4  |
| 283 |           | 9   | max        | .01         | 1   | .007      | 2  | 00               | 1   | 2.099e-3       | _4_           | NC            | _1_           | NC             | 1  |
| 284 |           |     | min        | 013         | 3   | 015       | 3  | 2                | 4   | 0              | 1_            | 3573.618      | 3             | 276.582        | 4  |
| 285 |           | 10  | max        | .009        | 1   | .006      | 2  | 0                | 1_  | 2.187e-3       | _4_           | NC            | _1_           | NC             | 1  |
| 286 |           |     | min        | 011         | 3   | 014       | 3  | 167              | 4   | 0              | 1_            | 3979.509      | 3             | 332.14         | 4  |
| 287 |           | 11  | max        | .008        | 1   | .005      | 2  | 0                | 1   | 2.275e-3       | _4_           | NC            | _1_           | NC             | 1  |
| 288 |           |     | min        | 01          | 3   | 012       | 3  | 135              | 4   | 0              | <u>1</u>      | 4487.911      | 3             | 408.61         | 4  |
| 289 |           | 12  | max        | .007        | 1   | .004      | 2  | 0                | 1   | 2.362e-3       | _4_           | NC            | _1_           | NC             | 1  |
| 290 |           |     | min        | 009         | 3   | 011       | 3  | 107              | 4   | 0              | _1_           | 5142.844      | 3             | 518.152        | 4  |
| 291 |           | 13  | max        | .006        | 1   | .003      | 2  | 0                | 1   | 2.45e-3        | 4             | NC            | 1             | NC             | 1  |
| 292 |           |     | min        | 008         | 3   | 009       | 3  | 081              | 4   | 0              | 1_            | 6017.68       | 3             | 683.36         | 4  |
| 293 |           | 14  | max        | .005        | 1   | .002      | 2  | 0                | 1   | 2.537e-3       | 4             | NC            | 1             | NC             | 1  |
| 294 |           |     | min        | 006         | 3   | 008       | 3  | 058              | 4   | 0              | 1_            | 7244.494      | 3             | 950.241        | 4  |
| 295 |           | 15  | max        | .004        | 1   | .001      | 2  | 0                | 1   | 2.625e-3       | _4_           | NC            | _1_           | NC             | 1  |
| 296 |           |     | min        | 005         | 3   | 006       | 3  | 039              | 4   | 0              | _1_           | 9087.44       | 3             | 1425           | 4  |
| 297 |           | 16  | max        | .003        | 1   | 0         | 2  | 0                | 1   | 2.712e-3       | _4_           | NC            | _1_           | NC             | 1  |
| 298 |           |     | min        | 004         | 3   | 005       | 3  | 023              | 4   | 0              | _1_           | NC            | 1_            | 2401.823       | 4  |
| 299 |           | 17  | max        | .002        | 1   | 0         | 2  | 0                | 1   | 2.8e-3         | 4_            | NC            | 1_            | NC<br>4075 000 | 1  |
| 300 |           | 40  | min        | 003         | 3   | 003       | 3  | <u>011</u>       | 4   | 0              | 1_            | NC<br>NC      | 1_            | 4975.066       | 4  |
| 301 |           | 18  | max        |             | 1   | 0         | 2  | 0                | 1   | 2.887e-3       | 4             | NC<br>NC      | 1             | NC<br>NC       | 1  |
| 302 |           | 40  | min        | 001         | 3   | 002       | 3  | 003              | 4   | 0 075 - 0      | 1_            | NC<br>NC      | 1_            | NC<br>NC       | 1  |
| 303 |           | 19  | max        | 0           | 1   | 0         | 1  | 0                | 1   | 2.975e-3       | 4             | NC<br>NC      | 1             | NC<br>NC       | 1  |
| 304 | N 4-7     | 4   | min        | 0           | 1   | 0         | 1  | 0                | 1   | 0              | 1_            | NC<br>NC      | 1_            | NC<br>NC       | 1  |
| 305 | <u>M7</u> | 1   | max        | 0           | 1   | <u> </u>  | 1  | <u> </u>         | 1   | 0              | 1_1           | NC<br>NC      | 1             | NC<br>NC       | 1  |
| 306 |           | 2   | min        | 0           |     |           |    |                  | •   | -6.988e-4      | 4             | NC<br>NC      | _             | NC<br>NC       | -  |
| 307 |           | 2   | max        | 0           | 3   | 002       | 2  | <u>.014</u><br>0 | 1   | 0<br>-7.673e-5 | 4             | NC<br>NC      | <u>1</u><br>1 |                | 1  |
| 308 |           | 2   | min        |             |     |           | 3  |                  |     |                |               |               |               | NC<br>NC       |    |
| 309 |           | 3   | max        | .002        | 3   | 0         | 15 | .028             | 4   | 5.454e-4       | 4             | NC            | 1_4           | NC<br>NC       | 1  |
| 310 |           | 1   | min        | 002         | 2   | 005       | 3  | <u> </u>         | 4   | 1 1690 2       | <u>1</u><br>4 | NC<br>NC      | <u>1</u><br>1 | NC<br>NC       | 1  |
| 311 |           | 4   | max        | .003        | 3   | 001       | 15 |                  |     | 1.168e-3       |               | NC<br>NC      | _             | NC<br>0620 059 |    |
| 312 |           | F   | min        | 003         |     | 007       | 3  | <u> </u>         | 1 1 | 1 700 2        | 1_1           |               | <u>1</u><br>1 | 9620.958       |    |
| 313 |           | 5   | max        | .004        | 3   | 002       | 15 |                  | 1   | 1.79e-3        | <u>4</u><br>1 | NC<br>NC      | 1             | NC             | 4  |
| 314 |           | G   | min        | 004         |     | 009       |    | 0                |     | 0 2 4120 2     | •             | NC<br>NC      | <u>1</u><br>1 | 8293.115       | 1  |
| 315 |           | 6   | max<br>min | .005<br>004 | 3   | 002<br>01 | 15 | <u>.063</u>      | 1   | 2.412e-3<br>0  | <u>4</u><br>1 | 9311.279      | 3             | NC<br>7741.418 |    |
| 316 |           | 7   |            | .006        | 3   | 01<br>002 | 15 | .073             | 4   | 3.034e-3       | 4             | NC            | <u>၂</u>      | NC             | 1  |
| JII |           |     | max        | .000        | _ J | 002       | 10 | .013             | 4   | 0.0046-0       | _+_           | INC           |               | INC            |    |



Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec |        | x [in] | _LC_ | y [in] | LC | z [in]      | LC | x Rotate [r | LC | (n) L/y Ratio |          |          | LC |
|-----|--------|-----|--------|--------|------|--------|----|-------------|----|-------------|----|---------------|----------|----------|----|
| 318 |        |     | min    | 005    | 2    | 012    | 3  | 0           | 1  | 0           | 1_ | 8289.133      | 3        | 7665.11  | 4  |
| 319 |        | 8   | max    | .007   | 3    | 003    | 15 | .083        | 4  | 3.656e-3    | 4  | NC            | <u>1</u> | NC       | 1  |
| 320 |        |     | min    | 006    | 2    | 013    | 3  | 0           | 1  | 0           | 1  | 7680.009      | 3        | 7981.211 | 4  |
| 321 |        | 9   | max    | .008   | 3    | 003    | 15 | .092        | 4  | 4.278e-3    | 4  | NC            | 1_       | NC       | 1  |
| 322 |        |     | min    | 007    | 2    | 013    | 3  | 0           | 1  | 0           | 1  | 7358.828      | 3        | 8722.832 | 4  |
| 323 |        | 10  | max    | .008   | 3    | 003    | 15 | .101        | 4  | 4.9e-3      | 4  | NC            | _1_      | NC       | 1  |
| 324 |        |     | min    | 008    | 2    | 014    | 3  | 0           | 1  | 0           | 1  | 7268.885      | 3        | NC       | 1  |
| 325 |        | 11  | max    | .009   | 3    | 003    | 15 | .11         | 4  | 5.522e-3    | 4  | NC            | <u>1</u> | NC       | 1  |
| 326 |        |     | min    | 009    | 2    | 014    | 3  | 0           | 1  | 0           | 1  | 7257.605      | 4        | NC       | 1  |
| 327 |        | 12  | max    | .01    | 3    | 003    | 15 | .118        | 4  | 6.144e-3    | 4  | NC            | 1_       | NC       | 1  |
| 328 |        |     | min    | 01     | 2    | 013    | 3  | 0           | 1  | 0           | 1  | 7463.14       | 4        | NC       | 1  |
| 329 |        | 13  | max    | .011   | 3    | 003    | 15 | .126        | 4  | 6.767e-3    | 4  | NC            | 1_       | NC       | 1  |
| 330 |        |     | min    | 011    | 2    | 012    | 3  | 0           | 1  | 0           | 1  | 7961.223      | 4        | NC       | 1  |
| 331 |        | 14  | max    | .012   | 3    | 003    | 15 | .135        | 4  | 7.389e-3    | 4  | NC            | 1        | NC       | 1  |
| 332 |        |     | min    | 012    | 2    | 011    | 4  | 0           | 1  | 0           | 1  | 8864.296      | 4        | NC       | 1  |
| 333 |        | 15  | max    | .013   | 3    | 002    | 15 | .143        | 4  | 8.011e-3    | 4  | NC            | 1        | NC       | 1  |
| 334 |        |     | min    | 012    | 2    | 01     | 1  | 0           | 1  | 0           | 1  | NC            | 1_       | NC       | 1  |
| 335 |        | 16  | max    | .014   | 3    | 002    | 15 | .153        | 4  | 8.633e-3    | 4  | NC            | 1_       | NC       | 1  |
| 336 |        |     | min    | 013    | 2    | 009    | 1  | 0           | 1  | 0           | 1  | NC            | 1        | NC       | 1  |
| 337 |        | 17  | max    | .015   | 3    | 001    | 15 | .162        | 4  | 9.255e-3    | 4  | NC            | 1        | NC       | 1  |
| 338 |        |     | min    | 014    | 2    | 008    | 1  | 0           | 1  | 0           | 1  | NC            | 1        | NC       | 1  |
| 339 |        | 18  | max    | .016   | 3    | 0      | 15 | .173        | 4  | 9.877e-3    | 4  | NC            | 1        | NC       | 1  |
| 340 |        |     | min    | 015    | 2    | 007    | 1  | 0           | 1  | 0           | 1  | NC            | 1_       | NC       | 1  |
| 341 |        | 19  | max    | .017   | 3    | 0      | 15 | .184        | 4  | 1.05e-2     | 4  | NC            | 1        | NC       | 1  |
| 342 |        |     | min    | 016    | 2    | 006    | 1  | 0           | 1  | 0           | 1  | NC            | 1        | NC       | 1  |
| 343 | M8     | 1   | max    | .008   | 1    | .014   | 2  | 0           | 1  | 0           | 1  | NC            | 1        | NC       | 1  |
| 344 |        |     | min    | 002    | 3    | 017    | 3  | 184         | 4  | -5.967e-4   | 4  | NC            | 1        | 134.774  | 4  |
| 345 |        | 2   | max    | .008   | 1    | .014   | 2  | 0           | 1  | 0           | 1  | NC            | 1        | NC       | 1  |
| 346 |        |     | min    | 002    | 3    | 016    | 3  | 169         | 4  | -5.967e-4   | 4  | NC            | 1        | 146.65   | 4  |
| 347 |        | 3   | max    | .007   | 1    | .013   | 2  | 0           | 1  | 0           | 1  | NC            | 1        | NC       | 1  |
| 348 |        |     | min    | 002    | 3    | 015    | 3  | 154         | 4  | -5.967e-4   | 4  | NC            | 1        | 160.778  | 4  |
| 349 |        | 4   | max    | .007   | 1    | .012   | 2  | 0           | 1  | 0           | 1  | NC            | 1        | NC       | 1  |
| 350 |        |     | min    | 002    | 3    | 014    | 3  | 14          | 4  | -5.967e-4   | 4  | NC            | 1        | 177.744  | 4  |
| 351 |        | 5   | max    | .006   | 1    | .011   | 2  | 0           | 1  | 0           | 1  | NC            | 1        | NC       | 1  |
| 352 |        |     | min    | 002    | 3    | 013    | 3  | 125         | 4  | -5.967e-4   | 4  | NC            | 1        | 198.344  | 4  |
| 353 |        | 6   | max    | .006   | 1    | .01    | 2  | 0           | 1  | 0           | 1  | NC            | 1        | NC       | 1  |
| 354 |        |     | min    | 002    | 3    | 012    | 3  | 111         | 4  | -5.967e-4   | 4  | NC            | 1        | 223.681  | 4  |
| 355 |        | 7   | max    | .006   | 1    | .01    | 2  | 0           | 1  | 0           | 1  | NC            | 1        | NC       | 1  |
| 356 |        |     | min    | 002    | 3    | 011    | 3  | 097         | 4  | -5.967e-4   | 4  | NC            | 1        | 255.325  | 4  |
| 357 |        | 8   | max    | .005   | 1    | .009   | 2  | 0           | 1  | 0           | 1  | NC            | 1        | NC       | 1  |
| 358 |        |     | min    | 001    | 3    | 01     | 3  | 084         | 4  | -5.967e-4   | 4  | NC            | 1        | 295.559  | 4  |
| 359 |        | 9   | max    | .005   | 1    | .008   | 2  | 0           | 1  | 0           | 1  | NC            | 1        | NC       | 1  |
| 360 |        |     | min    | 001    | 3    | 009    | 3  | 071         | 4  | -5.967e-4   | 4  | NC            | 1        | 347.826  | 4  |
| 361 |        | 10  | max    | .004   | 1    | .007   | 2  | 0           | 1  | 0           | 1  | NC            | 1        | NC       | 1  |
| 362 |        | 1.0 | min    | 001    | 3    | 008    | 3  | 059         | 4  | -5.967e-4   | 4  | NC            | 1        | 417.507  | 4  |
| 363 |        | 11  | max    | .004   | 1    | .006   | 2  | 0           | 1  | 0           | 1  | NC            | 1        | NC       | 1  |
| 364 |        |     | min    | 001    | 3    | 008    | 3  | 048         | 4  | -5.967e-4   | 4  | NC            | 1        | 513.402  | 4  |
| 365 |        | 12  | max    | .003   | 1    | .006   | 2  | 0           | 1  | 0           | 1  | NC            | 1        | NC       | 1  |
| 366 |        | 12  | min    | 0      | 3    | 007    | 3  | 038         | 4  | -5.967e-4   | 4  | NC            | 1        | 650.738  | 4  |
| 367 |        | 13  | max    | .003   | 1    | .005   | 2  | <u>.030</u> | 1  | 0           | 1  | NC            | 1        | NC       | 1  |
| 368 |        | 10  | min    | 0      | 3    | 006    | 3  | 029         | 4  | -5.967e-4   | 4  | NC            | 1        | 857.778  | 4  |
| 369 |        | 14  | max    | .002   | 1    | .004   | 2  | 0           | 1  | 0           | 1  | NC            | 1        | NC       | 1  |
| 370 |        | 17  | min    | 0      | 3    | 005    | 3  | 021         | 4  | -5.967e-4   | 4  | NC            | 1        | 1192.025 | _  |
| 371 |        | 15  | max    | .002   | 1    | .003   | 2  | 0           | 1  | 0           | 1  | NC            | 1        | NC       | 1  |
| 372 |        | 13  | min    | 0      | 3    | 004    | 3  | 014         | 4  | -5.967e-4   | 4  | NC            | 1        | 1786.044 |    |
| 373 |        | 16  | max    | .001   | 1    | .002   | 2  | 014<br>0    | 1  | 0           | 1  | NC<br>NC      | 1        | NC       | 1  |
| 374 |        | 10  | min    | 0      | 3    | 003    | 3  | 008         | 4  | -5.967e-4   | 4  | NC            | 1        | 3006.325 | _  |
| 3/4 |        |     | 111111 | U      | J    | 003    | J  | 000         | 4  | -J.3076-4   | 4  | INC           |          | 3000.323 | 4  |



Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

| 375 17 max 0 1 .002 2                                                                  | 0   1   0   1   NC   1   NC   1                                  |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------|
|                                                                                        | 0 1 0 1 110 1 110 1                                              |
|                                                                                        | 004 4 -5.967e-4 4 NC 1 6211.902 4                                |
| 377 18 max 0 1 0 2                                                                     | 0 1 0 1 NC 1 NC 1                                                |
|                                                                                        | 001 4 -5.967e-4 4 NC 1 NC 1                                      |
| 379 19 max 0 1 0 1                                                                     | 0 1 0 1 NC 1 NC 1                                                |
| 380 min 0 1 0 1                                                                        | 0 1 -5.967e-4 4 NC 1 NC 1                                        |
| 381 M10 1 max .006 1 .005 2                                                            | 0 12 1.401e-3 4 NC 1 NC 2                                        |
|                                                                                        | 519                                                              |
|                                                                                        | 0 12 1:1000 0 1 110 1                                            |
|                                                                                        | 476                                                              |
|                                                                                        | 434                                                              |
| 387 4 max .005 1 .003 2                                                                | 0 12 1.662e-3 4 NC 1 NC 1                                        |
|                                                                                        | 392                                                              |
| 389 5 max .005 1 .002 2                                                                | 0 12 1.749e-3 4 NC 1 NC 1                                        |
|                                                                                        | 351 4 7.459e-6 12 NC 1 157.585 4                                 |
| 391 6 max .004 1 .002 2                                                                | 0 12 1.836e-3 4 NC 1 NC 1                                        |
|                                                                                        | 311 4 6.807e-6 12 NC 1 177.831 4                                 |
| 393 7 max .004 1 .001 2                                                                | 0 12 1.923e-3 4 NC 1 NC 1                                        |
|                                                                                        | 273 4 6.155e-6 12 NC 1 203.106 4                                 |
| 395 8 max .004 1 0 2                                                                   | 0 12 2.01e-3 4 NC 1 NC 1                                         |
|                                                                                        | 235 4 5.503e-6 12 NC 1 235.236 4                                 |
| 397 9 max .003 1 0 2                                                                   | 0 12 2.096e-3 4 NC 1 NC 1                                        |
| 398 min004 3006 3                                                                      | 2 4 4.852e-6 12 NC 1 276.97 4                                    |
| 399 10 max .003 1 0 2                                                                  | 0 12 2.183e-3 4 NC 1 NC 1                                        |
|                                                                                        | 166   4   4.2e-6   12   NC   1   332.608   4                     |
| 401 11 max .003 1 0 2                                                                  | 0 12 2.27e-3 4 NC 1 NC 1                                         |
|                                                                                        | 135   4   3.548e-6   12   NC   1   409.186   4                   |
| 403 12 max .002 1 0 2                                                                  | 0 12 2.357e-3 4 NC 1 NC 1                                        |
|                                                                                        | 107 4 2.896e-6 12 NC 1 518.887 4                                 |
| 405 13 max .002 1 0 15                                                                 | 0 12 2.444e-3 4 NC 1 NC 1                                        |
|                                                                                        | 081 4 2.244e-6 12 NC 1 684.335 4                                 |
| 407 14 max .002 1 0 15                                                                 | 0 12 2.531e-3 4 NC 1 NC 1                                        |
|                                                                                        | 058 4 1.593e-6 12 NC 1 951.608 4                                 |
| 409 15 max .001 1 0 15                                                                 | 0 12 2.618e-3 4 NC 1 NC 1                                        |
|                                                                                        | 039 4 9.312e-7 10 NC 1 1427.076 4                                |
| 411 16 max 0 1 0 15                                                                    | 0 12 2.705e-3 4 NC 1 NC 1                                        |
|                                                                                        | 023 4 -9.964e-7 1 NC 1 2405.395 4                                |
| 413                                                                                    | 0 12 2.792e-3 4 NC 1 NC 1<br>- 011 4 -1 387e-5 1 NC 1 4982 745 4 |
| 414     min     0     3    002     4       415     18     max     0     1     0     15 | 011 4 -1.387e-5 1 NC 1 4982.745 4<br>0 12 2.879e-3 4 NC 1 NC 1   |
|                                                                                        | 003 4 -2.675e-5 1 NC 1 NC 1                                      |
| 417 19 max 0 1 0 1                                                                     | 0 1 2.966e-3 4 NC 1 NC 1                                         |
| 418 min 0 1 0 1                                                                        | 0 1 -3.962e-5 1 NC 1 NC 1                                        |
| 419 M11 1 max 0 1 0 1                                                                  | 0 1 1.251e-5 1 NC 1 NC 1                                         |
| 420 min 0 1 0 1                                                                        | 0 1 -6.964e-4 4 NC 1 NC 1                                        |
| 421 2 max 0 3 0 15                                                                     | .014                                                             |
| 422 min 0 2002 4                                                                       | 0 1 -7.173e-5 4 NC 1 NC 1                                        |
| 423 3 max 0 3 0 15                                                                     | .028 4 5.53e-4 4 NC 1 NC 1                                       |
| 424 min 0 2004 4                                                                       | 0 1 -3.158e-5 1 NC 1 NC 1                                        |
| 425 4 max 0 3001 15                                                                    | .04 4 1.178e-3 4 NC 1 NC 1                                       |
| 426 min 0 2005 4                                                                       | 0 1 -5.363e-5 1 NC 1 9950.471 4                                  |
| 427 5 max .001 3002 15                                                                 | .052 4 1.802e-3 4 NC 1 NC 1                                      |
| 428 min 0 2007 4                                                                       | 0 1 -7.567e-5 1 NC 1 8612.363 4                                  |
| 429 6 max .001 3002 15                                                                 | .063 4 2.427e-3 4 NC 1 NC 1                                      |
|                                                                                        | 001 1 -9.772e-5 1 NC 1 8079.452 4                                |
| 431 7 max .002 3003 15                                                                 | .073 4 3.052e-3 4 NC 1 NC 1                                      |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_

|            | Member | Sec      |            | x [in]      | LC | y [in]          | LC | z [in]             |   | x Rotate [r            | LC             |                |               |               | LC |
|------------|--------|----------|------------|-------------|----|-----------------|----|--------------------|---|------------------------|----------------|----------------|---------------|---------------|----|
| 432        |        |          | min        | 001         | 2  | 011             | 4  | 001                | 1 | -1.198e-4              | 1_             | 8763.454       | 4             | 8049.26       | 4  |
| 433        |        | 8        | max        | .002        | 3  | 003             | 15 | .083               | 4 | 3.676e-3               | 4_             | NC             | _1_           | NC            | 1  |
| 434        |        |          | min        | 002         | 2  | 012             | 4  | 002                | 1 | -1.418e-4              | 1_             | 7851.594       | 4_            | 8447.421      | 4  |
| 435        |        | 9        | max        | .002        | 3  | 003             | 15 | .092               | 4 | 4.301e-3               | _4_            | NC             | _1_           | NC            | 1  |
| 436        |        | 40       | min        | 002         | 2  | <u>013</u>      | 4  | 002                | 1 | -1.639e-4              | 1_             | 7310.595       | 4_            | 9329.141      | 4  |
| 437        |        | 10       | max        | .003        | 3  | 003             | 15 | .101               | 4 | 4.926e-3               | 4              | NC             | 2             | NC<br>NC      | 1  |
| 438        |        | 44       | min        | 002         | 2  | 013             | 4  | 002                | 1 | -1.859e-4              | 1_             | 7045.718       | 4             | NC<br>NC      | 1  |
| 439        |        | 11       | max        | .003        | 3  | 003             | 15 | .11                | 4 | 5.55e-3                | 4              | NC             | 2             | NC<br>NC      | 1  |
| 440        |        | 40       | min        | 002         | 2  | 014             | 4  | 003                | 1 | -2.08e-4               | 1_             | 7017.771       | 4_            | NC<br>NC      | 1  |
| 441        |        | 12       | max        | .003        | 3  | 003             | 15 | .118               | 4 | 6.175e-3               | 4              | NC<br>7228.053 | <u>2</u><br>4 | NC<br>NC      | 1  |
| 442        |        | 13       | min        | 003         | 3  | 013<br>003      | 15 | 003<br>.126        | 4 | -2.3e-4                | <u>1</u><br>4  | NC             | <u>4</u><br>1 | NC<br>NC      | 1  |
| 444        |        | 13       | max<br>min | .004<br>003 | 2  | 003<br>013      | 4  | 004                | 1 | 6.8e-3<br>-2.521e-4    | 1              | 7720.766       | 4             | NC<br>NC      | 1  |
| 445        |        | 14       |            | .003        | 3  | 013             | 15 | .135               | 4 | 7.424e-3               | 4              | NC             | 1             | NC<br>NC      | 1  |
| 446        |        | 14       | max<br>min | 003         | 2  | 003<br>011      | 4  | 004                | 1 | -2.741e-4              | 1              | 8606.101       | 4             | NC<br>NC      | 1  |
| 447        |        | 15       | max        | .004        | 3  | 002             | 15 | <u>004</u><br>.144 | 4 | 8.049e-3               | 4              | NC             | 1             | NC            | 1  |
| 448        |        | 10       | min        | 003         | 2  | 01              | 4  | 005                | 1 | -2.961e-4              | 1              | NC             | 1             | NC            | 1  |
| 449        |        | 16       | max        | .003        | 3  | 002             | 15 | .153               | 4 | 8.674e-3               | 4              | NC             | 1             | NC            | 1  |
| 450        |        | 10       | min        | 003         | 2  | 008             | 4  | 005                | 1 | -3.182e-4              | 1              | NC             | 1             | NC            | 1  |
| 451        |        | 17       | max        | .005        | 3  | 002             | 15 | .163               | 4 | 9.298e-3               | 4              | NC             | 1             | NC            | 1  |
| 452        |        | <u> </u> | min        | 004         | 2  | 006             | 1  | 006                | 1 | -3.402e-4              | 1              | NC             | 1             | NC            | 1  |
| 453        |        | 18       | max        | .005        | 3  | 0               | 15 | .174               | 4 | 9.923e-3               | 4              | NC             | 1             | NC            | 1  |
| 454        |        |          | min        | 004         | 2  | 005             | 1  | 006                | 1 | -3.623e-4              | 1              | NC             | 1             | NC            | 1  |
| 455        |        | 19       | max        | .005        | 3  | 0               | 15 | .185               | 4 | 1.055e-2               | 4              | NC             | 1             | NC            | 1  |
| 456        |        |          | min        | 004         | 2  | 003             | 1  | 007                | 1 | -3.843e-4              | 1              | NC             | 1             | NC            | 1  |
| 457        | M12    | 1        | max        | .003        | 1  | .004            | 2  | .007               | 1 | -1.161e-6              | 12             | NC             | 1             | NC            | 3  |
| 458        |        |          | min        | 0           | 3  | 005             | 3  | 185                | 4 | -5.586e-4              | 4              | NC             | 1             | 133.957       | 4  |
| 459        |        | 2        | max        | .003        | 1  | .003            | 2  | .006               | 1 | -1.161e-6              | 12             | NC             | 1             | NC            | 2  |
| 460        |        |          | min        | 0           | 3  | 005             | 3  | 17                 | 4 | -5.586e-4              | 4              | NC             | 1             | 145.757       | 4  |
| 461        |        | 3        | max        | .003        | 1  | .003            | 2  | .006               | 1 | -1.161e-6              | 12             | NC             | 1_            | NC            | 2  |
| 462        |        |          | min        | 0           | 3  | 005             | 3  | 1 <u>55</u>        | 4 | -5.586e-4              | 4              | NC             | 1             | 159.795       | 4  |
| 463        |        | 4        | max        | .002        | 1  | .003            | 2  | .005               | 1 | -1.161e-6              | 12             | NC             | _1_           | NC            | 2  |
| 464        |        |          | min        | 0           | 3  | 005             | 3  | 14                 | 4 | -5.586e-4              | 4              | NC             | 1_            | 176.652       | 4  |
| 465        |        | 5        | max        | .002        | 1  | .003            | 2  | .005               | 1 | -1.161e-6              | 12             | NC             | _1_           | NC            | 2  |
| 466        |        |          | min        | 0           | 3  | 004             | 3  | 126                | 4 | -5.586e-4              | 4              | NC             | _1_           | 197.12        | 4  |
| 467        |        | 6        | max        | .002        | 1  | .003            | 2  | .004               | 1 | -1.161e-6              | 12             | NC             | _1_           | NC            | 2  |
| 468        |        | <u> </u> | min        | 0           | 3  | 004             | 3  | 112                | 4 | -5.586e-4              | 4              | NC             | 1_            | 222.296       | 4  |
| 469        |        | 7        | max        | .002        | 1  | .002            | 2  | .004               | 1 | -1.161e-6              | 12             | NC             | 1_            | NC            | 2  |
| 470        |        |          | min        | 0           | 3  | 004             | 3  | 098                | 4 | -5.586e-4              | 4_             | NC             | 1_            | 253.737       | 4  |
| 471        |        | 8        | max        | .002        | 1  | .002            | 2  | .003               | 1 |                        | 12             | NC             | 1_            | NC<br>200 745 | 2  |
| 472        |        |          | min        |             | 3  | 003             | 3  | 084                |   | -5.586e-4              |                | NC<br>NC       | 1             | 293.715       |    |
| 473        |        | 9        | max        | .002        | 3  | .002            | 2  | .003               | 1 | -1.161e-6              |                | NC             | 1             | NC<br>245 C40 | 2  |
| 474        |        | 10       | min        | 0           |    | 003             | 2  | 072                | 1 | -5.586e-4              | 4              | NC<br>NC       | <u>1</u><br>1 | 345.649       | 1  |
| 475<br>476 |        | 10       | max        | .001        | 3  | .002            | 3  | .002               | 4 | -1.161e-6              |                | NC<br>NC       | 1             | NC<br>414.885 |    |
| 477        |        | 11       | min<br>max | .001        | 1  | 003<br>.002     | 2  | 06<br>.002         | 1 | -5.586e-4<br>-1.161e-6 | <u>4</u><br>12 | NC<br>NC       | 1             | NC            | 1  |
| 478        |        |          | min        | 0           | 3  | 002             | 3  | 049                | 4 | -5.586e-4              | 4              | NC             | 1             | 510.168       | 4  |
| 479        |        | 12       | max        | .001        | 1  | .002            | 2  | .001               | 1 | -1.161e-6              |                | NC             | 1             | NC            | 1  |
| 480        |        | 12       | min        | 0           | 3  | 002             | 3  | 038                | 4 | -5.586e-4              |                | NC             | 1             | 646.626       | 4  |
| 481        |        | 13       | max        | 0           | 1  | .002            | 2  | .001               | 1 | -3.366e-4<br>-1.161e-6 | <u>4</u><br>12 | NC<br>NC       | 1             | NC            | 1  |
| 482        |        | 13       | min        | 0           | 3  | 002             | 3  | 029                | 4 | -5.586e-4              | 4              | NC<br>NC       | 1             | 852.343       | 4  |
| 483        |        | 14       | max        | 0           | 1  | .002            | 2  | <u>029</u><br>0    | 1 | -1.161e-6              | 12             | NC             | 1             | NC            | 1  |
| 484        |        | 14       | min        | 0           | 3  | 002             | 3  | 021                | 4 | -5.586e-4              | 4              | NC             | 1             | 1184.451      | 4  |
| 485        |        | 15       | max        | 0           | 1  | <u>002</u><br>0 | 2  | 0                  | 1 | -1.161e-6              |                | NC             | 1             | NC            | 1  |
| 486        |        | 10       | min        | 0           | 3  | 001             | 3  | 014                | 4 | -5.586e-4              | 4              | NC             | 1             | 1774.662      | -  |
| 487        |        | 16       | max        | 0           | 1  | 0               | 2  | 0                  | 1 | -1.161e-6              |                | NC             | 1             | NC            | 1  |
| 488        |        | 1.0      | min        | 0           | 3  | 0               | 3  | 008                | 4 | -5.586e-4              | 4              | NC             | 1             | 2987.109      | _  |
| 700        |        |          | 111111     | U           |    | U               | J  | .000               |   | 0.0000-4               | т              | 110            |               | 2007.103      |    |



Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member    | Sec |     | x [in] | LC | y [in]     | LC | z [in] | LC |           |          | (n) L/y Ratio | LC        |                | LC  |
|-----|-----------|-----|-----|--------|----|------------|----|--------|----|-----------|----------|---------------|-----------|----------------|-----|
| 489 |           | 17  | max | 0      | 1  | 0          | 2  | 0      | 1  | -1.161e-6 | 12       | NC            | 1         | NC             | 1   |
| 490 |           |     | min | 0      | 3  | 0          | 3  | 004    | 4  | -5.586e-4 | 4        | NC            | 1         | 6172.057       | 4   |
| 491 |           | 18  | max | 0      | 1  | 0          | 2  | 0      | 1  | -1.161e-6 | 12       | NC            | 1         | NC             | 1   |
| 492 |           |     | min | 0      | 3  | 0          | 3  | 001    | 4  | -5.586e-4 | 4        | NC            | 1         | NC             | 1   |
| 493 |           | 19  | max | 0      | 1  | 0          | 1  | 0      | 1  | -1.161e-6 |          | NC            | 1         | NC             | 1   |
| 494 |           |     | min | 0      | 1  | 0          | 1  | 0      | 1  | -5.586e-4 | 4        | NC            | 1         | NC             | 1   |
| 495 | M1        | 1   | max | .007   | 3  | .116       | 2  | .546   | 4  | 1.564e-2  | 1        | NC            | 1         | NC             | 1   |
| 496 |           |     | min | 003    | 2  | 021        | 3  | 0      | 12 | -2.535e-2 |          | NC            | 1         | NC             | 1   |
| 497 |           | 2   | max | .007   | 3  | .056       | 2  | .531   | 4  | 8.243e-3  | 4        | NC            | 4         | NC             | 1   |
| 498 |           |     | min | 003    | 2  | 009        | 3  | 005    | 1  | -1.254e-2 | 3        | 1932.477      | 2         | NC<br>NC       | 1   |
| 499 |           | 3   |     | .007   | 3  | .01        | 3  | .514   | 4  | 1.349e-2  | 4        | NC            | 5         | NC             | 1   |
|     |           | 3   | max |        |    |            |    |        |    |           | 4        |               |           |                | _   |
| 500 |           | -   | min | 003    | 2  | 008        | 2  | 007    | 1  | -1.336e-4 |          | 930.669       | 2         | 7849.712       | 5   |
| 501 |           | 4   | max | .007   | 3  | .043       | 3  | .498   | 4  | 1.182e-2  | 4_       | NC            | 5         | NC             | 1   |
| 502 |           |     | min | 003    | 2  | 081        | 2  | 007    | 1  | -4.686e-3 |          | 586.865       | 2         | 5495.714       | 5   |
| 503 |           | 5   | max | .006   | 3  | .085       | 3  | .482   | 4  | 1.014e-2  | _4_      |               | <u>15</u> | NC             | 1_  |
| 504 |           |     | min | 003    | 2  | 157        | 2  | 005    | 1  | -9.248e-3 | 3        | 423.164       | 2         | 4306.324       | 5   |
| 505 |           | 6   | max | .006   | 3  | .132       | 3  | .465   | 4  | 1.41e-2   | <u>1</u> |               | 15        | NC             | 1   |
| 506 |           |     | min | 003    | 2  | 23         | 2  | 002    | 1  | -1.381e-2 | 3        | 333.05        | 2         | 3596.254       | 5   |
| 507 |           | 7   | max | .006   | 3  | .176       | 3  | .448   | 4  | 1.885e-2  | 1        | NC            | 15        | NC             | 1   |
| 508 |           |     | min | 003    | 2  | 296        | 2  | 0      | 12 |           | 3        | 279.89        | 2         | 3119.165       | 4   |
| 509 |           | 8   | max | .006   | 3  | .213       | 3  | .43    | 4  | 2.36e-2   | 1        | 8994.044      | 15        | NC             | 1   |
| 510 |           |     | min | 003    | 2  | 348        | 2  | 0      | 12 | -2.294e-2 | 3        | 248.461       | 2         | 2783.504       | 4   |
| 511 |           | 9   | max | .006   | 3  | .237       | 3  | .411   | 4  | 2.61e-2   | 1        |               | 15        | NC             | 1   |
| 512 |           |     | min | 003    | 2  | 381        | 2  | 0      | 1  | -2.307e-2 | 3        | 232.106       | 2         | 2583.186       | 4   |
| 513 |           | 10  | max | .006   | 3  | .246       | 3  | .389   | 4  | 2.728e-2  | 2        |               | 15        | NC             | 1   |
| 514 |           | 10  | min | 003    | 2  | 392        | 2  | 0      | 12 | -2.025e-2 | 3        | 227.301       | 2         | 2526.762       | 4   |
| 515 |           | 11  |     | .006   | 3  | .24        | 3  |        |    | 2.931e-2  | _        |               | 15        | NC             | 1   |
|     |           |     | max |        |    |            |    | .366   | 4  |           | 2        |               |           |                |     |
| 516 |           | 40  | min | 003    | 2  | 381        | 2  | 0      | 12 |           |          | 232.848       | 2         | 2588.113       | 4   |
| 517 |           | 12  | max | .006   | 3  | .22        | 3  | .34    | 4  | 2.83e-2   | 2        |               | 15        | NC<br>ozoo coo | 1   |
| 518 |           | 10  | min | 003    | 2  | 347        | 2  | 0      | 1  | -1.459e-2 | 3        | 250.453       | 1_        | 2783.322       | 4   |
| 519 |           | 13  | max | .005   | 3  | .187       | 3  | .311   | 4  | 2.27e-2   | 2        |               | 15        | NC             | 1   |
| 520 |           |     | min | 003    | 2  | 293        | 2  | 0      | 1  | -1.168e-2 | 3        | 284.28        | 1         | 3275.865       | 4   |
| 521 |           | 14  | max | .005   | 3  | <u>145</u> | 3  | .281   | 4  | 1.709e-2  | 2        |               | <u>15</u> | NC             | _1_ |
| 522 |           |     | min | 003    | 2  | 224        | 2  | 0      | 12 | -8.768e-3 | 3        | 342.031       | 1         | 4298.918       | 4   |
| 523 |           | 15  | max | .005   | 3  | .099       | 3  | .249   | 4  | 1.149e-2  | 2        |               | 15        | NC             | 1   |
| 524 |           |     | min | 003    | 2  | 15         | 1  | 0      | 12 | -5.859e-3 | 3        | 441.19        | 1         | 6517.761       | 4   |
| 525 |           | 16  | max | .005   | 3  | .05        | 3  | .218   | 4  | 9.089e-3  | 4        | NC            | 5         | NC             | 1   |
| 526 |           |     | min | 003    | 2  | 074        | 1  | 0      | 12 | -2.949e-3 | 3        | 624.175       | 1         | NC             | 1   |
| 527 |           | 17  | max | .005   | 3  | .003       | 3  | .189   | 4  | 1.015e-2  | 4        | NC            | 5         | NC             | 1   |
| 528 |           |     | min | 003    | 2  | 005        | 2  | 0      | 12 | -3.957e-5 |          | 1013.947      | 1         | NC             | 1   |
| 529 |           | 18  | max | .005   | 3  | .055       | 1  | .164   | 4  | 1.044e-2  | 2        | NC            | 4         | NC             | 1   |
| 530 |           | 10  | min | 003    | 2  | 038        | 3  | 0      | 12 |           |          | 2142.43       | 1         | NC             | 1   |
| 531 |           | 19  | max | .005   | 3  | .108       | 1  | .142   | 4  | 2.097e-2  | 2        | NC            | 1         | NC             | 1   |
| 532 |           | 13  | min | 003    | 2  | 076        | 3  | 0      | 1  | -8.644e-3 |          | NC            | 1         | NC             | 1   |
|     | N/E       | 1   |     |        |    |            |    |        |    | 0         |          |               | 1         | NC             |     |
| 533 | <u>M5</u> | 1   | max | .021   | 3  | .27        | 2  | .546   | 4  |           | 1_4      | NC<br>NC      | _         |                | 1   |
| 534 |           |     | min | 014    | 2  | 025        | 3  | 0      | 1  | -3.507e-6 | 4_       | NC NC         | 1_        | NC<br>NC       | 1   |
| 535 |           | 2   | max | .021   | 3  | .13        | 2  | .534   | 4  | 6.917e-3  | 4_       | NC NC         | 5         | NC             | 1   |
| 536 |           |     | min | 014    | 2  | 01         | 3  | 0      | 1  | 0         | _1_      | 828.37        | 2         | NC             | 1   |
| 537 |           | 3   | max | .021   | 3  | .031       | 3  | .519   | 4  | 1.362e-2  | 4        | NC            | 5_        | NC             | 1   |
| 538 |           |     | min | 014    | 2  | 026        | 2  | 0      | 1  | 0         | 1        | 390.245       | 2         | 6449.775       | 4   |
| 539 |           | 4   | max | .02    | 3  | .119       | 3  | .503   | 4  | 1.11e-2   | 4        |               | 15        | NC             | 1   |
| 540 |           |     | min | 014    | 2  | 213        | 2  | 0      | 1  | 0         | 1        | 239.27        | 2         | 4833.649       | 4   |
| 541 |           | 5   | max | .02    | 3  | .239       | 3  | .485   | 4  | 8.575e-3  | 4        | 6923.431      | 15        | NC             | 1   |
| 542 |           |     | min | 013    | 2  | 415        | 2  | 0      | 1  | 0         | 1        | 168.642       | 2         | 4021.562       | 4   |
| 543 |           | 6   | max | .02    | 3  | .373       | 3  | .466   | 4  | 6.052e-3  | 4        |               | 15        | NC             | 1   |
| 544 |           |     | min | 013    | 2  | 615        | 2  | 0      | 1  | 0         | 1        | 130.487       | 2         | 3516.69        | 4   |
| 545 |           | 7   | max | .019   | 3  | .504       | 3  | .448   | 4  | 3.528e-3  | 4        |               | 15        | NC             | 1   |
| UTU |           |     | παλ | .010   | J  | .007       |    | + + 0  |    | 0.0200 0  | т_       | ITUU.UTI      | 10        | 110            |     |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

| 546        | Member    | Sec | min        | x [in]<br>013 | LC<br>2 | y [in]<br>796                                    | LC<br>2 | z [in]           | LC<br>1 | x Rotate [r           | LC<br>1        | (n) L/y Ratio | LC<br>2        | (n) L/z Ratio  |   |
|------------|-----------|-----|------------|---------------|---------|--------------------------------------------------|---------|------------------|---------|-----------------------|----------------|---------------|----------------|----------------|---|
| 547        |           | 8   | min<br>max | .013          | 3       | <u>796</u><br>.614                               | 3       | .43              | 4       | 1.005e-3              | 4              | 3874.323      | 15             | NC             | 1 |
| 548        |           | 0   | min        | 013           | 2       | 941                                              | 2       | <u>.43</u>       | 1       | 0                     | 1              | 95.387        | 2              | 2824.751       | 4 |
| 549        |           | 9   | max        | .018          | 3       | .685                                             | 3       | .411             | 4       | 0                     | 1              | 3599.975      | 15             | NC             | 1 |
| 550        |           | 3   | min        | 012           | 2       | -1.033                                           | 2       | 0                | 1       | -2.224e-6             | 5              | 88.65         | 1              | 2580.667       | 4 |
| 551        |           | 10  | max        | .018          | 3       | <u>-1.033                                   </u> | 3       | .389             | 4       | 0                     | 1              | 3517.32       | 15             | NC             | 1 |
| 552        |           | 10  | min        | 012           | 2       | -1.064                                           | 2       | 0                | 1       | -2.131e-6             | 5              | 86.636        | 1              | 2544.554       |   |
| 553        |           | 11  | max        | .018          | 3       | .693                                             | 3       | .365             | 4       | 0                     | 1              | 3600.061      | 15             | NC             | 1 |
| 554        |           |     | min        | 012           | 2       | -1.033                                           | 2       | 0                | 1       | -2.037e-6             | 5              | 88.798        | 1              | 2616.332       | 4 |
| 555        |           | 12  | max        | .017          | 3       | .633                                             | 3       | .341             | 4       | 7.266e-4              | 4              | 3874.527      | 15             | NC             | 1 |
| 556        |           | 1-  | min        | 012           | 2       | 938                                              | 2       | 0                | 1       | 0                     | 1              | 95.92         | 1              | 2737.499       |   |
| 557        |           | 13  | max        | .017          | 3       | .536                                             | 3       | .312             | 4       | 2.551e-3              | 4              | 4409.763      | 15             | NC             | 1 |
| 558        |           |     | min        | 012           | 2       | 786                                              | 1       | 0                | 1       | 0                     | 1              | 109.932       | 1              | 3221.226       | 4 |
| 559        |           | 14  | max        | .016          | 3       | .414                                             | 3       | .28              | 4       | 4.376e-3              | 4              | 5330.435      | 15             | NC             | 1 |
| 560        |           |     | min        | 011           | 2       | 599                                              | 1       | 0                | 1       | 0                     | 1              | 134.268       | 1              | 4446.339       | 4 |
| 561        |           | 15  | max        | .016          | 3       | .278                                             | 3       | .247             | 4       | 6.201e-3              | 4              | 6925.045      | 15             | NC             | 1 |
| 562        |           |     | min        | 011           | 2       | 395                                              | 1       | 0                | 1       | 0                     | 1              | 176.983       | 1              | 7813.554       | 4 |
| 563        |           | 16  | max        | .016          | 3       | .14                                              | 3       | .214             | 4       | 8.026e-3              | 4              | 9898.993      | 15             | NC             | 1 |
| 564        |           |     | min        | 011           | 2       | 193                                              | 1       | 0                | 1       | 0                     | 1              | 258.05        | 1              | NC             | 1 |
| 565        |           | 17  | max        | .015          | 3       | .011                                             | 3       | .185             | 4       | 9.851e-3              | 4              | NC            | 5              | NC             | 1 |
| 566        |           |     | min        | 011           | 2       | 016                                              | 2       | 0                | 1       | 0                     | 1              | 435.876       | 1_             | NC             | 1 |
| 567        |           | 18  | max        | .015          | 3       | .127                                             | 1       | .161             | 4       | 5.003e-3              | _4_            | NC            | <u>5</u>       | NC             | 1 |
| 568        |           |     | min        | 011           | 2       | 099                                              | 3       | 0                | 1       | 0                     | 1_             | 950.304       | 1_             | NC             | 1 |
| 569        |           | 19  | max        | .015          | 3       | .246                                             | 1       | .142             | 4       | 0                     | 1_             | NC            | 1_             | NC             | 1 |
| 570        | 140       |     | min        | 011           | 2       | <u>199</u>                                       | 3       | 0                | 1       | -1.744e-6             | 4_             | NC<br>NC      | 1_             | NC<br>NC       | 1 |
| 571        | <u>M9</u> | 1   | max        | .007          | 3       | .116                                             | 2       | .546             | 4       | 2.535e-2              | 3              | NC<br>NC      | 1              | NC<br>NC       | 1 |
| 572        |           |     | min        | 003           | 2       | 021                                              | 3       | 0                | 1       | -1.564e-2             | 1_             | NC<br>NC      | 1_             | NC<br>NC       | 1 |
| 573        |           | 2   | max        | .007          | 3       | .056                                             | 2       | .533             | 4       | 1.254e-2              | 3              | NC            | 4              | NC<br>NC       | 1 |
| 574        |           | 2   | min        | 003           |         | 009                                              | 3       | <u>0</u>         | 12      | -7.606e-3             | 1_             | 1932.477      | 2              | NC<br>NC       | 1 |
| 575<br>576 |           | 3   | max<br>min | .007<br>003   | 3       | <u>.01</u><br>008                                | 2       | <u>.518</u><br>0 | 12      | 1.359e-2<br>-3.125e-5 | <u>4</u><br>10 | NC<br>930.669 | <u>5</u><br>2  | NC<br>6620.446 |   |
| 577        |           | 4   | max        | .007          | 3       | .043                                             | 3       | .502             | 4       | 1.068e-2              | 5              | NC            | 5              | NC             | 1 |
| 578        |           | _   | min        | 003           | 2       | 081                                              | 2       | 0                | 12      | -4.612e-3             | 1              | 586.865       | 2              | 4898.614       |   |
| 579        |           | 5   | max        | .006          | 3       | .085                                             | 3       | .485             | 4       | 9.248e-3              | 3              | NC            | 15             | NC             | 1 |
| 580        |           |     | min        | 003           | 2       | 157                                              | 2       | 0                | 12      | -9.358e-3             | 1              | 423.164       | 2              | 4029.741       | 4 |
| 581        |           | 6   | max        | .006          | 3       | .132                                             | 3       | .466             | 4       | 1.381e-2              | 3              | NC            | 15             | NC             | 1 |
| 582        |           |     | min        | 003           | 2       | 23                                               | 2       | 0                | 12      | -1.41e-2              | 1              | 333.05        | 2              | 3495.421       | 4 |
| 583        |           | 7   | max        | .006          | 3       | .176                                             | 3       | .448             | 4       | 1.837e-2              | 3              | NC            | 15             | NC             | 1 |
| 584        |           |     | min        | 003           | 2       | 296                                              | 2       | 0                | 1       | -1.885e-2             | 1              | 279.89        | 2              | 3114.86        | 4 |
| 585        |           | 8   | max        | .006          | 3       | .213                                             | 3       | .43              | 4       | 2.294e-2              | 3              | 8978.568      | 15             | NC             | 1 |
| 586        |           |     | min        | 003           | 2       | 348                                              | 2       | 0                | 1       | -2.36e-2              | 1              | 248.461       | 2              | 2807.047       | 4 |
| 587        |           | 9   | max        | .006          | 3       | .237                                             | 3       | .411             | 4       | 2.307e-2              | 3              | 8392.571      | 15             | NC             | 1 |
| 588        |           |     | min        | 003           | 2       | 381                                              | 2       | 0                | 12      | -2.61e-2              | 1_             | 232.106       | 2              | 2576.458       | 4 |
| 589        |           | 10  | max        | .006          | 3       | .246                                             | 3       | .389             | 4       | 2.025e-2              | 3              | 8214.038      | 15             | NC             | 1 |
| 590        |           |     | min        | 003           | 2       | 392                                              | 2       | 0                | 1       | -2.728e-2             | 2              | 227.301       |                | 2527.798       |   |
| 591        |           | 11  | max        | .006          | 3       | .24                                              | 3       | .366             | 4       | 1.744e-2              | 3              | 8392.339      | <u>15</u>      | NC             | 1 |
| 592        |           | 40  | min        | 003           | 2       | <u>381</u>                                       | 2       | 0                | 1       | -2.931e-2             | 2              | 232.848       | 2              | 2596.535       |   |
| 593        |           | 12  | max        | .006          | 3       | .22                                              | 3       | .341             | 4       | 1.459e-2              | 3_             | 8978.12       | 15             | NC<br>0700 447 | 1 |
| 594        |           | 40  | min        | 003           | 2       | 347                                              | 2       | 0                | 12      | -2.83e-2              | 2              | 250.453       | 1_             | 2760.117       | 4 |
| 595        |           | 13  | max<br>min | .005<br>003   | 3       | .187<br>293                                      | 2       | .312             | 12      | 1.168e-2              | <u>3</u>       | NC<br>284.28  | <u>15</u><br>1 | NC<br>3276.345 | 4 |
| 596<br>597 |           | 14  |            | .005          | 3       | <u>293</u><br>.145                               | 3       | <u> </u>         | 4       | -2.27e-2<br>8.768e-3  |                | NC            | 15             | NC             | 1 |
| 598        |           | 14  | max<br>min | 003           | 2       | 224                                              | 2       | 002              | 1       | -1.709e-2             | 2              | 342.031       | 1              | 4423.799       |   |
| 599        |           | 15  | max        | .005          | 3       | .099                                             | 3       | .247             | 4       | 5.859e-3              | 3              | NC            | 15             | NC             | 1 |
| 600        |           | '   | min        | 003           | 2       | 15                                               | 1       | 004              | 1       | -1.149e-2             | 2              | 441.19        | 1              | 7149.241       | 5 |
| 601        |           | 16  | max        | .005          | 3       | .05                                              | 3       | .215             | 4       | 7.846e-3              | 5              | NC            | 5              | NC             | 1 |
| 602        |           | 1.0 | min        | 003           | 2       | 074                                              | 1       | 006              | 1       | -5.882e-3             | 2              | 624.175       | 1              | NC             | 1 |
| - U U L    |           |     | 1111111    | .000          |         | 107.1                                            | _       | .000             |         | 3.0020 0              | _              | J=            | -              |                |   |



Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec |     | x [in] | LC | y [in] | LC | z [in] | LC | x Rotate [r | LC | (n) L/y Ratio | LC | (n) L/z Ratio | LC |
|-----|--------|-----|-----|--------|----|--------|----|--------|----|-------------|----|---------------|----|---------------|----|
| 603 |        | 17  | max | .005   | 3  | .003   | 3  | .186   | 4  | 9.903e-3    | 4  | NC            | 5  | NC            | 1  |
| 604 |        |     | min | 003    | 2  | 005    | 2  | 007    | 1  | -5.071e-4   | 1  | 1013.947      | 1  | NC            | 1  |
| 605 |        | 18  | max | .005   | 3  | .055   | 1  | .162   | 4  | 4.706e-3    | 5  | NC            | 4  | NC            | 1  |
| 606 |        |     | min | 003    | 2  | 038    | 3  | 005    | 1  | -1.044e-2   | 2  | 2142.43       | 1  | NC            | 1  |
| 607 |        | 19  | max | .005   | 3  | .108   | 1  | .142   | 4  | 8.644e-3    | 3  | NC            | 1  | NC            | 1  |
| 608 |        |     | min | 003    | 2  | 076    | 3  | 0      | 12 | -2.097e-2   | 2  | NC            | 1  | NC            | 1  |



| Company:  | Schletter, Inc.                  | Date:    | 11/17/2015 |
|-----------|----------------------------------|----------|------------|
| Engineer: | HCV                              | Page:    | 1/5        |
| Project:  | Standard PVMax - Worst Case, 14- | -42 Inch | Width      |
| Address:  |                                  |          |            |
| Phone:    |                                  |          |            |
| E-mail:   |                                  |          |            |

### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

### 2. Input Data & Anchor Parameters

#### General

Design method:ACI 318-05 Units: Imperial units

#### **Anchor Information:**

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

# **Load and Geometry**

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

#### **Base Material**

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$ 

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

#### **Base Plate**

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28





| Company:  | Schletter, Inc.                               | Date: | 11/17/2015 |  |  |  |  |  |
|-----------|-----------------------------------------------|-------|------------|--|--|--|--|--|
| Engineer: | HCV                                           | Page: | 2/5        |  |  |  |  |  |
| Project:  | Standard PVMax - Worst Case, 14-42 Inch Width |       |            |  |  |  |  |  |
| Address:  |                                               |       |            |  |  |  |  |  |
| Phone:    |                                               |       |            |  |  |  |  |  |
| E-mail:   |                                               |       |            |  |  |  |  |  |

<Figure 2>



#### **Recommended Anchor**

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263





| Company:  | Schletter, Inc.                  | Date:   | 11/17/2015 |
|-----------|----------------------------------|---------|------------|
| Engineer: | HCV                              | Page:   | 3/5        |
| Project:  | Standard PVMax - Worst Case, 14- | 42 Inch | Width      |
| Address:  |                                  |         |            |
| Phone:    |                                  |         |            |
| E-mail:   |                                  |         |            |

### 3. Resulting Anchor Forces

| Anchor | Tension load,<br>N <sub>ua</sub> (lb) | Shear load x,<br>V <sub>uax</sub> (lb) | Shear load y,<br>V <sub>uay</sub> (lb) | Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb) |  |
|--------|---------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------------------|--|
| 1      | 1723.0                                | 23.0                                   | 593.0                                  | 593.4                                                      |  |
| Sum    | 1723 0                                | 23.0                                   | 593.0                                  | 593 4                                                      |  |

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'<sub>Nx</sub> (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>



### 4. Steel Strength of Anchor in Tension(Sec. D.5.1)

| N <sub>sa</sub> (lb) | $\phi$ | $\phi N_{sa}$ (lb) |
|----------------------|--------|--------------------|
| 8095                 | 0.75   | 6071               |

# 5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$  (Eq. D-7)

| Kc                          | λ                                                | $f'_c$ (psi)                 | h <sub>ef</sub> (in) | $N_b$ (lb)    |            |        |                    |
|-----------------------------|--------------------------------------------------|------------------------------|----------------------|---------------|------------|--------|--------------------|
| 17.0                        | 1.00                                             | 2500                         | 5.247                | 10215         |            |        |                    |
| $\phi N_{cb} = \phi (A_N$   | $_{lc}$ / $A_{Nco}$ ) $\Psi_{ed,N}$ $\Psi_{c,N}$ | $_{N}\Psi_{cp,N}N_{b}$ (Sec. | D.4.1 & Eq. D-4      | )             |            |        |                    |
| $A_{Nc}$ (in <sup>2</sup> ) | $A_{Nco}$ (in <sup>2</sup> )                     | $\Psi_{ed,N}$                | $arPsi_{c,N}$        | $\Psi_{cp,N}$ | $N_b$ (lb) | $\phi$ | $\phi N_{cb}$ (lb) |
| 220.36                      | 247 75                                           | 0.967                        | 1.00                 | 1 000         | 10215      | 0.65   | 5710               |

### 6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$ 

| $	au_{k,cr}$ (psi)             | <b>f</b> <sub>short-term</sub>                                  | $K_{sat}$            | $	au_{k,cr}$ (psi)             |                      |        |                 |
|--------------------------------|-----------------------------------------------------------------|----------------------|--------------------------------|----------------------|--------|-----------------|
| 1035                           | 1.00                                                            | 1.00                 | 1035                           |                      |        |                 |
| $N_{a0} = \tau_{k,cr} \pi d_a$ | h <sub>ef</sub> (Eq. D-16f)                                     |                      |                                |                      |        |                 |
| $\tau_{k,cr}$ (psi)            | d <sub>a</sub> (in)                                             | h <sub>ef</sub> (in) | $N_{a0}$ (lb)                  |                      |        |                 |
| 1035                           | 0.50                                                            | 6.000                | 9755                           |                      |        |                 |
| $\phi N_a = \phi (A_{Na})$     | / <b>A</b> <sub>Na0</sub> ) Ψ <sub>ed,Na</sub> Ψ <sub>p,i</sub> | NaNa0 (Sec. D.4      | I.1 & Eq. D-16a)               |                      |        |                 |
| $A_{Na}$ (in <sup>2</sup> )    | $A_{Na0}$ (in <sup>2</sup> )                                    | $\Psi_{\sf ed,Na}$   | $arPsi_{	extsf{p},	extsf{Na}}$ | N <sub>a0</sub> (lb) | $\phi$ | $\phi N_a$ (lb) |
| 109.66                         | 109.66                                                          | 1.000                | 1.000                          | 9755                 | 0.55   | 5365            |



| Company:  | Schletter, Inc.                               | Date: | 11/17/2015 |  |  |
|-----------|-----------------------------------------------|-------|------------|--|--|
| Engineer: | HCV                                           | Page: | 4/5        |  |  |
| Project:  | Standard PVMax - Worst Case, 14-42 Inch Width |       |            |  |  |
| Address:  |                                               |       |            |  |  |
| Phone:    |                                               |       |            |  |  |
| E-mail:   |                                               |       |            |  |  |

### 8. Steel Strength of Anchor in Shear (Sec. D.6.1)

| $V_{sa}$ (lb) | $\phi_{	extit{grout}}$ | $\phi$ | $\phi_{	extit{grout}} \phi V_{	ext{sa}}$ (lb) |  |
|---------------|------------------------|--------|-----------------------------------------------|--|
| 4855          | 1.0                    | 0.65   | 3156                                          |  |

# 9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

# Shear perpendicular to edge in y-direction:

| $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. | . D-24) |
|------------------------------------------------------------------------------|---------|
|------------------------------------------------------------------------------|---------|

| le (in)                     | da (in)                                                    | λ                            | f'c (psi)       | Ca1 (in)     | V <sub>by</sub> (lb) |        |                     |
|-----------------------------|------------------------------------------------------------|------------------------------|-----------------|--------------|----------------------|--------|---------------------|
| 4.00                        | 0.50                                                       | 1.00                         | 2500            | 7.00         | 6947                 |        |                     |
| $\phi V_{cby} = \phi (A_1)$ | $_{ m Vc}$ / $A_{ m Vco}$ ) $\Psi_{ m ed,V}$ $\Psi_{ m c}$ | $_{V}\Psi_{h,V}V_{by}$ (Sec. | D.4.1 & Eq. D-2 | 1)           |                      |        |                     |
| Avc (in <sup>2</sup> )      | $A_{Vco}$ (in <sup>2</sup> )                               | $\Psi_{\sf ed,V}$            | $\Psi_{c,V}$    | $\Psi_{h,V}$ | $V_{by}$ (lb)        | $\phi$ | $\phi V_{cby}$ (lb) |
| 192.89                      | 220.50                                                     | 0.925                        | 1.000           | 1.000        | 6947                 | 0.70   | 3934                |

### Shear perpendicular to edge in x-direction:

| V <sub>bv</sub> = ' | 7(1,/  | $d_{a})^{0.2}$ | Vd-22  | f'cCa1 1.5 | (Fa  | D-24) |
|---------------------|--------|----------------|--------|------------|------|-------|
| <b>v</b> bx -       | / Vie/ | uai            | VUaz V | I cLai     | ıLu. | D-241 |

| l <sub>e</sub> (in)         | d <sub>a</sub> (in)          | λ                            | f'c (psi)       | Ca1 (in)     | $V_{bx}$ (lb) |        |                     |
|-----------------------------|------------------------------|------------------------------|-----------------|--------------|---------------|--------|---------------------|
| 4.00                        | 0.50                         | 1.00                         | 2500            | 7.87         | 8282          |        |                     |
| $\phi V_{cbx} = \phi (A_1)$ | vc / A vco) Ψed, v Ψc,       | $_{V}\Psi_{h,V}V_{bx}$ (Sec. | D.4.1 & Eq. D-2 | 1)           |               |        |                     |
| $A_{Vc}$ (in <sup>2</sup> ) | $A_{Vco}$ (in <sup>2</sup> ) | $\Psi_{ed,V}$                | $\Psi_{c,V}$    | $\Psi_{h,V}$ | $V_{bx}$ (lb) | $\phi$ | $\phi V_{cbx}$ (lb) |
| 165.27                      | 278.72                       | 0.878                        | 1.000           | 1.000        | 8282          | 0.70   | 3018                |

### Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$  (Eq. D-24)

| I <sub>e</sub> (in)         | d <sub>a</sub> (in)          | λ                                | f'c (psi)         | <i>c</i> <sub>a1</sub> (in) | $V_{by}$ (lb) |        |                     |
|-----------------------------|------------------------------|----------------------------------|-------------------|-----------------------------|---------------|--------|---------------------|
| 4.00                        | 0.50                         | 1.00                             | 2500              | 7.00                        | 6947          |        |                     |
| $\phi V_{cbx} = \phi (2)$   | (Avc/Avco) $\Psi_{ed,V}$     | $\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se | c. D.4.1, D.6.2.1 | (c) & Eq. D-21)             |               |        |                     |
| $A_{Vc}$ (in <sup>2</sup> ) | $A_{Vco}$ (in <sup>2</sup> ) | $\Psi_{\sf ed,V}$                | $\varPsi_{c,V}$   | $\Psi_{h,V}$                | $V_{by}$ (lb) | $\phi$ | $\phi V_{cbx}$ (lb) |
| 192.89                      | 220.50                       | 1.000                            | 1.000             | 1.000                       | 6947          | 0.70   | 8508                |

# Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$  (Eq. D-24)

|                           | u)                            | (-4)                             |                   |                 |                      |        |                     |  |
|---------------------------|-------------------------------|----------------------------------|-------------------|-----------------|----------------------|--------|---------------------|--|
| le (in)                   | da (in)                       | λ                                | f'c (psi)         | Ca1 (in)        | V <sub>bx</sub> (lb) |        |                     |  |
| 4.00                      | 0.50                          | 1.00                             | 2500              | 7.87            | 8282                 |        |                     |  |
| $\phi V_{cby} = \phi (2)$ | $(A_{Vc}/A_{Vco})\Psi_{ed,V}$ | $\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se | c. D.4.1, D.6.2.1 | (c) & Eq. D-21) |                      |        |                     |  |
| Avc (in <sup>2</sup> )    | Avco (in <sup>2</sup> )       | $\Psi_{ed,V}$                    | $\Psi_{c,V}$      | $\Psi_{h,V}$    | $V_{bx}$ (lb)        | $\phi$ | $\phi V_{cby}$ (lb) |  |
| 165.27                    | 278.72                        | 1.000                            | 1.000             | 1.000           | 8282                 | 0.70   | 6875                |  |

### 10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$ 

| Kcp                         | A <sub>Na</sub> (In²)        | A <sub>Na0</sub> (In²) | $arPsi_{\sf ed,Na}$ | $arPsi_{ m 	extsf{p},Na}$ | Na0 (ID)   | Na (ID)       |        |                    |  |
|-----------------------------|------------------------------|------------------------|---------------------|---------------------------|------------|---------------|--------|--------------------|--|
| 2.0                         | 109.66                       | 109.66                 | 1.000               | 1.000                     | 9755       | 9755          |        |                    |  |
|                             |                              |                        |                     |                           |            |               |        |                    |  |
| 4 (:-2)                     | A (:2)                       | 177                    | 177                 | 177                       | A / /II- \ | A / /II- \    | ,      |                    |  |
| $A_{Nc}$ (in <sup>2</sup> ) | $A_{Nco}$ (in <sup>2</sup> ) | $arPsi_{ed,N}$         | $arPsi_{c,N}$       | $arPsi_{cp,N}$            | $N_b$ (lb) | $N_{cb}$ (lb) | $\phi$ | $\phi V_{cp}$ (lb) |  |
| 220.36                      | 247.75                       | 0.967                  | 1.000               | 1.000                     | 10215      | 8785          | 0.70   | 12298              |  |



| Company:  | Schletter, Inc.                  | Date:    | 11/17/2015 |
|-----------|----------------------------------|----------|------------|
| Engineer: | HCV                              | Page:    | 5/5        |
| Project:  | Standard PVMax - Worst Case, 14- | -42 Inch | Width      |
| Address:  |                                  |          |            |
| Phone:    |                                  |          |            |
| E-mail:   |                                  |          |            |

# 11. Results

# Interaction of Tensile and Shear Forces (Sec. D.7)

| Tension                     | Factored Load, Nua (lb)             | Design Strength, øNn (lb) | Ratio         | Status         |
|-----------------------------|-------------------------------------|---------------------------|---------------|----------------|
| Steel                       | 1723                                | 6071                      | 0.28          | Pass           |
| Concrete breakout           | 1723                                | 5710                      | 0.30          | Pass           |
| Adhesive                    | 1723                                | 5365                      | 0.32          | Pass (Governs) |
| Shear                       | Factored Load, V <sub>ua</sub> (lb) | Design Strength, øVn (lb) | Ratio         | Status         |
| Steel                       | 593                                 | 3156                      | 0.19          | Pass (Governs) |
| T Concrete breakout y+      | 593                                 | 3934                      | 0.15          | Pass           |
| T Concrete breakout x+      | 23                                  | 3018                      | 0.01          | Pass           |
| Concrete breakout y+        | 23                                  | 8508                      | 0.00          | Pass           |
| Concrete breakout x+        | 593                                 | 6875                      | 0.09          | Pass           |
| Concrete breakout, combined | -                                   | -                         | 0.15          | Pass           |
| Pryout                      | 593                                 | 12298                     | 0.05          | Pass           |
| Interaction check Nu        | a/φNn Vua/φVn                       | Combined Rat              | o Permissible | Status         |
| Sec. D.7.1 0.3              | 32 0.00                             | 32.1 %                    | 1.0           | Pass           |

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

### 12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.



| Company:  | Schletter, Inc.                  | Date:    | 11/17/2015 |
|-----------|----------------------------------|----------|------------|
| Engineer: | HCV                              | Page:    | 1/5        |
| Project:  | Standard PVMax - Worst Case, 34- | -35 Inch | Width      |
| Address:  |                                  |          |            |
| Phone:    |                                  |          |            |
| E-mail:   |                                  |          |            |

### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location:

Fastening description:

### 2. Input Data & Anchor Parameters

#### General

Design method:ACI 318-05 Units: Imperial units

#### **Anchor Information:**

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C<sub>min</sub> (inch): 1.75 Smin (inch): 3.00

#### **Base Material**

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$ : 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

# **Load and Geometry**

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No Anchors subjected to sustained tension: No Apply entire shear load at front row: No

#### **Base Plate**

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28





| Company:  | Schletter, Inc.                 | Date:    | 11/17/2015 |
|-----------|---------------------------------|----------|------------|
| Engineer: | HCV                             | Page:    | 2/5        |
| Project:  | Standard PVMax - Worst Case, 34 | -35 Inch | Width      |
| Address:  |                                 |          |            |
| Phone:    |                                 |          |            |
| E-mail:   |                                 |          |            |

<Figure 2>



#### **Recommended Anchor**

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263





| Company:  | Schletter, Inc.                  | Date:    | 11/17/2015 |
|-----------|----------------------------------|----------|------------|
| Engineer: | HCV                              | Page:    | 3/5        |
| Project:  | Standard PVMax - Worst Case, 34- | -35 Inch | Width      |
| Address:  |                                  |          |            |
| Phone:    |                                  |          |            |
| E-mail:   |                                  |          |            |

### 3. Resulting Anchor Forces

| Anchor | Tension load,<br>N <sub>ua</sub> (lb) | Shear load x,<br>V <sub>uax</sub> (lb) | Shear load y,<br>V <sub>uay</sub> (lb) | Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb) |
|--------|---------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------------------|
| 1      | 2700.0                                | 1671.0                                 | 0.0                                    | 1671.0                                                     |
| 2      | 2700.0                                | 1671.0                                 | 0.0                                    | 1671.0                                                     |
| Sum    | 5400.0                                | 3342.0                                 | 0.0                                    | 3342.0                                                     |

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5400 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis,  $e'_{Nx}$  (inch): 0.00 Eccentricity of resultant tension forces in y-axis,  $e'_{Ny}$  (inch): 0.00 Eccentricity of resultant shear forces in x-axis,  $e'_{Vx}$  (inch): 0.00 Eccentricity of resultant shear forces in y-axis,  $e'_{Vy}$  (inch): 0.00

<Figure 3>



# 4. Steel Strength of Anchor in Tension(Sec. D.5.1)

| $N_{sa}$ (lb) | $\phi$ | $\phi N_{sa}$ (lb) |
|---------------|--------|--------------------|
| 8095          | 0.75   | 6071               |

### 5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$  (Eq. D-7)

| Kc                            | λ                                                           | r <sub>c</sub> (psi)                      | n <sub>ef</sub> (In) | N <sub>b</sub> (ID) |                |            |        |                     |   |
|-------------------------------|-------------------------------------------------------------|-------------------------------------------|----------------------|---------------------|----------------|------------|--------|---------------------|---|
| 17.0                          | 1.00                                                        | 2500                                      | 6.000                | 12492               |                |            |        |                     |   |
| $\phi N_{cbg} = \phi (A_{I})$ | $_{ m lc}$ / $A_{ m Nco}$ ) $\Psi_{ m ec,N}$ $\Psi_{ m ed}$ | $_{l,N} arPsi_{c,N} arPsi_{cp,N} N_b$ (\$ | Sec. D.4.1 & Eq      | . D-5)              |                |            |        |                     |   |
| $A_{Nc}$ (in <sup>2</sup> )   | $A_{Nco}$ (in <sup>2</sup> )                                | $\Psi_{ec,N}$                             | $arPsi_{\sf ed,N}$   | $\Psi_{c,N}$        | $arPsi_{cp,N}$ | $N_b$ (lb) | $\phi$ | $\phi N_{cbg}$ (lb) |   |
| 408.24                        | 324.00                                                      | 1.000                                     | 1.000                | 1.00                | 1.000          | 12492      | 0.65   | 10231               | _ |

#### 6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$ 

| τ <sub>k,cr</sub> (psi)       | <b>f</b> <sub>short-term</sub>              | K <sub>sat</sub>                             | $\tau_{k,cr}$ (psi)           |                |                                                |              |        |                    |
|-------------------------------|---------------------------------------------|----------------------------------------------|-------------------------------|----------------|------------------------------------------------|--------------|--------|--------------------|
| 1035                          | 1.00                                        | 1.00                                         | 1035                          |                |                                                |              |        |                    |
| $N_{a0} = \tau_{k,cr} \pi da$ | hef (Eq. D-16f)                             |                                              |                               |                |                                                |              |        |                    |
| $\tau_{k,cr}$ (psi)           | d <sub>a</sub> (in)                         | h <sub>ef</sub> (in)                         | N <sub>a0</sub> (lb)          |                |                                                |              |        |                    |
| 1035                          | 0.50                                        | 6.000                                        | 9755                          |                |                                                |              |        |                    |
| $\phi N_{ag} = \phi (A_N$     | $_{a}$ / $A_{Na0}) arPsi_{ed,Na} arPsi_{g}$ | $_{g,Na} arPsi_{ec,Na} arPsi_{p,Na} \Lambda$ | l <sub>a0</sub> (Sec. D.4.1 & | Eq. D-16b)     |                                                |              |        |                    |
| $A_{Na}$ (in <sup>2</sup> )   | $A_{Na0}$ (in <sup>2</sup> )                | $\Psi_{\sf ed,Na}$                           | $arPsi_{g,Na}$                | $\Psi_{ec,Na}$ | $\mathscr{\Psi}_{\!\scriptscriptstyle {p,Na}}$ | $N_{a0}(lb)$ | $\phi$ | $\phi N_{ag}$ (lb) |
| 158.66                        | 109.66                                      | 1.000                                        | 1.043                         | 1.000          | 1.000                                          | 9755         | 0.55   | 8093               |



| Company:  | Schletter, Inc.                 | Date:    | 11/17/2015 |
|-----------|---------------------------------|----------|------------|
| Engineer: | HCV                             | Page:    | 4/5        |
| Project:  | Standard PVMax - Worst Case, 34 | -35 Inch | Width      |
| Address:  |                                 |          |            |
| Phone:    |                                 |          |            |
| E-mail:   |                                 |          |            |

### 8. Steel Strength of Anchor in Shear (Sec. D.6.1)

| $V_{sa}$ (lb) | $\phi_{	extit{grout}}$ | $\phi$ | $\phi_{grout}\phi V_{sa}$ (lb) |  |
|---------------|------------------------|--------|--------------------------------|--|
| 4855          | 1.0                    | 0.65   | 3156                           |  |

### 9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

# Shear perpendicular to edge in x-direction:

| $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c} C_{a1}^{1.5}$ (Eq. D-24) |         |      |           |          |                      |  |  |
|-----------------------------------------------------------------------------------|---------|------|-----------|----------|----------------------|--|--|
| le (in)                                                                           | da (in) | λ    | f'c (psi) | Ca1 (in) | V <sub>bx</sub> (lb) |  |  |
| 4.00                                                                              | 0.50    | 1.00 | 2500      | 12.00    | 15593                |  |  |

 $\phi V_{cbgx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx} (Sec. D.4.1 \& Eq. D-22)$ 

| $A_{Vc}$ (in <sup>2</sup> ) | $A_{Vco}$ (in <sup>2</sup> ) | $\Psi_{ec,V}$ | $arPsi_{\sf ed,V}$ | $\Psi_{c,V}$ | $\Psi_{h,V}$ | $V_{bx}$ (lb) | $\phi$ | $\phi V_{cbgx}$ (lb) |
|-----------------------------|------------------------------|---------------|--------------------|--------------|--------------|---------------|--------|----------------------|
| 612.00                      | 648.00                       | 1.000         | 0.944              | 1.000        | 1.000        | 15593         | 0.70   | 9735                 |

### Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$  (Eq. D-24)

| l <sub>e</sub> (in)         | d <sub>a</sub> (in)          | λ                                | f'c (psi)         | Ca1 (in)        | $V_{by}$ (lb) |        |                     |
|-----------------------------|------------------------------|----------------------------------|-------------------|-----------------|---------------|--------|---------------------|
| 4.00                        | 0.50                         | 1.00                             | 2500              | 14.66           | 21056         |        |                     |
| $\phi V_{cbx} = \phi (2)$   | (Avc/Avco) $\Psi_{ed,V}$     | $\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se | c. D.4.1, D.6.2.1 | (c) & Eq. D-21) |               |        |                     |
| $A_{Vc}$ (in <sup>2</sup> ) | $A_{Vco}$ (in <sup>2</sup> ) | $arPsi_{\sf ed,V}$               | $\Psi_{c,V}$      | $\Psi_{h,V}$    | $V_{by}$ (lb) | $\phi$ | $\phi V_{cbx}$ (lb) |
| 791.64                      | 967.12                       | 1.000                            | 1.000             | 1.000           | 21056         | 0.70   | 24129               |

# 10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\textit{cpg}} = \phi \min |\textit{KcpNag}\;;\; \textit{KcpNcbg}| = \phi \min |\textit{Kcp}(\textit{A}_\textit{Na} / \textit{A}_\textit{Na0}) \, \Psi_{\textit{ed},\textit{Na}} \, \Psi_{\textit{ec},\textit{Na}} \, \Psi_{\textit{ec},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, N_{\textit{a0}}\;;\; \textit{Kcp}(\textit{A}_\textit{Nc} / \textit{A}_\textit{Nco}) \, \Psi_{\textit{ec},\textit{N}} \, \Psi_{\textit{ed},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, N_{\textit{b}}|\; (\text{Eq. D-30b})$ 

| Kcp       | $A_{Na}$ (in <sup>2</sup> ) | $A_{Na0}$ (in <sup>2</sup> ) | $\Psi_{\sf ed,Na}$ | $\Psi_{g,Na}$ | $\Psi_{\sf ec,Na}$ | $\Psi_{ ho,Na}$     | <i>N</i> <sub>a0</sub> (lb) | Na (lb) |
|-----------|-----------------------------|------------------------------|--------------------|---------------|--------------------|---------------------|-----------------------------|---------|
| 2.0       | 158.66                      | 109.66                       | 1.000              | 1.043         | 1.000              | 1.000               | 9755                        | 14715   |
| Anc (in²) | Anco (in²)                  | $\Psi_{ec,N}$                | $\Psi_{ed,N}$      | $\Psi_{c,N}$  | $\Psi_{cp,N}$      | N <sub>b</sub> (lb) | Ncb (lb)                    | $\phi$  |
| 408.24    | 324.00                      | 1.000                        | 1.000              | 1.000         | 1.000              | 12492               | 15740                       | 0.70    |

φV<sub>cpg</sub> (lb) 20601

# 11. Results

### Interaction of Tensile and Shear Forces (Sec. D.7)

| Tension                | Factored Load, Nua (lb)             | Design Strength, øNn (lb) | Ratio         | Status         |
|------------------------|-------------------------------------|---------------------------|---------------|----------------|
| Steel                  | 2700                                | 6071                      | 0.44          | Pass           |
| Concrete breakout      | 5400                                | 10231                     | 0.53          | Pass           |
| Adhesive               | 5400                                | 8093                      | 0.67          | Pass (Governs) |
| Shear                  | Factored Load, V <sub>ua</sub> (lb) | Design Strength, øVn (lb) | Ratio         | Status         |
| Steel                  | 1671                                | 3156                      | 0.53          | Pass (Governs) |
| T Concrete breakout x+ | 3342                                | 9735                      | 0.34          | Pass           |
| Concrete breakout y-   | 1671                                | 24129                     | 0.07          | Pass           |
| Pryout                 | 3342                                | 20601                     | 0.16          | Pass           |
| Interaction check Nua  | /φNn Vua/φVn                        | Combined Rati             | o Permissible | Status         |



| Company:  | Schletter, Inc.                               | Date: | 11/17/2015 |  |  |
|-----------|-----------------------------------------------|-------|------------|--|--|
| Engineer: | HCV                                           | Page: | 5/5        |  |  |
| Project:  | Standard PVMax - Worst Case, 34-35 Inch Width |       |            |  |  |
| Address:  |                                               |       |            |  |  |
| Phone:    |                                               |       |            |  |  |
| E-mail:   |                                               |       |            |  |  |

| Sec. D.7.3 | 0.67 | 0.53 | 119.7 % | 1.2 | Pass |
|------------|------|------|---------|-----|------|
|            |      |      |         |     |      |

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

### 12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.