Měření amplitudové permeability

Jakub Dvořák

4. prosince 2020

Obr. 1 Prstencový vzorek

Parametry vzorku:

počty závitů: $N_1 = 35 \text{ z}, N_2 = 60 \text{ z},$

rozměry: $D_1 = 45 \text{ mm}, D_2 = 80 \text{ mm},$

v = 25 mm

RC článek: $C = 470 \text{ nF}, R_1 = 40 \text{ k}\Omega,$

 $R_2 = 120 \text{ k}\Omega, R_3 = 350 \text{ k}\Omega$

1 Úkol měření

- 1. a) V zapojení na 1 zobrazte na osciloskopu dynamickou hysterezní smyčku prstencového vzorku magneticky měkkého materiálu při napěť ovém magnetování (sinusovém průběhu B). Smyčka je zadána maximální hodnotou magnetické indukce B_m. Pozorujte vliv velikosti integrační konstanty použitého pasivního integračního RC článku na tvar smyčky a pro další měření rozhodněte, který z rezistorů R₁, R₂, R₃ v integračním článku je vhodné použít.
 - b) Z naměřených hodnot $I_{\rm 1m}$ a zadaných parametrů vzorku určete maximální hodnotu intenzity magnetického pole $H_{\rm m}$. Dále pomocí osciloskopu zjistěte hodnotu remanence $B_{\rm r}$ a koercitivity $H_{\rm c}$.
 - c) Změřte závislost amplitudové permeability μ_a na maximální hodnotě magnetické indukce pro $B_m = 0.1; 0.4; 0.7; 0.9; 1.1; 1.4; 1.7 T a závislost vyneste do grafu.$

2 Schéma zapojení

Obrázek 1: Schéma zapojení pro měření amplitudové permeability a zobrazení dynamické hysterezní smyčky na osciloskopu

OSC osciloskop *Keysight*TR toroidní transformátor

U zdroj napětí RC integrační článek

Tabulka 1: Seznam použitých přístrojů

Obrázek 2: Hysterezní smyčka

3 Seznam použitých přístrojů

4 Teoretický úvod

Sice platí velice zjednodušený vztah $H = \mu_O \mu_r B$ nicméně se jedná o velmi nepřesnou stacionární aproximaci Při časové změně magnetické indukce H je odezva magnetického pole B opožděná a "pamatuje si", v jakém stavu byla. Proto vzniká tzv. hysterezní smyčka.

5 Naměřené hodnoty

Naměřené hodnoty jsou zanesené v tabulce níže U_2 spočítáme jako

B_m [T]	$U_2[V]$	I_m [mA]
0,1	0,58	24
0,4	2,33	70
0,7	4,07	90
0,9	5,24	110
1,1	6,41	130
1,4	8,15	215
1,7	9,91	1550

$$U_2 = B_m \cdot 4,44 \cdot f \cdot N_2 \cdot S_F e \tag{1}$$

6 Zpracování naměřených hodnot

Po vyzkoušení jednotlivých rezistorů v integrátoru a optické kontrole průběhu na osciloskopu je zřejmé, že nejlepší ze tří dostupných je R₃. Jeho velikost je nejvyšší.

$$\frac{H_m}{H_c} = \frac{X_2}{X_1} \to H_c = \frac{X_1}{X_2} \cdot H_m = 1,56 \text{ A} \cdot \text{m}^{-1}$$

$$\frac{B_m}{B_r} = \frac{Y_2}{Y_1} \to B_r = \frac{Y_1}{Y_2} \cdot B_m = 1,5 \text{ T}$$
(2)

$$H_m = \frac{N_1 \cdot I_m}{\pi (D_1 + D_2)} = \frac{35 \cdot 1,55}{\pi (80 \cdot 10^{-3} + 45 \cdot 10^{-3})} \approx 136 \text{ A} \cdot \text{m}^{-1}$$
(3)

Amplitudovou permeabilitu následně spočítáme jako

$$\mu_a = \frac{B_m}{\mu_0 H_m} \cong 9953 \tag{4}$$

7 Závěrečné vyhodnocení

Ze závislosti amplitudové permeability vzorku na ma maximální magnetické indukci je zřejmé, že průběh je nelineární. Velikost μ_a dosahuje maxima přibližně mezi 1 T. Pro výběr vhodného rezistoru jsme se řídili podmínkou $\omega RC >> 1$

Seznam použité literatury a zdrojů informací

Seznam použitých internetových zdrojů

[1] Návod k laboratorní úloze