Problem

Use the construction in the proof of Theorem 1.45 to give the state diagrams of NFAs recognizing the union of the languages described in

- a. Exercises 1.6a and 1.6b.
- b. Exercises 1.6c and 1.6f.

THEOREM 1.45

The class of regular languages is closed under the union operation.

Step-by-step solution

Step 1 of 9

a)

Consider the languages,

 $L_{\rm I}$ ={ $w \mid w$ begins with 1 and ends with a 0 } and

 $L_2 = \{ w \mid w \text{ contains at least three 1s} \text{ on } \Sigma = \{0,1\}$

 $M_{_{\rm I}}$ be the NFA that recognizes $\ L_{_{\rm I}}$ and

 $M_{\rm 2}$ be the NFA that recognizes $\,L_{\rm 2}$.

Comment

Step 2 of 9

Let $L = L_1 \cup L_2$

Now M be the NFA that recognizes L.

• $L_1 = \{ w | w \text{ begins with } a \text{ 1 and ends with } a \text{ 0} \}$

$$L_1 = 1(0,1)^* 0$$

The state diagram of M_1 that recognizes L_1 is

Comments (5)

Step 3 of 9

• $L_2 = \{ w | w \text{ contains at least three 1s} \}$

$$L_2 = (0,1)^* 1(0,1)^* 1(0,1)^* 1(0,1)^*$$

The state diagram of $\,M_2^{}$ that recognizes $\,L_2^{}$ is

Comments (3)

Step 4 of 9

Now L is union of L_1 and L_2 .

So the state diagram of M that recognizes L is described as follows.

Comments (1)

Step 5 of 9

(b) Languages are

 $L_1 = \{w \mid w \text{ contains the substring } 0101 \text{ i.e., } w = x0101y \text{ for some } x \text{ and } y\} \text{ on } \sum = \{0,1\}$

 $L_1 = \{ w \mid w \text{ doesn't contain the substring } 110 \} \text{ on } \Sigma = \{0, 1\}$

 $M_{_{\parallel}}$ be NFA that recognizes $\ L_{_{\parallel}}$ and

 $\,M_{\rm 2}^{}\,$ be the NFA that recognizes $\,L_{\rm 2}^{}\,$

Comment

Step 6 of 9

Let $L = L_1 \cup L_2$

Now \emph{M} be the NFA that recognizes $\emph{L}.$

• $L_1 = \{ w \mid w \text{ contains the substring } 0101 \}$

The state diagram of M_1 that recognizes L_1 is

Comments (3)

Step 7 of 9

• $L_2 = \{ w \mid w \text{ doesn't contain the substring } 110 \}$

First we give the state diagram of the machine which recognize the language machine which recognize the language

Comments (4)

Step 8 of 9

Now L is the union of $L_{\rm l}$ and $L_{\rm 2}$

So the state diagram of \emph{M} that recognizes \emph{L} is described as follows

Comment

Step 9 of 9

Comments (3)