數值分析 SOR Method and Heat Equation

學號姓名: 00757025 何文豪

1.

Gauss-Seidel method: w = 1, Source = 5, times = 898

Boundary: top = d = 0, bottom = 20, right = 30, left = 30

SOR Method: w = 1.2, Source = 5, times = 614

Boundary: top = d = 0, bottom = 20, right = 30, left = 30

2.

Condition A: w = 1, Source = 5, times = 903

Boundary: top = d = 0, bottom = 30, right = 30, left = 30

Result: 改變 bottom boundary,溫度更為均勻,但收斂變慢了。

Condition B: w = 1, Source = 5, times = 577

Boundary: top = 30, bottom = 30, right = 30, left = 30

Result: 改變 top, bottom boundary, 收斂得更快。

Condition C: w = 1, Source = 10000, times = 889

Boundary: top = d = 0, bottom = 20, right = 30, left = 30

Result:加大熱源 2000 倍,溫度分布與 Gauss 差別很大,但收斂次數差不多。

Condition D: w = 1, Source = 0.05, times = 898

Boundary: top = d = 0, bottom = 20, right = 30, left = 30

Result:減少熱源 100 倍,數值與 Gauss 只有些微的差距,但收斂次數不變。

3.

W	times	W	times	W	times	W	times
1.00	898	1.25	556	1.50	314	1.75	118
1.05	818	1.30	501	1.55	274	1.80	83
1.10	744	1.35	450	1.60	234	1.85	107
1.15	677	1.40	402	1.65	196	1.90	165
1.20	614	1.45	357	1.70	158	1.95	343

w = 1.05 is the worst choice for the SOR method

w = 1.80 is the best choice for the SOR method

Condition E: w = 1.80, Source = 5, times = 83

Boundary: top = d = 0, bottom = 20, right = 30, left = 30

Result: 改變 w,數值與 Gauss 有些微的差距,但收斂次數變快 10 倍。

