Quantum Hardware - Part 2 and 3 -

2024/06/14

Masao Tokunari

IBM Research – Tokyo tokunari@jp.ibm.com

Outline

Part 1: Superconducting qubits

- Physics of the superconducting qubits
- Qubit control
- Quantum non-demolition measurement
- Qubit demonstration: qubit spectroscopy
- Two-qubit gate

Part 2: Device map and calibration data

Hands-on: extracting the device information

Part 3: Qubit scaling

- Modularity
- Microwave component development

Summary

Device map and calibration data

https://quantum.ibm.com/services/resources

Device map – heavy-hex lattice

Heavy hexagonal code

- For quantum error correction
- Low connectivity (up to 3 neighbor qubits) to avoid frequency collision
- Modest fault tolerant threshold

https://www.ibm.com/quantum/blog/heavy-hex-lattice

Device map and calibration data

https://quantum.ibm.com/services/resources

Basis gates

- ECR: Echoed Cross Resonance, $ECR = XI_{\pi} \cdot ZX_{\pi/2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 1 & i \\ 0 & 0 & i & 1 \\ 1 & -i & 0 & 0 \\ -i & 1 & 0 & 0 \end{pmatrix}$
- ID: Identity, $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- RZ: single-qubit rotation about Z-axis, $RZ(\theta) = \begin{pmatrix} e^{-i\frac{\theta}{2}} & 0 \\ 0 & e^{i\frac{\theta}{2}} \end{pmatrix}$ Implemented virtually in hardware via frame changes.
- X: single-qubit pauli X gate, bit-flip, $X_{\pi} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- SX: sqrt X gate, \sqrt{X} , $X_{\pi/2} = \frac{1}{2} \begin{pmatrix} 1+i & 1-i \\ 1-i & 1+i \end{pmatrix}$

Device map and calibration data

https://quantum.ibm.com/services/resources

Gate error – Randomized benchmarking

Randomized Benchmarking

- Technique for characterizing gate errors
- Perform a random series of Clifford gates and undo
- Single qubit RB → 1Q gate error, SX error
- Two qubit RB → ECR error

Pulse sequence: N random Cliffords - inverse Clifford - measure

- Ci is a random gate sampled from a finite Clifford gate set
- C-1 is performed to make the total sequence equal to identity
- Measure the probabilities to get back to the ground state at the end of the sequence
- Vary sequence length, fit the fidelity decay to an exponential curve to report Error Per Clifford

Readout error

Pulse sequence

- *I* measure (blue)
- X_{π} measure (red)
- Plot on IQ plane and discriminate 0/1

It is difficult to separate readout error and state preparation error

Relaxation time (T1): amplitude damping

Energy decay from the excited state |1> to the ground state |0>

- Spontaneous emission due to electromagnetic environment
- Coupling to two-level systems (TLSs) or any other channel
- Superconductor phenomena: quasiparticles and vortices
- Energy relaxation is characterized by the timescale T1
- The probability of a relaxation error is given by $1 e^{-t/T_1}$
- Pulse sequence : X_{π} (vary delay) measure

Decoherence time (T2): phase damping

Fluctuations in energy levels due to thermal broadening or magnetic noise

- Superposition states become classical, and a coherent state lose its phase information
- Ultimately limited by qubit relaxation (T_1) , even with dephasing (T_{ϕ}) improvements

$$\frac{1}{T_2} = \frac{1}{2T_1} + \frac{1}{T_{\phi}}$$

- Decoherence is characterized by the timescale T2
- The probability of a relaxation error is given by $1 e^{-t/T_2}$
- Pulse sequence : $X_{\pi/2}$ (vary delay) X_{π} (vary delay) $X_{\pi/2}$ measure

Coherence in superconducting circuits

Hands-on

Outline

Part 1: Superconducting qubits

- Physics of the superconducting qubits
- Qubit control
- Quantum non-demolition measurement
- Qubit demonstration: qubit spectroscopy
- Two-qubit gate

Part 2: Device map and calibration data

Hands-on: extracting the device information

Part 3: Qubit scaling

- Modularity
- Microwave component development

Summary

Device map and calibration data

https://quantum.ibm.com/services/resources

 $\rightarrow 2023$

Condor

Pushing the limits of scale & yield

1,121

Superconducting qubits

50%

Increase in qubit density

1 mile +

Of flex cabling

Condor unblocked the road to scaling.

We now need to focus on gate depth and quality

 $\rightarrow 2023$

Heron

133 qubit systems

Tunable coupler architecture

	ibm_sherbrooke Eagle	ibm_montecarlo (Heron)
Gate Error (best system)	0.6-0.7%	0.3% - Best ~ 0.1%
Crosstalk	High (qubit-qubit collisions)	Almost zero!
Gate time	500-600ns	90-100ns

Tunable Coupler architecture -

Performance

A major milestone in system performance:

A clear runway to our goal of 5K gates and beyond

Eagle R3

Mean T1 = 269 us Mean ECR gate time = **537 ns**

2772 gates

100 qubit circuit

Heron R1

Mean T1 = 174 us Mean CZ gate time = 96 ns

9300 gates (estimate)

100 qubit circuit

Development Roadmap IBM Quantum

Innovation Roadmap

New error correction codes and system modularity

C-coupler enables long-range on-chip connections for high-rate LDPC codes

L-coupler enables joining multiple logical memories to create large-scale systems

M-coupler enables joining multiple short-range chip-to-chip connections

Extending Heron platform through modular coupling

Flamingo

Heron platform + *l-coupler* gate + *l-coupler* cable

Crossbill

Heron platform + m-coupler bus + m-coupler packaging

Qubit chiplets within a multi-chip module

Schematic of superconducting quantum computer

IBM **Quantum**

Quantum systems using coaxial cable wiring (and SMA connectors)

IBM

Google

IBM Quantum / © 2023 IBM Corporation

N. Masluk et al., 2023 CEC/ICMC

Microwave components innovation is also crucial for further qubit scaling!

Components required for cryogenic microwave measurements

Wiring for microwave input/output

- Low thermal conductivity
- Low loss (for readout line)

Normal conducting coax for control (e.g. CuNi)

Superconducting coax for readout (e.g. NbTi)

Development of higher density flex wiring is ongoing for more qubit scaling

Components required for cryogenic microwave measurements

Quantum Hardware Test Center

- Key microwave component development for a robust supply chain
- Established at the University of Tokyo in 2022
- Testbed with IBM qubits

Summary

- Superconducting qubits are non-linear LC oscillators
- Qubit is controlled and measured by microwave drive pulse
- Qubit measurement is done by quantum non-demolition measurement
- Review of the ibm_kawasaki device map and calibration data
- Qubit scaling is done with modularity
- Development of cryogenic microwave components are also crucial for scaling

References

- Zlatko Minev, Superconducting Qubits I: Quantizing a Harmonic Oscillator, Josephson Junctions, Presented at the Qiskit global summer school (2020).
 - https://youtu.be/eZJjQGu85Ps?si=LrAlGV4CZOa-qHY3
- Jens Koch et al., Charge-insensitive qubit design derived from the Cooper pair box, Phys. Rev. A 76, 042319 (2007).
- Qiskit Textbook 6.4 Circuit Quantum Electrodynamics https://github.com/Qiskit/textbook/blob/main/notebooks/quantum-hardware-pulses/cQED-JC-SW.ipynb
- Masao Tokunari, 6.4 Circuit Quantum Electrodynamics, Qiskit Textbook Japanese translation
 https://youtu.be/mS83X2ZwbSY?si=pg5X1T3-0JT5WYim
 https://github.com/Qiskit/textbook/blob/main/translations/ja/ch-quantum-hardware/cQED-JC-SW.ipynb
- Sergey Bravyi et al., High-threshold and low-overhead fault-tolerant quantum memory, Nature 627, 778–782 (2024).
- Easwar Magesan et al., Scalable and Robust Randomized Benchmarking of Quantum Processes, Phys. Rev. Lett. 106, 180504 (2011).
- Quantum Summit 2023
 https://youtube.com/playlist?list=PL0VD16H1q5IOwPw0WPml60LQdZg4dFdrd&si=fP0buTgxF7HlMf-r
- Nick Masluk, Cryogenic infrastructure for 400 qubits and beyond, Presented at the CEC/ICMC (2023).

© 2024 International Business Machines Corporation

Thank you