1. Mots parenthésés

Définition 1. Une relation de matching de longueur ℓ est une relation $M \subseteq [1, \ell] \times [1, \ell]$ telle que

- les sommets en relation sont ordonnés: pour tous x, y, si M(x, y) alors x < y
- un sommet est en relation avec au plus un sommet: pour tout $x \in [1, \ell]$,

Etant donné un matching M, on appelle une paire $(x, y) \in M$ un **arc** de M.

$$|\{y \mid M(x, y)\} \cup \{y \mid M(y, x)\}| \le 1$$

• Deux arcs ne se croisent jamais: si x < z < y < t alors $(x, y) \notin M$ ou $(z, t) \notin M$

On désigne par **call** (resp. **return**) le départ (resp. l'arrivée) d'un arc. On dira qu'un call est en cours en une position(un moment) x, si la position qui porte son return est supérieure à x.

Définition 2. Mots parenthésés

Un mot parenthésé sur un alphabet Σ *est une structure* $\langle w, M \rangle$, $w \in \Sigma^*$, M *un matching de longueur* |w|.

Par exemple, le mot parenthésé $(aabcabbb, \{(1, 8), (2, 3), (5, 7)\})$ peut se représenter de la façon suivante:

Figure 1: Exemple de mot parenthésé

Définition 3 (Mots 2-parenthésés). Un mot 2-parenthésé (2-inw) est une structure $\langle u, M_1, M_2 \rangle$, où u est un mot, M_1 et M_2 sont deux relations de matching de longueur |u| telles que $\forall (x, y) \in M_2$

- (1) $\exists x_0, (x, x_0) \in M_1 \text{ ssi } \exists y_0, (y_0, y) \in M_1.$
- (2) $\exists x_0, (x_0, x) \in M_1 \text{ ssi } \exists y_0, (y, y_0) \in M_1.$

De plus, toute extrêmité d'un arc de M_1 est une extrêmité d'un arc de M_2 .

Par exemple le mot 2-parenthésé $(aabbccdd, \{(1,4), (2,3), (5,8), (6,7)\}, \{(1,8), (2,7), (3,6), (4,5)\})$ est représenté Figure 2.

Attention: Nous aurons parfois besoin d'utiliser des alphabets Σ particuliers. Il faudrait que le codage en tienne compte. En particulier, nous aimerions pouvoir avoir $\Sigma = \{0, 1\}^n$ pour n quelconque (c'est à dire que Σ est l'ensemble des (b_1, \ldots, b_n) où les b_i sont dans $\{0, 1\}$)

2. Automates de mots 2-parenthésé

Nous introduisions ici les 2-INWAs qui sont des automates reconnaissant des ensemble de mots 2-parenthésés.

Définition 4. Un automate de mots 2-parenthésés (2-INWA) est une structure $(Q, \Sigma, q_0, Q_f, P_1, P_2\Delta)$ avec:

• Q ensemble fini d'états linéaires.

Figure 2: Exemple de mot 2-parenthésé (les arcs de M_1 au dessus, et M_2 en dessous)

- $q_0 \in Q$ état linéaire initial.
- $Q_f \subseteq Q$ l'ensemble d'états linéaires acceptants.
- Σ l'alphabet fini d'entrée.
- P_1, P_2 ensembles finis d'états hiérarchiques disjoints de Q.
- Δ est la relation de transition décomposée en 5 relations:
 - $-\Delta_i \subseteq Q \times \Sigma \times Q$
 - $\Delta_{12} \subseteq Q \times \Sigma \times Q \times P_1 P_2$
 - $\Delta_{\bar{1},\bar{2}} \subseteq Q \times \Sigma \times P_1 P_2 \times Q$
 - $\Delta_{\bar{1},2} \subseteq Q \times \Sigma \times P_1 \times Q \times P_2$
 - $\Delta_{\bar{2},1} \subseteq Q \times \Sigma \times P_2 \times Q \times P_1$

Définition 5. Une configuration d'un 2-INWA $\mathcal{A} = (Q, \Sigma, q_0, Q_f, P_1, P_2, \Delta)$ est un tuple $c = (q, \omega, i, \gamma_1, \gamma_2)$ tel que

- $q \in Q$
- $\omega = \langle u, M_1, M_2 \rangle$ est un mot 2-parenthésé et $u \in \Sigma^*$
- $i \in [1, |u|]$
- $\gamma_1 \in P_1^*$ appelée pile de niveau 1
- $\gamma_2 \in P_2^*$ appelée pile de niveau 2

On note $C_{\mathcal{A}}$ l'ensemble des configurations de l'automate \mathcal{A}

La relation de transition $\rightarrow_{\mathcal{A}} \subseteq C_{\mathcal{A}} \times C_{\mathcal{A}}$ est définie de la façon suivante: $(q, \omega, i, \gamma_1, \gamma_2) \rightarrow_{\mathcal{A}} (q', \omega', i', \gamma'_1, \gamma'_2)$ ssi $\omega' = \omega, i' = i + 1$ et

- si i est une position interne (c'est à dire que i n'est l'extrémité d'aucun arc), alors $(q, u(i), q') \in \Delta_i$, $\gamma_1 = \gamma_1'$ et $\gamma_2 = \gamma_2'$. (Notez que u(i) désigne la i-ème lettre du mot u.)
- si *i* porte un call de M_1 et un call de M_2 , alors il existe $p_1 \in P_1$ et $p_2 \in P_2$ tel que $(q, u(i), q', p_1p_2) \in \Delta_{1,2}$, $\gamma'_1 = p_1\gamma_1$ et $\gamma'_2 = p_2\gamma_2$
- si *i* porte un return de M_1 et un return de M_2 , alors il existe $p_1 \in P_1$ et $p_2 \in P_2$ tel que $(q, u(i), p_1 p_2, q') \in \Delta_{\bar{1}, \bar{2}}$, $\gamma_1 = p_1 \gamma_1'$ et $\gamma_2 = p_2 \gamma_2'$

- si *i* porte un return de M_1 et un call de M_2 , alors il existe $p_1 \in P_1$ et $p_2 \in P_2$ tel que $(q, u(i), p_1, q', p_2) \in \Delta_{\bar{1}, 2}$, $\gamma_1 = p_1 \gamma_1'$ et $\gamma_2' = p_2 \gamma_2$
- si *i* porte un call de M_1 et un return de M_2 , alors il existe $p_1 \in P_1$ et $p_2 \in P_2$ tel que $(q, u(i), p_2, q', p_1) \in \Delta_{\bar{2},1}$, $\gamma'_1 = p_1 \gamma_1$ et $\gamma_2 = p_2 \gamma'_2$

Définition 6. Calcul d'un mot parenthèse

Un calcul d'un mot parenthésé ω de longueur ℓ par un automate $\mathcal A$ est une séquence de configurations $c_1,\ldots,c_{\ell+1}\in C_{\mathcal A}$ telle que:

- 1. $c_1 = (q_0, \omega, 1, \varepsilon, \varepsilon)$
- 2. $c_1 \rightarrow_{\mathcal{A}} c_2 \rightarrow_{\mathcal{A}} \ldots \rightarrow_{\mathcal{A}} c_\ell \rightarrow_{\mathcal{A}} c_{\ell+1}$

Remarquez que pour tout calcul, la dernière configuration est toujours de la forme $c_{\ell+1}=(q,\omega,\ell+1,\varepsilon,\varepsilon)$

Définition 7. Mode d'acceptation On définit 2 modes d'acceptation des calculs d'un mot. Etant donné un calcul $c_1, \ldots, c_{\ell+1}$ d'un mot ω

- 1. Mode 1: le calcul est accepté ssi il existe un état $q \in Q_f$ tel que $c_{\ell+1} = (q, \omega, \ell+1, \varepsilon, \varepsilon)$
- 2. Mode 2: le calcul est accepté ssi il est accepté par le mode 1 et pour tous i, j, k, n tels que $M_1(i, j)$ et $M_2(j, k)$ et $M_1(k, n)$, et il existe $p_1 \in P_1$ tel que $c_j = (q_j, j, p_1 \gamma_1^j, \gamma_2^j)$ et $c_n = (q_n, n, p_1 \gamma_1^n, \gamma_2^n)$

Remarquez que cela implique aussi que $c_{i+1} = (q_{i+1}, i+1, p_1\gamma_1^{i+1}, \gamma_2^{i+1})$ et $c_{k+1} = (q_{k+1}, k+1, p_1\gamma_1^{k+1}, \gamma_2^{k+1})$

L'ensemble des mots parenthésés acceptés avec le mode $i \in \{1, 2\}$ par l'automate \mathcal{A} est noté $L_i(\mathcal{A})$.

Exemple 1 L'automate de mots 2-parenthésés $(Q, \Sigma, q_0, Q_f, P_1, \dots, P_k, \Delta)$ suivant reconnait le langage

 $L(\mathcal{A}) = \{ \langle a^n b^n c^n d^n, \{ (i, 2n - i + 1) \mid i \in [1, n] \} \cup \{ (2n + i, 4n - i + 1) \mid i \in [1, n] \}, \{ (i, 4n - i + 1) \mid i \in [1, 2n] \} \rangle \mid n \ge 1 \}.$

- $Q = \{q_0, q_1, q_2, q_3\}.$
- $-\ \Sigma = \{a,b,c,d\}.$
- $Q_f = \{q_0, q_2\}.$
- $-P_1 = \{A_1\}, P_2 = \{A_2\}.$
- $-\Delta_i = \emptyset$
- $\Delta_{1,2} = \{(q_0, a, q_0, A_1A_2)\}\$
- $\Delta_{\bar{1},\bar{2}} = \{ (q_2, d, A_1 A_2, q_3), (q_3, d, A_1 A_2, q_3) \}$
- $\Delta_{\bar{1},2} = \{ (q_0, b, A_1, q_1, A_2), (q_1, b, A_1, q_1, A_2) \}$
- $\Delta_{\bar{2},1} = \{q_1, c, A_2, q_2, A_1\}, (q_2, c, A_2, q_2, A_1)\}\$

Voici un calcul du mot parenthésé

$$\omega = \langle a^2b^2c^2d^2, \{(1,4),(2,3),(3,8),(6,7)\}, \{(1,8),(2,7),(3,6),(4,5)\}\rangle:$$

- $c_1 = (q_0, \omega, 1, \varepsilon, \varepsilon)$
- $c_2 = (q_0, \omega, 2, A_1, A_2)$
- $c_3 = (q_0, \omega, 3, A_1A_1, A_2A_2)$
- $c_4 = (q_1, \omega, 4, A_1, A_2A_2A_2)$
- $c_5 = (q_1, \omega, 5, \varepsilon, A_2A_2A_2A_2)$

- $c_6 = (q_2, \omega, 6, A_1, A_2 A_2 A_2)$
- $c_7 = (q_2, \omega, 7, A_1A_1, A_2A_2)$
- $c_8 = (q_3, \omega, 8, A_1, A_2)$
- $c_9 = (q_3, \omega, 9, \varepsilon, \varepsilon)$

Ce calcul est acceptant pour les 2 modes.