Prof. Cynthia Bortolotto

Lista 5

- 1. Let $\{f_n\}$ be a sequence of real nonnegative functions on \mathbb{R} , and consider the following four statements:
 - (a) If f_1 and f_2 are upper semicontinuous, then $f_1 + f_2$ is upper semicontinuous.
 - (b) If f_1 and f_2 are lower semicontinuous, then $f_1 + f_2$ is lower semicontinuous.
 - (c) If each f_n is upper semicontinuous, then $\sum_{i=1}^{\infty} f_i$ is upper semicontinuous.
 - (d) If each f_n is lower semicontinuous, then $\sum_{i=1}^{\infty} f_i$ is lower semicontinuous.

Show that three of these are true and that one is false. What happens if the word "nonnegative" is omitted? Is the truth of the statements affected if \mathbb{R} is replaced by a general topological space?

2. Construct a totally disconnected compact set $K \subset \mathbb{R}$ such that m(K) > 0. (Here K is required to have no connected subset consisting of more than one point.)

If v is lower semicontinuous and $v \leq \chi_K$, show that actually $v \leq 0$. Hence χ_K cannot be approximated from below by lower semicontinuous functions, in the sense of the Vitali–Carathéodory theorem.

3. (Jensen's inequality) Let μ be a positive measure on a σ - algebra \mathcal{M} in a set Ω , so that $\mu(\Omega) = 1$. If f is a real function in $L^2(\mu)$, if a < f(x) < b, where $-\infty \leqslant a < b \leqslant \infty$, for all $x \in \Omega$, and if φ is convex on (a,b), then show that

$$\varphi\left(\int_{\Omega}f(x)d\mu(x)\right)\leqslant\int_{\Omega}(\varphi(f(x))d\mu(x)$$

4. Denote $e(x) = e^{2\pi ix}$ and let $(x_n)_{n \in \mathbb{N}} \subset \mathbb{R}$. We say that $(x_n)_n$ is equidistributed modulo 1 if, for all $m \neq 0$ it holds that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} e(mx_n) = 0.$$

Let (X, \mathcal{M}, μ) be a finite measure space and $\{f_n(x) : n = 1, 2, \ldots\}$ a sequence of measurable functions $f_n : X \to \mathbb{R}$.

Let 0 and assume that for each positive integer <math>m we have

$$\sum_{N=1}^{\infty} N^{-p-1} \int_{X} \left| \sum_{n=1}^{N} e(mf_n(x)) \right|^p d\mu(x) < \infty.$$

Show that for μ -almost all points $x \in X$ the sequence $\{f_n(x) : n = 1, 2, \ldots\}$ is equidistributed in modulo 1.

5. Suppose $0 . If f and g are non-negative functions on <math>(x, \mathcal{M}, \mu)$, show that

$$\left(\int_X (f+g)^p d\mu\right)^{1/p} \geqslant \left(\int_X f^p d\mu\right)^{1/p} + \left(\int_X g^p d\mu\right)^{1/p}$$