

EfficientNet: Rethinking Model Scaling for ConvNets

Mohammad Labadi (maa366) Katerina Popova (kap272) Justin Tien-Smith (jzt5)

Peter Zheng (pcz3)

Original Paper

Problem

Aaron Baruch (amb565)

- Single-dimension scaling is inefficient: Scaling depth, width, or input resolution alone yields diminishing accuracy gains as you make models larger.
- No principled way to balance all three dimensions: Manually tuning combinations of layers, channels, and image size is tedious and sub-optimal.
- Huge search space for ConvNet design: Exploring every mix of depth/width/resolution for a given compute budget is prohibitively expensive.

Paper's Solution

- Introduce a new baseline (EfficientNet-B0): Used neural-architecture search to find an efficient MobileNet-style backbone with MBConv+SE blocks.
- Compound scaling rule: Uniformly scale depth, width, and resolution by:

$$d = \alpha^{\phi}, w = \beta^{\phi}, r = \gamma^{\phi}$$

with coefficients α = 1.2, β = 1.1, γ = 1.15 chosen via a small grid search.

- Generate a model family (B0-B7): Vary the compound coefficient ϕ to smoothly trade off compute vs. accuracy.
- Dramatic efficiency gains: Achieve up to 8× fewer parameters and 6× faster inference for the same (or better) ImageNet accuracy!

References

- Tan, M., Le, Q. V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv:1905.11946v5, 2020.
- iamtapendu. (2025). Introduction to EfficientNet [Kaggle Notebook]. Kaggle. Retrieved May 5, 2025, from https://www.kaggle.com/code/iamtapendu/introduction-to-efficientnet
- Klingler, N. (2024, March 18). EfficientNet: Optimizing Deep Learning Efficiency. Viso.ai. Retrieved May 5, 2025, from https://viso.ai/deep-learning/efficientnet/

EfficientNet-B0 Model Architecture

Our Methodology

- Dataset: <u>CIFAR-10</u> (60K images, 10 classes).
- Models: B0 (baseline), depth-only, width-only, resolution-only, B1 (compound).
- Optimizer: RMSProp (momentum = 0.9, α = 0.9, ϵ = 0.1) with *linear* → exponential learning rate decay.
- Training: 35 epochs (vs. 350 in paper).

Over 35 epochs, one compound step (B0 → B1) gave **negligible** improvement over single dimension scaling; larger steps (more compounding) hit OOM beyond B1.

Class Activation Maps

Model	Our FLOPS	Our Top 1 Acc	Paper FLOPS	Paper Top 1
Baseline B0 model	0.82B	89.45%	0.4B	77.3%
Scale by depth (B0)	3.35B	86.31%	1.8B	79.0%
Scale by width (B0)	3.02B	88.40%	1.8B	78.9%
Scale by resolution (B0)	3.27B	88.80%	1.9B	79.1%
Compound scale (B1)	1.82B	85.21%	1.8B	81.1%

Table 1. Scaling effect on FLOPS and Top-1 Accuracy

Conclusion/Future Work:

- Conclusion: Our findings did not directly align with the paper's key insight. Compound scaling did not seem to deliver noticeable gains than scaling any single dimension alone.
- Future Work:
 - Extend experiments across the full EfficientNet family (B0–B7)
 - Match the original training schedule (350 epochs) for fair comparison
 - Scale up to and evaluate on the full ImageNet dataset instead of just CIFAR-10