20. tétel

Lineáris egyenletrendszer mátrixegyenletes alakja

Lineáris egyenletrendszer mátrixegyenletes alakja, a megoldhatóság és az oszlopok alterének kapcsolata. Összefüggés az egyértelmű megoldhatóság, az egyenletek és ismeretlenek száma között. Az egyértelmű megoldhatóság feltétele n × n méretű együtthatómátrix esetén

Lineáris egyenletredszer mátrixegyenletes alakja

Paraszti (chatgpt) módon

A lineáris egyenletrendszer mátrixegyenletes alakja egy tömör, algebrai formában történő leírása az egyenletrendszernek, ahol az ismeretlenek és az egyenletrendszer együtthatói mátrixokkal vannak kifejezve.

Matekos módon:

Legyen adott egy lineáris egyenletrendszer, amely a következő formában írható fel:

$$\sum_{j=1}^{n} a_{ij} x_j = b_i (i=1,2,...,m)$$

Legyen az aj az egyenletrendszer együtthatói

Xj az ismeretlenek

Bi az egyenletrendszer jobb oldalán szereplő konstansok

Ezt a mátrixegyenletet felírhatjuk Ax=b formában is, ahol az A az együtthatómátrix,

x a változók oszlopvektora, és b az eredményvektor

$$\begin{array}{c} \textbf{P\'elda:} \\ x_1 - 3x_3 + 5x_4 = -6 \\ 7x_1 + 2x_2 + 3x_3 = 9 \\ x_2 + 7x_3 - 2x_4 = 11 \end{array} \longleftrightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ 0 & 1 & 7 - 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ 0 & 1 \end{pmatrix} \longleftrightarrow A\underline{x} = \underline{b}$$

TEHÁT ez a cucc egy fancy egyenletrendszer leírási módja.

Megoldhatóság:

Egyenletrendszer akkor és csak akkor megoldható, ha
az együtthatóiból képzett mátrix determinánsa nem nulla,
az együtthatóiból képzett mátrixnak több sora van mint oszlopa (ismeretlene),
nincs az egyenletek között ellentmondás

alterek és oszlopok közti kapcsolat:

Ha A oszlopai A1,, akkor $(\exists x : Ax = b) \iff (b \in \Box A1, \Box) \iff (\Box A1, \Box) = \Box b$, A1, \Box) \iff $(r(A) = r(A b))$
BIZ: Az első két formula mindegyike azt jelenti, hogy b előáll az A1 , oszlopok lineáris kombinációjaként. Ha b \in \square A1 , \square , akkor nyilván \square A1 , \square = \square b, A1 , \square Ha pedig ez utóbbi alterek megegyeznek, akkor a bal oldali altér tartalmazza b-t, azaz k \in \square A1 , \square . Tehát a harmadik formula is ugyanazt jelenti, mint az első kettő. A negyedik formula bal oldalán szereplő altér része a jobb oldalon szereplőnek, tehát a dimenziójuk pontosan akkor egyenlő, ha e két altér megegyezik. Ezért a negyedik formula is ekvivalens az eddigiekkel. A rang definíciója utáni megfigyelés (2) része ill. a rang és oszloprang egyenlősége miatt r(A) = o(A) = dim(A1 ,), és innen közvetlenül adódik az ötödik formula ekvivalenciája a negyedikkel.

Állítás: Ha $A \in \mathbb{R}^{n \times n}$: (Ax=b egyért. megoldható) \iff (|A|!=0)

Biz: \Rightarrow : Indirekt bizonyítunk: tegyük fel, hogy |A| = 0. Láttuk, hogy ilyenkor A oszlopai nem lineárisan függetlenek, ezért A oszlopainak valamely nemtriviális lineáris kombinációja 0-t ad: $\exists y != 0$: Ay = 0. Ezért ha x az Ax = b megoldása, akkor A(x + y) = Ax + Ay = b + 0 = b miatt x + y is megoldás. Tehát az Ax = b mátrixegyenletnek ha van is megoldása, az nem egyértelmű. Ez ellentmondás, tehát A oszlopai lin.ftn-ek, ezért |A| 6= 0.

 \Leftarrow : Most azt tesszük fel, hogy |A| != 0. Ekkor A reguláris (azaz invertálható), így A⁻¹ -zel szorozhatunk balról. Ezért Ax = b \Leftrightarrow x = (A⁻¹A)x = A⁻¹ (Ax) = A⁻¹ b , azaz x egyértelmű.