The Morning Star

Calvin Fung

June 25, 2025

1 Problem

A compass points directly toward the morning star. It can only point in one of eight directions: the four cardinal directions (N, S, E, W) or some combination (NW, NE, SW, SE). Otherwise, it will break.

The directions the compass can point

There are *n* distinct points with integer coordinates on a plane. How many ways can you put a compass at one point and the morning star at another so that the compass does not break?

2 Solution

We present an algorithm that runs in randomized O(n) time.

Define 4 special lines, $l_0: x = 0, l_1: y = x, l_2: y = 0$ and $l_3: y = -x$.

Let P be the input set of points. We say a pair of points $(p,q), p \neq q \in P$ is in group $G_i, i = 0, ..., 3$ if the line passing through them is parallel to l_i .

It's easy to see that we can put a compass at point p and the morning star at point q such that the compass does not break iff (p,q) is in one of the groups ie. $\in \bigcup_{i=0}^3 G_i$. Furthermore, no point can belong to 2 different groups because no pair of lines l_i, l_j where $i \neq j$ are parallel to each other. It follows that the desired answer is $\sum_{i=0}^3 |G_i|$.

We show how to compute $|G_1|$ correctly in randomized O(n) time (the other G_i will be similar):

First we create an empty hash table H.

Then for each $p \in P$, there's a unique line l that's parallel to l_1 passing through it, in particular l: y = x + c where c = p.y - p.x. If the entry H[c] already exists, we do H[c] = H[c] + 1, else we create a new entry H[c] = 1.

Finally, after initializing res = 0, for each $(key, value) \in H$ where value > 1, we do $res = res + 2 * \binom{value}{2}$. We return res at the end.

correctness: Clearly each entry H[c] stores the number of points in P that lies on l: y = x + c which is parallel to l_1 . Notice any pair of points lying on l will be in G_1 , there're $2 * {H[c] \choose 2}$ such pairs. Combining with the fact that a point cannot lie on 2 different lines with slope 1 so we never double count any pair in G_1 , it follows $res \leq |G_1|$.

On the other hand, for any $(p,q) \in G_1$, both p,q must lie on y = x + c for some c, thus the combination (p,q) will be counted in $2 * \binom{H[c]}{2}$. Further, for 2 different pairs $(p,q) \neq (p',q') \in G_1$, if they correspond to different combinations then clearly they'll be counted twice, otherwise they correspond to same combinations but different order ie. p' = q, q' = p, then they'll be still counted twice as we double count each combination ie. $2 * \binom{H[c]}{2}$. It follows $res \geq |G_1|$.