

Slide credits: Patrick Forré and Rianne van den Berg

Regression with GP's

- Combining models: (Bishop 4.1-4.4)
 - Bayesian model averaging vs. model combination methods
 - Committees:
 - Bootstrap aggregation
 - Random subspace methods
 - Boosting
 - Decision trees
 - Random forests

Regression with GP's

- So far we have considered many different models for classification and regression
- It is often the case that overall performance can be improved by combining multiple models together in some way.
- Regression example: train L different models and make predictions using the average of the predictions made by each model.
- Methods that are combined like this are called committees

Model combination

- Committee example: boosting
- Train multiple models in sequence
- Error function used to train a particular model depends on performance of previous models
- Boosting algorithms can lead to substantial improvements over individual models!

Alternative: model selection

- For each prediction, select one model to make a prediction.
- The choice of the model that is selected is a function of the input variables
- Example 1: Decision trees! Selection process is a sequence of binary selections corresponding to the traversal of a tree structure
- Example 2: Mixtures of experts. Soft selection of models for predictions

Mixtures of experts. Soft selection of models for predictions
$$p(t \mid \mathbf{x}) = \sum_{k=1}^{K} \pi_k(\mathbf{x}) p(t \mid \mathbf{x}, k)$$

$$m_i \times m_k \text{ coefficients}$$

$$depends \text{ or } \mathbf{x}$$

Bayesian model averaging

VS

Model combination methods

Bayesian model averaging vs. combining models

- Let's make sure we understand the difference between Bayesian model averaging and model combination methods
- We have already seen a model combination method for density estimation:
 Gaussian mixture models!
- Several Gaussians are combined probabilistically to produce the density $p(\mathbf{x})$ $\rho(\mathbf{x}) = \sum_{i=1}^{n} \rho(\mathbf{x}) \cdot \sum_{i=1}^{n} \rho(\mathbf{$
- A binary latent variable **z** that indicates which component of the mixture is responsible for generating the datapoint **x**.
- The model specifies $p(\mathbf{x}, \mathbf{z}) = p(\mathbf{x} \mid \mathbf{z})p(\mathbf{z})$

with
$$p(\mathbf{x} | z_k = 1) = \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

one hot enc.

Combining models: GMM

A Gaussian Mixture model specifies $p(\mathbf{x}, \mathbf{z}) = p(\mathbf{x} \mid \mathbf{z})p(\mathbf{z})$

with
$$p(\mathbf{x} | z_k = 1) = \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

ightharpoonup Then the density over observed \mathbf{x} is obtained by

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

For i.i.d data $\mathbf{X} = \begin{bmatrix} \mathbf{x}_1, \dots, \mathbf{x}_N \end{bmatrix}^T$ we have

$$p(\mathbf{X}) = \prod_{n=1}^{N} p(\mathbf{x}_n) = \prod_{n=1}^{N} \sum_{\mathbf{z}_n} p(\mathbf{x}_n, \mathbf{z}_n)$$

So each observed datapoint \mathbf{x}_n has its own latent variable \mathbf{z}_n !

Bayesian model averaging

- Suppose we have different models, indexed by h = 1,...,H
- We also have prior probabilities p(h)
- Marginal distribution over the dataset is

$$p(\mathbf{X}) = \sum_{h=1}^{H} p(\mathbf{X} \mid h) p(h)$$

- Interpretation: one model is responsible for generating the entire dataset
- p(h) simply reflects our uncertainty which model is the correct model
- If dataset size increases, uncertainty is reduced: $p(h \mid \mathbf{X})$ becomes increasingly focused on one model

Contrast with model combination methods

- In Bayesian model averaging: the entire dataset is generated by a single model, we are just unsure which one it was!
- When we combine multiple models different data points can potentially be generated by different components/models!
- Example in GMM:
 - Take two datapoints \mathbf{x} and \mathbf{x}'
 - ightharpoonup They can be generated from different ${f z}$ and ${f z}'$
 - So they come from different model components!