Лабораторная работа № 13

ПРИБЛИЖЕННОЕ РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ГИПЕРБОЛИЧЕСКОГО ТИПА

Содержание работы:

- 1) изучить метод сеток для дифференциального уравнения гиперболического типа;
- 2) заменить исходное уравнение конечно-разностными соотношениями;
- 3) составить программу численного решения краевой задачи на ЭВМ;
 - 4) составить отчет о проделанной работе.

Пример выполнения работы

Задание.

1. Найти решение краевой задачи для дифференциального уравнения гиперболического типа

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} \tag{64}$$

на примере уравнения свободных колебаний однородной ограниченной струны длиной $0 \le x \le l$, где $a = \mathrm{const}$ с дополнительными краевыми условиями

$$u(x,0)=f(x)=0.6\cos(-x)$$
; $u_t^{'}(x,0)=F(x)=-0.6\sin(-x)+2$; $u(0,t)=\phi(t)=0.8t+0.6e^t$; $u(l,t)=\psi(t)=2.2t-0.7\sin(-t)$ (65) методом сеток.

- 2. В полуполосе $0 \le x \le l$, $0 \le t < \infty$ построить сетку $\{x_i, t_j\}$, где $x_i = ih$, $t_j = jk$, $i = \overline{0,n}$, $j = 0,1,\ldots$
- 3. Заменить уравнение (64) конечно-разностными соотношениями в узлах сетки.
- 4. Составить программу на любом языке программирования, реализующую процесс построения решения при l=1, n=10, $j=\overline{0,10}$.

Решение.

Рассмотрим пространственно-временную систему координат $\{x,t\}$ (рис. 17). В полуполосе $t \ge 0$, $0 \le x \le 1$ построим прямоугольную сетку $x_i = ih$, $i = \overline{0,10}$, $t_j = jk$, $j = \overline{0,10}$, $u_{ij} = u(x_i,t_j)$, где $h = \frac{1}{10}$ — шаг по оси OX и $k = \frac{h}{a}$ — шаг по оси Ot.

дифференциальное Исходное уравнение заменим конечноразностными уравнениями в узловых точках (x_i, t_i) .

Конечно-разностные уравнения запишутся так:
$$a^2 \frac{u_{ij+1} - 2u_{ij} + u_{ij-1}}{h^2} = a^2 \frac{u_{i+1j} - 2u_{ij} + u_{i-1j}}{h^2}.$$
 (66)

После преобразований получим:

$$u_{ij+1} = u_{i+1j} + u_{i-1j} - u_{ij-1}. (67)$$

Из формулы (67) видно, что для подсчета значения искомой функции u(x,t) в узловых точках (j+1)-го слоя используются значения u(x,t) в двух слоях j -м и (j-1)-м (рис. 18).

Рис. 18.

Для начала вычислений по формуле (67) необходимо знать значения функции u(x,t) в двух слоях j=0, j=-1. Запишем начальное условие $u_t'(x,0)=F(x)$ в конечно-разностном виде: $\frac{u_{i,0}-u_{i,-1}}{k}=F_i$, где $F_i=F(x_i)$. Из этого соотношения выразим $u_{i,-1}$:

$$u_{i,-1} = u_{i,0} - kF_i$$
.

Для исходной задачи (64), (65) конечно-разностная форма уравнения (64) имеет вид (67), а краевые условия (65) запишутся так:

$$u_{i,0} = 0.6 \cos(-x_i); \quad u_{i,-1} = u_{i,0} - kF_i$$

= $0.6 \cos(-x_i) - k(-0.6 \sin(-x_i) + 2);$

```
u_{0,j} = 0.8t_j + 0.6e^{t_j}; \quad u_{n,j} = 2.2t_j - 0.7\sin(-t_j); \quad i = \overline{0,10}; \quad j = \overline{0,10}.  (68) Алгоритм решения задачи:
```

1) построить систему равноотстоящих точек

$$l = 1, h = \frac{l}{n} = 0.1, x_i = ih, i = \overline{0,10}; t_j = jk, j = \overline{0,10}, k = \frac{h}{a};$$

- 2) вычислить $u_{i,0} = 0.6 \cos(-x_i)$, $i = \overline{0,10}$;
- 3) вычислить $u_{i,-1} = 0.6 \cos(-x_i) k(-0.6 \sin(-x_i) + 2)$, $i = \overline{1,9}$;
- 4) вычислить $u_{0,j} = 0.8t_j + 0.6e^{t_j}$; $t_j = jk$, $j = \overline{1,10}$;
- 5) вычислить $u_{n,j} = 2.2t_j 0.7 \sin(-t_j)$; $t_j = jk, j = \overline{1,10}$;
- 6) вычислить $u_{ij+1}=u_{i+1j}+u_{i-1j}-u_{ij-1},\ i=\overline{1,9},\ j=\overline{1,9}.$
- В качестве примера приведена программа на языке программирования Pascal, реализующая процесс вычислений.

Пример программы на языке Pascal

```
program Lab13;
uses crt;
const n=10; m=10; a=0; b=1; delta=1/6; s=6;
var i,j:integer;
  x,h,t,gamma,m1,m2,alfa,betta,n1:real;
  a1,b1,u:array [0..n,0..m] of real;
function f(x:real): real;
begin f:=gamma*cos(m1*x); end;
function fi1(t:real):real;
begin fi1:=alfa*t+betta*exp(t); end;
function fi2(t:real):real;
begin fi2:=n1*t+m2*sin(m1*t); end;
procedure Yav;
begin
h:=(b-a)/n;
gamma:=0.6;m1:=-1;alfa:=0.8;betta:=0.6;m2:=2.2;n1:=-0.7;
for i:=0 to n do for j:=0 to m do u[i,j]:=0;
x := a;
for i:=0 to n do begin
  u[i,0] := f(x);
  x := x + h;
end:
for j:=1 to m do begin
  u[0,j] := fi1(j*delta*h*h);
  u[n,j]:=fi2(j*delta*h*h);
for i:=1 to n-1 do for j:=0 to m-1 do u[i,j+1]:=1/6*(u[i-1,j]+4*u[i,j]+u[i+1,j]);
for i:=0 to n do write(' ',i:4);
writeln;
```

```
for j:=m downto 0 do begin
  write(j:2,' ');
  for i:=n downto 0 do write(u[i,j]:6:3);
  writeln;
end;
end;
procedure neyav;
begin
h:=(b-a)/n;
gamma:=0.6;m1:=-1;alfa:=0.8;betta:=0.6;m2:=2.2;n1:=-0.7;
for i:=0 to n do for j:=0 to m do u[i,j]:=0;
for i:=0 to n do begin
  u[i,0] := f(x);
  x := x + h;
end;
for j:=1 to m do begin
  u[0,j] := fi1(j*h*h/s);
  u[n,j] := fi2(j*h*h/s);
end;
for j:=0 to n-1 do begin
  a1[1,j+1]:=1/(2+s);
  b1[1,j+1]:=fi1((j+1)*h*h/s)+s*u[1,j];
end;
for i:=2 to n do
  for j:=0 to m-1 do begin
     a1[i,j+1]:=1/(2+s+a1[i-1,j+1]);
     b1[i,j+1]:=a1[i-1,j+1]*b1[i-1,j+1]+s*u[i,j];
  end:
for i:=1 to n-1 do for j:=0 to m-1 do u[i,j+1]:=a1[i,j+1]*(b1[i,j+1]+u[i+1,j+1]);
for i:=0 to n do write(' ',i:4);
writeln;
for j:=m downto 0 do begin
  write(j:2,' ');
  for i:=n downto 0 do write(u[i,j]:6:3);
  writeln;
end;
end;
begin
clrscr;
yav;
neyav;
end.
```

Решение задачи (1), (2) приведено в виде таблицы 18:

Табл. 18.

$N_{\underline{0}}$											
Π/Π	0	1	2	3	4	5	6	7	8	9	10
10	-0.048	0.070	0.094	0.100	0.105	0.110	0.116	0.132	0.181	0.32	0.62

9	-0.043	0.088	0.111	0.119	0.125	0.131	0.136	0.149	0.192	0.32	0.62
8	-0.039	0.108	0.131	0.141	0.149	0.156	0.162	0.172	0.207	0.32	0.62
7	-0.034	0.132	0.155	0.167	0.177	0.185	0.192	0.201	0.228	0.33	0.62
6	-0.029	0.159	0.183	0.198	0.210	0.221	0.229	0.237	0.257	0.34	0.61
5	-0.024	0.191	0.216	0.234	0.250	0.263	0.273	0.282	0.295	0.36	0.61
4	-0.019	0.227	0.255	0.277	0.297	0.313	0.326	0.336	0.345	0.39	0.61
3	-0.014	0.269	0.301	0.328	0.352	0.372	0.389	0.401	0.410	0.43	0.61
2	-0.010	0.317	0.355	0.388	0.417	0.442	0.463	0.479	0.491	0.50	0.61
1	-0.005	0.372	0.417	0.458	0.494	0.526	0.552	0.572	0.587	0.60	0.6
0	0.324	0.373	0.418	0.459	0.495	0.527	0.553	0.573	0.588	0.60	0.60

В отчет о проделанной работе должны входить: номер и название лабораторной работы; цель работы; содержание работы; задание на работу; теоретическая часть работы (вывод формул); листинг программы; таблица результатов; выводы о проделанной работе.

Порядок выполнения работы

- 1. Записать исходное дифференциальное уравнение гиперболического типа (64) и краевые условия (65).
 - 2. Записать алгоритм решения задачи.
- 3. Составить программу на любом языке программирования, реализующую численный метод решения дифференциального уравнения гиперболического типа. Печать результатов должна осуществляться на каждом шаге в виде таблицы 19:

Табл. 19.

t_j	x_0	x_1	 x_n
t_0	$u(x_0, t_0)$	$u(x_1,t_0)$	 $u(x_n,t_0)$
t_1	$u(x_0, t_1)$	$u(x_1, t_1)$	 $u(x_n,t_1)$
:	:	:	 :
t_m	$u(x_0,t_m)$	$u(x_1, t_m)$	 $u(x_n, t_m)$

- 4. Сделать выводы о проделанной работе.
- 5. Составить отчет о проделанной работе.

Варианты индивидуальных заданий

Табл. 20.

Номер	Параметры								
варианта	γ	m	α	β	Μ	N			
1	0.6	0.3	0.1	0.4	-0.2	1			
2	0.8	0.9	0.3	-0.5	0.9	-0.9			
3	0.5	0.4	-0.5	0.6	1	-0.8			
4	1.1	1	-0.4	-0.5	0.7	0.4			
5	1.4	1	-0.2	2.2	0.3	-0.6			

6	0.3	0.7	0.5	-1.4	-2	0.3
7	0.7	0.6	-0.5	0.9	1	0.2
8	0.6	-0.3	1	-1	0.9	0.4
9	-0.3	0.4	1.2	1	-0.3	0.6
10	-0.6	0.2	-0.1	0.3	0.2	0.9
11	0.3	-0.4	0.2	0.3	0.4	-0.7
12	-0.5	0.6	0.7	-0.6	1	0.8
13	1	0.8	-0.2	-0.4	0.6	0.3
14	1.2	2.2	0.6	1.3	2	-0.8
15	-0.4	2	0.7	-0.4	2.1	-0.4

Граничные условия:

$$f(x) = \gamma \cos m x$$
, $F(x) = \alpha + \beta \sin m x$, $\phi(t) = \alpha t + \beta e^t$, $\psi(t) = Nt + M \sin m t$

Для выполнения лабораторной работы 13 необходимо получить номер варианта индивидуального задания из табл. 20.