Mécanique quantique – L3

Sylvain Nascimbène

Séance de tutorat du 9 octobre 2019

Dynamique d'une particule : comparaison classique/quantique

1 Théorème d'Ehrenfest

On considère un système quantique évoluant selon un hamiltonien \hat{H} , ainsi qu'une observable indépendante du temps \hat{A} .

- 1. Écrire l'équation de Schrödinger satisfaite par l'état du système $|\psi(t)\rangle$.
- 2. Obtenir l'équation d'Ehrenfest, qui régit l'évolution temporelle de la valeur moyenne $\langle \hat{A} \rangle = \langle \psi(t) | \hat{A} | \psi(t) \rangle$:

$$i\hbar \frac{d\langle \hat{A} \rangle}{dt} = \langle [\hat{A}, \hat{H}] \rangle.$$
 (1)

2 Lien avec l'évolution classique

On s'intéresse au mouvement d'une particule dans un potentiel à une dimension $V(x) = V_0 x^n$. Les opérateurs qui interviennent dans le traitement quantique du problème vérifient :

$$[\hat{X}, \hat{P}] = i\hbar, \tag{2}$$

$$\hat{H} = \frac{\hat{P}^2}{2m} + V_0 \,\hat{X}^n. \tag{3}$$

- 3. Appliquer le théorème d'Ehrenfest aux opérateurs \hat{X} et \hat{P} . Comparer les équations obtenues aux équations classiques du mouvement.
- 4. Pour quel type de potentiels retrouve-t-on exactement les mêmes équations?

3 Evolution d'une particule libre

Dans la suite, on supposera la particule libre (pas de terme d'énergie potentielle) et on se place dans son référentiel propre, de telle façon que $\langle \hat{P} \rangle (0) = 0$ et $\langle \hat{X} \rangle (0) = 0$. On cherche à différencier l'évolution du système quantique en étudiant la dispersion de l'observable \hat{X} .

- 5. Écrire les équations d'évolution pour $\langle \hat{X}^2 \rangle$, $\langle \hat{P}^2 \rangle$ et $\langle \hat{C} \rangle = \langle \hat{X} \hat{P} + \hat{P} \hat{X} \rangle$. Montrer qu'elles constituent un système fermé que l'on résoudra.
- 6. Montrer que l'on peut choisir l'origine des temps de telle sorte que $\langle \hat{C} \rangle (t=0) = 0$.
- 7. Montrer que $\Delta \hat{X}^2$ croît au cours du temps.