Skriftlig eksamen på Økonomistudiet

Vinteren 2018 - 2019

MATEMATIK B

Tirsdag den 8. januar 2019

3 timers skriftlig prøve med hjælpemidler. Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller cas-værktøjer.

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

OBS: Bliver du syg under selve eksamen på Peter Bangs Vej, skal du kontakte eksamenstilsynet for at blive registeret som syg.

I den forbindelse skal du udfylde en blanket.

Derefter afleverer du en blank besvarelse i systemet og forlader eksamen.

Når du kommer hjem, skal du kontakte din læge og indsende en lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Københavns Universitets Økonomiske Institut

1. årsprøve 2019 V-1B ex

Skriftlig eksamen i Matematik B Tirsdag den 8. januar 2019

3 sider med 4 opgaver.

Løsningstid: 3 timer.

Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller casværktøjer.

Opgave 1. For ethvert $s \in \mathbf{R}$ betragter vi 3×3 matricen

$$A(s) = \begin{pmatrix} 2 & 1 & 1 \\ 1 & s & s \\ 1 & s & 1 \end{pmatrix}.$$

- (1) Udregn determinanten det A(s) for matricen A(s), og bestem de tal $s \in \mathbf{R}$, for hvilke matricen A(s) er regulær.
- (2) Bestem de tal $s \in \mathbf{R}$, for hvilke matricen A(s) er positiv definit.
- (3) Godtgør, at matricen A(s) ikke er negativ definit for noget tal $s \in \mathbf{R}$.
- (4) Bestem egenværdierne for matricen A(1), og godtgør, at denne matrix er positiv semidefinit.
- (5) Bestem en forskrift for den kvadratiske form $K: \mathbf{R}^3 \to \mathbf{R}$, der har matricen A(1) som sin tilhørende symmetriske matrix.
- (6) Opskriv en forskrift for den kvadratiske form $L: \mathbf{R}^2 \to \mathbf{R}$, som er defineret ved udtrykket

$$\forall (x_1, x_2) \in \mathbf{R}^2 : L(x_1, x_2) = K(x_1, x_2, -x_1),$$

og bestem den til L hørende symmetriske 2×2 matrix B.

Er L positiv definit?

Opgave 2. Vi betragter mængden

$$D = \{(x, y) \in \mathbf{R}^2 \mid x > 0 \land y > 0\}$$

samt den funktion $f: D \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x,y) \in D : f(x,y) = \ln x + \sqrt{y} - x^2.$$

- (1) Bestem værdimængden for funktonen f.
- (2) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x, y) \in D$.

- (3) Vis, at funktionen f ikke har nogen stationære punkter i mængden D.
- (4) Bestem Hessematricen f''(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in D$, og vis, at f er strengt konkav på mængden D.

Vi betragter den funktion $g: D \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x, y) \in D : g(x, y) = 1642 - f(x, y)$$

og den funktion $\psi: D \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x, y) \in D : \psi(x, y) = \exp(q(x, y)).$$

(5) Vis, at funktionen ψ er kvasikonveks, og afgør dernæst, om den endda er konveks.

Vi betragter nu den funktion $h: \mathbf{R}_+ \to \mathbf{R}$, som er defineret ved forskriften

$$\forall x \in \mathbf{R}_+ : h(x) = f(x, x).$$

(6) Bestem en forskrift for Taylorpolynomiet P_3 af tredje orden for h ud fra punktet $x_0 = 1$.

Opgave 3. Vi betragter differentialligningen

$$\frac{dx}{dt} + \left(\frac{4t^3}{2+t^4}\right)x = 1+t.$$

- (1) Bestem den fuldstændige løsning til differentialligningen (*).
- (2) Bestem den specielle løsning $\tilde{x}=\tilde{x}(t)$ til (*), så betingelsen $\tilde{x}(0)=2$ er opfyldt.
- (3) Bestem differentialkvotienten

$$\frac{dx}{dt}(0),$$

og vis, at enhver maksimal løsning x = x(t) er voksende i en omegn af punktet t = 0.

Opgave 4. I vektorrummet \mathbb{R}^4 betragter vi den hyperplan H, der har ligningen

$$H: 2x_1 + 3x_2 - x_3 + x_4 = 0.$$

(1) Godtgør, at hyperplanen H er et underrum af vektorrummet \mathbf{R}^4 , og bestem tre vektorer a,b og c, så

$$H = \operatorname{span}\{a, b, c\}.$$

(2) Bestem mængden

$$H^{\perp} = \{ y \in \mathbf{R}^4 \mid \forall x \in H : y \perp x \}$$

og godtgør, at H^{\perp} er et underrum af \mathbf{R}^4 .

Vi betragter nu funktionen $f:H^{\perp}\to\mathbf{R},$ som har forskriften

$$\forall y \in H^{\perp} : f(y) = ||z - y||^2,$$

hvor z = (1, 1, 1, 1).

(3) Bestem værdimængden for funktionen f.