Mérték, integrál, ...

10. Előadás

1. Emlékeztető.

a) Tetszőleges $\, f: X \to \overline{\bf R}\,$ mérhető függvény és $\, 0 "kitevő" esetén$

$$||f||_p := \left(\int |f|^p \, d\mu\right)^{1/p}$$

az f ún. p-normája. Továbbá

$$||f||_{\infty} := \inf\{\alpha \ge 0 : |f| \le \alpha \ \mu\text{-m.m.}\}$$

az $f \propto -normája$.

b) Hölder-egyenlőtlenség: tegyük fel, hogy az $1 \le p, q \le +\infty$ kitevőkre

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Ekkor bármely $f, h: X \to \overline{\mathbf{R}}$ mérhető függvényre igaz az

$$||fh||_1 < ||f||_p \cdot ||h||_q$$

egyenlőtlenség.¹

c) Minkowski-egyenlőtlenség: a mérhető $f,g:X\to \overline{\mathbf{R}}$ függvényekről tegyük fel, hogy létezik az $f+g:X\to \overline{\mathbf{R}}$ összegük. Ekkor tetszőleges $1\leq p\leq +\infty$ mellett fennáll az

$$||f + g||_p \le ||f||_p + ||g||_p$$

becslés.²

¹Ha itt $||f||_p$, $||h||_q < +\infty$, akkor az $1 < p, q < +\infty$ esetben az $||fh||_1 = ||f||_p \cdot ||h||_q$ egyenlőség akkor és csak akkor áll fenn, ha egy $\lambda \ge 0$ számmal $|f|^p = \lambda \cdot |h|^q$ μ -m.m., vagy $|h|^q = \lambda \cdot |f|^p$ μ -m.m. Az $||fh||_1 = ||f||_1 \cdot ||h||_\infty$ egyenlőség pedig azzal ekvivalens, hogy $|h(x)| = ||h||_\infty$ (μ -m.m. $x \in \{|f| > 0\}$).

²Ha $1 és <math>||f||_p$, $||g||_p < +\infty$, akkor az $||f+g||_p = ||f||_p + ||g||_p$ egyenlőség akkor és csak akkor igaz, ha egy alkalmas $c \ge 0$ együtthatóval vagy f = cg μ-m.m., vagy pedig g = cf μ-m.m.

2. L^p -terek.

Adott $1 \le p \le +\infty$ esetén legyen

$$L^p:=L^p(\mu):=\{f:X\to {\bf R}: f\ \text{ m\'erhet\~o \'es } \|f\|_p<+\infty\}.$$

- **1. Tétel.** Legyen $1 \le p \le +\infty$. Ekkor a fenti L^p -terekre az alábbi állítások teljesülnek:
 - a) az L^p lineáris tér az \mathbf{R} felett;
 - b) minden $f, g \in L^p$ esetén $\max\{f, g\}, \min\{f, g\} \in L^p$;
 - c) $f \in L^p \iff f^+, f^- \in L^p;$
 - d) ha $1 \le q \le +\infty$ és 1/p + 1/q = 1, $f \in L^p$, $g \in L^q$, akkor $f \cdot g \in L^1$;
 - e) véges μ esetén³ $L^{\infty} \subset L^p \subset L^1$.

Bizonyítás. Az a) állítás (ld. Minkowski-egyenlőtlenség) nyilvánvaló.

Α

$$\max\{f,g\}, \min\{f,g\}: X \to \mathbf{R}$$

függvények mérhetők és

$$|\max\{f,g\}|, |\min\{f,g\}| \le |f| + |g|.$$

Ezért $p < +\infty$ mellett az integrál monotonitása, $p = +\infty$ esetén pedig

$$|f| \le ||f||_{\infty} \ \mu-\text{m.m.}, \ |g| \le ||g||_{\infty} \ \mu-\text{m.m.}$$

alapján a Minkowski-egyenlőtlenséget felhasználva

$$\|\max\{f,g\}\|_p,\ \|\min\{f,g\}\|_p\leq \||f|+|g|\|_p\leq \|f\|_p+\|g\|_p<+\infty,$$
azaz a b) is igaz.

A c) állítás egyszerűen következik az a)-ből és a b)-ből az

$$f^+ = \max\{f, 0\}, \ f^- = \max\{-f, 0\}, \ f = f^+ - f^-$$

egyenlőségekre tekintettel.

A d)-t illetően ld. Hölder-egyenlőtlenség.

³Tehát $\mu(X) < +\infty$.

Az e)-ben szereplő $L^p\subset L^1$ tartalmazás igazolásához feltehető, hogy p>1. Legyen ekkor a $q\in \mathbf{R}$ olyan, hogy 1/p+1/q=1, és egy $c\in \mathbf{R}$ paraméterrel tekintsük a nyilván mérhető

$$f_c(x) := c \qquad (x \in X)$$

függvényt. Ekkor

$$\int |f_c|^q d\mu = |c|^q \cdot \mu(X) < +\infty,$$

így $f_c \in L^q$. Alkalmazzuk a d) állítást az $f \in L^p$ és a $g := f_1 \in L^q$ függvényre, amikor is $f = f \cdot g \in L^1$, más szóval $L^p \subset L^1$.

Az $L^{\infty} \subset L^p$ -hez legyen $p < +\infty$ és $f \in L^{\infty}$. Ekkor

$$|f|^p \le ||f||_{\infty}^p \mu - \text{m.m.},$$

így

$$||f||_p^p = \int |f|^p d\mu \le ||f||_{\infty}^p \cdot \mu(X) < +\infty,$$

következésképpen $f \in L^p$, tehát valóban $L^\infty \subset L^p$. \blacksquare

Ha az L^p -terek definíciójában szereplő μ mérték véges, akkor

$$L^{\infty} \subset L^q \subset L^p \subset L^1 \qquad (1 \leq p \leq q \leq +\infty).$$

Mindez már csak 1 mellett kíván indokolást. Ekkor a Hölder-egyenlőtlenséget a

$$\tilde{p} := \frac{q}{p}, \quad \tilde{q} := \frac{q}{q-p}$$

paraméterekkel alkalmazva $f \in L^q$ esetén azt kapjuk, hogy (a $h := f_1 \equiv 1$ függvénnyel)

$$\|f\|_p^p = \||f|^p \cdot h\|_1 \leq \||f|^p\|_{\tilde{p}} \cdot \|h\|_{\tilde{q}} = \|f\|_q^p \cdot (\mu(X))^{1/\tilde{q}}.$$

Innen

$$||f||_p \le (\mu(X))^{1/p-1/q} \cdot ||f||_q < +\infty$$

következik, tehát $f \in L^p$.

Az utóbbi becslés $q = +\infty$ esetén is igaz:

$$||f||_p \le \left(\mu(X)\right)^{1/p} \cdot ||f||_{\infty},$$

ui. $(p < +\infty \text{ mellett}) |f|^p \le ||f||_{\infty}^p \mu\text{-m.m. miatt}$

$$||f||_p = \left(\int |f|^p d\mu\right)^{1/p} \le \left(\int ||f||_\infty^p d\mu\right)^{1/p} = \left(\mu(X)\right)^{1/p} \cdot ||f||_\infty.$$

Hasonlóan, ha $p = 1 < q \le +\infty$, akkor a fenti $h \equiv 1$ függvénnyel a Hölderegyenlőtlenség alapján

$$||f||_1 = \int |fh| d\mu \le ||f||_q \cdot ||h||_r = ||f||_q \cdot (\mu(X))^{1/r},$$

ahol $1 \le r < +\infty$ és 1/q + 1/r = 1.

Speciálisan, ha $\mu(X) \leq 1$, akkor a most mondottak szerint

$$||f||_p \le ||f||_q \qquad (1 \le p \le q \le +\infty).$$

3. Lebesgue-tétel.

A Lebesgue-tételként idézett konvergencia-tétel m.m. konvergens függvénysorozatok határfüggvényének az integrálhatóságáról, valamint a sorozat "tagonkénti integrálhatóságáról" ad felvilágosítást.

2. Tétel (Lebesgue). Adott az (X, Ω, μ) mértéktér, $1 \leq p < +\infty$, az $f_n \in L^p$ $(n \in \mathbb{N})$ pedig legyen egy olyan függvénysorozat, amire a $\lim_{n \to \infty} f_n(x)$ határérték μ -m.m. $x \in X$ helyen létezik. Tegyük fel továbbá, hogy egy $F \in L^+$ függvénnyel egyrészt $||F||_p < +\infty$, másrészt minden $n \in \mathbb{N}$ indexre

$$|f_n(x)| \le F(x)$$
 μ - $m.m.$ $x \in X$.

Ekkor:

a) van olyan $f: X \to \mathbf{R}$ mérhető függvény, hogy

$$f = \lim_{n \to \infty} f_n \quad \mu\text{-m.m.};$$

b) minden a)-beli f függvényre $f \in L^p$ és $\lim_{n \to \infty} ||f - f_n||_p = 0$.

Bizonyítás. Legyen az $A \in \Omega$ olyan halmaz, hogy $\mu(A) = 0$ és bármelyik $x \in X \setminus A$ pontban létezik a $\lim_{n \to \infty} f_n(x)$ határérték. Hasonlóan: van olyan $B \in \Omega$, hogy $\mu(B) = 0$ és

$$F(x) < +\infty$$
 $(x \in X \setminus B)$.

⁴Ilyen B halmaz $\int F^p d\mu < +\infty$ miatt megadható.

Továbbá minden $n \in \mathbb{N}$ indexre valamilyen $C_n \in \Omega$ halmazzal $\mu(C_n) = 0$ és

$$|f_n(x)| \le F(x)$$
 $(x \in X \setminus C_n).$

На

$$D := A \bigcup B \bigcup \Big(\bigcup_{n=0}^{\infty} C_n\Big),$$

akkor $D \in \Omega$, $\mu(D) = 0$, és az előbb felsorolt valamennyi követelmény teljesül: tetszőleges $k \in \mathbb{N}$, $x \in Y := X \setminus D$ mellett

$$|f_k(x)| \le F(x) < +\infty$$
 és létezik a $\lim_{n \to \infty} f_n(x)$ határérték.

Definiáljuk az f függvényt a következőképpen:

$$f(x) := \begin{cases} \lim_{n \to \infty} f_n(x) & (x \in Y) \\ 0 & (x \in D). \end{cases}$$

Az f mérhető függvény. Mivel

$$|f(x)| = \begin{cases} \lim_{n \to \infty} |f_n(x)| \le F(x) < +\infty & (x \in Y) \\ 0 & (x \in D), \end{cases}$$

ezért az fnyilván valós értékű, azaz $f:X\to {\bf R}.$ Továbbá

$$f(x) = \lim_{n \to \infty} f_n(x)$$
 $(x \in Y)$

miatt $f = \lim_n f_n$ μ -m.m. Más szóval az f-re igaz mindaz, amit az a)-ban állítottunk.

Ha egy mérhető $f: X \to \mathbf{R}$ függvény eleget tesz az a)-nak, akkor

$$f = \lim_{n \to \infty} f_n \quad \mu\text{-m.m.}$$

szerint az f_n -ekre tett feltételből adódóan $|f| \leq F$ μ -m.m. is teljesül. Következésképpen

$$\int |f|^p d\mu \le \int F^p d\mu < +\infty.$$

Tehát $f \in L^p$ is igaz.⁵

Azt kell már csak megmutatnunk, hogy $\lim_{n\to\infty} \|f-f_n\|_p = 0$. Legyen ehhez

$$g_n := |f - f_n|^p \qquad (n \in \mathbf{N}).$$

⁵Vegyük észre, hogy amit eddig mondtunk, az $p = +\infty$ esetén is elmondható.

Ekkor $g_n \in L^+$ és $g_n \leq 2^p \cdot F^p$ μ -m.m. $(n \in \mathbb{N})$. Ezért (ld. Fatou-lemma)

$$\limsup_{n \to \infty} \int g_n \, d\mu \le \int \limsup_{n \to \infty} g_n \, d\mu = \int \lim_{n \to \infty} g_n \, d\mu = 0,$$

hiszen $\lim_{n\to\infty}g_n=0$ μ -m.m. Tehát

$$\limsup_{n \to \infty} \int g_n \, d\mu = 0,$$

amiből $\liminf_{n\to\infty} \int g_n d\mu = 0$, azaz valóban létezik a

$$\lim_{n \to \infty} \int g_n \, d\mu = \lim_{n \to \infty} \|f - f_n\|_p^p = 0$$

határérték. ■

Ha a μ mérték véges és a Lebesgue-tételben valamilyen $c \geq 0$ konstanssal

$$|f_n| \le c \ \mu\text{-m.m.} \quad (n \in \mathbf{N}),$$

akkor bármilyen $1 \leq p < +\infty$ mellett teljesül a Lebesgue-tétel valamennyi állítása. Ekkor ui. az $F \equiv c$ választással

$$\int F^p d\mu = c^p \cdot \mu(X) < +\infty.$$

Szokás a tételnek ezt a speciális esetét "kis Lebesgue-tétel"-ként említeni.

Legyen a 2. Tételben p = 1. Ekkor

$$\int f \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu.$$

Valóban,

$$\left| \int f \, d\mu - \int f_n \, d\mu \right| \le \int |f - f_n| \, d\mu = \|f - f_n\|_1 \to 0 \qquad (n \to \infty).$$

A jelentősége miatt nem érdektelen külön állításként is szerepeltetni (formailag picit más megfogalmazásban) a most mondottakat, mint az új mértékés integrálelmélet emblematikus tételét. Ez az az eredmény, ami választ ad a Riemann-integrál kritikája kapcsán megfogalmazott elvárásoknak.

3. Tétel (Lebesgue). Tegyük fel, hogy a Lebesgue-tételben az integrálható $f_n \in L$ $(n \in \mathbb{N})$ függvényekből álló sorozatnak μ -m.m. van határértéke, és egy $F \in L \cap L^+$ integrálható függvénnyel

$$|f_n| \leq F \ \mu\text{-m.m.} \quad (n \in \mathbf{N}).$$

Ekkor van olyan $f \in L$, hogy $f := \lim_{n \to \infty} f_n$ μ -m.m., és minden ilyen f (határ-)függvényre

$$\int f \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu.$$

Ha tehát az $f, g \in L$ függvényekre

$$f := \lim_{n \to \infty} f_n \ \mu$$
-m.m. és $g = \lim_{n \to \infty} f_n \ \mu$ -m.m.,

akkor $f = g \mu$ -m.m., valamint

$$\int f \, d\mu = \int g \, d\mu.$$

Jelöljük a $\lim_{n\to\infty} f_n$ szimbólummal az előbbi f,g,\dots függvények bármelyikét, akkor azt írhatjuk, hogy

$$\int \lim_{n \to \infty} f_n \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu,$$

ami (a Lebesgue-tételben tett feltételek mellett) az integrálás és a határátmenet felcserélhetőségét fejezi ki.

A Lebesgue-tétel "függvénysoros alakját" is könnyen megfogalmazhatjuk: ha a $g_n \in L \ (n \in \mathbf{N})$ függvényekből álló $\sum (g_n)$ függvénysornak μ -m.m. van határértéke, és valamilyen $G \in L \cap L^+$ függvénnyel

$$\left|\sum_{k=0}^{n} g_k\right| \le G \quad \mu-\text{m.m.} \quad (n \in \mathbf{N}),$$

akkor létezik olyan $g \in L$ függvény, hogy

$$g = \sum_{n=0}^{\infty} g_n \quad \mu\text{-m.m.}$$

és

$$\int g \, d\mu = \sum_{n=0}^{\infty} \int g_n \, d\mu.$$

Ez a helyzet speciálisan akkor, ha a $\sum (g_n)$ függvénysor μ -m.m. abszolút konvergens és $\sum_{n=0}^{\infty} |g_n| \in L$. Ekkor ui. a $G := \sum_{n=0}^{\infty} |g_n|$ függvény nyilván egy integrálható majoránsa az illető függvénysornak.

4. Teljesség.

A következő tételben megmutatjuk, hogy a $\|\cdot\|_p$ $(1 \le p \le +\infty)$ normafüggvény rendelkezik a számsorozatokkal kapcsolatban "érvényes" teljességi tulajdonsággal.

4. Tétel. Tekintsük az eddigiekben is szereplő (X, Ω, μ) mértékteret, legyen továbbá $1 \leq p \leq +\infty$, az $f_n \in L^p$ $(n \in \mathbb{N})$ pedig egy olyan függvénysorozat, amire teljesül az ún. Cauchy-kritérium: tetszőleges $\varepsilon > 0$ számhoz megadható olyan $N \in \mathbb{N}$ index, hogy hacsak $m, n \in \mathbb{N}$ és m, n > N, akkor

$$||f_m - f_n||_p < \varepsilon.$$

Ekkor:

- a) van olyan $f \in L^p$ függvény, hogy $\lim_{n \to \infty} ||f f_n||_p = 0$;
- b) egy alkalmas $n_k \in \mathbf{N}$ $(k \in \mathbf{N})$ indexsorozattal

$$f = \lim_{k \to \infty} f_{n_k} \ \mu\text{-m.m.}$$

Bizonyítás. Tegyük fel először, hogy $p < +\infty$. Ekkor a tételben szereplő Cauchy-kritérium miatt megadható olyan $n_k \in \mathbf{N}$ $(k \in \mathbf{N})$ indexsorozat, amivel

$$||f_{n_{k+1}} - f_{n_k}||_p < 2^{-k-1}$$
 $(k \in \mathbf{N}).$

На

$$g_k := f_{n_{k+1}} - f_{n_k} \quad (k \in \mathbf{N}) \text{ és } g := \sum_{k=0}^{\infty} |g_k|,$$

akkor

$$||g||_p \le \sum_{k=0}^{\infty} ||g_k||_p < \sum_{k=0}^{\infty} 2^{-k-1} = 1.$$

Ui. egyrészt a Minkowski-egyenlőtlenség miatt minden $n \in \mathbb{N}$ index mellett

$$\left\| \sum_{k=0}^{n} |g_k| \right\|_p = \left(\int \left(\sum_{k=0}^{n} |g_k| \right)^p d\mu \right)^{1/p} \le \sum_{k=0}^{n} \|g_k\|_p \le \sum_{k=0}^{\infty} \|g_k\|_p \le 1.$$

Másrészt az itt szereplő $\left(\sum_{k=0}^n |g_k|\right)^p$ $(n \in \mathbb{N})$ sorozat nyilván monoton nőve tart a g^p -hez, ezért a Beppo Levi-tétel alapján

$$\int g^p d\mu = \lim_{n \to \infty} \int \left(\sum_{k=0}^n |g_k| \right)^p d\mu,$$

amiből a mondott becslés már triviálisan következik.

Tehát $g < +\infty$ μ -m.m., ami azt jelenti, hogy a $\sum (g_n)$ függvénysor μ -m.m. abszolút konvergens. Tekintve, hogy minden $k \in \mathbb{N}$ esetén

$$\sum_{i=0}^{k} g_i = f_{n_{k+1}} - f_{n_0},$$

ezért az f_{n_k} $(k \in \mathbf{N})$ sorozat is μ -m.m. konvergens. Azt is tudjuk viszont, hogy

$$|f_{n_{k+1}}| = \left|\sum_{i=0}^{k} g_i + f_{n_0}\right| \le g + |f_{n_0}|,$$

és

$$||g + |f_{n_0}||_p \le ||g||_p + ||f_{n_0}||_p \le 1 + ||f_{n_0}||_p < +\infty.$$

Így alkalmazható a Lebesgue-tétel, miszerint van olyan $f \in L^p$ függvény, amelyikkel

$$f = \lim_{k \to \infty} f_{n_k} \ \mu$$
-m.m. és $\lim_{k \to \infty} ||f - f_{n_k}||_p = 0$

igaz. Jól ismert, hogy ha egy Cauchy-sorozat valamilyen részsorozatáról már tudjuk, hogy konvergens, 6 akkor maga a sorozat is konvergens. Tehát

$$\lim_{n\to\infty} ||f - f_n||_p = 0.$$

Ezzel "elintéztük" a $p<+\infty$ esetet. Ha $p=+\infty,$ akkor a fenti bizonyításban csak a

$$\lim_{k \to \infty} \|f - f_{n_k}\|_p = 0$$

reláció igazolása igényel némi módosítást, ti. ekkor nem alkalmazható a Lebesgue-tétel megfelelő része. Azonban

$$||f_{n_{k+1}} - f_{n_k}||_{\infty} < 2^{-k-1} \quad (k \in \mathbf{N}),$$

amiből egyszerűen kapjuk az

$$||f_{n_{k+m}} - f_{n_k}||_{\infty} < 2^{-k}$$
 $(m, k \in \mathbf{N})$

⁶Jelen esetben az (f_{n_k}) a $\|.\|_p$ norma szerint.

becslést:

$$||f_{n_{k+m}} - f_{n_k}||_{\infty} = \left| \left| \sum_{j=k}^{k+m-1} (f_{n_{j+1}} - f_{n_j}) \right| \right|_{\infty} \le \sum_{j=k}^{k+m-1} ||f_{n_{j+1}} - f_{n_j}||_{\infty} < \sum_{j=k}^{k+m-1} 2^{-j-1} < \sum_{j=k}^{\infty} 2^{-j-1} = 2^{-k}.$$

Innen viszont

$$|f - f_{n_k}| = \lim_{m \to \infty} |f_{n_{k+m}} - f_{n_k}| \le 2^{-k}$$
 μ -m.m. $(k \in \mathbf{N}),$

tehát

$$||f - f_{n_k}||_{\infty} \le 2^{-k} \qquad (k \in \mathbf{N})$$

adódik, következésképpen

$$\lim_{k \to \infty} ||f - f_{n_k}||_{\infty} = 0.$$

Az eddigiek alapján a következőket mondhatjuk: az L^p $(1 \le p \le +\infty)$ függvényhalmaz az ${\bf R}$ feletti lineáris tér (vektortér), az

$$L^p \ni f \mapsto ||f||_p$$

leképezés félnorma az L^p -
n. Ha valamilyen $p \in [1, +\infty]$ esetén az L^p vektortérben az

$$f \sim g \iff ||f - g||_p = 0 \quad (f, g \in L^p)$$

utasítással definiált relációt tekintjük, akkor a \sim reláció ekvivalencia. Az általa generált L^p -beli ekvivalencia-osztályokra tehát az jellemző, hogy az $f,g\in L^p$ függvények akkor és csak akkor tartoznak ugyanabba az ekvivalenciaosztályba, ha f=g μ -m.m.

Jelöljük az $f \in L^p$ függvény által generált ekvivalenciaosztályt a következőképpen:

$$\widehat{f} := \{ g \in L^p : ||g - f||_p = 0 \},$$

és legyen \mathbf{L}^p az \hat{f} $(f \in L^p)$ ekvivalenciaosztályok halmaza. A "szokásos" módon értelmezve az \mathbf{L}^p -ben a vektorműveleteket, az \mathbf{L}^p lineáris tér az \mathbf{R} felett,

$$\|\widehat{f}\|_p := \|f\|_p \qquad (\widehat{f} \in \mathbf{L}^p)$$

pedig norma ezen a téren. Az $(\mathbf{L}^p, \|\cdot\|_p)$ teljes normált tér (Banach-tér).

5. Lebesgue-terek.

Legyen pl. valamilyen $-\infty < a < b < +\infty$ esetén X := [a, b] és

$$\Omega := \{ A \in \mathcal{P}([a, b]) : A \in \widehat{\Omega}_1 \}, \ \mu(A) := \widehat{\mu}_1(A) \qquad (A \in \Omega).$$

Tekintsük az (X, Ω, μ) mértékteret. A most bevezetett (teljes) mértéktérnek megfelelő L^p -tereket a következőképpen fogjuk jelölni:

$$L^p[a,b] := L^p \qquad (1 \le p \le +\infty).$$

Mivel a μ mérték véges, ezért (ld. fent)

$$L^{\infty}[a,b] \subset L^{q}[a,b] \subset L^{p}[a,b] \subset L^{1}[a,b] \qquad (1 \le p \le q \le +\infty).$$

Azt mondjuk, hogy az

$$f:[a,b]\to\mathbf{R}$$

függvény (klasszikus értelemben) Lebesgue-integrálható, ha $f \in L^1[a,b]$, és ebben az esetben $\int f \, d\mu$ az f függvény (klasszikus) Lebesgue-integrálja. Ez utóbbira – hacsak nem okoz félreértést – használhatjuk a Riemann-integrállal kapcsolatban megszokott $\int_a^b f$ vagy $\int_a^b f(x) \, dx$ szimbólumokat is.

Könnyű példát adni olyan Lebesgue-integrálható $f \in L^1[a, b]$ függvényre, amelyik nem Riemann-integrálható: $f \notin R[a, b]$. Ilyen pl. az

$$f(x) := \begin{cases} 1 & (x \in [a, b] \cap \mathbf{Q}) \\ 0 & (x \in [a, b] \setminus \mathbf{Q}) \end{cases}$$

(Dirichlet-)függvény, ami nem más, mint az $[a,b] \cap \mathbf{Q}$ halmaznak az [a,b]-re vonatkozó karakterisztikus függvénye. Mivel a szóban forgó halmaz megszámlálható, ezért (Lebesgue-)mérhető és $\mu([a,b] \cap \mathbf{Q}) = 0$. Tehát valóban igaz, hogy $f \in L^1[a,b]$, továbbá

$$\int f \, d\mu = \mu([a, b] \cap \mathbf{Q}) = 0.$$

Ugyanakkor jól ismert az elemi analízisből, hogy az f nem Riemann-integrálható.

 $^{^7}$ A későbbiekben nem teszünk jelölésbeli különbséget az \mathbf{L}^p és az L^p terek között, azaz ezentúl az L^p "függvénytér" minden $f\in L^p$ eleme egyúttal az összes olyan $g:X\to\mathbf{R}$ mérhető függvényt is jelöli, amire $\|f-g\|_p=0$. Ebben az értelemben tehát minden $1\leq p\leq +\infty$ esetén az $(L^p,\|\cdot\|_p)$ egy Banach-tér.

6. Megjegyzések.

i) Az 1. Tétel e) állítása, azaz, hogy véges μ esetén

$$L^{\infty} \subset L^p \subset L^1 \qquad (1 \le p \le +\infty),$$

nem véges μ mértékre általában nem igaz. Legyen ui.

$$X := \mathbf{N}, \ \Omega := \mathcal{P}(\mathbf{N}), \ \mu(\{n\}) := 1 \qquad (n \in \mathbf{N}),$$

amikor8

$$L^{p} = \ell_{p} := \begin{cases} \left\{ (x_{k}) \in \mathbf{R}^{\mathbf{N}} : \sum_{k=0}^{\infty} |x_{k}|^{p} < +\infty \right\} & (1 \leq p < +\infty) \\ \left\{ (x_{k}) \in \mathbf{R}^{\mathbf{N}} : \sup_{k} |x_{k}| < +\infty \right\} & (p = +\infty), \end{cases}$$

és az $(x_k) \in \ell_p$ sorozatokra

$$\|(x_k)\|_p = \begin{cases} \left(\sum_{k=0}^{\infty} |x_k|^p\right)^{1/p} & (0$$

Ekkor p>1 esetén az említett e) állítással ellentétben éppen az ℓ_1 lesz valódi részhalmaza az ℓ_p -nek.

ii) Amennyiben valamilyen $1 \le p < q \le +\infty$ mellett (a μ mértékkel)

$$L^p(\mu) \subset L^q(\mu)$$

teljesül, akkor egyúttal minden $1 \le r < s \le +\infty$ esetén is igaz az

$$L^r(\mu) \subset L^s(\mu)$$

reláció. Ha viszont itt azt tudjuk, hogy $L^p(\mu) \supset L^q(\mu)$, akkor minden $1 \le r < s \le +\infty$ kitevőre is $L^r(\mu) \supset L^s(\mu)$ teljesül.

iii) Az $1 , <math>||f||_p$, $||g||_p < +\infty$ esetben fennálló $||f+g||_p = ||f||_p + ||g||_p \iff f = cg \text{ vagy } g = cf \text{ μ-m.m.}$

(egy alkalmas $c \ge 0$ együtthatóval) állításra hivatkozva funkcionálanalízisbeli terminológiával élve azt mondjuk, hogy a $\|.\|_p$ (1

⁸Ebben az esetben könnyen meggyőződhetünk arról, hogy az L^p -t alkotó $f:=(x_k)$ számsorozatokra az $1 \leq p < +\infty$ esetben $\int |f|^p d\mu = \sum_{k=0}^\infty |x_k|^p < +\infty$, valamint $f \in L^\infty$ azzal ekvivalens, hogy az előbbi (x_k) sorozat korlátos: $\sup_k |x_k| < +\infty$.

norma szigorú norma, vagy másképp fogalmazva: az $(L^p, \|.\|_p)$ szigorúan normált tér. Ebből a szempontból az 1 feltétel lényeges: az

$$(L^1, ||.||_1), (L^\infty, ||.||_\infty)$$

terek általában nem szigorúan normáltak.⁹

iv) Az (l_n) számsorozat $l\acute{e}pcs \acute{o}$, ha szigorúan monoton növő, $l_0=0$, továbbá $l_n \to +\infty$ $(n \to +\infty)$ és $\delta := \sup_n (l_n - l_{n-1}) < +\infty$. Tekintsük a kompakt [a,b] intervallumon a Lebesgue-féle (X,Ω,μ) mértékstruktúrát. Legyen $f \in L^+ \cap L^1$ és tegyük fel, hogy valamilyen fenti (l_n) lépcső esetén az

$$E_n := \{ x \in [a, b] : l_{n-1} \le f(x) < l_n \} \in \Omega \qquad (n = 1, 2, ...)$$

halmazokkal a $\sum_{n=1}^{\infty} l_n \mu(E_n)$ sor konvergens. Megmutatható, hogy ekkor bármely más (\tilde{l}_n) lépcsőre is az analóg $\sum_{n=1}^{\infty} \tilde{l}_n \mu(\tilde{E}_n)$ sor konvergens.

Véve az összes lehetséges lépcsőkre vonatkozó $L_{\star}(f)$ szuprémumát a $\sum_{n=1}^{\infty} \tilde{l}_{n-1}\mu(\tilde{E}_n)$ (Lebesgue-féle) alsó összegeknek, valamint az $L^{\star}(f)$ infimumát a $\sum_{n=1}^{\infty} l_n \mu(E_n)$ felső összegeknek, akkor

$$L_{\star}(f) = \int f \, d\mu = L^{\star}(f).$$

⁹Házi feladat: pl. az $(\ell_1, ||.||_1), (\ell_\infty, ||.||_\infty)$ terek ilyenek.

 $^{^{10}}$ Ahol tehát $X := [a, b], \ \Omega$ az [a, b] intervallum Lebesgue-mérhető részhalmazainak a szigma-algebrája, $\mu(A)$ pedig az $A \in \Omega$ halmaz Lebesgue-mértéke.