

# A port-Hamiltonian formulation for the full von-Kármán plate model

Andrea Brugnoli

18 July 2022

UNIVERSITY OF TWENTE.

#### Outline

Why port-Hamiltonian systems?

Von-Kármán theory of thin beams in pH form

Numerical discretization

Numerical convergence study

## Outline

Why port-Hamiltonian systems?

Von-Kármán theory of thin beams in pH form

Numerical discretization

Numerical convergence study

# A unified language for multiphysics in engineering

The port-Hamiltonian (pH) paradigm provides a language to understand multiphysics:

- Physics is at the core: port-Hamiltonian systems are passive with respect to the energy storage function.
- ► The **topological** and **metrical** structure of the equation is clearly separated (mimetic discretization).
- ▶ PH systems are closed under interconnection.



# Finite dimensional pH systems

#### A theory still under developement

There is **not** a **unique definition** of pH systems, even in finite dimension.

## Definition (Finite dimensional pH system)

The following time-invariant dynamical system is a pH system

$$\begin{aligned} \mathbf{M}\dot{\mathbf{x}} &= \mathbf{J}(\mathbf{x})\mathbf{x} + \mathbf{B}\mathbf{u}, \\ \mathbf{y} &= \mathbf{B}^{\top}\mathbf{x}. \end{aligned}$$

 $\mathbf{x}(t) \in \mathcal{X} \subseteq \mathbb{R}^n$  is the state,  $\mathbf{u}(t), \mathbf{y}(t) \in \mathbb{R}^m$  the input and output and

- ▶  $\mathbf{J}(\mathbf{x}) = -\mathbf{J}(\mathbf{x})^{\top} \in \mathbb{R}^{n \times n}$ ,  $\mathbf{B} \in \mathbb{R}^{n \times m}$  the interconnection and control operator.
- $ightharpoonup H(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{M}\mathbf{x}: \mathbb{R}^n \to \mathbb{R} \text{ with } \mathbf{M} > 0, \text{ the Hamiltonian.}$

# Finite dimensional pH systems



# Interconnection of pH systems



# Interconnection of pH systems



## Outline

Why port-Hamiltonian systems?

Von-Kármán theory of thin beams in pH form

Numerical discretization

Numerical convergence study

# Linear vs Von-Kármán plate theory



Geometrical non-linearities allow describing bifurcations (i.e. buckling).

# The von-Kármán assumption

Second-order approximation of geometrically exact beam theory **capturing the axial** bending **coupling**.



#### Basic geometric assumption

- Out of plane deflection comparable to the thickness:  $w/h = \mathcal{O}(1)$ .
- The squares of the in-plane stretching terms are negligible compared to the square of the rotations.

# Linear isotropic plates

The axial and bending behavior are uncoupled if  $w/h \ll 1$ :

## Axial displacement (planar elastodynamics)

$$ho h \partial_{tt} {\pmb u} = {\sf Div} \, {\pmb N}, \qquad {\pmb N} = D_m {\pmb \Phi}({\pmb arepsilon}_m), \qquad {\pmb arepsilon}_m = rac{1}{2} ( {\pmb \nabla} {\pmb u} + {\pmb \nabla}^{ op} {\pmb u} ) = {\sf Grad} \, {\pmb u}.$$

## Vertical displacement (Kirchhoff plate)

$$ho h \partial_{tt} w = -\operatorname{div}\operatorname{Div} oldsymbol{M}, \qquad oldsymbol{M} = D_b \Phi(oldsymbol{\kappa}), \qquad oldsymbol{\kappa} = \operatorname{Hess} w = \operatorname{Grad}\operatorname{grad} w.$$

The linear mapping  $\Phi(\mathbf{A}) = \nu \operatorname{Tr}(\mathbf{A})\mathbf{1} + (1-\nu)\mathbf{A}$  is positive and preserves symmetry.

# Von-Kármán plates



# Von-Kármán plate Dynamics

$$\rho A \partial_{tt} u = \text{Div } N, 
\rho A \partial_{tt} w = - \text{div Div } M + \text{div } N \text{ grad } w),$$

Total energy  $H = \frac{1}{2} \int_{\Omega} \{ D_m \Phi(\varepsilon_m) : \mathbf{N} + D_b \Phi(\kappa) : \mathbf{M} \} d\Omega$ 

# Port-Hamiltonian Von-Kármán plates

## Energy and coenergy variables

$$\boldsymbol{\alpha}_{u}=
ho h\partial_{t}\boldsymbol{u}, \qquad \boldsymbol{A}_{arepsilon}=\boldsymbol{arepsilon}_{m},$$

$$\alpha_{\it w} = \rho \it h \partial_t \it w, \qquad \it A_{\kappa} = \it \kappa.$$

Linear constitutive equations  ${m e}:=\delta_{lpha} H={\mathcal Q}{m lpha}$  with

$$Q = \operatorname{Diag} \left[ (\rho h)^{-1}, \ D_m \Phi, \ (\rho h)^{-1}, \ D_b \Phi \right]^{-1}.$$

# The port-Hamiltonian realization

To close the system, variable w has to be accessible.

$$\frac{\partial}{\partial t} \begin{pmatrix} \boldsymbol{\alpha}_{u} \\ \boldsymbol{A}_{\varepsilon} \\ w \\ \boldsymbol{\alpha}_{w} \\ \boldsymbol{A}_{\kappa} \end{pmatrix} = \underbrace{\begin{bmatrix} \mathbf{0} & \operatorname{Div} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \operatorname{Grad} & \mathbf{0} & \mathbf{0} & -\mathcal{C}(w)^{*} & \mathbf{0} \\ 0 & 0 & 0 & 1 & 0 \\ 0 & \mathcal{C}(w) & -1 & 0 & -\operatorname{div}\operatorname{Div} \\ \mathbf{0} & \mathbf{0} & \operatorname{Grad}\operatorname{grad} & \mathbf{0} \end{bmatrix}}_{\mathcal{J}} \begin{pmatrix} \delta_{\boldsymbol{\alpha}_{u}} H \\ \delta_{\boldsymbol{A}_{\kappa}} H \\ \delta_{\boldsymbol{\alpha}_{w}} H \\ \delta_{\boldsymbol{A}_{\kappa}} H \end{pmatrix},$$

where

$$\mathcal{C}(w)(T) = \operatorname{div}(T\operatorname{grad} w),$$

$$\mathcal{C}(w)^*(\cdot) = -\frac{1}{2}\left[\operatorname{grad}(\cdot)\otimes\operatorname{grad}(w) + \operatorname{grad}(w)\otimes\operatorname{grad}(\cdot)\right].$$

# Energy rate and boundary conditions

#### Proposition

The energy rate reads

$$\dot{\textit{H}} = \langle \gamma_0 \textbf{\textit{e}}_{\textit{u}} \, | \gamma_\perp \textbf{\textit{E}}_\varepsilon \rangle_{\partial \Omega} + \langle \gamma_0 \textbf{\textit{e}}_{\textit{w}} \, | \gamma_{\perp \perp, 1} \textbf{\textit{E}}_\kappa + \gamma_0 (\textbf{\textit{E}}_\varepsilon \textbf{\textit{n}} \cdot \text{grad } \textit{w}) \rangle_{\partial \Omega} + \langle \gamma_1 \textbf{\textit{e}}_{\textit{w}} \, | \gamma_{\perp \perp} \textbf{\textit{E}}_\kappa \rangle_{\partial \Omega},$$

- $ightharpoonup \gamma_0 \mathbf{e}_u = \mathbf{e}_u|_{\partial\Omega}$  is the Dirichlet trace;
- $ightharpoonup \gamma_{\perp} \mathbf{E}_{\varepsilon} = \mathbf{E}_{\varepsilon} \cdot \mathbf{n}|_{\partial\Omega}$  is the normal trace;
- $ho \gamma_{\perp\perp,1} m{E}_{\kappa} = -m{n} \cdot \text{Div } m{E}_{\kappa} \partial_{m{s}} (m{n}^{\top} m{E}_{\kappa} m{s})|_{\partial\Omega}$  is the effective shear force;
- $ightharpoonup \gamma_1 \mathbf{e}_w = \partial_{\mathbf{n}} \mathbf{e}_w |_{\partial \Omega}$  is the normal derivative trace;
- $ho \gamma_{\perp \perp} \mathbf{E}_{\kappa} = \mathbf{n}^{\top} \mathbf{E}_{\kappa} \mathbf{n}$  is the normal to normal trace.

#### Boundary conditions classification

| BCs            | Traction                  | Bending                                                         |                       |
|----------------|---------------------------|-----------------------------------------------------------------|-----------------------|
| Dirichlet BCs. | $e_u _0^L$                | $e_w _0^L$                                                      | $\partial_x e_w _0^L$ |
| Neumann BCs.   | $ e_{arepsilon} _{0}^{L}$ | $ e_{\varepsilon}\partial_{x}w-\partial_{x}e_{\kappa} _{0}^{L}$ | $e_{\kappa} _{0}^{L}$ |

## Outline

Why port-Hamiltonian systems?

Von-Kármán theory of thin beams in pH form

Numerical discretization

Numerical convergence study

# Pure coenergy formulation

#### Coenergy formulation for linear constitutive equations

If the Q operator is inverted:

$$\begin{pmatrix} \rho A \dot{e}_u \\ C_a \dot{e}_\varepsilon \\ \rho A \dot{e}_w \\ C_b \dot{e}_\kappa \\ \dot{w} \end{pmatrix} = \begin{bmatrix} 0 & \partial_x & 0 & 0 & 0 \\ \partial_x & 0 & \partial_x w \partial_x & 0 & 0 \\ 0 & \partial_x (\cdot \partial_x w) & 0 & -\partial_{xx}^2 & -1 \\ 0 & 0 & \partial_{xx}^2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} \begin{pmatrix} e_u \\ e_\varepsilon \\ e_w \\ e_\kappa \\ \delta_w H \end{pmatrix}.$$

In the sequel, the quantity  $\delta_w H$  is removed as no displacement dependent potential (e.g. gravity) is considered

#### Weak formulation

Introducing test functions and integrating by parts the first, third and fourth, we get the weak formulation.

#### Weak formulation

Find 
$$(e_u, e_w, e_\kappa, w) \in H^1(\Omega)$$
,  $e_\varepsilon \in L^2(\Omega)$  such that 
$$(\psi_u, \rho A \dot{e}_u)_\Omega = -(\partial_x \psi_u, e_\varepsilon)_\Omega + (\psi_u, e_\varepsilon)_{\partial\Omega}.$$

$$(\psi_\varepsilon, C_a \dot{e}_\varepsilon)_\Omega = (\psi_\varepsilon, \partial_x e_u)_\Omega + (\psi_\varepsilon, \partial_x w \, \partial_x e_w)_\Omega,$$

$$(\psi_w, \rho A \dot{e}_w)_\Omega = -(\partial_x \psi_w \partial_x w, e_\varepsilon)_\Omega + (\partial_x \psi_w, \partial_x e_\kappa)_\Omega$$

$$+ (\psi_w, e_\varepsilon \partial_x w - \partial_x e_\kappa)_{\partial\Omega},$$

$$(\psi_\kappa, C_b \dot{e}_\kappa)_\Omega = -(\partial_x \psi_\kappa, \partial_x e_w)_\Omega + (\psi_\kappa, \partial_x e_w)_{\partial\Omega},$$

$$(\psi, \dot{w})_\Omega = (\psi, e_w)_\Omega.$$

holds  $\forall (\psi_u, \psi_w, \psi_\kappa, \psi) \in H^1(\Omega), \forall \psi_\varepsilon \in L^2(\Omega).$ 

#### Weak formulation

Introducing test functions and integrating by parts the first, third and fourth, we get the weak formulation.

#### Weak formulation

Find 
$$m{e} = (e_u, e_\varepsilon, e_w, e_\kappa) \in H^1 \times L^2 \times H^1 \times H^1$$
 such that 
$$m(\psi, \partial_t \bm{e}) = j_w(\psi, \bm{e}) + b(\psi) \bm{u},$$
 
$$\partial_t w = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} \bm{e},$$
 
$$\bm{y} = b^\top(\bm{e}),$$

$$\forall \psi \in H^1 \times L^2 \times H^1 \times H^1 := X$$

- ▶ *m* is a symmetric, coercive, bilinear form;
- $\triangleright$   $j_w$  is a skew-symmetric bilinear form modulated by w;
- ▶  $b: X \to \mathbb{R}^6$  vector-valued functional.

## Mixed finite element construction<sup>1</sup>

Crucial concept: Hilbert complex  $H^1 \xrightarrow{\partial_x} L^2$ .

## Key requirements for mixed Galerkin approximation

- The subspaces  $H_h^1 \subset H^1$ ,  $L_h^2 \subset L^2$  form a subcomplex  $H_h^1 \xrightarrow{\partial_x} L_h^2$  (i.e.  $\partial_x H_h^1 \subset L_h^2$ ).
- ▶ they admit bounded linear projections  $\pi_h^{H^1}: H^1 \to H_h^1$  and  $\pi_h^{L^2}: L^2 \to L_h^2$  which commute with  $\partial_x$ :  $\partial_x \pi_h^{H^1} = \pi_h^{L^2} \partial_x$ .

Satisfied for 
$$CG_k \xrightarrow{\partial_x} DG_{k-1}$$
 
$$CG_k = \{u \in H^1(\Omega) | \forall \text{edge in the mesh}, \ u|_{\text{edge}} \in P_k\},$$
 
$$DG_{k-1} = \{u \in L^2(\Omega) | \forall \text{edge in the mesh}, \ u|_{\text{edge}} \in P_{k-1}\},$$
 where  $P_k$  space of polynomials of degree  $k$ .

<sup>&</sup>lt;sup>1</sup>arnold2006acta.

## Finite element choice and final system

For the proposed weak formulation, the FE spaces become

$$e_u^h \in \mathrm{CG}_{2k-1}, \qquad e_\varepsilon^h \in \mathrm{DG}_{2k-2}, \qquad (e_w^h, \ e_\kappa^h, \ w^h) \in \mathit{CG}_k, \quad k \geq 1.$$

Implications:

- ▶ Subcomplex property for the linear part:  $\partial_x CG_{2k-1} \subset DG_{2k-2}$ .
- The non linear part respects

$$\partial_x CG_k \cdot \partial_x CG_k \subset DG_{2k-2}$$
.

## Finite dimensional system (Galerkin projection)

$$\begin{split} \mathbf{M}\dot{\mathbf{e}} &= \mathbf{J}(\mathbf{w})\mathbf{e} + \mathbf{B}\mathbf{u}, \\ \dot{\mathbf{w}} &= \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{e}, \\ \mathbf{y} &= \mathbf{B}^{\top}\mathbf{e}. \end{split}$$

## Outline

Why port-Hamiltonian systems?

Von-Kármán theory of thin beams in pH form

Numerical discretization

Numerical convergence study

#### Manufactured solution

The following manufactured solution is considered

$$u^{\text{ex}} = x^3 [1 - (x/L)^3] \sin(2\pi t), \qquad w^{\text{ex}} = \sin(\pi x/L) \sin(2\pi t),$$

together with the boundary conditions

$$u|_0^L = 0, \quad w|_0^L = 0, \quad m_{xx}|_0^L = 0.$$

A Crank-Nicholson scheme is used for time integration.

#### Convergence measure

The discrete time-space norm  $L^{\infty}_{\Delta t}(\mathcal{X})(\mathcal{X}=H^1 \text{ or } L^2)$  is used to measure convergence

$$||\cdot||_{L^{\infty}(\mathcal{X})} \approx ||\cdot||_{L^{\infty}_{\Delta t}(\mathcal{X})} = \max_{t \in t_i} ||\cdot||_{\mathcal{X}},$$

where  $t_i$  are the discrete simulation instants.



 $L^{\infty}_{\Delta t}(H^1)$  error for  $e_u$ .

#### Axial velocity



$$e_u^h (h=2^{-5}, k=2).$$



 $L^{\infty}_{\Delta t}(L^2)$  error for  $e_{\varepsilon}$ .



 $e_{\varepsilon}^h$  for  $h=2^{-5}, k=2$ .



 $L^{\infty}_{\Delta t}(H^1)$  error for  $e_w$ .

#### Vertical velocity



 $e_w^h$  for  $h = 2^{-5}, k = 2$ .



 $L^{\infty}_{\Delta t}(H^1)$  error for  $e_{\kappa}$ .

#### Bending stress



 $e_{\kappa}^{h}$  for  $h = 2^{-5}, k = 2$ .

#### Conclusion and Outlook

- ► First step into pH non linear mechanics. The geometrical non linearities belong to the interconnection operator.
- ▶ Natural extension for the 2D case (fancier FE).
- ► Can be used to study more complex phenomena. The discretization method guarantees energy conservation.

## References I

# Port-Hamiltonian von-Kármán plates

$$\frac{\partial}{\partial t} \begin{pmatrix} \boldsymbol{\alpha}_{u} \\ \boldsymbol{A}_{\varepsilon} \\ w \\ \boldsymbol{\alpha}_{w} \\ \boldsymbol{A}_{\kappa} \end{pmatrix} = \underbrace{\begin{bmatrix} \mathbf{0} & \mathrm{Div} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathrm{Grad} & \mathbf{0} & \mathbf{0} & -\mathcal{C}(w)^{*} & \mathbf{0} \\ 0 & 0 & 0 & 1 & 0 \\ 0 & \mathcal{C}(w) & -1 & 0 & -\mathrm{div}\,\mathrm{Div} \\ \mathbf{0} & \mathbf{0} & \mathrm{Grad}\,\mathrm{grad} & \mathbf{0} \end{bmatrix}}_{\mathcal{J}} \begin{pmatrix} \delta_{\boldsymbol{\alpha}_{u}} H \\ \delta_{\boldsymbol{A}_{\kappa}} H \\ \delta_{\boldsymbol{\alpha}_{w}} H \\ \delta_{\boldsymbol{A}_{\kappa}} H \end{pmatrix},$$

where

$$\mathcal{C}(w)(T) = \operatorname{div}(T\operatorname{grad} w),$$

$$\mathcal{C}(w)^*(\cdot) = -\frac{1}{2}\left[\operatorname{grad}(\cdot)\otimes\operatorname{grad}(w) + \operatorname{grad}(w)\otimes\operatorname{grad}(\cdot)\right].$$