UE19CS251

4

(Established under Karnataka Act No. 16 of 2013)

## MARCH 2021: IN SEMESTER ASSESSMENT B Tech IV SEMESTER TEST – 1

## UE19CS251 – Design and Analysis of Algorithms Scheme and Solutions

| Time: 2 Hrs | Answer All Questions | Max Marks: 60 |
|-------------|----------------------|---------------|

1. a) Provide formal definition with suitable graphs for Big-O and Big-Theta notations

Solution: 2M

2M

## **Big-O Notation**

• **Definition:** f(n) = O(g(n)) iff there are two positive constants c and  $n_0$  such that

 $|f(n)| \le c |g(n)|$  for all  $n \ge n_0$ 

 If f(n) is nonnegative, we can simplify the last condition to

 $0 \le f(n) \le c g(n)$  for all  $n \ge n_0$ 

- We say that "f(n) is big-O of g(n)."
- As n increases, f(n) grows no faster than g(n).
   In other words, g(n) is an asymptotic upper bound on f(n).



## ⊖ notation

- Definition: f(n) = \(\theta(g(n))\) iff there are three positive constants c<sub>1</sub>, c<sub>2</sub> and n<sub>0</sub> such that c<sub>1</sub>|g(n)| ≤ |f(n)| ≤ c<sub>2</sub>|g(n)| for all n ≥ n<sub>0</sub>
- If f(n) is nonnegative, we can simplify the last condition to

 $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$  for all  $n \ge n_0$ 

- We say that "f(n) is theta of g(n)."
- As n increases, f(n) grows at the same rate as g(n). In other words, g(n) is an asymptotically tight bound on f(n).



b) Using limits, compare the order of the growth of  $(\log_2 n)^2$  and  $\log_3 n^2$ Solution: t(n) 0 implies that t(n) has a smaller order of growth than g(n),

 $\lim_{n \to \infty} \frac{t(n)}{g(n)} = \begin{cases} 0 & \text{implies that } t(n) \text{ has a smaller order of growth than } g(n), \\ c & \text{implies that } t(n) \text{ has the same order of growth as } g(n), \\ \infty & \text{implies that } t(n) \text{ has a larger order of growth than } g(n). \end{cases}$ 

1M

 $\lim \qquad (\log_2 n)^2 / \log_3 n^2 = \infty$ 

2M

 $(\log_2 n)^2 = \Omega(\log_3 n^2)$ 

n->00

 $(\log_2 n)^2$  has faster order of growth than  $(\log_3 n^2)$ 

1M

2

c) Sort the given functions in increasing order of time complexity(Big O)

 $t1(n) = n^{0.98787} \log n$ 

t2(n) = **100n** 

 $t3(n) = 1.01^{n}$ 

 $t4(n) = n^2$ 

|    |    | Solution:                                                                      |           |   |
|----|----|--------------------------------------------------------------------------------|-----------|---|
|    |    |                                                                                | ).5M each |   |
|    |    | $t1(n) = n^{0.98787} * log n = O(n^{0.98787} * n^{0.01213}) = O(n) = O(t2(n))$ |           |   |
|    |    |                                                                                |           |   |
|    | 1  |                                                                                |           |   |
| 2. | a) | Algorithm Mystery(A[0n-1,0n-1])                                                |           | 4 |
|    |    | //Input: A matrix A[0n-1,0n-1] of real numbers                                 |           |   |
|    |    | for i ← 0 to n-1 do                                                            |           |   |
|    |    | for j ← i+1 to n-1 do                                                          |           |   |
|    |    | if(A[i,j]!=0)                                                                  |           |   |
|    |    | return false                                                                   |           |   |
|    |    | return true                                                                    |           |   |
|    |    | (i) What does this algorithm compute?                                          |           |   |
|    |    | (ii) What is the basic operation?                                              |           |   |
|    |    | (iii) How many times the basic operation is executed for the best and wors     | t case?   |   |
|    |    | Solution:                                                                      |           |   |
|    |    | Algorithm checks if the matrix is lower triangular or not                      | 1M        |   |
|    |    | Basic operation: if(A[i,j]!=0)                                                 | 1M        |   |
|    |    | Basic operation executes once in Best case and n(n-1)/2 in the worst case      | 1+1M      |   |
|    |    | (Best case is when the first element A[0,1] it checks is non zero)             |           |   |
|    |    | so best case it runs once***                                                   |           |   |
|    | b) | Solve the recurrence using substitution method                                 |           | 4 |
|    |    | $T(n)=2T(n^{1/2})+\log_2 n$ $T(1)=1$                                           |           |   |
|    |    | Solution:                                                                      |           |   |
|    |    |                                                                                |           |   |

|    | T.                                                                                                                                                                                             |   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    | $T(\mathbf{R}) = 2T(n^{1/2}) + \log_2 n$                                                                                                                                                       |   |
|    | log_n=m n=am                                                                                                                                                                                   |   |
|    | $T(am) = 2T(a^{m/2}) + m$                                                                                                                                                                      |   |
|    | S(m) = & T (m/2) + m - 2 m                                                                                                                                                                     |   |
|    | $S(m) = 2 \left[ as(m/2^2) + m/2 \right] + m$                                                                                                                                                  |   |
|    | = 225 (m1,22) +2m                                                                                                                                                                              |   |
|    | ,                                                                                                                                                                                              |   |
|    | = & s(m/a²) + i.m                                                                                                                                                                              |   |
|    | m/2i=1 => Elogn                                                                                                                                                                                |   |
|    | = m sci) + m logm                                                                                                                                                                              |   |
|    | S(1)=T(2) T(2) ≈ 2                                                                                                                                                                             |   |
|    | = am + miogm                                                                                                                                                                                   |   |
|    | s(m)= 0(m log m)                                                                                                                                                                               |   |
|    | Jacn)= o( logn log logn) - 2m                                                                                                                                                                  |   |
|    | Jacon 12 of                                                                                                                                                                                    |   |
| c) | Algorithms A1 has time complexity O(nlogn). During a test, this algorithm spends 10 seconds to process 100 data items. Derive the time algorithm A1 should spend to process 10,000 data items. | 2 |
|    | Solution:                                                                                                                                                                                      |   |
|    | T(A1)=C(nlogn)<br>T(100)=C(100log100)                                                                                                                                                          |   |
|    | C=10/(100log100)                                                                                                                                                                               |   |
|    | T(10000)=(10/(100log100))*10000*log(10000)=2000 sec                                                                                                                                            |   |
| a) | Write a recursive sorting algorithm that uses divide and conquer technique which                                                                                                               | 4 |
| -, | divides problem size by considering values in the list.                                                                                                                                        | • |
|    | Solution:                                                                                                                                                                                      |   |

3.

|    |    | ALGORITHM $Quicksort(A[lr])$                                                                                                        |   |
|----|----|-------------------------------------------------------------------------------------------------------------------------------------|---|
|    |    | //Sorts a subarray by quicksort                                                                                                     |   |
|    |    | //Input: A subarray $A[lr]$ of $A[0n-1]$ , defined by its left and right indices                                                    |   |
|    |    | // l and r                                                                                                                          |   |
|    |    | //Output: Subarray $A[lr]$ sorted in nondecreasing order if $l < r$                                                                 |   |
|    |    | $s \leftarrow Partition(A[lr]) //s$ is a split position                                                                             |   |
|    |    | Quicksort(A[ls-1])                                                                                                                  |   |
|    |    | Quicksort(A[s+1r])                                                                                                                  |   |
|    |    | Partition position is determined based on value of Pivot element                                                                    |   |
|    | b) | Derive worst case time complexity for algorithm in Q.3a                                                                             | 4 |
|    |    | Solution:                                                                                                                           |   |
|    |    | Assuming algorithm sorts the list in ascending order                                                                                |   |
|    |    | Worst case is when input list is already sorted in ascending order  1M                                                              |   |
|    |    | All the splits will happen at extreme left leaving list of size one element less to be sorted further at each call,  1M             |   |
|    |    | so the number of comparisons is given by the recurrence                                                                             |   |
|    |    | Cworst(n) = (n + 1) + n + + 3 = (n + 1)(n + 2)/2 - 3                                                                                |   |
|    |    | $\in O(n^2)$ .                                                                                                                      |   |
|    | c) | What is upper bound on number of swaps selection sort performs?                                                                     | 2 |
|    |    | Solution:                                                                                                                           |   |
|    |    | Number of swaps is n-1 for selection sort. So upper bound on number of swaps is                                                     |   |
|    |    | Theta(n)                                                                                                                            |   |
| 4. | a) | Consider the string matching algorithm                                                                                              | 4 |
| 4. | aj | Algorithm stringmatch(P[0m-1],S[0n-1])                                                                                              | 4 |
|    |    | // P-Pattern S-Text                                                                                                                 |   |
|    |    | for i ← 0 to n-m do                                                                                                                 |   |
|    |    | $j \leftarrow 0$                                                                                                                    |   |
|    |    | while $j < m$ and $P[j] == S[i+j]$ do $j \leftarrow j + 1$                                                                          |   |
|    |    | if j == m                                                                                                                           |   |
|    |    | return i                                                                                                                            |   |
|    |    | return -1                                                                                                                           |   |
|    |    | Given a text consisting of string of length 1000 with all characters as 'a'                                                         |   |
|    |    | (aaaaaaaaaaa), how many comparisons, successful and unsuccessful, will this algorithm make in searching for each of these patterns? |   |
|    |    | angorithm make in searching for each of these patterns.                                                                             |   |
|    |    | i) baaaa                                                                                                                            |   |
|    |    | ii) ababa                                                                                                                           |   |
|    |    | Solution                                                                                                                            |   |
|    |    | i) 996 2M                                                                                                                           |   |
|    |    | ii) 1992( 996 successful +996 unsuccessful)                                                                                         |   |
|    | b) | Design an algorithm using Brute force approach to determine number of inversions                                                    | 4 |
|    |    | present in an array. An inversion of an array A[1n] of n distinct integer elements is                                               |   |
|    |    | a pair such that i < j and A[i] > A[j].                                                                                             |   |
|    |    | For example {5,9,10,4,8,7,3,6} has a total of 18 inversions                                                                         |   |
|    |    |                                                                                                                                     |   |

```
Solution:
          Algorithm count inversion BruteForce (A[], n)
          count ← 0
           for i \leftarrow 0 to n-1 do
             for j \leftarrow i+1 to n-1 do
                  if (A[i] > A[i])
                    count ← count+1
          return count.
      c)
          State Master Theorem to solve the recurrences
                                                                                                       2
          Solution:
          T(n) = aT(n/b) + f(n) where f(n) \in \Theta(n^d), d \ge 0
          Master Theorem: If a < b^d, T(n) \in \Theta(n^d)
                              If a = b^d, T(n) \in \Theta(n^d \log n)
                              If a > b^d, T(n) \in \Theta(n^{\log b a})
5.
          Explain source removal method to determine topologically sorted ordering of
                                                                                                       4
          vertices. What is algorithm design strategy used?
          Solution:
          Algorithm SourceRemoval Toposort(V, E)
                                                                                        3M
          L ← Empty list that will contain the sorted vertices
          S ← Set of all vertices with no incoming edges
          while S is non-empty do
            remove a vertex v from S
            add v to tail of L
            for each vertex m with an edge e from v to m do
               remove edge e from the graph
               if m has no other incoming edges then
                 insert m into S
          if graph has edges then
            return error (not a DAG)
          else return L (a topologically sorted order)
          Design strategy: Decrease and conquer (Decrease by one approach)
                                                                                            1M
          Write Decrease by a factor of 3 algorithm to solve fake coin puzzle. How faster it is
                                                                                                      4
          as compared to decrease by a factor of 2 approach, in which we split the coins into
          two piles?
          Solution:
          Algorithm find_fake_coin(coins)
                                                                                             3M
          if n = 1 then
```



