Digital Image Processing

Berlin University of Technology (TUB), Computer Vision and Remote Sensing Group Berlin, Germany

The Discrete Fourier Transform

$$a(x) =$$
 $a(0), a(1), ..., a(N-1)$

Frequency domain

(complex signal)

$$A(\mu) =$$

$$A(0), A(1), ..., A(N-1)$$

$$A(\mu) = \sum_{x=0}^{N-1} a(x) \exp\left(-\frac{2\pi i}{N}\mu x\right)$$
Forward DFT

$$a(x) = \sum_{\mu=0}^{N-1} A(\mu) \exp\left(\frac{2\pi i}{N} \mu x\right)$$
Inverse DFT

Signal

Reconstructed from the spectrum

Spectrum

Frequency domain representation: Weight and phase of frequency

Basis Function

Complex exponential (oscillation)

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y(t) = \exp(-i\mu t) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp(-i\mu t) \left[\int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau \right] dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(\tau) \left[\int_{-\infty}^{\infty} h(t-\tau) \exp(-i\mu t) dt \right] d\tau$$

$$(s = t - \tau) \to = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(\tau) \left[\int_{-\infty}^{\infty} h(s) \exp(-i\mu t) ds \right] d\tau$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(\tau) H(\mu) \exp(-i\mu \tau) d\tau$$

$$= H(\mu) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(\tau) \exp(-i\mu \tau) d\tau = H(\mu) X(\mu)$$

- 1. Kernel and image must have the same size before transformation
 - → Copy the kernel into a larger matrix

2. Centre the kernel (shift the central element to F'(1,1))

- 3. Fourier transform image and the centred kernel
- 4. The spectrum of the result E(y,x) is the element-wise product of the spectra obtained in step 3

- The DFT describes a periodic function
- When convolving in the frequency domain, it is as though image and filter are repeated to all sides indefinitely:

- For an image of resolution (M,N) in x and y, respectively:
 - → The point (-y,-x) is identical to the point (M-y, N-x)
- Elements that lie outside the kernel after centring simply re-appear on the opposite side of the kernel matrix!

Original image

Distorted image

Enhanced image

Black: Original edge y

Black: Original edge y

Red: Degraded edge y₀

Black: Original edge y

Red: Degraded edge y₀

USM (magenta):

1. Smooth: $y_0 \rightarrow y_1$

Black: Original edge y

Red: Degraded edge y₀

USM (magenta):

1. Smooth: $y_0 \rightarrow y_1$

2. Subtract: $y_2 = y_0 - y_1$

Black: Original edge y

Red: Degraded edge y₀

USM (magenta):

1. Smooth: $y_0 \rightarrow y_1$

2. Subtract: $y_2 = y_0 - y_1$

3. Add: $y_3 = y_0 + y_2$

Black: Original edge y

Red: Degraded edge y₀

USM (magenta):

1. Smooth: $y_0 \rightarrow y_1$

2. Subtract: $y_2 = y_0 - y_1$

2.5. Scale: $\dot{y}_2 = s * y_2$

3. Add: $y_3 = y_0 + y_2$

→ Final (green)

Original image

Enhanced image

Original image

Enhanced image with threholding

Original image

Sharpened image

Highly sharpened image

- 0. Given: Image I₀, Task: Enhancement
- 1. Smooth image I₀ to obtain I₁ (1st parameter: kernel size k)
- 2. Subtract smoothed image I_1 from original I_0 $I_2 = I_0 - I_1$
- 3. Act only on pixel where difference is larger than threshold T If (I₂ > T) then 4.
 (2rd parameter: threshold T)
- 4. Scale difference to further enhance edges $I_3 = s*I_2$ (3rd parameter: scale s)
- 5. Add to original image $I_4 = I_0 + I_3$

In short:

Difference image:

$$d(x,y)=i(x,y)-(i(x,y)\otimes m_k)$$

Enhanced image:

$$o(x,y) = \begin{cases} i(x,y) & \text{if } d(x,y) < T \\ i(x,y) + s \cdot d(x,y) & \text{else} \end{cases}$$

Parameter:

Given

```
main(int argc, char** argv)
```

- Declares variables
- Displays and saves images
- Applies USM-function
- → Measures and saves time

void createKernel(Mat& kernel, int kSize, string name)

kernel: the generated filter kernel

kSize: the kernel size

name: specifies type of filter, eg "gaussian", "average", ...

- Calculates (potentially different) filter kernels
- Filter type is specified by <name>
- In this exercise: Only Gaussian kernel is needed

•
$$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y} \exp\left[-\frac{1}{2}\left[\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu_y)^2}{\sigma_y^2}\right]\right]$$

- Mean and variance are determined by kernel size (eq. $\sigma = kSize/5$)
- Maximal value at centre
- Must integrate to one

void circShift(Mat& in, Mat& out, int dx, int dy)

• Performes circular shift in (dx,dy) direction on matrix <in>

void circShift(Mat& in, Mat& out, int dx, int dy)

• Performes circular shift in (dx,dy) direction on matrix <in>

void frequencyConvolution(Mat& in, Mat& out, Mat& kernel)

- Forward transform:
 dft(Mat, Mat, 0);
- Inverse transform
 dft(Mat, Mat, DFT_INVERSE + DFT_SCALE);
- Spectrum multiplication
 mulSpectrums(Mat, Mat, Mat, 0);

Re Y ₀₀	Re Y ₀₁	Im Y ₀₁	Re Y ₀₂	Im Y ₀₂	
Re Y ₁₀	Re Y ₁₁	Im Y ₁₁	Re Y ₁₂	Im Y ₁₂	
Re Y ₂₀	Re Y ₂₁	Im Y ₂₁	Re Y ₂₂	Im Y ₂₂	

void usm(Mat& in, Mat& out, int smoothType, int size, double thresh,
double scale)

in, out: in- and output image, respectively

smoothType: smoothing type (1==spatial, 2==frequency)

size: kernel size k

thresh: threshold T

scale: scale s

- Unsharp masking using smoothed image
- Thresholding to ensure valid image ranges [0,255]
 - Useful functions: threshold(..)

Make images

Different sizes

• Eg: 256x256 => 1024x1024

(not necessarily square)

- Prepare two graphs that describe time behaviour of convolution by usage of spatial and frequency domain
 - Software is your choice (eg. Matlab, Excel, OpenOffice-Calc, ...)
 - x-direction: filter size

y-direction: number of pixels in input image

z-direction: time

• How can this behaviour be explained?

Main function: Set parameter for USM

- Size of operator is already defined
- Which threshold T?
- Which scaling?

```
int numberOfKernelSizes = 10:
                                        // number of differently sized smoothing kernels
double thresh = 0:
                                        // difference necessary to perform operation
                                        // scaling of edge enhancement
double scale = 1;
[...]
for(int s=1; s<=numberOfKernelSizes; s++){
    int size = 4*s+1; // use this size for smoothing
    [...]
    // perform unsharp masking
    usm(v_plane, tmp, type+1, size, thresh, scale);
```

Exams

- Mid-term
 - Friday, <u>01.06.2012</u>, <u>10:15pm</u>, <u>E020</u>
 - Duration: ca. 30 min
 - No grade, but pass is necessary to take part at the final exam
- Final
 - Tuesday, <u>10.07.2012</u>, <u>10:15pm</u>
 - Duration: ca. 60 min
- Topics from lecture and exercise
- Questions in English, answers in English or German
- No books, no calculator, no script, no paper, ...