Robot, Sensor, Motor

Contents

- I. Robot Packages
- II. Sensor Packages
- III. Camera
- IV. Depth Camera
- V. Laser Distance Sensor
- **VI.** Motor Packages
- VII. Dynamixel
- VIII. How to use Open Packages

Robot Packages

Robot Package (http://robots.ros.org/)

Robotnik RB-1

Clearpath Robotics

Kingfisher

Cvton-Gamma

Dr. Robot Jaguar

Erle-Brain 2

Erle-Plane

Softbank Pepper

Videre Erratic

Sensor Packages

Sensor Package (http://wiki.ros.org/Sensors)

Type of sensor package

1D Range Finders

Infrared linear distance sensor that can be used to make low-cost robots

2D Range Finders

• Sensors that can measure the distance on 2D plane, and is mainly used for navigation

3D Sensors

 Sensors used in 3D distance measurement such as Intel's RealSense, Microsoft's Kinect, ASUS's Xtion

Audio/Speech Recognition

• Currently, there are few voice recognition related parts, but it seems to be added continuously

Cameras

 Camera driver used for object recognition, face recognition, character recognition, etc. and various application packages

Sensor Interfaces

- Very few sensors support USB and web protocols
- There are still many sensors that can acquire data from a microprocessor
- These sensors can be used with UART in MCU, or ROS in mini PC.

Practice Time

'LRF, IMU, USB camera,
Depth camera, Robot Model
Let's check through Rviz'

use the Rviz of your Pc to observe the data from the sensors that you have received

Today's Practice Material

Sensor Package Practice #1 (USB Camera)

\$ sudo apt-get install ros-kinetic-uvc-camera
\$ rosrun uvc_camera uvc_camera_node
\$ rosrun uvc_camera uvc_camera_node _device:=/dev/video?
\$ rosrun image_view image_view image:=/image_raw
\$ rqt_image_view image:=/image_raw
\$ rviz

If there are more than two cameras, Enter the device number you want to use instead of the question mark (Especially, for notebooks)

Three ways to view image messages

- * Change the display options of RViz
- Change fixed frame
 Global Options > Fixed Frame = camera
- 2) Add image display

 Click 'Add' in the bottom left corner of Rviz, then select Image

 (Add > by display > Rviz > Image)
- 3) Change topic value

 Change the value of 'Image > Image Topic' to "/image_raw"

Sensor Package Practice #1 (USB Camera)

Sensor Package Practice #2 (Transfer images remotely)


```
ROS_MASTER_URI = http://IP_OF_REMOTE_PC:11311
ROS_HOSTNAME = IP_OF_SENSOR_PC
```

```
ROS_MASTER_URI = http://IP_OF_REMOTE_PC:11311
ROS_HOSTNAME = IP_OF_REMOTE_PC
```

- Modify '~/.bashrc' for each PC (ROS_MASTER_URI and ROS_HOSTNAME)
- Run 'roscore' & 'rqt_image_view image:=/image_raw' on the remote PC
- Run 'rosrun uvc_camera', 'uvc_camera_node' on the sensor PC

^{*} Example of running ROS Master on a remote PC

Sensor Package Practice #3 (Camera Calibration)

- sudo apt-get install ros-kinetic-camera-calibration
- \$ rosrun uvc_camera uvc_camera_node
- sorun camera_calibration cameracalibrator.py --size 8x6 --square 0.024 image:=/image_raw camera:=/camera

Sensor Package Practice #4 (Depth Camera)

\$ sudo apt-get install ros-kinetic-openni2-camera ros-kinetic-openni2-launch

(In case of ASUS's Xtion)

- \$ tar -xvf Sensor-Bin-Linux-x64-v5.1.0.41.tar.bz2
- \$ cd Sensor-Bin-Linux-x64-v5.1.0.41/
- \$ sudo sh install.sh
- \$ roslaunch openni2_launch openni2.launch
- \$ sudo apt-get install ros-kinetic-astra-camera ros-kinetic-astra-launch

(In case of ASTRA)

- **\$ wget** https://raw.githubusercontent.com/tfoote/ros_astra_camera/master/orbbec-usb.rules
- **\$ wget** https://raw.githubusercontent.com/tfoote/ros_astra_camera/master/install.sh
- \$ sudo ./install.sh
- \$ roslaunch astra_launch astra.launch
- * Change the display options of RViz
- 1) Change fixed frame
 Change 'Global Options > Fixed Frame' to "camera_depth_frame"
- 2) Add & configure PointCloud2 Click 'Add' at the bottom left of rviz, then select PointCloud2
- 3) Change topic name & detail settings

Sensor Package Practice #4 (Depth Camera)

(In case of RealSense)

- \$ sudo apt-get install ros-kinetic-librealsense ros-kinetic-realsense-camera
- \$ roslaunch realsense_camera r200_nodelet_default.launch
- \$ rosrun rviz rviz -d rviz/realsenseRvizConfiguration1.rviz

- * Change the display options of RViz
- 1) Change fixed frame
 Change 'Global Options > Fixed Frame' to "camera_depth_frame"
- 2) Add & configure PointCloud2 Click 'Add' at the bottom left of rviz, then select PointCloud2
- 3) Change topic name & detail settings

Sensor Package Practice #4 (Depth Camera)

Sensor Package Practice #5 (Stereo Camera)

```
$ sudo apt-get install libv4l-dev libudev-dev ros-kinetic-rtabmap*
$ cd ~/catkin_ws/src/
$ svn export https://github.com/withrobot/oCam/trunk/Software/oCamS_ROS_Package/ocams
$ cd ~/catkin_ws/ && catkin_make
$ sudo gedit /etc/udev/rules.d/99-ttyacms.rules
ATTRS{idVendor}=="04b4" ATTRS{idProduct}=="00f9", MODE="0666", ENV{ID_MM_DEVICE_IGNORE}="1"
ATTRS{idVendor}=="04b4" ATTRS{idProduct}=="00f8", MODE="0666", ENV{ID_MM_DEVICE_IGNORE}="1"
$ sudo udevadm control --reload-rules
$ roslaunch ocams pointcloud.launch
```

(In case of oCam-Stereo)

https://github.com/withrobot/oCam/tree/master/Products/oCamS-1CGN-U

Sensor Package Practice #6 (LDS)

Sensor Package Practice #6 (LDS)

```
(In case of LDS)
CS
 git clone https://github.com/ROBOTIS-GIT/hls_lfcd_lds_driver.git
cm
sudo chmod a+rw /dev/ttyUSB0
roslaunch hls_lfcd_lds_driver view_hlds_laser.launch
                                                                                          (In case of RPLiDAR)
 CS
 git clone https://github.com/robopeak/rplidar_ros.git
cm
sudo chmod a+rw /dev/ttyUSB0
roslaunch rplidar_ros rplidar.launch
                                                                                         (In case of HOKUYO)
sudo apt-get install ros-kinetic-urg-node
sudo chmod a+rw /dev/ttyACM0
rosrun urg_node urg_node
```

- * Change the display options of RViz
- 1) Change fixed frame: Global Options > Fixed Frame = laser
- 2) Add & configure Axes: Click 'Add' at the bottom left of rviz, then add Axes (Change 'Length' & 'Radius' is option)
- 3) Add & configure LaserScan: Click 'Add' at the bottom left of rviz, then add LaserScan

(Topic designation is required, 'Color Transformer', 'Color', etc. are options)

Sensor Package Practice #6 (LDS)

Sensor Package Practice #7 (IMU)

cs

(In case of withrobot's myAHRS+)

- \$ git clone https://github.com/robotpilot/myahrs_driver.git
- \$ cm
- \$ sudo chmod a+rw /dev/ttyACM0
- stroslaunch myahrs_driver myahrs_driver.launch

Motor Packages

Motor Package (http://wiki.ros.org/Motor%20Controller%20Drivers)

- PhidgetMotorControl HC
- Roboteq AX2550 Motor Controller
- ROBOTIS Dynamixel

Contorolling Dynamixel with ROS Package

- DynamixelSDK (http://wiki.ros.org/dynamixel_sdk)
 - Support 3 representative OS (Linux, Windows, MacOS)
 - Support programming language such as C, C++, C#, Python, Java, MATLAB, LabVIEW, etc.
 - Support ROS

- dynamixel_workbench (http://wiki.ros.org/dynamixel_workbench)
 - Provide a variety of examples for ease of use in ROS

SMPS2DYNAMIXEL

Provide GUI tool for ROS

Question Time!

Advertisement #1

"ROS Robot Programming"

A Handbook is written by TurtleBot3 Developers

Advertisement #2

AI Research Starts Here ROS Official Platform

TurtleBot3 is a new generation mobile robot that's modular, compact and customizable. Let's explore ROS and create exciting applications for education, research and product development.

Advertisement #3

www.robotsource.org

The 'RobotSource' community is the space for people making robots.

We hope to be a community where we can share knowledge about robots, share robot development information and experiences, help each other and collaborate together. Through this community, we want to realize open robotics without distinguishing between students, universities, research institutes and companies.

Join us in the Robot community ~

END.