How to detect a compact object?

Binaries!

- Detached binaries:
- Doppler reflex motion of the visible star (as for Exo-Planets).
- Interacting binaries (semi-detached): Mass transfer from the normal star and accretion onto the companion

Carroll & Ostlie Fig. 18.4

Compact stars in close binaries

12-4

12-3

Reminder: Spectroscopic binaries: Mass of compact invisible object (as for the exo-planets) from 3rd Kepler:

$$\frac{a^3}{P^2} = \frac{G(M_1 + M_2)}{4\pi^2}$$

(a: semi-major axis, P: orbital period, $M_{1,2}$: Masses).

Derive from this: Mass function

Evolution of close binary stars

$$MF = \frac{M_2^3 \sin^3 i}{(1 + (M_1/M_2))^2} = \frac{K_1^2 P}{2\pi G}$$

C. Karl, U. Heber, R. Napiwotzki, S. Geier, Balt. Ast. 15, 1

measurement K_2 : velocity amplitude, P: period (power spectrum)

Mass function gives lower limit for M_2

How to distinguish between white dwarf, neutron star and black hole?

- If the lower limit to M₂ is less than the Chandrasekhar mass: no distinction possible.
- If the lower limit to M₂ is larger than Chandrasekhar mass but less than the Oppenheimer-Volkoff limit: Neutron star or black hole
- If the lower limit to M₂ is larger than the Oppenheimer-Volkoff limit: black hole
- If the companion is a pulsar: neutron star

Semi-detachted systems

Gravitational potential of a binary

Equipotential contours, Carroll & Ostlie Fig. 18.3 $L_1 \dots L_5$: Lagrangian points.

Effective gravitational potential, Carroll & Ostlie Fig. 18.2 Dashed line: Total energy rquired for material to flow through L1.

Compact stars in close binaries

4 Compact stars in close binaries

5

12 - 6

Secondary star Primary star Mass stream Hot Accretion disk

Orbit of secondary about center of mass (x)

- Visible star = secondary = normal star
- Cataclysmic variable: primary is white dwarf
- X-ray binary: primary is a neutron star or black hole.

12-5

12-9

Accretion

Astrophysical energy sources:

1. Nuclear fusion Reactions à la

$$4 \mathrm{p} \longrightarrow {}^4\mathrm{He} + \Delta E_\mathrm{nuc}$$

Energy released:

Fusion produces \sim 6 \times 10¹¹ J g⁻¹

(i.e., $\Delta E_{\rm nuc} \sim 0.007 m_{\rm p}c^2$)

2. Gravitation

Accretion of mass m from ∞ to $R_{\rm S}$ on black hole with mass ${\cal M}$ gives

$$\Delta E_{\rm acc} = \frac{GMm}{R_{\rm S}} \ \ {\rm where} \ \ R_{\rm S} = \frac{{\rm 2}GM}{c^2}$$

Accretion produces $\sim 10^{13} \,\mathrm{J}\,\mathrm{g}^{-1}$

(i.e.,
$$\Delta E_{\rm acc} \sim$$
 0.1 $m_{\rm p}c^2$)

⇒ Accretion of material is the most efficient astrophysical energy source.

... thus accreting objects are the most luminous in the whole universe.

Note: energy gets radiated away from outside the Schwarzschild radius!

INTEGRAL

Compact stars in close binaries

12-11

10

Mass determination

Orosz, 2003, priv. comm.

12-12

12 - 13

Explosions in binary systems: Novae

Novae: accretion of hydrogen onto the surface of a white dwarf:

- \bullet 10⁻⁵ M $_{\odot}$... 10⁻⁴ M $_{\odot}$ Hydrogen accumulate.
- Electron gas is degenerate
- Temperature of a few million K
- hydrogen burning in the CNO cycle starts
- thermal run-way as in the core helium flash at the tip of the RGB
- explosion expell almost all accreted material

Explosions in binary systems: Supernovae- Type Ia

after P. Höflich

SNe Ia: thermonuclear runaway in carbon-oxygen white dwarfs close to Chandrasekhar limit

Explosions in binary systems

12-15

3

Explosions in binary systems: Supernovae- Type Ia

Thermonuclear explosion of a white dwarf at the Chandrasekhar limit

- orbital shrinkage by common envelope ejection
- single degenerate scenario: continous mass transfer to the white dwarf
 - white dwarf & normal star
 - white dwar & helium star
- Double degenerate scenario:
- two white dwarfs: orbital shrinkage by gravitational wave radiation: white dwarf merger.

Explosions in binary systems

12-16

2

12 - 14

White dwarf merger

The less massive (larger) white dwarf is disrupted with in one final orbit and acrreted by the more massive one. Explosion starts when approaching the Chandrasekhar limit.