Da insiemi di agenti a sistemi swarm adattativi

Nomi degli autori

Progetto

Il progetto complessivo consta in una serie di realizzazioni di (ed esperimenti su) un modello multiagente; ogni nuova versione del modello è più raffinata della precedente. La versione iniziale non è un sistema collettivo; la versione finale realizza un sistema collettivo i cui elementi sono capaci di evolvere e di adattarsi all'ambiente.

1. Il progetto base (termiti)

Si tratta di termiti, che spostano oggetti, creando una serie di mucchi ("magazzini")....

Ambiente

Descrizione dell'ambiente

Agenti

Descrizione (modello...) degli agenti.

Due mosse possibili: (i) ricerca del cibo e (ii) deposizione del cibo

Dinamica del sistema

Cosa succede...

Feedback del sistema

Cosa fa crescere i "magazzini", altri feedback?

Esperimenti

- 1. Vedere come varia il numero e la dimensione dei magazzini (a 1000 passi) con il variare del raggio di "inerzia" degli agenti (esperimento I e II)
 - a. Range distanza minima percorsa senza cibo (consigliato): [2,80]
 - b. Range distanza minima percorsa con cibo (consigliato): [2,80]
- 2. Le termiti (così come qui realizzate) NON sono un esempio di "sistema collettivo": il lavoro di 1000 termiti in un tempo T, può essere fatto da 10 termiti in un tempo 100*T. Vedere quanti passi occorrono per arrivare a soli 6 gruppi, al variare del numero di termiti (esperimento III)
 - a. Range del numero di termiti coinvolte (consigliato): [10,500]
- 3. (facoltativo) Vedere come varia il numero e la dimensione dei magazzini (a 1000 passi) con il variare dell'angolo di virata
 - a. Range angolo di virata (consigliato): [5,360]

2. Stigmergia

Nido e termiti rilasciano ciascuno un proprio odore: il modello diventa un sistema "formicaio". Il formicaio è il primo esempio di sistema collettivo (sono attivi feedback fra gli agenti tramite l'ambiente, ed il comportamento collettivo è quindi diverso dal lavoro di un singolo agente), in grado di sfruttare diverse sorgenti di materiale.

Ambiente

Descrizione dell'ambiente

Agenti

Descrizione (modello...) degli agenti.

Ogni agente (formica) fa essenzialmente tre cose:

- cerca cibo (se scarica)
- ritorna al nido (se carica)
- vaga nell'ambiente...

Dinamica del sistema

Cosa succede...

Feedback del sistema

Descrizione dell'interazione fra le formiche attraverso l'ambiente...

Esperimenti

Semplice descrizione di un lancio, utilizzando i concetti appena descritti

3. Selezione

Ogni formica ha proprie risorse (quantificate e memorizzate in una variabile apposita) ed un proprio metabolismo (la quantità di risorse che viene consumata ad ogni mossa); ogni formica che torna al nido portando del cibo viene ricaricata. Le formiche che hanno risorse troppo basse (minori di zero nelle unità del programma) vengono sostituite da altre, create a caso (basta re-inizializzare le variabili della formica al valore iniziale – ricordandosi di cambiare i valori delle variabili inizializzare casualmente). L'effetto finale consiste nella scomparsa delle formiche meno adatte ai propri compiti

Ambiente

Uguale al precedente

Agenti

Descrizione (modello...) degli agenti.

Ogni agente (formica, rispetto al modello precedente, in più:

- calcola la propria età ...
- consuma risorse ad ogni mossa ...
- viene rimpiazzata se le risorse scendono sotto lo zero...

Dinamica del sistema

Cosa succede...

Feedback del sistema

Descrizione dell'effetto delle aggiunte di risorse e metabolismo

Esperimenti

Semplice descrizione di un lancio, utilizzando i concetti appena descritti.

Mostrare come variano nel tempo le distribuzioni di alcune delle caratteristiche delle formiche? (ad esempio: velocità, metabolismo) Arrivano a distribuzioni più o meno stabili? Di che tipo?

4. Evoluzione

Le formiche di successo (che hanno cibo ed abbastanza risorse) possono cercare intorno a sé altre formiche con abbastanza risorse e creare un'altra formica, che avrà metabolismo e velocità ognuno preso a caso da uno dei due genitori. Il processo è dispendioso, e la formica perde parte delle proprie risorse (1/10 delle iniziali).

Ambiente

Uguale al precedente

Agenti

Descrizione (modello...) degli agenti.

Ogni agente (formica, rispetto al modello precedente, in più:

- in certe condizioni cerca un partner
- se lo trova, crea un'altra formica (perdendo parte delle proprie risorse)

Dinamica del sistema

Cosa succede...

Feedback del sistema

Descrizione dell'effetto sul sistema del meccanismo di ereditarietà appena introdotto

Esperimenti

Semplice descrizione di un lancio, utilizzando i concetti appena descritti.

Come variano nel tempo le distribuzioni di alcune delle caratteristiche delle formiche? (ad esempio: velocità, metabolismo) Arrivano a distribuzioni più o meno stabili? Di che tipo?