Cleaning Data in Python - Jupyter Notebook

localhost:8888/notebooks/Documents/Python Scripts/Cleaning Data in Python/Cleaning Data in Python.ipynb

1.Exploring your data 1.1 Smokers and drinkers 1.2

1. Exploring your data

In [146]:

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

 $df = pd.read_csv('dob_job_application_filings_subset.csv')$

df.tail(

F:\Program Files\Anaconda\lib\site-packages\IPython\core\interactiveshell.py:3057: DtypeWarning: Columns (16) have mixed types. Specify dtype option on import or set low memory=False.

 $interactivity = interactivity, \ compiler = compiler, \ result = result)$

Out[146]:

	Job#	Doc #	Borough	House #	Street Name	Block	Lot	Bin#	Job Type	Job Status	 Owner's Last Name	Owner's Business Name	O I N
	520143988	1	STATEN ISLAND	8	NOEL STREET	5382	20	5069722	A2	D	 MALITO	GENO MALITO	8
12841													
	121613833	1	MANHATTAN	724	10 AVENUE	1059	4	1082503	A2	D	 CROMAN	722-724 10TH AVENUE HOLDING	63
12842												LLC	L
	121681260	1	MANHATTAN	350	MANHATTAN AVE.	1848	31	1055849	A2	A	 ARYEH	DG UWS LLC	6,
12843													
	320771704	1	BROOKLYN	499	UNION STREET	431	43	3007185	A2	D	 WIGGINS	N/A	7.
12844													
	520143951	1	STATEN ISLAND	1755	RICHMOND ROAD	887	28	5022931	A2	D	 CAMBRIA	RONALD CAMBRIA	17
12845													

5 rows × 82 columns

In [147]:

 $df_subset = df.loc[:,['Initial Cost', 'Total Est. Fee']]$

df_subset.iloc[:,0].str.replace('\$','')

print(df_subset.head())

Initial Cost Total Est. Fee
0 \$75000.00 \$986.00
1 \$0.00 \$1144.00
2 \$30000.00 \$522.50
3 \$1500.00 \$225.00
4 \$19500.00 \$389.50

In [148]:

df['Borough'].value_counts(dropna = 'False')

Out[148]:

MANHATTAN 6310
BROOKLYN 2866
QUEENS 2121
BRONX 974
STATEN ISLAND 575
Name: Borough, dtype: int64

In [149]:

df.head()

Out[149]:

	Job #	Doc #	Borough	House #	Street Name	Block	Lot	Bin #	Job Type	Job Status	 Owner's Last Name	Owner's Business Name	O N
	121577873	2	MANHATTAN	386	PARK AVENUE SOUTH	857	38	1016890	A2	D	 MIGLIORE	MACKLOWE MANAGEMENT	1.
0													
1	520129502	1	STATEN ISLAND	107	KNOX PLACE	342	1	5161350	A3	А	 BLUMENBERG	NA	1
2	121601560	1	MANHATTAN	63	WEST 131 STREET	1729	9	1053831	A2	Q	 MARKOWITZ	635 RIVERSIDE DRIVE NY LLC	6
3	121601203	1	MANHATTAN	48	WEST 25TH STREET	826	69	1015610	A2	D	 CASALE	48 W 25 ST LLC C/O BERNSTEIN	1
4	121601338	1	MANHATTAN	45	WEST 29 STREET	831	7	1015754	А3	D	 LEE	HYUNG- HYANG REALTY CORP	6

5 rows × 82 columns

In [150]:

df.columns

Out[150]:

```
Index([']ob\ \#',\ 'Doc\ \#',\ 'Borough',\ 'House\ \#',\ 'Street\ Name',\ 'Block',\ 'Lot',
     'Bin #', 'Job Type', 'Job Status', 'Job Status Descrp',
     'Latest Action Date', 'Building Type', 'Community - Board', 'Cluster',
     'Landmarked', 'Adult Estab', 'Loft Board', 'City Owned', 'Little e',
     'PC Filed', 'eFiling Filed', 'Plumbing', 'Mechanical', 'Boiler',
     'Fuel Burning', 'Fuel Storage', 'Standpipe', 'Sprinkler', 'Fire Alarm',
     'Equipment', 'Fire Suppression', 'Curb Cut', 'Other',
     'Other Description', 'Applicant's First Name', 'Applicant's Last Name',
     'Applicant Professional Title', 'Applicant License #',
     'Professional Cert', 'Pre- Filing Date', 'Paid', 'Fully Paid',
    'Assigned', 'Approved', 'Fully Permitted', 'Initial Cost', 
'Total Est. Fee', 'Fee Status', 'Existing Zoning Sqft',
    'Proposed Zoning Sqft', 'Horizontal Enlrgmt', 'Vertical Enlrgmt',
     'Enlargement SQ Footage', 'Street Frontage', 'ExistingNo. of Stories',
     'Proposed No. of Stories', 'Existing Height', 'Proposed Height',
     'Existing Dwelling Units', 'Proposed Dwelling Units',
     'Existing Occupancy', 'Proposed Occupancy', 'Site Fill', 'Zoning Dist1',
     'Zoning Dist2', 'Zoning Dist3', 'Special District 1',
     'Special District 2', 'Owner Type', 'Non-Profit', 'Owner's First Name',
     'Owner's Last Name', 'Owner's Business Name', 'Owner's House Number',
     'Owner'sHouse Street Name', 'City ', 'State', 'Zip', 'Owner'sPhone #',
    'Job Description', 'DOBRunDate'],
    dtype='object')
In [151]:
df.shape
Out[151]:
(12846, 82)
In [152]:
df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 12846 entries, 0 to 12845 Data columns (total 82 columns):

Job # 12846 non-null int64 Doc # 12846 non-null int64 12846 non-null object Borough 12846 non-null object House # Street Name 12846 non-null object Block 12846 non-null int64 12846 non-null int64 Lot Bin # 12846 non-null int64 12846 non-null object Job Type Job Status 12846 non-null object Job Status Descrp 12846 non-null object Latest Action Date 12846 non-null object **Building Type** 12846 non-null object Community - Board 12846 non-null object Cluster 0 non-null float64 2067 non-null object 1 non-null object

Landmarked Adult Estab 65 non-null object Loft Board City Owned 1419 non-null object 365 non-null object Little e PC Filed 0 non-null float64 eFiling Filed 12846 non-null object Plumbing 12846 non-null object Mechanical 12846 non-null object Boiler 12846 non-null object Fuel Burning 12846 non-null object Fuel Storage 12846 non-null object 12846 non-null object Standpipe Sprinkler 12846 non-null object Fire Alarm 12846 non-null object 12846 non-null object Equipment Fire Suppression 12846 non-null object Curb Cut 12846 non-null object 12846 non-null object Other Other Description 12846 non-null object Applicant's First Name 12846 non-null object Applicant's Last Name 12846 non-null object Applicant Professional Title 12846 non-null object

Professional Cert 6908 non-null object Pre- Filing Date 12846 non-null object Paid 11961 non-null object Fully Paid 11963 non-null object 3817 non-null object Assigned Approved 4062 non-null object **Fully Permitted** 1495 non-null object Initial Cost 12846 non-null object Total Est. Fee 12846 non-null object Fee Status 12846 non-null object Existing Zoning Sqft 12846 non-null int64 Proposed Zoning Sqft 12846 non-null int64 Horizontal Enlrgmt 231 non-null object 142 non-null object Vertical Enlrgmt 12846 non-null int64 Enlargement SQ Footage Street Frontage 12846 non-null int64 ExistingNo. of Stories 12846 non-null int64 12846 non-null int64 Proposed No. of Stories

12846 non-null object

12846 non-null int64

12846 non-null int64

Applicant License #

Existing Height

Proposed Height

Existing Dwelling Units 12846 non-null object 12846 non-null object Proposed Dwelling Units Existing Occupancy 12846 non-null object Proposed Occupancy 12846 non-null object Site Fill 8641 non-null object Zoning Dist1 11263 non-null object Zoning Dist2 1652 non-null object Zoning Dist3 88 non-null object Special District 1 3062 non-null object Special District 2 848 non-null object 0 non-null float64 Owner Type Non-Profit 971 non-null object Owner's First Name 12846 non-null object Owner's Last Name 12846 non-null object Owner's Business Name 12846 non-null object Owner's House Number 12846 non-null object

 Owner's House Street Name
 12846 non-null object

 City
 12846 non-null object

 State
 12846 non-null object

 Zip
 12846 non-null int64

 Owner's Phone #
 12846 non-null int64

 Job Description
 12699 non-null object

 DOBRun Date
 12846 non-null object

dtypes: float64(3), int64(15), object(64)

memory usage: 8.0+ MB

In [153]:

df.describe()

Out[153]:

	Job#	Doc #	Block	Lot	Bin #	Cluster	PC Filed	Existing Zoning Sqft	Proposed Zoning Sqft
count	1.284600e+04	12846.000000	12846.000000	12846.000000	1.284600e+04	0.0	0.0	1.284600e+04	1.284600e+04
mean	2.426788e+08	1.162930	2703.834735	623.303441	2.314997e+06	NaN	NaN	1.439973e+03	2.007286e+03
std	1.312507e+08	0.514937	3143.002812	2000.934794	1.399062e+06	NaN	NaN	3.860757e+04	4.081570e+04
min	1.036438e+08	1.000000	1.000000	0.000000	1.000003e+06	NaN	NaN	0.000000e+00	0.000000e+00
25%	1.216206e+08	1.000000	836.000000	12.000000	1.035728e+06	NaN	NaN	0.000000e+00	0.000000e+00
50%	2.202645e+08	1.000000	1411.500000	32.000000	2.004234e+06	NaN	NaN	0.000000e+00	0.000000e+00
75%	3.208652e+08	1.000000	3355.000000	59.000000	3.343823e+06	NaN	NaN	0.000000e+00	0.000000e+00
max	5.400246e+08	9.000000	99999.000000	9078.000000	5.864852e+06	NaN	NaN	2.873107e+06	2.873107e+06

In []:

In[]:

Uber

In [154]:

 $df_uber = pd.read_csv('nyc_uber_2014.csv')$

df_uber.head()

Out[154]:

	Unnamed: 0	Date/Time	Lat	Lon	Base
0	0	4/1/2014 0:11:00	40.7690	-73.9549	B02512
1	1	4/1/2014 0:17:00	40.7267	-74.0345	B02512
2	2	4/1/2014 0:21:00	40.7316	-73.9873	B02512
3	3	4/1/2014 0:28:00	40.7588	-73.9776	B02512
4	4	4/1/2014 0:33:00	40.7594	-73.9722	B02512

In[]:

Smokers and drinkers

In [155]:

df_tips = pd.read_csv('tips.csv')

df_tips.head()

Out[155]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2

	total_bill	tip	sex	smoker	day	time	size
4	24.59	3.61	Female	No	Sun	Dinner	4

In [156]:

 $df_tips.plot(kind = 'scatter', \ x = 'tip', \ y = 'total_bill', \ figsize = [8,6], \ color = 'red', \ ylim = 3, \ xlim = 1)$

plt.show()

In [157]:

 $df_tips.plot(kind = 'scatter', x = 'tip', y = 'total_bill', title = 'Tips', subplots = True, grid = True, legend = True, xticks = [1,2,3,4,5,6,7,8,9,10], yticks = [5,10,15,20,25,30,35,40,45,50], fontsize = 12, figsize = [10,7], sharey = False)$

plt.show()

In [158]:

 $df_{tips.boxplot(column = 'tip', by = 'smoker')}$

plt.show()

In [159]:

 $df_tips.boxplot(column = 'tip', by = 'time')$

plt.show()

In [160]:

 $df_tips.boxplot(column = 'total_bill', by = 'time')$

plt.show()

In [161]:

 $df_{tips.boxplot(column = 'total_bill', by = 'day')}$

plt.show()

In [162]:

 $df_{tips.boxplot(column = 'tip', by = 'sex')}$

plt.show()

In [163]:

 $df_tips.boxplot(column = 'total_bill', \, by = 'size')$

plt.show()

In [164]:

 $df_tips.boxplot(column = 'total_bill', \, by = 'sex')$

plt.show()

In [165]:

 $df_tips['size'].plot(kind = 'hist')$

plt.show()

In [166]:

 $df_tips['total_bill'].plot(kind = 'hist')$

plt.show()

In [167]:

 $df_tips.total_bill.plot(kind = 'hist')$

plt.show()

In [168]:

 $df_{tips.tip.plot(kind = 'hist')}$

plt.show()

In [169]:

 $df_tips.sex.value_counts(dropna = 'False')$

Out[169]:

Male 157

Female 87

Name: sex, dtype: int64

In [170]:

 $df_tips.day.value_counts(dropna = 'False')$

Out[170]:

Sat 87

Sun 76

Thur 62 Fri 19

Name: day, dtype: int64

In [171]:

df_tips.smoker.value_counts()

Out[171]:

No 151

Yes 93

Name: smoker, dtype: int64

In [172]:

df_tips.describe()

Out[172]:

	total_bill	tip	size
count	244.000000	244.000000	244.000000
mean	19.785943	2.998279	2.569672
std	8.902412	1.383638	0.951100
min	3.070000	1.000000	1.000000
25%	13.347500	2.000000	2.000000
50%	17.795000	2.900000	2.000000
75%	24.127500	3.562500	3.000000
max	50.810000	10.000000	6.000000

In [173]:

df_tips.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 244 entries, 0 to 243 Data columns (total 7 columns): total_bill 244 non-null float64 244 non-null float64 sex 244 non-null object smoker 244 non-null object day 244 non-null object 244 non-null object time 244 non-null int64 size dtypes: float64(2), int64(1), object(4) memory usage: 13.4+ KB

In []:

In []:

Life expentancy

In [174]:

 $df_gap = pd.read_csv('gapminder.csv')$

df_gap.tail()

Out[174]:

	Unnamed: 0	1800	1801	1802	1803	1804	1805	1806	1807	1808	 2008	2009	2010	2011	2012	2013	2014
775	255	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	NaN								
776	256	NaN	 51.1	52.3	53.1	53.7	54.7	55.6	56.3								
777	257	NaN	 47.3	48.0	49.1	51.6	54.2	55.7	57.0								
778	258	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	NaN								
779	259	NaN	 55.6	55.8	56.0	55.9	56.0	56.0	56.1								

5 rows × 219 columns

In [175]:

df_gap.head()

Out[175]:

	Unnamed: 0	1800	1801	1802	1803	1804	1805	1806	1807	1808	 2008	2009	2010	2011	2012	2013	201
0	0	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	NaN								
1	1	28.21	28.20	28.19	28.18	28.17	28.16	28.15	28.14	28.13	 NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	2	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	NaN								
3	3	35.40	35.40	35.40	35.40	35.40	35.40	35.40	35.40	35.40	 NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	4	28.82	28.82	28.82	28.82	28.82	28.82	28.82	28.82	28.82	 NaN	NaN	NaN	NaN	NaN	NaN	NaN

5 rows × 219 columns

In[]:

In[]:

Air quality

In [176]:

 $df_air = pd.read_csv('airquality.csv')$

print(df_air.head())

Ozone Solar.R Wind Temp Month Day
0 41.0 190.0 7.4 67 5 1
1 36.0 118.0 8.0 72 5 2
2 12.0 149.0 12.6 74 5 3
3 18.0 313.0 11.5 62 5 4
4 NaN NaN 14.3 56 5 5

1 Method of melting

In [177]:

$$\label{eq:df_air_melt} \begin{split} df_{air_melt} &= pd.melt (df_{air_value_vars} = ['Ozone', 'Solar.R', 'Wind', 'Temp'], \ var_name = 'Criteria', \ id_vars = ['Month', 'Day']) \end{split}$$

```
print('df_air - ' + str(df_air_melt.shape))
print('df_air_melt - ' + str(df_air.shape))
display(df_air_melt.tail())
```

 ${\sf display}({\sf df_air_melt.head()})$

df_air - (612, 4) df_air_melt - (153, 6)

	Month	Day	Criteria	value
607	9	26	Temp	70.0
608	9	27	Temp	77.0
609	9	28	Temp	75.0
610	9	29	Temp	76.0
611	9	30	Temp	68.0

	Month	Day	Criteria	value
0	5	1	Ozone	41.0
1	5	2	Ozone	36.0
2	5	3	Ozone	12.0

		Month	Day	Criteria	value
	3	5	4	Ozone	18.0
ĺ	4	5	5	Ozone	NaN

2 Method of melting

In [178]:

airquality_melt = pd.melt(df_air, id_vars = ['Month', 'Day'], var_name = 'Measurement', value_name = 'Reading')
airquality_melt.head()

Out[178]:

	Month	Day	Measurement	Reading
0	5	1	Ozone	41.0
1	5	2	Ozone	36.0
2	5	3	Ozone	12.0
3	5	4	Ozone	18.0
4	5	5	Ozone	NaN

In [179]:

 $df_air_melt_back = pd.pivot(airquality_melt, \, columns = 'Measurement', \, values = 'Reading')$

df_air_melt_back

Out[179]:

Measurement	Ozone	Solar.R	Temp	Wind
0	41.0	NaN	NaN	NaN
1	36.0	NaN	NaN	NaN
2	12.0	NaN	NaN	NaN
3	18.0	NaN	NaN	NaN
4	NaN	NaN	NaN	NaN
5	28.0	NaN	NaN	NaN
6	23.0	NaN	NaN	NaN
7	19.0	NaN	NaN	NaN
8	8.0	NaN	NaN	NaN
9	NaN	NaN	NaN	NaN
10	7.0	NaN	NaN	NaN
11	16.0	NaN	NaN	NaN
12	11.0	NaN	NaN	NaN
13	14.0	NaN	NaN	NaN
14	18.0	NaN	NaN	NaN
15	14.0	NaN	NaN	NaN
16	34.0	NaN	NaN	NaN
17	6.0	NaN	NaN	NaN
18	30.0	NaN	NaN	NaN
19	11.0	NaN	NaN	NaN

Measurement	Ozone	Solar.R	Temp	Wind
20	1.0	NaN	NaN	NaN
21	11.0	NaN	NaN	NaN
22	4.0	NaN	NaN	NaN
23	32.0	NaN	NaN	NaN
24	NaN	NaN	NaN	NaN
25	NaN	NaN	NaN	NaN
26	NaN	NaN	NaN	NaN
27	23.0	NaN	NaN	NaN
28	45.0	NaN	NaN	NaN
29	115.0	NaN	NaN	NaN
582	NaN	NaN	91.0	NaN
583	NaN	NaN	92.0	NaN
584	NaN	NaN	93.0	NaN
585	NaN	NaN	93.0	NaN
586	NaN	NaN	87.0	NaN
587	NaN	NaN	84.0	NaN
588	NaN	NaN	80.0	NaN
589	NaN	NaN	78.0	NaN
590	NaN	NaN	75.0	NaN
591	NaN	NaN	73.0	NaN
592	NaN	NaN	81.0	NaN
593	NaN	NaN	76.0	NaN
594	NaN	NaN	77.0	NaN
595	NaN	NaN	71.0	NaN
596	NaN	NaN	71.0	NaN
597	NaN	NaN	78.0	NaN
598	NaN	NaN	67.0	NaN
599	NaN	NaN	76.0	NaN
600	NaN	NaN	68.0	NaN
601	NaN	NaN	82.0	NaN
602	NaN	NaN	64.0	NaN
603	NaN	NaN	71.0	NaN
604	NaN	NaN	81.0	NaN
605	NaN	NaN	69.0	NaN
606	NaN	NaN	63.0	NaN
607	NaN	NaN	70.0	NaN
608	NaN	NaN	77.0	NaN
609	NaN	NaN	75.0	NaN

Measurement	Ozone	Solar.R	Temp	Wind
610	NaN	NaN	76.0	NaN
611	NaN	NaN	68.0	NaN

612 rows × 4 columns

Pivotting datas

In [180]:

airquality_melt.head()

 $airquality_pivot = pd.pivot_table(airquality_melt, index = ['Month', 'Day'], columns = 'Measurement', values = 'Reading')$

airquality_pivot_reset = airquality_pivot.reset_index()

airquality_pivot_reset.head()

Out[180]:

Measurement	Month	Day	Ozone	Solar.R	Temp	Wind
0	5	1	41.0	190.0	67.0	7.4
1	5	2	36.0	118.0	72.0	8.0
2	5	3	12.0	149.0	74.0	12.6
3	5	4	18.0	313.0	62.0	11.5
4	5	5	NaN	NaN	56.0	14.3

In [181]:

df_air.columns

Out[181]:

 $Index(['Ozone', 'Solar.R', 'Wind', 'Temp', 'Month', 'Day'], \ dtype='object')$

In [182]:

df_air.describe()

Out[182]:

	Ozone	Solar.R	Wind	Temp	Month	Day
count	116.000000	146.000000	153.000000	153.000000	153.000000	153.000000
mean	42.129310	185.931507	9.957516	77.882353	6.993464	15.803922
std	32.987885	90.058422	3.523001	9.465270	1.416522	8.864520
min	1.000000	7.000000	1.700000	56.000000	5.000000	1.000000
25%	18.000000	115.750000	7.400000	72.000000	6.000000	8.000000
50%	31.500000	205.000000	9.700000	79.000000	7.000000	16.000000
75%	63.250000	258.750000	11.500000	85.000000	8.000000	23.000000
max	168.000000	334.000000	20.700000	97.000000	9.000000	31.000000

In [183]:

df_air.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 153 entries, 0 to 152
Data columns (total 6 columns):
Ozone 116 non-null float64
Solar.R 146 non-null float64
       153 non-null float64
Temp 153 non-null int64
Month 153 non-null int64
Day 153 non-null int64
dtypes: float64(3), int64(3)
memory usage: 7.2 KB
In [184]:
df\_air.Ozone.value\_counts(dropna = 'False').head()
Out[184]:
23.0 6
16.0 4
13.0 4
14.0 4
18.0 4
Name: Ozone, dtype: int64
In [185]:
df\_air.Month.value\_counts(dropna = 'False')
Out[185]:
8 31
7 31
5 31
9 30
6 30
Name: Month, dtype: int64
```

2. Tidying data for analysis

Pivot table

```
In [186]:
```

```
example = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar"],

"B": ["one", "one", "one", "two", "two", "one", "one", "two", "two"],

"C": ["small", "large", "large", "small", "small", "large", "small", "small", "large"],

"D": [1, 2, 2, 3, 3, 4, 5, 6, 7],

"E": [2, 4, 5, 5, 6, 6, 8, 9, 9]})
```

example

Out[186]:

	Α	В	С	D	E
0	foo	one	small	1	2
1	foo	one	large	2	4
2	foo	one	large	2	5
3	foo	two	small	3	5
4	foo	two	small	3	6
5	bar	one	large	4	6
6	bar	one	small	5	8
7	bar	two	small	6	9
8	bar	two	large	7	9

In [187]:

```
table = pd.pivot\_table(example, index = ['A', 'B'], values = 'D', columns = 'C', aggfunc = np.sum, fill\_value = 0)
```

Out[187]:

	С	large	small
Α	В		
	one	4	5
bar	two	7	6
	one	4	1
foo	two	0	6

In [188]:

 $table_mean = pd.pivot_table(example, index = ['A','C'], values = ['D','E'], aggfunc = \{'D':np.mean, 'E':np.mean\})$

table_mean

Out[188]:

		D	E
Α	С		
	large	5.500000	7.500000
bar	small	5.500000	8.500000
	large	2.000000	4.500000
foo	small	2.333333	4.333333

In [189]:

 $table_math = pd.pivot_table(example, index = ['A','C'], values = ['D', 'E'], aggfunc = \{'D':np.mean, 'E':[max, min, np.mean]\})$

table_math

Out[189]:

		D	E		
		mean	max mean		min
Α	С				
	large	5.500000	9.0	7.500000	6.0
bar	small	5.500000	9.0	8.500000	8.0
	large	2.000000	5.0	4.500000	4.0
foo	small	2.333333	6.0	4.333333	2.0

Ebola

In [190]:

 $ebola = pd.read_csv('ebola.csv')$

ebola.head()

Out[190]:

	Date	Day	Cases_Guinea	Cases_Liberia	Cases_SierraLeone	Cases_Nigeria	Cases_Senegal	Cases_UnitedStates	Ci
0	1/5/2015	289	2776.0	NaN	10030.0	NaN	NaN	NaN	N
1	1/4/2015	288	2775.0	NaN	9780.0	NaN	NaN	NaN	N
2	1/3/2015	287	2769.0	8166.0	9722.0	NaN	NaN	NaN	N
3	1/2/2015	286	NaN	8157.0	NaN	NaN	NaN	NaN	N
4	12/31/2014	284	2730.0	8115.0	9633.0	NaN	NaN	NaN	N

In [191]:

Out[191]:

	Day	Cases_Guinea	Cases_Liberia	Cases_SierraLeone	Cases_Nigeria	Cases_Senegal	Cases_UnitedStates	Ca
count	122.000000	93.000000	83.000000	87.000000	38.000000	25.00	18.000000	16.
mean	144.778689	911.064516	2335.337349	2427.367816	16.736842	1.08	3.277778	1.0
std	89.316460	849.108801	2987.966721	3184.803996	5.998577	0.40	1.178511	0.0
min	0.000000	49.000000	3.000000	0.000000	0.000000	1.00	1.000000	1.0
25%	66.250000	236.000000	25.500000	64.500000	15.000000	1.00	3.000000	1.0
50%	150.000000	495.000000	516.000000	783.000000	20.000000	1.00	4.000000	1.0
75%	219.500000	1519.000000	4162.500000	3801.000000	20.000000	1.00	4.000000	1.0
max	289.000000	2776.000000	8166.000000	10030.000000	22.000000	3.00	4.000000	1.0

In [192]:

ebola.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 122 entries, 0 to 121 Data columns (total 18 columns): 122 non-null object Date 122 non-null int64 Day Cases_Guinea 93 non-null float64 Cases_Liberia 83 non-null float64 Cases_SierraLeone 87 non-null float64 Cases_Nigeria 38 non-null float64 Cases_Senegal 25 non-null float64 Cases_UnitedStates 18 non-null float64 Cases_Spain 16 non-null float64 Cases_Mali 12 non-null float64 __ Deaths_Guinea 92 non-null float64 81 non-null float64 Deaths Liberia Deaths_SierraLeone 87 non-null float64 Deaths_Nigeria 38 non-null float64 22 non-null float64 Deaths_Senegal Deaths_UnitedStates 18 non-null float64 Deaths_Spain 16 non-null float64 $Deaths_Mali$ 12 non-null float64 dtypes: float64(16), int64(1), object(1) memory usage: 17.2+ KB

In [193]:

ebola.columns

Out[193]:

Index(['Date', 'Day', 'Cases_Guinea', 'Cases_Liberia', 'Cases_SierraLeone',
 'Cases_Nigeria', 'Cases_Senegal', 'Cases_UnitedStates', 'Cases_Spain',
 'Cases_Mali', 'Deaths_Guinea', 'Deaths_Liberia', 'Deaths_SierraLeone',
 'Deaths_Nigeria', 'Deaths_Senegal', 'Deaths_UnitedStates',
 'Deaths_Spain', 'Deaths_Mali'],
 dtype='object')

In [194]:

 $ebola_melt = pd.melt(ebola, id_vars = ['Date', 'Day'], var_name = 'type_country', value_name = 'counts')$

ebola_melt.head()

Out[194]:

	Date	Day	type_country	counts
0	1/5/2015	289	Cases_Guinea	2776.0
1	1/4/2015	288	Cases_Guinea	2775.0
2	1/3/2015	287	Cases_Guinea	2769.0
3	1/2/2015	286	Cases_Guinea	NaN
4	12/31/2014	284	Cases_Guinea	2730.0

In [195]:

ebola_melt.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1952 entries, 0 to 1951
Data columns (total 4 columns):
Date 1952 non-null object
Day 1952 non-null int64
type_country 1952 non-null object
counts 738 non-null float64
dtypes: float64(1), int64(1), object(2)
memory usage: 61.1+ KB

In [196]:

ebola_melt['str_split'] = ebola_melt['type_country'].str.split('_')

ebola_melt.head()

Out[196]:

	Date	Day	type_country	counts	str_split
0	1/5/2015	289	Cases_Guinea	2776.0	[Cases, Guinea]
1	1/4/2015	288	Cases_Guinea	2775.0	[Cases, Guinea]
2	1/3/2015	287	Cases_Guinea	2769.0	[Cases, Guinea]
3	1/2/2015	286	Cases_Guinea	NaN	[Cases, Guinea]
4	12/31/2014	284	Cases_Guinea	2730.0	[Cases, Guinea]

In [197]:

 $ebola_melt['type'] = ebola_melt['str_split'].str.get(0)$

 $ebola_melt['country'] = ebola_melt['str_split'].str.get(1)$

ebola_melt.head()

Out[197]:

	Date	Day	type_country	counts	str_split	type	country
0	1/5/2015	289	Cases_Guinea	2776.0	[Cases, Guinea]	Cases	Guinea
1	1/4/2015	288	Cases_Guinea	2775.0	[Cases, Guinea]	Cases	Guinea
2	1/3/2015	287	Cases_Guinea	2769.0	[Cases, Guinea]	Cases	Guinea
3	1/2/2015	286	Cases_Guinea	NaN	[Cases, Guinea]	Cases	Guinea
4	12/31/2014	284	Cases_Guinea	2730.0	[Cases, Guinea]	Cases	Guinea

In [198]:

 $ebola_melt_final = ebola_melt.drop(columns = 'str_split')$

ebola_melt_final.head()

Out[198]:

	Date	Day	type_country	counts	type	country
0	1/5/2015	289	Cases_Guinea	2776.0	Cases	Guinea
1	1/4/2015	288	Cases_Guinea	2775.0	Cases	Guinea

		Date	Day	type_country	counts	type	country
	2	1/3/2015	287	Cases_Guinea	2769.0	Cases	Guinea
	3	1/2/2015	286	Cases_Guinea	NaN	Cases	Guinea
Î	4	12/31/2014	284	Cases_Guinea	2730.0	Cases	Guinea

3. Combining data for analysis

```
In [199]:
```

display(x)

display(y)

	Α	В	С	D	E
0	foo	one	small	1	2
1	foo	one	large	2	4
2	foo	one	large	2	5
3	foo	two	small	3	5
4	foo	two	small	3	6
5	bar	one	large	4	6
6	bar	one	small	5	8
7	bar	two	small	6	9
8	bar	two	large	7	9

	Α	В	С	D	E
0	foo	two	small	11	22
1	bar	one	large	3	10
2	foo	one	small	8	4
3	bar	two	small	7	3
4	foo	one	large	3	4
5	bar	one	large	4	67
6	foo	two	small	5	10
7	foo	two	small	6	7
8	bar	two	large	7	1

In [200]:

 $x_{concat} = pd.concat([x, y], ignore_index = True, axis = 1)$

Out[200]:

	0	1	2	3	4	5	6	7	8	9
0	foo	one	small	1	2	foo	two	small	11	22
1	foo	one	large	2	4	bar	one	large	3	10
2	foo	one	large	2	5	foo	one	small	8	4
3	foo	two	small	3	5	bar	two	small	7	3
4	foo	two	small	3	6	foo	one	large	3	4
5	bar	one	large	4	6	bar	one	large	4	67
6	bar	one	small	5	8	foo	two	small	5	10
7	bar	two	small	6	9	foo	two	small	6	7
8	bar	two	large	7	9	bar	two	large	7	1

In [201]:

 $z = x.merge(y, left_on = 'A', right_on = 'A', how = 'inner')$

z.head()

Out[201]:

	Α	B_x	C_x	D_x	E_x	В_у	C_y	D_y	E_y
0	foo	one	small	1	2	two	small	11	22
1	foo	one	small	1	2	one	small	8	4
2	foo	one	small	1	2	one	large	3	4
3	foo	one	small	1	2	two	small	5	10
4	foo	one	small	1	2	two	small	6	7

~ Glob Python

In [202]:

import pandas as pd

import glob

pattern = '*.csv'

 $csv_files = glob.glob(pattern)$

display(type(csv_files))

display(csv_files)

list

['airquality.csv',
'dob_job_application_filings_subset.csv',

'ebola.csv',

'gapminder.csv', 'nyc_uber_2014.csv',
'tb.csv',
'tips.csv',

'uber1.csv',

'uber2.csv',

'uber3.csv']

In [203]:

 $pd_tips_file = pd.read_csv(csv_files[-1])$

pd_tips_file.head()

Out[203]:

	,Date/Time,Lat,Lon,Base
0	0,6/1/2014 0:00:00,40.7293,-73.992,B02512
1	1,6/1/2014 0:01:00,40.7131,-74.0097,B02512
2	2,6/1/2014 0:04:00,40.3461,-74.661,B02512
3	3,6/1/2014 0:04:00,40.7555,-73.9833,B02512
4	4,6/1/2014 0:07:00,40.688,-74.1831,B02512

~ Iterating and concatenating all matches

```
In [204]:
import pandas as pd
import glob

list = []
index = 'uber*.csv'
csv_files = glob.glob(index)

for x in csv_files:
    df = pd.read_csv(x, delimiter = ',')
    list.append(df)

uber = pd.concat(list)
```

,Date/Time,Lat,Lon,Base

0 0,4/1/2014 0:11:00,40.769,-73.9549,B02512

1 1,4/1/2014 0:17:00,40.7267,-74.0345,B02512

2 2,4/1/2014 0:21:00,40.7316,-73.9873,B02512

3 3,4/1/2014 0:28:00,40.7588,-73.9776,B02512

4,4/1/2014 0:33:00,40.7594,-73.9722,B02512

~ Merge

4

display(uber.head())

(297, 1)

```
In [205]:
```

display(visited)

	name	lat	long
0	DR-1	-49.85	-128.57
1	DR-3	-47.15	-126.72
2	MSK-4	-48.87	-123.40

	ident	site	dated
0	619	DR-1	1927-02-08
1	734	DR-3	1939-01-07
2	837	MSK-4	1932-01-14

In [206]:

o2o = pd.merge(left = site, right = visited, left_on = 'name', right_on = 'site', how = 'inner', validate = 'many_to_many')

020

Out[206]:

	name	lat	long	ident	site	dated
0	DR-1	-49.85	-128.57	619	DR-1	1927-02-08
1	DR-3	-47.15	-126.72	734	DR-3	1939-01-07
2	MSK-4	-48.87	-123.40	837	MSK-4	1932-01-14

4. Cleaning data for analysis

- astype() and dtype() works only with DataFrame not Series
- _category type decrease memory usage

In [216]:

type(df_tips)

Out[216]:

pandas.core.frame.DataFrame

In [219]:

df_tips2 = df_tips

df_tips2.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 244 entries, 0 to 243 Data columns (total 7 columns): total_bill 244 non-null float64 244 non-null float64 tip 244 non-null object sex 244 non-null object smoker 244 non-null object dav time 244 non-null object 244 non-null int64 dtypes: float64(2), int64(1), object(4) memory usage: 13.4+ KB

In [220]:

type(df_tips2)

Out[220]:

pandas.core.frame.DataFrame

In [208]:

df_tips2.head()

Out[208]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

```
In [223]:
```

df_tips2.sex = df_tips2.sex.astype('category')

 $df_{tips2['smoker']} = df_{tips2['smoker'].astype('category')}$

In [224]:

df_tips2.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 244 entries, 0 to 243 Data columns (total 7 columns): total_bill 244 non-null float64 244 non-null float64 tip 244 non-null category sex smoker 244 non-null category 244 non-null object day time 244 non-null object 244 non-null int64 size

dtypes: category(2), float64(2), int64(1), object(2)

memory usage: 10.3+ KB

In [225]:

df_tips2.total_bill = pd.to_numeric(df_tips2['total_bill'], errors = 'coerce')

In [226]:

s = pd.Series(['1.0', '2', -3])

s

Out[226]:

0 1.0

1 2 2 -3

dtype: object

In [227]:

pd.to_numeric(s)

Out[227]:

0 1.0 1 2.0 2 -3.0

dtype: float64

In [229]:

pd.to_numeric(s, downcast = 'signed')

Out[229]:

0 1

1 2 2 -3

dtype: int8

In [230]:

sa = pd.Series(['apple', '1.0', '2', -3])

Out[230]:

```
0 apple
1
    1.0
2
     2
3
    -3
dtype: object
In [232]:
pd.to_numeric(sa, errors = 'coerce')
Out[232]:
0 NaN
1 1.0
2 2.0
3 -3.0
dtype: float64
In [233]:
pd.to_numeric(sa, errors = 'ignore')
Out[233]:
0 apple
   1.0
1
2
     2
3
    -3
dtype: object
In [237]:
import re
pattern = re.compile('\d{3}-\d{3}-\d{4}')
match = pattern.match('123-456-7890')
match_2 = pattern.match('1245-953-0123')
print(bool(match))
print(bool(match_2))
True
False
In [239]:
import re
matches = re.findall('\d+', 'the recipe calls for 10 strawberries and 1 banana')
print(matches)
['10', '1']
In [240]:
pattern1 = bool(re.match(pattern = '\d{3}-\d{4}', string = '123-642-2356'))
print(pattern1)
True
In [241]:
pattern2 = bool(re.match(pattern = '\s\d^*.\d\{2\}', string = '\$123.45'))
print(pattern2)
True
In [248]:
pattern3 = bool(re.match(pattern='\w', string='Australia'))
print(pattern3)
True
In [249]:
df_tips.head()
Out[249]:
```

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

In [275]:

def recode_gender(gender):

import re

import numpy as np

if gender == 'Female':

return 0

elif gender == 'Male':

return 1

else:

return np.nan

In [279]:

df_tips2['recode'] = df_tips2.sex.apply(recode_gender)

df_tips2.head()

Out[279]:

	total_bill	tip	sex	smoker	day	time	size	repost	recode
0	16.99	1.01	Female	No	Sun	Dinner	2	0	0
1	10.34	1.66	Male	No	Sun	Dinner	3	1	1
2	21.01	3.50	Male	No	Sun	Dinner	3	1	1
3	23.68	3.31	Male	No	Sun	Dinner	2	1	1
4	24.59	3.61	Female	No	Sun	Dinner	4	0	0

5. Case study

In[]:

In []:

In []:

In []:

In[]:

In[]:

In []: