Lexical Analysis

Uday Khedker (www.cse.iitb.ac.in/~uday)

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

January 2025

Topic: Scanning

Section:

Lancing Const.

Specifying Scanners

Constructing DFAs

Tokenizing the Inpu

Representing DFA

Minimizing DFA

Outline

- Introduction
- Specifying scanners
- Tokenizing input using DFAs
- Constructing DFAs
- Representing DFAs using four-arrays
- Minimizing DFAs

Topic:

Scanning

Section: Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic:

Scanning Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Introduction

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Prof. Sanyal's slides (scanning-slides-sanyal-part1.pdf)

Topic:

Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic:

Scanning Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Specifying Scanners

Introduction

IIT Bombay cs302: Implementation of Programming Languages

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Prof. Sanyal's slides (scanning-slides-sanyal-part2.pdf)

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic: Scanning

Section:

10000

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Constructing DFAs

Topic: Scanning

Section:

Specifying Scanner

Constructing DFAs

Representing DFAs

Minimizing DFA

Constructing DFA for Multiple Patterns

- Join multiple DFAs/NFAs using ϵ transition Transition without consuming any input symbol
- This creates an NFA (Non-deterministic Finite Automaton)
 - Possible transition without consuming any input symbol
 - Possibly multiple transitions on the same input symbol
- Make the NFA deterministic by subset construction
 - Each state in the resulting DFA is a set of "similar" states of the NFA
 - The start state of the DFA is a union of all original start states (of multiple patterns)
 - Subsequent states are identified by finding out the sets of states of the NFA for each possible input symbol

Topic: Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input Representing DFAs Minimizing DFAs

Constructing NFA for a Regular Expression

Consider a regular expression R. Apply steps 1 to 4 to construct an NFA for R inductively:

- 1. If R is a letter in the alphabet Σ , create a two state NFA that accepts the letter (single transition from the start state to a single final state on the letter)
- 2. If R is $R_1 \cdot R_2$, create an NFA by joining the two NFAs N_1 and N_2 by adding an epsilon transition from every final state of N_1 to the start state of N_2 .
- 3. If the R is $R_1 \mid R_2$, create an NFA by joining the two NFAs N_1 and N_2 by creating a new start state s_0 and a new final state s_f . Add an epsilon transition from s_0 the start state of R_1 and similarly for R_2 . Add an epsilon transition from every final state of N_1 to s_f and similarly for N_2 .
- 4. If R is R_1^* , create an NFA by adding an epsilon transition from every final state of R_1 to the start state of R_1

Alternatively, we can create a new start state s_0 with an epsilon transition to the start state of R_1 and a new final state s_f with epsilon transitions from the final states of R_1 , and then add an epsilon transition from s_f to s_0 .

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Inpu

Representing DFAs

Minimizing DFA

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Inp

Representing DFAs

Minimizing DFAs

State	Transition				
State	а	b	С		

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Inp

Representing DFAs

Minimizing DFAs

Constructing DFA for Multiple Patterns: Example 1

State	Transition				
State	а	Ь	С		
$\{s_0, p_0, q_0\}$					

 $\{s_0,p_0,q_0\}$

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Inpu

Representing DFAs

Minimizing DFAs

State	Transition			
State	а	Ь	С	
$\{s_0, p_0, q_0\}$	$\{p_0\}$			
$\{p_0\}$				

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Inn

Representing DFAs

Minimizing DFA

State	Transition				
State	а	Ь	С		
$\{s_0, p_0, q_0\}$	$\{p_0\}$	$\{p_0\}$ $\{p_1\}$			
$\{p_0\}$					
$\{p_1\}$					

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Inc

Representing DFAs

Minimizing DFA

State	Transition			
State	а	Ь	С	
$\{s_0, p_0, q_0\}$	$\{p_0\}$	$\{q_1\}$		
$\{p_0\}$				
$\{p_1\}$				
$\{q_1\}$				

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the In

Representing DFAs

Minimizing DFA

State	Transition			
State	а	Ь	С	
$\{s_0, p_0, q_0\}$	$\{p_0\}$	$\{p_1\}$	$\{q_1\}$	
$\{p_0\}$	$\{p_0\}$			
$\{p_1\}$				
$\{q_1\}$				

Topic:

Scanning Section:

Lanca de la Con-

Specifying Scanners

Constructing DFAs

Tokenizing the Inp

Representing DFAs

Minimizing DFAs

State	Transition				
State	а	Ь	С		
$\{s_0, p_0, q_0\}$	$\{p_0\}$	$\{p_0\} \mid \{p_1\}$			
$\{p_0\}$	$\{p_0\}$	$\{p_1\}$			
$\{p_1\}$					
$\{q_1\}$					

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Inpu

Representing DFAs

Minimizing DFA

State	Transition			
State	а	Ь	С	
$\{s_0, p_0, q_0\}$	$\{p_0\}$	$\{q_1\}$		
$\{p_0\}$	$\{p_0\}$	$\{p_1\}$		
$\{p_1\}$				
$\{q_1\}$			$\{q_1\}$	

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Inpu

Representing DFA

Minimizing DFAs

Constructing DFA for Multiple Patterns: Example 2

Let L and D denote the set of all letters and digits, respectively

Pattern	Token
int	INT
L(L D)*	ID
D^+	NUM
=	=
;	;

For convenience, we will ignore the last two patterns that are completely independent

Topic: Scanning

Section:

Specifying Scanners

Constructing DFAs

Representing DFAs

$$\rightarrow$$
 C_1 D C_2 D

State	i	n	t	$L-\{i, n, t\}$	D

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

lokenizing the In

Representing DFAs

Minimizing DFAs

State	i	n	t	$L-\{i,n,t\}$	D
$\{a_1,b_1,c_1\}$					

Topic: Scanning

Section:

Introduction

Specifying Scanners
Constructing DFAs

Representing DFAs

Minimizing DFA

State	i	n	t	$L-\{i,n,t\}$	D
$\frac{\{a_1, b_1, c_1\}}{\{a_2, b_2\}}$	$\{a_2, b_2\}$				
$\{a_2,b_2\}$					

Topic: Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Inp

Representing DFAs

Minimizing DFAs

State	i	n	t	$L-\{i,n,t\}$	D
$\{a_1, b_1, c_1\}$ $\{a_2, b_2\}$	$\{a_2,b_2\}$	{ b ₂ }	{ b ₂ }	$\{b_2\}$	
$\{a_2,b_2\}$					
$\{b_2\}$					

Topic:

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Inpi

Representing DFAs

Minimizing DFAs

Topic:

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Inpu

Representing DFAs

Topic:

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Inpu

Representing DFAs

Minimizing DFAs

Topic:

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Inpi

Representing DFAs

Minimizing DFAs

Topic: Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Inpi

Minimizing DFAs

Topic:

Section:

Specifying Scanne

Constructing DFAs

Tokemizing the inpu

Representing DFAs

Minimizing DFAs

Topic: Scanning

Section:

Introduction

Constructing DFAs

Tokenizing the Innu

Representing DFAs

Minimizing DFAs

Topic:

Section:

Specifying Scanner

 $Constructing\ DFAs$

Tokenizing the inpu

Representing DFAs

Minimizing DFAs

Topic:

Section:

Introductio

Specifying Scanner

Constructing DFAs

Tokemizing the mpt

Representing DFA

Topic: Scanning

Section:

Industrial

Specifying Scanner

Constructing DFAs

Tokenizing the Inp

Representing DFAs

Minimizing DFAs

Constructing DFA for Multiple Patterns: Example 2

State	Possible Patterns	Accepted Pattern	
$\{a_1, b_1, c_1\}$			
$\{a_2,b_2\}$	ID	ID	
$\{b_2\}$	ID	ID	
$\{c_2\}$	NUM	NUM	
$\{a_3,b_2\}$	ID	ID	
$\{a_4, b_2\}$	INT, ID	INT	

Longest match. Lexeme "int" reaches state $\{a_4, b_2\}$ whereas lexeme "integer" reaches the state $\{b_2\}$

First matching rule preferred. Transitions L/n and L/t to state $\{b_2\}$ ensure that INT is preferred over ID for the lexeme "int"

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the inpu

Representing DFAs

Minimizing DFAs

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the I

Representing DFAs

Minimizing DFAs

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the In

Representing DFAs

Minimizing DFAs

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFA

Topic:

Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic:

Scanning

Section:

Introductio

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic:

Scanning

Section:

Introductio

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

-.

Representing DFAs

Minimizing DFAs

Topic:

Scanning

Section:

Introductio

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFA

Topic:

Scanning

Section:

Introduction

Specifying Scanners
Constructing DFAs

Constituting DIA

Representing DFAs

Minimizing DFA

Topic:

Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic:

Scanning

Section:

Introductio

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic:

Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic:

Scanning

Section:

Introductio

Specifying Scanners

Constructing DFAs

Tokenizing the Inpu

Representing DFAs

Minimizing DFAs

Topic:

Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic:

Scanning

Section

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Ir

Representing DFAs

Minimizing DFAs

Topic:

Scanning

Section

C----: C------

Constructing DFAs

Representing DFAs

Minimizing DFAs

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Inp

Representing DFA

Minimizing DFAs

Topic:

Scanning

Section

Carate dans Carana

Constructing DFAs

Tokenizing the Input

Representing DFA

Minimizing DFAs

Constructing DFA for Multiple Patterns: Example 3

Input int12=3 reaches state $\{e_2\}$ along the red transitions, recognizing the token ANY

Hence the ".*" pattern should be used with caution in a lex script

The "." pattern is much safer in a lex script

Topic: Scanning

Section:

Section

Specifying Scanners

Constructing DFAs

Tokenizing the In

Representing DFA

Minimizing DFAs

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Tokenizing the Input Using DFAs

Topic:

Scanning Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFA

An Example for Scanning: Specifications

Let L and D denote the set of all letters and digits, respectively

Pattern	Token		
int	INT		
L(L D)*	ID		
D^+	NUM		
=	=		
;	;		

We will scan the input string int int32=5;←

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFA

Minimizing DFA

Example for Scanning: DFA for the Patterns

Formally, a Deterministic Finite Automaton (DFA) is a five tuple

$$(\Sigma, S, s_0, \delta, F)$$

where

- ullet Σ is the input alphabet
- *S* is the set of states
- $s_o \in S$ is a unique start state
- $\delta: S \times \Sigma \to S$ is a transition function
- $F \subseteq S$ is a set of final states

Topic: Scanning

Section:

Introduction

Specifying Scanner

Constructing DFAs

Tokenizing the Input

Representing DFA

Minimizing DFA

Example for Scanning: DFA for the Patterns

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFA

Minimizing DFA

A Format to Show A Trace of Scanning

Ste	ep No	State	${\sf MatchedString}$	Buffer	NextChar	LastFinalState	${\sf MarkedPos}$	Action

- State (S). Current State
- MatchedString (MS). Prefix of the buffer matched to identify a lexeme
- Buffer. Holds the sequence of characters being analyzed to form a lexeme.
- NextChar (NC). The next character in the input; it will be shifted to the buffer if there is a valid transition in the DFA
- LastFinalState (LFS). The last final state seen
- MarkedPos (MP). The position of the character (in the buffer) just after the last seen lexeme
- Action. Specifies what to do when a lexeme is identified, such as token generation or error handling.

Topic: Scanning

Section

Introduction

pecifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFA

A Format to Show A Trace of Scanning

Step No	State	${\sf MatchedString}$	Buffer	${\sf NextChar}$	LastFinal State	${\sf MarkedPos}$	Action

- State (S). Current State
- M When there is no transition on Nextchar,
- B
 CAALLIDeria 1 Calaboration
 - if MarkedPos is -1, no final state is seen, the first character in the buffer is discarded, and the second character becomes
 NextChar, If no valid token was seen, discard the first character and continue.
 - otherwise, the lexeme upto MarkedPos (excluding it) is returned, the character at MarkedPos becomes NextChar If a valid token was seen, return it and resume scanning from MarkedPos.
 In either case, the LastFinalState is set to -1 and the state is set to 0
- se in either case, the LastFinalState is set to -1 and the state is set to
- Аспол.

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFA

Minimizing DFA

Topic: Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic: Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFA

Minimizing DFAs

Topic: Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFA

Topic: Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFA

Minimizing DFA

Topic: Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic: Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFA:

Minimizing DFAs

Topic: Scanning

Section:

Introduction

Specifying Scanners
Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic: Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic: Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic: Scanning

Section:

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFA

Minimizing DEA

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Minimining DEA

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic: Scanning

Section:

Industrial continu

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFA

Topic: Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFA:

Minimizing DFAs

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFA

Topic: Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFA

Minimizing DFAs

Topic: Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFA

Minimizing DFA

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFA

Scanning the Input "int int32=5;←"

Last Final State

Matched String

Marked Position

Next Char

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

The Trace of Scanning the Input "int int32=5; ←"

SNo	S	MS	Buffer	NC	LFS	MP	Action
1	0		int_int32=5;←	i			
2	1	i	int∟int32=5;←	n	1	1	
3	2	in	int_int32=5;←	t	2	2	
4	3	int	int∟int32=5;←	1	3	3	Found INT
5	0		∟int32=5;←	1			Discard 🗅
6	0		int32=5;←	-			
7	1	i	int32=5;←	n	1	1	
8	2	in	int32=5;←	t	2	2	
9	3	int	int32=5;←	3	3	3	
10	4	int3	int32=5;←	2	4	4	
11	4	int32	,	=	4	5	Found ID
12	0		=5;←	=			
13	6	=	=5;←	5	6	1	Found =
14	0		5;←	5			
15	5	5	5;←	;	5	1	Found NUM
16	0		;←	;			
17	7	;	\leftarrow	\rightarrow	7		Found ;

Topic: Scanning

Section

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFA

Minimizing DFA

Tutorial Problem On Scanning

 Find the occurrences of following substrings in a given input string load, loadaddress, add, sub, store

• Use the following automata

ullet Scan two input strings loadsubadd \longleftrightarrow and loadaddsub \longleftrightarrow

Topic:

Scanning Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Minimizing DFAs

The Role of MarkedPos

Observe the role of MarkedPos for the input loadaddsub↔

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

The Role of MarkedPos

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

The Role of MarkedPos

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Demo of Scan Trace

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic:

Scanning Section:

1000

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Representing DFAs Using Four Arrays

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Inpu

Representing DFAs

Minimizing DFAs

DFA to be Represented Using Four Arrays: Example 1

Topic: Scanning

Section:

The odd celon

Constructing DFAs

Tokenizing the Inp

Representing DFAs

Minimizing DFA

DFA to be Represented Using Four Arrays: Example 1

This slide explains how a Deterministic Finite Automaton (DFA) can be represented using four arrays: Base, Default, Next, and Check. Let's break it down step by step.

Instead of storing a full transition table, DFAs can be efficiently represented using four arrays:

Base: Stores an index offset for each state.

Default: Stores the fallback state if no direct transition exists.

Next: Stores the actual transitions. Check: Ensures transitions are valid.

1		_	l _a	_
		а	b	С
	0	1	0	3
	1	1	2	3
	2	1	3	3
	3	1	0	3

Topic: Scanning

Section

Introduction

Specifying Scanner

Constructing DFA

Representing DFAs

Minimizing DEA

DFA to be Represented Using Four Arrays: Example 1

States 0 and 3 have identical transitions. Transitions in states 1 and 2 differ from them only on b.

Char	Code
а	0
b	1
С	2

If Check[Base[s] + c] matches the current state (s), return the next state from Next[Base[s] + c].
Otherwise, use the Default table to find an alternative transition.

	а	b	С
0	1	0	3
1	1	2	3
2	1	3	3
3	1	0	3

State	Default	Base
0		
1		
2		
3		

	Next	Check
0		
1		
2		
3		
4		
5		

Topic: Scanning

Section

Later design

Specifying Scanners

Constructing DFAs

Representing DFAs

Minimizing DFA

DFA to be Represented Using Four Arrays: Example 1

We choose to fill the entries for state 0 first (state 3 could also have been used)

Char	Code
а	0
b	1
С	2

	а	b	С
0	1	0	3
1	1	2	3
2	1	3	3
3	1	0	3

State	Default	Base
0		
1		
2		
3		

	Next	Check
0		
1		
2		
3		
4		
5		

Topic: Scanning

Section

Introduction

Constructing DFA

Representing DFAs

Minimizing DFA

DFA to be Represented Using Four Arrays: Example 1

The Check array contains 0 to confirm that the corresponding entries in the next array are for state 0

Char	Code
а	0
b	1
С	2

	а	b	С
0	1	0	3
1	1	2	3
7	1	2	2

State	Default	Base	
0			
1			
2			
3			

Next	Check
1	0
0	0
3	0

Topic: Scanning

Section:

Introductio

Specifying Scanner

Constructing DFA:

Tokenizing the Inpu

Representing DFAs

Minimizing DFA

DFA to be Represented Using Four Arrays: Example 1

The Check array contains 0 to confirm that the corresponding entries in the next array are for state 0

Nove Chack

0
1
2

		C								11	<u> </u>	-	Cijec	-n
					State	efault	Base		≻ 0		1		0	
	а	b	С		0		•		1	>	0		0	
0 (1	0	3	> —	-	l			2		3 /		0/	
1	1	2	3		2				3		$\overline{}$)	
2	1	3	3		3				4					
3	1	0	3					1	5					

Topic: Scanning

Section

THE TOTAL COLOR

Constructing DFAs

Representing DFAs

Minimizing DFAs

DFA to be Represented Using Four Arrays: Example 1

For state 1, we reuse the transitions on a and c from state 0 but need to enter transition on b explicitly. We do this using the next free entry (index 3) in the next array and back calculating the base of state 1.

b, c

return nextstate(Default[s].c):

Char	Code
а	0
b	1
С	2

	а	b	С
0	1	0	3
1	1	2	3
2	1	3	3
3	1	0	3

Topic: Scanning

Section

Constructing DFA

rokemizing the mp

Representing DFAs

Minimizing DFAs

DFA to be Represented Using Four Arrays: Example 1

The variation in state 2 is similar to that for state 1. We reuse the transitions on a and c from state 0 but enter transition on b explicitly in the next free entry (index 4) in the next array and back-calculate the base of state 2.

return nextstate(Default[s].c);

Char	Code
а	0
b	1
С	2
С	2

	а	b	С
0	1	0	3
1	1	2	3
2	1	3	3
3	1	0	3

Next	Check	
1	0	
0	0	
3	0	
2	1	
3	2	

Topic: Scanning

Section:

Introductio

Specifying Scanners

Constructing DFA

Representing DFAs

Minimizing DFAs

DFA to be Represented Using Four Arrays: Example 1

int nextstate(s,c)
{ if (Check[Base[s]+c] == s
 return Next[Base[s]+c
else

State 3 is identical to state 0. We have shown here its base as same as for state 0.

(In practice, lex begins the entries from index 1 and keeps index 0 free for such entries. We have ignored it because it is a matter of details.)

return nextstate(Default[s],c);

Char	Code
а	0
b	1
С	2

In practice, Lex starts indexing DFA table entries from 1 and reserves index 0 for special entries (like error states or default transitions).

Example: If Base[1] = 5, transitions for state 1 start from Next[5], while Base[0] remains unused or reserved

	а	b	С
0	1	0	3
1	1	2	3
2	1	3	3
3	1	0	3

State	Default	Base	3 0
0			1
1	0	•	2
2	0	•	_ / _ 3
3	0	•	4
			5

	Next	Check
)	1	0
	0	0
	3	0
•	2	1
	3	2
•		

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Representing DFAs

Maria DE

The Intuition Behind Four Array Representation

How to find the appropriate space in Next array for a state?

- View the entries (in the row of the state) that are required to be stored as "pins" separated by the entries that are not required to be stored
- View the positions in the Next array that do not contain a transition as "holes"
- Try to match the pattern (i.e. separation) of pins with that of the available holes

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Inp

Representing DFAs

Minimizing DFAs

DFA to be Represented Using Four Arrays: Example 2

Set	Characters					
L	a to z					
D	0 to 9					

Pattern	Token
begin	BEGIN
$L(L D)^*$	ID
$(- \epsilon)D^+$	NUM

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFA

Representing DFAs

Minimizing DFAs

Table Representation for Example 2

In the following, L denotes any letter from a to z other than b, e, g, i, $\frac{n}{n}$ because these letters are listed separately

	b	е	g	i	n	L	D	-
0	1	8	8	8	8	8	7	6
1	8	2	8	8	8	8	8	
2	8	8	3	8	8	8	8	
3	8	8	8	4	8	8	8	
4	8	8	8	8	5	8	8	
5	8	8	8	8	8	8	8	
6							7	
7							7	
8	8	8	8	8	8	8	8	

Character	Code
a - z	0 - 25
0 - 9	26 - 35
-	36

Topic: Scanning

Section

Introduction

Specifying Scanners

Constructing DFAs

Representing DFAs

Minimizing DFA

Choice of Default States for Example 2

- States 8 and 6 are represented independently
- State 6 is the default state for state 7
- State 8 is the default state for all other states

The default state helps compress the DFA by avoiding redundant entries in the transition table. Instead of explicitly storing transitions for every state, some states inherit transitions from a default state.

Example:

State 6 and 8 have unique transitions, so it is stored independently. State 7 shares most transitions with State 6, so it defaults to State 6.

State 8 serves as a fallback for all other states, reducing table size and lookup complexity.

Topic: Scanning

Section:

Section.

Specifying Scanners

Constructing DFAs

Tokenizing the Inp

Representing DFAs

Minimizing DFAs

Four Arrays Representation for Example 2

S:	State	
D:	Default	
B:	Base	
N:	Next	
c.	Check	

	Ν	C		Ν	C		Ν	C		Ν	C
0			20			40			60		
1 2 3			21			41			61		
2			22			42			62		
3			23			43			63		
			24			44			64		
5			25			45			65		
4 5 6 7 8			26			46			66		
7			27			47			67		
8			28			48			68		
9			29			49			69		
10			30			50			70		
11			31			51			71		
12			32			52			72		
13			33			53			73		
14			34			54			74		
15			35			55			75		
16			36			56			76		
17			37			57			77		
18			38			58			78		
19			39			59			79		

S: State

B: Base

N: Next

D

3

4

5

6

Topic: Scanning

Section

Representing DFAs

Four Arrays Representation for Example 2

Topic: Scanning

Scannin

Section:

Specificing Scanners

Constructing DFAs

Representing DFAs

Minimizing DFA

Topic: Scanning

Scannin

Section

Cassifying Company

Constructing DFAs

Tokenizing the Inc

Representing DFAs

Minimizing DFA

Topic: Scanning

Section

Representing DFAs

Topic: Scanning

Section

Section.

Cassifying Company

Constructing DFAs

Takanining the land

Representing DFAs

Minimizing DFA

Topic: Scanning

Section

Introduction

Specifying Scanner

Constructing DFAs

Tokenizing the Inc

Representing DFAs

Minimizing DFA

Topic: Scanning

Section

Representing DFAs

Topic: Scanning

Section

Representing DFAs

Topic: Scanning

Section

Introduction

Specifying Scanner

Constructing DFAs

Tokenizing the Ir

Representing DFAs

Minimizing DFA

Topic: Scanning

Section:

Introduction

Specifying Scanner

Constructing DFA

Representing DFAs

Minimizing DFA

Size Comparison for Example 2 SIZE == total cells

• Space for a 2 dimensional table

rows \times columns = $9 \times 36 = 324$ REPRESENTATION

• Space for four arrays representation

FOUR ARRAY REPRESENTATION

Array	Size
Next	71
Check	71
Default	9
Base	9
Total	160

Storing a large graph as an adjacency matrix using four arrays (Base, Next, Check, Default) improves cache behavior because it allows sequential memory access instead of scattered pointer-based traversal.

Example:

In a linked list representation, accessing neighbors requires random memory jumps, causing cache misses. In contrast, storing transitions in contiguous arrays ensures faster lookups due to spatial locality, reducing cache misses and improving performance.

 If a large graph seen as adjacency matrix is stored using four arrays, it would have the need of pointers and dynamic memory allocation

This would imply good cache behaviour

Topic: Scanning

Section:

10000

Specifying Scanner

Constructing DFAs

Tokonizing the Inc

Representing DFAs

Minimizing DFA

Further Compression Using Equivalence Classes

- The four arrays handle similarity in the rows of the 2-D table
- Several columns could have a lot of similarity too
- We can define equivalence classes of characters that have identical transitions
 Identical columns are collapsed into a single column
- The equivalence classes are given contiguous codes thereby eliminating several "holes" in the Next and Check arrays

Topic: Scanning

Scannin

Section

Introduction

constructing birts

Tokenizing the II

Representing DFAs

Further Compression Using Equivalence Classes for Example 2

$EC \to$	0	1	2	3	4	5	6	7
	b	е	g	i	n	L	D	-
0	1	8	8	8	8	8	7	6
1	8	2	8	8	8	8	8	
2	8	8	3	8	8	8	8	
3	8	8	8	4	8	8	8	
4	8	8	8	8	5	8	8	
5	8	8	8	8	8	8	8	
6							7	
7							7	
8	8	8	8	8	8	8	8	

```
int nextstate(s,c)
{    if (Check[Base[s]+c] == s)
        return Next[Base[s]+c];
    else
        return nextstate(Default[s],c);
}
```

Now c represents the class of a character instead of the character

Topic: Scanning

Section:

Specifying Scanners

Constructing DFAs

Representing DFAs

Minimizing DFAs

Four Arrays Representation Using Equivalence Classes for Example 2

$EC \to$	0	1	2	3	4	5	6	7
	b	е	g	i	n	L	D	ı
0	1	8	8	8	8	8	7	6
1	8	2	8	8	8	8	8	
2	8	8	3	8	8	8	8	
3	8	8	8	4	8	8	8	
4	8	8	8	8	5	8	8	
5	8	8	8	8	8	8	8	
6							7	
7							7	
8	8	8	8	8	8	8	8	

D: 3: N :	Stat Def Bas Nex Che	ault e t	
6	D	В	
)			
2 2			
3			
}			
5			
7			

16

Topic:

Section

Introduction

Specifying Scanners

Constructing DFAs

Takanining the lan

Representing DFAs

Minimizing DFA

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Representing DFAs

Minimizing DEA

$EC \to$	0	1	2	3	4	5	6	7
	b	е	ф	i	n	L	D	-
0	1	8	8	8	8	8	7	6
1	8	2	8	8	8	8	8	
2	8	8	3	8	8	8	8	
3	8	8	8	4	8	8	8	
4	8	8	8	8	5	8	8	
5	8	8	8	8	8	8	8	
6							7	
7							7	
8	8	8	8	8	8	8	8	

Topic:

Scanning

Section:

Specifying Scanners

Constructing DEA

constructing D1745

Representing DFAs

Minimizing DEA

$EC \to$	0	1	2	3	4	5	6	7
	b	е	g	i	n	L	D	-
0	1	8	8	8	8	8	7	6
1	8	2	8	8	8	8	8	
2	8	8	3	8	8	8	8	
3	8	8	8	4	8	8	8	
4	8	8	8	8	5	8	8	
5	8	8	8	8	8	8	8	
6							7	
7							7	
8	8	8	8	8	8	8	8	

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Inni

Representing DFAs

Minimizing DFA

$EC \to$	0	1	2	3	4	5	6	7
	b	е	g	i	n	L	D	-
0	1	8	8	8	8	8	7	6
1	8	2	8	8	8	8	8	
2	8	8	3	8	8	8	8	
3	8	8	8	4	8	8	8	
4	8	8	8	8	5	8	8	
5	8	8	8	8	8	8	8	
6							7	
7							7	
8	8	8	8	8	8	8	8	

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Inpu

Representing DFAs

Minimizing DFAs

$EC \to$	0	1	2	3	4	5	6	7
	b	е	g	i	n	L	D	-
0	1	8	8	8	8	8	7	6
1	8	2	8	8	8	8	8	
2	8	8	3	8	8	8	8	
3	8	8	8	4	8	8	8	
4	8	8	8	8	5	8	8	
5	8	8	8	8	8	8	8	
6							7	
7							7	
8	8	8	8	8	8	8	8	

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFA

Representing DFAs

Minimizing DEA

$EC \to$	0	1	2	3	4	5	6	7
	b	е	g	i	n	L	D	-
0	1	8	8	8	8	8	7	6
1	8	2	8	8	8	8	8	
2	8	8	3	8	8	8	8	
3	8	8	8	4	8	8	8	
4	8	8	8	8	5	8	8	
5	8	8	8	8	8	8	8	
6							7	
7							7	
8	8	8	8	8	8	8	8	

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFA

Tokenizing the Inni

Representing DFAs

Minimizing DEA

$EC \to$	0	1	2	3	4	5	6	7
	b	е	ф	i	n	L	D	-
0	1	8	8	8	8	8	7	6
1	8	2	8	8	8	8	8	
2	8	8	3	8	8	8	8	
3	8	8	8	4	8	8	8	
4	8	8	8	8	5	8	8	
5	8	8	8	8	8	8	8	
6							7	
7							7	
8	8	8	8	8	8	8	8	

Topic:

Section

Introduction

Specifying Scanners

Constructing DFA

Tokenizing the Inpu

Representing DFAs

Minimizing DEA

Topic:

Section

Later describer

Specifying Scanners

Constructing DFA

Tokenizing the Inpu

Representing DFAs

Minimizing DEA

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Tutorial Problem

Represent the following DFA using 4-arrays notation as compactly as possible

Character	Code
а	0
Ь	1
C	2

Topic: Scanning

Section:

Section:

Specifying Scanners

Constructing DFAs

Representing DFAs

Minimining DEA

Tutorial Problem

Represent the following DFA using 4-arrays notation as compactly as possible

Character	Code
а	0
Ь	1
С	2

State	Base	Default
0	2	
1	0	
2	0	

	Next	Check
0	1	1
1	0	2
2	0	1
3	1	0
4 5	2	0
5		

NO DEFAULT STATE

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Topic: Scanning

Section:

Introduction

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Minimizing DFAs

Topic:

Scanning

Section:

Specifying Scanners

Constructing DFAs

Tokenizing the Input

Representing DFAs

Minimizing DFAs

Minimizing DFAs

Prof. Sanyal's slides (scanning-slides-sanyal-part3.pdf)