Approved For Release STAT 2009/08/19 :

CIA-RDP88-00904R000100120

Approved For Release 2009/08/19 :

CIA-RDP88-00904R000100120

Вторая Международная конференция Организации Объединенных Наций по применению атомной энергии в мирных целях

A/CONF/15/P/2206 USSR ORIGINAL: RUSSIAN

Не подлежит оглашению до официального сообщения на Конференции

PACHPEREMENE OCKONOUHEX ЭЛЕМЕНТОВ В ПРОЦЕССЕ ЭФИРНОЙ ЭКСТРАКЦИИ

В.М. Вдовенко

Отделение урана и плутония от осколков деления представляет собой трудную и важную задачу прикладной радиохимии. В настоящее темя наиболее перспективными являются, по-видимому, экстракционные схемы переработки облученных материалов. Промышленная переработка руд и концентратов производится главным образом также методами экстракции. Поэтому знание распределения осколков деления и возможных примесей между двумя жидкими фазами имеет первостепенное значение. В докладе Брюса (Т) на Первой международной конференции по мирному использованию атомной энергии в 1955 г. был подробно освещен вопрос о поведении осколков при экстракции урана и плутония трибутилфосфатом и метилизобутилкетоном.

В настоящей работе приводятся некоторые данные о поведении осколков при экстракции урана и плутония диэтиловым и дибутиловым эфиром.

Как известно, подавляющая часть у и β — активности после наиболее выгодной IOO-дневной выдержки облученного урана принадлежит немногим осколкам (2): цирконию, ниобию, рутению, элементам группы редких земель, барию, стронцию, цезию.

В производственных растворах могут также присутствовать элементы, которые применяются в качестве реактивов и попадают как
примеси с реактивами и как продукты коррозии аппаратуры.

Обычно уран и плутоний экстрагируются эфирами в виде нитратов. В литературе описаны (3,4,5) случаи извлечения некоторых элементов из азотнокислых растворов диэтиловым эфиром. Известно, что коэффициенты распределения большинства элементов между их водными растворами и диэтиловым эфиром невелики, но могут быть повышены добавлением азотной кислоты и высаливателя.

25 YEAR RE-REVIEW

Так как уранилнитрат относится к числу элементов, имеющих наибольшие коэффициенты распределения, то его извлечение диэтиловым эфиром использовалось для очистки урана от некоторых элементов (6).

В литературе упоминается (7) о возможности переработки облученного урана методом эфирной экстракции, но более подробные исследования в этом направлении неизвестны. Основой метода является хорошее извлечение шестивалентных урана и плутония органическим растворителем в отличие от весьма малого извлечения большинства примесей и осколков деления.

Нами проводилось изучение поведения различных элементов при экстракции из азотнокислых растворов диэтиловым эфиром путем встрякивания равных объемов приготовленного водного раствора и диэтилового эфира в течение 5 мин. После I2-часового отстаивания отбиралась проба органического раствора, к которой добавлялось некоторое количество дистиллированной воды, после чего эфир испарялся. Водный реэкстракт упаривался досуха, сухой остаток прокаливался и взвешивался. Большая точность определений обуславливалась большими — 350 мл — объемами равновесных растворов. Водная фаза в целях лучшего извлечения нитратов содержала высаливатель и имела состав: нитрат аммония 8,0 м, азотная кислота I,4 м, исследуемый нитрат ~ 0,I м. Во второй серии опытов в качестве высаливателя использовался нитрат алюминия, и раствор имел состав: нитрат алюминия 6,0 м, азотная кислота I,3 м,исследуемый нитрат ~ 0,I м. Результать опытов приведены в табл. 1.

Таблица І

Коэффициенты распределения некоторых нитратов между диэтиловым эфиром и водными растворами в присутствии высаливателя

Элемент	ИН _Ч И О ³	распределения в присутствии $A (NO_3)_3$
11	2	3
U Pu [©] Th Zr Bi	2,3 I,5 3,4.10 ⁻³ I,I.10 ⁻³ 3,I.10 ⁻⁴	0,32 1,1.10 ⁻² 2,1.10 ⁻²

1	2	3
Fe Ag II Hg Cu II Rb Co Ni Ba Zn Na K Mg Cal La Cr II Sr II Be * Y * II Sh K Y * II Na K Y	\(\begin{align*} \lambda \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1,7.10 ⁻³ 1,0.10 ⁻³ 8,2.10 ⁻⁴ 3,10 ⁻⁴ 2.10 ⁻⁴

 $^{^{*)}}$ Объем фаз равнялся 3О мл.

Из приведенных данных следует, что коэффициенты распределения большинства нитратов весьма малы. Наибольшие, коэффициенты распределения при использовании в качестве высаливателя нитрата аммония наблюдаются для урана и плутония ($A \sim 2$), меньше для тория $A = 3.4 \cdot 10^{-3}$, циркония $A = 1.1 \cdot 10^{3}$ и коэффициенты распределения $A = 1.1 \cdot 10^{-4}$ отмечены для прочих исследованных нитратов.

Высаливающее действие нитрата алюминия много больше, чем высаливающее действие нитрата аммония; коэффициенты распределения нитратов возрастают на 1-2 порядка.

Полученние данные подтверждаются данными по экстракции диэтиловым эфиром отдельных осколков без носителей, приведенными в табл. 2.0 пыты заключались во встряхивании равных объемов растворителя и исходного водного раствора. Последний готовился добавлением к 3,5 м раствору нитрата кальция определенных количеств азотной кислоты и радиоактивного препарата. В этих опытах наибольшие коэффициенты распределения отмечены для шэстивалентного церия и циркония, наименьшие — для цезия и рубидия. Коэффициенты распределения осколков возрастают с повышением кислотности исходного раствора. Как показали опыты, присутствие небольших количеств — порядка 0, I м — уранилнитрата практически не сказывается на величине коэффициентов распределения осколочных элементов.

Извлечение отдельных осколков деления возрастает в присутствии окислителя — бихромата калия. В табл. З приведены коэффициенты распределения церия и рутения при экстракции из раствора состава: уранилнитрат $\sim 0,5$ М, азотная кислота $\sim 0,8$ М, нитрат натрия $\sim 1,2$ М. При добавлении окислителя степень извлечения церия и рутения возрастает примерно на один порядок, тогда как извлечение $\mathbb{Z}_{\mathbb{Z}}$ остается практически тем же. В отсутствие азотной кислоти даже значительное количество высаливателя не способствует заметно извлечению нитратов. Сравнение величины извлечения церия и циркония из их $\sim 0,1$ М растворов в присутствии азотной кислоты или нитрата аммония приводится в табл. 4. Если при концентрации эзотной кислоты ~ 4 М наблюдаются коэффициенты распределения порядка 10^{-2} , то при концентрациях нитрата аммония ~ 4 М коэффициенты распределения имеют величину менее 10^{-4} .

Приведенные данные говорят о том, что для увеличения извлечения урана с хорошей очисткой выгоднее использовать добавление неизвле-каемых нитратов, чем азотной кислоты. Поэтому для дальнейшей работы использовались исходные растворы, содержащие большие количества высаливателей и небольшие количества азотной кислоты.

Была исследована очистка урана и плутония при проведении ряда последовательных операций по так называемому восстановительному варианту. Исходный раствор имел состав: уранилнитрат — 0,42 М, нитрат аммония 8,7 М, азотная кислота 1,5 М, азотнокислый

Коэффициенты распределения осколочных элементов между диэтиловым эфиром и водным раствором с высаливателем при разных кислотностях исходного раствора

	N B	I.10-3	I.10-3	2.10-3	3.10-3	6.10-3			I.10-2		
	1Z	4.10-3	1.10-2	I.10-2	3.10-2	7.10-2			2.10-2		
	(le +4	3.10-2		8.10-2		I-01.I	• 	3°10 ±	H		
	n II	I.10-4		3.10-4		4.IO-4	7	8.IO ±	I.10-3		
еде ления	¥	I.10-4	2.IO-4	4.IO-4			I.10-3				-
Коэффиценты распределения	(L6+3	7.IO ⁻⁴		4.IO-4		9.IO ⁻³		~ OT•T			No.
Коэффицие	La	I.10-4	I.10-4	2.10-4		3.10-4			4.I0-4		
	22	3,10-4		8.IO-4		I.10 ⁻³			I.10-3		
	RB	2.10-5		3.IO ⁻⁵	6.10-5	I.10-4	2.10-4	- OT•T		2,10-4	
-	C3	5-01.2	3.10-5	4.10-5	5.10-5	6.IO-5	2.10-4	2 OT • 9	2-01·4	6-01.8	I.10-4
Концентрация	слоты в исход- ном растворем	0,32	0,65	66,0	1,33	I,68	2,03		2,78	3,15	3,58

Таблица З

Коэффициенты распределения некоторых осколочных элементов между диэтиловым эфиром и водным раствором в присутствии бихромата калия и без него

Концентрация бихро- мата калия, М	Коэффициенты распределения					
and to homeny in	C'e	Ru	Zī			
0,03	9.10-3	I.5.10 ^{-I}	10-2			
отсутствует	3.10-4	1.10-2	10-2			

Таблица 4

Коэффициенты распределения церия и циркония при экстракции диэтиловым эфиром в присутствии азотной кислоты или нитрата аммония

Концентра- ция кисло- ты в исход-	Концентра- ция нитра- та аммо-	Коэффициенты распределения			
HOM pactbo-	ния в ис- ходном растворе,	Ce ⁺³	Ce ⁺⁴	Zı	
7,0		I,4.10 ⁻¹		3,4.10-2	
5,6		6,4.IO ⁻²	1,0	-	
3,5		2,5.10 ⁻²	0,7	6,9.10-4	
I,4		1.10-2	0,1	1,6.10-4	
0,14		5.10 ⁻³			
0		IO ⁻⁴	:	<1,5.10 ⁻⁴	
	4,1	IO ⁻⁴	- 1	< IO ⁻⁴	
	I,6	10-4		< 10-4	
	0,4	10-4		< 10 ⁻⁴	
	1	1	I ,		

гидразин О, I М. Из раствора, в котором плутоний находился в восстановленном состоянии, 6-кратным объемом диэтилового эфира извлекался уран. К оставшемуся водному раствору с практически тем же составом осколочной активности добавлялся бихромат калия для разрушения восстановителя и окисления плутония. Затем аналогичным образом извлекался плутоний.

Коэффициент очистки плутония от β - активности в результате проведения окислительной экстракции имел величину 90, от β - активности - 50. Радиохимический состав осколочной активности в исходном водном растворе и эфирных растворах урана и плутония приведен в табл. 5.

Изучалась также очистка урана и плутония по так называемому окислительному варианту, т.е. путем совместного извлечения урана и шестивалентного плутония и последущего их разделения. Экстракция велась из раствора состава: уранилнитрат I,25 M, азотная кислота 2,0 M. Полученный эфирный раствор урана и плутония пропускался через восстановительный раствор состава: нитрат аммония 8,0 M, нитрат гидразина 0,2 M. Всего проводилось три последовательных цикла очистки плутония и коэффициенты очистки плутония от уставанности составили соответственно ~ 40, ~ 40 и ~ 20.

Аналогичные опыты проводились с использованием в качестве исходных расторов с высаливателем — нитратом натрия. Примерный радиохимический состав исходного раствора, эфирного раствора после восстановительной реэкстракции плутония и водного плутониевого реэкстракта приведен в табл.6. Из этих данных, а также из данных табл.5 видно, что подавляющая часть осколочной активности органической фазы принадлежит цирконию и рутению.

Очистка органической фазы повышается при промывке ее слабокислыми водными растворами высаливаетля. Результаты исследований показывают эффективность метода экстракции диэтиловым эфиром для целей очистки урана и плутония от осколков деления и от примесей. Подобные исследования проводились с использованием в качестве экстрагента дибутилового эфира с четыреххлористым угле родом (15об.%) Было изучено поведение осколков деления при экстракции урана и плутония указанной смесью.

Таблица 5

Радиохимический состав осколочной активности при экстракционном выделении урана и плутония с помощью диэтилового эфира по восстановительному варианту

	Радио	Радиохимический состав активности в % от суммарной							
Элемент	Искодно твој	oro pac- pa	Эфирногс урана пос новительн ции	раствора ле восста- ой экстрак-	створа ния по окисли	ого ра- о плуто- осле итель- кстрак-			
	no B	no X	no B	nox	no ß	n0 X			
Zi Nb Ru Ce UX Ba Si	44 0,6 4,8 27 0,2 I,0 I7 I,0	89 6,0 3,8 I,4 2,I I,0	7I 0,I2 3,8 I5 0,2 0,6 4,9 2,I	93 3,5 3,0 0,5 2,3 0,8	28 3,0 35 28 0,2 - 3,2 3,5	80 I,0 24 0,45 I,0			
-	,		~ <u>,</u>	_	3,3	-			

Таблица 6

Примерный радиохимический состав осколочной активности при проведении ряда последовательных операций выделения и очистки урана и плутония путем экстракции диатиловым эфиром

	Рад	NOXNMN	ческий со	став а	ктивности	1 В % (от сумм	арной
Элемент	Иско го р твор	дно- ас - а	Эфирного створа у и плутон после ок тельной стракции	рана ия исли- эк-	Эфирног раствор урана п ле восо новител реэкстр	оа 10С- СТа- ІЬНОЙ	Водно реэко та пл ния	трак-
	B	8	В	J.	B	X	В	8
1	2	3	4	5	6	7	8	9
NB	20	50	I	5	I	30	6	20

Z7 20 40 15 45 15 20 20 50 Ru 6 4 80 50 80 50 7C 30 P.3. 55 5 5 3 5 I 5 0,I \$7 15 0 0,I 0 0,I 0 0,I 0		2	3	4	5	6	7	8	9
Ru 6 4 80 50 80 50 70 30 P.3. 55 5 5 3 5 I 5 0,I		20	40	15	45	15	20	20	50
P.3. 55 5 5 3 5 I 5 0,I	Ru	6	4	80	50	80	50	7 C	30
Str. I a la milia milia la milia mil	P. 3.	55	5	5	3	5	I	5	0,1
	Sr	15	0	0,1	0	0,1	0	0,1	Ó

Таблица 7

Зависимость коэффициента очистки урана от при экстракции смесью дибутилового эфира с четыреххлористым углеродом от кислотности исходного раствора

Концентрация азотной кисло- ты в исходном растворе, М	Коэффициент очистки от 8- эктивности на едини- цу веса урана
O,25	2000
O,5	400
I,0	100

Так как такая смесь обладает сравнительно слабой экстракционной способностью, то ее применение требует использования высококонцентрированных по нитратам исходных растворов.

Исследовалась экстракция I2-кратным объемом указанного растворителя из водного раствора, насыщенного по уранилнитрату (ЗМ), при которой извлекается около 35% урана. Величина очистки от осколков деления сильно зависит от кислотности исходного раствора, как видно из табл.7. Поэтому использование исходных растворов с концентрацией азотной кислоты свыше I М невыгодно. Полное извлечение урана с коэффициентом очистки от у- активности I30 достигается экстракцией из раствора с высаливателем состава: нитрат кальция 5 М, уранилнитрат 0,8 М, азотная кислота 0,5 М, бихромат калия 0,03 М. Результаты радиохимического энализа исходного раствора из органических растворов, полученных экстракцией как в присутствии высаливателя, так и без него, приведены в табл. 8. Из нее следует, что основным осколком, переходящим в органическую фазу, является цирконий.

Для сокращения объема сбросного активного растворе высаливателя ставились општи по его многократному использованию и влиянию все увеличивающейся активности исходного раствора на очистку. После каждой экстрокции высаливатель — нитрат кальция, содержащий почти всю суммарную активность исходного раствора, поступал на приготовление исходного раствора для следующей экстракции. Коэффициенты очистки от у — активности при 5 последовательных экстракциях, как видно из табл.9, остаются практически постоянными.

Другим способом сокращения количества высаливателя является продварительное извлечение части урана и плутония из растворов без высаливателя, насыщенных уранилнитратом. Проводился 5-цикличный процесс, каждый цикл которого состоял из 3 последовательных экстракций из раствора без высаливателя с упаркой оставшегося воднего раствора после экстракции.

После 3-й экстракции оставшийся водный раствор насыщался нитратом кальция, после чего производилось уже полное извлечение урана и плутония. Сбросный раствор высаливателя, содержащий почти всю суммарную исходную активность, использовался для приготовления раствора к 4-й экстракции следующего цикла.

Суммарный коэффициент очистки от X- активности по всему циклу имел величину 100. В табл. 10 приводятся коэффициенты очистки урана от X- активности при 4-й экстракции (в присутствии высаливателя) каждого цикла. Наблюдается последовательное возрастание коэффициента очистки, что, по-видимому, объясняется уменьшением доли хорошо извлекаемых компонент суммарной осколочной активности, так как с оборотным высаливателем следуют наименее извлекаемые осколки.

Проведение свыше 5-7 промывок неэффективно.

Таблица 8

Радиохимический состав осколочной активности при проведении окислительной экстракции смесью дибутилового этира с четырех-хлористым углеродом из растворов, насищенных уранилнитратом, и из растворов с высаливателем

Элемент Радиохимический состав активност					т сумма рной
	Исходного	о раствора	полученн экстракц	раствора ого путем ии из рас з высали-	створа, полу- ченного пу- тем экстрак- ции из рас- твора с выса
	β	8	B	8	ливателем В х
NB Zr Ru P.3. Cs Sr	13 18 5 55 1,0 15	45 32 4,2 2,3 I,5	0 62 6,0 4,0 0,2 0,1	7 75 5,0 0,3 0,2	0 4,0 83 85 3,0 2,0 3,0 0,1 I,0 0,5

Таблица 9

Коэффициенты очистки урана от **у** — активности при 5 последовательных экстракциях смесью дибутилового эфира с четы рехихористым углеродом с применением оборотного высаливателя

No e	кстракции		Сумма	рный коэффии	иент
			очист актив	рный коэффиц ки урана от ности	<i>y</i> –
	1			34	
	2			31	
	3	1		32	
	4			33	
•	5			25	

Таблица IO

Коэффициенты очистки урана от у— активности в 5-цикличном процессе извлечения урана с применением оборотного высаливателя

]fe	цикла	Коэффициент очистки при 4-й экстракции (с высаливателем)
		· ·	на единицу веса урана
-		1	1200
		2	3300
		3	11300
		4	38000
		5	21000

Потученные данные говорят о том, что метод экстракции урана и плутония диэтиловым эфиром или смесью дибутилового эфира с четыреххлористым угле родом может быть применен для отделения этих элементов от осколков деления. Наиболее полно проходит отделение урана и плутония от цезия и большинства редкоземельных элементов. Наиболее трудно отделимыми от урана и плутония элементами являются ци рконий и рутений.

Литература

- Брюс. Доклад на Женевской конференции № 719 (1955).
- 2. Fletcher J.M. Prog. Nucl. Chem. Ser. III, 1, 4, 1956
- 3. Wells R.C. J. Wash. Acad. Sci., 1930, 20,146
- 4. Bachelet 4., Cheylan E.J.Chem. Phys., 1947, 44, 245
- 5. Bock R., Bock E.Z. anorg. allg. Chem., 1950, 263, 196
- 6. Hillebrand W.F. U.S.Geol.Surv.Bull., 1891, 78,47
- 7. Rollier M. Gazz.chim.ital., 1954, 84, 649