K means clustering

```
In [1]:
```

import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

In [2]:

df=pd.read_csv(r"C:\Users\jyothi reddy\Downloads\Income.csv")
df

Out[2]:

	Gender	Age	Income(\$)
0	Male	19	15
1	Male	21	15
2	Female	20	16
3	Female	23	16
4	Female	31	17
195	Female	35	120
196	Female	45	126
197	Male	32	126
198	Male	32	137
199	Male	30	137

200 rows × 3 columns

In [3]: ▶

df.head()

Out[3]:

	Gender	Age	Income(\$)
0	Male	19	15
1	Male	21	15
2	Female	20	16
3	Female	23	16
4	Female	31	17

In [4]: ▶

```
plt.scatter(df["Age"],df["Income($)"])
plt.xlabel("Age")
plt.ylabel("Income($)")
```

Out[4]:

Text(0, 0.5, 'Income(\$)')

In [5]: ▶

```
from sklearn.cluster import KMeans
km=KMeans()
km
```

Out[5]:

```
▼ KMeans
KMeans()
```

In [6]: ▶

```
y_predicted=km.fit_predict(df[["Age","Income($)"]])
y_predicted
```

C:\Users\jyothi reddy\AppData\Local\Programs\Python\Python311\Lib\site-pa
ckages\sklearn\cluster_kmeans.py:870: FutureWarning: The default value o
f `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init
` explicitly to suppress the warning
 warnings.warn(

Out[6]:

In [7]: ▶

```
df["cluster"]=y_predicted
df.head()
```

Out[7]:

	Gender	Age	Income(\$)	cluster
0	Male	19	15	2
1	Male	21	15	2
2	Female	20	16	2
3	Female	23	16	2
4	Female	31	17	2

In [8]: ▶

```
df1=df[df.cluster==0]
df2=df[df.cluster==1]
df3=df[df.cluster==2]
plt.scatter(df1["Age"],df1["Income($)"],color="red")
plt.scatter(df2["Age"],df2["Income($)"],color="green")
plt.scatter(df3["Age"],df3["Income($)"],color="blue")
plt.xlabel("Age")
plt.ylabel("Income($)")
```

Out[8]:

Text(0, 0.5, 'Income(\$)')

In [9]: ▶

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
scaler.fit(df[["Income($)"]])
df["Income($)"]=scaler.transform(df[["Income($)"]])
df.head()
```

Out[9]:

	Gender	Age	Income(\$)	cluster
0	Male	19	0.000000	2
1	Male	21	0.000000	2
2	Female	20	0.008197	2
3	Female	23	0.008197	2
4	Female	31	0.016393	2

```
In [10]:
```

```
scaler.fit(df[["Age"]])
df["Age"]=scaler.transform(df[["Age"]])
df.head()
```

Out[10]:

	Gender	Age	Income(\$)	cluster
0	Male	0.019231	0.000000	2
1	Male	0.057692	0.000000	2
2	Female	0.038462	0.008197	2
3	Female	0.096154	0.008197	2
4	Female	0.250000	0.016393	2

```
In [11]:
```

```
km=KMeans()
```

In [12]:

```
y_predicted=km.fit_predict(df[["Age","Income($)"]])
y_predicted
```

C:\Users\jyothi reddy\AppData\Local\Programs\Python\Python311\Lib\site-pa
ckages\sklearn\cluster_kmeans.py:870: FutureWarning: The default value o
f `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init
` explicitly to suppress the warning
 warnings.warn(

Out[12]:

```
In [13]: ▶
```

```
df["New Cluster"]=y_predicted
df.head()
```

Out[13]:

	Gender	Age	Income(\$)	cluster	New Cluster
0	Male	0.019231	0.000000	2	0
1	Male	0.057692	0.000000	2	0
2	Female	0.038462	0.008197	2	0
3	Female	0.096154	0.008197	2	0
4	Female	0.250000	0.016393	2	7

In [14]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["Age"],df1["Income($)"],color="red")
plt.scatter(df2["Age"],df2["Income($)"],color="green")
plt.scatter(df3["Age"],df3["Income($)"],color="blue")
plt.xlabel("Age")
plt.ylabel("Income($)")
```

Out[14]:

Text(0, 0.5, 'Income(\$)')


```
In [15]: ▶
```

```
km.cluster_centers_
```

Out[15]:

In [16]: ▶

```
km.cluster_centers_
```

Out[16]:

```
array([[0.07239819, 0.08003857], [0.62037037, 0.47996357], [0.58974359, 0.20969945], [0.07322485, 0.38272383], [0.30944056, 0.50428465], [0.89799331, 0.28011404], [0.32905983, 0.78551913], [0.28388278, 0.1245121 ]])
```

In [17]: ▶

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["Age"],df1["Income($)"],color="red")
plt.scatter(df2["Age"],df2["Income($)"],color="green")
plt.scatter(df3["Age"],df3["Income($)"],color="blue")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker="+")
plt.xlabel("Age")
plt.ylabel("Income($)")
```

Out[17]:

Text(0, 0.5, 'Income(\$)')

In [18]: ▶

k_rng=range(1,10)
sse=[]

In [21]: ▶

```
for k in k_rng:
   km=KMeans(n clusters=k)
   km.fit(df[["Age","Income($)"]])
    sse.append(km.inertia )
#km.inertia_ will give you the value of sum of square error
print(sse)
plt.plot(k_rng,sse)
plt.xlabel("K")
plt.ylabel("Sum of Squared Error")
C:\Users\jyothi reddy\AppData\Local\Programs\Python\Python311\Lib\site-pa
ckages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value o
f `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init
 explicitly to suppress the warning
  warnings.warn(
C:\Users\jyothi reddy\AppData\Local\Programs\Python\Python311\Lib\site-pa
ckages\sklearn\cluster\ kmeans.py:870: FutureWarning: The default value o
f `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init
 explicitly to suppress the warning
 warnings.warn(
C:\Users\jyothi reddy\AppData\Local\Programs\Python\Python311\Lib\site-pa
ckages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value o
f `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init
 explicitly to suppress the warning
  warnings.warn(
C:\Users\jyothi reddy\AppData\Local\Programs\Python\Python311\Lib\site-pa
ckages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value o
f `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init
`explicitly to suppress the warning
 warnings.warn(
C:\Users\jyothi reddy\AppData\Local\Programs\Python\Python311\Lib\site-pa
ckages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value o
f `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init
 explicitly to suppress the warning
 warnings.warn(
C:\Users\jyothi reddy\AppData\Local\Programs\Python\Python311\Lib\site-pa
ckages\sklearn\cluster\ kmeans.py:870: FutureWarning: The default value o
f `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init
 explicitly to suppress the warning
  warnings.warn(
C:\Users\jyothi reddy\AppData\Local\Programs\Python\Python311\Lib\site-pa
ckages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value o
f `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init
 explicitly to suppress the warning
  warnings.warn(
C:\Users\jyothi reddy\AppData\Local\Programs\Python\Python311\Lib\site-pa
ckages\sklearn\cluster\ kmeans.py:870: FutureWarning: The default value o
f `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init
 explicitly to suppress the warning
  warnings.warn(
C:\Users\jyothi reddy\AppData\Local\Programs\Python\Python311\Lib\site-pa
ckages\sklearn\cluster\ kmeans.py:870: FutureWarning: The default value o
f `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init
 explicitly to suppress the warning
```

warnings.warn(

[23.583906150363607, 13.028938428018286, 7.492113413237458, 6.05837245335 3154, 4.742998936528983, 3.8580680007628616, 3.0547174363693586, 2.645864 014245702, 2.3135720353543285]

Out[21]:

Text(0, 0.5, 'Sum of Squared Error')

