

به نام خدا

پاسخنامه تمرین اول

استاد درس: دکتر مریم امیر مزلقانی

نیم سال اول ۱۴۰۲–۱۴۰۳

راه ارتباطی:

Aut.DataMining.Fall@gmail.com

سوال ۱.

= in) H (Target closs) = H(\frac{4}{9}, \frac{3}{9}; = -\frac{4}{9} \log_{\tau} \left(\frac{4}{9} \right) = -\frac{4}{9} \log_{\tau} \left(\frac{4}{9} \right) = -19911 Triget class
-) IG(TC, a,) = H(TC) - H(TC/a,) = 0/9911-
4H(+,+)-+H(+,5)==/1195
IG(TC, ar) = H(TC) - H(TC) = 19911 - = H(5,5)
ب) ارتهجای که خطر آسانزدر اختیار ما اس باید آله را دوران
انتاب کنی که برای ما مهتر باشد می آ را بدارای آساندهای دختان
TC + - + - + +
Y = IG(TC, ar) = H(Tc) - + H(1,0) - + H(1,0) = 0/16TV
170-> IG(TC, ar)=H(Tc)-+(H(+,+)-VH(5,5)= 0/0079
50 → IG(TC, ap)= H(TC)= = H(+,+)= +H(+,+)= +H(+,+)= +LOVIA
3,8-> IG(Te, ax)=HLTC)-&H(+3,5)-+H(+3,5)=0100V
9/0 -> IGCTC, QF) = H(TC) - 2 H(5, 5) = 1 H(+, 5) = 0/0/AT
V(0 -> IG(TC, ar) = H(TC) - AH(+, F) - +H(1,0) = -/1044
ب م بینیم کر متداره باتراز به می دهد م ۱ بیاند ۲ با انتخاب می کنیم
1.0. 50. Tc + -++

_ a,	ن) ابتدا به را در بوش ترار می دهیم.
T F T ST	
I I st	
I: H(S1) = -1 logp	年)-だしろんだ)=のハバル
	-+H(1,0)-+H(+0+)=0/1/1/
	- + H(100) - + H(+, +) = 0/1779
	به انتناب م کنیم
- 1111	F 6
	f- 5109 5=01V119
IG(St Ox) = H (Sx))- "H(1,0)- "H(+,+)=0/8/19
)-1x H(1/2, 1/2)=0
	م ما انتخاب م كنيم
بيرد باييآ سانسا ١٠٥٠ ي كر	ست I بهان ایند IG(S,IGE) بیشترین متداردا
	= H(+,+) - = H(1,0) = ~ MIIM
	م برابر با حتمار [G(5,10x) مند م متري ندار
	ں متب کا نیز باید آستندا ۲٫۵ قراری دادیم
IG(5,19+) = H(S+) -	\$H(+,+)-\$H(1,0)=0/m/19
	ر بازم فرقی ندائ
7 1 1 5 5 5	درنمانیت ۲ستاندا هان۲ ورنظری کسیرم و سا
ي بروم ما در مرسري	درنمان اسانبرا های ا درنفر می السرنم و سر

سوال ۲.

الف)

اگر به جای مربع خطا از قدرمطلق استفاده گردد مسئله بهینهسازی به $||X\beta - y||$ $||X\beta - y||$ تغییر میکند که باید آن را بدست بیاوریم و قدرمطلق در مقایسه با توان ۲ به مقادیر کوچک تفاضل $X\beta - y$ اهمیت بیشتری داده و به مقادیر بزرگ $X\beta - y$ اهمیت کمتری میدهد. لذا در مقابل دادههای پرت مقاوم تر است و همچنین به سمت صفر و تنک کردن مقادیر $X\beta - y$ میرویم.

ب)

در روش gradient descent از گرادیان و مشتق گیری استفاده میشود، اما با در نظر گذفتن قدرمطلق دیگر تابع مشتق پذیر نخواهد بود لذا نمیتوان از gradient descentاستفاده کرد و عینا روشهای حل قبلی را با subgradient استفاده کرد و عینا روشهای حل قبلی را با subgradient جلو برد.

ج)

به شکل زیر تشکیل میدهیم.Xبرای هر کلاس دادهها یک ماتریس

ماتریس ۷ را نیز همان داده جدید ۷ در نظر میگیریم. و با حل مسئله بهینهسازی min خطا را بدست میاوریم. این کار را برای هر کلاس تکرار میکنیم. (با X متناسب با همان کلاس) سپس هرکدام که داری خطای مینیمم کمتری باشد کلاس داده جدید خواهد بود.

(البته میتوان از رگرسیون شماره کلاس بر حسب دادهها هم استفاده کرد که کمتر کلی است)

سوال ۳.

$$x = \begin{bmatrix} 1 & 42 \\ 1 & 74 \\ 1 & 48 \\ 1 & 35 \\ 1 & 56 \\ 1 & 26 \\ 1 & 60 \end{bmatrix}$$

$$y = \begin{bmatrix} 98\\130\\120\\88\\182\\80\\135 \end{bmatrix}$$

$$x^T x \beta = x^T y$$

$$x^{T}x = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 42 & 74 & 48 & 35 & 56 & 26 & 60 \end{bmatrix} \times \begin{bmatrix} 1 & 42 \\ 1 & 74 \\ 1 & 48 \\ 1 & 35 \\ 1 & 56 \\ 1 & 26 \\ 1 & 60 \end{bmatrix} = \begin{bmatrix} 7 & 341 \\ 341 & 18181 \end{bmatrix}$$

$$x^{T}y = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 42 & 74 & 48 & 35 & 56 & 26 & 60 \end{bmatrix} \times \begin{bmatrix} 98 \\ 130 \\ 120 \\ 88 \\ 182 \\ 80 \\ 135 \end{bmatrix} = \begin{bmatrix} 833 \\ 42948 \end{bmatrix}$$

$$\begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 7 & 341 \\ 341 & 18181 \end{bmatrix}^{-1} \times \begin{bmatrix} 833 \\ 42948 \end{bmatrix} = \begin{bmatrix} 44.34 \\ 1.532 \end{bmatrix}$$

$$y = 1.532x + 44.34$$

سوال ۴.

١.

دقت آموزش بسیار بالا (۱۰۰٪) است در حالی که دقت آزمون پایینتر است (۵۰٪). این نشاندهنده ی احتمال زیاد overfitting است. در واقع، مدل به خوبی به دادههای آموزشی هماهنگ شده است (دقت بالا)، اما نمی تواند با دادههای جدید (آزمون) به خوبی عمل کند، که نشاندهنده ی overfitting به خوبی به دادههای آموزشی بنیار بالا و دقت آزمون بسیار پایین است، که نشاندهنده ی عدم تعمیم پذیری خوب مدل به دادههای جدید است.

۲.

دقت آموزش و دقت آزمون به نسبت هم نزدیکتر هستند (۸۰٪ در مقابل ۷۰٪)، که نشاندهنده ی یک تطابق بهتر بین عملکرد مدل در دادههای آموزش و آزمون است. این حالت ممکن است نشانگر یک مدل بهتر و کمتر overfit شده باشد.

سوال ۵.

منظم سازی برای جلوگیری از برازش بیش از حد داده ها، به ویژه زمانی که اختلاف زیادی بین عملکرد مجموعه آموزش و مجموعه تست وجود دارد. با منظم سازی، تعداد ویژگیهای مورد استفاده در تمرین ثابت نگه داشته میشود، اما مقدار ضرایب (w) کاهش مییابد .

Lasso Regression

این یک تکنیک منظمسازی است که در انتخاب ویژگی با استفاده از روش انقباض استفاده می شود که به آن روش رگرسیون جریمه شده نیز گفته می شود Lasso مخفف Lasso Selection Operator است که هم برای منظم سازی و هم برای انتخاب مدل استفاده می شود. این روش عبارت جریمه مجموع مطلق ضرایب است که باعث کاهش مقدار ضرایب به منظور کاهش ضرر میشود. این روش تمایل دارد که ضرایب را به صفر مطلق میل دهد .

$$L_{lasso} = argmin_{\hat{\beta}} \left(\|Y - \beta * X\|^2 + \lambda * \|\beta\|_1 \right)$$

Ridge Regression

تفاوت این روش با روش قبلی در این است که مقدار جریمهای که به تابع هزینه اضافه میشود برابر با مجذور ضرایب است. بر خلاف Lassoاین روش هیچگاه ضرایب را به سمت صفر مطلق سوق نمیدهد .

$$L_{ridge} = argmin_{\hat{\beta}} \left(\|Y - \beta * X\|^2 + \lambda * \|\beta\|_2^2 \right)$$

سوال ۶.

سوال ۷.

الف)

برای هر کدام از ویژگیهای درون جدول مقدار Gini|index را محاسبه میکنیم.

Gini Index for Heavy:

Gini (Heavy=NO) =
$$1 - \left(\left(\frac{Y}{A} \right)^{Y} + \left(\frac{Y}{A} \right)^{Y} \right) = \frac{1Y}{18}$$

Guni (Heavy=Yes) = $1 - \left(\left(\frac{1}{A} \right)^{Y} + \left(\frac{Y}{A} \right)^{Y} \right) = \frac{2}{9}$

Gini (Heavy) = $\frac{1}{12} \times \frac{1Y}{18} + \frac{y}{18} \times \frac{5}{9} = \frac{y}{10} + \frac{1}{9} = 0 \times 1999$

Gini Index for Spothal:

Gains (Spotted = NO) =
$$1 - ((\frac{\gamma}{0})^{\gamma} + (\frac{\gamma}{0})^{\gamma}) = \frac{17}{70}$$

Gains (Spotted = Yos) = $1 - ((\frac{1}{7})^{\gamma} + (\frac{\gamma}{7})^{\gamma}) = \frac{5}{9}$
Gains (Spotted) = $\frac{1}{7} \times \frac{17}{70} + \frac{17}{7} \times \frac{5}{9} = .1244V$

Quini Index for Smooth:

Gini
$$(5mooth = NO) = 1 - ((\frac{Y}{F})^{Y} + (\frac{Y}{5})^{Y}) = \frac{1}{Y}$$

Gini $(5mooth = Yes) = 1 - ((\frac{1}{5})^{Y} + (\frac{Y}{5})^{Y}) = \frac{1}{Y}$
Gine $(5mooth) = \frac{1}{Y} \times \frac{1}{Y} + \frac{1}{Y} \times \frac{Y}{X} = \frac{1}{5} + \frac{1}{14} = \frac{V}{14} = .554VD$

ب)

w	is Smooth = NO			
Heavy	spotted.	Porsonou		
NO	NO	NO		
NO	Yes	NO		
NO	Yes	Yes		
1 /2	NO	Yes		

Cashi for Heavy:

Gains (Heavy)= = = = = + = 1 / 1/4

Geini for spotted;

Geini (spoth) - NO) = 1-((=) = (=) = [T

Gini (spotted)= | 1 | + | 1 | = /a

Heavy Now !!

عدال	5 ma	oth &	
Ye,	No	NO	
Y,	No	Yes	1
No	7/4	Ves	1
No	NO	Ye,	

Caini (Heavy - 70) = | - | = 0 Ceiai (Heavy - 75) = | - (cf, 7, cf, 7) = 1 Caini (Heavy) = fxf + fx - . /10

(airi (Spother) = = x & + 1 x . - /4/p

Heavy Nort 4

لذا دراداس بلى رؤت عمر وهم راء-

ج)

د)

تمرین اول درس داده کاوی

Smooth=Ne, Spothed=No, Heavy=Ne it will (1) (Soldson)

: (Solo se one is)) do