Упражнение 9

Неподвижни точки на оператори

1. Неподвижни точки

Ще разглеждаме оператори от вида

$$\Gamma: \mathcal{F}_k \longrightarrow \mathcal{F}_k$$

т.е. оператори от тип $(k \to k)$. За такива оператори има смисъл да говорим за функции f, такива че

$$f = \Gamma(f). \tag{1}$$

Всяка функция f, за която това е в сила, ще наричаме nenodeuxна mouka (n.m.) на оператора Γ .

Всъщност условието (3) е едно уравнение с неизвестно — функцията f. Това уравнение може да има различен брой решения, в частност, може да няма решения.

Следващата задача илюстрира голямото разнообразие в това отношение.

Задача 1. Да се опишат неподвижните точки на всеки от изброените оператори:

а) константния оператор $\Gamma_c(f) = g$ от тип $(1 \to 1)$, където g е някаква фиксирана едноместна функция

Решение. Нека f е неподвижна точка на Γ_c . Тогава $f = \underbrace{\Gamma(f)}_{q}$,

т.е. f = g и значи този оператор има $e \partial uncmee ha$ неподвижна точка — функцията g.

б) оператора идентитет $\Gamma_{id}(f) \stackrel{\text{деф}}{=} f$ от тип $(1 \to 1)$ **Решение.** Ако f е неподвижна точка на Γ_{id} , то условието $f = \Gamma(f)$ се свежда до f = f. Следователно всяка функция е неподвижна точка на Γ_{id} и значи този оператор има *континуум* много неподвижни точки.

в) $\Gamma(f)(x) \simeq \begin{cases} f(x), & \text{ако } x = 0 \\ x, & \text{иначе.} \end{cases}$

Решение. Нека f е неподвижна точка на Γ . Тогава f удовлетворява условието

$$f(x) \simeq \begin{cases} f(x), & \text{ако } x = 0 \\ x, & \text{иначе}, \end{cases}$$

което означава, че за x>0 трябва f(x) да е равно на x. При x=0 би трябвало да имаме $f(0)\simeq f(0)$, което е изпълнено винаги. Следователно всяка неподвижна точка на Γ зависи от един параметър — стойността ѝ в 0, и значи тя изглежда по следния начин:

$$f_c(x) \simeq \begin{cases} c, & \text{ako } x = 0 \\ x, & \text{ako } x > 0. \end{cases}$$

Тук c е естествено число или е означение за недефинираност, т.е. във втория случай под f_c разбираме функцията

$$f_{\neg!}(x) \simeq \begin{cases} \neg!, & \text{ако } x = 0 \\ x, & \text{ако } x > 0 \end{cases}$$

г)

$$\Gamma(f)(x) \simeq \begin{cases} 0, & \text{ако } x = 0 \\ f(x+1), & \text{иначе.} \end{cases}$$

Решение. Ако f е неподвижна точка на Γ , то за нея е вярно, че

$$f(x) \simeq \begin{cases} 0, & \text{ако } x = 0 \\ f(x+1), & \text{иначе.} \end{cases}$$

Значи $f(0) \simeq 0$, а при всяко x>0 би трябвало $f(x) \simeq f(x+1)$, което означава, че

$$f(1) \simeq f(2) \simeq f(3) \simeq \dots$$

Следователно f трябва да има една и съща стойност при x>0 или въобще да няма стойност. С други думи, f или е някоя от функциите f_c , $c \in \mathbb{N}$, където f_c има вида

$$f_c(x) = \begin{cases} 0, & \text{ако } x = 0 \\ c, & \text{ако } x > 0, \end{cases}$$

или f е $f_{\neg!}$, където

$$f_{\neg !}(x) \simeq \begin{cases} 0, & \text{ako } x = 0 \\ \neg !, & \text{ako } x > 0, \end{cases}$$

Ето как изглеждат графично тези функции.

Операторите, които разгледахме дотук, имаха неподвижни точки — една или повече. Дали има оператори, които нямат неподвижни точки? Да, макар че те са доста неестествени. Ето един такъв принер.

Задача 2. Да фиксираме две различни функции f_0 и f_1 и да определим оператора Γ както следва:

$$\Gamma(f) = \begin{cases} f_1, & \text{and } f = f_0 \\ f_0, & \text{and } f \neq f_0. \end{cases}$$

Да се докаже, че този оператор няма неподвижни точки.

Решение. Разглеждаме двете възможности за f — да е равна или да е различна от f_0 , и стигаме до извода, че и в двата случая равенството $\Gamma(f) = f$ е невъзможно.

Задача 3. Да се докаже, че всеки от изброените оператори има единствена неподвижна точка и да се намери тази неподвижна точка.

а)
$$\Gamma(f)(x) \simeq \ \begin{cases} 1, & \text{ако } x = 0 \\ x.f(x-1), & \text{иначе}. \end{cases}$$

Решение. Нека f е неподвижна точка на Γ , т.е. f удовлетворява

рекурсивното условие:

$$f(x)\simeq egin{cases} 1, & ext{ako } x=0 \ x.f(x-1), & ext{иначе.} \end{cases}$$

Твърдо сме убедени, че f може да е само функцията ϕ акториел $\ddot{\ }$, но да го докажем все пак. Ще разсъждаваме с индукция, по точно, с индукция по x ще докажем, че

$$\forall x \in \mathbb{N} \ f(x) = x!.$$

За x=0 имаме $f(0)=1\stackrel{\text{деф}}{=}0!$. Да допуснем, че f(x)=x! за някое $x\geq 0$. Тогава за x+1 ще имаме, съгласно индуктивната хипотеза:

$$f(x+1) \simeq (x+1).f(x) = (x+1).x! = (x+1)!.$$

б)
$$\Gamma(f)(x) \simeq \ \begin{cases} 1, & \text{ако } x = 0 \\ 2.f(x-1), & \text{иначе}. \end{cases}$$

Решение. Следвайки пунктуално схемата от по-горе, показваме, че ако $f = \Gamma(f)$, то $f(x) = 2^x$ за всяко x.

в)
$$\Gamma(f)(x) \simeq \begin{cases} 1, & \text{ако } x=0\\ (f(\frac{x}{2}))^2, & \text{ако } x>0 \text{ е четно}\\ 2(f(\frac{x-1}{2}))^2, & \text{ако } x \text{ е нечетно} \end{cases}$$

Решение. Нека f е неподвижна точка на Γ , т.е. за f е в сила равенството:

$$f(x) \simeq \begin{cases} 1, & \text{ако } x = 0 \\ (f(\frac{x}{2}))^2, & \text{ако } x > 0 \text{ е четно} \\ 2(f(\frac{x-1}{2}))^2, & \text{ако } x \text{ е нечетно} \end{cases}$$

Сигурно съобразявате, че всеки ред от дефиницията на f съответства на алгоритъма за бързо степенуване и значи би трябвало f да е функцията 2^x . Ако не забележите веднага това, направете си няколко експеримента — пресметнете $f(1), f(2) \dots$ и ще се ориентирате.

Ние все пак искаме да имаме $doкaзame \land cmbo$, че $f = \lambda x.2^x$, което означава, че трябва да отново използваме индукция. В случая се

налага тя да е $n \overline{z}_n n a$, защото f(x) "вика себе си" не в "предишната" точка x-1, както беше в предните два примера. Това, което е важно, за да върви индукцията, е че

$$\frac{x}{2} < x$$
 за $x > 0$ и $\frac{x-1}{2} < x$.

За базата x=0 имаме $f(0) \stackrel{\text{деф}}{=} 1 = 2^0.$

Сега да фиксираме някакво x > 0 и да предположим, че за всички x' < x е вярно, че $f(x') = 2^{x'}$. Ако x е четно, за него ще имаме:

$$f(x) \simeq (f(\frac{x}{2}))^2 \ \stackrel{\text{\tiny M.X.}}{=} \ (2^{\frac{x}{2}})^2 \ = 2^x,$$

а ако x е нечетно, то отново от избора на f и индукционното предположение получаваме:

$$f(x) \simeq 2(f(\frac{x-1}{2}))^2 \stackrel{\text{\tiny M.X.}}{=} 2.(2^{\frac{x-1}{2}})^2 = 2^x$$

г)
$$\Gamma(f)(x)\simeq \ \begin{cases} 2x+1, & \text{ако } x\,\leq\,1\\ f(x-1)+6f(x-2), & \text{иначе}. \end{cases}$$

Решение. Нека за f е изпълнено:

$$f(x) \simeq \begin{cases} 2x+1, & \text{ако } x \leq 1 \\ f(x-1)+6f(x-2), & \text{иначе.} \end{cases}$$
 (2)

За да си съставим хипотеза за f, да опипаме почвата:

$$f(2) \stackrel{(4)}{\simeq} f(1) + 6f(0) \stackrel{(4)}{\simeq} 3 + 6.1 = 9 = 3^2;$$

$$f(3) \stackrel{(2)}{\simeq} f(2) + 6f(1) \stackrel{(2)}{\simeq} 9 + 6.3 = 27 = 3^3 \dots$$

Това, което се набива на очи, че вероятно $f(x) = 3^x$. Да проверим. Ясно е, че отново трябва да разсъждаваме с пълна индукция относно x. Базовите случаи x = 0 и x = 1 се проверяват непосредствено. Сега да фиксираме x > 1 и да приемем, че за всяко $x' < x, f(x') = 3^{x'}$. Тогава

$$f(x) \stackrel{\text{(4)}}{\simeq} f(x-1) + 6f(x-2) \stackrel{\text{\tiny M.X.}}{=} 3^{x-1} + 6.3^{x-2} = 3^{x-1} + 2.3^{x-1} = 3^x.$$

д)

$$\Gamma(f)(x,y) \simeq \begin{cases} y+1, & \text{ako } x=0 \\ f(x-1,0), & \text{ako } x>0 \ \& \ y=0 \\ f(x-1,f(x,y-1)), & \text{ako } x>0 \ \& \ y>0. \end{cases}$$

Решение. Това по същество доказахме в зад. 3 от първото упражнение "Индукция във фундирани множества".

2. Най-малки неподвижни точки

Казваме, че \underline{f} е най-малка неподвижна точка (н.м.н.т.) на оператора Γ , ако \underline{f} е най-малката сред неподвижните точки на Γ , което означава две неща:

- 1) f е неподвижна точка на Γ ;
- 2) за всяка друга неподвижна точка g е вярно, че $f \subseteq g$.

Ако съществува, най-малката неподвижна точка на Γ е единствена: наистина, ако f и g са две н.м.н.т., то от второто условие на дефиницията ще имаме, че $f \subseteq g$ и $g \subseteq f$ и значи f = g. Тази единствена най-малка неподвижна точка на Γ ще отбелязваме с f_{Γ} . (В темите за спец. КН ще я срещате и като $lfp(\Gamma)$).

Задача 4. Определете най-малките неподвижни точки на всеки от операторите от $3a\partial a a = 0.5$.

Решение. а) Видяхме, че константният оператор $\Gamma_c(f) \stackrel{\text{деф}}{=} g$ има единствена неподвижна точка g; следователно тя е и най-малката.

- **б)** За оператора Γ_{id} , на който всяка функция е неподвижна точка, очевидно най-малката ше е $\emptyset^{(1)}$.
- **в)** Ясно е, че сред всички неподвижни точки на този оператор наймалката ще е

$$f_{\neg!}(x) \simeq \begin{cases} \neg!, & \text{ако } x = 0 \\ x, & \text{ако } x > 0 \end{cases}$$

г) Най-малката н.т. на Γ ще е функцията $f_{\neg!}$.

Задача 5. (Устен изпит, 06/07/2018, гр. А, спец. И)

На кои от изброените оператори функцията x! се явява неподвижна точка. А на кои е най-малка неподвижна точка? Обосновете отговорите си.

a)
$$\Gamma_1(f)(x) = x!$$

б)
$$\Gamma_2(f)(x) \simeq x.f(x-1),$$
 където $x-1 = \begin{cases} 0, & \text{ако } x = 0 \\ x-1, & \text{ако } x > 0 \end{cases}$

в)
$$\Gamma_3(f)(x) \simeq \begin{cases} 1, & \text{ако } x \leq 1 \\ x.f(x-1), & \text{ако } x > 1 \end{cases}$$

г)
$$\Gamma_4(f)(x)\simeq \begin{cases} 1, & \text{ако }x=0\\ \lfloor \frac{f(x+1)}{x+1} \rfloor, & \text{ако }x>0 \end{cases}$$

Решение. а) Операторът Γ_1 е константен, и както видяхме от $3a\partial a ua$ 0.5, той има единствена неподвижна точка, в случая x!.

б) Изглежда доста вероятно x! да е неподвижна точка на Γ_2 , но да го проверим внимателно. За целта да дадем някакво име на функцията факториел, например φ . Трябва да проверим дали $\Gamma_2(\varphi) = \varphi$, което ще рече — дали $\Gamma_2(\varphi)(x) \simeq \varphi(x) \stackrel{\text{деф}}{=} x!$ за всяко $x \in \mathbb{N}$.

3а *положително х* това наистина е така, защото тогава

$$\Gamma_2(\varphi)(x) \stackrel{\text{ge}}{\simeq} x.\varphi(x-1) \simeq x.\varphi(x-1) = x(x-1)! = x!$$

При x = 0, обаче, това вече не е вярно, защото

$$\Gamma_2(\varphi)(0) \stackrel{\text{деф}}{\simeq} 0.\varphi(0-1) = 0.\varphi(0) = 0 \neq 0!,$$

което означава, че x! НЕ е неподвижна точка на Γ_2 . Всъщност неподвижните точки на този оператор нямат нищо общо с факториела; те са никъде недефинираната функция $\emptyset^{(1)}$ и едноместната константна функция $f = \lambda x 0$ — може да го проверите за упражнение $\ddot{\smile}$.

- в) Този оператор вече обсъждахме в 3adaua 0.7, където видяхме че неподвижната му точка е единствена и тя е x!.
- г) Тук вече функцията x! Е неподвижна точка на оператора.

Наистина, при x=0 имаме, че $\Gamma_4(\varphi)(0)\stackrel{\mathrm{дed}}{\simeq} 1=0!=\varphi(0).$

При x>0 минаваме по другия клон от дефиницията на Γ_4 и получаваме последователно:

$$\Gamma_4(\varphi)(x) \stackrel{\text{деф}}{\simeq} \lfloor \frac{\varphi(x+1)}{x+1} \rfloor \stackrel{\text{деф}}{=} \lfloor \frac{(x+1)!}{x+1} \rfloor = x! = \varphi(x).$$

Получихме, че x! е неподвижна точка на Γ_4 . Тя, обаче, не е $na\~u$ малката неподвижна точка на оператора. Непосредствено се проверява, че всъщност f_{Γ_4} е следната функция:

$$f_{\Gamma_4}(x) \simeq \begin{cases} 1, & \text{ако } x = 0 \\ \neg!, & \text{иначе.} \end{cases}$$

Решете самостоятелно задачата на група Б, за да се ориентирате дали сте разбрали предишната.

Задача 6. (Устен изпит, 06/07/2018, гр. Б, спец. И)

На кои от изброените оператори функцията x^2 се явява неподвижна точка. А на кои е най-малка неподвижна точка? Обосновете отговорите си.

- **a)** $\Gamma_1(f)(x) = x^2$,
- б) $\Gamma_2(f)(x) \simeq f(x-1) + (2x-1)$, където $x-1 = \begin{cases} 0, & \text{ако } x=0 \\ x-1, & \text{ако } x>0 \end{cases}$
- в) $\Gamma_3(f)(x) \simeq \begin{cases} 0, & \text{ако } x = 0 \\ f(x+1) 2x 1, & \text{ако } x > 0 \end{cases}$
- г) $\Gamma_4(f)(x) \simeq \begin{cases} x, & \text{ако } x \leq 1 \\ f(x-1) + 2x 1, & \text{ако } x > 1. \end{cases}$

Задача 7. (II контролно, 17/12/2016, спец. KH)

- а) Да се даде пример за оператор $\Gamma: \mathcal{F}_1 \to \mathcal{F}_1$, който има изброимо много неподвижни точки, всяка от които е крайна функция, но няма най-малка неподвижна точка.
- **б**) Възможно ли е да съществува оператор $\Gamma: \mathcal{F}_1 \to \mathcal{F}_1$, който има безкрайно много неподвижни точки и има най-малка неподвижна точка, която е тотална функция? Обосновете отговора си!

Решение. а) Ясно е, за да няма н.м.н.т., този оператор трябва да е твърде особен. Ще го конструираме, като укажем явно в дефиницията му, че неговите неподвижни точки са функциите от една фиксирана редица от крайни функции и само те. Тази редица от крайни функции g_0, g_1, \ldots можем да изберем по най-различни начини. Да се спрем, например, на следната редица $\{g_a\}_a$:

$$g_a(x) \simeq \begin{cases} a, & \text{ако } x = 0 \\ \neg!, & \text{ако } x > 0 \end{cases}$$

Сега да дефинираме Г по следния начин:

$$\Gamma(f) \ = \ egin{cases} g_a, & ext{ako } f = g_a ext{ за някое } a > 0 \ g_0, & ext{в останалите случаи.} \end{cases}$$

Ясно е, че всяка от функциите g_a е неподвижна точка на Γ : за a>0 минаваме по първия клон от определението на Γ , а за a=0 — по втория. Очевидно е също, че други неподвижни точки този оператор няма как да има, защото за всяка f, $\Gamma(f)$ е винаги нещо от вида g_a .

б) Отговорът е НЕ, заради следното просто наблюдение, което коментирахме още на първата лекция:

ако
$$f$$
 е тотална и $f \subseteq g$, то $f = g$.

Ясно е сега, че ако f_{Γ} е тотална, а g е някаква неподвижна точка на Γ , то от това, че $f_{\Gamma}\subseteq g$ получаваме $f_{\Gamma}=g$, с други думи, ако най-малката неподвижна точка е тотална, то тя е единствена неподвижна точка.