Введение в искусственный интеллект. Современное компьютерное зрение Семинар 7. Аугментация данных

Бабин Д.Н., Иванов И.Е., Петюшко А.А.

кафедра Математической Теории Интеллектуальных Систем

06 апреля 2021 г.

План семинара

- 💶 Выдача домашнего задания
- Аугментация данных

Трудности разметки больших датасетов

• Собрать представительнный датасет картинок даже без разметки в данном предметном домене — не очень простое дело (например, из-за правовых вопросов)

Трудности разметки больших датасетов

- Собрать представительнный датасет картинок даже без разметки в данном предметном домене не очень простое дело (например, из-за правовых вопросов)
- Для разметки одного bounding box-а требуется 2 клика, для разметки семантической маски уже гораздо больше

3 / 13

Трудности разметки больших датасетов

- Собрать представительнный датасет картинок даже без разметки в данном предметном домене не очень простое дело (например, из-за правовых вопросов)
- Для разметки одного bounding box-а требуется 2 клика, для разметки семантической маски уже гораздо больше
- Важно не просто найти людей, которые будут размечать данные, но и следить за качеством разметки

Трудности разметки больших датасетов

- Собрать представительнный датасет картинок даже без разметки в данном предметном домене не очень простое дело (например, из-за правовых вопросов)
- Для разметки одного bounding box-а требуется 2 клика, для разметки семантической маски уже гораздо больше
- Важно не просто найти людей, которые будут размечать данные, но и следить за качеством разметки
- Не раз сталкивался с плохо размеченными данными в своей практике, что обычно приводит к проблемам при обучении модели и/или тестировании

Трудности разметки больших датасетов

- Собрать представительнный датасет картинок даже без разметки в данном предметном домене не очень простое дело (например, из-за правовых вопросов)
- Для разметки одного bounding box-а требуется 2 клика, для разметки семантической маски уже гораздо больше
- Важно не просто найти людей, которые будут размечать данные, но и следить за качеством разметки
- Не раз сталкивался с плохо размеченными данными в своей практике, что обычно приводит к проблемам при обучении модели и/или тестировании
- Иногда для сбора данных нужно дорогое оборудование (например, снимки МРТ),а для разметки квалифицированные эксперты

3 / 13

Трудности разметки больших датасетов

- Собрать представительнный датасет картинок даже без разметки в данном предметном домене не очень простое дело (например, из-за правовых вопросов)
- Для разметки одного bounding box-а требуется 2 клика, для разметки семантической маски уже гораздо больше
- Важно не просто найти людей, которые будут размечать данные, но и следить за качеством разметки
- Не раз сталкивался с плохо размеченными данными в своей практике, что обычно приводит к проблемам при обучении модели и/или тестировании
- Иногда для сбора данных нужно дорогое оборудование (например, снимки МРТ),а для разметки квалифицированные эксперты

Вывод

Собрать большой датасет могут позволить себе только большие компании

Зачем компании собирают большие датасеты

Данные побеждают алгоритмы

- Для достижения лучшего качества современные датасеты могут содержать миллионы изображений. Например, датасет JFT содержит 303 миллионов изображений и разметку на 18 тысяч классов
- Чем более разнообразнее и представительнее датасет, тем лучше будет работать модель компьютеного зрения
- Как правило легче улучшить качество текущего решения добавив данные, чем используя более продвинутые модели и способы обучения (на практике используют оба подхода)

Аугментация данных (data augmentation)

Определение

Аугментация данных — это процесс создания новых экземпляров данных из уже имеющихся. При этом разметка новых данных получается из уже имеющейся разметки.

Влияние аугментации данных на качество модели

- Bce SOTA модели используют аугментации
- Было замечено, что правильно подобранная аугментация данных, может существенно улучшить итоговое качество модели
- Аугментация данных один из способов борьбы с переобучением
- Использование аугментации данных относится к лучшим практикам компьютерного зрения

Model	Base augmentations	AutoAugment augmentations
ResNet-50	76.3	77.6
ResNet-200	78.5	80.0
AmoebaNet-B (6,190)	82.2	82.8
AmoebaNet-C (6,228)	83.1	83.5

Виды аугментаций данных: стандартные трансформации

- Вырезание кропа (случайный кроп, центральный кроп и т.д.)
- Отражение и повороты на 90
- Поворот на случайный угол
- Добавление смаза (blur)
- Добавление шума
- Изменение яркости / контастности
- •

7 / 13

Виды агментаций для задачи классификации 1

Image	ResNet-50	Mixup	Cutout	CutMix
Label	Dog 1.0	Dog 0.5 Cat 0.5	Dog 1.0	Dog 0.6 Cat 0.4
ImageNet Cls (%)	76.3 (+0.0)	77.4 (+1.1)	77.1 (+0.8)	78.4 (+2.1)
ImageNet	46.3	45.8	46.7	47.3
Loc (%)	(+0.0)	(-0.5)	(+0.4)	(+1.0)
Pascal VOC	75.6	73.9	75.1	76.7
Det (mAP)	(+0.0)	(-1.7)	(-0.5)	(+1.1)

¹https://github.com/clovaai/CutMix-PyTorch

Аугментации для задач обнаружения объектов и сегментации 2

Основная идея

Объекты можно вырезать из одних изображений и вставлять в другие

Генерация данных

Идея

Иногда данные можно сгенерировать автоматически

Генерация данных

Идея

Иногда данные можно сгенерировать автоматически

Пример

Автомобильные номера

Генерация данных

Идея

Иногда данные можно сгенерировать автоматически

Пример

Автомобильные номера

Другой пример

Существует отдельный класс моделей, которые могут генерировать изображения, но есть нюансы.

Аугментации при тестировании (Test Time Augmentation)

Идея

Аугментирование при тестировании может улучшить итоговое качество модели

Пакет albumentations ³

albumentations

- Удобный инструмент для реализации аугментации данных
- Поддреживает различные задачи в различных доменах
- Интеграция с Keras и PyTorch
- Open source решение

Спасибо за внимание!

