Investitionsstrategien für das virtuelle Glücksrad (Portfoliooptimierung)

Anwendungsgebiete der Mathematik

TU Wien, Do., 14. März 2019

Univ.-Prof. Dr. Uwe Schmock
Finanz- und Versicherungsmathematik
Institut für Stochastik und Wirtschaftsmathematik
Technische Universität Wien, Österreich
https://fam.tuwien.ac.at/

Was ist eine Aktie? Ein Unternehmensanteil!

Beispiele für Aktiengesellschaften¹

Apple

- Börsenwert ca. 856 810 000 000 US-\$
 (ca. 197% des öster. Bruttoinlandsprodukts 2018)
- Preis einer Aktie: 181,71 US-\$ (161,17 Euro)

Coca-Cola Company

- Börsenwert ca. 197 600 000 000 US-\$
- Preis einer Aktie: 46,22 US-\$ (40,99 Euro)

McDonald's

- Börsenwert: ca. 139 330 000 000 US-\$
- Preis einer Aktie: 182,06 US-\$ (161,48 Euro)

¹Kurse vom 13. März 2019 (Quellen: Google Finance und Oanda)

Aktienbesitz und Aktienhandel

- Der Besitzer einer Aktie hat anteilsmäßigen Anspruch auf die jährlichen Gewinne und auf den Erlös beim Verkauf des Unternehmens.
- Aktien kann man am Aktienmarkt (Börse, spezieller Markt für Wertpapiere) kaufen und verkaufen.

Aktienhandel an der Börse

Grobe Zielsetzung: Langfristig durch geschickete Investitionen/Spekulationen ein großes Vermögen erwirtschaften.

Einige Probleme bei der Suche nach guten Investitionsstrategien:

- Wissen alle gleich viel über die Aktienfirmen?
- Welche Aktienkurse sind morgen möglich?
- Welche Kurse werden mit welchen Wahrscheinlichkeiten eintreten?
- Wie hängen die Aktienkurse voneinander ab?
- Wie beeinflussen die Zinsen die Aktienkurse?

Probleme mit guten Aktieninvestitionsstrategien

- Was sagen die Preise von Aktienoptionen über die erwarteten zukünftigen Preise der Aktien?
- Welchen Einfluss haben die Wechselkurse?
- Wie wirken sich (inter-)nationale politische Entscheidungen (z. B. zur Unternehmesbesteuerung) aus?
- Was sind die Auswirkung der Entscheidungen von Gerichten, Kartellbehörden und Zentralbanken?
- Wie groß ist der Einfluss der Rohstoffpreise und deren zukünftige Entwicklung?
- Einfluss von Wetter, Naturkatastrophen (Erdbeben, Überschwemmungen, Stürme, Tsunamis, Vulkane), Terrorismus, (Bürger-)kriegen, Revolutionen?

Motivation für das (virtuelle) Glücksrad

Übersichtliches (Spiel-)Modell für das fokussierte Studium von Investitionsstrategien

Vorteile:

- Bei jeder Runde sind genau bekannt:
 - Einsätze (= Verlustmöglichkeiten, frei wählbar),
 - mögliche Gewinne,
 - Gewinnwahrscheinlichkeiten.
- Bei jeder Runde neues Spiel und neues Glück: Keine Einflüsse der Vergangenheit auf das Glücksrad (stochastische Unabhängigkeit der Runden).

Gewinnwahrscheinlichkeiten am Glücksrad

Alle sechs Felder sind gleich groß, also kommt jedes mit gleicher Wahrscheinlichkeit.

Drei Felder sind rot, also ist $p_{\rm r}=\frac{3}{6}=\frac{1}{2}$ die Wahrscheinlichkeit für rot.

(p für englisch probability)

Zwei Felder sind blau, also $p_b = \frac{2}{6} = \frac{1}{3}$.

Ein Feld ist gelb, also $p_{\rm g} = \frac{1}{6}$.

Konditionen am (virtuellen) Glücksrad

- Start zur Zeit t = 0 mit Vermögen $V_0 = 300$ Euro.
- Einsätze in beliebigen Anteilen des Vermögens (mit Schiebereglern in Vielfachen der einstellbaren Geldeinheit oder in vollen Prozenten sowie den Anteilen 1/6, 1/3, 2/3 und 5/6, jeweils auf volle Cent "gerundet").
- Drei Möglichkeiten für Einsätze und Gewinne:

Farbe	Gewinnhöhe	Wahrscheinlichkeit
rot	$3 imes$ Einsatz E_{r}	$p_{r}=1/2$
blau	$2 imes$ Einsatz E_{b}	$p_{b} = 1/3$
gelb	$6 imes Einsatz\ E_g$	$p_{\sf g}=1/6$

1. Strategie für das Glücksrad

Das gelbe Feld liefert das höchste Vielfache des Einsatzes $E_{\rm g}$, nämlich $6E_{\rm g}$.

 \implies Setze gesamtes Startvermögen V_0 auf gelb, also $E_{\rm g}=V_0$.

Resultat: In den meisten Fällen ist das Startvermögen sofort verspielt (\improx Hungertod).

2. Strategie für das Glücksrad

Wahrscheinlichkeiten sind wichtig. Wegen

$$p_{\rm g} = \frac{1}{6} < p_{\rm b} = \frac{1}{3} < p_{\rm r} = \frac{1}{2}$$

setze gesamtes Startvermögen V_0 auf rot, also $E_r = V_0$.

Resultat: In ca. der Hälfte der Fälle ist das Vermögen sofort verspielt.

3. Strategie für das Glücksrad

Gewinnhöhen **und** Wahrscheinlichkeiten sind wichtig. Maximiere Erwartungswert des Vermögens nach 1. Runde

$$\mathbb{E}[V_1] = V_0 - E_{\mathsf{r}} - E_{\mathsf{b}} - E_{\mathsf{g}} + 3E_{\mathsf{r}}p_{\mathsf{r}} + 2E_{\mathsf{b}}p_{\mathsf{b}} + 6E_{\mathsf{g}}p_{\mathsf{g}}.$$

Resultat: Wegen $p_{\rm r}=\frac{1}{2}$, $p_{\rm b}=\frac{1}{3}$, $p_{\rm g}=\frac{1}{6}$ folgt

$$\mathbb{E}[V_1] = V_0 + (3p_r - 1)E_r + (2p_b - 1)E_b + (6p_g - 1)E_g$$
$$= V_0 + \frac{1}{2}E_r - \frac{1}{3}E_b.$$

Einsatz auf gelb lässt $\mathbb{E}[V_1]$ unverändert, Einsatz auf blau verkleinert $\mathbb{E}[V_1]$, also setze alles auf rot. Dies ist äquivalent zur 2. Strategie. Es gilt dann $\mathbb{E}[V_1] = \frac{3}{2}V_0$.

4. Strategie: Mit dem Glücksrad zum Millionär im Erwartungswert

Setze immer das gesamte Vermögen auf rot. Dann gilt nach n Runden

$$\mathbb{E}[V_n] = \frac{3}{2}\mathbb{E}[V_{n-1}] = \frac{3}{2} \cdot \frac{3}{2}\mathbb{E}[V_{n-2}] = \dots = \left(\frac{3}{2}\right)^n V_0.$$

Wegen $V_0 = 300$ gilt also nach n = 20 Runden

$$\mathbb{E}[V_{20}] = 300 \left(\frac{3}{2}\right)^{20} \approx 997577,02$$

Resultat: Im Erwartungswert ist man nach 20 Runden (beinahe) Euro-Millionär.

Frage: Wie sieht es wirklich aus?

Analyse der 4. Strategie: Erwartungswert-Millionär

Allgemein gilt

$$V_n = \left\{ egin{array}{ll} 3^n V_0 & ext{mit Wahrscheinlichkeit } rac{1}{2^n}, \\ 0 & ext{mit Ws. } 1 - rac{1}{2^n}. \end{array}
ight.$$

Für n = 8: $V_8 = 1968300$ mit Ws. $\frac{1}{256}$.

Für n = 20: $V_{20} = 1\,046\,035\,320\,300$ mit Ws. $\frac{1}{1\,048\,576}$.

5. Strategie: Das Glücksrad als Tresor

Aufgabe: Das gesamte Vermögen V_0 am Glücksrad setzen, aber nichts riskieren. Ist das möglich?

Lösung: Ja! Für die Einsätze

$$E_{\mathsf{r}} = \frac{1}{3}V_0, \quad E_{\mathsf{b}} = \frac{1}{2}V_0, \quad E_{\mathsf{g}} = \frac{1}{6}V_0$$

erhält man

$$3E_{\rm r}=V_0$$
 falls rot gewinnt, $2E_{\rm b}=V_0$ falls blau gewinnt, $6E_{\rm g}=V_0$ falls gelb gewinnt,

also in jedem Fall das Anfangskapital V_0 .

Das Glücksrad als Goldesel?

Frage: Gibt es eine risikolose Gewinnmöglichkeit?

Lösung: Jede Gewinnmöglichkeit muss mindestens die Summe $E_{\rm r}+E_{\rm b}+E_{\rm g}$ aller Einsätze liefern, also

$$2E_{\rm r} \stackrel{({\rm r})}{\geq} E_{\rm b} + E_{\rm g}, \quad E_{\rm b} \stackrel{({\rm b})}{\geq} E_{\rm r} + E_{\rm g}, \quad 5E_{\rm g} \stackrel{({\rm g})}{\geq} E_{\rm r} + E_{\rm b}.$$

Aus (r) und (b) folgt $2E_r \ge E_r + 2E_g$, also $E_r \ge 2E_g$.

Aus (g) und (b) folgt $5E_{\rm g} \geq 2E_{\rm r} + E_{\rm g}$, also $2E_{\rm g} \geq E_{\rm r}$.

Zusammen ergibt dies $E_{\rm r}=2E_{\rm g}$.

Einsetzen in (r) gibt $3E_g \ge E_b$, in (b) gibt $E_b \ge 3E_g$.

Zusammen ergibt dies $E_b = 3E_g$.

Also gilt in (r), (b), (g) Gleichheit \implies kein Gewinn.

6. Strategie: Konstante Einsätze am Glücksrad

Wähle Bruchteil $k \in \{1, 2, 3, ...\}$ und setze den konstanten Einsatz $E_r = V_0/k$ auf rot solange es geht.

Bis zum Ruin können so mindestens k Einsätze verspielt werden.

Empirische Beobachtung:

- Großer Einsatz

 Stärkeres Vermögenswachstum, aber auch große Ruinwahrscheinlichkeit

Frage:

Können die Ruinwahrscheinlichkeiten berechnet werden?

6. Strategie: Analyse der Ruinwahrscheinlichkeit

Sei q_k die Wahrscheinlichkeit des Ruins falls $V_0 = kE_r$.

Herleitung eines Gleichungssystems:

$$q_k = \frac{1}{2}q_{k-1} + \frac{1}{2}q_{k+2}$$
 für $k = 1, 2, 3, \dots$ mit $q_0 = 1$.

Unendlich viele Unbekannte, unendlich viele Gleichungen!

Lösung des unendlichen Gleichungssystems

Sind neben $q_0=1$ auch q_1 und q_2 bekannt, so können rekursiv mittels $q_{k+2}=2q_k-q_{k-1}$ für $k=1,2,3,\ldots$ alle anderen Werte q_3,q_4,q_5,\ldots berechnet werden.

Frage: Welche der unendlich vielen Lösungen ist die "richtige" Folge von Wahrscheinlichkeiten?

Antwort: Die einzige Lösung mit $q_k \in [0,1]$ für alle $k = 1, 2, 3, \ldots$ und $q_k \searrow 0$ für $k \to \infty$ ist

$$q_k = \lambda^k \quad \text{mit} \quad \lambda = \frac{\sqrt{5} - 1}{2} \approx 0.61803\dots$$

Probe: Wegen $\lambda^2 = 1 - \lambda$ gilt $\lambda^3 = \lambda - \lambda^2 = 2\lambda - 1$, also $q_{k+2} = \lambda^{k+2} = \lambda^{k-1}(2\lambda - 1) = 2q_k - q_{k-1}$.

6. Strategie: Tabelle der Ruinwahrscheinlichkeiten

k	q_k	k	q_k
0	1	10	0.008131
1	0.61803	15	0.000733
2	0.38197	20	0.000066
3	0.23607	25	5.96×10^{-6}
4	0.14590	30	5.37×10^{-7}
5	0.09017	40	4.37×10^{-9}
6	0.05573	50	3.55×10^{-11}
7	0.03444	100	1.26×10^{-21}
8	0.02129	300	2.01×10^{-63}
9	0.01316	1000	1.03×10^{-209}

Herleitung der allgemeinen Lösung

Vektoriteration: Es gilt $q_{k+2} = 2q_k - q_{k-1}$ für $k = 1, 2, 3, \ldots$, also in Matrixschreibweise

$$\begin{pmatrix} q_k \\ q_{k+1} \\ q_{k+2} \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 2 & 0 \end{pmatrix}}_{=:A} \begin{pmatrix} q_{k-1} \\ q_k \\ q_{k+1} \end{pmatrix}.$$

Jordan-Zerlegung:

$$A = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & \lambda & -\frac{1}{\lambda} \\ 1 & \lambda^2 & \frac{1}{\lambda^2} \end{pmatrix}}_{-\cdot S} \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & -\frac{1}{\lambda} \end{pmatrix}}_{-\cdot D} S^{-1}$$

Herleitung der allgemeinen Lösung (Fortsetzung)

Mit transponiertem Einheitsvektor $e_1^{\top} = (1,0,0)$ gilt

$$q_k = e_1^{\top} A^k \begin{pmatrix} q_0 \\ q_1 \\ q_2 \end{pmatrix} = e_1^{\top} S D^k S^{-1} \begin{pmatrix} 1 \\ q_1 \\ q_2 \end{pmatrix},$$

wobei $e_1^{\top}SD^k = \left(1, \lambda^k, (-\lambda)^{-k}\right)$ und

$$S^{-1} = \frac{1}{5} \begin{pmatrix} -5 & 5 & 5 \\ 7 + 4\lambda & -3 - \lambda & -4 - 3\lambda \\ 3 - 4\lambda & \lambda - 2 & 3\lambda - 1 \end{pmatrix}.$$

7. Strategie: Setzen konstanter Bruchteile

Beobachtung: Konstante Einsätze geben nach Vermögenszuwachs nur noch kleine Rendite.

ldee: Riskiere höhere Einsätze bei großem Vermögen, setze z. B. immer konstante Bruchteile $\alpha_{\rm r}, \alpha_{\rm b}, \alpha_{\rm g} \geq 0$ auf rot, blau und gelb, wobei $\alpha_{\rm r} + \alpha_{\rm b} + \alpha_{\rm g} \leq 1$.

Vorteil: Ist das Gesamtvermögen nicht auf ein oder zwei Farben konzentriert, kann es (abgesehen von Diskretisierungseffekten) nie ganz verspielt werden!

Interpretation für Erwartungswerte:

- Rotes Feld: Risikoreiche Investition (Aktie)
- Blaues Feld: Prämie für Hausratversicherung
- Gelbes Feld: Bargeld unter Matratze

Exkurs: Nutzenfunktionen für Wachstumsfaktoren

Frage: Welche Bruchteile α_r , α_b , α_g sind optimal?

Idee: Messe subjektiven Nutzen des Wachstumsfaktors F mittels Nutzenfunktion $U: [0, \infty) \to [-\infty, \infty)$.

Erwünschte Eigenschaften:

- U(1) = 0, da kein Zusatznutzen.
- U(0) stark negativ (= $-\infty$ falls $F = 0 \Leftrightarrow$ Hungertod), denn Totalverluste sind unerwünscht.
- ullet U monoton wachsend, denn kleinerer Verlust bzw. mehr Wachstum ist besser.
- ullet U konkav, denn mehr Wachstum wird unwichtiger, wenn das Wachstum sowieso schon groß ist.
- Wir normieren: U'(1) = 1.

Exkurs: Beispiele für Nutzenfunktionen

- Linearer Nutzen: U(x) = x 1
- Potenznutzen: Für $a \in (-\infty, 1]$, $a \neq 0$, definiere

$$U(x) = \frac{x^a - 1}{a}.$$

Beachte: $U(0) = -\infty$ für a < 0. Für a = 1 ist dies der lineare Nutzen.

- Logarithmisch: $U(x) = \log_e(x)$, entspricht a = 0
- Exponentiell: Für Konstante a > 0 definiere

$$U(x) = \frac{1 - e^{-a(x-1)}}{a}$$
 mit $e = 2,71828...$

7. Strategie: Optimaler Wachstumsfaktor

Wenn Bruchteile $\alpha_{\rm r}, \alpha_{\rm b}, \alpha_{\rm g} \geq 0$ mit $\alpha_{\rm r} + \alpha_{\rm b} + \alpha_{\rm g} \leq 1$ gesetzt sind, denn gilt für den Wachstumsfaktor

$$F(\alpha_{\rm r},\alpha_{\rm b},\alpha_{\rm g}) = 1 - \alpha_{\rm r} - \alpha_{\rm b} - \alpha_{\rm g}$$

$$+ \begin{cases} 3\alpha_{\rm r} & \text{mit Ws. } p_{\rm r} = \frac{1}{2}, \\ 2\alpha_{\rm b} & \text{mit Ws. } p_{\rm b} = \frac{1}{3}, \\ 6\alpha_{\rm g} & \text{mit Ws. } p_{\rm g} = \frac{1}{6}. \end{cases}$$

Aufgabe: Bestimme die Bruchteile $\alpha_r, \alpha_b, \alpha_g$ so, dass der erwartete Nutzen

$$\mathbb{E}ig[Uig(F(lpha_{\mathsf{r}},lpha_{\mathsf{b}},lpha_{\mathsf{g}})ig)ig]$$

des Wachstumsfaktors maximiert wird.

7. Strategie: Logarithmische Nutzenfunktion

Für optimalen logarithmischen Nutzen maximiere

$$\mathbb{E}[U(F(\alpha_{r}, \alpha_{b}, \alpha_{g}))] = p_{r} \log(1 + 2\alpha_{r} - \alpha_{b} - \alpha_{g}) + p_{b} \log(1 - \alpha_{r} + \alpha_{b} - \alpha_{g}) + p_{g} \log(1 - \alpha_{r} - \alpha_{b} + 5\alpha_{g})$$

über dem Tetraeder $\alpha_r, \alpha_b, \alpha_g \geq 0$ mit $\alpha_r + \alpha_b + \alpha_g \leq 1$.

Lösungsmethoden:

- Ausprobieren am Glücksrad
- Numerische Methoden zum Optimieren
- Analytische Lösung: Nullsetzen der drei partiellen Ableitungen, algebraisches Lösen des Gleichungssystems, Verifikation (hier erfolgreicher Weg)

7. Strategie: Logarithmische Nutzenfunktion (Forts.)

Lösung: Optimaler Mindesteinsatz ist $\frac{1}{3}$ des Vermögens in der Aufteilung

$$\alpha_{\rm r} = \frac{5}{18} \approx 27.78\%, \quad \alpha_{\rm b} = 0, \quad \alpha_{\rm g} = \frac{1}{18} \approx 5.56\%.$$

Zusätzlich kann ein Anteil $\alpha \in [0, \frac{2}{3}]$ mit Aufteilung $(\frac{\alpha}{3}, \frac{\alpha}{2}, \frac{\alpha}{6})$ gesetzt werden (vgl. Glücksrad als Tresor). Für $\alpha = \frac{2}{3}$ ist $\alpha_{\rm r} = \frac{1}{2}$, $\alpha_{\rm b} = \frac{1}{3}$, $\alpha_{\rm g} = \frac{1}{6}$ optimal.

Erwartete Rendite *R* im **Optimum** (linearer Nutzen):

$$R = \mathbb{E}[F(\alpha_{r}, \alpha_{b}, \alpha_{g}) - 1]$$

$$= p_{r}(2\alpha_{r} - \alpha_{b} - \alpha_{g}) + p_{b}(\alpha_{b} - \alpha_{r} - \alpha_{g})$$

$$+ p_{g}(5\alpha_{g} - \alpha_{r} - \alpha_{b}) = \frac{5}{36} \approx 13.889\%$$

Ihre clevere Strategie

- Entscheiden Sie sich für eine Nutzenfunktion (oder denken Sie sich eine eigene aus).
- Bestimmen Sie Ihre optimale Investitionsstrategie
- Probieren Sie diese online aus!

Internet:

```
https://fam.tuwien.ac.at/public/
apps/?id=fortune
```

Computerprogramme zum Ausprobieren

- Investieren am Glücksrad
- Investieren am Aktienmarkt
- Optionshandel
- Berechnung der Lebenserwartung
- Altersvorsorge mit Privatpension
- Zeitliche Entwicklung der Privatrenten

Internet:

https://fam.tuwien.ac.at/public/simulations.php

Poster im Internet

- Prinzip der Versicherung
- Extremwerttheorie Die Mathematik der seltenen Ereignisse
- Zukünftige Lebenserwartung & Rentenversicherung
- Kreditrisiko Grundlagen und aktuelle Entwicklungen
- Finanzmathematik Aktien, Zinsen und Optionen
- Volkszählungen & aktuelle Sterbetafeln
- Rückversicherung und Katastrophenbonds
- Die größten Versicherungsschäden
- Zinsstrukturmodelle Finanzmathematik und Geometrie https://fam.tuwien.ac.at/public/posters/