P9185 - Project 3: Protocol of a Cluster-randomized trial for Asthma-PASS

Amy Pitts, Yuqi Miao

2022-04-25

Background

Our interest is in persistent asthma in minority children.

- Comprehensive school-based interventions in collaboration with communities to reduce asthma morbidity and promote physical activity in urban areas.
- A pilot cluster RCT was conducted exploring this intervention in Bronx elementary schools
 - **Goal:** whether Children in schools receiving Asthma-PASS intervention may experience a greater improvement in the number of SFD at 6 **or** 12 months follow up than the children in the comparison group.
 - 4 Bronx elementary schools were recruited into the pilot study.
 - A total of 108 children recruited including ages 4-11 years with physician-diagnosed persistent or uncontrolled asthma attending kindergarten to 5th grades

Overview

- Data Overview
- Exploration into Pilot Study data
 - Model Specifications
 - Results
- Opening Proposal
 Opening Proposal
 - Model Specifications
 - Sample Size Suggestions

Data Overview

Variable	Definition
ID	Participant's ID
Time	Follow up time (Baseline, 6 months, 12 months)
Group	Intervention group (control or Intervention)
SFD	Symptom free days in the past two weeks
School	School recruited for the study

Table 1: Data Descriptions of Pilot Study

Data Exploration

Data Exploration

Data Exploration

Current outcome: SFD (Count data)

- Due to the skewed distribution towards higher values a poisson model will not fit our data well
- Outcome does not seem linear over the time observations.

Interested in the change from baseline to observation times.

New outcome: Change in SFD (Continuous Data)

- Transform the SFD by calculated:
 - 6 month observation baseline
 - 12 month observation baseline
- Baseline with become covariate

New Continous Outcome

Exploring variation between school and within school

Data Description

	Overall , N = 108 ¹	Group Control		Group Intervention		
Characteristic		School 1 , N = 28 ¹	School 3 , N = 31 ⁷	School 2 , N = 21 ¹	School 4 , N = 28 ¹	p- value ²
baseline	11.0 (7.0, 13.0)	12.0 (7.5, 13.0)	9.0 (6.2, 11.8)	11.0 (9.0, 14.0)	11.0 (7.5, 12.5)	0.3
Unknown	3	1	1	0	1	
Change_6months	2 (0, 5)	2 (0, 3)	3 (0, 8)	1 (0, 2)	0 (0, 4)	0.3
Unknown	10	3	4	2	1	
Change_12months	1.0 (0.0, 4.0)	1.0 (0.0, 3.5)	2.0 (0.5, 5.5)	0.5 (-0.2, 3.0)	0.0 (0.0, 3.0)	0.2
Unknown	15	5	4	1	5	
¹ Median (IQR)						

² Kruskal-Wallis rank sum test

Missing Data

Model Specifications

To model change in SFD let i for school, j for subjects, k for measures.

We will used mixed effect model.

$$\begin{split} Y_{ijk} &= \beta_0 + \beta_1 Baseline_{ij} \\ &+ \beta_2 Group_{ij} + \beta_3 Compare_{ijk} \\ &+ \beta_4 Group_{ij} \times Compare_{ijk} \\ &+ \alpha_{0i} + \alpha_{0j} + \epsilon_{ijk} \end{split}$$

where $\alpha_{0i}\sim N(0,\sigma_1^2)$, $\alpha_{0j}\sim N(0,\sigma_2^2)$, and $\epsilon_{ijk}\sim N(0,\sigma^2).$

We will be assuming data is missing at random $(MAR)^{[1]}$.

Model Result Fixed

Fixed Effects Estimates:

Characteristic	Beta	95% CI ¹	p-value	
baseline	-0.82	-1.0, -0.69	<0.001	
group				
0	_	_		
1	1.1	-0.46, 2.6	0.2	
compare				
m6_m0	_	_		
m12_m0	-0.05	-1.4, 1.3	>0.9	
group * compare	!			
1 * m12_m0	-0.27	-2.2, 1.6	0.8	
¹ CI = Confidence Interval				

Model Interpretations:

- When comparing the 6 months and baseline, The increase of sfd in intervention group is 1.1 (-0.46, 2.6) more than the increase of sfd in the treatment group.
- When comparing the 12 months and baseline, The increase of sfd in intervention group is 0.81 (-1.60, 2.12) more than the increase of sfd in the treatment group.
- No significant improvement from intervention group.

Model Result Random

Model 1 Random Effects:

group	Std.Dev	Variance
id	2.055	4.221
school	0.000	0.000
Residual	3.250	10.560

Calculating the Intraclass Correlation Coefficient

Model Quality

Cluster RCT design

- The investigators wish to propose a cluster-randomized clinical trial (RCT) in 30 Bronx schools to evaluate the effectiveness of their intervention program.
- Primary hypothesis: compared to the control group, children in schools randomized to intervention group will experience a greater improvement in the number of SFD at any of the 3, 6, 9, and 12 months assessment.
- The investigators would like to have at 80% probability to declare the trial is successful if the true effect size in improvement of SFD over time is at least 1/3 standard deviation.

Study design proposal:

- The primary interest of the study: test whether there is difference at any of the 3,6,9,12 months;
- Consider 4 comparisons separately:
 - month3: sfd_chage~group
 - month6: sfd_chage~group
 - month9: sfd_chage~group
 - month12: sfd_chage~group

Two levels of Sampling

- N_1 : Number of Individuals in each School (What we want to estimate)
- ullet N_2 : Number of Schools for one treatment arm (15 in our case)

Study design proposal:

2 level structure^[2]:

$$y_{ij} = \beta_0 + \beta_1 X_{ij} + \beta_2 y_{0,ij} + u_i + \epsilon_{ij}$$

- \bullet i for school, j for subject, y_{ij} is the sfd_change from tested time point to baseline
- within each comparison, there is only 1 measurement. So no consideration of the intra-subject correlation
- $u_i \sim N(0, \sigma_2^2)$, random intercept between schools
- ullet $\epsilon_{ij} \sim N(0, \sigma_e^2)$, random error term

Intraclass Correlation Coefficient

$$\rho = \frac{\sigma_2^2}{\sigma_2^2 + \sigma_e^2}$$

Hypothesis Set Up

$$\mathbf{Hypothesis:} H_0: \beta_1=0, H_1: \beta_1\neq 0$$

- calculate N based on normal distribution, with multiple adjustment: $\alpha^* = \alpha/4 = 0.025/4$
- $\beta = 0.2$
- $N_1 = N_0 = 15$
- Interested in when standardized effect size $\Delta = 1/3$

Sample Size Calculation

Test statistics

$$D_2 = \frac{\sqrt{N_2 N_1} \left(\bar{Y}_1 - \bar{Y}_0\right)}{\sigma \sqrt{2(1-\rho)}} \sim N(0,1)$$

Sample Size formula

$$N_1 = \frac{2(1-\rho)z_{\alpha^*,\phi}^2}{N_2\Delta_{(2)}^2 - 2\rho z_{\alpha^*,\phi}^2}$$

Where z is calculated based on the normal distribution.

$$z^2_{\alpha^*,\,\beta} = (z_{\alpha^*/2} + z_\beta)^2 = \left[\Phi^{-1}(1 - \alpha^*/2) + \Phi^{-1}(1 - \beta)^{-1}\right]^2$$

Sample Size Suggested

rho	class_size	group_size	total_samp
0.00	13.381	200.720	401.440
0.01	15.294	229.411	458.822
0.03	21.685	325.278	650.556

Resources

- [1] Hogan, J. W., Roy, J., & Korkontzelou, C. (2004). Handling drop-out in longitudinal studies. Statistics in Medicine, 23(9), 1455–1497. https://doi.org/10.1002/sim.1728
- [2] Ahn, C., Heo, M., & Zhang, S. (2014). Sample size calculations for clustered and longitudinal outcomes in clinical research. CRC Press.