主管 领导 审核 签字

哈尔滨工业大学(深圳)2019/2020 学年春季学期

高等数学 B 试题(期末)

题号	ı	=	III	四	五	六	七	八	九	+	总分
得分											
阅卷人											

注意行为规范 遵守考场纪律

李

一、填空题(每小题 3 分,共 4 小题,满分 12 分)

1. 函数 $z=2x^2+y^2$ 在点 (1,1) 处沿方向 $\vec{l}=\vec{i}-\vec{j}$ 的方向导数

$$\frac{\partial z}{\partial \bar{l}}\Big|_{(1,1)} = \underline{\hspace{1cm}}.$$

2. 由方程 $2xz + z^3 - xy^2 = 2$ 所确定的隐函数 z = z(x, y) 在点 (1,1,1) 处的全微

3. 函数 $f(x) = \frac{1}{x+2}$ 展开成 x 的幂级数的表达式为______.

4. 设 $\Sigma = \{(x, y, z) | x + y + z = 1, x \ge 0, y \ge 0, z \ge 0 \}$, 则 曲 面 积 分 $\iint (xy + yz + y^2) dS = \underline{\hspace{1cm}}.$

二、选择题(每小题 3 分, 共 4 小题, 满分 12 分, 每小题中给出的四个 选项中只有一个是符合题目要求的,把所选项的字母填在题后的括号内)

1. 设函数 f(x, y) 在点 (x_0, y_0) 处的两个偏导数 $f'_{x}(x_0, y_0), f'_{y}(x_0, y_0)$ 都存在, 则 (

- (A) $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ 存在; (B) $\lim_{x\to x_0} f(x,y_0)$ 和 $\lim_{y\to y_0} f(x_0,y)$ 都存在;
- (C) f(x,y) 在点 (x_0,y_0) 处必连续; (D) f(x,y) 在点 (x_0,y_0) 处必可微。

2. $\[\[\] \mathcal{U} I_1 = \iint \frac{x+y}{4} \, \mathrm{d}x \, \mathrm{d}y, I_2 = \iint \sqrt{\frac{x+y}{4}} \, \mathrm{d}x \, \mathrm{d}y, I_3 = \iint \sqrt[3]{\frac{x+y}{4}} \, \mathrm{d}x \, \mathrm{d}y \],$

其中 $D = \{(x,y) | (x-1)^2 + (y-1)^2 \le 2 \}$,则下列关系式成立的是(

- (A) $I_1 < I_2 < I_3$; (B) $I_3 < I_2 < I_1$; (C) $I_3 < I_1 < I_2$; (D) $I_2 < I_1 < I_3$
- 3. 设L是圆柱面 $x^2 + y^2 = 4$ 与平面y + z = 0的交线,从z轴正向往z轴负向看去为逆时针方 向,则曲线积分 $\oint_L z dx + y dz = ($)
 - (A) -4π ; (B) -2π ; (C) 2π ; .(D) 4π .

- 4. 设 f(x) 是周期为 2π 的奇函数,且 $f(x) = \begin{cases} \pi x, 0 \le x < \frac{\pi}{2}, \\ \pi + x, \frac{\pi}{2} \le x < \pi, \end{cases}$ 又设 $\sum_{n=1}^{\infty} b_n \sin nx$ 是 f(x) 的傅里

叶级数, s(x) 是级数的和函数,则 $s\left(\frac{5}{2}\pi\right)=($)

- (A) $\frac{\pi}{2}$; (B) π ; (C) $\frac{3\pi}{2}$; (D) $-\pi$.

三、(8 分) 求微分方程 $y'' + y' - 2y = 2e^x$ 的通解。

六、(7 分)设函数 f(x,y)满足 $f'_x(x,y)=(2x+1)\mathrm{e}^{2x-y}$,且 f(0,y)=y+2, L是从点 (0,0) 到 点 (1,2) 的光滑曲线,计算曲线积分 $I=\int_L f'_x(x,y)\mathrm{d}x+f'_y(x,y)\mathrm{d}y$ 。

七、(7 分)计算曲面积分 $\iint_{\Sigma} \frac{x^3 \mathrm{d}y \mathrm{d}z + y^3 \mathrm{d}z \mathrm{d}x + (z^3+1) \mathrm{d}x \mathrm{d}y}{\sqrt{x^2+y^2+z^2}}$,其中曲面 Σ 为下半球面 $z = -\sqrt{4-x^2-y^2}$ 的上侧。

十、(4分) 讨论级数 $\sum_{n=2}^{\infty} \ln \left(1 + \frac{(-1)^n}{n^p}\right)$ 的敛散性(常数 p>0),若收敛,指出是条件收敛还是绝对收敛。