Autonomous mobile robot

See – think – act

THIS IS THE MOST IMPORTANT SLIDE OF THE WEEK!

Goal

Advance in the middle of the name

• How?

Velocity *v* has to be constant

Angular velocity ω is used to correct

- φ
- d

- Angular velocity ω is used to correct
 - φ
 - d

If $\phi = 0$ (looking forward) and d > 0 (too much on the left), what should I do?

If d = 0 (right at the center) and $\phi < 0$ (looking on the right), what should I do?

If d = 0, $\phi_1 < 0$ and $\phi_2 < \phi_1$, would $\omega_1 > \omega_2$?

Proportional control

Proportional control

The water flow F is in liters/second. It is the time derivative of the volume V of water in the tank :

$$F(t) = V'(t)$$

The floater position a is in m, and it is the height of the cuboid formed by the water. As width and depth are constant, a is proportional to V:

$$a(t) = V(t)/c$$

Therefore,

$$F(t) = c \times a'(t)$$

Proportional control

$$F(t) = c \times a'(t)$$

The toilet boil uses a proportional control system:

A is the <u>desired</u> position for the floater (tank is full).

The <u>error</u> *e* is the difference:

$$e(t) = A - a(t)$$

And the toilet lets in a flow proportional to e with a constant k_flow :

$$F(t) = -k_flow \times e$$

Another example: temperature control in your car

Objective: keep the car temperature T at $T_o = 25$ °C

Adjusting the heater power

Objective: keep the temperature T(t) at 25°C

We can prove that the power W of the heater/air conditionner is proportional to T'(t): $W = c \times T'(t)$

How much power should we use to keep the car at T0 = 25?

$$W = k_{heater} \times (T_0 - T)$$
Error e

Influence of k_heater

$$W = k_{heater} \times (T_0 - T)$$

The people who made this example are crazy! Canadians, probably.

Influence of k_heater

$$W = k_{heater} \times (T_0 - T)$$

The people who made this example are crazy! Canadians, probably.

Let's summarize.

To use proportional control to keep variable a(t) to desired value a_0 we need:

- To be able to control the derivative a'(t)
- To be able to measure the error between a(t) and a_0

Then, we use:

$$a'(t)=k_a\times(a_0-a(t))$$

We have to choose k_a correctly, so that we change fast enough but not too much.

ω and φ

- We know that $\omega(t) = \varphi'(t)$, and we can control $\omega(t)$.
- We can measure $\varphi(t)$ and we know $\varphi_0 = 0$

Therefore, we will use:

$$\omega_{\varphi}(t) = k_{\varphi} \times (0 - \varphi) = -k_{\varphi} \times \varphi = k_{\theta} \times \varphi$$

φ(t) and d

We know that

$$d'(t) = v_d(t) = v(t) \times \sin(\varphi(t))$$

We set v(t) as constant.

We use an approximation: $sin(x) \approx x$ when x is small.

Thinking that $\varphi(t)$ is small, we have:

$$d'(t) = v(t) \times \varphi(t)$$

So we would like:

$$\varphi_d(t) = k_D \times (0-d) = -k_D \times d$$

φ(t) and d

We know that

$$d'(t) = v_d(t) = v(t) \times \sin(\varphi(t))$$

We set v(t) as constant.

We use an approximate is small.

Thinking But, Vincent, we cannot control $\varphi(t)$!

$$a(t) = V(t) \times \varphi(t)$$

So we would like:

$$\varphi_d(t) = k_D \times (0-d) = -k_D \times d$$

But... we cannot control $\varphi(t)$

But... we cannot control $\varphi(t)$

Yes we can!

$$\omega_d(t) = k_{\varphi,d} \times (\varphi_d - \varphi)$$

$$\varphi_d(t) = k_D \times (0 - d) = -k_D \times d$$

$$\omega_d(t) = k_{\varphi,d} \times (-k_D - d) = k_d \times d$$

So, what do we have

$$\omega_d(t) = k_{\varphi,d} \times (-k_D - d) = k_d \times d$$

$$\omega_{\varphi}(t) = k_{\varphi} \times (0 - \varphi) = -k_{\varphi} \times \varphi = k_{\theta} \times \varphi$$

$$\omega = k_d \times d + k_\theta \times \varphi$$

That's it?

$$\omega = k_d \times d + k_\theta \times \varphi$$

Yes, that's it! But now, we have to find k_d and k_{θ} .

Calibrating k_d and k_e

$$\omega = k_d \times d + k_\theta \times \varphi$$

Let's try it!