

## (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization  
International Bureau(43) International Publication Date  
13 September 2001 (13.09.2001)

PCT

(10) International Publication Number  
WO 01/66752 A2(51) International Patent Classification<sup>2</sup>: C12N 15/12, C07K 14/47, 16/18, C12N 5/10, C12Q 1/68

(74) Agents: TREANNIE, Lisa, M. et al.; Hamilton, Brook, Smith &amp; Reynolds, P.C., Two Militia Drive, Lexington, MA 02421 (US).

(21) International Application Number: PCT/US01/07371

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CI, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, IIR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(22) International Filing Date: 7 March 2001 (07.03.2001)

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English

## Published:

(26) Publication Language: English

— without international search report and to be republished upon receipt of that report

(30) Priority Data:  
60/187,518 7 March 2000 (07.03.2000) US  
60/261,557 12 January 2001 (12.01.2001) US

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(71) Applicant (for all designated States except US): WHITE-  
HEAD INSTITUTE FOR BIOMEDICAL RESEARCH  
[US/US]; Nine Cambridge Center, Cambridge, MA 02142  
(US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WANG, Peijing,  
Jeremy [CN/US]; Apt. 22B, 364 Rindge Avenue, Cam-  
bridge, MA 02140 (US). PAGE, David, C. [US/US]; 3 Ivy  
Circle, Winchester, MA 01890 (US).

A2

(54) Title: REPRODUCTION-SPECIFIC GENES

(57) Abstract: Reproduction-specific nucleic acid molecules, particularly those that are indicative of or associated with infertility in men, proteins encoded by these reproduction-specific nucleic acid molecules and antibodies that bind such proteins are described. Also described are variant reproduction-specific genes and proteins, and antibodies which bind such proteins, as well as methods of using the reproduction-specific genes, proteins and antibodies and methods of using the variant reproduction-specific genes, proteins and antibodies.

WO 01/66752 A2

## REPRODUCTION-SPECIFIC GENES

### RELATED APPLICATION

This application claims the benefit of U.S. provisional application Serial No. 60/187,518, filed on March 7, 2000, and U.S. provisional application Serial No. 5 60/261,557, filed on January 12, 2001. The entire teachings of the above applications are incorporated herein by reference.

### BACKGROUND OF THE INVENTION

Infertility is of great clinical significance, and between 2 and 7% of couples are infertile. Both physical and genetic factors are associated with male infertility. 10 Some genetic factors are chromosomal aberrations, including: chromosomal translocations, Down's syndrome, Klinefelter's syndrome and Y chromosome microdeletions. Many cases of azoospermia are idiopathic (have no obvious cause) in that the subject is infertile but otherwise healthy. Previous research has suggested that genetic factors are important contributors to these cases, but these factors have 15 not been identified.

### SUMMARY OF THE INVENTION

Spermatogonial stem cells are designated as undifferentiated spermatogonia; they are capable of self-renewal and persist as a constant population in adults. While renewing themselves, some of these stem cells begin to differentiate to give rise to 20 type A spermatogonia. Type A spermatogonia divide four times and differentiate to eventually become type B spermatogonia. Type B spermatogonia divide once, enter meiosis at puberty, and eventually become mature sperm.

Described herein are novel nucleic acid molecules, referred to as reproduction-specific nucleic acid molecules, from spermatogonia (the stem cells of 25 male germ cells); novel reproduction-specific proteins; antibodies that bind the

proteins; and uses of the nucleic acid molecules or portions thereof, proteins and antibodies. The novel nucleic acid molecules of the present invention fall into three classes: 1) male germ cell-specific nucleic acid molecules, which are nucleic acid molecules that are expressed only in male germ cells; 2) testis-specific nucleic acid 5 molecules, which are nucleic acid molecules that are expressed only in testis; and 3) testis-and ovary-specific nucleic acid molecules, which are nucleic acid molecules that are only expressed in testis and ovary. As further described herein, the present work has resulted in identification of a number of variants of the testis-specific genes, TAF2Q and TEX11 which are present on sex chromosome X.

10 The present invention also relates to variant forms of reproduction-specific nucleic acid molecules (referred to as variant reproduction-specific nucleic acid molecules) that are indicative of or associated with infertility in men, proteins encoded by variant reproduction-specific nucleic acid molecules (referred to as variant reproduction-specific proteins), antibodies that bind such proteins, and 15 methods of using the variant reproduction-specific nucleic acid molecules or portions thereof, proteins encoded by variant reproduction-specific nucleic acid molecules, and antibodies that bind variant reproduction-specific proteins.

The present invention encompasses all of these nucleic acid molecules, their complements, portions of the nucleic acid molecules and their complements, and 20 any nucleic acid molecules that, through the degeneracy of the genetic code, encode a protein whose sequence is presented herein or a protein encoded by nucleic acid molecules whose sequence is specifically presented herein. Nucleic acid molecules of the present invention (genes, genomic sequences, cDNAs and portions of the foregoing) are useful, for example, as hybridization probes and as primers for 25 amplification methods which, in turn, are useful in methods of detecting the presence, absence or alteration of the nucleic acid molecules described herein.

The present invention also relates to methods of identifying or determining differences in one or more of these reproduction-specific nucleic acid molecules that are associated with (indicative of) infertility in men. For example, nucleic acid 30 molecules from tissues or body fluids, such as nucleic acid molecules in blood, obtained from one or more males with a known condition, such as lack of sperm

production or reduced sperm count, can be assessed, using the nucleic acid molecule(s) described herein, or characteristic portions thereof, to determine whether the male(s) lacks some or all of the nucleic acid molecule(s) described herein or has a variant nucleic acid molecule(s) (e.g., in which there is a deletion, 5 substitution, addition or mutation, compared to the sequences presented herein). Nucleic acid molecules (e.g., from a male with reduced sperm count or viability) can be assessed, using nucleic acid molecules described herein or nucleic acid molecules which hybridize to a nucleic acid molecule described herein, to determine whether they are associated with or causative for infertility (e.g., reduced sperm count or 10 viability). For example, the presence or absence of all or a portion of a nucleic acid molecule or nucleic acid molecules shown to be necessary for fertility or adequate sperm count can be assessed, using nucleic acid molecules which hybridize to the nucleic acid molecule or nucleic acid molecules of interest to determine the basis for an individual's infertility or reduced sperm count. In one embodiment, the 15 occurrence of one or more reproduction-specific nucleic acid molecules or a characteristic portion of one or more reproduction-specific nucleic acid molecules is assessed in a sample containing nucleic acid molecules.

In another embodiment, deletion or alteration of one of the nucleic acid molecules described herein or a characteristic portion thereof is used to assess a 20 nucleic acid sample obtained from a male who has a reduced sperm count or spermatogenic failure. Lack of hybridization of reproduction-specific nucleic acid molecules known to be present in fertile men, but not in infertile men, to nucleic acid molecules in the sample (sample nucleic acid molecules) indicates that the gene is not present in the sample nucleic acid molecules or is present in a variant form 25 which does not hybridize to reproduction-specific nucleic acid molecules present in fertile men. In the present methods, sample nucleic acid molecule can be analyzed for the alteration or occurrence of one or more of the reproduction-specific nucleic acid molecules and can be analyzed for one or more of the three classes of nucleic acid molecules described herein. For example, a group of nucleic acid molecule 30 probes (sequences) can be used to analyze sample nucleic acid molecule; the set of probes can include nucleic acid molecule probes which hybridize to two or more

reproduction-specific nucleic acid molecules or nucleic acid molecule probes which hybridize only to variant nucleic acid molecules characteristic of (indicative of) infertility in men.

Nucleic acid molecules described herein are also useful as primers in an 5 amplification method, such as PCR, useful for identifying and amplifying reproduction-specific nucleic acid molecules in a sample (e.g., blood). Further, proteins or peptides encoded by a reproduction-specific nucleic acid molecule can be assessed in samples. This can be carried out, for example, using antibodies which recognize proteins or peptides of the present invention (proteins or peptides encoded 10 by nucleic acid molecules described herein or a variant thereof that is present in infertile men, but not in fertile men or vice versa).

The present invention also relates to methods of diagnosing or aiding in the diagnosis of infertility in men, based on differences present in at least one of these nucleic acid molecules (between infertile men and fertile men). For example, one 15 embodiment of this invention is a diagnostic method, such as a method of determining whether nucleic acid molecules from a man (e.g., obtained from blood, other tissue) contain at least one nucleic acid molecule which varies (comprises a substitution, deletion, addition or rearrangement) from reproduction-specific nucleic acid molecules in a manner shown to be indicative of or characteristic of infertility

20 The present invention further relates to proteins disclosed herein or encoded by nucleic acid molecules described herein, portions of the proteins (such as characteristic portions, referred to as characteristic peptides, useful in distinguishing between infertile and fertile men) and antibodies (monoclonal or polyclonal) that bind proteins of the present invention or characteristic portions thereof. The 25 proteins of the present invention include proteins encoded by nucleic acid molecules whose sequence is disclosed herein; proteins whose amino acid sequences are disclosed herein; and proteins whose amino acid sequence differs from the amino acid sequence of proteins disclosed herein by at least one (one or more) residue and are associated with or indicative of azoospermia (lack of or reduction in sperm 30 production), referred to as variant reproduction-specific proteins. Antibodies of the

present invention are useful in methods of diagnosing or aiding in the diagnosis of infertility in men.

A further subject of the present invention is a method of contraception in which sperm production and/or function are altered, preferably reversibly. In the 5 method, the function of one or more of the nucleic acid molecules or one or more of the proteins described herein is disrupted in a man, with the result that sperm production does not occur; occurs only to a limited extent (an extent less than normally occurs in the individual); or is otherwise altered (e.g., defective sperm, such as sperm with decreased motility or shortened lifespan, are produced). For 10 example, a reproduction-specific gene shown to be present in fertile men, but not in infertile men, is targeted and its function (expression) is disrupted, with the result that the gene is not expressed, is expressed at a reduced level (at a level lower than if it the gene function had not been disrupted) or, when it is expressed, the resulting product is defective. Alternatively, a protein or proteins encoded by a reproduction- 15 cell specific gene(s) is targeted and its function is disrupted and/or the protein is broken down (e.g., by proteolysis). Agents (drugs) useful in the method are also the subject of the present invention.

Further, the present invention relates to a method of treating reduced sperm count, reduced sperm function, reduced sperm motility or spermatogenic failure. In 20 one embodiment, reduced sperm count is increased by administering an agent that enhances the activity, of a reproduction-specific gene or genes. Preferably, such drugs target (act essentially exclusively upon) a reproduction-specific gene or portion thereof. Such drugs can be administered by a variety of routes, such as oral or intravenous administration. In another embodiment, a gene therapy method is 25 used. For example, a one or more nucleic acid molecule(s) described herein, or a portion thereof which encodes a functional protein, is introduced into a man whose sperm count is reduced and in whom the nucleic acid molecule is expressed, and the resulting protein replaces or supplements the protein normally produced or enhances the quantity produced.

The nucleic acid molecules, proteins and antibodies that bind proteins of the present invention, or portions thereof, are also useful as markers for spermatogonial cells.

As described herein, particular variants of the testis-specific X-linked

- 5 TAF2Q and TEX11 nucleic acid molecules from infertile men were identified by methods described herein. These variants result from alternation in the nucleic acid molecule; some nucleic acid molecules alterations are silent (do not result in a change in amino acid), while others result in an amino acid alteration or in truncation of the encoded protein. These variants are associated with male  
10 infertility. The particular variants are useful in the methods described herein and are shown in Figures 107, 108, 111 and 112.

Thus, the invention relates to an isolated reproduction-specific nucleic acid molecule comprising a nucleic acid molecule having a nucleotide sequence selected from the group consisting of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23,  
15 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 55, 56, 58, 59, 61, 62, 64, 66, 67, 69, 71, 73, 74, 75, 77, 79, 81, 83, 86, 87 and 89; and the complements thereof.

The invention also relates to an isolated reproduction-specific nucleic acid molecule comprising a portion of a nucleic acid molecule having a nucleotide sequence selected from the group consisting of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 55, 56, 58, 59, 61, 62, 64, 66, 67, 69, 71, 73, 74, 75, 77, 79, 81, 83, 86, 87 and 89; and the complements thereof, wherein said portion is at least 14 contiguous nucleotides in length.

- 25 The invention further relates to an isolated reproduction-specific nucleic acid molecule comprising a nucleic acid molecule which hybridizes under high stringency hybridization conditions to a nucleic acid molecule having a nucleotide sequence selected from the group consisting of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 55, 56, 58, 59, 61, 62, 64, 66, 67, 69, 71, 73, 74, 75, 77, 79, 81, 83, 86, 87 and 89; and the complements thereof.

The invention also relates to an isolated reproduction-specific nucleic acid molecule comprising a nucleic acid molecule having a nucleotide sequence which is at least 70% identical to a nucleotide sequence selected from the group consisting of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 5 41, 43, 45, 47, 49, 50, 52, 54, 55, 56, 58, 59, 61, 62, 64, 66, 67, 69, 71, 73, 74, 75, 77, 79, 81, 83, 86, 87 and 89; and the complements thereof.

The invention further relates to an isolated reproduction-specific nucleic acid molecule which encodes a protein having an amino acid sequence selected from the group consisting of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 10 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 51, 53, 57, 60, 63, 65, 68, 70, 72, 76, 78, 80, 82, 84, 85, 88, and 90.

The invention further relates to an isolated variant reproduction-specific nucleic acid molecule comprising a nucleic acid molecule having the nucleic acid sequence of SEQ ID NO: 89 having one or more alterations selected from the group 15 consisting of A320G, T325A, C381T, G400A, A491G, G1282A, C1449A, T2219C, A2250T, T2295C and T2472C. The invention also relates to an isolated variant reproduction-specific nucleic acid molecule comprising a nucleic acid molecule having the nucleic acid sequence of SEQ ID NO: 50 having one or more alterations selected from the group consisting of the alterations shown in Figure 112.

20 The invention also relates to nucleic acid constructs comprising an isolated reproduction-specific nucleic acid molecule according to the invention operably linked to at least one regulatory sequence, and to a host cell comprising such nucleic acid constructs.

The invention also relates to an isolated protein comprising an amino acid 25 sequence selected from the group consisting of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 51, 53, 57, 60, 63, 65, 68, 70, 72, 76, 78, 80, 82, 84, 85, 88, and 90. The invention also pertains to an isolated protein comprising a portion of an amino acid sequence selected from the group consisting of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 51, 53, 57, 60, 63, 65, 68, 70, 72, 76, 78, 80, 82, 84, 85, 88, and 90, wherein said portion is at least 7 contiguous amino acids.

The invention is also drawn to an isolated protein comprising the amino acid sequence of SEQ ID NO: 90 having one or more alterations selected from the group consisting of W109R, V134I, G164R, N483K and V740A. The invention also relates to an isolated protein encoded by a nucleic acid molecule according to the 5 invention. The invention further relates to an antibody which specifically binds a protein according to the invention.

The invention also relates to a method of diagnosing infertility associated with alteration of a gene having a nucleotide sequence selected from the group consisting of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 10 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 55, 56, 58, 59, 61, 62, 64, 66, 67, 69, 71, 73, 74, 75, 77, 79, 81, 83, 86, 87 and 89, and whose alteration is associated with infertility, comprising the steps of: (a) obtaining a DNA sample to be assessed; (b) processing the DNA sample such that the DNA is available for hybridization; (c) combining the DNA of step (b) with nucleotide sequences complementary to the 15 altered nucleotide sequence of said gene, whose alteration is associated with infertility, under conditions appropriate for hybridization of the probes with complementary nucleotide sequences in the DNA sample, thereby producing a combination; and (d) detecting hybridization in the combination, wherein presence of hybridization in the combination is indicative of infertility associated with an 20 alteration of said gene.

The invention also relates to a method of diagnosing infertility associated with alteration of a gene having a nucleotide sequence selected from the group consisting of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 55, 56, 58, 59, 61, 62, 64, 66, 67, 69, 25 71, 73, 74, 75, 77, 79, 81, 83, 86, 87 and 89, and whose alteration is associated with infertility, comprising the steps of: (a) obtaining a DNA sample to be assessed; (b) processing the DNA sample such that the DNA is available for hybridization; (c) combining the DNA of step (b) with nucleotide sequences complementary to the nucleotide sequence of said gene, whose alteration is associated with infertility, 30 under conditions appropriate for hybridization of the probes with complementary nucleotide sequences in the DNA sample, thereby producing a combination; and (d)

detecting hybridization in the combination, wherein absence of hybridization in the combination is indicative of infertility associated with an alteration of said gene. In a preferred embodiment, infertility is a result of reduced sperm count, reduced sperm motility, malformed sperm, or combinations thereof.

5            BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the Spg1 cDNA sequence.

Figure 2 shows the Spg1 encoded protein sequence.

Figures 3a-3c show the Spg2 cDNA sequence.

Figure 4 shows the Spg2 encoded protein sequence.

10          Figures 5a-5b show the Spg3 cDNA sequence.

Figure 6 shows the Spg3 encoded protein sequence.

Figures 7a-7d show the Spg5 cDNA sequence.

Figures 8a-8b show the Spg5 encoded protein sequence.

Figures 9a-9b show the Spg13 cDNA sequence.

15          Figure 10 shows the Spg13 encoded protein sequence.

---

Figures 11a-11b show the Spg14 cDNA sequence.

Figures 12a-12b show the Spg14 encoded protein sequence.

Figures 13a-13b show the Spg15 cDNA sequence.

Figures 14a-14b show the Spg15 encoded protein sequence.

20          Figures 15a-15b show the Spg16 cDNA sequence.

Figure 16 shows the Spg16 encoded protein sequence.

Figures 17a-17b show the Spg17 cDNA sequence.

Figure 18 shows the Spg17 encoded protein sequence.

Figure 19 shows the Spg18 cDNA sequence

25          Figure 20 shows the Spg18 encoded protein sequence.

Figures 21a-21b show the Spg25 cDNA sequence.

Figures 22a-22b show the Spg25 encoded protein sequence.

Figure 23 shows the Spg27 cDNA sequence.

Figure 24 shows the Spg27 encoded protein sequence.

30          Figures 25a-25b show the Spg33 cDNA sequence.

-10-

- Figure 26 shows the Spg33 encoded protein sequence.
- Figure 27 shows the Spg34 cDNA sequence.
- Figure 28 shows the Spg34 encoded protein sequence.
- Figures 29a-29b show the Spg39 cDNA sequence.
- 5      Figure 30 shows the Spg39 encoded protein sequence.
- Figures 31a-31b show the Spg46 cDNA sequence.
- Figures 32a-32b show the Spg46 encoded protein sequence.
- Figures 33a-33b show the Spg58 cDNA sequence.
- Figures 34a-34b show the Spg58 encoded protein sequence.
- 10     Figure 35 shows the Spg59 cDNA sequence.
- Figure 36 shows the Spg59 encoded protein sequence
- Figures 37a-37b show the Spg64 cDNA sequence.
- Figure 38 shows the Spg64 encoded protein sequence.
- Figures 39a-39b show the Spg65 cDNA sequence.
- 15     Figure 40 shows the Spg65 encoded protein sequence.
- Figures 41a-41b show the Spg69 cDNA sequence.
- 
- Figure 42 shows the Spg69 encoded protein sequence.
- Figures 43a-43b show the Spg70 cDNA sequence.
- Figure 44 shows the Spg70 encoded protein sequence.
- 20     Figures 45a-45c show the Spg85 cDNA sequence.
- figure 46 shows the Spg85 encoded protein sequence.
- Figures 47a-47b show the Spg87 cDNA sequence.
- Figure 48 shows the Spg87 encoded protein sequence.
- Figures 49 shows the Spg84 cDNA sequence.
- 25     Figure 50 shows the hSPG1 cDNA sequence.
- Figure 51 shows the hSPG1 encoded protein sequence.
- Figures 52a-52b show the hSPG3a cDNA sequence.
- Figure 53 shows the hSPG3a encoded protein sequence.
- Figures 54a-54e show the hSPG3a genomic DNA sequence.
- 30     Figure 55 shows the hSPG3b cDNA sequence.
- Figures 56a-56d show the hSPG5 cDNA sequence.

- Figures 57a-57b show the hSPG5 encoded protein sequence.
- Figures 58a-58e show the hSPG5 genomic DNA sequence.
- Figures 59a-59c show the hSPG15 cDNA sequence.
- Figure 60 shows the hSPG15 encoded protein sequence.
- 5 Figures 61a-61t show the hSPG15 genomic DNA sequence.
- Figure 62 shows the hSPG18 cDNA sequence.
- Figures 63a-63b show the hSPG18 encoded protein sequence.
- Figures 64a-64b show the hSPG25 cDNA sequence.
- Figure 65 shows the hSPG25 encoded protein sequence.
- 10 Figure 66 shows the hSPG27 cDNA sequence.
- Figures 67a-67b show the hSPG34a cDNA sequence.
- Figure 68 shows the hSPG34a encoded protein sequence.
- Figure 69 shows the hSPG34b cDNA sequence.
- Figure 70 shows the hSPG34b encoded protein sequence.
- 15 Figures 71a-71b show the hSPG39a cDNA sequence.
- Figure 72 shows the hSPG39a encoded protein sequence.
- 
- Figure 73a and 73b show the hSPG39a genomic DNA sequence.
- Figure 74 shows the hSPG39b cDNA sequence.
- Figures 75a-75b show the hSPG46 cDNA sequence.
- 20 Figures 76a-76b show the hSPG46 encoded protein sequence.
- Figures 77 shows the hSPG64 cDNA sequence.
- Figures 78a-78b show the hSPG64 encoded protein sequence.
- Figures 79a-79b show the hSPG85 cDNA sequence.
- Figure 80 shows the hSPG85 encoded protein sequence.
- 25 Figures 81a-81b show the hSPG13 cDNA long form sequence.
- Figure 82 shows the sequence of the protein encoded by hSPG13 long form.
- Figures 83a-83b show is the hSPG13 cDNA short form sequence.
- Figure 84 shows the sequence of the protein encoded by hSPG13 short form.
- Figure 85 shows the hSPG39b encoded protein sequence.
- 30 Figures 86a-86b show the hSPG39b genomic DNA sequence.
- Figures 87a-87b show the hSPG70 cDNA sequence.

- Figure 88 shows the hSPG70 encoded protein sequence.
- Figures 89a and 89b show the nucleic acid sequence of TEX11 (SEQ ID NO: 89).
- Figure 90 shows the amino acid sequence of TEX11 (SEQ ID NO: 90).
- 5      Figure 91 depicts the identification of spermatogonia-specific genes by cDNA subtraction.
- Figure 92 depicts the known germ cell-specific genes enriched by subtraction.
- Figure 93 depicts the genes identified by the subtraction.
- 10     Figure 94 depicts the novel mouse germ cell specific genes identified by subtraction.
- Figure 95 depicts the post-transcriptional gene regulation of germ cell development.
- Figure 96 depicts the abundance of male germ-cell-specific genes on X Chromosome.
- 15     Figure 97 depicts the rapid evolution of spermatogonia-specific genes in mouse and human.
- 
- Figure 98 depicts hybrid male sterility in mice.
- Figure 99 depicts candidate genes for *Hst-3*.
- 20     Figure 100 depicts the 14 novel human testis-specific genes.
- Figure 101 depicts the BAC physical map and gene structure of TEX11.
- Figure 102 depicts the high throughput mutation screening by genomic sequencing.
- Figure 103 depicts the mutations found in infertile but not fertile males.
- 25     Figure 104 depicts the clustering of mutations in 3' but not 5' regions of introns of TEX11.
- Figure 105 depicts the epigenetic down regulation of X-linked genes during male meiosis.
- Figure 106 depicts the abundance of spermatogonia genes on the X Chromosomes.
- 30     Figure 107 depicts the intronic variants in TEX11.

-13-

Figure 108 depicts the coding variants in TEX11.

Figure 109 is a pedigree chart of WHT3759 depicting infertility as a result of mutations in TEX11.

Figure 110 depicts the coding variants found in infertile but not fertile males.

5       Figure 111 is a pedigree chart of WHT2508 depicting a mutation in TAF2Q resulting in infertility.

Figure 112 depicts the variants in TAF2Q.

Figures 113a, 113b and 113c depict the twenty-three spermatogonially expressed, germ cell specific genes in mouse and their human orthologs.

10

#### DETAILED DESCRIPTION OF THE INVENTION

A description of preferred embodiments of the invention follows.

Described herein are isolated reproduction-specific nucleic acid molecules which are male germ cell-specific, testis-specific or testis-and ovary-specific. Also 15 described are portions of the reproduction-specific nucleic acid molecules; complements of the reproduction-specific nucleic acid molecules and portions thereof and; nucleic acid molecules which hybridize to any of the reproduction-specific nucleic acid molecules under conditions of high stringency. Also described are nucleic acid molecules which are at least 70% identical in sequence to a 20 reproduction-specific nucleic acid molecule whose sequence is presented herein or to a nucleic acid molecule which encodes a reproduction-specific protein whose amino acid sequence is presented herein, or to a nucleic acid molecule which hybridizes to any of the reproduction-specific nucleic acid molecules under conditions of high stringency.

25       Particularly preferred are nucleic acid molecules and portion thereof which have at least about 60%, preferably at least about 70, 80 or 85%, more preferably at least about 90%, even more preferably at least about 95%, and most preferably at least about 98% identity with nucleic acid molecules described herein.

In one embodiment, the nucleic acid molecules hybridize under high 30 stringency hybridization conditions (e.g., for selective hybridization) to a nucleotide sequence described herein.

Stringent hybridization conditions for nucleic acid molecules are well known to those skilled in the art and can be found in standard texts such as *Current Protocols in Molecular Biology*, John Wiley & Sons, N.Y. (1998), pp. 2.10.1-2.10.16 and 6.3.1-6.3.6, the teachings of which are hereby incorporated by reference.

- 5 As understood by those of ordinary skill, the exact conditions can be determined empirically and depend on ionic strength, temperature and the concentration of destabilizing agents such as formamide or denaturing agents such as SDS. Other factors considered in determining the desired hybridization conditions include the length of the nucleic acid sequences, base composition, percent mismatch between
- 10 the hybridizing sequences and the frequency of occurrence of subsets of the sequences within other non-identical sequences. In one non-limiting example, nucleic acid molecules are allowed to hybridize in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more low stringency washes in 0.2X SSC/0.1% SDS at room temperature, or by one or more moderate stringency washes
- 15 in 0.2X SSC/0.1% SDS at 42°C, or washed in 0.2X SSC/0.1% SDS at 65°C for high stringency. Thus, equivalent conditions can be determined by varying one or more of these parameters while maintaining a similar degree of identity or similarity between the two nucleic acid molecules. Typically, conditions are used such that sequences at least about 60%, at least about 70%, at least about 80%, at least about
- 20 90% or at least about 95% or more identical to each other remain hybridized to one another.

- The percent identity of two nucleotide or amino acid sequences can be determined by aligning the sequences for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first sequence). The nucleotides or amino acids at corresponding positions are then compared, and the percent identity between the two sequences is a function of the number of identical positions shared by the sequences (*i.e.*, % identity = # of identical positions/total # of positions x 100). In certain embodiments, the length of a sequence aligned for comparison purposes is at least 30%, preferably at least 40%, more preferably at least 60%, and even more
- 25 30% preferably at least 70%, 80% or 90% of the length of the reference sequence. The actual comparison of the two sequences can be accomplished by well-known

- methods, for example, using a mathematical algorithm. A non-limiting example of such a mathematical algorithm is described in Karlin *et al.*, *Proc. Natl. Acad. Sci. USA*, 90:5873-5877 (1993). Such an algorithm is incorporated into the NBLAST and XBLAST programs (version 2.0) as described in Altschul *et al.*, *Nucleic Acids Res.*, 25:389-3402 (1997). When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (*e.g.*, NBLAST) can be used. See <http://www.ncbi.nlm.nih.gov>. In one embodiment, parameters for sequence comparison can be set at score=100, wordlength=12, or can be varied (*e.g.*, W=5 or W=20).
- 10       A mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, CABIOS (1989). Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the CGC sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap 15 penalty of 4 can be used. Additional algorithms for sequence analysis are known in the art and include ADVANCE and ADAM as described in Torellis and Roboti (1994) *Comput. Appl. Biosci.*, 10:3-5; and FASTA described in Pearson and Lipman (1988) *PNAS*, 85:2444-8.
- 18       The percent identity between two amino acid sequences can be accomplished 20 using the GAP program in the CGC software package (available at <http://www.cgc.com>) using either a Blossom 63 matrix or a PAM250 matrix, and a gap weight of 12, 10, 8, 6, or 4 and a length weight of 2, 3, or 4. In yet another embodiment, the percent identity between two nucleic acid sequences can be accomplished using the GAP program in the CGC software package (available at 25 <http://www.cgc.com>), using a gap weight of 50 and a length weight of 3. Thus, a substantially homologous amino acid or nucleotide sequence means an amino acid or nucleotide sequence that is largely but not wholly homologous to a nucleic acid molecule described herein, and which retains the same functional activity as the molecule to which it is homologous.
- 30       Also described herein are variant reproduction-specific nucleic acid molecules which are characteristic/indicative of infertility in men; mRNAs from

which the cDNA is transcribed (mRNAs that encode the cDNA); proteins encoded by each of the nucleic acid molecules presented herein and by variations thereof (nucleic acid molecules that, due to the degeneracy of the genetic code, encode an amino acid sequence presented herein or a functional equivalent thereof); variant 5 proteins associated with or indicative of lack of or reduction in sperm count (variant reproduction-specific proteins); characteristic portions of each of the proteins described herein; and antibodies that bind reproduction-specific proteins or variant reproduction-specific proteins or characteristic portions of these proteins.

The SEQ ID NO. for each of the sequences presented herein is shown in 10 Table 1. Where shown, lower case letters in the figures indicate untranslated regions of the DNA. However, not all untranslated regions are shown in lower case letters. The skilled artisan can determine the appropriate coding region for each cDNA described herein using methods (e.g., computer programs) that are routine in the art.

---

Table 1 List of Sequence ID Numbers for cDNA, Protein and Genomic Sequences

| SEQ ID NO. | Gene Name | Gene Symbol | Sequence | GenBank- NO. |
|------------|-----------|-------------|----------|--------------|
| 5          | 1 Spg1    | Taf2q       | cDNA     | AF285574     |
|            | 2 Spg1    | Taf2q       | Protein  | AF285574     |
|            | 3 Spg2    | Tex11       | cDNA     | AF285572     |
|            | 4 Spg2    | Tex11       | Protein  | AF285572     |
|            | 5 Spg3    | Nxf2        | cDNA     | AF285575     |
|            | 6 Spg3    | Nxf2        | Protein  | AF285575     |
| 10         | 7 Spg5    | Tex15       | cDNA     | AF285589     |
|            | 8 Spg5    | Tex15       | Protein  | AF285589     |
|            | 9 Spg13   | Rnf17       | cDNA     | AF285585     |
|            | 10 Spg13  | Rnf17       | Protein  | AF285585     |
|            | 11 Spg14  | Scmh2       | cDNA     | AF285577     |
|            | 12 Spg14  | Scmh2       | Protein  | AF285577     |
| 15         | 13 Spg15  | Mov10l1     | cDNA     | AF285587     |
|            | 14 Spg15  | Mov10l1     | Protein  | AF285587     |
|            | 15 Spg16  | Piwil2      | cDNA     | AF285586     |
|            | 16 Spg16  | Piwil2      | Protein  | AF285586     |
|            | 17 Spg17  | Tktl1       | cDNA     | AF285571     |
|            | 18 Spg17  | Tktl1       | Protein  | AF285571     |
| 20         | 19 Spg18  | Tex12       | cDNA     | AF285582     |
|            | 20 Spg18  | Tex12       | Protein  | AF285582     |
|            | 21 Spg25  | Usp26       | cDNA     | AF285570     |
|            | 22 Spg25  | Usp26       | Protein  | AF285570     |
|            | 23 Spg27  |             | cDNA     |              |
|            | 24 SPg27  |             | Protein  |              |
| 25         | 25 Spg33  | Tex19       | cDNA     | AF285590     |
|            | 26 Spg33  | Tex19       | Protein  | AF285590     |
|            | 27 Spg34  | Fthl17      | cDNA     | AF285569     |
|            | 28 Spg34  | Fthl17      | Protein  | AF285569     |
|            | 29 SPg39  | Tex13       | cDNA     | AF285576     |
|            | 30 Spg39  | Tex13       | Protein  | AF285576     |
| 30         | 31 Spg46  | Stk31       | cDNA     | AF285580     |
|            | 32 Spg46  | Stk31       | Protein  | AF285580     |
|            | 33 Spg58  | Tex16       | cDNA     | AF285573     |
|            | 34 Spg58  | Tex16       | Protein  | AF285573     |
|            | 35 Spg59  | Tex20       | cDNA     | AF285588     |
|            | 36 Spg59  | Tex20       | Protein  | AF285588     |
| 35         | 37 Spg64  |             | cDNA     |              |
|            | 38 Spg64  |             | Protein  |              |
|            | 39 Spg65  | Rnh2        | cDNA     | AF285581     |
|            | 40 Spg65  | Rnh2        | Protein  | AF285581     |
|            | 41 Spg69  | Pramell1    | cDNA     | AF285578     |
|            | 42 Spg69  | Pramell     | Protein  | AF285578     |
| 40         | 43 Spg70  | Tdrd1       | cDNA     | AF285591     |
|            | 44 Spg70  | Tdrd1       | Protein  | AF285591     |

-18-

|    |    |         |         |         |          |
|----|----|---------|---------|---------|----------|
|    | 45 | Spg85   | Tex14   | cDNA    | AF285584 |
|    | 46 | Spg85   | Tex14   | Protein | AF285584 |
| 5  | 47 | Spg87   | Tex18   | cDNA    | AF285583 |
|    | 48 | Spg87   | Tex18   | Protein | AF285583 |
|    | 49 | Spg84   | Tex17   | cDNA    | AF285579 |
|    | 50 | hSPG1   | TAF2Q   | cDNA    | AF285595 |
|    | 51 | hSPG1   | TAF2Q   | Protein | AF285595 |
| 10 | 52 | hSPG3a  | NXF2    | cDNA    | AF285596 |
|    | 53 | hSPG3a  | NXF2    | Protein | AF285596 |
|    | 54 | hSPG3a  |         | Genomic |          |
|    | 55 | hSPG3b  |         | cDNA    |          |
|    | 56 | hSPG5   | TEX15   | cDNA    | AF285605 |
|    | 57 | hSPG5   | TEX15   | Protein | AF285605 |
| 15 | 58 | hSPG5   |         | Genomic |          |
|    | 59 | hSPG15  | MOV10L1 | cDNA    | AF285604 |
|    | 60 | hSPG15  | MOV10L1 | Protein | AF285604 |
|    | 61 | hSPG15  |         | Genomic |          |
|    | 62 | hSPG18  | TEX12   | cDNA    | AF285600 |
| 20 | 63 | hSPG18  | TEX12   | Protein | AF285600 |
|    | 64 | hSPG25  | USP26   | cDNA    | AF285593 |
|    | 65 | hSPG25  | USP26   | Protein | AF285593 |
|    | 66 | hSPG27  |         | cDNA    |          |
|    | 67 | hSPG34a |         | cDNA    |          |
|    | 68 | hSPG34a |         | Protein |          |
| 25 | 69 | hSPG34b | FTHL17  | cDNA    | AF285592 |
|    | 70 | hSPG34b | FTHL17  | Protein | AF285592 |
|    | 71 | hSPG39a | TEX13A  | cDNA    | AF285597 |
|    | 72 | hSPG39a | TEX13A  | Protein | AF285597 |
|    | 73 | hSPG39a |         | Genomic |          |
| 30 | 74 | hSPG39b | TEX13B  | cDNA    | AF285598 |
|    | 75 | hSPG46  | STK31   | cDNA    | AF285599 |
|    | 76 | hSPG46  | STK31   | Protein | AF285599 |
|    | 77 | hSPG64  |         | cDNA    |          |
|    | 78 | hSPG64  |         | Protein |          |
| 35 | 79 | hSPG85  | TEX14   | cDNA    | AF285601 |
|    | 80 | hSPG85  | TEX14   | Protein | AF285601 |
|    | 81 | hSPG13  | RNF17   | cDNA    | AF285602 |
|    | 82 | hSPG13  | RNF17   | Protein | AF285602 |
|    |    | long    |         |         |          |
|    | 83 | hSPG13  | RNF17   | cDNA    | AF285603 |
|    |    | short   |         |         |          |
| 40 | 84 | hSPG13  | RNF17   | Protein | AF285603 |
|    |    | short   |         |         |          |
|    | 85 | hSPG39b | TEX13B  | Protein | AF285598 |
|    | 86 | hSPG39b |         | Genomic |          |

|    |        |       |         |          |
|----|--------|-------|---------|----------|
| 87 | hSPG70 | TDRD1 | cDNA    | AF285606 |
| 88 | hSPG70 | TDRD1 | Protein | AF285606 |
| 89 | hSPG2  | TEX11 | cDNA    | AF285594 |
| 90 | hSPG2  | TEX11 | Protein | AF285594 |

5

As used herein, the terms "reproduction-specific nucleic acid molecules" and "reproduction-specific genes" refer, respectively, to reproduction-specific nucleic acid molecules and reproduction-specific genes which are male germ cell-specific, testis-specific or testis- and ovary-specific. As used herein, the terms "variant

- 10 reproduction-specific nucleic acid molecules" and "variant reproduction-specific genes" refer, respectively, to reproduction-specific nucleic acid molecules and reproduction-specific genes which are male germ cell-specific, testis-specific or testis- and ovary-specific. Variant reproduction-specific nucleic acid molecules or genes can differ from reproduction-specific nucleic acid molecules in nucleic acid
- 15 sequence (e.g., deletion of one or more nucleotides, addition of one or more nucleotides or substitution or change in one or more nucleotides) or by their "loss" either physically or by failure of/or reduction in expression.

As used herein, the term "isolated" refers to substances which are obtained from (separated from) the sources in which they occur in nature, as well as to

- 20 substances (e.g., nucleic acid molecules, proteins, peptides) produced by recombinant/genetic engineering methods or by synthetic (chemical) methods.

- Also the subject of the present invention are methods in which the nucleic acid molecules, proteins, and antibodies of the present invention are useful. Such methods include a method of identifying genes or proteins characteristic of male
- 25 infertility, which include variant genes or proteins present in infertile men, but not in fertile men, and nucleic acid molecules or proteins present at different levels or at a different stage(s) in differentiation in infertile men than in fertile men. Also included is a method of diagnosing or aiding in the diagnosis of infertility in men, and a method of contraception in which sperm production or sperm count is reduced
  - 30 (no sperm is produced, sperm is produced to a lesser extent than normal in an individual) or defective sperm is produced (e.g., sperm with reduced motility, lifespan or testicular maturation arrest, or sertocytic cell defects). As used herein, the

terms "infertility in men" or "male infertility" include spermatogenic failure, a lack of sperm production, a severely reduced sperm count and production of defective sperm, each of which results in the inability or a severely reduced ability to cause fertilization.

- 5 Tex11 is a reproduction-specific gene that is X chromosome-linked. Its 3kb cDNA encodes a 917-residue protein that has no homology with other known proteins. The Tex11 gene is approximately 400kb and consists of 29 exons. As described in Example 2, 380 infertile males and 93 fertile males (fathers) were studied and 33 mutations were found in the nucleic acid sequence of TEX11; of  
10 these, 21 were found only in infertile males. These mutations include A320G, T325A, C381T, G400A, A491G, G1282A, C1449A, T2219C, A2250T, T2295C and T2472C and also shown is a two base pair insertion in exon 15 at nucleotide position 1233 (denoted as ins(2bp)) in Figure 108. A clustering of mutations is found in the 3' but not the 5' regions of the intron. These nucleic acid alterations are shown in  
15 Figure 108.

Another X linked reproduction-specific gene identified as containing variants as described herein is TAF2Q. The TAF2Q DNA and amino acid variations associated with infertility are shown in Figure 112.

- Isolated nucleic acid molecules (nucleic acid molecule genes, cDNAs,  
20 mRNA, RNA) of the present invention are of mammalian origin, such as of mouse (designated as Spg), human (designated as hSpg) or other primate, canine, feline or bovine origin.

- Both reproduction-specific nucleic acid molecules and variant reproduction-specific nucleic acid molecules are useful as hybridization probes or primers for an  
25 amplification method, such as polymerase chain reaction, to show the presence, absence or alteration of a gene(s) described herein. Probes and primers can comprise all or a portion of the nucleotide sequence (nucleic acid sequence) of a reproduction-specific nucleic acid molecule described herein or all or a portion of its complement. They can also comprise all or a portion of a variant reproduction-specific nucleic acid molecule which portion is characteristic of (indicative of)  
30 infertility or all or a portion of its complement. The probes and primers can be of

- any length, provided that they are of sufficient length and appropriate composition (appropriate nucleotide sequence) to hybridize to all or an identifying or characteristic portion of a gene indicative of infertility in men and remain hybridized under the conditions used. Useful probes include nucleic acid molecules which
- 5 distinguish between a reproduction-specific nucleic acid molecule described herein and a variant form of such a nucleic acid molecule that is indicative of infertility in men. Generally, the probe will be at least 14 nucleotides; the upper limit is the length of the nucleic acid molecule itself. Probes can be, for example, 14 to 20 nucleotides or longer (e.g., 15 to 25, 20 to 40, 30 to 50 or any other length
- 10 appropriate to specifically hybridize to a reproduction-specific gene or a variant reproduction-specific nucleic acid molecule and remain hybridized to nucleic acid molecules in a sample under the conditions used). The length of a specific probe will also be determined by the method in which it is used.

The genes described herein are useful to detect variant reproduction-specific

15 nucleic acid molecules present in a nucleic acid molecule sample obtained from men with lack of or reduction in sperm production, but not present in a nucleic acid molecule sample obtained from fertile men. Variant reproduction-specific nucleic acid molecules (e.g., having large alterations or deletions and small alterations or deletions such as short deletions, point mutations and small insertions) can be

20 identified with reference to reproduction-specific nucleic acid molecules/gene sequences presented herein. For example, nucleic acid molecules from infertile men with normal karyotypes and no Y chromosome microdeletions can be assessed. All human spermatogonic genes can be screened in a group of infertile men (with no or low sperm counts) using PCR. One pair of PCR primers can be designed for each

25 spermatogonic gene to produce a 200 bp PCR product or a PCR product of any appropriate length. A negative PCR result indicates the absence of a particular gene in an individual and can be confirmed by Southern blot. Small variations can be searched for in X-linked genes by nucleic acid molecule sequencing. Fertile men are used as controls. If a variant reproduction-specific gene is identified, additional

30 infertile men can be similarly screened to further confirm that the variant reproduction-specific nucleic acid molecule is associated with/indicative of

infertility in men. Alterations which are specific to infertile men can be used in the diagnosis of male infertility, alone or in conjunction with other methods of assessing male infertility.

The spermatogonic genes are strong candidates for pure male sterility factors.

- 5 A mutation in such a gene could alter its function in spermatogenesis and therefore cause male infertility. These novel genes are promising for the following reasons: first, they are germ cell-specific and expressed in spermatogonia. Two known germ cell-specific Y-linked human genes, RBM and DAZ, are also expressed in spermatogonia and are strongly implicated in male infertility when deleted. The
- 10 mouse homologues of RBM and DAZ were also identified in the subtraction protocol described in the Examples, suggesting an important role for other spermatogonic genes in male fertility. Second, nearly 50% of novel germ cell-specific genes are located on Chromosome X. This is significant from a theoretical point of view, indicating that Chromosome X may play the most important role in
- 15 male fertility. From a practical point of view, this result shows that mutations in infertile men are more likely to be found in X-linked genes than in autosomal genes.
- It is also far easier to search the X chromosome than within autosomes. In males, there is only one copy of the X-linked gene. For example, to find a mutation with a frequency of 1% in the population, one can screen 100 individuals if it is X-linked.
- 20 If the gene is autosomal, one has to screen 10,000 individuals ( $1\% \times 1\% = 0.01\%$ ) to find a homozygous mutation. However, the method described herein applies to the search for variations in infertile men in both X-linked and autosomal genes of this invention.

- In a further embodiment, the present invention is a method of diagnosing
- 25 reduced (partially or totally) sperm count or infertility in a man. For example, a method of diagnosing infertility in a man comprises (a) comparing the nucleic acid sequence of reproduction-specific nucleic acid molecules obtained from a man in whom infertility is to be assessed with the nucleic acid sequence of a corresponding variant reproduction-specific nucleic acid molecules from infertile men, wherein the
- 30 corresponding variant reproduction-specific nucleic acid molecules comprises an alteration characteristic of infertility in men; and (b) determining whether the

alteration characteristic of infertility in men is present in the reproduction-specific nucleic acid molecules obtained from the man in whom fertility is to be assessed. If the alteration is present in the nucleic acid molecules obtained, infertility is diagnosed in the man. A corresponding variant reproduction-specific nucleic acid

5 molecule is a reproduction-specific nucleic acid molecule of the same chromosomal location as the chromosomal location of nucleic acid molecule being analyzed (a nucleic acid molecule obtained from a man being assessed). One or more of the nucleic acid molecules described herein, or a portion(s) of one or more of the nucleic acid molecules or nucleic acid molecules that hybridize to nucleic acid molecules

10 described herein or to a complement thereof can be used in a diagnostic method, such as a method to determine whether a gene(s) or a portion of a gene(s) described herein is missing or altered in men. Any man may be assessed with this method of diagnosis. In general, the man will have been at least preliminarily assessed, by another method, as having reduced sperm count. By combining nucleic acid probes

15 derived from a sequence presented herein that is present in the DNA of fertile men, but not in the DNA of infertile men, with the nucleic acid molecules from a sample to be assessed, under conditions suitable for hybridization of the probes with DNA present in fertile men, but not with variant DNA, it can be determined whether the sample from a man to be assessed comprises the variant reproduction-specific

20 nucleic acid molecules. If the nucleic acid molecule is unaltered (is not a variant reproduction-specific nucleic acid molecules), it may be concluded that the alteration of the gene is not responsible for the reduced sperm count. Alternatively, the hybridization conditions used can be such that the probes will hybridize only with variant reproduction-specific nucleic acid molecules and not with reproduction-specific nucleic acid molecules.

25

Nucleic acid molecules assessed by the present method can be obtained from a variety of tissues and body fluids, such as blood or semen. In one embodiment, the above methods are carried out on nucleic acid molecules obtained from a blood sample. For example, a nucleic acid sample from men who are infertile or have a

30 low sperm count is assessed to determine whether all or a portion of a nucleic acid molecule(s) described herein differs in sequence from the sequence of a

corresponding nucleic acid molecule obtained from fertile men. In one embodiment, the altered nucleic acid molecules or gene which is assessed is one which differs from a sequence described herein by a deletion, addition or substitution of at least one nucleotide. In a second embodiment, the altered nucleic acid molecule or gene

5 is "missing" in that it is physically absent or not expressed/under-expressed (functionally absent). If an alteration occurs in a nucleic acid molecule obtained from infertile men, but not fertile men, it is indicative of (characteristic of) infertility and, thus, useful in the diagnosis of infertility in men. Such a nucleic acid molecule or gene is referred to as variant reproduction-specific nucleic acid molecule or

10 variant reproduction-specific gene.

This invention also relates to proteins encoded by the genes or portions of the genes described herein, proteins encoded by variant nucleic acid molecules (or portions thereof) that are characteristic of infertility in men), or by portions thereof and antibodies that recognize (bind) proteins described herein. Such antibodies are

15 useful in a diagnostic method to determine whether an intact or variant protein(s) is present in a sample (e.g., semen or testis biopsy) obtained from a man being assessed for infertility. They are also useful for identifying the expression of the gene(s) in a particular cell type or at a particular developmental stage. These antibodies can be used for studies of spermatogenesis. These antibodies can be used

20 for immunofluorescence of germ cells, or in Western blots for assessing the presence of the protein the antibody binds.

The invention also provides expression vectors containing a reproduction-specific nucleic acid molecule of the present invention which is operably linked to at least one regulatory sequence. "Operably linked" is intended to mean that the

25 nucleotide sequence is linked to a regulatory sequence in a manner which allows expression of the nucleotide sequence. The term "regulatory sequence" includes promoters, enhancers, and other expression control elements (see, e.g., Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990)). It should be understood that the design of the expression vector

30 may depend on such factors as the choice of the host cell to be transformed and/or the protein or peptide desired to be expressed. For instance, the proteins and

peptides of the present invention can be produced by ligating the cloned gene, or a portion thereof, into a vector suitable for expression in either prokaryotic cells, eukaryotic cells or both (see, for example, Broach, *et al.*, Experimental Manipulation of Gene Expression, ed. M. Inouye (Academic Press, 1993) p. 83; Molecular

- 5 Cloning: A Laboratory Manual, 2<sup>nd</sup> Ed., Sambrook *et al.* (Cold Spring Harbor Laboratory Press, (1989) Chapters 16 and 17).

Prokaryotic and eukaryotic host cells transfected by the described vectors are also provided by this invention. For instance, cells which can be transfected with the vectors of the present invention include, but are not limited to, bacterial cells, such

- 10 as *E. coli*, insect cells (baculovirus), yeast and mammalian cells, such as Chinese hamster ovary (CHO) cells.

Thus, a nucleotide sequence described herein can be used to produce a recombinant form of the encoded protein via microbial or eukaryotic cellular processes. Production of a recombinant form of the protein can be carried out using

- 15 known techniques, such as by ligating the oligonucleotide sequence into a DNA or RNA construct, such as an expression vector, and transforming or transfecting the construct into host cells, either eukaryotic (yeast, avian, insect or mammalian) or prokaryotic (bacterial cells). Similar procedures, or modifications thereof, can be employed to prepare recombinant proteins according to the present invention by
- 20 microbial means or tissue-culture technology.

The present invention also pertains to pharmaceutical compositions comprising the proteins and peptides described herein. For instance, the peptides or proteins of the present invention can be formulated with a physiologically acceptable medium to prepare a pharmaceutical composition. The particular physiological

- 25 medium may include, but is not limited to, water, buffered saline, polyols (e.g., glycerol, propylene glycol, liquid polyethylene glycol) and dextrose solutions. The optimum concentration of the active ingredient(s) in the chosen medium can be determined empirically, according to procedures well known in the art, and will depend on the ultimate pharmaceutical formulation desired. Methods of
- 30 introduction of exogenous polypeptides at the site of treatment include, but are not limited to, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous,

oral and intranasal methods. Other suitable methods of introduction can also include rechargeable or biodegradable devices and slow release polymeric devices. The pharmaceutical compositions of this invention can also be administered as part of a combinatorial therapy with other agents.

- 5        This invention also has utility in methods of treating disorders of reduced sperm count or enhancing/increasing sperm count and/or sperm activity. Reduced sperm count can be increased, for example, by administering a drug or agent that enhances the activity of a reproduction-specific gene or genes, with the result that sperm count is enhanced. Alternatively it can be used in a method of gene therapy,
- 10      whereby the gene or a gene portion encoding a functional protein is inserted into cells in which the functional protein is expressed and from which it is generally secreted to remedy the deficiency caused by the defect in the native gene.

- The invention described herein also has application to the area of male contraceptives. Variant reproduction-specific genes indicative of infertility can be
- 15      used to design agents which mimic the activity of the altered gene product(s). Thus, the present invention also relates to agents or drugs, such as, but not limited to, peptides or small organic molecules which mimic the activity (effects) of the variant gene product(s) of reproduction-specific genes (a variant reproduction-specific protein) of the present invention shown to be present in infertile men, but not in
- 20      fertile men. One embodiment of this invention is a method of contraception (a method of reducing sperm production and/or sperm activity) in a man, comprising administering to the man an agent that mimics the effects of a variant reproduction-specific protein in the man, whereby sperm production, sperm activity or both are reduced (and preferably abolished) in the man.

- 25      Alternatively, the agent or drug is one which blocks or inhibits the expression, activity or function of the reproduction-specific gene (e.g., an oligonucleotide or a peptide which blocks or inhibits the expression, activity or function of a reproduction-specific gene present in nucleic acid molecules of fertile men). The ideal agent will enter the cell, in which it will block or inhibit the
- 30      function of the gene, directly or indirectly. Alternatively, an agent or drug can

inhibit the activity or function of one or more proteins encoded by reproduction-specific nucleic acid molecules.

Reproduction-specific nucleic acid molecules described herein, such as those that encode proteins which have enzymatic activity, are potential targets of such blocking agents or inhibitors, as are the encoded proteins. For example, Spg17, which encodes a transketolase, and its human homologue; Spg25, which encodes a deubiquitinating enzyme, and its human homologue enzyme; Spg65, which encodes a RNase inhibitor, and its human homologue; and Spg85, which encodes a tyrosine protein kinase, and its human homologue can be targets of inhibitors, as can the encoded proteins. Agents that inhibit the gene, directly or indirectly, and/or the encoded product, directly or indirectly, are potential contraceptive agents. Agents that inhibit the gene, directly or indirectly, and/or the encoded product, directly or indirectly, are potential contraceptive agents.

Identification of a blocking agent or inhibitor of a reproduction-specific gene or an encoded product can be carried out using known methods. For example, a gene for which an inhibitor is to be identified can be expressed in an appropriate host cell (e.g., mouse or human cell lines), in the presence of an agent or drug to be assessed for its ability to block or inhibit a reproduction-specific gene(s) (a candidate drug). The ability of the candidate drug to do so can be assessed in several ways. For example, its effect on expression of the gene (e.g., by determining if the gene product is present in the host cells, by immunoassay or Western blot) can be assessed. Alternatively, binding of the candidate drug to the reproduction-specific gene or to the encoded protein can be assessed, as can degradation or disruption of the gene or the encoded protein. For example, hSPG25 has two catalytic domains (Cys domain and His domain) that are conserved within the ubiquitin specific protease family (Usp) members. In a bacterial assay (Baker et al., J Biol Chem 267, 23364-75 (1992)), the enzyme encoded by hSPG25 might cleave the Ub (ubiquitin) moiety from the substrate Ub-Arg- $\beta$ -Gal, a fusion protein of Ub and *E. coli*  $\beta$  galactosidase linked by an arginine. *E. coli* expressing Ub-Arg- $\beta$ -gal only will form blue colonies in the presence of its chromogenic substrate X-Gal. A deubiquitinating enzyme, like hSPG25, introduced in *E. coli* would cleave Ub-Arg-

$\beta$ -Gal into Ub and Arg- $\beta$ -Gal, which is an unstable protein, thus forming white colonies. A candidate drug would block the deubiquitinating activity of hSPG25. *E. coli* expressing both Ub-Arg- $\beta$ -Gal and hSPG25 should form blue colonies in the presence of X-Gal and the candidate drug.

- 5       The present invention also relates to antibodies that bind a protein or peptide encoded by all or a portion of the reproduction-specific nucleic acid molecule, as well as antibodies which bind the protein or peptide encoded by all or a portion of a variant nucleic acid molecule. For instance, polyclonal and monoclonal antibodies which bind to the described polypeptide or protein are within the scope of the
- 10      invention. In a specific embodiment, this invention relates to antibodies (polyclonal or monoclonal) that bind a protein or peptide that is associated with or indicative of infertility in men (a variant protein or peptide). Such antibodies can be used, alone or in combination with antibodies that bind proteins or peptides encoded by reproduction-specific nucleic acid molecules found in fertile men, in immunoassays
- 15      carried out to diagnose or aid in the diagnosis of infertility.

- Antibodies of this invention can be produced using known methods. An animal, such as a mouse, goat, chicken or rabbit, can be immunized with an immunogenic form of the protein or peptide (an antigenic fragment of the protein or peptide which is capable of eliciting an antibody response). Techniques for
- 20      conferring immunogenicity on a protein or peptide include conjugation to carriers or other techniques well known in the art. The protein or peptide can be administered in the presence of an adjuvant. The progress of immunization can be monitored by detection of antibody titers in plasma or serum. Standard ELISA or other immunoassays can be used with immunogen as antigen to assess the levels of
- 25      antibody. Following immunization, anti-peptide antisera can be obtained, and if desired, polyclonal antibodies can be isolated from the serum. Monoclonal antibodies can also be produced by standard techniques which are well known in the art (Kohler and Milstein, *Nature* 256:4595-497 (1975); Kozbar *et al.*, *Immunology Today* 4:72 (1983); and Cole *et al.*, *Monoclonal Antibodies and Cancer Therapy*,
- 30      Alan R. Liss, Inc., pp. 77-96 (1985)). Such antibodies are useful as diagnostics for

the intact or disrupted gene, and also as research tools for identifying either the intact or disrupted gene.

As described in Example 2, chromosomal mapping of the genes described herein demonstrated the surprisingly large number of genes on sex chromosome X.

- 5 This is the strongest evidence to date in support of the population genetics theory first suggested by R. A. Fisher and formalized by W. Rice. (Fisher, R.A., Biol. Rev. 6, 345-368 (1931); Rice, W., Evolution 38, 735-742 (1996); Hurst, L.D. and J.P. Randerson, Trends Genet. 15, 383-385 (1999)). This theory argues that sexually antagonistic traits (beneficial in one sex, but detrimental or neutral in the other) on 10 chromosome X tend to be strongly selected and, therefore, accumulate. Male germ cell-specific genes are only expressed in males and are, therefore, sexually antagonistic genes. The work described herein has resulted in identification of a number of testis-specific genes on chromosome X in both mice and humans.

In 1922, JBS Haldane observed that when in the offspring of two different 15 animal races one sex is absent, rare, or sterile, that sex is the heterozygous sex (XY or ZW) (Haldane JBS., *J. Genet.* 12:101-109 (1922)). Thus, in humans, males (XY) are sterile and female (XX) are fertile. This rule is obeyed in all animals:

- lepidoptera, birds, flies and mammals. The significance of this is the early stage in speciation, known as the origin of species. Haldane's rule incorporates the 20 following in his hypotheses: incompatibility between X- and Y linked genes, meiotic drive, disruption of dosage compensation, X-autosome translocation, dominance theory, faster-male theory and faster -X theory. The two assumptions made are that there are an abundance of "speciation genes" on X chromosome and the rapid evolution of "speciation genes". The result of the male sterility is reproduction 25 isolation and the origin of two species.

- Hybrid male sterility in mice has been mapped to *Hst-1* and *Hst-3* locus (Forejt J. et al., *Mammalian Genome* 1:84-91(1991); Matsuda Y. et al., Proc. Natl. Acad. Sci. USA 88:4850-4954 (1991)). In one study, the species *M.m. musculus* crossed with *M.m. domesticus*, the male sterility mapped to chromosome 17 t-complex (Hst-1 30 locus) and resulted in meiotic arrest of the spermatagonia. The X-Y dissociation and autosomal dissociation are high and the nature of the defect is genetic. In the other

study, *M. spretus* crossed with *M.m.domesticus* resulting in male sterility mapped to chromosome X distal end producing meiotic arrest of the spermatagonia, The X-Y dissociation is high/low, the autosomal dissociation high/low and the mature of the defect may be structural.

5       The present invention is illustrated by the following Examples, which are not intended to be limiting in any way. The teaching of all references cited herein are incorporated by reference in their entirety.

#### EXAMPLES

##### Example 1. Isolation and Cloning of Reproduction-Specific Genes from Mice

10      Isolation of Mouse Spermatogonia.

Spermatogonia were isolated by the Staphut method of sedimentation velocity at unit gravity (Bellve, A.R.. *Methods Enzymol.* 225, 84-113 (1993)). Primitive type A spermatogonia were prepared from testes of 6-day-old CD-1 mice (Charles River Laboratories). Mature type A and type B spermatogonia were isolated from 8-day-old CD-1 mice. By microscopic examination, at least 85% of the cells in the resulting preparations were spermatogonia, with no more than 15% somatic cell contamination.

#### cDNA Subtraction.

Three independent subtraction experiments were carried out using cDNAs from primitive type A, type A, or type B spermatogonia as the tracer. In all cases, tracer and driver cDNAs were derived from oligo(dT)-selected RNAs. Germ-cell-depleted testes were from *w<sup>y</sup>/w<sup>y</sup>* animals. Prior to subtraction, tracer and driver cDNAs were digested to completion with *Rsa* I. In each of the three experiments, we carried out one round of subtraction was performed using the "PCR-select" protocol (Clontech)(Diatchenko, L. *et al. Proc. Natl. Acad. Sci. USA* 93, 6025-6030 (1996). To more thoroughly subtract ubiquitous cDNAs, four additional rounds of subtraction were performed using a modified procedure (Douglas Menke, Whitehead Institute, personal communication) as described in Lavery, D.J.,*et al.; Proc. Natl.*

*Acad. Sci. USA* 94, 6831-6836 (1997). Between rounds of subtraction, enrichment of *Dazl* cDNA (germ-cell-specific) was monitored and disappearance of *G3PDH* cDNA (ubiquitous) was monitored. Three plasmid libraries (one for each of the three independent experiments) were prepared from the resulting pools of subtracted 5 cDNA fragments. 800 randomly selected clones from each of the three libraries (one read only) were sequenced. Of the 2400 sequences generated, 165 were of poor quality or derived from the cloning vector, leaving 2235 sequences for further analysis.

10       Sequence Analysis.

Of the 2235 sequence fragments, 409 corresponded to 13 previously reported germ-cell-specific genes (142 to *Mage*, 11 to *Ubel*, 2 to *Usp9y*, 44 to *Rbmy*, 10 to *Tuba3/Tuba7*, 2 to *Stra8*, 45 to *Ott*, 16 to *Sycp2*, 3 to *Sycp1*, 3 to *Figla*, 8 to *Sycp3*, 21 to *Ddx4*, and 102 to *Dazl*). Among the remaining 1826 sequence fragments, each 15 was searched electronically for redundancies and identities to known genes. 98 unique, novel sequence fragments were found that were each recovered at least twice. Each of these 98 sequences was tested for germ cell specificity by RT-PCR on 14 tissues. Of the 98 sequences, 45 were found to be expressed in spermatogonia and wild-type testis, but not in somatic tissues including *w<sup>y</sup>/w<sup>y</sup>* testis, indicating that 20 they are germ cell specific. After full-length cDNA sequences were assembled, these 45 sequence fragments were found to derive from a total of 23 different genes. Of the original set of 2235 sequence fragments, 546 corresponded to these 23 novel genes (8 to *Fth117*; 29 to *Usp26*; 38 to *Tkll*; 66 to *Tex11*; 2 to *Tex16*; 132 to *Taf2q*; 57 to *Pramell3*; 13 to *Nxf2*; 5 to *Tex13*; 4 to *Pramell*; 3 to *Tex17*; 2 to *Stk31*; 6 to 25 *Rnh2*; 29 to *Tex12*; 4 to *Tex18*; 2 to *Tex14*; 8 to *Rnf17*; 16 to *Piwil2*; 36 to *Mov10l1*; 7 to *Tex20*; 71 to *Tex15*; 6 to *Tex19*; 2 to *Tdrd1*).

cDNA Cloning.

Full-length mouse cDNA sequences were composites derived from subtracted cDNA clones, 5' and 3' RACE products, and clones isolated from 30 conventional cDNA libraries that were prepared from adult testes (Clontech, Palo

Alto, CA; Stratagene, La Jolla, CA; and one library of our own construction).

Orthologous human sequences were identified by searching GenBank using mouse cDNA sequences. Full-length human cDNA sequences were obtained by screening a cDNA library prepared from adult testes (Clontech).

##### 5 RH Mapping.

Using PCR, genomic DNAs from the 93 cell lines of the mouse T31 radiation hybrid panel (Research Genetics, Huntsville, AL) were tested for the presence of each gene (McCarthy, L.C. *et al.*, Genome Res. 7, 1153-1161 (1997)). PCR conditions and primer sequences have been deposited at GenBank, where 10 accession numbers are as follows: *Figla*, G65193; *Magea5*, G65194; *Ddx4*, G65195; *Ott*, G65196; *Sycp2*, G65197; *Sycp3*, G65198; *Stra8*, G65199; *Tuba3*, G65200; *Tuba7*, G65201; *Fthl17*, G65202; *Mov10l1*, G65203; *Nxf2*, G65204; *Piwil2*, G65205; *Pramel1*, G65206; *Pramel3*, G65331; *RNF17*, G65207; *Rnh2*, G65208; *Stk31*, G65210; *Taf2q*, G65211; *Tdrd1*, G65212; *Tex11*, G65213; *Tex12*, G65214; *Tex13*, 15 *G65215*; *Tex14*, G65216; *Tex15*, G65217; *Tex16*, G65218; *Tex17*, G65219; *Tex18*, G65220; *Tex19*, G65221; *Tex20*, G65222; *Tkl11*, G65223; and *Usp26*, G65224.

Analysis of the results positioned the genes with respect to the radiation hybrid map of the mouse genome constructed at the Whitehead/MIT Center for Genome Research (Van Etten, W.J. *et al.*, Nature Genet. 22, 384-387 (1999) ([www-genome.wi.mit.edu/mouse\\_rh/index.html](http://www-genome.wi.mit.edu/mouse_rh/index.html)). Chromosomal mapping data of human genes were retrieved from GenBank and confirmed by RH mapping using the GeneBridge 4 panel (Research Genetics). 20

##### Expression Analysis.

25 RT-PCR conditions and primer sequences have been deposited at GenBank, where accession numbers for mouse genes are as follows: *Gapd*, G65758; *Fshr*, G65759; *Dazl*, G65760; *Rbmy*, G65761; *Fthl17*, G65778; *Mov10l1*, G65779; *Nxf2*, G65780; *Piwil2*, G65781; *Pramel1*, G65762; *Pramel3*, G65782; *Rnf17*, G65763; *Rnh2*, G65783; *Stk31*, G65784; *Taf2q*, G65785; *Tdrd1*, G65786; *Tex11*, G65787; 30 *Tex12*, G65788; *Tex13*, G65789; *Tex14*, G65790; *Tex15*, G65791; *Tex16*, G65792;

*Tex17*, G65793; *Tex18*, G65794; *Tex19*, G65795; *Tex20*, G65796; *Tkdl1*, G65797; *Usp26*, G65798. Accession numbers for human genes are as follows: *FTH1*, G65764; *FTHL17*, G65765; *MOV10L1*, G65766; *NXF2*, G65767; *RNF17*, G65799; *STK31*, G65768; *TAF2Q*, G65769; *TDRD1*, G65770; *TEX11*, G65771; *TEX12*, 5 *G65772*; *TEX13A*, G65773; *TEX13B*, G65774; *TEX14*, G65775; *TEX15*, G65776; *USP26*, G65777.

**Example 2. Isolation and Cloning of Reproduction-Specific Genes**

380 infertile men (217 azoospermia and 163 oligospermia) and 93 fertile males were screened for mutations in two X-linked genes (TAF2Q and TEX 11).

- 10 The Klondike PCR-based subtraction protocol (Diatchenko, L. *et al.*, Methods Enzymol. 303, 349-80 (1999); Diatchenko, L. *et al.*, Proc. Natl. Acad. Sci. USA 93, 6025-30 (1996) and a modified subtraction protocol (modified by Doug Menke, personal communication) (Lavery, D.J. *et al.*, Proc. Natl. Acad. Sci. USA 94, 6831-6 (1997), Yang M. *et al.*, Anal. Biochem. 237(1):109-14 (1996); Ausubel, F.M. *et al.*, 15 Current Protocols in Molecular Biology (1997)) were used to generate a subtraction cDNA library for each type of spermatogonia. In detail, cDNAs synthesized from mRNAs of infertile males and fertile males' spermatogonia were subtracted against a mixture of cDNAs found in great excess derived from mRNAs of 11 different somatic tissues (heart, brain, lung, liver, skeletal muscle, kidney, spleen, stomach, thymus, skin and w<sup>v</sup>/w<sup>v</sup> testis). w<sup>v</sup>/w<sup>v</sup> testes are essentially devoid of germ cells (Geissler, E.N. *et al.*, Cell 55, 185-192 (1988)). After subtraction, germ cell-specific genes are expected to be enriched and ubiquitous genes to be removed to a certain degree. The subtractions were successful, as demonstrated by the enrichment of Dazl transcript (germ cell-specific) (Reijo, R., *et al.*, Genomics 35, 20 346-52 (1996)) and the disappearance of G3PDH transcript (ubiquitous, present in all the tissues). The subtracted cDNAs were directly cloned into a plasmid vector to make a subtracted cDNA library. A library was constructed from infertile men and fertile men. Clones randomly picked from each library were sequenced, using ABI 370 sequencer (ABI, Foster City, CA). A total of 2300 sequences was obtained. A 25 30 combination of different methods was used to obtain full-length cDNA sequences:

subtracted DNA sequencing, cDNA library screening of Stratagene and Clontech testis cDNA libraries (Stratagene, La Jolla, CA and Clontech, Palo Alto, CA), direct RT PCR of testis cDNAs and sequencing, 5' RACE (rapid amplification of cDNA ends) (Ausubel, F.M. et al., Current Protocols in Molecular Biology (1997)), 3'  
5 RACE, and direct screening and amplification of cDNA library subpools by PCR using one gene-specific primer and one vector-specific primer.

To determine the germ cell specificity, RT-PCR assay (reverse transcription polymerase chain reaction) of each clone was performed on a panel of thirteen different tissues (heart, brain, lung, liver, skeletal muscle, kidney, spleen, stomach,  
10 thymus, skin and w<sup>v</sup>/w<sup>v</sup> testis) (Ausubel, F.M. et al, Current Protocols in Molecular Biology (1997)). These novel X linked genes are designated FTH1, FTHL17, USP26, TEX 11, TAF2Q, NXF2, TEX13A, TEX13B, STK31, TEX12, TEX14, RNF17, MOV10L1, TEX15 and TDRD1.

The mutations in TEX 11 and TAF2Q were analyzed further. The structure  
15 of the gene was assessed, TEX11 BAC's and sequence was screened, primers were chosen spanning each exon. Infertile men were screened and the two genes sequenced. Polymorphism and causality were distinguished by looking at normal male controls, nature of variants, study of maternal relative (linkage), conservation between mouse and human, and splicing in vivo. There were 33 mutations found in  
20 TEX11, 12 in exons (4 silent) and 21 in intron. 21 were found only in infertile males (380 males), 1 found only in normal (fertile) males (93 males) and 11 polymorphisms (found in both infertile and normal males). The variants of TEX 11 are depicted in Figure 108.

There were 15 variants found in TAF2Q, 7 in exons and 8 in introns. Of these, 5  
25 were polymorphisms( found in both infertile and normal males), 9 were found only in infertile males, and 1 was found only in normal fertile males. Figure 112 depicts the variants in TAF2Q.

A combination of different methods was used to obtain full-length cDNA sequences: subtracted DNA sequencing, cDNA library screening of Stratagene and  
30 Clontech testis cDNA libraries (Stratagene, La Jolla, CA and Clontech, Palo Alto, CA), direct RT PCR of testis cDNAs and sequencing, 5' RACE (rapid amplification

-35-

of cDNA ends) (Ausubel, F.M. *et al.*, Current Protocols in Molecular Biology (1997)), 3' RACE, and direct screening and amplification of cDNA library subpools by PCR using one gene-specific primer and one vector-specific primer.

---

## CLAIMS

What is claimed is:

1. An isolated reproduction-specific nucleic acid molecule comprising a nucleic acid molecule having a nucleotide sequence selected from the group consisting of
  - (a) SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 55, 56, 58, 59, 61, 62, 64, 66, 67, 69, 71, 73, 74, 75, 77, 79, 81, 83, 86, 87 and 89; and
  - (b) the complements of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 55, 56, 58, 59, 61, 62, 64, 66, 67, 69, 71, 73, 74, 75, 77, 79, 81, 83, 86, 87 and 89.
2. A nucleic acid construct comprising an isolated reproduction-specific nucleic acid molecule according to Claim 1 operably linked to at least one regulatory sequence.
3. A host cell comprising a nucleic acid construct according to Claim 2.
4. An isolated reproduction-specific nucleic acid molecule comprising a portion of a nucleic acid molecule having a nucleotide sequence selected from the group consisting of:
  - (a) SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 55, 56, 58, 59, 61, 62, 64, 66, 67, 69, 71, 73, 74, 75, 77, 79, 81, 83, 86, 87 and 89; and
  - (b) the complements of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 55, 56, 58, 59, 61, 62, 64, 66, 67, 69, 71, 73, 74, 75, 77, 79, 81, 83, 86, 87 and 89,

wherein said portion is at least 14 contiguous nucleotides in length.

5. A nucleic acid construct comprising an isolated reproduction-specific nucleic acid molecule according to Claim 4 operably linked to at least one regulatory sequence.
- 5 6. A host cell comprising a nucleic acid construct according to Claim 5.
7. An isolated reproduction-specific nucleic acid molecule comprising a nucleic acid molecule which hybridizes under high stringency hybridization conditions to a nucleic acid molecule having a nucleotide sequence selected from the group consisting of:
  - 10 (a) SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 55, 56, 58, 59, 61, 62, 64, 66, 67, 69, 71, 73, 74, 75, 77, 79, 81, 83, 86, 87 and 89; and
  - (b) the complements of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 55,
- 15 56, 58, 59, 61, 62, 64, 66, 67, 69, 71, 73, 74, 75, 77, 79, 81, 83, 86, 87 and 89.
8. A nucleic acid construct comprising an isolated reproduction-specific nucleic acid molecule according to Claim 7 operably linked to at least one regulatory sequence.
- 20 9. A host cell comprising a nucleic acid construct according to Claim 8.
10. An isolated reproduction-specific nucleic acid molecule comprising a nucleic acid molecule having a nucleotide sequence which is at least 70% identical to a nucleotide sequence selected from the group consisting of:

- (a) SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 55, 56, 58, 59, 61, 62, 64, 66, 67, 69, 71, 73, 74, 75, 77, 79, 81, 83, 86, 87 and 89; and
  - (b) the complements of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 55, 56, 58, 59, 61, 62, 64, 66, 67, 69, 71, 73, 74, 75, 77, 79, 81, 83, 86, 87 and 89.
- 5
- 11 11 A nucleic acid construct comprising an isolated reproduction-specific nucleic acid molecule according to Claim 10 operably linked to at least one regulatory sequence.
- 10
12. A host cell comprising a nucleic acid construct according to Claim 11.
13. An isolated reproduction-specific nucleic acid molecule which encodes a protein having an amino acid sequence selected from the group consisting of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 51, 53, 57, 60, 63, 65, 68, 70, 72, 76, 78, 80, 82, 84, 85, 88, and 90.
- 15
14. A nucleic acid construct comprising an isolated reproduction-specific nucleic acid molecule according to Claim 13 operably linked to at least one regulatory sequence.
- 20 15. A host cell comprising a nucleic acid construct according to Claim 14.
16. An isolated variant reproduction-specific nucleic acid molecule comprising a nucleic acid molecule having the nucleic acid sequence of SEQ ID NO: 89 having one or more alterations selected from the group consisting of A320G, T325A, C381T, G400A, A491G, G1282A, C1449A, T2219C, A2250T, 25 T2295C and T2472C.

17. A nucleic acid construct comprising an isolated reproduction-specific nucleic acid molecule according to Claim 16 operably linked to at least one regulatory sequence.
18. A host cell comprising a nucleic acid construct according to Claim 17.
- 5 19. An isolated variant reproduction-specific nucleic acid molecule comprising a nucleic acid molecule having the nucleic acid sequence of SEQ ID NO: 50 having one or more alterations selected from the group consisting of the alterations shown in Figure 112.
20. A nucleic acid construct comprising an isolated reproduction-specific nucleic acid molecule according to Claim 19 operably linked to at least one regulatory sequence.
- 10 21. A host cell comprising a nucleic acid construct according to Claim 20.

---

22. An isolated protein comprising an amino acid sequence selected from the group consisting of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 15 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 51, 53, 57, 60, 63, 65, 68, 70, 72, 76, 78, 80, 82, 84, 85, 88, and 90.
23. An isolated protein comprising a portion of an amino acid sequence selected from the group consisting of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 51, 53, 57, 60, 63, 65, 20 68, 70, 72, 76, 78, 80, 82, 84, 85, 88, and 90, wherein said portion is at least 7 contiguous amino acids.
24. An isolated protein encoded by a nucleic acid molecule according to Claim 1.

25. An isolated protein encoded by a nucleic acid molecule according to Claim 4.
26. An isolated protein encoded by a nucleic acid molecule according to Claim 7.
- 5 27. An isolated protein encoded by a nucleic acid molecule according to Claim 10.
28. An isolated protein encoded by a nucleic acid molecule according to Claim 13.
- 10 29. An isolated protein encoded by a nucleic acid molecule according to Claim 16.
30. An isolated protein encoded by a nucleic acid molecule according to Claim 19.
31. An antibody which specifically binds a protein according to Claim 22.
32. An antibody which specifically binds a protein according to Claim 23.
- 15 33. An antibody which specifically binds a protein according to Claim 24.
34. An antibody which specifically binds a protein according to Claim 25.
35. An antibody which specifically binds a protein according to Claim 26.
36. An antibody which specifically binds a protein according to Claim 27.
37. An antibody which specifically binds a protein according to Claim 28.

38. An antibody which specifically binds a protein according to Claim 29.
39. An antibody which specifically binds a protein according to Claim 30.
40. An isolated protein comprising the amino acid sequence of SEQ ID NO: 90 having one or more alterations selected from the group consisting of W109R,  
5 V134I, G164R, N483K and V740A.
41. An antibody which specifically binds a protein according to Claim 40.
42. A method of diagnosing infertility associated with alteration of a gene having a nucleotide sequence selected from the group consisting of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45,  
10 47, 49, 50, 52, 54, 55, 56, 58, 59, 61, 62, 64, 66, 67, 69, 71, 73, 74, 75, 77, 79, 81, 83, 86, 87 and 89, and whose alteration is associated with infertility, comprising the steps of:
  - a) obtaining a DNA sample to be assessed;
  - b). processing the DNA sample such that the DNA is available for  
15 hybridization;
  - c) combining the DNA of step (b) with nucleotide sequences complementary to the altered nucleotide sequence of said gene, whose alteration is associated with infertility, under conditions appropriate for hybridization of the probes with complementary
  - nucleotide sequences in the DNA sample, thereby producing a  
20 combination; and
  - d) detecting hybridization in the combination,  
wherein presence of hybridization in the combination is indicative of infertility associated with an alteration of said gene.

43. A method according to Claim 42, wherein infertility is a result of reduced sperm count, reduced sperm motility, malformed sperm, or combinations thereof.
44. A method of diagnosing infertility associated with alteration of a gene having a nucleotide sequence selected from the group consisting of SEQ ID NO: 1, 5 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 55, 56, 58, 59, 61, 62, 64, 66, 67, 69, 71, 73, 74, 75, 77, 79, 81, 83, 86, 87 and 89, and whose alteration is associated with infertility, comprising the steps of:
  - 10 a) obtaining a DNA sample to be assessed;
  - b) processing the DNA sample such that the DNA is available for hybridization;
  - c) combining the DNA of step (b) with nucleotide sequences complementary to the nucleotide sequence of said gene, whose alteration is associated with infertility, under conditions appropriate for hybridization of the probes with complementary nucleotide sequences in the DNA sample, thereby producing a combination; and
  - d) detecting hybridization in the combination,  
wherein absence of hybridization in the combination is indicative of  
15 infertility associated with an alteration of said gene.
45. A method according to Claim 42, wherein infertility is a result of reduced sperm count, reduced sperm motility, malformed sperm, or combinations thereof.

Figure 1

**SEQ ID NO.:1 Spg1 cDNA sequence**  
acactcaatctccaaagggtggaaaaagaagtgaaagagactgctctactcagatgtgaa  
gctgtcagtgtccgcgtggaaagtcgttgtatgtatgtatgtcaaggaaatagaaggta  
agggtcCATGCCAACCCTCGAGGGGCTCGAGGCCACCGACTCCGGCAGGGCCAAGT  
CTCAGAAGACCCCCCGCCAGGGCACTGCTCGCTGCCAGACCCCTCGAGAGTGCCATGCGA  
TCCATGAGTGTAAAGGCTTGAATGTCATGACGTTGAGGAACAGTTTATATTGCGTCTGCC  
TCCGGAAACAAGCTTATGCTGTCAGGAAAATTATACTACATTCTAGAAAATGCTGCTTGGAAAGG  
ATAAACTAAAAATGACTTTCTCTGATGGCCACCATGCGTTGTTCAAGTAGACAAC  
GTCTCACTGCCTGTAACCTGGTTAACCTGCCTTGTGTTATCGGAAGGCTGAAAACAT  
TGACAGAAAAGACATTTATAAGACCGCGGATGTTCTCAGATGCTGTATGCACTGCCTG  
AAGGTGAGCCTCATTCCTCTGAAGAACCAAGTGTCTACTGGTCTACTGTAATT  
GGAATTAGTGAAGGGAGGCAGAGAGAAAATATAACTGGAAGCAGGCCATTACTCC  
ACCACTTAAGAATGTCAGAAAGAAAAGGTTCCGAAACACAAAAAAGCTCCCAGATG  
TGAAACAAGTGGATGAAATCAACTTTAGTGAGTACACTCAATCTCAAGTGTGGAAAAA  
GAAGTGAAGAGAGACTGCTCTACTCAGATGCTGAAGCTGTCAGTGTCCGCTGGAAAGTCGT  
TGATGATGATGATGCTAAGGAAATAGAAAAGTCAGGGTCCATGCCAACCACTCCAGGAA  
TCTCACAGATGGTGGTGCTAGTTATCAGACTATGATGTTCCGGAGATGATGGGT  
GATTCTGGCAGCAACAGTAATGATGTTGAAGAGAAAGAGTAATGAAGGTGACGACGGATGA  
TGATGAAGATGAAGATGATGAAAGACTATGGAATGAAAAGGAGGAGGAAGAGACAGACA  
ATTCTGAAGAGGGAGTTAGAGAAGGAGCTGCAGGCCAATTAAATGAAATTAGCCTCCAT  
GAAGCAGACCAAGATTACAGTTCAATAACCATGGCAATTCAAGAAACTGATTTTATCAA  
AGAAAAGAGGCTCCAGATGATTATAAAAAGCCAGCGACAGAAGGAACCTCTCAGGA  
AACTGGAAAATGACCTCAAGAGACATTCCAGAATGTTGGGGAGCTTAACATA  
ATGGAAAAGAGAAGTGTGAACAGATTACACCTCCAGGAACAACTGAAATGTTCCCT  
GAAGGAGTAAggaaaagccctcagcctggcacacccaagtggattcaccctccagatgaaga  
ctgggttggaaaccacatactttctgtccctctactttatcttaaacaactttat:t:gttg  
agcattttcactaaagtaaaatctaaggatcacatttatatacgagacatataagagg  
gagttatataaaatgcataggtttagagacccacatggatgttgt:tctttgtcaat  
tttagagattazatgtgttattttttatctttactttatctatgttaccatgagatcattca  
gccgtccttgtcaaaggtttaggcttagaaagatacacagctgttttacataagttact  
tttcaaacctggtttaagttatcttacaattttgaaatgtatcaaattgtcagctgg  
caatcccagcaatttaaaaggcagaagcagaaggtaaaatgtcagccagccgtggctg  
tatataagacccigtctcaaaaataaaactgaaaaccaaaaaaaaaaaaaaa

Figure 2

SEQ ID NO.:2 Spg1 encoded protein sequence Figure 2  
MPTTRGARGPPTPGRAKSQKTPRQGTARCQTLERAMRSMSVRLCHDVEEQFILRLLPPE  
QAVAVRKIIHSPNAAWKDKLKIDFSPDGHHAVVQVDNVLPAKLVNLPCVIGSLKTIDR  
KTFYKTADVSQMLVCSPEGEPHSPPEEVVSTGPTVIGISEGKAERKKYNWKHGITPPPL  
KNVRKKRFRKTTKLPDVKQVDEINFSEYTQSPSVEKEVKRLLYSDAEAVSVRWEVVDD  
DDAKEIESQGSMPTTPGISQMGGASLSDYDVFREMMGDGSNSNDVEEKSNEGDDDDDE  
DEDDEDYGYNEKEEEETDNSEELEKELQAKFNEFLHEADQDYSSITMAIQKLIFIKEK  
RLQMTYKXAAQRQKELLRKVENLTLKREFQNVLGKLNMEKEKECEQIYHLQEQLKCFLKE

Figure 3a

SEQ ID NO.:3 Spg2 cDNA sequence  
GAGACGGAGACGGAGTCGGAGACGCCAGACGCCAGCAAGCGTTCCGGG1GTGGGAGAGC  
AGACGCCCTCCCTGTTAACAACTTTCTCCTGGATTGCGAGCTTCCTCAACGTCCTGCA  
CCTTCAGGCTGGAGGCCAGACATTAAAAATGGACCGCATTACTGACTTTACTTCTTG

Figure 3b

GAACTTCAAGAGAAATCTGTTAAAACCCCTGATCATACTGGTAATTCACTGGAGACTACAAGA  
AATGATTGACAGAGATTCTTCACAAACATATCAAATTCAACAGAGAGTCTCTGACTGAAA  
TACAGAATATTCAAGATTGAAGAAATTGCAGTGAAACCTGTGGAACGGGGCAGTTACTAAG  
AGAGTAGAAGTGTCTGTGAGGAAAAACCAGGCAGCTAAACTGTGTTATATTGCTTGCAA  
GCTGGTATATATGCATGGAATCTCAGTCTCTTCAGAAGAAAGCTATTCAAAGACAGATTT  
TGATGAATATAAAAACAGGAAAAGACTCGTTGTATACTGGAAATGCTCAGATTGCTGAT  
GAATTTCAGCTGCCATGACTGATCTGGAGAGATTATATGTCAGATTATGCAAGAG  
CTGCTACACCGAGGCCAACGTGTGTGTTAAAGATGATTGTTGAGAAAGGCATCTCC  
ATGTGCTTCTTACCAAGCTGAGTCAGCTGTTGCTCAGGGGATTTCAGAAAGCATCT  
CTGTGCGTCTTACGTTGCAAAGATATGCTGATGAGACTCCCTAACATGACAAAATATCT  
TCATGTAECTCTGTTACAACCTGGCATAGAACGCAAGCAAGCGGAATAAAACAAAGAGA  
GTTCAATTCTGGCTTGGCCAAGCTATCAAATTGGGAAGATGGATAGGCCCTCTGTTGAG  
CCACAAATGCTGGCTAAACGCTGCCGGTTACTAGCCACTATTATTTGAATTGTTGGTGG  
CGAACATATTATACCAAGGCCCTCATGCTATACTCATTGCAAACAGGAACATTAC  
ATCCAGCTGGGCTTTCTTAAAGATGAGGATCCTCATGAAAGGCAACTCATGTAATGAA  
GAACCTCTGAAGCTGTAAGGAAATACTATATCTGCTATGCCCTTGGAAATTCTATCT  
GAGCATTATTCAATTCTGTAGATAATAAAAGAGAGTCTGTTGGGTTCGCTTCTGA  
GAATCATCTCTGACAATTAAAGTCGCCAGAAGATAGGAAGAGAAATTCTGTTCTAC  
ATTGACACGCTTTACAAAGGATCAAGACATGATTGCTGAAGAGAAAGATTAAAGACGT  
CCTTAAAGGTTACCPAACAAAGAGTCGACTGTCAGAGATTGGTAAATTGGTACACA  
ACATTCTGTGGGAAAGGCTTCCAGAACGTTAAGGTCCAAGATGCTGATGCCCTA  
CACTGGTACAGTTATTCTCTGAAGTTGATGAGTATGATAAACAGAGATCTGGATTGAT  
CAAGCTGAAGAGGAACATGGTTCTGTTACTTATCTTGAACAAACTGATAAGGCTA  
AAGAGGCCATAGCAGAACAGGTTAAGGTGAGCAAAGGATCCTACACATGTTTCACTCGGTATTAT  
ATATTCAAGATCGCAATCATGGAGGGTGTGCTTCAAGAGCTTACAGGTGGTCAGTGC  
TTTAAAGAAATCATTAAATGGATGGAGAATCAGAACATCGTGGACTAATTGAAGCTGGAG  
TTTCAACTCTCACAACTCTAACAGTTATCTATAGATTGCTCTAGAGAACAGCAA  
TTTGTGGCAGAAAGAGCTTGGAAATAATTATGTCACATTCAAAAGACCCAAAAGAAGT  
ACTTGGAGGTTAAAGTGTCTCATGCGGATTATTCTTCCACAAAGCTTTCAATGCAAG  
AATCTGAATATAAAAAGAACAGAAATGGTAGACTTTGGAACTACTTGAATACAGCACTC  
CTGAAATTCTGAATATTAAATGAACTCCCTCAACTTTGGATTATATGGTTAATGA  
TGCCAATTGGTTCAGGAAAATAGCTTGGAACTTAGCTGTGCAATCTGAGAACAGGATCTAG  
AGGCAATGAAACTTTTCTATGGTTCTTATAAGCTGCCCCCTTTGTCCTTGAT  
CAAGGACTACTGATTGACAGAAAACGTTGAGAACATGTTACTAACAGAACAGCACTT  
TAGAGGAAGAAAAGCTCCACAAATTGAGAACATGTTACTAACAGAACAGCACTT  
AGCAGATAAAAGAAATGCAAAAAAGTTGGAAATCTCCTGAAAAAAACAGGGGACTCTCA  
GGTGTGACTGTTGGGTATTGCTCTGCTATGAAATTGAAATTGAAAGTAAACCAAAACGAA  
TGATCCATCAGCAGATTGAGGATTTCAGTTGGAAAGATGCTGATTTAGAATGCA  
AACACTTGAACAAATGGCATTACTAGCTATGGATAAACCTGCAACTATCTACTATT  
GCACATAAGGCCATGAAAAACTTTTATTGATGTACAGAAAACAGGAGCCAGTTGATGT  
TTTAAATACAGCGTATGCACTGACAACTGATTAAACTCTGGTGGCAGATGAAGTAT  
GGAATATATCGCTGTATCCCCTAAAAGAAGTTCAAGGCCATTAAAATACTCTGAGC  
ATCATTGCCAAACGAAGGATAACCCAGAAGAGGAGATTGTATGGCTAATGATCAAGTC  
TTGGAATATTGGAAATACTGATGTCAGCAAGAACAGTATATATCTGAGAAAGGTGG  
CTGCAATGGCATGGATTCCCTGGCACCTTAGCACCCCTCAAAACAAAGCTATGAGCA  
AAGGTGAATCTCTGTATGCCAACCTCATGGAAATATTAGATAAAAAGACGGATTAAAG  
ATCTACAGAGAGTACTGAACAAATTAGAGCACTTATTGTTCTCCGGAGGATCAAGGTT  
CAGTTCCAGCACCAACGTGGCAGCTCAAAACCATCTGTAATTCCAGTTCCAGGGAAATC

Figure 3c

TGATACTCCCCCTCTGGTCACTGTGGGTACATGTGATAAAAGTAAAGAGTGATTTCACCTT  
 TTCAGTGGAGAGTCATAATGATTGAAGGGAGGTTGTAGAAAGCAGACTAGCTCACAGCAA  
 CTTGGAAGGTGTATATTGAGGCCGTGACTATTTCAGTGGTGGGTGTCA

**SEQ ID NO.:4 Spg2 encoded protein sequence**  
 MDRITDFYFLDFRESVKTLLITGNNSWRLQEMIDRFFTNISNFNRESLTEIQNIQIEEIA  
 VNLWNWAVTKVELSVRKNAKLCYIACKLVYMHGIVSSEEAIQRQILMNIKTGKEW  
 LYTGNAQIADEFFQAAMTDLERLYVRLMQSCYTEANVCVYKMKIVEKGIFHVLSYQAESA  
 VAQGDFKKASLCVLRCMDLMRPNMTKYLHVLCYNLGIEASKRNKYKESFWLGQSSE  
 IKGMDRRSVEPQMLAKTLRLLATIYLNCGEAYYTAKAFIAILIANKEHLHPAGLFLKMR  
 ILMKGNSCNEELLEAAKEILYLAAMPLEFYLSTIQFLIDNKRESVGFRFLRIISDNFKSP  
 EDRKRILLFYIDTLQKDQDMAEEKKDVLKGYQTRSRLSRDLVNWLHNILWGKAARS  
 VKVQKYADALHWYSYSLKLYEYDKADLDLIKLRNMVSCVLSLKQLDKAKEAIAEVEQK  
 DPTHFVTRYYIFKIAIMEGDAFRALQVVSALKSILMDGESEDRLGLIEAGVSTLTLSLS  
 IDFALENGQQFVAERALEYLCQLSKDPKEVLGGLKCLMRILPQAFHMPESEYKKEMG  
 RLWNYLNTALLFSEYFNEAPSTLDYMVNDANWFRKIAWNLAQSEKDLEAMKNFFMVS  
 YKLSLFCPLDQQLIAQKTCLLVAAAVIDLDRGRKAPTICEQNMLLRTALEQIKCKKVW  
 NLLKKTGDFSGDDCGVLLLYEFEVKTKTNDPSLSRFDSVWKMPDLCRTLETMALLA  
 MDKPAYYPTIAHKAMKLLLMYRKQEFDVVLKYSVCMHNLIKLLVADEVWNISLYPLKE  
 VQSHFKNTLSIIRQNEGYPEEEIVWLMIKSWNIGILMSSKNYISAERWAAMALDFLGH  
 LSTLKTSYEAKVNLLYANLMEILDKKTDLRSTEMTEQLRALIVPPEDQGSVSSTNVAAQ  
 NHL\*

Figure 5a

**SEQ ID NO.:5 Spg3 cDNA sequence**  
 cgctggcgtttgaagagacgcggacggctcagtttccctggagactagacagagcg  
 agcgagcaggcgttcagtgttagtcgttggttaATGTGGTCTCTCCAAAAGAGAAATCT  
 GCAAGGCAGGTCTTCCATGTTGTTAGAAGAACATTAATTCTGAGACATATAAACAC  
 GATATGGTTTACCATACAAGAGATCTGAGAGATTCTATCATTCAAGAACATACAAAATGAAT  
 TATAACCATGGTTTCAAGGAAGAAAGAGAGGTGTGAATTATATCTGGACTCAATTG  
 CAGAAAGAACATCATTTGATCATTATGGTGCTCCATATGCCATGGGAATGAAAAGAA  
 GGAGAGAAAGATGCAGTTATGATGACCAATTTCCTTAATGTGTGGATGATAGTAA  
 ACTGAGGAGGGCGAAACAGATCTGGATGCTGAAAATGAAACTGAGGAGAAATGGTACAA  
 GGTACAATTCCCAGTGGAGAAAGTATGAGAACATGGCTAATGAGGTCAATCCAGA  
 ACTTCTGTAGTGAGCCCTTCATCCCTGTTGATTTCACATGACAAAACCCAGGCCGG  
 TTCTTCTGAGAATGCTAACACTGCTCTGCATTGAAGGATGTCAGCTACAGGATTG  
 TGATGAAACAAAGCAGAAAATAGCGATCTTGTCACTCCTCTGTTGCCCCCTATTCTG  
 TGCAAAACAAGTTACATGAGAACATGGAGTACATAAGGAAATCTATGATGAACCGG  
 TATGACGCCCTCCCAGAAAGCTCTGGACCTCGAAAAGTTCCGATTGACCAAGGACTTAT  
 GGACAAAGGATATTGACATGATGCTGAATCGAAGAAGCTGCATGGTGCCACACTACAGA  
 TCATTCAAAGTGTATCCCTGAACTGTTGCTTGAACCTGACAAACACAAACTGTAC  
 CAGCTGGATGGGCTGTCAGACATGACAGAGAAGGGCCCTCACGTTAAGATCCTGAAACCT  
 CTCCCGAAATAAACTGAAGTCATTGACCGAATTGGAGAAGGTGAAAGAACTGAAGCTGG  
 AAGAGCTGTGGCTGGAGGGACCCCTCTGCACACTGCTTGTGATCATTTGAGTAT  
 ATAAGTACTATTGACCTATTCCCCAAGCTGTTGCGCTGGATGGCAGGACATTAAT  
 AGTACCAAAAAGAAATCTTCAGAATGGCAAGGGCCCTAATAGTACCGACAAAGAAATCTTC  
 AGAATGGCAAGGACTTAAATAGTACCGACAGGAATCCTCAGGATGGCAAGGACTTAAATA  
 GTACCGACAGGAATCCTCAGGATGGCAAGGACCTAATAGTACCAACAGGAATCCTCA  
 GGATGGCAAGGACCTAATAGTACCAACAAAAATGGACATCGAGGTCCCCAACCATGCA

Figure 5b

AGGAAAGCTGTAAACACATCTGAAGTCATAAAAATCTAGTTCTACAATTCTGAAAGAG  
 TACTACTTGTTTATGACAATGGAGATCGACTTCGTCTCTCGATGCTTACCATGACCA  
 GGCGTGCCTCCTTGTCAAGTCCCTTCGATGTCAGTGACCCAAACCTGAACAACCTGG  
 AAGAGTATTCAAATACAGCAGAGATCTAAAGAGGAGCAAGACTCAAGCATGCGAATG  
 CAGTTGCTGAAGCACACAAAACATGACATCGTAACCTCTTAGCTTACCCAAAAC  
 TCAGCATGATCTTGCTCTTCTGGACTTGTGAACCGGAAATGATGCTCT  
 GTTTTCTGTGAATGGACTATTGGAAGTGAAGGAAATGTCGAGGCTGCATCCGT  
 GCCTCACGAGGATCTTCATTGCTATCCCTGCAAGCATTCAAGAATTGATCATGAA  
 CGATGAGCTGATTGTGAGGAATGCCAGTCCCAAAGAGATACAAAAGGCCTTCACCTCAT  
 TGCGTGCACCCGACACGTCATTCAAGCCTTGCCTCTGAAGAACAGCAGGAAATGGTG  
 AAGTCTTCTCTGTGCAGTCTGGAAATGAACTTGACTGGTCTCAGAAGTGCCTTCAGA  
 TAACGAGTGGGACTACACCAAAGCTGGTGAGGCCTTCACTGCTCTCCAGAATGAGGGCA  
 AGATCCCAAAGGAATTCTCAAATAaaaggataactaaagatgtccctgtggatagagtat  
 tcctcctcatccacatattcccttataaggcccttcccacacctggaaatagagag  
 aggcccttctgaccaagaagcaaaggtaacatgtaggccaagtaataaacccccct  
 cccacattggcaattttctgtctccctccaaagggtttgtgatttcataataaaga  
 gtttcttacctaaaaaaa

Figure 6

**SEQ ID NO.:6 Spg3 encoded protein sequence**  
 MWSSPKENLQGRSSMIVQKNINSETYKQRYGLPYKRSERFYHSEYKMNHNHFQGRKRG  
 VNYIWSQFDRKNNHFDHYGAPYAMGMKRRERCSYDDQYFLNVWDDSKTEEGETDLDAE  
 NETEEKWYKVТИPSGRKYEKTLNRSIQNFCSEPFIPVDFHYDKTQARFFVQNAKTASA  
 LKDVSYRICDETSRKIAIFVSPSVVPYSVNKFTEQMEYIRESMMNRYDASQKALDLE  
 KFRFDQDLMDKDIDMMILNRRSCMVATLQIIQSDIPELLSLNLTNNKLYQLDGLSDMTEK  
 APHVKILNLSRNKLKSFTTELEKVKEIYLKLEELWLEGNPFCNCFLDHFEYISTIHDLFPKL  
 LRLDGEDIEVPKRNLQNGKGLIVPTRNLQNGKDLIVPTGNPQDGKDLIVPTGNPQDGKD  
 LIVPTGNPQDGKDLIVPTKMDIEVPQPCESCNTEVIKNLVLQFLKEYYLFYDNGDRL  
 RLLDAYHDQACFSLSVPFDVSDPNLNNLEEYFKYSRDLKRQDSSMRMQLLKHTKHDIV  
 NSLSSLPLKTQHBLCSFLVLDLFLHTEMMLCFSVNGLFMEVEGKCRGCIRAFTRIFIAPC  
 SDSRICIMNDELIVRNASPKEIQKAFTSLPAPDTSFKPLLSEEQQEMVKSFSVQSGMKL  
 DWSQKCLQDNEDYTKAGEAFTALQNECKIPKEFFK

Figure 7a

**SEQ ID NO.:7 Spg5 cDNA sequence**  
 ATGACATACTTTTATTATGTTCCACAGAAAGAGCATGTTCTCTGAATAACTGTAC  
 AATTGCTAAAAGAATTGGAAAAGGAAAGATGTCACAGTCATCTTGAACACTTCAGGA  
 AACCTGTGGATCCATTGTCAGGAAAATTGTCATGTAAGCACTAAATTCAAGAGATG  
 GGTCTTCAGCTCAGATACTTCTAGTTCTATGAAATGTACAAAATGAAACAATT  
 TGTGCTTGAAGCATAAACAGACAGACAGAAAATTCACTAAATCTTAGAGATGCTCTC  
 AAGTATAACACACAAATTCAAGTTTCTTCAACCCACTGGTAACACAGCAAGTGGT  
 AATGGTGACCTGTTCAAGTGTGACATATCTTAGAAGTATTAAAGTAGTATTCTGCTGC  
 TTTTCCCTCTCACAAACAAACTGCTCAAGTACAGTTATTACTTCAAAACCTATTAGG  
 ACCCAAGACTTTGAAGAGAGAACAGAGCATGAGAAACAAAGTGTACTGCAGGTTG  
 AGTGATGTTGCCATTGATAAGAGTTGGGTGTTGAGTACAAATAGCTGAC  
 ATGTATGCCAACTAGTTCATCTCTCATCGGAAGTCCCTGCTGATAATACCAATTACTA  
 GTTGTGTTGAAATGCCCTCTGCTTCAAAATTCTCTTGTAAAGTTCACACTATCAGGCTCAT  
 AATAGCAGCTCAAGGGCAGTACTGTATAGCATCCAGTAGCATTGCTGTTACAGAAC  
 ATTAAAGAGCAGACACAGTTCTCCCTCCCCAGTTCTTATCAAATGCAATTTCAGATG  
 TCAGGAAACAAAAACACAGTGAAGAACAGGTCCAGAGAGCTCAATGAGAACAGCAATGTC

Figure 7b

CCAGTTAACAGCTCTGAGCAGTGAGTCACGGAACTCCGATGAATCAGAAAAACTTGTAGCAACGACTCTCAGGGTCATTCTCAAGAGTCACCACCTCTGATATAAACAGTA  
TATATAAGGGTGGTCACCAGATGTCTACAGTCTTCCCAGCCAGAAGAAAGGAATCTA  
TGTGAATACATCCAAGATACGGGAATGAGAGGCCTCCATCAGCACAGAACAGCAC  
TAAGATGGAGTAAACCATACTTGGTCAAAGAAACTGTTCTTAGTAATGA<sup>2</sup>ACTGTTA  
GTAGCCCATTGATAATTCCAATACATTGTACCAAGGAACACAAAAGAAGGAGGAAATCTT  
AATTCTTAAGTGGTAATTGTGAAAAATCGGAGTTACTCATAAGTTACAAGTGCCAA  
GTTTCCCATATCTTCCACAGGGATAAAAATGAACATATATCGTGCAGCATTGGAATTAG  
AGTGGTCTCTTACTCCAACATAGAGTGTCTTCAACAAAGTACCCGAAACACTCTTG  
GAGCATGAAGATAATACAAATTGGCATGACTCAAGGGCTAATAGAATTAAAACAGT  
ACAAAATAATCAGAACATTGGTAACATTGTCTGATGCCCTCCAGGAAGC<sup>1</sup>AAAGATG  
TTCCCTGGCAGTGAAAGCTCATTGATAGAGTTATTTCATCAGCTGCCATTGACATC  
TCTCTTGAGAGTTCACTTCAACATAATTGGAGAATATACATGTGTCGGGAGGGAAAA  
TGAAAATGGGAAGCATCACCATATAACTGTCACAAGAAGGCTTCTCGTGTAAAG  
ATGGTGTGAGATCACAGCCTATCTTATGATGCAAGATTGAGCTGTGATCTGAACCTG  
AAAATTAACTTCAAGAACAAAGAGATGATAAAAATCCAAACGAGGCTAAAGAACACAA  
TACAGATNACATAAAATGGAGTGGAAACAGATGTCTTCAATGACCATTTCACCA  
ATATAGTTGAAATGGGGAAATTAAAGAGTAAACACTGAAGTAGAAATTCTGAATTCTGAA  
GAATGTTCACATTAACTCATTGGGGAAATTGGTAAACCAGCAGAACAGCAGCATC  
ATCAGAGAGTGAAGCTGTAGAACAAAGGATGCAACAAATGATCAAAGAGGCCTAGAGC  
ACTTGGTGTCCACATTCCAGAAATTGAAGGCTTCTCAGTGTGTTAGCCTCAAATGCT  
ACAAAACAAATAGTGGCACTACTGTCCTTACAGTAAGCACAAGTCTGGGATCATCA  
AAAAGATGAGTAAAAGAAATTGATAGTAACTGATAAAAGATAATTACAGACTTTCATCAG  
ACAGCATTTCTGAATGTGAAATTGATAGTAACTGATAAAAGATAATTACAGACTTTCATCAG  
TTGGTAAATGAGAATTCACTCTTAAACTGGGATTGGGAGTGAATTGGGAGGTTAGATCT  
TGAACATGATAATGGTCTGTATTTCACAAAATATGCAAGCCAGGGAAATGACCTT  
GTGAAGAATTGAGTTATGAGTCTCTAAAGTCTCGGATTGGGAGTGTGTTAGTAAAC  
GGAAGCAGTTATGAGGAATAGAAATCCTCAAGTCTTGCAGAAGGGAGGGTACTGATCA  
GCATAGTTCTACAGAATGTAACTGTGTTCTTCTGTTCAAGACAAAGAGGCTCC  
ACAAACCAATTCTTCCAGATCTACAGTTACAATTACAAACTTACTTAGTCTACGA  
ATCAGTCCCCTGATGAATCTTCTGAGTTGAAAGATAATTACAAACAGTAACGTA  
ATCTACAGAACAGAAACAAATAAGGAAGGGAAATGCTCTGAGTTGGCATGTGCTCCC  
AACCTTCTGGAGAAAATTCAAGTTCTGTTCAAGACAAAGAGGCTGCATGCATC  
GAATCAGGAGATGTGAGCAAGTCTGAGAGTTCCATTCTTCAACTCAAGTCATAATAC  
ACATGTGGATCAAGGATCTGGAAAACAAACATGACTCTTGTCTACTGAACCATCTA  
ATGTACAGTAATGAATGATAAGAGCAATTGCCCCACAAAATCAAAACCTGCTTTAAT  
GATACTAGAAATTAAAGGACATGCAATCAAGAAGTAGCAAAAGAACCCCTGCATGCATC  
TTCTCCAGGGTCAAGAACATAGCCATAAAGACTTAAGGAGCATGAAACTCAGAGA  
AGAAGAGAACAGGCCAACAGCCATGGCTCATCTGACCGTTCTTCTTATCCAAAGGA  
CGAATTAAACATTTCGAGTCAGAGAAGCAGTTAGGAATGTACTGAATTCTA  
TAATGAGCATTTATGTAAGGAAACATCTGTCCAGGAATTGAAACAAAGCTGTT  
TTCTTAAAGGCCATAGAAGAGTTCACTACATCTTGTGAGCTTATATCTA<sup>1</sup>AGTG  
GGACAAAAGAGGAAGGGCCATTACCAAAAGCATACTGAGTAATACATAATTCTG  
GGAAAGTTGTGATCATCAAGGTGATAGTTGATGCTCTGAAAGAAGATATTCTAAGCATT  
TTTGTCCAAAAGAAATTATGACAGACAGGGAGATAAAAGATTGAAAGATTGACATT  
GAGGAGTCATTGACCCCCGGTATCAAGCAGCAGGAGATAAAAGATTGAAAGATT  
TGCAGAGTGCCTTCTAATGAAAGTCATGTCGGCATGTTCCAGTAGTCTTACCACTT  
TCCATGTGAGAGAATTGTGATGAAGAACAGTTCCAGAACACCACAGTTACCTCTAGCT

Figure 7c

TATACATCTCAGAGTATAAGTCAGTTAGAATACACTAATAGCATTGTTGGAAATGAAAG  
 CTCCTCTGAACCTGAACATTTCCTGAACAAGTGGGAATATGCTTGACCCAAAAGAAA  
 CACTAACTGAAAAAGAATATCAGACACATACACAGTTATGTAATAGTGACTCTGCAAA  
 CTTAAACCATAACAACACATAGTATTAGCGATATAGCAAAGAATGTAATTCTGAGGA  
 TAAAACAGTTCTGTGAAAGCATTCCAGTGTATTAAAGTTCTATAAAAGAAAAACACAA  
 GTCATAGTCAGATAAAAGTTATGATTCAAATTGTAAGCCTAACACTGACATACATATT  
 TCAGTTTAGGCTCCAAGGACATTTAAGTGTGATATTATGAAACAAGATAA  
 TTGTGTATCTGATGGTGTAAAGTGGAGAAGCAATTTCCTATAGAAAAGTGTACAG  
 TTCCCTATGGAGACCACATCAAGCATTCCCTACGGAAAATATAGCAAGCAAAAGTTACACT  
 ATTCCCTCGGTCTCATCAATTCTAGTGACAGCTGGAGAGGAAGAATCTTCTGTAGGGGA  
 AAATGGACTCTCGATGTAATGAGAATGAGATGAATATTACTATGCAATTCTAAATTAG  
 ATCTAACATCAGTAACTGAAAGAAAAGTAAATTGTAAGAAAATATGAAAGAACCTATCT  
 TGCAATGATAGTTCTATGCTATTAAAGGAGAATATAACGGTCTTCCTAAAGATATAT  
 GGCAAAATACATTGAGGAAGAAAAAATTAGGAAAATTGAGCAAGCAGTTACAAAGAAA  
 TTATTACTGAAGGATCACCTATTAGTTAAAGTACAAAGTCAAAATAAGATCCTAAAG  
 GAAAATCATTCACTGTTACAAGAAAATTACAAACAATTGACTGATTCTCACCT  
 AACGATTAAAATTCTACTGTAGACACAATTGCTTTGAAAGACATTCTAATCAGCTTA  
 AAGAAAGAAGGAAGCAGGGCAAATTAAAGTTAAACAACCTCTCACTCTGACTGTCTC  
 TCCAAGGCCAGCCATTGTAGAAACTAATCATAGGCCTGTTTACATGGGAACCTAAAGT  
 TGCTACTCTCAGAAGGAAATTAAAAGAACATCGTCACCTAATTACACATCTCATGTA  
 CAGAACTGTCTCAAATTTCAGAGAGCAGATGAAGCAGCAGCATCTCTCAGATTAGAA  
 GAAGAGACTAAAGCTTGTCAAAATATTCTCCCTTATTGTTCAAGCTTTGAAAGACA  
 GCAAGAATGTCATTGACCAAATCTGATTTCAGAAAGCTATTGGTAGAACAAA  
 TGTGGAATAATTGAGACTTAAATTGAAACCATTGCTGTTGATACTTGGTAGAACATT  
 CAGATGGCAATGGAAACTATTCAATTATTGAAACAAAAGATTCTTAGAAGGTAA  
 ACCAACATTCCGAAGCTTGCTTTGGATGAGAGGAGCTGTACAGTGAACGTGCTCGCA  
 GGCCACGTGGATATCAACTGCACTCCATTCTACCCCTGGTTCAAGGACGACTAAA  
 TACAATGCCATTCTGTGAGTTACAGAAATTATCATAATCAGTTAGTTGAATTCTAACAGA  
 AACAAAGAAAATAATTCAATTACGCAATTATTAAATACAAACGGCAAATTAAATG  
 AATGTGAAGCCATAATGAAGCACTATTCTGATTGCTTTGACTTTGCTTCTGTCTCCA  
 TTTGCCCTGTGGAGTTAACCTTGGAGATAGTTAGGAGACCTGGAAACCTTAAGAAAAG  
 CACTCTGAAGCTGATCAGTGTACCTGGGGCTCTCTAAAGTCCATTCTACCCAGGAA  
 AGAAAGATCATTGTGGATCATTATAGAAATTGCTCTCAAGGTTAGTTTATCAAG  
 AGCAATGAAGAAAATTGATCAAATTCTGTTATGGCTGGAGCATATATATTGCA  
 TGCTGCAAAAGTCTTGATGAAAGAAAAGAGCTGCTCTTACCCAAAACATTCAAG  
 AAAAGAATAGAGAAAATGGAGGAAATAATGAGAGTGCTTTCTAAGTGAAGAACATC  
 TATGATGTCTTATCTAAAGGTTAACATGAACCCACTAGTATTGGACTTCAAGAAGA  
 TGCTATTATTGCTTCCAAACAACTCTAGGTAGGACATATCAAACCTGTAGGCTGAA  
 AACGCTTGGCTTCAATTCCAGATATTCTGTTGGTAGAGATACTGGATCAAGCTAA  
 TCTGCAGACCTAGAGGAGTTACAGGGCCTCACTCTCAGATGTACAGATCACTTAGAA  
 TTTAAAAAAATTACTTTCAAGATGCTGCAAGAAGATAACATAGATAATTCTCATGG  
 AAGAAAATGTTGGATATGCTAAGCAACCACAACTGGGAGCAGTCATTAAAGCCT  
 GAAGCTATTGAGATTATATTGAAATTGTCATGATCTCAGAAACAATTCACTACCTAA  
 AAATTAAATAGCAAGAAACTGCACAAACCAACAGAGATTTCGAGGTATGCTCTGGTTCGATT  
 GGTCTCTCTTCTGAGCTAATTGGCTGCAAGAAGAAGTGGTTCCCTTCTGTGTTGGT  
 GACACCCAAACRCATTGCCATTGGAACTGGTAGAGACTGCAATTCTGCTCTAACAA  
 AGAGCTGGCTGTTATCTATGAAATTGTCAGGCTCTAAACTGTTCTATGCTCTACATT  
 TATTCTACAGAGAACTTAAGGAACCTACAGGCCTTAAAGGCTCTGAAATAACTCTAAAG

Figure 7d

TATTCAGTTCCACGTATATTGACTTGGTGCCACATACTGCATCTGTAATTTGGAAA  
 CACTGTGGCAGAATTAGAACATAACTACAAGCAGTTTTCTATTACTCAAAATGTAATGCTGTCCTCTCAGAAGATTTGGAAAATGGTCATATTATAAAAGTTATGAAGACAAATTGAAACATATGAGCTGCTAAAGATACTAAATTGTCACACTCATCTTCTTCTTCTCAGAAGATGGAGACACCCGTTACAGAACCTGGGGAGGACAGCAGTCACCTGGGTTCTGAGCAGACACCTCCAGGTACAGAGTCACAGTAAAAAACATTCTAGACTCTCTAAAGCAGCTGTGACTGCAGACACATGTGAAGTCTCTCAGGGAAAGGAAATACAGACACTGTTCCCAGTTGGAAAAAACAAAAGGTTACCATGAAAGATGTTGGAAACATACAGACAGTATCCAAACATCCAAGCACTACAGGATCTCTCCAAATGATGAAAACAAAATAGGATCAAATTCCCTCTGACAGTCTGAAAACCATCTCTGCACTCTCAGAAGTGGTCAAAAGACAGAGCTCAGTACTTGGTTCACTGTCACCTGCTGAAAGTCTACAAGACACTTGCACACCAAAGTCAGAAAGCAAAATGAGAGCCAACAGACAGCTTACCTGATTCTTAGCATCTCTCACTGAACAGCAGGAAAGCTCAAATGTCATAGAGAAAAGAAATGGAATTCTAGTGTGGTCAAAACAAATGATAAGAAAGACTGTCCTTAGTAACCTGTGACCAAAAGGATATAGATGCCTCTTACTCACCTGACCACACCTGCACAGGAGTCCCATAAAACCCCTGTGGATCACACAGATCTCTCCCTCCTAACACTAACAGCAGGAAATGATGACCCCTTGTGGCTGATGCATCTGCTCTCAGTGTCTGCTTCCCTGAGTCAGAGAAGGACGTTATTGAGTGGCACAGACTTCACCATGAAAATAAATAAAATACTAAATTGTCCTACTGAAAGATTGTCAGGCACAGCTCTCCAGAACCTGTGTGATCAAGGACAAAATTCTGTCCTGCAAGTAGATAAAACACAGCCTATAAAAGTGAATGCCAAACTCTCAATACTGCACCCATTTGGCTCATATGGGAACACTGCCCCTTAATGTAATGGAACAGTACAGCACACTCACTCTGAAACAGAAATCAGGAAAGTTGGCCCATTCCAGGAATATACCTCCACAGTCTGCATGTTCTCCAGTACATAATTCTCTGCACATTGCAACTTCTCATATCCATACTACTCTTGTTCTATCAGTACAGCAGCAGCAATGGCACTGCTGTTACTCACACATACCAAGGATGACAACATATGAGATACAACAGCCTCCTCCAGTGTGACTACAGTTGCAAGTACTGTTAGAGCACACATTCACTCGTCAACTCTGAAACATTAGTTACTTCTGGACAGCCACAAGCAAATTCTTTAACCGAGGAAACGGGTATTTCATCTCACACGCCTGTTCCTACAATTCCAACAACCAGTTATTCAACAGTTGCTTCTCATCAACCAAGTCCACAGTGTGACTTATGCTCATGGCAACAGAACCGTTCTACGAAGGCTTAAAAAATAATCTCTTCAACTGAAATAAAATGCAACTTAAGTTCTCAGTAAAAAA

Figure 8a

SEQ ID NO.:8 Spg5 encoded protein sequence

MTYFIIVSTERACSLNNCTIAKRIGKCKDATVIFEHFRKPDPFVQENCPCALKNSEMGPFSSTDSYYGNVQNGNNSVLEAYNRQTENSSNLRDASQVYTHNSGFSIPTGNTASNGDLSVTYLRSILSSISAAFPShMNTGSSTVITSKLIKDPRLMKREQSMRNKSDTAGLSDVLPLDKSLGCGDSQIKLCMPSTSISSEVPADNTITSCLNASCFKFSSESSHYQAHNSSKGHDCLASSSIAVTEQFKEQHSSFPSSLNAFDVRKQKHSEEQVQRAQMRSNVFVLTALSSESRSNDESENTCSNDSQGHFSQESPSSDINSIYKVGHQMSTVFPAQKKGNLCEYIQDTGMMRASISTEDSTKDGVNHTWCKETVLSNETVSSPIDNSNTLYQEHKEGGNLNSLSGNCEKIGVTHRLQVPKFPISSSTGDKNELYRAALELECSLTPTIECLSQKYQHSLEHEDNTFAMTOGLIELKTVQNNQNFQNILSDAFQEAKDVPLASEKLIDRVISSAAIDISSLSSVCNEIGEYTCVRRENENGEASPYNCHEEASRVKDGVDHSLSYDAELSCDLNLKINLQEQRDDKNPNEAKEHNTDXINGSEKQDCLANDHFTNIVEMREIKSNTVEILNSEECFTFNSFRGKNGKPAETASSESEAVEQRHAAPNDQRGLEHLVSTFPEIEGSSVCVASNATKQIVGTTVLTVSTSLGDHQKDELKEICSSSESSDLGLVKHSISECEIDTDKDKLQDFHQLVNENSALKTGLGSEIEVDLEHDNGSVFQQNMHSQGNDLCEEFLYESLKSRIDWEGLF

Figure 8b

GSSYEEIESSSFARREGTDQHSSTECCNCSFCSDKRELHNP1FLPDLOVTTINLLSLR  
 ISPTDESLELKDNFYKQVTESTEPETNKEGNAGFGMCSQPSGENSSFCANKEGNSVQ  
 ESGDVSKSESSHSSNSHNTHVDQGSKPNNDSLSTEPNVTVMDKSKCPTKSKPVFN  
 DTRNKKDMQSRSKRTLHASSRGQNIANKDLREHETHEKRRPTSHSSDRFSSLQSQG  
 RIKTFSQSEKHINVLNLINNEASLCKSKHLRKLNKAVLHLKKAHRVETSLQLISKV  
 GQKRKGPLPKAYAVIHNFWESCDHQGDLSMERRYSKHFSLRKYDRQGDKRFRLRFDI  
 EESLTPVSKRLYRTNRERIAECLSNEMSGHVSSLLTFHVREFCDEEQFPEPQLPLA  
 YTSQSIQSLEYTNSIVGNESSSELEHFSETSGNMLDPKETLTEKEYQHTQLCNSDSAK  
 LKNHTHSIRDIAKECNSEDKTVLCESNPVYLSFIKENTSHSPDJKSYDSNCKANTDIHI  
 SVLGSKKHILSVDIYEQDNCVSDGVKSGEAIFPIEKCTVPMETTSSIPTEIASKSYT  
 IPPVSSILVTAGEEEESSVGGENGLFDVNENEMNITMHSKLDLTSVTEESKICKKNMKNLS  
 CNDSSMLKENITGPSKRYMAKYIEEKIRKIEQAVYKKIITEGSPISFKYKSQNKLK  
 EKSFHVNKKIITMNLTDHLSIKNSTVDTIALKDIPNQLKERKEAGQIKVNNNSHSDCL  
 SKPAIVETNHRPVLHGNPKVATLQKELKEHRSPNTSHVTELSQILQRADAASLQILE  
 EETKLCQNILPLFVQAERQQECSIDQILISRKLVEQNLWNCRKLKPCAVDTWVEL  
 QMAMETIQFIENKKRFLEGKPTFRSLWYDESLYSELLRRPRGYQLQSNFYPGFQGRLK  
 YNAFCELQNYHNQLVEFLTETKKENNYYALLKYKRQINECEAIMKHYSDCFDFCPSPV  
 FACGVNFGDSDLGDLTRLKSTLKLISVPGGSPKVHSYPGKDHLLWIIIEIVSSKVSFIK  
 SNEEISIKICLYGLEHIYFDAAKSLWKEKSCSLPKKHSEKNREMEEINESAFSKLKKI  
 YDVLSQLNNEPSTSIGLQEDAIITASKSTLGSISNCRLNKAWLSPYDSCVGEILDQAK  
 SADLELQGLTLRCTDHLEILKKYFQMLQEDNIDNIFIMEENVLDMLSNNHLGAVILKP  
 EAIEITYIEIVMISETIHYLKNLIAKKLHNCRFRGMLWFDWSSLPELIGCQEEVVSLVG  
 DTQTHCLWLKVETASVLUKELAVIYEYGEASNCYALHLFYRELKELTGVKRLLNNSK  
 YSVSTYIDLVPHTASVNFGNVAELEHNYKQFFLLKNVMSVPQKDFGMVHIIKVMKT  
 IEHMKLLSAKDTKLSTHLLFLQMLRNKRNALQQRQEKMETPVTEPGEDSSQPGVSEQT  
 PPGTECTVKNISDSSKKRPVTADTCVSESGKGNTDTVPSWKKQKVTMKDVGNIQTVSKH  
 PSTTGSPPNDENKIGSNSSDSLKSISASPEVVKRQSSVLGSVSPAESVQDTCTPKSESK  
 VEPTDSLPSLASLTERQQENSIVIEKRNGNSVAETNDKKDCPLVTCDCQKDIDASYSPD  
 HTPAQESHKTPVDHTQISPNSLTAGNDPLVPDASLLSVSASQSEKDVLSGTDFHHEN  
 NKILNLSTEDCTGTSSPEPVCIKDKISVQLQDKTQPIKSESPKKSMTDAPNLNTAPFGS  
 YGNSALNVNGTVQHTHSEQNSKVLTKVGPSPRNIPQPSACSPVNNSAHSFGTSY?YYS  
 WCFYQYSSSNGTAVTHTYQGMMTYEIQQPPPVLTTVASTVQSTHFNRSYSEHF SYFPG  
 QPQANSFNPNGNYFPPSHTPVSYNQQPVSYQASHQPVPAQATPYPPNPVGPPQWPWTY  
 APWQQNPFLRRP.

Figure 9a

SEQ ID NO.: 9 Spg13 cDNA sequence  
 AGCAATGGCGGCAGAGGCTCGTCGACCGGGCTGGCTTCTGTCACCTAGTGGAGAGTA  
 AGAGTGGAGCGCAGGGTGCCTCGGGGTGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTC  
 GTTGCCTCCGGTGACCACCACAAGTTCCATGTTGACATGCCCTTGTGAAGTGTGCCT  
 GTCAGCACCTCAAGAATATACCACAAGTAATGCACTGACTGTGAGGTTCATACAAC TG  
 TCAGCATGAATCAAGGTCACTACCCAGTAGATGGCTTCATCGAGGAAGATTCTTCTCTG  
 GAAGCCTTGCCACCGAAATGGTAAATAACTGCTCTTCAGATCTGAAAAGACAGTGG  
 CCAGCTAATTAAATGATTTAGAACATTCACTCCTCCATACATAGGAATGTTCAAACCCAT  
 CAGCTGAAATGTCGGAGACAGAAGAATTGATGAAGCACTGAAGATAGCAGGCTGTAAT  
 TTTGACAAATTAGTAATGCTATAAAATGCTTGATAGCCACACAAGATCAAAACAAGACA  
 AGAGACACACAGTCTAACAGAGGCTGTGGAGAACAGTTGATACACTTCTGCTTCTC  
 TTGATTCCAGGAAAAAGAGCTTGATGAAGAACATTATAAGGCGTACAGATGATTATT  
 TCAAAATTAGTAACAGTTAAAGCTACATTGAAGAGAAAAAGTGAATTGGATGCAGC

Figure 9b

TATGAAGATAGCAAAAGAACCTCAGATCTGCTCCTCTCTGAGGACCTACTGTGACCTGA  
 CTCAGATTATCCGGACTTGAAGTTAACATTGAAGTGAATTGTCACAAGTTAGTTCC  
 ATAATTCCAAGAACACCCCTAGGTTGGATATAATTGCAGTGAGGCCATCTGCATGTT  
 CAGCAGTATGGGAAAGATTGAATTGAGGACTCAACAAAATGTTACCCCTCAAGAAAATG  
 AAGATGGACAGAAATGTTCAAAAGAAAATTAAATAATAGAAAGGAACCTGTGTGATGTA  
 TACTCATCACTAGAAAAGAAAAAGGTAGATGCTGCTGACTGATGAAACACCTGA  
 ACCTCCTTGCAGCAGAGGCCCTGACAGGCATTAGAAGGGAAAAGAAGCAGCCAA  
 CAAAAGAGATGGTTGACATCTCCTAAGACTATTGCTGACTGCCTCAACTGGGA  
 TCCAGCCCTGATGTGATAATTGAGGAAATTATTGAGGAAACCTAGAAATCATGCTTAC  
 AGATGATCCTATAGAGACTCTGGATACCCAAAAAGCCCCCTCAGAAAGAGCAGTCTG  
 CTCCTGTTGGATCAAAGCAGGTTGCCAGAGCTAGTTTGTAAGTCATGTAATACAT  
 CCTTGCACCTCTATGTGCGGAAATATTCAAAATAAAAGATGCAACAATATTGGAGAA  
 GAAGATGAAGCAAGTTGCAATAGGAGCTTACACCTTGATCCTCAGACATTTGGAAC  
 TAGGTGCAAGAATATTGTCACAGTTAGAATAGAATAGAATGTGGTGTGAGGAATTATC  
 ACTGAAATAATTCCATCAAAAACAAAAATATTAGAAAACCAGTGTAGTCCAACCAAATT  
 CTCAGTCTGTGAAATTCACTAATACAGATATTGAGGAAATTCTGAAG  
 TCCTGATCATCACAGGAGTTGGTGACACACATGAGGGACCAGAGCATGATGGTGAACAG  
 CATATTACACTAAGTGACTTCTGTCGTTCTAATGAAGTCTGAACCATACAGTGAGGA  
 ACTGTTGAAAGACATCCCACATTAGCACACCTGTGCTCCTGAAAGACATCGTCCCAT  
 ACAATTCACTAAGTGAGAGAGAAAAGTGAATTCTCCTCAAAGGCTGTGGAGTTAGTG  
 TGTTGCCAGTGAAGTTGCTGAGTTGGCTGAAAGAACAGTTAGCCTGACAAACACAT  
 TCTGATTATGAACTATTAGTGCCTAAAGTTGCCATAAGCCTCAGCTCCATAACTG  
 AAAATATTGTAATGAAAATTGAGCTCAATAAGTCATATGAACACATAAAATATT  
 CAAGTAAATACCACAAAAAA

Figure 10

**SEQ ID NO.:10 Spg13 encoded protein sequence**  
 MAAEASSTGLASCHLVESKSGAQGASGCQCTRGRKVSVASGDHHKFPCGHAFCELCLS  
 APQEYTTSKCTDCEVHTTVSMNQGHYPVDGFIEEDSSLEALPPKMVNNSSDLEKTVDO  
 LINDLEHSSSIHRNVSNPSAVMSETEEIDEALKIAGCNFEQLSNAIKMLDSTQDQTRQE  
 THSLTEAVEKQFDTLLASLDSRKSLCEELIRRTDDYLSKLVTVKSYIEEKSDLDAAM  
 KIAKELRSAPSLRTYCDLTQIIRTLXLTFESELSSQVSIIPRNTPRLDINCSEAICMFS  
 SMGKIEFEDSTKCYQPQENEDGQNQKKFNRKELCCDVYSLEKKVDAAVLTDETPEP  
 PLQAEAPDRHLEGKKQPTKEMVVVTPKTIAVLQQLGSSPDVIIEELIEENLESCFTD  
 DPIETSGYPKKPPQKEQSAPVGSKAGCPLEVFPVSHVTHPCHFYVRKYSQIKDATILEKK  
 MKQVCNRSLHLDPSDILELGARIFVNSIKRMWCRIIITEIPSCKTNIRKPCSPKTFS  
 VCEISLIQIFMVDFGNSEVLIITGVGDTHEGPEDGEQHITLSDFCLLLMMKSEPYSEEL  
 LKDIPHIALHCSLKDIVPYNSVERESDSPSKAVEF\*

Figure 11a

**SEQ ID NO.:11 Spg14 cDNA sequence.**  
 acgcgggggagtcgcacctgtggcttgtgggtccgcggctatggcgccaaagctctga  
 agcctaacggcttctcgccctggctggctttctccgagttgaggccatctcc  
 tcgattccaagtgtgggttcggcccagtgggaccctctgctcaccATGGCAGAACCTG  
 CAACTGCAGAAGGAACCTCTGGTCTGGACACAGGTTACTAAACGGGGACACCCAGT  
 ACAGGGGAAATGGAGCCTGCCACTGGAGTGCAACTTGCTGGTTCTGGAGAGCTGGTTGC  
 TGAACCGGGACCCCTCCAGTACAGAAGCAAGGGAAAATACAGAAGAGGGCAATACCATGG  
 GGCAACAGCGAATGAGATCATTGACTGGGACAAGTACTGAAAGAGACTGGATCG

Figure 11b

ATGAGTGCTCCTCTGAATATTCAGACAGTCTAAGACTCCACCAACTAATGAATTCAA  
 AATTGGTATGAAATTGAGCCCCGTGACCCCTCGAACATATTGATTGGTGTGTGCTT  
 CGGTCTTGGAAATTACTGGAGGCCAGGTTACGTCTACGACTGGATGGTAGTGACAATAAG  
 AATGATTTTGAGACTTGAGGATTCTCATCGACACATAACACCTGTTGGGACGTGTGAACA  
 AGGAGGAGATTACTTCAGCCTCACGGGTACACACTGAATAACTTCATCATGGCCCA  
 TGTTCTTACTACGTGTACTAAGTGGATCTGAAGTGGCACCTGCAGTGTCTTTAAGGAG  
 GAACCACACGTCCACTCCAAAATAATTCTAGTTGGGATGAAGATTGAAGCTGTGCA  
 TAGAAAAAATCCATTTATGATCTGTCTGCCACAATTGGAGCTGTCTGGAGATCAAC  
 TTGATATCACTTTGATGGATGGAGTGGAGCATTGATTATGGTGTGACTATGACTCC  
 CGAGACATCTTCCCAGTTGGATGGTGTGCGCTCACAGGAGATGTATTACAGCCACCAAGG  
 AAAAATTGTTGAAAAAAGACCAAGGCCAAAAGAAGAACCAAGACTATGGAGACTTAGAA  
 CTGCTCTTTGGGAAATGAAGAAGAGGCCAGAAGCTGCAGAAGAACCTGGGACCCAGT  
 GTACTTACTTTGGAGATGAAACAGAAACTTGTGAAAGATTGCCAGGGAGAAGCTGCAAGA  
 AGAACCTGGGACCAGTGCATTACTTTGGAGATGAAAACAGAACTTTGAAAGATTGCC  
 AAGGAGGTTGGAAAAAACCCAGGGCAGAGGATTCATAAACCTGGAAAAGATGAAACC  
 AGACTGGGAAACATGACCAAGGAGCCCAGCTGGGAAAAACCCAGGGCAGAGGATT  
 CACCAACCTTGGAAAGATGAAGCCAGCAGGAAGAGATGTCCAAGTAGCCCCAGCTG  
 AGAAAAACGCAAGGGCAAAACAGTCACCACACCTGGACTGAGGATCCCAGACTTTT  
 GCAGATCAAGGAGATGCCAGCTGAGAAAAACGCAAGGGAAAACAGTCACCACACC  
 TTGAGCTGAGGATCCCAGACTTTTGAGATCAAGGAGATGCCAGCTGAGAAAAAAC  
 GCAAGGGCAAACAGTCACCACACCTGGACTGAGGATCCCAGACTTTTGAGATCAA  
 GGAGATGCCAGCTGAAAAACCAAGGGCAAAGAGTCACCAAAATCTCGGAAAGA  
 CCAAGCCCAGTTTAGCTGAGAAGCAATGCCAGCTTTTCAGCTCTTAGTG  
 TGAGGAGTACAGAGAGAACACCACCTCTCCTCTGAACAACCAAAGTCTCTACCTCT  
 GGGAAAACAAAATCCACCTCTAGAGGGCTCAAACCTCAAGGAAGTCTCCACGGAAAAC  
 AAGTGTGCAACCAGTACCAAAGACCAAGCAAGAAAGCAGGAAAATCTAAGTCTACTG  
 GAAATACTCATCCCCTAAGAAGGGCATTACTATTAAAATTGTCTTACCAAAAGAAAAAG  
 GGTGAAAAGTCTGGAAAAAGGAAAAGTATTCCAGTTATTCTCTACATCTCAGC  
 TTCTTAAGTACACTGATGAAAAGTTCTCATCTAAATAAGACTTCTGCAGGGCCATCTA  
 AAATAGTGTCTACAGTTGTGTATATAAAATAACATGGAGATTGTGGCCCTTC  
 CTGGATCCACAGAAGGTTCAGCAGCTACCTAACCAACTCGGCCAGGGCTGTGAATGT  
 CATTCTCAGCGGACTGTGCAGGCCCTGTCAATTGTGCCCTTCAGGCCAGGATGTGT  
 TTCTATTCTTAAACAGATAATAGAGGAGGAAAATGATAACTGCCTCTTGATGGG  
 AAAGTTCATCTGTCAGCTCCCTCAGTGAATAGTCATCATTTGCACCTCGCTTCT  
 TGAAAATTCTGCCAAAGCCTGCAGTGTGATAACTTTTGAGTAGCCAGCCTTCAGAC  
 GTGAGGCTCAAGTCCCTACCCAGATAACAGGCACTGATCAAAGCAACCAAGAAAATGGG  
 GAACCAAAGGAAAAGAGAAGGCCAAACGATTGTCTCTGCATCCTCATCGTTCTGCTCC  
 TGTCTCATCTAAGGTTCCAGAAAGTCTGGCAAGCGTCTAAAGGAAAATGAtggaaa  
 gctctgtactactgaagagttagctgtatgtaatggggctgaaactaggacc  
 agcagtaaaactttgttattacattgaaaaacttaaagaataaaaccataatgaaaat  
 gtgc当地ttatgttttagagataatccaggataactgaaaacatttactttatgtt  
 gttgttagtacataatgtatactcttattctttaatccatctaatacgtttgtatt  
 agcatgatcaaactggct

Figure 12a

SEQ ID NO.:12 Spg14 encoded protein sequence  
 MAEPATAEGTSGLQQVTKRGHPSTGEMEPATGVQLAGSGELVAEPGPSSTEARENTEE  
 ANTMGQTANEDHFDWDKYLKETGSMSAPSEYFRQSKTPPTNEFKIGMKLEARDPRNIDS

Figure 12b

VCVASVIGITGARLRLRLDGSDNKNDFWRLVDSSDIQPVGTCSEQGGDLLQPPPLGYTLNT  
 SSWPMFLRLVLTGSELAPAVFFKEEPPRPLQNNFIVGMKIEAVDRKNPFMICPATIGAV  
 CGDQLHITFDGWSGAFDYWCYDSRDIFPVGWCRLTGDVLQPPGKIVEKRPRRKRRTRL  
 WRLRTALLGNEEEAPEAAEPPGTSLTFGDENRTLKDRCRGEAAEPPGTSRAFTFGDENRT  
 LKDCQGGWKKPKGRGF1KPGKDETRPGKHDQGAPAGKKPRGRGFTQPLEDEARPGRDVQ  
 VAPAEKKRKKGKTVTTTPWTEPDRLFADQGDA<sup>P</sup>AEKKRKGKTVTTTPWTEPDRLFADQGDA<sup>P</sup>  
 AEKKRKKGKTVTTTPWTEPDRLFADQGDA<sup>P</sup>AEKPKGKRVTKSRKDQAQFLADEEAMPALF  
 SALSVSSTERTPPSSEQPKSSTSGTKSTSRAQTSRKSPPKTSVVQPVPKTSKKAGK  
 SKSTGNTSSPKKGITIKIVLPKKGGKSGKEKSIPIVISSTSSASLSTLMKSSSNKTS  
 AGPSKIVMSTVCVYINKHGDGPFLDPQKVQQLPNHFGPGPVNVILQRTVQACVNCAFQ  
 AKDVLFLKTDRGEMITAFFDGKVTVQLPPVNSASFALRFLENFCQSLQCDNFELSS  
 QPFREAQVPTPDTGTDQSKEPEKRSKRLSLHPRHSAPVSSKVRKSGQASKG  
 N

Figure 13a

**SEQ ID NO.:13 Spg15 cDNA sequence**

CAGCAGTGACTATGGCATGATTGACGACTTGTACTTCTAACATGACGCTGTGACGA  
 GTACAGTGCTTCGAACGTGGACAGGAAGTCATGCTGCTGTGAAGAAAACAAAGTG  
 TCAAATGGACTGAAAGCAATCAGAGTAGAAGCTGTCTGACAATGGGAAGATGATAG  
 CAAAAACTCTAGCAAAGGGTTGTCAGACTCCAGCCCCAGAGTGCTGATTGGCTGTGA  
 CTTCCATGTTGGAAGGTGCTGGCTATATCAGCCAGACACATACTTCTCTGGAGACT  
 GTGTGTGAAGGTTTCCACCCATGCAACGGTACTGGTAGAGGCTGAGTATTGGATCAG  
 GCCAGGGACATGGGAGCAGTGAGGCAATCTCTGTGAAGGCCCTCGAGGTACAAGCGTGTGG  
 ACAAGGTTGCAATTCCAGCCTGTGTGGAGGAACGGGTGATAGAGGACAGCATTCTC  
 TTCAAGCCTGGACTCCTTGAAGCTGCCGAAGGGTACATACCGAGGAGACAGCACATTGT  
 CAATGCTGTGGTTGTGGAGAGCAGCCAGTCATGCTACATCTGGAGAGCACTGTGCATGA  
 CCCCTGTGAAGAGAGATGCACACTTGGTGAGGCCCTCAGGAGGCCCTATGGAGCACTC  
 TTACTGAAAACAAAGGGACATTGAAGTTACAAGAATGACCAGTTTGACATTGAA  
 GGAAGGAGAAAGCAAATCAATCGTATCTGGATAAGAGAATAAAGGGAAAGTTCTCTCGGG  
 AGCTTGTCAAGTTGCAAGACTGGCTAACTGGGATAAAGCACACCAGTTAGATTGAGACA  
 CAGGGCAGAAGCAAGCTCTGCCAGGGAGCGGCTGGTCTGTTCTGAAGGTGAAAA  
 TGTTAACATTGAATCATCACAGAGAAGACAAAATGATGAGATTCCAGAGAGCCGTC  
 TGGCCAACAGCACAGAAATCTCTCCAGATGGCTGCGCTGTAAAGAAGAAACTAGAGAA  
 AAAGGAAACACGCCAGAGAAACAGGAGCCAGAGCCTGGGGGCTCATTCCTCGGGGGA  
 GAAGACTCACATTGTGGTCACATGCAGTGCCAAAACCCCTGGCGTTGCAAGGAGCTGC  
 TTCTGCTCTGTTCTCCGACTTCTCATGGCGCATCTGAACTGAGTGAGTGTGGTGAGC  
 AGCGAGGAGGCCCTGATAGCTGTGCGTGAAGCGTTTCTTGGAAAGAAGCTAAAGCTC  
 CCAACACATTAGTGTCTGCAAAGACTACAGTTGTTGTAACCACACAAAAAGGAACCTGA  
 GGCGACAACCTCAAGTTTCTCCACAGTATCCAATACCAAGATAGACTAAAAATGT  
 GTGGAGCAGAAGATTGACATCCTGACTTCCAGGCCCTCTGAGAGCTCTGAAACAT  
 GTCAAACATACAAGGAGAAGTTCTCCACCTGCTGTGGCTAGAGGAGATCCATGCAGAAA  
 TCGAGCTGAAGGAGTACAACATGAGCAGATTGCTCTCAAGAGGAACGGGGATCTGCTG  
 GTCCCTGGAGGTCCCCGGGCTCGCAGAGACCGGCCCTCCCTCATGCGAGGTGACAAACT  
 GATTTAAAATCTCAAGAAATACAATGGACATGTCATTGAATATATCGGCTATGTCATGG  
 AGATTCAATGAAGAAGATGTAACCTTAACTTAACTTCACTCAGGATTGAAACAATGTATAAT  
 TTTGAACCTATGGATGTGGAGTTACATCACATCGGACCACAAAGCAGACGGTGTCACTA  
 TGCACATTGAGCAGGTCACTCATTGGGTGTAAGATATTATTCGAGAAGAAATCATTT  
 TACAGTCTCCTCAGGTGACAGGAATTGGAGCCTGCAAGGACACCAAAAAATGATGGG  
 CAGTCCATCACCAACATCACCAAGAAATGATGGACAGTCCATGACCAAGGTAAACCAGAAA

Figure 13b

TGACAGCCAGTCCATCACCAACATCATCAGAAATGATGGACAGTCCATCACCAACGTCA  
 CCAGAAATGACGGGCAGCCCATCACCAAGGTAACCAGAAATAACAGCCAGTCATCACCA  
 AACATCACCAAGAAATGACGGGCAGCCCATCACCAAGAACAGAAACAGTGAAGGACCA  
 AACTAAACACACACAGAGGAAACGGCACGTGGTACCCACCGGACCCAGCCAGAGAAGGCTT  
 CCTCCACTGCAGAGACTATGGATGAAATCCAGATCCCAGACGGAGATAAGGAGTTC  
 TTCAACCCAGTGCTCAATGAAACCAAAGCTGGCCGTGAGGAGGATCCTGAGTGGCGA  
 CTGCCGGCTCTCCATATATCCTTTTGACCTCCGGGAACTGGAAAGACTGTGACTA  
 TAATCGAGGCTGTTTGACAGGTACATTATGCTTGCCGGACAGTCGGATTGGTCTGC  
 GCTCCTTCCAACAGTGCTGACCTTGTGTGTTGCACTTCATGAGAGCAAGGTGCC  
 GAAGCCAGCTGCCATGGTCCGGGTGAATGCCACCTGCAGATTGAAAGAGACTATTATTG  
 ATGCCATCAAACCGTATTGCAGAGATGGAGAAGATATCTGGAGAGCCTCACGCTTCAGG  
 ATAATAATCACTACATGTAGCAGTGAGGACTGTTTACCAAAATAGGAGTGAAGAGTTGG  
 ATACTTCACACATGTATTGTGGACGAGGCAGGGCACTGAGCCAGAAATGCCTTA  
 TTCCTTGGGACTGATTCAGACATCAATGGCAGATCGTGTGCTGGAGACCCATG  
 CAGCTGGCCAGTCATCAAGTCCAGGCTGGCATGGCCTATGGGTTGAATGTGTCAT  
 GTGGAGAGGCTGATGTCCAGACCAGCGTACCTGAGAGACGAAAATGCTTGGCGCTT  
 GCGGTGCATATAACCCATTGTTGGTCACAAAGCTTGTGAAGAAGTACAGGTCCCACCTG  
 GCTCTGCTGGACTGCCCTCACGCCGTGTTCTACCATAGGGAGCTGAGGTCTGTGCTGA  
 TCCCCAAGTAGTGAATTCACTGCTGGGCTGGGAGAAGCTGCCAGAAAAAGGCTTCCCTC  
 TCATCTTCCATGGAGTGAAGGGGACGAGGCTCGTGAAGGGAGAAGCCATCGTGGTTC  
 AGCCCAGCCGAGGCTGTCAGGTCACTGCGCTACTGTTGCTCTGGCCGGAGTGTCTC  
 CAGTCAAGTGTCTTCCAAGGATAAGGTGTCACTCACACCCATCGGAAGCAGGTGGAAA  
 AAATAAAAATCCTCTGCAAATGGGATTTGACTGACATAAAGGTTGGCTCGTAGAG  
 GAGTTCCAGGGACAAGAGTACCTGGCATCGTCACTCTCCACTGTGCGGTCAAATGAAGA  
 TAGATTGAAAGATGACCTGTTGGGTTCTGTCCAATTCAAAAGATTAAATG  
 TTGCAATCACAAAGACCCAAAGCACTGCTGATCATCTGGGAAACCCATGTGCTTGT  
 AGAGATCCCTGTTGGAGCGCTGCTAGAATACAGTGTAGCAATGGTGTCTACACAGG  
 GTGTGATCTGCTCCCTGAACCTCCAGGCTCTCCAAAAGTGAAGGCTCCAGTCCACTCCT  
 AAAAGTAAAGCACCGTGGAGGAAAGAGTGTGGCTCCACGTTAACCTTAAGCAGGCT  
 GTGGCTAGACAGCTGTGCCAGGACCTGTGGACATGGTGGAGTCTGCTACACAGGGAGC  
 CATGAGCCTCACCCATTGGGCCATTAGTCCAGGCCATGCTCAGTCTGTGACTCCT  
 GCGGCTTCTGGTCTCAAGACTGAATGTTGGTATGCATGGGACCACTGAGTCAGCTGGG  
 CTGCTCTGCTTCTGGACTGACCTTGGTCTAACAGTTAGTTCTGCCTGTGGCA  
 ATCACTGCCACTACACTCCCCAAATAACACTTCCATACCC

**SEQ ID NO.:14 Spg15 encoded protein sequence**

MIDLILYFSNDAVTSTVLLNVGQEVIAVVEENKVSNGLKAIIRVEAVSDKWEDDSKNSSK  
 GLSDSSPRVLIGCVTSMLLEGAGYISQTTYFSL2SVCEGFHPCKGDWVAEYWIRPGTWS  
 SEAISVKPLRYKRVDKVCISSLCGRNGVIEDS1FFSLDSLKLPEGYIPRRHDIVNAV  
 ESSQSCYIWRALCMTPVKRDAVLGEAPQE PYGALLLNKGDI  
 EVTRMTSFGLKEGESK  
 SIVIWIENKGKFSRELVSCR  
 LANWDKAHQFRFETQGRSKSCPG  
 AAGSVP  
 EGENVNSLN  
 HHR  
 EDKTDEIPESRLANSTEISPDGCAC  
 KEESEKGN  
 PEKQEP  
 EPGGLIPPG  
 EKTHIV  
 VTC  
 SAKNPGRCKELL  
 LCFSDFLIGRH  
 LEVSVVS  
 SEEALIA  
 VREPF  
 SWKKPKSS  
 QTLVS  
 AKT  
 TVV  
 VTTQ  
 KRNSRRQLPSFLP  
 QYFIPD  
 RLK  
 KCVEQK  
 EDIL  
 TFQPLLA  
 ELL  
 NMSNY  
 KE  
 KFST  
 LLW  
 LEET  
 HAE  
 IEL  
 KEY  
 NMS  
 RV  
 LKR  
 KGDL  
 L  
 LEV  
 PGL  
 A  
 ESR  
 PS  
 LYAGDKL  
 LI  
 LKSQ  
 EYNGH  
 VIEY  
 IGYV  
 MEI  
 HEED  
 VTL  
 KLN  
 PGF  
 EQM  
 YNF  
 PMD  
 VEF  
 TYN  
 RTTS  
 RRCH  
 YALEQV  
 IH  
 LGV  
 KVL  
 F  
 PEE  
 II  
 LQSP  
 QVT  
 GN  
 WSLA  
 QDT  
 KND  
 GQS  
 ITNI  
 TRND  
 GQS  
 MTK  
 KV  
 TRND  
 SQSI  
 TN  
 I  
 RND  
 GQS  
 IT  
 NV  
 TRND  
 GQ  
 P  
 IT  
 KN  
 KK  
 TV  
 KD  
 QT  
 KHTT

Figure 14a

Figure 14b

EERHVGTTDQPEKASSTAETMDEIQIPKLRDKEFFNPVLNENQKLAVRRILSGDCRPLP  
 YILFGPPGTGKTVTIIIEAVLQVHYALPDSRILVCAPSNSAADLVCLRLHESKVPKPAAM  
 VRVMATCRFEETIIDAIKPYCRDGEIDIWRASRFRIIITTCSSAGLFYQIGVRVGYFTHV  
 FVDEAQQASEPECLIPLGLISDINGQIVLAGDPMQLGPVIKSRLAMAYGLNVSMLERLM  
 SRPAYLRDENAFGACGAYNPLLVTKLVKNYRSHSALLALPSRLFYHRELEVCADPKVVT  
 SLLGWEKLPKGFPYLIFHGVRGNEAREGRSPSWFSPAEEAVQVMRYCCLLARSVSSQVSS  
 KDIGVITPYRKQVEKIKILLRNVDLTDIKVGSVEEFQGQEYLVIVIYSTRSNEDRFEDD  
 RYFLGFLSNSKRFNVAITRPKALLIILGNPHVILRDPFGALLEYSVSNGVYTGCDLPP  
 ELQALQK

Figure 15a

**SEQ ID NO.: 15 Spg16 cDNA sequence**

cctggctatgcggctagtagtatccggaggacagacgggggtctttcctgctcgctgtatgt  
 ctctcataaggcattcgaacgactctgtgctggatgtcatgcattctatctaccagc  
 AGAACAAAGGAGCACTTCCAGGACGAGTCAGCAAGCTCTGGTTGGCAGCATTGTCATC  
 ACGCGCTACAACAATCGTACCTACCGAATCGATGATGTGGACTGGAACAAAGACCCCTAA  
 AGACAGCTTGTCAATGTGGACGGGAAGGAAATCACATTCTGGAAATACTACAGCAAAA  
 ACTATGGGATCACAGTCAGGAAGATGACCAGCCGCTGCTGATCCACCOGGCCCAGTGAG  
 AGACAGAATAACCATGGCATTTGCTGAAGGGCGAGATCTGCTGCTGCCAGCTCTC  
 CTTCATGACGGGGATCCCTGAGAAGATGAAGAAGGACTTCAGGGCCATGAAGGACTTGA  
 CTCAGCAGATTAACCTGAGCCCCAACGAGCACCGACGGTCTTGGAAATGCCCTGCTGCAG  
 AGAATTTCACAAAACGAGACAGCCAGCAATGAGCTGACCCGCTGGGGCTCAGTCTGCA  
 TAAAGATGTCCACAAGATGAAAGGTGGCTCTGCAATGGAGAGGATCAACTTAAGGA  
 ACACCTTCATTTGTCACATCGGAGGGCCTGAACTGGGTTAAGGAAGTGACCAGAGATGCT  
 TCCATTCTAACTATTCCCATGCATTCTGGGACTCTTTATCCAAAGAGAGCAATGGA  
 CCAAGCCAGAGAACTGGTTAACATGTTGAAAAGATTGCCGGGCCATTGGCATGCGCA  
 CAAGCCCCCCCAGCCTGGGTGAGCTGAAGGATGACCGAATAGAGACCTATATCAGGACC  
 ATTCACTTCACTGGGAGTTGAGGGGAAGATACAAATGGTCGTTGCATCATCATGGG  
 CACACGTGATGATCTCTATGGAGCCATCAAGAAGCTGTCGCTGCCAGTCCCCAGTGC  
 CCTCACAGGTCAATGTCCGAACCATGGTCAGCCACCCAGGCTTCGGAGCGTGGCT  
 CAGAAAATTTCAGATGAACGTAAACTGGGTGGTAGCTCTGGGAGTGATGATAT  
 TCCGCTGAAACAACAAATGGTAGTTGGAAATGGATGTGACCATGACCCAGCAGAGGCA  
 TGCGCTCTGTGGCTGGCTTCGTGGCCAGCATAAAATCTCACACTCACCAAATGGTACTCG  
 AGGGTGGTGTCCAGATGCCACATCAGGAGATTGAGCTGAACGCTGAAGCTCTGCCCTGGT  
 GGGTCCCTGAAAAAGTATTATGAGGTGAACCATGGCTCCAGAGAAAATTGTGGTGT  
 ACCGAGATGGAGTGTCTGATGGCCAGCTAAAGACAGTTGCCAACCTACGAGATCCCTCAG  
 CTGCAAGATGTTTGAAGCCTTGATAACTACCAACCCCAAGATGGTGGTTGTAGT  
 TCAGAAGAAAATCAGCACCAATCTGTACCTTGCTGCTCTGATCACTCGTAAACCCCT  
 CCCCCGGGACTGTGGTTGATCATACCATACCAACAGCTGTGAGTGGGTGGATTCTACCTT  
 CTTGCCCATCATGTGGCACAGGGCTGTGGCATACCTACACACTACATGTGTTCTGAA  
 CACTGCATCATCTGAGCCCTGATCACATGCAAGAGGTGACTTCAAACATATGCCACATGT  
 ACTGGAATTGGCCTGGTACCATCGAGTTCCAGCTCTTGCAGTATGCCACAGCTA  
 GCTTCTGTCGGACAGATTGTCATCATGAGCCAGCCATCCAGCTGTGTGGAAACCT  
 GTTCTTCTGTAACTggaaaccttggacacccggctgcaaggagcaactggactcagctca  
 gctccctccatcagaatcaacagaaatggcagtggaaattttatgtttgcattttctt  
 tctccatcttggatggaaatttagattttctgttttttaaccctgatatcatagtaggg  
 tgtttgtggatgcctttatcccagcacttggagactgaagcaggagttatctttag  
 ttcaaggccagccatgactacatggtaggtttctaggctagccaagatcacagagtgaga

Figure 15b

ccccgtctcaaaaaacaaaaacaaaaccactgtccccctcaaagcccacaacaaaacccaaa  
gcctggggtcaaggaaagcaagtttaggttagccgctggctgcccgtgccttcatgga  
gtgtgtgccgtcagcgctgcttcctcagccgagcgtggagcttcggacaggcagtg  
atgacatgttcttagcatgtcaaattccccctaccaaataagtcaaacaaggaaaaata  
gcccccaaggcagcctgagcatcagttcttagggttatgcctacagaaccatcctatt  
tctgggtggcagaagtgacatgaagtcatcagacatcttaaggagagttactgtgca  
gctgtctacatgtgtgaaagacatgttagaaaaaccagcgtagggtagcgtcggcgtat  
gtgcccacctgaccaggcgtgtgagttgtacttcccgagagctggctagagctgttt  
ttctggtcctttggttatttgcacccatcatcagattgtcttcctgcagccccgactga  
tacacgcacatgtgcgcacgcacactttgttcttgcactaatcttgcacaaaaattca  
attagaacacatggaaaggattcagcagaccttaggaacattttgggtggagtgttagtt  
ttctgcaaaagtctgtaaatgagattacgcacagactcttccagctgtggctgggt  
tgcttggaaaatttcaaaatcccaaagttcaggctcccaaagttggcttggaaaaat  
gtgatagtctcacctgagtttagacatgttaggaaattttcttagggcctctggcttca  
gtattttggggaaagcactggtttctgtgttattttctctgtttcagaatcttc  
aagtttcttcaggcttcagtgccatcccttactggctctaaaagctaatttact  
taacctttcaaatgtgtatgtatcgatttatgtttgggtgtggatggatggtagg  
ggactgagcagaaatagtcatttaaataacagtgtgttaggagagcctcagttgaag  
tcctgaggagcagcggggctgtggagtcagttgtcagccctactcagacaggccaag  
cctgggctcgaagacacaacattgtccaggaaagcctttagttctatagcaccacagg  
ttggcagagaataagggttagggtctccaatacaccatggctttggagtctatgac  
caaggccaggctgagacactgaaatgtaaaagccatagaattaacagaacagactgaaa  
aacagacttcaagttccactttctggatttctgttaggaaagtctttgaatttgttag  
aagttgtgtttctcttagcactcctttcttttaggttagaacagatactgtgaccataatg  
ccagaatgtactttctgccttgggtttttatgccttgggtttcagttcaggccca  
aacaattggggccctgtgggtaaaataaaaacaatgtatgttataaaaa

SEQ ID NO.:16 Spc16 encoded protein sequence Figure 16

MHAIYQONKEHQDEC SKLLVGSIVITRYNNRTYRIDDVDWNKTPKDSFVMSDGKEITF  
LEYYSKNYGITVKEDDQPLLIHRP SERQNNHGMLLKGEI LLLPELS FMTG IPEKMKKDF  
RAMKDLTQQINLSPKQHHGALECLLQRISQNETASNELTRWGLSLHKDVHKIEGRLLPM  
ERINLRNTSFVITSEGLNWVKEVTRDASILTI PMHF WALFYPKRAMDQARELVNMLEKIA  
GPIGMRTSPPAWVELKDDRIETYIRTIQSLLGV EGKIQMVVC IIMGTRDDLYGAIKKLC  
CVQSPVPQS QVINVRTIGQPTRLSVAQKILLQMNCNLGGELWVDIPLKQLMVGMDVY  
HDPSRGMR SVVGFVASINLT LTKWYSRVV FQMPHQ EIVDSLKLCLVGSLLKKYYEVNHCL  
PEKIVVYRDGVSDGQLKT VANYEIPOLQKCFEA FDNYHPKMVFVVQKKISTNLYLAAP  
DHFT PPSGT VVDHTITSCEWVDFYLLAH HVRQCGCIP THYICVLNTANLSPD HMQRLT  
FKLCHMYWNWPGTIRVPA PCKV A H KLAFLSGOILHHEPA TOLCGNLFFL.

SEQ ID NO :17 Sng17 cDNA sequence Figure 17a

SEQ ID NO.:17 sgp17 cDNA sequence  
ggaggATGTCGGAGCTGAGGCAGTGGGATGGCCCACAAACGCTGGACCTGATGA  
GAAGACATTGCAGGTGTTGCCGGACATGCCAACCGCCTGCAATCCGTCCATCAGGG  
CCACAAAATTCCCTCGACCCTAGCTATCTCATACCATGCAGCAATGCTGAGATCATGCT  
GTGCTGTTCTTTATAACATGAGATATAAAACAAGAAGACCCGAAACCCAGACAAATGA  
CCGGTGATCCTTCAAAGGACTACCLTTGTTAATGTGGCACAGGATGGCCTGGAC  
AAGGACTAGGGGCTGCCTGTTGAGATGGCAATACTGGCAAGTACTTTGACCAAGCCAGC  
TACCGGGTGTCTGTCTCTGGGGATGAGGAATCCACAGAAGGCTCTGTTGGGAGGC  
ATTTGCCATTGCAATCCTACTACAATTGGACAATCTTATGGCAATCTTGATGTTGAACC

Figure 17b

Figure 18

SEQ ID NO.:18 Spg17 encoded protein sequence  
MSEAEASSGMNAGPDEKTLQVLRDMANRLRIRSIRATNSSTTSYLIPCSNAEIMSVL  
FFYTMRYKQEDPENPDNDRCILSKGLPFVNVTGWPQQLGAACGMAYTGKYFDQASYR  
VFCLLGDEESTEGSVWEAFAFASYYNLNDLMAIFDVNRIGHSSSMSVEHCLAIYQKRCE  
AFGWNTTYVDGRDVKTLCHVFSQAAQVRGKPTAVVAKTFKARGMPNVEDAESWYGRPMP  
KERADAIVKLIESQIQTNKILVPSPPIEDSPQINIMNICMTSPPVYVADDKVSTQRACG  
LALAKLGHEENDRVVLGSDTKNCNFSDIFKKEHPERFIQCCIAEQNMVNVALGCSTRDR  
TIVFAYSFIAAFFTRAFDQIRLGAISQININLIGCHCGVSTGDDNPYHMALEDLAMFRAI  
PNCVVVFYPSDAVSTEHAVYLAANTKEMCFIRTSQAETAIYTQETFOIQGAKVVRHSD  
NDKVIVIGAVTLLHEALVAAELSKEDISIRVIDLFTIKPLDIATIISNAKATGGRIIT  
VEDHYPEGGIGGGAVCAAVSMEPNIVVHNLAVMDVPRSGRCNEALDFSGISSLRHIIVAVK  
CILMT.

16/108

SEQ ID NO.:19 Spg18 cDNA sequence

Figure 19

ggcacgaggcgcgaaagccctcacgctcgctgcggctctgaggcggcaggctgtggcc  
gaatctccgcttgcgagtggggccagaggtttgtctccagagaatgtATGGCAACCCA  
CCTTGTAAAACCCGACTCTAGAAACTGCAAGAGGGCAAGAGAATTGGAGCCTCAGGTGT  
CTGATAGTCCACAGGTATCTCTCTGGAAAATCAGAGTCATCTCTCTGAGGCTCT  
GGACTCTTTATAAAGAGGAAGCTCTGGAGAAGGATTGAGCGATATGAGCAAGGAAAT  
TAATCTGATGTTGTCTACATATGCAAAGATTTAACGTGAAAGAGCAGCAGTAGATGCAT  
CTTACATCGATGAGATAGATGGACTCTCAAAGAACGCCATATTATTGAAAACCTTCTA  
GTACAAAAAGAGAGTTCCTGAAGCAGAGGTTACAGTAATTACCAACACCCTACACAA  
GTAAtgtgcctatgccagctaaaagtttcctgttactgctgtgtttcttgctaga  
aaaaacataattaaactgttaactttctaaattttaaaagaagtttaagatagatata  
taatatgaagtgttaatattttttgagggtcaaatattggcacattataaaaa  
tataatggaaaatttatatgcattttttcttatttgttattccctaaattgcatttt  
cccttcttaaactatgaaagaggactgtttaatttgattatgcttaacaataatttt  
taaatagcagatgattttgagatagtttaaagtgtttttcttgatttttattataa

SEQ ID NO.:20 Spg18 encoded protein sequence Figure 20  
MMANHLVKPDSRNCKRARELEPVQVSDSPQVSSLGKSESSLSEASGLFYKEEALEKDLSD  
MSKEINLMLSTYAKILSERAADVASYIDEIDGLFKEANIENFLVQKREFLKQRFTVIT  
NTLHK

Figure 21a

SEQ ID NO.: 21 Spg25 cDNA sequence

GCAAGAGTCAAGAGAGTGTTGGTGTTCAGGCCAGACTCTGTTCTATACAGCAGCA  
AATCCTAGGACTTGATTGCTCTCCATTCACTGTTCTACCTGTCAGTGCTGAGTCGCCTGTCCT  
AAGATTCTGATAGAGGTTGTTCCCTGGCATATACACACACTGCTGAGTTGGGAAGC  
TGCTTCATTGCAATTAGCATCCAGTGCCTAGCTCTGGTAAACTTGGGAAACAAATAGA  
AACTCCGAGATTGTTAATCAGTATACTGAGTTACTTGCAAAGAAAAAGAAGTATGG  
AGCCCCATATTGATAAAATGCTCAAGTCCAGATGTGGAGTGCAGGAAAGGCAGGAATGTCAG  
TCAAGAAATGCACTCATTGAAACATGTGTAGGAAAACGAGAAGTTAACTTATCTCTA  
TTTCAGCACTGGAAAGATTAAGACTTGCACACTACAGATAATATTAAAAGTGTGGTCC  
TTCAAAACCTATGGCGAAGACCAGAATTACCTACATTGACTTTAAAAATAATGATTTC  
TTGTTTGTGAGAAACTCACCAACCACAGATGCCAGAAGACTGAAGAGATTTCTAGACAA  
AACCTCTCAAGGTAGTATTGGCCAGCCAGAAGTGATGAGAGATGTGGTGAGCCTAGCA  
CAAGTGCACAGGGAGTTGAATGGCTTGGAGTTCATGTGAAACAAATAGTGAGTGCTTT  
GAATCACCCAAAGAAAGTGAATGTGCATGTTCTGTGAGTTGTCTTGCTTCCATCTC  
ATCAACCTTCTTCACAATGTAGGATTATTAGAAAACCAATTCTATAAGAGGAAAAGAT  
TTTTCTCTGATTAGCAAAAATGAAAAACAGAGCAACCTGAAGGACAGTATCAGGAC  
TTTGAGGCAAATTAGTGGTGTATCTCTAATGAAAAGGGAAAAGAAAGGAATGTAAG  
AGAAGTAGACATCAGTAAGCCAGGGTTGGATTCATTTGAGACCAACTATCTGAAAG  
ATAGTGGTGTGGATGTCGTGATCTTATGATCTCATTACAAAATTATTTCTCCAGTT  
CTGTTGGAAACACACTGTATTGAGAACGGCCTAGAGTGGCATGAATATATGAAGACATA  
CTTGCTTACCCAGAGAAATTGTCAGGCCAGGGCTGCCTAATGTGGGAAACACTGCTATA  
TAAATGTTGATTACAGTCTCTATGCTCAATACCACTGTTATTAAATGATTATTCAAC  
CAGGGTTCCCATGGATTAAAGCTCCAAAGATGATTTAACATGCTTGTGCAACT  
GCTTGTGTTGAAAGATATTACAACGCAAGGATTTAGACAGAAGTTACTTATAGGTATTA  
CAAAAGCCCTCCCCATATTGGAGAGATATTGCTGTTGACAGGCAGAATGATGCTCAT  
GAGTTTTAAGTCTCTGTTAGTTCACTGAGAGACTTCCAAAGAGTAACCATGAT  
GTGGCAGTCTGAAATGATTGGGGGATTTTTACTTACTTAAAGACATTGCTGATT

Figure 21b

ATGCTACTATC AAC AAA ATGCCGTTGTCCTGTTACCAATAATTGAAATTGAGTTG  
 CTAAGCTCCATT TTTGTAAGCTTGTGGCCTGACTCTTTAAGGGAGAACCAAGTAG  
 ATACCTTCTATCA CATTCCCCAAGGAGGGAAAGACATGTCCATCCAGTCCACTTTAG  
 ATCTTTCTT TAGTGCAAGAGGAGCTTGAGCATAGGTGTGAAAAGTGTGTACACAAA  
 TCTGTTTCA TTACAGGTTGGCCGGCTACCCAGGGTAATTATTGTTCATCTGAAACG  
 CTATCACTTTAATGAGTCATGGTAATGAAGAAGGATGAGCGGCCATCCTGTTCCA  
 AATACTTAAGGCTGTCTTGTCACTGTAGCAAAGCACAAACCGCCCCCACCCCTCGC  
 CCAGGTGAACATGTTAGAAATCTGACTTATTAAAACCCCTGAAGTGTGGGTTCCGA  
 AATACTCAAATGCCTTTAATTCA GTGAGGACCTCTAGATCCAAGGGTTCGAAACTA  
 TAAACATCACATCAAACAGGGAGTCAGAAGCACAAGTGGGAAAAGAGTCTCTGAAAGTG  
 TTGAGTGGAAAAGTGCAGCAGGAAAATTCAAGGAAAGGTGACACAGCACATATAGTGG  
 GTCAGAACTTACAAGGAGACTGAGAAACTCAAGAACATGAGGAAGAGCATAGACCC  
 GTGATTAGATTCTGGTAGTATCAGGGAGGCCAAAAGTACCAACAGGTGAGAAATGT  
 AACGAAGGGAGAAAGTGTATAAGCAGATTCCCTAGAGGCACTACTCAAAGCGTCCAAA  
 ACCAATCTCCCAGGAACAGACAGAAAACCTGGGAAAACTACACTGTACACATACCCAGG  
 ATAGTAGTCAGAGTTACAGAGCTCATCAGATTCCAGTAAGAGCTCCGATGCACTGAT  
 GATCTCGATAAGAAGGCAAAGCCTACACGCAAGGTGGATCCAACAAAGTTAAATAAAA  
 AGAAGATAATGTTACAGGCTTGTATAATTATCAACCATAATTGGGAAAGTCCCAATG  
 GAGGCCACTACATCAATGATGCCCTTGACTTCAAGAGGAGAGTTGGTCACTTATAGT  
 GATCTACATGTAACAAGAACCAAGAGGACTTTGTATATAGGGTCGGAGTTCTACTGG  
 GTATGTCTCTTACATGCCATAATGATATATTGAGAGCTCTGGCAAAGGAAACTC  
 AGTCTACCAGCACATCCAAGGGTTAGTAAGAGGAGTGTATGTTCACAGTACATGTCTA  
 TCCAAATGCCCTACTTATCTAAATTGGATAGAGAAGGACAGATAATTAGCCAGGACCA  
 ACAGCTCAACGAACATTATAGAGAAACGTTGTCACCCCTGACCACATCAGTCTTA  
 TAATTACAGCTCATGCTAATGAGTGTCTCTTATACAAGTTGGAACTGTAACTTTGT  
 ATAGTATTTGTCTAAATTATTGACAGTAAGGTTTTCAGTATTTGGTGGAA  
 GTTATATAATCCAAAGTGTGCCCTTACCGATTAAAATGACTTATTTGCTTCCAGTAA  
 AAGGTATGTTCTCTCATTTCTGTTCTTCTGCTATGGCAGCATAATAAGTTCTAA  
 TGAAAAAGCTTTATATATCAGAAGGAAAACCACACATGCCAGACACAGCACAGTTC  
 GACGAGTCTATCCAGCGCTGTTACCCAGCCTGCCGCTCTCTGCTCTTCTACATTG  
 GAATGGTTCGGTGTCACTCTCCCTCTGGCTTCTCACAGTGGATGCCATTATGGT  
 GATGCTTAAGTGAAGAGAGAACATTATGGCTGCACATGTTGGAAAAAAATACA  
 AAAATGGGAGAGGGCTGCAATTAGCTTTGTTGATTTTGGAGTTTCATTAACACT  
 GAACAATGTTCTACTGTTCTGTGATTAGGCCTGGTTATAAACTGTTTCAAAAT  
 AGTTGATTTGTTAAGTCTGTTTCCAGTGTCTGTTAGTTGTCTTGTCTTAAATG  
 GGGTTATTTCTTATTAGGAAAAAACAAATTCCACTTCTAGAATAAACGTTGAAGGAG  
 CTCTGCATGTGCTGGACCTACTGTGTGCTCCTTCTCCAGAATTCTGTTGGGAT  
 GGTTGACACCGT

Figure 22a

SEQ ID NO.: 22 Spg25 encoded protein sequence

MEPIILINAQVQMWSAKAGMSKSRNALIETCVGKREVKLILYFSTGKIKTLQLHDNIKSV  
 VLQTYGEDQNYLHLTFKNNDLFVKEKLTTTDARRLRFLDKTSQGSIRPARSDERGEP  
 STSAQEELNGSGSSCETNSECFESPKESEMCMFRELSSLPSSTFLHNVGLLLENQFIKRK  
 RFFSDLAKNEKQSNLKDSIRDPEANLUV CISNEKGKERNVREVDISKPGFGFPFETNYP  
 EDSGVDRVDLNDLITKLFSPVLLETHCIENGLEWHEYMKTYLLYPEKWLWQGLPNVGNTC  
 YINVVLQSLCSIPLFINDLFNQGF PWIKAPKDDFNMLLMQQLVLKD IYNARFRQKLLIG  
 ITKALPIFGEIFAVDRQND AHEFLSLCLVQLKETFQRVTMMWQSENDSGDFYLLKDIFA  
 DYATINKMPVCPTNNFEFELLSSIFCKACGLTLFKGEPSRYLSINIPQGGKDMSIQST

Figure 22b

LDLFFSAEELEHRCEKCLYNKSVSFHREGRLPRVIIVHLKRYHFNESWVMKKDERPILV  
 SKYRLSCHCSKSTKPPPLRPGEHVKNLDLLKPLEVLGSEILKLPFNSVRTSRSKGFE  
 TINITSNRESEAQSGKRVSEVLSGVQQENSGKGDTAHIVGSELTKETEKLKHEEEHR  
 PSDLDGSIREAQKYQQAEKCNEGRSDKQISLZEALTQSRRPK?ISQEQTENLGKTTLSHT  
 QDSSQSSQSSDSSKSSRCSDLDKKAKPTRKVDPTKFNKKEDNVYRLVNINHIGNSP  
 NGGHYINDAFDFKRQSWFTYSDLHVTRTQEDFVYRGRSSTGYVFFYMNDIFEELLAKE  
 TQSTSTSkg

Figure 23

**SEQ ID NO.: 23 Spg27 cDNA sequence**

TTCCCTCAGGGGTGCGTAAAAAAATTTCTGGAAAGATGGCCACTATGCAGTTGCAG  
 AGGACAGCTTCCTGAGTGCATTGGTATTCCAAATAAGATATCAACTGAGCATCAATC  
 TTTGATGTTGTGAAGAGGCTCCTAGCTGTTAGTATCTGCATCACCTATTGAGAG  
 GAATATTCCAGAACGTGTTATGGACAAGATATCTGGATGATCTGTGTCAAATT  
 CTGAAAGAAGATAAAAATTGTCCAGGTTCTCACAGCTAGTGAAGTGGATGCTGGATG  
 CTATGATGCTTACAGAAAGAAATCTAAGGATGATCATTCTAGCTGTATAACCCAATC  
 CAGGAGATCCTCAGACAATTTCAGAATGTTACAGTTAAATTCAAC<sup>m</sup>

Figure 24

**SEQ ID NO.: 24 Spg27 encoded protein sequence**

MATMQLQRTASLSALVFPNKISTEHQSLMFVKRLLAVSVSCITYLRGIFPERAYGTRYL  
 DDLCVKILKEDKNCPGSQLVKWMLGCYDALQKKYLRMIIILAVYTNPGDPQTISECYQF  
 KFK

Figure 25a

**SEQ ID NO.: 25 Spg33 cDNA sequence**

ttgacccttataaggccttgtggcccccgtgttcagtgcatttagcgaggaggggc  
 ctggctctggagtcattagctggcacctggcgctcagtcaggagctccccatata  
 tggagcaagtgtgaagetaagaagtttctggaaagctcaaggctgtacttcttcaga  
 gagccctgtgtgttctgtacacctcgtcactcgtcaagcactgtatctgt  
 gtgtccgcctagctgcagacagacttgcacccatgtgttgcaccatgtgtcccc  
 CGTCAGCGTTGCCA TGGGCCAGGGCATGTCTGCCTCTATGAGGCATGGCTGTAC  
 CATCTTGTCATGGGG AACAGACGAAGATCTGCTTGCTTCAAGGCAGCTTCTATT  
 GAATAAACTCTAC CTGGAGATGGGAGACTGGCAAGAGGAGGAAGAGGAAGAGGAAG  
 ATCTGCTGAGCTCAGAGTCAGACTCAGAGTCAGAGTCAGCAGGAGCCAGGGCTG  
 AGCAGG ATGCAATGGCGGGATTGGGGTCCCTTATGTGCCACAGAGTGTCTCTGA  
 AGGGTCTGGG GTCTGCCTGCCAACCCCTGTGTGGACACAGGGCATACTATT  
 CCTCCATTGGCCAC TGAGCTCTTCAGGAAGCTGTACCCCTGGATCTGGTCTGAG  
 TGGA CCCAGGCCCTCCCTGGAGACTTGATGGCTTTTCCCTGCTCGCACAGCTCAT  
 CCCTCTGACTTGGTGGGATATTTTGATGTGATGCCATCTCTGGCAACCTGTGTT  
 GGAGTTGAGATGCCACTGGCCCTTGGACAGACAGTAGCRAAATCCTGGTTGCAAG  
 AGACC AGAAGTTGCTCCTGTTGGATAGCGTCCAACTCTAGGTGCCACCTGCTGT  
 CAATGCGT GTCCGCTGGGTGTAAGGACTCAGGTCCAGCAGTGGCAGGTGTTG  
 CTGGACAGCAGGGCTGTACCATCAGAGCC TGAATCCCTGGAGGCTGAGCAT  
 CCTGCCACCTGCTACCTGTGGATAAAAGGCTCTGGTAGGTTCTCTGCCCTGGCAC  
 AT TAACATGCCAGAGACCTGGAGCTGGGAGCCAGGGAGAGAGGCTGTTATC  
 ACAGATGCTA CTATTGTGGTACTGACTACCACCTGCTCAGTCTTCCCTGATT  
 CCCACCCCCCTCCTGACCCCTACTCCCTGAtgcacattcctgagacactaa  
 agctcagacat

Figure 25b

tccccaggggccctggggactgtgaagagcaagaggttgcctgttctgagcagctcgagg  
gaacagtggtccaggacitgagggggcatcttgaacatcctgtgagcttatgaacctc  
agagggaaagtctggcatgttcgttcagtttcagtttgtaggtgaggcctagctg  
tatgttttagctgtatggagtgttgtgtgggggttatggggctccgtcacagatc  
tacgtatgtatggactctgaggcactagttgacctaactgtcataggggtcatatgtt  
actgtcttagggtaagataaccgtatttagggttcaactgttttttgttactttt  
ttcgttactcggtcccttttggggcttttgtaataaaagtgggtttaaaaa

Figure 26

SEQ ID NO.:26 Spg33 encoded protein sequence Figure 10  
MCPPVSRHGARGMSCLYEAWLYHLVHGEQTKICFAFCFKAAFLLNKLYLEMGDWQEEEE  
EEEEEDADLLEYLSSESSESEQEPGPQEQAWRGLGSLYVPQSSEGSGVLLPTPVWTQG  
ILFSIFVPTELFPQEAVPLDLGPEDAETWQALPWRDGLFPCSHQLIPPLTWWDIFDV  
PSPGQPVLLELRCHWPLDQTVAQSWLQDQKFVLLLDVQSRCHLLSMRVRWWVRTQVQH  
WQVLLDPGEMWVAHFRKEVGQHGLYHQSQLNPWRLSILTASELGMEPLLATCYLWNKGFW  
VGSFLPWHINMPETWSWEPEGLFITDATICGTDYHLAQSFLDSHPTPHPLLTLTP:

Figure 27

SEQ ID NO.:27 Spg34 cDNA sequence  
ggcacgagctgcagccatgtttagctgtcttagcgatcatctgttctgaggtaact  
tgggactgtggactgtttcttcgtccctgcctggccctgtgagcgggtggggaaatc  
gctgagccgtggtgtacagctcaagtgcctgccatGGCCGAAAGGCCCTCTCGAATG  
CAGCAGAACTATGACTGGCAGTGCAGGATGCTATCACACCCACATCCAGCTGTGCCT  
CTATGCCCTACGAGTACATGTCGATGGCAGTCTACTTTGACCCTGATGACGTGGCCC  
AGGAGAACCAAGCGTTCTTCTTGACCAAGTCACACAACGCCAGACAGTGCAGAG  
ATGTTCATGCACTGCAGAATAAGCGTGGAGGCTGCATCTCCCTCAGGACATCGCAG  
ACCAGAACGTGACAGCTGGCACGGGGATTTCAGGCCATGGAATGTGCCTCCACATGG  
AGATGCTGATCAACCAGAGCCTGCTCAACATGCACGAAGTGGCAAGGAGAAAGGCCAC  
CCCCACCTCTGCCATTCTGGAGCAAAGTGCCTAGATCAGCAGGTCGACATTTGAA  
GGAGATGAGCGGCTACCTGACCAACCTGCGCCAGATGGGGCGTAGAGCACAACTTGG  
CTGAGTACCTCTTGACAAAGCTCAGCCTGTCCTAAagcttcaagtggactgaactggga  
tgtctccactgtcggtgggtcttctgttgcattacacctaattttcatgttgggttt  
gaagcaaagttaactcatttcggtttctgtatggactgttgctttaaaaataaaattttgtc  
tgtttgttgcagcaaaattgaaaaaaa

Figure 28

**SEQ ID NO.: 28** Spg34 encoded protein  
MAEAPSRMQQNYDWQCEDAINTHIQLCLYASYEYMSMAYFDRDDVAQENFKRFFLTKS  
HNCQTSAEMFMHLQNKRGGCISLQDIARPERDSWHGGFQAMECAFHMEMLIQSLLNMH  
EVAKEKGDPHLCHFLECNCLDOOVDILKEMSGYLTNLRQMGAVEHNLAEYLFDKL SLS

Figure 29a

SEQ ID NO.: 29 Spg39 cDNA sequence  
gtgcggctttgttccgtcacttctgtcgcccttggtttcaggactgtcatctca  
cagggccagccaagccccctagagcactcagccatCATGAATTGGAGGTGTCACCACC  
GGGTTCCGCCATGCCAGGGTGTAAATGTCATCAACGAACAAATGGCCAAGCACTCAG  
AGGCCCCGGAGTTCTACCTCGAGAACCTGACCCCTGTCCTGGGAGGAGGTGGAGGAAAAGC  
TCAATGTCCTCCTGGACGGTACCGAGGTGCCTCGGGATGTTCAAGGAAGCCTGTGCCTGG  
AGCAGCCTGGCCCTGGGGGTTCGCTTCGCTTCAGGCAGGGCAGTTCAAGGGCGCAG  
AGTGCAGTGGCTGCACGACTTCGCCAGCCTGCACAGGTCAAGGGCGCATGCCCTGGCAT  
TGGACCTGAAGAAGCTCACCGACCAGCAGCAGAGATAAGAACGCAAGGAGGCCCTACCG

Figure 29b

CTTCTTTGGCCCACACTAACTCGCAGAGGTGCAGAGAGAGCGAGACCTGATGAGACT  
 GAAGCTACTACACGCAAGATTGCCACCCATATGAGAGTTGTGCGAGACTACAGAGGAT  
 GCCAGCACCAGGTACAAGCAAGAATGTCTACAATTATACAGCCTCTAACAGAAATCGT  
 CCCTAGccccagggcagaaccagagacagatctgaacaggaaacctctgccaactg  
 ctccaaagtccctcaggtagaaggaaggcgaaggactgtatctgatccggactgagacaca  
 actggaagagtcctatctcccagagactgtgaacctggagaatacgaagctgttgc  
 ccatgggacacctgttagcatcagaaatgtacttcgggtctgttattggtgaggat  
 acagctgcctcaggattgcaggccagatccctgtcgaattttgaacactctt  
 gggctgctaactccctactgcagggtttcctaaccctattgcacattgacatctgg  
 attcggatagtttctgtgtgggttaggaagtcctgtactgttaggcagtgcggcaa  
 aaccagagttgggaaacaactaagtggaaattgaaggccttagcagttgtggacaaaaac  
 tcaaatagccaaggcacagaggctgaagctggcaaaagaaaaaaaacaaaaaccacagt  
 tccttaagacttgtttactttggatctcaagaagtttaggggtggcagagtagaa  
 accaaacggtcaggactgaggggaaaccttaccccttacaacactgtttcaacctta  
 atgttcatctcatgtgggggtgaccccaaccataaaatcaccttactgacttgtac  
 ttcatatatcatatgtatgaaattataatgtaaatcacctgtgtctcccaaaaggctttagg  
 tgaccctgtgaaaggcttgttgcacctccataggggtcacagcccacaggctgagaac  
 tgcagcttacaagaactctaggctgaaaggaaaggactacaggaaagcgccatggatc  
 ctacagtgttagttgtcagctagccaaactgtttggcaactagatggatzaatct  
 cgaacatggcgtttaaactctgataaaggcagtaagagtttaggttaggtacttttga  
 gcaatttctcaagataaaacattgcaacctgcaggaaagctcatgaagactcagtag  
 tagaaacgagccattaaaggagaatgtttaaatgaaagaaacaagaaaaagatggc  
 ttatatagtggatgggaggactagccaaatgttttagaaaggaaaacaacacgatgaaag  
 ggaccattgtttgtgtaaagataaaacactttaaagttttaggtatgtcatgttatgc  
 tctatgtaaatatgttacaaatttatgtctataaaatctgtatttcagtaagcattga  
 aaagatatggaaagatatttagtgaacaggcagggAACAGGCAAGTGTGGTatggg  
 gggtagatagaacagaatacagccaaagtttgaataaaagggtttttatgtactctgt  
 gttttgaaagtaataagggtttacaaaataaaatgttttaccacttgaaaaaaacc

SEQ ID NO.:30 Spg39 encoded protein sequence

Figure 30

MNCEDVTTGFRHARVLMFINEQMAKESRGPEFYLENLTLSEEEVEEKLNVLLDGTEVPR  
 DVQEACAWSSLALGVRFAFRQGQLQGRRVQWLHDFASLRSAAHALALDLKKLTDQHEI  
 ERKEAAYQLLAHTKLAEVQRERDLMLKLLHARFATHMRVVRDYRGCCQHQVQARMSTI  
 IQPLNRRNP.

Figure 31a

SEQ ID NO.:31 Spg46 cDNA sequence

gggctggaggcgtggggatggcgcctggcATGTGGGCCAGCGGCTCTTGCTGGGA  
 CGGCTGTGGCGCANAGTGTAAAGTTCCAGGACTTGTCAAATGGATGAAGATAACACAT  
 TACAATAAAAGTTGAAGATGTTGTTGAAAGTCATGTAGAAAGATGCAGTAACATTGGGC  
 CCAGAATGTCAGTAAAAATAAGGATATTATGAAGATTGGTGTTCACTCTCAGAAGTTT  
 GTCTCTTGCTAATTCAAGTTGGCAATCTGATCCTAAGAAGATTATGGTGGATTG  
 TTTCTGAAAGATAAGTGTGGTACAGATGCAAAGTGCCTAAACTATCAGCGATGATNA  
 GTGCCTGGTGGGTACATTGACTATGAAATTACTGAAATTCTAAACGATCTGATATAG  
 TAGAAATTCCCTCCGGAGCTACATTTCCTAGTATTGCCAAGAAGTATAGACTTTGGGA  
 CTACAGATTCTCTGGCAAGAAGTACCCAGTTGATCAGGCTAGAAACATTGGGG  
 GAGTTGATTTGAAAAGAAAATTAAAATGAGAATAAAAGCAACATATCAAGATGGAA  
 CAGTTATTGCTCAGGCTGAGTATGGCCTGCGATATAGGGAAAGTGGCAAAGAAA  
 GGATTGCAAGAAAAGTGCAGACTGACCTCAGGCATTGATGCCTGTGAGGCAAAGAAACC

Figure 31b

```

TGATCCTAATCAGCTTGCCTCAAGGACTCTCAAGAACCTATCCCCCTGTGGGGCGCA
GATCAAACCGTCAACCTTCAGCAGCCAAAGGGCTTTAACGGGAGGCTGACTCTT
GATGTGAAGTATGAGACCAGTGCAGGCATCACGTGACATTCCAAAGGAAAGTTGGC
TGCTGGTGACTIONTTAATTTAGGGCTTAATGTCAGCTTGGCAAAATTAAACAGGACCACA
AACTTATTGAAGAAGATGAAAAGCTTAAACAGAGAAACAGGTTCTTAGAAAATTAC
AAAGCATTAGAATTAAAAGTTAGCAGACTGCCAGGAGCTGCAGCAAGAGAAAACAGC
TACCATGGATCTGACTAACGATTTAGAAAAGCACTCTGAAGACGTGTGAGGAACCAGGC
TGAAGAATTGGCAGCTAAAGTAGAACTATTGAAGAAAATTAGGCATATTAACATCAGT
ATTGGCTTGGAAATGACCTTCAGATGCTATGCAAGTGTGGATGAAGGGCTTTAC
TACTCTAGCATCTTGAATGAGTTAGAGAAAATTGGGCTGAATATAATGTTGCTCAGG
AGAAGATCCAACCTTGCTTAATGAGAATGAAGGTAATATTGATTGCTGAAAGAAAT
GAAGTACAACAGAAGCTGTCGTGGCTGTAGATGTTTATTCTGGAAGTAGATGACTT
ACCACTGATAAACGCTTAAACATTCAGGACTTAGCAACTCTTAACTCAGTGT
ATGGAAGGCCAAAGAAGGAACTAATTAACCTCTGAAGAACACTTAGAAAGTTTTGAC
TGGCAGTGTACCAAAAGAGAAGAGTCGCCAGTATTAGGAGTGAACAGAGGCATCTCT
GCAGCACCTTGTGGCATGGTCCAGACCCAGGAAAGGTTTGATCTGCTTGGATG
AACCATGACTTCAGAAGACCTGATTGTAATATTGACGAAATTCTAGAGAAGACTGAG
TCATGGTCTGCIAAGAGCTAGAGCTGTCCTCATGAGCAAGGTGTATAGACAAGGA
GATTATTAAATTACATACAGTCAGTGTGCAAAAGATCCATTCTGAGGAAAAGTTCA
TTGCCACCTTGTGTGTCAGTATAAGGACAGTGTGAGTTAAAAGCAGATGATTGAC
TGTTAAATAAGAACCCCAATGTGGATTACTGCTTCTATTAAAGAAGACATTGAAAGG
CTTAAAGCACAACCTGAGATGGAATTGGTTGAGAAGAGTAATTGGAAGAAATCTGATG
ACCATGATGGAACCTGAAATTGAGAAAATAAGCAAGAAAATAACTCAATTGCAAAATAGT
GTTTCCAGGAAATTATCATGAGAGGGAGGAATACTGAGAAGCTGAATAGCTTGACCCA
GAAATGGTCCCTGAGCTGCCCTGTGTATCCTGAAATAGGATTGCTTAAATATGAA
ATTCTGGTGGTCTTCTTACTATGAGCTTAGAGCAGGACCTTCTGACACTGAGCCCAGT
AAGGAACCTAGCAGCAAGCGCCTCTGGTGTCTCCAGGTTAATGGGAGGCCAGTCT
CTTAAAGGGCTATTCCGTGGATGTTGACACAGAACGGCAGGGTATTGAGAGAGCAGCCT
CTTACCATAGAGCTTGTGGATATGCTAAAGAAGACTCTGGGTACTGCCATTAAATTTC
TTGTTTTGTGTAAGTCTGATCTGTCCTATCTGATGGTCCCATATTATCCTAAGGC
AAACCTGAGTGCAGTTCAAGCCAGTATGCCCTTAACCTCAGAAGAAGCTTAAAGTCA
TGAAAGGTGTTGCCAGGGACTGCATACATTGCAAGTGTCTAACATAATTGATGCA
CTTCATCAGAACATGTATTGCTTAAATCGTAACAAAGGGATTGTTGAGATTATGA
CTTCACCAAATCTGAGAGCCAGCAGCTCAGTCACGCGATGGTTGGGATTGAGTT
TGCTCTACCTGAAATTGAAAACCTCCTTCTGCAAGTTCAGACTTATATGCT
TATGGTTGCCCTTCTTATGGCTTCTGTTCAAAATCAAGAGTTGAGACAAATGAAAGA
TGGAATTCCAAGTAGATCAGTTCTTGGATGATAATGTCAGTCCCTCTTGTAA
GCTTGATATATTAGAAGTCAATGACTGCTGAGCAGGTTTGAATGCTGAATGTTCT
TTGCTTCCAAAGGGAAATCAGTCCAAATCCAGAAAARGAGATTGAGTACTCAGCA
TAGCAGAGAAGATGAATCAAAGATGGAGAGTCTGGATAGATATAGTGAAGACAAAGAA
ATGGTGAAGCCAACCCCTGActaacaatccatttattgttgctgtatatgtccct
tttaaaaactttgtttgtttgttagtagacaaaaatgttccggaaacttagtggattg
catctttggatttggttgtaaaaataaaagaaatgtttgattcacacacctaaaaa

```

Figure 32*c*

SEQ ID NO.: 32 Spg46 encoded protein sequence  
 MWGQRLFACTAVAXSVSPGLVQMDEDTHYNKVEDVVGSHVEDAVTFWAQNVSKNKDIM  
 KIGCSLSEVCPLANSVFGNLDPKKLYGGLFSEDKCWYRCKVLKTISDDXCLVRVIDYGN  
 TEILNRSDIVEIPPELQFSIAKRYRLWCLQIPSGQEVTQFD

Figure 32b

QGRTFLGSLIFEKEIKMRIKATYQDGTVIAQAEGTVDIGEEVAKXGFAEKCRLTSGID  
 ACEAKKPDPNQLALRSLKNPIPLWGRRSNQSTFSRPKGHFNGRLTLDVKYETSAGNHVT  
 FPKESLAAGDFNLGSNVSLAKIKQDQKLIEENEKLKTEKEVLLNEYKALELKVEQTAQE  
 LQQEKTATMDLTKHLESTLTKCVGTRLKNLAALKVELLKEIRHINISIRFGNDLSDAMQV  
 LDEGSFTTLASLNELEKIWAENVAQEKTQTCLNENEGNILIAERNEVQQKLFVAVDVF  
 ILEVDDPLLDKRLKTLQDLATSLESVY/GKAEGTNNSEETLRKFFDWQCTKREEFASIR  
 SETEASLQHLVAWFQSSQKVFDLSLDEPLTSEDLIGNIDEILEKTESCVCKELELSLIE  
 QGVIDKEIILITYSQVLQKIHSSEEKFIALLSSKYKDSVEFKQKOMIDCLNKNPNVDYLLS  
 IKKTLKGLKAQLRWKLVEKSNLEESDDHDGTEIEKIKQEITQLRNSVFQEIVHEREEYE  
 KLNLSLTQKWFPELPLLYPEIGLLKYMNSGGLLTMSLERDLLDTEPMKELSSKRPLVCSE  
 VNGQPVLLKGYSVDVDTEGRVIQRAASYHRACGYAKEESGLLPLIFLFLCKSDPVAYLM  
 VPYYPKANLSAQASMPLTSEEALKVMKGVARGLHTLHSANIIH GSLHQNNVFA LNREQ  
 GIVGDYDFTKSESQRASVNAMVGGLLSPELKTGKPPSASSDLYAYGCLFLWLSVQONQ  
 EFETNEDGIPKVDQFHLDNVKSLLCSLIYFRSSMTAEQVLNAECFLPKGKSVPIPEK  
 EIECTQHSREDESKMESLDRYSEKTRNGEANP.

Figure 33a

SEQ ID NO.: 33 Spg58 cDNA sequence

caaagtctgATGGAATCTGAAAAAACAAAGATGGAGAGTGAAAGTTGTGGATGATCTC  
 TGATTCTGAGAGTTATTCACTGGACTCACACACAGAAAAGGTAGAGCATCAGTATCTA  
 AAATAAACTCTGATACAATTGATGAAACAGAAAACCAAGAACTAACAGAGATACTTGATG  
 GAGTCTGATTCTGAATCAAGTAATACAGACTCAGATTCAAGAGGTGTGAGCTAGCCTC  
 AGCAGCTGTGAAATACTTCATAGCTACAAAGACATTTCAGCAGAGCAGTGCTAGCAGCC  
 AGTTCCAAAGGATTCTGGTCTGCAAGTAGAACATAACTCAGACTCTGAAAGCCCT  
 GTGATGTCCTCTGATTCTATGAAATACATGAAGAAAGCTGAAACATGCAAGAGTACCTG  
 TAATTGGAAAGACTCAAGCGGCTCACAAAGTCTGAGTCTACAGGACTGGTTAGATG  
 CTAAAAGAAAACAATTAGATTCTGATAATGCTGGATACTGGGATAGCTCTGGAAAATAT  
 CAGTTAGTTCTATAGTACCTCAAGAGAGCGTTGAAAAGCTCAGGGTGACCTTCAAAC  
 GTTTCAGCATAGCACTGAAAAAGGAAGTAGGATCCAGTTCTGATAAACATCAGGCAC  
 AATTGGAAATGAAAGAGATCAAAGTGTACCTAAAGTAAAGATACTCATAAAAGACA  
 GAGACGGGATTAGACAATGAGGGTTTCAAATGGATGAGGAAAGAGAAGGATGTCTTGT  
 GGAATCTGACTTCTGATTCAAGACGTGAGGCACACCTGCTAGAAGCCCACCGGCTTG  
 GTGCTCGTAAAAGGAGATCGTCCCTCAGGGTTTGGAGACCCATTATCCTGCCTCCT  
 AAGCTGCCAGGATAACAAACTGAAGAACAAAAGTCTGTACAGCAGAAAGGATAACAG  
 AGTTCTAGAATTCACTGAAAGATACAAGAGTGAAAGACAAAATGTGAGATTGAAAG  
 AGGCATCTTCAGTCTCAGTGACAAGCCACTCTCGCAAGAAAAGTTAAAGAAAAGCAC  
 AGCTATAGCTTCTCCAGACTCTCCCACATTCAACAGATGAAAAGCATCACAGAAAAGC  
 TAGCCTGAAAATATCTGGCTATAAGCGCCAGTGCAGGAATATAGATATCCCCATAGTT  
 GTGAAAGTTGAAGTATCCTGAGTCTCAGTCCCATTCCCTAAGTCTGAGACTTGCACCTCT  
 AATGTATCATCATTGTTGACAGCCCACATTCTAAAGTCTAAGTCTGTACAGAACAGAAA  
 GAAGTCTCGAAGAAGTATTACATATTCTCCAGAACAGGGAGTCAAAATGTACTAGAT  
 GTTTTATGGAATCAGTACTCATCTTATCATAAATGCCATAAATTCTGATGATTCT  
 GACTCAGACTCTCCATTACATGCCAGATTCTCTCACATTCTAAATTCTCTCGCGCTC  
 TAAAACATCAGACACTTCAGACTCTCGAAATGCCCTTATCTCAATCCCTGGATC  
 CTCAGCATTCTGTTGAGCCCTGTTCTCTGCACAGGGAGATTCTAAACATTCTATA  
 GATTCCACCTCTTACATTGTGAAAGTTGTGCATCTTCAAAACCTTAAGGGCTC  
 TTCTGTTACACACACCATTCTAAAGACCACTAAAGAAAATCATGGGCAACATAGTACCC  
 ATGCCACATATCAGGACCTGTAAGATTGTCTCAAGTGAAGCAAGTCAACCTTACT  
 GCTCAACCTCAAAATGAGGATACTCCTGATGTCAGTGATGAAATATCAAAGCTGAGGC  
 TAATGTTGAAGATAAAACTCTTTACAAAGATGATACAGACCATGAAAGATGAGACAAATA

Figure 33b

CTGAAGATGAAACGGATGGTGAAGATGAAACAGACACTGAAGATGAAGATGAAGATGAT  
 ACCAAAGATAAAAAAGATCTAAAGACAAATCTGACCCTGATGGCAGTGATCCCAAAGA  
 TGGCAACTCTGAAAATAACTGATAGCAACAATGGGTCTCACCTAGTGGTTCTCTG  
 GACCTACAGGTGGACCTGATTCCAGCAATGATGGTACTCTAATAATGTAACGTGATCAC  
 AAGAGTGAATCTGACCCCTACCAATTGATAACGCTACCAACAGTGTGTTAACTTGAATA  
 TAGCACTGATGAGACATGTACCAACAATTAGACAATGCTTCAGATCTGGCAGAACATT  
 TCAATCATCACATAATGCTGACTTCAGGGTCGCACAAACCCAGCCTCTGGAAACAAA  
 ACTAGAACCAACTGGACTATTTCTGGTCCAACAATGAGGACACTGGCCCTAGAAA  
 TAGCATGATAAAAGAAAATATTGCTTATTCTGAGAATATTAGATTGCTTCCAACAGTT  
 ATCAAAATAATGTCATTAATAATGGGAGTGAACCAAGCAGCAACCCAAAGCCCCAAC  
 AGCTATGGGCTCCAAAAGACCTGACTCTAACCTAATATCAATCCCAGTAATGCTAC  
 TAACAATACTGTTAACCTAACTATGGTCAAAAATCCACGAGCAGTGTCTATTACAAA  
 AGACAGCTGCCCTAAACTATTATTCAAGATATTAATGATGTACAGGGTTACATATGAA  
 GTAAGGTCAAGTTGTAGTCACACTAACATTGACAGAAAGAAATATGCTGGTAG  
 ACTCAGCTTGCACTTCACACTATCAATGCCATTGATAACAATAATGTTACCTGTA  
 CTAGTGTGTTAGGTCTCAGTTGCTCTGAAAAACCTCTGTCCTAGACACTAAACAT  
 TCCCCTAGATTAGTCGTTCAAGGAGTTCAATGTTATCATCAGCCCAATTATAATAC  
 TAAAATAGTCAGAATGCTAATAAACTCAGTATCAGCAATATTACACCTACCTGCCA  
 CTGAATTAGAAATAAAATATTATCTGTTCTTAAATCATTATGAAATACCCCAAT  
 TTTATTGCTGGAACAAACTATCTGATTTTGATAACCTCGGAATTATGATGCTCCATTCAAG  
 TAAGCTTGAGAGCTTATAAAATTGATAACCAAAATATTGATGCTTACTATATCATCA  
 ACTCTGCTGGATACATGGACTCTGATAATTCTACATATGCCACTGGTCCATGGTTGCC  
 CTTGATGCCAAAAGAATCTGGTTTTAAAATTTCTCTAGGATCCAGAATACAATTGG  
 CATCAAGGATCCTCTCCCTTCAAGGTGTTCAATCAAATATTCTAGTCCCTA  
 GTTTCGATGTTAGTGGAGCTGAACCTGCCAGATATTATGAGTTACTATATCATCA  
 GGTGCTGTGAATCAATTTCAGCTCAGACTCCAAACAGGTAGCAGACAAAATGTTGA  
 CCTTTGAttaatgaaaagaataccttggatggaaaagacaaaaggcacaaccagaagg  
 ttctgaggagatgagcaaataactcaaaagaactacagtgtttccctgaacaatgttta  
 ttttatgtttatcttagatattcacccattatatgtccatgttttattgtctattg  
 tggccacaaaataacttcaaatgatccatgtgacaattgcctccatatgattacatgt  
 ggcagagtatgaaatttaggaaaaggcacacactgttagtcctttctagacagcatccaaa  
 aataaattttactactatgtattcataatataagatgagctttcaagcaaattcttccct  
 tgtattattctctgtatTTGAAGAAGAGGGCTTAactttaaaaaaatttaagacaga  
 taaaattttttatgtattgtggatgacattctagatTTAAAGAACCCATAACTAAATC  
 tataattattgttaatctaattgttgtactgtttgtgagcttgagctcgaaatt  
 aaaatagttaaagactcataaaaaaa

Figure 34a

SEQ ID NO.: 34 Spg58 encoded protein sequence  
 MESEKTKMESES LWMISDSESY SVD SHTEKGRASVSKINL IQIDETEK PRT KRYL MESD  
 SESSNT DSDSEG CELAS AAVK YFLATKTFQ QSSASSQFPK DSWS ASR TINS DSE SPVMS  
 SDSMKYMKKAE TCKSTCNLERLKA AKSES LQDW LDAKRQL DSDN AGYWDSSG KYQFS  
 SIVPQESV GK RQGD LQT FQHSTEKKEV GS SDK HQA QFG NERD QSDP SKR YLIK TETG  
 LDNEG FQMDE EREG CLV ESDFRD SERAHL LEAHL GARK KENR PPGF WRPI IILPPKLA  
 QDKKTEEQ KVQQ KDN RVSR IQLTRY KSED KNVR FEEA SSSL D KPLS QEKL KKHSYS  
 FSPDSPTFTDEK HHRK A S LK I SGY KRQ CKEY RY PHSC ES LK YQI SP I PLS SET CTSN VS  
 SFV D SPT SKSPK SVT RKS RRSITY S P EQGS QK CTRC FME I SNS SY HKCL I NS D DSD  
 SPLHGQISSHSKYSI LRSK TIRY FKT SRNR PLS QSL DPQ HS VV SRCS L HRED SKH S ID ST  
 SYLHC ESCASL QNLKGSSVT HTIS KTTK I MGQ HST HG HIS GPVRL SQSE SKF NL TAQP

Figure 34b

QNEDETPDVSDRNIKAEEANVEDKLLYKDDTDHEDETNTEDETDGEDETDTDEDEDDEDDTKD  
KKDPDKDSDPGSDPKGNSENNNTDSNNGSQPSGSQGPTGGPDSSNDGDSKNVTDHKSE  
SDPTIDNATNSDVNLKYSTDETCTNNLDNASDLAEYFNHHNNADFKGRTPNPASGNKTRT  
ILDYISGSNNEDTGPRNTMIKENIAYSENIRLLSNSYQNNVIKNGSEPSNPSPQNSYGL  
LPKDLDNSNSNINPSNATNNTNPNYGAKSTSTAIYKKTAALNYYSDINDVTGFTYEVR  
SFVVNSNYFDRKKAGRLSFALHTINAIDTNNVITCTSAVRSQFASEKTSVLDTKHSPR  
FSRFRSFNVIISPNEYNTKNSQNANKSSISNIYNLPATELEINILSVLKIIYGNTPNFIA  
GTNPYPDFLITSEFYEPLKLCRAYKIFDNQNIDAPFQDSAGYMDSDNSTYATGSMVALDA  
KESGFLKYFPRIQNTIGIKDPSSPFKVFNSQNILVPSFDVIVEAELPDIMKFTISSLGAV  
NOLFOLRLOTGSRQNVDL.

Figure 35

Figure 36

SEQ ID NO.:36 Spg59 encoded protein sequence  
MVPRAHNFSCCFLKYFRAPRVCQPLLPHLPQTTFPGPVGTRVGTSGDFPRLSSV  
PATLENCLFPSGTRRVASTPRACYPFCLFQLFDPKTFPTHPPPAVMKIELRPASL  
GCEGFNLSTSIIIFIVAKSLLYFAIFATTQVLPGLPKSSYTGKKAPKKSSWLVLWV  
LFLEFLITFLFV

Figure 37a

SEQ ID NO.:37 Spg64 cDNA sequence Figure 3.2  
GGCACGAGACTATTCTCGTACAGGAGAACATTCCGAAC...  
GGGTGGCCCCGCGTGGCAGACGCCATCCCCTACTGCTCGGCCGACTGGGGCCTGAGG  
GAGGATGAGAAGGAGAAAATACTCAGAAATGGCTCGAGAGTGAGAGCAGCCCAAGGGAAA  
GGATTCTGGGCCTTCAGAGAAGCAGAACTTGTATCTACACCAACTGAGGAGGCCAGGCA  
TGCTTGTACCAAAACCAAGTATTCTCCCCCTGATATGTCAAATTATCTATAAAAGT  
GATCAAGCTCTCCTGGAGGCATTTTTTCTGAAACATTTTAGCCATGGTGAGCT

Figure 37b

ACCTCCTCATGGTGAACAGCGCTTCCCTGTGAAATTGGCTGTGTTAAATACTCCC  
 TCCAGGAAGGTATTATGGCAGATTTCCACAGTTTATCCATCCAGGTGAAATTCCACGA  
 GGATTCGATTC CATTGCCAGGCTGCAAGTGATTCTAGTCACAAGATTCTATTCAA  
 CTTTGAAATTGGGCATGACCAAGCACTGTGTTACAAAACCTCTATAAATTATACATC  
 CAAACCCAGGAACTGGCACCTATTACTGCAAGTCTGATGATAGAGCCAGAGTCAC  
 TGTTGTTGAAGCGTATGGAGCGGCATCAGAAATAAGGAAAGATCTAGAACTTCTCAC  
 TGTAGAGGACCTTGAGTTGGGATCTACCAGCAAAATTCTCAAGGAGCCCTTAAGA  
 CCTGGGTGCGAACGCTCTAGATGTGGCATGTGGACTATTCTAGCAACACGAGGTGC  
 AAATGGCATGAAGAAAATGATATTCTCTGTGTTAGCTGTTGCAAGAAAATCGC  
 GTACTGCATCAGTAATTCTCTAGCCACTCTGTTGAAATCCAGCTACTGGAGCTCATG  
 TACCACTACAAGACTATGAGGCCAGCAACAGTGTGACACCCAAATGGTTGATTGGAT  
 GCAGGGCGGTACCAAGCTAAGAGTTGAGAGTCCAGGATTCTGTCAATTCAACTCTTA  
 CAATCAGGAACAAAGATCAAATACATCTACTGGTTATTATCCATCTGGGTGAAAATT  
 CGGGCCCTCACAGCAGTGTGCGGAAAGAGGAATTACCCGCTACTAGAGAGCATCTCA  
 AACTCCTCCAACACATCCATAGATTCTCCAGCTGTGAGACTTCACTCTCACCTTACAC  
 GCCCCAAAAAGATGGGTACAAACCTTCTCCTCTTCTTAATGATGGTACTTGTGC  
 GATTCTGGAAAAATAACAAGCCAACCTCCTTCTGACTACAGTCATATTAACAAACAT  
 CACATCAATAGTAAATGTCACTCCTAAACCTACTTAATTGTAAGGAAACTATTCAT  
 AGATTAAAAGTAATTGTGGTTGGAGAAG

Figure 38

**SEQ ID NO.:38 Spg64 encoded protein sequence**  
 MAREWRAAQGKDSGPSEKQKLVSTPLRRPGMLVPKPSISPPDMSNLSIKSDQALLGGIF  
 YFLNIFSHGELPPHCEQRFLPCEIGCVKYSLQEGLIMADFHSFIHPGEIPRGFRFHCQAA  
 SDSSHKIPISNFEGHDQATVLQNLKYKFIHPNPGNWPPITYCKSDDRARVNWLKRMRERA  
 SEIRQDLELLTVEDLVVGIFYQQKFLKEPSKTWRSLLDVAMWDYSSNTRCKWHEENDIL  
 FCALAVCKKIAYCISNSLATLFGIQLTGAHVPLQDYEASNSVTPKMVLDAGRYQKLRV  
 ESPGFCHFNNSYNQEQRNSTGYYPSGVKISGPHESSVRGRGITRLLESISNSSNNIHRE  
 SSCETSLSPYTPQKDGYKPFSSFS

**SEQ ID NO.:39 Spg65 cDNA sequence** Figure 39a  
 ggcacgagccaaagactggccaaaacctcagctcccatagaggatatcctatcccaac  
 cggagaaaactttttgtcatcgacaacttggaaatgtATGGAATGTGATATGTCTGAA  
 CGGGAGTCGGAGCTGTGATACCTGCACGGAGAACGCCATTGCGTATCCTGCTGAG  
 CAGTTGCTCAGGAGGAAGATGCTCCCCAAATCCTCTTCCATCTCTGCTACCCAG  
 AGACTTTTGAGAAAATGGAGGGCAGGGTTGAGTGCACAAATGTGAAATAGTAACAGGA  
 TTCAATGAGAGCAATATTAAGATGTTTCCGAGCTTGTCCAAGATAAGACCAAAAC  
 ACAGGAAATCTCAGTTGGTAAAGAAAACAGCAGCTGTTCACTGTATGTCAGGTCC  
 CTGTGCTCTGCTGGATGGTGGCCACTTGTCTAAAAAAAGAGATAGAGAAGGAAGAGAC  
 CTGGTCTCTGCTGCCGACGTACCACTCCCTGTATACCACTCACATCTCAATTGTT  
 CATTCCCCAAAGTGCCAATATCCAGTAAGGAAAGCAAGCTCAGCTTCAAGGCTCT  
 GTTCTCTGGCCCTGAGGGTATGTGACTGACACATTGTGTTGGTGGAGGAGGCTCTC  
 AGAAGAAATGGGATCATGGACTCCGACATCCCCACACTGCTGGACGTAAGGATCCTGA  
 GAAGAGCAGAAGAAATCTGAAAATCTTACATTTCCTCCACCCGTCTATCCAGGAGGTCT  
 GTGCAGCCATCTTATCTGCTAACAGGCCACRTGGACCACCCCTAGCCAGGATGTTAAA  
 AGTATAGAGGCACTCATATTACATTCTAAAGAAAGTCAAAGTACAGTGGATTTTTT  
 TGGCTCTTCATCTTGGCTTTACATGAATCAGAACAAAAAGCTAGAGGCATTTT  
 TTGGCCACCGAGTTGTCCCAGGAATTAACGTCAGTTGTATCAGTGCCTGGAAACCATA  
 AGTGGCAACGAAAGAGCTTCAAGAACAGGTAGATGGCATGAAGCTGTTACTGTCTGTT

Figure 39b

TGAGATGGACGATGAAGCCTTCTAGCACAAAGCAATGAACGTATGGAACAGATTAACT  
 TTGTGGCTAAGGATTATTCTGATGTTATTGTTGCTGCCACTGCTACAAACACTGTTCT  
 AACTGAAGAAACTATCCTTGTCAACCCAGAACATGCTGAGTGAAGGTCAAGAACACAG  
 CTATACGGAAAAGCTACTCATGTGTTGGCATCATATGTGCTCTGTGCTCATAGCAGTA  
 AGGACATCTACATACTCCAAGTGAAAAACACTAATCTCAATGAAACAGCCTCTTGGTG  
 TTATATAGTCATCTGATGTAACCCCAGCTGCACCCTAAAGCACTTGTGGTAAATAATGT  
 GACCTCCTATGTGATAACCGCCTGTTCTTGAGTTGAGTCAGAACCCAGTGTGAGC  
 ACTTGGACCTCAACCTCACATTCCATGGTGTGAAACTGTTGTGATGTC  
 TTGAGGCCAGGAAGAGTGCAACATAGAAAAGCTGATGGTAGCAGCCTGTAACCTTCACC  
 AGATGACTGCAAGGTCTTGCCTCCGTTCTGATCAGCAGCAAGATGTTAAAGCATCTTA  
 ATTTGTATCTAACAACTGGACAAGGGATATCCTCTGTGCAAGGCTTGTGCCAC  
 CCAGACTGCGTTCTGAGAACACTGGTGTAGTCACACTGCTCCCTCAGTGAGCAATGTTG  
 GGACTACCTTCGGAAGTCTTAGGCGGAACAAAACACTGAACACCACCTAGACATCAGCT  
 CCAATGACCTGAAGGATGAAGGGCTGAAGGTTCTGTGAGGCTCTGAGTCTCCCAGAC  
 AGTGTCTGAAGTCATAAGTGTAAAGATATTGTCATCACCAGTGGTTGCCAGGA  
 CCTGGCTGAAGTCTTGAGGAAGAACAGAACCTGAGGAACCTACAGGTTCAAACAATA  
 AAATAGAAGATGCTGGTGTGAAGCTCTGTGATGCTATAAAACATCCAACTGCCAC  
 TTAGAGAATATTGGATTGAAAGCCTGCGCACTAACTGGTGCCTGCTGTGAGGACCTTGC  
 TTCTGCTTTACCCACTGTAAGACCTGTTGAGGCTCTGAAACAGCAACAGTGTACCCCTGCAT  
 GTACTTGGACTTCGAATTACTGACTTTGATAAGGAAACCCAGGAGCTCTGATGGCTGA  
 GGAAGAGAAAACCCACACTTGAGCATCTAACAGTGTGTAAGcagaagcagaacaa  
 aaaggatggatgttctgcaagaaacatggctgtttctgacactaaactacactccaa  
 aagaaagagagcaggatcttaattggcccattataaaaaattacaggtcactaa  
 cattccaatgagatacatacagttttttacccatccccccattcagatgttttgc  
 agatagatgtgactttttgtttgcactacagattcaaacaggccattcaaagacagtt  
 tggtaaaatgtctgccccatataatgacagtttttcacacacttgattctaagcata  
 taaagttactttaaagataaaagtatcttagaaatcccttaagaagagatggcctg  
 ttggatggattactggccctataatgtcggtccaggcaatgatggccccacaaaat  
 tttagagaaatggacaaggttggaaatgatgatggaaactgttgcattttgtgt  
tttattaaataataatttaggcattttctaaaaa

Figure 40

SEQ ID NO.: 40 Spg65 encoded protein sequence  
 MECDMSERESELCDTCTEKQPLRILSSLRRKMLPKSSFLISATPETFEKMEGRVECT  
 NVKIVTGFNESNIKMYFRSLFQDKTKTQEISLVKENQLFTVCQVPVLCKMVATCLKK  
 EIEKGRDLVSVCRRTTSLYTTTHIFNLFIPQSAQYPSKESQAQLQSLCSLAAEGMWTDTF  
 VFGEEALRRNGIMSDSIPTLVDVRILEKSKKSEKSYIFLHPSIQEVCAAIFYLLKSHMD  
 HPSQDVKSIEALIFTFLKVKVQWIFFGSFIFGLLHESEQQKLEAFFGHQLSQEIKRQL  
 YQCLETISGNEELQEVDGMKLFYCLFEMDDEAFLAQAMNCMEQINFVAKDYSDVIVAA  
 HCLQHCSTLKKLSSLSTQNVLSEGQEHSYTEKLLMCWHMCSVLISSKDIYILQVKNTNL  
 NETASLVLYSHLMYPSCTLKALVVNNVTLCDNRLFFELIQNQCLQHLDLNLTFLSHGD  
 VKLLCDVLSQEECNIEKLMAACNLSPDDCKVFASVLISSKMLKHLNLSSNNLDKG  
 ISSLKALCHPDCVLKNLVLVNCNLSEQCWDYLSEVLRRNKTLNHLDISSNDLKDEGLKVLC  
 RALSPLDSVLKSLSVRYCLITTSGCQDLAEVLRKNQNLRLQVSNNKIEDAGVKLLCDA  
 IKHPNCYLENIGLEACALTGACCEDLASAFTHCKTLWGGINLQENALDHSGLVLFEALK  
 QQQCTLHVLGLRITDFDKETQELLMAEEEKNPHLSILSSV

Figure 41a

SEQ ID NO.: 41 Spp69 cDNA sequence

tggcagcattttcaggcaagcgccacgagacttgcgttcctgtcaggttttgtga  
 gtttgaggccagccccggggagacagagggaccggagggtccggggcgctcgagacat  
 ctgtttctgtccatctcttggaatctttcctgaagatccatcaggATGAGCTGCAAGAC  
 TCCACCCCACACTCCAGGAACCTGGCAGAGAACAGCCTCCTGAAGAACCCAGGACTTGGCTA  
 TCTCTGCTCTGGATGACATACCCTCACTTTCTCCATCACTGTTC? AAAGGCCTG  
 AGAAATAGATATGTTGGGATCATAAAGGCATGGTGCAGGCCTGGCCCTCCCTGTCT  
 TCCTCTGGGGCCATGATCAGTAGGAAGACTGCCTACAGGAGAACTTAGAGATTATCC  
 TGTATGGGCTTGATGCCTTGCTTCCCAGAAAGTCCCCACAGCAGGTGCAAGCTGCAA  
 GTGCTGGATTTACGGGTTATGCCTTGAAGCTGTGGAACAGGTTGCCTGTGTTGGGAC  
 TGCTGGCTGCAGTGAGAATCCAGCAGTGGTGGGCCATTGGAACAGAGGTGAAACAGC  
 CAGTGAAGGTGCTGGTAGACCTGGCCTCAAGGAAAGCCCACTAGATTCCACAGAGTCC  
 TTCCTCGTCAGTGGGTGGATAACAGGAATGGTTGGTAGTTGTGCTGTTGCAAGCT  
 GCAGATCTGGGCTATGTCCATGTATTACACAGAAAACCTTTGGAGATTTGGATCTGG  
 ACTCTGTCCAGGAGCTGCATGTACTGCATCAGTAATCCTGTCTGCCTGCTTAACCTC  
 GCCCCTTACTTGGGTCGATGAGGAACCTGCCTGCCTCATCCTCTCACCTCTGGCA  
 GACCTTCTCGATGACCCGGTGGAGAACAGCAGCAGGTATTACCCAGTTCACGTCTCAGT  
 TCCTCAAACGTAAATGCCTCCAGATCCTGCATCTGGATACTGTCTTCTCTAGAGGGT  
 CATCTGGATGAGCTATTCTGGTGGCTGAAGACACCCCTAGAGACCCCTGTGATTGA  
 TTGTAATCTCTAAAATCAGACTGGTTCCATATATCTGAGTTCCAGTCACAAGTCAGC  
 TAAAACACCTGAATTGAAATGGGTCAAACGTGACCCATTGAGGCCAGAGCCCTTCGA  
 GTTCTGTTACTAAAATCTGCATCTACCTAACATCCCTGGATTGGAGGGCTGTCAAAT  
 GATGGACTCTCAACTCAGTGCATCCTACCTGCTCTGAGATGCTGTACACAGCTCACCA  
 AGTTAATTCCATGGGAACATATCTCCATGCCTATCCTGAGGGAGCTGGCATATAAC  
 GTTGTCAAGCAGAAATCCCAACAGTCAAAGATAAGCTTATCCAAAGCTGTAGTCATCA  
 CAGTGGCTGGAGTTGAGGCCATTCTCAGCTCATATTGTGTTTAGATGTGGATC  
 GGACTACTGGGGAGCAAGAACAAAGTCTTGTGTTATGCTATTGTTCTGGAGAATATGTG  
 TTATGAtatcttacaatgtatttagacttggtagacttgcataatgagatacagat  
 ttaagctctttgtggacactgggatgtgtctggtagactgtcacaacacatgttt  
 tagactgcagtcttgcgagtgagaagagaaagttagactgtgcaaaacaagttag  
 agtatttgcataaggaaatgtggacacattgacagaagtcatggagtggttcgtt  
 tggcaggtacaaaagggcattccctccagcctgtttttgtatttgttagaaaaa  
 aatgggaccatctgtccatctggatgtcaaatcctgtgactgttagaacaacactt  
 gttttatgttatgtgtgtttcttctactttgtatctctgttagtgctgttagtatagg  
 tagcaccagacccatgtttttatgttagactgtttttatgttagtgatgttttt  
 tagtcaaaccacttattttatgttagactgtttttatgttagtgatgtttttatgt  
 cagttgagagcactttagactgtttttatgttagactgtttttatgttagtgatgt  
 ggtggctcacagtcatccagaactacttatgggtgcattgggatgtttttatgt  
 agacatacatgttaggtgaaacactcagacatgtactctaaaataattttttatgt  
 ttgtactgtatgttagactgtttttatgttagtgaggcagccagcaccactttag  
 gacactgtcaactgtatgtttatgttagactgtttttatgttagtgatgtttttatgt  
 aaccaggaatataatgggttagactgtttttatgttagtgatgtttttatgttag  
 atgacaatattaaacacccagaccactgttaggtgaaatgtttttatgttagtgatgt  
 aagaggggcatcaggtactgttagccatcagactgggttgaaatgttagtgatgt  
 cctaggctacagcacaactgtttttatgttagtgatgtttttatgttagtgatgt  
 tgaactgtgtttttatgttagtgatgtttttatgttagtgatgtttttatgttag  
 catcacttgcataaggctttatgttagtgatgtttttatgttagtgatgtttttatgt

28/108

Figure 41b

ctgttagccagagggctccataaggctgcgcagtccctgtgctggagtcacaggctcat  
gcatctatggctgacccttctgtccccataccctccgcctcgtataatgctgca

Figure 42

**SEQ ID NO.:42 Spg69 encoded protein sequence**  
 MSCKTPPTLQELAENSLLKNQDLAISALDDIPSLFFPSLFKKACRNRYVGIIKAMVQAW  
 PFPCLPLGAMISRKTAYRRILEIILYGLDALLSQKVPHSRCKLQVLSDLRVMPKLNRL  
 PVFGTAGCSENPAVGHSGTEVKQPVKVLVLKESPLDSTESTFLVQWVDNRNGLVSL  
 CCCKLQIWAMSMYYHRKLLEILDLDSVQELRMYCISNPVCLLNFAPIYLGRMRNLRCIL  
 SHLWQTFMSMTPVEKQQVITQFTSQFLKLKCLQILHLDTFFLEGHLDLFWWLKTPLET  
 LSVIDCNLSKSDWFHISEFOCTSSQLKHNLWKWLTHLSPEPLRVLLLKSASTLTSSDL  
 EGCQMMDSQLSAILPALRCTQLTKNFHGNYISMPIRLRELAYNVVKQKSQQSKIRFIP  
 SCSHHSGLEFEAISQPHIVFVDVDRRTGEQEVLFYAICSGEYVL.

Figure 43a

**SEQ ID NO.:43 Spg70 cDNA sequence**

ggcacaggttaggcctgtacagcaaagttaacaagcttaagataataaatcaccatt  
 taaaaacaaaggccattgaagtgaagagtgaggttactgtcccccccggagttactaaag  
 aaataacagcggtgtcgagagagaatATGTTCTCTGATTGAGAAGTCTCAACTCAAG  
 AAAACCATGGAGATAAGGGTACAGTTACTGAATTCAAGCACCCGAGTAACCTTTATAT  
 CCAGTTGTATTCTTCAGAGGTTCTAGAAAACATGAACCAACTCTCTACAAGCTTGAAAG  
 AGACATATGCAAATGTGGTGCCTGAAGATGGTTATCTTCCTGTTAAGGGGGAAAGTTGT  
 GTTGCCAATACACAGTTGATCAGACCTGGAACAGAGCCATAGTACAAGCCGTGGATGT  
 GCTGCAGAGGAAGGCCACGTCTGTACATTGACTATGGAACAGAGGAGATGATCCCGA  
 TAGACAGCGTTACCCGCTGAGCAGAGGCCTGACTTGTCTCTCTGCCATAAAAG  
 TGCTGTGTCAAGCGTCATTCCCACGTGGCGAGTGGAGTGAAGGCTGTGTCAGC  
 TGTCAAGGCCCTCTGTTGAGCAGTTCTGCTCTGTCAAGGTATGGACATCTTAGAGG  
 AGGAGGTACTCACCTGTGCCGTTGACCTTGTCTACAGAGCTCAGGAAAGCAGCTGGAC  
 CATGTGCTGGTGGAAATGGGTATGGAGTGAACCCGGTGAGCAGAGCTCCACGGAGCA  
 GAGTGTGGACCACAGTGCATTGGAGGACGTTGGAAGAGTGACAGTTGAGAGCAAGATTG  
 TGACAGACAGAAATGCCCTGATCCCCAAAGTGTGACTTGAATGTGGGTGATGAGTTC  
 TGTGGCGTGGTTGCCACATCCAGACACCAGAGGACTTCTTTGTCAGCAGCTGCAGAG  
 CGGCCACAAGCTGCGGAGCTTCAGGAATCCCTCAGTGAATACTGTGGCCATGTGATTC  
 CACGCTCTGACTTTATCCAACCATGGGACGGTGTGCTGCTCAGTTCTCAGAGGAT  
 GATCAGTGGTACCGCGCCTCGGTTCTGGCTACGCTTCTGAAGAATCTGTCCCTGGTTGG  
 ATATGTCGATTATGGGAACTTTGAGATTCTCAGTCTGAAGAAGACTTGTCCCATAATT  
 CAAAGTTGTTGGATTGCGGATGCAAGCTCTAAATTGTGTGCTGGCAGGCGTGAAGCCA  
 TCATTAGGAATTGGACTCCAGAAGCTGTGTGTCATGAAAGAGATGGTACAGAACAG  
 GATGGTCACAGTGGAGTGGTGGGCATGCTGGGACCAAGGGCCCTGGTGGAGCTCATCG  
 ACAAGTCGGTGGCTCCTCACGTCAGCGCTTCTAAAGCTCTCATAGACTCGGGCTTGCC  
 ATCAAAGAAAAGGACGTGGCAGATAAAGGCAGCAGTATGCACACAGCCAGTGTCCCTT  
 GGCCATTGAAGGTCCAGCAGAGGCCTGGAGTGGACGTGGGGAGTTCTACTGCCACTTT  
 AGACCGTGGATGTGGTGGTCTGCATGATGTACAGTCCCAGGGAGTTCTACTGCCACTTT  
 CTTAAAGATGATGCCCTAGAGAAGCTCGATGACTTGAATCAGTCCTAGCAGACTACTG  
 TGCACAAAAGCCGCCAATGGCTTTAAGGCAGAGATAGGGCGGCCTGCTGTGCCTTT  
 TTTCAGGTGACGGCAACTGGTACCGGGCTCTAGTCAGGAGATCTTACCAAGTGGGAAT  
 GTTAAAGTCCACTTGTGGATTACGGAAATGTTGAAGAAGTTACCAAGACCAACTCCA  
 GGCGATATTACCAACAGTTCTACTACTTCAGGGATGCAAGTGTGCTGGCTAGTAG  
 ATATACAGCCCCAACACAGCATTGGACAAAAGAGGCCACAAAGATTCAAGCATGT  
 GTTGTGGGGCTCAACTCCAAGCCAGAGTTGTGGAAATCACCGCGAACGGCGTGGCGT

Figure 43b

GGAGCTC~~ACCGATCTTCCACTCCTTACCCAA~~AATCATTAGTGTGCTCATCAGAG  
 AGCAGTTGGCTTAAGGTGTGGTCACCACAGGACTCACTGATGAGCAGACCTGCTAAT  
 CAACATAAGCAGATCGACAGGCCACAGGGTCAAGCCAGCCCTTCAACAGAGCAGTGGAA  
 GACAATGGAATTGCCAGTTAACAGACTATAGCAGCAAATGTTAGAGATCATAAGCC  
 CAGCCTTGTCTACGCCATCCCAGTGAATGTCAGAAAATCAAGAGAAGCTGTGTGTTAGCAGCTGAATTGTTAGAACACTGTAATGCTCAGAAGGGCCAGCCAGCCTACAGACCA  
 ACGGACCGGCAGCGTGCTGTGCTAGTACACAAATGATGACTTCTGGTACCGGGCCA  
 TTGTTCTGGAAACGTCGGAATCTGATGTAAGTTCTACGCAGATTATGAAACATCGAAACCCCTGCCCTTCCAGTCAGGCCACCTGGAGCTGCCCT  
 CCAGATCATTAGATGCTCACTAGAGGGCCGATGGAGCTGAATGAAAGCTGTTCGCAGTTAGTGTGAGCTGAGAAAATGCCATGCTGAACCAGAGTGTGGTCTCTGTGAAAGCCATTCAAAGAATGTCACGCAGTGTCAATTGAAACATGATCAATATAGCTGAGAATCTGGTGTGTCAGCAGAAAACCTCACTTCTAAAGGA  
 AAAGTGTCCACTAAAGAGATACCAACAGCAGAGACTGCTGTTGCACAGAGTTACAGAAACAGATTGAGAAACACAGAACAGATTCTCCTCTTAAACAATCCAACCAACCAAGTAAATTCACAGAGATGAAAAAGCTGCTGAGAAGCTAAaacatcatctttggaaattaacactggaaagaaagagacagcaaacgccagaaaaaa

SEQ ID NO.: 44 Spg70 encoded protein sequence

MFSDLRSLQLKKTMEIKGVTVTEFKHPSNFYIQLYSSEVLENMNLSTSFigure 44  
 DGYLPVKGEVCVAKYTVDQTWNRAIVQAVDVLQRKAHVLYIDYGNEMIPIDSVHPLSR  
 GLDLFPPSAIKCCVSGVIPTAGEWSEGVCAAVKALLFEQFCSVKVMDILEEEVLTCAVD  
 LVLQSSGKQLDHVLVEMGYGVKPGEQSSTEQSVDHSALVEDVGRVTVESKIVTDRLNIP  
 KVLTNVGDEFCGVVAHIQTPEFFCQQLQSGHKLAELQESLSEYGHVIPRSDFYPTI  
 GDVCCAQFSEDDDWYRASVLAYASEESVLVGYDVYGNFEILSLKRLCPIIPKLLDPMQ  
 ALNCVLAGVKPSLGIWTPEAVCVMKEMVQRNMVTRVVGMLGTRALVELIDKSVAPHVS  
 ASKALIDSGFAIKEKDVADKGSSMHTAVPLAIEGPAEALEWTWVEFTVDETVDVVCM  
 MYSSPGEFYCHFLKDDALEKLDDLNQSLADYCAQKPPNGFKAEIGRPCAFFSGDGNWYR  
 ALVKEILPSGNVKVHFVDYGNVEEVTTDQLQAILPQFLLPFQGMQCWLVDIQPPNKHW  
 TKEATTRFQACVVGLKLQARVEITANGVGELTDLSTPYPKIISDVLIREQLVLRCGS  
 PQDSLMSRPANQHKQIDSHRVQASPSTEQWKTMELPVVNKTIAANVLEIISPALFYAIPS  
 EMSENQEKLCVLAELLEHCNAQKGPAVRPRTGDAACCAYTNDDFWYRAIVLETSESD  
 VKVLYADYGNIETPLSRVQPIPASHLELPFQIIRCSLEGPMELNGSQLVMELLRNA  
 MLNQSVVLSVKAISKNVHAVSVEKCSENGMINIAENLVMCGLAENLTSKRKSASTKEIP  
 HSRDCCTELQKQIEKHEQILLFLLNNPTNQSKFTEMKKLLRS

SEQ ID NO.: 45 Spg85 cDNA sequence

ccactgaagaaagagaaggtggctcatcatcagcgcctgcaccacttcccttctcccaat  
 gactggaaagagatcctgggtaagtaagctgcaccctgggttgggataaaacttccccaa  
 agccaaagctgttagatattttggggcaaatgttcccagtttaagctgtcgttggga  
 gaactattttggggcttccctgaatgaggctatcaccagggcttctcatgaccttctg  
 aagaagatagacttcctctgcactcacggcagcccaccctgcttggttggttggatgcctgcttctcat  
 tcagggaggccaaatagttctcccaaccgcacgttzaacctggaaatcaccctcagggatTGCAGCTTACT  
 TACCCAGGATCTCTCCAGTCATTGGAGAGAAGGAGTGGTCCAGGGCTGATGAGCC  
 CACCTTCTCTTCTCAGTGGCCCTACATGGTCATGACTAACTCGTGTGGAATAGGA  
 GCAGAGTCACAGTAAAGGAGCTGAACCTCCCACCCGTCCCCACTGTAGCAGGCTGAGGTTGGCCGACTTGCTGAGCAGGAGCCAGCAGCAACCTGCGGCATCTAACCT

Figure 45b

GCTGCAACTGATGGCTGTATGTTGTCGGGACCTGGAGAAATTGCCCTGGTTACG  
 AGCGTATCGCAGTCGGCACACTGTTAGTGCCTCCATGAACGAAGGTCCCAGTCCCCA  
 GTGCTGCACATGGAGGTGATTGTCACCTGTTGCTCCAGGGTGTGATGCCCTGATATA  
 CCTGCATTCCCGGGGTTCATCCACCGCTCCCTAGCTCTACGCTGCCACATCGTCT  
 CTGCAGGAGAACAGCAAGGCTGACTAACCTGGAATACCTGACGGAAAGCCAGGACAGTGGT  
 GCACACAGAACGTGACTCGAATGCCCTCCCCACCCAGCTGTACAACCTGGCTGCACC  
 AGAAGTGGTCTTGCAAGGGCAGCCACGGTGAAGTCAGACATATAAGCTTTCCGTGA  
 TCATACAAAGAGATCTAACAGACAGTATACCCCTGGAATGGCTGGATGGCTCACTTGT  
 AAAGAAACCATAGCCTTGGGAAATTATTAGAAGCTGATGTCAGGCTTCCGGAACCTTA  
 CTATGATATTGTTAAGTCAGGAATCCATGCCAAGCAGAACCAATGAACCTTC  
 AAGATATTGTTATATTCTGAAGAAATGACTTAAAGGAATTATTGGAGCTCAGAAA  
 CAGCCAACCGAGAGCCCCAGAGGGCAGAGCTATGAACCCCATCCTGATGTTAATATCTG  
 CCTAGGTCTAACTCAGAATATCAAAGGACCCCTCCAGACTTGGACATCAAGGAACCTAA  
 AGGAAATGGGTAGTCAGCCCCATTCACCTACAGATCACTCCCTCTCACTGTAAA  
 ACACTAGCTCCTCAGACCCCTAGATTCAAGTCAGTGTCAAGCCAGAACCTGACAATGCAA  
 TGTTCCCTCTCCTGCTGCATGTCAGGAGAGCTGCTGCTCACCTGAGGGGGATAGACCAAA  
 AGGACAGCCTCTGCAGCTTGAATCAATGAGATCTACTCAGGCTGCTGACACTGGGA  
 ACTGACAAGGAGGAACAGAGTGTCTGGGACTGCTGCTCACCTGAGGGGGATAGACCAAA  
 CCAGGGAGATGAGCTGCCATCCCTGGAAGAACAGAGCTCGATTAAGATGGAGAGAGAATTG  
 ACTGTTTTGTGAAGAGGACAAAGCATTTCAGAAGTTGACACAGACCTTCTTTGAG  
 GATGATGACTGGCAAAGTGAATTCTCTGGTTCACTCAACCTGCCGAACCAACCAGAGA  
 AGCCAAGGGCAAAACGAGCAGCTGGTCAAGACTGATGAGTATGTCAGTAAGTGTGTGC  
 TGAATCTGAAGATTTCACAGGTGATGTCAGCAGAGCGCTGAGTGGCTGAGGAAGCTT  
 GAGCAGGAGGTAGAGGAGCTCGAGTGGGACAGAAGGAGCTGGACAGTCAGTGCAGCAG  
 TTTGCGGGATGCTTCATTAAAGTTGCAAATGCCAAGTTCAAGCCGGCTGTAGGCCCTC  
 CATCTTGGCTATCTCCTCTGTTATGCAATTACCAAGGGCTCAAGCAGCCTGAAAAT  
 GGTGGCACCTGGTTAACCTAGCAAGGTCTCCAGGAATGAGAGAGAGTCCAAGAGGG  
 ACATTTAGCAAAAAACCTGAGAAACTAAGTGCCTGTGGCTGGAAGCCTTTACACAAG  
 TGTCTGAAGAAAGCAGAGGGACTGCTCAGAGCTAAACAAATCAGCTGCCGACTCTCGT  
 GGCTCTGGGAAGCAGAGCACAGGTGAGCAGTTACCATCCACTCAAGAACAGGAGAG  
 TTTGGAAAAAAATACAAACCAAAATAGTAGGAGTATGGCGTCTGTCTGAAATCT  
 ATGCTACTAAGTCAGAAATAATGAGGATAATGGAGAGGCACACTGAAATGGAGATTG  
 GCAGTAAAAGAAATGGCAGAGAACAGAGTTCCGGACAGCTCTTATTACCTCCTTGGAA  
 TCCTCAGAGTAGTGCCTTGTGAGAGTAAGGTTGAAATGAGAGCACTCCTTGGCAC  
 GGCCCCCAATTAGAGGTCTGAGAGCACACAATGGCAGCAGCAGTATTAGAATACCAGAGG  
 GAAAATGATGAGCCCAAGGAAATACGAAGTTGGCAAAATGGACAACAGTGAAGTGA  
 CAAGAACAAAGCACAGCAGATGGACAGGGCTCCAGCGCTTCAGGGTATTAGATAACCCAT  
 TCTTCAGAAACCACGAGCAGGCCAGAGCAGAACATGAAAGCCTCTCAAGCAAGCTGTGACACG  
 TCTGTGGGCACTGAGAAGTTCTACAGCACCTCAAGTCCCAGGGAGACGACTTTGAAAG  
 ATTCCAAGATTCTTGTGCCAACGTCAAGGCTATGTTGAAAGAAAATTCCAAATAGAG  
 AAATATTGAAAAGAATGCTGAGATTGACCAAGCCTCAGTTCAAGCTATTCAATG  
 GCTGAAGACAAACAGACGAAACATTAGGGGAGACGCCAAGGAACCTGAAAGAGAAAA  
 CACATCACTGACAGACATTCAAGACTTGTCCAGCAGTACACCTATGATCAAGACGGCTATT  
 TTAAGGAAACCTCATACAAAACACCCAAATTAAAACACGCACCAACTAGTGCCTGTACC  
 CCGCTAAGCCCAGAGTCGATTCTCAGCTGCTAGTCACATGAAGACTGCCTTGAAGAA  
 TACCACATTTCATGTTAAAGAGGGATCTACATTGTTGGAATGGCCAAGAACAGCTATGA  
 GAACTTGTCTGCCAATTACAAACTGTCCGAGAGAGAGCTAAGGCCTGGAATCACTT  
 CTCGCTTCTCTAAAGCCTACCTGCCAAGCTGACTGACTCCAAGAGATTGTATGTT

Figure 45c

GAGTGAGACTGGCTCTCTAACGTTCTCGGGCATTTGTAACATCAACTCATGCTACCA  
 AGAGGAAGAGCCTACCCAGAGAACTGGCAGAAGCCACCTCTAACAGCATCTGATGAG  
 CTTCCACCACCAAGCTCAGGGACTACTTGATGAAATTGAGCAACTGAAGCAGCAGCAGGT  
 CTCATCCCTGGCGTCACATGAGAACACGGCACGTGATCTGAGTGTCACTAACAGGATA  
 AGAAGCATTGGAGAACAAAGAAACACAGTAGTAAAGACAGCAGTTCTTCCAGC  
 AGAGAAATTCAAGGATCTGGAAGATACAGAGAGAGCTCATTCTCTTGATGAGGACCT  
 GGAAAGATTCCCTGCAGTCACCTGAGGAGAACACGGCAGTGGACCCATCAAGGGCT  
 CTACAAGGGAGAAAAAAAACAAAGATCAAGACGTTGAGCAGAAGAGAAAAAGAAA  
 GAAAGCATCAAGCCAGAGAGAAGGGAGTCAGACAGCTCCCTAGGGACCTTGGAGAAGA  
 TGAACCTAAACCCCTGTTTGGAGCGACTGGGTTGGTCCAACCTCCAGGATAATTG  
 TGCTGGATCAGAGCAGTGTCACTGAttggaaactggaccgtgcaagcatttggt  
 gtggcccttccttccttatctgcatttttttttttttttttttttttttttttttttt  
 taactcacactttgttctgtctactatggcacaataatgtgtccatatcatgtgt  
 gcatgcttaatcatttttttttttttttttttttttttttttttttttttttttttt  
 caaacattttgttttttttttttttttttttttttttttttttttttttttttttttt  
tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt

Figure 46

**SEQ ID NO.:46 Spg85 encoded protein sequence**  
 MQLTPGSLPVIGEKEVVQADDEPTFSFFSGPYVMVNLVWNRSRVTVKELNLPTRPHC  
 SRLRLADLLIAEQEHSSNLRHPNLLQLMAVCLSRDLEKIRLVYERIAVGLFLSVLHERR  
 SQFPVLHMEVIVHLLLQVADALIYLHSRGFIHRSLSYYAVHIVSAGEARLTNLEYLTES  
 QDSGAHRNVTRMPLPTQLYNWAAPENVVLQKAATVKSDIYSFSVIIQEILTDSPWNGLD  
 GSLVKETIALGNYLEADVRLPEPYDIVKSGIHAKQKNRTMNLQDIRYILKNDLKEFIG  
 AQKTQPTESPRGQSYEPHPDVNICLGLTSEYQKDPPDLDIKELKEMGSQPHSPTDHFL  
 TVKPTLAQTLDSLSSAQKPDNANVPSPPAACLAEEVRSPtasQDSLCSFEINEIYSGC  
 LTLGTDKEEECLGTAASPEGDRPNQGDELPSLEEELDKMERELHCFCEEDKSISEVDTD  
 LLFEDDDWQSDSLGSLNLPETREAKGKTSSWSKTDEYVSKCVLNKISQVMMQQSAEW  
 LRKLEQEVEELWEAQKELDSQCSSLRDASLKFAANAKFQPAVGPPSLAYLPPVMQLPGLK  
 QPENGGTWLTLARSPGNEREFQEGHFSKKPEKLSACGWKPFTQVSEESRGDCSELNNQL  
 PTLRGPQKQSTGEQLPSTQEARSLERKNTQNNSRSMASVSSEIYATKSRNNEDNGEAHL  
 KWRLAVKEMAEKAVSGQLLLPPWNPQSSAPFESKVENESTPLPRPIRGPESTEWQHIL  
 EYQRENDEPKGNTKFGKMDNSCDKNKHSRWTGLQRFTGIRYPFFRNHEQPEQNEASQA  
 SCDTSVGTEKFYSTSSPIGDDFERFQDSFAQRQGYVEENFQIREIFENAEILTKPQFQ  
 AIQCAEDKQDETLETPKELKEKNTSLTDIQDLSSITYDQDGYFKETSYKTPKLKHAPT  
 SASTPLSPESISSAASHYEDCLENTTFHVKGSTFCWNGQEAMRTLSAKFTTVRERAKS  
 LESLASSKSLPAKLTDKRLCMLSETGSSNVSAAFVTSTHATKRKSLPRELAFAATSQQ  
 HLDDELPPPAQELLDEIEQLKQQQVSSLASHENTARDLSVTNKDKGHLEEQETNSSKDSS  
 FLSSREIQLDEDTERAHSSLDEDLERFLQSPEENTALLDPKGSTREKKNDQDVVEQK  
 RKKESIKPERRESDSLGLTLEEDELKPCFWKRLGWSEPSRIIVLDQSDLSD.

Figure 47a

**SEQ ID NO.:47 Spg87 cDNA sequence**  
 ACAGGTTCAAGGCTTAGGAAGAAAGGGTAGTACTCCAGGAACCTTCTCATGGTAG  
 GAATAACTTAATAGATGTGTTACAGTTGGAAATATCGGATTTCCTCTGGCCAGGTGTC  
 CAGGTGAGCACTTCAGGCATTACTGAGGAATCTGTGTTGCTGTATTACTGTTCCGTGAT  
 GTCAAACCTGTTCCACACAGTATAACGCAACAGCATAGTGTATAAGTATTATAGACC  
 AGACAGCTGGCCTGGAATTATTGCTCCCCCACACCTATCCCTACCCACACCTCAGGC  
 AAAACAAAGCAAAAAGCCCCAAATCTACTTTTGAGCAAGAGGGTGTGCTCAGGAAGAAGG

Figure 47b

AACACACAGAGGAAGTATACTTGTTTATTCCGAGGAAGGTGGTAATTGTATCCTT  
 CCCCTTGGCTGGGCTCTAACCTCTGCTAGTCTGAGAATTGGTCATAAGAAAATGGA  
 GGAAGGGAAAGGAGTTATTGCTCAAAGAGGAAAGGATCATTGCTTCAGGCTACCAAA  
 TTCTTAGAATAGAAATAGGACCTTGAGTAATAAAGTTTACTTGAAAGTGGGGAG  
 GGATTAACCTCTAACACAAAGTTTATAGTATTGATAGAAAAAAATCTCATTATATA  
 TTTCTTATAAAATCCTCCTCTTTCTTAAACACTCTTCTCAAACACTCATT  
 GTGGTTTCTTTCTGTTCTATCTGGAATAAGAAACTGCCCTGGGGAGGGAGTAGTA  
 CCTGTTATTAAATAGTCACACTATCCTATGTTATGTTCTAGAATAAAAAATTGT  
 TACATCTATTTCATTACCATGGTTAAGGTAAAGCTCACCTCCTAAGGGTAGTCCT  
 GTCAGGAGAATGATCTATGCTTGGATATTGCCCTTGATGTGCAAAGGAGTTG  
 CCTCCTTTAAGTGAAGTATCCAGGGTGTGGGCTCCAGAAAGTATTACAGTGTAA  
 ATGTAGCATTGCTTGTAAATTGTAAACATACATTAGGCACTTGTGAATCTCTTG  
 ATAATTGGGACACATTGTCATTCTGAGAACTTGTATTTTCTATTTCATAGT  
GTTACTGTGAATTAAATTGTATGCCACTGCCAAAAAATAAAGCTTACTTGGAAC  
ACAAAAA

Figure 48

**SEQ ID NO.:48 Spg8.7 encoded protein sequence**  
 MIYLLWNHCPLMCKGVCLLSEVSRVWGSRKYYSVLNVAFCNICNIHLGTCESSLIIG  
 THSSILRTCYFFSIFIVFTVN

Figure 49

**SEQ ID NO.:49 Spg84 cDNA sequence**  
 TTTCCCAGGGAAAGAGAAGGGAAAGGAAAAGTCAGCATGTGTCACAGGATGATTACGA  
 TAGGAATACAAGGGCCGGGTACAGTAAAATCAACTAGGAAATAAACCCCCAGGCA  
 GGGGTGGGGTCATCCAAGCCCCGGGGTAGGGGGCCTTAGTCTCCTGCAGTCAGGA  
 AAGAGATGGGAAAGGACAGACAAGTACACCCCTTCCACCCCTCCCCATAAATTCAAGA  
 TTCTCACAAGCTTGGTTCTAGCAGTAAACATGGAGATACTCGTCCGTCCT  
 GTAACAATCTGTGGCTCTTGACATAAGTTCTTGACCCGGCATTAAGTTCCTGAGT  
 GACTCACTGTACATTCACTAGTCCCTTCTGGTGTCCAGATTCCAACCTTCTACATGGA  
 AGGCCCCACAGTGTCTCTCGACCTAAGGGCGACAGATTACATTGGTTGATCCATC  
 CAAAGGCGAACATCACACCAGAAATAATGGCTTGCAGGGAGAAGCGGCACCTGCAAG  
 CCCTGCACAGGGACTCTGTGCAGAAGGAGGGAGAGCCAGGAACCGAGGCTCT  
 ATCTCCAGCTACAGAGTGTGAGGCCGTCTCAAAACCACCAACAAACTCTCACTGAG  
 TTAGGGACAAGGAAAGAATGAGGTTCTGGCTCTCAGAATTTCACATGGGTCTTC  
 AAGAGTTACAGAGATGCTAAAGAAGTAAATGAGCCTAAGTTCTTACGAGGGAGAAG  
 AGGGCTGCTGAAGGTCACTGTGGTCCAGAATGGGAGACACAGGAGGAGCAGGTAAAG  
 ATAAGCCATGGTCCCAGAGGTTGCTTGAAGAGGACCGCACATTAAAGTTTCAGAT  
 GGTGTTGTCTGGTGCAGAGCTTCTGTCAAAGATGCTTGGCTATTCTCAATAC  
 AACAAAAGTTGTAAACAATAAAACCCAAAAGAACATGAAGACCAACACATTTTATT  
 TTACACAACTNGGCCACCTAGCPATCACCAACTCAGAGACAGTAAAGTCCTACAAAGG  
 CCAGACGAATACAATTAACTAGGGGTAGGGCAGCATTGGGGAGAGGGAGACAAAGA  
 AACCAAGATCAGACACACACACACACACACACACACACACACACACACACAC  
 CAACACAGTGAGGTAGGTTGTGGCAGTCAGCTACAGCAGGGCAGGACACTGCCACTGAGG  
 CCCATACTCATGAGTCTCTCAGAAAGCCAAGATTGTGAAAGGCTAAGGAGTTGAGTC  
 TGCCCTCATGTCCTCATGCCCTGGACAGCAGTGAGGTGGAAATAAGGGTACTGGCTTAAGT  
 TGCATTCTTACTGGGATAACTCAGTGGCAGTGTACTTCCTAGCACAAATGAAGGCCAAG  
 ATTCCATCCCCAGCACAAAAGCAATCAATAAAACCCACCTCGCCACCGGTCC  
 GCCCACCGGTCC

Figure 50

**SEQ ID NO.: 50 hSPG1 cDNA sequence**

TTCGCCTCTACGTTCCGCCGGAGCCCACGCCGGTTCGTCCCGGAACCCACAGACCAG  
 AGACGCAGGTCCCAGCCTTTCGGTGTCGGGCCAGTCCCCGGAGGAGCGGACATGAGT  
 GAAAGCCAGGATGAAGTTCTGATGAAGTTGAGAACCACTTATATTGCGTCTGCCTCT  
 GGAACATGCTTGACTGTCAGGAACCTAGCACGTTCTCAAAGTGTCAAGATGAAGGATA  
 AACTAAAAATTGACTTATTGCTGATGGCGCCATGCAAGTTGTTGAAGTAGAAGATGTC  
 CCACTAGCTGCTAACGCTGGTTGACTTGCCTTGTGTTATTGAAAGCCTGAGAACGCTTGA  
 TAAAAAAACCTTTATAAAACAGCAGACATTCTCAGATGCTGTGCACTGCTGATG  
 GTGATATCCACCTTTCTCCAGAAGAACAGCTGCCTCTACTGATCCTAATATAGTCAGG  
 AAAAAAGAAAGGGGGAGAGAAGAAAATGTGCTGGAAGCATGGCATTACGCCACCACT  
 TAAGAATGTCAGAAAGAAAAGGTTCCGGAAAACACAAAAAAAGGTCCCTGATGTCAAAG  
 AAATGAAAAAAAGCAGCTTACTGAGTACATTGAATCTCAGACGTCGGAAAATGAAGTA  
 AAGAGACTGCTGCGTTCGGATGCTGAAGCCGTAAGTACCGTTGGGAAGTCATTGCTGA  
 AGATGGAACCAAGGAAATAGAAAGTCAAGGCTCCATCCAGGATTGATATCCTCGG  
 GAATGAGCAGCCACAAGCAGGGTCATACCTCGTCAGAATATGATATGCTTCGGAGATG  
 TTCAGTGATTCTAGAAGTAACAATGATGATGAGGATGAGGATGATGAAGATGAGGA  
 TGAGGATGAGGATGAGGATGAGGATGAGGAGAACAGAACAGAGGAGGAGGAGGAGGATG  
 ATCTGGAAAAGGCAGCTGCAGGCCAGTTATTGAATCTGCCAGTATAGGGCAAATGAA  
 GGTACCAAGTTCAATAGTCATGGAATTCAAGAACAGATTGAGGAGGAGGAGGAGGAG  
 CCATAAGATTCAAGAATAAAGCACAAAGACAGAACAGGATCTCATCATGAAAGTGGAAAACC  
 TGACACTCAAGAACATTTCAAGTCTGTGCTGGAGCAGTTGAGTTACAGGAAAACAA  
 AAAAATGAGAACAGCTATTCCTACAGGAACAGTTGCAGCGTTCTGAAGAACAGTGG  
 AGAGCCATTGGCGTGGCCCACAAACCTTGGATTCAACATCCAGACTGCAGATTGGATGA  
 AACTGTGCACGTTTGTCCCTTCAGTTGCCTTATGTTGAATCAGTTATATTATCTGT  
 ACCTTCTTGCTACTTAAATATGCTCACAGTTGTAGTCATGTAGAAAAGGCAGTAT  
 AAAAATGTAGTAGACTTAAAGACCCCACTCGACCACATGAGACTTCTCTTGTCAATTG  
 GGAATTATTATTATTAAATTAGAAATGGGTCTGTTATGTTGCCAGGCTGAATTCA  
 ACTCTGGCTTAAGGATCCTCCGCCCTCAGCCTC

Figure 51

**SEQ ID NO.: 51 hSPG1 encoded protein sequence**

MSESQDEVPDEVENQFILRLPLEHACTVRNLARSQSVKMKDKLKIIDLDPGRHAVVEVE  
 DVPLAAKLVLDLPCVIESLRTLDDKKTFYKTADISQMLVCTADGDIHLSPPEPAASTDPNI  
 VRKKERGREEKCVWKHGIPPLKNVRKKRFRKTQKKVPDVKEMEKSSTEVIESPDVEN  
 EVKRLLRSDAEAVSTRWEVIAEDGTKEIESQGSIPGFLISSGMSHKQGHTSSEYDMLR  
 EMFSDSRSNNDDDEDDEDDEDDEDKEEEEDCSEYYLERQLQAEFIESGQYRA  
 NEGTSIVMEIQKQIEKKEKKLHKIQNKAQRQKDLIMKVENLTLKNHFQSVLEQLELQE  
 KQKNEKLISLQEQLQRFLKK

Figure 52a

**SEQ ID NO.: 52 hSPG3a cDNA sequence**

aaaggtggagttttccggataatttgcacaaggaggactgtcattatgaacatgg  
 tgggtatgagcgccccgcctcacactgccaggagaatgatggaagcgtggagATGAGGG  
 ATGTCCACAAGGACCAACAACACTAACGACACACTCCTTATAGCATCCGATGCGAAAAGAAGA  
 ATGAAATGGCATAGTGAAGACGAAATCCCTATTACACACGTGGAGAAATAGAAACCTCC  
 GGAGAGAAAATGAGTCAGAACACACAGGATGGATACACAAAGGAACCTGGTTAAGGTCA  
 CAATTCCCTTACGGGATAAAAGTATGACAAGGCATGGCTAATGAATTCAATCCAGAGCCAT  
 TGCAGTGACCGCTTCACTCCGGTTGATTCCACTACGTCCGAAATCGGGCATGCTTCTT  
 TGTCCAGGATGCTAGCGCTGCCCTCCGCAATTGAAGGATGTCAGTTAAGGATTTATGATG

Figure 52b

ATGAGAACCAAAAGATATGTATATTCGAATCATTACTGCGCCCTACTCTGTGAAG  
 AATAAGTTGAAGCCAGGCCAAATGGAGATGCTAAAGCTGACCATGAACAAACGGTACAA  
 TGTCTCCCAGCAAGCTCTTGATCTCCAGAATCTCCGTTGACCCAGACTTGATGGGCC  
 GTGACATTGATATAATCCTGAATCGAAGAAAATCTGATGGCTGCCACCCCTGAAGATCATT  
 GAAAGAAATTTCCTGAGCTGTTGCTTGAACCTGTGCAACAAAGCTGTACCTCAGCT  
 GGATGGCCTTCIGACATTACAGAGAAGGCTCCAAAGTCAGACGCCCTGAATCTCTCCA  
 AAAATAAGCTGGAGTCGGCGTGGGAGTTGGCAAGGTGAAAGGGCTGAAGCTCGAAGAG  
 CTATGGCTAGAAGGGAACCGTGTGAGCACCTCTCGGACACAGTCCGCCATGTAAAG  
 TGCCATCCGGATTGTTCCCCAAGTTGTTACGCCTGGACGGCCGAGAGTTATCCGCAC  
 CAGTGAATTGACATTGACAGCTCTGAGACAATGAAACCTGCAAGGAAAATTTACT  
 GGATCTGAGACCTAAAGCATTAGTCCTGCAATTCTGCACTGAGCAGTATTACTCGATCTA  
 TGACTCTGGAGATCGACAGGGTCTCCTCGGTGCTTACACGATGAGGGCTGCTTCTCCT  
 TGGCTATTCCCTTCGACCCCAAGGACTCAGCCCCGAGCAGCTTGTGCAAGTACTTTGAG  
 GATAGCAGGAATATGAAAACACTCAAGGACCCCTACCTGAAGGGGAACCTGCTGAGGCG  
 CACAAAACGTGACATTGTGACTCCCTCAGTGCCTGCCCCAAACTCAGCATGACCTCA  
 GCTCCATCCTGGTGGACGTGTTGCGACAGCGAAAGGATGCTCTGCTTCTGCAAT  
 GGGGTTTCAAGGAAGTGGAAAGGACAGTCTCAGGGTCTGTTCTCGCCTCACCCGGAC  
 CTTCATGCTACCCCTGGCAGCAGTCCAGTCTGTCATCGTGAATGACAGCTGTTG  
 TGAGGGATGCCAGCCCCCAAGAGACTCAGAGTGCCTCTCCATCCCAGTGTCCACACTC  
 TCCTCCAGCTCTGAGCCCTCCCTCCAGGAGCAGCAGGAAATGGTGCAGGCTTCTC  
 TGCCAGTCTGGATGAAACTGGAGTGGTCTCAGAAGTGCCTTCAGGACAATGAGTGG  
 ACTACACTAGAGCTGGCCAGGCCTTCACTATGCTCCAGACCGAGGGCAAGATCCCCGG  
 GAGGCCCTCAAGCAAATCTCTAAaggagccctccatgttttgcatttcgttca  
 catcctttgtttcctttcaccagcctaaggcctggctgaccaggaagccaaacgt  
 taacttgaggccacgtgacataaccacccaaagagccagtgtctgttatcgccc  
cactcatgatcaccatttatttcataataaaagagtgacgttacacgttaaaaaa

Figure 53

SEQ ID NO.:53 hSPG3a encoded protein sequence  
 MRDVHKDQQLRHTPYSIRCEERRMKWHSEDEIRITIWRNRKPPERKMSQNTQDGYTRNWI  
 KVTIPYGIKYDKAWLMNSIQSHCSDRFTPVDFHYVRNRACFVQDASAASALKDVSYKI  
 YDDENQKICIFVNHSTAPYSVKNKLKPQMEMLKLTMNKRYNVSQALDLQNLRFDPDL  
 MGRDIDIIILNPRNCMAATLKIERNFPELLSLNLNNKLYQLDGLSDITEKAPKVKTLN  
 LSKNKLLESAWELGVVKGLKLEELWLEGNPLCSTFSQDSAYVSAIRDCFPKLLRLDGREL  
 SAPVIVDIDSSETMKPKENFTGSETLKHLVLQFLQQYYSIYDSDGRQQLLGAYHDEAC  
 FSLAIPFDPKDSAPSSLCKYFEDSRNMKTLKDPLYLGELLRTKRDIVDSLALPKTQH  
 DLSSILVDVWCQTERMLCFSVNGVFKEVEGQSQGSVLAFTRTFIATPGSSSLCIVNDE  
 LFVRDASPQETQSAFSIPVSTLSSSEPSLSQEQQEMVQAFAQSQGMKLEWSQKCLQDN  
 EWNYTRAGQAFTMLQTEGKIPAEAFKQIS

Figure 54a

SEQ ID NO.:54 hSPG3a genomic DNA sequence  
 AAAGGTGGGAGTTCTTCCGGATAATTTGACAAAGAGGAGCTGTCAATTATGAACATGG  
 TGGGTATGAGCGCCCGCCTTCACACTGCCAGGAGAATGATGGAAGCGTGGAGATGAGGG  
 ATGTCCACAAGGACCAACAACAAAGACAGTAAGTGACCAAGGCAGGCCAGCTGGTTCGCACGTA  
 GCAGCCCCCGGGACTGTGCAACOCTTTCATTCTCTGTGGTCTTCCTTTCTCTCTCAT  
 TAGAGAACTGACGAATGCTGGAAGTGGAAATAGTGGCTGAGCAATCCTAATTGTAGCCCT  
 GGCCTCAGTGAATGGAGCATGTATAGGAGACTTTCTTAGATTTAATGGATACCCGGCTT  
 CTCTCCCTTCCCCACAGCACTCCTTATAGCATCCGATGCGAAAGAAGAATGAATGGC  
 ATAGTGAAGACGAAATCCGTATTACACACGTGGAGAAATGAAACCTCCGGAGAGAAAA

Figure 54b

ATGAGTCAGAACACACAGGAATGGATAACAAGGAACGGTTAAGGTACAGTGAGTAT  
 CTTGGTGGGGCTGCATTAGGTGGACTATTCTGGAACCTGATAGAAGGAAGACCACTTA  
 AAACACCTAAGTTGATTATTTGGAGGAGAGCTCGGAATGGGGAAAGGGAGTTAG  
 GGCATCTATATTGGCACAAAAATAAGAAATCATGTCAGCGGTCTTCTTAGAAATC  
 TAAGCTAAGTAGAAGGTTGAAAGAAGAAAAAAAACCCAGCTGGTTGGTTCTGTT  
 TCCATCCTTAGTCCACGTTGTCTCCCTCCCTATTCTTCTTTACCCCTAG  
 ATTCCCTACGGGATAAAGTATGACAAGGCATGGCTAATGAATTCAATCCAGAGGCCATTG  
 CAGTGACCGCTTCACTCCGGTGTAGTCAAGAGAGGATGGTGAAGCCAGATGAGTGGGCA  
 TGGGGACGGGGAGAGGCCCTGGCTCAGCAGGGGCATTGGCCTTGACGCTGTGCTCT  
 TGCCCTCACTCCCTGAGTCCACTACGTCGAAATCGGCATGCTTGTCCAGGA  
 TGCTAGCGCTGCCCTCGCATTGAAGGATGTCAGTTATAAGATTATGATGATGAGAAC  
 AAAAGGTGTGCGCAGGGCATGCCCTGACTTAGTCTCTGGCAGGAGGACAGGCCAG  
 GGGGCTGGTCATCCTCTTGGGATTAGAGGCTGGTACTTACCACCCCTGCCTCCTGC  
 AGATATGTATATTGTCAATCATTCTACTGCGCCCTACTCTGTGAAAGAATAAGTTGAAG  
 CCAGGCCAAATGGAGATGCTAAAGTAATAACAGACTCAAGGATCATTGTATGTCCACTT  
 CCTGGACCCACCTCTTCTCCCTGGCCCCCTTTCCCTGTCACACACACCAC  
 CACCACCATCACCAGAGGCCAGAGCCTCTGTCTCATCTATCTGCAAGCTGACCA  
 TGAACAAACGGTACAATGTCCTCAGCAAGCTCTGATCTCCAGAAATCTCCGTTGAC  
 CCAGGTAAAGGCTGACAGCAGCAATTCTAAGACAAGCGGGGGCAGAGAGGTCTGCCCTGGG  
 AGGGAGACTTAGGAATGGCAATTACAGAGGGTTGGGCTGGCTCTGGTCCAGCCAGG  
 GCCCTCCCAGCCTTCCGATCCCTCTCTGGCTTCTCAAGACTGATGGCCGTGAC  
 ATTGATATAATCCTGAATCGAAGAAACTGCATGGCTGCCACCCCTGAGAGATCATGAAAG  
 AAATTCTCCCTGAGGTGAAGCCTTAGGCTCAGTGTGGTATTAGTTAGAGGGGTGGAAG  
 GGATAAAGGTGGAGGGCAGATTGTCTTGAGGCCAAGATAGTAGCCGCCACTCTAACT  
 CTTCTGACCCAAAGCTGTGTCTTGAACTTGTGCAACAAACAGCTGTACAGCTGGA  
 TGGCCTTCTGACATTACAGAGAAGGCTCCAAAGTCAGACCCCTGAAATCTCTCCAAAA  
 ATAAGGTGAGAAGGGGGAGCCAGATCAACTTGGGTGGAGGGCAGGACACATCAGGATA  
 ATGGCAACAGCCAGGCAGTGGCACCTGTGGGTGACTATGAGGGCCGGGGAAATCAGGG  
 CCCAGGGCTCTGGGTGTCTCTCTCCCTGGCCCTCCCTCCAGTTCTCCCCATCT  
 TTCTTAGCTGGAGTCGGCGTGGAGTTGGCAAGGTGAAAGGCTGAAGCTCGAACAGC  
 TATGGCTAGAAGGAAACCCGTTGTGCAAGCACCTCTCGGACCAGTCCGCCTATGTAAGG  
 TCAGTGGCAACCCGGTACCCCTTCTGGCACCTTGCTCCCTGGGTACTGAGCTGT  
 GTCTGAAGGTGCCCTCTGCAGGAAGAAGCAGCCTGGTCTCTGGAGGACCACAGAC  
 CTCCCTCCTACTCTCTCTCTCTCTCTCTCTGTCACTCAGTCACTCATCT  
 GTGCTTAGAGGTCTCTTCTCTCTGACATGGCTCCCTTTCACCTGCTCTGGGT  
 GTGTTCCCGCCCTGCTCTCACCAAGCCTCCAGTGTGCCCCCTGTGAGTGTGCTCCA  
 GGAAGTGGGGCTCCCCACCTCCCCAGGACCAGCAGTATTGAGATGCTGGTCCCTGGGA  
 CCGAGAAGAGTCCTTAGTCCGGGGCTCATGCTGAGACAGGCCCTCTGCTCCATGC  
 TCGGATGGGGCTCCCTCCCCGTCTCCCAAGAGGGTTCTCCTCTTGTCTCCAAAAAG  
 GTCCCCCCCACCTGCTCTGGCTGGCATGGGGCTTCCCTGCCCTACTGAGGGCTGGG  
 GCCCGGGGTGGCTGCTGTCATGCCATCTCTCTCTCTCTCTGTCACTCAGTCTGGG  
 CTCCTGGGGAGAACCTGGGTTCTACGTCAAGGGGCCAGAAGCGGGCCACGTTCT  
 GAGGCAGGAGTGGAAGGCAGAGGGCAGAGGGAGGTTGAGAAGACAGAAGGACAGGCCTCT  
 CAGGCAGTCCCCACCTCCCTCTCCACATCGTCCTGCCCTGGGCCCTCAG  
 AGGAGCCCTGGGTAGCCCGAGATGGGTAGCATTCCTCGGTCAAGGCCCTCAGCACAGAGG  
 GGCACAGGAGTCAGGGACCACATCAGAAGAGAATGCACTGGTCTGGAGAGGGGTCCCCAG  
 ACTCTGAACCCCATGCTGAGCTGGGGCTGACTCTTCACCTCCCTCCGGAGAAGGTCTC  
 CTGCCCCGTGGCTGCTGTGTTCCCATGCCAGCTCAGACTGAGCTCACACAGGTGAG

Figure 54c

GAAGGCTCCAGCTGCATCCAGTGGGCCCAACAGGCGCATGTTTCCCTTCCTG  
 CCTCGGTCCCCAGGGCCAGCCAGGGAGCAGTGAGGGAAAGGGCTGCAGCAGGGGAGGCC  
 TTTTCTCCTCTCTCCTCCCTGAACCTCCACCTCCGCAGTAGAGAGTCCTTCCTCCCT  
 TTGCATTGCATCCTGTTCTCCCTTGTCTCCTCTCCCTATGTCTCACCCATCCGTCCC  
 TCCCCCTACCTTCACCCCGTTCTGTTGTCCTCCCTGCCTTCCGCTTCGCTCCT  
 GAGTCCGGCCTCACTCACCTCCGTGTCAGCAGTCCTGGGCCATCCCTAAGGGCTGACC  
 TGGTCTTGGCCAGGGCTGGTCAGGCAGGTTGATGGACAGCCAGTGAGGTGGCAGAGCC  
 CTGGGCTCCCACCCCATTCCCTGCTCCCTGCAGAGCCTCCATGGTACTTGGCAAAG  
 GGGAGGGAGGGAGAGGAAGAAAAGCCCTGGAGGCTGGCTCCAGTGCTGCTTGTAG  
 CACTGGAGAAAAGGGAGTCAGGACAGTCTAGATGGAAGCTAACCGAGGAAGGAGAGG  
 GAGGAGTGTGAGGAGGGAGTGGGAGAGAGACTGTGCAACCCCTGAACTGTCAGTCATTCA  
 TTCAATTGGTTTGGACAGTGCCATCCGGGATTGTTCCCTTAAGTTGTTACGCTG  
 GTAAGTATGTATAATACCGTCATCATTGTCCTCTTACTCAAGAAAAGGACCTCAGG  
 CCTGCCCTCAAGTCCTTGGGTCTTGCCTAGATTACATGCTTGTATCAGACCCCTCATCC  
 ATTTTACAGGCATGGATTCTGAAAAAGACAAGAATATTCTCCCTGAAAATGTGTCC  
 CCCGCCACCCCCCCCCACACACACATTGCATGTGATAGTAGAGATGTCCAGCAC  
 CCCATGAGAAAGCCACCCACTGGAATTCCAGGGCCATTCCACCTAGCCTCTGATGC  
 TTGTCCTGGGCATGTTCATCTTATCGATCATCCAGCTCCATCTCCCTGGTCTCCAC  
 TGCTGACTTCCCTTCCCTCTCCAGGACGGGAGAGTTATCCGCACCAGTGATTGTT  
 GACATTGACAGCTCTGAGACAATGAAACCCCTGCAAGGTGAGGAAGAAGGACCAAGCAAG  
 ATTTGGGTTGCTGTAAGGGAGGCTTGTCCACCGCATAGATCCAATTGTCTTTGATT  
 TCAGGAAAACTTACTGGATCTGAGACCCCTAAAGCATTAGTCCTGCAATTCTGCAGC  
 AGTGAGTATCCCTGGGACCATGAGGAAGGGAGGGCTGAGACAGGGCTGGGCCACCCGTG  
 CAGCCTGGGAGTTTCAAGTCTCATCTGGGGGCCAGGCCACAGAGATAGCCTATCTCA  
 CTGCTCCCCACAGGTATTACTCGATCTAGTACTCTGGAGATCGACAGGGTCTCCTCGG  
 TGCTTACACGATGAGGCCTGTTCTCCTGGCTATTCCCTTCGACCCCAAGGACTCAG  
 CCCCGTGAGTATCACGGCTCAGACCCCTGCTGGGGCTGTGTCTCCCCAGCAGACAC  
 AGGCCAACTCCTGGAAATGCCACACTGGCCGGACCACCCACTCCTGCTCCTTTTC  
 TCCTAGGAGCAGCTGTGCAAGTACTTGGAGGATAGCAGGAATATGAAAACACTCAAGG  
 ACCCCTGTAAGTGTGTGATGGGAAGAGTGGAAGGTAAAGGGGTGTGATGGGAACAA  
 TCACAGGGCCAAGGACCAAGGAGATGTGGTAGCCCCCGCCCTGCCCCGCCACCTGCCA  
 TTCCCTGCTTCTCCTCTACAGACCTGAAGGGGAACTGCTGAGGCGCACAAAAC  
 GTGACATTGTGGACTCCCTCAGTGCCTGGCCAAAATCAGCATGACCTCAGCTCCATC  
 CTGGTGGACGTGTGGCAGACGGTGAGCACCTGCTTCCCTCCCTGGCAGGCCAGA  
 GAGCCAGAGGTGGTAGGAGGTTAAGGAGGATCCTGAGCACCTGAGCGCTTCTTCA  
 GGAAAAGGATGCTCTGTTCTGCAATGGGTTTCAAGGAAGGTGAGTGTCTGTATA  
 GTCCCCCTCCCCAGATCCCCACTGCTCCCTCCCCCTGGCTGGCTCCCTCTCAGAACTC  
 CCCCAAGCTCCCTGCTTCTGCTTCCCTTCCCTCTTCTTCCGTGTTTC  
 CCACCCCCACTCTGCTTCAACCACCCCTGATCTGACCTAGGTCCATGCCCTGCTGCC  
 TGCACAGCTCAGGCGTGCCTTAAGGACACAGACTGTGGAGTTGACAGCTCTCATCCCA  
 GGTCCTTACTCTGTAACTTGTGCTGGTTACTTAACCCCTCAGTTCCCTCATTTGCAAA  
 ATGGGGCTAATTAATCTATCTTGGCTACTGTGAAATAGGAATTAACTGAAACTTGTGG  
 TTTTCCCAGGGCCCCACACATGATAGGGGCCCTGTCAGTGGAGGGATTGTTCCCTGTT  
 GCTGCCCTCCCCATTCCCTGCCACATCCGCCTGACTCCAGTGAACAATTGTCTGGTCT  
 GCCCCCTCCCCCTCTGTGTGAGGTGCAAGCAATACTCTGACTGGGATCACCGTGT  
 GAGCAGTCTCAGGGTTCTGTTCTGCCCTCACCCGGACCTCATTGCTACCCCTGGCAG  
 CAGTCCAGGTTAGTGCTGTTGGTGGGAGCACCCATCCAAGCTTGGGCCAGTG

Figure 54d

TTGTGGAAATGTGGTGGGTGCAGTCCTCCGGGTGTTCTCAATTATGTGGAAGGCCGACA  
 GGAAGATCCAAGGAGCAGTCTAGCCTAGTGTAAAGAGTGTGGGCCCTGGAGTCAGAAT  
 ACAGATTCTGTTCTCACTCCAACACTCACAAACTGTGTGACCTTGATCAACTTATTG  
 ACCACTCTGTGATTCAAGTGCCTTTCTGAAATTGGAATAAGACTATCCACTTCCTG  
 GGCTGTTGTACAGGGTAATGCCTGGGGTTGGATCTAAAAATCTAGTGAAGCTGGTAG  
 ACAGTCCCTCCAAGGTGGACTCTGTGGGAGGGTTAGAGGGTACCAAGCCAAAAATCTG  
 GGAGGCAGGCACAGTTAGGGATATGGAAGGAATTGGTTGTGAGTGGCAGTGGTTAAG  
 AAGGATCCTGTTGGGGGTGCGGAGTTATCTACTTGTCCAGTTGAGGGTGCATT  
 TCTTCTCCAGTCTGTGCATCGTAATGACAGCTGTTGTGAGGGATGCCAGCCCC  
 AAGAGACTCAGAGTGCCTCTCATCCCAGTGTCCACACTCTCCTCCAGCTCTGAGCCC  
 TCCCTCTCCCAGGAGCAGCAGGAAATGGTGCAGGCTTCTGTGCCAGTCTGGGATGAA  
 ACTGGAGTGGTCTCAGAAGTGAATGGGAGTACATGGGATGGGGCTGTTGGGACA  
 TCAGAGGAATGAGTAATGAAAATCACATGCAATTGGAAAATAACTATCTGGTATT  
 TTGCTCCAAAAAAAGTGGTCCATGAAAAGGTATCATACTTTATACTGGTATATGT  
 AAATATTTTTAAATGGCATAATGCCAAATGACATTACCTCCATTGTAAATCTG  
 AAAGAACATCAACCACAATAACTGATAAACCCAGGTCAAGGTTGAAAGATAACAT  
 ATACAAAAATCATTGTACTTCTATGTAGTTGCAATGGACAATCCAAAAAAATGAAATT  
 AAGAAAATAAGTCCATCTACAGTAGCATGAAAGAAGAAGTATGTAGGAACAAAATT  
 AAGAGAAGAAGCGAAATCTGTACTCTGAAATCTGCAAAACATTGCTGAAAAAAATT  
 AAGAAGACCTAAATACGTGAAAGGCATCCCACGTTCATAGATTGAAAGACTTAATATC  
 ATTACGATGGCAGTACCAACCCAGAACATCTACAGATTGCAAGTCCCTGACAGAAT  
 CCCAACTGACTTCTTGCAAGAAATTGACAAGGTAACTCCAAAATTCATGTGAAATGCA  
 GTGGACCCCACAGCCAAACCATCTGAAAGAGAACACGTTAGAAGACTCACA  
 CTTCCGATTCAGAACTTGCTACAAACTACATTAATCAAGACTGTATGGTACCGACA  
 TAGGAACAGACGTGGGAAATCAATGGAATATAATTGAGACTCCACAGATAATCTCACGTA  
 TTTATGTCCAGTTGATTATCATTAGGGTGTGAAAAAAATCCAATGGAGAAAAAAATA  
 GTCTCTTAACAAATGGTGTGGAGAAGTGGATATCCACTTGCAAAACAATTAAATT  
 GACCCCTAACTCACATCACGTGCAAACACTGGCAGAAAATGGATCAATGACCTAAAATA  
 AGAGCCAGAACTGAAAAACTGTAAGTGTACATCTTCATTACCTTGAAATTAGGCAACC  
 ATTTCCTACATATGAAACCAAAAGCACAAGCAACCAAGAAAAAAATAGGTAATTGGAC  
 TTCATCTAAATTAAAAGCTTTGTGCATCAGCAGACACTATCAAGAAAGCGGAAACCG  
 ACTGGTGGGAAACAAGGAAATATTGCAAATCACATGCCGACAAGAAGAACCTTAC  
 AACTCAACAACAAACAGACAAGCCACCGAATTAAAAATGGGAAATGATTGAAATAGA  
 TGTTCTCAAAGGAGATATACAAATGACCAAGAACAGCAGTGAAAATCTCTCAACATC  
 GTTAGTCATTAGGAAACGCATATCGAAACACCACAGTGAGTTACCACTTCATACCCACTA  
 CGCTAGCTTGTCCATAAAGGAAACATGACAAATGCGGTGAGAATGCAGAGAAATT  
 GGAAATCTCATGTATTACTACTGGGAAACATAAAGTGGAGCAGTTGCTGGCAAAAAGATT  
 TTGGCAGTTCTCAAAATCTTAAACATGGAGTTACCACTGATCCAGTAATCCACTCC  
 TAAGTGTATACAAAAGAAATGAAATATATGCCATTCAACAACTGCACTGAATT  
 CCGTAGTGGCATATTCCAAATAGCCAAAAATGGAAACACATGGATTGACCTCAGCT  
 GATGAATGGATAATGTGGTACATCCATACGGTGGAAATTATTAGAATATTATTGATCC  
 ACAAAAAGGATGTAGTTGTGATATATGCTATGACGTGGATGAACCTGAAACATTAT  
 GTGCTAAGTGGGAGCACCCAGTCACAAAAGCCACATAATTATGATTCCATTCAAC  
 GAAGTGTCAAGAATAGCCAGATCCGTAGAGACCGAAGCAGAGTAGTGGTTGCCAAGAT  
 CTGGGGAAAGAGGGAGAACAGGGAGTGTATCTAACAGTTAAGGAGTTCTTTGAGGT  
 GATAAAAACAGTTGGAATTAGATAGGTGTGATGGTTGCACAACTTGTGAATAGACTT  
 AAAAGCACTGAATTGTACACCTTAAATGGTGAATGCTACAGTATGTGCATTATATCTC  
 AATAGAAAAGAAACGTATTATTGAATTTCACCTGTTATTCTTGAACATCTTCTTTA

Figure 54e

TCATATGTATTAAGCTCCCTGTTCATTTGAATACCGCTATGTTCTGATTGAAATTCTAGTGGCATTAAATGTCAGGGATGGCGTTTGTTTCCCCAGGCCTTTTCATTGTTACAATAGTGCTCATATTGGTACATGTGACCCAGCAAAAGGTAGCATAGATAAGGGTGGCATTGCATAGTCAGCGTGTCTGTCCTGGCTAGTAATGGAGAGCACCTGTTCTTCCTCAGCCCCAGGTGCCCTCAGGACAATGAGTGGAACTACACTAGAGCTGGCCAGGCCTTCACTATGCTCCAGGTGAGGTCTGGGAATCAAGTGGTAAAAGACAGCTGTCTGGGTCGTCAGGAGGGCCAAGAAGATGGAGGCCAGTAGTGTGGGGATGGAACCCAGTGCACCTGGCTCTACTAACATCCCACCTCTTCTTACTTTCTAGACCGAGGGCAAGATCCCCCAGAGGGCCTCAAGCAAATCTCCTAAAAGGAGGCCCTCCGATGTCTCTTGTCTTCGTTACATCCTCTTGTCTTCTCTTACCCAGCCTAAGGCCCTGGCTGACCAGGAAGCCAACGTTAACTTGAGGCCACGTGACATAACCACCCAAAGAGGCCAGTGCTCTGTGATTGCCCAACTCATGATCACCATTATTTATAATAAGAGTGACGTTACACGTT

SEQ ID NO.: 55 hSPG3b cDNA sequence

CCAGCAGGAAGGAGACCCAGAGTGCCCTCTCCATCCCAGTGCCTGCACCCCTCCAGCTCCTGCCTACCCCTCTCCAGAAGCAGCAGGAAATGGTGGAGACTGTCTCCACCCAGCTGGGATGAAACTTGAGCAGTCTCAGAAGTGCCTCAGGACAGTGAGTAGAACTACACCAAAAGCTGACCAGGTTTCACTATTCTCCAGACCGAAGGCAAGATCTCAGTGGAGGCCCTCAAGCAAATCCCCTAAAGGAGGCCCTCGATGTCTCTTGTCTTCATTCACATCCTCTTGTCTCTTACCCAGCCTAAGGCCGTGCCAGGACTGGGTTGGCAGCCTGGCTCACGGAAAGCCAAGTTAACCTGCAGGCCGGTAACATAACC

SEQ ID NO.: 56 hSPG5 cDNA sequence

ATGCCCAAGTGTGACCAAAGACAGTGTAAATGGTGCACCTTTGTTAAATTGGACAAGTCTTAAAAATATTTAAGTGGCTTAATGCTTCTTCTCACAACAATACTGGCTAAAGCACAGTCACTACTTCAAAATCCATCAAAGACCCAAAGACTGATGAGGAGAGAAAGAAAGTATGGGAGAACAGAGTAGTACTGCAGGCTTAAATGAGGTTTGCAATTGAGAAAGAGTTCAAGATAATTCAGAAATAAAATCGACACCCTCTAATTCTGCCTCCTCAGAAGTTGTCCTGGTGTGCTTACTAATGGTTGGATAACCCCTGCTTAAACTCTGTGTTAATGATTCAACATCTGGGCTCACAACATGGGCTCTGAGGACTATGACTGTATACCTCCAATAAAAGTTACCATGGCAGGGCAATGTAAGGACCAAGGTAATTTCCTTCCCAATTCTGTGTCAAATGTTAGTGTGAGGTTGAGAACCAAAACACAGTGAGGAGAACGCTCAGAGAGGCCAACAGGAGTCGGTAATGCTTACAAAGACTACAGTAGTCACATTTCAGGACTCGCAGTCTCTGATTAAACAAATTATCAGACTGGTTGCCAACAGTCTACAGTTTCACTCAAAAGAAAGTAAGCATTGATGAAATACCTTCAAAATACTGGAAAGATGAAAACCTCGCTGACCTGGAAAGACAGTCCAAACATGAAGAAAAGCAAACCTTCATGGAAAGAAATTGATAATGATTCACTAATGAAACAAAAATCAGTCCAATAGATAATTACATTGTTTGACCAAGAAATACAAAGAGAGTGAGAGTCATAATTCTTTGGGAAAAGCTGTGATAAAATATTAATTACTCAAGAGTTAGAAATAACAAATCTTCTACATCTACCATAAAGGATAAGGATGAACTAGATCATCTAGCATTGGAATGCCAAATTACTCCAAGTTTGAGAGCCTGTCACAAAGCATTCTCAGCACTCTGAGGAGTATGAGGGTAACATTACACAGTTTAGCCATTGCTCAAAAGCTAATGGAACTGAAATTGGGAAAATTAATCAAAATTAGCTAGGATTATAACTGAAAGCTTCCGAAACCAAAAGACATACCCAGGCCAAAGAAAATGTTCAATTGATAACAGTCTTACATCTACATCTGAGCAGCTAACTAGAGAACATATATGTTGTCATAGGAAAATGAAACAGTGTCAATTAGAGAACATTCAAGAGAGACTATAAGAAACTGCTTATGTTGAAGATAAGGGTCAGGATCACAATCTGTTCTGTAATTACAGTTAACCAATGATATCGCCTGAAATGTTAATTTCAAAAAPCAACAGATAGAGAAAACCAAAATGAGGCTAAAGAGAAATAGTGCTCATGTGT

Figure 55

Figure 56a

Figure 56b

AGAAAAACAACATAGAGAACATATATGGAGACAAAAGCAGGATTCTCATACAAACGAAA  
 ATTTCAAGCAATATAGATGAAAAGGAGGACAAAATTACCAATATAGAATTGGAGT  
 TCTGAAGAATTTCCTACTAAATTAACTTGATTGCAGAGAAGATAATGCAGTGTCAAGC  
 AGCAACTGCATTATTAGAGAGTGAAGAAGATAACCATTAGTCCGTGAAACAAAAGATA  
 CTGAAATTACTGGAAGAAGTGTAGACGATTGGCTTCCAGACATTCCCACACTGCA  
 AGTTCTCAGTGTGTAGCCTCAAATGCTGCAATACAGATAGCTAGTGTACTATGCC  
 TGCATTAAGCCTAAATAATGACGATCACCGAGATAACAGTTAAAGAAACTTGTCTT  
 CTGAAAGTCCAGATTGGTTGTTAGTAAACATAGGTTCTGATTGTGAAATTGAT  
 ACGGATAAAAATAATCACAGAACATTCATCAATCAATAATGAGAACTTAGTTCTT  
 TCAGAGCATTGAATTGGAAAGTGAATTGAAATAGAATTAGAAGATTGTGATGATGCTT  
 TTATATTTCACAAAGATAACACATAGCCATGAAACATGCTTGTGAAAGAATTGTGACC  
 TCATATAAGGCTCTGAAGTCTCGTATCAGTTGGGAAGGCTGTGTTAGCACTTGATAACGG  
 GGAGATGGAAGTTGGAAAGCACCACAGGAAGGGAGAATAGTGTATCAGCATTATTCTA  
 AGGAAAGTAACTATTTTATTCCCTCACACAAACAAATGAAACAGAACTTACAGCCCC  
 ATTTCAGTCCAGATCTACAAATTAAATTACTAATATATTAGGCCAGGATTCAGCCCC  
 GACAGCTGACTCCCTGCATTGAAAGATAGTTTGACACATGTAACCTGAAGCCACAA  
 AACCGGAAATAATAAGGAAGATGGAGAAATTCTAGGATTGACATTATTCCCAGCCT  
 TTTGGTGAAGATGCAGATTATCCATGTGAAAGATAAAGTTGATAATATAAGGCAAGAAC  
 AGGGCCAGTGAAGTAACCTGAAATCTCCCTTCTTTGACTTGAGTCGTAATACAGATG  
 TGAATCATACGCTCTGAAAATCAGAACAGTGAATCTTGTTACTGAACCTTCTAATGTC  
 ACAACAAATAGATGATGGAAGCAGATGTTCTTACAAAATCAAAACAGTACTATAATGA  
 TACCAAAAATAAAAAGGAGGTAGAATCAAGAAATTAGCAAAAGGAAGCTACATATATCTT  
 CCAGGGATCAGAACATACCACATAAGATTAAAGACGACATAAAATTATGGGAGAAAG  
 AGGAGGCTAACCAAGTCAGACTCATGAGTGTCTCTCATTATCCCAAGGACGAAT  
 TAAAACATTTCACAGTCAGAAAGCACATTAAGAGTGTCTAAATATCCTAAGTGTGATG  
 AAGCATCTTATGTAAGCAATGCTTCCAGAAAATAGACAAAGCAGTTGTTCAC  
 TTAAAAAAAGCTCATAGAAGAGTTCACACATCTTGAGCTTATAACTAAAGTAGGAGA  
 AGAAAGAAAGGGCCATTACAAAATCATATGCAAGTAAATTGCAATAATTCTGGGAAA  
 GTTGTGACCTTCAAGGTTAGTTCTGTCTCAAAGAAAATATTACTAAGCAT  
 TTTCGTCAAAAGAAAATATGACAACGGAGAAAAGAAAAGAGCTCAGCTGATAT  
 TTCTAAATCATTAACCCATGTGCAAAGCACAAGTCTTAAACAAAGTGGAGAGAAAA  
 AATGCCCTTCTAGGAAAAGTATGGCTAGCAGTGTCTCAAAAGTCACCCCCACCAAC  
 CACATGGGAGAATTGTAATCAAGAACATCCTGAATCACAGTTGCTGTATCCTCAC  
 ATCCCAAGTACAAGTCAGTCAAGTTATTATAATGCAAGTGTAAAGCAATCCAAGTT  
 CAGAAGAACATCAGCCCTTCTGGAAAATGCAATCTGTTTCCCCAGACCACTCA  
 GATGAGAAAATAGAAAAGAAAATCAAATTGATAACAGCATTATCTAGCACTAG  
 TAATATGAAAAGCTTGAACATTCAGCAATCATAATGTTAAAGATGCAACTAAAG  
 AAAACAGTTGTGACGCTAATGAACTAAATGAAAGTAATTCTGTATCTTAAAGTGC  
 ATAAGAAAACATAAATTCTAGTACAGGCAACGATTGTGATGCAACTTGCATAGGTCA  
 CACAAAGGCGAAAATGACGTACTTATATGCTTAGATTCAAATGTGAAGCACTTT  
 TAAATGATCTCTACCAACAAAGGTAACCTTATTCTGATTGTAAAAGAAACCTGGAA  
 GTAAAGTGGACAGATCCTATTGAGAGACCCAAACAAAGCATTATTACAGGAAACTTCCT  
 TATGGGCCCATTAAACCTAACTTTGATAGCAAGTAAAAGTACAGTATTCCCTCAGGTAT  
 CAGCCGCTGCAGTGCAGAGATAGTGAGGGAGAATCTCAGTACTGTACCAACTGTGAGCAG  
 AGAATTCTTACTGTAGATTCTTGCAGCATCCAGTACTGTACCAACTGTGAGCAGAG  
 CTGTAGAGAAAAGAGCTTCTAAAGACAGAACAGTGTCTCAGGTAATTGCCTCCATA  
 CAGATGGGAATGAAACAAATGTCAGTGAGATTGAGTTGGATGTAGCATCAGGAAC  
 GAAGAAGATAAAAGTTATGGGAAATATAGTGGAAATTATCTCCAGTGTAGTTCTCT

Figure 56c

GCTTTAAGAGATAATGTAAGGCTCCTTCAGAAACATGTATTGTGAAGAAGACA  
 CTGAGGACAGAATAACGTGGAAAGTTAACAGCGGAAAGCAAAAGATTCTGTTAC  
 AAAAGAAGCATGACTGAAGGATCAACTGTTAATACTGAGTACAAAAATCAAAGAATCA  
 GATCTCAGAAGAATCCTGTTAATGAGAAAATTATTACAACTAACTTGATTGATTCCC  
 ATCTGAGCACTAAAAACTACCACTGAGTCAGTCCCTTGAAGAACACAGTTCTAAT  
 CCGCTTAACAAAAGAGAGAAGAAGGGGGATTAAAGTTAGTAAAGACTCGCAGTCTGA  
 CTTGACATTACATTAGCCTATATTCCAAACCAGGAATTCTAGGAGTTAAC  
 ATACGCCTATTTACCTGCCACTCTGAAACCTGAAAGTCCCTACTCTCTGAAGAAA  
 CCTGCGTCATACGTGAGTATTAAAGAAAAACATTGCTCAGCTAATCATAACGCCCT  
 TATAGCTAATCTATCTAAATTGCAAGAGGGCAGATGAAGCATCATTTGCAGATT  
 TACAGGAAGAAACTAAGGTTGTCTAAATTCTCCCTTATTGTGGAAGCTTTGAA  
 AGAAAGCAAGAATGTTCACTTGAAACAACTCTGATTCAAGAGAACTGTTGGTAGACCA  
 AAACCTGTGAAATAATTGCAAACACACATTAAAACCATGTCGTGACACTTGGTAG  
 AACTTCATGATGATGAAACAATTCAATTGAAACAAAAAGGCACTTAGAA  
 GGTGAACCAACATTGCGAAGCTGCTTGGTATGATGAAACACTGATGCTGAGCTTCT  
 TGGAAAACCACGTGGATTCAACAGCAGTCTAATTCTATCCTGGTTCCAAGGAAGAT  
 TAAAATATAATGCATTCTGTGAGTTACAGACTTACCATGATCAATTAGTTGAATTGCTT  
 GAAGAAACAAAAGGGAAAAGAATTCAACTATGATTCTAAAGTACAAACGACAGGT  
 TAATGAATGTGAAGCCATAATGGAGCATTGTCGATTGCTTGTGATTCTCTTCTG  
 TTCCATTACCTGTGGAGTTAACCTGGAGATAGTTAGAAGACCTGAAATCTTAAGA  
 AAAAGTACTTTAAAGTTGATCAATGATGTGGGGACTCTCTAAAGTCATTGATCC  
 AGGAAAACAGGACCACCTGTGGATTATCATAGAAATGATCTCCTCAAAGGTTAATT  
 TTAAGAACACGAGGCACTGTTAAAATATCTTTATGGTCTGAAACATATCTT  
 TTTGATGCTGCAAAAATCTTGTGAAAGAGAGAACACAATCCTCAGCAAAAAATA  
 CTCACAAAAGAAGGACGAAGAAAGGCTACTCAGAGTGAATAATGTGCCCTTCTAAGT  
 TGCAGAAGATATGATACTTGTCTAAAGATTAAACATTGAAACCAATTCCCCTATT  
 GGGCTGAGGAGGATACTATAATTGCTTCCAGAAAGTCAGATCATCCAATAACGAAGC  
 AACAAATTAGCATAGAAAATTCTAAATTACAGTAATTGCTTGCACACCCAGATATT  
 GTTGTATTAGTGAGATATTGGATCAGGCTGAATTGCAAGACCTTAAAATTACAGGAT  
 CTCACCTTGAGATGTACAGATCACTTAGAAATTAAAAACTTCACTGCTAC  
 AGATAATAACATGGATAATTCTTATCACAGAAGAAAATCTTGTGAGCTGGTGATAA  
 ACCACAGCCATGAGGCTATCATTTAAAGCCTGAAGCTATTGAAATGTATATTGAAATC  
 GTCATGGTCTCAGAAACATTCACTTCTTAAACTCAATTGCAAGAAACTAGACAA  
 ACAGAGGTTTCGAGGTATGCTTGGTTGATTGTCACTCTCTGAGCTGGTCAGT  
 GCCAAGAAAAATGGCTCTTTCTTAAAGATAACTCAACAGATGTTGCCCT  
 TGGAAAGTGTAGAGACTGCTGTTCCGAACTTAAGAAAGATCTGGATATTCTGCAA  
 ATATAATGAAGCTGTTAATTGCTCATATGCTATTCAATTGCTCTAAGAGAACTTCAG  
 AACTTCAGAAATAAAAGCTTCTGAAGAAGTCCAAGTATTATTTATTCCACATATATT  
 GACTTTGTGCCATATAGCATCCATAAAATTATGGAAGCAGTGTGACAGAGTTAGAATA  
 CAACTACAATCAATTCTACACTGCTGAAGAATGTAATTGCTGCCCTAGGAAAGATT  
 TAGGAAAAATGGCCACATTAGGAAAGTCATGAAACAGATTGAAACATATGAAGATGATA  
 TGTACTAAAAATGCTGAACTAACCAATTCCCTTTCCTATGCCAAATGCTGTATAACAG  
 AAGGAAGATTTACAGCTGAAGAGAAAAGAAAATGAAATTCTCATATTGTAACCTG  
 GGGAAAAATAACATAATTAGTATTCTACAGTGTGCCCCAGTATCAGAGTGCATA  
 AACAAAAACATCTCAAATTCTCTAAACAGACCGAGGACTGTAGACAAATGTGAAGA  
 CTCTCAGGAACACAGCAAGATACTACTGTTCCAGTTGTAAGCTAAAGGTAGACA  
 TGAAAGATGTCACAAAATCAACAGAGAAAAGCAGATTCAAGCATCCAAGGACTACA  
 GGATCTCATCCCCAAAAGCGAAAACAAATTAGTACCAAGTTCATGTGACAGTCTGAAAG

Figure 56d

AAATCATTAAACGCCAAAAAGGTTGAAATGCAAAGATCACTACCTGGCTCACTTTAC  
 CCTTAGAGAACCCAAAAGACACTTGGCGCATCAAAGTCGGAAAGCAAAATAGACTTAAC  
 GTTTCATCTGATCACTTCAGTGGACACAGGAAATTAAATAGCATGAAGAAAAGAAA  
 TGTGAACCTTCAGTGCCTGAAACAAAAAGTGTAGAAGAAAAGATTGTGCCTTGC  
 TTTGTGACCAAAAAAGTGTACATGGCACATTTCACCCAGACCATGGGACGCTTGCAG  
 AAATTCTTAAAAATTCCCCAGATCCCACCCAAAATCCTGCCTTCTGATATAAACCC  
 AGAAAATGATGTTCTCTTGCGCTGATGCGTCGGTGCCTCAAAGCCAATTCTGTT  
 TTGTGAAAGATGTCCATCCTGATCTAGAAATGAATGACACAGTCTTGAACTTCAGAT  
 AATGATATAGTAAATTCTATTAATTTCCATGCATGACTTCTCCAGAACCCAT  
 CTGTATCCAGAACAAAATTCTACTCTGCAGATAAACAAACTACAGCCTACAGAAACTG  
 AGTCAGAGGACAAATACATGAAGGATACATTGAATCCAATACGTGCATACTTTGGA  
 GCATCTGGGCATATAACCTTAATGTGAATCAAGGAGCAGAGTACTCTCTTGAAACA  
 ACAGAATGACAAAATTCAAAGTCTTAATGCAGAATGCTGCCACATATTGGAATGAAC  
 TTCCACAGTCTGCATGTAACCAACATATAATTCTCTGAGCATTATTGGAACCTCA  
 TATCCATACTCTGTTGGTGTGTTATCAGTACAGCAACAGCAATGCCATTAC  
 CCAGACATACCAAGGGATAACATCATATGAAGTACAGCCATCTCTGGGCTTTGA  
 CCACAGTTGCAAGTACTGCCAGGGCACACATTCTAATCTGTACTCTCAATATT  
 ACTTATTGCGGGGGAGCCACAAGCAAATGGCTTGTGCAGTGAATGGGTATTCA  
 ATCTCAAATACCTGCTCTAATTTCGGCAGCAATTTCACAATATGCTTCATC  
 AGCCATTACCACAAGCTACATACCCCTAACCTCTAACATCGATTGTGCCTCCAGAAGTT  
 CCTGGGTTATGCTCCATGGCACCAAGAACCTTCATCCAGGACACTGA

Figure 57a

**SEQ ID NO.: 57 hSPG5 encoded protein sequence**

MPSDAKDSVNGDLLLNLWTSLKNILSGLNASFPLHNNTGSSTVTTSKSIKDPRLMRREES  
 MGEQSSTAGLNEVLQFEKSSDNVNSEIKSTPSNSASSSEVPGDRAVLTNGLDPFCKT  
 SVNDSQSWAHNMGSEDYDCIPPNKVTMAGQCKDQGNFSFPISVSNVSEVENQNHSEEK  
 AQRAQQESGNAYTKEYSSHIFQDSQSSDLKTIYQTGCQTSTVFLKKVSIDEYLQNTG  
 KMKNFADLEDSSKHEEKQTWSKEIDNDFTNETKISPIDNYIVLHQEYKESEHNSFGKS  
 CDKILITQELEITKSSTSTIKDKDELDHLALEWQITPSFESLSQHKPQHSVEYEGNIHT  
 SLAIAQKLMELKLGKINQNYASIITEAFPKPKDIPQAKEMFIDTVISYNIETAHDSSN  
 CSITREHICVHRKNENEPPVSLENIQRDYKETAYVEDRGQDHNLFCNSQLSNDIWLNVNF  
 KKQTDRENQNEAKENSASCVENNIENTYGDKKQDSHTNENFSNIDEKEDKNYHНИЕІЛС  
 SEEFTKFNLICREDNAVAATALLESEEDTISAVQKDENTGRSVEHLASTTFPKTA  
 SSSVCVASNAAIQIASATMPALSLNNDDHQFYQFKETCSSEPDFGLVHRVSDCEID  
 TDKNKSQESFHQSINENLVLQSIERSEIEIELEDCDDAFIFQODTHSHENMLCEEFT  
 SYKALKSRISWEGLLALDNGEMEVLESTTGRENSDQHYSKESNYFYSTQNNETELTSP  
 ILLPDLOQIKITNIFRPQFSPPTADSLALKDSFCTVTEATKPEINKEDGEILGFDTYSQP  
 FGENADYPCEDKVDNIRQESGPVSNSEISLSFDSLRSRNTDVNHTSENQNSESLFTEPSNV  
 TTIDDGSRCCFTKSXTDYNDTKNKEVESRISKRLHISSRDQNTIPHKDLRRHKIYGRK  
 RRLTSQDSSECFSLSQGRIKTFSQSEKHISVNLILSDEASLCKSKLSRKLDKAVVH  
 LKKAHRRVHTSLQLITKVGEERKGPLPKSYAVICNNFWESCDLQGYSSVSQPKYSTKH  
 FSSKRKYDKRRKKRAPKADISKSLTHVSKHKSYKTSGEKKCLSRKSMASSVSKSHPTTS  
 HMGEFCNQEHPESQLPVSVSTSQSTSQSVVYNSVSNPSLSEEHQPFSGKTAYLFSPDHS  
 DEKLIKENQIDTAFLSSTSKEYKLEKHSANHVKDATKENS C DANEVINESNSVSLSC  
 IKENINSSTGNDCDATCIGHTKAKTDVLISVLDNVKHFNDLYQQGNLILSDCKRNLE  
 VKWTDPIERPKQSIITGNFLMGPLNLTLIASKKYSIPQVSAAAVTDSEGESSKSYLDKQ  
 RILTVDSFAASSTVPHCEQSCREKELLKTEQCSSGNCLHTDGNETNVTEYELDVASGT  
 EEDKSYGENIVELSSSDSSLLLRDNVKGSSSETCIVKKDTEDRITWKVKQAEKAKDSVY

Figure 57b

KRSMTEGSTVNTEYKNQKNQISEESCLNEKIIITNLIDSHLSTKNTTTESVPLKNTVSN  
 PLNKREKKGEIKVSKDSQSDLTLHSEIAYISKPGILGVNHTPILPAHSETCKVPTLLKK  
 PASYVSDFKEKHCSANHTALIANLSQLQRADEASSLQILQEETKVCLNILPLFVEAFE  
 RKQECSEQILISRELLVDQNLWNNCHTLKPCAVDTLVELQMMMETIQFIENKKRHLE  
 GEPTLRSLLWYDETLYAELLGKPRGFQQSNFYPGFQGRALKYNAFCELQTYHDQLVELL  
 EETKREKNSYVFVFLKYKRQVNECEAIMEHCSDCDFSLSPVFTCGVNFGDSLEDLEILR  
 KSTLKLINVCGDSPKVHSYPGKQDHLWIIIEMISSKVNFIKNNEAVRKISLYGLEHIF  
 FDAAKNLVWKERTQSFSKKYSQKKDEERLLRVNKCAFSQLQKIYDTLSKDLNNEPISPI  
 GLEEDTIIASRKSDHPINEATISIENSFKFNSNLLAHPDICCISEILDQAEFADLKKLQD  
 LTLRCTDHLEILKKYFQMLQDNNMDNIFITEENVLDDVVINHSHEAIIILKPEAIEMYIEI  
 VMVSETIHFLKNSIAKLDKQRFRGMLWFDSLPELVQCQEKMASFSFLKDNDSTDVCL  
 WKVIETAVSELKKDLDIICKYNEAVNC SYAIHLLSRELQELSEIKKLLKKSKYFISTYI  
 DFVPYIASINYGSTVTELEYNQNQFSTLLKNVMSAPRKDLGKMAHIRKVMKTIEHMKMI  
 CTKNAELTISFFLCQMLYNRRKILQLRKEMNIHVKGEGNNKFSISTMLPPVSECI  
 NKNISNSSKKRPSTVDKCEDSQEQQQDTTVSSCKKLKVDMDVTKINREKATFKHPRTT  
 GSHPKSENKIVPSSCDSLKRNRHLPKKVEMQRSLPGSLLPLENPKDTCAKSESKIDL  
 VSSDHFSGQQENLNNSMKRNVNFSAETKSDKDCAAFAICDQKS VHGTFS PDHGTLQ  
 KFLKNSPDPTQKSCLDINPETDVSLVPDASVLSPIFCFVKDVHPDLEMNDTVFELQD  
 NDIVNSSIKNSSCMTSPEPICIQNKIPTLQINKLQPTETESEDKYMKDTLNPNPTVHTFG  
 ASGHITLNVNQGAEYSLSEQQNNDKNSKVLMQNAATYWNELPQSACNPTYNSSHLFGTS  
 YPYSAWCVYQYSNSNGNAITQTYQGITSYEVQPSPSGLLTTVASTAQGTHSNLLYSQYF  
 TYFAGEPQANGFVFPVNGYFQSQIPASNFRQPIFSQYASHQPLPQATYPYLPNRFVPP  
 PWVYAPWHQESFHPGH.

Figure 58a

SEQ ID NO.: 58 hSPG5 genomic DNA sequence

---

ATGCCAGTGTGCCAAAGACAGTGTAAATGGTGACCTTTGTTAAATTGGACAAGTCT  
 TAAAAATATTTAACAGTGGCTTAATGCTTCTTCCCTTCACAACAAATCTGGCTCAA  
 GCACAGTCACTACTCAAAATCCATCAAAGACCCAAGACTGATGAGGAGAGAAGAAAGT  
 ATGGGAGAACAGAGTAGTACTGCAGGCTTAAATGAGGTTTGCAATTGAGAACAGTT  
 AGATAATGTTAACAGAAATAAAATCGACACCCTAATTCTGCCTCCCTCAGAAG  
 TTGTCCTGGTATCGTGTGTTACTAACGGTTGGATAACCCCTGTTAAA  
 ACTCTGTTAACGATTACAATCTGGGCTCACAAACATGGGCTCTGAGGACTATGACTGTAT  
 ACCTCCAAATAAGTTACCATGGCAGGGCAATGTAAGGACCAAGGTAATTTCCTTCC  
 CAATTCTGTGTCATGTTAGTGTCAAGAGTTGAGAACCAACAGTGAGGAGAAC  
 GCTCAGAGAGCCAACAGGAGTCCGGAATGCTTACAAAGAGTACAGTAGTCACAT  
 TTTTCAGGACTCGCAGTCTCTGATTAAAAACATTATCAGACTGGTTGCCAACGT  
 CTACAGTTTCACTCAAAAAGAAAGTAAGCATTGATGAATACCTCAAAATACTGGA  
 AAGATGAAAATTCGCTGACCTGGAACACAGTTCCAAACATGAAGAAAAGCAAACCTC  
 ATGGAAAGAAATTGATAATGATTCACTAACATGAAACAAAAATCAGTCCAATAGATAATT  
 ACATTGTTTGCACCAAGAATACAAAAGAGAGTGAGAGTCATAATTCTTTGGGAAAGC  
 TGTGATAAAATATTAATTACTCAAGAGTTAGAAATAACAAAATCTCTACATCTACCAT  
 AAAGGATAAGGATGAACTAGATCATCTAGCATTGGAAATGGCAATTACTCCAAGTT  
 AGAGCCTGTCACAAAAGCATTCTCAGCACTCTGTGGAGTATGAGGGTAACATTCA  
 AGTTTAGCCATTGCTCAAAAGCTAATGGAACTGAAATTGGGGAAAATAATCAAATTA  
 TGCTAGCATTATAACTGAAGCTTCCGAAACCAAAAGACATACCCAGGCCAAAGAAA  
 TGTTCAATTGATAACAGTTATTCTCATCTTAACTAGAAACAGCTCATGACAGTTCAA  
 TGCAGCATAACTAGAGAACATATATGTGTCCATTAGAAAATGAAACCAGTGTC  
 ATTAGAGAACATTCAAGAGAGACTATAAGAAACTGCTTATGTTGAAGATAGGGTCAGG

Figure 58b

ATCACAATCTGTCTGTAATTACAGTTAACGAAATGATAATGGCTGAATGTTAATTTC  
 AAAAACAACAGATAGAGAAAACCAAAATGAGGCTAAAGAGAAATAGTGCTTCATGTGT  
 AGAACAACATAGAGAACATATGGAGACAAAAAGCAGGATTCTCATACAAACGAAA  
 ATTTCAGCAATATAGATGAAAAGGAGGACRAAAATTACCACAATATAGAAATTGAGT  
 TCTGAAGAATTTCCTACTAAATTAACTTGATTGCAGAGAAAGATAATGCAGTGTCA  
 AGCAACTGCATTATTAGAGAGTGAAGAAGATAACCATTAGTGCCGTAAACAAAAAGATA  
 CTGAAAATACTGGAAGAAGTGTAGAGCATTGGCTTCACGACATTCCCACACTGCA  
 AGTTCTCAGTGTGTAGCCTCAAATGCTGCAATACAGATAGCTAGTGTACTATGCC  
 TGCATTAAGCCTAAATAATGACGATCACCAAGATATACCAGTTAAAGAAACTTGTCTT  
 CTGAAAGTCCAGATTTGGTTGTAGTAAAACATAGGGTTCTGATTGTGAAATTGAT  
 ACGGATAAAAATAATCACAAGAACATTTCATCAATCAATAATGAGAACTTAGTTCT  
 TCAGAGCATTGAATTGAAAGTGAATTAGAATTAGAAGATTGTGATGATGCTT  
 TTATATTCAACAAGATAACACATAGCCATGAAAACATGCTTGTGAAAGAATTGTGACC  
 TCATATAAGGCTCTGAAGTCTCGTATCAGTTGGAGGTCTGTTAGCACTTGATAACGG  
 GGAGATGGAAGTTGGAAAGCACCAAGGAGAGGAGAAATAGTGTACGATTCTA  
 AGGAAAGTAACTATTTTATTCCCTACACAAAACAATGAAACAGAAACTTACAGCCCC  
 ATTTTACTCCAGATCTACAAATTAAATTACTAATATATTAGGCCAGGATTCA  
 GACAGCTGACTCCCTGCATTGAAAGATAGTTTGACACATGTAACGAAAGCCACAA  
 AACCGGAAATAATAAGGAAGATGGAGAAATTCTAGGATTGACATTATCCCAGCCT  
 TTTGGTGAAGATGCAGATTATCCATGTGAAAGATAAGTTGATAATATAAGGCAAGAATC  
 AGGGCCAGTGTGAGTAACCTGAAATCTCCCTTCTTGACTGAGTCGTAATACAGATG  
 TGAATCATACGTCGAAATCAGAACAGTGAATCTTGTACTGAAACCTCTAATGTC  
 ACAACAATAGATGGAAGCAGATGTTCTTACAAAATCAAAACACTGACTATAATGA  
 TACCAAAAATAAAAAGGAGGTAGAATCAAGAATTAGCAAAAGGAAGCTACATATCTT  
 CCAGGGATCAGAACATACCAACATAAGATTAAAGACGACATAAAATTATGGGAGAAAG  
 AGGAGGCTAACCGAGTCAGACTCATCTGAGTGTCTCTCATTATCCCAGGACGAAT  
 TAAAACATTTCACAGTCAGAAAAGCACATTAAGAGTGTCTCAAATCTCTAAGTGTG  
 AAGCATTTATGTAAGCAATGCTTCCAGAAAATAGACAAAGCAGTTGTTCA  
 TTAAAAAAAGCTCATAGAAGAGTTCACACATCTTGAGCTTAACTAAAGTAGGAGA  
 AGAAAGAAAGGGCCCATTACCAAAATCATATGCAGTAATATGCAATAATTCTGGGAAA  
 GTTGTGACCTTCAGGTTATAGTCTGTCTCAAAGAAAATATTACTAAGCAT  
 TTTCTGCAAAAGAAAATATGACAAACGGAGAAAGAAAAGAGCTCAGGCTGATAT  
 TTCTAAATCATTAACCCATGTGTCAAAGCACAGTCTTATAAAACAAGTGGAGAGAAA  
 AATGCCTTCTAGGAAAGTATGGCTAGCAGTGTCTCAAAGTCACCCCCACCACAGT  
 CACATGGGAGAATTGTGATCAGAACATCCTGAAATCACAGTGTCTGATCCTCCAC  
 ATCCCAGTACAAGTCAGTTATTATAATAGCAGTGTAAAGCAATCCAAGTTAT  
 CAGAACATCAGCCCTTTCTGGAAAAGCAGATATCTGTTTCCCCAGACCACTCA  
 GATGAGAAACTAATAGAAAAGAAAATCAAAATTGATACAGCATTATCTAGCA  
 TAATATGAAAAGCTTGAAAACATTCAAGCAATCATATTGTTAAAGATGCAACTAAG  
 AAAACAGTTGTGACGCTAATGAAGTAATAAAATGAAAGTAATTCTGTATCTTAAAGTGC  
 ATAAAAGAAAACATAAAATTCTAGTACAGGCAACGATTGTGATGCAACTGCA  
 CACAAAGGCAGAAACTGACGTACTTATATCAGTCTTAGATTCAAATGTGAAAGCACTTT  
 TAAATGATCTCTACCAACAGGTAACCTTATTATCTGATTGTAAAAGAAACCTGGAA  
 GTAAAGTGGACAGATCCTATTGAGAGACCCAAACAAAGCATTATTACAGGAAACTTCCT  
 TATGGGCCATTAAACCTAACTTTGATAGCAAGTAAAAGTACAGTATTCTCAGGTAT  
 CAGCCGCTGCAGTGCAGTAGTGAAGGGAGAATTCTCAAAATCTTACTTGGATAAGCAG  
 AGAATTCTTACTGTAGATTCTTGCAGCATCCAGTACTGTACCAACTGTGAGCAGAG  
 CTGTAGAGAAAAGAGCTTCTAAAGACAGAACAGTGTCTTCAGGTAATTGCCTCCATA

Figure 58c

CAGATGGGAATGAAACAAATGTCACTGAGAATTATGAGTTGGATGAGCATCAGGAAC  
 GAAGAAGATAAAAGTTATGGGGAAAATATAGTGGATTATCTTCAGTGTAGTTCTCT  
 GCTTTTAAGAGATAATGTAAGGCTCTCTCAGAACATGTATTGTGAAGAAAGACA  
 CTGAGGACAGAATAACGTGAAAGTTAACAGCGGAAAAGCAAAGATTCTGTTAC  
 AAAAGAAGCATGACTGAAGGATCAACTGTTAATCTGAGTACAAAAATCAAAGAATCA  
 GATCTCAGAAGAACCTGCTTAAATGAGAAAATTATTACAACTAATGATTGATTCCC  
 ATCTGAGCACTAAAAATACTACCACTGAGTCAGTCCCTTGAGAACACAGTTCTAAT  
 CCGCTTAACAAAGAGAGAAGAAGGGGAAATTAAAGTTAGTAAAGACTCGCAGTCTGA  
 CTTGACATTACATTAGAAATAGCCTATATTCCAAACCAGGAATTCTAGGAGTTAAC  
 ATACGCCTATTTACCTGCCCCTCTGAAACCTGTAAAGTCCCTACTCTCTGAAGAAA  
 CCTGCGTCATACGTGAGTGAATTAAAGAAAACATTGCTCAGTAATCATACGGCCCT  
 TATAGCTAATCTATCTAAATTTCAGAGGGCAGATGAAGCATCATCTTGAGATT  
 TACAGGAAGAAACTAAGGTTGTCTAAATATTCTCCCTTATTGTGGAAGCTTTGAA  
 AGAAAGCAAGAAATGTTAGTTGAACAAATCCTGATTCAAGAGAACTGTTGGTAGACCA  
 AAACCTGTGGAATAATTGCAAACACACATTAAACCATGTGCTGTTGACACTTGGTAG  
 AACTTCAAATGATGATGAAACAATTCAATTGAAACACTTGTGAAAGGCACTTAGAA  
 GGTGAACCAACATTGCGAAGCTGTTGGTATGAAACACTGTATGCTGAGCTTCT  
 TGGAAAACACGTGGATTCAACAGCAGTCTAATTCTATCCTGGTTCCAAGGAAGAT  
 TAAAATATAATGCATTCTGTGAGTTACAGACTTACCATGATCAATTAGTTGAATTGCTT  
 GAAGAAACAAAAAGGGAAAAAGAATTCAACTATGTATTCTAAAGTACAAACGACAGGT  
 TAATGAATGTGAAGCCATAATGGAGCATTGTTCCGATTGCTTGTGATTCTCTTCTG  
 TTCCATTACCTGTGGAGTTAACCTGGAGATAGTTAGAAGACCTGGAATCTTAAAGA  
 AAAAGTACTTTAAAGTTGATCAATGTATGTGGGACTCTCTAAAGTTCACTCGTATCC  
 AGGAAAACAGGACCATCTGTTGATTATCAGAAATGATCTCCTCAAAGGTTAATTAA  
 TTAAGAACAAACGAGGGCAGTACGTGTTAAATATCTCTTATGGTCTGGAACATATCTT  
 TTTGATGCTGCAAAATCTGTTGGAAAGAGAGAACACAATCCTCAGCAAAAAATA  
 CTCACAAAAGAAGGACGAAAGGCTACTCAGAGTGAATAATGTGCCCTTCTAAGT  
 TGCAGAAGATATGATACTTGTCTAAAGATTAAACATGAACCAATTCCCTTATT  
 GGGCTTGAGGAGGAACTATAATTGCTTCCAGAAAGTCAGATCATCCAAATAACGAAGC  
 AACAAATTAGCATAGAAAATTCTAAATTAAACAGTAATTGCTTGCACACCCAGATATT  
 GTTGTATTAGTGGAGATATTGGATCAGGCTGAATTGCTGAGACCTTAAAGTTACAGGAT  
 CTCACCTTGAGATGTACAGACTTAGAAATTAAACTTCACTTCAAGGATGCTACA  
 AGATAATAACATGGATAATTCTTATCACAGAAGAAATGTTAGACGTGGTGATAA  
 ACCACAGCCATGAGGCTATCATTAAAGCCTGAGCTATTGAAATGTATATTGAAATC  
 GTCATGGCTCAGAACAACTTCACTTCTAAACACTCAATAGCAAAGAAACTAGACAA  
 ACAGAGGTTTCGAGGTATGCTTGGTTGATTGTCACCTCTCTGAGCTGGTTCACT  
 GCCAAGAAAAATGGCTTCTTTCTATTCTAAAGATAACTCAACAGATGTTGCCTT  
 TGGAAAGTGAAGAGACTGCTGTTCCGAACTTAAAGAAAGATCTGGATATTCTGCAA  
 ATATAATGAAGCTGTTATTGCTCATATGCTATTGCTCTCAAGAGAACTTCAAG  
 AACTTTCAGAAATAAAAGCTTCTGAGAAGTCAAGTATTCTTATTCCACATATT  
 GACTTTGTCATATATAGCATCCATAATTGAAAGCAGTGTGACAGAGTTAGAATA  
 CAACTACAATCAATTCTACACTGCTGAGAATGTAATTGCTGCCCCCTAGGAAAGATT  
 TAGGAAAAATGGCCCACATTAGGAAAGTCATGAAACGATTGAAACATATGAAGATGATA  
 TGTACTAAAAATGCTGAACTAACCAATTCCCTTTCTATGCCAAATGCTGTATAACRG  
 AAGGAAGATTTACAGCTGAGAGAAAAGAAAATGAAATTCTATATTGTAAAACCTG  
 GGGAAAATAACAATAATTAGTATTCTACGATGTTGCCCTAGTATCAGAGTGCATA  
 AACAAAAACATCTCAAATTCCCTCTAAACAGACCGAGCAGCAGTGTAGACAAATGTGAAGA  
 CTCTCAGGAACAAAGATACTACTGTTCCAGTTGTAAGCTAAAGCTAAAGGTATGTA

Figure 58d

TGTTTAAACAAAACCTTTATAAGTATTCTTTGAAACAAAGTCACTCATAAGCAA  
ACAAGTAGTTGCAGAATTCTAAAAGTTAAGAATGGTAATTGTCTGGCAAATGAATT  
TACTAACTATAATATTGATTAAACAATTCAATTATCTATAAAATGATACATAAAATT  
TATGTATAGGTGATACTTGCAAAATGTCTACTTTTAAACGTAATGTTAACTTAGA  
AAACATTTTGGAGGACGGTGGATTAAAGCTCTTAAGAAGGAGTTCAATATTAT  
AACACTGAGTGAGTGACCAATTATTGAGTAGCTTTCTGTATAGCAAGCCTATGC  
CCCGTGTAGTGAATATTAAAAAGTGGCTAACAAAGCCTGTCTTGACCATTATCATC  
CCAATGGAGAAATAGGACAGATATTTCAGAGATATTATCAAGGAGTTAAAGTCC  
TATATTAAATACATTTAACAAATTGTCTAAAGCATTAAATATGTACTTGGCACTGATT  
TATTTATACACAACCCCTATGATGTATTCCATTATCTTACTTCAGATAAGGAAA  
GTGGGACACAGAGGAAATGACTATCCTGGGGTACAGAATTAGTAAATGGGAGCACCC  
AGATCTAAACCAGGCAGTCTGGCCTCAGAGCCTTATTGACAGTTGTCTCAGCACTGC  
TCTAAGAGGTTCTCTTACAGCTGTTCAAGACTCTTAGTTCAGAAGTTAGAAAAGAA  
ACCTATATGCAGCTGGGTGGATAGCTCACGCCGTAACTCCGGCACTTGGGAGGCCA  
AGGTGGCAGACTGCTTGAGTCCAGGAGTTCAAGACCAGCCTGGGCAACATGGTGAGAC  
CTCATCTACTAAAAATAACAAAAATTAGCCAGACATGGTGACATACACTTGTAGTT  
CCAACTACTTGGAGGTTGAAGCAAGAGGATTGCCGTGAGCACAGGGGGGAGGTTGCAG  
TGAGCCAGGATTACACCACTGTAAGCTGGGAGGACAGAGTAAAGACTCTGTTCA  
AAAAAAATTATATATATAATTAAAGTCTGGAACAATTAACTTAGTGGTA  
AGAATAATCTATGGATGGAGAAGGTTATTCAAGATTATGAAATATCTAAATTAGACCT  
AAGGAGTTGACCTTCATTCTGTACACATTGAAGTGTACTGTATATGAAATTGTT  
TCTAATGATTTAACAGATAGATTCTGAGTATATAAGTCATATATGTCTCTGTAGAAGT  
ATATATAGTAATAAGTAGTAGTACTGTATACAATACTACTTACAGTAATAAGTCAGCCA  
TGGCTTAGAAAAAGGTGTTAGAAAGGAAAATTCAATTGACAGACATGACTTAAAGAAT  
CGATGGGCTTAGCAACTGGTTACAGAAAGGACATAAAAGAGGGAGGGAATAGTCAT  
AAATGGACTTCAAGGTTAGTTAACGGCCAGGTGTTGGCTTGGCTGTAACTCCCA  
GCACTTGGGAGGCTGAGGCAGATGGATCACCTGAGGTCAAGGAGTTGAGACACCCTG  
ACCAACATACTGAATCCCCATCTACTAAAAATAACAAATTATCAGCTGGGTGTGGTGGT  
GGGCACCTTAGTCCCAGCTACTCTGGAGGCTGAGGCAGGAGAATCGCTTGCACCCAGT  
AGGCGGAGGTTGCAGTGAGCCATTATCGCATCACTGCACCTCAGCCTGGGTGACAGAAT  
GAGACTCCATCTCAAAAAAAAAAGATGTGAGGATAAGAAGAATGTTACAAATTATT  
TTTTTAAAGTTACTCCAAACATATGAAATTGGGAAGTCTAGGAGAGTCAGTCTT  
TCTGCAGGGAGGTGATAATTAAATTAGTTAACCTAGATGATGGCAGAACAGCAATT  
AAAATCTAATATTGAAATAAAATTATTTATTATAGTTGTATCACTAAATGAAG  
ATTTCTTGTATTTAACACAGGTAGACATGAAAGATGTCACTAAATTCAACAGA  
GAAAGGCACATCAAGCATTCAAGGTAGGAGTTCCCACAGCCCTATGTGGAAAAAA  
AATTGAACAAAATTGGGCAAATACTAAACAACAGTAAATAACACAATTATTTATATAATG  
TCATTGGATCATACATGTAACCTAGGGGATGAGAGTAAGCTAAGGAAAAAGAAAATTGT  
TTGAAATTATACAGTTCTTAAATTCAAGCCTAAGGAGTTGAACCTCATTCTGTAAAGTA  
TTAAAGGCTAAAGTCATGTGAAATTGCTTTCACTGATGTAAGGTTAACAAATTTC  
TGAGTATAGTTAGAAGTAAGTCAGCCAGGCTTAGAAAAGGGTGTAGTTGTTCACAGAAT  
AAGAAAGAAAATTATATCTTACAGATACGATACAATTACATAAGAATTGATGGGG  
CTTAGTAAAGTGGTTACCAAAAAAGACTCTAAATCAAAAGGGACTTTAAATA  
GGACAAGTGTAAAGATTACTTTTTAACTTGTGCAATTGAAAGAATGGCAAATTTC  
AAAACGGCATTTAAATGAGAACCTACATAGTCATCAATTCCCATACGATACCTTGAGC  
TCTCAGAAAGTATAATTTCATTGCAATTCTGGTGTAGTTGTTCACTGAGGCTGAA  
TTCAGTGAATATTGGCTTTAGTTGTTGAGTGGGATATGTGAATTCCAGGCCAAG  
AAGAATTCTCTTGACTACAGAGAAATGTACTACTTTCCCTCTAACATAATT

Figure 58e

CCTCATACTATTAAAGAATTCTATAAAGCACCAAAAAACTAATTACTGGCTGGGTGTC  
 GTGGCTCATGCCTGTAATCCCTGACTTGGGAGGCCAAGGCAGGGCGGATCACCTGAGG  
 TCAGGAGTTGGAGATCAGCCTGACCAACATGGTAAACACTATCTCTACTAAAAATATG  
 GAAACTAGCCGGGCATAGTGGCGGGTGCTGTAGTCCCAGCTACTTGGGAGGCTGAGGC  
 AGGAGAATCATTGAACTTGGGAGGCCAGGTTGCACTGAGCTGAGATGGTGCCTGCTGC  
 ACTCCAGCCTGGCAACAGACTCTGTGCAAAAAAAATTCAATATATATAT  
 ATATATATATATATATATATATATATATATATGTTTTATATATACACACATACA  
 CATAACATATGTGTATGTGTGTATATATGTGTGTGTGTGTATATAT  
 ATAATTACCTCAGGGACCTATATTAACACTGTCTGGCTTTAGACAATTCCATTGGATGC  
 TTCTCTCAGCTGCTTGAGACTGTCTGAATTAGCTAATAATTCAAGGCTATTAAATTG  
 GGCAAGAAATTGGAGATCTGCTTCCATTCTCAAAGATGAACAGACAAAAACGTA  
 TTAGCTGTTAACAGAGGGAAAGAAATCTTGGGGAGGCAGGGTTACAGCTG  
 GTAGTTACCAGTTATTAGCTATTACAAGTAATGAAGATCATCAGGAGGGAA  
 TATGAATTAAAAAACTATACTGAACAAATTGACTAGTGTAGTTCTACTTTAAAAGC  
 CTCCATTAGAAAATGTCTAATGCACAAATAGTTATTACAATATTGGAAATATTTA  
 AAATGTAGACCATATCATCTTCAGTAGGAAAAGTATCTAAATCAAACACGGCAGTC  
 AACTAGGAAAATGTTAACCTGTATAGTCCAATAGAATGGGAAACGTTAAC  
 ACTCTCCCCCTGGATAAAAATTCTAAATATATTCTTAAATTATGACCCAT  
 ATATTAAATTCTATTATGTATGTGTGCACCTAATAGGACTACAGGATCTCATCCC  
 AAAAGCGAAAACAAAATAGTACCAAGTTCATGTGACAGTCTGAAAAGAAATCTTAAAC  
 GCCAAAAAGGTGAAATGCCAAGATCACTACCTGGCTCACTTTACCCCTAGAGAAC  
 CAAAAGACACTTGCACATCAAAGTCGGAAACCAAAATAGACTTAACTGTTCATCTGAT  
 CACTTCAGTGGACAACAGGAAAATTAAATAGCATGAAGAAAAGAAATGTGAACCTCAG  
 TGCTGCTGAAACAAAAGTGTAAAGAAAAGATTGTGCTGCTTGTCAATTGACCAAA  
 AAAGTGTACATGGCACATTTCACCAAGACATGGGACGCTTGTCAAGAAATTCTTAA  
 AATTCCCCAGATECCCACCCAAAATCTGCCTTCTGATATAACCCAGAAACTGATGT  
 TTCTCTTGTGCCTGATGCGTCGGTGCCTCTAAAGCAATTTCCTGTTGTGAAAGATG  
 TCCATCCTGATCTAGAAATGAATGACACAGTCTTGAACCTCAAGATAATGATATAGTA  
 AATTCACTATTAAAATTCTCATGCATGACTTCTCCAGAACCCATCTGTATCCAGAA  
 CAAAATTCTACTCTGCAGATAAAACAAACTACAGCCTACAGAAACTGAGTCAGAGGACA  
 AATACATGAAGGATACATTGAATCCAAATACTGTGCATACTTTGGAGCATCTGGGCAT  
 ATAACCCCTTAATGTGAATCAAGGAGCAGAGTACTCTCTTCTGAACAAACAGAATGACAA  
 AAATTCAAAGTCCTAATGCAGAAATGCTGCCACATATTGGAATGAACCTCCACAGTCTG  
 CATGTAACCCAAACATATAATTCTCTGAGCATTATTGGAACCTCATATCCAACTCT  
 GCTTGGTGTGTTATCAGTACAGCAACAGCAATGGCAATGCCATTACCCAGACATACCA  
 AGGGATAACATCATATGAAGTACAGCCATCTCCCTCTGGCTGTTGACCACAGTTGCAA  
 GTACTGCCCAGGGCACACATTCTAATCTTCTGTACTCTCAATATTCTATTGCG  
 GGGGAGCCACAGCAAATGGCTTGTGCCAGTGAATGGGTATTTCATCTCAAAATACC  
 TGCTTCTAATTTCGGCAGCAATTTCACAAATATGCTTCTCATCAGCCATTACCAAC  
 AAGCTACATACCCCTACCTCCTAATGCAATTGCTGCTCCAGAAGTCCCTGGTTAT  
 GGTGAGTTTACATTTAATGCCTGCTTATTGAGTTGTTACTTTAA

Figure 59a

SEQ ID NO.: 59 hSPG15 cDNA sequence

CGGGGCAGCCTAGGCCGGGGAGGGCCATGCTGAGCCTCGCAGCCAGCTGGTGGCCTT  
 CTTCTGGAGGACGGCGGACACCCCTAGGGAGGAAGGCCAGCTGGAGGCCAGCTCG  
 CGGAAGGTGACACTAAGCTGAAACTGTACGGGTGTCGTGACAGGTACTGCAGCGAT  
 TATGGCATGATTGATGATGATCTACTTCTCCAGTGTGACTAGCAGAGTGCT  
 TCTGAATGTTGGACAGGAAGTGATTGCAAGTTGTTGGAAGAAATAAAGTGTCCATTGGAC

Figure 59b

TGAAAGCAATCAGGGTAGAAGCTGCTCTGATAAGTGGGAAGACGACAGCAGAAACCAT  
 GGGAGTCCCTCAGACTGCCGCCCCGAGTGTGATTGGCTGTGACTTCCTGGTGA  
 GGGCGCAGGCTGTATCAGTCAGACCACTACTCTCTGGAGAGTGTGCGAAGGCT  
 TCGAGCCCTGCAAGGGAGACTGGGTGGAGGCTGAGTACCGGATCCGGCTGGCATCGTGG  
 AGCAGCGAAGCCACCTCAGTGAAGCCACTGAGATAACAGCGCGTGGACAGGCTGCAT  
 CTCTAGCCTCTGTGGAAGGAACGGGGTGTAGAGGAAAGCATTTTACCTTGGACT  
 CCTTGAAACTGCCAGATGGGTACACACCCGGAGAGGTGACGTGGTCAATGCAGTGGTG  
 GTGGAGAGCAGCCAGTCATGCTATGTCTGGAGGGCGCTTGTATGACCTAGTGAAGAG  
 GCGAGACGCCGCCCCCTGTTCATGAGGCCACTCATTCTATGGAACGATTTGCTGAAGA  
 ACAAAAGGTGATATTGAAGTTACACAGGTGACGCATTGGAACCTAAAGGAAGGAAGA  
 AGTAAAACCATGGTGTATGGATAGAGAATAAAGGAGACATTCTCAAACCTAGTCAG  
 CTGTAAACTGGCTGGCTGGGATAAAATCTAAACAATTCAAGATTCCAATGCTGGATAAAG  
 ACCAGATGTGCCCGTGGTATCTTGTGTTCTGAGAAGGAGAATTCACTCAGAT  
 GAAATATTAATTCACTTAATTAGCCACACAAAAAACAAAAACCTCTCAGATGTCGGAGAG  
 CAGTTGGTGAACAACAGAGGAATCTCCAGGTGATTGTACCTGTAAGGAGAAAATG  
 GAGAAAAAGACAACATTCTATCAAGGAAGCAGATGACAGAGCCTGAGCCTGGGGGCTT  
 GTCCCTCCAGGGGGAAAAACCTCATTGTGGTCATCTGTGACGGAAAAATCCTGGCCG  
 CTGCAAGGAGCTCTTGTGTTTCCGATTCCTAATTGGCGATACCTTGAAG  
 TAAATGTTATCAGTGGGGAGGAGTCATAATTGCTGCGCGCGAACCAATTCTGGAAA  
 AAGCTTAAAGTCACAAGCGTTAACATCCGCAAAACTACAGTTGTTGTGACCGCACA  
 GAAAAGGAACACTAACAGCACAATTCCAAAGTCTTCCCAATATCCAATCCCAGATA  
 GACTTAGAAAATGTGGAACAAAAATTGACATCCTGACTTCCAGCCATTACTGCA  
 GAGCTTCTGAACATGTCAAATTACAAGGAGAAGTTTCGACTTTGCTGTGGCTTGAGGA  
 GATTTATGCAGAAATGGAACACTGAAAGAGTATAACATGAGCGGGATCATCTTAAGAAGGA  
 ATGGGGATCTGCTGGTTCTGGAGGTCCCAGGGTTGGCCGAAGGGAGGCCTCTCTAC  
 GCAGGTGATAAAACTGATTTCAGACTCAAGAGTACAATGGACATGCCATCGAATACAT  
 CAGCTACGTGACTGAGATTCACTGAAGAAGATGTAACCTCTTAAATTAAATCCAGAATTG  
 AACAAAGCCTATAACTTGAACCTATGGATGTGGAATTACATATAATTAGGACCAACAGC  
 AGACGGTGTCACTTGCACCTGAACACGTCACTCCACTTAGGTGTAAGTGTGTTCC  
 AGAAGAAATTATTTACAGTCTCCACAAGTGACGGGAAATTGGAACCATGCAACAAGACA  
 CCAAAAGCAGTGGACAGTCACCAGCAAAAGAATAGGAAAACAATGACGGACCAAGCT  
 GAGCATGGAACAGAGGAGAGGGCGTGTGGTGACAAGGACCTGCCGGTGGCACCCCTT  
 TACTGCAGAGATGAGCGATTGGTAGATGAAATTCAAGACCCCTAAAGCAAGAAAGATGG  
 AGTTTTCAACCCAGTGTAAATGAAATTCAAGAGTGTGAGTAAAGGATTCTGAGT  
 GGTGACTGCCGTCCCTCCGTATATTCTTTGGACCTCTGGTACTGGAAAGACAGT  
 GACAATAATAGAGGCTGTTTACAGGTACACTTTGCCTGGCAGAGTGGATTTTAG  
 TCTGTGCCCTCCAACAGTGCTGCTGACCTCGTGTCTGCGGCTGCACGAGAGCAAG  
 GTGCTACAGCGGCCACCATGGTCCGGGTGACGCCACCTGCAGGTTGAGGAGATAGT  
 TATTGACGCCGTCAAACCGTATTGCAAGAGACGGAGAAGACATCTGGAAAGCCTCACGCT  
 TCCGGATAATCATCACCATGCAAGCTCAGGGCTGTTTACCAAAATTAGGAGTGAGA  
 GTTGGGCACTTCACTCACGTGTTGTGGACAGGGCTGGCAGGGCAAGTGAGCCGGAAATG  
 CCTCATCCTCTGGGGCTGATGTGGACATCAGTGGCAGATCGTGTGGCAGGGAGACC  
 CCATGCAGCTCGGACCAAGTCATTAAGTCCAGACTCGCCATGGCCTATGGGCTGACGTG  
 TCCTTTGGAACGGCTGATGTCTGACCCGCGTACAGAGGGACGAAAATGCTTTCGG  
 TGCTTGCGCCCATATAATCCCTGTTGGTCACAAAGCTGGTGAAGAAACTACCGGTCCC  
 ACGAGGCCCTGCTGATGCTGCCCTCACGGCTGTTCTACACAGGGAACTCGAGGTCTGT  
 GCGGACCCCACAGTGGTGAACCTCCTTGCTGGCTGGGAGAAGTTGCTTAAGAAAGGCTT  
 CCCTCTCATCTCCATGGTGTGCGGGGGCAGCGAGGCACGGGAGGGAAAAAGCCCATCGT

Figure 59c

GGTTCAACCCGGCCGAGGCCCTCCAGGTCTGGCTACTGCTGCCTGGCCCACAGC  
 ATCTCCAGTCAGGTCTGCCAGCGACATTGGCGTATCACGCCCTACCGGAAGCAGGT  
 GGAGAATAATCAGAATTCTTTGCGTAATGTTGATCTGATGGATATAAAGGTTGGATCAG  
 TAGAGGAGTTCAAGGACAAGAGTATCTGGTCATCATCATTTGACCACGGTCAAAT  
 GAAGATAGATTGAAGATGATCGATATTTGGGTTCTGTCCAACCTCAAAAAGATT  
 TAATGTTGCAATCACCAGACCCAAAGCTTGCTGATAGTGTGGAAACCCCCATGTT  
 TCGTTGAGACCCCTGTTGGTCTGGAATACAGTATTACAAACGGTGTAC  
 ATGGGATGCGATTACCTCTGCACTGCAGTCCTGCAAAACTGTGGCGAGGGGGTGGC  
 AGACCCCTCCTACCCAGTGGTGCCAGAACATCCACAGGACCAGAGAACATCAGGAGCCCA  
 GCTGATCTGCAGTGGCTGACAGCAGGGAGGCCATGTGCTCAGCCTGGCACGGTGGCGT  
 TACAGTCTGCTCCGTGGCTCTGTCGCCCTGTGCGCAGCCAGGCAGGGTGTG  
 TGTGGGTGTGGGCTGCCAGGTTGGACGCAGCTGCTGCTGCCCTGACTTGGCATATGC  
 CAGCCTGTTCTGCCACAGGGCAGTCAGTGCCTACCCCTGAAATAACCCCTCGAGTG  
 ACCCCCCAAAAAA

**SEQ ID NO.: 60 hSPG15 encoded protein sequence** Figure 60  
 MLSLAALKVAFFWRTADTPREEAGQLEPELAEGDTKLKTVRGVVTRYCSDYGMIDDMIY  
 FSSDAVTSRVLLNVGQEVIAVVEENKVSNGLKAIRVEAVSDKWEDDSRNHGSPSDCGPR  
 VLIGCVTSLVEGAGCISQTTYFSLESVCEGFEPCKGDWVEAEYRIRPGTWSSEATSVKP  
 LRYKRVDKVCISSLCGRNGVLEESIFTLDSSLKLPDGYTPRRGDVVNAVVESSQSCYV  
 WRALCMTLVKRRDAAPVHEATHFYGTILLKNKGDIEVTQVTHFGTLKEGRSKTMVIWIE  
 NKGDIPQNLVSCKLAGWDKSQFRFQMLDKDQMCPPVSVFVSPPEKENSSDENINSLN  
 SHTKNKTSMQSESSLVNNRGISPQGDCTCKGENGEKDNLISRQKMTEPEPGGLVPPGGKTFI  
 VVICDGKPNPGRCKELLLLCSDFLIGRYLEVNVISGEESLIAAREPFSWKKLKSSQALT  
 SAKTTVVUTAQKRNRSRQLPSFLPQYPIPDRLRKCVEQKIDILTFQPLLAELLNMSNYK  
 EKFSTLLWLEEYIAEMELKEYNMSGIILRRNGDLLLEVPGLAEGRPSLYAGDKLILKT  
 QEYNGHAIYEYISYVTEIHEEDVTLKINPEFEQAYNFEPMDVEFTYNRTTSRRCHFALEH  
 VIHLGVVKLFPEEIILQSPQVTGNWNHAQDTKSSGQSTSNNKRNKTMDQAEHGEERRV  
 GDKDLPVLAPFTAEMS DWVDEIQTPKARKMEFFNPVVLNENQKLAVKRILSGDCRPLPYI  
 LFGPPGTGKTVTIIIEAVLQVHFALPDSRILVCAPNSAADLVCLRLHESKVLQPATMVR  
 VNATCRFEIIVIDAVKPYCRDGEDIWKA SRFRIIITTCSSSGLFYQIGVRVGHTHVFV  
 DEAGQASEPECLIPLGLMSDISQIVLAGDPMQQLGPVIKSRLAMAYGLNVSFLERLMSR  
 PAYQRDENAFGACGAHNPLLVTKLVKNYRSHEALLMLPSRLFYHRELEVCADPTVVTSL  
 LGWEKLPKKGFPPLIFHGVRGSEAREGKSPSWFNPAEAVQVLRYCCLLAHSISSQVSASD  
 IGVITPYRKQVEKIRILLRNVDLMDIKVGSVEEFQGQEYLVIIISTVRSNEDRFEDDRY  
 FLGFLNSNSKRFNVAITPKALLIVLGNPHVLRDPFGALLEYSITNGVYMGCDLPPAL  
 QSLQNCGEVADPSYPVVPESTGPEKHOEPS.

**SEQ ID NO.: 61 hSPG15 genomic DNA sequence** Figure 61a

GGGGGTCACTCGAGGGTTTATTCAGGGTAGGGCGCAGTGACTGCCCTGTGGCAGGAAC  
 AGGCTGGCATATGCCAAAGTCAGGGCAGCAGCAGCTGCGTCAACCTGGCAGCCCCACA  
 CCCACACACGACCTGCGCTGGCTGCGAGACAAAGGGCAGGCCACAGGAGCCACGGAGCAG  
 ACTGTAACGGCAACGTGGCCAGGCTGAGCACATGCCCTCCCTGCTGTCAGCCACTGCAG  
 ATCAGCTGGCTCTGATGCTCTCTGGCCTGTGGATTCTGGCACCACTGGTAGGAG  
 GGGTCTGCCACCCCTCGCCACAGCTGTAGACAGAGGAGAAGCGGATGGCCAGTGAGCC  
 AGGCTCCCACAGGGCTGGGAGCTGCACTCTTCCCAGTGGTTTACAAGGGGA  
 CTTAGTTTACCTGTTAGCTATGTGGAAAGGTGACATGACCCAAATGTCCAGGAA  
 CAGTGGCTGCTGCAGCCCAGGATGAGGTGAGGACGGACGGTGGCCGGCAGAGGGCTAGGCTG  
 CAGGTGGGTAAGTGGATGGGGTGAGGGGAGCAGGGCAGGCTAGAGCACGTTCT

Figure 61b

AGAGCCAGCCTGTCTTGAGGAAGACAGCAGAGCGCTCACTTTGCAGAGACTGCAGT  
 GCAGGAGGTAAATCGCATCCCATGTAAACACCCTTGTAAATACTGTATTCCAGCAAAGC  
 ACCAAAACAGGGGTCTGTGGCAATAACAATTAGCCTGGTGTGAGAGCAAGTGAAGGC  
 CCCATGTCTCCTGGTGCCTCGTACGTCTCACCCGAGTGACCCGGACCCCTCCCTTA  
 AGTGATCACAGCCCACCCAGTGCCTGAAAACACTCGAACGAGAACATGGGGTTCC  
 CAGCACTATCAGCAAAGCTTGGGTCTGGTGTGATTGCAACATTAAATCTTTGAGTTGG  
 ACAAGAAACCCAAAAAATATCGATCATCTCAAAATCTATCTCATTGACCGTACCTAA  
 AAGCACACAGAGATGAATAAAATGGCACTTGAAGTTTGGGGGCATGAAGAGAAC  
 TCTTGATATATAAAAACATTAAAAATGTTAAATAGCAGAACATGACCTCATTTGGTTC  
 AAAAAGAAAACAGGGAGGCCGGCGCGGTGGCTACGCCGTGAATCCAGCCTTGGGAGG  
 CCGAGGCCGGAGGATCACGAGGTCAAGGAGATCGAGAACATCTGGCTAACATGGTAAA  
 CCCCCTCTACTAAAAATACAaaaaaaaaaaaaattAGCTGGCGTGGTGGTGGCGCC  
 TGTAGTCCCAGCTACTCGAGAGGCTGAGGAGAACATGGCGTGAACCCGGGAGGCAGA  
 GCTTGCAGTGGCCAGATCGCGCCACTGCACTCCAGCCTGGCGACAGAGCAGCCA  
 TCTCAAAAAAAAAAGAAAGAAAAAGAAACAGGAGGTGGGGGGAGGGGGAGAAGG  
 GGGAGGAGGAAGGGCAGCAGAAAGGGTGGTCTCATCGGCACTCCATCTGCAGACAGG  
 GAGCCCTACGCTTGCCTGCTGGATGGCGGGTCTAGGGCTCTCGGGTAC  
 CTGCCCTCCCACTCTGCTCCTCACGCTGCTTCTTCCAACTTGTGTCCCTCCCTTC  
 TCCAAGGCATTACCATGTTCTGGTCCCTCTCTTACTCTCTGTGTCTTAGTC  
 TTTGAGTATTGTTAAAAGACCTTCCCACAGCCACTGCTTACAATGGCTCTGGACCT  
 AGGGAGTCTCCGCCTGCAGTGTCTCTGGGCTGGGAATCAGCCTCTGCCCTTAA  
 TCTGAAGCCCCCAGAACCCCCAGGGCAGCAAGCACCTGACTGTCCATCCCCACGGAGAA  
 CAGGGATACCTACGGTCGAAATGATGACGAGATACTCTGTCTTGAACACTCT  
 ACTGATCCAACCTTATATCCATCAGATCAACATTACGCAAAGAACATTGATTTCTC  
 CACCTTGAGAACAGATTAAAAGAAAGACTAAAGATAAACACTGTACAAATCCATTCTT  
 TCTTTTCTTTTTTTTGAGATGGAGTATTACTCTGTCAACCAGGCTGCAGTGCAG  
 TGGCGTGTCTCGGCTACTGCAACCTCTGCCCTCCGGGTTCAAGCAATTCTCTGCCT  
 CAGCCTCTGAGCAGCTGGGATTATGGGTGCATGCCACACCCGGTAATTTTTG  
 ATTGTTTAGAGAGAGGGTTTACCATATTGCCAGGCTGGTCTTGAACCTCTGACC  
 TTGTGATCCGCCTACCTCGGCTCCAAAAGTGTGGATTACAGGGCTGAGCCACCG  
 CCCGACATGTACAAATCCATCTCTTACACATCACAGCATAACCAAAATTGCCAAG  
 GTGCAATTGTTTTAATTCTTATTGCTTCTCTAACTGAAATTGATTTAGAACAC  
 AAATTGCAAGTTTAGTTAAACTGGGGACGGGGACAATGCTTACTAGGAAAGCAAGTT  
 TCATGTGGAAAATCCTCCCTCCCCACAAGCAGCATATCAAGGATGGAGGAATCCTCAG  
 GAGAACGAGATGCATGTGTAGAGCTGAGGATGGCAGCTCTAAGCTGGATGT  
 CTCAGCAGGATGGCACCTACAAGCTGAGGTTAACACACCAGGACACTGGCTGTGTGATG  
 TCTGGCAACTTACTTGTCTCCATAAGCCTCGTAATCTGTACCTCTGGGAGAACTAA  
 GCACTCACCTCTCGAGTCCCCGAGGTCAAGAAAAAGGAAACATAACATCTTGACGGC  
 TCTGCAGTCAAGCACCGCGGTACAGGTGATCTGTACTGTGATGCCCTAGGGACTC  
 ACCTTTCTCTGTATTGGGGTTCTTCAAGTCTGCTTGGTGGTGTGAACACCA  
 CAGGGACACATGCTTCAATGAAACCTGGTGTGCGCATGGGAGGCACCTGTGTCCC  
 CACCAAGAGCTCCAGGCCACTGTGAACGTGTGGAGATGCTCTCTGGGACCAACCCCTGG  
 GGCCTGGGACGCTAACTCTCTATAATCACATCACAGAGTCATACGAAATGAGAACCG  
 TCCCAATCAAATACCCAAAAGTGCCTTGTGAGAACACTGGGTTAGAGCTGGGGT  
 TGGCAAATGTTCCAAAAGGGCCAATATCAAGGGACATATAAAATGTAACCATTAGA  
 AATGTAAGGAAACTGTTGAGGCTCTGGCGTAGAAAAGCTGGCAGCTGCCGGAACTGGC  
 CCATGGATGGCAGTTGGGTGACCTCTCATGTTGAACGACATTCAAGTGCAGTCTGCC  
 CTTTAAACCTGCTGCTCACAGGAGCTTGTCTGCCCTGTGGAGCTGCAGGA

Figure 61c

GCCAAAGGAGCAGGGCTGCAGGGACCTCACAGAACCAAGGGCGTGCCTGGGCAGGGCGTACCTGCTCCGGTAGGGCGTGTAGACGCCATGTCGCTGGCAGACACCTGACTGGAGATGCTGTGGCCAGGAGGCAGCAGTAGCGCAGGACCTGGACGGCCCTGGCCGGTTGAACCACGATGGGCTTATTCCCTCCCGTGCCTCGCTGCCCTGGGTTGATGAGGAGAGAAAACCTACTTTACTTCATGAATATTCAACCAGAAGGCCTACAATCCAGGAGCTGAAGTCGGTGCTGGAAATACACACTGAATATGACAGAAATAATCCCTGCTCTCGTGCAGAACTTACATGTGAGCAGGGCAGATGGCATATGTTAAATGATGAAATGGCTCACAGTCATGCTAAACGCTACAGAGGAGGACGGGTACAGGAGTCCGCCACTCAGGTCTGAGCCCCGGAGTGGAGGGCTGGCTGGTATTTCTGATCTTTTTTTTTGATATTAGACCTTGATATAGCTACTTCCTCATCTGAAAATACTCTTCCTTAGAAAACATTAATGAGATATACTGACATAAAAGACAGACATATAGATCAACAGGGTAGAACCGAGAACTTAGAAATAACCTCGAATATACGGCAGATGACTTCTGACAAGGGTGCAGGACAGTTTTCAACCAACGCTGCTGGAAAAACTAGAGGCCACACGGAAAGGATGAAGACGGACCCACCTGACACCACCTGGAAACAGAAACTCAAGGTGGATCGAAGATTAAACCAAGACCTAAATCATAAAATTCTGGAGGAAACAGGGAAAAGCCCACGACATTAGGTTGGCAATGACTTCTGATACGACACCAAAGCCACTGGCAATAACTAAAAGGGATATGCTGGACTACATCCAAATGGAAAATGTCTGGGCATCAACGGACGCAATCAACACGTAAAAGATAGTCTGGGAGGGGGAGAAAACCTTTGCAAATAGTATATAAGAAGTTAATATCCAAAACCTAGGAGAAGTCTTAAATTCACTGACAAAAAGCGACCCAATTAAATATGGCAAAGGACCTGAATTCTCCAAAGGAGACATACAAATGGCAACAGGTACATGAAAAGCTGCTCAATGTCACAATCATTAGGAAATGCAAATCAAAACTACAGTGAGCTACACCTCACTCCACTAAGATGGCTACTTAAACAAACCCAGAAAATAAGTGGTGGTGAGGATGTGGGAAACTTGGAAACCTGCGGACTGTTGGTGGGTGTGGAAATGCTGCAGTTACTGTGGAAAGCAAGATGATGGTTCTCAAAAATTAAGACTAGAATTACCAACAATTCCACTTCCGGGTATGTACCCATGACGACTGAAAGCAGGGTCTCAAATAGATATCTGTACACCCGTTCTAGCAGCACTACTTACAATAGTCAAATGTCTGCA GCCCAAGTGTCCACTGATAGATGAACTGATACGCCAAGTATGGTGTATACACACAATACAAATGCTACTCAGCCCCAAAAGGGAGGAAATTCTGACACACACCACAAACATGGATGAACCTTGAGGACATGATGCTCAGTGAATAAGCCGGTCACAGAAGGACAAACACTCCATGATTAATTCCACTTGTATGAAGTACCTAGAACACCTGAATTCTACAGTCAGAAAGTAGAATTGGTGGCTGCTAGGCACTGCAGGGAGAAAAGTTACTGTTCATGGGTATAGAATTGTTAATACTGCAAGATAAAAGTTCTGGAGACTGCAAAACAAATGTGAATATACTTAAACACTATTAAACTTTACACTTAAAGGAGTCCAGGGCTGGTGGCTCAGGCTGTAACTCCAGCACTTGGGAGGCCGAGGTGGCAGATCACTTGAGGTCAAGAGTTCGAGACCAAGCCTGGCAACATGGGAGGCCGGAGGTTGCAGTGAGCCAAGATCATGCCACTGTACTCCAGGCTGGGTGACAGAGTGAGACAACTGTCTAAAAAAAAAGTTTTAACATGACAATTTTATATTATGTGTACATTATTTATGAAATGAAATGAAATGAAATGAAATGAAATGAGACAGGGTTTCACTCTGTCGCCAGACAAAGTGCCAGGGCATGATCACAGTTCACTGCAACCTCAACCTCTCCAGGCTCAGGTGATCCTCCACCTCAGGCTCCCTGAGTAGCTGGGACCAAGTGTGACCCACCATGACCGGATAATTGGTATTGGTATAGAGACAGGGTCTTGTATGTTGCTCTGGGCTGGGAGGACATGCTGAGGCTCAAGCAATCTGCTGCCCTGGGCTCAGGCAACATGGGAGGCCAGGTTGCAGTGAGGAAATGAAATTTAAAAGGTGACCACCAAGGGCGGGGTGCGGTGGCTCACGGCTGTAATCCAGTACTTTGGGAGGCCAGGCGGGCAGATCATGACGTCAAGGAGTTCGAGACCAAGCTGGGCAACATGGTAAAACCCGTCCTCTACTAAATACAAAATTAGCCGGACGTGGTGGCAGGCACCTGTGGTCCAGATCCTGGGAGTCTGAAAGCATGAGAATTGCTTGAACACTGGGAGGCAAGAGTTGAGTGAGCCAAAGATTGCACCAACTGCACTCCAGGCAAGGGTGACAGAACAAAACCTGTCTCAAAACACAGATAACAAACACACCCAAAAGTCACCAACAGATAAAAGCAGTAAAAATAC

Figure 61d

GAAAATTAGTTGGACGTGGTGGCAGGCCCTGAGTCCCAGCTACTTGGGAGGCTGAGG  
 CACGAGAATCGCTTGAACCTGGAAGGCAGGGTGCAGTGAGCCGAGATGGCGCCACTG  
 CACCCAGCTGGGTCAAAGAGCAAACCTCTGTCAAAAAAAAAAACCCACAAA  
 ACAACCCCCAAAAAGTACCAACCAGATAAAGCAGTAAGAATTAAATTGCTGTTGTTG  
 TTAAACCATTAACTTACTCATTTATTGTAATAAAGTACTGAGAAGAAACTTAAAGA  
 TTAATGGGATGAAAACCTATAGCAGAAAACCTCTAAACTGAGAAACAAATTCAATGAAAG  
 CAACCAATCAACTAGAAAAATTAGGAAATAAATGACTAAGAAAGATAAAGAAGAAAT  
 CATGTGAAATCACTATAGACTGGGCTGATTTATGTCACTAAAGCAAACTGACTCCAA  
 AATGGATTAAATATAAAACCTAGCTGCTCTAAGAAATACAACAATAAAATGAAGA  
 GGGCAAAGACATACCAGGTAAGAAAAAGTGGCAATGTTAATATTACGAGGTGGAA  
 TTTAAGACTAATACACATGACAGTATGGAAGGATTACATAATGAGGAAGATAAAGCA  
 GTGATAAATTATATGCATGAAACACAGCAGTTAAATTGTAAGACAAAGAACGATCAGA  
 AACCCAAGGATAATTGATGAGGAGCACGACGAGAACGAGGGGCTTCATGACTCTCTC  
 CGCCATGGCCTAACCGGTGGACAGATCCTAGGCCAGGACACAGAGCTGCTGAGTGACAG  
 CCTCCATGCATTATTATTTATAGTTAGGTCAAGTCAGCTCACTGCAGCCTCAATCTCCTGGC  
 TCAAGCAATCCTCTGCCTCAGCCTCCAAAGTAGCCGGACAAAGGCACATGCCACCA  
 TGCTCAGCTAATTAAAAAAAAAATTGTTAAGAGATGGGAGTTCACTATGT  
 TGCCCAGGCTAATCTGAACTCCTAGGCTCAAGCAATCCTCCTGCCTCAGCCTCCAAA  
 GTGCTGGGTTACAGGTGAGCCCCTGTCCTGGCCACTAATGTGTTTCTGATACCCA  
 GGAAAGCTCTGAGGATGGGAGAGCTAGCAGGACAGATGGGGAGACCACTGCAGGG  
 GAGGGACCTGCCTCAGAGTGCACCATGTCTGGAGGTGTCCAGCTCACTGCAGATTCTCC  
 TTAGGACCCCTTCTTCCAAATGTGAGAACCTCACAGCCCATACACATATCCCATC  
 CCACCACTTGGACAGATCACAGACAGATTTCCTCCCTCAGGAACCTACGAAGAGCAAC  
 TGGGGGCCACTGCTGGTAGGGCATGGAATGCAGAGGCCAAGGCAGCAAATGGTGT  
 AACCTGGACCCCTGCTCCCTGGGGCCCGTGGCATGGAAGGGCACTGGCACCCAGGGTC  
 CCCGTGCCCCGGTGCAGCCTCACTGCAGATACTTGAATGCCCTTCTGAGGG  
 CAGGGGTTAATGCAAAACTTGAATTCTGCTCTAACTAAACTCCTAAACAAACTATCT  
 CATTAGCGAATGCTTGTAAATTGCTTGGTCACTCAGCCTCTGAGGCCACTGTCCCTCTG  
 CGAGGCCCTGGAGAGGGGGTGGTGGCCGTCACTCCTCAGGCCAGGGCGCAGGGCTCG  
 GGATCGCAGCTGCTGCCCTCCCTGCCGGCTCTCTGACAGCTCCAACCCCTCGAGGG  
 AAGCACCGGAGGGAGGCCGGTGGTGGCCCTCTGGAGCTTCTGCGGCCCTGGGCGTCC  
 CCAGCCACATGCCCTGCGAGCTCCCCAGGCCCTCCAGAGCTCACTGGCACGCTTCGC  
 TTCTTGGAGCCAGTGCTTGTCTGCTGTGACCACTGAGAGTGGTGCCTGTGATGCC  
 TCCTTGGTGCAGGCACAACCATCTGGCAGGAGAAGTCAGCAGCATCCATCTGGGGGCA  
 CAAGCCCCCGATGGCTTCACTCTGGAGACCCAGCAGAACATCTGCCCGCACAGG  
 CAGGTGACAGAGCCTCACCTGGAGGAAGGACCTCTGCCATACTGTCTTACCCGACA  
 CGGTACACCTACGGATTCAAGACACAACCTACCCGCACACCAGTGAAGATGAGAGGGAAAG  
 CCTTTCTTAGGCAACTTCTCCAGCCCAGCAAGGAGGTCACTGTGGGTCCGCACA  
 GACCTCGAGTTCCCTGTGGTAGAACAGCCGTGGGCAGCATCAGCAGGGCTCGTGG  
 ACCGGTAGTTCTCACCAAGCTTGTGACCTGCGAGGAGATGGTGTGGTCACAAGGGG  
 AAGGTGGTACCGGCACAGTTCTGTCGAACGAAAAGCGGCTCTGCACAGCAACGTGA  
 GCCCTGCCTGACTTCAAGCCTGACTCTGCTCTGCCCTGTGTGTCGCCCTGCC  
 AGACCAAGCCCTGGATGATGGTCAAGCCAAGGGCCATCTGAATAGAAAATGGAAACA  
 TCAGGAAGAAAAGGGTGTGACGGCTGCCCTGTGTTCTCTGGGTCTGGGTGCC  
 GAGGGGCCTCTAAAGGGCTCTGCCACCTGGAACCCAGCAGCCGGTGGAGGGCAGGT  
 GGATGCCCTCCCTCGTGTGAGAGCTTCACCCCTGGAAACAGCATCTGTTGGCCCACA  
 CAGCCCTGCCTCCGCTTGGCACAGGGAGAGCTCTGGGCCAGGGAG

Figure 61e

AGCATAGACACTGTGACTCTGGGGCCTGGCCAGCCCTGGCGGGCCTGGCTGTGACTT  
 CACTGATGCGGCTGAGGGTGAUTGTGATATCACCAAGTACATGGGACACCTTAACTGTCT  
 GCCTCCAACCTTGTCTCGGGAAAGCTCACTCAGGGCAGGGCTCTTCCCCTGGTGTGGTGT  
 AAGCAGGCCAGAGAGGGTCTCCAGCGACTACAGGAGTTCAACCAAGTCAGAGCAATGCTCA  
 GTCTTGACCCCTGCTCATCAGTACCGATGTATTGGCATGAGGACTCGCTGCCTGTG  
 CCGCGGGGAGCCGTCCTCTATGCAATGCTGCACCCCTCTGCCCTCTGTCACTGACTG  
 TCCCTCGGGGAGACACTGCTGGGGAGAACAAAGCCTAGGGCTCTCCCTCTGGGATGAG  
 TTAACAAAGCCCCCTGTTGGTAAAAACCTGTGTTCTGCAGTGCTGTCTGTTACTCGCCA  
 GATGACACTGGCACGAGAACGCCATGATTGGCCCCGTGAGTCCTCCGACTCTGTCAAG  
 CCTAAATAGAATGTGTCCAGCCTCAACGTGCTACTCCAAACTCCAAATGTGATCTAGA  
 GTCACGGCACCTCTGCCTTAGCTGGACATGGCAGCTGCTGGGGAGAGAACAGGAAGCA  
 TGCAGCCTCCTGGGGTCACTGTGGCAGCGCTCTGGTTGGAGGGTGCAGGACACTGCC  
 AGGCCCCACACAGGACAAGGCTTCACCTCCCGTGCAGGAGGGTCTTCTGTACCTGTG  
 GCCCTGTGCTGTATGCACCTGCCCTGAAGGCTGTGTGGTGGGGACGCCAGCGTGTGGT  
 CTCTCTGCTGCCGACAGTCACCTGCACCCACACCTCCAGCAAAGCAGCTAGCGGGTA  
 CAGGCGCACAGCGGCACTGGAGGATGAGGCGAACCTCCGGGGACAGCAGAGCTCTCAG  
 GCGCCCTCTGGGGCCAGCAGCTGTCACGGCCGGCATCTCTGGGGCAGTTCTAG  
 GCCTCCTGGCACAGCCGGTCTGTCTGGGGTAGTCCTCATGAGGCCTTCCTGGCC  
 TGAAGACCCCCACCTGCTCCCTACCCCTGACAACCAAGAACATGGGGTCCAGTCCTTTCC  
 CTGAAAGTCTGCCCATGGTAACTGCCCTCATTTCTATTGATGTTAAACTGGCAATG  
 GGAATCAGATGGAGACTGTTTCTGTGGCTACAGGGCTTACAAACTGAGGCTACTT  
 GGTTCACTGTTGAATGATGGCCCTGGAGGCCAAGCTCAGTGCTGGGGCTCCAAA  
 GATGCAAATCCAAAGCCCACCTCAGAACATTGGTGCAAGGTTGGCTGAGAGCCCAGA  
 CCTGCACTTCAGTGGGACCTGGGTCAAGAGACCCTGAGGAGACACTGCCCTGCACT  
 CTCTAGGGCAGGCTTTTAAGTCACAACAAATTATTCTGCTTTCTTAACGTTAACAG  
 AGTAACACAGATTAACTTACTGAATCTGACCCCCAGAGTCAGCCATCAGCA  
 CCAGGGCTGCAGTTCTGTCAGGGGGAGGTGCTATGGTGGGTGCTCCCTGCACTCTG  
 CCCACGGATGGAGATGACTCAGGTGGACAGAACAGTGGCTGCTCGACTGCCCTGGAGC  
 CTGTGCTGCTTAGCTGGGACCTGAACCGCCTGGAGCTGTGACTCACCAACAGGGGA  
 TTATGTGCGCCACAAGCACCGAAAGCATTTCTGTCCTCTGGTACGGGGTGCAGACAT  
 CAGCCGTTCCAAAAGGACACGTTCAAGCCATAGGCCATGGCGAGTCTGGACTTAATGA  
 CTGGGCCAGCTGCATGGGTCTCCTGCCAGCACGATCTGCACACAGAGGGCCGTC  
 AGTCATGCAGGGAGGGTGCCGCTGCCACTCCTACGGGCTCAGGTGGGAATGGGGCTGT  
 GCGCAGGATGGCCCCATGCTCACTCTGCTGCAGGGGACGACGGGAGGGACTGGGAGAC  
 CAGGGATGCCAGGGCTTGGAGGCCGCTCTCCCCGCTTCCCCCTGAAGTCCTGCCA  
 TCTGCCCTCCCCGAAGTCCTGCATCTGCCGGCTCTGCAGCCTGGTTTCTCCTGCC  
 GAATCTCTCAAAGGGTAAGAGCCCCAAGGATGCCGTCTCTCTGGAAAGCTCTGCA  
 TGGCTGCCCTGGCCGCACTCCACCTGCCCTTGCCCTTGCCCATGGTTGCCCTTGAC  
 CTGGTCAGGCCGCCCCATGCCGCTGCTGCCCTGGACCAGTCCTGCTCCCTCCCTAGG  
 CGTCACCTTCATGCTCCGCCCAAGTCCTGGTACTGGGACAGACATCTAGGATGGG  
 TGCCAAGGAGGACCCCTGAAATGTCCAGTGCTGGACACTGGATGAGCTGCCCTGGATGAG  
 CCACAGTGAGAGAACCAAGGGAAAGTTCAAGGTGATGCCACGCCACCATCAGAACACTC  
 GGGGAGGAAGCAGGTGGGAGCAGAGAACAGAGGATGCCACAGAGCTGGAGGCCAG  
 CCTGAGGGCAAGTGGTCAGATGCCAGGGAGCAGTGGCCCTGTCCGCCCTCCAGGCAG  
 GAACGGCCGGCTACCCAGACCAGGGACCACTCCCTGACTTTACCGCTGTATCCCCAA  
 CACCTAGAACATGGCTTTACCTCCGTTTACAAGTAAATGAGTCAGAACACATTCACT  
 GTCCAAAAGGAATAAGTACAATAGAGACCCATGGCCCCAACACCTCGGGGTCCCTGG  
 CACTTCACCTGACCCCTGTACAGCTGTGACTGTTCCCGCAGGATGCCAGCCTGCATC

Figure 61f

CCCTCAGGAGAACGGGGT GAGGAGGAAGCAGCACACAGTAGTGCGACTTACCTGGC  
 CACTGATGTCCGACATCAGCCCCAGAGGAATGAGGCATTCCGGCTCACTTGCCTGCCA  
 GCCTCGTCCACAAACACGTGAGTGAAGTGCCAACTCTAGAGCAAAGATGTTCTAAATG  
 GTAATTCTGCGGAATTGTTAGCAATTGATGCCTCTGACACACTGGCAAAGCCACGC  
 TCAGGACCCCCGGGGCAGCAGCAGGGTTGCCAGGGGTGTGAGGAGCTGGGGCTGGG  
 TGTCACCCGGCTGGAGGGAGGAAGGCCACAGGTGTAGGAGATGCTAAGCCACATCAG  
 CACCCAGTGCTTGCACGCAGCGTCTGTATTCTAGAGATGTTGGAGGGAGAAGGGTG  
 GGAGCGATGGGAAACACACAGAGCGCTCCCTGGGGCAGCTCACAGGAGAACGCCAG  
 GCTCCTGGCCTGCTCTCACCTGCGTCTCACTCCTGTCAATTATCAAAATGCCAGGCTC  
 TAGTCCTGACTTCCCCTCTGTAGGCCTCCACCTCCCACGTGTCTCTCGGGAGGTGGCTG  
 AGGTGAGAGCAGCTGAACGGCGCTGTAAAGCGCTGAGAACAGGCTGGCCATGCAGG  
 CGGCCACAGATGGCAGCCTCCTGCATCCGCTCATTTCTCTGACTCATCCTGTG  
 AGCCACTCTCAGCTGGCACTGCCTGGCTGCATGCCAATAGGCTGAGGCCCTGGGAGC  
 CACTTCCAATCTGCGCACCATTAAGAAAATGGGGTGGTCGGGCGAGTGGCTCAGC  
 CCTGTAATGCCAGCACTTGGGAGGCCAGATGGGTGGATCACAGGGTCAGGAGATCAA  
 GACCATCCTGGCTAACACGGTGAACACCCGTCTACTCAAATACAAAAAAATTAGCC  
 GGGTGGGTGGCGGGCGCTGTAGTCCCAGCTACTCGGGAAAGCTGAGGCAGGAGAATGG  
 CGTGAACCTGGGAGGCCAGCTTGCACTGAGCTGAGATCGGCCACTGCACCTCAGCTT  
 GGGTGACAGAGCAGACTCCATCTCATAAAAAAAAAAAAAAGAAAAAAAGAAAATG  
 GGTCTCTAGAATGGCTCCCACAATTCTGGCCCTGCTGCCAACTCAGTGAGGTTCCA  
 GCTACAGAGCAGCCCTCTGGGGTACCTGTCCGGCTTCTCCCTCTCGTGTGACAAG  
 GGAGGTAAGGGAGGTGCAAGGAGCAGAGAGTCCACAGCGTTGCTGATGGACGGGGTGGG  
 ATTTTGGGAAGGAGTCGTCAAGGAGAAGCTGGCAACTCTTGATGGAAAGGCTGTGG  
 GACTGAGCGGAGAGCAGGAGCTCGCTGGCACATGATCTGTTCTAGAGTGCAGAGGG  
 CCACCCACCTGGGCCATGAGCTGAGGAACAGGTGCCCTGGCTTCCCTGGCTGCCA  
 CCCAGCAGCTCTGCTCTGTGGTCAGGAGGCCAGTGGGAAATGCTCTGGGAG  
 AACATGTCCTGATGCCCTGAGGAAGCAGGTATGGGCAGAGAGAGTGTCCGGAGCCACG  
 CCAACACTAACAGGACGCACCTGGCCCGACCGCTCTACTGCCAGCCACGTT  
 ACCCTCTCACTGCTGATTCCAGGATCTCCCTCTCCACCCCTAGATGCTGGCAAATC  
 CATCACCTCTGAGCCTCAGGTGCCCCTGTGGGTGAGACCCCTGTGGTCAGACCTGTG  
 CGGGGGCGGGCTCTGCTTACAGCAGTGCTGGGCCAACATGCTGCACTCCACTCAG  
 GTCAGCTGACACCTTCACTTCAGGTATCAATGTGTAACTCTCAAGACACGGATTTCAC  
 AAGTGACACCCTGAACCCCTCCCAGTGAAAGATGTTGAAATCAGCAAACGCCATTCC  
 CCATCTCATGTCCTATTCTGTTGAAAAAAATTAACATTATGTATCTTCTAGAATG  
 TAAGTATTAGGTTCAATTCTGTATTAATTGCACTTAAATGTCACCTTGGCCAGA  
 TGACATTGCTACTCTTGGCCTTGAGTGCCTCCACTCCAGCCGCCAGTG  
 GCCAACTAACGCTGTGGGCCCTCTGCAGCTGGCTGCAGCACCCCTCCCTGCTCTGCAC  
 AGAGCGCCTCTGAGAGAGCAGGCCCTGCAGCACCCCTCCCTGCTCTGCACAGAGGCC  
 GAGAGAGCGGCCCTGCAGCACCCCTCCCTGCTCTGCACAGAGGCCCTGAGAGAGGCC  
 CTGCAGCACCCCTCCCTGCTCTGCACAGAGGCCCTGAGAGAGGCCCTGCAGCACCC  
 TCCCTGCTCTGCACAGAGGCCCTGAGAGAGGCCCTGCAGCACCCCTCCCTGCTCT  
 GCACAGAGCGCCTCTGAGAGAGGCCCTGCAGCACCCCTCCCTGCTCTGCACAGAGGCC  
 CTCTGAGAGAGGCCCTGCAGCACCCCTCCCTGCTCTGCACAGAGGCCCTGAGAGAG  
 CGGCCCTGCAGCACCCCTCCCTGCTCTGCACAGAGTGCTCTGAGAGAGGCCCTGCC  
 GGCGGCCACCTCCTCCCACCTGAAACATCAGCTCCAGGGTGCAGGGTCCATGCAGT  
 GCGCGCTCTGCCCTAACAGAGGCCCTGCACTGGACTGGCTCTCGGCTCT  
 GACCTTGACTCATCAACACACATTAACAAAAAAATCCCTGCTTGTGAGATCCGTG  
 CTGTCCAAATCCGGTAGGCCACACAGGCCACCGCACAGTGGCTAGTCTGAAAC

Figure 61g

CTGACATGCTCTAAGTGTAAAATACATGGGGATTTGAAGACTTGAACCAAAAAAAAT  
 GTAAAGTGTCTCATCAATCACGTTCTACTAATCTCATGATGAAAGGACATCATGTATGT  
 GAGAGAGTTAACCGGCCGATGAAACCACATCCGTGACACGCTGTGATAGGCCTGGCTGGC  
 TGTGCCCTTGCTCCATGTGGAGCTGACGGACCACCTCTGTGGTCACCCCTACGACCAAC  
 CGTGACGCTGGACACTGTCCAGGGTGACCTGTCTCCAGGCTGTCAAGGGAGGGTCACGAC  
 CACTGTGACGCTGGACACTGTTCAAGAGCGACCTGTCTCCAGGCCGTCAAGGGAGGGTGGG  
 GCTTCCCTCAGAGGCCCTGGCTTCTCCCTCTCACCCCTCAGCCTGTGCCCGACACT  
 GTCTGGCTCTATGCACTGAGAGGGAGCTGCCGTGCCCTCCCCGACCCACCCCCCTGC  
 ACTGGGGTCTGAGAGTGCCTTGGTCTCACTCAGCCTCCCTGGCTCGAAGCTCTTCCT  
 CCCAGCCCCCAGGGGAGGTCTCTATGACAGCCGGCACCCACAAATCCATCTCCTCCG  
 CCTGTCTCCCTGAAGAGCCTCCAGGCCAGGGACACAATGGCCCCCAGGGTCTGACC  
 TTACAGAGCCCAGCCGTTCTAGGCAGCCTGCCCTCCAGCCACTCCAAGAGAGACTC  
 ACTCTCTGCTCAGAAGCCCTCACTGGCTTCCCGCTCACCAAGAGGTGTCCTAAAGGC  
 CCCTCCACAGCCCGCCAGGCCCTCCCCCTCACCAACCCCTTCAGGCCGTTCCGTCTCAG  
 AGGCTCTGGCTCTACAGTCTCTTGGGAGACCTCAGTGCTCCCCCACCGCGGGGCCT  
 CTGCATGGGCCAGTCCATCTGCCGTGCCATCCCCTCAGTGCTGGCTCTCGAGTCCTGGG  
 GTCTCGGCTTCCCCAGCTCCATTCAAGGACGGCCCTCCCCAACAGCCTTCTCGCCCA  
 CAGCCCTGCCCTCCCTGAGCACTGAGTCTCTGGGTCATCCGCCCTCAGACAGAAG  
 CTAGGAGAGGACTCCGACCTCTGCCCTGGGAGGCCCATGCCGCGCTCCATGCCGGGG  
 CTCACCTCACTCCTATTGGTAAAACAGCCCTGAGCTGTCATGTGGTATGATTATC  
 CGGAAGCGTAGGGCTTCCAGATGTTCTCCGTCTGCAATAACGGTTGACGGCGTC  
 AATAACTATCTGGGGCAAGGAGGCGTAGAGTTAGTTACTCCTCCAATTATTAAGCAG  
 AATTCAAAGGGAACCTGCCCTGGTACCACTTCTAGTTACGTCATAAGTCATGATT  
 AAGGTTTTCTCAAAATATCTCATACTTCCCTATCAATTCAAGTCCATGTTTATCAA  
 CTCTAGAGCCACAAATATAACACATAATCCTGCAGACCCCTCCCCAAACAACTTTGTA  
 CATTCTATTCACTGTTGTTGTTATTAGAGAGGGAGTCTGCTCTGCTCTG  
 TCGCCCAAGGCTGGAGTGCAATGGTCAATCTGGCTCACTGCAACCTCTGCCCTCCAGG  
 TTCAAGTGATTCTCCTGCTTGGCCCTCCGGAGTAGCTGGGATTACAGGCCATGCCACC  
 ACGCCCAAGCTATTTCATGTTAAACGCAATATTCAAGGCTGGCACAGTGGC  
 TAAAGCCTGAACTCAACACTTGGGAGGCAGAGGCCGGTGGATCACTTGAGATCAGG  
 AGTTCGTAGCCAGCCTGACCAACATGGTAAACCCCTGTCTCTACTAAAAATACAAAATT  
 AGCTGGATGTGGTGGCACACACCTGTAATCCTAGGTACTTAGGAGGCTGAGGCAGGAGA  
 ATTGCTGAACCCGGGAGGCCGGAGGTGCAAGTAGCAACACCAC TGCACTCCA  
 GCCTGGCAACAAAGAGCAAAACTCTGTCATAACAAACAAAAAATAAAGCAAAACT  
 TCGCTCTATAACCAAAACAGCAACTAAAGGAATACTTAAACCAAAACAGGCCGGCA  
 CGGTGGCTCACGCCGTAAATCCAGCACTTGGGAGGCCAGGGCAGATCATGAGG  
 TCAGGAGATCGAGACCATCTGGCTAACACGGTAAACTCCGTCTCTACTAAAAATACA  
 AAAAATTAGCCGGCGCAGTGGGGGTGCCTGTAGTCCCAGCTACTGGGAGGCTGAGG  
 CCAGAGAATGGTGTGAAACCTGGGAGGCCGGAGCTGCACTGAGGCCAGATGCCACTG  
 CACTTCAGCCTGGCGACACAGCGAGACTCCGTCTCAAAAAAAACAAAACAAAAC  
 AAAAACACCAAACCAACAAAACACTTAAAGTAACAAAGACGTTGGGGATT  
 AAATAAAAGAGGAATGTGATAATTTCACAATGCTACGAATGCCACAAATAGGTGTGATA  
 ACTCACACAGAGTGAGAATGTGATGAAATAGTCAGCAATCAAGCTCCACCAATTAGCGG  
 TGAGGGAGGGCCATGGCAGGCCATTCTCAACACAGCTTCTGTGGCGCCTCTGTG  
 CCCACCCCTCTACCCCTGCCCTCCCTGTCCACTTGGCATTCTCTATGTTCCAGGGAGG  
 GGTTCTGGTGCCTCCACTGCTTGCAACAGGCTCACCTCCTGCAACCTGCAGGTGGC  
 GTTCACCCGGACCATGGTGGCCGGCTGTAGCACCTTGCTCTCGTGCAGCCGAGACACA  
 CGAGGTCAGCAGCACTGTTGGAGGGCGCACAGACTAAAATCCGACTGTCCGGCAAGGCA

Figure 61h

AAGTGACCTTCATCAAAGACACACAAGAGACAAGGCTAACATCCACACCGCAAGGT  
 GGAAACCAGGAGTCTAACCTAACACACACATCGGGTGCAGGGACTCAGCTGCATGGG  
 CTCAGATGCCAGCCCCAACACACTGAGACCTGGGCACGACTCTGCCTCATCACACTG  
 CTGCCAAGCATTGGTTAGGTGGGAAGGTTCTCCGACTCTCTAACGATTCTAAACCACC  
 TTTCAGGGCAGAAACAGAGTCAGATTCTGCACACATCTGGCGTGTGGTACAATTGT  
 GCGCTCAATACCTGTTGCTAATTGAATCCTGAATGACGCTAACATGTAGATGGTCTTC  
 GGCTTATGATGGTTGACTTAACGCTTTTGACTTTATGATGGTGTGAAGACCATCCC  
 CAGTCAGTCTGCTCCTCACCTGACAAGGGATCATGCCTGATGAACCTGAAACAGGCTT  
 CCCAAATCCCATTACGATGGGTTATTGGGTTGTAACCCCATCAAAGTTAAGAAGCCTC  
 TGAGACAATAGTTCTAAACTTAACCTCAATTACAAATGAAGATATCTAAAACCTCT  
 GTGGAATGGTGGCTGTAGCTACTATAAGAGTAACCTCTTCTGCAGCAAAATGTCATG  
 ATTCAAGATAAAATAGTTTACCAAGGCTAAAATGAGTTCTCTAAACCTATGAAATAA  
 GCTTTAAATCCTACATATCCACAAAACAGACTAACATTATGAAATAACTGGTATT  
 TCTCAAGCTCTTCCAACGTCTGATTCTACAACTAACACTCACACTTCCTGAAGACAC  
 AGACGACACATGAACAGCAGCACAGAGCCACAGCACCCGGCGCCGCTGCCTTACCT  
 GTAAAACAGCCTCTATTATTGTCACTGTCTTCCAGTACAGGAGGTCAAAGAGAATA  
 TACGGGAGGGGACGGCAGTCACCACTCAGAACCTTTAAGTCTAACAGCTCTAACAGCTGTGGAC  
 ACGTCTCACCTAGGTCAAGCGTCAGCACGTCTGTGCAAAGGCTAACATCAGAGTCACAG  
 ACAGGGAGTAGCTCTCAGTGTGACCAGGGTAAGATGCCACAGGGCATTCTCTTAA  
 TAATCTGTTGCACTTTTTCTTTGAGACAGGGTCTCGCTCTGTCAACCCAGCT  
 TGGAGTACAGTGGCACAATCTCAGCTCACTGTAACCTCCATCTCCTGAGCTAACCGAT  
 CCTCCCACGTCAAGCCTCCGGTAGCTGGGACACAGGGCCACCACACACTGGCT  
 AATTTTGATTTTTTTTATAGAGACAAGGTTGCCATGTTGTCAGGTTGG  
 CTCGAACCTGAGCTCATATGATCTGCCACCTTAGCTTCCAAAAGTGTAGGATGA  
 CAGGTGTGAGCCCTGCACTCAACCTGTCTGTGTTAAAGAGGGTCAGGAGAACGA  
 ATGCAGCTGCTGAGAGGAAATGACAGGCTGTCAACCGATTCTGCAGCTTGGAC  
 CACTCAAATATTAGAGACTGGATTAAGGAAATGTCCACATCTCAGAGTACCTGGAAAAA  
 AACAAACCCAGAATCTAAAGTCTTCTAAAGTATCTAACGCTAAACACCAAGTCTCCAG  
 TCAGGGTGGAGACGGCAGCCGCTGTACAGGCCACACGCCCTACTGTTCTCCTC  
 TGCATGAGAGCCCACCTCTCAAAGTCCCCTTCCAGGCACAGTCTCAGAGTTGCTC  
 TTCTCCTGCCCTCATGAGCACATACCCCAATCGCTCATCTCTGCAGTAAAGGGTGC  
 AGCACCGGCAGGTCTGTACCAACACGCCCTCCTCTGTTCCATGCTCAGCTTGGTC  
 CGTCATTGTTCTCTATTCTAGAAATTATCAGGCAGAAAATGTTAAAGAACAGCT  
 GTGTTTACACTGGCTTGGTGAAGAGCAAACGTAACATCTAGTGTCTACTTAGTAT  
 ATTTATTAACAGCTTTGGATGGATCACAGGTCAAGGCCCTTGAAAATAAGAAAAA  
 AACAAACGATCAGATAAAACTGCTAAAAAGTTGTGCTTTCTTTAAACTTGCT  
 TTTAGAAAATCTAAATTGTGATGAAACCAAGCACAGGACTAAATTATTTAT  
 TAATATCATCTCCCTGGTACATCTAACCTGCTTCCAGGCTGGACAGTGGGGGAAAC  
 TGCAGGGGACAGTCAAGGGTACAGGCCAGGGCTCTGGGTCTCACGGGCCTGGAGAGTGT  
 GCAAAGTGCCTGGCTGTTGACGTCAGGCAAGATCTGCACCAAGGCCGGGCACGG  
 GGCTCACGCTTATCATCCACCACTGTGGGAGGCCAAGACAGGTGGATCACTTGAGGCC  
 AGGAGTTAAAGACTAGCCTGGGCAACATGGTGAACCCCTGTTCTAGCAAAATACAAA  
 AAAAAAAATTTAGCCGGGCTGGTGGTGCACCTGTGGTCCAGCTACTTGGA  
 GGCTGAGGTGGGAGGATCACTGAGCCCAGGAGGCCGGGCTGCAGTGTGGAGATTGG  
 GCGACCAACTCCAACCTGGGTGACAGAGACCCCCAACACTCATAAAAAAAAAAGGCT  
 GCACGCAGTGGCTCACGCCTATAATCCCAGCAGCTTGGGAGGCTGAGGCCGGCAGATCA

Figure 61i

CAAGGTCAAGAGATCGAGACCACCTGGCCAACATGGTGAACCCCTGTCTTACTAAAA  
 ATACAAAAAATTAGCTGGCGTGCGGCCACAGCTACTCGGGAGGCTGAGGCAGGAGAAT  
 AGCTGAACCCGGAGGTGGAGGCTGCAGTGAGCCAAGATCGTGCCTACTGCACTCCAGC  
 CTGGCGACAGAGCGAGACTCTGTCAAAACAACAAAAAAAGGATCCTACACAAGAA  
 TTGGTTTCTGTGTCTCAATGTAAGTAGTATTGTCTGAACCAGTGGGATTTCAA  
 TTTTTTCATTATGATCTGTAATTCTTGTAAATAACTTCATTATTTCATAGGATAG  
 ATTCTGGAATCTATAAAATCAAAGTTCTGGGCCAGGGTAGTGGTACACACCTATAA  
 TCTGAGCACTTCAGGAGGCTGAGGTGGAAGGACTGCTAGAGTCCAGGAGGTCAAGGTTG  
 CAGTGAGCCATGATTGCGACACTACACTGCAGTTAGGAGGACAGAGGAAGACTCTGTCT  
 CAAAAAAAGTTACGTTAAAAAATTACACACATTGCTAAGTTTAGTCTAAAA  
 CAGGCTTGTCCAACCAGCGGCCATGGACTATATACAGCCTAGGATGGCTCTGAATGCA  
 ACCCAACACAAACTCGTAAACTTTAAAACACTATAAGATTTTGTGATACATATT  
 TTTTCAGCTCATCAGCTATCATTAGTGTAGTGAATTATGTGTGGCCAAGACAAAT  
 TCTCTTGCAACGTGGCTAGGGAAGCCAAAGATTGGACACCCATGGTCTAGAAGGTT  
 ATGCCTATAACCTCCTCCACAACCATTGTGTTTGCAAGAGTGTGACTGACATAAATA  
 AGGTGCACATATTAAAGTGTGACTGACAAGTCTGACGTGCACATAACCCATAAAAC  
 CATCAGCACAATCAAGATGACAAATAGACCTGTCAGTCCCCAGAGCCGCTTGTGCCGC  
 AGCCCTCCAGTGGCACTGGCTGGCTCACATGCTCTCGAACCTTCATACATTCTATAAAT  
 GCACACAGTGTGATTCAATTGGAGAGGCCACCTGTGTTGTCATGTCACAGTTGCTCC  
 TTGTATTGCTGAGTCATGTTCCATTGTACGAACACAATGCAACTGCTTATCCATTAC  
 CTGCTCACGGACACTGGTTGTTGGTATTAAAAACCCAGCTGCTGTGAAC  
 TTTGTGTATGGTCCTCACGTGGCTTATGTCTCATCTCTAGAGAGAAATGGCTGG  
 GTTGTATGGCAGGTGCGCGTCCAGCTTCTTAAACACCTTTGCACAGTGGTGTGCCA  
 CTCCCCATTCCCACAGCAGGGTACGTGCCAGCGGCCACGGGCTACCAACGCGCAGA  
 TGGCCCAACTCAATTCTGGCATTCTAGCAGGTGTTAGTGGTACCTCATTGTGGTT  
 AACTTGTGTTCCCTAAACAACTAATGATGTTGAAACATCTTCATGTTGTTATTACCATC  
 TGTATGTATTCTCTGGTAAAGTGTCAAGTGTGTTGATCATTATAAAAAATTGAGTTCT  
 TAGGCAGTTGTAGAGTACTTCATATGTTCCGAATACAAGTTCTGATCAGATGTG  
 ATTTGCAAATATTCTCTAGTCTGTCACCTTCATTGTCTTACCAAGTGTCTTTTT  
 TTCTTGTGTTTTGAGACAGAGTTTCTATGTTGCCAGGCTAGCCTGGAACACTCC  
 TGGGCTCAAGAGACCTCCAGCCTCAGTCTGGTCACTGGGACTAAAGTGTATGC  
 CATTGTACCTTACTGTCTAACATGTTTCAAGCAGCAAATATTAAATTCACTGAA  
 GTCCAATTATCATTCTGTAAAGTCATGCTTGTACATAAAAAAATCCT  
 TGCCCAACAGAGGACGTGCAAGATGTTCTATGCTGTTCTAGATGCATAGTTTA  
 GGCTTGACATTGGGCTATAAACCGCAGAGTAAGTTAGTTGTCGCGCTGTGAGCT  
 ATGGACCCAGGTCCATGTTGCGCGTGCCTGCAATTACAGACCACGTGAGGTAAAC  
 AGGTAACCTGATAATATGGAATCTTCCGGCCAAAGAGATACTAATATCTCCCTCCATTG  
 ATTTACGTCTTTGTTGCCATCTTGTCAAGATGTATCCCTAATGTTAAAACATTAA  
 GGTGCTACTAAAAAATTCAGGCCTGGCATGGTGGCTCACGCCGTGAATC  
 CCAGCACTATGGGAGGCTGAGGTGGCGGATCATGAGGTCAAGGAGTTGAGACCCAGCCT  
 GATCAACATGGTGAACCTTGTCTACTAAAAAATACAAAAAATTAGCAGGGTGTGGTGG  
 CACGCACCTATAATCCCAGCTACTCAGGAGGCCAGGCAGGAGAACTGCTTGAATCTGG  
 GAGGCAGGTTGCAGTGAGGCCAGATCCGCCACTGCACCTGGCCTGGCAACAGAGC  
 GAGACTGTCTCAACAAACAAACAAACACCAAAACAAATTCTGAGTGTGTTACTGG  
 AAATATATATACAACCTTACACTGATCTGTATCTGCAAATCACTTATTAA  
 GTTCTAACAGCTTCATTAGTCCATCAGATTCTTCTTCTTCTATTGTTCTATT  
 TGAGACAGGGTTTCACCTTCATCACTCAGGCTGGAGTGTAGGGTACAATCACAGCTAC  
 TGCAGCCTCAACCTCCCAGGCTCAAGGGATCCTCTGCTCAGCCTCTGAGTGTAGCTGG

Figure 61j

GACTACAGGTGTGCCACCATGCCAGCTAATTTTAACTTTAAAAATAGAGACA  
 GGGCTTGCATGTTGCCAGGCTTCTCAGTGAATTTCCCATCTCAGCCTCCAAAGT  
 GCTGGAATTACCGGCACGAGTCACCACACCCGGCCTCCATCAGACTTCTACAGGATGC  
 GGATGCCCTGTTCTGCTTCATTGCCTGTCACAAATGCACAATGCTGGGCAGAAATG  
 CTGAGGAAACATGCCCTGATCCTGATCTTACAAGCAAAGAACATTCAAGTTATCACTAAG  
 TAGGTTTTGTAGGTAAGAAAATTCCCTTTATTTCTAGTTGCTGAATTGATCAG  
 GAATGGATGCTGGATTGTCAGATGCTTTCCAAGTCTACTGCCATGATTATATGGT  
 TTTCTTTCAGTTGTTAATATGGTATATTACACATTATTTGGAATGTTAGCC  
 ATTCCGGATGAAACCTCTGGTCTCATATAACATGTTGTCATATAACATAGATACTATA  
 TGTATAACATATAAAATATGTGTATATAAAATATGTGTATATATAAAATATGTATA  
 TTTATATATGTATATATAAAATATGTATATTTATATGTATATATAAAATATGTAT  
 ATTTATATATGTATATATAAAATATGTATATTTATATGTATATATAAAATATGTATA  
 TATATGTGTATATACATATGTATTTTGAGACAGAGTCTGCTCTGCGCCAGGCTG  
 GAGCGCAGTGGCATGATCTGGCTCACTGCAATCTCACCCCTGGTTCAAGCGATT  
 TCCTGCCTCAGCCTCCTGAGTAGCTAGGTCTACAGGCACATGCCACACCCAGCTAA  
 TTTTTTCTGGATGGAGTCTGCTGATTCTATTGCCACGCTGGAGTGCAGTGGCG  
 CGATCTCGGCTCACTGCAAGCCTCCGCTCTGTCATGTTAGATAGTTCTATTGCTCC  
 GTCTCAAGTTCACTAATTTCCTCTGCATTGCTAGTCTGCTGATAATTCTGTCCA  
 ATATATTTCATTCTAGGCATTGAATTTCATTCCCTAGAAGATAAAATTGTCCTTTA  
 TATATCTTCGTGTCTCCACTTAACCTGCTCATGTCCTACTTCTTGAACACATGGA  
 ACATATTATAACTGTTTAATGTCCTGTCGTAATTCCACCATGTTATTGGGGGG  
 GGTTGGTCCAATTGACTAAATTTCCTTTGGGTTACGTTTCACTTTTCATT  
 TGTAACCAGATGTCAGTGTCCATTTCACCTGCTGGGTGCTGGATAATTTCATTC  
 CTATAAAATTCTAAACTTGTCTGGATGTAATCCAATTATTGGAAACAGCTTGC  
 TTCTTTGAGGCTATCATACTTGTCACTGGGCCGGAGCAGCCTCAGTCAAAGGCT  
 GGACTTTCTACGCTCCTGAGACAACACCCCTCCATGGATCTACATGTAATTACGAGG  
 TTTTCTCTCTGGCTGTGGGACAGCTATTCTGGCACTGTCAGTTAAAGGATT  
 GTTCTGCTCCTCTCCAGCTGGTCTTTCCAGGCCCTGGTATTTCATCAT  
 GCACTGATCAATGTCAGCTGAAACTCAAGAAGGAATCTGTAGGTGCCAGCTGCT  
 CTCTGTCCCCTGCCCTCCCCAGCACTCTACTCTGTCAGCTTATCCCCCTGTCCTC  
 CCCACCCCTCCAAATGCTGTCAGTCAGGTCAGTGCAGTCCGCCCTGGCTCCCTC  
 TTGGTGCCTCTGGCCTAGACACTCTCGGAAGGCTGTGAGTTGGAAAACCAGGTC  
 ACCTCATTTGTTCCCTCTCAGGAATCCCTGCTTATGATAGCTGATGTTAATGTC  
 AAATTGTTGTTCCATATAGTTGTCGATTTCAGGTTAAACCTACAGTCATTAGGAATG  
 TGCCCACTAAATAGTAACACCTCCCTGATCTCACATGCCATCTGCACACAGACTCTC  
 CCCGAGAACAGGCAGTAGAAATGAAACAGTAATGAGGTGATGACGGAGAAGAAAAGC  
 TGTCCAAGGAAGACTTTCTATTGCAAGAACAAAAAGAGATCAACTATGAAATATG  
 CCACAGATGACTTTCAAGGATAACCTCTTGCTGCTTCATTGTCGTATTTCATGATT  
 GTATAGGCATTCTAAACCTATCATTTCAGGTTAAACCTACAGTCATTGAGTTATTTC  
 GCATTTCAGTATTAGATAATTAAAAATTCACTGTTATACATTGAAACATGCTCA  
 TAAAACCAAATTGAAATGCAACAAAAAAGTTGTAAGCTCCACCATGACACAGATGATT  
 TTCTGTTACTAGAAACATGAAAGATAAAACCACTCTATTGTTACCTACAAAAATA  
 TACTGAGAGCCCCAGGACAATACCTGGCATGTAATAGGCACATATTACTATTGAG  
 TGACTGGATTATAGAAGCTTTTTTTTGAGATGGAGTCTCGCTCTATTGCC  
 CAGGCTGGAGTGCAGTGGCGTGATCTGGCTCACTGCAACCTCTGCCCTGGGTTCAA  
 GTGATTCTCCTGCCCTAGCCTGAGTAGCTGGATTACAGGTGTACACCACATGCC

Figure 61k

CGGCTAATTTGGATTAGAGATGGGGTTCACCATCTTGGCCAGGCCTGGTCT  
 TGAACCTCCTGATCTCATGATCTGCCCGCCTGGCCTCCAAAAGTCCTGGGATTACAGGC  
 GTGAGCCACTGCGACCGGCCTAGAAAGTTTATAAAATATCTTGCAACATTACAAAG  
 TTTGCATATGTTAACAAATTGCGGGGTGTATCCTTCCAGACATTTCATGCAATACA  
 CAATCACATAATGTACCTAACATGTAACACATAAACCATAATAATTAAAAAAACTCT  
 AAGGCCGGGTGTGGCTCACGCCGTAAATCCAGCCTTGGGAGGCCGAGGAGGGT  
 GGATCACAAGATCAGGAGATCGAGACCAGCCTGACCAATATGGTAAACCCCTGTTCTA  
 CTAAAAATACAAAAATTAGCTGGGTGTATGGCACATGCCGTAGTCCTAGCTACTCTG  
 GAGACTGAGACAGGAGAACACTTGAAATCTGGGAGGCAGAGGTTGCAGTGAGCCAAGAT  
 TGCACCACTGCACTCCAGCCTGGGTGACAGAGCGAGACTCTGTCTAAAAAAAAAGAA  
 AGAAAAGAAAAAGAAAAAGAAAAACCAACTCTAAGGTCAATAAACATCTGTACTT  
 TGCTCCCCATTTAATATATTGTAGCCATCTAGCCCTGCATCTAGCCCTTGCAATAT  
 AAACCTTACACTAAATCTATTTGAATATTTAGTTCACTTATTTAACTGCAATTT  
 TGAGTTATTTGTGAACCAACTGCTCTAAACTCCAGTCAGTAAGCGCTAAACTCCG  
 AGAAGGAAACGCCAACCCCTGTGTAGACAGTACATCGTGAGCCATCCCTGTTGAG  
 AGACAGTCACCCGCTGAGCCACCCCTATGAAAGACAGCCACGTCGCTGAGCCATCC  
 CCTGTGTAGAGAAAGCCACATTGCTGAGCAGTACCTTTGCTGGTGGACTGTCCTG  
 CTTTGGTGTCTGTGCATGGTCCAATTCCCGTCACTTGTGGAGACTGTAATAAT  
 TTCTCTGGAAACACACTTTAAACAAAAATGGTAAGAGCACGGTATAACTAAAA  
 AGCTAAAAAAATTTAATAGAGGTTGTTATGGCTGACCTAAAGCAATTAAATATTCTA  
 TTCCCTCCTTCTTAACCTGCCTTTACTGTTCTAAATTATAGCATTATTAGTAC  
 TGCAATTCTCACAACAAAGCCCTTATTGCCCATCTGAAAAATTCAAAATTACA  
 TTTATGAAGGGAAAGCGAGCAACATAATTATTTCGGTTATTTAAGCATGCTATT  
 TTAGTTATTCACTAAGTGAATAGAAACACTAAACTGATAGAAAATTAAAA  
 ACATGAATATAACAAAAGTTTACTCTAATATTATGACTGAAGAGACTATTTACACA  
 AAATTTCATGAAGCCTATAAAACTCTGTGAAGATGTAACACTATCATTCTATAA  
 AAGTAATACCTTTACACCTAACGTGGATGACGTGTTCAAGTGCAAGTGACACCGTCTG  
 CTTGTGGCTCTGCAGGAAAGAAACACATAAAATAACTAACCTTACATTCTGAAATAT  
 TAAGGCTGGATAAGGTAAATTTATGATACAATCTTAAAGTCATATAAAAAAA  
 ATCACAGCAACAATCCACAAATGAAATAGAGAACAGAAAAACACTAGAGAGGACG  
 GGCGCGGTGGCTCACGTGTGAAATCCCAGCACTTGGGAGGCCGAGGTGGGTGGATCAC  
 CTGAGGTCAAGGAGTTCGAGACCAGCCTGGCAACATGATGAAACCCCTGCTCTACTAAA  
 AATACAAAATAGCCAGGCATAGTGGTGGTGCACGCCGTGAACTCCAGCTACTCAGGA  
 GGCTGAGGCATGAGAATCACTTGAACCTGGGAGGCAGAGGTTGCAGTAGCTGAGATGG  
 CACCACTGCACCTCCAGCCTGGGTGACAGAGTGAAGACTCTGTCTAAATTTGTAA  
 AAACCACTAGAGAATACCAAGAACCCAAAAAAAGCAAGGCAACCCATCCCACACC  
 CATTCTTCTTCTTTTTTTTTAGAGACTCTGCTCTGTTGCCTAGGCTGGA  
 GTGCAGTGGCACAGTCAGAGCTCACTGAAAGCCTCAAATTCTGGGCCATGTGATCCTC  
 CCACCTCAGCCTCTCAAGTGTGGATTACAGGTGTAAGCCACCAACTTGGCCCCAT  
 ATCCATTCTTGTAAATCACTAAATAAGAATCTATCTCCTCACCTGATAGAGG  
 GCCACTACGGAACCTACCAACCCACGCTGTACTAACTCGCTCAGGACTGACAGCCCTGCC  
 CCTAAGACCAGGGACAAAGCCAGTGCAGCACTGCCACCACTTCTATTCCACACTGGCA  
 CACAAGTCCAACCAAGGCCAGGAAGGCAAGGAAACAAATACACAGCATCCAAAAGA  
 GAAGAAGAAGTAAACTGTCTTGGTTTTTTTCAAGACGGAGGCTTGTCTGTGCG  
 CCCAGGCTGGAATGAGTAGCGTGATCTGGCTCACTGCAACCTCCGCTCTGGGTTCA  
 AGCAATTCTCCTGCCTCAGCCTCCCAAGTAGCTGGGATTACAGGTGACCACTACCACGC  
 CCGGCTGATTATTTGTATTTAGTAGAGATGGGGTTCCCCATGTGGGCTAGACTGGT  
 CTCAAACCTCCTGACCTCAGGTGATCCGCTGCCCTGGCTCCACAGTGCCTGGGTTAC

Figure 611

AGGTGTGAAACCACCCACACCCAAACCTAAAATGTCATTCTTGAATCAATGATTATATAT  
GTAGAAAATTCTACAGACTCTAGGAGAAGCTACTGGAGCTATTCAAGTTAGGAGACTTG  
CAGGATACAAGGTAAACATAACAAAAATCAATTGCTTTATAAATACTAGAAACAAGCA  
ATTAGAAAATTAAAGTTAAATTACTGTTATAACAGCCATTAAAAATTAAATAGGT  
ATAACTGACAAAAGATCTATAAGACCTATAACACTGAAAAGTATAAAATATTGCTAAAAG  
AAATGAAAACAGATGCAAATAAAATGGAGAGACATAACCCTTTCAAGGGCTGGAGGACTT  
ATTATTATTAAGATTCAATTCTCCAATTCTCCCTAAACCGACCCATAGGTTCAATGT  
AATCCCATTCAAAATCCCACAGGCTTCTGTAGAGACTGACATGACCTAAATCCATG  
TAAGAAGAAAGACCTGGAACAGCCAGACAACCTGAAAAGGAACAAAGTTGGAGGCTTG  
ATACTACCTGATTGAGACTTATCATAAAGGCACATATCATAACACTAGGTTGTGTT  
CCCCCAGCTCGTATGGTCAAACCTCATCCCCATGTGATGTTACTGGTATGAGGAGT  
TGAGGCCTTGGCAAGTGATTAGGTATGAGGGTGGGGCCTCATGAATGGAATTAGTGC  
CCTTACACAAGGGAGCACAGAGAGCTCTCCCATTCCCTCTGCTGCGTGAGGACACAGGG  
AAAAGACAGCCGCCTACGAACCAGGAAGCAGTCTCACCAAGGACACTGAACCTGCTGGTG  
CCTGACCTTGGCTTCTGACCTCCAGAGCATGAGAAATACATTCTGTTGTTATAA  
GCCACCCCACATCTATGGTGTATGCTAATGCAAGCCTGAGTGTACTAAGACAGACAATAAG  
ACCTGTAATGTTGGTGTCAAAGACAGACAAGTGTACAATGGAACACAACAGAGAGTCTT  
CAGAACAGATCAACAAATATTGGTCAACTGATTCTTTTTTTTACAAAGG  
TACAATAGTAATTCAATTGGAGAAAGGGCAGTTTTCATCAAATAATGCTTGGACAAC  
GGATGTTATTCCACCCCTCAATTCCATTCAACCCACAAACAATTGCAAAGCTTA  
ATGAGATAGATCATAATCTAAATGTACAGGATAAGCTGCCAAGTTCTAAACAGGAT  
AAAATCGTGTGAGATCCAATTAGTTACAGATTCTGAGATGCATCATTAAAGATCTGT  
GAAAGAAAACATTCAAAACTGGACTTCACCAAAATTAAATTCTGCATTCTCAAAG  
GCACTATAAAAACAATGAAAATACAAGCTGTAGTCTGAGGAAATATTGCACAGACACG  
TATCTGATAAAAGCACTGTACTGAAACTATACAAACATCTCTGCAAACCTCAATCATGAGA  
AAACAAATTTTAAAATGGGCCAAAGACTTGAGGAAGGACTTCAACAAAGTATTGTA  
CAAATGGAAAAAAAGCACATAAAAGATGTTCACTGGGGGTGTGGCCACACCT  
GTAATCCCAGCACTTGGGAGGCCAAGGTGGCAGATCACAGGTCAAGGAGATTGAGAC  
CATTCTGGCTAACACAGTGAAACCCCGTCTCACTAAAAATACAAAAAAA  
AATTAGCCGGGCGTGGTGGGGCACCTGTAGTCCAGCTACTCGGGAGACTGAGGCAG  
GAGAATGGTGTGAACCTGGAAGGCAGAGCTGCACTGAGGCCAGATCGTGCACACTGCAC  
TCCAGCCTGGGTAAACAGAACGAGACTCCGTCTCAAAAAAAGAAAAAGAAAAGATGTT  
CAGCATCATTAGTCATTAGAAAATACAAATTAAATCCACAAACGAGATATCCCTCACA  
CTACAAGAATCAGCTCTGTCCAGAGTCAAAGCAGGTCAAGGAGTCCAGGCCCTGGACGT  
CGGCTGCAGTCTCTCTAGCTGCCATGATGGAGGCTGTGCCTCTACCAGCGCTGCTG  
CTCCCTGTGGTCCAGCCAACCCCTCACAGTCATCCAAACACAGCTGCCCTTCCT  
CCCATTCCTGGTCTTCTCATGGCACTCACATGCTGGGGTCTCTCATCTGCACAGCAA  
ACAAAAGTACCCCCCTCCTGGCTCTCTGATCTCTTGGTCACCAATTCTCTCGCT  
CTCTCTCCATCCTGCCCTCCCTGCTTCATCGCAAAATGCCCTAAAAGGAAATCAACGA  
CATTTCTCCATTCCCCCGTAGTCATTCAATTCTCAATACATTCAATCTGGCTGT  
AGCCCAAATACTGCCGATTCTCAGACAGACATAAAAGCACTAATATTAAAAAATT  
TGATAAATTGACTATATTAAAATAGCACCTCTGTTAATAAAAAGACATATATATAT  
AAAATTATTTATTATTTATTGAGACAGAGTCGCTCTGTCAGGCTGGAGT  
GCAGTAGTATGATCTCAGCTCACCGCAACCTCCGCCTCTGGGTTCAAGCAATTCTCCT  
GCCTCAGCCTCCCAAGTAGCTGGACTGCGAGGCACTGTGCCATCATGCCCACTAAGTTT  
GTATTGTTAGTAGAGACAGTGTGTTCCCTGTTGGCCAGGCTGGTCTCGAATTCTCCTGAC  
CTCAAGAGATCCACCTGCCTGGCCTCCAAAGTGTAGGGATTACATCACACACCAGCC  
TCAAAAGATACTTTAAAAAGCTAAAAGATAAGGAAGAAATCTGGAGAAGATATGTAC

Figure 61m

CTAAGAATAGTTATCATAAGGAATACAGAAAGGACTCCCACACAAATGAAAATTGGAA  
 AAATTACTCAATAAAAAAGAGGGCAAAAGACGCAAGCAAGCATTTATGGAAGAGGAAC  
 ATTTTACGGCCCACGAACAAGAAGATTCTCAGCTTGTAAATAAGTCAGAGAAAAGTA  
 ATCAAGACCATCATGAGATGCATTACACACCTACCAGACTGGCACCAATTAGGAAGTCC  
 AACAAATCAGATTACAGAAAGGGCACCGATCAGCAGGCTGTATACACATGGATACTG  
 AAAGTCACTGATGCAACCCTTGAAAGCTGGAAAACCCAAACCCAGCAATCCCATC  
 CCTACATACACAGCAGCTTAGGAACAGCAGCAAACAATCGTAACAGCIAACAATGAAG  
 ATGTCCATCAACAGAAAACAGCGGGTATTACACAAACCGCAAACCAATGAACAGCAGT  
 TACAACAACACGGAGACATCTCAGGAACACAAATGTTAGTAAAGAATTAAACTGAAGAATA  
 AACCAAATACAGCAAGTTACTCCTTCTAAAGTTCAAAGAATTAAACTGAAGAATA  
 CATTTTGTGCATGACTAGTTAATGGTTTGTGGAGGAAGAAAAGCCAGCTGGTGC  
 CAGGTACAGCACCCCTATCCGACAAAGAAAACAATAAAAGTAAGGAGCTGGTAGCTG  
 ACGGTGACAGTGAGGCATGAACCAAAGATCCGGTCACATGAGATCTGGAAAGAATAC  
 ACATGCAATGTATGCACCTTATATCTCAAAAGATAGTTGATAATAAGCTAGAAACA  
 CGGGGTATGCAAAATGCTGTAGGAGCCACTTCCATCCACAAAGCCTATACACGTCAA  
 CCACAGGCATGGGGGGCTCCTACGTCACTTAGATGTCACAGACATACTCAAGA  
 GAACACTGTCCAATTAAAGATAAGAGACAAATTAACTGGGATGGTGCCTCATACCTA  
 TACTCCAAAACCTTGGGAGGCTGACCGAGGATCGCTTAGGAGTTATGA  
 CCAGCCTGGGACCCATCTTATTAAAAAAAGATGCCGGGCGTGGTAGCTCA  
 CGCCTGTAATCCAGCACTTGGGAGGCCAGGCAAGCGTATCACAGGTCAGGAGTTC  
 AAGACCAGACTGCCAATATGGTGAACACTGCCTCTACTAAAAATACAAAATTAGCC  
 AGGCGTGGTGGCAGGCACCTGTAGTCCCAGCTACTTGGGAGGCCAGGAGAATCG  
 CTTGAACCTGGGAGGCGAGGTGCAGTGAGCCGAGATTGCCACTGAAATCCAGCCT  
 GGGCAACAGAATGAGACCCAGTCTCAAAAAAAAAAAAAAGACATTGAAAG  
 AAGACTCACTAAAGCATTACCTATTATATGAAATTCCACATCCATAGGTTCAAAGTT  
 ATAGGCTTGTCAAATTCTGGATTAAATTAAAGAGTTACATCTTATGAAATCTAAA  
 AAAGGAACAAACAATATACCTGATTTCTGAAATAATGTGATATCTTATCTAGGACA  
 CATCATCAAAATTCTATTCTATAGCTCTGAGCTAAATTTGATATCTGAAAATTAGTT  
 GAAAAGGATTAAATCATTACGCCATTGATTACAAACAAGAGGAATGGATCAGTAC  
 AACTCAACTTACTGAACCTCTATTCACTTGGCTGTAGCCCTCTCTAAGGCTCTGAGA  
 ATAGAGAATGTGTGGGAGGTCAGTGACTCCATAGGACACAAACAAACCACAAGGG  
 TAGCCAAAGTGTACCTACTGTAAAGGAAGCCTCGATAAGAAGGTCTGGGTGCGGTGG  
 CTCACACCTGTAATCCAGCACTTGGGAGGCCAGGTGGCGGATCACCTGAGGTCA  
 GGAGTTGAGACCAGCCTGGCAACGGGGCGAACCCATCTCAGTAAAGCAAGATCTGATGATCAG  
 TTCTGCATATTCTTCTCTAGACAGTATGGTAGAAAAATAAGAAGGAAAGCCCTGATCT  
 GAAAAGGAGCTCAAGCTCTCCAGGTGACTCAGGCAACACCCCTGGTAGGGTCAAGTT  
 CCTGAGGGTCAGGGCTGACACCAAGCAGAGAGTCGGGAAGCTACGCCCTGGATGGCTTC  
 CAGCTCCGGGAGGAAGGAAGCAACAGTGGTACGGGCATGGGATTGTTCCCTGAG  
 GATGAGGAAGACAGACCAAGTCCTGACTATACACAGGAGACATGCGTTAGTCTACTTGA  
 GAACAGGTGCAGGTGGCATCCAAGAAAGCCTGAAAAGATGAAAATAATTGGAGCTA  
 AAAAGGATAACGGAAGGTCAATTCAAGATGCCAGGGTTGATCAATGGCATGGAGGCCCG  
 CCATATGGCTCAGGAACCAAGGGTGGAGGCAGGCAGGTGCCTCCTGAGATCTCTG  
 GCTCTGCTTCTTGGAGGTTGGTAGCAGCTCCCTTCTGGCACAGCTGGCTCA  
 GGAGGCTAAGATGGTCATTGGCCATCTGGGCTCCTCATGTCACCTGGTCACAGCA

Figure 61n

AAGGTGGGTAATGGAGAGCTGGCGAGGTATGCACTCGTGTCTCACATCTCAGTCCAC  
 AGGCATGGCTAATTCAAAATCTCTGAAATCTGCCAAGATGTTGTCTTCTGG  
 GAAATATCCCACCTCTGAAATCTGCCAAGCATGGACCTGCAAGGTGTAGCGCA  
 GAGTGAAGTGGCATCAAAGGTGCGAAGCTGCCTCTCTCCAGATCCTTATCAGGCTCT  
 TCTAGTTCTCTCAGCCCTTCTCCTCTGACAGTAAAGGCTCTGGCACTCTCCCTCAA  
 GTTTTCTACATTAAGTAATGTTGGCTTCATCTCTGATGCACAGATAGAGCACCTC  
 CCTCTCATGCAGATCCCAGTATCCTCAGGCTATGACCAGTACATGACCAAGTAAA  
 GTCCAGCCAAAGACTCACAGACCCCCATGCAAGAACCATCTGGAGCACCAGGATCTAC  
 TCAAAGCCAAAAAAACACCTTCAGCAGAACATCAGAGCTGCAACTCATAGGTGTATT  
 TTTCTTCAAGGCCTCAACTCTGCGAGCTCTCTGGAAATACATTAGAATGCCAAT  
 ACAACTCAACGCAAACCTCATGACTTACATATAACCTAAAGATAATATGTTTACAT  
 GGTTGAAAATATAGTATTAAGTCTTCTTATGCAATCAAATTTAAAGATTCACT  
 GTATCTTGACATTTCCAAAATAGCCAATGCAATGCTATGGGAGCATCTCCCCAAGAGCCGTG  
 GGGAGAACGTTACCTTCCAACCGGTCAAGAAGGGTGTGCTAACACAACCTATTAGA  
 GAGAGTGCCTCACCTCAGTCACGTAGCTGATGTTGATGGCATGCCATTGTACTC  
 TTGAGTTTAAATCAGTTTATCACCTAGTTAAAAAATATATTACCTGTTAAAGCT  
 AACACAAAATACAAATTCTGTGCTCTATAAAATCAAACACTGAGGGAGGTCAAT  
 AAAACGTTACTGGGGTCAGGCTGGGTGAGTGGCTCATGCCGTAAATCCCAGCATTG  
 AGAGGCCGAGGGCGGGATCACAAAGGTCAAGGGGATCGAGAACATCCTGGCTAACACGG  
 CGAAACCTCATCTCTACTAAAAATACAAAAAAATCAGCCGGGTGTTGGTGGCGGGC  
 GCCTGTAGTCCAGCTACTCGGGAGGCTAAGGCAGGAGAACGGCGTGAACCCGGGAGGC  
 AGAGGTTGCAATGAGCTGAGATTGCCACTGCACCTCAGGCTGGGCAACACAGCGAGA  
 CTCCACCTCAAAAACAAACAAACAAACAAAACATTACTGGGTCAACTGCTTA  
 CAACTAATGAAATACAACAAAGAAACATGCTGATGTACATGGTTGCTGATTTTAGT  
 GAAATTCTAACCCAAAAGAAAGAAAATGCAATAATGTGACTGTCATATTGCCAGTTAA  
 GAGTATCTCTCTCAAGTATGGTTCTCTGCTAGTCCACCCAGGGAAAGCATATGAGTAA  
 CAAACACACCTGCGTAGAGAGAAGGGCTCCCTCGGCAACCTGGACCTCCAGAACCC  
 AGCAGATCCCCATTCTCTTAAGATGATCCCGCTCATGTTATACTCTTCAAGTCCAT  
 TTCTGCATAAAATCTCCTCAAGCCACAGCAAGTCGAAACTCTCCTGTAATTGACA  
 TGTTCAAGACTGGAACACCCAAATGTTATAAAGTCAGCAACAGCTCAGCAGCACTC  
 TGGAAAGTACGCTCCGGAGCAGGAAGTCCAACAGCTCCAGTTCAGCAGATGGCCC  
 CCCAGGTGGGGCGATCCTCGCCGGAGCTGCAAGGTGCCTCAGTAAGTCCCGGCTTC  
 AGCACGAGGGCATGGGCTCCAGCACACTCCCTGGCCTTGGCATGAGCAGTGGGC  
 TCCAGCTGGCGTGTCCCTCCCTGCACTGCCACTCCTGTCACCCCTCCGTCTTTT  
 TCAGGGTTGTCACGTTAAATTCTGGGAAGGCAGAATTGGCTTCCACAGACRTCTGTGAA  
 AAAAGGACAAACTTCCAGGTCTGCCAGGTGGACTAACAGGACCAGATTACCCCTC  
 TACCTGAAAAAACTTAAAGAGACAGAGAAATAAGAAACGATGGTGTAAACAAATGAA  
 CATCACGTAGCAAAGGATTGTGATCCAAAGACTGGGAAACATCCATGGGGCCCCAT  
 GACTGATCCACCTGCTGCCATGAAACAGAGCTCCTAGGCCCCAGCACAGAGGACCCAGGGAT  
 GCTGCATGGTTCTAAGGAGAGGAGCTGATCTGTTGGGCTGAGCGCTGGGAAGAGCA  
 AGCAGCACAGAGTGGCTGGAGAGGGTCAGGGACCCACTCAGGACCATCAGCTCAGCA  
 CTAAGGAATGCAATGAGACACCACCTGCAAAACCCATTGAGGGGCCAGACCAGGGCCTC  
 AGCATGAGGTGGGGAAACTCACAGCAGCCCTGCCCGGAATGGAAAGTGGGAGGGCAG  
 AAAGTGCCTCTGAACACATGGTGGCTGAAATTCTCAAAATCTGAAAGAAACTCAGGCC  
 GCATATTCAAGAACTCCAAATGAACCCAAAGCACAGAACAGAAGAAAGAATCTCTAC  
 CACCACACATGTAARCAAATCTATAATATCAGTGTGATAAAAGAGAGAAATCTTAAAG  
 CAGCTAAGAAAAACACGTTATGTGCAAAAGAGCAAAAGATAAGAATTAAAGCAAAAGA  
 ACCCCATAAGAPAAACTAAAAATACTTAAAGGAGATGATAAAACAAACACAAATACA

Figure 61o

GCAAGACTTATGGGAGCAGCACAAAGCAGTGCTGAGGGAAATTGTGACTATGAGCACTGA  
 TTCCCGTGAGCACTGCAAGGAAATTAGACAAAGGAGAACAACTAACCCAAAGATAGCA  
 GAAGGAAGGAAATAAAGATTAGAGGAGAGATGAACAAAAGAGAGAACTGAAAAACAATA  
 CAGAAAACCAGGAAAACAAAAAGTTGGTCTCCAAAAGATCAACAAATTGACAGACT  
 TTTAGTAGATTAACAGAAGGGAAAGACAAATTACTAAATAAGATAGGAAAGTG  
 GGAACATTACTACAGAATCTACGGAAATAAAGGATTATAAGAGTATGAGCAATCGTA  
 TACCAATAACCCAGATGAAATGGACAAATTCTAGAAACACAAACCTACCAAGACTAAA  
 CCATGAAGAAAGAAAATCTGAATAGACCAATTACTACTAAGGAGGTTAAAGCAGTAATA  
 AATATTCTGAAAAGGAAAACCCCAGGACCTGATGGCTCCATAGCTAAATTCTACCAAAC  
 ATTTGAAGACTAACTAATACCAATCTTCTCAAACCTTTCCAAAAAATTCAAGAGGAGG  
 GAATACTCTGACTTATTCTTATGAGGCCAGCATTACCCGATCCCCAAGCCAGACAG  
 AGACACCTTCAGGAAAAGAAAACACAGACCATAATGAAACACTGATGAAAAAATCCTCAA  
 CACGATACTAGCACACAAAATTAGCAGCATATGAAAAGGATTAGCTGGGTGGGTGGC  
 TCATTCTGTAGTCCCAGTTACTTGGGAGACTGAGGTGGGAGGATTGCTTGAGCCCAGG  
 AGCTCGAGGCTGCAGTGAGCAGTGACTGAGCCATTGCACTCCAGCCTGGCAACACAGT  
 GAGACCTGTCTCAAAAACATATATAAAAATAAAAGGATTACATGCTATGATCAAGTGG  
 AATTATTCTCTGGAATGCAAGGATAGTTCAACATTGAAAATCAATTACTGTAGCAACA  
 CACATTAACAGAAGGAAAACATGATCATCTCAATACAGAAAAGCAATTGAA  
 TTTTTTTTTTTTTTTGAGACATGAGTTCCCTCTGTCACCAAGGCTGGAGCG  
 CAATGGTGCATCTCAGCTCACCGCAACCTCTGCTCTGGCTCAAGCGCTCCCAGG  
 TAGCTGGGATTACAGGTGCATGCCATCACACCCAGCTAGCATCTGACAAAATTAAACAC  
 CCTTCATGATAACGTTAACAAACTAGGAAGAGAAAATCAGGCTGGGTGGTGG  
 CTCACACCCATACTTGCCTGTAATTCCAACACTTGGGAGGCCAAGGCCGGGAGGATTGT  
 AAGACCTGTCTCTATGATATACAAAAGTTAGCCGGCATGGTGGTGCCTGCAGT  
 CACAGCTGTGAGCTGTGATTGCGCCACTGCACTCCAGCCTGGCGACAGGAGAGCCTGT  
 CTCAAAAATAATAATAATAATAATAAAAAGAGAAAAGGAAAAGAAGAAAAG  
 AAAGAAAAGAAAAGAAAGAAAGAAAACCATCACCTCAAAATGATGAAAGTCATATGAAA  
 AACCCACTGTTAACATCATACTCAATGGTAAAGATTGAAAGCTTTCCATAAGATCA  
 GGAACCTCCAAGGGAGGATGCCTGCTTCAACACTGCTATTGATGGTACTAGAAG  
 TTCTAGCCAGAGCAATTAGGCAAGAAAAGGAAATGAAAGGCATCTAAATTGAAAGGAA  
 GAAATAAAATTATCTGTTGAGATGGCATGCATAATTATGAAAGAAACTCTAAA  
 AGATTCCACAAAAAACTGTTAGAATAAAATAAAATTGCAAGTAGCAGGGTACAAAATC  
 AAAGGACAAAATTATCTTCAACACAGCAGAAAATAATAAAACTTACAAATTAAATTAAAC  
 CAAAGAAGTGAACACATACAGAGAAAATGACAAAACACTGCTGTAAAGAAAATTAAAG  
 AAGACATAAAATGTTAACACATTCCATGTTCATAGCCTGGAGGATTCAATATTGTT  
 AAAATGTCCATACTAACCAACGCATCTACAGATTCAATGCAATTCCATCAAATTCC  
 AATGACAGGCCGGTGCAGTGGCTCACACCTGTAATTCCAAGCAGCTTGGGAGGCTGAG  
 GCAGGGAGGAATACTGAGGCCAGGAGTTGAGACCAGCCTGGCAATGTAGTGAGACCT  
 CGTCTCTGGGAAAAAAATTCCAATGCTATTGAGAAATAGAAAATGCAATTGCTT  
 AAAATTGCTATAAAAGATCTGAAAAGCAAAATAAAATTCTGCCAAAGAACAAACAAAGCT  
 GGAGGACTCAAATTCTGATTTCTAAACACTACAAAGCTGCAGCATTCAAAACATCA  
 AGTCGGTGGCCTGTGGAAGGAACCTGAGGAGCAGCCAGCAGACCTGGGTCC  
 CCAGGGAGGAGCTGAGGAGCACCTCTCCATTCTAGCAGACCCAGGTCCAGCTTTCTG  
 CCACCTCGATGAAACCAATTGAGCATTGCTACAAACTCAGTGAACACTGGGGACAGAG  
 GACTGCGCTCGCAGCTCATGGCAACCTCCCTGCCAGGATCTGAGTAAACACATCT  
 GAACTGTTCTATCAGGGAGTGGATTGAAATTGCACCTCCATCCTAAGAACCCAGC  
 ACTGCCAGGCCGGTTTCCCTGGCATTGGGAACATAAGTTGGGTCCAGTGCCTA

Figure 61p

GATGATCAGGCAGGCATAACCTGGATAACGGTCAGACGAGAGCCACTGGGGCGTCTGCC  
 AGAATAAGTTCCCTGCGTGAGGAACCCCAGTCATGGGGCATCAGCTGTCCCTGGTAA  
 AACAAAGGACATTAAACAAGGAGGTGTATTGGAAAGGATCCCCTGAAGGGCGCA  
 TGGTGAACACCTAGGTCCCATTCCCTCATTCTCCTTAGGACAGGGCTGCCAGCTGCTC  
 TGGCACTGGAACCTCCAGTTAGCTGGGGACTCTCAGAACACCTCAACCCCTACAGAAA  
 AAAACCCCTCCTGGACAAAGGGCAATGTTCTCCCTCAAACCTGCAAATTATAGACTTT  
 TCTTCCTTCTTGAACCTTCTCCACCTACCCCACTCAGAACGTGCTCCTGTCTC  
 CCATGTGGGTGGGGACCTGGCTCTCCCTGGACCCTGCCCCCTGCTGGCTCTGTCA  
 GGATGATGGTAAAAGGCTAGAACACTTCTGCTCATAACAAAGGCCCTAGTCTAGCG  
 AGAGAGGCCAGGCTGATGGCAGAGGTATCCCTCAGTTCTGCTCCAGACCCCAAAGG  
 CCCTGTGCGTGACCCCCAGTGAGGCTGTGGGATGCCAGCCCCCTGGTGTACAGCAGGTCT  
 GGCAGCGTGAGTGCTATGGTGCCTCATCCCTCACGGCCAGGCACTGACCCCTGTTATCC  
 CAGCTACCTGTGAAGAAAACAAGCCAGATGAAGGTCTGAACCTGAGAAGGAACCTCCTG  
 GCTTTGTCAAGAAAACAAGAGCATTAGAAGATGCCAACACCCACAGGCCATGAGACACT  
 TCCTACCTCTGCAAGTAATGGCTGGAAAGTCAGGATGTCATTTTGTCCACACATT  
 TTCTAAGTCTATCTGGATTGGATATTGGGAAAGAAAATCTGGAAGTTGTCGTCTTGAG  
 TTCCTAAAAAAATTAAGTTACAAGTTAAAATAAGTCTTATCACCAGTATCACTAG  
 ACATTCTTACCTAACATCCTTCCATTAGGAAGACCAAAGTCCATCCATTTCCTG  
 AGAAGAACTGATATATGAATAGCTGGTCTAACGGCAGTGGTTGAAGCTTCTGTTTAGC  
 TCTGGGATCCTTCCTCAAACAGTCTCCACAAGTGTCTACTATTGTAAACAGGTAAG  
 TGTAGCTGCACAGGCTGTGGGAAACAGGGCTGGAACCCCCCAGAACCTCCTGGAACCAG  
 GAGTTGGAAACAGCTGTTTAAACATTCTATGAGCTAACCTCTTCTACTATATTGA  
 CATCAGGACTCCACCTGGGCCTATCCCTGCAAAGCACACATTAGGAAAAGGCTGCTCG  
 TCTGGGTCTGCCTTCGATTGTTGTTGTTCCAGCCTGTGGTTCTCTGGGG  
 AAATTCAAGTTGTTCAAGGATGAAGAACATCGCTGCTCTGGAGCCAAGCCAAAGCGGCA  
 ACAGAAACAATGGGAAAGGGACAGACAGGAGAGGAAGGCCAGGAGAGAACAGGGAAAC  
 GAAAAGTCAGAGTGAGGTCGATAAAACTCAACTCAGCAAAATAAGGATGTTGGTGGACC  
 TTTATCCCTCATCCCTCCCAGCTCTCCATTTCAGTGCAGTCTCACCCAAAGAGAGAAC  
 CCACATTGCTCTCGTATTCCATTCACTGTCACTCAATTGGGTTCCACTGGCTCAGC  
 CCTCAACAGGAGAAACGGGGTGAAGACATTCCCCATGGTTGTGCTGAGGGTTATGTCA  
 GCGCTCACATGCGAGGTGTATTGGAAAGCATTGATTACTAACACGAACAAAGGTAAAGG  
 GAAACCAGGATGATCACTACAGGCTTAGGTCAACAGCCTAACAGCTAACAGAACCATG  
 TGGCCTCAACAGACACGCTGGATTAAACAAATGTGGTTCTACCATGATGGTGGCTAG  
 AAACCTGGCTGGGAGTGTGCTGGCCTACAAAGCCCCCAGAACAGATGTGCTAACGTGAA  
 CACTCTGCTCTAGCTAACAGGCCAAAGTGGCCTGGCACTGGGGTCTAGCAGGAAGTGC  
 AGGACCTGTGACAGGCGCCACGGATGGACAGCTCTGGAAAGCAGGCCACCCGCAATGCC  
 CGCGTGGGCAGGTCCAGACACCTGGTGTGCTCCAGGTGTGCTCGAGCCAACCCGGTCAGG  
 CACTCTGGGTCACTAACCTGAGTGGCAGGAAACTGATGTCCTTGTGTTAGATACGCTCC  
 CACACAAATATGTTAAATTACGGGAAAGTAACTGACCAAGGGGTTAAATCCTGTGG  
 CTGTTGCTCTGTGTTGAAACTGTGCCCCAAAGAGTTAAAGAAACCGATGACT  
 AACAGAAATTCTGAGCCTGCAAGGATGGGTGATAAGAACAAACTCCAGCGCTGAGTCTC  
 CCCCTGCTTATGACATCAAGGACTGGCTGAGATCAGCTGGAACCAAGATGGACAACTG  
 GAGTTGTGCAAGAGCTTACTGACGTCACAGCCTGGATTCCCACCGTGTGTTCATGCCAAC  
 TCCCTCCGAACGGCACATGTGACCCATGAGGTAGCATGAAGGGTAGCTATGCACACC  
 CAAGGCCTTCCAGACCTCCCTTCCATTAACTCCAGATTCTA

Figure 61q

CCCACTAACGTTTCTGACAAAATTACTGCCTTAAAGCCAGCACAGAGAGACACATTT  
 GAGCTTGACTCCTGTCTCTGGGGTTGGTTCAATAACAAAGTTCTTTCTCAG  
 AAACCCACTGTGCTAGCAATGGCCCTAGTCAGGCAGTGAGGCCCTTTCTCAA  
 TAATAATATGCCAGGGATCATGACTGCTTATTGCTTACTGAGTGATTGCTTGCGC  
 AGAAAAACTGCACATTTCATGTCGACCTCATCAATCTCAAACCACAGAGGCAGG  
 GACTATCATTTCACCAATGAGAACAGGCTCAGAGTGGTTAAGAAACTGCCAAGGTC  
 ACACAGCTCTGGTGGCTGTGATTCAAAACAATGGCTAACCTTAAAGGTAAA  
 CAACCACATGATACTTCCCTGGTAACAGGTTTCCCTTAGTCTGAACTAAGTACA  
 AGTCCATAATCCCTCATCTGAACGTAACTGGGCAACACGTGATTGAAATTCAAGAA  
 TCTTCAGTATTAGAAAAGTACCCACCTCACCCCTAGGGAGGTCTGGGTAGTAGCAG  
 AGCTCAAACCCATCAGTTATTAGCCGATGGAGGAAAGTCACATCACACGGGACTAA  
 GTCATTACACTTAAAGCCTGCTATTCAAGGCTTTCTGTTTATAACTACAGAAGA  
 AACACAGTGGATGTGAAGTGCCTTCAGACTACCCCTCAGTTAAACTCTGGGTGGTC  
 CCTATGTTCCCAGCCACAAGTCCCAGATCACACACTGCTCTCTAACCTCCATTCTTA  
 AGTGGTACCAACATCTCAACAGGCTTCAGGTGACCCCCACAATCTGTTGCCCCCAGTG  
 CGAATGACACGGGGATGCCGTGCACTACACACCATGGCCTCGTCAGGACGGGAGGGTG  
 GCAGGAGCTGGGTGAGGCCAGCCTGCTGAGAGCCACCTTGAACCTGCCAGAGCAGAG  
 TGGGCTGGGGAGTGAAGGCCGTTCCCTGGCTTCACGCTGCTGCTGGCAGCTG  
 CAGAGACAGAACCTGACCTTCAGAGCTCCGTGAAACCCAGCTTCATCCCCCTTATACTCTCCCCAGCCAGGTGGT  
 AGCCACCGCTTGCCAGTGCACGTCCGCTTCTCACAGATAAAACTGCCAGACCAAG  
 AGCCACACTCATTCAGTTAGTACCTTTCTGCGGTACAACAACTGTAGTTTT  
 GCGGATGTTAACGCTTGTGAACTTTAAGCTTTCCAAGAAAATGGTTCGCGCGCAGC  
 AATTAGTGAECTCTCCCCACTGATAACATTTACTCAAGGTATGCCAATTAGGAAT  
 CGGAAAAACAGAGCAAAGGAGCTCCTGCAGCGCCAGGATTCTGAAAAAAACAAA  
 ATGAAATTAGTTAGTCATAAAATAAGATAGGAGTCACACAAATTCTTCTTGAC  
 TACAAGAAAAGTGAAGACTTAAGACTCATTTAGTCTTCAATAATTCTTTTACAGA  
 GAAAAAAAGAGATCTCTAAATAAGCTATGTAATTAAATATTCTCAAGATAAAATTAA  
 GCACCTACAGGCCCGGTGCGGTGGCTCAGGCCCTGTAATCCAGCACTTGGAGACTGA  
 GGCAGGGCAGATCGCTTGAGGCCAGGGAGTTGAGACCAGCCTGGCAATATACGGATGAAC  
 CTGCTCTGCAAAATAACACAAATTAGCCGGACATGGAGGGCTGTGCCTGTGGTCCA  
 GCTACTCGGGAGGCTGAGGTGGGAGCCCTAGGGAGGTGGAGGCTGCAGTGAAGCTGTGATC  
 ATGCCTCTGCACTCCAGCTGGCAAAGAGTGAAGACCCCTGCTCTAAAAAAA  
 AAAAGTAAGCATCTACATAGTCTTTTGTAACTCTAACACATATAAGAGTAG  
 GAAAAAAATTGATATTCCAAATTAGTCAGAATTTTATGACATGACCAAAATAGG  
 TACTATATCTATGTGCTTCTGCCAGTCCTCGCTGTGGCTCTAACCTGGGCTACATC  
 ATCCACACTACACTTGTGCCCTCTATGGCTTTTTTTTGAGACGGAGCTC  
 GCTCTGTCACCCAGCCTGGAGTGCCTGGCTGATCTCGGCTCACTGCAAGCTCCGCC  
 CCCAGGTTCAAGCCATTCTCTGCCAGCCTGAGTAGCTGGGACTACAGGTGCC  
 GCCACCAAGCCAGCTAATTCTTATTAGTAGAGACAGGGTTCACTGTGTAG  
 CACCTATGGCTTTTGAAACCTGTTCTATGTGTCATAATGTCAAA  
 AAAAGCATTGAGCTGGCTGCACCTCACACAGCTGACTGTGCACTTGCCACCCACAGCT  
 TGATGTTGATGAGCTGTGATTAAATCAGATTAAAGTTCAAAATTAGAATTAGA  
 CACCCAGCTGGAAGGCTATACGCACGTGCGGGAGCTAGCTGATGTAACCAACCAACCCAGGGAGA  
 AGGGAGCTGGAGGACAGGGCTGTTGGCTGAGCTGATGTAACCAACCAACCCAGGGAGA  
 GCGAAGGGCTCAAGGTTGGCGTCTGCCATCCCAGCTAGGAAGGGCCCTTCCCTGCC  
 CCCTCAGCACACTGTGCTGTCCGTGCCCTGGCAAATGCCACGGTGAAGGGATGGAGAT  
 GACCGAGGCCAGGGCTGGCTATGCGGAACAGGGCAAGGCAAGTCAGTGAAGAGGAGC

Figure 61r

CGTGATGTCTCAGAACAGCAGAAGCACAGGGAGCTCAGGCCTCAGAGAGCCTCAGAGAC  
 ACCCTGTTTCTTGTGAGGGTGAAGAGGCCATCTGGTGAGGACCCATGAGTCGTGCG  
 AAGTTACAGGATCCATTCCCCAGGTGGTCACACTTGGTACCTCCCAGCTCTAGACCAAT  
 GCTTTTCTTACGGATTCTGTACATCAAACGTCAGGTGTACCTTTGTTTTGA  
 GACAGAGTCTTGTCCCGTCAAGGCTGGAGTCAGTCGTGCGATCTTGCTCACTGCAC  
 CCTCCGTACCTGGATTAAAGCATTCTACTGCCCTAGCCTCCTGAGTAGCTAGGACTA  
 CAGGGGCCAAGTAATTGGTATTAGTAGAGGGCGGGTTCGCATGGTGGCCAG  
 GCTGGTTTCGAACTCCTGGTCTCAGGTGATCCACCCGCCACAAAGGAGTACCTTTATA  
 ACACCCAACCTAGAAGTATCAGAGAACTTAAACACGCGGCCTCCCCAGACCTCCAGG  
 CCCTTACTTCCGTACAGATGACCACAATGAAGGTTTCCCCCTGGAGGGACAAGCC  
 CCCAGGCTCAGGCTCTGTCATGCTTCTGATAGAATGGTGTCTTTCTCCATT  
 TCTCCTTACAGGTACAACTCACCTGGAAATAAAATTAAACAAAAGTTGACCAAAA  
 GGTAATTATCTCTAACAGTGTGGCATGCTTAGTGGAAATGAATACTCTCACAC  
 ACAAAAGACAGATGACACAAAAACACGGGGCAAGCCTCAGGTGGTGGCTGGAAAAACA  
 TAAAGAGAGAGAGCAGCTGGAAAGTAGCAGAGAGGGTGTGACTACCAAGTGCTGGGATAGA  
 AGGCCTGCCCCGGCGGCCAGCAATTTCCTGCTTCAGGTACTCAGGAGCCGGCC  
 GCCATCTGAAGCACCTCTGGTATTGTCAAGCTGCTTTGTCCTCTCCCTAACGTC  
 GTCAAGAGAAAGGGCTGAAAGCCGAAGAGCTCAGACCACAAAGCACTGTAGCTGCCG  
 GGTGCTCTGGCCCTGCTGCCCGCCCTGTCCAGAACTCACAAACCCACGGCCCCAG  
 CCCACCCGACCTCACGCAAGTGCAGCCGAAGCTCAGGCAACTACCTGGAGAGATTCTCTGT  
 TGTTACCAAACGTCTCCGACATCTGAGAGGTTTGTGTTTGTTGCTGCTATTAAAT  
 GAATTAAATATTTCATCTGATGAATTCTCCTCTCAGGAACAGAAACAAAGATAACCAC  
 GGGCACATCTGGTCTTATCCAGCATTTGGAATCTGAATTGGTAGATTATCCAGC  
 CAGCCAGTTACAGCTGACTAAGTTTGAGGAATGTCTCCTTATCCGGAAATAATAC  
 AATTAACTATGAACACAGCCAGGATTCTAAACCAAAATATTCAAGTATCATAAAACA  
 CAAAACCTAATCTAGGAAGTGGTGAATACACTTATGAATAAGTCAAAAGGT  
 CATTGGTAAACACGGTGAACACGGCTCTACTAAAATACAAAATATTAGCCGGCGT  
 TAGTCCCAGCACTTGGGAGGCTGAGGGCAATCACAAAGTCAGGAGCTCCAGACCA  
 TCCTGGCTAACACGGTGAACACGGCTCTACTAAAATACAAAATATTAGCCGGCGT  
 GGTGGCGGGCGCCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATGGTGTGAA  
 CCCGGGAGCCGGAGCTGCAAGTGCAGTGAGATCCGCGCCACTGCACCTCCAGCCGGCGA  
 CGGAGCAACACGCTGCTCAAAAAAAAAAAAAAAAAGAAAAGATCTTCATAAA  
 AGAAAAAAATAATGACCAAGTAAAGTGGTTTACAGAAATTATTGAGTCATAGTGT  
 AAAAGCCATTAAATGTAGCTTATAGAAAATGGTCAGTGGCAAAACTCACTCTATCCAGA  
 TCACCATGGTTTACTTCTCCTTCCCTTGGGTCAAAATGCGTCACCTGTGTAAC  
 TCAATATCACCTTGTCTCAGCAAATCGTCCATAGAAATGAGTGGCTCATGAAC  
 AGGGCGCGCTCTGAAAGAGCCCCAGAAAGACATCCCTCTGCAGCAGCACCA  
 CCTTCCTCGCCTGCCCTCGCTCAGGATAGACTGCTGGTGGGGCACTCAGAGGACC  
 ACCTCACACAGGCAAGGGCTCCACAGACTTAGGTTCTAAGGAGGATGGCAAAACCTA  
 AGGAAGAGAACGATGCCATTCAAAAGTCTAGAGAAAAGGAGCAGCCAGGGCACAGC  
 CACAGGCAGGAGTCTGAGAACGGTGTCTGAACTGCTCCCTCAGGCCACTCCC  
 CTGCTCAGAGTGCAGGGTAGGGTGGCATTCTCAGTCCTCTCTCCAGGCCACTCCC  
 AAGGTGGTGGTGGGGAGCATGGCCTTGCCTATTAGGGCTCCACTAAACTGCTTTG  
 GAAAGACTTTGTTGCTTGAAGTGTGAAACAAATGAAATGAGAAGTTTCTCTTT  
 AGAAAATGAGAAGATGAGATTAACTCTTCCCTAAAGGACCCACTTACTTCCCTT  
 CTTCTACTGATGCTACAGGCTGATTCTCCTCCCTGCCACTCCAGTCCAGGCCACTT  
 AGGTAAACCTGCCATGCCACTTCCAGTCCAGGCCACTTAAAGTGGGTCTC  
 TAGAATGGCTGCCACACTTCTGGCCCTGCTGCAACTCAGTGGAGGTCTCCAGCTACA

Figure 61s

GAGCAGCCCCCTCCTGGCGGGTGCCTGTTGGCTCTTCCTCTGTGTGCCCTGGTGTG  
 ACAAGGGAGGTACAGGGCAGAGAGTCCACAGCGTTGCTGATGGACGGGGTGGGATT  
 TGCAGAAAGGAGTCGTCAAGATGCGACTGCCCGTGCCTGGCTCAGCCCCCACAGGAGAA  
 GCTGCCAGCTCTGCCACGGGAAGGGTGTGGGCTGAGTGGAGAGCAGGAGCTCGCTT  
 GGCACATGATCTGTTCTAGAGTGCAGAGGGCTGCCAACCCGGGCCACGAGCTGAG  
 GAACAGGCACCCCAGCTCCCTGGCTCACCCACCCAGCAGCTTACTCTGTGGTCAG  
 GAGGCCTCAGTGGGAAATGCTGTGGGGCAGAAACAGGTCTTTCAAGCATTACTAG  
 CCTAAAGAGAAGGAGAGTGCCTGCTGCTCTCCCTAGCGGCCCTAGTGA  
 GTTCCCTGAAGACCCCCAGGCCACGCTTCAGGCCCTGGTCTGGGCTGATGCAAGAA  
 TGGGACGCCACAGCTCTGCCTGGGATGAGGTCAAGAGAACAGACAGGAAGCCTGAGGA  
 GTCCGACTCAGACATAGGGAGGAGGTGCAGGTCTTATTCTGGCACCCAGGCTCAG  
 CGGACTGGGCTGAAAGCAGAGCTCTGTGCCTCCAGGCTTCCGTGGTCAGATGCAGCG  
 GGAGCAGTGCACGTACATCCACGCCAACAGGATGGGCCCTAGGCACCCCTCCAAAGG  
 AAAGCGTGGTCCAGTGGGAGGGGAACTGGCTCCGAGCACCCAAACAAGCATCTGCC  
 AGTGGGCCGAAGGGCAAGGCTCTAGGAGGCTGAGCCCACCAGGCCCTGTCCCATAACA  
 CCTCCCACAGCCCCAAGTCCACCCCTCCGGCTGCTACCTTACATGGGGTGCACTGCTCCG  
 CACACCCCTGTGGCTCAGTTACACAGGGCTGCTGTGTCACCCAGAGGCCAGGCCAG  
 GCACCAAGATATGGGGCTGAAAGCAGACGCTTCCCCAACAGAACCTGCATTCTATCG  
 GGATCAAAAATAAGCAGACTGATGGAGGAGATGTCAGAACAGACTCACTGGTGGTGGT  
 AGGAGTGTGAAAGAAAATAAGACTCGGGGCCGGCGTGGTGGTCACGCCCTGTAATC  
 CCAGCAGTTGGGAGGCTGAGGTGGCGGATCATGAGGTCAAGGAGATTGAGACCATCCT  
 GGCTAACACGGTGAACACCCGTCTCTATTAAAATACAAAAAAATTAGCCAGGCATGGTG  
 GCAGGTGCCTATAGTCCCAGCTACTCAGGAGGCTGAGGTGGTGAATGGCGTAACCCA  
 GGAGGTGGAACCTGCAGTGAGCAGAGATCGGCCACTGCACTCCAACCTGGTGACGGA  
 GCGAGACTCCATCTAACGTCTCAACGGTCAACGGGAAAGGAAACTCAGCCAGAACGCTGTCATGAA  
 GAGTCGGGACCCCACTCACCATGCCAACAGGAAAAACTCAGCCAGAACGCTGTCATGAA  
 AGAAGCTGCCCTTCCTTGTCCCCAACGAGAGAGCTAACAGAACAGGTTAACATCTCC  
 ATGTTACCTTCTCTTACATCAAAGTGCATGTTACACAACTCTCCCTCCCTGTT  
 CTTTCTTCTCTTGCAATGTTACGTCTGTTACCTGACCGCACCCTCTTCTCCCT  
 CAGCCCACCTTCTCTTTAAATATTGAAAGGCCAACCATCTTGGAAAAAGGCAT  
 GAACCACAGATGGTCTGTGGATTGTGGCTTTCCAGGCATGTCCTCACACCTTTGGTTACAGGAG  
 GGCAAAAGTGAACCTCTAACCTGATTGAGACCTGTCACATACCTTTGGTTACAGGAG  
 GAAAGGCAGGCAGGGAGGGGCTGGTCAGAGCTGGGCTGCCAACAGTAGGGAGCTC  
 AGGGAAAGCCTCGTCATGGCTAGCACACAAAGAACACAGAACAGAACAGGAAATCTAATAA  
 TTTTTTTTTAATTGGAGATGGAGTCTGGCTCTGTTACCCAGGCTGGAGTGCAGTGGC  
 GTGATCTCTGCTCACTGCAACTTCTGCTTCCGGTCAAGCAATTCTCCTGCCCTCAGC  
 CTCCAGAGTAGCTGGATTAGGGTGTGCGCTGCCACGCCCTGGCTAACCTTTGTATT  
 TAGTAGAGATGGGGTTTACCGTGTGCCCAGGCTGTTCTGCAACTCTGAGCTCAGGC  
 AATCCGCCGCTGGCTCCAAAGTCTAGGATTACAGGCAGGCCACTGTGGCCA  
 GCCAGAAATCCAATAATTAAAGAACCAACTACATCCAATGCAATTCTTAAATGCCAAA  
 ATGTGAAACAACAAAAGAAAAATCCACCCAAACAGAACATCACCAATGTAAAGTGA  
 GGATGAAGAGCGACCCCTAACCTCACCTCAGTCACCATAGAGATGGCTGAAGCTTC  
 CAAAAGACAGTCTTTTTTTGGAGATGGAGTGTCACTCTGTTGTGCAGGCTGG  
 GTGCAGTGGCGCATCTGGCTCACTGCAAGCTCCGCTTCTGGTCAAGGCCATTCTC  
 CTGCCCTAGCCTCCCGAGTAGCTGGACTACAGGCAGGCCACCACGCCCTGGCTATT  
 TTTTGTGTTTTAGTAGAGATGGGGTTTACCATGTTAGCCAGGATGGTTCAATTCTCC  
 CGACCTTGTGATCCACCCACCTCGGCCCTCCAAAGTGCCTGGTATTACGGCGTGAGCCA  
 CGCGCCCGGCAAGACAGTCTTCTTTTGAGAACAGAGTCTCCTGTCACCCAGG

Figure 61t

CTGGAGTGCAGTGGTCAATCTGCCTCACTGCAACCTCTGCCCTTGGGTTCAAGTGA  
 TTCTCTGCCCTCAGCCTCCAAAGTAGCTGGGATTACAGGTGCCACCACAACCGGG  
 TAATTTTGATTTTAGAGAGACAGGGTTCTTCATATTGCCAGGCTGGTCTCGAA  
 CTCCCTGACCTCATGATCTACCCGCTCAGCATCCCAAAGCGTGGGATTACAGGCGTGA  
 GCCACCATGACCAGCCTCTTCTCTTTTAAGACAGAGCCTTGCT  
 GTGTTGCCAGGCTAGAGTGCCTAGCACGATCACAGCTCGCTGCAGCCTCAAGCTCCT  
 AGGCTCAAGCAATCTCCTGCTAACCTCGTGTAGCTGGGACCGGAGGTGCACACC  
 ACCATGCTCGGCTAATTTTTTTTTTTGAGAAGGAGTCTCGCTCTGTCG  
 CCCAGGCTGGAGTGCAGTGGCGCAGTCGGCTCACTGCAAGCTCCACCTCCGGGTTTC  
 ACGCCATTCTCTGCTCAGCCTCCAAAGCAGCCGGACTACAGGTGCCGTCACCACG  
 CCCGGCTAATTTTGATTTTTAGTAGACACGGGGTTCACCGTGTAGCCAGGAT  
 GGTCTCGATCCCCTGACCTCATGATTACCCGCTCGGCTCCAGGTGCTGAGATTA  
 CAGGCGTGAGCCACCGTGCCCCGCTCGCTGGCTAATTTTAATGTTGTAGAGAT  
 GGGGTCTCACTATGTTGCCAGGCTGGTCTCAAATTCTGGGCTCAGGCAATTCTCCTG  
 CCACGGCCTCCTGAAGTGTAGGGATGCTCTCCTTACCCAAACTCAGGGCTTGA  
 AATGTCATACTATTGGCTTATTAAAGTAACCTCTCAAAATATACTTATATGGGGCTTT  
 CACATCCCAAAGAAGAAAAGCTTTCTTTGAGACGGAGTTTACTTGTGCCCA  
 GGCCTGAGTGCAGTGGCGAATCTCAGCTCACTGCAACCTCTGCCCTCAGGTTCAAGC  
 AATTTCCCTGCCTCAGCCTCCCGAGTAGCTGGGATTACAGGGAGCACCCACGCCCA  
 GCTAATTTGTACTTTAGTAGAGACAGAGTTCACCGCTGGTCAGGCTGGTCTTGA  
 ACTCCCAACCTCAGGTGATCCGTCTGCCCTCAGCCTCCCAAAGTGCTAGGATTACAGGCG  
 TTAGGCCACCGCACCTGGCCAGAAAAGCATTCTTACCGCCTTCACTAGGGTCATAAC  
 AAAGTGCCCTCCAGACATAGCATGACTGGCTGCTCCACCACACTGCATTGACCACG  
 TCACCTCTCCGGGGTGTGTACCCATCTGGCAGTTCAAGGAGTCCAAGGTTAAAGAAGAT  
 GCTTCTCTCTAACACCCCCGTTCTCCACAGAGGCTAGAGATGCAGACACCTGGGAGCAGA  
 GAGCTGAGCGTCACAGGAAGCAGATGCTGCATGACGACAGGGCGCAGCTAAACACACG  
 CCCAAGTCAGCCCAAAGCAACAAAGCTGCACCAGGAAGGCTCAAGTCCGCATCCCGTAG  
 CACTGGTCCAGTGTATTCTCAAACACACCTTCTCCTAGAACATTAGCACTGTTGCA  
 TAAGCTACAGACCTTAGAATTCAAGGTATGCAAGCACTAGGGTTATTGTTCCAAACGA  
 AACACAGCATTGTCATAAGGAAAACACACTCCTCTTGGCATGACAAAGCTTTATTTT  
 TCCAGGCTTCCAACACATGCAGGAGAAGCCTGGGCGTGCAAGTTACCCCTGATGGCAG  
 GTCTGCCAGAAGCACAGAGAGGAGCCACTAGTCGGCACGCTACCTGTCCACGCGCTTG  
 TATCTCAGTGGCTTCACTGAGGTGGCTCGCTCCACGTGCCAGGCCGGATCCGGTA  
 CTCAGCCTCCACCCAGTCTCCCTGCAGGGCTCGAACGCT

Figure 62

SEQ ID NO.: 62 hSPG18 cDNA sequence

ccccataccgcgaactttgttagctggccttcggaaatatgATGGCAAATCACCTTGTA  
 AACGCTGATAATAGAAATTGCAAGAGGCCAAGAGAAATTGGAGTCTCCAGTGCCAGATAG  
 TCCACAGCTGCTCTCTGGAAAAATCAGATTGATCTTCTCTGAAATTCCGGACTAT  
 TTTATAAAGATGAAGCCTTGGAGAAAGATTAAATGATGTGAGCAAGGAAATTAAATCTA  
 ATGTTGTCTACCTATGCAAAGCTTTAAGTGAGAGAGCAGCAGTAGATGCATCTTACAT  
 TGATGAGATAGATGAACTCTCAAAGCCAATGCTATTGAAAACATTCTAATACAAA  
 AAAGAGAGTTCTGCCACAGAGGTTACAGTGATTGCAAACACATTACACAGATAAAat  
 atataacttggaaataagctgagaatttaacctattattgttataatggaaagaatgacatt  
 tatgcttggaaagctctcgagttgtt

SEQ ID NO.: 63 hSPG18 encoded protein sequence Figure 63a

Figure 63b

MANHLVKPDNRNCKRPRELES?VPDSPQLSSLGKSDSSFSEISGLFYKDEALEKDILNDV  
SKEINLMLSTYAKLLSERAAVDASYIDEIDELFKEANAIENFLIQKREFLRQRFTVIAN  
TLHR

**SEQ ID NO.: 64 bSPG25 cDNA sequence** Figure 64a

CTTCAAGATTATCAATAATCGGAGATACGTATATTTATTTGTAAAGAAAACATGGCTG  
CCCTATTCTACGTGGTTTGTCAAATAGGAACTGCAAGACTGGGATATCTAAGTCA  
AAAGAACATTCAATTGAAGCAGTGGAAAGAAAAGAAGAAGATAGACTGGTGTATT  
CAAAGTGGAAATATAGCACTTTCCGCTAAGTGATAATATTCAAATGTAGTCCTTA  
AATCCTATAGAGGAAACAAAATCACCTGCATTTAAGTACAAAATAATGGCTTG  
TTTATTGAAGGATTATCCTCCACAGATGCTGAAACAATTGAAGATATTCTGGACAGAGT  
TCATCAAAACGAGGTTCAAGGCCACCTGTGAGACCTGGTAAGGGTGGAGTGTCTTCTA  
GCACAACACAGAAGGAAATCAACAAAACCTCATTCCACAAAGTGTGAGAAATCAAGT  
AGCAAATCTTGTGAGATAGCAAAAGGAAGTGGGACAGGTGTCTCAGAGGATGCCTT  
GCTTACATCAAAATTGACACTTACTTGCAGGAGAGTTATCAGAAAATCAGCACAAGAAGA  
GGAAAAGAATGCTCTCATCTAGCTCAGAGATGAATGAGGAATTCTTGAAAGAAAATAAT  
TCTGTAGAATACAAGAAATCCAAGGCAGATTGTTGAGGTGTGAGCTATAATCGAGA  
GAAACAAATTGAAGTTAAAGAGTTAGAAGAGATAAGAAATTGGAATGTGAATCTTCAT  
GCATCATGAACGCCACTGGAAATCCTTACCTAGATGACATTGGTCTCTCCAAGCTCTC  
ACTGAGAAAATGGTTGGTATTCTGTTACAACAAGGGTATAGTGACGGTTACACAAA  
GTGGGATAAAATTAAAATTTTGAATTATTTCCAGAGAAAATATGCCACGGCCTCC  
CCAATTGGAAACACCTGTTATATGAATGCAGTGTACAGTCTACTTTCAATCCC  
TCGTTGCTGATGATTACTTAATCAGAGTTCCATGGGTAAAATTCCCTTAATGC  
TCTTACCATGTGCTGGCACGGCTACTTTTAAAGATACTTATAATAGAAATCA  
AGGAGATGTTACTCTTGAATCTTAAAGGCCATTCAAGCTGAGGATATTCCAT  
GGCAATGCACAGAACGATGCTCATGAGTTTAGCTCACTGTTAGATCAACTGAAAGA  
TAACATGGAAAATCTAACACAAATTGGAAGCCTAAAGTGAATTGGGAAAGATAATT  
TTCCTAAACAGGTTGGTGTGATGATCCTGACACCAGTGGGTTCTGCCCTGTCTT  
ACTAATTGAGTTAGAGTTGTTGCACTCCATTGCTTAAAGCTTGTGGTCAGGTTAT  
TCTCAAGACAGAACTGAATAATTACCTCTCCATCACCTCCCCAAAGAATAAAAGCAC  
ATCCTCATCTATTCACTGTTGATCTTTGGAGCAGAAGAGCTTGAGTAT  
AAATGTGAAAATGTGAGCACAAGACTCCGTGGAGTGCACTCATCAGTAGGCTACC  
TAGAATCCTTATTGTTCACCTCAAACGCTATAAGCTTGAATTGAGTTGTGCAATTAAAGA  
AGAATGACCAGGAAGTCATCATTCCAAATTAAAGGTGTCTCTCATTGCAATTGAA  
GGCACCAAGACCACCTCTCCCTGAGTGAGGATGGGAGAAATTACAGATTCCAATTATT  
AAAAGTTATTGCAAAGATGACTCTGGAAACATCAGTGTATCATGCCCTGCAACAAAGG  
AATCCAAAGATACTGGCTCCACACATTGGATCAGATAAGGAGTCTGAACAAAAAAA  
GGCCAGACAGTCTTAAAGGGCAAGCAGAAGACAGCAGCAAAAGTACCTGGAAAAG  
TTCTAACCAATTGAGCTAGAATTCTGTATACTCAGGAGATCGAGCATTCAATTGAAAAG  
AACCGTTAGCTCACTTAATGACGTATCTGGAAAGATACTCCACTTGTCACTTCCACAAA  
GCTGGAGGTAAACCTGCCAGCAGCCCAGGCACACCTCTCCTAAAGTTGACTTTCAAC  
AGTGCCGAAATTCCAAAACGAAAGAAAATATGTGAAATTACAGTAAGTTGTAGCTTTG  
ATAGGATTATCAATTCTACTAAAGATTGTTGAGATAAAATTATCAGAATTCCAGAA  
AGATTCCAAAAGTGTCTGAACAGACTCAGCAGTGTGACGGTATGAGAATCTGTGAACA  
AGCCCCCTCAGCAGGCACTGCCCTCAAGCTTCCAAAGCCAGGCACCCAGGGCACACAA  
AGAACCTCCTAAGACCTACAAAATTAAATCTACAGAAGTCTAACAGGAATTCCCTACTT  
GCACTGGGTTCCAAATAAGAATCCAAGAAACAAAGACATTAGATAAGATAAAATCTAA  
AGCCAGGAAACAAAGAAATGATGATAAGGGAGATCATACCTACCGGCTATTAGTG

Figure 64b

TTGTCAGCCATCTGGGAAACTCTAAAGTCAGGCCATTATCTGTGATGCCTATGAC  
 TTTGAGAACAGATCTGGTCACTTACGATGATATGCGGGTGTAGGTATCCAGGAGGC  
 CCAGATGCAGGAGGATAGCGTTGCACTGGTACATCTCTTACATGCATAATGAGA  
 TCTTGAAAGAGATGTTGAAAGAGAAGAGAATGCCAGCTTAATAGCAAGGAGGTAGAG  
 GAGACCCTCAGAAGGAATAA

Figure 65

**SEQ ID NO.: 65 hSPG25 encoded protein sequence**  
 MAALFLRGFVQIGNCKTGISKSKEAFIEAVERKKKDRLVLYFKSGKYSTFRLSDNITQNV  
 VLKSYRGNQNHLHLTLQNNNGLFIEGLSSTDQLKIFLDRVHQNEQPVPVRPGKGGSV  
 FSSTTQKEINKTSFHVKDEKSSSKSFIAKGSGTGVLRQMPLLTSKLTLTCGELSENQH  
 KKRKRMLSSSSSEMNEEFLKENNSVEYKKSKADCRCVSYSREKQLKLEENKKLECE  
 SSCIMNATGNPYLDDIGLLQALTEKMLVFLLQQGYSDGYTKWDKLKLFFELFPEKICH  
 GLPNLGNNTCYMNAVLQSLLSIPSFADDLLNQSFPGWKGIPLNALTMCILARLLFFADTYNI  
 EIKEMLLLNLKKAIISAAAEIFHGNAQNDAHFIAHCLDQLKDNMEKLNTIWPKSEFGE  
 DNFPKQVFADDPDTSGFSCPVITNFELELLHSIACKACGQVILKTELNNYLSINLPQRI  
 KAHPSSIQSTFDLFFGAELEYKCAKCEHKTSGVHSFSRLPRILIVHLKRYSLNEFCA  
 LKKNDQEVIISKYLKVSSHNEGTRPPLPLSEDGEITDFQLLKVKIRKMTSGNISVSWPA  
 TKEKDILAPHIGSDKESEQKKGQTVFKGASRRQQKYLGKNSKPNELESVYSGDRAFI  
 EKEPLAHLMTYLEDTSLCQFHAKAGGKPASSPGTPLSKVDFQTVPENPKRKKYVKTSKFV  
 AFDRIINPTKDLYEDKNIRIPIERFQKVSEQTQQCDGMRICEQAPQOALPQSFPKPGTQG  
 HTKNLLRPTKLNLQKSNRNSLLALGSNKNPRNKDILDKIKSKAKETKRNDDKGDHTYRL  
 ISVVSHLGKTLKSGHYICDAYDFEKQIWFTYDDMRVLGIQEAMQEDRRRCTGYIFFYMH  
 NEIFEEMLKREENAQLNSKEVEETLQKE

Figure 66

**SEQ ID NO.: 66 hSPG27 cDNA sequence**  
 TACGAATTAAACGACTCACTATAGGAATTGGCCCTCGAGGCCAGAAATTGGCAC  
 GAGGGCCCGGCTGCCACCCCTGCTGAGAAGTGAGGAGGCCCTCCGCCGGCAGGCCACCC  
 CATCTGGTTGAATTAAAGAAAATACTTTATCAGAAGAAGATGCCACTGCCAGTTGCA  
 GAGGACTCCCAGTGCAGTGCAGTGGTATTCCAAATAAGATATCAACTGAACACCAAGTCTT  
 TGGTGTAGTGAAGAGGCTCTAGCAGTTCTAGTACGTATCCTGTATCACGTATTGAGGGGA  
 ATATTCCAGAAATGCGTTATGGAACAAGATATCTAGATGGATGCTAGGATGTTATGAT  
 GCTTACAGAAAAATATCTAAGGATGGTTGTTAGCTGTATACACAAACCCAGAAGA  
 TCCTCAGACAATTTCACCATTCTGATGTTGGAGCGGCCGCAAGCTTATTCCCTTAGTG  
 AGGGTTAATTAGCG

Figure 67a

**SEQ ID NO.: 67 hSPG34a cDNA sequence**  
 AGCCGCGCTGTCGTCCACCATGGTGGTGCTCCGAGGCCACCGCTGCCACTGC  
 CCACGCCGATGCCGCTACCGCTCCGGCCCTGGCAAACCCACTGCTTTCCCTCCT  
 CCCAGGCCCGCCTGCCGCCCTGGCCGCTGTCGCAAGGTGCAACGGTACCAACC  
 CCAGCTGTGAGGCTGCCATCAACACCCACATCAGCCTGGAGCTCCACGCATCCTATGTG  
 TACCTGTCATGGCCTCTACTTCGACCAAGGACGACGCCCTGGAGCACTTGACTG  
 CTACTTCCTGTGCCAGTTGCAGGAGAAAAGGGAGCACGCCAGGAGCTGATGAGGCTGC  
 ACAACCTGCGCGGTGGCCGATCTGCCTTCATGACGTGGAGGCCAGAGGGCCAAGGC  
 TGGGAGAGCGGGCTCAAGGCCATGGAGTGCGCCTTCCACCTGGAGAAGAACATCAACCA  
 GAGCCTCTGGAGCTGCACCAAGCTGCCAAGGAGAACGGGACCCCCAGCTTGCGACT  
 TCCTGGAGAACCACTTCCTGAACCAGCAGGCCAAGACCATCAAAGAGCTGGGTGGCTAC  
 CTGAGCAACCTGCGCAAGATGGGTCCCCGGAAGCAGGCCCTGGCAGAGTACCTTTAA  
 CAAGCTACCCCTGGGCCAGCCAGAAACACACCTGAGGCCAGACAGGCCCTCAGCCA

Figure 67b

TGGGGTGCCTTCCCCCTGCTCGCGCCACCAGGGGGACGTCCATGTTGCCCTTCAGAAC  
ATTCTCTCATTTCCTCTCAGTTGACCATTGTAACAATAAGTTATCTGTTCT

**SEQ ID NO.: 68 hSPG34a encoded protein sequence** Figure 68  
 MVVLRGPHRCRHCPRRCRYPLRAPGKPTAFLPLPAPALPALGPLSQQVQRYHPSCEAAI  
 NTHISLELHASVYVLSMAFYFDQDDAALEHFDCYFLCQLQEKRHAEQELMRLHNLRGGR  
 ICLHDVGKPEGQGWESGLKAMECAFHLKNINQSLLRHQLAKENGDPQLCDFLENHFL  
 NQQAKTIKELGGYLSNLRKMGSPPEAGLAEYLFNKLTGRSQKHT

**SEQ ID NO.: 69 hSPG34b cDNA sequence** Figure 69  
 GGCCACCCGCCTTCACTATCGCCATTCTGTCACCTCAGCTGCTGCCCTCGCTACCG  
 CACCGACTTCGCCGTGTGCTCGCCTGCACCTTGCGCTGCCGCATGGCCACCGCCAG  
 CCGTCCGAGGTGCGCCAGAAGTACGACACCAACTGCAGCCGCATCAACAGCCACAT  
 CACGCTGGAGCTCTACACCTCCTACCTGTACCTGTCTATGGCCTCTACTTCAACCGGG  
 ACGACGTGGCCCTGGAGAACTTCTTCGCTACTTCTGCGCCGTGCGGACGACAAAATG  
 GAGCATGCCAGAAGCTGATGAGGCTGCAGAACCTGCGCGGTGGCCACATCTGCTTCA  
 CGATATCAGGAAGCCAGAGTGCCAAGGCTGGGAGAGCGGGCTCGTGGCCATGGAGTCCG  
 CCTTCCACCTGGAGAAGAACGTCAACCAGAGCCTGCTGGATCTGTACCAAGCTGGCCGTG  
 GAGAAGGGCGACCCCCAGCTGTGCCACTTCTGGAGAGCCACTACCTGCACGAGCAAGT  
 CAAGACCATCAAAGAGCTGGGTGGCTACGTGAGCAACCTGCGCAAGATTGTTCCCCGG  
 AAGCCGGCCTGGCTGAGTACCTGTCACAAGCTCACCCCTGGCGGCCGTCAAAGAG  
 ACTTGAGCCCAGATGGGCCCCACAGCCACGGGCTCCCTCCCTGGGTCAAGCCACTAGG  
 CGGGCGTGCATGTTGCCCTTCAGAACGTTCTTCAGTTTATCTTCAGTTTACCA  
 ATTGTTAGCAAAAAAGTTATCTGGTTCTCAAAGCAATAAGGTGTCCATAAAAAAAAAA  
 AAAAAAA

**SEQ ID NO.: 70 hSPG34b encoded protein sequence** Figure 70  
 MATAQPSQRQKYDTNCDAINSHITLELYTSYLYLSMAFYFNRDDVALENFFRYFLRL  
 SDDKMHEAQKLMRLQNLRGGHICLDIRKPECQGWESGLVAMESAFHLEKNVNQSLLDL  
 YQLAVEKGDPQLCHFLESHYLHEQVKTIKELGGYVSNLRKICSPEAGLAEYLFKLTG  
 GRVKET

**SEQ ID NO.: 71 hSPG39a cDNA sequence** Figure 71a  
 GGGAGAGAGATCTCCTCTCTTCGGCGTGTAAAGACAGCGGGGTTGGCCTGTACTT  
 CCTCTGGCCCTGGCTGAAGAGGGCTACTGAAACCGTTAAACCCCTAGGCATCATGGCC  
 TTGAGACCTGAGGACCCCAGTAGCGGGTTCCGGCATAGCAACGTGGTGGCCTTCATCAA  
 CGAGAAAATGGCCAGGCACACGAAAGGCCCCGAGTTCTATCTTGAGAAATATATCCTTAT  
 CCTGGGAGAAGGTGGAAGACAAGCTGAGGGCCATACTGGAGGACAGCGAGGTGCCAGT  
 GAGGTCAAAAGAGGCCTGCACCTGGGCGAGCCTGGCCTGGGTGTGCGCTTTGCCACAG  
 GCAGGCACAGCTACAAAGGCACAGGGTGCAGGCTGCACGGCTTCGCCAAACTGCACA  
 AATCAGCCGCACAGGCCTGGCATCAGACCTGAGAAGCTCAGGGAGCAGCAGGAGACG  
 GAACGCAAGGAGGGCGCTCCCGCTAAGAATGGCCCAGACCAGCCTCGTGGAGGTGCA  
 GAAAGAGAGAGACAAGGAGCTGGTGTCTCCCCATGAGTGGAGCAGGGGGCAGGGTGGC  
 CAGGCCCTGGCCACTGCCGGAGGGTTCCACAGAAGGAGCAGCTGAGGAGGAAGAAGAG  
 GCAGGCCCTGGCTGCTGGTGTGGAGGAGGAGGAGCAGAAGAAGAGCAGAGGGA  
 TGTGGAGGTTGTGGCTGCCCTGTGGAGGCCATGGCTCCCCCTGTGGAGGCTGGGCTG  
 CCCCCATGGAGACCCAGTTCCCCCAGTGGAGGCCAGGGCTGCCTCCATGGAGACCACA  
 GAGAAGCTGGAGAGAGAATCCTCCTGCAGCTCCTGGAGATGCTGATCAGGAAAGTACAC  
 CTATTGGGGCAGAAGGAGGGAGATCTCGGTGGTCGAACAGCCACATCTTATTCT

Figure 71b

```

CTGGAACCACGAACCCCTGGTCCAGAGCCTCATCAGAACCTCTCCTGTCCAGCCTCCCT
GCCTCATACTCATACTCATACTCAAGCCCTTTCTCCTCTCAGACATACCCACTAT
ATCCCCTCCACAAGCACAGTCACAGCACCAGTTCCGCCTCAGCTGCCCTCCGACTGGG
AGGCCCTTGATACTAGCCTGTGGTCTGATGGGGGCCACAGAATAGACCATCAGGAG
CACCCAAGAGACAGGAGATACTCCGAACCTCATCAGCAAAGACCTCCAGTATATCGCAG
GCCAGGGGACTGGGACTGCCCTGGTGTAAACGCTGTGAATTTCACGGAGGGATACTT
GCTTCGACTGTGGGAAGGAACTGGCTGCAAAAACCTCATTGAGTGCAGAAATGCAA
ATAAGAACCGAACATGTATAAAAAAA

```

Figure 72

**SEQ ID NO.: 72 hSPG39a encoded protein sequence**

```

MALRPEDPSSGFRHSNVVAFINEKMARHTKGPEFYLENISLSWEKVEDKLRAILEDSEV
PSEVKEACTWGSALGVRAHQRQAQLQRHRVRWLHGFAKLHKSAQALASDLKKLREQQ
ETERKEAASRLRMAQTSVLVEVQKERDKELVSPHEWEQGAGWPGLATAGGVCTEGAAEEE
EEAAVAAGAAGKGAAEQQRDVEVVAAPVEAMAPPVEAGAAPMETQFPHVEARAASME
TTEKLERILLQLLGDADEQEKYTYWGQKEGDLRSVETATSYFSGTTNPWSRASSEPLPVQ
LPASYSYSYSSPFSSFDIPTISPPQATVTAPVPPQLPSDWEAFDTSLWSDGGPHRIDH
QEHPDRRYSEPHQQRPPVYRRPGDWDCPWCNAVFSRRDTCFDKGKIWLQKPH

```

Figure 73a

**SEQ ID NO.: 73 hSPG39a genomic DNA sequence**

```

GGGAGAGAGATCTCCTCTCTTCGGGCCTGTTAACGACAGCGGGGTGGCTGTACTTT
CCTCTGGCCCTGGCTGAAGAGGTGAGGCCTGGTGGGAGGTGTCTAGGGTAGGACAAGC
CGGTCAAGGGGTCAATTAGGACGGCTTGTCAAGAGCGGGTAGGGCGGGGACAAGAGGGCG
GGAGAAGATGGATGAGGGGAGGGGCTAACGGGAGGGAAAGGAACCTATTGGCTGCTCCA
TCCACACAGGGCTAGTGAAACCGTTAACCCCTAGGCGATCATGGCCTTGAGACCTGAG
GACCCAGTAGCGGGTTCCGGCATAGCAACGGTGGCTGCCTCATCAACGAGAAAATGGC
CAGGCACACGAAAGGCCCCGAGTTCTATCTTGAGAATATATCCTTATCTGGAGAAGG
TGGAGACAAAGCTGAGGGCCATACTGGAGGACAGCGAGGTGCCAGTGAGGTCAAAGAG
GCCTGCACCTGGGGCAGCCTGGCTGGAGTGGCTTGGCCACAGGCAGGCACAGCT
ACAAAGGCACAGGGTGGCTGCACGGCTCGCAAACCTGCACAAATCAGCCGCAC
AGGCCTTGGCATCAGACCTGAAGAAGCTCAGGGAGCAGCAGGAGACGGAACGCAAGGAG
GCGGCCCTCCGGCTAACGAAATGGCCCAGACCAGCCTCGTGGAGGTGCAGAAAGAGAGAGA
CAAGGTGAGTTGGAAGCCGCTCCATGCAGTAAGATCCCTCAACTGGTCCCTGCCAGTA
CCACTGCCCTGCCCTTCCACCCCTCTCCACCCCTGCTCCATGGCTCGCCCTGCC
GCCCTCCCACCTGGTAGCTCGTCTACCTGCTTAGTGTCTCCGCCCTGCCAGA
ACACACCTCAGCCCTGCCACTCTCTCCAGGAGCTGGTGTCTCCCATGAGTGGGAGC
AGGGGGCAGGGTGGCCAGGCCTGGCCACTGCCGGAGGGTTTGACAGAAGGAGCAGCT
GAGGAGGAAGAAGAGGCGGGCTGGCTGCTGGCTGGCTGCCCCCTGTGGAGGCCATGGCTCCCC
AGAAGAGCAGAGGGATGTTGGAGGTTGTGGCTGCCCCCTGTGGAGGCCATGGCTCCCC
TGTGGAGGCTGGGCTGCCCATGGAGACCCAGTCCCTCCAGTGGAGGCCAGGGCTG
CCTCCATGGAGACCAAGAGAACGCTGGAGAGAACCTCTGCAGCTCCTGGAGATGCT
GATCAGGAAAGTACACCTATTGGGGCAGAAGGAGGGAGATCTCCGGTGGCTGAAAC
AGCCACATCTTATTCCTGGAACACAGAACCCCTGGTCCAGGCCTCATCAGAACCTC
TTCTGTCCAGCTCCCTGCCATACTCATACTCATACTCAAGCCCTTTCTCCTTC
TCAGACATACCCACTATATCCCCTCCACAAGCACAGTCACAGCACCAGTTCCGCCTCA
GCTGCCCTCCGACTGGGAGGGCTTGTAACTAGCCTGTGGCTGTGATGGGGGCCACAA
GAATAGACCATCAGGAGCACCCAAAGAGACAGGAGATACTCCGAACCTCATCAGCAAAGA
CCTCCAGTATATCGCAGGCCAGGGACTGGGACTGCCCTGGTGTAAACGCTGTGAATT

```

Figure 73b

TTCACGGAGGGATACTTGCTTCGACTGTGGGAAGGGAACTCTGGCTGCAAAAACCTCATT  
GAGTGCAGAAATGCAAAATAGAACCGAAGCATGTATA

SEQ ID NO.: 74 hSPG39b cDNA sequence

TCTCTTCAGGCCTGTTAACCGAGCGGGGTTGGCCCTGTACTTCCCTCTGGCCCTGGCTGAAG  
AGGGCTAGTGAACCGTTAACGCCCTAGGCATCATGGCCTTGAGACCTGAGGACCCC  
GTTAGTGGGTTCCGGCACGGAAACGTGGTGGCCTTCATCATCGAGAAATGCCAGGCAC  
ACGAAAGGCCCGAGTCTACTTCGAGAAATATATCCTTATCCTGGGAGGAGGTGGAAGA  
CAAGCTCAGGGCCATCCTGGAGGACAGCGAGGTGCCAGCGAGGTCAAAGAGGCCCTGCA  
CCTGGGGCAGCCTGGCCTTGGGTGTGCGCTTGCCCACAGGCAGGGCAGTTACAAAAC  
CGCAGGGTGCAGTGGCTGCAAGGCTTGCCAAACTGCACAGATCAGCTGCGCTGGCTT  
GGCCTCAAACCTGACGGAACCTCAAGGAACAGCAGGAGATGGAATGCAATGAGGCGACCT  
TCCAGTGCAGCTAACCGAGACCAGCCTTGCAGGAGGTGCAAGAGAGAGCGGGACATGCTG  
AGATGGAAGCTCTCCATGCCGAGCTGGCACCTCCCCAGGGACAGGGCCAGGCTACAGT  
GTTTCCAGGCCTGGCCACTGCCGGAGGGATTGGACAGAAGGAGCAGGTGAGCAGGAAA  
AGGAGGCGGTGGCTGCTGGTGTGGAGGAAAAGGAGAGGAGGAGGAGGTATGGCAGAG  
GCAGGGCCTGCCCGCAGGGTCTGCAGGGCTGGGAGGAGGCTCAGGCAGCCCT  
CGGAGCTATTGTAGCAGGCAAATTACACCTTGCAGGGCAGAGGGAGAAAGATCTCAGG  
TCAGTACAACACAGCCATGTCGCTCTGGCTGGGTCCACAGTCTCACTGGAGCC  
TCTTCCGTCCAGCTCCCTACCTCATTACATACTCATACCCATGCCCTTGTCCGCCT  
TCTCAGCCATACCCAAATATAACCCCTTCACCAGCAAGGTACAGAACGGTTCCA  
CAGATGCCCTTAACGGGGCCTGATGCTAGCCTGTGGTCAGATGTGGAGGCCA  
GGGAATAGACCTCAAGAGCCCCAAGAGACAGGAGAGACTCGAACCTCAGCAGA  
GAAGACCTCCAGTATATCGCAGGCCAGGGAACTGGGACTGCCGTGGTAAAGCTGTG  
AATTTTCATGGAGGGAAATTGCTTCTCTGGGAGGCCAATACGGCTGCAAAAGCCT  
CAGTAAAT

Figure 74

SEQ ID NO.: 75 hSPG46 cDNA sequence

CGGCGAAAGTCCAGTATGTGGGTCAGGGTCACTCTTCTAGAGCTCCGCAACGGAAAG  
TGTGAGTTTTCAAGGAATTGTTCAAGATGGATGAAGATAACACATTACGATAAAAGTGGAAAG  
ATGTGGTTGGAAGTCACATAGAAGATGCAGTAACATTTGGGCCAGAGTATCAATAGA  
AATAAGGATATCATGAAGATTGGTGTCACTGTCAGTGAAGTTGCCAGGCTCAGTTC  
AGTTTTGGGAATCTGACCCAAACAAGATTATGGTGGATTATTTCTGAAGATCAGT  
GTTGGTACAGATGCAAAGTACTGAAATCATCAGCAGTGGAAAGTGTCTGGTGGAGGTAC  
ATTGACTATGGAATACTGAAATTCTAAATCGATCTGATATAGTTGAAATTCTTTGGA  
GCTGCAGTTCTAGTGTGCCAAAAGTATAAACTTTGGGACTACACATTCTCTG  
ATCAAGAAGTTACCCAGTTGATCAGGGCACACCTTTGGGAGCTGATTGGAA  
AAGGAATAAAATGAGAATTAAAGCAACCTCTGAAGATGAAAGTATTGCTCAGGC  
TGAGTATGGCAGTGTGGATATAGGGAAAGAGGTGCTTAAGAAAGGATTGCAAGAGAAAT  
GCAGACTTGCTTCAGAACTGACATCTGTGAGGAAAAAAATTGGATCCTGGTCAACTT  
GTTCTCAGGAACCTCAAAAGCCCCATTCTTGTGGGGCATAGATCAAACCAAGTCAAC  
CTTCAGCAGGCCAAGGGGACTTAAGTGAGAAAATGACTCTTGACTGAAGGATGAAA  
ATGATGCCAGGCAATCTTAAACATTCCAAAGGAAAGTTGGCTGTTGGTGACTTTAAT  
TTAGGGTCTAACGTCAAGCCTGGAAAAAAATTAGCAGGACAGAAACTGATTGAAGAAA  
TGAAAAACTTAAACAGAGAAGGACGCTTCTGAAAGTTATAAGCGTTAGAATTGA  
AAAGTAGAGCAGATTGCCAGGGAGCTGCAGCAAGAGAAGGCAGCTGCTGTGGATTGACT  
AACCACTTGAAGACCTATATAGATACCGAATGAAAAATCTGGCAGC

Figure 75a

Figure 75b

TAAGATGGAATACTGAAAGAAATGAGGCATGTCGACATCAGTGTCCGTTCGGAAAAG  
 ACCTTCAAGATGCTATACAAGTGGATGAAGGGTGCCTTACTACTCCAGCTCTTGT  
 AATGGATTAGAGATAATATGGGCAGAACATACGCTGGCTCAGGAGAATATTAACCTTG  
 TGAAATATGTGAGTGAAGGAATATTGATTGCCAAAGAAATGAATGCAGCAGAAC  
 TGTACATGTCACTAGAAGATTTTATCTGGAAGTGTGATGAGTCATCTCTTAATAAACGC  
 TTAAAAACATTGCAGGAGTTGTCAGTCCTTAGAAGCAGTGTATGGACAAGCCAAGA  
 AGGAGCAAATTCTGATGAAATACTTAAAAATTTTATGACTGGAAAGTGTGATAAGAG  
 AGGAGTTCACCAAGTGTAGAAGTGAACAGACAGCTCTGCACCCTGTAGCATGG  
 TTCCAAAGAACCTTAAAGGTTTGACCTATCTGGAAGGATCACTGATTTCAGAAGA  
 CGCAATGGATAATATTGATGAAATCCTAGAGAACACTGAGTCAGTGTGCAAAGAGC  
 TGGAGATAGCTCTGGTTGATCAAGGTGATGCAGACAAGGAGATAATTCAAATACATAT  
 AGTCAAGTACTGCAAAAGATTCACTCAGAGGAAAGGCTCATGCCACAGTACAAGCTAA  
 GTACAAGGACAGTATTGAGTTAAAAAGCAGCTATTGAAATATTAAAGAAGATTCCCA  
 GTGTGGATCACCTGCTATCCATTAAAGAACATGAAAAGCTTAAAGCTCTACTCAGA  
 TGGAAATTGGTTGAAAAGAGTAATTGGAAGAGTCAGATGATCCTGATGGCTCTCAAAT  
 TGAGAAAATAAGAACAAATAACTCAGCTGCCAATAATGCTTTCAAGGAAATTATC  
 ATGAGAGAGAGGAATATGAGATGCTAACTAGTTGGCACAGAAATGGTCCCTGAGCTG  
 CCTCTGCTTCATCCTGAAATAGGATTACTCAAATACATGAACTCTGGGGTCTCCTTAC  
 ATGAGCTTGGAACGAGATCTCTTGATGCTGAGGCCATGAAGGAACCTAGCAGCAAGC  
 GTCCTTGGTACGTTCTGAGGTTAATGGCAGATAATTCTGTTAAAGGGCTATTCTGTG  
 GATGTTGACACAGAACGCAAGGTGATTGAGAGAGCAGCCACCTACCATAGAGCTGGAG  
 AGAACGCTGAAGGGAGACTCAGGTTACTGCCATTGATATTCTGTTTATGTAAGTCTG  
 ATCCATGGCTTATCTGATGGTCCCATACTACCCCTAGGGCAACCTGAATGCTGTC  
 GCCAACATGCCTTAAATTCAAGAACACTTAAAGGTGATGAAAGGTGTTGCCAGGG  
 TCTGCAACATTGCAAAAGGCTGACATAATTGATGCTGACTTCACTGAGAACAAATG  
 TTGCTTTAACCGTGAACAAGGAATTGTTGGAGATTGACTTCACCAAATCTGTGAGT  
 CAGCGAGCCTCGGTGAACTGATGGTGGTGAATTGAGTTGATGTCACCTGAGTTGAA  
 AATGGGAAACCTGCTTCTCCAGGTTCAAGACTTATATGCTTATGGCTGCCCTTTATT  
 GGCTTCTGTCAAAATCAGGAGTTGAGATAAAACATGGAATCCCCAAAGTGGAT  
 CAGTTTCACTGGATGATAAGTCAAATCCCTCTGCTAGCTGATGTTATGAGAAC  
 TTCAATGACTGCTGAAACAGTTTAAATGCTGAATGTTCTGATGCCAAGGAGCAAT  
 CAGTCCAAACCCAGAAAAGATACTGAAATACACCCCTATATAAAAAGGAAGAAC  
 AACACGGAGAACTTGGATAATGTTGGAGAACAGGAAACTTGA  
 TTGTTAAATTATTATTGTTGTTGTCAGAGGTTCTTTAAAAACTTGTGTTGGTTG  
 GTTAATACACAGAAATATCTAGAAATGTTCTGGGACTAGTTGAGTTGATCTTAGT  
 TCAGGTTGTGAAAATAPAGATGTTGGCTATGCCAAAAAA

**SEQ ID NO.: 76 hSPG46 encoded protein sequence** Figure 76a  
 MWVQGHSSRASATEVSFSGIVQMDEDTHYDKVEDVVGSHIEDAVTFWAQSINRNKIDM  
 KIGCSLSEVCPQASSVLGNLDPNKITYGGLFSEDQCWYRCKVLKIIISVEKCLVRYIDYGN  
 TEILNRSIDIVEIPLELQFSVAKKYKLUWGLHIPSQEVTFDQGTTFLGSLIFEKEIKM  
 RIKATSEDGTIVIAQAEYGSTD1GE2EVLKKGFAEKRLASRTDICEEKLDPGQLVLRNL  
 KSPIPLWGHRSNQSTFSRPKGHLSEKMTLDLKDENADAGNLITFPKESLAVGDFNLGSNV  
 SLEKIKQDQKLIEENEKLKTEKDALLESYKALELKVEQIAQELQQEXAAVDLTNHLEY  
 TLKTYIDTRMKNLAPKMEILKEMRHVDISVRFGKDLSDAIQVLDUGCFTTPASLNGLEI  
 IWAEYSLAQENIKTCYVSEGNIILIAQRNEMQQKLVMSVEDFILEVDESSLNKRLKTLQ  
 DLSVSLEAVYQOAKEGANSDEILKKFYDWKCDKREEFTSVRSETDASLHRLVAWFQRTL  
 KVFDLSVEGSLISEADMNIDEILEKTTESSVCKELEIALVDQGDADKEIIISNTYSQVLQ

74/108

Figure 76b

KIHSEERLIATVQAKYKDSIEFKKQLIEYLKKIPSVDHLLSIKKTLKSLKALLRWKLVE  
KSNLEESDDPDGSQIEKIKEEITQLRNNVFQEIVHEREEYEMTLSAQKWFPELPLLHP  
EIGLLKYMNSGGLTMSLERDLDAAEPMKELSSKRPLVRSEVNGQIILLKGYSVDVDTE  
AKVIERAATVHRAWREAEGDSGLLPIFLFLCKSDPMAYLMVPYYPRANLNQANMPL  
NSEETLKVMKGVAQGLHTLHKADIHGSLHQNNVFALNREQGIVGDFDFTKSVSQRASV  
NMMVGDSLMSPELKMGK2ASPGSDLYAYGCLLLWLS7QNQEFEINKDGIPKVDQFHLD  
DKVKSLLCPLICYRSSMTAEQVLNAECFLMPKEQSVPNPEKDTEYTLYKKEEEIKTENL  
DKCMEEKPRNGEANFDC

SEQ ID NO.: 77 hSPG64 cDNA sequence

**SEQ ID NO.:77 hSPG64 cDNA sequence** Figure 77  
gagggccgcgggtgttttgtctgtctgaggccaggaagtgtaccgcgctgccatGCCG  
AACCCTAAAGGCCAGCCGGAATGCTTACTATTTCTCGTGAGGAGAACATCCCCGAACT  
ACGGCGACGAGGCCTGCCTGTGGCTCGCGTTGCTGATGCCATCCCTACTGCTCCTCAG  
ACTGGGCCTCTGAGGGAGGAAGAAAAGGAGAAATACGCAGAAATGGCTCGAGAACATGG  
AGGGCCGCTCAGGGAAAGGACCTGGCCCTCAGAGAACAGCAGAACCTGTTCACACC  
ACTGAGGAGGCCAGGCATGTTGACCAAAGCAGAACATGTTCACCTCAGATATGTCAG  
CTTGCTTAAAGGTGATCAAGCTCCCTGGAGGCATTTTTATTTTGAAACATT  
TTTAGCCATGGCGAGCTACCTCCTCATGTGAAACAGCGCTCCCTGTGAAATTGG  
CTGTGTTAAGTATTCTCTCCAAGAAGGTATTATGGCAGATTCCACAGTTTATAAAC  
CTGGTGAATTCCACGAGGATTCGATTTCATTGTCAAGGCTGCAAGTGTGATTCTAGTCAC  
AAGATTCTATTCAAATTGAAACGTGGGCATAACCAAGCAACTGTGTTACAAAACCT  
TTATAGATTATTCACTCCCAACCCAGGGACTGCCACCTATCTACTGCAAGTCTGATG  
ATAGAACCAAGAGTCAACTGGTGTGAAAGCATATGCCAAAGGCATCAGAAATCAGGAA  
GATCTACAACCTCACTGTAGAGGACCTTGTAGTGGGATCTACCAACAAAAATTCT  
CAAGGAGCCCTCTAACAGACTTGGATTCGAAGCCTCTAGATGTGGCATGTGGATTATT  
CTAGCAACACAAGGTGCAAGTGGCATGAAGAAAATGATATTCTCTGTGCTTAGCT  
GTTGCAAGAAGATTGCGTACTGCATCAGTAATTCTCTGCCACTCTCTGGAAATCCA  
GCTCACAGAGGCTCATGTACCAACTACAAGATTATGAGGCCAGCAATAGTGTGACACCC  
AAATGGTGTATTGGATGCAGGGCGTTACAGAGCTAACGGTTGGAGTTCAAGGATTC  
TCTCATTTCAACTCTTAATGAGGACAAAGATCAAACACACCCATTGGTACTACCC  
ATCTAGGGCAAAATTCTGGCCAAACAGCAGCGTTGGGGAGAGGAATTACCCGCT  
TACTAGAGAGCATTCCAATTCTCCAGCAATATCCACAAATTCTCAACTGTGACACT  
TCACCTCACCTACATGTCCCAGAACAGTGGATACAATTCTCTTCCTATCTTA  
Atgatgtactctttcaatttctgaaaacagtaacaggcccaactccttcttactac  
agtcatattaaacagatcacatcaatgacaaaatgtactactataaaaaactacttaatt  
tgtaaaggaaattgtttcatagattaaaaaaattgtgggtggagagacatcttggcattt  
gtgctttttcttgaggattgttcgtttccggctgtatgtatgggtatatcattaa  
agtttggagtcctatataatgaacaaaactgacattttagatgtactttggaaatgtt  
atagattgatcatctttcttcgtataataaaggatgtatgtatgtatgaaaggatgtt  
aaaaaa

Figure 77

res. 20-26 168654 encoded protein sequence

SEQ ID NO.: 78 hSPG64 encoded protein sequence  
MPNRKASRNAYYFFVQEKIPELRRRGLPVARVADAIPYCSSDWALLREEEKEKYAEMAR  
EWRAAQGKDPGPSEKQKPVFTPLRRPGMLVPKQNVSPPDMSALSLKGDQALLGGIFYFL  
NIFSHGELPPHCEQRFLPCIEGCVKYSLQEGIMADFHFSINPGEIPRGFRFHCQAASDS  
SHKIPISNFERGHNQATVLQNLRYRFIHPNPGNWPPYIYCKSDDRTRVNWCLKHMAKASEI  
RQDLQLLTVEDLVVGIFYQQKFLKEPSKTWIRSLLDVAMWDYSSNTRCKWHEENDILFC  
LAVALCKKIAAVCISNSLATLFGIOLTEAHVPLQDYEASN SVPK MVVLDAGRYQKL RVGSS

74108

75/108  
Figure 78b

GF SHF NSS NEE QRS NT PIGD YPS RAK I S GQ N S V R G R G I T R L L E I S N S S S N I H K F S N C  
DT S L S P Y M S Q K D G Y K S F S S L S .

Figure 79a

**SEQ ID NO.: 79 bSPG85 cDNA sequence**

GCTTCCGAAACCTACTATGATATTGTTAAGTCAGGCATCCACGTCAGCAGAAAGACC  
GAACATATGAAACCTCAAGATATCCGGTATATTCTGAGAAATGACTTAAGGATTTACT  
GGAGCCCAGAGAACCTAACCAACCGAGAGGCCAGAGTGCAGAGATAACGGACTCCATCC  
CGATGTCAATGTCATCTAGGACTGACTCAGAACACCCCCAGAGAGACACCTGACATGG  
AAATCATAGAACTAAAGGAATGGGCAGTCACCTCATTCAACCAAGGGTTCACTCTTTA  
TTCACTGAGGGGACACTAGATCCTCAGGCCAGATCCATGTCAGTGGCCAGGGAGAC  
TCAGAATCAAGATGCTCCTGCCCTGCTCCATTATGGCAGAAGAGGCCAGCAGCCCCA  
GCACAGGTCAAGCCAGCCTCTGCAGTTGAAATCAACGAGATCTACTCAGGCTGCTTG  
ATTTTGGAAAGATGACATAGAAAGAGCCTCCAGGAGCTGTTCATCTTGGAGGCAGACGG  
ACCTAACCCAGGTAGATGAACTGAAATCCATGGAAGAAGAGCTGGATAAGATGGAGAGAG  
AGGCGTGTGTTGGCAGTGGAGAGCTCTCAAAAGCTGAGACAGAGTACTCT  
TTGATGACTGGGACTGGAAAACGGTTCACTCAGTCACGCCTCCTGAGTCAC  
CAGAGAAAGCCAAGAGCAATTGAAACAACATGTCCACGACTGAGGAGTATCTCATCAGTA  
AGTGTGTGCTGGATCTAAAGATTATGCAAGACAATAATGCAAGAGAATGATGATAGGCTG  
AGGAATATCGAGCAGATATTAGATGAAAGTGCAGATGAAACAGAACAGGAAGAGCG  
CATGTCCTTATGGGCCACTTCAAGAGAGTTACAAATGCCTACAGTTACCTCTGGCCG  
TGGGCCCTCCATCTTAAACTATATTCCCTGCTCACAGCTTCAAGGGGGTCAGAAG  
CCAGACACCAGTGGCAACTACCCAAACCCCTACCAAGATTCCAAGAATGCTGCCACTCT  
TTGTGACCCCTGGAAAACAGAACACAGATGAAACAATTCACTGCACTCAAGGAGCCAAGG  
ACAGTTGGAAACAAGCAGGATCCAAAATACCAGTAGCCAGGGAAAGACCTAGAGAGTCC  
ACTGCCAAGCCAAGCCACACAGTTAATAGTGCACCTCTGTCAGGACTCTACCG  
GCAGGGACCTCTGCATCACCAGCTGCACTGGACTCTACCAAGGATGAGTGTGGAAC  
CTGTTCTCTGAAATCTATAATGCAAGAGTCCAGAAATTAAGATGATGGAAAGGTACAC  
TTAAAATGGAAAATGGAGGTGAAAGAAATGGCAAAAGAAAGCAGCTACTGGACAGCTCAC  
AGTACCTCTTGGCATCCTCAGAGTAGTCTGACTTTAGAGAGCGAGGCTGAAAATGAGC  
CCGACGCCCTGTCAGCCCCCATTAGGAGCCCAGAAAAACACGGATGGCAGCGAGTT  
ATTGAGTATCATAGGAAAATGATGAGGCCAGAGGAATGGCAAGTTGACAAGACGGG  
CAACAATGACTGTGACAGTGACCAGCATGGCAGACAGCCAGGCTTGAAGCTTCACCA  
GTATCAGGCACCCATCTCCAGACAAAGGAGCAACAGAGCATAGTGAAGCCTTCAA  
GCAAGTTCTGACACATTGGCTGTAGAGAAATTTACAGTACCTCGAGTCCCATAGA  
AGAGGACTTTGAAGGAATACAAGGTGCAATTGCCAACCTCAAGTCTCTGGTGAGGAAA  
AGTTCAAATGAGAAAAATTCTTGGAAAGAATGCTGAGATTTCAGGCCAGGTCTCAATT  
CAACCTGTACGAAGTACTGAAAGATGAAACAAGAACAGACATCAAAGGAGTCACCAAAGGA  
ACTGAAAGAGAAAGACATATCATGACGGATATTCAAGACCTGTCAGTATCTCTATG  
AACCAGACAGCTTTTAAGGAAGCTTCATGCAAAACACCCAAAATAACCATGCAACCT  
ACCAAGTGTCAAGCCTCCACTCAGGCCAGGGTCCGTTCTCAGCTGCCAGTCAGTATAA  
AGACTGCCTGAAAGTATCAGCTTCAAGGTTAAGACAGAGCTTGCCTCTGCTGGAACA  
GTCAAGAATTATTCAAACCTTGCTGTGACTTTATAAGTGTCCGAGAGAGAGCAGCAAAG  
AAACTGGATTCTCTCCTACTCCTCTGAAACTCCCCCTCAAGACTGACTGGCTTAA  
AAGATTGTCTTCAATTATTGGGGCTGGATCCCCCAGCCTGTTAAGGCATGTGACTCAT  
CACCAACCCATGCCACCCAGAGAACGGAGCCTGCCAAAGTAGAAGCCTCTCAGCAT  
CGCATTGATGAGCTGCCACCATCTCAGGAGCTACTTGATGACATTGAGCTCTGAA  
ACAGCAGCAGGGCTCATCCACGGTGTGCAAGAACACAGCAAGTGTGAGGAGGCA  
CTGCAAATGATCAAAGGCACTTAAAGAACAAAGAAACTGACAGTAAAGAAGATAGT

Figure 79b

AGTATGCTTTGCCAAAGAAAAGTGAAGATCTGGAGAGGACACAGAGAGAGCTCACTC  
TACTCTGGATGAGGACCTGGAAAGATGGCTGCAGCCACCTGAGGAGAGCGTGGAGCTAC  
AAGACCTTCCCAGGGCTCTGAAAGGGAGACAATATCAAAGATCAAAGGTTGGTGAAG  
GAGAAGAGAAAAGGGAAGATAGCATACACCAGAGAGAAGGAAATCAGAGGGTGTCT  
AGGGACTTCTGAAGAAGATGAACCTAAATCCTGTTTGGAGCGACTAGGTTGGTCCG  
AATCAGGATAATCGTGCCTGGATCAGAGTGAATTGTCAGACTGATTGGAAATTGGAT  
CATAGACGGACTCTGGCCTGAGTTGAGTGTCTGGTTGTAAGCTCCTTCTCTTCT  
TCTGCTTCAGTTGCTGTCAGGGCAGCAGTCCAGTTCTGTAAGTCTCACCTTGTCAGC  
TGCCACAATAGACATCATCGTTGGCCTCTGTTAGCAGCACATTCAACCATTGTT  
TTCAGTCAGATTCTGAAAAGTGAGAGGTTAGTTGATAGTAAAATTTGGTTGTGC  
CTAGAATGGCTTGGTTTGTGATGTTAAATTCTAAAGACTTTAACCTTGTATATA  
ATAAAAATGTTAATTAAATAACAGAAAAA

**Figure 80**

SEQ ID NO.: 80 hSPG85 encoded protein sequence  
MNLQDIRYILKNDLKDFTGAQRTQPTESPRVQRYGLHPDVNVYLGLTSEHPRETPDMEI  
IELKEMGSQPHSPRVHSLFTEGTLDPQAPDPCLMARETQNQDAPCPAPFMAEEASSPST  
GQPSLCSFEINEIYSGCLILEDDIEEPPGAASSLEADGPNQVDELKSMEELDKMERA  
CCFGSEDESSSKAETEYSFDDWDWQNGLSLLSLPESTREAKSNLNMMSTTEEYLISKC  
VLDLKIMQTIMHENDDRRLRNIEQILDEVEMKQEQQEERMSLWATSREFTNAYKLPLAVG  
PPSPLNYIIPVQLQLSGGQKPDTSGNYPTLPRFPRMLPTLCDPGKQNTDQFQCTQGAKDS  
LETSRIQNTSSQGRPRESTAQAKATQFNSALFTLSSHRQGPSASPSCHWDSTRMSVEPV  
SSEIYNAESRNKDDGKVHLWKMEVKEMAKKAATGQLTVPPWHQSSLTLESEAENEPD  
ALLQPPIRSVENTDWQRVIEYRENDEPRGNKGFDKTGNNDSDQHGRQPRLGGSFTSI  
RHPSPRQKEQPEHSEAFQASSDTLVAVEKSYSTSSPIEEDFEGIQGAGAQPOQVSGEEEKF  
QMRKILGKNAEILPRSQFQPVRSTEDEQEETSKESPTELKEKDLSLTDIQLLSSISYEP  
DSSFKEASCCKTPKINHAPTSVSTPLSPGSVSSAASQYKDQLESITFQVKTEFASCWNQ  
EFIQTLSDDFI SVRERAKKLDSSLTSSETPPSRLTGLKRLLSSFIGAGSPSLVKACDSSP  
PHATQRRLSPKVEAFSQHRIDELPPPSQELLDDIELLKQQQGSSTVLHENTASGGGTA  
NDQRHLEEQQETDSKKEDSSMLLSKETEDLGEDTERAHSTLDEDLERWLQPPEESVELQD  
LPKGSERETNIKDQKVGEEKRKRED SITPERRKSEGVLGTSEEDELKSCFWKRLGWSES  
SRIIVLDQSDLSD.

SEQ ID NO.: 81 hs2613 long transcript cDNA sequence Figure 81a

SEQ ID NO.:81 hSPG13 long transcript cDNA sequence  
actgttagtccaaagctgaattccggcgATGGCCGCAGAGGCTTCGAAGACTGGGCCCT  
CTAGGTCTTCTACCAGCGAATGGGGAGGAAGAGTCAGCCCTGGGGTGCCGCTGAATC  
CAGTGCACCAAGGTGTGGAAGGAGGGTATCCAGATCATCCGGTCACCATTGTGAACCTCA  
ATGTGGACATGCTTTGTGAACATATGCTTGTAAATGACTGAAGAACATGCACCAATT  
TATGCCCTGATTGTGAGGTTGCTACAGCTGTAATAACTAGACAAACGCTACTACCCAATG  
GCTGGATATATTAAGGAAGACTCCATAATGGAAAAACTGCAGCCTAACGATAAAAGAA  
TTGTTCTCAGGACTTTAAGAAGACTGCTGATCAGCTAACTACTGTTAGAACGTTCA  
CCTCCACAGACAAGACTCTTTGAACCTCATCAGCTGTAATGTTGACACTAAATACTGCA  
GAAGAAAATTGATGAAAGCATTGAATACAGCACACCCATAGTTCGAACAGTTAACGATTGC  
TGGAAAAGCATTGAAACATGCAGAAGCATTGATAGAGGAAAGAGAAAGAGTTATAG  
AAGTTGTGGAGAAACAGTTGACCACTTTGGCTTTTGATTCCAGGAAAAAGAAC  
CTGTGTGAAAGAATTGCAAGAACTACTGATGATTATCTATCAAATTAAATAGGCTAA  
AAGCTACATTGAAGAGAAAATAATTGAATGCAGCTATGAAACATAGCAAGAGCAT  
TACAATTATCGCCTTCTCTAAGAACATACTGTGACCTGAACTCAGATTATCCGGACTTTG  
CAGTTAACTTCAGATAGTGAATTAGCAGAACTGTTAGTCTCCACAACTAAGGAACCCCTCC

Figure 81b

CAGGTTGAGTGTGAATTGCAGTGAGATCATCTGTATGTTCAACAATATGGAAAGATTG  
AATTTAGGGACTCAACAAAATGTTATCCCCAAGAAAATGAAATTAGACAGAACGTTCAA  
AAGAAATATAATAACAAAAGGAACCTTCTTGTACGATACATACCCACCGCTAGAAAAA  
GAAAAAGGTTGACATGTCGCTTAACCAGTGAAAGCACCACCATCTTGCAACCTG  
AGACAAATGATGTACATTAGAAGCAAAAAACTTCCAGCACAGAAAGACGTTGCAACA  
GCATCCCCTAAACCATGCTGTACCTCAGATGGGATCTAGCCCTGATGTGATAAT  
TGAAGAAATTATTGAAGACAACGTGAAAGTTCTGCAGAGCTAGTTTGTAAAGCCATG  
TAATAGATCCTGCCATTCTACATTGGAAGTATTACACAAATAAAAGACGCCAAGTA  
CTGGAGAAGAAGGTGAATGAATTTCGAATAGGAGTTCACACCTTGATCCTTCAGACAT  
TTTGGAACTAGGTGCAAGAATATTGTCAGCAGTATTAAAAATGAAATGGTGGTGTGAG  
GAACATACACAGAATTAACTCAATAGAGGGTAGAAATACCAAGAAAACCTTGTAGTCCA  
ACCAGATTATTGTCATGAAAGTTGCACTAAACAAATATTGTCAGTGGTAGATTGGAAA  
TTCTGAAGTCTGATTGTCACTGGAGTTGTTGATAACCCATGTGAGGACAGAACACTG  
CTAAGCAACATATTGCACTAAATGATTATGTCGGTCTAAGGAAATCTGAACCATAT  
ACTGAAGGGCTGCTAAAGACATCCAGCATTAGCACACCATGCTATTGAAAGACAT  
TGTTCACAGAATTCAAATGAAGGCTGGGAAGAGGAAGCTAAAGTGGATTGGAAA  
TGGTAAATAACAAGGCTGTTCAATGAAAGTTTAGAGAAGAAGATGGTGTGCTTATT  
GTAGATCTGCAAAACCACCAACCGAATAAAATAAGCAGTGTATGCCGTGCTCTTAG  
AGATGCGCTAGTTTATGAACTAGCAAAAGATCTGATCTAAaaagtggtagagac  
acttctcattttcaatgtttctgtattggaaagaactaaagcttcataatcta  
ttttgttggcgtcattccctctgctgaattttaaatgttactctggcttacctgttaa  
tggagaatttgcatatatctacttagaaagatagtggccccggac

SEQ ID NO.: 82 hSPG13 long transcript encoded protein Figure 82  
sequence

MAAEASKTGPSRSSYQRMGRKSQPWGAAEIQC TRCGRRVSRSSGHHC ELQCGHAFCELC  
LLMTEECTTIIICPDCEVATAVNTRQRYPMAGYIKEDSIMEKLQPKTIKNCSDQDFKKTA  
DQLTTLERSASTDKTLLNSSAVMLDTNTAEEIDEALNTAHSFEQLSIAGKALEHMQK  
QTIEERERVIEVVEKQFDQLLAFFDSRKKNLCEEFARTDDYLSNLNIKASYIEEKNN  
LNAAMNIARALQLSPSLRTYCDLNQIIRTLQLTSDSELAQVSSPQLRNPPRLSVNCSEI  
ICMFNNMGKIEFRDSTKCYQPQENEIRQNQKYYNNKELSCYDTPPLEKKVDMMSVLT  
SEAPPPLQPETNDVHLEAKNFQPKDVATASPKTIAVLPMQGSSPDVIIEEIEDNVE  
SSAELVFVSHVIDPCFYIRKYSQIKDAKVLEKKVNEFCNRSSHLDPSDILELGARIFV  
SSIKNGMWCRTGTTIELIPIEGRNTRKPCSPTRLFVHEVALIQIFMVDFGNSEVLIVTGV  
VDTHVRPEHSQHIALNDLCLVLRKSEPYTEGLLKDIQPLAQPCSLKDIPQNSNEGW  
EEEAKVEFLKMNNKAVSMKVREEDGVLIVDLQKPPNKISSDMPVSLRDALVMELA  
KDLI.

Figure 83a

SEQ ID NO.: 83 hSPG13 short transcript cDNA sequence  
actgttagtccaagctgaattccggcgATGGCGGCAGAGGCTTCGAAGACTGGGCCTT  
CTAGGTCTCCTTACCAAGCGAATGGGAGGAAGAGTCAGCCCTGGGTGCCGCTGAATC  
CAGTGCACCAAGGTGTGAAGGAGGGTATCCAGATCATCCGGTCACCATTGTGAACTTCA  
ATGTTGACATGCTTTGTGAACTATGCTGTTAATGACTGAAGAATGCACCAATTAA  
TATGCCCTGATGTGAGGTTGCTACAGCTGTAATAACTAGACAAACGCTACTACCCAATG  
GCTGGATATATAAGGAAGACTCCATAATGGAAAATGCAAGCCTAACGATAAAGAA  
TTGTTCTCAGGACTTTAAGAAGACTGCTGATCAGCTAACACTACTGGTTAGAACGTTGAG  
CCTCCACAGACAAGACTCTTGAACTCAGCTGTAATGTTGGACACTAATACTGCA  
GAAGAAATTGATGAAGCATTGAATACAGCACACCATAGTTCGAACAGTTAACGATTGC

Figure 83b

TGGAAAAGCAGTGAACACATGCAGAAGCAACGATAGAGGAAAGAGAAAGAGTTATAG  
 AAGTTGTGGAGAACAGTTGACCAACTTTGGCTTTTGATTCCAGGAAAAAGAAC  
 CTGTGTGAAGAACATTGCPAGAACTACTGATGATTATCTATCAAATTAAAGGCTAA  
 AACCTACATTGAAGAGAAAAAAATAATTGAATGCAGCTATGAACATAGCAAGAGCAT  
 TACAATTATGCCCTCTCTAAGAACATACTGTGACCTGAATCAGATTATCCGGACTTTG  
 CAGTTAACCTCAGATAGTGAATTAGCACAAAGTTAGTTCTCCACAACTAAGGAACCCCTCC  
 CAGGTTGAGTGTGAATTGCAGTGAGATCATCTGTATGTTCAACAAATATGGGAAAGATTG  
 AATTAGGGACTCAACAAATGTTATCCCCAAGAAAATGAAATTAGACAGAATGTTCAA  
 AAGAAATATAAAACAAAAGGAACCTTCTGTTACGATAACATACCCACCGCTAGAAAA  
 GAAAAGGTTGACATGTCCTAACCAAGTGAAGCACCACCTCCTTGCAACCTG  
 AGACAAATGATGTACATTAGAACAAAAACTTCCAGCACAGAAAGACGTTGCAACA  
 GCATCCCCTAAACCATTGCTGTGTACCTCAGATGGGATCTAGCCCTGATGTGATAAT  
 TGAAGAAATTATTGAAGACAACGTGAAACATGCGGCACAGATGATCTGGGGAGACAC  
 CTAGATATCCAAGGCTCTTCAGAAAAACTCATCTGTTCTTGGATCAAAGCA  
 GATACTGTAACAACGTGTAAGctttagtgttagggatttactgtatgttagttctgc  
 agagctagttttgtaaaggcatgtaatagatccttgccattctacattcgaaagtatt  
 cacaataaaagacgccaaggactggagaagaaggtgaa

Figure 84

SEQ ID NO.: 84 hSPG13 short transcript encoded protein sequence

MAAEASKTGPSSYQRMGRKSQPWGAAEIQC TRCGRRVSRSSGHCELQCGHAFCELC  
 LLMTEECTTIIICPDCEVATAVNTRQRYPMAGYIKEDSIMEKLQPKTIKNCSDQDFKKTA  
 DQLTTLERSASTDKTLNNSAVMLDTNTAEEIDEALNTAHHSFEQLSIAGKALEHMQK  
 QTIEERERVIEVVEKQFDQLLAFFDSRKKNLCEEFARTDDYLSNLNIKASYIEEKKNN  
 LNAAMNIARALQLSPSLRTYCDLNQIIRTLQLTSDSELAQVSPQLRNPPRLSVNCSEI  
 ICMFNNMGKIEFRDSTKCYQPQENEIRQNQVKYNNKELSCYDTPPLEKKVDMSVLT  
 SEAPPPLQPETNDVHLEAKNFQPKDVATASPKTIAVLQPMGSSPDVIIEEIIDNV  
 TCGTDDLGETPRYPKKPLQKNSSVPFGSKADTVTTV.

Figure 85

SEQ ID NO.: 85 hSPG39b encoded protein sequence  
 MALRPEDPSSGFRHGNVVAIFIIEKMARHTKGPEFYFENISLSWEVEDKLRILEDSEV  
 PSEVKEACTWGLSLALGVRAHRQGQLQNRRVQWLQGFALKHRSAAVLVLSNLTELKEQQ  
 EMECNEATFQLQLTETSLAEVQRERDMLRWKLFAHELAPPQGQGQATVFPGLATAGGDW  
 TEGAGEQEKEAVAAAAGAAGGKGEERYAEAGPAPAEVLQGLGGGFRQPLGAIVAGKLHLC  
 GAEGERSQVSTNSHVCLLAWVHSLTGASSCPAPYLIHILIPMPFVRLSHTQYTPFTS  
 KGHRTGSNSDAFQLGGL.

Figure 86a

SEQ ID NO.: 86 hSPG39b genomic sequence

TCTCTTCAGGCGTGTAAAGCAGCGGGTTGGCCTGTACTTCTCTGGCCCTGGCTGAAG  
 AGGTGAGGCCTGGTGGAGATGTCCTAGGGTAGGACAAGCCGGTCAGAGGGTCATTAGG  
 AGGGTCTTGTCAAGAGTGGGAGGGCGAGAACAGATGAGGGGAGGGCTAAGGAGGA  
 GGAAAGAAACCTATTGGCTGCTCATCCACACAGGGCTAGTGAAACCGTTAAGCCCCTA  
 GGCATGATGGCCTTGAGACCTGAGGACCCCAGTAGTGCTCCGGCACGGAAACGTGG  
 TGGCCTTCATCGAGAAAATGGCCAGGCACACGAAAGGCCCGAGTTCTACTCGAG  
 AATATATCCTTATCCTGGGAGGAGGTGGAAGACAAGCTCAGGGCCATCCTGGAGGACAG  
 CGAGGTGCCAGCGAGGTCAAAGAGGCCTGCACTGGGGCAGGGCTGGCCTGGGTGTGC  
 GCTTGCCCACAGGCAGGGCAGTTACAAAACCGCAGGGTGCAGTGGCTGCAAGGCTTT  
 GCCAAACTGCACAGATCAGCTGCGCTGGCTTGGCCTCAAACCTGACGGAACCTCAAGGA

Figure 86b

ACAGCAGGAGATGGAATGCAATGAGCGACCTCCAGTTGCAGCTAACCGAGACCAGCC  
 TTGCGGAGGTGCAGAGAGAGCGGGACATGCTGAGATGGAAGCTTCCATGCCGTAAGA  
 TCCCCCGAATGGTCCCTGTCCAATGCCCTGCCCTGCCAACCTGTCCGGACCCCTG  
 CCCTGTCCCAGAATGTGTTCAAGCTCTGCCTACTTCTCTCCAGGAGCTGGCACCTCCC  
 CAGGGACAGGGCCAGGCTACAGTGTTCAGGCCCTGCCACTGCCGGAGGGATTGGAC  
 AGAAGGAGCAGGTGACCAGGAAAAGGAGGCCGGTGGCTGCTGCTGGTGTGGAGGAA  
 AAGGAGAGGAGAGGTATGCAGAGGCAGGGCCTGCCCGCAGAGGTCTTGAGGGCTG  
 GGAGGAGGCTTCAGGCAGGCCCTCGGAGCTATTGAGCAGGCAAATTACACCTTGC  
 GGCAGAGGGAGAAAGATCTCAGGTCAAGTACAAACAGCCATGTCTGTCTGGGCTT  
 GGGTCCACAGTCTCACTGGAGCCTCTCAGTCCAGTCCACCTCATTACATACTC  
 ATACCCATGCCCTTGTCCGCCCTCTCAGCCATAACCAATATAACCCCTTACCCAGCAA  
 AGGTACAGAACGGGTTCCAACTCAGATGCCCTTCAACTGGGGGCCCTGATGCTAGC  
 CTGTGGTCAGATGTGGAGGCCAGGGAATAGACCCCTCAAGAGCCCCAAGAGACAGGAG  
 AGACTCCGAACTCCATCAGCAGAGAAGACCTCCAGTATATCGCAGGCCAGGGAACTGGG  
 ACTGCCCTGGTGTAAAGCTGTGAATTTCATGGAGGGAAAATTGCTCCTGTGGG  
 AGGCGAATCTGGCTGCAAAAGCCTCAGTAAAT

Figure 87a

SEQ ID NO.: 87 hSPG70 cDNA sequence

GAECTATATTCCCTGTAAGGGGGAAAGTTGATTGCCAAGTACACTGTTGATCAGACCTG  
 GAACAGAGCAATCATAACAAACAGTTGATGTGCAAGCAAAAGAAGGCACATGTCTTATATA  
 TTGATTATGGAATGAAGAATAATTCCATTAAACAGAATTACACCTCAACAGGAAC  
 ATTGACTTGTTCCTCCTGTGCCATAAAGTGTCTTGTAGCCAATGTTATCCCAGCAGA  
 AGGGAAATTGGAGCAGTGATTGTATCAAAGCTACTAAACCACGTGTTAATGGAGCAGTACT  
 GCTCCATAAAAGATTGTCGACATCTTGAAGAGGAAGTGGTTACCTTGCTGTAGAAGTT  
 GAGCTGCCAAATTCAAGGAAAACCTTGTAGACCATGTGCTTATAGAAATGGGATATGGCTT  
 GAAACCCAGTGGACAAGATTCTAAGAAGGAAAATGCCAGATCAAAGTGTATCTGAAGATG  
 TTGGAAAAATGACAACACTGAAAACAAACATTGCGTAGACAAAAGTGCACTAATCCCAAAA  
 GTGTTAACTTTGAATGTAGGTGATGAGTTTGTGGTGTGGTGCACATTCAAACACC  
 AGAAGACTCTTTGTCAACAACTGCAAAAGTGGCGAAAGCTTGCTGAACCTCAGGCAT  
 CCCTTAGCAAGTACTGTGATCAGTTGCCACGCTCTGATTTTATCCAGCCATTGGT  
 GATATATGTTGTGCTCAGTTCTCAGAGGATGATCAGTGGTACCGTGCCTCTGTTGGC  
 TTACGCTCTGAAGAATCTGACTGGTCGGATATGTAGATTATGGAAACTTTGAAATCC  
 TTAGTTGATGAGACTTTGCCATAATCCAAAGTTGTTGGAATTGCCAATGCAAGCT  
 ATAAAGTGTGTACTAGCAGGAGTAAAGCCATCATTAGGAATTGGACTCCAGAAAGCTAT  
 TTGTCATGAAAAAAACTTGTACAGAACAAAATAATCACAGTGAAGTGGTGGACAAGT  
 TGGAAAACAGTCCCTGGGGCTTGTATAATTCCGAGACGCCCTCATGTCAGTGT  
 AGCAAAGTTCTCCTAGATGCAGGCTTGTGCTGGAGAACAGAGTATGGTGACAGATAA  
 ACCCAGTGTGAAAGAAAACCAGTGTCCCTGGGTGTGGAAGGAAAAGTAAATCCAT  
 TGGAGTGGACATGGGTTGAACTTGGTGTGACCAACAGTAGATGTTGTGGTGTG  
 ATATATAGTCCTGGAGAATTGTTATTGCCATGTGCTTAAAGAGGATGCTTAAAGAAA  
 CAATGATTGAAACAGTCATTAGCAGAACACTGCCAGCAGAAAGTTACCTAATGGTTCA  
 AGGCAGAGATAGGACAACCTTGTGCTGGTGTGGAAGGAAAAGTAAATCCAT  
 GCTTTAGTCAGGAAATTCTACCAAAATGGACATGTTAAAGTACATTGTGGATTATGG  
 AAACATCGAAGAAGTTACTGCAGATGAACCTCGAATGATATCATCAACATTAAAC  
 TTCCCTTCAAGGGAAATACGGTGCCAGTTAGCAGATATACAGTCTAGAAACAAACATTGG  
 TCTGAAGAAGCCATAACAAAGATTCCAGATGTGTGTTGCTGGGATAAAATTGCAAGCCAG  
 AGTGGTTGAAAGTCAGTAAATGGGATAGGAGTTGAAACTCACCGATCTCCACTTGT  
 ATCCCAGAATATTAGTGTGATGTTGATGAACATCTGGTTAAATCTGCTTCA

Figure 87b

CCACATAAAAGACTTACCAAATGACAGACTTGTTAATAAACATGAGCTCAAGTTCATGT  
 ACAGGGACTTCAGCTACCTTTCAGCTGAGCAATGGAAGACGATAGAATTGCCAGTGG  
 ATAAAACATACAAAGCAAATGTATTAGAAATCATAGGCCAAACTTGTGTTATGCTCTA  
 CCAAAAGGGATGCCAGAAAATCAGGAAAAGCTGTGCATGTTGACAGCTGAATTATAGA  
 ATACTGCAATGCTCCGAAAAGTCGACCACCCCTATAGACCAAGAATTGGAGACGCATGCT  
 GTGCCAAATACACAAGTGATGATTTTGGTATCGTGCAGTTGTTCTGGGACATCAGAC  
 ACTGATGTGGAAGTGCTCATGCAACTATGGAAACATTGAAACCCCTGCCCTTTGCAG  
 AGTGCAACCAATCACCTCTAGCCACCTGGCGTCCTTCCAATTATTAGATGTCAC  
 TTGAAGGATTAATGGAATTGAATGGAAGCTCTTCATTAATAATATGCTATTAAAA  
 AATTTCATGTTGAATCAGAAATGTAATGCTTCTGTGAAAGGAATTACAAAGAATGTCCA  
 TACAGTGTCAAGTTGAGAAATGTTCTGAGAATGGACTGTCGATGTAGCTGATAPGCTAG  
 TGACATTGCTGGCAAAAACATCACACCTCAAAGGCAGAGTGCCTTAAATACAGAA  
 AAGATGTATAGGACGAATTGCTGTCACAGAGTTACAGAAACAAGTTGAAAPCATGA  
 ACATATTCTCTCTCTTAAACAAATTCAACCAATCAAATAATTATGAAATGA  
 AAAAACTGGTAAAAAGTTAAGTAAAGTTAACTGATGTTTCGCCTCTGTGATCAC  
 CAATAGGACATCTCAGGCATATTGGCAGGATAGAGCTAATGGAGTGAACCTATTGTA  
 AGGCTGTACTTCTGATGTTTCCTTGTACTGCTAATGAACTGAACCCCCAGGGGTA  
 TTCCAGTTGTAATAGCCTTCCTTACTGTTGTTGGTTCTGTGAATGCCATGTTATTG  
 ATATGTGGAGGGCCGGAATTCTTTGCTA

Figure 88

SEQ ID NO.: 88 hSPG70 encoded protein sequence  
 MEQYCSIKIVDILEEEVVTFAVEVELPNSGKLLDHVLIEMGYGLKPSQDSKKENADQS  
 DPEDVGKMTTENNIVVDKSDSLIPKVLTNVGDEFCGVVAHIQTPEDFFCQQLQSGRKLA  
 ELQASLSKYCDQLPPRSDFYPAIGDICCAQFSEDDQWYRASVLAYASEESVLVGVDY  
 NFEILSLMRLCPPIPKLLELPMQAIKVCLAGVKPSLGIWTPEAICLMKKLVQNKIITVK  
 VVDKLENSSLVELIDKSETPHVSVSVKVLLDAGFAVGEQSMVTDKPSDVKE  
 TSPLGVEGKVNPLEWIWVELGVDQTVDDVVVCVITYSPGEFYCHVLKEDALKLNDLN  
 KSIAEHQQKLPGNPKAEIGQPCCAFFAGDGWSYRALVKEILPNGHVVKHF  
 DVYGNIEEVTADELRISSIFLNLPFQGIRCOLADIQSRNKHWSEE  
 ITRFQMCVAGIKLQARVVEVTENGIGVELTD  
 LSTCYPRIISDVLIDEHLVLKSASPHKDPNDRLVNKHELOQHVQGLQATSSAEQWK  
 TIELPVDTIQANVLEIISPNLFYALPKGMPEQEKLCMLTAELLEYCN  
 APKSRLPPYRPRIGDACCAYTSDDFWYRAVVLGTS  
 DTIVEVLYADYGNIE  
 TLPLCRVQPI  
 TSSHLALPFQI  
 IIRCSELGIMELNGSSSQLIIMLLKNFMLNQN  
 VMLSVKGITK  
 NVHTVSVEKCSENGTV  
 DVADKLVTFGLAKNITPQRQSALNT  
 EKMYRTNCCCTELQK  
 QVEKHEHILLFLNN  
 STNQNK  
 FIEMKKLVKS

Figure 89a

Human TEX11 cDNA sequence:

TGGTTAAGTCCAAGCTGACAATGATGATTTTTCCATGGACTTAAAGAAG  
TTGTTGAAAACCTGGTTACAAATGATAATTACCTAACATACCAAGAGGCAATT  
GATAGACTCTTCAGCGACATAGCAAATATCAACAGGGAGTCTATGGCTGAAA  
TAACAGACATTAGATTGAAGAAATGGCAGTAAACCTATGGAACTGGGACT  
TACCATAGGAGGAGGTTGGCTGTAAATGAAGAGCAGAAAATTAGATTACAT  
TATGTTGCTTGCAAGTTGCTGAGTATGTGTGAAGCCTCATTGCCTCAGAAC  
AAAGTATTCAACGACTGATTATGATGAATATGAGAATAGGAAAAGAATGGTT  
GGATGCTGGAAATTTCTAATCGCTGATGAATGTTTCAAGCTGCTGTGGCC  
AGTCTGGAGCAATTATACGTCAAATTAAATTCAAAGGAGCTCCCCCTGAGGCTG  
ACTTGACCATGGAGAAGATTACTGTTGAGAGTGACCACCTCAGAGTGCTTC  
TTACCAAGCAGAGTCAGCAGTTGCTCAAGGGATTCAAAGAGCATTATG  
TGTGTACTGCAATGAAAGATATGTTGATGAGGCTCCCCCAGATGACTTCAA  
GTCTTCATCATCTCTGTTACAACCTTGGAGTAGAAACCCAGAAGAATAATAA  
TATGAAGAAAGTTCTTCTGGCTTAGCCAAAGCTATGATATTGGGAAGATGG  
ATAAGAAATCTACTGGGCCAGAAATGCTGGCTAAAGTTCTACGGCTTATTAGC  
CACGAATTATTGGATTGGATGACACCAAATATTATGATAAGGCTCTCAAT  
GCTGAAACCTAGCAAACAAGGAACATTAAAGTTCTCCTGGCTTTCTTAA  
AAATGAAAATCCTCTTGAAGGGCAAACATCTAATGAAGAACTCCTGAAGC  
TGTCTGGAAATACTACATCTTGACATGCCCTAGACTCTGTCTGAACATT  
GCTAAACTGCTGATGGATCATGAAAGAGAATCTGTTGGGTTCTTCAATT  
CGATTATTATGAAACGTTTAAGTCATCGGAAAATATTGGAAAAGTTCTGATA  
CTCCATACTGACATGCTTTACAAGGAAGGAAGACTTCTGCCAAGGAGA  
AGATTGAAGAAATCTTTAGCTCACCAAACAGGAAGACAACGTACAGCAGA  
ATCAATGAACTGGTTACACAACATTCTGTGGAGACAAGCTGCCAGTAGTTT  
GAGGTACAAATTACACTGATGCCCTACAATGGTACTATTATTCTCTGAGGT  
TTTATTCAACTGATGAAATGGATCTGGACTTCACCAAGCTGCAGAGGAACAT  
GGCTTGCTGTTACCTGAATTGCAACAACCTGATAAGGCCAAAGAGGGCAGT  
GGCAGAAGCTGAACGACATGCCCTAGGAACGTTTCACTCAAATTATATA  
TTCAAGATTGCACTGATAGAGGGCAACTCTGAAAGAGCTTGCAGGCAATAA  
TTACTTTAGAGAATATTAACAGATGAAGAGTCAGAAGATAATGATCTAGTT  
GCAGAGAGAGGTTCACCTACCATGCTCTAAGTTAGCTGCCAGTTGCTC  
TAGAGAATGGACAACAAATTGGCAGAAAAAGCTTGGAAATTAGCTCA  
ACATTCAAGAAGACCAGGAACAAAGTTCTACAGCTGAAAGTGTGTTGCTCGT  
TTTCTCTTCCAAAATTGCTGAAATGCCGAATCTGAAGATAAGAAGAAAG  
AAATGGATCGACTTTGACTTGCTGAATAGAGCCTTGTGAAACTTCTCA  
GCCCTTGGTGAAGAAGCCTTAAGTTGGAGTCAGAGCTAATGAAGCTCA  
GTGGTTGCAAAACAGCTTGGAACTTGGCTGTGCAATGTGACAAAGATCC  
AGTGTGATGAGAGAGTTTATACCTTATAAGATGTCCCAGTTGTC  
CTTCTGATCAAGTAATTGATTGACGGAAAACATGTTACTTATGGCAGTT  
GCAGTTGATCTAGAGCAAGGGAGAAAAGCTTCAACAGCTTGAACAGACC  
ATGTTCTGAGTCGTGCACTTGAGGAGATCCAGACATGCAATGACATCCATA  
ATTCTGAAACAAACAGGGACCTCTCAAATGATTGATGTGAGAAATTGCT  
TCTGCTGTACGAGTTGAAGTTAGAGCCTAATGAATGATCCATTACTGGAA  
AGCTTCTGGAATCAGTGTGGAGTTGCCTCATTAGAAACTAAACATTTG

AAACAATTGCAATAATAGCAATGGAAAAGCCTGCACACTATCCTTGATTGC  
TCTCAAGGCCTGAAAAAGGCTTATTGCTCTACAAAAGGAAGAACCAATT  
GATATATCACACATACAGCAAATGTATGCACAACTGGTTAACCTCTCAGTGC  
CAGATGGGGCGTCGAATGTAGAGCTCTGCCCCCTGGAAGAAGTTGGGGC  
TATTTGAAGATGCTCTGAGCCACATTAGCCGCACTAAAGACTACCCAGAAA  
TGGAGATTCTCTGGCTGATGGTCAAGTCCTGGAATACCGGAGTACTTATGTT  
TAGCAGGAGCAAGTATGCATCTGCTGAAAAGTGGTGTGGCCTGGCCTGCG  
TTTCCTTAACCACCTTACCTCCTCAAGGAAAGCTATGAAACTCAGATGAATA  
TGCTGTATAGTCAGCTGTGGAAGCATTGAGTAACAACAAGGGCCAGTTT  
TCATGAACATGGCTACTGGAGCAAGTCAGATTAGGCAAGCTCATGCCACA  
TGAAGAAGATACATTGTCCCAGATGCTGACTGTTAAATTTTGCCAGAGT  
TTCTCTTGAGCTTTGTTCTGTTGCTCAGACCCCTGTTTCAATGTTGAA  
TAAACTTCTAAAATAAAAGCATGCTGAATT

Figure 89b

Human TEX11 protein sequence:

MDFKEVVENLVTNDNSPNIPEAIDRLFSDIANINRESMAEITDIQIEEMAVNLWN  
WALTIGGGWLVNEEQKIRLHYVACKLLSMCEASFASSEQSIQRLLIMMNNMRIGKE  
WLDAGNFLIADECFQAAVASLEQLYVKLIQRSSPEADLTMEKITVESDHFRVLSY  
QAESAVAQGDFQRASMVCVLQCKDMLMRLPQMTSSLHHLCYNFGVETQKNNK  
YEESSFWLSQSYYDIGKMDKKSTGPPEMLAKVLRLLATNYLDWDDTKYYDKALNA  
VNLANKEHLSSPGLFLKMKILLKGGETSNEELLEAVMEILHLDMPPLDFCLNIKLLM  
DHERESVGFHFLTIIHERFKSSENIGKVLLHTDMILLQRKEELLAKEKIEEIFLAHQ  
TGRQLTAESMNWLHNILWRQAASSFEVQNYTDALQWYYSLRFYSTDEMDD  
FTKLQRNMACCYLNLQQLDKAKEAVAEAERHDPRNVFTQFYIFKIAVIEGNSER  
ALQAIITLENILTDEESEDNDLVAERGSPTMILLSLAAQFAENGQQIVAEKALEYL  
AQHSEDQEQLTAVKCLLRFLLPKIAEMPESEDKKEMDRLLTCLNRAFKLSQ  
PFGEALSLESRANEAQWFRKTAWNLAQCDKDPVMMREFFILSYKMSQFCP  
SDQVILIARKTCLLMAVADLEQGRKASTAFEQTMFSLRALEEQTCDIHNFLK  
QTGTFSNDSCEKLLLLYEFEVRAKLNDPLLESFLESVWELPHLETKTFTIAIIAM  
EKPAHYPLIALKKALLYKKEEPIDISQYSKCMHNLVNLSVPDGASNVELCPL  
EEVWGYFEDALSHISRTKDYPPEMEILWLMVKSWNTGVLMFSRSKYASAECWC  
GLALRFLNHLSFKESYETQMNLSQLVEALSNNKGPFHEHGYWSKSD

Figure 90

# Identification of spermatogonia-specific genes by cDNA subtraction



Figure 91

## Known germ cell-specific genes enriched by subtraction

| Gene               | Chr | Source                 | Significance                    |
|--------------------|-----|------------------------|---------------------------------|
| <i>Rbmy</i>        | Y   | Elliott, 1996          | implicated in male fertility    |
| <i>Dazl</i>        | 17  | Reijo, 1996            | implicated in male fertility    |
| <i>Ubely</i>       | Y   | Mitchell, 1991         | spermatogonial proliferation    |
| <i>Usp9y</i>       | Y   | Ehrmann, 1998          | implicated in male fertility    |
| <i>Sycp 1</i>      | 3   | Sage, 1997             | meiosis                         |
| <i>Sycp 2</i>      | 2   | Wang, unpublished      | meiosis                         |
| <i>Sycp 3</i>      | 10  | Klink, 1997            | meiosis                         |
| <i>Figla</i>       | 6   | Liang, 1997            | bHLH transcription factor       |
| <i>Ddx4</i>        | 13  | Fujiwara, 1994         | germ cell determination in fly  |
| <i>Tuba3/Tuba7</i> | 6   | Villasante, 1986       | testis specific tubulin isoform |
| <i>Ott</i>         | X   | Kerr, 1996             | meiosis                         |
| <i>Mage</i>        | X   | De Plaen, 1999         | melanoma associated antigen     |
| <i>Stra8</i>       | 6   | Oulad-Abdelghani, 1996 | Induced by retinoic acid        |

The subtraction is highly sensitive and comprehensive

Figure 92

86/108



23 novel mouse germ cell specific genes

Figure 93

## Novel mouse germ cell specific genes

| <b>Gene</b>    | <b>Significance</b>                                                                 |
|----------------|-------------------------------------------------------------------------------------|
| <i>Taf2q</i>   | Transcription initiation factor                                                     |
| <i>Nxf2</i>    | Nuclear mRNA export factor                                                          |
| <i>Rnf17</i>   | RING finger protein interacting with all mad members of the Myc oncoprotein pathway |
| <i>Mov10l1</i> | Putative RNA helicase                                                               |
| <i>Piwil2</i>  | Homologue of piwi involved in germ cell renewal in fly                              |
| <i>Tktl1</i>   | Transketolase                                                                       |
| <i>Usp26</i>   | Ubiquitin specific protease                                                         |
| <i>Fthl17</i>  | Ferritin heavy chain; iron metabolism                                               |
| <i>Stk31</i>   | Putative protein kinase with One tudor domain                                       |
| <i>Rnh2</i>    | Ribonuclease inhibitor                                                              |
| <i>Tdrd1</i>   | Four tudor domains                                                                  |
| <i>TEX14</i>   | putative protein kinase                                                             |
| <i>Pramell</i> | Prame-like gene                                                                     |
| 10 genes       | No homology with proteins in the database                                           |

Figure 94

## Post-transcriptional gene regulation of germ cell development

| Genes          | Features                          |
|----------------|-----------------------------------|
| <i>Nxf2</i>    | Nuclear mRNA exporter (RRM)       |
| <i>Rnh2</i>    | Ribonuclease inhibitor (LRR)      |
| <i>Stk31</i>   | One tudor domain                  |
| <i>Tdrd1</i>   | Four tudor domain                 |
| <i>Mov10l1</i> | RNA helicase                      |
| <i>Dazl</i>    | RNA recognition motif (RRM)       |
| <i>Rbm</i>     | RNA recognition motif (RRM)       |
| <i>Ddx4</i>    | DEAD box; a putative RNA helicase |

Figure 95

## Abundance of male germ-cell-specific genes on X Chromosome



Figure 96

SUBSTITUTE SHEET (RULE 26)

90/108

Rapid evolution of spermatogonia-specific genes  
in mouse and human



Figure 97

## Hybrid male sterility in mice

| Locus                  | <i>Hst-1</i>                                          | <i>Hst-3</i>                                      |
|------------------------|-------------------------------------------------------|---------------------------------------------------|
| Cross                  | <i>M. m. musculus</i><br>X<br><i>M. m. domesticus</i> | <i>M. spretus</i><br>X<br><i>M. m. domesticus</i> |
| Separation             | 1 million yrs                                         | 3 million yrs                                     |
| Male sterility         | Yes                                                   | Yes                                               |
| Mapping                | Chr. 17 t-complex                                     | Chr. X distal end                                 |
| Pathology              | meiotic arrest                                        | meiotic arrest                                    |
| X-Y dissociation       | High                                                  | High/Low                                          |
| Autosomal dissociation | High                                                  | High/Low                                          |
| Nature of defect       | Genic                                                 | Structural ?                                      |

Figure 98

92/108

## Candidate genes for *Hst-3*



93/108

# 14 novel human testis-specific genes



Figure 100

## BAC physical map and gene structure of *TEX11*

Exons

1       29



Sequenced by Human Genome  
Project

Sequenced in house

The *TEX11* gene is ~ 400 kb and consists of 29 exons.

Figure 101

## High throughput mutation screening by genomic sequencing



PCR amplification on infertile patient DNA  
Sequencing of PCR product  
Sequence analysis

380 infertile males and 93 fathers  
29 exons of TEX11

14,000 PCR reactions  
14,000 sequencing reactions

Figure 102

96/108

## Mutations found in infertile but not normal males



Figure 103

97/108



FIG. 104

**Epigenetic down-regulation of X-linked genes  
during male meiosis**



Figure 105

99/108

## Abundance of spermatogonia genes on X Chromosomes

Origin of Species

Hybrid sterility

Origin of human male infertility

X-linked male infertility

Hybrid sterility in men ?

Figure 106

100/108

Intronic Variants in *TEX11*

| Patient   | IVS   | Variant                    | Diagnosis       | Found in<br>380 infertile | Found in 93<br>normal |
|-----------|-------|----------------------------|-----------------|---------------------------|-----------------------|
| 1E03      | 2     | T(-17)C                    | AZ              | 1                         | 0                     |
|           | 3     | A(35)G                     |                 | CV                        | 57                    |
|           | 3     | T(-22)C                    | AZ, SCO,<br>TMA | 6                         | 0                     |
| 2H4       | 3     | CAT(-22)TAC                |                 | 1                         | 1                     |
| 4F9       | 4     | G(-48)A                    | SCO             | 1                         | 0                     |
|           | 10    | T(-27)C                    |                 | CV                        | 5                     |
| 4F12      | 11    | T(-28)C                    | TMA             | 1                         | 0                     |
| 1C02      | 14    | G(-64)A                    | SCO/TMA         | 1                         | 0                     |
|           | 15    | A(48)T                     |                 | CV                        | 22                    |
|           | 17    | ATT, AAC<br>GAC -23 to -25 |                 | CV, three<br>haplotypes   | Yes                   |
| 1G08      | 18    | T(-22)C                    | severe OZ       | 1                         | 0                     |
| 1C6, 4G11 | 20*   | T(-10)A                    | AZ, TMA         | 2                         | 0                     |
| 4B11      | 20*   | G(-1)A                     | TMA/OZ          | 1                         | 0                     |
| 4G1       | 21    | A(-34)G                    | SCO             | 1                         | 0                     |
|           | 22    | C(-44)T                    | normal          | 0                         | 1                     |
| 1C2       | 23    | G(-119)A                   | SCO/TMA         | 1                         | 0                     |
| 4C6       | 26    | A(-55)C                    | SCO             | 1                         | 0                     |
|           | 27    | T58C                       |                 | 12                        | 3                     |
|           | 27    | TC(-4,-3)AT                |                 | Variant                   | 4                     |
| 2H9       | 27    | A(-44G)                    | fructose+<br>AZ | 1                         | 0                     |
|           | 3'UTR | T(123)C                    |                 | 4                         | 1                     |

Only 1 variant found in normal males

All the variants only in infertile males are in the 3' region of introns

Nearly all are in the AZ, TMA, SCO.

Figure 107

101/108

CODING VARIANTS IN *TEX 11*

| Patient ID      | Source   | Exon | Variant                        | Change   | Diagnosis        | I <sup>380</sup> | F <sup>93</sup> |
|-----------------|----------|------|--------------------------------|----------|------------------|------------------|-----------------|
|                 |          | 5    | AAA-AGA(320)<br>K107R          | mis      |                  | 14               | 5               |
| 1B12<br>WHT3150 | Oates\$  | 5    | TGG-AGG(325)<br>W109R          | mis      | AZ               | 1                | 0               |
| 4B04<br>WHT3171 | Oates\$  | 5    | C381T next to 5'<br>SS         | silent   | TMA              | 1                | 0               |
| 3D12<br>WHT3417 | Oates\$  | 6    | GTC-ATC(400)<br>V134I          | mis      | AZ/OZ            | 1                | 0               |
| 3G08<br>WHT3500 | Silber\$ | 6    | CAA-CGA(491)<br>Q164R          | mis      | pathologic<br>AZ | 1                | 0               |
| 1H11<br>WHT3759 | Silber\$ | 15   | Ins(1233) 2bp                  | nonsense | TMA              | 1                | 0               |
|                 |          | 15   | GAA-<br>AAA(1282)<br>Glu428Lys | mis      |                  | 20               | 3               |
| 2B06<br>WHT3677 | Oates\$  | 16   | AAC(1449)AAA<br>Ans483Lys      | mis      | OZ               | 1                | 0               |
| 4C04<br>WHT2499 | Silber\$ | 25   | GTG2219GCG<br>V740A            | mis      | TMA              | 1                | 0               |
| 1B07<br>WHT3459 | Oates\$  | 25   | A(2250)T                       | silent   | AZ               | 1                | 0               |
| 4C06<br>WHT2546 | Silber\$ | 26   | T2295C                         | silent   | SCO              | 1                | 0               |
|                 |          | 27   | T2472C                         | silent   |                  | 23               | 4               |

AZ: azoospermia; OZ: oligospermia; TMA: testicular maturation arrest; SCO: sertoli cell only

\$ = families being pursued and cell lines being further studied

I<sup>380</sup> = No. in 380 infertile menF<sup>93</sup> = No. in 93 normal men

Figure 108

102/108



Both maternal uncles: >30 yrs of marriage and no children  
 → Indicates the proband who has a 2bp insertion in *TEX11*  
*WHT4067* is heterozygous for this mutation

**FIG. 109**

103/108



FIG. 110

Coding variants found in infertile but not normal males



→ Proband WHT2508 has an bp deletion in TAF2Q (X-linked).  
 We have his histology  
 WHT is heterozygous for this mutation

### WHT2508 pedigree

Figure 111

105/108

Variants in *TAF2Q*

| Patient ID      | Source    | Exon  | Variant                    | Change    | Diag-nosis   | I <sup>380</sup>     | F <sup>93</sup> |
|-----------------|-----------|-------|----------------------------|-----------|--------------|----------------------|-----------------|
| 3F9<br>WHT3457  |           | 3     | T142C<br>4bp to SS         | silent    | TMA          | 1                    | 0               |
| 1F11<br>WHT3493 | Oates \$  | 4     | GAT-GTT(149)<br>Asp39Gly   | mis       | OZ           | 1                    | 0               |
| 2B3             |           | 5     | G375A                      | silent    | severe<br>OZ | 1                    | 0               |
|                 |           | 9     | AGC-GGC (664)<br>Ser222Gly | mis       |              | 66                   | 11              |
|                 |           | 10    | 6bp Del                    | Del(2 au) |              | 96                   | 20              |
| 1A11<br>WHT2508 | Silber \$ | 11    | Del (A928)                 | nonsense  | TMA          | 1                    | 0               |
| Ctrl #1C06      |           | 13    | G1109A C370Y               | missense  | Normal       | 0                    | 1               |
| 3C12            |           | IVS2  | G(-47)C                    |           | OZ           | 1                    | 0               |
| 4E08            |           | IVS3  | A(-24)C                    |           | SCO          | 1                    | 0               |
| 3E05            |           | IVS4  | A(24)C                     |           | unknown      | 1                    | 0               |
| 2F10            |           | IVS7  | C(-57)G                    |           | unknown      | 1                    | 0               |
|                 |           | IVS8  | A(52)G                     |           |              | CV                   | 31              |
| 1B11            |           | IVS9  | G(9)A                      |           | AZ           | 1                    | 0               |
|                 |           | IVS10 | A(91)G                     |           |              | 61+96<br>(haplotype) | 10+20           |
|                 |           | IVS10 | (-104)                     |           |              | CV                   | 29              |

I<sup>380</sup> = No. in 380 infertile menF<sup>93</sup> = No. in 93 normal men

Figure 112

| Mouse Genes    |                                             |               |     |             |                                                                                                                                |
|----------------|---------------------------------------------|---------------|-----|-------------|--------------------------------------------------------------------------------------------------------------------------------|
| Gene symbol    | Gene name                                   | Ex-expression | Chr | GenBank no. | Comments                                                                                                                       |
| <i>Fth1l7</i>  | Ferritin heavy polypeptide-like 17          | testis        | X   | AF285569    | Ferritin, functioning in iron metabolism, consists 24 heavy and light chains <sup>a</sup>                                      |
| <i>Usp26</i>   | Ubiquitin specific protease 26              | testis        | X   | AF285570    | Predicted protein contains His and Cys domains conserved among deubiquitinating enzymes <sup>b</sup>                           |
| <i>Tktl1</i>   | Transketolase-like 1                        | testis        | X   | AF285571    | Homologous to human transketolase <i>TKTL1</i> <sup>c</sup>                                                                    |
| <i>Tex11</i>   | Testis expressed gene 11                    | testis        | X   | AF285572    | Novel 947-residue protein                                                                                                      |
| <i>Tex16</i>   | Testis expressed gene 16                    | testis        | X   | AF285573    | Novel 1139-residue protein; rich in serine                                                                                     |
| <i>Taf2q</i>   | TBP-associated factor, RNA polymerase II, Q | testis        | X   | AF285574    | Human autosomal homolog <i>TAF2F</i> encodes a component of TFIID <sup>d</sup>                                                 |
| <i>Pramel3</i> | PRAME (human)-like 3                        | testis        | X   | AY004873    | Homologous to human <i>PRAME</i> , encoding a melanoma antigen recognized by cytotoxic T cells <sup>e</sup>                    |
| <i>Nxf2</i>    | Nuclear RNA export factor 2                 | testis        | X   | AF285575    | Homologous to Mex67p and <i>NXF1</i> , encoding nuclear RNA export factors <sup>f,g</sup>                                      |
| <i>Tex13</i>   | Testis expressed gene 13                    | testis        | X   | AF285576    | Novel 186-residue protein; two closely related homologs on human X chromosome                                                  |
| <i>Pramell</i> | PRAME (human)-like 1                        | testis        | 4   | AF285578    | Homologous to human <i>PRAME</i>                                                                                               |
| <i>Tex17</i>   | Testis expressed gene 17                    | testis        | 4   | AF285579    | Novel 120-residue protein; calculated pI 9.9                                                                                   |
| <i>Stk31</i>   | Serine/threonine kinase 31                  | testis        | 6   | AF285580    | Putative protein kinase <sup>i</sup> with tudor domain (found in RNA-interacting proteins) <sup>j</sup> and coiled coil region |
| <i>Rnh2</i>    | Ribonuclease inhibitor 2                    | testis        | 7   | AF285581    | Predicted protein contains 6 leucine-rich repeats <sup>k</sup>                                                                 |
| <i>Tex12</i>   | Testis expressed gene 12                    | testis        | 9   | AF285582    | Novel 123-residue protein with coiled coil region                                                                              |
| <i>Tex18</i>   | Testis expressed gene 18                    | testis        | 10  | AF285583    | Novel 80-residue protein                                                                                                       |
| <i>Tex14</i>   | Testis expressed gene 14                    | testis        | 11  | AF285584    | Predicted protein contains two protein kinase domains <sup>l</sup>                                                             |
| <i>Rnf17</i>   | Ring finger protein 17                      | testis        | 14  | AF285585    | A RING finger-containing protein <sup>m</sup>                                                                                  |
| <i>Piwil2</i>  | piwi (drosophila)-like 2                    | testis        | 14  | AF285586    | Homologous to <i>Drosophila piwi</i> , involved in germ-line stem cell renewal and meiotic drive <sup>n,o</sup>                |
| <i>Mov10ll</i> | Mov10 (mouse)-like 1                        | testis        | 15  | AF285587    | Putative RNA helicase <sup>p</sup>                                                                                             |

Figure 113a

| Gene symbol  | Gene name                | Ex-pression      | Chr | GenBank no. | Comments                                                |
|--------------|--------------------------|------------------|-----|-------------|---------------------------------------------------------|
| <i>Tex20</i> | Testis expressed gene 20 | testis and ovary | 2   | AF285588    | Novel 188-residue protein; calculated pI 10.2           |
| <i>Tex15</i> | Testis expressed gene 15 | testis and ovary | 8   | AF285589    | Novel 2785-residue protein                              |
| <i>Tex19</i> | Testis expressed gene 19 | testis and ovary | 11  | AF285590    | Novel 351-residue protein with coiled coil region       |
| <i>Tdrd1</i> | Tudor domain protein 1   | testis and ovary | 19  | AF285591    | Predicted protein contains 4 tudor domains <sup>j</sup> |

- a Lawson, D.M. *et al.*, *Nature* 349, 541-544 (1991).
- b Baker, R.T., *et al.*, *J. Biol. Chem.* 267, 23364-23375 (1992).
- c Coy, J.F. *et al.*, *Genomics* 32, 309-316 (1996).
- d Chiang, C.M. & Roeder, R.G. *Science* 267, 531-536 (1995).
- e van Baren, N. *et al.*, *Br. J. Haematol.* 102, 1376-1379 (1998).
- f Segref, A. *et al.*, *Embo J.* 16, 3256-3271 (1997).
- g Gruter, P. *et al.*, *Mol. Cell* 1, 649-659 (1998).
- h Kang, Y. & Cullen, B.R. *Genes Dev.* 13, 1126-1139 (1999).
- i Hanks, S.K. & Quinn, A.M. *Methods Enzymol.* 200, 38-62 (1991).
- j Ponting, C.P., *Trends Biochem. Sci.* 22, 51-52 (1997).
- k Kobe, B. & Deisenhofer, J., *Trends Biochem. Sci.* 19, 415-421 (1994).
- l Mouse *Rnf17* appears to encode a protein of 626 residues. A mouse cDNA sequence corresponding to the 5' portion of *Rnf17* was reported recently; it appeared to encode a protein of 316 residues [X. Y. Yin, K. Gupta, W. P. Han, E. S. Levitan, E. V. Prochownik, *Oncogene* 18, 6621 (1999)]. The discrepancy may be the result of sequencing errors near the 3' end of the previously reported cDNA sequence (compare GenBank AF190166 [1098 nucleotides; 951 nucleotide open reading frame] with GenBank AF285585 [2094 nucleotides; 1881 nucleotide open reading frame]). Yin and colleagues demonstrated that the portion of the protein encoded by their partial cDNA interacted with mad proteins in vitro. In the case of human *RNF17*, alternative splicing appears to generate two protein isoforms.
- m Cox, D.N. *et al.*, *Genes Dev.* 12, 3715-3727 (1998).
- n Schmidt, A. *et al.*, *Genetics* 151, 749-760 (1999).
- o Mooslehner, K., *et al.*, *Mol. Cell. Biol.* 11, 886-893 (1991).

Figure 113b

## Mouse spermatogonially expressed gene specific gene and the human orthologs

| Mouse          | Gen Bank No. | Human          | GenBank No.          | Chr. |
|----------------|--------------|----------------|----------------------|------|
| <i>Fthl17</i>  | AF285569     | <i>FTHL17</i>  | AF285592             | X    |
| <i>Usp26</i>   | AF285570     | <i>USP26</i>   | AF285593             | X    |
| <i>Tkdl</i>    | AF285571     |                |                      |      |
| <i>Tex11</i>   | AF285572     | <i>TEX11</i>   | AF285594             | X    |
| <i>Tex16</i>   | AF285573     |                |                      |      |
| <i>Taf2q</i>   | AF285574     | <i>TAF2Q</i>   | AF285595             | X    |
| <i>Pramel3</i> | AY004873     |                |                      |      |
| <i>Nxf2</i>    | AF285575     | <i>NXF2</i>    | AF285596             | X    |
| <i>Tex13</i>   | AF285576     | <i>TEX13A</i>  | AF285597             | X    |
| <i>Pramell</i> | AF285578     | <i>TEX13B</i>  | AF285598             | X    |
| <i>Tex17</i>   | AF285579     |                |                      |      |
| <i>Stk31</i>   | AF285580     | <i>STK31</i>   | AF285599             | 7    |
| <i>Rnh2</i>    | AF285581     |                |                      |      |
| <i>Tex12</i>   | AF285582     | <i>TEX12</i>   | AF285600             | 11   |
| <i>Tex18</i>   | AF285583     |                |                      |      |
| <i>Tex14</i>   | AF285584     | <i>TEX14</i>   | AF285601             | 17   |
| <i>Rnf17</i>   | AF285585     | <i>RNF17</i>   | AF285602<br>AF285603 | 13   |
| <i>Piwil2</i>  | AF285586     |                |                      |      |
| <i>Mov10l1</i> | AF285587     | <i>MOV10L1</i> | AF285604             | 22   |
| <i>Tex20</i>   | AF285588     |                |                      | 8    |
| <i>Tex15</i>   | AF285589     | <i>TEX15</i>   | AF285605             |      |
| <i>Tex19</i>   | AF285590     |                |                      | 10   |
| <i>Tdrd1</i>   | AF285591     | <i>TDRD1</i>   | AF285606             |      |

Figure 113c