МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ИС

КУРСОВАЯ РАБОТА

по дисциплине «Управление данными»

Тема: Разработка базы данных для автоматизации деятельности выставки собак

Студент гр. 6373	 Васильев М.С.
Преподаватель	 Татарникова Т.М.

Санкт-Петербург 2018

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ (КУРСОВОЙ ПРОЕКТ)

АННОТАЦИЯ

В данной курсовой работе производится проектирование реляционной базы данных для сайта, обеспечивающего поддержку выставки собак. На практике рассматривается анализ предметной области базы данных и логическое проектирование. По результатам курсовой работы получена логическая схема реляционной БД в третьей нормальной форме и получен рабочий прототип сайта, для обеспечения поддержки собачьих выставок.

SUMMARY

This course project presents process of designing relational database, for supporting dog expositions. We examined on a specific example database subject analysis and logical design. As a result, we got a logical scheme of relational database reduced to a third normal form and working prototype for site to support dog expositions.

СОДЕРЖАНИЕ

	Введение	5
1.	Анализ предметной области	6
1.1.	Выбор подхода	6
1.2.	Выбор оперируемых объектов	6
1.3.	Выбор групп пользователей системы	6
2.	Создание ER-модели	7
3.	Нормализация базы данных	9
3.1.	Первая нормальная форма	9
3.2.	Вторая нормальная форма	9
3.3.	Третья нормальная форма	9
4.	Описание БД в СУБД	10
4.1.	Таблицы	10
4.2.	Запросы с листингами SQL	11
4.3.	Реализация интерфейса к БД	13
5.	Разграничение прав	15
5.1.	Доступы каждой группы	15
5.2.	Детали реализации	15
	Заключение	16
	Список использованных источников	17

ВВЕДЕНИЕ

В теории БД методология проектирования рассматривается как совокупность человеко-машинных инструментов и средств, применяемых для последовательной разработки проекта структуры баз данных. Совокупность процедур проектирования централизованной БД, которые можно объединить в четыре этапа.

На этапе формулирования и анализа требований устанавливаются цели организации, определяются требования к БД. Эти требования документируются в форме доступной конечному пользователю и проектировщику БД. Обычно при этом используется методика интервьюирования персонала различных уровней управления.

Этап концептуального проектирования заключается в описании и синтезе информационных требований пользователей в первоначальный проект БД. Результатом этого этапа является высокоуровневое представление информационных требований пользователей на основе различных подходов.

В процессе логического проектирования высокоуровневое представление данных преобразуется в структуре используемой СУБД. Полученная логическая структура БД может быть оценена количественно с помощью различных характеристик (число обращений к логическим записям, объем данных в каждом приложении, общий объем данных и т.д.). На основе этих оценок логическая структура может быть усовершенствована с целью достижения большей эффективности.

На этапе физического проектирования решаются вопросы, связанные с производительностью системы, определяются структуры хранения данных и методы доступа.

В данной работе мы рассмотрим первые три этапа на примере проектирования некоторой абстрактной реляционной базы данных.

1. АНАЛИЗ ПРЕДМЕТНОЙ ОБЛАСТИ

1.1. Выбор подхода

В настоящее время при проектировании БД используют два подхода. Первый из них основан на стабильности данных, что обеспечивает наибольшую гибкость и адаптируемость к используемым приложениям. Применение такого подхода целесообразно в тех случаях, когда не предъявляются жесткие требования к эффективности функционирования (объем памяти и время поиска), существует большое количество разнообразных задач с изменяемыми и непредсказуемыми запросами.

Другой подход базируется на стабильности процедур запросов к БД и является предпочтительным при жестких требованиях к эффективности функционирования, особенно это касается быстродействия.

Мною был выбран системный подход, так как жестких требований к эффективности функционирования не было представлено.

1.2. Выбор оперируемых объектов

В качестве оперируемых объектов были выбраны следующие неотъемлемые составляющие собачьих выставок: собаки, участники, эксперты, ринги и призы.

1.3. Выбор групп пользователей системы

В качестве групп пользователей были выбраны администраторы и обычные пользователи, так как конечной целью данной системы является заполнение её данными администратором, и получением данных из неё пользователем.

2. СОЗДАНИЕ ЕК-МОДЕЛИ

В соответствии с предметной областью была составлена следующая ER-диаграмма.

7

А также, диаграмма с уточненными атрибутами и названиями ключей.

Рисунок 2. Уточнённая ER-модель

3. НОРМАЛИЗАЦИЯ БАЗЫ ДАННЫХ

3.1. Первая нормальная форма

Отношение находится в первой нормальной форме, когда значения его аттрибутов являются простыми, т. е. Не являются множеством или повторяющейся группой.

Все отношения в нашей БД изначально находятся в первой нормальной форме.

3.2. Вторая нормальная форма

Отношение находится во второй нормальной форме, если оно находится в первой нормальной форме, если все её атрибуты, не входящие в состав первичного ключа, функционально от него зависят.

Все отношения нашей БД уже удовлетворяют данному требованию, следовательно она уже находится во второй нормальной форме.

3.3. Третья нормальная форма

Отношения находятся в третьей нормальной форме, если они находятся во второй нормальной форме и при этом любой атрибут, не входящий в состав первичного ключа, функционально зависит только от него.

Все отношения нашей БД уже удовлетворяют данному требованию, следовательно она уже находится в третьей нормальной форме.

4. ОПИСАНИЕ БД В СУБД

4.1. Таблицы

4.1.	. таолицы					
Id			Name			
Таблица 1.	Порода					
Id			Name			
Таблица 2.	Клуб					
Id	fancy_n	iame	age	fathers_breed_i	mothers_breed _id	breed_id
Таблица 3.	Собака					
id		participant_id		ring_id		
Таблица 4.	Эксперт					
id			name			
Таблица 5.	Группа					
id	first_na	me	second_name	last_name	dog_id	club_id
Таблица 6.	Участник					
id	place		dog_id			
Таблица 7.	Приз					
id			breed_id			

Таблица 8. Ринг

id	username	password	participant_id	group_id

Таблица 9. Пользователь

4.2. Запросы с листингами SQL

Получение пароля пользователя по имени пользователя:

SELECT password

FROM %(users_table)s

WHERE username = %(username)s

Получение группы пользователя по имени пользователя:

SELECT %(groups_table)s.name

FROM %(groups_table)s INNER JOIN %(users_table)s on % (groups_table)s.id = % (users_table)s.group_id

WHERE %(users_table)s.username = %(username)s;

Получение экспертов по заданной породе:

SELECT %(participant_table)s.id

FROM %(ring_table)s, %(experts_table)s, %(participant_table)s

WHERE %(id)s = %(ring_table)s.breed_id

AND %(experts_table)s.ring_id = %(ring_table)s.id

AND %(participant_table)s.id = %(experts_table)s.participant_id

Полученеи списка пород по заданному клубу:

SELECT %(breed_table)s.name

FROM %(participant_table)s, %(dog_table)s, %(breed_table)s WHERE %(participant_table)s.dog_id = %(dog_table)s.id AND %(dog_table)s.breed_id = %(breed_table)s.id AND %(participant_table)s.club_id = %(id)s

Получение списка призов по заданному клубу:

SELECT count(%(prize_table)s) FILTER (WHERE %(prize_table)s.place = 1) as first_place,

count(%(prize_table)s) FILTER (WHERE %(prize_table)s.place = 2) as second_place,

count(%(prize_table)s) FILTER (WHERE %(prize_table)s.place = 3) as third_place

FROM %(prize_table)s, %(participant_table)s, %(dog_table)s, % (club_table)s

WHERE %(prize_table)s.dog_id = %(dog_table)s.id AND %(participant_table)s.dog_id = %(dog_table)s.id AND %(participant_table)s.club_id = %(club_table)s.id AND %(club_table)s.id = %(id)s GROUP BY %(club_table)s.name;

Получение отчета о выступлении по заданному клубу:

SELECT %(participant_table)s.last_name, %

(participant_table)s.first_name,

 $\% (participant_table)s.middle_name, \ \% (prizes_table)s.place, \ \% (dog_table)s.fancy_name,$

%(breed_table)s.name

FROM %(prizes_table)s, %(participant_table)s, %(dog_table)s, % (breed_table)s

WHERE %(prizes_table)s.dog_id = %(participant_table)s.dog_id
AND %(participant_table)s.club_id = %(id)s
AND %(participant_table)s.dog_id = %(dog_table)s.id
AND %(dog_table)s.breed_id = %(breed_table)s.id;

Получение собаки по заданному эксперту:

SELECT %(participant_table)s.dog_id

FROM %(experts_table)s, %(participant_table)s
WHERE %(id)s = %(experts_table)s.ring_id
AND %(experts_table)s.participant_id = %(participant_table)s.id

Получение ринга по заданному участнику:

SELECT %(ring_table)s.id

FROM %(participant_table)s, %(dog_table)s, %(ring_table)s WHERE %(participant_table)s.dog_id = %(dog_table)s.id AND %(dog_table)s.breed_id = %(ring_table)s.breed_id AND %(participant_table)s.id = %(participant)s

Получение отчета о выступлении заданного участника:

SELECT %(participant_table)s.id, %(prizes_table)s.place

FROM %(prizes_table)s, %(participant_table)s WHERE %(participant_table)s.dog_id = %(prizes_table)s.dog_id AND %(participant_table)s.id = %(id)s;

Получение списка незанятых рингов:

SELECT %(ring_table)s.id

FROM %(ring_table)s LEFT JOIN %(experts_table)s ON % (ring_table)s.id = %(experts_table)s.ring_id WHERE %(experts_table)s.id IS NULL;

4.3. Реализация интерфейса к БД

Интерфейс к бд, был реализован в виде одностраничного веб-приложения с серверной частью, отвечающей за работу с бд. Ниже представлены примеры пользовательского интерфейса и детали реализации.

Рисунок 3. Список собак

Рисунок 4. Создание собаки

В ходе работы были использованы сделующие технологии для создания интерфейса:

Серверная часть - Python 3.7 + FlaskRESTful Клиентская часть - Javascript ES6 + Vue.js.

Для локального тестирования и запуска потребуются установленные Python (версии не ниже 3.6), pip, virtualenv, NodeJS. А также, установленный и запущенный redis. Все представленные ниже инструкции верны для дистрибутива Ubuntu 18.

Для сборки серверной части требуется выполнить следующие шаги в терминале:

- 1. python3 -m virtualenv venv
- 2. source ./venv/bin/activate/
- 3. pip install -r requirements.txt
- 4. flask run app.py —host=0.0.0.0 —port=5000

Для сборки клиентской части требуется выполнить следующие шаги в терминале:

- 1. cd ./web/
- 2. npm install
- 3. cd ./src/
- 4. vue serve

После этого, клиент будет доступен из браузера по адресу http://localhost:8080/.

5. РАЗГРАНИЧЕНИЕ ПРАВ

5.1. Доступы каждой группы

В данной работе, пользователи разделены на две группы: Администратор и Пользователь.

Для группы Администратор, предусмотрены операции чтения и записи. Для группы Пользователь, предусмотрена только операция чтения.

5.2. Детали реализации

Ограничения на запись и чтения произведены на уровне HTTP-запросов, что на данный момент является лидирующим методом разграничения прав пользователей. Также, пользователи каждой группы видят только элементы интерфейса, которые для них доступны.

Для группы администраторов доступны как и POST так и GET запросы, в отличии от группы пользователей, для которых доступны только GET запросы.

Само разграничение происходит на этапе обработки запроса на сервере, путём декорирования функции-обработчика. Перед обработкой, происходит проверка группы текущего пользователя, которая хранится в сессии в кэше (key-value хранилище, на основе структуры данных хэш-таблица), доступ к которой быстрее, чем постоянное обновление группы пользователя из базы данных.

Группа пользователя добавляется в кэш, на этапе входа в систему и при выходе из системы удаляется из него.

ЗАКЛЮЧЕНИЕ

В процессе выполнения курсовой работы была создана реляционная база данных. В качестве области применения были выбраны выставки собак. В ходе выполнения курсовой работы была построена концептуальная модель, а затем и первичный вид реляционной базы данных. Методом последовательного приведения к видам нормальной формы база данных была приведена к третьей нормальной форме, также была построена ER-диаграмма раскрывающая связи и объекты.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Цехановский В.В. Методические указания к курсовой работе по дисциплине "Управление данными". СПб: СПбГЭТУ "ЛЭТИ", 2004. 29 с.
- 2. Дейт К. Дж. Введение в системы баз данных. М.: «Вильямс», 2006. 1328 с.