1. NURBS

1.1. Pesos para circunferencias

intersection of the tangent lines passing through the other two points (now we see why this technique only works for arcs of less than 180 \circ). Its weight, w2, is the cosine of half of the angle subtended by the arc. That is, if $\angle B1CB3 = \theta$, where C is the center of the circle, then w2 = $cos(\theta/2)$.

2. Isogeometric analysis

2.1. Problema clasico

$$\Delta u + f = 0 \quad \text{in } \Omega,$$

$$u = g \quad \text{on } \Gamma_D,$$

$$\nabla u \cdot \mathbf{n} = h \quad \text{on } \Gamma_N,$$

$$\beta u + \nabla u \cdot \mathbf{n} = r \quad \text{on } \Gamma_R,$$

2.2. Formulación debil

$$\int_{\Omega} \nabla w \cdot \nabla u \, d\Omega + \beta \int_{\Gamma_R} w u \, d\Gamma = \int_{\Omega} w f \, d\Omega + \int_{\Gamma_N} w h \, d\Gamma + \int_{\Gamma_R} w r \, d\Gamma.$$

2.3. Forma bilineal/lineal

$$a(w,u) = L(w),$$
 Donde:
$$a(w,u) = \int_{\Omega} \nabla w \cdot \nabla u d\Omega + \beta \int_{\Gamma_R} w u d\Gamma,$$

$$L(w) = \int_{\Omega} \nabla w f d\Omega + \int_{\Gamma_N} w h d\Gamma + \int_{\Gamma_R} w r d\Gamma.$$

2.4. Discretización

Galerkin's method consists of constructing finite-dimensional approximations of S and V, denoted S^h and V^h , respectively. Strictly speaking, these will be subsets such that

$$S^h \subset S, \tag{3.20}$$

$$\mathcal{V}^h \subset \mathcal{V}. \tag{3.21}$$

Furthermore, these will be associated with subsets of the space spanned by the isoparametric basis.

We can further characterize S^h by recognizing that if we have a *given* function $g^h \in S^h$ such that $g^h|_{\Gamma_D} = g$, then for every $u^h \in S^h$ there exists a unique $v^h \in V^h$ such that

$$u^h = v^h + g^h. (3.22)$$

2.5. Forma bilineal/lineal discretas

$$a(w^h, u^h) = L(w^h) \implies a(w^h, v^h) = L(w^h) - a(w^h, g^h)$$