ECON-320-Lab-6

Sonan Memon

Introduction

- There are many possible causes of failure in accurate causal inference with econometric models; one of them is omitted variable bias.
- Correlation is not causation.

Packages

```
library(tinytex)
library(tidyverse)
library(dslabs)
library(dplyr)
library(ggplot2)
library(tibble)
library(modelsummary)
library(broom)
library(haven)
```

```
n < -1000
set.seed(1)
# Generate data in a tibble
data sim = tibble(
e1 = rnorm(n, sd = 3),
e2 = rnorm(n, sd = 2),
e3 = rnorm(n, sd = 1),
x = runif(n, min = 0, max = 10),
y = runif(n, min = 10, max = 20),
z = 20 - 0.3*y + 3*x + e1,
a = 6 + 2*x - 1.5*y + e2,
b = 10 - 0.5*y + 4*z + e3)
lm1 = lm(data = data sim, a \sim x)
lm2 = lm(data = data sim, a \sim y)
lm3 = lm(data = data sim, a \sim x + y)
```

• Is there omitted variable bias in any of the following models?

$$a = \beta_0 + \beta_1 x$$

$$a = \beta_0 + \beta_1 y$$

$$a = \beta_0 + \beta_1 x + \beta_2 y$$

Regression Table: Models for a

Table 1: Results From Simulated Data

	Model 1	Model 2	Model 3	
(Intercept)	-16.565***	17.031***	5.842***	
	(0.308)	(1.026)	(0.370)	
Х	2.037***		1.994***	
	(0.052)		(0.023)	
y		-1.548***	-1.490***	
		(0.068)	(0.023)	

$$+$$
 p $<$ 0.1, * p $<$ 0.05, ** p $<$ 0.01, *** p $<$ 0.001

• Is there omitted variable bias in any of the following models?

$$b = \beta_0 + \beta_1 x$$

$$b = \beta_0 + \beta_1 y$$

$$b = \beta_0 + \beta_1 x + \beta_2 y$$

```
lm4 = lm(data = data_sim, b ~ y)
lm5 = lm(data = data_sim, b ~ z)
lm6 = lm(data = data_sim, b ~ y + z)
```

Regression Table: Models for b

Table 2: Results From Simulated Data

	Model 1	Model 2	Model 3	
(Intercept)	152.698***	2.093***	9.971***	
	(6.230)	(0.193)	(0.213)	
у	-1.751***		-0.498***	
	(0.411)		(0.011)	
Z		4.015***	4.001***	
		(0.006)	(0.004)	

$$+$$
 p $<$ 0.1, * p $<$ 0.05, ** p $<$ 0.01, *** p $<$ 0.001

Bad Controls

- Irrelevant and bad controls can soak up all the variance and block causal pathways of interest.
- Example below adds an irrelevant control which is one example of a bad control.
- Look at adjusted \mathbb{R}^2 values.

```
data_sim <- data_sim %>%
  mutate(c = rnorm(n, mean = 10, sd = 5))

lm9 = lm(data = data_sim, a ~ c + y)
```

F Tests

- Consider the model: $b = \beta_0 + \beta_1 y + \beta_2 z$
- If we want to test null hypotheses such as $H_0: \beta_1 = \beta_2$ or $H_0: \beta_1 = 2*\beta_2$ or $H_0: \beta_1 > \beta_2$ etc, we can use F tests.
- Restricted versus unrestricted models, Under $H_0: \beta_1 = \beta_2$, model is: $b = \beta_0 + \beta_1 (y+z)$.

F Tests

```
data_sim <- data_sim %>%
mutate(plus = y + z)

restricted = lm(data = data_sim, b ~ plus)
unrestricted = lm(data = data_sim, b ~ y + z)
```

$$\bullet \ F_{q,n-k-1} = \frac{\frac{RSS_r - RSS_u}{q}}{\frac{RSS_u}{n-k-1}}$$

$$\bullet$$
 For $H_o:\beta_1=\beta_2$, $q=1,\;k=2,\;n=1000$

Manual Computation of F-Test

[1] 150181.6

```
res r sq = (unname(resid(restricted)))^2
res u sq = (unname(resid(unrestricted)))^2
rss r = sum(res r sq)
rss u = sum(res u sq)
q = 1
k = 2
F_stat \leftarrow ((rss_r - rss_u)/q)/(rss_u/(n - k - 1))
F stat
```

Sonan Memon

ECON-320-Lab-6

F-statistic and Critical Value

- Once you have a F-statistic, you need to compare it against a critical value, which comes from a F-Table.
- $F_{1,1000-3}=Critical\ Value \approx 3.841$ and $F_{stat}=150181.6>3.841$; we reject at $\alpha=0.05$ and beyond.

