Supercritical Space-Width Trade-offs for Resolution

Jakob Nordström

KTH Royal Institute of Technology

SAT and Interactions Schloss Dagstuhl September 19–23, 2016

Joint work with Christoph Berkholz

Goal: refute unsatisfiable CNF

- Start with axiom clauses in formula
- Derive new clauses by resolution rule

$$\frac{C\vee x \qquad D\vee \overline{x}}{C\vee D}$$

▶ Done when empty clause ⊥ derived

Goal: refute unsatisfiable CNF

- Start with axiom clauses in formula
- ► Derive new clauses by resolution rule

$$\frac{C\vee x \qquad D\vee \overline{x}}{C\vee D}$$

Done when empty clause \perp derived

$$x \vee y$$

- 2. $x \vee \overline{y} \vee z$
- 3. $\overline{x} \vee z$
- $\overline{y} \vee \overline{z}$ 4.
- 5. $\overline{x} \vee \overline{z}$

Goal: refute unsatisfiable CNF	1.	$x \vee y$	Axiom
► Start with axiom clauses in formula	2.	$x \vee \overline{y} \vee z$	Axiom
► Derive new clauses by resolution rule	3.	$\overline{x}\vee z$	Axiom
$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$	4.	$\overline{y} \vee \overline{z}$	Axiom
▶ Done when empty clause ⊥ derived	5.	$\overline{x} \vee \overline{z}$	Axiom
Can represent refutation/proof as	6.	$x \vee \overline{y}$	Res(2,4)
► annotated list or	7.	x	Res(1,6)
directed acyclic graph (DAG)	8.	\overline{x}	Res(3,5)
	9.	\perp	Res(7,8)

Goal: refute unsatisfiable CNF	1.	$x \vee y$	Axiom
Start with axiom clauses in formula	2.	$x \vee \overline{y} \vee z$	Axiom
► Derive new clauses by resolution rule	3.	$\overline{x}\vee z$	Axiom
$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$	4.	$\overline{y} ee \overline{z}$	Axiom
ightharpoonup Done when empty clause ot derived	5.	$\overline{x} \vee \overline{z}$	Axiom
Can represent refutation/proof as	6.	$x \vee \overline{y}$	Res(2,4)
▶ annotated list or	7.	x	Res(1,6)
directed acyclic graph (DAG)	8.	\overline{x}	Res(3,5)
	9.	\perp	Res(7,8)

Goal: refute unsatisfiable CNF	1.	$x \vee y$	Axiom
Start with axiom clauses in formula	2.	$x \vee \overline{y} \vee z$	Axiom
► Derive new clauses by resolution rule	3.	$\overline{x} \lor z$	Axiom
$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$	4.	$\overline{y} ee \overline{z}$	Axiom
ightharpoonup Done when empty clause ot derived	5.	$\overline{x} \vee \overline{z}$	Axiom
Can represent refutation/proof as	6.	$x \vee \overline{y}$	Res(2,4)
▶ annotated list or	7.	x	Res(1,6)
directed acyclic graph (DAG)	8.	\overline{x}	Res(3,5)
	9.	\perp	Res(7,8)

Goal: refute unsatisfiable CNF	1.	$x \vee y$	Axiom
► Start with axiom clauses in formula	2.	$x \vee \overline{y} \vee z$	Axiom
► Derive new clauses by resolution rule	3.	$\overline{x} \lor z$	Axiom
$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$	4.	$\overline{y} \vee \overline{z}$	Axiom
lacktriangle Done when empty clause ot derived	5.	$\overline{x} \vee \overline{z}$	Axiom
Can represent refutation/proof as	6.	$x \vee \overline{y}$	Res(2,4)
► annotated list or	7.	x	Res(1,6)
directed acyclic graph (DAG)	8.	\overline{x}	Res(3,5)
	9.	\perp	Res(7,8)

Goal: refute unsatisfiable CNF	1.	$x \lor y$	Axiom
► Start with axiom clauses in formula	2.	$x \vee \overline{y} \vee z$	Axiom
► Derive new clauses by resolution rule	3.	$\overline{x}\vee z$	Axiom
$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$	4.	$\overline{y} \vee \overline{z}$	Axiom
lacktriangle Done when empty clause ot derived	5.	$\overline{x} \vee \overline{z}$	Axiom
Can represent refutation/proof as	6.	$\boldsymbol{x}\vee \overline{\boldsymbol{y}}$	Res(2,4)
► annotated list or	7.	x	Res(1,6)
directed acyclic graph (DAG)	8.	\overline{x}	Res(3,5)
	9.	\perp	Res(7,8)

Goal: refute unsatisfiable CNF	1.	$x \lor y$	Axiom
Start with axiom clauses in formula	2.	$x \vee \overline{y} \vee z$	Axiom
► Derive new clauses by resolution rule	3.	$\overline{x}\vee z$	Axiom
$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$	4.	$\overline{y} \vee \overline{z}$	Axiom
lacktriangle Done when empty clause ot derived	5.	$\overline{x} \vee \overline{z}$	Axiom
Can represent refutation/proof as	6.	$x \vee \overline{y}$	Res(2,4)
► annotated list or	7.	$oldsymbol{x}$	Res(1,6)
directed acyclic graph (DAG)	8.	\overline{x}	Res(3,5)
	9.	\perp	Res(7,8)

Goal: refute unsatisfiable CNF	1.	$x \vee y$	Axiom
Start with axiom clauses in formula	2.	$x \vee \overline{y} \vee z$	Axiom
► Derive new clauses by resolution rule	3.	$\overline{x}\vee z$	Axiom
$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$	4.	$\overline{y} \vee \overline{z}$	Axiom
lacktriangle Done when empty clause ot derived	5.	$\overline{x} \vee \overline{z}$	Axiom
Can represent refutation/proof as	6.	$x \vee \overline{y}$	Res(2,4)
► annotated list or	7.	$oldsymbol{x}$	Res(1,6)
directed acyclic graph (DAG)	8.	\overline{x}	Res(3,5)
	9.	\perp	Res(7,8)

Goal: refute unsatisfiable CNF	1.	$x \vee y$	Axiom
► Start with axiom clauses in formula	2.	$x \vee \overline{y} \vee z$	Axiom
► Derive new clauses by resolution rule	3.	$\overline{x} ee z$	Axiom
$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$	4.	$\overline{y} \vee \overline{z}$	Axiom
lacktriangle Done when empty clause ot derived	5.	$\overline{x} ee \overline{z}$	Axiom
Can represent refutation/proof as	6.	$x \vee \overline{y}$	Res(2,4)
► annotated list or	7.	x	Res(1,6)
directed acyclic graph (DAG)	8.	\overline{x}	Res(3,5)
	9.	\perp	Res(7,8)

Goal: refute unsatisfiable CNF	1.	$x \vee y$	Axiom
► Start with axiom clauses in formula	2.	$x \vee \overline{y} \vee z$	Axiom
► Derive new clauses by resolution rule	3.	$\overline{x} \lor z$	Axiom
$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$	4.	$\overline{y} \vee \overline{z}$	Axiom
lacktriangle Done when empty clause ot derived	5.	$\overline{x} ee \overline{z}$	Axiom
Can represent refutation/proof as	6.	$x \vee \overline{y}$	Res(2,4)
► annotated list or	7.	x	Res(1,6)
directed acyclic graph (DAG)	8.	\overline{x}	Res(3,5)
	9.	\perp	Res(7,8)

Goal: refute unsatisfiable CNF	1.	$x \vee y$	Axiom
► Start with axiom clauses in formula	2.	$x \vee \overline{y} \vee z$	Axiom
► Derive new clauses by resolution rule	3.	$\overline{x}\vee z$	Axiom
$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$	4.	$\overline{y} \vee \overline{z}$	Axiom
lacktriangle Done when empty clause ot derived	5.	$\overline{x} \vee \overline{z}$	Axiom
Can represent refutation/proof as	6.	$x \vee \overline{y}$	Res(2,4)
► annotated list or	7.	x	Res(1,6)
directed acyclic graph (DAG)	8.	$\overline{oldsymbol{x}}$	$\operatorname{Res}(3,5)$
	9.	\perp	Res(7,8)

Goal: refute unsatisfiable CNF	1.	$x \vee y$	Axiom
Start with axiom clauses in formula	2.	$x \vee \overline{y} \vee z$	Axiom
► Derive new clauses by resolution rule	3.	$\overline{x}\vee z$	Axiom
$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$	4.	$\overline{y} \vee \overline{z}$	Axiom
lacktriangle Done when empty clause ot derived	5.	$\overline{x} \vee \overline{z}$	Axiom
Can represent refutation/proof as	6.	$x \vee \overline{y}$	Res(2,4)
► annotated list or	7.	$oldsymbol{x}$	Res(1,6)
directed acyclic graph (DAG)	8.	\overline{x}	$\operatorname{Res}(3,5)$
	9.	\perp	Res(7,8)

Goal: refute unsatisfiable CNF	1.	$x \vee y$	Axiom
► Start with axiom clauses in formula	2.	$x \vee \overline{y} \vee z$	Axiom
► Derive new clauses by resolution rule	3.	$\overline{x}\vee z$	Axiom
$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$	4.	$\overline{y} \vee \overline{z}$	Axiom
lacktriangle Done when empty clause ot derived	5.	$\overline{x} \vee \overline{z}$	Axiom
Can represent refutation/proof as	6.	$x \vee \overline{y}$	Res(2,4)
► annotated list or	7.	$oldsymbol{x}$	Res(1,6)
directed acyclic graph (DAG)	8.	$\overline{oldsymbol{x}}$	Res(3,5)
	9.	1	Res(7,8)

Goal: refute unsatisfiable CNF		$x \vee y$	Axiom
► Start with axiom clauses in formula	2.	$x \vee \overline{y} \vee z$	Axiom
► Derive new clauses by resolution rule		$\overline{x}\vee z$	Axiom
$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$	4.	$\overline{y} \vee \overline{z}$	Axiom
lacktriangle Done when empty clause ot derived	5.	$\overline{x} \vee \overline{z}$	Axiom
Can represent refutation/proof as	6.	$x \vee \overline{y}$	Res(2,4)
► annotated list or	7.	x	Res(1,6)
directed acyclic graph (DAG)	8.	\overline{x}	Res(3,5)
	9.	1	Res(7,8)

Goal: refute unsatisfiable CNF

- Start with axiom clauses in formula
- Derive new clauses by resolution rule

$$\frac{C\vee x \qquad D\vee \overline{x}}{C\vee D}$$

lacktriangle Done when empty clause ot derived

Can represent refutation/proof as

- ► annotated list or
- directed acyclic graph (DAG)

Goal: refute unsatisfiable CNF

- Start with axiom clauses in formula
- Derive new clauses by resolution rule

$$\frac{C\vee x \qquad D\vee \overline{x}}{C\vee D}$$

▶ Done when empty clause ⊥ derived

Can represent refutation/proof as

- annotated list or
- directed acyclic graph (DAG)

Tree-like resolution if DAG is tree

Resolution Size/Length and Width

Length of proof = # clauses (9 in our example) Length of refuting $F = \min$ length over all proofs for F

Resolution Size/Length and Width

```
Length of proof = \# clauses (9 in our example)
Length of refuting F = \min length over all proofs for F
```

Size should strictly speaking measure # symbols
But for resolution don't care too much about linear factors here
Set size = length

Resolution Size/Length and Width

```
Length of proof = \# clauses (9 in our example)
Length of refuting F = \min length over all proofs for F
```

Size should strictly speaking measure # symbols
But for resolution don't care too much about linear factors here
Set size = length

Width at most linear, so here obviously care about linear factors

Space = amount of memory needed when performing refutation

1.	$x \vee y$	Axiom
2.	$x \vee \overline{y} \vee z$	Axiom
3.	$\overline{x} \lor z$	Axiom
4.	$\overline{y} \vee \overline{z}$	Axiom
5.	$\overline{x} \vee \overline{z}$	Axiom
6.	$x \vee \overline{y}$	Res(2,4)
7.	x	Res(1,6)
8.	\overline{x}	Res(3,5)
9.	\perp	Res(7,8)

Space	e = amount of memory needed
when	performing refutation

Can be measured in different ways:

- clause space (our focus)
- ► total space

ı			
L.			

$$x \vee y$$

$$x \vee \overline{y} \vee z$$

$$\overline{x} \lor z$$

 $\overline{x} \vee \overline{z}$

$$\overline{y} \vee \overline{z}$$

$$x \vee \overline{y}$$

$$\mathsf{Res}(2,4)$$

8.

9.

 \overline{x}

$$\mathsf{Res}(3,5)$$

Res(1,6)

Space = amount of memory needed when performing refutation	1.	$x \vee y$	Axiom
Can be measured in different ways:		$x \vee \overline{y} \vee z$	Axiom
clause space (our focus)total space	3.	$\overline{x}\vee z$	Axiom
	4.	$\overline{y} \vee \overline{z}$	Axiom
Clause space at step t : $\#$ clauses at steps $\leq t$ used at steps $\geq t$ Total space at step t : Count also literals	5.	$\overline{x} \vee \overline{z}$	Axiom
	6.	$x \vee \overline{y}$	Res(2,4)
	7.	x	Res(1,6)
	8.	\overline{x}	Res(3,5)
	9.	\perp	Res(7,8)

Space = amount of memory needed when performing refutation	1.	$x \vee y$	Axiom
Can be measured in different ways:	2.	$x \vee \overline{y} \vee z$	Axiom
clause space (our focus)total space	3.	$\overline{x}\vee z$	Axiom
	4.	$\overline{y} \vee \overline{z}$	Axiom
Clause space at step t : $\#$ clauses at steps $\leq t$ used at steps $\geq t$ Total space at step t : Count also literals	5.	$\overline{x} \vee \overline{z}$	Axiom
	6.	$x \vee \overline{y}$	Res(2,4)
Example: Clause space at step 7		\boldsymbol{x}	Res(1,6)
	8.	\overline{x}	Res(3,5)
	9.	\perp	Res(7,8)

Space = amount of memory needed when performing refutation

Can be measured in different ways:

- ► clause space (our focus)
- ► total space

Clause space at step t: # clauses at steps $\leq t$ used at steps $\geq t$ Total space at step t: Count also literals

Example: Clause space at step 7

Space = amount of memory needed when performing refutation

Can be measured in different ways:

- ► clause space (our focus)
- ► total space

Clause space at step t: # clauses at steps $\leq t$ used at steps $\geq t$ Total space at step t: Count also literals

Example: Clause space at step 7 is 5

Space = amount of memory needed when performing refutation

Can be measured in different ways:

- ► clause space (our focus)
- ► total space

Clause space at step t: # clauses at steps $\leq t$ used at steps $\geq t$ Total space at step t: Count also literals

Example: Clause space at step 7 is 5 Total space at step 7 is 9

Space = amount of memory needed when performing refutation

Can be measured in different ways:

- ► clause space (our focus)
- ▶ total space

Clause space at step t: # clauses at steps $\leq t$ used at steps $\geq t$ Total space at step t: Count also literals

Example: Clause space at step 7 is 5 Total space at step 7 is 9

Space of proof $= \max$ over all steps Space of refuting $F = \min$ over all proofs

Worst-case upper bounds for resolution refutations of formula (from now on assume n = #variables):

Worst-case upper bounds for resolution refutations of formula (from now on assume n=#variables):

Size / length # derivation steps

 $\mathcal{O}(2^n)$

Worst-case upper bounds for resolution refutations of formula (from now on assume n = #variables):

```
Size / length # derivation steps \mathcal{O}(2^n)
Width max # literals in a clause \mathcal{O}(n)
```

Worst-case upper bounds for resolution refutations of formula (from now on assume n=#variables):

```
Size / length # derivation steps \mathcal{O}(2^n)

Width max # literals in a clause \mathcal{O}(n)

Clause space max # clauses in memory \mathcal{O}(n)
```

Worst-case upper bounds for resolution refutations of formula (from now on assume n = #variables):

```
Size / length # derivation steps \mathcal{O}(2^n) Width max # literals in a clause \mathcal{O}(n) Clause space max # clauses in memory \mathcal{O}(n) Total space total size of memory \mathcal{O}(n^2)
```

Worst-case upper bounds for resolution refutations of formula (from now on assume n = #variables):

```
Size / length # derivation steps \mathcal{O}(2^n) Width max # literals in a clause \mathcal{O}(n) Clause space max # clauses in memory \mathcal{O}(n) Total space total size of memory \mathcal{O}(n^2)
```

This talk: focus on width and clause space

Worst-case upper bounds for resolution refutations of formula (from now on assume n = #variables):

```
Size / length \# derivation steps \mathcal{O}(2^n) Width \max \# literals in a clause \mathcal{O}(n) Clause space \max \# clauses in memory \mathcal{O}(n) Total space total size of memory \mathcal{O}(n^2)
```

This talk: focus on width and clause space But results translate to total space by:

clause space \leq total space \leq clause space \cdot width

For n-variable k-CNFs (k constant) it holds that:

width $\leq \Omega(\text{clause space})$ [Atserias & Dalmau '03]

For n-variable k-CNFs (k constant) it holds that:

```
\begin{array}{lll} \mbox{width} & \leq & \Omega \mbox{(clause space)} & \mbox{[Atserias \& Dalmau '03]} \\ \mbox{width}^2 & \leq & \Omega \mbox{(total space)} & \mbox{[Bonacina '16]} \\ \end{array}
```

For n-variable k-CNFs (k constant) it holds that:

```
\begin{array}{lll} \text{width} & \leq & \Omega \big( \text{clause space} \big) & [\text{Atserias \& Dalmau '03}] \\ \\ \text{width}^2 & \leq & \Omega \big( \text{total space} \big) & [\text{Bonacina '16}] \\ \\ \text{width}^2 & \leq & \Omega \big( n \log(\text{size}) \big) & [\text{Ben-Sasson \& Widgerson '99}] \\ \end{array}
```

For n-variable k-CNFs (k constant) it holds that:

```
\begin{array}{lll} \text{width} & \leq & \Omega \big( \text{clause space} \big) & [\text{Atserias \& Dalmau '03}] \\ \text{width}^2 & \leq & \Omega \big( \text{total space} \big) & [\text{Bonacina '16}] \\ \text{width}^2 & \leq & \Omega \big( n \log(\text{size}) \big) & [\text{Ben-Sasson \& Widgerson '99}] \\ \end{array}
```

In particular, width $=\Omega(n)\Longrightarrow {\sf size}=\Omegaig(2^nig)$

For n-variable k-CNFs (k constant) it holds that:

```
\begin{array}{lll} \text{width} & \leq & \Omega \big( \text{clause space} \big) & [\text{Atserias \& Dalmau '03}] \\ \text{width}^2 & \leq & \Omega \big( \text{total space} \big) & [\text{Bonacina '16}] \\ \text{width}^2 & \leq & \Omega \big( n \log(\text{size}) \big) & [\text{Ben-Sasson \& Widgerson '99}] \\ \end{array}
```

In particular, width
$$=\Omega(n)\Longrightarrow {\sf size}=\Omegaig(2^nig)$$

So clearly width key measure—but not the answer to every question

For n-variable k-CNFs (k constant) it holds that:

```
\begin{array}{lll} \text{width} & \leq & \Omega \big( \text{clause space} \big) & [\text{Atserias \& Dalmau '03}] \\ \text{width}^2 & \leq & \Omega \big( \text{total space} \big) & [\text{Bonacina '16}] \\ \text{width}^2 & \leq & \Omega \big( n \log(\text{size}) \big) & [\text{Ben-Sasson \& Widgerson '99}] \\ \end{array}
```

In particular, width
$$=\Omega(n)\Longrightarrow {\sf size}=\Omega(2^n)$$

So clearly width key measure—but not the answer to every question

► Can have width $\Theta(\sqrt{n})$ and still size poly(n) [Bonet & Galesi '99]

For n-variable k-CNFs (k constant) it holds that:

```
\begin{array}{lll} \text{width} & \leq & \Omega \big( \text{clause space} \big) & [\text{Atserias \& Dalmau '03}] \\ \text{width}^2 & \leq & \Omega \big( \text{total space} \big) & [\text{Bonacina '16}] \\ \text{width}^2 & \leq & \Omega \big( n \log(\text{size}) \big) & [\text{Ben-Sasson \& Widgerson '99}] \\ \end{array}
```

In particular, width
$$=\Omega(n)\Longrightarrow {\sf size}=\Omega(2^n)$$

So clearly width key measure—but not the answer to every question

- ► Can have width $\Theta(\sqrt{n})$ and still size poly(n) [Bonet & Galesi '99]
- ▶ Can have width $\mathcal{O}(1)$ and still clause space $\Omega(n/\log n)$ [Ben-Sasson & Nordström '08]

 $\mathsf{size} \quad \leq \quad n^{\mathcal{O}(\mathsf{width})}$

 $\mathsf{size} \quad \leq \quad n^{\mathcal{O}(\mathsf{width})}$

time to find a refutation $\leq n^{\mathcal{O}(\mathsf{width})}$

for $w \leftarrow 3 \dots n$ do

Resolve all clauses & keep resolvents with at most \boldsymbol{w} literals

If \perp has been derived, then output <code>UNSAT</code>

end for

Output SAT

```
\mbox{size} \quad \leq \quad n^{\mathcal{O}(\mbox{width})} time to find a refutation \quad \leq \quad n^{\mathcal{O}(\mbox{width})}
```

```
\begin{array}{l} \textbf{for} \ w \leftarrow 3 \dots n \ \textbf{do} \\ & \text{Resolve all clauses \& keep resolvents with at most } w \ \text{literals} \\ & \text{If} \ \bot \ \text{has been derived, then output } \textbf{UNSAT} \\ & \textbf{end for} \\ & \text{Output SAT} \end{array}
```

Algorithm (and resolution proof) requires $n^{\mathcal{O}(\text{width})}$ space!

 $\mbox{size} \quad \leq \quad n^{\mathcal{O}(\mbox{width})}$ time to find a refutation $\quad \leq \quad n^{\mathcal{O}(\mbox{width})}$

for $w \leftarrow 3 \dots n$ do

Resolve all clauses & keep resolvents with at most w literals If \bot has been derived, then output UNSAT

end for

Output SAT

Algorithm (and resolution proof) requires $n^{\mathcal{O}(\text{width})}$ space!

[Ben-Sasson '02] exhibited formulas

- lacktriangleright refutable in width $\mathcal{O}(1)$ and clause space $\mathcal{O}(1)$
- width $\mathcal{O}(1) \Longrightarrow \mathsf{clause} \; \mathsf{space} \; \Omega(n/\log n)$

size $\leq n^{\mathcal{O}(\mathsf{width})}$

time to find a refutation $\ \le \ n^{\mathcal{O}(\mathsf{width})}$

for $w \leftarrow 3 \dots n$ do

Resolve all clauses & keep resolvents with at most \boldsymbol{w} literals

If \perp has been derived, then output <code>UNSAT</code>

end for

Output SAT

Algorithm (and resolution proof) requires $n^{\mathcal{O}(\text{width})}$ space!

[Ben-Sasson '02] exhibited formulas

- refutable in width $\mathcal{O}(1)$ and clause space $\mathcal{O}(1)$
- width $\mathcal{O}(1) \Longrightarrow$ clause space $\Omega(n/\log n)$

Which bound is closer to the truth?

size $\leq n^{\mathcal{O}(\mathsf{width})}$

time to find a refutation $\ \le \ n^{\mathcal{O}(\mathsf{width})}$

for $w \leftarrow 3 \dots n$ do

Resolve all clauses & keep resolvents with at most w literals If \bot has been derived, then output <code>UNSAT</code>

end for

Output SAT

Algorithm (and resolution proof) requires $n^{\mathcal{O}(\text{width})}$ space!

[Ben-Sasson '02] exhibited formulas

- refutable in width $\mathcal{O}(1)$ and clause space $\mathcal{O}(1)$
- width $\mathcal{O}(1) \Longrightarrow \mathsf{clause} \; \mathsf{space} \; \Omega(n/\log n)$

Which bound is closer to the truth?

Recall: can always do clause space $\mathcal{O}(n)$

Theorem

For any $\varepsilon>0$ and $6\leq w\leq n^{\frac{1}{2}-\varepsilon}$ exist n-variable w-CNFs F_n s.t.

- 1. Resolution can refute F_n in width w
- 2. Any width-w refutation of F_n requires clause space $n^{\Omega(w)}$

Theorem

For any $\varepsilon>0$ and $6\leq w\leq n^{\frac{1}{2}-\varepsilon}$ exist n-variable w-CNFs F_n s.t.

- 1. Resolution can refute F_n in width w
- 2. Any width-w refutation of F_n requires clause space $n^{\Omega(w)}$

Space lower bound $n^{\Omega(w)}$ holds for all proofs up to width $o(w \log n)$

Theorem

For any $\varepsilon>0$ and $6\leq w\leq n^{\frac{1}{2}-\varepsilon}$ exist n-variable w-CNFs F_n s.t.

- 1. Resolution can refute F_n in width w
- 2. Any width-w refutation of F_n requires clause space $n^{\Omega(w)}$

Space lower bound $n^{\Omega(w)}$ holds for all proofs up to width $o(w \log n)$

Proof outline

Use hardness condensation approach in [Razborov '16]:

- 1. Start with formula that requires nearly linear clause space
- 2. Reduce the number of variables from n to $n^{1/w}$
- 3. But maintain space lower bound for small-width proofs

Theorem

For any $\varepsilon>0$ and $6\leq w\leq n^{\frac{1}{2}-\varepsilon}$ exist n-variable w-CNFs F_n s.t.

- 1. Resolution can refute F_n in width w
- 2. Any width-w refutation of F_n requires clause space $n^{\Omega(w)}$

Space lower bound $n^{\Omega(w)}$ holds for all proofs up to width $o(w \log n)$

Proof outline

Use hardness condensation approach in [Razborov '16]:

- 1. Start with formula that requires nearly linear clause space
- 2. Reduce the number of variables from n to $n^{1/w}$
- 3. But maintain space lower bound for small-width proofs

Key components:

- Expander graphs
- ➤ XORification (substitution with exclusive or)

Typical setting for trade-off results:

lacktriangle Have two complexity measures arphi and ψ

- lacktriangle Have two complexity measures arphi and ψ
- lacktriangle Worst-case (usually trivial) upper bounds $arphi_{
 m crit}$ and $\psi_{
 m crit}$

- lacktriangle Have two complexity measures arphi and ψ
- lacktriangle Worst-case (usually trivial) upper bounds $arphi_{
 m crit}$ and $\psi_{
 m crit}$
- ▶ There are instances I_n such that:
 - ightharpoonup \exists solutions S_1 , S_2 with $\varphi(S_1) = \mathsf{small}'$ and $\psi(S_2) = \mathsf{small}''$

- lacktriangle Have two complexity measures arphi and ψ
- lacktriangle Worst-case (usually trivial) upper bounds $arphi_{
 m crit}$ and $\psi_{
 m crit}$
- ▶ There are instances I_n such that:
 - ightharpoonup \exists solutions S_1 , S_2 with $\varphi(S_1) = \mathsf{small}'$ and $\psi(S_2) = \mathsf{small}''$
 - Any solution S with $\varphi(S)$ even medium-small must have $\psi(S)$ approach critical value $\psi_{\rm crit}$

- lacktriangle Have two complexity measures arphi and ψ
- lacktriangle Worst-case (usually trivial) upper bounds $arphi_{
 m crit}$ and $\psi_{
 m crit}$
- ▶ There are instances I_n such that:
 - ightharpoonup \exists solutions S_1 , S_2 with $\varphi(S_1) = \mathsf{small}'$ and $\psi(S_2) = \mathsf{small}''$
 - ▶ Any solution S with $\varphi(S)$ even medium-small must have $\psi(S)$ approach critical value $\psi_{\rm crit}$
 - lacktriangledown Conversely, $\psi(S)$ medium-small $\Longrightarrow \varphi(S) pprox \varphi_{\mathrm{crit}}$

Typical setting for trade-off results:

- lacktriangle Have two complexity measures arphi and ψ
- lacktriangle Worst-case (usually trivial) upper bounds $arphi_{
 m crit}$ and $\psi_{
 m crit}$
- ▶ There are instances I_n such that:
 - ightharpoonup \exists solutions S_1 , S_2 with $\varphi(S_1) = \mathsf{small}'$ and $\psi(S_2) = \mathsf{small}''$
 - ▶ Any solution S with $\varphi(S)$ even medium-small must have $\psi(S)$ approach critical value $\psi_{\rm crit}$
 - lacktriangledown Conversely, $\psi(S)$ medium-small $\Longrightarrow \varphi(S) pprox \varphi_{\mathrm{crit}}$

Supercritical setting for trade-offs:

lacktriangle Any S with arphi(S) medium-small must have $\psi(S)\gg \psi_{
m crit}$

Typical setting for trade-off results:

- lacktriangle Have two complexity measures arphi and ψ
- lacktriangle Worst-case (usually trivial) upper bounds $arphi_{
 m crit}$ and $\psi_{
 m crit}$
- ▶ There are instances I_n such that:
 - ightharpoonup \exists solutions S_1 , S_2 with $\varphi(S_1) = \mathsf{small}'$ and $\psi(S_2) = \mathsf{small}''$
 - Any solution S with $\varphi(S)$ even medium-small must have $\psi(S)$ approach critical value $\psi_{\rm crit}$
 - $lackbox{Conversely, } \psi(S) \ \mathsf{medium\text{-small}} \Longrightarrow \varphi(S) pprox \varphi_{\mathrm{crit}}$

Supercritical setting for trade-offs:

- lacktriangle Any S with arphi(S) medium-small must have $\psi(S)\gg \psi_{
 m crit}$
- lackbox Optimizing φ pushes ψ up into supercritical regime above worst case!

Typical setting for trade-off results:

- lacktriangle Have two complexity measures arphi and ψ
- lacktriangle Worst-case (usually trivial) upper bounds $arphi_{
 m crit}$ and $\psi_{
 m crit}$
- ▶ There are instances I_n such that:
 - ightharpoonup \exists solutions S_1 , S_2 with $\varphi(S_1) = \mathsf{small}'$ and $\psi(S_2) = \mathsf{small}''$
 - Any solution S with $\varphi(S)$ even medium-small must have $\psi(S)$ approach critical value $\psi_{\rm crit}$
 - $lackbox{Conversely, } \psi(S) \ \mathsf{medium\text{-small}} \Longrightarrow \varphi(S) pprox \varphi_{\mathrm{crit}}$

Supercritical setting for trade-offs:

- lacktriangle Any S with arphi(S) medium-small must have $\psi(S)\gg \psi_{
 m crit}$
- lackbox Optimizing φ pushes ψ up into supercritical regime above worst case!
- ▶ **Very** strong trade-offs—Razborov refers to them as "ultimate"

Typical setting for trade-off results:

- lacktriangle Have two complexity measures arphi and ψ
- lacktriangle Worst-case (usually trivial) upper bounds $arphi_{
 m crit}$ and $\psi_{
 m crit}$
- \triangleright There are instances I_n such that:
 - ightharpoonup \exists solutions S_1 , S_2 with $\varphi(S_1) = \mathsf{small}'$ and $\psi(S_2) = \mathsf{small}''$
 - Any solution S with $\varphi(S)$ even medium-small must have $\psi(S)$ approach critical value $\psi_{\rm crit}$
 - $lackbox{ Conversely, } \psi(S) \ \mathrm{medium\text{-}small} \Longrightarrow \varphi(S) pprox \varphi_{\mathrm{crit}}$

Supercritical setting for trade-offs:

- lacktriangle Any S with arphi(S) medium-small must have $\psi(S)\gg \psi_{\mathrm{crit}}$
- lackbox Optimizing φ pushes ψ up into supercritical regime above worst case!
- Very strong trade-offs—Razborov refers to them as "ultimate"
- ▶ We feel "supercritical" is more descriptive

Very well-connected so-called expander graphs play leading role in many proof complexity lower bounds

Very well-connected so-called expander graphs play leading role in many proof complexity lower bounds

Clause-variable incidence graph (CVIG)

- ► Clauses on the left
- ► Variables on the right
- lacksquare Edge if variable \in clause (ignore signs)

Very well-connected so-called expander graphs play leading role in many proof complexity lower bounds

Clause-variable incidence graph (CVIG)

- ► Clauses on the left
- ► Variables on the right
- ► Edge if variable ∈ clause (ignore signs)

If CVIG well-connected, then lower bounds for

- width, size, and space in resolution [Ben-Sasson & Wigderson '99, Ben-Sasson & Galesi '03]
- degree and size in polynomial calculus
 [Impagliazzo et al. '99, Alekhnovich & Razborov '01]

Very well-connected so-called expander graphs play leading role in many proof complexity lower bounds

Clause-variable incidence graph (CVIG)

- ► Clauses on the left
- ► Variables on the right
- ► Edge if variable ∈ clause (ignore signs)

If CVIG well-connected, then lower bounds for

- width, size, and space in resolution [Ben-Sasson & Wigderson '99, Ben-Sasson & Galesi '03]
- degree and size in polynomial calculus
 [Impagliazzo et al. '99, Alekhnovich & Razborov '01]

Can also define more general graphs that capture "underlying combinatorial structure" and extend results [Mikša & Nordström '15]

Modify F to $F[\oplus_2]$ by substituting $x_1 \oplus x_2$ for every variable x

Modify F to $F[\oplus_2]$ by substituting $x_1 \oplus x_2$ for every variable x

$$\overline{x} \lor y
\downarrow
\neg (x_1 \oplus x_2) \lor (y_1 \oplus y_2)
\downarrow
(x_1 \lor \overline{x}_2 \lor y_1 \lor y_2)
\land (x_1 \lor \overline{x}_2 \lor \overline{y}_1 \lor \overline{y}_2)
\land (\overline{x}_1 \lor x_2 \lor y_1 \lor y_2)
\land (\overline{x}_1 \lor x_2 \lor \overline{y}_1 \lor \overline{y}_2)$$

Modify F to $F[\oplus_2]$ by substituting $x_1 \oplus x_2$ for every variable x

$$\overline{x} \vee y
\downarrow
\neg (x_1 \oplus x_2) \vee (y_1 \oplus y_2)
\downarrow
(x_1 \vee \overline{x}_2 \vee y_1 \vee y_2)
\wedge (x_1 \vee \overline{x}_2 \vee \overline{y}_1 \vee \overline{y}_2)
\wedge (\overline{x}_1 \vee x_2 \vee y_1 \vee y_2)
\wedge (\overline{x}_1 \vee x_2 \vee \overline{y}_1 \vee \overline{y}_2)$$

Used to prove, e.g.:

▶ width $\geq w$ for $F \Longrightarrow \text{size} \geq \exp(\Omega(w))$ for $F[\oplus_2]$ [Ben-Sasson '02] (credited to [Alekhnovich & Razborov])

Modify F to $F[\oplus_2]$ by substituting $x_1 \oplus x_2$ for every variable x

$$\overline{x} \lor y$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\neg (x_1 \oplus x_2) \lor (y_1 \oplus y_2)$$

$$\downarrow \qquad \qquad \qquad \qquad \downarrow$$

$$(x_1 \lor \overline{x}_2 \lor y_1 \lor y_2)$$

$$\land (x_1 \lor \overline{x}_2 \lor \overline{y}_1 \lor \overline{y}_2)$$

$$\land (\overline{x}_1 \lor x_2 \lor y_1 \lor y_2)$$

$$\land (\overline{x}_1 \lor x_2 \lor \overline{y}_1 \lor \overline{y}_2)$$

Used to prove, e.g.:

- ▶ width $\geq w$ for $F \Longrightarrow \text{size} \geq \exp(\Omega(w))$ for $F[\oplus_2]$ [Ben-Sasson '02] (credited to [Alekhnovich & Razborov])
- ▶ # vars in memory $\geq s$ for $F \Longrightarrow \mathsf{clause} \ \mathsf{space} \ \geq \Omega(s)$ for $F[\oplus_2]$ [Ben-Sasson & Nordström '08]

Intuition for XORification Lower Bounds

How to construct resolution refutation π of $F[\oplus_2]$?

Intuition for XORification Lower Bounds

How to construct resolution refutation π of $F[\oplus_2]$?

Naive idea: Simulate resolution refutation π' of F (using substitution on previous slide)

Intuition for XORification Lower Bounds

How to construct resolution refutation π of $F[\oplus_2]$?

Naive idea: Simulate resolution refutation π' of F (using substitution on previous slide)

Seems like a bad idea—XORification causes bad blow-up

- ► linear in # variables in memory
- exponential in width

Intuition for XORification Lower Bounds

How to construct resolution refutation π of $F[\oplus_2]$?

Naive idea: Simulate resolution refutation π' of F (using substitution on previous slide)

Seems like a bad idea—XORification causes bad blow-up

- ► linear in # variables in memory
- exponential in width

Nevertheless, can prove (sort of) this is the best resolution can do

Intuition for XORification Lower Bounds

How to construct resolution refutation π of $F[\oplus_2]$?

Naive idea: Simulate resolution refutation π' of F (using substitution on previous slide)

Seems like a bad idea—XORification causes bad blow-up

- ► linear in # variables in memory
- exponential in width

Nevertheless, can prove (sort of) this is the best resolution can do

Intuition behind proof

- ▶ Given resolution refutation π of $F[\oplus_2]$
- \blacktriangleright Extract the refutation π' of F that π is simulating
- Prove that extraction preserves complexity measures of interest

- 1. $u_1 \oplus u_2$
- 2. $v_1 \oplus v_2$
- 3. $w_1 \oplus w_2$
- 4. $(u_1 \oplus u_2) \land (v_1 \oplus v_2) \rightarrow (x_1 \oplus x_2)$
- 5. $(v_1 \oplus v_2) \wedge (w_1 \oplus w_2) \rightarrow (y_1 \oplus y_2)$
- 6. $(x_1 \oplus x_2) \land (y_1 \oplus y_2) \to (z_1 \oplus z_2)$
- 7. $\neg(z_1 \oplus z_2)$

- sources are true
- truth propagates upwards
- but sink is false

- 1. $u_1 \oplus u_2$
- 2. $v_1 \oplus v_2$
- 3. $w_1 \oplus w_2$
- 4. $(u_1 \oplus u_2) \land (v_1 \oplus v_2) \rightarrow (x_1 \oplus x_2)$
- 5. $(v_1 \oplus v_2) \wedge (w_1 \oplus w_2) \rightarrow (y_1 \oplus y_2)$
- 6. $(x_1 \oplus x_2) \land (y_1 \oplus y_2) \to (z_1 \oplus z_2)$
- 7. $\neg(z_1 \oplus z_2)$

- sources are true
- truth propagates upwards
- but sink is false

- 1. $u_1 \oplus u_2$
- 2. $v_1 \oplus v_2$
- 3. $w_1 \oplus w_2$
- 4. $(u_1 \oplus u_2) \land (v_1 \oplus v_2) \rightarrow (x_1 \oplus x_2)$
- 5. $(v_1 \oplus v_2) \wedge (w_1 \oplus w_2) \rightarrow (y_1 \oplus y_2)$
- 6. $(x_1 \oplus x_2) \land (y_1 \oplus y_2) \to (z_1 \oplus z_2)$
- 7. $\neg(z_1 \oplus z_2)$

- sources are true
- truth propagates upwards
- but sink is false

- 1. $u_1 \oplus u_2$
- 2. $v_1 \oplus v_2$
- 3. $w_1 \oplus w_2$
- 4. $(u_1 \oplus u_2) \land (v_1 \oplus v_2) \to (x_1 \oplus x_2)$
- 5. $(v_1 \oplus v_2) \land (w_1 \oplus w_2) \rightarrow (y_1 \oplus y_2)$
- 6. $(x_1 \oplus x_2) \land (y_1 \oplus y_2) \to (z_1 \oplus z_2)$
- 7. $\neg(z_1 \oplus z_2)$

- sources are true
- truth propagates upwards
- but sink is false

- 1. $u_1 \oplus u_2$
- 2. $v_1 \oplus v_2$
- $3. \quad w_1 \oplus w_2$
- 4. $(u_1 \oplus u_2) \land (v_1 \oplus v_2) \to (x_1 \oplus x_2)$
- 5. $(v_1 \oplus v_2) \wedge (w_1 \oplus w_2) \rightarrow (y_1 \oplus y_2)$
- 6. $(x_1 \oplus x_2) \land (y_1 \oplus y_2) \rightarrow (z_1 \oplus z_2)$
- 7. $\neg(z_1 \oplus z_2)$

- sources are true
- truth propagates upwards
- but sink is false

- 1. $u_1 \oplus u_2$
- 2. $v_1 \oplus v_2$
- 3. $w_1 \oplus w_2$
- 4. $(u_1 \oplus u_2) \land (v_1 \oplus v_2) \to (x_1 \oplus x_2)$
- 5. $(v_1 \oplus v_2) \wedge (w_1 \oplus w_2) \rightarrow (y_1 \oplus y_2)$
- 6. $(x_1 \oplus x_2) \land (y_1 \oplus y_2) \to (z_1 \oplus z_2)$
- 7. $\neg(z_1 \oplus z_2)$

- sources are true
- truth propagates upwards
- but sink is false

Encode pebble games on DAGs [Ben-Sasson & Wigderson '99]

- 1. $u_1 \oplus u_2$
- $2. \quad v_1 \oplus v_2$
- 3. $w_1 \oplus w_2$
- 4. $(u_1 \oplus u_2) \land (v_1 \oplus v_2) \rightarrow (x_1 \oplus x_2)$
- 5. $(v_1 \oplus v_2) \wedge (w_1 \oplus w_2) \rightarrow (y_1 \oplus y_2)$
- 6. $(x_1 \oplus x_2) \land (y_1 \oplus y_2) \rightarrow (z_1 \oplus z_2)$
- 7. $\neg(z_1 \oplus z_2)$

- sources are true
- truth propagates upwards
- but sink is false

Written in CNF as explained before, e.g.

$$u_1 \oplus u_2 = (u_1 \vee u_2) \wedge (\overline{u}_1 \vee \overline{u}_2)$$

$$\neg (z_1 \oplus z_2) = (z_1 \vee \overline{z}_2) \wedge (\overline{z}_1 \vee z_2)$$

Encode pebble games on DAGs [Ben-Sasson & Wigderson '99]

- 1. $u_1 \oplus u_2$
- $2. \quad v_1 \oplus v_2$
- 3. $w_1 \oplus w_2$
- 4. $(u_1 \oplus u_2) \land (v_1 \oplus v_2) \rightarrow (x_1 \oplus x_2)$
- 5. $(v_1 \oplus v_2) \wedge (w_1 \oplus w_2) \rightarrow (y_1 \oplus y_2)$
- 6. $(x_1 \oplus x_2) \land (y_1 \oplus y_2) \rightarrow (z_1 \oplus z_2)$
- 7. $\neg(z_1 \oplus z_2)$

- sources are true
- truth propagates upwards
- ▶ but sink is false

Written in CNF as explained before, e.g.

$$u_1 \oplus u_2 = (u_1 \vee u_2) \wedge (\overline{u}_1 \vee \overline{u}_2)$$

$$\neg (z_1 \oplus z_2) = (z_1 \vee \overline{z}_2) \wedge (\overline{z}_1 \vee z_2)$$

Easy to refute pebbling formulas in size $\mathcal{O}(n)$ and width $\mathcal{O}(1)$ Pebbling space lower bounds \Rightarrow clause space lower bounds [Ben-Sasson & Nordström '08, '11]

Suppose

- ► F CNF formula over variables U
- $ightharpoonup \mathcal{G} = (U \dot{\cup} V, E)$ bipartite graph

Substituted formula F[G] over variables V:

Suppose

- ▶ F CNF formula over variables U
- $ightharpoonup \mathcal{G} = (U \dot{\cup} V, E)$ bipartite graph

Substituted formula F[G] over variables V:

Suppose

- ▶ F CNF formula over variables U
- $ightharpoonup \mathcal{G} = (U \dot{\cup} V, E)$ bipartite graph

Substituted formula F[G] over variables V:

Suppose

- ▶ F CNF formula over variables U
- $ightharpoonup \mathcal{G} = (U \dot{\cup} V, E)$ bipartite graph

Substituted formula F[G] over variables V:

ightharpoonup replace every $u \in U$ by $\bigoplus_{v \in N(u)} v$

Suppose

- ▶ F CNF formula over variables U
- $ightharpoonup \mathcal{G} = (U \dot{\cup} V, E)$ bipartite graph

Substituted formula F[G] over variables V:

- ightharpoonup Apply to pebbling formulas F in [Ben-Sasson & Nordström '08]
 - refutable in width 6
 - require space $\Omega(n/\log n)$

- \blacktriangleright Apply to pebbling formulas F in [Ben-Sasson & Nordström '08]
 - refutable in width 6
 - require space $\Omega(n/\log n)$
- $ightharpoonup \mathcal{G}$ with left-degree $\leq w/6$, |U|=n, and $|V|=n^{\mathcal{O}(1/w)}$

- lacktriangle Apply to pebbling formulas F in [Ben-Sasson & Nordström '08]
 - refutable in width 6
 - require space $\Omega(n/\log n)$
- ▶ \mathcal{G} with left-degree $\leq w/6$, |U| = n, and $|V| = n^{\mathcal{O}(1/w)}$
 - $F[\mathcal{G}]$ refutable in width $\leq w$

- lacktriangle Apply to pebbling formulas F in [Ben-Sasson & Nordström '08]
 - refutable in width 6
 - require space $\Omega(n/\log n)$
- $ightharpoonup \mathcal{G}$ with left-degree $\leq \! w/6$, $|U| \! = \! n$, and $|V| \! = \! n^{\mathcal{O}(1/w)}$
 - ▶ $F[\mathcal{G}]$ refutable in width $\leq w$ ✓

- \blacktriangleright Apply to pebbling formulas F in [Ben-Sasson & Nordström '08]
 - ► refutable in width 6
 - require space $\Omega(n/\log n)$
- $ightharpoonup \mathcal{G}$ with left-degree $\leq \! w/6$, $|U| \! = \! n$, and $|V| \! = \! n^{\mathcal{O}(1/w)}$
 - ▶ $F[\mathcal{G}]$ refutable in width $\leq w$ ✓
 - ▶ space of width-w refutation of $F[\mathcal{G}] \gtrapprox$ space of refutation of $F = \Omega(n/\log n) = |V|^{\Omega(w)}$

- \blacktriangleright Apply to pebbling formulas F in [Ben-Sasson & Nordström '08]
 - ► refutable in width 6
 - require space $\Omega(n/\log n)$
- $ightharpoonup \mathcal{G}$ with left-degree $\leq \! w/6$, $|U| \! = \! n$, and $|V| \! = \! n^{\mathcal{O}(1/w)}$
 - ▶ $F[\mathcal{G}]$ refutable in width $\leq w$ ✓
 - ▶ space of width-w refutation of $F[\mathcal{G}] \gtrapprox$ space of refutation of $F = \Omega(n/\log n) = |V|^{\Omega(w)}$?

- \blacktriangleright Apply to pebbling formulas F in [Ben-Sasson & Nordström '08]
 - refutable in width 6
 - require space $\Omega(n/\log n)$
- $ightharpoonup \mathcal{G}$ with left-degree $\leq \! w/6$, $|U| \! = \! n$, and $|V| \! = \! n^{\mathcal{O}(1/w)}$
 - ▶ $F[\mathcal{G}]$ refutable in width $< w \checkmark$
 - ▶ space of width-w refutation of $F[\mathcal{G}] \gtrapprox$ space of refutation of $F = \Omega(n/\log n) = |V|^{\Omega(w)}$?

- \blacktriangleright Apply to pebbling formulas F in [Ben-Sasson & Nordström '08]
 - refutable in width 6
 - require space $\Omega(n/\log n)$
- $ightharpoonup \mathcal{G}$ with left-degree $\leq \! w/6$, $|U| \! = \! n$, and $|V| \! = \! n^{\mathcal{O}(1/w)}$
 - ▶ $F[\mathcal{G}]$ refutable in width $\leq w$ ✓
 - ▶ space of width-w refutation of $F[\mathcal{G}] \gtrapprox$ space of refutation of $F = \Omega(n/\log n) = |V|^{\Omega(w)}$?

- \blacktriangleright Apply to pebbling formulas F in [Ben-Sasson & Nordström '08]
 - ightharpoonup refutable in width 6
 - require space $\Omega(n/\log n)$
- lacksquare g expander with left-degree $\leq w/6$, |U|=n, and $|V|=n^{\mathcal{O}(1/w)}$
 - ▶ $F[\mathcal{G}]$ refutable in width < w ✓
 - space of width-w refutation of $F[\mathcal{G}] \gtrapprox$ space of refutation of $F = \Omega(n/\log n) = |V|^{\Omega(w)}$

$$\mathcal{G} = (U \,\dot{\cup}\, V, E)$$
 is (d, r, c) -boundary expander if

- ▶ left-degree $\leq d$
- ▶ for every $U' \subseteq U$, $|U'| \le r$ it holds that $|\partial(U')| \ge c|U'|$

$$\partial(U'):=\left\{v\in N(U'):\;|N(v)\cap U'|=1\right\}$$

$$\mathcal{G} = (U \,\dot{\cup}\, V, E)$$
 is (d, r, c) -boundary expander if

- ▶ left-degree $\leq d$
- for every $U'\subseteq U$, $|U'|\le r$ it holds that $|\partial(U')|\ge c|U'|$

$$\partial(U') := \left\{ v \in N(U') : |N(v) \cap U'| = 1 \right\}$$

- ▶ left-degree d = 3
- lacktriangle expanding set size r=3
- ightharpoonup expansion factor c=1

$$\mathcal{G} = (U \,\dot{\cup}\, V, E)$$
 is (d, r, c) -boundary expander if

- ▶ left-degree $\leq d$
- ▶ for every $U' \subseteq U$, $|U'| \le r$ it holds that $|\partial(U')| \ge c|U'|$

$$\partial(U') := \left\{ v \in N(U') : |N(v) \cap U'| = 1 \right\}$$

- ▶ left-degree d = 3
- ightharpoonup expanding set size r=3
- ightharpoonup expansion factor c=1

$$\mathcal{G} = (U \,\dot{\cup}\, V, E)$$
 is (d, r, c) -boundary expander if

- ▶ left-degree $\leq d$
- ▶ for every $U' \subseteq U$, $|U'| \le r$ it holds that $|\partial(U')| \ge c|U'|$

$$\partial(U') := \left\{ v \in N(U') : |N(v) \cap U'| = 1 \right\}$$

- ▶ left-degree d = 3
- ightharpoonup expanding set size r=3
- ightharpoonup expansion factor c=1

 $\mathcal{G} = (U \,\dot{\cup}\, V, E)$ is (d, r, c)-boundary expander if

- ▶ left-degree $\leq d$
- for every $U'\subseteq U$, $|U'|\le r$ it holds that $|\partial(U')|\ge c|U'|$

$$\partial(U') := \left\{ v \in N(U') : |N(v) \cap U'| = 1 \right\}$$

Example

- ▶ left-degree d=3
- ightharpoonup expanding set size r=3
- ightharpoonup expansion factor c=1

Lemma ([Razborov '16])

For $\varepsilon>0$ and n,d with $d\leq |V|^{\frac{1}{2}-\varepsilon}$, |U|=n, $|V|=n^{\mathcal{O}(1/d)}$ there are (d,r,2)-boundary expanders $\mathcal G$ with $r=d\log n$

Look at clauses $\mathcal D$ in memory in width-w refutation of $F[\mathcal G]$ Recover clauses $\mathcal C$ in memory in "simulated refutation" of F

Look at clauses $\mathcal D$ in memory in width-w refutation of $F[\mathcal G]$ Recover clauses $\mathcal C$ in memory in "simulated refutation" of F

Must have $N(Vars(\mathcal{C})) \subseteq Vars(\mathcal{D})$

$$Ker(V') := \{ u \in U : N(u) \subseteq V' \}$$

 $|V'| \le r \implies |\operatorname{Ker}(V')| \le |V'|$ (since left vertex sets expand a lot)

Look at clauses $\mathcal D$ in memory in width-w refutation of $F[\mathcal G]$ Recover clauses $\mathcal C$ in memory in "simulated refutation" of F

Must have $N(Vars(\mathcal{C})) \subseteq Vars(\mathcal{D})$

$$Ker(V') := \{ u \in U : N(u) \subseteq V' \}$$

$$\begin{split} |V'| \leq r &\implies |\mathrm{Ker}(V')| \leq |V'| \\ \text{(since left vertex sets expand a lot)} \end{split}$$

$$V' = \{v_3, \dots, v_8\}$$
, $\operatorname{Ker}(V') = \{u_6, u_7, u_{12}\}$

Look at clauses $\mathcal D$ in memory in width-w refutation of $F[\mathcal G]$ Recover clauses $\mathcal C$ in memory in "simulated refutation" of F

 $\mathsf{Must}\ \mathsf{have}\ N(\mathit{Vars}(\mathcal{C})) \subseteq \mathit{Vars}(\mathcal{D})$

$$Ker(V') := \{ u \in U : N(u) \subseteq V' \}$$

$$|V'| \le r \implies |\mathrm{Ker}(V')| \le |V'|$$
 (since left vertex sets expand a lot)

$$V' = \{v_3, \dots, v_8\}$$
, $\operatorname{Ker}(V') = \{u_6, u_7, u_{12}\}$

Look at clauses $\mathcal D$ in memory in width-w refutation of $F[\mathcal G]$ Recover clauses $\mathcal C$ in memory in "simulated refutation" of F

Must have
$$N(Vars(\mathcal{C})) \subseteq Vars(\mathcal{D})$$

$$Ker(V') := \{ u \in U : N(u) \subseteq V' \}$$

$$|V'| \le r \implies |\mathsf{Ker}(V')| \le |V'|$$
 (since left vertex sets expand a lot)

Example

$$V' = \{v_3, \dots, v_8\}$$
, $Ker(V') = \{u_6, u_7, u_{12}\}$

Locally looks almost like XORification without recycling, so previous proof might work. . . And give bound in terms of $|U|\gg |V|$

Sketch of Proof Sketch

Look at clauses $\mathcal D$ in memory in width-w refutation of $F[\mathcal G]$ Recover clauses $\mathcal C$ in memory in "simulated refutation" of F

 $\mathsf{Must}\ \mathsf{have}\ N(\mathit{Vars}(\mathcal{C})) \subseteq \mathit{Vars}(\mathcal{D})$

$$Ker(V') := \{ u \in U : N(u) \subseteq V' \}$$

$$|V'| \le r \implies |\mathrm{Ker}(V')| \le |V'|$$
 (since left vertex sets expand a lot)

Example

$$V' = \{v_3, \dots, v_8\}, \text{ Ker}(V') = \{u_6, u_7, u_{12}\}$$

Locally looks almost like XORification without recycling, so previous proof might work. . . And give bound in terms of $|U|\gg |V|$

Actual details very different

Introduced in [Razborov JACM '16] to show that treelike resolution refutations of width w can require doubly exponential size $2^{n^{\Omega(w)}}$

Introduced in [Razborov JACM '16] to show that treelike resolution refutations of width w can require doubly exponential size $2^{n^{\Omega(w)}}$

Has also been used to establish

► Tradeoffs between width and rank for Lovász-Schrijver linear programming hierarchy [Razborov ECCC '16]

Introduced in [Razborov JACM '16] to show that treelike resolution refutations of width w can require doubly exponential size $2^{n^{\Omega(w)}}$

Has also been used to establish

- ► Tradeoffs between width and rank for Lovász-Schrijver linear programming hierarchy [Razborov ECCC '16]
- Quantifier depth lower bounds for finite variable fragments of first-order logic [Berkholz & Nordström LICS '16]

Introduced in [Razborov JACM '16] to show that treelike resolution refutations of width w can require doubly exponential size $2^{n^{\Omega(w)}}$

Has also been used to establish

- ► Tradeoffs between width and rank for Lovász-Schrijver linear programming hierarchy [Razborov ECCC '16]
- Quantifier depth lower bounds for finite variable fragments of first-order logic [Berkholz & Nordström LICS '16]

Where else can this technique be useful?

► We exhibit supercritical space-width trade-offs for resolution

- ► We exhibit supercritical space-width trade-offs for resolution
- Minimizing width can make space go way above linear (worst-case "critical" bound)

- ► We exhibit supercritical space-width trade-offs for resolution
- Minimizing width can make space go way above linear (worst-case "critical" bound)

Open question 1

Similar tradeoffs for degree vs. space in polynomial calculus?

- ► We exhibit supercritical space-width trade-offs for resolution
- Minimizing width can make space go way above linear (worst-case "critical" bound)

Open question 1

Similar tradeoffs for degree vs. space in polynomial calculus?

Weaknesses: non-constant width and huge size blow-up

- ► We exhibit supercritical space-width trade-offs for resolution
- Minimizing width can make space go way above linear (worst-case "critical" bound)

Open question 1

Similar tradeoffs for degree vs. space in polynomial calculus?

- ▶ Weaknesses: non-constant width and huge size blow-up
- ► Inherent for XORification with large arity

- ► We exhibit supercritical space-width trade-offs for resolution
- Minimizing width can make space go way above linear (worst-case "critical" bound)

Open question 1

Similar tradeoffs for degree vs. space in polynomial calculus?

- ▶ Weaknesses: non-constant width and huge size blow-up
- ▶ Inherent for XORification with large arity

Open question 2

Are there supercritical tradeoffs for 3-CNFs?

- ► We exhibit supercritical space-width trade-offs for resolution
- Minimizing width can make space go way above linear (worst-case "critical" bound)

Open question 1

Similar tradeoffs for degree vs. space in polynomial calculus?

- ▶ Weaknesses: non-constant width and huge size blow-up
- ▶ Inherent for XORification with large arity

Open question 2

Are there supercritical tradeoffs for 3-CNFs?

► Probably yes, unless PSPACE = EXPTIME

- ► We exhibit supercritical space-width trade-offs for resolution
- Minimizing width can make space go way above linear (worst-case "critical" bound)

Open question 1

Similar tradeoffs for degree vs. space in polynomial calculus?

- ▶ Weaknesses: non-constant width and huge size blow-up
- ▶ Inherent for XORification with large arity

Open question 2

Are there supercritical tradeoffs for 3-CNFs?

- Probably yes, unless PSPACE = EXPTIME
- ► Can search for small-space refutations in PSPACE, but finding refutations in given width EXPTIME-complete [Berkholz '12]

- ► We exhibit supercritical space-width trade-offs for resolution
- Minimizing width can make space go way above linear (worst-case "critical" bound)

Open question 1

Similar tradeoffs for degree vs. space in polynomial calculus?

- Weaknesses: non-constant width and huge size blow-up
- ▶ Inherent for XORification with large arity

Open question 2

Are there supercritical tradeoffs for 3-CNFs?

- Probably yes, unless PSPACE = EXPTIME
- ► Can search for small-space refutations in PSPACE, but finding refutations in given width EXPTIME-complete [Berkholz '12]

Thank you for your attention!