Functional Analysis Assignment 1

Victor Z. Nygaard, nfq 499 December 14, 2020

Problem 1

a)

For $x, y \in X, \alpha \in \mathbb{K}$, we show

1.
$$||x||_0 = 0 \Leftrightarrow x = 0$$

2.
$$\|\alpha x\|_0 = |\alpha| \|x\|_0$$

3.
$$||x+y||_0 \le ||x||_0 + ||y||_0$$
,

in order to prove $\|\cdot\|_0$ is a norm on X.

1. Assuming $||x||_0 = 0$, we get

$$0 = ||x||_0 \equiv ||x||_X + ||Tx||_Y.$$

As $\|\cdot\|_X$ and $\|\cdot\|_Y$ are themselves norms, and particularly satisfy $\|\cdot\|_X$, $\|\cdot\|_Y \ge 0$, we get $\|x\|_X$, $\|Tx\|_Y = 0$ from the above equation. Either of these prove x = 0, as we are dealing with two norms that therefore themselves satisfy the first norm property, (using T linear for $\|\cdot\|_Y$.) Assuming x = 0 gives

$$||x||_0 ||x||_X + ||Tx||_Y = 0 + 0,$$

as T linear, and $\left\|\cdot\right\|_X, \left\|\cdot\right\|_Y$ are norms.

2. For $\alpha \in \mathbb{K}$

$$\begin{split} \left\|\alpha x\right\|_{0} &\equiv \left\|\alpha x\right\|_{X} + \left\|T\left(\alpha x\right)\right\|_{Y} \\ &= \left|\alpha\right| \left\|x\right\|_{X} + \left\|\alpha Tx\right\|_{Y} \\ &= \left|\alpha\right| \left\|x\right\|_{X} + \left|\alpha\right| \left\|Tx\right\|_{Y} \\ &= \left|\alpha\right| \left(\left\|x\right\|_{X} + \left\|Tx\right\|_{Y}\right) \\ &= \left|\alpha\right| \left\|x\right\|_{0}, \end{split}$$

using $\|\cdot\|_X$, $\|\cdot\|_Y$ themselves norms and T linear.

3. For $x, y \in X$

$$\begin{split} \|x+y\|_0 &\equiv \|x+y\|_X + \|T\left(x+y\right)\|_Y \\ &= \|x+y\|_X + \|Tx+Ty\|_Y \\ &\leq \|x\|_X + \|Tx\|_Y + \|y\|_X + \|Ty\|_Y \\ &= \|x\|_0 + \|y\|_0 \,, \end{split}$$

using $\|\cdot\|_X$, $\|\cdot\|_Y$ themselves norms and T linear, thus altogether proving $\|\cdot\|_0$ is a norm on X.

Assuming T bounded we prove $\|\cdot\|_0$, $\|\cdot\|_X$ equivalent on X based on Definition 1.4 in the Lecture Notes (denoted "LN" from here), and having shown $\|\cdot\|_0$ to be a norm on X above. For some $c_1 \in \mathbb{R}$

$$c_1 \|x\|_0 \equiv c_1 (\|x\|_X + \|Tx\|_Y).$$

By P1.10 in LN, as T is bounded $\exists C>0 \forall x\in X \;\; \|Tx\|_Y \leq C \, \|x\|_X\,,$ hence

$$c_1(\|x\|_X + \|Tx\|_Y) \le c_1(\|x\|_X + C\|x\|_X) = c_1\|x\|_X(1+C).$$

Our goal is choosing c_1 such that $c_1 ||x||_X (1+C) \le ||x||_X$, (with the need for $c_1 \le c_2$ for some $c_2 > 0$ postponed for now.)

For x = 0 we are free to choose as

$$c_1 ||x||_X (1+C)|_{x=0} \equiv c_1 \cdot 0 \cdot (1+C) = 0 \le ||x||_X |_{x=0} = 0.$$

For $x \neq 0$ we have

$$c_1 \|x\|_X (1+C) \le \|x\|_X$$

$$\Leftrightarrow$$

$$c_1 \le \frac{\|x\|_X}{\|x\|_X (1+C)} = \frac{1}{1+C},$$

so we choose $c_1 := \frac{1}{1+C}$, which satisfies our requirement of $c_1 > 0$ as C > 0, while making sure $c_1 ||x||_0 \le ||x||_X$, $\forall x \in X$.

We now need to show $\exists c_2 \geq c_1 > 0, c_2 < \infty$ such that $||x||_X \leq c_2 ||x||_0$, $\forall x \in X$. We are once again assisted by P1.10 from LN

$$c_2 \|x\|_0 \equiv c_2 (\|x\|_X + \|Tx\|_Y) \le c_2 (\|x\|_X + C \|x\|_X) = c_2 \|x\|_X (1+C).$$

As before with x=0, we are fairly free to choose our c_2 as

$$c_2 ||x||_{X} (1+C)|_{x=0} \equiv c_2 \cdot 0 \cdot (1+C) = 0 \ge ||x||_{X}|_{x=0} = 0.$$

For $x \neq 0$ we have

$$c_{2} \|x\|_{X} (1+C) \ge \|x\|_{X}$$

$$\Leftrightarrow$$

$$c_{2} \ge \frac{\|x\|_{X}}{\|x\|_{X} (1+C)} = \frac{1}{1+C} =: c_{1},$$

so we might choose $c_2 := \frac{1}{1+C} = c_1$, which satisfies the requirement of Definition 1.4 from LN as we have shown that $\exists c_1, c_2 \in \mathbb{R} \mid 0 < c_1 \leq c_2 < \infty$, such that for all $x \in X$ we have $c_1 \|x\|_0 \leq \|x\|_X \leq c_2 \|x\|_0$.

Now, assume $\|\cdot\|_X$, $\|\cdot\|_0$ equivalent ie. we assume the existence of $c_1, c_2 \in \mathbb{R} \mid 0 < c_1 \le c_2 < \infty$, such that for all $x \in X$ we have $c_1 \|x\|_X \le \|x\|_0 \le c_2 \|x\|_X$. Note that for some fixed $x \in X$

$$||Tx||_{Y} \le ||x||_{X} + ||Tx||_{Y} \equiv ||x||_{0} \le c_{2} ||x||_{X},$$

with the first inequality due to $\|\cdot\|_X \ge 0$, and the second due to our assumption. As $c_2 > 0$ choosing $C := c_2$ grants us the desired result.

b)

Assuming X to be finite dimensional leads to the following desired implications, with the first derived from T1.6 in LN (which was also proved in An1), and the third coming from 1a).

 $\dim X < \infty \Rightarrow \text{all norms on } X \text{ are equivalent} \Rightarrow \|\cdot\|_X, \|\cdot\|_0 \text{ are equivalent} \Rightarrow T \text{ bounded.}$

c)

From the supplied hint, we might choose a Hamel Basis $(x_i)_{i\in I}$ for X, for some set I. By dividing each of these x_i 's with their own norm we might repick a Hamel Basis $(q_i)_{i\in I}$ that is normalized, with $q_i:=\frac{x_i}{\|x_i\|}$. We will now use the fact that a Hamel Basis by definition grants us the existence of a unique linear function $T:X\to Y$, that pairs $(q_i)_{i\in I}\subseteq X$ with $(y_i)_{i\in I}\subseteq Y$ through $q_i\stackrel{T}{\longmapsto}y_i$. We do this, as we want to prove $\|T\|=\infty$, and that we want to choose our y_i 's to bring this about, as we want to continue work on the expression

$$||T|| \equiv \sup_{x \in X} (||Tx|| \mid ||x|| \le 1) \ge \sup_{i \in I} (||Tq_i||)$$

$$\equiv \sup_{i \in I} \left(\left\| T \frac{x_i}{||x_i||} \right\| \right)$$

$$= \sup_{i \in I} \left(\frac{1}{||x_i||} ||Tx_i|| \right)$$

$$= \sup_{i \in I} \left(\frac{1}{||x_i||} ||y_i|| \right)$$

$$(1)$$

While the normalization of the basis via the q_i 's tames it somewhat, the definition of a Hamel basis still allows for the possibility of I be uncountable, and we may therefore select some countable subset thereof $K := \{k_1, k_2, \ldots\}$, so that for $i \in K$ the y_i 's are monotonically growing.

From (1) we see that we might for $i = k_n \in K$ we could define $y_i \equiv y_{k_n} \in Y$ to be some element in y with norm $||y_{k_n}|| = ||x_{k_n} \cdot n||$ and then choose to kill off the y_i 's for $i \in I \setminus K$ with $y_i := 0$, $i \in I \setminus K$. We thus get from (1) that

$$\sup_{i \in I} \left(\frac{1}{\|x_i\|} \|y_i\| \right) = \sup_{k_n \in K} \left(\frac{1}{\|x_{k_n}\|} \|y_{k_n}\| \right)$$

$$= \sup_{n \in \mathbb{N}} \left(\frac{1}{\|x_{k_n}\|} \|y_{k_n}\| \right)$$

$$= \sup_{n \in \mathbb{N}} \left(\frac{1}{\|x_{k_n}\|} \|x_{k_n}\| \cdot n \right)$$

$$= \sup_{n \in \mathbb{N}} (n) = \infty,$$

so that $||T|| = \infty$ ie. T is unbounded.

 \mathbf{d}

Using subproblem 1c) we may pick an unbounded linear map $T: X \to Y$, and define the norm $\|\cdot\|_0$ on X as in subproblem 1a); $\|x\|_0 := \|x\|_X + \|Tx\|_Y$. Subproblem 1a) tells us that this definition of $\|\cdot\|_0$ will not be equivalent with the given norm $\|\cdot\|_X$ as T is unbounded.

Furthermore, by the definition of the "0-norm" we get $\|x\|_0 := \|x\|_X + \|Tx\|_Y \ge \|x\|_X$, as $\|\cdot\|_Y \ge 0$. Using the contrapositive statement of the result reached in HW3P1 we may conclude that as $\|\cdot\|_X$, $\|\cdot\|_0$ are not equivalent, X cannot be complete with respect to both norms. So, if $(X, \|\cdot\|_X)$ were to be complete (ie. a Banach Space), $(X, \|\cdot\|_0)$ could not be.

 $\mathbf{e})$

1e) is unsolved

Problem 2

a)

In this problem we will be making liberal use of the conclusions drawn in HW1P5 (that themselves are very much based upon HW1P4) as an alternative to a Hahn-Banach - style argument. As always when dealing with conjugate numbers of $1 < \infty$, we will be splitting the cases in two, defining, as by regular convention, $\frac{1}{\infty} := 0$, we see that 1 and ∞ are conjugate, for the case p = 1, and that for p > 1, p and $q := \frac{p}{p-1}$ will be conjugate. Though we will only argue boundedness for p > 1, as HW1P5 does most of the preliminary work for us (again using the convention that ∞ and 1 are conjugate numbers).

Note that in the spirit of HW1P4-5 we may think of $f: M \to \mathbb{C}$, f((a, b, 0, 0, ...)) := a + b, as summing over some productset $X \times Y = (x_n)_{n \in \mathbb{N}} \times (y_n)_{n \in \mathbb{N}}$, where we in our case have

$$x_n = \begin{cases} a, & n = 1 \\ b, & n = 2 \\ 0, & n \ge 3, \end{cases}$$

and

$$y_n = \begin{cases} 1, & n = 1 \\ 1, & n = 2 \\ 0, & n \ge 3, \end{cases}$$

such that the y_n 's act coefficients for the x_n 's and that we consequently can write f as $f_y(x) = \sum_{n=1}^{\infty} x_n y_n = a+b, (x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}$ as defined above. When referring to some specific y in \tilde{f}_y below, we will be considering this to be defined as $(y_n)_{n\in\mathbb{N}}$ is above. We will call this "fact1"

So as not to confuse notation we will rename the complex-valued, well defined, bounded linear functional $f:\ell_p\to\mathbb{C}$ from HW1P5 as \tilde{f} such that $\forall y\equiv (y_n)_{n\in\mathbb{N}}\in\ell_q(\mathbb{N})$ we have $\tilde{f}_y(x):=\sum_{n=1}^\infty x_ny_n$, for $x\equiv (x_n)_{n\in\mathbb{N}}\in\ell_p(\mathbb{N})$. Notice that by the considerations above, we may consider \tilde{f}_y an extension of f from M to the whole of ℓ_p . One way of formalizing this further could be to view $M\subseteq\ell_p(\mathbb{N})$ as consisting of all the elements of ℓ_p that are killed off after the second sequence term, ie. we may generate any element $x_m\in M$, as a surjective projection $\pi:\ell_p\twoheadrightarrow M$ of any element in $x\in\ell_p$ through

$$x_m = \pi(x) := (x_1, x_2, 0, 0, \dots),$$

and by fact1, as,

$$\tilde{f}_{y}(x) \equiv \sum_{n=1}^{\infty} x_{n} y_{n} \stackrel{.}{=} x_{1} \cdot 1 + x_{2} \cdot 1 = x_{1} + x_{2}$$

$$\equiv \tilde{f}_{y} (\pi (x))$$

$$\stackrel{\text{fact } 1}{=} f(\pi(x)).$$
(2)

We will be referring to the fact that \tilde{f}_y extends f this way, as calling "fact2"

Also proved in HW1P5 is the existence of an isometric isomorphism $\ell_q(\mathbb{N}) \ni y \stackrel{T}{\mapsto} \tilde{f}_y \in (\ell_p(\mathbb{N}))^*$, so as to

make $(\ell_p(\mathbb{N}))^* \cong \ell_q(\mathbb{N})$, for q and p conjugate numbers. By definition of T we therefore have $\left\| \tilde{f}_y \right\| \equiv \|T(y)\|$, and as T is an isometry from ℓ_q we further get $\|T(y)\| = \|y\|_q$. Let us call this "fact3" Using fact1-3 combined allows us to bound f through the derivation

$$||f|| \stackrel{\text{by def}}{\equiv} \sup \left\{ |f(x)| \mid ||x|| \le 1, x \in M \right\} \stackrel{\text{fact1,2}}{=} \sup \left\{ \left| \tilde{f}_y(x) \right| \mid ||x|| \le 1, x \in M \right\}$$

$$\stackrel{\text{fact2}}{\leq} \sup \left\{ \left| \tilde{f}_y(x) \right| \mid ||x|| \le 1, x \in \ell_p \right\}$$

$$\equiv \left\| \tilde{f}_y \right\| \stackrel{\text{fact3}}{=} ||y||_q \stackrel{\text{by def.}}{<} \infty.$$

$$(3)$$

As we are following an alternative to a Hahn-Banach approach, we might want to show that the norm of f on M is equal to the norm of \tilde{f}_y on ℓ_p , of which we have shown one inclusion by showing that f is bounded above.

With x_m defined as above, notice that

$$\|\pi(x)\|_{M} \equiv \|x_{m}\|_{M}$$

$$\equiv (|x_{1}|^{p} + |x_{2}|^{p})^{\frac{1}{p}}$$

$$\leq (|x_{1}|^{p} + |x_{2}|^{p} + \dots)^{\frac{1}{p}}$$

$$\equiv \|x\|_{\ell_{p}},$$

such that we may by (2) conclude that

$$\left| \tilde{f}_y(\pi(x)) \right| \stackrel{(2)}{=} \left| \tilde{f}_y(x) \right| \stackrel{(2)}{=} \left| f(\pi(x)) \right| \le \|f\| \cdot \|\pi(x)\| \stackrel{(3)}{\le} \|f\| \cdot \|x\|,$$

such that as $\left\| \tilde{f}_y \right\| = \inf \left\{ C > 0 : \left\| \tilde{f}_y(x) \right\| \le C \left\| x \right\| \right\}$, we get $\left\| \tilde{f}_y \right\| \le \left\| f \right\|$, consequently $\left\| f \right\| = \left\| \tilde{f}_y \right\| = \left\| y \right\|_q \equiv \left\| (1,1,0,0,\ldots) \right\|_q$, for p > 1.

As mentioned the buildup for the case p=1, (also of HW1P4-5 origin) is rather similar, with the implementation of the buildup most oftenly following along as well, so that we get $||f|| = ||y||_{\infty} \equiv ||(1, 1, 0, 0, \ldots)||_{\infty} = 1$.

b)

Having shown existence of the desired functional (that we have chosen to name \tilde{f}) in subproblem a) we will now uniqueness by contradiction as standard.

Assume therefore that there exists some different bounded linear functional $F: \ell_p \to \mathbb{C}$ that extends f, such that ||F|| = ||f||.

Further in 2b) is unsolved

The intuition for why assuming existence of a different functional F with the same properties leads to a contradiction for p > 1 being, that as the two functionals are different on a different $y \in \ell_q$ than $(1, 1, 0, \ldots)$ must be "assigned" to F, but with p > 1 (and the conjugate q) the norms are sensitive to this change, as it forces the norm of F to be different from the norm of f creating a contradiction. The argument should have gone through the use of the HW1P5 constructed function, that we in a) dubbed T, and in particular its bijectivity and it being a isometric isomorphism.

 \mathbf{c})

As the supremum of $y \equiv (1,1,0,0,\ldots) \in \ell_{\infty}$, is 1, we may, by choosing some new element in ℓ_q y_c that in addition to having its first two coordinates be 1 also contains some $c \in \mathbb{C}$ with $|c| \leq 1$ such that $y_c := (1,1,c,0,\ldots)$. Notice in particular that this construction also has $||y_c||_{\infty} = 1$, so that we might by the

use of T as introduced in a), find some $\tilde{f}_{y_c} = T(y_c)$ extending f (T being bijective, in particular surjective). As T is also injective we know a priori that $\tilde{f}_{y_c} \neq \tilde{f}_y$. By a) we thus have $||y_c|| = ||y|| = ||\tilde{f}_y|| = ||f||$. The construction will by definition also have the property that

$$\tilde{f}_{y_c} \equiv \sum_{n=1}^{\infty} x_n y_{c_n} \doteq a \cdot 1 + b \cdot 1 + 0 \cdot c = a + b \equiv f(x),$$

so that we may tag the norms $\|\tilde{f}_{y_c}\| \stackrel{\cong}{=} \|T(y_c)\| = \|f\|$ onto the fold. Ie. we have found a different linear functional that extends f and that has the same norm. As $\#\{z \in \mathbb{C} | |z| \leq 1\}$ is infinite, we may by the bijectivity of T choose infinitely many different linear functionals on $\ell_1(\mathbb{N})$ extending f and having the same norm as well.

Problem 3

a)

Using the Linear Algebra result (As an example, see Linear Algebra by Hesselholt&Wahl T.4.3.11(1)) that injective linear maps take linearly independent sets to linearly independent sets, we may choose a set of n+1 linearly independent vectors $(x_i)_{i \in \{1,\dots,n,n+1\}=:I}$ in X.

Assume for contradiction that the linear map $F: X \to \mathbb{K}^n$ is injective.

By assumption we would therefore have that $F\left((x_i)_{i\in I}\right)\subseteq \mathbb{K}^n$ would be a set of n+1 linearly independent vectors in \mathbb{K}^n . As you cannot have n+1>n linearly independent vectors in \mathbb{K}^n , we get our required contradiction with F being injective and linear from X to \mathbb{K}^n .

b)

For $F: X \to \mathbb{K}^n$, with $F(x) = (f_1(x), \dots, f_n(x))$, $f_i \in X^*$, we note that F is linear, on account of the f_i 's being linear, as we for $\alpha \in \mathbb{K}$, $x, y \in X$ have

$$F(\alpha x + y) \equiv (f_1(\alpha x + y), \dots, f_n(\alpha x + y))$$

$$= (f_1(\alpha x + y), \dots, f_n(\alpha x + y))$$

$$= (f_1(\alpha x) + f_1(y), \dots, f_n(\alpha x) + f_n(y))$$

$$= (\alpha f_1(x) + f_1(y), \dots, \alpha f_n(x) + f_n(y))$$

$$= (\alpha f_1(x), \dots, \alpha f_n(x)) + (f_1(y), \dots, f_n(y))$$

$$= \alpha (f_1(x), \dots, f_n(x)) + (f_1(y), \dots, f_n(y))$$

$$= \alpha F(x) + F(y).$$

By problem 3a) F is therefore non-injective ie. $\ker F \equiv \{x \in X \mid F(x) = 0 \in \mathbb{K}^n\} \neq \{0\}$. Note that for any fixed $x \in X$ we have $\mathbb{K}^n \ni 0 = F(x) \equiv (f_1(x), \dots, f_n(x)) \Leftrightarrow \mathbb{K} \ni 0 = f_1(x) = f_2(x) = \dots = f_n(x)$, so $x_0 \in \ker F \Leftrightarrow x_0 \in \ker f_i \, \forall i \in \{1, \dots, n\} \Leftrightarrow x_0 \in \cap_{i \in \{1, \dots, n\}} \ker f_i$. So as $\ker F \equiv \{x \in X \mid F(x) = 0 \in \mathbb{K}^n\} \neq \{0\}$, we get the desired result.

c)

Using T2.7b) in LN, we may for $0 \neq x \in X$ choose n functionals from the dual space of X; $f_i \in X^*, i \in I := \{1, \ldots, n\}$ such that $||f_i|| = 1$, and f(x) = ||x||.

From subproblem 3b) we know that $\cap_{i \in I} \ker f_i \neq \{0\}$. We note that for each $i \in I$ that $\ker f_i$ will be a subspace of X, such that we may use the Linear Algebra result that in particular finite intersections

of subspaces are again a subspace (Proved in Exercises in the 2018-2019 LinAlg-course), we get that the intersections of the kernels is again a subspace of X.

Choose some $0 \neq y_0 \in \bigcap_{i \in I} \ker f_i$. Using the fact that $\bigcap_{i \in I} \ker f_i$ is a subspace of X we may pick some $\alpha \in \mathbb{K}$ such that $\|\alpha y_0\| = 1$, and define $\bigcap_{i \in I} \ker f_i \ni y := \alpha y_0$.

As $y \in \bigcap_{i \in I} \ker f_i$, we get $f_i(y) = 0$, $\forall i \in I$, so that for $x_1, x_2, \dots, x_n \in X$ we may conclude that for some $i \in I$ such that $x_i \neq 0$ we get

$$|f_i(y - x_i)| = |f_i(y) - f_i(x_i)| = |f_i(x_i)| = |||x_i|| = ||x_i||,$$

such that as

$$|f_i(y-x_i)| \le ||f_i|| ||y-x_i|| = ||y-x_i||,$$

we get $||x_i|| \le ||y - x_i||$. If $\exists i_0 \in I : x_{i_0} = 0$, we get the desired result as well, as $||y - x_{i_0}|| \mid_{(x_{i_0} = 0)} = ||y|| = 1 \ge ||x_{i_0}|| \mid_{(x_{i_0} = 0)} = 0$.

d)

The fact that you may not cover the unit-sphere S with a finite cover of closed balls without having any of the balls contain 0 follows from subproblem3c). Choosing once again a set of points $x_1, \ldots, x_n \in X$, along with a set of radii r_1, \ldots, r_n , the covering of S will take the form

$$\bigcup_{i=1}^{n} \overline{B}(x_{i}, r_{i}) \equiv \bigcup_{i=1}^{n} \{x \in X | \|x - x_{i}\| \le r_{i}\} \supseteq S \equiv \{x \in X | \|x\| = 1\}.$$

However, by choosing such a covering, there will, by subproblem3c) exist some $y \in X$ with $||y|| = 1 \Rightarrow y \in S$ such that $||y - x_i|| \ge ||x_i - 0||$, $\forall i \in \{1, ..., n\}$. ie. as $y \in S$ it is necessary for the covering to contain y, but by containing y the balls containing y in the convering will inevitably also contain 0, thus proving the desired result.

e)

That the unit ball in X is non-compact follows immediately from haven proven that the unit-sphere S is non-compact by the way of contraposition of the fact that a closed subspace of a compact space is compact (see for example Prop 4.22 of Folland).

The fact that the unit-sphere S is non-compact, follows from the Open Covering Theorem, and subproblem 3d); Assume towards a contraposition that S is compact. The Open Covering Theorem tells us that we may therefore reduce any open covering of S to a finite covering. Choose some covering of S consisting of the family of open balls (of for example radius 1/3), with center on S, and reduce this to a finite cover. Taking the closure of each of the finitely many open balls, we get a finite covering of S consisting of closed balls. As each of these are centered somewhere on S and each have norm 1/3 none of them will contain 0 which contradicts with the statement proved in subproblem 3d).

Problem 4

a)

Let $n \in \mathbb{N}$. Note that $E_n \subseteq L_1([0,1],m)$ will be absorbing in $L_1([0,1],m)$ (by definition) if and only if $E_n := \left\{ f \in L_1([0,1],m) \mid \int_{[0,1]} |f(x)|^3 dm(x) \le n \right\}$ is convex and satisfies $\forall (f \neq 0) \in L_1([0,1],m) \exists t > 0$ such that $f \in E_n$ ie. such that $\int_{[0,1]} |f(x)|^3 dm(x) \le n$. Note that $\int_{[0,1]} |f(x)|^3 dm(x) = t^3 \int_{[0,1]} |f(x)|^3 dm(x)$,

for t > 0. We now show that E_n is not absorbing in $L_1([0,1],m)$.

By HW2P2b) we know that $L_3([0,1],m) \subset L_1([0,1],m)$ such that we might find some $\tilde{f} \in L_1([0,1],m) \setminus L_3([0,1],m)$. For $\|\cdot\|_3$ being the norm on $L_3([0,1],m)$, we would for such a function have $\|\tilde{f}\|_3^3 \equiv \int_{[0,1]} |\tilde{f}(x)|^3 dm(x) = \infty$, so for t > 0 we would a have

$$\left\|t\tilde{f}\right\|_3^3 \equiv \int_{[0,1]} \left|t\tilde{f}(x)\right|^3 dm(x) = t^3 \int_{[0,1]} \left|\tilde{f}(x)\right|^3 dm(x) = \infty.$$

ie. there does not exist a t > 0 that would let $t\tilde{f}$ be absorbed in E_n , for any $n \in \mathbb{N}$.

b)

To show that E_n has empty interior for any $n \in \mathbb{N}$ in $L_1([0,1],m)$ we show that as $E_n \subseteq L_3([0,1],m) \subset L_1([0,1],m)$, any sequence $(f_i)_{i\in\mathbb{N}}$ in the complement of E_n that converges (in L_1) to some arbitrary $f \in E_n$, will not be an interior point of E_n .

Inspired by solutions to HW1 and HW2, reimplementing $\tilde{f} \in L_1([0,1],m) \setminus L_3([0,1],m)$ and using the result $L_3([0,1],m) \subset L_1([0,1],m)$ derived from HW2P2b) to "seperate" $L_1([0,1],m) \setminus L_3([0,1],m)$ from

 E_n , we will choose our sequence to be of the form $f_i := f + \frac{f}{i}$, $i \in \mathbb{N}$, which serves both our desired purposes, of

$$f_i \in E_n^c$$

and of

$$f_i \stackrel{\|\cdot\|_1}{\to} f.$$

Noting from An2 that the L_p -spaces are vector spaces and thus in particular stable under addition and multiplication, we see that assuming $f_i \in E_n$ for some $i \in \mathbb{N}$ leads to a contradiction by

$$f_i = f + \frac{\tilde{f}}{i} \Leftrightarrow \tilde{f} = i \cdot (f_i - f),$$

as $\tilde{f} \in L_1([0,1],m) \setminus L_3([0,1],m)$, but we have assumed $f_i \in E_n \subseteq L_3([0,1],m) \subset L_1([0,1],m)$, such that as $f \in E_n$ $f_i - f \in E_n \subseteq L_3([0,1],m) \Rightarrow i \cdot (f_i - f) \in L_3([0,1],m) \nleq$.

The convergence will be satisfied as $\tilde{f} \in L_1([0,1],m) \Rightarrow \left\|\tilde{f}\right\|_1 < \infty$ so that

$$||f_i - f||_1 = \left\|\frac{\tilde{f}}{i}\right\|_1 = \frac{1}{i}\left\|\tilde{f}\right\|_1 \to 0,$$

for $i \to \infty$.

\mathbf{c}

Pick some $n \in \mathbb{N}$. We will once again pick some sequence $(f_i)_{i \in \mathbb{N}} \subseteq E_n$, that exhibits convergence in L_1 to some f such that we might show that actually $f \in E_n$. Notice as in b) that $f \in E_n$ if and only if $\int_{[0,1]} |f(x)|^3 dm(x) \le n$, ie. if and only if $\int_{[0,1]} |f(x)|^3 dm(x) \le [0,n]$. Our core machinery will be Fatou's Lemma (see for example An2, T9.11.)

In order to qualify for using Fatou, we will need to find a sequence that converges (atleast liminf) pointwise to f. To aid in this, we will be using the Riesz Fisher-derived corollary, that as $f_i \stackrel{L_1}{\to} f$ there exists a subsequence $(f_{i_k})_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty} f_{i_k}(x) \stackrel{a.s.}{=} f(x)$. (See Corollary 13.8 An2, which is good enough for

 L_1 as well as its intended \mathcal{L}_1 .) Notice that as the f_i 's are measurable the subsequence will also be. Using continuous (and therefore measureable) transformation of f_{i_k} with $|\cdot|^3$, we may thus conclude that

$$0 \leq \int_{[0,1]} \left| f(x) \right|^3 dm(x) = \int_{[0,1]} \lim_{k \to \infty} \left| f_{i_k}(x) \right|^3 dm(x) = \int_{[0,1]} \liminf_{k \to \infty} \left| f_{i_k}(x) \right|^3 dm(x) \stackrel{\text{Fatou}}{\leq} \liminf_{k \to \infty} \int_{[0,1]} \left| f_{i_k}(x) \right|^3 dm(x),$$

but as $(f_i)_{i\in\mathbb{N}}\subseteq E_n\Rightarrow (f_{i_k})_{k\in\mathbb{N}}\subseteq E_n\Leftrightarrow \int_{[0,1]}|f_{i_k}(x)|^3\leq n$, we get $\liminf_{k\to\infty}\int_{[0,1]}|f_{i_k}(x)|^3dm(x)\leq \liminf_{k\to\infty}n=n$, such that $\int_{[0,1]}|f(x)|^3dm(x)\in[0,n]$. As n was arbitrary, we how now shown the requested result.

 \mathbf{d}

By D3.12 ii) in LN $L_3([0,1],m) \subset L_1([0,1],m)$ will be of first category, if there exists some sequence $(E_n)_{n\in\mathbb{N}}$ of nowhere dense sets, such that $L_3([0,1],m) = \bigcup_{n\in\mathbb{N}} E_n$. Notice, as we happen to have a sequence of this very moniker, that

$$\bigcup_{n \in \mathbb{N}} E_n \equiv \bigcup_{n \in \mathbb{N}} \left\{ f \in L_1([0,1], m) \mid \int_{[0,1]} |f(x)|^3 dm(x) \le n \right\}
= \left\{ f \in L_1([0,1], m) \mid \int_{[0,1]} |f(x)|^3 dm(x) < \infty \right\} \equiv L_3([0,1], m).$$

So what remains to be shown is that the E_n 's are nowhere dense. To this end note that for some $n \in \mathbb{N}$ E_n will by definition By D3.12 i) in LN be nowhere dense if(f) the closure of E_n is empty, ie. if(f) $Int(\overline{E_n}) = \emptyset$. By subproblem c) we have that as the E_n 's are closed, $\overline{E_n} = E_n$. By subproblem b), the E_n 's have empty interior. We therefore have the requirements to say that the E_n 's are nowhere dense, and as they union to be $L_3([0,1],m)$, we can say that $L_3([0,1],m)$ is of first category in $L_1([0,1],m)$.

Problem 5

a)

Note that $x_n \to x$ in norm as $n \to \infty \iff ||x_n - x|| \to 0$, for $n \to \infty$.

Note also that the absolute value on \mathbb{R} is continuous, such that by an application of the inverse triangle inequality on $\|\cdot\|$, can do the following computation

$$||x_{n} - x|| \ge |||x_{n}|| - ||x||| \ge 0$$

$$\Rightarrow$$

$$0 = \lim_{n \to \infty} ||x_{n} - x|| \ge \lim_{n \to \infty} |||x_{n}|| - ||x|||$$

$$= \left|\lim_{n \to \infty} (||x_{n}|| - ||x||)\right|$$

$$= \left|\lim_{n \to \infty} (||x_{n}||) - ||x||\right| \ge 0,$$

which implies that $\lim_{n\to\infty} (\|x_n\|) - \|x\|| = 0$, such that $\lim_{n\to\infty} (\|x_n\|) - \|x\| = 0$, and hence $\lim_{n\to\infty} \|x_n\| = \|x\|$.

b)

As a Hilbert Space is in particular a Banach Space, and as nets generalize sequences, we get by HW4 Problem 2a), that as $x_n \to x$ in H, for $n \to \infty$, we have that $\forall f \in H^*$ $(f(x_n))_{n \in \mathbb{N}} \to f(x)$. The Riesz Representation

Theorem proves that any such $f \in H^*$ can, for some $y \in H$ be written on the form $f_y(x) = \langle x, y \rangle$. By HW4 we thus have $f_y(x_n) = \langle x_n, y \rangle \to \langle x, y \rangle$, $\forall y \in H$. By An2 T26.24 every separable Hilbert Space has a (countable) Orthonormal Basis $(e_n)_{n \in \mathbb{N}}$, and by An2 T26.21 this is equivalent to Parsevals identity,

$$\sum_{n=1}^{\infty} \left| \langle e_n, h \rangle \right|^2 = \left\| h \right\|^2$$

being satisfied $\forall h \in H$. We therefore get that $|\langle e_n, h \rangle|^2 \stackrel{n \to \infty}{\to} 0$, so that $\langle e_n, h \rangle \stackrel{n \to \infty}{\to} 0$, and as $\langle \cdot_1, \cdot_2 \rangle = \overline{\langle \cdot_2, \cdot_1 \rangle}$ get also get $\langle h, e_n \rangle \stackrel{n \to \infty}{\to} 0$. So as $\forall f \in H^* \exists x_f \in H : f(e_n) = \langle e_n, x_f \rangle$ we get that $||x_n|| \to ||x||$ doesn't follow.

c)

We will reach the desired result by showing that the norm is (at least sequentially) weakly lower-semicontinuous as $x_n \rightharpoonup x$ in H. To this end, we use T2.7b) in LN such that for $||x|| \le 1, x \ne 0 \exists f \in H^* : ||f|| = 1$ and f(x) = ||x||, as well as the result of problem 2a) in HW4. We thus have

$$||x|| = f(x) = |f(x)|$$

$$= \left| \lim_{n \to \infty} f(x_n) \right|$$

$$= \lim_{n \to \infty} |f(x_n)|$$

$$\leq \liminf_{n \to \infty} ||f|| ||x_n||$$

$$= \lim_{n \to \infty} ||f|| ||x_n|| \leq 1,$$

which is the desired result as the case x=0 is immediate.