

Al with IoT

PART III. Raspberry Pi & Sensor BASICS

라즈베리 파이란?

Raspberry Pi 4

싱글 보드 컴퓨터(Single-board computer, SBC)의 일종

- 단일보드(PCB) 위에 중앙처리장치(CPU), 메모리, I/O 장치 등이 장착된 컴퓨터
- 관리가 쉽고 성능대비 저렴한 가격, 저전력, 초소형의 특징을 지님
- 리눅스 계열의 OS 지원: Raspbian OS 사용
- GPIO (General-Purpose Input/Output) 지원
- 각종 센서 및 소자들을 C 또는 파이썬 언어를 통해 제어 가능

라즈베리 파이란?

Raspberry Pi 4 H/W Spec.

		Broadcom BCM2711, Quad core Cortex-A72 (ARMv8) 64-bit SOC @ 1.5GHz					
	H/W	1 GB LPDDR4-3200 SDRAM					
	System	Extended 40-pin GPIO header					
		5V/3A DC power input					
Raspberry	Network	2.4 / 5 GHz IEEE 802.11ac wireless LAN					
Pi 4	Interface	Bluetooth 5.0, BLE / Gigabit Ethernet					
Model B		CSI camera port for connecting Raspberry Pi camera					
		DSI display port for connecting a Raspberry Pi touchscreen					
	I/O ports	2 micro-HDMI ports, 2 USB 3.0 & 2 USB 2.0 ports					
		Micro SD card slot for loading OS and storing data					
		4-pole stereo output and composite video port					

라즈베리 파이의 활용 |

라즈베리 파이를 사용한 아파트 난방비 절감 시스템

- 난방 밸브 조절을 통한 물의 온기 효과적 사용
- 일기예보 데이터 획득 날씨에 따른 난방 정도 조절

< 출처: Bloter, 아파트 난방코딩: 이런게 IoT 아닌가요 >

라즈베리 파이의 활용 ||

라즈베리 파이 기반 어항 관리 장치

- 어항 상태 모니터링 정보의 스마트 기기 전송
- 수온/산소량 관리 및 먹이 배급 장치 작동

mCube-Al 키트 소개

mCube-Al 키트 구성

구분	장치
1	Raspberry Pi 4
2	Raspberry Pi 4 I/O Port
3	Speaker
4	Audio Level Meter
5	Microphone
6	Sensor Control Connector
7	Text LCD
8	온/습도 센서 (DHT 11)
9	Blower FAN
Α	Keypad
В	조도 센서
С	가스 센서
D	LED (4 EA)
E	동작 감지 센서
F	Buzzer

인공 지능 음성 인식 시스템

mCube-Al 시스템 구성

mCube-Al 키트 - GPIO

General-Purpose Input Output

범용 입출력 포트

- 주변장치 및 소자들을 동작시키는 인터페이스
- Ex. LED를 켜기 위해 해당 소자에 해당하는 포트로 신호를 인가
- 라즈베리파이는 보드 상 40개의 GPIO 핀을 제공 (GPIO 핀을 제어할 수 있는 라이브러리는 raspbian OS에 기본 설치)

mCube-Al 키트 - GPIO

GPIO 기본 사용방법

```
- 가장 먼저 모듈을 import
>>> import RPi.GPIO as GPIO
```

```
- 핀 넘버를 이르는 방식을 선택
>>> GPIO.setmode(GPIO.BOARD)
또는
>>> GPIO.setmode(GPIO.BCM)
// SOC 칩에서 사용하는 핀 넘버 사용
```

- 핀 모드 설정 (입력핀 또는 출력핀)
 >>> GPIO.setup(4, GPIO.OUT)
 >>> GPIO.setup([18, 19, 20], GPIO.IN, initial=GPIO.HIGH) //list로 한번에 설정
- Input/Output 신호 인가 >>> GPIO.output(4, GPIO.HIGH)
- 프로그램 종료 전, 반드시 리소스 반납>>> GPIO.cleanup()

IoT Example I – LED

발광 다이오드

Light Emitting Diode

- 순방향 전압을 가했을 때 발광하는 반도체 소자
- 전구, 형광등에 비해 전력 소모가 적고 수명이 긴 특징

LED 제어 방법

- GPIO 포트를 통해 LED가 연결된 GPIO 핀에 전압을 인가 했을 시, ON
- LED의 양극(Anode)에 전기적 신호를 통해 5V, 음극(Cathode)에 0V(접지, GND)가 유지 시, ON
- 라즈베리 파이의 CPU에서 해당 소자(GPIO 핀)에 Low(0) 또는 High(1)의 신호를 보내주는 방식
- GPIO 핀 할당 (LED 좌측 상단부터)

GPIO	GPIO 4	LED_1
(BCM)	GPIO 5	LED_2

GPIO	GPIO 14	LED_3
(BCM)	GPIO 15	LED_4

IoT Example I – LED


```
import RPi.GPIO as GPIO
from time import sleep
LED_1 = 4
def main():
   GPIO.setmode(GPIO.BCM)
   GPIO.setwarnings(False)
   GPIO.setup(LED_1, GPIO.OUT, initial=False)
   print("main() program running...")
   try:
        while True:
           GPIO.output(LED_1, GPIO.HIGH)
           sleep(0.5)
           GPIO.output(LED_1, GPIO.LOW)
            sleep(0.5)
   except KeyboardInterrupt:
       GPIO.cleanup()
if __name__ == '__main__':
   main()
```


Exercise I – LED

LED 순차 점등 제어

- 1) 0개의 LED가 켜진 초기(initial) 상태
- 2) 0.5초 간격으로 1개의 LED가 차례로 점등(ON)
- 3) 4개의 LED가 켜졌을 때, 1개씩 차례로 소등(OFF)
- 4) 1-3의 과정이 반복

원하는 번호의 LED 제어

- 1) 0개의 LED가 켜진 초기(initial) 상태
- 2) 왼쪽 위 LED부터 시계 방향으로 번호를 매김 (1~4)
- 3) "LED NUMBER: " 을 출력하고, 1~4 중 입력을 받아 제어할 LED를 결정
- 4) "LED SET: " 을 출력하고, 'ON' 또는 'OFF' 입력을 받아 알맞은 번호의 LED 제어

스위치(Switch)

전류의 흐름을 막거나 계속 흐르게 하는 용도의 장치

- 누름 버튼 스위치, 토글 스위치, DIP 스위치 등 다양한 종류
- mCube-AI의 키패드는 푸쉬 버튼 스위치 사용
- 버튼을 누르는 동안 전류를 흐르게 하여 신호 상태 제어

키패드 제어 방법

- 일반적 푸쉬 버튼 스위치: 눌림 상태에 HIGH 신호 인가, 눌리지 않은 상태에 LOW 신호 인가
- 키패드 각 버튼에 해당하는 스위치가 입력으로 작용: Input을 통해 MCU로 신호를 수신 (<-> LED는 출력 신호를 인가하여 ON/OFF 제어)
- 푸쉬 버튼 스위치는 해당 출력 핀이 GND와 연결되어 있다가 스위치가 눌릴 경우 전류가 흘러 HIGH 상태 MCU는 0과 1의 신호로 받아들여 동작을 제어

매트릭스(Matrix) 구조 키패드

- 키패드의 모든 버튼을 스위치로 할당하는 경우 : 사용되는 포트 수가 너무 많아짐!
- 포트의 수를 줄이기 위해 행렬 기반 매트릭스 구조 사용
- 각 행 또는 열 단위로 출력을 설정
 - -> 행이 하나 선택되면, 몇 번째 열인지 구분
 - -> 선택된 행 + 입력된 열에 해당하는 스위치 입력 판단

		SW_C							
		100	010	001					
	1000	SW 1	SW 2	SW 3					
CW D	0100	SW 4	SW 5	SW 6					
SW_R	0010	SW 7	SW 8	SW 9					
	0001	SW *	SW 0	SW #					

매트릭스(Matrix) 구조 키패드

- 각 행에 순차적으로 HIGH 신호를 인가 (반복)

GPIO_EX

부족한 GPIO 핀을 확장하여 사용

- 라즈베리 파이의 GPIO v핀 2개를 사용하여 7개의 입력을 받을 수 있는 EXPANDER 사용
- 키패드의 각 행(ROW)와 각 열(COL)은 Expander에 연결되어 있음
- RPi.GPIO와 GPIO_EX 모듈을 import 해야 함!

라즈베리파이 확장 GPIO PIN (IO EXPANDER)	KEYPAD
P0	ROW0
P1	ROW1
P2	ROW2
P3	ROW3
P4	COL0
P5	COL1
P6	COL2


```
import RPi.GPIO as GPIO
from time import sleep
import GPIO_EX
ROWO_PIN = 0
ROW1_PIN = 1
ROW2_PIN = 2
ROW3_PIN = 3
COLO_PIN = 4
COL1_PIN = 5
COL2_{PIN} = 6
COL_NUM = 3
ROW_NUM = 4
g_preData = 0
colTable = [COLO_PIN, COL1_PIN, COL2_PIN]
rowTable = [ROW0_PIN, ROW1_PIN, ROW2_PIN, ROW3_PIN]
```



```
lef initKeypad():
   for i in range(0, COL_NUM):
       GPIO_EX.setup(colTable[i], GPIO_EX.IN)
   for i in range(0, ROW_NUM):
       GPI0_EX.setup(rowTable[i], GPI0_EX.OUT)
def selectRow(rowNum):
   for i in range(0, ROW_NUM):
       if rowNum == (i + 1):
           GPIO_EX.output(rowTable[i], GPIO_EX.HIGH)
           sleep(0.001)
           GPIO_EX.output(rowTable[i], GPIO_EX.LOW)
           sleep(0.001)
   return rowNum
```



```
def readCol():
    keypadstate = -1
    for i in range(0, COL_NUM):
        inputKey = GPIO_EX.input(colTable[i])
        if inputKey:
            keypadstate = keypadstate + (i + 2)
            sleep(0.5)
    return keypadstate
```



```
def readKeypad():
   global g_preData
   keyData = -1
   runningStep = selectRow(1)
   row1Data = readCol()
   selectRow(0)
   sleep(0.001)
   if (row1Data != -1):
       keyData = row1Data
   if runningStep == 1:
       if keyData == -1:
           runningStep = selectRow(2)
           row2Data = readCol()
           selectRow(0)
           sleep(0.001)
```



```
if (row2Data != -1):
           keyData = row2Data + 3
sleep(0.1)
                                       PREVIOUS CODE
if keyData == -1:
   return -1
if g_preData == keyData:
   g_preData = -1
   return -1
g_preData = keyData
print("\r\nKeypad Data : %d" % keyData)
return keyData
```



```
def main():
   GPIO.setwarnings(False)
   GPIO.setmode(GPIO.BCM)
   initKeypad()
   print("setup keypad pin")
    try:
       while True:
           keyData = readKeypad()
    except KeyboardInterrupt:
       GPIO.cleanup()
if __name__ == '__main__':
   main()
```


Exercise II – KeyPad & LED

KeyPad 입력 모듈 완성하기

- 1) 키패드의 3행, 4행의 입력이 나오도록 코드 작성
- 2) *, #의 입력이 제대로 동작하도록 작성
- 3) Hint-1: runningStep에 따른 행 선택(selectRow)와 열 입력 감지(readCol) Hint-2: 문자입력(*, #)은 keyData 변수 저장과 출력에 문자열에 맞게 작성

KeyPad 입력 숫자에 따른 LED 제어

- 1) 키패드 각 입력 [1, 2, 3, 4]에 따라 할당된 LED 점등
- 2) 키패드 1 입력 시, LED_1이 ON
- 3) LED_i 가 ON인 상태에서 키패드 i 입력 시, OFF
- 4) [1, 2, 3, 4] 외의 키패드 입력 시, 현재 점등된 모든 LED OFF

조도 센서

황화카드뮴(Cadmium Sulfide, CdS) 광 측정 센서

- 빛의 양이 어느 정도인지 확인하기 위한 용도
- Ex. 스마트폰에서 자동으로 화면 밝기를 조절하는 기능에 사용
- 기본적으로 포토 트랜지스터(Photo Transistor)의 원리로 동작

포토 트랜지스터

빛을 비추면 조도에 비례하여 광전류가 흐르는 수광소자

- 바이폴라(Bi-polar) 트랜지스터 구조
- 베이스 단자가 전기적으로 단절
- <u>광량이 많아지는 경우, 베이스 전류가 공급: 컬렉터 에미터 간 전류 양이 증가</u>
- 광량에 비례하여 변화하는 전류량을 측정

CDS 조도 센서 제어 방법

- 측정된 조도를 해당하는 핀으로 출력
- 출력 값은 아날로그(Analog)
- ADC (Analog-to-Digital Converter)를 통해 디지털 값으로 변환하여 확인 가능
- 별도의 ADC (MCP3208)을 통해 변환된 디지털 전압 값을 라즈베리 파이에서 수신
- 빛의 양이 많을 경우, CDS value (즉, 변환 전압)이 높게 측정

SPI 인터페이스

Serial Peripheral Interface

- 두 개의 주변장치 간 직렬통신으로 데이터를 교환하는 인터페이스
- Full-duplex 방식(양방향 동시전송)으로 동작
- CPU 주변 디바이스/프로세서 간 통신에 활용
- MCP320 ADC 프로세서와 라즈베리 파이가 통신하기 위해 사용

MCP3208 ADC [1/2]

- 8 CH (8개의 장치 연결 가능), 12 bit 데이터 통신
- 2개의 제어 모드 (SingleEnded, Diff)
 SingleEnded: 하나의 장치에서 값을 수신
 Diff.: 두 장치의 차이 값을 수신
- 원하는 장치로부터 값을 수신하기 위해 연결 채널 설정

Name	Function
V _{DD}	+2.7V to 5.5V Power Supply
DGND	Digital Ground
AGND	Analog Ground
CH0-CH7	Analog Inputs
CLK	Serial Clock
D _{IN}	Serial Data In
Dout	Serial Data Out
CS/SHDN	Chip Select/Shutdown Input
V _{REF}	Reference Voltage Input

	NTRO	THE RESERVE OF THE PARTY OF THE		INPUT	CHANNEL		
SINGLE/ DIFF	D2	D1	D0	CONFIGURATION	SELECTION		
1	0	0	0 single ended CH0				
1	0	0	1	single ended	CH1		
1	0	1	0	single ended	CH2		
1	0	1	1	single ended	CH3		
1	1	0	0	single ended	CH4		
1	1	0	1	single ended	CH5		
1	1	1	0	single ended	CH6		
1	1	1	1	single ended	CH7		

MCP3208 Pin 배열 및 기능

MCP3208 채널 선택 제어 비트

MCP3208 ADC [2/2]

- 전송 데이터 포맷: 3 바이트로 구성

	StartBit										
1st Byte	0	0	0	0	0	1	S/ D	D 2			
2nd Byte	D 1	D 2	X	nu II	B 11	B 10	В9	B8			
3rd Byte	В7	В6	B5	B4	В3	B2	B1	В0			

```
uint8_t buf[3];
buf[0] = 0x06 | ((aChAddr & 0x07) >> 2)
buf[1] = ((aChAddr & 0x07) << 6)
buf[2] = 0x00</pre>
```

- 채널 선택 이후, 2번째 바이트 하위 니블과 3번째 바이트에 수신 데이터 존재

CDS 기본 예제

```
import RPi.GPIO as GPIO
from time import sleep
import spidev

spi = spidev.SpiDev()
CDS_CHANNEL = 0

def initMcp3208():
    spi.open(0, 0) # open(bus,device), device 0 - CEO(GPIO8), device 1 - CE1(GPIO7)
    spi.max_speed_hz = 1000000 # set 1MHz
    spi.mode = 3 # set 0b110
```

- spi.open: 라즈베리 파이와 MCP3208은 하나의 버스(0) 공유
- spi.mode: spi 동작 모드 설정 (상승 엣지, 하강 엣지, 클럭 전단 혹은 후단)

CDS 기본 예제

```
buildReadCommand(channel):
   startBit = 0x04
   singleEnded = 0x08
   configBit = [startBit | ((singleEnded | (channel & 0x07)) >> 2), (channel & 0x07) << 6, 0x00]</pre>
   return configBit
def processAdcValue(result):
    '''Take in result as array of three bytes.
      all of the third byte'''
   byte2 = (result[1] \& 0x0F)
   return (byte2 << 8) | result[2]
```


CDS 기본 예제

```
def analogRead(channel):
   if (channel > 7) or (channel < 0):
       return -1
   r = spi.xfer2(buildReadCommand(channel))
   adc_out = processAdcValue(r)
   return adc_out
def controlMcp3208(channel):
   analogVal = analogRead(channel)
   return analogVal
def readSensor(channel):
   return controlMcp3208(channel)
```



```
def main():
   GPIO.setmode(GPIO.BCM)
   initMcp3208()
   print("Setup pin as outputs")
    try:
       while True:
            readVal = readSensor(CDS_CHANNEL)
            voltage = readVal * 4.096 / 4096
            print("CDS Val=%d\tVoltage=%f" % (readVal, voltage))
            sleep(0.5)
    except KeyboardInterrupt:
       GPIO.cleanup()
        spi.close()
if __name__ == '__main__':
   main()
```


Exercise III – CDS & LED

CDS 광량 측정에 따른 LED 제어

- 1) CDS 측정 voltage 또는 측정 CDS value를 4단계 threshold로 구분
- 2) Threshold 범위에 따라 LED 점등 개수 결정
- 3) 가장 어두운 광량 범위: 4개의 LED 점등 가장 밝은 광량 범위: 0개의 LED 점등

IoT Example IV – FAN

Blower FAN

바람이 나오는 출구를 두어 한쪽 방향으로 바람을 만들어 냄

- 전력을 공급하여 날개를 회전
- 출구로 바람을 내보내어 열을 식히는 용도

FAN 제어 방법

- GPIO 포트를 통해 FAN에 연결된 IN1 핀에 전압을 인가했을 시, ON
- IN2 핀에는 항상 Low 신호를 보내주어야 함 (GND 역할)
- LED 동작과 동일한 구조 : GPIO 핀에 OUT 할당 후, 신호 인가

GPIO	GPIO 18	FAN_IN1
(BCM)	GPIO 27	FAN_IN2

IoT Example IV – FAN


```
import RPi.GPIO as GPIO
from time import sleep
ON = 1
OFF = 0
FAN_PIN1 = 18
FAN_PIN2 = 27
def onFan():
    GPIO.output(FAN_PIN1, GPIO.HIGH)
    GPIO.output(FAN_PIN2, GPIO.LOW)
def offFan():
    GPIO.output(FAN_PIN1, GPIO.LOW)
    GPIO.output(FAN_PIN2, GPIO.LOW)
```

IoT Example IV – FAN


```
def main():
   GPIO.setmode(GPIO.BCM)
   GPIO.setwarnings(False)
   GPIO.setup(FAN_PIN1, GPIO.OUT, initial=False)
   GPIO.setup(FAN_PIN2, GPIO.OUT, initial=False)
   print("Setup FAN pin as outputs")
   print("main() program")
   try:
       while True:
           onFan()
           sleep(3.0)
           offFan()
           sleep(1.0)
   except KeyboardInterrupt:
       GPIO.cleanup()
if __name__ == '__main__':
   main()
```

IoT Example V – DHT11

DHT11 온/습도 측정 센서

온도 센서 동작 원리

- 써미스터(Thermistor)를 사용한 온도 측정
- 온도에 따라 저항이 변화하는 소자
- 일정 전압이 인가될 때, 변화하는 저항에 따른 전류 측정 후 온도 값으로 변환

습도 센서 동작 원리

- 저항 감지형 습도 측정 센서
- 양 전극이 서로 연결이 되어 있지 않으나 수분을 통해 미세 전류가 흐르는 구조
- 습도가 오를수록 미세 전류량에 따라 변화된 저항 값으로 습도를 측정

Adafruit(제조사)의 라이브러리 사용

- 전류 변화 및 저항 변화를 각각 온도/습도로 치환해주는 라이브러리

저항 감지형 습도 측정계

IoT Example V – DHT11

DHT11 제어 방법

```
라이브러리 및 필수 패키지 설치 확인
>>> sudo apt update
>>> sudo apt upgrade
>>> sudo apt install python3-pip
>>> sudo apt install -y python-smbus
>>> sudo apt install -y i2c-tools
>>> sudo raspi-config (인터페이스 옵션: I2C enable 확인)
>>> pip3 install RPI.GPIO
>>> pip3 install adafruit-blinka
>>> pip3 install adafruit-circuitpython-dht
>>> pip3 install adafruit-circuitpython-charlcd
>>> sudo apt install libgpiod2
```

IoT Example V – DHT11


```
import board
import adafruit_dht
from time import sleep
dhtDevice = adafruit_dht.DHT11(board.D17)
def main():
    print("main() program")
    while True:
        try:
            temperature_c = dhtDevice.temperature
            humidity = dhtDevice.humidity
            print("Temp: {:.1f}C Humidity: {}%".format(temperature_c, humidity))
        except RuntimeError as error:
            print(error.args[0])
        sleep(2.0)
if __name__ == '__main__':
    main()
```


Exercise IV – FAN & DHT11

온도 및 습도 조건에 따른 팬 구동

- 1) DHT11에서 온도와 습도를 1초마다 측정
- 2) 온도가 28도 이상이거나(or) 습도가 60% 이상일 시, FAN 구동
- 3) 다시 온도와 습도가 일정치 이하로 내려가면, FAN OFF

Text LCD

문자를 표시하는 시각적 전달 장치

- 액정을 이용하여 화소에 도달하는 빛을 선택적으로 투과시키거나 차단함
- 간단한 문자 표시가 필요한 임베디드 장치에서 사용됨

Text LCD 제어 방법

Text LCD를 초기화하고 제어신호 타이밍에 맞추어 명령 및 데이터 신호 전송

- 제어 신호는 RS, R/W, E 핀을 사용
- 데이터 신호는 DB0-DB7번 핀을 사용
- GPIO를 통해 명령을 전달

Text LCD 구조

Cotrol LSI: 다양한 Input에 맞추어 LCD 제어 정보를 저장하는 대규모 집적 회로

- 명령 레지스터: 화면 초기화, 커서 초기화 등의 제어 명령을 저장
- 데이터 레지스터: DDRAM과 CGRAM에 쓰고 읽은 데이터를 일시적으로 저장
- BF: 1이면 LCD Controller가 동작 중으로 명령 수행 불가능함을 알리고, 0이면 다음 명령 수행 가능함을 알림
- DDRAM (Data Display RAM): 표시될 문자의 아스키코드가 저장되어 있는 메모리
- CGRAM (Character Generator RAM): 사용자가 원하는 문자를 만들기 위해 사용하는 메모리

LCD: 정해진 문자를 출력하는 표시부

LCD Driver: 문자열 출력과 LCD 표시부 제어를 위한 명령을 수행

출력 예정 Text 저장 위치 결정

디스플레이 (Display) 화면의 각 행과 열의 위치에는 고유한 주소 (Address) 값이 부여됨

- 실습에 사용되는 장비는 16x2 디스플레이로 구성됨
- 행과 행 사이의 어드레스가 연속되어 있지 않음

Display Position	1	2	3	4	5		15	16
DDRAM Address (hexadecim al)	00	01	02	03	04	:	0E	0F
	40	41	42	43	44	₩	4E	4F

Text 출력 문자 변환과 저장

- 출력하고자 하는 문자를 ASCII 코드로 변환하여 DDRAM에 저장

Upper 4 Lower Bits 4 Bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx0000	CG RAM (1)						••	:				*****	:	₩.	O.	
xxxx0001	(2)		i				-==	-==			::	7	#-	<u>i</u>	-==	

GPIO Mapping

제어 방법이 다소 복잡하고 소스 코드의 양이 많아서, 실습 과정에서는 라이브러리를 활용할 예정

- 제어와 데이터 전송에 필요한 PIN을 GPIO를 통해 연결
- 16열로 구성되어 있으므로, 4개의 Data bus만 활용 (D4 D7)

라즈베리파이 GPIO PIN (BCM)	TEXT LCD
GPIO 22	LCD_RS
GPIO 23 (GND)	LCD_RW [option]
GPIO 24	LCD_E
GPIO 19	LCD_D4
GPIO 20	LCD_D5
GPIO 26	LCD_D6
GPIO 21	LCD_D7


```
import board
import digitalio
import adafruit_character_lcd.character_lcd as character_lcd
from time import sleep
# Raspberry Pi pin setup
lcd_rs = digitalio.DigitalInOut(board.D22)
lcd_en = digitalio.DigitalInOut(board.D24)
lcd_d7 = digitalio.DigitalInOut(board.D21)
lcd_d6 = digitalio.DigitalInOut(board.D26)
lcd_d5 = digitalio.DigitalInOut(board.D20)
lcd_d4 = digitalio.DigitalInOut(board.D19)
# Define LCD column and row size for 16x2 LCD.
lcd_columns = 16
lcd_rows = 2
lcd = character_lcd.Character_LCD_Mono(lcd_rs, lcd_en, lcd_d4, lcd_d5, lcd_d6, lcd_d7, lcd_columns, lcd_rows)
```



```
def initTextlcd():
    lcd.clear()
   lcd.home()
   lcd.cursor_position(0,0)
   sleep(1.0) # Wait 1 seconds
def displayText(text='',col=0,row=0):
    lcd.cursor_position(col, row)
   lcd.message = text
def clearTextlcd():
    lcd.clear()
   lcd.message = 'clear LCD\nGoodbye!'
   sleep(2.0)
    lcd.clear()
```



```
def main():
    initTextlcd()
    print("start textlcd program ...")
    try:
        while(1):
            line = 'Hello World\n'
            lcd.clear()
            displayText(line,0,0)
            sleep(3)
    except KeyboardInterrupt:
        clearTextlcd()
if __name__ == '__main__':
   main()
```


Exercise V – Text LCD

입력 받은 숫자 출력 및 비밀번호 일치 여부 확인

- 1) 입력 받은 4자리 숫자를 첫 줄에 출력
- 2) 두 번째 줄에 입력 받은 숫자가 미리 설정된 비밀번호와 일치하는 지 확인
- 3) 일치할 경우 CORRECT를, 불일치할 경우 FAIL을 출력

온도 및 습도 출력

- 1) DHT11을 통해 구한 온도와 습도 값을 Text LCD에 출력
- 2) 첫 줄에 Temp. (온도) C
- 3) 둘째 줄에 Humidity (습도) %