EECS351 Discussion 1, 09/8/16

Nate Sawicki

1 What is a signal? What is a system?

focus on discrete signals and discrete-domain systems

2 Properties of Discrete Signals

2.1 Periodicity

As signal x[n] is periodic if there exists a number n_0 such that $x[n] = x[n-n_0]$ for all n. The period of the signal is n_0 .

For sinusoidal functions (i.e. $\cos{(\omega n + \phi)}$), the function is periodic iff ω is a rational multiple of π , i.e. $\omega = \frac{M}{N}\pi$ for integers M and N.

2.2 Boundedness

A signal is bounded if there exists a positive, finite number B such that $|x[n]| \leq B$ for all n.

2.3 Causality

A signal x[n] is causal if x[n] = 0 for n < 0.

2.4 Symmetry

A signal x[n] is symmetric if x[n] = x[-n]. Signals with symmetry are also called "even".

If instead a signal has the property that -x[n] = x[-n], then it is called "odd".

3 Properties of Discrete-Domain Systems

3.1 Causality

A system \mathcal{T} is causal if $\mathcal{T}\{x[n]\}$ depends only on x[n] for n < 0. In other words, it depends only on the present and past values of x[n] and not the future values.

3.2 Linearity

A system \mathcal{T} is linear iff for any inputs $x_1[n]$ and $x_2[n]$ and any scalars a_1 and a_2 , $\mathcal{T}\{a_1x_1[n] + a_2x_2[n]\} = a_1\mathcal{T}\{x_1[n]\} + a_2\mathcal{T}\{x_2[n]\}$.

3.3 Shift-Invariance (a.k.a. Time-Invariance)

Let $y[n] = \mathcal{T}\{x[n]\}$. Then the system \mathcal{T} is shift-invariant if $\mathcal{T}\{x[n-n_0]\} = y[n-n_0]$. In other words, the output of the delayed signal is the same as the delay of the output signal.

3.4 Bounded Input Bounded Output (BIBO) Stability

A system \mathcal{T} is called BIBO stable if any bounded input signal x[n] results in a bounded output signal y[n]. If a bound B_x exists for bounded x[n], then there exists a bound B_y such that $|y[n]| = |\mathcal{T}\{x[n]\}| \leq B_y$ for all n.

4 Kronecker Delta (a.k.a. Delta Sequence, Unit Sample Sequence)

$$\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

4.1 Decomposition of Discrete Signals with Shifted Deltas

Any sequence x[n] can be written as $x[n] = \sum\limits_{k=-\infty}^{\infty} x[k] \delta[n-k]$

4.2 Sampling Property

$$\delta[n - n_0]x[n] = \delta[n - n_0]x[n_0]$$

4.3 Sifting Property

$$\sum_{n=-\infty}^{\infty} \delta[n-n_0]x[n] = x[n_0]$$

4.4 Scaling Property

 $\delta[2n] = \delta[n]$ Note that there is no scaling factor!

5 Complex Numbers

6 Convolution

7 Miscellany

In class, she mentioned carrier frequency modulation as a motivation for ideal filters. Want to discuss IQ demodulation?