DMA Domácí úkol č. 3a

Tento úkol vypracujte po přednášce a před cvičením, na druhé straně je řešení. Pokud vám něco není jasné, zeptejte se na cvičení.

- 1. Najděte opačný a inverzní prvek k a = 12 v \mathbb{Z}_{35} .
- **2.** Uvažujte čísla a=158621836 a b=273963451. Rozhodněte, zda jsou spolu kongruentní modulo n=45. Použijte rozklad $n=5\cdot 9$, lemma z přednášky a testy dělitelnosti.

Řešení:

- **1.** a) (-a) = n a = 23.
- **b)** Hledáme $x \in \mathbb{Z}$ aby 12x + 35m = 1 pro nějaké $m \in \mathbb{Z}$, toto děláme Euklidem.

Dostali jsme $3 \cdot 12 + (-1) \cdot 35 = 1$, modulo 35 to dává $3 \cdot 12 \equiv 1$. Takže $12^{-1} = 3$.

a/b	A	B
35	1	0
12	0	1
11	1	-2
1●	$-1 \bullet$	3●
0		

2. Potřebujeme ukázat, že $a \equiv b \pmod{5}$ a $a \equiv b \pmod{9}$.

Vidíme z poslední cifry, že $a \mod 5 = 1$ a $b \mod 5 = 1$, podle jedné věty proto $a \equiv b \pmod 5$.

Je rozdíl b-a=115341615 dělitelný devíti? Ciferný součet je 27, je dělitelný devíti? Jeho ciferný součet :-) je 9, ten dělitelný devíti je. Takže $a\equiv b\pmod{9}$.

Čísla 5, 9 jsou nesoudělná, podle lemmatu proto $a \equiv b \pmod{5 \cdot 9}$.