Gimbal Communications - Preliminary

PO Box 1500
2621 Wasco Street
Hood River, OR 97031
(541) 387-2120 phone
(541) 387-2030 fax
www.cloudcaptech.com
support@cloudcaptech.com
sales@cloudcaptech.com

Bill Vaglienti

January 25, 2008

Version 1.0.0

Table of Contents

1	Intro	troduction							
2	Phy	hysical layer3							
3	Gim	bal communications datalink layer	. 3						
	3.1	General packet definition	. 3						
	3.2	Group types	. 4						
4	Gim	bal communications packets	. 4						
	4.1	Command and control input packets, group 0x00	. 4						
4.2 Dynamics information packets, group 0x08									
	4.3	Position information packets, group 0x10	10						
	4.4	Gimbal setup packets, group 0x48	14						
	4.5	Camera Type	19						
5	CA	N interface	21						
	5.1	Gimbal input CAN frames	21						
	5.2	Gimbal output CAN frames	21						
	5.3	3AX axis control	21						
6	1/1 3	I former of	22						

1 Introduction

TASE is a gimbaled camera system intended for use by small UAVs or any other system that needs stabilized pan and tilt functionality. This document describes the communications protocol used to talk to TASE.

2 Physical layer

TASE supports three 3-wire RS-232 serial channels, one 3-wire TTL channel, and one 3-wire CAN connection.

Port	Connector	Pins	Level	Function
Com1	39-pin	5(Gnd), 6 (Rx),	RS232	Optional Interface to Honeywell
		7 (Tx)		HMR2300 3-axis magnetometer.
Com2	39-pin	25(Gnd), 26	RS232	9600 Baud gimbal communications.
		(Rx), 27 (Tx)		
Com3	25-pin	4(Gnd), 5 (Tx),	RS232	57600 Baud gimbal communications.
		6 (Rx)		
KLV	25-pin	15 (Tx), 16	5V	9600 Baud KLV output data.
		(Rx), 17 (Gnd)	TTL	
CAN	25-pin	22 (HI), 23	CAN	1Mbaud multidrop differential CAN
		(LO), 9 (GND)		bus for gimbal communications.

Table 1. Physical layer serial pin-outs and function

3 Gimbal communications datalink layer

3.1 General packet definition

Gimbal communications take place using packets whose general format is described Table 2 below. Note that all multi-byte values are always sent with the most significant byte first, i.e. in Big-Endian order. This document identifies the bit order of a word as starting at 0 which is the left-most or most-significant bit (MSB).

Byte	Name	Meaning
0	SYNC1	Synchronization character used to signal the receiving state machine that a packet may be forthcoming. Must be $0x00$.
1	SYNC2	Second synchronization character used to signal the receiving state machine that a packet may be forthcoming. Must be 0xFF.
2	SYNC3	Third synchronization character used to signal the receiving state machine that a packet may be forthcoming. Must be 0x5A.
3	Size	Number of data bytes in the packet, including the Group and PktType members (i.e. 2 more than the size of Data).
4	Group	The group byte identifies the category of data contained in the packet.

Table 2. datalink layer packet definition

5	PktType	The packet type, along with the group, identifies the type of data contained in the packet.			
6Size+3	Data	Data of the packet			
Size+4	Check_0	Most and least significant bytes of the checksum. The			
Size+5	Check_1	checksum is formed by unsigned summation of all bytes in			
		the packet excluding the checksum bytes.			

3.2 Group types

Table 3 lists the different packet group recognized by the gimbal.

Table 3. Packet group types

Name	Group	Meaning
COMMAND_AND_CONTROL_GROUP	0x00	Gimbal input command and control packets.
DYNAMICS_INFORMATION_GROUP	0x08	Rate and attitude information input and
		output.
POSITION_INFORMATION_GROUP	0x10	GPS and sensor point of interest position
		input and output.
STATUS_INFORMATION_GROUP	0x28	Status packets.
SETUP_GROUP	0x48	Gimbal setup packets.

4 Gimbal communications packets

4.1 Command and control input packets, group 0x00

Table 4. Packet types for command and control input group 0x00

Name	PktType	Dir	Freq	Meaning
GIMBAL_CMD	0x80	In	N/A	Gimbal command packet for controlling
				pan, tilt, roll, and operational modes.
GYRO_ZERO_CMD	0x40	In	N/A	Gimbal command packet for zeroing the
				rate gyros.
CAMERA_CMD	0x41	In	N/A	Camera zoom and focus control.
LEGACY_CAMERA_CMD	0x81	In	N/A	VISCA based camera zoom and focus.
CAMERA_PASS	0x42	Both	N/A	Pass-through to directly communicate
				to camera
RETRACT_DEPLOY_CMD	0x43	Both	N/A	TASE third-axis command.

4.1.1 Gimbal Command Packet: 0x80

The gimbal command packet is input to the gimbal to control its position or rate, and whether stabilization is enabled or disabled.

Table 5. Gimbal command packet data contents

Byte	Name	Meaning
0	Pan(MSB)	Signed 16 bit pan position or rate command in 1/100 th of deg
1	Pan(LSB)	or deg/second.
2	Tilt(MSB)	Signed 16 bit tilt position or rate command in 1/100 th of

_	T				
3	Tilt(LSB)		deg or deg/second.		
4	Roll(MSB)	Signed 16 bit roll position or rate command in 1/100 th of			
5	Roll(LSB)	deg or	deg/second. This signal is ignored by the gimbal.		
6	Flags	Flags d	escribes how the data are interpreted:		
		0x00 L	egacy rate command, stabilization off.		
		0x01 L	egacy position command, stabilization off.		
		0x02 L	egacy rate command, stabilization on.		
		0x03 L	egacy position command, stabilization on.		
		0x10 R	ate command, stabilization off		
		0x90 R			
		0x20 Position command, stabilization off.			
		0xA0 P	0xA0 Position command, stabilization on.		
		0x30 I	mpulse command, stabilization off		
		0xB0 I	of interest is on than this command shifts the sensor		
		0			
		point of interest errors.			
			POI error. If sensor point of interest is on than		
		this sets the sensor point of interest error.			
		0xD0 SPOI error rate. If sensor point of interest is on			
		than this sets the rate at which the sensor point of			
		interest error changes.			
7	ImpulseTime	Unsigned 8-bit amount of time used to answer an impulse			
		command in hundredths of a second.			

4.1.2 Gyro Zero Packet: 0x40

The gyro zero packet is a zero length input packet used to tell the gimbal to zero the rate sensors. This packet should only be sent when the gimbal is not moving.

4.1.3 Camera Command Packet: 0x41

The camera control packet provides the fields necessary to control the camera settings. This packet will change the active camera unless 0xFF is passed for the camera designator. This packet can be sent with just one byte in which case the camera settings are not changed, but instead the active camera is changed.

Byte Name Meaning Camera Camera designator, 0 for camera A, 1 for camera B, 2 for camera C. 0xFF for do not change camera. 1 Reserved Set to zero. Signed 16 bit horizontal field of view in 1/100th of a HFOV (MSB) HFOV (LSB) degree. If the HFOV value is negative the value is interpreted as zoom ratio minus in -1/100ths of a zoom. 0xFFFF (-1) means do not change field of view. Unsigned 16 bit focus position in millimeters. Note that Focus (MSB) not all cameras support focus control. Special cases: Focus (LSB) 0x0000: Auto-focus. OxFFFD: Trigger focus on current view. 0xFFFE: Infinite focus. OxFFFF: Do not change focus. Exposure mode. Note that not all cameras support exposure Exposure control. 0) Full auto: auto iris and gain; shutter at 1/60 s.

Table 6. Gimbal command packet data contents

		1) Shutter priority	: shutter command and auto iris and	
		gain.		
		2) Bright: Bright value used below with fixed shutter		
		0xFF) Do not change	e exposure control.	
7	Shutter	Unsigned 8 bit VISC	CA shutter speed command from 0x00 (1/1)	
	Speed	to $0x15 (1/10000)$.	0xFF is do not change. This value only	
		applies if Exposure	e is 1 or 2. Not all cameras support	
		shutter speed contr	col.	
8	Bright	Bright value used for exposure mode 2. 0x00 is dark		
		0x1F is brightest.	0xFF is do not change. This value only	
		applies if Exposure	e is 2. Not all cameras support bright	
		control.		
9	Flags	Bitfield for camera	discretes.	
		0) MSB	Set for no change to flags.	
		1-4) Reserved	Set to zero.	
		5) Black hot	Set for black hot, else white hot.	
		6) Stab on	Set to turn camera stabilization on.	
		7) Title on	Set to turn title display on.	

4.1.4 Legacy Camera Command Packet: 0x81

The legacy camera control packet provides the fields necessary to directly control the first camera through Sony VISCA commands.

Byte	Name	Meaning		
0	Zoom{MSB}	Unsigned 16 bit VISCA zoom command from 0x0000 (wide end)		
1	Zoom(LSB)	to 0x4000 (narrow end).		
2	Focus (MSB)	Unsigned 16 bit VISCA focus position command from 0x1000		
3	Focus (LSB)	(far end) to 0xC000 (near end). Special cases:		
		0x0000: Auto-focus at fast rate.		
		0x0001: Auto-focus at slow rate.		
		OxFFFD: Trigger focus on current view.		
		0xFFFE: Infinite focus.		
		<pre>0xFFFF: Do not change focus.</pre>		
4	Auto	Automatic exposure mode:		
	Exposure	0) Full auto: auto iris and gain; shutter at 1/60 s		
		1) Shutter priority: shutter command and auto iris and		
		gain		
		2) Iris priority: iris command and auto gain and shutter		
		3) Manual: user commands		
5	Shutter	Unsigned 8 bit VISCA shutter speed command from $0x00$ (1/1)		
	Speed	to $0x15 (1/10000)$. $0xFF$ is do not change.		
6	Iris	Unsigned 8 bit VISCA f stop setting from 0x00 (close) to		
		0x11 (F1.4).		
7	Gain	Unsigned 8-bit VISCA gain settings from 0x00 (-3dB) to 0x0F (28 dB)		

Table 7. Gimbal command packet data contents

4.1.5 Camera pass through Packet: 0x42

The camera pass through packet gives the ability to directly send and receive data from the camera. Sending the camera pass through packet will disable the gimbals internal camera control functionality (i.e. the ability to respond to camera command packets). Some cameras

(those which the gimbal does not know how to control) are automatically in camera pass through mode.

Pass through packets sent to the gimbal represent data to be sent to the camera. Pass through packets received from the gimbal represent data from the camera.

Table 8. Gimbal camera pass through packet

Byte	Name	Meaning		
0	Camera	Camera designator, 0 for camera A, 1 for camera B, 2 for		
		camera C.		
1	Baud	Baud rate of the camera interface, in units of 1200. 0 means do not change. Packets from the gimbal will contain the current baud rate of the camera interface. Packets to the gimbal contain the desired baud rate. If the desired baud		
		rate does not match the current baud rate the gimbal will change the camera interface baud rate.		
2	Reserved	Set to zero		
3	Reserved	Set to zero		
4	Data_0	First byte in this packet to/from the camera.		
N+3	Data_N	Last byte in this packet to/from the camera.		

4.1.6 Retract Deploy Command: 0x43

The third axis command packet is used to command the retract/deploy mechanism that is an option for TASE. This system retracts or deploys the entire gimbal, hence it is not really a gimbal angle like pan or tilt, and its position does not affect the interpretation of camera orientation information in the geo-referencing packet. The gimbal will echo this packet when the retraction or deployment is complete.

Table 9. Third axis command packet

Byte	Name	Meaning
0	Deploy	Set to non-zero to command deployment, zero commands
		retraction.
1	Reserved	Set to zero.

4.2 Dynamics information packets, group 0x08

Table 10. Packet types for dynamics information group 0x08

PktType	Dir	Freq	Meaning
0x10	Out	10	Gimbal axis angle information.
0x40	Out	10	Gimbal telemetry information.
0x41	In	N/A	Host sensor information.
0x42	In	N/A	Host attitude information.
	0x10 0x40 0x41	0x10 Out 0x40 Out 0x41 In	0x40 Out 10 0x41 In N/A

4.2.1 Gimbal angle packet: 0x10

The gimbal angle packet is sent by the gimbal to report the gimbal angles relative to the gimbal mount.

Table 11. Gimbal angle packet data contents

Byte	Name	Meaning
0	Pan_0	Signed 16 bit pan position in 1/100 th of degree.
1	Pan_1	
2	Tilt_0	Signed 16 bit tilt position in 1/100 th of degree.
3	Tilt_1	
4	Roll_0	Signed 16 bit roll position in 1/100 th of degree. The gimbal
5	Roll_1	does not have a roll axis, this value will be reported zero.

4.2.2 *Gimbal rate packet: 0x40*

The gimbal rate packet is sent to report the gimbal mount rate, gimbal axis rate, and mode of operation. The mount rate is measured with inertial sensors, the gimbal axis rate is the speed of the gimbal axis relative to the mount. This information can be used by video processing systems to aid video stabilization and geo-rectification.

Table 12. Gimbal rate packet data contents

Byte	Name	Meaning	
0	Time_0	Unsigned 32-bit	gimbal time since reset in milliseconds.
1	Time_1		
2	Time_2		
3	Time_3		
4	PanRate_0	Signed 16 bit gi	mbal pan axis rate in 1/100 ^{th o} /s.
5	PanRate_1		
6	TiltRate_0	Signed 16 bit gi	mbal tilt axis rate in 1/100 th °/s.
7	TiltRate_1		
8	RollRate_0	Signed 16 bit gi	mbal roll axis rate in 1/100 th °/s. The
9	RollRate_1		have a roll axis, this value will be zero.
10	p_0	Signed 16 bit gi	mbal mount body roll rate in 1/100 th
11	p_1	deg/second.	
12	q_0		mbal mount body pitch rate in 1/100 th
13	q_1	deg/second.	
14	r_0		mbal mount body yaw rate in 1/100 th
15	r_1	deg/second.	
16	Reserved		
17	Mode	Operational mode	<u> </u>
		Bit 0) MSB	Set if stabilization is on
		Bit 1)	Set if 3AX in deployed state.
		Bit 2)	Set if 3AX in retracted state.
		Bits 3-7)	The mode of the gimbal:
			• Rate feedback
			Position feedback
			Sensor point of interest
			• Pan initialization
			Tilt initialization
			Position initialization

4.2.3 Host sensor packet: 0x41

The host sensor packet is used to inform the gimbal of the host inertial information. The gimbal can use this information to perform a check against its own sensors or to perform state estimation

using the host sensors. The data in this packet must be supplied in the gimbal's natural coordinate system.

Table 13. Host sensor packet data contents

Byte	Name	Meaning				
0	Time(MSB)	Unsigne	ed 32-bit host time in milliseconds.			
1	Time(1)					
2	Time(2)					
3	Time(LSB)					
4	Roll(MSB)	Signed	16 bit host body roll rate in 1/100 th deg/second.			
5	Roll(LSB)					
6	Pitch(MSB)	Signed	16 bit host body pitch rate in 1/100 th deg/second.			
7	Pitch(LSB)					
8	Yaw(MSB)	Signed	16 bit host body yaw rate in 1/100 th deg/second.			
9	Yaw(LSB)					
10	Flags	Bits	Meaning			
		0	Bias corrected. If set this bit indicates that the			
		(MSB)	rate data have been bias corrected by the host and			
			can be used by the gimbal to perform its own bias			
			correction.			
		1	if set this bit indicates that accelerometer data			
			are valid.			
		2	If set this bit indicates that TAS data is valid,			
			else TAS data must be ignored.			
		3-7	Reserved. Set to zero			
11	SampleRate		ed 8-bit rate at which this packet is being supplied			
			gimbal in packets per second. This value is only			
			ted the first time this packet is received.			
12	X_Accel(MSB)		16-bit x-axis acceleration in units of 1/300 th of a			
13	X_Accel(LSB)	/	metet/second/second.			
14	Y_Accel(MSB)		16-bit y-axis acceleration in units of 1/300 th of a			
15	Y_Accel(LSB)	· ·	second/second.			
16	Z_Accel(MSB)	_	16-bit z-axis acceleration in units of 1/300 th of a			
17	Z_Accel(LSB)	/	second/second.			
18	TAS (MSB)		ed 16-bit true air speed in units of 1/100 th of a			
19	TAS(LSB)	meter p	per second. OxFFFF if this value is unavailable.			

4.2.4 Host attitude packet: 0x42

The host attitude packet is used to inform the gimbal of the host attitude information. The gimbal can use this information to aid or replaces its internal navigation solution. The data in this packet must be supplied in the gimbal's natural coordinate frame, i.e. the Euler angles of the gimbal mount relative to inertial space.

Table 14. Host attitude packet data contents

Byte	Name	Meaning
0	Time(MSB)	Unsigned 32-bit host time in milliseconds.
1	Time(1)	
2	Time(2)	
3	Time(LSB)	
4	Roll(MSB)	Signed 16 bit host Euler roll angle in 1/100 th deg. From -
5	Roll(LSB)	180° to 180°.

6	Pitch(MSB)	Signed	16 bit host Euler pitch angle in 1/100 th deg. From -		
7	Pitch(LSB)	90° to	90°.		
8	Yaw(MSB)	Signed	16 bit host Euler yaw angle in 1/100 th deg. From -		
9	Yaw(LSB)	180° to	180°.		
10	Flags	Bits	Meaning		
		0-5	Reserved, set to zero.		
		6	6 Set this bit to tell the gimbal to use the yaw		
		information to aid the internal GPS/INS filter.			
		7(lsb) Set this bit to tell the gimbal to overwrite its			
		internal attitude solution with the data in this			
			packet. This can also be accomplished with the		
			navigation source packet.		
11	SampleRate	_	d 8-bit rate at which this packet is being supplied		
		to the	gimbal in packets per second.		

4.3 Position information packets, group 0x10

Table 15. Packet types for position information group 0x10

Name	PktType	Dir	Freq	Meaning
HOST_GPS_DATA	0x10	In	N/A	Host GPS information.
SPOI_CMD	0x40	In	N/A	Sensor point of interface command.
GEOREFERENCE_DATA	0x41	Out	4	Data needed to geo-reference the image data.

4.3.1 Host GPS data

The host GPS data packet is used to inform the gimbal of the host location and velocity. The gimbal can use this information to perform sensor point of interest control or to provide metadata to downstream devices. Position data is relative to the WGS-84 ellipsoid.

Table 16. Host GPS packet data contents

Byte	Name	Meaning
0	Time_0	Unsigned 32-bit host time in milliseconds.
1	Time_1	
2	Time_2	
3	Time_3	
4	Lat_0	32-bit signed integer latitude, in milli-arcseconds.
5	Lat_1	
6	Lat_2	
7	Lat_3	
8	Lon_0	32-bit signed integer longitude, in milli-arcseconds.
9	Lon_1	
10	Lon_2	
11	Lon_3	
12	Height_0	32-bit signed integer GPS height, in centimeters above the
13	Height_1	ellipsoid.
14	Height_2	
15	Height_3	
16	Vnorth_0	16-bit signed integer North component of the groundspeed, in
17	VNorth_1	centimeters per second.
18	VEast_0	16-bit signed integer East component of the groundspeed, in

VEast 1 centimeters per second. 20 16-bit signed integer Down component of the groundspeed, in VDown 0 21 VDown_1 centimeters per second. 22 16-bit unsigned GPS year. Year_0 23 Year_1 24 Month GPS month, 1...12 25 Day GPS day, 1...31 26 GPS hour, 0...23 Hour 27 Minute GPS minutes, 0...59 28 GPS seconds, 0...59 Second GPS fractional seconds in 0.01 seconds 0...99 FracSecond 30 Valid 1 if GPS data is valid, else 0 31 SampleRate Unsigned 8-bit rate at which this packet is being supplied to the gimbal in packets per second.

4.3.2 Sensor point of interest command

The sensor point of interest (SPOI) command packet is used to command the gimbal to point at a specific location in inertial space. This packet is only useful if the gimbal is receiving regular host attitude and GPS packets. When this command is received the gimbal will switch to sensor point of interest tracking mode. The gimbal will propagate the sensor point of interest command according to the SPOI velocity. Position data is relative to the WGS-84 ellipsoid. Send this packet with zero length to request the current SPOI information.

Table 17. Sensor point of interest command packet data contents

Byte	Name	Meaning			
0	Lat_0	32-bit signed integer latitude of the sensor point of			
1	Lat_1	interest, in milli-arcseconds.			
2	Lat_2				
3	Lat_3				
4	Lon_0	32-bit signed integer longitude of the sensor point of			
5	Lon_1	interest, in milli-arcseconds.			
6	Lon_2				
7	Lon_3				
8	Height_0	32-bit signed integer height of the sensor point of interest,			
9	Height_1	in centimeters above the ellipsoid.			
10	Height_2				
11	Height_3				
12	Vnorth_0	16-bit signed integer North component of the groundspeed of			
13	VNorth_1	the SPOI, in centimeters per second.			
14	VEast_0	16-bit signed integer East component of the groundspeed of the			
15	VEast_1	SPOI, in centimeters per second.			
16	VDown_0	16-bit signed integer Down component of the groundspeed of the			
17	VDown_1	SPOI, in centimeters per second.			
18	Flags	Packet flags			
		0) If this packet is sent to the gimbal then set this bit			
		MSB to request an echo of this packet for confirmation. If			
		this packet is received from the gimbal this bit will			
		be set if stabilization is on.			
		1-7) If this packet is received from the gimbal the mode			
		Mode will be recorded here.			

4.3.3 Gimbal geo-referencing data: 0x41

The gimbal telemetry packet reports the gimbal position, and camera angels. The camera angels are determined from the gimbal mount orientation, and gimbal angles. The gimbal position and mount orientation may be supplied by the host system or may be determined within the gimbal itself using its own sensors. This information can be used by video processing systems to georeference the image information.

Table 18. Gimbal geo-referencing data

Byte	Name	Meaning
0	Time_0	Unsigned 32-bit gimbal time since reset in milliseconds.
1	Time 1	
2	Time_2	
3	Time 3	
4	 Lat_0	32-bit signed integer latitude, in milli-arcseconds.
5	Lat_1	
6	Lat_2	
7	Lat_3	
8	Lon_0	32-bit signed integer longitude, in milli-arcseconds.
9	Lon_1	
10	Lon_2	
11	Lon_3	
12	Height_0	32-bit signed integer GPS height, in centimeters above
13	Height_1	the ellipsoid.
14	Height_2	
15	Height_3	
16	Vnorth_0	16-bit signed integer North component of the groundspeed,
17	VNorth_1	in centimeters per second.
18	VEast_0	16-bit signed integer East component of the groundspeed,
19	VEast_1	in centimeters per second.
20	VDown_0	16-bit signed integer Down component of the groundspeed,
21	VDown_1	in centimeters per second.
22	Year_0	16-bit unsigned GPS year.
23	Year_1	
24	Month	GPS month, 112.
25	Day	GPS day, 131.
26	Hour	GPS hour, 023.
27	Minute	GPS minutes, 059.
2.8	Second	GPS seconds, 059.
29	FracSecond	GPS fractional seconds in 0.01 seconds 099.
30	NumSats	Number of satellites tracked by the GPS.
31	PDOP	Position dilution of precision in units of 0.1 PDOP.
32	Status_0	16-bit GPS status word.
33	Status_1	• Bit $0-2$ (msb): $111 = 3D$ Fix
		110 = 2D Fix
		101 = Propagate Mode
		100 = Position Hold
		011 = Acquiring Satellites
		010 = Bad Geometry
		001 = Reserved
		000 = Reserved
		Bit 3: Set if dead-reckoned
		Bit 4: Set if satellite based augmentation system

Bit 5: Reserved Bit 6: Fast acquisition position Bit 7: GPS data are raw (unfiltered) Bit 8: GPS is performing cold start Bit 9: GPS is differentially corrected Bit 10: Position lock mode enabled Bit 11: Auto survey mode Bit 12: Insufficient satellites visible Bit 13-14: 11 = No antenna power 10 = Antenna undercurrent 01 = Antenna overcurrent 00 = Antenna good Bit 15: Reserved 34 CameraRoll 0 Signed 16 bit Euler roll angle of the camera in 1/100th CameraRoll_1 35 deg. From -180° to 180° . 36 CameraPitch_0 Signed 16 bit Euler pitch angle of the camera in 1/100th 37 CameraPitch 1 deg. From -90° to 90° . Signed 16 bit Euler yaw angle of the camera in 1/100th 38 CameraYaw_0 39 CameraYaw_1 deg. From -180° to 180° . 40 HFOV_0 Unsigned 16-bit horizontal field of view of the active camera in 1/100th deg. 41 HFOV_1 Unsigned 16-bit vertical field of view of the active VFOV 0 42 camera in 1/100th deg. VFOV 1 Unsigned 16-bit focal length in 1/100th of a millimeter. Focal 0 45 Focal_1 46 Mode Operational mode of the gimbal: Bit 0) MSB Set if stabilization is on Bit 1) Set if 3AX in deployed state. Set if 3AX in retracted state. Bit 2) Bits 1-7) The mode of the gimbal: • Rate feedback Position feedback Sensor point of interest Pan initialization Tilt initialization • Position initialization 47 SampleRate Unsigned 8-bit rate at which this packet is being sent. 48 NavHealth_0 16 bit GPS/INS navigation health information, bit set to 49 NavHealth 1 indicate residual error or covariance is within bounds. Bit 0: Position. Bit 1: Velocity. Bit 2: Reserved. Bit 3: Reserved. Bit 4: Reserved. Bit 5: Reserved. Bit 6: Heading. Bit 7: Attitude. Bit 8: Gyro bias. Bit 9: Accelerometer bias. Bit 10: Magnetometer bias. Bit 11: Reserved. Bit 12-15: Filter mode: init, align, ready, normal, AHRS.

50	MountRoll_0	Signed 16 bit Euler roll angle of the gimbal mount in
51	MountRoll_1	1/100 th deg. From -180° to 180°.
52	MountPitch_0	Signed 16 bit Euler pitch angle of the gimbal mount in
53	MountPitch_1	1/100 th deg. From -90° to 90°.
54	MountYaw_0	Signed 16 bit Euler yaw angle of the gimbal mount in
55	MountYaw_1	$1/100^{th}$ deg. From -180° to 180° .
56	Pan_0	Signed 16 bit pan position in 1/100th deg. From -180° to
57	Pan_1	180°.
58	Tilt_0	Signed 16 bit tilt position in 1/100th deg. From -270° to
59	Tilt_1	90°.
60	Roll_0	Signed 16 bit roll position in 1/100th deg. From -180° to
61	Roll_1	180°.
62	Camera	Camera designator indicating which camera is active, 0
		for camera A, 1 for camera B, 2 for camera C.

4.4 Gimbal setup packets, group 0x48

The gimbal setup packets are used to configure the gimbal for custom operation. Anytime the gimbal receives one of these packets it replies by sending the packet back. Hence each of these packets can be sent as zero length in order to query the current settings. The data in these packets are stored onboard the gimbal so that they will survive a power cycle.

Pkt Type Name Dir Freq Meaning PACKET_RATE 0x00 Both N/ASetup and query of the rates of the various gimbal telemetry packets. Setup and query the filter parameters SENSOR_FILTER 0x01 N/A Both used for stabilization. AXIS_SETTING 0×0.2 Both N/A Setup and query the gimbal axis control data. SYSTEM VERSION 0x03 Both N/A Query of system version iformation. NAV_SOURCE 0×04 Both N/ASetup of navigation sources CAMERA_TYPE 0x05 Both N/A Setup of camera types 0x06 GPS_LEVER_ARM Both N/A Setup of GPS lever arm CAMERA_ALIGN 0x07 Both N/A Alignment of camera

Table 19. Packet types for gimbal setup group 0x48

4.4.1 Gimbal Packet Rate

The packet rate packet is used to specify or query the rates at which the gimbal telemetry packets are output. This packet can be used to modify the default behavior in order to reduce the telemetry bandwidth requirement or to improve time resolution (at the expense of bandwidth). A zero packet rate will disable output for that packet.

Table 20. Gimbal packet rate

Byte	Name	Meaning
0	Angle_1	GIMBAL_ANGLE Packet rate in packets per second for external

		communications port 1. Defaults to 10.	
1	Rate_1	GIMBAL_RATE Packet rate in packets per second for external	
		communications port 1. Defaults to 10.	
2	Geo-ref_1	GEO_REFERENCE Packet rate in packets per second for external	
		communications port 1. Defaults to 4.	
3	Camera_1	Reserved for camera details.	
4	Reserved	Reserved byte set to zero.	
5	Angle_2	GIMBAL_ANGLE Packet rate in packets per second for external	
		communications port 2. Defaults to 10.	
6	Rate_2	GIMBAL_RATE Packet rate in packets per second for external	
		communications port 2. Defaults to 10.	
7	Geo-ref_2	GEO_REFERENCE Packet rate in packets per second for external	
		communications port 2. Defaults to 4.	
8	Camera_2	Reserved for camera details.	
9	Reserved	Reserved byte set to zero.	
10	Angle_3	GIMBAL_ANGLE Packet rate in packets per second for external	
		communications port 3. Defaults to 10.	
11	Rate_3	GIMBAL_RATE Packet rate in packets per second for external	
		communications port 3. Defaults to 10.	
12	Geo-ref_3	GEO_REFERENCE Packet rate in packets per second for external	
		communications port 3. Defaults to 4.	
13	Camera_3	Reserved for camera details.	
14	Reserved	Reserved byte set to zero.	
15	Temporary	Set this to 1 to make these settings temporary (i.e. don't	
		write them to nonvolatile storage)	

4.4.2 Gimbal sensor filter

The sensor filter packet provides the ability to control the inertial sensor filters that control the bandwidth of the data used to provide stabilization.

Table 21. Gimbal sensor filter

Byte	Name	Meaning
0	Cutoff	Cutoff frequency in 0.1Hz for the 2 nd order Butterworth low pass filter applied to the gyro data before being fed to the stabilization. Lower values reduce noise, higher values increase stabilization bandwidth. Default is 10Hz.
1	Decimation	Gyro rate decimation in 1/10 th deg/s. If the absolute value of the gyro rate signal is less than this value the rate will be treated as zero. Increasing this value reduces the effects of gyro noise and bias error at the expense of stabilization accuracy. Default is 0.5 deg/s.

4.4.3 Axis settings

The axis settings packet provides the ability to control the settings used to drive the gimbal axis actuators. It can be used to adjust the actuator to account for camera mass and rotation limitations due to cabling or physical interference issues. When sending this packet use 0xFF (or 0xFFFF for 16-bit values) to indicate that you don't want to change a parameter.

Table 22. Gimbal axis settings

Byte Name Meaning	
-------------------	--

	1	
0	Pan_NoGo_Center_0	16-bit signed center of the pan no go range in
1	Pan_NoGo_Center_1	$1/100^{\text{th}}$ deg from -180° to 180° . The no go range
		defines a region in which the system cannot go
		because of physical limitations. Default is zero.
2	Pan_NoGo_Range_0	16-bit unsigned range of the pan no go area in
3	Pan_NoGo_Range_1	$1/100^{\text{th}}$ deg from 0° to 360°. If the no go range is
		zero then the axis is free running. Default is
		zero.
4	Tilt_NoGo_Center_0	16-bit signed center of the Tilt no go range in
5	Tilt_NoGo_Center_1	$1/100^{\text{th}}$ deg from $-270\degree$ to $90\degree$. Default is $90\degree$.
6	Tilt_NoGo_Range_0	16-bit unsigned range of the Tilt no go area in
7	Tilt_NoGo_Range_1	$1/100^{\rm th}$ deg from 0° to 360°. Default is 60°.
8	Roll_NoGo_Center_0	16-bit signed center of the Roll no go range in
9	Roll_NoGo_Center_1	$1/100^{\mathrm{th}}$ deg from -180° to 180° . Ignored.
10	Roll_NoGo_Range_0	16-bit unsigned range of the Roll no go area in
11	Roll_NoGo_Range_1	$1/100^{\mathrm{th}}$ deg from 0° to 360°. Ignored.
12	Pan_MaxRate	Max pan rate in units of $5^{\circ}/s$. Default is $300^{\circ}/s$.
14	Tilt_MaxRate	Max tilt rate in units of $5^{\circ}/s$. Default is $300^{\circ}/s$.
15	Roll_MaxRate Max roll rate in units of 5°/s. Ignored.	
16	Pan_MaxAccel	Max pan acceleration in units of 200°/s/s. Default
		is 10,000°/s/s
17	Tilt_MaxAccel	Max tilt acceleration in units of 200°/s/s. Default
		is 10,000°/s/s
18	Roll_MaxAccel	Max roll acceleration in units of 200°/s/s.
		Ignored.
19	Pan_PosGain	Pan position feedback gain in units of 0.1 °/s
		commanded rate per degree of position error.
		Default is 4[(°/s)/°]
20	Tilt_PosGain	Tilt position feedback gain in units of 0.1 °/s
		commanded rate per degree of position error.
		Default is 4[(°/s)/°]
21	Roll_PosGain	Roll position feedback gain in units of 0.1 °/s
		commanded rate per degree of position error.
		Ignored
22	Temporary	Set this to 1 to make these settings temporary (i.e.
		don't write them to nonvolatile storage)
22	Temporary	Ignored

4.4.4 Gimbal System Version

The system version packet is used to request version information from the gimbal. The version information includes both hardware and software versions and camera information. Send this packet as zero length to request the version information.

Table 23. Gimbal system version packet

Byte	Name	Meaning
0	Major	Major version number of the gimbal software.
1	Minor	Minor version number of the gimbal software.
2	Sub	Sub version number of the gimbal software.
3	Released	One if software is released, else test version.
4	SoftYear_0	16-bit unsigned year of the software release.
5	SoftYear_1	
6	SoftMonth	Month of the software release, 1-12.
7	SoftDay	Day of the software release, 1-31.

BoardSN 0 Unsigned 32-bit board serial number. BoardSN 1 BoardSN_2 10 11 BoardSN_3 12 BoardRev_0 Unsigned 32-bit board revision number. 13 BoardRev_1 14 BoardRev_2 15 BoardRev_3 BoardConfig_0 16 Unsigned 32-bit board configuration code. 17 BoardConfig 1 BoardConfig 2 18 19 BoardConfig_3 20 BoardYear_0 16-bit unsigned year of the board fabrication 21 BoardYear_1 BoardMonth Month of the board fabrication, 1-1223 BoardDay Day of the board fabrication, 1-3124 Camera A Identifier for the first camera, See Table 28. Reserved 25 MaxHFOV_A_0 Unsigned 16 bit maximum horizontal field of view in $1/100^{\text{th}}$ of a degree for camera A. 27 MaxHFOV_A_1 Unsigned 16 bit minimum horizontal field of view in 28 MinHFOV_A_0 $1/100^{\text{th}}$ of a degree for camera A. 29 MinHFOV_A_1 30 Identifier for the second camera, OxFF if none. Camera B Table 28. 31 Reserved 32 MaxHFOV_B_0 Unsigned 16 bit maximum horizontal field of view in 33 MaxHFOV_B_1 1/100th of a degree for camera B. MinHFOV_B_0 Unsigned 16 bit minimum horizontal field of view in 1/100th of a degree for camera B. 35 MinHFOV_B_1 Camera C Identifier for the third camera, OxFF if none. See Table 36 Reserved 38 MaxHFOV_C_0 Unsigned 16 bit maximum horizontal field of view in $1/100^{\text{th}}$ of a degree for camera C. 39 MaxHFOV_C_1 40 MinHFOV_C_0 Unsigned 16 bit minimum horizontal field of view in $1/100^{\text{th}}$ of a degree for camera C. 41 MinHFOV_C_1

4.4.5 Gimbal Navigation Source

The gimbal has its own set of inertial sensors and its own GPS. By default it runs its own GPS/INS solution to generate the high rate position, velocity, and attitude information needed to perform sensor point of interest (SPOI) calculations. However external systems can supply their own data by sending this packet to change the navigation source information. Send this packet with zero length to query the navigation source settings.

Table 24. Gimbal navigation source packet

Byte	Name	Meaning
0	ExternalAttitude	If this byte is nonzero then the attitude solution
		used for SPOI calculations will be taken from the Host
		Attitude packet. In addition the gyro biases will be
		estimated by comparing the locally measured angular
		rates with the rates arriving in the Host Body Rates
		packet. If this field is clear the host data are not

		used and attitude and gyro bias estimates are done	
		using a GPS/INS filter.	
1	ExternalGPS	If this byte is set then the system will default to	
		using the GPS data from the Host GPS packet. If the	
		external attitude byte is clear the host GPS will be	
		fed into the GPS/INS filter and its output will be	
		used for SPOI. If the external attitude byte is set	
		then the position and velocity will be taken directly	
		from the host GPS.	

4.4.6 Camera Type

The camera type packet is used to request or change the camera type. The gimbal uses the camera type to determine how to communicate to a camera. This packet is typically only used during manufacturing setup.

Table 25. Gimbal system version packet

Byte	Name	Meaning	
0	Camera	Type of the first camera, 0x0 is do not change, 0xFF is no	
	A	camera. See Table 28.	
1	Camera	Type of the second camera, 0x0 is do not change, 0xFF is no	
	В	camera. See Table 28.	
2	Camera	Type of the third camera, 0x0 is do not change, 0xFF is no	
	С	camera. See Table 28.	

4.4.7 GPS Lever Arm

The GPS lever arm gives the distance from the IMU of the gimbal to the GPS antenna. This data are used in the GPS/INS navigation filter. On the TASE gimbal the IMU is located at the top front of the man electronics housing (the side furthest from the connectors). When traveling from the IMU to the GPS, if the motion goes in a positive direction with respect to gimbal coordinates, than the lever arm is positive.

Table 26. GPS lever arm

Byte	Name	Meaning
0	Χ	16-bit signed X distance from the avionics IMU to the GPS antenna
1	ant	in millimeters.
2	Y	16-bit signed Y distance from the avionics IMU to the GPS antenna
3	ant	in millimeters.
4	Z	16-bit signed Z distance from the avionics IMU to the GPS antenna
5	ant	in millimeters.

4.4.8 Camera alignment

The camera alignment gives the error between the cameras boresight axis and the gimbal position as measured by the encoders. The camera alignment can vary as a function of camera optical zoom and hence is measured in two different locations. The sign convention on the alignment is confusing. Assuming the gimbal is mounted such that zero pan and zero tilt should provide a centered image, than if the image is to the right of center the pan error is positive; and

if the image is above center the tilt error is positive. (i.e. if you center the image the current pan and tilt reading will be the error).

Table 27. Camera alignment

Byte	Name	Meaning
0	Zoom_1	Unsigned 16-bit zoom ratio at which the first alignment
1		measurement was taken, in units of 1/100 th .
2	PanErr_1	Signed 16-bit pan error at the first zoom ratio in 1/100 th of
3		degree.
4	TiltErr_1	Signed 16-bit tilt error at the first zoom ratio in $1/100^{\rm th}$ of
5		degree.
6	RollErr_1	Signed 16-bit roll error at the first zoom ration in $1/100^{ m th}$
7		of a degree.
8	Zoom_2	Zoom ratio at which the second alignment measurement was
9		taken, in units of 1/100 th .
10	PanErr_2	Signed 16-bit Pan error at the second zoom ratio in 1/100 th of
11		degree.
12	TiltErr_2	Signed 16-bit Tilt error at the second zoom ratio in 1/100 th
13		of degree.
14	RollErr_2	Signed 16-bit Roll error at the second zoom ration in 1/100 th
15		of a degree.

4.5 Camera Type

The camera types supported by the gimbal are given below

Table 28. Gimbal camera types

Туре	Name	Meaning
36	SONY_FCB_EX480B	Sony 480B block camera, 18x optical zoom, NTSC
37	SONY_FCB_EX480BP	Sony 480B block camera, 18x optical zoom, PAL
38	SONY_FCB_EX48B	Sony 48B block camera, 18x optical zoom, NTSC
39	SONY_FCB_EX48BP	Sony 48B block camera, 18x optical zoom, PAL
48	SONY_FCB_EX980	Sony 980 block camera, 26x optical zoom, NTSC
49	SONY_FCB_EX980P	Sony 980 block camera, 26x optical zoom, PAL
50	SONY_FCB_EX980S	Sony 980 block camera, 26x optical zoom, NTSC, with built-in stabilizer
51	SONY_FCB_EX980SP	Sony 980 block camera, 26x optical zoom, PAL, with built-in stabilizer
52	SONY_FCB_EX480C	Sony 480C block camera, 18x optical zoom, NTSC
53	SONY_FCB_EX480CP	Sony 480C block camera, 18x optical zoom, PAL
68	SONY_FCB_EX1010	Sony 1010 block camera, 36x optical zoom, NTSC
69	SONY_FCB_EX1010P	Sony 1010 block camera, 36x optical zoom, PAL

95	FLIR_320_PHOTON_14	FLIR Indigo Photon IR camera with 14° FOV
		lens
96	FLIR_320_PHOTON_20	FLIR Indigo Photon IR camera with 20° FOV
		lens
97	FLIR_320_PHOTON_23	FLIR Indigo Photon IR camera with 23° FOV
		lens
98	FLIR_320_PHOTON_36	FLIR Indigo Photon IR camera with 36° FOV
		lens
99	FLIR_320_PHOTON_50	FLIR Indigo Photon IR camera with 50° FOV
		lens
112	THERMOTEKNIX_MIRICLE_110_41	Thermoteknix miracle 110 IR camera with
		40.9° FOV lens
113	THERMOTEKNIX_MIRICLE_110_24	Thermoteknix miracle 110 IR camera with
		23.7° FOV lens
114	THERMOTEKNIX_MIRICLE_110_15	Thermoteknix miracle 110 IR camera with
		15.3° FOV lens
115	THERMOTEKNIX_MIRICLE_110_10	Thermoteknix miracle 110 IR camera with
		10.2° FOV lens
120	THERMOTEKNIX_MIRICLE_307_48	Thermoteknix miracle 307 IR camera with
		47.9° FOV lens
121	THERMOTEKNIX_MIRICLE_307_28	Thermoteknix miracle 307 IR camera with
		28.1° FOV lens
122	THERMOTEKNIX_MIRICLE_307_18	Thermoteknix miracle 307 IR camera with
		18.2° FOV lens
123	THERMOTEKNIX_MIRICLE_307_13	Thermoteknix miracle 307 IR camera with
		12.2° FOV lens
		12.2° FOV lens

5 CAN interface

The gimbal can be interfaced over a CAN connection. The datalink layer remains exactly the same, and the bytes of each packet are simply encapsulated within consecutive CAN frames. Note that this requires that the time order of CAN frames be preserved on the bus. The CAN bus runs at 1Mbaud

5.1 Gimbal input CAN frames

CAN frames with an ID value of 0x11000000 are input frames that are interpreted as data going to the gimbal. The frame length can be from 1 to 8 bytes as needed.

5.2 Gimbal output CAN frames

CAN frames with an ID value of 0x10000000 are output frames that are interpreted as data coming from the gimbal. The frame length can be from 1 to 8 bytes as needed.

5.3 3AX axis control

The 3AX is a gimbal mounting drive system to deploy and retract TASE gimbals. A small microprocessor on the 3AX performs the actual motor control for retract and deploy operation. The TASE and the 3AX communicate over CAN using the following frames:

5.3.1 Move command, 0x12010000

This two byte message is sent by the TASE gimbal to command the 3AX to perform a retraction or deployment

Table 29. Move command CAN frame ID 0x12010000

Byte	Name	Meaning
0	Position	0 for deploy, else retract commanded
1	Reserved	Set to zero.

5.3.2 Moving command, 0x12020000

This two byte message is sent by the 3AX periodically to indicate the position and movement status of the retract deploy mechanism.

Table 30. Move command CAN frame ID 0x12010000

Byte	Name	Meaning
0	Position	From 0 (completely deployed) to 0xFE (completely retracted).
		OxFF is reserved to indicate that the position is unknown.
1	Speed	Signed 8 bit number indicating the speed of deployment in units of 5 deg/sec. The speed is positive if the system is retracting, else negative.

6 KLV format

The gimbal supports a KLV output (Key, Length, Value) output packet. The packet is output at 9600 baud as fast as the serial port can accept it, about every 900 milliseconds. The packet format is given in Table 31.

Table 31. KLV output packet format.

Byte	Name	Value/Meaning
0	Master key	0x06
1	_	0x0E
2		0x2B
3		0x34
4		0x02
5		0x03
6		0x01
7		0x01
8		0x00
9		0x00
10		0x00
11		0x00
12		0x00
13		0x00
14		0x00
15		0x00
16	Key length	69
17	UTC key	1
18	Key length	8
19	Value_0	Unsigned 64-bit number of microseconds since Midnight Jan 1
20	Value_1	1970.
21	Value_2	
22	Value_3	
23	Value_4	
24	Value_5	
25	Value_6	
26	Value_7	
27	Lat key	2
28	Key length	4
29	Value_0	Signed 32-bit latitude of the sensor as half circle over
30	Value_1	2^32:
31	Value_2	Latitude_deg = Value*4294967296.0/180.0
32	Value_3	Latitude_rad = Value*4294967296.0/Π
33	Lon key	3
34	Key length	4
35	Value_0	Signed 32-bit longitude of the sensor as full circle over
36	Value_1	2^32: Longitude_deg = Value*4294967296.0/360.0
37	Value_2	Longitude_deg = Value^4294967296.0/360.0 Longitude_rad = Value*4294967296.0/2
38	Value_3	
39	Alt key	2
40	Key length	
41	Value_0 Value_1	Unsigned 16-bit altitude[m] of the sensor from -900 to 10000: Altitude = Value*65536/10900 - 900
43	Pan key	5

Key length 45 Unsigned 16-bit sensor relative azimuth (i.e. Pan) from 0.0 Value_0 Value 1 to 360.0 deg: Azimuth_deg = Value*65536/360.0Azimuth_rad = $Value*65536/2\Pi$ Tilt key 6 2 48 Key length 49 Signed 16-bit sensor relative elevation (i.e. Tilt): Value_0 50 Elevation_deg = Value*65536/360.0 Value_1 Elevation_rad = Value*65536/2Π 51 Heading key Key length Unsigned 16-bit platform heading from 0.0 to 360.0 deg: Value_0 Heading deg = Value*65536/360.054 Value 1 Heading_rad = $Value*65536/2\Pi$ 5.5 Pitch key 2 Key length 57 Value_0 Signed 16-bit platform pitch angle from -20.0 to 20.0 deg: 58 Value_1 $Pitch_deg = Value*65536/40.0$ Pitch_rad = $Value*65536/(40.0\Pi /180.0)$ 59 Roll key Key length 60 Signed 16-bit platform roll angle from -50.0 to 50.0 deg: Value_0 61 Value 1 $Roll_deg = Value*65536/100.0$ Roll_rad = $Value*65536/(100.0\Pi /180.0)$ 62 VNorth key 10 63 Key length 2 64 Value_0 Signed 16-bit North velocity[m/s] of the sensor: 65 Value 1 VNorth = Value*65536/510.0VEast key 11 66 Key length Value_0 68 Signed 16-bit East velocity[m/s] of the sensor: VEast = Value*65536/510.0 69 Value_1 70 HFOV key 12 71 2 Key length Value_0 Unsigned 16-bit horizontal field of view as half circle 72 73 over 2^16: HFOV_deg = Value*65536/180.0 Value_1 HFOV rad = $Value*65536/\Pi$ 74 VFOV key 13 75 Key length Value_0 Unsigned 16-bit vertical field of view as half circle over $2^16: VFOV_deg = Value*65536/180.0$ 77 Value_1 $VFOV_rad = Value*65536/\Pi$ GPS status 78 14 key Key length 80 16-bit GPS status word. Value_0 81 Value 1 Bit 0-2 (msb): 111 = 3D Fix 110 = 2D Fix101 = Propagate Mode 100 = Position Hold 011 = Acquiring Satellites 010 = Bad Geometry001 = Reserved

		000 = Reserved
		Bit 3: Set if dead-reckoned
		Bit 4: Set if satellite based augmentation system
		Bit 5: Reserved
		Bit 6: Fast acquisition position
		Bit 7: GPS data are raw (unfiltered)
		Bit 8: GPS is performing cold start
		Bit 9: GPS is differentially corrected
		Bit 10: Position lock mode enabled
		Bit 11: Auto survey mode
		Bit 12: Insufficient satellites visible
		• Bit 13-14: 11 = No antenna power
		10 = Antenna undercurrent
		01 = Antenna overcurrent
		00 = Antenna good
		Bit 15: Reserved
82	Checksum	15
	key	
83	Key length	2
84	Value_0	16-bit unsigned summation of bytes 17 through 81.
85	Value_1	