<u>Doonside Technology</u> <u>High School</u>

Extension 2 Mathematics

Trial HSC Examination
2001

2001

Total marks (120)

Attempt Questions 1-8

All questions are of equal value

Answer each question starting a FRESH SHEET with your name and the question number at the top. Extra writing booklets are available.

Question	n 1 (15 marks) Use a SEPARATE writing booklet	Marks
B	Find $\int x \cos(x^2) dx$	1
B	Using the substitution $x = 2 \sin \theta$ evaluate $\int_0^2 \sqrt{4 - x^2} dx$	4
Mr.	Using the method of partial fractions find $\int \frac{-4dx}{x^2 + 2x - 3}$	4
<u>_(g)</u>	Find $\int \frac{x^2 + 2x - 3}{x + 1} dx$	4
(e)>	Using integration by parts evaluate $\int_{1}^{e} \ln x dx$	2

Question 2 (15 marks) Use a SEPARATE writing booklet

Marks

2

2

2

If A = 3+4i and B = 2-i

Express the following in the form x + iy where x and y are real numbers:

- (i) AB
- 1 \sqrt{A} (ii)
- 2 (iii) $\frac{A}{B}$ 2

des

if $z = \sqrt{3} + i$

- 2 1) Find the exact values of mod(z) and arg(z)
- ii) By using your answers to (i) and De Moivre's theorem write z^5 in the form a+ib2

Or in Argand diagram shade the region containing all the points representing the ₩)

cc plex numbers z such that:

and $\frac{\pi}{4} < \arg(z-1) < \frac{\pi}{2}$

lain algebraically or geometrically why the locus described by (d)

 $\left(\frac{z}{z-4}\right) = \frac{\pi}{2}$ is a circle.

C en that z and w represent two complex numbers, explain why

 $|z-w| \geq |z-w|$

Question 3 (15 marks) Use a SEPARATE writing booklet

Mark.

The sketch above shows the graph of the function y = f(x). There is a horizontal asymptote at y = -1 and vertical asymptotes at x = 0 and x = -4. Draw separate sketches of the following functions

(i)
$$y = |f(x)|$$

(ii
$$y = \frac{1}{f(x)}$$

(iii)
$$y = \int f(x) dx$$

2

Sketch the following curves on separate axes for each part showing all intercepts and turning points.

(i)
$$y = \cos 3x$$
 and hence $y = \cos^2 3x$ (in the domain $-\pi \le x \le \pi$)

(ii)
$$y = \frac{(x-1)(x+3)}{(x+2)(x-2)}$$
 (in the domain $-5 \le x \le 4$)

Question 4 (15 marks)

ellipse.

$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

Show that this is the equation of the locus of a point P(x,y) moving such that the sum of its distances from A (4, 0) and B (-4, 0) is 10 units.

(ii) Calculate the eccentricity of this ellipse.

(iii) State the equations of the directrices of this ellipse.

(iv) Find the equation of the tangent to the curve at a point Q (a, b) which lies on the

P
$$\left(5p, \frac{5}{p}\right)$$
, $p > 0$ and $Q\left(5q, \frac{5}{q}\right)$, $q > 0$ are two points on the hyperbola, H , $xy = 25$.

Derive the equation of the chord PQ,

State the equations of the tangents at P and Q,

1

iii) If the tangents at P and Q intersect at R, find the co-ordinates of R.

2

iv) If the secant PQ passes through the point S(15,0), find the locus of R.

Question5 (15 marks)

A dome is sitting on a regular hexagonal base of side 20 metres. The height of the dome is also 20 metres. Each strut of the dome is a quarter of a circle with its centre at the centre of the hexagonal base.

If the slice is h metres above the base, show that the length of each side is $\sqrt{400 - h^2}$ [2]

- Yi) Show that the area of the cross-section is $A = \frac{3\sqrt{3}}{2} (400 h^2)$
- Hence, or otherwise calculate the volume of the solid.

b)

The area in the diagram is composed of a parabola $y = 4 - (x - 3)^2$ surmounted on a semi-circle $y = -\sqrt{4 - (x - 3)^2}$, as shown. This area is rotated about the y-axis.

8

Use the method of cylindrical shells to calculate the volume generated.

[Hint: Explain and show that $V = \int_{1}^{5} 2\pi x [4 - (x - 3)^2 + \sqrt{4 - (x - 3)^2}] dx$. For the second part of the integral, use the substitution $x - 3 = 2\sin\theta$]

Question 6 (15 marks)

- When $x^3 kx^2 10kx + 25$ is divided by x 2 the remainder is 9. Find the value of k.
- b) A polynomial function is $P(x) = x^5 + x^4 + 13x^3 + 13x^2 48x 48$. Factorise P(x) over the field of
 - i) real numbers,
 - ii) complex numbers.
- (c) Factorise $x^4 16$ fully over the complex field.
- Golve the equation $4x^3 8x^2 + 5x 1 = 0$ given that it has a double root.
- (e) The equation $x^3 6x^2 + 7x 3 = 0$ has roots α , β , and γ

Write an equation which has roots α^2 , β^2 , and γ^2 .

- (ii) Write an equation which has roots $\frac{1}{\alpha}$, $\frac{1}{\beta}$, and $\frac{1}{\gamma}$.
- (iii) It is known that the solution to given a problem is the average of the roots of the equation $x^3 6x^2 + 7x 3 = 0$ Without finding the roots determine the solution to the problem.

Question 7(15 marks)

(a) Prove the identity
$$\frac{\cos y - \cos(y + 2q)}{2\sin q} = \sin(y + q)$$

(b) Use mathematical induction and the result in part (a) to prove the identity

$$\sin q + \sin 3q + \sin 5q + \dots + \sin(2n - 1)q = \frac{1 - \cos 2nq}{2\sin q}$$

(c) (i) Find the domain of
$$f(x) = \sin^{-1}(2x - 1)$$

(ii) Sketch the graph of
$$y = \sin^{-1} (2x - 1)$$

4

(iii) Solve
$$\sin^{-1}(2x-1) = \cos^{-1}x$$
.

- (c) A box contains 6 cards, two of which are identical. From this box 3 cards are drawn without replacement.
 - (i) How many different selections could be made.
 - (ii) What is the probability that a selection will include the two identical cards.

Question 8 (15 marks)

- (a) Solve for z if $z^5 = 1$
- (b) By noting that $z^n + z^{-n} = 2\cos n\theta$ and that z is the complex number $\cos \theta + i\sin \theta$, show that

$$\cos^4 \theta = \frac{1}{8} \cos 4\theta + \frac{1}{2} \cos 2\theta + \frac{3}{8}$$

- i) Show that, if $I_n = \int_0^1 (1+x^2)^n dx$, then $I_n = \frac{2n}{2n+1} I_{n-1}$
- ii) Hence find $\int_{0}^{t} (1+x^{2})^{3} dx$

3

By expanding $(1+x)^{n+2}$ in two different ways, show that

$$\binom{n+2}{r} = \binom{n}{r} + 2\binom{n}{r-1} + \binom{n}{r-2}$$