LİNEER DÖNÜŞÜMLERDE TABAN DEĞİŞİMİ

Lineer Cebir ve Çözümlü Problemler

4.Baskı

M.Özdemir, Altın Nokta Yayınevi, 2020

Lineer Dönüşümlerde Taban Değişimi

Bir vektör uzayındeki bir $T: \mathbb{V} \to \mathbb{W}$ lineer dönüşümünü, \mathbb{V} ve \mathbb{W} uzaylarının farklı tabanlarına göre de tanımlayabiliriz. Bu durumda, lineer dönüşümün matrisi de değişecektir. Bir $\overrightarrow{\mathbf{u}}$ vektörünün, \mathbb{V} uzayının standart taban dışındaki bir başka \mathcal{B} tabanına göre yazılışını $\left[\overrightarrow{\mathbf{u}}\right]_{\mathcal{B}}$ olarak yazdığımızı hatırlayın. Herhangi bir $\overrightarrow{\mathbf{u}} \in \mathbb{V}$ vektörünün, T dönüşümü altındaki görüntüsünün, \mathbb{W} uzayının bir \mathcal{S} tabanına göre koordinatlarını veren dönüşümün matrisini de kolayca bulabiliriz. Bu matrisi, $\left[T\right]_{\mathcal{S}}^{\mathcal{B}}$ ile göstereceğiz. Yazılışa dikkat ederseniz, görüntü uzayının tabanını sağ altta, tanım uzayının tabanını da sağ üstte gösteriyoruz. Standart tabanlar için, tabanı genelde belirtmeyiz, ama bu kısımda standart tabanı \mathcal{E} kümesi ile ifade edeceğiz.

GÖSTERİMLER

Aşağıda, bazı gösterimlerin neyi ifade ettiği verilmiştir.

 $T: \mathbb{V} \to \mathbb{W}$ lineer bir dönüşüm, \mathcal{B} , \mathbb{V} uzayının, \mathcal{S} ise \mathbb{W} uzayının tabanı olmak üzere,

- $oxed{oxed} \left[\overrightarrow{f u}
 ight]_{\mathcal B}: \overrightarrow{f u}\in \mathbb V$ vektörünün $\mathcal B$ tabanına göre koordinatlarını gösteren sütun matrisi
- $\left[T\left(\overrightarrow{\mathbf{u}}\right)\right]_{\mathcal{S}}:T\left(\overrightarrow{\mathbf{u}}\right)\in\mathbb{W}$ vektörünün \mathcal{S} tabanına göre koordinatlarını gösteren sütun matrisi,
- $[T]_{\mathcal{S}}^{\mathcal{E}} = [T]_{\mathcal{S}} : \mathbb{V}$ uzayının standart tabanına göre koordinatları verilen bir vektörün, \mathbb{W} uzayının \mathcal{S} tabanına göre koordinatlarını veren lineer dönüşümün matrisi
- $[T]_{\mathcal{E}}^{\mathcal{B}} = [T]_{\mathcal{E}}^{\mathcal{B}} : \mathbb{V}$ uzayının \mathcal{B} tabanına göre koordinatları verilen bir vektörün, \mathbb{W} uzayının standart tabanına göre koordinatlarını veren lineer dönüşümün matrisi
- $[T]_{\mathcal{B}}^{\mathcal{S}}: \mathbb{V}$ uzayının \mathcal{S} tabanına göre koordinatları verilen bir vektörün, \mathbb{W} uzayının \mathcal{B} tabanına göre koordinatlarını veren lineer dönüşümün matrisi

Bir Lineer Dönüşümün Tabanlara Göre Değişim Matrisi

Tanım

 $T: \mathbb{V} \to \mathbb{W}$ bir lineer dönüşüm olmak üzere, $\mathcal{B} = \{\overrightarrow{\mathbf{v}}_1, \overrightarrow{\mathbf{v}}_2, ..., \overrightarrow{\mathbf{v}}_n\}$ kümesi, \mathbb{V} uzayının tabanı, $\mathcal{S} = \{\overrightarrow{\mathbf{w}}_1, \overrightarrow{\mathbf{w}}_2, ..., \overrightarrow{\mathbf{v}}_m\}$ kümesi de \mathbb{W} kümesinin tabanı olsunlar. i = 1, 2, ..., n için, $T(\overrightarrow{\mathbf{v}}_i)$ vektörü \mathbb{W} uzayında bir vektördür. Bu vektörün, \mathcal{S} tabanına göre koordinatlarının sütun olarak yazılmasıyla elde edilen, $m \times n$ türünden matrise, T lineer dönüşümünün \mathcal{B} ve \mathcal{S} tabanlarına göre matrisi denir ve $[T]_{\mathcal{S}}^{\mathcal{B}}$ ile gösterilir. Bu matris yardımıyla, herhangi bir $\overrightarrow{\mathbf{v}} \in \mathbb{V}$ vektörünün \mathcal{S} tabanına göre bileşenlerini kolayca bulabiliriz.

Bir Lineer Dönüşümün Tabanlara Göre Değişim Matrisi

Tanım

 $T: \mathbb{V} \to \mathbb{W}$ bir lineer dönüşüm olmak üzere, kümesi, \mathbb{V} ve \mathbb{W} uzaylarının tabanı sırasıyla $\mathcal{B} = \left\{\overrightarrow{\mathbf{v}}_1, \overrightarrow{\mathbf{v}}_2, ..., \overrightarrow{\mathbf{v}}_n\right\}$ ve $\mathcal{S} = \left\{\overrightarrow{\mathbf{w}}_1, \overrightarrow{\mathbf{w}}_2, ..., \overrightarrow{\mathbf{v}}_m\right\}$ olsun. Buna göre,

$$T(\overrightarrow{\mathbf{v}}_{1}) = a_{11} \overrightarrow{\mathbf{w}}_{1} + a_{21} \overrightarrow{\mathbf{w}}_{2} + \dots + a_{m1} \overrightarrow{\mathbf{v}}_{m}$$

$$T(\overrightarrow{\mathbf{v}}_{2}) = a_{12} \overrightarrow{\mathbf{w}}_{1} + a_{22} \overrightarrow{\mathbf{w}}_{2} + \dots + a_{m2} \overrightarrow{\mathbf{v}}_{m}$$

$$\vdots$$

$$T(\overrightarrow{\mathbf{v}}_{n}) = a_{1n} \overrightarrow{\mathbf{w}}_{1} + a_{2n} \overrightarrow{\mathbf{w}}_{2} + \dots + a_{mn} \overrightarrow{\mathbf{v}}_{m}$$

olmak üzere,

$$[T]_{\mathcal{S}}^{\mathcal{B}} = \left[egin{array}{ccccc} a_{11} & a_{12} & \cdots & a_{1m} \ a_{21} & a_{22} & \cdots & a_{2m} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array}
ight]$$

matrisi, T lineer dönüşümünün \mathcal{B} ve \mathcal{S} tabanlarına göre matrisidir.

Kısa Bilgi

 $\overrightarrow{\mathbf{v}} \in \mathbb{V}$ vektörünün, \mathcal{B} tabanına göre koordinatları(bileşenleri)

$$[\overrightarrow{\mathbf{v}}]_{\mathcal{B}}$$

olmak üzere, $\mathcal{T}\left(\overrightarrow{\mathbf{v}}\right)$ vektörünün \mathbb{R}^2 uzayının \mathcal{S} tabanına göre koordinatları

$$[T(\overrightarrow{\mathbf{v}})]_{\mathcal{S}}$$

ile gösterilir ve

$$\left[T(\overrightarrow{\mathbf{v}})\right]_{\mathcal{S}} = \left[T\right]_{\mathcal{S}}^{\mathcal{B}} \left[\overrightarrow{\mathbf{v}}\right]_{\mathcal{B}}$$

eşitliği sağlanır. Aşağıdaki örneklerle, bir lineer dönüşümün farklı tabanlara göre matrisinin nasıl bulunduğunu inceleyiniz.

 $T:\mathbb{R}^2\to\mathbb{R}^2$, $T\left(\textbf{x},\textbf{y}\right)=(3\textbf{x}+\textbf{y},4\textbf{x}-2\textbf{y})$ lineer dönüşümünün, \mathbb{R}^2 nin $\mathcal{E}=\{(\textbf{1},\textbf{0})$, $(\textbf{0},\textbf{1})\}$ standart tabanına göre, matrisinin

$$[\mathsf{T}]_\mathcal{E}^\mathcal{E} = [\mathsf{T}] = \left[egin{array}{cc} \mathbf{3} & \mathbf{1} \ \mathbf{4} & -\mathbf{2} \end{array}
ight]$$

olduğunu biliyoruz. $\mathcal{B} = \{\overrightarrow{v}_1 = (1,2), \overrightarrow{v}_2 = (3,5)\}$ olmak üzere,

- a) \mathbb{R}^2 uzayının \mathcal{B} tabanına göre koordinatları verilen bir vektörün, \mathbb{R}^2 uzayının standart tabanına göre koordinatlarını veren lineer dönüşümüm matrisi olan, $[\mathsf{T}]_{\mathcal{E}}^{\mathcal{B}} = [\mathsf{T}]^{\mathcal{B}}$ matrisini bulunuz.
- b) \mathbb{R}^2 uzayının standart tabanına göre koordinatları verilen bir vektörün, \mathbb{R}^2 uzayının \mathcal{B} tabanına göre koordinatlarını veren lineer dönüşümüm matrisi olan, $[\mathsf{T}]_{\mathcal{B}}^{\mathcal{E}} = [\mathsf{T}]_{\mathcal{B}}$ matrisini bulunuz.
- c) \mathbb{R}^2 uzayının \mathcal{B} tabanına göre koordinatları verilen bir vektörün, \mathbb{R}^2 uzayının \mathcal{B} tabanına göre koordinatlarını veren lineer dönüşümüm matrisi olan, $[\mathbf{T}]_{\mathcal{B}}^{\mathcal{B}}$ matrisini bulunuz.

d) \mathbb{R}^2 uzayının \mathcal{B} tabanına göre koordinatları verilen bir vektörün, \mathbb{R}^2 uzayının

$$S = \left\{\overrightarrow{\mathbf{w}}_{\mathbf{1}} = (\mathbf{1}, \mathbf{1}), \overrightarrow{\mathbf{w}}_{\mathbf{1}} = (\mathbf{1}, -\mathbf{1})
ight\}$$

ortogonal tabanına göre koordinatlarını veren lineer dönüşümüm matrisi olan, $[\mathsf{T}]_{c}^{\mathcal{B}}$ matrisini bulunuz.

e) \mathbb{R}^2 uzayının

$$S = \{(1,1), (1,-1)\}$$

ortogonal tabanına göre koordinatları verilen bir vektörün, \mathbb{R}^2 uzayının \mathcal{B} tabanına göre koordinatlarını veren lineer dönüşümün matrisi olan, $[T]_{R}^{S}$ matrisini bulunuz.

f) $\overrightarrow{w} = (0,1)$ için, yukarıda bulduğunuz matrislerin herbirini kullanarak, $T(\overrightarrow{w})$ vektörünün standart tabana göre koordinatlarını bularak, eşit olduklarını doğrulayınız.

$$\mathsf{T}:\mathbb{R}^2 \to \mathbb{R}^3$$
, $\mathsf{T}(\mathsf{x},\mathsf{y}) = (\mathsf{x}+2\mathsf{y},3\mathsf{x}-\mathsf{y},2\mathsf{x}-\mathsf{y})$ lineer dönüşümünün, \mathbb{R}^3 uzayının

$$\mathcal{B} = \left\{\overrightarrow{w}_1 = (\textbf{1}, \textbf{2}, \textbf{1}) \text{ , } \overrightarrow{w}_2 = (\textbf{1}, \textbf{1}, \textbf{0}) \text{ , } \overrightarrow{w}_3 = (\textbf{1}, \textbf{0}, \textbf{1})\right\}$$

tabanına göre matrisini bulunuz.

b) $\overrightarrow{u}=(1,2)\in\mathbb{R}^2$ vektörünün T lineer dönüşümü altındaki görüntüsünün, \mathbb{R}^3 uzayının \mathcal{B} tabanına göre koordinatlarını bulunuz.

$$\mathsf{T}:\mathbb{R}^3 \to \mathbb{R}^2$$
, $\mathsf{T}(\mathsf{x},\mathsf{y},\mathsf{z}) = (2\mathsf{x}+\mathsf{y}+\mathsf{z},\mathsf{x}-\mathsf{z})$ lineer dönüşümü ile \mathbb{R}^3 uzayının

$$\mathcal{B} = \left\{ \overrightarrow{v}_1 = (\textbf{1,0,1}) \,,\, \overrightarrow{v}_2 = (\textbf{0,1,1}) \,,\, \overrightarrow{v}_3 = (\textbf{1,1,0}) \right\}$$

tabanı ve \mathbb{R}^2 uzayının

$$S = \left\{ \overrightarrow{\mathbf{w}}_{\mathbf{1}} = (\mathbf{1,3}) \text{ , } \overrightarrow{\mathbf{w}}_{\mathbf{2}} = (\mathbf{3,1})
ight\}$$

tabanı veriliyor. T dönüşümünün $\mathcal B$ ve $\mathcal S$ tabanlarına göre matrisini bulunuz.

- b) \mathbb{R}^3 uzayında, \mathcal{B} tabanına göre koordinatları $\overrightarrow{\mathbf{v}}=(\mathbf{1},\mathbf{1},\mathbf{3})$ olan vektör için, $\mathbf{T}\left(\overrightarrow{\mathbf{v}}\right)$ vektörünün, \mathcal{S} tabanına göre koordinatlarını bulunuz.
- c) T dönüşümünün standart tabanlara göre matrisini yazarak, b) seçeneğindeki durumla karşılaştırınız.

- $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (x+y,x-y) lineer dönüşümü ile \mathbb{R}^2 uzayının,
- $\mathcal{B} = \left\{ \overrightarrow{\mathbf{v}}_{\mathbf{1}} = (1,2) \text{ , } \overrightarrow{\mathbf{v}}_{\mathbf{2}} = (2,1) \right\} \text{ ve } \mathcal{S} = \left\{ \overrightarrow{\mathbf{w}}_{\mathbf{1}} = (1,1) \text{ , } \overrightarrow{\mathbf{w}}_{\mathbf{1}} = (1,-1) \right\} \text{ tabanları veriliyor.}$
- a) \mathbb{R}^2 uzayının \mathcal{B} tabanına göre koordinatları verilen bir vektörün, \mathbb{R}^2 uzayının standart tabanına göre koordinatlarını veren lineer dönüşümüm matrisi olan, $[T]_{\mathcal{E}}^{\mathcal{B}} = [T]^{\mathcal{B}}$ matrisini bulunuz.
- b) \mathbb{R}^2 uzayının standart tabanına göre koordinatları verilen bir vektörün, \mathbb{R}^2 uzayının \mathcal{B} tabanına göre koordinatlarını veren lineer dönüşümüm matrisi olan, $[T]_{\mathcal{B}}^{\mathcal{E}} = [T]_{\mathcal{B}}$ matrisini bulunuz.
- c) \mathbb{R}^2 uzayının \mathcal{B} tabanına göre koordinatları verilen bir vektörün, \mathbb{R}^2 uzayının \mathcal{B} tabanına göre koordinatlarını veren lineer dönüşümüm matrisi olan, $[T]_{\mathcal{B}}^{\mathcal{B}}$ matrisini bulunuz.
- d) \mathbb{R}^2 uzayının \mathcal{B} tabanına göre koordinatları verilen bir vektörün, \mathbb{R}^2 uzayının, \mathcal{S} tabanına göre koordinatlarını veren lineer dönüşümüm matrisi olan, $[T]_{\mathcal{S}}^{\mathcal{B}}$ matrisini bulunuz.
- e) \mathbb{R}^2 uzayının \mathcal{S} tabanına göre koordinatları verilen bir vektörün, \mathbb{R}^2 uzayının, \mathcal{B} tabanına göre koordinatlarını veren lineer dönüşümüm matrisi olan, $[T]_{\mathcal{S}}^{\mathcal{B}}$ matrisini bulunuz.

$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
, $T(x,y) = (x+2y,3x-y,2x-y)$ lineer dönüşümünün, \mathbb{R}^3 uzayının $\mathcal{B} = \{\overrightarrow{\mathbf{v}}_1 = (1,2,1), \overrightarrow{\mathbf{v}}_2 = (1,1,0), \overrightarrow{\mathbf{v}}_3 = (1,0,1)\}$ tabanına göre matrisini bulunuz.

 $T:\mathbb{R}^3 \to \mathbb{R}^2$, T(x,y,z) = (2x+y+z,x-z) lineer dönüşümü ile \mathbb{R}^3 uzayının $\mathcal{B} = \left\{\overrightarrow{\mathbf{v}}_1 = (1,0,1), \overrightarrow{\mathbf{v}}_2 = (0,1,1), \overrightarrow{\mathbf{v}}_3 = (1,1,0)\right\}$ tabanı ve \mathbb{R}^2 uzayının $\mathcal{S} = \left\{(1,3);(3,1)\right\}$ tabanı veriliyor. T dönüşümünün \mathcal{B} ve \mathcal{S} tabanlarına göre matrisini bulunuz.

Lineer Dönüşümlerde Birebir ve Örtenlik

Tanım

 $T: \mathbb{V} \to \mathbb{W}$ lineer dönüşümü verilsin.

$$T(\overrightarrow{\mathbf{v}}_1) = T(\overrightarrow{\mathbf{v}}_2)$$

eşitliği, $\overrightarrow{\mathbf{v}}_1 = \overrightarrow{\mathbf{v}}_2$ olmasını gerektiriyorsa, T dönüşümü **birebirdir** denir. Diğer yandan,

$$\operatorname{G\"{o}r}\left(\mathbb{V}\right)=\mathbb{W}$$

ise, T dönüşümüne **örtendir** denir. Hem birebir, hem de örten dönüşüme **izomorfizm**, $\mathbb W$ ve W vektör uzaylarına da **izomorf uzaylar** denir.

$$\mathbb{V} \cong \mathbb{W}$$

seklinde gösterilir.

Lineer Dönüşümün Birebirliği ve Çekirdeği

Teorem

 $T: \mathbb{V} o \mathbb{W}$ bir lineer dönüşüm olsun. T dönüşümünün birebir olması için gerek ve yeter koşul

$$\mathbf{\check{C}ek}\left(T\right) =\left\{ 0\right\}$$

olmasıdır.

Kanıt.

 $(\Rightarrow):T$ dönüşümü birebir ve $\overrightarrow{\mathbf{v}}\in\mathbf{Cek}(T)$ olsun. Bu durumda,

$$T(\overrightarrow{\mathbf{v}}) = 0 = T(0)$$

eşitliğinden, $\overrightarrow{\mathbf{v}}=0$ elde edilir. Yani, $\mathbf{Cek}(T)=\{0\}$ 'dır.

 $(\Leftarrow): \mathbf{Cek}(T) = \{0\} \text{ olsun. } \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}} \in \mathbb{V} \text{ olmak üzere, } T(\overrightarrow{\mathbf{u}}) = T(\overrightarrow{\mathbf{v}}) \text{ olsun. Bu durumda,}$

T'nin lineerliğinden, $T(\overrightarrow{\mathbf{u}} - \overrightarrow{\mathbf{v}}) = 0$ olur. O halde, $\overrightarrow{\mathbf{u}} - \overrightarrow{\mathbf{v}} \in \mathbf{Cek}(T)$ ve $\overrightarrow{\mathbf{u}} - \overrightarrow{\mathbf{v}} = 0 \Rightarrow \overrightarrow{\mathbf{u}} = \overrightarrow{\mathbf{v}}$ elde edilir. Bu, T dönüşümünün birebir olduğunu gösterir.

 $T:\mathbb{R}^3 \to \mathbb{R}^2$, T(x,y,z)=(x-y,x+z) dönüşümünün örten olduğunu, ama birebir olmadığını gösteriniz.

 $T:\mathbb{R}^2 \to \mathbb{R}^3$, T(x,y)=(x+y,x,x-y) dönüşümünün birebir olduğunu, fakat örten olmadığını kanıtlayınız.

 $T:\mathbb{R}^3 \to \mathbb{R}^3$, T(x,y,z)=(x-y,x+z,2x-y+z) dönüşümünün birebir ve örten olup olmadığını inceleyiniz.

 $T:\mathbb{R}^3 o \mathbb{R}^3$, T(x,y,z)=(x-y,x+z,z) dönüşümünün birebir ve örten olup olmadığını inceleyiniz.

 $T: \mathbb{R}^3 \to \mathbb{R}^2$, T(x, y, z) = (x + 2y, x + 2z) dönüşümünün birebir ve örten olup olmadığını inceleyiniz.

Görüntü Uzayının Tabanı

Teorem

 $T: \mathbb{V} \to \mathbb{W}$ lineer dönüşümü birebir ve $\{\overrightarrow{\mathbf{v}}_1, \overrightarrow{\mathbf{v}}_2, ..., \overrightarrow{\mathbf{v}}_n\}$ kümesi, \mathbb{V} uzayının bir tabanı ise,

$$\left\{ T(\overrightarrow{\textbf{v}}_1), T(\overrightarrow{\textbf{v}}_2), ..., T(\overrightarrow{\textbf{v}}_n) \right\}$$

kümesi de, $G\ddot{o}r(\mathbb{V})$ görüntü uzayının bir tabanıdır.

Kanıt.

 $\{T(\overrightarrow{\mathbf{v}}_1), T(\overrightarrow{\mathbf{v}}_2), ..., T(\overrightarrow{\mathbf{v}}_n)\}$ vektör kümesinin, lineer bağımsız olduğunu ve $\mathbf{G\ddot{o}r}(\mathbb{V})$ 'yi gerdiğini göstermeliyiz.

i) Önce, $\{T(\overrightarrow{\mathbf{v}}_1), T(\overrightarrow{\mathbf{v}}_2), ..., T(\overrightarrow{\mathbf{v}}_n)\}$ kümesinin lineer bağımsız olduğunu görelim. Bu kümenin lineer bağımsız olduğunu göstermek için

$$\lambda T(\overrightarrow{\boldsymbol{v}}_1) + \lambda T_2(\overrightarrow{\boldsymbol{v}}_2) + \cdots \lambda_n T(\overrightarrow{\boldsymbol{v}}_n) = 0 = T\left(0\right)$$

eşitliğinde $\lambda_1 = \cdots = \lambda_n = 0$ olduğunu göstermeliyiz. T lineer ve birebir olduğundan

$$T\left(\lambda_{1} \overrightarrow{\mathbf{v}}_{1} + \lambda_{2} \overrightarrow{\mathbf{v}}_{2} + \dots + \lambda_{n} \overrightarrow{\mathbf{v}}_{n}\right) = T\left(0\right) \Leftrightarrow \lambda_{1} \overrightarrow{\mathbf{v}}_{1} + \lambda_{2} \overrightarrow{\mathbf{v}}_{2} + \dots + \lambda_{n} \overrightarrow{\mathbf{v}}_{n} = 0$$

elde edilir. S vektör kümesi lineer bağımsız vektör kümesi olduğundan, bu eşitlik sadece $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$ durumunda sağlanır. O halde, $\{T(\overrightarrow{\mathbf{v}}_1), T(\overrightarrow{\mathbf{v}}_2), ..., T(\overrightarrow{\mathbf{v}}_n)\}$ kümesi de lineer bağımsızdır.

Kanıt.

ii) Şimdi de, $\mathbf{G\ddot{o}r}(T) = Sp\left\{T(\overrightarrow{\mathbf{v}}_1), T(\overrightarrow{\mathbf{v}}_2), ..., T(\overrightarrow{\mathbf{v}}_n)\right\}$ olduğunu gösterelim. $\overrightarrow{\mathbf{w}} \in \mathbf{Ger}(T)$ olsun. Buna göre, $T(\overrightarrow{\mathbf{v}}) = \overrightarrow{\mathbf{w}}$ olacak sekilde bir $\overrightarrow{\mathbf{v}} \in \mathbb{V}$ daima vardır.

$$\left\{\overrightarrow{\mathbf{v}}_{1},\overrightarrow{\mathbf{v}}_{2},...,\overrightarrow{\mathbf{v}}_{n}\right\}$$

kümesi, \mathbb{V} kümesinin bir tabanı ise, $\overrightarrow{\mathbf{v}} = c_1 \overrightarrow{\mathbf{v}}_1 + c_2 \overrightarrow{\mathbf{v}}_2 + \cdots + c_n \overrightarrow{\mathbf{v}}_n$ seklinde tek türlü yazılabilir. Bu durumda, T'nin lineerliği kullanılırsa,

$$T(\overrightarrow{\mathbf{v}}) = T(c_1 \overrightarrow{\mathbf{v}}_1 + c_2 \overrightarrow{\mathbf{v}}_2 + \dots + c_n \overrightarrow{\mathbf{v}}_n)$$

$$\overrightarrow{\mathbf{w}} = c_1 T(\overrightarrow{\mathbf{v}}_1) + c_2 T(\overrightarrow{\mathbf{v}}_2) + \dots + c_n T(\overrightarrow{\mathbf{v}}_n)$$

olur ve $\overrightarrow{\mathbf{w}} \in Sp\{T(\overrightarrow{\mathbf{v}}_1), T(\overrightarrow{\mathbf{v}}_2), ..., T(\overrightarrow{\mathbf{v}}_n)\}$ elde edilir. Sonuc olarak, $\{\overrightarrow{T}(\overrightarrow{\mathbf{v}}_1), T(\overrightarrow{\mathbf{v}}_2), ..., T(\overrightarrow{\mathbf{v}}_n)\}$ kümesi, $\mathbf{G\ddot{o}r}(\mathbb{V})$ görüntü uzayının bir tabanıdır.

43 / 66

Aynı Boyutlu Uzaylar Arasındaki Lineer Dönüşümde Birebirlik ve Örtenlik

Teorem

 $T: \mathbb{V} \to \mathbb{W}$ lineer dönüşümü verilsin. Bu durumda, Sıfırlık $(T) + Rank(T) = Boy(\mathbb{V})$ eşitliği sağlanır. Yani, bir T dönüşümünde, görüntü uzayının boyutu ile çekirdeğin boyutunun toplamı, tanım uzayının boyutuna eşittir.

Teorem

 $T: \mathbb{V} \to \mathbb{W}$ lineer dönüşümü verilsin. $Boy(\mathbb{V}) = Boy(\mathbb{W}) = n$ olsun.

a) T birebir ise örtendir. b) T örten ise birebirdir.

Kanıt.

- a) T dönüşümü birebir olsun. O halde, Çek $(T)=\{0\}$ 'dır. Yani, Boy $(\operatorname{Çek}(T))=0$ olur. Bu durumda, Boy(R(T))=n olacağından, **Gor** $(T)=\mathbb{W}$ olur ki, bu T dönüşümünün örten olması demektir.
- **b)** T dönüşümü örten olsun. Bu durumda, Boy($\operatorname{Ger}(T)$)=n olacağından, Boy($\operatorname{Çek}(T)$)=0 olmalıdır. Bu, T dönüşümünün birebir olduğunu gösterir.

Tersinir Dönüşüm

Tanım

 $T: \mathbb{V} \to \mathbb{W}$ lineer dönüşümü verilsin. I birim dönüşümü göstermek üzere, eğer, $T \circ T^{-1} = I$ ve $T^{-1} \circ T = I$ olacak şekilde bir tek

$$T^{-1}: \mathbb{W} \to \mathbb{V}$$

dönüşümü varsa, T dönüşümüne **tersinirdir** denir.

Lineer Dönüşümün Tersi

Teorem

 $T: \mathbb{V} \to \mathbb{W}$ lineer dönüşümü birebir ise, $T^{-1}: \mathbf{G\"{o}r}(T) \to \mathbb{V}$ dönüşümü tanımlıdır ve T^{-1} dönüşümü de lineer dönüşümdür.

Kanıt.

 $\overrightarrow{\mathbf{w}}_1, \overrightarrow{\mathbf{w}}_2 \in G\ddot{o}r(T)$ olsun. Bu durumda, $T^{-1}(\overrightarrow{\mathbf{w}}_1) = \overrightarrow{\mathbf{v}_1}$ ve $T^{-1}(\overrightarrow{\mathbf{w}}_w) = \overrightarrow{\mathbf{v}}_2$ olacak şekilde bir $\overrightarrow{\mathbf{v}}_1, \overrightarrow{\mathbf{v}}_2 \in \mathbb{V}$ vardır. Buna göre,

$$T(\overrightarrow{\mathbf{v}}_1) = \overrightarrow{\mathbf{w}}_1, T(\overrightarrow{\mathbf{v}}_2) = \overrightarrow{\mathbf{w}}_2$$

ve T'nin lineerliğinden, $T\left(\lambda \overrightarrow{\mathbf{v}}_{2}\right) = \lambda \overrightarrow{\mathbf{w}}_{2}$ ve $T\left(\overrightarrow{\mathbf{v}}_{1} + \lambda \overrightarrow{\mathbf{v}}_{2}\right) = \overrightarrow{\mathbf{w}}_{1} + \lambda \overrightarrow{\mathbf{w}}_{2}$ yazılabilir. Buradan,

$$T^{-1}\left(\overrightarrow{\mathbf{w}}_{1}+\lambda\overrightarrow{\mathbf{w}}_{2}\right)=\overrightarrow{\mathbf{v}}_{1}+\lambda\overrightarrow{\mathbf{v}}_{2}=T^{-1}\left(\overrightarrow{\mathbf{w}}_{1}\right)+\lambda T^{-1}\left(\overrightarrow{\mathbf{w}}_{2}\right)$$

olduğundan, T^{-1} dönüsümü de lineerdir.

Lineer Dönüşümlerin Bileşkesi

Teorem

V, W ve U reel vektör uzayları olmak üzere,

$$T_1: \mathbb{V} \to \mathbb{W}$$
 ve $T_2: \mathbb{W} \to \mathbb{V}$

liner dönüşümleri birebir ise,

$$T_2 \circ T_1 : \mathbb{V} \to \mathbb{U}$$

dönüşümü de lineerdir ve

$$(T_2 \circ T_1)^{-1} = T_1^{-1} \circ T_2^{-1}$$

eşitliği sağlanır.

Lineer Dönüşümün Tersinirliği

Teorem

Bir $T: \mathbb{V} \to \mathbb{W}$ lineer dönüşümün tersinir olması için gerek ve yeter koşul

$$\operatorname{\mathsf{Çek}}(T) = \{0\}$$
 ve $\operatorname{\mathsf{Ger}}(T) = \mathbb{W}$

olmasıdır.

Lineer Dönüşümün Tersinin Tersi

Teorem

T bir tersinir lineer dönüşüm ise, T^{-1} dönüşümü de lineerdir ve $\left(T^{-1}\right)^{-1}=T$ eşitliği sağlanır.

Sonuçlar : $T: \mathbb{R}^m \rightarrow \mathbb{R}^n$ lineer dönüşümü verilsin.

- i) m < n ise, T dönüşümü kesinlikle örten değildir.
- ii) m > n ise, T dönüşümü kesinlikle birebir değildir.
- iii) m = n ise, T örtense, birebir'dir.
- iv) m = n ise T birebir ise, örtendir.
- **v)** m = n ise ve T birebir ise, T dönüşümünün tersi vardır.
- **vi)** T lineer dönüşümünün tersi olması için, T'ye karşılık gelen standart matris tersinir olmalıdır.

T(x, y, z) = (x + y, x + z, y + z) lineer dönüşümünün tersini bulunuz.

Bölüm Sonu Tekrar Testi (Lineer Dönüşümler ve Uygulamaları)

T(x,y) = (x+y,x-y) lineer dönüşümünün $\mathcal{B} = \{(1,2);(1,1)\}$ tabanına göre matrisi aşağıdakilerden hangisidir?

A)
$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 B) $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ C) $\begin{bmatrix} -4 & -2 \\ 7 & 4 \end{bmatrix}$ D) $\begin{bmatrix} -4 & 1 \\ 2 & 2 \end{bmatrix}$ E) $\begin{bmatrix} -2 & 1 \\ 2 & 2 \end{bmatrix}$

T(x,y) = (x+y,x-y,x) lineer dönüşümünün $\mathcal{B} = \{(1,2);(1,1)\}$ tabanına göre matrisi aşağıdakilerden hangisidir?

A)
$$\begin{bmatrix} 1 & 3 \\ -1 & 0 \\ 1 & 1 \end{bmatrix}$$
 B) $\begin{bmatrix} 1 & 3 \\ -1 & 0 \\ 1 & 1 \end{bmatrix}$ C) $\begin{bmatrix} 3 & 2 \\ -1 & 0 \\ 1 & 1 \end{bmatrix}$ D) $\begin{bmatrix} 1 & -1 & 1 \\ 3 & 0 & 1 \end{bmatrix}$ E) $\begin{bmatrix} 3 & -1 & 1 \\ 2 & 0 & 1 \end{bmatrix}$

 $T:\mathbb{R}^3
ightarrow \mathbb{R}^2$ bir lineer dönüşüm olmak üzere, aşağıdakilerden kaç tanesi daima doğrudur?

I. $T(\vec{0}) = \vec{0}$ II. T örten olamaz

III. T birebir olabilir. IV. Rank T < 3'tür.

V. Sıfırlık $(T) \leq 2$ 'dir.

A) 4 **B)** 3 **C)** 2 **D)** 1

E) 5

 $T_1 = \mathbb{R}^3 \to \mathbb{R}^2$, T(x, y, z) = (x + y, x + z) ve $T_2 = \mathbb{R}^2 \to \mathbb{R}^3$,

T(x,y) = (x+y,x+2y,x) olmak üzere, $T = T_1 \circ T_2$ lineer dönüsümü için asağıdakilerden kaçı doğrudur?

- I. $T_1 \circ T_2 : \mathbb{R}^3 \to \mathbb{R}^3$ II. Tersinirdir.
- III. Rank $(T_2 \circ T_1) = 2$ IV. Çek $T = \{\vec{0}\}$.
- V. T lineer dönüşümü birebir, örtendir.
- **A)** 0 **B)** 3 **C)** 2 **D)** 1 **E)** 4

 $T_1 = \mathbb{R}^3 \to \mathbb{R}^2$, T(x,y,z) = (x+y,x+z) ve $T_2 = \mathbb{R}^2 \to \mathbb{R}^3$, T(x,y) = (x+y,x+2y,x) olmak üzere, $T=T_2\circ T_1$ lineer dönüşümü için aşağıdakilerden kaçı doğrudur?

I. $T_2 \circ T_1 : \mathbb{R}^3 \to \mathbb{R}^3$ II. Tersinirdir.

III. $Rank(T_2 \circ T_1) = 2$. IV. $Qek T = {\vec{0}}$.

A) 0 **B)** 3 **C)** 2 **D)** 1 **E)** 4

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
,

$$T(x, y, z) = (2x + y, x - z, 3x + ky - z)$$

dönüşümü aşağıdaki k değerlerinden hangisi için birebir değildir?

- **A)** 4

- **B)** 3 **C)** 2 **D)** 1
- **E)** 0

 $T_1: \mathbb{R}^n \to \mathbb{R}^m \ (n < m)$ ve $T_2: \mathbb{R}^m \to \mathbb{R}^k \ (m < k)$ lineer dönüşümleri verilsin. Buna göre, aşağıdakilerden kaç tanesi daima doğrudur?

- I. $T_2 \circ T_1$ dönüsümü de lineerdir.
- II. $T_2 \circ T_1 : \mathbb{R}^k \to \mathbb{R}^{n'}$ dir.
- III. $T_1 \circ T_2$ tanımlı değildir.
- IV. $T_2 \circ T_1$ dönüşümü daima örtendir.
- V. $T_2 \circ T_1$ dönüşümü birebir olamaz.
- VI. Rank $(T_2 \circ T_1) \geq m$ dir.
- **A)** 4 **B)** 3 **C)** 1 **D)** 2

- **E)** 0

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
,

$$T(x, y, z) = (2x + y, x - z, 3x + 4y + kz)$$

dönüşümü tersinir ise k aşağıdakilerden hangisi olamaz?

- **A)** 4

- **B)** 5 **C)** 2 **D)** 1
- **E)** 0

M.Özdemir, Altın Nokta Yayınevi, 2020

 $T: \mathbb{R}^3 \to \mathbb{R}^3$.

$$T(x, y, z) = (2x + y, x + z, kx + 2y - z)$$

dönüşümünün çekirdeği 1 boyutlu ise k kaçtır?

- **A)** 4 **B)** 3 **C)** 2 **D)** 1 **E)** 0

 $T: \mathbb{V} \to \mathbb{W}$ lineer dönüşümünde çekirdeğin boyutu n-2 ve \mathbb{V} uzayının boyutu ise n+3'tür. Buna göre, bu dönüşümün rankı kaçtır?

- **A)** 0

- **B)** 3 **C)** 2n+1 **D)** 1
- **E)** 5

 $T:\mathbb{R}^{n+1} \to \mathbb{R}^{2n-5}$ lineer dönüşümü birebir ve örten ise n kaçtır?

A) 0 **B)** 3 **C)** 6 **D)** 1

E) 5

 $T: \mathbb{V} \to \mathbb{W}$ lineer dönüşümünde Sıfırlık(T) = 2, Rank(T) = 2n - 1 ve Boy $(\mathbb{V}) = 3n - 5$ ise n kaçtır?

- **A)** 0
- **B)** 2
- **C)** 6
- **D)** 1
- **E)** 5

$$T_1=\mathbb{R}^3\to\mathbb{R}^2$$
,

$$T(x, y, z) = (x + y, x + y + 2z)$$

ve
$$T_2=\mathbb{R}^2 o\mathbb{R}^3$$
,

$$T(x,y) = (x+y, kx, y-x)$$

olmak üzere, $T_1 \circ T_2$ lineer dönüşümü aşağıdaki k değerlerinden hangisi için birebir değildir?

- **A)** 4 **B)** 3 **C)** -1 **D)** -2 **E)** 0

Kaynak : Mustafa Özdemir, Lineer Cebir ve Çözümlü Problemler, Altın Nokta Yayınevi, 208 sayfa, İzmir, 2020.

https://www.altinnokta.com.tr/tr/162_mustafa-ozdemir