# Applying Grover's algorithm to AES: quantum resource estimates

Markus Grassl<sup>1</sup>, Brandon Langenberg<sup>2</sup>, Martin Roetteler<sup>3</sup> and Rainer Steinwandt<sup>2</sup>

<sup>1</sup> Universität Erlangen-Nürnberg & Max Planck Institute for the Science of Light

<sup>2</sup> Florida Atlantic University

<sup>3</sup> Microsoft Research

February 24, 2016

- Quantum circuits for implementing an exhaustive key search for the Advanced Encryption Standard (AES)
- Analyze the quantum resources required
- Consider the overall circuit size, number of qubits, and circuit depth
- Focus on the Clifford+T gate set
- Establish precise bounds for qubits and gates needed to implement Grover's algorithm for all three versions (128, 192, and 256 bit) that are standardized in FIPS-PUB 197

- 1 AES: Rounds
- 2 AES: Key Expansion
- 3 Resource Estimates
- 4 Grover
- 5 Uniqueness
- 6 Conclusion

#### **AES**: Rounds

128 qubits hold the current internal state

| $S_0$    | 0 | S <sub>0,1</sub> | S <sub>0,2</sub> | S <sub>0,3</sub>        |     | $ S_{0,0}\rangle$ |
|----------|---|------------------|------------------|-------------------------|-----|-------------------|
| $S_{1,}$ | 0 | $S_{1,1}$        | S <sub>1,2</sub> | $S_{1,3}$               |     | $ S_{1,0}\rangle$ |
| $S_{2}$  | 0 | $S_{2,1}$        | $S_{2,2}$        | $S_{2,3}$               | ] → | :                 |
| $S_{3}$  | 0 | $S_{3,1}$        | S <sub>3,2</sub> | <i>S</i> <sub>3,3</sub> |     | $ S_{3,3}\rangle$ |

Each round of AES applies the following four operations:

- SubBytes
- ShiftRows
- MixColumns
- AddRoundKey

- Treat each byte as  $\alpha \in \mathbb{F}_2[x]/(1+x+x^3+x^4+x^8)$
- Finds  $\alpha^{-1}$  (leaving 0 invariant)
- Applies an affine transformation

- Treat each byte as  $\alpha \in \mathbb{F}_2[x]/(1+x+x^3+x^4+x^8)$
- Finds  $\alpha^{-1}$  (leaving 0 invariant)
- Applies an affine transformation
- Classical AES can employ a lookup table

- Treat each byte as  $\alpha \in \mathbb{F}_2[x]/(1+x+x^3+x^4+x^8)$
- Finds  $\alpha^{-1}$  (leaving 0 invariant)
- Applies an affine transformation
- Classical AES can employ a lookup table
- Decided explicity calculating result was more resource friendly

- Treat each byte as  $\alpha \in \mathbb{F}_2[x]/(1+x+x^3+x^4+x^8)$
- Finds  $\alpha^{-1}$  (leaving 0 invariant)
- Applies an affine transformation
- Classical AES can employ a lookup table
- Decided explicity calculating result was more resource friendly
- Itoh-Tsujii inverter:

$$\alpha^{-1} = \alpha^{254} = ((\alpha \cdot \alpha^2) \cdot (\alpha \cdot \alpha^2)^4 \cdot (\alpha \cdot \alpha^2)^{16} \cdot \alpha^{64})^2$$

Quantum AES February 24, 2016 5 / 21 AES: SubBytes:  $\alpha^{-1} = ((\alpha \cdot \alpha^2) \cdot (\alpha \cdot \alpha^2)^4 \cdot (\alpha \cdot \alpha^2)^{16} \cdot \alpha^{64})^2$ 

| Qubits | 0                      | 1                      | 2*                     | 3                      | 4∗                     | 5*                     | 6                      |
|--------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| 00-07  | $ \alpha\rangle$       |
| 08-15  | 0>                     | $ \alpha^2\rangle$     |
| 16-23  | 0>                     | 0>                     | $ \alpha^3\rangle$     | $ \alpha^3\rangle$     | $ \alpha^3\rangle$     | 0>                     | 0>                     |
| 24-31  | 0>                     | 0>                     | 0>                     | $ \alpha^{12}\rangle$  | $ \alpha^{12}\rangle$  | $ \alpha^{12}\rangle$  | $ \alpha^{48}\rangle$  |
| 32-39  | 0⟩                     | 0>                     | 0>                     | 0>                     | $ \alpha^{15}\rangle$  | $ \alpha^{15}\rangle$  | $ \alpha^{15}\rangle$  |
| Qubits | 7∗                     | 8                      | 9                      | 10∗                    | 11                     | 12                     | 13∗                    |
| 00-07  | $ \alpha\rangle$       | $ \alpha\rangle$       | $ \alpha^{64}\rangle$  | $ \alpha^{64}\rangle$  | $ \alpha^{64}\rangle$  | $ \alpha\rangle$       | $ \alpha\rangle$       |
| 08-15  | $ \alpha^2\rangle$     | 0>                     | 0>                     | $ \alpha^{127}\rangle$ | $ \alpha^{254}\rangle$ | $ \alpha^{254}\rangle$ | $ \alpha^{254}\rangle$ |
| 16-23  | $ \alpha^{63}\rangle$  | 0>                     |
| 24-31  | $ \alpha^{48}\rangle$  |
| 32-39  | $ \alpha^{15}\rangle$  |
| Qubits | 14                     | 15                     | 16∗                    | 17                     | 18                     | 19∗                    | 20                     |
| 00-07  | $ \alpha\rangle$       |
| 08-15  | $ \alpha^{254}\rangle$ |
| 16-23  | $ \alpha^3\rangle$     | 0>                     | 0>                     |
| 24-31  | $ \alpha^{48}\rangle$  | $ \alpha^{12}\rangle$  | $ \alpha^{12}\rangle$  | 0⟩                     | $ \alpha^2\rangle$     | $ \alpha^2\rangle$     | 0>                     |
| 32-39  | $ \alpha^{15}\rangle$  | $ \alpha^{15}\rangle$  | 0>                     | 0>                     | 0>                     | 0>                     | 0>                     |

Example: Squaring in  $\mathbb{F}_2[x]/(1+x+x^3+x^4+x^8)$ 

$$\begin{bmatrix} 100010101 \\ 00001011 \\ 01000100 \\ 00001111 \\ 00101001 \\ 00000110 \\ 00010100 \\ 00000011 \end{bmatrix} = \begin{bmatrix} 10000000 \\ 00001000 \\ 01000000 \\ 00100000 \\ 00000100 \\ 00000001 \end{bmatrix} \cdot \begin{bmatrix} 1000 \\ 0100 \\ 0010 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \end{bmatrix}$$

|    |   |   |   |   |   |   | , |  |
|----|---|---|---|---|---|---|---|--|
| Γ1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 0  | 1 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 0  | 0 | 1 | 0 | 0 | 0 | 0 | 0 |  |
| 0  | 0 | 0 | 1 | 0 | 0 | 0 | 0 |  |
| 0  | 0 | 0 | 0 | 1 | 0 | 0 | 0 |  |
| 0  | 0 | 0 | 0 | 0 | 1 | 0 | 0 |  |
| 0  | 0 | 0 | 0 | 1 | 1 | 1 | 0 |  |
| 0  | 0 | 0 | 0 | 0 | 0 | 1 | 1 |  |
|    |   |   |   |   |   |   |   |  |







#### Multiplication: Maslov et al.'s design



Multiplication: Maslov et al.'s design



64 Toffoli and 21 CNOT gates ightarrow 448 T plus 533 Clifford gates

Multiplication: Maslov et al.'s design



64 Toffoli and 21 CNOT gates  $\to$  448 T plus 533 Clifford gates 8 total mulitplications per inversion  $\to$  3584 T plus 4264 Clifford gates

Multiplication: Maslov et al.'s design



64 Toffoli and 21 CNOT gates  $\to$  448 T plus 533 Clifford gates 8 total mulitplications per inversion  $\to$  3584 T plus 4264 Clifford gates

#### **EXPENSIVE**

Final Step: Affine transformation computed, LUP decomposition used.

$$\begin{bmatrix} b'_0 \\ b'_1 \\ b'_2 \\ b'_3 \\ b'_4 \\ b'_5 \\ b'_6 \\ b'_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Final Step: Affine transformation computed, LUP decomposition used.

$$\begin{bmatrix} b'_0 \\ b'_1 \\ b'_2 \\ b'_3 \\ b'_4 \\ b'_5 \\ b'_6 \\ b'_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

SubBytes:

Final Step: Affine transformation computed, LUP decomposition used.

SubBytes:

One 8-bit S-Box ightarrow 3584 T-gates and 4569 Clifford gates.

Final Step: Affine transformation computed, LUP decomposition used.

SubBytes:

One 8-bit S-Box ightarrow 3584 T-gates and 4569 Clifford gates.

16 S-Boxes per round!

#### AES: ShiftRows

| $S_{0,0}$        | $S_{0,1}$        | S <sub>0,2</sub> | S <sub>0,3</sub> |
|------------------|------------------|------------------|------------------|
| $S_{1,0}$        | $S_{1,1}$        | $S_{1,2}$        | $S_{1,3}$        |
| $S_{2,0}$        | $S_{2,1}$        | S <sub>2,2</sub> | $S_{2,3}$        |
| S <sub>3,0</sub> | S <sub>3,1</sub> | S <sub>3,2</sub> | S <sub>3,3</sub> |

| $S_{0,0}$        | $S_{0,1}$        | S <sub>0,2</sub> | $S_{0,3}$        |
|------------------|------------------|------------------|------------------|
| $S_{1,1}$        | $S_{1,2}$        | $S_{1,3}$        | $S_{1,0}$        |
| $S_{2,2}$        | $S_{2,3}$        | $S_{2,0}$        | $S_{2,1}$        |
| S <sub>3,3</sub> | S <sub>3,0</sub> | S <sub>3,1</sub> | S <sub>3,2</sub> |

- Permutation of current AES state
- Permutation of qubits
- Instead adjust position of subsequent gates
- Addressed during next SubBytes

#### AES: MixedColumns

Operates on entire column (32 (qu)bits) at a time. LUP decomposition on  $32 \times 32$  matrix to compute in place  $\rightarrow$  277 CNOT gates, depth of 39.

$$\begin{bmatrix} 02\,03\,01\,01\\01\,02\,03\,01\\01\,01\,02\,03\\03\,01\,01\,02 \end{bmatrix}$$

#### AES: MixedColumns

 ${\tt MixColumns:}$  277 CNOT gates with total depth of 39



## AES: AddRoundKey

Bit-wise XOR of the round key with the current state



128 CNOT gates executed in parallel

Key Expansion employs the following to 32 bits (1 word) at a time:

Key Expansion employs the following to 32 bits (1 word) at a time:

• RotWord() - Similar to ShiftRows, requires no current action

Key Expansion employs the following to 32 bits (1 word) at a time:

- RotWord() Similar to ShiftRows, requires no current action
- SubWord() Applies SubBytes once to each of the 4 bytes

Key Expansion employs the following to 32 bits (1 word) at a time:

- RotWord() Similar to ShiftRows, requires no current action
- SubWord() Applies SubBytes once to each of the 4 bytes
- Rcon[i/Nk] Flip of bits One or two uncontrolled NOT gates

Key Expansion employs the following to 32 bits (1 word) at a time:

- RotWord() Similar to ShiftRows, requires no current action
- SubWord() Applies SubBytes once to each of the 4 bytes
- Rcon[i/Nk] Flip of bits One or two uncontrolled NOT gates
- XOR XORing words 32 controlled NOT gates executed in parallel

Key Expansion employs the following to 32 bits (1 word) at a time:

- RotWord() Similar to ShiftRows, requires no current action
- SubWord() Applies SubBytes once to each of the 4 bytes
- Rcon[i/Nk] Flip of bits One or two uncontrolled NOT gates
- XOR XORing words 32 controlled NOT gates executed in parallel

SubWord() (expensive) only applied to every 4 (AES-128, 256) or 6 (AES 192) words in key expansion. These words are treated differently.

 ${\tt SubWord()}$  like  ${\tt SubBytes}$  was costly o storing seemed cost effective

• AES-128 - 4 words into 44. 10 use Subword(), constructed & stored

SubWord() like SubBytes was costly  $\rightarrow$  storing seemed cost effective

- AES-128 4 words into 44. 10 use Subword(), constructed & stored
- AES-192 6 words into 52. 8 use Subword(), constructed & stored

SubWord() like SubBytes was costly  $\rightarrow$  storing seemed cost effective

- AES-128 4 words into 44. 10 use Subword(), constructed & stored
- AES-192 6 words into 52. 8 use Subword(), constructed & stored
- AES-256 8 words into 60. 13 use Subword() constructed & stored

SubWord() like SubBytes was costly o storing seemed cost effective

- AES-128 4 words into 44. 10 use Subword(), constructed & stored
- AES-192 6 words into 52. 8 use Subword(), constructed & stored
- AES-256 8 words into 60. 13 use Subword() constructed & stored

|     | #gates |        |         | dep   | oth     | #qı     | ubits    |
|-----|--------|--------|---------|-------|---------|---------|----------|
|     | NOT    | CNOT   | Toffoli | T     | overall | storage | ancillae |
| 128 | 176    | 21,448 | 20,480  | 5,760 | 12,636  | 320     | 96       |
| 192 | 136    | 17,568 | 16,384  | 4,608 | 10,107  | 256     | 96       |
| 256 | 215    | 27,492 | 26,624  | 7,488 | 16,408  | 416     | 96       |

Remaining words constructed only using XOR  $\rightarrow$  generate as needed. Example: AES-128 -  $word7 = word4 \oplus word3 \oplus word2 \oplus word1$ 



#### Resource Estimates

To save and reuse qubits, cleaned up along the way (Ex. AES-192)



#### Resource Estimates

| :       |           |           |           |        |         |          |
|---------|-----------|-----------|-----------|--------|---------|----------|
|         |           | #gates    |           | dep    | oth     | #qubits  |
|         |           | Т         | Clifford  | T      | overall |          |
| AES-128 | Key Gen   | 143,360   | 185,464   | 5,760  | 12,626  | 320      |
|         | 10 Rounds | 917,504   | 1,194,956 | 44,928 | 98,173  | 536      |
|         | Total     | 1,060,864 | 1,380,420 | 50,688 | 110,799 | 856+128  |
| •       |           |           |           |        |         |          |
|         |           | #ga       | ites      | dep    | oth     | #qubits  |
|         |           | T         | Clifford  | T      | overall |          |
| AES-192 | Key Gen   | 114,688   | 148,776   | 4,608  | 10,107  | 256      |
|         | 12 Rounds | 1,089,536 | 1,418,520 | 39,744 | 86,849  | 664      |
|         | Total     | 1,204,224 | 1,567,296 | 44,352 | 96,956  | 920+192  |
| =       |           |           |           |        |         |          |
|         |           | #gat      |           | dep    |         | #qubits  |
| _       |           | T         | Clifford  | T      | overall |          |
| AES-256 | Key Gen   | 186,368   | 240,699   | 7,488  | 16,408  | 416      |
|         | 14 Rounds | 1,318,912 | 1,715,400 | 52,416 | 114,521 | 664      |
| _       | Total     | 1,505,280 | 1,956,099 | 59,904 | 130,929 | 1080+256 |

#### Grover





- (a) Grover circuit applied  $\lfloor \frac{\pi}{4} \sqrt{2^k} \rfloor$  times for k=128,192,256
- (b) Shown is the circuit decomposition of G

$$G = \left( (H^{\otimes k}(2|0\rangle\langle 0|-1)H^{\otimes k}) \otimes \mathbf{1}_2 \right) U_f$$



Figure: Reversible implementation of  $U_f$ . For k=128, r=3 invocations of AES suffice to make the target key unique. For k=192 number of parallel AES boxes increases to r=4 and for k=256 to r=5. Overall structure of the circuit is common to all key sizes.

| #gates |                      |                      | dep                  | #qubits              |       |
|--------|----------------------|----------------------|----------------------|----------------------|-------|
| k      | T                    | Clifford             | T                    | overall              |       |
| 128    | $1.19 \cdot 2^{86}$  | $1.55\cdot 2^{86}$   | $1.06 \cdot 2^{80}$  | $1.16 \cdot 2^{81}$  | 2,953 |
| 192    | $1.81 \cdot 2^{118}$ | $1.17\cdot 2^{119}$  | $1.21\cdot 2^{112}$  | $1.33 \cdot 2^{113}$ | 4,449 |
| 256    | $1.41 \cdot 2^{151}$ | $1.83 \cdot 2^{151}$ | $1.44 \cdot 2^{144}$ | $1.57 \cdot 2^{145}$ | 6,681 |

Table: Resource estimates for Grover to attack AES-k,  $k \in \{128, 192, 256\}$ .

#### Conclusion:

Only SubBytes involves T-gates and called a minimum of 296 times (AES-128) and up to 420 (AES-256). Results in quantum circuits of quite moderate complexity. Seems prudent to move away from 128-bit keys.