Biogeografía de islas

Función de incidencia de Hanski

Gerardo Martín

28-07-2023

Intro

Modelos anteriores representan:

- · Número de especies como función de:
 - · Especies continentales
 - · Riesgo de extinción
 - · Probailidad de inmigración
- · Determinantes geográficos del número de especies
 - · Áreas y Distancias

Un marco para análisis de datos

- · Levins y MacArthur y Wilson ignoran características de islas
- · No permiten estimar efectos sobre número de especies

MacArthur y Wilson (1963): $\uparrow \text{Area} \to \text{Extinción} \downarrow$

Hanski propuso modelo para relacionarlos

El modelo de incidencia de Hanski (1994)

- · Ocupación es función de colonización y extinción
- · Modelo representa probabilidad de transición:

· De modo que:

$$Estado_t = Vacío (1)$$

$$Estado_{t+1} = Ocupado (2)$$

Los dos estados posibles de un parche

Parámetros

- \cdot $\,$ C_i es la probabilidad de ser colonizado en período t
- \cdot E_i es la probabilidad de sufrir una extinción
- $\cdot \ 1 C_i$ es pa probabilidad de permanecer ocupado
- $\cdot \ 1 E_i$ es la probabilidad de permanecer vacío

Probabilidad de que parche esté ocupado

$$J_i = \frac{C_i}{C_i + E_i} \tag{3}$$

Si $C_i=0.3~\mathrm{y}~E_i=0.5$

$$J_i = \frac{0.3}{0.3 + 0.5} = 0.375 \tag{4}$$

Derivación de ${\cal J}_i$

Se parte del modelo de lluvia de propágulos (única fuente de especies es el continente):

$$\frac{dp}{dt} = c(1-p) - ep$$

Donde las condiciones de equilibio son:

$$p^* = \frac{c}{c+e}$$

8

Matriz de transiciones

Table 1: Primera fila es la probabilidad asociada a t. Segunda fila a t+1.

	Vacío	Ocupado
Vacío	0.7	0.5
Ocupado	0.3	0.5

 J_i es la probabilidad a largo plazo de ocupación, por lo tanto el punto de equilibrio. La sitribución estable de los valores propios λ es:

9

Estimación de la probabilidad de extincion (E_i)

- · Se determina como función del Área (A_i)
 - \cdot En áreas grandes E_i es pequeño

$$E_i = \begin{cases} \frac{e}{A^x} & \text{si } A_i > e^{1/x} \\ 1 & \text{si } A_i \leq e^{1/x} \end{cases} \tag{5}$$

Donde e es un parámetro a estimar (no es la cte de Euler).

Ejemplo del efecto del área sobre ${\cal E}_i$

Probabilidad de colonización (C_i)

• Es función de migrantes y distancia de tierra continental u otros parches:

$$C_i = \frac{1}{1 + \left(\frac{y'}{S_i}\right)^2}$$

 y^\prime es la habilidad colonizadora de las especies

 S_i es una de aislamiento del parche i

Fórmula para S_i

$$S_i = \sum_{j=i}^n p_j \exp(-\alpha d_{ij}) A_j$$

n número total de parches j que son hábitats de las especies migrantes

 p_{j} es el estado de ocupación de cada parche

 d_{ij} es la distancia lineal entre parche i y el j

lpha es el efecto de la distancia entre i y j

 A_j es el área de j : índice de tamaño poblacional

Ejemplo del efecto de $\overline{d_{ij}}$ y $\overline{A_j}$

Combinando C_i y E_i para obtener J_i

$$J_i = \frac{1}{1 + \left(1 + \left[\frac{y'}{S_i}\right]^2\right) \frac{e}{A_i^x}} \tag{6}$$

Para lo cual necesitamos los siguientes datos:

- $\cdot \ A_i$, las áreas de cada parche
- · ubicación geográfica de cada parche que recibe (i) ó emite (j) especies
- · presencia ó ausencia en cada parche
- \cdot Parámetro de distancia lpha (se estima con regresión no lineal)

Referencias

- Ilkka Hanski (1994). Patch-occupancy dynamics in fragmented landscapes. *Trends in Ecology and Evolution*.
- Robert MacArthur et al. (1963). An Equilibrium Theory of Insular Zoogeography. Evolution.
- Nicolas Gotelli y B J McGill (2006). Null Versus Neutral Models: What's the Difference?. *Ecography*.
- · Hank Stevens (2023). Primer of Ecology using R.