CS243: Introduction to Algorithmic Game Theory

Week 10.1 Game Theory in Carsharing (Dengji ZHAO)

SIST, ShanghaiTech University, China

Survey

- Do you think we need a dedicated programming course during your first two-year study, especially before Data Structure course?
 - If Yes, which language would you prefer: C/C++, Java or Python...? Why?
 - 2 If no, why?

The Model

Questions:

- How to arrange the sharing?
- How much should they pay/receive?

History

- Began in the 1940s in North America
- Been promoted because of
 - fuel shortages, air pollution and traffic congestion
- Peaked in the US in 1970 with a commute mode share of 20.4%

Public and Private Promotions

People are still NOT well motivated!

What are the obstacles?

- Safety and Privacy
- Flexibility and Reliability
- ...

- Complicated join procedures
- No free market competition!

What can we do?

The Model

Use Mechanism Design to build ridesharing:

- Automated ride matching/scheduling
- Automated (profitable) price setting

What can we do?

Use Mechanism Design to build ridesharing:

- Automated ride matching/scheduling
- Automated (profitable) price setting

What can we do?

Use Mechanism Design to build ridesharing:

- Automated ride matching/scheduling
- Automated (profitable) price setting

to answer...

Questions:

- How to arrange the sharing?
- How much should commuters pay/receive?

Mechanism Design (Reverse Game Theory)

Mechanism design answers...

How to design a mechanism which leads to a desired outcome?

Outline

- The Model
- 2 Fixed-price Mechanisms
- VCG with Reserve Prices
- Balanced Trade Reduction

Outline

- The Model
 - Auction-based Ridesharing
- Fixed-price Mechanisms
- VCG with Reserve Prices
- Balanced Trade Reduction

System Overview

System Overview

Input:

- Route map: a graph G = (L, E),
 - *L*: stopping points/locations,
 - E: routes between stopping points,
 - w(e): time required to travel via route $e \in E$.
- Commuter i's private trip/type: $\theta_i = (l_i^d, l_i^a, t_i^a, t_i^a, c_i, q_i)$
 - I_i^d , $I_i^a \in L$: departure and arrival locations,
 - t_i^d , t_i^a : earliest departure and latest arrival time,
 - $c_i \in \mathbb{R}^+$: travel cost to finish the trip,
 - $q_i \in \mathbb{N}$: extra seats available on the trip.

System Overview

Output:

- Allocation/Scheduling:
 - driver: drives and takes riders
 - rider: shares with drivers
 - unmatched: goes with the original travel preference
- Payments:
 - driver: receives money
 - rider: pays money
 - unmatched: no payment

The Goal of the System

Properties of the output:

- Minimize the total travel costs (efficiency)
- Incentivize participation and against manipulations
 - commuters never receive negative utility (individual rationality)
 - truthfully reporting their trip information is a dominant strategy (truthfulness)
- Deficit control (budget balance)
 - The system owner should not lose too much money

Auction-based Ridesharing

One Solution: Applying VCG Mechanism

One classical solution: VCG

One Solution: Applying VCG Mechanism

Vickrey Auction (Second Price Auction)

One Solution: Applying VCG Mechanism

Vickrey Auction (Second Price Auction)

- Allocation: the agent with the highest valuation wins
- Payment: the harm of others caused by the agent
- Properties: Efficient, Individually Rational, and Truthful.

0000

One-sided Auction

Double Auction

0000

One Solution: Applying VCG Mechanism

One-sided Auction

Double Auction

Vickrey-Clarke-Groves (VCG) auction

- Efficient (costs minimizing)
- Individually rational (agents never lose money)
- Truthful (truthfully reporting is the best)
- High deficit (Quiz: how much does each driver receive in the following example?)

Vickrey-Clarke-Groves (VCG) auction

- Efficient (costs minimizing)
- Individually rational (agents never lose money)
- Truthful (truthfully reporting is the best)
- High deficit (Quiz: how much does each driver receive in the following example?)

Question

How to control deficit?

The Model Fixed-price Mechanisms VCG with Reserve Prices Balanced Trade Reduction Conclusion occording to the Mechanisms occurred to the Mechanisms occurre

Auction-based Ridesharing

Our Solutions (Overview)

We propose...

Fixed-price Mechanisms:

- Flexible deficit control (outperforms VCG)
- Truthful and individually rational
- Very inefficient

VCG with Reserve Prices:

- Flexible deficit control (outperforms VCG)
- Partially truthful and individually rational
- Flexible efficiency control

Balanced Trade Reduction :

- Flexible deficit control (outperforms VCG)
- Truthful and individually rational
- Flexible efficiency control

Outline

- 1 The Mode
- Fixed-price Mechanisms

 x^{fixed}(p⁰, p¹)
- 3 VCG with Reserve Prices
- Balanced Trade Reduction

Given predefined values $p^0 \ge 0$ (for riders) and $p^1 \le 0$ (for drivers), fixed payments are defined

- Allocation independent
- Allocation dependent
 - location dependent (e.g. shortest path)
 - detour dependent
 - sharing dependent
 - ...

 $x^{fixed}(p^0, p^1)$

Dictatorship Mechanism

Properties

- truthful and individually rational
- better deficit control than VCG
- very inefficient

Problems of Non-dictatorship Mechanisms

Case I:

- fixedPay = 10
- both prefer driving
- potential problem for deterministic mechanisms

Case II:

- fixedPay = 1
- both prefer riding
- potential problem for all mechanisms

Outline

- VCG with Reserve Prices • $\mathcal{M}^{VCG}(r^0, r^1)$

VCG with Two-Sided Reserve Prices $\mathcal{M}^{VCG}(r^0, r^1)$

Predefined reserve prices $r^0 \ge 0$ (for riders) and $r^1 \le 0$ (for drivers),

Note: r_0 and r_1 can be allocation dependent.

Conclusion

VCG with Two-Sided Reserve Prices $\mathcal{M}^{VCG}(r^0, r^1)$

Predefined reserve prices $r^0 \ge 0$ (for riders) and $r^1 \le 0$ (for drivers),

Properties: $\mathcal{M}^{VCG}(r^0, r^1)$ is truthful iff $r^0 \ge -r^1$.

Outline

- 1 The Mode
- 2 Fixed-price Mechanisms
- VCG with Reserve Prices
- Balanced Trade Reduction
 - McAfee's Trade Reduction
 - Balanced Trade Reduction

McAfee's Trade Reduction (1992)

McAfee's reduction: increase VCG payments via reducing efficiency

VCG payments:

• Riders: 90

Drivers: -91

Deficit: 4

McAfee's payments:

• Riders: 91

● Drivers: −90

No deficit!

McAfee's Reduction is NOT Truthful in Ridesharing

McAfee's trade reduction is **NOT** truthful in ridesharing because:

 a commuter who can be allocated as either driver or rider might manipulate/switch! **Balanced Trade Reduction**

The Model

Balanced Trade Reduction (BTR)

VCG payment for a buyer

$$V_i^b - X_i^{vcg} \geq V_i^s - \hat{X}_i^{vcg}$$

McAfee's payment for a buyer

$$v_i^b - (x_i^{vcg} + \delta_1) \ngeq v_i^s - (\hat{x}_i^{vcg} + \delta_2)$$

Balanced Trade Reduction payment for a buyer

$$v_i^b - (x_i^{vcg} + \delta) \ge v_i^s - (\hat{x}_i^{vcg} + \delta)$$

Balanced Trade Reduction (BTR)

VCG payment for a buyer

$$V_i^b - X_i^{vcg} \ge V_i^s - \hat{X}_i^{vcg}$$

McAfee's payment for a buyer

$$v_i^b - (x_i^{vcg} + \delta_1) \ngeq v_i^s - (\hat{x}_i^{vcg} + \delta_2)$$

Balanced Trade Reduction payment for a buyer

$$v_i^b - (x_i^{vcg} + \delta) \ge v_i^s - (\hat{x}_i^{vcg} + \delta)$$

Properties of BTR:

 Truthful, Individually Rational, almost Efficient, but has Deficit.

What is NEW?

- The first comprehensive ridesharing model studied from a pure game-theoretic point of view.
- Auction-based ridesharing system incentivizing participation.
- Flexible deficit control rather than completely remove deficit (investment opportunity).

- The problem of finding optimal schedules is computationally hard (optimal in range).
- Allow agents to submit trips dynamically over time (online mechanism design).
- Collaboration with existing public/private transports (Uber are banned in many countries!).
- Trips with uncertain commitment.

References

- Dengji Zhao, Sarvapali Ramchurn, Enrico Gerding, Nick Jennings: Balanced Trade Reduction for Dual-Role Exchange Markets. In the Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI-15)
- Dengji Zhao, Dongmo Zhang, Enrico Gerding, Yuko Sakurai, Makoto Yokoo: Incentives in Ridesharing with Deficit Control. In the Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-14)
- N. Nisan, T. Roughgarden, Eva Tardos, and V. V. Vazirani: Algorithmic Game Theory. Cambridge University Press, 2007.