Zadanie numeryczne 09

Autor: Eryk Stępień

20.01.2023

Spis treści:

- 1. Problem
- 2. Program
 - 1. Użyte narzędzia
 - 2. Kompilacja i uruchomienie
 - 3. Opis działania programu
- 3. Analiza wyników działania programu
 - 1. Metoda bisekcji
 - 2. Metoda falsi
 - 3. Metoda siecznych
 - 4. Metoda Newtona
 - 5. Podsumowanie
 - 6. Usprawnienie

1. Problem

Znajdź numerycznie pierwiastek x^* równań f(x) = 0 i g(x) = 0 dla

- a) $f(x) = \sin(x) 0.4$
- b) $g(x) = f(x)^2 = (\sin(x) 0.4)^2$

Na przedziale $x\in[0,\frac{\pi}{2}]$ metodami (a-d) z zad.1 (poza przypadkami, kiedy nie da się tego zrobić). Ile kroków potrzeba, żeby osiągnąć założoną z góry dokładność za pomocą poszczególnych metod? Zbadaj, jak zachowuje się ciąg x_i-x^* dla wszystkich metod oraz funkcji f i g (dokładne rozwiązanie to oczywiście $x^*=\arcsin{(0.4)}$). W tym celu, zależność x_i-x^* przedstaw na wykresie (należy dobrać odpowiednią skalę osi, tak, żeby wykres był czytelny). Usprawnij rozwiązanie dla funkcji g(x) stosując metodę z zad. 5.

2. Program

2.1 Użyte narzędzia

Program został napisany w języku Python 3.10. Przy zastosowaniu środowiska PyCharm 2023.2.2. Korzysta on z następujących bibliotek:

- Numpy
- Mathplotlib.pyplot

2.2 Kompilacja i uruchomienie

W celu kompilacji należy wywołać poniższą komendę w terminalu:

Python NUM9.py

2.3 Opis działania programu

Program używa metod z zadania pierwszego w celu znalezienia numerycznych pierwiastków równań, wyświetla znaleziony pierwiastek oraz tworzy wykres zbieżności ciągu $x_i - x^*$

3. Analiza wyników działania programu

3.1 Metoda Bisekcji

Metoda ta polega na połowieniu przedziału. Mamy podany przedział [a,b]. Jeśli funkcja zmienia znak na tym przedziale to znajduje się tam miejsce zerowe. Metoda polega na wyznaczeniu punktu $c=\frac{a+b}{2}$, a następnie wybraniu nowego przedziału [a,c] lub [c,b]. Kryterium stopu w tym przypadku może być wystarczająco mała wielkość przedziału. W programie kryterium stopu jest dostatecznie mała różnica aktualnie podejrzanego o bycie miejscem zerowym punktu z dokładnym miejscem zerowym punktu obliczonym z arcsin (0.4).

Wyniki działania programu:

Dla a) Miejsce zerowe uzyskane metodą bisekcji=0.4115168460674883 prawdziwe miejsce zerowe=0.41151684606748806. Uzyskano po 49 krokach

Dla b) Nie możemy zastosować bisekcji ponieważ funkcja nie zmienia znaku na przedziale

3.2 Metoda Falsi

Metoda falsi w założeniu jest bardzo podobna do metody bisekcji. Wymaga ona zmiany znaku na przedziale oraz wybierania przedziałów [a, c] lub [c, b]. Punkt c jest dany jednak wzorem

$$c = \frac{-b*f(a) + a*f(b)}{f(b)*f(a)}$$

Wyniki działania programu:

Dla a) Miejsce zerowe uzyskane metodą falsi=0.4115168460674884 prawdziwe miejsce zerowe=0.41151684606748806. Uzyskano po 13 krokach

Dla b) Ponownie funkcja nie zmienia znaku, więc nie możemy zastosować tej metody

3.3 Metoda Siecznych

Metoda siecznych nie wymaga aby funkcja zmieniała znak na przedziale. Wymaga ona jednak, aby punktem wyjścia były dwa punkty, dla których $f(a) \neq f(b)$. Prowadzimy sieczną przez te punkty i jako c bierzemy miejsce zerowe tej siecznej.

$$c = \frac{a * f(b) - b * f(a)}{f(b) - f(a)}$$

Metoda siecznych nie musi być zbieżna, więc dodajemy kolejny warunek stopu, będący przekroczeniem określonej liczby maksymalnych iteracji.

Wyniki działania programu:

Dla a) Miejsce zerowe uzyskane metodą siecznych=0.4115168460674876 prawdziwe miejsce zerowe=0.41151684606748806. Uzyskano po 6 krokach

Dla b) Miejsce zerowe uzyskane metodą siecznych=0.41151684606748723 prawdziwe miejsce zerowe=0.41151684606748806. Uzyskano po 72 krokach

3.4 Metoda Newtona

Metoda newtona nie wymaga, aby funkcja zmieniała znak ale musi ona przyjmować dodatkowy warunek stopu w postaci przekroczenia maksymalnej iteracji. Miejsce zerowe jest obliczane następującym wzorem iteracyjnym.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Pochodna f'(x) obliczona została analitycznie dla każdej z funkcji.

Wyniki działania programu:

Dla a) Miejsce zerowe uzyskane metodą newtona=0.411516846067488 prawdziwe miejsce zerowe=0.41151684606748806. Uzyskano po 4 krokach

Dla b) Miejsce zerowe uzyskane metodą newtona=0.41151684606748723 prawdziwe miejsce zerowe=0.41151684606748806. Uzyskano po 49 krokach

3.5 Podsumowanie

W wyniku działania programu tworzone są następujące wykresy:

Dla funkcji f(x)

Wykres przedstawia zależność x_i-x^* w skali logarytmicznej. Obrazuje on "prędkość" ustalania pierwiastka funkcji. Metoda newtona osiąga najdokładniejszy wynik przy najmniejszej liczbie kroków. Kolejną najszybszą metodą jest metoda siecznych ale jak widać z wykresu oraz z wartości obliczonych przez program metoda ta jest najmniej precyzyjna.

Dla funkcji G:

Dla funkcji g(x) możemy zastosować tylko dwie metody, co opisałem wcześniej. Ponownie metoda Newtona wymaga najmniejszej ilości kroków. Warto zauważyć, że różnica precyzji między metodą newtona a siecznych w tym przypadku jest marginalna.

3.6 Usprawnienie

Zbieżność dla funkcji g(x) możemy usprawnić wykonując metodę siecznych i newtona dla usprawnionej funkcji $u(x) = \frac{g(x)}{g'(x)}$. Funkcja ta posiada to samo miejsce zerowe co funkcja g(x).

Przeanalizujmy przebieg metod dla funkcji u(x). Oto wyniki działania programu odnoszące się do tej funkcji:

Miejsce zerowe uzyskane metodą siecznych=0.41151684606748806 prawdziwe miejsce zerowe=0.41151684606748806. Uzyskano po 7 krokach

Miejsce zerowe uzyskane metodą newtona=0.41151684606748806 prawdziwe miejsce zerowe=0.41151684606748806. Uzyskano po 4 krokach

Metody są bardzo precyzyjne i pierwiastek funkcji osiągany jest już po kilku krokach. Dla przypomnienia dla g(x) mieliśmy 49 kroków dla metody newtona i 72 dla metody siecznych.