Important consequences of Steinitz: Cor 6.4.7: All bases of V have the same number of vectors. Proof: If $M = \{\alpha_1, ..., \alpha_n\}$, $B = \{\beta_1, ..., \beta_m\}$ are both bases of V. A spans V, B is linearly independent: m < n B spans V, A is linearly independent: n < m=n. Det 6.48: If a basis of V has n vectors, then V is finite-dimensional and dim V=n (dim V may depend on F.) If V has no finite basis, then V is infinite-Limensional

Ex: Using standard bases din F=n, din Pan(F)=n, din Mm,n (F)=mn F[x] is infinite-dimensional. How to find a basis 3: Use dimension. Th 6.4.11 Basis theorem: If ACV and Al = dim V (# 00), then A is linearly independent if and only if A spans V. in only need to check one of (2207 Week 8.5 p7)

Other useful things:

Cor 6.4.10: If ASV and IAI > dim V, then

A is linearly dependent.

Th. 6.4.16: If W is a subspace of V,

then dim W = dim V.

(2207 Week 8.5 p6)

6.5: Sums and direct sums of subspaces (?) How to make a big subspace out of small ones? Tw2 (1) $Ex in R²: W₁ = Span {(0)}$ $W₂ = Span {(0)}$ W, UW2 is not a subspace: $\frac{W_1}{W_2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \notin W_1 \cup W_2$.. To make a big subspace W containing W, and Wz, we must include sums like $\binom{1}{0} + \binom{0}{1}$.

Def 6.5.1/6.5.4: Let W1,..., Wk be subspaces of V. The sum of W,,..., Wk is: $W_1+\cdots+W_K=\sum_{i=1}^KW_i=\sum_{i=1}^Kd_i\Big|d_i\in W_i$ [sisk] Ex: from above: $W_1 + W_2 = \mathbb{R}^2$: $\begin{pmatrix} \chi \\ y \end{pmatrix} = \begin{pmatrix} \chi \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ y \end{pmatrix}$ in \mathbb{R}^3 : $U_1 = \text{span}\{e_i\}$ line $U_2 = \text{span}\{e_2\}$ line $U, +U_2 = V, \quad \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} x \\ 0 \end{array} \right) + \left(\begin{array}{c} y \\ y \end{array} \right)$ U, W V, = span (e, e) V,+V2=1R3: (3) = (3)+(0) 12= span (63,63)

Note: summing is commutative: W, +W2 = W2+W, · W, + ... + W x = W; for 1 \le i \le k, i given wi EWi, wi = 0+ ... + 0+ wi+ 0+ ... + 0. € W, + + Wk. Prop. 6.5.3: W,+...+Wk is a subspace. Proof: 0 EW, +... + Wk .: 0 = 0 +... +0 and DE each Wi: Wi is a subspace. if d, BEW, +... + Wk, then d=d, +... + dk,

$$\beta = \beta_1 + \dots + \beta_k$$
, for $\forall i, \beta_i \in W_i$ ($|\leq i \leq k$).
 $ad + \beta = a(d_1 + \dots + d_k) + \beta_1 + \dots + \beta_k$
 $= (ad_1 + \beta_1) + \dots + (ad_k + \beta_k)$
and $ad_i + \beta_i \in W_i$
 $\therefore W_i$ is a subspace.

Another view. W, UWz is a set i. to make a subspace, take Span (W, UWz).

a) W, +... +Wk = Span (W, v... v Wk) Th. 6.5.5: b) if Wi = Span (Ai), then W, +... +WK = Span (A, v... v AK) Proof: for simplicity, we show only k=2. To show W,+W2 = Span(W,UW2): W,+Wz is a subspace, and contains W, and Wz (6.3.8) : contains Span (W, UW) To show Span (W,UW2) = W,+W2