

MEGHE GROUP VALUES REDEFINED DTEL (Department for Technology Enhanced Learning) Learning NYSS, In

The Centre for Technology enabled Teaching & Learning, NYSS, India

Teaching Innovation - Entrepreneurial -Global

DEPARTMENT OF COMPUTER TECHNOLOGY IV-SEMESTER COMPUTER ARCHITECTURE AND ORGANIZATION

UNIT NO.4 ARITHMETICS

UNIT 4:- SYLLABUS

1	Number Representation , Addition of Positive number
2	Logic Design for fast adders
3	Addition and Subtraction , Arithmetic and Branching conditions
4	Multiplications of positive numbers, Signed- Operand multiplication
5	Fast Multiplication, Booth's Algorithm
6	Integer Division, Floating point numbers and operations

UNIT-4 SPECIFIC OBJECTIVE / COURSE OUTCOME

The student will be able to:

Design of Arithmetic unit to perform fixed point

and floating point arithmetic operations.

Add of signed& unsigned nos

X _i	y _i	Carry-in c_i	Sum <i>s_i</i>	Carry-out c_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S_{i} = X_{i} Y_{i} C_{i} + X_{i} Y_{i} C_{i} + X_{i} Y_{i} C_{i} + X_{i} Y_{i} C_{i} + X_{i} Y_{i} C_{i} = X_{i} \oplus Y_{i} \oplus C_{i}$$

$$C_{i+1} = Y_{i} C_{i} + X_{i} C_{i} + X_{i} Y_{i}$$

Example:

$$\frac{X}{Z} = \frac{7}{13} = \frac{0}{1} = \frac{0}{1} = \frac{0}{1} = \frac{1}{1} = \frac{0}{1} = \frac{1}{1} = \frac{0}{1} = \frac{0$$

At the i^{th} stage: Input: c_i is the carryin

Output:

 s_i is the sum

 c_{i+1} carry-out

to (i+1)st state

Add of logic for a single stage

Full Adder (FA): Symbol for the complete circuit for a single stage of addition.

n-bit

Adder

- *Cascade *n* full adder (FA) blocks to form a *n*-bit adder.
- •Carries propagate or ripple through this cascade, <u>n-bit</u> <u>ripple carry adder.</u>

Carry-in c_0 into the LSB position provides a convenient way to perform subtraction.

K n-bit numbers can be added by cascading *k n*-bit adders.

Each *n*-bit adder forms a block, so this is cascading of blocks Carries ripple or propagate through blocks, <u>Blocked Ripple Carry Adder</u>

LECTURE 1:

n-bit

Subtractor

- •Recall X Y is equivalent to adding 2's complement of Y to X.
- •2's complement is equivalent to 1's complement + 1.
- $\cdot X Y = X + Y + 1$
- •2's complement of positive and negative numbers is computed similarly.

n-bit adder/subtractor (contd)

- •Add/sub control = 0, addition.
- •Add/sub control = 1, subtraction.

Detecting Overflows

- Overflows can only occur when the sign of the two operands is the same.
- Overflow occurs if the sign of the result is different from the sign of the operands.
- Recall that the MSB represents the sign.
 - x_{n-1} , y_{n-1} , s_{n-1} represent the sign of operand x, operand y and result s respectively
- Circuit to detect overflow. can be implemented by the following logic expressions:

Computing the Add time

Consider Oth stage:

- • c_1 is available after 2 gate delays.
- c_0 • s_1 is available after 1 gate delay.

Cascade of 4 Full Adders, or a 4-bit adder

- • s_0 available after 1 gate delays, c_1 available after 2 gate delays.
- • s_1 available after 3 gate delays, c_2 available after 4 gate delays.
- • s_2 available after 5 gate delays, c_3 available after 6 gate delays.
- • s_3 available after 7 gate delays, c_4 available after 8 gate delays.

For an n-bit adder, s_{n-1} is available after 2n-1 gate delays c_n is available after 2n gate delays

Fast

Recall the equations:

$$Addition_{y_i} \oplus c_i$$

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

Second equation can be written as: $c_{i+1} = x_i y_i + (x_i + y_i) c_i$

$$c_{i+1} = x_i y_i + (x_i + y_i) c_i$$

We can write: $c_{i+1} = G_i + P_i c_i$

$$c_{i+1} = G_i + P_i c_i$$

where $G_i = x_i y_i$ and $P_i = x_i + y_i$

- • G_i is called generate function and P_i is called propagate function
- G_i and P_i are computed only from x_i and y_i and not C_i thus they can be computed in one gate delay after X and Y are applied to the inputs of an *n*-bit adder.

Carry Lookahead Adder

$$\begin{split} c_{i+1} &= G_i + P_i c_i \\ c_i &= G_{i-1} + P_{i-1} c_{i-1} \\ \Rightarrow c_{i+1} &= G_i + P_i (G_{i-1} + P_{i-1} c_{i-1}) \\ continuing \\ \Rightarrow c_{i+1} &= G_i + P_i (G_{i-1} + P_{i-1} (G_{i-2} + P_{i-2} c_{i-2})) \\ until \\ c_{i+1} &= G_i + P_i G_{i-1} + P_i P_{i-1} G_{i-2} + \dots + P_i P_{i-1} \dots P_1 G_0 + P_i P_{i-1} \dots P_0 C_0 \end{split}$$

- •All carries can be obtained 3 gate delays after X, Y and c_0 are applied.
 - -One gate delay for P_i and G_i
 - -Two gate delays in the AND-OR circuit for c_{i+1} .
- This is called Carry Lookahead adder

Carry Lookahead Adder

- Performing n-bit addition in 4 gate delays independent of n is good only theoretically because of fan-in constraints.
- Last AND gate and OR gate require a fan-in of (n+1) for a n-bit adder.
- In order to add operands longer than 4 bits, we can cascade 4-bit Carry-Lookahead adders. Cascade of Carry-Lookahead adders is called <u>Blocked Carry-Lookahead adder</u>.

Blocked carry lookahead Adder

$$c_4 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0$$

Rewrite this as:

$$P_0' = P_3 P_2 P_1 P_0$$

$$G_0' = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0$$

Subscript I denotes the blocked carry lookahead and identifies the block.

Cascade 4 4-bit adders, c_{16} can be expressed as:

$$c_{16} = G_{3}' + P_{3}'G_{2}' + P_{3}'P_{2}'G_{1}' + P_{3}'P_{2}'P_{1}'G_{0}' + P_{3}'P_{2}'P_{1}'P_{0}'C_{0}$$

Blocked carry lookahead Adder

After x_i , y_i and c_0 are applied as inputs:

- G_i and P_j for each stage are available after 1 gate delay.
 - All carries are available after 5 gate delays.
 - c_{16} is available after 5 gate delays.

= Ai @Bi & Cin H= Bici +Gi pi = Ai Bi Gi = Ai. Bi put i=0. 2nd Full adder Citl = PicitGi Com C1 = Po Co + Cto = (Ao(+) Bo) (0 + Ao. Bo put i=1 (3rd F.A) C2= P2(2P1C1+G1 = PICPOCO+GO)+GI C2= P1 P0 C0 + P1 G0 + G1 Put i=2 (4thin) C3 = P2C2 +G2 = P2(P1P0 Co + P1G0 +G1)+G2 C3 = P2P1P0 C0 + P2P1G0+P2G1+G2 put i = 3 & For C4 C4= P20C3+G2 = P3 CP2 P1 P0 Co + P2 P1 Go + P2G1 + G2) + G3 C4= P3 P2 P1 P0 C0 + P3 P2 P1 GO+ P3 P2 G1+ P3 G2+G3 Ex'- & 1001 So = xo@ yo @ Go = 10100 Ci+1 = Gi + PiCi put i=0. = 18(Ao Bo) + (Ao (Bo) Co = 1.1+ 0.0 C1 = 1 C2= G1+P19 = G1+P1 (Gro+PoCo) = CA + P. 1 GO + P. PO CO =0+1.1 C=2 C3 = G2 + P2C2 = G2+P2(G1+P1G0+P1P0C0) = G2+P2G1+P2P1G0+P2P1P0G0 = 0 + 1.0 + 1.1.1 C4 = Gy + P3 C3 = G3+P3 (G2+P2G1+P2P1G0+P2P1P3G) = G3+ P3G2+ P3P2G1+ P3P2P1G0+P3P2P1PaG0

THANK YOU

Multiplication of unsigned numbers litiplication

Product of 2 *n*-bit numbers is at most a 2*n*-bit no.

Unsigned multiplication can be viewed as addition of shifted versions of the multiplicand.

Multiplication of unsigned numbers Multiplication

- •We added the partial products at end.
 - Alternative would be to add the partial products at each stage.
- Rules to implement multiplication are:
 - •If the *i*th bit of the multiplier is 1, shift the multiplicand and add the shifted multiplicand to the current value of the partial product.
 - Hand over the partial product to the next stage
 - Value of the partial product at the start stage is 0.

DTEL

Typical multiplication cell

Multiplication

Combinatorial array multiplier

Multiplicand is shifted by displacing it through an array of adders.

Combinatorial array multiplier

- Combinatorial array multipliers are:
 - 1. Extremely inefficient.
 - 2. Have a high gate count for multiplying numbers of practical size such as 32-bit or 64-bit numbers.
 - 3. Perform only one function, namely, unsigned integer product.
- •Improve gate efficiency by using a mixture of combinatorial array techniques and sequential techniques requiring less combinational logic.

Sequential multiplication

Multiplication

- Recall the rule for generating partial products:
 - 1. If the ith bit of the multiplier is 1, add the appropriately shifted multiplicand to the current partial product.
 - 2. Multiplicand has been shifted <u>left</u> when added to the partial product.
- However, adding a left-shifted multiplicand to an unshifted partial product is equivalent to adding an unshifted multiplicand to a right-shifted partial product

DTEL

Sequential Circuit Multiplier

Multiplication

DTEL

Multiplication

Sequential multiplication

THANK YOU

Booth's

Algorithm

Multiplie		r Version of multiplicand	
t ∸1	Bi t i	Version of multiplicar selected by bit	
0	0	0XM	
1	0	+1 XM	
0	1	_1 XM	
1	1	0XM	

Booth multiplier recoding table.

Signed

• Considering 2's-complement signed pleation will happen to (-13)×(+11) if Sequential multiplication following the same method of unsigned multiplication?

Sign extension of negative multiplicand.

•Consider in a multiplication, the multiplier is positive 0011110, how many appropriately shifted versions of the multiplicand are added in a standard procedure?

Booth's

Algorithm

•Since 0011110 = 0100000 - 0000010, if we use the expression to the right, what will happen?

2's complements of multiplicand

Booth's

• In general, in the Booth scheme, 41997 times the shifted multiplicand is selected when moving from 0 to 1, and +1 times the shifted multiplicand is selected when moving from 1 to 0, as the multiplier is scanned from right to left.

Booth recoding of a multiplier.

THANK YOU

Bit-Pair Recoding of Multipliers:

•Bit-pair recoding halves the maximum number of summands (versions of the multiplicand).

(a) Example of bit-pair recoding derived from Booth recoding

Bit-Pair Recoding of Multipliers:

Multiplier bit-pair		Multiplier bit on the right	
<i>i</i> +1	i	<i>i</i> _1	selected at position
0	0	0	0 X M
0	0	1	+1 X M
0	1	0	+1 X M
0	1	1	+2 X M
1	0	0	_2 X M
1	0	1	_1 X M
1	1	0	_1 X M
1	1	1	0 X M

(b) Table of multiplicand selection decisions

Fast Multiplication

Bit-Pair Recoding of Multipliers:

THANK YOU