## 107: Extended Kalman Filter, Organited KF and Informention Filter

\*Summary of LOG: gp = 9 Ha a.p (XYT povemetrization) op = oH, oHa op SSG notation Xga = Xgb D Xab (RBT + covervince projection) Special Enclidean group.  ${}^{5}H_{a} \in SE(2)$ Sensor models: Lider (but there are ofher ...) Landmarks: mi = [ wix, mi, g] T (localions) f(z)=h(x, m;)=[3] feative from compe, bearing, (appearmu) Fr N(Hz); h(par, m), Zs) · Kalman filter: Linear system + Garriers prior, Joint Commune D Mt = At Mt + But prediction. (mar juntize) Zt = At Ze-1 At +Rt

 $\begin{array}{ll}
\text{III} & K_t = \overline{Z}_t C_t^T (C_t \overline{Z}_t C_t^T + Q)^{-1} \\
\text{IV} & M_t = \overline{M}_t + K_t (\overline{Z}_t - C_t \overline{M}_t) \\
\text{IV} & \overline{Z}_t = (\overline{I} - K_t C_t) \overline{Z}_t
\end{array}$ 

correction (contioning)

· Molion model: first order taylor expansion

$$X_t = g(X_{t-1}, u_t, E_t) \sim g(u_{t-1}, u_t) + \frac{\partial g}{\partial x_{t-1}}(x_{t-1}, u_{t-1}) + E_t$$

LOS discussed on how to model g(.) for different syrkens and how to obtain the probabilistic Model.

· Sensor model: we observe features of amburety (606)

$$2\epsilon = h(x_t, \mathcal{Y}_t) \simeq h(\mu_t) + \frac{2h}{2x_t}(x_t - \mu_t) + 2t$$

Intention on linearization

y = f(x)



real:

Yinearizing astumu ERRORS! X Extended Kulmon Filter. Inputs: Mt-1, Zt-1, Mt, Zt 1: The = g(Mt-1, Mt) 2:  $Z_t = G_t Z_t G_t^T + R_t$ 3: Kr = \$ HT ( Ht Zt Ht + Qt)-1 20 4: Mt = Tit + Kt (Zt - h(Tit)) (Innovation vector) 5: Z = (I - K+ H+) Z, return Me, Zt (N(Me, Zt) Truperties - EKF 1, very efficient O(K24+N2) (al KF) - Not optimal, but in practice works well Dopander ou the non-linearithm (some our more problematic)



Compact initial distribution reduces the error because we are unear The linearization point (0(11111))

## \* Unscented transformation



$$\mathcal{Y}^{\epsilon;7} = g(\chi^{\epsilon;7}, M_t)$$

We transform a set of hima points instead of a 1st Taylor exp.

## · Choosing the signa points

$$\chi^{E07} = \mu$$

$$\chi^{E07} = \mu + (\sqrt{N+1}, \sqrt{Z_{x}}); \quad i = 1, ..., N$$

$$\chi^{E17} = \mu - (\sqrt{N+1}, \sqrt{Z_{x}}); \quad i = n+1, ..., 2n$$

$$\text{recall} \quad Z = L L \quad (\text{holenky}) \Rightarrow \sqrt{Z} = R L$$

$$\chi = \sqrt{N+1} = K \quad (\text{radim})$$

· Sigma weights

$$mean \qquad \omega_{\infty}^{507} = \frac{\Delta}{n+\Delta}$$

covaring  $\omega = \frac{\Delta}{N+\Delta} + (1-\alpha^2+\beta)$ 

$$W_m^{\text{Li7}} = W_c^{\text{Li7}} = \frac{1}{2(n+4)}$$

#### > Unscented Kalman Filter

$$\overline{\mathbb{Z}}$$

6: 
$$\overline{Z}_{t} = h(\overline{X}_{t})$$

7: 
$$\hat{z}_t = \sum_{i=0}^{2n} w_m^{[i]} \overline{Z}_t^{[i]}$$
  $\hat{z}_t = H_t \cdot \overline{X}_t$  on  $EKF$ 

8: 
$$S_t = \sum_{t=0}^{2n} w_t \left( \overline{Z}_t^{(i7)} - \hat{z}_t \right) \left( \overline{Z}_t^{(i7)} - \hat{z}_t \right)^T + Q_t$$
 (S= HZHT+Q)

9: 
$$\overline{Z}_{t}^{x_{i\overline{z}}} = \sum_{i=0}^{2n} \omega_{c}^{(i)} (\overline{X}_{t}^{(i)} - \overline{\mu_{t}}) (\overline{Z}_{i}^{(i)} - \hat{Z}_{t})^{T}$$
 (Crossoverin  $\overline{Z}_{i}^{(i)} |_{t}$ )

$$M = \sum_{t=0}^{\infty} X_{t} =$$

$$\mathcal{Z}_{\tau} = \widetilde{\mathcal{Z}}_{\tau} - \mathcal{N}_{\tau} S_{\tau} (S_{\tau}^{-1})^{T} \mathcal{Z}_{\tau}^{LZ})^{T}$$

$$= \overline{Z}_t - K_t \left( \overline{Z}_t H_t \right)^T$$

UKF summary:

Highly efficient, some complexity on EKF + extra constant.

Better linearization (Jacobson us tigme points)

Perivative free

Still not optimal

\* Gaustian Commical paramélization

Canoutal form: simplied and elegant form. We and so the same desirations to obtain the UF equivalent (Information filter) for linear danshows and the Extended IF for linearized January Cystems.

# XInprimation Filter

Inputs: Ét.1, 1/4-1, 112, 24

1:  $\hat{\Lambda}_t = (A_t \Lambda_{t-1}^{-1} A_t^T + R_t)^{-1}$ 

2:  $\overline{\xi}_{c} = \overline{\Lambda}_{t} \left( A_{l} \cdot \Lambda_{t-1}^{-1} \xi_{t-1} + B_{t} \cdot u_{\epsilon} \right)$ prediction

(marginalization)

3:  $\Lambda_t = C_t^T Q_t^{-1} C_t + \Lambda_t$ 

4:  $\hat{\xi}_t = C_t^T Q_t^{-1} Z_t + \bar{\xi}_t$ 

ceturn St. At

(Prub Rob 73)

( widitioning) (easew)

There exists a duality between marjinallying a dawnon and conditioning a canonical form, both are easy.

Next lecture: localization Prob Reb Gh7