

宇宙最遠クエーサーの探索

松岡 良樹 (国立天文台)

Why do we care?

→ 1. Formation and evolution of SMBHs

 $M(t) = M_0 e^{[\lambda(1-\epsilon)/\epsilon](t/0.45 \text{ Gyr})}$

Why do we care?

→ 2. Evolution of IGM; Re-ionization

Why do we care?

→ 3. Evolution of host galaxies

Chemical evolution

First identification of a high-z (z ≥ 6) quasar

RD J030117+1002025 (Stern et al. 2000) z = 5.5, $M_B = -22.7$ mag

Survey area: 74 arcmin²

Depth: R < 26.3 mag (Hale 5m, 4.4 hrs)

I < 25.7 mag (KPNO 4m, 2 hrs)

z < 24.8 mag (KPNO 4m, 3.3 hrs)

Spectroscopy: LRIS/Keck, 4.5 hrs

Candidate selection: red R - I and flat I - z colors. "No morphological criteria were implemented since the primary goal of this program is to study normal, star-forming galaxies at high redshift."

→ six good candidates.

Era of systematic searches

Sloan Digital Sky Survey

- * 2.5 m telescope
- * optical (u, g, r, i, z) bands
- * z < 20.5 mag
- * 8,000 deg²

High-z quasars

- * 30 objects (Fan+00,01,03,04,06; Jiang+08,09)
- *5.7 < z < 6.4
- \star -27.9 < M₁₄₅₀ < -24.4
- **★** Completed.

Canada-France High-z Quasar Survey

- * CFHT 3.6 m
- * optical (u, g, r, i, z) bands
- ***** z ≤ 22 mag
- * ~600 deg²

High-z quasars

- * 19 objects (Willott+07,09,10)
- *5.9 < z < 6.4
- * -27.0 < M₁₄₅₀ < -22.2
- * (nearly) Completed.

UKIDSS/VIKING surveys

- ★ 4-m telescopes
- **★** NIR (Z, Y, J, H, K) bands
- * Y < 22.3 mag
- $*1,500 deg^2$

High-z quasars

- * 6 objects (Venemans+07,13; Mortlock+09,11)
- *5.9 < z < 7.1
- * -27.1 < M₁₄₅₀ < -25.5
- * 10-20 more objects expected at z ~ 7.

Era of systematic searches

HSC-SSP High-z Quasar Survey

Table 7: Quasar Samples												
		Wide (14	$400 \deg^2)$		Deep (27 deg^2)							
redshift	3.7 – 4.6	4.6 – 5.7	5.9 – 6.4	6.6 – 7.2	< 1	3.7 – 4.6	4.6 – 5.7	6.6 - 7.2				
mag. range	r < 23.0	i < 24.0	z < 24.0	y < 23.4	i < 25.0	i < 25.0	i < 25.0	y < 25.3				
number	6000	3500	280	50	2000	200	50	3				

Uncovering $z \gtrsim 6$ quasars down to $M_{1450} \sim -22$ mag over 1,400 deg²! (Only a few object is currently known at $M_{1450} > -24$ mag)

z_{AB} < 25 mag, 100 deg² w/o photometry errors

- + O-M stars
- Late-M dwarfs
- L dwarfs
- T dwarfs
- Quasars at z=5.0-6.5

z_{AB} < 25 mag, 100 deg² w/ photometry errors

z_{AB} < 24 mag, 100 deg² w/ photometry errors

yab < 24.5 mag, 100 deg² w/ photometry errors

y_{AB} < 24.5 mag, 100 deg² w/o photometry errors

- + O-M stars
- Late-M dwarfs
- L dwarfs
- T dwarfs
- Quasars at z=6.5-7.4

y_{AB} < 23.5 mag, 100 deg² w/ photometry errors

We start with 25,385 z-band point sources with S/N > 5. (z-band based forced photometry of m_{PSF} are used)

Prioritization of the candidates with the probabilistic approach:

PQ = the Bayesian probability of being a high-z quasar rather than a Galactic brown dwarf

= $W_Q/(W_Q+W_D)$ where $W_{Q/D} = \int \rho(s) Pr(det | s) Pr(d | s) ds$

 \rightarrow Only 19 of them have P_Q > 0.1

Visual inspection of the 19 candidates

- ✓ one cosmic ray hit (A)
- ✓ most of them are very faint and possibly spurious detections (B, C, ...)

Quality cut of σ_z < 0.1 mag (this will be incorporated into the earlier stage in the real survey) \rightarrow only 2 final candidates survive

The final candidates

	HSC				COSMOS							ultraVISTA			
	HSC i (AB mag)	HSC z (AB mag)	HSC y (AB mag)	HSC Po	S-cam i (AB mag)	S-cam z (AB mag)	UKIRT J (AB mag)	CFHT K (AB mag)	KPNO K (AB mag)	HST F814 (AB mag)	HST class.star	uVISTA Y (AB mag)	uVISTA J (AB mag)	uVISTA H (AB mag)	uVISTA K (AB mag)
S1	27.00 ± 0.35	24.00 ± 0.04	23.44 ± 0.08	0.9999	26.84 ± 0.38	24.08 ± 0.09	22.03 ± 0.02	20.96 ± 0.02	21.05 ± 0.15	25.57 ± 1.43	0.97	22.85 ± 0.02	21.90 ± 0.01	21.26 ± 0.01	20.80 ± 0.01
S2	26.39 ± 0.26	24.36 ± 0.07	25.37 ± 0.64	0.9985	26.18 ± 0.23	24.36 ± 0.10	24.03 ± 0.22	23.40 ± 0.15	n/a	n/a	n/a		-		

- (S1) z_{SCam} J_{UKIRT} = 2.0 suggests it is likely a contaminating Galactic T dwarf; y_{HSC} might be much fainter than the true magnitude due to >3 σ photometry error.
- (S2) $z_{SCam} J_{UKIRT} = 0.3$ is consistent with being a z ~ 6 quasar.

Spectroscopic follow-ups

* Subaru S15A: "First spectroscopic identification of HSC-SSP high-z quasar candidates"

- * Subaru S15A-service "Spectroscopic Identification of New z~6 HSC-SSP Quasars"
- * VLT period 95 "Spectroscopic Identification and Mass Measurements of New z~6,7 Quasars"

Future prospects

When did first 109-M_{sun} SMBHs emerge?

Sensitivity of future instruments

