Algorithms II Cheat-Sheet

Notation

```
A \in [10] \equiv A \in [1..10]
{a, b c} is a set of vertices
G\{a, b, c\} is a graph
\overrightarrow{x} just represents a vector x
```

Big O

Notation	Intuitive meaning	Analogue
$f(n) \in O(g(n))$	f grows at most as fast as g	<u> </u>
$f(n) \in \Omega(g(n))$	f grows at least as fast as g	≥
$f(n) \in \Theta(g(n))$	f at the same rate as g	=
$f(n) \in o(g(n))$	f grows strictly less fast than g	<
$f(n) \in \omega(g(n))$	f grows strictly faster than g	>

Notation	Formal definition
$f(n) \in O(g(n))$	$\exists C, n_0 \colon \forall n \geq n_0 \colon f(n) \leq C \cdot g(n)$
$f(n) \in \Omega(g(n))$	$\exists c, n_0 \colon \forall n \geq n_0 \colon f(n) \geq c \cdot g(n)$
$f(n) \in \Theta(g(n))$	$\exists c, C, n_0 : \forall n \geq n_0 : c \cdot g(n) \leq f(n) \leq C \cdot g(n)$
$f(n) \in o(g(n))$	$\forall C \colon \exists n_0 \colon \forall n \geq n_0 \colon f(n) \leq C \cdot g(n)$
$f(n) \in \omega(g(n))$	$\forall c \colon \exists n_0 \colon \forall n \geq n_0 \colon f(n) \geq c \cdot g(n)$

Interval Scheduling

A **request** is a pair of integers (s, f) with $0 \le s \le f$. We call s the start time and f the finish time.

A set A of requests is **compatible** if for all distinct (s, f), $(s', f') \in A$, either $s' \ge f$ or $s \ge f'$ — that is, the requests' time intervals don't overlap.

Interval Scheduling Problem

Input: An array \mathcal{R} of n requests $(s_1, f_1), \ldots, (s_n, f_n)$.

Desired Output: A compatible subset of \mathcal{R} of maximum possible size.

Algorithm: GREEDYSCHEDULE **Input**: An array \mathcal{R} of n requests. **Output**: A maximum compatible subset of \mathcal{R} . 1 begin Sort \mathcal{R} 's entries so that $\mathcal{R} \leftarrow [(s_1, f_1), \dots, (s_n, f_n)]$ where $f_1 \leq \dots \leq f_n$. Initialise $A \leftarrow []$, lastf $\leftarrow 0$. foreach $i \in \{1, \ldots, n\}$ do if $s_i \ge last f$ then Append (s_i, f_i) to A and update lastf $\leftarrow f_i$. Return A.

Complexity:

Step 2 takes O(n log n)

Steps 3–6 all take O(1) time and are executed at most n times.

 \therefore total running time = O(nlog n) + O(n)O(1) =O(nlogn).

Interval Scheduling

Formal GreedySchedule:

 $A^{+} := \operatorname{argmin} \{f : (s, f) \in R, A \cup \{(s, f)\} \text{ is }$ compatible for all $A \subseteq R$, $A_{i+1} := A_i \cup \{A_i^+\}$ $A_0 := \emptyset$,

 $t := \max\{i: A_i \text{ is defined}\}\$

Interval Scheduling Proofs

Lemma: Greedy Schedule always outupts A_t

Proof: By induction form the following loop invariant. At the start of the i'th iteration of 4-7:

- A is equal to $A_t \cap \{(s_1, f_1), ..., (s_{i-1}, f_{i-1})\}$
- last is equal to the latest finish time of any request in A (or 0 if A = [])

Lemma: A_t is a compatible set

Proof: Instant by induction; A_0 is compatible, and if A_i is compatible then so is $A_{i+1} = A_i \cup A^+$ by the definition of A_i^+

Lemma: A_t is a maximum compatible subset of the Array R (look in pseudocode)

Proof:

Base case for i = 1: A_0^+ is the fastest finishing request in R by definition

Inductive step: Suppose A_i finishes faster than B_i . Let B_i^+ be the (i+1)'st fastetst-finishing element of

B. Since A_i finishes faster than B_i , $A_i \cup \{B_i^+\}$ is compatible. Hence by definition, A_i^+ exists and finishes no later than B^+

Theorem: GreedySchedule outputs A_t , which is a maximum compatible set.

Proof: putting all of the above proofs together, we prove the theorem.

Graph Theory

Graph: G = (V, E)

Edge: E = E(G) is a set of edges contained in

 $\{\{u,v\}: u,v \in V, u \neq v\}$ **Vertex**: V = V(G) is a set of vertices

Subgraph: $H = (V_H, E_H)$ of G is a graph with $V_H \subseteq V$ and $E_H \subseteq E$

Induced Subgraph: is a subgraph if $E_H = \{e \in E : e \subseteq V_H\}$

Component: H of G is a maximal connected induced subgraph of G.

Degree: d(v) = |N(v)|

Neighbourhood: $N(v) = \{w \in V : \{v, w\} \in E\}$

Walk: sequence of vertices $v_0...v_k$ such that $\{v_i, v_{i+1}\} \in E \text{ for all } i \leq k-1$

Length: the value of k (see above walk definition)

Euler Walk: a walk that contains every edge in G exactly once.

Isomorphism: two graphs are isomorphic if there is a bijection f: $V_1 \to V_2$ such that $\{f(u), f(v)\} \in E_2$ if and only if $\{u, v\} \in E_1$

Path: is a walk in which no vertices repeat

Connected: A graph is connected if any two vertices are joined by a path

Digraph: is a pair G = (V, E), V is a set of vertices and E is a set of edges contained in $\{(u,v): u,v \in V, u \neq v\}$

Strongly connected: G is .. if for all $u, v \in V$, there is a path from u to v and a path from v to u. Weakly connected:

In-Neighbourhood: $N^-(v) = \{u \in V(G) : (u,v) \in$ E(G)

Out-Neighbourhood: $N^+(v) = \{w \in V(G) : v \in V(G) : v$ $(v,w) \in E(G)$

Cycle: is a walk $W = w_0...w_k$ with $w_0 = w_k$ and $k \geq 3$, in which every vertex appears at most once except for w_0 and w_k (which appear twice)

Hamilton cycle: is a cycle containing every vertex in the graph

k-regular: a graph is .. if every vertex has degree k Bijection:

Graph Theory

Theorem: If G has an Euler walk, then either:

- every vertex of G has even degree; or
- all but two vertices v_0 and v_k have even degree, and any euler walk must have v_0 and v_k as endpoints

Theorem: let G = (V, E) be a digraph with no isolated vertices, and let $U, v \in V$. Then G has an Euler walk from u to v if and only if G is weakly connected and either:

- u = v and every vertex of G has equal in- and out-degrees; order
- $u \neq v, d^+(u) = d^-(u) + 1, d^-(v) = d^+(v) + 1$ and every other vertex of G has equal in- and out-degrees

Dirac's Theorem: Let $n \geq 3$. Then any n-vertex graph G with minimum degree at least $\frac{n}{2}$ has a Hamilton cycle.

Handshake lemma: For any graph

 $G = (V, E), \sum_{v \in V} d(v) = 2|E|$

Proof: All edges contain two vertices, and each vertex v is in d(v) edges. Count the number of verted-edge pairs: Let $X = \{(v,e) \in V \times E : v \in E\}$. Then |X| = 2|E| and $|X| = \sum_{v \in V} d(v)$, so we're done. **Directed Handshake lemma**: For any graph

Directed Handshake lemma: For any graph $G = (V, E), \sum_{v \in V} d^+(v) = \sum_{v \in V} d^-(v) = 2|E|$

Proof: TODO. Instead of counting vertex-edge pairs, we count tail-edge pairs. Each edge has one tail so |X| = |E|

Trees

 $\textbf{Forest} \colon \text{a graph with no cycles}$

Tree: a forest that is connected

Root: for T = (V, E). Root $r \in V$ as follows. For all vertices $v \neq r$, let P_v be the unique path from r to v. Then direct each P_v from r to v.

Leaf: is a degree-1 vertex. Root cannot be a leaf.

Ancestor: u is an .. of v if u i on P_v **Parent**: u is the .. of v if $u \in N^-(v)$

level: first .. L_0 of T is r, and $L_{i+1} = N^+(L_i)$.

depth: of T is max{i: $L_i \neq \emptyset$ }. Root doesn't count

Lemma 1: If T = (V, E) is a tree, then any pair of vertices $u, v \in V$ is joined by a unique path uTv in T

Lemma 2: Any n-vertex tree has n-1 edges

Lemma 3: Any n-vertex tree T = (V, E) with $n \ge 2$ has at least 2 leaves

Tree Properties:

A: T is connected and has no cycles

B: T has n-1 edges and is connected

C: T has n-1 edges and has no cycles

D: T has a unique path between any pair of vertices

 $A \implies B, C, D$ $A \Longleftarrow B, C, D$.

Depth First Search

Graphs as data structures:

Adjacency Matrix:

Storing: $\Theta(|V|^2)$ space

Adjacency query: $\Theta(1)$ time

Neighbourhood query: $\Theta(|V|)$ time

Adjacency List:

$$[s] \rightarrow b, a$$

$$\boxed{\mathbf{a}} \to s, c$$

Storing: $\Theta(|V| + |E|)$ space Adjacency query: $\Theta(d^+(u))$ time Neighbourhood query: $\Theta(d^+(u))$ time

 \mathbf{DFS} :

Input : Graph G = (V, E), vertex $v \in V$.

Output: List of vertices in v's component.

1 Number the vertices of G as v_1, \ldots, v_n . 2 Let explored[i] \leftarrow 0 for all $i \in [n]$.

2 Let explored[I] \leftarrow 0 for all $I \in$

3 Procedure helper (v_i)

9 Call helper(v).

10 Return $[v_i: explored[i] = 1]$ (in some order).

Complexity: In total there are $\sum_{v \in V} d(v) = O(|E|)$ calls to helper (each vertex only runs lines 5-7 once), and there is O(1) time between calls. So the running time is O(|V| + |E|).

Invariant: When helper is called, if explored[i] = 1 then $v_i \in V(C)$.

Claim: Every vertex in P is explored

Proof by induction: We prove $x_1, ..., x_i$ are explored for all $i \leq t$. x_1 is explored. If x_i is explored, then helper (x_{i+1}) will be called from helper (x_i) . so x_{i+1} will also be explored.

DFS Tree: a .. T of G is a rooted tree satisfying:

- V(T) is the vertex set of a component of G;
- If $\{x,y\} \in E(G)$, then x is an ancestor of y in T or vice versa.

Breadth First Search

Distance: The distance between x and y, d(x, y), is the length in edges of a shortest path between x and y, or ∞ if no such path exists.

BFS:

Input : Graph G = (V, E), vertex $v \in V$. **Output** : d(v, y) for all $y \in V$ and "a way of

finding shortest paths".

- 1 Number the vertices of G as $v = v_1, \ldots, v_n$.
- 2 Let $L[i] \leftarrow \infty$ for all $i \in [n]$.
- 3 Let $L[1] \leftarrow 0$, pred $[1] \leftarrow None$.
- 4 Let queue be a queue containing all tuples (v, v_i) with $\{v, v_i\} \in E$.
- 5 while queue is not empty do

```
Remove front tuple (v_i, v_j) from queue.

If L[j] = \infty then

Add (v_j, v_k) to queue for all \{v_j, v_k\} \in E, k \neq i.

Set L[j] \leftarrow L[i] + 1, pred[j] = i.
```

10 Return L and pred.

Complexity: If G is in adjacency list form, each edge is added to queue at most twice, incurring O(1) overhead each time, so the running time is O(|V| + |E|).

BFS

explanation: BFS works by starting at a vertex and then adding all adjacent vertices to a queue. We then take the first vertex in the queue and look for a new set of adjacent vertices to add, repeating the process until we have reached our destination.

Dijkstra's Algorithm

Weighted Graph:

Weight function:

Length:

Distance:

Priority queue:

Dijkstra:

Complexity:

Dijkstra Operations:

Claim: Dijkstra's algorithm calculates distances correctly.

Proof:

Linear Programming

Feasible: We say $\overrightarrow{x} \in \mathbb{R}^n$ is a feasible solution if $\overrightarrow{x} > \overrightarrow{0}$ and $A\overrightarrow{x} < \overrightarrow{b}$.

Optimal: We say \overrightarrow{x} is an optimal solution if $f(\overrightarrow{y}) \leq f(\overrightarrow{x})$ for all feasible $y \in \mathbb{R}^n$

Polytope: is a geometric object with flat sides

Corollary: There will always be an optimal solution

Non-Standard Form:

$$-4x + 5y - z \rightarrow \text{max subject to}$$

$$x + y + z \le 5$$
;

$$x + y + z \ge 5;$$

$$x + 2y \ge 2;$$

 $x, z \geq 0.$

Standard Form:

$$-4x + 5(y_1 - y_2) - z \rightarrow \text{max subject to}$$

$$x + (y_1 - y_2) + z \le 5;$$

$$-x - (y_1 - y_2) - z \le -5;$$

$$-x - 2(y_1 - y_2) \le -2;$$

$$x, y_1, y_2, z \ge 0.$$

Matrix Form:

$$-4x + 5y_1 - 5y_2 - z \rightarrow \text{max}$$
 subject to

$$\begin{pmatrix} 1 & 1 & -1 & 1 \\ -1 & -1 & 1 & -1 \\ -1 & -2 & 2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y_1 \\ y_2 \\ z \end{pmatrix} \le \begin{pmatrix} 5 \\ -5 \\ -2 \end{pmatrix};$$

$$x, y_1, y_2, x \ge 0.$$

Simplex Method: Search greedily for a vertex of the feasible polytope which maximises the objective function

Worst case: hypercube which has $\Omega(2^n)$ vertices.

In practice it only need $\Theta(n)$ steps

Vertex Cover: in a graph G, is a set $X \subseteq V$ such that every edge in E has at least one vertex in X

We can express finding a minimum vertex cover as solving a linear program in which the solutions must be integers: an integer linear program.

$$\sum_{v} x_{v} \rightarrow \text{min subject to}$$

$$x_{u} + x_{v} \ge 1 \text{ for all } \{u, v\} \in E;$$

$$x_{v} \le 1 \text{ for all } v \in V;$$

$$x_{v} \ge 0 \text{ for all } v \in V;$$

$$x_{v} \in \mathbb{N} \text{ for all } v \in V.$$

 $X = \{1, 3, 5, 7\}$ is **not** a vertex cover.

Here we have
$$x_1 = x_3 = x_5 = x_7 = 1$$
 and $x_0 = x_2 = x_4 = x_6 = 0$.

The uncovered edge $\{2,4\}$ corresponds to the constraint $x_2+x_4\geq 1$, which is violated.

Flow Networks

Flow Network: consists of a directed graph G = (V, E), a capacity function $c : E \to \mathbb{N}$, a source vertex $s \in V$ with $N^-(s) = \emptyset$, and a sink vertex $t \in V$ with $N^+(t) = \emptyset$

Flow: is a function in (G, c, s, t) $f: E \to \mathbb{R}$ with properties:

- No edge has more flow than capacity; formally, for all $e \in E, 0 \le f(e) \le c(e)$
- Flow is conserved at vertices; flow in = flow out

Maximum Flow: a flow f maximising the value of the flow, v(f)

Cut: is any pair of disjoint edges $A, B \subseteq V$ with $A \cup B = V$, $s \in A$ and $t \in B$.

Lemma 1: For all sets $X \subseteq V$ $\{s,t\}$, we have $f^+(X) = f^-(X)$. So flow is conserved in sets/cuts as well as vertices

Proof: By summing conservation of flow over all $v \in X$:

 $\sum_{v \in X} \sum_{u \in N^-(v)} f(u, v) = \sum_{v \in X} \sum_{w \in N^+(v)} f(v, w)$. For all $e \subseteq X$, f(e) appears once on each side; after cancelling those terms we're left with $f^+(X) = f^-(X)$.

Lemma 2: For all cuts (A, B), $f^{+}(A) - f^{-}(A) = f^{-}(B) - f^{+}(B)$.

Proof: We have shown that $v(f) = f^+(A) - f^-(A)$ because A and B are disjoint and $A \cup B = V$.

Lemma 3: Push(G, c,s,t, f, P) returns a new flow f', with value v(f') = v(f) + C in O(|V(G)|) time

Ford-Fulkerson:

Input: A (weakly connected) flow network (G, c, s, t).

Output: A flow f with no augmenting paths.

1 begin

- Construct the flow f with f(e) = 0 for all $e \in E(G)$.
- Construct the residual graph G_f .
 - **while** G_f contains a path P from s to t **do**
- Find *P* using depth-first (or breadth-first) search.
- Update $f \leftarrow \text{Push}(G, c, s, t, f, P)$.
- 7 Update G_f on the edges of P.
- Return f.

Complexity: Every step takes O(|E|) time or O(|V|) time, and since G is weakly connected we have |V| = O(|E|). So the running time is O(v(f*)|E|).

Flow Networks

Residual graph: G_f of (G, c, s, t) on V(G) as follows:

- if flow < capacity: then forward edge with value capacity-flow
- if flow > 0: add backward edge with value flow

Residual capacity of edge: max{capacity - flow, backward edge flow}

Residual capacity of network: minimum residual capacity of it's edges

Augmenting Path:

Max-flow min-cut theorem: The value of a maximum flow is equal to the minimum capacity of a cut, i.e. the minimum value of $c^+(A)$ over all cuts (A, B).

Proof: Let f be a maximum flow, and let (A, B) be a cut minimising $c^+(A)$. We already proved $v(f) \leq c^+(A)$. Moreover, there is no augmenting path for f, so exactly as before, there is a cut (A'.B') with $c^+(A') = v(f)$; thus $v(f) > c^+(A)$. The result follows.