Classical realizability: new tools and applications

Guillaume Geoffroy

Under the supervision of Laurent Regnier 12M, ED 184, Aix-Marseille Université

29 March 2019

Theorem (Euclid – *Elements*, Book IX – c. 300 BC) There are infinitely many prime numbers. Proof.

Theorem (Euclid – *Elements*, Book IX – c. 300 BC) There are infinitely many prime numbers.

Proof.

Take any finite list p_1, \ldots, p_n of prime numbers

Theorem (Euclid – *Elements*, Book IX – c. 300 BC) There are infinitely many prime numbers.

Proof.

Take any finite list p_1, \ldots, p_n of prime numbers Compute their product $A = p_1 \times \ldots \times p_n$

Theorem (Euclid – *Elements*, Book IX – c. 300 BC) There are infinitely many prime numbers.

Proof.

Take any finite list p_1,\ldots,p_n of prime numbers Compute their product $A=p_1\times\ldots\times p_n$ Extract a prime factor q from A+1

Theorem (Euclid – *Elements*, Book IX – c. 300 BC) There are infinitely many prime numbers.

Proof.

Take any finite list p_1, \ldots, p_n of prime numbers Compute their product $A = p_1 \times \ldots \times p_n$ Extract a prime factor q from A+1 q divides A+1, therefore q does not divide A

Theorem (Euclid – *Elements*, Book IX – c. 300 BC) There are infinitely many prime numbers.

Proof.

Take any finite list p_1, \ldots, p_n of prime numbers Compute their product $A = p_1 \times \ldots \times p_n$ Extract a prime factor q from A+1 q divides A+1, therefore q does not divide A Therefore q is not in the list p_1, \ldots, p_n

Theorem (Euclid – *Elements*, Book IX – c. 300 BC) There are infinitely many prime numbers.

Proof.

Take any finite list 3,5,7 of prime numbers Compute their product $A=p_1\times\ldots\times p_n$ Extract a prime factor q from A+1q divides A+1, therefore q does not divide ATherefore q is not in the list p_1,\ldots,p_n

Theorem (Euclid – *Elements*, Book IX – c. 300 BC) There are infinitely many prime numbers.

Proof.

Take any finite list 3,5,7 of prime numbers Compute their product $A=3\times5\times7$ Extract a prime factor q from A+1q divides A+1, therefore q does not divide ATherefore q is not in the list p_1,\ldots,p_n

Theorem (Euclid – *Elements*, Book IX – c. 300 BC) There are infinitely many prime numbers.

Proof.

Take any finite list 3,5,7 of prime numbers Compute their product $A=3\times5\times7=105$ Extract a prime factor q from A+1 q divides A+1, therefore q does not divide A Therefore q is not in the list p_1,\ldots,p_n

Theorem (Euclid – *Elements*, Book IX – c. 300 BC) There are infinitely many prime numbers.

Proof.

Take any finite list 3,5,7 of prime numbers Compute their product $A=3\times5\times7=105$ Extract a prime factor q from 106q divides A+1, therefore q does not divide ATherefore q is not in the list p_1,\ldots,p_n

Theorem (Euclid – *Elements*, Book IX – c. 300 BC) There are infinitely many prime numbers.

Proof.

Take any finite list 3,5,7 of prime numbers Compute their product $A=3\times5\times7=105$ Extract a prime factor q from $106=2\times53$ q divides A+1, therefore q does not divide ATherefore q is not in the list p_1,\ldots,p_n

Theorem (Euclid – *Elements*, Book IX – c. 300 BC) There are infinitely many prime numbers.

Proof.

Take any finite list 3,5,7 of prime numbers Compute their product $A=3\times5\times7=105$ Extract a prime factor 2 from $106=2\times53$ q divides A+1, therefore q does not divide ATherefore q is not in the list p_1,\ldots,p_n

Theorem (Euclid – *Elements*, Book IX – c. 300 BC) There are infinitely many prime numbers.

Proof.

Take any finite list 3,5,7 of prime numbers Compute their product $A=3\times5\times7=105$ Extract a prime factor 2 from $106=2\times53$ 2 divides 106, therefore 2 does not divide 105 Therefore 2 is not in the list 3,5,7

Conjecture (Goldbach, 1742)

For each $n \ge 4$ even, there exist p, q primes such that n = p + q.

Conjecture (Goldbach, 1742)

For each $n \ge 4$ even, there exist p, q primes such that n = p + q.

Realizing the conjecture \leftrightarrow finding p and q for every n:

Conjecture (Goldbach, 1742)

For each $n \ge 4$ even, there exist p, q primes such that n = p + q.

Realizing the conjecture \leftrightarrow finding p and q for every n:

Conjecture (Goldbach, 1742)

For each $n \ge 4$ even, there exist p, q primes such that n = p + q.

Realizing the conjecture \leftrightarrow finding p and q for every n:

Take any even integer $n \ge 4$.

Conjecture (Goldbach, 1742)

For each $n \ge 4$ even, there exist p, q primes such that n = p + q.

Realizing the conjecture \leftrightarrow finding p and q for every n:

Take any even integer $n \ge 4$.

For all pairs of primes (p,q) do:

Conjecture (Goldbach, 1742)

For each $n \ge 4$ even, there exist p, q primes such that n = p + q.

Realizing the conjecture \leftrightarrow finding p and q for every n:

```
Take any even integer n \ge 4.
For all pairs of primes (p,q) do:
if n = p + q: return (p,q)
```

Conjecture (Goldbach, 1742)

For each $n \ge 4$ even, there exist p, q primes such that n = p + q.

Realizing the conjecture \leftrightarrow finding p and q for every n:

```
Take any even integer n \ge 4.
For all pairs of primes (p,q) do:
if n = p + q: return (p,q)
else: keep looking
```

Model of computation (programs t, u, v, ...) Realizability theory (formulas A, B, C, ...)

Model of computation (programs
$$t, u, v, ...$$
)

 $t \Vdash A$

Realizability theory $\{A; \exists t (t \Vdash A)\}$

Model of computation (programs
$$t, u, v, ...$$
)
$$t \Vdash A$$

$$t \text{ realizes } A$$
Realizability theory $\{A; \exists t \ (t \Vdash A)\}$

$$t \text{ realizes } A$$
Extension of λ -calculus + control (call-cc)
$$Extension of ZF$$

Krivine's realizability models

$$ZF_{\varepsilon} = \varepsilon \subseteq$$

$$\begin{array}{c|cccc} \mathsf{ZF}_\varepsilon & = & \varepsilon & \subseteq \\ \hline \mathsf{ZF} & \approx & \in & \subsetneq \end{array}$$

$$\begin{array}{c|ccc} \mathsf{ZF}_{\varepsilon} & = & \varepsilon & \subseteq \\ \hline \mathsf{ZF} & \approx & \in & \subsetneq \end{array}$$
$$\mathsf{ZF}_{\varepsilon} \vdash \forall a, b \ (a \in b \leftrightarrow \exists a' \approx a \ a' \varepsilon b)$$

$$\begin{array}{c|cccc} \mathsf{ZF}_{\varepsilon} & = & \varepsilon & \subseteq \\ \hline \mathsf{ZF} & \approx & \in & \subsetneq \end{array}$$

$$\mathsf{ZF}_{\varepsilon} \vdash \forall a, b \ (a \in b \leftrightarrow \exists a' \approx a \ a' \varepsilon b)$$

Proposition: ZF_{ε} is a conservative extension of ZF

$$\begin{array}{c|cccc} \mathsf{ZF}_{\varepsilon} & = & \varepsilon & \subseteq \\ \hline \mathsf{ZF} & \approx & \in & \mathbb{S} \end{array}$$

$$\mathsf{ZF}_{\varepsilon} \vdash \forall a, b \ (a \in b \leftrightarrow \exists a' \approx a \ a' \varepsilon b)$$

Proposition: ZF_{ε} is a conservative extension of ZF

Logical	$ \forall \land \lor \rightarrow \ldots $
Non-logical	∩ ∪ ↔

 $t\star\pi$

Evaluation rules:

Evaluation rules:

Evaluation rules:

Plus transitivity and reflexivity.

Pole: a set \bot of processes such that for all $q \in \bot$, for all $p \succ_K q$, $p \in \bot$.

Pole: a set \bot of processes such that for all $q \in \bot$, for all $p \succ_K q$, $p \in \bot$. Example: $\bot = \{ p; p \succ_K \lambda x. x \star \text{nil } \}$.

Pole: a set \bot of processes such that for all $q \in \bot$, for all $p \succ_K q$, $p \in \bot$. Example: $\bot = \{ p; p \succ_K \lambda x. x \star \text{nil } \}$.

Formula
$$A+\mathsf{pole}\ \bot$$

$$\mathsf{Truth}\ \mathsf{value}\ \|A\|_{\bot}\subseteq \Pi=\{\mathsf{stacks}\}$$

Pole: a set \bot of processes such that for all $q \in \bot$, for all $p \succ_K q$, $p \in \bot$. Example: $\bot = \{ p; p \succ_K \lambda x. x \star \text{nil } \}$.

Formula
$$A+\mathsf{pole}\ \bot$$

$$\mathsf{Truth}\ \mathsf{value}\ \|A\|_{\bot}\subseteq \Pi=\{\mathsf{stacks}\}$$

$$|A|_{\perp} = (||A||_{\perp})^{\perp} = \{ t; \forall \pi \in ||A||_{\perp}, t \star \pi \in \perp \}$$

All poles \longrightarrow Extensions of ZF \bot \longrightarrow Theory(\bot)

All poles
$$\longrightarrow$$
 Extensions of ZF \bot \bot Theory(\bot) = $\{A; \exists t \text{ proof-like}, t \in |A|_{\bot} \}$

All poles
$$\longrightarrow$$
 Extensions of ZF \bot \bot \longleftarrow Theory(\bot) $=$ $\{A; \exists t \text{ proof-like}, t \in |A|_{\bot}\}$

Proof-like term: a term in which no stack constant (k_{π}) appears.

All poles
$$\longrightarrow$$
 Extensions of ZF \bot \bot Theory(\bot) = $\{A; \exists t \text{ proof-like}, t \in |A|_{\bot} \}$

Proof-like term: a term in which no stack constant (k_{π}) appears.

Adequacy: if $A \vdash_{\mathsf{classical}} B$ and A is realized, then B is realized.

Realizability	forcing

Realizability	forcing
$\Lambda,\Pi,\Lambda\star\Pi$	Р

Realizability	forcing
$\Lambda,\Pi,\Lambda\star\Pi$	Р
>	≤

Realizability	forcing
$\Lambda,\Pi,\Lambda\star\Pi$	Р
>	<u>≤</u>
$tu,t\bullet\pi,t\star\pi$	$t \wedge u, t \wedge \pi$

Realizability	forcing
$\Lambda,\Pi,\Lambda\star\Pi$	Р
>	≤
$tu,t\bullet\pi,t\star\pi$	$t \wedge u, t \wedge \pi$
$t\star\pi\in oldsymbol{\perp}$	$t\perp\pi$

Realizability	forcing
$\Lambda,\Pi,\Lambda\star\Pi$	Р
>	≤
$tu,t\bullet\pi,t\star\pi$	$t \wedge u, t \wedge \pi$
$t\star\pi\in\bot\!\!\!\!\bot$	$t\perp\pi$
proof-like	1

Realizability	forcing
$\Lambda,\Pi,\Lambda\star\Pi$	Р
>	≤
$tu,t\bullet\pi,t\star\pi$	$t \wedge u, t \wedge \pi$
$t\star\pi\in oldsymbol{\perp}$	$t\perp\pi$
proof-like	1
realizes	forces

First-order formula $A \longrightarrow \text{Formula } (\Im 2 \models A)$ of the on Boolean Algebras $\xrightarrow{translation}$ realizability language

First-order formula
$$A \longrightarrow \text{Formula } (\Im 2 \models A)$$
 of the on Boolean Algebras $\xrightarrow{translation}$ realizability language

$$\forall x \ \forall y \ \forall z x \land (y \land z) = (x \land y) \land z$$

The operation \land is associative

First-order formula
$$A \longrightarrow \text{Formula } (\Im 2 \models A)$$
 of the on Boolean Algebras $\xrightarrow{translation}$ realizability language

The operation ∧ on 32 is associative

First-order formula
$$A \longrightarrow \text{Formula } (\Im 2 \models A)$$
 of the on Boolean Algebras $\xrightarrow{translation}$ realizability language

$$\exists 2 \models \forall x \forall y \forall z \\
 x \land (y \land z) = (x \land y) \land z$$

The operation ∧ on 32 is associative

$$\forall x \ (x = 0) \lor (x = 1)$$
 There are only two elements

First-order formula
$$A \longrightarrow \text{Formula } (\Im 2 \models A)$$
 of the on Boolean Algebras $\xrightarrow{translation}$ realizability language

$$\exists 2 \models \forall x \forall y \forall z \\
x \land (y \land z) = (x \land y) \land z$$

The operation ∧ on 32 is associative

$$\exists 2 \models \forall x \ (x=0) \lor (x=1)$$

I2 only has two elements

First-order formula
$$A \longrightarrow \text{Formula } (\Im 2 \models A)$$
 of the on Boolean Algebras $\xrightarrow{translation}$ realizability language

$$| \mathbb{J}2 \models A \rightarrow B |_{\perp} = | (\mathbb{J}2 \models A) \rightarrow (\mathbb{J}2 \models B) |_{\perp}$$

First-order formula
$$A$$
 on Boolean Algebras $translation$ Formula ($\Im 2 \models A$) of the realizability language

$$| \mathbb{J}2 \models A \rightarrow B |_{\perp} = |(\mathbb{J}2 \models A) \rightarrow (\mathbb{J}2 \models B)|_{\perp}$$

$$| \mathbb{J}2 \models \forall x \ A(x) |_{\perp} = | \mathbb{J}2 \models A(0) |_{\perp} \cap | \mathbb{J}2 \models A(1) |_{\perp}$$

$$32 \models (0 = 0) \lor (0 = 1)$$

$$32 \models (1 = 0) \lor (1 = 1)$$

 $\Im 2 \models (0 = 0) \lor (0 = 1)$

$$J2 \models (1 = 0) \lor (1 = 1)$$

Realized by λx . λy . x

$$\Im 2 \models \forall x \ (x=0) \lor (x=1)$$

$$32 \models (0 = 0) \lor (0 = 1)$$

Realized by λx . λy . x

Realized by λx . λy . y

$$32 \models (1 = 0) \lor (1 = 1)$$

$$32 \models (0 = 0) \lor (0 = 1)$$

Realized by λx . λy . x

$$J2 \models (1 = 0) \lor (1 = 1)$$

Realized by λx . λy . y

$$\Im 2 \models \forall x \ (x=0) \lor (x=1)$$

Not always realized (depends on \perp)

► Realizability structures & multi-evaluation relations,

- ► Realizability structures & multi-evaluation relations,
- ▶ 32 can be elementarily equivalent to any Boolean algebra,

- ► Realizability structures & multi-evaluation relations,
- ▶ 12 can be elementarily equivalent to any Boolean algebra,
- ▶ The problem of relative definability can be studied and solved with 12 in some models of computation,

- ► Realizability structures & multi-evaluation relations,
- ▶ 12 can be elementarily equivalent to any Boolean algebra,
- ▶ The problem of relative definability can be studied and solved with 12 in some models of computation,
- ▶ For every λ , $DC_{\widehat{\lambda}}$ can be realized,

- ► Realizability structures & multi-evaluation relations,
- ▶ 12 can be elementarily equivalent to any Boolean algebra,
- ▶ The problem of relative definability can be studied and solved with 12 in some models of computation,
- ▶ For every λ , $DC_{\hat{\lambda}}$ can be realized,
- With Laura Fontanella: " $\hat{\lambda}$ is a cardinal" can be realized.

Multiple poles: realizability structures

Limitation of single-pole models: lack of modularity

► If ⊥ grows:

Limitation of single-pole models: lack of modularity

▶ If \perp grows: $-\|a \notin b\|_{\perp}$ unchanged

Limitation of single-pole models: lack of modularity

► If \perp grows: $- ||a \notin b||_{\perp}$ unchanged $- |a \notin b|_{\perp}$ grows

Limitation of single-pole models: lack of modularity

```
► If \perp grows: - ||a \not\in b||_{\perp} unchanged - |a \not\in b|_{\perp} grows - ||a \in b||_{\perp} grows
```

Limitation of single-pole models: lack of modularity

```
▶ If \perp grows: - ||a \not\in b||_{\perp} unchanged - |a \not\in b|_{\perp} grows - ||a \varepsilon b||_{\perp} grows - |a \varepsilon b|_{\perp} ???
```

Limitation of single-pole models: lack of modularity

```
► If \perp grows: - ||a \notin b||_{\perp} unchanged - |a \notin b|_{\perp} grows - ||a \in b||_{\perp} grows - ||a \in b||_{\perp} ???
```

▶ How to combine two poles \bot ₁ and \bot ₂?

All sets of poles \longrightarrow Extensions of ZF (realizability structures) $\mathcal{S} \longmapsto \mathsf{Theory}(\mathcal{S})$

All sets of poles
$$\longrightarrow$$
 Extensions of ZF (realizability structures)
$$\mathcal{S} \longmapsto \qquad \qquad \text{Theory}(\mathcal{S}) = \left\{ \begin{array}{c} A; \; \exists t \; \text{proof-like}, \\ t \Vdash_{\mathcal{S}} A \end{array} \right\}$$

All sets of poles
$$\longrightarrow$$
 Extensions of ZF (realizability structures)
$$\mathcal{S} \longmapsto \qquad \qquad \text{Theory}(\mathcal{S}) = \\ \left\{ \begin{array}{c} A; \; \exists t \; \text{proof-like}, \\ \forall \bot \in \mathcal{S}, \; t \in |A|_\bot \end{array} \right\}$$

All sets of poles
$$\longrightarrow$$
 Extensions of ZF (realizability structures)
$$\mathcal{S} \longmapsto \qquad \qquad \text{Theory}(\mathcal{S}) = \\ \left\{ \begin{array}{c} A; \; \exists t \; \text{proof-like}, \\ \forall \bot \in \mathcal{S}, \; t \in |A|_\bot \end{array} \right\}$$

If $S_1 \subseteq S_2$, then Theory $(S_1) \supseteq \text{Theory}(S_2)$.

All sets of poles
$$\longrightarrow$$
 Extensions of ZF (realizability structures)
$$\mathcal{S} \longmapsto \qquad \qquad \text{Theory}(\mathcal{S}) = \\ \left\{ \begin{array}{c} A; \; \exists t \; \text{proof-like}, \\ \forall \bot \in \mathcal{S}, \; t \in |A|_\bot \end{array} \right\}$$

If
$$S_1 \subseteq S_2$$
, then Theory $(S_1) \supseteq \text{Theory}(S_2)$.

Combining S_1 and S_2 : $S_1 \cap S_2$.

$$p \succ_{\mathcal{S}} q \text{ iff } \forall \bot \in \mathcal{S}, q \in \bot \Rightarrow p \in \bot$$

$$p \succ_{\mathcal{S}} q \text{ iff } \forall \bot \in \mathcal{S}, q \in \bot \Rightarrow p \in \bot$$
$$p \succ_{\mathcal{K}} q \Rightarrow p \succ_{\mathcal{S}} q$$

$$p \succ_{\mathcal{S}} q \text{ iff } \forall \bot \in \mathcal{S}, q \in \bot \Rightarrow p \in \bot$$

$$\begin{aligned} p \succ_{\mathcal{K}} q \Rightarrow p \succ_{\mathcal{S}} q \\ \succ_{\mathcal{S}} \text{reflexive and transitive} \end{aligned}$$

$$p \succ_{\mathcal{S}} q \ \textit{iff} \ \forall \bot\!\!\!\bot \in \mathcal{S}, q \in \bot\!\!\!\bot \Rightarrow p \in \bot\!\!\!\bot$$

$$\begin{aligned} p \succ_{\mathcal{K}} q \Rightarrow p \succ_{\mathcal{S}} q \\ \succ_{\mathcal{S}} \text{reflexive and transitive} \end{aligned}$$

 ${\mathcal S}$ not uniquely determined by $\succ_{\mathcal S}$

$$P \succ_{\mathcal{S}} Q \text{ iff } \forall \bot \in \mathcal{S}, Q \subseteq \bot \Rightarrow P \cap \bot \neq \emptyset$$

$$P \succ_{\mathcal{S}} Q \text{ iff } \forall \bot \in \mathcal{S}, Q \subseteq \bot \Rightarrow P \cap \bot \neq \emptyset$$

 ${\mathcal S}$ is uniquely determined by $\succ_{{\mathcal S}}$

Let ${\mathcal S}$ be a realizability structure:

Let $\mathcal S$ be a realizability structure:

▶ For all p, q such that $p \succ_K q$, $\{p\} \succ_{\mathcal{S}} \{q\}$,

Let S be a realizability structure:

- ▶ For all p, q such that $p \succ_K q$, $\{p\} \succ_{\mathcal{S}} \{q\}$,
- ▶ For all p, $\{p\} \succ_{\mathcal{S}} \{p\}$,

(identity)

Let S be a realizability structure:

- ▶ For all p, q such that $p \succ_K q$, $\{p\} \succ_S \{q\}$,
- ► For all p, $\{p\} \succ_{\mathcal{S}} \{p\}$, (identity)
- ▶ For all P, Q, P', Q', for all r, (cut) if $P \succ_{\mathcal{S}} Q \cup \{r\}$ and $P' \cup \{r\} \succ_{\mathcal{S}} Q'$, then $P \cup P' \succ_{\mathcal{S}} Q \cup Q'$,

Let S be a realizability structure:

- ▶ For all p, q such that $p \succ_K q$, $\{p\} \succ_{\mathcal{S}} \{q\}$,
- ► For all p, $\{p\} \succ_{\mathcal{S}} \{p\}$, (identity)
- ▶ For all P, Q, P', Q', for all r, (cut) if $P \succ_{\mathcal{S}} Q \cup \{r\}$ and $P' \cup \{r\} \succ_{\mathcal{S}} Q'$, then $P \cup P' \succ_{\mathcal{S}} Q \cup Q'$,
- ► For all P, Q, P', Q' such that $P \succ_{\mathcal{S}} Q$, (weakening) if $P \subseteq P'$ and $Q \subseteq Q'$, then $P' \succ_{\mathcal{S}} Q'$.

A *multi-evaluation relation* is a binary relation \succ between sets of processes such that:

- ▶ For all p, q such that $p \succ_K q$, $\{p\} \succ \{q\}$,
- ► For all p, $\{p\} \succ \{p\}$, (identity)
- ▶ For all P, Q, P', Q', for all r, (cut) if $P \succ Q \cup \{r\}$ and $P' \cup \{r\} \succ Q'$, then $P \cup P' \succ Q \cup Q'$,
- For all P, Q, P', Q' such that $P \succ Q$, (weakening) if $P \subseteq P'$ and $Q \subseteq Q'$, then $P' \succ Q'$.

A *multi-evaluation relation* is a binary relation \succ between sets of processes such that:

- ▶ For all p, q such that $p \succ_K q$, $\{p\} \succ \{q\}$,
- ► For all p, $\{p\} \succ \{p\}$, (identity)
- ▶ For all P, Q, P', Q', for all r, (cut) if $P \succ Q \cup \{r\}$ and $P' \cup \{r\} \succ Q'$, then $P \cup P' \succ Q \cup Q'$,
- For all P, Q, P', Q' such that $P \succ Q$, (weakening) if $P \subseteq P'$ and $Q \subseteq Q'$, then $P' \succ Q'$.

$$\succ$$
 $\longrightarrow \mathcal{S}_{\succ} = \left\{ \bot; \begin{array}{c} \forall P, Q \text{ s.t. } P \succ Q, \\ Q \subseteq \bot \Rightarrow P \cap \bot \neq \emptyset \end{array} \right\}$

Taming 12 (somewhat)

Adding instructions

```
Infinitely many  \begin{cases} &\text{- unrestricted instructions} \\ &\text{- restricted instructions} \end{cases} \text{ with no rules in } \succ_{\mathcal{K}}.
```

Adding instructions

```
Infinitely many  \begin{cases} & \text{- unrestricted instructions} \\ & \text{- restricted instructions} \end{cases} \text{ with no rules in } \succ_{\mathcal{K}}.
```

Proof-like term: a term in which no stack constant (k_{π}) or restricted instruction appears.

Realizing " $\ 2$ has fewer than 2^n elements"

Theory(S)
$$\vdash \left(\exists 2 \models \forall x_1 \ldots \forall x_{2^n} \bigvee_{i \neq j} (x_i = x_j) \right) iff$$

Realizing "J2 has fewer than 2" elements"

Theory(
$$\mathcal{S}$$
) \vdash (\gimel 2 \models Fewer_{2 n}) *iff*

Realizing " $\ 2$ has fewer than 2^n elements"

Realizing "12 has fewer than 2" elements"

Let φ be any unrestricted instruction.

Let φ be any unrestricted instruction.

$$\text{Let } \mathcal{S}_{<2^n} = \left\{ \begin{array}{c} \text{for all } u_1, \dots, u_n, \pi, \\ \mathbbmspace{1mu}; \text{ if all but one of the } u_i \star \pi \text{ are in } \mathbbmspace{1mu}, \\ \text{then } \varphi \star u_1 \bullet \dots \bullet u_n \bullet \pi \text{ is in } \mathbbmspace{1mu}. \end{array} \right\}.$$

Let φ be any unrestricted instruction.

Let $\mathcal{S}_{<2^n}$ be the largest structure such that for all u_1,\ldots,u_n,π ,

Let φ be any unrestricted instruction.

Let $\mathcal{S}_{<2^n}$ be the largest structure such that for all u_1,\ldots,u_n,π ,

Theory(
$$\mathcal{S}_{\leq 2^n}$$
) \vdash ($\Im 2 \models \mathsf{Fewer}_{2^n}$).

Realizing "12 has at least 2" elements"

Let ξ be any unrestricted instruction other than φ .

Realizing "J2 has at least 2" elements"

Let ξ be any unrestricted instruction other than φ . Let c_{\top} and c_{\perp} be two restricted instructions.

Realizing "J2 has at least 2" elements"

Let ξ be any unrestricted instruction other than φ . Let c_{\top} and c_{\bot} be two restricted instructions.

Let
$$\mathcal{S}_{\top \perp} = \{ \perp \!\!\! \perp; \text{ for all } \pi, c_{\perp} \star \pi \in \perp \!\!\! \perp \}.$$

Realizing "J2 has at least 2" elements"

Let ξ be any unrestricted instruction other than φ . Let c_{\top} and c_{\bot} be two restricted instructions.

Let
$$S_{\top \perp} = \{ \perp : \text{ for all } \pi, c_{\perp} \star \pi \in \perp \}$$
.

$$\text{Let } \mathcal{S}_{\geq 2^n} = \mathcal{S}_{\top \perp} \cap \left\{ \begin{array}{l} \text{for all } u, \pi, \\ \text{if } u \star c_{\top} \bullet c_{\perp} \bullet \ldots \bullet c_{\perp} \star \pi \in \bot \\ \text{and } u \star c_{\perp} \bullet c_{\top} \bullet \ldots \bullet c_{\perp} \star \pi \in \bot \\ \end{array} \right\}.$$

$$\text{and } u \star c_{\perp} \bullet c_{\perp} \bullet \ldots \bullet c_{\top} \star \pi \in \bot \\ \text{then } \xi \star u \bullet \pi \in \bot$$

Realizing "12 has at least 2" elements"

Let ξ be any unrestricted instruction other than φ . Let c_{\top} and c_{\bot} be two restricted instructions.

Let $\mathcal{S}_{\geq 2^n}$ be the largest structure such that for all u,π :

Realizing "12 has at least 2" elements"

Let ξ be any unrestricted instruction other than φ . Let c_{\top} and c_{\bot} be two restricted instructions.

Let $\mathcal{S}_{\geq 2^n}$ be the largest structure such that for all u,π :

$$\left\{ c_{\perp} \star \pi \right\} \succ_{\mathcal{S}_{\geq 2^{n}}} \left\{ \right\},$$

$$\left\{ \xi \star u \cdot \pi \right\} \succ_{\mathcal{S}_{\geq 2^{n}}} \left\{ \begin{array}{l} u \star c_{\top} \cdot c_{\perp} \cdot \dots \cdot c_{\perp} \star \pi, \\ u \star c_{\perp} \cdot c_{\top} \cdot \dots \cdot c_{\perp} \star \pi, \\ & \ddots & \\ u \star c_{\perp} \cdot c_{\perp} \cdot \dots \cdot c_{\top} \star \pi \end{array} \right\}.$$

Realizing " \mathbb{I} 2 has at least 2^n elements"

Let ξ be any unrestricted instruction other than φ . Let c_{\top} and c_{\bot} be two restricted instructions.

Let $\mathcal{S}_{\geq 2^n}$ be the largest structure such that for all u,π :

$$\left\{ c_{\perp} \star \pi \right\} \succ_{\mathcal{S}_{\geq 2^{n}}} \left\{ \right\},$$

$$\left\{ \xi \star u \cdot \pi \right\} \succ_{\mathcal{S}_{\geq 2^{n}}} \left\{ \begin{array}{l} u \star c_{\top} \cdot c_{\perp} \cdot \dots \cdot c_{\perp} \star \pi, \\ u \star c_{\perp} \cdot c_{\top} \cdot \dots \cdot c_{\perp} \star \pi, \\ & \ddots \\ u \star c_{\perp} \cdot c_{\perp} \cdot \dots \cdot c_{\top} \star \pi \end{array} \right\}.$$

Proposition

Theory
$$(S_{\geq 2^n}) \vdash (\gimel 2 \models \mathsf{Fewer}_{2^n} \to \bot).$$

Realizing " $\ ^{1}$ 2 has exactly 2^{n} elements"

Let
$$\mathcal{S}_{=2^n} = \mathcal{S}_{<2^{n+1}} \cap \mathcal{S}_{\geq 2^n}$$
.

Realizing " $\ ^{1}$ 2 has exactly 2^{n} elements"

Let
$$\mathcal{S}_{=2^n} = \mathcal{S}_{<2^{n+1}} \cap \mathcal{S}_{\geq 2^n}$$
.

Proposition

Theory($S_{=2^n}$) \vdash (\mathfrak{I} 2 \models Fewer_{2ⁿ+1} $\land \neg$ Fewer_{2ⁿ}).

Realizing " $\ ^{1}$ 2 has exactly 2^{n} elements"

Let
$$\mathcal{S}_{=2^n} = \mathcal{S}_{<2^{n+1}} \cap \mathcal{S}_{>2^n}$$
.

Proposition

Theory(
$$\mathcal{S}_{=2^n}$$
) \vdash ($\Im 2 \models \mathsf{Fewer}_{2^n+1} \land \neg \mathsf{Fewer}_{2^n}$).

Proposition

Theory($S_{=2^n}$) $\not\vdash \bot$.

Realizing any consistent Boolean formula

Theorem

Let A be a Boolean formula. There exists a realizability structure $\mathcal S$ such that Theory($\mathcal S$) $\vdash \exists 2 \models A$ and Theory($\mathcal S$) $\not\vdash \bot$ iff A is satisfiable in Boolean algebras with at least two elements.

Realizing any consistent Boolean formula

Theorem

Let A be a Boolean formula. There exists a realizability structure $\mathcal S$ such that Theory($\mathcal S$) $\vdash \exists 2 \models A$ and Theory($\mathcal S$) $\not\vdash \bot$ iff A is satisfiable in Boolean algebras with at least two elements.

Corollary

Let $\mathbb B$ be a Boolean algebra. There exists a realizability structure $\mathcal S$ such that Theory($\mathcal S$) \vdash " $\gimel 2$ is elementarily equivalent to $\mathbb B$ " and Theory($\mathcal S$) $\not\vdash \bot$.

Generalized dependent choices (restricted Zorn's lemma)

A well-ordering instruction

Let < be a well-ordering on terms,

A well-ordering instruction

Let < be a well-ordering on terms, Let χ be any non-restricted instruction.

A well-ordering instruction

Let < be a well-ordering on terms, Let χ be any non-restricted instruction.

Let \mathcal{S} be the largest structure such that for all a,b,t,u,v,π :

$$\begin{cases} \{\chi \star a \cdot b \cdot t \cdot u \cdot v \cdot \pi\} \succ_{\mathcal{S}} \begin{cases} \{t \star \pi\} & \text{if } a < b \\ \{u \star \pi\} & \text{if } a = b \\ \{v \star \pi\} & \text{if } a > b \end{cases} .$$

Proposition

 $\begin{tabular}{ll} Theory(\mathcal{S}) \vdash & \text{``Every family of non-empty sets has a (possibly non } \\ \approx & \text{-compatible) choice function''}. \\ \end{tabular}$

Proposition

Theory(\mathcal{S}) \vdash "Every family of non-empty sets has a (possibly non \approx -compatible) choice function".

 $a \mapsto \operatorname{choice}(a) \varepsilon a$

Proposition

$$egin{array}{cccc} a & \longmapsto & \operatorname{choice}(a) \ arepsilon & a \ & & & & & & & & \\ b & \longmapsto & & \operatorname{choice}(b) \ arepsilon & b \end{array}$$

Proposition

Proposition

Proposition

Proposition

The generic ordinal $\widehat{\lambda}$

Let λ be the cardinal of Λ

The generic ordinal $\widehat{\lambda}$

Let λ be the cardinal of Λ Let $(\tau_{\alpha})_{\alpha<\lambda}$ be a list of terms s.t. $\beta<\alpha\Rightarrow\tau_{\beta}<\tau_{\alpha}$

The generic ordinal $\widehat{\lambda}$

Let λ be the cardinal of Λ Let $(\tau_{\alpha})_{\alpha < \lambda}$ be a list of terms s.t. $\beta < \alpha \Rightarrow \tau_{\beta} < \tau_{\alpha}$

$$\text{For all } \alpha \leq \lambda \text{, let } \widehat{\alpha} = \left\{ \ \left(\widehat{\beta}, \tau_{\beta} \bullet \pi \right); \ \beta < \alpha, \pi \text{ stack } \right\}.$$

Realizers of
$$\widehat{\beta} \in \widehat{\alpha}$$
: $\sim \left\{ \begin{array}{ll} \tau_{\beta} & \text{if } \beta < \alpha \\ \text{none} & \text{if } \beta \geq \alpha \end{array} \right.$

Proposition

 $\mathsf{Theory}(\mathcal{S}) \vdash \forall \alpha \varepsilon \widehat{\lambda} \ \forall \beta \varepsilon \widehat{\lambda} \ (\alpha \varepsilon \beta \vee \alpha = \beta \vee \beta \varepsilon \alpha).$

Proposition

 $\mathsf{Theory}(\mathcal{S}) \vdash \forall \alpha \varepsilon \widehat{\lambda} \ \forall \beta \varepsilon \widehat{\lambda} \ (\alpha \varepsilon \beta \vee \alpha = \beta \vee \beta \varepsilon \alpha).$

Corollary

Theory(S) $\vdash \forall \alpha \varepsilon \widehat{\lambda} \ \forall \beta \varepsilon \widehat{\lambda} \ (\alpha \neq \beta \to \alpha \varepsilon \beta \lor \beta \varepsilon \alpha).$

Proposition

Theory(S) $\vdash \forall \alpha \varepsilon \hat{\lambda} \ \forall \beta \varepsilon \hat{\lambda} \ (\alpha \varepsilon \beta \lor \alpha = \beta \lor \beta \varepsilon \alpha).$

Corollary

Theory(S) $\vdash \forall \alpha \varepsilon \widehat{\lambda} \ \forall \beta \varepsilon \widehat{\lambda} \ (\alpha \neq \beta \to \alpha \in \beta \lor \beta \in \alpha).$

Proposition

 $\mathsf{Theory}(\mathcal{S}) \vdash \forall \alpha \varepsilon \widehat{\lambda} \ \forall \beta \varepsilon \widehat{\lambda} \ (\alpha \varepsilon \beta \vee \alpha = \beta \vee \beta \varepsilon \alpha).$

Corollary

Theory(\mathcal{S}) $\vdash \forall \alpha \varepsilon \widehat{\lambda} \ \forall \beta \varepsilon \widehat{\lambda} \ (\alpha \neq \beta \to \alpha \not\approx \beta).$

Proposition

 $\mathsf{Theory}(\mathcal{S}) \vdash \forall \alpha \varepsilon \widehat{\lambda} \ \forall \beta \varepsilon \widehat{\lambda} \ (\alpha \varepsilon \beta \vee \alpha = \beta \vee \beta \varepsilon \alpha).$

Corollary

Theory(\mathcal{S}) $\vdash \forall \alpha \varepsilon \widehat{\lambda} \ \forall \beta \varepsilon \widehat{\lambda} \ (\alpha \approx \beta \to \alpha = \beta).$

Proposition

Theory(S) $\vdash \forall \alpha \varepsilon \widehat{\lambda} \ \forall \beta \varepsilon \widehat{\lambda} \ (\alpha \varepsilon \beta \lor \alpha = \beta \lor \beta \varepsilon \alpha).$

Corollary

Theory(S) $\vdash \forall \alpha \varepsilon \widehat{\lambda} \ \forall \beta \varepsilon \widehat{\lambda} \ (\alpha \approx \beta \to \alpha = \beta)$.

Theorem

Theory(S) \vdash "Every $\widehat{\lambda}$ -indexed family of non-empty sets has a \approx -compatible choice function".

Proposition

Theory(S)
$$\vdash \forall \alpha \varepsilon \hat{\lambda} \ \forall \beta \varepsilon \hat{\lambda} \ (\alpha \varepsilon \beta \lor \alpha = \beta \lor \beta \varepsilon \alpha).$$

Corollary

Theory(S)
$$\vdash \forall \alpha \varepsilon \hat{\lambda} \ \forall \beta \varepsilon \hat{\lambda} \ (\alpha \approx \beta \to \alpha = \beta)$$
.

Theorem

Theory $(S) \vdash AC_{\widehat{\lambda}}$.

Proposition

Theory(\mathcal{S}) $\vdash \forall \alpha \varepsilon \widehat{\lambda} \ \forall \beta \varepsilon \widehat{\lambda} \ (\alpha \varepsilon \beta \lor \alpha = \beta \lor \beta \varepsilon \alpha).$

Corollary

Theory(S) $\vdash \forall \alpha \varepsilon \hat{\lambda} \ \forall \beta \varepsilon \hat{\lambda} \ (\alpha \approx \beta \to \alpha = \beta)$.

Theorem

Theory(\mathcal{S}) \vdash DC $_{\widehat{\lambda}}$ (dependent choice sequences up to length $\widehat{\lambda}$.)

Thank you!