

Introduction to Computer Science and Programming

Lecture 13

Sebastian Wandelt

Beihang University

Outline

- Recap
- Some "leftovers"
- Hardness of Problems
- Summary

Some leftovers

Heaps and Heapsort

Heaps and Heapsort

- Combines the better attributes of merge sort and insertion sort.
 - What could that be?

Heaps and Heapsort

- Combines the better attributes of merge sort and insertion sort.
 - Like merge sort, but unlike insertion sort
 - Running time is O(n log n).
 - Like insertion sort, but unlike merge sort:
 - Sorts in place.
- Makes use of a data structure (=heap) to manage information during the execution of an algorithm.
- The heap has many other applications beside sorting

Heap

- A heap is a binary tree with a special property
- That sounds similar to …?
 - Which other special tree-property do you remember from previous lectures?

Heap

- A heap is a binary tree with a special property
- That sounds similar to ...?
 - Which other special tree-property do you remember from previous lectures?
 - Binary search tree:
 - For each node:
 - » Left descendants smaller than node
 - » Right descendants larger than node
 - Balanced tree
 - For each node:
 - » Number of left children is equal to number of right children +-1

Heap Property (Max vs. Min)

- Max-Heap
 - For every node excluding the root, value is at most that of its parent
 - Largest element is stored at the root.

 In any subtree, no values are larger than the value stored at subtree root.

- Min-Heap
 - Inverse ...

Max heap: Example

 For every node excluding the root, value is at most that of its parent:

Max heap: Another Example?

 For every node excluding the root, value is at most that of its parent:

Max heap: Another Example?

 For every node excluding the root, value is at most that of its parent:

- Use max-heaps for sorting
- Create a max-heap for the input list
- Sorting algorithm (executed until the heap is empty):
 - We can always find the maximum element in a heap easily
 - After extracting the maximum, we need to do some kind of "repair" to our tree

Can we still avoid dealing with trees?

Data Structure Binary Heap

- List/Array viewed as a nearly complete binary tree.
 - Physically linear array.
 - Logically binary tree, filled on all levels (except lowest.)
- Map from array elements to tree nodes and vice versa
 - Root A[0]
 - Left[i] A[2i+1]
 - Right[i] A[2i+2]
 - Parent[i] A[$\lfloor i$ /2 \rfloor]
- length[A] number of elements in array A.
- heap-size[A] number of elements in heap stored in A.
 - heap-size[A] ≤ length[A]

Heaps – Example

Max-heap as an array.

What is the corresponding max-heap tree?

Heaps – Example

Max-heap as an array.

Again, how exactly can we use max-heaps for sorting?

- Use max-heaps for sorting.
- The array representation of max-heap is not sorted!
- Steps in sorting
 - Convert the given array of size n to a max-heap (BuildMaxHeap)
 - 2. Swap the first and last elements of the array.
 - Now, the largest element is in the last position where it belongs.
 - That leaves n − 1 elements to be placed in their appropriate locations.
 - However, the array of first n-1 elements is no longer a max-heap.
 - Float the element at the root down one of its subtrees so that the array remains a max-heap
 - Repeat step 2 until the array is sorted.

- Please try this on the following example:
 - -[2,6,3,5,4,7,1]

 Both data structures are dynamic collections, in which the order of element removal is prespecified

- Both data structures are dynamic collections, in which the order of element removal is prespecified
- Motivation:

- Both data structures are dynamic collections, in which the order of element removal is prespecified
- Motivation:

 Both data structures are dynamic collections, in which the order of element removal is prespecified

Two operations on queues:

- enqueue(x) ... add an element x to the end of the collection
- x=dequeue() ... retrieve and remove the oldest element
- FIFO (First In First Out)
- Two operations on stacks:
 - push(x) ... add an element x to the top of the collection
 - x=pop() ... retrieve and remove the most recently added element
 - LIFO (Last In First Out)

- Both data structures are dynamic collections, in which the order of element removal is prespecified
- Two operations on queues:
 - enqueue(x) ... add an element x to the end of the collection
 - x=dequeue() ... retrieve and remove the oldest element
 - FIFO (First In First Out)
- Two operations on stacks:
 - push(x) ... add an element x to the top of the collection
 - x=pop() ... retrieve and remove the most recently added element
 - LIFO (Last In First Out)

- Both data structures are dynamic collections, in which the order of element removal is prespecified
- Motivation:

- Both data structures are dynamic collections, in which the order of element removal is prespecified
- Motivation:

Queue (FIFO)

- Priority management
- Many real-world examples
 - Transportation, Administration, ...

Stack (LIFO)

- Real-world example are harder to find than for Queues
 - Yet, our brain/memory somehow is a vague stack.
- Stacks are mainly used in algorithms!

- Both can be implemented by using lists easily
 - How?

Hardness of Problems

Subset-sum problem

- Given a set of integers, does any non-empty subset of them add up to a given number k?
- How would Python code for that function look like?

3-partition problem

- Given a list of integers, can S be partitioned into triples, such that the sum of each triple is equal?
- [20, 23, 25, 45, 27, 40] can be partitioned into the two triples:
 - [20, 25, 45] ...sum=90
 - [23, 27, 40] ...sum=90

How would Python code for that function look like?

3-partition problem: Solution

Try at home ☺

Complexity classes

Function	Common Name
N!	factorial
2 ^N	Exponential
N ^d , d > 3	Polynomial
N^3	Cubic
N^2	Quadratic
$N\sqrt{N}$	N Square root N
N log N	N log N
N	Linear
\sqrt{N}	Square root of n
log N	Logarithmic
1	Constant

Complexity classes

Function	Common Name
N!	factorial
2 ^N	Exponential
N ^d , d > 3	Polynomial
N^3	Cubic
N^2	Quadratic
$N\sqrt{N}$	N Square root N
N log N	N log N
N	Linear
\sqrt{N}	Square root of n
log N	Logarithmic
1	Constant

Complexity classes

Most naïve Sort Naïve Subsetsum

Function	Common Name
N!	factorial
2 ^N	Exponential
N ^d , d > 3	Polynomial

Bubble Sort

Merge Sort

Naïve search in List

Balanced BST search Array index lookup

	lastorial
2 ^N	Exponential
N^d , $d > 3$	Polynomial
N^3	Cubic
N^2	Quadratic
$N\sqrt{N}$	N Square root N
N log N	N log N
N	Linear
\sqrt{N}	Square root of n
log N	Logarithmic
1	Constant

Complexity classes

Which complexity class is acceptable?

Function	Common Name
N!	factorial
2 ^N	Exponential
N ^d , d > 3	Polynomial
N ³	Cubic
N^2	Quadratic
$N\sqrt{N}$	N Square root N
N log N	N log N
N	Linear
\sqrt{N}	Square root of n
log N	Logarithmic
1	Constant

Complexity classes – Run times

Assume N = 100,000 and processor speed is 1*10**9 operations per second

Which complexity class is acceptable?

Depends on problem and input size!

Function	Running Time
2 ^N	3.2 x 10 ^{30,086} years
N^4	3171 years
N^3	11.6 days
N^2	10 seconds
$N\sqrt{N}$	0.032 seconds
N log N	0.0017 seconds
N	0.0001 seconds
\sqrt{N}	3.2 x 10 ⁻⁷ seconds
log N	1.2 x 10 ⁻⁸ seconds

What else?

Please note ...

- The next few slides are just a very rough overview
- Not part of the exam anymore

Please note ...

- The next few slides are just a very rough overview
- Not part of the exam anymore

Complexity Theory

- NL=Non-Deterministic Linear
- P=Polynomial
- NP= Non-Deterministic Polynomial
- EXPTIME=Exponential Time

- Computers are by design deterministic
- One function can be executed at a time!
 - Any objection?

- Computers are by design deterministic
- One function can be executed at a time!
 - How about multiple processors?
 - How about multi-core machines?

- Computers are by design deterministic
- One function can be executed at a time!
 - How about multiple processors?
 - How about multi-core machines?
 - The speed—up obtained by parallelizing with multiple cores/processors is constant (with large input n)!
 - It does not change the complexity class at all!

- Computers are by design deterministic
- One function can be executed at a time!
 - How about multiple processors?
 - How about multi-core machines?
 - The speed—up obtained by parallelizing with multiple cores/processors is constant (with large input n)!
 - It does not change the complexity class at all!
- Suppose there exists a machine that can execute ANY number of functions in parallel
 - Assume that a single function call takes polynomial (P) time
 - Overall running time?

- Computers are by design deterministic
- One function can be executed at a time!
 - How about multiple processors?
 - How about multi-core machines?
 - The speed—up obtained by parallelizing with multiple cores/processors is constant (with large input n)!
 - It does not change the complexity class at all!
- Suppose there exists a machine that can execute ANY number of functions in parallel
 - Assume that a single function call takes polynomial (P) time
 - Overall running time?
 - Still polynomial time!

- Computers are by design deterministic
- One function can be executed at a time!
 - How about multiple processors?
 - How about multi-core machines?
 - The speed—up obtained by parallelizing with multiple cores/processors is constant (with large input n)!
 - It does not change the complexity class!
- Suppose there exists a machine that can execute ANY number of functions in parallel
 - Assume that a single function call takes polynomial (P) time
 - Overall running time?
 - Still polynomial time!

This is basically kind of Quantum Computing!

What is a problem in NP?

- A problem that can be solved by such a non-deterministic machine in polynomial time
- Examples:
 - Many, many, many ...

Major property of NP problems

- It is easy (=P time) to verify whether an assignment is a solution
- It is <u>significantly</u> harder to **find** the solution

NP-hard problem: Example

- Boolean formulae, consisting of:
 - Variables
 - Negation
 - Conjunction
 - Disjunction
- Question: Is a given formula satisfiable?
 - Hard for simplified instances/normal forms
- Brute force solution?

NP-hard problem: Example

- Boolean formulae, consisting of:
 - Variables
 - Negation
 - Conjunction
 - Disjunction
- Question: Is a given formula satisfiable?
 - Hard for simplified instances/normal forms
- Brute force solution?
- There exist heuristics /approximations which lead to solutions of problems with 100000 variables on nowadays computers

53

The biggest (open) question in Computer Science is ...

Why is this question so interesting?

- There is a WHOLE load of problems which are known to be in NP. Examples? Here you go ...
- Graphs:
 - Capacitated Minimum Spanning Tree
 - Degree-constrained Spanning Tree
 - Graph coloring
 - Dominating Set
 - Clique Cover
 - Graph partitioning
 - Vertex cover
 - Etc.

Why is this question so interesting?

- There is a WHOLE load of problems which are known to be in NP. Examples? Here you go ...
- Mathematical Programming:
 - Knapsack
 - Subset Sum
 - 3-partition
 - Bin-packing
 - Traveling salesman problem
 - Integer programming
 - Non-convex quadratic programming
 - etc.

Why is this question so interesting?

- There is a WHOLE load of problems which are known to be in NP. Examples? Here you go ...
- Others:
 - Boolean satisfiability
 - Circuit satisfiability
 - Cyclic ordering
 - Set packing
 - Many facility location problems
 - Many routing problems
 - Many scheduling problems
 - etc.

Why is this question even more interesting?

- People have tried for 40-50 years to prove P=NP or P!=NP
 - Nobody succeeded so far
 - Many smart people spent half of their lives on this question!
- Benefit:
 - These attempts induced many new concepts in computer science

Does this problem need more advertisement?

Why is this question REALLY interesting?

 If you solve any of the NP problems in P time, you can solve all others in P time!

Why is this question REALLY interesting?

 If you solve any of the NP problems in P time, you can solve all others in P time!

Problem Reduction

- Express one problem in terms of another problem
- A simple analogy:
 - We do not know how to multiply, but we can compute the square of numbers
 - Can we still solve multiplication?

Problem Reduction

- Express one problem in terms of another problem
- A simple analogy:
 - We do not know how to multiply, but we can compute the square of numbers
 - Can we still solve multiplication?

$$a imes b = rac{\left(\left(a+b
ight)^2 - a^2 - b^2
ight)}{2}$$

We reduce multiplication to squaring ...

Why is this question REALLY interesting?

- For all problems in NP, it has been shown that there exists a P time transformation procedure to at least one other NP problem
 - If you solve one problem in P time, you can transfer the results to any other problem in P time!
 - Rationale: Many problems involve similar structures!
 - Selecting nodes/links
 - Selecting numbers
 - Selecting variables

One example transformation

First problem

• 3-SATISFIABILITY (3SAT)
Instance: Set U of variables, a collection C of clauses over U such that each clause c in C has size exactly 3.
Question: Is there a truth assignment for U satisfying C?

$$C = (\neg v_1 \text{ OR } v_2 \text{ OR } \neg v_3) \text{ AND } (v_1 \text{ OR } \neg v_2 \text{ OR } \neg v_4) \text{ AND}$$

$$(\neg v_2 \text{ OR } \neg v_4 \text{ OR } v_5) \text{ AND } (v_3 \text{ OR } v_4 \text{ Or } v_5)$$

First problem

• 3-SATISFIABILITY (3SAT)
Instance: Set U of variables, a collection C of clauses over U such that each clause c in C has size exactly 3.
Question: Is there a truth assignment for U satisfying C?

$$C = (\neg v_1 \text{ OR } v_2 \text{ OR } \neg v_3) \text{ AND } (v_1 \text{ OR } \neg v_2 \text{ OR } \neg v_4) \text{ AND } (\neg v_2 \text{ OR } \neg v_4 \text{ OR } v_5) \text{ AND } (v_3 \text{ OR } v_4 \text{ Or } v_5)$$

$$C = \{ \neg v_1, v_2, \neg v_3 \}, \{ v_1, \neg v_2, \neg v_4 \}, \{ \neg v_2, \neg v_4, v_5 \}, \{ v_3, v_4, v_5 \}$$

Let us assume that somebody smart proved that 3SAT is NP-hard!

Second problem

The Independent Set Problem

Problem: Given a graph G = (V, E) and an integer k, is there a subset S of at least k vertices such that no $e \in E$ connects two vertices that are both in S?

Second problem

The Independent Set Problem

Problem: Given a graph G = (V, E) and an integer k, is there a subset S of at least k vertices such that no $e \in E$ connects two vertices that are both in S?

Theorem: Independent Set is NP-complete.

Proof: How can we prove that it is a NP hard problem?

Second problem

The Independent Set Problem

Problem: Given a graph G = (V, E) and an integer k, is there a subset S of at least k vertices such that no $e \in E$ connects two vertices that are both in S?

Theorem: Independent Set is NP-complete.

Proof: How can we prove that it is a NP hard problem?

=> Solve 3SAT using Independent Set Problem

Reducing 3-SAT to Independent Set

For each variable, we can create two vertices:

If we connect a variable and its negation, we can be sure that only *one* of them is in the set. In all, we must have *n* vertices in *S* to be sure all variables are assigned.

This will handle the binary true-false values; how can we also make sure that all of the clauses are fulfilled?

Including Clauses in the Reduction

We can consider the clauses as triangles:

Each clause has at least one true value. On the other hand, at most one vertex in a triangle can be in the independent set. So how do we tie these together?

Tying it all together...

$$C = \{ \neg v_1, v_2, \neg v_3 \}, \{ v_1, \neg v_2, \neg v_4 \}, \{ \neg v_2, \neg v_4, v_5 \}, \{ v_3, v_4, v_5 \}$$

If there are n variables and m clauses, then finding the satisfiability is the same as finding n+m independent vertices.

$$C = \{ \neg v_1, v_2, \neg v_3 \}, \{ v_1, \neg v_2, \neg v_4 \}, \{ \neg v_2, \neg v_4, v_5 \}, \{ v_3, v_4, v_5 \}$$

Here you go:

Why is this question REALLY interesting?

- Wouldn't it be nice to solve all computer science problems at once, by solving a single problem only?
- Nowadays, people believe that P!=NP
 - No proof yet
 - If you were able to prove P!=NP, you would get (at least) one million USD, and much more fame!

Why is this question REALLY interesting?

- Wouldn't it be nice to solve all computer science problems at once, by solving a single problem only?
- Nowadays, people believe that P!=NP
 - No proof yet
 - If you were able to prove P!=NP, you would get (at least) one million USD, and much more fame!

Question: Is there an optimal, fast algorithm for my problem?

Answer: If your problem is NP-hard, then <u>very likely</u> not!

(Sorry, that the very last message of this lecture is so ... "inexact". 🙁)

Summary

What happened?

What happened?

What happened?

You have seen (and hopefully learned) a lot

- Let's have a quick tour of the core concepts
 - ICSP in 10 slides, instead of ~1300 slides

Algorithm design and analysis

Can I do better?

Main theme of the lecture:

Algorithm designer

We needed more details!

T(n) = O(f(n))

Does it work?
Is it fast?

Worst-case analysis

HERE IS AN INPUT!

big-O notation

$$T(n) = O(f(n))$$

$$\Leftrightarrow$$

$$\exists c, n_0 > 0 \text{ s. t. } \forall n \ge n_0,$$

$$0 \le T(n) \le c \cdot f(n)$$

Design paradigm: Divide and Coquer

- Like MergeSort!
- Or Karatsuba's algorithm!
- Or k-Select!
- How do we analyze these?

By careful analysis!

Useful shortcut, the master method is.

All this sorting makes you wonder ...?

Can we do better?

Depends on who you ask:

 CountingSort takes time O(n) if the objects are, for example, small integers!

 Can't do better in a comparison-based model.

Binary Search Trees

- Useful data structure!
- Especially the self-balancing ones!

Maintain balance by stipulating that black nodes are balanced, and that there aren't too many red nodes.

It's just good sense!

Hash tables: Another way to store objects

Some buckets

Exam

Types of tasks (not exhaustive):

- Theory:
 - Proof that XYZ
 - Formally define the notion of XYZ
- Programming (Python)
 - Design an algorithm for a given problem XYZ and implement it
 - What is the time complexity of a specific algorithm/program?
 - Finding errors in a program
- Applied tasks
 - Apply algorithm XYZ to the following input and show all intermediate steps

In total: 120 minutes

Material

- You are not allowed to use any material, including
 - Text books
 - Own paper, summaries
 - Mobile phones, tablets, calculator, etc.
 - Solutions of neighbors
- You are allowed to use:
 - Pencil / Pen
 - Tissue (in reasonable amounts ©)

Questions?

Any feedback from your side?

- Did you get along well with the book?
- How do you like the recap?
- What to improve?
- Which topic was too easy?
- Which topic was too difficult?
- Any improvements regarding the lab classes?

Thank you very much!