Raquel Ocasio

D207 – Exploratory Data Analysis

September 24, 2023

Western Governors University

Part A1

Is there a significant association between the martial status of a patient, and the means by which they are initially admitted to the hospital?

Part A2

An analysis of the data can benefit the stakeholders by providing insight into whether a patient's marital status is affecting how the patient is admitted to the hospital.

Part A3

The "Marital" and "Initial admin" variables are relevant for answering the question.

Part B1

See attached code.

Part B2

```
Contingency Table
Initial_admin Elective Admission Emergency Admission Observation Admission
Marital
Divorced
                             492
                                                 986
                                                                        483
                                                 1051
Married
                             499
                                                                        473
Never Married
                             528
                                                 973
                                                                        483
Separated
                             499
                                                 998
                                                                        490
Widowed
                                                                        507
The p-value is 0.5852742698130522
There is no significant association between the variables.
Expected frequencies:
[[ 491.0344 992.266 477.6996]
 [ 506.5592 1023.638 492.8028]
 [ 496.7936 1003.904 483.3024]
[ 497.5448 1005.422 484.0332]
 [ 512.068 1034.77
                     498.162 ]]
```

(Zach, 2021)

Part B3

The Chi-Squared test was chosen for this analysis because it can help determine if there is a significant relationship between categorical variables. The variables that need to be analyzed for the question are categorical.

Part C
Continuous Variables (Zach, 2021b)

	VitD_levels	Doc_visits
Mean	17.96426165	5.0122
Median	17.95112226	5
Mode	18.13543091	5
Standard Deviation	2.017231042	1.045734439
Interquartile Range	2.721523888	2
Range	16.58796571	8

Categorical Variables (Paula's Web3 & Crypto, 2019)

Area	Count	Percentage
Suburban	3328	33.3%
Urban	3303	33.0%
Rural	3369	33.7%

Services	Count	Percentage
Blood Work	5265	52.7%
Intravenous	3130	31.3%
CT Scan	1225	12.3%
MRI	380	3.8%

Part C1

(Zach, 2021b)

Part D
Bivariate statistics for continuous variables (Zach, 2021c)

VitD_levels x Doc_visits

Correlation Coefficient	0.010210475			12			V.	
SUMMARY OUTPUT								
Regression Stati	stics							
Multiple R	0.010155965							
R Square	0.000103144							
Adjusted R Square	3.12394E-06							
Standard Error	1.045738435							
Observations	9999							
ANOVA								
· · · · · · · · · · · · · · · · · · ·	df	SS	MS	F	Significance F			
Regression	1	1.127724588	1.127725	1.031233	0.309893764			
Residual	9997	10932.40803	1.093569					
Total	9998	10933.53575						
- X	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	4.917525084	0.093718208	52.47139	0	4.73381853		4.73381853	5.101231638
19.1414657	0.005264717	0.005184377	1.015497	0.309894	-0.004897705	0.015427138	-0.004897705	0.015427138

Population x Age

Correlation Coefficient	-0.018986639							
SUMMARY OUTPUT								
Regression Stat	istics							
Multiple R	0.018988025							
R Square	0.000360545							
Adjusted R Square	0.000260551							
Standard Error	20.63688064							
Observations	9999	4						
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	1535.585535	1535.586	3.605669	0.057611645			
Residual	9997	4257530.784	425.8808					
Total	9998	4259066.369						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	53.77519916	0.248678814	216.2436	0	53.28773863	54.2626597	53.28773863	54.2626597
2951	-2.64348E-05	1.39214E-05	-1.89886	0.057612	-5.37235E-05	8.53957E-07	-5.37235E-05	8.53957E-07

Bivariate statistics for categorical variables (Paula's Web3 & Crypto, 2019)

Services x Area

Services x Area Column Lab						
Row Labels	*	Rural		Suburban	Urban	Grand Total
Blood Work			33.85%	32.86%	33.30%	100.00%
CT Scan			34.45%	33.06%	32.49%	100.00%
Intravenous			32.88%	34.12%	33.00%	100.00%
MRI			35.79%	32.89%	31.32%	100.00%
Grand Total			33.69%	33.28%	33.03%	100.00%

Marital x Gender

Marital x Gen	der Column Labels					
Row Labels	Divorced	Married	Never Married	Separated	Widowed	Grand Total
Female	9.84%	9.93%	9.94%	10.17%	10.30%	50.18%
Male	9.22%	9.97%	9.57%	9.27%	9.65%	47.68%
Nonbinary	0.55%	0.33%	0.33%	0.43%	0.50%	2.14%
Grand Total	19.61%	20.23%	19.84%	19.87%	20.45%	100.00%

Part D1

(Zach, 2021c)

(Paula's Web3 & Crypto, 2019)

Part E1

The Chi-Squared test showed that the p-value was greater than 0.05, therefore there was no significant association between the Marital and Initial_admin variables.

Part E2

A limitation of the Chi-Squared test analysis is that it cannot determine if the variables have a causal relationship.

Part E3

Since there is no significant association between the variables, it is recommended that the organization consider other possible factors that determine how a patient is admitted to the hospital.

Part F

The Panopto video can be viewed at

 $\underline{https://wgu.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=555d23bb-e0fa-4e42-968b-b085016cd613}$

Part G

Zach. (2021b). How to perform univariate Analysis in Excel (With Examples). Statology. https://www.statology.org/univariate-analysis-excel/

Zach. (2021c). How to perform Bivariate Analysis in Excel (With Examples). Statology. https://www.statology.org/bivariate-analysis-in-excel/

[Paula's Web3 & Crypto]. (2019, April 22). Using Pivot tables to analyze Categorical Data [Video]. Youtube.com. <u>Using Pivot tables to analyze Categorical Data</u>

Zach. (2021). How to create a contingency table in Python. Statology. https://www.statology.org/contingency-table-python/

Part H

Not applicable.