shown that intellectual abilities of males were more variable than intellectual abilities of females when looking at several standardized test batteries measuring general knowledge, mechanical reasoning, spatial visualization, quantitative ability, and spelling. Indeed, the variability hypothesis (that men demonstrate greater variability than women) is more than a century old (for a review, see Shields, 1975). In many research domains, such as mathematics performance, there are strong indicators that variances ratios differ between 1.1 and 1.2, although variances ratios do not differ in all countries, and the causes for these differences are not yet clear. Nevertheless, it is an empirical fact that variances ratios can differ among pre-existing groups.

Furthermore, some pre-existing groups have different variability by definition. An example from the field of education is the comparison of selective school systems (where students are accepted on the basis of selection criterions) versus comprehensive school systems (where all students are accepted, whatever their aptitudes; see, e.g., Hanushek & Wößmann, 2006). At the moment that a school accepts its students, variability in terms of aptitude will be greater in a comprehensive school than in a selective school, by definition.

Finally, a quasi-experimental treatment can have a different impact on variances between groups. Hanushek and Wößmann (2006) suggest that there is an impact of the educational system on variability in achievement. Even if variability, in terms of aptitude, is greater in a comprehensive school than in a selective school at first, a selective school system at primary school increases inequality (and then variability) in achievement in secondary school. Another example is variability in moods. Cowdry, Gardner, O'Leary, Leibenluft, & Rubinow (1991) noted than intra-individual variability is larger in patients suffering from premenstrual syndrome (PMS) than in normal patients and larger in normal patients than in depressive patients. Researchers studying the impact of an experimental treatment on mood changes can expect a bigger variability of mood changes in patients with PMS than in normal or depressive patients and thus a higher standard deviation in mood measurements.

A second reason for unequal variances across groups is that while variances of two groups are the same when group assignment is completely randomized, deviation from equality of variances can occur later, as a *consequence* of an experimental treatment (Cumming, 2013; Erceg-Hurn & Mirosevich, 2008; Keppel, 1991). For example, psychotherapy for depression can increase the variability in depressive symptoms, in comparison with a control group, because the effectiveness of the therapy will depend on individual differences (Bryk & Raudenbush, 1988; Erceg-Hurn & Mirosevich, 2008). Similarly, Kester (1969) compared the IQs of students from a control group with the IQs of students when high expectancies about students were induced in the teacher. While no effect of teacher expectancy on IO was found, the variance was bigger in the treatment group than in the control group (56.52 vs. 32.59, that is, SDR \approx 1.32). As proposed by Bryk and Raudenbush (1988), this can result from the interaction between the treatment and the students' reactions: students can react differently to the induced expectations. More generally, whenever a manipulation has individual moderators, variability should increase compared to a control condition.

Knowing whether standard deviations differ across conditions is important information, but in many fields, we have no accurate estimates of the standard deviation in the population. Whereas we collect population effect sizes in meta-analyses, these meta-analyses often do not include the standard deviations from the literature. As a consequence, we regrettably do not have easy access to aggregated information about standard deviations across research areas, despite the importance of this information. It would be useful if meta-analysts start to code information about standard deviations when performing meta-analyses (Lakens, Hilgard, & Staaks, 2016), such that we can accurately quantify whether standard deviations differ between groups, and how large the SDR is.

The Mathematical Differences Between Student's *t*-test, Welch's *t*-test, and Yuen's *t*-test

So far, we have simply mentioned that Welch's t-test differs from Student's t-test in that it does not rely on the equality of variances assumption. In this section, we will explain why this is the case. The Student's t statistic is calculated by dividing the mean difference between group $\bar{x}_1 - \bar{x}_2$ by a pooled error term, where s_1^2 and s_2^2 are variance estimates from each independent group, and where n_1 and n_2 are the respective sample sizes for each independent group (Student, 1908):

$$t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\left(\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}\right) * \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$
(1)

The degrees of freedom are computed as follows (Student, 1908):

$$df = n_1 + n_2 - 2 (2)$$

Student's *t*-test is calculated based on a *pooled* error term, which implies that both samples' variances are estimates of a common population variance. Whenever the variances of the two normal distributions are not similar and the sample sizes in each group are not equal, Student's *t*-test results are biased (Zimmerman, 1996). The more unbalanced the distribution of participants across both independent groups, the more Student's *t*-test is based on the incorrect standard error (Wilcox et al., 2013) and, consequently, the less accurate the computation of the *p*-value will be.

When the larger variance is associated with the *larger* sample size, there is a decrease in the nominal Type 1 error rate (Nimon, 2012; Overall, Atlas, & Gibson, 1995). The reason for this is that the error term increases, and,