*	BH manipulation					
	perators					
0	AND					
	0 0 0 0 0 0					
	0 0					
	A 1/10 022 110					
	remains the same	bey digite				
	remains the same	, 13				
	2111111					
	1 10010100					
(2)	90					
	0 %					
	0 6 086					
	0 0					
	0					
	\ 0					
	1					
6						
(3)	XOR (1) (if and only if)	ahear				
	exclusive OR	observations				
	$a b a^{\wedge}b$	a^1 = a				
	0 0 0	a" = a				
	0 1	2 ^ 2 = = =				
	\ 0 1	9-0-9				
	1 1 0					
		a^a = 0				

*	BH manipulati	~ W					
	Operators		/				
	AND						
	V	0					
	0 0	0 %	ь "				
	0 0	0					
	0	Ó					
	1 6	0					
	1	1					
	A LINOS MAN	2					
	remains the	2 WIA	it any nur	aber, digits			
	remains the same						
	1 1001010						
	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
<u></u>							
(2)	08						
	Q	Ь	a or	0			
	0	٥	0	-			
	0)					
	\	0					
	\						
			,				
(3)	XOR (^)	if and	(2: "/00	a h course			
	exclusive	2 R	and it	observations			
	٥	6	a v p	$\alpha^{\gamma} = \bar{\alpha}$			
	0	0	0	a" = a			
	0	(1	g^0 = q			
	•	O	1	0 - 0			
	\	\	0	$a^{n}a = 0$			
			•	V V			

(a) complement (~) a = 10110 a = 01001Number Systems

O Recimal -> 0,1,2, ... 9. Base 10 (357)10 (10)10 3 Binary -) 0 & 1 (Base 2). (10),0= (010)2. (7)10 = .(11) 3 Octal -> 0,1,2,3, 7 Base 8 Recimal: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14 Octal: 0,1,2,3,4,5,6,7,10,11,12,13,14,15,16 (9) = (11) 8 Hexadecimal: 0,1,2,3,4,5,6,7,8,9,A,B,Col,EF

Base: 16. $(10)_{10} = (12)_{10} = (12)_{10}$

Classmate
Date
Page

Conveysation (i) Recimal to base 1 8 (onvert (17) to base 2 Keep dividing by base, take memainder, white in opposite $\frac{2}{2} \frac{12}{4} = \frac{1}{2} = \frac{1}{$ $(13)^{10} = (8)^{8}$ (1)110 - (2)8

2)

2)

(onvert any base b to decimal

(10001) = () ? steps: multiply & add the power of base with digits = 1 x 2 + 0 x 2 + 0 x 2 + 0 x 2 + 1 x 2

. = 16 +1,

CHISSMALE NOW HOO

$$5.(21)_8 = ()_{10}$$

$$= 2 * 6' + 1 * 8'$$

$$= 2 \times 8 + 1$$

$$= (1)_{10}$$

* continuing with operators

steb: 1010 <<1 = 10100

General point!

$$\int a < < \rho = .0 \times 5_{e}$$

@ Right shift >>

$$0001001 >> 1 = 2001100$$

 $(00011234)_{16} = (11234)_{10}$

(12 world) - some for all number systems

Set the ith byt KTH 0R 0001000 -> (mask Reset ith bit 1010110 2 1101111 - How to get this mask?

Q

Q

1000110 Ans

mask: 1 (1 << (n-1)

Q Find the position of the right most set bit

0=101101 $-N = alb \qquad How?$

Ans = N& (-N)

* Negative of a number in Binary form:

21:18 = 94pd 1

value of no. o Tells us if no is tup of - ve -10= ? 1-> - 46 9Ut <- 0 steps: = @ (ompliment of no.) = aka 23 6 +1 to it (ompliment method $(0)_{0} = (00001010)_{2}$ 0 11110101 6 11110101 (1110110) 10/10110111 stoved Why tho?

we will get -ve of that number

discarded

010 10000 provid ni 01

1000=111+ 1000000000 9 -17+1 - 00001010 10000 = 1111+ 16 15+1 What is this 14 1111111 = 00000001 1/1/ + 0001 "NOW: 1111111 +1 -00001010 60001 =) 11111111 - 00001010 ti (step) complement -00001010] comblement * Range of numbers. (b) 1 byte: | [011 | 011 sign of number Total = 2x2x2x2 stimes actual no is stored in bits = n-1 Cototalbi In Ibyle: 7 bits

$$\begin{array}{c|c} \hline 3 & 3 & 17 & 4 \\ \hline \hline 0 & 0 & 1 \\ \hline \end{array} = 3$$

Find the nth magic no. magleno

= 0 1 1 = 30 (st2s) 0 -) 125 4 = 1 0

= 1 0 1 --) 130

n=6 11 6 100P | This will give me lost digit in binary

0 x s' + 1 x 5 + 1 x 5 3

Find no of digit in base b $(6)_{10} \Longrightarrow 1$

(U)

Q

(6),0 => (110) = 3 (By Keeping

classmate
Date ______

Formula: No of digits in base of of noix = int (1090n) +1 logxa logxb 100 d = x 1 + tal 10926 = x = no of digits 6 = 2% * Pascal's Triangle Find the sum of nth you Sum of each your = JC + JC + JC + JC 1 5 10 10 51 For nth you, sum = 20-1 (Ans:) (1 < < (n-1) = 1 * 2n-1

Imp to understand this grestion

Given a number of find the no of set bits 8 in it. N = d200 Ans = 2 1001=1 1000 = (-1) = 0001 n - [n2(-n)] = 1000 =1001 8 4 7 => 1000 2011 No of set bits = no of it evations Find xor of nos from a to a XOR Fromotog 001=1 00105=3 10 ſ.

repro - as a d 0 -> 9 0 1f a 1,4 =0 a'1.4=1 0+1 a 1.4=2 01/4=3 \bigcirc XOR of all nos between a &b a=3 77506070809 (01, 20) 374757677, 18 19, These are the extras This 15 0 -> (a-1) Ans f(b) > f(a-1) x (m) - 3 XOR OF O - DX D. 4 down = 2x1-10w!!! right = N-(0) 3 " 2 3. 2 1

000000