A 2.6.A Sei M eine Menge und $F \subseteq 2^M$. Dann ist F ein Filter, wenn (1) $\emptyset \notin F$, (2) $U, V \in F \Longrightarrow U \cap V \in F$ und (3) $U \in F, U \subseteq V \Longrightarrow V \in F$.

- (a) Zeige: Alle Menge, die ein beliebiges festes $x \in M$ enthalten, bilden einen Filter.
- (b) Zeige: Für jede unendliche Menge M ist die Menge der Komplemente aller endlichen Teilmengen von M ein Filter.
- (c) Ein Filter heißt Ultrafilter, wenn er in keinem anderen Filter enthalten ist. Zeige, dass der Filter aus (a) ein Ultrafilter ist.
- (d) Zeige: Jeder Filter ist in einem Ultrafilter enthalten. Hinweis: Die Menge aller einen Filter enthaltenden Filter ist durch Inklusion partiell geordnet. Wende das Lemma von Zorn an.

A 2.6.B Beweisen Sie den folgenden Satz: Seien A und B Mengen. Dann gibt es eine injektive Funktion von A nach B oder eine injektive Funktion von B nach A.

Hinweis: Nicht jede Menge ist endlich, und nicht jede unendliche Menge lässt sich in der Form $\{x_n \mid n \in \mathbb{N}\}$ schreiben. Betrachten Sie die folgende halbgeordnete Menge:

$$H := \{(M, f, N) \mid M \subseteq A, N \subseteq B, f : M \to N \text{ ist eine Bijektion}\}.$$

Wir definieren $(M, f, N) \leq (M', f', N')$ genau dann, wenn folgendes gilt: $M \subseteq M', N \subseteq N'$, und f' ist eine Fortsetzung von f (also f'(x) = f(x) für alle $x \in M$). Zeigen Sie:

- (a) H ist eine Halbordnung.
- (b) H ist nicht leer.
- (c) Jede nichtleere Teilkette von H hat eine obere Schranke in H. (In H!)
- (d) Wenn (M^*, f^*, N^*) ein maximales Element von H ist, dann muss $M^* = A$ oder $N^* = B$ gelten. Im ersten Fall ist f^* bijektiv von A nach $N \subseteq B$, im zweiten Fall findet man eine Bijektion von B nach $M \subseteq A$.

A 2.6.C Sei H eine halbgeordnete Menge, in der jede Kette beschränkt ist. Dann gibt es zu jedem Element h_0 in H ein h_1 in H, welches erstens maximal in H ist und zweitens $h_1 \ge h_0$ erfüllt.

Hinweis: Betrachte die Menge $H' := \{h \in H \mid h \ge h_0\}.$