А/Б-тесты 4 занятие

Игорь Полянский Нетология Сентябрь 2020

Основы статистики

О чем говорили раньше:

- Data-informed использует не только данные, но и другие источники
- Простая гипотеза = Бизнес-гипотеза = ЕСЛИ ... ТО ...
- Маркетинговая/продуктовая гипотеза = что делаем + на кого повлияет + какой результат ожидаем + почему ожидаем такой результат
- Приоритезация гипотез ICE, PIE
- Экспресс-анализ
- А/Б тесты. Определение и виды
- Что можно тестировать, а что нет?
- Типы метрик и методы их агрегаций
- Стат. единица и генеральная совокупность

Agenda

- 1. Описательные статистики
- 2. ЦПД. Что это и зачем?
- 3. Виды распределений и связь с ЦПД
- 4. Ограничения применения ЦПД
- 5. Статистические гипотезы
- 6. Параметры А/Б теста: ошибки первого и второго рода, мощность, p-value
- 7. Длительность А/Б теста: калькуляторы

Описательные статистики + теория

Среднее арифметическое

Среднее арифметическое — сумма всех значений выборки, разделенная на их количество. В речи слово "арифметическое" часто опускается или заменяется на слово "значение".

$$ar{x}=rac{1}{n}\left(\sum_{i=1}^n x_i
ight)=rac{x_1+x_2+\cdots+x_n}{n}$$

Среднее арифметическое: пример

В тестовой группе 6 водителей. Каждое число соответствует количеству поездок у конкретного водителя. Сколько в среднем проехали водители?

Выборка:

1 0 7 4 9 17

Среднее: ???

Среднее арифметическое: пример

В тестовой группе 6 водителей. Каждое число соответствует количеству поездок у конкретного водителя. Сколько в среднем проехали водители?

Выборка:

1	0	7	4	9	17
---	---	---	---	---	----

Среднее: ~6,33

Решение: (1+0+7+4+9+17)/6 = 6,33

Медиана

(простым языком) Медиана – такое число выборки, что ровно половина из элементов выборки больше него, а другая половина меньше него.

(в общем виде) Медиана – средний элемент выборки, упорядоченной по возрастанию.

В повседневной жизни понятие медиана или медианное значение используется довольно редко, но оно очень полезно для рассмотрения ряда количественных явлений.

В тестовой группе 5 водителей. Каждое число соответствует количеству поездок у конкретного водителя. Каково медианное количество поездок?

Выборка:

1 0 7 4 9

Медиана: ???

В тестовой группе 5 водителей. Каждое число соответствует количеству поездок у конкретного водителя. Каково медианное количество поездок?

Выборка:

1 2 7 4 9

Медиана: 4

Решение:

1 2 7 4 9 — 1 2 <u>4</u> 7 9 —

В тестовой группе 6 водителей. Каждое число соответствует количеству поездок у конкретного водителя. Каково медианное количество поездок?

Выборка:

1	0	7	4	9	17
---	---	---	---	---	----

Медиана: ???

В тестовой группе 5 водителей. Каждое число соответствует количеству поездок у конкретного водителя. Каково медианное количество поездок?

Выборка:

1 0 7 4 9 17

Медиана: 5,5

Решение:

Квиз: среднее или медиана

1. Общий уровень зарплат в стране

2. Ожидаемая температура в июне

Квиз: среднее или медиана

1. Общий уровень зарплат в стране

Ответ: МЕДИАНА

Квиз: среднее или медиана

2. Ожидаемая температура в июне

Ответ: И ТО, И ТО

Персентиль aka квантиль

К-Персентиль – значение, на уровне или ниже которого находятся К% наблюдений.

Часто используется при оценивании позиции тестируемого субъекта в генеральной совокупности. Например, если водитель в 90-персентиле по количеству поездок, то 90% водителей сделали столько же или меньше поездок.

Алгоритм:

- 1. Отсортировать данные по возрастанию
- 2. Посчитать p = round(K * n), где K желаемый процент, n кол-во наблюдений
- 3. Взять наблюдение под порядковым номером р

Очень интересный факт:

25%-персентиль = 1 квартиль, 50%-персентиль = 2 квартиль, 75%-персентиль = 3 квартиль

Персентиль: пример

В тестовой группе 4 водителя. Каждое число соответствует количеству поездок у конкретного водителя. Каковы 25% и 75% персентили поездок?

Выборка:

1 0 7 4

25%-персентиль: ??? 75%-персентиль: ???

Алгоритм:

2.

- 1. Отсортировать данные по возрастанию
 - Посчитать p = round(K * n), где K желаемый процент, n кол-во наблюдений
- 3. Взять наблюдение под порядковым номером р

Персентиль: пример

В тестовой группе 4 водителя. Каждое число соответствует количеству поездок у конкретного водителя. Каковы 25% и 75% персентили поездок?

Выборка: 1

0 7 4

25-персентиль: ???

Решение:

75-персентиль: ???

Решение:

1 0 7 4 0 1 4 7 p = 0,75 * 4 = 3 ------ 4

Математическое ожидание

Математическое ожидание - среднее (взвешенное по вероятностям возможных значений) значение случайной величины.

$$\mathbb{E}[X] = \sum_{i=1}^\infty x_i \ p_i$$
 , где случайная величина X имеет распределение: $\mathbb{P}(X=x_i) = p_i, \ \sum_{i=1}^\infty p_i = 1$

Математическое ожидание: пример

Допустим, ${\bf X}$ - событие конверсии конкретного пользователя. ${\bf X}$ - случайная величина, принимающая значения ${\bf 0}$ и ${\bf 1}$ с вероятностями, указанными в таблице.

X	0	1
P(X=x)	0.9	0.1

Чему равно матожидание Х?

Математическое ожидание: пример

Допустим, **X** - событие конверсии конкретного пользователя. **X** - случайная величина, принимающая значения 0 и 1 с вероятностями, указанными в таблице.

X	0	1
P(X=x)	0.9	0.1

Чему равно матожидание **X**?

Решение: E(X) = 0 * 0.9 + 1 * 0.1 = 0.1

Математическое ожидание: кейс

Рассмотрим рулетку казино. Всего - 38 полей (18 красных, 18 черных и 2 зеро). *Правила*: ставка удваивается в случае положительного исхода и обнуляется в противном случае.

Можно заработать в долгосрочной перспективе, если все время ставить \$1 на красное?

Математическое ожидание: кейс

Рассмотрим рулетку казино. Всего - 38 полей (18 красных, 18 черных и 2 зеро). *Правила*: ставка удваивается в случае положительного исхода и обнуляется в противном случае.

Можно заработать в долгосрочной перспективе, если все время ставить \$1 на красное?

Решение: нельзя. Матожидание: (18/38)*1\$*2 = 36/38 < 1. То есть в среднем, поставив \$1, мы получим \$36/38.

Математическое ожидание: бизнес

Вспомним ІСЕ

ICE = Impact * Confidence - Effort

Допустим, Impact=M, Confidence=C

Имеем табличку:

Impact	0	М
P(Impact = x)	1-C	С

Тогда ICE = M * C - Effort = E(Impact) - Effort = Impact * Confidence - Effort

Дисперсия случайной величины

Дисперсия случайной величины (Var) — мера разброса значений случайной величины относительно её математического ожидания.

Используется, чтобы понять, насколько близко наблюдения сгруппированы вокруг среднего.

$$\overline{S}^2 = rac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$
, где $\overline{X} = rac{1}{n} \sum_{i=1}^n X_i$ — выборочное среднее

Дисперсия случайной величины: пример

В тестовой группе 4 водителя. Каждое число соответствует количеству поездок у конкретного водителя. Какова дисперсия поездок?

Выборка: 1

1 0 7 4

Дисперсия: ???

Дисперсия случайной величины: пример

В тестовой группе 4 водителя. Каждое число соответствует количеству поездок у конкретного водителя. Какова дисперсия поездок?

Выборка: 1 0 7 4

Дисперсия: ???

Решение: 1 0 7 4 — Среднее = 3 — Дисперсия = (2^2+3^2+4^2+1^2)/4=7,5

Интерпретация: в среднем, наблюдения отдалены от среднего на 2,7 поездок (квадратный корень из дисперсии)

Дисперсия случайной величины: наглядно

Процент vs процентный пункт

Процент – показатель изменения величины по отношению к изначальному значению.

Процентный пункт – показатель изменения величины, выраженной в процентах, который описывает разность между новым и старым значениями этой величины.

Процент vs процентный пункт: пример

Конверсия 20% 40%

Процент vs процентный пункт: пример

Конверсия

20%

40%

Вывод 1: конверсия в группе Б на 100% выше

Вывод 2: конверсия в группе Б на 20 процентных пунктов выше

Квиз: критическое мышление

На конференции ребята из стартапа рассказывают кейс о повышении продаж на 100%. Что стоит уточнить про его продукт?

Квиз: критическое мышление

На конференции ребята из стартапа рассказывают кейс о повышении продаж на 100%. Что стоит уточнить про его продукт?

Ответ: абсолютное количество продаж. Что если была всего одна продажа...

Это называется эффектом низкой базы

Распределения & ЦПД

Широкая классификация распределений

Что такое распределение?

Дискретное

(Конечное кол-во возможных значений)

Распределение - закон, определяющий вероятность каждому возможному значению переменной.

Мы уже видели такое распределение:

Х	0	1
P(X=x)	0.9	0.1

Что такое распределение?

Дискретное

(Конечное кол-во возможных значений)

Распределение - закон, определяющий вероятность каждому возможному значению переменной.

Мы уже видели такое распределение:

Х	0	1
P(X=x)	0.9	0.1

Непрерывное

(Бесконечное кол-во возможных значений)

Распределение - функция, характеризующая сравнительную вероятность реализации тех или иных значений случайной переменной.

Пример:

Перед тем, как рассмотрим несколько теоретических распределений, разберем один метод визуализации

Ящик с усами (ака боксплот)

Центральная **жирная линия - медиана**

Хорошая практика - отображать крестиком среднее

Границы прямоугольника - 1 и 3 квартили (помните?) Обозначаются как Q1 и Q3 соответственно.

Концы "усов" считаются по формуле: $X_1 = Q_1 - k(Q_3 - Q_1)$, $X_2 = Q_3 + k(Q_3 - Q_1)$ Чаще всего выбирают k=1,5

IQR: Q3-Q1 (интерквартильный размах)

Ящик с усами (ака боксплот)

Результаты экспериментов по измерению скорости света

Ящик с усами (ака боксплот): PS

Существует много вариаций боксплотов, поэтому лучше уточняйте что есть что

Пример: концы усов могут соответствовать максимуму и минимуму

Ящик с усами (ака боксплот): зачем

- 1. Легко читаются основные статистики распределения
- 2. Четко **видно**, после какого значения наблюдения являются **выбросами**
- 3. Неплохо оценивается степень разброса и асимметрии данных
- 4. Крайне полезен, когда наблюдений мало

Примеры теоретических распределений

Распределения бывают разные

Рассмотрим несколько распределений подробнее

Гамма

Среднее >> медиана

Бизнес-пример: выручка на юзера

Интуиция: большинство юзеров приносят мало денег.

После определенной суммы наблюдается резкое падение в количестве юзеров

Гамма-распределение

Боксплот:

Бета

Среднее << медиана

Бизнес-пример: доля принятых заказов у водителя

Интуиция: из-за ограничений, большинство водителей имеют высокую долю принятых заказов

Боксплот:

Особый случай: распределение Бернулли

Случайная величина имеет распределение Бернулли, если она принимает всего два значения: 1 и 0 с вероятностями *p* и *q=1-p* соответственно. Таким образом:

$$\mathbb{P}(X=1)=p$$
 ,

$$\mathbb{P}(X=0)=q$$
 .

Принято говорить, что событие X=1 соответствует «успеху», а событие X=0 - «неудаче». Эти названия условные, и в зависимости от конкретной задачи могут быть заменены на противоположные.

Бизнес-пример: действие юзера на странице (либо конверсия, либо нет)

Биномиальное

Сумма нескольких величин Бернулли

Бизнес-пример: количество конверсий юзера из нескольких попыток*

Боксплот:

Биномальное

^{*}при условии, что каждое решение о конверсии независимо

Нормальное

Среднее = медиана

Пример: при достаточно большом количестве попыток, количество конверсий распределено нормально

Боксплот:

^{*}при условии, что каждое решение о конверсии независимо

Задачка

Приведите пример метрики, которая, вероятно, распределена:

Логнормально

Задачка

Приведите пример метрики, которая, вероятно, распределена:

1. Логнормально

Ответ (пример):

1. Среднее количество поездок за неделю у водителя

Центральная Предельная Теорема (ЦПД)

Центральная Предельная Теорема (ЦПД)

Пусть X_1, \ldots, X_n, \ldots есть бесконечная последовательность независимых одинаково распределённых случайных величин, имеющих конечное математическое ожидание μ и дисперсию σ^2 .

Тогда:
$$\sqrt{n} rac{ar{X}_n - \mu}{\sigma} o N(0,1)$$

Иначе говоря, **среднее** значение асимтотически **распределено нормально**

ЦПД: иллюстрация

- 1. Берем НЕ нормальное распределение
- 2. Набираем из него много выборок и в каждой считаем среднее
- 3. Строим распределение средних
- 4. Оно нормальное!

Зачем все это?

А вот зачем:

Из прошлого занятия мы помним, что группы должны быть **однородными**, чтобы могли делать выводы о результатах фичи

Но как в этом убедиться?

Наиболее известный вариант: **t-тест**, но он применим только к нормальным распределениям

О других вариантах и деталях тестов - на следующей лекции

Какая разница, какое распределение, если есть ЦПД?

Но все не так просто: часть 1

К сожалению, **ЦПД** выполняется не всегда. Например, может нарушаться, если:

1. У истинного распределения метрики бесконечная дисперсия

Это <u>не теоретическая абстракция!</u> На картинке справа, **у желтого распред**е

На картинке справа, **у желтого распределения бесконечная дисперсия.** Попросту говоря - тяжелые хвосты.

2. Наличие аутлаеров (выбросов)

Аутлаеры - аномальные значения метрики. (Например, меньше 2,5% или больше 97,5% персентилей)

Бесконечная дисперсия: пример

Мы не знаем формулу распределения, но правый хвост потенциально может уйти сколь угодно далеко

Точно сказать нельзя, но данное распределение, вероятно, нарушает ЦПД.

Но все не так просто: часть 2

Очень **часто метрика имеет** какое-то **неизвестное науке распределение**. В таком случае **неизвестно, работает ли для него ЦПД**, поэтому требуются другие статистические критерии для сравнения групп

Пример неизвестного распределения:

Другие визуализации распределений

Классическая классика

Гистограмма: построение

- 1. Разбиваем значения метрики на *N* участков
- 2. Считаем количество значений в каждом участке
- 3. Строим гистограмму, откладывая участки по горизонтальной оси, а подсчет по вертикальной

Гистограмма: пример

Значения метрики: 1,1,1,2,2,3,3,3,3

Постройте гистограмму, разбив значения метрики на 3 равных участка (в уме или на листочке)

Гистограмма: пример

Значения метрики: 1,1,1,2,2,3,3,3,3

Постройте гистограмму, разбив значения метрики на 3 равных участка (в уме или на листочке)

Ответ:

Закрепляем

Соотнесите распределения и боксплоты. Начнем с D)

Закрепляем

Соотнесите распределения и боксплоты. Теперь Е)

Закрепляем

Соотнесите распределения и боксплоты

Остальные надо делать "вместе"

Закрепляем

Соотнесите распределения и боксплоты

Пример А/Б теста

Настройка теста

В нашем примере, мы проведем А/Б тест для компании, пытающейся увеличить количество юзеров, покупающих premium аккаунт сервиса

Изменение: вид кнопки на странице

Цель: больше юзеров, покупающих premium аккаунт сервиса

Изменение: наглядно

Выборочные статистики

Текущее состояние и план:

Текущая конверсия	10%
Желаемое увеличение	2 п.п.
Юзеров в каждой группе	1000

Результаты теста:

	Сконвертировалис		
Группа	Ь	Общее кол-во	Доля
A	94	1000	9.4%
Б	122	1000	12.2%

Сравнение групп: математика

Предположим, что каждый пользователь независимо и с одинаковой вероятностью р (для тестовой и контрольной групп разные р) принимает решение о покупке premium аккаунта.

В таком случае, событие конверсии конкретного пользователя имеет распределение Бернулли:

$$X \sim Bernoulli(p)$$

Мы показывали ранее, что

По свойству распределения,

$$E(X) = p Var(X) = p(1-p)$$

По ЦПД, распределение средних (то есть р) будет нормальным со следующими параметрами:

$$\hat{p} \sim Normal\left(\mu = p, \ \sigma = \frac{\sqrt{p(1-p)}}{\sqrt{n}}\right)$$

Сравнение групп: графики

- Распределения тестовой (красная) и контрольной (синяя) групп.
- Пунктиры выборочные средние

Статистические гипотезы

Статистические гипотезы

	Гипотеза	
	Нулевая	Альтернативная
Обозначение	H_0	H_1
Суть	Изменение не повлияет на метрику	изменение приведет к улучшению/ухудшению метрики

Нулевая гипотеза считается верной, пока не доказано обратное

Статистические гипотезы: наш пример

	Гипотеза	
	Нулевая	Альтернативная
Обозначение	H_0	H_1
Утверждение	изменение не повлияет на конверсию	изменение приведет к улучшению/ухудшению конверсии

Статистические гипотезы: наш пример

В нашем случае, мы хотим проверить, есть ли разница в пропорциях. То есть набор гипотез будет выглядеть так:

$$\begin{cases}
H_0: d = 0 \\
H_1: d \neq 0
\end{cases}$$

При нулевой гипотезе, разность распределена: $\hat{d}_0 \sim Normal(0, SE_{pool})$

При альтернативной гипотезе, разность распределена: $\hat{d}_A \sim Normal(d,\ SE_{pool})$, где $d=p_B-p_A$

Статистические гипотезы: график

Визуализация нулевой (красная) и альтернативной (синяя) гипотез

Идея тестирования: наш пример

Предполагая, что нулевая гипотеза верна, посчитать вероятность получения такой же или более экстремальной разности пропорций.

Почему так?

Если разность в реальности равна нулю, то получить далекое от нуля значение можно с очень маленькой вероятностью. Эта вероятность называется **p-value**.

И что дальше? Где этот барьер, когда мы говорим: "Это настолько маленькая вероятность, что, пожалуй, разница в пропорциях должна быть"?

Этот барьер называется уровнем значимости. Или попросту "альфа". И мы его выбираем сами!

Альфа (aka ошибка первого рода)

Типичные значения альфы: 1%, 5%, 10%. В **Gett** мы обычно выбираем 5%.

На графике зеленым отмечена alpha=2,5%. Серые пунктирные линии - 95% интервал разности пропорций при нулевой гипотезе.

Интерпретация: вероятность отклонить корректную нулевую гипотезу.

"Мощность" / "сила" теста

Сила =
$$Pr$$
(отклонить $H_0|H_1$ верна)

"Вероятность отклонить нулевую гипотезу при условии, что верна альтернативная"

"Мощность" / "сила" теста

Мощность закрашена зеленым. Почему так?

- 1. "Верна альтернативная" то есть смотрим на площадь под синим графиком
- 2. "Отклонить нулевую гипотезу" то есть смотрим справа от серого пунктира

Бета (ака ошибка второго рода)

Второй тип ошибки (закрашена зеленым), которую мы можем сделать: принять нулевую гипотезу при условии, что верна альтернатива

Интерпретация: вероятность принять неверную нулевую гипотезу.

Видим, что мощность теста очень низкая (59%). Что

делать?

Увеличить выборку

Мощность заметно выросла (почти на 30 п.п.) (за счет уменьшение дисперсии разности)

И какой размер выборки оптимальный?

Калькуляторы необходимого размера выборки

- 1. https://www.evanmiller.org/ab-testing/sample-size.html самый приятный
- 2. https://www.optimizely.com/sample-size-calculator/?conversion=10&effect=20&significance=9
 <u>5</u> тоже вариант

Как пользоваться?

Вбиваем текущую конверсию Вбиваем уровень значимости (alpha) Вбиваем желаемую мощность теста (power)

Вбиваем minimal detectable effect (MDE) - то изменение в конверсии, которое хотим уметь корректно определять с заданными alpha & power

Длительность эксперимента

Сократится, если

- Размер выборок
- Минимальный отслеживаемый эффект (aka MDE)

"Сила" теста (aka power) 🔀

Вероятность ошибки первого рода (aka alpha)

Замечание

Калькуляторы предполагают нормальное распределение метрики. Более того, они **актуальны** только в случае работы **с конверсиями** (по крайней мере те, что есть в общем доступе)

Почему?

Потому что если метрика - не конверсия, то, формально говоря, ее распределение не известно. Значит, невозможно применять анализ, аналогичный тому, что мы изучили выше.

Как быть?

Обсудим через одну лекцию)

Чекпоинты по длительности теста

- 1. Посчитать минимальный размер каждой группы, соответствующий заданным параметрам (alpha, power, MDE) с помощью онлайнкалькулятора
- 2. Если в продукте присутствует эффект сезонности, держать тест в течение 1-2 циклов (ака недель)

Практическое задание (45 мин)

- Пройдите опросник по результатам лекции (feedback + цель на курс)
- Используя тестовые данные (или ваши собственные), рассчитайте 5 метрик. Для каждой метрики:
 - 1) Посчитайте среднее
 - 2) Посчитайте медиану
 - 3) Посчитайте 95-персентиль
 - 4) Визуализируйте распределение частотным графиком **и** "ящиком с усами". Есть ли распределения, напоминающие нормальное? Со звездочкой: проверьте это с помощью теста на нормальность
- Для АБ тестов, задействующих конверсии, рассчитайте необходимые размеры выборок

Спасибо за внимание! Вы молодцы!

Вопросы?

Спасибо за внимание

