Appunti di Logica e Algebra 2

Pietro Pizzoccheri Lorenzo Bardelli https://github.com/PietroPizzoccheri/uni

2024

Contents

1	Teo	ria degli anelli commutativi e dei campi
	1.1	Insiemi
		1.1.1 Operazioni tra insiemi
	1.2	Funzioni
		1.2.1 Composizione di funzioni
		1.2.2 Operazioni su insiemi
	1.3	Monoidi e Gruppi
	1.4	Morfismi
	1.5	Relazioni
	1.6	Insieme quoziente per gruppi abeliani
	1.7	Anelli
	1.8	Ideali
	1.9	Anelli quoziente
	1.10	Algoritmo di Euclide e identità di Bézout su $\mathbb Z$
	1.11	Equazioni diofantee lineari
		Morfismi di anelli
	1.13	Caratteristica di un anello
	1.14	Anello dei polinomi in una indeterminata a coefficienti in un campo
	1.15	Caratteristica di un anello
	1.16	Anello dei polinomi in una indeterminata a coefficienti in un campo
	1.17	Algoritmo di Berlekamp
2	Ten	sori
_	2.1	Prodotto tra matrici
	2.1	2.1.1 Anello degli endomorfismi
	2.2	Spazio duale di uno spazio vettoriale
	$\frac{2.2}{2.3}$	Forme bilineari e prodotto tensoriale
	۷.5	2.3.1 Prodotto tensoriale di spazi vettoriali
	2.4	Rango di una matrice
	∠.4	2.4.1 Rango di un tensore
	2.5	endomorfismi di V come elementi di $V^* \otimes V$

1 Teoria degli anelli commutativi e dei campi

1.1 Insiemi

Un insieme è una collezione di oggetti, detti elementi dell'insieme.

 $\mathbb{N} := \{0, 1, 2, 3, \cdots\}$ insieme dei numeri naturali

 $\mathbb{Z} := \{\cdots, -2, -1, 0, 1, 2, \cdots\}$ insieme degli interi

 $\mathbb{Q}:=\left\{rac{a}{b}\mid a,b\in\mathbb{Z},b
eq0
ight\}$ insieme dei numeri razionali

 $\mathbb{R} := \text{insieme dei numeri reali}$

 $\mathbb{C} := \text{insieme dei numeri complessi}$

1.1.1 Operazioni tra insiemi

⊆ inclusione tra insiemi

 $X \subseteq Y$ si legge "X è sottoinsieme di Y" o "X è incluso in Y"

Se X è un insieme finito, indico con |X| il numero di elementi di X, detto anche la cardinalità di X.

 \varnothing : Insieme vuoto e $|\varnothing| = 0$

Siano X e Y due insiemi. L'insieme $X \times Y := \{(x, y) : x \in X, y \in Y\}$ lo chiamiamo **prodotto cartesiano** di X e Y.

Sia $A \in \mathcal{P}(x)$, dove $\mathcal{P}(X) := \{A : A \subseteq X\}$ è detto **Insieme delle parti di** X. L'insieme $A^c := X \setminus A$ è detto **complementare** di A

1.2 Funzioni

Siano X e Y due insiemi. **Una funzione** f **da** X **a** Y è un sottoinsieme $F \subseteq X \times Y$ tale che:

- $(x, y_1) \in F$, $(x, y_2) \in F \implies y_1 = y_2, \forall x \in X, y_1, y_2 \in Y$.
- $x \in X \implies \exists y \in Y \text{ tale che } (x,y) \in F$

Una funzione $F \subseteq X \times Y$ la indichiamo con $f: X \to Y$. E scriviamo f(x) = y se $(x,y) \in F$.

Definizione: La funzione $Id_x: X \to X$ tale che $Id_x(x) = x, \forall x \in X$ la chiamiamo funzione identità su X

Definizione: Una funzione $f: X \to Y$ è **iniettiva** se $\forall x_1, x_2 \in X, f(x_1) = f(x_2) \implies x_1 = x_2$

Definizione: Una funzione $f: X \to Y$ è suriettiva se Im(f) = Y, dove $Im(f) = \{y \in Y : \exists x \in X \text{ tale che } f(x) = y\}$ è detta immagine di f

Definizione: Una funzione $f: X \to Y$ è biunivoca se è sia iniettiva che suriettiva.

1.2.1 Composizione di funzioni

Siano $f: X \to Y$ e $g: Y \to Z$ due funzioni. La **composizione di** f **e** g è la funzione $g \circ f: X \to Z$ tale che $(g \circ f)(x) = g(f(x)), \forall x \in X$.

Definizione: una funzione $f:X\to Y$ è detta **invertibile** se esiste una funzione $g:Y\to X$ tale che

- $g \circ f = Id_X$
- $f \circ g = Id_Y$

la funzione g è detta **funzione inversa di** f e la indichiamo con f^{-1} .

Una funzione $f: X \to Y$ è invertibile se e solo se è biunivoca.

1.2.2 Operazioni su insiemi

Definizione: Una funzione $f: X \times X \to X$ è detta **operazione su** X. Invece di f(x,y) scriveremo $x \cdot y$.

Definizione: Un'operazione · su X è detta **associativa** se $(x \cdot y) \cdot z = x \cdot (y \cdot z)$, $\forall x, y, z \in X$.

Definizione: Un'operazione \cdot su X è detta **commutativa** se $x \cdot y = y \cdot x, \forall x, y \in X$.

Esempio:

- $\mathcal{P}(X)$ con l'operazione di unione \cup è associativa e commutativa, così come lo è con l'intersezione \cap .
- $A \setminus B := A \cup B^C$ (differenza insiemistica) è un'operazione su $\mathcal{P}(X)$. non è associativa: sia $A \neq \emptyset$. Allora $A \setminus (A \setminus A) = A \neq (A \setminus A) \setminus A = \emptyset$ non è commutativa: $A \setminus \emptyset = A \neq \emptyset \setminus A = \emptyset$, se $A \neq \emptyset$
- $A\Delta B := (A \setminus B) \cup (B \setminus A)$ (differenza simmetrica) è un'operazione su $\mathcal{P}(X)$. è commutativa e anche associativa, facilmente verificabile coi diagrammi di Venn.
- Sia $F(X) := \{f : X \to X\}$. La composizione" o" è un'operazione su F(X). è associativa, ma non è commutativa.
- $a \circ b = \frac{a+b}{2}$ è un'operazione commutativa su \mathbb{Q} , ma non associativa.

Definizione: Sia · un'operazione su X. Un elemento $e \in X$ tale che $e \cdot x = x \cdot e = x$, $\forall x \in X$ è detto **elemento neutro** o **identità**.

L'identità è unica; se $e, e' \in X$ sono due identità, allora $e = e \cdot e' = e'$.

1.3 Monoidi e Gruppi

Definizione: Un insieme X con un'operazione associativa e un'identità è detto monoide.

Esempio:

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ con l'addizione e identità 0 sono monoidi.
- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ con la moltiplicazione e identità 1 sono monoidi.
- $\mathcal{P}(X)$ con \cup e come identità l'insieme X è un monoide.
- $\mathcal{P}(X)$ con \cap e come identità l'insieme vuoto è un monoide.
- $F(X) := \{f : X \to X\}$ con la composizione" o "e come identità la funzione identità (Id_X) è un monoide.

Definizione: Sia X un monoide. Un elemento $x \in X$ è detto **invertibile** se esiste $y \in X$ tale che $x \cdot y = y \cdot x = e$, dove e è l'identità di X. L'elemento y è detto **inverso** di x.

Se $x \in X$ è invertibile, il suo inverso è unico e lo indichiamo con x^{-1} . L'identità del monoide è invertibile e il suo inverso è l'identità stessa.

Esempio:

- L'insieme degli elementi invertibili di $(\mathbb{N}, +)$ è $\{0\}$.
- Linsieme degli elementi invertibili di $(\mathbb{Z}, +)$ è \mathbb{Z} , di $(\mathbb{Q}, +)$ è \mathbb{Q} , di $(\mathbb{R}, +)$ è \mathbb{R} , di $(\mathbb{C}, +)$ è \mathbb{C} .
- L'insieme degli elementi invertibili di (\mathbb{N},\cdot) è $\{1\}$, di (\mathbb{Z},\cdot) è $\{1,-1\}$, di (\mathbb{Q},\cdot) è $\mathbb{Q}\setminus\{0\}$, di (\mathbb{R},\cdot) è $\mathbb{R}\setminus\{0\}$, di (\mathbb{C},\cdot) è $\mathbb{C}\setminus\{0\}$.
- L'insieme degli elementi invertibili di $F(X) = \{f : X \to X\}$ è l'insieme delle funzioni invertibili.

Definizione: Un monoide X è detto **gruppo** se ogni suo elemento è invertibile. Se l'operazione è commutativa, il gruppo è detto **gruppo abeliano**.

Esempio:

- $(\mathcal{P}(x), \Delta)$ è un gruppo abeliano. L'identità è l'insieme vuoto e l'inverso di $A \in \mathcal{P}(x)$ è A stesso. $(A^2 = \varnothing, \forall A \subseteq X)$
- $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$ sono gruppi abeliani
- $(\mathbb{Q}\setminus\{0\}, \bullet)$, $(\mathbb{R}\setminus\{0\}, \bullet)$, $(\mathbb{C}\setminus\{0\}, \bullet)$ sono gruppi abeliani
- sia $X = \{1, 2, \dots, n\}$ l'insieme delle funzioni invertibili $f: X \to X$ è il **Gruppo** delle permutazioni di n elementi (o gruppo simmetrico). Lo indiciamo con S?n. $|S_n| = m!$. Non è abeliano se $n \ge 3$.

Definizione: Sia X un monoide con identità e. Un sottoinsieme $Y \subseteq X$ tale che $e \in Y$ e Y è chiuso rispetto all'operazione di X è detto **sottomonide di** X. Analogamente definiamo la nozione di **sottogruppo di** X. il gruppo $\{e\}$ è detto **sottogruppo banale** di X.

Esempio:

- Con l'addizione, $\{0\}$ èun sottomonoide di \mathbb{N} . $\{0\}$ è anche sottogruppo banale.
- Con la moltiplicazione abbiamo la catena di sottomonoidi $\{1\} \subseteq \mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq insieme R \subseteq \mathbb{C}$ e di sottogruppi $\{1\} \subseteq \mathbb{Q} \setminus \{0\} \subseteq \mathbb{R} \setminus \{0\}$
- con l'addizione abbiamo la caten di sottogruppi $\{0\} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$

Definizione: Sia X un monoide e $S \subseteq X$ un sottoinsieme. L'insieme $\langle S \rangle := \{x_1 \cdot x_2 \cdot \cdots x_n : n \in \mathbb{N}, x_1, x_2, \cdots, x_n \in S\}$ è detto **sottomonoide generato da** S (intersezione di utti i sottomonoidi di X che contengono S). Se X è un gruppo, $\langle S \rangle$ è detto **sottogruppo** generato da S.

Esempio:

- $S = \{1\} \subseteq (\mathbb{N}, +)$. Allora $\langle S \rangle = \{0, 1, 2, \cdots\} = \mathbb{N}$
- sia $S := \{ p \in \mathbb{N} : p \text{ è primo} \} \cup \{ 0 \} \subseteq (\mathbb{N}, \cdot)$. allora $\langle S \rangle = \mathbb{N}$
- $S = \{0, 1\} \subseteq (\mathbb{N}, \bullet)$. Allora $\langle S \rangle = \{0, 1\}$
- sia $S = \{1\} \subseteq (\mathbb{Z}, +)$. il sottogruppo generato da S è $\langle S \rangle = \mathbb{Z}$
- uno spazio ettoriale V è un gruppo abeliano se consideriamo l'operazione di addizione fra vettori. Prendiamo $V = \mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$. Sia $v = (1, 1) \in \mathbb{R}^2$. Il sottogruppo $\langle \{v\} \rangle = \{(n, n) : n \in \mathbb{Z}\}$ è un sottogruppo proprio del sottospazio generato da $\{v\}$. Sia $v_1 = (1, 0)$ ed $v_2 = (0, 1)$, allora il sottogruppo $\langle \{v_1, v_2\} \rangle$ è $\mathbb{Z} \times \mathbb{Z} \subseteq \mathbb{R} \times \mathbb{R}$

Definizione: Siano M_1, M_2 con identità e_1, e_2 rispettivamente. Si definisce prodotto diretto di M_1 e M_2 l'insieme $M_1 \times M_2$ con l'operazione $(m_1, m_2) \cdot (m'_1, m'_2) = (m_1 \cdot m'_1, m_2 \cdot m'_2)$ e identità (e_1, e_2) . Analogamente si definisce prodotto diretto di gruppi G_1eG_2 .

L'inverso di una coppia $(a, b) \in G_1 \times G_2$ è (a^{-1}, b^{-1}) .

1.4 Morfismi

Definizione: Siano M_1eM_2 monoidi con identità e_1ee_2 . Una funzione $f:M_1 \to M_2$ è un morfismo di monoidi se:

- $f(e_1) = e_2$
- f(xy) = f(x)f(y)

Definizione: Siano G_1eG_2 gruppi con identità e_1ee_2 . Una funzione $f:G_1 \to G_2$ è un morfismo di gruppi se:

- $f(e_1) = e_2$
- \bullet f(xy) = f(x)f(y)

Definizione: Il **nucleo** di un morfismo di monoidi $f: M_1 \to M_2$ è il sottomonoide di M_1 definito come: $Ker(f) := \{x \in M_1 : f(x) = e_2\}$

Definizione: Il nucleo di un morfismo di gruppi $f: G_1 \to G_2$ è il sottogruppo di G_1 definito come: $Ker(f) := \{x \in G_1 : f(x) = e_2\}$. Il nucleo è un sottogruppo di G_1 . e Im(f) è un sottogruppo di G_2 .

Definizione: Un isomorfismo di monoidi (e di gruppi) èun morfismo biunivoco, tale che la funzione inversa sia un morfismo.

Proposizione: Sia $f: M_1 \to M_2$ un morfismo di monoidi. Se f è biunivoco, allora è un isomorfismo. Questo vale anche per i gruppi.

Dimostrazione: Dobbiamo far vedere che la funzione inversa $f^{-1}: M_2 \to M_2$ è un morfismo di monoidi. Poiché $f(e_1) = e_2$, allora $f^{-1}(e_2) = e_1$. Siano $x_2, y_2 \in M_2$, allora esistono $x_1, y_1 \in M_1$ tali che $f(x_1) = x_2, f(y_1) = y_2$. Quindi $f^{-1}(f(x_1)f(y_1)) = f^{-1}(f(x_1y_1)) = x_1y_1 = f^{-1}(x_2)f^{-1}(y_2)$

Esempio:

- Siano $M_1 = (\mathcal{P}(X), \cup)$ e $M_2 = (\mathcal{P}(X), \cup)$, dove X è un insieme. Sia $f: M_1 \to M_2$ definita ponendo $f(A) = A^C, \forall A \subseteq X$. la funzione f è biunivoca. Inotre, dalle formule di De Morgan segue che $f(A \cap B) = (A \cap B)^C = A^C \cup B^C = f(A) \cup f(B)$. Quindi f è un isomorfismo di monoidi, poiché $f(X) = X^C = \emptyset$, essendo X l'identità di M_1 e \emptyset l'identità di M_2 .
- Sia $\mathbb{Z}_2 := \{0, 1\}$ con l'operazione definita come: 0+0=0, 0+1=1+0=1, 1+1=0. Sia $X := \{1, 2, \dots, n\}, n \in \mathbb{N}$. La funzione $f : \mathcal{P}(X) \to \mathbb{Z}_2 \times \dots \times \mathbb{Z}_2$ (n volte) definita da: $f(A) = (a_1, a_2, \dots, a_n)$, dove $a_i = 1$ se $i \in A$ e $a_i = 0$ se $i \notin A$. è un isomorfismo del gruppo $(\mathcal{P}(X), \Delta)$ con il gruppo $\mathcal{P}(X) \to \mathbb{Z}_2 \times \dots \times \mathbb{Z}_2 = (\mathbb{Z}_2)^n$

Vediamo ora come ogni monoide finito è isomorfo a un monoide di matrici quadrate, dove l'operazione è il prodotto righe per colonne.

Sia $M = \{x_1, \dots, x_n\}$ un monoide, $|M| = n \in \mathbb{N}$, con identità $e = x_1$. Per ogni $x \in M$ definiamo una matrice $A(x) \in Mat_{n \times n}(\mathbb{Z})$ nel seguente modo: $A(x)_{ij} = 1$ se $x_i \cdot x = x_j$ e $A(x)_{ij} = 0$ altrimenti. La funzione $F : M \to Mat_{n \times n}(\mathbb{Z})$ $(x \mapsto A(x))$ è iniettiva.

Infatti, se A(x) = a(y), allora $A(x)_{i1} = A(y)_{i1}$, $\forall i \in \{1, \dots, n\}$.

Quindi se $A(x)_{i1} = A(y)_{i1} = 1$, allora $xx_1 = xe = x = yx_1 = y$.

Risulta inoltre facile vedere che A(xy) = A(x)A(y) (prodotto righe per colonne), ossia che F è un morfismo di monoidi ($Mat_{n\times n}(\mathbb{Z})$ è un monoide con l'operazione di prodotto righe per colonne, la cui identità è la matrice I_n).

Quindi $F: M \to Im(F)$ è un isomorfismo di monoidi.

Esempio: Sia $M = (\mathbb{Z}_2, \cdot)$ il monoide definito da:

•	0	1
0	0	0
1	0	1

costruiamo un sottomonoide di $Mat_{4\times 4}(\mathbb{Z})$ isomorfo a $M\times M=\{(0,0),(0,1),(1,0),(1,1)\}.$

$$(1,1) \mapsto \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

•	(0,0)	(0,1)	(1,0)	(1,1)
(0,0)	(0,0)	(0,0)	(0,0)	(0,0)
(0,1)	(0,0)	(0,1)	(0,0)	(0,1)
(1,0)	(0,0)	(0,0)	(1,0)	(1,0)
(1,1)	(0,0)	(0,1)	(1,0)	(1,1)

Si può verificare direttamnete che le matrici hanno la stessa tabella moltiplicativa. (fine esempio)

Abbiamo quindi visto che un monoide finito di cardinalità n è isomorfo a un monoide di matrici $n \times n$ le cui colonne hanno un unico "1" e altrove sono "0".

Ognuna di queste matrici può essere vista come una funzione da $X = \{1, \dots, n\}$ in X:

$$A_{ij} = 1 \Leftrightarrow f(j) = i$$

$$A_{ij} = 0 \Leftrightarrow f(j) \neq i$$

Il prodotto righe per colonne corrisponde alla composizione di funzioni.

Quindi un monoide finito di cardinalità n è isomorfo a un sottomonide del monoide delle funzioni f da $\{1, \dots, n\}$ in $\{1, \dots, n\}$ con l'operazione di composizione.

Notiamo che un elemento $x \in M$ di un monoide finito M è invertibile se e solo se la matrice associata è invertibile (una matrice $A \in Mat_{n \times n}(\mathbb{Z})$ è invertibile se e solo se il suo determinante è invertibile su \mathbb{Z} , ossia se e solo se $det(a) \in \{-1, 1\}$).

Da ciò segue che un gruppo finito G di cardinalità |G| = n, è isomorfo a un gruppo di matrici le cui componenti sono"0" e "1" e che hanno un unico "1" in ogni riga e ogni colonna (matrici di permutazioni).

Il gruppo G è inoltre isomorfo a un sottogruppo del gruppo delle funzioni biunivoche da $\{1, \dots, n\}$ in $\{1, \dots, n\}$, che abbiamo chiamato **gruppo simmetrico** S_n .

Gli elementi di S_n in notazione a una linea sono indicati nel modo seguente: sia $\sigma \in S_n$ una funzione biunivoca da $\{1, \dots, n\}$ in $\{1, \dots, n\}$, allora σ è indicata come $\sigma(1)\sigma(2)\cdots\sigma(n)$.

Teorema (Teorema di Cayley): Ogni sottogruppo finito di cardinalità $n \in \mathbb{N} \setminus \{0\}$ è isomorfo a un sottogruppo di S_n

Esempio:

- $S_2 = \{12, 21\}$ $S_3 = \{123, 132, 213, 231, 312, 321\}$
- vediamo il gruppo $(\mathbb{Z}_2, +)$ come gruppo di matrici e come gruppo di permutazioni. $(\mathbb{Z}_2, +) \simeq \{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \} \simeq \{12, 21\} = S_2 \ (\simeq : \text{isomorfismo di gruppi})$

1.5 Relazioni

Definizione: Sia X un insieme. Un sottoinsieme $R \subseteq X \times X$ è detto **relazione su** X.

Definizione: Una relazione $R \subseteq X \times X$ è detta **relazione di equivalenza** se soddisfa le seguenti proprietà:

- riflessità: $(x, x) \in R, \forall x \in X$
- simmetria: $(x,y) \in R \implies (y,x) \in R, \forall x,y \in X$
- transitività: $(x,y) \in R$ $e(y,z) \in R \implies (x,z) \in R, \forall x,y,z \in X$

Se R è una relazione di equivalenza su X e $(x,y) \in R$, scriviamo $x \sim y$, che si legge "x è equivalente a y".

Definizione: Sia X un insieme e $R \subseteq X \times X$ una relazione di equivalenza su X. L'insieme $[x]_R := \{y \in X : x \sim y\}$ è detto classe di equivalenza di x rispetto a R.

Definizione: L'insieme $X/\sim := \{[x] : x \in X\}$ è detto insieme quoziente.

Definizione: La funzione $\pi: X \to X/\sim$, $x \mapsto [x]$ è detta **proiezione canonica**.

Definizione: Siano $x, y \in X$. Allora se $x \sim y$ abbiamo che [x] = [y]. Se $x \nsim y$ abbiamo che $[x] \cap [y] = \varnothing$. Quindi $X = \underset{[x] \in X/\sim}{\uplus} [x]$, ossia X/\sim è una partizione di X.

Esempio:

- \bullet L'uguaglianza " = " è una relazione di equivalenza su ogni insieme X.
- Sia $X = \{1, 2, \dots, n\}$. Definiamo si $\mathcal{P}(X)$ la seguente relazione: $A \sim B \Leftrightarrow |A| = |B|, \forall A, B \subseteq X$. Questa è una relazione di equivalenza e $\mathcal{P}^{(X)}/\sim \equiv \{0, 1, \dots, n\}$. Se $A \subseteq X$ è tale che $|A| = k \le n$ allora $|[A]| = \binom{n}{k} := \frac{n!}{k!(n-k)!}$
- Sia G un gruppo e $H \subseteq G$ un sottogruppo. La relazione \sim su G definita da $g_1 \sim g_2 \Leftrightarrow g_1 = g_2 h$ per qualche $h \in H$ è una relazione di equivalenza.
 - $-g \sim g: g \cdot e, \forall g \in G, e \in H$
 - $-g_1 \sim g_2 \rightarrow g_2 \sim g_1 : g_1 = g_2 h \rightarrow g_1 h^{-1} = g_2 \ (h^{-1} \in H)$

$$-g_1 \sim g_2, g_2 \sim g_3 \rightarrow g_1 \sim g_3: g_1 = g_2h, g_2 = g_3h' \rightarrow g_1 = g_3hh' = g_3h'', \forall g_1, g_2, g_3 \in G$$

In questo caso l'insieme quoziente lo indichiamo con ^G/H.

Definizione: Il numero $\binom{n}{k}$ è chiamato **coefficiente binomiale**, questo perché $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^n y^{n-k}, \forall x, y \in \mathbb{C}$

1.6 Insieme quoziente per gruppi abeliani

Se G è un gruppo abeliano, possiamo definire la seguente operazione "+" su ${}^{G}/H$: $[g_{1}] + [g_{2}] := [g_{1} + g_{2}]$, vediamo che è ben definita: se $g'_{1} = g_{1} + h_{1}$ e $g'_{2} = g_{2} + h_{2}$, allora $[g'_{1}] = [g_{1}]$, $[g'_{2}] = [g_{2}]$ e $g'_{1} + g'_{2} = g_{1} + h_{1} + g_{2} + h_{2} = g_{1} + g_{2} + h$, dove $h = h_{1} + h_{2} \in H$. Quindi $[g'_{1} + g'_{2}] = [g_{1} + g_{2}]$. L'operazione è ovviamente associativa e commutativa, perché lo è quella su G. Inoltre [g] + [0] = [g], $\forall [g] \in {}^{G}/H$ dove con "0" abbiamo indicato l'identità di G. Quindi la classe [0] dell'identità di $({}^{G}/H, +)$. Infine [g] + [-g] = [g - g] = [0], dove con -g abbiamo indicato l'inverso di g in G. Quindi -[g] = [-g], $\forall [g] \in {}^{G}/H$, ossia $({}^{G}/H, +)$ è un gruppo abeliano.

Esempio:

- Se $H = \{0\} \subseteq G$, allora G/H è isomorfo a G. ($\{0\}$ gruppo banale e G gruppo abeliano)
- Sia $G = (\mathbb{Z}, +)$ e $n \in \mathbb{N}$. Il sottoinsieme $n\mathbb{Z} = \{nz : z \in \mathbb{Z}\}$ è un sottogruppo di \mathbb{Z} .

$$-0\mathbb{Z} = \{0\}$$

$$-1\mathbb{Z} = {\mathbb{Z}}$$

$$-2\mathbb{Z} = \{\cdots, -4, -2, 0, 2, 4, \cdots\}$$

$$-3\mathbb{Z} = \{\cdots, -6, -3, 0, 3, 6, \cdots\}$$

Definiamo il gruppo abeliano $\mathbb{Z}_n := \mathbb{Z}/n\mathbb{Z}$, per $\mathbb{Z}_0 = \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/n\mathbb{Z}$. Sia $n \geq 0$ e siano $x, y \in \mathbb{Z}$.

- Allora $x \sim y \Leftrightarrow x = y + h \ (h \in n\mathbb{Z}) \Leftrightarrow x - y = kn \ (\text{per } k \in \mathbb{Z}) \Leftrightarrow$ il resto della divisione di x per n è uguale al resto della divisione di y per n.

I possibili resti della divisione per n sono $0, 1, \dots, n-1$. Quindi $\mathbb{Z}_n = \{[0], [1], \dots, [n-1]\} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}.$ $(\{[0], [1], \dots, [n-1]\}$ sono

le classi di resto)

 $-\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}, \overline{1} + \overline{1} = [1+1] = [2] = [0]$

$$\begin{array}{c|cccc} + & \overline{0} & \overline{1} \\ \hline \overline{0} & \overline{0} & \overline{1} \\ \hline \overline{1} & \overline{1} & \overline{0} \end{array}$$

$$- \mathbb{Z}_3 = \{\overline{0}, \overline{1}, \overline{2}\},\$$

Definizione: Sia G un gruppo abeliano e $H \subseteq G$ un sottogruppo. La proiezione canonica $\pi: G \to G/H$ è un morfismo suriettivo di gruppi

+	$\overline{0}$	1	$\overline{2}$	
$\overline{0}$	$\overline{0}$	1	$\overline{2}$	
1	$\overline{1}$	$\overline{2}$	$\overline{0}$	
$\overline{2}$	$\overline{2}$	$\overline{0}$	1	

Se G è un gruppo finito e $H \subseteq G$ è un sottogruppo, allora $[g] \in G/H \to |[g]| = |H|$. Infatti $[g] = \{gh : h \in H\} \text{ e } gh_1 = gh_2 \to h_1 = h_2.$

Poiché le classi di quivalenza sono una partizione di G, abbiamo $|G| = |G/H| \cdot |H|$.

In particolare la cardinalità o (ordine) di un sottogruppo di un gruppo finito divide la cardinalità del gruppo.

Teorema: Sia $f: G_1 \to G_2$ un morfismo di gruppi. Allora f è iniettivo se e solo se $Ker(f) = \{e_1\}.$

(Questo non vale per i morfismi di monoidi.)

Dimostrazione: Sia f iniettivo. Sia $x \in Ker(f)$. Allora $f(x) = e_2$ e quindi, poiché anche $f(e_1) = e_2$, si ha che $x = e_1$ per l'ipotesi di iniettività.

Sia
$$Ker(f) = \{e_1\}$$
. Siano $x, y \in G_1$ tali che $f(x) = f(y)$.
Allora $f(x)f(y^{-1}) = e_2 \to f(xy^{-1}) = e_2 \to xy^{-1} \in Ker(f) \to xy^{-1} = e_1 \to x = y$,

Esempio:

•
$$G = \mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\},\$$

- $-\langle \overline{0}\rangle = \overline{0}$ sottogruppo banale $\simeq \mathbb{Z}_1$
- $-\langle \overline{1}\rangle = \mathbb{Z}_4$
- $-\langle \overline{2}\rangle = \{\overline{0},\overline{2}\} \simeq \mathbb{Z}_2 \ (2+2=0)$
- $-\langle \overline{3} \rangle = \mathbb{Z}_4 (3, 3+3=6=2, 3+2=5=1, 3+1=4=0)$

I sottogruppi di \mathbb{Z}_4 possono averer cardinalità 1, 2, 4. L'insieme dei sottogruppo di $\mathbb{Z}_4 \ \text{\'e} \ \{\{\overline{0}\}, \{\overline{0}, \overline{2}\}, \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\} = \mathbb{Z}_4\}$

•
$$G = \mathbb{Z}_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\},$$

- $-\langle \overline{0}\rangle = \overline{0}$ sottogruppo banale $\simeq \mathbb{Z}_1$
- $-\langle \overline{1}\rangle = \mathbb{Z}_6$
- $-\langle \overline{2}\rangle = \{\overline{0}, \overline{2}, \overline{4}\} \simeq \mathbb{Z}_3$
- $-\langle \overline{3}\rangle = \{\overline{0},\overline{3}\} \simeq \mathbb{Z}_2$
- $-\langle \overline{4}\rangle = \{\overline{0},\overline{2},\overline{4}\} \simeq \mathbb{Z}_3$
- $-\langle \overline{5}\rangle = \mathbb{Z}_6$

I sottogruppi di \mathbb{Z}_6 possono averer cardinalità 1, 2, 3, 6. L'insieme dei sottogruppo di \mathbb{Z}_6 è $\{\{\overline{0}\}, \{\overline{0}, \overline{2}, \overline{4}\}, \{\overline{0}, \overline{3}\}, \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\} = \mathbb{Z}_6\}$

Caso generale: consideriamo il gruppo $\mathbb{Z}_n = (\{\overline{0}, \overline{1}, \cdots, \overline{n-1}\}, +)$ sia $m \in \mathbb{N}, m < \infty$

n. Se $m=0, \langle \overline{0} \rangle = \{ \overline{0} \}.$

Sia m > 0 e $z := \frac{mcm\{m,n\}}{m}$. (mcm = minimo comune multiplo)

 $\overline{m} + \overline{m} + \dots = \overline{m} = \overline{zm} = \overline{mcm\{m,n\}} = \overline{0}$

Se $i \le i \le z$: $im < zm = mcm\{m, n\} \to n$ non divide im.

 $\overline{m} + \overline{m} + \cdots = \overline{m} = \overline{im} \neq \overline{0}$ perché im è multiplo di m e $im < mcm\{m,n\}$, quindi im non è multiplo di n. Dunque $|\langle \overline{m} \rangle| = z = \frac{mcmc\{m,n\}}{m}$.

In particolare, $\langle \overline{m} \rangle = \mathbb{Z}_n \Leftrightarrow z = n \Leftrightarrow MCD^m\{m,n\} = 1$. Ossia l'insieme $\{\overline{m}\}$ genera il gruppo \mathbb{Z}_n sse m e n sono coprimi.

Definizione: La funzione definita da $\varphi : \mathbb{N} \setminus \{0\} \to \mathbb{N} \setminus \{0\}$,

 $\varphi(n) := |\{m \in \mathbb{N} \setminus \{0\} : m < n \text{ } e \text{ } MCD\{m,n\} = 1\}| \text{ } è \text{ } detta \text{ } funzione \text{ } di \text{ } Eulero.$ Quindi ci sono $\varphi(n)$ elementi \overline{m} tali che $\langle \overline{m} \rangle = \mathbb{Z}_n$.

Proposizione: L'insieme dei sottogruppi di $(\mathbb{Z}, +)$ è $\{n\mathbb{Z} : n \in \mathbb{N}\}.$

Dimostrazione: Sia $H \subseteq \mathbb{Z}$ un sottogruppo non banale.

Sia $k := min(H_{>0})$ dove $H_{>0} := \{h \in H : h > 0\}.$

Sia $h \in H_{>0}, h \neq k$.

Allora h > k e h = nk + r, $n \in \mathbb{N}, 0 \le r < k$.

Dunque $r = h - nk \in H \rightarrow r = 0$ per la minimalità di k.

Definizione: Un gruppo G è detto **ciclico** se esiste $g \in G$ tale che $\langle g \rangle = G$. Un gruppo ciclico è anche abeliano

Esempio:

- $\mathbb{Z} = \langle 1 \rangle$ è ciclico
- $\mathbb{Z}_n = \langle \overline{1} \rangle$ è ciclico
- $\mathbb{Z} \times \mathbb{Z} = \langle (1,0), (0,1) \rangle$ non è ciclico, infatti in $\mathbb{Z} \times \mathbb{Z}$, se $(a,b) \in \mathbb{Z} \times \mathbb{Z}$, $\langle (a,b) \rangle = \{(ka,kb) : k \in \mathbb{Z}\} = \{(x,y) : a \text{ divide } x,b \text{ divide } y\} \subsetneq \mathbb{Z} \times \mathbb{Z}$.
- $\mathbb{Z}_2 \times \mathbb{Z}_2$ non è ciclico. Infatti, in $\mathbb{Z}_2 \times \mathbb{Z}_2$ si ha:
 - $\langle (\overline{0}, \overline{0}) \rangle = \{ (\overline{0}, \overline{0}) \}$
 - $\langle (\overline{0}, \overline{1}) \rangle = \{\overline{0}\} \times \mathbb{Z}_2$
 - $\langle (\overline{1}, \overline{0}) \rangle = \mathbb{Z}_2 \times \{\overline{0}\}$
 - $-\ \langle (\overline{1},\overline{1})\rangle = \{(\overline{0},\overline{0}),(\overline{1},\overline{1})\}$

Quindi nessun elemento di $\mathbb{Z}_2 \times \mathbb{Z}_2$ genera $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Teorema (di isomorfismo per gruppi abeliani): Sia $f: G_1 \to G_2$ un morfismo di gruppi abeliani. Allora esiste un morfismo iniettivo $\varphi: {}^{G_1}/\kappa_{er\varphi} \to G_2$ tale che il seguente diagramma è commutativo:

$$G_1 \xrightarrow{f} G_2$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

In particolare, $G_1/Ker(f) \simeq \Im(f)$.

Dimostrazione: L'assegnazione $[g] \mapsto f(g), \forall g \in G$, definisce una funzione φ : $G_1/Ker(f) \to G_2$.

Infatti, se $g' \sim g$, ossia [g] = [g'], allora $g = g' + h, h \in Ker(f)$.

Dunque f(g) = f(g' + h) = f(g') + f(h) = f(g'). Poiché f è morfismo di gruppi, anche φ lo è.

Inoltre $Ker(f) = \{[g] \in G/Ker(f) : \varphi([g]) = O_2\} = \{[g] \in G/Ker(f) : f(g) = O_2\} = [O_1].$ Quindi φ è iniettiva.

Infine, $\varphi: G_1/Ker(f) \to Im(f)$ è un morfismo di gruppi, iniettivo e suriettivo, quindi un isomorfismo.

Teorema: Sia G un gruppo ciclico. Allora ogni sottogruppo di G è ciclico.

Dimostrazione: Sia $g \in G$ tale che $g = \langle g \rangle$. La funzione $\varphi : (\mathbb{Z}, +) \to G$ definita da $\varphi(g) = g^n, \forall n \in \mathbb{Z}, \ \grave{e}$ un morfismo suriettivo di gruppi.

- G è infinito: allora $Ker(f) = \{0\}$ e quindi φ è iniettivo. Dunque φ è un isomorfismo di gruppi. Tutti i sottogruppi di \mathbb{Z} sono ciclici.
- G è finito: sia $H \subseteq G$ un sottogruppo. Allora $\varphi^{-1}(H) := \{n \in \mathbb{Z} : \varphi(n) \in H\} \subseteq \mathbb{Z}$ è un sottogruppo di \mathbb{Z} , quindi esiste $\varphi^{-1}(H) = \langle k \rangle$ con $k \in \mathbb{N}$.

 La restrizione φ : $k\mathbb{Z} \to H$ è un morfismo suriettivo di gruppi e $\varphi(hk) = \varphi(\underbrace{k+k+\cdots+k}) = \varphi(k)\varphi(k)\cdots\varphi(k) = [\varphi(k)]^h, \forall h \in \mathbb{Z}$. Quindi $H = \langle \varphi(k) \rangle$.

Corollario: L'insieme dei sottogruppi di $\mathbb{Z}_n, n \in \mathbb{N}$ è $\{\langle \overline{m} \rangle : \overline{m} \in \mathbb{Z}_n \}$.

Proposizione: Sia $n \in \mathbb{N}$ e sia d/n (d divide n). Allora esiste al più un unico sottogruppo di \mathbb{Z}_n di cardinalità d.

Dimostrazione: Sia $H \subseteq \mathbb{Z}_n$ sottogruppo tale che |H| = d. Si considerino le proiezioni canoniche $\mathbb{Z} \to^{\pi_1} \mathbb{Z}_n \to^{\pi_2} \mathbb{Z}_n / H$.

Poiché $\pi_1^{-1}(H) = \{m \in \mathbb{Z} : \pi_1(m) \in H\}$ è un sottogruppo di \mathbb{Z} , allora esiste $k \in \mathbb{N}$ tale che $\pi_1^{-1}(H) = k\mathbb{Z}$. Inoltre $Ker(\pi_1 \cdot \pi_2) = \pi_1^{-1}(H)$ e quindi, essendo $\pi_1 \cdot \pi_2$ un morfismo suriettivo di gruppi, $\mathbb{Z}_n/H \simeq \mathbb{Z}/\pi^{-1}(H) = \mathbb{Z}/k\mathbb{Z} = \mathbb{Z}_k$.

Quindi $|\mathbb{Z}_k| = k = |\mathbb{Z}_n/H| = |\mathbb{Z}_n|/|H| = \frac{n}{d}$, ossia k è univocamente determinato, e allora $H = \pi_1(k\mathbb{Z})$ è univocamente determinato.

Esempio: I sottogruppi di \mathbb{Z}_{899} sono quattro, perché $899 = 31 \cdot 29$, quindi c'è un sottogruppo di cardinalità 1 (il sottogruppo banale), uno di cardinalità 31, uno di cardinalità $29 \in \mathbb{Z}_{899}$.

Sono: $\{\{0\}, \langle \overline{29} \rangle, \langle \overline{31} \rangle, \mathbb{Z}_{899}\}.$

1.7 Anelli

Definizione: Sia X un insieme su cui sono definite due operazioni $+ e \cdot X$ è un **anello** con unità 1_X se:

- (X, +) è un gruppo abeliano
- (X,\cdot) è un monoide con unità 1_X

• vale la proprietà distributiva:

$$-a \cdot (b+c) = a \cdot b + a \cdot c$$

- $(a+b) \cdot c = a \cdot c + b \cdot c$, $\forall a, b, c \in X$

Definizione: Diaciamo che un anello X è **commutativo** se il monoide (X, \cdot) è commutativo.

Indichiamo con "0" l'identità del gruppo (X, +).

Esempio:

- Gli insiemi $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ con le operazioni di addizione e moltiplicazione sono anelli commutativi con unità, che è il numero "1".
- L'insieme delle matrici $n \times n$, n > 1 a valori su \mathbb{Z} , su \mathbb{Q} , su \mathbb{R} o su \mathbb{C} , con l'operazione di somma e il prodotto righe per colonne, è un anello **non commutativo**, con unità la matrice identità.
 - In generale, se A è un anello commutativo con unità, l'insieme $Mat_{n\times n}(A)$ delle matrici a valori in \mathbb{R} con le operazioni di somma e prodotto righe per colonne, è un anello non commutativo con unità.
- $\{X\}$ è un anello, detto **anello nullo**. Le due operazioni sono la stessa e $0 = 1_{\{X\}} = x$.

Considereremo sempre $0 \neq 1_A$ e studieremo solo anelli commutativi con unità. Quindi quando diremo "anello" intendiamo "anello con unità".

Definizione: Sia A un anello commutativo. Un elemento $x \in A$ è detto **zero divisore** se esiste $y \in A \setminus \{0\}$ tale che xy = 0.

Definizione: Diciamo che un elemento $x \in A$ è **invertibile** se è un elemento invertibile del monoide (A, \cdot) .

Proposizione: Sia A un anello commutativo. Allora l'insieme degli elementi invertibili di A è disgiunto dall'insieme degli zero-divisori di A.

Dimostrazione: Siano $x, y \in A$ tali che xy = 0. Se X è invertibile, allora $x^{-1}xy = y = 0$, quindi x non è uno zero-divisore.

Proposizione (legge di cancellazione): Sia A un anello commutativo e sia $x \in A$ un elemento che non è uno zero-divisore. Allora $xy = xz \rightarrow y = z, \forall y, z \in A$.

Dimostrazione: Se xy = xz allora x(y - z) = 0. Poiché x non è uno zero-divisore, allora y - z = 0, ossia y = z.

Definizione: Un anello commutativo privo di zero-divisori non nulli è detto **dominio** di integrità.

Definizione: Un anello commutativo i cui elementi non nulli sono tutti invertibili è detto campo.

Esempio: L'anello \mathbb{Z} è un dominio di integrità, ma non è un campo. Gli anelli $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ sono campi.

1.8 Ideali

Definizione: Sia A un anello commutativo. Un sottoinsieme $I \subseteq A$ è detto **ideale** di A se:

- $I \ \dot{e} \ un \ sottogruppo \ di \ (A, +)$
- $ax \in I, \forall a \in A, x \in I$

Esempio: Abbiamo già visto che ogni sottogruppo di $(\mathbb{Z}, +)$ è del tipo $n\mathbb{Z} = \{kn : k \in \mathbb{Z}\}$, dove $n \in \mathbb{N}$. Inoltre, se $a \in \mathbb{Z}$ e $x \in n\mathbb{Z}$, ossia x = kn per qualche $k \in \mathbb{Z}$, si ha che $ax = akn \in n\mathbb{Z}$. Quindi $n\mathbb{Z}$ è un ideale di $\mathbb{Z}, \forall n \in \mathbb{N}$, e tutti gli ideali di \mathbb{Z} sono di questo tipo.

Osservazioni: Siano $I,J\subseteq A$ ideali di un anello commutativo A. Allora :

- $I \cap J$ è un ideale di A
- $I + J := \{x + y : x \in I, y \in J\}$ è un ideale di A
- $IJ := \langle \{xy : x \in I, y \in J\} \rangle$ è un ideale di A

Definizione: Sia $S \subseteq A$ un sottoinsieme di un anello commutativo. **L'ideale generato** da S è l'intersezione di tutti gli ideali di A che contengono S e lo indichiamo con $\langle S \rangle$. Se $S = \{x\}$, diciamo che $\langle S \rangle$ è l'ideale principale generato da $x \in A$.

Esempio: Abbiamo visto che gli ideali di \mathbb{Z} sono tutti e soli i sottoinsiemi $n\mathbb{Z} = \langle n \rangle, n \in \mathbb{N}$. Quindi gli ideali di \mathbb{Z} sono tutti principali.

Definizione: un anello i cui ideali sono tutti principali si dice anello ad ideali principali.

Proposizione: Sia A un anello commutativo e $I \subseteq A$ un ideale. Allora:

- I = A se e solo se I contiene un elemento invertibile
- A è un campo sse i suoi unici ideali sono $\langle 0 \rangle$ e $A = \langle 1_A \rangle$

Dimostrazione:

- se I = A allora $1_A \in I$ e 1_A è invertibile. Sia $u \cap I$ un elemento invertibile. Allora $u^{-1} \cap A$ e quindi $1_A u u^{-1} \in I$. Ne segue che $A = \langle 1_A \rangle \subseteq I$. e quindi I = A.
- Sia A un campo e sia I ≠ ⟨0⟩.
 se n ∈ I e x ≠ 0 allora x è invertibile e quindi I = A per il punto sopra.
 Vicerversa, se ⟨0⟩ e A sono gli unici ideali di A, e se x ∈ A\{0}, allora ⟨X⟩ = ⟨1_A⟩, ossia ax = 1_A per qualche a ∈ A. Quindi x è invertibile.

1.9 Anelli quoziente

Sia A un anello commutativo e $I \subseteq A$ un ideale.

In particolare, A con l'operazione "+" è un gruppo abeliano e I è un sottogruppo di A. Allora possiamo definire il gruppo quoziente A/I.

Con l'operazione $[x] \cdot [y] := [xy]$, per ogni $[x], [y] \in A/I$, abbiamo che A/I è un anello commutativo con unità $[1_A]$.

Infatti, mostriamo che l'operazione è ben definita. Siano $x' \in [x]$ e $y' \in [y]$. Allora esistono $i_x \in I$ e $i_y \in I$ tali che $x' = x + i_x$ e $y' = y + i_y$.

Quindi
$$x'y' = (x + i_x)(y + i_y) = xy + \underbrace{xi_y + yi_x + i_xi_y}_{\in I \text{ perchè } I \text{ è un ideale di } A}$$

Quindi [x'y'] = [xy].

Inoltre $[1_A][x] = [1_A x] = [x]$, per ogni $[x] \in A/I$, quindi $[1_A]$ è l'unità di A/I.

Esempio: Abbiamo visto che $n\mathbb{Z} = \{kn : k \in \mathbb{Z}\}$ è un ideale dell'anello \mathbb{Z} . Quindi il quoziente $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ ha la struttura di anello.

- $\mathbb{Z}_0 \simeq \mathbb{Z}$
- $\mathbb{Z}_1 \simeq \{0\}$ anello nullo.
- $\mathbb{Z}_2 \simeq \{\overline{0}, \overline{1}\}$

$$\begin{array}{c|cccc} \cdot & \overline{0} & \overline{1} \\ \hline \overline{0} & \overline{0} & \overline{0} \\ \hline \overline{1} & \overline{0} & \overline{1} \\ \end{array}$$

• $\mathbb{Z}_3 \simeq \{\overline{0},\overline{1},\overline{2}\}$ è un campo perchè $\overline{1}$ è invertibile e $\overline{2}\cdot\overline{2}=\overline{1}$, quindi anche $\overline{2}$ è invertibile.

	$\overline{0}$	1	$\overline{2}$
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
1	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{1}$

• $\mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$ dove $\overline{2} \cdot \overline{2} = \overline{0}$, quindi \mathbb{Z}_4 non è un dominio di integrità. In particolare non è un campo.

•	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
1	$\overline{0}$	$\overline{1}$	$\overline{2}$	3
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{0}$	$\overline{2}$
3	$\overline{0}$	3	$\overline{2}$	1

Vediamo che \mathbb{Z}_n è un campo se e solo se $n \in \mathbb{N} \setminus \{0,1\}$ è un numero primo (per n=0abbiamo $\mathbb{Z}_0 \simeq \mathbb{Z}$ e per n=1 abbiamo l'anello nullo).

Un ideale di \mathbb{Z}_n è un sottogruppo di \mathbb{Z}_n .

Poiché \mathbb{Z}_n è ciclico, i suoi sottogruppi sono ciclici e sono $\{\langle \overline{m} \rangle : \overline{m} \in \mathbb{Z}_n \}$. Inoltre $\langle \overline{m} \rangle \subseteq \mathbb{Z}_n$

è un ideale, $\forall \overline{m} \in \mathbb{Z}_n$. Infatti, se $\overline{a} \in \mathbb{Z}$, allora $\overline{am} = \overline{am} = \underline{\overline{m} + \overline{m} + \cdots + \overline{m}} \in \langle \overline{m} \rangle$

Quindi $\{\langle \overline{m} \rangle : \overline{m} \in \mathbb{Z}_n\}$ è l'insieme degli ideali di \mathbb{Z}_n (\mathbb{Z}_n è anello ad ideali principali). Inoltre, se n > 1, $\{\langle \overline{m} \rangle \overline{m} \in \mathbb{Z}_n\} = \{\{\overline{0}\}, \mathbb{Z}_n\} \cup \{\langle \overline{m} \rangle : MCD_{m \neq 0}\{m, n\} \neq 1\}$ Quindi \mathbb{Z}_n è un campo se e solo se $\{\langle \overline{m} \rangle : \overline{m} \in \mathbb{Z}_n\} = \{\{\overline{0}\}, \mathbb{Z}_n\}$ se e solo se n è un numero primo.

Esempio: \mathbb{Z}_3 è un campo, si ha che $\overline{2}^{-1} = \overline{2}$. Infatti $\overline{2} \cdot \overline{2} = \overline{4} = \overline{1}$. Invece \mathbb{Z}_4 non lo è; infatti $\overline{2} \cdot \overline{2} = \overline{0}$ e quindi $\overline{2}$ non è invertibile.

1.10 Algoritmo di Euclide e identità di Bézout su $\mathbb Z$

Vogliamo calcolare il massimo comun divisore tra 1876 e 365. Usiamo l'algoritmo di Euclide:

$$1876 = 5 \cdot 365 + 51$$

$$365 = 7 \cdot 51 + 8$$

$$51 = 6 \cdot 8 + 3$$

$$8 = 2 \cdot 3 + 2$$

$$3 = 1 \cdot 2 + 1$$

$$2 = 2 \cdot 1 + 0$$

Quindi $MCD\{1876, 365\} = 1$.

Adesso vogliamo trovare due numeri $x, y \in \mathbb{Z}$ tali che 1876x + 365y = 1. Un'identità del tipo $ax + by = MCD\{a, b\}$ si chiama **identità di Bézout**. Dall'algoritmo di Euclide abbiamo:

$$1 = 3 - 2 \cdot 1$$

$$2 = 8 - 3 \cdot 2$$

$$3 = 51 - 6 \cdot 8$$

$$8 = 365 - 7 \cdot 51$$

$$51 = 1876 - 5 \cdot 365$$

Quindi

$$1 = 3 - 2 =$$

$$= 3 - (8 - 3 \cdot 2) = 3 \cdot 3 - 8$$

$$= 3 \cdot (51 - 8 \cdot 6) - 8 = 3 \cdot 51 - 8 \cdot 19$$

$$= 3 \cdot 51 - 19(365 - 51 \cdot 7)$$

$$= 136 \cdot 51 - 19 \cdot 365$$

$$= 136 \cdot (1876 - 365 \cdot 5) - 19 \cdot 365$$

$$= 136 \cdot 1876 - 699 \cdot 365$$

Quindi x = -699 e y = 136.

In generale possiamo enunciare il seguente teorema:

Teorema: siano $a, b \in \mathbb{N} \setminus 0$, se $a \mid b$, allora $a = MCD\{a, b\}$. se $a \nmid b$ e r è l'ultimo resto non nullo dell'algoritmo di Euclide, allora $r = MCD\{a, b\}$. inoltre esistono $x, y \in \mathbb{Z}$ tali che $ax + by = MCD\{a, b\}$.

Dimostrazione: Sia $I = \{ax + by : x, y \in \mathbb{Z}\}$ l'insieme dei multipli di $a \in b$.

Poiché I è un ideale di \mathbb{Z} , allora $I = n\mathbb{Z}$ per qualche $n \in \mathbb{N}$.

Poiché $a \in I$, allora $n \mid a$.

Poiché $b \in I$, allora $n \mid b$.

Quindi $n = MCD\{a, b\}.$

Inoltre, poiché $r \in I$, allora r = ax + by per qualche $x, y \in \mathbb{Z}$.

Quindi $r = MCD\{a, b\}.$

fatta da copilot, controllare a pag 40 di "a concrete introduction to higher algebra" di Lindsay Childs

1.11 Equazioni diofantee lineari

sono equazioni del tipo ax + by = c, con $a, b, c \in \mathbb{Z}$.

Proposizione: siano $a, b, c \in \mathbb{Z}$.

allora esistono $x, y \in \mathbb{Z}$ tali che ax + by = c se e solo se $MCD\{a, b\} \mid c$.

Dimostrazione: Se ax + by = c, allora $MCD\{a, b\} \mid c$.

Viceversa, se $d := MCD\{a, b\} \mid c$, allora abbiamo un'identità di Bézout ax + by = d $\forall x, y \in \mathbb{Z}$.

se $d \mid c$ cioè se $c = d \cdot k$ per qualche $k \in \mathbb{Z}$, a(kx) + b(ky) = kd = c

Esempio: l'equazione diofantea:

365x - 1876y = 24 ha soluzione perchè $MCD\{365, 1876\} = 1$ e 1 | 24.

Avevamo l'identità di Bézout 365(-699) - 1876(-136) = 1, moltiplicando per 24 otteniamo

 $365(-699 \cdot 24) - 1876(-136 \cdot 24) = 24.$

ossia una soluzione è $x = -699 \cdot 24$ e $y = -136 \cdot 24$.

Esempio: in \mathbb{Z}_{1876} calcolare, se esiste, l'inverso moltiplicativo di $\overline{365}$.

abbiamo che $\overline{365} \cdot \overline{a} = \overline{1}$ in \mathbb{Z}_{1876}

se e solo se esistono $a, b \in \mathbb{Z}$ t.c. $365 \cdot a = 1 + b \cdot 1876 \leftrightarrow 365 \cdot a - 1876 \cdot b = 1$.

una soluzione è a = -699 e b = 136, ossia $\overline{365}^{-1} = \overline{-699} = \overline{1177}$.

1.12 Morfismi di anelli

Definizione: se $p \in \mathbb{N}$ è un numero primo, scriviamo $\mathbb{F}_p := \mathbb{Z}_p$; il campo \mathbb{F}_p ha p elementi.

Definizione: Siano A, B due anelli. Un'applicazione $f: A \to B$ è un **morfismo di** anelli se:

- $f:(A,+)\to (B,+)$ è un morfismo di gruppi.
- $f:(A,\cdot)\to(B,\cdot)$ è un morfismo di monoidi.

Definizione: il nucleo di un morfismo di anelli $f: A \to B$ è l'insieme $Ker(f) := \{a \in A : f(a) = 0\}.$

Osservazione: Ker(f) è un ideale di A, A anello commutativo.

Esempio: sia $I \subseteq A$ un ideale di un anello commutativo A. allora la proiezione canonica $\pi: A \to {}^A\!/\!{}_I$ che mappa $a \to [a]$ è un morfismo di anelli il cui nucleo è I.

Esempio: si consideri l'anello dei numeri complessi \mathbb{C} . allora il coniugio $\overline{z} = \overline{a+bi} = a-bi$ è un morfismo di anelli da \mathbb{C} in \mathbb{C} : $\overline{1} = 1, \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}, \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$

Teorema (di isomorfismo per anelli commutativi): Sia $f: A \to B$ un morfismo di anelli commutativi. Allora esiste un morfismo iniettivo di anelli $\Psi: {}^{A}/Ker(f) \to B$ tale che il seguente diagramma è commutativo:

in particolare, se f è suriettivo, allora Ψ è un isomorfismo di anelli.

Notazione: $\overline{x} \in \mathbb{Z}_n$. La classe di equivalenza \overline{x} la scriveremo anche $x \mod n$.

Teorema (Teorema cinese dei resti): siano $n_1, n_2, ..., n_k \in \mathbb{N} \setminus \{0, 1\}$ tali che $MCD\{n_i, n_j\} = 1$ per ogni $1 \leq i, j \leq k, i \neq j$. sia $n := n_1 \cdot n_2 \cdot ... \cdot n_k$. allora la funzione $\Psi : \mathbb{Z}_n \to \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times ... \times \mathbb{Z}_{n_k}$ che mappa $xmodn \to (xmodn_1, xmodn_2, ..., xmodn_k)$ è un isomorfismo di anelli.

Dimostrazione: vediamo prima di tutto che Ψ è un morfismo di anelli dove $f: \mathbb{Z} \to \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times ... \times \mathbb{Z}_{n_k}$. è definita da $f(x) = (x mod n_1, x mod n_2, ..., x mod n_k) \forall x \in \mathbb{Z}$.

- $f(a + b) = ((a + b)modn_1, ..., (a + b)modn_k)$ = $(amodn_1 + bmodn_1, ..., amodn_k + bmodn_k)$ = $(amodn_1, ..., amodn_k) + (bmodn_1, ..., bmodn_k)$ = $f(a) + f(b), \forall a, b \in \mathbb{Z}$
- $f(1) = (1 mod n_1, ..., 1 mod n_k)$ $e(1 mod n_1, ..., 1 m$
- $f(a \cdot b) = ((a \cdot b) mod n_1, ..., (a \cdot b) mod n_k)$ = $(a mod n_1 \cdot b mod n_1, ..., a mod n_k \cdot b mod n_k)$ = $(a mod n_1, ..., a mod n_k) \cdot (b mod n_1, ..., b mod n_k)$ = $f(a) \cdot f(b), \forall a, b \in \mathbb{Z}$

 $ora\ mostriamo\ che\ f\ \grave{e}\ suriettivo: \\ sia\ (a_1modn_1,...,a_kmodn_k)\in\mathbb{Z}_{n_1}\times\mathbb{Z}_{n_2}\times...\times\mathbb{Z}_{n_k} \\ osserviamo\ che\ MCD\{n_i,n_1n_2...n_{i-1}n_{i+1}...n_k\}=1,\forall 1\leq i\leq k. \\ quindi\ abbiamo\ le\ identit\grave{a}\ di\ B\acute{e}zout:\ c_in_i+b_i\frac{n}{n_i}=1\ ossia \\ u_i+v_i=1\ dove\ u_i=c_in_i\in< n_i>e\ v_i=b_i\frac{n}{n_i}\in<\frac{n}{n_i}>. \\ diefiniamo\ x:=a_1v_1+...+a_kv_k\ e\ abbiamo\ che\ f(x)=(a_1modn_1,...,a_kmodn_k). \\ infatti\ v_imodn_j=\begin{cases} 0 & se\ i\neq j\\ 1 & se\ i=j \end{cases}$

dal teorema di isomorfismo abbiamo che $\mathbb{Z}/\mathrm{Ker}(f) \simeq \mathbb{Z}_{n_1} \times ... \times \mathbb{Z}_{n_k}$ come anelli. ma abbiamo che $\mathrm{Ker}(f) = < n_1 > \cap < n_2 > \cap ... \cap < n_k >$ = $< mcm\{n_1, ..., n_k\} > = < n_1 n_2 ... n_k > dato che n_i e n_j sono coprimi <math>\forall i \neq j$. quindi $\mathbb{Z}/\mathrm{Ker}(f) = \mathbb{Z}/< n > = \mathbb{Z}_n$ e l'isomorfismo $\Psi : \mathbb{Z}_n \to \mathbb{Z}_{n_1} \times ... \times \mathbb{Z}_{n_k}$ è quello dell'enunciato del teorema.

Esempio: siano $n_1 = 3, n_2 = 7en_3 = 10$. Allora $n := n_1n_2n_3 = 210$ e abbiamo l'isomorfismo di anelli $\mathbb{Z}_{210} \simeq \mathbb{Z}_3 \times \mathbb{Z}_7 \times \mathbb{Z}_{10}$. sia $(2mod3, 5mod7, 4mod10) \in \mathbb{Z}_3 \times \mathbb{Z}_7 \times \mathbb{Z}_{10}$, questa terna corrisponde ad un elemento $xmod210 \in \mathbb{Z}_{210}$ che soddisfa il sistema

$$\begin{cases} x \mod 3 = 2 \mod 3 \\ x \mod 7 = 5 \mod 7 \\ x \mod 10 = 4 \mod 10 \end{cases}$$

la dimostrazione del teorema cinese dei resti ci dice come trovare x. $x=2v_1+5v_2+4v_3$ dove se 3a+70b=1,7a+30b=1 e 10a+21b=1 sono identità di Bézout, allora $v_1=70b,v_2=30b=30,v_3=21b$

$$3a + 70b = 1 \rightarrow a = -23, b = 1 \rightarrow v_1 = 70$$

$$7a + 30b = 1 \rightarrow 30 = 4 \cdot 7 + 2, 7 = 3 \cdot 2 + 1$$

$$\rightarrow 1 = 7 - 3 \cdot 2 = 7 - 3(30 - 4 \cdot 7) =$$

$$13 \cdot 7 - 3 \cdot 30 = 91 - 90 = 1 \rightarrow a = 13, b = -3 \rightarrow v_2 = -3 \cdot 30$$

$$10a + 21b = 1 \rightarrow a = -2, b = 1 \rightarrow v_3 = 21$$

quindi $x = 2 \cdot 70 - 5 \cdot 3 \cdot 30 + 4 \cdot 21 = 194 \mod 210$

Corollario: Sia $U(\mathbb{Z}_n)$ il gruppo degli elementi invertibili dell'anello \mathbb{Z}_n . sia $n:=n_1...n_k$ dove $MCD\{n_i,n_j\}=1 \forall 1\leq i,j\leq k,i\neq j$. e $n_i\in\mathbb{N}\setminus\{0,1\}\forall 1\leq i\leq k$. allora come i gruppi $U(\mathbb{Z}_n)\simeq U(\mathbb{Z}_{n_1})\times...\times U(\mathbb{Z}_{n_k})$

Dimostrazione: l'isomorfismo Ψ del teo. cinese dei restti, ristretto a $U(\mathbb{Z}_n)$ dà un isomorfismo di gruppi

Poiché un elemento $\overline{x} \in \mathbb{Z}_n$ è invertibile s.s.e. esiste un'identità di Bézout ax + bn = 1 abbiamo che \overline{x} è invertibile s.s.e. $MCD\{x, n\} = 1$. Quindi $|U(\mathbb{Z}_n)| = \varphi(n)$, con φ funzione di Eulero.

dal precedente Corollario e da questo segue un altro Corollario:

Corollario: Sia $\varphi : \mathbb{N} \setminus \{0\} \to \mathbb{N} \setminus \{0\}$ la funzione φ di Eulero. siano $x, y \in \mathbb{N} \setminus \{0\}$ tali che $MCD\{x, y\} = 1$, allora $\varphi(xy) = \varphi(x) \cdot \varphi(y)$.

Dimostrazione: dal Corollario precedente abbiamo che $U(\mathbb{Z}_{xy}) \simeq U(\mathbb{Z}_x) \times U(\mathbb{Z}_y)$ come i gruppi, quindi:

$$\varphi(xy) = |U(\mathbb{Z}_{xy})| = |U(\mathbb{Z}_x) \times U(\mathbb{Z}_y)| = |U(\mathbb{Z}_x)| \cdot |U(\mathbb{Z}_y)| = \varphi(x) \cdot \varphi(y)$$

Esempio: siano $n_1 = 3, n_2 = 7en_3 = 10$. Allora $n := n_1n_2n_3 = 210$ e abbiamo l'isomorfismo di anelli $\mathbb{Z}_{210} \simeq \mathbb{Z}_3 \times \mathbb{Z}_7 \times \mathbb{Z}_{10}$. sia $(2mod3, 5mod7, 4mod10) \in \mathbb{Z}_3 \times \mathbb{Z}_7 \times \mathbb{Z}_{10}$, questa terna corrisponde ad un elemento $xmod210 \in \mathbb{Z}_{210}$ che soddisfa il sistema

$$\begin{cases} x \mod 3 = 2 \mod 3 \\ x \mod 7 = 5 \mod 7 \\ x \mod 10 = 4 \mod 10 \end{cases}$$

la dimostrazione del teorema cinese dei resti ci dice come trovare x. $x=2v_1+5v_2+4v_3$ dove se 3a+70b=1,7a+30b=1 e 10a+21b=1 sono identità di Bézout, allora $v_1=70b,v_2=30b=30,v_3=21b$

$$3a + 70b = 1 \rightarrow a = -23, b = 1 \rightarrow v_1 = 70$$

$$7a + 30b = 1 \rightarrow 30 = 4 \cdot 7 + 2, 7 = 3 \cdot 2 + 1$$

$$\rightarrow 1 = 7 - 3 \cdot 2 = 7 - 3(30 - 4 \cdot 7) =$$

$$13 \cdot 7 - 3 \cdot 30 = 91 - 90 = 1 \rightarrow a = 13, b = -3 \rightarrow v_2 = -3 \cdot 30$$

$$10a + 21b = 1 \rightarrow a = -2, b = 1 \rightarrow v_3 = 21$$

quindi $x = 2 \cdot 70 - 5 \cdot 3 \cdot 30 + 4 \cdot 21 = 194 \mod 210$

Corollario: Sia $U(\mathbb{Z}_n)$ il gruppo degli elementi invertibili dell'anello \mathbb{Z}_n . sia $n:=n_1...n_k$ dove $MCD\{n_i,n_j\}=1 \forall 1\leq i,j\leq k,i\neq j$. e $n_i\in\mathbb{N}\setminus\{0,1\}\forall 1\leq i\leq k$. allora come i gruppi $U(\mathbb{Z}_n)\simeq U(\mathbb{Z}_{n_1})\times...\times U(\mathbb{Z}_{n_k})$

Dimostrazione: l'isomorfismo Ψ del teo. cinese dei restti, ristretto a $U(\mathbb{Z}_n)$ dà un isomorfismo di gruppi

Poiché un elemento $\overline{x} \in \mathbb{Z}_n$ è invertibile s.s.e. esiste un'identità di Bézout ax + bn = 1 abbiamo che \overline{x} è invertibile s.s.e. $MCD\{x, n\} = 1$. Quindi $|U(\mathbb{Z}_n)| = \varphi(n)$, con φ funzione di Eulero.

dal precedente Corollario e da questo segue un altro Corollario:

Corollario: Sia $\varphi : \mathbb{N} \setminus \{0\} \to \mathbb{N} \setminus \{0\}$ la funzione φ di Eulero. siano $x, y \in \mathbb{N} \setminus \{0\}$ tali che $MCD\{x, y\} = 1$, allora $\varphi(xy) = \varphi(x) \cdot \varphi(y)$.

Dimostrazione: dal Corollario precedente abbiamo che $U(\mathbb{Z}_{xy}) \simeq U(\mathbb{Z}_x) \times U(\mathbb{Z}_y)$ come i gruppi, quindi:

$$\varphi(xy) = |U(\mathbb{Z}_{xy})| = |U(\mathbb{Z}_x) \times U(\mathbb{Z}_y)| = |U(\mathbb{Z}_x)| \cdot |U(\mathbb{Z}_y)| = \varphi(x) \cdot \varphi(y)$$

Come conseguenza del corollario precedente otteniamo una formula per calcolare la funzione φ di Eulero.

Se p è un numero primo, allora ci sono p^k numeri $1 \le n \le p^k$. Di questi numeri $p, 2p, ..., p^{k-1}p$ hanno fattori comuni con p^k e quindi

$$\varphi(p^k) = p^k - p^{k-1}.$$

se $n = p^{k_1}...p^{k_s}$ per il corollario precedente (n > 1): $\varphi(n) = \varphi(p_1^{k_1}...\varphi(p_s^{k_s}) = (p_1^{k_1} - p_1^{k_1-1})...(p_s^{k_s} - p_s^{k_s-1}) = p_1^{k_1}...p_s^{k_s} \prod_{p|n,pprimo} (1 - \frac{1}{p}) = n \prod_{p|n,pprimo} (1 - \frac{1}{p}).$

Teorema (di Eulero): Sia $n \in \mathbb{N} \setminus \{0\}$ ed $a \in \mathbb{N} \setminus \{0\}$ tale che $MCD\{a, n\} = 1$. allora $a^{\overline{\varphi(n)}} = \overline{1} \in \mathbb{Z}_n$. (diciamo che $a^{\varphi(n)} \equiv 1 \mod n$)

Dimostrazione: sappiamo che la cardinalità del gruppo degli elementi invertibili di \mathbb{Z}_n è $\varphi(n)$.

Sia $<\overline{a}>\subseteq U(\mathbb{Z}_n)$ il sottogruppo generato da \overline{a} in $U(\mathbb{Z}_n)$. allora $|<\overline{a}>|$ divide $\varphi(n)$, ossia $\varphi(n)=k|<\overline{a}>|$, per qualche $k\in\mathbb{N}$. Sia $c:=|<\overline{a}>|$; abbiamo che $=\overline{1}=\overline{a}^c=(\overline{a^c})^k=\overline{a^{ck}}=\overline{a^{\varphi(n)}}$.

Corollario:(piccolo teorema di Fermat) Sia p un numero primo e $a \in \mathbb{N}$. allora in \mathbb{Z}_p abbiamo che $\overline{a} = \overline{a^p}(a^p \equiv a \mod p)$.

Dimostrazione: se p è primo si ha che $\varphi(p) = p - 1$. allora dal Teo. di Eulero segue che, se $a \neq 0, p \nmid a$, $a^{varphi(p) \equiv 1 \mod p} \implies a^{p-1} \equiv 1 \mod p \implies a^p \equiv a \mod p$. se a = 0op|a l' uguaglianza si riduce $a \ \overline{0} = \overline{0}$.

1.13 Caratteristica di un anello

sia A un anello. il sottogruppo $<1_A>\subseteq (A,+)$ è un gruppo ciclico. quindi esiste un $n\in\mathbb{N}$ tale che $<1_A>\simeq\mathbb{Z}_n$. n è detto la caratteristica dell'anello A.

Esempio: la caratteristica di \mathbb{Z} è 0, infatti $<1>=\mathbb{Z}\simeq\mathbb{Z}_0$. la caratteristica degli anelli $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ è sempre 0 poiché $<1>=\mathbb{Z}\simeq\mathbb{Z}_0$ in $\mathbb{Q}, \mathbb{R}, \mathbb{C}$

Esempio: sia $n \in \mathbb{N}$ allora la caratteristica dell'anello \mathbb{Z}_n è n. infatti $<\overline{1}>=\mathbb{Z}_n$, rispetto all'operazione +

indichiamo con CHAR(A) la caratteristica di un anello A.

Definizione: sia A un anello e sia $< 1_A >$ il sottogruppo di (A,+) generato da 1_a . l'intersezione di tutti i sottoanelli di A contenenti $< 1_a >$ si chiama **sottoanello fondamentale di A**.

Esempio: il sottoanello fondamentale di $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ è \mathbb{Z}

Definizione: sia K un campo

l'intersezione di tutti i sottocampi di K contenenti il gruppo $< 1_k > \subseteq (K, +)$ si chiama sottocampo fondamentale di K.

Esempio: il sottocampo fondamentale di $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ è \mathbb{Q} . se $p \in \mathbb{N}$ è primo, il sottocampo fondamentale di \mathbb{F}_p è \mathbb{F}_p perché $<\overline{1}>=\mathbb{F}_p$.

1.14 Anello dei polinomi in una indeterminata a coefficienti in un campo

Sia K un campo. una funzione $f: \mathbb{N} \to K$ si chiama **successione a valori in** K. ad una successione a valori in K corrisponde una serie formale nella variabile x su K:

$$\sum_{n=0}^{\infty} f(n)x^n$$

se l'insieme $\{m \ in\mathbb{N} : f(n) \neq 0\}$ è finito diciamo che la serie formale è un polinomio in x di grado $deg(P) := MAX\{n \in \mathbb{N} : f(n) \neq 0\}$. il grado del poliniomio 0 non è definito.

l'insieme dei polinomi in x a coefficienti in K si indica con K[x] ed è un anello commutativo con le operazioni:

- somma: $(\sum_{n=0}^{\infty} a_n X^n) + (\sum_{n=0}^{\infty} b_n X^n) = \sum_{n=0}^{\infty} (a_n + b_n) X^n$
- prodotto: $(\sum_{n=0}^{\infty} a_n X^n) \cdot (\sum_{n=0}^{\infty} b_n X^n) = \sum_{n=0}^{\infty} (\sum_{k=0}^{n} a_k b_{n-k}) X^n$

l'unità di K[x] è il polinomio 1_k .

Esempio: in
$$\mathbb{F}_2[x]$$
 siano $P:=1+X^2+X^3$ e $Q:=X+X^2$. allora $P+Q=1+X+X^2+X^3$ e $P\cdot Q=X+X^2+X^3+X^5$

Proposizione: siano $P, Q \in K[x]$ polinomi non nulli. allora il grado del prodotto $P \cdot Q$ è deg(P) + deg(Q).

in particolare K[x] è un dominio di integrità.

Definizione: un polinomio si dice **monico** se il coefficiente del termine di grado massimo è 1.

Definizione: sia K un campo. un polinomio $P \in K[x]$ si dice **irriducibile** se i suoi unici divisori sono del tipo a, aP con $a \in K \setminus \{0\}$. altrimenti si dice **riducibile**.

Esempio: in $\mathbb{F}_2[X]$ il polinomio $X^2 + 1$ è irriducibile, infatti: $X^2 + 1 = (X+1)^2$, quindi X+1 divide $X^2 + 1$ e $X+1 \notin K \setminus \{0\}$.

Esempio: in K[X] ogni polinomio di grado 1 è irriducibile, infatti: se deg(P) = 1 allora P = aX + b con $a, b \in K, a \neq 0$. i suoi divisori sono c e $c^{-1}(aX + b), c \in K \setminus \{0\}$.

Definizione: sia $\alpha \in K$. l'elemento α è detto **radice** del polinomio $P = \sum_{n=0}^{\infty} a_n X^n \in K[X]$ se $P(\alpha) = \sum_{n=0}^{\infty} a_n \alpha^n = 0$.

anche nell'anello K[X] come in \mathbb{Z} abiamo un algoritmo di divisione Euclidea. se $f(X), g(X) \in K[X]$ sono polinomi non nulli allora esistono unici polinomi $q(X), r(X) \in K[X]$ tali che:

 $f(X) = q(X) \cdot g(X) + r(X)$ e r(X) = 0 oppure deg(r) < deg(g). q(X) si chiama **quoziente** e r(X) si chiama **resto** della divisione. ne segue il seguente teorema, dimostrato come in \mathbb{Z} :

Teorema: l'anello K[X] è a ideali principali. se $I = \langle p(X) \rangle$ allora esiste un unico generatore monico di I.

Definizione: definiamo il **massimo comune divisore** di due polinomi $f(X), g(X) \in K[X]$ come l'unico massimo comune divisore monico.

Come in $\mathbb Z$ possiamo trovarlo con l'algoritmo delle divisioni successive che dà anche un <u>identità di Bézout</u>.

Esempio:
$$f(X) = X^4 - X^3 - 4X^2 + 4X + 1$$
 e $g(X) = X^2 - 1$ in $\mathbb{Q}[X]$, allora:

$$f(X) = g(X)(X^2 - 3) + (X - 2)$$
$$g(X) = (X - 2)(X + 1) + 1 \implies MCD(f, g) = 1$$

inoltre

$$1 = g(X) - (X - 2)(X + 1) + 1 = g(X) - [f(X) - g(X)(X^{2} - 3)](X + 1) =$$

= $-(X - 1)f(X) + (X^{3} + X^{2} - 3X - 2)g(X).$

proprietà: sia K un campo e $P(X) \in K[X]$ un poliniomio irriducibile. allora l'anello quoziente K[X]/< P(X) >è un campo.

Dimostrazione: sia [f] in^{K[X]}/< P(X) > tale che $[p] \neq [0]$ ossia p(X) non divide f(X). Dunque $MCD\{f(X), p(X)\} = 1$ perchè p(X) è irriducibile. quindi abbiamo un'identità di Bézout a(X)f(X) + b(X)p(X) = 1. ossia $[a(X)] = [f(X)]^{-1}$ in K[X]/< P(X) >.

Esempio: in $\mathbb{F}_2[X]$ il polinomio $P(X) = 1 + X + X^2$ è irriducibile. infatti non ha radici in \mathbb{F}_2 .

quindi l'anello $\mathbb{F}_2[X]/<1+X+X^2>$ è un campo, che chiamiamo \mathbb{F}_4 . un elemento di \mathbb{F}_4 è della forma a_0+a_1X con $a_0,a_1\in\mathbb{F}_2$. la tavola moltiplicativa è la seguente:

l'inverso di $X \in 1 + X$.

Esempio: in $\mathbb{F}_3[X]$ il polinomio $P(X) = 1 + X^2$ è irriducibile. indichiamo con \mathbb{F}_9 il campo $\mathbb{F}_3[X]/<1+X^2>$. un elemento di \mathbb{F}_9 è della forma a_0+a_1X con $a_0,a_1\in\mathbb{F}_3$ quindi sono 9. la tavola moltiplicativa è la seguente:

•	0	1	2	X	1 + X	2 + X	2X	1 + 2X	2 + 2X
0	0	0	0	0	0	0	0	0	0
1	0	1	2	X	1 + X	2 + X	2X	1 + 2X	2 + 2X
2	0	2	1	2X	2 + 2X	1 + 2X	X	2 + X	1 + X
X	0	X	2X	2	2 + X	2 + 2X	1	1 + X	1 + 2X
1 + X	0	1 + X	2 + 2X	2 + X	2X	1	1 + 2X	2	X
2 + X	0	2 + X	1 + 2X	2 + 2X	1	X	1 + X	2X	2
2X	0	2X	X	1	1 + 2X	1 + X	2	2 + 2X	2 + X
1 + 2X	0	1 + 2X	2 + X	1 + X	2	2X	2 + 2X	X	1
2 + 2X	0	2 + 2X	1 + X	1 + 2X	X	2	2 + X	1	2X

l'inverso di X è 2.

Teorema (di Ruffini): sia $f(X) \in K[X]$ un polinomio non nullo. se $\alpha \in K$, il resto della divisione di f(X) per $X - \alpha$ è $f(\alpha)$, in particolare α è una radice di f(X) s.s.e. $X - \alpha$ divide f(X) in K[X].

Dimostrazione: $f(X) = (X - \alpha)q(X) + r(X)$ con r(X) = 0 oppure deg(r(X)) < 1. quindi r(X) è un polinomio costante, $r(X) = x \in K$. calcolando in α otteniamo $f(\alpha) = c$.

Esempio: il polinomio $X^2 + 1 \in \mathbb{R}[X]$ non ha radici in \mathbb{R} quindi è irriducibile e $\mathbb{R}^{[X]}/\langle X^2 + 1 \rangle$ è un campo isomorfo a \mathbb{C} , dove l'isomorfismo è dato dall'assegnazione $1 \to 1$ e $x \to i$

enunciamo il seguente importante risultato, senza fornire la dimostrazione. (vedi proposizione 4.3.5 di "Teoria delle equazioni e teoria di Galois" - S.Gabelli).

Proposizione: se K è un campo, ogni sottogruppo finito del gruppo moltiplicativo $K \setminus \{0\}$ è ciclico. in particolare, se K è un campo finito, $K \setminus \{0\}$ è un gruppo ciclico.

Esempio: • in $\mathbb{F}_4 = \mathbb{F}_2/\langle 1+X+X^2 \rangle$ si ha che $\{X,X^2,X^3\} = \{X,1+X,1\} = \mathbb{F}_4 \setminus \{0\}$ quindi X è un generatore del gruppo moltiplicativo $\mathbb{F}_4 \setminus \{0\}$, l'altro è 1+X

• in $\mathbb{F}_9 = \mathbb{F}_3/\langle 1+X^2 \rangle$ abbiamo: $\langle X \rangle = \{X, X^2, X^3, X^4\} = \{X, 2, 2X, 1\}$ $\langle 1+X \rangle = \{1+X, (1+X)^2, (1+X)^3, (1+X)^4, (1+X)^5, (1+X)^6, (1+X)^7, (1+X)^8\} =$ $= \{1+X, 2X, 1+2X, 2, 2+2X, X, 2+X, 1\}$ $= \mathbb{F}_9 \setminus \{0\}$ quindi 1+X genera il gruppo moltiplicativo.

Sia $p \in \mathbb{N}$ un numero prima e sia $n \in \mathbb{N} \setminus \{0\}$. sia $Q(X), \mathbb{F}_p[X]$ un qualsiasi polinomio irriducibile di grado n. definiamo il campo

$$\mathbb{F}_{p^n} = \mathbb{F}_p[X]/\langle Q(X) \rangle$$

vogliamo ora mostrare che se $Q(X), Q'(X)e\mathbb{F}_p[X]$ sono polinomi irriducibili di grado n, allora

$$\mathbb{F}_p[X]/\langle Q(X)\rangle \simeq \mathbb{F}_p[X]/\langle Q'(X)\rangle$$
, isomorfismo tra campi

quindi la definizione di \mathbb{F}_p è ben posta, a meno di isomorfismi.

Definizione: siano $F \subseteq K$ due campi (ampliamento di campi). un elemento $\alpha \in K$ si dice <u>algebrico</u> su F se è radice di qualche polinomio non nullo su $f(X) \in F(X)$, altrimenti si dice <u>trascendente</u> su F.

dato un ampliamento di campi $F \subseteq K$ e $\alpha \in K$, si consideri il morfismo di anelli

$$v_{\alpha}: F[X] \to K$$

 $f(X) \to f(\alpha).$

 $Ker(v_{\alpha})$ è l'ideale di F[X] costituito dai polinomi che si annullano in α . quindi α è algebrico su F s.s.e. $Ker(v_{\alpha})$ è un ideale non nullo di F[X]. poiche F[X] è ad ideali principali, $ker(v_{\alpha}) = \langle m(X) \rangle$ dove m(X) è l'unico polinomio monico di grado minimo in $Ker(v_{\alpha})$.

Definizione: se $\alpha \in K$ è algebrico su F, il polinomio m(X) definito sopra si chiama **polinomio minimmo di** α **su F**, se deg(m(X)) = n, α si dice algebrico di grado n

Nota: sia $\alpha \in K$ e $P(X) \in F[X] \setminus \{0\}$) tale che $p(\alpha) = 0$, allora p(X) è il polinomio minimo di α su F s.s.e. p(X) è monico e irriducibile.

Esempio: si consideri l'ampliamento $\mathbb{R} \subseteq \mathbb{C}$. allora $1 + X^2 \in \mathbb{R}[X]$ è il polinomio minimo di $i \in \mathbb{C}$ su \mathbb{R} .

Proprietà: sia $F \in K$ un ampliamento di campi e $\alpha \in K$. si consideri il morfismo di anelli $v_{\alpha} : F[X] \to K$. allora $Im(v_{\alpha})$ è il più piccolo sottoanello di K contenente sia F che α

Dimostrazione: si osservi che l'immagine di un morfismo di anelli è un sottoanello. di conseguenza $Im(v_{\alpha})$ è un sottoanello di K. sia $c \in F$ e si consideri il polinomio costante $c \in F[X]$. allora $v_{\alpha}(c) = c$. quindi $F \subseteq Im(v_{\alpha})$ e $v_{\alpha}(X) = \alpha \implies \alpha \in Im(v_{\alpha})$ d'altra parte per chiusura aditiva e moltiplicativa, ogni sottoanello di K contenete sia F che α contiene anche $Im(v_{\alpha})$.

Proposizione: sia $F \subseteq K$ un ampliamento di campi e sia $\alpha \in K$. il più piccolo sottocampo di K contenente sia F che α si chiama ampliamento di F in K generato da α e si indica con $F(\alpha)$ tale ampliamento si dice semplice (poichè generato da un solo elemento)

da questa proposizione segue questo Corollario:

Corollario: sia $F \subseteq K$ un ampliamento di campi e sia $\alpha \in K$. allora $F(\alpha) = \{f(\alpha)g(\alpha)^{-1} : f(X), g(X) \in F[X], g(\alpha) \neq 0\}$.

Dimostrazione: per la proposizione precedente il più piccolo sottoanello di K contenente sia F che α è $Im(v_{\alpha} = \{f(\alpha) : f(X) \in F[X]\})$. prendendo gli inversi in K si ottiene la tesi.

se $\alpha \in K$ è algebrico su F si ha che $Im(v_{\alpha} \simeq F[X]/< m(X) >)$, dove m(X) è il polinomio minimo di α . quindi $Im(v_{\alpha})$ è un campo e $F(\alpha) = Im(v_{\alpha})$. se n è il grado di α si ha quindi:

$$F(\alpha) = \{c_0 + c_1 \alpha + \dots + c_{n-1} \alpha^{n-1} : c_i \in F\}$$

Esempio: si consideri l'ampliamento $\mathbb{Q} \subseteq \mathbb{R}$. l'elemento $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$ è akgebrico su \mathbb{Q} con polinomio minimo $X^2 - 2$. quindi $\sqrt{2}$ ha grado 2 su \mathbb{Q} e

$$\mathbb{Q}(\sqrt{2}) = \{c_0 + c_1\sqrt{2} : c_0, c_1 \in \mathbb{Q}\}\).$$

adesso mostriamo che il campo \mathbb{F}_{p^n} è un ampliamento semplice di \mathbb{F}_p

Proposizione: sia $\alpha \in \mathbb{F}_{p^n}$ un generatore del campo moltiplicativo $\mathbb{F}_{p^n} \setminus \{0\}$. allora $\mathbb{F}_{p^n} = \mathbb{F}_p(\alpha)$.

Dimostrazione: $\mathbb{F}_p(\alpha)$ è il più piccolo sottocampo di \mathbb{F}_{p^n} contenente sia \mathbb{F}_p che α quindi $\mathbb{F}_p(\alpha) \subseteq \mathbb{F}_{p^n}$. Poiché α genera il gruppo moltiploicativo $\mathbb{F}_{p^n} \setminus \{0\}$ anche $\mathbb{F}_{p^n} \subseteq \mathbb{F}_p(\alpha)$

Ora, se $P(X), Q(X) \in \mathbb{F}_p[X]$ sono due polinomi irriducibili di grado n, vogliamo costruire un isomorfismo

$$f: \mathbb{F}_p[X]/\langle P(X) \rangle \longrightarrow \mathbb{F}_p[X]/\langle Q(X) \rangle$$

ci serve il seguente risultato:

Proposizione: siano $F \subseteq K$ e $F \subseteq K'$ due ampliamenti di campi. se $\alpha \in K$ è algebrico di grado n su F, con polinomio minimo m(x), esiste un morfismo di campi $\varphi : F(\alpha) \to K'$ che fissa F in K'. in questo caso i morfismi φ sono tanti quante le radici distinte $\beta_1, ..., \beta_s$ di m(X) in K'. sono tutti e soli quelli definiti da:

$$c_0 + c_1 \alpha + \dots + c_{n-1} \alpha^{n-1} \to c_0 + c_1 \beta_i + \dots + c_{n-1} \beta_i^{n-1}$$

Dimostrazione: se α è algebrico di grado n su F con polinomio minimo m(X) e $\varphi: F(\alpha) \to K'$ è isomorfismo, allora $0 = \varphi(0) = \varphi(m(\alpha)) = m(\varphi(\alpha))$ quindi $\varphi(\alpha)$ deve essere radice di m(X) in K'. viceversa, sia β una radice di m(X) in K' e consideriamo il morfismo di anelli

$$v_{\beta}: F[X] \to K'$$

 $f(X) \to f(\beta)$

poiché $m(X) \in Ker(v_{\beta})$, dal Teorema di isomorfismo per anelli abbiamo che il seguente diagramma è commutativo:

$$F[X] \xrightarrow{v_{\beta}} K'$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\pi}$$

$$F(\alpha) \simeq F[X]/< m(X) >$$

infatti $Ker(v_{\beta}) = \langle m(X) \rangle$, essedo m(X) irriducibile. quindi abbiamo trovato un morfismo iniettivo $\varphi : F(\alpha) \to K'$ che soddisfa le proprietà dell'enunciato.

sia F un campo e $f(X) \in F[X]$ un polinomio di grado $n \ge 1$. un campo K, ampliamento di F, si dice **campo di spezzamento di f(X) su F** se:

- f(X) fattorizza in polinomi di grado 1 su K[X]
- non ci sono campi intermedi $F \subseteq L \subsetneq K$ con la stessa proprietà.

Esempio: $\mathbb{Q}(\sqrt{2})$ è un campo di spezzamenro di $X^2 - 2 \in \mathbb{Q}[X]$. \mathbb{C} è un campo di spezzamenro di $X^2 + 1 \in \mathbb{R}[X]$.

Ora vogliamo mostrare che un campo che ha cardinalità p^n è un campo di spezzamento del polinomio $X^{p^n} - X \in \mathbb{F}_p[X]$. infatti se K è un campo e $|K| = p^n$, allora il suo gruppo moltiplicativo $K \setminus \{0\}$ ha cardinalità $p^n - 1$ e quindi oer ogni $\alpha \in K \setminus \{0\}$ si ha $\alpha^{p^n-1} = 1$. quindi ogni elemento di K è radice del polinomio $X^{p^n} - X$. per il teorema di Ruffini, K è un campo di spezzamento di $X^{p^n} - X$. Adesso mostriamo che ogni poliniomio di grado n irriducibile in $\mathbb{F}_p[X]$ divide $X^{p^n} - X \in \mathbb{F}_p[X]$.

Proposizione: tutti e soli i polinomi irriducibili su \mathbb{F}_p di grado n dividono $X^{p^n} - X \in \mathbb{F}_p[X]$.

Dimostrazione: sia $P(X) \in \mathbb{F}_p[X]$ irriducibile di grado n e sia $K := \mathbb{F}_p[Y]/\langle P(Y) \rangle$. allora K ha p^n elementi che sono le radici di $X^{p^n} - X \in K[X]$. poichè $Y \in K$ è una radice $P(X) \in K[X]$, $P(X)eX^{p^n} - X$ hanno una radice in comune in K, allora per il teorema di Ruffini hanno un fattore comune X - YinK[X]. quindi, poiché $\mathbb{F}_p \subseteq K$ e MCD in $\mathbb{F}_p = MCD$ in K[X] $\Longrightarrow P(X), X^{p^n} - X$ hanno $MCD \neq 1$ in $\mathbb{F}_p[X]$. poiché P(X) è irriducibile in $\mathbb{F}_p[X]$, P(X) divide $X^{p^n} - X$.

adesso vogliamo costruire un isomorfismo di campi

$$f: \mathbb{F}_p[X]/\langle P(X) \rangle \longrightarrow \mathbb{F}_p[X]/\langle Q(X) \rangle$$

dove $P(X), Q(X) \in \mathbb{F}_p[X]$ sono monici irriducibili di grado n. basta costruire un isomorfismo di anelli.

Infatti un morfismo di anelli che sono campi è iniettivo. Inoltre:

$$\left|\mathbb{F}_p[X]\middle/\!< P(X)>\right| = \left|\mathbb{F}_p[X]\middle/\!< Q(X)>\right| = p^n$$

quindi tale morfismo è biunivoco, ossia è isomorfismo.

Si ha che, se $y \in \mathbb{F}_p[Y]/\langle P(Y) \rangle$ allora $P(X) \in \mathbb{F}_p[X]$ è il polinomio minimo di y su \mathbb{F}_p . quindi, se P(X) ha una radice in $\mathbb{F}_p[Y]/\langle Q(Y) \rangle$, possiamo usare la proposizione sull'estensione di morfismi di campi per definire il morfismo f, che sarà un isomorfismo. Infatti $\mathbb{F}_p \subseteq \mathbb{F}_p[X]/\langle Q(X) \rangle$. Inoltre $\mathbb{F}_p[X]/\langle P(X) \rangle = \mathbb{F}_p([X])$, dove [X] è la classe di X in $\mathbb{F}_p[X]/\langle P(X) \rangle$. poiché $\mathbb{F}_p[Y]/\langle Q(Y) \rangle$ è un campo di spezzamento di $X^{p^n} - X$ e P(X) divide $X^{p^n} - X$, allora P(X) si fattorizza in fattori di grado 1 in $\mathbb{F}_p[Y]/\langle Q(Y) \rangle$.

sia $\beta \in \mathbb{F}_p[Y]/\langle Q(Y) \rangle$ tale che $p(\beta) = 0$. allora l'assegnazione

$$c_0 + c_1 x + \dots + c_{n-1} x^{n-1} \to c_0 + c_1 \beta + \dots + c_{n-1} \beta^{n-1}$$

definisce un morfismo di anelli

$$f\,:\, \mathbb{F}_p[X]\big/\!< P(X)> \,\longrightarrow\, \mathbb{F}_p[X]\big/\!< Q(X)>$$

Esempio: in $\mathbb{F}_3[X]$ si considerino i polinomi irriducibili

$$1 + X^2 + 2 + X + X^2$$
.

il polinomio minimo di X in $\mathbb{F}_3[X]/<1+X^2>:=K$ su \mathbb{F}_3 è $1+X^2$. in $K':=\mathbb{F}_3[Y]/<1+Y+Y^2>$ si ha che

$$1 + X^2 = (X + Y + 2)(X + 2Y + 1)$$

quindi in $K'[X], 1 + X^2$ ha due radici:

$$-Y - 2 = 2Y + 1$$
 e $-2Y - 1 = y + 2$.

abbiamo quindi due isomorfismi

$$f: K \to K'$$

$$a_0 + a_1 x \to a_0 + a_1 (2Y + 1)$$

$$g: K \to K'$$

$$a_0 + a_1 x \to a_0 + a_1 (Y + 2)$$

$$f(0) = 0$$

$$f(1) = 1$$

$$f(2) = 2$$

$$f(X) = 2Y + 1$$

$$f(1+X) = f(1) + f(X) = 2Y + 2$$

$$f(2+X) = f(2) + f(X) = 2Y$$

$$f(2X) = f(2)f(X) = 2f(X) = y + 2$$

$$f(1+2X) = f(1) + f(2X) = Y$$

$$f(2+2X) = f(2) + f(2X) = y + 1$$

$$\begin{split} g(0) &= 0 \\ g(1) &= 1 \\ g(2) &= 2 \\ g(X) &= Y + 2 \\ g(1+X) &= g(1) + g(X) = Y \\ g(2+X) &= g(2) + g(X) = Y + 1 \\ g(2X) &= g(2)g(X) = 2g(X) = 2Y + 1 \\ g(1+2X) &= g(1) + g(2X) = 2Y + 2 \\ g(2+2X) &= g(2) + g(2X) = 2Y \end{split}$$

Osservazione: $X \in K$ non è un generatore di $K \setminus \{0\}$. infatti il sottogruppo del gruppo moltiplicativo $K \setminus \{0\}$ generato da X è $\langle X \rangle = \{X, 2, 2X, 1\} \subsetneq K \setminus \{0\}$

Lemma: se K è un anello commutativo di caratteristica prima p, allora

$$(X+Y)^{p^h} = X^{p^h} + Y^{p^h}$$

per ogni $x, y \in K, h \ge 1$.

Dimostrazione: sia h = 1. se p > k > 0, p divide tutti i coefficienti binomiali $\binom{p}{k} := \frac{p!}{k!(p-k)!}$ perché non divide k!(p-k)!. allora $(X+Y)^p = \sum_{k=0}^p \binom{p}{k} X^k Y^{p-k} = X^p + Y^p$. la tesi seque per induzione.

Automorfismo di Frobenius:

Dal lemma precedente segue che se K è un campo di caratteristica p, allora la funzione

$$\Phi: K \to K$$
$$x \to x^p$$

è un morfismo di campi. infatti

$$\Phi(x+y) = (x+y)^p = x^p + y^p = \Phi(x) + \Phi(y)$$

$$\Phi(xy) = (xy)^p = x^p y^p = \Phi(x)\Phi(y)$$

 $\forall x, y \in K$.

se $K = \mathbb{F}_{p^n}, \Phi$ è un automorfismo

(essendo morfismo initettivo da un campo di cardinalità finita in se stesso) detto automorfismo di Frobenius.

Teorema: il gruppo degli automorfismi di \mathbb{F}_{p^n} , $AUT(\mathbb{F}_p^n)$ è ciclico di cardinalità n, generato dall'automorfismo di Frobenius.

Dimostrazione: vedi teorema 4.3.17 del libro di Stefania Gabelli.

Lemma: sia F un campo. Il polinomio X^d-1 divide il polinomio X^n-1 s.s.e. d divide n.

Dimostrazione: se $n = qd + r, 0 \le r \le d$, in $\mathbb{F}[X]$ si ha:

$$(x^{n}-1) = (X^{d}-1)(X^{n-d} + X^{n-2d} + \dots + x^{n-(p-1)d} + X^{r}) + (X^{r}-1).$$

 $quindi X^d - 1 \ divide X^n - 1 \ s.s.e. \ X^r - 1 \ e \ il \ polinomio \ nullo, \ cio e \ s.s.e. \ r = 0$

Esempio: siano $n_1 = 3, n_2 = 7en_3 = 10$. Allora $n := n_1n_2n_3 = 210$ e abbiamo l'isomorfismo di anelli $\mathbb{Z}_{210} \simeq \mathbb{Z}_3 \times \mathbb{Z}_7 \times \mathbb{Z}_{10}$. sia $(2mod3, 5mod7, 4mod10) \in \mathbb{Z}_3 \times \mathbb{Z}_7 \times \mathbb{Z}_{10}$, questa terna corrisponde ad un elemento $xmod210 \in \mathbb{Z}_{210}$ che soddisfa il sistema

$$\begin{cases} x \mod 3 = 2 \mod 3 \\ x \mod 7 = 5 \mod 7 \\ x \mod 10 = 4 \mod 10 \end{cases}$$

la dimostrazione del teorema cinese dei resti ci dice come trovare x. $x=2v_1+5v_2+4v_3$ dove se 3a+70b=1,7a+30b=1 e 10a+21b=1 sono identità di Bézout, allora $v_1=70b,v_2=30b=30,v_3=21b$

$$3a + 70b = 1 \rightarrow a = -23, b = 1 \rightarrow v_1 = 70$$

$$7a + 30b = 1 \rightarrow 30 = 4 \cdot 7 + 2, 7 = 3 \cdot 2 + 1$$

$$\rightarrow 1 = 7 - 3 \cdot 2 = 7 - 3(30 - 4 \cdot 7) =$$

$$13 \cdot 7 - 3 \cdot 30 = 91 - 90 = 1 \rightarrow a = 13, b = -3 \rightarrow v_2 = -3 \cdot 30$$

$$10a + 21b = 1 \rightarrow a = -2, b = 1 \rightarrow v_3 = 21$$

quindi $x = 2 \cdot 70 - 5 \cdot 3 \cdot 30 + 4 \cdot 21 = 194 \mod 210$

Corollario: Sia $U(\mathbb{Z}_n)$ il gruppo degli elementi invertibili dell'anello \mathbb{Z}_n . sia $n:=n_1...n_k$ dove $MCD\{n_i,n_j\}=1 \forall 1\leq i,j\leq k,i\neq j$. e $n_i\in\mathbb{N}\setminus\{0,1\}\forall 1\leq i\leq k$. allora come i gruppi $U(\mathbb{Z}_n)\simeq U(\mathbb{Z}_{n_1})\times...\times U(\mathbb{Z}_{n_k})$

Dimostrazione: l'isomorfismo Ψ del teo. cinese dei restti, ristretto a $U(\mathbb{Z}_n)$ dà un isomorfismo di gruppi

Poiché un elemento $\overline{x} \in \mathbb{Z}_n$ è invertibile s.s.e. esiste un'identità di Bézout ax + bn = 1 abbiamo che \overline{x} è invertibile s.s.e. $MCD\{x, n\} = 1$. Quindi $|U(\mathbb{Z}_n)| = \varphi(n)$, con φ funzione di Eulero.

dal precedente Corollario e da questo segue un altro Corollario:

Corollario: Sia $\varphi : \mathbb{N} \setminus \{0\} \to \mathbb{N} \setminus \{0\}$ la funzione φ di Eulero. siano $x, y \in \mathbb{N} \setminus \{0\}$ tali che $MCD\{x, y\} = 1$, allora $\varphi(xy) = \varphi(x) \cdot \varphi(y)$.

Dimostrazione: dal Corollario precedente abbiamo che $U(\mathbb{Z}_{xy}) \simeq U(\mathbb{Z}_x) \times U(\mathbb{Z}_y)$ come i gruppi, quindi:

$$\varphi(xy) = |U(\mathbb{Z}_{xy})| = |U(\mathbb{Z}_x) \times U(\mathbb{Z}_y)| = |U(\mathbb{Z}_x)| \cdot |U(\mathbb{Z}_y)| = \varphi(x) \cdot \varphi(y)$$

Come conseguenza del corollario precedente otteniamo una formula per calcolare la funzione φ di Eulero.

Se p è un numero primo, allora ci sono p^k numeri $1 \le n \le p^k$. Di questi numeri $p, 2p, ..., p^{k-1}p$ hanno fattori comuni con p^k e quindi

$$\varphi(p^k) = p^k - p^{k-1}.$$

se $n = p^{k_1}...p^{k_s}$ per il corollario precedente (n > 1): $\varphi(n) = \varphi(p_1^{k_1}...\varphi(p_s^{k_s}) = (p_1^{k_1} - p_1^{k_1-1})...(p_s^{k_s} - p_s^{k_s-1}) = p_1^{k_1}...p_s^{k_s} \prod_{p|n,pprimo} (1 - \frac{1}{p}) = n \prod_{p|n,pprimo} (1 - \frac{1}{p}).$

Teorema (di Eulero): Sia $n \in \mathbb{N} \setminus \{0\}$ ed $a \in \mathbb{N} \setminus \{0\}$ tale che $MCD\{a, n\} = 1$. allora $a^{\overline{\varphi(n)}} = \overline{1} \in \mathbb{Z}_n$. (diciamo che $a^{\varphi(n)} \equiv 1 \mod n$)

Dimostrazione: sappiamo che la cardinalità del gruppo degli elementi invertibili di \mathbb{Z}_n è $\varphi(n)$.

 $Sia < \overline{a} > \subseteq U(\mathbb{Z}_n)$ il sottogruppo generato da $\overline{a}inU(\mathbb{Z}_n)$. allora $|<\overline{a}>|$ divide $\varphi(n)$, ossia $\varphi(n) = k |<\overline{a}>|$, per qualche $k \in \mathbb{N}$. Sia $c := |<\overline{a}>|$; abbiamo che $= \overline{1} = \overline{a}^c = (\overline{a^c})^k = \overline{a^{ck}} = \overline{a^{\varphi(n)}}$.

Corollario:(piccolo teorema di Fermat) Sia p un numero primo e $a \in \mathbb{N}$. allora in \mathbb{Z}_p abbiamo che $\overline{a} = \overline{a^p}(a^p \equiv a \mod p)$.

Dimostrazione: se p è primo si ha che $\varphi(p) = p - 1$. allora dal Teo. di Eulero segue che, se $a \neq 0, p \nmid a$, $a^{varphi(p) \equiv 1 \mod p} \implies a^{p-1} \equiv 1 \mod p \implies a^p \equiv a \mod p$. se a = 0op|a l' uguaglianza si riduce $a \ \overline{0} = \overline{0}$.

1.15 Caratteristica di un anello

sia A un anello. il sottogruppo $<1_A>\subseteq (A,+)$ è un gruppo ciclico. quindi esiste un $n\in\mathbb{N}$ tale che $<1_A>\simeq\mathbb{Z}_n$. n è detto la caratteristica dell'anello A.

Esempio: la caratteristica di \mathbb{Z} è 0, infatti $<1>=\mathbb{Z}\simeq\mathbb{Z}_0$. la caratteristica degli anelli $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ è sempre 0 poiché $<1>=\mathbb{Z}\simeq\mathbb{Z}_0$ in $\mathbb{Q}, \mathbb{R}, \mathbb{C}$

Esempio: sia $n \in \mathbb{N}$ allora la caratteristica dell'anello \mathbb{Z}_n è n. infatti $<\overline{1}>=\mathbb{Z}_n$, rispetto all'operazione +

indichiamo con CHAR(A) la caratteristica di un anello A.

Definizione: sia A un anello e sia $< 1_A >$ il sottogruppo di (A,+) generato da 1_a . l'intersezione di tutti i sottoanelli di A contenenti $< 1_a >$ si chiama **sottoanello fondamentale di A**.

Esempio: il sottoanello fondamentale di $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ è \mathbb{Z}

Definizione: sia K un campo

l'intersezione di tutti i sottocampi di K contenenti il gruppo $< 1_k > \subseteq (K, +)$ si chiama sottocampo fondamentale di K.

Esempio: il sottocampo fondamentale di $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ è \mathbb{Q} . se $p \in \mathbb{N}$ è primo, il sottocampo fondamentale di \mathbb{F}_p è \mathbb{F}_p perché $<\overline{1}>=\mathbb{F}_p$.

1.16 Anello dei polinomi in una indeterminata a coefficienti in un campo

Sia K un campo. una funzione $f: \mathbb{N} \to K$ si chiama **successione a valori in** K. ad una successione a valori in K corrisponde una serie formale nella variabile x su K:

$$\sum_{n=0}^{\infty} f(n)x^n$$

se l'insieme $\{m \ in\mathbb{N} : f(n) \neq 0\}$ è finito diciamo che la serie formale è un polinomio in x di grado $deg(P) := MAX\{n \in \mathbb{N} : f(n) \neq 0\}$. il grado del poliniomio 0 non è definito.

l'insieme dei polinomi in x a coefficienti in K si indica con K[x] ed è un anello commutativo con le operazioni:

- somma: $(\sum_{n=0}^{\infty} a_n X^n) + (\sum_{n=0}^{\infty} b_n X^n) = \sum_{n=0}^{\infty} (a_n + b_n) X^n$
- prodotto: $(\sum_{n=0}^{\infty} a_n X^n) \cdot (\sum_{n=0}^{\infty} b_n X^n) = \sum_{n=0}^{\infty} (\sum_{k=0}^{n} a_k b_{n-k}) X^n$

l'unità di K[x] è il polinomio 1_k .

Esempio: in
$$\mathbb{F}_2[x]$$
 siano $P:=1+X^2+X^3$ e $Q:=X+X^2$. allora $P+Q=1+X+X^2+X^3$ e $P\cdot Q=X+X^2+X^3+X^5$

Proposizione: siano $P, Q \in K[x]$ polinomi non nulli. allora il grado del prodotto $P \cdot Q$ è deg(P) + deg(Q).

in particolare K[x] è un dominio di integrità.

Definizione: un polinomio si dice **monico** se il coefficiente del termine di grado massimo è 1.

Definizione: sia K un campo. un polinomio $P \in K[x]$ si dice **irriducibile** se i suoi unici divisori sono del tipo a, aP con $a \in K \setminus \{0\}$. altrimenti si dice **riducibile**.

Esempio: in $\mathbb{F}_2[X]$ il polinomio $X^2 + 1$ è irriducibile, infatti: $X^2 + 1 = (X+1)^2$, quindi X+1 divide $X^2 + 1$ e $X+1 \notin K \setminus \{0\}$.

Esempio: in K[X] ogni polinomio di grado 1 è irriducibile, infatti: se deg(P) = 1 allora P = aX + b con $a, b \in K, a \neq 0$. i suoi divisori sono c e $c^{-1}(aX + b), c \in K \setminus \{0\}$.

Definizione: sia $\alpha \in K$. l'elemento α è detto **radice** del polinomio $P = \sum_{n=0}^{\infty} a_n X^n \in K[X]$ se $P(\alpha) = \sum_{n=0}^{\infty} a_n \alpha^n = 0$.

anche nell'anello K[X] come in \mathbb{Z} abiamo un algoritmo di divisione Euclidea. se $f(X), g(X) \in K[X]$ sono polinomi non nulli allora esistono unici polinomi $q(X), r(X) \in K[X]$ tali che:

 $f(X) = q(X) \cdot g(X) + r(X)$ e r(X) = 0 oppure deg(r) < deg(g). q(X) si chiama **quoziente** e r(X) si chiama **resto** della divisione. ne segue il seguente teorema, dimostrato come in \mathbb{Z} :

Teorema: l'anello K[X] è a ideali principali. se $I = \langle p(X) \rangle$ allora esiste un unico generatore monico di I.

Definizione: definiamo il **massimo comune divisore** di due polinomi $f(X), g(X) \in K[X]$ come l'unico massimo comune divisore monico.

Come in $\mathbb Z$ possiamo trovarlo con l'algoritmo delle divisioni successive che dà anche un <u>identità di Bézout</u>.

Esempio:
$$f(X) = X^4 - X^3 - 4X^2 + 4X + 1$$
 e $g(X) = X^2 - 1$ in $\mathbb{Q}[X]$, allora:

$$f(X) = g(X)(X^2 - 3) + (X - 2)$$
$$g(X) = (X - 2)(X + 1) + 1 \implies MCD(f, g) = 1$$

inoltre

$$1 = g(X) - (X - 2)(X + 1) + 1 = g(X) - [f(X) - g(X)(X^{2} - 3)](X + 1) =$$

= $-(X - 1)f(X) + (X^{3} + X^{2} - 3X - 2)g(X).$

proprietà: sia K un campo e $P(X) \in K[X]$ un poliniomio irriducibile. allora l'anello quoziente K[X]/< P(X) >è un campo.

Dimostrazione: sia [f] in^{K[X]}/< P(X) > tale che $[p] \neq [0]$ ossia p(X) non divide f(X). Dunque $MCD\{f(X), p(X)\} = 1$ perchè p(X) è irriducibile. quindi abbiamo un'identità di Bézout a(X)f(X) + b(X)p(X) = 1. ossia $[a(X)] = [f(X)]^{-1}$ in K[X]/< P(X) >.

Esempio: in $\mathbb{F}_2[X]$ il polinomio $P(X) = 1 + X + X^2$ è irriducibile. infatti non ha radici in \mathbb{F}_2 .

quindi l'anello $\mathbb{F}_2[X]/<1+X+X^2>$ è un campo, che chiamiamo \mathbb{F}_4 . un elemento di \mathbb{F}_4 è della forma a_0+a_1X con $a_0,a_1\in\mathbb{F}_2$. la tavola moltiplicativa è la seguente:

l'inverso di $X \in 1 + X$.

Esempio: in $\mathbb{F}_3[X]$ il polinomio $P(X) = 1 + X^2$ è irriducibile. indichiamo con \mathbb{F}_9 il campo $\mathbb{F}_3[X]/<1+X^2>$. un elemento di \mathbb{F}_9 è della forma a_0+a_1X con $a_0,a_1\in\mathbb{F}_3$ quindi sono 9. la tavola moltiplicativa è la seguente:

•	0	1	2	X	1 + X	2 + X	2X	1 + 2X	2 + 2X
0	0	0	0		0	0	0	0	0
1	0	1	2	X	1 + X	2 + X	2X	1 + 2X	2 + 2X
2	0	2	1	2X	2 + 2X	1 + 2X	X	2 + X	1 + X
X	0	X	2X	2	2 + X	2 + 2X	1	1 + X	1 + 2X
1 + X	0	1 + X	2 + 2X	2 + X	2X	1	1 + 2X	2	X
2 + X	0	2 + X	1 + 2X	2 + 2X	1	X	1 + X	2X	2
2X	0	2X	X	1	1 + 2X	1 + X	2	2 + 2X	2 + X
1 + 2X	0	1 + 2X	2 + X	1 + X	2	2X	2 + 2X	X	1
2 + 2X	0	2 + 2X	1 + X	1 + 2X	X	2	2 + X	1	2X

l'inverso di X è 2.

Teorema (di Ruffini): sia $f(X) \in K[X]$ un polinomio non nullo. se $\alpha \in K$, il resto della divisione di f(X) per $X - \alpha$ è $f(\alpha)$, in particolare α è una radice di f(X) s.s.e. $X - \alpha$ divide f(X) in K[X].

Dimostrazione: $f(X) = (X - \alpha)q(X) + r(X)$ con r(X) = 0 oppure deg(r(X)) < 1. quindi r(X) è un polinomio costante, $r(X) = x \in K$. calcolando in α otteniamo $f(\alpha) = c$.

Esempio: il polinomio $X^2 + 1 \in \mathbb{R}[X]$ non ha radici in \mathbb{R} quindi è irriducibile e $\mathbb{R}^{[X]}/< X^2 + 1 >$ è un campo isomorfo a \mathbb{C} , dove l'isomorfismo è dato dall'assegnazione $1 \to 1$ e $x \to i$

enunciamo il seguente importante risultato, senza fornire la dimostrazione. (vedi proposizione 4.3.5 di "Teoria delle equazioni e teoria di Galois" - S.Gabelli).

Proposizione: se K è un campo, ogni sottogruppo finito del gruppo moltiplicativo $K \setminus \{0\}$ è ciclico. in particolare, se K è un campo finito, $K \setminus \{0\}$ è un gruppo ciclico.

Esempio: • in $\mathbb{F}_4 = \mathbb{F}_2/\langle 1+X+X^2 \rangle$ si ha che $\{X,X^2,X^3\} = \{X,1+X,1\} = \mathbb{F}_4 \setminus \{0\}$ quindi X è un generatore del gruppo moltiplicativo $\mathbb{F}_4 \setminus \{0\}$, l'altro è 1+X

• in $\mathbb{F}_9 = \mathbb{F}_3/\langle 1+X^2 \rangle$ abbiamo: $\langle X \rangle = \{X, X^2, X^3, X^4\} = \{X, 2, 2X, 1\}$ $\langle 1+X \rangle = \{1+X, (1+X)^2, (1+X)^3, (1+X)^4, (1+X)^5, (1+X)^6, (1+X)^7, (1+X)^8\} =$ $= \{1+X, 2X, 1+2X, 2, 2+2X, X, 2+X, 1\}$ $= \mathbb{F}_9 \setminus \{0\}$ quindi 1+X genera il gruppo moltiplicativo.

Sia $p \in \mathbb{N}$ un numero prima e sia $n \in \mathbb{N} \setminus \{0\}$. sia $Q(X), \mathbb{F}_p[X]$ un qualsiasi polinomio irriducibile di grado n. definiamo il campo

$$\mathbb{F}_{p^n} = \mathbb{F}_p[X] / \langle Q(X) \rangle$$

vogliamo ora mostrare che se $Q(X), Q'(X)e\mathbb{F}_p[X]$ sono polinomi irriducibili di grado n, allora

$$\mathbb{F}_p[X]/\langle Q(X)\rangle \simeq \mathbb{F}_p[X]/\langle Q'(X)\rangle$$
, isomorfismo tra campi

quindi la definizione di \mathbb{F}_p è ben posta, a meno di isomorfismi.

Definizione: siano $F \subseteq K$ due campi (ampliamento di campi). un elemento $\alpha \in K$ si dice <u>algebrico</u> su F se è radice di qualche polinomio non nullo su $f(X) \in F(X)$, altrimenti si dice <u>trascendente</u> su F.

dato un ampliamento di campi $F \subseteq K$ e $\alpha \in K$, si consideri il morfismo di anelli

$$v_{\alpha}: F[X] \to K$$

 $f(X) \to f(\alpha).$

 $Ker(v_{\alpha})$ è l'ideale di F[X] costituito dai polinomi che si annullano in α . quindi α è algebrico su F s.s.e. $Ker(v_{\alpha})$ è un ideale non nullo di F[X]. poiche F[X] è ad ideali principali, $ker(v_{\alpha}) = \langle m(X) \rangle$ dove m(X) è l'unico polinomio monico di grado minimo in $Ker(v_{\alpha})$.

Definizione: se $\alpha \in K$ è algebrico su F, il polinomio m(X) definito sopra si chiama **polinomio minimmo di** α **su F**, se deg(m(X)) = n, α si dice algebrico di grado n

Nota: sia $\alpha \in K$ e $P(X) \in F[X] \setminus \{0\}$) tale che $p(\alpha) = 0$, allora p(X) è il polinomio minimo di α su F s.s.e. p(X) è monico e irriducibile.

Esempio: si consideri l'ampliamento $\mathbb{R} \subseteq \mathbb{C}$. allora $1 + X^2 \in \mathbb{R}[X]$ è il polinomio minimo di $i \in \mathbb{C}$ su \mathbb{R} .

Proprietà: sia $F \in K$ un ampliamento di campi e $\alpha \in K$. si consideri il morfismo di anelli $v_{\alpha} : F[X] \to K$. allora $Im(v_{\alpha})$ è il più piccolo sottoanello di K contenente sia F che α

Dimostrazione: si osservi che l'immagine di un morfismo di anelli è un sottoanello. di conseguenza $Im(v_{\alpha})$ è un sottoanello di K. sia $c \in F$ e si consideri il polinomio costante $c \in F[X]$. allora $v_{\alpha}(c) = c$. quindi $F \subseteq Im(v_{\alpha})$ e $v_{\alpha}(X) = \alpha \implies \alpha \in Im(v_{\alpha})$ d'altra parte per chiusura aditiva e moltiplicativa, ogni sottoanello di K contenete sia F che α contiene anche $Im(v_{\alpha})$.

Proposizione: sia $F \subseteq K$ un ampliamento di campi e sia $\alpha \in K$. il più piccolo sottocampo di K contenente sia F che α si chiama ampliamento di F in K generato da α e si indica con $F(\alpha)$ tale ampliamento si dice semplice (poichè generato da un solo elemento)

da questa proposizione segue questo Corollario:

Corollario: sia $F \subseteq K$ un ampliamento di campi e sia $\alpha \in K$. allora $F(\alpha) = \{f(\alpha)g(\alpha)^{-1} : f(X), g(X) \in F[X], g(\alpha) \neq 0\}$.

Dimostrazione: per la proposizione precedente il più piccolo sottoanello di K contenente sia F che α è $Im(v_{\alpha} = \{f(\alpha) : f(X) \in F[X]\})$. prendendo gli inversi in K si ottiene la tesi.

se $\alpha \in K$ è algebrico su F si ha che $Im(v_{\alpha} \simeq F[X]/< m(X) >)$, dove m(X) è il polinomio minimo di α . quindi $Im(v_{\alpha})$ è un campo e $F(\alpha) = Im(v_{\alpha})$. se n è il grado di α si ha quindi:

$$F(\alpha) = \{c_0 + c_1 \alpha + \dots + c_{n-1} \alpha^{n-1} : c_i \in F\}$$

Esempio: si consideri l'ampliamento $\mathbb{Q} \subseteq \mathbb{R}$. l'elemento $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$ è akgebrico su \mathbb{Q} con polinomio minimo $X^2 - 2$. quindi $\sqrt{2}$ ha grado 2 su \mathbb{Q} e

$$\mathbb{Q}(\sqrt{2}) = \{c_0 + c_1\sqrt{2} : c_0, c_1 \in \mathbb{Q}\}\).$$

adesso mostriamo che il campo \mathbb{F}_{p^n} è un ampliamento semplice di \mathbb{F}_p

Proposizione: sia $\alpha \in \mathbb{F}_{p^n}$ un generatore del campo moltiplicativo $\mathbb{F}_{p^n} \setminus \{0\}$. allora $\mathbb{F}_{p^n} = \mathbb{F}_p(\alpha)$.

Dimostrazione: $\mathbb{F}_p(\alpha)$ è il più piccolo sottocampo di \mathbb{F}_{p^n} contenente sia \mathbb{F}_p che α quindi $\mathbb{F}_p(\alpha) \subseteq \mathbb{F}_{p^n}$. Poiché α genera il gruppo moltiploicativo $\mathbb{F}_{p^n} \setminus \{0\}$ anche $\mathbb{F}_{p^n} \subseteq \mathbb{F}_p(\alpha)$

Ora, se $P(X), Q(X) \in \mathbb{F}_p[X]$ sono due polinomi irriducibili di grado n, vogliamo costruire un isomorfismo

$$f: \mathbb{F}_p[X]/\langle P(X) \rangle \longrightarrow \mathbb{F}_p[X]/\langle Q(X) \rangle$$

ci serve il seguente risultato:

Proposizione: siano $F \subseteq K$ e $F \subseteq K'$ due ampliamenti di campi. se $\alpha \in K$ è algebrico di grado n su F, con polinomio minimo m(x), esiste un morfismo di campi $\varphi : F(\alpha) \to K'$ che fissa F in K'. in questo caso i morfismi φ sono tanti quante le radici distinte $\beta_1, ..., \beta_s$ di m(X) in K'. sono tutti e soli quelli definiti da:

$$c_0 + c_1 \alpha + \dots + c_{n-1} \alpha^{n-1} \to c_0 + c_1 \beta_i + \dots + c_{n-1} \beta_i^{n-1}$$

Dimostrazione: se α è algebrico di grado n su F con polinomio minimo m(X) e $\varphi: F(\alpha) \to K'$ è isomorfismo, allora $0 = \varphi(0) = \varphi(m(\alpha)) = m(\varphi(\alpha))$ quindi $\varphi(\alpha)$ deve essere radice di m(X) in K'. viceversa, sia β una radice di m(X) in K' e consideriamo il morfismo di anelli

$$v_{\beta}: F[X] \to K'$$

 $f(X) \to f(\beta)$

poiché $m(X) \in Ker(v_{\beta})$, dal Teorema di isomorfismo per anelli abbiamo che il seguente diagramma è commutativo:

$$F[X] \xrightarrow{v_{\beta}} K'$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\pi}$$

$$F(\alpha) \simeq F[X]/< m(X) >$$

infatti $Ker(v_{\beta}) = \langle m(X) \rangle$, essedo m(X) irriducibile. quindi abbiamo trovato un morfismo iniettivo $\varphi : F(\alpha) \to K'$ che soddisfa le proprietà dell'enunciato.

sia F un campo e $f(X) \in F[X]$ un polinomio di grado $n \ge 1$. un campo K, ampliamento di F, si dice **campo di spezzamento di f(X) su F** se:

- f(X) fattorizza in polinomi di grado 1 su K[X]
- non ci sono campi intermedi $F \subseteq L \subsetneq K$ con la stessa proprietà.

Esempio: $\mathbb{Q}(\sqrt{2})$ è un campo di spezzamenro di $X^2 - 2 \in \mathbb{Q}[X]$. \mathbb{C} è un campo di spezzamenro di $X^2 + 1 \in \mathbb{R}[X]$.

Ora vogliamo mostrare che un campo che ha cardinalità p^n è un campo di spezzamento del polinomio $X^{p^n} - X \in \mathbb{F}_p[X]$. infatti se K è un campo e $|K| = p^n$, allora il suo gruppo moltiplicativo $K \setminus \{0\}$ ha cardinalità $p^n - 1$ e quindi oer ogni $\alpha \in K \setminus \{0\}$ si ha $\alpha^{p^n-1} = 1$. quindi ogni elemento di K è radice del polinomio $X^{p^n} - X$. per il teorema di Ruffini, K è un campo di spezzamento di $X^{p^n} - X$. Adesso mostriamo che ogni poliniomio di grado n irriducibile in $\mathbb{F}_p[X]$ divide $X^{p^n} - X \in \mathbb{F}_p[X]$.

Proposizione: tutti e soli i polinomi irriducibili su \mathbb{F}_p di grado n dividono $X^{p^n} - X \in \mathbb{F}_p[X]$.

Dimostrazione: sia $P(X) \in \mathbb{F}_p[X]$ irriducibile di grado n e sia $K := \mathbb{F}_p[Y]/\langle P(Y) \rangle$. allora K ha p^n elementi che sono le radici di $X^{p^n} - X \in K[X]$. poichè $Y \in K$ è una radice $P(X) \in K[X]$, $P(X)eX^{p^n} - X$ hanno una radice in comune in K, allora per il teorema di Ruffini hanno un fattore comune X - YinK[X]. quindi, poiché $\mathbb{F}_p \subseteq K$ e MCD in $\mathbb{F}_p = MCD$ in K[X] $\Longrightarrow P(X), X^{p^n} - X$ hanno $MCD \neq 1$ in $\mathbb{F}_p[X]$. poiché P(X) è irriducibile in $\mathbb{F}_p[X]$, P(X) divide $X^{p^n} - X$.

adesso vogliamo costruire un isomorfismo di campi

$$f: \mathbb{F}_p[X]/\langle P(X) \rangle \longrightarrow \mathbb{F}_p[X]/\langle Q(X) \rangle$$

dove $P(X), Q(X) \in \mathbb{F}_p[X]$ sono monici irriducibili di grado n. basta costruire un isomorfismo di anelli.

Infatti un morfismo di anelli che sono campi è iniettivo. Inoltre:

$$\left|\mathbb{F}_p[X]/\langle P(X)\rangle\right| = \left|\mathbb{F}_p[X]/\langle Q(X)\rangle\right| = p^n$$

quindi tale morfismo è biunivoco, ossia è isomorfismo.

Si ha che, se $y \in \mathbb{F}_p[Y]/\langle P(Y) \rangle$ allora $P(X) \in \mathbb{F}_p[X]$ è il polinomio minimo di y su \mathbb{F}_p . quindi, se P(X) ha una radice in $\mathbb{F}_p[Y]/\langle Q(Y) \rangle$, possiamo usare la proposizione sull'estensione di morfismi di campi per definire il morfismo f, che sarà un isomorfismo. Infatti $\mathbb{F}_p \subseteq \mathbb{F}_p[X]/\langle Q(X) \rangle$. Inoltre $\mathbb{F}_p[X]/\langle P(X) \rangle = \mathbb{F}_p([X])$, dove [X] è la classe di X in $\mathbb{F}_p[X]/\langle P(X) \rangle$. poiché $\mathbb{F}_p[Y]/\langle Q(Y) \rangle$ è un campo di spezzamento di $X^{p^n} - X$ e P(X) divide $X^{p^n} - X$, allora P(X) si fattorizza in fattori di grado 1 in $\mathbb{F}_p[Y]/\langle Q(Y) \rangle$.

sia $\beta \in \mathbb{F}_p[Y]/\langle Q(Y) \rangle$ tale che $p(\beta) = 0$. allora l'assegnazione

$$c_0 + c_1 x + \dots + c_{n-1} x^{n-1} \to c_0 + c_1 \beta + \dots + c_{n-1} \beta^{n-1}$$

definisce un morfismo di anelli

$$f\,:\, \mathbb{F}_p[X]\big/\!< P(X)> \,\longrightarrow\, \mathbb{F}_p[X]\big/\!< Q(X)>$$

Esempio: in $\mathbb{F}_3[X]$ si considerino i polinomi irriducibili

$$1 + X^2 + 2 + X + X^2$$
.

il polinomio minimo di X in $\mathbb{F}_3[X]/<1+X^2>:=K$ su \mathbb{F}_3 è $1+X^2$. in $K':=\mathbb{F}_3[Y]/<1+Y+Y^2>$ si ha che

$$1 + X^2 = (X + Y + 2)(X + 2Y + 1)$$

quindi in $K'[X], 1 + X^2$ ha due radici:

$$-Y - 2 = 2Y + 1$$
 e $-2Y - 1 = y + 2$.

abbiamo quindi due isomorfismi

$$f: K \to K'$$

$$a_0 + a_1 x \to a_0 + a_1 (2Y + 1)$$

$$g: K \to K'$$

$$a_0 + a_1 x \to a_0 + a_1 (Y + 2)$$

$$f(0) = 0$$

$$f(1) = 1$$

$$f(2) = 2$$

$$f(X) = 2Y + 1$$

$$f(1+X) = f(1) + f(X) = 2Y + 2$$

$$f(2+X) = f(2) + f(X) = 2Y$$

$$f(2X) = f(2)f(X) = 2f(X) = y + 2$$

$$f(1+2X) = f(1) + f(2X) = Y$$

$$f(2+2X) = f(2) + f(2X) = y + 1$$

$$\begin{split} g(0) &= 0 \\ g(1) &= 1 \\ g(2) &= 2 \\ g(X) &= Y + 2 \\ g(1+X) &= g(1) + g(X) = Y \\ g(2+X) &= g(2) + g(X) = Y + 1 \\ g(2X) &= g(2)g(X) = 2g(X) = 2Y + 1 \\ g(1+2X) &= g(1) + g(2X) = 2Y + 2 \\ g(2+2X) &= g(2) + g(2X) = 2Y \end{split}$$

Osservazione: $X \in K$ non è un generatore di $K \setminus \{0\}$. infatti il sottogruppo del gruppo moltiplicativo $K \setminus \{0\}$ generato da X è $\langle X \rangle = \{X, 2, 2X, 1\} \subsetneq K \setminus \{0\}$

Lemma: se K è un anello commutativo di caratteristica prima p, allora

$$(X+Y)^{p^h} = X^{p^h} + Y^{p^h}$$

per ogni $x, y \in K, h \ge 1$.

Dimostrazione: sia h = 1. se p > k > 0, p divide tutti i coefficienti binomiali $\binom{p}{k} := \frac{p!}{k!(p-k)!}$ perché non divide k!(p-k)!. allora $(X+Y)^p = \sum_{k=0}^p \binom{p}{k} X^k Y^{p-k} = X^p + Y^p$. la tesi seque per induzione.

Automorfismo di Frobenius:

Dal lemma precedente segue che se K è un campo di caratteristica p, allora la funzione

$$\Phi: K \to K$$
$$x \to x^p$$

è un morfismo di campi. infatti

$$\Phi(x+y) = (x+y)^p = x^p + y^p = \Phi(x) + \Phi(y)$$

$$\Phi(xy) = (xy)^p = x^p y^p = \Phi(x)\Phi(y)$$

 $\forall x, y \in K$.

se $K = \mathbb{F}_{p^n}, \Phi$ è un automorfismo

(essendo morfismo initettivo da un campo di cardinalità finita in se stesso)

detto automorfismo di Frobenius.

Teorema: il gruppo degli automorfismi di \mathbb{F}_{p^n} , $AUT(\mathbb{F}_p^n)$ è ciclico di cardinalità n, generato dall'automorfismo di Frobenius.

Dimostrazione: vedi teorema 4.3.17 del libro di Stefania Gabelli.

Lemma: sia F un campo. Il polinomio X^d-1 divide il polinomio X^n-1 s.s.e. d divide n.

Dimostrazione: se $n = qd + r, 0 \le r \le d$, in $\mathbb{F}[X]$ si ha:

$$(x^n-1) = (X^d-1)(X^{n-d} + X^{n-2d} + \dots + x^{n-(p-1)d} + X^r) + (X^r-1).$$

 $quindi \; X^d-1 \; divide \; X^n-1 \; s.s.e. \; X^r-1 \; \grave{e} \; il \; polinomio \; nullo, \; cio\grave{e} \; s.s.e. \; r=0$

dalla fattorizzazione nella dimostrazione del lemma otteniamo che, calcolazado in p, se $p^d - 1$ divide $p^n - 1$ allora d divide n.

Corollario: d divide $n \iff (X^{p^d} - X)$ divide $(X^{p^n} - X)$ in $\mathbb{F}_p[X]$.

 $Dimostrazione: \implies$

per il lemma precedente, $X^d - 1$ divide $X^n - 1$. calcolando in p si ottiene che $p^d - 1$ divide $p^n - 1$. quindi sempre per il lemma, $X^{p^{d-1}} - 1$ divide $X^{p^n-1} - 1$.

 $viceversa\ se\ X^{p^{d-1}}-1\ divide\ X^{p^n-1}-1,\ allora\ p^d-1\ divide\ p^n-1\ \Longrightarrow\ d|n.$

Proposizione: tutti e soli i sottocampi di \mathbb{F}_{p^n} sono i campi \mathbb{F}_{p^d} con d|n.

Dimostrazione: abbiamo che, se $\mathbb{F}_{p^d} \subseteq \mathbb{F}_{p^n}$, allora tutte le radici di $X^{p^d} - X$ in \mathbb{F}_{p^d} sono radici di $X^{p^n} - X$ in \mathbb{F}_{p^n} , ossia $X^{p^d} - X$ divide $X^{p^n} - X \implies d|n$. se d divide n, $X^{p^d} - X$ divide $X^{p^n} - X$ e l'insieme delle radici di $X^{p^d} - X$ (è un campo) sta in \mathbb{F}_{p^n}

Finora, dato un numero primo p e un numero naturale $n \neq 0$, abbiamo costruito il campo \mathbb{F}_{p^n}

di cardinalità p^n prendendo un polinomio irriducibile $Q \in \mathbb{F}_p$ e facendo il quoziente:

$$\mathbb{F}_{p^n} = \mathbb{F}_p[X] / \langle Q(X) \rangle$$

Abbiamo visto che due campi costruiti in questo modo sono isomorfi. Facciamo alcune osservazioni e un discorso più generale.

- sia K un campo finito. qual'è la caratteristica di K?
 prendiamo il sottogruppo < 1_K >⊆ K. poiché < 1_K > è finito,
 < 1_K >≃ Z_n per qualche n > 1.
 dato che gli elementi di < 1_K > sono di un campo, non sono divisori dello zero,
 quindi n è primo, ossia un campo finito ha caratteristica prima p
 e il suo sottocampo fondamentale è F_p
- sia K un campo finito. Abbiamo detto nel punto 1. che F_p ⊆ K per qualche primo p.
 inoltre il gruppo moltiplicativo K \ {0} è ciclico e quindi,
 come precedentemente dimostrato, seK \ {0} = α, K = F_p(α).
 Quindi, se il grado di α su F_p è n, abbiamo che:
 |K| = pⁿ, ossia ogni campo finito ha cardinalità pⁿ, per qualche p primo e n ≠ 0.
- 3. siano K_1 e K_2 due campi finiti di cardinalità p^n . sia $K_1 = \mathbb{F}_p(\alpha)$ dove α è un generatore del gruppo $K_1 \setminus \{0\}$ e ha grado n su K_1 . sia $Q \in \mathbb{F}_p[X]$ il suo polinomio minimo. Quindi deg(Q) = n, e Q è irriducibile.
 - (a) K_1 e K_2 sono campi di spezzamento di $X^{p^n} X \in \mathbb{F}_p[X]$.
 - (b) ogni polinomio irriducibile di grado n in $\mathbb{F}_p[X]$ è fattore di $X^{p^n} X$.
 - (c) da (b) segue che Q ha una radice in K_2 , la chiamiamo β .
 - (d) l'assegnazione $\alpha \to \beta$ definisce un mofismo di campi da K_1 in K_2 . poiché un morfismo tra campi è sempre iniettivo, ed essendo anche suriettivo, perché K_1 e K_2 hanno la stessa cardinalità, è un isomorfismo:

$$K_1 \simeq K_2$$

1.17 Algoritmo di Berlekamp

Teorema: sia $f(x) \in \mathbb{F}_p[x]$ di grado d > 1, sia $h(x) \in \mathbb{F}_p[x]$ di grado 1 < deg(h) < d tale che f(x) divide $h(x)^p - h(x)$. allora

$$f(x) = MCD\{f(x), h(x)\} \cdot MCD\{f(x), h(x) - 1\} \cdot \dots \cdot MCD\{f(x), h(x) - (p-1)\}$$

è una fattorizzazione non banale di f(x) in $\mathbb{F}_n[x]$.

Dimostrazione: supponiamo che f(x) divida $h(x)^p - h(x)$. il polinomio $X^p - X \in \mathbb{F}_p[X]$ si fattorizza come:

$$X^{p} - X = X(X - 1)(X - 2)...(X - (p - 1))$$

 $mettendo\ h(x)\ al\ posto\ di\ X\ si\ ha:$

$$h(x)^p - h(x) = h(x)(h(x) - 1)(h(x) - 2)...(h(x) - (p - 1))$$

abbiamo che $MCD\{h(x) - i, h(x) - j\} = 1 \forall i, j \in \mathbb{F}_p, i \neq j.$ infatti, se $MCD\{h(x) - i, h(x) - j\} = D(x)$ allora

$$\begin{cases} h(x) - i = D(x) \cdot H_i(x) \\ h(x) - j = D(x) \cdot H_j(x) \end{cases}$$

$$\implies D(x)[H_i(x) - H_j(x)] = j - i \in \mathbb{F}_p$$

$$\implies deg(D) = 0, i \neq j$$

inoltre, se $MCD\{a,b\} = 1$ si ha che $MCD\{f,ab\} = MCD\{f,a\} = MCD\{f,b\}$. per induzione si ha che

$$MCD\{f, a_1 \cdot \ldots \cdot a_k\} = MCD\{f, a_1\} \cdot \ldots \cdot MCD\{f, a_k\}$$

dato che f(x) divide $h(x)^p - h(x)$, abbiamo che

$$f(x) = MCD\{f(x), h(x)^p - h(x)\}\$$

 $poich\acute{e},\;se\;i\neq j,\;MCD\{h(x)-i,h(x)-j\}=1,\;si\;ha$

$$f(x) = MCD\{f(x), h(x)^p - h(x)\} = MCD\{f(x), h(x)[h(x) - 1] \cdot \dots \cdot [h(x) - p + 1]\} = MCD\{f, h\} \cdot MCD\{f, h - 1\} \cdot \dots \cdot MCD\{f, h - p + 1\}.$$

poiché $deg(h-i) < deg(f), MCD\{f, h-i\} \neq f(x), \forall i \in \mathbb{F}_p.$ quindi nella fattoriazzazione precedente appaiono solo polinomi di grado < d, perciò è non banale.

Proposizione: Un polinomio $h(x) \in \mathbb{F}_p[x]$ che soddisfa le condizioni del teorema esiste sempre.

Dimostrazione: Sia

$$h(x) = b_0 + b_1 x + \dots + b_{d-1} x^{d-1} \in \mathbb{F}_p[X]$$

allora

$$h(x)^p = b_0^p + b_1^p x + \dots + b_{d-1}^p x^{p(d-1)}$$

(avendo dimostrato che $(X+Y)^p = x^p + Y^p$ e induttivamente che $(\sum_{i=1}^k x_i)^p = \sum_{i=1}^k x_i^p$)

$$b_i^p = b_i \forall 0 \le i \le d-1 \text{ quindi } h(x)^p = b_0 + b_1 x^p + \dots + b_{d-1} x^{p(d-1)}$$

si ha che

$$h(x)^p \mod f(x) = b_0 \pmod{f} + b_1(x^p \mod f) + \dots + b_{d-1}(x^{p(d-1)} \mod f)$$

 $sia \ x^{ip} = f(x)q_i(x) + r_i(x) \ con \ deg(r_i) < d, 0 \le i \le d-1.$
 $abbiamo \ che$

$$[h(x)^p - h(x)] \mod f = 0 \mod f \iff h(x)^p \mod f = h(x) \mod f \iff b_0 r_0(x) + b_1 r_1(x) + \dots + b_{d-1} r_{d-1}(x) = b_0 + b_1 x + \dots + b_{d-1} x^{d-1}.$$

otteniamo così un sistema lineare di d equazioni nelle incognite b_i . dobbiamo mostrare che esistono soluzioni non nulle. sia $f(x) = p_1(x)...p_k(x)$ una fattoriazzazione di $f(x) \in \mathbb{F}_p[x]$ in fattori irriducibili. supponiamo che f non habbia fattori multipli (verificabile con Teorema seguente).

Teorema: sia K un campo.

- 1. se $f(x) \in K[x]$ è ha un fattore multiplo, allora $MCD\{f, f'\} \neq 1$ dove f' è la derivata di f rispetto a x.
- 2. se K ha caratteristica 0 o p, e $MCD\{f, f'\} \neq 1$, allora f(x) ha un fattore multiplo. abbiamo una versione in $\mathbb{F}_p[x]$ del teorema cinese dei resti.

$$\begin{split} MCD\{p_i(x),p_j(x)\} &= 1, \forall \leq i \leq k, 1 \leq j \leq k, i \neq j \\ \mathbb{F}_p[x]/< f> &\simeq \mathbb{F}_p[x]/< p_1(x) \times \ldots \times \mathbb{F}_p[x]/< p_k(x)> \end{split}$$

dato $(s_1,...,s_k) \in \mathbb{F}_p^k$, esisite un unica classe $[h(x)] \in \mathbb{F}_p[x]/f$ tale che

$$\begin{cases} [h(x)] = s_1 i n^{\mathbb{F}_p[x]} / \langle p_1(x) \rangle \\ \dots \\ [h(x)] = s_k i n^{\mathbb{F}_p[x]} / \langle p_k(x) \rangle \end{cases}$$

ossia
$$h(x)-s_i$$
 è divisibile per $p_i(x), \forall 1\leq i\leq k$ quindi $p_i(x)$ divide $h(x)[h(x)-1]...[h(x)-(p-1)]=h(x)^p-h(x), \forall 1\leq i\leq k$

Esempio: fattorizziamo $f = x^5 + x^2 + 2x + 1 \in \mathbb{F}_3[x]$. ferifichiamo che $MCD\{f, f'\} = MCD\{x^5 + x^2 + 2x + 1, 2x^4 + 2x + 2\} = 1$ poi calcoliamo i resti:

$$x^{3(5-1)} = x^{12} \equiv (x^2 + 2) \mod f \ x^{3 \cdot 3} = x^9 \equiv (2x^4 + x^3 + x^2 + 2x + 2) \mod f$$

$$x^{3 \cdot 2} = x^6 \equiv (2x^3 + x^2 + 2x) \mod f \ x^3 \equiv x^3 \mod f \ 1 \equiv 1 \mod f$$

$$\implies b_0 + b_1 x^3 + b_2 (2x^3 + x^2 + 2x) + b_3 (2x^4 + x^3 + x^2 + 2x + 2) + b_4 (x^2 + 2) =$$

$$= b_0 + b_1 x + b_2 x^2 + b_3 x^3 + b_4 x^4$$

$$\begin{cases} 2b_3 + 2b_4 = 0 \\ 2b_2 + 2b_3 - b_1 = 0 \\ b_2 + b_3 + b_4 - b_2 = 0 \\ b_1 + 2b_2 = 0 \\ 2b_3 - b_4 = 0 \end{cases} \iff \begin{cases} b_3 = 2b_4 \\ b_1 + b_2 + b_3 = 0 \\ b_1 = b_2 \end{cases} \iff b_1 = b_2 = b_3 = 2b_4$$

una soluzione è dunque (0, 1, 1, 1, 2), ossia $h(x) = x + x^2 + x^3 + 2x^4$. quindi

$$f(x) = MCD\{f, x + x^2 + x^3 + 2x^4\} \cdot MCD\{f, 1 + x^2 + x^3 + 2x^4\} \cdot MCD\{f, 2 + x^2 + x^3 + 2x^4\} = (1 + x^2)(x^3 + 2x + 1)$$

Sia $f(x)\mathbb{F}_p[x]$, deg(f) = d. sia $f(x) = p_1(x) \cdot ... \cdot p_k(x)$ una fattoriazzazione di f(x) in fattori irriducibili, non banali e aventi molteplicità 1. siano

$$r_0 = 1 \mod f(x)$$

$$r_1 = x^p \mod f(x)$$
...
$$r_{d-1} = x^{p(d-1)} \mod f(x)$$

con $deg(r_i) < d \forall 0 \leq i \leq d-1$ definiamo la matrice $A \in Mat_{d \times d}(\mathbb{F}_p)$ nel segueente modo: $A_{ij} = \text{coefficiente del termine di grado i del polinomio } r_j(x)$

Esempio: considerando l'esempio precedente, si ha:

$$A \in Mat_{5\times5}(\mathbb{F}_3) = \begin{vmatrix} 1 & 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 \end{vmatrix}$$

la matrice A-I è la matrice del sistema che abbiamo risolto, ossia $(A-I)\overline{b}=\overline{0}$

Teorema: Il numero di fattori irriducibili k nella fattorizzazione di f è uguale alla dimensione del nucleo di A - I. ossia k = d - rk(A - I), rango calcolato sul campo \mathbb{F}_p .

Dimostrazione: osserviamo innanzitutto che dim $(ker(A-I)) \ge 1$. infatti la d-tupla $(b_0, 0, ..., 0)$ è sempre soluzione del sistema $\forall b_0 \in \mathbb{F}_p$. abbiamo visto che l'Insieme

$$H = \{ h \in \mathbb{F}_p[x] : deg(h) < d, f|h^p - h \}$$

è uno spazio vettoriale su \mathbb{F}_p isomorfo a ker(A-I). sia k il numero di fattori irriducibili non banali di f, aventi tutti molteplicità 1. dimostriamo che \mathbb{F}_p^k è isomorfo a H. abbiamo già dimostrato che per ogni $(s_1,...s_k) \in \mathbb{F}_p^k$ troviamo un unico elemento di H, usando il Teorema cinese dei resti per l'anello $\mathbb{F}_p[X]$. quindi abbiamo definito una funzione $\varphi : \mathbb{F}_p^k \to H$

- 1. φ è un morfismo si spazi vettoriali.
- 2. φ è iniettiva: $ker(\varphi) = \{(s_1, ...s_k) \in \mathbb{F}_p^k : s_i \mod p_i = 0, \forall 1 \le i \le k\}$ $= \{(0, ..., 0)\}$
- 3. φ è suriettiva: se $h \in H$, abbiamo visto che $h^p - h = h(h-1)(h-2)...(h-(p-1))$. questi fattori sono coprimi a coppie, quindi se $f|h^p - h$, allora $p_i(x)|(h-s_i)$ per un unico $s_i \in \mathbb{F}_p, \forall 1 \leq i \leq k$. quindi h è soluzione del sistema

$$\begin{cases} h \equiv s_1 \mod p_1 \\ \dots \\ h \equiv s_k \mod p_k \end{cases}$$

abbiamo dimostrato che $\varphi: \mathbb{F}_p^k \to H$ è un isomorfismo do spazi vettoriali, quindi

$$\mathbb{F}_p^k \simeq H \simeq ker(A-I)$$

 $ossia\ dim(ker(A-I)) = k = d - rk(A-I).$

Esempio: sempre considerando l'esempio precedente, si ha che 2 = 5 - rk(A - I)

se $f \in \mathbb{F}_p[x]$ ha fattori irriducibili di molteplicità > 1, procediamo come segue: abbiamo che $D = MCD\{f, f'\} \neq 1$. osserviamo che il polinomio $\frac{f}{D}$ ha fattori irriducibili tutti di molteplicità 1. infatti se $p_1, ..., p_k$ sono tutti distinti,

$$\begin{array}{l} f' = (p_1^{e_1}(x)...p_k^{e_k}(x))' = \\ e_1 p_1^{e_1-1} p_1' p_2^{e_2} ... p_k^{e_k} + ... + e_k p_1^{e_1} p_2^{e_2} ... p_k^{e_k-1} p_k' \end{array}$$

e $D=p_1^{e_1-1}...p_k^{e_k-1}$ quindi $\frac{f}{D}=p_1...p_k$

allora fattorizziamo $\frac{f}{D}$ poi fattorizziamo D, eventualmente ripetendo con D, D'. fincé non otteniamo $MCD\{D_i, D_i'\} = 1$.

Esempio: in $\mathbb{F}_3[x]$ consideriamo il polinomio $f = 1 + 2x + 2x^2 + x^5 + x^6 + x^7$. si ha che

$$f' = 2 + 4x + 5x^4 + 7x^6 = 2 + x + 2x^4 + x^6.$$

е

$$MCD\{f,f'\}=1+2x+x^3=:D.$$
 $\frac{f}{D}=1+2x^2+x^3+x^4,$ fattorizzando otteniamo $(x+1)(1+2x+x^3).$

dato che D non ha radici in \mathbb{F}_3 , D è irriducibile. allora

$$f = \frac{f}{D} \cdot D = (x+1)(1+2x+x^3)^2$$

2 Tensori

2.1 Prodotto tra matrici

Definizione: prodotto righe per colonne di matrici 2×2 sia $Mat_{2\times 2}(K) = \{ \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} : x_i \in K \}$ l'insieme delle matrici 2×2 a coefficienti in un campo K.

diamo all'insieme una struttura di anello:

• somma:
$$\begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} + \begin{pmatrix} y_1 & y_2 \\ y_3 & y_4 \end{pmatrix} = \begin{pmatrix} x_1 + y_1 & x_2 + y_2 \\ x_3 + y_3 & x_4 + y_4 \end{pmatrix}$$

• prodotto:
$$\begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \cdot \begin{pmatrix} y_1 & y_2 \\ y_3 & y_4 \end{pmatrix} = \begin{pmatrix} x_1y_1 + x_2y_3 & x_1y_2 + x_2y_4 \\ x_3y_1 + x_4y_3 & x_3y_2 + x_4y_4 \end{pmatrix}$$

con queste operazioni $Mat_{2\times 2}(K)$ è un anello con unità $\begin{pmatrix} 1_k & 0 \\ 0 & 1_k \end{pmatrix}$.

il prodotto così definito richiede di eseguire 8 moltiplicazioni. abalogamente possiamo dotare $Mat_{n\times n}(K)$ di una struttura di anello. la moltiplicazione righe per colonne richiede l'esecuzione di n^3 moltiplicazioni.

Esempio: in $Mat_{3\times 3}(\mathbb{F}_2)$ abbiamo

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Definizione: Algorimo di Strassen per il prodotto di matrici 2 x 2:

sia
$$A = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$$
 e $B = \begin{pmatrix} y_1 & y_2 \\ y_3 & y_4 \end{pmatrix}$ e $AB = \begin{pmatrix} z_1 & z_2 \\ z_3 & z_4 \end{pmatrix}$

1.
$$(x_1 + x_4)(y_1 + y_4)$$

2.
$$(x_3 + x_4)y_1$$

3.
$$x_1(y_2 + y_4)$$

4.
$$x_4(-y_1+y_3)$$

5.
$$(x_1 + x_2)y_4$$

6.
$$(-x_1+x_3)(y_1+y_2)$$

7.
$$(x_2 - x_4)(y_3 + y_4)$$

allora
$$z_1 = 1 + 4 - 5 + 7$$
, $z_2 = 3 + 5$, $z_3 = 2 + 4$, $z_4 = 1 + 3 - 2 + 6$

Esempio: in $Mat_{2\times 2}(\mathbb{F}_2)$ siano

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} e B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

allora
$$.1 = 0, .2 = 0, .3 = 1, .4 = 0, .5 = 0, .6 = 0, .7 = 0$$

quindi $AB = \begin{pmatrix} .1 + .4 - .5 + .7 & .3 + .5 \\ .2 + .5 & .1 + .3 - .2 + .6 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$

Nell'algoritmo di Strassen per matrici 2 x 2 si eseguono 7 moltiplicazioni. L'algoritmo può anche essere usato ricorsivamente per motiplicare matici più grandi. ad esempio, se $M, N \in Mat_{4\times 4}(K)$, possiamo scrivere:

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in N = \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix}$$
 dove $A, B, C, D, A', B', C', D' \in Mat_{2 \times 2}(K)$ poiche $MN = \begin{pmatrix} AA' + BC' & AB' + BD' \\ CA' + DC' & CB' + DD' \end{pmatrix}$

possiamo usare l'algoritmo in due passi. primo passo:

1.
$$(A+D)(A'+D')$$

2.
$$(C+D)A'$$

3.
$$A(B' + D')$$

4.
$$D(-A'+C')$$

5.
$$(A + B)D'$$

6.
$$(-A+C)(A'+B')$$

7.
$$(B-D)(C'+D')$$

e quindi
$$MN=\begin{pmatrix} .1+.4-.5+.7 & .2+.5\\ .3+.4 & .1+.3-.2+.6 \end{pmatrix}$$
 secondo passo: calcoliamo il prodotto in (.1, .2, 3, ... , .7) con l'algoritmo di Strassen.

Quindi l'algoritmo di Strassen per il prodotto tra due matrici 4 x 4 richiede 7² moltiplicazioni.

se vogliamo moltiplicare matrici 3 x 3

possiamo aggiungerre una riga e una colonna di zeri e considerarle 4 x 4.

In generale la moltiplicazione di due matrici n x n usando l'algoritmo di Strassen richiede

 7^k moltiplicazioni se $n=2^k$ abbiamo che

$$7^k = 2^{\log_2 7^k} = 2^{k \log_2 7} \approx 2^{2.81}$$

Definizione: L'esponente w della moltiplicazione di matrici è $w := INF\{h \in \mathbb{R} : Mat_{n \times n}(K) \text{ può essere moltiplicato con } O(n^h) \text{ operazioni aritmrtiche} \}$

L'algoritmo di Strassen mostra che $w \leq 2.81$.

Se n = 2 l'algoritmo di Strassen è ottimale (dal Teorema di Brockett- Dobkin).

Non è noto un algoritmo ottimale per la moltiplicazione matrici 3 x 3.

Nel 2022 è stato pubblicato un algoritmo trovato da Alphatensor per matrici 4×4 su \mathbb{F}_2 che richiede l'esecuzione di 47 moltiplicazioni, l'algoritmo di Strassen ne richiederebbe 49.

2.1.1 Anello degli endomorfismi

Definizione: Siano V, W spazi vettoriale su un campo K. una funzione $f:V \to W$ è un endomorfismo di spazi vettoriali se:

$$f(av_1 + bv_2) = af(v_1) + bf(v_2) \forall a, b \in K, v_1, v_2 \in K$$

Un morfismo $f: V \to V$ di spazi vettoriali è detto endomorfismo di V. L'insieme $End(V) = \{f: V \to V: f \text{ è un endomorfismo di } V \}$ E' un anello con le operazioni di somma e composizione di funzioni. con unità la funzione identità $Id_v: V \to V$. se dim(V) > 1 l'anello non è commutativo.

Definizione: sia $Mat_{n\times n}(K)$ l'insieme delle matrici n x n a coefficienti in K. con le operazioni di somma e prodotto righe per colonne, L'insieme $Mat_{n\times n}(K)$ è un anello, con unità la matrice identità

$$Id_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Ad un endomorfismo $f \in End(V)$, se dim(V) = n, possiamo associare una matrice nel seuente modo:

 $Sia\{e_1,...e_n\}$ una base di V.

Sia $f(e_1) = a_{1i}e_1 + a_{2i}e_2 + ... + anie_n, a_{1i}, ..., a_{ni} \in K \forall 1 \leq i \leq n$. allora la matrice M(f) associata a f è:

$$\begin{pmatrix} a_{1i} \\ \dots \\ a_{ni} \end{pmatrix}$$

Teorema: sia V uno spazio vettoriale di dimensione n su un campo K. allora la funzione

$$M: End(V) \to Mat_{n \times n}(K)$$

 $f \to M(f)$

è un isomorfismo di anelli. (non lo dimostriamo perchè semplice)

Esempio: si consideri il campo $\mathbb{F}_4 := \mathbb{F}_2[x]/1 + x + x^2$. \mathbb{F}_4 è uno spazio vettoriale di dimensione 2 sul campo \mathbb{F}_2 . nella base $\{1, x\}di\mathbb{F}_4$ l'automorfismo di Frobenius

$$\Phi: \mathbb{F}_4 \to \mathbb{F}_4$$
$$v \to v^2$$

che è un morfismo di spazi vettoriali $(\Phi(y) = y \forall y \in \mathbb{F}_2)$, è rappresentato dalla matrice

$$M(\Phi) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

infatti $\Phi(1) = 1, \Phi(x) = x^2 = 1 + x.$

dato che $[(\Phi)]^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ una rappresentazione matriciale di $Aut(\mathbb{F}_4)$ è

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\}$$

in rappresentazione matriciale gli endomorfismi di \mathbb{F}_4 , come spazio vettoriale, sono l'insieme di 16 matrici

$$Mat_{2\times 2}(\mathbb{F}_2) = \left\{ \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} : x_i \in \mathbb{F}_2 \right\}$$

Esempio (automorfismi di \mathbb{F}_4 come s.v. su \mathbb{F}_2): sia $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ una matrice invertibile a coefficienti in \mathbb{F}_2 .

A rappresenta un automorfismo di \mathbb{F}_4 come spazio vettoriale.

A è invertibile se e solo se il determinante di A è diverso da 0 (quindi deve essere 1).

•
$$a = 0 \implies bc = 1 \implies b = c = 1$$

•
$$b = 0 \implies ad = 1 \implies a = d = 1$$

•
$$c = 0 \implies ad = 1 \implies a = d = 1$$

•
$$d = 0 \implies bc = 1 \implies b = c = 1$$

quindi, come spazio vettoriale,

$$Aut(\mathbb{F}_4) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \right\}$$

invece come campo avevamo che

$$Aut(\mathbb{F}_4) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\} = \left\{ Id, \Phi \right\}$$

2.2 Spazio duale di uno spazio vettoriale

Definizione: Sia V unio spazio vettoriale di dimenzione n su un campo K. Sia $\{e_1, ..., e_n\}$ una base di V. L'insieme

$$V^* = \{f : V \to K : f \ \text{\'e} \ \text{un morfismo di spazi vettoriali} \ \}$$

è detto **spazio duale di V**. sia

$$e_i^*(e_j) = \begin{cases} 1 \text{ se } i = j \\ 0 \text{ se } i \neq j \end{cases} \quad \forall 1 \le i \le n$$

L'insieme $\{e_1^*,...,e_n^*\}$ è una base di V^* . in paricolare $\dim(V^*)=\dim(V)=n$.

Esempio: Sia $V=(\mathbb{F}_2)^4$ e sia $f\in V^*$ definita da

$$f(x) = < \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, x >$$

dove <,> è il prodotto scalare standard.

Dunque, se
$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$
, $f(x) = x_1 + x_2 + x_3 + x_4$ e $f = e_1^* + e_2^* + e_3^* + e_4^*$.

ad esempio
$$f(\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}) = 1+1+1+1=0, f(\begin{pmatrix} 0\\1\\1\\1 \end{pmatrix}) = 0+1+1+1=1$$

2.3Forme bilineari e prodotto tensoriale

Definizione: Sia V uno spazio vettoriale di dimensione n su un campo K. Indichiamo con $\{e_1,...,e_n\}$ una base di V.

Una funzione $f: V \times V \to K$ è detta forma bilineare su V se:

- $f(av_1, v_2) = f(v_1, av_2) = af(v_1, v_2), \forall a \in K, v_1, v_2 \in V$
- $f(v_1 + v_2, w) = f(v_1, w) + f(v_2, w)$ $f(w, v_1 + v_2) = f(w, v_1) + f(w, v_2), \forall v_1, v_2, w \in V$

Definizione: Siano $f, f_1, f_2: V \times V \to K$ forme bilineari. Se definiamo

- $f_1 + f_2 : V \times V \to K$ come $(f_1 + f_2)(v, w) = f_1(v, w) + f_2(v, w), \forall v, w \in V$
- $af: V \times V \to K \text{ con } (af)(v, w) = af(v, w), \forall v, w \in Vea \in K$

allora $f_1 + f_2$ e af sono forme bilineari.

Quindi l'insieme delle forme bilineari su V è uno spazio vettoriale che denotiamo con

$$V^* \otimes V^*$$

Prodotto tensoriale di V^* con V^*

Siano $1 \leq i, j \leq n$, indichiamo con $e_i^* \otimes e_j^* : V \times V \to K$ la forma bilineare su V tale che:

$$(e_i^* \otimes e_j^*)(e_h, e_k) = \delta_{ih}\delta_{jk} = \begin{cases} 1_k \text{ se } i = h, j = k \\ 0 \text{ altrimenti} \end{cases}$$
 dove $\delta_{ih} = \begin{cases} 1 \text{ se } i = h \\ 0 \text{ altrimenti} \end{cases}$ è la delta di Kronecker.

L'insieme $\{e_i^* \otimes e_j^* : 1 \leq i, j \leq n\}$ è una base di $V^* \otimes V^*$. Abbiamo che

$$\{e_i^* \otimes e_i^*(e_h, e_k) = e_i^*(e_h)e_i^*(e_k).$$

Se $u, v \in V^*$ allora $u \otimes v(x, y) = u(x)v(y), \forall x, y \in V$.

Se $u = u_1 e_1^* + ... + u_n e_n^*$ e $v = v_1 e_1^* + ... + v_n e_n^*$ allora $u \otimes v = \sum_{j=1}^n \sum_{i=1}^n u_i v_j e_i^* \otimes e_j^*(x, y)$. Quindi $(u_1 e_1^* + ... + u_n e_n^*) \otimes (v = v_1 e_1^* + ... + v_n e_n^*) = \sum_{j=1}^n \sum_{i=1}^n u_i v_j e_i^* \otimes e_j^*$.

Esempio: sia $\langle \cdot, \cdot \rangle$ il prodotto scalare canonico su \mathbb{K}^n , ossia

se
$$v = v_1 e_1 + ... + v_n e_n$$
 e $w = w_1 e_1 + ... + w_n e_n$ allora

$$\langle v, w \rangle = v_1 w_1 + \dots + v_n w_n.$$

il prodotto scalare canonico è una forma bilineare simmetrica su V. come elemento di $(K^n)^* \otimes (K^n)^*$ si scrive

$$e_1^* \otimes e_1^* + e_2^* \otimes e_2^* + ... + e_n^* \otimes e_n^*$$

Ad una forma bilineare f su V possimao associare una matrice M(f) in $Mat_{n\times n}(K)$ nel seuente modo:

La componente $M(f)_{ij}$ di coordinate i, j è l'elemento $f(e_i, e_j) \in K$,

In tal modo $f(u, v) = \langle u, M(f)v \rangle \forall u, v \in V$.

cio
è $M(f)_{ij}=$ coordinata di fnella bas
e $\{e_i^*\otimes e_j^*\}$ di $V^*\otimes V^*$

Esempio: alcune matrici associate:

- la matrice del prodotto scalare canonico è la matrice identità.
- alla forma bilineare

$$e_1^* \otimes e_2^* - e_2^* \otimes e_1^* \in (K^2)^* \otimes (K^2)^*$$

corrisponde la matrice $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ si nota che è una forma bilineare antisimmetrica.

• La forma bilineare antisimmetrica

$$e_1^* \otimes e_2^* - e_2^* \otimes e_1^* + e_2^* \otimes e_4^* - e_4^* \otimes e_2^* \in (K^4)^* \otimes (K^4)^*$$

è detta forma simplettica, e la sua matrice associata è $\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$

Abbiamo quindi definito un isomorfismo di spazi vettoriali

$$M: V^* \otimes V^* \to Mat_{n \times n}(K)$$

 $f \to M(f)$

Quindi se

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \in Mat_{n \times n}(K)$$

La forma bilineare $f \in V^* \otimes V^*$ associata a A è

$$f = (a_{11}e_1^* + \dots + a_{n1}e_n^*) \otimes e_1^* + \dots + (a_{1n}e_1^* + \dots + a_{nn}e_n^*) \otimes e_n^*$$

Esempio:
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \in Mat_{2\times 2}(\mathbb{F}_3)$$

 $f = (e_1^* + 2e_2^*) \otimes e_1^* + (2e_1^* + e_2^*) \otimes e_2^* = e_1^* \otimes e_1^* + 2e_2^* \otimes e_1^* + 2e_1^* \otimes e_2^* + e_2^* \otimes e_2^*$

Nota: essend $v^* \otimes V^*$ lo spazzio vettoriale delle forme bilineare su V, si ha che:

1.
$$a(e_i^* \otimes e_j^*) = (ae_i^*) \otimes e_j^* = e_i^* \otimes (ae_j^*)$$

2.
$$e_i^* \otimes (e_j^* + e_k^*) = e_i^* \otimes e_j^* + e_i^* \otimes e_k^*$$

Esempio: siano
$$v_1 = 3e_1^* + 2e_2^* + e_3 \in (\mathbb{R}^3)^*$$
 e $v_2 = e_2^* - \sqrt{3}e_3^* \in (\mathbb{R}^3)^*$ Allora $v_1 \otimes v_2 = (3e_1^* + 2e_2^* + e_3^*) \otimes (e_2^* - \sqrt{3}e_3^*) = 3e_1^* \otimes e_2^* - 3\sqrt{3}e_1^* \otimes e_3^* + 2e_2^* \otimes e_2^* - 2\sqrt{3}e_2^* \otimes e_3^* + e_3^* \otimes e_2^* - \sqrt{3}e_3^* \otimes e_3^*$

Definizione: Siano $V_1, V_2, ..., V_k$ spazi vettoriali su un campo \mathbb{F} . una funzione

$$f: V_1 \times V_2 \times ... \times V_k \to \mathbb{F}$$

è detta <u>forma multilineare</u> se è lineare rispetto ad ogni variabile. cioè se:

1.
$$f(av_1,...,v_k) = f(v_1,av_2,...,v_k) = ... = f(v_1,...,av_k) = af(v_1,...,v_k) \forall a \in \mathbb{F}, v_i \in V_i$$

2.
$$f(v_1 + w_1, v_2, ..., v_k) = f(v_1, ..., v_k) + f(w_1, ..., v_k)$$
...
$$f(v_1, v_2, ..., v_k + w_k) = f(v_1, ..., v_k) + f(v_1, ..., w_k)$$
 $\forall v_i, w_i \in V_i$

2.3.1 Prodotto tensoriale di spazi vettoriali

Definizione: Siano $V_1, V_2, ..., V_k$ spazi vettoriali su un campo \mathbb{F} . Definiamo $V_1 \otimes V_2 \otimes ... \otimes V_k$ lo spazio vettoriale delle forme multilineari

$$f: V_1 \times V_2 \times ... \times V_k \to \mathbb{F}$$

Una base di $V_1 \otimes V_2 \otimes ... \otimes V_k$ è l'insieme

$$\{e_{i_1}^{1^*} \otimes e_{i_2}^{2^*} \otimes ... \otimes e_{i_k}^{k^*} : 1 \leq i_1 \leq dim(V_1), ..., 1 \leq i : k \leq dim(V_k)\}$$

dove $\{e_{i_1}^{1*}\}$ è una base di V_1^* , ecc.

2.4 Rango di una matrice

Definizione: Sia $A \in Mat_{h \times k}(\mathbb{F})$ una matrice $h \times k$. Il rango di A è definito come:

 $rk(A) := n^{\circ}$ massumo di colonne linearmente indipendenti $= n^{\circ}$ massimo di righe linearmente indipendenti

si verifica facilmente che ogni matrice si può scrivere come combinazione lineare di matrici di rango 1.

sia $X = \{A \in Mat_{h \times k}(\mathbb{F}) : rk(A) = 1\}$, allora si ha che

$$rk(A) = min\{k \in \mathbb{N} : A = \sum_{i=1}^{k} M_i, M_i \in X, \forall 1 \le i \le k\}$$

Esempio: la matrice

$$A = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 4 & -6 \\ 3 & 0 & 3 \end{pmatrix}$$

ha rango 2, e si ha che:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -1 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 3 \\ 0 & 0 & -6 \\ 0 & 0 & 3 \end{pmatrix}$$

che è una combinazione lineare di matrici di rango 1, un altra è:

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 2 \\ 3 & 0 & 3 \end{pmatrix} + \begin{pmatrix} 0 & -1 & 2 \\ 0 & 4 & -8 \\ 0 & 0 & 0 \end{pmatrix}$$

ovviamente è la minima perchè rk(A) = 2

Come è fatta una matrice di rango 1 in $Mat_{a\times b}(K)$? tutte le sue colonne sono proporzionali ad un vettore colonna $\overrightarrow{v} \in K^a \setminus \{\overrightarrow{0}\}$. Quindi, se $A \in Mat_{a\times b}(K)$ e rk(A) = 1, esistono $a_1, ..., a_b \in K$ tali che:

$$A = \begin{pmatrix} a_1 \overrightarrow{v} & a_2 \overrightarrow{v} & \dots & a_b \overrightarrow{v} \end{pmatrix}$$
quindi $A = \overrightarrow{v} \begin{pmatrix} a_1 & a_2 & \dots & a_b \end{pmatrix} = \overrightarrow{v} \overrightarrow{a}^T$
$$\text{dove } \overrightarrow{a} = \begin{pmatrix} a_1 \\ \dots \\ a_b \end{pmatrix} \in K^b \setminus \{ \overrightarrow{0} \}$$

Come è fatta una matrice $A \in Mat_{a \times b}(K)$ di rango k? siano $\overrightarrow{v_1},...,\overrightarrow{v_k} \in K^a \setminus \{\overrightarrow{0}\}$ colonne linearmente indipendenti. le altre colonne sono combinazione lineare di queste e quindi esistono $\overrightarrow{a_1},...,\overrightarrow{a_k} \in K^b \setminus \{\overrightarrow{0}\}$ tali che:

$$A = \overrightarrow{v_1} \overrightarrow{a_1}^T + ... + \overrightarrow{v_k} \overrightarrow{a_k}^T$$

cioè A si scrive come somma di k matrici di rango 1. se si potesse scrivere con meno addendi avrebbe rango < k. quindi $rk(A) = min\{k \in N : A = \sum_{i=1}^k M_i, rk(M_i) = 1 \forall 1 \leq i \leq k\}$

D'ora in poi se $V_1, ..., V_h$ sono spazi vettoriali su un campo K con basi

$$\{v_1^1,...v_{i_1}^1\}, \{v_1^2,...v_{i_2}^2\},..., \{v_1^h,...v_{i_h}^h\}$$

allora $V_1 \otimes V_2 \otimes ... \otimes V_h$ è uno spazio vettoriale con base

$$\{v_{j_1}^1 \otimes v_{j_2}^2 \otimes ... \otimes v_{j_h}^h : 1 \leq j_1 \leq i_1, ..., 1 \leq j_h \leq i_h\}$$

che soddisfa le seguenti Relazioni:

- 1. $a(v_{j_1}^1 \otimes v_{j_2}^2 \otimes ... \otimes v_{j_h}^h) = (av_{j_1}^1) \otimes v_{j_2}^2 \otimes ... \otimes v_{j_h}^h = ... = v_{j_1}^1 \otimes v_{j_2}^2 \otimes ... \otimes (av_{j_h}^h),$ $\forall a \in K, 1 \leq j_1 \leq i_1, ..., 1 \leq j_h \leq i_h$
- 2. $(v_1 + w_1) \otimes v_2 \otimes ... \otimes v_h = v_1 \otimes v_2 \otimes ... \otimes v_h + w_1 \otimes v_2 \otimes ... \otimes v_h$... $v_1 \otimes v_2 \otimes ... \otimes (v_h + w_h) = v_1 \otimes v_2 \otimes ... \otimes v_h + v_1 \otimes v_2 \otimes ... \otimes w_h$ $\forall v_i, w_i \in V_i, 1 \leq i \leq h$

L'insieme $\{v_1 \otimes v_2 \otimes ... \otimes v_h : v_i \in V_i \forall 1 \leq i \leq h\}$

è L'insieme dei tensori di rango 1 di $V_1 \otimes V_2 \otimes ... \otimes V_h$

2.4.1 Rango di un tensore

Ogni elemento di $V_1 \otimes V_2 \otimes ... \otimes V_h$ si scrive come combinazione lineare di tensori di rango 1.

infatti la base $\{v_{j_1}^1 \otimes v_{j_2}^2 \otimes ... \otimes v_{j_h}^h\}$ è costituita da tensori di rango 1.

Definizione: Sia $T \in V_1 \otimes V_2 \otimes ... \otimes V_k$.

definiamo rango di T e lo indichiamo rk(T) il minimo $r \in \mathbb{N}$ tale che:

$$T = \sum_{i=1}^{r} T_i$$

dove $T_i \in V_1 \otimes V_2 \otimes ... \otimes V_k$ sono di rango 1, $\forall 1 \leq i \leq r$.

Esempio: sia U con base $\{u_1, u_2\}$, V con base $\{v_1, v_2\}$ e W con base $\{w_1, w_2\}$.

- $T: u_1 \otimes v_1 \otimes w_1 + u_2 \otimes v_2 \otimes w_2 \in U \otimes V \otimes W$ ha rango 1. infatti $T = u_1 \otimes v_1 \otimes (v_1 + v_2) \otimes w_1$.
- $T: u_1 \otimes v_1 \otimes w_1 + u_2 \otimes v_2 \otimes w_2 + u_1 \otimes v_2 \otimes w_1 + u_2 \otimes v_1 \otimes w_2 \in U \otimes V \otimes W$ ha rango 2. infatti l'unica fattorizzazione possibile è $T = (u_1 \otimes v_1 + u_2 \otimes v_2 \otimes v_2) \otimes w_1$ che non è un tensore di rango 1.
- $T = u_1 \otimes v_1 \otimes w_1 + u_2 \otimes v_2 \otimes w_2 \in U \otimes V \otimes W$ ha rango 2.

Poiché $dim(\bigotimes_{i=1}^h V_i) = \prod_{i=1}^h dim(V_i)$, abbiamo che, se $T \in \bigotimes_{i=1}^h V_i$ allora $rk(T) \leq \prod_{i=1}^h dim(V_i)$, poiche $\bigotimes_{i=1}^h V_i$ ha una base fatta di tensori di rango 1.

Ora verifichiamo che la nozione di rango di un Tensore è coerente con quella di rango di una matrice,

interpretando una matrice come forma bilineare, e quindi come un tensore.

Vediamo subito che una matrice di rango 1 corrisponde ad un tensore di rango 1.

Una matrice $m \times n$ di rango 1 h come colonne multipli di un vettore $v \in K^m \setminus \{0\}$.

La prima colonna sia a_1v , la seconda a_2v , ..., a_nv , $a_i\in K$

Quindi tale matrice di rango 1 si scrive come

$$A = \begin{pmatrix} v_1 \\ v_2 \\ \dots \\ v_m \end{pmatrix} \begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix} = \overrightarrow{v} \overrightarrow{a}^T$$

Come forma bilineare è il seguente elemento di $(K^m)^* \otimes (K^n)^*$:

$$v_1a_1e_1^* \otimes e_1^* + v_2a_1e_2^* \otimes e_1^* + \dots + v_1a_2e_1^* \otimes e_2^* + v_2a_2e_2^* \otimes e_2^* + \dots + v_1a_ne_1^* \otimes e_n^* + \dots + v_ma_ne_m^* \otimes e_n^* = \\ = (v_1e_1^* + \dots + v_me_m^*) \otimes a_1e_1^* + (v_1e_1^* + v_me_m^*) \otimes a_2e_2^* + \dots + (v_1e_1^* + \dots + v_me_m^*) \otimes a_ne_n^* = \\ (v_1e_1^* + \dots + v_me_m^*) \otimes (a_1e_1^* + \dots + a_ne_n^*)$$

Dunque una matrice $A \in Mat_{m \times n}(K)$ tale che rk(A) = 1 corrisponde ad un tensore

$$T_A \in (K^m)^* \otimes (K^n)^*$$
 tale che $rk(T_A) = 1$.

Esempio: La matrice

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \end{pmatrix} \in Mat_{2\times 3}(\mathbb{F}_3)$$

Ha rango 1 perchè $\binom{2}{1}=2\binom{1}{2}$ in $(\mathbb{F}_3)^2$

ad A corrisponde la forma bilineare $T_A: (\mathbb{F}_3)^2 \times (\mathbb{F}_3)^3 \to \mathbb{F}_3$ definita da

$$T_A(u, v) = u^T A v, \forall u \in (\mathbb{F}_3)^2, v \in (\mathbb{F}_3)^3$$

 $(u^T \text{ è il trasposto del vettore colonna } u)$

come elemento di $(\mathbb{F}_3^2)^* \otimes (\mathbb{F}_3^3)^*$ si scrive

$$T_A = e_1^* \otimes e_1^* + 2e_2^* \otimes e_1^* + 2e_1^* \otimes e_3^* + e_2^* \otimes e_3^* = (e_1^* + 2e_2^*) \otimes e_1^* + (2e_1^* + e_2^*) \otimes e_3^* = (e_1^* + 2e_2^*) \otimes (e_1^* + e_3^*)$$

D'altra parte avevamo che $A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \end{pmatrix}$ sul campo \mathbb{F}_3

Ovviamente ad un Thsore di rango 1 $v_1 \otimes v_2 \in (K^m)^* \otimes (K^n)^*$ corrisponde una matrice di rango 1 $v_1v_2^T \in Mat_{m \times n}(K)$ dove v_i sono i vettori colonna delle coordinate nella base duale.

Esempio: sia $(2e_1^* + 3e_2^*) \otimes (e_2^* + 4e_3^*) \in (\mathbb{F}_5^2)^* \otimes (\mathbb{F}_5^3)^*$ La matrice corrispondente è

$$\begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} 0 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 3 \\ 0 & 3 & 2 \end{pmatrix} \in Mat_{2\times 3}(\mathbb{F}_5)$$

Quindi abbiamo dato una corrispondenza biunivoca

tra matrici di rango $1 \in Mat_{m \times n}(K)$ e tensori di rango $1 \in (K^m)^* \otimes (K^n)^*$.

Dalla caratterizzazione del rango di una matrice in termini di combinazioni lineari di matrici di rango 1,

e dalla definizione di rango di un tensore, segie che le matrici di rango r in $Mat_{m\times n}(K)$ stanno in corrispondenza con i tensori di rango r in $(K^m)^*\otimes (K^n)^*$.

2.5 endomorfismi di V come elementi di $V^* \otimes V$

Sia V uno spazio vettoriale su un campo K con base $\{e_1,...,e_n\}$. Gli elementi di $V^* \otimes V = span\{e_i^* \otimes e_j\}$ possono essere interpretati come endomorfismi di V nel segueente modo: definiamo il morfismo di spazi vettoriali

$$e_i^* \otimes e_j : V \to V$$
 ponendo $(e_i^* \otimes e_j)(v) = \begin{cases} e_j^{\text{se}} \ h = i \\ 0 \ \text{altrimenti} \end{cases}$, ossia $(e_i^* \otimes e_j)(e_h) = e_i^*(e_h)e_i \forall 1 \leq i, j, h \leq n$.

se $f \in END(V)$ è rappresentato dalla matrice

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

allora come elemento di $V^* \otimes V$ si scrive

$$f = e_1^* \otimes (a_{11}e_1 + a_{21}e_2 + \dots + a_{n1}e_n) + \dots + e_n^* \otimes (a_{1n}e_1 + \dots + a_{nn}e_n).$$

viceversa, ogni elemento di $V^* \otimes V$ può essere interpretato come un endomorfismo di V e tale corrispondenza biunivoca è un isomorfismo di spazi vettoriali

$$END(V) \to V^* \otimes V$$

Esempio: sia $V \in Mat_{2\times 2}(\mathbb{R})$ lo spazio vettoriale delle matrici 2×2 a coefficienti reali. La funzione

$$f: Mat_{2\times 2}(\mathbb{R} \to Mat_{2\times 2}(\mathbb{R})$$
$$A \to A^T$$

è un morfismo di spazi vettoriali.
una base di V è $\{F_{i:}: 1 \le i, i \le 2\}$

una base di V è $\{E_{ij}: 1 \leq i, j \leq 2\}$, dove

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
$$E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

la matrice di f in questa base è

$$M(f) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, rk(M(f) = 4)$$

come elemento di $V^* \otimes V$ la trasposizione si scrive

$$f = E_{11}^* \otimes E_{11} + E_{12}^* \otimes E_{21} + E_{21}^* \otimes E_{12} + E_{22}^* \otimes E_{22}, rk(f) = 4$$

Invece l'elemento $g \in V^* \otimes V$ definito da

$$g = 2E_{11}^* \otimes E_{11} + E_{12}^* \otimes (E_{12} + E_{21}) + E_{21}^* \otimes (E_{12} + E_{21}) + 2E_{22}^* \otimes E_{22} = 2E_{11}^* \otimes E_{11} + (E_{12}^* + E_{21}^*) \otimes (E_{12} + E_{21}) + 2E_{22}^* \otimes E_{22}, rk(g) = 3$$

corrisponde all'endomorfismo

$$g: Mat_{2\times 2}(\mathbb{R}) \to Mat_{2\times 2}(\mathbb{R})$$

 $A \to A + A^T$

In generale i morfismi di spazi verroeiali $f:V\to W$ sono in corrispondenza biunivoca con $V^*\otimes W$ e tale corrispondenza è un isomorfismo di spazi vettoriali

$$Hom(V,W) \to V^* \otimes W$$
spazio vettoriale dei morfismi $f:V \to W$

il rango di un morfismo $f: V \to W$ (come dimensione della sua immagine o come rango della sua matrice associata) corrisponde al rango del tensore $f \in V^* \otimes W$.

Ancora più in genrale, ogni forma multilineare $f: V_1 \times ... \times V_h \to W$ è un elemento di $V_1^* \otimes ... \otimes V_h^* \otimes W$.

$$e_{i_1}^{1^*} \otimes e_{i_2}^{2^*} \otimes ... \otimes e_{i_h}^{h^*} \otimes w(v_1, v_2, ... v_h) = e_{i_1}^{1^*}(v_1)e_{i_2}^{2^*}(v_2)...e_{i_h}^{h^*}(v_h)w \in W$$

$$\forall 1 \leq i_1 \leq V_1, ..., 1 \leq i_h \leq dimV_h, v_i \in V_i, w \in W$$

Adesso andiamo a considerare la moltiplicazione di matrici $2\times 2.$ Questa è una forma bilineare

$$M_{2,2,2}: Mat_{2\times 2}(K) \times Mat_{2\times 2}(K) \rightarrow Mat_{2\times 2}(K)$$

definita da $M_{2,2,2}(A,B)=AB$ (prodotto righe per colonne). E' una forma bilineare perchè

1.
$$x(AB) = (xA)B = A(xB), \forall x \in K, A, B \in Mat_{2\times 2}(K)$$

2.
$$A(B_1 + B_2) = AB_1 + AB_2$$

 $(A_1 + A_2)B = A_1B + A_2B, \forall A_1, A_2, B_1, B_2, A, B, \in Mat_{2\times 2}(K)$

quindi $M_{2,2,2} \in (Mat_{2\times 2}(K))^* \otimes (Mat_{2\times 2}(K))^* \otimes Mat_{2\times 2}(K)$ vediamo come scrivere $M_{2,2,2}$ nella base

$$\{E_{ij}^* \otimes E_{h,k}^* \otimes E_{uv}\}, \text{ dove}$$

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

abbiamo che $E_{11}E_{11} = E_{11}, E_{12}E_{12} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, ..., E_{22}E_{22} = e_{22}$, ossia

$$E_{ij}E_{hk} = \begin{cases} E_{ik} \text{ se } j = h\\ 0 \text{ altrimenti} \end{cases}$$

quindi

$$M_{2,2,2} = E_{11}^* \otimes E_{11}^* \otimes E_{11} + E_{12}^* \otimes E_{21}^* \otimes E_{11} + E_{11}^* \otimes E_{12}^* \otimes E_{12} + E_{12}^* \otimes E_{22}^* \otimes E_{12} + E_{21}^* \otimes E_{11}^* \otimes E_{11}^* \otimes E_{11}^* \otimes E_{12}^* \otimes E_{12$$

 $rk(M_{2,2,2} \leq 8)$. abbiamo anche che

$$\begin{split} M_{2,2,2} &= (E_{11}^* + E_{22}^*) \otimes (E_{11}^* + E_{22}^*) \otimes (E_{11} + E_{22}) + \\ &+ (E_{21}^* + E_{22}^*) \otimes E_{11}^* \otimes (E_{21} - E_{22}) + \\ &+ E_{11}^* \otimes (E_{12}^* - E_{22}^*) \otimes (E_{12} + E_{22}) + \\ &+ E_{22}^* \otimes (-E_{11}^* + E_{21}^*) \otimes (E_{12} + E_{22}) + \\ &+ (E_{11}^* + E_{12}^*) \otimes E_{22}^* \otimes (-E_{11} + E_{12}) + \\ &+ (-E_{11}^* + E_{21}^*) \otimes (E_{11}^* + E_{12}^*) \otimes E_{22} + \\ &+ (E_{12}^* - E_{22}^*) \otimes (E_{21}^* + E_{22}^*) \otimes E_{11} \end{split}$$

da questa fattorizzazione si ha che $rk(M_{2,2,2}) \leq 7$.

Questa fattorizzasione è l'algoritmo di Strassen per la moltiplicazione di matrici 2×2 . Notiamo che, se $A, B \in Mat_{2,2}(K)$,

$$E_{ij}^* \otimes E_{hk}^* \otimes E_{uv}^*(A,B) = E_{ij}(A)E_{hk}(B)E_{uv}$$

Quindi ogni addendo in una fattorizzazione del tensore $M_{2,2,2}$ corrisponde ad una moltiplicazione di elementi del campo K.

Allora il rango del tensore $M_{2,2,2}$ è il numero massimo di moltiplicazioni necessarie per calcolare il prodotto di due matrici 2×2 .

Alcuni risultati generali

```
Teorema (di Brockett-Dobkin (1978)): consideriamo il campo K = \mathbb{C} rk(M_{n,n,n} \geq 2n^2 - 1) (M_{n,n,n} è il tensore della moltiplicazione di due matrici n \times n sul cmapo \mathbb{C})

Corollario: rk(M_{2,2,2} = 7) infatti dall'algoritmo di Strassen segue che rk(M_{2,2,2}) \leq 7, e dal teorema di Brockett-Dobkin segue che rk(M_{2,2,2}) \geq 7.

Teorema (di Bläser (1999)): rk(M_{n,n,n}) \geq \frac{5}{2}n^2 - 3n

Teorema (di Laderman (1976)): rk(M_{n,n,n}) \leq 23

Teorema (Deepmind (2022)): sul campo \mathbb{F}_2 rk(M_{4,4,4}) \leq 47 rk(M_{5,5,5}) \leq 96

Teorema (di Kauers e Moosbauer (2022)): sul campo \mathbb{F}_2 rk(M_{5,5,5}) \leq 95
```

vedi anche la tabella a pagina 4 dell'articolo "discovering faser matrix multiplication algorithms with reinforcement learning"