

Eletrónica Geral

4º Trabalho de Laboratório: Multiplicador de Tensão com Díodos

Turma:

Fábio Santos – 42111

André Faria – 44731

Afonso Correia – 47521

João Jacinto - 48659

Índice

1 - Introdução	3
2 - Objetivos	3
3 - Esquema de Montagem	3
4 - Dimensionamento	4
4.1	4
4.2	5
5 – Condução do trabalho	8
5.1	8
5.2	10
6 – Análise dos resultados e conclusões	12
6.1	12
6.2	12
6.3	12
7 – Conclusão	13

1 - Introdução

Um multiplicador de tensão é um circuito com dois ou mais díodos retificadores que produzem uma tensão média igual ao múltiplo da tensão de pico.

2 - Objetivos

Com este trabalho pretende-se que o aluno concretize os seguintes objetivos:

- Conhecer o funcionamento dos multiplicadores de tensão;
- Determinar o número de andares necessários;
- Conhecer a relação entre o valor da capacidade e a frequência do sinal da fonte.

3 - Esquema de Montagem

Para a resposta às questões colocadas no dimensionamento, considere a montagem da Figura 1 (C1=C2=C3=C4= 1μ F/250V; D1=D2=D3=D4=1N4006).

Figura 1 - Esquema de montagem

4 - Dimensionamento

4.1 - Explique o princípio de funcionamento do multiplicador de tensão representado na Figura 1.

Um multiplicador de tensão trata-se de um conversor AC/DC, ou seja, converte uma tensão alternada de determinado valor de pico numa tensão contínua cujo seu valor é um múltiplo do valor de pico de entrada. No caso do quadruplicador de tensão, este tem uma tensão de saída contínua que é quatro vezes maior do que o valor de pico da tensão alternada aplicada à entrada. Para além deste modelo temos diversos outros modelos de configurações multiplicadoras de tensão de acordo com o número de vezes que aumentam a tensão de entrada.

Na figura 1 quando temos na entrada uma tensão alternada que está no semiciclo negativo, o primeiro díodo D1 conduz e carrega o condensador C1 com a tensão máxima (Vm). Quando esta tensão passa para o semiciclo positivo, o primeiro díodo D1 fica ao corte e passa a conduzir o díodo D2, a tensão de saída será a soma das tensões de C1 e C2, ou seja, a tensão resultante no nó D é 2Vm. Quando voltamos a ter um semiciclo negativo iremos ter no nó G uma tensão de 3Vm, ou seja, triplicamos a tensão. E por fim novamente a circular no semiciclo positivo iremos ter uma tensão de 4Vm no nó H e assim quadruplicar a tensão de entrada.

- **4.2** Deduza as equações que permitem calcular a tensão nos condensadores (C1, C2, C3 e C4).
 - Assumindo que o Díodo 1 (D₁) está ON e, aplicando a seguinte malha, obtém-se a expressão:

Visto que D_1 está a conduzir $ightarrow V_{D1} = 0$

$$-V_m + V_{D1} + V_{C1} = 0 \Leftrightarrow V_{C1} = V_m$$

 Passando para D₂ e C₂, voltando-se a aplicar uma malha e com D₂ ON, obtém-se a expressão:

Visto que D_2 está a conduzir $\rightarrow V_{D2} = 0$

$$-V_m - V_{C1} + V_{D2} + V_{C2} = 0 \Leftrightarrow$$

$$\Leftrightarrow -V_m - V_m + 0 + V_{C2} = 0 \Leftrightarrow$$

$$\Leftrightarrow V_{C2} = 2V_m$$

 Utiliza-se o mesmo procedimento para D₃ e C₃, obtendo-se a seguinte expressão e malha:

Visto que D $_3$ está a conduzir $V_{D3}=0$

$$-V_m - V_{C2} + V_{D3} + V_{C3} + V_{C1} = 0 \Leftrightarrow$$
$$\Leftrightarrow -V_m - 2V_m + 0 + V_{C3} + V_m = 0 \Leftrightarrow$$
$$\Leftrightarrow V_{C3} = 2V_m$$

 Conclui-se, utilizando uma última vez, para D₄ e C₄ uma malha para obter a última expressão:

Visto que D₄ está a conduzir $\rightarrow V_{D4} = 0$

$$-V_m - V_{C1} - V_{C3} + V_{D4} + V_{C4} + V_{C2} = 0 \Leftrightarrow$$

$$\Leftrightarrow -V_m - V_m - 2V_m + 0 + V_{C4} + 2V_m = 0 \Leftrightarrow$$

$$\Leftrightarrow V_{C4} = 2V_m$$

1- Com R_{Carga} = 470kΩ simule o comportamento do circuito para os seguintes pares de evoluções temporais: V_m e V_{BA} ; V_m e V_{EC} ; V_{BA} e V_{FD} ; V_{EC} e V_{IG} ; V_m e V_{IC} (Carga).

Figura 2 - Simulação Carga $470k\Omega$

2. Com R_{Carga} = 1,5M Ω simule o comportamento do circuito para os seguintes pares de evoluções temporais: V_m e V_{BA} ; V_m e V_{EC} ; V_{BA} e V_{FD} ; V_{EC} e V_{IG} ; V_m e V_{IC} (Carga).

Figura 3 - Simulação Carga 1,5 $M\Omega$

5 – Condução do trabalho

Monte o circuito indicado na Figura 2 considerando os seguintes valores para os respetivos componentes: C1=C2=C3=C4=1 μ F/250V; D1=D2=D3=D4=1N4006; Lâmpada de néon em série com R_{Carga}=470k Ω /1,5M Ω .

5.1 - Coloque a lâmpada de néon em série com a R_{Carga} =470 $k\Omega$ entre os pontos C e I. Com o auxílio do osciloscópio observe e registe, sincronizadamente no tempo, os seguintes pares de evoluções temporais: V_m e V_{BA} ; V_m e V_{EC} ; V_{BA} e V_{FD} ; V_{EC} e V_{IG} ; V_m e V_{IC} (Carga).

Figura 4 - Vm e VBA e simulação (470kΩ)

Figura 5 - Vm e VEC e simulação (470kΩ)

Figura 6 - VBA e VFD e simulação (470kΩ)

Figura 7 - VEC e VIG e simulação (470kΩ)

Figura 8 - Vm e VIC e simulação (470kΩ)

5.2 - Coloque a lâmpada de néon em série com a R_{Carga} =1,5 $M\Omega$ entre os pontos C e I. Com o auxílio do osciloscópio observe e registe, sincronizadamente no tempo, os seguintes pares de evoluções temporais: V_m e V_{BA} ; V_m e V_{EC} ; V_{BA} e V_{FD} ; V_{EC} e V_{IG} ; V_m e V_{IC} (Carga).

Figura 9 - Vm e VBA e simulação (1,5MΩ)

Figura 10 - Vm e VEC e simulação (1,5MΩ)

Figura 11 - VBA e VFD e simulação (1,5MΩ)

Figura 12 - VEC e VIG e simulação (1,5 $M\Omega$)

Figura 13 - Vm e VIC e simulação (1,5 $M\Omega$)

6 – Análise dos resultados e conclusões

6.1 - Compare as formas de onda e os valores da tensão obtidos na alínea 4.3 (simulação) com as formas de onda e os valores obtidos nas alíneas 5.1 e 5.2 (ensaio experimental).

As formas de onda retiradas experimentalmente correspondem às simuladas. As pequenas diferenças que se podem observar devem-se às variações físicas dos diversos componentes, nomeadamente a resistência interna e a queda de tensão nos mesmos.

6.2 - Qual a tensão máxima inversa que os díodos D1, D2, D3 e D4 têm de suportar?

A tensão máxima inversa que os díodos têm de suportar é pelo menos a tensão máxima que lhe está a ser aplicada aos terminais inversamente, de modo a não entrar à condução inversa.

Logo:

Díodo	Tensão máxima	Experimental (470kΩ)	Experimental (1,5MΩ)
D_1	V _m	36,8V	36,8V
D ₂	$2V_{m}$	68,8V	71,2V
D ₃	2V _m	66,4V	72,0V
D ₄	2V _m	64,8V	69,8V

6.3 - Ao colocar a lâmpada de néon em série com cada R_{Carga} =470 $k\Omega/1$,5 $M\Omega$, verificouse que para cada R_{Carga} a tensão aos seus terminais variou. Explique o porquê dessa diferença?

$$V_{IC}(470k\Omega) = 132V;$$

 $V_{IC}(1,5M\Omega) = 140V;$

O quadruplicador de tensão permite-nos aumentar a tensão, mas a potência total disponível mantém-se, logo implica que a corrente máxima disponível seja menor. A resistência R_{Carga} limita a corrente que atravessa a lâmpada néon, logo a tensão nos terminais da carga é maior, quanto maior for a impedância da mesma.

7 – Conclusão

Através da simulação foi possível perceber que quanto maior a resistência R_{Carga}, menor será a corrente que atravessa a lâmpada. Como a potência total disponível no circuito tem de se manter, quando multiplicamos a tensão, segundo a Lei de Ohm, a corrente deverá diminuir.

Uma vez que se trata de uma lâmpada de néon, quanto menor a corrente que a alimenta, menor será a sua luminosidade.

Através das medições efetuadas foi possível validar como funciona um multiplicador de tensão (Quadriplicador, neste caso).

O circuito real não nos permitirá obter exatamente os mesmos valores obtidos em simulação devido à queda de tensão dos díodos e à resistência interna dos condensadores.

Em conclusão, todos os objetivos propostos foram alcançados, e foi possível comprovar o modelo teórico estudado.