SRM Institute of Science and Technology Department of Mathematics 18MAB102T-Advanced Calculus and Complex Analysis 2020-2021 Even

Unit – I: Multiple Integrals Tutorial Sheet - II

S.No	Questions	Answers
Part – A [3 Marks]		
1	Find the area bounded by the lines $x=0$, $y=1$ and $y=x$ using double integration	$\frac{1}{2}$ sq.units
2	Find the area of a circle of radius 'a' by double Integration in polar coordinates	πa^2 sq. units
3	Evaluate $\iint dx dy$ over the region bounded by x=0, x=2, y=0 and y=2	4
4	Find the area of the lemniscate $r^2 = a^2 \cos 2\theta$ by double integration	a ² sq. units
5	Change to polar ordinates : $\int_{0}^{a} \int_{y}^{a} \frac{x^{2} dx dy}{\sqrt{x^{2} + y^{2}}}$	$\int_{0}^{\pi/4} \int_{0}^{a \sec \theta} r^2 \cos^2 \theta dr d\theta$
Part – B [6 Marks]		
6	Find the smaller of the area bounded by $y = 2 - x$ and $x^2 + y^2 = 4$	π - 2
7	Evaluate $\iint xy(x+y)dxdy$ over the area between $y = x^2$ and $y = x$	$\frac{3}{56}$
8	Find the area lying inside the circle r = a sin θ and the outside the cardioid r = a(1 - cos θ)	$\frac{a^2}{2}\left(2-\frac{\pi}{2}\right)$
9	Find $\iint r^3 dr d\theta$ over the area A which is the region between the circles $r = 2 \sin \theta \& r = 4 \sin \theta$.	$\frac{45\pi}{2}$
10	Find the area of the cardioid $r = a(1 - \cos \theta)$	$\frac{3\pi a^2}{2}$ sq.units