IN THE SPECIFICATION:

Please amend the specification as follows:

Page 1, between the title and the first paragraph, please insert the following heading:

BACKGROUND OF THE INVENTION

Page 6, please rewrite the paragraph beginning at line 6 as follows:

The preemulsions A and B are respectively prepared by stirring the compositions described above in the presence of water and of poly(vinyl alcohol) (PVA 25/140 Rhodoviol® RHODOVIOL®). Once obtained separately, the preemulsions A and B are mixed with one another.

Page 8, line 14, insert the following heading: BRIEF SUMMARY OF THE INVENTION

Page 9, please rewrite the paragraph beginning at line 7 as follows:

(F) optionally at least one POS resin comprising at least two alkenyl groups a non-hydroxylated silicone resin exhibiting at least two different units chosen from those of formulae $R^{10}_{3}SiO_{1/2}$ (unit

M), $R_{2}^{10}SiO_{2/2}$ (unit D), $R_{2}^{10}SiO_{3/2}$ (unit T) and $SiO_{4/2}$ (unit Q) per molcule, wherein R_{2}^{10} are identical or different and are selected from the group consisting of linear or branched alkyl, vinyl, phenyl and 3,3,3-trifluoropropyl radicals.

Page 9, between lines 21 and 23, please insert the following paragraphs:

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a graph showing the peel adhesion strength of emulsions containing different adhesion promoters which were coated on woven polyester fabric.

Figure 2 is a graph showing the peel adhesion strength of emulsions containing different adhesion promoters which were coated on woven glass fabric.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Page 15, rewrite the paragraph beginning at line 9 as follows:

The preferred water-dispersible sulfonated polyesters are those which have a number-average molar mass of between 10,000 and 35,000, an acid number of less than 5 mg of KOH/g and a sulfur

U.S. Patent Appln. S.N. 10/518,402 AMENDMENT

PATENT

level of between 0.8 and 2% by weight, preferably between 1.2 and 1.8%. Use may be made in particular, as polyesters of this type, of the products sold by Rhodia under the trade name Gerol PS20 GEROL PS20®.

Page 23, please rewrite the paragraph beginning at line 15 as follows:

The [[R]] \underline{R}^{10} radicals are identical or different and are chosen from linear or branched alkyl, vinyl, phenyl or 3,3,3-trifluoropropyl radicals. Preferably, the alkyl radicals exhibit from 1 to 6 carbon atoms inclusive. More particularly, mention may be made, as alkyl radicals [[R]] \underline{R}^{10} , of the methyl, ethyl, isopropyl, tert-butyl and n-hexyl radicals.

Page 29, rewrite the paragraph beginning at line 33 as follows:

deast two alkenyl groups a non-hydroxylated silicone resin exhibiting at least two different units chosen from those of formulae R¹⁰₃SiO_{1/2} (unit M), R¹⁰₂SiO_{2/2} (unit D), R¹⁰SiO_{3/2} (unit T) and SiO_{4/2}

(unit Q) per molecule, wherein R¹⁰ are identical or different and are selected from the group consisting of linear or branched alkyl, vinyl, phenyl and 3,3,3-trifluoropropyl radicals.

Page 32, please rewrite the table as shown below:

	PART	PART	PART		
	(A1)	(A2)	(B)		
			(catalyzing		
			emulsion)		
POS (A-1) - vinylated oil	280	280	106		
(F) = ECH	0.7	0.7	0		
Resin (E.1)	280	280	0		
Surfactant (D) = Rhodasurf	35	-	-		
RHODASURF® ROX					
(B) + (D) = PVA	_	162	56		
POS (A-2) - hydrogenated oil	25	25	0		
Catalyst (C) comprising 10%	-	-	0.9		
of Pt					
Sorbic acid	0.225	0.225	0		
100% sodium bicarbonate	_	_	1.9		
Demineralized water	409	270	35		
Total	1030	1018	200		
Properties of the final emulsions					
Mean particle size (µm),	0.3	2.9	2.4		
measured with a Coulter					
COULTER LS130					

So	lids content (%)	59.6	59.6	60.9
(2	g 1 h at 120°C)			
	SiH/SiVi (molar ratio) of the		2.07	
	bath obtained by mixing 100			
	parts by weight of emulsion A +			
	10 parts by weight of			
	catalyzing emulsion B			
	pH of the bath prepared by		between	7 and 8
	mixing 100 parts by weight o	of		
	emulsion A + 10 parts by we	ight		
	of catalyzing emulsion B			

Page 33, please rewrite the paragraph beginning at line 5 as follows:

Rhodasurf ROX RHODASURF® ROX, 35 g of water and POS oil (A-1) in which the ECH inhibitor has been dispersed beforehand are introduced into an IKA laboratory reactor equipped with a scraping anchor stirrer and with a base (cooled by circulation of cold water). After stirring at 80 revolutions/min for 15 min, a concentrated oil/water emulsion is obtained which has the appearance of a viscous gel.

U.S. Patent Appln. S.N. 10/518,402 AMENDMENT

PATENT

Page 33, please rewrite the paragraph beginning at line 21 as follows:

At this stage, the mean particle size of the emulsion, characterized using a Coulter COULTER® LS130, is 0.29 $\mu m\,.$

Page 33, please rewrite the paragraph beginning at line 30 as follows:

The 10% aqueous solution of poly(vinyl alcohol) (Rhodoviol RHODOVIOL® 25/140) and the sorbic acid are introduced into an IKA laboratory reactor equipped with a scraping anchor stirrer and with a base (cooled by circulation of cold water).

Page 34, please rewrite the paragraph beginning at line 5 as follows:

At this stage, the mean particle size of the emulsion, characterized with a Coulter COULTER® LS130, is 5.9 $\mu m\,.$

Page 34, please rewrite the paragraph beginning at line 8 as follows:

An <u>Ultra-Turrax ULTRA-TURRAX®</u> rotor-stator (IKA) is then added and the emulsion is sheared for 1 h 30, 20 min at

U.S. Patent Appln. S.N. 10/518,402 AMENDMENT

PATENT

16 000 revolutions/min and then 1 h 10 min at 13 000 revolutions/min,

Page 37, please rewrite the paragraph beginning at line 30 as follows:

The promoter is $\frac{Dynasylan@}{DYNASYLAN@}$ HS 2926, sold by Degussa-Sivento, epoxy silane, pH = 3, at 60% in water

Page 38, please rewrite the paragraph beginning at line 3 as follows:

 $\frac{\text{Dynasylan@}}{\text{Dynasylan@}} \quad \underline{\text{Dynasylan@}} \quad \text{HS} \quad 2929 \quad \text{sold} \quad \text{by} \quad \text{Degussa-Sivento,}$ salified and condensed acrylic aminated silane, pH = 4, at 60% in water.

U.S. Patent Appln. S.N. 10/518,402 AMENDMENT PATENT

Page 38, please rewrite the paragraph beginning at line 9 as follows:

The promoter is Silquest® SILQUEST® VS142, sold by Witco-OSI, aminated silane, pH = 12, at approximately 25% in water, which is composed of an oligomer of the silane described below, partially condensed via its SiOH groups.

Page, 39, please rewrite the paragraph beginning at line 35 as follows:

- 1 Lhomargy® LHOMARGY® DY 30 dynamometer