UNIFE

Universidade Federal de Itajubá Instituto de Engenharia de Sistemas e Tecnologias da Informação-IESTI

Trabalho 01 de Compiladores (ECOM06)

Bárbara Alves de Paiva Barbosa - 2020003139 Maria Clara Martins Santana - 2020012227 Ryan Wyllyan Ribeiro Inácio - 2020001770

1. Introdução

Este documento tem como objetivo introduzir o conceito do projeto de desenvolvimento da linguagem ColorOhm. Essa linguagem foi criada com o propósito de simplificar as operações associadas ao uso de resistores. Ela permite a conversão do valor numérico de um resistor para o seu código de cores, conforme ilustrado na Imagem 1. Além disso, a ColorOhm viabiliza a realização de operações fundamentais com resistores, incluindo a conexão em série e em paralelo.

Código de Cores A extremidade com mais faixas deve apontar para a esquerda Resistores padrão 560k Ω 10% de tolerância Resistores de precisão 237 Ω 1% de tolerância 2ª Faixa Cor 1ª Faixa 3ª Faixa Multiplicador Tolerância Preto x 10 Ω Marrom Larania x 1K Ω Amarelo x 10K O Azul x 1M Ω x 10M Ω Violeta +/- .1% Cinza 8 8 8 +/- .05% Branco x .1 Ω Dourado Prateado x .01 Ω +/- 10%

Imagem 1 - Código de cores resistores

Fonte: Apostila Eletrônica Básica IFC. Disponível em:

https://professor.luzerna.ifc.edu.br/ricardo-kerschbaumer/wp-content/uploads/sites/43/2018/0
3/Apostila-Eletrônica-Básica-parte-3.pdf

Portanto, será apresentado neste relatório um exemplo de um possível algoritmo da linguagem aqui projetada. Além disso, pode ser encontrado as expressões regulares, tokens e autômatos relacionados à linguagem.

2. Exemplo do código

```
ohm
       //declaração
       value r1, r2, r3;
       resistor rc, rb, ra, rz;
       //atribuição
       r1 = 200;
       rc = [m,m,r];
        //conversão
       r2 = (value) [g,r,m]; //conversão para valor
       ra = (resistor) 1500; //conversão para resistor
       rb = (resistor) r1;
       //operações
       r3 = r1 : r2; //serie
       rz = rc | rb | ra; //paralelo
       //imprimindo os valores calculados
       show[r1,rc,r2,ra,rb,r3,rz];
```

endohm

3. Expressões Regulares

Em primeiro momento, tem-se abaixo as expressões regulares relacionadas a linguagem. Contudo, ao depender do nível de complexidade e para fins de organização esta seção foi dividida em sub tópicos, os quais agrupam expressões com características semelhantes.

```
"ohm"
inicio
                                       "endohm"
fim
                                       ": "
terminadorLinha
                               =
                                      {letra} + {digito|letra} *
variavel
                                      {\{digito\}}^+ \mid {\{digito}^+ ponto \ digito}^+ \}
valor
                               =
                                      \{0 - 9\}
digito
                               =
                                      \{a-zA-Z\}
letra
atribuicao
tipo
                                      resistor | valorResistor
                                       conversaoValor | conversaoResistor
conversao
                               =
```

3.1. Operações dos resistores

```
paralelo = "|"
série = ": "
conversaoValor = "re2va"
conversaoResistor = "va2re"
```

3.2. Símbolos Especiais

```
virgula = ",'
ponto = ".'
abreColchetes = "["
fechaColchetes = "]"
```

3.3. Palavras Reservadas

```
resistor = "resistor"

valorResistor = "value"

cor = "k"|"m"|"r"|"o"|"y"|"g"|"b"|"v"|"a"|"w"

mostrar = "show"
```

Vale ressaltar que as letras reservadas para cores são correspondentes ao código de cor já apresentado e que a relação de cada letra para cor pode ser observada na Tabela 1.

Tabela 1 - Relação cores e letras reservadas

Letra designada	Cor correspondente
k	Preto
m	Marrom
r	Vermelho
0	Laranja
y	Amarelo
g	Verde
b	Azul
V	Violeta
a	Cinza
W	Branco
d	Dourado
S	Prateado

Fonte: Elaborada pelos autores

3.4. Operações da Linguagem

algoritmo	=	inicio {operacoes } ⁺ fim
operacoes declarando definicaoV o conversaoGenerica oper	-	efinicaoResistor conversao1 conversao2 erie operacaoParalelo
modeloResistor abreColchetes cor virgul	= a cor v	irgula {cor cor virgula cor} fechaColchetes
declarando tipo variavel {virgula va	= riavel}	* terminadorLinha
definicaoValor variavel atribuicao valor	= r termi	nadorLinha
definicaoResistor variavel atribuicao mode	eloResi	= stor terminadorLinha
conversao1 variavel atribuicao conv	= ersaoV	alor modeloResistor terminadorLinha
conversao2 variavel atribuicao conv	= ersaoR	esistor valor terminadorLinha
conversaoGenerica variavel atribuicao conv	= ersao เ	variavel terminadorLinha
operacaoSerie	=	
variavel atribuicao vario	avel {se	rrie variavel} ⁺ terminadorLinha
operacaoParalelo	=	
variavel atribuicao vario	avel {po	$aralelo\ variavel\}^{ ext{+}} terminador Linha$
mostrando mostrar abreColchetes v terminadorLinha	= ariavei	l {virgula variavel} * fechaColchetes

4. Tokens

Tabela 2 - Relação dos tokens e suas definições

Definição	Token
variavel	VARIAVEL
valor	VALOR
tipo	TIPO
conversao	CONVERSAO
algoritmo	ALGORITMO
operacoes	OPERACOES
modeloResistor	MODELO_RESISTOR
declarando	DECLARANDO
definicaoValor	DEFINICAO_VALOR
definicaoResistor	DEFINICAO_RESISTOR
conversao1	CONVERSAO1
conversao2	CONVERSAO2
conversaoGenerica	CONVERSAO_GENERICA
operacaoSerie	OPERACAO_SERIE
operacaoParalelo	OPERACAO_PARALELO
mostrando	MOSTRANDO

Fonte: Elaborada pelos autores

5. Autômatos

Autômato VARIAVEL

Autômato reconhecedor de variável: precisa iniciar com uma letra. Pode terminar somente com uma letra ou pode vir letras e dígitos depois.

Autômato VALOR

Autômato reconhecedor de valor: pode ser um inteiro com um ou mais dígitos. Ou pode ser fracionário separado por ponto, com um ou mais dígitos após o ponto. Vale ressaltar que este autômato foi desenvolvido para indicar os possíveis valores dos resistores.

Autômato ALGORITMO

Autômato reconhecedor de algoritmo: precisa reconhecer a palavra reservada para o início e possuir ao menos uma operação. E então pode ter várias operações e ser finalizado.

Autômato MODELO_RESISTOR

Autômato reconhecedor de resistor: o resistor será representado com quatro ou três cores separadas por vírgulas e tudo entre colchetes. Seguindo letras das cores que foram apresentadas na Tabela 1.

Autômato DECLARANDO

Autômato reconhecedor de declaração: a declaração precisa de um tipo e ter ao menos uma variável, podendo ter mais variáveis separadas por vírgula, mas todas serão do mesmo tipo. Ao fim é necessário um terminador de linha para chegar no estado final. Desta forma, este autômato verifica a declaração de todas as variáveis utilizadas nos algoritmos.

Autômato DEFINICAO_VALOR q0 variavel q1 atribuicao q2 valor q3 terminadorLinha q4

Autômato reconhecedor de definição de valor: é colocada uma variável que receberá o valor e então o símbolo de atribuição seguido pelo valor que a variável receberá, por fim um terminador de linha para chegar ao estado final.

Autômato DEFINICAO_RESISTOR q0 variavel q1 atribuicao q2 modeloResistor q3 terminadorLinha q4

Autômato reconhecedor de definição de resistor: é colocada uma variável que receberá o resistor e então o símbolo de atribuição seguido pelo resistor que a variável receberá, por fim um terminador de linha para chegar ao estado final.

Autômato reconhecedor de conversão de um resistor para valor: precisa de uma variável que receberá o valor da conversão com um símbolo de atribuição seguido pelo símbolo da conversão para valor e então colocar um valor de cores do resistor para ser convertido. O estado final é atingido com um terminador de linha.

Autômato CONVERSAO2

Autômato reconhecedor de conversão de um valor para um resistor: precisa de uma variável que receberá o valor da conversão com um símbolo de atribuição seguido pelo símbolo da conversão para resistor e então colocar o valor a ser convertido. O estado final é atingido com um terminador de linha.

Autômato reconhecedor de conversão genérica: uma conversão consiste em uma variável seguida por uma atribuição com o símbolo da conversão desejada e então colocar a variável com o tipo que precisa ser convertido. O estado final é atingido com um terminador de linha.

Autômato OPERACAO_SERIE

Autômato reconhecedor da operação série de resistor: precisa colocar a variável que receberá o valor da operação, então o símbolo que fará atribuição seguido de pelo menos duas variáveis separadas pelo símbolo da série e em seguida podem vir várias variáveis separadas pela série e por fim um terminador de linha para chegar no estado final.

Autômato OPERACAO_PARALELO

Autômato reconhecedor da operação paralelo de resistor: precisa colocar a variável que receberá o valor da operação, então o símbolo que fará atribuição seguido de pelo menos duas variáveis separadas pelo símbolo da paralelo e em seguida podem vir várias variáveis separadas pelo paralelo e por fim um terminador de linha para chegar no estado final.

Autômato reconhecedor da impressão de variáveis: exige a palavra reservada que realiza a exibição e precisa abrir colchetes para em seguida reconhecer ao menos uma variável ou várias separadas por vírgula, então os colchetes são fechados e por fim é colocado um terminador de linha.