PCAP Module Instruction

Introduction

This document is intended to be a quick introduction to the PCAPModule software. It has been divided into two sections, namely, Conceptual Basis of LiDAR Point Positioning and Source Data & Input Data Description.

Caution: In order to run or develop the PCAPModule, WinPCAP software must be installed on the machine. This is to enable decoding of the PCAP files!!

Provided Software and its dependents

PCAPModule_var.exe
boost_system-vc120-mt-1_55.dll
liblas.dll

Data Source

CPT_08172017_Calibration_US231.bop

HDL32E-left-2_00015_20170817132941.pcap

Input Data

config.txt
output_files.txt
pcap_files.txt
calib_files.txt
track_times.txt
bop_files.txt
out sensors 20170817 ACRE HDL32E2L.scalib

Conceptual Basis of LiDAR Point Positioning

A typical directly geo-referenced LiDAR system could involve 3 coordinate systems (i.e., mapping frame, IMU body frame, and laser unit frame). A given point, I, acquired from a mobile mapping system can be reconstructed in the mapping coordinate system using following equation, which is graphically illustrated in following figure. The coordinates of a 3D point relative to the laser unit coordinate system, $r_I^{lu}(t)$. An IMU body frame should be considered when mobile systems are equipped with a GNSS/INS navigation unit. For mobile systems, the lever arm, r_{lu}^b , and boresight matrix, R_{lu}^b , between laser unit and body frame coordinate systems are time-independent as the laser units are fixed rigidly with respect to the IMU unit. The GNSS/INS integration provides the time-dependent position, $r_b^m(t)$, and rotation, $R_b^m(t)$, relating the mapping frame and IMU body frame coordinate systems.

$$r_{l}^{m} = r_{b}^{m}(t) + R_{b}^{m}(t) r_{lu}^{b} + R_{b}^{m}(t) R_{lu}^{b} r_{l}^{lu}(t)$$

Calibration File - out_sensors_20170817_ACRE_HDL32E2L.scalib

The *.scalib files contains the LiDAR system mounting and sensor parameters. The format of the calibration file is as below:

Note: For this project, you only need to modify the LiDAR system mounting parameters and observe the change of the point cloud.

!Output Calibr	ation File v0.3										
!LiDARSENSORCALIB v1.1											
!Sigma0 = 0.0156259822											
!SensorName LaserCount											
HDL32E2 32											
!Calibration M	odel										
0											
		The one you	need to modify								
!Reference Uni	t ID										
dx, dy, dz are lever arm r_{lu}^b omega, phi, kappa are boaresight angles R_{lu}^b											
		omega, pni,	карра are boares	ignt angles K_{lu}							
ldv(m) dv(m) d	z(m) omega(deg)	phi(deg) kappa(d	eal (fixed)								
-0.0264631204	0.2112906348	0.3200000000	-6.4915169070	1.2163119700	-66.1306038631						
		sRange delRange		112100113700	00.100000001						
!LaserID0											
1.000000000	0.0000000000	1.0000000000	0.0000000000	1.0000000000	0.000000000						
!LaserID1											
1.000000000	0.0000000000	1.0000000000	0.0000000000	1.0000000000	0.000000000						
!LaserID2											
1.000000000	0.0000000000	1.0000000000	0.000000000	1.0000000000	0.000000000						
!LaserID3											
1.000000000	0.0000000000	1.0000000000	0.000000000	1.0000000000	0.000000000						

Data Source

BOP File

Body Orientation Parameters (BOP) files contain trajectory information that are collected using GNSS/INS system. After data has been collected by a GNSS/INS system, post-processing is applied to produce a differential GPS based *.bop file. An example BOP file from CPT/IGM is shown below:

IBOP File v0.1											
!UTCTime	Easting N	orthing H-	Ell	H-MSL	Roll	Pitch	Heading	Omega	Phi	Kappa	
! (sec)	(m)	(m) (i	1)	(m)	(deg)	(deg)	(deg)	(deg)	(deg)	(deg)	
74746.0000000	0 506134.805	4477972.808	186.389	219.980	0.2907200000	-5.5494820000	145.7678950000	4.7535307624	2.8816686090	214.1453242785	
74746.0099999	9 506134.805	4477972.808	186.389	219.980	0.2872940000	-5.5510160000	145.7682390000	4.7528937661	2.8853365342	214.1450062033	
74746.0199999	8 506134.805	4477972.808	186.389	219.980	0.2800190000	-5.5496700000	145.7670610000	4.7476305241	2.8906994693	214.1464505141	
74746.0299999	7 506134.805	4477972.808	186.389	219.980	0.2737670000	-5.5464480000	145.7642530000	4.7413053359	2.8942972253	214.1495800798	
74746.0399999	6 506134.805	4477972.808	186.389	219.980	0.2730790000	-5.5437090000	145.7609280000	4.7384815544	2.8936037350	214.1530451195	
74746.0499999	5 506134.805	4477972.808	186.389	219.980	0.2780440000	-5.5434600000	145.7589040000	4.7409643555	2.8895224901	214.1549355799	
74746.0599999	4 506134.805	4477972.808	186.389	219.980	0.2848980000	-5.5461580000	145.7595460000	4.7470850065	2.8853122320	214.1539750173	

PCAP File

The *.pcap file is a type of data collected using an Ethernet network connection using a User Datagram Protocol (UDP). Data acquired by this method are encoded in a hexadecimal format, and need to be decoded before acquiring LiDAR point cloud information.

Input Data

config.txt:

• Configuration file settings are explained in the screenshot below:

```
PCAP Module Configuration File
Please retain the same order for the configuration (Inertial sensor, Range, Azimuth)!
!Inertial Sensor | IGM,CPT = 0, APX15 = 1 (set as zero in the program by default)
Range Threshold (in meters) // Set as a range!!
Exclude ranges greater than the value below
  30
!Azimuth Threshold Range (in degrees)
Exclude points which fall in the range below (make the value as -1 if not required)
!Example: Phenomobile = 75 285, S1000+ = 30 330,...
!LaserID Range
!HDL32E = 0 - 31, VLP16 = 0 - 15
!Example IDs: 0-5 = 0 5; All LaserID's = -1 -1
Output in Laser unit coordinate system!
!Example, 0= mapping frame, 1 = laser unit frame
!Odd/Even Laser beam output
!Time Offset
Number of Thread
```

pcap_files.txt

- List of input PCAP files for processing
- Contains the absolute location path to the pcap files to be processed

```
D:\Run\ReconstructionTutorial\Data\HDL32E-left-2_00015_20170817132941.pcap
```

scalib_files.txt

- List of calibration files for processing
- Put the *.scalib file in the same folder with provided software
- Contains the name to the scalib files to be processed

```
out_sensors_20170817_ACRE_HDL32E2L.scalib
```

bop_files.txt

- List of BOP Files for processing
- Contains the absolute location path to the bop files for processing.

```
D:\Run\ReconstructionTutorial\Data\CPT_08172017_Calibration_US231.txt
```

output_files.txt

- List of file names for LAS output
- Contains the name of processed output LAS files.

```
!File names for the LAS output file
TestData
```

track_times.txt

• Set the time range for the generated point cloud

```
| TrackID startTime(millisec) endTime(millisec)
| fileIndex1, fileIndex2, fileIndex3 (file index corresponds to the index of the pcap file in the program)
1 63074140 63088530
0 -1 -1
```

PCAPModule: How to run?

- After setting all the input file, double click the "PCAPModule_var.exe"
- PCAPModule first reads the input configuration file (config.txt), line by line. Hence, it is important to keep the same input configuration order.
- It then proceeds to read the pcap_files.txt, bop_files.txt, calib_files.txt and output files.txt, also, line by line
- The corresponding line of each file is linked to each other, to generate the output in LAS format