INFO523 Decision Trees

Sebastian Deimen & Noah Giebink

21 März 2020

Preprocessing

At first, we are going to make two sets of our spot-data: one only related to the music vaiables and one also including the socio- variables.

Overview

Step 1: build a decision tree to classify countries using social variables. **Step 1B:** Interesting rules for distinguishing countries **Step 2:** use most important variable from Stage 1 to cluster countries (the tree in Step 3 performed better with fewer classes this way) **Step 3:** build a decision tree to classify clustered countries by music variables (dimensions of music taste) **Step 3B:** Interesting rules **Step 4:** Compare performance of decision tree in Step 3 to Random Forest

Step 1. Decision tree

Split Train/Test

We split the spot_music_SOCIO data into training and test data, not using a validation set.

##	happiness	density_sqkm	percent_internet_users
##	774.80000	681.46667	632.80000
##	percent_urban	median_age	freedom
##	618.13333	574.13333	418.03011
##	gdp	track.popularity	danceability
##	330.99183	41.24946	12.50000
##	speechiness	valence	acousticness
##	12.00000	10.00000	6.00000
##	liveness	loudness	
##	3.00000	2.00000	

error rate: 0

Figure 1. First decision tree: classifying countries by social variables.

Why is the error rate 0?

Seems to good to be true...Let's examine the happiness variable.

Figure 2. Each country has a single happiness value (boxplot lacks quantiles, etc) spread over each tuple for that country (by virtue of the sociopolitical data source's methods). Therefore, if at least one tuple from each country made it into both the training and test data, this could lead to a perfect error rate.

Solution: Discretize variables and re-run decision tree

```
## Warning: funs() is soft deprecated as of dplyr 0.8.0
## Please use a list of either functions or lambdas:
##
##
     # Simple named list:
##
     list(mean = mean, median = median)
##
     # Auto named with `tibble::lst()`:
##
##
     tibble::1st(mean, median)
##
##
     # Using lambdas
     list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## This warning is displayed once per session.
```

Examine distribution of levels

Figure 3. Distribution of discretized levels.

Socio-political tree with discretized variables

##	median_age	gdp	happiness
##	280.966308	240.000000	180.000000
##	percent_urban	percent_internet_users	freedom
##	122.800000	120.000000	96.696774
##	density_sqkm	track.popularity	loudness
##	92.000000	74.172509	66.000000
##	danceability	track.explicit	tempo
##	58.000000	57.000000	56.166667
##	valence	mode	speechiness
##	50.666667	45.933333	43.750000
##	acousticness	liveness	key
##	41.133333	19.000000	12.000000
##	instrumentalness		
##	2.493262		

error rate (categorical features): 0

Figure 4. Classification of countries using discretized social variables. We chose not to prune the tree because it already has impeccable performance on the test data. The error rate is still 0.

Step 1B: interesting rules

- 1. If freedom !=1,2,3 (1 is highest) and percent urban =2, then country = China
- 2. If freedom != 1,2,3 (1 is highest) and percent urban != 2, then country = Russia (note: Russia's percent urban is 74.3 (> level 2))
- 3. If freedom = 1,2,3 (all but lowest), percent internet users != 1,4 (moderate), happiness != 3,4 (below 50th percentile), and percent urban = 4 (highest), then country = Dominican Republic

Step 2. Use important variable from tree in Step 1 to cluster countries

Our goal is to classify countries by music tastes. To make results more interpretable, we clustered countries by the most important variable in the decision tree shown in Fig. 4, $median_age$, for classification (this also improved performance over a previous tree, not shown). We decided to use two k=2 to get "old" and "young" countries. We then bound the clusters to our solely music-variable data and used this to grow the tree.

In essence, our question is: what are the most important music variables that distinguish 'old' countries' music taste from 'young' countries?

Histogram of age\$age

##		2011n+m11		alua+am
		=	_	cluster
##	1	Argentina		1
##	2	Brazil	31.3	1
##	3	Chile	33.7	1
##	4	Colombia	30.1	1
##	5	Dominican Republic	26.1	1
##	6	Guatemala	21.3	1
##	7	India	26.7	1
##	8	Indonesia	28.0	1
##	9	Mexico	27.5	1
##	10	Peru	27.5	1
##	11	Philippines	24.1	1
##	12	South Africa	26.1	1
##	13	Australia	37.4	2
##	14	Canada	40.5	2
##	15	China	37.0	2
##	16	France	41.2	2
##	17	Germany	45.9	2
##	18	Italy	45.9	2
##	19	Japan	46.3	2
##	20	Russia	38.7	2
##	21	Spain	43.2	2
##	22	United Kingdom	40.2	2
##	23	United States	37.6	2

track.popularity loudness danceability liveness ## 56.298012 46.181401 40.188362 39.264202 ## valence speechiness tempo acousticness

DT on age clusters error rate: 0.2618026

Figure 6. Classification of young and old countries.

Step 3B: interesting rules

- 1. If track popularity >= 70 (scale 0-100) and speechiness >= 0.046 (range 0.02-0.56 in our data), then people in the country are old.
- 2. If track popularity <70 then people in the country are young.
- 3. IF track popularity >70 and speechiness < 0.046 (extremely low), then people in the country are young.

Step 4. Compare performance with Random Forest

##	error rate of ran	ndom forest	: 0.306137	71
##		old	young	MeanDecreaseAccuracy
##	<pre>track.popularity</pre>	14.8610114	38.536835	38.156838
##	track.explicit	26.1189837	28.218747	39.260859
##	danceability	6.6209921	31.329210	31.627768
##	key	0.3814949	25.155949	23.031012
##	loudness	20.0696730	24.866302	32.488752
##	mode	3.4348690	18.752703	19.025058
##	speechiness	8.8587460	22.417634	24.533138
##	acousticness	3.3322197	21.872132	21.210333
##	${\tt instrumentalness}$	3.7132997	1.161682	4.643728
##	liveness	7.5477464	10.266746	13.846465
##	valence	7.3661636	33.532441	36.020983
##	tempo	8.4027534	32.876324	33.443795

```
##
                    MeanDecreaseGini
## track.popularity
                           41.219844
## track.explicit
                           21.723402
## danceability
                           34.020828
## key
                           37.256145
## loudness
                           29.532470
## mode
                           15.334032
## speechiness
                           23.142324
## acousticness
                           31.761173
## instrumentalness
                            2.750786
## liveness
                           19.798520
                           41.143108
## valence
                           38.462655
## tempo
##
                             old
                                        young MeanDecreaseAccuracy
## track.popularity 0.0205116475 0.0527427290
                                                       0.0371596379
## track.explicit
                    0.0403204628 0.0347164965
                                                       0.0373467459
                    0.0095001035 0.0501888096
                                                       0.0305905640
## danceability
## key
                    0.0005122247 0.0401616204
                                                       0.0210420559
## loudness
                    0.0308169769 0.0365875559
                                                       0.0337248980
## mode
                    0.0040735301 0.0235115733
                                                       0.0141087717
## speechiness
                    0.0079679666 0.0227406534
                                                       0.0155535272
                    0.0042688935 0.0271475209
## acousticness
                                                       0.0161161694
## instrumentalness 0.0011389665 0.0002532277
                                                       0.0006699091
## liveness
                    0.0061082189 0.0082612429
                                                       0.0072204467
## valence
                    0.0109830882 0.0678681232
                                                       0.0404535990
## tempo
                    0.0110016668 0.0502082969
                                                       0.0312828891
##
                    MeanDecreaseGini
## track.popularity
                           41.219844
## track.explicit
                           21.723402
## danceability
                           34.020828
## key
                           37.256145
## loudness
                           29.532470
## mode
                           15.334032
## speechiness
                           23.142324
## acousticness
                           31.761173
## instrumentalness
                            2.750786
## liveness
                           19.798520
## valence
                           41.143108
                           38.462655
## tempo
```


How did Random Forest stack up against the decision tree?

With an error rate of \sim .4, random forest performed *slightly* better than our single decision tree, which yielded an error rate of \sim 0.43. Surprisingly, variable importance changed: track.popularity is still most important, but speechiness is relatively unimportant in the random forest model; instead, the second most important variable here is whether music is explicit.