DESCRIPTION:

ScienceQtech is a startup that works in the Data Science field. ScienceQtech has worked on fraud detection, market basket, self-driving cars, supply chain, algorithmic early detection of lung cancer, customer sentiment, and the drug discovery field. With the annual appraisal cycle around the corner, the HR department has asked you (Junior Database Administrator) to generate reports on employee details, their performance, and on the project that the employees have undertaken, to analyze the employee database and extract specific data based on different requirements.

Objective:

To facilitate a better understanding, managers have provided ratings for each employee which will help the HR department to finalize the employee performance mapping. As a DBA, you should find the maximum salary of the employees and ensure that all jobs are meeting the organization's profile standard. You also need to calculate bonuses to find extra cost for expenses. This will raise the overall performance of the organization by ensuring that all required employees receive training.

The tasks to be performed:

1. Create a database named employee, then import data_science_team.csv, proj_table.csv and emp_record_table.csv into the employee database from the given resources.

SQL code:

CREATE DATABASE employee;

SQL Code: CREATE TABLE emp_record (

```
emp_id VARCHAR (6) not null PRIMARY KEY, f_name VARCHAR (10) not null, l_name VARCHAR (10) not null, gender VARCHAR (10) not null, role VARCHAR (30) not null, dept VARCHAR (15) not null, exp INT not null, country VARCHAR (15) not null, continent VARCHAR (15) not null, salary INT not null, emp_rating INT not null, manager_id VARCHAR (5), proj_id varchar (5));
```


Desc emp_record;

	Field	Type	Null	Key	Default	Extra	
•	emp_id	varchar(6)	NO	PRI	HULL		
	f_name	varchar(10)	NO		NULL		
	I_name	varchar(10)	NO		NULL		
	gender	varchar(10)	NO		NULL		
	role	varchar(30)	NO		NULL		
	dept	varchar(15)	NO		NULL		
	exp	int	NO		NULL		
	country	varchar(15)	NO		NULL		
	continent	varchar(15)	NO		HULL		
	salary	int	NO		HULL		
	emp_rating	int	NO		NULL		
	manager	varchar(5)	YES		NULL		
	proj_id	varchar(5)	YES		HULL		

SQL code:

```
CREATE TABLE proj_table (
proj_id VARCHAR (5) not null PRIMARY KEY,
proj_name VARCHAR (30) not null,
domain VARCHAR (15) not null,
start_date DATE not null,
closure_date DATE not null,
dev_qtr VARCHAR (4) not null,
status VARCHAR (10) not null);
```


SQL code:

```
CREATE TABLE data_sci_team (
emp_id VARCHAR (6) not null PRIMARY KEY,
f_name VARCHAR (10) not null,
l_name VARCHAR (10) not null,
gender VARCHAR (10) not null,
role VARCHAR (30) not null,
dept VARCHAR (15) not null,
exp INT not null,
country VARCHAR (15) not null,
```

continent VARCHAR (15) not null);

Desc data sci team;

Import data into tables.

SQL code:

Output:

proj_table

emp record

Data Science Team:

2. Create an ER diagram for the given employee database.

SQL code:

3. Write a query to fetch EMP_ID, FIRST_NAME, LAST_NAME, GENDER, and DEPARTMENT from the employee record table, and make a list of employees and details of their department.

SQL code:

SELECT emp_id, f_name, l_name, gender, dept FROM emp_record;

	emp_id	f_name	I_name	gender	dept
٠	E001	Arthur	Black	M	ALL
	E005	Eric	Hoffman	M	FINANCE
	E010	William	Butler	M	AUTOMOTIVE
	E052	Dianna	Wilson	F	HEALTHCARE
	E057	Dorothy	Wilson	F	HEALTHCARE
	E083	Patrick	Voltz	M	HEALTHCARE
	E103	Emily	Grove	F	FINANCE
	E204	Karene	Nowak	F	AUTOMOTIVE
	E245	Nian	Zhen	M	RETAIL
	E260	Roy	Collins	M	RETAIL
	E403	Steve	Hoffman	M	FINANCE
	E428	Pete	Allen	M	AUTOMOTIVE
	E478	David	Smith	M	RETAIL
	E505	Chad	Wilson	M	HEALTHCARE
	E532	Claire	Brennan	F	AUTOMOTIVE
	E583	Janet	Hale	F	RETAIL
	E612	Tracy	Norris	F	RETAIL
	E620	Katrina	Allen	F	RETAIL
	E640	Jenifer	Jhones	F	RETAIL
	HULL	NULL	HULL	NULL	NULL

- 4. Write a query to fetch EMP_ID, FIRST_NAME, LAST_NAME, GENDER, DEPARTMENT, and EMP_RATING if the EMP_RATING is:
 - less than two
 - greater than four
 - between two and four

EMP_RATING is Less than two

SQL code:

SELECT emp_id, f_name, l_name, gender, dept, emp_rating FROM emp_record WHERE emp_rating < 2;

Output:

EMP_RATING is Greater than four:

Sql code:

SELECT emp_id, f_name, l_name, gender, dept, emp_rating FROM emp_record WHERE emp_rating > 4;

EMP RATING is Between two and four:

SQL code:

SELECT emp_id, f_name, l_name, gender, dept, emp_rating FROM emp_record WHERE emp_rating BETWEEN 2 AND 4;

5. Write a query to concatenate the FIRST_NAME and the LAST_NAME of employees in the Finance department from the employee table and then give the resultant column alias as NAME.

SQL code:

SELECT CONCAT(f_name,' ',l_name)NAME FROM emp_record WHERE dept = 'FINANCE';

6. Write a query to list only those employees who have someone reporting to them. Also, show the number of reporters (including the President).

SQL Code:

SELECT role, manager_id,count(*)
FROM emp_record
GROUP BY manager_id
ORDER BY manager_id;

output.

7. Write a query to list down all the employees from the healthcare and finance departments using union. Take data from the employee record table.

SQL Code:

SELECT f_name, l_name, dept
FROM emp_record
WHERE dept = 'HEALTHCARE'
UNION
SELECT f_name, l_name, dept
FROM emp_record
WHERE dept = 'FINANCE';

8. Write a query to list down employee details such as EMP_ID, FIRST_NAME, LAST_NAME, ROLE, DEPARTMENT, and EMP_RATING grouped by dept. Also include the respective employee rating along with the max emp rating for the department.

SQL Code:

SELECT emp_id, f_name, l_name, role, dept, emp_rating, emp_rating AS max_rating FROM emp_record
WHERE (dept, emp_rating)
IN (SELECT dept, MAX(emp_rating)FROM emp_record GROUP By dept)
ORDER BY dept ASC;

Output:

9. Write a query to calculate the minimum and the maximum salary of the employees in each role. Take data from the employee record table.

SQL Code:

SELECT role, MIN(salary)AS minSalary, MAX(salary) AS maxSalary FROM emp_record GROUP BY role;

Output:

	role	minSalary	maxSalary
١	PRESIDENT	16500	16500
	LEAD DATA SCIENTIST	8500	9000
	SENIOR DATA SCIENTIST	5500	7700
	MANAGER	8500	11000
	ASSOCIATE DATA SCIENTIST	4000	5000
	JUNIOR DATA SCIENTIST	2800	3000

10. Write a query to assign ranks to each employee based on their experience. Take data from the employee record table.

SQL Code:

SELECT f_name, l_name, exp as experience,
DENSE_RANK()OVER (ORDER BY exp DESC) exp_rank
FROM emp_record;

11. Write a query to create a view that displays employees in various countries whose salary is more than six thousand. Take data from the employee record table.

SQL Code:

CREATE VIEW 6K_salary AS

SELECT emp_id, f_name, l_name, country, salary
FROM emp_record
WHERE salary > 6000;

SELECT * FROM 6k salary;

12. Write a nested query to find employees with experience of more than ten years. Take data from the employee record table.

SQL Code:

```
SELECT emp_id, f_name, l_name, exp
FROM emp_record
WHERE exp IN (
SELECT exp
FROM emp_record
WHERE exp > 10);
```

Output:

13. Write a query to create a stored procedure to retrieve the details of the employees whose experience is more than three years. Take data from the employee record table.

SQL Code:

```
DELIMITER //
CREATE PROCEDURE Employee3()
BEGIN
SELECT * FROM emp_record
WHERE exp > 3;
END //
DELIMITER;
CALL Employee3;
```


14. <u>Create an index to improve the cost and performance of the query to find the employee</u> whose FIRST NAME is 'Eric' in the employee table after checking the execution plan.

Sql code:

ALTER TABLE emp_record ADD INDEX fname_index (f_name); SELECT * FROM emp_record WHERE f_name = 'Eric';

Output:

15. Write a query to calculate the bonus for all the employees, based on their ratings and salaries (Use the formula: 5% of salary * employee rating).

SQL Code:

SELECT f_name, l_name, salary, ((salary * .05)*emp_rating) AS bonus FROM emp_record;

16. Write a query to calculate the average salary distribution based on the continent and country. Take data from the employee record table.

Average salary based on the continent:

SQL Code:

SELECT continent, AVG (salary)
FROM emp_record
GROUP BY continent
ORDER BY continent ASC;

Average salary based on the country:

SQL Code:

SELECT country, AVG(salary)

FROM emp_record

GROUP BY country

ORDER BY country ASC;

