Exercícios Recomendados 1 -- Termodinâmica

- $1^{\underline{0}}$) O comprimento da coluna de mercúrio em um certo termômetro de mercúrio-em-vidro é de 5,00 cm, quando o termômetro está em contato com água em seu ponto tríplice. Considere o comprimento da coluna de mercúrio como a propriedade termométrica X e seja θ a temperatura empírica determinada pelo termômetro.
 - a) Calcule a temperatura da coluna quando o comprimento da coluna de mercúrio é 6,00 cm.
 - b) Calcule o comprimento da coluna de mercúrio no ponto de vapor.
 - c) Se X pode ser medido com a precisão de 0,01 cm, este termômetro pode ser usado para distinguir o ponto de gelo e o ponto tríplice?

Resposta: a) 327,8 K; b) 6,83 cm; c) Não.

 2^{0}) Suponha que um valor numérico de 100 seja atribuído à temperatura do ponto de vapor, e que a razão de duas temperaturas seja definida como razão limite, quando $P_{3} \rightarrow 0$, das pressões correspondentes de um gás conservado a volume constante. Sabendo que $\lim_{P_{3}\rightarrow 0}\left(\frac{P_{v}}{P_{g}}\right)=1,366$, encontre o melhor valor experimental para a temperatura do ponto de gelo nesta escala.

Resposta: 73,2°.

- 3º) Um termômetro mal construído assinala +1,00°C no ponto de gelo e 99,0°C no ponto do vapor d'água.
 - a) Obtenha uma equação de correção para esse termômetro.
 - b) Qual é o valor correto da temperatura (na escala Celsius), correspondente à leitura de 25,5 °C em sua escala?

Resposta: b) 25°C.

 4^{0}) Um volume V à temperatura T contém n_{A} moles de um gás ideal A e n_{B} moles de um gás ideal B. Estes gases não reagem quimicamente. Mostre que a pressão total P do sistema é dada por

$$P = P_A + P_B$$
, (1)

onde P_A e P_B são as pressões que cada gás exerceria se estivesse só no volume. A grandeza P_A é chamada a pressão parcial do gás A, e a Eq. (1) é conhecida como a lei de Dalton das pressões parciais.

 5^{0}) Em todos os chamados gases diatômicos, algumas das moléculas estão dissociadas em átomos separados, a fração dissociada aumentando com a temperatura. O gás como um todo consiste, então, em uma porção diatômica e outra monoatômica. Muito embora cada componente possa atuar como um gás ideal, a mistura não o é, porque o número de moles varia com a temperatura. O grau de dissociação δ de um gás diatômico é definido como a razão da massa m_1 da porção monoatômica para a massa total m do sistema, $\delta = \frac{m_1}{m}$. Supondo que o gás obedeça à lei de Dalton, mostre que a equação de estado do gás é

$$PV = (\delta + 1) \left(\frac{m}{M_2}\right) RT,$$

onde M₂ é o "peso" molecular da componente diatômica.

 $6^{\underline{0}}$) Um tubo em J, de seção reta uniforme, contém ar à pressão atmosférica. A altura barométrica é h_0 . A altura do lado menor do tubo é $\frac{h_0}{2}$ e a do maior é h_0 . É derramado mercúrio no lado maior aberto, encerrando o ar na extremidade do lado menor fechado. Qual a altura da coluna de mercúrio no lado fechado, quando o lado aberto está completamente cheio de mercúrio. Descreva suas considerações.

 $0.225h_0$.

 $7^{\underline{0}}$) Um manômetro de mercúrio com dois ramos desiguais de seções transversais idênticas está selado com a mesma pressão P_0 nos dois ramos, como mostra a figura. Com a temperatura constante, um volume adicional de $10~{\rm cm}^3$ de mercúrio é adicionado ao manômetro através de uma torneira localizada em seu fundo. O nível à esquerda sobe 6 cm e o nível da direita sobe 4 cm. Calcule a pressão P_0

Resposta: 114,4 cmHg.

 $8^{\underline{0}}$) Uma substância tem um coeficiente de compressão isotérmica $\kappa = \frac{aT^3}{P^2}$, e um coeficiente de dilatação $\beta = \frac{bT^2}{P}$, onde a e b são constantes. Encontre a equação de estado da substância e a razão $\frac{a}{b}$.

Resposta:
$$V = V_0 e^{\frac{aT^3}{P}}$$
; $\frac{a}{b} = \frac{1}{3}$.

 $9^{\underline{0}}$) Uma substância hipotética tem um coeficiente de compressão isotérmica $\kappa = \frac{a}{v}$, e um coeficiente de dilatação volumétrica $\beta = \frac{2bT}{v}$, onde a e b são constantes. Determine a equação de estado desta substância.

Resposta:
$$v - bT^2 + aP \equiv cte$$
.

 10^{0}) Calcule o trabalho feito por um corpo expandindo, a pressão constante de 2,34 atm, de um volume inicial de 3,12 L a um volume final de 4,01 L.

Resposta:
$$2.10 \times 10^2$$
 J.

11º) Calcule o trabalho realizado por 10 g de oxigênio que se expande isotermicamente a 20°C de 1,0 atm a 0,3 atm.

Resposta:
$$9.1 \times 10^2$$
 J.

 $12^{\underline{0}}$) Um cilindro equipado com um êmbolo móvel contém um gás ideal à pressão P_1 , volume específico v_1 e temperatura T_1 . A pressão e o volume são simultaneamente aumentados, de modo que, em cada instante, P e v são relacionados pela equação

$$P = Av$$
.

onde A é uma constante.

- a) Expresse a constante A em termos da pressão P_1 , a temperatura T_1 e a constante dos gases R.
- b) Encontre a temperatura, quando o volume específico for dobrado, se $T_1 = 200 \text{ K}$.

Resposta: a)
$$A = \frac{P^2}{RT_1}$$
. b) 800 K.

13⁰) Calcule o trabalho realizado contra a pressão atmosférica, quando 10 kg de água convertem-se em vapor, ocupando um volume de 16,7 m³.

Resposta: $1,69 \times 10^6$ J.

14^o) No cilindro de uma máquina a vapor é admitido vapor a uma pressão constante de 30 atm. O curso do êmbolo é de 0,5 m e o diâmetro do cilindro é 0,4 m. Calcule o trabalho (em joules) realizado pelo vapor em cada percurso.

Resposta:
$$1.9 \times 10^5$$
 J.

15º) Um gás ideal, originalmente a uma temperatura T_1 e pressão P_1 , é comprimido reversivelmente contra um pistão até seu volume seja a metade do de seu volume original. A temperatura do gás é alterada durante o processo, de modo que a cada instante a relação P = AV seja satisfeita, onde A é uma constante. Determine o trabalho realizado pelo gás, em termos de n (número de moles), R e T_1 .

Resposta:
$$W = -\frac{3}{8}nRT_1$$
.

- 16°) A temperatura de um gás ideal a uma pressão inicial P_1 e volume V_1 é aumentada a volume constante até que a pressão seja dobrada. O gás é, então, expandido isotermicamente até que a pressão caia para seu valor original, onde é comprimido à pressão constante, até que o volume retorne ao seu valor inicial.
 - a) Esboce estes processos no plano P V e no plano P T.
 - b) Calcule o trabalho em cada processo e o trabalho líquido realizado no ciclo, se $n = 2 \times 10^3$ moles, $P_1 = 2.0 \text{ atm e } V_1 = 4.0 \text{ m}^3.$

Resposta:
$$W_{AB} = 0$$
; $W_{BC} = 1.12 \times 10^6$ J; $W_{CA} = -8.08 \times 10^5$ J; $W_{ciclo} = 3.12 \times 10^5$ J.

 17^{0}) A capacidade térmica específica molar c_{P} da maior parte das substâncias (exceto a temperaturas muito baixas) pode ser expressa satisfatoriamente pela fórmula empírica

$$c_P = a = 2bT - cT^{-2},$$

onde a, b e c são constantes, e T é a temperatura em Kelvin.

- a) Em termos de a, b e c, encontre o calor necessário para elevar a temperatura de n moles de uma substância à pressão constante, de T_1 para T_2 .

b) Determine a capacidade térmica específica média entre
$$T_1$$
 e T_2 .
Resposta: a) $Q_P = na(T_2 - T_1) + nb(T_2^2 - T_1^2) - nc\frac{(T_2 - T_1)}{T_1 T_2}$. b) $\frac{\bar{C}_P}{n} = a + b(T_2 + T_1) - \frac{c}{T_1 T_2}$.