p. 95:

10: Let γ, σ be two paths in the space X which begin at the point p and end at q. As in the proof of theorem (5.6), these paths induces isomorphisms γ_*, σ_* of $\pi_1(X, p)$ with $\pi_1(X, q)$. Show that σ_* is the composition of γ_* and the inner automorphism of $\pi_1(X, q)$ induced by the element $\langle \sigma^{-1} \gamma \rangle$.

Solution: The isomorphisms induces by γ and σ are given by γ_* ($\langle \alpha \rangle$) = $\langle \gamma^{-1} \alpha \gamma \rangle$ and σ_* ($\langle \alpha \rangle$) = $\langle \sigma^{-1} \alpha \sigma \rangle$, respectively.

The inner automorphism of $\pi_1(X,q)$ induced by $\langle \sigma^{-1}\gamma \rangle$ is given by $\langle \alpha \rangle \to \langle \sigma^{-1}\gamma \rangle \langle \alpha \rangle \langle \sigma^{-1}\gamma \rangle^{-1} = \langle \sigma^{-1}\gamma \rangle \langle \alpha \rangle \langle \gamma^{-1}\sigma \rangle \langle \sigma^{-1}\gamma \alpha \gamma^{-1}\sigma \rangle = \sigma_* \gamma_*^{-1} \langle \alpha \rangle$, so denoting this inner automorphism by β , we get $\langle \alpha \rangle \xrightarrow{\gamma_*} \langle \gamma^{-1}\alpha\gamma \rangle \xrightarrow{\beta} \sigma_* \gamma_*^{-1} \langle \gamma^{-1}\alpha\gamma \rangle = \sigma_* \langle \gamma\gamma^{-1}\alpha\gamma\gamma^{-1} \rangle = \sigma_* \langle \alpha \rangle$, hence $\sigma_* = \beta \circ \gamma_*$, so σ_* is the composition of γ_* and the inner automorphism of $\pi_1(X,q)$ induces by $\langle \sigma^{-1}\gamma \rangle$.

p. 102:

18: Let $\pi\colon X\to Y$ be a covering map. So each point $y\in Y$ has a neighborhood V for which $\pi^{-1}(V)$ breaks up as a union of disjoint open sets, each of which maps homeomorphically onto V under π . Call such a neighborhood 'canonical'. If α is a path in Y, show how to find points $0=t_0< t_1<\ldots< t_m=1$ such that $\alpha([t_i,t_{i+1}])$ lies in a canonical neighborhood for $0\leq i\leq m-1$. Hence lift α piece by piece to a (unique) path in X which begins at any preassigned point of $\pi^{-1}(\alpha(0))$.

Solution: For each $y \in Y$, let V_y denote a canonical open neighborhood for y under π (we can assume V_y is open since π restricting to a homeomorphism also gives a homeomorphic correspondence of open sets). By assumption, $\bigcup_{y \in Y} V_y$ covers Y, so since α maps $I \to Y$, we have $\bigcup_{y \in Y} \alpha^{-1}(V_y)$ is an open covering of I, so as I is a compact metric space, there exists a Lebesgue number $\delta > 0$ for the covering. Subdivide I = [0,1] into intervals $0 = t_0 < t_1 \ldots < t_m = 1$ such that $|t_{i+1} - t_i| < \delta$ for all i (for example we can choose some $N \in \mathbb{N}$ such that $\frac{1}{N} < \delta$ and let $t_i = \frac{i}{N}$ for $i = 0, \ldots, N$).

Now, by construction any $[t_i, t_{i+1}]$ lies in some $\alpha^{-1}(V_y)$, so $\alpha([t_i, t_{i+1}]) \subset V_y$ which is a canonical neighborhood.

Now, let x_0 be an arbitrary point in $\pi^{-1}(\alpha(0)) \subset X$, and suppose $\alpha([0,t_1]) \in V_{y_1}$. Then x_0 lies in some $U \subset \pi^{-1}(V_{y_1})$ such that U is mapped homeomorphically by π onto V_{y_1} . Let f be the inverse of $\pi|_U: U \to V_{y_1}$.

Define $\tilde{\alpha}(t) = f \circ \alpha(t)$ for $t \in [0, t_1]$. Then for $t \in [0, t_1]$, we have $\pi \circ \tilde{\alpha}(t) = \pi \circ f \circ \alpha(t) = \alpha(t)$, so $\tilde{\alpha}$ is a lift on $[0, t_1]$.

Suppose we have defined $\tilde{\alpha}$ on $[0,t_N]$ for $1 \leq N < m$. Thus $\alpha|_{[0,t_N]} = \pi \circ \tilde{\alpha}$ on $[0,t_N]$. We want to define $\tilde{\alpha}$ on $[t_N,t_{N+1}]$. Suppose $\alpha([t_N,t_{N+1}]) \subset V_y$. Then $\tilde{\alpha}(t_N) \in \pi^{-1}(V_y)$, so let $\tilde{\alpha}(t_N) \in U \subset \pi^{-1}(V_y)$ such that π maps U homeomorphically onto V_y . Let g be the inverse of $\pi|_U: U \to V_y$. Let $\tilde{\alpha}(t) = g \circ \alpha(t)$ for $t \in [t_N,t_{N+1}]$. Since $g \circ \alpha(t_N)$ agrees with on $\tilde{\alpha}(t_N)$, the gluing lemma ensures continuity of $\tilde{\alpha}$ on all of $[0,t_{N+1}]$.

With this construction $\pi \circ \tilde{\alpha}(t) = \pi \circ g \circ \alpha(t) = \alpha(t)$ on $[t_N, t_{N+1}]$, so $\tilde{\alpha}$ is a lift on $[t_N, t_{N+1}]$.

By repeating m times, we thus have constructed $\tilde{\alpha}$ on all of I=[0,1], with $\alpha=\pi\circ\tilde{\alpha}$ and thus $\tilde{\alpha}$ is a lift starting at x_0 .

For uniqueness, we notice that for x_0 , we had that $\alpha\left([0,t_1]\right)$ lies in some V_{y_1} , so $x_0 \in \pi^{-1}(V_{y_1})$ which, by assumption, is a disjoint union of sets each homeomorphic to V_y by π . Since these are disjoint, x_0 is in precisely one of them, say U. So supposing β is another lift of α on $[0,t_1]$ starting at x_0 , we get $\pi \circ \beta = \alpha = \pi \circ \tilde{\alpha}$. Since $(\pi \circ \beta)([0,t_1]) = \alpha\left([0,t_1]\right) = (\pi \circ \tilde{\alpha})\left([0,t_1]\right)$ lies in some V_{y_1} and if f is the inverse of $\pi|_U: U \to V_{y_1}$ (which exists as π is a homeomorphism of U onto V_{y_1}), then $\beta = f \circ \pi \circ \beta = f \circ \pi \circ \tilde{\alpha} = \tilde{\alpha}$ on $[0,t_1]$. Hence there is a unique extension of $\tilde{\alpha}$ over $[0,t_1]$.

Similarly, for arbitrary $1 \leq i \leq m-1$, $\alpha([t_i,t_{i+1}]) \subset V_y$ for some y, so, as above, $\tilde{\alpha}(t_i) \in U \subset \pi^{-1}(V_y)$ where π maps U homeomorphically onto V_y . Suppose now β is another lift of α on $[t_i,t_{i+1}]$ starting at $\tilde{\alpha}(t_i)$. We have $\pi \circ \beta = \alpha = \pi \circ \tilde{\alpha}$ on $[t_i,t_{i+1}]$, so as this takes values in V_y , let g be the inverse of $\pi|_U: U \to V_y$; giving $\beta = g \circ \pi \circ \beta = g \circ \pi \circ \tilde{\alpha} = \tilde{\alpha}$ on $[t_i,t_{i+1}]$. As we showed uniqueness for the base case

i=0 and this inductive step ensures that gives a unique extension $\tilde{\alpha}|_{[0,t_N]}$ there exists a unique extension $\tilde{\alpha}|_{[0,t_{N+1}]}$ of $\tilde{\alpha}|_{[0,t_N]}$ over $[t_N,t_{N+1}]$. Repeating this m times gives uniqueness of $\tilde{\alpha}$.

21: Describe the homomorphism $f_*: \pi_1(S^1, 1) \to \pi_1(S^1, f(1))$ induces by each of the following maps: (a) The antipodal map $f(e^{i\theta}) = e^{i(\theta + \pi)}, 0 \le \theta \le 2\pi$.

(b) $f(e^{i\theta}) = e^{in\theta}, 0 \le \theta \le 2\pi$ where $n \in \mathbb{Z}$.

(c)
$$f(e^{i\theta}) = \begin{cases} e^{i\theta}, & 0 \le \theta \le \pi \\ e^{i(2\pi - \theta)}, & \pi \le \theta \le 2\pi \end{cases}$$

Solution:

In the following, let $\langle g \rangle$ denote a generator for $\pi_1\left(S^1,1\right)$ with $g\colon I \to S^1$ given by $g(t) = e^{2\pi i t}$. For any induced homomorphism $f_*\colon \pi_1\left(S^1,1\right) \to \pi_1\left(S^1,f(1)\right)$, let $\gamma\colon I \to S^1$ be the loop $f\circ g$. Then for any $\alpha\in\pi_1(S^1,1)$, we have that there exists an $n\in\mathbb{Z}$ such that $\langle\alpha\rangle=\langle g\rangle^n=\langle g^n\rangle$, so $f_*\langle\alpha\rangle=\langle f\circ g^n\rangle=\langle f\circ g\rangle^n=\langle \gamma\rangle^n$, so $\langle\gamma\rangle$ is a generator for the image of f_* . Hence f_* on the generator $\langle g\rangle$, i.e. $f\circ g$, gives a complete description of the homomorphism $f_*\colon \pi_1\left(S^1,1\right)\to\pi_1\left(S^1,f(1)\right)$.

(a) We claim that the image of f_* is isomorphic to $\mathbb{Z} \cong \pi_1(S^1, -1)$.

Let $\alpha \colon I \to S^1$ be the path $\alpha(t) = e^{i\pi t}$. Then the isomorphism induces by α is given by

$$\alpha_* \langle \beta \rangle = \langle \alpha^{-1} \beta \alpha \rangle$$

which is an isomorphism of $\pi_1(S^1, 1)$ and $\pi_1(S^1, -1)$. We claim that $f_*(\langle \beta \rangle) = \alpha_*(\langle \beta \rangle)$. For this, it suffices to show that it is true on the generator of $\pi_1(S^1, 1)$ since f_* and α_* are homomorphisms. We want to produce a homotopy between $f \circ g$ and $\alpha^{-1}g\alpha$. Define the map

$$F(s,t) = \begin{cases} e^{i\pi(1-4s)}, & s \in \left[0, \frac{1-t}{4}\right] \\ e^{i\pi\left(\frac{4(2-t)s+4t-2}{1+t}\right)}, & s \in \left[\frac{1-t}{4}, \frac{1}{2}\right] \\ e^{i\pi(2s-1)}, & s \in \left[\frac{1}{2}, 1\right] \end{cases}$$

This is continuous and a homotopy between $F(s,0) = \alpha^{-1} \gamma \alpha$ and $F(s,1) = f \circ g$.

$$F(s,t) = \begin{cases} e^{i\pi(1-4s)}, & s \in \left[0, \frac{1-t}{4}\right] \\ e^{i\pi\frac{8s-4st+4t-2}{1+s}}, & s \in \left[\frac{1-t}{4}, \frac{1}{2}\right] \\ e^{i\pi(2s-1)}, & s \in \left[\frac{1}{2}, 1\right] \end{cases}$$

Hence, $f_*: \pi_1(S^1, 1) \to \pi_1(S^1, -1)$ is the map sending a generator to a generator.

(b) We have

$$f \circ q(t) = e^{2\pi i n t} = q(t)^n, \quad t \in [0, 1]$$

which is the loop that winds around S^1 counterclockwise n times. Thus f_* maps $g \to g^n$ - or, identifying $\pi_1\left(S^1,1\right)$ with \mathbb{Z} , maps $1 \to n$. This generates the image group of f_* which thus is $\langle g^n \rangle \leq \pi_1\left(S^1,1\right)$. (c)

$$\gamma(t) := f \circ g(t) = \begin{cases} e^{2\pi i t}, & t \in \left[0, \frac{1}{2}\right] \\ e^{i2\pi(1-t)}, & t \in \left[\frac{1}{2}, 1\right] \end{cases}$$

is the loop that goes counterclockwise from 1 to -1 along S^1 during $\left[0, \frac{1}{2}\right]$ and then reversing direction going from -1 to 1 clockwise during $\left[\frac{1}{2}, 1\right]$.

Now γ is homotopic to the constant loop by the homotopy $F: I \times I \to S^1$ given by $F(s,t) = \gamma(st)$, so since $\langle 1 \rangle = \langle \gamma \rangle$ generates the image subgroup, we find that f_* is the homomorphism mapping everything to the constant loop.