

Exame Final Nacional de Física e Química A Prova 715 | 1.ª Fase | Ensino Secundário | 2019

11.º Ano de Escolaridade

Decreto-Lei n.º 139/2012, de 5 de julho | Decreto-Lei n.º 55/2018, de 6 de julho

Duração da Prova: 120 minutos. | Tolerância: 30 minutos.

14 Páginas

VERSÃO 1

Indique de forma legível a versão da prova.

Para cada resposta, identifique o grupo e o item.

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.

É permitido o uso de régua, esquadro, transferidor e calculadora gráfica em modo de exame.

Apresente apenas uma resposta para cada item.

As cotações dos itens encontram-se no final do enunciado da prova.

A prova inclui uma tabela de constantes, um formulário e uma tabela periódica.

Nas respostas aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o grupo, o número do item e a letra que identifica a opção escolhida.

Utilize os valores numéricos fornecidos no enunciado dos itens.

TABELA DE CONSTANTES

Capacidade térmica mássica da água líquida	$c = 4.18 \times 10^3 \text{ J kg}^{-1} {}^{\circ}\text{C}^{-1}$
Constante de Avogadro	$N_{\rm A} = 6.02 \times 10^{23} \rm mol^{-1}$
Constante de gravitação universal	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Índice de refração do ar	n = 1,000
Módulo da aceleração gravítica de um corpo junto à superfície da Terra	$g = 10 \text{ m s}^{-2}$
Módulo da velocidade de propagação da luz no vácuo	$c = 3.00 \times 10^8 \text{ m s}^{-1}$
Produto iónico da água (a 25 °C)	$K_{\rm w} = 1,00 \times 10^{-14}$
Volume molar de um gás (PTN)	$V_{\rm m} = 22,4~{\rm dm}^3~{\rm mol}^{-1}$

FORMULÁRIO

• Quantidade, massa e volume

$$n = \frac{N}{N_{\rm A}}$$

$$M = \frac{m}{n}$$

$$V_{\rm m} = \frac{V}{n}$$

$$\rho = \frac{m}{V}$$

• Soluções

$$c = \frac{n}{V}$$

$$x_{\rm A} = \frac{n_{\rm A}}{n_{\rm total}}$$

$$pH = -log \ \{[H_3O^+]/mol \ dm^{-3}\}$$

• Energia

$$E_{\rm c} = \frac{1}{2} \ m \ v^2$$

$$E_{pg} = mgh$$

$$E_{\rm m} = E_{\rm c} + E_{\rm p}$$

$$W = F d \cos \alpha$$

$$\sum W = \Delta E_0$$

$$\sum W = \Delta E_{\rm c}$$
 $W_{\overrightarrow{F}_{\rm g}} = -\Delta E_{\rm pg}$

$$U = RI$$

$$P = RI^2$$

$$U = \varepsilon - rI$$

$$E = m \ c \ \Delta T$$

$$\Delta U = W + Q$$

$$E_{\rm r} = \frac{P}{A}$$

Mecânica

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$
 $v = v_0 + a t$

$$v = v_0 + at$$

$$a_{\rm c} = \frac{v^2}{r}$$

$$\omega = \frac{2\pi}{T}$$

$$v = \omega r$$

$$\overrightarrow{F} = m\overrightarrow{a}$$

$$F_{\rm g} = G \frac{m_1 m_2}{r^2}$$

• Ondas e eletromagnetismo

$$\lambda = \frac{v}{f}$$

$$\Phi_{\rm m} = BA\cos\alpha$$

$$\Phi_{\rm m} = B A \cos \alpha \qquad |\varepsilon_{\rm i}| = \frac{|\Delta \Phi_{\rm m}|}{\Delta t}$$

$$n = \frac{c}{v}$$

$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2$$

TABELA PERIÓDICA DOS ELEMENTOS QUÍMICOS

18	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,29	86 Rn	0 Og		
_	17	9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At	117 Ts	71 Lu 174,97	103 Lr
	16	8 O 16,00	16 S 32,06	34 Se 78,97	52 Te 127,60	84 Po	116 Lv	70 Yb 173,05	102 No
	15	7 N 14,01	15 P 30,97	33 AS 74,92	51 Sb 121,76	83 Bi 208,98	115 Mc	69 Tm 168,93	101 Md
	4	6 C 12,01	14 Si 28,09	32 Ge 72,63	50 Sn 118,71	82 Pb 207,2	114 F1	68 Er 167,26	100 Fm
	13	5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,38	113 Nh	67 Ho 164,93	99 ES
			12	30 Zn 65,38	48 Cd 112,41	80 Hg 200,59	112 Cn	66 Dy 162,50	% C t
			7	29 Cu 63,55	47 Ag 107,87	79 Au 196,97	111 Rg	65 Tb 158,93	97 Bk
			10	28 Ni 58,69	46 Pd 106,42	78 Pt 195,08	110 Ds	64 Gd 157,25	96 C m
	თ			27 Co 58,93	45 Rh 102,91	77 Ir 192,22	109 Mt	63 Eu 151,96	95 Am
	ω		œ	26 Fe 55,85	44 Ru 101,07	76 Os 190,23	108 Hs	62 Sm 150,36	94 Pu
			7	25 Mn 54,94	43 Tc	75 Re 186,21	107 Bh	61 Pm	93 Np
			9	24 Cr 52,00	42 Mo 95,95	74 W 183,84	106 Sg	60 Nd 144,24	92 U 238,03
		Número atómico Elemento Massa atómica relativa	rc	23 V 50,94	41 Nb 92,91	73 Ta 180,95	105 Db	59 Pr 140,91	91 Pa 231,04
		Númer Ele; Massa ató	4	22 Ti 47,87	40 Zr 91,22	72 Hf 178,49	104 Rf	 58 Ce 140,12	90 Th 232,04
			ო	21 Sc 44,96	39 Y 88,91	57-71 Lantanídeos	89-103 Actinídeos	 57 La 138,91	89 Ac
_	7	4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,33	88 Ra		
-	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr		

GRUPO I

Uma tina de ondas é um tanque de pequena profundidade que contém água e onde é possível, utilizando um gerador adequado, produzir ondas na superfície da água. O gerador pode ser ajustado de modo a produzir ondas de frequências diferentes.

As imagens dessas ondas apresentam zonas mais claras, que correspondem a cristas, e zonas mais escuras, que correspondem a vales.

1. A Figura 1 apresenta uma imagem das ondas obtidas numa tina de ondas, numa determinada experiência. Na figura, estão ainda representados dois pontos, A e B, à superfície da água.

Figura 1

1.1. Considere que o gerador de ondas está ajustado para $5.0~{\rm Hz}$ e que a imagem é obtida num instante t.

Quanto tempo decorrerá, no mínimo, entre o instante t e um instante no qual o ponto A se encontre num vale?

- **(A)** 0,15 s
- **(B)** 0,20 s
- (C) 0.050 s
- **(D)** 0,10 s

1.2. Se a distância entre os pontos A e B for 15,6 cm, o comprimento de onda das ondas que se propagam na superfície da água será

- (A) 1,30 cm
- **(B)** 2,23 cm
- (C) 2,60 cm
- **(D)** 3,12 cm

2. Com o objetivo de determinar a velocidade de propagação das ondas produzidas na superfície da água contida numa tina, mediu-se o comprimento de onda, λ , dessas ondas para várias frequências, f.

Na tabela seguinte, estão registados os valores de f e de λ medidos e ainda os inversos desses valores.

f/Hz	λ / cm	$\frac{1}{f}$ / Hz ⁻¹	$\frac{1}{\lambda}$ / cm ⁻¹		
8,8	8,8 2,3 0,114		0,435		
10,5	2,0	0,09524	0,500		
12,7	1,6	0,07874	0,625		
15,1	5,1 1,4 0,06623		0,714		
20,3	1,0	0,04926	1,00		

Determine a velocidade de propagação das ondas, em ${
m cm~s^{-1}}$, nas condições em que decorreu a experiência, a partir da equação da reta de ajuste a um gráfico adequado.

Na sua resposta:

- identifique as variáveis independente e dependente a considerar nos eixos do gráfico;
- apresente a equação da reta de ajuste ao gráfico;
- obtenha o valor solicitado, com um número correto de algarismos significativos.

GRUPO II

- 1. Num ensaio laboratorial, adicionou-se uma amostra de água, a uma temperatura T, a uma outra amostra de água, de massa $350.0~{\rm g}$ e inicialmente a $5.2~{\rm ^oC}$. Verificou-se que, após um determinado intervalo de tempo, o sistema resultante daquela adição ficou à temperatura de $27.9~{\rm ^oC}$.
 - **1.1.** Calculou-se a energia total cedida pela amostra de água inicialmente à temperatura T, tendo-se obtido $3.85 \times 10^4 \, \rm J$.

Conclua em que sentido terá ocorrido a transferência de energia entre o sistema resultante daquela adição e o exterior, até ser atingida a temperatura de 27,9 °C.

Mostre como chegou à conclusão solicitada.

1.2. As temperaturas foram medidas com um termómetro digital, cujo funcionamento se baseia na variação da resistência elétrica de um fio condutor (constituinte do termómetro) com a temperatura. Para que o termómetro funcione adequadamente, a variação da potência dissipada por efeito Joule, no fio, deve ser desprezável.

Considere que a resistência elétrica do fio aumenta $3.85~\Omega$ por cada $10~^{\circ}\mathrm{C}$ de aumento de temperatura e que, na experiência realizada, o fio foi percorrido por uma corrente constante de $9.0\times10^{-4}~\mathrm{A}$.

Verifique que, entre $5.2~^{\rm o}{\rm C}$ e $27.9~^{\rm o}{\rm C}$, o aumento da potência dissipada naquele fio foi inferior a $10^{-5}~{\rm W}$, sendo, por isso, desprezável.

- **2.** Para determinar experimentalmente a variação de entalpia (mássica) de fusão do gelo, adicionou-se gelo fundente a água previamente aquecida.
 - 2.1. Para minimizar o erro nesta determinação, o gelo adicionado deve estar dividido em
 - (A) pequenos fragmentos e vir diretamente do congelador.
 - (B) pequenos fragmentos e ter sido colocado previamente em água a 0 °C.
 - (C) grandes fragmentos e vir diretamente do congelador.
 - (**D**) grandes fragmentos e ter sido colocado previamente em água a 0 °C.

- **2.2.** Na experiência realizada, mediu-se a massa do gelo fundente, a massa e a temperatura inicial da água, e a temperatura à qual o sistema resultante daquela adição atingiu o equilíbrio térmico.
 - O que é necessário ainda conhecer para calcular a variação de entalpia (mássica) de fusão do gelo, considerando que o sistema é isolado?
 - (A) Apenas a capacidade térmica mássica da água líquida.
 - (B) A capacidade térmica mássica da água líquida e a capacidade térmica mássica do gelo.
 - (C) A energia necessária à fusão de $1~\mathrm{kg}$ de gelo e a capacidade térmica mássica da água líquida.
 - (D) Apenas a energia necessária à fusão de 1 kg de gelo.

GRUPO III

Considere a reação traduzida por

$$2 H_2O(1) \implies H_3O^+(aq) + OH^-(aq)$$

- 1. Na reação anterior, moléculas de água cedem
 - (A) protões a iões $OH^{-}(aq)$.
- (B) protões a moléculas de água.
- **(C)** eletrões a iões OH⁻(aq).
- (D) eletrões a moléculas de água.
- **2.** O produto iónico da água é 3.80×10^{-14} , a uma temperatura T.
 - Se, à temperatura T, o pH de uma água engarrafada for 6,90, essa água
 - (A) será neutra, uma vez que as concentrações de $H_3O^+(aq)$ e de $OH^-(aq)$ serão iguais.
 - (B) não será neutra, uma vez que o seu pH será diferente de 7.
 - (C) não será neutra, uma vez que a concentração de H₃O⁺(aq) será inferior à de OH⁻(aq).
 - (D) será neutra, uma vez que o seu pH será próximo de 7.
- 3. Dissolvendo em água, a temperatura constante, uma certa quantidade de uma base, a concentração de $OH^-(aq)$
 - (A) diminui, e o produto iónico da água mantém-se constante.
 - (B) aumenta, e o produto iónico da água não se mantém constante.
 - (C) diminui, e o produto iónico da água não se mantém constante.
 - (D) aumenta, e o produto iónico da água mantém-se constante.

GRUPO IV

A reação de síntese do amoníaco pode ser traduzida por

$$N_2(g) + 3 H_2(g) \implies 2 NH_3(g) \qquad \Delta H < 0$$

- 1. Nesta reação, a variação do número de oxidação do elemento que se reduz é
 - **(A)** +3

- **(B)** +1 **(C)** -3 **(D)** -1
- 2. Que volume de $H_2(g)$ terá de reagir, no mínimo, para se obter 35,0 dm³ de $NH_3(g)$, em condições de pressão e de temperatura constantes?

 - (A) 52.5 dm^3 (B) 35.0 dm^3 (C) 23.3 dm^3 (D) 105 dm^3
- 3. Considere um sistema fechado onde se encontram, em equilíbrio, as espécies envolvidas na reação considerada.

Na Figura 2, apresentam-se os esboços dos gráficos da quantidade de equilíbrio, n, de uma daquelas espécies, em função da pressão, P, para duas temperaturas, $T_{\rm A}$ e $T_{\rm B}$.

Figura 2

Conclua qual das temperaturas, $T_{\rm A}$ ou $T_{\rm B}$, é menor, começando por verificar se a espécie a que o gráfico se refere é um reagente ou um produto da reação.

Apresente, num texto estruturado e com linguagem científica adequada, a fundamentação da conclusão solicitada.

4. Num reator com a capacidade de 0,50 L, foram introduzidas 6,00 mol de NH3 (g). Quando o sistema químico atingiu o estado de equilíbrio, à temperatura T, verificou-se que existia no reator 86,6% da quantidade inicial daquele gás.

Calcule a constante de equilíbrio, K_c , da reação de decomposição do amoníaco, à temperatura T.

GRUPO V

A Figura 3 representa, à escala, um diagrama de níveis de energia do átomo de hidrogénio, no qual são apresentados apenas os três primeiros níveis de energia.

- **1.** A energia do nível n = 4 é -1.36×10^{-19} J.
 - **1.1.** A que distância do nível n = 3 deveria estar o nível n = 4 no diagrama representado na figura? Mostre como chegou ao valor solicitado.
 - **1.2.** As riscas do espectro de emissão do átomo de hidrogénio, na região do visível, são originadas por transições eletrónicas para o nível n = 2.

Conclua se, no espectro de emissão do átomo de hidrogénio, na região do visível, poderá existir uma risca a $3,45\times10^{-19}~J$.

Mostre como chegou à conclusão solicitada.

2. Qual é a energia mínima necessária para ionizar o átomo de hidrogénio no primeiro estado excitado?

 — Página em branco ————	

GRUPO VI

A 14 de outubro de 2012, Felix Baumgartner (FB), um paraquedista austríaco, subiu num balão de hélio até à estratosfera. A partir desse balão, FB realizou um salto até à superfície da Terra.

1. Um balão, cheio com $0.750~\mathrm{mol}$ de hélio (He), tem um volume de $70.0~\mathrm{dm^3}$, a uma determinada altitude. A essa altitude recolheu-se uma amostra de $1.0~\mathrm{dm^3}$ de ar, medido em condições de pressão e de temperatura idênticas às existentes no interior do balão.

A percentagem em volume de nitrogénio, N_2 , na amostra de ar recolhida é 78%.

Determine a massa de nitrogénio nessa amostra de ar.

Apresente todas as etapas de resolução, explicitando todos os cálculos efetuados.

- 2. Na estratosfera existe uma camada de ozono, $O_3(g)$, que absorve parte da radiação ultravioleta proveniente do Sol.
 - **2.1.** Qual é a quantidade de ozono existente numa amostra de ar, de massa $5 \times 10^2 \, \mathrm{g}$, numa zona da estratosfera na qual o ar contém $10 \, \mathrm{ppm}$ (em massa) de ozono?
 - **(A)** $1 \times 10^{-5} \text{ mol}$

(B) $1 \times 10^{-4} \text{ mol}$

(C) $5 \times 10^{-3} \text{ mol}$

- **(D)** $5 \times 10^{-4} \text{ mol}$
- **2.2.** A molécula de ozono, O_3 , é menos estável do que a molécula de oxigénio, O_2 .

Na Figura 4, está representado um modelo tridimensional da molécula de ozono.

Figura 4

Na molécula de ozono, o átomo central ______ eletrões de valência não ligantes, e o comprimento da ligação oxigénio-oxigénio é _____ do que na molécula de oxigénio.

- (A) apresenta ... menor
- (B) apresenta ... maior
- (C) não apresenta ... maior
- (D) não apresenta ... menor

3. No salto que realizou desde a estratosfera até à Terra, Felix Baumgartner (FB) foi o primeiro homem a quebrar a barreira do som sem qualquer veículo propulsor.

Considere que a queda de FB em direção à Terra foi aproximadamente vertical.

Na Figura 5, apresentam-se, para os primeiros $100~{\rm s}$ de queda, os gráficos do módulo da velocidade, $v_{{\rm FB}}$, e da altitude, h, de FB, em função do tempo, t. Na figura, está também representada uma linha a tracejado, que traduz o modo como variou o módulo da velocidade do som, $v_{{\rm som}}$, ao longo da trajetória percorrida, durante aquele intervalo de tempo.

Considere que o conjunto *FB* + *equipamento* pode ser representado pelo seu centro de massa (modelo da partícula material) e que a variação da aceleração gravítica com a altitude é desprezável.

- **3.1.** Qual foi o sentido da resultante das forças que atuaram sobre o conjunto FB + equipamento, nos primeiros $40 \, \mathrm{s}$ de queda?
- **3.2.** Qual foi, aproximadamente, a distância percorrida pelo conjunto *FB* + *equipamento*, no intervalo de tempo em que o módulo da sua velocidade aumentou?
 - **(A)** 19 km
- **(B)** 11 km
- (C) 23 km
- **(D)** 28 km
- **3.3.** No intervalo de tempo [50, 60] s, o módulo da aceleração do conjunto FB + equipamento _______, e a intensidade da resultante das forças que nele atuaram _______.
 - (A) aumentou ... aumentou
- (B) aumentou ... diminuiu
- (C) diminuiu ... diminuiu
- (D) diminuiu ... aumentou
- **3.4.** No intervalo de tempo [50, 100] s, a energia potencial gravítica do sistema *FB* + *equipamento* + *Terra* _______ , e a energia mecânica do sistema ______ .
 - (A) aumentou ... diminuiu
- (B) aumentou ... permaneceu constante
- (C) diminuiu ... diminuiu
- (D) diminuiu ... permaneceu constante
- **3.5.** Considere um referencial unidimensional Oy vertical, com sentido de cima para baixo.

Qual dos esboços de gráfico seguintes poderá representar a componente escalar da posição, y, do conjunto FB + equipamento, em relação ao referencial Oy, em função do tempo, t, nos primeiros $100 \ \mathrm{s}$ de queda?

(A)

(B)

(C)

(D)

3.6. Considere que a massa do conjunto *FB* + *equipamento* era 118 kg.

Determine o trabalho realizado pela força de resistência do ar que atuou sobre o conjunto, no intervalo de tempo em que este se moveu com velocidade superior à velocidade do som.

COTAÇÕES

0	Item									
Grupo	Cotação (em pontos)									
I	1.1.	1.2.	2.							
1	7	7	10							24
	1.1.	1.2.	2.1.	2.2.						
II	7	10	7	7						31
III	1.	2.	3.							
1111	7	7	7							21
IV	1.	2.	3.	4.						
1 1 1	7	7	10	10						34
v	1.1.	1.2.	2.							
•	7	7	7							21
VI	1.	2.1.	2.2.	3.1.	3.2.	3.3.	3.4.	3.5.	3.6.	
VI	10	7	7	7	7	7	7	7	10	69
TOTAL										200

Prova 715 1.ª Fase VERSÃO 1