Fig.1. Pst I G \boldsymbol{G} TCCTGTGCAGCCTCGGGACGCGCCACCAGTGGTCATGGTCACTATGGTATGGGCTGGTTC CGCCAGGTTCCAGGGAAGGAGCGTGAGTTTGTCGCAGCTATTAGGTGGAGTGGTAAAGAG K ACATGGTATAAAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGATAACGCCAAGACT s . K G R F S R K ACGGTTTATCTGCAAATGAACAGCCTGAAACCTGAAGATACGGCCGTTTATTATTGTGCC \boldsymbol{L} K \boldsymbol{P} \boldsymbol{E} DT A \boldsymbol{L} S GCTCGACCGGTCCGCTGGATGATATTTCCCTGCCGGTTGGGTTTGACTACTGGGGCCAG Ι S \boldsymbol{L} G F GGGACCCAGGTCACCGTCTCCTCAGAACAAAAACTCATCTCAGAAGAGGATCTGAATTAA S S \boldsymbol{E} E S E Q K \boldsymbol{L} Ι D

EcoRI

TAAGGGCTAAGCTCGAATTC

1: Molecular Weight Markers

2: 943.37 Sample

3: Neg. Ctrl

1: Molecular Weight Markers 2-5: Samples Plant.22, 25, 30,34

6-9: Neg. Plants Samples

10: Positive Ctrl (P.pastoris produced)

Fig.4.

Fig.6. PstI CAGGTGCAGCTGCAGCAGTCAGGGGGGGGGGGTCTCTGAGACTC G G G $L \cdot V$ Q A TCCTGTGTAGCTTCTGAAAGCAGCTTCAGCAACAATCACATGGGCTGGTACCGCCGGGCT Η G CCAGGGAACCAGCGCGAGCTGGTCGCAACTATTAGTCCTGGTGGTAGCACACACTATGTA S GACTCCGTGAAGGGCCGATTCACCATCTCCCGAGACAACGCCAAGAACACAGTGTATCTA T Ι S R K S K G R CAAATGGACAGCCTGAAACCAGAGGACACGGCCGTCTATTACTGTGCTGCCAAGGGGAGG D \boldsymbol{T} A Y Y A A K S \boldsymbol{L} K P \boldsymbol{E} CG Pst.I

GGGCTGCAGGCTATGCAGTACTGGGGCCAGGGGACCCTGGTCACCGTCTCCTCAGCGCAC G 0 G T \boldsymbol{L} T CACAGCGAAGACCCCAGCTCCGCGGCCCCCATCACCATCACCATCACGGGGCCGCAGAA Η Η Н G S S A A A Η Η Η A CAAAAACTCATCTCAGAAGAGGATCTGAATGGGGCCGCATAGTAA**CAATTG** S \boldsymbol{E} E D \boldsymbol{L} N G A K \boldsymbol{L} Ι

Fig.8.

0: Molecular Weight Markers 1-6: pPV.8-PRIa-HCV33myc-SKDEL plants 7-9: pPV.8-GBSS-HCV33myc-SKDEL plants

Fig.11.

Fig.12.

PstI CAGGTGCAGCTGCAGGAGTCTGGGGGGGGGGCCTGGTGCAGGCTGGGGGGGTCTCTGAGACTC G G G TCCTGTGTAGCCTCTGGAAACACCTTCAGTATCATAGCTATGGCCTGGTACCGCCAGGCT G Ι CCAGGGAAGCAGCGCGAGGTGGTCGCAAGTATTAATAGTATTGGCAGCACAAATTATGCA GACTCCGTGAAGGGGCGATTCACCATCTCCAGAGACAACGCCAAGAACACAGTGTATCTG R S Ι CAAATGAGCAGCCTGAAACCTGAGGACACGGCCGTCTATTACTGTGCTGCCGGTAATTTG K CTGGTTAAGAGGCCTTACTGGGGCCAGGGGACCCTGGTCACCGTCTCCTCAGAACCCAAG ACACCAAAACCACAACCAGCGGCCGCCCATCACCATCACCATCACGGGGCCGCAGAACAA Н AAACTCATCTCAGAAGAGGATCTGAATGGGGCCGCATAGTAACAATTG A MunI S \boldsymbol{E} E D \boldsymbol{L} N G

Fig.14. PstI ACCATGGCCCAGGTGAAACTGCAGCAGTCTGGGGGGGGGAGGATTGGTGCAGGCTGGGGGCCCT Q Q S G G LTMAOVKL V OCTGAGGCTCTCCTGTGCAGCCTCTGGACGCACCTTCAGTAACTATGCCGTGGGCTGGTTC S G R T F SN S C A AY ACGCCAGGCTCCAGGGAAGGAGCGTGAGTTTGTCGCTGCTATTAGCCGTGATGGTGGGCGC P G K ER \boldsymbol{E} F V AA Ι S R ACATACTATGCGGACTCCGTGAAGGGCCGATTCGCCGTCTCCAGAGACTACGCCGAGAAC YYADSVKGRFAVSRD ACGGTGTATCTGCAAATGAACAGCCTGAAACCTGAGGACACGGCCGTTTATTACTGTAAC V Y L O M N S L K P E D T A V ACAAGGGCCTACTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCAGCGCACCACAGCGAA WGQGTQVTVSS GACCCCAGCTCCGCGGCCGCCCATCACCATCACCATCACGGGGCCGCAGAACAAAACTC PSSAAAHHHHHHGAAEOKL ATCTCAGAAGAGGATCTGAATGGGGCCGCATAGTAACAATTG S E E D L N G A A MunI

Fig.15. NcoI PstI ACCATGGCCCAGGTGAAACTGCAGCAGTCTGGGGGGGGGATTGGTGCAGGCTGGGGGCCCT T M A Q V K L Q Q S G G G L V Q A G CTGAGGCTCTCCTGTGCAGCCTCTGGACGCACCTTCAGTAACTATGCCGTGGGCTGGTTC RLSCAASGRTF S N Y AO A P G K E R E F V A A I S R ACATACTATGCGGACTCCGTGAAGGGCCGATTCGCCGTCTCCAGAGACTACGCCGAGAAC S V K G R F A V S R DY ACGGTGTATCTGCAAATGAACAGCCTGAAACCTGAGGACACGGCCGTTTATTACTGTAAC N S \boldsymbol{L} K P E \boldsymbol{T} ACAAGGGCCTACTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCAGCGCACCACAGCGAA W G Q GT O \boldsymbol{V} T V SS Α GACCCAGCTCCGCGGCCGCCCATCACCATCACCATCACGGGGCCGCAGAACAAAAACTC A HHHHHHGAA E O K LATCTCAGAAGAGGATCTGAATTCTGAGAAAGATGAGCTATGACAATTG N S EK D E LT S E E D L

Fig.17A.

Fig.17B.

			10/20		
	NcoI	PstI		Fig.1	8.
1	>>		HCV33.	gaggattggt (g g l	>
51	>		HCV33	ggacgcgcca (g r a	>
101	>		HCV33	ggttccaggg a	>
151	>		HCV33	aagagacatg	>
201	>		HCV33	gataacgcca a d n a	>
251	>		HCV33	agatacggcc (>
301	>		HCV33 v d d BstEII	tttccctgcc (>
351	>		33	gtctcctcag a	Hinge>
401	>		Hinge	accacaaccc a	>
451	>	.Hinge	>>>>	ctgagctcct (CH2. p e l	>
501	>		CH2	gacgtcctct (>
551	>		CH2	cgtgggccag (d v g q	>
601	>		CH2	cagaggtgcg a	>
651				acgtaccgcg	

Fig.18 (Cont).

	trp kee qfns tyr vvs
701	cctgcccatc cagcaccagg actggctgac ggggaaagag ttcaaatgca >
751	aggtcaacaa caaagctctc ccggccccca tcgagaagac catctccaag >
801	gccaaagggc agacccggga gccgcaggtg tacgccctgg ccccacaccg >>>>
851	ggaagagctg gccaaggaca ccgtgagcgt aacctgcctg gtcaaaggct > CH3 r e e l a k d t v s v t c l v k g
901	tctacccacc tgatatcaac gttgagtggc agaggaacgg tcagccggag > f y p p d i n v e w q r n g q p e
951	tcagagggca cctacgccac cacgccaccc cagctggaca acgacgggac
	seg tya't tpp qld ndg
1001	ctacttcctc tacagcaagc tctcggtggg aaagaacacg tggcagcggg > t y f l y s k l s v g k n t w q r
1051	gagaaacctt cacctgtgtg gtgatgcacg aggccctgca caaccactac > g e t f t c v v m h e a l h n h y EcoRI
1101	acccagaaat ccatcaccca gtcttcgggt aaataataag aattcgagct > t q k s i t q s s g k
1151	cqaa

12/23

	Ncol	PstI		Fig.19.
1	>>		HCV33	ggattggt gcaggctggg g l v q a g
51	ggctctctga	gactctcctg	tgcagcctcg gg	acgcgcca ccagtggtca
101	tggtcactat	ggtatgggct	ggttccgcca gg	ttccaggg aaggagcgtg
151	>		HCV33	gagacatg gtataaagac > e t w y k d
201	>		HCV33	taacgcca agactacggt d n a k t t
251	>		HCV33	atacggcc gtttattatt d t a v y y
301	>		HCV33	tccctgcc ggttgggttt s l p v g f
351	>		33	ctcctcag aacccaagac >>>Hinge> v s s e p k
401	>		Hinge	cacaaccc aatcctacaa > p q p n p t
451	>	.Hinge	>>>>	gagctcct gggagggcccCH2> e l l g g p
501	>		CH2	cgtcctct ccatttctgg d v l s i s
551	>		CH2	tgggccag gaagaccccg > v g q e d p
601	>		CH2	gaggtgcg aacggccaac e v r t a n
				gtacegeg tggtcagegt

Fig.19 (Cont).

trp kee qfns tyr v v s 701 cctgcccatc cagcaccagg actggctgac ggggaaagag ttcaaatgca >...... vlpiqhq dwl tgke fkc HincII 751 aggtcaacaa caaagctctc ccggccccca tcgagaagac catctccaag >.....CH2...... k v n n k a l p a p i e k t i s k 801 gccaaagggc agacccggga gccgcaggtg tacgccctgg ccccacaccg >...>>>....> akg qtrepqvyal aph 851 ggaagagetg gecaaggaca cegtgagegt aacetgeetg gtcaaagget >..........> reelakd tvs vtcl vkg 901 tctacccacc tgatatcaac gttgagtggc agaggaacgg tcagccggag >...... fyp p d i n v e w q r n g q p e 951 teagagggea cetaegeeae caegeeaeee cagetggaea aegaegggae >...... seg tyattppqld ndg 1001 ctacttecte tacageaage teteggtggg aaagaacaeg tggeageggg >.....> tyfl ysk lsv g k n t w q r 1051 gagaaacctt cacctgtgtg gtgatgcacg aggccctgca caaccactac >...... 1101 acccagaaat ccatcaccca gtcttcgggt aaatctgaga aagatgagct >.....SEKDEL....... tqk sit qssg kse kde EcoRI 1151 ataataagaa ttcgagctcg aa

į.

ł

Fig.28.

N	co	Ι

PstI

1	ccatggccca M A	ggtgcagctg (Q V Q L			ggtgcaggct L V Q A
51	ggggggtctc G G S	tgaggctctc (L R L :			
101	tccgcatatg R P H M	ggttggttcc G W F			
151	tcgcactgat V A L	ttctgcgggt I S A G			
201		ccatctccag T I S			
251	aatgaacagc Q M N S	ctgaaacctg L K P	E D T		
301		ctggggccag Y W G Q			
351	-	aaccacaacc K P Q			accatcacgg H H H
401	ggccgcagaa	caaaaactca	tctcagaaga	ggatctgaat	ggggccgcat

G A A E Q K L I S E E D L N G A A

MunI

451 agtaacaatt g

