[1] 아래 회로는 사진확대기(photographic enlarger) 의 노출 시간을 조절하기 위한 포토타이머 회로이다. 회로 우측의 램프는 relay current가 2.0 mA일 때 켜지고, 0.5 mA일 때 꺼진다. t=0일 때 스위치는 A에서 B로 이동한다. $10~k\Omega$ 가변 저항 (potentiometer)의 크기가 $5~k\Omega$ 으로 맞춰져 있고, relay는 $4~k\Omega$ 저항과 무시할 수 있는 인덕턴스를 가진다고 가정하라. (20점)

The circuit below is a photo timer circuit for timing the light in photographic enlarger. When the relay current is 2.0 mA and 0.5 mA, the lamp is turned on and off, respectively. At t=0, the switch moves from A to B. Assume that the resistance of 10 k Ω potentiometer is set to 5 k Ω , and the relay has 4 k Ω resistance and negligible inductance. (20pts)

- (a) $i_b(t)$ 를 구하고, $i_b(t)$ 를 그려라. (12점) Derive $i_b(t)$, and draw $i_b(t)$. (12pts)
- (b) 램프가 꺼지는 시간을 구하라. (8점) Compute the time when the lamp is turned off. (8pts)

[2] 아래 회로는 voltage-to-current 변환 회로이다. 다음 문제를 풀어라. (20점)

The circuit below shows a voltage-to-current converter circuit. Solve the following questions. (20pts)

- (a) *i_{out}*을 구하라. (8점) Derive *i_{out}* (8pts)
- (b) $V_s = 5 \text{ V}$ 이고, R_L 의 값이 100Ω 과 500Ω 사이 값을 가진다고 가정할 때, 아래 조건들을 모두 만족시키는 R_1 , R_2 , α 의 값 또는 범위를 구하라. (12점)

Find the value or range of $R_{1\nu}$ $R_{2\nu}$ and α that satisfy the following conditions. Assume that $V_s = 5 \text{ V}$ and R_{L} varies from 100 Ω to 500 Ω . (12pts)

- i) $i_s \leq 0.5 \text{ mA}$
- ii) $i_{out} = 10 \text{ mA}$
- iii) $|v_2| \leq 20 \text{ V}$

[3] 아래 회로를 보고 다음 문제에 답하시오. (20점)

- (a) 단자 a, b사이의 Thevenin 등가회로를 구하시오. (10점)
- (b) 단자 a, b 사이에 10Ω 의 저항을 연결할 때, 이 저항에 최대의 전력이 전달되도록 하는 R_{χ} 의 값을 구하고, 이때 전달되는 최대전력과 v_0 및 i_0 를 구하시오. (10점)

Using the circuit shown below, answer the following questions: (20pts)

- (a) Determine the Thevenin equivalent circuit between terminal a and b. (10pts)
- (b) Determine the resistance R_x with which the maximum power is delivered to 10Ω resistor connected between terminal a and b. And find the power, v_0 and i_0 . (10pts)

[4] 아래 회로를 보고 다음 문제에 답하시오.(20점)

- (a) 회로망의 방정식과 특성방정식을 구하시오. (6점)
- (b) 회로의 응답이 Overdamped, Critically damped, Underdamped 일 경우 각각의 α의 범위를 구하시오. (6점)
- (c) α=2 인 경우 초기값 *i*_L(0), *vc*(0), *i*'_L(0), *v*'*c*(0)과 t>0일 때 *i*_L(t), *vc*(t)응답을 구하시오. (8점)

Using the circuit shown below, answer the following questions: (20pts)

- (a) Find the circuit equations and the characteristic equation. (6pts)
- (b) Determine the ranges of a which make the system Overdamped, Critically damped and Underdamped. (6pts)
- (c) Find the initial value $i_L(0)$, $v_C(0)$, $i'_L(0)$, $v'_C(0)$ and and $i_L(t)$ $v_C(t)$ responses for t>0 with α =2. (8pts)

[5] 다음 회로에서 전류 i_L(t) (t>0)를 구하라. (20점) Determine i_L(t) (t>0) for the following circuit. (20pts)

$$V_{S}(t)=e^{-2t}u(t)+4u(-t) [V]$$

$$1 \Omega$$

$$V_{S} \stackrel{\uparrow}{\longrightarrow} 1 \mu F$$

$$3 \Omega$$

[6] 다음 회로에서 $V_0(t) = f(t) \cdot u(t)$ 의 형태가 되도록 R_x 의 값을 정하고, $R = 500\Omega$, $i_b = 80nA$ 일 때 f(t)를 구하라.(20점)

(힌트:offsets model을 사용하되, finite input bias current, zero input offset current, zero input offset voltage를 가정하시오.)

Find R_x so that $V_0(t) = f(t) \cdot u(t)$ and find f(t) when $R = 500\Omega$ and $i_b = 80nA$. (20pts)

(Hint: Use offsets model and assume finite input bias current, zero input offset current, and zero input offset voltage)

