## A Chain Rule for Randomness Deficiency

Samuel Epstein\*

October 13, 2023

## Abstract

This paper is an exposition of the addition equality theorem for algorithmic entropy in  $[G\acute{0}1]$ , applied to the specific case of infinite sequences. This application implies that randomness deficiency of infinite sequences obeys the chain rule, analgous to the finite Kolmogorov complexity case. This is a generalization of van Lambalgen's Theorem. It is unclear whether this result is folklore, but in any case this paper presents a dedicated proof of the equality.

## 1 Introduction

Prefix free Kolmogorov complexity, **K**, obeys the chain rule, with for  $x, y \in \{0, 1\}^*$ ,

$$\mathbf{K}(x,y) =^+ \mathbf{K}(x) + \mathbf{K}(y|x, \mathbf{K}(x)).$$

In this paper, we apply the addition equality theorem for algorithmic entropy in [G01] to the specific case of infinite sequences. The consequence to this is a result about randomness deficiency  $\mathbf{D}$ , where for computable probability  $\mu$ , for infinite sequences,  $\mathbf{D}(\alpha|\mu,x) = \sup_n -\log \mu(\alpha[0..n] - \mathbf{K}(\alpha[0..n]|x)$ . The randomness deficiency over the space  $\{0,1\}^{\infty} \times \{0,1\}^{\infty}$ , is  $\mathbf{D}(\alpha,\beta|\mu,\nu) = \sup_n -\log \mu(\alpha[0..n]) - \log \nu(\beta[0..n]) - \mathbf{K}(\alpha[0..n]\beta[0..n])$ . The discrete case for  $\mathbf{d}(x|p) = -\log p(x) - \mathbf{K}(x)$  is trivial. The result detailed in this paper is as follows.

**Theorem.** ([G01]) Relativized to probabilities  $\mu$  and  $\nu$  over  $\{0,1\}^{\infty}$ ,

$$\mathbf{D}(\alpha, \beta | \mu, \nu) =^{+} \mathbf{D}(\alpha | \mu) + \mathbf{D}(\beta | \nu, (\alpha, \lceil \mathbf{D}(\alpha | \mu) \rceil)).$$

This is a generalization of van Lambalgen's Theorem, which states  $(\alpha, \beta)$  is ML random iff  $\alpha$  is ML random and  $\beta$  is ML random with respect to  $\alpha$ . If one were to take the complexities of the probabilities  $\mu$  and  $\nu$  into account (that is, they are no longer O(1)) then the theorem statement and proofs become more nuanced. This generalization can be seen in [G01].

## 2 Results

As shown in [G01],  $2^{\mathbf{D}(\alpha|\mu)} \stackrel{*}{=} \mathbf{t}_{\mu}(\alpha)$  where  $\mathbf{t}_{\mu}$  is a universal lower computable  $\mu$ -test. Furthermore, similar arguments can be used to show that  $2^{\mathbf{D}(\alpha,\beta|\mu,\nu)} \stackrel{*}{=} \mathbf{t}_{\mu,\nu}(\alpha,\beta)$ , where  $\mathbf{t}_{\mu,\nu}$  is a universal lower computable test over  $\{0,1\}^{\infty} \times \{0,1\}^{\infty}$ . For measure  $\mu$  and lower continuous function f over  $\{0,1\}^{\infty}$ , we use the notation  $\mu^x f(x) = \int_{x \in \{0,1\}^{\infty}} f(x) d\mu(x)$ . Throughout this section, the universal Turing machine is assumed to be relativized to probabilities  $\mu$  and  $\nu$  over  $\{0,1\}^{\infty}$ . This means that there is an O(1) sized program that can compute  $\mu(x\{0,1\}^{\infty})$  uniformly in  $x \in \{0,1\}^*$ , and similarly for  $\nu$ .

Proposition 1 
$$-\mathbf{D}(x|\mu) <^+ -\log \nu^y 2^{\mathbf{D}(x,y|\mu,\nu)}$$
.

<sup>\*</sup>JP Theory Group. samepst@jptheorygroup.org

**Proof.** Let  $f(x, \mu, \nu) = -\log \nu^y 2^{\mathbf{D}(x, y | \mu, \nu)}$ . The function f is upper computable and has  $\mu^x 2^{-f(x, \mu, \nu)} \le 1$ . The proposition follows from the universal properties of  $\mathbf{t}_{\mu}$ , where  $2^{-f} \stackrel{*}{<} \mathbf{t}_{\mu}$ .

**Proposition 2** For a computable function  $f: N^2 \to \mathbb{N}$ ,

$$-\mathbf{D}(x|\mu,y)<^+\mathbf{K}(z)-\mathbf{D}(x|\mu,f(y,z)).$$

**Proof.** The function

$$g_{\mu}(x,y) = \sum_{z} 2^{\mathbf{D}(x|\mu, f(y,z)) - \mathbf{K}(z)},$$

is lower computable and  $\mu^x g_{\mu}(x,y) \leq \sum_z 2^{-\mathbf{K}(z)} \leq 1$ . So  $g_{\mu}(x,y) \stackrel{*}{<} 2^{\mathbf{D}(x|\mu,y)}$ . The left hand side is a summation, so the inequality holds for each element of the sum, proving the proposition.

**Proposition 3** If i < j, then

$$i - \mathbf{D}(x|\mu, i) <^+ j - \mathbf{D}(x|\mu, j).$$

**Proof.** Using Proposition 2, with f(i, n) = i + n, we have

$$-\mathbf{D}(x|\mu, i) + \mathbf{D}(x|\mu, j) < \mathbf{K}(j-i) < j-i.$$

**Definition 1** Let  $F: \{0,1\}^{\infty} \to \mathbb{Z} \cup \{-\infty,\infty\}$  be an upper semicomputable function. An  $(\mu, F)$ -test is a function  $t: \{0,1\}^{\infty} \times \{0,1\}^{\infty} \to \mathbb{Z} \cup \{-\infty,\infty\}$  that is lower semicomputable and  $\mu^x t(x,y) \le 2^{-F(y)}$ . There exists a maximal  $(\mu, F)$  test,  $\mathbf{t}_{(\mu, F)}$ , such that  $t \stackrel{*}{<} \mathbf{t}_{(\mu, F)}$ .

**Proposition 4** Let  $F: \{0,1\}^{\infty} \to \mathbb{Z} | \cup \{-\infty,\infty\}$  be an upper semicomputable function,. For all x and with  $\mathbf{t}_{(\nu,F)}(y) > -\infty$ ,

$$\mathbf{t}_{(\nu,F)}(x,y) \stackrel{*}{=} 2^{-F(y)} \mathbf{t}_{\nu}(x|y,F(y)).$$

**Proof.** To prove the inequality  $\stackrel{*}{>}$ , let  $g(x,y,m) = \max_{i \geq m} 2^{-i} \mathbf{t}_{\nu}(x|y,i)$ . This function is lower computable, and decreasing in m. Let  $g(x,y) = g_{\nu}(x,y,F(y))$  is lower semicomputable since F is upper semi-computable. The multiplicative form of Proposition 3 implies

$$g(x, y, m) \stackrel{*}{=} 2^{-m} \mathbf{t}_{\nu}(x|y, m)$$
$$g(x, y) \stackrel{*}{=} 2^{-F(y)} \mathbf{t}_{\nu}(x|y, F(y)).$$

Since  $\mathbf{t}_{\nu}$  is a test:

$$\nu^x 2^{-m} \mathbf{t}_{\nu}(x|y,m) \le 2^{-m}$$
  
 $\nu^x g(x,y) \stackrel{*}{<} 2^{-F(y)},$ 

which implies  $g(x,y) \stackrel{*}{<} \mathbf{t}_{(\nu,F)}(x,y)$  by the optimality of  $\mathbf{t}_{(\nu,F)}$ . We now consider the upper bound. Let  $\mathbf{t}'_{(\nu,F)}(x,y,m)$  be the modification of  $\mathbf{t}_{(\nu,F)}$ , which is a lower computable function such that  $\nu^x \mathbf{t}'_{(\nu,F)}(x,y,m) \leq 2^{-m+1}$  and if  $\nu^x \mathbf{t}_{(\nu,F)}(x,y) \leq 2^{-m}$  then  $\mathbf{t}'_{(\nu,F)}(x,y,m) = \mathbf{t}_{(\nu,F)}(x,y)$ . The

function  $2^{m-1}\mathbf{t}'_{(\nu,F)}(x,y,m)$  is a test conditioned on y,m so it has  $\overset{*}{<}\mathbf{t}_{\nu}(x|y,m)$ . Substituting F(y) for m, we have that  $\nu^{x}\mathbf{t}_{(\nu,F)} \leq 2^{-m}$  and so

$$\mathbf{t}_{(\nu,F)}(x,y) = \mathbf{t}'_{(\nu,F)}(x,y,F_{\nu}(y)) \stackrel{*}{<} 2^{-F(y)+1} \mathbf{t}_{\nu}(x|y,F(y)).$$

**Theorem 1** ([GÓ1]) Relativized to computable probabilities  $\mu$  and  $\nu$  over  $\{0,1\}^{\infty}$ ,

$$\mathbf{D}(x, y|\mu, \nu) =^+ \mathbf{D}(x|\mu) + \mathbf{D}(y|\nu, (x, \lceil \mathbf{D}(x|\mu) \rceil)).$$

**Proof.** We first prove the  $<^+$  inequality. Let  $G(x, y, m) = \min_{i \geq m} i - \mathbf{D}((y|\nu, (x, i)))$ , which is upper computable and increasing in m. So the function

$$G(x,y) = G(x,y,\lceil -\mathbf{D}(x|\mu) \rceil).$$

which is also upper computable because m is replaced with an upper computable function  $\lceil -\mathbf{D}(x|\mu) \rceil$ . Proposition 2 implies

$$G(x, y, m) = {}^{+} m - \mathbf{D}(y|\nu, (x, m)),$$
  

$$G(x, y) = {}^{+} - \mathbf{D}(x|\mu) - \mathbf{D}(y|\nu, (x, \lceil -\mathbf{D}_{\mu}(x|\nu) \rceil)).$$

So

$$\nu^{y} 2^{-m + \mathbf{H}(y|\nu,(x,m))} \le 2^{-m}$$

$$\nu^{y} 2^{-G(x,y)} \stackrel{*}{<} 2^{\mathbf{D}(x|\mu)}.$$

Integrating over x gives  $\mu^x \nu^y 2^{-G(x,y)} \stackrel{*}{<} 1$ , implying  $-\mathbf{D}(x,y|\mu,\nu) <^+ G(x,y)$ .

To prove the  $>^+$  inequality, let  $f(x,y) = 2^{\mathbf{D}(x,y|\mu,\nu)}$ . Proposition 1 implies there exists  $c \in \mathbb{N}$  with  $\nu^y f(x,y) \leq 2^{\mathbf{D}(x|\mu)+c}$ . Let  $F(x,\mu) = \lceil -\mathbf{D}(x|\mu) \rceil$ . Note that if h is a lower computable function such that  $\nu^y h(x,y) \stackrel{*}{<} 2^{\mathbf{D}(x|\mu)}$ , then  $\mu^x \nu^y h(x,y) \stackrel{*}{<} \mu^x \mathbf{t}_{\mu}(x) \stackrel{*}{<} 1$ , so  $h \stackrel{*}{<} f$ , so f is a universal F-test. Proposition 4 (substituting g for g and g for g gives

$$-\mathbf{D}(x, y | \mu, \nu) = -\log f(x, y) >^{+} F(x) - \mathbf{D}(y | \nu, (x, F(x))).$$

References

[GÓ1] P. Gács. Quantum Algorithmic Entropy. Journal of Physics A Mathematical General, 34(35), 2001.