unidad 4 Estructuras no lineales Árboles

Contenido

- 4.1 Árboles.
- 4.1.1 Concepto de árbol.
- 4.1.2 Clasificación de árboles.
- 4.1.3 Operaciones básicas sobre árboles binarios.
- 4.1.4 Aplicaciones.
- 4.1.5 Árboles balanceados (AVL).
- 4.2 Grafos.
- 4.2.1Terminología de grafos
- 4.2.2 Operaciones básicas sobre grafos

Definición

Un árbol dirigido es una estructura:

- Jerárquica porque los componentes están a distinto nivel.
- Organizada porque importa la forma en que esté dispuesto el contenido.
- Dinámica porque su forma, tamaño y contenido pueden variar durante la ejecución.

Un árbol puede ser:

- vacío,
- Una raíz + subárboles.

Representación de un Árbol.

Mediante diagramas de Venn

Mediante círculos y flechas

Mediante paréntesis anidados:

(a(b(e,f), c, d))

Conceptos Básicos

- Si hay un camino de A hasta B, se dice que A es antecesor de B, y que B es sucesor de A.
- Padre es el antecesor inmediato de un nodo
- Hijo, cualquiera de sus desc}ientes inmediatos.
- Descendiente de un nodo, es cualquier sucesor de dicho nodo.
- Hermano de un nodo, es otro nodo con el mismo padre.
- Generación, es un conjunto de nodos con la misma profundidad.

Conceptos Básicos (cont.)

- Raíz es el nodo que no tiene ningún predecesor (sin padre).
- Hoja es el nodo que no tiene sucesores (sin hijos) (Terminal). Los que tienen predecesor y sucesor se llaman nodos interiores.
- Rama es cualquier camino del árbol.
- Bosque es un conjunto de árboles desconectados.
- Nivel o profundidad de un nodo, es la longitud del camino desde la raíz hasta ese nodo. El nivel puede de}irse como 0 para la raíz y nivel (predecesor)+1 para los demás nodos.

Conceptos Básicos (cont.)

- Los nodos de la misma generación tienen el mismo nivel.
- Grado de un nodo, es el número de flechas que salen de ese nodo (hijos). El número de las que entran siempre es uno.
- Grado de un árbol, es el mayor grado que puede hallarse en sus nodos.
- Longitud del camino entre 2 nodos: es el número de arcos que hay entre ellos.

Conceptos Básicos (cont.)

Tipos de árboles

<u>Un árbol ordenado</u>: Es aquel en el que las ramas de los nodos están ordenadas.

- Los de grado 2 se llaman árboles binarios.
- Cada árbol binario tiene un subárbol izquierda y subárbol derecha.

Tipos de árboles (cont.)

Árboles de expresión

Popresentan un orden de ejecución

$$(A*B) + (C*D) + E$$

$$(7 + 12) * (-9) \rightarrow -171$$

Tipos de árboles (cont.)

Árboles similares: Los que tienen la misma estructura (forma)

- Arboles Equivalentes: Son los árboles similares y sus nodos contienen la misma información.
- Árboles n-ario: Es un árbol ordenado cuyos nodos tiene N subárboles, y donde cualquier número de subárboles puede ser árboles vacíos

Arbol binario

Es un árbol en el que todos sus nodos alo mas tienen dos hijos.

Tipos de árboles (cont.)

Árbol binario completo:

Es un árbol en el que todos sus nodos, excepto los del ultimo nivel, tienen dos hijos.

Número de nodos en un árbol binario completo = 2^h −1 (en el ejemplo h = 4, → 15) esto nos ayuda a calcular el nivel de árbol necesario para almacenar los datos de una aplicación.

ARBOLES BINARIOS DE BUSQUEDA Son árboles binarios ordenados.

ARBOLES- B Son árboles cuyos nodos pueden tener un número múltiple de hijos.

Arboles rojinegros

Referencias

- Estructuras de datos, Osvaldo Cairo, Silvia guardati. Ed Mc Graw-Hill
- Estructura de datos en C++, Dr. Romeo Sánchez Nigenda.