

Design Experiments for the FPGA FIR Filter Lecture

Prof. Dr. Marco Winzker, Bonn-Rhein-Sieg University, 2020

Competencies and Learning Objectives

With the lecture you learn about development of an FIR filter from algorithm to FPGA implementation including verification with a self-checking testbench.

Lecture video and this information about the experiments is available as a video lecture:

https://www.youtube.com/playlist?list=PLGzeDuLmmxDr10_4zRujRBVnqij-PZyYb

Feel free to use this material for your needs

This work by Marco Winzker, Hochschule Bonn-Rhein-Sieg is licensed under a **Creative Commons Attribution 4.0 International License**.

Set-Up of Design-Flow

Learning goal:

- Understand the design-flow of FPGA design and remote lab usage
- This experiment should be done as a preparation for all other experiments

Level of difficulty: Easy

- a) Install the design software on your computer
 - GNU Octave
 - Intel Quartus including ModelSim Starter edition and device files for Cyclone V
- b) Download the source files and perform FPGA simulation and synthesis
 - Find a test image and resize it to 1280*720 pixel resolution
- c) Upload the bitfile (filetype: sof) to the remote lab and perform the experiment
- d) Change the rounding in the filter arithmetic and repeat simulation and synthesis
 - Remove term "+ 16" from submodule sharp_arith.vhd (or change to "+ 15", "+ 17")

Switch for Sharpness Improvement

Learning goal:

- Working with the VHDL files
- Understanding the structure of the circuit design

Level of difficulty: Easy

- a) Use one of the switches to change the output signal between original image and sharpness improvement
 - Top-level module sharp.vhd has three switches at input "enable_in"
- b) Perform FPGA synthesis and execute the experiment on the remote lab
- c) Observe two things
 - The vertical position of the output image should not "jump" between the two settings
 - Power consumption should be lower if sharpness improvement is disabled
- d) Make sure, that the processing mode (sharpness on/off) does not change in the middle of an image

Switch for Degree of Sharpness Improvement

Learning goal:

- Optimization of the signal processing algorithm
- Design verification with Octave and simulation

Level of difficulty: Moderate

- a) Use the switches to change the output signal between different degrees of sharpness improvement
 - Can be implemented by changing the amplification factor A for the highpass filter
 - Recommendation: Four modes low: A=1/4, medium: A=1/2, high: A=1, off: A=0
- b) Generate verification images with Octave and perform simulation
 - Recommendation: Use four testbenches for the four modes
- c) Perform FPGA synthesis and execute the experiment on the remote lab
- d) Compare FPGA resource usage and power consumption with original implementation

Correct Handling of Image Borders

Learning goal:

Digital design for FPGAs

Level of difficulty: Advanced

Experiment:

The VHDL code has two simplifications for handling image borders

- Pixels at the border are filtered together with pixel of the neighbouring line/frame
- The output is shifted by three lines
- a) Implement correct handling of image borders in the VHDL design
 - Check how Octave handles filtering at image borders
 - Recommendation: Octave has several options; consider which is best for hardware implementation
- b) Perform the design flow with verification and FPGA implementation

Change Filter Coefficients

Learning goal:

- Optimization of the signal processing algorithm
- Trade-off between image quality and FPGA resources

Level of difficulty: Advanced

- a) Use other filter coefficients for the highpass filter
 - Use Octave and modify number of taps "n" and cutoff frequency "w" in Octave function "fir1(n, w, type)"
 - Research literature for other filter functions
- b) Perform the design flow with verification and FPGA implementation
- c) Compare image quality, FPGA resource usage and power consumption
 - Is a 3-tap filter sufficient? How much resource can be saved?
 - How many taps can be implemented on the FPGA?

Reduce RAM Resources for Line Memory

Learning goal:

- Digital design for FPGAs
- Understanding usage of FPGA resources

Level of difficulty: Moderate

Experiment:

The line memories in sharp_linemem.vhd need a delay of 1280 pixel. FPGA synthesis implements this with BlockRAMs and uses 2048 memory locations.

Note: This is sensible, as long as enough FPGA resources are available.

- a) Change the line memory so that only 1280 memory locations are used
- b) Perform the design flow with verification and FPGA implementation
- c) Compare FPGA resource usage and power consumption
- d) How many line memories can be implemented with the original approach and the modification?

Increase Word Width for Intermediate Signal

Learning goal:

- Digital design for FPGAs
- Design verification with Octave and simulation

Level of difficulty: Moderate / Advanced

Experiment:

- a) Increase the word width of the intermediate signal after the first filter arithmetic
- b) Perform simulation and FPGA implementation
- c) Compare image quality, FPGA resource usage and power consumption

Advanced:

d) Change Octave code and perform verification with self-checking testbench