"Large Volume Data Visualization"

PROJECT REPORT

FOR THE

SUMMER RESEARCH INTERNSHIP PROGRAMME 2017

BY

Jalaz Kumar
Department of Computer Science & Engineering
NIT Hamirpur, H.P

Aman Agrawal
Department of Information Technology
HBTU Kanpur, U.P

UNDER THE SUPERVISION OF

Dr. Anupam Agrawal

Professor IIIT-ALLAHABAD

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY, ALLAHABAD

10th July, 2017

CANDIDATES' DECLARATION

We hereby declare that the work presented in this project report entitled "Large Volume Data Visualization", submitted towards fulfilment of Summer Research Internship at Indian Institute of Information Technology, Allahabad, is an authenticated record of our original work carried out from May 15, 2017 to July 10, 2016 under the guidance of Prof. Anupam Agrawal. Due acknowledgements has been made in the text to all other material used. The project was done in full compliance with the requirements and constraints of the prescribed curriculum.

Allahabad July 10, 2017

Jalaz Kumar NIT Hamirpur Aman Agrawal HBTU Kanpur

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

Date: 10 July 2017 Place: Allahabad Dr. Anupam Agrawal Professor IIIT Allahabad

ACKNOWLEDGEMENT

We would like to acknowledge and extend our heartfelt gratitude to **Dr. Anupam Agrawal**, Indian Institute of Information Technology Allahabad, who guided us through this project. His keen vital encouragement, superb guidance, and constant support are the motive force behind this project work.

We would like to thank the various research scholars of MHRD Lab namely Upendra Sir, Parmatama Sir, Nayaneesh Sir & Piyush Sir who all helped us in the hour of need.

We would like to show our gratitude to all our fellow summer interns at IIITA for SRIP 2017 for their continuous motivation and encouragement during this project. We are very thankful to all the technical and non-technical staffs of the college for their assistance and co-operation.

Jalaz Kumar NIT Hamirpur Aman Agrawal HBTU Kanpur

ABSTRACT

A novel approach for GPU-based 3D volume rendering in high quality of large out-of-core volume data has been implemented. Our prime focus was on the storage of large volume data in a hierarchical data structure (i.e. octree) which stores the data in form of bricks, in addition every brick is further divided into macro-cells for easier traversal of data during run-time.

The approach performs accelerating structure traversal out of GPU ray casting loop in an intensive manner and introduce an efficient & reliable empty-space culling methodology by rasterizing the proxy geometry of a view-dependent portion of the octree nodes. Octree traversal is now performed on CPU while rasterization and visualization processes are performed on the GPU. Rasterization pass is able to capture all of the bricks that the ray penetrates in a per-pixel list. Moreover, as the per-pixel list is captured in a front-to-back order, our ray-casting pass requires only to cast rays inside the tighter ray segments. During the phase of evaluation and testing, this approach achieved 2 to 4 time faster rendering speed than the current state-of-the-art algorithm (which performs traversal of data structure on GPU) across a variety of data sets. As branch-intensive operations are operated in CPU at a better rate than on a GPU while floating point computations are better performed on GPU.

Moreover, efforts have been made to build the whole system more user-friendly & interactive. By enabling both keyboard as well as mouse functionalities, extensively working over the UI part, the final product is more user-oriented.

Table of Contents

1.	Introduction	1
2.	Problem definition and Objectives.	1
3.	Literature Survey.	2-9
4.	Methodology	10-15
5.	Hardware and Software Requirements	16
6.	Activity Time Chart	17
7.	Experimental Setup and Results	18-19
8.	Performance Comparison.	20
9.	Conclusion and Future Scope	21
10.	References	22

1. Introduction

Our project focuses on 3D visualization of human medical data which is large-scale and has to be interactive, hence we are motivated to use GPU techniques.

1.1 Motivation

With the improving technology, medical diagnosis and increasing population the size of medical data (MRI, CT Scan etc.) is increasing day by day. Thus, the problem of visualization of large data arises which is very prominent in this era. However, so as to deal with the ever-increasing resolution and size of today's volume data, it is really crucial to use highly scalable visualization algorithms, data structures, and efficient architectures in order to circumvent the restrictions imposed by the constrained amount of on-board GPU memory. Volume visualization deals with methods to explore, analyse and visualize volumetric data acquired in medicine, computational physics and various other scientific disciplines. In other words, it is a method of extracting meaningful information from volumetric data using interactive graphics and imaging and it is considered with data representation, modelling, manipulation and rendering. Interactivity in resolution is making both the computational and the visualization effort proportionally equivalent to the amount of data that is actually visible on screen (output-sensitive algorithms and system designs).

GPU-based large volume data visualization techniques based on the notions of actual output-sensitive resolution visibility and the current working set of volume, bricks the current subset of dataset that is minimally required to produce an output image of the desired display resolution.

2. Problem definition

To visualize large volume medical human data on GPU efficiently. It can be used to view human body in different resolutions and perspectives based on the requirements of the user, hence interactive. This requires effective handling of large data in a structured way, keeping in mind the memory constraints.

2.1 Objective

To build a robust system which could be used to visualize data independent of its size on any inexpensive hardware having minimum specifications.

- Modelling the data using multi resolution model like octree.
- > Selective rendering of data as required by the user, hence output-specific and Interactive.

3. Literature Survey

Table 1. Literature Survey Table

S. No.	Title	Year	Journal/ Conference	Objective	Method	Dataset Used & Size	Advantage	Disadvant- ages	Challen ges Dealt	Future Scope
1	A single-pass GPU ray casting framework for interactive out- of-core rendering of massive volumetric datasets [3]	2008	Journal Visual Comput 2008	To present an adaptive out-of-core technique for rendering large scalar data volumes employing single-pass GPU ray casting	Volumetric dataset is decomposed into small cubical bricks, which are then organized into an octree structure maintained out-of-core and during run time loading the working set on the GPU	Multi- gigavoxel CT dataset	Octree is used for data representation maintained out-of-core. At runtime, an adaptive loader, which executes on the CPU, updates the view and transfers the function-dependent working set of bricks maintained on GPU memory by asynchronously fetching data from the out-of-core octree traversal. Out-of-core data management is beneficial for filtering out as much data in an efficient way that is not contributing to a particular image	will not efficiently update as the integration of level-of- details available and the visibility culling techniques	efficient ly	To exploit the capability of this system to perform a full- volume ray tracing so as to produce higher quality images that incorporate in them more advanced shading effects
2	A Survey of GPU-Based Large-Scale Volume Visualization [2]	2014	Conference Eurographics Conference on Visualization (EuroVis) (2014)	the current state of the		Large Volumetric Data	Octree is use as the data structure in volume rendering which enables adaptive level of details Along with empty space Skipping. Using Output Sensitives Algorithm Was making their running time	Rendering of data, all the stages in this pipeline have to be scalable		

г	1		T .	1	1	1	I	I	1	1	1
								dependent on the size of the output generated rather than the size of the input given. Focus on Rayguided and visualizationdriven architectures.	for the entire application otherwise the visualizatio n will not be done perfectly and accurately.		
	3	Octree Rasterization: Accelerating High-Quality Out-of-Core GPU Volume Rendering [1]		Journal IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS	more practically available in the clinic by the use of a consumer-	Store volumes of data in an octree (of bricks) Each having further split Into regular Macrocells. Using accelerating structure traversal in an efficient manner out of the GPU raycasting loop and by rasterizing the proxy Geometry of a view dependent portion of the octree Nodes. This Rasterization pass captures majority of the bricks that the ray penetrates in a per- Pixel list.		visualization to be more practical by the use of a consumer level GPU. It introduces a new out-of-core GPU 3D volume Rendering way, which combines object-order and image-order advantages and acts as a general acceleration approach, which makes complex visualizations possible, while maintaining interactivity at the same time. The algorithm	scheme involving bricks often suffers from per- pixel traversal of the acceleration structure, which is a branch- intensive operation and may not perform well on some modern GPU architectures,	GPU limits the data Size. Raycasting by passing each brick, hence increasing the overhead	This methodology can be used in various visualization systems, such as in multiple user activities, comparative and multiple volume studies, or on time-varying data visualization in future work

4	GPU-based 2 Volume Rendering for Medical Image Visualization [4]	2005 Confere Enginee in Medi And Biolo 27th Annu Confere	ring the usage of some well-developed hardware resource, a graphics		CT scan of the Stanford terracotta bunny (512*512*360) Real clinical human abdomen CT data, (400*400*344) MRI head scans (190*217*190) MRI head scans (256*256*109)	volume data in texture, resampling and interpolating them using hardware instead of the software. This paper presented a novel 3D volume-	the 3D ray-casting operation completely in GPU so, the large-scale data cannot be	The algorithm employed a native pre-classification method to classify the voxels before interpolation, since this must be done in CPU, it costs much time	to get even
5	A Framework 2 for Rendering Large Time-Varying Data Using Wavelet-Based Time-Space Partitioning (WTSP) Tree [5]	2004 Confere VG'0 Proceed of th Fourth I graphic VGT confere on Volu Graph	new methodology to manage and render large scale time-varying data using the wavelet-based time-	goal of the WTSP tree is to support the interactive browsing of data at some arbitrary spatiotemporal	scale time- varying data	spatio-temporal locality and coherence of the underlying time-varying dataset and exploit the wavelet transform to convert the data into a	Enable rapid dynamic run-time	interactive volume rendering is the huge amount of data	Studying different approaches to combine the WTSP tree data structure with other data compression schemes. For instance, to incorporate the Laplacian pyramid structure into the WTSP tree and trade space for reconstructi on and rendering time

					tree algorithm		spatio-temporal Representation. During rendering, the wavelet- compressed data stream is decompressed on-the-fly and rendered using 3D hardware Texture mapping. WTSP tree allows random access of data at arbitrary spatial and temporal resolutions at runtime.	So basically it focused on the space and time management of rendering and visualization rather than the image quality and the results accuracy.		
6	Interactive Iso-surface Ray Tracing of Large Octree Volumes [6]	2006	Conference Interactive Ray Tracing 2006, IEEE Symposium	To present a technique for ray tracing iso surfaces of large compressed structured volumes of data	tation is based on the	Blunt Fin (40x32x32) Protein (64x64x64)	competitive frame rates on		Rendering of large volumes is a difficult problem in visualizatio n. With direct volume rendering, GPU memory Is able to impose an absolute constraint on the volume size, and the video bus	a dynamic, view-adaptive levels of detailed scheme. Such a system would be able to reduce the complexit y and variance of the

				I	I		l]		
7		2009	Conference	This method		Skull CT scan	To facilitate the	Due to the	The	
	GPU-based			makes use of		data set	use of well-	Very Large	visualization	
	Volume		Conference on			(256x256x256)		number of	of such data	
	Rendering for			interpolation			hardware resource,	trilinear	in an	
	Medical Image			to Accelerate	implements	Human head	GPU-based	interpolations	interactive	
	[7]		and	the speed of	ray casting	MRI data set	3D volume ray-	that have to	manner is a	-
			Informatics	rendering.	operation	(256x256x256)	casting algorithm	be processed	challenge,	
				Besides the	completely		is proposed which	so as to	since the	
				usage of	in GPU. It	Pet data set for	implements the	produce	frame rate is	
				volume ray-	performs	chest	volumetric	image results	heavily	
				casting in	re-sampling	(512x512x256)	ray casting	of high	dependent on	
				back-to-	3D volume	(operation	quality, the	the amount of	
				frond order	data,	Head CT scan	completely in the	availability	data that have	
				when	represented	data	GPU. The	of direct 3D	to be	
				the voxel's	as a stack of	(256x256x84)	algorithm	volume	visualized	
				opacity is	3D texture,	()	resamples 3D	rendering has		
				accumulated			volume data,	yet been		
				to a	sampling		represented	restricted		
				threshold	surface.		as a stack of 3D	to high-end		
				then after	The 3D		texture onto a	workstations		
				calculation	volumetric		sampling surface.	and special		
				will be	ray-		It is processed on	purpose		
				discarded.	casting		an interactive rate	graphics		
					algorithm		even for direct	hardware.		
					performs in		volumetric			
					fragment		rendering while			
					shaders		keeping the high			
							image quality.			
8	Mapping High-	2000	Journal	To learn and	It uses the	Three sets of	This paper	The	The challenge	
"	Fidelity	2007	IEEE	analyze new		human CT data	describe a thread	advantage is	is to provide	
	Volume		Transactions	volumetric	data	(16-bit)	and data parallel	the challenge	improved	
	Rendering for		on	rendering	parallel	(10-011)	implementation	for providing	health care	
	Medical		Visualization		implement-	Large medical	of volumetric ray-	improvised	efficiently,	
	Imaging to		and	that are	ation of ray-	human dataset	casting that makes	health care	which is	
	CPU, GPU and		Computer	suited to	casting that	(750x750x1000)	it suitable to key	efficiently,	complicated	
	Many-Core		Graphics	modern	makes it	(730X730X1000)	architectural trends	which is	by the	
1	Architectures		P62	parallel	suitable to		of three modern	complicated	magnitude	
	[8]			processing	key		commodity	by the	of the data.	
	[~]			architectures	•		parallel	scale & size	Despite the	
					trends of		architectures:	of the data.	Availability	
					three major		multi-core, GPUs,	Despite the	of several	
					commodity		and an upcoming	availability	general	
					parallel		many-core Intel	of various	purpose and	
					architecture		R architecture	general	specialized	
					s:		code-named	purpose and	rendering	
					multi-		Larrabee. Overall	specialized	engines,	
					core,		implementation	rendering	volume	
					GPUs,		of ray-casting in	engines, the	visualization	
					and an		parallel manner	medical	has not been	
					upcoming		delivers close to	community	widely	
					many-core		5.8x speed-up on	has not yet	adopted by	
					Intel R		quad-core	widely	the medical	
					architecture		Nehalem over an	adopted the	community	
					code-		optimized scalar	volumetric	-	
					named		version running on		except in certain	
					Larrabee		a single core.		specific cases	

									•	
9	Large Scale	2015		To reduce	Present a new	Stag beetle	This paper	Certain specific cases. In ray- casting, as the ray traverses through the volume, they access voxels with a non- constant stride. The basic	The JIT	just-in-time
	Volume visualization on GPU A Just-in-Time Compiled Sparse GPU Volume Data Structure [9]		IEEE Transactions on Visualization and Computer Graphics	the memory bandwidth (bottleneck	sparse volume hybrid data representation (JiTTree) that makes it	dataset (brick size- 32*32*32) Kingsnake dataset (brick size- 128*128*128)	presents JiTTree, a novel & new sparse hybrid volume data structure that uses just-in- time compilation to overcome the	principle of the data structure is to adapt to the local sparsity of a specific data set. Other volume representation often make the distinction between dense and empty (or homogenous) regions and treat these regions differently.	approach transforms memory- bound programs into instruction- bound programs. Although data structure is not designed for dense data, it	compilation of the root level to improve performance; to add dynamic write capabilities in addition to the read- only access; improve the JIT compilation approach for other memory access

_	ı		1	ı			1		1
						Combining multiple sparse data structures and reducing traversal overhead we leverage their individual advantages. JiTTree reduces the traversal overhead of the resulting optimal data structure			
10	A Survey of Octree Volume Rendering Methods [10]	2006		Survey and comparison of existing works employing octrees for volume rendering	Large Volume Data	This paper perform surveys and compares the existing works which employ octrees for 3D volume rendering. It's Main focus is specifically on extracting out direct volume rendering, and iso-surface ray tracing. It surveys the varieties of octree available and the efficient hashing schemes for their traversal.	It only examines Octrees that are of considerable interest in Field of volume Rendering only, we are not able to compare its usefulness towards any particular purpose.		Future applications of volume rendering using octrees could attempt to combine the pure octree approach with GPU rendering approaches , using out- of-core methods
11	Cell Octrees: A New Data Structure for Volume Modelling and Visualization [11]			An Improvisatio n in the bono approach which uses an incomplete octree structure with a relatively smaller memory	Large Volume Data	block when their property	of any dimension in the volumetric data is not a power of two, or is not equal to the number of cells of another dimension of it, then nodes will not have all eight children. In such cases, octree will be having a larger spread in the lower levels i.e. closer to the leaf nodes, and a smaller spread in the levels close	bono, noted as octree with cells, has been accompl ished	may be stored in the octree, so grid storage is not necessary and there may be further reductions in

12	Multi	2001	Journal	Reduction in	Texture-	MRI brain	The prime focus of	The algorithm	"Future work"
12	Resolution	2001	The	the amount	based	(32 MB)	this paper is to speed	that is proposed	is Addressed
	volume		Visual	of texture	octree		up the texture based	does not	So to analyze
	visualization		Computer	memory		MRI Brain	rendering of	consider view-	The various
	with a texture -		2001	that is		(4 MB)	volumetric datasets.	dependent	approaches for
	based octree			required for			The paper do propose		selecting the
	[12]			rendering a		CT jaw	a new texture memory		interest
				3D volume		(32 MB)	representation & some	perspective	Function
				data, and		cm v	management policy	distortion and	which is able
				thus reducing		CT Jaw	that was able to substitute the classical	the shrinkage of farthest of	to better Satisfies
				the texture		(11 MB)	one- texel per voxel	data	user-Defined
				loading		CT Vertebra	concept for a	sections)	Constraints
				overhead of		(64 MB)	hierarchical approach.	as, in 3D	viz, Problem
				the rendering		(04 MD)	This method benefits	volume	of the
				engine.		CT Vertebra	nearly homogeneous	rendering, the	Combination
						(42 MB)	regions and regions of	differences in	of surface and
						(12112)	somewhat lower	the ratio of	the Volume
							interest. The	projections are	Information
							proposed algorithm is	very limited.	
							totally based on a	This paper is	
							simple traversal of the	basically	
							octree representation	focused on	
							of large-scale	The speedup	
							Volumetric data	of the 3D	
							Driven by a user-	volume	
							defined image	Visualization in	
							quality, defined	so the other	
							as a combination of	attributes	
							data homogeneity and prime importance, a	(i.e. image	
							set of octree nodes are	quality) are considered as	
							selected to be	considered as	
							rendered on the fly.	a secondary choice	
							The degree of	choice	
							accuracy that is		
							applied to represent		
							each one of the nodes		
							of the cut in the		
							texture memory is		
							basically set		
							independently		
							as per the user-defined		
12	F., -1-1' 4	2000	T 1	T- :1	D -4	37:11	parameters.	A 1	F
13	Enabling the interactive	2009	Journal Springer	To implement a bricked,	Retrieving data	Visible Human Male	The purpose of research was to find	Approach was not able to	Further can be extended for
	display of		Science	hierarchical,			out a significant faster	compress	exploiting the
	large medical		20101100	out-of-core	a discrete	(1760 x 1024	approach to 3d	datasets in	use of
	volume			partition-	multi-	x 1878)	visualize large	presence of	multithreading
	datasets by			based strategy		37:-11	datasets using	noise	in the GPUs to
	multiresolution			to balance the	model,	Visible Human	multiresolution bricking &		speed up the pre-processing.
	bricking			usage of main (CPU)	along with a bricking	Female	hierarchical data		Also possible
				memory and	technique	(Size-12.03	structures like octree		to further
				external	combined	GB)			compress the
				(GPU)	with it.	$(2048 \times 1216 \times 126)$			pre-processed
				memory		5186)			bricked layout data
				l .		<u> </u>	L.,,		auta

4. Methodology

The visible Human male dataset is used for experimentation. It is of 3.15 GB RAW file. The data is made up of a stack of images of resolution 1760 X 1024. The stack consists of 1878 slices. Each slice represents the body cut horizontally. The paper [1] & [13] are our base research paper as they introduces a novel method to process the large volume data efficiently.

Figure 1: Flowcharts of our approach (left) and the previous out-of-core GPU 3D volume rendering approach (right). Yellow boxes are executed on the CPU, all other boxes on the GPU. Control flow is indicated by the black arrows & the output of intermediate data is indicated using green arrows.

The flow of method in Figure 1 is explained as follows [1]:

4.1. Pre-processing

A large volume dataset is first pre-processed using blocking techniques (division of large dataset in blocks of data) and storing it in Octree (a 3-D data structure is represented in the form of recursively sub-dividing into eight octants). An **octree of bricks** is constructed where the actual resolution data is stored in leaf nodes. At each level or node a brick of same dimension B_{res} is made. The length of the tree is kept shallow which results in courser bricks. Inner bricks are built using down sampling of the lower level nodes like averaging filter, in this way the whole dataset can be represented as a multi-resolution hierarchy maintained on the CPU. Each node of the octree points to a particular brick having a constant resolution that resembles the part of the volume corresponding to that particular node.

Pre-processing steps comprises of 3 main steps:

- 1. Sampling
- 2. Bricking
- 3. Compression

Bricks store extra overlapping voxels, which helps in accessing the neighbouring voxels at runtime using the tri-cubic interpolation and gradient computations. Since the octree don't use any transfer function for empty space culling it uses macro-cells for storing the min-max scalar values for each of the corresponding bricks, for efficient brick culling. The dimension for macro-cell is M_{res}

4.1.1. Octree Creation and Visualization of View-Dependent Working Set:

1878 slices were first constructed into a single 3D-Volume. Dimensions of each image slice is 1760 * 1024. Brick size of every node in octree is taken as 220*128*235. Single large Volume is splitted into 512 bricks of resolution 220*128*235. These bricks are then averaged by a factor of 8 to construct 64 bricks of same resolution which are further averaged by a factor of 8 to construct 8 bricks which are then combined to form a single root. These bricks are then saved as nodes of an octree where root acts as parent having 8 children which are individually divided into 8 more children. Structure of the octree node is as follows –

```
struct node {
    ifstream fp;
    struct node *child[NO_CHILDREN];
    struct node *parent;
    int level;
    int a[3];
    int no_children;
    int is_leaf;
    string name;
};
Table 2: Structure of octree
```

4.2. Generation of a View-Dependent Working Data-Set

For viewing different frames a cut is decided out of the octree according to the required frame. The cut includes different resolution nodes as per needed dependent on the viewing angle. This cut-portion is used for updating the GPU pool of bricks for rendering. If we zoom the image the children of the current node has to be loaded and if we zoom out then multiple nodes has to be fused together. For deciding the cut breadth first order octree traversal is used starting from the root node and is continued till the required node is found.

Initialize queue with root tag = 2 while(stack_not_empty) { cur = queue.front() queue.pop() split cur in 8 octants if possible for (i = 0; i < 8; i++) { if ROI lies in octant[i] if ROI lies completely in octant[i] tag = 1</pre>

Work-set Generation Algorithm

Table 3: Workset Generation Algorithm

4.2.1. View-Dependent Brick Sorting

push in brick_pool else tag = 2

else

tag = 0

push in queue

copy brickpool to cudaMemory

The nodes in the cut-portion are rasterized as before. Hence we sort the nodes and store them in front to back fashion using a pointer list which is stored for further use. Pointers to the traversed cut-nodes are stored in a STL list. A node that is traversed is always replaced by its children to front-back order during depth-first search, this is done till a node labelled as node cut-portion is found. It is implemented using an 8 * 8 table for lookup purpose. Each row of the look up table is able to encode a possible order of all the 8 octants according to the viewpoint in the octree space.

4.2.2. Memory Management of the Working Dataset

The cut-portion represents the brick data and macro-cell data of the nodes. This data is then transferred to GPU asynchronously. The working set is loaded into 2 memory pools:

✓ Brick Pool

It is organized ad a 3D texture of specific size and dimension. Each of the cell of this pool corresponds to a particular brick, and the cell stores the corresponding brick Id Bid.

✓ Macro-cell Pool

The 3D macro-cell pool is packed with the corresponding brick's macro-cell at particular brick id B_{ID}.

4.3. Proxy-Geometry Rasterization

The comparison between 2 pass and normal rasterization is shown in Fig 3. The explained process of two pass rasterization could be seen in Fig 4. In the first pass, rasterization of the proxy geometries of the whole working set of bricks is performed and all bricks are captured that a ray penetrates into a per-pixel list. In second pass, we are rasterizing all the non-empty macro cells (of all the bricks) and refine the per-pixel list in which each element will be containing a ray-segment corresponding to that particular brick which the ray penetrates. This results in the skipping of empty spaces of macro cell. Fig 4. Gives detailed process for the 2nd pass i.e. traversing the macrocells.

Figure 2: Philosophy of Approach: The cutportion is composed of all of the active bricks (red—A, B, C, and D) at different ROIs depending on the current view. Each active brick is subdivided into macrocells which are green coloured. Empty bricks of purple colour are never added to the octree-cut. We are firstly rasterizing active blocks so that the active blocks can be captured by the fragment shaders that the ray penetrates (B and D) into a list in front-to-back order. Then we are rasterizing the nonempty macrocells and refining the z-values in the list in order to get a tighter ray segment (shown as the solid black line) for each brick at the accuracy of the macro cell level.

4.4. Raycasting

For each desired image pixel, a ray is generated. Using a simple camera model, the ray originates at the centre of projection of the camera and traverses through the image pixel on the imaginary image plane floating in between the camera and the volume to be rendered. In the raycasting pass, depth interval is defined by the two extreme end points of the ray-segment that performs the GPU raycasting for that corresponding brick.

Figure 3: Comparison between 2 pass rasterization Process and normal method

4.5. Interactive Visualization

Once we are ready with the pre-processed data organised in the form of multibricks in octrees, we need to interactively visualize it. Keyboard as well as Mouse both functionalities are incorporated to enhance UI features.

4.5.1. Keyboard Approach

In this method, various keystrokes are devised to interactively visualize the datasets. Initially the root file of pre-processed data organised in octree is loaded, which is of lowest resolution. Now, from this we can visualize any portion of body using these keystrokes:

Key '0': Upper Right Front

Key '1': Upper Left Front

Key '2': Upper Right Back

Key '3': Upper Left Back

Key '4': Lower Right Front

Key '5': Lower Left Front

Key '6': Lower Right Back

Key '7': Lower Left Back

Key 'b': Back Key to come back to parent node **Key 'h':** Reset Key to come back to root node

Key 'q': Exit

4.5.2. Mouse Approach

In this, we are using ROI (Region of Interest) selection using mouse, a rectangular box is used to select the same. Once the rectangle is positioned appropriately, we can render the selected portion in higher resolution by selecting the appropriate child node of the current node using octree traversal.

Moreover, Left Mouse click is used to rotate the body throughout the screen & Right Mouse click is reserved for zoom In & Out purpose.

ROI Selection is done using Mouse Scroller Click/ Mid Mouse click.

Algorithm applied for selection of appropriate file to be rendered on the fly:

Step 1: Identification of Body Orientation using viewRotation matrix

Note: Currently 4 Orientation are supported Front, Back, Right Side, and Left Side

Step 2: Identification of Quadrant in a particular orientation

Using extreme coordinates of ROI selection rectangle viz (X_{r1}, Y_{r1}) , and (X_{r2}, Y_{r2}) and comparing with the mid points of the cubical box viz (X_m, Y_m) .

Step 3: Using the selected orientation and the quadrant, appropriate brick is selected from the CPU and copied to the GPU for rendering purpose.

(a) (b)

Figure 5(a): ROI Selection and (b): Rendered Output of ROI in Higher Resolution

5. Hardware and Software requirements

5.1 Software Requirements

CUDA enabled system i.e. nvcc Compiler

OpenGL

■ Windows: Visual Studio (8+)

• Linux: gcc compiler

 National Library of Medicine Visible Human Body (Male) 3.15 GB Dataset

5.2 Hardware Requirements

SPECIF	SPECIFICATIONS							
GPU processor	Tesla C1060							
CUDA Cores	240							
Shader clock	1296 MHz							
Memory	5888 MB							
Total available graphics	4096 MB							
memory								
Bus	PCI Express x16							

6. Activity Time Chart

	Work done	(Phase 1)			Work done (P	hase 2)	
Week 1: 15 th May - 22 nd May	Week 2: 22 nd May – 29 th May	Week 3: 29 th May – 5 th June	Week 4: 5 th June – 12 th June	Week 5: 12 th June – 19 th June	Week 6: 19 th June – 26 th June	Week 7: 26 th June – 3 rd July	Week 8: 3 rd July – 10 th July
Literature	Environment	Learning	Data	Fixing Initial	Adding	Adding UI	Extensive
Survey	Setup:	OpenGL and	Collection &	Bugs in the	Keyboard	Support &	Bug-Fixing
	OpenGL and	Cuda C	Code	previous	functionality and	Mouse	and Testing
	Cuda C		Walkthrough	version &	Interactive	Functions.	
			of the	pre-	visualization		
			previous	processing of	using octree		
			version	data	traversal		

7. Experimental Setup and Results

Experimental Setup was as follows:

- 1. Linux Operating System
- 2. OpenGL Api
- 3. Cuda C Enabled
- 4. gcc compiler to run native C code
- 5. nvcc compiler to run Cuda C code

Following are the screenshots of the product for interactive visualization of the medical dataset that we have done so far:-

(a) (b)

Figure 6: (a) and (b) are 2 different orientation of root node

(a) (b)

Figure 7: (a) Original Portion of root level and (b) Interactively Visualized Portion

(a) (b)

Figure 8: (a) Original Portion (b) Interactively Visualized Portion

8. Performance Comparison

Performance comparison on the basis of rendering quality, when we performed visualization using the source codes of different algorithms which are available as open source and on our technique, the results obtained have smoother image quality from the technique using GPU octree rasterization methods (i.e. the proposed methodology).

Performance comparison on the basis of rendering speed with a Traversing Algorithms using GPU Octree. Octree creation method takes 5-10 minutes on any type of datasets. After which octree traversal, rasterization, per-pixel list generation and rendering are done in matter of minutes as they are performed on GPU using maximum number of cores which can be utilized. As octree creation for a dataset is only performed once and stored in hard disk, the rendering speed is 2-4 times greater than what was performed by previous algorithms which performed octree traversal on GPU.

Table 4: Comparison between CPU and GPU time

S. No.	Processor	Time Require from 8 to 1 brick construction	Time Require from 64 to 1 Brick construction
1.	Quad Core	~20 mins	~2 hrs
2.	Intel i3	~12 mins	~45 mins
3.	Intel i5	~5 mins	~25 mins
4.	GPU	~micro secs	~secs

9. Future Scope and Conclusion

In our method which we have implemented is a fast, GPU based out-of-core 3D volume ray-casting, which moves the branch-intensive octree traversal out of the GPU ray-casting loop and after the traversing completes, execute it on the GPU. By introduction of the tighter depth range for the GPU ray-casting it exercised the greater control over the rendering process by using the hardware rasterization unit performance. This method also offers somewhat more sophisticated & efficient empty space skipping, and also makes possible the use of advanced features like cubic interpolation in an interactive manner for the large out-of-core data sets. Since the presented method provides a general accelerating scheme by rasterizing an octree to generate tight ray segments, and the approach can also be used to improvise the performance of the other visualization & rendering systems, such as in multiple user activities, comparative and multiple volumetric studies, or as a future work apart from these we can also use it for time-varying data visualization. Improvements like a more generalized method to deal with the size of brick irrespective of the size of data and optimum number of levels will help to enhance the performance.

A viable future scope of this approach is to be able to visualize multiple bricks that are falling in the Reason of Interest (ROI). These multiple bricks may be present at any level of the octree.

10. References

- [1] B. Liu, G. J. Clapworthy, F. Dong and E. C. Prakash "Octree Rasterization: Accelerating High-Quality Out-of-Core GPU Volume Rendering" IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 10, pp. 1731-1745, OCTOBER 2013
- [2] J. Beyer, M. Hadwiger and H. Pfister, "A Survey of GPU-Based Large-Scale Volume Visualization", Eurographics Conference on Visualization (EuroVis), 2014
- [3] obbetti . arton and . . uiti an, "A single -pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric datasets", Springer-Verlag 2008 pp: 797–806, 2008
- [4] Y. Heng and L. Gu, "GPU-based Volume Rendering for Medical Image Visualization", Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, pp. 5145-5148, September 1-4, 2005
- [5] C. Wang and H. Shen, "A Framework for Rendering Large Time-Varying Data Using Wavelet-Based Time-Space Partitioning (WTSP) Tree", Department of Computer and Information Science, The Ohio State University, 2004
- [6] A. Knoll, I. Wald, S. Parker and C. Hansen, "Interactive Iso-surface Ray Tracing of Large Octree Volumes", Scientific Computing and Imaging Institute, University of Utah, Technical Report No UUSCI-2006-026, 2006
- [7] S. Chen and C. Hao, "Interactive GPU-based Volume Rendering for Medical Image", Biomedical Engineering and Informatics, BMEI '09. 2nd International Conference on 17-19 Oct, 2009
- [8] M. Smelyanskiy, D. Holmes, J. Chhugani, A. Larson, D. M. Carmean, D. Hanson, P. Dubey, K. Augustine, D. Kim, A. Kyker, V. W. Lee, A. D. Nguyen, L. Seiler and R. Robb, "Mapping High-Fidelity Volume Rendering for Medical Imaging to CPU, GPU and Many-Core Architectures", IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 6, Nov/Dec, 2009
- [9] M. Labschutz, S. Bruckner, M. E. Groller, M. Hadwiger and P. Rautek, "JiTTree: A Just-in-Time Compiled Sparse GPU Volume Data Structure", Visualization and Computer Graphics, IEEE Transactions, Vol. 22, Issue. 1, pp. 1025-1034, 2015
- [10] A. Knoll, "A Survey of Octree Volume Rendering Methods", Scientific Computing and Imaging Institute University of Utah, 2006
- [11] F. Velasco and J. C. Torres, "Cell Octrees: A New Data Structure for Volume Modeling and Visualization", VMV '01 Proceedings of the Vision Modeling and Visualization Conference, pp. 151-158, 2001
- [12] I. Boada, I. Navazo and R. Scopigno, "Multi- Resolution volume visualization with a texture-based octree", Springer-Verlag, pp. 185-197, 2001
- [13] A. Agrawal, J. Kohout, G. J. Clapworthy, N. J.B. McFarlane, F. D. M. Viceconti, F. Taddei and D. Testi, "Enabling the interactive display of large medical volume datasets by multiresolution bricking", Springer, pp. 3-19, 2000