第四章 非线性方程(组)的数值解法

数值分析

南京理工大学数统学院

4.1 非线性方程的数值解法

- 4.1.1 根的定义与二分法
- 4.1.2 不动点迭代法
- 4.1.3 迭代加速收敛的方法
- 4.1.4 Newton迭代法和割线法
- 4.2 算子导数及其计算
- 4.3 不动点迭代基本原理
- 4.4 非线性方程组的数值解法
 - 4.4.1 不动点迭代法
 - 4.4.2 Newton法
 - 4.4.3 Newton法的若干变形

4.1 非线性方程的数值解法

4.1.1 根的定义与二分法

方程f(x) = 0的根 x^* , 又称为函数f(x)的零点, 它使 $f(x^*) = 0$.

若f(x)可分解为

$$f(x) = (x - x^*)^m g(x),$$

其中m为正整数,且 $g(x^*) \neq 0$. 当m = 1时,则称 x^* 为单根;若m > 1,称 x^* 为f(x) = 0的m重根,或 x^* 为f(x)的m重零点.

若 x^* 是f(x)的m重零点, 且g(x)充分光滑, 则

$$f(x^*) = f'(x^*) = \dots = f^{(m-1)}(x^*) = 0, \quad f^{(m)}(x^*) \neq 0.$$

科学与工程计算中有大量方程求根问题, 其中一类特殊的问题是多项式方程

$$f(x) = a_n x^n + \dots + a_1 x + a_0, \quad (a_n \neq 0)$$

的求根问题, 其中系数 $a_i(i=0,1,\cdots,n)$ 为实数.

当f(x)为n次代数多项式时,根据代数学基本定理,n次方程在复数域内有且只有n 个根(含复根,m重根按m计算).

n > 5时,不能用公式表示方程的根。

实际问题, 不一定需要根的精确值, 往往需要满足一定精度的近似根.

对于 $n \geq 3$ 的多项式方程和一般连续函数方程,可采用数值方法求近似根。

二分法

方程f(x) = 0, 如果在区间[a, b]上至少有一个根, 则称[a, b]是方程的一个有根区间.

设函数f(x)在[a,b]上连续,且有f(a)f(b)<0,根据介值定理,[a,b] 是一个有根区间。

进一步, 若区间[a,b]上, f(x)严格单调, 则[a,b]内有且仅有一个根, 这时若能将有根区间不断缩小, 便能逐步得到根的近似值.

二分法基本思想: 采用对分区间的方法根据分点处函数值的符号逐步将有根区间缩小, 使在足够小的区间内, 方程有且仅有一个根.

设方程f(x)=0的一有根区间为[a,b](且其内只有一个根), f(a)f(b)<0, 取中点 $x_0=\frac{a+b}{2}$, 将区间[a,b] 分成两个小区间: $[a,x_0]$ 和 $[x_0,b]$, 计算 $f(x_0)$:

若
$$f(x_0) = 0$$
,则 x_0 为 $f(x) = 0$ 的根,计算结束;

若
$$f(a)f(x_0) < 0$$
, 令 $a_1 = a$, $b_1 = x_0$;

若
$$f(x_0)f(b) < 0$$
, 令 $a_1 = x_0$, $b_1 = b$;

 $[a_1,b_1]$ 为新的有根区间,对它施行同样的处理,得到一系列有根区间:

$$[a,b]\supset [a_1,b_1]\supset [a_2,b_2]\supset\cdots\supset [a_k,b_k]\supset\cdots$$

其中每个区间长度都是前一个的一半,区间 $[a_k,b_k]$ 的长度为

$$b_k - a_k = \frac{1}{2^k}(b - a).$$

如果二分过程无限继续下去,这些有根区间最终必收缩于一点 x^* ,该点就是所求根.

如果取 $[a_k,b_k]$ 的中点 $x_k=rac{a_k+b_k}{2}$ 作为f(x)=0根的近似值,则有误差估计式:

$$|x_k - x^*| \le \frac{1}{2}(b_k - a_k) = \frac{1}{2^{k+1}}(b - a).$$

对于所给精度 ϵ , 若取k使得

$$\frac{1}{2^{k+1}}(b-a) \le \epsilon,$$

则 $|x_k - x^*| \leq \epsilon$, 算法终止.

例 求方程 $x(x+1)^2 - 1 = 0$ 在区间[0,1]内的一个实根, 要求保留四位有效数字.

例 求方程 $x(x+1)^2-1=0$ 在区间[0,1]内的一个实根, 要求保留四位有效数 字.

解 f(0) < 0, f(1) > 0, 按照误差估计式, 预计只要二分14次, 便能达到预定 精度, 二分计算结果如表:

k	a_k	b_k	x_k	$f(x_k)$ 符号
0	0.0	1.0	0.5	+
1	0.0	0.5	0.25	-
2	0.25	0.5	0.375	-
:	:	:	:	:
14	0.465515	0.465576	0.465546	-

非线性方程(组)的数值解法

(wsli@njust.edu.cn)

二分法优点: 算法简单, 且总是收敛的;

缺点: 收敛慢, 不能求偶数重根, 故通常不单独将其用于求根, 只用于为根求一个较好的初始近似值.

4.1.2 不动点迭代法

1. 迭代格式

对非线性方程f(x) = 0,

若可化为等价方程 $x = \varphi(x)$ (其解为 $\varphi(x)$ 的不动点).

由此建立递推公式

$$x_{k+1} = \varphi(x_k), \quad k = 0, 1, \cdots$$
 (1.1)

给定初值 x_0 可得序列 $\{x_k\}_0^\infty$, 如果 $\lim_{t\to\infty} x_k = x^*$, 且 $\varphi(x)$ 在 x^* 附近连续, 则

$$x^* = \lim_{k \to \infty} x_{k+1} = \lim_{k \to \infty} \varphi(x_k) = \varphi\left(\lim_{k \to \infty} x_k\right) = \varphi(x^*),$$

于是 x^* 是方程 $x = \varphi(x)$ 的根, 也是原方程f(x) = 0的根.

$$x_{k+1} = \varphi(x_k), \quad k = 0, 1, \cdots$$
 (1.1)

一般地, 称(1.1)为迭代格式, 也称迭代公式, $\{x_k\}$ 为迭代序列, x_0 为迭代初值, $\varphi(x)$ 为迭代函数, 用迭代格式(1.1)求得方程近似根的方法称为不动点迭代法, 或简单迭代法.

当迭代序列收敛时, 称迭代法收敛, 否则称迭代法发散.

Figure: 不动点迭代法的几何意义(迭代收敛)

Figure: 不动点迭代法的几何意义(迭代发散)

例 求方程 $x^3 + x - 1 = 0$ (x > 0) 在区间[0.5, 1]内的一个实根.

$$\mathbf{H}$$
 (1) $x = 1 - x^3$, $x_0 = 0.5$, $x_1 = 0.875$, \dots , $x_9 = 1.00$, $x_{10} = 0.00$

(2)
$$x = \sqrt[3]{1-x}$$
, $x_0 = 0.5, \dots, x_{24} = 0.68227157$, $x_{25} = 0.68236807$

(3)
$$x = \frac{1+2x^3}{1+3x^2}$$
, $x_0 = 0.5, \dots, x_4 = 0.68232780, x_5 = 0.68232780$

Figure 1.3 Geometric view of FPI. The fixed point is the intersection of g(x) and the diagonal line. Three examples of g(x) are shown together with the first few steps of FPI. (a) $g(x) = 1 - x^3$ (b) $g(x) = (1 - x)^{1/3}$ (c) $g(x) = (1 + 2x^3)/(1 + 3x^2)$

2. 迭代法的全局收敛性

定理4.1: 若 $\varphi(x)$ 在[a,b]上具有一阶连续导数, 且满足条件:

- (1) 当 $x \in [a, b]$ 时, $\varphi(x) \in [a, b]$;
- (2) 存在正数L < 1, 使对任意 $x \in [a, b]$, 有 $|\varphi'(x)| \leq L < 1$,

则有: (1) 方程 $x = \varphi(x)$ 在区间[a,b]上存在唯一根 x^* ;

- (2) 对任何初值 $x_0 \in [a, b]$, 由 $x_{k+1} = \varphi(x_k)$, $k = 0, 1, \cdots$ 确定的 x_k 收敛于 x^* ;
- (3) $|x_k x^*| \le \frac{L}{1 L} |x_k x_{k-1}|, \ k = 1, 2, \cdots;$
- (4) $|x_k x^*| \le \frac{L^k}{1 L} |x_1 x_0|, \ k = 1, 2, \cdots;$
- (5) $\lim_{k \to \infty} \frac{x_{k+1} x^*}{x_k x^*} = \varphi'(x^*).$

注:

- (1) 若L接近于1,则收敛可能很慢.
- (2) 定理4.1的结论(3)直接用计算结果 x_k 与 x_{k-1} 来估计误差, 称为后验误 差估计式.
- (3) 定理4.1的结论(4)是在尚未计算时估计出 x_k 的误差 $|x^* x_k|$, 因此称为先验误差估计式, 可用于计算需要迭代的步数.
- (4) 定理4.1条件可用下面Lipschitz条件来代替:

存在正实数L < 1, 使 $\forall x, y \in [a, b]$, 有

$$|\varphi(x) - \varphi(y)| \le L|x - y|.$$

定理4.2: 设方程 $x = \varphi(x)$ 在[a,b]内有根 x^* , 且当 $x \in [a,b]$ 时, $|\varphi'(x)| \ge 1$, 则对任意初值 $x_0 \in [a,b]$ 且 $x_0 \ne x^*$, 迭代公式 $x_{k+1} = \varphi(x_k)$ 发散.

定理4.2: 设方程 $x=\varphi(x)$ 在[a,b]内有根 x^* , 且当 $x\in [a,b]$ 时, $|\varphi'(x)|\geq 1$, 则对任意初值 $x_0\in [a,b]$ 且 $x_0\neq x^*$, 迭代公式 $x_{k+1}=\varphi(x_k)$ 发散.

例 用不动点迭代法求方程 $f(x) = x(x+1)^2 - 1 = 0$ 在区间[0,1]内的一个实根,精确至4位有效数字。

17 / 85

定理4.2: 设方程 $x=\varphi(x)$ 在[a,b]内有根 x^* , 且当 $x\in [a,b]$ 时, $|\varphi'(x)|\geq 1$, 则对任意初值 $x_0\in [a,b]$ 且 $x_0\neq x^*$, 迭代公式 $x_{k+1}=\varphi(x_k)$ 发散.

- 例 用不动点迭代法求方程 $f(x) = x(x+1)^2 1 = 0$ 在区间[0,1]内的一个实根,精确至4位有效数字.
- 解 将方程化为等价形式 $x = \frac{1}{(x+1)^2}$, 于是

$$\varphi(x) = \frac{1}{(x+1)^2}, \quad \varphi'(x) = -\frac{2}{(x+1)^3}.$$

当 $x \in [0,1]$ 时, $\varphi(x) \in [\varphi(1), \varphi(0)] = [0.25, 1] \subseteq [0, 1]$,

 $|\psi'(0)| = 2$, 定理4.1条件(2)不满足, 因此需要缩小有根区间.

从 $x_0 = 0$ 开始,以h = 0.2为步长,逐步验证,得f(0.2) < 0,f(0.4) < 0,f(0.6) > 0,由此知方程在[0.4, 0.6]内有一实根.

当
$$x \in [0.4, 0.6]$$
时,有 $|\varphi'(x)| \le |\varphi'(0.4)| = \frac{2}{(0.4+1)^3} = 0.7289 < 1$,

但是
$$\varphi(x) \in [\varphi(0.6), \varphi(0.4)] = \left[\frac{1}{(0.6+1)^2}, \frac{1}{(0.4+1)^2}\right] = [0.3906, 0.5102] \nsubseteq [0.4, 0.6],$$

继续缩小有根区间为[0.4, 0.55], 此时

$$\varphi(x)\in [\varphi(0.55),\varphi(0.4)]=\left[\frac{1}{(0.55+1)^2},\frac{1}{(0.4+1)^2}\right]=[0.4612,0.5102]\subseteq [0.4,0.55],$$

$$|\varphi'(x)| \le |\varphi'(0.4)| = 0.7289 < 1$$
,

于是 $\forall x_0 \in [0.4, 0.55]$, 迭代格式收敛, 取 $x_0 = 0.4$, 计算结果列表如下

k	x_k	k	x_k
0	0.4	÷	:
1	0.510204	:	:
2	0.438459	:	:
3	0.483287	17	0.465602
4	0.454516	18	0.465552
5	0.472675	19	0.465584
6	0.461090	20	0.465563

迭代18次时,有4位有效数字,取 $x^* \approx 0.4656$,其误差不超过 0.5×10^{-4} .

3. 局部收敛性与收敛速度

定义: 设方程 $x = \varphi(x)$ 有根 x^* , 若在 x^* 的某个邻域 $S = \{x | |x - x^*| \le \delta\}$ 内, 对任意初值 $x_0 \in S$, 迭代格式

$$x_{k+1} = \varphi(x_k), \quad k = 0, 1, 2, \cdots$$
 (1.2)

产生的序列 $\{x_k\} \in S$, 且收敛于 x^* , 则称迭代格式在 x^* 附近是局部收敛的.

定理4.3: 设方程 $x=\varphi(x)$ 有根 x^{\star} , 且在 x^{\star} 的某个邻域 $S=\{x||x-x^{\star}|\leq$

- δ }内 $\varphi(x)$ 存在一阶连续导数, 则
- (1) 当 $|\varphi'(x^*)|$ < 1时, 迭代格式(1.2)局部收敛;
- (2) 当 $|\varphi'(x^*)| \ge 1$ 时, 迭代格式(1.2)发散.

定理4.3: 设方程 $x = \varphi(x)$ 有根 x^* , 且在 x^* 的某个邻域 $S = \{x||x-x^*| \le \delta\}$ 内 $\varphi(x)$ 存在一阶连续导数, 则

- (1) 当 $|\varphi'(x^*)|$ < 1时, 迭代格式(1.2)局部收敛;
- (2) 当 $|\varphi'(x^*)| \ge 1$ 时, 迭代格式(1.2)发散.

证明: (1) 设 $|\varphi'(x^*)| < 1$, 由连续函数的性质, 则当 δ 适当小时, 对任意 $x \in S$, 有 $|\varphi'(x)| \le L < 1$, 且

$$|\varphi(x) - x^*| = |\varphi(x) - \varphi(x^*)| = |(x - x^*)\varphi'(\xi)| \le L|x - x^*| < |x - x^*| \le \delta,$$

即 $\varphi(x) \in S$, 在区间S上, 定理4.1条件满足, 因此迭代格式局部收敛.

(2) 设 $|\varphi'(x)| \ge 1$, 则在 x^* 的某个邻域内有 $|\varphi'(x)| \ge 1$, 由定理4.2知迭代格式发散。

注: 定理4.3对初值 x_0 要求较高. 如果已知 x^* 的大概位置, x_0 为 x^* 的一个较好的近似, 则可用 $|\varphi'(x_0)| < 1$ 代替 $|\varphi'(x^*)| < 1$, 用 $|\varphi'(x_0)| \ge 1$ 代替 $|\varphi'(x^*)| \ge 1$, 然后用定理4.3判断迭代格式的局部敛散性.

注: 定理4.3对初值 x_0 要求较高. 如果已知 x^* 的大概位置, x_0 为 x^* 的一个较好的近似, 则可用 $|\varphi'(x_0)| < 1$ 代替 $|\varphi'(x^*)| < 1$, 用 $|\varphi'(x_0)| \ge 1$ 代替 $|\varphi'(x^*)| \ge 1$, 然后用定理4.3判断迭代格式的局部敛散性.

例 用不动点迭代法求方程 $f(x) = x(x+1)^2 - 1 = 0$ 在 $x_0 = 0.4$ 附近的根.

注: 定理4.3对初值 x_0 要求较高. 如果已知 x^* 的大概位置, x_0 为 x^* 的一个较好的近似, 则可用 $|\varphi'(x_0)| < 1$ 代替 $|\varphi'(x^*)| < 1$, 用 $|\varphi'(x_0)| \ge 1$ 代替 $|\varphi'(x^*)| \ge 1$, 然后用定理4.3判断迭代格式的局部敛散性.

例 用不动点迭代法求方程 $f(x) = x(x+1)^2 - 1 = 0$ 在 $x_0 = 0.4$ 附近的根.

解 将方程化为等价形式 $x = \frac{1}{(x+1)^2}$,于是

$$\varphi(x) = \frac{1}{(x+1)^2}, \quad \varphi'(x) = -\frac{2}{(x+1)^3},$$

因为 $|\varphi'(0.4)| = 0.7289$, 由定理4.3知迭代格式

$$x_{k+1} = \frac{1}{(x_k + 1)^2}, \quad k = 0, 1, 2, \dots$$

是局部收敛的, 计算结果见上例,

定义: 设迭代格式 $x_{k+1} = \varphi(x_k)$ 收敛于方程 $x = \varphi(x)$ 的根 x^* , 记迭代误 $\not\equiv e_k = x_k - x^*$

(1) 若存在实数 $p \ge 1$ 及非零常数C(p = 1时 $C \in (0, 1)$), 使

$$\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^p} = C, \tag{1.3}$$

则称 $\{x_k\}$ 是p阶收敛的, C称为渐近误差常数.

(2) 若存在实数p > 1及C > 0(p = 1时 $C \in (0,1)$), 以及正整数K, 使得 当k > K时.

$$|e_{k+1}| \le C|e_k|^p, (1.4)$$

则称 $\{x_k\}$ 至少p阶收敛.(注: 若p阶收敛, 则至少p阶收敛)

当p=1 时, 也称为线性收敛, 当p>1时, 称为超线性收敛, 当p=2 时, 称为平方收敛.

定理4.4: 设 x^* 是 $\varphi(x)$ 的不动点, 在 x^* 附近 $|\varphi'(x)| < 1$,

- (1) 若 $\varphi'(x)$ 在 x^* 的邻域上连续, $\varphi'(x^*) \neq 0$, 则对一个任意靠近 x^* 的初值, 迭代公式 $x_{k+1} = \varphi(x_k)$ 线性收敛:
- (2) 若 $\varphi''(x)$ 在 x^* 的邻域上连续, $\varphi'(x^*) = 0$, $\varphi''(x^*) \neq 0$, 则 $x_{k+1} = 0$ $\varphi(x_k)$ 平方收敛:
- (3) 若 $\varphi^{(p)}(x)$ 在 x^* 的邻域上连续, $\varphi'(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0$, $\varphi^{(p)}(x^*) \neq 0$
- 0,则 $x_{k+1} = \varphi(x_k)$ 是p阶收敛的,且有

$$\lim_{k \to \infty} \frac{e_{k+1}}{e_{k}^{p}} = \frac{\varphi^{(p)}(x^{\star})}{p!}.$$
(1.5)

(wsli@njust.edu.cn)

例 设2个迭代分别是线性收敛与平方收敛的:

(1)
$$\frac{e_{k+1}}{e_k} = \frac{1}{2}$$
, (2) $\frac{\tilde{e}_{k+1}}{\tilde{e}_k^2} = \frac{1}{2}$, $k = 0, 1, \cdots$

其中 $e_0 = \tilde{e}_0 = \frac{1}{3}$,若取精度 $\epsilon = 10^{-10}$,试分别估计这2个迭代所需迭代次数。

例 设2个迭代分别是线性收敛与平方收敛的:

(1)
$$\frac{e_{k+1}}{e_k} = \frac{1}{2}$$
, (2) $\frac{\tilde{e}_{k+1}}{\tilde{e}_k^2} = \frac{1}{2}$, $k = 0, 1, \cdots$

其中 $e_0 = \tilde{e}_0 = \frac{1}{3}$,若取精度 $\epsilon = 10^{-10}$,试分别估计这2个迭代所需迭代次数.

解 (1) 由
$$\frac{e_{k+1}}{e_k} = \frac{1}{2}$$
, $e_0 = \frac{1}{3}$, 可得

$$e_k = \frac{1}{2}e_{k-1} = \dots = \frac{1}{2^k}e_0 = \frac{1}{2^k}\frac{1}{3},$$

要使 $|e_k| < 10^{-10}$, 只要 $\frac{1}{2^k} \frac{1}{3} \le 10^{-10}$, 可得

$$k \ge \frac{10\ln 10 - \ln 3}{\ln 2} = 31.63,$$

因此要满足精度要求, 应迭代32次.

(2) 由
$$\frac{\tilde{e}_{k+1}}{\tilde{e}_k^2} = \frac{1}{2}$$
, $\tilde{e}_0 = \frac{1}{3}$, 可得

$$\tilde{e}_k = \frac{1}{2}\tilde{e}_{k-1}^2 = \dots = \left(\frac{1}{2}\right)^{2^k-1} \left(\frac{1}{3}\right)^{2^k} = 2\left(\frac{1}{6}\right)^{2^k},$$

要使 $|\tilde{e}_k| < 10^{-10}$,只要 $2\left(\frac{1}{6}\right)^{2^k} \le 10^{-10}$,可得

$$k \ge \frac{\ln 13.328}{\ln 2} = 3.73,$$

因此要满足精度要求, 应迭代4次.

4.1.3 迭代加速收敛的方法

在许多情况下, 可以由迭代函数 $\varphi(x)$ 构造一个新的迭代函数 $\Phi(x)$, 使得:

- (1) 方程 $x = \Phi(x)$ 和 $x = \varphi(x)$ 具有相同的根 x^* ;
- (2) 由迭代公式 $x_{k+1} = \Phi(x_k)$ 产生的迭代序列收敛于 x^* 的阶高于 $x_{k+1} = \varphi(x_k)$ 产生的迭代序列收敛于 x^* 的阶.

4.1.3 迭代加速收敛的方法

在许多情况下, 可以由迭代函数 $\varphi(x)$ 构造一个新的迭代函数 $\Phi(x)$, 使得:

- (1) 方程 $x = \Phi(x)$ 和 $x = \varphi(x)$ 具有相同的根 x^* ;
- (2) 由迭代公式 $x_{k+1} = \Phi(x_k)$ 产生的迭代序列收敛于 x^* 的阶高于 $x_{k+1} = \varphi(x_k)$ 产生的迭代序列收敛于 x^* 的阶.

方法1: 思路: 对方程 $x = \varphi(x)$, 若 $\varphi'(x^*) \neq 0$ (即迭代格式可能线性收敛), 直接构造出与其等价的方程 $x = \Phi(x)$, 但 $\Phi'(x^*) = 0$ (即迭代格式可能平方收敛, 或更快).

将 $x = \varphi(x)$ 写为 $(1 + C)x = (1 + C)\varphi(x), C \neq -1$, 于是

$$x = \varphi(x) + C(\varphi(x) - x) = \Phi(x),$$

$$\Phi'(x^*) = \left[\varphi(x) + C(\varphi(x) - x)\right]'\Big|_{x = x^*} = 0,$$

于是

$$C = \frac{\varphi'(x^*)}{1 - \varphi'(x^*)}, \quad \Phi(x) = \frac{1}{1 - \varphi'(x^*)} \left[\varphi(x) - x\varphi'(x^*) \right].$$

由于 $\Phi'(x^*)=0$, 故迭代格式

$$x_{k+1} = \frac{1}{1 - \varphi'(x^*)} \left[\varphi(x_k) - \varphi'(x^*) x_k \right], \tag{1.6}$$

至少平方收敛.

(wsli@njust.edu.cn)

 $\mathbf{\dot{z}}$: 实际计算时, 由于 x^* 未知, 故常用其邻近值, 如 x_{k_0} 代替而使用如下迭代格式(这样处理后迭代速度可能不是平方收敛)

$$x_{k+1} = \frac{1}{1-L} \left[\varphi(x_k) - Lx_k \right], \quad L = \varphi'(x_{k_0}).$$
 (1.7)

例 用迭代法求方程 $f(x) = x(x+1)^2 - 1 = 0$ 在0.4附近的一个实根, 精确至4位有效数字.

解 取 $x_{k_0} = 0.4$, 则 $L = \varphi'(0.4) = -0.7289$ 得迭代格式

$$x_{k+1} = \frac{1}{1 + 0.7289} \left[\frac{1}{(x_k + 1)^2} + 0.7289 x_k \right],$$

取 $x_0 = 0.4$,计算结果列于下表:

k	x_k	k	x_k
0	0.4	3	0.465566
1	0.463742	4	0.465571
2	0.465473		

 $x^* \approx 0.465571$, 迭代4步即可得到4位有效数字的近似根.

方法2(艾特金(Aitken)加速法):

设已得到线性收敛的迭代序列
$$\{x_k\}$$
, $\lim_{k \to \infty} \left| \frac{x_{k+1} - x^*}{x_k - x^*} \right| = C(0 < C < 1)$,

因而当k适当大时,有

$$\frac{x_{k+2} - x^*}{x_{k+1} - x^*} \approx \frac{x_{k+1} - x^*}{x_k - x^*} \Rightarrow x^* \approx \frac{x_k x_{k+2} - x_{k+1}^2}{x_{k+2} - 2x_{k+1} + x_k},$$

$$\tilde{x}_k = \frac{x_k x_{k+2} - x_{k+1}^2}{x_{k+2} - 2x_{k+1} + x_k}. (1.8)$$

由序列 $\{x_k\}$ 得到序列 $\{\tilde{x}_k\}$ 的方法称为Aitken加速方法.

Aitken加速的几何意义:

设相邻两步迭代的误差 $\varepsilon(x_k)=x_{k+1}-x_k$,加速迭代收敛即加快 $\varepsilon(x_k)$ 趋于零的速度。若

$$\varepsilon(x_k) = x_{k+1} - x_k$$
, $\varepsilon(x_{k+1}) = x_{k+2} - x_{k+1}$,都不等于零,则可以在" $x - \varepsilon(x)$ "坐标系上,用经过 $(x_k, \varepsilon(x_k))$ 和 $(x_{k+1}, \varepsilon(x_{k+1}))$ 的直线与 x 轴的交点,取 x_{k+1} 作为第 x_{k+1} 次 迭代的结果

定理4.5: 设序列 $\{x_k\}$ 满足 $x_k \neq 0$, $k = 1, 2, \cdots$, 且存在非零常数 λ , 满足 $|\lambda| < 1$, 使

$$x_{k+1} - x^* = (\lambda + \delta_k)(x_k - x^*),$$
 (1.9)

其中 $\lim_{k\to\infty} \delta_k = 0$, 则对充分大的k, 由(1.8)定义的 \tilde{x}_k 都存在, 且

$$\lim_{k \to \infty} \frac{\tilde{x}_k - x^*}{x_k - x^*} = 0, \tag{1.10}$$

即 $\{\tilde{x}_k\}$ 收敛比 $\{x_k\}$ 快.

斯蒂芬森(Steffensen)迭代法:对不动点迭代法应用Aitken加速,

$$x^* \approx \frac{x_k \varphi(\varphi(x_k)) - \varphi^2(x_k)}{\varphi(\varphi(x_k)) - 2\varphi(x_k) + x_k},$$

将上式左端作为新的近似值 x_{k+1} , 得到迭代格式 $x_{k+1} = \Phi(x_k)$, $k = 0, 1, \cdots$,

$$\Phi(x) = \frac{x\varphi(\varphi(x)) - \varphi^2(x)}{\varphi(\varphi(x)) - 2\varphi(x) + x},$$
(1.11)

$$x_{k+1} = \frac{x_k \varphi(\varphi(x_k)) - \varphi^2(x_k)}{\varphi(\varphi(x_k)) - 2\varphi(x_k) + x_k}.$$
(1.12)

(1.12)称为Steffensen迭代法.

33 / 85

定理4.6: 若 x^* 为 $\Phi(x)$ 的不动点,则也是 $\varphi(x)$ 的不动点;反之,若 x^* 为 $\varphi(x)$ 的不动点, $\varphi'(x)$ 存在且连续, $\varphi'(x^*)$ \neq 1, x^* 也是 $\Phi(x)$ 的不动点。

定理4.7: 若 x^* 为 $\varphi(x)$ 的不动点,在 x^* 的邻域中 $\varphi(x)$ 有 p+1 阶连续导数,若对 p=1, $\varphi'(x^*)\neq 1$,则Steffensen 迭代二阶收敛;若原迭代法 p阶收敛(p>1),则 Steffensen 迭代 2p-1 阶收敛。

注: 由定理4.7, p=1时条件 $\varphi'(x^*) \neq 1$, Steffensen迭代法不仅可以提高收敛速度, 有时也可将原本不收敛的迭代法改进为二阶收敛的方法.

例 用Steffensen迭代法求方程 $f(x) = x(x+1)^2 - 1 = 0$ 在0.4附近的一个实根, 精确至4位有效数字.

解 将方程化为等价形式
$$x=\frac{1}{(x+1)^2}$$
,于是 $\varphi(x)=\frac{1}{(x+1)^2}$, $|\varphi'(0.4)|\approx 0.7289$,迭代格式 $x_{k+1}=\varphi(x_k)$ 局部线性收敛.

Steffensen迭代法
$$x_{k+1} = \frac{x_k \varphi(\varphi(x_k)) - \varphi(x_k)^2}{\varphi(\varphi(x_k)) - 2\varphi(x_k) + x_k}, \quad k = 0, 1, 2, \cdots$$

k	x_k	$\varphi(x_k)$	$\varphi(\varphi(x_k))$
0	0.4	0.510204	0.438459
1	0.466749	0.464824	0.466046
2	0.465571	0.465571	

 $x^{\star} \approx 0.465571$, 迭代2步即可得到4位有效数字的近似根.

4.1.4 Newton迭代法和割线法

1. Newton迭代法的构造

Newton法思想: 利用Taylor展开, 将非线性方程近似为线性方程.

设 x^* 是f(x)=0的根,且已有一个近似值 $x_k\approx x^*$,如果f''(x)存在且连续,由Taylor展开式

$$f(x^*) = f(x_k) + f'(x_k)(x^* - x_k) + \frac{f''(\xi)}{2}(x^* - x_k)^2$$
, ξ 在 x^* 和 x_k 之间, $\approx f(x_k) + f'(x_k)(x^* - x_k)$,

于是得到近似方程 $f(x_k) + f'(x_k)(\tilde{x}^* - x_k) = 0$, 如果 $f'(x_k) \neq 0$, 可得

$$\tilde{x}^* = x_k - \frac{f(x_k)}{f'(x_k)},\tag{1.13}$$

取 \tilde{x} *作为原方程新的近似根 x_{k+1} , 即

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \cdots$$
 (1.14)

(1.14)称为牛顿迭代公式,用牛顿迭代公式求方程根的方法称为牛顿迭代法,简称牛顿法.

Newton迭代法也是一种不动点迭代法, 迭代函数为

$$\varphi(x) = x - \frac{f(x)}{f'(x)}. (1.15)$$

Newton迭代法的几何意义:

方程
$$y = f(x_k) + f'(x_k)(x - x_k)$$

是 曲 线 在 点 $(x_k, f(x_k))$ 处 的 切 线 方 程,迭 代 格式(1.14)就是切线与x轴交点的横坐标,所以牛顿法是用切线与x轴交点横坐标近似代替曲线与x轴交点横坐标,因此牛顿法也称切线法.

对Newton法的迭代函数 $\varphi(x) = x - \frac{f(x)}{f'(x)}$ 求导, 得

$$\varphi'(x) = 1 - \frac{(f'(x))^2 - f''(x)f(x)}{(f'(x))^2} = \frac{f''(x)f(x)}{(f'(x))^2},$$
(1.16)

$$\varphi''(x) = \left(f(x)\frac{f''(x)}{(f'(x))^2}\right)' = f'(x)\frac{f''(x)}{(f'(x))^2} + f(x)\left(\frac{f''(x)}{(f'(x))^2}\right)', (1.17)$$

2. 局部收敛性

对Newton法的迭代函数 $\varphi(x) = x - \frac{f(x)}{f'(x)}$ 求导, 得

$$\varphi'(x) = 1 - \frac{(f'(x))^2 - f''(x)f(x)}{(f'(x))^2} = \frac{f''(x)f(x)}{(f'(x))^2},$$
(1.16)

$$\varphi''(x) = \left(f(x)\frac{f''(x)}{(f'(x))^2}\right)' = f'(x)\frac{f''(x)}{(f'(x))^2} + f(x)\left(\frac{f''(x)}{(f'(x))^2}\right)', (1.17)$$

(1) 当 x^* 是f(x) = 0的单根时,则有 $f(x^*) = 0$, $f'(x^*) \neq 0$,于是

$$\varphi(x^*) = x^*, \quad \varphi'(x^*) = 0, \quad \varphi''(x^*) = \frac{f''(x^*)}{f'(x^*)}.$$

定理4.8: 设 $f(x^*)=0$, $f'(x^*)\neq 0$, 且f在包含 x^* 的一个区间上有二阶连续导数, 则Newton迭代法局部收敛到 x^* , 且至少是二阶收敛.

例:设a > 0,用Newton法求方程 $x^2 - a = 0$ 的根,并分析其收敛性.

定理4.8: 设 $f(x^*) = 0$, $f'(x^*) \neq 0$, 且f在包含 x^* 的一个区间上有二阶连续导数,则Newton迭代法局部收敛到 x^* ,且至少是二阶收敛.

例:设a > 0,用Newton法求方程 $x^2 - a = 0$ 的根,并分析其收敛性.

解: Newton法解这个方程的迭代公式:

$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{a}{x_k} \right), \quad k = 0, 1, \dots$$

如果 $0 < x_0 < \sqrt{a}$,有

$$x_1 - \sqrt{a} = \frac{1}{2} \left(x_0 + \frac{a}{x_0} \right) - \sqrt{a} = \frac{(x_0 - \sqrt{a})^2}{2x_0},$$

所以 $x_1 > \sqrt{a}$, 同理可验证, $\forall x_k > \sqrt{a}$, 有 $x_{k+1} > \sqrt{a}$, 而且

$$x_{k+1} - x_k = \frac{a - x_k^2}{2x_k} < 0,$$

即 $\{x_k\}$ 从k=1起是一个单调递减有下界的序列,它有极限 x^\star ,对迭代公式两边取极限,得 $x^\star=\sqrt{a}$.

如果 $x_0 > \sqrt{a}$, 类似可得, $\{x_k\}$ 从k = 0起是一个单调递减有下界的序列, 它有极限 x^* , 对迭代公式两边取极限, 得 $x^* = \sqrt{a}$.

综上, 任取 $x_0 > 0$, Newton迭代法都收敛到 \sqrt{a} , 在 $(0, +\infty)$ 上具有全局收敛性.

(2) 当
$$x^*$$
是 $f(x) = 0$ 的 $m(m \ge 2)$ 重根时,则有 $f(x) = (x - x^*)^m g(x)$,

且 $g(x^*) \neq 0$, 于是

$$\varphi(x) = x - \frac{f(x)}{f'(x)} = x - \frac{(x - x^*)^m g(x)}{m(x - x^*)^{m-1} g(x) + (x - x^*)^m g'(x)}$$
$$= x - \frac{(x - x^*)g(x)}{mg(x) + (x - x^*)g'(x)}.$$

所以 $\varphi(x^*) = x^*$,

$$\varphi'(x^*) = \lim_{x \to x^*} \frac{\varphi(x) - \varphi(x^*)}{x - x^*} = \lim_{x \to x^*} \frac{x - \frac{(x - x^*)g(x)}{mg(x) + (x - x^*)g'(x)} - x^*}{x - x^*}$$
$$= \lim_{x \to x^*} \left[1 - \frac{g(x)}{mg(x) + (x - x^*)g'(x)} \right] = 1 - \frac{1}{m},$$

因而Newton 法对重根 $(m \ge 2)$ 是一阶局部收敛, 即线性收敛.

(1) 若 x^* 是f(x) = 0的 $m(m \ge 2)$ 重根, m已知, 则可将Newton法迭代函数 改为

$$\varphi(x) = x - \frac{mf(x)}{f'(x)},$$

构造迭代格式

$$x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \cdots$$
 (1.18)

(2) 若 x^* 是f(x) = 0的 $m(m \ge 2)$ 重根,m未知,令 $\mu(x) = \frac{f(x)}{f'(x)}$,则 x^* 是 $\mu(x)$ 的单根,对 $\mu(x) = 0$ 用Newton迭代法,迭代函数为

$$\varphi(x) = x - \frac{\mu(x)}{\mu'(x)} = x - \frac{f(x)f'(x)}{[f'(x)]^2 - f(x)f''(x)},\tag{1.19}$$

迭代法

$$x_{k+1} = x_k - \frac{\mu(x_k)}{\mu'(x_k)} = x_k - \frac{f(x_k)f'(x_k)}{[f'(x_k)]^2 - f(x_k)f''(x_k)}, \quad (1.20)$$

至少二阶收敛.

注:式(1.20)的分母会包含两个接近零的数之差,要适当处理以避免严重的舍入误差.

3. 牛顿下山法

牛顿迭代法对初值的要求较高, 如果 x_0 偏离所求根 x^* 较远, 则牛顿法可能发散. 为防止迭代发散, 对迭代过程再附加一项要求, 即具有单调性:

$$|f(x_{k+1})| < |f(x_k)|,$$
 (1.21)

满足此要求的算法称下山法.

牛顿法与下山法结合: 将牛顿法的计算结果

$$\bar{x}_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)},$$

与前一步的近似值x_k取加权平均作为新的改进值:

$$x_{k+1} = \lambda \bar{x}_{k+1} + (1 - \lambda)x_k, \tag{1.22}$$

其中 $0 < \lambda < 1$ 称为下山因子, (1.22)即

$$x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, \cdots$$
 (1.23)

称为牛顿下山法.

选择下山因子的方法: $\lambda = 1$ 开始, 逐次将 λ 减半进行试算, 直至下降条 件(1.21)满足.

牛顿下山法算法:

- (1) 输入: x_0 , ϵ , ϵ_{λ} , δ , α .
- (2) $f_0 = f(x_0)$.
- (3) $f_1 = f'(x_0), \lambda = 1.$
- (4) $x_1 = x_0 \lambda \frac{f_0}{f_1}$, $f_2 = f(x_1)$,
- (5) 若 $|f_2| > |f_0|$, 且 $\lambda > \epsilon_{\lambda}$, $\lambda = \alpha \lambda$, 转(4),
- (6) 若 $|f_2| > |f_0|$, 且 $\lambda < \epsilon_{\lambda}$, 下山失败, $x_0 = x_0 + \delta$. 转(2).
- (7) 若 $|f_2| < \epsilon$ 或 $|x_1 x_0| < \epsilon$. 输出 $x^* = x_1$. 迭代终止.
- (8) 若 $|f_2| < |f_0|$, $x_0 = x_1$, $f_0 = f_2$, 转(3).

4. 割线法

牛顿法每步迭代要计算 $f'(x_k)$,有时 $f'(x_k)$ 计算较困难,为简化计算,可用 x_{k-1} , x_k 点上的差商近似导数,即

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}},$$

牛顿迭代公式变为

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}, \quad k = 1, 2, \cdots$$
 (1.24)

称为割线法.

几何意义: 通过曲线y = f(x)上两点 $(x_{k-1}, f(x_{k-1}))$, $(x_k, f(x_k))$ 作曲线的割线, 其与x轴交点横坐标就是 x_{k+1} .

割线法是两步迭代法,局部收敛,收敛阶为 $\frac{1}{2}(1+\sqrt{5})$.

例 分别用Newton迭代法和割线法求解方程 $\cos x = x$ 在0.5附近的根, 要求保留6位有效数字.

解 设 $f(x) = \cos x - x$, Newton迭代法的计算公式:

$$x_{k+1} = x_k + \frac{\cos x_k - x_k}{\sin x_k + 1},$$

割线法计算公式:

$$x_{k+1} = x_k - \frac{(\cos x_k - x_k)(x_k - x_{k-1})}{(\cos x_k - x_k) - (\cos x_{k-1} - x_{k-1})},$$

取初值 $x_0 = 0.5$, $x_1 = 0.78539816 (\approx \frac{\pi}{4})$, 计算结果列于下表

	Newton迭代法	Newton迭代法	割线法
x_0	0.5	0.78539816	0.5
x_1	0.75522242	0.73953613	0.78539816
x_2	0.73914167	0.73908518	0.73638414
x_3	0.73908513	0.73908513	0.73905813
x_4	0.73908513	0.73908513	0.73908515
x_5	0.73908513	0.73908513	0.73908513

4.2 算子导数及其计算

1. 算子的连续性

定义: 设 X,Y 为 Banach 空间, $F:D\to Y$ 为线性或非线性算子, 其中 $D\subset X$ 为算子的定义域。对于 $x_0\in D$,若对于任意固定 的 $h\in X$, $t\in \mathbb{R}$,只要 $x_0+th\in D$,下面的极限成立

$$\lim_{t \to 0} F(x_0 + th) = F(x_0),$$

$$\left(\lim_{t\to 0} ||F(x_0+th) - F(x_0)||_Y = 0\right)$$

则称算子 F 在点 $x_0 \in D$ 处半连续(沿方向 h 连续)。

若对于任意 $h \in X$,有

$$\lim_{\|h\|_{X} \to 0} ||F(x_0 + h) - F(x_0)||_{Y} = 0,$$

则称算子 F 在点 $x_0 \in D$ 处连续。

连续的概念是逐点定义的,若算子 F 在 $D \subset X$ 中的每一点都连续,则称算子 F 在 D 上是连续的。

算子除了连续性质以外,我们更关心的是算子的导数。在这里,我们介绍两种最常用的算子导数:

- (1) Gâteaux 导数: 传统极限形式定义导数的拓展。
- (2) Fréchet 导数: 传统微分形式定义导数的拓展。

2. Gâteaux导数 (传统极限形式定义导数的拓展)

定义: 设 X,Y 为 Banach 空间, $F:D\subset X\to Y$ 为线性或非线性算子,若在 $x_0\in D$ 处,对于任意 $h\in X$, $t\in \mathbb{R}$, $x_0+th\in D$,极限 $F(x_0+th)-F(x_0)$

$$\lim_{t \to 0} \frac{F(x_0 + th) - F(x_0)}{t}$$

存在,则称算子 F 在 x_0 处 Gâteaux 可微,称其极限 $DF(x_0,h)$ 为算子 F 在 x_0 处对于增量 h 的 Gâteaux 微分。进一步,若存在有界线性算子 $A: X \to Y$ (其中 A 与 x_0 有关,与 h 无关),使得

$$DF(x_0, h) = A \cdot h , \ \forall h \in X,$$

则称 A 为 算子 F 在 x_0 处的 Gâteaux 导数,记为 $F'_G(x_0)$,其中 "·" 表示一种 "线性作用"。

3. Fréchet 导数 (传统微分形式定义导数的拓展)

定义: 设 X,Y 为 Banach 空间, $F:D\subset X\to Y$ 为线性或非线性算子,在 $x_0\in D$ 处,若对于任意满足 $x_0+\triangle x\in D$ 的变化量 $\triangle x\in X$,都存在与 $\triangle x\in X$ 无关的有界线性算子 $A:X\to Y$,使得

$$F(x_0 + \Delta x) - F(x_0) = A \cdot \Delta x + \omega(x_0, \Delta x)$$

其中

$$\lim_{||\Delta x||_X \to 0} \frac{||w(x_0, \Delta x)||_Y}{||\Delta x||_X} = 0$$
 ,

则称等式右端的线性主部 $A \cdot \triangle x$ 为算子 F 在 x_0 处的 Fréchet 微分,记作 $dF(x_0, \triangle x)$,其中有界线性算子 A 称为算子 F 在 x_0 处的 Fréchet 导数,记为 $F'_F(x_0)$ 。

关于 Gâteaux 导数与 Fréchet 导数的几点说明:

- (1) 算子 F 是 Fréchet 可导,则必然是 Gâteaux 可导的,但反之未必。
- (2) 算子 F 是 Gâteaux 可导且导数连续,则 F 也是 Fréchet 可导的。
- (3) 若算子 F 是 Gâteaux 导数和 Fréchet 导数都存在,则两者一致且唯一,可统一记为 F'(x)。
- (4) 在定义中的 $A \cdot h$ 和 $A \cdot \Delta x$ 中的 "·",表示一种"线性作用",这种作用可能为数字的相乘、矩阵向量乘法、内积运算等等;
- (5) 无论算子 F 本身是线性还是非线性的,它在某点 x_0 处的导数 $F'(x_0) = A$ 一定是线性算子。

4. 算子导数的计算

我们只需要计算 Gâteaux 导数即可, 即需要计算极限

$$\lim_{t\to 0}\frac{F(x+th)-F(x)}{t}=DF(x,h)=F'(x)\cdot h$$

若今

$$g(t) = F(x + th),$$

则根据 Gâteaux 导数的定义 可得

$$DF(x,h) = \lim_{t \to 0} \frac{F(x+th) - F(x)}{t} = \lim_{t \to 0} \frac{g(t) - g(0)}{t} = g'_t(0)$$

可以看到, 求 Gâteaux 微分 DF(x,h) 的过程上可以转化为简单的求一 元函数 q(t) 在 t=0 处的导数的问题.

(1) 一元函数导数的重新解释

例: 对于一元函数 $f: \mathbb{R} \to \mathbb{R}$, 求其导数 f'(x).

解: 设 g(t) = f(x + th), 则

$$g'_{t}(0) = \lim_{t \to 0} \frac{g(t) - g(0)}{t} = \lim_{t \to 0} \frac{f(x+th) - f(x)}{t}$$
$$= \lim_{t \to 0} \frac{f(x+th) - f(x)}{(x+th) - x} \cdot h = f'(x) \cdot h$$

这里的 f'(x) 是传统的一元函数的"导数",但这里不是将它看作是一个简单的"数",而是一个线性算子,即

$$f'(x): \mathbb{R} \to \mathbb{R}: \quad \forall h \in \mathbb{R}, \quad f'(x) \cdot h = y \in \mathbb{R}$$

注: 这里 "·" 所表示的 "线性作用" 为数字之间的乘法运算.

(2) 多元函数导数(梯度)的重新解释

例: 对于 $f: \mathbb{R}^n \to \mathbb{R}$, $\boldsymbol{x} = (x_1, x_2, \dots, x_n)^T$, 设 f 具有连续偏导数, 求 $f'(\boldsymbol{x})$.

解: 设
$$g(t) = f(\boldsymbol{x} + t\boldsymbol{h}), \ \forall \boldsymbol{h} = (h_1, h_2, \cdots, h_n)^T \in \mathbb{R}^n$$
, 则

$$g'(t) = (f(x_1 + th_1, x_2 + th_2, \cdots, x_n + th_n))'_t$$

$$= \frac{\partial f}{\partial x_1}(\mathbf{x} + t\mathbf{h})h_1 + \frac{\partial f}{\partial x_2}(\mathbf{x} + t\mathbf{h})h_2 + \cdots + \frac{\partial f}{\partial x_n}(\mathbf{x} + t\mathbf{h})h_n$$

从而

$$g'(0) = \frac{\partial f}{\partial x_1}(\boldsymbol{x})h_1 + \frac{\partial f}{\partial x_2}(\boldsymbol{x})h_2 + \dots + \frac{\partial f}{\partial x_n}(\boldsymbol{x})h_n,$$

$$= (h_1, h_2 \cdots h_n) \left(\frac{\partial f}{\partial x_1}(\boldsymbol{x}), \frac{\partial f}{\partial x_2}(\boldsymbol{x}), \cdots \frac{\partial f}{\partial x_n}(\boldsymbol{x}) \right)^T$$

$$= (\nabla f(\boldsymbol{x}), \boldsymbol{h})$$

$$= \nabla f(\boldsymbol{x}) \cdot \boldsymbol{h},$$

其中 $\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}), \frac{\partial f}{\partial x_2}(\mathbf{x}), \cdots, \frac{\partial f}{\partial x_n}(\mathbf{x})\right)^T$ 为多元函数的梯度. 因此,

$$f'(\boldsymbol{x}) = \nabla f(\boldsymbol{x})$$

注: 这里 "·" 所表示的"线性作用"关系为向量与向量之间的内积运算.

例: 设
$$F(x) = ||Ax - y||_2^2$$
, 其中 $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, 求 $F'(x)$.

解: 设
$$g(t) = F(\boldsymbol{x} + t\boldsymbol{h}), \ \forall \boldsymbol{h} \in \mathbb{R}^n, \ \mathbb{U}$$

$$g(t) = ||\boldsymbol{A}(\boldsymbol{x} + t\boldsymbol{h}) - \boldsymbol{y}||_2^2$$

$$= (\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y} + t\boldsymbol{A}\boldsymbol{h}, \boldsymbol{A}\boldsymbol{x} - \boldsymbol{y} + t\boldsymbol{A}\boldsymbol{h})$$

$$= t^2||\boldsymbol{A}\boldsymbol{h}||_2^2 + 2t(\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}, \boldsymbol{A}\boldsymbol{h}) + ||\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}||_2^2$$

即
$$g'(0) = 2(\mathbf{A}\mathbf{x} - \mathbf{y}, \mathbf{A}\mathbf{h}) = (2\mathbf{A}^T(\mathbf{A}\mathbf{x} - \mathbf{y}), \mathbf{h})$$
,从而 $F'(\mathbf{x}) = 2\mathbf{A}^T(\mathbf{A}\mathbf{x} - \mathbf{y})$

5. 向量值函数的导数

在实际问题中,我们经常遇到求解线性或非线性方程组的问题,可以统 一地表示为:

$$\begin{cases} f_1(x_1, x_2, \dots x_n) = y_1 \\ f_2(x_1, x_2, \dots x_n) = y_2 \\ \vdots \\ f_m(x_1, x_2, \dots x_n) = y_m \end{cases}$$

其中 f_1, f_2, \dots, f_m 具有连续偏导数.

向量值函数

向量值函数定义如下

$$m{y} = m{F}(m{x}) = \left(egin{array}{c} f_1(m{x}) \\ f_2(m{x}) \\ dots \\ f_m(m{x}) \end{array}
ight), \ egin{array}{c} m{F}: \mathbb{R}^n
ightarrow \mathbb{R}^m \\ m{x} = (x_1, x_2, \cdots, x_n)^T \in \mathbb{R}^n \\ m{y} = (y_1, y_2, \cdots, y_m)^T \in \mathbb{R}^m \end{array}$$

这里 f_1, f_2, \dots, f_m 为具有连续偏导数的线性或非线性n元函数.

向量值函数的一阶导数: Jacobi矩阵

设
$$g(t) = \boldsymbol{F}(\boldsymbol{x} + t\boldsymbol{h})$$
, $\forall \boldsymbol{h} = (h_1, h_2, \cdots, h_n)^T \in \mathbb{R}^n$, 则

$$g'(t) = \left(egin{array}{c} f_1(oldsymbol{x} + toldsymbol{h}) \ dots \ f_m(oldsymbol{x} + toldsymbol{h}) \end{array}
ight)^{'} = \left(egin{array}{c} (f_1(oldsymbol{x} + toldsymbol{h}))^{'}_t \ dots \ (f_m(oldsymbol{x} + toldsymbol{h}))^{'}_t \end{array}
ight)$$

$$g'(0) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} h_1 + \frac{\partial f_1}{\partial x_2} h_2 + \dots + \frac{\partial f_1}{\partial x_n} h_n \\ \vdots \\ \frac{\partial f_m}{\partial x_1} h_1 + \frac{\partial f_m}{\partial x_2} h_2 + \dots + \frac{\partial f_m}{\partial x_n} h_n \end{pmatrix}$$

,

(wsli@niust.edu.cn)

$$g'(0) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}, \frac{\partial f_1}{\partial x_2}, \cdots, \frac{\partial f_1}{\partial x_n} \\ \vdots & & \\ \frac{\partial f_m}{\partial x_1}, \frac{\partial f_m}{\partial x_2}, \cdots, \frac{\partial f_m}{\partial x_n} \end{pmatrix}_{m \times n} \cdot \boldsymbol{h},$$

从而得到

$$m{F}'(m{x}) = \left(egin{array}{ccc} rac{\partial f_1}{\partial x_1}, rac{\partial f_1}{\partial x_2}, \cdots, rac{\partial f_1}{\partial x_n} \ dots & dots \ rac{\partial f_m}{\partial x_1}, rac{\partial f_m}{\partial x_2}, \cdots, rac{\partial f_m}{\partial x_n} \end{array}
ight)_{m{m} imes n}$$
 —Jacobi矩阵

该矩阵通常被称为是算子 F 在 x 处的 Jacobi 矩阵.

4.3 不动点迭代基本原理

设 $F:D\subset X\to Y$ 为线性或非线性算子, 考虑下面方程的求解问题

$$F(x) = 0, \ x \in X$$

将该方程等价地改写为

$$F(x) = 0 \Leftrightarrow x = \Phi(x),$$

其中 Φ 是连续算子($X \to X$), 称满足 $x^* = \Phi(x^*)$ 的点 x^* 为不动点, 显然求出不动点就得到原问题的解.

$$x^{(k+1)} = \Phi(x^{(k)}),$$

得到迭代序列 $\{x^{(k)}\}$.

如果不动点迭代格式得到的迭代序列收敛, 即存在 x^* , 使得

$$\lim_{k \to \infty} x^{(k)} = x^* \qquad (\lim_{k \to \infty} ||x^{(k)} - x^*|| = 0),$$

则有

$$\lim_{k\to\infty} x^{(k+1)} = \lim_{k\to\infty} \Phi(x^{(k)}) \quad \Rightarrow x^* = \Phi(x^*) \quad \Rightarrow F(x^*) = 0,$$

从而得到原问题的解.

问题: 不动点迭代序列什么情况下收敛? 收敛速度如何?

不动点迭代的压缩映射原理

定义: 设 X 为 Banach 空间, 算子 $\Phi:D\subset X\to X$, 若存在常数 $L\in(0,1)$, 使得对任意 $x,y\in D_0\subset D$, 都有

$$||\Phi(x) - \Phi(y)|| \le L||x - y||,$$

则称 Φ 为 D_0 上的压缩映射, L 称为压缩因子.

定理4.9: (压缩映射原理) 设 X 为 Banach 空间, 如果

- (1) 闭集 $D_0 \subseteq X$; (闭集合)
- (2) 算子 $\Phi: D_0 \to D_0$; (自身映射到自身)
- (3) 算子 Φ 在 D_0 上是压缩映射; (压缩映射), 则算子 Φ 在 D_0 上存在唯一的不动点 x^* , 它是下面迭代格式

$$x^{(k+1)} = \Phi(x^{(k)}),$$

得到的迭代序列 $\{x^{(k)}\}$ 的极限点(即 $\lim_{k\to\infty}x^{(k)}=x^*$), 并有如下估计:

$$||x^{(k)} - x^*|| \le \frac{1}{1 - L} \left| \left| x^{(k+1)} - x^{(k)} \right| \right| \le \frac{L^k}{1 - L} ||x^{(0)} - \Phi(x^{(0)})||,$$

其中 L 为压缩因子, $x^{(0)} \in D_0$ 为迭代初值.

定义: 设迭代序列 $\{x^{(k)}\}$ 收敛于 x^* , 记误差为 $e^{(k)}=x^{(k)}-x^*$, 则 (1)若存在实数 $p\geq 1$ 及非零常数 C, 使得

$$\lim_{k \to \infty} \frac{||e^{(k+1)}||}{||e^{(k)}||^p} = C$$

则称 $\{x^{(k)}\}$ 是 p 阶收敛, C 称为渐近误差常数.

(2)若存在实数 $p \ge 1$ 及常数 C > 0 (当 p = 1 时规定 0 < C < 1), 以及正整数 K. 使得当 k > K 时. 有

$$||e^{(k+1)}|| \le C||e^{(k)}||^p$$

则称 $\{x^{(k)}\}$ 至少 p 阶收敛.

对于不动点迭代格式 $x^{(k+1)} = \Phi(x^{(k)})$, 其收敛速度和 Φ 相关.

定理4.10: 设 x^* 为算子 Φ 的不动点, 整数 p>1, 且 $\Phi^{(p)}$ 在 x^* 的邻域 连续, 且满足

$$\Phi'(x^*) = 0, \dots, \Phi^{(p-1)}(x^*) = 0, \quad \Phi^{(p)}(x^*) \neq 0$$

则迭代法 $x^{(k+1)} = \Phi(x^{(k)})$ 生成的迭代序列 $\{x^{(k)}\}$ 在 x^* 的邻域是 p 阶 收敛的.

(wsli@njust.edu.cn)

4.4 求解非线性方程组的迭代法

4.4.1 不动点迭代法

定理4.11: 设 $D_0 = \{(x_1, x_2, \cdots, x_n) | a_i \leq x_i \leq b_i, i = 1, 2, \cdots, n\}$, 这里 $a_i, b_i (i = 1, 2, \cdots, n)$ 为常数, 设 $\Phi: D_0 \subset R^n \to R^n$ 具有一阶连续偏导, $\Phi(D_0) \subset D_0$, 若存在常数L < 1, 满足

$$\left| \frac{\partial g_i}{\partial x_j} \right| \le \frac{L}{n}, \ \forall \ \boldsymbol{x} \in D_0, \ i, j = 1, 2, \cdots, n.$$
 (4.1)

则迭代序列 $\{x^{(k)}|x^{(k)}=\Phi(x^{(k-1)})\}$ 对任意初始近似 $x^{(0)}\in D_0$ 收敛于 Φ 的不动点 $x^*\in D_0$. 并有估计:

$$||m{x}^* - m{x}^{(k)}||_{\infty} \leq rac{L^k}{1 - L}||m{x}^{(1)} - m{x}^{(0)}||_{\infty}.$$

局部收敛性(即在 x* 附近收敛).

定理4.12:(Ostrowski) 设算子 $\Phi:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 有唯一不动点 $x^*\in\int(D)$, 且在 x^* 处 Fréchet 可导, $\Phi'(x^*)$ 的谱半径满足

$$\rho\left(\Phi'(x^*)\right) < 1$$

则存在开球 $S = S(x^*, \delta) \subset D$, 对于任意 $x^0 \in S$, 由 $x^{(k+1)} = \Phi(x^{(k)})$ 生成的迭代序列 $\{x^{(k)}\}$ 收敛于 x^* .

72 / 85

例: 用不动点迭代法求解

$$\begin{cases} x_1^2 - 10x_1 + x_2^2 + 8 = 0 \\ x_1x_2^2 + x_1 - 10x_2 + 8 = 0 \end{cases}$$

解: 将方程组写成 $x = \Phi(x)$ 形式, 其中

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad \Phi(x) = \begin{pmatrix} g_1(x) \\ g_2(x) \end{pmatrix} = \begin{pmatrix} \frac{1}{10}(x_1^2 + x_2^2 + 8) \\ \frac{1}{10}(x_1 + x_1x_2^2 + 8) \end{pmatrix}$$

设 $D = \{(x_1, x_2)^T | 0 \le x_1, x_2 \le 1.5 \}$ (闭区域), 则可验证

$$0.8 \le g_1(x), g_2(x) \le 1.5$$

即 $\Phi(D) \subset D$ (自身到自身的映射).

对任意 $x, y \in D$, 有

$$||\Phi(x) - \Phi(y)||_1 = |g_1(x) - g_1(y)| + |g_2(x) - g_2(y)|$$

$$= \frac{1}{10} |x_1^2 - y_1^2 + x_2^2 - y_2^2| + \frac{1}{10} |x_1 x_2^2 - y_1 y_2^2 + x_1 - y_1|$$

$$\leq 0.75 (|x_1 - y_1| + |x_2 - y_2|) = 0.75 ||x - y||_1$$

即币为压缩映射。

根据压缩映射原理,由 $\{x^{(k+1)} = \Phi(x^{(k)})\}$ 生成的迭代序列 $\{x^{(k)}\}$ 收 敛。

取
$$(x_1^{(0)}, x_2^{(0)})^T = (0, 0)^T$$
,则可得到
$$(x_1^{(1)}, x_2^{(1)})^T = (0.8, 0.8)^T, \qquad (x_1^{(2)}, x_2^{(2)})^T = (0.928, 0.928)^T, \\ (x_1^{(3)}, x_2^{(3)})^T \approx (0.97283, 0.97327)^T, \qquad (x_1^{(4)}, x_2^{(4)})^T \approx (0.97283, 0.97327)^T, \\ (x_1^{(5)}, x_2^{(5)})^T \approx (0.98365, 0.98943)^T, \qquad (x_1^{(6)}, x_2^{(6)})^T \approx (0.99465, 0.99662)^T$$

4.4.2 Newton 法

设 $F: D \subset \mathbb{R}^n \to \mathbb{R}^n$ F-可导, 考虑非线性方程组

$$F(x) = 0.$$

设 $x^* \in D$ 为方程组的解, $x^{(0)}$ 为 x^* 的近似初始值, $x^{(0)} \in D$, 由F- 导数的定义:

$$oldsymbol{0} = oldsymbol{F}(oldsymbol{x}^*) = oldsymbol{F}(oldsymbol{x}^{(0)}) + oldsymbol{F}'(oldsymbol{x}^{(0)}) \cdot (oldsymbol{x}^* - oldsymbol{x}^{(0)}) + \omega(oldsymbol{x}^{(0)}, oldsymbol{x}^* - oldsymbol{x}^{(0)}),$$

其中 $\omega(x^{(0)}, x^* - x^{(0)})$ 是高阶无穷小量, 略去此项, 得

$$m{F}(m{x}^{(0)}) + m{F}'(m{x}^{(0)}) \cdot (m{x}^* - m{x}^{(0)}) pprox m{0}$$
 ,

于是 $x^* \approx x^{(0)} - [F'(x^{(0)})]^{-1}F(x^{(0)})$,记此近似值为 $x^{(1)}$,用它作为初值又可导出新的 x^* 的近似值

$$oldsymbol{x}^{(2)} = oldsymbol{x}^{(1)} - [oldsymbol{F}'(oldsymbol{x}^{(1)})]^{-1}oldsymbol{F}(oldsymbol{x}^{(1)}), \; \cdots$$

一般地,

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - [\mathbf{F}'(\mathbf{x}^{(k)})]^{-1}\mathbf{F}(\mathbf{x}^{(k)}), \ k = 0, 1, 2, \cdots$$
 (4.2)

称为Newton迭代法.

 $F'(x^{(k)})$ 为F(x)在 $x^{(k)}$ 处的Jacobi矩阵,每一次迭代都要求 $F'(x^{(k)})$ 的逆,实际计算时可采用下面等价格式:

$$\begin{cases}
\mathbf{F}'(\mathbf{x}^{(k)}) \cdot \Delta \mathbf{x}^{(k)} = -\mathbf{F}(\mathbf{x}^{(k)}), \\
\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}.
\end{cases}$$
(4.3)

即Newton迭代法每一步要解一个n阶线性方程组, $\Delta x^{(k)}$ 看作对前一次 $x^{(k)}$ 的修正。

算法(Newton迭代法):

- (i) 给定初值 $x^{(0)}$ 及计算精度 ϵ_1, ϵ_2 并置k=0:
- (ii) 计算 $F(x^{(k)})$ 并记为 $b^{(k)}$. 若 $||b^{(k)}|| < \epsilon_1$. 输出 $x^{(k)}$. 转(vii). 否则转(iii):
- (iii) 计算 $F'(x^{(k)}) = (\partial_i f_i(x^{(k)}))$ 并记为 $A^{(k)}$;
- (iv) 解方程组 $A^{(k)} \Delta x^{(k)} = -b^{(k)}$ 得 $\Delta x^{(k)}$:
- $(\mathbf{v}) \; \; \mathbf{E} \, \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}.$
- (vi) 若 $||\Delta x^{(k)}|| < \epsilon_2$, 输出 $x^{(k+1)}$, 迭代终止, 否则 $k+1 \to k$. $x^{(k+1)} \to x^{(k)}$ 转(ii).

例: 用Newton 法解方程组

$$\begin{cases} x_1^2 - 10x_1 + x_2^2 + 8 = 0 \\ x_1x_2^2 + x_1 - 10x_2 + 8 = 0 \end{cases}$$

解: 记

$$F(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix} = \begin{bmatrix} x_1^2 - 10x_1 + x_2^2 + 8 \\ x_1x_2^2 + x_1 - 10x_2 + 8 \end{bmatrix},$$

F(x)的Jacobi阵

$$F'(x) = \begin{bmatrix} 2x_1 - 10 & 2x_2 \\ x_2^2 + 1 & 2x_1x_2 - 10 \end{bmatrix}$$

取
$$oldsymbol{x}^{(0)}=(0,0)^T$$
,解 $oldsymbol{F}'(oldsymbol{x}^{(0)})\Deltaoldsymbol{x}^{(0)}=-oldsymbol{F}(oldsymbol{x}^{(0)})$,即

$$\begin{bmatrix} -10 & 0 \\ 1 & -10 \end{bmatrix} \begin{bmatrix} \Delta x_1^{(0)} \\ \Delta x_2^{(0)} \end{bmatrix} = - \begin{bmatrix} 8 \\ 8 \end{bmatrix}$$

得: $\Delta x^{(0)} = (0.8, 0.8)^T$, 如此继续下去, 得到:

与前面不动点迭代法相比, 收敛要快得多.

对于非线性方程组的 Newton 迭代法, 我们有收敛性结论:

定理4.13: 设 $F:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 满足 $F(x^*)=\mathbf{0},\ x^*\in D$, 在 x^* 的开邻域 $S_0\subset D$ 中有一阶连续导数且 $F'(x^*)$ 可逆,则

- (1) 存在半径为 δ 的闭球 $S_{\delta} = S(\boldsymbol{x}^*, \delta) \subset S_0$,使得 $\boldsymbol{F}(\boldsymbol{x})$ 对闭球中的 所有点都有意义;
- (2) 由 Newton 迭代格式产生的迭代序列 $\{x^{(k)}\}$ 局部收敛于 x^* , 且是 超线性收敛;
- (3) 若 Jacobi 矩阵满足 Lipschitz 条件,即存在 $\gamma>0$ 使得

$$||F'(x) - F'(x^*)|| \le \gamma ||x - x^*||, \forall x \in S_{\delta}$$

则 Newton 迭代法至少平方收敛。

Newton法的缺点:

- (1) 每一步需要计算 $F(x^{(k)})$ 和 $F'(x^{(k)})$ 及求解线性方程组, 计算量大
- (2) $x^{(0)}$ 必须靠近 x^*

1. 简单Newton法

在Newton法中,每次迭代要求 $F'(x^{(k)})$,要计算 n^2 个偏导数,计算量很大,若改为计算固定点 $x^{(0)}$ 的 $F'(x^{(0)})$,迭代公式变为:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - [\mathbf{F}'(\mathbf{x}^{(0)})]^{-1} \mathbf{F}(\mathbf{x}^{(k)}), \quad k = 0, 1, 2, \cdots$$
 (4.4)

称为简单Newton迭代法. 它只有线性收敛速度, 失去Newton法收敛速度快的优点.

2. 离散Newton法

在实际使用Newton法时,为避免计算F'(x),通常可用<mark>差商代替偏导数</mark>,即用矩阵J(x,h) 代替F'(x)

$$\boldsymbol{J}(\boldsymbol{x},\boldsymbol{h}) = \begin{pmatrix} \frac{1}{h_1}[f_1(\boldsymbol{x} + h_1\boldsymbol{e}_1) - f_1(\boldsymbol{x})] & \cdots & \frac{1}{h_n}[f_1(\boldsymbol{x} + h_n\boldsymbol{e}_n) - f_1(\boldsymbol{x})] \\ \vdots & & \vdots \\ \frac{1}{h_1}[f_n(\boldsymbol{x} + h_1\boldsymbol{e}_1) - f_n(\boldsymbol{x})] & \cdots & \frac{1}{h_n}[f_n(\boldsymbol{x} + h_n\boldsymbol{e}_n) - f_n(\boldsymbol{x})] \end{pmatrix}$$

这里 $\mathbf{h} = (h_1, \dots, h_n)^T$, \mathbf{e}_i 为第i个坐标向量.

如果 $m{J}(m{x},m{h})^{-1}$ 存在,就用 $m{J}(m{x}^{(k)},m{h}^{(k)})^{-1}$ 代替Newton 迭代公式中的 $m{F}'(m{x}^{(k)})^{-1}$,

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \mathbf{J}(\mathbf{x}^{(k)}, \mathbf{h}^{(k)})^{-1} \mathbf{F}(\mathbf{x}^{(k)}), \quad k = 0, 1, \cdots$$
 (4.5)

其中 $\{h^{(k)}\}$ 为预先给定的向量序列.

则得离散Newton法:

若取
$$\boldsymbol{h}^{(k)} = (f_1(\boldsymbol{x}^{(k)}), f_2(\boldsymbol{x}^{(k)}), \cdots, f_n(\boldsymbol{x}^{(k)}))^T = \boldsymbol{F}(\boldsymbol{x}^{(k)}),$$
 于是

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \mathbf{J}(\mathbf{x}^{(k)}, \mathbf{F}(\mathbf{x}^{(k)}))^{-1} \mathbf{F}(\mathbf{x}^{(k)}), \quad k = 0, 1, \cdots$$
 (4.6)

称为Newton-Stefensen方法, 该算法具有平方收敛速度, 每步需要计算n+1 个F(x) 函数值.