Lecture: Prof. Dr. Christian Fries, Exercises: Dr. Andrea Mazzon, Tutorium: Lorenzo Berti Wintersemester 2021/22

Exercise 2

Given the tenor discretization $T_0 < T_1 < \cdots < T_n$, consider the caplets paying

$$\max(L(T_i, T_{i+1}; T_i) - K, 0) (T_{i+1} - T_i)$$
 in T_{i+1} ,

i = 1, ..., n - 1, for a given LIBOR market model represented by the processes $L_i := L(T_i, T_{i+1})$, i = 1, ..., n - 1.

Derive the analytic formula of such caplets under the displaced lognormal model, that is, assuming that for any i = 1, ..., n - 1, the process L_i follows the dynamics

$$dL_i(t) = \mu_i(t)dt + (L_i(t) + d_i)\sigma_i^D(t)dW_i(t), \quad t \ge 0,$$

under the real-world measure \mathbb{P} . Also assume here that $d_i > 0$ and that $\sigma_i^D(\cdot)$ are deterministic functions.

Solution

Fix an index i = 1, ..., n - 1. Consider then the process L_i following the dynamics

$$dL_i(t) = \mu_i(t)dt + (L_i(t) + d_i)\sigma_i^D(t)dW_i(t), \quad t \ge 0,$$

under the real-world measure \mathbb{P} . Note that L_i is a martingale under the measure $Q^{P(T_{i+1})}$, i.e., has the dynamics

$$dL_i(t) = (L_i(t) + d_i)\sigma_i^D(t)dW_i^{Q^{P(T_{i+1})}}(t), \quad t \ge 0$$

where $W^{Q^{P(T_{i+1})}}$ is a $Q^{P(T_{i+1})}$ -Brownian motion.

Also note that

$$\max (L(T_i, T_{i+1}; T_i) - K, 0) (T_{i+1} - T_i) = \max (L_i(T_i) - K, 0) (T_{i+1} - T_i)$$
$$= \max ((L_i(T_i) + d_i) - (K + d_i), 0) (T_{i+1} - T_i),$$

so that evaluating the caplet with strike K written on the underlying L_i is equivalent to evaluate a caplet with strike $K + d_i$ written on the underlying $\bar{L}_i := L_i + d_i$. We have that \bar{L}_i satisfies

$$d\bar{L}_i(t) = dL_i(t) = (L_i(t) + d_i)\sigma_i^D(t)dW_i^{Q^{P(T_{i+1})}}(t) = \bar{L}_i(t)\sigma_i^D(t)dW_i^{Q^{P(T_{i+1})}}(t), \quad t \ge 0,$$

i.e., it follows log-normal dynamics. This implies that we can get the price of the caplet written on \bar{L}_i with strike $K + d_i$ from formula (78) of the script, where the initial value is the initial value of \bar{L}_i , i.e., $\bar{L}_i(0) = L_i(0) + d_i$, and the strike is $K + d_i$. This gives us the formula of the caplet written on L_i and solves the exercise.