Shannon, Fano, Huffman . Now we know X > Hp(x). but we have to prous Ho(x) & L & Ho(x) +1 li > - log o p(xi) } may not be an integer. li > [-lugo p(xi)] for opt: li=[-logo p(xi)] ≥ D-1 = ≥ D-[-log, P(x1)] = = = (log p p (xi)) = E p(xi) = | The code with li = [-logp(P(xi))] is called shannon coole The above proof shoros that such code is possible (& p-lis1) - logo p(xi) s li s - logo p(xi) +1 (x s [x] sx+) E[-log , p (xi)] & F[li] & F[-log p (xi) +1] Ho(x) & L & Ho(x) +1 (li=[-logop(xi)] Symbol: A B C D E 1939 7/39 6/39 6/39 8/39 (ix)q, post 2,480 2.7 1.379 2.7 2.963 [-tog; p(xi)] 2 = 21 adewords 00 010 011 100 101 H(x)= 0.530 + 0.445 + 0.830 + 0.379 = 2.184 $\frac{30+21+1836+15}{39} = \frac{34}{102} = \frac{34}{29} = 2.61$

Shannon Code

Suppose me ham an alphabet (x1, x2, ... xn). with prob. (pupe... pn). The desired codeword length a one li = [- log : Pi].

* · Cons	much al	nonnon	code			×	plx
	1					1	0.25
×		12	12	14	5	2	0.25
P(x)	0.75	0.25				3	0.20
1	The state of the s	10.25	0.20	0.12	21.0	Ч	0.15
logipix)	2	2	2.32	2.736	2.736.	5	0.15
li	2	2	3	3	3	The Carton	1841
Code					3	(00)	
Coale	00	01	100	101	110	9/00	
						200	-

Huffman Code:

Suppose there is an alphabet

Skol) A = {x, x2, ... xn}. Pick up

two xi & xj which have smallest

prot pi & py. Create a subtree that has two characters x; and x; atteast at leaves

(Stop 2). Set up new pro6 _, (11) 211

Pij = pi+Ps

Remove 21 & x's and add 21's

A' = AUjariy- ¿nionjy.

1A' = 1A1-1

Repeat this meigling, until one symbol is left. |A(n) |= |

Fano code:

- D- We have a list of symbols fx,, x, ... x, y-> fp,,p,...pnj.
- D → Divide the symbols in such a way that larger prob on left side and smaller prob on night side

5	жч	X3	21,	NA
p	124	Pa	Pi	P,
P	124	P3	P.	

- 3 Divide the list such that total prot on deft side is as close as total prot on right hand side.
- (G) → Assign Left part → 0 Right port →1
- 3- Apply Recursively -> Each symbol will have leaf excle in tree

		1				
symbol	A	13	C	P	E	1
prob.	0.385	0.179	0.154	0.154	0.128	T
	0		8 3 1			
	0	_ 1	0			-
				0	1	
	00	01	10	110	111	
	A	B	C	D	E	