Linear Systems and Matrix Equations

Linear Independence

A set of vectors $\{v_1,...,v_k\}$ is **linearly** independent if the vector equation

 $c_1\vec{v}_1 + ... c_k\vec{v}_k = \vec{0}$ has only the trivial

solution($c_1 = ... = c_k = 0$).

is a transformation T that satisfies Linear Transformation both the following conditions:

 $\bullet \ T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$

• $T(c\vec{u}) = cT(\vec{u})$

Definition

Linear Functions Consistent

All terms are of degree 0 or 1.

lin. systems is consistent if either 1 or ∞ solutions exist else inconsistent.

Row-Equivalence Two matrixes are row-equivalent if there is a sequence of **EROS** that transforms one into the other.

Pivot Position is a position in a matrix that corresponds to a leading 1 in the matrix reduced echelon form.

Pivot Columns is a culumn of A that contain a **pivot**. Leading Entry of a row in a matrix is the leftmost nonzero entry in the row.

Basic Variables in a system of linear equations are the of the matrix for the system.

Free Variables pivot columns. Column Vector is a matrix with only one column.

Lin. Combination

Span $\operatorname{span}(\vec{v})$ is the set of all scalar multiples of \vec{v} , where $\vec{c} \neq \vec{0}$.

 $I_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$ Identity Matrix

Homogeneous A homogeneous system of linear equations can be written in the form $A\vec{x} = \vec{0}$.

Trivial Sol. The trivial solution to a homogeneous system is $\vec{x} = \vec{0}$. Any other solutions are called nontrivial solutions.

A set of vectors $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\} \in \mathbb{R}^n$ is Linear Dependence linearly dependent if there exist weights such that $c_1 \vec{v}_1 + ... + c_p \vec{v}_p = \vec{0}$ where where at least one $c \neq 0$.

For a linear transformation T: Surjective(onto) for every vector $\vec{w} \in W$, there exist a vector $\vec{v} \in V$ such that T(v) = W.

For a linear transformation T: Injective(one-to-one) meaning that each vector in V maps to a unique vector in W.

 $\vec{e}_j = \begin{bmatrix} \vdots \\ 1 \\ \vdots \end{bmatrix}$ the 1 is on the jth row. Standard Vector

Theorems

Properties 1 Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and $c, d \in \mathbb{R}$ then: $\bullet \vec{u} + \vec{v} = \vec{v} + \vec{u}$

 $\bullet \vec{u} + \vec{0} = \vec{u} \bullet \vec{u} + (-\vec{u}) = \vec{0} \bullet c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v} \bullet (c + d)\vec{w} = c\vec{w} + d\vec{w}$

• $c(d\vec{u}) = (cd)\vec{u}$

Theorem 1 (Uniqueness of Reduced Echelon Form)

Every matrix is row equivalent to a unique row echelon form.

Theorem 2 (Existence of Solutions) A system of linear equations is consistent if and only if the last (rightmost) column of its augmented matrix is not a pivot column.

Theorem 3 (Matrix Eq., Vector Equ., and Lin. Systems)

If A is a $m \times n$ matrix with columns $\vec{a}_1, ..., \vec{a}_n, \vec{b} \in \mathbb{R}^n$ then the variables that correspond to pivot columns matrix equation $A\vec{x} = \vec{b}$ has same solution set as vector equation $x_1\vec{a}_1 + ... + x_n\vec{a}_n = \vec{b}$ wich is the same solution set to system of are the variables that do not correspond to linear equation with augmented matrix $A|\vec{b}| = \vec{a}_1, ..., \vec{a}_n|\vec{b}|$

> Theorem 4 (Existence of Solutions) Let $A_{n \times m}$ the following are equivalent: $\bullet \ \forall \vec{b} \in \mathbb{R}^n, A\vec{x} = \vec{b} \ has \ a \ solution. \ \bullet \ each$ \vec{b} is the linear combination of the columns of A. • Columns of A $span \mathbb{R}^n$. • A has a pivot in every row.

Theorem 5 If $A_{m \times n}$, \vec{u} , $\vec{v} \in \mathbb{R}^n$ $c \in \mathbb{R}$, where $A\vec{u}$ is defined $\bullet \ A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v} \bullet A(c\vec{u}) = c(A\vec{u})$

Theorem 6 (Nontrivial Sol. of Homogeneous Equ.) The homogeneous equation $A\vec{x} = 0$ has a nontrivial solution if and only if the equation has at least one free variable.

Theorem 7 (Solution Sets with Free Variables) Suppose the equation $A\vec{x} = \vec{b}$ is consistent. Let p be a particular solution to the equation $A\vec{x} = \vec{b}$ Then the solution set of $A\vec{x} = \vec{b}$ is the set of all vectors of the form $\vec{w} = \vec{p} + \vec{v}_h$, where v_h is the solution of the homogeneous equation $A\vec{x} = \vec{0}$.

Theorem 8 (Sets of Two or More Vectors) The set of s = $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_p\}$ of 2 or more vectors is linearly dependent if and only if at least 1 vector is a linear combination of the other.

Theorem 9 (Sets with More Vectors than Entries) If with $V \to W$, if $T(\vec{v}_1) = T(\vec{v}_2)$, then $\vec{v}_1 = \vec{v}_2^p > n$, then the set $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\} \in \mathbb{R}$ must be linearly demeaning that each vector in V maps to a pendent.

> Theorem 10 (Sets Containing the Zero Vector) Any set of vectors that contains the zero vector is linearly dependent.

> Theorem 11 (One-to-One Transformations) Let $T: \mathbb{R}^n \to$ \mathbb{R}^m be a linear transformation. Then T is injective if and only if $T(\vec{x}) = \vec{0}$ has only the trivial solution.

Theorem 12 (The Standard Matrix of a Lin. Trans.)

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there is unique matrix A such that $T(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$. A is the $m \times n$ matrix whose jth column is the vector $T(\vec{e}_j)$: $A = [T(\vec{e}_1), T(\vec{e}_2), ..., T(\vec{e}_n)]$.

Theorem 13 (One-to-One and Onto Tran. and Matrices)

Let A be the standard matrix for the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$. Then: \bullet T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span $\mathbb{R}^m \bullet T$ is **Injective** if and only if the columns of A are linearly independent.

Coefficient Matrix Example

$$\begin{cases} A_1 x_1 + A_2 x_2 + A_3 x_3 = \alpha \\ B_1 x_1 + B_2 x_2 + B_3 x_3 = \beta \end{cases} \Leftrightarrow \begin{bmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{bmatrix}$$
 (1)

Augmented Matrix Example

$$\begin{cases} A_1x_1 + A_2x_2 + A_3x_3 = \alpha \\ B_1x_1 + B_2x_2 + B_3x_3 = \beta \end{cases} \Leftrightarrow \begin{bmatrix} A_1 & A_2 & A_3 & \alpha \\ B_1 & B_2 & B_3 & \beta \end{bmatrix}$$

Elementary Row Operations (EROS)

- 1. [Replacement] Replace one row by sum of itself.
- 2. [Interchange] Swap position of 2 rows.
- 3. [Scaling] Multiply all entries in row by non-zero constant.

Echelon Form (ef)

- 1. All non-zero rows are above any rows of all-zero.
- 2. Each leading entry of a row is in a column to the right of the roe above it.
- 3. All entries in a column below a leading entry are 0.

Reduced Row Echelon Form (rref)

- 1. As to be in echelon form.
- 2. Leading entry in each row is 1.
- 3. Each leading 1 is the only non-zero entry in its column.

Vector Operations

$$\begin{pmatrix} A_1 \\ A_2 \end{pmatrix} + \begin{pmatrix} B_1 \\ B_2 \end{pmatrix} = \begin{pmatrix} A_1 + B_1 \\ A_2 + B_2 \end{pmatrix} \quad C \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} = \begin{pmatrix} CA_1 \\ CA_2 \end{pmatrix}, C \in \mathbb{R}$$

Matrix & Vector Multiplication

Let
$$A_{m \times n}, \vec{x} \in \mathbb{R}^n$$
. $A\vec{x} = [a_1, ..., a_n] \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = a_1 x_1 + ... + a_n x_n$

Matrix Algebra, Determinants, & Eigenvectors

Definition

Transposes Let A be an $m \times n$ matrix. The **transpose**

of A, denoted A^T , is the $n \times m$ matrix whose columns are formed from the

corresponding rows of A.

Diagonal Matrix $\;\;$ A $\mathbf{diagonal}$ \mathbf{matrix} is a matrix whose

non-diagonal entries are all 0.

Theorems & Properties

Properties 2 (Addition and Scalar Multiplication) Let

 $A_{n \times m}, B_{n \times m}, C_{n \times m}$ and $r, s \in \mathbb{R}$ then: $\bullet A + B = B + A$ $\bullet A + (B + C) = (A + B) + C \bullet A + 0 = A \bullet r(A + B) = rA + rB$

 $\bullet (r+s)A = rA + sA \bullet r(sA) = (rs)A$

Properties 3 (Properties of the Transpose) Let A and B be two matrices and let r be a scalar. Then the following properties hold (as long as the sums and products are defined.) \bullet $(A^T)^T = A$ \bullet $(A+B)^T = A^T + B^T$ \bullet $(rA)^T = rA^T$ \bullet $(AB)^T = A^T + B^T$

matrix operations

A = B if and only if their coresponding entries are equal.

Let $A_{n\times m}$, $B_{n\times m}$ then A+B is the $m\times n$ matrix obtained by adding the corresponding entries.

The scalar multiplication cA is the $m \times n$ matrix obtained by multiplying each entry of A by c.

Let $A_{n\times p}, B_{p\times m}$ such that $B = (\vec{b}_1, \vec{b}_2, \dots, \vec{b}_p)$ then $AB = (2) \quad (A\vec{b}_1, A\vec{b}_2, \dots, A\vec{b}_p)$

Orthogonality and Diagonalization

Definition

Inner Product $\vec{v} \cdot \vec{u} = \vec{v}^T \vec{u} = u_1 v_1 + ... + u_n v_n$

(Also called dot product or scalar product)

Length of \vec{x} $||\vec{x}|| = \sqrt{\vec{x} \cdot \vec{x}} = \sqrt{x_1^2 + \dots + x_n^2}$

Unit vectore A vector with $||\vec{x}|| = 1$

Normalization The formula $\vec{u} = \frac{\vec{x}}{||\vec{x}||}$ creat a unit vector

in the same direction as \vec{x} .

(Also called Norm or Magnitude)

Distance $dist(\vec{u}, \vec{v}) = \vec{u} - \vec{v}$ $dist(\vec{u}, \vec{v})$

Orthogonality $\vec{u} \cdot \vec{v} = 0$

Orthogonal Set A set of vectors $\{\vec{u}_1, ..., \vec{u}_p\} \in \mathbb{R}^n$ such that

each distinct vectors are orthogonal.

Orthogonal Basis For a subspace W of \mathbb{R}^n is a basis that is

also an orthogonal set.

Orthonormal set is a set of orthogonal unit vectors.

Orthogonal matrix
— Is a squared matrix whose columns are

 $\mbox{orthonormal.} \\ \mbox{Normal equation} \qquad A^T A \vec{x} = A^T \vec{b}$

Least-Squares Error $||\vec{b} - A\hat{x}||$

Least-Squares Problem

Symetric $A_{m \times n}$ is symetric if $A = A^T$

Spectrum Set of eigenvalues of $A_{n\times n}\{\lambda_1,...,\lambda_n\}$ is

called the **spectrum** of A.

Quadratic Form A quadratic form on \mathbb{R}^n is a function Q

from $\mathbb{R}^n \to \mathbb{R}$ of the form $Q(\vec{x}) = \vec{x}^T A \vec{x}$,

where A is a symetric matrix.

Orthogonal Complements Let W be a subspace of \mathbb{R}^n .

The orthogonal complement of W is: $W^{\perp} = \{ \vec{x} \in \mathbb{R}^n | \vec{x} \cdot \vec{w} = \vec{0}, \forall \vec{w} \in W \}$

Orthogonal Projection of $\vec{y} \in \mathbb{R}^n$ onto subspace W of \mathbb{R}^n is the vector \hat{y} in W such that $\vec{y} - \hat{y}$

is in W^{\perp} . (Noted $\operatorname{proj}_W(\vec{y})$)

is to find \vec{x} that makes $||\vec{b} - A\vec{x}||$

= dist $(\vec{b}, A\vec{x})$ as small as possible.

Orthogonally Diagonalizable Matrix $\;\;$ is a square matrix for which

there exist an orthogonal matrix P and a diagonal matrix D such that $A = PDP^{-1} = PDP^{T}$.

Theorems

Properties 4 Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and $c \in \mathbb{R}^n$ then:

- $\bullet \ \vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} \ \bullet \ (\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w} \ \bullet \ (c\vec{u}) \cdot \vec{v} = c(\vec{u} \cdot \vec{v}) = (c\vec{v}) \cdot \vec{u}$
- $\vec{u} \cdot \vec{u} = u_1^2 + \dots + u_n^2 \ge 0$

Theorem 14 (Fundamental Subspaces Theorem) Let $A_{M\times N}$ then: \bullet $(row(A))^{\perp} = nul(A) \bullet (COl(A))^{\perp} = nul(a^{\perp})$

Theorem 15 If $S = \{\vec{u}_1, ..., \vec{u}_p\}$ is an orthogonal set of non-zero vectors in \mathbb{R} then S is a linearly independent set.

Theorem 16 let $\{\vec{u}_1,...,\vec{u}_p\}$ be an **orthogonal basis** for $w \in \mathbb{R}^n$. Let $y \in W$. Then $\vec{y} = C_1\vec{u}_1 + ... + C_p\vec{u}_p$, $C_j = \frac{\vec{y} \cdot \vec{u}_i}{\vec{v}_i \cdot \vec{v}_i}$.

Theorem 17 Let $u=(\vec{u}_1\vec{u}_2\vec{u}_3)$, where $\{\vec{u}_1,\vec{u}_2,\vec{u}_3\}$ is orthonormal set. $u^T\cdot u=I$

Theorem 18 Let u be an orthogonal matrix, Let $\vec{x}, \vec{y} \in \mathbb{R}$: • $|u\vec{x}| = |\vec{x}|$ • $(u\vec{x}) \cdot (u\vec{y}) = \vec{x} \cdot \vec{y}$

Theorem 19 (Orthogonal Decomposition Theorem) Let W be a subspace with an orthogonal basis $\{\vec{u}_1,...,\vec{u}_p\}$. let $\vec{y} \in \mathbb{R}^n$ then: $\hat{y} = \left(\frac{\vec{y} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1}\right) \vec{u}_1 + ... + \left(\frac{\vec{y} \cdot \vec{u}_p}{\vec{u}_p \cdot \vec{u}_p}\right) \vec{u}_p$

Theorem 20 (Best Approximation Theorem) Let W be a subspace of \mathbb{R} . Let $\vec{y} \in \mathbb{R}^n$ and $\hat{y} = proj_W(\vec{y})$. Then \hat{y} is closest point to \vec{y} in W. That is $\forall \vec{v} \neq \vec{y} \ ||\vec{y} - \hat{y}|| < ||\vec{y} - \vec{v}||$

Theorem 21 (Orth. Proj. with Orthonormal Bases) Let W subspace in \mathbb{R}^n . Let $\{\vec{u}_1,...,\vec{u}_p\}$ be an orthonormal basis of W. $proj_W(\vec{y}) = (\vec{y} \cdot \vec{u}_1)\vec{u}_1 + ... + (\vec{y} \cdot \vec{u}_p)\vec{u}_p$ Let $U = (\vec{u}_1 \ \vec{u}_2 \ ... \ \vec{u}_p)$. Then $proj_W(\vec{y}) = UU^T\vec{y}$

Theorem 22 (Normal Equations and Least-Squares Sol.)

The set of least squares solutions of $A\vec{x} = \vec{b}$ coincide the non-empty solutions of the Normal equation.

Theorem 23 (Criteria for a Unique Least-Squares Sol.) Let $A_{M\times N}$ then the following are equivalent: \bullet $A\vec{x}=\vec{b}$ has unique least-square solution $\forall \vec{b} \in \mathbb{R}^n$. \bullet Columns of A are linearly independant. \bullet The matrix A^TA is invertible. When the statements are true, the least squares solution is given by $\hat{x} = (A^TA)^{-1}A^T\vec{b}$

Theorem 24 (Eigenvectors of a Symmetric Matrix) Let A be a symmetric matrix. Then any two eigenvectors of A from different eigenspaces are orthogonal.

Theorem 25 (Symmetric Matrices and Orth. Diag.) A square matrix A is orthogonally diagonalizable if and only if A is a symmetric matrix.

Theorem 26 (Spectral Theorem For Symetric Matrices) Let $A_{n\times n}$ be symetric. Then the following properties hold. • A has n real eigenvalues (counting multiplicities). • Then dimension of the eigenspace for each eigenvalue λ is equal to the multiplicity of λ . • The eigenvectors of A corresponding to different eigenvalues are orthogonal. • A is orthogonally diagonalizable.

Theorem 27 (Principal Axis Theorem) Let $A_{N\times N}$ be symetric. Then there is an orthogonal change of variable $\vec{x} = P\vec{y}$ that transform the quadratic form $\vec{x}^T A \vec{x}$ to $\vec{y}^T A \vec{y}$ whith no cross terms(Ex. of cross terms is $x_1 x_2$). The columns of P are the eigenvectors of A.

Theorem 28 (Eiganvalue of Definites Quadratic) The quadratic form is: \bullet Positive definite if and only if $\forall i \lambda_i > 0$. \bullet Negative definite if and only if $\forall i \lambda_i < 0$. \bullet Indefinite if and only if A as positive and negative eiganvalues.

Fact about the Orthogonal Complements

• $\vec{0} \in W^{\perp}$ since $\vec{0} \cdot \vec{w} = 0$ • If $W \in W^{\perp}$, $c \in \mathbb{R}$ then $cW \in W^{\perp}$ • If $\vec{w}_1, \vec{w}_2 \in W^{\perp}$ so $(\vec{w}_1 + \vec{w}_2) \cdot \vec{x} = \vec{w}_1 \cdot \vec{x} + \vec{w}_2 \cdot \vec{x} \in W$

Gram-Schmit Process(G-S)

The Gram-Schmit Process is an algorithme producing an orthogonal basis.

Start whith $\{\vec{x}_1,...,\vec{x}_n\}$ basis for noozero subspace w of \mathbb{R}^n define:

$$\vec{v}_1 = \vec{x}_1$$

$$\vec{v}_2 = \vec{x}_2 - \left(\frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1}\right) \vec{v}_1$$

:
$$\vec{v}_n = \vec{x}_n - \left(\frac{\vec{x}_n \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1}\right) \vec{v}_1 - \ldots - \left(\frac{\vec{x}_n \cdot \vec{v}_{n-1}}{\vec{v}_{n-1} \cdot \vec{v}_{n-1}}\right) \vec{v}_{n-1}$$

Finding the Matrix of a Quadratic Form

$$Q(\vec{x}) = Ax_1^2 + Bx_1x_2 + Cx_2^2 \Leftrightarrow \begin{bmatrix} A & \frac{B}{2} \\ \frac{B}{2} & C \end{bmatrix}$$

Quadratic Form Terminology

A quadratic for $Q(\vec{x})$ is: • Positive Definite If $Q(\vec{x}) > 0, \forall \vec{x} \neq \vec{0}$ • Positive Semidefinite If $Q(\vec{x}) \geq 0$ • Negative Definite If $Q(\vec{x}) < 0, \forall \vec{x} \neq \vec{0}$ • Negative Semidefinite If $Q(\vec{x}) \leq 0$