

10 11 12

Values of States

- Fundamental operation: compute the (expectimax) value of a state
- Expected utility under optimal action
- Average sum of (discounted) rewards
- This is just what expectimax computed!
- Recursive definition of value:

$$\begin{split} V^*(s) &= \max_a X Q^*(s,a) \\ Q^*(s,a) &= \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^*(s') \right] \end{split}$$

$$V^*(s) = \max_{a} \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \, V^*(s') \right]$$

ctimax) value of a state

13 14 15

Problem: States are repeated Idea: Only compute needed quantities once Problem: Tree goes on forever Idea: Do a depth-limited computation, but with increasing depths until change is small Note: deep parts of the tree eventually don't matter if y < 1

19 20 21

22 23 24

25 26 27

k=100 0.57 0.43 0.48 0.28 VALUES AFTER 100 ITERATIONS Discount = 0.9

31 32 33

Value Iteration

- Start with V₀(s) = 0: no time steps left means an expected reward sum of zero
- Given vector of V_k(s) values, do one ply of expectimax from each state: $V_{k+1}(s) \leftarrow \max_{a} \sum T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$
- · Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 Basic idea: approximations get refined towards optimal values
 Policy may converge long before values do

Living reward = 0

Value Iteration

• Bellman equations characterize the optimal values:

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

• Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Value iteration is just a fixed point solution method
 ... though the V_k vectors are also interpretable as time-limited values

34 35 36

Convergence*

- $\:\:$ How do we know the $\boldsymbol{V}_{\!k}$ vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values

- Case 2: If the discount is less than 1
 Sketch: For any state, V_k and V_{k+1} can be viewed as depth k 1 expectimax results in nearly identical search trees
 The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros

- That last layer is at best all R_{IMX}

 It is at worst R_{IMN}

 But everything is discounted by γ^{k} that far out

 So V_{k} and V_{k-1} are at most γ^{k} max |R| different

 So as k increases, the values converge

37 38