Para construir un biestable RS Sincrono, tipo Master-Slave activo por Jhanco de mida solo tenemos que invertir el reloj.

Ejercicio e

Demnestra que un biestable T divide la frecuencia en 2 de una sural de reloj.

Como re puede observar, la retal DUPLICA m período, lo que rignifica que divide en dos un frecuenca

Ejercicio 3

- Registro de almacenamiento: [https://circuitverse.org/simulator/edit/registrod]
- Registro de desplazamiento: [https://circuitverse.org/simulator/edit/regitroddes]
- Contador asíncrono: [https://circuitverse.org/simulator/edit/contador_asincrono-714775e9-8458-41f1-b528-28e86263fc64]

Ejercicio 4 Para revolver este ejercicio usasemos una descripción gráfica o representación de estados llamada "máquina de Mealy". Describo los estados como círculos, y los relaciones entre ellos con flechas.

Cada relación, o evolución de la máquina de un estado a otro, se poduce con una combinación de entrada y conlleva la activación de las salidas.

En este ejercicio tenemos dos estados: bombilh apagada (So) y bombilh encundida (Si).

- 4) 1 h bombile está apagada, y pulso A (AB=10), re enciende. Pasa al otro estado, y la salida que produce es '1'.
- *) l'está apagada, no hacer hada o pulsar B me dejan en el estado So y no produce salida.
- 1) AB=11 esta prohibida en el emmaiado (AB=00 AB=01)
- 4) li está encendida, y pulso B (AB=OI), u apaga.
- 1) li esté encendida, pulsar A o no hacer nada, la deja encendida.

Apartado A
Luso el diagrama de fases (máy Healy) es:

B) Obtener table de fases

	AB								
	00	01	11	10					
50	So	So	_	Sı					
Si	Si	50		Sı					

c) Codifico los estados

Mób hay dos: $S_0 = 0$ Mób necerito 1 bit $S_1 = 1$

D) tablas de verdad (mapa karnaugh) de los estados y de las salidas.

			QE+3			
			Α	В		
		00	01	11	10]
QŁ	0	0	0	X	[[Q _k
CAF.	1		D	X		
		/			_	_
	Qt	11 = A	+ 9.	3		
	•		+			

	S					
			Α	В		
		00	01	11	10	
QL	0	0	0	X	1	
46	1	1	0	\x	1	

S= A+ q.B

Apartado 1, implementación en prestos lógicas.

q = A + q. B

S = 9 *

https://circuitverse.org/simulator/edit/pulsadores

Apartado 2. Como los estados tienen 1 hit, volo necesito 1 biestable Jk

A) Construjo una tabla de la verdad, con AB, Qt y Qtts. y voy deduciendo los entrados Dk, sepún como lo hace un flip-flop de este tipo.

CI	K	J	К	Qn	Qn+1	Qn+1
:	l	_	_	0	0	
W	bΔ	0	0	1	1	Qn
/ //	ı	0	1	0	0	0
	l/		0 1	1	0	
EI E	L	C, 1 \L	1 0	0	1	1
ELECT	ı 🕆			1	1	
_ :	1	1	1	0	1	Qn'
	1	т	1	1	0	ŲΠ

	Qt	Α	В	Qt+1
	0	0	0	0
	U	٥	٥	
	0	0	1	0
-	0	1	0	1
	0	1	1	×
	1	0	0	1
_	1	0	1	0
	1	1	0	1
_	1	1	1	ス

10
K
Χ
X
X
×
0
1
0
X

Por ejemplo:

AB=00 Q=0 -> Q+1=0

It debe de:

y 0 dejar el estado camo está Dk=00

y) 0 forzarlo a cro RESET Jk=01

Liego J=0 y k da ignal (X)

B) Halenus Karnaugh para Jy k

				2		
		AB				
Q.		00	01	11	10	
	0	0	0	X	ز	
	1	Х	×	Х	Х	

Ot

		AB								
		00	01	11	10					
	0	X	×	X	×					
_	1	0	- 1	X	0					

k = 13

c) Disujamos el circuito.

A S Q S

https://circuitverse.org/simulator/edit/pulsadores2

En el rimulador tengo una senal de "trable" que tengo que poner a 1 para que furcione.

