11612733 杜子豪

- 5.B——
- 1.

$$(I+T+T^2+\cdots+T^{n-1})(I-T)=(I+T+T^2+\cdots+T^{n-1})-(T+T^2+\cdots+T^{n-1}+T^n)=I$$

Thus I-T is invertible

o b.

$$(1-x)^{-1} = \sum_{n=0}^{\infty} x^n$$

Substitute x with T we can get the formula

• 4.

$$\forall v \in V, v = Pv + (v - Pv)$$

Since $Pv \in \operatorname{range} P$ and P(v-Pv) = 0 which implies $v-Pv \in \operatorname{null} P$

$$V = \operatorname{null} P + \operatorname{range} P$$

Suppose $v \in \operatorname{range} P \cap \operatorname{null} P$

$$\exists u \in V ext{ s.t. } Pu = v$$

$$0 = Pv = PPu = Pu = v$$

Thus range $P \cap \text{null } P = \{0\}$

• 6.

Since U is invariant under T, $u \in U$ implies $Tu \in U$

Thus $u \in U$ implies $TTu \in U$

Thus similarly U is invariant under T^n for any $n \in \mathbb{N}^*$

Since
$$p(T) = \sum_{n=0}^{\infty} a_n T^n$$

Thus U is invariant under p(T)

• 11.

If $\alpha = p(\lambda)$ where λ is an eigenvalue of T, $p(T)v = p(\lambda)v = av$

Thus α is an eigenvalue of T

If α is an eigenvalue of p(T), $p(T) - \alpha I$ is not invertible

Suppose
$$p-\alpha=c(x-\lambda_1)\cdots(x-\lambda_n)$$
 where $c,\lambda_1,\ldots,\lambda_n\in\mathbb{C}$

$$p(T) - \alpha I = c(T - \lambda_1 I) \cdots (T - \lambda_n I)$$

Thus $\exists \lambda_k$ s.t. $T - \lambda_k I$ is not invertible

$$p(T)v = av = p(\lambda_k)v$$

• 12.

Suppose
$$T(x,y)=(-x,y)$$

Thus T has no eigenvalue

However $T^2=I$ which has eigenvalue 1

• 15.

Can't find such operator....

• 16.

Define
$$\phi(p)=p(T)v$$
 where $\phi\in\mathcal{L}(\mathcal{P}_n(\mathbb{C}),V)$

$$\phi(ap_1+bp_2)=(ap_1+bp_2)(T)v=ap_1(T)v+bp_2(T)v=a\phi(p_1)+b\phi(p_2)$$

Thus ϕ is linear.

Since dim
$$\mathcal{P}_n(\mathbb{C}) = n+1$$

 ϕ is not injective

Hence
$$\exists p \in \mathcal{P}_n(\mathbb{C})$$
 s.t. $\phi(p) = 0 = p(T)v$

Thus we can write
$$c(T-\lambda_1 I)\cdots (T-\lambda_m I)v=0$$

Thus
$$\exists \lambda_j$$
 s.t. $Tv = \lambda v$

• 5.C——

• 1.

Since T is diagonalizable, exist 1-dimensional subspace U_1, \ldots, U_n of V

For each
$$U_k$$
 if $x \in U_k$, $Tx \in U_k$

Thus if Tx=0, $\operatorname{null} T|_{U_k}=U_k$ otherwise $\operatorname{range} T|_{U_k}=U_k$

Thus $V = \operatorname{null} T \oplus \operatorname{range} T$

- 3.
 - o a to b is obvious
 - o b to c

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T = \dim (\operatorname{null} T + \operatorname{range} T) = \dim V + \dim (\operatorname{range} T \cap \operatorname{null} T)$$

Thus $\dim(\operatorname{range} T\cap\operatorname{null} T)=0$ which implie $\operatorname{range} T\cap\operatorname{null} T=\{0\}$

o cto a

Since range $T \cap \operatorname{null} T = \{0\}$ and $\operatorname{dim \, range} T + \operatorname{dim \, null} T = \operatorname{dim} V$

Hence $\operatorname{range} T + \operatorname{null} T = V$

which proves (a)

• 6.

Since T has $\dim V$ distinct eigenvalues, T is diagonalizable

S has the same eigen vectors as T,

Thus with respect to eigenvectors of T, $\mathcal{M}(T)$ has only eigenvalues of T on the diagonal Thus with respect to eigenvectors of T, $\mathcal{M}(S)$ has also only eigenvalues of S on the diagonal Thus with respect to this basis $\mathcal{M}(ST)=\mathcal{M}(TS)$ which implies that ST=TS

• 9.

$$Tv=\lambda v\Leftrightarrow T^{-1}Tv=\lambda T^{-1}v\Leftrightarrow rac{1}{\lambda}v=T^{-1}v$$
 Hence $E(\lambda,T)=E(rac{1}{\lambda},T^{-1})$

• 13.

Suppose v_1, \ldots, v_4 is a basis of F^4

Define $\mathcal{M}(R)$ with respect to this basis is $|2\ 0\ 0\ 0|$

 $|0\ 6\ 0\ 0|$

 $|0\ 0\ 6\ 0|$

 $|0\ 0\ 0\ 7|$

And define $\mathcal{M}(T)$ with respect to this basis is $|2\ 0\ 0\ 0|$

 $|1\ 6\ 0\ 0|$

 $|0\ 0\ 6\ 0|$

 $|0\ 0\ 0\ 7|$

If exist S s.t. $R = S^{-1}TS$, $T = SRS^{-1}$

Since S is invertible and R can be diagonalizable

With respect to Sv_1, \ldots, Sv_4 , T can be diagonalizable

However, $\dim E(2,T)=1, \dim E(6.T)=1, \dim E(7,T)=1$ which implies T is not diagonalizable Hence such S doesn't exist

• 15.

To get existance of $(x,y,z) \in \mathrm{F}^3$ s.t. $T(x,y,z) = (17+8x,\sqrt{5}+8y,2\pi+8z)$

We must show that $(T-8I)(x,y,z)=(17,\sqrt{5},2\pi)$ and such (x,y,z) exist

Since 6, 7 are eigenvalues of T and T is not diagonalizable

T has no other rigenvalues

Thus
$$null(T - 8I) = \{0\}$$

Since T-8I is an operator, it is surjective

which implies such (x, y, z) must exist