Lecture 8: Small-Step Operational Semantics and Type Soundness

Programming Languages (H)

Simon Fowler & Michele Sevegnani

Semester 2, 2024/2025

Overview

Last time

Types and Typechecking

This lecture:

- A refresher on inductive definitions & proof by induction
- Type soundness for big-step semantics
- Limitations of big-step semantics
- Small-step semantics
- Type soundness for small-step semantics

So, our program typechecks. Why should we care?

- Throughout my lectures so far, I've hammered home the importance of formal definitions
 - Reduced ambiguity, ability to spot corner cases, less verbosity, but most importantly the **ability to do mathematical reasoning**
- Last lecture we looked at typing rules and typecheckers. Intuitively, typechecking rules out a lot of programming errors, which is great.
- But what does this actually **mean** in practice? Which errors? Can typechecking get us any formal guarantees?

Type Soundness, Informally

Core idea: "If a program is well-typed, then it shouldn't run into any errors when it runs"

Let's see how we can try to write this using our two judgements...

Big-step operational semantics

Expression M evaluates to value V

Typing rules

Expression M has type A under environment Γ

"If a program is well-typed, then it'll always evaluate down to a value."

Big-step operational semantics

Expression M evaluates to value V

$$\Gamma \vdash M:A$$

Typing rules

Expression M has type A under environment Γ

If $\cdot \vdash M : A$ then there exists some V such that $M \Downarrow V$ and $\cdot \vdash V : A$.

Proof by Induction

Refresher: Induction Proofs

- Before we start, I'm not expecting you write induction proofs in the exam, but induction is important in PL theory / for understanding the concepts
- Proof by induction is a proof technique for proving properties over inductively-defined structures
- Induction allows us to assume the property holds for any subexpressions

Natural Numbers Base case $0 \in \mathbb{Z}$ Inductive case $x + 1 \in \mathbb{Z}$, if $x \in \mathbb{Z}$

Structural Induction

- Structural induction allows us to do induction over an inductivelydefined data structure by reasoning about the cases individually.
- Example: the **size** of a binary tree is recursively defined as follows

```
size(leaf) = 1
size(node(t1, x, t2)) = 1 + size(t1) + size(t2)
```

- We want to prove that the size of every binary tree is odd
 - Remember from AF2 that we can write even numbers as 2k (for some k), and odd numbers as 2k + 1
 - We can use our induction hypothesis to reason that the size of each subtree is odd

The size of all binary trees is odd

1) Begin by stating the proof technique:

"We proceed by induction on the structure of t"

- 2) Next, write out the cases (in this case, ways of constructing a tree)
- 3) **Prove each case**, making use of the IH if necessary
- 4) Once all cases are proved, we have proved that the theorem holds

```
Case t = leaf
```

size(leaf) = 1, which is odd as required

```
Case t = node(t1, x, t2)

size(node(t1, x, t2)) = 1 + size(t1) + size(t2)
```

By the induction hypothesis:

- size(t1) is odd, so can be written 2i + 1
- size(t2) is odd, so can be written 2k + 1

So we have that 1 + size(t1) + size(t2) can be written as:

$$1 + (2j + 1) + (2k + 1)$$

= 1 + (2j + 2k + 2)
= 2(j + k + 1) + 1

which is odd, as required

Our languages are all inductively-defined!

We've defined all of our languages using BNF, but that is in fact an inductive definition, meaning we can reason about our languages using induction! Compare the two styles for L_{Arith}...

```
n \in \mathbb{Z}
n \in \text{Terms}
L \odot M \in \text{Terms if:}
• L \in \text{Terms}
• \odot \in \{+, -, *, /\}
• M \in \text{Terms}
```

Rule Induction

- We have defined all of our formal definitions using inference rules
- Roughly speaking, rule induction allows us to assume that a property holds for all premises of a rule, and we then use this information to show that the property holds for the conclusion
 - If we do this for all rules, then we have proved the property

Rule Induction Example

We can define the set of even positive integers E using the following rules:

$$\frac{n \in E}{0 \in E} \qquad \frac{n \in E}{n + 2 \in E}$$

Theorem: If $n \in E$, then $n + n \in E$

Proof: By rule induction on the derivation of $n \in E$

Case 1:

$$0 + 0 = 0$$
, so the property holds immediately

Rule Induction Example

We can define the set of even positive integers E using the following rules:

$$0 \in E$$

$$\frac{n \in E}{n+2 \in E}$$

Case 2:

We want to show that $(n + 2) + (n + 2) \in E$ By the induction hypothesis, $n + n \in E$ Thus we can show:

$$\frac{n \in E}{n + 2 \in E}$$

$$\frac{n+n \in E}{(n+n)+2 \in E}$$
$$\frac{(n+n)+2 \in E}{(n+n)+2 \in E}$$

Rearranging we arrive at $(n + 2) + (n + 2) \in E$, as required.

Proving Big-Step Type Soundness

Proving Type Soundness for L_{Arith}: A Problem

- Our type soundness statement says that if an expression is well-typed (under an empty environment), then it can evaluate to a value of the same type
- However, what about the following case?

$$(1+2)/0 \Downarrow ???$$

- Since division by zero is undefined, the expression does not evaluate to a value and is a counterexample (our interpreters would throw an exception)
- There are a few ways of fixing this (adding exceptions into the language, adding a special case with a default value) – but for simplicity we'll just remove division

Proving Type Soundness: Overall Approach

Theorem: If $\cdot \vdash M : A$ then there exists some V such that $M \lor V$ and $\cdot \vdash V : A$.

To prove this, our approach is as follows:

- Proceed by rule induction on the derivation of $\cdot \vdash M : A$
- For each case, we can assume that any subexpressions are typed according to the typing rule
- By the induction hypothesis, we can show that any subexpression will evaluate to a value
- Using this information, we'll use the corresponding big-step rule to show that the whole expression evaluates to a value

sli.do 3400724

Proving Type Soundness for L_{Arith} without division

Theorem: If $\cdot \vdash M : A$ then there exists some V such that $M \lor V$ and $\cdot \vdash V : A$.

Proof: By induction on the derivation of $\cdot \vdash M : A$.

Case $\cdot \vdash n : Int$

It follows immediately that $\frac{1}{n \downarrow n}$, as required

Proving Type Soundness for L_{Arith} without division

```
Case \cdot \vdash M \odot N : Int

Assumption: \underbrace{\cdot \vdash M : Int \cdot \vdash N : Int}_{\cdot \vdash M \odot N : Int}
```

By the induction hypothesis, there exist V, W such that $M \Downarrow V$ and $N \Downarrow W$ and both $\cdot \vdash V$: Int and $\cdot \vdash W$: Int.

Consider the evaluation rule for binary operators: $\frac{M \Downarrow V \quad N \Downarrow W}{M \odot N \Downarrow V \widehat{\odot} W}$

Since $\{+, -, *\}$ are total functions on integers, $V \ \widehat{\odot} \ W$ is defined, and therefore by the above evaluation rule, $M \ \widehat{\odot} \ N \ V \ \widehat{\odot} \ W$ with $\cdot \vdash V \ \widehat{\odot} \ W$: Int as required.

Limitations of Big-Step Semantics

The big-step type soundness property is very strong:

Theorem: If $\cdot \vdash M : A$ then there exists some V such that $M \Downarrow V$ and $\cdot \vdash V : A$.

This does not hold for L_{Rec} as it requires that every L_{Rec} term terminates – which is not the case, for example (rec f(x). f x) true

But naturally we want to show some form of type soundness property holds for recursive languages!

The answer: reason about evaluation step-by-step

Small-Step Operational Semantics

Small-Step Operational Semantics

 $M \Downarrow V$

Big-step operational semantics

Expression M evaluates to value V

Small-step operational semantics

Expression M takes a reduction step to expression N

We write $M \rightarrow^* N$ to mean M takes zero or more reduction steps to N

Small-Step Rules for L_{Arith}

$$\overline{V \odot W \longrightarrow V \ \widehat{\odot} \ W}$$

If both arguments are values, then we can apply the actual operation

$$\frac{M \longrightarrow M'}{M \odot N \longrightarrow M' \odot N}$$

$$\frac{M \longrightarrow M'}{V \odot M \longrightarrow V \odot M'}$$

Otherwise, we need to use the **congruence rules**

The first says that if we have an expression $M \odot N$ and M can take a step to M', then the whole expression can take a step to $M' \odot N$.

The second allows reduction of the second subexpression, if the first is already a value.

The rules enforce a **left-to-right evaluation order**

Evaluating
$$(1 + (2 * 3)) + (4 * 5)$$

$$\frac{2*3 \to 6}{1 + (2*3) \to 1 + 6}$$

$$(1 + (2*3)) + (4*5) \to (1+6) + (4*5)$$

First step: We can't evaluate either addition, but we **can** evaluate multiplication

$$\frac{1 + 6 \rightarrow 7}{(1 + 6) + (4 * 5) \rightarrow 7 + (4 * 5)}$$

Second step: We can now evaluate 1 + 6 to 7

Evaluating
$$(1 + (2 * 3)) + (4 * 5)$$

$$\frac{4*5 \rightarrow 20}{7 + (4*5) \rightarrow 7 + 20}$$

Third step: evaluate the multiplication

$$\overline{7+20 \longrightarrow 27}$$

Final step: both operands are values, so perform the addition, and we're done

Small-Step Rules for L_{If}

if true **then** M **else** $N \longrightarrow M$

We have **two** main small-step rules for conditionals

The first takes a step to the then branch if the test is the value true

if false **then** M **else** $N \rightarrow N$

The second takes a step to the else branch if the test is the value false

 $L \to L'$

if L then M else $N \longrightarrow \text{if } L'$ then M else N

We need a congruence rule to evaluate the test if it isn't yet a value

Small-Step Rules for L_{Rec}

$$\overline{(\lambda x. M) \ V \longrightarrow M \ \{ \ V \ / \ x \}}$$

When evaluating a function application where the function is a value, reduce to the function body (with argument substituted for parameter)

$$(\operatorname{rec} f(x).M) V \longrightarrow M \{ (\operatorname{rec} f(x).M / f, V / x \}$$

Recursion is similar, but we also need to substitute in a copy of the function

$$\frac{M \longrightarrow M'}{M N \longrightarrow M' N} \qquad \frac{M \longrightarrow M'}{V M \longrightarrow V M'}$$

Finally, the congruence rules allow us to reduce the function first, and then the argument

sli.do 3400724

Equivalence of Big- and Small-Step Semantics (1)

- Big-step and small-step semantics are different ways of saying the same thing, each with advantages and disadvantages
 - **Big-step**: Closer to how we write interpreters, but cannot reason easily about nonterminating expressions
 - Small-step: More fine-grained reasoning power, but (usually) further away from how we would implement a language
- My own sub-area, concurrent PL design, exclusively uses smallstep semantics as we need to reason about individual communication actions between processes
- Luckily, we can prove that these two styles are equivalent, and get the best of both worlds

Equivalence of Big- and Small-Step Semantics (2)

There's a corresponding small-step reduction sequence for every big-step derivation

If $M \Downarrow V$, then $M \longrightarrow^* V$.

Proof is by rule induction on the derivation of $M \Downarrow V$ (exercise if you're interested!)

There's a corresponding big-step derivation for every small-step reduction sequence from an expression to a value

If $M \longrightarrow^* V$, then $M \Downarrow V$.

Proof is by structural induction on *M* and inspection of the small-step rules (exercise if you're interested!)

Type Soundness

Type Soundness for Small-Step Semantics

We can now specify a more general type soundness property that we can use on $L_{\text{Rec}}!$

If a process is well typed, then it is either already a value, or it can take a step while staying well typed

Preservation

Reduction doesn't change the result type or introduce type errors

Progress

Well typed processes don't get "stuck"

Type Soundness for Small-Step Semantics

We can now specify a more general type soundness property that we can use on $L_{\text{Rec}}!$

If $\cdot \vdash M : A$, then either M is a value V, or there exists some N such that $M \longrightarrow N$ and $\cdot \vdash N : A$.

Preservation

If $\Gamma \vdash M : A$ and there exists some N such that $M \longrightarrow N$, then $\Gamma \vdash N : A$.

Progress

If $\cdot \vdash M : A$, then either M is a value V, or there exists some N such that $M \longrightarrow N$

Preservation

If $\Gamma \vdash M : A$ and there exists some N such that $M \longrightarrow N$, then $\Gamma \vdash N : A$.

Preservation for L_{Arith}

It's easiest to prove preservation by induction on the derivation of $M \rightarrow N$, so we need to consider all of the reduction rules

Preservation

If $\Gamma \vdash M : A$ and there exists some N such that $M \longrightarrow N$, then $\Gamma \vdash N : A$.

$$\overline{V \odot W \to V \ \widehat{\odot} \ W}$$

$$\frac{M \longrightarrow M'}{M \odot N \longrightarrow M' \odot N}$$

$$\frac{M \longrightarrow M'}{V \odot M \longrightarrow V \odot M'}$$

Assumption:
$$\Gamma \vdash V : \text{Int } \Gamma \vdash W : \text{Int}$$
 $\Gamma \vdash V \odot W : \text{Int}$

As $\bigcirc \in \{+, -, *\}$, we know that $V \bigcirc W$ is of type Int, as required

Assumptions:
$$\frac{\Gamma \vdash M \colon \text{Int } \Gamma \vdash N \colon \text{Int}}{\Gamma \vdash M \bigodot N \colon \text{Int}} \quad \text{and} \quad M \longrightarrow M'$$

By the induction hypothesis, $\Gamma \vdash M'$: Int, so we can show:

$$\frac{\Gamma \vdash M' \colon \text{Int} \quad \Gamma \vdash N \colon \text{Int}}{\Gamma \vdash M' \odot N \colon \text{Int}} \quad \text{as required.}$$

Assumptions:
$$\frac{\Gamma \vdash V \colon \text{Int} \quad \Gamma \vdash M \colon \text{Int}}{\Gamma \vdash V \odot M \colon \text{Int}} \quad \text{and} \quad M \longrightarrow M'$$

By the induction hypothesis, $\Gamma \vdash M'$: Int, so we can show:

$$\frac{\Gamma \vdash V \colon \text{Int} \quad \Gamma \vdash M' \colon \text{Int}}{\Gamma \vdash V \odot M' \colon \text{Int}} \quad \text{as required.}$$

Preservation for L_{If}

if true **then** M **else** $N \rightarrow M$

(the case for 'false' is similar)

Assumption: $\frac{\Gamma \vdash \mathsf{true} : \mathsf{Bool} \ \Gamma \vdash M : A \quad \Gamma \vdash N : A}{\Gamma \vdash \mathsf{if} \ \mathsf{true} \ \mathsf{then} \ M \ \mathsf{else} \ N : A}$

It follows immediately from our assumption that $\Gamma \vdash M : A$ as required.

$$\frac{L \to L'}{\text{if } L \text{ then } M \text{ else } N \longrightarrow}$$

$$\text{if } L' \text{ then } M \text{ else } N$$

Assumptions:
$$\frac{\Gamma \vdash L \colon \text{Bool} \quad \Gamma \vdash M \colon A \quad \Gamma \vdash N \colon A}{\Gamma \vdash \text{if } L \text{ then } M \text{ else } N \colon A} \quad \text{and} \quad L \to L$$

By the induction hypothesis, $\Gamma \vdash L'$: Int, so we can show:

$$\frac{\Gamma \vdash M : \text{Bool} \quad \Gamma \vdash M : A \quad \Gamma \vdash N : A}{\Gamma \vdash \text{if } L' \text{ then } M \text{ else } N : A} \quad \text{as required.}$$

If $\cdot \vdash M : A$, then either M is a value V, or there exists some N such that $M \to N$

Progress for L_{Arith}

We need to prove progress by induction on the **typing derivation**, so need to consider all the typing rules

If $\cdot \vdash M : A$, then either M is a value V, or there exists some N such that $M \to N$

 $\Gamma \vdash n : Int$

This case follows immediately, since n is already a value.

 $\Gamma \vdash M : Int \quad \Gamma \vdash N : Int$

 $\Gamma \vdash M \odot N : Int$

By the induction hypothesis:

- either M is a value, or there exists some N such that $M \rightarrow M'$
- either N is a value, or there exists some N such that $N \to N'$.

So we have three cases we need to consider:

- $M \odot N$, where $M \rightarrow M'$ -- so we can reduce by rule 2
- $V \odot N$, where $N \rightarrow N'$ -- so we can reduce by rule 3
- $V \odot W$, so we can reduce by rule 1

(1)

$$\overline{V \odot W \to V \ \widehat{\odot} \ W}$$

 $\frac{2}{M \to M'}$

$$\frac{3}{V \odot M \to V \odot M'}$$

Progress for L_{If}

(Omitting the value cases as they are similar to integer literals)

 $\Gamma \vdash L$: Bool $\frac{\Gamma \vdash M : A \quad \Gamma \vdash N : A}{\Gamma \vdash \mathbf{if} L \mathbf{then} M \mathbf{else} N : A}$

By the IH, we know that either L is a value, or $L \longrightarrow L'$

If L is a value V, then since $\cdot \vdash V$: Bool it must be the case that either V = true or V = false and we can reduce by (1) or (2)

If $L \longrightarrow L'$ then we can reduce by (3)

- 1 if true then M else $N \rightarrow M$
- 2 **if** false **then** M **else** $N \rightarrow N$
- $\frac{L \to L'}{\text{if } L \text{ then } M \text{ else } N \to \text{if } L' \text{ then } M \text{ else } N }$

Type Soundness for L_{Rec} (non-examinable)

- The proofs for L_{Lam} and L_{Rec} are similar
- The main difference is that we need a **substitution lemma** that shows that an expression remains well typed after substitution

If
$$\Gamma, x: A \vdash M: B$$
 and $\Gamma \vdash V: A$, then $\Gamma \vdash M \{V/x\}$

• I will add the full proof to Moodle for those who are interested

Conclusion

- This lecture:
 - Lots of induction
 - Type soundness for big-step semantics
 - Small-step semantics
 - Type soundness via preservation and progress
- (Phew! You'll be happy to know that that's the most mathematical part of the course done – no more induction)
- Want to write your own typechecker? Join me in the lab this afternoon!