3 Statische Eigenschaften von Messystemen

Lernziele

- Kennlinien und Kennlinienfehler
- indirekte Strom- und Spannungsmessung mittels Shuntwiderstand
- Vierleiter-Widerstandsmessung
- Messung von Strom mittels eines Stromwandlers nach dem Kompensationsprinzip

3.1 Statisches Verhalten

3.1.1 Kennlinie

- Was versteht man unter dem statischen Verhalten eines Systems?
- Was ist die Kennlinie?

3.1.2 Kennlinienfehler

- Welche Arten von Kennlinienfehlern gibt es bei linearen Übertragungsgliedern?
- Auf welche Größen kann sich der relative Kennlinienfehler beziehen?
- Wie berechnet er sich in den einzelnen Fällen?

3.2 Strommessung

3.2.1 Kompensations-Stromwandler

- Wie funktioniert ein Kompensations-Stromwandler?
- Welche Vor- und Nachteile bestehen gegenüber der Messung mit einem Shuntwiderstand?
- Bei einem Messstrom von 0,1 A liegt am Ausgang eines Kompensations-Stromwandlers eine Spannung von 1,2 V an. Berechnen Sie das Verhältnis von Signalausgangsspannung zum Eingangsstrom $(V_i = \frac{u_s}{i})$.
- Am Ausgang des Stromwandlers wird eine Spannung von $u_s = 0.3 \,\mathrm{V}$ gemessen. Wie groß war der Strom i_e ? Sie können davon ausgehen, dass der Stromwandler eine lineare Kennlinie, die durch den Ursprung verläuft, aufweist.

3.2.2 Shunt-Widerstand

- Was ist ein Shuntwiderstand?
- Welche Messschaltungen können hiermit realisiert werden?

3.2.3 indirekte Strommessung mit Shuntwiderstand

Zur Strommessung soll ein Kalibrierwidertand aus Manganin eingesetzt werden. Bei der ersten Messung wird der Widerstand falsch verwendet und auch das Voltmeter über die Stromanschlüsse 1 und 2 angeschlossen (siehe Bild 3.1).

Bild 3.1: Strommessung mit Shuntwiderstand (falsche Verkabelung!)

Beschreibung	Wert
Strom	I = 10 A
Nennwiderstand Shunt	$R = 10 m\Omega$
Toleranz des Nennwiderstandes R	$F_R = \pm 0.03\%$
Leitungswiderstand	$R_L = 3 m\Omega$
Innenwiderstand Voltmeter	$R_I = 10 M\Omega$
Widerstandswert des Messkabels zum Voltmeter je	$R_K = 1 m\Omega$

Tabelle 3.1: Messwerte

- Wie groß ist der Wert des Stroms, der aus der Spannungsmessung und dem Nennwiderstand $R = 10 m\Omega$ berechnet wird?
- Wie groß sind der relative und der absolute Fehler der Strommessung?
- Schließen Sie das Voltmeter nun korrekt an und ermitteln Sie nochmals den Wert des Stroms aus der Spannungsmessung und dem Nennwiderstand.
- Wie groß sind nun der relative und der absolute Fehler der Strommessung?

3.3 Vierleiter-Widerstandsmessung

${\bf 3.3.1\ \ Vierleiter\text{-}Widerstandsmessung}$

- Wie funktioniert die Vierleiter-Widerstandsmessung?
- Welche Vor- und Nachteile hat sie?

Zusatzaufgaben

3.3.2 Kennlinie eines NTC-Widerstandes

Ein NTC-Widerstand (Negative Temperature Coefficient) soll zur Messung der Temperatur T eingesetzt werden. Das stark nichtlineare Verhalten R(T) lässt sich durch die Kennlinie

$$R(T) = A \exp \left(B\left(\frac{1}{T} - \frac{1}{T_0}\right)\right)$$

beschreiben. Hierbei ist T die Temperatur in K, B eine Materialkonstante und $A = R(T_0)$ der Widerstand bei Raumtemperatur $T_0 = 298$ K.

- 1. Berechnen und plotten Sie mit Python die reale Kennlinie zahlenmäßig mit $T_0 = 298 \,\mathrm{K}$, $B = 3000 \,\mathrm{K}$, $A = 200 \,\Omega$ für den Messbereich $T_{Anfang} = 268 \,\mathrm{K}$ bis $T_{Ende} = 328 \,\mathrm{K}$.
- 2. Bestimmen Sie analytisch die lineare Kennlinie $R_{lin,fix}(T)$ in Fixpunkteinstellung mit den Fixpunkten Messanfang $T_{Anfang} = 268 \,\mathrm{K}$ und Messende $T_{Ende} = 328 \,\mathrm{K}$. Plotten Sie die Kennlinie in die bereits vorhandene Grafik.

Ergebnis:
$$R_{fix}(T) = 3020 \Omega - 8,96 \Omega/\kappa \cdot T$$

3. Bestimmen Sie für die oben berechnete lineare Kennlinien die Kurve des auf den Ausgangsbereich bezogenen Linearisierungsfehlers.

$$F_{rel}(T) = \frac{R(T) - R_{fix}(T)}{R_{fix}(T_{Ende}) - R_{fix}(T_{Anfang})}$$

Plotten Sie die Kurve und bestimmen Sie grafisch den maximalen Fehler.

Ergebnis:

$$F_{rel,max} \approx 29,1\%$$

Dem NTC wird nun zur Linearisierung der Kennlinie ein Widerstand R_p parallel geschaltet (siehe Bild 3.2)

Bild 3.2: Heißleiter mit Parallelwiderstand

6. Bestimmen Sie allgemein die resultierende Gleichung für die Widerstandswerte $R_{ges}\left(T\right)$

Ergebnis:
$$R_{ges} = \frac{R_p A \exp\left(B\left(\frac{1}{T} - \frac{1}{T_0}\right)\right)}{R_p + A \exp\left(B\left(\frac{1}{T} - \frac{1}{T_0}\right)\right)}$$

7. Bestimmen Sie nun den Parallelwiderstand derart, dass die Widerstandskennlinie im Arbeitspunkt (Mitte des Messbereichs $T_{AP} = T_0 = 298 \,\mathrm{K}$) einen Wendepunkt besitzt. Warum ist diese Vorgabe sinnvoll? Plotten sie die Kennlinie $R_{ges}(T)$.

Ergebnis:
$$R_p = 134 \Omega$$

Prof. Dr.-Ing. C. Gühmann Daniel Thomanek, M.Sc FG Elektronische Mess- und Diagnosetechnik 8. Bestimmen Sie nun erneut die analytische Kennlinie in Fixpunkteinstellung. Plotten Sie die Kennlinie in die bereits vorhandene Grafik

Ergebnis:
$$R_{ges,fix}(T) = 378 \Omega - 1,00 \Omega/K \cdot T$$

9. Bestimmen Sie erneut für die lineare Kennlinien die Kurve des auf den Ausgangsbereich bezogenen Linearisierungsfehlers.

$$F_{rel}(T) = \frac{R_{ges}(T) - R_{ges,fix}(T)}{R_{ges,fix}(T_{Ende}) - R_{ges,fix}(T_{Anfang})}$$

Plotten Sie die Kurve und bestimmen Sie für jede den maximalen Fehler. Vergleichen Sie den Linearisierungsfehler der ursprünglichen Kennlinie R(T) mit dem der linearisierten Kennlinie $R_{ges}(T)$. Was sind die Vor- und Nachteile einer Linearisierung mit einem parallel Parallelwiderstand?

Ergebnis: $F_{rel,max} = 1,25\%$