Раствор Алиева для завершения плодоношения огурца																				
Удобрение	На 1 л	На 1000 л	Хим состав	Элементы в растворе, грамм							Доля оксидов в удобрении			Доля элементов в удобрении						
				Nобщ	N-NH ₄	N-NO ₃	K	Р	Mg	Ca	K ₂ O	P ₂ O ₅	CaO	MgO	N-NH ₄	N-NO ₃	K	Р	Ca	Mg
Сульфат магния	0,40	400	MgSO ₄ *7H ₂ O						40,56					0,17						0,10
Кальций азотнокислый	0,81	810	Ca(NO ₃) ₂ *2H ₂ O	120,69	5,67	115,02				155,28			0,27		0,01	0,14			0,19	
Монокалийфосфат	0,28	280	KH ₂ PO ₄				76,69	60,20			0,33	0,50					0,27	0,22		
Сульфат калия	0,49	490	K ₂ SO ₄				203,35				0,50						0,42			
Хелат железа	0,04	38																		
Итого		2018		121	6	115	280	60	41	155										
Требуемые значения				120	0	120	280	60	40	220										