Experimental and Computational Methods in Linguistic Research

Spring 2025

Instructor: Sanghee Kim

Week 7

Agenda

- Reading time and surprisal
- Language model output

- Research proposal
 - Research question
 - Hypothesis
 - Experimental design
 - Methods
 - Analysis
 - Predictions
 - Report

Final presentation

• Sign up for your final presentation (May 20 or May 22)

Understanding reading times

• Why do we see such reading time differences?

The debate

- Memory?
- Expectation?

Surprisal & Psycholinguistics

In addition to measuring the average information for a language, we can
of course measure the information conveyed by any given linguistic
unit (e.g. phoneme, word, utterance) in context. This is often called
surprisal:

$$Surprisal(x) = \log_2 \frac{1}{P(x \mid context)}$$

- Surprisal will be high, when x has a low conditional probability, and low, when x has a high probability.
- Claim: Cognitive effort required to process a word is proportional to its surprisal (Hale, 2001).

Surprisal and log probability

$$Surprisal(x) = \log_2 \frac{1}{P(x \mid context)}$$

$$Surprisal(x) = -log_2P(x)$$

BERT

Encoder

GPT

Decoder

Transformer Architecture

Probability distribution over words

Transformer Architecture

We will access the model output to obtain the probability (and surprisal) of the word (given prior context).

Input

Input tokenization

Decoder #12, Position #1 output vector DECODER • • • DECODER <S> 2 1024

Key notions

- Model output: probability over words given prior context.
 - Given context "The key to the cabinet ...", how likely is it see word_1, word_2, word3, ... word_n?
 - Assigning probability over all "words" in the model vocabularly.

Arehalli & Linzen (2020)

The key to the cabinets...

output token probabilities (logits)

model vocabulary size **50,257**

We will convert this to log probability and then surprisal.

Workflow

Model output ____ Convert to probabilities (softmax function)

Logits vs. Softmax Probability

Workflow

```
Model output
(logits)
```

Convert to **probabilities** (softmax function)

Obtain surprisal
Surprisal(x) = -log₂P(x)

Relationship between Probability, Log Probability, and Surprisal

- Obtain model surprisal at the critical word
- Compare it with human reading time results

Transformer Architecture

Demo

 https://colab.research.google.com/drive/1u-AHUUWfCIX4WyB6t23NY SIRPFnhpjt?usp=sharing