Computing Assignment 5

Daniel Todd 301428609 D100

What I did:

I firstly chose my n values to be $n=\{100,150,200,250,\dots,1000\}$, as these values give a large range and are evenly spaced. I then calculated equally spaced nodes on [-1,1] given by the equation $x_i=-1+\frac{2i}{n}\mid i=\{0,\dots,n\}$. I then calculated the interpolating polynomial for functions $f_1(x)=\frac{1}{5-4x}$ and $f_2(x)=\frac{1}{1+16x^2}$. I then calculated Chebyshev nodes given by $x_i=\cos(\frac{i\pi}{n})\mid i=\{0,\dots,n\}$ for $f_1(x)$ & $f_2(x)$ as well as a third function; $f_3(x)=\cos(10^4x)$. Then, for all 5 of my interpolating polynomials calculated, I found the error for each using the equation $e_n=\max_{-1\leq x\leq 1}|P(x)-f(x)|$. I then made a plot of n vs $log_{10}(e_n)$ for each function. These plots can be seen below.

The Results:

I found that the Chebyshev nodes seems to be more accurate, but do not seem to be robust against trigonometric functions. I then calculated the smallest value of n (to within ± 10) such that $e_n \leq 10^{-5}$ to be n=155500 for the trigonometric function f_3 . Which shows the lack of robustness for Chebyshev nodes, as all other functions interpolated using Chebyshev nodes achieve this accuracy much quicker (within $n \geq 150$)