Reliable calculation of thermoacoustic instability risk using an imperfect surrogate model

S. Guo, C. Silva, W. Polifke

ASME Turbo Expo 2020 GT2020-14434

Limited training data

Uncertain surrogate model

Uncertain risk calculation

Presentation overview

- Motivation
- Case study settings
- ☐ Quantifying the variation of risk calculation
- ☐ Reducing the variation of risk calculation
- Conclusions

Network model, flame impulse response and Gaussian process

[1] Komarek, T., Polifke, W., 2010, J Eng Gas Turbines Power.

Network model, flame impulse response and Gaussian process

[1] Komarek, T., Polifke, W., 2010, J Eng Gas Turbines Power.

Presentation overview

- Motivation
- ☐ Case study settings
- ☐ Quantifying the variation of risk calculation
- ☐ Reducing the variation of risk calculation
- Conclusions

The growth rate prediction uncertainty yielded by GP permits the quantification of risk variations

The growth rate prediction uncertainty yielded by GP permits the quantification of risk variations

Only outputs close to stability margin worth considering in quantifying risk variations

Only outputs close to stability margin worth considering in quantifying risk variations

Taking GP uncertainty into account yields a more robust risk calculation

Taking GP uncertainty into account yields a more robust risk calculation

 $P_f(\%)$

Taking GP uncertainty into account yields a more robust risk calculation

More training samples lead to more robust risk estimation

More training samples should be allocated in the vicinity of the stability margin

An active learning scheme is adopted to enrich the training dataset

Calculation

An active learning scheme is adopted to enrich the training dataset

Model

Calculation

Active learning scheme delivers a more robust risk estimation given the same number of training samples

Conclusion

Guo et al. | ASME Turbo Expo 2020

Efficient robust design for thermoacoustic instability analysis: A Gaussian Process approach

ASME J. Eng. Gas Turbines Power

Efficient robust design for thermoacoustic instability analysis: A Gaussian Process approach

ASME J. Eng. Gas Turbines Power

Reliable calculation of thermoacoustic instability risk using an imperfect surrogate model

ASME Turbo Expo 2020: GT2020-14434

Quantify risk calculation variation

Reduce risk calculation variation

Efficient robust design for thermoacoustic instability analysis: A Gaussian Process approach

ASME J. Eng. Gas Turbines Power

Reliable calculation of thermoacoustic instability risk using an imperfect surrogate model

ASME Turbo Expo 2020: GT2020-14434

Calculating thermoacoustic system instability risk using imperfect surrogate models

Improved training scheme

Efficient robust design for thermoacoustic instability analysis: A Gaussian Process approach

ASME J. Eng. Gas Turbines Power

Reliable calculation of thermoacoustic instability risk using an imperfect surrogate model

ASME Turbo Expo 2020: GT2020-14434

Calculating thermoacoustic system instability risk using imperfect surrogate models

- Improved training scheme
- Gradient-enhanced GP

Efficient robust design for thermoacoustic instability analysis: A Gaussian Process approach

ASME J. Eng. Gas Turbines Power

Reliable calculation of thermoacoustic instability risk using an imperfect surrogate model

ASME Turbo Expo 2020: GT2020-14434

Calculating thermoacoustic system instability risk using imperfect surrogate models

- Improved training scheme
- Gradient-enhanced GP
- Helmholtz solver instead of network model
- More uncertain parameters and larger variational ranges

Conclusion

Guo e

Guo et al. | ASME Turbo Expo 2020