Transformers

Dr Mehreen Alam

https://jalammar.github.io/illustrated-transformer/

https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-intransformer-models-part-1/

Challenges of RNNs

- Long range dependencies
- Parallelization

English German Translation quality

BLEU scores (higher is better) of single models on the standard WMT newstest2014 English to German translation benchmark.

English French Translation Quality

BLEU

BLEU scores (higher is better) of single models on the standard WMT newstest2014 English to French translation benchmark.

The animal didn't cross the street because it was too tired. L'animal n'a pas traversé la rue parce qu'il était trop fatigué.

The animal didn't cross the street because it was too wide.

L'animal n'a pas traversé la rue parce qu'elle était trop large.

Self-Attention

- attention mechanism relating different positions of a single sequence in order to compute a representation of the sequence.
- intra-attention

Calculating self-attention

- 1. create three vectors from each of the encoder's input vectors:
 - 1. Query Vector
 - 2. Key Vector
 - 3. Value Vector
- 2. calculate self-attention for every word in the input sequence
 - 1. Example for "Action gets results."

Word	q vector	k vector	v vector
Action	$q_{_1}$	k,	V ₁
gets		k ₂	V ₂
results		k ₃	V ₃

Word	q vector	k vector	v vector	score
Action	q,	k,	V ₁	q,.k,
gets		k ₂	V ₂	q ₁ .k ₂
results		k ₃	V ₃	q ₁ .k ₃

Word	q vector	k vector	v vector	score	score / 8
Action	$q_{_1}$	k,	V ₁	q,.k,	q ₁ .k ₁ /8
gets		k ₂	V ₂	q ₁ .k ₂	q ₁ .k ₂ /8
results		k ₃	V ₃	q ₁ .k ₃	q ₁ .k ₃ /8

Word	q vector	k vector	v vector	score	score / 8	Softmax
Action	$q_{_1}$	k,	V ₁	q ₁ .k ₁	q ₁ .k ₁ /8	X ₁₁
gets		k ₂	V ₂	q ₁ .k ₂	q ₁ .k ₂ /8	X ₁₂
results		k ₃	V ₃	q ₁ .k ₃	q ₁ .k ₃ /8	X ₁₃

Word	q vector	k vector	v vector	score	score / 8	Softmax	Softmax * v	Sum
Action	$q_{_1}$	k,	V ₁	q,.k,	q ₁ .k ₁ /8	X ₁₁	X ₁₁ * V ₁	Z ₁
gets		k ₂	V ₂	q ₁ .k ₂	q ₁ .k ₂ /8	X ₁₂	X ₁₂ * V ₂ /	
results		k ₃	V ₃	q ₁ . k ₃	q ₁ .k ₃ /8	X ₁₃	X ₁₃ * V ₃	

Word	q vector	k vector	v vector	score	score / 8	Softmax	Softmax * v	Sum*
Action		k,	V ₁	q ₂ .k ₁	q ₂ .k ₁ /8	X ₂₁	X ₂₁ * V ₁	
gets	q ₂	k ₂	V ₂	q ₂ .k ₂	q ₂ .k ₂ /8	X ₂₂	X ₂₂ * V ₂	Z ₂
results		k ₃	V ₃	q ₂ .k ₃	q ₂ .k ₃ /8	X ₂₃	X ₂₃ * V ₃	

Word	q vector	k vector	v vector	score	score / 8	Softmax	Softmax * v	Sum*
Action		k,	V ₁	q ₃ .k ₁	q ₃ .k ₁ /8	Х ₃₁	X ₃₁ * V ₁	
gets		k ₂	V ₂	q ₃ .k ₂	q ₃ .k ₂ /8	X ₃₂	X ₃₂ * V ₂	
results	q_3	k ₃	V ₃	q ₃ .k ₃	q ₃ .k ₃ /8	X ₃₃	X ₃₃ * V ₃	Z ₃

Decoder RNN

Recap of Attention from Seq2Seq

Attention: in equations

- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$
- We get the attention scores e^t for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^T oldsymbol{h}_1, \dots, oldsymbol{s}_t^T oldsymbol{h}_N] \in \mathbb{R}^N$$

• We take softmax to get the attention distribution α^t for this step (this is a probability distribution and sums to 1)

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

• We use $\, \alpha^t \,$ to take a weighted sum of the encoder hidden states to get the attention output $\, a_t \,$

$$oldsymbol{a}_t = \sum_{i=1}^N lpha_i^t oldsymbol{h}_i \in \mathbb{R}^h$$

• Finally we concatenate the attention output a_t with the decoder hidden state s_t and proceed as in the non-attention seq2seq model

$$[oldsymbol{a}_t; oldsymbol{s}_t] \in \mathbb{R}^{2h}$$

ence-to-sequence with attention

Multi-headed Attention

Multi-Head Attention

1) Concatenate all the attention heads

	Z)	Z	1	Z	2	Z	3	Z	Z 4	2	Z 5	Z	Z 6	7	Z 7	
Ī																	

 Multiply with a weight matrix W^o that was trained jointly with the model

Χ

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

s trained odel

Positional Encoding and Embedding

Residuals

Decoder

Decoding time step: 1 2 3 4 5 6 OUTPUT

Decoding time step: 1 2 3 4 5 6

OUTPUT

Training Details

Output Vocabulary

WORD	а	am	I	thanks	student	<eos></eos>
INDEX	0	1	2	3	4	5

One-hot encoding of the word "am"

Untrained Model Output

0.2	0.2	0.1	0.2	0.2	0.1

Correct and desired output

a am I thanks student <eos>

Trained Model Outputs

a am I thanks student <eos>

Limitations of Transformers

- Attention can only deal with fixed-length text strings:
 - The text has to be split into a certain number of segments before being fed into the system as input.
- This chunking of text causes context fragmentation:
 - E.g., if a sentence is split from the middle, then a significant amount of context is lost.
 - In other words, the text is split without respecting the sentence or any other semantic boundary

Useful Links

- Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.
- https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
- https://www.analyticsvidhya.com/blog/2019/06/understanding-transformers-nlp-state-of-the-art-models/
- https://jalammar.github.io/illustrated-transformer/
- Sample Code Links:
 - https://github.com/tensorflow/tensor2tensor/blob/master/README.md#walkthrough
 - https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello-t2t.ipynb#scrollTo=s19ucTii-wYb