Лекция №1: Основни понятия

1.1 Специфично за частичните функции

Ще разглеждаме функции в множеството на естествените числа

$$\mathbb{N} = \{0, 1, \dots\},\$$

които са *частични*. Това означава, че в някои точки те могат да не са дефинирани, т.е. да нямат стойност. Като цяло, такива ще са функциите, които ще изучаваме в този курс. Това ще са функции, които се пресмятат – най-общо казано – с някаква програма. И тъй като програмите, както е известно, невинаги завършват, то и функциите, които те пресмятат, в общия случай трябва да са частични.

Ще пишем $f: \mathbb{N}^n \longrightarrow \mathbb{N}$, за да означим, че f е частична функция на n аргумента в \mathbb{N} . Съвкупността от всички такива функции ще отбелязваме с \mathcal{F}_n , с други думи

$$\mathcal{F}_n = \{ f \mid f : \mathbb{N}^n \longrightarrow \mathbb{N} \}.$$

По-надолу ще предполагаме, че f е произволна n-местна частична функция. Ако тя е дефинирана в точката (x_1, \ldots, x_n) , това ще отбелязваме така:

$$!f(x_1,\ldots,x_n),$$

а ако не е дефинирана — ще пишем съответно $\neg!f(x_1,\ldots,x_n)$.

Множеството от всички точки, в които f е дефинирана, ще наричаме $\underline{\partial e \phi u h u u u o h o m e c m o (\partial o m e u h)}$ на f и ще означаваме с Dom(f), или формално:

$$Dom(f) = \{(x_1, \dots, x_n) \mid !f(x_1, \dots, x_n)\}.$$

Ако $Dom(f) = \mathbb{N}^n$, ще казваме, че f е $\underline{momaлнa}$ (навсякъде дефинирана). Разбира се, всяка тотална функция може да се разглежда и като частична, т.е. тя също е от множеството $\mathcal{F}_n = \{f \mid f : \mathbb{N}^n \longrightarrow \mathbb{N}\}$. Когато

казваме функция, изобщо казано, ще имаме предвид частична функция. Ако е важно, че функцията е тотална, това ще бъде отбелязвано експлицитно, в случай че не се подразбира от контекста.

По-нататък n-торките (x_1, \ldots, x_n) понякога ще съкращаваме до \bar{x} .

1.1.1 Условно равенство

Когато пишем знак за равенство между изрази, в които участват частични функции, е необходимо да уточним какво ще разбираме в случаите, когато някоя от двете страни (или и двете) не са дефинирани. За тази цел ще използваме нов символ \simeq , който ще наричаме условно равенство. Това равенство се дефинира по следния начин:

Определение 1.1. Нека $\alpha(\bar{x})$ и $\beta(\bar{x})$ са изрази, в които участват частични функции. Тогава

$$\alpha(\bar{x}) \simeq \beta(\bar{x}) \quad \stackrel{\text{деф}}{\Longleftrightarrow} \quad !\alpha(\bar{x}) \ \& \ !\beta(\bar{x}) \ \& \ \alpha(\bar{x}) = \beta(\bar{x})$$

$$\vee \ \neg !\alpha(\bar{x}) \ \& \ \neg !\beta(\bar{x}).$$

С други думи, условното равенство има стойност *истина* или когато и двете му страни са дефинирани и имат една и съща стойност, или когато и двете му страни не са дефинирани. В останалите случаи то е $n \delta ca$. В частност, $f(\bar{x}) \simeq y$ ще е вярно точно когато f е дефинирана в \bar{x} и нейната стойност е y.

 $\underline{\Gamma pa\phi u\kappa ama}~G_f$ на частичната функция f въвеждаме по обичайния начин:

$$G_f = \{(x_1, \dots, x_n, y) \mid f(x_1, \dots, x_n) \simeq y\}.$$

Определение 1.2. За две n-местни частични функции f и g ще казваме, че са paвни (и ще пишем f=g), ако $f(\bar{x})\simeq g(\bar{x})$ за всяко $\bar{x}\in\mathbb{N}^n$.

Ясно е, че ако f=g, то Dom(f)=Dom(g) и $f(\bar{x})=g(\bar{x})$ за всяко $\bar{x}\in Dom(f)$. Да разпишем по-подробно условието за равенство на две функции:

$$f = g \iff \forall x_1 \dots \forall x_n \ f(x_1, \dots, x_n) \simeq g(x_1, \dots, x_n)$$

$$\iff \forall x_1 \dots \forall x_n \forall y \ (f(x_1, \dots, x_n) \simeq y \iff g(x_1, \dots, x_n) \simeq y)$$

$$\iff \forall x_1 \dots \forall x_n \forall y \ ((x_1, \dots, x_n, y) \in G_f \iff (x_1, \dots, x_n, y) \in G_g)$$

$$\iff G_f = G_g.$$

Излезе (без да е изненадващо), че две частични функции са равни точно тогава, когато имат едни и същи графики.

Нека $\alpha(x_1,\ldots,x_n)$ е израз, в който участват променливите x_1,\ldots,x_n , и нека сме избрали някаква част от тях — да кажем x_1,\ldots,x_k . Тогава с

$$\lambda x_1,\ldots,x_k\cdot\alpha(x_1,\ldots,x_n)$$

ще означаваме функцията g на променливите x_1,\ldots,x_k ,, която при фиксирани x_{k+1},\ldots,x_n се дефинира по следния начин:

$$g(x_1,\ldots,x_k) \stackrel{\text{деф}}{\simeq} \alpha(x_1,\ldots,x_n)$$

за всяко $(x_1,\ldots,x_k)\in\mathbb{N}^k$.

Примери: $\lambda x \cdot x$ е функцията *идентитет*, $\lambda x \cdot 0$ е едноместната константна функция, която има стойност 0, $\lambda x, y \cdot x + y$ е функцията събиране, докато $\lambda x \cdot x + y$ е линейната функция f, която при фиксирано y се дефинира като f(x) = x + y.

1.1.2 Релацията включване

Тук ще въведем една релация между частични функции, която няма аналог при тоталните функции. Релацията е <u>включване (\subseteq)</u> и смисълът ѝ е, че ако $f \subseteq g$, то "g знае повече от f" или "g носи повече информация от f". Ето точното определение:

Определение 1.3. Нека $f, g \in \mathcal{F}_n$. Тогава

$$f \subseteq g \iff \forall x_1 \dots \forall x_n \forall y \ (f(x_1, \dots, x_n) \simeq y \implies g(x_1, \dots, x_n) \simeq y).$$

Ако $f \subseteq g$, ще казваме още, че f е $nod \phi y n \kappa u u$ я на g или обратно — че g е npodължение на f. Преразказано, една функция се продължава от друга, ако там, където първата е дефинирана (т.е. има някаква стойност), там и втората е дефинирана и има същата стойност.

Ето как изглеждат графиките на две функции f и g, такива че $f \subseteq g$:

Разбира се, тъй като функциите f и g са дискретни, то графиките им би трябвало да са дискретни множества. Ние, обаче, за по-нагледно навсякъде в курса ще ги чертаем като непрекъснати.

От определението на релацията ⊆ се вижда, че

$$f \subseteq g \iff G_f \subseteq G_g$$
,

което обяснява защо използваме същия символ \subseteq както при включване между множества.

Да отбележим и още един очевиден факт, който ще използваме често:

$$f \subseteq g \implies Dom(f) \subseteq Dom(g).$$

Ако f е тотална и $f \subseteq g$, то очевидно f = g, т.е. върху тоталните функции релацията включване съвпада с релацията равенство.

Когато задаваме някаква функция f и искаме да кажем, че в т. (x_1,\ldots,x_n) тя няма стойност, това ще записваме и така: $f(x_1,\ldots,x_n)\simeq \neg!$.

Ето един пример за две функции f и g, такива че f е подфункция на g:

Пример 1.1. Да дефинираме функциите f и g по следния начин:

$$f(x,y) \simeq \begin{cases} \lfloor \frac{x}{y} \rfloor, & \text{ако } y > 0 \\ \neg !, & \text{ако } y = 0, \end{cases}$$

$$g(x,y) = \begin{cases} \lfloor \frac{x}{y} \rfloor, & \text{ako } y > 0\\ 0, & \text{ako } y = 0. \end{cases}$$

Ясно е, че в точките, в които е дефинирана, f има същата стойност като g, с други думи, $f\subseteq g$.

Релацията *строго включване* (\subset) се дефинира от \subseteq по обичайния начин:

$$f \subset g \iff f \subseteq g \ \& \ f \neq g.$$

За функциите f и q от $\Pi pumep\ 1.1$ от по-горе всъщност имаме $f \subset q$.

От наблюдението, че две функции са равни точно когато графиките им съвпадат, получаваме следната връзка между релациите = и ⊆:

$$f = g \iff G_f = G_g$$

$$\iff G_f \subseteq G_g \& G_g \subseteq G_f$$

$$\iff f \subseteq g \& g \subseteq f.$$

Излезе, че

$$f = g \iff f \subseteq g \& g \subseteq f.$$

От тази еквивалентност се вижда един начин да покажем, че две vac-muuhu функции са равни — като проверим, че едната е подфункция на другата и обратно. Оказва се, че можем леко да отслабим това условие, като заменим включването $g \subseteq f$ с по-слабото $Dom(g) \subseteq Dom(f)$. Тази дребна наглед корекция в някои моменти ще ни спестява доста писане. Но първо да се убедим, че можем да направим това:

Твърдение 1.1. Нека f и g са n-местни функции. Тогава f=g тогава и само тогава, когато са изпълнени условията:

- 1) $f \subseteq g$;
- 2) $Dom(g) \subseteq Dom(f)$.

Доказателство. Ако f=g, то $f\subseteq g$ и $g\subseteq f$ и от последното, в частност, следва и включването между домейните $Dom(g)\subseteq Dom(f)$. Обратно, нека са верни 1) и 2). Трябва да покажем, че $f\subseteq g$ и $g\subseteq f$. Първото включване е точно условието 1). За да покажем, че и $g\subseteq f$, да приемем, че за произволни \bar{x},y $g(\bar{x})\simeq y$. Тогава $\bar{x}\in Dom(g)$, а оттук съгласно 2) ще имаме и $\bar{x}\in Dom(f)$, и значи $f(\bar{x})\simeq z$ за някое z. Сега от условието 1) получаваме, че и $g(\bar{x})\simeq z$, откъдето y=z. И така, получихме, че за произволни \bar{x},y :

$$g(\bar{x}) \simeq y \implies f(\bar{x}) \simeq y,$$

което съгласно дефиницията на релацията \subseteq означава, че $g \subseteq f$.

Да напомним, че една бинарна релация е *частична наредба*, ако е рефлексивна, транзитивна и антисиметрична. Релацията включване, която току-що въведохме, е точно такава:

Твърдение 1.2. За всяко $n \ge 1$ релацията \subseteq е частична наредба в \mathcal{F}_n .

Доказателство. Следва от еквивалентността

$$f \subseteq g \iff G_f \subseteq G_g$$

и от факта, че теоретико-множествената релация включване е частична наредба. \Box

Да отбележим, че горната релация наистина е частична, т.е. не всеки две функции от \mathcal{F}_n са свързани чрез нея. Такива са например константните функции $f_0 = \lambda x$. 0 и $f_1 = \lambda x$. 1.

Не се заблуждавайте: вярно е, че $f_0(x) \leq f_1(x)$ за всяко x, обаче не е вярно, че $f_0 \subseteq f_1$. $\ddot{\smile}$

Интуитивно, $f\subseteq g$ означава, че f е "по-малко информативна" от g. Тогава "най-малко информативна" ще е функцията, която не е дефинирана в нито една точка. Всъщност има безброй много такива функции, в зависимост от броя на аргументите им. За фиксирано $n\geq 1$ с $\emptyset^{(n)}$ ще означаваме n-местната функция, която не е дефинирана за нито една n-торка $\bar{x}\in\mathbb{N}^n$ и тази функция ще наричаме $\underline{nukode\ nedeфunupahama\ (npashama)\ функция}$ на n аргумента. Ясно е, че за всяка $f\in\mathcal{F}_n$ е в сила включването

$$\emptyset^{(n)} \subseteq f$$
,

с други думи, никъде недефинираната функция $\emptyset^{(n)}$ е най-малкият (относно \subseteq) елемент на \mathcal{F}_n .

1.1.3 Суперпозиция на функции

Ще завършим този раздел с дефиницията на операцията *суперпозиция* на частични функции.

Определение 1.4. Нека f е произволна n-местна функция, а g_1, \ldots, g_n са n на брой функции, всички на k аргумента. $\underline{Cynepnosuuusma}$ на тези функции е k-местната функция h, която се дефинира по следния начин:

$$h(x_1, \dots, x_k) \simeq y \iff \exists z_1 \dots \exists z_n \ (g_1(x_1, \dots, x_k) \simeq z_1 \& \dots \& g_n(x_1, \dots, x_k) \simeq z_n \& f(z_1, \dots, z_n) \simeq y)$$
(1.1)

за всяко (x_1,\ldots,x_k) от \mathbb{N}^k

Суперпозицията на f и g_1,\ldots,g_n ще означаваме с

$$f(g_1,\ldots,g_n).$$

При n=1 функцията f(g) ще наричаме композиция на f и g и ще бележим с обичайното $f \circ g$.

От еквивалентността (1.1) следва в частност, че

$$!f(g_1,\ldots,g_n)(\bar{x}) \iff !g_1(\bar{x}) \& \ldots \& !g_n(\bar{x}) \& !f(g_1(\bar{x}),\ldots,g_n(\bar{x})).$$

Ако приемем, че така разбираме дефинираността на $f(g_1, \ldots, g_n)(\bar{x})$, определението за суперпозиция можем да запишем и по-кратко като:

$$f(g_1,\ldots,g_n)(\bar{x}) \stackrel{\text{деф}}{\simeq} f(g_1(\bar{x}),\ldots,g_n(\bar{x})).$$

Да обърнем внимание, че за да има стойност изразът $f(g_1(\bar{x}), \ldots, g_n(\bar{x}))$, трябва всеки от изразите $g_1(\bar{x}), \ldots, g_n(\bar{x})$ да има стойност, независимо че някои от тези стойности могат да не се използват за крайния резултат $f(g_1(\bar{x}), \ldots, g_n(\bar{x}))$. Ето два примера:

Пример 1.2.

1) Нека $f = \lambda x, y . x$ (което означаваще: f(x,y) = x за всяко x,y), нека още $g = \lambda x . x$, а $h = \emptyset^{(1)}$. Тогава

$$f(q,h)(x) \simeq f(q(x),h(x)) \simeq f(x,\neg!) \simeq \neg!,$$

въпреки че вторият аргумент на f е фиктивен и стойността на f(x,y) не зависи от него.

2) Нека сега $f = \lambda x, y$. x.y , $g = \lambda x$. 0, а $h = \emptyset^{(1)}$ отново. Тогава

$$f(g,h)(x) \simeq f(g(x),h(x)) \simeq 0.\neg! \simeq \neg!.$$

От друга страна, когато единият множител е 0, има някаква логика да искаме резултатът от умножението също да бъде 0, без въобще да се пресмята другият множител. Във функционалното програмиране подобно явление е известно като отложено пресмятане (lazy evaluation), т.е. пресмятането на изразите се отлага дотогава, докогато е възможно, а на функционалните променливи се подават имената на изразите (а не техните стойности).

Ето един съвсем прост пример за рекурсивна програма, при която двата основни начина за подаване на параметрите — по стойност и по име — водят до различен резултат:

Пример 1.3. Нека R е следната програма:

$$F(X, Y) = \text{if } X = 0 \text{ then } 0 \text{ else } F(X-1, F(X, Y))$$

При извикването по стойност F(5, 10) ще имаме:

$$\underline{F}(5, 10) \longrightarrow F(4, \underline{F}(5, 10)) \longrightarrow F(4, F(4, \underline{F}(5, 10))) \longrightarrow \dots$$

което очевидно зацикля, докато при извикването по име ще стигнем до базовия случай X=0 и съответно резултатът ще е 0:

$$\underline{F}(5, 10) \longrightarrow \underline{F}(4, F(5, 10)) \longrightarrow \underline{F}(3, F(4, F(5, 10))) \longrightarrow \dots \longrightarrow F(0, F(1, \dots, F(4, F(5, 10)) \dots)) \longrightarrow 0.$$

Ясно е, че с $call\ by\ value\ R$ ще пресметне функцията

$$f_{CV}(x,y)\simeq egin{cases} 0, & ext{ako } x=0 \ \neg!, & ext{ako } x>0, \end{cases}$$

докато с call by name — функцията

$$f_{CN}(x,y)=0$$
 за всяко $x,y\in\mathbb{N}$.

Излезе, че $f_{CV} \subseteq f_{CN}$, или другояче казано — всичко, което се извежда от R по стойност, се извежда и по име. По-нататък ще видим, че това наблюдение е в сила за всяка рекурсивна програма R.