EXHIBIT 9

to

PLAINTIFFS' MOTION FOR PRELIMINARY INJUNCTION

in

Center for Biological Diversity and Amargosa Conservancy v. Debra Haaland, et al.

Case No. 2:21-cv-01049-JAD-NJK

Rover Metals (USA), Inc., Notice of Intent (NOI)

United States Department of the Interior
BUREAU OF LAND MANAGEMENT
Royal Gorge Field Office
3028 East Main Street
Cañon City, Colorado 81212

DATE FILED:	1/5/2023

*Please indicate any fields you feel are confidential information.

Fields highlighted in yellow are not likely to be applicable to a small miner (dredge/highbank).

1. Openston/Claimont Information					
n 1: Operator/Claimant Information Int to 43 CFR 3809.301(b)(1).					
Operator Information Operator Name: Rover Metals (USA) Inc.C/O Mathew Smillie Mailing Address: 8175 S. Virginia St. #850, PMB 393 City: State: ZipCode: Reno, NV, 89511 Phone #: (+1) 778-754-2855					
Claimant/Claim Information, if applicable; if open minerals check here Primary Claimant: GenGold2, LLC Mailing Address: 14403 Rattlesnake Road, City: State: ZipCode: Grass Valley, CA 95945 Phone #: 801-520-4583 Alternate Phone #: 801-440-5174 Additional claimant name(s), if applicable: John E Zimmerman, Donald Merrick					
Claims Information: Please list the CMC numbers, claim names, and claim type (i.e. placer, lode, mill site, tunnel site) for all claims involved in the proposed operations. CMC Claim Name Claim Type see attachment FB and WFB on attachment Placer					

Section 2: Location

Pursuant to 43 CFR 3809.301(b)(2).

1. Legal Description

Principal Meridian	Township (North or South)	Range (East or West)	Section	Quarter Section (NE, SE, SW, NW)	Quarter Quarter Section (NE, SE, SW, NW)
Mt Diablo	16S	50E	see attachment		
Mt Diablo	16S	51E	see attachment		
Mt Diablo	17S	50E	see attachment		
Mt Diablo	17S	51E	see attachment		

	County: Nye
2.	
3.	Private BLM USFS State Other Access: Please identify the intended access to work sites. Describe in writing and on the location map.
	Access will be by established unpaved roads off of Highway 160 or State Route 373.

- 4. <u>Maps & Drawings of Operations</u>: Please include an accurate topographic base map showing the location of the proposed project with this form. The prospector may submit a U.S.G.S 7.5 minute quadrangle or similar map of adequate scale that:
 - a. Provides a general location in relation to major roads, towns, etc.
 - b. Identifies the proposed prospecting site(s) or activity areas involving surface disturbance. Activity areas include, but are not limited to, all drill holes, mud pits, excavations, trenches, adits, shafts, tunnels, rock dumps, stockpiles, impoundments, prospecting roads, etc.; and
 - c. Includes sufficient detail to identify and locate known prospecting features and facilities that may be affected and those that are not anticipated to be affected. This includes, but is not limited to, the location of all drill holes, mud pits, excavations, trenches, adits, shafts, tunnels, rock dumps, stockpiles, impoundments, prospecting roads, etc. Color photographs, adequately labeled (including date, orientation and location), of the prospecting site may be used to fulfill this requirement if included with this form.

Section	ection 3: Description of Operations (i.e., Proposed Action)							
Pursuai	nt to 43 CFR 3809.301(b) ₍	(2).						
1.	Proposed Disturbance:	4.24	acres					
2.	Commodity:							
	Primary <u>Lithium</u>	Secondary		Others				
3.	Period of Operation:							
	Beginning: May 2023		Ending: April, 2024					

4. General Schedule of Operations: Please describe the different parts of operation (Site Development, Operational Phases, Reclamation Phases). Describe each phase of the exploration operation including design, operations, timeframe for completion, and reclamation.

Site development will consist of excavation of drill sumps by backhoe or similar. Operational drilling will be conducted by rotary methods, with drill holes planned to 250 to 300 feet deep each. Samples will collected and sent for analysis. All drill holes will be expected to intersect ground water. All will be plugged upon completion according to specs. Drilling may be conducted in two phases, with likely 10 holes drilled in summer 2023 and followup drilling possibly in fall 2023 or spring 2024. Reclamation will commence as soon as reasonable and advisable after the completion of all drill holes.

5. Access and other roads: include information such as, but not limited to, the type (haul, light vehicle, access), location(s), length, maintenance, upgrades, uses, temporary, permanent, etc. Indicate any part of the access that is in current existence and the current condition. Indicate these items on the location map(s) in section 2.3.

Access to 23 drill sites will be on unpaved existing roads and 7 drill sites will be cross country sites. Access to 7 drill sites will require cross country travel. Disturbance will total 2.92 acres: 1.33 acres for overland travel, 1.45 acres for drill pads, and 0.14 acres for drill sumps.

6. <u>Equipment</u>: Please list all vehicles, equipment and devices that will be used Notice level operations.

, 1 1			
Activities	General Type	Size	
Site Development	backhoe,	standard	
Exploration Operations	rotary drill and support vehicles	standard	
Reclamation	backhoe, rake, ATV	standard	
Other			

7. Exploration Operations: In the table below, identify the type or method of prospecting proposed and the quantity to be extracted including, but not limited to, dredging, high banking, cuts, pits, trenches, shafts, tunnels, adits, declines, air drilling, fluid drilling, blasting, etc. In the open comments box, describe any additional exploration activities including but not limited to: water source, pipelines, generator/pump, storage containers, etc. Indicate items listed in the table and comments on the location map(s) in section 2.3.

Type or Method of Prospecting	Quantity of Material	Estimated Area of Surface
	Removed (tons)	Disturbance (acres)
fluid drilling	12 ton for samples	2.92 acres total
TOTAL	12	2.92 acres

Water will be sourced from lo	cal dairy, Ponderosa	Dairy on Farm Road,	, We have an
agreement with the owner to	purchase drilling water	er from them.	

a. Drilling (if applicable):

	Quantity	Average Width	Average	Average length	Diameter
		(ft)	depth (ft)	(ft)	(in)
Mud Pits	30	10	varies	20	N/A
Drill Pads	30	30	N/A	70	N/A
Drill Holes	30		300		0.5 feet

b. <u>Underground Operations (*if applicable*):</u> Describe the proposed underground exploration work including reopening of old workings, advancement of adits or shafts, trenches, pits, cuts, rock dumps, or other types of disturbance. Further describe dimensions if necessary:

NA		

c. <u>Scope of Operation:</u> Clearly state the objective for this operation. Then, describe in detail the type and extent of the operation to be performed. Provide detailed information for any surface excavation or other land disturbance including roads, pits, trenches, waste piles, drill pads and collar areas of underground workings, ponds, etc. For placer type exploration include the amount of material to be processed from each test site, and the dimension of test sites (Section 3.5). Indicate the different types and locations of disturbance on the location map(s) in section 2.3.

Rotary drilling is planned to test alluvium and bedrock for lithium content. Thirty drill sites are will be placed in existing roads or accessed by cross country travel. Each site will be occupied for only a day or two at most. Roads are little traveled and the drilling is not expected to cause third parties undo inconvenience.

8. Use and Occupancy (if applicable):

The following information must be included in the proposed Notice in order to comply with the 43 CFR 3715, Use and Occupancy under the Mining Laws, when use or occupancy exceeds 14-days in a 30-day period. The definitions of terms are found in 43 CFR 3715.0-5. These regulations apply to public lands administered by the BLM. A written description of the proposed occupancy that describes in detail: (see 43 CFR 3715.3-2):

- a. How the proposed occupancy is reasonably incident;
- b. How the proposed occupancy meets the conditions specified in 43 CFR 3715.2 and 43 CFR 3715.2-1
- c. Where you will place temporary or permanent structures for occupancy;

- d. The location of and reason you need enclosures, fences, gates, and signs intended to exclude the general public;
- e. The location of reasonable public passage or access routes through or around the area to adjacent public lands; and
- f. The estimated period of use of the structures, enclosures, fences, gates and signs, as well as, the schedule for removal and reclamation when operations end.
- g. Indicate these items on the location map(s) in section 2.3.

The program is not expected to take over 14 days at a time. The access roads and drill sites are little traveled and no undo access issues are expected for third parties. Each site will be occupied for an average of one day.

9.	Hazardous Substances, if applicable: Indicate if chemicals and/or fuel are to be used on site. Include information
	such as, but not limited to, type of generator, chemicals, fuels, quantities, disposal, storage, etc. Indicate
	locations of use and storage on location map(s) in section 2.3. Include a spill contingency plan if chemicals and
	fuel are to be used or stored on site.
	N.A.

N	IA			

10. Water Management Plan:

a. Describe anticipated relationship to surface water and groundwater (proximity to streams, penetration of ground water aquifers, known water depth of lenses, major watershed, storm water plan per CDPHE regulations, etc.).

Groundwater is expected to be encountered in each drill hole. Each drill hole will be plugged to standards upon completion.

b. If the use of water is required, describe the location of source and quantity to be used. Please include any necessary permits in Section 3.12 below.

Water for drilling will be obtained from a private party, Ponderosa Dairy/Ed Goedhart.

11. Please list any and all permits associated with the proposed operations:

Issuing Agency	Permit Type	Permit # Date of Expira		
Nevada Division of Water Resources	groundwater waiver for mineral explo	MM-LV125	March 20, 2024	

Section 4: Cultural and Paleontological Resources, & Fish, Wildlife, and Plant Habitats *Pursuant to 43 CFR 3809.420.*

Cultural and Paleontological Resources:

- 1. Operators shall not knowingly disturb, alter, injure, or destroy any scientifically important paleontological remains or any historical or archaeological site, structure, building or object on Federal lands.
- 2. Operators shall immediately bring to the attention of the authorized officer any cultural and/or paleontological resources that might be altered or destroyed on Federal lands by his/her operations, and shall leave such discovery intact until told to proceed by the authorized officer. The authorized officer shall evaluate the discoveries brought to his/her attention, take action to protect or remove the resource, and allow operations to proceed within 10 working days after notification to the authorized officer of such discovery.
- 3. The Federal Government shall have the responsibility and bear the cost of investigations and salvage of cultural and paleontology values discovered after a Notice has been approved, or where a Notice is not involved.

Fish, Wildlife, and Plant Habitat:

The operator shall take such action as may be needed to prevent adverse impacts to threatened or endangered species, and their habitat which may be affected by operations.

Section 5: Reclamation Plan

Pursuant to 43 CFR 3809.301(b)(3).

b. <u>Period of Reclamation:</u>

c.

Beginning: June, 2023

1. A plan for reclamation, per 43 CFR 3809.401, to meet the standards in 43 CFR 3809.420 is required with this application. The disturbance created under this mining plan will dictate the reclamation plan. The cost of implementing the reclamation plan will dictate the bond amount.

The reclamation plan should include, but is not limited to, a description of the equipment and devices, practices you propose to use, a timeline for completion, etc.

a. It is suggested that a photographic record of the pre-prospecting and post-prospecting conditions be kept by the prospector. These photos should be taken from the same location and by the same method to clearly show the pre-site conditions of the land and the reclamation efforts. Upon completion of reclamation and request for bond or surety release, the photos may be considered as evidence of adequate reclamation, and thus, aid the BLM to act more quickly on the request for release.

Provide a description of the native vegetation of the area to be disturbed, including tree, shrub, and grass communities of the area. Color photographs, sufficient to adequately represent the ecology of the site and adequately labeled (including date, orientation and location), may be used in lieu of a written description.
Typical Mojave Desert vegetation.

Ending: April, 2024

d.	 Describe the estimated topsoil depth and how top operations, and redistributed for the re-establishn approximate redistribution depth. 	-	
	NA		
e.			
	(CDRMS) and State of Colorado regulations for required Holes will be plugged according to State		<u> </u>
f.	f. Describe how portals, adits, shafts, ponds, excavate Colorado Division of Reclamation and Mining Safer standards). You may wish to contact other State at applicable write N/A. Drill sumps will be filled and seeded upon coordinate with the BLM for seed mixture	ey (CDRMS) for sp and Federal Agenci completion of	ecific reclamation performance les for closure specifications. <i>If not</i> the drill program. We will
g.	g. Describe how roads will be reclaimed or returned applicable write N/A.	to their pre-prosp	pecting (or better) condition. <i>If not</i>
	Drill sites and cross country routes will be We will coordinate with the BLM on all as seed mix.		•
h.	h. List the seed mixture to be used in the re-establish mixtures and rates, contact the local NRCS.	ment of vegetation	on. For assistance with formulating seed
	Provide Plant name and seeding rate		
		Rate (PLS/Acre)	Seeding Method

Plant Name	Seeding Rate (PLS/Acre)	Seeding Method
corordinated with BLM		

2. Reclamation Cost Estimate: required by 43 CFR 3809.552.

The reclamation cost estimate must ensure:

- 1. the estimated costs as if reclamation work was contracted with a third party to reclaim the operations according to the reclamation plan, including construction and maintenance costs for any treatment facilities necessary to meet Federal and State environmental standards.
- 2. The Cost of Equipment Rental, Operation and Labor Appropriate for the Geographic Area

Enter those values in the cost estimate that are appropriate to this project. Attach sources/information used in cost estimate (examples: Caterpillar Performance Handbook, contractor's estimate, etc.). Some line items may not apply.

A. Earthwork/Recontouring	Labor ⁽¹⁾	Equipment ⁽²⁾	Materials	Total
Exploration	\$	\$	\$	\$ee attached SRCE
Exploration Roads & Drill Pads	562	1015	0	1577
Roads				
Drill Hole Abandonment	5733	5940	3870	15,543
Pits	578	998		1,576
Underground Openings				NA
Waste Rock Dumps				NA
Foundation & Buildings Area				NA
Lay down/storage yards, Etc.				NA
Drainage & Sediment Control				
Other				
Mobilization/Demobilization	1355	1705		3,060
Subtotal "A"				21,756
B. Revegetation/Stabilization	Labor ⁽¹⁾	Equipment ⁽²⁾	Materials	Total
Exploration	\$	\$	\$	\$
Exploration Roads & Drill Pads				
Roads				NA
Drill Hole Abandonment				NA
Pits				NA
Underground Openings				NA
Waste Rock Dumps				NA
Foundation & Buildings Area				NA
Lay down/storage yards, Etc.				NA
Drainage & Sediment Control				NA
Mobilization/Demobilization				NA
Other				
Subtotal "B"				0
C. Structure, Equipment and Facility	Labor ⁽¹⁾	Equipment ⁽²⁾	Materials	Total
Foundation & Buildings Area	\$	\$	\$	Ņ A
Other Demolition				NA
Equipment Removal				NA

Fence Removal				NA
Pipe & culvert Removal				NA
Rip-Rap, rock lining, gabions				NA
Subtotal "C"				0
D. Monitoring	Labor ⁽¹⁾	Equipment ⁽²⁾	Materials	Total
Reclamation Monitoring & Maintenance	\$	\$	\$	\$
Ground and Surface Water Monitoring				
Subtotal "D"				0
E. Construction Management & Support	Labor ⁽¹⁾	Equipment ⁽²⁾	Materials	Total
Construction Management	\$	\$	\$	\$
Road Maintenance				
Other				
Subtotal "E"				0
F. Operation & Maintenance Costs	Labor ⁽¹⁾	Equipment ⁽²⁾	Materials	Total
Subtotal A through E	\$	\$	\$	\$ 1,756
G. Indirect Costs (see text below for fu	rther informa	tion)		
1. Engineering, Design and Construction	0			
4. Bond (6.2)	715			
5. Contractor Profit (6.3)	2385			
6. Contract Administration (6.4)	2385			
Subtotal Add-on Costs				5485
GRAND TOTAL				27241

RECLAMATION COST ESTIMATION SUMMARY SHEET FOOTNOTES

- 1. Federal construction contracts require Davis-Bacon wage rates for contracts over \$2,000. Wage rate estimates may include base pay, payroll loading, overhead and profit. (NOTE Depending on type of operations, it may be issued as a service contract.)
- 2. The reclamation cost estimate must include the estimated plugging cost for holes utilizing the most reliable assumption of total depth.
- 3. Miscellaneous items should be itemized on accompanying worksheets.
- 4. Management plans for hazardous material to include petroleum products
- 5. Any mitigation measures identified in the Notice must be included in the reclamation cost estimate. Mitigation may include measures to avoid, minimize, rectify and reduce or eliminate the impact, or compensate for the impact.
- 6. Details in reference to section "G Indirect Costs" of the table above.
 - (1) Engineering, design and construction (ED&C) plans are often necessary to provide details on the reclamation needed to contract for the required work. To estimate the cost to develop an ED&C plan use 4. 8% of the operations and maintenance cost. Inclusion of a line item for the development of an ED&C plan may not be necessary for small operations, such as notice-level exploration. With small, uncomplicated reclamation efforts contracting may be able to proceed without developing an ED&C plan.

(2)Federal construction contracts exceeding \$100,000 require both a performance and a payment bond (Miller Act, 40 U.S.C. 270 et seq.). Each bond premium is figured at 1.5% of the O&M cost. Enter the sum of both premium costs on this line, as applicable.

- (3) For Federal construction contracts, use 7% of estimated O&M cost for the contractor's profit.
- (4) To estimate the contract administration cost, use 6 to 10% of the operational and maintenance (O&M) cost.

Comments:

See attached SRCE for best monetary calculations for reclamation and bond amount.	

Section 6: Terms and Conditions for Notice Level Operations

Complete Filing and Starting Exploration Operations:

- 1. If BLM does not take any of the actions described in § 3809.313, you may begin operations no sooner than 15 calendar days after the appropriate BLM office receives your complete notice. BLM may send you an acknowledgement that indicates the date we received your notice. If you don't receive an acknowledgement or have any doubt about the date we received your notice, contact the office to which you sent the notice. This subpart does not require BLM to approve your notice or inform you that your notice is complete.
- 2. If BLM completes our review sooner than 15 calendar days after receiving your complete notice, we may notify you that you may begin operations.
- 3. A financial warranty must be provided for the cost of reclamation of the disturbance described in this Notice, pursuant to 43 CFR 3809.500-599. The financial warranty must be submitted prior to entry upon lands for the purpose of prospecting in a manner greater than casual use. Information on additional financial warranties can be found in the regulations. (www.ecfr.gov; title 43, subpart 3809)
- 4. Your operations may be subject to BLM approval under part 3710, subpart 3715, of this title relating to use or occupancy of unpatented mining claims.
- 5. Performance standards outlined in 43 CFR 3809.420 must be met during all aspects of the exploration operations. Failure to comply may result in enforcement per 43 CFR 3809.600-605.

Section 7: Departmental Use Only		
Case File #	Reviewed By:	
Received on:	Response Due by:	
Remarks:		
		1
1		П

Geology and Lithium Mineralization of the Let's Go Lithium Project Nye County, Nevada

John E Zimmerman GenGold2, LLC 10/4/2022

Location

The Let's Go Lithium Project (LGL) is a new Nevada lithium claystone project located in the Amargosa Valley of southwestern Nevada, about 80 miles northwest of Las Vegas (see Figure 1 below).

Figure 1. Project Location

Lithium Mineralization Highlights

Several factors point to the strong lithium potential of the Let's Go Lithium ("LGL") project:

- It is located within the Southwest Nevada Lithium Province (see Figure 2 below), where lithium
 is currently produced from brines, and several lithium claystone projects have been identified
 and developed to the Feasibility/Pre-Feasibility pilot plant stage;
- 2. LGL is located in a large basin of clay rich Tertiary lakebed sediments, the major host rock for the other lithium claystone deposits in the province. Claystone beds up to 500 feet thick are reported from water wells drilled in the area including on the project itself (see Table 1 Select Water Well Drill Logs below).
- 3. Lithium in commercial grades are known in the area:
 - a. At the Franklin Wells Hectorite deposit on the west edge of the basin (no resource grade known but values of up to 3,110 ppm Li reported by the U.S. Geological Survey).

- b. Samples collected at the LGL project by John Zimmerman contain up to 820 ppm lithium in surface grab samples (certified by ALS Labs, see Appendix 1). Handheld Laser Induced Breakdown Spectroscopy ("HH LIBS") samples have returned lithium values of up to 1,218 ppm Li on the project (see Appendix 2).
- c. PhD reported literature in "purified fine gray clay separates" of values of up to 3,800 ppm Li from locations near the project area (Khoury¹, et al).
- d. The ABCs of Lithium Mining is that grades of 680ppm Li and higher are considered to be high grade².

Figure 2. Southwest Nevada Lithium Province

Land status

Land status of the project area is shown in Figure 3 below. Most of the project area is held by the BLM and is open to mineral location. There are also some pre-existing mining claims and privately held land. GenGold2, LLC, located 296 placer claims in early September 2022 (Figure 3) and these comprise the current project area of approximately 6,000 acres. These were located by the aliquot method (portion

of quarter-quarter section). Two separate sets of claims were located to cover areas of known lithium surface anomalies.

Figure 3. Land Status

Geology

The geography of the project area is generally flat desert landscape typical of an alluvial basin and dry lake bed. It is punctuated by some central low bluffs (see cover page photo). The general geology of the area is described by Bestram³:

"Rocks of lower Paleozoic and Tertiary age make up the highlands and mountains; the lowlands are mantled by various types of Quaternary deposits. Tuffs and tuffaceous sandstones make up the bulk of the Tertiary rocks found in the northern most part of the [Lathrop Wells] quadrangle. Basalt is found, commonly capping ridge tops.

Structurally, the area was affected by two major periods of deformation. During the late Mesozoic early Tertiary phase, compressional deformation predominated. Large easterly-directed thrust faults, accompanied by folding and strike-slip faulting, were the rule. About 17 million years ago, a major change occurred in the tectonic setting of the region with the onset of extensional faulting and volcanic activity (Stewart, 1980). Basin and range faulting, which began in the Miocene and continued to the Holocene, is responsible for the topography and geology seen today. It is suggested

by Denny and Drews (1965) and Khoury (1978)⁴ that during the Pleistocene much of the lowlands in the Lathrop Wells and Ash Meadows quadrangles were covered intermittently by a series of pluvial lakes. Significant amounts of lacustrine sediments were deposited in the area during this period as well as the continuing influx of fluvial clastics."

Four geologic maps have been produced covering the project area and immediately surrounding area. The work of Swadley⁵ 1983 of the USGS shows several Quaternary units at the surface in the project area (Figure 4 below). These include thin younger (Pleistocene) units including eolian sands (Q1s) and fluvial sands and gravels (Q2c, Q2bc). Under these are somewhat older units (Pliocene and Pleistocene) alluvium QTa, a thin limestone unit (QTII) and a marl unit (QTId). The marl unit is likely the surface exposure of a thick bed of claystone that is known from water wells to be up to 500 feet thick. It is dated at 800,000 years from an included ash bed. These units are all flat lying or nearly flat. Limestone capped buttes in the center of the area are probably uplifted fault blocks and show a minor amount of tilt, less than 5 degrees. Lhoist of Nevada has been producing specialty clays from the marl for over 50 years from shallow open pits north and south of the claim block.

Figure 4. Geology

Numerous water wells have been drilled in the Amargosa Flats area and simple drill logs are available for many (see Figure 5 below). They generally show thicknesses of clay beds (some with mixed silt, sand,

and gravel) of 123 to 500 feet. Some of the clay was noted be gray or light gray in color, a characteristic that correlates with higher lithium values at American Lithium's (TSX: LI) TLC Project (Dave Mough, personal communication, 2022).

Figure 5. Area Water Wells

	Table 1.1 Select drill logs from the Let's Go Lithium Project									
Log#	Depth (ft)	Date	Water Table	From ft	To ft	Lithology	Clay total	Note		
98654	500	9/01/05	47	0	20	clay/sand				
				20	160	clay				
				160	300	clay/gravel				
				300	500	clay	500			
98656	510	9/01/05	0	0	20	gravel		artesian after lift test		
				20	300	clay				
				300	350	gravel				
				350	390	clay	320			
				390	510	bedrock?				
28820	200	7/01/87	131	0	200	silt/clay	200			
46842	2110	11/01/94	na	0	260	brown clay				
				260	360	sand				
				360	487	brown clay	387			
				487	515	basalt				
				575	2110	silt/sand/cla	у			
						Average	352 ft	107 m		
			clay interval							

Table 1.2 Select drill logs from surrounding area								
Log#	Depth (ft)	Date	Water Table	From ft	To ft	Lithology	Clay total	Note
52335	151	8/01/79	56	0	28	sand		east of map
				28	105	clay		
				105	107	limestone		
				107	130	clay/gravel		
				130	144	gray clay		carbon?
				144	151	clay/lime	121	
117448	225	6/01/13	60	0	13	clay/sand		
				13	225	calcified ash	225	clay??
117026	350	2/01/13	70	0	103	sand/gravel		
				103	123	brown clay		
				123	126	sand/gravel		
				126	173	gray clay		carbon?
				173	174	sand/gravel		
				177	310	clay		
				310	345	gravel/clay		
				345	350	gray clay	240	carbon?
81178	240	8/01/00	na	0	10	sand		
				10	205	clay/sand	195	
				205	215	sand/gravel		
				215	240	limestone		
7655	400	10/01/63	85	0	240	clay/sand		
				240	340	clay/talc	340	
				340	350	sand		
				350	392	talc/lime		
						Average	224 ft	68.2 m
			clay interval					

Lithium Mineralization

High lithium contents have been identified in clays from several areas in and near the project. These include an identified historic lithium resource at the Franklin Wells deposit about 7.5 miles southwest of the project area in California (Figure 1 above) on the western edge of the Amargosa Valley. This deposit is reported to contain about 66,000,000 tons of ore at an unspecified grade but an imputed valued of \$1,330,000,000 (Wilkerson⁶ et al, 2001); the USGS has reported individual sample values up to 3,110 ppm Li from the pit area. This deposit is long and linear, being 3 miles long and 700 feet wide. This linear aspect and the local alteration and breccias indicate that it was formed by hot spring activity along a fault zone (Wilkerson⁶, et al, 2001).

Eberl, et al (1982), and Khoury (1979)⁴ reported strong lithium values from samples collected from clay mine pits and auger holes near the project area (see Figure 6b below). These samples are described as being collected every 15 cm from auger holes and pits generally less than 10 meters deep; one hole was drilled to 35 meters. This material was then "purified" or centrifuged to produce an ultra-fine (<0.1 micron) clay sample. The USGS analyzed these samples for lithium and returned values of 100 to 1,400 ppm lithium in 13 samples as reported by Khoury (1979)¹, and from 2,700 to 3,800 ppm for 3 samples as reported by Eberl et al (1982)⁴ (see Figure 6a below). Those three samples are from the same locations as reported by Khoury¹ who reported values of 1,400 ppm, 1,000 ppm, and 500 ppm Li; the discrepancy in values is not explained by Eberl⁴, et al. As these samples have been processed to produce an ultra-fine fraction, they do not represent whole rock lithium values. They do suggest though that lithium is present in the clay beds in significant amounts.

Figure 6a. U.S. Geological Survey Lithium PPM Values near to Let's Go Lithium Project

The author has sampled numerous sites in and around the Let's Go Lithium project area. There are few areas of true outcrop (see picture of butte on cover page photo), and most of the samples come from dumps and subcrop and one pile of drill cuttings. Values of up to 820 ppm have been returned from green clay material (dump and subcrop) by a 4 acid method (ALS Labs LiOG63) (see Appendix 1 below) and up to 1,252 from HH LIBS analyses (see Appendix 2 below). The most consistent high values have come from green clays at the base of the largest butte on the project (see picture of butte on cover page photo), in prospect pits and subcrop (see Figure 6b below). This area is approximately 100 feet below the top of the butte and likely represents the deepest exposure of the marl unit (QTId).

Figure 6b. Lithium Values in Surface Samples from Let's Go Lithium Project

Metallurgical Test

Three pulps from remaining from the samples discussed above were re-run by a weak acid extraction technique (ALS laboratory method ME-MS41W, Table 2 below). A good percentage of the lithium, 64% to 98%, was extracted by the weak aqua regia acid (nitric and hydrochloric acids). This indicates that the lithium in the claystone is not bound up tightly in the mineral structure but is readily leached by weak acids. This suggests that LGL lithium claystones may be amenable to the extraction techniques being demonstrated by Cypress Development at Clayton Valley and American Lithium at TLC on their lithium claystone deposits.

		Table 2. Lithium extraction by dilute acid							
Year		Analytic method Analytic method							
	ID LiOG63		ME-MS41W	ME-MS41W					
	ID	Li ppm	Li ppm	Percent					
2017	AMZ-26	930	910	98%					
2017	AMZ-28	780	710	91%					
2017	AMZ-29	470	302	64%					

Exploration Plan

With its setting, strong surface lithium values, and thick clay beds, the LGL Project represents an excellent target for a lithium claystone deposit. The next major step at the project should be RC or RAB drilling the clay beds to depths of 250 to 300 feet in several wide spaced holes to test the lithium values in the clay beds at depth. While more surface sampling and auger drilling could be conducted before a drill test, they would not represent either a negative or positive test of the clay bed section, as so little of the section is exposed for sampling. Real testing can only be done with a drill. For a first pass, five wide spaced holes in each of the two claim blocks will be sufficient and any significant lithium concentrations should have good lateral continuity. The drill budget is approximately CAD200,000.

References

- 1. Khoury, H. N. (1979) Mineralogy and chemistry of some unusual clay deposits in the Amargosa Desert, southern Nevada: Ph.D. Thesis, University of Illinois, Urbana, Illinois, 171 pp.6.
- 2. Google Search: Mining.com, Lithium ABCs
- 3. Bestram, B., 1985, Mineral Patent Application of Industrial Mineral Ventures, Inc for the Cat, Dry, and Ewing Placer Mining Claims, BLM report on file at the BLM Worland Office, Worland, WY.
- 4. Eberl, Dennis D, Jones, Blair F. and Khoury, Hani N., 1982, Mixed-Layer Kerolite/Stevensite from the Amargosa Desert, Nevada; Clays and Clay Minerals, Vol 30, No. 5,321-326.
- 5. Swadley, W C, 1983, Map showing surficial geology of the Lathrop Wells quadrangle, Nye County, Nevada; USGS Miscellaneous Investigations Series Map I-1361, scale 1:48,000.
- 6. Wilkerson, Gregg, Bureau of Land Management, , Vredenburgh, Larry, Bureau of Land Management; Serenko, Thomas J., Southern Clay Products, Inc; Eyde, Ted H., Gadsden Sonora Holdings LLC, 2001, The Franklin Wells Hectorite Deposit, Inyo County, California, from The Changing Face of the East Mojave Desert, Abstracts from the 2001 Desert Symposium, California State University, Desert Studies Consortium.

Appendix 1. ALS Certified Surface Samples - Let's Go Lithium Project

ID2	Year	ЦТН	WIDTH	TYPE	X_utm27	Y_utm27	Li-OG63%	Li ppm
FB22-1	2022	claystone	1	outcrop	557093	4039773	0.006	60
FB22-2	2022	claystone	1	outcrop	557094	4039773	0.005	50
FB22-3	2022	claystone	1	outcrop	557094	4039773	0.005	50
FB22-4	2022	claystone	1	outcrop	555578	4041544	0.011	110
FB22-5	2022	claystone	1	outcrop	556512	4040147	0.016	160
FB22-6	2022	claystone	1	dump	565249	4043834	0.005	50
FB22-7	2022	clay	1	dump	568102	4040440	0.039	390
FB22-8	2022	claystone	1	dump	568411	4040488	0.011	110
FB22-9	2022	clay	1	outcrop	569184	4043299	-0.005	-50
FB22-10	2022	clay	1	subcrop	569203	4043328	-0.005	-50
FB22-11	2022	clay	1	dump	568526	4044178	0.007	70
FB22-12	2022	clay	1	dump	565473	4041418	0.011	110
FB22-12b	2022	gypsum clay	1	dump	559441	4038886	0.082	820
FB22-13	2022	clay	1	subcrop	559487	4038851	0.037	370
FB22-14	2022	clay	1	subcrop	559401	4038901	0.061	610
FB22-15	2022	clay	1	dump	566538	4039269	0.01	100
FB22-16	2022	clay	1	subcrop	559365	4039001	0.051	510
FB22-17	2022	clay		subcrop	559441	4038885	0.048	480
FB22-18	2022	clay		outcrop	567214	4038769	0.034	340
AMZ-1	2017	qtl	1		563773	4042690	.	-50
AMZ-2	2017	qtl	1		563764	4042675	0.016	160
AMZ-3	2017	limestone	20	outcrop	563408	4042642	-0.005	-50
AMZ-4	2017	qtl		outcrop	564318		0.011	110
AMZ-5	2017	qtl		outcrop	565270		0.007	70
AMZ-6	2017	qtl		dump	565316	4043777	0.006	60
AMZ-7	2017	qtl		outcrop	547160	4030693	0.067	670
AMZ-8	2017	qtl		outcrop	547121	4030643	0.078	780
AMZ-9	2017	qtl		trench	545777	4031907	0.021	210
AMZ-10	2017	qtl		dump	546005	4031775	0.007	70
AMZ-11	2017	qtl		dump	559441	4038881	0.057	570
AMZ-12	2017	qtl		outcrop	559414	4038914	-0.005	-50
AMZ-13	2017	qtl		outcrop	559430	4038973	0.009	90
AMZ-14	2017	qtl		outcrop	559425	4038956		120
AMZ-15	2017	qtl		dump	559410	4038899	0.045	450
AMZ-16	2017	qtl		outcrop	541442	4040902	-0.005	-50
AMZ-17	2017	qtl		dump	541831	4040068		-50
AMZ-17	2017	clay		outcrop	556073	4042872	0.023	230
AMZ-19	2017	clay		outcrop	556064			260
AMZ-20	2017	clay and limestone		outcrop	558272			50
AMZ-21	2017	clay		dump	557842		1	-50
AMZ-22	2017	volcanic sandstone		outcrop	556663	4043674	 	60
AMZ-23	2017	clay		trench	558459	4045293	-	60
AMZ-24	2017	clay		trench	555583	4043293	1	50
		· ·		dump	557082			-50
AMZ-25	2017 2017	shale			547222	4039758		930
AMZ-26		clay		dump		4030600		
AMZ-27	2017	clay		float	547201	4030653	0.053	530
AMZ-28	2017	clay		dump	559444	4038883	0.078	780
AMZ-29	2017	clay		subcrop	559251	4039305		470
AMZ-30	2017	clay		outcrop	559474		t t	170
AMZ-31	2017	siltstone		subcrop	559296	4039505	1	300
AMZ-32	2017	clay		dump	559211	4039113		320
AMZ-33	2017	clay limestone		outcrop	559942	4040583	 	50
AMZ-34	2017	clay		dump	559848	4040840	 	100
AMZ-35	2017	clay		dump	559736		1	270
AMZ-36	2017	clay		dump	560003	4040509		60
AMZ-37	2017	clay		dump	559954	4040579	 	50
AMZ-38	2017	limestone clay	1	trench	545776	4031903	0.018	180

Case 2:23-cv-01049-JAD-NJK Document 9-9 Filed 07/17/23 Page 24 of 24

Appendix 2. Handheld Laser Induced Breakdown Spectroscopy ("HH LIBS") samples

ID2	Year	LITH	WIDTH	TYPE	X_utm27	Y_utm27	LIBs avg Li ppm
FB22-7	2022	clay	1	dump	568102	4040440	724
FB22-16	2022	clay	1	subcrop	559365	4039001	1218
FB22-17	2022	clay	1	subcrop	559441	4038885	707
FB22-18	2022	clay	1	outcrop	567214	4038769	406