2.1 (b)

<u>x y z</u>	(xy+z)	(x+z)	(y+z)	$\underline{(x+z)(y+z)}$
0 0 0	0	0	0	0
0 0 1	1	1	1	1
010	0	0	1	0
0 1 1	1	1	1	1
100	0	1	0	0
101	1	1	1	1
110	1	1	1	1
1 1 1	1	1	1	1

2.3 (a)
$$A'B'C + AB'C + BC = B'C + BC = C$$

(b)
$$x'y'z' + y'z = y'(x'z' + z) = y'(x' + z) = x'y' + y'z$$

(c)
$$(x + y)'(x' + y') = x'y'(x' + y') = x'y'$$

(d)
$$x'y'z' + w'x'yz' + wx'yz' = x'z'(y' + w'y) + wx'yz' = x'z'(y' + w'y + wy) = x'z'$$

(e)
$$(BC' + A'D)(AB' + CD') = BC'AB' + BC'CD' + A'DAB' + A'DCD' = 0$$

(f)
$$(a+c)(a'+b+c)(a'+b'+c) = (ab+ac+a'c+bc+c)(a'+b'+c)$$

$$= (ab+c)(a'+b'+c) = abc+a'c+b'c+c$$

$$= abc+c(a'+b'+1)$$

$$= c$$

2.4 (a)
$$A'C' + ABC + AC = A'C' + AC(B+1) = A'C' + AC = (A XNOR C)$$

(d)
$$(A' + C)(A' + C')(A + B + C'D) = (A' + CC')(A + B + C'D)$$

= $A'(A + B + C'D) = AA' + A'B + A'C'D = A'(B + C'D)$

2.6 (a)
$$A'B'C + AB'C + BC = C$$

Simplified diagram is same as 2.6 (f) simplified diagram, F = C.

(a) x'y'z' + y'z = x'y' + y'z = F

(c)

(d)
$$x'y'z' + w'x'yz' + wx'yz' = x'z' = F$$

(e)

2.15
$$T_1 = A'BC' + A'BC + AB'C' + AB'C = A'B + AB' = A \oplus B$$

$$T_2 = A'B'C' + A'B'C + ABC' + ABC = A'B' + AB = (A \oplus B)'$$