What Is Claimed Is:

varying continuously.

3

	•
1	1. In an adaptive speed control system for
2	a vehicle, a method for controlling vehicle
3	deceleration, the method comprising:
4	determining a speed of the vehicle; and
5	setting a maximum allowed vehicle
6	deceleration based on the vehicle speed determined.
1	2. The method of claim 1 wherein setting a
2	maximum allowed vehicle deceleration based on the
3	vehicle speed includes adjusting the maximum allowed
4	vehicle deceleration in an inverse relationship to the
5	vehicle speed.
Ba	
()= 44)	3. The method of claim 2 wherein adjusting
2	the maximum allowed vehicle deceleration comprises
3	decreasing the maximum allowed vehicle deceleration as
4	the vehicle speed increases.
1	4. The method of claim 2 wherein adjusting
2	the maximum allowed vehicle deceleration comprises
3	increasing the maximum allowed vehicle deceleration as
4	the vehicle speed decreases.
1	5. The method of claim 2 wherein the
2	maximum allowed vehicle deceleration is capable of

B	\mathbb{R}^{-1}
Aduk	6. The method of claim 5 wherein the
2	maximum allowed vehicle deceleration is capable of
3	varying in a range between about 0.2 g and about
4	0.3 g.
1	7. The method of claim 2 wherein the
2	maximum allowed vehicle deceleration is an exponential
3	function of the vehicle speed.
•	- * 4
1	5. The method of claim wherein the
2	maximum allowed vehicle deceleration is defined by the
3	equation:
4	$MAXDECEL = 0.2 + 160/(VEHSPD + 40)^{2}$
5	where MAXDECEL is the maximum allowed vehicle
6	deceleration, and VEHSPD is the vehicle speed.
	·
1 ·	9. In an adaptive speed control system for
2	a vehicle, a system for controlling vehicle
3	deceleration, the system comprising:
4	a receiver capable of receiving an input
5	signal indicative of a speed of the vehicle; and
6	a controller capable of setting a maximum
7	allowed vehicle deceleration based on the vehicle
8	speed.
	\mathcal{L}
1	10. The system of claim 9 wherein, to set a
2	maximum allowed vehicle deceleration based on the

	3	vehicle speed, the controller is capable of adjusting
	4	the maximum allowed vehicle deceleration in an inverse
	5 a.l.\	relationship to the vehicle speed.
•	B4)	
	1º 11:	11. The system of claim 10 wherein, to
	2	adjust the maximum allowed vehicle deceleration, the
	3	controller is capable of decreasing the maximum
	4	allowed vehicle deceleration as the vehicle speed
	5	increases.
	1	12. The system of claim 10 wherein, to
	2	adjust the maximum allowed vehicle deceleration, the
	3	controller is capable of increasing the maximum
	4	allowed vehicle deceleration as the vehicle speed
	5	decreases.
	1	13. The system of claim 10 wherein the
	2	maximum allowed vehicle deceleration is capable of
	3 n E	varying continuously.
	1 R3	
JT,	W/PY	14. The system of claim 13 wherein the
	2	maximum allowed vehicle deceleration is capable of
	3	varying in a range between about 0.2 g and about
	4	0.3 g.
		\mathcal{A}

15. The system of claim 10 wherein the
maximum allowed vehicle deceleration is an exponential
function of the vehicle speed.

- 1 The system of claim 18 wherein the
- 2 maximum allowed vehicle deceleration is defined by the
- 3 equation:
- 4 MAXDECEL = $0.2 + 160/(VEHSPD + 40)^2$,
- 5 where MAXDECEL is the maximum allowed vehicle
- 6 deceleration, and VEHSPD is the vehicle speed.