

# Lecture 13: Deep Sequential Models Efstratios Gavves

#### Lecture overview

- Autoregressive Models
- o PixelCNN, PixelCNN++, PixelRNN
- O WaveNet
- Time-Aligned DenseNets

- $\circ$  Let's assume we have signal modelled by an input random variable x
- Can be an image, video, text, music, temperature measurements

o Is there an order in all these signals?

- $\circ$  Let's assume we have signal modelled by an input random variable x
- Can be an image, video, text, music, temperature measurements

o Is there an order in all these signals?



- $\circ$  Let's assume we have signal modelled by an input random variable x
- Can be an image, video, text, music, temperature measurements

o Is there an order in all these signals? Other signals and orders?



- $\circ$  Let's assume we have signal modelled by an input random variable x
  - Can be an image, video, text, music, temperature measurements

o Is there an order in all these signals?



- o If x is sequential, there is an order:  $x = [x_1, ..., x_k]$ 
  - E.g., the order of words in a sentence
- o If x is not sequential, we can create an artificial order  $x = [x_{r(1)}, ..., x_{r(k)}]$ 
  - E.g., the order with which pixels make (generate) an image
- Then, the marginal likelihood is a product of conditionals

$$p(x) = \prod_{k=1}^{D} p(x_k | x_{j < k})$$

- o Different from Recurrent Neural Networks
  - (a) no parameter sharing
  - (b) chains are not infinite in length

- $\circ$  Pros: because of the product decomposition, p(x) is tractable
- $\circ$  Cons: because the p(x) is sequential, training is slower
  - To generate every new word/frame/pixel, the previous words/frames/pixels in the order must be generated first → no parallelism



# The where and now of Deep Autoregressive Models

- Sequential data is a natural fit
  - Language modelling, time series, etc
  - For non-sequential data they are ok, although arguably artificial
- Question: How to model the conditionals  $p(x_k|x_{i < k})$ 
  - Logistic regression (Frey et al., 1996)
  - Neural networks (Bengio and Bengio, 2000)

- Modern deep autoregressors
  - NADE, MADE, PixelCNN, PixelCNN++, PixelRNN, WaveNet



Neural Autoregressive Distribution Estimation, Larochelle and Murray, AISTATS 2011

#### NADE

Minimizing negative log-likelihood as usual

$$\mathcal{L} = -\log p(x) = -\sum_{k=1}^{D} p(x_k | x_{< k})$$

o Then, we model the conditional as

$$p(x_d|x_{< d}) = \sigma(V_{d,:} \cdot h_d + b_d)$$

where the latent variable  $h_d$  is defined as

$$h_d = \sigma(W_{:,d} \cdot x_d + c)$$





# NADE: Training & Testing

#### "Teacher forcing" training

Training: Use ground truth values (e.g. of pixels)



Testing: Use predicted values in previous order



#### NADE Visualizations



**Binarized MNIST** samples (NADE)

**Binarized MNIST** samples (DeepNADE)

Binarized MNIST samples (ConvNADE)

- Question: How could we construct an autoregressive autoencoder?
- $\circ$  To rephrase: How to modify an autoencoder such that each output  $x_k$ depends only on the previous outputs  $x_{< k}$  (autoregressive property)?
  - $\circ$  Namely, the **present** k-th output  $\widetilde{x}_k$  must not depend on a computational path from future inputs  $x_{k+1}, ..., x_D$
  - Autoregressive:  $p(x|\theta) = \prod_{k=1}^{D} p(x_k|x_{i < k}, \theta)$
  - Autoencoder:  $p(\tilde{x}|x,\theta) = \prod_{k=1}^{D} p(\tilde{x}_k|x_k,\theta)$

Masked Autoencoder for Distribution Estimation, Germain, Mathieu et al., ICML 2015

- Question: How could we construct an autoregressive autoencoder?
- $\circ$  To rephrase: How to modify an autoencoder such that each output  $x_k$ depends only on the previous outputs  $x_{< k}$  (autoregressive property)?
  - $\circ$  Namely, the **present** k-th output  $\tilde{x}_k$  must not depend on a computational path from future inputs  $x_{k+1}, ..., x_D$
  - Autoregressive:  $p(x|\theta) = \prod_{k=1}^{D} p(x_k|x_{i < k}, \theta)$
  - Autoencoder:  $p(\tilde{x}|x,\theta) = \prod_{k=1}^{D} p(\tilde{x}_k|x_k,\theta)$
- O Answer: Masked convolutions!

$$h(x) = g(b + (W \odot M^{W}) \cdot x)$$
  

$$\tilde{x} = \sigma(c + (V \odot M^{V}) \cdot h(x))$$

Masks







Masked Autoencoder for Distribution Estimation, Germain, Mathieu et al., ICML 2015



Masked Autoencoder for Distribution Estimation, Germain, Mathieu et al., ICML 2015

#### **PixelRNN**

- O Unsupervised learning: learn how to model p(x)
- Decompose the marginal



$$p(x) = \prod_{i=1}^{n^2} p(x_i|x_1, ..., x_{i-1})$$

- $\circ$  Assume row-wise pixel by pixel generation and sequential colors R $\rightarrow$ G $\rightarrow$ B
- Each color conditioned on all colors from previous pixels and specific colors in the same pix

$$p(x_{i,R}|x_{< i}) \cdot p(x_{i,G}|x_{< i},x_{i,R}) \cdot p(x_{i,B}|x_{< i},x_{i,R},x_{i,G})$$

o Final output is 256-way softmax

Pixel Recurrent Neural Networks, van den Oord, Kalchbrenner and Kavukcuoglu, arXiv 2016

#### **PixelRNN**

O How to model the conditionals?

$$p(x_{i,R}|x_{< i}), p(x_{i,G}|x_{< i}, x_{i,R}), p(x_{i,B}|x_{< i}, x_{i,R}, x_{i,G})$$

- LSTM variants
  - 12 layers
- O Row LSTM
- Diagonal Bi-LSTM



#### **PixelRNN**

- Residual connections also to speed up convergence
- $\circ$  Pros: good modelling of  $p(x) \rightarrow$  nice image generation
- Ocons: slow training, slow generation



#### PixelRNN - Generations



Figure 1. Image completions sampled from a PixelRNN.

#### **PixelCNN**

Unfortunately, PixelRNN is too slow

- Solution: replace recurrent connections with convolutions
- Multiple convolutional layers to preserve spatial resolution
- Training is much faster because all true pixels are known in advance, so we can parallelize
  - Generation still sequential (pixels must be generated) → still slow



**PixelCNN** 

Stack of masked convolutions

| 1 | 1 | 1 | 1 | 1 |
|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

Pixel Recurrent Neural Networks, van den Oord, Kalchbrenner and Kavukcuoglu, arXiv 2016

## **PixelCNN**

Use masked convolutions again to enforce autoregressive relationships





#### PixelCNN – Pros and Cons

o Cons: Performance is worse than PixelRNN

• Why?

• New problem: the cascaded convolutions create a "blind spot"

# Blind spot

- o Because of
  - (a) the limited receptive field of convolutions and
  - (b) computing all features at once (not sequentially)
  - → cascading convolutions makes current pixel not depend on all previous
  - → blind spot



# Fixing the blind spot: Gated PixelCNN

- Use two layers of convolutions stacks
  - Horizontal stack: conditions on current row and takes as input the previous layer output and the vertical stack
  - Vertical stack: conditions on all rows above current pixels
- $\circ$  Also replace ReLU with a  $tanh(W * x) \cdot \sigma(U * x)$





#### PixelCNN - Generations

#### Coral reef



#### PixelCNN - Generation

#### Sorrel horse



#### PixelCNN - Generation

#### Sandbar



#### PixelCNN - Generation

#### Chasa Apso



#### PixelCNN++

- Improving the PixelCNN model
- Replace the softmax output with a discretized logistic mixture lihelihood
  - Softmax is too memory consuming and gives sparse gradients
  - Instead, assume logistic distribution of intensity and round off to 8-bits
- Condition on whole pixels, not pixel colors
- Downsample with stride-2 convs to compute long-range dependencies
- Use shortcut connections
- Dropout
  - PixelCNN is too powerful a framework  $\rightarrow$  can onverfit easily

PixelCNN++: Improving the PixelCNN with Discretized Logistic, Salimans, Karpathy, Chen, Kingma, ICLR 2017

### PixelCNN++



### PixelCNN++ - Generations



#### PixelVAE

A standard VAE with a PixelCNN generator/decoder

• Be careful. Often the generator is so powerful, that the encoder/inference network is ignored  $\leftarrow$  Whatever the latent code z there will be a nice image generated

PixelVAE: A Latent Variable Model for Natural Images, Gulrajani et al., ICLR 2017

#### PixelVAE



#### PixelVAE - Generations



64x64 LSUN Bedrooms



64x64 ImageNet

#### PixelVAE - Generations

Varying top latents





























#### WaveNet



WaveNet: A Generative Model for Raw Audio, van den Oord et al., arXiv 2017

#### WaveNet

Inspired by PixelRNN and PixelCNN

Fully convolutional neural network

Use dilated convolutions

Samples



#### WaveNet architecture



# VideoTime: Time-Aligned DenseNets

- Video Time: Properties, Encoders and Evaluation
  - A. Ghodrati, E. Gavves, C. Snoek, BMVC 2018
- O How to model image sequences optimally?



Video Time: Properties, Encoders and Evaluation, Ghodrati, Gavves, Snoek, BMVC 2018

# Properties of video

A standard VAE with a PixelCNN



**Forward** 



Backward

# Video properties

Natural order (+)











Reverse order (-)









Temporal continuity

















Temporal causality











#### Current solutions

LSTMs learn transitions between subsequent states

3D convolutions learn spatiotemporal patterns within a video





# Time-Aligned DenseNets

- Autoregressive-like: each new frame directly depends on all previous frames
  - They are not generative
- No parameter sharing → like ConvNets, unlike RNNs
- Sequential → like RNNs, unlike ConvNets



# Better latent space



#### Summary

- Autoregressive Models
- o PixelCNN, PixelCNN++, PixelRNN
- O WaveNet
- Time-Aligned DenseNets