

Art of Problem Solving 1999 Balkan MO

Balkan MO 1999

_	May 8th
1	Let O be the circumcenter of the triangle ABC . The segment XY is the diameter of the circumcircle perpendicular to BC and it meets BC at M . The point X is closer to M than Y and Z is the point on MY such that $MZ = MX$. The point W is the midpoint of AZ .
	a) Show that W lies on the circle through the midpoints of the sides of ABC ;
	b) Show that MW is perpendicular to AY .
2	Let p be an odd prime congruent to 2 modulo 3. Prove that at most $p-1$ members of the set $\{m^2 - n^3 - 1 \mid 0 < m, n < p\}$ are divisible by p .
3	Let ABC be an acute-angled triangle of area 1. Show that the triangle whose vertices are the feet of the perpendiculars from the centroid G to AB , BC , CA has area between $\frac{4}{27}$ and $\frac{1}{4}$.
4	Let $\{a_n\}_{n\geq 0}$ be a non-decreasing, unbounded sequence of non-negative integers with $a_0 = 0$. Let the number of members of the sequence not exceeding n be b_n . Prove that
	$(a_0 + a_1 + \dots + a_m)(b_0 + b_1 + \dots + b_n) \ge (m+1)(n+1).$

Contributors: Valentin Vornicu