

Introdução aos Sistemas Digitais

Universidade Federal de Uberlândia Faculdade de Computação Prof. João Henrique de Souza Pereira

Apresentação

- GSI008 Sistemas Digitais
- Fundamentação básica acerca da eletrônica digital que rege os processos computacionais.
- Entendimento deste conteúdo facilitará o aprendizado dos demais conteúdos previstos no curso de BSI.

Sistema de Avaliação

Duas provas (P₁ e P₂) com valor de 35 pontos cada.

Trabalhos práticos: 30 pontos.

 Prova substitutiva, com valor de 35 pontos, substituindo a menor nota.

Materiais da Disciplina

http://bit.ly/aulasdfacom

O Processo de Abstração em SD

Natureza

observações e medidas

V	ı
4	0.1
12	0.3
16	0.4

Abstração Conj. de Instruções

MOV A,1 ADD A,#10

Abstração Arquiteturas

Abstração Linguagens

```
#include <stdio.h>
void main()
{
   printf("oi!")
}
```

Sistemas Digitais e Sistemas de Informação

- Porquê estudar SD em um curso de BSI?
 - O computador é um sistema digital
 - Entender SD auxilia na programação de computadores
 - Desenvolvimentos efetivos em computação ubíqua requerem conhecimentos de SD
 - Sistemas de informação frequentemente devem ser interfaceados com outros sistemas
 - Sistemas Embarcados e Sistemas
 Reconfiguráveis ("Hardware Softening")

Grandezas Elétricas

- Corrente elétrica (I);
- Tensão Elétrica (v);
- Resistividade Elétrica (Ω);
- Capacitância Elétrica (Farad);
- Potência Elétrica (W);
- Indutância Elétrica (L).

Eletricidade: Intuição

1Coulomb = 6.25x10¹⁸ elétrons

Movimentação de Elétrons Livres

Lei De Ohm

- Georg Simon Ohn (1787-1854)
- Afirma que, para um condutor mantido à temperatura constante, a razão entre a tensão entre dois pontos e a corrente elétrica é constante. Essa constante é denominada de resistência elétrica.

$$R = \frac{V}{I}$$

Resistores

Cor	1ª Faixa	2ª Faixa	3ª Faixa	Multiplicador	Tolerância
Preto	0	0	0	x1	
Marrom	1	1	1	x10	±1%
Vermelho	2	2	2	x100	±2%
Laranja	3	3	3	x1K	
Amarelo	4	4	4	x10 K	
Verde	5	5	5	x100K	±0.5%
Azul	6	6	6	x1M	±0.25%
Violeta	7	7	7	x10M	±0.1%
Cinza	8	8	8		±0.05%
Branco	9	9	9		
Dourado				X.1	±5%
Prateado				x.01	±10%

Resistores

- Impõem uma resistência ao fluxo dos elétrons;
 - Em geral a resistência gera calor;
 - Princípio básico de lâmpadas incandescentes, chuveiros, aquecedores, etc.

Cálculo de Resistores

• Série: $R(s) = R_a + R_b$

• Paralelo:
$$R_{(p)}=\dfrac{R_a\times R_b}{R_a+R_b}$$

$$\dfrac{1}{R_{(p)}}=\dfrac{1}{R_a}+\dfrac{1}{R_b}+\ldots$$

Exemplos

Capacitores

Lista básica de Componentes

- Existem muitos outros;
- Os componentes listados ao lado compõem a lista básica dentre todos os componentes de interesse para esta disciplina;
- Estes são, do ponto de vista de Sistemas Digitais componentes auxiliares. O foco principal concentrar-se-á em Circuitos Integrados e Portas Lógicas.

SD e Telecomunicações

O Mundo dos 0's e 1's

Sinais Discretos vs Contínuos

- Infinitos possíveis valores mensuráveis a qualquer momento;
- Complexo;
- Suscetível a ruídos.

- Nº de possíveis valores finito, mensuráveis em intervalos específicos;
- Relativamente simples;
- Tolerância a ruídos.

Pro Lar

- Leitura: (Tocci) 1.1 até 1.3 (pgs. 1-9)
- Exercícios: (Tocci): E={1.2, 1.2}

Bibliografia Comentada

TOCCI, R. J., WIDMER, N. S., MOSS, G. L.
 Sistemas Digitais – Princípios e Aplicações.
 11ª Ed. Pearson Prentice Hall, São Paulo,
 S.P., 2011, Brasil.

- CAPUANO, F. G., IDOETA, I. V. **Elementos de Eletrônica Digital**. 40ª Ed. Editora Érica.
- São Paulo. S.P. 2008. Brasil.