Математический анализ 1. Лекции 7 – 8.

Приложение 1. Доказательства некоторых утверждений

Теорема Ферма об экстремуме

Теорема

Пусть функция f дифференцируема в точке c и имеет локальный максимум в точке c. Тогда f'(c)=0.

Доказательство. Пусть функция f имеет локальный максимум в точке c. Тогда существует такая ε -окрестность $\mathcal{O}_{\varepsilon}(c)=(c-\varepsilon,c+\varepsilon)$ точки c, что $f(c)\geqslant f(x)$ для всех $x\in\mathcal{O}_{\varepsilon}(c)$. Поэтому для всех $x\in(c-\varepsilon,c)$ выполнено

$$\frac{f(x) - f(c)}{x - c} \geqslant 0,\tag{1}$$

а для всех $x \in (c, c + \varepsilon)$ выполнено

$$\frac{f(x) - f(c)}{x - c} \leqslant 0. \tag{2}$$

Поскольку функция f дифференцируема в точке c, существует

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c),$$

а значит, существуют и $\lim_{x \to c-0} \frac{f(x) - f(c)}{x-c}$ и $\lim_{x \to c+0} \frac{f(x) - f(c)}{x-c}$, причем

$$\lim_{x \to c-0} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c+0} \frac{f(x) - f(c)}{x - c} = f'(c).$$

Теорема Ролля

Теперь из неравенств (1) и (2) получаем: $f'(c)\geqslant 0$ и $f'(c)\leqslant 0$. Значит, f'(c)=0

Теорема Ролля

Пусть функция f определена и непрерывна на отрезке [a,b], дифференцируема на интервале (a,b) и, при этом, f(a)=f(b). Тогда существует такая точка $c\in(a,b)$, что

$$f'(c) = 0.$$

Доказательство. По теореме Вейерштрасса функция f ограничена на отрезке [a,b]. Пусть $m=\inf\{f(x):x\in[a,b]\}$ и $M=\sup\{f(x):x\in[a,b]\}$. Тогда, вновь по теореме Вейерштрасса, существуют такие точки $p,q\in[a,b]$, что f(p)=m и f(q)=M. Если M=m, то функция f есть константа на отрезке [a,b], и в качестве c можно взять любую точку $c\in(a,b)$. В противном случае, поскольку f(a)=f(b), хотя бы одна из точек p,q принадлежит интервалу (a,b). Положим c равным такому числу $z\in\{p,q\}$, что $z\in(a,b)$. Легко проверить, что эта точка является точкой экстремума. Тогда утверждение теоремы немедленно следует из теоремы Ферма об экстремуме.

Теорема Лагранжа о конечных приращениях

Теорема

Пусть функция f определена и непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b) . Тогда существует такая точка $c\in(a,b)$, что

$$f(b) - f(a) = f'(c)(b - a).$$

Доказательство. Рассмотрим функцию

$$g(x) = f(x) - \frac{f(b) - f(a)}{b - a}x.$$

Легко проверить, что функция g удовлетворяет условиям теоремы Ролля. Значит, для некоторой точки $c \in (a,b)$

$$0 = g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a},$$

откуда f(b) - f(a) = f'(c)(b - a).

Теорема Коши о конечных приращениях

Теорема

Пусть функции f и g непрерывны на отрезке [a,b] и дифференцируемы на интервале (a,b), причем $g'(x)\neq 0$ для всех $x\in (a,b)$. Тогда существует такая точка $c\in (a,b)$, что

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Доказательство. Рассмотрим функцию

$$h(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)}g(x).$$

Легко проверить, что функция h удовлетворяет условиям теоремы Ролля. Значит, для некоторой точки $c \in (a,b)$

$$0 = h'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}g'(c),$$

откуда
$$\dfrac{f(b)-f(a)}{g(b)-g(a)}=\dfrac{f'(c)}{g'(c)}.$$