Question Number	Scheme	Mar	ks
1. (a)(i) (ii)	[IQR = 47 - 33 =] 14 $[Range = 54 - 11 =] $ 43	B1 B1	(2)
(b)	e.g. $Q_2 - Q_1 (= 9) > (5 =) Q_3 - Q_2$	M1	(2)
	Therefore <u>negative</u> (skew)	A1	(2)
(c)	$25 \rightarrow 37 \implies \text{new } Q_1 = 35 \pmod{\text{plot}}$	B1	(2)
	[54 \rightarrow 60 (implies upper whisker now at 60) but no change to Q_3]		
	New IQR = 12 so need to re-calculate for outliers Outliers now $[>47 + 18 = 65 \text{ or}] < 35 - 18 = 17$	M1 A1	
	Box Plot	711	
	20 30 40 50 60 70		
	Box and two whiskers with median still at 42	M1	
	Lower quartile at their 35 (\neq 33) and upper quartile unchanged at 47	A1ft	
	Two outliers at 11 and 15 Lower whisker at 18 (or 17) and upper whisker at 60	A1 A1	
(d)	The value of pmcc is small or weak correlation (o.e.)	M1	(7)
(u)	Therefore the complaint is <u>not</u> supported	A1	(2)
		[13	
(a)(i)	Notes 1 st B1 for 14		
	2 nd B1 for 43		
(b)	M1 for a suitable reason or calculation (allow longer whisker on left etc)		
	A1 for negative skew (dep on M1 seen) "left skew" etc is A0 [Condone incorre	ct "9" or	"5"]
(c)	B1 for new lower quartile at 35 (stated or on box plot) 1st M1 for finding the new IOP (< 14) and attempting to re-calculate for outlier	C.	
	1 st M1 for finding the new IQR (< 14) and attempting to re-calculate for outlier 1 st A1 for at least the correct lower limit of 17 seen		
	2 nd M1 for drawing a box with only two whiskers and median at 42 (all points - 2 nd A1ft for lower quartile of "35" (changed from 33) and upper quartile unchanged from 33).		
	3 rd A1 for only two outliers at 11 and 15 (no overlap with whisker) 4 th A1 for lower whisker ending at 18 (or 17) <u>and</u> upper whisker ending at 60		
	Correct box plot scores all except 1 st M1A1 (i.e. 5/7) this M1A1 requires some		g
(d)	M1 for comment that pmcc is "small" so little correlation (just saying < 0 is no	ot enough	1)
(4)	Allow e.g. "not significant" or "not relevant" or $-0.5 < r < 0.5$ or "not cl	_	
	but "no correlation" is M0		
	A1 for suggesting the complaint is <u>not</u> supported e.g. "little evidence to suppo Dep on M1 seen NB M1A0 is possible	rt claim'	,
	Dep on terr seem ten terren is possible		

Question Number	Sch	neme	Marks
2. (a)	C 8 12 23 S 14 10 G	S (12) 23 (6) (14) (16) (17) (18) (19) (19) (19) (19) (19) (19) (19) (19	B1 B1 B1 B1
(b)(i)	$P(S) = \left[\frac{12 + 23 + 13}{80} \right] = \frac{48}{80} \text{ or } \frac{3}{5} \text{ or } 0$.6	B1ft
(ii)	$P(S \mid C) = \frac{P(S \cap C)}{P(C)} = \frac{\frac{12}{80}}{\frac{20}{80}}$		(1 M1
0	$=\frac{12}{20} \text{ or } 0.6$	1,65 75	A1cso (2
(iii)	$P(S) = P(S C)$ or $P(C) = 0.25$, $P(C \cap S)$ so S and C are in		B1ft dB1ft
(c)	Need P(S G) = $\frac{13}{23}$ P(S C) = 0.6 > 0.565 so assistant selli	ng coats has the better performance	M1A1 A1
	70,7	Notes	[Total 12
(a)	Notes 1st B1 for 3 labelled circles with 12, 13 & $n(C \cap G) = 0$ marked or implied (e.g.RH diagrazed May use probabilities not integers A blank space does not imply a zero		RH diagram
(b)(i)	B1ft for 0.6 or any exact equivalent (single fraction) or ft their values (ft blank as 0)		
(ii)	M1 for a correct conditional prob. Co A1cso for 0.6 which must come from	orrect expression and one correct ft prob a denominator of 20	. Num < Der
(iii)	1 st B1ft for a full reason. If not $P(S) = P(S C)$ then <u>all</u> values must be stated, labelled and correct or correct ft from diagram. Correct not'n required so $P(S \cup C) = 0.15$ is B0B0 2 nd dB1ft dep. on a correct reason for correct conclusion for their values		
(c)	$1^{st} A1$ for $\frac{13}{23}$ (accept awrt 0.565) [atio of probabilities or numbers using the Sight of $P(S \mid G) = \frac{13}{23}$ is M1A1] chooses "coats" based on a correct comparison.	
	Allow incorrect $P(S C)$ provid	ed > 0.565 to score 2^{nd} A1 and so all 3 with no P(). Probabilities may be descri	marks

Question Number	Scheme	Marks	
3. (a)	[Discrete] <u>uniform</u> (BUT <u>continuous</u> uniform is B0)	B1 (1)	
(b)	$P(D=3) + P(D=1) \times P(D=2) = \frac{1}{4} + \frac{1}{4} \times \frac{1}{4} = \frac{5}{16} $ (*)	M1A1cso	
(c)	$P(D=1) \times P(D=1) = \frac{1}{4} \times \frac{1}{4} \text{ or } 1 - \left(\frac{1}{4} + \frac{5}{16} + \frac{5}{16} + \frac{1}{16}\right) = \frac{1}{16}$	(2) B1	
(d)	$E(X) = 0 + 2 \times \frac{1}{4} + 3 \times \frac{5}{16} + 4 \times \frac{5}{16} + 5 \times \frac{1}{16} $ = 3	(1) M1A1 (2)	
(e)	$E(X^{2}) = 0 + 2^{2} \times \frac{1}{4} + 3^{2} \times \frac{5}{16} + 4^{2} \times \frac{5}{16} + 5^{2} \times \frac{1}{16} = \left[\frac{166}{16} \text{ or } \frac{83}{8} \text{ or } 10.375\right]$ $Var(X) = \frac{166}{16} - 3^{2}$	M1 dM1	
	$\sigma_{x}^{2} = 1.375 \text{ or } \frac{11}{8}$	A1 (3) M1	
(f)	$P(R = r)$ $\frac{3}{4}$ $\frac{1}{4}$ y 2.5 4.5	A1 (2)	
(g)	$E(R) = 1 \times \frac{3}{4} + 2 \times \frac{1}{4} [= 1.25 \text{ o.e.}]$ $E(Y) = 2E(R) + 0.5$ $P(Y = y) \qquad \frac{3}{4} \qquad \frac{1}{4}$ $E(Y) = 2.5 \times \frac{3}{4} + 4.5 \times \frac{1}{4}$	M1 M1	
(h)	$= 2.5 + 0.5 = 3 (*)$ $R = 1 \text{ so } Y = 2.5 \Rightarrow X = D = 2 \text{ or } 3 \text{ or } 4 \text{ so } D = 3 \text{ or } 4 \text{ work and prob} = \frac{1}{4} + \frac{1}{4}$ $\text{May use } P(X > 2.5 \mid R = 1) = \frac{2}{3} \text{ then prob will be } \frac{2}{3} \times \frac{3}{4}$	A1cso (3)	
	R = 2 so $Y = 4.5 \implies D = 1$ then $X = 0$, 3 or 4 or 5 so $X = 5$ only prob = $\frac{1}{16}$ So $P(X > Y) = \frac{1}{4} + \frac{1}{16} = \frac{9}{16}$	M1 A1 (3)	
		[Total 17]	
(b)	Notes M1 for a correct expression in terms of $P(D)$ or with $\frac{1}{4}$ s for $P(X = 3)$ A1cso M1 scored and no incorrect working seen $[P(X = 0) + P(X = 3)]$ is M0A0 if identified!]		
(d)	M1 for an attempt i.e. an expression with at least 3 correct products seen A1 for 3 or an exact equivalent e.g. $\frac{48}{16}$		
(e)	1^{st} M1 for an attempt i.e. an expression with at least 3 correct products seen[implied by $\frac{166}{16}$] 2^{nd} dM1 dep on 1^{st} M1 for use of $Var(X) = E(X^2) - E(X)^2$ must see values but ft their values A1 for 1.375 or an exact equivalent		
(f)	M1 for one correct value of <i>r</i> and it's associated probability A1 for a fully correct probability distribution – needn't be in a table		
(g)	1^{st} M1 for correct expression for E(R) [ft their (f)] or 1.25 or correct distribution for Y[ft (f)] 2^{nd} M1 for correct use of E(Y) = 2E(R) + 0.5 or correct expr'n for E(Y) [ft (f)] [\Rightarrow 1 st M1] A1cso for 3 with no incorrect working seen provided both Ms are scored		
(h)	1 st M1 for cases where $R = 1$ and prob. 2 nd M1 for cases where $R = 2$ and prod. A1 for $\frac{9}{16}$ or exact equivalent	b	

Question Number	Scheme	Marks	
4 (a)	$\overline{x} = \frac{58}{40} = 1.45$	B1	
	$\sigma^2 = \frac{84.829}{40} - 1.45^2$	M1	
	= 0.018225 = awrt	A1	
(b)	New mean = <u>145</u>	B1ft (3)	
	New $\sigma = 13.5$	B1 (2)	
(c)(i)	Reason e.g. mean of two extra children is the same as the original mean Conclusion the mean is therefore unchanged or $= 145$	M1 A1	
(ii)		M1 A1	
	Conclusion therefore standard deviation will increase	(4)	
-0	Notes	[9]	
(a)	Notes B1 for a correct mean (accept an exact fraction)		
(")	M1 for a correct expression for σ^2 (or s^2) (ft their mean and condone inside s	square root)	
	A1 for awrt 0.0182 (NB $s^2 = 0.0186923$ awrt 0.0187) Correct ans only 2/2		
(b)	1 st B1ft for new mean = 145 or $100 \times \text{their } \overline{x}$ 2 nd B1 for new s.d. = awrt 13.5 (accept $s = 13.6719$ or awrt 13.7)		
(c)(i)	1 st M1 for a suitable reason. May see recalculation e.g. $\frac{"145" \times 40 + 130 + 160"}{42}$	0 (o.e.)	
	e.g. "both 15 away from the mean" or "both same distance from the mea "mean of new values is 145 or the same"		
	1 st A1 for 145 or 1.45 or "no change" but M1 must be seen [no further comment needed if answer matches their (b) or (a)]		
(ii)	2^{nd} M1 for a suitable reason but must have idea that the "gap" (= 15) > 1 st. do 2^{nd} A1 for stating standard deviation will be greater (o.e.) [M1 must be seen]		
	Calculations (You may see)		
	e.g. $\Sigma y^2 = 84.829 + 1.3^2 + 1.6^2 = 89.079$ leading to $\sigma = \sqrt{0.01842} = 0.13575$ or $\underline{13.6}$ (cm)		
	or $\frac{89.079}{42} = 2.1209 > \frac{84.829}{40} = 2.1207$ but $\frac{\sum_{n} x}{n}$ stays the same so σ greater		
	BUT M0A0 unless we see mention of 15 (cm) or 1.5 (m) being more that	an 1 sd	

Question Number	Scheme	Marks
5. (a)	[It supports because:] r is close to -1 or there is strong correlation.	B1
		(1)
(b)	e.g. The dependent variable. The variable being studied.	B1
	5	(1)
(c)	$S_{ch} = -3034.6$	M1 A1
	$[b = \frac{S_{ch}}{S_{cc}} =]\frac{-3034.6}{303448} = -0.01[000hours/mg]$	
	So the data support the statement. (o.e.)	dA1
		(3)
(d)	- 126 3660 362	M1 A1ft
	$a = \overline{h} - b\overline{c} = \frac{126}{20} - "-0.01" \times \frac{3660}{20} = 6.3 - "-0.01" \times 183 = 8.13$	
	awrt <u>8.1</u>	A1 (3)
)		(0)
		[8 marks]
(b)	Notes B1 Allow equivalent definitions e.g. the variable you can't control in an experim	nant
(10)	or the amount of sleep depends on the amount of caffeine	Hem.
	or is affected by (changes according to) another variable	
	BUT "can't be measured" is B0	
	Mark (c) and (d) together. Gradient: M1 & 1st A1 in (c) Intercept: M1 & 1	1st A1 in (d)
(c)	M1 for calculation of gradient (correct expression)	
	1^{st} A1 for awrt -0.01 must be seen to come from gradient (can be part of wh	ole equation)
	2 nd dA1 dependent on M1 and 1 st A1 for "claim is supported" or "Martin is corn	rect"
	or "reduces by 1 hour"	
2 nd A1	If whole equation is seen before 2 nd A1 attempted they must refer to just gr	radient
2 nd A1	or May use equation to calculate h for some c and then $c + 100$ to show loss of	of 1 hour
	If they use the intercept and $c = 100$, must see a clear subtraction (e.g. $8.13 - 7$)	.13) to score
(d)	M1 for attempt to find <i>a</i> for linear regression model	
`	(Use of letter b or ft their value of b but a correctly placed \overline{h} or \overline{c} ne	eeded)
	1^{st} A1ft for correct expression for a (follow through their value for b)	
I	2^{nd} A1 for awrt 8.1 (hours) (or 8 hours and awrt 8 minutes) [Allow 8.1 – 0]	

Question Number	Scheme		Marks
6. (a)	$P(L > 4.3) = P\left(Z > \frac{4.3 - 4.1}{0.125}\right)$		M1
	$= P(Z > 1.6) \underline{\text{or}} 1 - P(Z)$	2 < 1.6) or $1 - 0.9452$	M1
	= 0.0548		A1 (3)
(b)	P(3.9 < L < 4.3) = P(Z < 1.6) - P(Z < 1.6)	< -1.6) or $2(P(7 < 1.6) - 0.5)$	X
(D)	= 0.9452 - 0.0548	= 2(0.9452 - 0.5)	Di
	= 0.8904	=0.8904	B1cso (1)
(c)	Number of unusable bolts = $(1-0.89) \times 500$ [= 55]	$\frac{\text{Alternative}}{\text{E(value of a bolt)}} = 0.89 \times 9 + 0.11 \times 1$	M1oe
	Value of bolts = " 445 "× 9 + " 55 "× 1	E(profit per bolt)= $0.89 \times 9 + 0.11 \times 1 - 5$	
	profit = " 445 "× 9 +" 55 "× 1 - 500 × 5	Profit = "3.12"×500	Mloe
	Profit from bolts = 1560 pence	Profit from bolts = 1560 pence	A1 (4)
	$\frac{4.198 - \mu}{\sigma} = 1.96$ or 4.198	1.06	, ,
(d)	$\frac{\sigma}{\sigma} = 1.96$ or $4.198 = 4.065 - \mu$ or $4.065 = -0.7$		M1A1
	U	$-\mu = -0.7\sigma$ be	A1
	$0.133 = 2.66\sigma$		M1
	$\sigma = 0.05$ (or awrt 0.0500) $\mu = 4.1$ (or awrt 4.10)		A1 A1 (6)
(e)		creased or $P(3.9 < L < 4.3)$ increased.	B1ft
(5)		01 1 (515 \ Z \ 115) 11101011011	dB1ft
	So the profit will increase		(2)
	NB Use of + 0.7 in (c) $\rightarrow \mu = 3.99, \sigma$		Total 16
(a)	1 st M1 standardising. Allow use of 0	125 ²	
(4)	$2^{\text{nd}} \text{ M1} 1-p \qquad p > 0.8$		
<i>a</i> >	A1 awrt 0.0548	0.0004014010	
(b)	B1cso sight of 0.8904 or better (calc:	0.8904014212) or a correct subtraction	n
(c)	$1^{\text{st}} M1 (1-"0.89") \times 500 \text{ or } 0.89 \times 9 + 10^{-1}$	+0.11×1 SC think 55 scrap	loses 1p
, ,	2^{nd} M1 "445"×9+"55" or $0.89 \times 9 + 10^{-3}$	BI for answer of awri	1450 n
	3 rd M1 method for the profit <u>or</u> their	r "3.12"×500 Score as: M1M0M0A1	. 1150 р
	A1 for awrt £15.60 or 1560 pence(p) [need units]	
(d)	1^{st} M1 Forming either equation – must have z value but allow $\pm z$ where $ z > 0.6$ 1^{st} A1 correct equation $4.198 - \mu = 1.96\sigma$ - any form (or allow $z = \text{awrt } 1.960$)		
	2^{nd} A1 correct equation $4.065 - \mu =$	-0.7σ - any form (or allow $z = \text{awrt} - 0.00$	0.700)
	$2^{\rm nd}$ M1 eliminating μ or σ (method <u>sec</u>		
	3 rd A1 0.05 (or awrt 0.0500)	4 th A1 4.1 (or awrt 4.10 dep or	1 1 st or 2 nd A1)
(2)	NB Candidate who assumes $\mu = 4.1$		0 4 4 2 1
(e)	If they have $\mu = 4.1$ in part (d) then	(allow any σ) otherwise need to see P(3 n don't need to state "mean the same" in J	part (e)
	2 nd dB1ft therefore profit will increase	e (o.e.) σ	0 is B0B0]