Постановка задачи

Даны $(t_i,y_i)_{i=1}^n$, где X — одномерные значения, а Y — одномерная целевая переменная.

Рассмотрим p — количество экспоненциальных членов, тогда мы подбираем функцию:

$$f:X o Y;\ f(t,{f p})=\sum_{i=1}^p \lambda_i lpha_i^t.$$

где
$$\mathbf{p} = (\lambda_1, \dots, \lambda_p, lpha_1, \dots, lpha_p)$$

Предполагая, что $\forall i \ \alpha_i > 0$, можно переписать $f(t, \mathbf{p})$ как:

$$f(t,\mathbf{p}) = \sum_{i=1}^p \lambda_i \exp(\ln(lpha_i)t) = \sum_{i=1}^p \lambda_i \exp(\omega_i t),$$

где $\mathbf{p}=(\lambda_1,\ldots,\lambda_p,\omega_1,\ldots,\omega_p)$ — параметры, которые необходимо подобрать.

Функция потерь для оптимизации — это MSE:

$$L(\mathbf{p}) = \sum_{i=1}^p (y_i - f(t_i, \mathbf{p}))^2.$$

Метод оптимизации — алгоритм Левенберга — Марквардта, встроенный в функцию curve fit библиотеки scipy.

Алгоритм Левенберга — Марквардта (LMA)

Подобно другим численным методам минимизации, алгоритм Левенберга — Марквардта является итеративной процедурой. Для начала минимизации необходимо задать начальное приближение для вектора параметров. Начальное значение $\mathbf{p}^T = (1,1,\ldots,1)$ подходит в большинстве случаев; в задачах с множеством локальных минимумов алгоритм сходится к глобальному минимуму, только если начальное приближение достаточно близко к решению.

На каждом шаге итерации вектор параметров ${f p}$ заменяется новой оценкой ${f p}+{f \Delta}$. Чтобы определить ${f \Delta}$, функция $f(t_i,{f p}+{f \Delta})$ линеаризуется:

$$f(t_i,\mathbf{p}+oldsymbol{\Delta})pprox f(t_i,\mathbf{p})+\mathbf{J}_ioldsymbol{\Delta},$$

где

$$\mathbf{J}_{i}=rac{\partial f\left(t_{i},\mathbf{p}
ight)}{\partial\mathbf{p}}$$

— это градиент f по параметрам ${f p}$.

Таким образом $\forall j \leq p$:

$$\mathbf{J}_{ij} = rac{\partial f\left(t_i, \mathbf{p}
ight)}{\partial \lambda_{\mathbf{i}}} = \exp(\omega_j t_i),$$

$$\mathbf{J}_{ij+p} = rac{\partial f\left(t_i,\mathbf{p}
ight)}{\partial \omega_{\mathbf{j}}} = \lambda_j t_i \exp(\omega_j t_i).$$

Функция потерь достигает минимума, когда её градиент по ${f p}$ равен нулю. Для первого приближения $f\left(t_i,{f p}+{f \Delta}
ight)$:

$$L\left(\mathbf{p}+oldsymbol{\Delta}
ight)pprox\sum_{i=1}^{p}\left[y_{i}-f\left(t_{i},\mathbf{p}
ight)-\mathbf{J}_{i}oldsymbol{\Delta}
ight]^{2}$$

или в векторной форме:

$$L\left(\mathbf{p}+\mathbf{\Delta}
ight)pprox\|\mathbf{y}-\mathbf{f}\left(\mathbf{p}
ight)-\mathbf{J}\mathbf{\Delta}\|_{2}^{2}.$$

Взяв производную от $L\left(\mathbf{p}+\mathbf{\Delta}\right)$ по Δ и приравняв её к нулю, получим:

$$\left(\mathbf{J}^{\mathrm{T}}\mathbf{J}\right)\mathbf{\Delta}=\mathbf{J}^{\mathrm{T}}\left[\mathbf{y}-\mathbf{f}\left(\mathbf{p}
ight)
ight].$$

Выражение выше соответствует методу Гаусса—Ньютона. Матрица Якоби ${f J}$ обычно не квадратная, а прямоугольная размерности m imes n, где n — количество параметров. Перемножение ${f J}^T {f J}$ дает квадратную матрицу размерности n imes n. Результат — это система из n линейных уравнений, решаемая для ${f \Delta}$.

Вклад Левенберга заключается в использовании регуляризованной версии уравнения:

$$\left(\mathbf{J}^{\mathrm{T}}\mathbf{J}+\lambda\mathbf{E}
ight)\mathbf{\Delta}=\mathbf{J}^{\mathrm{T}}\left[\mathbf{y}-\mathbf{f}\left(\mathbf{p}
ight)
ight],$$

где λ — коэффициент регуляризации, настраиваемый на каждой итерации. Если снижение L быстрое, значение λ уменьшается, приближая алгоритм к методу Гаусса—Ньютона:

$$oldsymbol{\Delta} pprox [\mathbf{J}^T\mathbf{J}]^{-1}\mathbf{J}^T[\mathbf{y} - \mathbf{f}\left(\mathbf{p}
ight)],$$

иначе λ увеличивается, приближая шаг к направлению градиентного спуска:

$$oldsymbol{\Delta} pprox oldsymbol{\lambda}^{-1} \mathbf{J}^T [\mathbf{y} - \mathbf{f} \left(\mathbf{p}
ight)].$$

Чтобы сделать решение инвариантным к масштабу, алгоритм Марквардта решал модифицированную задачу, в которой каждая компонента градиента масштабировалось в соответствии с кривизной. Это обеспечивает более значительные изменения вдоль направлений с меньшим градиентом, что позволяет избежать медленной сходимости в этих направлениях. Флетчер в своей статье 1971 года A modified Marquardt subroutine for non-linear least squares упростил эту формулу, заменив единичную матрицу E диагональной матрицей, состоящей из диагональных элементов $\mathbf{J}^T\mathbf{J}$:

$$\left[\mathbf{J}^{\mathrm{T}}\mathbf{J} + \lambda \operatorname{diag}\left(\mathbf{J}^{\mathrm{T}}\mathbf{J}\right)\right] \boldsymbol{\Delta} = \mathbf{J}^{\mathrm{T}}\left[\mathbf{y} - \mathbf{f}\left(\boldsymbol{p}\right)\right].$$

Выбор коэффициента регуляризации

Эффективной стратегией управления λ является "отложенное вознаграждение": увеличение λ после неудачного шага и снижение после успешного. Это позволяет алгоритму быстро сходиться к решению, когда он находится вблизи минимума, и медленно исследовать пространство параметров, когда он находится далеко от минимума.

Детали реализации

Так как производительность реализации, основанной исключительно на теоретических выкладках, оказалась недостаточной для практического применения, в итоговом решении были внесены несколько улучшений.

Функция потерь

Функция потерь была изменена на χ^2 , так как она часто используются в задачах аппроксимации кривых. Она определяется следующим образом:

$$\chi^2(oldsymbol{p}) = \sum_{i=1}^n \left(rac{y_i - f(t_i, oldsymbol{p})}{\sigma_i}
ight)^2 = \left[\mathbf{y} - \mathbf{f}\left(\mathbf{p}
ight)
ight]^T oldsymbol{W}\left[\mathbf{y} - \mathbf{f}\left(\mathbf{p}
ight)
ight],$$

где $m{W}=\mathrm{diag}\left(rac{1}{\sigma_1^2},\dots,rac{1}{\sigma_n^2}
ight)$ — матрица весов: $\sigma_i^2=\mathbb{D}[y_i]$. На практике она используется для увеличения веса измерений с меньшими ошибками.

Формула обновления для $oldsymbol{\Delta}$ была скорректирована, чтобы учитывать изменение функции потерь:

$$\left(\mathbf{J}^{\mathrm{T}} oldsymbol{W} \mathbf{J} + \lambda \mathbf{E}
ight) oldsymbol{\Delta} = \mathbf{J}^{\mathrm{T}} oldsymbol{W} \left[\mathbf{y} - \mathbf{f} \left(oldsymbol{p}
ight)
ight].$$

Принятие шага

Ранее шаг принимался, если функция потерь уменьшалась, иначе он отклонялся, а коэффициент регуляризации увеличивался. Теперь шаг принимается, если метрика ρ больше порогового значения $\epsilon_4>0$ (step-acceptance в коде). Эта метрика измеряет фактическое уменьшение χ^2 по сравнению с улучшением, достигаемым шагом метода Левенберга-Марквардта.

$$ho = rac{\chi^2(oldsymbol{p}) - \chi^2(oldsymbol{p} + oldsymbol{\Delta})}{|(oldsymbol{y} - oldsymbol{\hat{y}})^T \mathbf{W} (oldsymbol{y} - oldsymbol{\hat{y}}) - (oldsymbol{y} - oldsymbol{\hat{y}} - \mathbf{J}oldsymbol{\Delta})^T \mathbf{W} (oldsymbol{y} - oldsymbol{\hat{y}} - \mathbf{J}oldsymbol{\Delta})|} \ = rac{\chi^2(oldsymbol{p}) - \chi^2(oldsymbol{p} + oldsymbol{\Delta})}{|oldsymbol{\Delta}^T (\lambda oldsymbol{\Delta} + \mathbf{J}^T \mathbf{W} (oldsymbol{y} - oldsymbol{\hat{y}}))|}$$

где
$$\hat{m{y}} = \mathbf{f}(m{p})$$
.

Эта метрика для принятия шага была предложена Нильсеном в его статье 1999 года [3]. Выбранное значение для $\epsilon_4 - 10^{-1}$.

Стратегия обновления

Коэффициент регуляризации и параметры модели обновляются согласно следующим правилам:

Если
$$ho>\epsilon_4$$
: $\lambda=\max[\lambda/L_\downarrow,\ 10^{-7}],\ \mathbf{p}\leftarrow\mathbf{p}+oldsymbol\Delta$ иначе: $\lambda=\min[\lambda L_\uparrow,\ 10^7]$

где $L_{\downarrow} \approx 9$ и $L_{\uparrow} \approx 11$ — фиксированные константы (REG_DECREASE_FACTOR и REG_INCREASE_FACTOR в коде). Эти значения были выбраны на основе статьи [2].

Критерии сходимости

Алгоритм останавливается, когда выполняется одно из следующих условий:

- $oldsymbol{\cdot}$ Сходимость по норме градиента: $\max |\mathbf{J}^T\mathbf{W}(oldsymbol{y}-oldsymbol{\hat{y}})|<\epsilon_1$ (gradient_tol в коде)
- ullet Сходимость по коэффициентам: $\max |oldsymbol{\Delta}/\mathbf{p}| < \epsilon_2$ (coefficients_tol в коде)
- Сходимость по (редуцированному) χ^2 : $\chi^2_
 u = \chi^2/(m-n) < \epsilon_3$ (chi2_red_tol в коде)

где $\epsilon_1=10^{-3}$, $\epsilon_2=10^{-3}$, $\epsilon_3=10^{-1}$ — пороговые значения, заданные пользователем.

Начальное приближение

В задачах нелинейных наименьших квадратов функция потерь $\chi^2(\mathbf{p})$ может иметь множество локальных минимумов. В таких случаях метод Левенберга-Марквардта может сходиться к неудовлетворительному решению. Если это происходит, пользователь может попытаться задать лучшее начальное приближение для параметров, например, с помощью случайного поиска, или поиска по сетке, либо путем анализа данных.

Источники

- 1. Wikipedia contributors. *Levenberg–Marquardt algorithm*. Wikipedia, The Free Encyclopedia..
- 2. H.P. Gavin, *The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems*. 2020.
- 3. H.B. Nielson, Damping Parameter in Marquardt's method. 1999.