Media Access Sublayer and LANs

ICT 2156

OUTLINE

- Approaches to sharing transmission medium
- Random Access Protocols-
 - Aloha
 - Slotted Aloha
 - CSMA
 - CSMA/CD
- Token Ring protocols
- •IEEE LAN standards
- Bridges
- •FDDI

Multiple Access Communications

☐ Broadcast Network:

Routing not necessary

Data Link Layer

Logical Link Control

Media Access Control

Sharing Transmission Medium: Approaches

Sharing Transmission Medium: Approaches

•Static Channelization :

- Partitioning the medium into separate channels and dedicating to particular users.
- •Suitable when there is steady stream of information that makes efficient use of dedicated channel.

Dynamic Medium Access Control :

- •On per packet basis; where the user traffic is not continuous.
- •Aim: Eliminate the incidence of collisions.

To achieve reasonable utilization of the medium.

Delays

Propagation Delay

• The amount of time it takes for the first bit of signal to travel from the sender to the receiver.

•
$$T_P = d/c$$

Transmission Delay

- The amount of time required to push all of the packet's bits into the wire.
- The delay caused by the data-rate of the link.
- Transmission delay is a function of the packet's length and has NOTHING to do with the distance between the two nodes. This delay is proportional to the packet's length in bits.

•
$$T_d = N/R$$

Question: 1

The stations on a wireless network are a maximum of 300 km apart. If the network transmits 400-bit frames on a shared channel of 200 kbps. Find the propagation and Transmission Delay.

Given:

d=300 km = 300 x 1000 m

 $c = 3 \times 10^8 \text{ m/s}$

N=400 bit

 $R = 200 \text{ Kbps} = 200 \times 10^3 \text{ bps}$

Solution:

Taxonomy of Multiple-access protocols

Random Access or Contention Methods

- Decentralized Channel Allocation Method.
- •Decision to send or not depends on the state of the medium.
- Random Access
 - No scheduled time for a station to transmit.
 - Transmission is random among stations.
- Contention Methods
 - Stations compete with one another to access the medium

Random Access or Contention Methods

- •Contention may lead to access conflict- collision-and destruction or modification of frames.
- •Few questions to consider to resolve such conflict:
 - When can the station access the medium?
 - What can the station do if the medium is busy?
 - How can the station determine the success or failure of the transmission?
 - What can the station do if there is an access conflict?

•The original ALOHA protocol is called pure ALOHA.

•Idea:

• Each station sends a frame whenever it has a frame to send.

•Limitation:

• The possibility of collision between frames from different stations as there is only one channel to share.

Even if **one bit** of a frame **coexists** on the channel with one bit from another frame, there is a collision, and both will be destroyed.

Frames in a pure ALOHA network

- •A collision involves two or more stations.
- •ACK from receiver.
- •No ACK==>Frame Destroyed===> Resend.
- •What happens if all these stations try to resend their frames after the time-out?

•Back-off time, *T_B* : random.

- •Second method to prevent congesting the channel with retransmitted frames:
 - After a maximum number of retransmission attempts, K_{max} , a station must give up and try later.

- •Time-out period = the maximum possible round-trip T_p .
 - = twice the amount of time required to send a frame between the two most widely separated stations $(2 \times T_p)$ '
- \square The back-off time T_B : random value that normally depends on K.
- \square The value of \mathbf{K}_{max} is usually chosen as 15.

Example

Q:The stations on a wireless ALOHA network are a maximum of 600 km apart. If we assume that signals propagate at 3×10^8 m/s, we find the propagation delay as

Tp =
$$(6 \times 10^5) / (3 \times 10^8) = 2 \text{ ms}.$$

- •Now we can find the value of T_B for different values of K.
- •For K = 1, the range is $\{0, 1\}$. The station needs to generate a random number with a value of 0 or 1. This means that T_B is either 0 ms (0×2) or 2 ms (1×2) , based on the outcome of the random variable.
- •For K = 2, the range is $\{0, 1, 2, 3\}$. This means that T_B can be 0, 2, 4, or 6 ms, based on the outcome of the random variable.

Pure ALOHA: Vulnerable time

- •Vulnerable time: The time in which there is a possibility of collision.
- •Assumptions:
 - The stations send fixed-length frames
 - Each frame takes T_{fr} sec to send.

Pure ALOHA: Vulnerable time

Q:

A pure ALOHA network transmits **200-bit frames** on a shared channel of **200 kbps**. What is the requirement to make this frame collision-free?

Solution:

Pure ALOHA: Throughput

If the average number of frames generated by the system during one frame transmission time = \mathbf{G} ,

the average number of successful transmissions for pure ALOHA:

$$S = G \times e^{-2G}$$

- •Interpretation?
- Computation of G?
 - $G = n_s \times n_{fs} \times T_{fr}$
 - n_s: the number of stations
 - n_{fs}: the number of frames a station can send per second.

Pure ALOHA: Throughput

Q: What is the throughput if the system (all stations together) produces: a. 1000 frames per second, b. 500 frames per second, c. 250 frames per second? (Assume previous data).

Q: We have a pure ALOHA network with 100 stations. If $T_{fr} = 1$ microseconds, what is the number of frames/second each station can send to achieve the maximum efficiency?

Solution:

To achieve the maximum efficiency in pure ALOHA, G = 1/2.

$$G = n_s \times n_{fs} \times T_{fr} = 100 \times n_{fs} \times 1 \,\mu s = 1/2 \rightarrow n_{fs} = 5000 \,frames/second$$

Slotted ALOHA

•The time is divided into slots of T_{fr} seconds, and the station is forced to send only at the beginning of the time slot.

Slotted ALOHA: Vulnerable Time

Slotted ALOHA: Throughput

- •The throughput for slotted ALOHA is $S = G \times e^{-G}$.
- •The maximum throughput $S_{max} = 0.368$ when G = 1.
- •If a station generates only one frame in this vulnerable time (and no other station generates a frame during this time), the frame will reach its destination successfully.

Q: N= 200 bits, R= 200 Kbps. What is the throughput if the system (all stations together) produces: a. 1000 frames per second, b. 500 frames per second, c. 250 frames per second?

Carrier Sense Multiple Access (CSMA)

- Based on the principle "sense before transmit" or "listen before talk."
- •CSMA requires that each station first listen to the medium (or check the state of the medium) before sending.
- •CSMA can reduce the possibility of collision, but it cannot eliminate it.
- •The possibility of collision still exists because of propagation delay; a station may sense the medium and find it idle, only because the first bit sent by another station has not yet been received.

CSMA

CSMA: Vulnerable Time

CSMA: Persistent Methods

Defines what the system does when the channel is busy/idle.

a. 1-persistent

b. Nonpersistent

c. p-persistent

1-Persistent CSMA

- •Keeps sensing the medium continuously.
- •If channel is idle, sends a frame immediately, with probability 1.
- •Highest chance of collision. Why?

a. 1-persistent

Non-persistent CSMA

- •Reduces the chance of collision.
- •Reduces the efficiency of the network because the medium remains idle when there may be stations with frames to send.

b. Nonpersistent

p-Persistent CSMA

- •Used if the channel has time slots with a slot duration \geq Tp_{max}.
- •It reduces the chance of collision and improves efficiency.
- •In this method, after the station finds the line idle it follows these steps:
 - 1. With probability p, the station sends its frame.
 - 2. With probability q = 1 p, the station waits for the beginning of the next time slot and checks the line again.
 - a. If the line is idle, it goes to step 1.
 - b. If the line is busy, it acts as though a collision has occurred and uses the backoff procedure.

p-Persistent CSMA

c. p-persistent

Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

- •Limitation of CSMA: Does not specify the procedure following a collision.
- •CSMA/CD augments the algorithm to handle the collision.
- •Here, a station monitors the medium after it sends a frame to see if the transmission was successful.

CSMA/CD

•If a collision is detected, transmission is aborted.

CSMA/CD

CSMA/CD: Minimum Frame Size

- •Before sending the last bit of the frame, the sending station must detect a collision, if any, and abort the transmission.
- •Reason: Once the entire frame is sent, the station does not keep a copy of the frame and does not monitor the line for collision detection.
- \bullet T_{fr} ≥ 2 x T_p. Why?
- •In the worst-case scenario, if the two stations involved in a collision are the maximum distance apart, the signal from the first takes time T_p to reach the second, and the effect of the collision takes another time T_p to reach the first.

CSMA/CD

Q: A network using CSMA/CD has a **bandwidth of 10 Mbps**. If the maximum propagation time (including the delays in the devices and ignoring the time needed to send a jamming signal, as we see later) is **25.6** μ s, what is the minimum size of the frame?

Solution:

The frame transmission time is $T_{fr} = 2 \times T_p = 51.2 \mu s$.

This means, in the worst case, a station needs to transmit for a period of 51.2 μ s to detect the collision.

The minimum size of the frame is 10 Mbps \times 51.2 μ s = 512 bits or 64 bytes.

This is actually the minimum size of the frame for Standard Ethernet.

CSMA/CD

Differences?

CSMA/CD: Throughput

- •The throughput of CSMAICD is greater than that of pure or slotted ALOHA.
- •The maximum throughput occurs at a different value of G and is based on the **persistence method** and the value of 'p' in the p-persistent approach.
- •For 1-persistent method, the maximum throughput is around 50 percent when G = 1.
- •For non-persistent method, the maximum throughput can go up to 90 percent when G is between 3 and 8.

CSMA/CD

Q: In CSMA/CD, the minimum frame size is 512 bits, if BW=10Mbps. What should be the minimum frame size, if a) BW=100Mbps b) 1Gbps c) 10Gbps?

Hint: Find the relationship between the minimum frame size and the data rate/BW.

Controlled Access

- •The stations consult one another to find which station has the right to send.
- •A station cannot send unless it has been authorized by other stations.
- •Methods:
 - Reservation
 - Polling
 - Token Passing

Polling

- •Works with topologies in which one device is designated as a **primary station** and the other devices are **secondary stations**.
- •All data exchanges must be made through the primary device even when the ultimate destination is a secondary device.
- •The primary device controls the link; the secondary devices follow it instructions.
- •The primary device is always the **initiator** of a session.
- •They are two functions in polling access method:
 - Select
 - Poll

Polling: SELECT

- •If the primary is neither sending nor receiving data, it knows the link is available. How?
- •The *select* function is used whenever the primary device has something to send.
- •The primary device must alert the secondary device before sending the transmission.

Polling: POLL

- •The *poll* function is used by the primary device to solicit transmissions from the secondary devices.
- •When the primary is ready to receive data, it must ask (poll) each device in turn if it has anything to send.
- •The secondary may respond either with a NAK frame if it has nothing to send or with data if it does.

Polling

Q: A network with **one primary** and **four secondary** stations uses polling.

The size of a data frame is 1000 bytes.

The size of the poll, ACK, and NAK frames are 32 bytes each.

Each station has **5 frames** to send.

How many total bytes are exchanged if a station can send only one frame in response to a poll?

Token Passing

- •The stations in a network are organized in a logical ring, with each station having a *predecessor* and a *successor*.
- •The right to channel access has been passed from the predecessor to the current station and will be passed from current station to the successor.
- •Right to access is managed through a **token**.
- •If a station has some data to send, it must wait for the token from its predecessor.
- •Token management is needed for this access method: time for holding token, preventing token from getting lost or destroyed, assigning priorities, and so on.

Token Passing: Logical Ring

a. Physical ring

c. Bus ring

b. Dual ring

d. Star ring

Stations **DO NOT** have to be physically connected in a ring. The ring can be a logical one.

Token Passing

Topology	Description	Address?	Example
Physical Ring	 When a station sends the token to its successor, the token cannot be seen by other stations. Problems? 	No need for successor's address.	-
Dual Ring	 Auxiliary ring in reverse direction. 2 transmitter ports, 2 receiver ports. 	No need for successor's address.	FDDI, CDDI
Bus Ring (Token Bus)	The stations are connected to a single cable called a bus.	Address of successor, and predecessor(?)	Token Bus Lan standardized by IEEE
Star Ring	 Hub acts as the connector. The wiring inside the hub makes the ring; the stations are connected to this ring through the two wire connections. Advantages? 	??	Token Ring LAN by IBM

Books

- 1. Alberto Leon Garcia "Communication Networks" 6.1
- 2. Behrouz Forouzan, "Data Communications and Networking", 4th ed., Chapter:12.