NGUYỄN ĐÌNH TRÍ (chủ biên) TẠ VĂN ĐĨNH - NGUYỄN HỔ QUỲNH

TOÁN HỘC CAO CÂP

TẬP MỘT

ĐẠI SỐ VÀ HÌNH HỌC GIẢI TÍCH

NHÀ XUẤT BẢN GIÁO DỤC

NGUYỄN ĐÌNH TRÍ (Chủ biên) TA VĂN ĐĨNH - NGUYỄN HỔ QUỲNH

TOÁN HỌC CAO CẤP

TẬP MỘT

ĐẠI SỐ và HÌNH HỌC GIẢI TÍCH

GIÁO TRÌNH DÙNG CHO CÁC TRƯỜNG ĐẠI HỌC KĨ THUẬT
(Tái bản lần thứ mười một)

NHÀ XUẤT BẢN GIÁO DỤC

LỜI NÓI ĐẦU

Chương trình môn toán ở trường phổ thông đã có nhiều thay đổi từ khi Bộ Giáo dục và Đào tạo ban hành chương trình cải cách giáo dục. Bộ giáo trình Toán học cao cấp dùng cho các trường đại học kĩ thuật này được viết vừa nhằm thích ứng với sự thay đổi đó ở trường phổ thông, vừa nhằm nâng cao chất lượng giảng dạy toán ở trường đại học.

Toán học cao cấp là một môn học khó mà sinh viên các trường đại học kī thuật phải học trong ba học kì đầu, bao gồm những vấn đề cơ bản của đại số và giải tích toán học, đóng vai trò then chốt trong việc rèn luyện tư duy khoa học, cung cấp công cụ toán học để sinh viên học các môn học khác ở bậc đại học và xây dựng tiềm lực để tiếp tục tự học sau này.

Khi viết bộ sách này chúng tôi rất chú ý đến mối quan hệ giữa lí thuyết và bài tập. Đối với người học toán, hiểu sâu sắc lí thuyết phải vận dụng được thành thạo các phương pháp cơ bản, các kết quả cơ bản của lí thuyết trong giải toán, làm bài tập và trong quá trình làm bài tập người học hiểu lí thuyết sâu sắc hơn. Các khái niệm cơ bản của đại số và giải tích toán học được trình bày một cách chính xác với nhiều ví dụ minh hoạ. Phần lớn các định lí được chúng minh đẩy dủ. Cán bộ giảng dạy, tuỳ theo quỹ thời gian của mình, có thể hướng dẫn cho sinh viên tự dọc một số phần, một số chứng minh. Cuối mối chương đều có phần tóm tắt với các định nghĩa chính, các định lí và các công thức chủ yếu và phần bài tập đã được chọn lọc kĩ, kèm theo đấp số và gợi ý.

Bộ sách được viết thành 3 tập:

- Tập 1 : Đại số và hình học giải tích.
- Tập 2 : Phép tính giải tích một biến số.
- Tập 3: Phép tính giải tích nhiều biến số.

Bộ sách là công trình tập thể của nhóm tác giả gồm ba người: Nguyễn Đình Trí (chủ biên), Tạ Văn Đĩnh và Nguyễn Hồ Quỳnh. Ông Tạ Văn Đĩnh phụ trách viết tập 1. Ông Nguyễn Hồ Quỳnh phụ trách viết 7 chương đầu của tập 2. Ông Nguyễn Đình Trí phụ trách viết chương 8 của tập 2 và toàn bộ tập 3. Cùng với bộ giáo trình này chúng tôi cũng viết 3 tập Bài tập Toán cao cấp nhằm hỗ trợ các bạn dọc cần lời giải chi tiết của những bài tập đã ra trong bộ giáo trình này.

Viết bộ giáo trình này, chúng tỏi đã tham khảo kinh nghiệm của nhiều đồng nghiệp đã giảng dạy môn Toán học cao cấp nhiều năm ở nhiều trường đại học. Chúng tôi xin chân thành cảm ơn các nhà giáo, các nhà khoa học đã đọc bản thảo và đóng góp nhiều ý kiến xác đáng.

Chúng tôi cũng xin chân thành cảm ơn Ban Giám đốc Nhà xuất bản Giáo dục về việc xuất bản bộ giáo trình này, cảm ơn các biên tập viên Nguyễn Trọng Bá, Phạm Bảo Khuê, Phạm Phu, Nguyễn Văn Thường của Nhà xuất bản Giáo dục đã làm việc tận tình và khẩn trương.

Chúng tôi rất mong nhận được những ý kiến nhận xét của bạn đọc đối với bộ giáo trình này.

Các tác giả

Chương I TẬP HỢP VÀ ÁNH XẠ

1.0. MỜ ĐẦU

1.0.1. Khái niệm về mênh đề toán học

Ta hiểu mệnh đề toán học như là một khẳng định toán học chỉ có thể đúng hoặc sai, không thể nhập nhằng, nghĩa là không thể vừa dúng vừa sai, cũng không thể vừa không đúng vừa không sai.

Thí du 1.0.1.

2 < 3 là một mênh đề toán học đúng

3 > 4 là một mệnh để toán học sai

1.0.2. Kí hiệu ⇒

Khi với giả thiết mệnh đề A đúng ta chứng minh được mệnh để B cũng đúng thì ta nói từ *mệnh đề A suy ra mệnh đề B*, hay *mệnh đề A kéo theo mệnh đề B*. Để diễn đạt ý đó ta viết gọn là

$$A \Rightarrow B$$

Đôi khi ta còn viết

$$B \Leftarrow A$$

Thí du 1.0.2.

$$(a < b) \Rightarrow (a + c < b + c)$$

1.0.3. Kí hiểu 🖨

Khi $A \Rightarrow B$ đồng thời $B \Rightarrow A$, thì ta nói mệnh để A tương đương mệnh để B. Để diễn đạt ý đó ta viết gọn là

Thi du 1.0.3.
$$(a < b) \Leftrightarrow (b > a)$$
$$(|a| < b) \Leftrightarrow (-b < a < b)$$

1.0.4. Điều kiện đủ, điều kiện cần, điều kiện cần và đủ

Khi $A \Rightarrow B$ ta nói A là điều kiện đủ để có B B là điều kiên cần để có A

Khi $A \Leftrightarrow B$ tức $A \Rightarrow B$ và $B \Rightarrow A$, ta nói A là điều kiện cần và đủ để có B. Lúc đó B cũng là điều kiên cần và đủ để có A.

Thí du 1.0.4. Rō ràng

 $(|a| < b) \Rightarrow (b > 0)$, nhưng từ b > 0 không suy ra được |a| < b.

Vậy |a| < b là điều kiện đủ để có b > 0, b > 0 là điều kiện cần để có |a| < b, |a| < b không phải là điều kiện cần và đủ để có b > 0.

1.0.5. Kí hiệu :=

Kí hiệu này dùng để đưa vào một định nghĩa, nó thay cho cụm từ "định nghĩa bởi".

Thi dụ 1.0.5. Đường tròn := Quỹ tích của các điểm trong mặt phẳng cách đều một diễm xác định.

1.0.6. Kí hiểu V

Kí hiệu này thay cho cụm từ "với mọi" hay "với bất kì".

Thi du 1.0.6. $\forall x \text{ thực ta có } x^2 - x + 1 > 0$.

1.0.7. Kí hiệu 3

Kí hiệu này thay cho cụm từ "tồn tại" hay là "có".

Thi du 1.0.7. $\exists x \text{ de } x^2 - 3x + 2 = 0$, dó là x = 1 và x = 2.

BÀI TÂP : 1.1.

1.1. TẬP HỢP VÀ PHẦN TỬ

1.1.1. Khái niệm về tập hợp và phần tử

Khái niệm tập hợp và phân tử không thể định nghĩa bằng những khái niệm đã biết. Ta coi tập hợp là khái niệm nguyên sơ, không định nghĩa. Tuy nhiên ta có thể nói như sau:

Tất cả những đối tượng xác định nào đó hợp lại tạo thành một tập hợp, mỗi đối tượng cấu thành tập hợp là một phần tử của tập hợp.

Thí dụ I.I.I. Tất cả những người Việt Nam trên thế giới tạo thành tập hợp người Việt Nam. Mỗi người Việt Nam là một phần tử của tập hợp đó.

Thí dụ 1.1.2. Tất cả các điểm trong không gian tạo thành tập hợp điểm trong không gian. Mỗi điểm là một phần tử của tập hợp đó.

Thí dụ 1.1.3. Tất cả các đường thẳng trong không gian tạo thành tập hợp các đường thẳng trong không gian. Mỗi đường thẳng là một phần tử của tập hợp đó.

1.1.2. Khái niệm thuộc và kí hiệu €

Nếu a là phần tử của tập hợp E ta nói "a thuộc E" và viết

$$a \in E$$

Nếu a không là phần tử của E ta nói "a không thuộc E" và viết

$$a \notin E$$
 hay $a \in E$.

Thi dụ 1.1.4. $4 \in tập hợp các số chắn,$

3 ∉ tập hợp các số chẳn.

1.1.3. Cách mô tả một tập hợp

Muốn mô tả một tập hợp ta phải làm đủ rõ để khi cho một phần tử ta biết được nó có thuộc tập hợp của ta hay không. Thường có hai cách:

1) Liệt ké ra tất cả các phần từ của tập hợp.

Thi du 1.1.5.
$$A := \{x, y, z, t\}$$

Tập hợp này chỉ có 4 phần từ là x, y, z, t.

Vậy
$$x \in A, y \in A, z \in A, t \in A$$

nhưng $u \notin A$, $v \notin A$.

Nêu ra tính chất đặc trưng của các phần tử tạo thành tập hợp.

Thí dụ 1.1.6. $P := \{các số chắn\}$.

Như vậy ta có ngay $4 \in P$ nhưng $3 \in P$.

1.1.4. Kí hiệu l

Tập hợp các số chẳn còn có thể mô tả như sau :

$$P := \{ m \mid m = 2n, n \text{ nguyên} \}$$

Cách viết này đọc là : P là tập hợp các phần tử m trong đó (hay sao cho) m = 2n với n là số nguyên. Rỗ ràng đó chỉ là cách điển đạt khác của tập các số chẵn.

Kí hiệu l đặt trước phần giải thích tính chất đặc trung của phần tử m.

 $Chú \circ I.I.I.$ Sau này để cho gọn, đôi khi ta chỉ dùng từ "tập" thay cho cụm từ "tập hợp".

1.1.5. Một số tập hợp số thường gặp

Tập các số tự nhiên

$$N := \{0, 1, 2, ...\}$$

$$N^* := \{1, 2, ...\} = N - \{0\}.$$

Tập các số nguyên

$$\mathbf{Z} := \{0, +1, -1, +2, -2, \dots\}.$$

Tập các số hữu tỉ

$$\mathbf{Q} := \left\{ \frac{p}{q} \mid q \neq 0, p \in \mathbf{Z}, q \in \mathbf{Z} \right\}.$$

Tập các số thực

$$\mathbf{R} := \{các \text{ số thực}\}.$$

1.1.6. Tập rỗng

Theo cách nói ở mục 1.1.1 thì một tập hợp phải có ít nhất một phần tử mới có nghĩa. Tuy nhiên để cho tiện về sau, ta đưa thêm vào khái niệm tập rỗng theo quy ước :

Định nghĩa 1.1.1. Tập rỗng là tập hợp không có phần từ nào.

Kí hiệu của tập rỗng là Ø (chữ O với một gạch chéo).

Thí du 1.1.7. Tập nghiệm thực của phương trình

 $x^2 - 3x + 2 = 0$ là {1, 2}, nhưng tập nghiệm thực của phương trình $x^2 + x + 1 = 0$ là \varnothing vì phương trình này không có nghiệm thực.

1.1.7. Sự bằng nhau của hai tập

Định nghĩa 1.1.2. Ta nói tập A hẳng tập B nếu A và B trùng nhau, nghĩa là mọi phần tử của A cũng là phần tử của B và ngược lại mọi phần tử của B cũng là phần tử của A.

Khi A bằng B ta viết A = B.

Thí du 1.1.8. Cho

$$A := \{x, 1, \square, \Delta\}, \qquad B := \{1, \square, x, \Delta\}$$

thì có A = B.

1.1.8. Sự bao hàm - Tập con

Dinh nghĩa 1.1.3, Nếu mọi phần tử của A cũng là phần tử của B thì ta nói

A bao hàm trong B

B bao hàm A

A là tập con của B.

Để diễn đạt ý đó ta viết

$$A \subset B$$
 hay $B \supset A$.

Chú ý 1.1.2. Người ta coi tập Ø là tập con của mọi tập A.

Thi du 1.1.9. $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.

Chú ý 1.1.3. Rô ràng có

$$(A = B) \Leftrightarrow (A \subset B \lor \lambda B \subset A).$$

1.1.9. Biểu diễn hình học - Biểu độ Ven

Để dễ hình dung một số quan hệ giữa các tập hợp người ta dùng cách biểu diễn hình học gọi là biểu đồ Ven: xem mỗi tập hợp là tập điểm trong một vòng phẳng, mỗi điểm trong vòng là một phần từ của tập hợp $(hình\ I)$. Khi đó quan hệ $A \subset B$ biểu điển trên hình 2 bằng cách vẽ vòng A nằm trong vòng B.

BÀI TẬP : 1.2, 1.3, 1.4.

1.2. CÁC PHÉP TOÁN VỀ TẬP HỢP

1.2.1. Phép hợp

Định nghĩa 1.2.1. Hợp của hai tập A và B là tập hợp tạo bởi tất cả các phần tử thuộc A hoặc thuộc B.

Kí hiệu hợp đó là A ∪ B ta có

$$(x \in A \cup B) \Leftrightarrow (x \in A \text{ hoặc } x \in B)$$

Hợp $A \cup B$ biểu diễn bằng biểu đồ Ven ở hình 3.

1.2.2. Phép giao

Định nghĩa 1.2.2. Giao của hai tập A và B là tập hợp tạo bởi tất cả các phần tử vừa thuộc A vừa thuộc B.

Kí hiệu giao đó là $A \cap B$ ta có

$$(x \in A \cap B) \Leftrightarrow (x \in A \lor a x \in B)$$

Giao $A \cap B$ biểu diễn bằng biểu đồ Ven ở hình 4.

Dình nghĩa 1.2.3. Khi $A \cap B = \emptyset$ ta nói A và B rời nhau.

1.2.3. Tính chất

Các tính chất sau suy từ định nghĩa:

$$A \cup B = B \cup A,$$

$$A \cap B = B \cap A,$$

$$A \cup A = A,$$

$$A \cap A = A,$$

$$(A \cup B) \cup C = A \cup (B \cup C),$$

$$(A \cap B) \cap C = A \cap (B \cap C),$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C),$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

Ta chứng minh tính chất đầu tiên. Ta có

$$x \in A \cup B \Rightarrow (x \in A \text{ hoặc } x \in B) \Rightarrow (x \in B \text{ hoặc } x \in A) \Rightarrow x \in B \cup A,$$
 $x \in B \cup A \Rightarrow (x \in B \text{ hoặc } x \in A) \Rightarrow (x \in A \text{ hoặc } x \in B) \Rightarrow x \in A \cup B.$
Vày

$$A \cup B = B \cup A$$

1.2.4. Hiệu của hai tập

Định nghĩa 1.2.4. Hiệu của tập A và tập B là tập tạo bởi tất cả các phần từ thuộc A mà không thuộc B.

Kí hiệu hiệu đó là A - B hay $A \setminus B$ ta có $(x \in A - B)$ (hay $A \setminus B) \Leftrightarrow (x \in A \text{ và } x \notin B)$. Hiệu của hai tập biểu diễn bằng biểu đồ Ven ở hình 5.

1.2.5. Táp bù (còn gọi là tặp bổ sung)

Định nghĩa 1.2.5. Xét tập \tilde{E} và A là tập

con của E, nghĩa là $A \subset E$. Lúc đó E - A gọi là *tập bù của A trong E*.

Kí hiệu tập bù đó là \overline{A} ta có

$$\overline{A} := E - A$$

Tập bù \overline{A} biểu diễn bằng biểu đồ Ven ở hình 6.

Rō ràng

$$\overline{A} \subset E$$
, $\overline{\overline{A}} := E - \overline{A} = A$.

Hinh 6

1.2.6. Định luật De Morgan

Với mọi $A \subset E$, $B \subset E$ ta có

$$\overline{A \cup B} = \overline{A} \cap \overline{B}, \ \overline{A \cap B} = \overline{A} \cup \overline{B}$$

Ta chứng minh đẳng thức dầu. Xét $x \in E$. Ta có

$$x \in \overline{A \cup B} \implies x \notin A \cup B \implies (x \notin A \text{ và } x \notin B) \implies (x \in \overline{A} \text{ và } x \in \overline{B})$$

 $\Rightarrow x \in \overline{A} \cap \overline{B}$:

$$x \in \overline{A \cap B} \implies (x \in \overline{A} \ \text{và} \ x \in \overline{B}) \implies (x \notin A \ \text{và} \ x \notin B) \implies x \notin A \cup B$$

$$\implies x \in \overline{A \cup B}$$

$$Vay \ \overline{A \cup B} = \overline{A} \cap \overline{B}$$

Thí dụ 1.2.1. Gọi A là tập nghiệm của phương trình $x^2 - 3x + 2 = 0$. B là tập nghiệm của phương trình $x^2 - 4x + 3 = 0$. Ta có

$$A = \{1, 2\},$$
 $B = \{1, 3\}$
 $A \cup B = \{1, 2, 3\}$
 $A \cap B = \{1\}$
 $A - B = \{2\}.$

Tập nghiệm của phương trình

$$(x^2-3x+2)(x^2-4x+3)=0$$

 $1a A \cup B = \{1, 2, 3\}.$

Tập nghiệm của hệ phương trình

$$\begin{cases} x^2 - 3x + 2 = 0 \\ x^2 - 4x + 3 = 0 \end{cases}$$

là $A \cap B = \{1\}.$

1.2.7. Suy rộng

Giả sử I là một tập con của \mathbb{N} , $I \subset \mathbb{N}$ và $(A_i)_{i \in I}$ là một họ những tập con của tập E.

Ta định nghĩa hợp

$$A = \bigcup_{i \in I} A_i$$
 bởi $\{x \in \bigcup_{i \in I} A_i \Leftrightarrow \exists i \in I : x \in A_i\}$

và giao

$$B = \bigcap_{i \in I} A_i \text{ b\'oi } \{x \in \bigcap_{i \in I} A_i \Leftrightarrow \forall i \in I : x \in A_i\}$$

Định luật De Morgan suy rộng cho họ những tập con của E sẽ có dạng

$$(\overrightarrow{\bigcup} A_i) = \bigcap_{i \in I} \overline{A}_i$$

$$(\overline{\bigcap_{i\in I}}A_i) = \bigcup_{i\in I}\overline{A}_i$$

1.2.8. Khái niệm phủ và phân hoạch

Giả sử $I \subset \mathbb{N}$ và $S = \{(A_i)_{i \in I}\}$ là một họ những tập con của tập E.

Nếu $\bigcup_{i \in I} A_i = E$ thì ta nói S là một phủ của E.

Nếu ngoài ra, $\forall i \in I$, $A_i \neq \emptyset$ và $A_i \cap A_j = \emptyset$, $i \neq j$, thì nói họ S là một phần hoạch của E.

Thí dụ 1.2.2. Xét E là mặt phẳng Oxy thì tập tất cả các đường thẳng vuông góc với Ox, $x=x_i$, $x_i \in \mathbf{R}$ tạo thành một phân hoạch của E.

BÀI TẬP: 1.5, 1.6, 1.7.

1.3. TÍCH ĐỂ CÁC

1.3.1. Tích để các của hai tập

Định nghĩa 1.3.1. Tích để các của hai tập A và B là tập tát cả các cặp (a, b), a trước b sau, được tạo nên do lấy $a \in A$, $b \in B$ một cách bất kì.

Kí hiệu tích đó là $A \times B$, ta có

$$A \times B := \{(a, b) \mid a \in A, b \in B\}$$

Thí du 1.3.1. Cho

$$A = \{1, 3\}, B = \{2, x\}$$

thì

$$A \times B := \{(1, 2), (1, x), (3, 2), (3, x)\}.$$

٧à

$$A \times A = \{(1, 1), (1, 3), (3, 1), (3, 3)\}$$

Chú ý 1.3.1. Chú ý rằng (1, 3) và (3, 1) là hai cặp khác nhau.

1.3.2. Tích để các của ba tập

Định nghĩa 1.3.2. Tích đề các của ba tập A, B, C là tập tất cả các bộ ba (a, b, c) theo thứ tự a rồi b rồi c, được tạo thành do lấy $a \in A$, rồi $b \in B$, rồi $c \in C$ một cách bất kì.

Kí hiểu tích đó là $A \times B \times C$ ta có

$$A \times B \times C := \{(a, b, c) \mid a \in A, b \in B, c \in C\}$$
Thi du 1.3.2. Néu $A = \{1, 3\}, B = \{2, x\}, C = \{\Delta\}$ thì
$$A \times B \times C = \{(1, 2, \Delta), (1, x, \Delta), (3, 2, \Delta), (3, x, \Delta)\}$$
và
$$A \times A \times A = \{(1, 1, 1), (1, 1, 3), (1, 3, 1), (1, 3, 3), (3, 1, 1), (3, 1, 3), (3, 1, 1), (3, 3, 3)\}.$$

1.3.3. Tích đề các của n tạp

Định nghĩa 1.3.3. Tích để các của n tập A_1 , A_2 , ..., A_n là tập tất cả các bộ n phần tử $(a_1, a_2, ..., a_n)$ theo thứ tự a_1 , rối a_2 , ..., rối a_n được tạo thành do lấy $a_1 \in A_1$, rồi $a_2 \in A_2$, ..., rồi $a_n \in A_n$ một cách bất kì.

Kí hiệu tích đó là $A_1 \times A_2 \times ... \times A_n$, ta có :

$$A_1 \times A_2 \times ... \times A_n := \{(a_1, a_2, ..., a_n) \mid a_i \in A_i, i = \overline{1, n}\}$$

Tích đề các $A \times A \times ... \times A$ (n lần) viết gọn là A^n :

$$A^n := \{(a_1, a_2, ..., a_n) \mid a_i \in A, i = \overline{1, n}\}$$

BÀI TẬP : 1.8, 1.9.

1.4. QUAN HỆ TƯƠNG ĐƯƠNG VÀ QUAN HỆ THỨ TƯ

1.4.1. Khái niệm về quan hệ hai ngôi

Định nghĩa 1.4.1. Cho tập E và tính chất A liên quan đến hai phần tử của E. Nếu a và b là hai phần tử của E thoả mãn tính chất A thì ta nói a có quan hệ A với b và viết a A b.

Quan hệ này gọi là quan hệ hai ngôi trên E.

Xét một số thí dụ:

Thí dụ 1.4.1. Trên tập các đường thẳng trong không gian, "đường thẳng D vuông góc với đường thẳng D'" là một quan hệ hai ngôi.

Thi dụ I.4.2. Trên tập các số tự nhiên N^* , "a nguyên tố với b" là một quan hệ hai ngôi.

Thí dụ 1.4.3. Trên tập số thực \mathbf{R} , "a = b" là một quan hệ hai ngôi; "a < b" cũng là một quan hệ hai ngôi.

1.4.2. Đồ thị của quan hệ hai ngôi

Khi $a \mathcal{R} b$ ta cũng nói cặp (a, b) thoả mãn quan hệ \mathcal{R} . Cặp (a, b) là phần tử của tích $E \times E$. Ta chú ý đến tập G tất cả các cặp $(a, b) \in E \times E$ thoả mãn \mathcal{R} . Ta gọi G là đô thi của quan hệ \mathcal{R} . Vày có

Định nghĩa 1.4.2. Đố thị của quan hệ \mathcal{R} là tập tất cả các cặp (a,b) của $E \times E$ thoá mẫn quan hệ \mathcal{R} .

Thí dụ 1.4.4. Đô thị của quan hệ "a = b" trên **R** là đường phân giác của các góc vường I và III trong mặt phẳng toạ độ Oab (hình 7).

Thi dụ 1.4.5. Đồ thị của quan hệ "a < b" trên R là nửa mặt phẳng ở trên đường phân giác của các góc vuông I và III (hình 8).

1.4.3. Một số tính chất của quan hệ hai ngói

Tuỳ theo định nghĩa, một quan hệ hai ngôi \mathcal{R} trên E có thể có một số tính chất sau đây :

1) Tính phản xạ : Quan hệ 🕸 có tính phản xạ nếu

$$a \mathcal{R} a, \forall a \in E$$

Thí dụ 1.4.6. Quan hệ "a = b" trên **R** có tính phản xạ vì a = a, nhưng quan hệ "a < b" không có tính phản xạ vì không có a < a.

2) Tính đối xứng : Quan hệ A có tính đối xứng nếu

$$a \mathcal{R} b \Rightarrow b \mathcal{R} a$$

Thí dụ 1.4.7. Quan hệ "a = b" trên **R** có tính đối xứng vì $a = b \Rightarrow b = a$.

Quan hệ "a < b" trên $\mathbf R$ không có tính đối xứng vì từ a < b không suy ra b < a.

3) Tính hắc cấu : Quan hệ 🛪 có tính bắc cầu nếu

$$(a \mathcal{R} b \text{ và} b \mathcal{R} c) \Rightarrow a \mathcal{R} c.$$

Thí dụ 1.4.8. Quan hệ "a = b" trên **R** có tính bắc cầu vì (a = b và b = c) $\Rightarrow a = c$.

Quan hệ "a < b" cũng có tính bắc cầu vì $(a < b \text{ và } b < c) \Rightarrow a < c$.

4) Tính phản đối xứng : Quan hệ \Re có tính phản đối xứng nếu $(a \Re b \text{ và } b \Re a) \Rightarrow a = b.$

Thí dụ 1.4.9. Quan hệ " $a \le b$ " trên **R** có tính phản dối xứng vì $(a \le b \text{ và } b \le a) \Rightarrow a = b$.

1.4.4. Quan hệ tương đương

Định nghĩa 1.4.3. Quan hệ hai ngôi A trên tập E gọi là một quan hệ tương đương nếu nó có ba tính chất phản xạ, đối xứng và bắc cầu.

Khi \mathcal{R} là một quan hệ tương đương và $a \mathcal{R} b$ ta viết

$$a - b(\Re)$$

và đọc: "a tương đương b theo quan hệ \Re ".

Bạn đọc có thể kiểm tra lại các khẳng định trong các thí dụ sau.

Thí dụ 1.4.10. Trong N, Z, Q, R quan hệ "a = b" là một quan hệ tương đương (xem các thí dụ 1.4.6, 1.4.7, 1.4.8).

Thí dụ 1.4.11. Trong \mathbb{Z} quan hệ "a-b là bội của một số nguyên p khác 0 cho trước" là một quan hệ tương đương. Lúc đó ta viết

$$a \equiv b \ (p) \text{ hay } a \equiv b \ (\text{mod } p)$$

và đọc : "a đồng dư b mòđulo p".

Thí dụ 1.4.12. Trong tập các đường thẳng trong không gian quan hệ "dường thẳng D đồng phương với đường thẳng D" là một quan hệ tương đương.

Thí dụ 1.4.13. Trong tập các vectơ tự đo trong không gian quan hệ "vectơ \vec{u} bằng vectơ \vec{v} " là một quan hệ tương đương.

1.4.5. Lớp tương đương

Xét tập E trong đó có một quan hệ tương đương \mathcal{R} ; gọi a là một phần tử xác định của E. Khi đó tất cả các phần từ $b \in E$ tương đương với a lập thành một tập gọi là *lớp tương đương* của a theo quan hệ \mathcal{R} . Kí hiệu lớp đó là $\mathcal{C}(a,\mathcal{R})$ ta có

$$\mathscr{C}(a,\mathscr{R}) := \{b \mid b \in E, b \sim a(\mathscr{R})\}$$

Có thể xem a là phần từ đại diện cho lớp $\mathscr{C}(a, \mathscr{H})$.

Thi dụ 1.4.14. Trong tập các đường thẳng trong không gian, tất cả các dường thẳng dồng phương với một đường thẳng Δ cho trước tạo thành lớp tương đương của Δ theo quan hệ "đồng phương" mà phần tử đại điện là Δ . Có thể nói mỗi lớp tương đương đó xác định một phương trong không gian.

Thí dụ 1.4.15. Trong tập tất cả các vectơ tự do trong không gian, tất cả các vectơ bằng một vectơ \overrightarrow{OA} gốc O cho trước tạo thành một lớp tương đương theo quan hệ "bằng nhau" mà phần tử đại diện là \overrightarrow{OA} .

Thi dụ 1.4.16. Trong R lớp tương dương của một số xác định a theo quan hệ "a = b" chỉ có một phần tử là a.

 $Chú\circ 1.4.I$: Tập tất cả các lớp tương đương $\mathscr{C}(a,\mathscr{R})$ tạo thành một phân hoạch trên E.

1.4.6. Quan hệ thứ tự

Định nghĩa 1.4.4. Quan hệ hai ngôi R trèn tập E gọi là một quan hệ thừ tự nếu nó có ba tính chất : phản xạ, phản đối xứng và bắc cấu.

Bạn dọc có thể kiểm tra lại các khẳng định trong các thí dụ cau :

Thí dụ 1.4.17. Trong N, Z, Q, R quan hệ " $a \le b$ " là một quan hệ thứ tụ.

Thi dụ 1.4.18. Trong N quan hệ "a chia hết cho b" là một quan hệ thứ tư.

Thí dụ 1.4.19. Trong tập các tập con của một tập E cho trước, quan hệ $A \subset B$ là một quan hệ thứ tự.

1.4.7. Quan hệ thứ tư toàn phần

Định nghĩa 1.4.5. Một quan hệ thứ tự \mathcal{A} trên tập E gọi là quan hệ thứ tự toàn phần nếu $\forall a, b \in E$, ta đều có hoặc a \mathcal{A} b hoặc b \mathcal{A} a.

Thí dụ 1.4.20. Trên N, Z, Q, R, quan hệ " $a \le b$ " là một quan hệ thứ tự toàn phần vì $\forall a, b \in \mathbb{N}$ hay Z hay Q hay R ta đều có hoặc $a \le b$ hoặc $b \le a$.

Thí dụ 1.4.21. Trên tập các tập con của một tập cho trước E, quan hệ " \subset " là một quan hệ thứ tự không toàn phần vì nếu A và B rời nhau chẳng han thì không có $A \subset B$ cũng không có $B \subset A$.

1.4.8. Tập có thứ tự

Định nghĩa 1.4.6. Xét tập E trong đó có một quan hệ thứ tự \mathcal{R} . Cho hai phần từ bất kì a và b của E. Nếu a \mathcal{R} b ta nói a có thể so sánh được với b. Các phần từ so sánh được với nhau sắp xếp theo một thứ tự xác định theo quan hệ \mathcal{R} .

Định nghĩa 1.4.7. Nếu \mathcal{B} là một quan hệ thứ tự toàn phần thì tất cả các phần từ của E đều được sắp thứ tự theo quan hệ \mathcal{B} . Ta nói E được sắp thứ tự toàn phần bởi quan hệ \mathcal{B} .

Nếu $\hat{\mathcal{R}}$ là một quan hệ thứ tự không toàn phần thì chỉ có một số phần từ của E được sắp xếp theo quan hệ \mathcal{R} . Ta nói E là tập có thứ tự bộ phản hay E được sắp thứ tự bộ phận.

Thí dụ 1.4.22. Các tập N, Z, Q, R là những tập có thứ tự toàn phần theo quan hệ thứ từ " $a \le b$ ".

Thí dụ 1.4.23. Tập các tập con của một tập E cho trước là một tập có thứ tự bộ phận theo quan hệ " \subset ".

BÀI TẬP: 1.10, 1.11, 1.12, 1.13, 1.14, 1.15.

1.5. ÁNH XA

1.5.1. Mờ đầu

Cho hai tập E và F và một quy luật f liên hệ các phần tử của E với một số phần tử của F.

Thí du 1.5.1,
$$E = F = \mathbf{R}$$

 $x \in \mathbb{R}$ liên hệ với $y \in \mathbb{R}$ bởi $y = x^3$.

Thi du 1.5.2. E = F = R

 $x \in \mathbf{R}$ liên hệ với $y \in \mathbf{R}$ bởi quy luật $y = x^2$.

Thí du 1.5.3. E = R, F = Z

 $x \in \mathbb{R}$ liên hệ với $y \in \mathbb{Z}$ bởi quy luật y = [x],

[x] kí hiệu phần nguyên của x.

Thi du 1.5.4. $E = \{x \mid x \in \mathbb{R}, -1 \le x \le 1\}$

 $F = \mathbf{R}$

 $x \in E$ liên hệ với $y \in \mathbb{R}$ bởi quy luật

y = cung có sin là x.

Thi dụ 1.5.5. E là tập các diểm trong không gian kí hiệu là \mathcal{H} , F là tập các diểm trong một mặt phẳng xác định π .

Điểm $M \in \mathcal{X}$ liên hệ với điểm $P \in \pi$ bởi quy luật : "P là hình chiếu vuông gốc của điểm M lên mặt phẳng π ".

Hinh 9

Nếu quy luật f có đặc điểm sao cho nó tạo ra từ mỗi phần từ của E một và chỉ một phần từ của F (hình 9) thì ta nói f là một ánh xq từ E tới F. Vây có định nghĩa ánh xa như sau :

1.5.2. Định nghĩa ánh xạ

Định nghĩa 1.5.1. Ánh xạ từ tập E tới tập F là một quy luật f liên hệ giữa E và F sao cho khi nó tác động vào một phần tử x bắt kì của E sẽ tạo ra một và chỉ một phần tử y của F.

Thí dụ 1.5.6, Xét các quy luật đã nêu ở các thí dụ 1.5.1 - 1.5.5:

- 1) Quy luật ở thí dụ 1.5.1 là một ánh xạ từ \mathbf{R} tới \mathbf{R} vì mỗi $x \in \mathbf{R}$ tạo ra một và chi một $y \in \mathbf{R}$ xác định bởi $y = x^3$.
- 2) Quy luật ở thí dụ 1.5.2 là một ánh xạ từ \mathbf{R} tới \mathbf{R} vì mỗi $x \in \mathbf{R}$ tạo ra một và chỉ một $y \in \mathbf{R}$ xác định bởi $y = x^2$.
- 3) Quy luật ở thí dụ 1.5.3 là một ánh xạ từ \mathbb{R} tới \mathbb{Z} vì mỗi $x \in \mathbb{R}$ tạo ra một và chỉ một $y \in \mathbb{Z}$ xác định bởi y = [x].
- 4) Quy luật ở thí dụ 1.5.4 không phải là một ánh xạ từ E tới \mathbf{R} vì mỗi $x \in E$ tạo ra vò số $y \in \mathbf{R}$ xác định bởi y bằng cung có sin là x, chẳng hạn với $x = \frac{1}{2} \in E$ thì các cung $\frac{\pi}{6} + 2k\pi$ và $\frac{5\pi}{6} + 2k\pi$, $k \in \mathbf{Z}$, đều có sin là $\frac{1}{3}$.

5) Quy luật ở thí dụ 1.5.5 là một ánh xạ từ \mathcal{K} tới π vì mỗi diểm $M \in \mathcal{K}$ chiếu vuông góc lên mặt phẳng π cho một và chỉ một diểm $P \in \pi$.

1.5.3. Kí hiệu ánh xa

Để diễn tả f là ánh xạ từ tập E tới tập F ta viết

$$f: E \to F \text{ hay } E \xrightarrow{f} F$$

và gọi E là tập ngườn, F là tập dích.

Phần từ $y \in F$ được tạo ra từ phần từ $x \in E$ bởi quy luật f gọi là dnh của x và x gọi là nghịch ảnh (hay tao ảnh) của y. Ta viết

$$y = f(x)$$

hay $x \mapsto y = f(x)$

hay $x \mapsto y$

f(x) đọc là "f của x" hay "f tại x".

Chú ý 1.5.1. Chú ý rằng mỗi phần tử của E có một và chi một ảnh, nhưng mỗi $y \in F$ chưa chắc đã có nghịch ảnh.

Định nghĩa 1.5.2. Tập tạo bởi các ảnh của tất cả các phần tử $x \in E$ gọi là ảnh của E (qua f), viết là f(E):

$$f(E) := \{y \mid y = f(x), x \in E\}$$

hay

$$f(E) := \{ y \mid \exists x \in E, y = f(x) \}$$

Ta luôn có

$$f(E) \subset F$$

Định nghĩa 1.5.3. Nếu A là một tập con của $E:A\subset E$, thì tập

$$f(A) := \{y \mid y = f(x), x \in A\}$$

gọi là ảnh của A (qua f).

Nếu $B \subset F$ thì tập $f^{-1}(B) := \{x \mid x \in E, f(x) = y \in B\}$ gọi là nghịch ảnh của B trong ánh xạ f.

1.5,4. Đơn ánh

 $X\acute{e}t\ f: E \to F.$

Nói chung mỗi phần từ y thuộc tập dích F có thể là ảnh của một hay nhiều phần từ khác nhau ở tập nguồn E. Nếu nó chỉ có thể là ảnh của một phần từ thì ta nói f là dơn ánh. Vây có

Định nghĩa 1.5.4. Ánh xạ f : E - F gọi là một đơn ánh nếu

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$
 (1.1.1)

Muốn chứng minh ánh xạ $f: E \to F$ là một dơn ánh ta phải kiểm tra lai điều kiên (1.1.1).

Ta cũng có thể xét "phương trình"

$$f(x) = y, y \in F$$

Nếu "phương trình" với ẩn x này không thể có quá một nghiệm với mọi y của F thì f là đơn ánh.

Thí dụ 1.5.7. Ta duyệt lại các ánh xạ ở mục 1.5.1 và 1.5.2

1) Xét ánh xa ở thí dụ 1.5.1 : Phương trình

$$x^3 = v \cdot v \in \mathbf{R}$$

có nghiệm đuy nhất $x = \sqrt[3]{y} \in \mathbb{R}$. Vậy ánh xạ này là đơn ánh.

2) Xét ánh xạ ở thí dụ 1.5.2 : phương trình

$$x^2 = y$$
, $y \in \mathbb{R}$

có hai nghiệm khác nhau nếu y > 0. Vậy ánh xạ này không phải là đơn ánh.

3) Xét ánh xạ ở thí dụ 1.5.3 : phương trình

$$[x] = y, y \in \mathbb{N}$$

có vỏ số nghiệm, chẳng hạn với y = 1 thì x = 1,1 hay 1,3... đều có phản nguyên là 1. Vây ánh xa này không là đơn ánh.

- 4) Quy luật ở thí dụ 1.5.4 không phải là một ánh xạ, nên dương nhiên nó không phải là dơn ánh.
- 5) Xét ánh xạ ở thí dụ 1.5.5 ta kiểm tra điều kiện (1.1.1). Một điểm $P \in \pi$ có vô số điểm $M \in \mathcal{K}$ chiếu vuông góc lên π thành P, đó là tái cả các điểm M nằm trên đường thẳng vuông góc với mặt phẳng π tại P. Vậy ánh xạ này không phải là đơn ánh.

1.5.5. Toàn ánh

Xét ánh xạ $f: E \rightarrow F$.

Nói chung f(E) là một tập con của $F: f(E) \subset F$. Nếu có f(E) = F thì f được gọi là một toàn ánh: Vậy có

Dịnh nghĩa 1.5.5. Ánh xạ $f: E \rightarrow F$ gọi là một toàn ánh nếu

$$f(E) = F. ag{1.1.2}$$

Khi f là một toàn ánh ta cũng nói f là ánh xạ từ E lên F.

Mệnh đề (1.1.2) có nghĩa là mỗi $y \in F$ đều là ảnh của ít nhất một $x \in E$. Muốn chứng minh ánh xạ $f : E \to F$ là một toàn ánh ta phải kiểm tra lại diều kiện (1.1.2).

Ta cũng có thể xét "phương trình"

$$f(x) = y, y \in F$$

Nếu "phương trình" này có nghiệm với mọi $y \in F$ thì f là một toàn ánh.

Thí du 1.5.8. Ta duyệt lai các thí du ở mục 1.5.1 và 1.5.2.

1) Xét ánh xạ ở thí dụ 1.5.1 : phương trình

$$x^3 = y, y \in \mathbb{R}$$

luôn có nghiệm $\forall y \in \mathbb{R}$. Vậy ánh xạ này là một toàn ánh.

2) Xét ánh xạ ở thí dụ 1.5.2 : Phương trình

$$x^2 = y, y \in \mathbb{R}$$

chỉ có nghiệm khi $y \ge 0$. Vậy ánh xạ này không là toàn ánh.

80

Chú ý rằng cũng có thể xét $f(\mathbf{R})$:

 $f(\mathbf{R}) = \{y \mid y = x^2, x \in \mathbf{R}\} = \mathbf{R}^+ := \{y \mid y \ge 0\} \ne \mathbf{R}$ nên cũng kết luân được rằng ánh xa này không là toàn ánh.

3) Xét ánh xạ ở thí dụ 1.5.3 : Phương trình :

$$[x] = y, y \in \mathbb{N}$$

bao giờ cũng có nghiệm ∀y ∈ N. Vậy ánh xa này là toàn ánh.

- 4) Quy luật ở thí dụ 1.5.4 không phải là ánh xạ, nên đương nhiên không phải là toàn ánh.
 - 5) Xét ánh xạ ở thí dụ 1.5.5 ta kiểm tra điều kiện (1.1.2).

Rõ ràng
$$f(\mathcal{K}) = \pi$$

Vây ánh xa này là toàn ánh.

1.5.6. Song ánh

Định nghĩa 1.5.6. Ánh xạ $f: E \to F$ gọi là một song ánh nếu nó vừa là đơn ánh vừa là toàn ánh.

Thí dụ 1.5.9. Ta duyệt lại các ánh xạ ở mục 1.5.1 và 1.5.2. Theo các kết quả ở hai mục trên ta có :

- 1) Ánh xạ ở thí dụ 1.5.1 là song ánh
- 2) Ánh xạ ở thí dụ 1.5.2 không là song ánh
- 3) Ánh xạ ở thí dụ 1.5.3 không là song ánh
- 4) Quy luật ở thí dụ 1.5.4 không phải là ánh xạ
- 5) Ánh xa ở thí du 1.5.5 không phải là song ánh.

1.5.7. Ánh xa ngược của một song ánh - Tương ứng 1-1

Xét hai tập E và F và f là một song ánh từ E tới F. Khi đó (xem hình 10):

Hình 10

Úng với mỗi $y \in F$ có một và chỉ một $x \in E$ để y = f(x) (có một vì f là toàn ánh từ E lên F và chỉ có một vì f là đơn ánh từ E tới F). Vây có

Dinh lí và định nghĩa 15.7. Song ánh $f: E \rightarrow F$ tạo ra một

ánh xạ từ F tới E. Ánh xạ này gọi là ánh xa ngược của ánh xa f và kí hiệu là f^{-1} :

$$f^{-1}: F \to E$$

với đặc điểm :

néu
$$f(x) = y$$
 thì $f^{-1}(y) = x$ $(x \in E, y \in F)$,

nếu
$$f^{-1}(y) = x$$
 thì $f(x) = y$ $(y \in F, x \in E)$.

Rõ ràng f^{-1} cũng là một song ánh.

Đồng thời với song ánh $f: E \to F$ ta có một tương ứng 1-1 hai chiều giữa E và F, chiều từ E tới F thực hiện bởi ánh xạ f, còn chiều từ F tới E thực hiện bởi ánh xạ f^{-1} .

Thí dụ 1.5.10. Song ánh f từ R tới R xác định bởi

$$x \in \mathbb{R} \mapsto y = x^3 \in \mathbb{R}$$

có ánh xạ ngược f^{-1} từ \mathbf{R} tới \mathbf{R} xác định bởi

$$y \in \mathbb{R} \mapsto x = \sqrt[3]{y} \in \mathbb{R}$$

Song ánh này tạo ra một tương ứng I - I giữa R và R (xem hình II).

Hinh 11

1.5.8. Hợp (tích) của hai ánh xạ

Cho ba tập hợp E, F, G và hai ánh xạ

$$f: E \to F, g: F \to G$$

Như vậy mỗi $x \in E$ tạo ra bởi f một và chỉ một $y \in F$:

$$f(x) = y$$

và mỗi $y \in F$ tạo ra bởi g một và chỉ một $z \in G$:

$$g(y) = z$$

Do đó mỗi $x \in E$ tạo ra (qua trung gian y) một và chỉ một $z \in G$ xác định bởi g/f(x)/f = z.

Vây có một ánh xa từ E tới G xác định như sau :

$$x \in E \mapsto z = g/f(x) \in G$$

Định nghĩa 1.5.8. Ánh xạ này gọi là hợp của f và g (hay tích của f và g), kí hiệu là $g \circ f$:

$$g \circ f : E \to G$$

xác định như sau :

$$x \in E \mapsto (g \circ f)(x) = g[f(x)] \in G$$

Thí du 1.5.11. Cho $E = F = G = \mathbb{R}$.

$$x \in \mathbf{R} \mapsto y = f(x) = x^2 \in \mathbf{R}$$

$$y \in \mathbb{R} \mapsto z = g(y) = y - 5 \in \mathbb{R}$$

thì ánh xa hợp gof: R -> R xác định như sau

$$x \in \mathbb{R} \mapsto (g \circ f)(x) = g/f(x) = x^2 - 5 \in \mathbb{R}$$

Chú ý 1.5.2

Hợp của hai đơn ánh là một đơn ánh.

Hợp của hai toàn ánh là một toàn ánh.

Hợp của hai song ánh là một song ánh.

Để nghi ban đọc kiểm tra lai.

Chú ý 1.5.3. Cho hai tập E và F và song ánh $f: E \to F$. Theo mục 1.5.7 thì tồn tai ánh xa ngược

$$f^{-1}: F \rightarrow E$$

Ta có

$$x \in E \mapsto (f^{-1} \circ f)(x) = f^{-1} [f(x)] = f^{-1}(y) = x$$

 $y \in F \mapsto (f \circ f^{-1})(y) = f[f^{-1}(y)] = f(x) = y$

nghĩa là có

$$f^{-1} \circ f = I_E, \ f \circ f^{-1} = I_F$$

trong đó

 I_E là ánh xạ đồng nhất trong E

 I_F là ánh xạ đồng nhất trong Fnghĩa là

$$\forall x \in E$$
 $l_E(x) = x$
 $\forall y \in F$ $l_F(y) = y$

BÀI TÂP: 1.16, 1.17, 1.18, 1.19, 1.20, 1.21, 1.22, 1.23, 1.24.

1.6. TẬP HỮU HẠN – TẬP ĐẾM ĐƯỢC – TẬP KHÔNG ĐẾM ĐƯỢC

1.6.1. Một số thí du mở đầu

Xét

$$A = \{a, b, c\}$$
 có 3 phần từ $B = \{x_1, x_2, x_3\}$ có 3 phần từ

$$M = \{1, 2, ..., n\}$$
 có n phần tử

$$D = \{x_1, x_2, ..., x_n\}$$
 có n phần tử.

Những tập này chỉ có một số hữu hạn phần tử.

Bây giờ xét

$$N^* = \{1, 2, ..., n, ...\}$$

$$X = \{x_1, x_2, ..., x_n, ...\}$$

$$\mathbf{R} = \{S\delta \text{ thue}\}$$

$$Y = \{y \mid y \in \mathbb{R}, 0 < y < 1\}$$

Các tập này có vô số phần tử.

1.6.2. Lực lượng của tập hợp

Định nghĩa 1.6.1. Nói hai tập E và F có cùng lực lượng nếu tỏn tại một tương ứng I - I giữa chúng.

Muốn cho E và F có cùng lực lượng, diều kiện cận và dù là giữa chúng tồn tại một song ánh.

Trở lại các thí du ở mục 1.6.1.

Giữa A và B có tương ứng 1-1.

$$a \leftrightarrow x_1, b \leftrightarrow x_2, c \leftrightarrow x_3$$

Điều đó biểu hiện ở chỗ chúng cùng có 3 phần tử. Ta nói 3 là luc lương của A và B.

Giữa M và D có tương ứng 1-1

$$i \leftrightarrow x_i, i = 1, 2, ..., n$$

Điều đó biểu hiện ở chỗ chúng cùng có n phần tử. Ta nói : n là lực lượng của M và D.

Giữa N và X có tương ứng 1-1

$$i \leftrightarrow x_i$$
, $i = 1, 2, ...$

Ta nói N^* và X có cùng lực lượng.

Giữa R và Y có tương ứng 1-1

$$x \in \mathbb{R} \leftrightarrow y = \frac{1}{\pi} \operatorname{arctg} x + \frac{1}{2}$$

Ta nói R và Y có cùng lực lượng.

1.6.3. Tập hữu hạn - Tập đếm được và tập không đểm được

Tập M và các tập có cùng lực lượng với nó gọi là các *tập hữu hạn* (có n phần tử).

Tập N^* và các tập có cùng lực lượng với nó gọi là các *tập đếm được*.

Tập \mathbf{R} và các tập có cùng lực lượng với nó gọi là những *tập không đếm được* (có vô số phân tử không đếm được).

BÀI TẬP: 1.25, 1.26.

1.7. ĐẠI SỐ TỔ HỢP

1.7.1. Hoán vi

Xét tập hữu hạn E có n phần tử:

$$E = \{x_1, x_2, ..., x_n\}.$$

Định nghĩa 1.7.1. Một hoán vị của E là tập gồm tất cả các phần tử của E xếp theo một thứ tự xác định.

Bản thân E cũng là một hoán vị của E, gọi là hoán vị đồng nhất.

Mỗi hoán vị của E ứng với một song ánh từ E lên E và ngược lại.

Thi du 1.7.1.
$$E = \{x_1, x_2\}$$

thì các hoán vị của E là $\{x_1, x_2\}$ và $\{x_2, x_1\}$.

$$E = \{x_1, x_2, x_3\}$$

thì các hoán vi của E là

$$\{x_1 \ x_2 \ x_3\}$$
, $\{x_2 \ x_3 \ x_1\}$, $\{x_3 \ x_1 \ x_2\}$
 $\{x_3 \ x_2 \ x_1\}$, $\{x_1 \ x_3 \ x_2\}$, $\{x_2 \ x_1 \ x_3\}$

Ta thấy : Số các hoán vị của một tập có 2 phần từ là 2 = 2! ; số các hoán vị của một tập có 3 phần từ là 6 = 3!.

Người ta chứng minh được rằng số các hoán vị (khác nhau) của tặp E có n phần tử là

$$P_n = n!$$

Thi du 1.7.2. $P_{10} = 10! = 1.2.3.4.5.6.7.8.9.10.$

Chú ý 1.7.1. Vậy số song ánh của tập E có n phần tử lên chính nó hay số các song ánh giữa hai tập cùng có n phần tử là P_{n} .

1.7.2. Chỉnh hợp lặp

Xét $E = \{x_1, x_2, ..., x_n\}$ và tập B gồm p phần tử

$$B = \{y_1, y_2, \dots, y_n\}.$$

Định nghĩa 1.7.2. Một chính hợp lặp chập p của E là một bộ phận gồm p phần tử không bắt buộc phải khác nhau lấy từ n phần tử của E rồi xếp theo một thứ tự xác định.

Mỗi chỉnh lặp chặp p của E ứng với một ánh xạ từ B đến E và ngược lại.

Thí dụ 1.7.3. $E = \{x_1, x_2\}$ thì các chính hợp lặp chặp 3 của các phần từ của E là

$$\{x_1 x_1 x_1\}$$
, $\{x_1 x_1 x_2\}$, $\{x_1 x_2 x_1\}$, $\{x_2 x_1 x_1\}$
 $\{x_2 x_2 x_2\}$, $\{x_1 x_2 x_2\}$, $\{x_2 x_1 x_2\}$, $\{x_2 x_2 x_1\}$.

Tát cả có $8 = 2^3$.

Người ta chứng minh được rằng số chính hợp lặp chập p của một tập có n phần tử là n^p .

Với n = 2, p = 3 ta có $2^3 = 8$.

Chú ý 1.7.2. Vậy số ánh xạ từ tập B có p phần tử đến tập E có n phần tử là n^p .

1.7.3. Chinh hợp

Bây giờ xét các bộ phận gồm p phần từ khác nhau rút ra từ E, điều đó buộc $p \le n$.

Định nghĩa 1.7.3. Một bộ phận gồm p phần tử $(p \le n)$ khác nhau lấy từ n phần tử của E rồi xếp theo một thứ tự xác định là một chính hợp (không lặp) chập p của n phần tử của E.

Mỗi chính hợp (không lập) chặp p của n phần tử của E ứng với một đơn ánh từ tập B có p phần tử tới E và ngược lại.

Thi dụ 1.7.4. Cho $E = \{x_1, x_2, x_3\}, p = 2, (n = 3)$ thì các chinh hợp chập 2 của 3 phần từ của E là

$$\{x_1, x_2\}$$
, $\{x_2, x_1\}$, $\{x_1, x_3\}$, $\{x_3, x_1\}$, $\{x_2, x_3\}$, $\{x_3, x_2\}$
Có 6 tát cả.

Người ta chứng minh được rằng số các chỉnh hợp chập p $(p \le n)$ của một tập hợp có n phần tử là

$$A_n^p = \frac{n!}{(n-p)!} = n(n-1) \dots (n-p+1)$$

Với
$$n = 3$$
, $p = 2$ ta có $A_3^2 = 6$.

Chú ý 1.7.3. Vậy số đơn ánh từ một tập có p ($p \le n$) phần từ tới một tập có n phần từ là A_n^p .

1.7.4. Tổ hợp

Xét tập
$$E = \{x_1, x_2, ..., x_n\}, p \le n$$
.

Định nghĩa 1.7.4. Một bộ phận gồm p phần tử $(p \le n)$ khác nhau lấy từ các phần tử của E (không kể thứ tự) gọi là một tổ hợp chặp p của n phần tử của E.

Thí dụ 1.7.5. Cho $E=\{x_1,\,x_2,\,x_3\},\,p=2,\,(n=3)$ thì các tổ hợp chập 2 của 3 phần tử của E là

$$\{x_1, x_2\}, \{x_1, x_3\}, \{x_2, x_3\}$$

Có 3 tất cả.

1,00

Gọi số các tổ hợp (khác nhau) chập p của một tập có n phần từ $(p \le n)$ là C_n^p . Rỗ ràng theo định nghĩa của tổ hợp và hoán vị ta có $C_n^p = A_n^p/P_p$.

Do đó

$$C_n^p = \frac{n!}{p!(n-p)!} = \frac{n(n-1)\dots(n-p+1)}{p!}$$

Chú ý rằng 0! = 1 theo quy trớc.

Với n = 3, p = 2 ta có $C_n^p = 3$.

 $Ch\dot{u}$ ý 1.7.4. Từ biểu thức của C_n^p và với quy ước $C_n^o = 1$ ta suy ra (ban dọc kiểm tra lại):

$$C_n^{n-p} = C_n^p$$

 $C_n^p + C_n^{p+1} = C_{n+1}^{p+1}$

1.7.5. Nhị thức Newton

Xét
$$(x + 1)^n = \underbrace{(x + 1)(x + 1) \dots (x + 1)}_{n \text{ thừa số}}$$

Rō ràng

$$(x+1)^n = x^n + k_{n-1}x^{n-1} + k_{n-2}x^{n-2} + ... + 1$$

Hệ số của x^p bằng số cách chọn p lần x trong n thừa số (mỗi thừa số là x+1), số đó chính là số tổ hợp chập p của n phần tử, tức là bằng C_n^p . Vậy

$$(x+1)^n = x^n + C_n^{n-1}x^{n-1} + ... + C_n^{n-p}x^{n-p} + ... + 1$$

Thay
$$x = \frac{a}{h}$$
 và chú ý đến $C_n^{n-p} = C_n^p$ ta có

$$(a+b)^n = a^n + C_n^1 a^{n-1} b + ... + C_n^p a^{n-p} b^p + ... + C_n^{n-1} a b^{n-1} + b^n$$

Đó là công thức nhị thức Newton.

Với n = 2, 3 ta thấy lại các công thức đã biết :

$$n = 2$$
 $(a + b)^2 = a^2 + 2ab + b^2$
 $n = 3$ $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$

Chú ý 1.7.5. Về tam giác Pascal

Các hệ số của công thức nhị thức Newton viết được dưới dạng tam giác, gọi là tam giác Pascal:

$$n = 1$$
 1 1 $n = 2$ 1 2 1 $n = 3$ 1 3 3 1 $n = 4$ 1 4 6 4 1 $n = 5$ 1 5 10 10 5 1 $n = 6$ 1 6 15 20 15 6 1

Số hạng ở hàng dưới bằng số hạng cùng cột ở hàng trên cộng với số hạng cùng hàng trên ở cột bên trái.

BÀI TẬP: 1.27, 1.28, 1.29, 1.30, 1.31, 1.32, 1.33.

TÓM TẮT CHƯƠNG I

Kí hiệu

⇒ kéo theo

⇔ tương đương

∀ với mọi

∃ tồn tại

:= định nghĩa bởi

sao cho

Tập hợp và phần tử

Kí hiệu \in , đọc là thuộc : $a \in A$

Tập rỗng ϕ

Tập bằng nhau : A = B nếu A và B trùng phau Bao hàm, tập con

$$A \subset B \Leftrightarrow ((x \in A) \Rightarrow (x \in B))$$

$$((A \subset B) \text{ và } (B \subset A)) \Leftrightarrow A = B$$

Hore $x \in A \cup B \Leftrightarrow ((x \in A) \text{ hoac } (x \in B))$

Giao $x \in A \cap B \Leftrightarrow ((x \in A) \lor a (x \in B))$

Hiệu $x \in A - B \Leftrightarrow ((x \in A) \text{ và } (x \notin B))$

 $A \subset E$ thì $\overline{A} = E - A$ Bù

Tích để các

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

$$A \times B \times C = \{(a, b, c) \mid a \in A, b \in B, c \in C\}$$

Một quan hệ hai ngôi H trên E gọi là

phán xa nếu

 $x \Re x \cdot \forall x \in E$

đối xứng nếu

 $x \mathcal{H} y \Rightarrow y \mathcal{H} x$

bắc cầu nếu

 $(xHy \ va \ yHz) \Rightarrow xHz$

phản đối xứng nếu $(x \mathcal{H} v) v = v$

Quan hệ \Re trên E gọi là quan hệ tương đương nếu nó phản xa, đối xứng và bắc cầu, kí hiệu là ~.

Tập tất cả các $y \in E$ mà -x gọi là lớp tương đương của x.

Quan hệ \mathcal{R} trên E gọi là quan hệ thứ tự nếu nó phản xa, phản đối xứng và bắc cầu, thường kí hiệu là \leq .

Hai phần từ a và b của E gọi là so sánh được nếu an b hay by a

 \mathcal{H} là quan hệ thứ tự toàn phần nếu mọi cặp a và b của E đều so sánh được; \mathcal{H} là quan hệ thứ tự bộ phận nếu chỉ có một số cặp a và b của E là so sánh được.

Ánh xạ từ tập E tới tập F

Đó là một quy luật f liên hệ giữa E và F sao cho ứng mỗi $x \in E$ có một và chỉ một $y \in F$, viết $f : E \to F$.

y gọi là đnh của x, còn x gọi là nghịch đnh của y; viết y = f(x) hay f(x) = y hay $x \mapsto y$.

Đơn ánh : f là dơn ánh nếu

$$f(x) = f(x') \Rightarrow x = x'$$

Toàn ánh : f là toàn ánh nếu f(E) = F.

Song ánh : f là song ánh nếu f vừa là đơn ánh vừa là toàn ánh.

Nếu f là song ánh từ E tới F, nó tạo ra ánh xạ ngược f^{-1} từ F tới E. Một song ánh từ E tới F tạo ra một tương ứng 1 - 1 giữa E và F.

Lực lượng của tập hợp

Hai tập hợp gọi là có cùng lực lượng nếu giữa chúng có một tương ứng l-1. Tập $\{1, 2, ..., n\}$ và các tập cùng lực lượng với nó là các tập hữu hạn; chúng cùng có n phần từ.

Tập $\{1, 2, ..., n,...\}$ và các tập cùng lực lượng với nó là các tập đếm được.

Tập số thực \mathbf{R} và các tập hợp cùng lực lượng với nó là vô hạn không đếm được.

Đại số tổ hợp

Số các ánh xạ từ một tập gồm p phần tử tới một tập gồm n phần tử bằng số các chính hợp lặp chập p của n phần từ. Số đó là n^p .

Số các đơn ánh từ một tặp hợp gồm p phần từ tới một tặp gồm n phần từ bằng số các *chỉnh hợp* chặp p cùa n phần từ. Số đó là

$$A_n^p = n(n-1) \dots (n-p+1)$$

Số các song ánh từ một tập gồm n phần tử lên chính nó bằng số các hoán v_i của n phần tử. Số đó là

$$P_n = n!$$

Một bộ phận gồm p ($p \le n$) phần từ lấy từ n phần tử (không kể thứ tự) gọi là một tổ hợp chập p của n phần tử... Số tổ hợp đó là

$$C_n^p = \frac{A_n^p}{p!} = \frac{n!}{p!(n-p)!}$$

Ta có

\$ 00

$$C_n^p = C_n^{n-p}$$

$$C_n^p = C_{n-1}^{p-1} + C_{n-1}^p$$

Nhi thức Newton

$$(a+b)^n =$$

$$= a^n + na^{n-1}b + ... + \frac{n(n-1)...(n-p+1)}{p!}a^{n-p}b^p + ... + b^n$$

BÀI TẬP CHƯƠNG I

1.1. Dùng các kí hiệu đã học ở tiết 1.0 hãy viết các mệnh đề sau :

Định nghĩa – Tam giác ABC gọi là tam giác cân nếu nó có hai góc bằng nhau.

Định lí - Nếu tam giác ABC có hai cạnh bằng nhau thì nó là tam giác cân.

Định lí - Điều kiện cản và đủ để tam giác ABC cân là nó có hai cạnh bằng nhau.

- 1.2. Tìm tập các nghiệm của phương trình hay bất phương trình dưới đây và biểu diễn chúng trên trục số:
 - a) $x^2 4x + 3 = 0$

b)
$$x^2 - 4x + 3 > 0$$

c)
$$x^2 - 4x + 3 \le 0$$

d)
$$x^2 - x + 1 = 0$$

e)
$$x^2 - x + 1 > 0$$

f)
$$x^2 - x + 1 < 0$$

1.3. Tìm tập các nghiệm của hệ phương trình hay bất phương trình dưới đây và biểu diễn chúng trên mặt phẳng toạ đô:

a)
$$\begin{cases} 3x + 2y = 8 \\ 4x - y = 7 \end{cases}$$

b)
$$\begin{cases} 3x - y = 2 \\ -6x + 2y = -4 \end{cases}$$

c)
$$3x - y = 0$$

d)
$$3x - y > 0$$

e)
$$3x - y < 0$$

- 1.4. Trong các trường hợp sau hỏi có A = B không?
- a) A là tập các số thực không âm, B là tập mọi số thực không nhỏ hơn trị tuyệt đối của chính nó;
- b) A là tập các số thực không âm, B là tập mọi số thực không lớn hơn trị tuyệt đối của chính nó;
- c) A là tập mọi số nguyên không âm và không lớn hơn 100 có tam thừa là một số lẻ không chia hết cho 3, B là tập các số nguyên không âm và không lớn hơn 100 có bình phương trừ 1 chia hết cho 24.
- 1.5. A, B, C là tập con của E. Chứng mình rằng nếu $A \cup C \subset A \cup B$ và $A \cap C \subset A \cap B$ th) $C \subset B$.

- 1.6. A là tập con của E. Hãy xác định các tập sau $\overline{(A)}$; $A \cap \overline{A}$, $A \cup \overline{A}$, $\overline{\varnothing}$, \overline{E} .
 - 1.7. A, B là các tập con của E. Chứng minh
 - a) Nếu $A \subset B$ thì $\overline{B} \subset \overline{A}$.
- b) Nếu A và B rời nhau thì mọi phần tử của E sẽ thuộc \overline{A} hoặc thuộc \overline{B} .
 - c) $A \subset B \Leftrightarrow A \cup B = B \Leftrightarrow \overline{A} \cup B = E$
 - d) $A \subset B \Leftrightarrow A \cap B = A \Leftrightarrow A \cap \overline{B} = \emptyset$
 - e) $\overline{A} \cup \overline{B} = (\overline{A} \cap \overline{B})$
 - f) $\overline{A} \cap \overline{B} = (\overline{A \cup B})$
 - **1.8.** Cho $A = \{1, 2, 3\}, B = \{2, 3, 4\}.$

Hãy viết ra tất cả các phần từ của $A \times B$ và biểu diễn chúng thành các điểm trên mặt phẳng toa đô.

1.9. Cho
$$A = [1, 2] := \{x \mid 1 \le x \le 2\}$$

$$B = \{2, 3\} := \{x \mid 2 < x < 3\}$$

Hãy biểu diễn hình học tập tích $A \times B$ trên mật phẳng toạ độ.

1.10. Trong R, quan hệ a R b xác định bởi

$$a^3 - b^3 = a - b$$

có phải là quan hệ tương đương không? Tìm lớp tương đương $\mathscr{C}(a,\mathscr{R})$.

- 1.11. Trong tập các số tự nhiên, các quan hệ sau có phải là quan hệ tương dương không?
 - a) a chia hết cho b;
 - b) a không nguyên tố với b.
- 1.12. a) Trong không gian hình học thông thường được coi như tập các điểm M, M',..., chứng minh rằng quan hệ "M và M' ở trên một

đường thẳng cùng phương với đường thẳng D cho trước" là một quan hệ tương đương. Nêu đặc điểm của các lớp tương đương.

- b) Cùng câu hỏi đó trong mặt phẳng với quan hệ "M" là ảnh của M trong một phép quay quanh tâm O cho trước".
- 1.13. Trong tập các đường thẳng trong không gian quan hệ $D \perp D'$ có phải là quan hệ tương đương không ?
 - 1.14. Trong R2, hãy chứng minh quan hệ

$$(x, y) \le (x', y') \Leftrightarrow x \le x', y \le y'$$

là quan hệ thứ tự. Nó có phải quan hệ thứ tự toàn phần không ? Nếu không, hãy xác định hai cặp (x, y) và (x', y') cụ thể không thỏa mãn cả $(x, y) \le (x', y')$ lẫn $(x', y') \le (x, y)$.

1.15. Một kì thi có hai môn thi, điểm cho từ 0 đến 20. Mỗi thí sinh có hai điểm, x là điểm của môn thi thứ nhất, y là điểm của môn thi thứ hai. Trong tập các thí sinh, người ta xét tập các cặp điểm số (x, y) và xác định quan hệ hai ngôi \mathcal{H} như sau

$$(x_1, y_1) \mathcal{R}(x_2, y_2) \Leftrightarrow \begin{cases} \text{hoặc } x_1 < x_2 \\ \text{hoặc } x_1 = x_2 \text{ và } y_1 \le y_2 \end{cases}$$

Chứng minh rằng \mathcal{H} là một quan hệ thứ tự toàn phần trên tập các thí sinh.

- 1.16. Các ánh xạ $f:A\to B$ sau là dơn ánh, toàn ánh, song ánh? Xác dịnh ánh xạ ngược nếu có:
 - 1) $A = \mathbb{R}, B = \mathbb{R}, f(x) = x + 7$;
 - 2) $A = \mathbb{R}$, $B = \mathbb{R}$, $f(x) = x^2 + 2x 3$;
 - 3) $A = [4, 9], B = [21, 96], f(x) = x^2 + 2x 3$
 - 4) $A = \mathbb{R}, B = \mathbb{R}, f(x) = 3x 2|x|$;
 - 5) $A = \mathbb{R}, B = (0, +\infty), f(x) = e^{x+1}$;
 - 6) A = N, B = N, f(x) = x(x + 1).
- 1.17. Các ánh xạ sau đây là loại ánh xạ gì ? Xác định ánh xạ ngược nếu có

- 1) Đối xứng đối với một điểm O;
- 2) Tinh tiến theo vector \bar{a} ;
- 3) Quay quanh tâm O một gốc θ trong mặt phầng;
- 4) Vị tự tâm O với tỉ số $k \neq 0$.
- 1.18. a) Cho ánh xạ $f: \mathbf{R} \to \mathbf{R}$ xác định bởi

$$f(x) = \frac{2x}{1+x^2}$$

Nó có là đơn ánh ? là toàn ánh ? Tìm ành f(R).

- b) Cho ánh xạ $g: \mathbb{R}^* \to \mathbb{R}, \mathbb{R}^* = \mathbb{R} \{0\}$ xác định bởi $x \mapsto \frac{1}{x}$. Tìm ảnh $f \circ g$.
 - 1.19. Xét hai ánh xa

 $f: \mathbf{R} \to \mathbf{R}$ xác định bởi f(x) = |x|

 $g: \mathbf{R}_+ \to \mathbf{R}, \mathbf{R}_+ := \{x \mid x \in \mathbf{R}, x \ge 0 \}$ xác định bởi $x \mapsto \sqrt{x}$

So sánh $f \circ g$ và $g \circ f$.

1.20. Cho 4 tập hợp A, B, C, D và ba ánh xa

$$f: A \rightarrow B$$
; $g: B \rightarrow C$; $h: C \rightarrow D$.

Chứng minh rằng

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

1.21. 1) Cho 2 tập E và F và ánh xạ $f: E \rightarrow F$.

A và B là hai tạp con của E. Chứng minh

- a) $A \subset B \Leftrightarrow f(A) \subset f(B)$;
- b) $f(A \cap B) \subset f(A) \cap f(B)$:
- c) $f(A \cup B) = f(A) \cup f(B)$.
- 2) Chứng minh rằng nếu f là đơn ánh thì

$$f(A \cap B) = f(A) \cap f(B)$$
.

1.22. Cho 2 tập E và F và ánh xạ f: $E \rightarrow F$.

A và B là 2 tập con của F, chứng minh

a)
$$A \subset B \Rightarrow f^{-1}(A) \subset f^{-1}(B)$$
;

b)
$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$
.

1.23. Cho
$$f: E \to F$$
; $g: F \to G$

Chứng minh rằng:

1) Nếu f và g là toàn ánh thì g o f là toàn ánh;

Nếu f và g là đơn ánh thì $g \circ f$ là đơn ánh;

Nếu f và g là song ánh thì $g \circ f$ là song ánh.

- 2) Nếu $g \circ f$ là song ánh và f là toàn ánh thì f và g là song ánh.
- 1.24. Với mỗi bộ 4 số nguyên a, b, c, d sao cho ad bc = 1, ta cho ánh xa $f: \mathbb{Z}^2 \to \mathbb{Z}^2$ xác định bởi

$$f:(x, y) \mapsto (ax + by, cx + dy)$$

và gọi F là tập các ánh xạ như thế.

- a) Chứng minh rằng f là song ánh và $f^{-1} \in F$.
- b) Chứng minh rằng nếu f và $g \in F$ thì $f \circ g \in F$.
- 1.25. 1) Chứng minh rằng hợp của hai tập hữu hạn là một tập hữu hạn.
- Chứng minh rằng hợp của một số đếm được các tập hữu hạn là một tập đếm được.
- 1.26. Cho tập E, gọi $\mathscr{S}(E)$ là tập tất cả các tập con của E. Chứng minh rằng $\mathscr{S}(E)$ không cùng lực lượng với E.
- 1.27. Cho $A = \{a, b\}$. Có thể lập được bao nhiều bảng khác nhau có dang

	а	ь
a	α	β
ь	Y	δ

trong đó α , β , γ , $\delta \in A$?

- 1.28. a) Có bao nhiều số có 5 chữ số?
- b) Có bao nhiều số có 5 chữ số mà các chữ số đều khác nhau?
- 1.29. Tìm số tất cả các tập con của một tập gồm n phần tử, kể cả tập rỗng.
 - 1.30. Cho các hoán vị P và Q của [1 2 3 4]:

 $P = \{3 \ 4 \ 1 \ 2\}$ $Q = \{2 \ 4 \ 1 \ 3\}$ mà ta kí hiệu như sau :

$$P = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{bmatrix}, \quad Q = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{bmatrix}$$

Tim $P \circ Q$, $Q \circ P$, P^{-1} và Q^{-1} .

- 1.31. Cho n diểm khác nhau trong mặt phẳng sao cho ba điểm bất kì không thẳng hàng. Xét các đoạn thẳng nối từng cặp hai diểm khác nhau.
 - a) Tính số các đoạn thẳng đó.
 - b) Tính số các tam giác được tạo nên.
 - c) Ứng dụng cho các trường hợp riêng :

$$n=3, n=4, n=5.$$

1.32. Chứng minh

a)
$$1 - C_n^1 + C_n^2 - ... + (-1)^p C_n^p = (-1)^p C_{n-1}^p$$

b)
$$\sum_{i=0}^{n} C_{n}^{i} = 2^{n}$$

c)
$$\sum_{i=0}^{n} (-1)^{i} C_{\mathbf{n}}^{i} = 0.$$

1.33. Tim số hang lớn nhất trong khai triển của nhi thức

$$(37 + 19)^{31}$$
.

ĐÁP SỐ

1.1. Tam giác cân := tam giác có hai góc bằng nhau

Tam giác có hai cạnh bằng nhau ⇒ tam giác cân Tam giác có hai cạnh bằng nhau ⇔ tam giác cân

1.2. a)
$$\{1,3\}$$
; b) $(-\infty,1) \cup (3,+\infty)$; c) $\{1,3\}$; d) \emptyset ; e) $(-\infty,+\infty)$; f) \emptyset .

1.3. a) $\{(2, 1)\}$; b) $\{(x, y) \mid x \text{ tùy } \hat{y}, y = 3x - 2\}$ đường thẳng y = 3x - 2

c)
$$\{(x, y) \mid x \text{ tuỳ } \hat{y}, y = 3x\}.$$

dường thẳng $y = 3x$.

d) $\{(x, y) \mid x \text{ tuỳ } \acute{y}, y < 3x\}$. Các diểm (x, y) nằm dưới đường thẳng y = 3x.

e) $\{(x, y) \mid x \text{ tuỳ } \hat{y}, y > 3x\}$. Các diểm (x, y) nằm trên đường thẳng y = 3x

1.4. a) Có; b) Không; c) Có.

1.6.
$$\overline{(\overline{A})} = A$$
; $A \cap \overline{A} = \emptyset$; $A \cup \overline{A} = E$

$$\bar{\varnothing} = E, \bar{E} = \varnothing$$

1.8. $\{(1, 2), (2, 2), (3, 2), (1, 3), (2, 3), (2, 4), (1, 4), (3, 3), (3, 4)\}.$

Các điểm có toạ độ như trên.

1.9. Hình chữ nhật có 4 định là (1, 2), (1, 3), (2, 2), (2, 3).

1.10. Có.

 $|a| < 2 / \sqrt{3}$ và $a = 1 / \sqrt{3}$ thì $\mathscr{C}(a,\mathscr{H}) = \{a \text{ và hai nghiệm của phương trình } x^2 + ax + a^2 - 1 = 0\}.$

 $|a|=2/\sqrt{3}$, $\mathcal{C}(a,\mathcal{R})=\{a \text{ và nghiệm kép của phương trình trên}\}$.

$$|a| > 2 / \sqrt{3}$$
, $\mathcal{C}(a, \mathcal{R}) = \{a\}$.

$$|a| = 1 / \sqrt{3}$$
, $\mathscr{C}(a, \mathscr{B}) = \{a, -2a\}$.

1.11. a) Không (vì không đối xứng).

b) Không (vì không bắc cầu).

- 1.12. a) Lớp tương dương gồm tất cả các đường thẳng cùng phương
- b) Mỗi lớp tương đương là một đường tròn tâm O.
- 1.13. Không (vì không phản xạ và không bắc cấu).
- 1.14. Không phải quan hệ thứ tự toàn phần, chẳng hạn (1, 2) và (2, 1) không so sánh được.
 - 1.16. 1) Don ánh, toàn ánh, song ánh, $f^{-1}(y) = y 7$.
 - 2) Không đơn ánh, không toàn ánh, không có ánh xạ ngược.
 - 3) Đơn ánh, toàn ánh, song ánh $f^{-1}(y) = -1 + \sqrt{4 + y}$.
 - 4) Đơn ánh, toàn ánh, song ánh, $f^{-1}(y) = \begin{cases} y, y \ge 0 \\ \frac{1}{5}y, y < 0 \end{cases}$
 - 5) Đơn ánh, toàn ánh, song ánh $f^{-1}(y) = \ln y 1$
 - 6) Đơn ánh; không toàn ánh; không song ánh; không có ánh xạ ngược.
 - 1.17. Tất cả đều là song ánh.
 - 1) Ánh xạ ngược trùng với nó.
 - 2) Ánh xạ ngược là tịnh tiến theo vector $-\vec{a}$.
 - 3) Ánh xạ ngược là quay quanh tâm O một góc -θ.
 - 4) Ánh xạ ngược là vị tự tâm O với tỉ số $\frac{1}{k}$.
 - 1.18. a) f không phải đơn ánh hay toàn ánh, $f(\mathbf{R}) = [-1, 1]$;
 - b) $f \circ g = f$.
 - 1.19. $f \circ g \neq g \circ f$.
 - 1.27. Đó là số các ánh xạ từ A^2 tới A, tức là $2^4 = 16$.
 - **1.28.** a) 9×10^4 số có 5 chữ số.
 - b) $9 \times 9 \times 8 \times 7 = 4536$ số có 5 chữ số khác nhau.
 - 1,29, 2ⁿ.

1.30.
$$P \circ Q = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{bmatrix}$$
, $Q \circ P = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{bmatrix}$
$$P^{-1} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{bmatrix}$$
, $Q^{-1} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{bmatrix}$

1.31. a)
$$d = \frac{n(n-1)}{2}$$

b)
$$t = \frac{1}{6}n(n-1)(n-2)$$

c) với
$$n = 3$$
 $d = 3$ $t = 1$
 $n = 4$ $d = 6$ $t = 14$
 $n = 5$ $d = 10$ $t = 10$

1.33.
$$C_{31}^{10}37^{21}19^{10}$$
.

Chương II

CẤU TRÚC ĐẠI SỐ - SỐ PHỰC -ĐA THỰC VÀ PHÂN THỰC HỮU TỈ

2.1. LUẬT HỢP THÀNH TRONG TRÊN MỘT TẬP

2.1.1. Khái niệm về luật hợp thành trong

Định nghĩa 2.1.1. Luật hợp thành trong trên tập E, hay phép toán trên E, là một quy luật khi tác động lên hai phần tử a và b của E sẽ tạo ra một và chỉ một phần tử cũng của E.

Nói cách khác, luật hợp thành trong trên tập E là một ánh xạ từ $E \times E$ tới E.

Kí hiệu luật hợp thành trong trên tập E là * ta có

$$(a, b) \in E \times E \mapsto a * b \in E$$

hay

$$a, b \in E \mapsto a * b \in E$$

Thí dụ 2.1.1. Phép cộng (+) là một luật hợp thành trong trên các tập N, Z, Q, R:

$$(a, b) \in \mathbb{N} \mapsto a + b \in \mathbb{N}$$

$$(a, b) \in \mathbf{Z} \mapsto a + b \in \mathbf{Z}$$

$$(a,b) \in \mathbf{Q} \mapsto a+b \in \mathbf{Q}$$

$$(a, b) \in \mathbb{R} \mapsto a + b \in \mathbb{R}$$

Thí dụ 2.1.2. Phép nhân (.) là một luật hợp thành trong trên các tấp N, Z, Q, R:

$$(a, b) \in \mathbb{N} \mapsto a.b \in \mathbb{N}$$

 $(a, b) \in \mathbb{Z} \mapsto a.b \in \mathbb{Z}$
 $(a, b) \in \mathbb{Q} \mapsto a.b \in \mathbb{Q}$
 $(a, b) \in \mathbb{R} \mapsto a.b \in \mathbb{R}$

2.1.2. Tính chất của một luật hợp thành trong

Một luật hợp thành trong (*) trên tập E có thể có một số tính chất sau :

1) Tính kết hợp. Ta nói luật hợp thành trong (*) trên tập E có tính kết hợp nếu

$$\forall a, b, c \in E \text{ ta c6 } a * (b * c) = (a * b) * c$$

Thí dụ 2.1.3. Phép cộng (+) và phép nhân (.) trên các tập N, Z, Q, R có tính kết hợp vì

$$a + (b + c) = (a + b) + c$$

 $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

2) Tính giao hoán. Ta nói luật hợp thành trong * trên tập E có tính giao hoán nếu

$$\forall a, b \in E$$
 ta có $a * b = b * a$

Thi dụ 2.1.4. Phép cộng (+) và phép nhân (.) trên các tập N, Z, Q, R có tính giao hoán vì

$$a + b = b + a$$

 $a \cdot b = b \cdot a$

3) Phần tử trung hoà. Ta nói luật hợp thành trong (*) trên tập E có phần tử trung hoà là e nếu $e \in E$ và

$$\forall a \in E \text{ ta có } a * e = e * a = a$$

Thí dụ 2.1.5. Phép cộng (+) trên các tập N, Z, Q, R có phần tử trung hoà là 0 vì ta luôn có

$$a + 0 = 0 + a = a$$

Thi dụ 2.1.6. Phép nhân (.) trên các tập N, N*, \mathbf{Z} , \mathbf{Q} , \mathbf{R} có phần tử trung hoà là 1 vì ta luôn có

$$a.1 = 1.a = a$$

4) Phần tử đối (hay đối xứng). Xét tập E trên đó có luật hợp thành trong (*) với phần tử trung hoà e. Xét phần tử $a \in E$. Phần tử $a' \in E$ gọi là phần tử đối của a nếu

$$a * a' = a' * a = e$$

Thí dụ 2.1.7. Đối với phép cộng (+) trên các tập \mathbb{Z} , \mathbb{Q} , \mathbb{R} mọi phần tử a đều có phần tử đối là -a vì

$$a + (-a) = (-a) + a = 0$$

Riêng trên tập N, thì $-n \notin N$, cho nên mọi phần tử $\neq 0$ của N không có phần tử đối đối với phép cộng.

Thí dụ 2.1.8. Đối với phép nhân (.) trên các tập \mathbf{Q} , \mathbf{R} , mọi phần từ a = 0 đều có phần từ đối là $\frac{1}{a}$, còn viết là a^{-1} , vì $a \cdot \frac{1}{a} = \frac{1}{a}$. a = 1.

Riêng trên \mathbf{Z} mọi phần tử $a \neq 0$ và $a \neq 1$ đều không có phần tử đối vì

$$a \in \mathbb{Z}$$
, $(a \neq 0, a \neq 1)$ thì $\frac{1}{a} \notin \mathbb{Z}$.

Khi phép toán được đặt tên là phép nhân thì phần tử đối được gọi là phần tử nghịch đảo.

2.1.3. Khái niệm về cấu trúc đại số

Một tập có trang bị một hay nhiều luật hợp thành trong với những tính chất xác dịnh tạo thành một trong những đối tượng toán học gọi là cấu trúc đai số.

Sau đây ta sẽ nghiên cứu các cấu trúc nhóm, vành và trường và đặc biệt là trường số phức.

Đố là các cấu trúc đại số thông dụng nhất.

2.2. CẤU TRÚC NHÓM

2.2.1. Định nghĩa nhóm

Định nghĩa 2.2.1. Tập G không rồng có trang bị một luật hợp thành trong (*) kí hiệu là (G, *). Cặp (G, *) được gọi là một nhóm nếu thoả mãn ba tính chất sau :

G1: Luật (*) có tính kết hợp.

G2: Luật (*) có phần tử trung hoà e.

G3: Mọi phần tử của G đều có phần tử đối.

Ba tính chất G1, G2, G3 còn gọi là các tiên đề của nhóm.

Nếu có thêm tính chất thứ tư:

G4: Luật (*) có tính giao hoán thì nhóm <math>(G, *) gọi là nhóm giao hoán hay nhóm Abel.

 $Ch\dot{u}$ ý 2.2.1. Khí cập (G, *) là một nhóm, nếu không sợ lầm lẫn ta cũng nói gọn : G là một nhóm.

Thí dụ 2.2.1. Căn cứ các kết quả ở mục 2.1.2 thì $(\mathbf{Z}, +)$, $(\mathbf{Q}, +)$, $(\mathbf{R}, +)$ là những nhóm giao hoán.

2.2.2. Một số tính chất của nhóm

Dựa vào định nghĩa 2.2.1 có thể chứng minh được các tính chất sau :

- 1) Phần tử trung hoà e là duy nhất.
- 2) Phần từ đối a' của a là đuy nhất.
- 3) Có quy tắc giản ước :

$$a * x = a * y \Rightarrow x = y$$
.

Áp dụng: Trên Z, Q, R có quy tắc giản ước

$$a + x = a + y \Rightarrow x = y$$

4) Trên G phương trình

$$a * x = b$$

có nghiệm duy nhất

$$x = a' * b$$

Áp dụng: Trên Z, Q, R phương trình

$$a + x = b$$

có nghiệm duy nhất

$$x = (-a) + b = b - a,$$

Ta thừ chứng minh các kết luân trên.

1) Giả sử có hai phần tử trung hoà e và e', nghĩa là

$$\forall a \in G \ a * e = e * a = a$$

$$a * e' = e' * a = a$$

Xét tích e * e'. Vì e và e' đều là phần từ trung hoà nên ta có

$$e' = e' * e = e.$$

Ta suy ra e = e'.

2) Cho $a \in G$, giả sử có hai phần từ đối a' và a'' nghĩa là có

$$a' * a = a * a' = e, a" * a = a * a" = e.$$

Thể thì có

$$(a'*a)*a'' = e*a'' = a''$$

$$a' * (a * a'') = a' * e = a'$$

và suy ra

$$a' = a''$$
.

3) Giả sử đã có

$$a * x = a * y$$
.

Ta suy ra

$$a' * (a * x) = a' * (a * y)$$

$$(a'*a)*x = (a'*a)*y$$

VŽV

$$x = y$$
.

4) Giả sử

$$a * r = b$$

Ta suy ra

$$a' * (a * x) = a' * b$$

$$(a'*a)*x = a'*b$$
$$x = a'*b.$$

Ngược lại dễ thấy rằng x = a' * b thoả mãn phương trình đã cho.

BÀI TẬP: 2.1, 2.2, 2.3.

2.3. CẤU TRÚC VÀNH

2.3.1. Đình nghĩa vành

Định nghĩa 2.3.1. Tập A không rỗng có trang bị hai luật hợp thành trong, luật thứ nhất gọi là luật cộng, viết là +, luật thứ hai gọi là luật nhân, viết là ., kí hiệu là (A, +, .). Bộ ba (A, +, .) được gọi là một vành nếu thoả mãn các tính chất sau :

A1 : Cặp (A, +) là một nhóm giao hoán (phần tử trung hòa thường được kí hiểu là 0).

A2: Luật nhân (.) có tính kết hợp.

A3 : Luật nhân (.) cố tính phân phối hai phía đối với luật cộng (+), nghĩa là $\forall a, b, c \in A$ ta có

$$a.(b+c) = a.b + a.c$$
 (phán phối trái)
 $(b+c).a = b.a + c.a$ (phân phối phải)

Khi (A, +, .) là một vành và không sợ lẫn thì ta cũng nói A là một vành.

Vành (A, +, .) gọi là vành giao hoán nếu có thêm tính chất thứ tư: A4: Luật (.) có tính giao hoán.

Thí dụ 2.3.1. Các bộ ba $(\mathbf{Z}, +, .)$, $(\mathbf{Q}, +, .)$, $(\mathbf{R}, +, .)$ là các vành giao hoán.

Ngoài ra nếu

Luật nhân (.) có phần tử trung hoà, kí hiệu là 1, thì vành (A, +, .) gọi là vành có đơn v_i .

Thí dụ 2.3.2. Các vành $(\mathbf{Z}, +, .)$, $(\mathbf{Q}, +, .)$, $(\mathbf{R}, +, .)$ là các vành có đơn vị, đơn vị đó là 1.

2.3.2. Vành nguyên

Định nghĩa 2.3.2. Vành nguyên là một vành (A, +, .) trong đó có tính chất

$$a.b = 0 \Rightarrow a = 0 \text{ hoặc } b = 0. \tag{2.3.1}$$

Thí du 2.3.3. Các vành $(\mathbf{Z}, +, .)$, $(\mathbf{Q}, +, .)$, $(\mathbf{R}, +, .)$ là các vành nguyễn.

Trong một vành bất kì ta có

$$a.0 = 0.a = 0$$

Trong vành nguyên ta còn có (2,3.1).

Vậy trong vành nguyên ta có

Điều kiện cần và đủ để một tích bằng không là một trong hai nhân tử bằng không.

BÀI TÂP : 2.4.

2.4. CẤU TRÚC TRƯỜNG

2.4.1. Định nghĩa trường

Định nghĩa 2.4.1. Gọi K là một tập không rỗng có trang bị hai luật hợp thành trong : luật cộng (+) và luật nhân (.). Ta nói (K, +, .) hay K là một trường nếu thoả măn các tính chất sau :

K1: (K, +, .) là một vành giao hoán có dơn vị.

K2: Với mọi $a \in K$, $a \neq 0$ (phần từ trung hoà của luật +), thì tồn tại phần từ đối a' của a đối với luật nhân (.) nghĩa là

$$a.a' = a'.a = 1 \ (a \neq 0).$$

a' gọi là nghịch đảo của a, kí hiệu là a^{-1} hay $\frac{1}{a}$.

Thi du 2.4.1. \mathbf{R} và \mathbf{Q} với luật cộng (+) và nhân (.) thông thường là một trường.

2.4.2. Một số tính chất

- 1) Trường là một vành nguyên.
- 2) K là một trường thì $K \setminus \{0\}$ là một nhóm đối với phép nhân.

Hệ quả. Trong một trường có quy tắc giản ước:

$$(a.b = a.c, a \neq 0) \Rightarrow b = c.$$

3) Trong một trường phương trình

$$a.x = b. a \neq 0$$

cố nghiệm duy nhất

$$x = a^{-1}$$
. $b = \frac{b}{a}$.

BÀI TẬP: 2.5, 2.6, 2.7.

2.5. SỐ PHỰC

2.5.1. Mở đầu

Tập các số thực ${\bf R}$ đã rất phong phú. Tuy nhiên nếu chỉ biết các số thực thì một phương trình đơn giản như

$$x^2 + 1 = 0 \text{ hay } x^2 = -1$$
 (2.5.1)

sẽ không có nghiệm vì không có số thực nào bình phương lên lại bằng -1.

Vì vậy ta phải xây dựng thêm những số mới gọi là số phức. Các số phức phải phong phú hơn các số thực để phương trình (2.5.1) có nghiệm đồng thời có thể xem số thực là trường hợp riêng của số phức.

2.5.2. Định nghĩa số phức

Định nghĩa 2.5.1. Khái niệm số phúc mô tả bằng ba phát biểu sau :

Phát biểu 1. Số phức là một cặp số thực (a, b):

 $a \in \mathbf{R}$ là thành phần thứ nhất của số phức;

 $b \in \mathbf{R}$ là thành phần thứ hai của số phức;

Tập tất cả các số phức kí hiệu là C.

Phát biểu 2 (về phép cộng và phép nhân số phức):

Trong tập C có hai luật hợp thành trong: luật cộng (+) và luật nhân (.) xác định như sau:

$$\forall (a,b) \in \mathbb{C}, \forall (a',b') \in \mathbb{C} \text{ ta có}:$$

$$(a,b) + (a',b') := (a+a',b+b').$$

$$(a,b)(a',b') := (aa' - bb', ab' + ba').$$

Phát biểu 3 (về sự bằng nhau hai số phúc):

$$\forall (a,b) \in \mathbb{C}, \forall (a',b') \in \mathbb{C}$$

ta có

$$(a,b)=(a',b')$$
 khi và chỉ khi $a=a',b=b'$.

Thí du 2.5.1.

- (2, 3) là một số phức
- (4, 5) là một số phức khác

$$(2,3)+(4,5)=(2+4,3+5)=(6,8).$$

$$(2, 3).(4, 5) = (2.4 - 3.5, 2.5 + 3.4) = (-7, 22)$$

2.5.3. Tập C là một trường

Định lí 2.5.1. Với hai luật cộng và nhân vừa định nghĩa, tập C các số phức là một trường.

Định lí này có thể chứng minh bằng cách kiểm tra lại định nghĩa của trường căn cứ vào các định nghĩa hai luật cộng (+) và nhân (.) số phức ở trên; việc này khá đài đòng, ta bỏ qua.

Vì C là một trường nên khi tính toán về các số phức ta có thể áp dụng các tính chất của trường như tính giao hoán, tính kết hợp của luật cộng và luật nhân, tính phân phối của luật nhân đối với luật cộng.

Sau đây là một số nhân xét thêm:

1) Phần từ trung hoà của luật cộng (+) là số phức (0, 0) vì

$$(a, b) + (0, 0) = (a + 0, b + 0) = (a, b)$$

$$(0,0) + (a,b) = (0+a,0+b) = (a,b)$$

Phần tử đối của số phức (a, b) đối với luật cộng là (-a, -b) vì

$$(a, b) + (-a, -b) = (a - a, b - b) = (0, 0)$$

$$(-a, -b) + (a, b) = (-a + a, -b + b) = (0, 0)$$

Ta sẽ kí hiệu
$$(-a, -b)$$
 là $-(a, b)$ nghĩa là $-(a, b) := (-a, -b)$

và gọi nó là số phức đối của số phức (a, b).

3) Phần tử trung hoà của luật nhân (.) là số phức (1, 0) vì

$$(a, b).(1, 0) = (a.1 - b.0, a.0 + b.1) = (a, b)$$

$$(1,0).(a,b) = (1.a-0.b, 1.b+0.a) = (a,b)$$

4) Phần tử đối của số phức $(a, b) \neq (0, 0)$ đối với luật nhân (.) là

$$\left[\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2}\right]$$

vì 1) $(a, b) \neq (0, 0) \Rightarrow a^2 + b^2 \neq 0$

2)
$$(a, b) \cdot \left[\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2} \right] = (1, 0)$$

$$\frac{a}{a^2+b^2}$$
, $\frac{-b}{a^2+b^2}$. $(a,b)=(1,0)$

Ta sẽ gọi phần tử

$$\left[\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2}\right]$$

là nghịch đảo của (a, b) và kí hiệu là $(a, b)^{-1}$

2.5.4. Về kí hiệu z = (a, b)

Từ nay mỗi số phức (a, b) có thể kí hiệu bằng một chữ thời, chữ z chẳng hạn, nghĩa là thay cho cặp (a, b) ta có thể chỉ viết chữ z:

$$z := (a, b)$$

Ngoài ra, luật nhân số phức hay thực cũng có thể viết không cần dấu chấm "." nữa, nghĩa là thay cho z.z' ta có thể viết zz' và thay cho a.a' ta viết aa' là dù.

2.5.5. Mặt phảng phức

Vì mỗi số phức z là một cặp số thực (a, b) nên ta có thể biểu diễn nó bằng một điểm M trong mặt phẳng toạ độ Oxy (hình 12) sao cho M có toạ độ là a và b. Với cách đó ta có một tương ứng 1-1 giữa tập số phức C và tập các điểm của mặt phẳng Oxy. Do đó mặt phẳng Oxy được gọi là mặt phẳng phức.

Điểm M có toạ độ là (a, b) gọi là ảnh của số phúc z = (a, b).

Số phức z gọi là toạ vi của điểm M.

Trong mặt phẳng phức số phức (0, 0) có ảnh là gốc toạ độ O, số phức (1, 0) và (0, 1) có những vị trí đặc biệt (hình 13).

(0.1) (1.0) x

2.5.6. Số thực là trường hợp riêng của số phức - Đơn vị thực

Mỗi số thực a ta biểu diễn bằng một điểm trên trực Ox nhận a làm hoành độ. Bây giờ ta xét các số phức có dạng (a,0), tức là các số phức có thành phần thứ hai bằng không. Ta nhận thấy $(hình\ 14)$:

- a) Ảnh của mỗi số phức (a, 0) là một diễm ở trên Ox.
- b) Ảnh của số phức (a, 0) trùng với điểm biểu diễn số thực a.
- c) Anh cùa tổng hai số phức dạng (a, 0):

$$(a, 0) + (a', 0) = (a + a', 0)$$

trùng với điểm biểu diễn tổng của hai số thực a + a'.

d) Ånh của tích hai số phức dạng (a, 0)

Hình 14

$$(a.0).(a', 0) = (aa', 0)$$

trùng với điểm biểu điển tích của hai số thực aa'.

e) Nghịch đảo của số phúc dạng $(a, 0) \neq (0, 0)$ là $(a^{-1}, 0)$, nghịch đảo của số thực $a \neq 0$ là a^{-1} . Vậy ảnh của nghịch đảo của số phức $(a, 0) \neq (0, 0)$ trùng với điểm biểu điển nghịch đảo của số thực $a \neq 0$.

Vì những lẽ trên ta đồng nhất số phúc (a, 0) với số thực a, nghĩa là xem số phúc (a, 0) là số thực a và viết

$$(a, 0) \equiv a, a \in \mathbb{R}$$

Với nghĩa đó ta nói : số thực là trường hợp riêng của số phức. Sau đó

- 1) Số phức (1, 0) đồng nhất với 1 nên được gọi là đơn vị thực, ta cũng có (1, 0)(1, 0) = (1, 0) như 1.1 = 1.
 - 2) Ta có thể nhân số thực λ với số phúc (a,b) như sau :

$$\lambda(a, b) = (\lambda, 0)(a, b) = (\lambda a, \lambda b)$$

nghĩa là

$$\lambda(a,b) = (\lambda a, \lambda b), \lambda \in \mathbf{R}$$

2.5.7. Số ảo thuần tuý - Đơn vị ảo

Bày giờ xét các số phức có dạng (0, b), ảnh của chúng nằm trên trục Oy của mặt phẳng phức (hình 15). Ta nhận thấy

$$(0, b)(0, b) = (-b^2, 0) \equiv -b^2$$

Vày số phức (0, b) có binh phương luôn là một số âm (nếu $b \neq 0$). Ta gọi chúng là số ảo thuần tuý.

Đặc biệt số i = (0, 1) có bình phương

$$i^2 = (0, 1)(0, 1) = (-1, 0) \equiv -1$$

tức là

$$i^2 = -1$$

nên được gọi là đơn vị ảo.

Trục Oy dùng để biểu diễn các số ảo thuần túy (0, b) nên gọi là trực ảo. Còn trục Ox dùng để biểu diễn các số $(a, 0) \equiv a$ thực nên gọi là trực thực.

2.5.8. Dạng chính tắc của số phức

Xét số phúc
$$z = (a, b)$$
. Ta có
 $z = (a, b) = (a, 0) + (0, b)$
 $= a(1, 0) + b(0, 1) = a + bi$.

Vậy có

$$z = (a, b) = a + bi$$
.

Dạng (a + bi) gọi là dạng chính tắc của số phức a gọi là phần thực, ta viết a = Re(z) b gọi là phần ảo, ta viết b = Im(z).

Với dạng chính tắc, các phép tính được thực hiện bằng cách sử dụng tính chất "C là một trường" và hệ thức $i^2 = -1$ nghĩa là như trong các số thực với chú ý là $i^2 = -1$.

Thí du 2.5.2.

$$(2+3i)(4-5i) =$$

$$= 2.4 - 2.5i + 3i.4 - 3i.5i$$

$$= 8 - 10i + 12i + 15 = 23 + 2i$$

Với
$$i^2 = -1$$
 ta suy ra
 $i^3 = i^2$, $i = -i$, $i^4 = (i^2)$, $(i^2) = (-1)(-1) = 1$.

Một cách tổng quát ta có

$$i^{4p} = 1$$
, $i^{4p+1} = i$, $i^{4p+2} = -1$, $i^{4p+3} = -i$.

2.5.9. Dạng lượng giác của số phức

Trong mặt phầng phức, số phức z = (a, b) = a + bi có ảnh là điểm M (hình 16).

Giả sử $z \neq (0, 0)$. Khi đó điểm $M \ncong gốc$ O. Ta đặt

$$OM = \rho,$$

$$\theta = (\overrightarrow{Ox}, \overrightarrow{OM}),$$

 ρ là một số thực dương, ta gọi nó là módun của z và kí hiệu là |z|. Góc θ được

xác dịnh sai khác $2k\pi$, $k \in \mathbb{Z}$, gọi là agumen của z và kí hiệu là Arg(z).

Chiếu vuông góc vectơ \overline{OM} lên hai trục Ox và Oy ta được

νà

$$a = \rho \cos \theta$$
, $b = \rho \sin \theta$.

Do dó $z = a + bi = \rho \cos \theta + i \rho \sin \theta$.

 $V_{AY} c \delta \quad z = \rho(\cos\theta + i\sin\theta)$

gọi là dạng lượng giác của số phức.

Khi z = (0, 0) thì $M \equiv 0$, ta có $\rho = 0$, agumen bất kì.

Ta suy га:

1) Điều kiện bằng nhau của hai số phức ở dạng lượng giác :

Muốn cho hai số phức sau đây

$$z = \rho(\cos\theta + i\sin\theta) \text{ và } z' = \rho'(\cos\theta' + i\sin\theta')$$

bằng nhau, điểu kiện cần và dủ là

$$\rho' = \rho \text{ và } \theta' = \theta + 2k\pi.$$

2) Tích của hai số phức ở dạng lượng giác :

Giả sử

$$z = \rho(\cos\theta + i\sin\theta), z' = \rho'(\cos\theta' + i\sin\theta')$$

Ta có

$$zz' = \rho \rho' [\cos\theta \cos\theta' - \sin\theta \sin\theta' + i(\cos\theta \sin\theta' + \sin\theta \cos\theta')]$$
$$= \rho \rho' [\cos(\theta + \theta') + i\sin(\theta + \theta')].$$

Vậy

\$ 60°

zz' có môdun là $\rho\rho'$ nghĩa là |zz'| = |z| |z'|

có agumen là $\theta + \theta$ nghĩa là

$$Arg(zz') = Arg(z) + Arg(z')$$

Do đố

$$z^2 = \rho^2 (\cos 2\theta + i \sin 2\theta)$$

Một cách tổng quát ta có

$$z^{m} = \rho^{m}(\cos m\theta + i\sin m\theta), \ m \in \mathbb{N}$$
 (2.5.2)

Ta cũng có

$$\frac{z}{z'} = \frac{|\rho|}{|\rho'|} [\cos(\theta - \theta') + i\sin(\theta - \theta')]$$

Vậy

$$\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}, \quad Arg\left(\frac{z}{z'}\right) = Arg(z) - Arg(z')$$

2.5.10. Môđun của tổng

Trong mặt phẳng phức (hình 17):

số phức
$$z = a + bi$$
 có ảnh là điểm $M(a, b)$

số phức z' = a' + b'i có ảnh là điểm M'(a', b')

số phức z + z' có dạng

$$z + z' = (a + a') + (b + b')i$$

nên có ảnh là điểm M''(a + a', b + b'). Do đó

$$\overrightarrow{OM}'' = \overrightarrow{OM} + \overrightarrow{OM}'$$

Trong tam giác OMM" ta có

$$OM = |z|$$
, $MM'' = |z'|$, $OM''' = |z + z'|$

đồng thời

$$OM'' \leq OM + MM''$$

Do dó

$$|z+z'| \leq |z| + |z'|$$

2.5.11. Số phức liên hợp

Xét số phức z = a + bi. Số phức a - bi gọi là số liên hợp của z = a + bi và kí hiểu là \overline{z} :

$$\overline{z} = a - bi$$

Trong mặt phẳng phức, ảnh của \overline{z} là đối xứng của ảnh của z đối với trục thực Ox (hình 18).

Rō ràng

$$\overline{\overline{z}} = z$$

$$z + \overline{z} = 2a \ (\in \mathbb{R})$$

$$z\overline{z} = a^2 + b^2 \quad (\in \mathbb{R})$$

$$z\overline{z} = |z|^2$$

$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2};$$

$$|\overline{z}| = |z|.$$

Đồng thời

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

$$\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$$

$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$$

Thi du 2.5.3(1+i)(1-i) = 2

$$\frac{1}{2-i} = \frac{2+i}{5}.$$

2.5.12. Công thức Moivre

Xét số phức $z = \cos\theta + i\sin\theta$, tức là |z| = 1.

Áp dụng công thức (2.5.2) ta có

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$
$$n \in \mathbb{N}, n > 0$$

Công thức này gọi là công thức Moivre.

Thí dụ 2.5.4. Lấy n = 3 ta có

$$(\cos\theta + i\sin\theta)^3 = \cos 3\theta + i\sin 3\theta$$

Khai triển về trái theo công thức nhị thức ta được

 $\cos^3\theta + 3i\cos^2\theta\sin\theta + 3\cos\theta i^2\sin^2\theta + i^3\sin^3\theta = \cos3\theta + i\sin3\theta$ hay

$$\cos^3\theta - 3\cos\theta\sin^2\theta + i(3\cos^2\theta\sin\theta - \sin^3\theta) = \cos3\theta + i\sin3\theta$$

Hai số phức bằng nhau khi và chỉ khi phần thực bằng nhau và phần ảo bằng nhau. Ta suy ra

$$\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$$

$$\sin 3\theta = 3\cos^2 \theta \sin \theta - \sin^3 \theta$$

Ta tiếp tục suy ra

$$tg3\theta = \frac{\sin 3\theta}{\cos 3\theta} = \frac{3tg\theta - tg^3\theta}{1 - 3tg^2\theta}$$

Chú ý 2.5.1. Công thức Moivre đúng cả khi n nguyên bằng không và âm, nghĩa là nó đúng với mọi $n \in \mathbb{Z}$. (Đề nghị bạn đọc kiểm tra lại).

2.5.13. Căn bậc n (n nguyên dương)

Hãy tính các căn bậc n của z. Ta xét phương trình $z^n = a$. Giả sử

$$a = r(\cos\alpha + i\sin\alpha)$$
$$z = \rho(\cos\theta + i\sin\theta)$$

 $Viz^n = a nên có$

$$\rho^{\mathsf{D}}(\cos n\theta + i\sin n\theta) = r(\cos\alpha + i\sin\alpha)$$

Do dó

$$\rho^n = r$$
, $n\theta = \alpha + 2k\pi$

Vay

$$\rho = \sqrt[n]{r}, \ \theta = \frac{\alpha}{n} + \frac{2k\pi}{n},$$

$$k = 0, 1, 2, \dots, n - 1.$$

Ta suy ra:

Có n căn bắc n khác nhau của $a \neq 0$ là

$$z_k = \sqrt[n]{r} \left[\cos \left(\frac{\alpha}{n} + \frac{2k\pi}{n} \right) + i \sin \left(\frac{\alpha}{n} + \frac{2k\pi}{n} \right) \right], \quad k = \overline{0, n-1} \quad (2.5.3)$$

Các ảnh của z_k là các định của một đa giác đều n cạnh nội tiếp trong dường tròn tâm O bán kính $\sqrt[M]{r}$.

Thi dụ 2.5.5. Tính căn bậc 2 của a. Đó là (xem 2.5.3):

$$z_0 = \sqrt{r} \left[\cos \frac{\alpha}{2} + i \sin \frac{\alpha}{2} \right].$$

$$z_1 = \sqrt{r} \left[\cos \left(\frac{\alpha}{2} + \pi \right) + i \sin \left(\frac{\alpha}{2} + \pi \right) \right]$$

$$= -\sqrt{r} \left[\cos \frac{\alpha}{2} + i \sin \frac{\alpha}{2} \right] = -z_0.$$

Anh của z_0 và z_1 là hai điểm đối nhau trên đường tròn tâm O bán kính \sqrt{r} , r = |a| (hình 19).

Thí du 2.5.6. Tính các căn bậc ba của 1.

Vì 1 = cos0 + isin0 nên các căn bác ba khác nhau của 1 là

$$z_k = \cos\left(\frac{0}{3} + \frac{2k\pi}{3}\right) + i\sin\left(\frac{0}{3} + \frac{2k\pi}{3}\right)$$

$$k = 0, 1, 2.$$

Vậy có ba căn bậc ba khác nhau của 1 là

$$z_0 = 1$$

$$z_1 = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$

$$z_2 = \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}.$$

Ta chú ý rằng ta có

$$z_2 = z_1^2$$
, $z_1 = z_2^2$.

$$z_0 + z_1 + z_2 = 0,$$

$$1+z_1+z_1^2=0,$$

$$1 + z_2 + z_2^2 = 0.$$

Anh của z_0 , z_1 , z_2 là các đình của một tam giác đều trên đường tròn tâm O bán kính 1 (hình 20).

2.5.14. Giải phương trình bậc hai

Xét phương trình

$$ax^2 + bx + c = 0,$$

$$a, b, c \in \mathbb{R}$$

Ta đã biết rằng nếu $\Delta = b^2 - 4ac \ge 0$ thì phương trình có 2 nghiệm thực khác nhau hay 1 nghiệm kép. Bây giờ ta xét trường hợp $\Delta < 0$.

Phương trình đã cho viết được ở dạng

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2} = 0$$

hay

$$\left[x + \frac{b}{2a}\right]^2 = \frac{\Delta}{4a^2} = \frac{i^2 \cdot (-\Delta)}{4a^2}, -\Delta > 0.$$

Ta suy ra

$$x + \frac{b}{2a} = \pm i \frac{\sqrt{-\Delta}}{2a}.$$

Vậy khi $\Delta < 0$ phương trình bậc hai có hai nghiệm phức liên hợp

$$x_1 = \frac{-b + i\sqrt{-\Delta}}{2a}$$
, $x_2 = \frac{-b - i\sqrt{-\Delta}}{2a}$

Thi du 2.5.7. Phương trình

$$x^2 + x + 1 = 0$$

có hai nghiệm

$$x_1 = \frac{-1 + i\sqrt{3}}{2}, \ x_2 = \frac{-1 - i\sqrt{3}}{2}.$$

Đặc biệt, phương trình $x^2 + 1 = 0$ có hai nghiệm là i và -i.

BÀI TÂP: 2.8 - 2.33.

2.6. ĐA THỨC

2.6.1. Định nghĩa đa thức

Dinh nghĩa 2.6.1. Cho số nguyên $n \ge 1$.

Đa thức là hàm số có dạng

$$p(x) := a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

trong đó a_i là các hệ số nói chung $\in \mathbb{C}$.

Nếu biết $a_n = 0$ ta nói p(x) có bậc n.

Nói chung, ta nói da thức có bậc $\leq n$.

Nếu $a_1 = a_2 = ... = a_n = 0$, $a_o \neq 0$, thì ta sẽ nói rằng đa thức p(x) có bậc là 0 ($p(x) = a_0$ ($a_0 \neq 0$)). Nếu $a_0 = 0$ nữa, ta quy ước nói đa thức có bậc $-\infty$.

Thí dụ 2.6.1. $x^3 - 2x^2 + 3x + 1$ là một đa thức bậc 3.

$$x^5 - x^3 - 4x$$
 là một đa thức bắc 5.

Đa thức là một dạng hàm đơn giản vì :

1) Việc tính giá trị của đa thức tại $x = \alpha$ cụ thể chỉ cần thực hiện bằng các phép tính nhân và cộng :

$$p(\alpha) = a_0 + a_1 \alpha + a_2 \alpha^2 + ... + a_n \alpha^n$$

2) Đa thức luôn có đạo hàm :

$$p'(x) = a_1 + 2a_2x + ... + na_nx^{n-1},$$

3) Đa thức luôn có nguyên hàm:

$$P(x) = c + a_0 x + a_1 \frac{x^2}{2} + ... + a_n \frac{x^{n+1}}{n+1}.$$

2.6.2. Chìa da thức theo lũy thừa giảm

Thí dụ 2.6.2. Ta muốn chia đa thức

$$p(x) := -6 + x - 7x^3 + x^5$$

cho da thức

$$q(x) := -1 - x + x^2 + x^3$$
.

Ta sắp xếp lại các đa thức theo luỹ thừa giảm

$$p(x) = x^{5} + 0x^{4} - 7x^{3} + 0x^{2} + x - 6$$
$$q(x) = x^{3} + x^{2} - x - 1$$

rồi tiến hành chia

Đến đây ta nhận thấy da thức chia q(x) có bậc 3 mà da thức dư $5x^2 - 5x - 11$ có bậc 2, 2 < 3, nên không tiếp tục chia nữa, ta dùng lai và viết kết quả

$$x^5 - 7x^3 + x - 6 = (x^3 + x^2 - x - 1)(x^2 - x - 5) + 5x^2 - 5x - 11$$
 (giống như khi chia 13 cho 4 ta được $13 = 4.3 + 1$).

Nối chung khi chia một da thức p bậc n cho một đa thức q bậc m $(m \le n)$ theo luỹ thừa giảm, ta được một đa thức b có bậc bằng n-m và có phần du là một đa thức r có bắc < m:

$$p = qb + r$$
, bậc của $r <$ bậc của q

Khi r = 0 thì ta nói p chia hết cho q.

2.6.3. Nghiệm của đa thức - Phân tích đa thức thành tích

Định nghĩa 2.6.2. Số α gọi là nghiệm của đa thức p(x) nếu

$$p(\alpha)=0$$

Định lí 2.6.1. Giả sử p(x) có bậc $n \ge 1$. Điều kiện cấn và đủ để nó có nghiệm α là nó chia hết cho $x - \alpha$:

$$p(x) = (x - \alpha)p_1(x)$$
 (2.6.1)

trong đó $p_1(x)$ là đa thức có bậc n-1.

Chứng minh : Điều kiện dù. Nếu p(x) có dạng (2.6.1) thì rõ ràng $p(\alpha) = 0$, do dó nó có nghiệm α .

Điều kiện cần. Nếu p(x) có nghiệm α , ta chia p(x) cho $x - \alpha$ thì được

$$p(x) = (x - \alpha)p_1(x) + k$$

trong đó $p_1(x)$ là đa thức có bậc n-1, còn k là đa thức bậc < 1, tức là k =hằng.

Thay $x = \alpha$ vào hai vế ta được $k = p(\alpha) = 0$.

Vây p(x) chia hết cho $x - \alpha$.

Nếu $p(x) = (x - \alpha)p_1(x)$, $p_1(\alpha) \neq 0$, thì α được gọi là một nghiệm đơn của p(x).

Neu $p(x) = (x - \alpha)^m p_1(x), p_1(\alpha) \neq 0$, m nguyên dương lớn hơn 1, thì α gọi là một nghiệm bội m của p(x).

Dịnh lí 2.6.2. (D'Alembert). Mọi đã thức p(x) mà bậc $n \ge 1$ đều có ít nhất một nghiệm (thực hay phức).

Đây là một định lí cơ bản của Đại số học. Ta thừa nhận nó mà không chứng minh.

Hệ quả quan trọng của nó là

Định lí 2.6.3. Mọi đa thức bậc $n \ge 1$ có n nghiệm thực hoặc phức, đơn hoặc bội, mỗi nghiệm bội m tính m lần, đồng thời đa thức có phân tích thành tích các thừa số bậc nhất

$$p(x) = a_n(x - \alpha_1)(x - \alpha_2)...(x - \alpha_n), \ \alpha_1, \ \alpha_2, ... \ \alpha_n \in \mathbb{C}$$
 (2.6.2)

Chứng minh: Theo định lí 2.6.2 (D'Alembert) thì p(x) có ít nhất một nghiệm α_1 thực hoặc phức. Do đó nó có dạng (2.6.1):

$$p(x) = (x - \alpha_1)p_1(x)$$

trong đó $p_1(x)$ có bậc là n-1.

Nếu bậc của $p_1(x) \ge 1$ thì cũng lập luận như trên ta lại có

$$p_1(x) = (x - \alpha_2)p_2(x)$$

trong đó $p_2(x)$ có bậc là (n-1)-1=n-2, v.v.

Cuối cùng ta được $p(x) = (x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n)k$ trong đó k là đa thức bậc < 1, nghĩa là k = hằng.

So sánh hệ số của x^n ở hai về ta được $k = a_n$.

Một hệ quả của định lí 2.6.3 là

Định lí 2.6.4. Mọi đã thức bậc khóng lớn hơn $n (n \ge 1)$ không thể có quá n nghiệm (thực hoặc phức).

2.6.4. Trường hợp đa thức có hè số thực

Xét da thức

$$P(x) = a_0 + a_1 x + ... + a_n x^n, \ a_i \in \mathbb{R}, \ a_n \neq 0$$

Thay x bằng z và \overline{z} ta có

$$P(x) = a_o + a_1 z + ... + a_n z^n$$

$$P(\overline{z}) = a_o + a_1 \overline{z} + ... + a_n (\overline{z})^n.$$

$$\overline{z + z'} = \overline{z} + \overline{z}'$$

$$\overline{zz'} = \overline{z}.\overline{z}'$$

nên $P(\overline{z}) = \overline{P(z)}$.

Nếu $P(\alpha) = 0$ thì $\overline{P(\alpha)} = \overline{0} = 0$. Do đó $P(\overline{\alpha}) = 0$, nghĩa là nếu α là nghiệm của P(x) thì $\overline{\alpha}$ cũng là nghiệm của P(x).

Giả sử P(x) có các nghiệm thực là $c_1, c_2, ..., c_r$ và các nghiệm phức không thực là $\alpha_1, \overline{\alpha}_1, \alpha_2, \overline{\alpha}_2 ... \alpha_s, \overline{\alpha}_s$.

Khi đó P(x) có dạng

$$P(x) = a_n(x - c_1) \dots (x - c_r)(x - \alpha_1)(x - \overline{\alpha}_1) \dots (x - \alpha_s)(x - \overline{\alpha}_s).$$

Xét số hạng $(x - \alpha_1)(x - \overline{\alpha}_1)$ ta có

$$(x - \alpha_1)(x - \overline{\alpha}_1) = x^2 - (\alpha_1 + \overline{\alpha}_1)x + |\alpha_1|^2.$$

Đó là một tam thức bậc hai có hệ số thực (vì $\alpha_1 + \overline{\alpha}_1 = 2 \operatorname{Re}(\alpha_1) \in \mathbf{R} \ và \ |\alpha_1|^2 \in \mathbf{R})$ nhưng không có nghiệm thực (vì nó đã có hai nghiệm phức là α_1 và $\overline{\alpha}_1$). Vậy nó có dạng

$$x^2 + p_1 x + q_1 \text{ v\'en } p_1^2 - 4q_1 < 0.$$

Tóm lai ta có

Định k 2.6.5. Đa thức P(x) bậc n $(n \ge 1)$ với hệ số thực có phân tích thành tích các thừa số bậc nhất thực và bậc hai thực :

$$P(x) = a_n(x - c_1) \dots (x - c_r)(x^2 + p_1x + q_1) \dots (x^2 + p_sx + q_s)$$
 (2.6.3)

trong đó $c_1, ..., c_r$ là các nghiệm thực của P(x) còn các thừa số bậc hai không có nghiệm thực :

$$p_k^2 - 4q_k < 0$$
, $k = 1, 2, ..., s$

Đồng thời, vì theo định lí 2.6.3, số nghiệm là n, nên

$$r + 2s = n$$

Chú ý 2.6.1. Dạng (2.6.2) gọi là dạng nhân từ hoá của đa thức P(x) nói chung.

Dạng (2.6.3) gọi là dạng nhân tử hoá của đa thức P(x) với hệ số thực.

Thí dụ 2.6.3. Hãy nhân tử hoá da thức

$$P(x) = x^4 - 3x^3 + 3x^2 - 3x + 2$$

Lời giải : Ta có

$$P(x) = x^{4} + 3x^{2} + 2 - 3x(x^{2} + 1) =$$

$$= (x^{2} + 1)(x^{2} + 2) - 3x(x^{2} + 1)$$

$$P(x) = (x^{2} + 1)(x^{2} + 2 - 3x)$$

$$= (x - 1)(x - 2)(x^{2} + 1)$$

2.6.5. Đa thức đồng nhất không

Dịnh nghĩa 2.6.3. Đa thức p(x) có bậc $\leq n$

$$p(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

gọi là đa thức đồng nhất không nếu p(x) = 0, $\forall x$.

Để biểu thị điều đó ta viết $p(x) \equiv 0$.

Dinh lí 2.6.6, $p(x) \equiv 0 \Leftrightarrow a_i = 0, \forall i$.

Chúng minh: Phần \Leftarrow : Giả sử $a_i = 0$, $\forall i$. Khi đó p(x) viết

$$p(x) = 0 + 0x + 0x^2 + ... + 0x^n$$

 $Vay p(x) = 0, \quad \forall x.$

Bảy giờ chứng minh phần \Rightarrow : Giả sử $p(x) \equiv 0$. Giả sử bậc của p(x) là m, $m \leq n$. Nếu $m \geq 1$ thì theo định lí 2.6.4, p(x) có không quá m nghiệm. Nhưng ở đây nó lại có vô số nghiệm. Vậy bậc m của p(x) phải nhỏ hơn 1, nghĩa là p(x) có đạng $p(x) = a_0$, các a_i khác đều = 0. Hệ số a_0 cũng phải = 0 vì p(x) = 0, $\forall x$. Do đó

$$a_i = 0, \forall i$$

Đa thức đồng nhất 0 là đa thức không.

2.6.6. Các đa thức đồng nhất

Định nghĩa 2.6.4. Hai đa thức có bậc không lớn hơn n

$$p(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

$$q(x) = b_0 + b_1 x + b_2 x^2 + ... + b_n x^n$$

gọi là đồng nhất nếu $p(x) = q(x), \ \forall x.$

Để biểu thị diễu đó ta viết $p(x) \equiv q(x)$.

Dinh lí 2.6.7.
$$p(x) \equiv q(x) \Leftrightarrow a_i = b_i$$
, $\forall i$

Chứng minh: Trước hết ta có

$$p(x) - q(x) = a_0 - b_0 + (a_1 - b_1)x + ... + (a_n - b_n)x^n$$

Báy giờ ta có

$$p(x) \equiv q(x) \Leftrightarrow p(x) - q(x) \cong 0$$

$$\Leftrightarrow a_i - b_i = 0, \forall i \text{ (theo dinh If 2.6.6)}$$

$$\Leftrightarrow a_i = b_i, \forall i$$

BÀI TẬP: 2.34, 2.35, 2.36, 2.37.

90,

2.7. PHÂN THỰC HỮU TỈ

2.7.1. Định nghĩa phân thức hữu tỉ

Định nghĩa 2.7.1. Phân thức hữu tỉ là tỉ số của hai đa thức $\frac{P(x)}{O(x)}$, Q(x) khác đa thức θ .

Chú ý 2.7.1. Ta chỉ xét trường hợp các hệ số là thực.

2.7.2. Phần thức thực sư và phản thức không thực sư

Định nghĩa 2.7.2. Nếu bặc của tử nhỏ hơn bậc của mẫu thì phân thức gọi là phân thức thực sự.

Nếu bậc của từ không nhỏ hơn bậc của mẫu thì phân thức gọi là phân thức không thực sự. Trong trường hợp phân thức là không thực sự bao giờ ta cũng có thể chia từ cho mẫu theo luỹ thừa giảm để được

$$\frac{P(x)}{O(x)} = E(x) + \frac{S(x)}{O(x)}$$

trong đó E(x) là một đa thức có bậc bằng bậc của P trừ bậc của Q (gọi là phần nguyên của phân thức), còn $\frac{S(x)}{Q(x)}$ là một phân thức mà bậc của từ S nhỏ hơn bậc của mẫu Q, nghĩa là S/Q là một phân thức thực sư.

Thí du 2.7.1. (xem thí du 2.6.2 ở mục 2.6.2).

$$\frac{x^5 - 7x^3 + x - 6}{x^3 + x^2 - x - 1} = x^2 - x - 5 + \frac{5x^2 - 5x - 11}{x^3 + x^2 - x - 1}.$$

2.7.3. Các phản thức (thực sự) đơn giản

Các phân thức có đạng

$$\frac{A}{(x-a)^m}$$
, $m=1, 2, ..., a \in \mathbb{R}$

gọi là các phân thức đơn giản loại một.

Các phân thức có dạng

$$\frac{Mx+N}{(x^2+px+q)^m}, \ p^2-4q<0, \ m=1, 2,...$$

gọi là các phân thức đơn giản loại hai.

Chú ý rằng $(x - a)^m$ có nghiệm thực đơn hoặc bội m là a còn $(x^2 + px + q)^m$ không có nghiệm thực vì $p^2 - 4q < 0$.

Ngoài ra các phân thức đơn giản đều là các phân thức thực sự.

2.7.4. Phân tích một phán thức thực sự thành tổng của các phân thức đơn giản

Giả sử phân thức thực sự có dạng

$$\frac{P(x)}{Q(x)} = \frac{P(x)}{(x-a)^r (x^2 + px + q)^s}$$

Khi đó ta có công thức phân tích

$$\frac{P}{Q} = \frac{A_1}{(x-a)} + \frac{A_2}{(x-a)^2} + \dots + \frac{A_r}{(x-a)^r} + \frac{M_1x + N_1}{x^2 + px + q} + \frac{M_2x + N_2}{(x^2 + px + q)^2} + \dots + \frac{M_sx + N_s}{(x^2 + px + q)^s}$$

trong đó $A_1, A_2, ..., A_r, M_1, N_1, ..., M_s, N_s$ là các hằng số thực, có thể xác định được bằng cách quy đồng mẫu số rỗi đồng nhất hai về.

Nếu phân thức thực sự có đạng tổng quát

$$\frac{P}{Q} = \frac{P(x)}{(x - a_1)^{\alpha_1} \dots (x - a_r)^{\alpha_r} (x^2 + p_1 x + q_1)^{\beta_1} \dots (x^2 + p_r x + q_r)^{\beta_s}}$$

thì ta có công thức phân tích tổng quát trong đó mỗi thừa số loại một $(x-a_1)^{\alpha_1},...$, ứng với một tổng các phân thức đơn giản loại một và mỗi thừa số loại hai $(x^2+p_1x+q_1)^{\beta_1},...$, ứng với một tổng các phân thức đơn giản loại hai như trong công thức phân tích ở trên.

Thí dụ 2.7.2. Hãy phân tích

$$\frac{P}{Q} = \frac{x^4 + 2}{x(x^2 - 1)^2}$$

thành tổng các phán thức đơn giản.

Lời giải. Trước hết ta nhận xét bặc của P=4 nhỏ hơn bậc của Q=5.

Vậy P/Q đã là phân thức thực sư.

Về O ta có

$$Q = x(x^2 - 1)^2 = x(x - 1)^2(x + 1)^2$$

Do đó P/Q có đang phân tích thành tổng

$$\frac{P}{Q} = \frac{x^4 + 2}{x(x-1)^2(x+1)^2} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^2} + \frac{D}{x+1} + \frac{E}{(x+1)^2}$$
(2.7.1)

Để tính A, B, C, D, E có hai cách (nói chung).

Cách thứ nhất là cách cổ diễn: ta quy đồng mẫu số, bỏ mẫu số chung rồi đồng nhất hai vế tức là cân bằng hệ số của cùng lũy thừa của x ở hai vế. Ta sẽ được một hệ phương trình tuyến tính đối với A, B, C, D, E; giải hệ đó ta được A, B, C, D, E.

Quy đồng mẫu số và bỏ mẫu số chung ta được

$$x^{4} + 2 = A(x-1)^{2}(x+1)^{2} + Bx(x-1)(x+1)^{2} + Cx(x+1)^{2} + Dx(x+1)(x-1)^{2} + Ex(x-1)^{2}$$

Thực hiện phép nhân ở vế phải và rút gọn bằng cách đặt các luỹ thừa của x thành thừa số chung ta được

$$x^{4} + 2 = A(x^{4} - 2x^{2} + 1) + B(x^{4} + x^{3} - x^{2} - x) + C(x^{3} + 2x^{2} + x) + D(x^{4} - x^{3} - x^{2} + x) + E(x^{3} - 2x^{2} + x)$$

$$x^{4} + 2 = x^{4}(A + B + D) + x^{3}(C + B + E - D) +$$

$$+ x^{2}(-2A + 2C - B - 2E - D) +$$

$$+ x(C - B + E + D) + A$$

Hai đa thức ở hai về bằng nhau với mọi x. Do đó ta cán bằng các hệ số của cùng luỹ thừa của x ở hai về (lũy thừa 4, 3, 2, 1, 0) ta được các phương trình đối với các ản A, B, C, D, E:

$$A + B + D = 1$$

$$C + B + E - D = 0$$

$$-2A + 2C - B - 2E - D = 0$$

$$C - B + E + D = 0$$

$$A = 2$$

Giải hệ này ta được:

Phương trình cuối cho A=2

Hai phương trình thứ hai và thứ bốn cho

$$B = D \text{ và } C = -E$$

Từ đó phương trình thứ nhất cho

$$B=D=-\frac{1}{2}$$

Sau đó phương trình thứ ba cho $C = \frac{3}{4}$.

Tiếp theo là $E = -\frac{3}{4}$.

Tóm lại ta thu được phân tích :

$$\frac{x^4 + 2}{x(x^2 - 1)^2} = \frac{2}{x} - \frac{1}{2(x - 1)} + \frac{3}{4(x - 1)^2} - \frac{1}{2(x + 1)} - \frac{3}{4(x + 1)^2}$$

Cách thứ hai : sử dụng một số nhận xét (mẹo).

Để tính A ta nhân hai về của (2.7.1) với x rồi cho $x \to 0$ ta được A = 2.

00.00

Bày giờ ta nhận xét tầng P/Q là hàm lẻ, ta suy ra

$$\frac{A}{-x} - \frac{B}{(x+1)} + \frac{C}{(x+1)^2} - \frac{D}{x-1} + \frac{E}{(x-1)^2} =$$

$$= -\frac{A}{x} - \frac{B}{(x-1)} - \frac{C}{(x-1)^2} - \frac{D}{(x+1)} - \frac{E}{(x+1)^2}$$

Do đó

$$D = B$$
, $E = -C$

Để tính C ta nhân hai vế của (2.7.1) với $(x-1)^2$ rồi cho $x \to 1$ ta được

$$3 = 4C \text{ tức là } C = \frac{3}{4}$$

Để tính B ta nhân hai vế của (2.7.1) với x rồi cho $x \to +\infty$ ta được

$$1 = 2 + 2B$$
, tức là $B = -1/2$

Tóm lại, các kết quả thu được vẫn như trước.

Thí dụ 2.7.3 Hãy phân tích

$$\frac{P}{Q} = \frac{x^6 + 2}{(x^2 + 1)^2(x - 1)}$$

thành tổng các phân thức tối giản.

Lời giải: Trước hết, vì bậc của tử là 6, bậc của mẫu là 5 nên P/Q là phân thức không thực sự. Ta chia tử cho mẫu theo lũy thừa giảm:

$$\frac{x^6 + 2}{(x - 1)(x^2 + 1)^2} = x + 1 - \frac{x^4 - x^2 - 3}{(x - 1)(x^2 + 1)^2}$$

Phân thức ở về phải là thực sự. Ta phân tích nó :

$$\frac{x^4 - x^2 - 3}{(x - 1)(x^2 + 1)^2} = \frac{A}{(x - 1)} + \frac{Mx + N}{x^2 + 1} + \frac{Bx + C}{(x^2 + 1)^2}$$

Để tính A ta nhân hai vế với x - 1 rồi cho $x \to 1$ ta được A = -3/4.

Sau đó ta có

$$S := \frac{Mx + N}{(x^2 + 1)} + \frac{Bx + C}{(x^2 + 1)^2} = \frac{x^4 - x^2 - 3}{(x - 1)(x^2 + 1)^2} - \frac{A}{x - 1}$$
$$= \frac{7x^3 + 7x^2 + 9x + 9}{4(x^2 + 1)^2}$$

vì A = -3/4.

Chia tử số cho $(x^2 + 1)$ theo luỹ thừa giảm của x ta được

$$7x^3 + 7x^2 + 9x + 9 = (x^2 + 1) 7(x + 1) + 2(x + 1)$$

Chia hai vế của đẳng thức này cho $4(x^2 + 1)^2$ ta được

$$S = \frac{7}{4} \frac{x+1}{(x^2+1)} + \frac{2}{4} \frac{x+1}{(x^2+1)^2}$$

Tóm lai

$$\frac{x^6+2}{(x-1)(x^2+1)^2} = x+1 + \frac{3}{4(x-1)} - \frac{7x+7}{4(x^2+1)} - \frac{x+1}{2(x^2+1)^2}$$

Đề nghị bạn đọc giải bài tập ở thí dụ 2.7.3 bằng phương pháp cổ diễn, nghĩa là quy đồng mẫu số, bỏ mẫu số chung, cân bằng hai vế rồi giải hệ phương trình đại số tuyến tính đối với A, B, C, D, E.

BÀI TÂP: 2.38.

TÓM TẮT CHƯƠNG II

Luật hợp thành trong, hay còn gọi là phép toán, trên tập E là một ánh xạ từ $E \times E$ tới E. Kí hiệu nó là (*) ta có

$$(a,b) \in E \times E \mapsto a * b \in E$$
.

Tập G có một phép toán (*) gọi là một nhóm nếu thoà mãn các tính chất sau

- 0,0
- (G1) Phép toán (*) có tính kết hợp
- (G2) Tôn tại phân tử trung hoà đối với phép (*)
- (G3) Tồn tại phần tử đới của mọi phần tử thuộc G

Nếu thêm tính chất

(G4) Phép toán (*) có tính giao hoán thì nhóm G gọi là nhóm giao hoán hay nhóm Abel.

Phần tử trung hoà và phần tử đối là duy nhất.

Nếu
$$x * y = x * z$$
 thì $y = z$.

Tập A với hai phép toán gọi là một vành nếu A với phép toán thứ nhất tạo thành một nhóm giao hoán, đồng thời phép toán thứ hai có tính kết hợp và tính phân phối đối với phép toán thứ nhất.

Nếu phép toán thứ hai có tính giao hoán nữa thì vành A gọi là vành giao hoán

Nếu phép toán thứ hai có phần tử trung hoà nữa thì vành A gọi là vành có đơn vi

Tập K với hai phép toán gọi là một trường nếu nó là một vành giao hoán có đơn vì, đồng thời mọi phần tử khác phần tử trung hoà của phép toán thứ nhất đều có phần tử đối đối với phép toán thứ hai.

Số phức

Mỗi số phức z xác định bởi một cặp số thực a và b:

$$z=(a,b)$$

Trong mặt phẳng phúc số phức z biểu diễn bằng một điểm M có toạ độ là (a,b). Dạng chính tắc của số phức :

$$z = a + bi$$

a goi là phần thực của z : a = Re(z)

b gọi là phần ảo của z : b = Im(z)

i = (0, 1) là một số ảo thuần tuý có đặc diểm

 $i^2 = -1$ tức là *i* là một căn bậc hai của -1.

Người ta gọi í là đơn vị ảo.

Số phức liên hợp của z là $\overline{z} = a - bi$

Dạng lượng giác của số phức

$$z = \rho(\cos\theta + i\sin\theta)$$

$$\rho = OM = \sqrt{a^2 + b^2}$$
 gọi là môdun của z, viết $|z|$

$$\theta = g\delta c \ (\overrightarrow{Ox}, \overrightarrow{OM})$$
goi là agumen của z, viết Arg(z)

Tích của hai số phức

$$z_1 = \rho_1(\cos\theta_1 + i\sin\theta_1), z_2 = \rho_2(\cos\theta_2 + i\sin\theta_2)$$

$$\mathbf{l\hat{a}} \qquad z_1.z_2 = \rho_1 \rho_2 (\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))$$

Công thức Moivre

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

 $C\check{a}n\ b\hat{a}c\ n\ c\grave{u}a\ a=r(\cos\alpha+i\sin\alpha)$ là

$$z_k = \sqrt[n]{r} \left(\cos \frac{\alpha + 2k\pi}{n} + i \sin \frac{\alpha + 2k\pi}{n} \right)$$

$$k = 0, 1, 2, ..., n - 1$$

Da thức

Đa thức có dạng

$$p(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

 α là nghiệm của p(x) nếu $p(\alpha) = 0$.

Định lí D'Alembert. Mọi đa thức có bậc $n \ge 1$ sẽ có ít nhất một nghiệm $\alpha \in \mathbb{C}$.

 $H\dot{e}$ quả. Mọi đa thức có bậc $n \ge 1$ sẽ có đủ n nghiệm

$$\alpha_1, \alpha_2, ..., \alpha_n$$
 trong đó nghiệm bội m tính m lần.

Đồng thời đa thức có bậc $n \ge 1$ thì có thể phân tích thành n thừa số bác nhất

$$p(x) = a_n(x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n)$$

Mỗi da thức bậc $n \ge 1$, có hệ số thực, có thể phân tích thành tích các thừa số bậc nhất thực và các thừa số bậc hai thực không có nghiệm thực, tức là

$$x^2 + px + q$$
, p, q thue, $p^2 - 4q < 0$.

Do thức không là đa thức bằng 0 tại mọi x. Nó có dạng $0 + 0x + ... + 0x^n$

Ta còn viết $p(x) \equiv 0$. Ta có

$$p(x) \equiv 0 \Leftrightarrow a_i = 0, \forall i$$

Hai đa thức đồng nhất. Hai da thức

$$p(x) = a_0 + a_1 x + ... + a_n x^n$$
 và
 $q(x) = b_0 + b_1 x + b_2 x^2 + ... + b_n x^n$

gọi là hai đa thức đồng nhất nếu p(x) = q(x), $\forall x$.

Ta còn viết $p(x) \equiv q(x)$. Ta có

$$p(x) \equiv q(x) \Leftrightarrow a_i = b_i, \forall i.$$

Phân thức hữu tỉ

Phân thức hữu tị là tỉ số của hai đa thức.

Phân thức gọi là thực sư nếu bác của từ nhỏ hơn bác của mẫu

Nếu P(x)/Q(x) là một phân thức không thực sự thì bằng cách chia tử cho mẫu theo lũy thừa giảm của x ta có

$$\frac{P(x)}{Q(x)} = E(x) + \frac{R(x)}{Q(x)}$$

trong đó E(x) là một đã thức còn R(x) / Q(x) là một phân thức thực sự.

Một phần thức thực sự có thể phân tích thành tổng của các phân thức đơn giản loại một

$$\frac{A}{(x-a)^m}$$
, $A, a \in \mathbb{R}, m \in \mathbb{Z}, m \ge 1$

và các phân thức đơn giản loại hai

$$\frac{Bx + C}{(x^2 + px + q)^m}, B, C, p, q \in \mathbb{R}, p^2 - 4q^2 < 0, m \in \mathbb{Z}, m \ge 1.$$

BÀI TẬP CHƯƠNG II

- **2.1.** Cho $E = \{1, 2, 3\}, P_1, P_2, P_3, P_4, P_5, P_6 \ \text{là các hoán vị của } E.$
- 1) Chứng minh rằng với luật hợp thành là tích các hoán vị thì tập hợp các hoán vị nói trên tạo thành một nhóm, kí hiệu là S_3
 - 2) Hỏi nhóm đó có giao hoán không?
 - 2.2. Gọi $\mathbb{R}^* := \mathbb{R} \{0\}$. Xét các ánh xạ $f_i : \mathbb{R}^* \to \mathbb{R}^*$ như sau

$$f_1(x) = x,$$
 $f_2(x) = 1/x$
 $f_3(x) = -x,$ $f_4(x) = -1/x$

Với luật hợp thành * xác định bởi

$$f_i * f_j = f_i \cdot f_j$$

hãy chứng minh rằng các ánh xạ trên tạo thành một nhóm. Nhóm đó có giao hoán không?

2.3. Cũng câu hỏi như ở bài tặp 2.2 với $\mathbf{R}^{**}=\mathbf{R}-\{0,1\}$ và $f_i:\mathbf{R}^{**}\to\mathbf{R}^{**}$ như sau :

$$f_1(x) = x$$
, $f_2(x) = \frac{1}{1-x}$, $f_3(x) = \frac{x-1}{x}$, $f_4(x) = \frac{1}{x}$, $f_5(x) = 1-x$, $f_6(x) = \frac{x}{x-1}$.

- 2.4. Hỏi mỗi tập số sau dây với phép cộng số và phép nhân số có phải là một vành không?
 - 1) Tập các số nguyên;
 - 2) Tập các số nguyên chẵn;
 - 3) Các số hữu ti;
 - 4) Các số thực;
 - 5) Các số phức;
 - 6) Các số có dạng $a + b\sqrt{2}$, a và b nguyên;
 - 7) Các số có dạng $a + b\sqrt{3}$, a và b hữu tỉ;

- 8) Các số phức có dạng a + bi, a và b nguyên;
- 9) Các số phức có dạng a + bi, a và b hữu tỉ.
- 2.5. Hỏi mỗi tập số ở bài tập 2.4 trên có phải là một trường không?
- 2.6. Chứng minh rằng phương trình $x^2 + x 1 = 0$ không có nghiệm hữu tỉ.
 - 2.7. Cho a, b, c, d là các số hữu tỉ, λ là một số vô tỉ, chứng minh rằng :

$$(a + \lambda b = c + \lambda d) \Leftrightarrow (a = c \text{ và } b = d)$$

 $Ung \ dung : Viết số <math>\sqrt{192 + 96\sqrt{3}}$ ở dạng $x + y\sqrt{3} \ với x, y hữu tỉ.$

2.8. Chứng minh rằng

$$z = (1 + 2i)(2 - 3i)(2 + i)(3 - 2i)$$

là một số thực.

2.9. Tìm x và y thực thỏa mãn

$$(1+2i)x + (3-5i)y = 1-3i$$

2.10. Cho $a, b \in \mathbb{R}$, hãy xác định $x, y \in \mathbb{R}$ sao cho

$$(x + ai)(b + yi) = 4 + 3i$$

Biên luân theo a và b.

2.11. Hãy thực hiện các phép tính sau

a)
$$\frac{1+itg\alpha}{1-itg\alpha}$$
;

b)
$$\frac{a+bi}{a-bi}$$
;

c)
$$\frac{(1+2i)^2 - (1-i)^3}{(3+2i)^3 - (2+i)^2}$$

d)
$$\frac{(1-i)^5-1}{(1+i)^5+1}$$
;

e)
$$\frac{(1+i)^9}{(1+i)^7}$$

2.12. Hãy tính

a)
$$\left[-\frac{1}{2} + i \frac{\sqrt{3}}{2} \right]^2$$
;

b)
$$\left[-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right]^3$$
;

2.13. Hãy tính các căn bác hai của các số phức:

a) 3 - 4i:

b) -15 + 8i:

c) -3 - 4i:

d) -8 + 6i.

2.14. Giải phương trình

a)
$$x^4 + 6x^3 + 9x^2 + 100 = 0$$

b) $x^4 + 2x^2 - 24x + 72 = 0$

2.15. Viết các số phúc sau ở dạng lượng giác

- a) 1:
- b) -1 :
- d) -i:

e)
$$1 + i$$
; f) $-1 + i$; g) $-1 - i$; h) $1 - i$;

i)
$$1 + i\sqrt{3}$$
; j) $-1 + i\sqrt{3}$; k) $-1 - i\sqrt{3}$;

1)
$$1 - i\sqrt{3}$$
; m) $2i$; n) -3 ;

$$n) -3$$

o)
$$\sqrt{3}-i$$
;

o)
$$\sqrt{3} - i$$
; p) $2 + \sqrt{3} + i$

2.16. Tìm dạng lượng giác của

$$z = \frac{1 + i\sqrt{3}}{\sqrt{3} + i}$$

Tính z^{100} .

2.17. Cho $a = \cos\theta + i\sin\theta$. Tính $\frac{1-a}{1+a}$ theo θ .

2.18. Xét hai số phức z_1 và z_2 . Tìm điều kiện về z_1 và z_2 để

a) z_1/z_2 là thực;

b) z_1/z_2 là ảo thuần túy.

2.19. Hãy tìm biểu diễn hình học của các số phức z thòa mãn

a) |z| < 2;

b) |z-1| < 1:

c) |z-1-i| < 1.

2.20. Giải phương trình

a)
$$|z| - z = 1 + 2i$$
:

b)
$$|z| + z = 2 + i$$
.

2.21. Chứng minh hằng đẳng thức

$$|x + y|^2 + |x - y|^2 = 2(|x|^2 + |y|^2)$$

và cho biết ý nghĩa hình học của nó.

2.22. Tính

a)
$$(1+i)^{25}$$
;

b)
$$\left\{ \frac{1+i\sqrt{3}}{1-i} \right\}^{20}$$
;

c)
$$\left[1 - \frac{\sqrt{3} - i}{2}\right]^{24}$$
;

d)
$$\frac{(-1+i\sqrt{3})^{15}}{(1-i)^{20}} + \frac{(-1-i\sqrt{3})^{15}}{(1+i)^{20}}$$
.

$$(1 + \cos\alpha + i\sin\alpha)^n$$

2.24. Chứng minh rằng nếu $z + \frac{1}{z} = 2\cos\theta$, $(z \in \mathbb{C})$, thì

$$z^m + \frac{1}{z^m} = 2\cos m\theta$$

2.25. Chứng minh

$$\left(\frac{1+itg\alpha}{1-itg\alpha}\right)^n = \frac{1+itgn\alpha}{1-itgn\alpha}$$

2.26. Tính các cān:

bậc 6 của
$$\frac{1-i}{\sqrt{3}+i}$$
; bậc 8 của $\frac{1+i}{\sqrt{3}-i}$; bậc 6 của $\frac{i-1}{1+i\sqrt{3}}$.

2.27. Hāy biểu diễn theo cosx và sinx :

- a) $\cos 5x$;
- b) $\cos 8x$:
- c) sin6x;
- d) $\sin 7x$.

- 2.28. Hãy biểu diễn tg6φ theo tgφ.
- 2.29. Chứng minh

$$(1+i)^n = 2^{n/2} \left[\cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4} \right]$$

- 2.30. Hāy biểu diễn $\cos^5\theta$ và $\sin^5\theta$ theo \cos và \sin của các góc bội cùa θ.
 - 2.31. Viết nghiệm của phương trình

$$x^2 + x\sqrt{3} + 1 = 0$$

ở dang lượng giác

2.32. Giải phương trình

$$z^2 - (1 + i\sqrt{3})z - 1 + i\sqrt{3} = 0$$

2.33. Giải phương trình

$$x^6 - 7x^3 - 8 = 0$$

- 2.34. Hãy chia
- a) $2x^4 3x^3 + 4x^2 5x + 6$ cho $x^2 3x + 1$
- b) $x^3 3x^2 x 1$ cho $3x^2 2x + 1$
- c) $x^4 + ix^3 ix^2 + x + 1$ cho $x^2 ix + 1$
- 2.35. Tìm điều kiện để $x^3 + px + a$ chia hết cho $x^2 + mx 1$.
- 2.36. Từ điều kiến để $x^4 + px^2 + a$ chia hết cho $x^2 + mx + 1$.
- 2.37. Hãy phân tích thành tích các thừa số bác nhất a) $x^4 - 2x^2 \cos \varphi - 1$:
 - b) $x^3 6x^2 + 11x 6$:
- c) $x^4 + 4$:

- d) $x^4 10x^2 + 1$
- 2.38. Hãy phân tích các phân thức sau thành tổng các phân thức don giản:
 - a) $\frac{(x-1)^3}{x^2}$;

b) $\frac{2x(x^2+1)}{(x^2+1)^2}$;

c) $\frac{1}{x(x-1)^3}$;

d) $\frac{x^2+1}{(x^2-1)(x^2+x+1)}$;

e) $\frac{x^4+4}{4}$;

- f) $\frac{1}{x^6+1}$;
- g) $\frac{1}{(x^2+1)^2(x^2+x+1)}$.

ĐÁP SỐ

- 2.1. 1) Hãy lập bảng nhân và suy ra kết quả.
 - 2) Nhóm không giao hoán.
- 2.2. Hãy lập bằng nhân và suy ra kết quả. Nhóm giao hoán.
- 2.3. Hãy lập bảng nhân và suy ra kết quả. Nhóm không giao hoán.
- 2.4. 1) Vành; 2) Vành; 3) Vành; 4) Vành; 5) Vành; 6) Vành;
- 7) Vành ; 8) Vành ; 9) Vành.
 - 2.5. 1) Không; 2) Không; 3) Trường; 4) Trường; 5) Trường; 6) Không;
- 7) Trường; 8) Không; 9) Trường.

2.6.
$$x = -\frac{1}{2}(1 \pm \sqrt{5})$$
; $x \in Q \Rightarrow \sqrt{5} \in Q$: vô lí.

2.7.
$$a-c=\lambda(d-b), d-b\neq 0 \Rightarrow \lambda \in \mathbb{Q}$$
: vô lí.

$$\hat{U}_{ng} \, dung : (x + y\sqrt{3})^2 = 192 + 96\sqrt{3} \Leftrightarrow \begin{cases} x^2 + 3y^2 = 192 \\ 2xy = 96 \end{cases}$$

$$x = 12, y = 4$$

2.8.
$$z = 65$$
.

2.9.
$$x = -\frac{4}{11}$$
; $y = \frac{5}{11}$.

2.10.
$$-1 < ab < 4 : 2$$
 nghiệm

$$ab = -1$$
 hav $ab = 4:1$ nghiệm

ab < -1 hay ab > 4: vo nghiệm

2.11. a)
$$\cos 2\alpha + i \sin 2\alpha$$
; b) $\frac{a^2 - b^2}{a^2 + b^2} + \frac{2abi}{a^2 + b^2}$;

c)
$$\frac{44-5i}{318}$$
; d) $\frac{1-32i}{25}$;

2.12. a)
$$-\frac{1}{2} - i \frac{\sqrt{3}}{2}$$
; b) 1.

e) 2.

2.13. a)
$$\pm (2 - i)$$
:

b)
$$\pm (1 + 4i)$$
;

c)
$$\pm (1 - 2i)$$
:

d)
$$\pm (1 + 3i)$$
.

2.14. a)
$$1 \pm 2i : -4 \pm 2i :$$

b)
$$2 \pm i\sqrt{2}$$
 : $-2 \pm 2i\sqrt{2}$.

2.15. a)
$$\cos 0 + i \sin 0$$
;

b)
$$\cos \pi + i \sin \pi$$
:

c)
$$\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$$
;

d)
$$\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2}$$
;

e)
$$\sqrt{2} \left[\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right]$$

e)
$$\sqrt{2} \left[\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right]$$
; f) $\sqrt{2} \left[\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right]$;

g)
$$\sqrt{2} \left[\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right]$$

g)
$$\sqrt{2} \left[\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right]$$
; h) $\sqrt{2} \left[\cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4} \right]$;

i)
$$2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$
;

$$j) \ 2 \left[\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right];$$

k)
$$2\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right)$$
; 1) $2\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right)$;

1)
$$2\left[\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right]$$

m)
$$2\left[\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right]$$
; n) $3(\cos\pi + i\sin\pi)$;

n)
$$3(\cos\pi + i\sin\pi)$$

o)
$$2\left(\cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6}\right)$$
; p) $(\sqrt{2} + \sqrt{6})\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)$.

2.16.
$$z = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6}$$
;

$$z^{100} = \cos\frac{100\pi}{6} + i\sin\frac{100\pi}{6} = \frac{-\sqrt{3} + i}{2}.$$

2.17.
$$-itg\frac{\theta}{2}$$
.

2.18. Gọi
$$M_1$$
 và M_2 là ảnh của z_1 và z_2 thì

a)
$$M_1$$
 và M_2 thẳng hàng với gốc O;

b)
$$\widehat{M_1OM_2} = \frac{\pi}{2}$$
.

- 2.19. a) Phần trong của đường tròn tâm O bán kính 2.
 - b) Phân trong và phân trên của đường tròn tâm (0, 1) bán kính 1.
 - c) Phần trong của đường tròn tâm (1, 1) bán kính 1.

2.20. a)
$$z = \frac{3}{2} - 2i$$
;

b)
$$z = \frac{3}{4} + i$$
.

2.21. Ý nghĩa hình học: Tổng các bình phương của hai đường chéo của một hình bình hành bằng tổng các bình phương của các cạnh của hình bình hành đó.

2.22. a)
$$2^{12}(1+i)$$
;

b)
$$2^9(1-i\sqrt{3})$$
;

c)
$$(2 - \sqrt{3})^{12}$$
;

$$d) -64.$$

2.23.
$$2^n \cos^n \frac{\alpha}{2} \left[\cos \frac{n\alpha}{2} + i \sin \frac{n\alpha}{2} \right]$$

2.24. Chứng tổ rằng $z = \cos\theta \pm i \sin\theta$; $\frac{1}{z} = \cos\theta \mp i \sin\theta$ rồi dùng công thức Moivre.

2.26. a)
$$\frac{1}{12\sqrt{2}} \left[\cos \frac{24k+19}{72} \pi + i \sin \frac{24k+19}{72} \pi \right]$$

$$k = 0, 1, 2, 3, 4, 5.$$

b)
$$\frac{1}{16\sqrt{2}} \left[\cos \frac{24k+5}{96} \pi + i \sin \frac{24k+5}{96} \pi \right]$$

$$k = 0, 1, 2, 3, 4, 5, 6, 7.$$

c)
$$\frac{1}{12\sqrt{2}} \left[\cos \frac{24k+5}{72} \pi + i \sin \frac{24k+5}{72} \pi \right]$$

- 2.27. a) $\cos 5x = \cos^5 x 10\cos^3 x \sin^2 x + 5\cos x \sin^4 x$
 - b) $\cos^8 x 28\cos^6 x \sin^2 x + 70\cos^4 x \sin^4 x 28\cos^2 x \sin^6 x + \sin^8 x$
 - c) $6\cos^5 x \sin x 20\cos^3 x \sin^3 x + 6\cos x \sin^5 x$
 - d) $7\cos^6 x \sin x 35\cos^4 x \sin^3 x + 21\cos^2 x \sin^5 x \sin^7 x$

2.28.
$$\frac{2(3tg\varphi - 10tg^3\varphi + 3tg^5\varphi)}{1 - 15tg^2\varphi + 15tg^4\varphi - tg^6\varphi}$$

2.29. Hãy biểu diễn $1 + i \ddot{\sigma}$ dang lương giác.

2.30.
$$\cos^5 \theta = \frac{1}{2^4} (\cos 5\theta + 5\cos 3\theta + 10\cos \theta)$$

 $\sin^5 \theta = \frac{1}{2^4} (\sin 5\theta - 5\sin 3\theta + 10\sin \theta)$

2.31.
$$\alpha = \frac{-\sqrt{3} + i}{2} = \cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6}$$

$$\bar{\alpha} = \frac{-\sqrt{3} - i}{2} = \cos \frac{5\pi}{6} - i \sin \frac{5\pi}{6}$$

2.32.
$$z' = \frac{1+\sqrt{3}}{2} + i\frac{\sqrt{3}-1}{2}$$
, $z'' = \frac{1-\sqrt{3}}{2} + i\frac{1+\sqrt{3}}{2}$

2.33.
$$2\left(\cos\frac{2k\pi}{3} + i\sin\frac{2k\pi}{3}\right), k = 0, 1, 2$$

 $\cos\frac{\pi + 2k\pi}{3} + i\sin\frac{\pi + 2k\pi}{3}, k = 0, 1, 2.$

2.34. a)
$$2x^2 + 3x + 11 + \frac{25x - 5}{x^2 - 3x + 1}$$
;

b)
$$\frac{3x-7}{9} - \frac{26x-2}{9(3x^2-2x+1)}$$
;

c)
$$x^2 + 2ix - 3 - i + \frac{(2-i)x + 4 + i}{x^2 - ix + 1}$$

2.35.
$$p = -q^2 - 1$$
, $m = q$

2.36. 1)
$$q = p - 1$$
, $m = 0$
2) $q = 1$, $m = \pm \sqrt{2 - p}$.

2.37. a)
$$\left[x - \cos\frac{\varphi}{2} - i\sin\frac{\varphi}{2}\right] \left[x + \cos\frac{\varphi}{2} + i\sin\frac{\varphi}{2}\right] \times \left[x - \cos\frac{\varphi}{2} + i\sin\frac{\varphi}{2}\right] \left[x + \cos\frac{\varphi}{2} - i\sin\frac{\varphi}{2}\right]$$

b)
$$(x-1)(x-2)(x-3)$$
;

c)
$$(x-1-i)(x-1+i)(x+1-i)(x+1+i)$$
:

d)
$$(x - \sqrt{3} - \sqrt{2})(x - \sqrt{3} + \sqrt{2})(x + \sqrt{3} - \sqrt{2})(x + \sqrt{3} + \sqrt{2})$$
.

2.38. a)
$$x-3+\frac{1}{4(x-2)}+\frac{27}{4(x+2)}$$
;

b)
$$\frac{1}{(x-1)^2} + \frac{1}{x-1} - \frac{1}{(x+1)^2} + \frac{1}{x+1}$$
;

c)
$$\frac{1}{(x-1)^3} - \frac{1}{(x-1)^2} + \frac{1}{x-1} - \frac{1}{x}$$
;

d)
$$-\frac{1}{x+1} + \frac{1}{3(x-1)} + \frac{2x+1}{3(x^2+x+1)}$$
;

e)
$$1 + \frac{1}{x\sqrt{2} - 2} - \frac{1}{x\sqrt{2} + 2} - \frac{2}{x^2 + 2}$$
;

f)
$$\frac{1}{3(x^2+1)} + \frac{x\sqrt{3}+2}{6(x^2+x\sqrt{3}+1)} + \frac{-x\sqrt{3}+2}{6(x^2-x\sqrt{3}+1)}$$
;

g)
$$\frac{x}{x^2+x+1} - \frac{x}{(x^2+1)^2} - \frac{x-1}{x^2+1}$$

Chương III

MA TRẬN - ĐỊNH THỰC -HỆ PHƯƠNG TRÌNH TUYẾN TÍNH

3.1. MA TRẬN

3.1.1. Khái niệm ma trản

Khi ta có $m \times n$ số ta có thể xếp thành một bảng chữ nhật chứa m hàng n cột. Một bảng số như thế gọi là một ma trận.

Định nghĩa 3.1.1. Một bảng số chữ nhật có m hàng n cột

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

gọi là một ma trận cỡ m × n.

 a_{ij} là phần tử của ma trận A nằm ở giao điểm của hàng i cột j. Để kí hiệu ma trận người ta đùng hai đấu ngoặc vuông như ở trên hay hai đấu ngoặc tròn.

Để nói A là ma trận cỡ $m \times n$ có phần tử nằm ở hàng i cột j là a_{ij} ta viết

$$A = [a_{ij}]_{m \times n}$$

Khi m = n, bằng số thành vuông, ta có ma trận vuông với n hàng n cột, ta gọi nó là ma trận cấp n:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & & \vdots & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

Các phần từ a_{11} , a_{22} ,..., a_{nn} gọi là các phần từ chéo. Đường thẳng xuyên qua các phần từ chéo gọi là đường chéo chính.

Ma trận A cấp n

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ & & \ddots & \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$
 còn viết
$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ & a_{22} & \dots & a_{2n} \\ & & \ddots & \\ & & & a_{nn} \end{bmatrix}$$

trong đó $a_{ij} = 0$ nếu i > j, gọi là ma trận tam giác trên.

Ma trận cấp n:

$$\begin{bmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ & & & & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$
 còn viết
$$\begin{bmatrix} a_{11} & & & \\ a_{21} & a_{22} & & \\ & & & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

trong đó $a_{ij} = 0$ nếu i < j, gọi là ma trận tam giác dưới.

Ma trận cấp n:

$$\begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ & & \vdots & \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$
 còn viết
$$\begin{bmatrix} a_{11} & & & \\ & a_{22} & & \\ & & \ddots & \\ & & & a_{nn} \end{bmatrix}$$

trong đó $a_{ij} = 0$ nếu $i \neq j$ gọi là ma trận chéo.

Thí dụ 3.1.1. Bàng số

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

là một ma trận cờ 2 imes 3 với các phần tử

$$a_{11} = 1, a_{12} = 2, a_{13} = 3$$

 $a_{21} = 4, a_{22} = 5, a_{23} = 6$

Bảng số

$$a_{21} = 4, a_{22} = 3, a_{23} = 6$$

$$B = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$

là ma trân cỡ 3 × 1 với các phần từ

$$b_{11} = 1, b_{21} = 2, b_{31} = 3.$$

Bàng số $C = [4 \ 5 \ 6]$

là ma trận cỡ
$$1 \times 3$$
 với các phần tử

 $c_{11}=4, c_{12}=5, c_{13}=6.$ Chú ý 3.1.1. Sau đây chỉ xét chủ yếu các ma trận thực, tức là các ma trận với $a_{ij}\in {\bf R}.$

3.1.2. Ma trận không
Định nghĩa 3.1.2. Ma trận không là ma trận mà tất cả các phần tử đều bằng không.

Ma trận không kí hiệu là 0.

Thi du 3.1.2.
$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

là ma trận không cỡ 2×4 .

3.1.3. Ma trận bằng nhau

Định nghĩa 3.1.3. Hai ma trận A và B gọi là bằng nhau nếu chúng có cùng cỡ và các phần tử cùng vị trí bằng nhau, tức là

1)
$$A = [a_{ij}]_{m \times n}, B = [b_{ij}]_{m \times n}$$

2)
$$a_{ij} = b_{ij}$$
 với mọi i và mọi j

Khi A bằng B ta viết A = B.

Thí du 3.1.3

$$\begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

có nghĩa là a = 1, b = 2, c = 3, d = -4.

3.1.4. Cộng ma trận

1) Định nghĩa 3.1.4. Cho hai ma trận cùng cỡ $m \times n$:

$$A = [a_{ij}]_{m \times n}, \quad B = [b_{ij}]_{m \times n}$$

Tổng A + B là ma trận cỡ $m \times n$ xác định bởi

$$A+B=[a_{ij}+b_{ij}]_{m\times n}$$

tức là

$$(A+B)_{ii}=a_{ii}+b_{ii}$$

Như vậy muốn cộng hai ma trận cùng cỡ ta cộng các phần từ cùng vị trí.

Thí du 3.1.4

$$\begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 7 \\ 2 & -3 \end{bmatrix} = \begin{bmatrix} 2+5 & 3+7 \\ -1+2 & 4-3 \end{bmatrix} = \begin{bmatrix} 7 & 10 \\ 1 & 1 \end{bmatrix}$$

2) Tính chất. Để thấy rằng

$$A + B = B + A$$
$$A + 0 = 0 + A = A$$

Nếu gọi

$$-A = \{-a_{ij}\}_{m \times n}$$

thì còn có

$$A + (-A) = (-A) + A = 0$$

Nếu có thêm ma trận C với

$$C = [c_{ij}]_{m \times n}$$

thì

$$(A+B)+C=A+(B+C)$$

Chú ý 3.1.2. Gọi $\mathcal{M}_{m\times n}$ là tập các ma trận cỡ $m\times n$. Khi đó $(\mathcal{M}_{m\times n}, +)$ là một nhóm giao hoán.

3.1.5. Nhàn ma trận với một số

1) Định nghĩa 3.1.5. Cho

$$A = [a_{ij}]_{m \times n}, k \in \mathbb{R}$$

thì tích kA là ma trận cỡ mimes nxác định bởi $kA=[ka_{ij}]_{m imes n}$.

Như vậy, muốn nhân một ma trận với một số ta nhân tất cả các phần tử của ma trận với số đó.

Thi du 3.1.5.

$$2\begin{bmatrix} 3 & 4 \\ 7 & -2 \end{bmatrix} = \begin{bmatrix} 2.3 & 2.4 \\ 2.7 & 2.(-2) \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 14 & -4 \end{bmatrix}$$

2) Tính chất. Để thấy rằng

$$k(A + B) = kA + kB$$

$$(k + h)A = kA + hA$$

$$k(hA) = (kh)A$$

$$1. A = A$$

$$0.A = 0$$

3.1.6. Phép nhán ma trận với ma trận

Định nghĩa 3.1.6. Xét hai ma trận

$$A = [a_{ij}]_{m \times p}, B = [b_{ij}]_{p \times n}$$

2.50

trong đó số cột của ma trận A bằng số hàng của ma trận B. Người ta gọi tích AB là ma trận $C = [c_{ij}]_{m \times n}$ có m hàng n cột mà phần từ c_{ij} được tính bởi công thức

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ip}b_{pj} = \sum_{k=1}^{p} a_{ik}b_{kj}$$
 (3.1.1)

Cách tính c_{ii} có thể hình dung bằng sơ đổ

và có thể nói tắt :

 c_{ii} bằng hàng i của A nhân với cột j của B.

Thí du 3.1.6.

$$\begin{bmatrix} 3 \\ 2 \end{bmatrix}_{2\times1} \begin{bmatrix} 1 & 4 \end{bmatrix}_{1\times2} = \begin{bmatrix} 3.1 & 3.4 \\ 2.1 & 2.4 \end{bmatrix}_{2\times2} = \begin{bmatrix} 3 & 12 \\ 2 & 8 \end{bmatrix}_{2\times2}$$

$$\begin{bmatrix} 1 & 4 \end{bmatrix}_{1\times2} \begin{bmatrix} 3 \\ 2 \end{bmatrix}_{2\times1} = \begin{bmatrix} 1.3 + 4.2 \end{bmatrix}_{1\times1} = \begin{bmatrix} 11 \end{bmatrix}_{1\times1}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 1 & 2 \end{bmatrix}_{2\times3} \begin{bmatrix} 1 & 2 \\ 3 & 2 \\ 1 & 4 \end{bmatrix}_{3\times2} = \begin{bmatrix} 1.1 + 2.3 + 3.1 & 1.2 + 2.2 + 3.4 \\ 4.1 + 1.3 + 2.1 & 4.2 + 1.2 + 2.4 \end{bmatrix}_{2\times2}$$

$$= \begin{bmatrix} 10 & 18 \\ 9 & 18 \end{bmatrix}_{3\times2}$$

Chú ý 3.1.3. Muốn nhân AB (A bên trái, B bên phải) phải có điều kiện: số cột của A bằng số hàng của B. Muốn nhân BA (B bên trái, A bên phải) phải có điều kiện: số cột của B bằng số hàng của A. Do đó khi nhân AB được chưa chắc đã nhân BA được. Trường hợp đặc biệt khi A và B là hai ma trận vuông cùng cấp thì nhân AB và BA đều được.

Chú ý 3.1.4. Khi nhân AB và BA được, chưa chắc đã có AB = BA.

Thí du 3.1.7. Cho

$$A = \begin{bmatrix} -1 & 0 \\ 2 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$$

thì

$$AB = \begin{bmatrix} -1 & -2 \\ 11 & 4 \end{bmatrix} \qquad BA = \begin{bmatrix} 3 & 6 \\ -3 & 0 \end{bmatrix}$$

Ö đây AB ≠ BA.

Chú ý 3.1.5. Có những ma trận $A \neq 0$, $B \neq 0$ mà AB = 0 như

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & -6 \\ -1 & 3 \end{bmatrix}$$

thì

$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

3.1.7. Một số tính chất

Có thể chứng minh với giả thiết các phép tính viết ở đưới thực hiện được, ta có:

Định lí 3.1.1.

$$A(B+C) = AB + AC$$

$$(B+C)A = BA + CA$$

$$A(BC) = (AB)C$$

$$k(BC) = (kB)C = B(kC)$$

04

Chú ý 3.1.6. Với các phép tính cộng ma trận và nhân ma trận với ma trận ta có thể thấy rằng tập các ma trận vuông cũng cấp với hai phép toán đó tạo thành một vành không giao hoán.

3.1.8. Ma trận chuyển vị

Định nghĩa 3.1.7. Xét ma trận $A = [a_{ij}]_{m \times n}$. Đổi hàng thành cột, cột thành hàng ta được ma trận mới gọi là ma trận chuyển vị của A, ký hiệu là A^{t} .

Vậy có
$$A^t = [a_{ji}]_{n \times m}$$

Ta thấy rằng nếu A có m hàng n cót thì A' có n hàng m cót. Thí du 3.1.8.

$$A = \begin{bmatrix} -4 & 1 \\ 3 & 0 \\ 2 & 7 \end{bmatrix} \quad \text{th} \quad A^t = \begin{bmatrix} -4 & 3 & 2 \\ 1 & 0 & 7 \end{bmatrix}$$

3.1.9. Chuyển vị của tích hai ma trận

Giả sử
$$A = [a_{ij}]_{m \times p}, \qquad B = [b_{ij}]_{p \times n}$$

Khi đó nhân AB được và AB có cỡ $m \times n$. Qua phép chuyển vị ta có

$$A^t = [a_{ii}]_{p \times m}, \qquad B^t = [b_{ii}]_{n \times p}$$

Ta thấy rằng số cội của B' bằng số hàng của A'. Vậy nhân B'A' được và tích đó cố cỡ $n \times m$.

Dinh lí 3.1.2.

$$(AB)^t = B^t A^t$$

Xem chứng minh trong phần phụ lục cuối chương, mục 3.6.1. Thí du 3.1.9.

$$A = \begin{bmatrix} -1 & 2 \\ 1 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$$

Ta có

$$AB = \begin{bmatrix} 4 & 3 \\ 14 & 3 \end{bmatrix}, \quad (AB)^t = \begin{bmatrix} 4 & 14 \\ 3 & 3 \end{bmatrix}$$

$$A^t = \begin{bmatrix} -1 & 1 \\ 2 & 4 \end{bmatrix}, B^t = \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix}$$

$$B^t A^t = \begin{bmatrix} 4 & 14 \\ 3 & 3 \end{bmatrix}$$

Vậy trong thí dụ này đúng là

$$(AB)^t = B^t A^t.$$

BÀI TẬP: 3.1 - 3.11

3.2. ĐINH THỨC

3.2.1. Định thức của ma trận vuồng

Xét ma trán cấp n:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nj} & \dots & a_{nn} \end{bmatrix}$$

Ta chú ý đến phần từ a_{ij} , bò di hàng i và cột j ta thu được ma trận chỉ còn n-1 hàng n-1 cột, tức là ma trận cấp n-1. Ta kí hiệu nó là M_{ij} và gọi nó là ma trận con ứng phần từ a_{ij} .

Chẳng hạn, với

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

ta có

$$M_{11} = \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix}, \quad M_{12} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}, \quad M_{13} = \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

$$M_{21} = \begin{bmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{bmatrix}, \quad M_{22} = \begin{bmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{bmatrix}, \quad M_{23} = \begin{bmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{bmatrix}$$

$$M_{31} = \begin{bmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{bmatrix}, \quad M_{32} = \begin{bmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{bmatrix}, \quad M_{33} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

Định nghĩa 3.2.1. Định thức của ma trận A, kí hiệu là đet (A), được định nghĩa dẫn dấn như sau :

A là ma trận cấp 1:

$$A = [a_{i,1}]$$
 thì $\det(A) = a_{i,1}$

A là ma trận cấp hai :

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

thi
$$\det(A) = a_{11} \det(M_{11}) - a_{12} \det(M_{12}) = a_{11}a_{22} - a_{12}a_{21}$$

(Chú ý rằng a_{11} và a_{12} là các phần từ nằm cùng ở hàng 1 của ma trận A), vận văn, và một cách tổng quát,

A là ma trận cấp n thì

$$\det(A) = a_{11} \det(M_{11}) - a_{12} \det(M_{12}) + ... + (-1)^{1+n} a_{1n} \det(M_{1n}) (3.2.1)$$

(Chú ý rằng $a_{11}, a_{12}, ..., a_{1n}$ là các phần tử cùng nằm ở hàng 1 của ma trân A).

Để kí hiệu định thức, người ta dùng hai gạch đứng đặt ở hai bên :

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

Định thức của ma trận cấp n gọi là định thức cấp n.

Thí dụ 3.2.1.

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1.4 - 2.3 = -2$$

$$\begin{vmatrix} 1 & 2 & 3 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix} = 1 \begin{vmatrix} 5 & 6 \\ -8 & 9 \end{vmatrix} - 2 \begin{vmatrix} -4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \begin{vmatrix} -4 & 5 \\ 7 & -8 \end{vmatrix} =$$

$$= 1(45 + 48) - 2(-36 - 42) + 3(32 - 35) = 240$$

3.2.2. Tính chất của định thức

Tính chất 1. $det(A^{t}) = det(A)$.

Hướng chứng minh. Trước hết người ta chứng minh một công thức phụ:

$$\det(A) = a_{11} \det(M_{11}) - a_{21} \det(M_{21}) + \dots + (-1)^{n+1} a_{n1} \det(M_{n1})$$
(3.2.2)

Sau đó áp dụng phương pháp quy nạp toán học (xem chứng minh chi tiết trong phần phụ lục cuối chương, mục 3.6.2).

Thí dụ 3.2.2.

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = -2 \qquad \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix} = 1.4 - 3.2 = -2$$

Hệ quả 3.2.1. Một tính chất đã đúng khi phát biểu về hàng của định thức thì nó vẫn còn đúng khi trong phát biểu ta thay hàng bằng cột.

Tính chất 2. Đổi chỗ hai hàng (hay hai cột) của một định thức ta được một định thức mới bằng định thức cũ đổi dấu.

Xem chứng minh trong phần phụ lục cuối chương, mục 3.6.3.

Thí dụ 3.2.3. Ta có

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1.4 - 2.3 = -2$$

Đổi chỗ hai hàng liên tiếp ta được

$$\begin{vmatrix} 3 & 4 \\ 1 & 2 \end{vmatrix} = 3.2 - 4.1 = 2 = -(-2)$$

Tính chất 3. Một định thức có hai hàng (hay hai cột) như nhau thì bằng không.

Chứng minh. Gọi định thức có hai hàng như nhau là Δ . Đổi chỗ hai hàng đó ta được

$$\Delta = -\Delta$$

Váy có $2\Delta = 0$, do dó $\Delta = 0$.

Tính chất 4. Dựa vào định nghĩa (3.2.1) và áp dụng tính chất 2 ta suy ra

$$\det(A) = (-1)^{i+1} [a_{i1} \det(M_{i1}) - a_{i2} \det(M_{i2}) + \dots \pm a_{in} \det(M_{in})]$$
(3.2.3)

Chú ý rằng các phần từ a_{i1} , a_{i2} , ..., a_{in} đều nằm ở hàng i của định thức, nên công thức (3.2.3) có thể gọi là khai triển của định thức theo hàng i.

Dựa vào công thức (3.2.2) và tính chất 2 ta suy ra

$$\det(A) = (-1)^{1+j} [a_{ij} \det(M_{1j}) - a_{2j} \det(M_{2j}) + \dots \pm a_{nj} \det(M_{nj})]$$
(3.2.4)

Chú ý rằng các phần từ $a_{1j}, a_{2j}, ..., a_{nj}$ đều nằm ở cột j của định thức, nên công thức (3.2.4) có thể gọi là khai triển của định thức theo cột j.

Thí du 3.2.4. Xét

$$\Delta = \begin{vmatrix} 1 & 2 & 3 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix}$$

 $\mathring{\mathbf{O}}$ thí dụ 3.2.1, ta dựa vào định nghĩa và đã tìm được $\Delta = 240$.

Bay giờ áp dụng khai triển định thức theo hàng 3 (3,2.3) tạ có

$$\Delta = (-1)^{3+1} \left\{ 7 \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} - (-8) \begin{vmatrix} 1 & 3 \\ -4 & 6 \end{vmatrix} + 9 \begin{vmatrix} 1 & 2 \\ -4 & 5 \end{vmatrix} \right\}$$
$$= 7(12-15) + 8(6+12) + 9(5+8) = 240$$

Áp dụng khai triển định thức theo cột 2 (3.2.4) ta cũng có

$$\Delta = (-1)^{1+2} \left\{ 2 \begin{vmatrix} -4 & 6 \\ 7 & 9 \end{vmatrix} - 5 \begin{vmatrix} 1 & 3 \\ 7 & 9 \end{vmatrix} + (-8) \begin{vmatrix} 1 & 3 \\ -4 & 6 \end{vmatrix} \right\}$$
$$= -2(-36 - 42) + 5(9 - 21) + 8(6 + 12) = 240$$

Tính chất 5. Một định thức có một hàng (hay một cột) toàn là số không thì bằng không.

Đố là hệ quả của các công thức (3.2.3) và (3.2.4).

Tính chất 6. Khi nhân các phần tử của một hàng (hay một cột) với cùng một số k thì được một định thức mới bằng định thức cũ nhân với k.

Đố là hệ quả của các công thức (3.2.3) và (3.2.4).

Hệ quả 3.2.2. Từ tính chất 6 ta suy ra nhận xét sau : Khi các phần tử của một hàng (hay một cột) có một thừa số chung, ta có thể đưa thừa số chung đó ra ngoài dấu đình thức.

Thí dụ 3.2.5.

$$\begin{vmatrix} 2 & 3 \\ 4 & 8 \end{vmatrix} = \begin{vmatrix} 2 & 3 \\ 4 & 1 & 4 = 2 \end{vmatrix} = 4 \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = 4(4 - 3) = 4$$

Tính chất 7. Một định thức có hai hàng (hay hai cột) tỉ lệ thì bằng không.

Thật vậy, đưa hệ số tỉ lệ ra ngoài đấu định thức thì được một định thức có hai hàng (hay hai cột) như nhau nên nó bằng không.

Tính chất 8. Khi tất cả các phần tử của một hàng (hay một cột) có đạng tổng của hai số hạng thì định thức có thể phân tích thành tổng của hai định thức, chẳng hạn như

$$\begin{vmatrix} a_{11} & a_{12} + a_{12} \\ a_{21} & a_{22} + a_{22} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} + a_{11} & a_{12} + a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

Đố là hệ quả của các công thức (3.2.3) và (3.2.4).

Tính chất 9. Nếu một định thức có một hàng (hay một cột) là tổ hợp tuyến tính của các hàng khác (hay của các cột khác) thì định thức ấy bằng không.

Đó là hệ quả của tính chất 8 và 7.

Tính chất 10. Khi ta cộng bội k của một hàng vào một hàng khác (hay bội k của một cột vào một cột khác) thì được một định thức mới bằng đình thức cũ.

Thí du 3.2.6.

$$\begin{vmatrix} 2 & 1 & 3 \\ 4 & 5 & 7 \\ 6 & 1 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 2 & 1 & 3 \\ 4 + (-2)2 & 5 + (-2)1 & 7 + (-2)3 \\ 6 & 1 & 5 \end{vmatrix}$$
$$= \begin{vmatrix} 2 & 1 & 3 \\ 0 & 3 & 1 \\ 6 & 1 & 5 \end{vmatrix}$$

Chú ý 3.2.1. Làm như trong thí dụ trên ta được một định thức mới bằng định thức cũ, nhưng lại có phần tử ở hàng 2 cột 1 bằng không.

Ta cũng có thể làm như thế với hàng thứ ba để biến phần tử ở hàng 3 cột 1 thành số không :

$$\begin{vmatrix} 2 & 1 & 3 \\ 0 & 3 & 1 \\ 6 & 1 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 3 \\ 0 & 3 & 1 \\ 6 + (-3)2 & 1 + (-3)1 & 5 + (-3)3 \end{vmatrix}$$
$$= \begin{vmatrix} 2 & 1 & 3 \\ 0 & 3 & 1 \\ 0 & -2 & -4 \end{vmatrix}$$

Ta thấy định thức sẽ đơn giản đi.

Tính chất 11 (Về các định thức có dạng tam giác). Các định thức của ma trận tam giác bằng tích các phần từ chéo:

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{vmatrix} = a_{11}a_{22} \dots a_{nn}$$

$$\begin{vmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = a_{11}a_{22} \dots a_{nn}$$

Cách chứng minh dựa vào khai triển (3.2.3) và (3.2.4).

Chẳng hạn, xét định thức cấp ba

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{vmatrix}$$

Khai triển theo cột 1 ta được

$$\Delta = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ 0 & a_{33} \end{vmatrix}$$

Sau đó tính dịnh thức cấp hai bằng khai triển theo cột 1 của nó ta được

$$\Delta = a_{11} \ a_{22} \ a_{33}$$

Thí du 3.2.7.

$$\begin{vmatrix} 1 & 2 & 3 \\ 0 & 7 & -6 \\ 0 & 0 & 11 \end{vmatrix} = 1.7.11 = 77$$

3.2.3. Cách tính định thức bằng biến đổi sơ cấp

Để tính một định thức, có thể dùng định nghĩa hoặc khai triển (3.2.3), (3.2.4), cũng có thể áp dụng các tính chất của định thức mà tìm cách biến đổi để đưa nó về các dạng don giản. Cách dùng các biến đổi sơ cấp là một trong những cách như thế.

Các biến đổi sơ cấp về hàng mà ta sẽ dùng được liệt kẽ ở bảng dưới đây

Biến đổi sơ cấp	Tác dụng	Lí do
(1) Nhân một hàng với một số k ≠ 0	Định thức nhân với k	Tính chất 6
(2) Đổi chỗ 2 hàng	Định thức đổi dấu	Tính chất 2
(3) Cộng k lần hàng r vào hàng s	Định thức không đổi	Tính chất 10

Chú ý rằng:

- (1) Nói nhân một hàng với một số k có nghĩa là nhân tất cả các phần tử của hàng đó với k.
- (2) Nói cộng k lần hàng r vào hàng s nghĩa là cộng k lần mỗi phần từ ở hàng r với phần từ cùng cột với nó ở hàng s và đặt vào hàng s.

Bây giờ để tính một định thức ta làm như sau :

Bước 1. Áp dụng các phép biến đổi sơ cấp về hàng tìm cách đưa dẫn định thúc đã cho về dạng tam giác, nhớ ghi lại tác dụng của từng phép biến đổi sơ cấp được sử dụng.

Bước 2. Tính giá trị của định thức dạng tam giác thu được dựa vào tính chất 11 và kể đến tác dụng tổng hợp của các phép biến đổi sơ cấp đã sử dụng.

Thí du 3.2.8. Hãy tính

$$\Delta = \begin{vmatrix} 0 & 1 & 5 \\ 3 & -6 & 9 \\ 2 & 6 & 1 \end{vmatrix}$$

Giải. Ta có

$$\Delta = -\begin{vmatrix} 3 & -6 & 9 \\ 0 & 1 & 5 \\ 2 & 6 & 1 \end{vmatrix}$$
 dổi chỗ hai hàng 1 và 2
$$= -3 \begin{vmatrix} 1 & -2 & 3 \\ 0 & 1 & 5 \\ 2 & 6 & 1 \end{vmatrix}$$
 dựa thừa số 3 ở hàng 1 ra ngoài
$$= -3 \begin{vmatrix} 1 & -2 & 3 \\ 0 & 1 & 5 \\ 0 & 10 & -5 \end{vmatrix}$$
 cộng -2 lần hàng 1 với hàng 3
$$= -3 \begin{vmatrix} 1 & -2 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & -55 \end{vmatrix}$$
 cộng -10 lần hàng 2 với hàng 3
$$= -3 \cdot 1 \cdot 1 \cdot (-55) = 165$$

Chú ý 3.2.2. Cũng có thể xét các biến đổi sơ cấp về cột và áp dụng chúng để tính định thức.

BÀI TẬP: 3.12 - 3.22.

90.00

3.3. MA TRẬN NGHỊCH ĐẢO

3.3.1. Ma trận đơn vị

Gọi \mathcal{M}_n là tập các ma trận vuông cấp n:

$$\mathcal{M}_{n} = \{A\}, \qquad A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

Định nghĩa 3.3.1. Ma trận

$$I = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

trong đó các phần tử chéo bằng 1, các phần tử khác bằng không, gọi là ma trận đơn vị cấp n.

Đặc điểm của ma trắn đơn vì 1 là :

$$AI = IA = A$$
, $\forall A \in \mathcal{M}_n$

Thí du 3.3.1.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

3.3.2. Ma trận khả đảo và ma trận nghịch đảo

Định nghĩa 3.3.2. Xét $A \in \mathcal{M}_n$. Nếu tồn tại ma trận $B \in \mathcal{M}_n$ sao cho

$$AB = BA = I$$

thì nói A khả đảo và gọi B là ma trận nghịch đảo của A.

Khi A có nghịch đảo ta nói A không suy biến.

Người ta kí hiệu ma trận nghịch đảo của $m{A}$ là $m{A}^{-1}$, nghĩa là có

$$AA^{-1} = A^{-1}A = I$$

Thí du 3.3.2.

vì

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \text{ thi } A^{-1} = \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & \mathbf{1} \\ 3/2 & -1/2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

3.3.3. Sự duy nhất của ma trận nghịch đảo

Định lí 3.3.1. Ma trận nghịch đảo A^{-1} của $A \in \mathcal{M}_n$ nếu có thì chỉ có một mà thời.

Chứng minh. Giả sử B và C đều là ma trận nghịch đảo của $A \in \mathcal{M}_n$, nghĩa là có

$$AB = BA = I$$
, $AC = CA = I$

Từ AB = I ta suy ra

$$C(AB) = CI$$
$$(CA)B = C$$

$$IB = C$$

$$B = C$$

3.3.4. Sự tồn tại của ma trận nghịch đảo và biểu thức của nó

Xét ma trận

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

9.5

Ở mục 3.2.1 ta đã gọi ma trận M_{ij} suy từ A bằng cách bỏ đi hàng i cột j là ma trận con ứng phần từ a_{ij} .

Bây giờ ta gọi

$$D_{ij} = \det(M_{ij}) \tag{3.3.1}$$

là định thức con ứng phần tử a_{ii} , và

$$C_{ij} = (-1)^{i+j} D_{ij}$$

là phụ đại số của phần từ a_{ij} .

Với các kí hiệu đó công thức (3.2.3) kết hợp với tính chất 3 của định thức cho

$$a_{k1}C_{i1} + a_{k2}C_{i2} + ... + a_{kn}C_{in} = \begin{cases} \det(A) \text{ new } k = i \\ 0 & \text{new } k \neq i \end{cases}$$
 (3.3.2)

Kết hợp công thức (3.2.4) với tính chất 3 ta có

$$a_{1k}C_{1j} + a_{2k}C_{2j} + \dots + a_{nk}C_{nj} = \begin{cases} \det(A) \text{ n\'eu } k = j \\ 0 & \text{n\'eu } k \neq j \end{cases}$$
(3.3.3)

Ta có

Định lí 3.3.2. Nếu det(A) $\neq 0$ thì ma trận A có nghịch đảo A⁻¹ tính bởi công thức sau :

$$A^{-1} = \frac{1}{\det(A)}C^{t} = \frac{1}{\det(A)}\begin{bmatrix} C_{11} & C_{21} & \dots & C_{n1} \\ C_{12} & C_{22} & \dots & C_{n2} \\ \dots & \dots & \dots & \dots \\ C_{1n} & C_{2n} & \dots & C_{nn} \end{bmatrix}$$

Chứng minh. Nhân AC^{ℓ} và áp dụng công thức (3.3.2) ta được

$$AC' = \begin{bmatrix} \det(A) & 0 & \dots & 0 \\ 0 & \det(A) & \dots & 0 \\ 0 & 0 & \dots & \det(A) \end{bmatrix}$$

Nhân $C^{\prime}A$ và áp dụng công thức (3.3.3) ta cũng được như thế.

Vày có

$$\frac{1}{\det(A)} \cdot AC^t = \frac{1}{\det(A)} C^t A = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & & \cdot & \\ & & & \cdot & \\ & & & & 1 \end{bmatrix} = I$$

và định lí được chứng minh

Chú ý 3.3.1. Khí $\det(A) \neq 0$ thì A có nghịch đảo, nên A là ma trận không suy biến.

3.3.5. Cách tính ma trận nghịch đảo bằng phụ đại số

Áp dụng định lí 3.3.2 :

Thi du 3.3.3. Cho

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$

 $det(A) = -1 \neq 0$

Ta có

$$C_{11} = 40$$
 $C_{12} = -13$ $C_{13} = -5$
 $C_{21} = -16$ $C_{22} = 5$ $C_{23} = 2$
 $C_{31} = -9$ $C_{32} = 3$ $C_{33} = 1$

Do đó

$$C = \begin{bmatrix} 40 & -13 & -5 \\ -16 & 5 & 2 \\ -9 & 3 & 1 \end{bmatrix} \qquad C^{t} = \begin{bmatrix} 40 & -16 & -9 \\ -13 & 5 & 3 \\ -5 & 2 & 1 \end{bmatrix}$$

Vậy

$$A^{-1} = \frac{1}{-1}C^{t} = \begin{bmatrix} -40 & 16 & 9\\ 13 & -5 & -3\\ 5 & -2 & -1 \end{bmatrix}$$

Thi du 3.3.4. Xét ma trận cấp hai

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

 $V\acute{o}i \det(A) = ad - bc \neq 0 thi$

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
$$C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$$

Vì và đo đó

$$C' = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

3.3.6. Ma trận nghịch đảo của tích hai ma trán

Định lí 3.3.3. Giả sử A và $B \in \mathscr{M}_n$ là hai ma trận khả đảo. Khi đó AB cũng khả đảo và

$$(AB)^{-1} = B^{-1}A^{-1}$$

Chứng minh. Ta có

$$(AB)B^{-1}A^{-1} = A(BB^{-1})A = AIA^{-1} = AA^{-1} = I$$

 $B^{-1}A^{-1}(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I$

Vậy AB khả đảo và $B^{-1}A^{-1}$ là ma trận nghịch đảo của AB. Ngoài ra ta còn có Định lí 3.3.4. Nếu $A \in \mathcal{M}_n$ khả đảo và có nghịch đảo A^{-1} thì

- (a) A^{-1} cũng khả đảo và $(A^{-1})^{-1} = A$.
- (b) A^m cũng khả đảo và

$$(A^{m})^{-1} = (A^{-1})^{m}$$
, m nguyên > 0.

(c) $\forall k \neq 0$ to có kA cũng khả đảo và $(kA)^{-1} = \frac{1}{L}A^{-1}.$

3.3.7. Định thức của tích hai ma trận

Định lí 3.3.5. Nếu A và B là hai ma trận vuông cùng cấp thì có det(AB) = det(A)det(B)

Xem chứng minh trong phần phụ lục cuối chương, mục 3.6.4.

Thí dụ 3.3.5. Cho

$$A = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} -1 & 3 \\ 5 & 8 \end{bmatrix}$$

Khi đó

$$AB = \begin{bmatrix} 2 & 17 \\ 3 & 14 \end{bmatrix}$$

Đồng thời

$$det(A) = 1$$
, $det(B) = -23$, $det(AB) = -23$

Vày đúng là

$$det(AB) = det(A)det(B)$$
.

3.3.8. Dịnh lí 3.3.6. Nếu $A \in \mathcal{M}_n$ khả đảo tức là có nghịch đảo A^{-1} thì $det(A) \neq 0$.

Chứng minh. Từ
$$AA^{-1} = I$$

ta áp dụng định lí 3.3.2 thì suy ra

$$\det(AA^{-1}) = \det(I)$$

 $\det(A) \det(A^{-1}) = 1$

Vậy phải có $det(A) \neq 0$. Cũng có $det(A^{-1}) \neq 0$.

- 3.3.9. Định lí 3.3.7. 1) Nếu B là ma trận vường cùng cấp với A sao cho BA = I thì A khả đảo và $B = A^{-I}$.
- 2) Nếu B là ma trận vuông cùng cấp với A sao cho AB = I thì A khả đảo và $B = A^{-1}$.

Chững minh phần 1). Vì BA = I nên

$$\det(BA) = \det(I)$$

$$\det(B) \det(A) = 1$$

Do đó det $(A) \neq 0$. Vậy A khả đảo và có nghịch đảo là A^{-1} . Nhân đẳng thức BA = I bên phải với A^{-1} ta có

$$(BA)A^{-1} = IA^{-1}$$
$$B(AA^{-1}) = A^{-1}$$

$$B = A^{-1}$$

Phần 2) Chứng minh tương tự.

BÀI TẬP: 3.23 - 3.28.

3.4. HÉ PHƯƠNG TRÌNH TUYẾN TÍNH

3.4.1. Dạng tổng quát của một hệ phương trình tuyến tính

Đó là một hệ m phương trình đại số bậc nhất đối với n ẩn số

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$
(3.4.1)

trong đó $x_1, x_2, ..., x_n$ là các ẩn số a_{ij} là hệ số ở phương trình thứ i của ẩn x_j b_i là về phải của phương trình thứ i

Khi m = n ta có một hệ vuông với n phương trình n ẩn.

Khi các $b_i = 0$, $\forall i$ ta có một hệ thuần nhất.

Thí du 3.4.1

$$\begin{cases} 2x_1 - 3x_2 + 4x_3 = 5 \\ 3x_1 + 2x_2 - 7x_3 = 6 \end{cases}$$

là một hệ 2 phương trình 3 ẩn;

$$\begin{cases} 2x_1 - 3x_2 = 5 \\ 3x_1 + 2x_2 = 6 \end{cases}$$

là một hệ hai phương trình 2 ẩn;

$$\begin{cases} 2x_1 - 5x_2 = 0 \\ 4x_1 + 6x_2 = 0 \end{cases}$$

là một hệ thuẩn nhất,

3.4.2. Dạng ma trạn của hệ phương trình tuyến tính

Xét hệ (3.4.1). Ma trận

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$
(3.4.2)

gọi là ma trận hệ số của hệ ; ma trận

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} = [b_1 \ b_2 \dots b_m]^{\mathsf{t}}$$

gọi là ma trận về phải (hay cột về phải) của hệ ; ma trận

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = [x_1 \ x_2 \ \dots \ x_n]^t$$

gọi là *ma trận ẩn* của hệ.

Với phép nhân ma trận với ma trận, hệ (3.4.1) viết

$$Ax = b \tag{3.4.3}$$

Đó là dạng ma trận của hệ (3.4.1).

3.4.3. Hé Cramer

Bây giờ xét hệ n phương trình n ẩn :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$
(3.4.4)

với ma trận hệ số

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$
 (3.4.5)

là một ma trận vuông cấp n.

Dạng ma trận của hệ vẫn là (3.4.3), chỉ khác ở chỗ Λ có dạng (3.4.5) và

$$b = [b_1 \ b_2 \ ... \ b_n]'$$

Hệ (3.4.3) ở đây viết lại là

$$Ax = b \tag{3.4.6}$$

Định nghĩa 3.4.1. Hệ (3.4.4) tức là (3.4.6) gọi là hệ Cramer nếu det $(A) \neq 0$.

Định lí 3.4.1. (Định lí Cramer). Hệ Cramer có nghiệm duy nhất tính bằng công thức $x = A^{-1}b$ tức là

$$x_{j} = \frac{\det(A_{j})}{\det(A)} \tag{3.4.7}$$

trong đó A là ma trận (3.4.5), A_j là ma trận suy từ A bằng cách thay cột thứ j bởi cột về phải b.

Chứng minh. Vì det $(A) \neq 0$ nên theo định lí 3.3.5, A có nghịch đảo:

$$A^{-1} = \frac{1}{\det(A)}C^t$$

Thay trong (3.4.6) x bởi $A^{-1}b$ ta có

$$A(A^{-1}b) = (AA^{-1})b = b$$

Vậy $x = A^{-1}b$ là nghiệm của hệ.

Sử dụng biểu thức của A^{-1} ở định lí 3.3.5 ta suy ra

$$x = A^{-1}b = \frac{1}{\det(A)} \begin{bmatrix} C_{11} & C_{21} & \dots & C_{n1} \\ C_{12} & C_{22} & \dots & C_{n2} \\ \dots & \dots & \dots & \dots \\ C_{1n} & C_{2n} & \dots & C_{nn} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

nghĩa là có

$$x_j = \frac{C_{1j}b_1 + C_{2j}b_2 + \dots + C_{nj}b_n}{\det(A)} = \frac{\det(A_j)}{\det(A)}.$$

Để chứng minh sự duy nhất của nghiệm ta giả sử hệ (3.4.6) có hai nghiệm là x và y:

$$Ax = b$$
 $Ay = b$

Bằng phép trừ vế với về ta được

$$Ax - Ay = 0$$

hay

$$A(x-y)=0$$

Nhân hai vế với A⁻¹ ta có

$$A^{-1}A(x-y) = A^{-1}0 = 0$$

 $(x-y) = 0$

nghĩa là cố x = y. Vậy hệ chỉ có một nghiệm.

Thí du 3.4.2. Giải hệ

$$\begin{cases} x_1 + 2x_3 = 6 \\ -3x_1 + 4x_2 + 6x_3 = 30 \\ -x_1 - 2x_2 + 3x_3 = 8 \end{cases}$$

Giải. Ta có

$$A = \begin{bmatrix} 1 & 0 & 2 \\ -3 & 4 & 6 \\ -1 & -2 & 3 \end{bmatrix}, \qquad b = \begin{bmatrix} 6 \\ 30 \\ 8 \end{bmatrix}$$

Váy

$$A_{1} = \begin{bmatrix} 6 & 0 & 2 \\ 30 & 4 & 6 \\ 8 & -2 & 3 \end{bmatrix}, \qquad A_{2} = \begin{bmatrix} 1 & 6 & 2 \\ -3 & 30 & 6 \\ -1 & 8 & 3 \end{bmatrix},$$

$$A_{3} = \begin{bmatrix} 1 & 0 & 6 \\ -3 & 4 & 30 \\ -1 & -2 & 8 \end{bmatrix}$$

Ta tính dược

$$\det(A) = 44 \neq 0$$

$$\det(A_1) = -40$$
, $\det(A_2) = 72$, $\det(A_3) = 152$

Ta suy ra các nghiệm của hệ đã cho:

$$x_1 = -\frac{40}{44} = -\frac{10}{11}, \ x_2 = \frac{72}{44} = \frac{18}{11}, \ x_3 = \frac{152}{44} = \frac{38}{11}.$$

3.4.4. Giải hệ phương trình tuyến tính bằng biến đổi sơ cấp

Xét hệ phương trình tuyến tính ở dạng phương trình (3.4.4) và ở dạng ma trận (3.4.6) trong đó A là ma trận (3.4.5).

a) Hệ tam giác trên. Đó là hệ

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ & \dots \\ a_{nn}x_n = b_n \end{cases}$$

với ma trận hệ số là một ma trận tam giác trên

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ & a_{22} & \dots & a_{2n} \\ & & & \ddots \\ & & & a_{nn} \end{bmatrix}$$

Với giả thiết $a_{ii} \neq 0$, việc giải nó từ dưới lên rất đơn giản : phương trình cuối cho ngay x_n , phương trình liền trên cho x_{n-1} , vân vân, phương trình đầu cho x_1 .

b) Ta viết ma trận A và cạnh nó là vecto b, ta được ma trận chữ nhật [A, b]. Ta áp dụng các biến đổi sơ cấp về hàng (xem 3.3.9) vào ma trận [A, b] để đưa dần ma trận A về dạng tam giác. Ta nhận thấy :

Phép biến đổi sơ cấp nhân một hàng với một số khác không ứng với phép nhân một phương trình của hệ với một số khác không, nó không làm thay đổi nghiệm của hệ.

Phép đổi chỗ hai hàng ứng với phép đổi vị trí của hai phương trình không làm thay đổi nghiệm của hệ.

Cuối cùng, phép cộng bội k của một hàng vào một hàng khác ứng với phép cộng bội k của một phương trình vào một phương trình khác cũng không làm thay đổi nghiệm của hệ.

Vậy hệ tam giác cuối cùng thu được tương đương với hệ đã cho. Giải hệ này – điều này không khó – từ đưới lên ta thu được nghiệm của hệ đã cho.

Thí dụ 3.4.3. Xét hệ

$$\begin{cases} 2x_1 + 4x_2 + 3x_3 = 4 \\ 3x_1 + x_2 - 2x_3 = -2 \\ 4x_1 + 11x_2 + 7x_3 = 7 \end{cases}$$

Ta suy ra

$$A = \begin{bmatrix} 2 & 4 & 3 \\ 3 & 1 & -2 \\ 4 & 11 & 7 \end{bmatrix}, \qquad b = \begin{bmatrix} 4 \\ -2 \\ 7 \end{bmatrix}$$

Áp dụng các phép biến đổi sơ cấp về hàng để đưa ma trận A về dạng tam giác ta có

2	4	3	4
3	1	-2	-2
4	11	7	7
2	4	3	4
	-5	-6,5	-8
	3	1	-1
2	4 -5	3 -6,5 -2,9	4 -8 -5,8

Vậy hệ đã cho tương đương với hệ tam giác trên

$$2x_1 + 4x_2 + 3x_3 = 4$$
$$-5x_2 - 6.5x_3 = -8$$
$$-2.9x_3 = -5.8$$

Giải hệ tam giác trên này từ đười lên ta thu được

$$x_3 = 2, x_2 = -1, x_1 = 1$$

Đó cũng là nghiệm của hệ đã cho.

Phương pháp vừa trình bày còn có tên là phương pháp Gauss.

3.4.5. Phương pháp Gauss - Jordan

Sau khi đưa ma trận về ma trận tam giác trên ta tiếp tục áp dụng các biến đổi sơ cấp để đưa ma trận tam giác trên về ma trận đơn vị. Trở lại thí dụ 3.4.3 ở trên, ta có

2	4	3	4
	-5	-6,5	-8
		-2,9	-5,8
1	2	1,5	2
	1	1,3	1,6
		1	2
1	2	0	-1
	1	0	-1
		1	2
1	0	0	. 1
	1	0	-j
		1	2

Kết quả ta được hệ chéo:

$$x_1 = 1$$

$$x_2 = -1$$

$$x_3 = 2$$

Do đó có ngay kết quả

$$x_1 = 1$$
, $x_2 = -1$, $x_3 = 2$

3.4.6. Áp dụng phương pháp Gauss – Jordan tính ma trận nghịch đảo

Muốn tính ma trận nghịch đảo của ma trận vương $A = [a_{ij}]$, theo định lí 3.3.6 ta chỉ cần tìm ma trận $B = [b_{ij}]$ sao cho AB = I, khi đó $B = A^{-1}$.

Để cho đơn giản cách viết ta xét trường hợp ma trận cấp ba:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Ta phải tìm ma trận

$$B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

sao cho AB = I:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Như vậy các cột B_1 , B_2 , B_3 thỏa mãn

$$AB_1 = I_1, AB_2 = I_2, AB_3 = I_3$$

Đó là ba hệ đại số tuyến tính có chung ma trận hệ số là A. Ta sẽ giải chúng bằng phương pháp Gauss – Jordan trong cùng một bằng.

Quy tắc thực hành: Muốn tính ma trận nghịch đảo A^{-1} của ma trận A bằng các phép biến đổi sơ cấp về hàng ta làm như sau:

- 1) Viết ma trận đơn vị I bên cạnh ma trận A.
- 2) Ấp dụng các phép biến đổi sơ cấp về hàng để đưa dẫn ma trận A về ma trận đơn vị I, tác động đồng thời phép biến đổi sơ cấp vào cột ma trận I.
- 3) Khi A dã được biến đổi thành I thì I trở thành ma trận nghịch đảo A^{-1}

Thí dụ 3.4.4. Xét ma trận

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$

Toàn bộ quá trình tính toán có thể ghi tóm tắt thành một bảng như sau :

1	2	3	1	0	0	L_1
2	5	3	0	1	0	L_2
1	0	8	0	0	1	L_3
1	2	3	1	0	0	_
0	1	-3	-2	1	0 1	$-2L_1+L_2\to L_2$
0	-2	5	-1	0	1	$-1L_1 + L_3 \rightarrow L_3$
1	2	3	1	0	0	
0	1	-3	-2	1	0	
0	0	-1	-5	2)	$2L_2+L_3\to L_3$
1	2	3	1	0	0	
				1	0	
0	1	-3	-2	1	U	
0	1 0	-3 1	-2 5	-2	-1	$-1L_3 \rightarrow L_3$
1	1 0 2		-2 5 -14			
0		1		-2 	-1	$-1L_3 \rightarrow L_3$ $-3L_3 + L_1 \rightarrow L_1$ $3L_3 + L_2 \rightarrow L_2$
0	2	0	-14	-2 6	- <u>!</u> 3	$-3L_3+L_1\to L_1$
1 0	2	0 0	-14 13	-2 6 -5	$\frac{-1}{3}$	$ \begin{array}{c} -3L_3 + L_1 \rightarrow L_1 \\ 3L_3 + L_2 \rightarrow L_2 \end{array} $
0 0 0	2 1 0	0 0 1	-14 13 5 -40	-2 6 -5 -2	-1 3 -3 -1 9	$-3L_3+L_1\to L_1$
0 0 0	2 1 0	0 0 1	-14 13 5	-2 6 -5 -2 16	-1 3 -3 -1	$ \begin{array}{c} -3L_3 + L_1 \rightarrow L_1 \\ 3L_3 + L_2 \rightarrow L_2 \end{array} $

Vậy

$$A^{-1} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix}$$

3.4.7. Hệ thuần nhất (n phương trình n ẩn)

Xét hệ thuần nhất

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0 \end{cases}$$
(3.4.8)

Ma trân hệ số vẫn là (3.4.5)

Hệ có dạng ma trận

$$Ax = 0 \tag{3.4.9}$$

Vế phải là ma trận không, cỡ $n \times 1$.

Hệ thuần nhất (3.4.8) tức là (3.4.9) luôn có nghiệm không:

$$x = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = [0 \ 0 \ \dots \ 0]^{t}$$

vì khi thay $x_1 = 0$, $x_2 = 0$, ..., $x_n = 0$ vào vế trái của (3.4.8) thì các phương trình đó thòa mẫn.

Nghiệm không của hệ thuần nhất gọi là nghiệm tầm thường của nó.

Một câu hỏi đặt ra là : Khi nào hệ thuần nhất (3.4.8) có nghiệm không tầm thường. Ta có

Định lí 3.4.2. Hệ thuần nhất (3.4.8) có nghiệm không tầm thường khí và chỉ khi det (A) = 0.

Chứng minh. Nếu det $(A) \neq 0$ thì theo định lí 3.4.1 nó có nghiệm duy nhất, nên chi có nghiệm tầm thường.

Nếu det (A) = 0 thì bằng biến đổi sơ cấp về hàng và bằng cách đánh số lại các ẩn tức là đổi chỗ các cột ta có thể đưa ma trận A về đang tam giác trên

$$\begin{bmatrix} a'_{11} & a'_{12} & \dots & a'_{1r} & a'_{1r+1} & \dots & a'_{1n} \\ a'_{22} & \dots & a'_{2r} & a'_{2r+1} & \dots & a'_{2n} \\ & \dots & \dots & \dots & \dots & \dots \\ & & a'_{rr} & a'_{rr+1} & \dots & a'_{rn} \\ & & & 0 & \dots & 0 \\ & & & & 0 \end{bmatrix}$$

trong đó $a'_{ii} \neq 0$, i = 1, 2, ..., r. Nếu r = n thì det $(A) = \pm a'_{11} ... a'_{nn} \neq 0$. Điều này trái giả thiết det (A) = 0. Vậy r < n. Về phải vẫn toàn là số không. Vậy hệ tam giác trên thuần nhất, tương đương với hệ đã cho, sẽ có số phương trình ít hơn số ẩn, nên nó có vô số nghiệm. Cho nên ngoài nghiệm tầm thường ra nó phải có nghiệm không tầm thường.

Thí dụ 3.4.5. Hệ

$$\begin{cases} 2x_1 + 3x_2 = 0 \\ 3x_1 + 4x_2 = 0 \end{cases}$$

có định thức

$$\begin{vmatrix} 2 & 3 \\ 3 & 4 \end{vmatrix} = -1 \neq 0$$

nên chỉ có nghiệm tầm thường $x_1 = 0, x_2 = 0$.

Hệ
$$\begin{cases} 2x_1 + 3x_2 = 0 \\ 4x_1 + 6x_2 = 0 \end{cases}$$

có định thức

$$\begin{vmatrix} 2 & 3 \\ 4 & 6 \end{vmatrix} = 0$$

nên có nghiệm không tầm thường chẳng hạn $x_1 = 3$, $x_2 = -2$. Thật ra hai phương trình đó chỉ là một. Cho $x_1 = 3$ ta tìm ra $x_2 = -2$.

Kết quả tóm tát

Trong trường hợp m = n, ta có kết quả tóm tắt sau :

Các mệnh để sau tương đương:

- (a) det $(A) \neq 0$.
- (b) A khả đảo.
- (c) Hệ Ax = b có nghiệm duy nhất với mọi b.
- (d) Hệ Ax = 0 chỉ có nghiệm tầm thường.

BÀI TÂP: 3.29 - 3.41.

3.5. HẠNG CỦA MA TRẬN – HỆ PHƯƠNG TRÌNH TUYẾN TÍNH TỔNG QUÁT

3.5.1. Hang của ma trân

Xét ma trân cỡ $m \times n$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Gọi p là một số nguyên dương không lớn hơn min $\{m, n\}$.

Định nghĩa 3.5.1. Ma trận vuông cấp p suy từ A bằng cách bỏ đi m - p hàng và n - p cột gọi là ma trận con cấp p của A.

Định thức của ma trận con đó gọi là định thức con cấp p của A.

Thí dụ 3.5.1. Xét ma trận cỡ 3×4

$$A = \begin{bmatrix} 1 & -3 & 4 & 2 \\ 2 & 1 & 1 & 4 \\ -1 & -2 & 1 & -2 \end{bmatrix}.$$

Ta có min $\{3, 4\} = 3$, do dó p = 1, 2, 3.

Các định thức con cấp ba của A là

$$\begin{vmatrix} 1 & -3 & 4 \\ 2 & 1 & 1 \\ -1 & -2 & 1 \end{vmatrix} = 0 \qquad \begin{vmatrix} 1 & 4 & 2 \\ 2 & 1 & 4 \\ -1 & 1 & -2 \end{vmatrix} = 0$$
$$\begin{vmatrix} -3 & 4 & 2 \\ 1 & 1 & 4 \\ -2 & 1 & -2 \end{vmatrix} = 0 \qquad \begin{vmatrix} 1 & -3 & 2 \\ 2 & 1 & 4 \\ -1 & -2 & -2 \end{vmatrix} = 0$$

Các định thức con cấp hai của A là

$$\begin{vmatrix} 1 & -3 \\ 2 & 1 \end{vmatrix} = 7 \qquad \begin{vmatrix} 1 & -3 \\ -1 & -2 \end{vmatrix} = -5 \qquad \text{v.v.}$$

Định nghĩa 3.5.2. Hạng của ma trận A là cấp cao nhất của các định thức con khác không của A.

Ta kí hiệu hang của ma trận A là $\rho(A)$.

Thí dụ 3.5.2. Xét ma trận A ở thí dụ 3.5.1. Các định thức con cấp ba đều bằng không, nhưng có dịnh thức con cấp hai khác không. Vậy $\rho(A) = 2$.

Vì với mọi ma trận vuông B ta có $det(B^t) = det(B)$ nên có

Chú ý 3.5.1.
$$\rho(A^{t}) = \rho(A).$$

3.5.2. Cách tính hạng của ma trận bằng biến đổi sơ cấp về hàng

- a) Ma trận bác thang : Đó là những ma trân có 2 tính chất :
- Các hàng khác không (tức là có phần từ ≠ 0) luôn ở trên các hàng không (tức là có tất cả các phần từ = 0).

2) Trên hai hàng khác không thì phần từ khác không đầu tiên ở hàng dưới bao giờ cũng ở bên phải cột chứa phần từ khác không đầu tiên ở hàng trên. Chẳng hạn, các ma trận sau có dạng bậc thang:

$$A = \begin{bmatrix} 1 & -3 & 0 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -3 & 0 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$

Ta thấy rằng ở ma trận A, định thức con khác không cấp cao nhất là 3, vậy $\rho(A) = 3$, nó bằng số hàng khác không của A, còn ở ma trận B, định thức con khác không cấp cao nhất là 2, vậy $\rho(B) = 2$, nó bằng số hạng khác không của B.

Nói chung ta có nhân xét sau:

- Chú ý 3.5.2. Hạng của một ma trận có dạng bậc thang bằng số hàng khác không của nó.
- b) Bây giờ vì các phép biến đổi sơ cấp về hàng (xem 3.3.2, 3.3.9) không làm thay đổi tính khác không hay bằng không của các định thức con của một ma trận, nên không thay đổi hạng của ma trận. Vì vậy ta có thể áp dụng chúng để đưa một ma trận về dạng bậc thang rồi áp dụng chú ý 3.5.2 mà suy ra hạng của ma trận đã cho.

Thí dụ 3.5.3. Xét ma trận

$$A = \begin{bmatrix} 1 & -3 & 4 & 2 \\ 2 & 1 & 1 & 4 \\ -1 & -2 & 1 & -2 \end{bmatrix}$$

Các biến đổi sơ cấp về hàng cho

1 2 -1	-3 1 -2	4 1 1	2 4 -2
1	-3	4	2
0	7	-7	0
0	-5	5	0
1	-3	4	2
0	7	-7	0
0	0	. 0	0

Bảng số cuối cùng là một ma trận ở dạng bậc thang có hai hàng khác không. Vây $\rho(A) = 2$.

3.5.3. Hệ phương trình tuyến tính tổng quát

Bay giờ xét hệ phương trình tuyến tính tổng quát (3.4.1). Ma trận hệ số của nó là ma trận A ở (3.4.2). Xét ma trận bổ sung tức là ma trận A thêm cột b:

$$\overline{A} = [A, b] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \dots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$

Định lí 3.5.1. (Định lí Kronecker – Capelli). Hệ (3.4.1), tức là hệ Ax = b, có nghiêm khi và chỉ khi

$$\rho(\overline{A}) = \rho(A)$$

Chứng mình. Bằng các biến đổi sơ cấp về hàng và bằng cách đánh số lại các ẩn tức là đổi chỗ các cột ta đưa ma trận \overline{A} về dạng bậc thang:

$$a'_{11} \ a'_{12} \dots a'_{1r} \ a'_{1r+1} \dots a'_{1n} \ b'_{1}$$

$$a'_{22} \dots a'_{2r} \ a'_{2r+1} \dots a'_{2n} \ b'_{2}$$

$$\vdots$$

$$a'_{rr} \ a'_{rr+1} \dots a'_{rn} \ b'_{r}$$

$$0 \dots 0 \ b'_{r+1}$$

$$0 \ b'_{m}$$

$$(3.5.1)$$

trong đó $r \le \min\{m, n\}$. Từ đó ta suy ra định lí 3.5.1.

Chú ý 3.5.3. Từ định lí 3.5.1 ta suy ra:

$$\rho(\overline{A}) \neq \rho(A)$$
 thì hệ vô nghiệm
$$\rho(\overline{A}) = \rho(A) = n$$
 thì hệ có nghiệm duy nhất
$$\rho(\overline{A}) = \rho(A) < n$$
 thì hệ có vô số nghiệm.

Giả sử $\rho(A) = \rho(A) = r$. Ta giải hệ (3.4.1) như sau:

Vì $\rho(A) = \rho(A) = r$ nên tồn tại một định thức con khác 0 cấp r của A, ta gọi nó là định thức con chính. Các phần tử của định thức con chính nằm ở r phương trình, gọi là các phương trình chính, và là hệ số của r ẩn, gọi là r ẩn chính. Các ẩn còn lại gọi là ẩn phụ. Cà hệ tương đương với hệ mới gồm r phương trình chính, gọi là hệ con chính. Trong hệ con chính ta chuyển các ẩn phụ sang về phải, ta được một hệ con có r phương trình đối với r ẩn chính. Giải hệ con đó đối với các ẩn chính ta được nghiệm của hệ phụ thuộc về phải và các ẩn phụ. Khi r = n thì không có ẩn phụ.

Nếu đã đưa được ma trận \overline{A} về đạng bậc thang (3.5.1) thì nên lây định thức con chính là

$$\begin{bmatrix} a'_{11} & a'_{12} & \dots & a'_{1r} \\ & a'_{22} & \dots & a'_{2r} \\ & & \dots & & & \\ & & & a'_{rr} \end{bmatrix}$$

Khi đó hệ con chính là một hệ tam giác trên, để giải.

Thí du 3.5.4. Xét hè phương trình

$$\begin{cases} x_1 + 2x_2 + ax_3 = 3\\ 3x_1 - x_2 - ax_3 = 2\\ 2x_1 + x_2 + 3x_3 = b \end{cases}$$
 (3.5.2)

- 1) Hãy xác định a và b để hệ có nghiệm duy nhất.
- 2) Xác định a và b để hệ có vô số nghiệm.
- 3) Xác định a và b để hệ vô nghiệm.

Giải. Xét các ma trận

$$A = \begin{bmatrix} 1 & 2 & a \\ 3 & -1 & -a \\ 2 & 1 & 3 \end{bmatrix}, \qquad \overline{A} = \begin{bmatrix} 1 & 2 & a & 3 \\ 3 & -1 & -a & 2 \\ 2 & 1 & 3 & b \end{bmatrix}$$

Ta có
$$\det(A) = \begin{vmatrix} 1 & 2 & a \\ 3 & -1 & -a \\ 2 & 1 & 3 \end{vmatrix} = 2a - 21$$

- 1) Điều kiện cần và dù để hệ đã cho (3.5.2) có nghiệm duy nhất là det $(A) \neq 0$. Vày đấp số của cấu hỏi 1) là $a \neq 21/2$, còn b bất kì.
- 2) Từ kết luận trên ta suy ra: muốn cho hệ (3.5.2) có vô số nghiệm, trước hết phải có a = 21/2.

Khi đó det(A) = 0 nên $\rho(A) < 3$. Vì A có định thức con

$$\begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} = -1 - 6 = -7 \neq 0$$

là định thức cấp 2 nên $\rho(A) = 2$ khi a = 21/2. Theo định lí 3.5.1 (Kronecker – Capelli), muốn cho hệ có nghiệm cần và dù là $\rho(\overline{A}) = \rho(A) = 2$. Ta hãy tính $\rho(\overline{A})$ khi a = 21/2 bằng biến đổi sơ cấp. Ta có

$$\bar{A} = \begin{bmatrix}
1 & 2 & 21/2 & 3 \\
3 & -1 & -21/2 & 2 \\
2 & 1 & 3 & b
\end{bmatrix}
\xrightarrow{2L_1 \to L_1 \atop 2L_2 \to L_2}
\xrightarrow{\begin{bmatrix}
2 & 4 & 21 & 6 \\
6 & -2 & -21 & 4 \\
2 & 1 & 3 & b
\end{bmatrix}}
\xrightarrow{-3L_1 + L_2 \to L_2 \atop -L_1 + L_3 \to L_3}$$

$$\begin{bmatrix}
2 & 4 & 21 & 6 \\
0 & -14 & -84 & -14 \\
0 & -3 & -18 & b - 6
\end{bmatrix}
\xrightarrow{-\frac{1}{14}L_2 \to L_2 \atop 0 & -3 & -18 & b - 6
\end{bmatrix}}
\xrightarrow{\begin{bmatrix}
2 & 4 & 21 & 6 \\
0 & 1 & 6 & 1 \\
0 & -3 & -18 & b - 6
\end{bmatrix}}$$

$$\xrightarrow{-3L_1 + L_2 \to L_2 \atop -L_1 + L_3 \to L_3}
\xrightarrow{-L_1 + L_2 \to L_3}
\xrightarrow{\begin{bmatrix}
2 & 4 & 21 & 6 \\
0 & 1 & 6 & 1 \\
0 & 0 & 0 & b - 3
\end{bmatrix}}$$

Qua bảng cuối cùng này ta thấy rằng số bàng khác không của A là 2, phù hợp với kết quả $\rho(A) = 2$ khí a = 21/2. Số bàng khác không của \overline{A} phụ thuộc b. Nó là 2 nếu b = 3 và là 3 nếu $b \neq 3$. Vậy cố

$$\rho(\overline{A}) = \rho(A) = 2 \text{ khi } a = 21/2, \quad b = 3$$

$$\rho(\overline{A}) \neq \rho(A) \qquad \text{khi } a = 21/2, \quad b \neq 3$$

Khi $\rho(\widetilde{A}) = \rho(A) = 2 < 3$ thì hệ đã cho tương đương với một hệ 2 phương trình 3 ẩn.

$$\begin{cases} x_1 + 2x_2 + \frac{21}{2}x_3 = 3 \\ 3x_1 - x_2 - \frac{21}{3}x_3 = 2 \end{cases}$$

nên πό có vô số nghiệm.

Tóm lại (xem thêm chú ý 3.5.3):

$$a = 21/2$$
 thì hệ có nghiệm duy nhất $a = 21/2$, $b = 3$ thì hệ vô nghiệm $a = 21/2$, $b = 3$ thì hệ có vô số nghiệm

BÀI TÂP: 3.42 ~ 3.45

3.6. PHŲ LŲC

3.6.1. Chứng mình dịnh lí 3.1.2: Cho hai ma trận A và B sao cho có thể nhân AB. Khi đó ta có

$$(AB)^t = B^t A^t \tag{3.6.1}$$

Chứng minh. Xét

$$A = [a_{ii}]_{m \times n}, B = [b_{ii}]_{n \times n}$$

thì có thể nhân AB và

$$AB = C = [c_{ij}]_{m \times p}$$
 trong đó $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$

Khi đó ta có

$$A^t = [a_{ij}^t]_{n \times m}$$
 trong đó $a_{ij}^t = a_{ji}$

$$B' = [b_{ij}^t]_{p \times n}$$
 trong đó $b_{ij}^t = b_{ji}$

$$C^t = [c_{ij}^t]_{p \times m}$$
 trong đó $c_{ij}^t = c_{ji} = \sum_{k=1}^n a_{jk} b_{ki}$

Do đó có thể nhân B'A' :

$$B^{\prime}A^{\prime} = D = [d_{ij}]_{p \times m}$$
 trong đó $d_{ij} = \sum_{k=1}^{n} b_{ik}^{\prime} a_{kj}^{\prime}$

Ta nhận thấy

$$d_{ij} = \sum_{k=1}^{n} b_{ki} a_{jk} = \sum_{k=1}^{n} a_{jk} b_{ki} = c_{ji} = c_{ij}^{t}$$

Vậy có

$$B^t A^t = C^t = (AB)^t$$

tức là (3.6.1).

3.6.2. Chứng minh tính chất 1 của định thức :

$$\det(A^{\prime}) = \det(A) \tag{3.6.2}$$

Trước hết ta chứng minh một bổ đề, bổ đề 3.6.1 dưới đây, đó chính là công thức (3.2.2) ở mục 3.2.2.

Bổ đề 3.6.1 :

$$\det(A) = a_{11} \det(M_{11}) - a_{21} \det(M_{21}) + \dots + (-1)^{n+1} a_{n1} \det(M_{n1})$$
(3.6.3)

Đây là công thức khai triển định thức det (A) theo côt một.

Chứng minh

 M_{ij} ký hiệu ma trận suy từ A bằng cách bỏ đi hàng i, cột j; M_{ij}^{kl} ký hiệu ma trận suy từ A bằng cách bỏ đi hàng i, hàng k, cột j, cột l;

$$\Delta := \det(A) \; ; \; \Delta_{ij} := \det(M_{ij}) \; ; \; \Delta_{ij}^{kl} := \det(M_{ij}^{kl}) \;$$

Ta chứng minh công thức (3.6.3) bằng phương pháp quy nạp toán học.

Rỗ ràng nó đúng với định thức cấp 1 và cấp 2. Bây giờ giả sử (3.6.3) đúng với định thức cấp n-1, n>2. Theo (3.2.1) ta có

$$\Delta = a_{11}\Delta_{11} + \sum_{i=2}^{n} (-1)^{1+j} a_{1j}\Delta_{1j}$$

Áp dụng (3.6.3) vào các định thức Δ_{1j} cấp n-1 ta được

$$\Delta = a_{11}\Delta_{11} + \sum_{j=2}^{n} (-1)^{1+j} a_{1j} (\sum_{k=2}^{n} (-1)^{k+1} a_{k1}\Delta_{1j}^{k1})$$

$$\Rightarrow \Delta = a_{11}\Delta_{11} + \sum_{j=2}^{n} \sum_{k=2}^{n} (-1)^{k+j} a_{1j} a_{k1} \Delta_{1j}^{k1}$$

$$\Rightarrow \Delta = a_{11}\Delta_{11} + \sum_{k=2}^{n} (-1)^{k+1} a_{k1} (\sum_{j=2}^{n} (-1)^{1+j} a_{1j} \Delta_{1j}^{k1})$$

$$\Rightarrow \Delta = a_{11}\Delta_{11} + \sum_{k=2}^{n} (-1)^{k+1} a_{k1} \sum_{j=2}^{n} \Delta_{k1} \Rightarrow (3.6.3)$$

Bày giờ ta chứng minh công thức (3.6.2).

Rỗ ràng nó đúng với ma trận cấp 1. Bây giờ giả sử nó còn đúng đến ma trận cấp n-1, n>1. Xét A là ma trân cấp n. Theo (3.2.1) ta có

$$\det(A) = a_{11} \det(M_{11}) - a_{12} \det(M_{12}) + \dots + (-1)^{1+n} \det(M_{1n})$$

Vậy theo giả thiết quy nạp thì

$$\det(A) = a_{11} \det(M_{11}^t) - a_{12} \det(M_{12}^t) + \dots + (-1)^{1+n} \det(M_{1n}^t)$$

Vế phải của đẳng thức trên chính là khai triển của $\det(A^t)$ theo cột 1. Vậy áp dụng bổ đề 3.6.1 ta suy ra (3.6.2).

3.6.3. Chứng minh tính chất 2 của định thức:

Đổi chỗ hai hàng (hay hai cột) của một định thức ta được một định thức mới bằng định thức cũ đổi đấu.

Bổ đề 3.6.2. Đổi chỗ hai hàng liên tiếp thì định thức đổi dấu.

Chứng minh. Rỗ ràng bổ đề đúng với định thức cấp 2. Bảy giờ giả sử nó còn đúng với định thức cấp n-1, n>2.

Gọi $A = [a_{ij}]$ là ma trận cấp n, $\Delta_{ij} = \det(M_{ij})$;

Gọi $A' = [a'_{ij}]$ là ma trận suy từ A sau khi đổi chỗ hai hàng liên tiếp $k, k+1, \Delta'_{ij} = \det(M'_{ij})$;

Khai triển det(A') theo cột một ta có

$$d \cap (A') = \sum_{i=1}^{n} (-1)^{i+1} a'_{i1} \Delta'_{i1}$$

trong đó Δ_{i1} là các định thức cấp n-1, đồng thời

khí
$$i = k$$
 thì $a'_{k} = a_{(k+1)1} \Rightarrow \Delta'_{k1} = -\Delta_{(k+1)1}$
khí $i = k+1$ thì $a'_{(k+1)1} = a_{k1} \Rightarrow \Delta'_{(k+1)1} = -\Delta_{k1}$
khí $i = k, k+1$ thì $a'_{i+1} = a_{i+1} \Rightarrow \Delta'_{i+1} = -\Delta_{i+1}$
 $a'_{(i+1)1} = a_{(i+1)1} \Rightarrow \Delta'_{(i+1)1} = -\Delta_{(i+1)1}$

Do dó

$$\det(A') = \sum_{i=1}^{n} (-1)^{i+1} a'_{i1} \Delta'_{i1} = -\sum_{i=1}^{n} (-1)^{i+1} a_{i1} \Delta_{i1} = -\Delta$$

nghĩa là bổ đề 3.6.2 được chứng minh.

Bây giờ muốn đổi chỗ hai hàng bất kì s và r (r > s + 1) trước hết ta đưa hàng r đến hàng s bằng r - s lần đổi chỗ hai hàng liên tiếp. Khi đó hàng s cũ chiếm vị trí hàng s + 1, ta đưa nó đến vị trí hàng r cũ bằng r - s - 1 lần đổi chỗ hai hàng liên tiếp. Vậy muốn đổi chỗ hai hàng bất kì s và r, (r > s + 1) ta phải thực hiện 2(r - s) - 1 lần đổi chỗ hai hàng liên tiếp. Do đó theo bổ đề 3.6.2, định thức đổi dấu 2(r - s) - 1 lần, tức là một số lễ lần. Vậy định thức mới bằng định thức cũ đổi dấu.

3.6.4. Chứng minh định lí 3.3.5 :

A và B là hai ma trận vuông cùng cấp. Khi đó

$$\det(AB) = \det(A)\det(B) \tag{3.6.4}$$

Chứng minh này chia làm nhiều bước :

(i) Ma trận sơ cấp và phép biến đổi sơ cấp về hàng của ma trận.

Có ba phép biến đổi sơ cấp về hàng của ma trận A và ba ma trận sơ cấp thực hiện chúng :

1. Phép nhân (các phần tử của) hàng r với số $\lambda \neq 0$, thực hiện bởi phép nhân bên trái ma trân A với ma trân

Ma trận này suy từ ma trận đơn vị bằng cách nhân phần tử chéo $a_{rr} = 1$ với λ .

Ma trận $F(r, \lambda)$ gọi là ma trận sơ cấp loại 1.

Thi du 3.6.1.

$$\begin{bmatrix} 1 & & \\ & \lambda & \\ & & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 2\lambda & 2\lambda & 2\lambda \\ 3 & 3 & 3 \end{bmatrix}$$

Ta nhận thấy

$$\det(F(r,\lambda)) = \lambda \neq 0.$$

Do đó F(r, r) khả nghịch và ma trận nghịch đảo

$$(F(r,\lambda))^{-1} = F(r,\frac{1}{\lambda})$$

thuộc cùng loại với $F(r, \lambda)$.

Hơn nữa, phép nhân bên phải A với $F(r,\lambda)$ thực hiện phép nhân cột r của A với λ .

2. Phép đổi chỗ hai hàng r và s, thực hiện bởi phép nhân bên trái ma trân A với ma trân

$$P(r,s) = \begin{bmatrix} 1 & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

Ma trận này suy từ ma trặn đơn vị bằng cách đổi chỗ hai hàng r và s. Ma trận P(r, s) gọi là ma trận sơ cấp loại 2.

Thí dụ 3.6.2.

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 \\ 1 & 1 & 1 \\ 3 & 3 & 3 \end{bmatrix}$$

Ta nhận thấy

$$\det(P(r,s)) = -1$$

Do đó P(r, s) khả nghịch và ma trận nghịch đảo

$$(P(r,s))^{-1} = P(r,s)$$

thuộc cùng loại với P(r, s).

Hơn nữa, phép nhân bên phải A với P(r, s) thực hiện phép đổi chỗ hai cột r và s của A.

3. Cộng λ lần hàng r với hàng s, thực hiện bởi phép nhân bên trái ma trận A với ma trận

$$Q(r, \lambda, s) = \begin{bmatrix} 1 & & & & & \\ & 1 & & & & \\ & & 1 & & & \\ & & & 1 & & \\ & & \lambda & & & 1 \\ & & & & 1 \\ & & & & & 1 \end{bmatrix}$$
 hàng s

Ma trận này suy từ ma trận đơn vị bằng cách thay $a_{sr} = 0$ bởi số λ .

Ma trận $Q(r, \lambda, s)$ gọi là ma trận sơ cấp loại 3.

Thí du 3.6.3.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \lambda & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{bmatrix} = \begin{bmatrix} a & b & c \\ a' & b' & c' \\ \lambda a + a'' & \lambda b + b'' & \lambda c + c'' \end{bmatrix}$$

Ta nhận thấy

$$\det(Q(r,\lambda,s))=1$$

Do đó $Q(r, \lambda, s)$ khả nghịch và ma trận nghịch đảo

$$(Q(r, \lambda, s))^{-1} = Q(r, -\lambda, s)$$

thuộc cùng loại với $Q(r, \lambda, s)$.

Hơn nữa, phép nhân bên phải A với $Q(r, \lambda, s)$ thực hiện phép cộng λ lần cột r với cột s của A.

(ii) Bổ để 3.6.3. Nếu A là một ma trận vuông thì tồn tại một số hữu hạn ma trận sơ cấp F_i , i = 1, 2, ..., k để

$$A = F_1 F_2 ... F_k U, (3.6.5)$$

trong đó U là một ma trận tam giác trên với

$$u_{ii} \neq 0, 1 \le i \le k, k \le n.$$
 (3.6.6)

Chứng minh. Bằng một số hữu hạn phép biến đổi sở cấp về hàng ta dưa ma trận A về ma trận tam giác trên U thỏa mãn (3.6.6), nghĩa là tồn tại một số hữu hạn ma trận sơ cấp $E_1, E_2,...,E_m$ để

$$E_m E_{m-1} \dots E_1 A = U.$$

Do đó áp dụng định lí 3.3.3 ta suy ra

$$A = E_1^{-1} E_2^{-1} ... E_m^{-1} U.$$

Đặt $E_i^{-1} = F_i$ thì F_i là ma trận sơ cấp cùng loại với E_i và

$$A = F_1 F_2 ... F_m U.$$

Vậy ta được kết luận của bổ đề.

Thi du 3.6.4. Cho ma trận

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix} \begin{bmatrix} L_1 \\ L_2 \\ L_3 \end{bmatrix}$$

Ta thực hiện các phép biến đổi sơ cấp về hàng như sau :

$$L_{1} := L_{1}$$

$$L_{2} := -2L_{1} + L_{2} \Rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -3 \\ 1 & 0 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A = E_{1}A = A_{1}$$

$$E_{1}$$

$$L_{1} := L_{1}$$

$$L_{2} := L_{2}$$

$$L_{3} := -1L_{1} + L_{3}$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -3 \\ 0 & -2 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$A_{1} = E_{2}A_{1} = A_{2}$$

$$E_{3}$$

$$L_{1} := L_{1}$$

$$L_{2} := L_{2} \Rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -3 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

$$A_{2} = E_{3}A_{2} = A_{3}$$

$$E_{3}$$

$$L_{1} := L_{1}$$

$$L_{2} := L_{2} \Rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} A_{3} = E_{4}A_{3} = A_{4}$$

$$-1L_{3} := L_{3}$$

trong đó E_1 , E_2 , E_3 , E_4 là các ma trận sơ cấp.

Đặt

$$U = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix}$$

ta có

$$U = A_4 = E_4 A_3 = E_4 E_3 A_2 = E_4 E_3 E_2 A_1 = E_4 E_3 E_2 E_1 A.$$

Do dó

$$A = E_1^{-1} E_2^{-1} E_3^{-1} E_4^{-1} U.$$

Vậy

$$A = F_1 F_2 F_3 F_4 U, \quad F_i = E_i^{-1}$$

(iii) Bổ để 3.6.4. Nếu A là ma trận vuông, E là ma trận sơ cấp cùng cấp thì

$$det(EA) = det(E)det(A). (3.6.7)$$

Chứng minh. $E = F(r, \lambda)$ thì

$$det(EA) = \lambda det(A)$$
, và $det(E) = \lambda$

nên (3.6.7) **đú**ng.

$$E = P(r, s)$$
 thì

$$det(EA) = -det(A)$$
, $va det(E) = -1$

nên (3.6.7) dúng.

$$E = Q(r, \lambda, s)$$
 thì

$$det(EA) = det(A)$$
, $var{det}(E) = 1$

nên (3.6.7) đúng.

(iv) Bổ đề 3.6.5. Nếu A là ma trận vuông, U là ma trận tam giác trên cùng cấp với A mà các phần tử chéo $u_{ii} \neq 0$ khi $1 \leq i \leq k, k \leq n$ thì

$$\det(UA) = \det(U)\det(A). \tag{3.6.8}$$

Chứng minh. Nếu k < n thì $u_{nn} = 0$. Khi đó thì U và UA có các phản từ ở hàng cuối cùng toàn là số không. Do đó

$$det(U) = 0$$
, $det(UA) = 0 \Rightarrow det(UA) = det(U)det(A)$

Nếu k = n thì $u_{ii} \neq 0$, $1 \leq i \leq n$. Khi đó ta đưa U về ma trận đơn vị I bằng các phép biến đổi sơ cấp về hàng, thí dụ như

$$U = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} L_1 \\ L_2 \\ L_3 \end{bmatrix}$$

Ta có

$$L_{1} := L_{1}$$

$$L_{2} := 3L_{3} + L_{2} \Rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} U = U_{1}$$

$$Q_{1}$$

$$L_{1} := -3L_{3} + L_{1}$$

$$L_{2} := L_{2}$$

$$L_{3} := L_{3}$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} U_{1} = U_{2}$$

$$L_{1} := -2L_{2} + L_{1}$$

$$L_{2} := L_{2}$$

$$L_{3} := L_{3}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} U_{2} = I,$$

trong đó Q_1, Q_2, Q_3 là các ma trận sơ cấp. Vậy có

$$I = Q_3 U_2 = Q_3 (Q_2 U_1) = Q_3 Q_2 (Q_1 U) = Q_3 Q_2 Q_1 U.$$

Một cách tổng quát, tồn tại các ma trận sơ cấp Q_i để

$$Q_k Q_{k-1} \dots Q_1 U = I$$

$$\Rightarrow U = Q_1^{-1}Q_2^{-1} \dots Q_k^{-1}I = P_1P_2 \dots P_kI,$$

trong đó $P_i = Q_i^{-1}$ là ma trận sơ cấp cùng loại với Q_i . Do đó

$$U = P_1 P_2 \dots P_k.$$

Vậy áp dụng bổ đề 3.6.4 ta được

$$\det(U) = \det(P_1)\det(P_2)...\det(P_k)$$

$$\det(UB) = \det(P_1)\det(P_2)...\det(P_k)\det(B) = \det(U)\det(B).$$

Váy có (3.6.8).

(v) Chứng minh (3.6.4)

Áp dụng bổ đề 3.6.3 ta thấy A có biểu diễn (3.6.5) trong đó U thỏa mãn (3.6.6). Do đó

$$AB = F_1 F_2 ... F_k UB.$$

Áp dụng bổ đề 3.6.4 và 3.6.5 ta suy ra

$$\det(A) = \det(F_1)\det(F_2)...\det(F_m)\det(U)$$

$$\det(AB) = \det(F_1)\det(F_2)...\det(F_m)\det(U)\det(B).$$

Vậy có

$$\det(AB) = \det(A)\det(B) \Rightarrow (3.6.4).$$

3.6.5. Phán tích A = LU

Với khái niệm ma trận sơ cấp ta đã chứng minh được bổ đề 3.6.3 và từ đó suy ra định lí 3.3.5. Một hệ quả nữa của bổ đề 3.6.3 là phân tích A = LU:

Giả sử A là ma trận vuông cấp n. Nếu có thể đưa A về U thỏa mãn (3.6.5) chỉ bằng các phép biến đổi sơ cấp loại một và loại ba thì tổn tại ma trận tam giác dưới L và ma trận tam giác trên U để

$$A = I.U.$$

Chứng minh. Theo bổ để 3.6.3 thì tồn tại các ma trận sơ cấp F_i để

$$F_k F_{k-1} ... F_1 A = U,$$

trong đó U là ma trận tam giác trên. Đồng thời vì ta chỉ áp dụng các phép biến đổi sơ cấp loại một và ba nên F_i và $(F_i)^{-1}$ là các ma trận tam giác đười. Do đó

$$A = (F_1)^{-1}(F_2)^{-1}...(F_k)^{-1}U$$

Vì tích của hai ma trận tam giác dưới là một ma trận tam giác dưới nên

$$(F_1)^{-1}(F_2)^{-1}...(F_k)^{-1} = L$$

là một ma trận tam giác dưới và ta có A = LU.

Chú ý 3.6.1. Nếu khi đưa A về U ta phải dùng đến một số biến đổi sơ cấp loại hai thì cuối cùng ta thu được phân tích ma trận A sau khi đã đổi chỗ các hàng cần thiết thành tích LU.

TÓM TẮT CHƯƠNG HI

1. Ma trận

Ma trận cỡ $m \times n$ là bảng số chữ nhật

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$a_{ii} \in \mathbb{R}$$

viết tắt là

$$A = [a_{ij}]_{m \times n}$$

Khi m = n ta có ma trân vuồng cấp n.

Tạp các ma trận cỡ $m \times n$ kí hiệu là $\mathcal{M}_{m \times n}$

Tặp các ma trận vường cấp n kí hiệu là \mathcal{M}_n

Ma trần không

$$O = \{0\}_{m \times n}$$
 (các phần từ đều bằng 0)

Ma trận bằng nhau

$$[a_{ij}]_{m\times n} = [b_{ij}]_{m\times n} \iff a_{ij} = b_{ij} \quad \forall i, j$$

Công hai ma trắn

$$[a_{ij}]_{m\times n} + [b_{ij}]_{m\times n} = [a_{ij} + b_{ij}]_{m\times n}$$

Nhân ma trận với một số

$$k[a_{ij}]_{m\times n}=[ka_{ij}]_{m\times n}$$

Nhân ma trận với ma trân

$$A = [a_{ii}]_{m \times n}, B = [b_{ii}]_{m \times n}$$

thì tích AB = C là ma trân cỡ $m \times n$:

$$C = [\epsilon_{ii}]_{m \times n}$$

trong dó

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Ma trặn chuyển vị

$$A = [a_{ij}]_{m \times n} \implies A^t = [a_{ii}]_{n \times m}.$$

Néu $A \in \mathcal{M}_{m \times p}$, $B \in \mathcal{M}_{p \times n}$ thì $(AB)^t = B^t A^t$.

2. Định thức của ma trận vuông

Cho ma trận vường cấp n

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

Bò đi hàng i cột j thì còn lại ma trận cấp n-1 gọi là ma trận con ứng phần tử a_{ij} , kí hiệu ma trận đó là M_{ij} .

Định thức của ma trận vuông A, kí hiệu là $\det(A)$ được định nghĩa dẫn dần như sau :

$$A = [a_{11}]$$
 thì $\det(A) = a_{11}$

Sau đó, định thức của ma trận vuông A cấp n là

$$\det(A) = a_{11} \det(M_{11}) - a_{12} \det(M_{12}) + ... + (-1)^{1+n} a_{1n} \det(M_{1n}).$$

Định nghĩa đó cũng cho luôn cách tính định thức của ma trận cấp bất kì. Định thức của ma trận cấp n gọi là định thức cấp n.

Định thức của ma trận cấp n có một số tính chất quan trọng:

- 1) $\det(A^t) = \det(A)$.
- 2) Đổi chỗ hai hàng thì định thức đổi dấu.

Từ định nghĩa và hai tính chất đó ta suy ra các tính chất khác của định thức

Nếu A và $B \in \mathcal{M}_n$ thì $\det(AB) = \det(A)$. $\det(B)$.

3. Ma trận nghịch đảo

Ma trận đơn vị cấp n là ma trận vưởng cấp n có dạng

$$I = \begin{bmatrix} \mathbf{i} & & & \\ & 1 & & \\ & & \ddots & \\ & & & \ddots \end{bmatrix}$$

Nó có đặc điểm $AI = IA = A \quad \forall A \in \mathcal{M}_n$.

Ma trận $A \in \mathcal{M}_n$ gọi là khả đảo nếu tồn tại ma trận $B \in \mathcal{M}_n$ sao cho AB = BA = I. Khi đó, B gọi là ma trận nghịch đảo của A.

Kí hiệu ma trận nghịch đảo của A là A^{-1} :

$$AA^{-1} = A^{-1}A = I$$
.

Cách tính ma trận nghịch đảo :

Gọi $D_{ij}=\det(M_{ij})$ là định thức con ứng với a_{ij} và gọi $C_{ij}=(-1)^{i+j}D_{ij}$ là phụ đại số của a_{ij} , ta có :

Nếu det(A) \neq 0 thì A khả đảo với

$$A^{-1} = \frac{1}{\det(A)}C^{t}, \quad C = [C_{ij}]$$

và ngược lại, nếu A khả đảo thì $\det(A) \neq 0$.

Nếu A và $B \in \mathcal{M}_n$ và khả đảo thì AB khả đảo và $(AB)^{-1} = B^{-1}A^{-1}$.

4. Hê phương trình tuyến tính

Dạng ma trận của hệ phương trình tuyến tính :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$
(*)

Xét các ma trận

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Khi đó hệ (*) có đang ma trân

$$Ax = b \tag{**}$$

Hê Cramer là hè vuông (m = n) với $det(A) \neq 0$.

Dinh lí Cramer. Hê Cramer có nghiêm duy nhất

$$x_j = \det(A_j)/\det(A), \qquad j = 1, 2, ..., n,$$

trong đó A; suy từ A bằng cách thay cột thứ j bởi cột vế phải b.

Trường hợp m = n ta còn có :

Hệ thuần nhất Ax = 0 có nghiệm không tầm thường khi và chỉ khi det(A) = 0, và các mênh để sau tương đương:

- (a) $det(A) \neq 0$.
- (b) A khả đảo.
- (c) Hé Ax = b có nghiêm duy nhất.
- (d) Hê Ax = 0 chỉ có nghiệm tầm thường.

Định lí Kronecker - Capelli. Điều kiên cần và đủ để hê (*) tức là (**) có nghiệm là

hang của
$$A = \text{hang của } \overline{A} (= [A, b])$$

A là ma trân A bổ sung thêm cột b ở bên phải.

BÀI TẬP CHƯƠNG III

3.1. Cho

$$A = \begin{bmatrix} 1 & 3 \\ -1 & 2 \\ 3 & 4 \end{bmatrix}; \quad B = \begin{bmatrix} 0 & 1 \\ 3 & 2 \\ -2 & 3 \end{bmatrix}; \quad C = \begin{bmatrix} 2 & -3 \\ 1 & 2 \\ 4 & -1 \end{bmatrix}$$

Tinh

1)
$$(A + B) + C$$
; 2) $A + (B + C)$;

$$2) A + (B + C)$$

4) Tîm A^t , B^t , C^t .

3.2. Hãy nhân các ma trân :

a)
$$\begin{bmatrix} 2 & \mathbf{i} \\ 3 & 2 \end{bmatrix}$$
. $\begin{bmatrix} \mathbf{i} & -\mathbf{i} \\ 1 & \mathbf{i} \end{bmatrix}$;

b)
$$\begin{bmatrix} 3 & 5 \\ 6 & -1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$$

c)
$$\begin{bmatrix} 3 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$
, $\begin{bmatrix} 1 & 1 & -1 \\ 2 & -1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$;

d)
$$\begin{bmatrix} 2 & 1 & 1 \\ 3 & 0 & 1 \end{bmatrix}$$
. $\begin{bmatrix} 3 & 1 \\ 2 & 1 \\ 1 & 0 \end{bmatrix}$

$$e)\begin{bmatrix}3 & 2 & 1\\ 0 & 1 & 2\end{bmatrix}.\begin{bmatrix}1\\ 2\\ 3\end{bmatrix};$$

f)
$$\begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$
. $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$

$$\mathbf{g}) \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 4 \\ 1 \end{bmatrix}$$

3.3. Hãy thực hiện các phép tính sau

a)
$$\begin{bmatrix} 2 & 1 & 1 \\ 3 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}^2;$$

b)
$$\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}^3$$
;

c)
$$\begin{bmatrix} 3 & 2 \\ -4 & -2 \end{bmatrix}^5$$

d)
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
,

e)
$$\begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}^n$$

3.4. Hãy tính AB - BA nếu

a)
$$A = \begin{bmatrix} 1 & -2 & -1 \\ 2 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$
;

$$B = \begin{bmatrix} 4 & 1 & 1 \\ -4 & 2 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \\ -1 & 2 & 1 \end{bmatrix}$$
;

$$B = \begin{bmatrix} 3 & 1 & -2 \\ 3 & -2 & 4 \\ -3 & 5 & -1 \end{bmatrix}$$

3.5. Chứng minh rằng nếu AB = BA thì

a)
$$(A + B)^2 = A^2 + 2AB + B^2$$

b)
$$A^2 - B^2 = (A + B)(A - B)$$

3.6. Hãy tìm tát cả các ma trận giao hoán với ma trận A dưới đây :

a)
$$A = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}$$
;

b)
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

c)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 1 & 2 \end{bmatrix}$$

3.7. Hãy tìm f(A) với

$$f(x) = x^2 - 5x + 3I$$
 và $A = \begin{bmatrix} 2 & -1 \\ -3 & 3 \end{bmatrix}$

- 3.8. Hãy tìm tắt cả các ma trận cấp hai có bình phương bằng ma trận không.
- 3.9. Hãy tìm tát cả các ma trận cấp hai có bình phương bằng ma trận đơn vị.
 - 3.10. Cho

$$A = \begin{bmatrix} -1 & 1 & 2 \\ 2 & 0 & 3 \\ -2 & -1 & 1 \end{bmatrix}, \quad B \begin{bmatrix} 2 & 2 \\ 1 & -2 \\ 3 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Hãy kiểm tra lai tính kết hợp

$$(AB)C = A(BC)$$

của phép nhân ma trận.

3.11. Cho

$$A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 2 \\ 1 & 4 \end{bmatrix}$$

Hãy tính

$$\mathbf{2}) \mathbf{B}^{t}$$
 ;

1)
$$A^{t}$$
; 2) B^{t} ; 3) $A^{t}B^{t}$; 4) $B^{t}A^{t}$.

4)
$$R^IA^I$$

5)
$$(AB)^{i}$$
; 6) $(BA)^{i}$; 7) $(A+B)^{i}$.

6)
$$(BA)'$$

7)
$$(A + B)^{t}$$

3.12. Tính các định thức cấp hai

$$a)\begin{vmatrix}2&3\\1&4\end{vmatrix};$$

b)
$$\begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix}$$

a)
$$\begin{vmatrix} 2 & 3 \\ 1 & 4 \end{vmatrix}$$
; b) $\begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix}$; c) $\begin{vmatrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{vmatrix}$

d)
$$\begin{vmatrix} a & c+di \\ c-di & b \end{vmatrix}$$
; e) $\begin{vmatrix} tg\alpha & -1 \\ 1 & tg\alpha \end{vmatrix}$

e)
$$\begin{vmatrix} tg\alpha & -1 \\ 1 & tg\alpha \end{vmatrix}$$

3.13. Tính các định thức cấp ba

a)
$$\begin{vmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{vmatrix}$$

d)
$$\begin{vmatrix} 1 & i & 1+i \\ -i & 1 & 0 \\ 1-i & 0 & 1 \end{vmatrix}$$

3.14. Cho

$$\begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix} = \Delta$$

Hỏi các định thức sau

a)
$$\begin{vmatrix} a' & b' & c' \\ a'' & b'' & c'' \\ a & b & c \end{vmatrix}$$

b)
$$\begin{vmatrix} a^n & b^n & c^n \\ a' & b' & c' \\ a & b & c \end{vmatrix}$$

bằng bao nhiều?

3.15. Cho

$$\begin{vmatrix} a & b & c & d \\ a' & b' & c' & d' \\ a'' & b'' & c'' & d'' \\ a''' & b''' & c''' & d''' \end{vmatrix} = \Delta$$

Hòi các định thức sau bằng bao nhiều:

a)
$$\begin{vmatrix} b & c & d & a \\ b' & c' & d' & a' \\ b'' & c''' & d''' & a''' \\ b'''' & c'''' & d'''' & a'''' \end{vmatrix}$$
b)
$$\begin{vmatrix} d & c & b & a \\ d' & c' & b' & a' \\ d''' & c''' & b''' & a''' \\ d'''' & c''' & b'''' & a'''' \end{vmatrix}$$

b)
$$\begin{vmatrix} d & c & b & a \\ d' & c' & b' & a' \\ d'' & c'' & b''' & a''' \\ d''' & c''' & b'''' & a'''' \end{vmatrix}$$

3.16. Giải phương trình

$$\begin{vmatrix} 1 & x & x^2 & x^3 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{vmatrix} = 0$$

Biết rằng các số 204, 527, 255 chia hết cho 17. Hãy chứng minh

chia hết cho 17.

3.18. Chứng minh

$$\begin{vmatrix} b+c & c+a & a+b \\ b'+c' & c'+a' & a'+b' \\ b"+c" & c"+a" & a"+b" \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ a' & b' & c' \\ a" & b" & c'' \end{vmatrix}$$

3.19. Tính định thức

$$\begin{vmatrix} 1 & 0 & -1 & -1 \\ 0 & -1 & -1 & 1 \\ a & b & c & d \\ -1 & -1 & 1 & 0 \end{vmatrix}$$

bằng cách khai triển nó theo các phần từ của hàng ba.

3.20. Tính định thức

$$\begin{vmatrix} 2 & 1 & 1 & x \\ 1 & 2 & 1 & y \\ 1 & 1 & 2 & z \\ 1 & 1 & 1 & t \end{vmatrix}$$

bằng cách khai triển nó theo các phần tử của cột bốn.

3.21. Tính các định thức sau

1)
$$\begin{vmatrix} 13547 & 13647 \\ 28423 & 28523 \end{vmatrix}$$
; 2) $\begin{vmatrix} 246 & 427 & 327 \\ 1014 & 543 & 443 \\ -342 & 721 & 621 \end{vmatrix}$
3) $\begin{vmatrix} 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{vmatrix}$; 4) $\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{vmatrix}$
5) $\begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix}$; 6) $\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \\ 1 & 8 & 27 & 64 \end{vmatrix}$
7) $\begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & a & b \\ 1 & a & 0 & c \\ 1 & b & c & 0 \end{vmatrix}$; 8) $\begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$

3.22. Chứng minh

$$D_{n} = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \\ x_{1}^{2} & x_{2}^{2} & \cdots & x_{n}^{2} \\ \cdots & \cdots & \cdots & \cdots \\ x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1} \end{vmatrix} =$$

$$= (x_2 - x_1)(x_3 - x_1) \dots (x_n - x_1) \times \times (x_3 - x_2) \dots (x_n - x_2) \times \times \dots \times \times \times (x_n - x_{n-1}) = \prod_{i>i} (x_i - x_j).$$

3.23. Cho ma trân chéo

$$A = \begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

trong đó $a_{11}a_{22} \dots a_{nn} \neq 0$. Chúng minh rằng A khả đảo và tìm A^{-1} .

- 3.24. Chứng minh rằng nếu A là ma trận vuông thoà mãn $A^2 3A + I = 0$ thì $A^{-1} = 3I A$.
- 3.25. Cho hai ma trận vuông A và B sao cho AB = 0. Chứng minh rằng A không thể khả đảo trừ khi B = 0.
 - 3.26. Chứng minh rằng nếu A khả đảo và AB = AC thì B = C.
 - 3.27. A là một ma trận vuông cấp n.
 - 1) Cho det(A) = 3, hãy tính $det(A^2)$ và $det(A^3)$.
 - 2) Cho biết A khả dào và det(A) = 4, tính $det(A^{-1})$.
 - 3) Cho $det(A) = 5 \text{ và } B^2 = A$, tính det(B).
 - 4) Cho det(A) = 10, tinh $det(A^{t}A)$.
- 3.28. Hỏi các ma trận sau có khả đào không, nếu có, hãy tìm ma trận nghịch đảo bằng phụ đại số:

1)
$$\begin{bmatrix} 2 & -1 \\ 3 & 3 \end{bmatrix}$$
 2) $\begin{bmatrix} -1 & 2 \\ 3 & -6 \end{bmatrix}$

$$3) \begin{bmatrix} 2 & 1 & -1 \\ 0 & 1 & 3 \\ 2 & 1 & 1 \end{bmatrix}$$

$$\begin{array}{c|cccc}
4) & 1 & -1 & 2 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}$$

$$5) \begin{bmatrix} 1 & 4 & 2 \\ -1 & 0 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$

3.29. Giải phương trình AX = B d6i với ẩn là ma trận X với

$$A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 2 & 1 \\ -2 & 3 & 1 \end{bmatrix};$$

$$A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 2 & 1 \\ -2 & 3 & 1 \end{bmatrix}; \qquad B = \begin{bmatrix} 1 & 1 & 1 & -1 \\ 1 & 0 & 2 & 2 \\ 1 & -2 & 2 & 0 \end{bmatrix}$$

3.30. Áp dụng định lí Cramer giải các hệ sau

1)
$$\begin{cases} 2x + 5y = 1 \\ 4x + 5y = -5 \end{cases}$$

$$\begin{cases} x + 2y = 4 \\ 2x + y = 3 \end{cases}$$

3)
$$\begin{cases} 2x - 2y - z = -1 \\ y + z = 1 \\ -x + y + z = -1 \end{cases}$$

$$\begin{cases} x - y + z = 1 \\ 2x + y + z = 2 \\ 3x + y + 2z = 0 \end{cases}$$

5)
$$\begin{cases} 2x_1 - x_2 - x_3 = 4 \\ 3x_1 + 4x_2 - 2x_3 = 11 \\ 3x_1 - 2x_2 + 4x_3 = 11 \end{cases}$$

6)
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 5 \\ 2x_1 + 3x_2 + x_3 = 1 \\ 2x_1 + x_2 + 3x_3 = 11 \end{cases}$$

7)
$$\begin{cases} x_1 + 2x_2 + 3x_3 - 2x_4 = 6 \\ 2x_1 - x_2 - 2x_3 - 3x_4 = 8 \\ 3x_1 + 2x_2 - x_3 + 2x_4 = 4 \\ 2x_1 - 3x_2 + 2x_3 + x_4 = -8 \end{cases}$$

8)
$$\begin{cases} x_2 - 3x_3 + 4x_4 = -5 \\ x_1 - 2x_3 + 3x_4 = -4 \\ 3x_1 + 2x_2 - 5x_4 = 12 \\ 4x_1 + 3x_2 - 5x_3 = 5 \end{cases}$$

- 3.31. Hỏi các mệnh để sau là đúng hay sai
- 1) Theo định lí Cramer, nếu det(A) = 0 thì hệ Ax = b vô nghiệm.
- 2) Theo dịnh lí Cramer, nếu Ax = 0 có nghiệm không tẩm thường thì det(A) = 0.

3.32. Tìm ma trận X thoà mãn phương trình

a)
$$\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} X = \begin{bmatrix} 4 & -6 \\ 2 & 1 \end{bmatrix}$$

b)
$$X\begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 3 \\ 4 & 3 & 2 \\ 1 & -2 & 5 \end{bmatrix}$$

3.33. Hãy giải các hệ sau bằng cách tính ma trận nghịch đảo

1)
$$\begin{cases} 3x + 4y = 2 \\ 4x + 5y = 3 \end{cases}$$
; 2)
$$\begin{cases} -3x + 2y = 1 \\ 2x + 4y = -6 \end{cases}$$
;

3)
$$\begin{cases} 3x + 4y = 3 \\ 4x + 5y = 2 \end{cases}$$
; 4)
$$\begin{cases} -3x + 2y = -6 \\ 2x + 4y = 1 \end{cases}$$
.

3.34. Giải

1)
$$\begin{cases} 2x + 3y = 4 \\ 2y = 4 \end{cases}$$
 2)
$$\begin{cases} 2x_1 + x_2 - 4x_3 + 2x_4 = 2 \\ 3x_2 + x_3 + x_4 = 6 \\ 2x_3 + 3x_4 = -1 \\ x_4 = -1 \end{cases}$$

3.35. Áp dụng phương pháp Gauss giải các hệ sau :

1)
$$\begin{cases} 1.2x - 0.8y = 2.0 \\ -1.5x + 0.25y = -4.0 \end{cases}$$

$$\begin{cases} x + y + z = 1 \\ x + 2y + 3z = -1 \\ x + 4y + 9z = -9 \end{cases}$$

3)
$$\begin{cases} x_1 - x_2 + x_3 - x_4 = 2 \\ x_1 - x_3 + 2x_4 = 0 \\ -x_1 + 2x_2 - 2x_3 + 7x_4 = -7 \\ 2x_1 - x_2 - x_3 = 3 \end{cases}$$

$$\begin{cases} x_1 - x_2 + 2x_3 + 2x_4 + x_5 = 3\\ 2x_1 + x_2 + 5x_3 + 2x_4 + 2x_5 = 6\\ -x_1 + 4x_2 - 6x_4 + x_5 = -3\\ -2x_1 - 4x_2 - 4x_3 - x_4 + x_5 = -3\\ 2x_1 + 4x_2 + 4x_3 + 7x_4 - x_5 = 9 \end{cases}$$

3.36. Dùng phương pháp Gauss - Jordan tính ma trận nghịch đảo của các ma trân sau

a)
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
;

b)
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ b & 0 & 1 \end{bmatrix}$$
;

c)
$$A = \begin{bmatrix} 1 & 3 & -5 & 7 \\ 0 & 1 & 2 & -3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3.37. Dùng phương pháp Gauss - Jordan tính ma trận nghịch đào của các ma trân sau nếu có

$$1) A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix};$$

2)
$$A = \begin{bmatrix} 1 & -1 & 2 \\ -1 & 2 & 1 \\ 2 & -3 & 2 \end{bmatrix}$$
;

$$3) A = \begin{vmatrix} 1 & 1 & 2 \\ 2 & 3 & 2 \\ 1 & 3 & -1 \end{vmatrix};$$

4)
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
;

5)
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$$
;

6)
$$A = \begin{bmatrix} 2 & -3 \\ -6 & 9 \end{bmatrix}$$
;

7)
$$A = \begin{bmatrix} 1 & -1 & -1 \\ -i & 1 & -1 \\ 2 & 2 & 0 \end{bmatrix}$$
;

8)
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
;

9)
$$A = \begin{bmatrix} 3 & 2 & 0 \\ 2 & 1 & 3 \\ 4 & -2 & -1 \end{bmatrix}$$
;

10)
$$A = \begin{vmatrix} 1 & -2 & 1 & -1 \\ -1 & 4 & -2 & 3 \\ 2 & 0 & 1 & 3 \\ -2 & 6 & 0 & 5 \end{vmatrix}$$
;

3.38. Với các giá trị nào của a thì hệ sau đây không có nghiệm duy nhất

$$\begin{cases} x - 2y = 5 \\ 3x + ay = 1 \end{cases}$$

2)
$$\begin{cases} x - y + 2z = 3 \\ 2x + ay + 3z = 1 \\ 3x + 3y + z = 4 \end{cases}$$

3.39. Tim những giá trị của a để hai hệ sau tương đương

$$\begin{cases} x + 2y = 1 \\ 2x + 5y = 1 \end{cases}$$

$$\begin{cases} x + ay = 4 \\ -x + 2y = -5 \end{cases}$$

3.40. Viết nghiệm của các hệ sau theo a, b, c

1)
$$\begin{cases} x + 3y = a \\ 2x + 2y = b \end{cases}$$

2)
$$\begin{cases} x + y - z = a \\ x + 2y - 2z = b \\ 2x - y + 2z = c \end{cases}$$

3.41. Xác định a để hệ sau có nghiệm không tầm thường

1)
$$\begin{cases} ax - 3y + z = 0 \\ 2x + y + z = 0 \\ 3x + 2y - 2z = 0 \end{cases}$$

2)
$$\begin{cases} (1-a)x + 2y = 0 \\ 2x + (4-a)y = 0 \end{cases}$$

3.42. Trong các hệ sau dây, hệ nào có nghiệm không tẩm thường, hệ nào không có:

$$\begin{cases} x_1 + 3x_2 + 5x_3 + x_4 = 0 \\ 4x_1 - 7x_2 - 3x_3 - x_4 = 0 \\ 3x_1 + 2x_2 + 7x_3 + 8x_4 = 0 \end{cases}$$

2)
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ x_2 + 4x_3 = 0 \\ 5x_3 = 0 \end{cases}$$

3.43. Tìm hạng của các ma trận sau:

a)
$$A = \begin{bmatrix} 2 & -1 & 3 & -2 & 4 \\ 4 & -2 & 5 & 1 & 7 \\ 2 & -1 & 1 & 8 & 2 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & 3 & 5 & -1 \\ 2 & -1 & -3 & 4 \\ 5 & 1 & -1 & 7 \\ 7 & 7 & 9 & 1 \end{bmatrix}$$

$$c) A = \begin{bmatrix} 4 & 3 & -5 & 2 & 3 \\ 8 & 6 & -7 & 4 & 2 \\ 4 & 3 & -8 & 2 & 7 \\ 4 & 3 & 1 & 2 & -5 \\ 8 & 6 & -1 & 4 & -6 \end{bmatrix}$$

3.44. Xác định hạng của các ma trận sau tuỳ theo λ (λ thực):

a)
$$A = \begin{bmatrix} 3 & \lambda & 1 & 2 \\ 1 & 4 & 7 & 2 \\ 1 & 10 & 17 & 4 \\ 4 & 1 & 3 & 3 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} -1 & 2 & 1 & -1 & 1 \\ \lambda & -1 & 1 & -1 & -1 \\ 1 & \lambda & 0 & 1 & 1 \\ 1 & 2 & 2 & -1 & 1 \end{bmatrix}$$

3.45. Giải các hệ sau và biện luận theo các tham số:

1)
$$\begin{cases} \lambda x + y + z = 1 \\ x + \lambda y + z = \lambda \end{cases}$$
$$x + y + \lambda z = \lambda^2$$

2)
$$\begin{cases} x + ay + a^{2}z = a^{3} \\ x + by + b^{2}z = b^{3} \\ x + cy + c^{2}z = c^{3} \end{cases}$$

3)
$$\begin{cases} x + y + z = 1 \\ ax + by + cz = d \\ a^{2}x + b^{2}y + c^{2}z = d^{2} \end{cases}$$

ĐÁP SỐ

3.1. 1) và 2)
$$\begin{bmatrix} 3 & 1 \\ 3 & 6 \\ 5 & 6 \end{bmatrix}$$
;

4)
$$A^{t} = \begin{bmatrix} 1 & -1 & 3 \\ 3 & 2 & 4 \end{bmatrix},$$

$$C' = \begin{bmatrix} 2 & 1 & 4 \\ -3 & 2 & -1 \end{bmatrix}$$

3.2. a)
$$\begin{bmatrix} 3 & -1 \\ 5 & -1 \end{bmatrix}$$
;

c)
$$\begin{bmatrix} 6 & 2 & -1 \\ 6 & 1 & 1 \\ 8 & -1 & 4 \end{bmatrix};$$

e)
$$\begin{bmatrix} 10\\8 \end{bmatrix}$$
;

$$\begin{bmatrix}
3 & 9 \\
-3 & 6 \\
9 & 12
\end{bmatrix}$$

$$B^t = \begin{bmatrix} 0 & 3 & -2 \\ 1 & 2 & 3 \end{bmatrix}$$

b)
$$\begin{bmatrix} -9 & 13 \\ 15 & 4 \end{bmatrix}$$

$$d)\begin{bmatrix} 9 & 3 \\ 10 & 3 \end{bmatrix}$$

$$f) \begin{bmatrix} 2 & 4 & 6 \\ 1 & 2 & 3 \\ 3 & 6 & 9 \end{bmatrix}$$

3.3. a)
$$\begin{bmatrix} 7 & 4 & 4 \\ 9 & 4 & 3 \\ 3 & 3 & 4 \end{bmatrix}$$
; b) $\begin{bmatrix} 15 & 20 \\ 20 & 35 \end{bmatrix}$; c) $\begin{bmatrix} 3 & -2 \\ 4 & 8 \end{bmatrix}$

d)
$$\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$$
; e) $\begin{bmatrix} \cos n\varphi & -\sin n\varphi \\ \sin n\varphi & \cos n\varphi \end{bmatrix}$.
3.4. a) $\begin{bmatrix} 4 & 0 & -1 \\ 6 & -2 & -4 \\ -7 & 0 & -3 \end{bmatrix}$ b) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

$$\begin{bmatrix} -7 & 9 & -2 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
3.5. $(A + B)^2 = A^2 + AB + BA + B^2 = A^2 + 2AB + B^2$

3.5.
$$(A + B)^2 = A^2 + AB + BA + B^2 = A^2 + 2AB + B^2$$

 $(A + B)(A - B) = A^2 - AB + BA - B^2 = A^2 - B^2$

b)
$$\begin{bmatrix} x & y \\ 0 & x \end{bmatrix}$$
 $y = 0$

3.6. a) $\begin{vmatrix} x & 2y \\ -y & y = 2y \end{vmatrix}$

3.7. $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

c)
$$\begin{bmatrix} x & y & 0 \\ u & v & 0 \\ 3t - 3x - u & t - 3y - v & t \end{bmatrix}$$

3.8.
$$\begin{bmatrix} a & b \\ c & -a \end{bmatrix} \quad \text{v\'en} \quad bc + a^2 = 0$$

3.9.
$$\pm \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & -a \end{bmatrix} \text{ v\'oi } a^2 + bc = 1$$

3.11. 1)
$$\begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix}$$
;

$$2)\begin{bmatrix} -1 & 1 \\ 2 & 4 \end{bmatrix}$$

3)
$$\begin{bmatrix} 4 & 14 \\ 3 & 3 \end{bmatrix}$$
;

4)
$$\begin{bmatrix} -3 & -2 \\ 0 & 10 \end{bmatrix}$$

5)
$$\begin{bmatrix} -3 & -2 \\ 0 & 10 \end{bmatrix}$$
;

6)
$$\begin{bmatrix} 4 & 14 \\ 3 & 3 \end{bmatrix}$$
;

$$7)\begin{bmatrix}1&4\\1&5\end{bmatrix}.$$

b) 5; c) 1; d)
$$ab - c^2 - d^2$$
;

e)
$$1/\cos^2\alpha$$
.

c) 1; d)
$$-2$$
.

3.15. a)
$$-\Delta$$
;

3.17. Công vào côt cuối côt thứ nhất nhân với 100 và côt thứ hai nhân với 10.

3.19.
$$3a - b + 2c + d$$
.

3.20.
$$4t - x - y - z$$
.

7)
$$a^2 + b^2 + c^2 - 2(bc + ca + ab)$$
;

8)
$$-2(x^3+y^3)$$
.

3.23.
$$A^{-1} = \begin{bmatrix} \frac{1}{a_{11}} & 0 & \dots & 0 \\ 0 & \frac{1}{a_{22}} & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots \\ 0 & 0 & \dots & \frac{1}{a_{nn}} \end{bmatrix}$$

3.27. 1)
$$\det(A^2) = 9$$
, $\det(A^3) = 27$
2) $\det(A^{-1}) = 1/4$

3)
$$det(B) = \pm \sqrt{5}$$

$$4) \det(A^1 A) = 100$$

$$)\begin{bmatrix} 1/3 & 1/9 \\ 1/2 & 2/9 \end{bmatrix}$$

3.28. 1)
$$\begin{bmatrix} 1/3 & 1/9 \\ -1/3 & 2/9 \end{bmatrix}$$

$$\begin{bmatrix} -1/3 & 2/9 \end{bmatrix}$$

3)
$$\begin{bmatrix} -1/2 & -1/2 & 1 \\ 3/2 & 1 & -3/2 \\ -1/2 & 0 & 1/2 \end{bmatrix}$$
4)
$$\begin{bmatrix} 1 & 1 & -4 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$
5)
$$\begin{bmatrix} -1/7 & -4/7 & 2/7 \\ 5/14 & -1/14 & -3/14 \\ -1/7 & 3/7 & 2/7 \end{bmatrix}$$

3.29.
$$\begin{bmatrix} 0 & 5 & 1 & 9 \\ 0 & 3 & 1 & 7 \\ 1 & -1 & 1 & -3 \end{bmatrix}$$

3.29.
$$\begin{bmatrix} 0 & 3 & 1 & 7 \\ 1 & -1 & 1 & -3 \end{bmatrix}$$

3.30. 1) (-3, 7/5);

2) (2/3, 5/3)

4) (7, -3, -9)

2) Không khả đảo

3.32. a)
$$\begin{bmatrix} 2 & -23 \\ 0 & 8 \end{bmatrix}$$

$$3)(2,1,0,-1);$$

3.36. a)
$$\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$$
;

c)
$$\begin{bmatrix} 1 & -3 & 11 & -38 \\ 0 & 1 & -2 & 7 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3.37. 1)
$$\begin{bmatrix} 1/5 & 1/5 \\ -3/5 & 2/5 \end{bmatrix}$$

$$5)\begin{bmatrix} 4/5 & -3/5 \\ -1/5 & 2/5 \end{bmatrix}$$

7)
$$\begin{bmatrix} 1/4 & -1/4 & 1/4 \\ -1/4 & 1/4 & 1/4 \\ -1/2 & -1/2 & 0 \end{bmatrix}$$

b)
$$\begin{bmatrix} -3 & 2 & 0 \\ -4 & 5 & -2 \\ -5 & 3 & 0 \end{bmatrix}$$

2)
$$(3, 2, 1, -1)$$

$$2)(1, 2, -2)$$

$$4)$$
 (-3, 0, 2, 1, 0)

b)
$$\begin{bmatrix} 1 & -2 & 7 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$2) \begin{bmatrix} 7 & -4 & -5 \\ 4 & -2 & -3 \\ -1 & 1 & 1 \end{bmatrix}$$

- 4) Không có nghịch đảo
- 6) Không có nghich dảo

7)
$$\begin{bmatrix} 1/4 & -1/4 & 1/4 \\ -1/4 & 1/4 & 1/4 \\ -1/2 & -1/2 & 0 \end{bmatrix}$$
 8)
$$\begin{bmatrix} 3/4 & -1/4 & -1/4 \\ -1/4 & 3/4 & -1/4 \\ -1/4 & -1/4 & 3/4 \end{bmatrix}$$

9)
$$\begin{bmatrix} 5/43 & 2/43 & 6/43 \\ 14/43 & -3/43 & -9/43 \\ -8/43 & 14/43 & -1/43 \end{bmatrix} = 10) \begin{bmatrix} 17/2 & 7/2 & -3/2 & 1/2 \\ 33/4 & 13/4 & -7/4 & 3/4 \\ 5/2 & 1/2 & -1/2 & 1/2 \\ -13/2 & -5/2 & 3/2 & -1/2 \end{bmatrix}$$

$$2) -\frac{4}{5}$$

$$3.39. -1$$

3.40. 1)
$$((3b - 2a)/4, (2a - b)/4)$$

2)
$$(2a - b, -6a + 4b + c, -5a + 3b + c)$$

3.43. a)
$$\rho(A) = 2$$

b)
$$\rho(A) = 3$$

c)
$$\rho(A) = 2$$

3.44. a)
$$\lambda = 0$$
 thì $\rho(A) = 2$

$$\lambda \neq 0$$
 thì $\rho(A) = 3$

b)
$$\lambda = 1$$
 thì $\rho(A) = 3$

$$\lambda \neq 1$$
 th) $\rho(A) = 4$

3.45. 1) Nếu $\lambda \neq 1$ và $\lambda \neq -2$ thì hệ có nghiệm duy nhất :

$$x = -\frac{\lambda + 1}{\lambda + 2}$$
, $y = \frac{1}{\lambda + 2}$, $z = \frac{(\lambda + 1)^2}{\lambda + 2}$

Nếu $\lambda = 1$ thì hệ có vô số nghiệm phụ thuộc hai tham số Nếu $\lambda = -2$ thì hê không có nghiệm

2) Nếu $a \neq b \neq c$ thì hệ có nghiệm duy nhất

$$x = abc$$
, $y = -(ab + ac + bc)$, $z = a + b + c$

Nếu trong số a, b, c có hai số bằng nhau thì hệ có vô số nghiệm phụ thuộc một tham số.

Nếu a = b = c thì hệ có vô số nghiệm phụ thuộc hai tham số.

3) Nếu $a \neq b \neq c$ thì hệ có nghiệm duy nhất

$$x = \frac{(b-d)(c-d)}{(b-a)(c-a)}, \ y = \frac{(a-d)(c-d)}{(a-b)(c-b)}, \ z = \frac{(a-d)(b-d)}{(a-c)(b-c)}$$

Nếu a = b, $a \neq c$, d = a hay d = c thì hệ có vô số nghiệm phụ thuộc một tham số.

Nếu b = c, $a \neq b$, d = a hay d = b thì hệ cũng có vô số nghiệm phụ thuộc một tham số.

Nếu a = c, $a \neq b$, d = a hay d = b thì hệ cũng có vô số nghiệm phụ thuộc một tham số.

Nếu a = b = c = d thì hệ có vô số nghiệm phụ thuộc hai tham số.

Trong tất cả các trường hợp còn lại, hệ vô nghiệm.

Chương IV

HÌNH HỌC GIẢI TÍCH (Ôn tập : Đường bậc hai và mặt bậc hai)

4.1. MỞ ĐẦU

Có thể nói hình học giải tích là món hình học lấy dại số làm phương tiện chủ yếu.

Muốn thế trước hết người ta biểu diễn mỗi diểm trong mặt phẳng bằng một cặp số toạ độ, môi điểm trong không gian bằng một bộ ba số toạ độ, mỗi đường trong mặt phẳng bằng một phương trình đối với cặp số toạ độ, mỗi mặt trong không gian bằng một phương trình đối với bộ ba số toạ độ. Sau đó người ta áp dụng các phương pháp dại số để giải quyết các vấn để hình học.

Nội dung môn học này đã được trình bày ở sách giáo khoa bậc học phổ thông. Chương này chỉ ôn tập khái niệm đường bậc hai và mặt bậc hai, cần biết khi học môn giải tích toán học, đặc biệt là phần phép tính tích phân của hàm nhiều biến số.

4.2. ĐƯỜNG BẬC HAI TRONG MẶT PHẨNG

4.2.1. Phương trình bậc hai tổng quát

Ở trường trung học ta dã thấy các dường tròn, elip, hypebôn, parabôn đều có phương trình là phương trình bậc hai đối với x và y. Nay ta xét hài toán ngược lại, tức là tìm biểu diễn hình học của một

phương trình bậc hai đối với x, y. Dạng tổng quát của một phương trình như thế là

$$Ax^{2} + 2Bxy + Cy^{2} + 2Dx + 2Ey + F = 0$$

$$(|A| + |B| + |C| \neq 0)$$
(4.2.1)

mà biểu diễn hình học của nó là đường bậc hai.

Trước hết ta xét một số trường hợp riêng thông qua các thí dụ.

4.2.2. Phương trình vấng số hạng chéo xy và có các hệ số của x^2 và y^2 bằng nhau

Thí dụ 4.2.1. Xét phương trình

$$x^{2} + y^{2} - 2x + 4y - 4 = 0 (4.2.2)$$

Nó tương đương với

$$(x-1)^2 + (y+2)^2 = 9$$

Ta nhận thấy phương trình (4.2.2) biểu diễn trong mặt phẳng Oxy đường tròn tâm I(1, -2) bán kính R = 3.

4.2.3. Phương trình váng số hang chéo xy và các số hạng bậc nhất

Thí dụ 4.2.2. Xét phương trình

$$4x^2 + 9y^2 - 36 = 0 (4.2.3)$$

Nó tương dương với

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

Ta nhận thấy phương trình (4.2.3) là phương trình của một elip có bán trục lớn a = 3 nằm trên Ox và bán trục nhỏ b = 2 nằm trên Oy (hình 21).

Thi du 4.2.3. Xét phương trình

$$4x^2 - 9y^2 = 36 (4.2.4)$$

Nó tương đương với

$$\frac{x^2}{9} - \frac{y^2}{4} = 1$$

Ta nhận thấy (4.2.4) là phương trình của một hypebôn có bán trực thực a = 3 nằm trên Ox và bán trực ảo b = 2 nằm trên Oy và có hai tiệm cận $y = \pm \frac{2}{3}x$ (hình 22).

Thi du 4.2.4. Xét phương trình

$$x^2 + 2y^2 = 0 (4.2.5)$$

Phương trình này thoả mãn khi và chi khi x = 0, y = 0. Vậy biểu diễn hình học của nó là một điểm có toạ độ (0, 0), đó là gốc toạ độ.

Thí dụ 4.2.5. Xét phương trình

$$4x^2 - y^2 = 0 (4.2.6)$$

Phương trình này tương đương với

$$(2x - y)(2x + y) = 0 (4.2.7)$$

Cặp số (x, y) thoả mãn (4.2.7) khi và chỉ khi nó thoả mãn một trong hai phương trình

$$2x - y = 0,
2x + y = 0$$
(4.2.8)

Vậy biểu diễn hình học của (4.2.6) là biểu diễn hình học của hai phương trình (4.2.8), đó là hai đường thẳng đi qua gốc toạ độ (hình 23).

Hinh 23

Thí dụ 4.2.6. Xét phương trình

$$x^2 + y^2 + 1 = 0 (4.2.9)$$

Nó tương đương với

$$x^2 + y^2 = -1 (4.2.10)$$

Không có cặp số thực (x, y) nào thoả mãn phương trình (4.2.10). Nhưng những cặp số như (i, 0), (-i, 0), (0, i), (0, -i) thoả mãn nó. Nói chung ta có thể viết (4.2.9) thành

$$x^2 + y^2 = i^2$$

và xem nó là một đường tròn ảo tâm tại O(0, 0) với bán kính ảo R = i.

4.2.4. Phương trình văng số hạng chéo và văng một số hạng bình phương

Thi du 4.2.7. Xét các phương trình

$$y^2 = 2x , \qquad y^2 = -2x,$$

$$x^2 = 2y$$
, $x^2 = -2y$.

Ta thấy chúng có biểu diễn hình học là các đường parabôn ở hình 24.

Hình 24

4.2.5. Công thức đổi trục

Toạ độ (x, y) của một điểm M phụ thuộc hệ trục toạ độ mà ta chọn. Phương trình bậc hai tổng quát đối với x, y có dạng (4.2.1) trong hệ trục Oxy. Nếu ta chọn một hệ trục khác thì phương trình ấy sẽ thay đổi và có thể đơn giản đi rất nhiều. Vì vậy muốn xét biểu diễn hình học của phương trình tổng quát (4.2.1) trước hết ta xét các công thức đổi trục.

Có hai cách đổi trực từ hệ cũ Oxy sang hệ mới O'x'y', đó là phép tinh tiến và phép quay.

a) Còng thức tịnh tiến trục

Tịnh tiến hệ trục Oxy thành hệ trục O'x'y' nếu O'x' || Ox và O'y' || Oy (hình 25). Phép tịnh tiến trục được hoàn toàn xác dịnh khi cho toạ độ (a, b) của O' đổi với hệ Oxy.

Xét một điểm M trong mặt phẳng. Liên hệ giữa các toạ độ (x, y) của Mtrong hệ Oxy với các toạ độ (x', y')cũng của M trong hệ O'x'y' là

$$\begin{cases} x = a + x' \\ y = b + y' \end{cases} \tag{4.2.11a}$$

Đó là các công thức tịnh tiến trục (từ Oxy sang O'x'y').

Từ đó ta suy ra

$$\begin{cases} x' = -a + x \\ y' = -b + y \end{cases}$$

Đây cũng có thể xem là công thức tịnh tiến trục từ O'x'y' sang Oxy.

b) Công thức quay trục

Khi ta quay hệ cũ Oxy một góc α xung quanh gốc O ta được một hệ mới Ox'y'. Phép quay trục được xác định hoàn toàn bởi góc α (hình 26).

Xét một diễm M trong mặt phẳng. Nó có toạ độ (x, y) đối với hệ cũ và toạ độ (x', y') đối với hê mới. Ta có

$$\overrightarrow{OM} = \overrightarrow{OP'} + \overrightarrow{P'M}$$

Chiếu dằng thức hình học này lên hai trục Ox và Oy ta được liên hệ giữa (x, y) và (x', y'):

$$\begin{cases} x = x'\cos\alpha - y'\sin\alpha \\ y = x'\sin\alpha + y'\cos\alpha \end{cases}$$
 (4.2.11b)

Các công thức này gọi là các công thức quay trục (từ Oxy sang Ox'y').

Bằng cách thay α bởi $-\alpha$ ta suy ra các công thức quay trục từ Ox'y' sang Oxy:

$$\begin{cases} x' = x \cos \alpha + y \sin \alpha \\ y' = -x \sin \alpha + y \cos \alpha \end{cases}$$

4.2.6. Một số áp dụng đơn giản

Thí du 4.2.8. Xét phương trình:

$$y = x^2 - 2x + 2 \tag{4.2.12}$$

Ở phổ thông ta gọi đổ thị của hàm số y này là một parabôn. Bây giờ ta giải thích tại sao có thể gọi như vậy. Ta viết (4.2.12) thành

$$y = x^{2} - 2x + 2 =$$

= $x^{2} - 2x + 1 + 1 = (x - 1)^{2} + 1$

và suy ra

$$y-1=(x-1)^2$$

Dăt
$$y - 1 = y', x - 1 = x'$$
.

Vậy nếu tịnh tiến trục theo công thức

$$\begin{cases} x = 1 + x' \\ y = 1 + y' \end{cases}$$

(trong dó a = 1, b = 1), thì phương trình dā cho viết

$$y'=x'^2,$$

Đó là phương trình của một parabôn đối với hệ mới (hình 27).

Thí du 4.2.9. Xét phương trình:

$$xy = k^2 (k \text{ là hằng số khác 0}) \tag{4.2.13}$$

Ở phổ thông ta đã gọi đồ thị của nó là một hypebôn cân. Bây giờ ta giải thích tai sao gọi thế.

Ta quay trục đi một góc $\alpha = 45^{\circ}$ tức là theo công thức:

$$\begin{cases} x = x'\cos 45^{\circ} - y'\sin 45^{\circ} = \frac{1}{\sqrt{2}}(x'-y') \\ y = x'\sin 45^{\circ} + y'\cos 45^{\circ} = \frac{1}{\sqrt{2}}(x'+y') \end{cases}$$

Thay vào (4.2.13) ta có

$$\frac{1}{\sqrt{2}}(x'-y').\frac{1}{\sqrt{2}}(x'+y')=k^2$$

$$\frac{x^{2}-y^{2}}{2}=k^{2}$$
, hoặc

$$\frac{x^{2}}{(\sqrt{2}k)^{2}} - \frac{y^{2}}{(\sqrt{2}k)^{2}} = 1$$

Đó là phương trình của một hypebôn đối với hệ trục mới (hình 28) với hai tiệm cận $y' = \pm x'$.

Hypebôn này gọi là cân theo nghĩa nó có bán trục thực và bán trục ảo bằng nhau (cùng bằng $\sqrt{2}k$).

4.2.7. Trường hợp tổng quát

Trở lại phương trình tổng quát (4.2.1). Giả sử $B \neq 0$.

Trước hết bằng một phép quay trục thích hợp

$$\begin{cases} x = x' \cos \alpha - y' \sin \alpha \\ y = x' \sin \alpha + y' \cos \alpha \end{cases}$$

ta đưa phương trình (4.2.1) về một phương trình bậc hai đối với x', y'

$$A'x'^2 + 2B'x'y' + C'y'^2 + 2D'x' + 2E'y' + F = 0$$
 (4.2.14)

trong đó

$$A' = \frac{1}{2}(A - C)\cos 2\alpha + B\sin 2\alpha + \frac{1}{2}(A + C)$$

$$C' = \frac{1}{2}(C - A)\cos 2\alpha - B\sin 2\alpha + \frac{1}{2}(A + C)$$

$$B' = \frac{1}{2}(C - A)\sin 2\alpha + B\cos 2\alpha$$

Chọn α thoà mãn điều kiện B' = 0, tức là

$$tg2\alpha = \frac{2B}{A-C} \tag{4.2.15}$$

Khi đó, phương trình (4.2.14) chỉ còn

$$A'x'^2 + C'y'^2 + 2D'x' + 2E'y' + F = 0$$
 (4.2.16)

trong dó

$$A' = \pm \frac{1}{2} \sqrt{(A - C)^2 + 4B^2} + \frac{1}{2} (A + C)$$

$$C' = \pm \frac{1}{2} \sqrt{(A - C)^2 + 4B^2} + \frac{1}{2} (A + C)$$

Nếu B = 0 thì phương trình (4.2.1) đã có dạng (4.2.16) rồi.

Sau khi đã có (4.2.16) ta dùng một phép tịnh tiến trực thích hợp ta có thể đưa phương trình (4.2.16) về một trong những dạng đơn giản

đã xét ở các mục trên và do đó có thể tìm ra biểu diễn hình học của phương trình đã cho.

Xét dại lượng:

$$\delta := A'C' = AC - B^2 \tag{4.2.17}$$

Kết quả tổng quát là :

- 1) Nếu $\delta = AC B^2 > 0$ thì (4.2.1) xác định một elip, hoặc thu về một điểm, hoặc một elip ảo.
- 2) Nếu $\delta = AC B^2 < 0$ thì (4.2.1) xác dịnh một hypebôn, hoặc hai đường thẳng giao nhau.
- 3) Nếu $\delta = AC B^2 = 0$ thì (4.2.1) xác định một parabôn, hoặc một cặp đường thẳng song song, hoặc một cặp đường thẳng trùng nhau, hoặc một cặp đường thẳng ảo song song.

Thí dụ 4.2.10. Vẽ dường biểu diễn phương trình

$$5x^2 + 4xy + 2y^2 - 24x - 12y + 18 = 0 (4.2.18)$$

Ta ∞ A = 5, B = 2, C = 2, $\delta = AC - B^2 = 10 - 4 = 6 > 0$, vậy đường biểu diễn là một elip.

Trước hết ta quay hệ trục toạ độ một góc α , được tính bởi công thức (4.2.15)

$$tg2\alpha = \frac{4}{5-2} = \frac{4}{3} \Rightarrow tg\alpha = \frac{-3\pm 5}{4}$$
.

Vậy tg $\alpha = \frac{1}{2}$ và tg $\alpha = -2$. Ta chọn tg $\alpha = \frac{1}{2}$; do đó

$$\cos\alpha = \pm \frac{1}{\sqrt{1 + tg^2\alpha}} = \pm \frac{2}{\sqrt{5}},$$

$$\sin\alpha=\pm\frac{1}{\sqrt{5}}.$$

Ta sẽ lấy $\cos \alpha = \frac{2}{\sqrt{5}}$, $\sin \alpha = \frac{1}{\sqrt{5}}$.

Vay:
$$x = x'\cos\alpha - y'\sin\alpha = \frac{2x'-y'}{\sqrt{5}}$$

$$y = x'\sin\alpha + y'\cos x = \frac{x'+2y'}{\sqrt{5}}$$

Thế vào phương trình trên ta được

$$6x^{2} + y^{2} - \frac{60}{\sqrt{5}}x^{2} + 18 = 0$$

Phương trình đó có thể viết:

$$6(x' - \sqrt{5})^2 - 30 + y'^2 + 18 = 0,$$

hay

$$6(x'-\sqrt{5})^2+y'^2-12=0.$$

Đổi toạ độ $x' - \sqrt{5} = X$, y' = Y, tức là tịnh tiến hệ trục Ox', Oy' sao cho gốc tới điểm I có toạ độ đối với hệ Ox', Oy' là $(\sqrt{5}, 0)$.

Ta được:

$$6X^2 + Y^2 - 12 = 0$$

hay, chia hai vế cho 12, ta được

$$\frac{X^2}{2} + \frac{Y^2}{12} = 1.$$

Vậy đường biểu diễn của (4.2.18) là một clip nhận IX, IY làm trục đối xứng, có trục lớn nằm trên IY, bán trục lớn là $2\sqrt{3}$, trục nhỏ nằm trên IX, bán trục nhỏ bằng $\sqrt{2}$ (hình 29).

Vậy là bằng các công thức đối trục ta có thể đưa một phương trình bậc hai

Hinh 29

tổng quát đối với x, y về một trong các dạng gọn nhất. Việc làm đó gọi là rút gọn phương trình bậc hai tổng quát. Bài toán này sẽ giải quyết đầy đủ và gọn hơn ở cuối chương 8.

Chú ý 4.2.1. Xem thêm chương 8, mục 8.6.1.

BÀI TÂP : 4.1 - 4.4.

4.3. MẶT BẬC HAI

Bây giờ ta sẽ nghiên cứu những mặt mà phương trình của chúng là bậc hai đối với x, y, z. Những mặt đó được gọi là những mặt bậc hai.

4.3.1. Mặt cầu

 \vec{O} trường phổ thông trung học ta đã thấy rằng phương trình của mặt cầu tâm I(a, b, c) bán kính R là

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$$
 (4.3.1)

hay

$$x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + a^{2} + b^{2} + c^{2} - R^{2} = 0$$

'Đó là một phương trình bậc hai đối với x, y, z, trong đó các hệ số của x^2 , y^2 , z^2 bằng nhau, không có các số hạng chéo xy, yz, xz. Ngược lại, mọi phương trình bậc hai đối với x, y, z, trong đó các hệ số của x^2 , y^2 , z^2 bằng nhau, không có các số hạng chéo, xy, yz, zx đều biểu điển một mặt cầu nào đó, vì có thể để dàng đưa phương trình ấy về dạng (4.3.1), mặt cầu đó có thể thu về một điểm hay là ảo.

Thí dụ 4.3.1. Phương trình

$$x^2 + y^2 + z^2 - 2x + 4y - 6z - 2 = 0$$

có thể viết như sau :

$$x^{2} - 2x + 1 + y^{2} + 4y + 4 + z^{2} + 6z + 9 - 1 - 4 - 9 - 2 = 0,$$

$$(x - 1)^{2} + (y + 2)^{2} + (z - 3)^{2} - 16 = 0.$$

Đó là phương trình của mặt cấu tâm (1, -2, 3) bán kính là 4.

4.3.2. Mặt elipxóit

Trong không gian, phương trình

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \tag{4.3.2}$$

hav

trong đó a, b, c là những hằng số dương, xác định mặt mà ta gọi là mặt elipxôit (hình 30). Vì phương trình (4.3.2) chỉ chứa bình phương của x, y, z nên mặt elipxôit nhận các mặt phẳng toạ độ làm mặt phẳng đối xứng, nhân gốc O làm tâm đối xứng.

Cắt mặt elipxôit bởi các mặt phẳng toạ độ xOy, yOz, zOx, giao tuyến theo thứ tự là những c

giao tuyến theo thứ tự là những elip (hình 30).

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, z = 0$$

$$\frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, x = 0$$

$$\frac{z^2}{c^2} + \frac{x^2}{a^2} = 1, y = 0$$

Cắt mặt elipxôit bởi mặt phẳng z = h song song với mặt phẳng xOy, giao tuyến có phương trình

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{h^2}{c^2}, \ z = h \tag{4.3.3}$$

Nếu |h| < c, phương trình (4.3.3) có thể viết

$$\frac{x^2}{a^2 \left(1 - \frac{h^2}{c^2}\right)} + \frac{y^2}{b^2 \left(1 - \frac{h^2}{c^2}\right)} = 1, \ z = h.$$

Đó là phương trình của một elip có các bán trục là

$$a\sqrt{\left(1-\frac{h^2}{c^2}\right)}, b\sqrt{\left(1-\frac{h^2}{c^2}\right)}$$

Khi h tăng từ 0 đến c các bán trục đó nhỏ dần. Nếu h = 0 giao tuyến là chip có các bán truc a, b. Nếu h = c, giao tuyến thu lai điểm (0, 0, c). Khi h biến thiên từ -c đến +c, giao tuyến di chuyển và sinh ra māt elipxôit. a, b, c dược gọi là các bán trực của elipxôit.

Nếu a = b, giao tuyến của elipxôit với các mặt phẳng z = h là những đường tròn

$$\begin{cases} x^2 + y^2 = a^2 \left(1 - \frac{h^2}{c^2}\right), \\ z = h \end{cases}$$

Có thể xem elipxôit đó là mặt sinh ra do quay elip $\frac{x^2}{2} + \frac{z^2}{2} = 1$ quanh truc Oz. Ta gọi đó là một elipxóit tròn xoay. Cũng vậy, nếu a = c hay b = c ta có những elipxôit tròn xoay.

Nếu a = b = c, phương trình (4.3.2) trở thành $x^2 + y^2 + z^2 = a^2$, đó là phương trình của mặt cấu.

4.3.3. Mặt hypebólòit một tầng

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1,$$
 (4.3.4)

trong đó a, b, c là những hàng số đương, là phương trình của một mặt mà ta gọi là mặt hypebôlôit một tổng (hình 31). Mặt đó nhận các mặt

toa độ làm tâm đối xứng.

Cát mặt (4.3.4) bởi mặt phẳng xOy,

phảng toa độ làm mặt đối xứng, nhận gốc

giao tuyến là elip
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, $z = 0$.

Cắt nó bởi các mặt phẳng yOz, zOx, giao tuyến theo thứ tự là các hypebôn

$$\frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, \quad x = 0 \ ; \quad \frac{x^2}{a^2} - \frac{z^2}{c^2} = 1,$$

y = 0 (hình 31).

Cắt mặt (4.3.4) bởi mặt phẳng z = h song song với mặt phẳng xOy, giao tuyến có phương trình

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 + \frac{h^2}{c^2}, \ z = h. \tag{4.3.5}$$

Đó là phương trình của một elip có các bán truc là

$$a\sqrt{1+\frac{h^2}{c^2}}$$
, $b\sqrt{1+\frac{h^2}{c^2}}$

Nếu h=0 giao tuyến là elip có các bán trục a, b. Khi h tăng dần và lớn lên võ cùng, các bán trục của giao tuyến cũng tăng dần và lớn lên vô cùng. Khi h biến thiên từ $-\infty$ đến $+\infty$, giao tuyến di chuyển và sinh ra hypebôlôit một tầng. a, b, c được gọi là các bán trực của mặt. Nếu a=b, giao tuyến (4.3.5) là những đường tròn :

$$x^2 + y^2 = a^2 \left(1 + \frac{h^2}{c^2} \right), z = h.$$

Lúc đó ta có mặt hypebôlôit một tầng tròn xoay, sinh ra do hypebôn $\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1$ quay quanh trục Oz là trục không cất hypebôn.

4.3.4. Mặt hypebólóit hai tầng

Phương trình

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1,$$
 (4.3.6)

trong đó a, b, c là những hằng số dương, là phương trình của một mặt mà ta gọi là *mặt hypebôlôit hai tẩng* (hình 32). Mặt đó nhận các mặt phẳng toạ độ làm mặt phẳng đối xứng, nhận gốc toạ độ làm tâm đối xứng.

Mặt phẳng xOy không cất mặt đó. Các mặt phẳng xOz, yOz theo thứ tự cắt nó theo các đường

$$\frac{x^2}{a^2} - \frac{z^2}{c^2} = -1, y = 0;$$

$$\frac{y^2}{c^2} - \frac{z^2}{c^2} = -1, x = 0;$$

đó là những hypebôn cắt truc Oz (hình 32).

Cắt mặt (4.3.6) bởi mặt phẳng z = h song song với mặt phẳng xOz, giao tuyến có phương trình

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{h^2}{c^2} - 1, z = h \quad (4.3.7)$$

Nếu |h| > c, đó là phương trình của một elip có các bán trực là

$$a\sqrt{\left(\frac{h^2}{c^2}-1\right)}, \ b\sqrt{\left(\frac{h^2}{c^2}-1\right)}.$$

Nếu $h = \pm c$, giao tuyến thu về một điểm. Nếu |h| tăng dân và lớn lên vô cùng, các bán trục của elip (4.3.7) cũng tăng dân và lớn lên vô cùng.

Khi |h| tăng từ c đến $+\infty$, giao tuyến di chuyển và sinh ra hypeboloit hai táng. Mặt đó có hai tầng riêng biệt.

a, b, c được gọi là các bán trục của mặt. Nếu a = b, giao tuyến là những đường tròn :

$$x^2 + y^2 = a^2 \left(\frac{h^2}{c^2} - 1 \right), z = h.$$

Lúc đó ta có mặt hypebôlôit hai tầng tròn xoay, sinh ra do hypebôn $\frac{x^2}{a^2} - \frac{z^2}{c^2} = -1$ quay quanh trực Oz là trực cất hypebôn.

4.3.5. Mặt parabôlôit eliptic

Phương trình

$$\frac{x^2}{p} + \frac{y^2}{q} = 2z \tag{4.3.8}$$

trong đó p, q là những hằng số dương, xác định một mặt mà ta gọi là mặt purabôlôit eliptic (hình 33). Vì các biến x, y có mặt trong phương trình (4.3.8) với số mũ chẵn nên mặt cong nhận các mặt phẳng yOz, zOx làm mặt phẳng đối xứng.

Mặt phẳng xOy cất mặt cong tại diểm (0, 0, 0). Các mặt phẳng xOy, yOz theo thứ tự cất nó theo các đường

$$x^2 = 2pz, y = 0$$

$$y^2 = 2qz, \ x = 0;$$

đó là những parabón nhận Oz làm trục (hình 33).

Cắt mặt cong bởi mặt phẳng z = h song song với mặt phẳng xOy, giao tuyến có phương trình

Hinh 33

$$\frac{x^2}{p} + \frac{y^2}{q} = 2h, z = h \tag{4.3.9}$$

Nếu h > 0, đó là phương trình của một elip có các bán trục là $\sqrt{2ph}$, $\sqrt{2qh}$. Nếu h = 0, giao tuyến thu về một điểm; khi h tăng dẫn và lớn lên vô cùng, các bán trục của giao tuyến cũng tăng dẫn và lớn lên vô cùng. Khi h tăng từ 0 đến $+\infty$, giao tuyến di chuyển và sinh ra mặt parabólôit eliptic.

p, q được gọi là những tham số của mặt. Nếu p=q, giao tuyến (4.3.9) là những đường tròn

$$x^2 + y^2 = 2ph, \quad z = h.$$

Lúc đó, mặt parabôlôit eliptic là mặt tròn xoay do parabôn $x^2 = 2pz$ quay quanh trục $Oz \sinh ra$..

4.3.6. Mặt parabôlôit hypebôlic

Phương trình

$$\frac{x^2}{p} - \frac{y^2}{q} = 2z \tag{4.3.10}$$

trong đó p, q là những hằng số dương, là phương trình của một mặt mà ta gọi là *mặt parabôlôit hypebólic* (hình 34). Mặt đó nhận các mặt phẳng yOz, zOx làm mặt phẳng đối xứng.

Mặt phẳng zOx cất mặt cong theo đường:

$$x^2 = 2pz, \ y = 0 \tag{4.3.11}$$

Đó là một parabôn nhận Oz làm trục. Cắt mặt cong bởi những mặt phẳng x = h song song với mặt yOz, giao tuyến có phương trình

$$y^2 = -2q \left(z - \frac{h^2}{2p} \right), \ x = h \tag{4.3.12}$$

Đó là phương trình của những parabôn có tham số q, có trục song song với Oz, quay bề lõm về phía z < 0; có dình nằm trên parabôn (4.3.11). Khi h biến thiên từ $-\infty$ đến $+\infty$, các parabôn (4.3.12) dì chuyển và sinh ra mặt parabôlôit hypebôlic (hình 34)

Cắt mặt cong bởi những mặt phẳng z = h song song với mặt phẳng xOy, phương trình của giao tuyến là

$$\frac{x^2}{p} - \frac{y^2}{q} = 2h, \ z = h \tag{4.3.13}$$

Nếu h > 0, đó là phương trình của những hypebôn có trục thực nằm trong mặt phẳng zOx và song song với Ox, có bán trục thực bằng $\sqrt{2ph}$, có bán trục ào bằng $\sqrt{2qh}$. Nếu h < 0, đó là phương trình của những hypebôn có trục thực nằm trong mặt phẳng yOz và song song với Oy, có bán trục thực bằng $\sqrt{-2qh}$, có bán trục ảo bằng $\sqrt{-2ph}$. Nếu h = 0, phương trình (4.3.13) có thể viết

$$\left(\frac{x}{\sqrt{p}} - \frac{y}{\sqrt{q}}\right) \left(\frac{x}{\sqrt{q}} + \frac{y}{\sqrt{q}}\right) = 0, \ z = 0.$$

Đó là phương trình của một cặp đường thẳng trong mặt phẳng xOy di qua gốc O.

4.3.7. Mặt trụ bậc hai

Mặt trụ là mặt được sinh ra bởi một đường thắng D di chuyển luôn luôn song song với một phương cho trước và dựa vào một đường L cho trước. Đường L được gọi là đường chuẩn, đường thẳng D là đường sinh của mặt tru.

Xét mặt S xác định bởi phương trình f(x, y) = 0. Phương trình ấy không chứa z. Giả sử $M_o(x_o, y_o, z_o)$ là một điểm trên mặt S, toạ độ của nó thoả mãn phương trình của mặt, tức là $f(x_o, y_o) = 0$. Mọi điểm M nằm trên đường thẳng đi qua M_o song song với Oz đều có toạ độ (x_o, y_o, z) , trọng đó z là một số nào đó. Các toạ độ đó cũng thoà mãn phương trình của mặt S vì phương trình ấy không chứa z. Vậy nếu M_o nằm trên mặt S thì đường thẳng đi qua M_o song song với trục Oz cùng nằm trên mặt S. Mặt khác trong mặt phẳng xOy phương trình f(x, y) = 0 xác định một đường L nào đó. Dĩ nhiên đường L nằm trên

mặt S. Vậy có thể xem mặt S được sinh ra bởi một đường thẳng di chuyển luôn luôn song song với trục Oz và dựa vào đường L, đó là mặt trụ có đường sinh song song với trục Oz và nhận L làm đường chuẩn (hình 35).

Tương tự, phương trình g(y, z) = 0 không chứa x, xác dịnh một mặt trụ có đường sinh song song với Ox; phương trình

h(x, z) = 0 không chứa y, xác định một mặt trụ có đường sinh song song với Oy.

Những mặt trụ mà phương trình là bậc hai đối với toạ độ chạy được gọi là những mặt trụ bậc hai.

Thí dụ 4.3.2. Phương trình

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

xác dịnh mặt trụ có đường sinh song song với Oz và có đường chuẩn là một elip nằm trong mặt phẳng xOy (hình 36).

Nếu a = b, phương trình ấy xác định một mặt trụ tròn xoay. Thi du 4.3.3. Phương trình

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

xác định mặt trụ có đường sinh song song với Oz và có đường chuẩn là một hypebôn nằm trong mặt phẳng xOy (hình 37).

Thi du 4.3.4. Phương trình

$$y^2 = 2px$$

xác định mặt trụ có đường sinh cùng phương với O_2 và có đường chuẩn là một parabôn nằm trong mặt phẳng xO_2 (hình 38).

4.3.8. Mặt nón bậc hai

Mặt nón là mặt được sinh ra bởi một dường thẳng D di chuyển luôn luôn đi qua một điểm cố định I và dựa vào một đường L cho trước. Đường L được gọi là đường chuẩn, đường thẳng D là đường sinh, điểm I là đỉnh của mặt nón.

Hình 38

Xét mặt xác định bởi phương trình

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0. {(4.3.14)}$$

Mật đó cắt mặt phẳng xOy tại gốc toạ độ. Giao tuyến của mặt đó với mặt phẳng yOz có phương trình

$$\frac{y^2}{b^2} - \frac{z^2}{c^2} = 0, \ x = 0$$

hoặc

$$\left(\frac{y}{b} - \frac{z}{c}\right) \left(\frac{y}{b} + \frac{z}{c}\right) = 0, \ x = 0.$$

Đó là phương trình của một cặp đường thẳng giao nhau trong mặt phẳng yOz. Mặt phẳng xOz cất mặt cong theo hai đường thẳng giao nhau

$$\left(\frac{x}{a} - \frac{z}{c}\right) \left(\frac{x}{a} + \frac{z}{c}\right) = 0, \ y = 0.$$

Cắt mặt cong bởi mặt phẳng z = h song song với mặt phẳng xOy, giao tuyến có phương trình

$$\frac{x^2}{\frac{a^2h^2}{c^2}} + \frac{y^2}{\frac{b^2h^2}{c^2}} = 1, \ z = h \tag{4.3.15}$$

Đố là phương trình của elip có các bán trục là $\frac{ah}{c}$, $\frac{bh}{c}$. Khi h biến thiên từ $-\infty$ đến $+\infty$, giao tuyến đó sẽ di chuyển và sinh ra mặt (4.3.14) (hình 39).

Ta sẽ chứng minh rằng nếu diễm $M_o(x_o, y_o, z_o)$ nằm trên mặt (4.3.14) thì dường thẳng OM_o cũng nằm trên mặt (4.3.14). Quả vậy, diễm M_o nằm trên mặt (4.3.14), do đó toạ độ (x_o, y_o, z_o) của nó thoà mãn phương trình (4.3.14). Mọi điểm trên đường thẳng OM_o đều có toạ độ $(\lambda x_o, \lambda y_o, \lambda z_o)$, trong đó λ là một số nào đó, do đó chúng đều nằm trên mặt (4.3.14) vì toạ độ của chúng thoà mãn phương trình

$$\frac{\lambda^2 x_o^2}{a^2} + \frac{\lambda^2 y_o^2}{b^2} - \frac{\lambda^2 z_o^2}{c^2} = \lambda^2 \left(\frac{x_o^2}{a^2} + \frac{y_o^2}{b^2} - \frac{z_o^2}{c^2} \right) = 0.$$

Vậy mặt (4.3.14) sinh ra bởi một dường thẳng di chuyển luôn luôn di qua gốc toạ độ và dựa vào một elip cho bởi phương trình (4.3.15) với một trị h xác dịnh nào đó. Đó là một mặt nón có dình tại gốc toạ độ. Nếu a = b, ta có một mặt nón tròn xoay.

Chú ý rằng phương trình (4.3.14) là thuần nhất bậc hai đối với x, y, z, tức là mọi số hạng của nó đều là bậc hai đối với x, y, z. Mọi mặt mà phương trình là thuần nhất đối với x, y, z đều có tính chất vừa chứng minh trên, tức đều là mặt nón đình O. Mọi mặt mà phương trình là thuần nhất đối với $x - x_0$, $y - y_0$, $z - z_0$ đều là mặt nón định

 (x_0, y_0, z_0) . Những mặt nón mà phương trình là bậc hai đối với x, y, z là những mặt nón bậc hai.

Chú ý 4.3.1. Về mặt bậc hai tổng quát xem chương 8, mục 8.6.2.

BÀI TẬP: 4.5 - 4.11.

BÀI TẬP CHƯƠNG IV

4.1. Vẽ các đường biểu diễn của

a)
$$y = 2x^2 - 4x + 8$$
;
b) $y^2 + 8y - 2x + 12 = 0$.

- 4.2. Cho phương trình $y = \frac{2x+3}{x+4}$. Tìm phép tinh tiến hệ trực toạ độ sao cho trong hệ mới phương trình không chứa các số hạng bậc nhất.
- 4.3. Cho phương trình $2x^2 5xy + 2y^2 + 3x 4 = 0$. Phải quay hệ trục toạ độ một gốc bằng bao nhiều để cho phương trình trong hệ mới không có số hạng chéo.
- 4.4. Đưa các phương trình sau về dạng chính tắc và vẽ đường biểu diễn của chúng :

a)
$$3x^2 + 10xy + 3y^2 - 2x - 14y - 13 = 0$$
;

b)
$$25x^2 - 14xy + 25y^2 + 64x - 64y - 224 = 0$$
;

c)
$$7x^2 + 6xy - y^2 + 28x + 12y + 28 = 0$$
;

d)
$$9x^2 - 24xy + 16y^2 - 20x + 110y - 50 = 0$$
.

4.5. Tim ý nghĩa hình học của các phương trình sau:

a)
$$y + 2 = 0$$
;

b)
$$x^2 + y^2 + z^2 = 25$$
;

c)
$$(x-2)^2 + (y+3)^2 + (z-5)^2 = 49$$
;

d)
$$x^2 + 2y^2 + 3z^2 = 0$$
;

e)
$$x^2 + 2y^2 + 3z^2 + 5 = 0$$
;

g)
$$x - y = 0$$
:

h)
$$x + z = 0$$
:

i)
$$xyz = 0$$
:

k)
$$x^2 - 4x = 0$$
;

1)
$$yz + z^2 = 0$$
.

4.6. Xác định tâm và bán kính của các mặt cầu sau :

a)
$$x^2 + y^2 + z^2 - 6x + 8y + 2z + 10 = 0$$
;

b)
$$x^2 + y^2 + z^2 - 6x + 10 = 0$$
;

c)
$$x^2 + y^2 + z^2 - 4x + 12y - 2z + 41 = 0$$
.

4.7. Tìm tâm và bán kính của đường tròn

$$\begin{cases} (x-4)^2 + (y-7)^2 + (z+1)^2 = 36\\ 3x + y - z - 9 = 0 \end{cases}$$

4.8. Chứng tổ rằng các mặt phẳng x - 2 = 0, y = 3, z = 1 cắt mặt elipxôit

$$\frac{x^2}{16} + \frac{y^2}{12} + \frac{z^2}{4} = 1$$

theo các elip. Tính các bán trục và xác định các đinh của chúng. Vẽ các giao tuyến ấy.

4.9. Tìm giao tuyến của mặt hypebôlôit một tầng

$$\frac{x^2}{36} + \frac{y^2}{16} - \frac{z^2}{4} = 1$$

với các mặt phẳng toạ độ, với các mặt phẳng z = 1, z = 2, x = 1, x = 2, y = 1, y = 2.

4.10. Tìm giao tuyến của mặt

$$\frac{x^2}{5} - \frac{y^2}{4} = 6z$$

với các mặt phẳng toạ độ. Chứng tò rằng mặt phẳng y + 6 = 0 cất mặt đó theo một parabón; tìm tham số và định của nó.

4.11. Tim giao tuyến của mặt

$$y^2 + z^2 = x$$

với các mặt phẳng toạ độ. Tìm phương trình của hình chiếu trên mặt phẳng xOy của giao tuyến của mặt đó với mặt phẳng x + 2y - z = 0.

ĐÁP SỐ

4.1. a)
$$X^2 = \frac{Y}{2}$$
, với $X = x - 1$, $Y = y - 6$;

b)
$$Y^2 = 2X$$
, với $X = x + 2$, $Y = y + 4$.

4.2. Tịnh tiến sao cho gốc đến điểm (-4, 2).

4.3.
$$\frac{\pi}{4}$$
.

4.4. a)
$$X^2 - \frac{Y^2}{4} = 1$$
, $v \circ i x = \frac{x' - y'}{\sqrt{2}}$, $y = \frac{x' + y'}{\sqrt{2}}$.
 $x' = X + \frac{1}{\sqrt{2}}$, $y' = Y - \frac{3}{\sqrt{2}}$.

b)
$$\frac{X^2}{16} + \frac{Y^2}{9} = 1$$
 với $x = \frac{x' - y'}{\sqrt{2}}$.

$$y = \frac{x' + y'}{\sqrt{2}}$$
; $x' = X, y' = Y + \sqrt{2}$.

c)
$$X^2 - 4Y^2 = 0$$
, với $x = \frac{x' + 3y'}{\sqrt{10}}$.

$$y = \frac{-3x' + y'}{\sqrt{10}}$$
; $x' = X - \frac{2}{\sqrt{10}}$, $y' = Y - \frac{6}{\sqrt{10}}$.

d)
$$Y^2 = 2X$$
 với $x = \frac{-4x' + 3y'}{5}$
 $y = \frac{-3x' - 4y'}{5}$; $x' = X - 3$, $y' = Y + 2$.

- 4.5. a) Mặt phẳng song song với mặt phẳng toạ độ xOz, cách nó một khoảng d = 2, về phía y < 0;
 - b) Mặt cầu tâm tại gốc toạ độ, có bán kính R = 5;
 - c) Māt cầu tâm tai (2, -3, 5), có bán kính R = 7;
 - d) Điểm gốc toạ độ;
 - e) Phương trình không có ý nghĩa hình học;
- g) Mặt phảng đi qua trục Oz và đường thẳng x = y trong mặt phẳng xOy;
- h) Mặt phẳng đi qua trục Oy và đường thẳng x = -z trong mặt phẳng zOx;
 - i) Ba mặt phẳng toạ độ;
- k) Mặt phẳng yOz và mặt phẳng song song với nó, cách nó một khoảng d=4 về phía x>0;
- 1) Mặt phẳng xOy và mặt phẳng đi qua trực Ox và đường thẳng y + z = 0 trong mặt phẳng yOz.
 - 4.6. a) Tâm (3, -4, -1), bán kính bằng 4; b) Mặt cấu ảo;
 - c) Tâm (2, -6, 1), bán kính bằng 0.
 - 4.7. Tâm (1, 6, 0), bán kính bằng 5.
- **4.8.** 3, $\sqrt{3}$, (2, 3, 0), (2, -3, 0), (2, 0, $\sqrt{3}$), (2, 0, $-\sqrt{3}$); 2, 1, (2, 3, 0), (-2, 3, 0), (0, 3, 1), (0, 3, -1); $2\sqrt{3}$, 3, $(2\sqrt{3}, 0, 1)$, $(-2\sqrt{3}, 0, 1)$, (0, 3, 1), (0, -3, 1).

4.9.
$$\frac{x^2}{36} + \frac{y^2}{16} = 1$$
, $z = 0$; $\frac{y^2}{16} - \frac{z^2}{4} = 1$, $x = 0$; $\frac{x^2}{36} - \frac{z^2}{4} = 1$, $y = 0$; $\frac{x^2}{45} + \frac{y^2}{20} = 1$, $z = 1$;

$$\frac{x^2}{72} + \frac{y^2}{32} = 1$$
, $z = 2$; $\frac{y^2}{\frac{140}{9}} - \frac{z^2}{\frac{35}{9}} = 1$, $x = 1$:

$$\frac{y^2}{\frac{128}{2}} - \frac{z^2}{\frac{32}{2}} = 1, \quad x = 2 \ ;$$

$$\frac{x^2}{\frac{135}{4}} - \frac{z^2}{\frac{15}{4}} = 1, \quad y = 1;$$

$$\frac{x^2}{27} - \frac{z^2}{2} = 1, \quad y = 2.$$

4.10.
$$y^2 + 24z = 0$$
, $x = 0$; $x^2 = 30z$, $y = 0$; $\frac{x}{\sqrt{5}} - \frac{y}{2} = 0$,

$$\frac{x}{\sqrt{5}} + \frac{y}{2} = 0, \quad z = 0, \quad y = -6, \text{ parabon có tham số bằng 15, dình}$$
$$\left\{0, -6, -\frac{3}{2}\right\}.$$

4.11. (0, 0, 0);
$$z^2 = x$$
, $y = 0$; $y^2 = x$, $z = 0$; $x^2 + 4xy + 5y^2 - x = 0$, $z = 0$.

Chương V

KHÔNG GIAN VECTO - KHÔNG GIAN EUCLID

5.1. KHÔNG GIAN VECTO - ĐỊNH NGHĨA VÀ THÍ DU

5.1.1. Nhân xét mở dầu

Có nhiều tập hợp mà các phần từ có thể "cộng" với nhau và "nhân" với một số. Sau đây là một số thí dụ:

Tập các vectơ hình học

Tập các hàm số liên tục

Tập các đa thức

Tập các ma trận cùng cỡ.

Để nghiên cứu chúng theo một quan điểm thống nhất người ta xây dựng khái niệm không gian vectơ tổng quát. Sau đó mỗi tập trên chỉ là một trường hợp cụ thể, nó sẽ có tất cả những tính chất của không gian vectơ tổng quát.

5.1.2. Khái niệm không gian vectơ

Định nghĩa 5.1.1. Xét tập V khác rỗng mà mỗi phần từ ta quy ước gọi là một vectơ và trường số thực R. Giả sử trong V ta định nghĩa được hai phép toán : phép cộng hai vectơ và phép nhân một vectơ với một số thực.

Phép cộng hai vectơ là một luật hợp thành trong trên V cho phép tạo ra từ một cặp vectơ x, $y \in V$ một vectơ duy nhất gọi là tổng của chúng, kí hiệu là x + y.

10.4 10.4

Phép nhân một vectơ với một số, còn gọi là phép nhân với vô hướng, là một luật hợp thành ngoài trên V cho phép tạo ra từ một vectơ $x \in V$ và một số thực $k \in \mathbf{R}$ một vectơ duy nhất gọi là tích của chúng, kí hiệu là kx.

Nếu 10 yêu cấu sau được thoả mãn với mọi $x, y, z \in V$ và mọi $k, l \in \mathbb{R}$ thì tâp V được gọi là một không gian vectơ trên trường \mathbb{R} :

- (1) Nếu x và $y \in V$ thì $x + y \in V$
- $(2) x + y = y + x, \ \forall x, y \in V$
- (3) x + (y + z) = (x + y) + z, $\forall x, y, z \in V$
- (4) Tồn tại vectơ $\theta \in V$ sao cho

$$\theta + x = x + \theta = x$$
. $\forall x \in V$

Phần từ θ gọi là phần tử trung hoà của phép + (hay của V).

(5) Với mỗi $x \in V$ tổn tại vect $\sigma - x \in V$ sao cho

$$x + (-x) = (-x) + x = \theta$$

Phần tử -x gọi là phần tử đối xứng (hay phần tử đối) của x.

- (6) Nếu $k \in \mathbf{R}$ và $x \in V$ thì $kx \in V$
- (7) k(x + y) = kx + ky
- (8) (k+l)x = kx + lx
- (9) k(lx) = (kl)x
- (10) I.x = x

 $Ch\dot{u}$ ý 5.1.1. Yêu cầu (1) nói lên tính đóng kín của V đối với phép cộng vectơ, cũng nói tắt là tính đóng kín của phép cộng vectơ.

Yêu cầu (6) nói lên tính đóng kín của V đối với phép nhân với vô hướng, cũng nói tắt là tính đóng kín của phép nhân với vô hướng.

Yêu cầu (2) nói lên tính giao hoán của phép công vecto.

Yêu cầu (3) nói lên tính kết hợp của phép cộng vecto.

Chủ ý 5.1.2. Mười yêu cấu (1) – (10) gọi là mười tiên để của không gian vecto.

Có tài liệu người ta chi nêu 8 tiên đề (2) (3) (4) (5) (7) (8) (9), (10), xem các tiên đề (1) và (6) đã bao hàm trong các dịnh nghĩa của hai phép tính cộng hai vectơ và nhân một vectơ với một số.

Chú ý 5.1.3. Nếu thay **R** bằng trường số phức **C** thì ta có không gian vectơ trên trường số phức. Ở giáo trình này ta chỉ quan tâm đến các không gian vectơ trên trường số thực.

5.1.3. Thí du

Thi du 5.1.1.

Gọi R_2 (R_2 chứ không phải \mathbf{R}^2) là tập các vectơ hình học trong mặt phẳng có chung gốc hay là tập các vectơ hình học tự do trong mặt phẳng trong đó ta đồng nhất các vectơ bằng nhau (tức là các vectơ cùng phương, cùng hướng, cùng độ dài xem là một). Trong R_2 ta xét phép cộng vectơ theo quy tắc tam giác và phép nhân vectơ với một số thực thông thường.

Cả 10 tiên để (1) – (10) đều thoả mãn – phần tử trung hoà là vectơ không $\vec{0}$, phần tử đối của vectơ \vec{a} là $-\vec{a}$.

Vậy R_2 là một không gian vecto.

Một cách tương tự tập R_3 các vectơ hình học trong không gian có chung gốc hay các vectơ hình học tự do trong không gian (trong đó ta đồng nhất các vectơ bằng nhau) với phép cộng vectơ và phép nhân vectơ với một số thực là một không gian vectơ.

Thí dụ 5.1.2. Xét \mathbb{R}^n là tập mà mỗi phần tử là một bộ n số thực có thứ tự $(x_1, x_2, ..., x_n)$, còn gọi là một vectơ n thành phần. Xét

$$x = (x_1, x_2, ..., x_n)$$
 và $y = (y_1, y_2, ..., y_n)$.

Phép cộng vectơ và phép nhân với vô hướng định nghĩa như sau

$$x + y = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$
 (5.1.1)

$$kx' = (kx_1, kx_2, ..., kx_n), k \in \mathbf{R}$$
 (5.1.2)

Ngoài ra x = y khi và chỉ khi $x_i = y_i$, $\forall i$

Ta kiểm tra lại các tiên đề.

Công thức (5.1.1) chứng tổ $x + y \in \mathbb{R}^n$, đó là tiên để (1).

Từ (5.1.1) ta suy ra

$$y + x = (y_1 + x_1, y_2 + x_2, ..., y_n + x_n)$$

Vậy y + x = x + y, đó là tiên đề (2).

Một cách tương tự, ta suy ra tiên đề (3) thoả mãn.

Tiên đề (4) thoả mãn với phần tử trung hòa là

$$\theta = (0, 0, ..., 0)$$

Tiên đề (5) thoả mãn với phần tử đối của $x \in \mathbb{R}^n$ là

$$-x = (-x_1, -x_2, ..., -x_0)$$

Công thức (5.1.2) chứng tỏ $kx \in V$, đó là tiên đề (6).

Để kiểm tra tiên đề (7) ta sử dụng (5.1.1) và (5.1.2)

$$k(x + y) = (k(x_1 + y_1), k(x_2 + y_2), ..., k(x_n + y_n)) =$$

$$= (kx_1 + ky_1, kx_2 + ky_2, ..., kx_n + ky_n)$$

$$= (kx_1, kx_2, ..., kx_n) + (ky_1, ky_2, ..., ky_n)$$

$$= kx + ky$$

Một cách tương tự ta suy ra các tiên để (8), (9) thoả mãn. Đối với tiên để (10) ta viết theo (5.1.2)

$$1x = (1x_1, 1x_2, ..., 1x_n) = (x_1, x_2, ..., x_n) = x.$$

Tóm lại, cả 10 tiên đề (I) - (10) đều thoá mãn. Vậy \mathbf{R}^n là một không gian vecto.

Chú ý 5.1.4.

1) Mỗi cặp số $(a_1, a_2) \in \mathbb{R}^2$ có hai ý nghĩa hình học : Có thể biểu diễn nó bằng một điểm M trong mặt phẳng toạ độ mà a_1 là hoành độ và a_2 là tung độ (hình 40).

Cũng có thể biểu diễn nó như là một vectơ mà a_1 là thành phần thứ nhất và a_2 là thành phần thứ hai (hình 41).

Với cách biểu diễn thứ nhất ta có một tương ứng 1-1 giữa \mathbb{R}^2 và tặp các diễm của mặt phẳng toạ độ.

Với cách biểu diễn thứ hai ta có một tương ứng 1-1 giữa \mathbb{R}^2 và R_2 (xem thí dụ 5.1.1).

2) Môi bộ ba số $(a_1, a_2, a_3) \in \mathbb{R}^3$ có hai ý nghĩa hình học. Có thể biểu diễn nó bằng một điểm M trong không gian toạ độ mà a_1 là hoành độ, a_2 là tung độ và a_3 là cao độ (hình 42). Cũng có thể biểu diễn nó như là một vector \vec{a} mà a_1 là thành phần thứ nhất, a_2 là thành phần thứ hai và a_3 là thành phần thứ ba (hình 43). Với cách biểu diễn thứ nhất ta có một tương ứng 1-1 giữa \mathbb{R}^3 và tập các điểm của không gian toạ độ. Với cách biểu diễn thứ hai ta cũng có một tương ứng 1-1 giữa \mathbb{R}^3 và R_3 (xem thí dụ 5.1.1).

3) Mối phần tử $(a_1, a_2, ..., a_n) \in \mathbb{R}^n$ cũng có thể xem là một điểm n toạ độ hay một vecto n thành phần.

Thí dụ 5.1.3. Gọi C[a, b] là tập các hàm số liên tục trên $a \le t \le b$, a và b cho trước. Xét

$$f \in C[a, b]$$
 và $g \in C[a, b]$

Ta nói f = g néu f(t) = g(t), $\forall t \in [a, b]$

Trên C[a, b] ta dịnh nghĩa phép cộng f + g và phép nhân $kf, k \in \mathbb{R}$ như sau :

$$(f+g)(t) = f(t) + g(t), \quad \forall t \in [a,b]$$
$$(kf)(t) = kf(t), \quad \forall t \in [a,b]$$

Thể thì có

$$f+g\in C[a,b], kf\in C[a,b]$$

Đó là các tiên đề (1) và (6). Các tiên đề còn lại cũng thoả mãn (bạn đọc kiểm tra). Phần từ trung hoà là hàm số đồng nhất không, tức là bằng $0, \forall t \in [a, b]$. Phần từ đối xứng của hàm f là -f:

$$(-f)(t) = -f(t), \forall t \in [a, b]$$

Vậy C[a, b] là một không gian vecto.

Chú ý 5.1.5. Có thể xét tập $C(-\infty, +\infty)$ gồm các hàm số liên tục trên $(-\infty, +\infty)$. Nó cũng là một không gian vecto.

Thí dụ 5.1.4. Xét $W \subset C[a, b]$ gồm những hàm số có giá trị tại t = 0 là 1 với hai phép tính cộng vectơ và nhân với vô hướng đã định nghĩa trong C[a, b]. Lấy

thì
$$f(t) = t + 1 \in W, g(t) = t^{2} + 1 \in W$$

$$(f + g)(t) = t + 1 + t^{2} + 1 = t^{2} + t + 2$$
nén
$$(f + g)(0) = 2$$

Do đó $f + g \notin W$. Tiên đề (1) không thoà mãn. Vậy W không phải là một không gian vecto.

Thí dụ 5.1.5. Gọi P_n là tập các đa thức có bậc $\leq n$, n là một số nguyên đương xác định:

$$P_n = \{p\} \ p := a_0 + a_1 t + a_2 t^2 + ... + a_n t^n\}$$

Vì da thức cũng là một hàm số liên tục nên trong P_n ta định nghĩa phép cộng đa thức và nhân đa thức với một số thực như phép cộng hàm số và nhân hàm số với một số thực trong C[a, b] ở thí dụ 5.1.3.

Từ đó ta suy ra : Nếu $k \in \mathbb{R}$ và

$$p = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n \in P_n$$

$$q = b_0 + b_1 t + b_2 t^2 + \dots + b_n t^n \in P_n$$

thì

$$p + q = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n \in P_n$$

$$kp = ka_0 + (ka_1)t + \dots + (ka_n)t^n \in P_n$$

Do đó các tiên đề (1) và (6) thỏa mãn.

Có thể chứng minh được rằng 8 tiên để còn lại cũng thoả mãn với phần từ trung hoà là đa thức không :

$$0 + 0t + 0t^2 + ... + 0t^n$$

và phần tử đối xứng của

$$p = a_0 + a_1 t + ... + a_n t^n$$

là

$$-p = -a_0 - a_1 t - ... - a_n t^n$$

Vậy P_0 là một không gian vecto.

Chú ý 5.1.6. Xem thêm các mục 2.6.5 và 2.6.6 về đa thức đồng nhất không và các đa thức đồng nhất.

Thí dụ 5.1.6. Theo kết quả ở thí dụ 5.1.5 th) tập P_2 các đa thức bậc nhỏ hơn hay bằng 2 là một không gian vecto. Bây giờ xét P_2^* các đa thức có bậc bằng 2 : $P_2^* = \{p^* \mid p^* = a_0 + a_1t + a_2t^2, a_2 \neq 0\}$. Ta thù lấy

$$p^* = 1 + 2t + t^2 \in P_2^*$$

 $q^* = 2 - 3t - t^2 \in P_2^*$

thì thấy .

$$p^* + q^* = 3 - t \notin P_2^*$$

Như vậy tiên đề (1) không thoả mãn, do đó P_2^* không phải là một không gian vecto.

Thí dụ 5.1.7. Gọi $\mathcal{M}_{m \times n}$ là tập các ma trận cỡ $m \times n$ với hai phép tính cộng ma trận và nhân ma trận với một số thực đã dịnh nghĩa ở 3.1.4 và 3.1.5.

Dễ thấy rằng cả 10 tiên để (1)-(10) đều thoả mãn (bạn đọc kiểm tra lai).

Vậy $\mathcal{M}_{m \times n}$ là một không gian vecto.

5.1.4. Một số tính chất đầu tiên của không gian vectơ

Bất kì không gian vectơ nào cũng có tính chất sau:

Dinh lí 5.1.1. (a) Phần tử trung hoà θ là duy nhất.

- (b) Phần tử đối xứng của bắt kì x nào thuộc V cũng là duy nhất.
- (c) $\forall x \in V$ ta đều có $0x = \theta$.
- (d) $\forall x \in V$ to $d\hat{e}u c\hat{o} \neg x = (-1)x$.
- e) $\forall k \in \mathbb{R}$ to đều có $k\theta = \theta$.
- (f) $v\acute{o}i x \in V$, $v\grave{a}k \in \mathbf{R}$ ta $c\acute{o}$:

Nếu $kx = \theta$ thì hoặc k = 0 hoặc $x = \theta$.

Chứng minh: Hai tính chất (a) và (b) suy từ khẳng định ở chú ý 5.1.4 nói rằng (V, +) là một nhóm.

Để chứng minh (c) ta viết

$$\theta + 0x = 0x = (0 + 0)x$$
$$= 0x + 0x$$

rồi giản ước

$$\theta = 0x$$

Để chứng minh (d) ta viết

$$x + (-1)x = 1x + (-1)x = [1 + (-1)]x = 0x = \theta$$

$$(-1)x + x = \theta$$

νà

Suy ra (-1)x là vectơ đối của x, tức là -x.

Để chứng minh (e) ta viết

$$0\theta = \theta$$

Suy ra

$$k\theta = k(\theta\theta)$$

$$= (k.0)\theta$$

$$= 0\theta$$

$$= \theta$$
.

Để chứng minh (f) ta giả sử $kx = \theta$.

Nếu k = 0 thì $0x = \theta$ theo (c)

Nếu $k \neq 0$ thì tồn tại k^{-1} . Do đó có

$$k^{-1}(kx) = k^{-1}\theta$$

$$(k^{-1}k)x = \theta$$

$$x = \theta$$

Vậy nếu $kx = \theta$ thì hoặc k = 0 hoặc $x = \theta$.

Chú ý 5.1.7. Bày giờ ta có thể định nghĩa phép trừ:

$$x - y := x + (-y)$$

Khi đó ta có

$$x = y \Leftrightarrow x - y = \theta$$
.

Chú ý 5.1.8. Các tính chất (a) – (f) ở định lí 5.1.1 dúng trong mọi không gian vectơ cụ thể, ta có kết luận ấy mà không cần phải kiểm tra lại trên từng không gian cụ thể vì ta đã chứng minh định lí 5.1.1 với giả thiết V là một không gian vectơ bất kì (thoả mãn 10 tiên đề của không gian vectơ). Đó là lợi ích của quan điểm tiên đề.

BÀI TÂP: 5.1.

5.2. KHÔNG GIAN CON VÀ HỆ SINH

5.2.1. Định nghĩa không gian con

Định nghĩa 5.2.1. V là một không gian vectơ với hai phép tính : cộng vectơ và nhân vectơ với một số, W là một tập con của V. Nếu với hai phép tính trên, W cũng là một không gian vectơ thì W được gọi là một không gian con của V.

Như vậy muốn chứng tỏ $W \subset V$ là một không gian con của V ta phải chứng minh rằng bản thân W với hai phép tính: cộng vectơ và nhân vectơ với một số đã định nghĩa trong V, cũng thoả mãn 10 tiên đề của không gian vectơ. Định lí sau giúp cho việc chứng minh $W \subset V$ là một không gian con của V đơn giản hơn.

5.2.2. Điều kiện để W ⊂ V là không gian con

Định lí 5.2.1. V là một không gian vectơ, $W \subset V$, $W \neq \emptyset$. Muốn cho W là không gian con của V điều kiện cần và đủ là hai tính chất sau được thoả mẫn :

- (a) Néu u và v ∈ W thì u + v ∈ W (tức là W đóng kín đối với phép cộng vectơ).
- (b) Nếu $k \in \mathbb{R}$, $u \in W$ thì $ku \in W$ (tức là W đóng kín đối với phép nhân vectơ với một số thực).

Chứng minh : 1) Nếu W là không gian con của V thì bản thân nó là một không gian vectơ, nên thoả mãn cả 10 tiên đề trong đó tiên đề (1) và (6) chính là (a) và (b).

2) Ngược lại, giả sử (a) và (b) thoả mãn thì đó là các tiên để (1) và (6). Trong các tiên để còn lại các tiên để (2), (3), (7), (8), (9), (10) đã thoả mãn trong V nên cũng thoả mãn trong W. Do đó để hoàn thành ta chỉ còn phải chứng minh rằng các tiên để (4) và (5) cũng thoả mãn trong W.

Giả sử $u \in W$. Theo giả thiết (b), $ku \in W$ với mọi số $k \in \mathbb{R}$. Với k = 0 ta có $0u = \theta \in W$. Với k = -1 ta có $(-1)u = -u \in W$ (theo định lí 5.1.1). Sau đó trong W ta có

$$u + \theta = \theta + u = u$$

$$(-u) + u = u + (-u) = (1 + (-1)) u = 0u = \theta$$

vì $0u = \theta$ theo dinh lí 5.1.1.

Vậy W là một không gian vecto.

5.2.3. Thí dụ

Thí dụ 5.2.1.V là một không gian vectơ thì bản thân V có thể xem là một không gian con của V.

Tập chi gồm một phần tử trung hoà θ , $\{\theta\}$ thoả mãn

$$\theta + \theta = \theta$$
, $k\theta = \theta$ mà $\theta \in \{\theta\}$

Vậy tập $\{\theta\}$ cũng là một không gian con của V.

Thi dụ 5.2.2. Mỗi phần tử của \mathbb{R}^2 là một cặp số $u = (x_1, y_1)$ biểu diễn bằng một điểm trong mất phẳng tọa độ Oxy (hình 44) (Xem chú ý 5.1.4).

Xét W là tập điểm thuộc đường thẳng đi qua gốc toạ độ, có phương trình

$$Ax_1 + By_1 = 0$$

A và B không đồng thời = 0.

Giả sử $u = (x_1, y_1)$ và $v = (x_2, y_2)$ đều $\in W$ và $k \in \mathbb{R}$ thì có $Ax_1 + By_1 = 0$, $Ax_2 + By_2 = 0$. Do đó

$$A(x_1 + x_2) + B(y_1 + y_2) = 0, A(kx_1) + B(ky_1) = 0$$

Vây $u + v \in W$, $ku \in W$. Theo định lí 5.2.1, W là không gian con của \mathbb{R}^2 .

Thí dụ 5.2.3. Theo thí dụ 5.1.7, tập $\mathcal{M}_{2 \times 2}$ các ma trận vuông cấp 2 là một không gian vectơ. Bây giờ xét W là tập các ma trận cấp 2 có dạng

$$\begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix}, a \lor b \in \mathbf{R}$$

Dễ thấy rằng W đóng kín đối với phép cộng ma trận và nhân ma trận với một số thực (bạn đọc kiểm tra lại). Vậy W là một không gian con của $\mathcal{M}_{2\times 2}$.

Thí dụ 5.2.4. Xét hệ phương trình tuyến tính thuần nhất m phương trình n ẩn ở dạng ma trận Ax = 0. Gọi W là tập nghiệm của hệ. Mỗi nghiệm là một bộ n số thực

 $x = (x_1, ..., x_n) \in \mathbb{R}^n$. Vậy $W \subset \mathbb{R}^n$. Giả sử x và $y \in W$ thì A(x + y) = Ax + Ay = 0, A(cx) = cAx = 0, $(c \in \mathbb{R})$.

Vậy W đóng kín đối với phép cộng và nhân với một số thực.

Do đó W là một không gian con của \mathbb{R}^n .

5.2.4. Tổ hợp tuyến tính của một họ vectơ

Định nghĩa 5.2.2. V là một không gian vectơ, S là một họ vectơ của V:

$$S = \{x_1, x_2, ..., x_n\}.$$

Biểu thức

$$c_1 x_1 + c_2 x_2 + \dots + c_n x_n,$$

 $c_i = \text{const} \in \mathbb{R}$

là một vectơ thuộc V và được gọi là một tổ hợp tuyến tính của các vectơ của họ S, hay cũng có thể nói gọn là tổ hợp tuyến tính của họ S.

Thi du 5.2.5. Vecto $(x, y) \in \mathbb{R}^2$ là một tổ hợp tuyến tính của các vecto i = (1, 0) và j = (0, 1) vì

$$xi + yj = x(1, 0) + y(0, 1) = (x, y).$$

Trong \mathbb{R}^2 vecto (7, -1) là một tổ hợp tuyến tính của các vecto $x_1 = (2, 1)$ và $x_2 = (1, -1)$ vì

$$2x_1 + 3x_2 = 2(2, 1) + 3(1, -1) = (4, 2) + (3, -3) = (7, -1).$$

Thí dụ 5.2.6. Vectơ $(x, y, z) \in \mathbb{R}^3$ là một tổ hợp tuyến tính của các vectơ i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) vì

$$xi + yj + zk = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) = (x, y, z).$$

Thí dụ 5.2.7. Hãy biểu diễn vectơ $(7, -3) \in \mathbb{R}^2$ thành tổ hợp tuyến tính của $x_1 = (1, 1)$ và $x_2 = (1, -1)$.

Giải. Ta đi tìm các hằng số c₁ và c₂ để

$$c_1x_1 + c_2x_2 = (7, -3)$$
nghĩa là
$$(7, -3) = c_1(1, 1) + c_2(1, -1)$$

$$= (c_1, c_1) + (c_2, -c_2)$$

$$= (c_1 + c_2, c_1 - c_2)$$

Ta thu được
$$c_1 = 2$$
, $c_2 = 5$. Vậy
$$(7, -3) = 2(1, 1) + 5(1, -1).$$

5.2.5. Không gian con sinh bởi một họ vectơ

Dinh nghĩa 5.2.3. V là một không gian vecto,

 $S = \{x_1, x_2, ..., x_n\}$ là một họ vectơ của V. Ta gọi tập tát cả những tổ hợp tuyến tính của các vectơ của S là bao tuyến tính của S, kí hiệu là Span(S).

Dịnh lí 5.2.2. W = span(S) là một không gian con của V.

Chứng minh: Vì $x_1 = 1x_1$ nên $x_1 \in W$, do đó $W \neq \emptyset$.

Bảy giờ giả sử

$$x = c_1 x_1 + ... + c_n x_n \in W,$$
 $y = d_1 x_1 + ... + d_n x_n \in W,$ $k \in \mathbb{R}$

khi đó ta có

$$x + y = (c_1 + d_1)x_1 + \dots + (c_n + d_n)x_n \in W$$
$$kx = (kc_1)x_1 + \dots + (kc_n)x_n \in W.$$

Vậy W đóng kín đối với hai phép tính trong V. Theo định \mathcal{U} 5.2.1, W là một không gian con của V.

Trường hợp W trùng với V dẫn đến khái niệm hệ sinh của không gian vectơ như dưới đây.

5.2.6. Định nghĩa hệ sinh của không gian vectơ

Định nghĩa 5.2.4. V là một không gian vectơ, $S = \{x_1, ..., x_n\} \subset V$. Nếu span(S) = V, tức là nếu mọi $x \in V$ đều có biểu diễn

$$x = c_1 x_1 + \dots + c_n x_n.$$

thì nói họ S sinh ra V hay họ S là một hệ sinh của V.

Thí dụ 5.2.8. Trong \mathbb{R}^2 xét i = (1, 0) và j = (0, 1). Mọi $x \in \mathbb{R}^2$ có dạng $x = (x_1, x_2)$ nên viết được như sau

$$x = (x_1, x_2) = x_1(1, 0) + x_2(0, 1) = x_1i + x_2j$$
,

nghĩa là x là một tổ hợp tuyến tính của i và j.

Vậy họ $\{i, j\}$ sinh ra \mathbb{R}^2 hay họ $\{i, j\}$ là một hệ sinh của \mathbb{R}^2 .

Thí dụ 5.2.9. Bây giờ xét $x = (1, 2) \in \mathbb{R}^2$. Mọi tổ hợp tuyến tính của x có dạng cx, $c \in \mathbb{R}$. Vậy nếu $y = (y_1, y_2) \in \text{span}(x) = \{cx\}$ thì có $(y_1, y_2) = c(1, 2)$.

Ta suy ra

$$y_2 = 2y_1.$$

Đó là một đường thẳng đi qua gốc toạ độ (hình 45).

Vậy span(1, 2) chỉ là một đường thẳng di qua gốc toạ độ. Vector x = (1, 2) chỉ sinh ra một đường thẳng di qua gốc toạ độ mà không sinh ra cả \mathbb{R}^2 .

Thí dụ 5.2.10. Bây giờ xét

$$x = (1, 2)$$

٧à

$$y = (1, 1)$$

của \mathbb{R}^2 .

Ta thủ xét xem họ $\{x, y\}$ có sinh ra \mathbb{R}^2 không. Muốn thế ta xét $z = (z_1, z_2)$ bắt kì của \mathbb{R}^2 và di tìm a và b thuộc \mathbb{R} để có z = ax + by, nghĩa là

$$(z_1, z_2) = a(1, 2) + b(1, 1)$$

= $(a + b, 2a + b)$

Ta suy ra

$$\begin{cases} a+b=z_1\\ 2a+b=z_2 \end{cases}$$

Hệ này có định thức

$$\begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = 1.1 - 1.2 = -1 \neq 0$$

nên luôn có nghiệm. Vậy họ $\{x, y\}$ là một hệ sinh của \mathbb{R}^2 (hình 46).

BÀI TẤP: 5.2 - 5.12.

5.3. HỌ VECTƠ ĐỘC LẬP TUYẾN TÍNH VÀ PHỤ THUỐC TUYẾN TÍNH

5.3.1. Khái niệm đọc lập tuyến tính và phụ thuộc tuyển tính

Định nghĩa 5.3.1. V là một không gian vectơ, $S = \{x_1,...,x_n\} \subset V$. Xét điều kiện

$$c_1 x_1 + ... + c_n x_n = \theta$$
 (5.3.1)

Nếu điều kiện (5.3.1) chỉ xảy ra khi $c_1 = 0, ..., c_n = 0$ thì ta nói họ S độc lập tuyến tính.

Nếu tồn tại các số thực $c_1, ..., c_n$ không đồng thời bằng 0 để (5.3.1) thoả mãn thì ta nói họ S phụ thuộc tuyến tính.

5.3.2. Thí đụ

Thí dụ 5.3.1. Xét xem họ $\{i, j\}$, i = (1, 0), j = (0, 1), trong \mathbb{R}^2 là độc lập tuyến tính hay phụ thuộc tuyến tính.

Giải. Điều kiện (5.3.1) viết $c_1(1,0) + c_2(0,1) = (0,0)$.

Nó tương đương với $(c_1, c_2) = (0, 0)$.

Vậy điều kiện (5.3.1) chỉ xảy ra khi $c_1 = 0$, $c_2 = 0$. Do đó họ (i, j) là độc lập tuyến tính trong \mathbb{R}^2 .

Thí dụ 5.3.2. Cho x = (1, 2), y = (1, 1) trong \mathbb{R}^2 . Hồi họ $\{x, y\}$ có độc lập tuyến tính không?

Giải: Điều kiên (5.3.1) viết

$$c_1(1, 2) + c_2(1, 1) = (0, 0).$$

Nó tương dương với

$$(c_1 + c_2, 2c_1 + c_2) = (0, 0)$$

Vậy điều kiện (5.3.1) chỉ xảy ra khi

$$\begin{cases} c_1 + c_2 = 0 \\ 2c_1 + c_2 = 0 \end{cases}$$

Hệ này có định thức bằng $-1 \neq 0$ nên chỉ có nghiệm tâm thường $c_1 = c_2 = 0$. Vậy $c_1x + c_2y = \theta$ chỉ xảy ra khí $c_1 = c_2 = 0$. Do đó họ $\{x, y\}$ độc lập tuyến tính trong \mathbb{R}^2 .

Thí dụ 5.3.3. Cho họ $S = \{(3, -6), (-2, 4)\}$. Hỏi nó có độc lập tuyến tính trong \mathbb{R}^2 không ?

Giải: Điều kiện (5.3.1) viết

$$c_1(3, -6) + c_2(-2, 4) = (0, 0)$$

Phương trình này tương dương với

$$(3c_1 - 2c_2, -6c_1 + 4c_2) = (0, 0).$$

Nó tương đương với

$$\begin{cases} 3c_1 - 2c_2 = 0 \\ -6c_1 + 4c_2 = 0 \end{cases}$$

Hệ này có nghiệm không tẩm thường chẳng hạn $c_1 = 2$, $c_2 = 3$.

Do đó họ S đã cho phụ thuộc tuyến tính.

Thi dụ 5.3.4. Trong không gian R_3 ở thí dụ 5.1.1 thì :

Hai vecto đồng phương là phụ thuộc tuyến tính.

Hai vectơ không đồng phương là độc lập tuyến tính.

Ba vectơ đồng phẳng là phụ thuộc tuyến tính.

Ba vectơ không đồng phẳng là đọc lập tuyến tính.

Bốn vectơ bất kì là phụ thuộc tuyến tính.

 $Ch\dot{u}$ ý 5.3.1. Mọi họ vectơ S chứa vectơ không là phụ thuộc tuyến tính.

Chú ý 5.3.2. Giả sử họ S phụ thuộc tuyến tính và giả sử điều kiện (5.3.1) được thoả mãn với $c_k \neq 0$, nghĩa là

$$c_1x_1 + ... + c_kx_k + ... + c_nx_n = \theta.$$

Ta suy ra

$$x_k = -(c_1x_1 + ... + c_{k-1}x_{k-1} + c_{k+1}x_{k+1} + ... + c_nx_n)/c_k$$

Vậy nếu họ S phụ thuộc tuyến tính thì trong họ S có ít nhất một vectơ biểu diễn được thành một tổ hợp tuyến tính của các vectơ còn lại (giả sử S có số vectơ lớn hơn hoặc bằng 2).

BÀI TÂP: 5.13 - 5.18.

5.4. KHÔNG GIAN HỮU HẠN CHIỀU VÀ CƠ SỞ CỦA NÓ

5.4.1. Khá! niêm về không gian n chiều

Định nghĩa 5.4.1. Không gian vectơ V được gọi là không gian n chiều ($1 \le n$ nguyên) nếu trong V tổn tại n vectơ độc lập tuyến tính và không tổn tại quá n vectơ độc lập tuyến tính.

Khi đó ta nói số chiều của không gian V là n và kí hiệu nó là đim (V).

Tập $\{\theta\}$ chỉ gồm một phần từ θ của một không gian vectơ bất kì theo thí dụ 5.2.1 cũng là một không gian vectơ, ta nói có số chiều bằng θ : dim $(\{\theta\}) = 0$.

Các không gian n chiều, $n \ge 0$, gọi là không gian hữu hạn chiều.

Nếu trong V có thể tìm được một số bắt kì các vectơ độc lập tuyến tính thì ta nói V là không gian vô hạn chiều.

Trong tài liệu này ta chỉ xét các không gian hữu hạn chiều.

Thi dụ 5.4.1. Xét không gian R_3 các vectơ hình học gốc tại điểm xác dịnh O nói ở thí dụ 5.1.1.

Qua thí dụ 5.3.4 (hai điểm cuối) ta thấy 3 vectơ không đồng phẳng thì độc lập tuyến tính và 4 vectơ bất kì thì phụ thuộc tuyến tính.

Vậy R_3 là không gian 3 chiều, dim $(R_3) = 3$.

5.4.2. Cơ sở của không gian n chiều

Trong không gian n chiều, số vectơ độc lập tuyến tính có thể có không vượt quá n. Từ đó ta đi đến định nghĩa sau :

Định nghĩa 5.4.2. Trong không gian n chiều V mọi họ gồm n vectơ độc lập tuyến tính gọi là một cơ sở của V.

Thí dụ 5.4.2. Trong không gian R_3 ở thí dụ 5.4.1 mọi họ gồm ba vectơ không đồng phẳng là một cơ sở của nó.

5.4.3. Những tính chất về cơ sở và số chiều

1. Trước hết ta xét một bổ để.

Bổ đề 5.4.1. Giả sử V là một không gian vectơ, $T = \{y_1, ..., y_n\}$ là một họ góm n vectơ độc lập tuyến tính của V, $S = \{x_1, ..., x_m\}$ là một họ gồm m vectơ của V và sinh ra V. Thể thì $n \le m$.

Chứng minh: Vì S sinh ra V nên

$$y_1 = a_{11}x_1 + ... + a_{m1}x_m$$

 $y_2 = a_{12}x_1 + ... + a_{m2}x_m$
 $y_n = a_{1n}x_1 + ... + a_{mn}x_m$

Xét hệ phương trình tuyến tính mà ấn là c_i :

$$\begin{cases} a_{11}c_1 + \dots + a_{1n}c_n = 0 \\ a_{21}c_1 + \dots + a_{2n}c_n = 0 \\ \dots \\ a_{m1}c_1 + \dots + a_{mn}c_n = 0 \end{cases}$$

Nếu n>m thì hệ thuần nhất này có số phương trình ít hơn số ẩn, do đó nó có nghiệm không tầm thường, nghĩa là tồn tại n số thực c_i không đồng thời bằng 0 thoả mãn m đẳng thức trên. Nhân đẳng thức thứ nhất với x_1 , đẳng thức thứ hai với x_2 ..., đẳng thức thứ m với x_m rồi cộng lại ta được

$$(a_{11}c_{1}+...+a_{1m}c_{m})x_{1}+...+(a_{m1}c_{1}+...+a_{mn}c_{n})x_{m}=0$$
 hay là

 $c_1(a_{11}x_1+...+a_{m1}x_m)+...+c_n(a_{1n}x_1+...+a_{mn}x_m)=0,$ nghĩa là có

$$c_1 y_1 + ... + c_n y_n = 0,$$

với các c_i không đồng thời bằng không. Điều này trái giả thiết nói rằng họ T độc lập tuyến tính. Vậy $n \le m$.

- 2. Bảy giờ ta phát biểu và chứng minh một số tính chất quan trọng về cơ sở và số chiều của không gian vectơ.
- a) Định lí 5.4.1. Giả sử V là một khóng gian vectơ, $S = \{f_1, ..., f_k\}$ là một họ gồm k vectơ của V.

Nếu S sinh ra V và độc lập tuyến tính thì V là không gian k chiều và S là một cơ sở của V.

Chứng minh: Giả sử $T = \{e_1, ..., e_p\}$ là một họ gồm p vectơ độc lập tuyến tính của V. Theo bổ dễ 5.4.1 thì $p \le k$. Do đó k là số tối đa các vectơ độc lập tuyến tính của V. Vậy theo định nghĩa 5.4.1, k là số chiều của V. Sau đó thì S có k vectơ độc lập tuyến tính nên theo định nghĩa 5.4.2 thì S là một cơ sở của V.

Thí dụ 5.4.3. Xét các vectơ i = (1, 0) và j = (0, 1) của \mathbb{R}^2 .

Họ (i, j) sinh ra \mathbb{R}^2 theo thí dụ 5.2.8. Nó độc lập tuyến tính theo thí dụ 5.3.1.

Vày \mathbb{R}^2 có số chiều là 2 và họ $\{i, j\}$ là một cơ sở.

Thí dụ 5.4.4. Xét các vectơ x = (1, 2) và y = (1, 1) của \mathbb{R}^2 .

Họ $\{x, y\}$ sinh ra \mathbb{R}^2 theo thí dụ 5.2.10. Nó độc lập tuyến tính theo thí dụ 5.3.2.

Vậy \mathbb{R}^2 có số chiều là 2 và $\{x, y\}$ là một cơ sở.

Thi dụ 5.4.5. Trong Rⁿ xét họ vectơ

$$B = \{e_1, e_2, ..., e_n\}$$

$$e_i = \{0, ..., 0, 1, 0, ..., 0\}$$

Ho B sinh ra \mathbb{R}^n vì moi $x = (x_1, ..., x_n) \in \mathbb{R}^n$ có thể viết

$$x = x_1 e_1 + \dots + x_n e_n$$

Họ B độc lập tuyến tính vì điều kiện (5.3.1) viết

$$c_1e_1 + ... + c_ne_n = (0, 0, ..., 0)$$

tức là

$$c_1 = 0, c_2 = 0, ..., c_n = 0$$

Vậy dim(\mathbb{R}^n) = n và B là một cơ sở.

b) Định nghĩa 5.4.3. Cơ sở trong thí dụ 5.4.5 gọi là cơ sở chính tắc của \mathbb{R}^n .

Thí dụ 5.4.6. Trong không gian P_n các đa thức có bậc nhỏ hơn hay bằng n, xét họ

$$B = \{1, t, t^2, ..., t^n\}$$

Họ này sinh ra P_n vì mọi đa thức p có bậc không lớn hơn n đều viết ở dạng

$$p = a_0 + a_1 t + a_2 t^2 + ... + a_n t^n, a_i \in \mathbb{R}$$

Họ B này độc lập tuyến tính vì điều kiện

$$c_0.1 + c_1t + ... + c_nt^n = 0, \forall t$$

chứng tỏ phương trình này có vô số nghiệm, diều đó chỉ có thể xảy ra khi $c_0 = 0$, $c_1 = 0$, ..., $c_n = 0$ (vì một phương trình bậc nhỏ hơn hay bằng n với ít nhất một hệ số khác 0 có nhiều nhất là n nghiệm) (xem thêm 2.6.5 và 2.6.6).

Vậy dim $(P_n) = n + 1$ và B là một cơ sở của P_n .

Cơ sở này gọi là cơ sở chính tắc của Pa.

Cơ sở của một không gian vectơ còn có đặc điểm quan trọng sau : V là một không gian vectơ

$$S = \{f_1, ..., f_n\}$$
 là một họ gồm n vectơ của V .

c) Dinh lí 5.4.2.

Nếu V là không gian n chiều và S là một cơ sở thì mọi $x \in V$ có biểu diễn duy nhất :

$$x = c_1 f_1 + \dots + c_n f_n \tag{5.4.1}$$

d) Đinh lí 5.4.3.

Nếu mọi $x \in V$ có biểu diễn duy nhất (5.4.1) thì V là không gian n chiều và S là một cơ sở.

Chứng minh định li 5.4.2 : Giả sử V là không gian n chiều và S là một cơ sở của V. Lúc đó họ S độc lập tuyến tính và mọi họ gồm n+1 vectơ của V là phụ thuộc tuyến tính. Xét x bất kì của V. Họ $\{x,f_1,...,f_n\}$ gồm n+1 vectơ nên phụ thuộc tuyến tính. Do đó tồn tại các số c_i không đồng thời bằng 0 để

$$c_0 x + c_1 f_1 + ... + c_n f_n = \theta$$

 $c_0 \neq 0$ vì nếu $c_0 = 0$, thì tồn tại các số c_i không đồng thời bằng không để

$$c_1 f_1 + \dots + c_n f_n = \theta$$

điều này trái với tính chất S là độc lập tuyến tính. Do đó

$$x = \left(-\frac{c_1}{c_o}\right) f_1 + \dots + \left(-\frac{c_n}{c_o}\right) f_n$$

Vậy mọi $x \in V$ có biểu điển (5.4.1). Ta chứng minh biểu diễn đó là duy nhất. Giả sử có hai biểu điển cho x:

$$x = c_1 f_1 + ... + c_n f_n$$

$$x = c_1' f_1 + ... + c_n' f_n$$

$$(c_1 - c_1') f_1 + ... + (c_n - c_n') f_n = \theta.$$

thì có

Vì họ S độc lập tuyến tính nên đẳng thức này chỉ xảy ra khi

$$c_1 - c_1 = 0, ..., c_n - c_n = 0$$

tức là

$$c_1 = c_1, ..., c_n = c_n$$

Vây biểu điển (5.4.1) của x là đuy nhất.

Chứng minh định li 5.4.3.

Bảy giờ giả sử mọi $x \in V$ có biểu điền duy nhất (5.4.1). Do đó S sinh ra V. Ta chứng minh thêm rằng S độc lập tuyến tính. Xét biểu diễn (5.4.1) của phần từ không của V:

$$0f_1 + \dots + 0f_n = \theta$$

Biểu diễn này là duy nhất. Do đó điều kiện (5.3.1) viết

$$c_1 f_1 + \dots + c_n f_n = \theta$$

chỉ xây ra khi $c_1 = 0, ..., c_n = 0$. Vậy họ S đọc lập tuyến tính. Tóm lại S sinh ra V và S độc lập tuyến tính, nên theo định lí 5.4.1, V là không gian n chiều và S là một cơ sở của V.

d) V là một không gian n chiều

$$S = \{u_1, u_2, ..., u_n\} \subset V$$
 (5.4.2)

Ta hãy tìm diễu kiện để S độc lập tuyến tính tức là điều kiên để S là một cơ sở của V.

Giả sử $B = \{v_0, v_1, ..., v_n\}$ là một cơ sở nào đó của V và u_i , j = 1, 2, ..., n có phân tích :

$$u_j = u_{1j}v_1 + u_{2j}v_2 + \dots + u_{nj}v_n \tag{5.4.3}$$

Điều kiên để họ S độc lập tuyến tính là

$$c_1 u_1 + c_2 u_2 + \dots + c_n u_n = 0$$
 (5.4.4)

chi xảy ra khi $c_1 = c_2 = \dots = c_n = 0$. Vì u_i có phân tích (5.4.3) nên điều kiên (5.4.4) có nghĩa là hê

$$Ac = 0$$

$$A = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ u_{21} & u_{22} & \dots & u_{2n} \\ \dots & \dots & \dots \\ u_{n1} & u_{n2} & \dots & u_{nn} \end{bmatrix} c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$
 (5.4.5)

chỉ có nghiệm tầm thường. Vây có

Định lí 5.4.4. Điều kiện cản và đủ để S độc lập tuyến tính là $\det(A) \neq 0$.

Ta suy ra hệ quả sau:

Định lí 5.4.5. V là không gian n chiếu. Muốn cho họ S ở (5.4.2) là cơ sở của V điều kiện cần và dù là det (A) \neq 0, A xác định bởi (5.4.5).

Thí dụ 5.4.7. Xét ba vectơ thuộc \mathbb{R}^3

$$u_1 = (1, 2, 1), u_2 = (2, 1, 4), u_3 = (3, 2, 1).$$

Ta lập ma trận A:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 1 & 4 & 1 \end{bmatrix}$$

Ta có det(A) = 14 \neq 0. Vậy họ $\{u_1, u_2, u_3\}$ độc lập tuyến tính.

Ngoài ra ta xét thêm một tính chất nữa:

Giả sử V là một không gian n chiều. Xét

$$S = \{v_1, v_2, ..., v_r\} \subset V$$

là một họ vectơ độc lập tuyến tính.

Nếu r = n thì theo định nghĩa 5.4.2, S là một cơ sở của V.

Nếu r < n thì ta có thể mở rộng S thành một cơ sở cho V, cụ thể là ta có định lí sau :

Định k 5.4.6. V là một khóng gian n chiều; nếu $S = \{v_1,...,v_r\} \subset V$ là một họ độc lập tuyến tính và r < n thì có thể tìm được n - r vectơ $v_{r+1},...,v_n$ sao cho họ $\{v_1,...,v_r,v_{r+1},...,v_n\}$ là một cơ sở của V.

Kết quả này có thể chứng minh bằng phương pháp quy nạp toán học. Sau đây là một thí dụ minh hoạ.

Thí dụ 5.4.8. Trong không gian R_3 ở thí dụ 5.4.1, 5.4.2, có số chiều n=3, hai vectơ không đồng phương là độc lập tuyến tính. Nếu ta thêm vào hai vectơ đó vectơ thứ ba không đồng phẳng với chúng thì được một cơ sở của R_3 .

5.4.4. Lai nói về hệ phương trình tuyến tính tổng quát

Xét hệ phương trình tuyến tính gồm m phương trình n ẩn:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$
(5.4.6)

Ma trân hệ số của hệ là

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = [A_1, A_2, \dots, A_n]$$

(Kí hiệu tượng trưng A_i chi vectơ cột thứ j của ma trận A).

Ma trần bổ sung của hệ là

$$\overline{A} = [A_1, A_2, ..., A_n, b]$$

với

$$A_{j} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}, \quad b = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{bmatrix}$$

Hệ (5.4.6) có thể viết ở dạng vectơ

$$x_1A_1 + x_2A_2 + ... + x_nA_n = b$$

Váy:

Nếu hệ có nghiệm thì b \in span $\{A_1, ..., A_n\}$

Ngược lại, nếu $b \in \text{span}\{A_1, ... A_n\}$ thì hệ có nghiệm.

Do đó có:

Định lí 5.4.7. Điều kiện cấn và đủ để hệ (5.4.6) có nghiệm là

$$b \in \operatorname{span}\left\{A_1, ..., A_n\right\}$$

BÀI TÂP: 5.19 - 5.23.

5.5. SỐ CHIỀU VÀ CƠ SỞ CỦA KHÔNG GIAN CON SINH BỞI MỘT HO VECTƠ

5.5.1 Mở đầu

Giả sử V là một không gian vectơ và

$$S = \left\{u_1, u_2, ..., u_p\right\} \subset V$$

Theo định l(5.2.2 th) S sinh ra một không gian con W của V. Bây giờ ta tìm số chiều và cơ sở của W.

5.5.2. Hang của một họ vectơ

Định nghĩa 5.5.1. Xết họ $S = \{u_1, ..., u_p\} \subset V$. Số tối đa các vectơ độc lập tuyến tính có thể rút ra từ S gọi là hang của họ S và kí hiệu là r(S).

5.5.3. Cách tính hạng của một họ vectơ bằng biến đổi sơ cấp

Ta trình bày phương pháp này thông qua một thí dụ.

Thí dụ 5.5.1. Trong R3 xét họ

$$S = \{u_1, u_2, u_3, u_4\} \subset \mathbb{R}^3$$

với

$$u_1 = (1, 3, 0), \qquad u_2 = (0, 2, 4)$$

$$u_3 = (1, 5, 4), \qquad u_4 = (1, 1, -4).$$

Ta lập ma trận A có 4 hàng là 4 vectơ trên:

$$\vec{A} = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 2 & 4 \\ 1 & 5 & 4 \\ 1 & 1 & -4 \end{bmatrix}$$

rồi dùng các biến đổi sơ cấp về hàng để đưa A về dạng bậc thang (xem 3.5.2):

$$A = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 2 & 4 \\ 1 & 5 & 4 \\ 1 & 1 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & -2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = U$$

Nhận xét 1. Mỗi phép biến đổi sơ cấp về hàng không thay đổi span của các vectơ hàng của ma trận A.

Chứng minh: Giả sử phép biến đổi sơ cấp biến mả trận A có các hàng là u_1, u_2, u_3, u_4 thành ma trận A' có các hàng là u'_1, u'_2, u'_3, u'_4 . Nếu phép biến đổi sơ cấp là phép nhân một hàng với một số khác không hay phép cộng một hàng với bội của một hàng khác thì u'_1, u'_2, u'_3, u'_4 là các tổ hợp tuyến tính của u_1, u_2, u_3, u_4 . Mặt khác mỗi phép biến đổi sơ cấp đều có phép biến đổi ngược cũng là biến đổi sơ cấp biến u'_1, u'_2, u'_3, u'_4 trở lại thành u_1, u_2, u_3, u_4 , nghĩa là u_1, u_2, u_3, u_4 cũng là các tổ hợp tuyến tính của u'_1, u'_2, u'_3, u'_4 . Vậy

$$\operatorname{span}\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\} = \operatorname{span}\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$$

Nhận xét 2. Trong dạng bậc thang U các vectơ hàng khác không là độc lập tuyến tính.

Chứng minh. Xét thí dụ 5.5.1. Ta thấy trong ma trận U có hai vectơ hàng khác không là

$$u_1 = (1, 3, 0) \text{ và } u_2 = (0, 1, 2)$$

Để chứng minh chúng độc lập tuyến tính ta xét điều kiện

$$c_1u_1+c_2u_2=0$$

Điều kiện này tương đương với

$$1c_1 + 0c_2 = 0$$

$$3c_1 + 1c_2 = 0$$

$$0c_1 + 2c_2 = 0$$

tức là $c_1 = 0$, $c_2 = 0$. Vậy u_1 và u_2 độc lập tuyến tính. Trường hợp tổng quát, cách chứng minh là tương tự.

Vày có

Chú ý 5.5.1. Hạng của họ vectơ $S \subset V = \mathbb{R}^n$ bằng số vectơ hàng khác không của ma trận bậc thang U suy từ ma trận A bằng các biến đổi sơ cấp về hàng.

Trong thí du 5.5.1 họ S có hang bằng 2.

Từ các chú ý 3.5.1, 3.5.2 và 5.5.1 ta suy ra

Chú ý 5.5.2. Hạng của họ vectơ $S \subset V = \mathbb{R}^n$ bằng hạng của ma trận A thành lập từ toạ độ của các vectơ của họ S xem là các hàng của A hoặc xem là các cột của A.

5.5.4. Số chiều và cơ sở của không gian con sinh bởi một họ vectơ

1. Vì số tối đa các vectơ độc lập tuyến tính của họ S bằng hạng r của nó nên ta có thể suy ra

Định lí 5.5.1. V là một không gian vectơ

$$S = \left\{u_1, ..., u_p\right\} \subset V$$

Thế thì W = span(S) là một không gian con của V có số chiều bằng hạng r của S và mọi họ r vectơ độc lập tuyến tính rút từ S là một cơ sở của W.

Chứng minh: Giả sử $S' = \{u'_1, u'_2, ..., u'_r\}$ gồm r vectơ đọc lập tuyến tính rút từ S (vì bao giờ ta cũng có thể đánh số lại các vectơ của S để có r vectơ đầu là độc lập tuyến tính) lúc đó

$$\operatorname{span}(S) = \operatorname{span}(S) = W.$$

Vì S' độc lập tuyến tính và sinh ra W nên theo định lí 5.4.2, W có số chiều là r. Sau đó mọi họ gồm r vectơ độc lập tuyến tính rút từ S là một cơ sở của W theo định nghĩa 5.4.2.

Thí dụ 5.5.2. Xét họ $\{u_1, u_2, u_3, u_4\} \subset \mathbb{R}^3$ ở thí dụ 5.5.1. Theo kết quả đã thu được ở đó thì họ này sinh ra một không gian con của \mathbb{R}^3 có số chiều bằng 2 và $\{u_1, u_2\}$ là một cơ sở.

2. Bày giờ giả sử V là một không gian n chiều và $S = \{v_1,...,v_n\} \subset V$. Nếu S độc lập tuyến tính thì S là một cơ sở của V theo định nghĩa 5.4.2. của cơ sở. Ta có thêm: Nếu S sinh ra V thì S cũng là một cơ sở của V, nghĩa là ta có

Đinh lí 5.5.2. V là không gian n chiều và

 $S = \{v_1, ..., v_n\} \subset V$. Nếu S sinh ra V thì S là một cơ sở của V.

Chứng minh. Ta có span(S) = V. Giả sử hạng của S là r. Theo định lí 5.5.1 thì r là số chiều của span (S) tức là của V. Vậy r = n. Do đó hệ S độc lập tuyến tính và vì vậy nó là cơ sở của V.

BÀI TẬP: 5.24 - 5.30.

5.6. TÍCH VÔ HƯỚNG VÀ KHÔNG GIAN CÓ TÍCH VÔ HƯỚNG

5.6.1. Mở đầu

Từ trường phố thông ta đã học khái niệm độ dài của một vectơ hình học và sự vuông góc của hai vectơ hình học. Đó là những khái niệm rất quan trọng. Nay ta tìm cách suy rộng các khái niệm đó cho những vectơ của một không gian vectơ.

Ta bất đầu từ khái niệm tích vô hướng.

5.6.2. Nhác lại tích vô hướng của hai vectơ hình học (xem 4.6).

Tích vô hướng của hai vectơ hình học \vec{a} và \vec{b} là một số thực, kí hiệu là $\langle \vec{a}, \vec{b} \rangle$, xác định bởi

$$\langle \vec{a}, \vec{b} \rangle = |\vec{a}| \cdot |\vec{b}| \cos \alpha$$

trong đó

 $|\bar{a}|$ là độ đài của \bar{a}

 $\left| ec{b}
ight|$ là độ dài của $ec{b}$

lpha là góc giữa $ilde{a}$ và $ilde{b}$ (hình 47)

Dựa vào định nghĩa đó người ta đã chứng minh được các tính chất sau của tích vô hướng

- (1) $\langle \vec{a}, \vec{b} \rangle$ là một số xác định đối với mọi vectơ \vec{a}, \vec{b}
- (2) $\langle \vec{a}, \vec{b} \rangle = \langle \vec{b}, \vec{a} \rangle$
- (3) $\langle \tilde{a} + \tilde{b}, \tilde{c} \rangle = \langle \tilde{a}, \tilde{c} \rangle + \langle \tilde{b}, \tilde{c} \rangle$
- (4) $\langle k\tilde{a}, \tilde{b} \rangle = k \langle \tilde{a}, \tilde{b} \rangle$
- (5) $\langle \bar{a}, \bar{a} \rangle \ge 0$ và $\langle \bar{a}, \bar{a} \rangle = 0 \Leftrightarrow \bar{a} = \theta$.

Từ định nghĩa của tích võ hướng của 2 vectơ ta cũng suy ra

$$|\bar{a}| = \sqrt{\langle \bar{a}, \bar{a} \rangle}$$

Dựa vào các tính chất đó người ta chứng minh được các biểu thức toạ độ của tích vô hướng:

Trong
$$\mathbf{R}^2$$
, new $\bar{a} = (a_1, a_2)$, $\bar{b} = (b_1, b_2)$ thi
 $\langle \bar{a}, \bar{b} \rangle = a_1b_1 + a_2b_2$

và trong \mathbb{R}^3 :

Néu
$$\bar{a} = (a_1, a_2, a_3), \ \bar{b} = (b_1, b_2, b_3)$$
 thì $\langle \bar{a}, \bar{b} \rangle = a_1b_1 + a_2b_2 + a_3b_3$

5.6.3. Tích vô hướng trong không gian vectơ và không gian có tích vô hướng

Nó là suy rộng của khái niệm tích vô hướng của hai vectơ hình học, căn cứ vào những tính chất (1) - (5) ở 5.6.2.

Định nghĩa 5.6.1. V là một không gian vectơ, u và v là hơi vectơ của V. Tích vô hướng của u và v là một số thực, kí hiệu là <11, v>, thoả mãn các tính chất sau gọi là các tiến để của tích vô hướng :

TVH1 $\langle u, v \rangle$ xác định đối với mọi cập $u, v \in V$

TVH2 $\langle u, v \rangle = \langle v, u \rangle$

TVH3 $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$

TVH4 $\langle ku, v \rangle = k \langle u, v \rangle$

TVH5 $\langle u, u \rangle \ge 0 \text{ và } \langle u, u \rangle = 0 \Leftrightarrow u = \theta$

Không gian vectơ V có trang bị một tích vô hướng gọi là không gian có tích vô hướng. Không gian n chiều có tích vô hướng gọi là không gian Euclid.

Thi du 5.6.1. Trong \mathbf{R}^{n} với $u = (u_1, u_2, ..., u_n)$

$$v = (v_1, v_2, ..., v_n)$$

thì biểu thức tương tự biểu thức toạ độ của tích vô hướng trong ${\bf R}^2$ và ${\bf R}^3$ sau đây

$$u_1v_1 + u_2v_2 + ... + u_nv_n$$

thoả mãn tất cả các tính chất TVH1 - TVH5, cho nên nó là một tích võ hướng của \mathbb{R}^n :

$$\langle u, v \rangle := u_1 v_1 + u_2 v_2 + ... + u_n v_n.$$
 (5.6.1)

Dịnh nghĩa 5.6.2. Tích vô hướng (5.6.1) gọi là tích vô hưởng Euclid trong \mathbb{R}^n .

Thi dụ 5.6.2. Trong không gian vectơ các hàm số liên tục trên [a, b], tức là C[a, b] (xem thí dụ 4.1.3), thì tích vô hướng của hai hàm f và g có thể định nghĩa bởi

$$\langle f,g \rangle := \int_{a}^{b} f(x)g(x)dx$$

Các tiên đề TVH1-TVH5 đều thoả mãn.

Chú ý 5.6.1.

Từ các tiến để TVH1 - TVH5 ta suy ra thêm các tính chất sau:

$$\langle \theta, v \rangle = \langle v, \theta \rangle = 0$$

 $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$
 $\langle u, kv \rangle = k \langle u, v \rangle$

5.6.4. Đô dài của vectơ

Ta đã biết:

Trong \mathbf{R}^3 , $\vec{a} = (a_1, a_2, a_3)$ thì độ dài của \vec{a} là

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2} = \langle \vec{a}, \vec{a} \rangle^{1/2}$$

Suy rọng ý đó ta có khái niệm độ dài của vectơ trong không gian vectơ có tích vô hướng.

I. Định nghĩa 5.6.3. V là một không gian có tích vô hướng và $u \in V$ thì số (không âm) $\|u\|$ xác định bởi

$$||u|| := \langle u, u \rangle^{1/2}$$

gọi là độ dài của vectơ u.

Chú ý 5.6.2. Độ dài của u cũng gọi là chuẩn của u.

Thí dụ 5.6.3. Trong \mathbf{R}^{n} , $u = (u_1, u_2, ..., u_n)$ ta có

$$||u|| = (u_1^2 + u_2^2 + ... + u_n^2)^{1/2}$$

gọi là độ dài Euclid của u ∈ Rn.

2. Bất đẳng thức Cauchy - Schwarz (C-S)

Nếu u và v là hai vectơ trong một không gian có tích vô hướng thì có bất đẳng thức Cauchy - Schwarz :

$$|\langle u, v \rangle| \le ||u|| \cdot ||v||$$
 (C.S)

Chứng minh. Trường hợp có một vectơ = θ , giả sử $u = \theta$ thì

$$\langle u, v \rangle = 0, ||u|| = 0$$

nên bất đẳng thức trên thoả mãn.

Trường hợp $u \neq \theta$ và $v \neq \theta$ thì theo tiên để TVH5 ta có

$$\langle tu + v, tu + v \rangle \ge 0, \forall t \in \mathbb{R}.$$

Do do

$$\langle u, u \rangle t^2 + 2 \langle u, v \rangle t + \langle v, v \rangle \ge 0, \forall t \in \mathbb{R}$$

hay

$$||u||^2 t^2 + 2 < u, v > t + ||v||^2 \ge 0, \forall t \in \mathbb{R}.$$

Vế trái là một tam thức bác hai đối với t có biệt số là

$$\langle u, v \rangle^2 - \|u\|^2 \|v\|^2$$

Vậy phải có

$$\langle u, v \rangle^2 - \|u\|^2 \cdot \|v\|^2 \le 0$$

Từ đó suy ra bất đẳng thức (C-S)

Thí dụ 5.6.4. Áp dụng bất dẳng (C-S) vào

 $u = (u_1, u_2, ..., u_n)$ và $v = (v_1, v_2, ..., v_n)$ trong \mathbb{R}^n với tích vô hướng Euclid ta được

$$\left(u_1v_1+u_2v_2+\ldots+u_nv_n\right)^2 \leq \left(u_1^2+u_2^2+\ldots+u_n^2\right)\left(v_1^2+v_2^2+\ldots+v_n^2\right)$$

3. Tính chất của độ dài. Độ dài của vectơ có các tính chất sau :

$$L, ||u|| \ge 0$$

$$L_2 \quad ||u|| = 0 \Leftrightarrow u = \theta$$

$$L_3 \qquad ||ku|| = |k| ||u||$$

$$L_4 \qquad \|u+v\| \leq \|u\| + \|v\|.$$

Các tính chất L_1 , L_2 , L_3 để thấy từ các tiên để của tích vô hướng và định nghĩa của độ dài. Ta chứng minh tính chất L_4 .

Theo dinh nghĩa

$$||u + v||^2 = \langle u + v, u + v \rangle$$

$$= \langle u, u \rangle + 2 \langle u, v \rangle + \langle v, v \rangle$$

$$\leq \langle u, u \rangle + 2 |\langle u, v \rangle| + \langle v, v \rangle$$

Theo bất đẳng thức C - S thì

$$|< u, v>| \le ||u|| ||v||$$

Do đó

$$||u + v||^2 \le ||u||^2 + 2||u|| .||v|| + ||v||^2$$
$$\le (||u|| + ||v||)^2$$

Từ đó suy ra L4.

5.6.5. Khái niêm khoảng cách

Nếu ta xem mỗi phần tử của không gian vectơ là một điểm (xem chú ý 5.1.4) thi ta có thể đưa vào khái niệm khoảng cách (xem hình 48) giữa hai điểm u, v:

$$d(u,v):=\|u-v\|$$

Khoảng cách d(u, v) có các tính chất

$$D_1 \quad d(u, v) \ge 0$$

$$D_2$$
 $d(u, v) = 0 \Leftrightarrow u = v$

$$D_3 d(u, v) = d(v, u)$$

$$D_4 \quad d(u, v) \le d(u, w) + d(w, v)$$

Hinh 48

Bất đẳng thúc D4 thường gọi là bất đẳng thức tam giác.

Các tính chất D_1 , D_2 , D_3 suy từ L_1 , L_2 , L_3 .

Để có D₄ ta viết

$$u-v=u-w+w-v$$

Nhờ L4 ta suy ra

$$||u-v|| \le ||u-w|| + ||w-v||.$$

Đó chính là D_4 .

5.6.6. Sự vương góc của hai vectơ

Trong R_3 ta có $\langle \vec{a}, \vec{b} \rangle = |\vec{a}| |\vec{b}| \cos \alpha$.

Do đó khi $\langle \tilde{a}, \tilde{b} \rangle = 0$ mà $|\tilde{a}| \neq 0$, $|\tilde{b}| \neq 0$ thì $\cos \alpha = 0$ nghĩa là α vuông, $\tilde{a} \perp \tilde{b}$. Trong trường hợp tổng quát ta có khái niệm vuông góc như sau :

1. Dịnh nghĩa 5.6.4. Trong một không gian có tích vô hướng hai vectơ u và v gọi là trực giao nếu < u, v > = 0.

Hơn nữa, nếu u trực giao với mọi vectơ của một họ W nào đó thì nói u trực giao với W.

Chú ý rằng sự trực giao của hai vectơ định nghĩa như vậy sẽ phụ thuộc định nghĩa của tích vô hướng. Hai vectơ cho trước có thể trực giao theo tích vô hướng này mà không trực giao theo tích vô hướng khác.

2. Thí dụ 5.6.5. Trong P2 xét tích vô hướng

$$\langle p, q \rangle = \int_{-1}^{1} p(x) q(x) dx.$$
Xét
$$p = x, q = x^{2}$$
thì có
$$\|p\| = \langle p, p \rangle^{1/2} = \left[\int_{-1}^{1} x . x dx \right]^{1/2} = \sqrt{\frac{2}{3}}$$

$$\|q\| = \langle q, q \rangle^{1/2} = \left[\int_{-1}^{1} x^{2} . x^{2} dx \right]^{1/2} = \sqrt{\frac{2}{5}}$$

$$\langle p, q \rangle = \int_{-1}^{1} x x^{2} dx = \int_{-1}^{1} x^{3} dx = 0.$$

Vậy vectơ p = x và $q = x^2$ của P_2 là hai vectơ trực giao theo tích vô hướng định nghĩa ở trên.

80, e

5.6.7. Họ vectơ trực giao

1. Định nghĩa 5.6.8. Một họ vectơ trong không gian có tích vỏ hướng gọi là một họ trực giao nếu bất kì hai vectơ khác nhau nào của họ cũng trực giao.

Một họ vectơ trực giao trong đó mọi vectơ đều có chuẩn là 1 gọi là một họ trực chuẩn.

Thí dụ 5.6.6. Xét các vectơ trong R³

$$v_1(0, 1, 0)$$
; $v_2 = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$, $v_3 = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)$

Họ $S = \{v_1, v_2, v_3\}$ trong \mathbb{R}^3 với tích vô hướng Euclid là một họ trực chuẩn vì

$$\langle v_1, v_2 \rangle = 0, \langle v_2, v_3 \rangle = 0, \langle v_3, v_1 \rangle = 0$$

 $\|v_1\| = 1, \|v_2\| = 1, \|v_3\| = 1$

2. Chuẩn hoá một vectơ. Nếu v là một vectơ khác không trong không gian có tích vô hướng thì

$$\frac{1}{\|v\|} v$$
 có chuẩn là 1.

Thật vậy

$$\left\| \frac{1}{\|v\|} v \right\| = \frac{1}{\|v\|} \|v\| = 1.$$

5.6.8. Quá trình trực giao hoá của Gram-Smidt

Dịnh lí 5.6.1. V là một không gian có tích vô hướng, $S = \{u_1, u_2, ..., u_m\}$ là một họ vectơ độc lập tuyến tính của V. Ta có thể thay S bằng họ trực chuẩn

$$S' = \{v_1, v_2, ..., v_m\}$$
sao cho khi ki hiệu $S_k = \{u_1, ..., u_k\}, S'_k = \{v_1, ..., v_k\}$ thì
$$\operatorname{span} S_k = \operatorname{span} S'_k, k = 1, 2, ..., m$$

Chứng minh

Bước 1. Trước hết ta đặt $v_1 = u_1 / |u_1|$.

Như vậy $||v_1|| = 1$ và span $S_1 = \operatorname{span} S_1$.

Bước 2. Tìm v_2 sao cho họ $\{v_1, v_2\}$ trực chuẩn. Muốn thể ta đặt

$$\bar{v}_2 = u_2 + t v_1$$

và chọn t sao cho

$$\langle v_2, v_1 \rangle = 0$$
, tức là $\langle u_2 + t v_1, v_1 \rangle = 0$
 $\langle u_2, v_1 \rangle + \iota \langle v_1, v_1 \rangle = 0$.

Vậy
$$t = -\langle u_2, v_1 \rangle / ||v_1||^2 = -\langle u_2, v_1 \rangle.$$

Do đó $\overline{v}_2 = u_2 - \langle u_2, v_1 \rangle v_1.$

Sau đó đặt

$$v_2 = \frac{1}{\|\overline{v}_2\|} \overline{v}_2 = \frac{u_2 - \langle u_2, v_1 \rangle v_1}{\|u_2 - \langle u_2, v_1 \rangle v_1\|}.$$

Đương nhiên $u_2 - \langle u_2, v_1 \rangle v_1 \neq \theta$ vì nếu $u_2 - \langle u_2, v_1 \rangle v_1 = \theta$ thì

$$u_2 = \langle u_2, v_1 \rangle v_1 = \frac{\langle u_2, v_1 \rangle}{\|u_1\|} u_1$$

nghĩa là u_2 và u_1 không đọc lập tuyến tính, điều này trái với giả thiết. Vậy $\{v_1, v_2\} = S'_2$ trực chuẩn và span $S'_2 = \text{span } S_2$.

Bước 3. Giả sử đã xây dựng được họ trực chuẩn

$$S'_{k-1} = \{v_1, v_2, ..., v_{k-1}\}.$$

mà span $S_l = \operatorname{span} S_l \mid 1 \le l \le k-1$.

Ta xây dựng tiếp v_k để cho họ

$$S'_{k} = \{v_{1}, v_{2}, ..., v_{k-1}, v_{k}\}$$

là họ trực chuẩn và span $S'_k = \operatorname{span} S_k$. Muốn thế ta đặt

và chọn các t_i , j = 1, ..., k - 1, sao cho

$$\langle \overline{v}_k, v_j \rangle = 0, j = 1, 2, ..., k-1$$

Điều kiên này viết

$$\langle u_k, v_j \rangle + \langle t_j v_j, v_j \rangle = 0$$

 $i = 1, 2, ..., k-1$

Ta suy ra

$$t_j = -\langle u_k, v_j \rangle, j = 1, 2, ..., k-1$$

Do đó v, được xác định

$$\overline{v}_k = u_k - \langle u_k, v_1 \rangle v_1 - \dots - \langle u_k, v_{k-1} \rangle v_{k-1}.$$

Sau đó, cũng như ở bước 2, ν̄, không thể bằng θ. Đặt

$$v_k = \frac{1}{\left\|\overline{v}_k\right\|} \, \overline{v}_k = \frac{u_k - \langle u_k, \, v_1 > v_1 - \ldots - \langle u_k, \, v_{k-1} > v_{k-1} |}{\left\|u_k - \langle u_k, \, v_1 > v_1 - \ldots - \langle u_k, \, v_{k-1} > v_{k-1} \right\|}.$$

Tiếp tục quá trình đó cho tới khi k = m ta được họ

$$S' = \{v_1, v_2, ..., v_m\}$$

gồm m vectơ trực chuẩn, span $S_k = \text{span } S_k$, k = 1, 2, ..., m.

Ta nói S' có được từ S bằng trực chuẩn hoá Gram-Smidt.

Thi du 5.6.7. Cho trong không gian Euclid R³

$$S = \left\{ u_1, u_2, u_3 \right\}$$

$$u_1 = (1, 1, 1), u_2 = (0, 1, 1), u_3 = (0, 0, 1).$$

Hãy trực chuẩn hoá Gram-Smidt họ vecto $\{u_1, u_2, u_3\}$.

Lời giải :

Bước 1 : Đặt

$$v_1 = \frac{u_1}{\|u_1\|} = \frac{(1, 1, 1)}{\sqrt{3}} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$

Buck 2
$$v_{2} = \frac{u_{2} - \langle u_{2}, v_{1} \rangle v_{1}}{\|u_{2} - \langle u_{2}, v_{1} \rangle v_{1}\|}$$

$$u_{2} - \langle u_{2}, v_{1} \rangle v_{1} = (0, 1, 1) - \frac{2}{\sqrt{3}} \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$

$$= \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right).$$
Vay
$$v_{2} = \frac{3}{\sqrt{6}} \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right) = \left(-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right).$$
Buck 3
$$v_{3} = \frac{u_{3} - \langle u_{3}, v_{1} \rangle v_{1} - \langle u_{3}, v_{2} \rangle v_{2}}{\|u_{3} - \langle u_{3}, v_{1} \rangle v_{1} - \langle u_{3}, v_{2} \rangle v_{2}\|} =$$

$$= u_{3} - \langle u_{3}, v_{1} \rangle v_{1} - \langle u_{3}, v_{2} \rangle v_{2} =$$

$$= (0, 0, 1) - \frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) - \frac{1}{\sqrt{6}} \left(-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$$

$$= \left(0, -\frac{1}{2}, \frac{1}{2}\right).$$
Vay
$$v_{3} = \sqrt{2} \left(0, -\frac{1}{2}, \frac{1}{2}\right) = \left(0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$
Tom lai
$$v_{1} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$

$$v_{2} = \left(-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$$

tạo nên họ S' trực chuẩn trong không gian R³ với tích vô hướng Euclid và span $S'_k = \text{span } S_k$ (k = 1, 2, 3).

 $v_3 = \left(0, -\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$

5.6.9. Tính độc lập tuyển tính của một họ vectơ trực giao

Dịnh lí 5.6.2. Nếu $S = \{v_1, v_2, ..., v_m\}$ là một họ trực giao các vectơ khác không trong một không gian có tích vô hướng thì S là độc lập tuyến tính.

Chứng minh : Giả sử

$$c_1v_1 + c_2v_2 + ... + c_mv_m = \theta.$$

Muốn chứng minh S là độc lập tuyến tính ta phải chứng minh rằng từ đẳng thức trên ta suy ra $c_1 = c_2 = ... = c_m = 0$.

Nhân vô hướng hai về của đẳng thức với v_i ta được

$$c_i < v_i, v_i > = 0$$

vì $\langle v_i, v_j \rangle = 0$ khi $j \neq i$. Ta suy ra $c_i = 0$ với mọi i = 1, 2, ..., m vì $\langle v_i, v_i \rangle = \|v_i\|^2 \neq 0$. Vậy họ S độc lập tuyến tính.

Ta có hệ quả của định lí 5.6.2 và định nghĩa 5.4.2 như sau :

Định lí 5.6.3. Trong một không gian Euclid n chiều mọi họ $S = \{v_1, ..., v_n\}$ gồm n vectơ khác không mà trực giao đều là một cơ sở của không gian đó.

Định nghĩa 5.6.6. Cơ sở đó gọi là $c\sigma$ sở trực giao của không gian Euclid. Nếu đồng thời độ dài của mỗi vecto v_i bằng 1 nữa thì nó là một $c\sigma$ sở trực chuẩn của không gian Euclid.

Thí dụ 5.6.8. Họ ba vectơ ở thí dụ 4.7.6 là một cơ sở trực chuẩn của không gian Euclid \mathbb{R}^3 .

5.6.10. Sự tồn tại cơ sở trực chuẩn trong không gian Euclid n chiều

1. Định lí 5.6.4. Trong mọi không gian Euclid n chiều khác (θ) đều tồn tại it nhất một cơ sở trực chuẩn.

Chứng minh: Giả sử V là một không gian Euclid n chiều khác rồng và $S = \{u_1, u_2, ..., u_n\}$ là một cơ sở bất kì của V. Áp dụng quá trình trực giao hoá của Gram-Smidt (xem 5.6.8, định lí 5.6.1) ta sẽ được họ trực chuẩn gồm n vector

$$S' = \{v_1, v_2, ..., v_n\}.$$

Theo định lí 5.6.3, S' là một cơ sở của V. Vậy tồn tại một cơ sở trực chuẩn của V.

2. Định lí 5.6.5. Nếu $S' = \{v_1, v_2, ..., v_n\}$ là một cơ sở trực chuẩn của một không gian Euclid V n chiều thì với mọi $u \in V$ ta có

$$u = <\!\! u, \, v_1\!\!> v_1 + <\!\! u, \, v_2\!\!> \!\! v_2 + \ldots + <\!\! u, \, v_n\!\!> \!\! v_n.$$

Chứng minh: Vì S là một cơ sở của V nên u có dạng

$$u = c_1 v_1 + c_2 v_2 + \dots + c_n v_n.$$

Nhân võ hướng hai về với v_i , i = 1, 2, ..., n, ta được

$$\langle u, v_i \rangle = \langle c_1 v_1 + ... + c_n v_n, v_i \rangle =$$

= $c_1 \langle v_1, v_i \rangle + ... + c_n \langle v_n, v_i \rangle$.

Vì S trực chuẩn nên

$$\langle v_j, v_i \rangle = 0, \ j \neq i$$

 $\langle v_i, v_i \rangle = 1.$

Do đó phương trình trên đơn giản đi còn

$$\langle u, v_i \rangle = c_i$$
.

Vậy u có đạng cần chứng minh.

3. Thí du 5.6.9. Cho

$$v_1 = (0, 1, 0), v_2 = \left(-\frac{4}{5}, 0, \frac{3}{5}\right), v_3 = \left(\frac{3}{5}, 0, \frac{4}{5}\right).$$

Dễ thấy rằng $S = \{v_1, v_2, v_3\}$ là một họ trực chuẩn trong \mathbb{R}^3 với tích vô hướng Euclid. Do đó nó là một cơ sở trực chuẩn của \mathbb{R}^3 . Hãy biểu diễn u = (1, 1, 1) thành một tổ hợp tuyến tính của các vectơ của ho S.

Gidi: Ta có:
$$\langle u, v_1 \rangle = 1$$
. $\langle u, v_2 \rangle = -\frac{1}{5}$, $\langle u, v_3 \rangle = \frac{7}{5}$

Vậy, theo định lí 5.6.5, thì

$$u = v_1 - \frac{1}{5}v_2 + \frac{7}{5}v_3, \text{ nghĩa là}$$

$$(1, 1, 1) = (0, 1, 0) - \frac{1}{5} \left(-\frac{4}{5}, 0, \frac{3}{5} \right) + \frac{7}{5} \left(\frac{3}{5}, 0, \frac{4}{5} \right).$$

5.6.11. Hình chiếu của một vectơ lên một không gian con

1. Trước hết ta chứng minh một định lí xem như một bố để.

Định lí 5.6.6. Giả sử V là một không gian có tích vớ hướng, $S = \{v_1, v_2, ..., v_m\}$ là một họ trực chuẩn các vectơ trong V, W là không gian con sinh bởi S.

Xét u là một vectơ bắt kì của V.

Ta đặt

$$w_1 = \langle u, v_1 \rangle v_1 + \langle u, v_2 \rangle v_2 + ... + \langle u, v_m \rangle v_m$$

 $w_2 = u - w_3$.

Ta có

$$u=w_1+w_2,$$

trong đó

- (i) $w_1 \in W = span \{S\}$
- (ii) w2 trực giao với W, nghĩa là trực giao với mọi vectơ của W.

Chứng minh (i) hiển nhiên do biểu thức của w_1 . Để chứng minh (ii) ta nhân võ hướng $\langle w_2, v_i \rangle$, i = 1, ..., m.

Ta có
$$\langle w_2, v_i \rangle = \langle u - w_1, v_i \rangle = \langle u, v_i \rangle - \langle w_1, v_i \rangle =$$

= $\langle u, v_i \rangle - \langle u, v_i \rangle = 0$.

Như vậy, w_2 trực giao với mọi v_i , i = 1, ..., m, nên dễ thấy nó trực giao với span $\{S\} = W$.

2. Định nghĩa hình chiếu trực giao

Định nghĩa 5.6.7. Ta gọi w_1 là hình chiếu trực giao của u lên W, kí hiệu là $hch_w u$:

$$w_1 = hch_w u$$
,

còn $w_2 = u - hch_w u$ gọi là thành phần của u trực giao với W.

Thi dụ 5.6.10. Xét không gian \mathbb{R}^3 (với tích vô hướng Euclid) và W là không gian con sinh bởi những vectơ trực giao

$$v_1 = (0, 1, 0), v_2 = \left(-\frac{4}{5}, 0, \frac{3}{5}\right).$$

Hình chiếu trực giao của u = (1, 1, 1) lên W là

$$hch_{3}, u = \langle u, v_{1} \rangle v_{1} + \langle u, v_{2} \rangle v_{2}$$

$$= 1(0, 1, 0) + -\frac{1}{5} \left(-\frac{4}{5}, 0, \frac{3}{5} \right)$$

$$= \left(\frac{4}{25}, 1, -\frac{3}{25} \right)$$

Thành phần của µ trực giao với W là

$$u - hch_{w}u = (1, 1, 1) - \left(\frac{4}{25}, 1, -\frac{3}{25}\right)$$
$$= \left(\frac{21}{25}, 0, \frac{28}{25}\right)$$

(Xem hình 49).

BÀJ TẬP 5.31 – 5.50.

5.7. TOA ĐỘ TRONG KHÔNG GIAN n CHIỀU

5.7.1. Khái niệm toạ đó trong không gian n chiều

Định nghĩa 5.7.1. Giả sử $S = \{v_1, ..., v_n\}$ là một cơ sở của không gian n chiều V. Lúc đó theo định lí 5.4.3, mọi $v \in V$ có biểu diễn duy nhất

$$v = c_1 v_1 + c_2 v_2 + ... + c_n v_n, c_i \in \mathbb{R}.$$

Các số $c_1, c_2, ..., c_n$ gọi là các toạ độ của v đối với cơ sở S.

Vector

$$(v)_S = (c_1, c_2, ..., c_n)$$

là một vectơ trong \mathbf{R}^n và được gọi là vectơ toạ độ của v đối với cơ sở S. Vectơ $(v)_S$ viết ở dạng cột dẫn đến ma trận

$$[v]_{S} = \begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{bmatrix}$$

là một ma trận $c\bar{\sigma} n \times 1$ và được gọi là ma trận toạ độ của v đối với cơ sở S.

Thí dụ 5.7.1. (a) Chứng minh rằng họ $S = \{v_1, v_2, v_3\}$ với

$$v_1 = (1, 2, 1), v_2 = (2, 9, 0), v_3 = (3, 3, 4)$$

tạo thành một cơ sở trong \mathbb{R}^3 .

- (b) Hãy tìm vectơ toạ độ và ma trận toạ độ của v = (5, -1, 9) đối với S.
- (c) Hãy tìm vectơ $w \in \mathbb{R}^3$ có vectơ toạ độ đối với S là $(w)_S = (-1, 3, 2)$.

Giải: (a) Để nghị bạn đọc tự làm.

(b) Ta phải tìm các số c_1 , c_2 , c_3 sao cho

$$v = c_1 v_1 + c_2 v_2 + c_3 v_3$$

tức là $(5, -1, 9) = c_1(1, 2, 1) + c_2(2, 9, 0) + c_3(3, 3, 4)$.

Cân bằng các thành phần ở hai vế ta được

$$\begin{cases} c_1 + 2c_2 + 3c_3 = 5 \\ 2c_1 + 9c_2 + 3c_3 = -1 \\ c_1 + 4c_3 = 9 \end{cases}$$

Giải hệ này, ta được

$$c_1 = 1$$
, $c_2 = -1$, $c_3 = 2$.

Do đó

$$(v)_S = (1, -1, 2)$$
$$[v]_S = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}.$$

(c) Dùng định nghĩa của vectơ toạ độ (w)5 ta có

$$w = (-1)v_1 + 3v_2 + 2v_3 = (11, 31, 7)$$

 $Ch\dot{u}$ ý 5.7.1. Các vectơ toạ độ và ma trận toạ độ phụ thuộc vào thứ tư của các vectơ cơ sở.

Trong một không gian hữu hạn chiều, khi cơ sở đã ấn định thì giữa các vectơ của không gian và các vectơ toạ độ (hay ma trận toạ độ) có tương ứng 1-1.

Thí dụ 5.7.2. Xéi cơ sở $S = \{1, x, x^2\}$ của P_2 .

Xét
$$p = a_0 + a_1 x + a_2 x^2 \in P_2$$

thì $(p)_S = (a_0, a_1, a_2)$

 $[p]_{S} = \begin{bmatrix} a_{o} \\ a_{1} \\ a_{2} \end{bmatrix}.$

Thí dụ 5.7.3. Xét không gian với hệ trục vuông góc Oxyz và xét cơ sở chính tắc $S = \{i, j, k\}$ trong đó

$$i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)$$

Khi đó nếu ν = (a, b, c) là một vectơ bắt kì thuộc ${
m I\!R}^3$ thì

$$v = (a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1)$$

$$= a\vec{i} + b\vec{j} + c\vec{k}$$

Điều đó có nghĩa là

$$v = (a, b, c) = (v)_{\mathcal{S}}$$

Nói cách khác, các thành phần của một vectơ v đối với một hệ trục vuông góc Oxyz cũng là những toạ độ của v đối với cơ sở chính tắc $\{i, j, k\}$.

...5.7.2. Toa độ trong không gian Euclid (xem định nghĩa 5.7.1)

Nếu $S = \{v_1, ..., v_n\}$ là một cơ sở trực chuẩn trong không gian Euclid n chiếu V, thì theo định lí 5.6.5 biểu thức của vectơ $u \in V$ đối với cơ sở S là

$$u = \langle u, v_1 \rangle v_1 + \langle u, v_2 \rangle v_2 + ... + \langle u, v_n \rangle v_n.$$

$$\forall ay \qquad (u)_S = (\langle u, v_1 \rangle, \langle u, v_2 \rangle, ..., \langle u, v_n \rangle)$$

$$\lceil \langle u, v_1 \rangle \rceil$$

٧à

$$[u]_S = \begin{bmatrix} \langle u, v_1 \rangle \\ \langle u, v_2 \rangle \\ . \\ . \\ \langle u, v_n \rangle \end{bmatrix}.$$

Thí dụ 5.7.4. Nếu

$$v_1 = (0, 1, 0), v_2 = \left(-\frac{4}{5}, 0, \frac{3}{5}\right), v_3 = \left(\frac{3}{5}, 0, \frac{4}{5}\right)$$

thì như đã nhận xét ở thí dụ 5.6.9, $S = \{v_1, v_2, v_3\}$ là 1 cơ sở trực chuẩn của không gian \mathbb{R}^3 với tích vô hướng Euclid.

Với u = (2, -1, 4) ta có

$$(u, v_1) = -1, (u, v_2) = \frac{4}{5}, (u, v_3) = \frac{22}{5}.$$
Do đó
$$(u)_S = \left(-1, \frac{4}{5}, \frac{22}{5}\right)$$

$$[u]_S = \begin{bmatrix} -1\\ \frac{4}{5}\\ \frac{22}{5} \end{bmatrix}.$$

5.7.3. Biểu thức của tích vô hướng trong cơ sở trực chuẩn của không gian Euclid

Các cơ sở trực chuẩn đối với không gian Euclid rất tiện lợi như sẽ thấy đười đây.

Giả sử $S = \{e_1, e_2, ..., e_n\}$ là một cơ sở trực chuẩn trong không gian Euclid n chiều E:

$$\langle e_i, e_j \rangle = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Xét hai vecto x và y thuộc E. Ta có :

$$x = x_1 e_1 + ... + x_n e_n$$
, $y = y_1 e_1 + ... + y_n e_n$,

nghĩa là
$$(x)_S = (x_1, x_2, ..., x_n), (y)_S = (y_1, y_2, ..., y_n).$$

Khi đó

$$\langle x, y \rangle = (x_1 e_1 + ... + x_n e_n, y_1 e_1 + ... + y_n e_n)$$

$$\langle x, y \rangle = x_1 y_1 + ... + x_n y_n = [x]_S' [y]_S = [y]_S' . [x]_S (5.7.1)$$

Đố là biểu thức toạ độ của tích vô hướng $\langle x, y \rangle$ trong cơ sở trực chuẩn S của không gian Euclid E.

5.7.4. Độ dài và khoảng cách trong cơ sở trực chuẩn của không gian Euclid

Từ kết quả (5.7.1) ở 5.7.3 ta suy ra

$$||x|| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

$$d(x, y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}.$$

5.7.5. Đặc điểm của ma trận đối xứng xem là một toán tử tuyên tính trong không gian Euclid n chiều

Bây giờ giả sử S là một cơ sở trực chuẩn trong không gian Euclid n chiều và A là một ma trận vuông cấp n đối xứng :

$$A = \left(a_{ij}\right)_{n \times n}, \ a_{ji} = a_{ij}$$

và

$$(x)_{S} = (x_1, x_2, ..., x_n)$$

$$(y)_S = (y_1, y_2, ..., y_n)$$

Dè cho gọn ta sẽ viết $x := [x]_S$ và $y := [y]_S$. Dinh lí 5.7.1.

$$A^{I} = A \Leftrightarrow \langle Ax, y \rangle = \langle x, Ay \rangle, \forall x, y \in E.$$

Chứng minh.

1. Theo (5.7.1) ta có

$$\langle Ax, y \rangle = (Ax)^t y = x^t A^t y$$

 $\langle x, Ay \rangle = x^t Ay$

Vậy nếu A' = A thì $\langle Ax, y \rangle = \langle x, Ay \rangle, \forall x, y \in E$.

2. Bây giờ giả sử $\langle Ax, y \rangle = \langle x, Ay \rangle, \forall x, y \in E$. Ta có

$$\langle Ae_i, e_j \rangle = \langle e_i, Ae_j \rangle \, \forall i, j$$

Nhưng

$$<\!\!Ae_i, e_j\!\!> = <\!\!e_j, Ae_i\!\!> = a_{ji}, <\!\!e_i, Ae_j\!\!> = a_{ij}$$

Vậy $a_{jj} = a_{jj}$. Do đó $A^{l} = A$.

BÀI TẬP 5.51 - 5.56.

5.8. BÀI TOÁN ĐỔI CƠ SỞ

5,8.1. Đặt bài toán

Trong không gian vecto n chiều V, giả sử có hai cơ sở

$$B = (e_1, e_2, ..., e_n)$$
 và $B' = (e'_1, e'_2, ..., e'_n)$

Ta sẽ quy ước gọi B là cơ sở cũ và B' là cơ sở mới.

Xét $v \in V$. Đối với cơ sở B ta có

$$v = v_1 e_1 + v_2 e_2 + \dots + v_n e_n \tag{5.8.1}$$

nghĩa là $(v)_B = (v_1, v_2, ..., v_n)$

$$[v]_B = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}.$$

Đối với cơ sở B' ta có

$$v = v'_1 e'_1 + v'_2 e'_2 + \dots + v'_n e'_n$$
 (5.8.2)

nghĩa là $(v)_{B'} = (v'_1, v'_2, ..., v'_n)$

$$[v]_{\mathcal{B}'} = \begin{bmatrix} v_1' \\ v_2' \\ \vdots \\ v_n' \end{bmatrix}.$$

Hãy tìm liên hệ giữa $(v)_B$ và $(v)_{B'}$, tức là giữa $[v]_B$ và $[v]_{B'}$.

5.8.2. Ma trận chuyển

Định nghĩa 5.8.1. Ma trận P thoả mẫn

$$[v]_{R} = P[v]_{R}. (5.8.3)$$

gọi là ma trận chuyển cơ sở từ B sang B'.

Để có P, trước hết ta viết các biểu diễn của e'_i trong cơ sở B.

$$e'_{1} = p_{11}e_{1} + p_{21}e_{2} + \dots + p_{n1}e_{n}$$

$$e'_{2} = p_{12}e_{1} + p_{22}e_{2} + \dots + p_{n2}e_{n}$$

$$\vdots = p_{n}e_{n} + p_{n}e_{n} + p_{n}e_{n}$$
(5.8.4)

$$e'_n = p_{1n}e_1 + p_{2n}e_2 + \dots + p_{nn}e_n$$

nghĩa là

$$[e'_{1}]_{B} = \begin{bmatrix} p_{11} \\ p_{21} \\ \vdots \\ p_{n1} \end{bmatrix}, [e'_{2}]_{B} = \begin{bmatrix} p_{12} \\ p_{22} \\ \vdots \\ p_{n2} \end{bmatrix}, \dots, [e'_{n}]_{B} = \begin{bmatrix} p_{1n} \\ p_{2n} \\ \vdots \\ p_{nn} \end{bmatrix}$$

Thay (5.8.4) vào (5.8.2) ta duoc

$$v = v'_{1}(p_{11}e_{1} + p_{21}e_{2} + \dots + p_{n1}e_{n}) +$$

$$+ v'_{2}(p_{12}e_{1} + p_{22}e_{2} + \dots + p_{n2}e_{n}) + \dots +$$

$$+ v'_{n}(p_{1n}e_{1} + p_{2n}e_{2} + \dots + p_{nn}e_{n}) =$$

$$= (p_{11}v'_{1} + p_{12}v'_{2} + \dots + p_{1n}v'_{n})e_{1} +$$

$$+ (p_{21}v'_{1} + p_{22}v'_{2} + \dots + p_{2n}v'_{n})e_{2} + \dots +$$

$$+ (p_{n1}v'_{1} + p_{n2}v'_{2} + \dots + p_{nn}v'_{n})e_{n}$$

Đối chiếu với (5.8.1) ta suy ra

$$v_1 = p_{11}v'_1 + p_{12}v'_2 + \dots + p_{1n}v'_n$$

$$v_2 = p_{21}v'_1 + p_{22}v'_2 + \dots + p_{2n}v'_n$$
(5.8.5)

$$v_n = p_{n1}v_1' + p_{n2}v_2' + ... + p_{nn}v_n'$$

Công thức (5.8.5) gợi ra ý đặt

$$P = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2n} \\ \dots & & & & \\ p_{n1} & p_{n2} & \dots & p_{nn} \end{bmatrix}$$
 (5.8.6)

$$= [e'_1]_B [e'_2]_B ... [e'_n]_B$$

Với ma trận P đó, công thức (5.8.5) có dạng (5.8.3).

Vậy P xác định bởi (5.8.6) là ma trận chuyển cơ sở từ B sang B'.

Ma trận chuyển cơ sở P có tính chất sau :

Định lí 5.8.1. Nếu P là ma trận chuyển cơ sở từ cơ sở B sang cơ sở B' thì

- (a) P khả đảo (tức là P không suy biến, det (P) \neq 0))
- (b) P^{-1} là ma trận chuyển cơ sở từ B' sang B:

$$[v]_{R'} = P^{-1}[v]_{R} (5.8.7)$$

Chứng minh: (a) Ma trận P không suy biến theo định lí 5.4.4.

(b) Vì P không suy biến nên tồn tại P^{-1} . Do đó (5.8.3) cho (5.8.7). Và (5.8.7) chứng tỏ rằng P^{-1} là ma trận chuyển cơ sở từ B' sang B.

Chú ý 5.8.1. Công thức (5.8.3) biểu diễn toạ độ cũ của vectơ v theo toa độ mới của vectơ v.

Công thức (5.8.7) biểu diễn toạ độ mới của vectơ v theo toạ độ cũ của vectơ v.

Khi có một biểu thức của toạ độ cũ thì công thức (5.8.3) cho phép chuyển biểu thức đó thành biểu thức theo toạ độ mới.

Thi du 5.8.1. Cho các cơ sở trong \mathbb{R}^2

$$B = \{e_1, e_2\}$$
 và $B' = \{e'_1, e'_2\}.$

Các vectơ viết ở dạng cột :

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, e'_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, e'_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

(a) Tìm ma trận chuyển cơ sở từ B sang B'

(b) Tim
$$[v]_{B'}$$
 néu $v = \begin{bmatrix} 7 \\ 2 \end{bmatrix}$.

Giài : (a) Trước hết ta biểu diễn $e'_1 = e_1 + e_2$ $e'_2 = 2e_1 + e_2$

Do đó

$$[e'_1]_B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, [e'_2]_B = \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

Vậy ma trận chuyển cơ sở từ B sang B' là

$$P = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}.$$

(b) Do đó ma trận chuyển cơ sở từ B' sang B là

$$p^{-1} = \begin{bmatrix} -1 & 2 \\ 1 - 1 \end{bmatrix}.$$

Chú ý rằng ma trận này cũng có thể tìm được bằng cách biểu điển e_1 và e_2 theo e'_1 và e'_2 .

Vì
$$\begin{bmatrix} 7 \\ 2 \end{bmatrix} = 7 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 7e_1 + 2e_2 \text{ nên } [v]_B = \begin{bmatrix} 7 \\ 2 \end{bmatrix}.$$

Do đó

$$[v]_{B'} = P^{-1}[v]_{B} = \begin{bmatrix} -1 & 2 \\ 1 - 1 \end{bmatrix} \begin{bmatrix} 7 \\ 2 \end{bmatrix} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}.$$

Sau đây là một kết quả nữa:

5.8.3. Dinh lí 5.8.2

Nếu P là một ma trận chuyển cơ sở từ một cơ sở trực chuẩn sang một cơ sở trực chuẩn khác trong một không gian Euclid n chiều thì P là ma trận trực giao, trực giao theo nghĩa:

$$P^{t}P = I$$
.

Do dó

$$P^{-1}=P^{1}.$$

Chứng minh. Giả sử tích vô hướng trong không gian Euclid kí hiệu là <...>. Khi đó

$$\langle e_i, e_j \rangle = \begin{cases} 1 \text{ néu } i = j \\ 0 \text{ néu } i \neq j \end{cases}, \langle e'_j, e'_j \rangle = \begin{cases} 1 \text{ néu } i = j \\ 0 \text{ néu } i \neq j \end{cases}$$

Theo (5.8.4) ta có

$$\langle e'_i, e'_j \rangle = \langle \sum_{k=1}^n p_{ki} e_k, \sum_{l=1}^n p_{lj} e_l \rangle = \sum_{k=1}^n \sum_{l=1}^n p_{ki} p_{lj} \langle e_k, e_l \rangle$$

$$\Rightarrow \langle e'_i, e'_j \rangle = \sum_{k=1}^n p_{ki} p_{kj}$$

$$\Rightarrow \sum_{k=1}^n p_{ki} p_{kj} = \begin{cases} 1 & \text{n\'eu } i = j \\ 0 & \text{n\'eu } i \neq j \end{cases} .$$

Điều đó chứng tỏ $P^tP = I$.

Thí dụ 5.8.2. Áp dụng vào phép quay trực vương góc trong mặt phẳng, ta xét hệ trực tọa độ vưởng góc Oxy. Quay nó đi một góc α (hình 50). Một điểm Q của mặt phẳng có toạ độ (x, y) đối với hệ cũ Oxy sẽ có toạ độ mới là (x', y') đối với hệ mới Ox'y'.

Hãy tìm liên hệ giữa (x, y) và (x', y').

Gidi: Các vectơ viết ở dạng cột

$$B = \{e_1, e_2\}$$

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$B' = \{e'_1, e'_2\}$$

$$e'_1 = \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix}$$

$$e'_2 = \begin{bmatrix} -\sin \alpha \\ \cos \alpha \end{bmatrix}$$

Do đó ma trận chuyển cơ sở từ B sang B' là

$$P = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

Vậy có

$$\begin{bmatrix} x \\ y \end{bmatrix} = P \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}.$$

Ta suy ra

$$x = x'\cos\alpha - y'\sin\alpha$$

 $y = x'\sin\alpha + y'\cos\alpha$

Mặt khác, ta tính được

$$P^{-1} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$

Rō ràng

$$P^{-1} = P^t$$

như định lí 5.8.2 đã khẳng định.

Vậy thí dụ 5.8.2 có thể xem là một minh hoạ cho định lí 5.8.2.

BÀI TÂP: 5.57 - 5.66.

TÓM TẤT CHƯƠNG V

Không gian vectơ trên trường số thực R là một tập V (mà mỗi phần tử quy ước gọi là một vectơ) với hai phép toán cộng vectơ và nhân vectơ với một số thực R, thoả mãn 10 tính chất (gọi là 10 tiên đề của không gian vectơ):

(1)
$$x, y \in V \Rightarrow x + y \in V$$

$$(2) x + y = y + x$$

(3)
$$x + (y + z) = (x + y) + z$$

(4)
$$\exists \theta \in V$$
 sao cho $\theta + x = x + \theta = x$

 θ gọi là *phần tử trung hoà* của phép +

(5) Với mỗi $x \in V$ tồn tại $-x \in V$ sao cho

$$x + (-x) = (-x) + x = \theta$$

-x gọi là phần tử đối xứng của x

(6)
$$x \in V$$
, $k \in R$ thì $kx \in V$

$$(7) k(x + y) = kx + ky, \quad k \in \mathbf{R}$$

(8)
$$(k+l)x = kx + lx$$
, $k, l \in \mathbb{R}$

$$(9) \ k(lx) = (kl)x$$

(10)
$$1x = x$$

Từ 10 tiên để trên ta suy ra

- (a) Phần tử trung hoà θ là duy nhất
- (b) Phần từ đối xứng của bất kì x nào thuộc V là đuy nhất
- (c) $\forall x \in V$ ta đều có $0x = \theta$
- (d) $\forall x \in V$ ta đều có (-1)x = -x
- (e) $\forall k \in \mathbf{R}$ ta đều có $\mathbf{k}\theta = \theta$
- (f) $x \in V$, $k \in \mathbf{R}$ thì

$$kx = \theta \Rightarrow k = 0 \text{ hoặc } x = \theta.$$

Không gian con : $W \subset V$ gọi là không gian con của V nếu với hai phép toán trong V, W là một không gian vecto.

Điều kiện cần và dù để $W \subset V$ là không gian con của V là nó khác rỗng và đóng kín đối với hai phép toán của V.

V là một không gian vectơ

$$S = \{x_1, x_2, ..., x_n\} \subset V$$
 là một họ vectơ của V .

Biểu thức

$$c_1x_1 + c_2x_2 + \dots + c_nx_n, c_i \in \mathbb{R}$$

là một vecto $\in V$ và được gọi là một tổ hợp tuyến tính của họ S.

Tập tất cả các tổ hợp tuyến tính của họ S gọi là bao tuyến tính của S, kí hiệu là span (S).

Span(S) là một không gian con của V.

Nếu span(S) = V thì nói S sinh ra V hay S là một hệ sinh của V.

Ho S gọi là độc lập tuyến tính nếu diễu kiện

$$c_1x_1 + c_2x_2 + ... + c_nx_n = \theta$$

chỉ xảy ra khi $c_1 = 0$, $c_2 = 0$, ..., $c_n = 0$.

Nếu trái lại, tồn tại các số $c_1, c_2, ..., c_n$, không đồng thời bằng 0 để có điều kiện trên thì họ S gọi là phụ thuộc tuyến tính.

Không gian hữu hạn chiều

Không gian vectơ V gọi là không gian n chiều, $n \ge 1$ nếu trong V tồn tại n vectơ độc lập tuyến tính và không thể tồn tại quá n vectơ độc lập tuyến tính.

Tập chỉ gồm một phần từ trung hoà θ của một không gian vectơ nào đó cũng là một không gian vectơ. Đó là những không gian không chiều.

Các không gian n chiều, $n \ge 0$, gọi là không gian hữu hạn chiều. Số chiều của chúng kí hiệu là dim.

Nếu trong V tồn tại một số bắt kì các vectơ độc lập tuyến tính thì V gọi là không gian vô số chiều.

Trong một không gian n chiều, $n \ge 1$, mỗi họ gồm n vectơ đọc lập tuyến tính gọi là một $\cos s \hat{\sigma}$ của không gian.

V là một không gian vectơ

$$S = \{x_1, x_2, ..., x_n\} \subset V$$

Nếu S độc lập tuyến tính và sinh ra V thì V là không gian n chiều và S là môt cơ sở.

Nếu V là không gian n chiều và S là một cơ sở thì mọi $x \in V$ có biểu diễn duy nhất

$$x = c_1 x_1 + c_2 x_2 + ... + c_n x_n$$

và ngược lại, nếu mọi $x \in V$ có biểu diễn duy nhất như trên thì V là không gian n chiều và S là một cơ sở.

Nếu V là không gian n chiều và $S = \{x_1, ..., x_r\} \subset V$ là một họ vectơ độc lập tuyến tính và nếu r < n thì có thể bổ sung thêm n - r vectơ $x_{r+1}, ..., x_n$ nữa để họ

$$\{x_1, ..., x_r, x_{r+1}, ..., x_n\}$$

là một cơ sở của V.

Số chiều và cơ sở của không gian con sinh bởi một họ vectơ

V là một không gian vect σ

$$S = \{x_1, x_2, ..., x_m\} \subset V$$

Hạng của họ S là số vectơ độc lập tuyến tính tối đa có thể rút ra từ họ S. Kí hiệu hạng của họ S là r(S).

Hạng của họ S có thể tính bằng biến đổi sơ cấp.

$$\dim(\operatorname{span}(S)) = r(S).$$

Khi V là một không gian n chiều có cơ sở B thì trong B mỗi vectơ của họ $S \subset V$ có n toạ độ. Hạng của họ S bằng hạng của ma trận có các hàng là toạ độ của các vectơ của S viết thành hàng hoặc hạng của ma trận có các cột là toạ độ của các vectơ S viết thành cột.

V là không gian n chiều, $S = \{x_1, ..., x_n\} \subset V$. Nếu S sinh ra V thì S là một cơ sở của V.

Tích vô hướng

V là một không gian vectơ

$$u, v \in V$$

Tích vô hướng của u và v là một số thực kí hiệu là $\langle u, v \rangle$, phụ thuộc u và v, thoả mãn 5 tính chất dưới đây gọi là 5 tiên đề của tích vô hướng .

- (1) $\langle u, v \rangle$ xác định với mọi cặp u, v của V
- (2) < u, v > = < v, u >
- (3) $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$
- (4) < ku, v> = k < u, v>
- (5) $\langle u, v \rangle \ge 0$ và $\langle u, u \rangle = 0 \Leftrightarrow u = \theta$.

Không gian vectơ V trong đó tồn tại một tích vô hướng gọi là không gian có tích vô hướng.

Không gian V n chiều có tích vô hướng gọi là không gian Euclid.

Nếu
$$V = \mathbb{R}^n$$
, $x = (x_1, ..., x_n) \in V$, $y = (y_1, ..., y_n) \in V$ thì
$$(x, y) = x_1 y_1 + ... + x_n y_n$$

là một tích vô hướng. Ta gọi nó là tích vô hướng Euclid của R"

Độ đài. V là không gian có tích vô hướng, $v \in V$ thì

$$||v|| = \sqrt{\langle u, v \rangle}$$
.

Vector \mathbf{v} có $\|\mathbf{v}\| = 1$ gọi là vector đã chuẩn hoá.

Sự trực giao. V là không gian có tích vô hướng

$$u, v \in V$$
.

Nói u và v trực giao nếu $\langle u, v \rangle = 0$.

Họ vector $S = \{v_1, ..., v_m\} \subset V$ gọi là họ trực giao nếu

$$\langle v_i, v_i \rangle = 0, i \neq j$$

Họ S gọi là trực chuẩn nếu

$$\langle v_i, v_j \rangle = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

Cơ sở trực giao trong không gian Euclid là một cơ sở gồm các vectơ trực giao.

Cơ sở trực chuẩn trong không gian Euclid là một cơ sở gồm các vectơ trực chuẩn.

Trong không gian Euclid bao giờ cũng tồn tại ít nhất một cơ sở trực chuẩn.

Bất đẳng thức Cauchy - Schwarz

$$|\langle u, v \rangle| \le ||u||$$
. $||v||$.

Toa độ trong không gian n chiếu

V là không gian n chiều.

$$S = \{v_1, v_2, ..., v_n\} \subset V$$
 là một cơ sở

Khi đó mọi $v \in V$ có biểu điển duy nhất

$$v = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$$

Các số $c_1, c_2, ..., c_n$ gọi là các tọa độ của v đối với cơ sở S.

 $(v)_s = (c_1, c_2, ..., c_n) \in \mathbb{R}^n$ gọi là vectơ toạ độ của v đối với cơ sở S.

$$[v]_{s} = \begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{bmatrix} \in \mathcal{M}_{n \times 1} \quad \text{gọi là } ma \text{ trận toạ độ của v đối với cơ sở } S$$

Nếu V là không gian Euclid và S là cơ sở trực chuẩn thì

$$v = \langle v, v_1 \rangle v_1 + \langle v, v_2 \rangle v_2 + \dots + \langle v, v_n \rangle v_n$$

$$(v)_s = (\langle v, v_1 \rangle, \langle v, v_2 \rangle, \dots, \langle v, v_n \rangle)$$

nên

thì

$$[v]_s = \begin{bmatrix} \langle v, v_1 \rangle \\ \langle v, v_2 \rangle \\ \vdots \\ \langle v, v_n \rangle \end{bmatrix}$$

V là không gian Euclid, S là cơ sở trực chuẩn

$$(u)_s = (a_1, a_2, ..., a_n), (v)_s = (b_1, b_2, ..., b_n)$$

 $< u, v > = a_1b_1 + a_2b_2 + ... + a_nb_n$

Bài toán đổi cơ sở

 $oldsymbol{V}$ là không gian $oldsymbol{n}$ chiều

$$B = \{e_1, ..., e_n\}$$
 là một cơ sở

 $B' = \{e'_1, ..., e'_n\}$ là một cơ sở khác

 $v \in V$ thì

$$(v)_B = (v_1, v_2, ..., v_n), (v)_{B'} = (v'_1, v'_2, ..., v'_n).$$

Tổn tại ma trận P không suy biến để

$$(v)_B = P(v)_{B'}, \qquad (v)_{B'} = P^{-1}(v)_B$$

theo nghĩa

$$[v]_{R} = P[v]_{R'}, \quad [v]_{R'} = P^{-1}[v]_{R}.$$

Ma trận P gọi là ma trận chuyển cơ sở từ B sang B', còn gọi tắt là ma trận chuyển. Nó viết

$$P = \{[e'_1]_R \{e'_2\}_R \dots [e'_n]_R\}$$

Nếu V là không gian Euclid n chiều và

B và B' là các cơ sở trực chuẩn thì

$$P^{1}P = I$$
 nghĩa là $P^{-1} = P^{1}$.

BÀI TẬP CHƯƠNG V

- 5.1. Trong các bài tập dưới đây người ta cho một tập các phần từ gọi là vectơ, hai phép tính cộng vectơ và nhân vectơ với một số. Hãy xác định tập nào là không gian vectơ và nếu có tập nào không phải là không gian vectơ thì chỉ ra các tiên đề mà tập đó không thoả mãn.
 - 1) Tập tất cả các bộ ba số thực (x, y, z) với các phép tính

$$(x, y, z) + (x', y', z') := (x + x', y + y', z + z')$$

 $k(x, y, z) := (kx, y, z)$

2) Tập các bộ ba số thực (x, y, z) với các phép tính

$$(x, y, z) + (x', y', z') := (x + x', y + y', z + z')$$

 $k(x, y, z) := (0, 0, 0)$

3) Tập các cặp số thực (x, y) với các phép tính

$$(x, y) + (x', y') := (x + x', y + y')$$

 $k(x, y) := (2kx, 2ky)$

- 4) Tập các số thực x với các phép tính cộng và nhân thông thường.
- 5) Tập các cặp số thực có dạng (x, y) trong đó $x \ge 0$ với các phép tính thông thường trong \mathbb{R}^2 .

6) Tập các cặp số thực (x, y) với các phép tính

$$(x, y) + (x', y') := (x + x' + 1, y + y' + 1)$$

 $k(x, y) := (kx, ky)$

- 5.2. Hỏi mỗi tập dưới dây là không gian con của R^3 hay không :
- (a) Các vecto có dang (a, 0, 0)?
- (b) Các vecto có dang (a, 1, 1)?
- (c) Các vecto có dạng (a, b, c) với b = a + c?
- (d) Các vecto có dạng (a, b, c) với b = a + c + 1?
- 5.3. Gọi \mathcal{M}_2 là tập các ma trận vuông cấp hai với phép cộng ma trận và nhân ma trận với một số thực thông thường. Chứng minh rằng \mathcal{M}_2 là một không gian vectơ. Hỏi mỗi tập đười đây có là không gian con của \mathcal{M}_2 không:
 - (a) Các ma trận có dạng

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

trong đó a, b, c là nguyên?

(b) Các ma trận có dạng

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

trong đó a + d = 0?

- (c) Các ma trận cấp hai sao cho $A = A^{\dagger}$?
- (d) Các ma trận cấp hai sao cho det (A) = 0?
- 5.4. Hồi mỗi tập đưới đây có là không gian con của C[0, 1] không :
- (a) Các $f \in C[0, 1]$ sao cho $f(x) \le 0$, $\forall x \in [0, 1]$?
- (b) $\text{Các } f \in C[0, 1] \text{ sao cho } f(0) = 0?$
- (c) Các $f \in C[0, 1]$ sao cho f(0) = 2?

- (d) Các f là hàng?
- (e) Các $f \in C[0, 1]$ có dạng $k_1 + k_2 \sin x$, trong đó k_1 và k_2 là các số thực.
- 5.5. Hỏi mỗi tập dưới đây có phải là không gian con của P_3 không :
- (a) Các da thức $a_0 + a_1x + a_2x^2 + a_3x^3$ trong đó $a_0 = 0$?
- (b) Các đã thức $a_0 + a_1 x + a_2 x^2 + a_3 x^3$ trong đó $a_0 + a_1 + a_2 + a_3 = 0$?
- (c) Các đa thúc $a_0 + a_1x + a_2x^2 + a_3x^3$ trong đó a_0 , a_1 , a_3 là các số nguyên.
 - 5.6. Hãy biểu diễn vecto x thành tổ hợp tuyến tính của u, v, w:
 - a) x = (7, -2, 15); u = (2, 3, 5), v = (3, 7, 8), w = (1, -6, 1)
 - b) x = (0, 0, 0); u, v, w như $\dot{\sigma}$ a).
 - c) x = (1, 4, -7, 7); u = (4, 1, 3, -2), v = (1, 2, -3, 2),w = (16, 9, 1, -3)
 - d) x = (0, 0, 0, 0); u, v, w như ở c).
 - 5.7. Hãy xác định λ sao cho x là tổ hợp tuyến tính của u, v, w:
 - a) $u = (2, 3, 5), v = (3, 7, 8), w = (1, -6, 1); x = (7, -2, \lambda)$
 - b) $u = (4, 4, 3), v = (7, 2, 1), w = (4, 1, 6); x = (5, 9, \lambda)$
 - c) $u = (3, 4, 2), v = (6, 8, 7); x = (9, 12, \lambda)$
 - d) $u = (3, 2, 5), v = (2, 4, 7), w = (5, 6, \lambda); x = (1, 3, 5)$
- 5.8. Hãy biểu diễn các đa thức sau thành tổ hợp tuyến tính của $p_1 = 2 + x + 4x^2$, $p_2 = 1 x 3x^2$, $p_3 = 3 + 2x + 5x^2$
 - (a) $5 + 9x + 5x^2$
 - (b) $2 + 6x^2$
 - (c) 0
 - (d) $2 + 2x + 3x^2$

5.9. Ma trận nào dưới đây là tổ hợp tuyến tính của

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 2 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 4 & -2 \\ 0 & -2 \end{bmatrix};$$

(a)
$$\begin{bmatrix} 6 & 3 \\ 0 & 8 \end{bmatrix}$$
?

(b)
$$\begin{bmatrix} -1 & 7 \\ 5 & 1 \end{bmatrix}$$
?

(c)
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} ?$$

(d)
$$\begin{bmatrix} 6 & -1 \\ -8 & -8 \end{bmatrix} ?$$

5.10. Mỗi họ vectơ đười đây có sinh ra \mathbb{R}^3 không

(a)
$$v_1 = (1, 1, 1), v_2 = (2, 2, 0), v_3 = (3, 0, 0)$$
?

(b)
$$v_1 = (2, -1, 3), v_2 = (4, 1, 2), v_3 = (8, -1, 8)$$
?

(c)
$$v_1 = (3, 1, 4), v_2 = (2, -3, 5), v_3 = (5, -2, 9), v_4 = (1, 4, -1)$$
?

(d)
$$v_1 = (1, 3, 3), v_2 = (1, 3, 4), v_3 = (1, 4, 3), v_4 = (6, 2, 1)$$
?

5.11. Hỏi hàm nào dưới đây thuộc không gian sinh bởi

$$f = \cos^2 x$$
 và $g = \sin^2 x$

- (a) $\cos 2x$? (b) $3 + x^2$?
- (c) 1?
- (d) $\sin x$?

5.12. Hỏi các đa thức đười đây có sinh ra P_3 không

$$p_1 = 1 + 2x - x^2$$
, $p_2 = 3 + x^2$,
 $p_3 = 5 + 4x - x^2$, $p_4 = -2 + 2x - 2x^2$?

5.13. Các tập sau đây là độc lập tuyến tính hay phụ thuộc tuyến tính :

(a)
$$u_1 = (1, 2)$$
 và $u_2 = (-3, -6)$ trong \mathbb{R}^2 ?

(b)
$$u_1 = (2, 3), u_2 = (-5, 8), u_3 = (6, 1) \text{ trong } \mathbb{R}^2$$
?

(c)
$$p_1 = 2 + 3x - x^2 \text{ và } p_2 = 6 + 9x - 3x^2 \text{ trong } P_2$$
?

(d)
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix}$$
 và $B = \begin{bmatrix} -1 & -3 \\ -2 & 0 \end{bmatrix}$ trong \mathcal{M}_2 ?

5.14. Các tập dưới đây là độc lập tuyến tính hay phu thuộc tuyến tính ;

- a) (1, 2, 3), (3, 6, 7) trong \mathbb{R}^3 ?
- b) (4, -2, 6), (6, -3, 9) trong \mathbb{R}^3 ?
- c) (2, -3, 1), (3, -1, 5), (1, -4, 3) trong \mathbb{R}^3 ?
- d) (5, 4, 3), (3, 3, 2), (8, 1, 3) trong \mathbb{R}^3 ?
- 5.15. Các tạp dưới đầy là độc lập tuyến tính hay phụ thuộc tuyến tính :
- a) (4, -5, 2, 6), (2, -2, 1, 3), (6, -3, 3, 9), (4, -1, 5, 6) trong \mathbb{R}^4 ?
- b) (1, 0, 0, 2, 5), (0, 1, 0, 3, 4), (0, 0, 1, 4, 7), (2, -3, 4, 11, 12)trong R⁵?
 - **5.16.** Tập nào trong P_2 dưới đây là phụ thuộc tuyến tính :
 - (a) $2 x + 4x^2$, $3 + 6x + 2x^2$, $1 + 10x 4x^2$?
 - (b) $3 + x + x^2$, $2 x + 5x^2$, $4 3x^2$?
 - (c) $6 = x^2 + 1 + x + 4x^2$?
 - (d) $1 + 3x + 3x^2 + 4x^2 + 5 + 6x + 3x^2 + 7 + 2x x^2$?
 - 5.17. Tập nào trong $C(-\infty, +\infty)$ dưới đây là phụ thuộc tuyến tính :
 - (a) 2. $4\sin^2 x$. $\cos^2 x$
- (b) x, $\cos x$?

(c) 1. $\sin x$. $\sin 2x$

- (d) $\cos 2x \sin^2 x \cos^2 x$
- (e) $(1+x)^2$, x^2+2x , 3 (f) $(0, x, x^2)$
- 5.18. Tim \(\lambda\) thực làm cho các vectơ sau đây phụ thuộc tuyến tính trong \mathbb{R}^3 :

$$v_1 = \left(\lambda, -\frac{1}{2}, -\frac{1}{2}\right), \quad v_2 = \left(-\frac{1}{2}, \lambda, -\frac{1}{2}\right), \quad v_3 = \left(-\frac{1}{2}, -\frac{1}{2}, \lambda\right)$$

- 5.19. Hãy giải thích tại sao các tàp sau không phải là cơ sở của không gian tương ứng:
 - (a) $u_1 = (1, 2), u_2 = (0, 3), u_3 = (2, 7) d\acute{o}i v\acute{o}i \mathbb{R}^2$.

(c)
$$p_1 = 1 + x + x^2$$
, $p_2 = x - 1$ đối với P_2 .

(d)
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 6 & 0 \\ -1 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 3 & 0 \\ 1 & 7 \end{bmatrix}$,

$$D = \begin{bmatrix} 5 & 1 \\ 4 & 2 \end{bmatrix}, E = \begin{bmatrix} 7 & 1 \\ 2 & 9 \end{bmatrix} \quad \text{doi voi } \mathcal{M}_2.$$

5.20. Ho nào dưới đây là cơ sở trong \mathbb{R}^2 :

(b)
$$(4, 1), (-7, -8)$$

(c)
$$(0,0)$$
, $(1,3)$

(d)
$$(3, 9), (-4, -12)$$

5.21. Họ nào dưới đây là cơ sở trong R³

(b)
$$(3, 1, -4)$$
, $(2, 5, 6)$, $(1, 4, 8)$

(c)
$$(2, -3, 1), (4, 1, 1), (0, -7, 1)$$

(d)
$$(1, 6, 4), (2, 4, -1), (-1, 2, 5)$$

5.22. Họ nào dưới đây là cơ sở trong P_2

(a)
$$1 - 3x + 2x^2$$
, $1 + x + 4x^2$, $1 - 7x$

(b)
$$4 + 6x + x^2$$
, $-1 + 4x + 2x^2$, $5 + 2x - x^2$

(c)
$$1 + x + x^2$$
, $x + x^2$, x^2

(d)
$$-4 + x + 3x^2$$
, $6 + 5x + 2x^2$, $8 + 4x + x^2$

5.23. Chứng minh rằng họ sau đây là cơ sở trong \mathcal{M}_2

(a)
$$\begin{bmatrix} 3 & 6 \\ 3 & -6 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -8 \\ -12 & -4 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

5.24. Xác định số chiều và một cơ sở của không gian nghiệm của các hệ sau

1)
$$\begin{cases} 2x_1 + x_2 + 3x_3 = 0 \\ x_1 + 2x_2 = 0 \\ x_2 + x_3 = 0 \end{cases}$$

2)
$$\begin{cases} 3x_1 + x_2 + x_3 + x_4 = 0 \\ 5x_1 - x_2 + x_3 - x_4 = 0 \end{cases}$$

3)
$$\begin{cases} 3x_1 + x_2 + 2x_3 = 0 \\ 4x_1 + 5x_3 = 0 \\ x_1 - 3x_2 + 4x_3 = 0 \end{cases}$$

4)
$$\begin{cases} x_1 - 3x_2 + x_3 = 0 \\ 2x_1 - 6x_2 + 2x_3 = 0 \\ 3x_1 - 9x_2 + 3x_3 = 0 \end{cases}$$

$$\begin{cases} 2x_1 - 4x_2 + x_3 + x_4 = 0 \\ x_1 - 5x_2 + 2x_3 = 0 \\ -2x_2 - 2x_3 - x_4 = 0 \\ x_1 + 3x_2 + x_4 = 0 \\ x_1 - 2x_2 - x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x + y + z = 0 \\ 3x + 2y - z = 0 \\ 2x - 4y + z = 0 \\ 4x + 8y - 3z = 0 \\ 2x + y - 2z = 0 \end{cases}$$

5.25. Xác định cơ sở của các không gian con của \mathbb{R}^3 :

(a) Mặt phẳng
$$3x - 2y + 5z = 0$$

(b) Mặt phảng
$$x - y = 0$$

(c) Đường thẳng
$$\begin{cases} x = 2t & . \\ y = t, & -\infty < t < +\infty \\ z = 4t \end{cases}$$

- (d) Các vecto có dang (a, b, c), trong đó b = a + c.
- 5.26. Xác định số chiều của các không gian con của \mathbb{R}^4
- (a). Các vecto có dạng (a, b, c, 0).
- (b) Các vecto có dạng (a, b, c, d) trong đó d = a + b và c = a b.
- (c) Các vecto có dạng (a, b, c, d) trong đó a = b = c = d.
- 5.27. Xác định số chiều của không gian con của P_3 gồm các đa thức

$$a_0 + a_1 x + a_2 x^2 + a_3 x^3$$
 với $a_0 = 0$

- 5.28. Tìm một cơ sở và số chiều của không gian con của R³ sinh bởi các vectơ sau
 - a) (1, -1, 2), (2, 1, 3), (-1, 5, 0)
 - b) $(2, 4, 1), (3, 6, -2), (-1, 2, -\frac{1}{2})$
- 5.29. Từn một cơ sở và số chiều của không gian con của ${f R}^4$ sinh bởi các vectơ sau
 - a) (1, 1, -4, -3), (2, 0, 2, -2), (2, -1, 3, 2)
 - b) (-1, 1, -2, 0), (3, 3, 6, 0), (9, 0, 0, 3)
 - c) (1, 1, 0, 0), (0, 0, 1, 1), (-2, 0, 2, 2), (0, -3, 0, 3)
 - d) (1, 0, 1, -2), (1, 1, 3, -2), (2, 1, 5, -1), (1, -1, 1, 4)
 - 5.30. a) Chứng minh rằng tập các hàm khả vì trên [a, b] và thoả m**ān**

$$f' + 4f = 0$$

tạo thành một không gian con của C[a, b].

b) Tìm số chiều và một cơ sở của nó.

5.31. 1) Tính tích vò hướng Euclid trong \mathbb{R}^2 của

a)
$$u = (2, -1), v = (-1, 3)$$

b)
$$u = (0, 0), v = (7, 2)$$

2) Tính đô dài Euclid của u và v và kiểm tra lai bất đẳng thức C - S.

5.32. 1) Với hai ma trận trong .//s

$$u = \begin{bmatrix} u_1 & u_2 \\ u_3 & u_4 \end{bmatrix}, \quad v = \begin{bmatrix} v_1 & v_2 \\ v_3 & v_4 \end{bmatrix}$$

Hãy chứng minh rằng biểu thức

$$\langle u, v \rangle := u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4$$

là một tích vô hướng.

. 2) Áp dụng để tính tích vô hướng của

$$u = \begin{bmatrix} -1 & 2 \\ 6 & 1 \end{bmatrix}, \qquad v = \begin{bmatrix} 1 & 0 \\ 3 & 3 \end{bmatrix}$$

3) Kiểm tra lại bất đẳng thức C - S.

5.33. Với p và $q \in P_2$:

$$p = a_0 + a_1 x + a_2 x^2$$
, $q = b_0 + b_1 x + b_2 x^2$

1) Chứng minh rằng

$$\langle p, q \rangle := a_0 b_0 + a_1 b_1 + a_2 b_2$$

là một tích vô hướng trong P_2 .

2) Ấp dụng để tính tích vô hướng của

$$p = -1 + 2x + x^2$$
, $q = 2 - 4x^2$.

3) Kiểm tra lai bất đẳng thức C - S.

4) Chứng minh rằng

$$\langle p, q \rangle := p(0)q(0) + p\left(\frac{1}{2}\right)q\left(\frac{1}{2}\right) + p(1)q(1)$$

cũng là một tích vô hướng trong P_2 .

- 5) Làm lại phần 2) với tích vô hướng mới.
- 6) Làm lại phần 3) với tích vô hướng mới.

5.34. Xét
$$u = (u_1, u_2, u_3), v = (v_1, v_2, v_3) \in \mathbb{R}^3$$

Hỏi biểu thức nào dưới đây có thể là một tích vô hướng trong ${\bf R}^3$, nếu không được thì nêu lí do :

a)
$$\langle u, v \rangle := u_1 v_1 + u_3 v_3$$
;

b)
$$\langle u, v \rangle := u_1^2 v_1^2 + u_2^2 v_2^2 + u_3^2 v_3^2$$
;

c)
$$\langle u, v \rangle$$
: = $2u_1v_1 + u_2v_2 + 4u_3v_3$;

d)
$$\langle u, v \rangle$$
 := $u_1v_1 - u_2v_2 + u_3v_3$.

5.35. Trong \mathbb{R}^2 ta xét tích vô hướng Euclid. Hãy áp dụng bất đẳng thức C - S để chứng minh

$$|a\cos\theta + b\sin\theta| \le \sqrt{a^2 + b^2}$$

5.36. Với f = f(x), $g = g(x) \in P_2$. Chúng minh rằng

$$\langle f, g \rangle := \int_{-1}^{1} f(x)g(x)dx$$

là một tích vô hướng.

Hãy tính tích vô hướng của

a)
$$f = 1 - x + x^2 + 5x^3$$
, $g = x - 3x^2$;

b)
$$f = x - 5x^3$$
, $g = 2 + 8x^2$.

5.37. Với tích vô hướng Euclid trong \mathbb{R}^3 , hãy xác định k để u và v trực giao

a)
$$u = (2, 1, 3), v = (1, 7, k)$$
;

b)
$$u = (k, k, 1), v = (k, 5, 6).$$

5.38. Với tích vô hướng trong P_2 ở bài tập 5.33.1 chứng minh rằng

$$p = 1 - x + 2x^2 \text{ và } q = 2x + x^2$$

trực giao.

5.39. Cho ma trận $A = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} \in \mathcal{M}_2$. Với tích vô hướng ở bài tập

5.32, hỏi trong các ma trận dưới đây ma trận nào trực giao với A:

a)
$$\begin{bmatrix} -3 & 0 \\ 0 & 2 \end{bmatrix}$$
?

b)
$$\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$$
?

c)
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
?

d)
$$\begin{bmatrix} 2 & 1 \\ 5 & 2 \end{bmatrix}$$
?

5.40. Với tích vô hướng Euclid trong \mathbb{R}^4 , hãy tìm hai vectơ có chuẩn bằng 1 và trực giao với các vectơ sau

$$u = (2, 1, -4, 0), v = (-1, -1, 2, 2), w = (3, 2, 5, 4)$$

5.41. V là không gian có tích vô hướng. Chúng minh

1)
$$\|u + v\|^2 + \|u - v\|^2 = 2\|u\|^2 + 2\|v\|^2$$

 $\langle u, v \rangle = \frac{1}{4}\|u + v\|^2 - \frac{1}{4}\|u - v\|^2$

đối với mọi $u, v \in V$.

5.42. Xét không gian C [0, π] với tích vô hướng

$$< f, g> := \int_{0}^{\pi} f(x)g(x)dx$$

và xét các hàm số $f_n(x) = \cos nx$, n = 0, 1, 2, ...

Chứng minh rằng f_k và f_l trực giao nếu $k \neq l$.

5.43. Cho
$$x = \left(\frac{1}{\sqrt{5}}, -\frac{1}{\sqrt{5}}\right)$$
 và $y = \left(\frac{2}{\sqrt{30}}, \frac{3}{\sqrt{30}}\right)$.

Chứng minh rằng x và y trực chuẩn trong \mathbb{R}^2 theo tích vô hướng $\langle u, v \rangle := 3u_1v_1 + 2u_2v_2$, nhưng không trực chuẩn theo tích vô hướng Euclid

$$\langle u, v \rangle = u_1 v_1 + u_2 v_2$$

5.44. Chứng minh rằng

$$u_1 = (1, 0, 0, 1),$$
 $u_2 = (-1, 0, 2, 1),$

$$u_3 \approx (2, 3, 2, -2),$$
 $u_4 = (-1, 2, -1, 1).$

là một họ trực giao trong R4 đối với tích vô hướng Euclid.

5.45. Trong \mathbb{R}^2 có tích vô hướng Euclid. Hãy áp dụng quá trình Gram – Smidt để biến cơ sở $\{u_1, u_2\}$ đười đây thành cơ sở trực chuẩn

(a)
$$u_1 = (1, -3), u_2 = (2, 2),$$

(b)
$$u_1 = (1, 0), u_2 = (3, -5).$$

5.46. Trong \mathbb{R}^3 xét tích vô hướng Euclid. Hãy áp dụng quá trình Gram – Smidt để biến cơ sở $\{u_1, u_2, u_3\}$ đười đây thành cơ sở trực chuẩn

(a)
$$u_1 = (1, 1, 1), \quad u_2 = (-1, 1, 0), \quad u_3 = (1, 2, 1);$$

(b)
$$u_1 = (1, 0, 0), u_2 = (3, 7, -2), u_3 = (0, 4, 1).$$

- **5.47.** Trong \mathbb{R}^3 xét tích vô hướng Euclid. Hãy tìm một cơ sở trực chuẩn trong không gian con sinh bởi các vectơ (0, 1, 2) và (-1, 0, 1).
- 5.48. Trong \mathbb{R}^3 xét tích vô hướng $\langle u, v \rangle := u_1 v_1 + 2u_2 v_2 + 3u_3 v_3$. Hãy áp dụng quá trình Gram Smidt để biến

$$u_1 = (1, 1, 1), u_2 = (1, 1, 0), u_3 = (1, 0, 0)$$

thành một cơ sở trực chuẩn.

5.49. Không gian con của \mathbb{R}^3 sinh bởi $u_1 = \left(\frac{4}{5}, 0, -\frac{3}{5}\right)$ và

 $u_2 = (0, 1, 0)$ là một mặt phẳng đi qua gốc. Hãy biểu điển w = (1, 2, 3) thành $w = w_1 + w_2$ trong đó w_1 nằm trong mặt phẳng còn w_2 trực giao với mặt phẳng.

5.50. Trong P_2 xét tích vô hướng

$$\langle p, q \rangle := \int_{-1}^{1} p(x)q(x)dx$$

Hãy áp dụng quá trình Gram – Smidt để biến cơ sở chuẩn tắc $\{1, x, x^2\}$ thành một cơ sở trực chuẩn.

5.51. Hãy tìm ma trận toạ độ và vectơ toạ độ của w đối với cơ sở $S = \{u_1, u_2\}$ trong đó

(a)
$$u_1 = (1, 0), \quad u_2 = (0, 1), \quad w = (3, -7);$$

(b)
$$u_1 = (2, -4), \quad u_2 = (3, 8), \quad w = (1, 1);$$

(c)
$$u_1 = (1, 1), \quad u_2 = (0, 2), \quad w = (a, b).$$

5.52. Hãy tìm ma trận toạ độ và vectơ toạ độ của w đối với cơ sở $S = \{u_1, u_2, u_3\}$ trong đó

(a)
$$w = (2, -1, 3), u_1 = (1, 0, 0), u_2 = (2, 2, 0), u_3 = (3, 3, 3)$$
;

(b)
$$w = (5, -12, 3), u_1 = (1, 2, 3), u_2 = (-4, 5, 6), u_3 = (7, -8, 9)$$
;

5.53. Hãy tìm vectơ toạ độ và ma trận toạ độ của A đối với cơ sở $B\{A_1,A_2,A_3,A_4\}$ trong đó

$$A = \begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix}, \qquad A_1 = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}, \qquad A_2 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \qquad A_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \qquad A_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

5.54. Hãy tìm vectơ toạ độ và ma trận toạ độ của đã thức p đối với cơ sở $B = \{p_1, p_2, p_3\}$ trong đố

$$p = 4 - 3x + x^2$$
, $p_1 = 1$, $p_2 = x$, $p_3 = x^2$.

5.55. Trong \mathbb{R}^2 và \mathbb{R}^3 xét tích vô hướng Euclid và một cơ sở trực chuẩn. Hãy tìm vectơ toạ độ và ma trận toạ độ của w

(a)
$$w = (3, 7), u_1 = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), u_2 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right);$$

(b)
$$w = (-1, 0, 2),$$
 $u_1 = \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right),$

$$u_2 = \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right), \quad u_3 = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right).$$

5.56. Trong \mathbb{R}^2 xét tích vò hướng Euclid. Xét $S = \{w_1, w_2\}$ với $w_1 = \left(\frac{3}{5}, -\frac{4}{5}\right), \quad w_2 = \left(\frac{4}{5}, \frac{3}{5}\right).$

- (a) Chứng minh S là một cơ sở trực chuẩn của \mathbb{R}^2 .
- (b) Cho u và $v \in \mathbb{R}^2$ với $(u)_s = (1, 1), (v)_s = (-1, 4).$

Hãy tính ||u||, d(u, v) và $\langle u, v \rangle$.

- (c) Tim u và v rồi tính ||u||, d(u, v) và $\langle u, v \rangle$ một cách trực tiếp.
- 5.57. Xét các cơ sở $B = \{u_1, u_2\}$ và $B' = \{v_1, v_2\}$ của \mathbb{R}^2 trong đó $u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, u_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, v_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$
 - (a) Hãy tìm ma trận chuyển cơ sở từ B sang B'.
 - (b) Hảy tính ma trận toạ độ $[w]_B$ trong đó w = (3, -5) và tính $[w]_{B'}$.
 - (c) Tính [w]R trực tiếp và kiểm tra lại kết quả trên
 - (d) Tìm ma trận chuyển cơ sở từ B' sang B.
 - 5.58. Làm lại bài tập 5.57 với

$$u_1 = (2, 2), u_2 = (4, -1), v_1 = (1, 3), v_2 = (-1, -1).$$

5.59. Xét trong \mathbb{R}^3 hai cơ sở $B = \{u_1, u_2, u_3\}, B' = \{v_1, v_2, v_3\}$ trong đó

$$u_1 = (-3, 0, -3), u_2 = (-3, 2, 1), u_3 = (1, 6, -1);$$

$$v_1 = (-6, -6, 0), v_2 = (-2, -6, 4), v_3 = (-2, -3, 7).$$

- (a) Hãy tìm ma trận chuyển cơ sở từ B' sang B.
- (b) Tính ma trận toạ độ $[w]_B$ của w = (-5, 8, -5) và tính $[w]_{B'}$.
- (c) Tính trực tiếp [w]_R, và kiểm tra lại kết quả trên.
- 5.60. Làm lai bài tập 5.59 với

$$u_1 = (2, 1, 1), u_2 = (2, -1, 1), u_3 = (1, 2, 1)$$

 $v_1 = (3, 1, -5), v_2 = (1, 1, -3), v_3 = (-1, 0, 2).$

5.61. Trong P_1 xét các cơ sở $B = \{p_1, p_2\}$, $B' = \{q_1, q_2\}$ với $p_1 = 6 + 3x$, $p_2 = 10 + 2x$

$$q_1 = 2, q_2 = 3 + 2x$$

- (a) Tìm ma trận chuyển cơ sở từ B' sang B.
- (b) Tính ma trận toạ độ $[p]_R$ với p = -4 + x rồi suy ra $[p]_{R'}$.
- (c) Tính trực tiếp $[p]_{R'}$ và kiểm tra lại kết quả trên.
- (d) Tìm ma trận chuyển cơ sở từ B sang B'.
- 5.62. Gọi V là không gian sinh bởi $f_1 = \sin x$ và $f_2 = \cos x$,
- (a) Chứng minh rằng $g_1 = 2\sin x + \cos x$ và $g_2 = 3\cos x$ tạo thành một cơ sở của V.
 - (b) Tim ma trận chuyển cơ sở từ $B' = \{g_1, g_2\}$ sang $B = \{f_1, f_2\}$.
 - (c) Tính ma trận tọa độ $[h]_B$ với $h = 2\sin x 5\cos x$ và suy ra $[h]_{B'}$.
 - (d) Tính trực tiếp [h]B và kiểm tra lại kết quả trên.
 - (e) Tim ma trận chuyển cơ sở từ B sang B.
- 5.63. Trong mặt phẳng xét hệ trực vuông góc Oxy, và quay nó đi một góc $\theta = 3\pi/4$ quanh gốc ta được hệ trực vuông góc Ox'y'.
 - (a) Tìm toa đô trong hệ mới của điểm (-2, 6) trong hệ cũ.
 - (b) Tìm toạ độ trong hệ cũ của điểm (5, 2) trong hệ mới.
 - 5.64. Hỏi trong các ma trận dưới đây ma trận nào là trực giao?

(a)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, (b) $\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$,

(c)
$$\begin{bmatrix} 0 & 1 & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix},$$
 (d)
$$\begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

Tính ma trận nghịch đảo của các ma trận trực giao đó.

5.65. Chứng minh rằng hai ma trận dưới dây là trực giao với mọi giá trị của 0:

a)
$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$
, b) $\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Tính nghịch đảo của chúng.

5.66. Xét biến đổi tọa độ trong mặt phẳng

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -\frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}$$

- 1) Chứng minh rằng nó là trực giao.
- 2) Tìm (x', y') của những điểm mà (x, y) là
- a) (2, -1);
- b) (4, 2);
- c) (-7, -8);
- d) (0, 0)

5.67. Giải hẻ

$$\begin{cases} 5x_1 + 7x_2 + 2x_3 - 3x_4 = 1\\ 2x_1 + 3x_2 + 4x_3 - 6x_4 = 2\\ -11x_1 - 15x_2 + 2x_3 - 3x_4 = 1 \end{cases}$$

5.68. Giải hệ

$$\begin{cases} 3x_1 - 5x_2 + 2x_3 + 4x_4 = 2 \\ 7x_1 - 4x_2 + x_3 + 3x_4 = 5 \\ 5x_1 + 7x_2 - 4x_3 - 6x_4 = 3 \end{cases}$$

$$\begin{cases} 4x_1 + 3x_2 - 9x_3 = 9 \\ 2x_1 + 3x_2 - 5x_3 = 7 \\ x_1 + 8x_2 - 7x_3 = 12 \end{cases}$$

ĐÁP SỐ

5.1. 1) Không - Tiên để 8 không thoả mãn

- 2) Không Tiên đề 10 không thoả mãn
- 3) Không Tiên để 9 và 10 không thoà mãn
- 4) C6
- 5) Không. Tiên để 5 và 6 không thoả mãn
- 6) Không. Tiên để 7 và 8 không thoà mãn 5.2. a) có; b) không; c) có; d) không
- 5.3. a) không; b) có; c) có; d) không
- 5.4. a) không; b) có; c) không; d) có; e) có 5.5. a) có; b) có; không
- |5.6. a| (7, -2, 15) = (11 5t)u (5 3t)v + tw, t bất k
- b) (0, 0, 0) = t(-5u + 3v + w), t bất kì
- c) (1,4,-7,7) = 3u + 5v w
- d) (0, 0, 0, 0) = 0u + 0v + 0w (duy nhất)
- |5.7. a) $\lambda = 15$; b) λ bất kì; c) λ bất kì; d) $\lambda \neq 12$ |5.8. a) $5 + 9x + 5x^2 = -12p_1 - p_2 + 10p_3$
- b) $2 + 6x^2 = 4p_1 2p_3$
- c) $0 = 0p_1 + 0p_2 + 0p_3$
- d) $2 + 2x + 3x^2 = -\frac{11}{8}p_1 \frac{1}{8}p_2 + \frac{13}{8}p_3$

- 5.9. a) có; b) không; c) có; d) có
- 5.10. a) có; b) không; c) không; d) có
- 5.11. a) và c)
- 5.12. không
- 5.13. a) $u_2 = -3u_1$;
- b) phụ thuộc tuyến tính

c) $p_2 = 3p_1$;

- d) B = -A
- 5.14. a) độc lập; b) phụ thuộc; c) độc lập; d) phụ thuộc.
- 5.15. a) phụ thuộc; b) độc lập.
- 5.16. a) độc lập; b) độc lập; c) độc lập; d) phụ thuộc
- 5.17. a) phụ thuộc ; b) độc lập ; c) độc lập ; d) phụ thuộc
- e) phụ thuộc; f) phụ thuộc

5.18.
$$\lambda = -\frac{1}{2}$$
, $\lambda = 1$

- 5.19. a) Một cơ sở trong R² có hai vectơ
- b) Một cơ sở trong R³ có ba vectơ
- c) Một cơ sở trong P2 có ba vectơ
- d) Một cơ sở trong 4/2 có bốn vectơ
- 5.20. a) và b)
- 5.21. a) và b)
- 5.22. c) và d)
- 5.24. 1) Không có cơ sở, dim = 0.
- 2) Cơ sở là $\left(-\frac{1}{4}, \frac{1}{4}, 1, 0\right)$, (0, -1, 0, 1); dim = 2
- 3) Không có cơ sỗ, dim = 0.
- 4) Cơ sở là (3, 1, 0), (-1, 0, 1); dim = 2
- 5) Không có cơ sở, $\dim = 0$
- 6) Không có cơ sở, dim = 0

5.25. a)
$$\left(\frac{2}{3}, 1, 0\right), \left(-\frac{5}{3}, 0, 1\right)$$
; b) $(1, 1, 0), (0, 0, 1)$

- c) (2, +1, 4); d) (1, 1, 0), (0, 1, 1)
- 5.26. a) 3; b).2; c) 1
- **5.27.** 3
- 5.28. a) và b) Số chiều bằng 3 và một cơ sở là ba vectơ đã cho.
- **5.29.** a) Số chiều bằng 3 và (1, 1, -4, -3), (0, 1, -5, -2), $(0, 0, 1, -\frac{1}{2})$ là một cơ sở.
- b) Số chiều bằng 3 và (1, -1, 2, 0), (0, 1, 0, 0), $(0, 0, 1, -\frac{1}{6})$ là một cơ sở.
- c) Số chiếu bằng 4 và (1, 1, 0, 0), (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1) là một cơ sở.
 - d) Số chiều bằng 3 và (1, 0, 1, -2), (0, 1, 2, 0), (0, 0, 1, 3) là một cơ sở.
 - **5.31.** 1) a) -5; b) 0
 - 5.32, 20

5.33. -6;
$$-\frac{23}{4}$$

- 5.34. a) Không, tiên để 5 không thoả mãn.
- b) Không, tiến đề 3 không thoả mãn.
- c) Có.
- d) Không, tiên đề 5 không thoá mãn.

5.36. a)
$$-28/15$$
; b) $-\frac{68}{3}$

5.37. a)
$$k = -3$$
; b) $k = -2$, $k = -3$.

5.40.
$$\pm \frac{1}{\sqrt{3249}}$$
 (-34, 44, -6, 11)

5.45. a)
$$\left(\frac{1}{\sqrt{10}}, -\frac{3}{\sqrt{10}}\right), \left(\frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}}\right); b) (1,0), (0,-1)$$

5.46. a)
$$\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}\right)$$

b) (1, 0, 0),
$$\left(0, \frac{7}{\sqrt{53}}, -\frac{2}{\sqrt{53}}\right)$$
, $\left(0, 30\sqrt{11925}, \frac{105}{\sqrt{11925}}\right)$

5.47.
$$\left(0, \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right), \left(\frac{\sqrt{5}}{\sqrt{6}}, -\frac{2}{\sqrt{30}}, \frac{1}{\sqrt{30}}\right)$$

5.48.
$$\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right), \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right), \left(\frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, 0\right)$$

5.49.
$$w_1 = \left(-\frac{4}{5}, 2, \frac{3}{5}\right), w_2 = \left(\frac{9}{5}, 0, \frac{12}{5}\right)$$

5.50,
$$\frac{1}{\sqrt{3}}$$
, $\sqrt{\frac{3}{2}}x$, $\sqrt{\frac{5}{8}} - 3\sqrt{\frac{5}{8}}x^2$

5.51. a)
$$(w)_s = (3, -7)$$
; $[w]_s = \begin{bmatrix} 3 \\ -7 \end{bmatrix}$

b)
$$(w)_s = (5/28, 3/14)$$
; $[w]_s = \begin{bmatrix} 5/28 \\ 3/14 \end{bmatrix}$

c)
$$(w)_s = \left(a, \frac{b-a}{2}\right)$$
; $[w]_s = \begin{bmatrix} a \\ b-a \\ 2 \end{bmatrix}$

5.52. a)
$$(w)_s = (3, -2, 1)$$
; $[w]_s = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$

b)
$$(w)_s = (-2, 0, 1)$$
; $[w]_s = \begin{bmatrix} -2\\0\\1 \end{bmatrix}$

5.55. a)
$$(w)_s = (-2\sqrt{2}, 5\sqrt{2}); [w]_s = \begin{bmatrix} -2\sqrt{2} \\ 5\sqrt{2} \end{bmatrix}$$

b) $(w)_s = (0, -2, 1), [w]_s = \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}$
5.56. b) $||u|| = \sqrt{2}, d(u, v) = \sqrt{13}, \langle u, v \rangle = 3$

5.57. a) $\begin{bmatrix} 2 & -3 \\ 1 & 4 \end{bmatrix}$,

d) $\frac{1}{11} \begin{bmatrix} 4 & 3 \\ -1 & 2 \end{bmatrix}$

d) $\begin{bmatrix} 0 & +5/2 \\ -2 & -13/2 \end{bmatrix}$

18-TOÁN HỌC CAO CÁP TI

5.59. a) $\begin{bmatrix} 3/4 & \frac{2}{3} & 1/12 \\ -3/4 & -\frac{3}{2} & -17/12 \\ 0 & 1 & 2/3 \end{bmatrix}$

b) $[w]_B = \begin{bmatrix} 31/21 \\ 4/7 \\ 2/7 \end{bmatrix}$, $[w]_{B'} = \begin{bmatrix} 19/12 \\ -43/12 \\ 1/2 \end{bmatrix}$

5.53. $(A)_B = (-1, 1, -1, 3); [A]_B = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$

b) $[w]_B = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$, $[w]_{B'} = \begin{bmatrix} -3/11 \\ -13/11 \end{bmatrix}$

273

5.58. a) $\begin{bmatrix} 13/10 & -1/2 \\ -2/5 & 0 \end{bmatrix}$. b) $[w]_B = \begin{bmatrix} -17/5 \\ 8/5 \end{bmatrix}$, $[w]_{B'} = \begin{bmatrix} -4 \\ -7 \end{bmatrix}$

5.54.
$$(p)_{B} = (4, -3, 1) : [p]_{B} = \begin{bmatrix} 4 \\ -3 \\ 1 \end{bmatrix}$$

5.55. a) $(w)_{s} = (-2\sqrt{2}, 5\sqrt{2}) : [w]_{s} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

5.60. a)
$$\begin{bmatrix} 3 & 2 & 5/2 \\ -2 & -3 & -1/2 \end{bmatrix}$$

5.60. a)
$$\begin{bmatrix} 3 & 2 & 5/2 \\ -2 & -3 & -1/2 \\ 5 & 1 & 6 \end{bmatrix}$$
 b) $[w]_B = \begin{bmatrix} 9 \\ -9 \\ -5 \end{bmatrix}$, $[w]_{B'} = \begin{bmatrix} -7/2 \\ 23/2 \\ 6 \end{bmatrix}$.

5.61. a)
$$\begin{bmatrix} 3/4 & 7/2 \\ 3/2 & 1 \end{bmatrix}$$
.

b)
$$[p]_B = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, $[p]_{B'} = \begin{bmatrix} -11/4 \\ 1/2 \end{bmatrix}$

d)
$$\begin{bmatrix} -2/9 & 7/9 \\ 1/3 & -1/6 \end{bmatrix}$$

5.62. b)
$$\begin{bmatrix} 1/2 & 0 \\ -1/6 & 1/3 \end{bmatrix}$$

c)
$$[h]_B = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$$
, $[h]_{B'} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

e)
$$\begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}$$

5.63. a)
$$(4\sqrt{2}, -2\sqrt{2})$$
,

b)
$$(-3,5\sqrt{2},1,5\sqrt{2})$$

5.64. a) Trực giao và
$$A^{-1} = A' = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, b) $\begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$,

d) Trực giao và
$$A^{-1} = A' = \begin{bmatrix} -1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 1/\sqrt{6} & -2/\sqrt{6} & 1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \end{bmatrix}$$

5.66. a)
$$(-2, -1)$$
,

c)
$$(-11/5, 52/5)$$
;

5.67.
$$x_1 = 22x_3 - 33x_4 - 11$$

$$x_2 = -16x_3 + 24x_4 + 8$$

5.69. Hệ có nghiệm duy nhất

$$x_1 = 3$$
, $x_2 = 2$, $x_3 = 1$.

80,

Chương VI

ÁNH XẠ TUYỂN TÍNH

6.1. KHÁI NIÈM ÁNH XA TUYẾN TÍNH

6.1.1. Mở đầu

V và W là hai không gian vecto.

Trong số các ánh xạ từ V tới W có một lớp rất quan trọng là lớp các ánh xạ tuyến tính mà ta sẽ trình bày dưới đây.

6.1.2. Định nghĩa ánh xạ tuyến tính

Định nghĩa 6.1.1. Ánh xạ $T:V\to W$ từ không gian vectơ V tới không gian vectơ W gọi là ánh xạ tuyến tính nếu nó có hai tính chất sau

(i)
$$T(u + v) = T(u) + T(v)$$
, $\forall u, v \in V$

(ii)
$$T(ku) = kT(u)$$
 $\forall k \in \mathbb{R}, \forall u \in V.$

Trong trường hợp W trùng với V thì ánh xạ tuyến tính $T:V\to V$ gọi là toán tử tuyến tính (trên V).

6.1.3. Thí dụ

Thí dụ 6.1.1. Xét ánh xạ $T: \mathbb{R}^2 \to \mathbb{R}^3$ xác định bởi

$$T(x, y) = (x, x + y, x - y)$$

Néu
$$u = (x_1, y_1), v = (x_2, y_2)$$
 thì

$$u + v = (x_1 + x_2, y_1 + y_2)$$

nên

$$T(u+v) = ((x_1 + x_2), (x_1 + x_2) + (y_1 + y_2), (x_1 + x_2) - (y_1 + y_2))$$

= $(x_1, x_1 + y_1, x_1 - y_1) + (x_2, x_2 + y_2, x_2 - y_2)$
= $T(u) + T(v)$.

Nếu $k \in \mathbb{R}$ thì $ku = (kx_1, ky_1)$ nên

$$T(ku) = (kx_1, kx_1 + ky_1, kx_1 - ky_1)$$

= $k(x_1, x_1 + y_1, x_1 - y_1) = kT(u)$.

Vây ánh xa 7 đã cho là tuyến tính.

Chú ý 6.1.1. Nếu $T: V \rightarrow W$ là một ánh xa tuyến tính thì

$$T(k_1v_1 + k_2v_2) = T(k_1v_1) + T(k_2v_2) = k_1T(v_1) + k_2T(v_2)$$

$$\forall v_1, v_2 \in V, \forall k_1, k_2 \in \mathbb{R}.$$

Một cách tương tự

$$T(k_1v_1 + k_2v_2 + ... + k_mv_m) = k_1T(v_1) + ... + k_mT(v_m)$$

$$\forall v_1, v_2, ..., v_m \in V, \forall k_1, k_2, ..., k_m \in \mathbb{R}.$$

Chú ý 6.1.2. Về cách nhân ma trận với vectơ (n chiều)

Xét ma trận $A \in \mathcal{M}_{m \times n}$:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

và vecto $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$. Ta muốn tìm một cách nhân A với x. Muốn thế ta viết x ở dạng vecto cột

$$[x] = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

Như vậy [x] là một ma trận cỡ $n \times 1$, [x] $\in \mathcal{M}_{n \times 1}$.

Rō ràng có liên hệ qua lại

$$x \in \mathbf{R}^{\mathsf{n}} \Leftrightarrow [x] \in \mathscr{M}_{\mathsf{n} \times 1}$$
 (6.1.1)

Ta có:
$$[x + y] = [x] + [y]$$

 $[kx] = k[x]$

Đối với $[x] \in \mathcal{M}_{n \times 1}$ ta có thể nhân

$$A[x] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \dots & \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix}$$

 $và có A[x] \in \mathscr{M}_{m\times 1}.$

Do đó ta có chú ý sau

Khi $A \in \mathscr{M}_{m \times n}$ và $x \in \mathbb{R}^n$ tạ hiểu ngằm x := [x] và Ax là A nhân với x ở dạng cột tức là

$$Ax := A[x] \tag{6.1.2}$$

tức là

$$(Ax)_i = \sum_{i=1}^n a_{ij} x_j$$

Chẳng hạn với

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \in \mathcal{M}_{2 \times 2}, x = (1, 2) \in \mathbb{R}^2$$

thì

$$Ax := A[x] = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1.1 + 2.2 \\ 3.1 + 4.2 \end{bmatrix} = \begin{bmatrix} 5 \\ 11 \end{bmatrix}.$$

Bày giờ ta xét tiếp một số thí dụ về ánh xạ tuyến tính.

Thí dụ 6.1.2. Giả sử $A \in \mathcal{M}_{m \times n}$. Ta xét quy luật T

$$x \in \mathbb{R}^n \mapsto T(x)$$
 sao cho $[T(x)] = A[x].$ (6.1.3)

Trước hết, theo (6.1.1)

$$x \in \mathbb{R}^{\mathbb{R}} \Rightarrow [x] \in \mathcal{M}_{n \times 1} \Rightarrow A[x] \in \mathcal{M}_{m \times 1}$$
. Do dó theo (6.1.3)
$$[T(x)] \in \mathcal{M}_{m \times 1}.$$

Vây theo $(6.1.1), T(x) \in \mathbb{R}^{m}$.

Vậy (6.1.3) chứng tỏ T là một ánh xạ từ \mathbb{R}^n tới \mathbb{R}^m .

Bảy giờ ta chứng minh ánh xạ T là tuyến tính.

Già sử x và $y \in \mathbb{R}^n$, ta có $x + y \in \mathbb{R}^n$, $kx \in \mathbb{R}^n$. Do đó $[T(x + y)] = A[x + y] = A(\{x\} + [y]) = A[x] + A[y] = [T(x)] + [T(y)]$ [T(kx)] = A[kx] = A(k[x]) = kA[x] = k[T(x)].

Vậy T là ánh xạ tuyến tính từ \mathbf{R}^n tới \mathbf{R}^m . Nó thực hiện theo (6.1.3) như sau :

$$x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n \mapsto T(x) = (y_1, y_2, ..., y_m) \in \mathbb{R}^m$$
 thông qua

$$[x] = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \mapsto A[x] = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 & + \dots + & a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 & + \dots + & a_{2n}x_n \\ \dots & \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 & + \dots + & a_{mn}x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_m \end{bmatrix}$$

Ánh xạ tuyến tính ở thí dụ này gọi là ánh xạ nhân với ma trận hay ánh xạ ma trán.

Theo (6.1.2) ánh xạ ấy cũng có thể viết là Ax.

Thi dụ 6.1.3. Xét một trường hợp riêng của thí dụ trên. Gọi α là một góc xác định và $T: \mathbb{R}^2 \to \mathbb{R}^2$ là ánh xạ nhân với ma trận

$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

Nếu $v = (x, y) \in \mathbb{R}^2$ tức là

$$[v] = \begin{bmatrix} x \\ y \end{bmatrix}$$

thì phép nhan với ma trận A tạo ra ánh xạ tuyến tính xác định bởi

$$[T(v)] = A[v] = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \cos \alpha & -y \sin \alpha \\ x \sin \alpha & +y \cos \alpha \end{bmatrix}$$

Về mặt hình học (hình 51) ta sẽ chứng minh rằng vecto v' là kết quả của phép quay v một góc α quanh góc toạ độ, sẽ trùng với T(v). Thật vậy, giả sử ϕ là góc giữa v và trục x dương và giả sử v' = (x', y') tức là

duong va gia
$$[v'] = \begin{bmatrix} x' \\ v' \end{bmatrix}$$

Gọi r là độ dài của v và của v.

Ta có

$$x = r\cos\phi, y = r\sin\phi$$

Do đó

$$[v'] = \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} r\cos(\alpha + \phi) \\ r\sin(\alpha + \phi) \end{bmatrix} = \begin{bmatrix} r\cos\alpha\cos\phi - r\sin\alpha\sin\phi \\ r\sin\alpha\cos\phi + r\cos\alpha\sin\phi \end{bmatrix}$$
$$= \begin{bmatrix} x\cos\alpha - y\sin\alpha \\ r\sin\alpha + y\cos\alpha \end{bmatrix} = [T(v)].$$

 $x' = r\cos(\alpha + \phi), y' = r\sin(\alpha + \phi),$

Hinh 51

Vậy v' = T(v).

Ánh xạ tuyến tính ở thí dụ này là phép quay trong \mathbb{R}^2 một góc α .

Thi dụ 6.1.4. Giả sử V và W là hai không gian vecto. Ánh xạ $T:V\to W$ xác định bởi

$$T(v) = 0, \quad \forall v \in V$$

là một ánh xạ tuyển tính.

That vay, $\forall u, v \in V, \forall k \in \mathbf{R}$, ta có

$$T(u) = \theta$$
, $T(v) = \theta$, $T(u + v) = \theta$, $T(ku) = \theta$.

Do đó
$$T(u+v) = T(u) + T(v)$$
$$T(ku) = kT(u).$$

Ta gọi ánh xạ ở thí dụ này là ánh xạ không.

Thí du 6.1.5. V là một không gian vectợ. Ánh xa $T: V \rightarrow V$ xác định bởi

$$T(v) = v, \forall v \in V$$

là một ánh xa tuyến tính (ban đọc kiểm tra).

Ta gọi ánh xạ này là ánh xạ đồng nhát.

Thí dụ 6.1.6. V là một không gian vectơ và $k \in \mathbb{R}$. Ánh xạ $T: V \to V$ xác định bởi.

$$T(v) = kv, k > 0, \forall v \in V$$

là một toán tử tuyến tính trên V (bạn đọc kiểm tra).

Nếu k > 1, T là một phép dẫn; nếu 0 < k < 1, T là một phép co.

Thí dụ 6.1.7. Giả sử V là một không gian có tích vô hướng, W là một không gian con hữu hạn chiều

 $B = (w_1, w_2, ..., w_r).$

của V, W có cơ sở trực chuẩn là

Giả sử $T: V \rightarrow W$ là ánh xạ chiếu mỗi vectơ $v \in V$ thành hình chiếu trực giao của nó lên W, nghĩa là

$$T(v) = \langle v, w_1 \rangle w_1 + \langle v, w_2 \rangle w_2 + ... + \langle v, w_r \rangle w_r$$

Ánh xạ T gọi là phép chiếu trực giao của V lên W (hình 52). Nó là một ánh xạ tuyến tính vì

$$T(u + v) = \langle u + v, w_1 \rangle w_1 + ... + \langle u + v, w_r \rangle w_r$$

$$= \langle u, w_1 \rangle w_1 + ... + \langle u, w_r \rangle w_r +$$

$$+ \langle v, w_1 \rangle w_1 + ... + \langle v, w_r \rangle w_r$$

$$= T(u) + T(v).$$

$$T(ku) = \langle ku, w_1 \rangle w_1 + \dots + \langle ku, w_r \rangle w_r$$

$$= k \langle u, w_1 \rangle w_1 + \dots + k \langle u, w_r \rangle w_r$$

$$= k(\langle u, w_1 \rangle w_1 + \dots + \langle u, w_r \rangle w_r)$$

$$= kT(u)$$

Thí dụ 6.1.8. Một trường hợp riêng của thí dụ trên là trường hợp sau : $V = \mathbb{R}^3$ với tích vô hướng Euclid. Những vecto $w_1 = (1, 0, 0)$ và

 $w_2 = (0, 1, 0)$ tạo thành một cơ sở trực giao của mặt phẳng Oxy (bạn đọc kiểm tra lại). Vậy nếu $v = (x, y, z) \in \mathbb{R}^3$ thì hình chiếu trực giao của v lên mặt phẳng Oxy cho bởi

$$T(v) = \langle v, w_1 \rangle w_1 + \langle v, w_2 \rangle w_2$$

= $x(1, 0, 0) + y(0, 1, 0)$
= $(x, y, 0)$

(x,y,z)

(x,y,o)

Hinh 53

(xem hinh 53).

Thí dụ 6 1.9. Giả sử V là không gian vectơ n chiếu, và $S = \{w_1, w_2, ..., w_n\}$ là một cơ sở của V. Thế thì mỗi $v \in V$ có biểu diễn duy nhất

$$v = c_1 w_1 + c_2 w_2 + \dots + c_n w_n,$$

nghĩa là có

$$(v)_s = (c_1, c_2, ..., c_n) \in \mathbb{R}^n$$
.

Xét ánh xạ $T: V \to \mathbb{R}^n$ xác định bởi

$$T(v) = (v)_x$$

Ta sẽ chứng minh T là ánh xạ tuyến tính.

Thật vây, với $u \in V$ nữa ta có

$$u = b_1 w_1 + b_2 w_2 + ... + b_n w_n,$$

0

nghĩa là có

$$(u)_S = (b_1, b_2, ..., b_n) \in \mathbb{R}^n$$
.

Do đó

$$(u + v)_S = (b_1 + c_1, b_2 + c_2, ..., b_n + c_n)$$

$$= (b_1, b_2, ..., b_n) + (c_1, c_2, ..., c_n)$$

$$= (u)_S + (v)_S ;$$

$$(ku)_S = (kb_1, kb_2, ..., kb_n)$$

$$= k(b_1, b_2, ..., b_n)$$

$$= k(u)_S .$$

Một cách tương tự, ánh xạ $T:V \to \mathscr{M}_{n\times 1}$ xác định bởi

$$[T(v)] = [v]_{\varsigma}$$

cũng là một ánh xạ tuyến tính.

Thí dụ 6.1.10. V là một không gian có tích vô hướng và v_0 là một véctơ cố định của V. Giả sử $T:V\to \mathbb{R}$ là một ánh xa xác định bởi

$$T(v) = \langle u, v_0 \rangle$$
.

Theo tính chất của tích vỏ hướng ta có

$$T(u + v) = \langle u + v, v_o \rangle = \langle u, v_o \rangle + \langle v, v_o \rangle$$

$$= T(u) + T(v);$$

$$T(ku) = \langle ku, v_o \rangle = k \langle u, v_o \rangle$$

$$= kT(u).$$

Vậy T là một ánh xa tuyến tính.

Thí dụ 6.1.11. Giả sử V = C[0, 1] và W là không gian con của C[0, 1] gồm tất cả những hàm số có đạo hàm liên tục trên $0 \le t \le 1$.

Giả sử $D:W\to V$ là ánh xạ xác định bởi

$$D(f) = f$$

Theo tính chất của đạo hàm ta có

$$D(f + g) = (f + g)' = f' + g'$$

$$= D(f) + D(g)$$

$$D(kf) = (kf)' = kf'$$

$$= kD(f).$$

Vậy D là một ánh xạ tuyến tính.

Thí dụ 6.1.12. Giả sử V = C[0, 1] và $J: V \rightarrow \mathbb{R}$ là ánh xạ xác định

bởi
$$J(f) = \int_{0}^{1} f(t)dt$$
.

Dễ thấy, theo tính chất của tích phân:

$$J(f+g) = \int_{0}^{1} [f(t) + g(t)] dt = \int_{0}^{1} f(t) dt + \int_{0}^{1} g(t) dt$$
$$= J(f) + J(g) ;$$
$$j(kf) = \int_{0}^{1} kf(t) dt = k \int_{0}^{1} f(t) dt ...$$

Vav J là một ánh xa tuyến tính.

6.1.4. Các phép toán về ánh xạ tuyến tính

1) Giả sử V và W là hai không gian vectơ và

$$f: V \to W$$
 và $g: V \to W$

là hai ánh xạ tuyến tính từ V tới W.

Ta định nghĩa tổng f + g của hai ánh xạ tuyến tính và tích kf của một ánh xa tuyến tính với một số thực k như sau :

$$\forall u \in V, (f+g)(u) := f(u) + g(u) \in W$$

$$\forall u \in V, (kf)(u) := kf(u) \in W.$$

Dễ thấy rằng f + g và kf cũng là những ánh xạ tuyến tính từ V tới W (bạn dọc kiểm tra lại).

Bây giờ, gọi $\mathscr{C}(V, W)$ là tập tất cả những ánh xạ tuyến tính từ V tới $W: \mathscr{C}(V, W) := \{f | f : V \to W, f \text{ tuyến tính}\}.$

Với hai phép toán cộng ánh xạ tuyến tính và nhân ánh xạ tuyến tính với một số thực vừa dịnh nghĩa, có thể chứng minh được rằng $\mathcal{F}(V, W)$ là một không gian vectơ trên trường số thực.

Bây giờ giả sử V, W, U là ba không gian vectơ và

$$f: V \to W, g: W \to U$$

là hai ánh xạ tuyển tính.

Khi đó ánh xạ hợp $g \circ f$ (xem 1.5.8) xác định bởi $\forall v \in V$ $(g \cdot f)(v) = g(f(v)) \in U$ là một ánh xạ tuyến tính từ V tới U.

6.1.5. Sự đẳng cấu của không gian n chiều với \mathbb{R}^n

Định nghĩa 6.1.2. Hai không gian vectơ V và V gọi là đẳng cấu nếu giữa các vectơ $x \in V$ và các vectơ $x' \in V$ có một tương ứng l-l

$$x \leftrightarrow x'$$

sao cho, nếu $x \leftrightarrow x'$ và $y \leftrightarrow y'$ thì

$$x + y \leftrightarrow x' + y'$$

$$kx \leftrightarrow kx', k \in \mathbf{R}$$
.

Hai không gian đẳng cấu có những tính chất giống nhau.

Dựa vào các kết quả ở thí dụ 6.1.9 ta suy ra định lí sau :

Định lí 6.1.1. Mọi không gian n chiếu V đều đẳng cấu với Rn.

Chứng minh : Xét ánh xạ $T:V \to \mathbb{R}^n$ xác định bởi

$$v \in V \mapsto T(v) = (v)_S \in \mathbb{R}^n$$

trong đó S là một cơ sở của V.

Theo thí dụ 6.1.9 thì ánh xạ T là tuyến tính và tạo ra một tương ứng 1-1 giữa V và \mathbf{R}^n nghĩa là

$$x \in V \leftrightarrow (x)_{S} \in \mathbb{R}^{n}$$
.

Đồng thời với

$$x \in V \leftrightarrow (x)_S \in \mathbb{R}^n$$

 $y \in V \leftrightarrow (y)_S \in \mathbb{R}^n$

ta có

$$x + y \in V \leftrightarrow (x + y)_S = (x)_S + (y)_S \in \mathbb{R}^n$$

 $kx \in V \leftrightarrow (kx)_S = k(x)_S \in \mathbb{R}^n$.

Vậy V đẳng cấu với $\mathbf{R}^{\mathbf{n}}$.

Chú ý 6.1.3. Khái niệm dàng cấu của hai không gian hữu hạn chiều nói trên có thể suy cho cả các không gian vectơ bất kì. Cụ thể hơn, ta xét hai không gian vectơ V và W và giả sử tồn tại một ánh xạ tuyến tính T từ V sang W

$$T:V\to W.$$

Khi đó ta nói T là một phép đồng cấu của V trên W. Nếu ngoài ra W lại trùng với V thì ta nói T là một phép $t\psi$ đồng cấu của V.

Nếu T là một song ánh từ V lên W thì ta nói T là một phép dằng cấu của V trên W. Nếu ngoài ra W lại trùng với V thì ta nói T là một phép tự dằng cấu của V.

Khi tồn tại một phép đẳng cấu của V lên W ta nói V đẳng cấu với W, W đẳng cấu với V, V và W đẳng cấu với nhau.

Người ta thường đồng nhất hai không gian đẳng cấu với nhau, tức là xem hai không gian đó như là một.

BÀI TÂP: 6.1 - 6.9.

6.2. CÁC TÍNH CHẤT CỦA ÁNH XẠ TUYẾN TÍNH -HẠT NHÂN VÀ ẢNH

6.2.1. Tính chất đầu tiên

Định lí 6.2.1. V và W là hai không gian vectơ.

Nếu $T: V \rightarrow W$ là một ánh xạ tuyến tính thì

- (a) $T(\theta) = \theta$
- (b) $T(\neg v) = \neg T(v), \forall v \in V$
- (c) T(v w) = T(v) T(w), $\forall v, w \in V$

Chứng minh: (a) Giả sử $v \in V$. Vì $0v = \theta$ (xem định lí 5.1.1 phần (c)), nên $T(\theta) = T(0v) = 0$ $T(v) = \theta$.

(b) Bây giờ, vì -v = (-1)v (xem định lí 5.1.1 **phần** (d)), nên

$$T(-v) = T((-1)v) = (-1)T(v) = -T(v)$$
.

(c) V) v - w = v + (-w) (xem chú ý 5.1.8) nên v - w = v + (-1) w, do dó

$$T(v - w) = T(v + (-1)w) = T(v) + T((-1)w) = T(v) - T(w).$$

6.2.2. Khái niệm hạt nhàn và ảnh của ánh xạ tuyến tính

Định nghĩa 6.2.1, Giả sử V và W là hai không gian vectơ và $T:V\to W$ là một ánh xa tuyến tính.

Khi đó tập tất cả các phần tử của V có ảnh là $\theta \in W$ gọi là hạt nhán của T, kí hiệu là Ker(T):

$$Ker(T) := \{x \mid x \in V, T(x) = \theta\}$$

Tập tất cả các phần từ của W là ảnh của ít nhất một phần tử của V gọi là dnh của T, kí hiệu là ${\rm Im}(T)$:

$$Im(T) := \{y \mid y \in W, \exists x \in V, T(x) = y\}.$$

Như vậy

$$lm(T) = T(V).$$

Bạn đọc có thể tham khảo định nghĩa 1.5.2.

Thí dy 6.2.1. Giả sử $T: V \rightarrow W$ là ánh xạ không.

Khi đó (xem thí du 6.1.4) ta có

$$\forall v \in V, T(v) = 0 \in W. Vay$$

$$Ker(T) = V.$$

Vì θ là ảnh duy nhất của mọi $v \in V$ nén

$$Im(T) = \{\theta\}.$$

Thí dự 6.2.2. Giả sử $T: \mathbb{R}^n \to \mathbb{R}^m$ là ánh xạ nhân với ma trận thuộc $\mathcal{M}_{m \times n}$:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

Nhân của T gồm tất cả các vecto $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ sao cho ma

trận
$$[x] = \begin{bmatrix} x_1 \\ x_2 \\ ... \\ x_n \end{bmatrix}$$
 là nghiệm của hệ thuẩn nhất $A[x] = \theta$.

Ành của T gồm những vectơ $y = (y_1, y_2, ..., y_m) \in \mathbb{R}^m$ sao cho hệ

$$A[x] = [y], [y] = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_{m} \end{bmatrix}$$

tương thích (nghĩa là có nghiệm).

6.2.3. Tính chất của nhân và ảnh

Định lí 6.2.2. Nếu $T: V \rightarrow W$ là một ánh xa tuyến tính thì

- (a) Ker(T) là một không gian con của V.
- (b) Im(T) là một không gian con của W.

Chứng minh: (a) Để chứng minh Ker(T) là một không gian con của V ta phải chứng minh nó đóng kín đối với phép cộng vectơ và phép nhân vectơ với một số trong V (định lí 5.2.1).

Giả sử $v_1, v_2 \in \text{Ker}(T)$ và $k \in \mathbb{R}$. Ta có

$$T(v_1 + v_2) = T(v_1) + T(v_2) = \theta + \theta = \theta$$

 $V_{4} v_1 + v_2 \in Ker(T).$

Bay giờ

$$T(kv_1) = kT(v_1) = k\theta = \theta.$$

 $V_{ay} kv_1 \in Ker(T)$. Xong phần (a).

(b) Giả sử w_1 và $w_2 \in \text{Im}(T)$ ta phải chứng minh $w_1 + w_2 \in \text{Im}(T)$ và $kw_1 \in \text{Im}(T)$ với mọi $k \in \mathbb{R}$. Muốn thế ta phải tìm được a và $b \in V$ sao cho

$$T(a) = w_1 + w_2 \text{ và } T(b) = kw_1.$$

Vì w_1 và $w_2 \in \text{Im}(T)$ nên tồn tại những vector a_1 và $a_2 \in V$ sao cho $T(a_1) = w_1$ và $T(a_2) = w_2$. Đặt $a = a_1 + a_2$ và $b = ka_1$ thì

$$T(a) = T(a_1 + a_2) = T(a_1) + T(a_2) = w_1 + w_2$$

 $T(b) = T(ka_1) = kT(a_1) = kw_1.$

Vây xong phần (b).

Thi dụ 6.2.3. Giả sử $T: \mathbb{R}^n \to \mathbb{R}^m$ là ánh xạ nhân với ma trận cỡ $m \times n$. Vì Ker(T) gồm những nghiệm của phương trình $Ax = \theta$ nên Ker(T) là không gian nghiệm của hệ đó.

Mặt khác Im(T) gồm những vectơ b sao cho tồn tại x để Ax = b thoả mãn. Vậy Im(T) là không gian cột của ma trận A (tức là không gian sinh bởi các vectơ cột của A).

6.2.4. Hạng của ánh xa tuyến tính - Định lí về số chiều

1. Định nghĩa 6.2.2. Nếu $T: V \to W$ là một ánh xạ tuyến tính thì số chiều của Im(T) gọi là hạng của T, kí hiệu là rank(T):

$$rank(T) := dim(Im(T))$$

Thí dụ 6.2.4. Giả sử $T: \mathbb{R}^2 \to \mathbb{R}^2$ là phép quay của \mathbb{R}^2 một góc $\pi/4$. Về mặt hình học ta thấy ngay rằng

$$\operatorname{Im}(T) = \mathbb{R}^2 \text{ và Ker}(T) = \{\theta\}.$$

Vay dim(Ker(T)) = 0 va

$$rank(T) = (dim(Im(T)) = 2$$

Thí dụ 6.2.5. Giả sử $T: \mathbb{R}^n \to \mathbb{R}^m$ là ánh xạ nhân với ma trận cỡ $m \times n$. Ở thí dụ 6.2.3 ta đã thấy rằng Im(T) bằng không gian cột của A, vậy hạng của T bằng số chiều của không gian cột của A, tức chính là hang của A (chú ý 5.5.2).

Tóm lai

$$rank(T) = \rho(A)$$

Ở thí dụ 6.2.3 ta cũng thấy rằng Ker(T) là không gian nghiệm của phương trình $Ax = \theta$. Vậy

$$\dim(\operatorname{Ker}(T)) = \dim(\operatorname{không gian nghiệm của} Ax = \theta).$$

- 2. Định lí sau đây cho biết liên hệ giữa rank(T) tức là dim(Im(T)) với dim(Ker(T)):
- Định lí 6.2.3. (định lí về số chiều). Nếu $T:V\to W$ là một ánh xạ tuyến tinh từ không gian vectơ n chiều V tới không gian vectơ W thì có

$$\dim(\operatorname{Im}(T)) + \dim(\operatorname{Ker}(T)) = n$$

tức là

$$rank(T) + dim(Ker(T)) = n.$$

Chứng minh: Xét trường hợp

$$1 \leq \dim(\operatorname{Ker}(T)) < n$$

còn các trường hợp Ker(T) có số chiều là 0 hay n xem là bài tập.

Giả sử $\dim(\text{Ker}(T)) = r, 0 < r < n \text{ và}$

$$S_1 = \{v_1, ..., v_r\}, T(v_i) = 0, i = 1, ..., r.$$

là một cơ sở của Ker(T). Vì S_1 độc lập tuyến tính nên theo định lí 5.4.5 có thể thêm vào đó n-r vectơ $v_{r+1}, ..., v_n$ nữa để

00

$$S_2 = \{v_1, ..., v_r, v_{r+1}, ..., v_n\}$$

tạo thành một cơ sở trong V.

Để tính $\dim(\operatorname{Im}(T))$ ta xét họ

$$S_3 = \{T(v_{r+1}), ..., T(v_n)\}$$

 $\operatorname{gom} n - r \operatorname{vecto} \in \operatorname{Im}(T)$.

Ta sẽ chứng minh S_3 sinh ra Im(T) và độc lập tuyến tính.

Để chứng minh S_3 sinh ra Im(T), ta xét v bất kì thuộc V và tính T(v). Vì S_2 là cơ sở trong V nên

$$v = c_1 v_1 + ... + c_r v_r + c_{r+1} v_{r+1} + ... + c_n v_n$$

Do đó

$$T(v) = c_1 T(v_1) + \dots + c_r T(v_r) + c_{r+1} T(v_{r+1}) + \dots + c_n T(v_n)$$

$$T(v) = c_{r+1} T(v_{r+1}) + \dots + c_n T(v_n)$$

vì $v_1, ..., v_r \in \text{Ker}(T)$. Vậy S_3 sinh ra Im(T).

Để chứng minh S_3 độc lập tuyển tính ta xét điều kiện (5.3.1)

$$c_{r+1}T(v_{r+1}) + \dots + c_nT(v_n) = \theta$$
 (6.2.1)

Nó tương đương với

$$T(c_{r+1}v_{r+1} + ... + c_nv_n) = \theta$$

nghĩa là

$$c_{r+1}v_{r+1} + \dots + c_nv_n \in \text{Ker}(T).$$

Do đó, vì S_1 là cơ sở của Ker(T)

$$c_{r+1}v_{r+1} + ... + c_nv_n = c_1v_1 + ... + c_rv_r$$

Ta suy ra

$$c_1 v_1 + \dots + c_r v_r - c_{r+1} v_{r+1} + \dots - c_n v_n = \theta$$

Nhưng S_1 iại là cơ sở của V nên điều kiện này cho

$$c_i = 0, \forall i$$

Vậy điều kiện (6.2.1) suy ra

$$c_{r+1} = 0, ..., c_n = 0,$$

nghĩa là S3 độc lập tuyến tính.

Từ hai kết quả trên, áp dụng định lí 5.4.2 ta suy ra Im(T) là không gian n-r chiều.

Vậy có

$$\dim(\operatorname{Im}(T)) + \dim(\operatorname{Ker}(T)) = (n - r) + r = n$$

Xong chứng minh định lí.

3. Trường hợp đặc biệt khi $V = \mathbb{R}^n$, $W = \mathbb{R}^m$ và $T : \mathbb{R}^n \to \mathbb{R}^m$ là ánh xạ nhân với ma trận A cỡ $m \times n$ thì định lí 6.2.3 về số chiều cho

$$dim(Ker(T)) = n - rank(T)$$

= số cột của $A - hang$ của A .

Vạy có

Định lí 6.2.4. Nếu A là một ma trận cỡ $m \times n$ thì số chiều của không gian nghiệm của phương trình $A[x] = \theta$ bằng n trừ hạng của A.

Thí dụ 6.2.6. Bạn đọc có thể chứng minh rằng hệ thuần nhất

$$\begin{cases} 2x_1 + 2x_2 - x_3 & + x_5 = 0 \\ -x_1 - x_2 + 2x_3 - 3x_4 + x_5 = 0 \\ x_1 + x_2 - 2x_3 & -x_5 = 0 \\ x_3 + x_4 + x_5 = 0 \end{cases}$$

có không gian nghiệm là không gian một chiều.

Vì ma trân hệ số

$$A = \begin{bmatrix} 2 & 2 & -1 & 0 & 1 \\ -1 & -1 & 2 & -3 & 1 \\ 1 & 1 & -2 & 0 & -1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

có 5 cột, nên theo định lí 6.2.4 hạng của ma trận A, $\rho(A)$ thoả mẫn

$$1 = 5 - \rho(A)$$

Do đó $\rho(A) = 4$.

BÀI TẬP: 6.10 - 6.21.

6.3. MA TRÂN CỦA ÁNH XA TUYẾN TÍNH

6.3.1. Mở đầu

Ở thí dụ 6.1.2 ta đã thấy rằng mỗi ma trận cỡ $m \times n$ tạo ra một ánh xạ tuyến tính từ \mathbf{R}^n tới \mathbf{R}^m . Nay ta sẽ chứng minh rằng mọi ánh xạ tuyến tính trên các không gian hữu hạn chiều có thể thực hiện bằng một phép nhân ma trận.

6.3.2. Khái niệm ma trận của ánh xa tuyến tính

Xét hai không gian hữu hạn chiều : V có n chiều và W có m chiều. Giả sử B là một cơ sở trong V, B là một cơ sở trong W :

$$B = \{u_1, u_2, ..., u_n\}, B' = \{v_1, v_2, ..., v_m\}$$

Cho ánh xa tuyến tính $T: V \rightarrow W$. Khi đó

$$x \in V \mapsto T(x) \in W$$

$$x = x_1 u_1 + ... x_n u_n, T(x) = y_1 v_1 + ... + y_m v_m$$

Chuyển qua toạ độ ta có

$$(x)_{B} = (x_{1}, x_{2}, ..., x_{n}) \in \mathbf{R}^{n}, (T(x))_{B'} = (y_{1}, y_{2}, ..., y_{m}) \in \mathbf{R}^{m}$$
nghĩa là

$$[x]_{B} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} \in \mathcal{M}_{n \times 1} \mapsto [T(x)]_{B'} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \end{bmatrix} \in \mathcal{M}_{m \times 1}$$

Ta muốn tìm ma trận $A \in \mathcal{M}_{m \times n}$ liên hệ $[x]_B$ với $[T(x)]_{B'}$ sao cho

$$A[x]_{R} = [T(x)]_{R'} \quad \forall x \in V$$
 (6.3.1)

để cho T(x) có thể thực hiện được bằng một phép nhân ma trận.

Định nghĩa 6.3.1. Ma trận A cỡ $m \times n$ thỏa mẫn (6.3.1) nếu có, sẽ được gọi là ma trận của ánh xạ tuyến tính $T: V \to W$ đối với cơ sở B trong V và B' trong W.

Để chứng tỏ ma trận A tồn tại, bây giờ ta tìm cách xây dựng nó. Trước hết ta có một nhận xét.

Chủ ý 6.3.1. Mọi ánh xạ tuyến tính $f: V \to W$ được xác định hoàn toàn bởi $f(u_i)$, j = 1, ..., n (đó là giá trị của f tại u_i).

Thật vậy, với $x = x_1 u_1 + ... + x_n u_n \in V$ thì

$$f(x) = f(x_1u_1 + ... + x_nu_n) = x_1f(u_1) + ... + x_nf(u_n).$$

Bây giờ, vì phép nhân với ma trận là một ánh xạ tuyến tính nên dựa vào chú ý 6.3.1, ta xây dựng ma trận A bằng cách xác dịnh $A[u_i]_B$ bởi

$$A[u_j]_B = [T(u_j)]_{B'} \quad j = 1, ..., n$$
 (6.3.2)

Vì $T(u_i) \in W$ nên nó có phần tích trong cơ sở B'

$$T(u_j) = t_{I_j} v_1 + t_{2j} v_2 + \dots + t_{mj} v_m$$
 (6.3.3)

nghĩa là

$$[T(u_j)]_{B'} = \begin{bmatrix} t_{1j} \\ t_{2j} \\ \vdots \\ t_{mj} \end{bmatrix}$$

Mặt khác, vì u_j là vectơ thứ j của cơ sở B trong V nên $A[u_j]_B$ bằng cột thứ j của A. (Bạn đọc có thể kiểm tra lại bằng cách thực hiện phép nhân).

Vậy điều kiện (6.3.2) có nghĩa là

cột thứ
$$j$$
 của A là
$$[T(u_j)]_{B^{\cdot}} = \begin{bmatrix} r_1 \\ r_{2j} \\ \vdots \\ r_{mj} \end{bmatrix}$$
 (6.3.4)

Do dó $A = \{[T(u_1)]_{B'}, [T(u_2)]_{B'}, ..., [T(u_n)]_{B'}\},$

$$= \begin{bmatrix} t_{11} & t_{12} & \dots & t_{1n} \\ t_{21} & t_{22} & \dots & t_{2n} \\ t_{m1} & t_{m2} & \dots & t_{mn} \end{bmatrix}. \tag{6.3.5}$$

Với ma trận A đó ta kiểm tra lại điều kiện (6.3.1). Ta có :

$$x = x_{I}u_{I} + \dots + x_{n}u_{n}$$

$$T(x) = T(x_{I}u_{I} + \dots + x_{n}u_{n}) = x_{I}T(u_{I}) + \dots + x_{n}T(u_{n})$$

Do dó $[T(x)]_{B'} = x_1 \{T(u_1)\}_{B'} + ... + x_n [T(u_n)]_{B'}$

$$= x_{1} \begin{bmatrix} t_{11} \\ t_{21} \\ \vdots \\ t_{m1} \end{bmatrix} + \dots + x_{n} \begin{bmatrix} t_{1n} \\ t_{2n} \\ \vdots \\ t_{mn} \end{bmatrix}$$

Vế phải dúng bằng $A[x]_B$. Vậy ma trận A xây dựng bởi (6.3.5) là ma trận thoá mãn (6.3.1).

Tóm lai, ta có

Dịnh lí 6.3.1. Cho ánh xạ tuyến tính $T: V \to W$ từ không gian n chiều V tới không gian m chiều W thì ma trận của nó đổi với cơ sở B trong V và cơ sở B' trong W là ma trận (6.3.5).

Chú ý 6.3.2. Về cách tính ảnh T(x) của gốc x.

Ta có sơ đồ

Theo sơ đồ này, khi đã có $x \in V$ muốn tính T(x) có hai cách : cách thứ nhất là tính trực tiếp, cách thứ hai là tính gián tiếp qua ba bước :

- (1) Tính ma trận toạ độ $[x]_R$ của x
- (2) Nhân $A[x]_R$ để được $[T(x)]_R$.
- (3) Tái tạo T(x) từ ma trận toạ độ $[T(x)]_{R}$.

Có hai lí do cho thấy tầm quan trọng của cách tính gián tiếp. Thứ nhất, nó cung cấp một phương tiện có hiệu quả để tiến hành những ánh xạ tuyến tính trên máy tính diện tử. Lí do thứ hai có tính lí thuyết, nhưng có những hệ quả quan trọng trong thực tiễn.

Ma trận A phụ thuộc những cơ sở B và B'. Thông thường ta chọn B và B' sao cho việc tính các ma trận toạ độ càng đơn giản càng tốt. Ta cũng có thể chọn B và B' làm cho ma trận A đơn giàn, chẳng hạn sao cho ma trận A là ma trận thưa. Nếu có thể làm được điều đó thì A có thể cung cấp những thông tin quan trọng về tính tuyến tính của T.

1)
$$V = \mathbf{R}^{\mathbf{n}}, W = \mathbf{R}^{\mathbf{m}}, X \text{\'et}$$

$$T: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{M}}$$

Giả sử B và B' là các cơ sở chính tắc trong V và W:

$$B = \{e_1, ..., e_n\}, B' = \{f_1, ..., f_m\}$$

trong đó các vecto e_i và f_i viết ở dạng cột :

$$e_{i} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}_{n \times 1} \quad \text{hang } i \qquad f_{j} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}_{m \times 1} \quad \text{hang } j$$

Khi đó nếu ta viết x và T(x) ở dạng cột thì có

$$x = \begin{bmatrix} x_1 \\ \cdot \\ \cdot \\ \cdot \\ x_n \end{bmatrix} = [x]_B \qquad , \qquad T(x) = \begin{bmatrix} (T(x))_1 \\ \cdot \\ \cdot \\ (T(x))_m \end{bmatrix} = [T(x)]_B.$$

Ma trận A tương ứng có dạng

$$A = [T(e_1) ... T(e_n)]$$

trong đó $T(e_i)$ viết ở đạng cột.

Định nghĩa 6.3.2. Ma trận A này gọi là ma trận chính tắc của T.

Vì cơ sở chính tắc là duy nhất nên ma trận chính tắc của T là duy nhất.

2) $V \equiv W$. Ta thường chọn B' = B. Ma trận A tương ứng gọi là ma trận của T đối với B. Lúc đó (6.3.1) viết

$$A[x]_{\mathsf{B}} = [T(x)]_{\mathsf{B}}$$

6.3.4. Thí du

Thí dụ 6.3.1. Tìm ma trận chính tắc của ánh xạ $T: \mathbb{R}^2 \to \mathbb{R}^2$ xác định bởi (các vectơ viết ở dạng cột)

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 2x_2 \\ x_1 - x_2 \end{bmatrix}$$

Giải: Ta có

$$T(e_1) = T\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ và } T(e_2) = T\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

Vậy

$$A = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$$

1

$$T(e_1)$$
 $T(e_2)$

Có thể kiểm tra lại:

$$A\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + 2x_2 \\ x_1 - x_2 \end{bmatrix}$$

Thí dụ 6.3.2. Tìm ma trận chính tắc của ánh xạ $T: \mathbb{R}^3 \to \mathbb{R}^4$ xác định bởi (các vectơ viết ở dạng cót)

$$T\left[\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right] = \begin{bmatrix} x_1 + x_2 \\ x_1 - x_2 \\ x_3 \\ x_1 \end{bmatrix}$$

Giải: Ta có

$$T(e_{I}) = T\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \quad T(e_{2}) = T\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix},$$

$$T(e_3) = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Thí dụ 6.3.3. Giả sử $T: \mathbb{R}^2 \to \mathbb{R}^2$ là ánh xạ tuyến tính biến mỗi vectơ $(x, y) \in \mathbb{R}^2$ thành ảnh đối xứng của nó đối với trục tung (hình 54). Hãy tìm ma trận chính tắc của T (các vectơ viết ở dạng cột).

Lời giải: Ta có
$$T(e_1) = T\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$T(e_2) = T\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$(-x,y)$$

$$T(y)$$

$$Y$$

$$Hinh 54$$

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$Kiểm tra lại:
$$A\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -x \\ y \end{bmatrix}$$$$

Thí dụ 6.3.4. Giả sử $T: P_1 \rightarrow P_2$ là ánh xạ tuyến tính xác định bởi T(p(x)) = xp(x).

Hãy tìm ma trân của T đối với các cơ sở

$$B = \{u_1, u_2\} \text{ và } B' = \{u'_1, u'_2, u'_3\}$$

trong dó
$$u_1 = 1$$
, $u_2 = x$; $u_1' = 1$, $u_2' = x$, $u_3' = x^2$.

Giải: Từ công thức về T ta có

$$T(u_I) = T(1) = (x)(1) = x$$

$$T(u_2) = T(x) = (x)(x) = x^2$$
.

Bằng cách kiểm tra lại ta có

$$[T(u_I)]_{\mathsf{B}} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, [T(u_2)]_{\mathsf{B}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

Vậy ma trận của T đối với B và B' là

$$A = [[T(u_1)]_{\mathbf{B}}, [T(u_2)]_{\mathbf{B}}] = \begin{bmatrix} 0 & 0 \\ \mathbf{i} & 0 \\ 0 & \mathbf{i} \end{bmatrix}.$$

Thí dụ 6.3.5. Giả sử $T: P_1 \rightarrow P_2$, B và B' như ở thí dụ trên, và giả sử

$$T(x) = 1 - 2x.$$

Hãy dùng ma trận A thu được ở thí dụ trên để tính T(x) một cách gián tiếp và so sánh với cách tính trực tiếp.

Giải : Bằng cách tính gián tiếp ta có

Giái : Bằng cách tính gián tiếp ta có
$$[x]_{B} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}.$$

Do dó $[T(x)]_{B'} = A[x]_{B} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}.$

Vậy
$$T(x) = 0u'_1 + 1u'_2 - 2u'_3 = 0(1) + 1(x) - 2(x^2)$$

= $x - 2x^2$

Tính trực tiếp ta có

$$T(x) = T(1-2x) = x(1-2x) = x-2x^2$$
.

4.100

Thí dụ 6.3.6. Giả sử $B = \{u_I, u_2, ..., u_n\}$ là một cơ sở trong không gian vectơ hữu hạn chiều V và $I: V \to V$ là toán tử đồng nhất trên V. Khi đó

$$I(u_{I}) = u_{1}, I(u_{2}) = u_{2}, ..., I(u_{n}) = u_{n}$$

$$V_{A}y \qquad [I(u_{I})]_{B} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, [I(u_{2})]_{B} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ ..., [I(u_{n})]_{B} = \begin{bmatrix} 0 \\ 0 \\ ..., [I(u_{n})]_{B} \end{bmatrix}$$

Do dó
$$\{I_{B} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} .$$

Vậy ma trận của toán tử đồng nhất đối với bất kì cơ sở nào cũng là ma trận đơn vị cấp *n*.

Thí dụ 6.3.7. Giả sử $T: \mathbb{R}^2 \to \mathbb{R}^2$ là ánh xạ tuyến tính xác định bởi (các vectơ viết ở dạng cột)

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 \\ -2x_1 + 4x_2 \end{bmatrix}$$

Hāy tìm ma trận của T đối với cơ sở $B = (u_1, u_2)$ với

$$u_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 và $u_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Giải: Từ định nghĩa của T ta có

$$T(u_1) = \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 2u_1 \text{ và } T(u_2) = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3u_2.$$

$$V_{A}y\left[T(u_{1})\right]_{B} = \begin{bmatrix} 2\\0 \end{bmatrix}, \left[T(u_{2})\right]_{B} = \begin{bmatrix} 0\\3 \end{bmatrix}.$$

Do đó ma trận của T đối với B là $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$.

 $Ch\hat{u}$ ý 6.3.2. Có thể chứng minh được điều ngược lại của định lí 6.3.1, cu thể là :

Cho ma tran

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}.$$

bao giờ cũng tồn tại ánh xạ tuyến tính $T:V\to W$ xác định bởi

$$[T(u_i)]_{\mathbf{B}^*}$$
 bằng cột thứ j của $A = A[u_i]_{\mathbf{B}}$

nhân A làm ma trận đối với cơ sở B và B'.

Trường hợp riêng:

$$V = \mathbf{R}^n$$
, $\mathbf{W} = \mathbf{R}^m$

B và B' là các cơ sở chính tắc.

Đó là thí dụ 6.1.2.

6.3.5. Ma trận của toán từ tuyến tính trong không gian Euclid

Giả sử V là không gian Euclid n chiều với tích vô hướng <...>, $B = \{e_1, e_2, ..., e_n\}$ là một cơ sở trực chuẩn của V và T là một toán từ tuyến tính trong V. Khi đó công thức (6.3.3) cho

$$T(e_i) = t_{1i}e_1 + t_{2i}e_2 + ... + t_{ni}e_n$$

Do độ

$$< T(e_j), e_i> = < t_{1j}e_1 + t_{2j}e_2 + ... + t_{nj}e_n, e_i> = t_{ij}$$

6

Vậy theo (6.3.4), (6.3.5) toán từ tuyến tính T có ma trận trong cơ sở B là

$$A = [t_{ij}] \text{ v\'et } t_{ij} = \langle T(e_j), e_i \rangle = \langle e_i, T(e_j) \rangle.$$
 (6.3.6)

BÀI TẬP: 6.22 - 6.33.

6.4. SƯ ĐỒNG DANG

6.4.1. Ma trạn đồng dạng

Dịnh nghĩa 6.4.1. Giả sử A và B là hai ma trận vuông cùng cấp π. Ta nói B đồng dạng với A, kí hiệu B \(\sigma\) A, nếu tồn tại một ma trận không suy biến (tức là khả đảo) P cấp n sao cho

$$B = P^{-1}AP.$$

Chú ý 6.4.1. Đằng thức $B = P^{-1}AP$ có thể viết

$$A = PBP^{-1} = (P^{-1})^{-1}BP^{-1}.$$

Đặt $P^{-1} = Q$ ta có

 $A = Q^{-1}BQ$, Q không suy biến.

Vậy nếu B đồng đạng với A thì A đồng dạng với B.

6.4.2. Ma trận của ánh xạ tuyến tính thông qua phép đổi cơ sở

Định lí 6.4.1. Giả sử $T:V\to V$ là một toán tử tuyến tính trong không gian n chiều V. Nếu A là ma trận của T đối với cơ sở B và A' là ma trận của T đối với cơ sở B', thì

$$A' = P^{-1}AP,$$

trong đó P là ma trận chuyển cơ sở từ B sang B'.

Vậy A' đồng dạng với A.

Chứng minh: Theo giả thiết của định lí ta có, $\forall x \in V$:

$$A[x]_{B} = [T(x)]_{B}$$
, $A'[x]_{B'} = [T(x)]_{B'}$

Vì P là ma trận chuyển cơ sở từ B sang B' nên P^{-1} là ma trận chuyển cơ sở từ B' sang B và có

$$P[x]_{R'} = [x]_{R}, P^{-1}[T(x)]_{R} = [T(x)]_{R'}$$

Do đó
$$A'[x]_{B'} = [T(x)]_{B'} = P^{-1}[T(x)]_{B}$$

= $P^{-1}A[x]_{B} = P^{-1}AP[x]_{B'}$

tức là $A'[x]_{\mathbf{R}'} = P^{-1}AP[x]_{\mathbf{R}'} \ \forall x \in V.$

 $Vay có A' = P^{-1}AP.$

Thí du 6.4.1. Giả sử $T: \mathbb{R}^2 \to \mathbb{R}^2$ xác dinh bởi

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 \\ -2x_1 + 4x_2 \end{bmatrix}$$

Hãy tìm ma trận chính tắc của T, tức là ma trận của T đối với cơ sở chính tắc $B = \{e_1, e_2\}$:

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

rồi dùng định lí 6.4.1 để biến ma trận đó thành ma trận của T đối với cơ sở $B' = \{u_I, u_2\}$:

$$u_{j} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, u_{2} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Giải: Từ công thức về T ta có

$$T(e_{j}) = T \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

$$T(e_2) = T\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

Do đó ma trần chính tắc của T là

$$A = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$$

Bày giờ ta lập ma trận chuyển cơ sở P từ B sang B'. Ta thấy

$$u_1 = e_1 + e_2, u_2 = e_1 + 2e_2.$$

Do đó
$$[u_I]_B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $[u_2]_B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

$$Vay P = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

Ta suy ra
$$P^{-1} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$
.

Do đó theo định lí 6.4.1, ma trận của T đối với cơ sở B là

$$A' = P^{-1}AP = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}.$$

 $Ch\dot{u}$ ý 6.4.2. Ma trận A có dạng chéo, nó đơn giản hơn A, và có nhiều tính chất đáng chú ý như

$$(A')^2 = A' \cdot A' = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 2^2 & 0 \\ 0 & 3^2 \end{bmatrix}.$$

Chú ý 6.4.3. Từ chú ý 6.4.2 ta có thể đặt vấn để sau : Cho ma trận A vuông bất kì. Hỏi có thể tìm được ma trận P vuông cùng cấp để ma trận $A' = P^{-1}AP$ có dạng đơn giản hơn A, chẳng hạn như ma trận A' có dạng chéo, được không ? Đó là vấn đề rút gọn ma trận mà ta sẽ giải quyết một phần ở chương sau thông qua các trị riêng và vectơ riêng của ma trận.

BÀI TẬP : 6.34, 6.35

TÓM TẮT CHƯƠNG VI

Ánh xa tuyến tính

V và W là hai không gian vecto (trên trường \mathbf{R})

$$T:V\to W$$

Nói T là ánh xạ tuyến tính nếu

$$T(u+v) = T(u) + T(v)$$
 $\forall u, v \in V$

$$T(ku) = kT(u) \quad \forall u \in V, \quad \forall k \in \mathbb{R}.$$

Từ định nghĩa đó suy ra

(a)
$$T(\theta) = \theta$$

(b)
$$T(-v) = -T(v)$$

(c)
$$T(u-v) = T(u) - T(v)$$

Hat nhàn và ảnh

$$Ker(T) := \{ v \in V \mid T(v) = \theta \}$$

$$Im(T) := \{ w \in W \mid \exists v \in V, T(v) = w \}$$
$$= T(V).$$

Ker(T) là một không gian con của V.

Im(T) là một không gian con của W.

Hạng của ánh xạ tuyến tính

$$rank(T) := dim(T(V)) = dim(Im(T))$$

Nếu V là không gian n chiều thi

$$rank(T) + dim(Ker(T)) = n$$

Ánh xa tuyển tính và ma trận

V là không gian n chiều có cơ sở là B

W là không gian m chiếu có cơ sở là B'.

Cho ma trận A cỡ $m \times n$ thì phép nhân A với vectơ $x \in V$ tạo ra một ánh xa tuyến tính từ V tới W.

Ngược lại, cho một ánh xạ tuyến tính $T:V\to W$ thì tồn tại ma trận A cỡ $m\times n$ để ánh xạ T có thể thực hiện thông qua phép nhân với ma trân A:

$$A[x]_{\mathbf{R}} = [T(x)]_{\mathbf{R}'} x \in V$$

Ma trận A gọi là ma trận của ánh xạ T đới với các cơ sở B trong V và B' trong W.

Ma trân A xác định bởi:

cột thứ
$$j$$
 của A là $[T(u_j)]_{\mathbf{B}^i}$, $j=1,\,2,\,...,\,n$

 u_i là vectơ thứ j của cơ sở B.

Sự đồng dạng của 2 ma trận vường thuộc \mathcal{M}_n .

Nói A đồng dạng với B, kí hiệu $A \hookrightarrow B$, nếu tồn tại ma trận không suy biến $P \in \mathcal{M}_n$ để có $A = P^{-1}BP$.

Nếu A∽B thì B∽ A.

Ma trận của ánh xạ tuyến tính qua biến đổi cơ sở

V là không gian vecto n chiếu

 $T:V\to V$ là một toán từ tuyến tính trên V

Đối với cơ sờ B của V, T có ma trân A,

Đối với cơ sở B' của V. T có ma trận A'.

P là ma trận chuyển cơ sở từ B sang B',

Khi đó có $A' = P^{-1}AP$, nghĩa là $A' \hookrightarrow A$.

BÀI TẬP CHƯƠNG VI

6.1. Ánh xạ $f = \mathbb{R}^2 \to \mathbb{R}^2$ dưới đây có phải là tuyến tính không :

1)
$$f(x, y) = (2x, y)$$

2)
$$f(x, y) = (x^2, y)$$

3)
$$f(x, y) = (y, x)$$

4)
$$f(x, y) = (0, y)$$

5)
$$f(x, y) = (x, y + 1)$$

6)
$$f(x, y) = (2x + y, x - y)$$

7)
$$f(x, y) = (y, y)$$

8)
$$f(x, y) = (\sqrt[3]{x}, \sqrt[3]{y}).$$

6.2. Ánh xạ $f: \mathbb{R}^3 \to \mathbb{R}^2$ đười đây có phải là tuyến tính không :

1)
$$f(x, y, z) = (x, x + y + z)$$

2)
$$f(x, y, z) = (0, 0)$$

3)
$$f(x, y, z) = (1, 1)$$

4)
$$f(x, y, z) = (2x + y, 3y - 4z)$$

6.3. Ánh $x \neq f: \mathcal{M}_2 \to \mathbb{R}$ dưới đây có phải là tuyến tính không :

1)
$$f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a + d$$

$$2) \ f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \det\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

3)
$$f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = 2a + 3b + c - d$$
 4) $f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a^2 + b^2$.

6.4. Ánh xạ $f: P_2 \rightarrow P_2$ đười đây có phải là tuyến tính không :

1)
$$f(a_0 + a_1x + a_2x^2) = a_0 + (a_1 + a_2)x + (2a_0 - 3a_1)x^2$$

2)
$$f(a_0 + a_1x + a_2x^2) = a_0 + a_1(x + 1) + a_2(x + 1)^2$$

3)
$$f(a_0 + a_1x + a_2x^2) = 0$$

4)
$$f(a_0 + a_1x + a_2x^2) = (a_0 + 1) + a_1x + a_2x^2$$
.

6.5. Cho $f: \mathbb{R}^2 \to \mathbb{R}^2$ là ánh xạ biến mỗi điểm của mặt phẳng thành điểm đối xứng của nó đối với trực y. Hãy tìm công thức cho f và chứng tò rằng nó là một toán từ tuyến tính trong \mathbb{R}^2 .

6.6. Gọi $\mathcal{M}_{m \times n}$ là tặp các ma trận cỡ $m \times n$. Cho B là một ma trận cỡ 2×3 hoàn toàn xác dịnh. Chứng minh rằng ánh xạ $T: \mathcal{M}_{2 \times 2} \to \mathcal{M}_{2 \times 3}$ dịnh nghĩa bởi T(A) = AB là ánh xạ tuyến tính.

6.7. Cho $T: \mathbb{R}^3 \to \mathbb{R}^2$ là một ánh xạ ma trận và giả sử

$$T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}1\\1\end{bmatrix}, \quad T\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}3\\0\end{bmatrix}, \quad T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}4\\-7\end{bmatrix}$$

(b) Tim
$$T \begin{bmatrix} 1 \\ 3 \\ 8 \end{bmatrix}$$

(c) Tim
$$T \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \right\}$$

6.8. Cho ánh xạ $T: \mathbb{R}^3 \to W$ là một phép chiếu trực giao các điểm của \mathbb{R}^3 lên mặt phẳng xOz.

- (a) Tîm công thức của T.
- (b) Tîm T(2, 7, -1).
- 6.9. S là một cơ sở trong không gian n chiều V.
- a) Chứng minh rằng nếu $v_1, v_2, ..., v_r$ là một họ đọc lập tuyến tính trong V thì các vectơ toạ độ $(v_1)_s, (v_2)_s, ..., (v_r)_s$ cũng tạo thành một họ độc lập tuyên tính trong \mathbf{R}^n và ngược lại.
- b) Nếu $\{v_1, ..., v_t\}$ sinh ra V th) $\{(v_1)_s, ..., (v_t)_s\}$ cũng sinh ra \mathbb{R}^n và ngược lại.
 - **6.10.** Cho $T: \mathbb{R}^2 \to \mathbb{R}^2$ là ánh xạ nhân với ma trận

$$\begin{bmatrix} 2 & -1 \\ -8 & 4 \end{bmatrix}$$

1) Hỏi vectơ nào dưới đây thuộc Im(T)?

(a)
$$(1, -4)$$
.

(c)
$$(-3, 12)$$
.

2) Vectơ nào dưới đây thuộc Ker(T)?

(a)
$$(5, 10)$$
,

(c)
$$(1, 1)$$
.

6.11. 1) Cho ánh xạ tuyến tính $T = P_2 \rightarrow P_3$ xác định bởi T(p(x)) = xp(x). Hỏi phần từ nào dưới đây thuộc Ker(T):

(a)
$$x^2$$
?

(c)
$$1 + x$$
?

2) Hội phần tử nào dưới đây thuộc Im(T):

(a)
$$x + x^2$$
?

(b)
$$1 + x$$
?

(c)
$$3 - x^2$$
?

- **6.12.** V là một không gian vecto, cho $T:V\to V$ xác định bởi T(v)=3v
 - (a) Tim Ker(T).
 - (b) Tim Im(T).
 - 6.13. Tìm số chiều của Ker(T) và Im(T) với
 - (a) T cho ở bài táp 6.10.
 - (b) T cho ở bài tập 6.11.
- **6.14.** V là không gian n chiều. Tìm hạng của ánh xạ tuyến tính $T:V\to V$ xác định bởi

(a)
$$T(x) = x$$
;

(b)
$$T(x) = \theta$$
;

(c)
$$T(x) = 3x$$
.

6.15. Xét cơ sở $S = \{v_1, v_2, v_3\}$ trong \mathbb{R}^3 trong đó

$$v_1 = (1, 2, 3), v_2 = (2, 5, 3), v_3 = (1, 0, 10).$$

Tìm biểu diễn ánh xạ tuyến tính : $T: \mathbb{R}^3 \to \mathbb{R}^2$ xác định bởi $T(v_1) = (1,0), T(v_2) = (1,0), T(v_3) = (0,1).$ Tính T(1,1,1), trong các cơ sở chính tắc của $\mathbb{R}^3, \mathbb{R}^2$.

- 6.16. Tim ánh xạ tuyến tính $T: P_2 \to P_2$ xác định bởi T(1) = 1 + x, $T(x) = 3 x^2$, $T(x^2) = 4 + 2x 3x^2$. Tính $T(2 2x + 3x^2)$.
 - 6.17. Tính $\dim(\text{Ker}(T))$ trong đó
 - (a) $T: \mathbb{R}^5 \to \mathbb{R}^7$ có hạng 3
 - (b) $T: P_4 \rightarrow P_3$ có hạng 1
 - (c) Im của $T: \mathbb{R}^6 \to \mathbb{R}^3$ là \mathbb{R}^3
 - (d) $T: \mathscr{M}_2 \to \mathscr{M}_2$ có hạng 3.
 - 6.18. A là ma trận cỡ 5×7 có hạng bằng 4.
 - (a) Hãy tìm số chiều của không gian nghiệm của $Ax = \theta$.
 - (b) Hòi Ax = b có tương thích với mọi $b \in \mathbb{R}^5$ không? Lí do.

6.19. T là một ánh xa ma trận xác định như dưới đây.

Hãy tìm: (a) một cơ sở cho Im(T);

- (b) một cơ sở cho Ker(T);
- (c) số chiều của Im(T) và Ker(T).

1)
$$\begin{bmatrix} 1 & -1 & 3 \\ 5 & 6 & -4 \\ 7 & 4 & 2 \end{bmatrix}$$
2)
$$\begin{bmatrix} 2 & 0 & -1 \\ 4 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$
3)
$$\begin{bmatrix} 4152 \\ 1230 \end{bmatrix}$$
4)
$$\begin{bmatrix} 1 & 4 & 5 & 0 & 9 \\ 3 & -2 & 1 & 0 & -1 \\ -1 & 0 & -1 & 0 & -1 \\ 2 & 3 & 5 & 1 & 8 \end{bmatrix}$$

- **6.20.** Gọi $D: P_3 \to P_2$ là ánh xạ đạo hàm D(p) = p'. Hãy mô tả $\mathrm{Ker}(D)$.
 - **6.21**. Gọi $I: P_1 \to \mathbb{R}$ là ánh xạ tích phân

$$J(p) = \int_{-1}^{1} p(x) dx.$$

Hãy mô tả Ker(J).

6.22. Hãy tìm ma trận chính tắc (xem định nghĩa 6.3.2) của mỗi toán tử tuyến tính sau :

(a)
$$T(x_1, x_2) = (2x_1 - x_2, x_1 + x_2)$$

(b)
$$T(x_1, x_2) = (x_1, x_2)$$

(c)
$$T(x_1, x_2, x_3) = (x_1 + 2x_2 + x_3, x_1 + 5x_2, x_3)$$

(d)
$$T(x_1, x_2, x_3) = (4x_1, 7x_2, -8x_3)$$

6.23. Tim ma trận chính tắc của mỗi ánh xa tuyến tính sau

(a)
$$T(x_1, x_2) = (x_2, -x_1, x_1 + 3x_2, x_1 - x_2)$$

(b)
$$T(x_1, x_2, x_3, x_4) = (7x_1 - 2x_2 - x_3 + x_4, x_2 + x_3, -x_1)$$

(c)
$$T(x_1, x_2, x_3) = (0, 0, 0, 0, 0)$$

(d)
$$(x_1, x_2, x_3, x_4) = (x_4, x_1, x_3, x_2, x_2 - x_3)$$

- **6.24.** Tìm ma trận chính tắc của toán tử tuyến tính $T: \mathbb{R}^2 \to \mathbb{R}^2$ biến v = (x, y) thành đối xứng của nó đối với
 - (a) Trục x.
 - (b) Đường phân giác y = x.
 - (c) Gốc toạ độ.

Hãy tính T(2, 1) trong mỗi trường hợp

6.25. Tim ma trận của ánh xa tuyến tính $T: P_2 \rightarrow P_1$ xác định bởi

$$T(a_0 + a_1x + a_2x^2) = (a_0 + a_1) - (2a_1 + 3a_2)x$$

đối với các cợ sở chính tắc trong P_2 và P_1 .

6.26. Cho $T: \mathbb{R}^2 \to \mathbb{R}^3$ xác dinh bởi

$$T(x_1, x_2) = (x_1 + 2x_2, -x_1, 0)$$

(a) Tìm ma trận của T đổi với các cơ sở $B = \{u_1, u_2\}$ trong \mathbb{R}^2 và $\mathbb{B}' = \{v_1, v_2, v_3\}$ trong \mathbb{R}^3 :

$$u_1 = (1, 3), u_2 = (-2, 4)$$

$$v_1 = (1, 1, 1), v_2 = (2, 2, 0), v_3 = (3, 0, 0)$$

- (b) Dùng ma trận thu được $\dot{\sigma}$ (a) để tính T(8, 3).
- 6.27. Cho $T: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi

$$T(x_1, x_2, x_3) = (x_1 - x_2, x_2 - x_1, x_1 - x_3)$$

(a) Tîm ma trận của T đối với cơ sở $B = \{v_1, v_2, v_3\}$

$$v_1 = (1, 0, 1), v_2 = (0, 1, 1), v_3 = (1, 1, 0)$$

- (b) Dùng ma trận thu được ở (a) để tính T(2, 0, 0).
- **6.28.** Cho $T: P_2 \to P_4$ là ánh xạ tuyến tính xác định bởi $T(p)(x) = x^2 p(x)$.
- (a) Tìm ma trận của T đối với các cơ sở $B = \{p_1, p_2, p_3\}$ trong P_2 và cơ sở chính tắc B' trong P_4 :

$$p_1 = 1 + x^2$$
, $p_2 = 1 + 2x + 3x^2$, $p_3 = 4 + 5x + x^2$

(b) Dùng ma trần thu được ở (a) hãy tính $T(-3 + 5x - 2x^2)$.

6.29. Cho
$$v_1 = (1, 3), v_2 = (-1, 4)$$
 và $A = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$ là ma trận của

ánh xạ $T: \mathbb{R}^2 \to \mathbb{R}^2$ đối với cơ sở $B = \{v_1, v_2\}.$

- (a) Tim $[T(v_1)]_B$ và $[T(v_2)]_B$.
- (b) Tîm $T(v_1)$ và $T(v_2)$.
- (c) Tîm T(1,1).

6.30. Cho A =
$$\begin{bmatrix} 3 - 2 & 1 & 0 \\ 1 & 6 & 2 & 1 \\ -3 & 0 & 7 & 1 \end{bmatrix}$$

là ma trận của ánh xạ $T: \mathbb{R}^4 \to \mathbb{R}^3$ đối với các cơ sở $B = \{v_1, v_2, v_3, v_4\}$ trong \mathbb{R}^4 và $B' = \{w_1, w_2, w_3\}$ trong \mathbb{R}^3 :

$$v_1 = (0, 1, 1, 1), v_2 = (2, 1, -1, -1), v_3 = (1, 4, -1, 2), v_4 = (6, 9, 4, 2)$$

$$w_1 = (0, 8, 8), w_2 = (-7, 8, 1), w_3 = (-6, 9, 1).$$

- (a) Tim $[T(v_1]_{B'}, [T(v_2)]_{B'}, [T(v_3)]_{B'}, [T(v_4)]_{B'}$
- (b) Tîm $T(v_1)$, $T(v_2)$, $T(v_3)$, $T(v_4)$.
- (c) Tîm T(2, 2, 0, 0).

6.31. Cho A =
$$\begin{bmatrix} 1 & 3-1 \\ 2 & 0 & 5 \\ 6-2 & 4 \end{bmatrix}$$
 là ma trận của ánh xạ

 $T: P_2 \to P_2$ đối với cơ sở $B = \{v_1, v_2, v_3\}$ với $v_1 = 3x + 3x^2, v_2 = -1 + 3x + 2x^2, v_3 = 3 + 7x + 2x^2$

- (a) Tim $[T(v_1)]_B$, $[T(v_2)]_B$, $[T(v_3)]_B$
- (b) Tim $T(v_1)$, $T(v_2)$, $T(v_3)$.
- (c) Tim $T(1 + x^2)$.
- 6.32. Cho $D: P_2 \rightarrow P_2$ là toán từ đạo hàm D(p) = p'.

Tìm ma trận của D đối với mỗi cơ sở $B = \{p_1, p_2, p_3\}$ đưới đây :

(a)
$$p_1 = 1$$
, $p_2 = x$, $p_3 = x^2$.

(b)
$$p_1 = 2$$
, $p_2 = 2 - 3x$, $p_3 = 2 - 3x + 8x^2$.

- (c) Dùng ma trần thu được ở (a) để tính $D(6-6x+24x^2)$.
- (d) Làm lai phần (c) đối với ma trắn ở (b).
- 6.33. Trong các bài tập dưới đây hãy tìm ma trận của T đối với cơ sở B rồi suy ra ma trân của T đối với cơ sở B'.

1)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 xác định bởi

$$T(x_1, x_2) = (x_1 - 2x_2, -x_2)$$

$$B = \{u_1, u_2\}, B' = \{v_1, v_2\}$$

$$u_1 = (1, 0), u_2 = (0, 1), v_1 = (2, 1), v_2 = (-3, 4)$$

2) $T: \mathbb{R}^2 \to \mathbb{R}^2$ xác dịnh bởi

$$T(x_1, x_2) = (x_1 + 7x_2, 3x_1 - 4x_2)$$

$$B = \{u_1, u_2\}, B' = \{v_1, v_2\}$$

$$u_1 = (2, 3), u_2 = (4, -1), v_1 = (1, 3), v_2 = (-1, -1)$$

3) $T: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi

$$T(x_1, x_2, x_3) = (x_1 + 2x_2 - x_3, -x_2, x_1 + 7x_3)$$

B là cơ sở chuẩn tắc trong \mathbf{R}^3 , $B' = \{v_1, v_2, v_3\}$.

$$v_1 = (1, 0, 0), v_2 = (1, 1, 0), v_3 = (1, 1, 1)$$

- 4) $T = \mathbb{R}^3 \to \mathbb{R}^3$ là phép chiếu trực giao lên mặt phẳng xOy, B và B' cho ở bài tập 3).
 - 5) $T: \mathbb{R}^2 \to \mathbb{R}^2$ xác định bởi T(x) = 5x, B và B' cho ở bài tập 2).
 - 6) $T: P_1 \rightarrow P_1$ xác định bởi

$$T(a_0 + a_1 x) = a_0 + a_1(x + 1)$$

$$B = \{p_1, p_2\}, B' = \{q_1, q_2\}$$

$$p_1 = 6 + 3x, p_2 = 10 + 2x$$

$$a_1 = 2, a_2 = 3 + 2x$$

- **6.34.** Chứng minh rằng nếu A và B đồng dạng thì A^2 và B^2 đồng dạng.
- 6.35. Chứng minh rằng hai ma trận đồng dạng có cùng hạng.

0

6.5.
$$f(x, y) = (-x, y)$$
.

6.7. a)
$$\begin{bmatrix} 1 & 3 & 4 \\ 1 & 0 & -7 \end{bmatrix}$$
; b) $\begin{bmatrix} 42 \\ -55 \end{bmatrix}$; c) $\begin{bmatrix} x + 3y + 4z \\ x - 7z \end{bmatrix}$.

b)
$$\begin{bmatrix} 42 \\ -55 \end{bmatrix}$$

c)
$$\begin{bmatrix} x + 3y + 4z \\ x - 7z \end{bmatrix}$$

6.8. a)
$$T(x, y, z) = (x, y, 0)$$

6.12. a)
$$Ker(T) = \{\theta\}$$
; b) $Im(T) = V$.

6.13. a)
$$\dim(Ker(T)) = 1$$
; $\dim(Im(T)) = 1$;

b)
$$\dim(\text{Ker}(T)) = 0$$
; $\dim(\text{Im}(T)) = 3$.

6.14. a)
$$\dim(\text{Ker}(T)) = 0$$
; $\dim(\text{Im}(T)) = n$;

b)
$$\dim(Ker(T)) = n$$
; $\dim(Im(T)) = 0$;

c)
$$\dim(\text{Ker}(T)) = 0$$
; $\dim(\text{Im}(T)) = n$.

6.15.
$$T(x, y, z) = (30x - 10y - 3z, -9x + 3y + z),$$

 $T(1, 1, 1) = (17, -5).$

6.16.
$$T(2-2x+3x^2) = 8 + 8x - 7x^2$$
.

6.17. a)
$$\dim(\text{Ker}(T)) = 2$$
;

b)
$$\dim(\operatorname{Ker}(T)) = 4$$
;

c)
$$\dim(\operatorname{Ker}(T)) = 3$$
;

d)
$$dim(Ker(T)) = 1$$
.

6.18. a) số chiều =
$$\dim(\text{Ker}(T)) = 3$$
;

b) Không. Muốn cho Ax = b tương thích $\forall b \in \mathbb{R}^5$, phải có $Im(T) = \mathbb{R}^5$, nhưng vì rank(T) = 4 nên dim $(Im(T)) = 4 \neq 5$ nên Im $(T) \neq \mathbb{R}^5$.

6.19. 1) a)
$$\begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix}$$
. $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$

b)
$$\begin{bmatrix} -14/11 \\ 19/11 \\ 1 \end{bmatrix}$$

c)
$$rank(T) = 2$$
, $dim(Ker(T)) = 1$

$$2) a) \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1/2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

c)
$$rank(T) = 1$$
, $dim(Ker(T)) = 2$

3) a)
$$\begin{bmatrix} 1\\1/4 \end{bmatrix}$$
. $\begin{bmatrix} 1\\2 \end{bmatrix}$

b)
$$\begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \end{bmatrix}$$
 $\begin{bmatrix} -4/7 \\ 2/7 \\ 0 \\ 1 \end{bmatrix}$

c)
$$rank(T) = 2$$
, $dim(Ker(T)) = 2$

4) a)
$$\begin{bmatrix} 1\\3\\-1\\2 \end{bmatrix}$$
, $\begin{bmatrix} 0\\1\\-2/7\\5/14 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$ b) $\begin{bmatrix} -1\\-1\\0\\0\\0 \end{bmatrix}$

b)
$$\begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} -1 \\ -2 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

c)
$$rank(T) = 3$$
, $dim(Ker(T)) = 2$

- 6.20. Ker(D) gồm các đa thức hằng.
- 6.21. Ker(J) gồm các đa thức có dạng kx.

6.22. a)
$$\begin{bmatrix} 2-1 \\ 1 \end{bmatrix}$$

$$c) \begin{bmatrix} 1 & 2 & 1 \\ 1 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{b}) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

d)
$$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & -8 \end{bmatrix}$$

6.23. a)
$$\begin{vmatrix} 0 & 1 \\ -1 & 0 \\ 1 & 3 \\ 1 & -1 \end{vmatrix}$$

b)
$$\begin{bmatrix} 7 & 2 - 1 & 1 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix}$$

d)
$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \end{bmatrix}$$

6.24. a)
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

b)
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

c)
$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$T((2,1)) = (2,-1);$$

d) $T((2,1)) = (1,2);$

T((2,1)) = (-2,-1).

6.25.
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & -2 & -3 \end{bmatrix}$$

b)
$$\begin{bmatrix} 14 \\ -8 \\ 0 \end{bmatrix}$$

6.26. a)
$$\begin{bmatrix} 0 & 0 \\ -1/2 & 1 \\ 8/3 & 4/3 \end{bmatrix}$$

b)
$$\begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

6.27. a)
$$\begin{bmatrix} 1 & -3/2 & 1/2 \\ -1 & 1/2 & 1/2 \\ 0 & 1/2 & -1/2 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 2 \\ -2 \\ 2 \end{bmatrix}$$

b)
$$-3x^2 + 5x^3 - 2x^4$$

6.28. a)
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 4 \\ 0 & 2 & 5 \\ 1 & 3 & 1 \end{bmatrix}$$

6.29. a)
$$[T(v_1)]_B = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
, $[T(v_2)]_B = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$

b)
$$T(v_1) = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$$
, $T(v_2) = \begin{bmatrix} -2 \\ 29 \end{bmatrix}$

c)
$$\begin{bmatrix} 19/7 \\ -83/7 \end{bmatrix}$$
.

$$[T(v_3)]_B = \begin{bmatrix} -1\\5\\4 \end{bmatrix}$$
b) $T(v_1) = 16 + 51x + 19x^2$

$$T(v_2) = -6 - 5x + 5x^2$$

$$T(v_3) = 7 + 40x + 15x^2$$

6.30. a) $\{T(v_1)_{\mathbf{B}'} = \begin{bmatrix} 3 \\ 1 \\ -3 \end{bmatrix}, [T(v_2)]_{\mathbf{B}'} = \begin{bmatrix} -2 \\ 6 \\ 0 \end{bmatrix}$

 $[T(v_3)]_{\mathbf{B}^+} = \begin{bmatrix} \mathbf{t} \\ 2 \\ 7 \end{bmatrix} [T(v_4)]_{\mathbf{B}^+} = \begin{bmatrix} 0 \\ \mathbf{t} \end{bmatrix}$

 $T(v_3) = \begin{bmatrix} -56 \\ 87 \\ 17 \end{bmatrix}, T(v_4) = \begin{bmatrix} -13 \\ 17 \\ 2 \end{bmatrix}$

b) $T(v_1) = \begin{bmatrix} 11 \\ 5 \\ 22 \end{bmatrix}, T(v_2) = \begin{bmatrix} -42 \\ 32 \\ -10 \end{bmatrix}$

6.31. a) $[T(v_1)]_B = \begin{bmatrix} 1 \\ 2 \\ 6 \end{bmatrix}$, $[T(v_2)]_B = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}$

 $\cdot c) \begin{bmatrix} -31 \\ 37 \\ 12 \end{bmatrix}$

c)
$$T(1+x^2) = 22 + 56x + 14x^2$$

317

6.32. a)
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

b)
$$\begin{bmatrix} 0 & -3/2 & 23/6 \\ 0 & 0 & -16/3 \\ 0 & 0 & 0 \end{bmatrix}$$

c)
$$-6 + 48x$$

d)
$$-6 + 48x$$
.

6.33. 1)
$$[T]_{B} = \begin{bmatrix} 1 & -2 \\ 0 & -1 \end{bmatrix}$$

6.33. 1)
$$[T]_{B} = \begin{bmatrix} 1 & -2 \\ 0 & -1 \end{bmatrix}$$
, $[T]_{B'} = \begin{bmatrix} -3/11 & -56/11 \\ -2/11 & 3/11 \end{bmatrix}$

2)
$$[T]_{B} = \frac{1}{14} \begin{bmatrix} -1 & 61 \\ 81 & -41 \end{bmatrix}$$
, $[T]_{B'} = \frac{1}{2} \begin{bmatrix} -31 & 9 \\ -75 & 25 \end{bmatrix}$

$$[T]_{\mathbf{B}'} = \frac{1}{2} \begin{bmatrix} -31 & 9\\ -75 & 25 \end{bmatrix}$$

3)
$$[T]_{\mathbf{B}} = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 7 \end{bmatrix}$$

3)
$$[T]_{B} = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 7 \end{bmatrix}$$
, $[T]_{B'} = \begin{bmatrix} 1 & 4 & 3 \\ -1 & -2 & -9 \\ 1 & 1 & 8 \end{bmatrix}$

4)
$$[T]_{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, $[T]_{B'} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$.

$$[T]_{B'} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

5)
$$[T]_{\mathbf{B}} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$
, $[T]_{\mathbf{B}'} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$

$$[T]_{B'} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$

6)
$$[T]_{B} = \begin{bmatrix} 2/3 & -2/9 \\ 1/2 & 4/3 \end{bmatrix}$$
, $[T]_{B'} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

$$[T]_{\mathbf{B}'} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ 0 & \mathbf{1} \end{bmatrix}$$

Chương VII

TRỊ RIÊNG VÀ VECTƠ RIÊNG CỦA TOÁN TỬ TUYỂN TÍNH

7.1. TRI RIÊNG VÀ VECTO RIÊNG CỦA MA TRÂN

7.1.1. Mở đầu

Trong nhiều bài toán, khi cho toán từ tuyến tính $T:V\to V$ thì có một vấn đề quan trọng là xác định được những số λ sao cho $T(x)=\lambda x$, tức là T(x) tỉ lệ với $x, x\neq 0$. Ta sẽ nghiên cứu vấn đề này và nêu lên một vài ứng dụng.

7.1.2. Khái niệm trí riệng và vectơ riệng của ma trân

Định nghĩa 7.1.1. Giả sử A là ma trận vướng cấp n. Số λ gọi là trị riêng của A nếu phương trình

$$Ax = \lambda x, x \in \mathbb{R}^n$$

$$c \acute{o} nghi \note m \ x = (x_1, x_2, ..., x_n) \neq (0, 0, ..., 0).$$

Vecto $x \neq \theta$ này gọi là vecto riêng ứng trị riêng λ .

Thi du 7.1.1. Cho
$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$

Ta thấy
$$A\begin{bmatrix} 1\\2 \end{bmatrix} = \begin{bmatrix} 3 & 0\\8 & -1 \end{bmatrix} \begin{bmatrix} 1\\2 \end{bmatrix} = \begin{bmatrix} 3\\6 \end{bmatrix} = 3\begin{bmatrix} 1\\2 \end{bmatrix}$$

Vày với x = (1, 2) ta có

$$Ax = 3x$$

nghĩa là 3 là trị riêng của A với vectơ riêng $\frac{1}{4}(1,2) \in \mathbb{R}^2$.

Chú ý 7.1.1. Nếu x là vectơ riêng của A ứng trị riêng λ thì cx, trong đó c là một hằng số khác không tuỳ ý, cũng là vectơ riêng của A ứng trị riêng λ .

Thật vậy, ta có

$$A(cx) = cAx = c\lambda x = \lambda(cx).$$

Vì vậy sau khi có x ta có thể chọn c để được vectơ riêng có độ đài bằng 1, nghĩa là

$$||cx|| = 1 \Rightarrow c = 1/||x||$$
.

Vecto riêng có độ dài bằng 1 gọi là vecto riêng đã chuẩn hoá.

7.1.3. Phương trình đặc trưng

Để tìm các trị riêng của ma trận vuông A cấp n, ta viết $Ax = \lambda x$ thành $Ax = \lambda Ix$, $x \in \mathbb{R}^n$, trong đó I là ma trận đơn vị cấp n. Do đó có

$$(A-\lambda I)x=0.$$

Đây là một hệ tuyến tính thuẩn nhất. Muốn cho λ là trị riêng của A, điều kiện là hệ trên có nghiệm $x \neq \theta$ và muốn thế điều kiện cần và dù là

$$\det(\mathbf{A} - \lambda \mathbf{I}) \approx 0. \tag{7.1.1}$$

Đó là phương trình để xác định các trị riêng của A, ta đi đến định nghĩa sau

Định nghĩa 7.1.2. Phương trình (7.1.1) gọi là phương trình đặc trưng của ma trận vuông A, còn đa thức $\det(A - \lambda I)$ gọi là đa thức đặc trưng của A.

Thí dụ 7.1.2. Hãy tìm các trị riêng của ma trận

$$A = \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}$$

Giải : Ta có

$$A - \lambda I = \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -\lambda & 2 \\ & -1 & -\lambda \end{bmatrix}$$

Vây phương trình đặc trung của A là

$$\det(A - \lambda I) \approx \begin{vmatrix} 3 - \lambda & 2 \\ -1 & -1 \end{vmatrix} = \lambda^2 - 3\lambda + 2 = 0.$$

Ta suy ra $\lambda = 1$ và $\lambda = 2$ là các trị riêng của A.

Thí dụ 7.1.3. Tim các trị riêng của ma trận

$$A = \begin{bmatrix} -2 & -1 \\ 5 & 2 \end{bmatrix}$$

Giải: Phương trình đặc trưng của A viết

$$\det(A - \lambda I) = \begin{vmatrix} -2 - \lambda & -1 \\ 5 & 2 - \lambda \end{vmatrix} = \lambda^2 + 1 = 0$$

Phương trình này không có nghiệm thực, chỉ có hai nghiệm phức là i và -i. Vậy ma trận A không có trị riêng thực, nhưng có hai trị riêng phức là i và -i.

Chú ý 7.1.2. Phương trình đặc trưng (7.1.1) của ma trận A cấp n là phương trình bậc n đối với λ . Theo đại số học (định lí 2.6.3) nó có n nghiệm thực hoặc phức, đơn hoặc bội. Vậy một ma trận cấp n có n trị riêng, thực hoặc phức, đơn hoặc bội.

Chú ý 7.1.3. Số bội của nghiệm λ của phương trình đặc trưng (7.1.1) gọi là số bội đại số của λ .

7.1.4. Tri riêng của ma trân đồng đang

Định lí 7.1.1. Hai ma trận đồng dạng có cùng một đã thức đặc trung, nghĩa là có các trị riêng như nhau.

Chứng minh: Giả sử A và B là hai ma trận đồng dạng, nghĩa là tồn tại ma trận P không suy biến: $\det(P) \neq 0$, dễ có $B = P^{-1}AP$.

Xét phương trình đặc trưng của B:

$$det(B - \lambda I) = \det(P^{-1}AP - \lambda P^{-1}IP)$$

$$= \det(P^{-1}(A - \lambda I)P)$$

$$= \det(P^{-1})\det(A - \lambda I)\det(P)$$

$$= \det(A - \lambda I)\det(P^{-1})\det(P)$$

$$= \det(A - \lambda I)\det(P^{-1}P)$$

$$= \det(A - \lambda I)\det(I)$$

$$= \det(A - \lambda I)$$

vì theo dịnh lí 3.3.5 $\det(P) \det(P^{-1}) = \det(PP^{-1}) = \det(I) = 1$.

Do đó trị riêng của B trùng với trị riêng của A.

7.1.5. Tìm vectơ riêng của ma trận

Vectơ riêng của ma trận A ứng trị riêng λ là nghiệm khác không của phương trình $Ax = \lambda x$.

Đó là những vectơ khác không trong không gian nghiệm của phương trình

$$(A - \lambda I)x = 0 \tag{7.1.2}$$

6

Định nghĩa 7.1.3. Ta gọi không gian nghiệm của (7.1.2) là không gian riêng của A ứng trị riêng λ .

Chú ý 7.1.4. Số chiều của không gian riêng của A ứng trị riêng λ gọi là số bôi hình học của λ .

Thí dụ 7.1.4. Hãy tìm các cơ sở của không gian riêng của

$$A = \begin{bmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

Giải: Phương trình đặc trung của A là

$$\begin{vmatrix} 3 - \lambda & -2 & 0 \\ -2 & 3 - \lambda & 0 \\ 0 & 0 & 5 - \lambda \end{vmatrix} = -(\lambda - 1)(\lambda - 5)^2 = 0$$

nên các trị riêng của A là $\lambda = 1$ và $\lambda = 5$ (bội 2).

Theo dinh nghĩa, vectơ

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

là vectơ riêng của A ứng trị riêng λ khi và chỉ khí x là nghiệm không tầm thường của

$$\begin{bmatrix} 3 - \lambda & -2 & 0 \\ -2 & 3 - \lambda & 0 \\ 0 & 0 & 5 - \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

nghĩa là

Với $\lambda = 5$ ta có

$$\begin{bmatrix} -2 & -2 & 0 \\ -2 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Giài hệ này tá được $x_1 = -s$, $x_2 = s$, $x_3 = t$.

Vậy những vectơ riêng của A ứng trị riêng $\lambda = 5$ là những vectơ khác không có dạng :

$$x = \begin{bmatrix} -s \\ s \\ t \end{bmatrix} = \begin{bmatrix} -s \\ s \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ t \end{bmatrix} = s \begin{bmatrix} -t \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

Vì hai vector $\begin{bmatrix} -1\\1\\0 \end{bmatrix}$ và $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$ là độc lập tuyến tính, chúng tạo thành

một cơ sở cho không gian riêng ứng trị riêng $\lambda = 5$.

 $V \circ i \lambda = 1$:

$$\begin{bmatrix} 2 & -2 & 0 \\ -2 & -2 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Giải hệ này ta được $x_1 = t$, $x_2 = t$, $x_3 = 0$.

Vậy các vectơ riêng ứng trị riêng $\lambda = 1$ là các vectơ khác không có dạng

$$x = \begin{bmatrix} t \\ t \\ 0 \end{bmatrix} = t \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

cho nèn $\begin{bmatrix} 1 \\ I \\ 0 \end{bmatrix}$

là cơ sở của không gian riêng ứng trị riêng $\lambda = 1$.

BÀI TẬP: 7.1 - 7.3.

7.1.6. Trị riêng của ma trắn đối xứng

Định lí 7.1.2. Ma trận đối xứng A chỉ có trị riêng thực.

Chứng minh.

Cho
$$A = [a_{ij}]_{n \times n}, \quad x = [x_i]_{n \times 1}$$

- Nhớ rằng nếu $\alpha \in \mathbb{C}$ thì α kí hiệu số phức liên hợp của α . Bảy giờ ta định nghĩa

$$\overline{A} := [\overline{a}_{ij}]_{n \times n}, \quad \overline{x} := [\overline{x}_i]_{n \times 1}.$$

Khi đó rõ ràng

$$\overline{Ax} = \overline{A}\overline{x} = \overline{A}\overline{x}$$
.

Giả sử λ là trị riêng của A và $x \neq \theta$ là vectơ riêng tương ứng. Khi đó ta có $\tilde{x}^t x > 0$ và

$$\lambda \overline{x}^{t} x = \overline{x}^{t} (\lambda x) = \overline{x}^{t} (Ax) = (Ax)^{t} \overline{x} = x^{t} A^{t} \overline{x} =$$

$$= x^{t} A \overline{x} = x^{t} (\overline{Ax}) = x^{t} \overline{\lambda} \overline{x} = \overline{\lambda} x^{t} \overline{x} = \overline{\lambda} \overline{x}^{t} x$$

$$\Rightarrow (\lambda - \overline{\lambda}) \overline{x}^{t} x = 0 \Rightarrow \lambda - \overline{\lambda} = 0 \Rightarrow \lambda = \overline{\lambda} \Rightarrow \lambda \in \mathbb{R}$$

Do dó vecto riêng tương ứng là $v = (v_1, v_2, ..., v_n) \in \mathbb{R}^n$.

Định lí 7.1.3. Nếu ma trận A cấp n đối xứng thì nó có n trị riêng thực và n vectơ riêng trực chuẩn tương ứng.

Xem chứng minh trong phần phụ lục cuối chương, mục 7.5.1.

7.2. TRỊ RIỆNG VÀ VECTƠ RIỆNG CỦA TOÁN TỬ TUYẾN TÍNH TRONG KHÔNG GIAN HỮU HAN CHIỀU

7.2.1. Đặt bài toán

Ở trên ta đã định nghĩa trị riêng và vectơ riêng cho một ma trận. Ta cũng có thể định nghĩa trị riêng và vectơ riêng cho toán tử tuyến tính.

Định nghĩa 7.2.1. Giả sử V là một không gian vectơ. Số λ gọi là trị riêng của toán tử tuyến tính $T:V\to V$ nếu tốn tại vectơ $x\neq 0$ sao cho $T(x)=\lambda x$.

Vecto x duợc gọi là vectơ riêng ứng trị riêng λ.

Như vậy những vectơ riêng của T ứng trị riêng λ là những vectơ khác không của $Ker(T-\lambda I)$. Hạt nhân này được gọi là không gian riêng của T ứng trị riêng λ .

7.2.2. Cách giải trong không gian hữu hạn chiều

Định lí 7.2.1. Giả sử T là một toán tử tuyến tính trong không gian vectơ hữu hạn chiều V và A là ma trận của T đối với một cơ sở nào đó B của V. Thế thì

- 1) Những trị riêng của T là những trị riêng của A.
- 2) Vecto x là vecto riêng của T ứng trị riêng λ khi và chỉ khi ma trận toạ độ $[x]_B$ tức là vecto cột $[x]_{B'}$ là vecto riêng của A ứng trị riêng λ .

Chứng minh ; Phương trình $T(x) = \lambda x$ tương đương với

$$[T(x)]_{\mathbf{B}} = \lambda [x]_{\mathbf{B}}$$

Nhưng theo định nghĩa 6.3.1 và công thức (6.3.1) thì

$$[T(x)]_{\mathbf{R}} = A[x]_{\mathbf{R}}$$

Vậy phương trình $T(x) = \lambda x$ tương đương với

$$A[x]_{\mathrm{B}} = \lambda[x]_{\mathrm{B}}$$

Chú ý 7.2.1. Nếu đổi cơ sở thì theo định lí 6.4.1, ma trận A' của T đối với cơ sở mới đồng dạng với ma trận A và do đó theo định lí 7.1.1, A' có cùng trị riêng như A.

Thi du 7.2.1. Hãy tìm các trị riêng và cơ sở trong không gian riêng của toán từ tuyến tính $T: P_2 \rightarrow P_2$ xác định bởi

$$T(a + bx + cx^{2}) = (3a - 2b) + (-2a + 3b)x + (5c)x^{2}.$$

Giải: Ma trận của T đối với cơ sở

$$B = \{1, x, x^2\}$$

$$A = \begin{bmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

là

8.00

Các trị riêng của T là các trị riêng của A: đó !à $\lambda = 1$ và $\lambda = 5$ (Thí dụ 7.1.4). Cũng ở thí dụ 7.1.4 ta đã tìm ra không gian riêng của A ứng với $\lambda = 5$ có cơ sở $\{u_1, u_2\}$, còn không gian riêng ứng $\lambda = 1$ có cơ sở $\{u_3\}$, trong đó

$$u_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad u_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

Đó là những ma trân toa đô đối với B của

$$p_1 = -1 + x, p_2 = x^2, p_3 = 1 + x$$

Vậy $\{-1 + x, x^2\}$ là một cơ sở trong không gian riêng của T ứng $\lambda = 5$, và $\{1 + x\}$ là một cơ sở cho không gian riêng ứng $\lambda = 1$.

7.3. VẤN ĐỀ CHÉO HOÁ MA TRẬN

7.3.1. Đặt bài toán

Bài toán la. Cho V là một không gian vectơ hữu hạn chiều, $T:V\to V$ là một toán tử tuyến tính trong V. Ta đã biết (xem định nghĩa 6.3.1) rằng ma trận của T phụ thuộc cơ sở chọn trong V. Ta mong muốn có một cơ sở sao cho ma trận của T có dạng đơn giản như dạng chéo chẳng hạn. Hỏi có hay không một cơ sở trong V sao cho ma trận của T đối với cơ sở đó là ma trận chéo?

Bài toán 2a. Cho V là một không gian vectơ hữu hạn chiều có tích vỏ hướng, $T:V\to V$ là một toán tử tuyến tính trong V. Hỏi có hay không một cơ sở trực giao trong V sao cho ma trận của T đối với cơ sở đó là ma trận chéo?

7.3.2. Cách giải

Giả sử A là ma trận của T đối với một cơ sở xác định nào đó trong V. Ta xét một phép đổi cơ sở. Theo định lí 6.4.1 thì ma trận mới của T sẽ là $P^{-1}AP$ trong đó P là ma trận đổi cơ sở.

Vậy bài toán la tương đương với bài toán: Hỏi có tồn tại một phép đổi cơ sở để cho ma trấn mới của T đối với cơ sở mới là ma trân chéo?

Nếu V là một không gian có tích vô hướng và những cơ sở là trực chuẩn thì theo định lí 5.8.2, P sẽ là trực giao.

Vậy ta đã dưa hai bài toán 1a và 2a về những bài toán dạng ma trận: Bài toán 1b (dạng ma trận). Cho một ma trận vuông A. Hồi có tồn tại

hay không một ma trận P khả đảo sao cho $P^{-1}AP$ là ma trận chéo?

Bài toán 2b (dạng ma trận). Cho ma trận vuông A. Hỏi có tồn tại hay không ma trận trực giao P sao cho $P^{-1}AP$ là ma trận chéo ? (ma trận vuông A gọi là ma trận trực giao nếu A'A = I).

7.3.3. Ma trán chéo hoá dược

Định nghĩa 7.3.1. Cho ma trận vuông A. Nếu tồn tại một ma trận khả đảo P sao cho $P^{-1}AP$ là ma trận chéo thì nổi ma trận A chéo hoá được và nối ma trận P làm chéo hoá ma trận A.

Như vậy A chéo hoá được nếu nó đồng dạng với một ma trận chéo.

Ta phải trả lời hai câu hỏi: 1) ma trận có điều kiện gì thì chéo hoá được và 2) ma trận P làm chéo hoá ma trân ấy xác định như thế nào?

7.3.4. Giải bài toán chéo hoá ma trân

Định lị 7.3.1. Giả sử A là ma trận vuông cấp n. Điều kiện cần và đủ để A chéo hoá được là nó có n vectơ riêng độc lập tuyến tính.

Chứng minh : a) Giả sử A chéo hoá được, nghĩa là tồn tại một ma trần khả đảo P:

$$P = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2n} \\ p_{n1} & p_{n2} & \dots & p_{nn} \end{bmatrix},$$

sao cho $P^{-1}AP = D$, trong đó

$$D = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}.$$

Ta suy ra

$$AP = PD$$

Gọi p_1 , p_2 , ..., p_n là các vectơ cột của P, ta thấy các cột liên tiếp của AP là Ap_1 , Ap_2 , ..., Ap_n . Đồng thời

$$PD = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2n} \\ \dots & \dots & \dots & \dots \\ p_{n1} & p_{n2} & \dots & p_{nn} \end{bmatrix} \begin{bmatrix} \lambda_1 & & & & \\ \lambda_2 & & & \\ & \ddots & & & \\ & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 p_{11} & \lambda_2 P_{12} & \dots & \lambda_n p_{1n} \\ \lambda_1 p_{21} & \lambda_2 p_{22} & \dots & \lambda_n p_{2n} \\ \dots & & & & \\ \lambda_1 p_{n1} & \lambda_2 p_{n2} & \dots & \lambda_n p_{nm} \end{bmatrix}$$

Vây phương trình AP = PD ở trên cho

$$Ap_1 = \lambda_1 p_1, Ap_2 = \lambda_2 p_2, ..., Ap_n = \lambda_n p_n$$

Vì P khả đảo nên những vectơ cột $p_i \neq \theta$, do đó $\lambda_1, \lambda_2, ..., \lambda_n$ là các trị riêng của A và $p_1, p_2, ..., p_n$ là các vectơ riêng tương ứng.

Vì P khả đào nên $\det(P) \neq 0$ và các vecto $p_1, p_2, ..., p_n$ là độc lập tuyến tính.

Vậy khi A chéo hoá được thì nó có n vectơ riêng độc lập tuyến tính.

Chứng minh (b). Giả sử A có n vectơ riêng độc lập tuyến tính p_1 , p_2 , ..., p_n với các trị riêng tương ứng λ_1 , λ_2 , ..., λ_n và giả sử

$$P = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2n} \\ \dots & \dots & \dots & \dots \\ p_{n1} & p_{n2} & \dots & p_{nn} \end{bmatrix}$$

là ma trận mà các cột là $p_1, p_2, ..., p_n$.

Các cột của tích AP là Ap1, Ap2, ..., Apn

Nhưng $Ap_1 = \lambda_1 p_1$, $Ap_2 = \lambda_2 p_2$,..., $Ap_n = \lambda_n p_n$,

trong đó D là ma trận chéo có những trị riêng trên đường chéo chính. Vì những vectơ cột của P là độc lập tuyến tính, nên P khả đảo. Vậy phương trình AP = PD ở trên viết thành

$$P^{-1}AP = D.$$

Vậy khi A có n vectơ riêng độc lập tuyến tính thì A chéo hoá được. Từ chứng minh của định lí trên ta đi đến :

7.3.5. Quy trình chéo hoá một ma trận

 $Bu\acute{o}c\ I$. Tim n vecto riêng độc lập tuyến tính của A:

$$p_1, p_2, ..., p_n$$

Bước 2. Lập ma trận P có $p_1, p_2, ..., p_n$ là các cột.

Bước 3. Ma trận $P^{-1}AP$ sẽ là ma trận chéo với $\lambda_1, \lambda_2, ..., \lambda_n$ là các phản từ chéo liên tiếp, trong đó λ_i là trị riêng ứng p_i , i = 1, 2, ..., n.

Thí dụ 7.3.1. Tìm ma trận P làm chéo hoá ma trận

$$A = \begin{bmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

Giải: Từ thí dụ 7.1.4 các trị riêng của A là $\lambda = 5$ và $\lambda = 1$ đồng thời các vectơ riêng

$$p_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \text{ và } p_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ tạo nên cơ sở cho không gian riêng ứng trị}$$

riêng $\lambda = 5$, còn

$$p_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

là cơ sở cho không gian riêng ứng trị riêng $\lambda = 1$. Để kiểm tra để thấy $\{p_1, p_2, p_3\}$ độc lập tuyến tính, do đó

$$P = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

làm chéo hoá A:

$$P^{-1}AP = \begin{bmatrix} -1/2 & 1/2 & 0 \\ 0 & 0 & 1 \\ 1/2 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 1 \end{bmatrix}.$$

Thí du 7.3.2. Xét ma trận

$$A = \begin{bmatrix} -3 & 2 \\ -2 & 1 \end{bmatrix}$$

Phương trình đặc trưng của A là

$$\det(A - \lambda I) = \begin{vmatrix} -3 - \lambda & 2 \\ -2 & 1 - \lambda \end{vmatrix} = (\lambda + 1)^2 = 0.$$

Vậy $\lambda = -1$ là trị riêng duy nhất của A. Vectơ riêng ứng trị riêng $\lambda = -1$ là nghiệm của (A + I)x = 0 nghĩa là

$$\begin{cases} 2x_1 - 2x_2 = 0 \\ 2x_1 - 2x_2 = 0 \end{cases}$$

Những nghiệm của hệ này là $x_1 = t$, $x_2 = t$. Do đó không gian riêng gồm các vectơ

$$\begin{bmatrix} t \\ t \end{bmatrix} = t \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Vì không gian này là một chiều, nên A không có hai vectơ riêng độc lập tuyến tính, do đó không chéo hoá được.

Thi du 7.3.3. Cho $T: \mathbb{R}^3 \to \mathbb{R}^3$ là một toán từ tuyến tính xác dịnh

bởi
$$T \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3x_1 - 2x_2 \\ -2x_1 + 3x_2 \\ 5x_3 \end{bmatrix}$$

Hãy tìm một cơ sở trong \mathbb{R}^3 trong đó ma trận của T là ma trận chéo.

Giải: Nếu $B = \{e_1, e_2, e_3\}$ là cơ sở chính tắc trong \mathbb{R}^3 thì

$$T(e_1) = T \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ 0 \end{bmatrix}, \ T(e_2) = T \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \\ 0 \end{bmatrix}, \ T(e_3) = T \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$$

nên ma trần chính tắc của T là

$$A = \begin{bmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

Bây giờ ta muốn thay đổi cơ sở từ cơ sở chính tắc B sang cơ sở mới $B' = \{u_1, u_2, u_3\}$ để được một ma trận chéo A' cho T.

Nếu gọi P là ma trận chuyển cơ sở từ cơ sở B sang cơ sở chưa biết B' thì theo định lí 6.4.1, A và A' có liên hệ

$$A' = P^{-1}AP.$$

Nói cách khác : Ma trận chuyển cơ sở P làm chéo hoá A. Ta đã tìm ra P ở thí dụ 7.3.1. :

$$P = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \text{ và } A' = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Vì P là ma trận chuyển cơ sở từ $B = \{e_1, e_2, e_3\}$ sang $B' = \{u_1, u_2, u_3\}$ nên các cột của P là $[u_1]_B$, $[u_2]_B$, $[u_3]_B$, cho nên

$$[u_1]_B = \begin{bmatrix} -1\\1\\0 \end{bmatrix}, [u_2]_B = \begin{bmatrix} 0\\0\\1 \end{bmatrix}, [u_3]_B = \begin{bmatrix} 1\\1\\0 \end{bmatrix}.$$

$$u_1 = (-1)e_1 + (1)e_2 + (0)e_3 = \begin{bmatrix} -1\\1\\0 \end{bmatrix}$$

$$u_2 = (0)e_1 + (0)e_2 + (1)e_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

$$u_3 = (1)e_1 + (1)e_2 + (0)e_3 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$$

là những vectơ cơ sở tạo nên ma trận chéo A' của T.

7.3.6. Chéo hoá ma trận có n trị riêng khác nhau

Định lí 7.3.2. Nếu ma trận A cấp n có n trị riêng khác nhau thì A chéo hoá được.

Chứng minh: Dựa vào định lí 7.3.1, ta chỉ cần chứng minh rằng ma trận A có n vectơ riêng độc lập tuyến tính. Giả sử các trị riêng và vectơ riêng tương ứng của A là λ_i và u_i , i=1,2,...,n. Đặt $S=\{u_1,u_2,...,u_n\}$ và gọi r là hạng của S. Ta đánh số lại các vectơ riêng và trị riêng nếu cần để có r vectơ riêng đầu là độc lập tuyến tính. Nếu r < n thì $\{u_1,...,u_r,u_{r+1}\}$ là phụ thuộc tuyến tính:

$$u_{r+1} = c_1 u_1 + c_2 u_2 + ... + c_r u_r$$

Nhân hai vế với A và chú ý rằng $Au_i = \lambda_i u_i$ ta có

$$\lambda_{r+1}u_{r+1} = c_1\lambda_1u_1 + c_2\lambda_2u_2 + ... + c_r\lambda_ru_r$$

Ta suy ra

$$c_1(\lambda_{r+1}-\lambda_1)u_1+c_2(\lambda_{r+1}-\lambda_2)u_2+...+c_r(\lambda_{r+1}-\lambda_r)u_r=0.$$

 $Vi u_1, u_2, ..., u_r$ độc lập tuyến tính và vì

$$\lambda_{r+1} - \lambda_1 \neq 0, \ \lambda_{r+1} - \lambda_2 \neq 0, ..., \ \lambda_{r+1} - \lambda_r \neq 0$$

nên $c_1 = 0$, $c_2 = 0$, ..., $c_r = 0$. Vậy $u_{r+1} = \theta$, điều đó trái giả thiết u_{r+1} là vectơ riêng. Do đó r không thể nhỏ hơn n, nghĩa là có r = n. Nói cách khác ma trận A có n vectơ riêng độc lập tuyến tính.

Thí du 7.3.4. Ma trân

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

có ba tri riêng khác nhau

$$\lambda_1 = 4, \lambda_2 = 2 + \sqrt{3}, \lambda_3 = 2 - \sqrt{3}$$

(bạn đọc có thể kiểm tra lại).

Do đó tồn tại ma trận khả đảo P để

$$P^{-1}AP = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 + \sqrt{3} & 0 \\ 0 & 0 & 2 - \sqrt{3} \end{bmatrix}$$

BÀI TẬP 7.4 - 7.10.

9

7.4. VẤN ĐỀ CHÉO HOÁ TRỰC GIAO

7.4.1. Mở đầu

Trong phần này ta sẽ tìm lời giải đặp cho bài toán 2b đề ra ở 7.3.1 và 7.3.2. Câu trả lời liên quan đến một lớp ma trận rất quan trọng là ma trận đối xứng.

Trước hết ta nhấc lại khái niệm ma trận trực giao. Ma trận vuông A gọi là ma trận trực giao nếu $A^{t}A = I$.

7.4.2. Khái niệm chéo hoá trực giao

Định nghĩa 7.4.1. Cho ma trận vuông A. Nếu tồn tại ma trận trực giao P sao cho P AP là ma trận chéo thì nói A là chéo hoá trực giao được và P là ma trận làm chéo hoá trực giao ma trận A.

Ta phải trả lời hai câu hỏi : 1) Những ma trận thế nào thì chéo hoá trực giao được ? 2) Ma trận P thực hiện quá trình chéo hoá trực giao đó là ma trận nào ?

7.4.3. Giải bài toán chéo hoá trực giao

Định lí 7.4.1. Giả sử A là ma trận vuông cấp n. Điều kiện cấn và đủ để A chéo hoá trực giao được là A có n vectơ riêng trực chuẩn.

Chứng minh: a) Giả sử A chéo hoá trực giao được. Khi đó có một ma trận trực giao P sao cho $P^{-1}AP$ là ma trận chéo. Như trong chứng minh định lí 7.3.1 đã chỉ rõ, n vectơ cột của P là các vectơ riêng của A. Vì P trực giao, nên có thể xem các vectơ đó là trực chuẩn, do đó A có n vectơ riêng trực chuẩn.

b) Giả sử A có n vectơ riêng trực chuẩn

$$\{p_1, p_2, ..., p_n\}.$$

Như trong chứng minh dịnh lí 7.3.1 đã chỉ rõ, ma trận P nhận các vectơ riêng đó làm các cột sẽ chéo hoá ma trận A. Vì những vectơ riêng này là trực chuẩn nên P là trực giao. Vậy P chéo hoá trực giao A.

7.4.4. Chéo hoá trực giao các ma trần đối xứng

Định lí 7.4.2. Xét ma trận vường A cấp n. Điều kiện cần và đủ để ma trận A chéo hoá trực giao được là A đối xứng.

Chứng minh: Chứng minh dịnh lí 7.4.1 chứng tỏ rằng một ma trận cấp n chéo hoá trực giao được sẽ chéo hoá trực giao được bởi một ma trận P cấp n mà các cột được tạo nên bởi họ trực chuẩn các vectơ riêng của A. Gọi D là ma trận

$$D = P^{-1}AP$$

thì

$$A = PDP^{-1}.$$

Nhưng vì P là trực giao nên

$$A = PDP^{I}$$
.

Do đó

$$A' = (PDP')^t = (P')^t D^t P' = PD^t P' = PDP^t = A$$

Vây $A^1 = A$, nghĩa là A là ma trân đối xứng.

Phần ngược lại suy từ định lí 7.1.3 và 7.3.1.

7.4.5. Thém một số tính chất của trị riêng của ma trận đối xứng

Vì ma trận đối xứng A chéo hoá trực giao được nên tồn tại ma trận trực giao P để

$$P^{-1}AP = D$$

trong đó D là ma trận chéo các trị riêng của A. Vậy A và D có các trị riêng trùng nhau với cùng một số vectơ riêng độc lập tuyến tính ứng mỗi trị riêng. Do đó có kết quả:

Định lí 7.4.3. Nếu ma trận vuông A đối xứng thì các vectơ riêng thuộc những không gian riêng khác nhau sẽ trực giao theo tích vô hướng Euclid trong \mathbf{R}^n .

Chứng mình : Giả sử λ và μ là hai trị riêng khác nhau của A, đồng thời ν thuộc không gian riêng ứng λ và w thuộc không gian riêng ứng μ . Ta có

$$Av = \lambda v, Aw = \mu w, \lambda \neq \mu$$

 $v = (v_1, v_2, ..., v_n) \in \mathbb{R}^n, w = (w_1, w_2, ..., w_n) \in \mathbb{R}^n.$

Theo định nghĩa 5.7.2 về tích võ hướng Euclid trong \mathbb{R}^n

$$\langle v, w \rangle := v_1 w_1 + v_2 w_2 + ... + v_n w_n = [v]^t [w].$$

Ta phải chứng minh $\langle v, w \rangle = 0$. Ta có

$$\lambda < v, w > = < \lambda v, w > = < Av, w > = [Av]^t [w]$$

= $(A[v])^t [w] = [v]^t A^t [w] = [v]^t A[w]$
= $< v, Aw > = < v, \mu w > = \mu < v, w >$.

Do đó:

$$(\lambda - \mu) < v, w > 0$$

Nhưng theo giả thiết $\lambda \neq \mu$ nên đẳng thức này buộc $\langle w, v \rangle = 0$, nghĩa là v và w trực giao theo tích vô hướng Euclid.

Ngoài ra ta còn có

Định H 7.4.4. Nếu ma trạn A đối xứng thì số bội hình học của mỗi trị riêng bằng số bội đại số của nó,

nghĩa là : nếu trị riêng à là nghiệm bội m của phương trình đặc trưng của A thì ứng với à có đủ m vectơ riêng độc lập tuyến tính,

nói cách khác : không gian riêng ứng λ có số chiếu đúng bằng m. Ta suy ta

7.4.6. Quy trình chéo hoá trực giao các ma trận đối xứng

 $Bu\acute{\sigma}c$ I. Tìm một cơ sở cho mỗi không gian riêng của ma trận đối xứng A.

Bước 2. Áp dụng quá trình trực giao hoá của Gram - Smidt vào mỗi cơ sở đó để được một cơ sở trực chuẩn cho mỗi không gian riêng.

Bước 3. Lập ma trận P mà các cột là các vectơ cơ sở xây dựng ở bước. 2. Ma trận P này sẽ làm chéo hoá trực giao ma trận A.

Thí dụ 7.4.1. Hãy tìm ma trận trực giao P làm chéo hoá ma trận

$$A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix}$$

Giải: Trước hết ta nhận xét ngay rằng ma trận A này đối xứng. Phương trình đặc tr**ưng** của A là

$$\det (A - \lambda I) = \begin{vmatrix} 4 - \lambda & 2 & 2 \\ 2 & 4 - \lambda & 2 \\ 2 & 2 & 4 - \lambda \end{vmatrix} = (\lambda - 2)^2 (8 - \lambda) = 0.$$

Dùng phương pháp ở thí dụ 7.1.4 ta tìm được cơ sở của không gian riêng ứng $\lambda=2$ là

$$u_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \text{ và } u_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

Áp dụng quá trình trực giao hoá Gram – Smidt vào $\{u_1, u_2\}$ ta được những vectơ riêng trực chuẩn ứng $\lambda = 2$

$$v_1 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix} \text{ và } v_2 = \begin{bmatrix} -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{bmatrix}$$

Không gian riêng ứng $\lambda = 8$ là

$$u_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Chuẩn hoá nó ta được

$$v_3 = \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}$$

Cuối cùng ta lấy v_1 , v_2 , v_3 làm các cột cho P ta được

$$P = \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}.$$

Ma trận P này sẽ làm chéo hoá ma trận A.

BÀI TÂP: 7.11, 7.12.

7.5. PHU LUC

7.5.1. Chứng minh định lí 7.1.3

Toán tử tự liên hợp

Sau đây khi T là một toán từ tuyến tính thì viết T(x) hay Tx ta hiểu là cùng một nghĩa.

Định nghĩa 7.5.1. Toán tử tuyến tính T trong không gian Euclid thực n chiều V_n gọi là tự liên hợp nếu

$$\langle Tx, y \rangle = \langle x, Ty \rangle \quad \forall x, y \in V_n$$

Giả sử $B = \{e_1, e_2, \dots, e_n\}$ là một cơ sở trực chuẩn của V_n và

$$x = x_1e_1 + x_2e_2 + ... + x_ne_n$$
, $y = y_1e_1 + y_2e_2 + ... + y_ne_n$.

Gọi $A = \{a_{ij}\}$ là ma trận của T trong cơ sở B.

Dinh ll 7.5.1.

$$\langle Tx, y \rangle = \langle x, Ty \rangle \Leftrightarrow A^t = A$$

Chứng minh.

Nếu T tự liên hợp thì

$$< Te_i, e_j > = < e_i, Te_j > \forall i, j.$$

Nhưng theo công thức (6.3.6) thì

$$\langle Te_i, e_j \rangle = \langle e_j, Te_i \rangle = a_{ji}, \langle e_i, Te_j \rangle = a_{ij}.$$

 $V_{A}^{A}y A' = A.$

Ngược lại giả sử $A^t = A$ nghĩa là $a_{ij} \approx a_{ji} \, \forall i, j$. Ta có

$$\langle Tx, y \rangle = \langle T \left[\sum_{i=1}^{n} x_{i} e_{i} \right], \sum_{j=1}^{n} y_{j} e_{j} \rangle = \sum_{i,j=1}^{n} x_{i} y_{j} \langle Te_{i}, e_{j} \rangle =$$

$$= \sum_{i,j=1}^{n} x_{i} y_{j} \langle e_{j}, Te_{i} \rangle = \sum_{i,j=1}^{n} x_{i} y_{j} a_{ji}$$

$$\langle x, Ty \rangle = \langle \sum_{i=1}^{n} x_{i} e_{i}, T \left[\sum_{j=1}^{n} y_{j} e_{j} \right] \rangle = \sum_{i,j=1}^{n} x_{i} y_{j} \langle e_{i}, Te_{j} \rangle =$$

$$= \sum_{i,j=1}^{n} x_{i} y_{j} a_{ij} .$$

 $V_{Ay} < Tx, y > = < x, Ty > \forall x, y \in V \Rightarrow T \text{ tự liên hợp.}$

Định lí 7.5.2. Nếu T là toán từ tự liên hợp trên không gian Euclid m chiếu $V_{\mathbf{m}}$ ($m \ge I$) thì T có ít nhất một trị riêng thực, nghĩa là tón tại $\lambda \in \mathbb{R}$ và $w \in V_{\mathbf{m}}$, $w \ne \theta$ để $Tw = \lambda w$.

Chứng minh.

Giả sử $B = \{y_1, y_2, ..., y_m\}$ là một cơ sở trực chuẩn của V_m , $C = [c_{ij}] = \{\langle y_i, Ty_i \rangle\}$ là ma trận của T trong cơ sở B.

Theo dịnh lí 2.6.2 C có ít nhất một trị riêng. Vì T tự liên hợp nên theo định lí 7.5.1 ma trận C đối xứng. Do đó, kết hợp với định lí 7.1.2 ta suy ra C có trị riêng thực $\lambda \in \mathbf{R}$ và vectơ riêng thực $\mathbf{v} = (v_1, v_2, ..., v_m) \in \mathbf{R}^m$

Khi dó

0,0

$$Tw = \lambda w$$
, với $w = v_1 y_1 + v_2 y_2 + ... + v_m y_m \in V_m$.

Định lí 7.5.3. Nếu T là toán từ tự liên hợp trên không gian Euclid n chiếu V_n ($n \ge 1$) thì T có n trị riêng thực và n vectơ riêng trực chuẩn.

Chứng minh.

Vì T tự liên hợp trên $V_{\rm n}$ nên theo định lí 7.5.2 tổn tại $\lambda_1 \in R$ và $v_1 \in V_n$ để

$$Tv_1 = \lambda_1 v_1, \quad ||v_1|| = 1.$$

Đặt

$$M_1 = \operatorname{Span}\{v_1\}, N_1 = \{v | v \in V_n, \langle v_1, v \rangle = 0\}$$

thì N_1 là phần bù trực giao của M_1 . Nó là một không gian con của V_n . Ta có $\dim(M_1) = 1$, $\dim(N_1) = n - 1$.

Nếu n=1 thì $\dim(N_1)=0$; $V_n=V_1$; $\{v_1\}$ là một cơ sở của $M_1=V_1$ và do đó định lí được chứng minh.

Xét trường hợp n > 1. Khi đó dim $(N_1) \neq 0$. Nếu $y \in N_1$ thì $< v_1, y > = 0$ và theo định lí 7.5.1 ta có

$$\langle Ty, v_1 \rangle = \langle y, Tv_1 \rangle = \langle y, \lambda_1 v_1 \rangle = \lambda_1 \langle y, v_1 \rangle = 0 \Rightarrow Ty \in N_1.$$

Vậy N_1 là không gian con của V_n và T là toán tử tự liên hợp trên N_1 . Do đó tồn tại $\lambda_2 \in \mathbb{R}$ và $v_2 \in N_1 \subset V_n$ để

$$Tv_2 = \lambda_2 v_2$$
, $||v_2|| = 1$, $\langle v_1, v_2 \rangle = 0$.

Toàn bộ lập luận trên có thể làm lại cho $M_2 = \operatorname{Span}\{v_1, v_2\}$ thay cho M_1 và $N_2 = \{v | \langle v_1, v \rangle = 0, \langle v_2, v \rangle = 0\}$ thay cho N_1 , v.v. Vì $\dim(N_2) = \dim(N_1) - 1 = (n-1) - 1 = n-2$, v.v., nên đến lần thứ n thì $\dim(N_n) = n - n = 0$ ta dùng lại và được n vecto riêng trực chuẩn của T.

Dịnh lí 7.1.3. Mỗi ma trận A đối xứng cấp n có n trị riêng thực và n vect σ riêng trực chuẩn trong \mathbb{R}^n .

Chứng minh. Gọi T là toán tử tuyến tính trên không gian Euclid $V_n = \mathbf{R}^n$ xác định bởi ma trận A. Vì A đối xứng nên theo định ií 7.5.1 T tự liên hợp. Do đó theo định lí 7.5.3 T có n trị riêng thực λ_i và n vectơ riêng v_i trực chuẩn trong $V_n = \mathbf{R}^n$:

$$Tv_i = \lambda_i v_i$$

Ta suy ra : A con tri rieng thực và <math>n vecto rieng trực chuẩn trong \mathbb{R}^n .

TÓM TẮT CHƯƠNG VII

Trị riêng và vectơ riêng của ma trận

Cho ma trân vuông A cấp n

Số λ gọi là trị riêng của A nếu phương trình

$$Ax = \lambda x$$
, $x \in \mathbb{R}^n$

có nghiệm không tầm thường ; vectơ nghiệm khác θ này gọi là vectơ riêng ứng trị riêng λ .

Để tìm các trị riêng của A ta có phương trình

$$\det(A - \lambda I) = 0$$

gọi là phương trình đặc trưng của A.

Khi đã tìm ra trị riêng λ thì vecto riêng tương ứng là nghiệm không tầm thường của hệ thuầu nhất

$$(A - \lambda I)x = 0.$$

Trị riêng và vectơ riêng của toán từ tuyến tính

V là một không gian vectơ

 $T: V \rightarrow V$ là một toán tử tuyến tính trên V

$$Tv = \lambda v, v \in V$$

có nghiệm $v \neq \theta$; nghiệm $v \neq \theta$ gọi là vectơ riêng ứng tri riêng λ .

Muốn tìm trị riêng và vectơ riêng của T, ta chọn trong V một cơ sở xác định B, xây dựng ma trận A của T đối với cơ sở B đó, tìm trị riêng của ma trần A, đó chính là tri riêng của T. Còn biểu thức của vectợ riêng thì phu thuộc cơ sở B đã chon.

Chú ý rằng khi đổi cơ sở từ B thành B' thì ma trận của ánh xa Tđối với cơ sở mới B' sẽ thành A' và $A' \neq A$, nhưng vì A' đồng dang với A nên trì riêng không thay đổi.

Chéo hoá ma trân

Cho ma trân vuông A cấp n. Nếu tồn tại ma trân P khả đảo cấp nsao cho $P^{-1}AP = D$ là ma trận chéo thì nói ma trận A chéo hoá được và P làm chéo hoá A.

Điều kiện cần và dủ để A chéo hoá được là A có n vecto riêng độc lập tuyến tính.

Điều kiện dù để A chéo hoá được là A có n trị riêng khác nhau.

Cho ma trận vường A cấp n. Nếu tồn tại ma trận trực giao $P(P^{\dagger}P=I)$ sao cho $P^{-1}AP = D$ là ma trân chéo thì nói A chéo hoá trực giao được và P làm chéo hoá trực giao A.

Điều kiên cần và đủ để A chéo hoá trực giao được là A có n vectơ riêng trực chuẩn.

Điều kiên cần và đủ để A chéo hoá trực giao được là A là ma trắn đối xứng.

BÀI TẬP CHƯƠNG VII

7.1. Tìm các trị riêng và cơ sở của không gian riêng của các ma trân sau :

1)
$$\begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$

$$2) \begin{bmatrix} 10 & -9 \\ 4 & -2 \end{bmatrix} \qquad \qquad 3) \begin{bmatrix} 0 & 3 \\ 4 & 0 \end{bmatrix}$$

$$3) \begin{bmatrix} 0 & 3 \\ 4 & 0 \end{bmatrix}$$

4)
$$\begin{bmatrix} -2 & -7 \\ 1 & 2 \end{bmatrix}$$

5)
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$6)\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}$$

$$\begin{array}{c|cccc}
0 & 1 & 0 \\
-4 & 4 & 0 \\
-2 & 1 & 2
\end{array}$$

$$9)\begin{bmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{bmatrix}$$

$$\begin{bmatrix}
4 & -5 & 7 \\
1 & -4 & 9 \\
-4 & 0 & 5
\end{bmatrix}$$

16)
$$\begin{bmatrix} 3 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 3 & 0 & 5 & -3 \\ 4 & -1 & 3 & -1 \end{bmatrix}$$

7.2. Cho $T: P_2 \rightarrow P_2$ xác định bởi

$$T(a_o + a_1x + a_2x^2) =$$

$$(5a_o + 6a_1 + 2a_2) - (a_1 + 8a_2)x + (a_o - 2a_2)x^2$$

- (a) Tîm các trị riêng của T.
- (b) Tìm cơ sở của không gian riêng của T.
- 7.3. Chứng minh rằng $\lambda = 0$ là trị riêng của ma trận A khi và chỉ khi A suy biến.
 - 7.4. Chứng minh rằng các ma trận sau không chéo hoá được.

1)
$$\begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}$$

$$2)\begin{bmatrix}2 & -3\\1 & -1\end{bmatrix}$$

$$3) \begin{vmatrix} 3 & 0 \\ 0 & 2 \end{vmatrix}$$

1)
$$\begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}$$
 2) $\begin{bmatrix} 2 & -3 \\ 1 & -1 \end{bmatrix}$ 3) $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}$ 4) $\begin{bmatrix} -1 & 0 & 1 \\ -1 & 3 & 0 \\ -4 & 13 & -1 \end{bmatrix}$

7.5. Tìm ma trận P làm chéo hoá A và xác đình $P^{-1}AP$

1)
$$A = \begin{bmatrix} -14 & 12 \\ -20 & 17 \end{bmatrix}$$

$$2) A = \begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$$

3)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

7.6. Hòi ma trận A dưới đây có chéo hoá được không. Nếu được thì tìm ma trận P làm chéo hoá A và xác định $P^{-1}AP$.

1)
$$A = \begin{bmatrix} 19 & -9 & -6 \\ 25 & -11 & -9 \\ 12 & -9 & 4 \end{bmatrix}$$
 2) $A = \begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ 3 & 1 & 2 \end{bmatrix}$

$$2) A = \begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix}$$

3)
$$A = \begin{bmatrix} 5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5 \end{bmatrix}$$

$$A) A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$

$$5) A = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

$$6) A = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 5 & -5 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$

7.7. Cho $T: \mathbb{R}^2 \to \mathbb{R}^2$ là toán tử tuyến tính

$$T(x_1,x_2) = (3x_1 + 4x_2, 2x_1 + x_2).$$

Hãy tìm một cơ sở của \mathbb{R}^2 trong đó ma trận của T có đạng chéo.

7.8. Cho $T: \mathbb{R}^3 \to \mathbb{R}^3$ là toán tử tuyến tính

$$T(x_1,x_2,x_3)=(2x_1-x_2-x_3,x_1-x_3,-x_1+x_2+2x_3).$$

Hãy tìm một cơ sở của \mathbb{R}^3 trong đó ma trận của T có đạng chéo.

7.9. Cho
$$A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$$

Hāy tính A^{10} .

7.10. Cho
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Chứng minh:

- (a) A chéo hoá được nếu $(a-d)^2 + 4bc > 0$.
- (b) A không chéo hoá được nếu $(a-d)^2 + 4bc < 0$.
- 7.11. Tìm ma trận P làm chéo hoá trực giao A và xác định $P^{-1}AP$:

$$1) \ A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

2)
$$A = \begin{bmatrix} 5 & 3\sqrt{3} \\ 3\sqrt{3} & -1 \end{bmatrix}$$

3)
$$A = \begin{bmatrix} -7 & 24 \\ 24 & 7 \end{bmatrix}$$

$$4) A =
 \begin{cases}
 -2 & 0 & -36 \\
 0 & -3 & 0 \\
 -36 & 0 & -23
 \end{cases}$$

$$5) \ A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

6)
$$A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

8)
$$A = \begin{bmatrix} 5 & -2 & 0 & 0 \\ -2 & 2 & 0 & 0 \\ 0 & 0 & 5 & -2 \\ 0 & 0 & -2 & 2 \end{bmatrix}$$

7.12. Tìm ma trận làm chéo hoá trực giao

$$A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}, \qquad b \neq 0.$$

ĐÁP SỐ

7.1. 1)
$$\lambda = 3$$
, (1/2, 1); $\lambda = -1$, (0, 1)

2)
$$\lambda = 4$$
, (3/2, 1)

3)
$$\lambda = \sqrt{12}$$
, $(3/\sqrt{12}, 1)$; $\lambda = -\sqrt{12}$, $(-3/\sqrt{12}, 1)$

- 4) Không có trị riêng thực. Không có không gian riêng.
- 5) $\lambda = 0$, (1, 0) và (0, 1)
- 6) $\lambda = 1$, (1, 0) và (0, 1)
- 7) $\lambda = -1$, (0, 1, -1)
- 8) $\lambda_1 = \lambda_2 = \lambda_3 = 2$ (1, 2, 0), (0, 0, 1)
- 9) $\lambda_1 = 1, (1, 1, 1)$.

$$\lambda_2 = \lambda_3 = 0, (1, 2, 3)$$

- 10) $\lambda_1 = \lambda_2 = \lambda_3 = 1$, (3, 1, 1)
- 11) $\lambda_1 = 3$, (1, 2, 2)

$$\lambda_2 = \lambda_3 = -1, (1, 2, 1)$$

12) $\lambda_1 = \lambda_2 = 1, (2, 1, 0), (-1, 0, 1)$

$$\lambda_3 = -1, (3, 5, 6)$$

13) $\lambda_1 = 1, (1, 2, 1)$

$$\lambda_2 = 2 + 3i, (3 - 3i, 5 - 3i, 4)$$

$$\lambda_3 = 2 - 3i, (3 + 3i, 5 + 3i, 4)$$

14) $\lambda_1 = \lambda_2 = 1, (0, 0, 0, 1)$

$$\lambda_3 = \lambda_4 = 0$$
, (0, 1, 0, 0), (0, 0, 1, 0)

15)
$$\lambda_1 = \lambda_2 = 1, (1, 0, 1, 0), (0, 0, 0, 1)$$

$$\lambda_3 = \lambda_4 = 0, (0, 1, 0, 0), (0, 0, 1, 0)$$

16)
$$\lambda = 2$$
, (1, 1, -1, 0), (1, 1, 0, 1).
7.2, a) $\lambda = -4$, $\lambda = 3$

b)
$$\lambda = -4 : -2 + \frac{8}{3}x + x^2$$

$$\lambda = 3: 5-2x+x^2.$$

7.5. 1)
$$P = \begin{bmatrix} 4/5 & 3/4 \\ 1 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} 1/3 & 0 \\ 1 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} 1/3 & 0 \\ 1 & 1 \end{bmatrix}$$

 $P^{-1}AP = \begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix}$

 $P^{-1}AP = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

3)
$$P = \begin{bmatrix} 0 & \mathbf{1} & 0 \\ 1 & 0 & \mathbf{1} \\ -1 & 0 & \mathbf{1} \end{bmatrix}$$
 $P^{-1}AP = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 \\ 0 & 0 & 2 \end{bmatrix}$

4)
$$P = \begin{bmatrix} -2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 $P^{-1}AP = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

2)
$$P = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$
 $P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

4)
$$P = \begin{bmatrix} -1/3 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
 $P^{-1}AP = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

6)
$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
 $P^{-1}AP = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 3 & 0 \end{bmatrix}$

7.8.
$$(1, 1, -1)$$
, $(1, 0, 1)$, $(1, 1, 0)$

7.9.
$$\begin{bmatrix} 1 & 0 \\ -1023 & 1024 \end{bmatrix}$$

7.11. 1)
$$P = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$
 $P^{-1}AP = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$

2)
$$P = \begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix}$$
 $P^{-1}AP = \begin{bmatrix} 8 & 0 \\ 0 & -4 \end{bmatrix}$

3)
$$P = \begin{bmatrix} 3/5 & -4/5 \\ 4/5 & 3/5 \end{bmatrix}$$
 $P^{-1}AP = \begin{bmatrix} 25 & 0 \\ 0 & -25 \end{bmatrix}$

4)
$$P = \begin{bmatrix} -4/5 & 0 & 3/5 \\ 0 & 1 & 0 \\ 3/5 & 0 & 4/5 \end{bmatrix}$$
 $P^{-1}AP = \begin{bmatrix} 25 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -50 \end{bmatrix}$

5)
$$\begin{vmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

6)
$$\begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{6} & 1/\sqrt{2} \\ 1/\sqrt{3} & -2/\sqrt{6} & 0 \\ 1/\sqrt{3} & 1/\sqrt{6} & -1/\sqrt{2} \end{bmatrix}$$

7)
$$\begin{bmatrix} 0 & 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

8)
$$\begin{bmatrix} 1/\sqrt{5} & 0 & -2/\sqrt{5} & 0\\ 2/\sqrt{5} & 0 & 1/\sqrt{5} & 0\\ 0 & 1/\sqrt{5} & 0 & -2/\sqrt{5}\\ 0 & 2/\sqrt{5} & 0 & 1/\sqrt{5} \end{bmatrix}$$

Chuong VIII

DANG TOÀN PHƯƠNG

8.1. DANG TUYẾN TÍNH TRÊN KHÔNG GIAN VECTƠ V

V là một không gian vectơ, \mathbf{R} là trường các số thực.

Định nghĩa 8.1.1. Một ánh xạ $f: V - \mathbf{R}$ gọi là một dạng tuyến tính trên V nếu

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$
 $x, y \in V$ $\alpha, \beta \in \mathbb{R}$

Ta cũng nó f(x) tuyến tính đối với $x \in V$.

Thí du 8.1.1.

Tích phân

$$J(u) := \int_a^b u(t)dt, \quad u \in C[a,b]$$

là một dạng tuyến tính trên V = C[a, b].

v := ax, a = const là một dạng tuyến tính trên $V = \mathbf{R}$;

 ω : = ax + b, a = const, b = const khác 0 không phải là một dạng tuyến tính trên $V = \mathbb{R}$.

Để nghị bạn đọc kiểm tra lại.

8.2. DANG SONG TUYẾN TRÊN KHÔNG GIAN VECTƠ V

8.2.1. Dạng song tuyến

Định nghĩa 8.2.1. Ánh xạ $\varphi: V \times V \to \mathbb{R}$ gọi là một dạng song tuyến trên V nếu nó tuyến tính đối với x khi y cổ định và tuyến tính đối với y khi x cố định, tức là

 $\varphi(kx + hx', y) = k\varphi(x, y) + h\varphi(x', y), \forall x, x' \in V, y \in V, \forall k, h \in \mathbb{R}$ $\varphi(x, ky + hy') = k\varphi(x, y) + h\varphi(x, y'), x \in V, \forall y, y' \in V, \forall k, h \in \mathbb{R}$ Thi du 8.2.1. Tích phần

$$\varphi(u,v) := \int_a^b u(t)v(t)dt, \quad u,v \in C[a,b]$$
 (8.2.1)

là một dạng song tuyến trên V = C[a, b].

Thi du 8.2.2. Cho
$$x = (x_1, x_2) \in \mathbb{R}^2$$
, $y = (y_1, y_2) \in \mathbb{R}^2$. Hàm
$$\psi(x, y) := x_1 y_1 + x_1 y_2 + x_2 y_1 + x_2 y_2 \tag{8.2.2}$$

là một dạng song tuyến trên $V = \mathbf{R} \times \mathbf{R} = \mathbf{R}^2$.

Để nghi ban đọc kiểm tra lai.

8.2.2. Dạng song tuyến đối xứng

Định nghĩa 8.2.2. Dạng song tuyến $\varphi(x,y)$ trên V gọi là dạng song tuyên đối xứng nếu

$$\varphi(y, x) = \varphi(x, y) \ \forall x, y \in V.$$

Thí $d\mu$ 8.2.3. Các dạng song tuyến (8.2.1) và (8.2.2) là các dạng song tuyến đối xứng.

Tích vô hướng của hai vectơ trong một không gian vectơ là một dạng song tuyến đối xứng.

Đề nghị ban dọc kiểm tra lai.

8.3. DẠNG TOÀN PHƯƠNG TRÊN KHÔNG GIAN VECTƠ V

8.3.1. Định nghĩa

Định nghĩa 8.3.1. Khi dạng song tuyến $\varphi(x, y)$ đôi xứng thì biểu thúc thu được bằng cách thay y bởi x

$$\varphi(x, x) := \varphi(x, y) \Big|_{y = x}$$

goi là một dạng toàn phương trên V.

Lúc đó ta nói đạng song tuyến $\varphi(x, y)$ là đạng song tuyến gốc sinh ra đạng toàn phương $\varphi(x, x)$.

Thi du 8.3.1. Từ thí dụ 8.2.3 ta suy ra: Hàm

$$\varphi(u,u) = \int_a^b u^2(t)dt, \quad u \in C[a,b]$$

là một dạng toàn phương trên V = C[a, b] sinh bởi dạng song tuyến $\varphi(u, v)$ ở (8.2.1).

Phiém hàm

$$\psi(x,x) = x_1^2 + 2x_1x_2 + x_2^2, \quad (x_1,x_2) \in \mathbb{R}^2$$

là một đạng toàn phương trên $V = \mathbb{R}^2$ sinh bởi dạng song tuyến $\psi(x, y)$ ở (8.2.2).

8.3.2. Phán loại các dạng toàn phương

Ta nói dạng toàn phương $\psi(x, x)$

(i) xác định dương nếu

$$\psi(x,x) > 0 \quad \forall x \in V, x \neq 0$$
;

(ii) nửa xác định dương (hay xác định không âm) nếu

$$\psi(x, x) > 0 \quad \forall x \in V, x \neq 0$$
;

(iii) xác định âm nếu

$$\psi(x,x)<0 \qquad \forall x\in V,\,x\neq0\;;$$

(iv) nửa xác định âm (hay xác định không đương) nếu

$$\psi(x, x) < 0 \quad \forall x \in V, x \neq 0$$

(v) đấu không xác định nếu nó có thể dương cũng như âm. Thí dụ 8.3.2.

Dạng toàn phương $\int_a^b v^2(t)dt$ trên C[a, b] là dạng toàn phương xác dịnh dương ;

Dạng toàn phương $x_1^2 + 2x_2^2$ trên \mathbb{R}^2 là dạng toàn phương xác định dương;

Dạng toàn phương $x_1^2 + 2x_3^2$ trên \mathbb{R}^3 là dạng toàn phương nửa xác định dương;

Dạng toàn phương $x_1^2 - 2x_2^2$ trên \mathbb{R}^2 là dạng toàn phương đấu không xác định.

Để nghị bạn đọc kiểm tra lại.

8.4. DẠNG SONG TUYẾN VÀ DẠNG TOÀN PHƯƠNG TRÊN KHÔNG GIAN n CHIỀU

8.4.1. Dang song tuyến trên không gian n chiều

 $V = V_n$ là một không gian n chiều;

Giả sử $\psi(x, y)$ là một dạng song tuyến trên V_n .

Trong V_n ta chọn một cơ sở xác định :

$$S = \{e_1, e_2, ..., e_n\}$$

Khi đó $x, y \in V_n$ có biểu diễn

$$x = \sum_{i=1}^{n} x_i e_i$$
, $y = \sum_{i=1}^{n} y_i e_i$;

 $(x_1, x_2, ..., x_n)$ là toạ độ của x còn $(y_1, y_2, ..., y_n)$ là toạ độ của y trong cơ sở S.

Do đó

$$\psi(x, y) = \psi \left[\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j \right] = \sum_{i, j=1}^{n} \psi(e_i, e_j) x_i y_j.$$

Vậy $\psi(x, y)$ có biểu thức

$$\psi(x, y) = \sum_{i,j=1}^{n} a_{ij} x_i y_j, \qquad (8.4.1)$$

trong đó $a_{ij} = \psi(e_i, e_i)$ gọi là biểu thức toạ độ của ψ trong cơ sở S.

Ma trân

$$A = [a_{ij}] = [\psi(e_i, e_i)]$$
 (8.4.2)

gọi là ma trận của dạng song tuyến ψ trong cơ sở S.

Chú ý 8.4.1. Dạng ma trận của ψ.

Theo chú ý 6.1.2 chương 6 ta có

$$[x]_{S} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

Vậy có

$$\psi(x, y) = \sum_{i, j=1}^{n} a_{ij} x_i y_j \iff \psi(x, y) = [x]_S^t A[y]_S = [y]_S^t A[x]_S, \quad (8.4.3)$$

trong đó ma trận A xác định bởi (8.4.2).

Ta gọi (8.4.3) là biểu thức ma trận hay dạng ma trận của ψ trong cơ sở S.

Bây giờ cho n^2 số b_{ij} bất kì tức là cho ma trận $B=[b_{ij}]$ cấp n bất kì và xét phiếm hàm

$$\varphi(x, y) := \sum_{i, j=1}^{n} b_{ij} x_{i} y_{j} = [x]_{S}^{t} B[y]_{S} = [y]_{S}^{t} B[x]_{S}$$
 (8.4.4)

Hàm này tuyến tính đối với x khi giữ y cổ định và tuyến tính đối với y khi giữ x cổ định nên nó là một dạng song tuyến nhận B làm ma trận.

8.4.2. Dạng toàn phương trên không gian n chiều

Xét dạng song tuyến $\psi(x, y)$ có dạng (8.4.4) xác định bởi ma trận $B = [b_{ij}]$. Khí $b_{ji} = b_{ij}$, tức là khi ma trận B đối xứng thì theo định nghĩa 8.3.1

$$\varphi(x, x) = [x]_S^t B[x]_S = \sum_{i,j=1}^n b_{ij} x_i x_j$$

là một dạng toàn phương trong cơ sở S của không gian V_n .

Lúc này ma trận đối xứng B của dạng song tuyến trở thành ma trận của dạng toàn phương trong cơ sở S.

Như vậy, mọi dạng toàn phương dều là một hàm bậc hai đẳng cấp đối với các biến $x_1, x_2, ..., x_n$ với ma trận đối xứng.

Bây giờ xét hàm bậc hai đẳng cấp đối với $x_1, x_2, ..., x_n$ bất kì :

$$\varphi(x, x) = \sum_{i,j=1}^{n} b_{ij} x_i x_j$$

Khi đó

0,

$$\varphi(x, y) = \sum_{i, j=1}^{n} b_{ij} x_{i} y_{j} = \{x\}_{S}^{i} B[y]_{S}, \quad B = \{b_{ij}\}$$

là một dạng song tuyến.

Nếu B không đối xứng thì $\varphi(x, y)$ không đối xứng, cho nên $\varphi(x, x)$ đã cho không phải là một dạng toàn phương xác định bởi ma trận B.

Nhưng vì rõ ràng $x_i x_j = x_j x_i$ nên tạ có thể viết lại $\varphi(x, x)$:

$$\varphi(x, x) = \sum_{i,j=1}^{n} \frac{1}{2} (b_{ij} + b_{ji}) x_i x_j$$

Do đó nếu đặt

$$C = [c_{ij}] = \left[\frac{1}{2}(b_{ij} + b_{ji})\right]$$

thì $\varphi(x, x)$ có thể viết

$$\varphi(x, x) = \sum_{i,j=1}^{n} c_{ij} x_{i} x_{j} = [x]_{S}^{t} C[x]_{S}$$

đồng thời, ma trận C đối xứng. Vậy $\varphi(x, y) = [x]_S^t C[y]$ là đạng song tuyến đối xứng xác định bởi ma trận C và do đó $\varphi(x, x) = [x]_S^t C[x]_S$ là một đạng toàn phương xác định bởi ma trận C.

Như vậy mọi hàm bậc hai đẳng cấp đối với $x_1, x_2, ..., x_n$ bao giờ cũng có thể viết thành một dạng toàn phương đối với các biến đó trong cơ sở S.

8.4.3. Trường hợp riêng : $V_n = \mathbb{R}^n$.

Bây giờ xét $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ thì

$$x = x_1 f_1 + x_2 f_2 + ... + x_n f_n, \qquad f_i = (\underbrace{0, ..., 0}_{i-1}, 1, \underbrace{0, ..., 0}_{n-i})$$

Do đó $x_1, x_2, ..., x_n$ là toạ độ của x trong cơ sở chính tắc $F = \{f_1, f_2, ..., f_n\} \text{ của } \mathbf{R}^n.$

Vậy mọi hàm bậc hai đẳng cấp đối với các toạ độ $(x_1, x_2, ..., x_n) = x \in \mathbb{R}^n$.

$$\sum_{i,j=1}^{n} b_{ij} x_i x_j$$

với ma trận hệ số $B = [b_{ij}]$ là một dạng toàn phương với ma trận $C = [b_{ij} + b_{ji}] / 2]$ trong cơ sở chính tắc của \mathbf{R}^n .

Chú ý rằng cơ sở F là một cơ sở trực chuẩn theo tích vô hướng Euclid của \mathbb{R}^n .

8.5. RÚT GON DANG TOÀN PHƯƠNG

8.5.1. Dạng chính tác của dạng toàn phương trên không gian n chiếu

Biểu thức của dạng toàn phương trên V_n phụ thuộc cơ sở S. Thường nó chứa cà số hạng bình phương x_i^2 cả số hạng chéo $x_i x_j$.

Định nghĩa 8.5.1. Biểu thức của dạng toàn phương trong cơ sở S chỉ chứa các số hạng bình phương

$$\alpha_1 x_1^2 + \alpha_2 x_2^2 + ... + \alpha_n x_n^2$$

gọi là đạng chính tắc của nó trong cơ sở S.

Ma tran của dạng chính tắc này là ma trận chéo :

$$D = \begin{vmatrix} \alpha_1 & & & \\ & \alpha_2 & & \\ & & \ddots & \\ & & & \alpha_n \end{vmatrix}$$

Một dạng toàn phương ở dạng chính tắc có thể phân loại để dàng, chẳng hạn như nó xác định dương nếu tất cả các hệ số $\alpha_i > 0$.

8.5.2. Rút gọn dạng toàn phương

Giả sử V_n là một không gian n chiều và S là một cơ sở của nó. Xét trong cơ sở S dạng toàn phương

$$Q(x, x) = \sum_{i,j=1}^{n} a_{ij} x_i x_j = x^t A x, \qquad (8.5.1)$$

trong đó ma trận $A = [a_{ij}]$ là ma trận đối xứng. Rút gọn dạng toàn phương là đưa dạng toàn phương về dạng chính tắc bằng những

phép đổi biến tuyến tính thích hợp; điều đó tương đương với việc tìm một cơ sở mới trong đó dạng toàn phương chỉ chứa các số hạng bình phương.

8.5.3. Phương pháp đổi biến trực giao (hay phương pháp chéo hoá trực giao)

Giả sử V_n là một không gian có tích vô hướng và S là một cơ sở trực chuẩn của nó. Xét trong cơ sở S dạng toàn phương (8.5.1).

Muốn rút gọn dạng toàn phương (8.5.1) người ta đổi sang một cơ sở trực chuẩn mới $S' = \{e'_1, e'_2, ..., e'_n\}$ thích hợp.

Vì ma trận A đối xứng nên theo định lí 7.1.3 nó có n vectơ riêng trực chuẩn:

$$f_1, f_2, ..., f_n$$

ứng với n trị riêng

$$\lambda_1, \lambda_2, ..., \lambda_n$$

Chọn cơ sở mới là

$$S' = \{f_1, f_2, ..., f_n\}$$

và gọi P là ma trận chuyển cơ sở từ S sang S':

$$[x]_{S} = P[x]_{S'}.$$
 (8.5.2)

ره

Trong S' dạng toàn phương (8.5.1) trở thành

$$(P[x]_{S'})^t A(P[x]_{S'}) = ([x]_{S'})^t P^t AP[x]_{S'} = ([x]_{S'})^t A'[x]_{S'}.$$

Vì S và S' cùng trực chuẩn nên theo định lí 5.8.2 ta có

$$P^{t} = P^{-1} \Rightarrow A^{*} = P^{t} A P = P^{-1} A P = D = \begin{bmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \end{bmatrix}.$$

Vậy bằng phép đổi biến (8.5.2) đạng toàn phương (8.5.1) đã cho trong S sẽ có trong S' đạng sau :

$$\lambda_1(x'_1)^2 + \lambda_2(x'_2)^2 + \dots + \lambda_n(x'_n)^2$$
 (8.5.3)

Đó là dạng chính tắc trong cơ sở S' của dạng toàn phương đã cho.

Phép đổi biến (8.5.2) có ma trận chuyển cơ sở P là ma trận trực giao, cho nên phương pháp này gọi là phương pháp đổi biến trực giao.

Nó dựa vào quy trình chéo hoá trực giao ma trận đối xứng A nên người ta cũng gọi nó là phương pháp chéo hoá trực giao ma trận.

Váy có

Định lí 8.5.1. Mọi dạng toàn phương cho trong một cơ sở trực chuẩn có thể đưa về dạng chính tắc bằng một phép đổi biến trực giao.

Thí dụ 8.5.1. Xét dạng toàn phương trên \mathbb{R}^2 xác định bởi

$$Q(x, x) := 5x_1^2 - 4x_1x_2 + 8x_2^2$$
 (8.5.4)

trong cơ sở chính tắc

$$\{e_1, e_2\}, e_1 = (1, 0), e_2 = (0, 1)$$

Nó có ma trận đối xứng

$$A = \begin{bmatrix} 5 & -2 \\ -2 & 8 \end{bmatrix}$$

. Ma trận đối xứng này có hai trị riêng $\lambda_1 = 4$, $\lambda_2 = 9$ ứng với hai vectơ riêng trực chuẩn

$$v_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad v_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

tạo thành cơ sở trực chuẩn mới trong đó dạng toàn phương đã cho có dạng chính tắc đối với biến mới (ξ_1, ξ_2) :

$$Q = 4\xi_1^2 + 9\xi_2^2. (8.5.5)$$

Công thức đổi biến là

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 - 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}$$
 (8.5.6)

Sau đây là một hệ quả của (8.5.3):

Định lí 8.5.2. Q(x, x) là một dạng toàn phương trong cơ sở trực chuẩn của không gian Euclid n chiều với ma trận đối xứng A. Gọi λ_i , i = 1, 2, ..., n là các trị riêng của A. Khi đó dạng toàn phương sẽ

- (i) xác định dương khi và chỉ khi $\lambda_i > 0$ với $1 \le i \le n$
- (ii) nửa xác định đương khi và chỉ khi $\lambda_i \geq 0$ với $1 \leq i \leq n$;
- (iii) xác định âm khi và chỉ khi $\lambda_i < 0$ với $1 \le i \le n$;
- (iv) nửa xác định âm khi và chỉ khi $\lambda_i \leq 0$ với $1 \leq i \leq n$;
- (v) đầu không xác định khi và chỉ khi vừa có trị riêng đương vừa có trị riêng âm.

8.5.4. Phương pháp đổi biến tam giác hay phương pháp Jacobi

Xét dạng toàn phương Q(x, x) trên không gian n chiều V_n . Trong cơ sở cũ $S = \{e_1, e_2, ..., e_n\}$ nó có biểu thức

$$Q(x, x) = \sum_{i,j=1}^{n} a_{ij} x_{i} x_{j}, \qquad (8.5.7)$$

٠,

trong dó

$$a_{ij} = Q(e_i, e_j) = Q(e_j, e_i) = a_{ji}$$
. (8.5.8)

Giả sử

$$\Delta_{k} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & & & \\ a_{k1} & a_{k2} & \dots & a_{kk} \end{vmatrix} = 0, \quad k = 1, 2, \dots, n$$
 (8.5.9)

Để tìm một cơ sở mới $S' = \{f_1, f_2, ..., f_n\}$ trong đó dạng toàn phương không có số hạng chéo ta tìm các f_i sao cho

$$Q(f_i, f_k) = 0$$
 $i \neq k, i, k = 1, 2, ..., n.$ (8.5.10)

Muốn thế ta đặt

$$f_{1} = \alpha_{11} e_{1}$$

$$f_{2} = \alpha_{21} e_{1} + \alpha_{22} e_{2}$$

$$\vdots$$

$$f_{n} = \alpha_{n1} e_{1} + \alpha_{n2} e_{2} + \dots + \alpha_{nn} e_{n}$$
(8.5.11)

và xác định các α_{ii} sao cho (8.5.10) thoả mãn.

Từ (8.5.11) ta suy ra:

$$Q(f_k, e_i) = 0, i = 1, 2, ..., k-1 \Rightarrow Q(f_k, f_i) = 0, i = 1, 2, ..., k-1$$

Do đó để có (8.5.10) ta chỉ cần thoả mãn điều kiện

$$Q(f_k, e_i) = 0, i = 1, 2, ..., k - 1, k = 1, 2, ..., n.$$
 (8.5.12)

Vì vế phải của (8.5.12) bằng không nên các điều kiện (8.5.12) xác định f_k sai khác một hệ số nhân. Để ấn định hệ số đó ta đặt thêm điều kiên

$$Q(f_k, e_k) = 1, \quad k = 1, 2, ..., n.$$
 (8.5.13)

Với mỗi k xác định, điều kiện (8.5.12) và (8.5.13) viết

$$a_{11} \alpha_{k1} + a_{12} \alpha_{k2} + \dots + a_{1k} \alpha_{kk} = 0$$

$$a_{21} \alpha_{k1} + a_{22} \alpha_{k2} + \dots + a_{2k} \alpha_{kk} = 0$$

$$\vdots \qquad (8.5.14)$$

$$a_{(k-1)1} \alpha_{k1} + a_{(k-1)2} \alpha_{k2} + \dots + a_{(k-1)k} \alpha_{kk} = 0$$

$$a_{k1} \alpha_{k1} + a_{k2} \alpha_{k2} + \dots + a_{kk} \alpha_{kk} = 1.$$

Định thức của hệ (8.5.14) chính là Δ_k mà ở (8.5.9) ta đã giả thiết khác 0. Vậy f_k được xác định với mọi k. Ta suy ra

$$\alpha_{kk} = \frac{\Delta_{k-1}}{\Delta_k}. (8.5.15)$$

Bảy giờ trong cơ sở mới $S' = \{f_1, f_2, ..., f_n\}$ thoà mãn (8.5.12) và (8.5.13) dang toàn phương Q có biểu thức

$$Q = \sum_{i,j=1}^{n} b_{ij} \xi_i \xi_j ,$$

trong đó $\xi = (\xi_1, \xi_2, ..., \xi_n)$ là biến mới và $b_{ij} = Q(f_i, f_j)$.

Theo (8.5.10) thì $b_{ij} = 0$ khi $i \neq j$. Cho nên

$$Q = \sum_{i=1}^{n} b_{ii} \xi_i^2. \tag{8.5.16}$$

Để tính b_{ii} ta có

$$b_{ii} = Q(f_i, f_i) = Q(f_i, \alpha_{i1} e_1 + \alpha_{i2} e_2 + ... + \alpha_{ii} e_i).$$

Do đó theo (8.5.12) ta suy ra

$$b_{ii} = \alpha_{i1} \ Q(f_i, e_1) + \alpha_{i2} \ Q(f_i, e_2) + ... + \alpha_{ii} \ Q(f_i, e_i) = \alpha_{ii} \,.$$

Chú ý đến (8.5.15) ta có

$$b_{ii} = \alpha_{ii} = \frac{\Delta_{i-1}}{\Delta_i}$$
 (8.5.17)

Vậy có

Định lí 8.5.3. Dạng toàn phương Q(x, x) đã cho có dạng chính tắc trong cơ sở S':

$$Q = \frac{1}{\Delta_1} \xi_1^2 + \frac{\Delta_1}{\Delta_2} \xi_2^2 + \dots + \frac{\Delta_{n-1}}{\Delta_n} \xi_n^2.$$
 (8.5.18)

Căn cứ vào (8.5.11) ma trận chuyển cơ sở là ma trận tam giác trên :

$$P = \begin{bmatrix} \alpha_{11} & \alpha_{21} & \dots & \alpha_{n1} \\ 0 & \alpha_{22} & \dots & \alpha_{n2} \\ & & \vdots \\ 0 & \dots & \alpha_{nn} \end{bmatrix}$$

cho nên phương pháp Jacobi còn gọi là phương pháp đổi biến tam giác.

».

Thí dụ 8.5.2. Xết dạng toàn phương (8.5.4) ở thí dụ 8.5.1. Nó có ma trận

$$A = \begin{bmatrix} 5-2 \\ -2 & 8 \end{bmatrix}$$

Do đó

$$\Delta_1 = 5 > 0$$
, $\Delta_2 = \begin{bmatrix} 5 - 2 \\ -2 & 8 \end{bmatrix} = 36 > 0$.

Vậy đạng toàn phương (8.5.4) có đạng chính tắc

$$Q = \frac{1}{\Delta_1} \xi_1^2 + \frac{\Delta_1}{\Delta_2} \xi_2^2 = \frac{1}{5} \xi_1^2 + \frac{5}{36} \xi_2^2.$$
 (8.5.19)

Muốn tìm công thức đổi biến ta phải xác định các vectơ cơ sở mới f_1 , f_2 . Ta dựa vào (8.5.11), (8.5.12), (8.5.13). Ta có

$$f_1 = \alpha_{11} e_1 = (\alpha_{11}, 0)$$

 $f_2 = \alpha_{21} e_1 + \alpha_{22} e_2 = (\alpha_{21}, \alpha_{22})$

Để xác định α_{11} ta viết theo (8.5.10), (8.5.11) khi k = 1

$$Q(f_1, e_1) = 1 \Rightarrow 5\alpha_{11} = 1 \Rightarrow \alpha_{11} = \frac{1}{5} \Rightarrow f_1 = \left(\frac{1}{5}, 0\right)$$

Để xác định α_{21} và α_{22} ta viết theo (8.5.10), (8.5.11) khi k = 2

$$Q(f_2, e_1) = 0$$
, $Q(f_2, e_2) = 1$

tức là

$$a_{11} \alpha_{21} + a_{12} \alpha_{22} = 0$$

$$a_{21} \alpha_{21} + a_{22} \alpha_{22} = 1$$

Do đó

$$5\alpha_{21} - 2\alpha_{22} = 0$$
$$-2\alpha_{21} + 8\alpha_{22} = 1$$

100

Ta suy ra $\alpha_{21} = 1/18$ và $\alpha_{22} = 5/36$. Vậy

$$f_2 = \left(\frac{1}{18}, \frac{5}{36}\right)$$

Vậy công thức đổi biến là

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1/5 & 1/18 \\ 0 & 5/36 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}$$
 (8.5.20)

Một hệ quả của định lí 8.5.3 là phần đầu của định lí sau:

Định lí 8.5.4. Dạng toàn phương (8.5.7) xác định dương khi và chỉ khi

$$\Delta_i > 0, 1 \le i \le n \tag{8.5.21}$$

Chứng minh. Điều kiện (8.5.21) là điều kiện dù vì đó là hệ quả của dạng chính tắc (8.5.18).

Muốn chứng minh (8.5.21) là điều kiện cần trước hết ta chứng minh $\Delta_i \neq 0 \ \forall i$. Giả sử

$$\Delta_i := \begin{bmatrix} Q(e_1, e_1) \ Q(e_1, e_2) \ \dots \ Q(e_1, e_i) \\ Q(e_2, e_1) \ Q(e_2, e_2) \ \dots \ Q(e_2, e_i) \\ \dots \\ Q(e_i, e_1) \ Q(e_i, e_2) \ \dots \ Q(e_i, e_i) \end{bmatrix} = 0$$

Lúc đó tồn tại i hằng số c_i không đồng thời bằng không để

$$c_{1} Q(e_{1}, e_{i}) + c_{2} Q(e_{2}, e_{i}) + \dots + c_{i} Q(e_{i}, e_{i}) = 0$$

$$\Rightarrow Q(c_{1} e_{1}, e_{i}) + Q(c_{2}, e_{2}, e_{i}) + \dots + Q(c_{i} e_{i}, e_{i}) = 0$$

$$\Rightarrow Q(c_{1} e_{1} + c_{2} e_{2} + \dots + c_{i} e_{i}, e_{i}) = 0$$

$$\Rightarrow Q(c_{1} e_{1} + c_{2} e_{2} + \dots + c_{i} e_{i}, c_{1} e_{1} + c_{2} e_{2} + \dots + c_{i} e_{i}) = 0$$

$$\Rightarrow c_{1} e_{1} + c_{2} e_{2} + \dots + c_{i} e_{i} = 0$$

Điều đó màu thuẫn với tính độc lập tuyến tính của $\{e_1, e_2, ..., e_i\}$.

Bây giờ nếu có một số $A_i < 0$ thì trong các hệ số của dạng chính tắc (8.5.18) vừa có hệ số âm vừa có hệ số dương. Do đó nếu chọn ξ_i như sau :

$$\xi_i = \begin{cases} 0 \text{ khi hệ số của } \xi_i \text{ dương} \\ 1 \text{ khi hệ số của } \xi_i \text{ Am} \end{cases}$$

Với $\xi = (\xi_1, \xi_2, ..., \xi_n)$ chọn như vậy ta sẽ thấy $Q(\xi, \xi) < 0$. Điều này màu thuẫn với Q(x, x) xác định đương.

Vậy không thể có $\Delta_i \le 0$, cho nên (8.5.21) cũng là diều kiện cần để Q(x,x) xác định đương.

Thi du 8.5.3. Dạng toàn phương (8.5.4) ở thí du 8.5.1 có $\Delta_1 = 5 > 0$, $\Delta_2 = 36 > 0$ nên là dạng toàn phương xác định dương.

8.5.5. Phương pháp Lagrange

Trong cơ sở S của không gian hữu hạn chiếu V_n xét dạng toàn phương

$$Q(x, x) = \sum_{i,j=1}^{n} a_{ij} x_i x_j$$
, $a_{ji} = a_{ij}$.

Giả sử $a_{11} \neq 0$. Ta nhóm các số hạng chứa x_1 :

$$Q = a_{11} x_1^2 + 2a_{12} x_1 x_2 + ... + 2a_{1n} x_1 x_n + ... + a_{nn} x_n^2$$

Do đó

$$Q = \frac{1}{a_{11}} (a_{11} x_1 + a_{12} x_2 + ... + a_{1n} x_n)^2 + Q_1.$$

trong đó Q_1 không chứa x_1 nữa. Đặt

$$y_1 = a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n$$
; $y_i = x_i, i = 2, 3, ..., n$
$$Q = \frac{1}{a_{11}}y_1^2 + Q_1$$

thì cớ

trong đó Q_1 không chứa y_1 :

$$Q_1 = \sum_{i,j=2}^n b_{ij} y_i y_j.$$

Sau đó người ta làm việc với Q_1 chỉ còn chứa các $y_2, y_3, ..., y_n$ như với Q trước. Cứ thế, cho tới khi thu được biểu thức không chứa các số hạng chéo nữa.

Nếu $a_{11} = 0$ ta đi tìm trong số các $a_{22}, ..., a_{nn}$ có số nào khác 0, chẳng hạn $a_{kk} \neq 0$ thì ta đổi vai trò a_{kk} thay cho a_{11} .

Nếu tát cả các $a_{ii}=0$ thì tồn tại ít nhất một số hạng $2a_{ij}x_ix_j$ với $a_{ij}\neq 0$. Lúc đó ta đặt

$$x_i = y_i + y_j$$
, $x_j = y_i - y_j$, $x_k = y_k$, $k \neq i, j$

thì có

$$2a_{ij} x_i x_j = 2a_{ij}^{\cdot} (y_i^2 - y_j^2)$$
.

nghĩa là trong biểu thức của dạng toàn phương đã xuất hiện các số hạng bình phương. Ta tiếp tục làm lại từ đầu.

Bây giờ ta xét một thí dụ.

Thí dụ 8.5.4. Xét dạng toàn phương (8.5.4).

Ta viết

$$Q(x, x) = 5\left(x_1^2 - \frac{4}{5}x_1x_2\right) + 8x_2^2 =$$

$$= 5\left(x_1 - \frac{2}{5}x_2\right)^2 - 5\left(\frac{2}{5}\right)^2 x_2^2 + 8x_2^2 = 5\left(x_1 - \frac{2}{5}x_2\right)^2 + \frac{36}{5}x_2^2.$$
Dat
$$y_1 = x_1 - \frac{2}{5}x_2, \quad y_2 = x_2$$
ta duọc
$$Q(x, x) = 5y_1^2 + \frac{36}{5}y_2^2 \qquad (8.5.22)$$

Đó là dạng chính tắc cần tìm.

Thí du 8.5.5. Xét dạng toàn phương

$$Q(x, x) = 2x_1x_2 + 4x_1x_3 - x_2^2 - 8x_3^2$$

Ta viết lai

$$Q(x, x) = -x_2^2 + 2x_1x_2 + 4x_1x_3 - 8x_3^2$$

và đặt

$$x_1 = \xi_2, \ x_2 = \xi_1, \ x_3 = \xi_3$$

thì được

$$Q(x, x) = -\xi_1^2 + 2\xi_1 \xi_2 + 4\xi_2 \xi_3 - 8\xi_3^2$$

Ta viết lai

$$Q(x,x) = -(\xi_1 - \xi_2)^2 + \xi_2^2 + 4\xi_2\xi_3 - 8\xi_3^2$$

và đặt

$$y_1 = \xi_1 - \xi_2, \quad y_2 = \xi_2, \quad y_3 = \xi_3$$

thì được

$$Q(x, x) = -y_1^2 + y_2^2 + 4y_2y_3 - 8y_3^2.$$

Ta viết lai

$$Q(x,x) = -y_1^2 + (y_2 + 2y_3)^2 - 4y_3^2 - 8y_3^2 = -y_1^2 + (y_2 + 2y_3)^2 - 12y_3^2$$
và đặt $\eta_1 = y_1, \ \eta_2 = y_2 + 2y_3, \ \eta_3 = y_3$

và đặt

thì được

$$Q(x, x) = -\eta_1^2 + \eta_2^2 - 12\eta_2^2$$

với các công thức đổi biến

$$\eta_1 = y_1 = \xi_1 - \xi_2 = x_2 - x_1
\eta_2 = y_2 + 2y_3 = \xi_2 + 2\xi_3 = x_1 + 2x_3
\eta_3 = y_3 = \xi_3 = x_3$$

hay

$$x_{1} = \eta_{2} - 2\eta_{3}$$

$$x_{2} = \eta_{1} + \eta_{2} - 2\eta_{3}$$

$$x_{3} = \eta_{3}.$$
(8.5.23)

 $H\hat{e}$ quả. Cho trong cơ sở S của không gian V_n đạng toàn phương Q. Tổn tại ít nhất một cơ sở S' trong đó Q có dạng chính tắc.

8.5.6. Đình luật quán tính

Một dạng toàn phương có thể có nhiều dạng chính tắc khác nhau (trong những cơ sở mới khác nhau). Ví dụ dạng toàn phương (8.5.4) có ít ra là ba dạng chính tắc khác nhau: (8.5.5), (8.5.19), (8.5.22). Sở dĩ vậy là vì ta đã sử dụng ba phép đổi biến khác nhau, đó là (8.5.6), (8.5.20) và (8.5.23).

Khi một dạng toàn phương được đưa về dạng chính tắc bằng hai cách khác nhau (tức là trong hai cơ sở mới khác nhau) thì số các hệ số dương bằng nhau và số các hệ số âm bằng nhau.

Đó là nội dung của định luật quán tính.

Từ phát biểu trên ta suy ra: số các hệ số bằng không cũng bằng nhau.

8.6. ÁP DUNG

8.6.1. Áp dụng 1 : Nhận đạng đường bậc hai

Xét phương trình bặc hai tổng quát đối với cặp toạ độ đề các (x_1, x_2) của điểm $x \in \mathbb{R}^2$:

$$ax_1^2 + 2bx_1x_2 + cx_2^2 + 2gx_1 + 2hx_2 + d = 0,$$
 (8.6.1)

trong đó a, b, c, g, h, d là những số thực cho trước. Ta muốn biết đường bậc hai này là đường gì? đường tròn hay đường elip? v.v.

Vế trái của (8.6.1) là tổng của hai hàm : một hàm bậc hai q và một hàm bậc nhất p với

$$q := ax_1^2 + 2bx_1x_2 + cx_2^2$$
, $p := 2gx_1 + 2hx_2 + d$.

Ta nhận thấy q là một dạng toàn phương trong cơ sở $S = \{i = (1, 0), j = (0,1)\}$ của \mathbb{R}^2 với ma trận đối xứng :

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix} \tag{8.6.2}$$

Phương trình đặc trưng của A là

$$\begin{vmatrix} a-\lambda & b \\ b & c-\lambda \end{vmatrix} = \lambda^2 - (a+c)\lambda + ac - b^2 = 0.$$

Nó có hai nghiệm thực λ_1 và λ_2 , thoả mãn diều kiện

$$\lambda_1 \cdot \lambda_2 = ac - b^2$$
, $\lambda_1 + \lambda_2 = a + c$.

Đó là hai trị riêng thực của A. Hai vectơ riêng trực chuẩn tương ứng có dạng

$$f_1 = \begin{bmatrix} f_{11} \\ f_{21} \end{bmatrix}, \qquad f_2 = \begin{bmatrix} f_{12} \\ f_{22} \end{bmatrix}.$$

Bằng phép đổi biến sang cơ sở mới $S' = \{f_1, f_2\}$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix} \cdot \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}$$

$$x \qquad P \qquad \xi$$

$$(8.6.3)$$

ta đưa dạng toàn phương q về dạng chính tắc trong cơ sở mới :

$$q = \lambda_1 \xi_1^2 + \lambda_2 \xi_2^2.$$

Do đó phương trình (8.6.1) có dạng

$$\lambda_1 \xi_1^2 + \lambda_2 \xi_2^2 + 2gx_1 + 2hx_2 + d = 0$$

hay

$$\lambda_1 \xi_1^2 + \lambda_2 \xi_2^2 + 2g(f_{11}\xi_1 + f_{12}\xi_2) + 2h(f_{21}\xi_1 + f_{22}\xi_2) + d = 0$$

hay

$$\lambda_1 \xi_1^2 + \lambda_2 \xi_2^2 + 2g' \xi_1 + 2h' \xi_2 + d = 0, \tag{8.6.4}$$

trong đó

$$g' = gf_{11} + hf_{21}, h' = gf_{12} + hf_{22}$$

I. Trường hợp λ_1 và λ_2 khác 0 và cùng dấu, tức là khí $ac - b^2 > 0$.

Ta viết lai phương trình (8.6.4):

$$\lambda_1 \left(\xi_1 + \frac{g'}{\lambda_1} \right)^2 + \lambda_2 \left(\xi_2 + \frac{h'}{\lambda_2} \right)^2 = d'$$
 (8.6.5)

trong đó

$$d' = \lambda_1 \left(\frac{g'}{\lambda_1}\right)^2 + \lambda_2 \left(\frac{h'}{\lambda_2}\right)^2 - d = \frac{(g')^2}{\lambda_1} + \frac{(h')^2}{\lambda_2} - d.$$

Áp dụng cộng thức tình tiến trục (xem mục 4.2.5):

$$X_1 = \xi_1 + \frac{g'}{\lambda_1}, \qquad X_2 = \xi_2 + \frac{h'}{\lambda_2}$$

ta đưa (8.6.5) về dang:

$$\lambda_1 X_1^2 + \lambda_2 X_2^2 = d' \tag{8.6.6}$$

1. Giả sử $d' \neq 0$ và cùng đấu với λ_1 , λ_2 . Ta chia hai vế của (8.6.6) cho d':

$$\frac{X_1^2}{(d'/\lambda_1)} + \frac{X_2^2}{(d'/\lambda_2)} = 1 \tag{8.6.7}$$

Đây là một elip thực với các bán trục $\sqrt{d'/\lambda_1}$ và $\sqrt{d'/\lambda_2}$.

Đặc biệt nếu $\lambda_1 = \lambda_2$ nữa thì elip thực trở thành một đường tròn thực với bán kính $\sqrt{d'/\lambda_1}$.

2. Nếu đ' $\neq 0$ và khác dấu của λ_1 , λ_2 thì (8.6.7) viết

$$\frac{X_1^2}{i^2(-d'/\lambda_1)} + \frac{X_2^2}{i^2(-d'/\lambda_2)} = 1$$

và ta có một elip với các bán trục ảo $i\sqrt{-d'/\lambda_1}$ và $i\sqrt{-d'/\lambda_2}$. Ta gọi nó là một elip ảo.

3. $N\hat{e}u d' = 0$ thì (8.6.6) cho

$$\lambda_1 X_1^2 + \lambda_1 X_2^2 = 0.$$

Cả đường bậc hai thu về một điểm $(X_1 = 0, X_2 = 0)$.

II. Trường hợp λ_1 và λ_2 khác 0 và khác dấu tức là khi $ac - b^2 < 0$.

Giả sử $\lambda_1 > 0$, $\lambda_2 < 0$.

Giống như ở l. ta có (8.6.6).

1. $N\acute{e}u\ d' \neq 0$ thì từ (8.6.6) ta suy ra (8.6.7) và (8.6.7) cho :

$$\frac{\lambda_1}{d'}X_1^2 - \frac{-\lambda_2}{d'}X_2^2 = 1.$$

Bây giờ dù đấu của d' thể nào ta cũng có một hypebôn.

2. $N\acute{e}u d' = 0$ thì (8.6.6) viết

$$\lambda_1 X_1^2 - (-\lambda_2 X_2^2) = 0.$$

Do dó có

$$\sqrt{\lambda_1} X_1 = \pm \sqrt{-\lambda_2} X_2.$$

Đây là hai đường thẳng cắt nhau.

III. Trường hợp có một trị riêng bằng 0 tức là khi $ac - b^2 = 0$ và $a + c \neq 0$.

Giả sử $\lambda_1 \neq 0$, $\lambda_2 = 0$, phương trình (8.6.4) viết

$$\lambda_1 \xi_1^2 + 2g' \xi_1 + 2h' \xi_2 + d = 0.$$
 (8.6.8)

1. Nếu $h' \neq 0$ ta có

$$\xi_2 = -\frac{1}{2h}(\lambda_1 \xi_1^2 + 2g'\xi_1 + d)$$

Đày là một parabôn có trực song song với trực ξ_2 .

$$\left(\xi_1 + \frac{g'}{\lambda_1}\right)^2 + \frac{d''}{\lambda_1} = 0 \tag{8.6.9}$$

trong dó

$$d'' = d - \frac{(g')^2}{\lambda_1}.$$

a) Nếu d'' \neq 0 và khác đấu của λ_1 thì (8.6.9) cho

$$\xi_1 = -\frac{g'}{\lambda_1} \pm \sqrt{-\frac{d''}{\lambda_1}}$$

Đố là hai đường thẳng thực song song.

b) Nếu d" \neq 0 và cừng đấu với λ_1 thì (8.6.9) cho

$$\xi_1 = -\frac{g'}{\lambda_1} \pm i \sqrt{-\frac{d''}{\lambda_1}}$$

Đó là hai đường thẳng ảo song song.

c) $N\acute{e}u \ d'' = 0 \ \text{thì} \ (8.6.9) \ \text{chi} \ \text{còn}$

$$\left(\xi_1 + \frac{g'}{\lambda_1}\right)^2 = 0 \Rightarrow \left(\xi_1 + \frac{g'}{\lambda_1}\right) = 0$$

Đó là hai đường thẳng thực trùng nhau.

IV. Trường hợp $\lambda_1 = \lambda_2 = 0$ tức là khi $ac - b^2 = 0$ và a + c = 0.

$$ac - b^2 = 0$$
, $a + c = 0 \Rightarrow a^2 + c^2 + 2b^2 = 0 \Rightarrow a = b = c = 0$

Vậy phương trình bậc hai (8.6.1) chỉ còn số hạng bậc nhất

$$2gx_1 + 2hx_2 + d = 0$$

Đó là một đường thẳng.

Tóm lai:

Khi $\delta = b^2 - ac < 0$ thì đường bậc hai đã cho là một elip thực hoặc ảo;

Khi $\delta = b^2 - ac > 0$ thì dường bậc hai đã cho là một hypebôn hoặc hai đường thẳng cắt nhau.

Người ta xem hai đường thẳng cắt nhau là một hypebôn suy biến.

Nếu $\delta = b^2 - ac = 0$ và $a + c \neq 0$ thì đường bậc hai đã cho là một parabôn, hay hai đường thẳng thực song song hay hai đường thẳng đo song song hay hai đường thẳng thực trùng nhau.

Người ta xem hai đường thẳng thực song song hay hai đường thẳng ảo song song hay hai đường thẳng thực trùng nhau là một parabón suy biến.

Đặc biệt khi $b^2 - ac = 0$ và a + c = 0 tức là khi a = b = c = 0 thì dường bậc hai thu về dường bậc nhất tức là một đường thẳng.

Dưới đây khi trình bày các thí dụ nói chung ta không sử dụng các công thức phiền phức ở trên mà chỉ áp dụng cách làm tương tự vào những phương trình bậc hai cụ thể.

Thí du 8.6.1. Hãy nhân dang đường cong phẳng cho bởi phương trình

$$5x_1^2 - 4x_1x_2 + 8x_2^2 = 36 (8.6.10)$$

Giải: Đó là phương trình

$$a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2 = 36$$

với

$$a_{11} = 5$$
, $a_{12} = -2$, $a_{22} = 8$

Vav

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix} = \begin{bmatrix} 5 & -2 \\ -2 & 8 \end{bmatrix}$$

Ma trận đối xứng A có hai trị riêng

$$\lambda_1 = 4 \text{ và } \lambda_2 = 9$$

và hai vectơ riêng trực chuẩn v_1 , v_2 tạo thành cơ sở trực chuẩn B:

$$B = \left\{ \begin{bmatrix} v_1 \end{bmatrix}_{\mathcal{E}}, \begin{bmatrix} v_2 \end{bmatrix}_{\mathcal{E}} \right\} = \left\{ \begin{bmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix}, \begin{bmatrix} -\frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix} \right\}.$$

Ma trận chuyển cơ sở từ cơ sở chính tắc sang B là

$$P = \begin{bmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}$$

Ma trận này sẽ làm chéo hoá trực giao ma trận A. Với mọi $x \in \mathbb{R}^2$

ta kí hiệu
$$[x]_E = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, $[x]_B = \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix}$

Vì có

$$[x]_E = P[x]_B \text{ và } [x]_B = P^t[x]_E$$

nên ta suy ra

$$\{x\}_{E}^{t}A[x]_{E} = [x]_{B}^{t}(P^{t}AP)[x]_{B} = [x]_{B}^{t}D[x]_{B},$$

trong dó

$$D = P^t A \dot{P} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix}.$$

Do đó

$$[x]_B^i D[x]_B = [x'_1 x'_2] \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix} \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = 4x'_1^2 + 9x'_2^2.$$

Vậy phương trình (8.6.10) trong toạ độ cũ (x_1, x_2) trở thành phương trình trong toạ độ mới (x'_1, x'_2) :

$$4x_1^2 + 9x_2^2 = 36,$$

$$\frac{x_1^2}{2} + \frac{x_2^2}{4} = 1.$$

Đó là phương trình của đường chip trong hệ trực mới x'_1, x'_2 có bán trực lớn là 3 và bán trực nhỏ là 2.

Công thức đổi biến

$$\left[x\right]_E = P[x]_B$$

viết

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix}$$

và cho
$$x_1 = \frac{2}{\sqrt{5}}x'_1 - \frac{1}{\sqrt{5}}x'_2$$
; $x_2 = \frac{1}{\sqrt{5}}x'_1 + \frac{2}{\sqrt{5}}x'_2$.

Đó là công thức quay trục một góc θ sao cho

$$\cos\theta = \frac{2}{\sqrt{5}}; \sin\theta = \frac{1}{\sqrt{5}};$$

dúng là

$$\cos^2\theta + \sin^2\theta = \frac{4}{5} + \frac{1}{5} = \frac{5}{5} = 1$$

Vậy từ hệ trục cũ ta có thể dụng hệ trục mới, sau đó dụng đường elip (hình 55).

Thí dụ 8.6.2. Hãy nhận dạng đường cong phẳng

$$5x_1^2 - 4x_1x_2 + 8x_2^2 + \frac{20}{\sqrt{5}}x_1 - \frac{80}{\sqrt{5}}x_2 + 4 = 0$$
 (8.6.11)

Giải : Với

$$A = \begin{bmatrix} 5 & -2 \\ -2 & 8 \end{bmatrix} \text{ và } K = \begin{bmatrix} \frac{20}{\sqrt{5}} & \frac{-80}{\sqrt{5}} \end{bmatrix}$$

Phương trình (8.6.11) viết

$$[x]_E^t A[x]_E + K[x]_E + 4 = 0.$$
 (8.6.12)

Như ở thí dụ trên đã rõ

$$P = \begin{bmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}$$

làm chéo hoá trực giao ma trận A. Thay $[x]_E = P[x]_B$ vào (8.6.12) ta được

$$(P[x]_n)^t A(P[x]_n) + K(P[x]_n) + 4 = 0$$

hay

$$[x]_{B}^{t}(P^{t}AP)[x]_{B} + (KP)[x]_{B} + 4 = 0.$$
 (8.6.13)

Vì

$$P^t A P = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix}$$

và

$$KP = \left[\frac{20}{\sqrt{5}} \quad \frac{-80}{\sqrt{5}}\right] \begin{bmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{\epsilon}} & \frac{2}{\sqrt{\epsilon}} \end{bmatrix} = [-8, -36]$$

nên (8.6.13) trở thành

$$4x_1^2 + 9x_2^2 - 8x_1^2 - 36x_2^2 + 4 = 0. (8.6.14)$$

Ta viết (8.6.14) thành

$$4(x'_1^2 - 2x'_1 + 1) + 9(x'_2^2 - 4x'_2 + 4) = -4 + 4 + 36$$

tức là

$$4(x'_1 - 1)^2 + 9(x'_2 - 2)^2 = 36. (8.6.15)$$

$$X_{1} = x'_{1} - 1$$

$$X_{2} = x'_{2} - 2$$
(8.6.16)

ta thu dước từ (8.6.15)

$$\frac{X_1^2}{9} + \frac{X_2^2}{4} = 1.$$

Vây đường cong phải tìm là một đường elíp, thu được bằng tinh tiến đường elíp ở thí du trên theo cóng thức (8.6.16) (hình 56).

8.6.2. Ap dung 2: Nhận dang mặt bác hai

Cách giải tương tự cách làm đối với đường bậc hai.

Xét phương trình bắc hai tổng

Hình 56 quát đối với bộ ba toạ độ để các (x_1, x_2, x_3) của điểm $x \in \mathbb{R}^3$:

$$ax_1^2 + bx_2^2 + cx_3^2 + 2rx_1x_2 + 2sx_1x_3 + 2tx_2x_3 + 2ex_1 + 2gx_2 + 2hx_3 + d = 0,$$
 (8.6.17)

trong đó a, b, c, r, s, t, e, g, h, d là những số thực cho trước.

Vế trái của (8.6.17) là tổng của hai hàm : một hàm bác hai q và một hàm bác nhất p với

$$q := ax_1^2 + bx_2^2 + cx_3^2 + 2rx_1x_2 + 2sx_1x_3 + 2tx_2x_3,$$

$$p := 2ex_1 + 2gx_2 + 2hx_3 + d = 0.$$

Ta nhận thấy q là một dạng toàn phương trong cơ sở $S = \{i = (1,0,0),$ j = (0,1,0), k = (0,0,1) của \mathbb{R}^3 với ma trận đối xứng:

$$A = \begin{bmatrix} a & r & s \\ r & b & t \\ s & t & c \end{bmatrix}.$$

Phương trình đặc trung của A là

$$\begin{vmatrix} a-\lambda & r & s \\ r & b-\lambda & t \\ s & t & c-\lambda \end{vmatrix} = 0$$

Nó có ba nghiệm thực λ_1 , λ_2 và λ_3 . Đó là ba trị riêng thực của A. Ba vecto riêng trực chuẩn tương ứng có dạng

$$f_{1} = \begin{bmatrix} f_{11} \\ f_{21} \\ f_{31} \end{bmatrix}, \qquad f_{2} = \begin{bmatrix} f_{12} \\ f_{22} \\ f_{32} \end{bmatrix}, \qquad f_{3} = \begin{bmatrix} f_{13} \\ f_{23} \\ f_{33} \end{bmatrix}$$

Bằng phép đổi biến sang cơ sở mới $S' = \{f_1, f_2, f_3\}$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \cdot \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{bmatrix}$$

ta đưa dang toàn phương q về dang chính tắc trong cơ sở mới:

$$q = \lambda_1 \xi_1^2 + \lambda_2 \xi_2^2 + \lambda_3 \xi_3^2.$$

Do dó (8.6.17) có dạng

$$\lambda_1 \xi_1^2 + \lambda_2 \xi_2^2 + \lambda_3 \xi_3^2 + 2ex_1 + 2gx_2 + 2hx_3 + d = 0 \quad (8.6.18)$$

hay

$$\begin{split} \lambda_1 \xi_1^2 + \lambda_2 \xi_2^2 + \lambda_3 \xi_3^2 + 2e(f_{11}\xi_1 + f_{12}\xi_2 + f_{13}\xi_3) + \\ 2g(f_{21}\xi_1 + f_{22}\xi_2 + f_{23}\xi_3) + 2h(f_{31}\xi_1 + f_{32}\xi_2 + f_{33}\xi_3) + d &= 0 \end{split}$$

hay

$$\lambda_1 \xi_1^2 + \lambda_2 \xi_2^2 + \lambda_3 \xi_3^2 + 2e'\xi_1 + 2g'\xi_2 + 2h'\xi_3 + d = 0, (8.6.19)$$
 trong đó

$$e' = ef_{11} + gf_{21} + hf_{31},$$
 $g' = ef_{12} + gf_{22} + hf_{32},$
 $h' = ef_{13} + gf_{23} + hf_{33}.$

Sau đó áp dụng những phép tịnh tiến trực thích hợp ta có thể đưa các phương trình trên về các đạng đơn giản và từ đó suy ra dạng của mặt bậc hai. Sau đây là một số trường hợp hay gặp.

i. Trường hợp λ_1 , λ_2 và λ_3 khác 0 (khi det(A) \neq 0) và cùng dấu

Ta viết lai (8.6.19):

$$\lambda_{1} \left(\xi_{1} + \frac{e^{t}}{\lambda_{1}} \right)^{2} + \lambda_{2} \left(\xi_{2} + \frac{g^{t}}{\lambda_{2}} \right)^{2} + \lambda_{3} \left(\xi_{3} + \frac{h^{t}}{\lambda_{3}} \right)^{2} = d^{t}$$

$$d' = -d + \frac{(e^{t})^{2}}{\lambda_{3}} + \frac{(g^{t})^{2}}{\lambda_{2}} + \frac{(h^{t})^{2}}{\lambda_{3}}.$$

Áp dụng công thức tịnh tiến trục :

$$\xi_1 + \frac{e'}{\lambda_1} = X_1, \quad \xi_2 + \frac{g'}{\lambda_2} = X_2, \quad \xi_3 + \frac{h'}{\lambda_3} = X_3$$
 (8.6.20)

ta được

$$\lambda_1 X_1^2 + \lambda_2 X_2^2 + \lambda_3 X_3^2 = d' \tag{8.6.21}$$

1. Nếu d'≠0 và cùng dấu với các trị riêng thì (8.6.21) viết

$$\frac{\lambda_1}{d'}X_1^2 + \frac{\lambda_2}{d'}X_2^2 + \frac{\lambda_3}{d'}X_3^2 = 1$$

Đó là một mặt elipxôit thực.

Đặc biệt khi $\lambda_1 = \lambda_2 = \lambda_3$ thì mặt elipxôit thực trở thành một mặt cầu bán kính $\sqrt{d'/\lambda_1}$.

2. Nếu d' = 0 và khác đấu của các trị riêng thì (8.6.21) viết

$$\frac{\lambda_1}{d'}X_1^2 + \frac{\lambda_2}{d'}X_2^2 + \frac{\lambda_3}{d'}X_3^2 = i^2$$

Đó là một mặt elipxôit ảo.

3. $N \dot{e} u d' = 0$ thì (8.6.21) viết

$$\lambda_1 X_1^2 + \lambda_2 X_2^2 + \lambda_3 X_3^2 = 0.$$

Vậy cả mặt bậc hai thu về một điểm $(X_1 = 0, X_2 = 0, X_3 = 0)$.

II. Trường hợp ba trị riêng khác 0 trong đó có hai trị riêng cùng dấu và một trị riêng khác dấu

Giả sử $\lambda_1 > 0$, $\lambda_2 > 0$, $\lambda_3 < 0$. Giống như ở I. ta có (8.6.21).

1. Nếu d' > 0 thì (8.6.21) cho

$$\frac{\lambda_1}{d'}X_1^2 + \frac{\lambda_2}{d'}X_2^2 - \left(-\frac{\lambda_3}{d'}\right)X_3^2 = 1$$

Đó là một mặt hypeboloit một tầng.

2. Nếu d' < 0 thì (8.6.21) cho

$$\frac{\lambda_1}{-d'}X_1^2 + \frac{\lambda_2}{-d'}X_2^2 - \frac{\lambda_3}{d'}X_3^2 = -1$$

Đó là một mặt hypebolôit hai tầng.

III. Trường hợp có một trị riêng bằng 0, còn hai trị riêng kia cùng dấu

Giả sử $\lambda_3 = 0$, $\lambda_1 > 0$, $\lambda_2 > 0$. Phương trình (8.6.19) viết

$$\lambda_1 \xi_1^2 + \lambda_2 \xi_2^2 + 2e^i \xi_1 + 2g^i \xi_2 + 2h^i \xi_3 + d = 0$$

Áp dung công thức tinh tiến truc

$$\xi_1 + \frac{e'}{\lambda_1} = X_1, \quad \xi_2 + \frac{g'}{\lambda_2} = X_2, \quad \xi_3 = X_3$$
 (8.6.22)

ta được

$$\lambda_1 X_1^2 + \lambda_2 X_2^2 + 2h' X_3 = d',$$
 (8.6.23)

trong đó

$$d' = -d + \frac{(e')^2}{\lambda_1} + \frac{(g')^2}{\lambda_2}.$$

1. Nếu $h' \neq 0$ thì (8.6.23) là một mặt parabôlôit eliptic (mặt parabôlôit loại elip).

2. Nếu h' = 0 thì (8.6.23) viết

$$\lambda_1 X_1^2 + \lambda_2 X_2^2 = d^*.$$

Đây là một mặt trụ có đường sinh song song với phương X_3 .

IV. Trường hợp có một trị riêng bằng 0, còn hai trị riêng kia khác dấu

Giả sử $\lambda_3 = 0$, $\lambda_1 > 0$, $\lambda_2 < 0$. Giống như ở II. ta có (8.6.23).

- 1. Nếu $h' \neq 0$ thì (8.6.23) là một mặt paraboloit hypeboloit (mặt paraboloit loại hypebon).
 - 2. Nếu h' = 0 (8.6.23) cho

$$\lambda_1 X_1^2 + \lambda_2 X_2^2 = d$$

Đây là một mặt trụ có đường sinh song song với phương X_3 .

V. Trường hợp có hai trị riêng bằng 0

Giả sử $\lambda_3 = \lambda_2 = 0$, $\lambda_1 \neq 0$. Phương trình (8.6.19) viết

$$\lambda_1 \xi_1^2 + 2e'\xi_1 + 2g'\xi_2 + 2h'\xi_3 + d = 0$$

Áp dụng công thức tịnh tiến trục

$$\xi_1 + \frac{e^x}{\lambda_1} = X_1, \quad \xi_2 = X_2, \quad \xi_3 = X_3$$
 (8.6.24)

ta được

$$\lambda_1 X_1^2 + 2g' X_2 + 2h' X_3 = d'$$

$$d' = -d + \frac{(e')^2}{\lambda_1}$$

- 1. Nếu g' = 0, $h' \neq 0$. Ta có một mặt trụ parabon có đường sinh song song với phương ξ_3 .
- 2. Nếu $g' \neq 0$, h' = 0. Ta có một mặt trụ parabon có đườ sinh song song với phương ξ_2 .

3. Nếu $g' \neq 0$, $h' \neq 0$. Ta có một mặt trụ parabôn có dường sinh song song với phương vuông góc với dường thắng $g'\xi_2 + h'\xi_3 = 0$.

'n

VI. Trường hợp cả ba trị riêng đều bằng 0

Khi đó phương trình bậc hai (8.6.19) chỉ còn

$$e'\xi_1 + g'\xi_2 + h'\xi_3 + d = 0$$

Đó là một mặt phẳng.

Sau đây ta xét một vài thí dụ để minh hoạ.

Thi dụ 8.6.3. Hãy nhận dạng mặt bậc hai

$$2x_1^2 + 2x_2^2 + 3x_3^2 - 2x_1x_3 - 2x_2x_3 = 16.$$

Giái: Ta có

$$A = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

Ma trận đối xứng A có ba trị riêng

$$\lambda_1 = 1$$
, $\lambda_2 = 2$, $\lambda_3 = 4$

và 3 vecto riêng tạo thành cơ sở trực chuẩn

$$B = \left\{ \begin{bmatrix} v_1 \end{bmatrix}_E, \begin{bmatrix} v_2 \end{bmatrix}_E, \begin{bmatrix} v_3 \end{bmatrix}_E \right\} = \left\{ \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}, \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \\ -2/\sqrt{6} \end{bmatrix} \right\}.$$

Gọi P là ma trận chuyển cơ sở từ cơ sở chính tắc sang B

$$P = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & -2/\sqrt{6} \end{bmatrix}$$

thì có công thức đổi toạ độ

$$[x]_{E} = P[x]_{B}, \quad [x]_{B} = P^{I}[x]_{E}.$$

Do đó
$$[x]_E^t A[x]_E = (P[x]_B)^t A(P[x]_B)$$

$$= [x]_B^t (P^t A P)[x]_B$$

$$= [x]_B^i D[x]_B,$$

trong dó $D = P'AP = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}.$

Cho nên

$$[x]'_{B}D[x]_{B} = [x'_{1}x'_{2}x'_{3}]\begin{bmatrix} 1 & & \\ & 2 & \\ & & 4 \end{bmatrix} \begin{bmatrix} x'_{1} \\ x'_{2} \\ x'_{3} \end{bmatrix}.$$

Vậy phương trình đã cho trong toạ độ $c\bar{u}$ (x_1, x_2, x_3) trở thành phương trình trong toạ độ mới (x_1, x_2, x_3) :

$$x_1^2 + 2x_2^2 + 4x_3^2 = 16$$

hay $\frac{x_1^2}{16} + \frac{x_2^2}{8} + \frac{x_3^2}{4} = 1.$

8.6.3. Áp dụng 3 : Một bài toán cực trị có điều kiện

 V_n là một không gian có tích vô hướng. $S=\left\{e_1,e_2,...,e_n
ight\}$ là một cơ sở trực chuẩn của V_n . Xét trong cơ sở S dạng toàn phương

Đó là phương trình của mặt elipxôit có các bán trục là 4, $\sqrt{8}\,$ và 2.

$$Q = \sum_{i=1}^{n} a_{ij} x_i x_j, \qquad a_{ji} = a_{ij}. \tag{8.6.25}$$

Hāy tìm cực trị của Q với điều kiện

$$x^{t}x = x_{1}^{2} + x_{2}^{2} + ... + x_{n}^{2} = 1.$$
 (8.6.26)

6

Đế giải ta đặt $A = [a_{ij}]$ thì A' = A và (8.6.25) viết $Q = x^i A x$.

Vì A đối xứng nên nó có n trị riêng λ_i , i=1,2,...,n ứng với n vectơ riêng f_i , i=1,2,...,n tạo thành một cơ sở trực chuẩn mới $S'=\left\{f_1,f_2,...,f_n\right\}$. Bằng phép đổi biến trực giao $x=P\xi$ từ S sang S' ta dua Q về dạng chính tắc :

$$Q = \lambda_1 \xi_1^2 + \lambda_2 \xi_2^2 + \dots + \lambda_n \xi_n^2.$$
 (8.6.27)

Già sử

$$\lambda_1 \le \lambda_2 \le \dots \le \lambda_n. \tag{8.6.28}$$

Khi đó

$$\lambda_1 \xi' \xi = \lambda_1 \sum_{i=1}^n \xi_i^2 \le Q \le \lambda_n \sum_{i=1}^n \xi_i^2 = \lambda_n \xi' \xi.$$
 (8.6.29)

Vì

$$x = P\xi \implies x^t x = (P\xi)^t (P\xi) = \xi^t P^t P\xi = \xi^t \xi$$

nên (8.6.29) và (8.6.26) cho

$$\lambda_1 \le Q \le \lambda_n. \tag{8.6.30}$$

Căn cứ vào (8.6.30) và (8.6.27) ta suy ra kết quả:

Q dạt giá trị lớn nhất là λ_n tại $\xi^{(M)} = (1, 0, ..., 0)$ tức là tại $x^{(M)} = P^{-1}\xi^{(M)} = P^{t}\xi^{(M)}$ và đạt giá trị bế nhất là λ_1 tại $\xi^{(m)} = (0, ..., 0, 1)$ tức là tại $x^{(m)} = P^{-1}\xi^{(m)} = P^{t}\xi^{(m)}$.

Thí dụ 8.6.4. Xét dạng toàn phương (8.5.4) trong \mathbb{R}^2 ở thí đụ 8.5.1. Bằng phép dổi biến trực giao (8.5.6) ta đã dưa nó về dạng chính tắc (8.5.5). Vậy nó đạt giá trị lớn nhất là 9 tại $\xi^{(M)}=(1,0)$, tức là tại $x^{(M)}=(1/\sqrt{5})$ (2, 1) và giá trị bé nhất là 4 tại $\xi^{(m)}=(0,1)$, tức là tại $x^{(m)}=(1/\sqrt{5})$ (-1,2)

BÀI TẬP CHƯƠNG VIII

8.1. Tìm dạng chính tắc của mỗi đạng toàn phương sau :

1)
$$x_1^2 + x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3$$

2)
$$x_1^2 - 2x_2^2 + x_3^2 + 2x_1x_2 + 4x_1x_3 + 2x_2x_3$$

3)
$$x_1^2 - 3x_3^2 - 2x_1x_2 + 2x_1x_3 - 6x_2x_3$$

8.2. Tìm phép biến đổi tuyến tính để đưa mỗi dạng toàn phương đười đây về dạng chính tắc và cho biết đạng chính tắc đó:

1)
$$x_1^2 + 5x_2^2 - 4x_3^2 + 2x_1x_2 - 4x_1x_3$$

2)
$$4x_1^2 + x_2^2 + x_3^2 - 4x_1x_2 + 4x_1x_3 - 3x_2x_3$$

3)
$$x_1x_2 + x_1x_3 + x_2x_3$$

,0

4)
$$2x_1^2 + 18x_2^2 + 8x_3^2 - 12x_1x_2 + 8x_1x_3 - 27x_2x_3$$

5)
$$-12x_1^2 - 3x_2^2 - 12x_3^2 + 12x_1x_2 - 24x_1x_3 + 8x_2x_3$$

8.3. Nhân dạng và vẽ các đường bác hai sau :

a)
$$2x^2 - 4xy - y^2 + 8 = 0$$

b)
$$x^2 + 2xy + y^2 + 8x + y = 0$$

c)
$$5x^2 + 4xy + 5y^2 = 9$$

d)
$$11x^2 + 24xy + 4y^2 - 15 = 0$$

e)
$$2x_1^2 + 4x_1x_2 + 5x_2^2 = 24$$

f)
$$x_1^2 + x_1 x_2 + x_2^2 = 18$$

g)
$$x_1^2 - 8x_1x_2 + 7x_2^2 = 36$$

h)
$$5x_1^2 - 4x_1x_2 + 8x_2^2 = 36$$

8.4. Nhân dang và vẽ các mặt bắc hai sau :

a)
$$2x_1^2 - 2x_1x_3 + 2x_2^2 - 2x_2x_3 + 3x_3^2 = 16$$

b)
$$2xy + 2xz + 2yz - 6x - 6y - 4z = 0$$

c)
$$7x^2 + 7y^2 + 10z^2 - 2xy - 4xz + 4yz - 12x + 12y + 60z = 24$$

d)
$$2xy - 6x + 10y + z - 31 = 0$$

e)
$$2x^2 + 2y^2 + 5z^2 - 4xy - 2xz + 2yz + 10x - 26y - 2z = 0$$

ĐÁP SỐ

8.1. 1)
$$y_1^2 + y_2^2 - y_3^2$$
;

2)
$$y_1^2 - y_2^2 - y_3^2$$

3)
$$y_1^2 - y_2^2$$

8.2. 1)
$$y_1^2 + y_2^2 - y_3^2$$

$$x_1 = y_1 - \frac{1}{2}y_2 + \frac{5}{6}y_3$$
, $x_2 = \frac{1}{2}y_2 - \frac{1}{6}y_3$, $x_3 = \frac{1}{3}y_3$

2)
$$y_1^2 + y_2^2 - y_3^2$$
, $x_1 = \frac{1}{2}y_1 + y_2$, $x_2 = y_2 + y_3$, $x_3 = -y_2 + y_3$.

3)
$$y_1^2 - y_2^2 - y_3^2$$
, $x_1 = y_1 - y_2 - y_3$, $x_2 = y_1 + y_2 - y_3$, $x_3 = y_3$.

4)
$$y_1^2 + y_2^2 - y_3^2$$
, $x_1 = \frac{1}{2}\sqrt{2}y_1 - \frac{5}{3}\sqrt{3}y_2 + \frac{1}{3}\sqrt{3}y_3$,

$$x_2 = -\frac{1}{3}\sqrt{3}y_2 + \frac{1}{3}\sqrt{3}y_3, \quad x_3 = \frac{1}{3}\sqrt{3}y_2 + \frac{1}{3}\sqrt{3}y_3.$$

5)
$$y_1^2 + y_2^2 - y_3^2$$
, $x_1 = -\frac{3}{4}y_1 - \frac{1}{4}y_2 + \frac{1}{6}\sqrt{3}y_3$.

$$x_2 = -\frac{1}{2}y_1 + \frac{1}{2}y_2, \ x_3 = \frac{1}{2}y_1 + \frac{1}{2}y_2$$

- 8.3. a) Hypebol $2x^{2} 3y^{2} = 8$
 - **b)** Parabol $2\sqrt{2}x'^2 7x' + 9y' = 0$
 - c) Elip $7x^{2} + 3y^{2} = 9$
 - d) Hypebol $4x^{2} y^{2} = 3$
 - e) Elip
 - f) Elip
 - g) Hypebol
 - h) Elip $4x_1^2 + 9x_2^2 = 36$
- 8.4. a) Elipxôit $x_1^2 + 2x_2^2 + 4x_3^2 = 16$
 - b) Hypeboloit 2 tang $x^{2} + y^{2} 2z^{2} = -10$
 - c) Elipxôit $x^{(2)} + y^{(2)} + z^{(2)} = 4$
 - d) Parabôlôit hypebôlic $x'^2 y'^2 + z' = 0$
 - e) Parabôlôit eliptic $6x^{2} + 3y^{2} 8\sqrt{2}z' = 0$

TÀI LIỆU THAM KHẢO

- Kim Cương Toán cao cấp Tập 1 Đại số NXB Đại học và Giáo dục chuyên nghiệp, Hà Nội, 1990.
 - 2. L.Lesieur CL. Joulain Toán cao cấp, II.
 - 3. Howard Anton Elementary Linear Algebra 1977
 - 4. Carroll Wilde Linear Algebra 1987
 - 5. Г.М. Гедьфанд. Лекция по линейной алгебре. 1966

MỤC LỤC

	Trang
Lời nói đầu	3
Chương I. TẬP HỢP VÀ ÁNH XẠ	5
1.0. Mớ đầu	5
I.I. Tập hợp và phần tử	6
1.2. Các phép toán về tập hợp	10
1.3. Tích để các	14
1.4. Quan hệ tương đương và quan hệ thứ tự	15
1.5. Ánh xạ	20
1.6. Tập hữu hạn - Tập đếm được - Tập không đếm được	28
1.7. Đại số tổ hợp	30
Tóm tắt chương I	34
Bài tập chương l	37
Đáp số	43
Chương II. CĂU TRÚC ĐẠI SỐ - SỐ PHỨC -	
ĐA THỰC VÀ PHÂN THỰC HỮU TỈ	47
2.1. Luật hợp thành trong trên một tập	47
2.2. Cấu trúc nhóm	50
2.3. Cấu trúc vành	52
2.4. Cấu trúc trường	53
2.5. Số phức	54
	387

2.6. Đa thức	66
2.7. Phân thức hữu tỉ	73
Tóm tắt chương 11	78
Bài tập chương 1[82
Đáp số	87
Chương III. MA TRẬN - ĐỊNH THỰC - HỆ PHƯƠNG TRÌNH TUYẾN TÍNH	92
3.1. Ma trận	92
3.2. Định thức	100
3.3. Ma trận nghịch đảo	109
3.4. Hệ phương trình tuyến tính	115
3.5. Hạng của ma trận - Hệ phương trình tuyến tính tổng quát	127
3.6. Phụ lục	134
Tóm tắt chương III	145
Bài tập chương III	149
Dáp số	161
Chương IV. HÌNH HỌC GIẢI TÍCH	
(Ôn tập : Đường bặc hai và mặt bặc hai)	168
4.1. Mở đầu	168
4.2. Đường bậc hai trong mặt phẳng	168
4.3. Mặt bặc hai	178
Bài tập chương IV	189
Đáp số	191
Chương V. KHÔNG GIAN VECTO - KHÔNG GIAN EUCLID	194
5.1. Không gian vectơ - Định nghĩa và thí dụ	194
5.2. Không gian con và hệ sinh	203
5.3. Họ vectơ độc lập tuyển tính và phụ thuộc tuyến tính	209
5.4. Không gian hữu hạn chiều và cơ sở của nó	211
388	

5.5. Số chiều và cơ sở của không gian con sinh bởi một họ vectơ	219
5.6. Tích vô hướng và không gian có tích vó hướng	222
5.7. Toa độ trong không gian n chiều	236
5.8. Bài toán đổi cơ sở	241
Tóm tắt chương V	247
Bài tập chương V	253
Đáp số	269
Chương VI. ÁNH XẠ TUYẾN TÍNH	275
6.1. Khái niệm ánh xạ tuyến tính	275
6.2. Các tính chất của ánh xạ tuyển tính - Hạt nhân và ảnh	286
6.3. Ma trận của ánh xạ tuyến tính	292
6.4. Sự đồng dạng	302
Tóm tắt chương VI	305
Bài tập chương VI	306
Đáp số	314
Chương VII. TRỊ RIÊNG VÀ VECTƠ RIÊNG CỦA TOÁN TỬ TUYẾN TÍNH	319
7.1. Trị riê ng và vectơ riêng của ma trận	319
7.2. Trị riêng và vectơ riêng của toán từ tuyến tính trong không gian hữu hạn chiều	324
7.3. Vấn đề chéo hoá ma trận	326
7.4. Vấn đề chéo hoá trực giao	333
7.5. Phụ lục	337
Tóm tắt chương VII	340
Bài tập chương VII	341
Đáp số	344
CL VIII DANG TO AN DIVIDING	140
Chương VIII. DẠNG TOÀN PHƯƠNG	348
8.1. Dạng tuyến tính trên không gian vecto V	348
8.2. Dang song tuyến trên không gian vecto V	348
	389

an -
20
0.
- 0

8.3. Dạng toàn phương trên không gian vecto V	349
8.4. Dạng song tuyển và dang toàn phương trên không gian n chiếu	351
8.5. Rút gọn dạng toàn phương	355
8.6. Áp dung	366
Bài tập chương VIII	383
Đáp số	384

Chịu trách nhiệm xuất bản : Chủ tịch HĐQT kiêm Tổng Giám đốc NGÔ TRẦN ÁI Phó Tổng Giám đốc kiêm Tổng biên tập NGUYỄN QUÝ THAO

Biển tập lần đầu :

NGUYỄN VĂN THƯỜNG

Biến tập tái bản :

NGUYỄN TRONG HÀI

Biên tặp kĩ thuật :

BÙI CHÍ HIỂU

Sửa bản in :

PHÒNG SỬA BẢN IN (NXB GIÁODỤC)

Chế bản :

PHÒNG CHẾ BẢN (NXB GIÁO DỤC)

TOÁN HỌC CAO CẤP - TẬP I

ĐẠI SỐ VÀ HÌNH HỌC GIÁI TÍCH

Mā số: 7Κ075Γ6 - DAI

In 5.000 bản, khổ 14.3 x 20.3 cm tại Công ty cổ phần in Sách giáo khoa tại TP - Hà Nội. Số xuất bản: 04-2006/CXB/111-1860/GD. In xong và nóp lưu chiếu tháng 10 năm 2006.

CÔNG TY CỔ PHẨN SÁCH ĐẠI HỌC - DẠY NGHỀ H E V O B C O

Địa chỉ: 25 Hàn Thuyên, Hà Nội

Tim doc

SÁCH THAM KHẢO ĐAI HỌC BỘ MÔN TOÁN

của Nhà xuất bản Giáo dục

- 1. Giải tích bàm
- 2. Bài tập giải tích hàm
- 3. Tôpò đại cương Độ đo và tích phân
- 4. Giải tích tân 1
- 5. Giải tích tập 2
- 6. Đại số đại cương
- 7. Số đại số
- 8. Hình học vị phân
- 9. Giải tích số
- 10. Phương trình đạo hàm riêng
- 11. Cơ sở phương trình vi phân và lí thuyết ổn định
- 12. Mở đầu lí thuyết xác xuất và ứng dụng
- 13. Bài tấp xác suất
- 14. Lí thuyết xác suất
- 15. Xác suất thống kê
- 16. Phương pháp tính và các thuật toán
- 17. Từ điển toán học thông dụng
- 18. Toán học cao cấp (tập 1, 2, 3)
- 19. Bài tập Toán học cao cấp (tập 1, 2, 3)

Nguyễn Xuân Liệm

Nguyễn Xuân Liêm

Nguyễn Xuân Liêm

Nguyễn Xuân Liêm

Nguyễn Xuân Liêm

Nguyễn Hữu Việt Hưng

Hoang Xuan Sinh

Đoàn Quỳnh

Nguyễn Minh Chương (Chủ biểi

Nguyễn Minh Chương

Nguyễn Thể Hoàn - Pham Phu

Dang Hung Thang

Đặng Hung Tháng

Nguyễn Duy Tiến - Vũ Viết Yếi

Nguyên Văn Hộ

Phan Vàn Hạp - Lê Định Thịnh

Ngò Thúc Lanh (Chủ biên)

Nguyễn Đình Trí (Chủ biên)

Nguyễn Đinh Tri (Chu biến)

Bạn đọc có thể tim mua tại các Công ti Sách - Thiết bi trường học ở các địa phương hoặc các Chu hỏng vách của Nhà xuất bản Giáo đượ:

Tại Ha Noi - 25 Hàn Thuyên, 81 Trần Hưng Đạo, 187B Giảng Võ, 23 Trắng Tiên Tại Đà Nang - 15 Nguyễn Chí Thanh

Tại Thành pho Hò Chi Minh : 104 Mai Thị Lựu, Quân 1

Giá: 20,600đ