Digital Electronics and Microprocessors

Class 10

CHHAYADEVI BHAMARE

Flip-Flop Applications

- □ Examples of applications:
 - Counting
 - Storing binary data
 - Transferring binary data between locations
- Many FF applications are categorized as sequential, which means that the output follows a predetermined sequence of states.

D	Q(t+1)
0	0
1	1

$$Q(t+1) = D$$

\boldsymbol{J}	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q'(t)

$$Q(t+1) = JQ' + K'Q$$

Frequency Division and Counting

- □ FFs are often used to divide a frequency. Here the output frequency is 1/8th the input (clock) frequency.
- □ The same circuit is also acting as a binary counter. The outputs will count from 000_2 to 111_2 or 0_{10} to 7_{10}
- □ The number of states possible in a counter is the modulus or MOD number. The figure is a MOD-8 (2³) counter. If another FF is added it would become a MOD-16 (2⁴) counter.

J-K flip-flops wired as a three-bit binary counter (MOD-8).

Table of flip-flop states shows binary counting sequence.

<u>2</u> 2	21	20	
Q_2	Q_1	Q_0	
0 0 0	0 0 1 1	0 1 0 1	Before applying clock pulses After pulse #1 After pulse #2 After pulse #3
1 1 1	0 0 1 1	0 1 0 1	After pulse #4 After pulse #5 After pulse #6 After pulse #7
0 0 0 0	0 0 1 1	0 1 0 1	After pulse #8 recycles to 000 After pulse #9 After pulse #10 After pulse #11

State transition diagram shows how the states of the counter flipflops change with each applied clock pulse.

Data Storage and Transfer

- □ FFs are commonly used for storage and transfer of data in binary form.
- □ Groups of FFs used for storage are registers.
- Data transfers take place when data is moved between registers or FFs.
- □ Synchronous transfers take place at PGT or NGT of clock.

Data Storage and Transfer

- □ Asynchronous transfers are controlled by PRE and CLR inputs.
- □ Transferring the bits of a register simultaneously is a parallel transfer.
- □ Transferring the bits of a register a bit at a time is a serial transfer.

Parallel transfer of contents of register *X* into register *Y*.

Serial Data Transfer: Shift Registers

- □ When FFs are arranged as a shift register, bits will shift with each clock pulse.
- □ The direction of data shifts will depend on the circuit requirements and the design.

Four-bit shift register.

Serial transfer of information from *X* register into *Y* register.

Serial Data Transfer: Shift Registers

- □ Parallel transfers register contents are transferred simultaneously with a single clock cycle.
- □ Serial transfers register contents are transferred one bit at a time, with a clock pulse for each bit.
- □ Serial transfers are slower, but the circuitry is simpler. Parallel transfers are faster, but circuitry is more complex.
- Serial and parallel are often combined to exploit the benefits of each.

More on Counter

Categories of counters

1. Ripple counters

The flip-flop output transition serves as a source for triggering other flip-flops

- ⇒ no common clock pulse (not synchronous)
- 2. Synchronous counters:

The CLK inputs of all flip-flops receive a common clock

Synchronous/Asynchronous Counter

Synchronous counter:

All flip-flops in a synchronous counter receive the same clock pulse and so change state simultaneously.

Asynchronous (Ripple) counter:

Flip-flops transitions ripple through from one flip-flop to the next in sequence until all flip-flops reach a new stable value (state). Each single flip-flop stage divides the frequency of its input signal by two.

What good are counters?

- □ Counters can act as simple clocks to keep track of "time."
- □ You may need to record how many times something has happened.
 - How many bits have been sent or received?
 - How many steps have been performed in some computation?
- □ All processors contain a program counter, or PC.
 - Programs consist of a list of instructions that are to be executed one after another (for the most part).
 - The PC keeps track of the instruction currently being executed.
 - The PC increments once on each clock cycle, and the next program instruction is then executed.

Some important terms

- Modulus of a counter:-the number of states trough which a counter sequences before repeating.
- □ Full sequence counter.
- □ Truncated sequence counter.

Counters

- □ Analysis of counter:-counter circuit is given analyzing its count sequence.
- □ Design of a counter:-counter behavior will be given, then designing a circuit accordingly to get expected counter behavior.

Analysis of a counter

4-bit Binary Counter

A3 A2 A1 A0 0 0 1 1 0 1 0 0

Four-bit synchronous binary counter

Design of a counter

Design of a synchronous 2 bit up/down counter using D flip flops

- □ Determine the number of flip-flops
- □ Draw state diagram
- □ Get excitation table
- □ Obtain the minimal expressions for inputs using K-map
- □ Draw the logic diagram from the expression.

The complete state diagram and table Present State Inputs Next :

Presen	t State	Inputs	Next	State
Q_1	Q_0	X	Q_1	Q_0
0	0	0	0	1
0	0	1	1	1
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	0
1	1	1	1	0

D flip-flop inputs

- ☐ If we use D flip-flops, then the D inputs will just be the same as the desired next states.
- □ Equations for the D flip-flop inputs are shown at the right.

Present State		Inputs	Next	State	Excitation IP		
Q_1	Q_0	X	Q_1	Q_0	D1	D0	
0	0	0	0	1	0	1	
0	0	1	1	1	1	1	
0	1	0	1	0	1	0	
0	1	1	0	0	0	0	
1	0	0	1	1	1	1	
1	0	1	0	1	0	1	
1	1	0	0	0	0	0	
1	1	1	1	0	1	0	

$$D_1 = Q_1 \oplus Q_0 \oplus X$$

$$D_0 = Q_0$$

Flip-Flop Excitation Tables

Excitation Table:- the excitation table specifies the values for the flip-flop input signals needed to cause the transitions in the transition table.

Present State	Next State	F.F. Input
Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

Design of a synchronous 3 bit up/down counter using JK flip flops

- Determine the number of flip-flops
- Draw state diagram
- □ Get excitaion table
- □ Obtain the minimal expressions for inputs
- □ Draw the logic diagram

□ State diagram

Excitation table

	ese:	nt	Mo	Next state Required inpu		nput	ts					
Sta	ate		de									
Q 3	Q2	Q1	M	Q3	Q2	Q1	Ј3	К3	J2	K2	J1	K1
0	0	0	0	1	1	1	1	X	1	X	1	X
0	0	0	1	0	0	1	0	X	0	X	1	X
0	0	1	0	0	0	0	0	X	0	X	X	1
0	0	1	1	0	1	0	0	X	1	X	X	1
0	1	0	0	0	0	1	0	X	X	1	1	X
0	1	0	1	0	1	1	0	X	X	0	1	X
0	1	1	0	0	1	0	0	X	X	0	X	1
0	1	1	1	1	0	0	1	X	X	1	X	1
1	0	0	0	0	1	1	X	1	1	X	1	X
1	0	0	1	1	0	1	X	0	0	X	1	X
1	0	1	0	1	0	0	X	0	0	X	X	1
1	0	1	1	1	1	0	X	0	1	X	X	1
1	1	0	0	1	0	1	X	0	X	1	1	X
1	1	0	1	1	1	1	X	0	X	0	1	X
1	1	1	0	1	1	0	X	0	X	0	X	1
1	1	1	1	0	0	0	X	1	X	1	X	1

Present State	Next State	F.F. Input		
Q(t)	Q(t+1)	$oldsymbol{J}$	K	
0	0	0	X	
0	1	1	X	
1	0	X	1	
1	1	X	0	

Q3(PS)Q3(NS) = 01 then from excitation table of JK flip flop J3K3 should be 1X(J3=1 K3=X)
Q2(PS)Q2(NS)= 01 then from excitation table of JK flip flop J2K2 should be 1X(J2=1 K2=X)
Similarly fill all the rows of excitation inputs for all states of counter

^{*} PS=Present state *NS= Next state

K-maps for excitations of synchronous 3 bit U/D counter

Draw the final circuit of 3bit UP/DOWN counter using JK flip flop

□ Work for you