Problem A. Побег Майлза

Time limit 4000 ms

Mem limit 262144 kB

OS Windows

Майлз опять сбегает от Мигеля О'Хары, но в этот раз он смог захватить с собой устройство для перемещения между двумя мирами. К сожалению, его перемещения ограничены одним городом в каждом из миров. Но эти два города очень похожи: в каждом из них ровно n небоскребов, располагающихся в одних и тех же точках пространства.

Некоторые пары небоскребов, расположенных в одном мире, пригодны для того, чтобы протянуть между ними паутину и переместиться с одного на другой (в любом из двух направлений). В первом мире есть ровно m_1 таких пар небоскребов, а во втором — ровно m_2 . Известно, за какое время можно переместиться между доступными парами небоскребов в каждом мире. Помимо этого Майлз может, находясь на i-м небоскребе в первом мире, переместиться на i-й небоскреб во втором, и наоборот, за x секунд.

Майлз собирается встретится со своей командой на небоскребе номер t второго мира, при этом начинает он побег с небоскреба номер s первого мира. Помогите Майлзу и скажите, как быстро он сможет встретиться со своей командой, чтобы иметь шансы против Мигеля.

Входные данные

Первая строка ввода содержит два целых числа n и x — количество небоскребов в каждом из двух миров и время перемещения между соответствующими небоскребами разных миров ($1 \le n \le 10^5$; $1 \le x \le 10^6$).

Вторая строка содержит число m_1 — количество пар небоскребов, между которыми можно перемещаться в городе первого мира ($0 \le m_1 \le 10^6$).

Следующие m_1 строк содержат по три числа u_i, v_i и c_i , означающих, что между небоскребами u_i и v_i в первом мире можно переместиться в любом направлении за c_i секунд ($1 \le u_i, v_i \le n; 1 \le c_i \le 10^6$).

В следующих строках в таком же формате содержится информация о возможных перемещениях между небоскребами второго мира: в первой из этих строк дано

число m_2 , а следующие m_2 строк содержат сами описания перемещений (в виде троек чисел u_i, v_i и c_i).

Последняя строка содержит два целых числа s и t — номер стартового небоскреба в первом мире и конечного во втором ($1 \le s, t \le n$).

Выходные данные

Выведите единственное целое число — минимальное время путешествия между небоскребом s первого мира и небоскребом t второго мира, или -1, если между ними нет пути.

Examples

Input	Output
6 2	6
7	
1 3 2	
6 4 1	
4 1 5	
5 3 2	
1 2 1	
1 5 4	
2 3 4	
6	
4 2 1	
2 1 5	
5 2 3	
3 1 5	
1 5 4	
2 6 1	
5 6	