Computational Syntax Lecture Notes (08/30/2019 Friday)

Syntax →Structure <--> Meaning →Inverted T-model →CFG →(C)CG →MG →TAG

CG: Functional Application

Biff NP	really σ/σ	likes (S\NP)/NP	and (σ\σ)/σ	somewhat σ/σ	adores (S\NP)/NP	Paul. NP		
	> (S\NP)/NP			(S\NP)/NE				
	>。 (S\NP)/NP							
	S\NP							
		ς						

MG:

Biff NP	really σ/σ	hates (S/NP)\NP >	and (σ\σ)/σ	Lorraine NP	somewhat σ/σ	adores (S/NP)\NP	Mardy. NP
(S/NP)\NP			(S/NP)\NP				
S/NP					S/NP	······	
			S\	NP		-	
							>

(Note: $D_o = object DP$)

Functional Application

FA
$$\frac{\sigma/\tau}{\tau} >$$

FA
$$\frac{\tau - \sigma \backslash \tau}{\tau} <$$

Functional Composition

FC
$$\frac{\sigma/\tau \quad \tau/\rho}{\sigma/\rho} > B$$

$$\mathbf{FC} \qquad \frac{\tau \backslash \rho \quad \sigma \backslash \tau}{\sigma \backslash \rho} < B$$

Type Raising

$$\mathbf{TR} \qquad \frac{\tau}{\sigma/(\sigma \backslash \tau)} > T$$

$$\mathbf{TR} \qquad \frac{\tau}{\sigma \backslash (\sigma/\tau)} < T$$

Crossing Functional Composition

CFC
$$\frac{\sigma/\tau \quad \tau \backslash \rho}{\sigma \backslash \rho} > Bx$$

CFC
$$\frac{\tau/\rho \quad \sigma \backslash \tau}{\sigma/\rho} < Bx$$

The following is an example of functional composition. In the analysis, the scope of really applies to both "hates" and "might kill", which can not be realized in minimal grammar.

This is an example of type raising.

might

kill

really

hates

$$\frac{\frac{\text{Biff}}{NP}}{\frac{NP}{S/(S\backslash NP)}} \xrightarrow{\text{really}} \frac{\text{hates}}{(S\backslash NP)/NP} \xrightarrow{\text{and}} \frac{\text{Lorrain}}{NP} \xrightarrow{\text{adores}} \frac{\text{Marty}}{(S\backslash NP)/NP} \xrightarrow{NP} \frac{S/(S\backslash NP)/NP}{S/(S\backslash NP)} > \mathbf{B}$$

$$\frac{\frac{S/(S\backslash NP)}{S/NP}}{\frac{S/NP}{S/NP}} > \mathbf{B}$$

$$\frac{S/NP}{S/NP} > \mathbf{B}$$

This sentence is an example of crossing functional composition.

Marty

I	introduced	to	Marcel	my	very	heavy	friends
\overline{NP}	$\overline{((S\backslash NP)/PP_{to})/NP}$	$\overline{PP_{to}/NP}$	\overline{NP}	$\overline{NP/N}$	$\overline{(\sigma/\sigma)/(\sigma/\sigma)}$	$\overline{(\sigma/\sigma)}$	\overline{N}
$\overline{S/(S\backslash NP)}^{>T}$		PP_{to}	>		σ/σ	>	
	$\overline{S\backslash (S/PP_{to})}^{$			N		>	
	S/NP		—< B ×		NP		>
-		\overline{S}					>