Nonlinear Component Analysis as a Kernel Eigenvalue Problem

Jifu Zhao

Huan Yan

Vikram Idiga

Pavan Kumar Nadiminti

Nov. 16, 2016, Urbana

Content

- Introduction
 - PCA
 - Kernel PCA
- Algorithms
- Examples
- Summary & Extension

PCA

- Invented by Karl Pearson, 1901*.
- Main idea
 - Convert a set of correlated variables linearly uncorrelated variables through orthogonal transformation
- Widely used for dimensionality reduction, feature extraction and data visualization

PCA

- Invented by Karl Pearson, 1901*.
- Main idea
 - Convert a set of correlated variables linearly uncorrelated variables through orthogonal transformation
- Widely used for dimensionality reduction, feature extraction and data visualization

Algorithm 1 PCA in Feature Spaces

```
1: procedure PCA(X)

2: given input: X_{n \times m} \leftarrow \left[\mathbf{x}_1; \mathbf{x}_2; \cdots; \mathbf{x}_n\right]^T

3: de-mean (or standardize): x_{ij} \leftarrow x_{ij} - \bar{x}_j or x_{ij} \leftarrow \frac{x_{ij} - \bar{x}_j}{s_j}

4: calculate covariance matrix: Cov \leftarrow \frac{1}{n}X^TX

5: singular value decomposition (SVD): [U, S, V] \leftarrow svd(Cov)

6: choose the first k eigenvectors: E_{m \times k} \leftarrow \left[\mathbf{u}_1; \mathbf{u}_2; \cdots; \mathbf{u}_k\right]

7: project the test data \mathbf{x} : \mathbf{p} \leftarrow E^T\mathbf{x}

8: finish
```

Kernel PCA

- Put forward by Scholkopf et al., 1998*
- Main idea
 - Expand the original feature space by non-linear transformations
 - Apply PCA in the transformed feature space
- Main drawback
 - Expanded feature space may have very high dimensions
 - Apply PCA is computationally expensive or even impossible
 - Solution -- Kernels

Expand the feature space

- Suppose we want to map \vec{x} into a new space: $\phi(\vec{x})$
- \vec{x} has d dimensions and $\phi(\vec{x})$ has m dimensions m>d
- we need to calculate:
 - $\vec{x}\vec{x}^T$: complexity $O(d^2)$
 - $\phi(\vec{x})\phi(\vec{x})^T$: complexity $O(m^2)$
- What if $m \gg d$?
 - Solution: Kernels

"Kernel Trick"(1)

Example:

•
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$

•
$$\phi(\vec{x}) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix}$$
 and $\phi(\vec{y}) = \begin{bmatrix} y_1^2 \\ \sqrt{2}y_1y_2 \\ y_2^2 \end{bmatrix}$

- Want to calculate: $\phi(\vec{x}) \cdot \phi(\vec{y}) = x_1^2 y_1^2 + 2x_1 x_2 y_1 y_2 + x_2^2 y_2^2$
- Define $k(\vec{x}, \vec{y}) = (\vec{x} \cdot \vec{y})^2$
 - $k(\vec{x}, \vec{y}) = x_1^2 y_1^2 + 2x_1 x_2 y_1 y_2 + x_2^2 y_x^2 = \phi(\vec{x}) \cdot \phi(\vec{y})$

"Kernel Trick"(1)

• Example:

•
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$

•
$$\phi(\vec{x}) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix}$$
 and $\phi(\vec{y}) = \begin{bmatrix} y_1^2 \\ \sqrt{2}y_1y_2 \\ y_2^2 \end{bmatrix}$

- Want to calculate: $\phi(\vec{x}) \cdot \phi(\vec{y}) = x_1^2 y_1^2 + 2x_1 x_2 y_1 y_2 + x_2^2 y_2^2$
- Define $k(\vec{x}, \vec{y}) = (\vec{x} \cdot \vec{y})^2$
 - $k(\vec{x}, \vec{y}) = x_1^2 y_1^2 + 2x_1x_2y_1y_2 + x_2^2y_x^2 = \phi(\vec{x}) \cdot \phi(\vec{y})$
- Important finding:
 - Complexity for $k(\vec{x}, \vec{y})$ is still O(d) instead of O(m)
- What's next?
 - Find some way to calculate $k(\vec{x}, \vec{y})$ rather than $\phi(\vec{x})\phi(\vec{x})^T$

"Kernel Trick"(2)

Covariance matrix:

$$C = \frac{1}{n} \sum_{i=1}^{m} \phi(x_i) \phi(x_i)^T$$

Find eigenvalues and eigenvectors for:

$$\lambda oldsymbol{v} = C oldsymbol{v}$$
 $\lambda(\phi(x_k) \cdot oldsymbol{v}) = (\phi(x_k) \cdot C oldsymbol{v})$ and $oldsymbol{v} = \sum_{i=1}^n lpha_i \, \phi(x_i)$

For kernel matrix K

$$K_{ij} = \left(\phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j)\right)$$
 $n\lambda K\boldsymbol{\alpha} = K^2\boldsymbol{\alpha} \text{ or } n\lambda \boldsymbol{\alpha} = K\boldsymbol{\alpha}$

Projection for any given x on ith principal component

$$p_i(\mathbf{x}) = \sum_{j=1}^n \alpha_{ij} k(\mathbf{x}, \mathbf{x}_j)$$

Kernel PCA Algorithm

- Conclusion:
 - Only need to calculate the kernel matrix K
 - find the eigenvalues and eigenvectors for K

Kernel PCA Algorithm

- Conclusion:
 - Only need to calculate the kernel matrix K
 - find the eigenvalues and eigenvectors for K

Algorithm 2 Kernel PCA

```
1: procedure K-PCA(X)

2: given input: X_{n \times m} \leftarrow \begin{bmatrix} \mathbf{x}_1; \mathbf{x}_2; \cdots; \mathbf{x}_n \end{bmatrix}^T

3: calculate kernel matrix K_{n \times n} : k_{ij} \leftarrow k(\mathbf{x}_i, \mathbf{x}_j)

4: centralize K : K' \leftarrow K - \mathbb{I}_n K / n - K \mathbb{I}_n / n + \mathbb{I}_n K \mathbb{I}_n / n^2

5: calculate eigenvector \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_d according to: n \lambda \boldsymbol{\alpha} = K' \boldsymbol{\alpha}

6: normalize eigenvector according to: n \lambda_i \boldsymbol{\alpha}_i^T \boldsymbol{\alpha}_i = 1

7: project the test data \mathbf{x} : p_i(\mathbf{x}) \leftarrow \sum_{j=1}^n \alpha_{ij} k(\mathbf{x}, \mathbf{x}_j)

8: finish
```

Note: \mathbb{I}_n stands for $n \times n$ matrix with all values equal to 1.

Commonly Used Kernels*

Polynomial kernel

$$K(x,y) = (\gamma x^T y + c_0)^d$$

Radial basis function kernel (Gaussian or RBF kernel)

$$K(x,y) = \exp(-\gamma ||x - y||^2)$$

Sigmoid kernel

$$K(x, y) = \tanh(\gamma x^T y + c_0)$$

Laplacian kernel

$$K(x,y) = \exp(-\gamma ||x - y||_1)$$

And so on.

Toy Examples

Toy Examples

Iris Dataset - Introduction

- Iris flower dataset is introduced by Ronald Fisher (1936)*
- It contains 3 different types of irises (Setosa, Versicolor, and Virginica)**.
- The dataset has 150 records and each has 4 features:
 - Sepal Length
 - Sepal Width
 - Petal Length
 - Petal Width.

Iris Dataset - PCA vs. K-PCA

Iris Dataset - PCA vs. K-PCA

Digits Dataset – Introduction

- Normalized handwritten digits, automatically scanned from envelops by the U.S. Postal Service*.
- All the images have been processed into 16×16 grayscale images (256 features).
- The dataset has 10 classes (0-9). There are 7291 training observations and 2007 test observations.

Class	0	1	2	3	4	5	6	7	8	9	Total
Train	1194	1005	731	658	652	556	664	645	542	644	7291
Test	359	264	198	166	200	160	170	147	166	177	2007

^{*} http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/zip.info.txt
** http://scikit-learn.org/stable/auto examples/datasets/plot iris dataset.html

Digits Dataset – Introduction

Digits Dataset - PCA vs. K-PCA

Digits Dataset – Classification

Train a 10-way multi-class neural network for classification

Training accuracy and testing accuracy

Inputs	Raw image	PCA	Polynomial Kernel (degree=2)	Polynomial Kernel (degree=3)	RBF Kernel
Feature Number	256	128	512	1024	1024
Training Accuracy	95.52%	94.94%	99.99%	98.51%	93.58%
Test Accuracy	90.98%	90.23%	94.42%	93.92%	88.14%

Summary

- Kernel PCA takes advantage of kernels to avoid huge computations
- Kernels PCA can work better than PCA
- Need to note:
 - Kernel matrix K has dimension of $n \times n$. It may need time to find eigenvectors when n is large
 - Using kernels, the parameters like d, γ, c_0 need to be determined by users

Extension

- There are a lot of methods for dimensionality reduction
 - Independent Component Analysis (ICA)
 - Non-negative Matrix Factorization (NMF)
 - Isometric Feature Mapping (ISOMAP)
 - Locality Sensitive Hashing (LSH)
 - Latent Semantic Analysis (LSA)
 - Restricted Boltzmann Machine (RBM)
 - Auto-encoder
 - And so on

Questions?

- All source codes are available in GitHub
 - https://github.com/JifuZhao/UIUC_Courses/tree/m aster/UIUC_IE529/project/code

Thank you.