Traitement Avancé du Signal et des Images Partie Signal

Sébastien Adam Cours de Licence 3 EEEA-INFOSD 2023-2024

Présentation

Sébastien Adam

- Professeur des Universités (Enseignant-Chercheur)
 - Enseignant en :
 - * L1 IEEEA (LCS, AO)
 - * L2 EEEA/INFO (ProgC, OTSI)
 - * L3 EEEA (TASI)
 - M1 SID (RO)
 - * M2 SID (GA)
 - Chercheur au laboratoire LITIS, équipe Apprentissage (https://www.litislab.fr/)
 - Directeur adjoint de la fédération CNRS Norm@stic (http://www.normastic.fr/)
 - Directeur du Master Sciences et Ingénierie des Données (http://mastersid.univ-rouen.fr/)
- Sebastien.Adam@univ-rouen.fr
- Bureau U2.1.41

Présentation

Informations concernant le Master S(I)D

- Le master SID devient en septembre 2024 un master SD
- Pourquoi? pour avoir une fiche RNCP : https://t.co/0SV5xopnmU
- Pourquoi une fiche RNCP? pour offrir l'alternance
- La structure et les contenus ne changent pas!
- Les parcours et leurs noms ne changent pas!
 - ➤ SIME : Systèmes Intelligents Mobiles et Embarqués (Mobile/embarqué + IA)
 - ▶ SD : Sciences des Données (IA / Data) : co-accrédité avec l'INSA
 - ► MINMACS : Parcours d'excellence Math/Info (multi-mentions, bourses, mentorat...) : parcours Rouen/Caen/Le Havre
- Pour 2024/2025, l'alternance est possible uniquement en M1 SIME
- Si tout va bien, possibilités de bourses et de tutorat (Normanthiia)

Présentation

Informations candidatures

Tout se passe via la plateforme MonMaster (equivalent ParcoursSup)

- Capacité Accueil Limitée (CAL) : 56 places pour le master
- Capacité Offerte Limitée (COL)
 - M1 SD : 15 places
 - M1 SIME FA: 8 places
 - ► M1 SIME FC : 12 places
 - M1 MINMACS : 5 places
- Classement fait par l'équipe pédagogique
- Critère principal : résultats de L3

Organisation de l'enseignement TASI

Objectifs

- "Nouvelle" UE commune aux deux filières
- Suite de l'UE OTSI de L2
- Contenu: modèles et algorithmes utiles en traitement du signal et des images: un peu de maths, un peu de python, les concepts importants du traitement du signal (et de l'IA).

Structure

L'UE est scindée en deux parties (et enseignants) :

- une partie relative au traitement des signaux 1D (avec Messieurs Moscatelli et Berar)
- une partie relatives au traitement des images (avec Mesdames Petitjean et Lecomte)

Organisation de l'enseignement

Volumes horaires sur la maquette

- 24h CM : 12h en signal / 12h en images
- 12h TD : Tout en signal
- 24h TP: 12h en signal / 12h en images

Informations pratiques

- CM le mercredi matin de 8h15 à 10h15
- TD le mardi matin, de 8h à 10h (plus tard dans le semestre)
- TP le mardi après midi (plus tard dans le semestre)

Evaluation

- 1 CC sur la partie signal (+ seconde chance)
- En TP : non déterminé pour le moment

Plan

- 1 Introduction au traitement du signal
 - Contexte du cours : signaux et traitements
 - Représentation des signaux

- Rappels d'analyse spectrale continue
 - Développement en séries de Fourier
 - Transformée de Fourier

Signal et traitement du signal

Signal

- Représentation physique d'une information, souvent mesurable par un capteur, évoluant selon une ou plusieurs variables et convoyée d'une source vers une destination.
- Ex : son (parole, musique), signaux biologiques (EEG, ECG...), signaux géophysique (sismique, débit), informations boursières

Traitement du signal

• Discipline des sciences de l'ingénieur permettant de :

- Transmettre
- Détecter
- Compresser
- Transformer

Exemples 1D et 2D

Exemples

Transformations : un exemple de votre vie de tous les jours

Compression

- ullet lci, les h_i sont des filtres, qui éliminent certaines composantes
- Applications du filtrage : Détection de craquements sur un enregistrement, Suppression de bruit, Annulation d'écho, etc.
- Les filtres modifient le contenu fréquentiel des signaux

Réprésentation des signaux

Deux représentations duales

- Représentation en fonction de la variable indépendante
 - ▶ En général, c'est le temps $\rightarrow f(t)$
 - Parfois l'espace $\rightarrow f(x, y)$
 - ▶ Voire le temps et l'espace $\rightarrow f(x, y, t)$

Fréquence (Hz)

Son grave

Réprésentation des signaux

Deux représentations duales

- Représentation en fonction des fréquences présentes dans le signal
- Notion de fréquence
 - Nombre de reproduction d'un motif pendant une durée donnée
 - linverse de la période f = 1/T
 - Exprimée en Hertz (Hz)
 - L'analyse spectrale détermine le contenu fréquentiel d'un signal

Fréquence (Hz)

Son aigu

Outils pour l'analyse spectrale

Objectif: étudier les différents outils pour différents signaux

- Signaux analogiques périodiques
 - → le développement en séries de Fourier
- Signaux analogiques non périodiques
 - \rightarrow la transformée de Fourier
- Signaux à temps discret
 - ightarrow la transformée de Fourier à temps discret
- Signaux et fréquences numériques
 - → la transformée de Fourier discrète

Pré-requis mathématiques indispensables

La TF d'un signal x(t), c'est : $X(f) = \int_{-\infty}^{+\infty} x(t)e^{-2j\pi ft}dt$

- Des exponentielles complexes et des intégrales
- L'UE de L2 "OTSI" fournit les rappels nécessaires (clef : OTSI2023).

Plan

- 1 Introduction au traitement du signal
 - Contexte du cours : signaux et traitements
 - Représentation des signaux

- Rappels d'analyse spectrale continue
 - Développement en séries de Fourier
 - Transformée de Fourier

Introduction

- Objectif : obtenir une représentation spectrale d'un signal.
- Outil "théorique" ne s'appliquant qu'aux signaux périodiques et nécessitant la forme analytique du signal (non utile en pratique).

Rappel : Un signal x(t) est périodique si il existe une constante T t.q.

$$x(t+T)=x(t)$$
 $\forall t$

• On appelle **période fondamentale**, le plus petit réel positif T_0 qui vérifie cette condition, et **fréquence fondamentale** $f_0 = \frac{1}{T_0}$.

Exemples de signaux périodiques :

- Sinusoidaux : $x(t) = \cos(2\pi f_0 t)$ ou exp complexes : $x(t) = e^{j2\pi f_0 t}$
- Définis périodiques : soit x(t) périodique de période 2π tel que x(t) = t si $t \in [-\pi, \pi[$

Développement en séries de Fourier

Principe

- Proposé par Joseph Fourier en 1822.
- Principe : décomposer (approximer) le signal comme une combinaison linéaire de signaux périodiques élémentaires (sinus, cosinus, exponentielles complexes) dont la fréquence est multiple de celle du signal
- On obtient des coefficients traduisant la "quantité" de chaque composante fréquentielle présente dans le signal

Illustration: reconstruction d'un rectangle (1,3,5,255)

Décomposition en exponentielles complexes

Tout signal périodique x(t) de période fondamentale T_0 peut etre représenté en une somme d'exponentielles complexes :

$$x(t) = \sum_{k=-\infty}^{+\infty} c_k e^{jkw_0 t}$$
 avec $w_0 = \frac{2\pi}{T_0} = 2\pi f_0$

les c_k sont **les coefficients de Fourier complexes**. Ils s'obtiennent par :

$$c_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jkw_0 t} dt = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-jkw_0 t} dt = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-jkw_0 t} dt$$

L'intégrale se calcule sur **n'importe quel intervalle de longueur** T_0 . $c_0 = \frac{1}{T_0} \int_{T_0} x(t) dt$ est la valeur moyenne de x(t) sur une période. C'est la composante continue

Posons $e^{i\theta} = cos(\theta) + isin(\theta)$ pour obtenir l'écriture trigonométrique

Décomposition en séries trigonométriques

En utilisant $e^{i\theta} = \cos(\theta) + i\sin(\theta)$, on a une écriture équivalente sous forme trigonométrique :

$$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kw_0 t) + b_k \sin(kw_0 t)]$$

où a_k et b_k sont les coefficients de Fourier obtenus par les équations :

$$a_k = rac{2}{T_0} \int_{T_0} x(t) \cos(kw_0 t) dt$$
 $b_k = rac{2}{T_0} \int_{T_0} x(t) \sin(kw_0 t) dt$

- Les coefficients a_k et b_k peuvent être obtenus depuis les coefficients c_k par : $\frac{a_0}{2} = c_0$, $a_k = c_k + c_{-k}$, $b_k = j(c_k c_{-k})$
- Réciproquement, les c_k peuvent être calculés depuis les a_k et b_k par : $c_k = \frac{a_k jb_k}{2}$ et $c_{-k} = \frac{a_k + jb_k}{2}$

→□▶→□▶→□▶ □ ♥Q(

Quelques propriétés des DSF

- Signal harmonique (sinus ou cosinus pur) \Rightarrow uniquement le fondamental a_1 ou b_1 .
- Signal pair (comme le cosinus) $\Rightarrow b_n = 0$
- Signal impair (comme le sinus) $\Rightarrow a_n = 0$
- On peut déduire des a_n et des b_n :
 - Le spectre d'amplitude : $\rho_n = \sqrt{a_n^2 + b_n^2}$
 - Le spectre de phase : $\phi_n = \arctan \frac{b_n}{a_n}$

Puissance

La puissance P d'un signal périodique peut également se calculer à l'aide des coefficients d'une série de Fourier grâce au **Théorème de Parseval**

$$P = \frac{1}{T_0} \int_{T_0} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |c_k|^2 = \frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} a_n^2 + b_n^2$$

Développement en séries de Fourier

Exemple de DSF

• Calculer le DSF sous sa forme trigonométrique du signal rectangle de période T_0 ($f_0 = \frac{1}{T_0}$)

Rappel des formules

- $x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kw_0 t) + b_k \sin(kw_0 t)]$
- $a_k = \frac{2}{T_0} \int_{T_0} x(t) \cos(kw_0 t) dt$
- $b_k = \frac{2}{T_0} \int_{T_0} x(t) \sin(kw_0 t) dt$

Développement en séries de Fourier

Exemple de DSF

On obtient $a_0 = a_n = 0$ et $b_n = \frac{2}{\pi n} (1 - (-1)^n)$, soit :

$$x(t) = \sum_{n=1}^{N} \frac{2}{\pi n} (1 - (-1)^n) sin(\frac{2\pi nt}{T})$$

Le spectre d'amplitude est le suivant :

ightarrow on a détecté les composantes fréquentielles d'un signal périodique .

Exercices (certains seront traités en TD)

Pour chacun des signaux suivants, **périodiques de période** 2π , dessiner le signal et calculer le développement en séries de Fourier.

$$\mathbf{1} x_1(t) = \left\{ \begin{array}{ll} t+\pi & \text{ si } t \in [-\pi, 0[\\ t-\pi & \text{ si } t \in [0, \pi] \end{array} \right.$$

- ② $x_2(t) = t \text{ si } t \in]-\pi,\pi[$,
 - **Exprimer la valeur du DSF en** $t=\frac{\pi}{2}$

 - ► En utilisant l'égalité de Parseval, donner $\sum_{p=1}^{+\infty} \frac{1}{p^2}$

$$\mathbf{3} \quad x_3(t) = \left\{ \begin{array}{ll} -t - \pi/2 & \text{ si } t \in [-\pi, 0] \\ t - \pi/2 & \text{ si } t \in [0, \pi] \end{array} \right.$$

Principe

- Même auteur que les DSF : Joseph Fourier
- Généralise des DSF dans le cas de signaux non périodique
- Intuitivement, on suppose que la période T du signal tend vers l'infini : sa "fréquence de reproduction" f tend alors vers 0

- On tend alors vers une analyse continue dans les fréquences
- → C'est le principe de la transformée de Fourier

Définition

Soit x(t) un signal analogique non périodique. Sa transformée de Fourier, si elle existe, est donnée par :

$$X(f) = \int_{-\infty}^{+\infty} x(t)e^{-2j\pi ft}dt$$

- X(f) est une fonction complexe de la variable réelle f
- X(f) indique, la "quantité" de fréquence f présente dans le signal x(t) sur l'intervalle de temps considéré
- x(t) et X(f) sont deux descriptions équivalentes (temporelle ou fréquentielle) du même signal. On écrit : $x(t) \leftrightarrow X(f)$
- |X(f)| est le spectre d'amplitude du signal
- arg[X(f)] est le spectre de phase du signal

Inversion

Si elle existe, la transformée de Fourier inverse est de X(f) est donnée par :

$$\tilde{x}(t) = \int_{-\infty}^{+\infty} X(f) e^{i2\pi f t} df$$

Conditions d'existence

Il existe des conditions sur l'existence de la Transformée de Fourier d'un signal x(t) et des conditions pour que $\tilde{x}(t)=x(t)$. Par exemple, une de ces conditions est que x(t) soit à énergie finie soit $\int_{-\infty}^{+\infty}|x(t)|^2dt<\infty$. Cependant, nous n'aborderons pas ces conditions d'existence dans ce cours et en général, pour les signaux x(t) qui nous intéressent, on considerera ces conditions satisfaites.

Propriétés (1)

- Linéarité : $a_1x_1(t) + a_2x_2(t) \leftrightarrow a_1X_1(f) + a_2X_2(f)$
- Décalage temporel : $x(t-t_0) \leftrightarrow e^{-2j\pi f t_0} X(f)$
- Décalage fréquentiel : $e^{2j\pi f_0 t} x(t) \leftrightarrow X(f-f_0)$
- Changement d'échelle : $x(at) \leftrightarrow \frac{1}{|a|}X(\frac{f}{a})$
- Dérivation : $\frac{dx(t)}{dt} \leftrightarrow 2j\pi fX(f)$
- Dérivations multiples : $\frac{d^n x(t)}{dt} \leftrightarrow (2j\pi f)^n X(f)$
- Intégration : soit P[x(t)] la primitive de x(t). $P[x(t)] \leftrightarrow \frac{1}{2j\pi f}X(f)$
- Les réciproques existente naturellement

Propriétés

- Inversion temporelle : $x(-t) \leftrightarrow X(-f)$
- Conjugaison complexe : $x^*(t) \leftrightarrow X^*(f)$
- Si x(t) est réel pur [cas fréquent], alors X(f) = X(-f) (paire)
- Si x(t) est imaginaire pur, alors X(f) = -X(-f)
- si x(t) est réel et pair, alors X(f) est réelle et paire
- si x(t) est réel et impair, alors X(f) est imaginaire pure et impaire

Fourier, puissance et énergie

Définitions

Soit un signal x(t) défini sur $]-\infty,+\infty]$, et soit T_0 un intervalle de temps

- L'énergie de x(t) est donnée par : $E = \int_{-\infty}^{+\infty} |x(t)|^2 dt$
- L'énergie de x(t) sur $\left[-\frac{T_0}{2}, \frac{T_0}{2}\right]$ est donnée par : $E = \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} |x(t)|^2 dt$
- La puissance moyenne de x(t) : $P = \lim_{T_0 \to \infty} \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} |x(t)|^2 dt$

Théorème de Parseval

L'énergie est conservée lors du passage du domaine temporel au domaine fréquentiel : c'est le théorème de Parseval

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

Exemple 1

Soit le signal **non périodique** $x_1(t)$ représenté sur la figure suivante :

- Calculer $X_1(f)$
- Tracer le spectre d'amplitude du signal
- Tracer le spectre de phase du signal

Exemple 2

Soit le signal **non périodique** $x_2(t)$ représenté sur la figure suivante :

- Calculer $X_2(f)$
- Tracer le spectre d'amplitude du signal
- Tracer le spectre de phase du signal

Exemple 3 : traité en TD

Soit le signal **non périodique** $x_3(t)$ représenté sur la figure suivante :

- Calculer $X_3(f)$
- Tracer le spectre d'amplitude du signal
- Tracer le spectre de phase du signal