เลขที่นั่งสอบ	

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคเรียนที่ 2 ปีการศึกษา 2555

ข้อสอบวิชา PHY 204 Vibrations and Waves สอบวันที่ 6 มีนาคม 2556

นักศึกษาภาควิชาฟิสิกส์ ชั้นปีที่ 2 เวลา 9.00 -12.00 น.

۰	å	•			
คา	เฑ	Ľ	গ	J	•

- 1. ข้อสอบวิชานี้มีทั้งหมด 9 ข้อ รวม 11 หน้า คะแนนเต็ม 70 คะแนน
- 2. เขียน ชื่อ-สกุลและรหัสประจำตัวนักศึกษาให้ครบถ้วน
- 3. อนุญาตให้ใช้เครื่องคำนวณตามประกาศของมหาวิทยาลัยได้
- 4. ห้ามนำเอกสารใดๆ หรือไม้บรรทัดสูตรเข้าห้องสอบ
- 5. ทุจริตในการสอบมีโทษสูงสุด ให้พ้นสภาพการเป็นนักศึกษา

ชื่อ-สกุล		รหัส	ภาควิชา
,			
			1
1	คะแนน		

ผู้ออกข้อสอบ ดร.ปณิตา ชินเวชกิจวานิชย์ 8872

ข้อสอบนี้ได้ผ่านคณุ	ุเะกรรมการกลั่นกรอ	วงข้อสอบภาค	าวิชาฟิสิกส์
d	114	_	
/	/		
••••••	**************************		***************************************

Chapter 1:SHM

$$\ddot{x} + \omega^2 x = 0$$

$$x = a \sin(\omega t + \phi)$$

$$PE = \frac{1}{2}sx^{2} = \frac{1}{2}ma^{2}\omega^{2}sin^{2}(\omega t + \phi)$$

$$KE = \frac{1}{2}m\dot{x}^2 = \frac{1}{2}ma^2\omega^2\cos^2(\omega t + \phi)$$

$$E = \frac{1}{2}ma^2\omega^2 = \frac{1}{2}sa^2$$

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{1}{g}}$$

Chapter 2: Damped Oscillator

$$m\ddot{x} = -sx - r\dot{x}$$

$$x = C_1 \exp \left(\frac{-rt}{2m} + \left(\frac{r^2}{4m^2} - \frac{s}{m} \right)^{1/2} t \right)$$

$$+C_{2} \exp \left(\frac{-rt}{2m} - \left(\frac{r^{2}}{4m^{2}} - \frac{s}{m}\right)^{1/2} t\right)$$

$$x = (A + Bt)e^{-rt/2m}$$

$$x = Ae^{-\pi/2m} \sin(\omega' t + \phi)$$

$$\omega'^2 = \frac{s}{m} - \frac{r^2}{4m^2}$$

$$\delta = \frac{r}{2m}\tau' = \ln\left(\frac{A_0}{A_1}\right)$$

$$A_t = A_0 e^{-rt/2m} = A_0 e^{-1}$$
; $t = \frac{2m}{r}$

$$E = E_0 e^{-\pi/m} , Q = \frac{\omega' m}{r}$$

$$\frac{\text{energy stored in system}}{\text{energy lost per cycle}} = \text{constant} = \frac{Q}{2\pi}$$

Chapter 3: Forced Oscillator

$$L\frac{dI}{dt} + RI + \frac{q}{C} = 0$$

$$q = q_0 \exp \left[\frac{-Rt}{2L} \pm t \sqrt{\frac{R^2}{4L^2} - \frac{1}{LC}} \right]$$

$$\omega^2 = \frac{1}{1.0} - \frac{R^2}{4L^2}$$

$$m\ddot{x} + r\dot{x} + sx = F_0 \cos \omega t$$

$$x = \frac{F_0 \sin \omega t}{\omega Z_m}$$
 $v = \frac{F_0}{Z_m} \cos(\omega t - \phi)$

$$Z_{m} = \left(r^{2} + \left(\omega m - s/\omega\right)^{2}\right)^{1/2}$$

$$x_{max} = \frac{F_0}{\omega_r Z_m}, x_{max} = \frac{F_0}{\omega' r}; \omega_r = \left(\frac{s}{m} - \frac{r^2}{2m^2}\right)^{1/2}$$

$$P = (F_0 \cos \omega t) \left(\frac{F_0}{Z_m}\right) \cos(\omega t - \phi)$$

$$=\frac{F_0^2}{Z_m}\cos\omega t \cos(\omega t - \phi)$$

$$P_{av}(max imum) = \frac{F_0^2}{2r}$$
 $Q = \frac{\omega_0}{\omega_2 - \omega_1}$

Chapter 4: Transverse wave motion

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$$

$$y = a \sin(\omega t - \phi) = a \sin \frac{2\pi}{3} (ct - x);$$

$$k = \frac{2\pi}{\lambda} = \frac{\omega}{c}$$

$$Z = \frac{\text{transverse force}}{\text{transverse velocity}} = \frac{F}{v}$$
 $Z = \frac{T}{c} = \rho c$

$$\vec{\mathbf{v}} = \vec{\mathbf{A}} e^{i(\omega t - \mathbf{k}\mathbf{x})}$$

$$F_0 e^{i\omega t} = -T \left(\frac{\partial y}{\partial x}\right)_{x=0} \quad \ \bar{y} = \frac{F_0}{i\omega} \left(\frac{c}{T}\right) e^{i(\omega t - kx)}$$

Reflection coefficient =
$$\frac{B_1}{A_1} = \frac{Z_1 - Z_2}{Z_1 + Z_2}$$

Transmission coefficient =
$$\frac{A_2}{A_1} = \frac{2Z_1}{Z_1 + Z_2}$$

$$\frac{\text{reflected energy}}{\text{incident energy}} = \frac{Z_1 B_1^2}{Z_1 A_1^2} = \left(\frac{B_1}{A_1}\right)^2 = \left(\frac{Z_1 - Z_2}{Z_1 + Z_2}\right)^2$$

$$\frac{\text{transmitted energy}}{\text{incident energy}} = \frac{Z_2 A_2^2}{Z_1 A_1^2} = \frac{4Z_1 Z_2}{(Z_1 + Z_2)^2}$$

rate of energy transfer (Power) =
$$\frac{1}{2} \rho \omega^2 A^2 c$$

ชื่อ-ส	สกุลรหัสน์	มักศึกษา หน้า	ที่ 3
1.	กล่องมวล 2 กิโลกรัมผูกติดกับสปริงที่มีค่าคงตัวของสปริง 150 นิวตัน/เมตร เมตร และกล่องกำลังเคลื่อนที่ไปในทิศทาง -x ด้วยความเร็ว 2.5 เมตร/วินาที่ 1.1 แอมปลิจูดการแกว่งของมวล	-	
	1.2 มุมเฟส (φ)		
	1.3 สมการแสดงการกระจัดในรูปฟังก์ชันของเวลา		
2.	ในการศึกษาเรื่องพลังงานในระบบ SHM 2.1 จงเขียนรูปกราฟความสัมพันธ์ระหว่างการกระจัด กับพลังงานศักย์	(6 คะแนน) พลังงานจลน์ และพลังงานรวมของระบบ	

ื่อ-สกุล		รหัสนักศึกษา	หน้าที่ 4
2.2 %	วงหาระยะกระจัดที่พลังงานศักย์และพลั	กังงานจลน์ของระบบมีค่าเท่ากัน	
		รการเคลื่อนที่เป็น 4x + rx + 32x = 0 จงหา	าค่า damping constant (r)
จะทำให้ ก 3.1	ารเคลื่อนที่เป็น damped SHM		(6 คะแนน)
5.1			
3.2	heavy damping		
3.3	critical damping		

4. จงแสดงว่า $x = (A - Bt)e^{-rt/2m}$ เป็นคำตอบของสมการ $m\ddot{x} + r\dot{x} + sx = 0$ เมื่อ $\frac{r^2}{4m^2} = \frac{s}{m}$ (6 คะแนน)

- 5. ในการศึกษาเรื่อง Forced oscillator ของระบบหนึ่งที่ทดลองปรับเปลี่ยนค่า r 5 ค่า เมื่อนำมาวาดกราฟระหว่าง displacement กับ ความถี่ของ driving force แสดงดังรูป และพบว่าแอมปลิจูดการกระจัดจะมีค่าสูงสุดตามสมการ $x_{max} = \frac{F_0}{\omega_r Z_m} \text{ โดย } \omega_r \text{ คือ frequency of displacement resonance} \tag{12 คะแนน)}$
 - 5.1 จงอธิบายกราฟความสัมพันธ์ระหว่างการกระจัดกับความถึ

5.2 จงแสดงว่า displacement resonance จะเกิดที่ $\omega_r = \left(\frac{s}{m} - \frac{r^2}{2m^2}\right)^{1/2}$

5.3 จงแสดงว่าเมื่อความถี่ของ driving force มีค่าน้อยมากๆ (ωo 0) แอมปลิจูดของการกระจัดจะมีค่าเข้าใกล้ F $_{o}$ /s

5.4 จากกราฟทั้ง 5 เส้น นักศึกษาคิดว่าค่า quality factor (Q) ของกราฟเส้นใดมีค่าสูงสุด เพราะเหตุใด

จากกราฟแสดงความสัมพันธ์ระหว่างกำลังเฉลี่ย (P_{av}) ซึ่งมีหน่วยเป็นวัตต์ และความถี่ของ driving force มีหน่วย เป็นเฮิร์ตซ์ จงตอบคำถามต่อไปนี้ (10 คะแนน)

6.1 resonance frequency (ω_0) มีค่าเท่าใด

6.2 bandwidth มีค่าเท่าใด

6.3 O-factor มีค่าเท่าใด

6.4 ถ้าปลด driving force ออก จงหาจำนวนรอบของการสั่นที่ทำให้พลังงานของระบบลดลงเหลือ $\,\mathrm{e}^{-1}$ ของค่าเดิม

6.5 ถ้ามวล ${f m}$ มีค่า 0.05 กิโลกรัม จงคำนวณหาแอมปลิจูดของ driving force (F_0)

จากรูป คลื่นตกกระทบ $\mathbf{y}_1 = \mathbf{A}_1 \sin(\omega \mathbf{t} - \mathbf{k}_1 \mathbf{x})$ เดินทางไปในทิศ $+\mathbf{x}$ เมื่อถึงรอยต่อจะมีคลื่นบางส่วนผ่านรอยต่อไปได้ (14 คะแนน)

7.1 จงเขียนสมการแสดงการกระจัดของคลื่น $\mathbf{y}_{_{\mathrm{I}}},~\mathbf{y}_{_{\mathrm{I}}},~\mathbf{y}_{_{\mathrm{I}}}$

7.2 จงเขียนเงื่อนไขขอบ (boundary conditions) ที่ตำแหน่ง $\mathbf{x}=0$

ชื่อ-สกุล -	รหัสนักศึกษา ห น้าที่ 9
7.3	จงหาแอมปลิจูดคลื่นสะท้อน (reflected wave) และคลื่นที่ส่งผ่าน (transmitted wave) ในเทอมของแอมปลิจูดคลื่น ตกกระทบ
7.4	แอมปลิจูดคลื่นสะท้อนจะเป็นลบเมื่อใด อธิบายให้ชัดเจน
7.5	จงหาอัตราส่วนของ Power คลื่นสะท้อนต่อคลื่นตกกระทบ

ชื่อ-สกุล	รหัสนักศึกษา	ที่	10
-----------	--------------	-----	----

8. จากการศึกษาเรื่องคลื่นในเส้นเชือก

(10 คะแนน)

8.1 เชือกเส้นหนึ่งมีค่า linear mass density $\rho = 5 \times 10^{-2} \text{ kg/m}$ มีแรงตึงเชือก 80N จงหาว่าต้องให้ Power กับ เชือก เท่าใดที่จะทำให้เกิดคลื่นในเชือกความถี่ 60Hz และมีแอมปลิจูด 6 cm

8.2 ถ้าเพิ่ม Power เป็น 2.5 เท่า แอมปลิจูดจะเพิ่มขึ้นเท่าใด

9. (พิเศษ) จงแสดงว่าในวงจร RLC แรงดันไฟฟ้าที่ตกคร่อมตัวเก็บประจุจะมีค่าสูงสุดที่ความถี่ $\omega=\omega_0(1-\frac{1}{4Q_0^2})^{1/2}$ เมื่อ $\omega_0^2=(LC)^{-1}$ และ $Q_0=\omega_0 L/R$ (แนะ $q=q_o\exp\left[\frac{-Rt}{2L}\pm\sqrt{\frac{R^2}{4L^2}-\frac{I}{LC}}\right]$) (10 คะแนน)