Package 'bigutilsr'

October 12, 2022

Title Utility Functions for Large-scale Data
Version 0.3.4
Date 2021-04-08
Description Utility functions for large-scale data. For now, package 'bigutilsr' mainly includes functions for outlier detection and unbiased PCA projection.
License GPL-3
Encoding UTF-8
Language en-US
ByteCompile TRUE
RoxygenNote 7.1.1
<pre>URL https://github.com/privefl/bigutilsr</pre>
<pre>BugReports https://github.com/privefl/bigutilsr/issues</pre>
LinkingTo Rcpp
Imports bigassertr (>= 0.1.1), bigparallelr (>= 0.2.3), nabor, Rcpp, robustbase, RSpectra, stats
Suggests covr, Gmedian, mytnorm, rrcov, spelling, testthat (>= 2.1.0)
NeedsCompilation yes
Author Florian Privé [aut, cre]
Maintainer Florian Privé <florian.prive.21@gmail.com></florian.prive.21@gmail.com>
Repository CRAN
Date/Publication 2021-04-13 22:00:11 UTC
R topics documented:
as_model_matrix covRob covrob_ogk geometric_median hist_out

2 as_model_matrix

	knn_parallel	7
	-1	
	LOF	8
	maha_trans	9
	nclass.scottRob	10
	pca_nspike	10
	pca_OADP_proj	11
	predict.Procrustes	12
	prob_dist	13
	procrustes	14
	rollmean	15
	tukey_mc_up	15
Index		17

 as_model_matrix

Transform a data frame

Description

Transform a data frame into a matrix using one hot encoding.

Usage

```
as_model_matrix(df, intercept = FALSE)
```

Arguments

df A data frame.

intercept Whether to have a column with all 1s. Default is FALSE.

Value

A matrix.

```
mat <- as_model_matrix(iris)
str(mat)</pre>
```

covRob 3

Description

Deprecated

Usage

```
covRob(data, ...)
```

Arguments

data A matrix.
... Not used.

See Also

```
covrob_ogk() dist_ogk()
```

covrob_ogk	Robust	Location	and	Scatter	Estimation	-	Ortogonalized
	Gnanad	esikan-Kette	enring	(OGK)			

Description

Computes a robust multivariate location and scatter estimate with a high breakdown point, using the pairwise algorithm proposed by Marona and Zamar (2002) which in turn is based on the pairwise robust estimator proposed by Gnanadesikan-Kettenring (1972).

Usage

```
covrob_ogk(U, niter = 2, beta = 0.9)
dist_ogk(U, niter = 2, beta = 0.9)
```

Arguments

U	A matrix with	no missing v	values and at	least 2 columns.

 $\label{eq:niteration} \textbf{Number of number of iterations for the first step of the algorithm, usually 1 or 2}$

since iterations beyond the second do not lead to improvement.

beta Coverage parameter for the final reweighted estimate. Default is 0.9.

4 covrob_ogk

Details

The method proposed by Marona and Zamar (2002) allowes to obtain positive-definite and almost affine equivariant robust scatter matrices starting from any pairwise robust scatter matrix. The default robust estimate of covariance between two random vectors used is the one proposed by Gnanadesikan and Kettenring (1972) but the user can choose any other method by redefining the function in slot vrob of the control object CovControlOgk. Similarly, the function for computing the robust univariate location and dispersion used is the tau scale defined in Yohai and Zamar (1998) but it can be redefined in the control object.

The estimates obtained by the OGK method, similarly as in CovMcd are returned as 'raw' estimates. To improve the estimates a reweighting step is performed using the coverage parameter beta and these reweighted estimates are returned as 'final' estimates.

Value

```
covrob_ogk(): list of robust estimates, $cov and $center.
dist_ogk(): vector of robust Mahalanobis (squared) distances.
```

References

Maronna, R.A. and Zamar, R.H. (2002) Robust estimates of location and dispersion of high-dimensional datasets; *Technometrics* **44**(4), 307–317.

Yohai, R.A. and Zamar, R.H. (1998) High breakdown point estimates of regression by means of the minimization of efficient scale *JASA* **86**, 403–413.

Gnanadesikan, R. and John R. Kettenring (1972) Robust estimates, residuals, and outlier detection with multiresponse data. *Biometrics* **28**, 81–124.

Todorov V & Filzmoser P (2009), An Object Oriented Framework for Robust Multivariate Analysis. *Journal of Statistical Software*, **32**(3), 1–47. URL https://www.jstatsoft.org/v32/i03/.

See Also

```
rrcov::CovOgk()
stats::mahalanobis()
```

```
X <- readRDS(system.file("testdata", "three-pops.rds", package = "bigutilsr"))
svd <- svds(scale(X), k = 5)

U <- svd$u
dist <- dist_ogk(U)
str(dist)</pre>
```

geometric_median 5

geometric_median	Geometric median
------------------	------------------

Description

Compute the geometric median, i.e. the point that minimizes the sum of all Euclidean distances to the observations (rows of U).

Usage

```
geometric_median(U, tol = 1e-10, maxiter = 1000, by_grp = NULL)
```

Arguments

U	A matrix (e.g. PC scores).
tol	Convergence criterion. Default is 1e-10.
maxiter	Maximum number of iterations. Default is 1000.
by_grp	Possibly a vector for splitting rows of U into groups before computing the geometric mean for each group. Default is NULL (ignored).

Value

The geometric median of all rows of U, a vector of the same size as ncol(U). If providing by_grp, then a matrix with rows being the geometric median within each group.

```
X <- readRDS(system.file("testdata", "three-pops.rds", package = "bigutilsr"))
pop <- rep(1:3, c(143, 167, 207))

svd <- svds(scale(X), k = 5)
U <- sweep(svd$u, 2, svd$d, '*')
plot(U, col = pop, pch = 20)

med_all <- geometric_median(U)
points(t(med_all), pch = 20, col = "blue", cex = 4)

med_pop <- geometric_median(U, by_grp = pop)
points(med_pop, pch = 20, col = "blue", cex = 2)</pre>
```

hist_out

	•			
n:	ıc	t_	\sim 1	1 🕇
11.	ப	L _	υı	ıυ

Outlier detection (histogram)

Description

Outlier detection based on departure from histogram. Suitable for compact values (need a space between main values and outliers).

Usage

```
hist_out(x, breaks = nclass.scottRob, pmax_out = 0.2, nboot = NULL)
```

Arguments

Х	Numeric vector (with compact values).
breaks	Same parameter as for hist(). Default uses a robust version of Scott's rule. You can also use "FD" or nclass.FD for a bit more bins.
pmax_out	Percentage at each side that can be considered outliers at each step. Default is 0.2.
nboot	Number of bootstrap replicates to estimate limits more robustly. Default is NULL (no bootstrap, even if I would recommend to use it).

Value

A list with

- x: the initial vector, whose outliers have been removed,
- lim: lower and upper limits for outlier removal,
- all_lim: all bootstrap replicates for lim (if nboot not NULL).

```
set.seed(1)
x <- rnorm(1000)
str(hist_out(x))

# Easy to separate
x2 <- c(x, rnorm(50, mean = 7))
hist(x2, breaks = nclass.scottRob)
str(hist_out(x2))

# More difficult to separate
x3 <- c(x, rnorm(50, mean = 6))
hist(x3, breaks = nclass.scottRob)
str(hist_out(x3))
str(hist_out(x3, nboot = 999))</pre>
```

knn_parallel 7

knn_parallel	Find K nearest neighbours for multiple query points

Description

Find K nearest neighbours for multiple query points

Usage

```
knn_parallel(data, query = data, k, ..., ncores = bigparallelr::nb_cores())
```

Arguments

data	Mxd matrix of M target points with dimension d
query	Nxd matrix of N query points with dimension d (nb data and query must have same dimension). If missing defaults to data i.e. a self-query.
k	an integer number of nearest neighbours to find
• • •	Arguments passed on to nabor::knn
	eps An approximate error bound. The default of 0 implies exact matching.
	searchtype A character vector or integer indicating the search type. The default value of 1L is equivalent to "auto". See details.
	radius Maximum radius search bound. The default of 0 implies no radius bound.
ncores	Number of cores to use. Default uses bigparallelr::nb_cores().

Value

A list with elements nn.idx (1-indexed indices) and nn.dists (distances), both of which are $N \times k$ matrices. See details for the results obtained with 1 invalid inputs.

```
## Not run: knn_parallel(matrix(1:4, 2), k = 2, ncores = 2)
```

8 LOF

LOF

Local Outlier Factor (LOF)

Description

LOF: Identifying Density-Based Local Outliers.

Usage

```
LOF(
    U,
    seq_k = c(4, 10, 30),
    combine = max,
    robMaha = FALSE,
    log = TRUE,
    ncores = 1
)
```

Arguments U

U	A matrix, from which to detect outliers (rows). E.g. PC scores.
seq_k	Sequence of numbers of nearest neighbors to use. If multiple k are provided, this returns the combination of statistics. Default is c(4, 10, 30) and use max to combine (see combine).
combine	How to combine results for multiple k? Default uses max.
robMaha	Whether to use a robust Mahalanobis distance instead of the normal euclidean

distance? Default is FALSE, meaning using euclidean.

log Whether to return the logarithm of LOFs? Default is TRUE.

ncores Number of cores to use. Default is 1.

References

Breunig, Markus M., et al. "LOF: identifying density-based local outliers." ACM sigmod record. Vol. 29. No. 2. ACM, 2000.

See Also

```
prob_dist()
```

```
X <- readRDS(system.file("testdata", "three-pops.rds", package = "bigutilsr"))
svd <- svds(scale(X), k = 10)

llof <- LOF(svd$u)
hist(llof, breaks = nclass.scottRob)</pre>
```

maha_trans 9

```
tukey_mc_up(llof)

llof_maha <- LOF(svd$u, robMaha = TRUE)
hist(llof_maha, breaks = nclass.scottRob)
tukey_mc_up(llof_maha)

lof <- LOF(svd$u, log = FALSE)
hist(lof, breaks = nclass.scottRob)
str(hist_out(lof))
str(hist_out(lof, nboot = 100))
str(hist_out(lof, nboot = 100, breaks = "FD"))</pre>
```

maha_trans

Transform matrix

Description

Transform matrix to use Mahalanobis distance instead of Euclidean one.

Usage

```
maha_trans(U, estim = covrob_ogk(U))
```

Arguments

U A matrix (e.g. PC scores).

estim List of location and scatter estimates, \$cov and \$center.

Value

U, transformed.

```
X <- readRDS(system.file("testdata", "three-pops.rds", package = "bigutilsr"))
svd <- svds(scale(X), k = 5)

U <- svd$u
dist1 <- dist_ogk(U)

U.maha <- maha_trans(U)
dist2 <- rowSums(U.maha^2)
all.equal(dist2, dist1)</pre>
```

pca_nspike

nclass.scottRob

Compute the Number of Classes for a Histogram

Description

Compute the Number of Classes for a Histogram

Usage

```
nclass.scottRob(x)
```

Arguments

Х

a data vector.

Value

The suggested number of classes.

References

Scott, D. W. (1979). On optimal and data-based histograms. Biometrika, 66, 605–610. doi: 10.2307/2335182.

Examples

pca_nspike

Number of spikes in PCA

Description

Estimate the number of distant spikes based on the histogram of eigenvalues.

Usage

```
pca_nspike(eigval, breaks = "FD", nboot = 100)
```

pca_OADP_proj

Arguments

eigval Eigenvalues (squared singular values).

breaks Same parameter as for hist(). Default uses a robust version of Scott's rule.

You can also use "FD" or nclass. FD for a bit more bins.

nboot Number of bootstrap replicates to estimate limits more robustly. Default is 100.

Value

The estimated number of distant spikes.

Examples

```
N <- 400; M <- 2000; K <- 8
U <- matrix(0, N, K); U[] <- rnorm(length(U))
V <- matrix(0, M, K); V[] <- rnorm(length(V))
# X = U V^T + E
X <- tcrossprod(U, V) + 15 * rnorm(N * M)
pca <- prcomp(X)
eigval <- pca$sdev^2
plot(head(eigval, -1), log = "xy", pch = 20)
pca_nspike(eigval)</pre>
```

pca_OADP_proj

OADP projection

Description

Online Augmentation, Decomposition, and Procrustes (OADP) projection of PC loadings onto some study data X.

Usage

```
pca_OADP_proj(X, loadings, sval)
pca_OADP_proj2(XV, X_norm, sval)
```

Arguments

X Data to get PC loadings into.

loadings PC loadings of the reference PCA to project.

sval Singular values of the reference PCA (sqrt of the eigen values). Only the ncol(loadings)

first ones will be used.

XV X %*% loadings

X_norm Vector of sums of squared rows (e.g. rowSums(X^2)).

12 predict.Procrustes

Value

- pca_OADP_proj(): A list with the simple projection X %*% loadings and the projection based on OADP.
- pca_OADP_proj2(): The projection based on OADP only (a matrix of same size of XV).

Examples

```
X <- readRDS(system.file("testdata", "three-pops.rds", package = "bigutilsr"))
N <- 400; M <- ncol(X)
ind <- sample(nrow(X), N)

# Compute SVD using one part of samples
svd <- svds(X[ind, ], k = 5)
U <- sweep(svd$u, 2, svd$d, '*')
col <- 2:3
plot(U[, col])
points(cbind(0, 0), pch = 8, col = "green", cex = 2)

# Projecting other samples
proj <- pca_OADP_proj(X = X[-ind, ], loadings = svd$v, sval = svd$d)
points(proj$simple_proj[, col], col = "red", pch = 20)  # shrunk towards 0
points(proj$OADP_proj[, col], col = "blue", pch = 20)  # unshrunk</pre>
```

predict.Procrustes

Predict method

Description

Predict method for class Procrustes.

Usage

```
## S3 method for class 'Procrustes'
predict(object, X, ...)
```

Arguments

objectObject of class Procrustes.XNew matrix to transform.Not used.

Value

X, transformed.

See Also

```
procrustes().
```

prob_dist 13

pro	h n	1101
DI O	-	1136

Probabilistic set distance

Description

Probabilistic set distance

Usage

```
prob_dist(U, kNN = 5, robMaha = FALSE, ncores = 1)
```

Arguments

U A matrix, from which to detect outliers (rows). E.g. PC scores.

kNN Number of nearest neighbors to use. Default is 5.

robMaha Whether to use a robust Mahalanobis distance instead of the normal euclidean

distance? Default is FALSE, meaning using euclidean.

ncores Number of cores to use. Default is 1.

References

Kriegel, Hans-Peter, et al. "LoOP: local outlier probabilities." Proceedings of the 18th ACM conference on Information and knowledge management. ACM, 2009.

See Also

LOF()

```
X <- readRDS(system.file("testdata", "three-pops.rds", package = "bigutilsr"))
svd <- svds(scale(X), k = 10)
U <- svd$u

test <- prob_dist(U)
plof <- test$dist.self / test$dist.nn
plof_ish <- test$dist.self / sqrt(test$dist.nn)
plot(U[, 1:2], col = (plof_ish > tukey_mc_up(plof_ish)) + 1, pch = 20)
plot(U[, 3:4], col = (plof_ish > tukey_mc_up(plof_ish)) + 1, pch = 20)
plot(U[, 5:6], col = (plof_ish > tukey_mc_up(plof_ish)) + 1, pch = 20)
```

14 procrustes

nrac	rustes
DI OC	1 43 663

Procrustes transform

Description

Procrustes transform Y = pXR (after centering), where p is a scaling coefficient and R is a rotation matrix that minimize $\|Y - pXR\|_F$.

Usage

```
procrustes(Y, X, n_iter_max = 1000, epsilon_min = 1e-07)
```

Arguments

Υ	Reference matrix.
Χ	Matrix to transform $(ncol(X) \ge ncol(Y))$.
n_iter_max	Maximum number of iterations. Default is 1000.
epsilon_min	Convergence criterion. Default is 1e-7.

Value

Object of class "procrustes", a list with the following elements:

- \$R: the rotation matrix to apply to X,
- \$rho: the scaling coefficient to apply to X,
- \$c: the column centering to apply to the resulting matrix,
- \$diff: the average difference between Y and X transformed.

You can use method predict() to apply this transformation to other data.

```
A <- matrix(rnorm(200), ncol = 20)
B <- matrix(rnorm(length(A)), nrow = nrow(A))
proc <- procrustes(B, A)
str(proc)
plot(B, predict(proc, A)); abline(0, 1, col = "red")</pre>
```

rollmean 15

rollmean

Gaussian smoothing

Description

Gaussian smoothing

Usage

```
rollmean(x, size)
```

Arguments

x Numeric vector.

size

Radius of the smoothing (smaller than half of the length of x). If using size = 0, it returns x.

Value

Numeric vector of the same length as x, smoothed.

Examples

```
(x <- rnorm(10))
rollmean(x, 3)</pre>
```

tukey_mc_up

Outlier detection threshold (upper)

Description

Outlier detection threshold (upper) based on Tukey's rule, corrected for skewness using the 'med-couple', and possibly corrected for multiple testing.

Usage

```
tukey_mc_up(x, coef = NULL, alpha = 0.05, a = -4, b = 3)
```

16 tukey_mc_up

Arguments

x	Numeric vector. Should be somewhat normally distributed.
coef	number determining how far 'whiskers' extend out from the box. If NULL (default), this is computed to get an type-I error of alpha, after adjusting for multiple testing. A standard value to use is 1.5.
alpha	See coef. Default is 0.05.
a	scaling factors multiplied by the medcouple $mc()$ to determine outlyer boundaries; see the references.
b	scaling factors multiplied by the medcouple mc() to determine outlyer boundaries; see the references.

References

Hubert, M. and Vandervieren, E. (2008). An adjusted boxplot for skewed distributions, *Computational Statistics and Data Analysis* **52**, 5186–5201.

See Also

```
robustbase::adjbox()
```

```
\label{eq:linear_model} \begin{split} & \text{hist}(x <- \text{c(rnorm(3, m = 6), rnorm(1e4, m = 0))}) \\ & (q <- \text{tukey\_mc\_up(x)}) \\ & \text{abline(v = q, col = "red")} \\ & \text{which}(x > q) \end{split}
```

Index

```
as\_model\_matrix, \\ 2
bigparallelr::nb_cores(), 7
covRob, 3
covrob_ogk, 3
covrob_ogk(), 3
dist_ogk (covrob_ogk), 3
dist_ogk(), 3
geometric_median, 5
hist_out, 6
knn_parallel, 7
LOF, 8
LOF(), 13
maha_trans, 9
mc, 16
nabor::knn, 7
\verb|nclass.scottRob|, 10
pca_nspike, 10
pca_OADP_proj, 11
pca_OADP_proj2 (pca_OADP_proj), 11
predict.Procrustes, 12
prob_dist, 13
prob_dist(), 8
procrustes, 14
procrustes(), 12
robustbase::adjbox(), 16
rollmean, 15
rrcov::Cov0gk(), 4
stats::mahalanobis(), 4
tukey_mc_up, 15
```