CLASSIFICAÇÃO DO COMPORTAMENTO DO MOTORISTA A PARTIR DE IMAGENS UTILIZANDO APRENDIZADO DE MÁQUINA PROFUNDO

Nome: Morsinaldo Medeiros Docente: Adriao Duarte Doria Neto Disciplina: Inteligência Artificial

O Problema

Os motoristas querem fazer outras atividades enquanto dirigem.

Alguns veículos estão embarcando câmeras para monitorar o motorista.

Embarcar um modelo de IA capaz de classificar o estado do motorista.

Classe	Label	
co	Safe Driving	
C1	Texting - Right	
ca	Talking on the phone - Right	
c3	Texting - Left	
C4	Talking on the phone - Left	
C5	Operating the radio	
C6	Drinking	
C7	Reaching behind	
C&	Hair and makeup	
C9	Talking to passenger	

https://www.kaggle.com/c/state-farm-distracted-driver-detection/data

Classe	Label	
co	Safe Driving	
C1	Texting - Right	
ca	Talking on the phone - Right	
c3	Texting - Left	
C4	Talking on the phone - Left	
C5	Operating the radio	
C6	Drinking	
C7	Reaching behind	
C&	Hair and makeup	
C9	Talking to passenger	

https://www.kaggle.com/c/state-farm-distracted-driver-detection/data

Classe	Label	
co	Safe Driving	
C1	Texting - Right	
ca	Talking on the phone - Right	
C3	Texting - Left	
C4	Talking on the phone - Left	
C 5	Operating the radio	
C6	Drinking	
C7	Reaching behind	
C&	Hair and makeup	
C9	Talking to passenger	

https://www.kaggle.com/c/state-farm-distracted-driver-detection/data

Classe	Label	
co	Safe Driving	
C1	Texting - Right	
ca	Talking on the phone - Right	
C3	Texting - Left	
C4	Talking on the phone - Left	
C 5	Operating the radio	
C6	Drinking	
C7	Reaching behind	
C&	Hair and makeup	
C9	Talking to passenger	

https://www.kaggle.com/c/state-farm-distracted-driver-detection/data

O dataset

22424 imagens

26 motoristas 10 classes

17.940 img. - treinam.

4484 img. - teste

Modelo 1 - Baseline


```
DIM = 256
NB_CHANNELS = 3
NB_CLASSES = 10
```



```
Total params: 58,097,922
Trainable params: 58,094,854
Non-trainable params: 3,068
```

```
base model = Sequential()
base_model.add(Conv2D(32, (3, 3), padding="same",
                                  input_shape = (DIM , DIM , NB_CHANNELS)))
base model.add(Activation("relu"))
base model.add(BatchNormalization(axis=1))
base model.add(MaxPooling2D(pool_size=(3, 3)))
base_model.add(Conv2D(64, (3, 3), padding="same"))
base model.add(Activation("relu"))
base_model.add(BatchNormalization(axis=1))
base model.add(Conv2D(64, (3, 3), padding="same"))
base_model.add(Activation("relu"))
base model.add(BatchNormalization(axis=1))
base_model.add(MaxPooling2D(pool_size=(2, 2)))
base_model.add(Conv2D(128, (3, 3), padding="same"))
base_model.add(Activation("relu"))
base_model.add(BatchNormalization(axis=1))
base_model.add(Conv2D(128, (3, 3), padding="same"))
base model.add(Activation("relu"))
base model.add(BatchNormalization(axis=1))
base_model.add(MaxPooling2D(pool_size=(2, 2)))
base model.add(Flatten())
base_model.add(Dense(1024))
base_model.add(Activation("relu"))
base model.add(BatchNormalization())
base model.add(Dense(10))
base model.add(Activation("softmax"))
base_model.build((0,256,256,3))
base_model.summary()
```

Modelo 2 - ResNet-50

DIM = 256 NB_CHANNELS = 3 NB_CLASSES = 10

Total params: 24,770,698
Trainable params: 24,717,578
Non-trainable params: 53,120

Model: "encoder_resnet_50"		
Layer (type)	Output Shape	Param #
resnet50 (Functional)	(None, 8, 8, 2048)	23587712
global_average_pooling2d ((G (None, 2048)	0
dense_2 (Dense)	(None, 512)	1049088
dense_3 (Dense)	(None, 256)	131328
dense_4 (Dense)	(None, 10)	2570

Baseline

ResNet-50

Baseline

```
[INFO] 0.07547938452986881 kWh of electricity used since the begining [INFO] Energy consumed for RAM: 0.003919561951455499 kWh [INFO] Energy consumed for all GPU: 0.03650870809606344 kWh [INFO] Energy consumed for all CPU: 0.03505111448234984 kWh [INFO] CO2 emission 0.047626220824339746(in Kg)
```

ResNet-50

```
[INFO] 0.09873487794682977 kWh of electricity used since the begining [INFO] Energy consumed for RAM: 0.0045570970551078 kWh [INFO] Energy consumed for all GPU: 0.053422190006672136 kWh [INFO] Energy consumed for all CPU: 0.04075559088504978 kWh [INFO] CO2 emission 0.012736179872663017(in Kg)
```


Os Resultados

Acc: 0.9906

Acc: 0.9940

CLASSIFICAÇÃO DO COMPORTAMENTO DO MOTORISTA A PARTIR DE IMAGENS UTILIZANDO APRENDIZADO DE MÁQUINA PROFUNDO

Nome: Morsinaldo Medeiros Docente: Adriao Duarte Doria Neto Disciplina: Inteligência Artificial

Obrigado pela atenção!

Email: morsinaldo.medeiros.075@ufrn.edu.br Github: https://github.com/Morsinaldo