¿QUÉ ES UN PLC?

Controlador Lógico Programable

Viene para reemplazar a

Relevadores y Cables

Y posteriormente a

Tarjetas Electrónicas

Entradas y Salidas del PLC

TIPOS	CODIFICACIÓN	SENTIDO	FUNCIONES DE LA INTERFAZ
TODO O NADA	BINARIA 1 bit	ENTRADAS	 Adaptación de niveles de tensión Filtrado de perturbaciones Aislamiento galvánico
		SALIDAS	 Adaptación de niveles de tensión Amplificación de corriente Aislamiento galvánico
SEÑALES CONTINUAS	ANALÓGICAS (0, ± 10 V) (4, 20 mA)	ENTRADAS	 Adaptación y filtrado de señal Conversión A/D
		SALIDAS	 Conversión D/A Adaptación a 0, ± 10 V o 4, 20 mA
	DIGITALES (8, 16 bits)	ENTRADAS	 Selección de canal y multiplexado Conversión de códigos
		SALIDAS	 Conversión de código (Bin. → ASCII → 7 segmentos) Amplificación de corriente
		BIDIRECCIONALES	 Conversión de código (serie ↔ paralelo) Protocolo de diálogo (hard + soft)

Entradas y Salidas del PLC

Entradas

Salidas

Lenguajes

Function Block Diagram (FBD)

FUP: Puede interpretarse la U « Unificado» y la P «Programming». Function Block Diagram Unified Programming

Function Block Diagram (FBD) KOP (Kontaktplan) "Kontaktplan" en alemán, que significa "diagrama de contactos"

Instruction List (IL)

AWL:"Anweisungsliste" en Alemán significa "lista de instrucciones"

Ciclos de Programación

Ciclos de Programación

Ventajas y Desventajas

Ventajas

- Los PLC responden a las necesidades humanas
- Están diseñados para el duro entorno de la actividad industrial
- Preparado para trabajar en temperaturas elevadas, ruido eléctrico, vibraciones e incluso impactos
- Disminuye consumo eléctrico, mantenimiento y mejora el proceso

Desventajas

- La automatización de las tareas, genera que el ser humano pase a ser prescindible.
- Se requiere personal calificado para el manejo de estos dispositivos lo que implica un costo elevado y dificultad para conseguir.
- Se deben tener en cuenta múltiples detalles para que la operación salga a la perfección, tanto en la producción como en el código de programación.

NOMBRE	SÍMBOLO	DESCRIPCIÓN
Contacto NA	\dashv	Se activa cuando hay un 1 lógico en el elemento que representa. Puede ser una entrada física, una variable interna o un bit de sistema.
Contacto NC	<u></u>	Su función es similar al contacto NA, con la única diferencia que se activa cuando hay un 0 lógico.
Bobina NA	()—	Se activa cuando la combinación que hay a su entrada (izquierda) da un 1 lógico. Suele representar elementos de salida o variable interna.
Bobina NC	—(<i>></i>)—	Su función es similar a la bobina NA, con la única diferencia que se activa cuando hay un 0 lógico (izquierda)
Bobina set Bobina reset	(s)— (R)—	La bobina set una vez activada, solo puede ser desactivada por su correspondiente bobina reset.

Ejemplos lenguaje LADDER

Lenguaje AND y OR

AND

ENTRADAS (Input)		SALIDA (Output)
Α	В	Y = A.B
0	0	0
0	1	0
1	0	0
1	1	1

OR

ENTRADAS (Input)		SALIDA (Output)
Α	В	Y = A+B
0	0	0
0	1	1
1	0	1
1	1	1

Aplicaciones con AND y OR

Autor retención

Combinación AND de OR

Aplicaciones en lenguaje LADDER

Aplicaciones en lenguaje LADDER

```
Q0.1
( )
```

```
Q0.1
Q0.1
```

```
Q0.1 Q0.1
```

Tipos de Temporizadores

>TON: Temporizador con Retardo a la Conexión

>TOF: Temporizador con Retardo a la Desconexión

Tipos de Temporizadores

TON: Temporizador con Retardo a la Conexión

Conexión	Descripción
Entrada Trg	La entrada Trg (Trigger) dispara el temporizador de retardo a la conexión.
Parámetro	T: tiempo de retardo tras el que se activa la salida (transición de la señal de salida de 0 a 1). Remanencia activada = el estado se guarda de forma remanente.
Salida Q	Q se activa una vez expirado el tiempo parametrizado, si Trg sigue activada.

Se desea realizar lo siguiente:

Cuando se presiona el botón START, el motor debe girar en sentido horario (KM1) para mover la cinta y transportar la caja. Cuando la caja es detectada por el sensor S1, el motor debe girar en sentido antihorario (KM2) hasta que el operario presione el pulsador STOP. Considerar un tiempo de 5 segundos para el cambio de giro del motor.

Ejemplo Nº1: Inversión de Giro de un Motor

Ejemplo N°1: Inversión de Giro de un Motor

Ejemplo Nº1: Inversión de Giro de un Motor

Tipos de Temporizadores

TOF: Temporizador con Retardo a la Desconexión

Conexión	Descripción
Entrada Trg	Un flanco descendente (transición de 1 a 0) en la entrada Trg (Trigger) inicia el tiempo de retardo a la desconexión.
Entrada R	Por medio de la entrada R (Reset), el tiempo de retardo a la desconexión y la salida se ponen a 0. Reset tiene prioridad sobre Trg .
Parámetro	T: la salida se desactiva cuando expira el tiempo de retardo T (transición de la señal de salida de 1 a 0). Remanencia activada = el estado se guarda de forma remanente.
Salida Q	Q se activa con un disparo en la entrada Trg y permanece activada hasta que haya expirado el tiempo T.

Cuando el operario presione el botón START, el motor debe arrancar. Si el operario pulsa STOP, el motor se debe detener luego de 5 segundos. El circuito de mando debe contar con un pulsador de Paro de Emergencia y una lámpara que

indica cuando esta presente.

ENTRADAS	SALIDAS
START	KM ₁
STOP	Hi
F ₃	

Contadores

Contador adelante/atrás

Conexión	Descripción	
Entrada R	Con una señal en la entrada R (Reset), el valor de contaje interno y la salida se ajustan al valor inicial (StartVal).	
Entrada Cnt	La función cuenta en la entrada Cnt los cambios de estado de 0 a 1. Los cambios de estado de 1 a 0 no se cuentan. Utilice las entradas I3, I4, I5 e I6 para contajes rápidos (LOGO! 12/24RC/RCo, LOGO! 12/24RCE, LOGO! 24/24o y LOGO! 24C/24Co): máx. 5 kHz, si la entrada rápida está conectada directamente al bloque de función contador adelante/atrás Utilice cualquier otra entrada o un elemento del circuito para contajes lentos (típ. 4 Hz).	
Entrada Dir	La entrada Dir (Direction) determina el sentido de contaje: Dir = 0: adelante Dir = 1: atrás	
Parámetro	On: umbral de conexión / Rango de valores: 0 a 999999 Off: umbral de desconexión / Rango de valores 0 a 999999 Valor inicial: valor inicial a partir del cual se cuenta adelante o atrás. Remanencia activada = el estado se guarda de forma remanente.	
Salida Q	Q se activa o desactiva en función del valor real Cnt y de los umbrales ajustados.	

Se desea encender y apagar una lámpara de la siguiente manera:

➤ Al presionar el botón START el bombillo se debe encender y al presionar el botón STOP se debe apagar

Ejemplo: Encendido y apagado de un bombillo con dos pulsadores

