Оглавление

1	Век	торные пространства	2
	1.1	Подпространства	3
	1.2	Прямая сумма подпространств	4

Глава 1

Векторные пространства

Теорема 1. Следующие определения базиса равносильны:

- 1. u_i ЛНЗ и порождающая
- 2. u_i максимальная ЛНЗ
- 3. u_i минимальная порождающая
- 4. Любой вектор можно единственным образом представить в виде ЛК u_i

Доказательство. Уже доказаны: $2 \implies 1, 3 \implies 1$

- \bullet 1 \Longrightarrow 2
 - u_i ЛНЗ

Докажем, что $u_1, ..., u_n, v - ЛЗ$ для $\forall v$

 u_i – порождающая $\implies \exists a_i : v = a_1u_1 + ... + a_nu_n$

Оказалось, что v – ЛК $u_i \implies u_1, ..., u_n, v$ – ЛЗ

 \bullet 1 \Longrightarrow 3

 u_i – порождающая

Пусть u_i не минимальная. Пусть $u_1,...,u_{n-1}$ тоже порождающая $\implies \exists \, a_i: un=a_nu_1+...+a_{n-1}u_{n-1} \implies u_i$ – ЛЗ

 \bullet 4 \iff 1

Система порождающая и в 1, и в 4

Нужно доказать, что представление единственно \iff ЛНЗ

$$-4 \implies 1$$

$$0 = 0 \cdot u_1 + \dots + 0 \cdot u_n$$

Представление нуля единственно. Значит, система ЛНЗ

$$-4 \implies 1$$

$$v = a_1 u_1 + \dots + a_n u_n, \quad v = b_1 u_1 + \dots + b_n u_n$$

$$0 = v - v = (a_1 - b_1)u_1 + \dots + (a_n - b_n)u_n$$

ЛНЗ
$$\implies a_i - b_i = 0$$

Определение 1. Координатами вектора v в базисе $u_1,...,u_n$ называется такой набор $a_i,...,a_n\in K$: $v=a_1u_1+...+a_nu_n$

Свойства (базиса). V – конечномерное векторное пространство

1. Дополнение до базиса

Любую ЛНЗ систему можно дополнить до базиса

Доказательство. $u_1, ..., u_k$ – ЛНЗ Если это не базис, можно добавить вектор так, что система останется ЛНЗ^a

Докажем, что процесс когда-нибудь закончится:

Пусть есть порождающая система из n векторов \implies в любой ЛНЗ системе не более n векторов

 a Если ничего нельзя добавить, то она максимальная, и это базис

2. "Спуск" к базису

Из любой порождающей системы можно выбрать базис

Доказательство. Если система не минимальна, будем убирать векторы по одному

3. Количество векторов

В любых двух базисах поровну элементов

Доказательство. Пусть $u_1,...,u_k$ и $w_1,...,w_m$ – базисы

Тогда, u_i – порождающая, и w_i – ЛНЗ

По теореме о линейной зависимости линейной комбинации, $m \leq k$

Аналогично, $m \geq k$

Определение 2. Пусть V конечномерно

Размерностью V называется количество элементов в базисе

Обозначение. $\dim V$, $\dim_K V$

Если $V = \{0\}$, то dim V = 0

1.1 Подпространства

Определение 3. Пусть V — векторное пространство над $K,\,U\subset V$

U называется подпространством, если U – векторное пространство над K с теми же опреациями

Определение 4. U, W — подпространства V

Их суммой называется множество $\{u+w \mid u \in U, w \in W\}$

Обозначение. U+W

Определение 5. $U_1, ..., U_n$ – подпространства V

$$U_1 + \dots U_n = \{ u_1 + \dots + u_n \mid u_i \in U_i \}$$

Замечание. $U_1 + U_2 + U_3 = (U_1 + U_2) + U_3$

Свойства.

- 1. Сумма подпространств является подпространством
- 2. Пересечение подпространств является подпространством

Теорема 2 (формула Грассмана). Пусть U, W — конечномерные подпространства векторного пространства V

Tогда $\dim(U+W) + \dim(U\cap W) = \dim U + \dim W$

Доказательство. Пусть $l_1,...,l_k$ – базис $U\cap W\implies l_i$ – ЛНЗ

Дополним их до базиса $U: l_1, ..., l_k, u_1, ..., u_m$ – базис U

Аналогично, $l_1,...,l_k,w_1,...,w_n$ – базис W

Достаточно доказать, что $l_1, ..., l_k, u_1, ..., u_m, w_1, ..., w_n$ – базис U+W, так как тогда (k+m+n)+k=(k+m)+(k+n)

Докажем, что это порождающая система:

Пусть $v \in U + W$, v = u + w

Разложим по базису:

$$u = \sum a_i l_i + \sum b_i u_i, \quad w = \sum a_i l_i + \sum d_i w_i$$

Сложим:

$$v = \sum (a_i + b_i)l_i + \sum b_i u_i + \sum d_i w_i$$

Докажем ЛНЗ:

Пусть $\sum a_i l_i + \sum b_i u_i + \sum c_i w_i = 0$

$$\left. \begin{array}{l} \sum b_i u_i \in U \\ \sum b_i u_i = -\sum a_i b_i - \sum d_i w_i \in W \end{array} \right\} \implies \sum b_i u_i \in U \cap W$$

 $l_1,...,l_k$ – базис $U\cap W$

$$\exists c_i : \sum b_i u_i = \sum c_i l_i \implies (-c1)l_1 + \dots + (-c_k)l_k + b_1 u_1 + \dots + b_m u_m = 0 \implies c_i = 0, l_i = 0$$

$$\exists a_i b_i + 0 + \sum d_i w_i = 0 \implies a_i = 0, d_i = 0$$

Определение 6. Подпространством, порождённым векторами $u_1,...,u_k$ называется множество всех линейных комбинаций $u_1,...,u_k$

Обозначение. $\langle u_1, ..., u_k \rangle$

Свойства.

- 1. $\langle u_1,...,u_k \rangle$ является подпространством. Это минимальное по включению подпространство, содержащее все u_i
- 2. $\langle u_1, ..., u_k \rangle = \langle u_1 \rangle + ... + \langle u_k \rangle$

1.2 Прямая сумма подпространств

Определение 7. V – векторное пространство, U, W – подпространства

Сумма U+W называется прямой, если $\forall v \in V$ представляется в виде $u+w, \quad u \in U, w \in W$ единственным образом

Обозначение. $U \oplus W$

Замечание. Прямая сумма $U_1,...,U_k$ определяется одинаково Если $V=U_1\oplus...\oplus U_k$, то говорят, что V раскладывается в прямую сумму U_i

Теорема 3. Равносильны определения прямой суммы в случае 2 подпространств U и W конечномерного просранства V:

- 1. Сумма U + W прямая (по определению 7)
- 2. Если u + w = 0, $u \in U, w \in W$, то u = 0, w = 0
- 3. $U \cap W = \{0\}$
- 4. Объединение базисов U и W является базисом U+W

Доказательство.

- $1 \implies 2$ очевидно
- $2 \implies 1$ Пусть $u + w = u' + w' \implies (u - u') + (w - w') = 0 \implies u = u', w = w'$

•
$$2 \implies 3$$

 $\square V$ CTL $v \in U \cap W \implies -v \in U \cap W$

$$v + (-v) = 0 \implies v = 0$$

• 3
$$\iff$$
 4

$$\dim U + \dim W = \dim(U + W) + \dim(U \cap W)$$

$$4 \iff \dim U + \dim W = \dim(U+W) \iff \dim(U\cap W) = 0 \iff U\cap W = 0$$

Теорема 4. Пусть V — конечномерное пространство, $U_1, ..., U_k$ — подпространства Тогда следующие условия равносильны:

1. Сумма
$$U_1 + ... + U_k$$
 прямая

2. Если
$$u_1 + ... u_k$$
, $u_i \in U$, то $u_i = 0$

3.
$$\forall i \ U_i \cap (U_1 + ... + U_{i-1} + U_{i+1} + ... + U_k) = \{0\}$$

4.
$$U_1 \cap U_2 = \{0\}, \quad (U_1 + U_2) \cap U_3 = \{0\}, \dots$$

5. Объединение любых базисов
$$u_i$$
 является базисом $u_1 + ... + u_k$

Доказательство.

•
$$1 \implies 2$$
 очевидно

$$\bullet$$
 2 \Longrightarrow 1

Пусть
$$v = u_1 + ... + u_k = u'_1 + ... + u'_k$$

$$v - v = (u_1 - u_1') + \dots + (u_k - u_k') = 0 \implies u_i = u_i'$$

 \bullet 2 \Longrightarrow 3

Пусть $v \in U_1 \cap (U_2 + ... + U_k)$

$$v = u_1 + \dots + u_k, \quad u_i \in U_i$$

$$v \in i \implies -v \in U_i$$

$$0 = (-v) + u_2 + \dots + u_k \implies v = 0, \quad u_2 = \dots = u_k = 0$$

 \bullet 3 \Longrightarrow 4

Докажем, что
$$(U_1 + ... + U_{i-1}) \cap U_i = 0$$

Заметим, что
$$U_1+\ldots+U_{i-1}\subset U_1+\ldots+U_{i-1}+U_{i+1}+\ldots+U_k\implies (U_1+\ldots+U_{i-1})\cap U_i\subset (U_1+\ldots+U_{i-1}+U_{i+1}+\ldots+U_k)\cap U_i=\{\,0\,\}$$

 \bullet 4 \Longrightarrow 2

Пусть
$$u_1 + ... + u_k = 0$$
, $u_i \in U_i$

Пусть не все
$$u_1, ..., u_k$$
 равны 0

Положим $i \coloneqq \max \{ s \mid u_s \neq 0 \}$

$$u_1 + \ldots + u_{i-1} + u_i = 0 \implies u_i = -u_1 - \ldots - u_{i-1} \in U_1 + \ldots + U_{i-1} \implies u_i \in (U_1 + \ldots + U_{i-1}) \cap U_i = \{0\}$$

 \bullet 4 \iff 5

Пусть
$$n_i = \dim U_i$$

Пусть
$$B$$
 – объединение базисов U_i

Тогда
$$B$$
 – порождающая система $U_1 + ... + U_k$

$$B$$
 – базис $\iff B$ – минимальная порождающая система $\iff |B| = \dim(U_1 + ... + U_k)$