HUST

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

APPLIED ALGORITHMS

APPLIED ALGORITHMS

BACKTRACKING, BRANCH AND BOUND

ONE LOVE. ONE FUTURE.

CONTENTS

- General diagram of backtracking, branch and bound
- The problem of bus routes picking up and dropping off passengers
- Delivery truck route problem
- 2D material cutting problem

- The backtracking algorithm allows us to solve combinatorial enumeration problems and combinatorial optimization problems
- The alternative is modeled by a sequence of decision variables X_1, X_2, \ldots, X_n
- Need to find for each variable X_i a value selected from a given discrete set A_i such that
 - The constraints of the problem are satisfied
 - Optimize a given objective function
- Backtracking algorithm
 - Traverse through all variables (e.g. order from X_1, X_2, \ldots, X_n), for each variable X_k :
 - Traverse through all possible values that could be assigned to X_k , for each value v:
 - Check constraints
 - Assign $X_k = v$
 - If k = n then record a solution to the problem
 - Otherwise, consider the variable X_{k+1}

Enumeration problem

```
try(k){ //Try out the possible values assigned to X_k
 for v in A_k do {
     if check(v,k){
        X_b = v;
        [Update a data structure D]
        if k = n then solution();
        else {
            try(k+1);
        [Recover the data structure D]
```


Minimize optimization problem (Denote f^* : optimal value)

```
try(k){//Try out the possible values assigned to X_{b}
 for v in A_k do {
     if check(v,k){
        X_b = v;
        [Update a data structure D]
        if k = n then updateBest();
        else {
             if g(X_1, X_2, ..., X_k) < f^* then
                 try(k+1);
        [Recover the data structure D]
```


Minimize optimization problem (Denote f^* : optimal value)

```
try(k){//Try out the possible values assigned to X_k
 for v in A_k do {
     if check(v,k){
        X_b = v;
        [Update a data structure D]
        if k = n then updateBest();
        else {
             if g(X_1, X_2, ..., X_k) < f^* then
                 try(k+1);
        [Recover the data structure D]
```

• A bus departing from point 0 needs to build a route that could serve n passengers and return to point 0. Passenger i has: the pick-up point is i and the drop-off point is i + n (i = 1, 2, ..., n). The bus has K seats to serve passengers. The travel distance from point i to point j is d(i, j), with i, j = 0, 1, 2, ..., 2n. Calculate the route for the bus so that the total distance traveled is minimal, and the number of passengers on the bus never exceeds K.

- A bus departing from point 0 needs to build a route that could serve n passengers and return to point 0. Passenger i has: the pick-up point is i and the drop-off point is i + n (i = 1, 2, ..., n). The bus has K seats to serve passengers. The travel distance from point i to point j is d(i, j), with i, j = 0, 1, 2, ..., 2n. Calculate the route for the bus so that the total distance traveled is minimal, and the number of passengers on the bus never exceeds K.
- Branch and bound algorithm
 - Modelling problem: X_1, X_2, \ldots, X_{2n} is the sequence of pick-up and drop-off points on the bus route (a permutation of 1, 2, ..., 2n).
 - Cmin: the smallest distance among the distances between 2 points
 - Marker array: visited[v] = true means point v has appeared on the route and visited[v] = false, otherwise
 - load: number of passengers present in the vehicle
 - When the route reaches the pick-up point, the load increases by 1, and when it reaches the drop-off point, the load decreases by 1
 - *f*: length of the partial route
 - f*: shortest route length that has been found

Analyze the lower bound

- Untraveled route, including 2n+1-ksegments, each segment has length ≥ Cmin
- The length of the complete route developing further from X_k will be $\geq f$ + $Cmin^*(2n+1-k)$


```
try(k){
  for v = 1 to 2n do {
     if check(v,k){
        X_k = v;
        f = f + d(X_{k-1}, X_k); visited[v] = true;
        if v \le n then load += 1; else load -= 1;
        if k = 2n then updateBest();
        else {
            if f + Cmin*(2n+1-k) < f* then
                 try(k+1);
        if v \le n then load -= 1; else load += 1;
        f = f - d(X_{k-1}, X_k); visited[v] = false;
```

```
check(v,k){
  if visited[v] = true then return false;
  if v > n then {
    if visited[v-n] = false then return false;
  }else{
    if load + 1 > K then return false;
  }
  return true;
}
```

```
updateBest(){
   if f + d(X<sub>2n</sub>,0) < f* then {
     f* = f + d(X<sub>2n</sub>,0);
   }
}
```


HUST hust.edu.vn f fb.com/dhbkhn

THANK YOU!