Math 3322

Algebra 3, Assignment 1 Due January 22 at the start of class.

1. Prove each of the claims in the following theorem:

Theorem 1. If $\{G_i \mid i \in I\}$ is a family of groups, then

- $\prod_{i \in I}^w G_i$ is a normal subgroup of $\prod_{i \in I} G_i$.
- For each $k \in I$ the map $i_k : G_k \to \prod_{i \in I}^w G_i$ given by $i_k(g) = f$, where $f(j) = e_j$ for all $j \neq k$ and f(k) = g for all $g \in G_k$ is a one-to-one homomorphism.
- For each $k \in I$, the subgroup $i_k(G_k)$ is normal in $\prod_{i \in I}^w G_i$.
- 2. Find a pair of groups G, H such that $G \times H$ does not satisfy the universal property of the external (weak) direct product. Specifically, show that $G \times H$, together with the obvious homomorphisms $i_G : G \to G \times H$ and $i_H : H \to G \times H$, does not satisfy the following: For every group K with homomorphisms $f_G : G \to K$ and $f_H : K \to H$ there exists a unique homomorphism $f : G \times H \to K$ such that $f \circ i_G = f_G$ and $f \circ i_H = f_H$.
- 3. Consider a family of groups $\{G_i \mid i \in \mathbb{N}\}$ where each group G_i is isomorphic to a copy of \mathbb{Z} . Show that $\bigoplus_{i \in \mathbb{N}} G_i$ is not isomorphic to $\prod_{i \in \mathbb{N}} G_i$ (Hint: It may help to do the next question first, in order to get a feel for $\bigoplus_{i \in \mathbb{N}} G_i$).
- 4. Let $\mathbb{Q}_{>0}$ denote the positive rational numbers with multiplication as the operation. Show that $\mathbb{Q}_{>0}$ is isomorphic to $\bigoplus_{i\in\mathbb{N}} G_i$ from the previous question (Hint: To define your map, consider writing each element of $\mathbb{Q}_{>0}$ as a product of powers of primes).
- 5. Suppose that $\{x_1, x_2, x_3\}$ are the generators of a free group F. Let N be the smallest normal subgroup of F containing x_3 , meaning that if K is any other normal subgroup of F containing x_3 , then $N \subset K$. Show that F/N is free. (Hint: Verify that F/N satisfies the required universal property, with x_1N , x_2N as its generating set. You will need to use the fact that $N \subset K$ implies that there is a quotient map $F/N \to F/K$).
- 6. Show that the group $\langle a, b \mid a^2 = b^3 = a^{-1}b^{-1}ab = e \rangle$ is isomorphic to a cyclic group of order 6.