# Comparison of Various Data Generation Methods and Datasets

 $\bullet \bullet \bullet$ 

Ritik Dutta, IIT Gandhinagar

### Summary

- Goals
- Data Generation Methods
- Datasets Considered
- Metrics Used
- Related Works
- Challenges and Future Work

### Goals

- Quality control of generated data
  - Good marginal distributions
  - Retain interdependency of features
  - Shouldn't be copies of real data



### Methods for Data Generation

- GANs
  - Wasserstein GAN
  - o medGAN
- Multiple Imputations using Random Forests
- Copulas
- SAM: Structural Agnostic Model

### Generative Adversarial Networks



#### **GAN** Architecture

- Two versions of GANs used for data generation:
  - o medGAN
  - Wasserstein GAN

# Multiple Imputation using Random Forests

Ensemble ML method using multiple decision trees

Implementation:

- Train RF for each feature
- Predict values using RF
- Replace in original matrix



(1) Build predictors of one column from the others..

predictions.

randomly in a certain proportion p.

### Copulas

- Copulas: Multivariate distribution with uniform marginals
- Sklar's theorem: Every multivariate distribution can be expressed in terms of its marginals and a copula



### Datasets considered

| Boston Housing Dataset                                                                        | Adult Dataset                                                                         | Iris Dataset                                                                                                                    |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Concerning housing in the area of<br>Boston. Consists variables like per<br>capita crime rate | Consists of data pertaining to age, gender, workclass, education, to determine income | Consists information on different<br>types of the Iris plant. Consists<br>attributes such as petal length,<br>petal width, etc. |
| Contains numeric and binary data                                                              | Contains categorical and integer data                                                 | Contains only numerical data                                                                                                    |
| 15 features, ~130 samples                                                                     | 14 features, ~48,000 samples                                                          | 4 features, ~35 samples                                                                                                         |

### Characteristics of a good metric

- Agree with human perceptual judgments and human rankings of models
- Ability to distinguish generated samples from real ones; discriminability
- Favor models that generate diverse samples
- Have well-defined bounds (lower, upper, and chance)
- Have low sample and computational complexity

### Metrics to Check Similarity of Generated Data to Original

#### Univariate

Kolmogorov-Smirnov Test

#### Multivariate

- Maximum Mean Discrepancy
- 1-Nearest Neighbor classifier
- Lp Distance
- Principal Component Analysis

#### Application

- Similar covariances/ correlation
- Dimension-wise Prediction

### Kolmogorov Smirnov Test

- Just the maximum absolute difference between the CDF of two populations
- If both populations come from

same distribution, the diff. should be 0



# Maximum Mean Discrepancy

• Smooth function used whose value is high for points belonging to one class; low for the other class



# 1-Nearest Neighbour Classifier



Train classifier, and predict class of left out sample

# **Principal Component Analysis**

• First two principal components of the two datasets can be plotted and checked if there are any significant visual differences

#### Dimension-wise Prediction

- Train two logistic regression models using both real and generated data leaving out one feature which is predicted
- Compare F1 score of both the models on the test set
- More similar score -> more similar distributions

#### **Related Works**

- Daniel Jiwoong Im et al. claim that rankings produced by four metrics including
  1) Jensen-Shannon Divergence, 2) Constrained Pearson χ 2 , 3) Maximum Mean
  Discrepancy, and 4) Wasserstein Distance, are consistent and robust across metrics.
- Some suggest that evaluation criteria should be task specific
- L. Theis et al. report that in case of image generative models, good performance in one criterion need not imply good performance in another criterion

|                                              | Desiderata       |                       |                            |                       |                      |                            |                           |
|----------------------------------------------|------------------|-----------------------|----------------------------|-----------------------|----------------------|----------------------------|---------------------------|
| Measure                                      | Discriminability | Detecting Overfitting | Disentangled Latent Spaces | Well-defined Bounds   | Perceptual Judgments | Sensitivity to Distortions | Comp. & Sample Efficiency |
| 1. Average Log- likelihood [32, 90]          | low              | low                   | -                          | $[-\infty, \infty]$   | low                  | low                        | low                       |
| 2. Coverage Metric [92]                      | low              | low                   | -                          | [0, 1]                | low                  | low                        | -                         |
| 3. Inception Score (IS) [80]                 | high             | moderate              | -                          | $[1, \infty]$         | high                 | moderate                   | high                      |
| 4. Modified Inception Score (m-IS) [34]      | high             | moderate              | -                          | $[1, \infty]$         | high                 | moderate                   | high                      |
| 5. Mode Score (MS) [11]                      | high             | moderate              | -                          | $[0, \infty]$         | high                 | moderate                   | high                      |
| 6. AM Score [119]                            | high             | moderate              | -                          | $[0, \infty]$         | high                 | moderate                   | high                      |
| 7. Fréchet Inception Distance (FID) [35]     | high             | moderate              |                            | $[0, \infty]$         | high                 | high                       | high                      |
| 8. Maximum Mean Discrepancy (MMD) [33]       | high             | low                   | -                          | $[0, \infty]$         | -                    |                            | -                         |
| 9. The Wasserstein Critic [2]                | high             | moderate              | -                          | $[0, \infty]$         | -                    | -7                         | low                       |
| 10. Birthday Paradox Test [3]                | low              | high                  | -                          | $[1, \infty]$         | low                  | low                        | -                         |
| 11. Classifier Two Sample Test (C2ST) [51]   | high             | low                   | -                          | [0, 1]                | -                    | -                          | -                         |
| 12. NDB [76]                                 | low              | high                  | -                          | $[0, \infty]$         | _                    | low                        | -                         |
| 13. Classification Performance [73, 42]      | high             | low                   | -                          | [0, 1]                | low                  | -                          | -                         |
| 14. Image Retrieval Performance [100]        | moderate         | low                   | -                          | *                     | low                  | -                          | -                         |
| 15. Generative Adversarial Metric (GAM) [40] | high             | low                   | _                          | *                     | _                    | _                          | moderate                  |
| 16. NRDS [117]                               | high             | low                   | -                          | [0, 1]                | -                    | -                          | poor                      |
| 17. Adversarial Accuracy & Divergence [109]  | high             | low                   | -                          | $[0, 1], [0, \infty]$ | -                    | =:                         | -                         |
| 18. Reconstruction Error [107]               | low              | low                   | -                          | $[0, \infty]$         | -                    | moderate                   | moderate                  |
| 19. Image Quality Measures [103, 77, 44]     | low              | moderate              | -                          | *                     | high                 | high                       | high                      |
| 20. Low-level Image Statistics [113, 45]     | low              | low                   | -                          | *                     | low                  | low                        | -                         |
| 21. Precision, Recall and $F_1$ score [62]   | low              | high                  | 1                          | [0, 1]                | -                    | -                          | -                         |

Ali Borji. "Pros and Cons of GAN Evaluation Measures". [1]

#### Iris Dataset



#### Boston Dataset

#### medGAN

#### Imputation with RF







#### Boston Dataset

medGAN

#### Imputation with RF

Covariance values for each feature





### Challenges and Future Work

- Discrepancy between different metrics: which metric to believe then?
- Metrics might not always work ideally: MMD might not be 0 even when Pr = Pg because of sampling variance
- Work with MIMIC, Adult, etc. on comparisons

#### References

- [1] Ali Borji. "Pros and Cons of GAN Evaluation Measures". In: CoRR abs/1802.03446 (2018). arXiv: 1802.03446. url: http://arxiv.org/abs/1802.03446
- [2] Gao Huang et al. An empirical study on evaluation metrics of generative adversarial networks. 2018. url: https://openreview.net/forum?id=Sy1f0e-R-
- [3] Daniel Jiwoong Im et al. "Quantitatively Evaluating GANs With Divergences Proposed for Training". In: CoRR abs/1803.01045 (2018). arXiv: 1803.01045. url: http://arxiv.org/abs/1803.01045.
- [4] L. Theis, A. van den Oord, and M. Bethge. "A note on the evaluation of generative models". In: ArXiv e-prints (Nov. 2015). arXiv: 1511.01844 [stat.ML].
- [5] Discussions with Dr. Guyon