1 Section 7.5 Exercises

Exercises with solutions from Section 7.5 of [UA].

Exercise 7.5.1. (a) Let f(x) = |x| and define $F(x) = \int_{-1}^{x} f$. Find a piecewise algebraic formula for F(x) for all x. Where is F continuous? Where is F differentiable? Where does F'(x) = f(x)?

(b) Repeat part (a) for the function

$$f(x) = \begin{cases} 1 & \text{if } x < 0 \\ 2 & \text{if } x \ge 0. \end{cases}$$

Solution. (a) Some calculations reveal that $F:[-1,\infty)\to \mathbf{R}$ is given by

$$F(x) = \begin{cases} \frac{1}{2}(1 - x^2) & \text{if } -1 \le x \le 0, \\ \frac{1}{2}(1 + x^2) & \text{if } x > 0. \end{cases}$$

It is straightforward to manually check that F is differentiable (and hence continuous) on its domain, with derivative given by F'(x) = f(x). However, note that the Fundamental Theorem of Calculus part (ii) (FToC, Theorem 7.5.1 (ii)) immediately implies that F is continuous on any interval of the form [-1, b] for $b \in \mathbf{R}$ (in fact, Lipschitz on such intervals) and hence is continuous on its domain. Furthermore, as f is continuous everywhere, the FToC also implies that F is differentiable on its domain with derivative given by F'(x) = f(x).

(b) In this case, the function $F: [-1, \infty) \to \mathbf{R}$ is given by

$$F(x) = \begin{cases} 1 + x & \text{if } -1 \le x \le 0, \\ 1 + 2x & \text{if } x > 0. \end{cases}$$

As in part (a), the FToC part (ii) implies that F is continuous on its domain. Furthermore, since f is continuous on $A = [-1,0) \cup (0,\infty)$, the FToC implies that F is differentiable on A with derivative given by F'(x) = f(x). However, because f is not continuous at 0 the FToC does not allow us to conclude that F is differentiable at 0. Indeed, F fails to be differentiable here:

$$\lim_{x \to 0^{-}} \frac{F(x) - F(0)}{x} = 1 \neq 2 = \lim_{x \to 0^{+}} \frac{F(x) - F(0)}{x}.$$

Exercise 7.5.2. Decide whether each statement is true or false, providing a short justification for each conclusion.

- (a) If g = h' for some h on [a, b], then g is continuous on [a, b].
- (b) If g is continuous on [a, b], then g = h' for some h on [a, b].
- (c) If $H(x) = \int_a^x h$ is differentiable at $c \in [a, b]$, then h is continuous at c.

Solution. (a) This is false. For a counterexample, consider the function $h: [-1,1] \to \mathbf{R}$ given by

$$h(x) = \begin{cases} x^{5/3} \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Then, as we showed in Exercise 5.2.7 (a), h is differentiable but h' is not continuous at 0.

- (b) This is true. Theorem 7.2.9 implies that g is integrable on [a, b] and so we are justified in defining $h : [a, b] \to \mathbf{R}$ by $h(x) = \int_a^x g$; the continuity of g on [a, b] then allows us to use the FToC part (ii) to conclude that g = h'.
- (c) This is false. For a counterexample, consider $h: [-1,1] \to \mathbf{R}$ given by

$$h(x) = \begin{cases} 0 & \text{if } x \neq 0, \\ 1 & \text{if } x = 0. \end{cases}$$

Then $H: [-1,1] \to \mathbf{R}$ defined by $H(x) = \int_{-1}^{x} h(t) dt$ is identically zero and hence differentiable at 0, but h is not continuous at 0.

Exercise 7.5.3. The hypothesis in Theorem 7.5.1 (i) that F'(x) = f(x) for all $x \in [a, b]$ is slightly stronger than it needs to be. Carefully read the proof and state exactly what needs to be assumed with regard to the relationship between f and F for the proof to be valid.

Solution. In light of Theorem 7.4.1, it would suffice for F'(x) = f(x) to hold for all but finitely many $x \in [a, b]$.

Exercise 7.5.4. Show that if $f:[a,b]\to \mathbf{R}$ is continuous and $\int_a^x f=0$ for all $x\in[a,b]$, then f(x)=0 everywhere on [a,b]. Provide an example to show that this conclusion does not follow if f is not continuous.

Solution. Define $F:[a,b]\to \mathbf{R}$ by $F(x)=\int_a^x f$. On one hand, since by assumption F is identically zero on [a,b], we have that F is differentiable on [a,b] and satisfies F'(x)=0 for all $x\in[a,b]$. On

the other hand, because f is continuous on [a, b], the FToC part (ii) implies that F'(x) = f(x) for all $x \in [a, b]$. Thus f is identically zero on [a, b].

For an example demonstrating that this conclusion does not follow if f is not continuous, consider $f:[0,1] \to \mathbf{R}$ defined by

$$f(x) = \begin{cases} 1 & \text{if } x = 0, \\ 0 & \text{if } 0 < x \le 1. \end{cases}$$

Then $\int_0^x f = 0$ for all $x \in [0, 1]$, but f is not identically zero.

Exercise 7.5.5. The Fundamental Theorem of Calculus can be used to supply a shorter argument for Theorem 6.3.1 under the additional assumption that the sequence of derivatives is continuous.

Assume $f_n \to f$ pointwise and $f'_n \to g$ uniformly on [a, b]. Assuming each f'_n is continuous, we can apply Theorem 7.5.1 (i) to get

$$\int_{a}^{x} f_n' = f_n(x) - f_n(a)$$

for all $x \in [a, b]$. Show that g(x) = f'(x).

Solution. Let $x \in [a, b]$ be given. Because $f'_n \to g$ uniformly on [a, x], Theorem 7.4.4 shows that

$$\lim_{n \to \infty} \int_a^x f_n' = \int_a^x g.$$

We can then take the limit as $n \to \infty$ on both sides of the equation $\int_a^x f_n' = f_n(x) - f_n(a)$ and use the pointwise convergence $f_n \to f$ to see that

$$f(x) = f(a) + \int_{a}^{x} g$$

for all $x \in [a, b]$. Since g is the uniform limit of a sequence of continuous functions it is itself continuous (Theorem 6.2.6) and so we may invoke the FToC part (ii) to conclude that f'(x) = g(x) for all $x \in [a, b]$.

Exercise 7.5.6 (Integration-by-parts). (a) Assume h(x) and k(x) have continuous derivatives on [a, b] and derive the familiar integration-by-parts formula

$$\int_{a}^{b} h(t)k'(t) dt = h(b)k(b) - h(a)k(a) - \int_{a}^{b} h'(t)k(t) dt.$$

- (b) Explain how the result in Exercise 7.4.6 can be used to slightly weaken the hypothesis in part (a).
- Solution. (a) By assumption the functions h, h', k, and k' are continuous on [a, b]; it follows that (hk)' = hk' + h'k is continuous on [a, b]. Theorem 7.2.9 then implies that (hk)' is integrable on [a, b] and so we may use the FToC part (i) to see that

$$\int_{a}^{b} h(t)k'(t) + h'(t)k(t) dt = \int_{a}^{b} (h(t)k(t))' dt = h(b)k(b) - h(a)k(a).$$

(b) In light of Exercise 7.4.6, we need only assume that h' and k' are integrable on [a, b].

Exercise 7.5.7. Use part (ii) of Theorem 7.5.1 to construct another proof of part (i) of Theorem 7.5.1 under the stronger hypothesis that f is continuous. (To get started, set $G(x) = \int_a^x f$.)

Solution. It will suffice to show that G(b) = F(b) - F(a). Because f is continuous on [a, b], the FToC part (ii) implies that G'(x) = f(x) = F'(x) for all $x \in [a, b]$; it follows from Corollary 5.3.4 that G(x) = F(x) + k for some constant k. Substituting x = a, we see that k = -F(a) and thus G(b) = F(b) - F(a), as desired.

Exercise 7.5.8 (Natural Logarithm and Euler's Constant). Let

$$L(x) = \int_{1}^{x} \frac{1}{t} dt,$$

where we consider only x > 0.

- (a) What is L(1)? Explain why L is differentiable and find L'(x).
- (b) Show that L(xy) = L(x) + L(y). (Think of y as a constant and differentiate g(x) = L(xy).)
- (c) Show L(x/y) = L(x) L(y).
- (d) Let

$$\gamma_n = \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) - L(n).$$

Prove that (γ_n) converges. The constant $\gamma = \lim \gamma_n$ is called Euler's constant.

(e) Show how consideration of the sequence $\gamma_{2n} - \gamma_n$ leads to the interesting identity

$$L(2) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$$

- Solution. (a) We have L(1) = 0. Because t^{-1} is continuous on $(0, \infty)$, the FToC part (ii) shows that L is differentiable on $(0, \infty)$ and satisfies $L'(x) = x^{-1}$.
 - (b) Note that, by part (a),

$$\frac{d}{dx}L(xy) = yL'(xy) = \frac{y}{xy} = \frac{1}{x} = L'(x).$$

Corollary 5.3.4 then implies that L(xy) = L(x) + k for some constant k. Substituting x = 1, we see that k = L(y) and thus L(xy) = L(x) + L(y), as desired.

(c) Observe that, by parts (a) and (b),

$$0 = L(1) = L\left(\frac{y}{y}\right) = L(y) + L\left(\frac{1}{y}\right),$$

so that $L\left(\frac{1}{y}\right) = -L(y)$ for any y > 0. Combining this with part (b) shows that $L\left(\frac{x}{y}\right) = L(x) - L(y)$.

(d) Let $n \geq 2$ be given and consider the partition $P = \{1, \ldots, n\}$ of [1, n]. Then

$$1 + \frac{1}{2} + \dots + \frac{1}{n} > 1 + \frac{1}{2} + \dots + \frac{1}{n-1} = U\left(\frac{1}{t}, P\right) \ge U\left(\frac{1}{t}\right) = L(n).$$

Thus $\gamma_n \geq 0$ for each $n \in \mathbb{N}$, so that (γ_n) is bounded below.

Again, let $n \in \mathbf{N}$ be given and observe that

$$\gamma_n - \gamma_{n+1} = L\left(1 + \frac{1}{n}\right) - \frac{1}{n+1}.$$

Since $\frac{1}{t} \ge \frac{n}{n+1}$ on $\left[1, 1 + \frac{1}{n}\right]$, Theorem 7.4.2 (iii) shows that

$$L\left(1+\frac{1}{n}\right) \ge \frac{1}{n+1}$$

and hence $\gamma_n \geq \gamma_{n+1}$ for each $n \in \mathbb{N}$, so that (γ_n) is decreasing; we can now appeal to the Monotone Convergence Theorem (Theorem 2.4.2) to conclude that (γ_n) converges.

(e) For $n \in \mathbb{N}$, observe that

$$\gamma_{2n} - \gamma_n = \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{2n}\right) - \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) - L(2n) + L(n)$$

$$= \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{2n}\right) - \left(\frac{2}{2} + \frac{2}{4} + \dots + \frac{2}{2n}\right) - L(2) - L(n) + L(n)$$

$$= \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{2n}\right) - L(2).$$

Taking the limit as $n \to \infty$ on both sides gives the desired equality.

Exercise 7.5.9. Given a function f on [a, b], define the total variation of f to be

$$Vf = \sup \left\{ \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| \right\},$$

where the supremum is taken over all partitions P of [a, b].

- (a) If f is continuously differentiable (f' exists as a continuous function), use the Fundamental Theorem of Calculus to show $Vf \leq \int_a^b |f'|$.
- (b) Use the Mean Value Theorem to establish the reverse inequality and conclude that $Vf = \int_a^b |f'|$.
- **Solution.** (a) Let $P = \{x_0, \ldots, x_n\}$ be an arbitrary partition of [a, b]. Because f' is continuous on [a, b], it is integrable on [a, b] and so we may use the FToC part (i) and Theorem 7.4.2 (v) to see that

$$\sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| = \sum_{k=1}^{n} \left| \int_{x_{k-1}}^{x_k} f' \right| \le \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} |f'| = \int_{a}^{b} |f'|.$$

As P was arbitrary, it follows that $Vf \leq \int_a^b |f'|$.

(b) For any $\epsilon > 0$, there exists a partition $P = \{x_0, \dots, x_n\}$ of [a, b] such that

$$\left(\int_a^b |f'|\right) - \epsilon = L(|f'|) - \epsilon < L(|f'|, P).$$

For $k \in \{1, ..., n\}$, apply the Mean Value Theorem on the interval $[x_{k-1}, x_k]$ to obtain some $t_k \in (x_{k-1}, x_k)$ such that

$$|f'(t_k)|(x_k - x_{k-1}) = |f(x_k) - f(x_{k-1})|.$$

It follows that

$$L(|f'|, P) = \sum_{k=1}^{n} \inf\{|f'(t)| : t \in [x_{k-1}, x_k]\}(x_k - x_{k-1})$$

$$\leq \sum_{k=1}^{n} |f'(t_k)|(x_k - x_{k-1})$$

$$= \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})|$$

$$\leq Vf.$$

We have now shown that for every $\epsilon > 0$ it holds that

$$\int_{a}^{b} |f'| \le Vf + \epsilon$$

and thus we obtain the inequality $\int_a^b |f'| \leq Vf$. Given part (a), we may conclude that $Vf = \int_a^b |f'|$.

Exercise 7.5.10 (Change-of-variable Formula). Let $g:[a,b] \to \mathbf{R}$ be differentiable and assume g' is continuous. Let $f:[c,d] \to \mathbf{R}$ be continuous, and assume that the range of g is contained in [c,d] so that the composition $f \circ g$ is properly defined.

- (a) Why are we sure f is the derivative of some function? How about $(f \circ g)g'$?
- (b) Prove the change-of-variable formula

$$\int_{a}^{b} f(g(x))g'(x) \, dx = \int_{g(a)}^{g(b)} f(t) \, dt.$$

Solution. (a) f is integrable on [c,d] because it is continuous on [c,d] and so if we let $F(x) = \int_c^x f$ then the FToC part (ii) implies that F'(x) = f(x) for each $x \in [c,d]$. Similarly, note that $f \circ g$ is continuous on [a,b], being a composition of continuous functions, and hence is integrable on [a,b]. By assumption g' is continuous on [a,b] and so is also integrable on [a,b]. We can now use Exercise 7.4.6 to see that $(f \circ g)g'$ is integrable on [a,b], so that we can define $G(x) = \int_a^x (f \circ g)g'$ and use the FToC part (ii) to see that G'(x) = f(g(x))g'(x) for each $x \in [a,b]$.

(b) Define $F:[c,d]\to \mathbf{R}$ and $G:[a,b]\to \mathbf{R}$ by

$$F(t) = \int_{g(a)}^{t} f(x) dx$$
 and $G(t) = \int_{a}^{t} f(g(x))g'(x) dx$.

Then F'(t) = f(t), so that [F(g(t))]' = f(g(t))g'(t), and G'(t) = f(g(t))g'(t). It follows that F(g(t)) = G(t) + k on [a, b] for some constant k. Substituting t = a, we see that k = 0 and thus F(g(b)) = G(b), i.e.

$$\int_{g(a)}^{g(b)} f(x) \, dx = \int_{a}^{b} f(g(x))g'(x) \, dx.$$

Exercise 7.5.11. Assume f is integrable on [a, b] and has a "jump discontinuity" at $c \in (a, b)$. This means that both one-sided limits exist as x approaches c from the left and from the right, but that

$$\lim_{x \to c^{-}} f(x) \neq \lim_{x \to c^{+}} f(x).$$

(This phenomenon is discussed in more detail in Section 4.6.)

- (a) Show that, in this case, $F(x) = \int_a^x f$ is not differentiable at x = c.
- (b) The discussion in Section 5.5 mentions the existence of a continuous monotone function that fails to be differentiable on a dense subset of **R**. Combine the results of part (a) with Exercise 6.4.10 to show how to construct such a function.

Solution. (a) Let $A = \lim_{x \to c^-} f(x)$ and $B = \lim_{x \to c^+} f(x)$. A small modification of the proof of the FToC part (ii) shows that

$$\lim_{x \to c^{-}} \frac{F(x) - F(c)}{x - c} = A \quad \text{and} \quad \lim_{x \to c^{+}} \frac{F(x) - F(c)}{x - c} = B.$$

Since $A \neq B$, we see that $\lim_{x\to c} \frac{F(x)-F(c)}{x-c}$ does not exist, i.e. F is not differentiable at c.

(b) As in Exercise 6.4.10, let $\{r_1, r_2, r_3, ...\}$ be an enumeration of the rationals and for each $n \in \mathbb{N}$ define $u_n : \mathbb{R} \to \mathbb{R}$ by

$$u_n(x) = \begin{cases} 2^{-n} & \text{if } r_n < x, \\ 0 & \text{if } x \le r_n. \end{cases}$$

Now define $h: \mathbf{R} \to \mathbf{R}$ by $h(x) = \sum_{n=1}^{\infty} u_n(x)$. Let [a,b] be a given interval and note that for each $N \in \mathbf{N}$ the partial sum function $h_N(x) = \sum_{n=1}^N u_n(x)$ has at most N jump

discontinuities on [a, b]; it follows from Theorem 7.4.1 that h_N is integrable on [a, b]. In Exercise 6.4.10 we showed that $h_N \to h$ uniformly on \mathbf{R} and hence by Theorem 7.4.4 we see that h is integrable on [a, b]. We can now define $H : \mathbf{R} \to \mathbf{R}$ by $H(x) = \int_0^x h$. The FToC part (ii) shows that H is continuous, and we can use Theorem 7.4.1 and the fact that h is non-negative to see that H is monotone increasing.

Now we will prove that h has a jump discontinuity at each rational number. Let $r_m \in \mathbf{Q}$ be given; we have two claims.

(i) Our first claim is that $\lim_{x\to r_m^-} h(x) = h(r_m)$. To see this, let $\epsilon > 0$ be given and choose $N \in \mathbb{N}$ such that $2^{-N} < \epsilon$. Because the set $\{r_1, \ldots, r_N\}$ is finite, we can choose a $\delta > 0$ such that the intersection $(r_m - \delta, r_m) \cap \{r_1, \ldots, r_N\}$ is empty, i.e. if $r_n \in (r_m - \delta, r_m)$, then n > N.

Now suppose that $x \in (r_m - \delta, r_m)$ and enumerate the rationals in $[x, r_m)$ as a subsequence $\{r_{n_1}, r_{n_2}, r_{n_3}, \ldots\}$ of the sequence $\{r_1, r_2, r_3, \ldots\}$; by our previous discussion, we must have $n_k > N$ for each $k \in \mathbb{N}$. As we showed in Exercise 6.4.10, h is strictly increasing and $h(r_m) - h(x) = \sum_{k=1}^{\infty} 2^{-n_k}$. Thus

$$|h(r_m) - h(x)| = 2^{-N} \sum_{k=1}^{\infty} 2^{-n_k + N} \le 2^{-N} \sum_{n=1}^{\infty} 2^{-n} = 2^{-N} < \epsilon$$

and our claim follows.

(ii) Our second claim is that $\lim_{x\to r_m^+} h(x) = h(r_m) + 2^{-m}$. Again, let $\epsilon > 0$ be given and choose $N \in \mathbb{N}$ such that $2^{-N} < \epsilon$. Similarly to before, we can choose a $\delta > 0$ such that if $r_n \in (r_m, r_m + \delta)$ then n > N. For $x \in (r_m, r_m + \delta)$, enumerate the rationals in (r_m, x) as a subsequence $\{r_{n_1}, r_{n_2}, r_{n_3}, \ldots\}$ of the sequence $\{r_1, r_2, r_3, \ldots\}$, so that

$$[r_m, x) = \{r_m, r_{n_1}, r_{n_2}, r_{n_3}, \ldots\};$$

by our previous discussion, we must have $n_k > N$ for each $k \in \mathbb{N}$. Thus $h(x) - h(r_m) = 2^{-m} + \sum_{k=1}^{\infty} 2^{-n_k}$ and, arguing as in our first claim, it follows that

$$|h(x) - h(r_m) - 2^{-m}| = \sum_{k=1}^{\infty} 2^{-n_k} \le 2^{-N} < \epsilon.$$

This proves our second claim.

We have now shown that if $r_m \in \mathbf{Q}$, then

$$\lim_{x \to r_m^-} h(x) = h(r_m) < h(r_m) + 2^{-m} = \lim_{x \to r_m^+} h(x),$$

so that h has a jump discontinuity at each rational number; it follows from part (a) that H fails to be differentiable at each rational number.

 $[\mathrm{UA}]$ Abbott, S. (2015) Understanding Analysis. 2^{nd} edition.