Нелинейная динамика возмущений течения Колмогорова при больших числах Рейнольдса

Нелинейная динамика возмущений течения Колмогорова при больших числах Рейнольдса

Калашник М.В., Курганский М.В. Институт физики атмосферы им. А.М. Обухова РАН, Москва, Россия kalashnik-obn@mail.ru

Ключевые слова: гидродинамическая неустойчивость, течение Колмогорова, нелинейная динамика, вихри

Система уравнений динамики идеальной жидкости имеет простое точное решение, описывающее стационарное двумерное периодическое течение (невязкое течение Колмогорова). В присутствии вязкости это течение экспоненциально во времени затухает и для его поддержания необходима внешняя периодическая сила. Высокая степень симметрии и возможность лабораторного моделирования течения Колмогорова стимулировали теоретические исследования его устойчивости. В одной из первых работ на эту тему (Л.Д. Мешалкин, Я. Г. Синай, 1961) для решения линейной задачи теории устойчивости использовался аппарат теории цепных дробей, позволяющий определить критическое значение числа Рейнольдса. С использованием этого аппарата впоследствии исследовались задачи устойчивости в присутствии ряда осложняющих факторов. Альтернативный подход, использующий длинноволновое приближение и интегральные условия разрешимости для уравнений с периодическими коэффишиентами, был предложен в работах Г. Сивашинского (1985, 1986). Фундаментальный вклад в решение проблемы внесли работы школы А.М. Обухова, одного из выдающихся учеников А. Н. Колмогорова. В этих работах, в частности, впервые было показано, что только учет придонного трения позволяет согласовать теоретические и экспериментальные результаты.

Основное внимание в упомянутых работах уделялось динамике возмущений при умеренных (закритических) значениях числа Рейнольдса. В настоящем докладе представлены результаты исследования неустойчивости течения Колмогорова при больших значениях числах Рейнольдса (случаи нулевой и исчезающе малой вязкости). В приближении длинных волн построен класс аналитических решений, описывающий нелинейную стадию развития неустойчивости. Показано, что на этой стадии компоненты вектора скорости осциллируют с неограниченно возрастающей со временем частотой. При этом продольный компонент всегда ограничен, а поперечный компонент экспоненциально нарастает. Поле функции тока расслаивается на систему замкнутых вихревых ячеек, разделенных меандрирующими потоками с незамкнутыми линиями тока. С течением времени вихревые ячейки деформируются и сжимаются в продольном направлении. Учет малой вязкости приводит к затуханию продольного компонента вектора скорости и стабилизации роста поперечного компонента.