Verifying Robustness of Programs Under Structural Perturbations

Clay Thomas and Jacob Bond

December 2, 2017

Motivation

- An attempt to synthesize the max function using PBE:
 - $(13, 15) \mapsto 15$
 - $(-23, 19) \mapsto 19$
 - $(-75, -13) \mapsto -13$

Motivation

- An attempt to synthesize the max function using PBE:
 - $(13, 15) \mapsto 15$
 - $(-23, 19) \mapsto 19$
 - $(-75, -13) \mapsto -13$
- Synthesized program: P(a,b):=return b

Motivation

- An attempt to synthesize the max function using PBE:
 - $(13, 15) \mapsto 15$
 - $(-23, 19) \mapsto 19$
 - $(-75, -13) \mapsto -13$
- Synthesized program: P(a,b):=return b
- Neither synthesized program, nor synthesizer are robust

• Robustness: behaving predictably on uncertain inputs [2]

- Robustness: behaving predictably on uncertain inputs [2]
- $P(13,15) \neq P(15,13)$

- Robustness: behaving predictably on uncertain inputs [2]
- $P(13,15) \neq P(15,13)$
- $(15, 13) \mapsto 15$
 - $(19, -23) \mapsto 19$
 - $(-13, -75) \mapsto -13$

would synthesize very different program

- Robustness: behaving predictably on uncertain inputs [2]
- $P(13,15) \neq P(15,13)$
- $(15, 13) \mapsto 15$
 - $(19, -23) \mapsto 19$
 - $(-13, -75) \mapsto -13$

would synthesize very different program

• Synthesize a robust program or develop robust synthesizer

Robustness Properties

Continuity: small change to input ⇒ small change to output

$$Sort([1,4,3,6])=[1,3,4,6]$$

$$Sort([2,3,3,5])=[2,3,3,5]$$

Robustness Properties

Continuity: small change to input ⇒ small change to output

$$Sort([1,4,3,6])=[1,3,4,6]$$

 $Sort([2,3,3,5])=[2,3,3,5]$

• Permutation: permuting input leaves output invariant

$$Sort([1,4,3,6])=[1,3,4,6]$$

 $Sort([6,3,1,4])=[1,3,4,6]$

Robustness Properties

Continuity: small change to input ⇒ small change to output

Sort(
$$[1,4,3,6]$$
)= $[1,3,4,6]$
Sort($[2,3,3,5]$)= $[2,3,3,5]$

Permutation: permuting input leaves output invariant

$$Sort([1,4,3,6])=[1,3,4,6]$$

 $Sort([6,3,1,4])=[1,3,4,6]$

 Simultaneous Permutation: permuting all inputs leaves output invariant (Grade(responses, answers))

Grade([sqrt(
$$x^2$$
), 1/e, 6.5], [abs(x), e^-1, 13/2])=1 rearrange problem parts

Grade([1/e, 6.5, sqrt(x^2)], [e^-1, 13/2, abs(x)])=1

Consider

- 1: if $x \ge 0$ then
- 2: r := y
- 3: **else**
- 4: r := z

- Consider
 - 1: if $x \ge 0$ then
 - 2: r := y
 - 3: **else**
 - 4: r := z
- If $y \neq z$, discontinuous at x = 0

- Consider
 - 1: **if** x > 0 **then**
 - 2: r := y
 - 3: **else**
 - 4: r := z
- If $y \neq z$, discontinuous at x = 0
- Proof rule:

$$c \vdash \operatorname{Cont}(P_1, \operatorname{In}, \operatorname{Out})$$
 $c \vdash \operatorname{Cont}(P_2, \operatorname{In}, \operatorname{Out})$
 $c' \vdash \operatorname{Cont}(b, \operatorname{Var}(b))$ $(c \land \neg c') \vdash \operatorname{Out}_{P_1} = \operatorname{Out}_{P_2}$

 $c \vdash \text{Cont}(\text{if } b \text{ then } P_1 \text{ else } P_2, \text{In}, \text{Out})$

- Consider
 - 1: **if** x > 0 **then**
 - 2: r := y
 - 3: **else**
 - 4: r := z
- If $y \neq z$, discontinuous at x = 0
- Proof rule:

$$c \vdash \operatorname{Cont}(P_1, \operatorname{In}, \operatorname{Out})$$
 $c \vdash \operatorname{Cont}(P_2, \operatorname{In}, \operatorname{Out})$
 $c' \vdash \operatorname{Cont}(b, \operatorname{Var}(b))$ $(c \land \neg c') \vdash \operatorname{Out}_{P_1} = \operatorname{Out}_{P_2}$

$$c \vdash \text{Cont}(\text{if } b \text{ then } P_1 \text{ else } P_2, \text{In}, \text{Out})$$

Only applicable to numerical perturbations

• Robustness requires two executions

- Robustness requires two executions
- Verified using product program

- Robustness requires two executions
- Verified using product program
 - $P_1 \circledast P_2$ is simultaneous execution

- Robustness requires two executions
- Verified using product program
 - $P_1 \otimes P_2$ is simultaneous execution
- Cartesian Hoare Logic reasons about product programs

- Robustness requires two executions
- Verified using product program
 - $P_1 \otimes P_2$ is simultaneous execution
- Cartesian Hoare Logic reasons about product programs
- Cartesian Hoare Triple examples:

- Robustness requires two executions
- Verified using product program
 - $P_1 \circledast P_2$ is simultaneous execution
- Cartesian Hoare Logic reasons about product programs
- Cartesian Hoare Triple examples:
 - Determinism:

$$\|\vec{x_1} = \vec{x_2}\|f(\vec{x})\|ret_1 = ret_2\|$$

- Robustness requires two executions
- Verified using product program
 - $P_1 \circledast P_2$ is simultaneous execution
- Cartesian Hoare Logic reasons about product programs
- Cartesian Hoare Triple examples:
 - Determinism:

$$\|\vec{x_1} = \vec{x_2}\|f(\vec{x})\|ret_1 = ret_2\|$$

• Symmetry:

$$||x_1 = y_2 \wedge x_2 = y_1||f(x, y)|| ret_1 = ret_2||$$

- Robustness requires two executions
- Verified using product program
 - $P_1 \circledast P_2$ is simultaneous execution
- Cartesian Hoare Logic reasons about product programs
- Cartesian Hoare Triple examples:
 - Determinism:

$$\|\vec{x_1} = \vec{x_2}\|f(\vec{x})\|ret_1 = ret_2\|$$

Symmetry:

$$||x_1 = y_2 \wedge x_2 = y_1||f(x, y)||ret_1 = ret_2||$$

Requires specifying property in first-order logic

- Robustness requires two executions
- Verified using product program
 - $P_1 \otimes P_2$ is simultaneous execution
- Cartesian Hoare Logic reasons about product programs
- Cartesian Hoare Triple examples:
 - Determinism:

$$\|\vec{x_1} = \vec{x_2}\|f(\vec{x})\|ret_1 = ret_2\|$$

Symmetry:

$$||x_1 = y_2 \wedge x_2 = y_1||f(x, y)||ret_1 = ret_2||$$

- Requires specifying property in first-order logic
- Not optimized for 2-safety properties

Our Contributions

Goals:

- Reason about invariance under discrete perturbations
- Want to optimize for our specific problem

Results:

- Small sets of perturbations that "generate" all perturbations
 - Lists, binary search trees
- Formulate "invariance with respect to a function"
 - General, sound procedure
- Sanity checks and bug finding

Lists – Invariance under order

Given an array a

- Let a_{swap} be a with its first and second entry swapped
 - $[a[1], a[0], a[2], a[3], \ldots, a[n]]$
- Let a_{rot} be a rotated by 1
 - $[a[1], a[2], a[3], \dots a[n], a[0]]$

Lemma: If for any a, $P(a) = P(a_{swap}) = P(a_{rot})$, then for any permutation a' of a, we have P(a) = P(a'). Proof: Math [3]

Programs - Invariance under order

- maxList([x]) = x
- maxList([x, ...xs...]) = max(x, maxList(xs))
- Verifying $\max List(a) = \max List(a_{swap})$ has one case:

$$maxList([x, y, ...xs...]) \stackrel{?}{=} maxList([y, x, ...xs...])$$

$$|| \qquad || \qquad \qquad ||$$

$$max(x, maxList([y, ...xs...])) \qquad max(y, maxList([x, ...xs...]))$$

$$|| \qquad \qquad || \qquad \qquad ||$$

$$max(x, max(y, maxList(xs))) \qquad max(y, max(x, maxList(xs)))$$

$$|| \qquad \qquad || \qquad \qquad ||$$

$$max(x, max(y, z)) \qquad max(y, max(x, z))$$

Binary Search Trees

- For lists, two simple permutations generated all permutations
- Goal: similar permutations for BSTs

Binary Search Trees

Binary Search Trees

It suffices to show

- Every tree can be transformed into a "normal form" (i.e. list)
 - "flatten" straightens out the tree
 - "rotate" lets you straighten all the parts
- Every operation is reversable

Lists and Binary Search Trees

 Can check robustness under ALL permutations by checking just TWO permutations

- Sets of permutations are case-by-case
- Goal: formulation of invariance
 - Useful
 - Easy to code/express
 - Checkable

Invariance of a program $P: T \rightarrow Z$ relative to a function $f: T \rightarrow T'$

- f(t) gives a "canonical representative" of t
- For concreteness, $f = list : BST \rightarrow List$

Observation: The following are equivalent:

- $list(x) = list(y) \implies P(x) = P(y)$
- There exists a program $\widetilde{P}: Lists \to Z$ such that $P(t) = \widetilde{P}(list(t))$

$$BSTs \xrightarrow{P} Z$$

$$Lists$$

- Idea: Synthesize a witness to the invariance
 - A function \widetilde{P} : Lists $\rightarrow Z$
- P and list provide a full specification of \widetilde{P}
- Counterexample guided inductive synthesis [4]

Future Directions

- Develop proof rules for discrete perturbations
- Improved handling of branching programs by Cartesian Hoare Logic
- Working implementation of Cartesian Hoare Logic
- Find more data structures with small perturbation sets
- Speed up our general procedure
- Synthesis for verification?
- Implement!

References

S. Chaudhuri, S. Gulwani, and R. Lublinerman.

Continuity analysis of programs.

POPL '10, pages 57-70, New York, NY, USA, 2010. ACM.

S. Chaudhuri, S. Gulwani, and R. Lublinerman.

Continuity and robustness of programs.

Commun. ACM, 55(8):107-115, Aug. 2012.

D. S. Dummit and R. M. Foote.

Abstract Algebra.

John Wiley & Sons, 3rd edition, 2004.

A. Solar-Lezama, L. Tancau, R. Bodik, V. Saraswat, and S. Seshia.

Combinatorial sketching for finite programs.

In ASPLOS-12, pages 404-415, Oct 2016.

M. Sousa and I. Dillig.

Cartesian hoare logic for verifying k-safety properties.

PLDI '16, pages 57-69, New York, NY, USA, 2016. ACM.

