

FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA LICENCIATURA EM ENGENHARIA INFORMÁTICA REDES DE COMPUTADORES I

TEMA: VLSM

Grupo Docente:

- Eng°. Délcio Chadreca
- Eng°. Felizardo Munguambe

Tópicos da Aula

- ► Introdução;
- ► VLSM
- ► Cálculo de VLSM;
- ► Algoritmo de cálculo de VLSM;
- ► Exemplo;
- ► Sumarização.

Introdução

O desperdícios de endereços IP é um problema em Redes de Computadores. A busca por técnicas que permitem optimizar o processo de endereçamento é uma questão preponderante.

Na presente aula, vamos abordar sobre o VLSM e, uma técnica para de sub-redes que visa minimizar o desperdício de endereços IP.

Também iremos abordar sobre a agregação de rotas, e seus benefícios.

VLSM (Variable Length Subnet Masking)

VLSM (*Variable Lenght Subnet Mask*) é um método de cálculo de sub-redes utilizando máscaras de tamanho variáveis e surgiu da necessidade de otimizar-se o espaço de endereçamento disponivel.

Com o VLSM basicamente o que fazemos é dividir as sub-redes em outras sub-redes, cada uma com o tamanho necessário para satisfazer os requisitos de projeto.

Essa tecnica é utilizada normalmente quando se deseja atingir algum dos pontos a seguir:

- Menor desperdício de endereços IPs.
- Maior flexibilidade na distribuição de endereços.
- Possibilidade de **sumarização** de rotas (agregação de rotas)

Cálculo do VLSM

O calculo do VLSM consiste no preenchimento de uma tabela composta pelos seguintes campos:

Nome da	Necessidade	Endereço de Rede	Máscara	Máscara em	Faixa utilizável	Broadcast
sub-rede				Decimal		

Onde:

Nome da sub-rede – corresponde a designação que a sub-rede.

Necessidade – a necessidade nada mais é do que a quantidade de endereços IP utilizáveis que são necessários em uma determinada sub-rede.

Endereço de Rede – em cada sub-rede haverá um endereço de rede que identifica a sub-rede e um endereço de *broadcast*.

Máscara – a máscara de cada sub-rede está associada a necessidade de cada sub-rede.

Algoritmo de resolução

Passo 01: Identificar a rede principal.

Passo 02: Preencher na tabela os campos correspondentes ao: Nome de sub-rede e necessidade.

• Ao preencher os campos citados acima, deve-se organizar em ordem decrescente dos valores da necessidade.

Passo 03: Aplicar a fórmula 2ⁿ-2≥necessidade; e encontrar o menor valor de **n** que obedece a condição.

Passo 04: Identificar a máscara e identificar o endereço de rede da próxima sub-rede. Preencher os outros campos da tabela.

Passo 05: Realizar os Passos 03 e 04 para as necessidades subsequentes.

Exemplo: Cálculo de VLSM

Considere os seguintes dados:

Rede Principal: 10.0.0.0/16

Considere a seguinte distribuição hipotética de necessidades por regiões:

- Beira 6000;
- Maputo 12000;
- Inhambane 5000;
- Maxixe 650;
- Xai-Xai 250;
- Tete -67;
- Quelimane 100; e
- Nampula 35.

Resolução

Passo 01:

Rede Principal: 10.0.0.0/16

Passo 02:

Nome da	Necessidade	Endereço de Rede	Máscara	Máscara em	Faixa utilizável	Broadcast
sub-rede				Decimal		
Maputo	12000					
Beira	6000					
Inhambane	5000					
Maxixe	650					
Xai-Xai	250					
Quelimane	100					
Tete	67					
Nampula	35					

Passo 03:

Para a primeira necessidade = 12000.

2¹⁴-2≥12000, n=14. (n representa o número de zeros da direita para a esquerda)

Passo 04:

Conforme apresentado no slide anterior, a máscara será: /18 (contando o número de 1's)

Como encontrar o endereço da próxima sub-rede?

Sabemos que com a mascara /18, trabalha-se com os bits do 3º octecto.

O endereço inicial dado é 10.0.0.0, este endereço corresponde ao endereço da primeira sub-rede (**Maputo**), para saber o endereço da próxima sub-rede, vamos adicionar $2^6 = 64$, no 3° Octeto. Assim 0+64=64. Logo: 10.0.64.0 é o endereço de rede da segunda sub-rede (**Beira.**)

Nome da	Necessidade	Endereço de Rede	Máscara	Máscara em	Faixa utilizável	Broadcast
sub-rede				Decimal		
Maputo	12000	10.0.0.0	/18	255.255.192.0	10.0.0.1 – 10.0.63.254	10.0.63.255
Beira	6000	10.0.64.0				
Inhambane	5000					
Maxixe	650					
Xai-Xai	250					
Quelimane	100					
Tete	67					
Nampula	35					

Para a segunda necessidade

Passo 05:

Passos 03 e 04:

 $2^{n}-2 \ge 6000$, n=13.

X.X.1110000.0000000

Máscara: /19

 $2^{5}=32$.

Próxima sub-rede: 64+32 = 96. Logo, 10.0.96.0

Nome da	Necessidade	Endereço de Rede	Máscara	Máscara em	Faixa utilizável	Broadcast
sub-rede				Decimal		
Maputo	12000	10.0.0.0	/18	255.255.192.0	10.0.0.1 – 10.0.63.254	10.0.63.255
Beira	6000	10.0.64.0	/19	255.255.224.0	10.0.64.1 – 10.0.95.254	10.0.95.255
Inhambane	5000	10.0.96.0				
Maxixe	650					
Xai-Xai	250					
Quelimane	100					
Tete	67					
Nampula	35					

Para a terceira necessidade

Passo 05:

Passos 03 e 04:

 $2^{n}-2 \ge 5000$, n=13.

X.X.1110000.0000000

Máscara: /19

 $2^{5}=32$.

Próxima sub-rede: 96+32 = 128. Logo, 10.0.128.0

Nome da	Necessidade	Endereço de Rede	Máscara	Máscara em	Faixa utilizável	Broadcast
sub-rede				Decimal		
Maputo	12000	10.0.0.0	/18	255.255.192.0	10.0.0.1 – 10.0.63.254	10.0.63.255
Beira	6000	10.0.64.0	/19	255.255.224.0	10.0.64.1 - 10.0.95.254	10.0.95.255
Inhambane	5000	10.0.96.0	/19	255.255.224.0	10.0.96.1 - 10.0.127.254	10.0.127.255
Maxixe	650	10.0.128.0				
Xai-Xai	250					
Quelimane	100					
Tete	67					
Nampula	35					

Para as restantes necessidades

Passo 05:

Passos 03 e 04:

 $2^{n}-2 \ge 650$, n=10.

X.X.11111100.0000000

Máscara: /22

 $2^2 = 4$.

Próxima sub-rede: 128+4=132. Logo, 10.0.132.0

Nome da	Necessidade	Endereço de Rede	Máscara	Máscara em	Faixa utilizável	Broadcast
sub-rede				Decimal		
Maputo	12000	10.0.0.0	/18	255.255.192.0	10.0.0.1 – 10.0.63.254	10.0.63.255
Beira	6000	10.0.64.0	/19	255.255.224.0	10.0.64.1 - 10.0.95.254	10.0.95.255
Inhambane	5000	10.0.96.0	/19	255.255.224.0	10.0.96.1 - 10.0.127.254	10.0.127.255
Maxixe	650	10.0.128.0	/22	255.255.252.0	10.0.128.1 - 10.0.131.254	10.0.131.255
Xai-Xai	250	10.0.132.0				
Quelimane	100					
Tete	67					
Nampula	35					

Para as restantes necessidades

Passo 05:

Passos 03 e 04:

 $2^{n}-2 \ge 250$, n=8.

X.X.111111111.0000000

Máscara: /24

28=256. (Esgota todos os hosts no último octecto, uma vez que máscara é do último octeto, logo deve-se acrescentar +1 no 3° octeto)

Próxima sub-rede: 132+1=133. Logo, 10.0.133.0

Nome da	Necessidade	Endereço de Rede	Máscara	Máscara em	Faixa utilizável	Broadcast
sub-rede				Decimal		
Maputo	12000	10.0.0.0	/18	255.255.192.0	10.0.0.1 – 10.0.63.254	10.0.63.255
Beira	6000	10.0.64.0	/19	255.255.224.0	10.0.64.1 - 10.0.95.254	10.0.95.255
Inhambane	5000	10.0.96.0	/19	255.255.224.0	10.0.96.1 - 10.0.127.254	10.0.127.255
Maxixe	650	10.0.128.0	/22	255.255.252.0	10.0.128.1 - 10.0.131.254	10.0.131.255
Xai-Xai	250	10.0.132.0	/24	255.255.255.0	10.0.132.1 - 10.0.132.254	10.0.132.255
Quelimane	100	10.0.133.0				
Tete	67					
Nampula	35					

Para as restantes necessidades

Passo 05:

Passos 03 e 04:

 $2^{n}-2 \ge 100$, n=7.

X.X.X.10000000

Máscara: /25

 $2^{7}=128$.

Próxima sub-rede: 0+128=128. Logo, 10.0.133.128

Nome da	Necessidade	Endereço de Rede	Máscara	Máscara em	Faixa utilizável	Broadcast
sub-rede				Decimal		
Maputo	12000	10.0.0.0	/18	255.255.192.0	10.0.0.1 – 10.0.63.254	10.0.63.255
Beira	6000	10.0.64.0	/19	255.255.224.0	10.0.64.1 - 10.0.95.254	10.0.95.255
Inhambane	5000	10.0.96.0	/19	255.255.224.0	10.0.96.1 – 10.0.127.254	10.0.127.255
Maxixe	650	10.0.128.0	/22	255.255.252.0	10.0.128.1 – 10.0.131.254	10.0.131.255
Xai-Xai	250	10.0.132.0	/24	255.255.255.0	10.0.132.1 – 10.0.132.254	10.0.132.255
Quelimane	100	10.0.133.0	/25	255.255.255.128	10.0.133.1 – 10.0.133.126	10.0133.127
Tete	67	10.0.133.128				
Nampula	35					

Para as restantes necessidades

Passo 05:

Passos 03 e 04:

 $2^{n}-2 \ge 67$, n=7.

X.X.X.10000000

Máscara: /25

 $2^{7}=128.$

Próxima sub-rede: 128+128=256. Logo, 10.0.134.0

Nome da	Necessidade	Endereço de Rede	Máscara	Máscara em	Faixa utilizável	Broadcast
sub-rede				Decimal		
Maputo	12000	10.0.0.0	/18	255.255.192.0	10.0.0.1 – 10.0.63.254	10.0.63.255
Beira	6000	10.0.64.0	/19	255.255.224.0	10.0.64.1 – 10.0.95.254	10.0.95.255
Inhambane	5000	10.0.96.0	/19	255.255.224 .0	10.0.96.1 - 10.0.127.254	10.0.127.255
Maxixe	650	10.0.128.0	/22	255.255.252.0	10.0.128.1 – 10.0.131.254	10.0.131.255
Xai-Xai	250	10.0.132.0	/24	255.255.255.0	10.0.132.1 – 10.0.132.254	10.0.132.255
Quelimane	100	10.0.133.0	/25	255.255.255.128	10.0.133.1 – 10.0.133.126	10.0.133.127
Tete	67	10.0.133.128	/25	255.255.255.128	10.0.133.129 - 10.0.133.254	10.0.133.255
Nampula	35	10.0.134.0				

Para as restantes necessidades

Passo 05:

Passos 03 e 04:

 $2^{n}-2 \ge 35$, n=6.

X.X.X.11000000

Máscara: /26

 $2^6 = 64$.

Próxima sub-rede: 0+64=64. Logo, 10.0.134.64

Calculo de VLSM Resumo

Passo 01: Identificar a Mascar actual

Passo 02: Aplicar a formula básica: 2ⁿ-2≥ Necessidade

Passo 03: Obter nova mascara

Passo 04: Jump/Salto da rede: 256-Nova Mascara

Passo 05: Rede Seguinte: Rede Actual + Jump

Tabela Final

Nome da	Necessidade	Endereço de Rede	Máscara	Máscara em	Faixa utilizável	Broadcast
sub-rede				Decimal		
Maputo	12000	10.0.0.0	/18	255.255.192.0	10.0.0.1 – 10.0.63.254	10.0.63.255
Beira	6000	10.0.64.0	/19	255.255.224.0	10.0.64.1 – 10.0.95.254	10.0.95.255
Inhambane	5000	10.0.96.0	/19	255.255.224.0	10.0.96.1 – 10.0.127.254	10.0.127.255
Maxixe	650	10.0.128.0	/22	255.255.252.0	10.0.128.1 – 10.0.131.254	10.0.131.255
Xai-Xai	250	10.0.132.0	/24	255.255.255.0	10.0.132.1 – 10.0.132.254	10.0.132.255
Quelimane	100	10.0.133.0	/25	255.255.255.128	10.0.133.1 – 10.0.133.126	10.0.133.127
Tete	67	10.0.133.128	/25	255.255.255.128	10.0.133.129 – 10.0.133.254	10.0.133.255
Nampula	35	10.0.134.0	/26	255.255.255.192	10.0.134.1 – 10.0.134.62	10.0.134.63

Sumarização

A agregação de rotas é importante porque:

- Permite poupar espaço na tabela de encaminhamento de redes próximas;
- A agregação pode reduzir o tamanho da tabela de encaminhamento.

Rede Sumária

Como encontrar uma rede sumária?

Para encontrar a rede sumária, é necessário:

- 1. Converter todos os endereços IP em binário.
- 2. Observar, da esquerda para direita, e encontrar o último *bit* estático dentre os endereços em binário.
 - Ao subdividir os endereços em duas partes. O número de bits estáticos representa a Máscara da rede Sumária.
- 3. Substituir por zero os bits variáveis e este será o endereço da rede sumária.

Exemplo 01:

Encontre a rede sumária das seguintes sub-redes:

Endereço	Em Binário
192.168.98.0	11000000.10101000.01100010.00000000
192.168.99.0	11000000.10101000.01100011.00000000
192.168.100.0	11000000.10101000.01100100.00000000
192.168.101.0	11000000.10101000.01100101.00000000
192.168.102.0	11000000.10101000.01100110.000000000
192.168.105.0	11000000.10101000.01101001.00000000

Rede Sumária: (192.168.96.0/20): 11000000.101010000.01100000.000000000

Exemplo 02:

Considere os endereços da tabela de VLSM, encontre a rede sumária.

10.0.0.0	00001010.00000000 00000000.00000000
10.0.64.0	00001010.00000000 01000000.00000000
10.0.96.0	00001010.00000000 01100000.00000000
10.0.128.0	00001010.00000000.10000000.00000000
10.0.192.0	00001010.00000000.11000000.00000000
10.0.133.0	00001010.00000000.10000101.00000000
10.0.133.128	00001010.00000000.10000101.10000000
10.0.134.0	00001010.00000000.10000110.00000000

Exercício-1

A eng. Sara deseja subdividir a faixa de IPs (10.2.0.0/16) da sua empresa. Segundo ele, o modelo "Classless" ajuda a diminuir o desperdício de endereços IPs. A empresa dele, a ITGov_Corporation, tem 16 filiais. 4 filias com mais de 800 dispositivos, 3 com menos de 300 dispotivios , 3 com mais de 400 dispositivos duas com menos de 800 dispotivos e 4 com menos de 24 dispotivos

Realize os cálculos e explique a Joaquim todo o procedimento que você realizou para encontrar as subredes.

Exercício-2

A empresa Tomas MasterDevWeb é dona da faixa de IP 20.37.0.0/17. Segmente essa subrede de forma que permita ter:

- 1 subrede para 456 servidores;
- 1 subrede para 5094 computadores;
- 1 subrede para 238 câmeras de vigilância;
- 3 subredes para os dispositivos móveis dos usuários. Cada subrede deve suportar, no mínimo, 350 dispositivos.

Exercicio 3

A engra. Yula deseja subdividir a faixa de IPs (30.90.0.0/16) da sua empresa. Segundo ela, o modelo "Classless" ajuda a diminuir o desperdício de endereços IPs. A empresa dela, a Yulaconections esta espalhada em todas capitais do país da seguinte forma:

Zona Sul: FQMA:3000hosts; FQGZ2000hots e FQIN1000hosts

Zona Centro:FQMN512hosts; FQSF1024hosts FQTT2046hots FQZA400hosts

Zona Norte: FQLC:63 FQCD:54 FQNP:29

Nota: Existem 9 links ponto-a-ponto para garantir a conexão entre as unidades de produção.

Realize os cálculos e explique todo o procedimento que voce realizou para encontrar as subredes.

OBRIGADO!!!