Problem Statement: Mr Anil is planning to go on a budget vacation trip. He is confused with multiple choices. Develop an ML algorithm to help find the best budget trip based on the distance (kilometer) using DataScience methodology.

```
import pandas as pd
print(pd.__version__)
```

1.3.5

	<pre>distance(Km)</pre>	Budget	10+
0	100	1800	
1	75	1350	
2	50	900	
3	150	2850	
4	175	3325	
5	200	3700	
6	350	6300	
7	400	7200	
8	500	9500	
9	520	9360	
10	700	12950	

	<pre>distance(Km)</pre>	7
0	100	•
1	75	
2	50	
3	150	
4	175	
5	200	
6	350	
7	400	
8	500	
9	520	
10	700	

0 1800

```
1 1350
2 900
3 2850
4 3325
5 3700
6 6300
7 7200
8 9500
9 9360
10 12950
Name: Budget, dtype: int64
```

DATA VISUALIZATION

from matplotlib import pyplot as plt

Visualizing the data using matplotlib

```
plt.scatter(X,y,s=100,marker='*',color="red")
plt.plot(X,y,color='pink')
```


This is the final outcome of visualizing the given data.

Markers and colors are used in visualizing datas.

ML MODEL

ML Model is created using linear_model from the package sklearn

from sklearn import linear_model

reg=linear_model.LinearRegression()

```
reg.fit(X,y)
    LinearRegression()
reg.predict([[300]])
    /usr/local/lib/python3.7/dist-packages/sklearn/base.py:451: UserWarning: X does not have valid feature names, but LinearRegress
      "X does not have valid feature names, but"
    array([5518.98000886])
reg.score(X,y)
    0.9986895622712859
m=reg.coef
m
    array([18.42225122])
b=reg.intercept
b
    -7.695356738392547
inputX=300
output Budget=m*inputX+b
output Budget
    array([5518.98000886])
```

import pickle

plt.scatter(X,y,s=100,marker='*',color="black")
plt.plot(X,y,color='blue')

plt.scatter(X,y,s=100,marker='*',color="black")
plt.plot(X,ytest,color='purple')

[<matplotlib.lines.Line2D at 0x7f736695af90>]

with open('/content/BudgetTripmodel','rb') as f:
 reg=pickle.load(f)

reg.predict([[300]])

/usr/local/lib/python3.7/dist-packages/sklearn/base.py:451: UserWarning: X does not have valid feature names, but LinearRegress "X does not have valid feature names, but" array([5518.98000886])

4

```
df=pd.read_csv('/content/ClientFile.csv')
df
```

	<pre>distance(Km)</pre>	7
0	500	
1	780	
2	900	
3	1100	
4	1400	
5	1700	
6	2100	
7	3300	
8	4500	
9	4600	

```
predictedprice=reg.predict(df)
predictedprice
```

```
array([ 9203.4302526 , 14361.66059383, 16572.33074007, 20256.7809838 , 25783.4563494 , 31310.131715 , 38679.03220247, 60785.73366488, 82892.43512728, 84734.66024915])
```

print(type(predictedprice))

<class 'numpy.ndarray'>

8/19/22, 7:37 PM

df['Budget']=predictedprice
df

	<pre>distance(Km)</pre>	Budget	7
0	500	9203.430253	
1	780	14361.660594	
2	900	16572.330740	
3	1100	20256.780984	
4	1400	25783.456349	
5	1700	31310.131715	
6	2100	38679.032202	
7	3300	60785.733665	
8	4500	82892.435127	
9	4600	84734.660249	

df.to_csv('ClientOutputFile.csv',index=False)

✓ 0s completed at 7:34 PM