

PaSim simulations in the Massif Central of France

Renáta Sándor, Catherine Picon-Cochard, Raphaël Martin, Frédérique Louault, Katja Klumpp, Borras David, **Gianni Bellocchi**

French National Institute for Agricultural Research , Grassland Ecosystem Research Unit, Clermont-Ferrand (France)

Rome (Italy) October 03, 2015

The Pasture Simulation model (PaSim)

- Mechanistic, biogeochemical model (Riedo et al., 1998)
- Simulation of fluxes of water, energy, C and N at the soilplant-animal atmosphere interface
- Simulation of permanent (cut / grazed) grassland systems
- ➤ Time resolution: ~30 minutes
- > Reference grassland model in several projects:
 - Europe: EU FP7 AnimalChange, FACCE-JPI MACSUR
 - International: AgMIP, FACCE-JPI CN-MIP and Model4Pasture

PaSim - modified solution

~f (growth temperature)

$$P_{max} = P_{max,20} \cdot f_T \cdot P_{m,CO_2T} \cdot P_{mN} \cdot P_{mC}$$

$$f'_T = \left\{ \sin \left[\pi \left(\frac{T - T_0}{T'_0 - T_0} \right)^{\alpha} \right] \right\}^{\beta}$$

Zaka et al. (2015)

Permanent grassland sites (Massif Central of

France)

Laqueuille

1040 m a.s.l.

Mean annual temperature: 8.0 °C Annual total precipitation: 1000 mm

modextreme

Theix

880 m a.s.l.

Mean annual temperature: 8.7 °C Annual total precipitation: 780 mm

Theix - Manipulation of precipitation and temperature (2009-2012)

- □ Actual climate (C): 240.5 mm (summer rain), 768.8 mm (annual rain)
- □ Actual climate with summer extreme event (CX): heat wave (active warming system) and precipitation reduction (162 mm, 693.8 mm)
- ☐ Future climate (WD) corresponding to a projection of SRES A2 scenario for 2020-2049: night temperature increase (passive warming system) and precipitation reduction (146.0 mm, 564.8 mm)
- ☐ Future climate with summer extreme event (WDX): active warming system to mimic extreme temperature event under projected scenario (71 mm, 491.3 mm)

Zwicke et al. (2013)

http://modextreme.org/webxtreme

Performance indicators (Cut-)

	С	СХ	WD	WXD
Observed mean	2.69	2.16	1.94	1.85
observed mean	2103	2120	1131	1100
Existing solution				
Simulated mean	2.00	1.92	1.83	1.79
Mean squared error (best, 0 - +infinity, worst)	296.30	128.25	118.41	140.00
Index of agreement (worst, 0 – 1, best)	0.84	0.81	0.80	0.80
Modelling efficiency (worst, -infinity - 1, best)	0.59	0.41	0.39	0.38
Correlation coefficient (worst, -1 - 1, best)	0.95	0.96	0.95	0.93
t test probability of equal means (worst, 0 - 1, best)	0.12	0.43	0.70	0.83
Modified solution				
Simulated mean	1.67	1.61	1.56	1.51
Mean squared error (best, 0 - +infinity, worst)	399.03	179.87	156.51	173.25
Index of agreement (worst, 0 - 1, best)	0.87	0.84	0.83	0.83
Modelling efficiency (worst, -infinity - 1, best)	0.71	0.58	0.55	0.55
Correlation coefficient (worst, -1 - 1, best)	0.96	0.96	0.95	0.94
t test probability of equal means (worst, 0 - 1, best)	0.05	0.12	0.25	0.33

Performance indicators (Cut+)

	С	CX	WD	WXD
Observed mean	2.29	1.77	1.91	1.69
Existing solution				
Simulated mean	2.72	2.64	2.55	2.46
Mean squared error (best, 0 - +infinity, worst)	149.67	166.61	169.08	176.18
Index of agreement (worst, 0 - 1, best)	0.75	0.70	0.73	0.70
Modelling efficiency (worst, -infinity - 1, best)	0.09	-0.26	-0.01	-0.22
Correlation coefficient (worst, -1 - 1, best)	0.89	0.85	0.85	0.83
t test probability of equal means (worst, 0 - 1, best)	0.18	0.01	0.06	0.03
Modified solution				
Simulated mean	2.00	1.94	1.93	1.86
Mean squared error (best, 0 - +infinity, worst)	147.08	117.66	145.67	132.84
Index of agreement (worst, 0 - 1, best)	0.81	0.77	0.79	0.77
Modelling efficiency (worst, -infinity - 1, best)	0.47	0.27	0.38	0.26
Correlation coefficient (worst, -1 - 1, best)	0.91	0.87	0.87	0.84
t test probability of equal means (worst, 0 - 1, best)	0.36	0.56	0.96	0.57

Gross primary production

Laqueuille (France)

2004

Underestimations in winter time (with constant T_{opt})

Ma et al. (2015)

Literature sources

- Ma, S., Lardy, R., Graux, A.-I., Ben Touhami, H., Klumpp, K., Martin, R., Bellocchi, G., 2015. Regional-scale analysis of carbon and water cycles on managed grassland systems. Environmental Modelling & Software 72, 356-371.
- Riedo, M., Grub, A., Rosset, M., Fuhrer, J., 1998. A pasture simulation model for dry matter production, and fluxes of carbon, nitrogen, water and energy. Ecological Modelling 105, 141–183.
- Zaka, S., Frak, E., Julier, B., Gastal, F., Louarn, G., 2015. The thermal acclimation of photosynthesis only differs at high temperature between Mediterranean and temperate cultivars of alfalfa (*Medicago sativa* L.). AoB Plants, submitted.
- Zwicke, M., Alessio, G.A., Thiery, L., Falcimagne, R., Baumont, R., Rossignol, N., Soussana, J.-F., Picon-Cochard, C., 2013. Lasting effects of climate disturbance on perennial grassland aboveground biomass production under two cutting frequencies. Global Change Biology 19, 3435–3448.

Acknowledgement

"The research leading to these results has received funding from the European Community's Seventh Framework Programme – FP7 (KBBE.2013.1.4-09) under Grant Agreement No. 613817, 2013-2016"

