

Міністерство освіти і науки України

Національний технічний університет України

«Київський політехнічний інститут імені Ігоря Сікорського»

Фізико-технічний інститут

## ЛАБОРАТОРНА РОБОТА №4

з дисципліни

«Криптографія»

на тему: «Побудова регістрів зсуву з лінійним зворотним зв'язком та дослідження їх властивостей»

| Виконали:                          |
|------------------------------------|
| студенти 3 курсу ФТI               |
| групи ФБ-72                        |
| Топорова Варвара та Лобанова Уляна |
|                                    |
| Іеревірив:                         |

## Мета роботи:

Ознайомлення з принципами побудови регістрів зсуву з лінійним зворотним зв'язком; практичне освоєння їх програмної реалізації; дослідження властивостей лінійних рекурентних послідовностей та їх залежності від властивостей характеристичного полінома регістра.

#### Порядок виконання роботи

- 0. Уважно прочитати методичні вказівки до виконання комп'ютерного практикуму.
- 1. Вибрати свій варіант завдання згідно зі списком. Варіанти завдань містяться у файлі Crypto\_CP4 LFSR\_Var.
- 2. За даними характеристичними многочленами p1(x), p2(x) скласти лінійні рекурентні співвідношення для ЛРЗ, що задаються цими характеристичними многочленами.
- 3. Написати програми роботи кожного з ЛРЗ L1, L2.
- 4. За допомогою цих програм згенерувати імпульсні функції для кожного з ЛРЗ і підрахувати їх періоди.
- 5. За отриманими результатами зробити висновки щодо влавстивостей кожного з характеристичних многочленів p1(x), p2(x): многочлен примітивний над F2; не примітивний, але може бути незвідним; звідний.
- 6. Для кожної з двох імпульсних функцій обчислити розподіл k-грам на періоді, k≤ni, де ni степінь полінома fi(x), i=1,2 а також значення функції автокореляції A(d) для  $0 \le d \le 10$ . За результатами зробити висновки..

#### Результати роботи:

P1(X) = X25 + X20 + X19 + X17 + X15 + X14 + X13 + X10 + X8 + X7 + X6 + X3 + X10 +

Період: 33554431 - примітивний

Автокореляція:

0:0

1: 16777216

2: 16777216

3: 16777216

4: 16777216

5: 16777216

6: 16777216

7: 16777216

8: 16777216

9: 16777216

10: 16777216

| Монограми     | Біграми       | 3-грами        | 4-грами        | 5-грами         |
|---------------|---------------|----------------|----------------|-----------------|
| "0": 16777215 | "00": 4195309 | "000": 1396895 | "0000": 524164 | "00000": 209971 |
| "1": 16777216 | "01": 4195128 | "001": 1397531 | "0001": 525176 | "00001": 209559 |
|               | "10": 4191469 | "010": 1398583 | "0010": 524408 | "00010": 209307 |
|               | "11": 4195309 | "011": 1397829 | "0011": 525027 | "00011": 209867 |
|               |               | "100": 1400251 | "0100": 524746 | "00100": 209143 |
|               |               | "101": 1397542 | "0101": 524940 | "00101": 209360 |
|               |               | "110": 1398429 | "0110": 524247 | "00110": 210490 |
|               |               | "111": 1397750 | "0111": 523513 | "00111": 209643 |
|               |               |                | "1000": 522718 | "01000": 209611 |
|               |               |                | "1001": 523589 | "01001": 209680 |
|               |               |                | "1010": 524236 | "01010": 209972 |
|               |               |                | "1011": 523536 | "01011": 210064 |
|               |               |                | "1100": 524905 | "01100": 209978 |
|               |               |                | "1101": 523977 | "01101": 209459 |
|               |               |                | "1110": 524499 | "01110": 210690 |
|               |               |                | "1111": 524926 | "01111": 209883 |
|               |               |                |                | "10000": 209475 |
|               |               |                |                | "10001": 210034 |
|               |               |                |                | "10010": 209630 |
|               |               |                |                | "10011": 210156 |
|               |               |                |                | "10100": 209585 |
|               |               |                |                | "10101": 209612 |
|               |               |                |                | "10110": 210239 |
|               |               |                |                | "10111": 209582 |
|               |               |                |                | "11000": 209573 |
|               |               |                |                | "11001": 209501 |
|               |               |                |                | "11010": 209480 |
|               |               |                |                | "11011": 209204 |
|               |               |                |                | "11100": 209698 |
|               |               |                |                | "11101": 209357 |
|               |               |                |                | "11110": 209363 |
|               |               |                |                | "11111": 209720 |

# $\underline{P2(X)} = X20 + X17 + X15 + X13 + X11 + X10 + X9 + X6 + X4 + X2 + 1$

Період: 11275 – незвідний

Автокореляція:

0:0

1: 5608

2: 5648

3: 5616

4: 5608

5: 5648

6: 5624

7: 5680

8: 5760

9: 5624

10: 5624

| Монограми | Біграми    | 3-грами    | 4-грами     | 5-грами     |
|-----------|------------|------------|-------------|-------------|
| "0": 5595 | "00": 1394 | "000": 459 | "0000": 171 | "00000": 74 |
| "1": 5680 | "01": 1369 | "001": 468 | "0001": 170 | "00001": 70 |
|           | "10": 1438 | "010": 453 | "0010": 200 | "00010": 67 |
|           | "11": 1436 | "011": 534 | "0011": 168 | "00011": 64 |
|           |            | "100": 462 | "0100": 151 | "00100": 68 |
|           |            | "101": 446 | "0101": 172 | "00101": 63 |
|           |            | "110": 472 | "0110": 183 | "00110": 70 |
|           |            | "111": 464 | "0111": 200 | "00111": 71 |
|           |            |            | "1000": 184 | "01000": 79 |
|           |            |            | "1001": 156 | "01001": 54 |
|           |            |            | "1010": 176 | "01010": 75 |
|           |            |            | "1011": 190 | "01011": 60 |
|           |            |            | "1100": 179 | "01100": 74 |
|           |            |            | "1101": 165 | "01101": 61 |
|           |            |            | "1110": 172 | "01110": 80 |
|           |            |            | "1111": 181 | "01111": 73 |
|           |            |            |             | "10000": 70 |
|           |            |            |             | "10001": 57 |
|           |            |            |             | "10010": 80 |
|           |            |            |             | "10011": 65 |
|           |            |            |             | "10100": 69 |
|           |            |            |             | "10101": 72 |
|           |            |            |             | "10110": 77 |
|           |            |            |             | "10111": 66 |
|           |            |            |             | "11000": 68 |
|           |            |            |             | "11001": 75 |
|           |            |            |             | "11010": 70 |
|           |            |            |             | "11011": 75 |
|           |            |            |             | "11100": 85 |
|           |            |            |             | "11101": 64 |
|           |            |            |             | "11110": 77 |
|           |            |            |             | "11111": 82 |

# Код програми

```
\begin{split} & const \; fs = require('fs'); \\ & const \; firstPol = [1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0]; \\ & const \; secondPol = [1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0]; \\ & const \; getAutocorr = (result, period, file) => \{ \\ & for \; (let \; d = 0; \; d < 11; \; d \; ++) \; \{ \\ & let \; amount = 0; \\ & for \; (let \; i = 0; \; i < period; \; i++) \; \{ \\ \end{split}
```

```
amount += (Number(result[i]) + Number(result[(i + d) % period])) % 2;
     }
     fs.appendFileSync(file, `${d}: ${amount}\n`);
  }
}
const generateNGrams = (n, i = 1, res = [], str = ") => {
  [0, 1].forEach(val => {
     if (i === n) res.push(str + val);
     else generateNGrams(n, i + 1, res, str + val);
  });
  return res;
}
const getNGramsAmount = (result, n, file) => {
  const nGrams = generateNGrams(n);
  nGrams.forEach(ngram => {
     let amount = 0;
     for (let i = 0; i \le result.length - n; i += n) {
       if (result.slice(i, i + n) === ngram) amount ++;
     fs.appendFileSync(file, ```\$\{ngram\}'': \$\{amount\}\n`);
  });
}
const main = (arr, file) => {
  const start = Array(arr.length);
  start.fill(0, 0, arr.length - 1);
  start[arr.length - 1] = 1;
  startStr = ";
  let\ endStr=";
  let period = 0;
  while (startStr !== start.join(")) {
     if (period === 0) startStr = start.join(");
     let sum = 0;
     let odd = 0;
     start.forEach((el, i) => \{
        sum += el * arr[i];
```

```
if (i === 0) odd = el;
       else if (i > 0) start[i - 1] = el;
       if (i === arr.length - 1) start[i] = sum % 2;
     });
     endStr += odd;
     ++ period;
  }
fs. appendFileSync(file, `\$\{endStr\}\n\period: \$\{period\}\n Autocorrelation: \n`);
getAutocorr(endStr, period, file);
fs.appendFileSync(file, 'NGrams: \n');
  for (let i = 1; i < 6; i++) {
     getNGramsAmount(endStr, i, file)
  }
}
fs.appendFileSync('pol1\_results.txt', 'FIRST POLYNOM \n\n');
main(firstPol, 'pol1_results.txt');
fs.appendFileSync('pol2\_results.txt', 'SECOND\ POLYNOM \n');
main(secondPol, 'pol2_results.txt');
```

**Висновок**: В даному комп'ютерному практикумі було набуто навичок роботи з лінійними регістрами зсуву, а саме: їх програмна реалізація, дослідження властивостей характеристичного полінома регістра. Окрім цього було досліджено властивості лінійних рекурентних послідовностей.