Task 6: K-Nearest Neighbors (KNN) Classification

Objective

Understand and implement KNN for classification problems.

Steps & Implementation

1. Dataset

- Dataset Used: Iris Dataset (scikit-learn / Kaggle)
- Target: Species (Setosa, Versicolor, Virginica)

2. Data Preprocessing

- Features normalized using StandardScaler
- Train-test split (80:20)

3. KNN Classifier

- Implemented using KNeighborsClassifier
- Tried different values of K (3, 5, 7, 9)

4. Model Evaluation

- Metrics: Accuracy, Confusion Matrix
- Example results (K=5):
- Accuracy: \~97%
- Confusion Matrix:

```
[[10 0 0]
[ 0 9 1]
[ 0 0 10]]
```

5. Decision Boundaries

- Visualized using matplotlib (2D feature pairs)
- Showed how classification regions change with different K values

Interview Questions & Answers

- 1. How does the KNN algorithm work?
- 2. Classifies a data point based on majority vote of its K nearest neighbors using a distance metric.
- 3. How do you choose the right K?

4. Small $K \to high$ variance (overfitting), Large $K \to high$ bias (underfitting). Usually odd K to avoid ties.

5. Why is normalization important in KNN?

6. Distance metrics are scale-sensitive; normalization ensures fair contribution of all features.

7. What is the time complexity of KNN?

8. Training: O(1), Prediction: $O(n \times d)$ per query (n = samples, d = dimensions).

9. What are pros and cons of KNN?

- 10. Pros: Simple, no training, works well on small datasets.
- 11. **X**Cons: Slow on large datasets, sensitive to noise & irrelevant features.

12. Is KNN sensitive to noise?

13. Yes, mislabeled or noisy data can mislead neighbor voting.

14. How does KNN handle multi-class problems?

15. Majority voting among neighbors naturally extends to multiple classes.

16. What's the role of distance metrics in KNN?

17. Defines neighbor closeness (e.g., Euclidean, Manhattan, Minkowski).

Code (Colab / Jupyter Notebook)

```
# KNN Classification - Iris Dataset
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, confusion_matrix,
classification_report
import matplotlib.pyplot as plt
import seaborn as sns

# 1. Load dataset
data = load_iris()
X = pd.DataFrame(data.data, columns=data.feature_names)
y = pd.Series(data.target)
```

```
# 2. Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42, stratify=y)
# 3. Normalize features
scaler = StandardScaler()
X_train_s = scaler.fit_transform(X_train)
X_test_s = scaler.transform(X_test)
# 4. Train KNN with different K values
for k in [3, 5, 7, 9]:
    clf = KNeighborsClassifier(n_neighbors=k)
    clf.fit(X_train_s, y_train)
    y_pred = clf.predict(X_test_s)
    acc = accuracy_score(y_test, y_pred)
    print(f'K={k} -> Accuracy: {acc:.3f}')
    print(confusion_matrix(y_test, y_pred))
# 5. Final model (K=5)
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train_s, y_train)
y_pred = knn.predict(X_test_s)
print("\nClassification Report:\n", classification_report(y_test, y_pred))
# 6. Confusion Matrix Heatmap
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('KNN Confusion Matrix (K=5)')
plt.show()
# 7. Decision Boundaries (2 features for visualization)
from matplotlib.colors import ListedColormap
X_vis = X.iloc[:, :2].values
y_vis = y.values
X_train_v, X_test_v, y_train_v, y_test_v = train_test_split(X_vis, y_vis,
test_size=0.2, random_state=42, stratify=y_vis)
scaler_v = StandardScaler()
X_train_v = scaler_v.fit_transform(X_train_v)
X_test_v = scaler_v.transform(X_test_v)
clf_vis = KNeighborsClassifier(n_neighbors=5)
clf_vis.fit(X_train_v, y_train_v)
# Mesh grid
gx, gy = np.meshgrid(np.arange(X_train_v[:,0].min()-1, X_train_v[:,0].max()
+1, 0.01),
```

```
np.arange(X_train_v[:,1].min()-1, X_train_v[:,1].max()
+1, 0.01))

Z = clf_vis.predict(np.c_[gx.ravel(), gy.ravel()])
Z = Z.reshape(gx.shape)

plt.contourf(gx, gy, Z, alpha=0.3,
    cmap=ListedColormap(('red','green','blue')))
plt.scatter(X_train_v[:,0], X_train_v[:,1], c=y_train_v, edgecolor='k',
    marker='o')
plt.title('KNN Decision Boundary (K=5, 2 features)')
plt.show()
```

Repository Structure

```
★ KNN-Classification-Task

├ 宮 knn_classification.ipynb # Code

├ 宮 README.md # Explanation

├ 切 outputs.png # Confusion Matrix, Decision Boundary

L ❤ data # Dataset
```

Key Learning

- KNN is an **instance-based learning algorithm** (no explicit training).
- Choice of K and feature scaling significantly affect performance.
- KNN works well for small, low-dimensional datasets but struggles with large-scale/high-dimensional data.