

Module 2 introduction

Information Retrieval Foundations

relevant documents

despite this mess!

Conversational

Designed for humans to read

Module Topics

- Widely used retrieval techniques
- Theoretical foundations and relative strengths of each technique, plus how they're used in combination
- Evaluation strategies
- Hands-on examples and a programming assignment

Retriever architecture overview

Information Retrieval Foundations

Two Search Approaches

Keyword Search

Looks for documents containing the **exact words** found in the prompt.

Semantic Search

Looks for documents with **similar meaning** to the prompt.

Search Techniques

Hybrid Search

Keyword Search

Ensures sensitivity to exact words the user included in the prompt

Semantic Search

Finds documents with similar meaning, even without matching words

Metadata Filtering

Excludes documents based on rigid criteria

High-performing retrievers balance all three techniques based on project needs.

Metadata filtering

Information Retrieval Foundations

Metadata Filtering

Uses rigid criteria to narrow down documents based on metadata like title, author, creation date, access privileges, and more.


```
SELECT * FROM articles
WHERE publication_date = '2023-10-01';

Return all articles published on specific date

section = "Opinion"
author = "Michael Chen"
date = June to July 2024
```

Metadata Filtering In RAG

Metadata filtering doesn't perform retrieval, it narrows down results from other techniques based on user attributes, not query content.

Subscription Filtering

Filter: Exclude all articles with metadata "subscription = paid"

Geographic Filtering

Filter: Include only articles with metadata "region = North America"

Advantages and Limitations

Pros

- Simple to understand and debug
- Fast, optimized, mature, and reliable
- Enforces strict retrieval rules, matching exact filter criteria

Cons

- Not true search
- Rigid, ignores content, and provides no way for ranking
- Useless alone

Keyword search - TF-IDF

Keyword Search TF-IDF

Introduction to Keyword Search

Keyword Search

Decades of proven simplicity

The simplicity and effectiveness that has powered retrieval for decades makes keyword search a key component of modern RAG systems.

Use bread flour for New York pizza dough.

Doc 2

New York pizzerias stay open late for home delivery.

At New York Pizza Mexico, they serve pizza with jalapeño

Bag of Words

Word order is ignored, only word presence and frequency matter

Sparse Vectors

Most words aren't used. The bag of words is sparse, with few non-zero entries.

Document 1 Document 2 Document 3

Prompt sparse vector

Frequency Based Scoring

Example Query: pizza oven

Document 1

Homemade pizza in oven is better than frozen pizza

Contains: Pizza (2x) Oven (1x)

Simple Scoring = 2 points

TF Scoring = 3 points

Document 2

Wood-fired oven is a better oven than a stone oven for cooking pizza

Contains: Pizza (1x) Oven (3x)

Simple Scoring = 2 points

TF Scoring = 4 point

Normalized TF Scoring

Longer documents may contain **keywords many times** simply because they are **longer**.

Solution: Normalize by document length

Score = (Number of keyword occurrences) / (Total words in document)

TF-IDF

Basic TF scoring treats **all words equally,** whether they're common filler words or rare, meaningful terms.

Solution: Weight terms using "inverse document frequency" (IDF).

Score = TF(word, doc) × log(Total docs / Docs containing word)

	Count Documents
--	------------------------

docs word appears in

For each word

making

pizza

total docs

Count Documents

Appears in 5 out of 100 documents

0.05

$$DF = 5/100$$

Appears in all 100 documents

Count Documents

Appears in 5 out of 100 documents

Pizza

$$DF = 5/100$$

0.05

T

Appears in all 100 documents

$$DF = 100/100$$

1.0

Flip to reward rare words

High Score

20

DF = 1/1.0

1.0

Count Documents

Appears in 5 out of 100 documents

$$DF = 5/100$$

Appears in all 100 documents

$$DF = 100/100$$

Flip to reward rare words

High Score

$$IDF = 1/0.05$$

The

Low Score

$$DF = 1/1.0$$

1.0

Apply log

Still higher

Too common, no weight

TF

- **making:** 0.4 (appears in 3/5 docs) moderately common
- **pizza:** 0.7 (appears in 2/5 docs) less common
- without: 0.2 (appears in 4/5 docs) very common
- **a:** 0.1 (appears in 4/5 docs) very common
- **oven:** 0.2 (appears in 4/5 docs) very common

TF-IDF

Documents with **rare keywords** score **higher** than documents with common words

Modern systems use a slightly refined version called BM25

Keyword search - BM25

Information Retrieval Foundations

BM25 Scoring

BM25 (Best Matching 25) was named as the 25th variant in a series of scoring functions proposed by its creators.

$$IDF*rac{TF*(k_1+1)}{TF+k_1*(1-b+b*(rac{ ext{document length}}{ ext{average document length}}))}$$

- This gives the score for a single keyword
- Sum scores across all keywords for total relevance score for a document

Term Frequency Saturation

"pizza" 10 times = Score X "pizza" 20 times = Score 2X

"pizza" 10 times = Score X
"pizza" 20 times = Score 1.3X

BM25

Term Frequency Saturation

2 Document Length Normalization

Short Doc = Good Score
Long Doc = Heavy Penalty

Too aggressive

Short Doc = Good Score
Long Doc = Smaller Penalty

BM25

Document length normalization

BM25 Tunable Parameters

k₁ - Term Frequency Saturation

- **Controls:** How much term frequency influences the score.
- Range: Typically between 1.2 and 2.0.
- Effect: Higher values increase the impact of term frequency; lower values reduce it.

b - Length Normalization

- Controls: The degree of normalization for document length.
- Range: Between 0 (no normalization) and 1 (full normalization).
- Effect: Balances favoring shorter vs. longer documents.

TF-IDF vs BM25

BM25 = Standard keyword search algorithm in production retrievers

better performance + same cost + more flexibility than TF-IDF

Keyword Search Overview

TF-IDF

- Keyword rarity
- Term frequency
- Document length

BM25

Most commonly used

- Document length normalization
- Term Frequency Saturation

Keyword Search Strengths

Semantic search introduction

Information Retrieval Foundations

In order to improve on lexical search it's necessary to capture not only the presence of words, but their **meaning**.

"happy"

"glad"

Incorrectly matches different meanings

Semantic Search vs. Keyword Search

- Prompt and documents each get a vector
- Vectors compared to generate scores
- The main difference is how vectors are assigned
 - Keyword Search: count words
 - Semantic Search: use embedding model

Understanding Embedding Models

Embedding models map tokens, to a location in space. This location is represented by a **vector**.

"Bear" → vector [5, 2]

In two dimensions, these can be represented as points

Vector Space

Understanding Embedding Models

No simple interpretation of X and Y axis

...instead...

points "float around" in space and similar words cluster together

Vector Space

Understanding Embedding Models

3 dimensions

100 - 1,000+ dimensions

More dimensions means more room to form clusters and capture nuanced relationships

Same principles hold Close vectors, similar meanings

Sentence Embedding Example

1 He spoke softly in class

2 He whispered quietly during class

3 Her daughter brightened the gloomy day

Euclidean Distance

Measures how far apart two vectors are by drawing a straight line from one vector to the other - the shortest possible distance between them.

Semantic Search

Semantic search embedding model deepdive

Information Retrieval Foundations

Embedding Models

How can an embedding model know to place similar text together, and dissimilar text farther apart?

Positive and Negative Examples in Training

Positive Pair

Negative Pair

Positive and Negative Examples in Training

Compile massive training dataset of positive and negative pairs

Initial Random Vectors in Embedding Models

- Update internal parameters based on scoring the positive and negative pairs
- Repeat the process: Embed → Score with Pairs → Update parameters
- Iteratively repeat the process, improving the model

Beginning of Training Training After Training Random Positions Pushing and pulling Meaningful Embeddings "He could smell the roses" "A field of fragrant flowers" "The lion roared majestically"

Scaling up Contrastive Learning

- In reality every vector is simultaneously pushed and pulled in many directions
- Using 100s or 1,000s of dimensions creates more space in which to push and pull vectors
- Eventually vectors pulled near similar words or text

Key Takeaways

- Semantic vectors are abstract and somewhat random
- Before training: locations in space have no meaning
- After training: locations have meaning because clusters of similar text have formed
- Only compare vectors from same embedding model

Vector embeddings in RAG

Hybrid Search in Information Retrieval

Key Strategies

Metadata Filtering

Uses rigid criteria stored in document metadata to narrow down search results Fast, easy, yes-no filter, but can't be used alone

Keyword Search

Scores documents based on having the same keywords found in the prompt Fast, performs especially well when keywords matter, but relies on exact matches

Semantic Search

Scores and ranks documents based on having similar meaning to the prompt Slower, computationally expensive, but more flexible

Hybrid Search

Reciprocal Rank Fusion

- Rewards documents for being highly ranked on each list
- Control weight of keyword vs. semantic ranking
- Score points equal to reciprocal of ranking 1st = 1 point, 2nd = 0.5 points, etc.
- Total points from all ranked list used to perform final ranking

$$rac{1}{k+ ext{rank in list 1}}+rac{1}{k+ ext{rank in list 2}}+\ldots+rac{1}{k+ ext{rank in list n}}$$

Reciprocal Rank Fusion $\frac{1}{k + \operatorname{rank in \, list} 1} + \frac{1}{k + \operatorname{rank \, in \, list} 2} + \dots + \frac{1}{k + \operatorname{rank \, in \, list} 1}$

$$\frac{1}{k + \operatorname{rank\ in\ list\ 1}} + \frac{1}{k + \operatorname{rank\ in\ list\ 2}} + \ldots + \frac{1}{k + \operatorname{rank\ in\ list\ n}}$$

When k = 0

Top ranked document shoots to top of overall ranking

1st vs 10th: 10x difference

When k = 50

Single high rank doesn't dominate overall ranking

1st vs 10th: 1.2x difference

RRF only cares about ranks, not scores

Beta: Weighting Semantic vs. Keyword

If exact keyword matching is important, set a lower beta

Hybrid Search

Hybrid search

Information Retrieval Foundations

Retrieval Quality Metrics

Common ingredients to most retriever quality metrics:

The Prompt

The specific prompt being evaluated

Ranked Results

Documents returned in ranked order

Ground Truth

All documents labeled as relevant or irrelevant

If you want to evaluate your retriever you need to know the correct answers

Precision and Recall

Precision

Measures how many of the returned documents are relevant

Relevant Retrieved / Total Retrieved

Recall

Measures how many of the relevant documents are returned

Relevant Retrieved / Total Relevant

Example

First Run

Retrieved: 12 Documents
Relevant: 8 Documents

Second Run

Retrieved: 15 Documents

Relevant: 9 Documents

Precision (8/12) 66%

Precision (9/15)

60%

Recall

(8/10)

80%

Recall

(9/10)

90%

Precision penalizes for **returning irrelevant** documents

Recall penalizes for leaving out relevant documents

100% Precision & Recall: Rank relevant documents most highly and only return those

Top k

Top K

- Retrieval metrics are influenced by how many documents the retriever returns
- Metrics are discussed in terms of top-k documents

Example

Rank	Relevant	
1	relevant	
2	-	
3	-	
4	relevant	
5	-	
6	relevant	
7	relevant	
8	-	
9	relevant	
10	relevant	

2 out of 5

40%

Precision @10

6 out of 10

60%

Recall@10

6 out of 8 total relevant

75%

Top-5 or Top-1 is stricter

Top-5 to Top-15 often used

Mean Average Precision

MAP@K evaluates average precision for relevant documents in first K documents. It is built off a related metric called "average precision".

Rank	Item	Precision@K
1	relevant	1/1 1.0
2	-	1/2 0.5
3	_	1/3 0.3
4	relevant	2/4 0.5
5	relevant	3/5 0.6
6	_	3/6 0.5

Rewards ranking relevant documents highly

Sum precisions for relevant docs only.

$$1 + 0.5 + 0.6 = 2.1$$

Divide by number of relevant documents

$$2.1 / 3 = 0.7$$

This calculation gives **Average Precision** or AP, for Mean Average Precision you find the average AP value across many prompts

Reciprocal rank

Measures the rank of the first relevant document in the returned list

Reciprocal Rank = 1 / Rank

First relevant at rank 1

1.0

First relevant at rank 2

0.5

First relevant at rank 4

0.25

The later the first relevant document appears, the worse the reciprocal rank

Mean Reciprocal Rank (MRR) averages over many prompt

Mean Reciprocal Rank

Search First relevant at rank 1

1.0

Sum all ranks

Search First relevant at rank 3

0.33

1.0 + 0.33 + 0.17 + 0.5 = 2.0

Search First relevant at rank 6

0.17

Divide by number of searches

2.0 / 4

MRR = 0.5

Search First relevant at rank 2

0.5

How to use retriever metrics

Recall or recall@K

Most cited metric, captures fundamental goal of finding relevant documents

Precision & MAP

Asses irrelevant documents and ranking effectiveness

Mean Reciprocal Rank

How well model performs at the very top of ranking

Metrics help:

- Evaluate retriever performance
- Check if adjustments improve results

All metrics depend on having ground truth relevant documents

Module 2 Conclusion

Information Retrieval Foundations

Conclusion

Keyword Search
 Ranks by keyword frequency exact
 matches

- Semantic Search
 Ranks by meaning, flexible
- Metadata Filtering Excludes by criteria
- Hybrid Search
 Combines all three techniques

Evaluation Metrics

Precision & Recall

MAP

Mean Reciprocal Rank

Measure improvement from adjusting tunable parameters in hybrid search