Lecture 19 The Conjugate Gradients Algorithm I

MIT 18.335J / 6.337J
Introduction to Numerical Methods

Per-Olof Persson (persson@mit.edu) November 21, 2007

Krylov Subspace Algorithms

• Create a sequence of *Krylov subspaces* for Ax = b:

$$\mathcal{K}_n = \langle b, Ab, \dots, A^{n-1}b \rangle$$

and find approximate solutions x_n in \mathcal{K}_n

- Only matrix-vector products involved
- For SPD matrices, the most popular algorithm is the Conjugate Gradients method [Hestenes/Stiefel, 1952]
 - Finds the best solution $x_n \in \mathcal{K}_n$ in the norm $\|x\|_A = \sqrt{x^T A x}$
 - Only requires storage of 4 vectors (not all the n vectors in \mathcal{K}_n)
 - Remarkably simple and excellent convergence properties
 - Originally invented as a direct algorithm! (converges after m steps in exact arithmetic)

2

The Conjugate Gradients Method

Algorithm: Conjugate Gradients Method

$$x_0 = 0, r_0 = b, p_0 = r_0$$

for
$$k = 1, 2, 3, \dots$$

$$\alpha_n = (r_{n-1}^T r_{n-1})/(p_{n-1}^T A p_{n-1}) \qquad \text{step length} \label{eq:alphan}$$

$$x_n = x_{n-1} + \alpha_n p_{n-1}$$
 approximate solution

$$r_n = r_{n-1} - \alpha_n A p_{n-1}$$
 residual

$$\beta_n = (r_n^T r_n)/(r_{n-1}^T r_{n-1})$$
 improvement this step

$$p_n = r_n + \beta_n p_{n-1}$$
 search direction

- ullet Only one matrix-vector product Ap_{n-1} per iteration
- ullet Operation count O(m) (excluding the matrix-vector product)

Properties of Conjugate Gradients Vectors

 The spaces spanned by the solutions, the search directions, and the residuals are all equal to the Krylov subspaces:

$$\mathcal{K}_n = \langle x_1, x_2, \dots, x_n \rangle = \langle p_0, p_1, \dots, p_{n-1} \rangle$$
$$= \langle r_0, r_1, \dots, r_{n-1} \rangle = \langle b, Ab, \dots, A^{n-1}b \rangle$$

• The residuals are orthogonal:

$$r_n^T r_i = 0 \quad (j < n)$$

• The search directions are A-conjugate:

$$p_n^T A p_j = 0 \quad (j < n)$$

Proofs. Textbook/black-board

Optimality of Conjugate Gradients

• The errors $e_n = x_* - x_n$ are minimized in the A-norm

Proof. For any other point $x = x_n - \Delta x \in \mathcal{K}_n$ the error is

$$||e||_A^2 = (e_n + \Delta x)^T A(e_n + \Delta x)$$
$$= e_n^T A e_n + (\Delta x)^T A(\Delta x) + 2e_n^T A(\Delta x)$$

But $e_n^T A(\Delta x) = r_n^T(\Delta x) = 0$, since r_n is orthogonal to \mathcal{K}_n , so $\Delta x = 0$ minimizes $\|e\|_A$

• Monotonic: $\|e_n\|_A \leq \|e_{n-1}\|_A$, and $e_n=0$ in $n\leq m$ steps *Proof.* Follows from $\mathcal{K}_n\subseteq\mathcal{K}_{n+1}$, and that $\mathcal{K}_n\subseteq\mathbb{R}^m$ unless converged

Optimization in CG

- CG can be interpreted as a minimization algorithm
- ullet We know it minimizes $\|e\|_A$, but this cannot be evaluated
- CG also minimizes the quadratic function $\varphi(x) = \frac{1}{2}x^TAx x^Tb$:

$$||e_n||_A^2 = e_n^T A e_n = (x_* - x_n)^T A (x_* - x_n)$$

$$= x_n^T A x_n - 2x_n^T A x_* + x_*^T A x_*$$

$$= x_n^T A x_n - 2x_n^T + x_*^T b = 2\varphi(x_n) + \text{constant}$$

- ullet At each step $lpha_n$ is chosen to minimize $x_n=x_{n-1}+lpha_np_{n-1}$
- The conjugated search directions p_n give minimization over all of \mathcal{K}_n

Polynomial Approximation by CG

- Conjugate Gradients finds an optimal polynomial $p_n \in P_n$ of degree n with p(0)=1, minimizing $\|p_n(A)e_0\|$ with initial error $e_0=x_*$
- More specifically, with $\Lambda(A)$ being the spectrum of A:

$$\frac{\|e_n\|_A}{\|e_0\|_A} = \inf_{p \in P_n} \frac{\|p(A)e_0\|_A}{\|e_0\|_A} \le \inf_{p \in P_n} \max_{\lambda \in \Lambda(A)} |p(\lambda)|$$

Proof. It is clear that $x_n=q_n(A)b=q_n(A)Ax_*$ with q_n degree n-1. Then $e_n=p_n(A)e_0$ with $p_n\in P_n$. The equality above then follows since CG minimizes $\|e_n\|_A$. For the inequality, expand in eigenvectors of A:

$$e_0 = \sum a_j v_j, \quad p(A)e_0 = \sum a_j p(\lambda_j) v_j$$

Then $\|e_0\|_A^2=\sum_j a_j^2\lambda_j$ and $\|p(A)e_0\|_A^2=\sum_j a_j^2\lambda_j(p(\lambda_j))^2$, which implies the inequality.

Rate of Convergence

- Important convergence results can be obtained from the polynomial approximation:
 - 1. If A has n distinct eigenvalues, CG converges in at most n steps Proof. The polynomial $p(x)=\Pi_{j=1}^n(1-x/\lambda_j)$ is zero at $\Lambda(A)$
 - 2. If A has 2-norm condition number κ , the errors are

$$\frac{\|e_n\|_A}{\|e_0\|_A} \le 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^n \approx 2\left(1 - \frac{2}{\sqrt{\kappa}}\right)^n$$

Proof. Textbook

• In general: CG performs well with clustered eigenvalues

8