Staatsexamenskurs Analysis LA (vertieft)

Skript DGL 1.

1 Existenz-und Eindeutigkeitssätze

differenzierbar ist, ist Fauf B lokal Lipschitz-stetig bzgl. x.

Sei $B \subseteq \mathbb{R} \times \mathbb{R}^n$ ein Gebiet und sei $F: B \to \mathbb{R}^n$, $(t, \mathbf{x}) \mapsto F(t, \mathbf{x})$ eine stetige Funktion.

Definition 1. Sei U eine offene Teilmenge von B. Wenn eine Konstante $L \geq 0$ gibt, so dass

$$||F(t, \mathbf{v}) - F(t, \mathbf{u})|| \le L \cdot ||\mathbf{v} - \mathbf{u}|| \qquad \forall (t, \mathbf{v}), (t, \mathbf{u}) \in U$$

gilt, sagt man dass die Funktion F auf U Lipschitz-stetig bezüglich \mathbf{x} ist. Wenn es um jeden Punkt $(t, \mathbf{x}) \in B$ eine Umgebung $U \subseteq B$, auf der F Lipschitz-stetig bzgl.

 \mathbf{x} ist, heißt F lokal Lipschitz-stetig bezüglich \mathbf{x} . Satz 2. Wenn die Funktion $F: B \to \mathbb{R}^n$ nach der Variablen $\mathbf{x} = (x_1, \dots, x_n)$ stetig partiell

Satz 3 (Picard-Lindelöf). Sei $F: B \to \mathbb{R}^n$ stetig und lokal Lipschitz-stetig bzgl. \mathbf{x} .

Dann gibt es zu jedem Punkt $(t_0, \mathbf{x}_0) \in B$ genau eine maximale Lösung $\varphi : I \to \mathbb{R}^n$ (I offen, $t_0 \in I$) des AWP

$$\mathbf{x}' = F(t, \mathbf{x}), \qquad \mathbf{x}(t_0) = \mathbf{x_0} \tag{1}$$

Bemerkung 4. a) Eine Lösung $x: I \to \mathbb{R}^n$ des AWP heißt maximal, wenn es keine Lösung $\tilde{x}: \tilde{I} \to \mathbb{R}^n$ des AWP (1) gibt, mit $I \subset \tilde{I}$.

b) Wenn $F: B \to \mathbb{R}^n$ nur stetig ist, besitzt das AWP eine Lösung (Satz von Peano), aber diese ist nicht unbedingt eindeutig; z.B. $y' = \sqrt[3]{y^2}$, y(0) = 0 hat unendliche viele Lösungen.

Satz 5 (Linear beschränkte rechte Seite). Sei $J \subseteq \mathbb{R}$ ein Intervall und sei $t_0 \in J$. Die Abbildung $F: J \times \mathbb{R}^n \to \mathbb{R}^n$ sei stetig und lokal Lipschitz-stetig bezüglich \mathbf{x} . Wenn es stetige Funktionen $\alpha, \beta: J \to [0, +\infty)$ gibt, so dass

$$||F(t, \mathbf{x})|| \le \alpha(t) \cdot ||\mathbf{x}|| + \beta(t) \qquad \forall t \in J, \mathbf{x} \in \mathbb{R}^n$$

gilt, dann existiert eine eindeutige Lösung von dem AWP (1) auf ganz J.

Bemerkung 6. Falls $F: J \times \mathbb{R}^n \to \mathbb{R}^n$ stetig und Lipschitz-stetig bezüglich \mathbf{x} auf $J \times \mathbb{R}^n$ ist, existiert eine eindeutige Lösung des AWP (1) auf J.

Satz 7 (Randverhalten maximaler Lösungen). Sei $\varphi:(a,b)\to\mathbb{R}^n$ die maximale Lösung des AWP (1). Falls $b<\infty$ ist, gibt es genau zwei Möglichkeiten:

- entweder ist $\varphi(t)$ auf dem Intervall $[t_0, b)$ unbeschränkt: $\lim_{t\to b^-} |\varphi(t)| = \infty$;
- oder der Rand ∂B von B ist nichtleer und es gilt $\lim_{t\to b^-} \mathrm{Abstand}((t,\varphi(t)),\partial B)=0$. Eine änliche Aussage gilt falls $a>-\infty$.

Bemerkung 8. Sei $F: D \subseteq \mathbb{R}^n \to \mathbb{R}^n$ eine stetige und Lipschitz-stetige Funktion, und sei $\varphi: (a, \infty) \to \mathbb{R}^n$ eine Lösung der autonomen DGL $\mathbf{x}(t)' = F(\mathbf{x}(t))$. Falls der Grenzwert $\lim_{t \to \infty} \varphi(t) =: \gamma \in \mathbb{R}^n$ existiert, ist γ eine konstante Lösung der DGL, d.h. $F(\gamma) = 0$.

2 Eindimensionale Lösungsverfahren

Sei $F:G\subseteq\mathbb{R}\times\mathbb{R}\to\mathbb{R}^2$ eine stetige und lokal Lipschitz-stetige bzgl. x Abbildung und betrachte das Anfangswertproblem

$$x' = F(t, x), \quad x(t_0) = x_0.$$
 (2)

Trennung der Variablen.

Wenn man F als Produkt $F(t,x) = g(t) \cdot h(x)$ mit stetigen Funktionen g,h darstellen kann, bekommt man die Differentialgleichung

$$x'(t) = g(t) \cdot h(x(t)).$$

Falls $h(x_0) = 0$ hat das AWP die konstante Lösungen: $x(t) \equiv x_0$.

Falls $h(x_0) \neq 0$ ergibt sich durch "Bruchrechnung" eine Trennung der Variablen:

$$\frac{1}{h(x(t))} \cdot x'(t) = g(t).$$

Sei H eine Stammfunktion von $\frac{1}{h}$ und G eine von g, so ist

$$H(x(t)) = G(t) + c$$
, wobei $c := H(x_0) - G(t_0)$.

Wegen $H'(x(t)) = \frac{1}{h(x(t))} \neq 0$ kann man diese Gleichung lokal nach x auflösen und erhält die Lösung

$$x(t) = H^{-1}(G(t) + H(x_0) - G(t_0)).$$

Variation der Konstanten.

Wenn man F als $F(t,x) = g(t) \cdot x + h(t)$ mit stetigen Funktionen $g,h:I \subset \mathbb{R} \to \mathbb{R}$ darstellen kann, bekommt man die inhomogene lineare Differentialgleichung $x' = g(t) \cdot x + h(t)$.

Man löst man erst mit Trennung der Variablen die zugehörige homogene DGL $x' = g(t) \cdot x$:

$$x(t) = C \cdot e^{G(t)}$$
, mit $C \in \mathbb{R}$,

wobei G eine Stammfunktion zu g ist.

Um eine Lösungen der inhomogene Gleichung $y'=g\cdot y+h$ zu finden, macht man den Ansatz

$$x = C(t) \cdot e^{G(t)},$$

den man als Variation der Konstanten bezeichnet. Es ist

$$x' = C'e^G + Cge^G = gx + C'e^G \implies C' = he^{-G}$$

Man bestimmt die gesucht Funktion $C: I \to \mathbb{R}$ als Stammfunktion von he^{-G} .

Die maximale Lösung $\phi: I \to \mathbb{R}$ des AWP (2) ist dann durch die Formel

$$\phi(t) = e^{G(t)} \left(x_0 + \int_{t_0}^t h(s)e^{-G(s)} ds \right)$$

gegeben.

Picard-Lindelöf Iterationsverfahren

Sei φ_0 die konstante Funktion $\varphi_0(t) = x_0$ und

$$\varphi_k(t) := x_0 + \int_{t_0}^t F(s, \varphi_{k-1}(s)) ds.$$

Dann konvergiert die Folge $(\varphi_k)_{k\in\mathbb{N}}$ auf einer Umgebung von t_0 gleichmäßig gegen die Lösung des AWP (2).