Komisja Egzaminacyjna dla Aktuariuszy

XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r.

Część I

Matematyka finansowa

Imię i	i nazwi	sko oso	by egza	minowa	nej:

Czas egzaminu: 100 minut

- 1. Inwestor dokonuje lokaty w kwocie 1000 PLN na 10 lat. Roczne stopy zwrotu w poszczególnych latach są niezależne i mają rozkład równomierny na przedziale (-10%;25%). Ile wynosi współczynnik E(X) / $\sigma(X)$ dla tej lokaty? (E(X) wartość oczekiwana stopy zwrotu z lokaty, $\sigma(X)$ odchylenie standardowe stopy zwrotu z lokaty). Podaj najbliższą wartość.
 - A) 1,4
 - B) 1,5
 - C) 1,6
 - D) 1,7
 - E) 1,8

2. Zakład ubezpieczeń oferuje swojemu klientowi jako opcję dodatkową przy polisie życiowej możliwość zakupu za rok pewnego produktu finansowego, którego wartość rynkowa (*f*) zależy od poziomu rynkowego odpowiedniej stopy procentowej (i). Zależność ta dana jest funkcją:

$$f(i) = 100000 * \left(1 + \sin \left(i * 200 \frac{\pi}{3} - \frac{2\pi}{3} \right) \right)$$

Klient zakładu będzie mógł nabyć ten produkt po ustalonej z góry cenie f(7%). Oblicz wysokość rezerwy netto jaką zakład powinien utworzyć dzisiaj na taką opcję dodatkową przy następujących założeniach:

- prawdopodobieństwo zgonu klienta w ciągu najbliższego roku q = 5% (wówczas wygasa możliwość skorzystania z opcji dodatkowej),
- klient skorzysta z opcji dodatkowej zawsze, gdy będzie to dla niego korzystne w porównaniu do ceny rynkowej produktu,
- rynkowa stopa procentowa *i* dla tego typu produktu za rok ma rozkład równomierny na przedziale (4%, 10%),
- stopa techniczna dla tego typu rezerwy na najbliższy rok $i_1 = 8\%$,
- rezerwa ma pokryć ryzyko ukształtowania się za rok ceny rynkowej produktu powyżej ceny oferowanej klientowi w opcji dodatkowej.

Podaj najbliższą wartość.

- A) 25 000
- B) 26 000
- C) 27 000
- D) 28 000
- E) 29 000

- **3.** Inwestor przyjmuje następujące założenia co do kształtowania się kursu akcji spółki X w kolejnych trzech okresach:
- obecna cena akcji wynosi 50,
- w każdym z trzech kolejnych okresów cena akcji może zmienić się o +20% (z prawdopodobieństwem 60%) lub -10% w odniesieniu do jej wartości z początku okresu, a prawdopodobieństwa zmiany są jednakowe w każdym okresie.

Inwestor zamierza nabyć europejską opcję call na 1 akcję spółki X z ceną wykonania 55 i terminem wykonania na koniec trzeciego okresu. Specyfika tej inwestycji polega na tym, że płatność za opcję następuje w dwóch ratach - pierwsza na początku inwestycji a druga na koniec drugiego okresu. Inwestor może nie zapłacić drugiej raty i wówczas opcja natychmiast wygasa bez możliwości jej wykonania. Inwestor w całości traci wówczas pierwszą ratę.

Jaką maksymalną kwotę inwestor byłby skłonny zapłacić za opcję (nominalna suma obu rat) przy następujących założeniach:

- pierwsza rata wynosi 40% ceny całkowitej (druga 60%),
- inwestor oczekuje stopy zwrotu z inwestycji w opcję na poziomie i = 10% w skali jednego okresu.

Podaj najbliższą wartość.

- A) 8,85
- B) 9,45
- C) 10,05
- D) 10,65
- E) 11,25

- **4.** Inwestor zamierza nabyć 10-letnią obligację zerokuponową o nominale 1000 PLN po cenie $1000 / (1,06)^{10}$ PLN. Obligacja posiada opcję przedwczesnego wykupu przez emitenta za 5 lat po cenie $1000 / (1,05)^5$ PLN. Rozkład zerokuponowej stopy 5 letniej za 5 lat jest równomierny na przedziale (2%;8%). Ile wynosi wartość oczekiwana rocznej efektywnej stopy zwrotu inwestora w okresie 10 lat (inwestor reinwestuje środki po stopie rynkowej o ile nastąpi wcześniejszy wykup, który to wykup następuje zawsze, o ile jest korzystny dla emitenta)? Podaj najbliższą wartość.
 - A) 5,52%
 - B) 5,62%
 - C) 5,72%
 - D) 5,82%
 - E) 5,92%

- **5.** Zakład ubezpieczeń oferuje produkt gwarantujący klientowi za 20 lat wypłatę 100 000 zł przy rocznej efektywnej stopie i = 4%. Oblicz składkę brutto płatną corocznie z góry przez 20 lat jeżeli:
 - koszty początkowe wynoszą 500 zł,
 - koszty związane z obsługą kolejnych składek (począwszy od drugiej) składają się z dwóch części:
 - o stałej wynoszącej 75 zł,
 - zmiennej wyrażonej jako % składki, rosnącej liniowo od 3% (dla drugiej składki) do 6% (dla składki dwudziestej)

Podaj najbliższą wartość.

- A) 3 473
- B) 3 555
- C) 3 648
- D) 3 724
- E) 3811

- **6.** Oblicz wartość obecną 20-letniej renty, która na końcu roku k (k = 1, 2, ..., 20), wypłaca kwotę $\binom{20}{k}$. Stopa dyskontowa i = 5%.
 - A) 647 575
 - B) 649 575
 - C) 651 575
 - D) 653 575
 - E) 655 575

- 7. W chwili t=0 rozpoczyna się akumulacja kwoty 1 zł z intensywnością oprocentowania $\delta_I(t)$. Po losowym czasie T następuje zmiana intensywności oprocentowania na $\delta_2(t)$ i dalej akumulacja odbywa się do chwili t=n. Funkcje akumulacji odpowiadające ciągłym intensywnościom oprocentowania $\delta_I(t)$ i $\delta_2(t)$ to odpowiednio $a_I(t)$ i $a_2(t)$. T jest zmienną losową o obciętym rozkładzie wykładniczym ze średnią α , z masą w punkcie n. Niech a(n) oznacza zakumulowaną wartość 1 zł w chwili n. Oblicz wartość oczekiwaną a(n), jeżeli wiadomo, że dla każdego t>0 zachodzi relacja $\frac{a_1(t)}{a_2(t)} = t$. Podaj odpowiedź dla n=10 i $\alpha=5$. Podaj najbliższą wartość.
 - Todaj najonzszą wartos

A)
$$4.12 * a_2(10)$$

B)
$$4.22 * a_2(10)$$

C)
$$4.32 * a_2(10)$$

D)
$$4.42 * a_2(10)$$

E)
$$4.52*a_2(10)$$

- 8. Dany jest nieskończony ciąg rent ciągłych, taki że renta startująca na początku roku t (t = 1, 2, ...) wypłaca z rosnąco liniowo intensywnością od 0 do t przez następnych t lat $((\bar{I}\bar{a})_{\bar{i}|})$. Wyznacz duration takiego ciągu płatności dla e^{δ} 1 = 10%, δ stałe w czasie. Podaj najbliższą wartość.
 - A) 20
 - B) 21
 - C) 22
 - D) 23
 - E) 24
- Uwaga. $\sum_{t=1}^{\infty} t^2 v^t = \frac{1}{i} * \left(1 + \frac{3}{i} + \frac{2}{i^2} \right), \ gdzie \ i > 0, \ v = \frac{1}{1+i}.$

- 9. 10-letnia obligacja płaci rocznie z dołu kupony równe C*i/2 (i >0 efektywna stopa w terminie do wykupu YTM). Wartość nominalna jest równa wartości wykupu i wynosi C=1000. Oblicz wrażliwość wartości rynkowej obligacji P na zmianę efektywnej stopy zwrotu i, $\frac{dP}{di}$. Podaj najbliższą wartość.
 - A) -4 000 * (1+i)⁻¹⁰
 - B) -4 500 * (1+i)⁻¹¹
 - C) $-5\ 000 * (1+i)^{-11}$
 - D) -5 500 *(1+i)⁻¹⁰
 - E) -6 000 * (1+i)⁻¹⁰

- 10. Funkcja akumulacji $a_1(t)$ spełnia zależność $a_1(t+s)=a_1(t)*a_1(s)$, dla dowolnych t, s > 0. Funkcja akumulacji $a_2(t)$ spełnia zależność $a_2(t+s)=a_2(t)+a_2(s)-1$, dla dowolnych t, s > 0. Wiadomo, że $a_1(10)=a_2(10)=15$. Wyznacz $\frac{\delta_1(5)}{\delta_2(5)}$, gdzie δ_1 i δ_2 są funkcjami intensywności oprocentowania odpowiednio dla a_1 i a_2 . Podaj najbliższą wartość.
 - A) 0,75
 - B) 0,95
 - C) 1,15
 - D) 1,35
 - E) 1,55

Egzamin dla Aktuariuszy z 5 czerwca 2006 r.

Matematyka finansowa

Arkusz odpowiedzi*

Imię i nazwisko:
Pesel:
OZNACZENIE WERSII TESTII

Zadanie nr	Odpowiedź	Punktacja⁴
1	D	
2	D	
3	D	
4	В	
5	A	
6	A	
7	C	
8	В	
9	C	
10	Е	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.