

人类肠道病毒粒子富集及纳米孔测序

Enrichment and Nanopore Sequencing of Human Gut Virus-like Particles

3 曹佳宝 1, 2, #, 张雨青 1, 2, #, 赵娜 1, 王军 1, *

4

1

2

- 5 1病原微生物与免疫学重点实验室,中国科学院微生物研究所,北京;2中国科学院大学,北京
- 6 *通讯作者邮箱: junwang@im.ac.cn
- 7 #共同第一作者/同等贡献

8

- 9 摘要:
- 10 实验背景:病毒作为微生物组的重要组成部分,具有较高的多样性,但是其含量较低,
- 11 直接测序得到的病毒序列极少,从而限制了病毒组研究。
- 12 实验原理:通过给定范围的孔径使符合范围的病毒粒子能顺利通过,初步过滤非病毒粒
- 13 子。然后,根据病毒粒子的大小、密度和形状等物理特性对其进行沉降富集,最终得到
- 14 纯净的病毒粒子。
- 15 实验目的:使用人类粪便样本对肠道病毒粒子进行富集,同时提取病毒核酸并进行扩增
- 16 和纯化,最后上机测序。
- 17 **实验结果**:该方法可有效提高病毒粒子的含量,病毒有效数据提升至 70%左右(包含未
- 18 知序列),为病毒组的下游分析奠定基础。同时,运用该方法获得的病毒 cDNA 扩增产
- 19 物除用于 Nanopore 测序,还可用于 Illumina 测序。
- 20 **关键词:** 人类肠道病毒组, VLPs, 富集, 扩增

21

22 材料与试剂

- 23 1. 0.45 μm PVDF 滤器 (Millex-HV)
- 24 2. 各种型号枪头
- 25 3. 1.5 ml、15 ml、50 ml 离心管
- 26 4. 超速离心管 (Beckman, catalog number: 355654)
- 5. TURBO DNase I (Invitrogen, catalog number: AM2238)
- 28 6. RNase A (QIAGEN)
- 29 7. 10 mM dNTP Mix (Promega, catalog number: U151B)
- 8. M-MLV Reverse Transcriptase (Promega, catalog number: M170B)

- 9. Klenow fragment (Taraka, catalog number: 2140A)
- 10. QIAamp MinElute Virus Spin Kit (QIAGEN, catalog number: 57704)
- 11. DEPC 水 (Ambion, catalog number: AM9922)
- 12. KOD-Plus DNA polymerase (Toyobo, catalog number: KOD-201)
- 35 13. 琼脂糖 (Invitrogen, catalog number: 75510-019)
- 14. QIAquick Gel Extraction Kit (QIAGEN, catalog number: 28704)
- 15. Ligation Sequencing Kit (Oxford Nanopore, catalog number: SQK-LSK109)
- 16. Native Barcoding Kit (Oxford Nanopore, catalog number: EXP-NBD104)
- 17. NEBNext FFPE DNA Repair Mix (NEB, catalog number: M6630L)
- 40 18. Ultra II End-prep enzyme Mix (NEB, catalog number: E7372AA)
- 41 19. Blunt/TA Ligase Master Mix (NEB, catalog number: M0367L)
- 42 20. Quick T4 DNA Ligase (NEB, catalog number: E6057AA)
- 43 21. 核酸染料 (Mei5bio, catalog number: MF079-plus-05)
- 22. 6x DNA Loading Buffer (Tiangen, catalog number: RT201-01)
- 45 23. Trans 15K DNA Marker (全式金生物, catalog number: BM161-01)
- 46 24. Primer Rrm (5'-GACCATCTAGCGACCTCCAC NNNNNN-3')
- 47 25. Primer Rm (5'-GCCGGAGCTCTGCAGAATTC-3')
- 48 26. DNA beads (Beckman, catalog number:A63987)
- 49 27. Qubit dsDNA HS Assay Kit (Invitrogen, catalog number: Q32854)
- 50 28. Ribonuclease Inhibitor (Promega, catalog number: N2518)
- 51 29. PBS 缓冲液 (见溶液配方)
- 52 30. TBE 缓冲液 (见溶液配方)

54 仪器设备

- 55 1. 冷冻离心机 (Beckman Coulter, model: Allegra™ X-22R)
- 56 2. 高速冷冻离心机 (Thermo Heraeus FERSCO 17 Centrifuge)
- 57 3. 超速冷冻离心机 (Beckman Coulter, model: XP-100)
- 58 4. 掌上离心机
- 59 5. 高压蒸汽灭菌锅
- 60 6. PCR 仪
- 61 7. 凝胶成像系统

- 62 8. 电泳仪
- 63 9. 恒温水浴锅
- 64 10. 超净工作台
- 65 11. PromethION 测序仪
- 66 12. 制胶槽和梳子
- 67 13. 手术刀
- 68 14. 磁力架
- 69 15. 电子天平

71 实验步骤

- 72 1. 病毒粒子 (VLPs) 富集(图1)
- 73 1.1 取 1~1.5 g 粪便于干净无菌的离心管,在 15 ml 无菌 PBS 中重悬并充分混匀;
- 74 1.2 4,500 rpm 4 °C 离心 10 分钟,取上清于新的无菌的离心管;
- 75 1.3 重复离心一次;
- 76 1.4 将上清液用无菌 0.45 μm PVDF 滤膜过滤至新的干净无菌的离心管;
- 77 1.5 将滤液再次用无菌 0.45 µm PVDF 滤膜过滤;
- 78 1.6 滤液转移至灭菌的超速离心管内,加无菌 PBS 至超过离心管体积 2/3 处,配
- 79 平;
- 80 1.7 180,000 x g 4 °C 离心 3 h;
- 81 1.8 弃上清,将离心管倒置在干净吸水纸以流尽残液;
- 82 1.9 加 150 µl 无菌 PBS 重悬沉淀并转移至新的无菌 1.5 ml 离心管;
- 83 1.10 250 µl 无菌 PBS 重复冲洗超速离心管并转移至 1.5 ml 离心管;
- 84 1.11 加入 8U 的 TURBO DNase I、45 µl 10x TURBO DNase I Buffer 和 20 U
- 85 的 RNase A 在 37 °C 下水浴处理 30 分钟;
- 86 2. 病毒核酸提取
- 87 处理后的病毒粒子取 140~200 µl 使用 QIAamp MinElute Virus Spin
- 88 Kit 试剂盒提取核酸,剩余病毒粒子-80°C储存。
- 89 3. 反转录为 cDNA
- 90 取 13 μl 核酸按照如下体系进行反转录,剩余核酸-80°C 储存。

91 第一链:

RNA 13 μl

Rrm primer 1 µl

92 65 °C 5 min, 冰浴 2 min;

5× MLV Buffer 4 μl

10 mM dNTP Mix 1 µl

RNA Inhibitor 0.5 µl

M-MLV 1 μl

93 25 °C 10 min; 37 °C 60 min; 95 °C 10 min; 4°C

94 第二链:

Rrm Primer 0.5 µl

10mM dNTP Mix 1 μl

10× Buffer 2.5 μl

Klenow fragment 2 µl

95 25 °C 10 min; 37 °C 60 min; 75 °C 10 min; 4 °C

96 4. PCR 扩增

97 取反转录产物按照如下体系和程序进行 PCR 扩增,一般为 25 μl 体系

98 (为获得足够质量的扩增产物,可增大到 200 µl 体系):

99 体系为:

Rm Primer 1 µl

2mM dNTP Mix 1.25 µl

10x Buffer 2.5 μl

Mg²⁺ 1 μI

KOD 酶 0.5 μl

反转录产物 1 μl

ddH₂O 17.75 μl

100 扩增程序为:

Step1: 95 °C 5 min 预变性

Step2: 95 ℃ 30 s 变性

Step3: 54°C 1 min 退火

Step4: 72 °C 30 s 延伸

Step5: Go to Step 2-4 34 个循环

Step6: 72 °C 10 min 充分延伸

Step7: 4 °C ∞ 反应终止,低温保存

101 PCR 体系配好后轻微涡旋混匀,分装到八连管中,稍离心,放入 PCR 仪中,运行

102 程序。

106

109

111

112

113

103 5. 琼脂糖凝胶电泳和胶回收(图2)

104 5.1 用 1×TBE 配制 2%浓度琼脂糖胶 (200 ml TBE 加 4 g 琼脂糖), 微波炉加热煮

105 沸至琼脂糖完全溶解,自来水冷却至约 60~70°C (体感可承受),加入 20 μl 核

酸染料,摇匀后倒入放有制胶托板的制胶槽中,插入梳子 (300 µl),冷却凝固

107 20 min;

108 5.2 将 200 μl PCR 反应液加入 100 μl 3x Loading Buffer 混匀后全部加入到制好的

琼脂糖胶孔中,加入 Marker,200 V 电泳 10 min;

110 5.3 取出琼脂糖胶放入凝胶成像系统中拍照,检查扩增产物目标条带。目的条带回

收纯化:参照 Marker 条带子量大小,用手术刀在紫外发光仪上切取大于 500

bp 的条带胶块,参照 QIAquick Gel Extraction Kit 说明书回收纯化目的基因片

段,并用 Qubit 4.0 检测胶回收产物浓度;

114 6. 文库制备及测序

115 回收后的核酸按照 ONT PromthION DNA 建库说明书进行基因文库制备和上机测

116 序。

图 1. 病毒富集、核酸提取纯化及测序流程(Cao 等, 2020)

117

图 2. 病毒核酸扩增后的琼脂糖凝胶电泳

图 3. 主要病毒组成及相对丰度(Cao 等, 2020)

127 注意事项

- 128 1. 病毒粒子富集过程中应保证在无菌环境中进行。
- 129 2. PBS 缓冲液重悬粪便时应充分悬浮,将粪便与食物残渣等冲洗干净,可多次冲洗
- 130 至上清液色浅澄清后进行下一步离心,也应当注意控制溶液体积。
- 131 3. 在超速离心过程中离心管中液体应超过离心管容积的 2/3,转速不宜过高,可适当
- 132 延长离心时间以使病毒粒子沉淀更充分 (Thurber 等, 2009)。
- 133 4. 病毒核酸在反转录扩增中应避免反复用枪头吹吸,可以选择轻轻拍打的方式混匀。
- 134 扩增过程为了保证核酸产量,可以扩增 50 μl 体系四组共 200 μl 总体系 (Froussard
- 135 1993).
- 136 5. PCR产物经琼脂糖凝胶电泳呈现为弥散条带,为了降低回收胶的质量,选择高浓度
- 137 琼脂糖凝胶和大电压进行电泳, Marker 中 500 bp 条带充分跑开时即可切胶回收,
- 138 丢弃小于 500 bp 的条带,其余条带全部切下回收。回收时裂胶液体积过大,需反
- 139 复多次添加至同一吸附柱离心。

141 溶液配方

140

- 142 1. TBE 缓冲液
- 144 加去离子水 800 ml 充分溶解,再定容至 1 L, 121 °C, 20 min 灭菌后室温保存,
- 145 使用时用去离子水稀释 10 倍。
- 146 2. PBS 缓冲液 (pH 7.2~7.4):
- 148 ml 充分搅拌溶解,然后加入浓盐酸调 pH 至 7.4,最后定容到 1 L。

150 致谢

149

- 151 该项工作得到中国国家重点研究发展计划 (批准号 2018YFC2000500),中国科学院战
- 152 略重点研究计划 (批准号 XDB29020000) 和国家自然科学基金 (批准号 31771481 和
- 153 91857101) 的支持。

154

参考文献

157	1.	Cao, J., Zhang, Y., Dai, M., Xu, J., Chen, L., Zhang, F., Zhao, N. and Wang, J. (2020).
158		Profiling of Human Gut Virome with Oxford Nanopore Technology. Medicine in
159		Microecology: 100012. https://doi.org/https://doi.org/10.1016/j.medmic.2020.100012

- Froussard, P. (1993). rPCR: a powerful tool for random amplification of whole RNA sequences. *Genome Research* 2: 185-190. https://doi.org/10.1101/gr.2.3.185
 - 3. Thurber, R. V., Haynes, M., Breitbart, M., Wegley, L. and Rohwer, F. (2009). Laboratory procedures to generate viral metagenomes. *Nature Protocols* 4(4): 470-483. https://doi.org/10.1038/nprot.2009.10

165

162

163

164