

Graph neural Networks for small molecules

Representation of small molecules as graphs

- Atoms can be interpreted as the nodes of a graph and bonds as the edges of a graph
- All N atoms have to be numbered arbitrarily
- Node feature vectors $\vec{x}_i \in \mathbb{R}^{D_n}$ for node i are calculated and saved in a matrix $X \in \mathbb{R}^{N \times D_n}$
- Bond feature vectors $\vec{e}_{i,j} \in \mathbb{R}^{D_e}$ (bond between atom i and j) are calculated and saved in a tensor $\mathbf{E} \in \mathbb{R}^{N \times N \times D_n}$
- Adjacency matrix $A \in \mathbb{R}^{N \times N}$ stores between which atoms a bond exists:
 - $A_{i,j} = 1$ -> a bond exists between atom i and j
 - \blacksquare $A_{i,j} = 0$ -> no bond exists between atom i and j
- X, E, and A are used as input for a graph neural network (GNN)

$$\vec{x}_i = \begin{pmatrix} atom \ type \\ mass \\ valence \\ charge \\ \dots \end{pmatrix}$$
 $\vec{e}_{i,j} = \begin{pmatrix} bond \ type \\ part \ of \ ring \\ \dots \\ \dots \\ \dots \end{pmatrix}$

2 hhu.de

Typical forward pipeline of a GNN

■ First, the node feature vectors are iteratively updated *T* times by using information about neighboring atoms and edges:

$$\vec{x}_i = \vec{x}_i^{(0)} \to \vec{x}_i^{(1)} \to \dots \to \vec{x}_i^{(T)} \in \mathbb{R}^{D_n}$$

Update for a single atom feature vector (N(i)) is the set of neighboring atoms):

$$\vec{x}_i^{(t+1)} = \sum_{j \in N(i)} U_t(\vec{x}_i^{(t)}, \vec{x}_j^{(t)}, \vec{e}_{i,j})$$

• After T update steps, we pool all feature vectors \vec{x}_i :

$$Pooling(\vec{x}_1^{(T)}, \vec{x}_2^{(T)}, ..., \vec{x}_N^{(T)}) = \vec{x} \in \mathbb{R}^{D_n}$$

Predicting a molecule/graph property:

$$FFN(\vec{x}) = y \in \mathbb{R}$$

Training of GNNs

- Whole network is trained end-to-end
 - Parameters of the update functions and the FFN are adjusted simultaneously
 - Training is the same as for standard deep neural networks

- GNNs can also be pre-trained in a self-supervised way
 - For example: Masking nodes and prediction the type of node from the neighboring bond and node feature vectors

4 hhu.de

Directed Message Passing Neural Network (D-MPNN)

- Calculating atom feature vectors $\vec{x}_i \in \mathbb{R}^{D_n}$ and bond feature vectors $\vec{e}_{i,j} \in \mathbb{R}^{D_e}$
- Initial hidden representations of atom-bond-pairs:

$$\vec{h}_{i,j}^{(0)} = ReLU(W_h \cdot concat(\vec{x}_i, \vec{e}_{i,j}))$$

Update hidden vectors T times

$$\vec{m}_{i,j}^{(1)} = \sum_{k \in N(i) \setminus j} \vec{h}_{i,k}^{(0)} \qquad \vec{h}_{i,j}^{(1)} = ReLU(\vec{h}_{i,j}^{(0)} + W_m^1 \cdot \vec{m}_{i,j}^{(1)})$$

t = 2: ...

t = T:

$$\vec{m}_{i,j}^{(T)} = \sum_{k \in N(i) \setminus i} \vec{h}_{i,k}^{(T-1)} \qquad \vec{h}_{i,j}^{(T)} = ReLU(\vec{h}_{i,j}^{(0)} + W_m^T \cdot \vec{m}_{i,j}^{(T)})$$

Directed Message Passing Neural Network (D-MPNN)

■ Initial hidden representations of node-bond-pairs:

$$\vec{h}_{i,j}^{(0)} = ReLU(W_h \cdot concat(\vec{x}_i, \vec{e}_{i,j}))$$

- Update hidden vectors T times
 - For t = 1, ..., T:

$$\vec{m}_{i,j}^{(t)} = \sum_{k \in N(i) \setminus i} \vec{h}_{i,k}^{(t-1)} \qquad \vec{h}_{i,j}^{(t)} = ReLU(\vec{h}_{i,j}^{(0)} + W_m^t \cdot \vec{m}_{i,j}^{(t)})$$

Calculating atom representations for all atoms i:

$$\vec{m}_i = \sum_{k \in N(i)} \vec{h}_{i,k}^{(T)} \qquad \vec{h}_i = ReLU(W_a \cdot concat(\vec{x}_i, \vec{m}_i))$$

- Pooling all atom feature vectors $\vec{x} = \sum_{i=1,...,N} \vec{h}_i$
- Predicting a molecule/graph property:

$$FFN(\vec{x}) = y \in \mathbb{R}$$

After model training

- We can use this model as our final prediction model
- Alternatively, we can extract the vectors \vec{x} for all molecules and train another ML model for the prediction task with these vectors as model input

7 hhu.de

	BACE RMSE	Clearance RMSE	Delaney <i>RMSE</i>	Lipo RMSE	BACE ROC	BBBP ROC	ClinTox ROC	SR-p53 ROC
D-MPNN	2.253	49.754	1.105	1.212	0.812	0.697	0.906	0.719
ChemBERTa-2								
MTR-10M	1.417	48.934	0.858	0.744	0.783	0.733	0.601	0.827
MTR-77M	1.363	48.515	0.889	0.798	0.799	0.728	0.563	0.817

Dataset Tasks	BBBP 1		ClinTox 2			SIDER 27
D-MPNN ⁵⁴	71.2	68.9	90.5	75.0	85.3	63.2
Molformer-XL	93.7	84.7	94.8	82.2	88.21	69.0

- Potential reasons for superior performance of Transformer Networks:
 - Can encode stereochemistry of molecules
 - Pre-trained on millions of small molecules