SEMAINE DU 23/11 AU 27/11

1 Cours

Primitives et intégrales

Primitives Définition. Théorème fondamental de l'analyse. Application au calcul d'intégral.

Méthodes de calcul d'intégrales Intégration par parties. Changement de variable.

Propriétés générales Linéarité, positivité, croissance, relation de Chasles, inégalité triangulaire. Une intégrale d'une fonction continue de signe constant est nulle si et seulement si cette fonction est nulle.

Cas des fonctions à valeurs complexes Définition via parties réelle et imaginaire.

Équations différentielles linéaires

Notion d'équation différentielle Exemples. Ordre d'une équation différentielle. Problème de Cauchy. Équations différentielles linéaires homogènes et avec second membre. Structure de l'ensemble des solutions (solution particulière + solution de l'équation homogène). Principe de superposition.

EDL du premier ordre Solution d'une EDL homogène. Solution d'une EDL avec second membre. Méthode de variation de la constante. Unicité de la solution d'un problème de Cauchy.

2 Méthodes à maîtriser

- Étudier des suites d'intégrale (sens de variation, limite).
- Faire attention à l'ordre des bornes lorsque l'on parle de positivité ou de croissance de l'intégrale.
- Intégrer par parties.
- Changement de variables.
- Employer les techniques de calcul d'intégrales pour le calcul de primitives.
- Passer éventuellement en complexes pour le calcul d'intégrales et de primitives faisant intervenir les fonctions sin et cos.
- Résoudre une EDL d'ordre un avec second membre :
 - 1. Résoudre l'équation homogène.
 - 2. Rechercher une solution particulière (utilisation éventuelle de la méthode de variation de la constante).
 - 3. En déduire l'ensemble des solutions de l'équation avec second membre.
 - 4. Prise en compte d'une condition initiale éventuelle.

3 Questions de cours

BCCP 42

- 1. Résoudre l'équation différentielle (H) : 2xy' 3y = 0 sur \mathbb{R}_+^* .
- 2. Résoudre l'équation différentielle (E) : $2xy' 3y = \sqrt{x}$ sur \mathbb{R}_+^* .
- 3. L'équation (E) admet-elle des solutions sur \mathbb{R}_+ ?

Lemme de Riemann-Lebesgue Soit f une fonction de classe \mathcal{C}^1 sur [a,b]. Montrer que $\lim_{\lambda \to +\infty} \int_a^b f(t)e^{i\lambda t} = 0$.

Séparation Soit f continue et positive sur [a,b] (a < b). Montrer que si $\int_a^b f(t) dt = 0$, alors f est nulle sur [a,b].

Série exponentielle Déterminer la limite de la suite de terme général $I_n = \int_0^1 \frac{(1-x)^n e^x}{n!} dx$. Déterminer une relation de récurrence

liant
$$I_n$$
 et I_{n+1} . En déduire que $\lim_{n\to+\infty}\sum_{k=0}^n\frac{1}{k!}=e$.

Série harmonique alternée Déterminer la limite de la suite de terme général $I_n = \int_0^1 \frac{t^n}{1+t} dt$. Déterminer une relation de récurrence

liant
$$I_n$$
 et I_{n+1} . En déduire que $\lim_{n\to+\infty}\sum_{k=1}^n\frac{(-1)^{k+1}}{k}=\ln 2$.