Дискретна математика

проф. д-р Тодорка Глушкова, Катедра "Компютърни технологии", ФМИ

Булева алгебра

Съдържание

- Булева алгебра
- Предикатна логика
- Приложения

Булева алгебра

- Булевата алгебра (или алгебра на съжденията) е специална алгебрична структура, която съдържа логическите оператори И, ИЛИ, НЕ, както и множествените функции сечение, обединение, допълнение.
- Тя е дефинирана за първи път от британския математик Джордж Бул, с цел да се използват алгебрични методи в логиката. Булевата алгебра и булевите операции стоят в основата на информатиката, програмирането и функционирането на компютърните системи, тъй като компютрите са програмирани да извършват точно тези логически операции.

Булева алгебра

- Константите, с които се оперира в тази алгебра са 0 и 1
- Операторите се срещат често написани по различен начин, напр. И, ИЛИ, НЕ (англ. AND, OR, NOT); ∧, ∨, ¬;
- математиците често използват + за ИЛИ, за И и черта над символа за НЕ.

Булева алгебра и съждителна логика

- Съждителната логика формално можем да представим в две стъпки:
 - Синтаксис правила за изграждане на логически изрази (формули)
 - Формула последователност от символи, които могат да се комбинират по определен начин
 - Семантика снабдява изразите със значение
 - Определя как да бъдат интерпретирани символите в една логическа формула

Синтаксис

Дефиниция:

Множеството на логическите формули върху множеството на променливите $V = \{ A_1, A_2, ... \}$ се дефинира рекурсивно както следва:

- Булевите стойности 0 и 1 са формули
- Всяка променлива A₁ ∈ V е формула
- Ако F и G са формули, тогава (¬F), (F ∧ G), (F ∨ G), (F → G), (F ↔ G), (F ↔ G) също са формули

Синтаксис

Оператори:

- "¬": отрицание
- "\"\": конюнкция (И-оператор)
- "∨": дизюнкциянюнкция (ИЛИ-оператор)
- "→ ": импликация
- "↔ ": еквивалентност
- "↔ ": антивалентност (ХОR-оператор)

Формули

Атомарна формула F: Формула, която не може да бъде разлагана

В съждителната логика това е множеството на атомарните формули е идентично с множеството $V \cup \{0, 1\}$

Съставна формула: Формула, която може да се разрага. Съставните ѝ части означаваме като подформули Използваме означението: F ∈ G, съответно F ∉ G

Обобщения за формули:

Интерпретации

- Семантиката на формулите се определя посредством моделиращата релация с
- За да можем да я дефинираме формално първо трябва да въведем понятието за интерпретация

Дефиниция:

Нека са дадени:

- F е логическа формула
- A₁, ..., A_n променливи, съдържащи се във F

Всяка I: $\{A_1, A_2, ...\} \rightarrow \{0, 1\}$ се нарича интерпретация на F

 $(\neg A \rightarrow \neg B) \land ((B \rightarrow A) \lor (A \rightarrow B)$ $A \rightarrow 0$ $B \rightarrow 0$ $(\neg 0 \rightarrow \neg 0) \land ((0 \rightarrow 0) \lor (0 \rightarrow 0)$

 $(\neg A \rightarrow \neg B) \land ((B \rightarrow A) \lor (A \rightarrow B)$ $A \rightarrow 1$ $B \rightarrow 0$ $(\neg 1 \rightarrow \neg 0) \land ((0 \rightarrow 1) \lor (1 \rightarrow 0)$

 $(\neg A \rightarrow \neg B) \land ((B \rightarrow A) \lor (A \rightarrow B)$ $A \rightarrow 0$ $B \rightarrow 1$ $(\neg 0 \rightarrow \neg 1) \land ((1 \rightarrow 0) \lor (0 \rightarrow 1)$

 $(\neg A \rightarrow \neg B) \land ((B \rightarrow A) \lor (A \rightarrow B)$ $A \rightarrow 1$ $B \rightarrow 1$ $(\neg 1 \rightarrow \neg 1) \land ((1 \rightarrow 1) \lor (1 \rightarrow 1)$

Въпрос

Ако имаме формула с n на брой променливи, колко е броят на възможните интерпретации?

2n

Семантика

Нека F и G са логически формули, а I - интерпретация. Семантиката се задава посредством релацията \mathfrak{c} , дефинирана индуктивно върху изграждането на формулите както следва:

- Ic 1
- I ⊯ 0
- Ic $A_i : \Leftrightarrow I(A_i) = 1$
- Ic $(\neg F) : \Leftrightarrow I \not\models F$
- Ic (F∧G):⇔Ic FиIc G
- Ic (F∨G):⇔Ic FилиIc G
- I с (F → G) :⇔ I⊯ F или I с G
- І с ($F \leftrightarrow G$) : \Leftrightarrow І с F тогава и само тогава, когато І с G
- Ic $(F \leftrightarrow G) :\Leftrightarrow I \not\models (F \leftrightarrow G)$

Една интерпретация I за която I c F се нарича модел на F

Булеви функции

Всяка съждителна формула F с n променливи можем да разглеждаме като булева функция

 f^{F} : $\{0,1\}^{n} \to \{0,1\}$, която за една интерпретация I приема стойност 1, само тогава, когато I е модел за F

Ако I присвоява на променливите A_1 , ..., A_n логическите стойности b_1 , ..., b_n , тогава стойността на функцията

$$f^{F}(b_{1}, ..., b_{n}) = \begin{cases} 1, \text{ ако I } c & F \\ 0, \text{ ако I } \not \models F \end{cases}$$

Понеже дефиниционната област е дискретна, булевите функции могат да се представят като таблици

Таблици

Отрицание:

	A	$\neg \mathbf{A}$
0	0	1
1	1	0

Импликация:

	A	В	$A \rightarrow B$
0	0	0	1
0	0	1	1
	1	0	0
2	1	1	1

Конюнкция:

	A	В	$\mathbf{A} \wedge \mathbf{B}$
0	0	0	0
1	0	1	0
2	1	0	0
3	1	1	1

Еквивалентност:

	A	В	A⇔B
0	0	0	1
1	0	1	0
2	1	0	0
3	1	1	1

Дизюнкция:

	A	В	$A \vee B$
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	1

Антивалентност:

	A	В	A⇔B
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	0

изпълнима

1 Колко модела?

A	В	C	G ₁	G ₂	G_3	G_4	F ₁
0	0	0	1	1	1	1	
0	0	1	1	1	0	1	0
0	1	0	1	0	1	0	0
0	1	1	1	1	0	1	0
1	0	0	0	1	1	0	0
1	0	1	0	1	1	0	0
1	1	0	1	0	1	0	0
1	1	1	1	1	1	1	(1)

общовалидна

1 Колко модела?

A	В	C	G_1	G_2	G_3	G_4	F ₂
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	0	1	0	1
0	1	1	1	1	1	1	1
1	0	0	0	1	0	0	1
1	0	1	0	1	1	0	1
1	1	0	1	0	0	0	1
1	1	1	1	1	1	1	1

неизпълнима

1 Колко модела?

A	В	С	G_1	G ₂	G_3	G ₄	F ₃
0	0	0	0	0	0	0	0
0	0	1	0	1	1	0	0
0	1	0	1	0	1	0	0
0	1	1	1	1	0	1	0
1	0	0	1	1	0	1	0
1	0	1	1	0	1	0	0
1	1	0	0	1	1	0	0
1	1	1	0	0	0	0	0

Видове формули

Една логическа формула F се нарича:

- Изпълнима ако F притежава поне един модел
- Неизпълнима ако F не притежава модел
- Общовалидна ако ¬F е неизпълнима

Всяка общовалидна формула означаваме също като тавтология

За множества от формули

Дефиниции:

Тези три дефиниции могат да бъдат обобщени за множества от формули:

- Изпълнимо когато съществува интерпретация I, която е модел за всяка F_i ∈ M.
 - Внимание: моделът за всички формули трябва да бъде еднакъв. Не е достатъчно всяка формула сама за себе си да бъде изпълнима.
- Неизпълнимо— когато F1, ..., Fn нямат общ модел
- Общовалидно обратното, ако всяка интерпретация е модел за елементите от М

Логически следствия

Дефиниции:

Нека $M \coloneqq \{ F_1, ..., F_n \}$ е множество от логически формули. Записваме, $M \in G$ ("от M следва G"), когато всеки модел на M е също модел на M.

Означаваме:

- c G, за Ø c G
- F c G, 3a { F } c G

Освен това:

- с G е в сила, когато G е общовалидна
- $F c G e B cила, когато <math>F \to G e$ общовалидна
- { F_1 , ..., F_n } с G е еквивалентна на { F_2 , ..., F_n } с $F_1 \to G$

Еквивалентност

Нека F и G са логически формули.

Релацията ≡ е дефинирана както следва:

• F ≡ G :⇔ F c G и G c F

Две формули F и G с F = G се наричат еквивалентни

Еквивалентност

Две формули F и G са еквивалентни, когато имат едни и същи модели. От математическа гледна точка "≡" е релация на еквивалентност върху множеството на съждителните формули, като притежава следните свойства:

- Рефлексивност: за всички формули F е в сила F ≡ F
- Симетричност: от $F \equiv G$ следва $G \equiv F$
- Транзитивност: от $F \equiv G$ и $G \equiv H$ следва $F \equiv H$

Освен това:

- F е само тогава общовалидна, когато $\mathsf{F} \equiv 1$
- F е само тогава неизпълнима, когато $\mathsf{F}\equiv 0$

Важни еквивалентности

идемпотентност

 $F \wedge F \equiv F$ $F \vee F \equiv F$

неутралност

 $F \wedge 1 \equiv F$ $F \vee 0 \equiv F$

Де Морган

 $\neg(F \land G) \equiv \neg F \lor \neg G$ $\neg(F \lor G) \equiv \neg F \land \neg G$

комутативност

 $F \wedge G \equiv G \wedge F$ $F \vee G \equiv G \vee F$

елиминация

 $F \wedge 0 \equiv 0$ $F \vee 1 \equiv 1$

Двойно отрицание

 $\neg\neg F \equiv F$

дистрибутивност

 $F \wedge (G \vee H) \equiv (F \wedge G) \vee (F \wedge H)$ $F \vee (G \wedge H) \equiv (F \vee G) \wedge (F \vee H)$

абсорбация

 $F \lor (F \land G) \equiv F$ $F \land (F \lor G) \equiv F$

Пълна система от логически оператори

- Може би предизвиква учудване, че в таблицата се съдържат само съждителните елементарни оператори ¬, ∧ и ∨
- Не става въпрос за ограничение

Всички останали могат да се свеждат до тези три. Множеството на тези три оператора се нарича пълна система от оператори

$$X \rightarrow Y \equiv \neg X \lor Y$$

$$X \leftrightarrow Y \equiv (\neg X \land \neg Y) \lor (X \land Y)$$

$$\equiv (\neg X \lor Y) \land (X \lor \neg Y)$$

$$X \nleftrightarrow Y \equiv (\neg X \land Y) \lor (X \land \neg Y)$$

$$\equiv (\neg X \lor \neg Y) \land (X \lor Y)$$

- Съществуват някои недостатъци на съждителното смятане, свързани с това, че:
 - съждителната логика изразява само логическата структура на сентенциите.
 - С нея не могат да се изразят твърдения като: "Релацията < е транзитивна" или "Всяко естествено число е равно на сумата от квадратите на 4 естествени числа."

• Логически изводи, при които такива структури имат значение, не могат да се изразят със съждителната логика. Затова се налага да разгледаме предикатната логика.

Пример:

Всички гълъби са птици: \forall x (Sx \rightarrow Mx)

Всички птици са животни: $\forall x(Mx \rightarrow Fx)$

 \Rightarrow Всички гълъби са животни: \forall x (Sx \rightarrow Fx)

- 1 Сократ е човек
- 2 Всички хора са смъртни
- 3 Тогава Сократ също е смъртен
 - Свойството да бъде човек е параметризирано съждение: Човек(х)
 - Което в зависимост от аргумента е вярно или грешно: за индивида "х = Сократ" съждението е вярно
 - Едно атомарно съждение, стойността на което се определя от един или повече участващи индивиди, се нарича предикат
 - Второто съждение дава квантитативно твърдение за индивиди
 - В терминологията на логиката може да се представи: "за всички х е в сила: ако Човек(х) е вярно съждение, тогава Смъртен(х) е също вярно съждение"

- Предикатната логика е разширение на съждителната логика със следното:
 - Многоместни предикати
 - Възможности за формулиране на квантифицирани съждения
- Нарича се предикатна логика от първа степен
 - 1 Човек(Сократ)

 - 3 с Смъртен(Сократ)

- **Логически квантори:** За да изразим съждение като предходното, въвеждаме **квантовите променливи.**
- Ясно е, че едно твърдение със свободни променливи не е нито вярно, нито невярно, докато свободните променливи не получат стойности.
- *Например:* "Ако x ≠0, то x.y =1".

Ако x=2; y=1/2, твърдението е вярно.

Ако x=2;y=3, твърдението не е вярно.

 Заб. Когато правим тези замествания, винаги имаме предвид конкретна област на стойностите. Например: х,у – реални числа; а не х-марсианец, а у – Мики Маус.

• Квантор за съществуване

Как да изразим в математиката съществуването на нещо?

 Нека Р е твърдение и нека съществуването на х означим с ∃х. Тогава

∃х:Р е твърдението:

"Съществува една х, такава че Р". Променливата х е квантова променлива.

- Твърдението ∃х:Р е вярно, ако Р е вярно за поне една стойност на х, избрана от нейната област (домейн).
- Символът ∃ е квантор за съществуване.
- **Пример**: Heка P : $x^2 + 3x + 2 = 0$, x-свободна променлива.

Верността на Р зависи от стойността на х:

- aкo x=2, то P e F;

Областта на стой-

- aкo x=-2, то P e T.

ностите на х е Z.

Като запис: $\exists x : x^2 + 3x + 2 = 0$.

- **Универсален квантор.** -В много математически твърдения като:
- " За всяко х≠ 0, съществува у: х.у=1" се твърди, че за всяка стойност на свободната променлива х твърдението Р е в сила.
- **Дефиниция:** Нека Р е твърдение със свободна променлива х. Тогава ∀ х:Р е твърдение, което се чете: "За всяко х Р"

- Променливата x е свързана във∀ x:P, като ∀ x:P е вярно, ако P е вярно за всяка стойност на x от нейната област.
- "∀" е универсален квантор.
- Вече можем да запишем и пълното твърдение:

$$\forall$$
 x:(x \neq 0 \rightarrow \exists y:xy=1) или \forall x \neq 0, \exists y:xy=1

Определяне верностните стойности на квантифицираните твърдения:

- 1) За да докажем, че ∀ х:Р е вярно, трябва да го докажем за всички стойности на х.
- 2) За да докажем, че ∀ х:Р е грешно, е достатъчно да докажем, че поне за една стойност на х е невярно.
- За да докажем, че ∃х:Р е вярно, е достатъчно да намерим само един случай за х, в който твърдението да е вярно.
- 4) За да докажем, че ∃х:Р е грешно, е достатъчно да докажем, че не ∃х, така, че Р да е вярно или, че Р е грешно за ∀ х.

• <u>Проблем</u>: Ако е дадено едно квантифицирано съждение, може ли и неговото отрицание да запишем като квантифицирано съждение?

Отговор: Да!

TEOPEMA 1: Нека P е твърдение. Тогава $(\forall x:P) \Leftrightarrow \exists x: P;$ $(\exists x:P) \Leftrightarrow \forall x: P;$

- D. W. Hoffmann, Theoretische Informatik, Hansen Verlag, 2009
- H. P. Gumm, M. Sommer, Einfuehrung in die Informatik, Oldenbourg Wissenschaftsverlag, 2004
- J. W. Grossman, Discrete Mathematics, Macmillan Pub. Co., 1990
- К. Манев, Увод в дискретната математика, КЛМН, 2005
- Й. Денев, Р. Павлов, Я. Демирович. Дискретна математика. Наука и изкуство, София, 1984.

- Д. Байнов, С. Костадинов, Р. Павлов, Л. Луканова. Ръководство за решаване на задачи по дискретна математика. Университетско издателство "Паисий Хилендарски", Пловдив, 1990.
- В.А. Успенский, Машина Поста, Москва, Наука, 1988, ISBN 5-02-013735-9.
- L. Lovasz, J. Pelikan, K. Vesztergombi, Discrete Mathematics – Elementary and Beyond, Springer Verlag, New York, 2003, ISBN 0-387-95584-4.

- E. Bender, S. Williamson, A Short Course in Discrete Mathematics, Dover, 2006, ISBN 0-486-43946-1.
- P. Linz, An Introduction to Formal Languages and Automata, Jones and Bartlett Publishers, 6-th edition, Jones & Bartlett Publishers, ISBN-13: 9781284077247, 2016
- Kenneth H. Rosen, Kamala Krithivasan, Discrete mathematics and its application, McGraw-Hill Companies, 7-th edition, ISBN 978-0-07-338309-5, 2012

- Owen D. Byer, Deirdre L. Smeltzer, Kenneth L. Wantz, Journey into Discrete Mathematics, AMS, MAA Press, Providence Rhode Island, ISBN 9781470446963, 2018
- Christopher Rhoades, Introductory Discrete Mathematics, Willford Press, ISBN 1682854922, 9781682854921, 2018
- David Liben-Nowell, Discrete Mathematics for Computer Science, Wiley, 2017, ISBN 1119397197, 9781119397199, 2017.
- <u>http://www.jflap.org/</u>- софтуерна среда