

# Kurs:Mathematik für Anwender/Teil I/33/Klausur mit Lösungen







Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Punkte 3332224140 4 4 6 0 0 4 4 3 5 54

 $\equiv$  Inhaltsverzeichnis  $\vee$ 

# **Aufgabe (3 Punkte)**

Definiere die folgenden (kursiv gedruckten) Begriffe.

1. Eine *Teilmenge*  $m{T}$  einer Menge  $m{M}$ .

- 2. Die Gaußklammer einer reellen Zahl x.
- 3. Eine streng fallende Funktion  $f: \mathbb{R} \to \mathbb{R}$ .
- 4. Das Taylor-Polynom vom Grad  $m{n}$  zu einer  $m{n}$ -mal differenzierbaren Funktion

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

in einem Punkt  $a \in \mathbb{R}$ .

- 5. Äquivalente (inhomogene) lineare Gleichungssysteme zur gleichen Variablenmenge über einem Körper K.
- 6. Die Determinante einer  $n \times n$ -Matrix M.

#### Lösung

- 1. Man sagt, dass die Menge T eine Teilmenge von M ist, wenn jedes Element von T auch ein Element von M ist.
- 2. Die Gaußklammer |x| ist durch

$$\lfloor x 
floor = n, ext{ falls } x \in [n,n+1[ ext{ und } n \in \mathbb{Z},$$

definiert.

3. Die Funktion

$$f:\mathbb{R}\longrightarrow\mathbb{R}$$

heißt streng fallend, wenn

$$f(x') < f(x)$$
 für alle  $x, x' \in I$  mit  $x' > x$  gilt.

4. Das Polynom

$$\sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

heißt das Taylor-Polynom vom Grad  $m{n}$  zu  $m{f}$  in  $m{a}$ .

- 5. Zwei (inhomogene) lineare Gleichungssysteme heißen äquivalent, wenn ihre Lösungsmengen übereinstimmen.
- 6. Zu  $i \in \{1,\ldots,n\}$  sei  $M_i$  diejenige (n-1) imes (n-1)-Matrix, die entsteht, wenn man in M die erste Spalte und die i-te Zeile weglässt. Dann definiert man rekursiv die D-eterminante von M durch

$$\det M = \left\{egin{array}{ll} a_{11}\,, & ext{falls } n=1\,, \ \sum_{i=1}^n (-1)^{i+1} a_{i1} \det M_i & ext{f\"ur } n \geq 2\,. \end{array}
ight.$$

## **Aufgabe (3 Punkte)**

Formuliere die folgenden Sätze.

- 1. Der Satz über die Existenz der Primfaktorzerlegung.
- 2. Der Satz über die Ableitung von Potenzfunktionen  $x\mapsto x^{lpha}$  .
- 3. Der Determinantenmultiplikationssatz.

#### Lösung

- 1. Jede natürliche Zahl  $n \in \mathbb{N}$ ,  $n \geq 2$ , besitzt eine Zerlegung in Primfaktoren.
- 2. Die Funktion

$$f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+, \, x \longmapsto x^{lpha},$$

ist differenzierbar und ihre Ableitung ist

$$f'(x) = \alpha x^{\alpha-1}$$
 .

3. Es sei K ein Körper und  $n\in\mathbb{N}_+$ . Dann gilt für Matrizen  $A,B\in\mathrm{Mat}_n(K)$  die Beziehung  $\det\left(A\circ B\right)=\det A\cdot\det B$  .

### **Aufgabe (3 Punkte)**

Nehmen Sie Stellung zur folgenden Aussage: "Das Prinzip "Beweis durch Widerspruch" ist offenbar absurd. Wenn man alles annehmen darf, so kann man immer einen Widerspruch erzielen und somit alles beweisen".

Lösung Widerspruchsbeweis/Einwand/Aufgabe/Lösung

### **Aufgabe (2 Punkte)**

Berechne

 $0,00000029 \cdot 0,00000000037.$ 

Das Ergebnis soll in einer entsprechenden Form angegeben werden.

Lösung

Es ist

$$0,\!00000029 = 29 \cdot 10^{-8}$$

und

$$0,00000000037 = 37 \cdot 10^{-11}$$
.

Somit ist das Produkt

$$0,00000029 \cdot 0,00000000037 = 29 \cdot 10^{-8} \cdot 37 \cdot 10^{-11} = 29 \cdot 37 \cdot 10^{-19} = 1073 \cdot 10^{-19}$$
.

Die Kommadarstellung davon ist

0,000000000000001073.

### **Aufgabe** (2 Punkte)

Zeige

$$\sum_{k=1}^n \frac{1}{k(k+1)} = \frac{n}{n+1}$$

### Lösung

Es ist

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n+1}$$

$$= \frac{n}{n+1}.$$

Berechne

$$(x+\mathrm{i} y)^n$$
.

#### Lösung

Nach dem binomischen Lehrsatz ist

$$egin{aligned} (x+\mathrm{i} y)^n &= \sum_{k=0}^n inom{n}{k} x^{n-k} \mathrm{i}^k y^k \ &= \sum_{k \leq n \; \mathrm{gerade}} (-1)^{k/2} inom{n}{k} x^{n-k} y^k + \mathrm{i} \left(\sum_{k \leq n \; \mathrm{ungerade}} (-1)^{k-1/2} inom{n}{k} x^{n-k} y^k 
ight). \end{aligned}$$

Formuliere und beweise die Lösungsformel für eine quadratische Gleichung

$$ax^2 + bx + c = 0$$

mit  $a,b,c\in\mathbb{R}$ , a
eq 0.

### Lösung

Es ist

$$x_{1,2} = rac{\pm \sqrt{b^2 - 4ac} - b}{2a} \, ,$$

vorausgesetzt, der Wurzelausdruck  $b^2-4ac$  ist nichtnegativ. Dies sieht man so: Die Bedingung

$$ax^2 + bx + c = 0$$

ist äquivalent zu

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0,$$

was mittels quadratischem Ergänzen äquivalent zu

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} = 0$$

ist. Umstellen und Erweitern liefert

$$\left(x+rac{b}{2a}
ight)^2=rac{b^2}{4a^2}-rac{c}{a}=rac{b^2}{4a^2}-rac{4ac}{4a^2}=rac{b^2-4ac}{4a^2}\,.$$

Dies ist äquivalent zu

$$x+rac{b}{2a}=rac{\pm\sqrt{b^2-4ac}}{2a}$$

und somit zu

$$x_{1,2} = rac{\pm \sqrt{b^2 - 4ac} - b}{2a} \, .$$

## **Aufgabe (1 Punkt)**

Bestimme den Exponenten, die Potenz und die Basis im Ausdruck

$$\left(\frac{3}{2}\right)^{\pi}$$
.

Lösung

In  $\left(rac{3}{2}
ight)^{\pi}$  ist der Gesamtausdruck die Potenz,  $rac{3}{2}$  ist die Basis und  $\pi$  ist der Exponent.

Beweise das Quotientenkriterium für Reihen.

### Lösung

Die Konvergenz ändert sich nicht, wenn man endlich viele Glieder ändert. Daher können wir  $k_0=0$  annehmen. Ferner können wir annehmen, dass alle  $a_k$  nichtnegative reelle Zahlen sind. Es ist

$$a_k = rac{a_k}{a_{k-1}} \cdot rac{a_{k-1}}{a_{k-2}} \! \cdots \! rac{a_1}{a_0} \cdot a_0 \leq a_0 \cdot q^k \, .$$

Somit folgt die Konvergenz aus dem Majorantenkriterium und der Konvergenz der geometrischen Reihe.

# **Aufgabe** (0 Punkte)

Lösung /Aufgabe/Lösung

### **Aufgabe (4 Punkte)**

Es sei

$$f(x)=ax^2+bx+c,\,a\neq 0,$$

ein Polynom vom Grad **2**. Zeige, dass der Durchschnitt des Graphen der Funktion mit jeder Tangenten an den Graphen aus genau einem Punkt besteht.

#### Lösung

Die Tangente zu  $x_0 \in \mathbb{K}$  wird durch

$$t(x) = f'(x_0)x + f(x_0) - f'(x_0)x_0 = f'(x_0)(x-x_0) + f(x_0)$$

beschrieben. Der Punkt  $(x_0,f(x_0))$  gehört zum Graphen und zur Tangente; wir müssen zeigen, dass kein weiterer Punkt zum Durchschnitt gehört. Nehmen wir an, es gäbe einen weiteren Punkt  $x_1 \neq x_0$  mit  $f(x_1) = t(x_1)$ . Dies bedeutet

$$ax_1^2+bx_1+c=(2ax_0+b)(x_1-x_0)+ax_0^2+bx_0+c$$
 .

Dies führt auf

$$a(x_1^2-x_0^2)+b(x_1-x_0)=(2ax_0+b)(x_1-x_0)\,.$$

Division durch  $x_1-x_0 
eq 0$  ergibt

$$a(x_1+x_0)+b=2ax_0+b$$

und daraus erhält man

$$ax_1 = ax_0$$
.

Wegen  $a \neq 0$  folgt der Widerspruch

$$x_1=x_0$$
.

Beweise die Kettenregel für differenzierbare Funktionen.

#### Lösung

Aufgrund von Satz 14.5 (Mathematik für Anwender (Osnabrück 2019-2020)) kann man

$$f(x)=f(a)+f^{\prime}(a)(x-a)+r(x)(x-a)$$

und

$$g(y) = g(f(a)) + g'(f(a))(y - f(a)) + s(y)(y - f(a))$$

schreiben. Daher ergibt sich

$$egin{aligned} g(f(x)) &= g(f(a)) + g'(f(a))(f(x) - f(a)) + s(f(x))(f(x) - f(a)) \ &= g(f(a)) + g'(f(a))(f'(a)(x-a) + r(x)(x-a)) + s(f(x))(f'(a)(x-a) + r(x)(x-a)) \ &= g(f(a)) + g'(f(a))f'(a)(x-a) + (g'(f(a))r(x) + s(f(x))(f'(a) + r(x)))(x-a). \end{aligned}$$

Die hier ablesbare Restfunktion

$$t(x) := g'(f(a))r(x) + s(f(x))(f'(a) + r(x))$$

ist stetig in a mit dem Wert 0.

### Aufgabe (6 Punkte)

Für ein Mathematikbuch soll der Graph der Exponentialfunktion über dem Intervall [-5,3] maßstabsgetreu in cm gezeichnet werden, wobei der Fehler maximal 0,001 cm sein darf. Es steht nur ein Zeichenprogramm zur Verfügung, das lediglich Polynom zeichnen kann. Welches Polynom kann man nehmen?

#### Lösung

Wir betrachten zur Exponentialreihe  $\sum_{n=0}^{\infty} \frac{x^n}{n!}$  die Teilpolynome

$$P_k(x) = \sum_{n=0}^k rac{x^n}{n!} \,.$$

Die Differenz der Exponentialfunktion zu diesen Polynomen ist somit

$$\sum_{n=k+1}^{\infty} \frac{x^n}{n!},$$

und der Betrag davon soll für jedes  $x \in [-5,3]$  maximal gleich 0,001 sein. Wegen

$$|\sum_{n=k+1}^{\infty}rac{x^n}{n!}|\leq\sum_{n=k+1}^{\infty}|rac{x^n}{n!}|\leq\sum_{n=k+1}^{\infty}rac{5^n}{n!}$$

müssen wir  $m{k}$  so wählen, dass

$$\sum_{n=k+1}^{\infty} \frac{5^n}{n!} \leq 0,001 = \frac{1}{1000}$$

ist. Wir betrachten

$$\sum_{n=k+1}^{\infty} \frac{5^n}{n!} = \frac{5^{k+1}}{(k+1)!} \left( \sum_{j=0}^{\infty} \frac{(k+1)!}{(k+1+j)!} 5^j \right)$$

$$= \frac{5^{k+1}}{(k+1)!} \left( \sum_{j=0}^{\infty} \frac{5^j}{(k+2)(k+3)\cdots(k+1+j)} \right)$$

$$\leq \frac{5^{k+1}}{(k+1)!} \left( \sum_{j=0}^{\infty} \left( \frac{5}{k+2} \right)^j \right).$$

Bei 5 < k+2 liegt rechts eine geometrische Reihe vor, bei  $k \geq 8$  ist deren Wert maximal gleich 2. Bei  $k \geq 10$  (bzw.  $\geq 13$ ) können wir grob abschätzen

$$\frac{5^{k+1}}{(k+1)!} = \frac{5}{k+1} \cdot \frac{5}{k} \cdots \frac{5}{10} \cdot \frac{5}{9} \cdots \frac{5}{5} \cdot \frac{5}{4} \cdots \frac{5}{1}$$

$$\leq \frac{5}{k+1} \cdot \frac{5}{k} \cdots \frac{5}{10} \cdot \frac{5^{4}}{24}$$

$$\leq \left(\frac{1}{2}\right)^{k-8} \cdot \frac{5^{4}}{24}$$

$$\leq \left(\frac{1}{2}\right)^{k-13}.$$

Wegen  $2^{10} \geq 1000$  ist dies bei  $k \geq 24$  kleiner als  $\frac{1}{2} \cdot \frac{1}{1000}$ . Daher ist  $P_{24} = \sum_{n=0}^{24} \frac{x^n}{n!}$  ein Polynom, das die Exponentialfunktion wie gewünscht approximiert.

Lösung / Aufgabe / Lösung

## **Aufgabe** (0 Punkte)

Lösung /Aufgabe/Lösung

# **Aufgabe (4 Punkte)**

Löse das inhomogene Gleichungssystem

$$5x +2y +z -7w = 3$$
 $6x +y +2z = 1$ 
 $x +y -z = 0$ 
 $3x +5y -7z +14w = 1$ .

### Lösung

Wir eliminieren zuerst die Variable  $m{w}$ , indem wir die erste Gleichung zweimal auf die vierte addieren . Dies führt auf

Nun eliminieren wir die Variable y, indem wir (bezogen auf das vorhergehende System) -II+I und -9II+III ausrechnen. Dies führt auf

Es ergibt sich nun wenn man die erste Gleichung mit 4 multipliziert und 3 mal die zweite subtrahiert

$$8x = -17$$

und

$$x=-rac{17}{8}$$
 .

Rückwärts gelesen ergibt sich

$$z=rac{31}{8}\,, \ y=6$$

und

$$w=rac{9}{28}$$
 .

Bestimme die  $2 \times 2$ -Matrizen über  $\mathbb R$  der Form

$$M = \left(egin{matrix} a & b \ 0 & d \end{matrix}
ight)$$

mit

$$M^2 + 3M - 4E_2 = 0.$$

#### Lösung

Die Gesamtbedingung führt wegen

$$\left(egin{array}{cc} a & b \ 0 & d \end{array}
ight) \circ \left(egin{array}{cc} a & b \ 0 & d \end{array}
ight) = \left(egin{array}{cc} a^2 & ab+bd \ 0 & d^2 \end{array}
ight)$$

auf

$$egin{pmatrix} a^2 & ab+bd \ 0 & d^2 \end{pmatrix} + 3egin{pmatrix} a & b \ 0 & d \end{pmatrix} - 4egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} = egin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}$$

und somit auf die drei Bedingungen

$$a^2 + 3a - 4 = 0,$$

$$d^2 + 3d - 4 = 0$$

und

$$(a+d+3)b=0.$$

Nach der Lösungsformel für quadratische Gleichungen gilt

$$a, d = 1, -4$$
.

Bei b=0 sind also

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -4 \end{pmatrix}, \begin{pmatrix} -4 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -4 & 0 \\ 0 & -4 \end{pmatrix}$$

Lösungen. Bei b 
eq 0 muss zusätzlich

$$a + d = -3$$

sein, und daher sind

$$\begin{pmatrix} 1 & b \\ 0 & -4 \end{pmatrix}, \begin{pmatrix} -4 & b \\ 0 & 1 \end{pmatrix}$$
mit  $b \neq 0$ 

weitere Lösungen.

### **Aufgabe** (3 Punkte)

Bestimme, ob die beiden Matrizen

$$M = egin{pmatrix} 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \end{pmatrix} \ \ ext{und} \ \ N = egin{pmatrix} 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \end{pmatrix}$$

zueinander ähnlich sind.

#### Lösung

Die Matrix  $oldsymbol{M}$  bildet

$$e_2 \mapsto e_1, \, e_1 \mapsto 0, \, e_4 \mapsto e_3, \, e_3 \mapsto 0,$$

daher ist  $M^2=0$ . Die Matrix N bildet

$$e_1\mapsto 0,\, e_4\mapsto e_3,\, e_3\mapsto e_2,\, e_2\mapsto 0,$$

daher ist  $N^2 \neq 0$ . Die beiden Matrizen können also nicht die gleiche lineare Abbildung beschreiben und sind somit nicht zueinander ähnlich.

### **Aufgabe (5 Punkte)**

Bestimme die Eigenwerte und die Eigenräume der durch die Matrix

$$M = egin{pmatrix} 4 & 0 & 3 \ 0 & -1 & 0 \ 2 & 0 & 3 \end{pmatrix}$$

gegebenen linearen Abbildung

$$arphi \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^3, \, v \longmapsto Mv.$$

#### Lösung

Das charakteristische Polynom ist

$$egin{aligned} \chi_M &= \det egin{pmatrix} x-4 & 0 & -3 \ 0 & x+1 & 0 \ -2 & 0 & x-3 \end{pmatrix} \ &= (x-4)(x+1)(x-3)-6(x+1) \ &= (x+1)((x-4)(x-3)-6) \ &= (x+1)(x^2-7x+6). \end{aligned}$$

Dies ergibt zunächst den Eigenwert -1. Durch quadratisches Ergänzen (oder direkt) sieht man für den quadratischen Term die Nullstellen 1 und 6, die die weiteren Eigenwerte sind. Da es drei verschiedene Eigenwerte gibt ist klar, dass zu jedem Eigenwert der Eigenraum eindimensional ist.

Eigenraum zu -1: Man muss die Lösungsmenge von

$$egin{pmatrix} -5 & 0 & -3 \ 0 & 0 & 0 \ -2 & 0 & -4 \end{pmatrix} egin{pmatrix} x \ y \ z \end{pmatrix} = egin{pmatrix} 0 \ 0 \ 0 \end{pmatrix}$$

bestimmen. Eine Lösung ist offenbar der Spaltenvektor  $egin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ , so dass der Eigenraum zu -1 gleich  $\lambda \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$  ist.

Eigenraum zu 1: Man muss die Lösungsmenge von

$$egin{pmatrix} -3 & 0 & -3 \ 0 & 2 & 0 \ -2 & 0 & -2 \end{pmatrix} egin{pmatrix} x \ y \ z \end{pmatrix} = egin{pmatrix} 0 \ 0 \ 0 \end{pmatrix}$$

bestimmen. Eine Lösung ist offenbar der Spaltenvektor  $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ , so dass der Eigenraum zu 1 gleich  $\lambda \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$  ist.

Eigenraum zu **6**: Man muss die Lösungsmenge von

$$\left(egin{array}{ccc} 2 & 0 & -3 \ 0 & 7 & 0 \ -2 & 0 & 3 \end{array}
ight) \left(egin{array}{c} x \ y \ z \end{array}
ight) = \left(egin{array}{c} 0 \ 0 \ 0 \end{array}
ight)$$

bestimmen. Eine Lösung ist offenbar der Spaltenvektor  $egin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}$ , so dass der Eigenraum zu 6 gleich  $\lambda \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}$  ist.

Zuletzt bearbeitet vor 2 Monaten von Marymay0609

### Wikiversity

Der Inhalt ist verfügbar unter CC BY-SA 3.0 ℃, sofern nicht anders angegeben.

Datenschutz • Klassische Ansicht