- Let $\mathfrak{F} = \mathfrak{N}_p \mathfrak{X}$, where \mathfrak{X} formation, and $\mathfrak{X} \subseteq \mathfrak{N}$. Then \mathfrak{F} is $\Sigma_2^{T_1}$ recognizable formation in class \mathfrak{S} .
- Let $\mathfrak{F} = \mathfrak{N}_p \mathfrak{X}$, where \mathfrak{X} formation, and $\mathfrak{X} \subseteq \mathfrak{N}$. Then \mathfrak{F} is $\Sigma_2^{T_2}$ recognizable formation in class \mathfrak{S} .
- Let $\mathfrak{F} = \mathfrak{N}_p \mathfrak{X}$, where \mathfrak{X} formation, and $\mathfrak{X} \subseteq \mathfrak{N}$. Then \mathfrak{F} is $\Sigma_2^{T_3}$ recognizable formation in class \mathfrak{S} .
- Let $\mathfrak{F} = \mathfrak{N}_p \mathfrak{X}$, where \mathfrak{X} formation, and $\mathfrak{X} \subseteq \mathfrak{N}$. Then \mathfrak{F} is $\Sigma_2^{S_{sn}}$ recognizable formation in class \mathfrak{S} .
- Let $\mathfrak{F} = \mathfrak{N}_p \mathfrak{X}$, where \mathfrak{X} formation, and $\mathfrak{X} \subseteq \mathfrak{N}$. Then \mathfrak{F} is $\Sigma_2^{S_n}$ recognizable formation in class \mathfrak{S} .
- Let $\mathfrak{F} = \mathfrak{N}_p \mathfrak{X}$, where \mathfrak{X} formation, and $\mathfrak{X} \subseteq \mathfrak{N}$. Then \mathfrak{F} is $\Sigma_2^{sub_{\mathfrak{F}}}$ recognizable formation in class \mathfrak{S} .
- Let $\mathfrak{F} = \mathfrak{N}_p \mathfrak{X}$, where \mathfrak{X} formation, and $\mathfrak{X} \subseteq \mathfrak{N}$. Then \mathfrak{F} is $\Sigma_2^{S_{an}}$ recognizable formation in class \mathfrak{S} .
- Let $\mathfrak{F} = \mathfrak{N}_p \mathfrak{X}$, where \mathfrak{X} formation, and $\mathfrak{X} \subseteq \mathfrak{N}$. Then \mathfrak{F} is $\Sigma_2^{S_{cn}}$ recognizable formation in class \mathfrak{S} .
- Let $\mathfrak{F} = \mathfrak{N}_p \mathfrak{X}$, where \mathfrak{X} formation, and $\mathfrak{X} \subseteq \mathfrak{N}$. Then \mathfrak{F} is $\Sigma_2^{S_{\mathfrak{X}-at}}$ recognizable formation in class \mathfrak{S} .
- Let $\mathfrak{F} = \mathfrak{N}_p \mathfrak{X}$, where \mathfrak{X} formation, and $\mathfrak{X} \subseteq \mathfrak{N}$. Then \mathfrak{F} is $\Sigma_2^{S_{\mathfrak{X}-san}}$ -recognizable formation in class \mathfrak{S} .
- Let $\mathfrak{F} = \mathfrak{N}_p \mathfrak{X}$, where \mathfrak{X} formation, and $\mathfrak{X} \subseteq \mathfrak{N}$. Then \mathfrak{F} is $\Omega_2^{T_1}$ recognizable formation in class \mathfrak{S} .
- Let $\mathfrak{F} = \mathfrak{N}_p \mathfrak{X}$, where \mathfrak{X} formation, and $\mathfrak{X} \subseteq \mathfrak{N}$. Then \mathfrak{F} is $\Omega_2^{T_2}$ recognizable formation in class \mathfrak{S} .
- Let $\mathfrak{F} = \mathfrak{N}_p \mathfrak{X}$, where \mathfrak{X} formation, and $\mathfrak{X} \subseteq \mathfrak{N}$. Then \mathfrak{F} is $\Omega_2^{T_3}$ recognizable formation in class \mathfrak{S} .
- Let $\mathfrak{F} = \mathfrak{N}_p \mathfrak{X}$, where \mathfrak{X} formation, and $\mathfrak{X} \subseteq \mathfrak{N}$. Then \mathfrak{F} is $\Omega_2^{S_{sn}}$ recognizable formation in class \mathfrak{S} .
- Let $\mathfrak{F} = \mathfrak{N}_p \mathfrak{X}$, where \mathfrak{X} formation, and $\mathfrak{X} \subseteq \mathfrak{N}$. Then \mathfrak{F} is $\Omega_2^{S_n}$ rec-

ognizable formation in class \mathfrak{S} .

Let $\mathfrak{F} = \mathfrak{N}_p \mathfrak{X}$, where \mathfrak{X} - formation, and $\mathfrak{X} \subseteq \mathfrak{N}$. Then \mathfrak{F} is $\Omega_2^{sub_{\mathfrak{F}}}$ - recognizable formation in class \mathfrak{S} .

Let $\mathfrak{F} = \mathfrak{N}_p \mathfrak{X}$, where \mathfrak{X} - formation, and $\mathfrak{X} \subseteq \mathfrak{N}$. Then \mathfrak{F} is $\Omega_2^{S_{an}}$ - recognizable formation in class \mathfrak{S} .

Let $\mathfrak{F} = \mathfrak{N}_p \mathfrak{X}$, where \mathfrak{X} - formation, and $\mathfrak{X} \subseteq \mathfrak{N}$. Then \mathfrak{F} is $\Omega_2^{S_{cn}}$ - recognizable formation in class \mathfrak{S} .

Let $\mathfrak{F} = \mathfrak{N}_p \mathfrak{X}$, where \mathfrak{X} - formation, and $\mathfrak{X} \subseteq \mathfrak{N}$. Then \mathfrak{F} is $\Omega_2^{S_{\mathfrak{X}-at}}$ - recognizable formation in class \mathfrak{S} .

Let $\mathfrak{F} = \mathfrak{N}_p \mathfrak{X}$, where \mathfrak{X} - formation, and $\mathfrak{X} \subseteq \mathfrak{N}$. Then \mathfrak{F} is $\Omega_2^{S_{\mathfrak{X}-san}}$ -recognizable formation in class \mathfrak{S} .