2018年秋季学期大学物理期末试卷

(A) $\sqrt{2}\hbar$ (B) $\sqrt{3}\hbar$ (C) $\sqrt{6}\hbar$ (D) $2\sqrt{3}\hbar$ (E) $4\sqrt{5}\hbar$
7. 平行板电容器中充满各向异性的均匀介质,设极板间的电场强度为已,电位移 矢量为 D,介质的极化强度为 P,对 E、 D、 P 的方向可作判断是[] (A) D与极板垂直, E 和 P 是否与极板垂直不能判定 (B) E与极板垂直, D 和 P 是否与极板垂直不能判定 (C) P与极板垂直, D 和 E 是否与极板垂直不能判定 (D) E、 D、 P 都与极板垂直; (E) E、 D、 P 都不与极板垂直 8. 图中, M、 P、 O 为由软磁材料制成的棒,三者在同一 平面内, 当 K 闭合后,[] (A) M 的左端出现 N 极 (B) P 的左端出现 N 极 (C) O 的右端出现 N 极 (D) P 的右端出现 N 极
9. 如图,两根直导线 ab 和 cd 沿半径方向被接到一个截面处处 相等的铁环上,稳恒电流从 a 端流入而从 d 端流出,则磁感强
度 \overline{B} 沿图中闭合路径 L 的积分 $\oint \overrightarrow{B} \cdot d\overrightarrow{l}$ 等于[]
(A) $\mu_0 I$ (B) $\frac{1}{3} \mu_0 I$ (C) $\frac{1}{4} \mu_0 I$ (D) $\frac{2}{3} \mu_0 I$
二. 填空题 (共 23 分)
$1.(2 ho)$ 如图所示,一块半导体样品沿 X 轴方向有电流 I 流动,在 Z 轴方向有均匀磁场 B 。已知导体样品尺寸为 b ,c,d,半导体片两侧的电势差为 U_{12} 。则半导体样品中载流子浓度 $n=$ (已知载流子电量为 q)。
各向同性均匀电介质 $arepsilon$, 后,电容为,维持两极板间的电压 $arepsilon$,
为U,则介质插入过程,电源作功为。
3,(2分)如图所示,在真空中,电流由长直导线 1 沿半径方向经 a 点流入一由电阻均匀的导线构成的圆环,再由 b 点沿切向从圆环流出,经长直导线 2 返回电源。已知长直导线上的电流强度为 I ,圆环半径为 R 。 a 、 b 和圆心 O 在同一直线上,则 O 处的磁感应强度 B 的大小为,方

4, (4分)如图所示,金属圆板在磁感应强度为 B 的均匀磁场中,以角速度 ω 绕过圆心的中心轴旋转,均匀磁场的方向垂直纸面向里,平行于旋转轴。这时板中由中心至同一边缘点的不同曲线上总感应电动势的大小为,方向。 5. (4分)如图所示,在光滑的水平面上,有一可绕竖直的固定轴 O 自由转动的刚性扇形封闭导体回路 OABO,其中半径 OA=L,回路总电阻为 R,在 OMN 区域内为匀强磁场 B,其方向垂直水平面向下,已知 OA 边进入磁场的角速度为 ω,则此时导体回路内的电流 I=,此时导体回路所受到的电磁阻力矩 M=。
5. (4分) 如图所示,在光滑的水平面上,有一可绕竖直的固定轴 O 自由转动的刚性扇形封闭导体回路 OABO,其中半径 OA=L,回路总电阻为 R,在 OMN 区域内为匀强磁场 B,其方向垂直水平面向下,已知 OA 边进入磁场的角速度为ω,则此时导体回路内的电流 I=,此时导体回路所受到的电磁阻力矩 M=.
600人) 相声打力 0万十四四种 1/1
$6.(2\ \mathcal{H})$ 一根直杆在 S 系中观测静长为 I ,与 x 轴的夹角为 θ , S' 系沿 S 系的 x 轴正向以速度 v 运动。 S' 系中观测此杆与 x' 轴的夹角是。
7.(3 分)氦氖激光器所发红光波长为 $\lambda=632.8\mathrm{nm}$,谱线宽度 $\Delta\lambda=10^{-9}\mathrm{nm}$,若光沿 x 轴
正向传播,利用不确定关系式 $\Delta x \Delta p_x \ge h$ (h=6.63×10^-34J•s) ,求光子的 x 坐
标的不确定量
8. $(3 分)$ 已知某金属的逸出功为 A ,用频率为 ν_1 的光照射该金属能产生光电效应,
则该金属的红限频率 $ u_0$ =, $ u_1 \!\!> \!\! \nu_0$,且遏止电势差 $ U_\sigma $ =。
三、简答题(共 10 分)
1,建立麦克斯韦电磁场理论的实验基础和基本假设是什么?(4)
2,在光和物质中的电子相互作用时出现光电效应和康普顿效应,这两个过程有什么不同?为什么康普顿效应更凸显了光的粒子性?(6分)
四、计算题(每题 10 分,共 40 分):

动,并均匀分布在导体横截面上.一个与导体轴线位于同一平面的宽为 R 的单位长度矩形回路绝缘地插在导体内,且矩形回路中心线与导体边线重合

(设导体内有一很小的缝隙,但不影响电流及磁场的分布).

- (1) 求回路在此位置时与圆柱导体的互感系数;
- (2) 若圆柱导体上流过交变电流 $i=I_0\cos\omega t$,求回路中的感应电动势. (回路中的自感忽略不计)
- 2. (10 分) 质量为m 的粒子在一维矩形无限深势阱中运动,其波函数为,

$$\psi_{\scriptscriptstyle n}(x) = A \sin \frac{n\pi}{a} x \qquad (0 < x < a) , \quad$$

- (1) 归一化常数 A;
- (2) 若粒子处于 n=3 的状态,它在区间 0-2a/3 内的概率;
- (3) 粒子处于 n=1 的状态时的能量。
- 3. (本题 10 分) 如图所示,已知电路中直流电源的电动 势为 12V,电阻 R=6 欧姆,电容器的电容 $C=1.0\,\mu$ F,试求
 - (1) 接通电源瞬时电容器极板间的位移电流;
 - (2) t=6×10-6s 时, 电容器极板间的位移电流。

- 4. (10分) 真空中有一半径为 R, 带电量为 Q的均匀带电球体.
- 求(1)空间的电场强度分布; (2)空间的电势分布; (3)带电球体内所储存的能量。