

Vandana M L

Department of Computer Science & Engineering

DESIGN AND ANALYSIS OF ALGORITHMS

Important Problem Types

Slides courtesy of **Anany Levitin**

Vandana M L

Department of Computer Science & Engineering

Design and Analysis of Algorithms Important Problem Types

- > sorting
- searching
- > string processing
- graph problems
- > combinatorial problems
- geometric problems
- numerical problems

Important Problem Types: Sorting

- > Rearrange the items of a given list in ascending order.
 - Input: A sequence of n numbers <a1, a2, ..., an>
 - Output: A reordering $<a_1'$, a_2' , ..., $a_n'>$ of the input sequence such that $a_1' \le a_2' \le ... \le a_n'$.
- Why sorting?
 - Help searching
 - Algorithms often use sorting as a key subroutine.
- Sorting key

A specially chosen piece of information used to guide sorting.

Example: sort student records by SRN.

Important Problem Types: Sorting

- > Rearrange the items of a given list in ascending order.
- Examples of sorting algorithms
 - Selection sort
 - Bubble sort
 - Insertion sort
 - Merge sort
 - Heap sort ...
- > Evaluate sorting algorithm complexity: the number of key comparisons.
- > Two properties
 - Stability: A sorting algorithm is called stable if it preserves the relative order of any two equal elements in its input.
 - In place: A sorting algorithm is in place if it does not require extra memory, except, possibly for a few memory units.

Important Problem Types: Searching

Find a given value, called a search key, in a given set.

Examples of searching algorithms

- Sequential searching
- Binary searching...

Important Problem Types: String Processing

A string is a sequence of characters from an alphabet.

Text strings: letters, numbers, and special characters.

String matching: searching for a given word/pattern in a text.

Text: I am a computer science graduate

Pattern: computer

Important Problem Types: Graph Problems

Definition

Graph G is represented as a pair G= (V, E), where V is a finite set of vertices and E is a finite set of edges

Modeling real-life problems

- Modeling WWW
- communication networks
- Project scheduling ...

Examples of graph algorithms

- Graph traversal algorithms
- Shortest-path algorithms
- > Topological sorting

Important Problem Types: Combinatorial Problems

Shortest paths in a graph

To find the distances from each vertex to all other vertices.

FIGURE 8.5 (a) Digraph. (b) Its weight matrix. (c) Its distance matrix.

Important Problem Types: Combinatorial Problems

Minimum cost spanning tree

• A spanning tree of a connected graph is its connected acyclic sub graph (i.e. a tree).

FIGURE 9.1 Graph and its spanning trees; T_1 is the minimum spanning tree

Important Problem Types: Geometric Problems

PES UNIVERSITY ONLINE

Closest Pair problem

Convex Hull Problem

Important Problem Types: Numerical Problems

- Solving Equations
- > Computing definite integrals
- Evaluating functions

THANK YOU

Vandana M L

Department of Computer Science & Engineering

vandanamd@pes.edu