Status Report

Jin Choi

2023.03.21

SNU Internal Meeting

Contents

- Introduction
- Plots Signal Regions
- Method
- Templates
- Systematics
- Results
- Conclusion

Introduction

About status

- Training ML discriminators done in early Feb.
- Currently moved on limit extraction in 3μ channel

Using 3 discriminant observables:

- 1. $M(\mu^+\mu^-)$
- 2. signal vs. tt+Fake score
- 3. signal vs. tt+X(W, Z, H) score

Plots - Signal Regions (MHc-100 / MA-60)

Plots - Signal Regions (MHc-130 / MA-90)

Method

Baseline Limit Extraction

- ullet Using only $M(\mu^+\mu^-)$ distribution
- shape analysis (intrinsic width of Z and A is different)

Limit Extraction with ML scores

- ullet Optimize the event selection with scores within M_A resolution
- ullet regenerate M_A templates
- not presented today

Method

Making template

- ullet Events Selection: Baseline Selection + $M_A\pm 5$ GeV with 0.1 GeV binning (3 GeV for $M_A=15$ GeV)
- For weight variations: vary weights only after the final selection
- For scale variations: redefine the object and re-select the events
- Final limit extraction done with Asysmptotic manner:

combine -M AsymptoticLimits workspace_nocut.root -m 125 --run blind

Templates

No ML cuts

Templates

With DNN cuts

Systematics

- Partial systematic tables
- ullet For fake bkgs, $~\pm~30\%$ variations in fake rates
- \bullet For conversion bkg, $\pm\,80\%$ variations (dominant from stat & fake contribution)
- For other MC samples,
- 1. Scale Variations: Jet Energy, Jet Resolution
- 2. Weight Variations: Muon ID eff, DblMuTrig eff.

Notes

- σ_{sig} = $\sigma(pp o tar{t})Br(t o H^+b)Br(H^+ o W^+A)Br(A o \mu\mu)$ assumed to be 15 fb (POI = 1)
- ullet Experimental sensitivity is almost indep. of M_{H^+} , so the limit will be presented in ascending order of M_A
- \bullet For $M_A \sim 60$ GeV, tt+Fake is the most dominant bkg
- \bullet For M_A ~ 90 GeV, tt+Z is the most dominant bkg
- For M_A > 120 GeV, almost no bkg. exists

Results - Limit plots / 2016, 3μ channel only

Conclusion

- Expected limits using 2016 data only / 3μ channel results have been shown
- How to use the ML discriminants?

To do

- Limit plots / tables will be updated sequentially right after the data processing finished (~Next Week?)
- Comparison of Traditional / DNN / GNN method will be presented (~2 weeks?)
- Adding $1e2\mu$ channel (~after KPS?)

Back Ups

Using 35.9 \fb (2016) only

$M_{H^+} \ M_A$ [GeV]	70 15	70 40	130 55	100 60	160 85	130 90	100 95	160 120	160 155
exp-2 [fb]	0.63	0.86	0.78	0.81	1.35	2.83	1.86	0.77	0.92
exp-1 [fb]	0.96	1.22	1.10	1.14	1.86	3.82	2.56	1.10	1.31
exp 0 [fb]	1.60	1.88	1.67	1.71	2.71	5.42	3.67	1.67	1.99

Back Ups

Back Ups

