离散数学 (2023) 作业 04

周帛岑 221900309

2023年3月20日

1 Problem 1

证:

- a) 中, 左侧集合有三个元素, 右侧集合有四个元素, 故不相等
- b) 中, 左侧集合中存在相同元素, 消去后与右侧想通过, 故相等。
- c) 中, 左侧集合有二个元素, 右侧集合有一个元素, 故不相等
- d) 中, 左侧集合中有四个元素, 右侧集合中有三个元素, 故不相等。

2 Problem 2

解:

- a) 为 Ø 的幂集
- b) 为 a 的幂集
- c) 中元素只有三个,而幂集元素个数,为 n , n 为原集合元素个数,故不为某个集合的幂集
- d) 为 a,b 的幂集

订正: a),b),d) 中出现错误

- a) 不为某集合的幂集
- b) 为 {a} 的幂集
- d) 为 {a,b} 的幂集

3 Problem 3

解:

- a): $\{x|x\neq 0\}$
- b):∅
- a): $\{x | x \neq 0 \leq x \neq 1\}$
- 订正: a),c) 中出现错误
- a): $\{x \in \mathbb{Z} | x \geq 1\}$
- c): $\{x \in \mathbb{Z} | x \neq 1 \perp x \neq 0\}$

4 Problem 4

不妨令 $A=\{a_1,a_2,.....a_n\}, B=\{a_1,a_2,....a_n,....a_m\}$ 则 A 中所有元素均在 B 中,即有 A \subseteq B

- (1) 证: $\forall a_i (i = 1, 2 \cdots n), a_i$ 均在 B 中,故两者的并集为 B
- (2) 证: $\forall a_i (i=1,2\cdots,n), a_i$ 均在 B 中 , ,且 $\forall a_j (j=n,n+1\cdots,m)$,j 均不在 A 中,故两者的交集为 A

5 Problem 5

解:

- a): 不能,令 C 为一不为空集的集合,取 A,B 为 C 的两不同子集,则 A \cup C = C,B \cup C = C, 两者相等,但 A \neq B
 - b) 不能, 令 C 为 \emptyset , 任取 A,B, 则 A \cup C = \emptyset ,B \cup C = \emptyset , 两者相等, 但 A \neq B
 - c) 可以:

 $A = A \cap (A \cup C)$

- $= A \cap (B \cup C)$
- $= (A \cap B) \cup (A \cap C)$
- $= (A \cap B) \cup (B \cap C)$
- $= B \cap (A \cup C)$
- $= B \cap (B \cup C)$
- = B

6 Problem 6

证:

对于 A⊆B

根据子集的定义,有 $A = A \cap B$,取补集,并应用德·摩根定律得, $\overline{A} = \overline{A} \cup \overline{B}$ 根据并集的定义,我们有 $\overline{B} \subseteq \overline{A}$ 对于 $\overline{B} \subseteq \overline{A}$,我们同理可证得有 $A \subseteq B$,即原命题得证

7 Problem 7

证:

a):

由对称差的定义, $A \oplus A$ 为属于 A 或属于 A 但是不属于 $A \cap A$ 的元素,又 $A \cap A = A$,故 $A \oplus A$ 中的元素既属于 A 但又不属于 A,只有 \emptyset 满足条件

订正:无错误,但是可以用更加符号化的语言:

 $A \oplus A = A \cup A - A \cap A = A - A = \emptyset$

b):

由对称差的定义, $A \oplus U$ 为属于 A 或属于 U 但是不属于 $A \cap U$ 的元素. 又 $A \cap U = A$,故 $A \oplus U$ 为全集 U 中去除 A 以外的部分,根据补集的定义,即 \overline{A}

8 Problem 8

a):

由并集的定义, $A_i \cup A_{i+1} = A_{i+1}$,则原式等于 $A_n = \{..., -2, -1, 0, 1, ...n\}$

b):

由交集的定义, $A_i \cap A_{i+1} = A_i$, 则原式等于 $A_1 = \{..., -2, -1, 0, 1\}$

9 Problem 9

证:

根据有限集的定义,我们可以数出 A,B 中的元素个数,不妨设 A 中有 m 个元素,B 中有 n 个元素,A 与 B 中有 a 个相同元素,则 $A \cup B$ 中有 m+n-a 个元素,根据有限集的定义,我们可以数出 $A \cup B$ 中的元素个数,并且这个结果为一个非负整数,故 $A \cup B$ 为有限集

10 Problem 10

解:

- a): $\{1,2,3,\{1,2,3\}\}$
- $b){:}\{\emptyset\}$
- c):{{ \emptyset },{{ \emptyset }}}
- $\mathbf{d}){:}\{\emptyset,\!\{\emptyset\},\!\{\{\emptyset,\!\{\emptyset\}\}\}\}$
- 订正: c) 中出现错误
- 应该为: {∅,{∅}}