and denote by δ its generator. Then $D_O=\{\ f\in C_O(\mathbb{R}^n)\ \cap\ C^1(\mathbb{R}^n)\ :\ \lim_{\|x\|\to\infty}\|(\operatorname{grad}\ f)(x)\|=0\ \}$ is a core of δ and

(3.21) $(\delta f)(x) = ((\text{grad } f)(x) | F(x))$ for all $f \in D_0$, $x \in \mathbb{R}^n$,

where (\cdot $| \cdot \rangle$ denotes the scalar product in \mathbb{R}^n

= f(x) by integrating by parts. Hence $f \in D(\delta)$ and $f - \delta f = g$; i.e. $\delta f = (\text{grad } f | F)$. This proves (3.21). Next we show $T_{O}(t)D_{O} \subset D_{O}$ for all $t \ge 0$, which implies that D_{O} is a core of δ by A-I, Thm.1.9 (or A-II, Cor.1.34). Since $F \in C^1(\mathbb{R}^n, \mathbb{R}^n)$, it follows that $\phi \in C^1(\mathbb{R} \times \mathbb{R}^n, \mathbb{R}^n)$ (see e.g., [Hirsch-Smale (1974), 15.2]). Moreover for each $x \in \mathbb{R}^n$, $\frac{d}{dt}$ (D $\phi_t(x)$) = DF($\phi_t(x)$)·D $\phi_t(x)$ and D $\phi_0(x)$ = Id , (see [Hirsch-Smale (1974), p. 300]; here Id $\in L(\mathbb{R}^n)$ denotes the identity operator. Hence $\begin{array}{lll} D\phi_{t}(x) &=& \mathrm{Id} \,+\, \int_{0}^{t} \mathrm{DF}\left(\phi_{s}(x)\right) \cdot \mathrm{D}\phi_{s}(x) \,\mathrm{d}s & \text{. Consequently} \\ \left\|\mathrm{D}\phi_{t}(x)\right\| &\leq& 1 \,+\, \int_{0}^{t} \mathrm{M} \cdot \left\|\mathrm{D}\phi_{s}(x)\right\| \,\mathrm{d}s & \text{for all } t \,\geq\, 0 & \text{and } x \,\in\, \mathbb{R}^{n} \end{array}; \text{ where} \end{array}$ $M := \sup_{\mathbf{x} \in \mathbb{R}} n \| DF(\mathbf{x}) \| < \infty$ by hypothesis. Hence by Gronwall's inequality, $\|D\phi_{t}(x)\| \le e^{Mt}$ (t ≥ 0) for all $x \in \mathbb{R}^{n}$. Now let $f \in D_{0}$, $t \ge 0$. Then $[grad_{(f \circ \phi_t)}](x) = [(grad_{(f \circ \phi_t)})] \cdot D\phi_t(x)$. Hence $\begin{aligned} & \| [\operatorname{grad} \ (f \circ \phi_{\operatorname{t}}) \](x) \| \leq e^{\operatorname{Mt}} \| (\operatorname{grad} \ f) \ (\phi_{\operatorname{t}} (x)) \| \ , \ \text{and so} \\ & \lim_{\| x \| \to \infty} \| [\operatorname{grad} \ (f \circ \phi_{\operatorname{t}}) \](x) \| \leq e^{\operatorname{Mt}} \lim_{\| x \| \to \infty} \| (\operatorname{grad} \ f) \ (\phi_{\operatorname{t}} (x)) \| = 0 \ . \end{aligned}$ Thus $f \circ \phi_+ \in D_0$ for all $t \ge 0$.

As a second class of examples we consider derivations on $C_O(a,b)$. Eventually we will determine all derivations on $C_O(a,b)$, which are generators of a group. We start by looking at differential operators of first order. Let $-\infty \le a < b \le \infty$ and let $m:(a,b) \to \mathbb{R}$ be a continuous function. We consider the operator δ_m on $C_O(a,b)$ given by

$$(\delta_{m}f)(x) = \begin{cases} m(x)f'(x) & \text{if } m(x) \neq 0 \\ 0 & \text{otherwise} \end{cases}$$

with domain $D(\delta_m)=\{f\in C_O(a,b): f \text{ is differentiable in } x \text{ if } m(x) \neq 0 \text{ and } \delta_m f \in C_O(a,b) \}$. Note that δ_m is a derivation on $C_O(a,b)$.