STA108 Final Project

Team 1 Grant, Jinghong, Natalie, Selam Instructor: Prof. Hao Chen Fall 2020

Overview on Earnings data

- 1. Data preparation
- 2. Data exploration
- 3. Data transformation
- 4. Significance testing
- 5. Model selection(s)
- 6. Model validation(s)

Data preparation (Earnings Data)

	experience <int></int>	weeks <int></int>	occupation <chr></chr>	industry <chr></chr>	south <chr></chr>	smsa <chr></chr>	married <chr></chr>	gender <chr></chr>	union <chr></chr>	education <int></int>	ethnicity <chr></chr>	wage <int></int>
1	9	32	white	yes	yes	no	yes	male	no	9	other	515
2	36	30	blue	yes	no	no	yes	male	no	11	other	912
3	12	46	blue	yes	no	no	no	male	yes	12	other	954
4	37	46	blue	no	no	yes	no	female	no	10	afam	751
5	16	49	white	no	no	no	yes	male	no	16	other	1474
6	32	47	blue	yes	no	yes	yes	male	no	12	other	1539

	experience <int></int>	weeks <int></int>	occupation <dbl></dbl>	industry <dbl></dbl>	south <dbl></dbl>	smsa <dbl></dbl>	married <dbl></dbl>	gender <dbl></dbl>	union <dbl></dbl>	education <int></int>	ethnicity <dbl></dbl>	wage <int></int>
1	9	32	0	1	1	0	1	1	0	9	0	515
2	36	30	1	1	0	0	1	1	0	11	0	912
3	12	46	1	1	0	0	0	1	1	12	0	954
4	37	46	1	0	0	1	0	0	0	10	1	751
5	16	49	0	0	0	0	1	1	0	16	0	1474
6	32	47	1	1	0	1	1	1	0	12	0	1539

Data exploration

Data transformation

$$R^2 = 0.446054$$

Data splitting

```
set.seed(123)
index = sample(1:595,298)
training_data = mydata[index,] #the first half
validate data = mydata[-index,] #the second half
```

- Randomly splitting data into two portions to allow for independent model building and model validation
- Random sample removes potential bias in ordering of entries

Significance Testing

 $Yi = (\beta 0 + \beta 1xi1 + \beta 2xi2 + \beta 3xi3 + \beta 4xi4 + \beta 5xi5 + \beta 6xi6 + \beta 7xi7 + \beta 8xi8 + \beta 9xi9 + \beta 10xi10 + \beta 11xi11) + \varepsilon_i$

Where:

- y_i is the wage of an individual i
- x_{i1} is years of experience of an individual i
- x_{i2} is number of weeks worked for every individual i
- $x_{i3} = 1$ if blue collar of i, 0 if not
- x_{i4} 1 if i works in industry, 0 if not
- x_i 1 if i reside in south area, 0 if not
- x_{i6} 1 if I reside in metropolitan area, 0 if not
- x_{i7} 1 if i is married, 0 if not
- x_{i8} 1 if i is male, 0 if not
- x_{i9} 1 if i is member of union, 0 if not
- x_{i10} is years of education of an individual i
- $x_{i11} = 1$ if i is African American race, 0 if not

And, the independent error terms ε_i follow a normal distribution with mean 0 and equal variance σ^2

Significance Testing (cont): Hypothesis Testing

❖ Is the wage of an individual significantly related **one slope parameter** to the working experience of an individual?

$$H_0: \beta_1 = 0$$

 $H_a: \beta_1 \neq 0$ $\left\{ F^* = 13.403 \ F_q = 3.857 \right\}$

Reject null hypothesis, in favor of Full Model

❖ Is the wage significantly related **subsets parameter** to individual working hours and designation?

$$H_0: \beta_1 = \beta_2 = 0$$

 $H_a:$ at least β_1 or $\beta_2 \neq 0$ $\left\{F^* = 3.436 \, F_q = 2.38 \,\right\}$

Reject null hypothesis, in favor of Full Model

❖ Is the regression model containing at least one predictor useful in predicting the average wage of an individual?

$$\begin{array}{l} H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = \beta_6 = \beta_7 = \beta_8 = \beta_9 = \beta_{10} = \beta_{11} = 0 \\ H_a: \text{ at least one } \beta_j \neq 0 \text{ (for } j = 1, 2, 3, 4, 5, 6, 7, 8, 10, 11) \\ \left\{ \begin{array}{l} F^* = 42.68 \; F_q = 1.81 \end{array} \right\} \end{array}$$

Reject null hypothesis, in favor of Full Model

Model selection **first-order model**

Model diagnostic **first-order model**

Model 71 Model 91

MSE = 0.109MSPR = 0.106 MSE = 0.111 MSPR = 0.107

Model selection first-order with two-way interaction "Stepwise selection"

AIC criteria

Call:

```
lm(formula = Y ~ education + gender + smsa + industry + occupation +
union + married + south + ethnicity + weeks + education:union +
industry:union + smsa:union + smsa:occupation + education:south +
industry:south + smsa:industry + industry:ethnicity + industry:weeks +
married:weeks + south:ethnicity, data = data.frame(Xs))
```

Coefficients:

0.01906

(Intercept)	education	gender	smsa
6.03416	0.08205	0.24680	0.23683
industry	occupation	union	married
1.37982	-0.25542	1.14928	-0.75100
south	ethnicity	weeks	education:union
0.55480	-0.14825	-0.01404	-0.06702
industry:union	smsa:union	smsa:occupation	education:south
-0.23622	-0.21078	0.21594	-0.03977
industry:south	smsa:industry	industry:ethnicity	industry:weeks
-0.31910	-0.19728	0.36022	-0.02187
married:weeks	south:ethnicity		

-0.28232

BIC criteria

```
lm(formula = Y ~ education + gender + smsa + industry + occupation +
union + education:union + industry:union, data = data.frame(Xs))
```

Coefficients:

education	gender	smsa
0.07230	0.34071	0.18483
occupation	union	education:union
-0.15890	1.14135	-0.07408
	0.07230 occupation	0.07230 0.34071 occupation union

industry:union -0.23516

Model validation first-order with two-way interaction

MSE = 0.103MSPR = 3.202

```
Call:
lm(formula = Y ~ ., data = data.frame(Xs))
                                                    Training
Residuals:
     Min
                     Median
                                           Max
                                                      data
-1.00979 -0.21068
                    0.01068
                             0.20929
                                      0.99925
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
             5.55437
                         0.15850
occupation
            -0.15890
                         0.05384
industry
             0.18883
                         0.05040
                                    3.747 0.000216
smsa
             0.18483
                         0.04092
gender
             0.34071
                         0.06143
union
             1.14135
                         0.21883
             0.07230
education
                         0.01022
                                   7.071 1.16e-11
            -0.07408
                         0.01580
                                  -4.688 4.25e-06
                                  -2.684 0.007696
V8
            -0.23516
                         0.08762
                                              0.05 '.' 0.1
Signif. codes:
                         0.001
Residual standard error: 0.326 on 289 degrees of freedom
Multiple R-squared: 0.4299, Adjusted R-squared: 0.4141
F-statistic: 27.24 on 8 and 289 DF, p-value: < 2.2e-16
Call:
lm(formula = Y val ~ ., data = data.frame(Xs val))
Residuals:
                                                    Validating
     Min
               10
                     Median
-1.25184 -0.16615
                    0.01725
                                                       data
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
             5.30166
occupation
            -0.15449
                         0.05132
                                  -3.011
industry
             0.14292
                         0.05343
smsa
             0.11753
                         0.04130
             0.52307
                         0.06536
gender
             1.22764
                         0.23756
union
             0.08450
education
                         0.01042
V7
            -0.08387
                         0.01812
                                   -4.629 5.57e-06
VB
            -0.21770
                         0.08470
                                  -2.570
                                           0.01067
Signif. codes:
```

Residual standard error: 0.3289 on 288 degrees of freedom Multiple R-squared: 0.483, Adjusted R-squared: 0.4686 F-statistic: 33.63 on 8 and 288 DF, p-value: < 2.2e-16

Prediction interval (on validation dataset)

- Prediction intervals much wider than confidence interval.
- Y_{h_new} means greater variance
- Mean of interval is not at the true middle (due to transformation)

Selected Model

We chose the following first-order model with these predictor variables.

i = Model 71		wit			
(Intercept)	experience	weeks	occupation	industry	south
TRUE	TRUE	FALSE	TRUE	TRUE	FALSE
smsa	married	gender	union	education	ethnicity
TRUE	FALSE	TRUE	TRUE	TRUE	TRUE

Acknowledgment:

We would like to give special thanks to Prof. Hao Chen, and Mr. Yi-Wei for sharing their knowledge and codes. Also, we would like to thank you all for giving your time to listen to our presentation.