Project progress reports:

By Friday, Nov. 18, 5:00 PM, each group should submit a progress report in the dropbox folder of the person of contact.

- The progress report should detail any relevant progress made by the team, including contributions of each member to this progress.
- The report is expected to have sufficient information to cover at least 1.5 pages and show enough progress for over a month that will have passed since the project proposals were submitted.

Project Progress Report - Fall 2016 CPSC 545

Students: Chen Gu, Zhishan Gu, Zijun Tang

Project dataset: NBA Shots Log

Data source: Kaggle Data Size: 16M

Preliminary Analysis (by Chen Gu)

- Download and clean the dataset so that the data set can be used for modelling
 - Remove rows with negative TOUCH TIME
 - Filling missing SHOT_CLOCK with according GAME_CLOCK value
- Show/visualize the relationship between FGM and all other attributes (by Zhishan Gu)
 - FGM vs Location:

LOCATION 'mean(FGM)'

A 0.4484133

H 0.4565350

FGM vs Period:

PERIOD `mean(FGM)`

- 1 0.4605283
- 2 0.4511074
- 3 0.4571420
- 4 0.4400989
- 5 0.3903509
- 6 0.4345238
- 7 0.3720930
- FGM vs Shot Clock:

FGM vs Dribbles:

FGM vs Shot Distance:

FGM vs Shot Type:

PTS_TYPE `mean(FGM)`

2 0.4888506

3 0.3515406

FGM vs Closest Defender Distance

Field Goal Ratio graph (by Chen Gu)
To have a rough understanding about the highest, lowest and average FG%, I draw a graph to illustrate these figures.

Field Goal Made, Field Goal Attempted, Field Goal Ratio graph (by Chen Gu)
 I suspect that with FGA increases, FG% (efficiency) map drop. To test this
 guess, I draw a graph which indicates the relationship between FGM, FGA and FG%.
 Surprisingly, efficiency is not influced by Field Goal Attemps.

Offensive player Ranking (by Chen Gu)
For offensive player ranking, currently I user a pretty naive method. I sort players
by Field Goal Ratio. Below is the ranking of players with FGA larger than or equal to

100. I will modify this method in the future, since it is not fair to compare a center and a guard by their FG%.

Defensive player Ranking (by Chen Gu)

For defensive player ranking, we the difference between a shooters' average FG% and FG% guarded by a certain defender. The larger the difference is, more effective the defense will be. We print top 10 defender who involved in at least 100 defense.

Regression (by Zhishan Gu)

 Fitted a standard logistic regression and removed insignificant attributes from the model:

Coefficients:	Estimate	Std. Error	z value	P-value
(Intercept)	1.58E-01	2.53E-02	6.228	4.74E-10
LOCATIONH	2.75E-02	1.16E-02	2.376	0.0175
PERIOD2	-3.19E-02	1.62E-02	-1.972	0.0486
PERIOD3	7.78E-03	1.61E-02	0.483	0.6289
PERIOD4	-2.36E-02	1.66E-02	-1.419	0.1559
PERIOD5	-1.70E-01	7.14E-02	-2.382	0.0172
PERIOD6	1.11E-01	1.61E-01	0.689	0.4908
PERIOD7	-1.29E-01	3.23E-01	-0.4	0.6889
GAME_CLOCK	-2.00E-05	2.85E-05	-0.701	0.4834
SHOT_CLOCK	1.56E-02	9.90E-04	15.767	2E-16
DRIBBLES	3.19E-02	4.63E-03	6.894	5.41E-12
TOUCH_TIME	-6.31E-02	5.46E-03	-11.541	2.00E-16
SHOT_DIST	-6.40E-02	1.10E-03	-57.972	2.00E-16
PTS_TYPE3	8.39E-02	2.03E-02	4.138	3.51E-05
CLOSE_DEF_DIST	1.02E-01	2.73E-03	37.264	2.00E-16

• Using VIF (Variance inflation factor) test to remove attributes with collinearity

	VIFTest		
	GVIF	Df	GVIF^(1/(2*Df))
LOCATION	1.00031	1	1.000153
PERIOD	1.02034	6	1.001679
GAME_CLOCK	1.03724	1	1.018447
SHOT_CLOCK	1.09135	1	1.044675
DRIBBLES	7.48754	1	2.736337
TOUCH_TIME	7.61748	1	2.759978
SHOT_DIST	2.79769	1	1.672629
PTS_TYPE	2.30353	1	1.517737
CLOSE_DEF_DIST	1.56988	1	1.252947

• Refit the logistic model with the rest attributes:

Coefficients:					
	Estimate	Std. Error	z-value	Pr(> z)	
(Intercept)	0.0166469	0.0210611	0.790	0.4293	
LOCATIONH	0.0272171	0.0115509	2.356	0.0185	*
PERIOD2	-0.0280839	0.0161253	-1.742	0.0816	
PERIOD3	0.0121570	0.0160497	0.757	0.4488	
PERIOD4	-0.0162074	0.0165541	-0.979	0.3276	
PERIOD5	-0.1575079	0.0710317	-2.217	0.0266	*
PERIOD6	0.1106633	0.1603299	0.690	0.4901	
PERIOD7	-0.1340025	0.3239996	-0.414	0.6792	
SHOT_CLOCK	0.0175909	0.0009664	18.203	<2e-16	***
DRIBBLES	-0.0183777	0.0017226	-10.669	<2e-16	***
SHOT_DIST	-0.0606711	0.0008297	-73.121	<2e-16	***
CLOSE_DEF_DIST	0.1036243	0.0027235	38.048	<2e-16	

Classifier (by Zijun Tang)

- SVM: using RBF kernel.
- Decision Tree
- Naive Bayes: The likelihood of the features is assumed to be Gaussian.

Validation (by Zijun Tang)

For all the three classifier, use 10 fold cross validation and stratified sampling. Accuracy:

- SVM: 0.6036852 0.60103061 0.59806371 0.60134291 0.5950652 0.60580978 0.59815711 0.60135874 0.59472122 0.59401843
- Decision Tree: 0.54044347 0.53864772 0.53810119 0.54247345 0.5354884 0.545057 0.54052788 0.54021552 0.54044979 0.53506169
- Naive Bayes: 0.59775141 0.59423798 0.59353529 0.59814179 0.59420629 0.59831329 0.58488209 0.59003592 0.59237857 0.59503358

Future plan:

- Incorporate players' ranking into the regression formula
- Brake some of the numerical variables into couple categorical levels so that the regression curve can be smoother.
- Fit Lasso and Ridge regressions and compare the result with standard GLM (generalized linear model)
- Classifier analysis will be carried out.
- Random Forest Classifier will be adopted and compared with SVM, Decision Tree and Naive Bayes.