4014.
$$z = x + y$$
, $(x^2 + y^2)^2 = 2xy$, $z = 0$ $(x > 0$, $y > 0$).
4015. $z = x^2 + y^2$ $x^2 + y^2 = x$, $x^2 + y^2 = 2x$, $z = 0$.

4015.
$$z = x^2 + y^2$$
, $x^2 + y^2 = x$, $x^2 + y^2 = 2x$, $z = 0$.
4016. $x^2 + y^2 + z^2 = a^2$, $x^2 + y^2 > a |x| (a > 0)$.
4017. $x^2 + y^2 - az = 0$, $(x^2 + y^2)^2 = a^2 (x^2 - y^2)$,

$$z=0 \ (a>0).$$

4018.
$$z = e^{-(x^2+y^2)}, z = 0, x^2 + y^2 = R^2.$$

4019.
$$z = c \cos \frac{\pi \sqrt{x^2 + y^2}}{2a}$$
, $z = 0$, $y = x \operatorname{tg} \alpha$, $y = x \operatorname{tg} \beta$ $(a > 0, c > 0, 0 \le \alpha < \beta \le 2\pi)$.
4020. $z = x^2 + y^2$, $z = x + y$.

Найти объемы тел, ограниченных следующими поверхностями (параметры предполагаются положительными):

4021.
$$\frac{x^3}{a^3} + \frac{y^3}{b^3} + \frac{z^2}{c^3} = 1$$
, $\frac{x^2}{a^3} + \frac{y^2}{b^3} = \frac{z^3}{c^2}$ (z>0).

4022.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$
, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

4023.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$$
, $\frac{x^2}{a^2} + \frac{y^3}{b^2} = \frac{x}{a} + \frac{y}{b}$, $z = 0$.

$$4024. \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^2 + \frac{z}{c} = 1, \ z = 0.$$

4025.
$$\left(\frac{x}{a} + \frac{y}{b}\right)^2 + \frac{z^2}{c^3} = 1$$
, $x = 0$, $y = 0$, $z = 0$.

4026.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
, $\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^2 = \frac{x^2}{a^2} - \frac{y^2}{b^2}$.

4027.
$$z^2 = xy$$
, $x + y = a$, $x + y = b$ $(0 < a < b)$.

4028.
$$z = x^2 + y^2$$
, $xy = a^2$, $xy = 2a^2$, $y = \frac{x}{2}$, $y = 2x$, $z = 0$.

4029.
$$z = xy$$
, $x^2 = y$, $x^2 = 2y$, $y^2 = x$, $y^2 = 2x$, $y = 2x$,

4030.
$$z = c \sin \frac{\pi xy}{a^2}$$
, $z = 0$, $xy = a^2$, $y = \alpha x$, $y = \beta x$ $(0 < \alpha < \beta; x > 0)$.

4031.
$$z = x^{3/2} + y^{3/2}$$
, $z = 0$, $x+y = 1$, $x = 0$, $y = 0$

4032.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z}{c} = 1$$
, $\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} = 1$,

$$z=0$$
.