Lecture 5

Descriptive Statistics III

Text: Chapter III

STAT 8010 Statistical Methods I August 30, 2019

> Whitney Huang Clemson University

Notes			

Agenda

- Review of Last Class
- 2 Numerical Summaries of Quantitative Variables

Notes

Last Lecture

- Graphical Summaries of Quantitative Variables
 - Dot plot
 - Stem-and-Leaf Plot
 - Histogram
 - Boxplot
- Numerical Summaries of Quantitative Variables
 - $\bullet \ \ \text{Mean} \Rightarrow \text{A measure of } \textbf{central tendency}$

Descriptive Statistics III
CLEMS N
Review of Last Class

Notes			

Shapes of Distributions

Descriptive Statistics III	
Review of Last Class	

Notes

Notes

Measures	of	Center

- A measure of center attempts to report a "typical" value for the variable
- When a measure of center is calculated with sample data it is a statistic
- When a measure of center is calculated with popular (e.g., census data) it is a **parameter**
- Measures: Mean, Median, Mode

Mean

• The **population mean**, denoted by μ_X , is the sum of all the population values $(\{X_i,\cdots,X_N\})$ divided by the total number (N) of population values. That is,

$$\mu_X = \frac{\sum_{i=1}^N X_i}{N}$$

• The **sample mean**, denoted by \bar{X} is the sum of all the sample values $(\{X_1, \cdots, X_n\})$ divided by the total number of sample values (n). That is

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Descriptive Statistics III	
CLEMS N	
Numerical Summaries of Quantitative Variables	

Notes			

Median

The median is the value separating the higher half from the lower half of a data sample

How to compute the median: Order the n observations in a data set from smallest to largest, then

 $\begin{array}{ll} \text{Median} = \\ \text{f the single middle value,} & \text{n odd} \\ \text{the average of the middle two values,} & \text{n even} \end{array}$

Notes			

Mode

The mode is the value of the observation that appears most frequently

How to compute the mode(s): Order the observations in a data set from smallest to largest, then find the number that is repeated more often than any other

1	Notes				
_					
-					

Example

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

Plot this "data set" and describe the shape of the distribution

Descriptive Statistics III
Numerical Summaries of Quantitative Variables

Notes			

Example cont'd

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

Find the sample mean

$$\bar{X} = \sum_{i=1}^{9} \frac{13+18+13+14+13+16+14+21+13}{9} = 1$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
 - Compute the sample size n and identify (or compute) the median value

Descriptive Statistics III

CLEMS Numerical

Review of Last Class

Numerical
Summaries of Quantitative Variables

3 = 15

Notes

Notes

Notes

Example cont'd

Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21

② We have 3 13 and 2 14 \Rightarrow 13 is the mode

Review of Last Class Numerical Summaries of Quantitative

5.1

Example: Resistant (Robust) Statistics

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, $\frac{210}{13}$, 13

• Find the sample mean

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9}$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210
 - ② Compute the sample size *n* and identify (or compute) the median value
 - 0 $n = 9 \Rightarrow$ the median is the 5th number, which is (still)

Review of Last Class Numerical

Numerical Summaries of Quantitative Variables

36

Example cont'd

- Find the mode
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210
 - ② We have 3 13 and 2 14 \Rightarrow 13 is (still) the mode

Notes

Measures of Spread

• **Measures:** Range, Variance(Standard Deviation), Interquartile range (IQR)

Notes

Range

The range of a dataset is the difference between the largest and smallest values

 $Range = Largest\ Value - Smallest\ Value$

- Compute the range of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13
- Compute the range of the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

Question: Is Range a robust statistic?

Notes			

Standard Deviation (Variance)

- The sample standard deviation (variance), denoted by $s(s^2)$, can be used to estimate the population standard deviation (varaince), denoted by $\sigma(\sigma^2)$.
- s is calculated in the following way:
 - igodeligap Calculate the sample mean \bar{x}
 - ② Calculate the deviation (from the sample mean) for each observation (i.e., $x_i \bar{x}$, $i = 1, \dots, n$)
 - Square each deviation and add them (i.e., $\sum_{i=1}^{n} (x_i \bar{x})^2$)
 - ① Divide by n-1 and take the square root (i.e., $s=\sqrt{\frac{\sum_{i=1}^n(x_i-\bar{x})^2}{n-1}}$)

5.16

Example

- Compute s of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13
- Compute s of the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

Question: Is standard deviation a robust statistic?

Notes

Notes

Interquartile range (IQR)

- $IQR = Q_3 Q_1$, where Q_1 is the Lower Quartile (the median of the lower half of the data) and Q_3 is the Upper Quartile (the median of the upper half of the data)
- Compute the IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13
- Compute the IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

Question: Is IQR a robust statistic?

Votes			