PROVA SCRITTA DI ELETTRONICA 1 7 FEBBRAIO 2019

1) Nel circuito in figura, i transistori nMOS e pMOS sono caratterizzati dalla tensione di soglia $V_{Tn} = |V_{Tp}| = V_T$ e dai coefficienti β_n e β_p . Il segnale d'ingresso abbia il seguente andamento:

t<0:
$$V_i$$
=Vdd
t>0: V_i = 0

Si calcoli il tempo di propagazione t_{pHL} del circuito (definito come il tempo necessario a V_u per compiere il 50% della propria escursione).

$$V_{dd}=3.5~V,~\beta_n=0.1~mA/V^2,~\beta_p=2~mA/V^2,~V_T=0.35~V,~R=1.5~k\Omega,~C=8~pF.$$

2) Nel circuito in figura, i transistori MOS sono caratterizzati dalla tensione di soglia $V_{Tn}=|V_{Tp}|=V_{T}$ e dai coefficienti β_n e β_p .Il transistore bipolare può essere descritto da un modello a soglia, con $V_{\gamma}=0.75$ V e $V_{CE,sat}=0.2$ V.

I segnali di ingresso V_a e V_b abbiano l'andamento periodico mostrato in figura, con periodo pari a 4 ns. Si determini l'andamento del segnale di uscita V_u , trascurando i transitori e il tempo di propagazione associato ad ogni sua transizione.

 $V_{dd} = 3.5V$, $V_T = 0.4 V$, $\beta_n = \beta_p = 1.4 \text{ mA/V}^2$, $\beta_F = 100$, $R_1 = 1.5 \text{ k}\Omega$, $R_2 = 32 \text{ k}\Omega$.

- Tempo a disposizione: 2h e 30m
- Indicare su ciascun foglio nome, cognome, data e numero di matricola
- Non usare penne o matite rosse
- L'elaborato deve essere contenuto in un unico foglio (4 facciate) protocollo

Osservazioni preliminari : M2 quando ON (sse vu<vdd-vt) è sat. Anche M1 quando on è sempre sat.

- 1) Per t<0 vi=vdd. M1 off. La corrente di pull-down è nulla, e quindi deve essere nulla anche la corrente di pull-up. In particolare, $I_R=(V_{dd}-V_u)/R=0$ e $V_u=V_{dd}$.
- 2) Per t-> ∞ vi = 0, M1 on e sat (sse, vu>vt da verificare), M2 on e sat (sse vu>vdd-vt, da verificare)

$idn2sat=\beta n/2*(vdd-vu-vt)^2$	Risolvendo si ottengono le seguenti soluzioni:
$idp1sat=\beta p/2*(vu-vt)^2$	vu=-1.843 V o vu=1.546 V
ir=(vdd-vu)/R	La soluzione vu=1.546 V soddisfa l'hp di
Ma	accensione di M1 (vu >vt) e di saturazione di M2
idn2sat+ir=idp1sat	(vu <vdd-vt)< td=""></vdd-vt)<>

3) Analisi del transitorio.

Il segnale d'uscita varia da vu(0+)=Vdd a $vu(\infty)=1.546$ V. Il tp_{HL} è il tempo che il segnale d'uscita impiega per compiere il 50% della sua escursione, quindi per passare da $vu_{iniz}=3.5$ V a $vu_{final}=(3.5+1.546)/2$ V=2.523V. Durante questo transitorio dapprima M2 è off, poi si accende quando $vu\leq vdd-vt=3.15$ V. il transitorio di scarica va quindi diviso in due tratti. Calcolo del tempo di ritardo tp, HL:

1) <u>3.15 V≤vu≤3.5 V</u>	2) 2.523 V≤ vu≤3.15 V
icap=Cdvu/dt	icap=Cdvu/dt
$idp1sat=\beta p/2 *(vu-vt)^2$	$idp1sat=\beta p/2 *(vu-vt)^2$
ir=(vdd-vu)/R	$idn2sat=\beta n/2*(vdd-vu-vt)^2$
	ir1=(vdd-vu)/R
Ma	,
icap=ir-idpsat	Ma
	icap=ir1+idn2sat-idpsat
$t_{p, HL1} = \int_{3.5}^{3.15} \frac{c}{ir - idpsat} dvu = 0.322ns$	•
ir-idpsat ir -idpsat ir -idpsat	$t_{p, HL2} = \int_{3.15}^{2.523} \frac{c}{ir_1 - idn_1 sat + idn_2 sat} dvu = 0.898ns$
	33.15 ir1-idp1sat+idn2sat
	tt t1 221 ns
	$t_{p, HL} = t_{p, HL1} + t_{p, HL2} = 1.221 \text{ ns}$

21.12.2018 - Esercizio 2

Il circuito è costituito da un invertitore CMOS e da un invertitore RTL che condividono l'uscita V_{ii} . L'andamento del segnale di uscita è quindi mostrato in figura:

I segnali di ingresso sono periodici, con periodo pari a 4 ns. All'interno del periodo è possibile riconoscere quattro condizioni diverse:

- 1) $\mathbf{0} < \mathbf{t} < \mathbf{1} \mathbf{n} \mathbf{s}$: $V_a = V_b = 0 \rightarrow M_n \text{OFF}$, $M_p \text{ON}$, T OFF. Entrambe le reti di pull-down sono quindi spente e la corrente è quindi identicamente nulla su tutto il circuito. Si ha quindi: $V_u = V_{dd}$
- 2) 1ns < t < 2ns: $V_a = V_{dd}$, $V_b = 0 \rightarrow M_n \text{ON}$, $M_p \text{OFF}$, T OFF. La rete equivale a un invertitore nMOS a carico resistivo, con ingresso alto. Ipotizzando M_n LIN (*), si ha:

$$I_{Dn} = \beta_n \left((V_{dd} - V_T) V_u - \frac{{V_u}^2}{2} \right)$$

$$I_{R1} = \frac{(V_{dd} - V_u)}{R_1}$$

$$I_{R1} = \frac{(V_{dd} - V_u)}{R_1}$$

dove la seconda soluzione è assurda ($V_u > V_{dd} \rightarrow I_{Dn} = I_{R1} < 0$), mentre la prima rispetta l'ipotesi (*): $V_{GSn} = V_{dd} > V_{DSn} + V_T = 0.501 + 0.4 = 0.901 \ V$ 3) 2ns < t < 3ns: $V_a = V_b = V_{dd} \rightarrow M_n \text{ON}, M_p \text{OFF}$, T ON. La rete equivale a un invertitore a carico resistivo, con il pull-

down costituito dal parallelo fra M_n e T. Ipotizzando ancora M_n LIN (**) e T in AD (***), si ha:

$$I_{Dn} = \beta_n \left((V_{dd} - V_T) V_u - \frac{{V_u}^2}{2} \right)$$

$$I_{R1} = \frac{(V_{dd} - V_u)}{R_1}$$

$$I_C = \beta_F I_B = \beta_F \frac{(V_{dd} - V_v)}{R_2}$$

Entrambe le soluzioni sono assurde, per cui occorre modificare le ipotesi. Supponendo M_n LIN (**) e T in SAT (***):

$$V_{u} = V_{CE,sat} \rightarrow \begin{cases} I_{C} = I_{R1} - I_{Dn} = \frac{\left(V_{dd} - V_{CE,sat}\right)}{R_{1}} - \beta_{n} \left((V_{dd} - V_{T})V_{CE,sat} - \frac{V_{CE,sat}^{2}}{2}\right) < \beta_{F} \frac{\left(V_{dd} - V_{\gamma}\right)}{R_{2}} (***) \\ V_{GSn} = V_{dd} > V_{DSn} + V_{T} = V_{CE,sat} + 0.4 = 0.601 V (**) \end{cases}$$

4) 3ns < t < 4ns: $V_a = 0$, $V_b = V_{dd} \rightarrow M_n OFF$, $M_p ON$, T ON. La rete equivale a un invertitore in cui la rete di pull-up consiste nel resistore R_1 in parallelo al transistore M_p , mentre la rete di pull-down è costituita dal transistore T. Ipotizzando M_p LIN (****) e T in AD (*****), si ha:

$$I_{Dp} = \beta_p \left((V_{dd} - V_T)(V_{dd} - V_u) - \frac{(V_{dd} - V_u)^2}{2} \right)$$

$$I_{R1} = \frac{(V_{dd} - V_u)}{R_1}$$

$$I_C = \beta_F I_B = \beta_F \frac{(V_{dd} - V_y)}{R_2}$$

dove la seconda soluzione è assurda (
$$V_u < 0 \rightarrow V_{CE} < V_{CE,sat}$$
), mentre la prima rispetta le ipotesi:
$$V_u = V_{CE} > V_{CE,sat} \ (*****)$$

$$V_{SGp} = V_{dd} > V_{SDp} + V_T = V_{dd} - V_u + V_T = \ 3.26 \ V \ (****)$$