Useful Inequalities $\{x^2\geqslant 0\}$ vo.36 · August 10, 2021		$square\ root$	$2\sqrt{x+1} - 2\sqrt{x} < \frac{1}{\sqrt{x}} < \sqrt{x+1} - \sqrt{x-1} < 2\sqrt{x} - 2\sqrt{x-1}$ for $x \ge 1$.
Cauchy-Schwarz	$\left(\sum\limits_{i=1}^n x_i y_i ight)^2 \leq \left(\sum\limits_{i=1}^n x_i^2 ight) \left(\sum\limits_{i=1}^n y_i^2 ight)$	binomial	$1 - \frac{x}{2} - \frac{x^2}{2} \le \sqrt{1 - x} \le 1 - \frac{x}{2} \text{for } x \le 1.$ $\max\left\{\frac{n^k}{k^k}, \frac{(n - k + 1)^k}{k!}\right\} \le \binom{n}{k} \le \frac{n^k}{k!} \le \left(\frac{en}{k}\right)^k; \ \binom{n}{k} \le \frac{n^n}{k^k (n - k)^{n - k}}.$
Minkowski	$\left(\sum_{i=1}^{n} x_i + y_i ^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} x_i ^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} y_i ^p\right)^{\frac{1}{p}} \text{for } p \ge 1.$		$\frac{n^k}{4k!} \le \binom{n}{k} \text{for } \sqrt{n} \ge k \ge 0; \frac{4^n}{\sqrt{\pi n}} (1 - \frac{1}{8n}) \le \binom{2n}{n} \le \frac{4^n}{\sqrt{\pi n}} (1 - \frac{1}{9n}).$ $\binom{n_1}{k_1} \binom{n_2}{k_2} \le \binom{n_1 + n_2}{k_1 + k_2}; \binom{tn}{k} \ge t^k \binom{n}{k} \text{for } t \ge 1.$
Hölder	$\sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} x_i ^p\right)^{1/p} \left(\sum_{i=1}^{n} y_i ^q\right)^{1/q} \text{for } p, q > 1, \ \frac{1}{p} + \frac{1}{q} = 1.$		$\frac{\sqrt{\pi}}{2}G \le \binom{n}{\alpha n} \le G \text{for } G = \frac{2^{nH(\alpha)}}{\sqrt{2\pi n\alpha(1-\alpha)}}, \ H(x) = -\log_2(x^x(1-x)^{1-x}).$
Bernoulli	$(1+x)^r \ge 1+rx$ for $x \ge -1$, $r \in \mathbb{R} \setminus (0,1)$. Reverse for $r \in [0,1]$.		$\sum_{i=0}^{d} {n \choose i} \le \min \left\{ n^d + 1, \left(\frac{en}{d} \right)^d, \ 2^n \right\} \text{for } n \ge d \ge 1.$
	$(1+x)^r \le 1 + (2^r - 1)x$ for $x \in [0,1], r \in \mathbb{R} \setminus (0,1)$. $(1+x)^n \le \frac{1}{1-nx}$ for $x \in [-1,0], n \in \mathbb{N}$.		$\sum_{i=0}^{\alpha n} \binom{n}{i} \le \min \left\{ \frac{1-\alpha}{1-2\alpha} \binom{n}{\alpha n}, \ 2^{nH(\alpha)}, \ 2^n e^{-2n\left(\frac{1}{2}-\alpha\right)^2} \right\} \text{for } \alpha \in (0, \frac{1}{2}).$
	$(1+x)^r \le 1 + \frac{rx}{1-(r-1)x}$ for $x \in [-1, \frac{1}{r-1}), r > 1$.	Stirling	$e\left(\frac{n}{e}\right)^n \leq \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{1/(12n+1)} \leq n! \leq \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{1/12n} \leq en\left(\frac{n}{e}\right)^n$
	$(1+nx)^{n+1} \ge (1+(n+1)x)^n$ for $x \in \mathbb{R}, n \in \mathbb{N}$. $x^y > \frac{x}{x+y}$ for $x > 0, y \in (0,1)$.	means	$\min x_i \le \frac{n}{\sum x_i^{-1}} \le \left(\prod x_i\right)^{1/n} \le \frac{1}{n} \sum x_i \le \sqrt{\frac{1}{n} \sum x_i^2} \le \frac{\sum x_i^2}{\sum x_i} \le \max x_i$
exponential	$(a+b)^n \le a^n + nb(a+b)^{n-1}$ for $a, b \ge 0, \ n \in \mathbb{N}$. $e^x \ge \left(1 + \frac{x}{n}\right)^n \ge 1 + x, \left(1 + \frac{x}{n}\right)^n \ge e^x \left(1 - \frac{x^2}{n}\right)$ for $n \ge 1, x \le n$.	$power\ means$	$\begin{split} M_p &\leq M_q \ \text{ for } \ p \leq q \text{, where } M_p = \left(\sum_i w_i x_i ^p\right)^{1/p}, w_i \geq 0, \sum_i w_i = 1. \end{split}$ In the limit $M_0 = \prod_i x_i ^{w_i}, \ M_{-\infty} = \min_i \{x_i\}, \ M_{\infty} = \max_i \{x_i\}.$
	$e^{x} \le 1 + x + x^{2}$ for $x < 1.79$; $xe^{x} \ge x + x^{2} + \frac{x^{3}}{2}$ for $x \in \mathbb{R}$. $e^{x} \ge x^{e}$ for $x \ge 0$; $\frac{x^{n}}{x!} + 1 \le e^{x} \le \left(1 + \frac{x}{x}\right)^{n + x/2}$ for $x, n > 0$.	Lehmer	$\frac{\sum_{i} w_{i} x_{i} ^{p}}{\sum_{i} w_{i} x_{i} ^{p-1}} \leq \frac{\sum_{i} w_{i} x_{i} ^{q}}{\sum_{i} w_{i} x_{i} ^{q-1}} \text{ for } p \leq q, \ w_{i} \geq 0.$
	$a^{x} \le 1 + (a-1)x; a^{-x} \le 1 - \frac{(a-1)}{a}x \text{for } x \in [0,1], \ a \ge 1.$ $\frac{1}{2-x} < x^{x} < x^{2} - x + 1, \text{ for } x \in (0,1]; e^{x} + e^{-x} \le 2e^{x^{2}/2}, \text{ for } x \in \mathbb{R}.$	$log\ mean$	$\sqrt{xy} \le \left(\frac{\sqrt{x} + \sqrt{y}}{2}\right) (xy)^{\frac{1}{4}} \le \frac{x - y}{\ln(x) - \ln(y)} \le \left(\frac{\sqrt{x} + \sqrt{y}}{2}\right)^2 \le \frac{x + y}{2} \text{ for } x, y > 0.$
	$x^{1/r}(x-1) \le rx(x^{1/r}-1)$ for $x, r \ge 1$.	Heinz	$\sqrt{xy} \le \frac{x^{1-\alpha}y^{\alpha} + x^{\alpha}y^{1-\alpha}}{2} \le \frac{x+y}{2}$ for $x, y > 0, \alpha \in [0, 1]$.
	$x^{y} + y^{x} > 1;$ $e^{x} > \left(1 + \frac{x}{y}\right)^{y} > e^{\frac{xy}{x+y}}$ for $x, y > 0$.	Maclaurin-	$S_k^2 \ge S_{k-1} S_{k+1}$ and $(S_k)^{1/k} \ge (S_{k+1})^{1/(k+1)}$ for $1 \le k < n$,
	$2 - y - e^{-x - y} \le 1 + x \le y + e^{x - y}; e^x \le x + e^{x^2} \text{for } x, y \in \mathbb{R}.$ $\left(1 + \frac{x}{a}\right)^p \ge \left(1 + \frac{x}{a}\right)^q \text{for } (i) \ x > 0, \ p > q > 0,$	Newton	$S_k = \frac{1}{\binom{n}{k}} \sum_{1 \le i_1 < \dots < i_k \le n} a_{i_1} a_{i_2} \cdots a_{i_k}, \text{and} a_i \ge 0.$
	(ii) - p < -q < x < 0, (iii) - q > -p > x > 0. Reverse for: (iv) q < 0 < p, -q > x > 0, (v) q < 0 < p, -p < x < 0.	Jensen	$\varphi\left(\sum_{i} p_{i} x_{i}\right) \leq \sum_{i} p_{i} \varphi\left(x_{i}\right)$ where $p_{i} \geq 0, \sum p_{i} = 1$, and φ convex. Alternatively: $\varphi\left(\operatorname{E}\left[X\right]\right) \leq \operatorname{E}\left[\varphi(X)\right]$. For concave φ the reverse holds.
logarithm	$\frac{x}{1+x} \le \ln(1+x) \le \frac{x(6+x)}{6+4x} \le x$ for $x > -1$.	Chebyshev	$\sum_{i=1}^{n} f(x_i)g(x_i)p_i \ge \left(\sum_{i=1}^{n} f(x_i)p_i\right)\left(\sum_{i=1}^{n} g(x_i)p_i\right)$
,	$\frac{2}{2+x} \le \frac{1}{\sqrt{1+x+x^2/12}} \le \frac{\ln(1+x)}{x} \le \frac{1}{\sqrt{x+1}} \le \frac{2+x}{2+2x} \text{for } x > -1.$		for $x_1 \leq \cdots \leq x_n$ and f, g nondecreasing, $p_i \geq 0$, $\sum p_i = 1$.
	$\ln(n) + \frac{1}{n+1} < \ln(n+1) < \ln(n) + \frac{1}{n} \le \sum_{i=1}^{n} \frac{1}{i} \le \ln(n) + 1$ for $n \ge 1$.		Alternatively: $E[f(X)g(X)] \ge E[f(X)]E[g(X)]$.
	$ \ln(x) \le \frac{1}{2} x - \frac{1}{x} ; \ \ln(x+y) \le \ln(x) + \frac{y}{x}; \ \ln(x) \le y(x^{\frac{1}{y}} - 1); \ x, y \ge 0.$	rearrangement	$\sum_{i=1}^{n} a_i b_i \ge \sum_{i=1}^{n} a_i b_{\pi(i)} \ge \sum_{i=1}^{n} a_i b_{n-i+1} \text{ for } a_1 \le \dots \le a_n,$
	$\ln(1+x) \ge x - \frac{x^2}{2}$ for $x \ge 0$; $\ln(1+x) \ge -x - x^2$ for $x > -0.68$.		$b_1 \leq \cdots \leq b_n$ and π a permutation of $[n]$. More generally:
trigonometric	$x - \frac{x^3}{2} \le x \cos x \le \frac{x \cos x}{1 - x^2/3} \le x \sqrt[3]{\cos x} \le x - x^3/6 \le x \cos \frac{x}{\sqrt{3}} \le \sin x,$		$\sum_{i=1}^{n} f_i(b_i) \ge \sum_{i=1}^{n} f_i(b_{\pi(i)}) \ge \sum_{i=1}^{n} f_i(b_{n-i+1})$ with $(f_{i+1}(x) - f_i(x))$ nondecreasing for all $1 \le i < n$.
hyperbolic	$x\cos x \le \frac{x^3}{\sinh^2 x} \le x\cos^2(x/2) \le \sin x \le (x\cos x + 2x)/3 \le \frac{x^2}{\sinh x},$		
	$\max\left\{\frac{2}{\pi}, \frac{\pi^2 - x^2}{\pi^2 + x^2}\right\} \le \frac{\sin x}{x} \le \cos \frac{x}{2} \le 1 \le 1 + \frac{x^2}{3} \le \frac{\tan x}{x} \text{for } x \in \left[0, \frac{\pi}{2}\right].$		Dually: $\prod_{i=1}^{n} (a_i + b_i) \le \prod_{i=1}^{n} (a_i + b_{\pi(i)}) \le \prod_{i=1}^{n} (a_i + b_{n-i+1})$ for $a_i, b_i \ge 0$.

Weierstrass	$\prod_i (1 - x_i)^{w_i} \ge 1 - \sum_i w_i x_i$, and	Milne	$\left(\sum_{i=1}^{n} (a_i + b_i)\right) \left(\sum_{i=1}^{n} \frac{a_i b_i}{a_i + b_i}\right) \le \left(\sum_{i=1}^{n} a_i\right) \left(\sum_{i=1}^{n} b_i\right) \text{for } a_i, b_i \ge 0.$
Kantorovich	$1 + \sum_{i} w_{i} x_{i} \leq \prod_{i} (1 + x_{i})^{w_{i}} \leq \prod_{i} (1 - x_{i})^{-w_{i}} \text{for } x_{i} \in [0, 1], w_{i} \geq 1.$ $\left(\sum_{i} x_{i}^{2}\right) \left(\sum_{i} y_{i}^{2}\right) \leq \left(\frac{A}{G}\right)^{2} \left(\sum_{i} x_{i} y_{i}\right)^{2} \text{for } x_{i}, y_{i} > 0,$	Carleman	$\sum_{k=1}^{n} \left(\prod_{i=1}^{k} a_i \right)^{1/k} \le e \sum_{k=1}^{n} a_k $
	$0 < m \le \frac{x_i}{y_i} \le M < \infty, A = (m+M)/2, G = \sqrt{mM}.$	$sum {\it \& l} product$	$\left \prod_{i=1}^{n} a_i - \prod_{i=1}^{n} b_i \right \le \sum_{i=1}^{n} a_i - b_i \text{for } a_i , b_i \le 1.$
Nesbitt	$\sum_{i=1}^{n} \frac{a_i}{S - a_i} \ge \frac{n}{n-1}$ for $a_i \ge 0$, $S = \sum_{i=1}^{n} a_i$.		$\prod_{i=1}^{n} (t + a_i) \ge (t+1)^n$ where $\prod_{i=1}^{n} a_i \ge 1$, $a_i > 0$, $t > 0$.
$sum~ {\it \&integral}$	$\int_{L-1}^{U} f(x) dx \le \sum_{i=L}^{U} f(i) \le \int_{L}^{U+1} f(x) dx \text{ for } f \text{ nondecreasing}.$	Radon	$\sum_{i} \frac{x_{i}^{p}}{a_{i}^{p-1}} \ge \frac{\left(\sum_{i} x_{i}\right)^{p}}{\left(\sum_{i} a_{i}\right)^{p-1}} \text{for } x_{i}, a_{i} \ge 0, p \ge 1 \text{ (rev. if } p \in [0, 1]).$
Cauchy	$f'(a) \le \frac{f(b) - f(a)}{b - a} \le f'(b)$ where $a < b$, and f convex.	Karamata	$\sum_{i=1}^{n} \varphi(a_i) \ge \sum_{i=1}^{n} \varphi(b_i) \text{for } a_1 \ge a_2 \ge \cdots \ge a_n, b_1 \ge \cdots \ge b_n,$ and $\{a_i\} \succeq \{b_i\}$ (majorization), i.e. $\sum_{i=1}^{t} a_i \ge \sum_{i=1}^{t} b_i$ for all $1 \le t \le n$, with $\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} b_i$, and φ convex (for concave φ the reverse holds).
Hermite	$\varphi\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b \varphi(x) dx \le \frac{\varphi(a)+\varphi(b)}{2}$ for φ convex.	Muirhead	$\sum_{\pi} x_{\pi(1)}^{a_1} \cdots x_{\pi(n)}^{a_n} \ge \sum_{\pi} x_{\pi(1)}^{b_1} \cdots x_{\pi(n)}^{b_n}, \text{sums over permut. } \pi \text{ of } [n],$
Gibbs	$\sum_{i} a_{i} \log \frac{a_{i}}{b_{i}} \ge a \log \frac{a}{b} \text{for } a_{i}, b_{i} \ge 0, \text{ or more generally:}$		where $a_1 \ge \cdots \ge a_n$, $b_1 \ge \cdots \ge b_n$, $\{a_k\} \succeq \{b_k\}$, $x_i \ge 0$.
	$\sum_{i} a_{i} \varphi\left(\frac{b_{i}}{a_{i}}\right) \leq a \varphi\left(\frac{b}{a}\right) \text{for } \varphi \text{ concave, and } a = \sum_{i} a_{i}, \ b = \sum_{i} b_{i}.$	Hilbert	$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_m b_n}{m+n} \leq \pi \left(\sum_{m=1}^{\infty} a_m^2 \right)^{\frac{1}{2}} \left(\sum_{n=1}^{\infty} b_n^2 \right)^{\frac{1}{2}} \text{for } a_m, b_n \in \mathbb{R}.$ With max $\{m, n\}$ instead of $m+n$, we have 4 instead of π .
Chong	$\sum_{i=1}^{n} \frac{a_i}{a_{\pi(i)}} \ge n \text{and} \prod_{i=1}^{n} a_i^{a_i} \ge \prod_{i=1}^{n} a_i^{a_{\pi(i)}} \text{for } a_i > 0.$	Hardy	$\sum_{n=1}^{\infty} \left(\frac{a_1 + a_2 + \dots + a_n}{n} \right)^p \le \left(\frac{p}{p-1} \right)^p \sum_{n=1}^{\infty} a_n^p \text{for } a_n \ge 0, p > 1.$
Schur-Vornicu	$f(x)(x-y)^k(x-z)^k+f(y)(y-z)^k(y-x)^k+f(z)(z-x)^k(z-y)^k\geq 0$ where $x,y,z\geq 0,\ k\geq 1$ integer, f convex or monotonic, $f\geq 0$.	Mathieu	$\frac{1}{c^2+1/2} < \sum_{n=1}^{\infty} \frac{2n}{(n^2+c^2)^2} < \frac{1}{c^2}$ for $c \neq 0$.
Young	$(\frac{1}{px^p} + \frac{1}{qy^q})^{-1} \le xy \le \frac{x^p}{p} + \frac{y^q}{q}$ for $x, y, p, q > 0$, $\frac{1}{p} + \frac{1}{q} = 1$. $\int_0^a f(x) dx + \int_0^b f^{-1}(x) dx \ge ab$, for f cont., strictly increasing.	Kraft	$\sum 2^{-c(i)} \le 1$ for $c(i)$ depth of leaf i of binary tree, sum over all leaves.
Shapiro	$\int_{0}^{n} \int f(x) dx + \int_{0}^{n} \int f(x) dx \ge d\theta, \text{ for } f \text{ cont., strictly increasing.}$ $\sum_{i=1}^{n} \frac{x_{i}}{x_{i+1} + x_{i+2}} \ge \frac{n}{2} \text{where } x_{i} > 0, \ (x_{n+1}, x_{n+2}) := (x_{1}, x_{2}),$	LYM	$\sum_{X \in \mathcal{A}} {n \choose X }^{-1} \le 1, \mathcal{A} \subset 2^{[n]}, \text{ no set in } \mathcal{A} \text{ is subset of another set in } \mathcal{A}.$
	and $n \le 12$ if even, $n \le 23$ if odd.	FKG	$\Pr[x \in \mathcal{A} \cap \mathcal{B}] \ge \Pr[x \in \mathcal{A}] \cdot \Pr[x \in \mathcal{B}], \text{for } \mathcal{A}, \mathcal{B} \text{ monotone set systems.}$
Hadamard	$(\det A)^2 \le \prod_{i=1}^n \sum_{j=1}^n A_{ij}^2$ where A is an $n \times n$ matrix.	Shearer	$ \mathcal{A} ^t \leq \prod_{F \in \mathcal{F}} \text{trace}_F(\mathcal{A}) $ for $\mathcal{A}, \mathcal{F} \subseteq 2^{[n]}$, where every $i \in [n]$ appears in at least t sets of \mathcal{F} , and $\text{trace}_F(\mathcal{A}) = \{F \cap A : A \in \mathcal{A}\}.$
Schur	$\sum_{i=1}^{n} \lambda_i^2 \leq \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}^2 \text{ and } \sum_{i=1}^{k} d_i \leq \sum_{i=1}^{k} \lambda_i \text{ for } 1 \leq k \leq n.$ $A \text{ is an } n \times n \text{ matrix. For the second inequality } A \text{ is symmetric.}$ $\lambda_1 \geq \cdots \geq \lambda_n \text{ the eigenvalues, } d_1 \geq \cdots \geq d_n \text{ the diagonal elements.}$	Sauer-Shelah	$ \mathcal{A} \leq \operatorname{str}(\mathcal{A}) \leq \sum_{i=0}^{\operatorname{vc}(\mathcal{A})} \binom{n}{i} \text{for } \mathcal{A} \subseteq 2^{[n]}, \text{ and}$ $\operatorname{str}(\mathcal{A}) = \{X \subseteq [n] : X \text{ shattered by } \mathcal{A}\}, \operatorname{vc}(\mathcal{A}) = \max\{ X : X \in \operatorname{str}(\mathcal{A})\}.$
Ky Fan	$\frac{\prod_{i=1}^{n} x_i^{a_i}}{\prod_{i=1}^{n} (1-x_i)^{a_i}} \le \frac{\sum_{i=1}^{n} a_i x_i}{\sum_{i=1}^{n} a_i (1-x_i)} \text{ for } x_i \in [0, \frac{1}{2}], \ a_i \in [0, 1], \ \sum a_i = 1.$	Khintchine	$\sqrt{\sum_i a_i^2} \ge \mathrm{E} \big[\big \sum_i a_i r_i \big \big] \ge \frac{1}{\sqrt{2}} \sqrt{\sum_i a_i^2}$ where $a_i \in \mathbb{R}$, and
Aczél	$(a_1b_1 - \sum_{i=2}^n a_ib_i)^2 \ge (a_1^2 - \sum_{i=2}^n a_i^2)(b_1^2 - \sum_{i=2}^n b_i^2)$ given that $a_1^2 > \sum_{i=2}^n a_i^2$ or $b_1^2 > \sum_{i=2}^n b_i^2$.	Bonferroni	$r_i \in \{\pm 1\}$ random variables (r.v.) i.i.d. w.pr. $\frac{1}{2}$. $\Pr\left[\bigvee_{i=1}^{n} A_i\right] \leq \sum_{i=1}^{k} (-1)^{j-1} S_j \text{for } 1 \leq k \leq n, k \text{ odd (rev. for } k \text{ even)},$
Mahler	$\prod_{i=1}^{n} (x_i + y_i)^{1/n} \ge \prod_{i=1}^{n} x_i^{1/n} + \prod_{i=1}^{n} y_i^{1/n} \text{where } x_i, y_i > 0.$	20mer10m	$S_k = \sum_{1 \le i_1 < \dots < i_k \le n} \Pr[A_{i_1} \land \dots \land A_{i_k}]$ where A_i are events.
Abel	$b_1 \cdot \min_{k} \sum_{i=1}^{k} a_i \le \sum_{i=1}^{n} a_i b_i \le b_1 \cdot \max_{k} \sum_{i=1}^{k} a_i$ for $b_1 \ge \dots \ge b_n \ge 0$.	Bhatia-Davis	$\operatorname{Var}[X] \le (M - \operatorname{E}[X])(\operatorname{E}[X] - m)$ where $X \in [m, M]$.

Samuelson	$\mu - \sigma \sqrt{n-1} \le x_i \le \mu + \sigma \sqrt{n-1}$ for $i = 1,, n$, where $\mu = \sum x_i/n$, $\sigma^2 = \sum (x_i - \mu)^2/n$.	Paley-Zygmund	$\Pr[X \ge \mu \ E[X]] \ge 1 - \frac{\operatorname{Var}[X]}{(1-\mu)^2 (E[X])^2 + \operatorname{Var}[X]}$ for $X \ge 0$, $\operatorname{Var}[X] < \infty$, and $\mu \in (0,1)$.
Markov Chebyshev	$\begin{split} &\Pr[X \geq a] \leq \operatorname{E}[X]/a \text{where } X \text{ is a r.v., } a > 0. \\ &\Pr[X \leq c] \leq (1 - \operatorname{E}[X])/(1 - c) \text{for } X \in [0, 1] \text{ and } c \in [0, \operatorname{E}[X]]. \\ &\Pr[X \in S] \leq \operatorname{E}[f(X)]/s \text{for } f \geq 0, \text{ and } f(x) \geq s > 0 \text{ for all } x \in S. \\ &\Pr[X - \operatorname{E}[X] \geq t] \leq \operatorname{Var}[X]/t^2 \text{where } t > 0. \\ &\Pr[X - \operatorname{E}[X] \geq t] \leq \operatorname{Var}[X]/(\operatorname{Var}[X] + t^2) \text{where } t > 0. \end{split}$	Vysochanskij- Petunin-Gauss	$\Pr[X - \mathrm{E}[X] \ge \lambda \sigma] \le \frac{4}{9\lambda^2} \text{if } \lambda \ge \sqrt{\frac{8}{3}},$
2^{nd} moment	$\Pr[X > 0] \ge (\operatorname{E}[X])^2/(\operatorname{E}[X^2]) \text{where } \operatorname{E}[X] \ge 0.$ $\Pr[X = 0] \le \operatorname{Var}[X]/(\operatorname{E}[X^2]) \text{where } \operatorname{E}[X^2] \ne 0.$	Etemadi	$\sigma^2 = \operatorname{Var}[X] < \infty, \tau^2 = \operatorname{Var}[X] + (\operatorname{E}[X] - m)^2 = \operatorname{E}[(X - m)^2].$ $\operatorname{Pr}\left[\max_{1 \le k \le n} S_k \ge 3\alpha\right] \le 3 \max_{1 \le k \le n} \left(\operatorname{Pr}\left[S_k \ge \alpha\right]\right)$
$k^{th} \ m{moment}$	$\begin{split} &\Pr\big[\big X-\mu\big \geq t\big] \leq \frac{\mathrm{E}\left[(X-\mu)^k\right]}{t^k} \text{ and} \\ &\Pr\big[\big X-\mu\big \geq t\big] \leq C_k \left(\frac{nk}{et^2}\right)^{k/2} \text{ for } X_i \in [0,1] \text{ k-wise indep. r.v.,} \end{split}$	Doob	where X_i are i.r.v., $S_k = \sum_{i=1}^k X_i$, $\alpha \ge 0$. $\Pr\left[\max_{1 \le k \le n} X_k \ge \varepsilon\right] \le \mathrm{E}\left[X_n \right]/\varepsilon \text{for martingale } (X_k) \text{ and } \varepsilon > 0.$
	$\Pr[X - \mu \ge t] \le C_k \left(\frac{1}{et^2}\right)$ for $X_i \in [0, 1]$ k-wise indep. r.v., $X = \sum X_i, \ i = 1, \dots, n, \ \mu = \mathrm{E}[X], \ C_k = 2\sqrt{\pi k}e^{1/6k}, \ k \ \mathrm{even}.$	Bennett	$\begin{aligned} & \Pr\left[\sum_{i=1}^{n} X_{i} \geq \varepsilon\right] \leq \exp\left(-\frac{n\sigma^{2}}{M^{2}} \; \theta\left(\frac{M\varepsilon}{n\sigma^{2}}\right)\right) \text{where } X_{i} \; \text{i.r.v.,} \\ & \operatorname{E}[X_{i}] = 0, \;\; \sigma^{2} = \frac{1}{n} \sum \operatorname{Var}[X_{i}], \;\; X_{i} \leq M \; (\text{w. prob. 1}), \;\; \varepsilon \geq 0, \end{aligned}$
$4^{th} \ moment$	$\mathrm{E} ig[X ig] \geq rac{ ig(\mathrm{E} ig[X^2 ig] ig)^{3/2}}{ ig(\mathrm{E} ig[X^4 ig] ig)^{1/2}} ext{where } 0 < \mathrm{E} ig[X^4 ig] < \infty.$		$\theta(u) = (1+u)\log(1+u) - u.$
Chernoff	$\Pr[X \ge t] \le F(a)/a^t$ for X r.v., $\Pr[X = k] = p_k$, $F(z) = \sum_k p_k z^k$ probability gen. func., and $a \ge 1$.	Bernstein	$\Pr\left[\sum_{i=1}^{n} X_i \ge \varepsilon\right] \le \exp\left(\frac{-\varepsilon^2}{2(n\sigma^2 + M\varepsilon/3)}\right) \text{for } X_i \text{ i.r.v.,}$ $E[X_i] = 0, \ X_i < M \text{ (w. prob. 1) for all } i, \ \sigma^2 = \frac{1}{n} \sum \text{Var}[X_i], \ \varepsilon \ge 0.$
	$\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu} \le \exp\left(\frac{-\mu\delta^2}{3}\right)$ for X_i i.r.v. from $[0,1], X = \sum X_i, \ \mu = \mathrm{E}[X], \ \delta \ge 0$ resp. $\delta \in [0,1)$.	Azuma	$\Pr[\left X_n - X_0\right \ge \delta] \le 2 \exp\left(\frac{-\delta^2}{2\sum_{i=1}^n c_i^2}\right) \text{for martingale } (X_k) \text{ s.t.}$ $\left X_i - X_{i-1}\right < c_i \text{ (w. prob. 1), for } i = 1, \dots, n, \ \delta \ge 0.$
	$\Pr\big[X \leq (1-\delta)\mu\big] \leq \left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu} \leq \exp\left(\frac{-\mu\delta^2}{2}\right) \text{ for } \delta \in [0,1).$ Further from the mean: $\Pr\big[X \geq R\big] \leq 2^{-R}$ for $R \geq 2e\mu \ (\approx 5.44\mu)$.	Efron-Stein	$\operatorname{Var}[Z] \leq \frac{1}{2} \operatorname{E} \left[\sum_{i=1}^{n} (Z - Z^{(i)})^{2} \right] \text{for } X_{i}, X_{i}' \in \mathcal{X} \text{ i.r.v.},$ $f : \mathcal{X}^{n} \to \mathbb{R}, \ Z = f(X_{1}, \dots, X_{n}), \ Z^{(i)} = f(X_{1}, \dots, X_{i}', \dots, X_{n}).$
	$\Pr[X \ge t] \le \frac{\binom{n}{k} p^k}{\binom{t}{k}} \text{for } X_i \in \{0, 1\} \text{ k-wise i.r.v., } E[X_i] = p, X = \sum X_i.$	McDiarmid	$\Pr[\left Z - \mathrm{E}[Z]\right \ge \delta] \le 2 \exp\left(\frac{-2\delta^2}{\sum_{i=1}^n c_i^2}\right) \text{for } X_i, X_i' \in \mathcal{X} \text{ i.r.v.},$
	$\Pr[X \ge (1+\delta)\mu] \le \binom{n}{\hat{k}} p^{\hat{k}} / \binom{(1+\delta)\mu}{\hat{k}} \text{for } X_i \in [0,1] \text{ k-wise i.r.v.,}$ $k \ge \hat{k} = \lceil \mu \delta / (1-p) \rceil, \ E[X_i] = p_i, \ X = \sum X_i, \ \mu = E[X], \ p = \frac{\mu}{n}, \ \delta > 0.$	Janson	$Z, Z^{(i)}$ as before, s.t. $\left Z - Z^{(i)}\right \leq c_i$ for all i , and $\delta \geq 0$. $M \leq \Pr\left[\bigwedge \overline{B}_i\right] \leq M \exp\left(\frac{\Delta}{2 - 2\varepsilon}\right) \text{where } \Pr[B_i] \leq \varepsilon \text{ for all } i,$
Hoeffding	$\Pr[X - \mathrm{E}[X] \ge \delta] \le 2 \exp\left(\frac{-2\delta^2}{\sum_{i=1}^n (b_i - a_i)^2}\right) \text{for } X_i \text{ i.r.v.,}$ $X_i \in [a_i, b_i] \text{ (w. prob. 1), } X = \sum_i X_i, \ \delta \ge 0.$		$M = \prod (1 - \Pr[B_i]), \ \Delta = \sum_{i \neq j, B_i \sim B_j} \Pr[B_i \wedge B_j].$
	A related lemma, assuming $\mathrm{E}[X]=0,\ X\in[a,b]$ (w. prob. 1) and $\lambda\in\mathbb{R}$:	Lovász	$\Pr\left[\bigwedge \overline{B}_i\right] \ge \prod (1-x_i) > 0$ where $\Pr[B_i] \le x_i \cdot \prod_{(i,j)\in D} (1-x_j),$
	$\mathrm{E}\big[e^{\lambda X}\big] \le \exp\left(\frac{\lambda^2 (b-a)^2}{8}\right)$		for $x_i \in [0,1)$ for all $i = 1,, n$ and D the dependency graph. If each B_i mutually indep. of all other events, except at most d ,
Kolmogorov	$\Pr\left[\max_{k} S_k \ge \varepsilon\right] \le \frac{1}{\varepsilon^2} \operatorname{Var}[S_n] = \frac{1}{\varepsilon^2} \sum_{i} \operatorname{Var}[X_i]$ where X_1, \dots, X_n are i.r.v., $\operatorname{E}[X_i] = 0$,		$\Pr[B_i] \le p$ for all $i=1,\ldots,n$, then if $ep(d+1) \le 1$ then $\Pr\left[\bigwedge \overline{B}_i\right] > 0$.
	Var $[X_i] < \infty$ for all i , $S_k = \sum_{i=1}^k X_i$ and $\varepsilon > 0$.	⊚⊕⊚ László Kozi	ma · latest version: http://www.Lkozma.net/inequalities_cheat_sheet