

# **Cloud Computing**

Final Fxam Exercise

Giovanni Lucarelli May 17, 2025

Introduction

#### Goal

- 1. **Build** a cluster of virtual nodes as:
  - Virtual Machines → VirtualBox
  - Containers → Docker
- 2. Assess and compare the performance:
  - · CPU
  - Memory
  - · Disk I/O
  - Network

# (Virtual) Hardware Specification

#### **Host Machine:**

CPU Intel Core i7-8550U CPU @ 1.80GHz,

4 Cores / 8 Threads

Memory 8 GB

Disk 256 GB SSD

OS Ubuntu 24.04.2 LTS

#### **Cluster Nodes:**

CPU 2 Cores

Memory 2048 MB

Disk 20 GB

OS Ubuntu 22.04.5 live server



# Methodology

# **Virtual Machine Setup**

- Build a template machine (hardware & software) & clone (reinitializing the MAC)
- 2. Network Adapters (VirtualBox GUI):
  - 2.1 NAT, internal net
  - 2.2 Port Forwarding and SSH (Host→Master)
- 3. Master Node:
  - 3.1 etc/hostname, etc/hosts
  - 3.2 DHCP, DNS, gateway
  - 3.3 Shared file system (NFS)
- 4. Worker Node:
  - 4.1 etc/hostname
  - 4.2 SSH (Master→Worker)
  - 4.3 Shared file system (NFS)

### Container Setup (1/2)

1. Build a template machine (Dockerfile)

```
# Download the latest official Ubuntu image
FROM ubuntu:latest

# Update and install all the required software
RUN apt-get update && apt-get install -y \
...
# Expose the SSH port
EXPOSE 22
```

## Container Setup (2/2)

### 2. Build a cluster (Docker Compose)

```
cluster01:
services:
                             build: .
  cluster01:
                             container name: cluster01
    . . .
  node01:
                             hostname: cluster01
                             networks:
    . . .
  node02:
                                internal-net:
                             deploy:
    . . .
networks:
                                resources:
  internal-
                                  limits:
                                    cpus: "2"
net:
    driver: bridge
                                    memory: 2G
volumes:
                             ports:
  shared-
                                - "2220:22"
                             volumes:
data:
    driver: local
                                - shared-data:/shared
```

#### **Benchmarks**

- **hpcc** suite of tests to measure the performance of high-performance computing systems
- **stress-ng** stress-testing CPUs, memory and other components under heavy load
- **sysbench** evaluating system parameters such as CPU, memory, and other components
  - iozone measure filesystem I/O performance
    - iperf measure network performance

# Assessing the Cluster

### General guidelines:

- no heavy processes on the host during the tests
- repeat each test multiple times to account for variability  $(1 < n_i < 5)$
- monitorate the host resources during the tests
- $\cdot$  repeat the tests on the host\*

# Running the tests

1. mpirun -np 4 -hostfile hosts <test>

```
File hosts:
node01 slots=2
```

node01 stots=2

2. bash-script to automatize multiple repetition of each test

# Results

# High Performance Computing Challenge (HPCC)

Number of repetition: 3

Benchmark types:

· Computational: HPL, DGEMM, FFT

· Memory: STREAM, PTRANS, RandomAccess

· Communication: PingPong, (PTRANS)

## **HPCC: Computational Performance**



### **HPCC: Nominal Memory Bandwidth**

sudo dmidecode --type memory

Configured Memory Speed: 1867 MT/s Bus width per channel: 64 bits = 8 bytes

Number of channels: 2

Bandwidth 
$$\left[\frac{GB}{s}\right] = 2 C \times 1.867 GT \times 8 \frac{B}{CT} = 29.9 \frac{GB}{s}$$

11

# HPCC: Memory Performance (1/2)

| Benchmark           | VM                | Container                          | Host              |
|---------------------|-------------------|------------------------------------|-------------------|
| SingleSTREAM (GB/s) |                   |                                    |                   |
| Сору                | 22.30 ± 0.32      | $\textbf{24.11} \pm \textbf{0.20}$ | 23.44 ± 0.06      |
| Scale               | 13.26 ± 0.19      | 14.23 ± 0.06                       | 14.06 ± 0.12      |
| Add                 | 14.40 ± 0.24      | 15.38 ± 0.16                       | 15.06 ± 0.14      |
| Triad               | 14.44 ± 0.28      | 15.48 ± 0.13                       | 15.22 ± 0.05      |
| StarSTREAM (GB/s)   |                   |                                    |                   |
| Сору                | 5.03 ± 0.03       | $\textbf{5.41} \pm \textbf{0.03}$  | 5.39 ± 0.02       |
| Scale               | $3.34 \pm 0.03$   | 3.55 ± 0.01                        | 3.56 ± 0.01       |
| Add                 | 3.75 ± 0.01       | 4.08 ± 0.02                        | 4.07 ± 0.01       |
| Triad               | 3.72 ± 0.04       | 4.02 ± 0.02                        | 4.00 ± 0.02       |
| PTRANS (GB/s)       | $0.196 \pm 0.014$ | 1.181 ± 0.239                      | $1.495 \pm 0.019$ |

# HPCC: Memory Performance (2/2)



### **HPCC: Comunication Performance**



Note the log scale!

## Stress-ng: CPU

### Repetitions: 5



- · real  $\approx$  usr + sys: no significant waiting time
- $\cdot$  VMs: fewer operations, higher CPU time per operation

### Stress-ng: Memory

#### Repetitions: 5



- Containers and Host:  $real > usr + sys \rightarrow some waiting time$
- VMs: real ≈ usr + sys → less waiting, but still higher CPU time per operation

# Sysbench

### Number of repetition: 5

| Benchmark                                  | VM                                 | Container                           | Host                          |
|--------------------------------------------|------------------------------------|-------------------------------------|-------------------------------|
| CPU<br>Events/s                            | 453.97 ± 1.28                      | 459.74 ± 2.54                       | 452.38 ± 6.76                 |
| Latency sum (ms)                           | 9998.15 ± 0.70                     | 9999.55 ± 0.51                      | 9999.56 ± 0.72                |
| Memory Throughput (Gib/s) Latency sum (ms) | $3.88 \pm 0.02$ $1066.09 \pm 8.01$ | $5.51 \pm 0.09 \\ 839.99 \pm 14.63$ | 5.19 ± 0.08<br>895.79 ± 18.40 |

### 10Zone: write local



### 10Zone: write shared



# IOZone: writing comparison



# Iperf



Conclusion

### Conclusion

#### **Docker Cluster**

- · Easier to configure (shared kernel and lightweight setup)
- Near-native or better performance in CPU and memory benchmarks
- · More scalable

#### VirtualBox Cluster

- · More time-consuming to configure (multiple full OS instances)
- · Higher overhead due to full hardware virtualization
- Lower memory bandwidth and network bitrate observed

