Stratégies de défense (dans les très grandes lignes)

Construire une stratégie de défense

- « Solution magique » n'existe pas en cybersécurité
- N'importe quelle couche de protection peut tomber
- Et on doit supposer qu'elle va effectivement tomber
- De multiples niveaux de protection doivent être mis en place

Prévention vs. Détection

- **Prévention**? Formidable. **Détection**? Obligatoire.
- **Détection** ⇒ **réaction**; on peut « minimiser les dégâts »
- Quand une attaque aura lieu avec succès, alors votre système de prévention sera déjà en défaut
 - Mais pas de détection ⇒ pas de réaction; les conséquences peuvent alors être très graves
- Évidemment, si aucune réponse (réaction) n'est prévue, le système de détection n'a qu'une valeur tout relative

Un point sur les scores

- On estime que **90 % des attaques ne sont pas détectées**
- Parmi les 10 % restants, elles sont restées indétectées pendant en moyenne
 20 mois
- En général, en SSI, le rapport d'investissements prévention/détection est beaucoup trop élevé

Flux entrants vs. flux sortants

- Plus de 95 % de surveillance se fait sur les flux entrants
 - Exfiltration de données?
 - Centres de Command & Control (C2)?
- De nouveau, on se concentre trop sur la prévention (principalement flux entrants) et pas assez sur la détection (beaucoup de flux sortants)

Notion de risque

- Sécurité = gestion de risques sur les ressources critiques
- Cela induit les notions de:
 - menaces: potentiel de dommage pouvant arriver
 - vulnérabilités: failles qui permettent à ces menaces de se concrétiser
- Risque = Menace x Vulnérabilité (pour l'instant)
 - on ne peut contrôler que les vulnérabilités
 - vulnérabilité est sans importance si aucune menace associée

Gestion des risques 101

Avant de passer une minute ou de dépenser un euro sur une solution quelconque de cybersécu, toujours se poser ces 3 questions:

- 1. Quel est le risque auquel ça répond?
- 2. Est-ce le risque le plus élevé actuellement?
- 3. Cette solution a-t-elle le meilleur rapport coût/efficacité?

DICP

DICP - Disponibilité

- On se protège contre **l'interruption d'un service** pour les personnes qui sont censées pouvoir y accéder (notion associée: **accessibilité**)
 - ressource doit être utilisable en des temps de réponse acceptables
 - en interne: dimensionner correctement (redondance) et gérer efficacement
 - en externe: fournisseurs de service s'engagent à fournir une certaine continuité de service
- Mise en place d'une politique de sauvegarde (rapport coût/risque)

DICP - Intégrité

- On se protège contre la modification (voire la destruction) non souhaitée
 d'informations ⇒ L'information est authentique et complète
- On parle donc ici de **protection en écriture**
- Problèmes liés:
 - systèmes d'exploitation & applications
 - transmission des données
 - procédures de sauvegarde
 - hashing & cryptographie

DICP - Confidentialité

- On se protège contre **la divulgation d'informations** en dehors des personnes autorisées
 - ⇒ Maintien du secret (**non-divulgation**)
- On parle donc ici de **protection en lecture**
- Problèmes liés:
 - contrôle d'accès
 - cryptographie

Priorisation DIC

- Il y a toujours un secteur plus critique que les autres en fonction des organisations:
 - Confidentialité: pharmaceutiques, publiques
 - Intégrité: finances
 - Disponibilité: e-commerce
- Il faut **aligner les besoins réels de l'organisation** avec les mesures de sécurité prises

Contrôle des accès

- **Identification**: de qui s'agit-il? (identifiant, *login*...)
- Authentification: vérification de cette identité (mot de passe, biométrie, etc.)
- Autorisations: qui a le droit de faire quoi?
- Contrôle des accès: rendu possible grâce aux 3 notions précédentes

DICP - Preuve

- Identification / authentification participent donc à confidentialité + intégrité, mais aussi à la notion de preuve:
 - non-répudiation: ne pouvoir nier qu'un événement a eu lieu
 - imputabilité: attribution d'une action à une entité donnée
 - traçabilité: reconstitution des événements à partir de données enregistrées (logging)

Preuve - Pour quoi faire?

- Gestion des incidents (reconstitution d'attaque, forensics...)
- Analyse des comportements utilisateurs (optimisation)
- Audit (diagnostic de sécurité)
- Systèmes de surveillance (détection d'incidents), IA

Approches défensives

- 1. Protection uniforme
- 2. Zones protégées
- 3. Protection centrée sur l'information
- 4. Protection orientée sur les vecteurs d'attaque

Protection uniforme

- Approche très commune, bon point de départ
- Toutes les parties de l'organisation reçoivent une protection du même type
 - pare-feu, VPN, IDS, antivirus, patching...
- Tous les systèmes sont traités de la même façon
- Limitation: tous les systèmes n'ont pas la même criticité

Zones protégées

- Créer un environnement très segmenté
- Les « unités de travail » plus critiques sont compartimentées
- Les accès à ces segments critiques sont très restreints
- Mise en place de pare-feux internes + VLANs / ACLs
- Les zones protégées **n'empêchent pas les brèches externes**: elles contrôlent les dommages internes

Protection centrée sur l'information

- Identification des ressources critiques et protection par couches
 - les données sont accessibles par les applications
 - les applications résident sur des hôtes
 - les hôtes communiquent par les réseaux
- Idée: les contrôles d'accès «accompagnent» les données, peu importe où elles sont utilisées
- Approche extensible (s'adapte à la quantité, à la répartition et au flux des données)

Protection orientée vecteurs d'attaque

- La menace a besoin d'un **vecteur** pour atteindre la vulnérabilité
- Principe: empêcher la menace d'utiliser le vecteur
- Exemples de vecteurs et de mesures associées:
 - clé USB ⇒ désactiver USB
 - pièces jointes email ⇒ bloquer ou scanner
 - usurpation d'email ⇒ vérifier l'adresse IP auprès du serveur

Réparation après incident

- Se contenter de *fix* les problèmes détectés : pas efficace
 - car alors on traite les symptômes, pas la maladie
- Compromission ⇒ backdoors et autres malwares potentiels
- Quand c'est possible, bonne stratégie: tout réinstaller de zéro

FACT

On ne peut pas protéger ce qu'on ne connaît pas

Gestion de configuration

- On ne peut pas gérer les vulnérabilités sans connaître le Système d'Informations
- Comme pour la détection d'intrusion, on va vouloir « détecter » et gérer les modifications du système
- Gestion de configuration :
 - description technique du SI (logiciels, matériel, doc...) ⇒ document de base
 - modifications qui sont faites au fil du temps? ⇒ modification du document de base

Résumé

- 100 % sécurité n'existe pas
 - par nature, les solutions préventives ne suffisent pas
 - la détection doit venir en soutien
 - tout est question de gestion de risques
 - sans rentrer en conflit avec les processus métier
- Flux entrants / Prévention, Flux sortants / Détection
- DIC + P
- Différentes approches défensives, non mutuellement exclusives