EE288 Data Conversions/Analog Mixed-Signal ICs Spring 2018

Lecture 21: Pipelined ADC 3

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Agenda

- Pipelined ADC Error Correction
 - Bit alignment
 - ADC Implementation Example
- OPAMP requirement
 - Gain
 - Bandwidth

Pipelined ADC

Pipelining – Old Idea

Pipelined ADC

- Stages operate on the input signal like a shift register
- New output data every clock cycle, but each stage introduces ½ clock cycle latency

Example1: Three 2-bit stages, no redundancy

 Example2: Three 2-bit stages, one bit redundancy in stages 1 and 2 (6-bit aggregate ADC resolution)

$$D_{out} = D_1 + \frac{1}{4}D_2 + \frac{1}{16}D_3$$

- Bits overlap
- Need adders (Still, no good reason for calling this "digital correction"...)

10-bit Pipelined ADC Implementation Example

Stage Delay Structure Example

No. of Comparators and Inter-stage Gain

- Number of Comparators for redundant stage design
 - $2^{N}-2$
 - 2-bit \rightarrow 2² 2 = 2 Comparators
 - 3-bit \rightarrow 2³ 2 = 6 Comparators
- Inter-stage MDAC gain requirement
 - 2^{N-1}
 - 2-bit $\rightarrow 2^{2-1} = 2$
 - 3-bit $\rightarrow 2^{3-1} = 4$
- For MDAC gain of 4
 - $Q = C_1 \cdot V_1 = C_2 \cdot V_2$
 - Sample input signal into 4 capacitors during phase 1 : $Q_1 = 4C \cdot V_{in}$
 - Flip-around to 1 capacitor during phase 1 : $Q_2 = C \cdot V_{out}$
 - $Q_1 = Q_2 \rightarrow V_{out} = 4V_{in}$

1.5-bit/Stage Pipelined ADC

- 2X gain + 3-level DAC + subtraction all integrated
- Digital redundancy relaxes the tolerance on CMP/RA offsets

2.5-bit/Stage Pipelined ADC

2.5-bit/Stage Pipelined ADC

- 6 comparators + 7-level DAC are required
- Max tolerance on comparator offset is $\pm V_R/8$

Example 14-bit Pipelined ADC

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 12, DECEMBER 2001

A 3-V 340-mW 14-b 75-Msample/s CMOS ADC With 85-dB SFDR at Nyquist Input

Wenhua (Will) Yang, Member, IEEE, Dan Kelly, Member, IEEE, Iuri Mehr, Member, IEEE, Mark T. Sayuk, Member, IEEE, and Larry Singer, Member, IEEE

Charge-redistribution THA

Flip-around THA

Amplifier in Flip-around THA

Amplifier in Stage 1

OPAMP Gain Requirement for N-bit ADC

OPAMP is always used in closed loop configuration.

OPAMP Closed-loop Response:

$$V_{\text{out}} = G \times V_{\text{in}} \left(\frac{1}{1 + \frac{1}{A \times \beta}} \right) \left(1 - e^{-\frac{t}{\tau}} \right)$$

Assume Gain Error should be less than 1/4 LSB

$$\frac{1}{\beta A} < \frac{1}{4} LSB \longrightarrow \frac{1}{\beta A} < \frac{1}{4} \frac{V_{FS}}{2^N}$$

$$A > \frac{4 \cdot 2^N}{\beta \cdot V_{FS}}$$

Resolution	Full Scale	Beta	Gain (dB)	Gain (dB)
N	V _{FS} (Volt)	β	4 ·2^(N) /(β·V _{FS})	20log(x)
10	1	1	4096	72
10	1	0.5	8192	78
11	1	1	8192	78
11	1	0.5	16384	84
12	1	1	16384	84
12	1	0.5	32768	90
13	1	1	32768	90
13	1	0.5	65536	96
14	1	1	65536	96
14	1	0.5	131072	102

OPAMP Bandwidth Requirement for N-bit ADC

Assume Settling Error should be less than 1/2 LSB

$$e^{-t/\tau} < \frac{1}{2} LSB \rightarrow e^{-t/\tau} < \frac{1}{2} \frac{V_{FS}}{2^N} \rightarrow \frac{t}{\tau} > (N+1) ln(2) - ln(V_{FS})$$

$$t = \frac{T_s}{2} = \frac{1}{2f_s}$$

$$\tau = \frac{1}{\omega_{-3dB}} = \frac{1}{2\pi f_{-3dB}} = \frac{1}{2\pi \beta f_u}$$

$$\frac{t}{\tau} = \frac{1}{2f_s} 2\pi \beta f_u > (N+1) \ln(2) - \ln(V_{FS})$$

$$f_u > \frac{f_s}{\pi\beta}[(N+1)ln(2) - ln(V_{FS})]$$

$$ln(2) = 0.693$$

Resolution	Full Scale	Beta	Sampling Rate	UGB	UGB(MHz)	fu/fs
N	V _{FS} (Volt)	β	fs	fu	fu	fu = k fs
10	1	1	1.00E+08	2.43E+08	243 MHz	fu = 2.5 fs
10	1	0.5	1.00E+08	4.85E+08	485 MHz	fu = 5 fs
11	1	1	1.00E+08	2.65E+08	265 MHz	
11	1	0.5	1.00E+08	5.30E+08	530 MHz	
12	1	1	1.00E+08	2.87E+08	287 MHz	fu = 3 fs
12	1	0.5	1.00E+08	5.74E+08	574 MHz	fu = 6 fs
13	1	1	1.00E+08	3.09E+08	309 MHz	
13	1	0.5	1.00E+08	6.18E+08	618 MHz	
14	1	1	1.00E+08	3.31E+08	331 MHz	fu = 3.3 fs
14	1	0.5	1.00E+08	6.62E+08	662 MHz	fu = 6.6 fs