Shannon's Theorem; block codes

George McNinch

2024-02-22

Overview

So far, we have chosen to use the term *code* for a vector subspace C of \mathbb{F}_q^n . The idea is that we are interested in encoding some data by identifying it with vectors in \mathbb{F}_q^k .

If G is a generator matrix for our code in standard form, then we encode our data: given a vector $v \in \mathbb{F}_q^k$, the encoded version is

$$v \cdot G \in \mathbb{F}_q^n$$
.

Note that – since G is in standard form – if $v = (v_1, \dots, v_k)$ then

$$v \cdot G = (v_1, \cdots, v_k, w_{k+1}, \cdots, w_n)$$

for some scalars $w_i \in \mathbb{F}_q$.

Our intent is to "transmit" this encoded data $v \cdot G$, possibly through some noisy channels that may result in transmission errors. At the other end, some vector w in \mathbb{F}_q^n is received, and the hope is to recover the vector v from the received vector w.

The field of *Information Theory* formulates a way to reason about such systems; we are going to sketch a rudimentary description.

Noisy Channels and Shannon's Theorem

We consider finite sets S and T (say $S = \{s_1, \dots, s_n\}$ and $T = \{t_1, \dots, t_m\}$).

We consider random variables X on S and Y on T. In particular, we may consider probabilities:

$$P(X = s) = p_s$$
, the probability that the random var X takes value $s \in S$

$$P(Y=t)=q_t, \quad \text{the probability that the random var Y takes value $t\in T$}$$

We view the elements of the set S as the data we *send* through some transmission channel, and T as the data we *receive*.

In the case of our linear codes $C \subset \mathbb{F}_q^n$ described above, S would be \mathbb{F}_q^k and T would be \mathbb{F}_q^n .

Block codes

More generally, we consider block codes $C \subset A^n$. Here A is an alphabet, and the code words in C are just n-tuples of elements from A. We write q = |A|. We say that the length of the code C is n.

In this setting, for our transmission channel we take S = C and $T = A^n$.

Channel

A channel Γ for transmission amounts to the following matrix with rows indexed by the set S and columns indexed by the set T:

$$p_{st} = P(Y = t \mid X = s)$$

i.e. the conditional probability that Y=t given that X=s.

Example An example is the *binary symmetric channel*, where $S = T = \{0, 1\}$ and the channel matrix Γ is given by

$$(p_{st}) = \begin{bmatrix} \phi & 1 - \phi \\ 1 - \phi & \phi \end{bmatrix} \quad \text{for some } \phi \in [0, 1].$$

Here ϕ represents the probability that 0 was received given that 0 was sent, and also the probability that 1 was received given that 1 was sent.

Note for example that if we know the channel matrix and if we know the probabilities for the random variable X, we find the probabilities for Y via

$$P(Y=t) = \sum_{s \in S} P(Y=t \mid X=s) \cdot P(X=s).$$

Example For the binary symmetric channel if we know that P(X=0)=p, then

$$P(Y = 0) = \phi \cdot p + (1 - \phi)(1 - p).$$

Decoding

With notation as above, a *decoding* is a function $\Delta: T \to S$. Think of it this way: given that $t \in T$ was received, the decoding function "guesses" that $\Delta(t) \in S$ was sent.

The question is: how to identify a good decoding function.

Well, we can consider the probabilities that reflect how often a decoding Δ is correct:

$$q_{\Delta(t),t} = P(X = \Delta(t) \mid Y = t)$$

represents the probability that $\Delta(t)$ was sent given that t was received.

The average probability of a correct decoding is given by

$$P_{\mathrm{COR}} = \sum_{t \in T} q_t \cdot q_{\Delta(t),t}$$

(remember that $q_t = P(Y = t)$)

Maximum likelihood decoding

A decoding $\Delta: T \to S$ is said to be a maximal likelihood decoding if

$$p_{\Delta(t),t} \ge p_{s,t}$$

for every $s \in S$ and every $t \in T$.

Under some circumstances, one achieves maximal likelihood decoding through minimum distance decoding.

For example, we have:

Lemma For the binary symmetric channel and $C \subset \mathbb{F}_2^n$, consider the assignment

$$\Delta(v) = u$$

where u is the closest neighbor to v in C with respect to the Hamming distance.

Then Δ is maximal likelihood decoding.

Transmission rate and capacity

For a block code $C \subset A^n$ with |A| = q, the transmission rate of C is defined to be

$$R = \frac{\log_q(|C|)}{n}$$

If $A = \mathbb{F}_q$ and C is a linear code with $k = \dim_{\mathbb{F}_q} C$, then

$$R = k/n$$
.

There is a notion of the *capacity* of a channel Γ ; it is a number which in some sense encodes the theoretical maximum rate at which information can be reliably transmitted over the channel; we omit the definition here.

Shannon's Theorem

Theorem (Shannon) Let $\delta > 0$ be given and let 0 < R with R less than the channel capacity.

For every sufficiently large natural number n, there is a code of length n and transmission rate $\geq R$ such that, using maximum likelihood decoding, the probability P_{COR} of a correct decoding satisfies

$$P_{\text{COR}} > 1 - \delta$$
.

This shows that, given a channel with non-zero capacity, there are codes which allow us to communicate using the channel and decode with a probability of a correct decoding arbitrary close to 1.

It is not constructive, of course – in some sense, this motivates the subject: how to find the codes that work well?

Bounds for block codes

Here we consider an alphabet A – thus A is just a finite set, of order |A| = q – and a set of codewords $C \subset A^n$; we call n the length of the codewords.

We consider the Hamming distance on A^n : for $u, v \in A^n$,

$$\operatorname{dist}(u, v) = \#\{i \mid u_i \neq v_i\}$$

where e.g. $u=(u_1,\cdots,u_n)\in A^n$. In words, the distance between u and v is the number of coordinates in which the tuples differ.

It is straightforward to check that dist is a *metric* on the finite set A^n ; in particular, the *triangle inequality* holds: for every $u, v, w \in A^n$ we have

$$\operatorname{dist}(u,v) \leq \operatorname{dist}(u,w) + \operatorname{dist}(w,v).$$

The *minimal distance* of C is given by

$$d = \min\{\operatorname{dist}(u, v) \mid u, v \in C, u \neq v\}.$$

Lemma Using nearest neighbor decoding, a block code of minimal distance d can correct up to (d-1)/2 errors.

Proof For every $w \in A^n$ and every $u, v \in C$ we have

(*)
$$d \le \operatorname{dist}(u, v) \le \operatorname{dist}(u, w) + \operatorname{dist}(w, v)$$
.

Now, if $\operatorname{dist}(u,w) \leq (d-1)/2$ and $\operatorname{dist}(w,v) \leq (d-1)/2$ then $\operatorname{dist}(u,v) \leq d-1$, contrary to (*). Thus for any w there is at most one codeword $u \in C$ for which $\operatorname{dist}(u,w) \leq (d-1)/2$.

From the point of view of code transmission, if $w \in A^n$ is *received* and no more than (d-1)/2 of the components of $w = (w_1, w_2, \dots, w_n)$ are erroneous, then nearest neighbor decoding will find the codeword in C that was transmitted.

Example (*Repetition code*) Consider a finite alphabet A and the the codewords $C = \{(a, a, \dots, a) \in A^r \mid a \in A\}$. Thus the data $a \in A$ is encoded by the redundant codeword (a, a, \dots, a) .

The minimal distance between distinct codewords in C is r, so the Lemma shows that using nearest neighbor decoding, this code can correct up to (r-1)/2 errors.

(Note that in this case nearest neighbor decoding amounts to decoding

$$(a_1, a_2, \cdots, a_r)$$

by "majority vote"; in other words, view $\{a_1, a_2, \cdots, a_r\}$ as a *multi-set* and choose an element with maximal multiplicity.)

Counting codes with given parameters

Write $A_q(n,d)$ for the maximum size |C| of a block code $C \subset A^n$ having minimal distance d.

We are going to prove some results about the quantity ${\cal A}_q(n,d).$

We first compute the size of a "ball" in the metric space $(A^n, dist)$.

Lemma For $u \in A^n$ and a natural number m write:

$$B_m(u) = \{ v \in A^n \mid \operatorname{dist}(u, v) \le m \}.$$

Let

$$\delta(m) = 1 + \binom{n}{1}(q-1) + \binom{n}{2}(q-1)^2 + \dots + \binom{n}{m}(q-1)^m = \sum_{j=0}^m \binom{n}{j}(q-1)^j.$$

Then $|B_m(u)| = \delta(m)$.

Remark Note that if $k \in \mathbb{N}$, k > n then we insist that $\binom{n}{k} = 0$; in this case "there are 0 ways of choosing precisely k elements from a set of size n."

This is consistent e.g. with the formula

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!}$$

since the factor (n-n)=0 appears in the numerator.

Proof of Lemma For each $j=0,1,\cdots,m$ there are $\binom{n}{j}\cdot (q-1)^j$ elements of A^n at distance precisely j from u.

We may now state and prove the following:

Theorem (Gilbert-Varshamov Bound)

$$A_q(n,d)\cdot \delta(d-1) \geq q^n.$$

Proof Suppose that $C \subset A^n$ is a code with minimal distance d for which $|C| = A_q(n, d)$.

Notice that $|C| \cdot \delta(d-1)$ is the size of the disjoint union

$$\bigsqcup_{u \in C} B_{d-1}(u).$$

Thus, if

$$|C| \cdot \delta(d-1) < q^n = |A^n|$$

then

$$\bigcup_{u \in C} B_{d-1}(u) \subsetneq A^n;$$

thus, there is some element $v \in A^n$ for which

$$v\notin \bigcup_{u\in C}B_{d-1}(u).$$

We then have $\operatorname{dist}(u,v) \geq d$ for every $u \in C$.

This shows that $C \cup \{v\} \subset A^n$ is a code having minimal distance d, contradicting the assumption that $|C| = A_q(n,d)$; i.e. contradicting the assumption that C has maximal size among codes $C' \subset A^n$ with minimal distance d.

Bibliography