

CENG 336 INT. TO EMBEDDED SYSTEMS DEVELOPMENT Spring 2022-2023 Recitation-3

OUTLINE

- ADC (Analog-to-Digital Converter)
- XC8 C Compiler Data Types
- LCD

A/D CONVERSION

In real world:

ANALOG signals

(the sensors used to monitor real world produce analog continuous voltage signals)

Converted by ADC

In computer world:

DIGITAL signals

A/D MODULE in PIC18F4620

- 13 Analog input channels
- 10-bit resolution
- Software selectable reference voltages
- Can operate in SLEEP mode using its own internal RC oscillator
- Can generate interrupts after the conversion
- Conversions can be initiated via both software and hardware

REGISTERS

- A/D Control Register0 (ADCON0)
 Controls the operation of the A/D module
- A/D Control Register1 (ADCON1)
 Configures the functions of the port pins
- A/D Control Register 2 (ADCON2)
 Configures the A/D clock source, programmed acquisition time and justification
- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)

REGISTER 19-1: ADCON0: A/D CONTROL REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

Logond	
Leuenu	

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '1' = Bit is set '0' = Bit is cleared x = Bit is unknown -n = Value at POR

GO/DONE: A/D Conversion Status bit bit 1

When ADON = 1:

1 = A/D conversion in progress

0 = A/D Idle

bit 0 ADON: A/D On bit

> 1 = A/D Converter module is enabled 0 = A/D Converter module is disabled

Note 1: These channels are not implemented on 28-pin devices.

Performing a conversion on unimplemented channels will return a floating input measurement.

Unimplemented: Read as '0'

CHS3:CHS0: Analog Channel Select bits

0000 = Channel 0 (AN0)

bit 7-6

bit 5-2

0001 = Channel 1 (AN1)

0010 = Channel 2 (AN2)

0011 = Channel 3 (AN3)

0100 = Channel 4 (AN4)

0101 = Channel 5 (AN5)(1,2)

0110 = Channel 6 (AN6)(1,2)

0111 = Channel 7 (AN7)(1,2)

1000 = Channel 8 (AN8)

1001 = Channel 9 (AN9)

1010 = Channel 10 (AN10)

1011 = Channel 11 (AN11)

1100 = Channel 12 (AN12)

1101 = Unimplemented)(2)

1110 = Unimplemented)(2)

1111 = Unimplemented)(2)

REGISTER 19-2: ADCON1: A/D CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-q ⁽¹⁾	R/W-q ⁽¹⁾	R/W-q ⁽¹⁾
_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5 VCFG1: Voltage Reference Configuration bit (VREF- source)

1 = VREF- (AN2)

0 = Vss

bit 4 VCFG0: Voltage Reference Configuration bit (VREF+ source)

1 = VREF+ (AN3)

0 = VDD

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits:

PCFG3: PCFG0	AN12	AN11	AN10	AN9	AN8	AN7 ⁽²⁾	AN6 ⁽²⁾	AN5 ⁽²⁾	AN4	AN3	AN2	AN1	ANO
0000(1)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0001	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0010	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0011	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0100	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0101	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0110	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α
0111(1)	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α
1000	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α
1001	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α
1010	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α
1011	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α
1100	D	D	D	D	D	D	D	D	D	D	Α	Α	Α
1101	D	D	D	D	D	D	D	D	D	D	D	Α	Α
1110	D	D	D	D	D	D	D	D	D	D	D	D	Α
1111	D	D	D	D	D	D	D	D	D	D	D	D	D

A = Analog input

D = Digital I/O

- Note 1: The POR value of the PCFG bits depends on the value of the PBADEN Configuration bit. When PBADEN = 1, PCFG<2:0> = 000; when PBADEN = 0, PCFG<2:0> = 111.
 - 2: AN5 through AN7 are available only on 40/44-pin devices.

REGISTER 19-3: ADCON2: A/D CONTROL REGISTER 2

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
bit 7							bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified 0 = Left justified

bit 6 Unimplemented: Read as '0'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = ∀alue at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 5-3	ACQT2:ACQT0: A/D Acquisition Time Select bits	bit 2-0	ADCS2:ADCS0: A/D Conversion Clock Select bits
	111 = 20 TAD		111 = FRC (clock derived from A/D RC oscillator) ⁽¹⁾
	110 = 16 T AD		110 = Fosc/64
	101 = 12 T AD		101 = Fosc/16
	100 = 8 TAD		100 = Fosc/4
	011 = 6 TAD		011 = FRC (clock derived from A/D RC oscillator) ⁽¹⁾
	010 = 4 TAD		010 = Fosc/32
	001 = 2 TAD		001 = Fosc/8
	$000 = 0 \text{ Tad}^{(1)}$		000 = Fosc/2

Note 1: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

A/D CONVERSION RESULT

A/D MODULE OPERATION

- The analog input charges a sample and hold capacitor to get a stable input voltage for the conversion.
- The analog input is disconnected from the sample and hold capacitor to eliminate the wrong conversion results due to possible input voltage changes during the conversion.
- The output of the sample and hold capacitor is the input into the converter.
- The converter then generates a digital result of this analog level.

ANALOG INPUT MODEL

FIGURE 21-3: ANALOG INPUT MODEL

A/D ACQUISITION TIME REQ

There is a minimum acquisition time to ensure that the holding capacitor is charged to a level that will give the desired accuracy for the A/D conversion. Look at the data sheet for calculations.

PIC18F4620 SUCCESSIVE APPROXIMATION ADC

- The analog voltage level is converted to a digital value by performing iterative comparisons with a generated voltage reference value.
- In each iterative step, a different voltage level is tested and depending on the comparison result the corresponding step bit is set or reset.

DAC = digital-to-analog converter

EOC = end of conversion

SAR = successive approximation register

S/H =sample and hold circuit

 $V_{\rm IN}$ = input voltage

 V_{REF} = reference voltage

Successive Approximation – example of a 4-bit ADC

Comparator outputs 1 when V+>V-, otherwise 0.

Reference:

Successive Approximation – example of a 4-bit ADC

Comparator outputs 1 when V+>V-, otherwise 0.

Reference:

Successive Approximation – example of a 4-bit ADC

Comparator outputs 1 when V+>V-, otherwise 0.

Reference:

Successive Approximation – example of a 4-bit ADC

Comparator outputs 1 when V+>V-, otherwise 0.

Reference:

Successive Approximation – example of a 4-bit ADC

time

Comparator outputs 1 when V+>V-, otherwise 0.

Reference:

Successive Approximation – example of a 4-bit ADC

Comparator outputs 1 when V+>V-, otherwise 0.

Reference:

Successive Approximation – example of a 4-bit ADC

Comparator outputs 1 when V+>V-, otherwise 0.

Reference:

Successive Approximation – example of a 4-bit ADC

Comparator outputs 1 when V+>V-, otherwise 0.

Reference:

Successive Approximation – example of a 4-bit ADC

Comparator outputs 1 when V+>V-, otherwise 0.

Reference:

Successive Approximation – example of a 4-bit ADC

Comparator outputs 1 when V+>V-, otherwise 0.

Reference:

Successive Approximation – example of a 4-bit ADC

Comparator outputs 1 when V+>V-, otherwise 0.

Reference:

Successive Approximation – example of a 4-bit ADC

Comparator outputs 1 when V+>V-, otherwise 0.

Reference:

Successive Approximation – example of a 4-bit ADC

Comparator outputs 1 when V+>V-, otherwise 0.

Reference:

Successive Approximation – example of a 4-bit ADC

Comparator outputs 1 when V+>V-, otherwise 0.

Reference:

Successive Approximation – example of a 4-bit ADC

Comparator outputs 1 when V+>V-, otherwise 0.

Reference:

Successive Approximation – example of a 4-bit ADC

Comparator outputs 1 when V+>V-, otherwise 0.

Reference:

Successive Approximation – example of a 4-bit ADC

Comparator outputs 1 when V+>V-, otherwise 0.

Reference:

A/D CONVERSION T_{AD} CYCLES

- The A/D conversion time per bit is defined as T_{AD} .
- The A/D conversion requires 11 T_{AD} per 10-bit conversion.

FIGURE 21-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

A/D CONVERSION T_{AD} CYCLES

FIGURE 21-5: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

SELECTING A/D CONVERSION CLOCK

The seven possible options for TAD are: $2T_{OSC}$, $4T_{OSC}$, $8T_{OSC}$, $16T_{OSC}$, $32T_{OSC}$, $64T_{OSC}$

TABLE 19-1: TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock S	ource (TAD)	Maximum Device Frequency				
Operation	ADCS2:ADCS0	PIC18F2X20/4X20	PIC18LF2X20/4X20 ⁽⁴⁾			
2 Tosc	000	2.86 MHz	1.43 kHz			
4 Tosc	100	5.71 MHz	2.86 MHz			
8 Tosc	001	11.43 MHz	5.72 MHz			
16 Tosc	101	22.86 MHz	11.43 MHz			
32 Tosc	010	40.0 MHz	22.86 MHz			
64 Tosc	110	40.0 MHz	22.86 MHz			
RC ⁽³⁾	x11	1.00 MHz ⁽¹⁾	1.00 MHz ⁽²⁾			

Note 1: The RC source has a typical TAD time of 1.2 μs.

2: The RC source has a typical TAD time of 2.5 μs.

For device frequencies above 1 MHz. the device must be in Sleep for the entire conversion or the A/D accuracy may be out of specification.

Low-power (PIC18LFXXXX) devices only.

see parameter 130, Table 26-28, page 360 for more information

1

For correct A/D conversions, the A/D conversion clock (T_{AD}) must be as short as possible (e.g. hold capacitor may discharge more), but greater than the minimum TAD (min 0.7 µs, max 25.0 µs (TOSC based, V REF \geq 3.0V)).

A/D MODULE OPERATION

- Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D acquisition time (ADCON2)
 - Select A/D conversion clock (ADCON2)
 - Turn on A/D module (ADCON0)
- Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time (if required).
- Start conversion:
 - Set GO/DONE bit (ADCON0 register)

- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared
 OR
 - Waiting for the A/D interrupt
- Read A/D Result registers (ADRESH:ADRESL); clear bit ADIF, if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

See the notes on the next page ->

A/D MODULE OPERATION

- The analog input channels must have their corresponding TRIS bits selected as inputs.
- When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0 register) is cleared and A/D Interrupt Flag bit, ADIF (PIR1<6>), is set.
- If acquisition time is programmed (ACQT2:ACQT0 bit, ADCON2<5:3>), as soon as the GO/DONE is set A/D module continues to sample the selected input for the programmed acquisition time then it starts the conversion.
- If acquisition time is not programmed, it is in the responsibility of the user to ensure that sufficient time passes after the selecting the analog input for input sampling. Then the user can initiate the conversion by setting the GO/DONE bit. Programming the acquisiton time exempts the user from handling the correct action time.

A/D MODULE SOME NOTES

• Resolution indicates the minimum voltage level that an ADC is sensitive to.

$${\rm Resolution} = \frac{\rm Vref_+ - Vref_-}{2^{\rm ADC~bits}}$$

$${\rm Resolution~of~10\text{-}bit~ADC~(Vref_+ = 5.0V, Vref_- = 0.0V)} = \frac{5.0V}{2^{10}} = \sim 0.0049V$$

- The GO/DONE bit should NOT be set in the same instruction that turns on the A/D, due to the required acquisition time requirement.
- If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

XC8 COMPILER

MPLAB XC8 C COMPILER

- Official C compiler from Microchip
- Can be downloaded from: https://www.microchip.com/pagehandler/en-us/family/mplabx/
- Can be used with MPLAB X IDE
- Getting Started and User's Guides can be downloaded from: https://www.microchip.com/pagehandler/en_us/devtools/mplabxc/

SUPPORTING DATA TYPES

TABLE 5-1: INTEGER DATA TYPES

Туре	Size (bits)	Arithmetic Type
bit	1	Unsigned integer
signed char	8	Signed integer
unsigned char	8	Unsigned integer
signed short	16	Signed integer
unsigned short	16	Unsigned integer
signed int	16	Signed integer
unsigned int	16	Unsigned integer
signed short long	24	Signed integer
unsigned short long	24	Unsigned integer
signed long	32	Signed integer
unsigned long	32	Unsigned integer
signed long long	32	Signed integer
unsigned long long	32	Unsigned integer

Туре	Size (bits)	Arithmetic Type
float	24 or 32	Real
double	24 or 32	Real
long double	same as double	Real

LCD

LCD

LCD PINOUTS

LCD PINOUTS

	Pin	Level	Description	Connection
•	1	0 V	Ground	GND
•	2	+5 V	Vcc	+5V
•	3	Variable	Contrast Voltage	Pot.
•	4	H/L	"R/S", H:DATA, L:Instruction	RE2
•	5	H/L	"R/W", H:Read (Lcd \rightarrow Pic), L:Write(Pic \rightarrow Lcd)	GND
•	6	H, H→L	"E" Clock input	RE1
•	7-14	H/L	I/O Pins	PORTD
•	15	-	Backlight anode	+5V
•	16	-	Backlight cathode	RA5(INVERTED)

LCD BLOCK DIAGRAM

MEMORIES INSIDE LCD

DDRAM: Data Display RAM is the working data buffer of the display. Each character on the display has a corresponding DDRAM location and the byte loaded in DDRAM controls which character is displayed.

Relationship between DDRAM addresses (7-bit) and positions on the liquid crystal display.

Display position	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
DDRAM address	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
DDRAM address	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F

2-Line by 16-Character Display

DDRAM address counter (AC) points where to display character. This address can be set via LCD instructions.

MEMORIES INSIDE LCD

CGROM: Character Graphics ROM that holds the fixed character set, namely all the standard patterns of dots for dot matrix characters

Upper 4bit Lower 4bit	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	ІННН	HLLL	HLLH	HLHL	нгнн	HHLL	ннгн	нннг	ннн
LLLL	CG RAM (1)															
LLLH	(2)						88888 88888 88888									
LLHL	(3)															
LLHH	(4)															
LHLL	(5)															
LHLH	(6)						00000	00000			00000					

MEMORIES INSIDE LCD

CGRAM: Character Graphics RAM that allows the user to define special supplementary non-standard character types that are not in the CGROM. You can load your own dot pattern shapes and display them. You can define maximum 8 characters.

INTERFACING WITH LCD

• LCD- "RS" → Used to select whether data or an instruction is being transferred between the microcontroller and the LCD.

H: Data, L: Instruction.

• LCD- "R/W" \rightarrow Used to read data from LCD or write data to LCD.

 $H : Read (LCD \rightarrow PIC), L : Write (PIC \rightarrow LCD).$

On PicGENIOS, R/W is connected to the Ground.

• LCD- "E" → After an instruction code or a data presented to the I/O pins a clock pulse should be sent to this pin. (High to Low)

INTERFACING WITH LCD

Attention: RE1 and RE2 pins are also analog pins. PCFG 4:0 bits of ADCON1 should be set for configuring them as digital outputs.

11.9 Instruction Table

				Ins	truct	ion c	ode					Execution
Instruction	RS	R/W	DB:	DB(DB 5	DB4	DB:	DB:	DB 1	DB	Description	time (fosc= 270 KHZ
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRA and set DDRAM address to "00H" from AC	1.53ms
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM address to "00H" From AC and return cursor to Its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Entry mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction And blinking of entire display	39us
Display ON/ OFF control	0	0	0	0	0	0	1	D	С	В	Set display (D), cursor (C), and Blinking of cursor (B) on/off Control bit.	
Cursor or Display shift	0	0	0	0	0	1	S/C	R/L	ŧ = 0	•	Set cursor moving and display Shift control bit, and the Direction, without changing of DDRAM data.	39us
Function set	0	0	0	0	1	DL	N	F	-	•	Set interface data length (DL: 8- Bit/4-bit), numbers of display Line (N: =2-line/1-line) and, Display font type (F: 5x11/5x8)	39us
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address Counter.	39us
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address Counter.	39us
Read busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal Operation or not can be known By reading BF. The contents of Address counter can also be read.	0us
Write data to Address	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43us
Read data From RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43us

LCD INSTRUCTION CODES

LCD Instruction Codes

CLEAR DISPLAY

• Clears all display memory and returns the cursor to the home position.

RS	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	1

RETURN HOME

- Returns the cursor to the home position (left top).
- DDRAM contents remain unchanged.

RS	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	1	X

ENTRY MODE SET

• Sets the cursor move direction and specifies whether or not to shift the display. These operations are performed during data write and read.

RS	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	1	I/D	S

I/D = 1: Increment DDRAM address S = 1: Display shift [I/D = 1 : Left, I/D = 0 : Right]

I/D = 0: Decrement DDRAM address S = 0: No display shift

ENTRY MODE SET

Command: 00000110

Increment Address Counter

Display Shift: OFF

Command: 00000111

Display Shift: ON

Shift LEFT

Command: 0000100

Decrement Address Counter

Display Shift: OFF

Command: 00000101

Display Shift: ON

Shift RIGHT

Example entry mode settings

DISPLAY & CURSOR CONTROL

• Sets display (D), cursor (C), and blinking of cursor (B) on/off control bit.

RS	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	1	D	С	В

D = 1: Display ON

D = 0: Display OFF

C = 1: Cursor ON

C = 0: Cursor OFF

B = 1: Blink ON

 $\mathbf{B} = \mathbf{0}$: Blink OFF

CURSOR OR DISPLAY SHIFT

• Moves the cursor or shifts the display without changing DD RAM contents.

RS	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	S/C	R/L	X	X

S/C	R/L	Operation
0	0	The cursor position is shifted to the left
0	1	The cursor position is shifted to the right
1	0	The entire display is shifted to the left with the cursor
1	1	The entire display is shifted to the right with the cursor

FUNCTION SET

• Sets interface data length (DL), number of display lines (N), and character font (F).

RS	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	DL	Ν	F	X	X

F = 1 : 5x11 dots N = 1 : 2 lines DL = 1 : 8 - bit

F = 0 : 5x8 dots N = 0 : 1 line DL = 0 : 4-bit

SET DDRAM ADDRESS

• Sets the DDRAM address (where the character will be displayed on the screen).

RS	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	A6	A 5	A4	A3	A2	A1	A0

Line1 Line2 Line3 Line4

80	81	82	83	84	85	86	87	88	89	8A	8B	8C	8D	8E	8F
C0	C1	C2	C 3	C4	C 5	C6	C7	C8	C 9	CA	СВ	CC	CD	CE	CF
90	91	92	93	94	95	96	97	98	99	9A	9B	9C	9D	9E	9F
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	DA	DB	DC	DD	DE	DF

Relationship between I/O port (PORTD in our case) values and positions on the liquid crystal display.

SET CGRAM ADDRESS

• Sets the CGRAM address (where custom characters can be populated) (maximum 8 characters).

RS	R/W	D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	1	A5	A4	A3	A2	A1	A0	

WRITE DATA TO RAM

• Writes data into the RAM.

RS	R/W	D7	D6	D5	D4	D3	D2	D1	D0	
1	0	D7	D6	D5	D4	D3	D2	D1	D0	

EXAMPLES