KAMPUS CAWANGAN MALAYSIAN SPANISH INSTITUTE

STB36403

INTERNET OF THINGS (IOT) TECHNOLOGY

Vehicle Reverse Sensing System PRACTICAL TEST 1 10/2023

ENCIK AZNIZAM BIN ABDULLAH

NAME	NO.ID	COURSE
KHAIRUL ANWAR BIN KHAIRUL SALLEH	54215121186	BET AE

ii. Circuit Layout Diagram (print screen & crop)


```
// C++ code
#include "Adafruit_LEDBackpack.h"
int x = 0;
long readUltrasonicDistance(int triggerPin, int echoPin)
 pinMode(triggerPin, OUTPUT); // Clear the trigger
 digitalWrite(triggerPin, LOW);
 delayMicroseconds(2);
 // Sets the trigger pin to HIGH state for 10 microseconds
 digitalWrite(triggerPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(triggerPin, LOW);
 pinMode(echoPin, INPUT);
 // Reads the echo pin, and returns the sound wave travel time in microseconds
 return pulseIn(echoPin, HIGH);
Adafruit_7segment led_display1 = Adafruit_7segment();
void setup()
 pinMode(11, OUTPUT);
 pinMode(9, OUTPUT);
 pinMode(6, OUTPUT);
 Serial.begin(9600);
 pinMode(10, OUTPUT);
 led display1.begin(112);
 pinMode(0, OUTPUT);
void loop()
 x = 0.01723 * readUltrasonicDistance(8, 7);
 Serial.print(x);
 if (x < 25) {
  analogWrite(11, 255);
  analogWrite(9, 0);
  analogWrite(9, 0);
  tone(6, 523, 100000); // play tone 60 (C5 = 523 Hz)
  Serial.println(" DANGER - YOU ARE TOO CLOSE");
 if (x \ge 25 \&\& x \le 50) {
  analogWrite(11, 255);
  analogWrite(9, 255);
  analogWrite(10, 0);
  tone(6, 523, 1000); // play tone 60 (C5 = 523 Hz)
  delay(700); // Wait for 700 millisecond(s)
  analogWrite(11, 0);
  analogWrite(10, 0);
  analogWrite(9, 0);
  delay(700);
  noTone(6);
  led_display1.blinkRate(1);
  Serial.println(" CAUTION - WATCH YOUR DISTANCE");
 if (x > 50) {
  analogWrite(11, 51);
  analogWrite(9, 204);
  analogWrite(10, 0);
  tone(0, 16, 1000); // play tone 0 (C0 = 16 Hz)
                    SAFE - MAINTAIN YOUR DISTANCE");
  Serial.println("
}
```

v. Circuit link

https://www.tinkercad.com/things/4rVi7ziz7nv-vehicle-reverse-sensing-system?sharecode=rt6ALXEH_7tG-AUild_EPmfNcMPCjSed1PUzi5hLflM

vi. Results

1. when the ultrasonic sensor detects a distance less than 25cm

Hardware	Condition
RED LED:	ON
Buzzer:	ON continuously

2. when the ultrasonic sensor detects a distance between 25cm to 50cm

Hardware	Condition
YELLOW LED:	BLINKING
Buzzer:	ON intermittently

3. when the ultrasonic sensor detects a distance above 50cm.

Hardware	Condition
GREEN LED:	ON
Buzzer:	OFF

vii. Conclusions

In the innovation of enhancing vehicle safety and maneuverability, the development and simulation of a Vehicle Reverse Sensing System using Tinkercad have provided valuable insights and practical applications. Through the integration of ultrasonic sensors and Arduino-based control systems, several notable conclusions can be drawn.

Enhanced Safety.

The implementation of ultrasonic sensors has significantly improved the safety of vehicle reverse maneuvers. Real-time detection of obstacles enables timely warnings and assists drivers in avoiding collisions.

Improved car control

The system contributes to increased car control, especially in confined spaces. The ability to detect obstacles behind the vehicle allows for more confident and precise reversing.

Reliability of Tinkercad Simulation

The Tinkercad platform has proven to be a reliable and accessible tool for simulating electronic systems. It provides a virtual environment for testing and validating sensor responses and system behavior.

User-Friendly Design

The system has been designed with user-friendliness in mind. Visual and audible alerts provide intuitive feedback to the driver, enhancing the overall user experience.

Adjustable

The system architecture is adjustable, allowing for potential expansions such as incorporating multiple sensors or integrating with other vehicle safety systems.