the first two vectors of the Haar basis in \mathbb{R}^4 . The four columns of the Haar matrix

$$W = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{pmatrix}$$

form a basis of \mathbb{R}^4 , and the inverse of W is given by

$$W^{-1} = \begin{pmatrix} 1/4 & 0 & 0 & 0 \\ 0 & 1/4 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1/2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & -1/4 & -1/4 \\ 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1/2 & -1/2 \end{pmatrix}.$$

Since the dual basis $(v_1^*, v_2^*, v_3^*, v_4^*)$ is given by the rows of W^{-1} , the last two rows of W^{-1}

$$\begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1/2 & -1/2 \end{pmatrix},$$

form a basis of V^0 . We also obtain a basis by rescaling by the factor 1/2, so the linear forms given by the row vectors

$$\begin{pmatrix}
1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{pmatrix}$$

form a basis of V^0 , the space of linear forms (linear equations) that vanish on the subspace V.

The method that we described to find V^0 requires first extending a basis of V and then inverting a matrix, but there is a more direct method. Indeed, let A be the $n \times m$ matrix whose columns are the basis vectors (v_1, \ldots, v_m) of V. Then a linear form u represented by a row vector belongs to V^0 iff $uv_i = 0$ for $i = 1, \ldots, m$ iff

$$uA = 0$$

iff

$$A^{\top}u^{\top} = 0.$$

Therefore, all we need to do is to find a basis of the nullspace of A^{\top} . This can be done quite effectively using the reduction of a matrix to reduced row echelon form (rref); see Section 8.10.

Example 11.7. For example, if we reconsider the previous example, $A^{\top}u^{\top}=0$ becomes

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$