WHAT IS CLAIMED IS:

1	1. An apparatus comprising:		
2	a first channel spatial filter, wherein a first input signal and a second input		
3	signal are input to said first channel spatial filter, and wherein a first output signal is		
4	output by said first channel spatial filter;		
5	a second channel spatial filter, wherein a third input signal and a fourth		
6	input signal are input to said second channel spatial filter, and wherein a second output		
7	signal is output by said second channel spatial filter; and		
8	a binaural spatial filter, wherein said first and second output signals are		
9	input to said binaural spatial filter and wherein a first channel output signal is output by		
10	said binaural spatial filter and a second channel output signal is output by said binaural		
11	spatial filter.		
1	2. The apparatus of claim 1, wherein said first input signal is output		
2	by a first microphone corresponding to a first channel and said second input signal is		
3	output by a second microphone corresponding to said first channel, and wherein said third		
4	input signal is output by a third microphone corresponding to a second channel and said		
5	fourth input signal is output by a fourth microphone corresponding to said second		
6	channel.		
	3. The apparatus of claim 2, wherein said first microphone and said		
1			
2	second microphone are positioned in a first end-fire array and wherein said third		
3	microphone and said fourth microphone are positioned in a second end-fire array.		
1	4. The apparatus of claim 2, wherein said apparatus is a hearing aid,		
2	wherein said first microphone and said second microphone are proximate to a user's left		
3	ear, and wherein said third microphone and said fourth microphone are proximate to a		
4	user's right ear.		
1	5. The apparatus of claim 1, wherein said first channel spatial filter		
2	further comprises:		
3	a first fixed polar pattern unit, said first fixed polar pattern unit outputting		
4	a first unit output;		
-	A 7		

5	a second fixed polar pattern unit, said second fixed polar pattern unit		
6	outputting a second unit output; and		
7	a first combining unit comprising a first adaptive filter, wherein said first		
8	combining unit receives said first unit output and said second unit output, and wherein		
9	said first combining unit outputs said first output signal.		
1	6. The apparatus of claim 5, wherein said second channel spatial fi	lter	
2	further comprises:		
3	a third fixed polar pattern unit, said third fixed polar pattern unit outputti		
4	a third unit output;		
5	a fourth fixed polar pattern unit, said fourth fixed polar pattern unit		
6	outputting a fourth unit output; and		
7	a second combining unit comprising a second adaptive filter, wherein s	aid	
8	second combining unit receives said third unit output and said fourth unit output, and		
9	wherein said second combining unit outputs said second output signal.		
1	7. The apparatus of claim 6, further comprising a processor, where	ein	
	said first, second, third, and fourth fixed polar pattern units and said first and second		
2	combining units are implemented by a software program running on said processor.		
3	combining units are implemented by a software program running on said processor.		
1	8. The apparatus of claim 7, wherein said processor is a digital		
2	processor.		
1	9. The apparatus of claim 1, said binaural spatial filter further		
2	comprising:		
3	a first combining unit, wherein said first combining unit combines said		
4	first and second output signals and outputs a reference signal;		
5	a first adaptive filter, said first adaptive filter receiving said reference		
6	signal;		
7	a second combining unit, wherein said second combining unit combine	es.	
8	said first output signal with a first adaptive filter output, and wherein said second		
9	combining unit outputs said first channel output signal;		
10	a second adaptive filter, said second adaptive filter receiving said refer	ence	
11	signal; and		

	12	a third combining unit, wherein said third combining unit combines said				
	13	second output signal with a second adaptive filter output, and wherein said third				
	14	combining unit outputs said second channel output signal.				
	1	10. The apparatus of claim 9, further comprising a processor, wherein				
	2	said first, second, and third combining units and said first and second adaptive filters are				
	3	implemented by a software program running on said processor.				
	1	11. The apparatus of claim 1, said binaural spatial filter further				
	2	comprising:				
	3	a first channel low pass filter, said first channel low pass filter accepting				
	4	said first output signal and outputting a first filtered output signal;				
1	5	a first delay unit, said first delay unit accepting said first filtered output				
und Arad Arab maj dana kasa dasa da	6	signal and outputting a delayed first filtered output signal;				
7	7	a first channel high pass filter, said first channel high pass filter accepting				
1	8	said first output signal and outputting a second filtered output signal;				
1	9	a second channel low pass filter, said second channel low pass filter				
	10	accepting said second output signal and outputting a third filtered output signal;				
	11	a second delay unit, said second delay unit accepting said third filtered				
	12	output signal and outputting a delayed third filtered output signal;				
÷	13	a second channel high pass filter, said second channel high pass filter				
	14	accepting said second output signal and outputting a fourth filtered output signal;				
	15	an adaptive processor, said adaptive processor accepting said second and				
	16	fourth filtered output signals and outputting an adaptively processed signal;				
	17 ·	a first combining unit, said first combining unit accepting said delayed first				
	18	filtered output signal and said adaptively processed signal, said first combining unit				
	19	outputting said first channel output signal; and				
	20	a second combining unit, said second combining unit accepting said				
	21	delayed third filtered output signal and said adaptively processed signal, said second				
	22	combining unit outputting said second channel output signal.				
	1	12. A hearing aid, comprising:				
	2	a first microphone outputting a first microphone signal;				

3	a second microphone outputting a second microphone signal, wherein said			
4	first and second microphones are positioned as a first end-fire array proximate to a user's			
5	left ear;			
6	a third microphone outputting a third microphone signal;			
7	a fourth microphone outputting a fourth microphone signal, wherein sa			
8	third and fourth microphones are positioned as a second end-fire array proximate to a			
9	user's right ear;			
10	a left spatial filter, said left spatial filter comprising:			
11	a first fixed polar pattern unit, said first fixed polar pattern unit			
12	outputting a first unit output;			
13	a second fixed polar pattern unit, said second fixed polar pattern			
14	unit outputting a second unit output; and			
15	a first combining unit comprising a first adaptive filter, wherein			
16	said first combining unit receives said first unit output and said second unit output,			
17	and wherein said first combining unit outputs a left spatial filter output signal.			
18	a right spatial filter, said right spatial filter comprising:			
19	a third fixed polar pattern unit, said third fixed polar pattern unit			
20	outputting a third unit output;			
21	a fourth fixed polar pattern unit, said fourth fixed polar pattern unit			
22	outputting a fourth unit output; and			
23	a second combining unit comprising a second adaptive filter,			
24	wherein said second combining unit receives said third unit output and said fourth			
25	unit output, and wherein said second combining unit outputs a right spatial filter			
26	output signal;			
27	a binaural spatial filter, said binaural spatial filter comprising:			
28	a third combining unit, wherein said third combining unit combines			
29	said left spatial filter output signal and said right spatial filter output signal and			
30	outputs a reference signal;			
31	a third adaptive filter, said third adaptive filter receiving said			
32	reference signal;			
33	a fourth combining unit, wherein said fourth combining unit			
34	combines said left spatial filter output signal with a third adaptive filter output,			
35	and wherein said fourth combining unit outputs a left channel output signal;			

36	a fourth adaptive filter, said fourth adaptive filter receiving said		
37	reference signal; and		
38	a fifth combining unit, wherein said fifth combining unit combines		
39	said right spatial filter output signal with a fourth adaptive filter output, and		
40	wherein said fifth combining unit outputs a right channel output signal;		
41	a first output transducer, said first output transducer converting said left		
42	channel output signal to a left channel audio output; and		
43	a second output transducer, said second output transducer converting said		
44	right channel output signal to a right channel audio output.		
1	13. A method of processing sound, comprising the steps of:		
2	receiving a first input signal from a first microphone;		
3	receiving a second input signal from a second microphone;		
4	providing said first and second input signals to a first fixed polar pattern		
5	unit;		
6	providing said first and second input signals to a second fixed polar pattern		
7	unit;		
8	adaptively combining a first fixed polar pattern unit output and a second		
9	fixed polar pattern unit output to form a first channel binaural filter input;		
10	receiving a third input signal from a third microphone;		
11	receiving a fourth input signal from a fourth microphone;		
12	providing said third and fourth input signals to a third fixed polar pattern		
13	unit;		
14	providing said third and fourth input signals to a fourth fixed polar pattern		
15	unit;		
16	adaptively combining a third fixed polar pattern unit output and a fourth		
17	fixed polar pattern unit output to form a second channel binaural filter input;		
18	combining said first channel binaural filter input and said second channel		
19	binaural filter input to form a reference signal;		
20	adaptively combining said reference signal with said first channel binaural		
21	filter input to form a first channel output signal; and		
22	adaptively combining said reference signal with said second channel		
23	binaural filter input to form a second channel output signal.		

1	14.	The method of claim 13, further comprising the steps of:	
2	converting said first channel output signal to a first channel audio signal;		
3	and		
4	conv	verting said second channel output signal to a second channel audio	
5	signal.		
1	15.	The method of claim 13, wherein said step of adaptively combining	
2	said first fixed polar pattern unit output and said second fixed polar pattern unit output to		
3	form said first channel binaural filter input further comprises the step of varying a first		
4	gain value to position a first null corresponding to said first channel binaural filter input,		
5	and wherein said step of adaptively combining said third fixed polar pattern unit output		
6	and said fourth fixed polar pattern unit output to form said second channel binaural filter		
7	input further comprises the step of varying a second gain value to position a second null		
8	corresponding to said second channel binaural filter input.		
1	16.	The method of claim 13, wherein said steps of adaptively	
2	combining utilize a		
2	combining utilize a	in LS algorithm.	
1	17.	The method of claim 13, wherein said steps of adaptively	
2	combining utilize an RLS algorithm.		
	10	The weeks described to the second of a dentively.	
1	18.	The method of claim 13, wherein said steps of adaptively	
2	2 combining utilize an TLS algorithm.		
1	19.	The method of claim 13, wherein said steps of adaptively	
2	combining utilize a	n NLMS algorithm.	
1	20.	The method of claim 13, wherein said steps of adaptively	
		•	
2	combining utilize an LMS algorithm.		