- 84. Verify that the examples in Handout 8 are groups indeed and exhibit some further examples among various sets of numbers, residues, matrices, polynomials, etc. Find groups in fields, rings, and vector spaces.
- 85. How many elements are in the symmetry group of a (a) rhombus; (b) circle; (c) brick; (d) cube? Which of these groups are commutative?
- **86.** Which congruences of the plane form a group under composition and which of these are commutative? (a) All translations; (b) all rotations; (c) all rotations and translations.
- 87. "Old" permutations. In elementary combinatorics, permutations mean all possible orders i_1, i_2, \ldots, i_n of the numbers $1, 2, \ldots, n$. Two elements in a permutation are in inversion, if the bigger number comes earlier. E.g. there are 5 inversions in 3, 2, 5, 1, 4, namely 3-2, 3-1, 2-1, 5-1, and 5-4.
- (a) How many inversions are in the following permutations: (a1) $1, 3, 5, \ldots, 49, 51, 50, 48, \ldots, 4, 2$; (a2) $26, 27, 25, 28, 24, \ldots, 51, 1$?
- (b) How does the number of inversions change if we transpose (b1) two adjacent elements; (b2) two arbitrary elements?
- (c) Find ALL values k which occur as a number of inversions in a permutation of n elements?
- (d) A permutation is *even* or *odd* according to the number of inversions being even or odd, resp. Show that for $n \geq 2$ there are as many even permutations as odd ones.
- 88. "New" permutations. We can consider permutations also as bijections of the set $\{1, 2, ..., n\}$ onto itself. These form the group S_n under composition.
- (a) Represent the following permutations as products of disjoint cycles:

(a1)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 5 & 2 & 7 & 3 & 6 & 1 & 4 \end{pmatrix}$$
; (a2) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 5 & 7 & 1 & 2 & 8 & 3 & 4 \end{pmatrix}$.

- (b) Verify that an "old" permutation is even iff the corresponding "new" permutation is the product of an even number of transpositions. As an important consequence, we get that representing a permutation as a product of transpositions, the parity of the number of factors is unique.
- **89.** (a) Determine the orders of elements in the groups 85.
 - (b) Which elements have finite order in \mathbb{C}^* ?
 - (c) Assume $o(g) < \infty$. Prove: (c1) $o(g^k) \mid o(g)$; (c2) $o(g^k) = o(g) \iff (o(g), k) = 1$; (c3) $o(g^k) = o(g)/(o(g), k)$.
- **90.** (a) If gh = hg, then (a1) $o(gh) \mid [o(g), o(h)]$; (a2) $o(gh) = o(g)o(h) \iff (o(g), o(h)) = 1$. (b) Exhibit an example for o(g) = o(h) = 2 whereas $o(gh) = \infty$.
- **91.** Verify that the order of a permutation is the least common multiple of the lengths of its disjoint cycles.

- **92.** Which of the following groups are cyclic: (a) $(\mathbf{Z}, +)$; (b) $(\mathbf{Z}_n, +)$; (c) The non-zero elements of \mathbf{Z}_{101} under multiplication; (d) $\{1, 3, 5, 7\} \subseteq \mathbf{Z}_8$ under multiplication; (e) The *n*th complex roots of unity under multiplication; (f) All complex roots of unity. (g) D_n ; (h); S_n ; (i) The symmetry group of a rhombus.
- 93. True or false:
- (a) If |G| = 81 and $g^2 \neq g^{29}$ for some $g \in G$, then G is cyclic.
- (b) If |G| = 54 and $g^2 \neq g^{29}$ for some $g \in G$, then G is cyclic.
- (c) If |G| = 81 and $g^2 = g^{29}$ for some $g \in G$, then G is not cyclic.
- **94.** Let $H \leq G$. Verify:
- (a) $e_H = e_G$ and the same holds for h^{-1} .
- (b) $\emptyset \neq H \leq G \iff (a, b \in H \Rightarrow ab^{-1} \in H).$
- **95.** Find all subgroups in (a) D_4 ; (b) S_3 ; (c) \mathbf{Z}_{20} ; (d) \mathbf{Z} ; (e) K.
- **96.** Assume $j \leq n$.
- (a) Show that S_n has a subgroup isomorphic to (a1) S_j ; (a2) D_j .
- (b) When does D_n have a subgroup isomorphic to D_j ?
- 97. (a) Prove that the intersection of arbitrarily many subgroups is always a subgroup.
 - (b) When is the union of two subgroups a subgroup?
- **98.** Let H be a non-empty subset in G. True or false:
- (a) If H is closed for the operation in G, then $H \leq G$.
- (b) If $|H| < \infty$ and H is closed for the operation in G, then $H \leq G$.
- (c) If $|H| < \infty$ and H is closed for forming inverses, then $H \leq G$.
- **99.** Let d(n) and $\sigma(n)$ denote the number and sum of divisors of n, resp. Prove:
- (a) Every subgroup of a cyclic group is cyclic.
- (b) \mathbf{Z}_n has exactly d(n) subgroups.
- *(c) D_n has exactly $d(n) + \sigma(n)$ subgroups
- 100. Exhibit all left and right cosets if $G = D_4$ and H is the cyclic subgroup generated by (a) a reflection; (b) the rotation with 90 degrees.
- **101.** Prove $2020 \mid \varphi(k^{2020} 1)$ for any k > 1 where $\varphi(n)$ is Euler's function counting the integers coprime to n among $1, 2, \ldots, n$.
- **102.** Let $S \subseteq \mathbf{R}$ and f(s) = s for all $s \in S$. Is it true that f is the sum of two periodic functions if S is (a) \mathbf{Q} ; (b) $\{a + b\sqrt{2} \mid a, b, \in \mathbf{Q}\}$; (c) \mathbf{R} ?

freud@caesar.elte.hu

freud.web.elte.hu/bsm/index.html