More Useful Distributions And Test Statistics

Eli Gurarie

StatR 101 - Lecture 10 November 26, 2012

November 26, 2012

Outline

	Distributions	Comparisons	Statistics
1.	$Chi\text{-}squared(\nu)$	Proportions	
2.	$\mathcal{T}(u)$	Sample means	$\frac{\overline{X}}{s_{x}/\sqrt{n}}$
3.	$\mathcal{F}(u_1, u_2)$	Sample variances	$\frac{s_1^2/n_1}{s_2^2/n_2}$

These three distributions are all derived from the normal distribution and are the most widely used null-distributions for hypothesis testing. You will see them pop up frequently in statistical test output.

Random Variable: X

$$X \sim \mathsf{Dist}(\mu, \sigma^2)$$

Sample Mean: \overline{X}

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$\sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$$

Standardized Sample Mean: Z

$$Z = rac{\overline{X} - \mu}{\sigma/\sqrt{n}} \ \sim \ \mathcal{N}(0,1)$$

This observation allows us to use th z-statistic to tests of means $(H_0: \mu_{obs} = \mu_0)$ with known variance.

Chi-squared distribution

$$Y = Z^2$$
 $\sim \chi^2(\nu = 1)$
 $f(y) = \frac{1}{\sqrt{2\pi y}}e^{-y/2}$

Chi-squared distribution

$$Y = Z_1^2 + Z_2^2 + Z_3^2$$

$$\sim \chi^2(\nu = 3)$$

$$f(y) = \frac{y^{(\nu/2)-1}}{2^{\nu/2}\Gamma(\frac{\nu}{2})}e^{-y/2}$$

The "Chi-squared" distribution has one parameter: ν - the 'degrees of freedom', that represents the number of independent standard normal variables that are summed.

Chi-squared distribution

http://en.wikipedia.org/wiki/Chi-squared_distribution

Chi-squared distribution: Card

$X \sim \chi^2(\nu)$

Name: Chi-squared distribution Models sum of ν standard

normal r.v.'s

Support: x $[0,\infty)$

Parameters: $\nu \in (0, \beta)$ degrees of freedom

pdf: $\frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} x^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}}$

mean: $\mathsf{E}(\mathsf{X})$

variance: Var(X) 2ν

Rcode: *chisq argument: df

Chi-squared distribution: as a statistic for sample variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$
$$\frac{s^{2}}{\sigma^{2}} = \frac{1}{n-1} \sum_{i=1}^{n} \frac{(X_{i} - \overline{X})^{2}}{\sigma^{2}}$$

some algebra

$$(n-1)\frac{s^2}{\sigma^2} = \sum_{i=1}^{n-1} \frac{(X_i - \mu)^2}{\sigma^2}$$

This means the statistic $(n-1)\frac{s^2}{\sigma^2}$ could be used to test $H_0: \sigma_{obs} = \sigma_0$, i.e. an observed standard deviation against a hypothesized one. But this is not a very common test.

Chi-squared distribution: as a statistic for sample variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$
$$\frac{s^{2}}{\sigma^{2}} = \frac{1}{n-1} \sum_{i=1}^{n} \frac{(X_{i} - \overline{X})^{2}}{\sigma^{2}}$$

some algebra

$$(n-1)\frac{s^2}{\sigma^2} = \sum_{i=1}^{n-1} \frac{(X_i - \mu)^2}{\sigma^2}$$

$$(n-1)\frac{s^2}{\sigma^2} \sim \chi^2(\nu=n-1)$$

This means the statistic $(n-1)\frac{s}{\sigma^2}$ could be used to test $H_0: \sigma_{obs} = \sigma_0$, i.e. an observed standard deviation against a hypothesized one. But this is not a very common test.

Chi-squared distribution: as a statistic for sample variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$
$$\frac{s^{2}}{\sigma^{2}} = \frac{1}{n-1} \sum_{i=1}^{n} \frac{(X_{i} - \overline{X})^{2}}{\sigma^{2}}$$

some algebra

$$(n-1)\frac{s^2}{\sigma^2} = \sum_{i=1}^{n-1} \frac{(X_i - \mu)^2}{\sigma^2}$$

 $(n-1)\frac{s^2}{\sigma^2} \sim \chi^2(\nu = n-1)$

This means the statistic $(n-1)\frac{s^2}{\sigma^2}$ could be used to test $H_0: \sigma_{obs} = \sigma_0$, i.e. an observed standard deviation against a hypothesized one. But this is not a very common test.

$$T = \frac{Z}{\sqrt{Y_{\nu}/\nu}}$$

where: $Z \sim \mathcal{N}(0,1)$

and: $Y_{\nu} \sim \chi^2(\nu)$

then:

 $T \sim \mathcal{T}(\nu)$

where: $Z \sim \mathcal{N}(0,1)$

and: $Y_{\nu} \sim \chi^2(\nu)$

then:

 $T \sim \mathcal{T}(\nu)$

where: $Z \sim \mathcal{N}(0,1)$

and: $Y_{\nu} \sim \chi^2(\nu)$

then:

$$T \sim \mathcal{T}(\nu)$$

Density

where: $Z \sim \mathcal{N}(0,1)$

and: $Y_{\nu} \sim \chi^2(\nu)$

then:

$$T \sim \mathcal{T}(\nu)$$

Student's T distribution

$$t \sim T_{\nu}: f(x|\nu) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

This is Student's T distribution.

- ullet The parameter $oldsymbol{
 u}$ is called: "the degrees of freedom".
- ullet The larger u, the closer the T-distribution is to the Z-distribution.

Student's T distribution

Name: Student's T Models the distribution of the $t = \frac{\overline{X} - \mu}{s_r / \sqrt{n}}$

Support: x $(-\infty, \infty)$

Parameters: $\nu \in (1, 2, 3, ..., \infty)$ degrees of freedom

pdf $f(x|n) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$

mean E(X) 0

variance $\operatorname{Var}(X)$ $\frac{\nu}{\nu-2}$

R code *t argument: df

Testing:
$$H_0: \mu_{obs} = \mu$$

Testing:
$$H_0: \mu_{obs} = \mu$$

$$t_{obs} = \frac{\overline{X} - \mu}{s/\sqrt{n}} \sim \mathcal{T}(\nu = n - 1)$$

$$z_{obs} = rac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)$$

Testing:
$$H_0: \mu_{obs} = \mu$$

Testing:
$$H_0: \mu_{obs} = \mu$$

$$t_{obs} = \frac{\overline{X} - \mu}{s/\sqrt{n}} \sim \mathcal{T}(\nu = n - 1)$$

$$z_{obs} = rac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)$$

Testing:
$$H_0: \mu_{obs} = \mu$$

Testing:
$$H_0: \mu_{obs} = \mu$$

$$t_{obs} = \frac{\overline{X} - \mu}{s/\sqrt{n}} \sim \mathcal{T}(\nu = n - 1)$$

$$z_{obs} = rac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)$$

Testing:
$$H_0: \mu_{obs} = \mu$$

Testing:
$$H_0: \mu_{obs} = \mu$$

$$t_{obs} = \frac{\overline{X} - \mu}{s/\sqrt{n}} \sim \mathcal{T}(\nu = n - 1)$$

$$z_{obs} = rac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)$$

Testing:
$$H_0: \mu_{obs} = \mu$$

$$t_{obs} = \frac{\overline{X} - \mu}{s/\sqrt{n}} \sim \mathcal{T}(\nu = n - 1)$$

n = 40

compare to:

$$z_{obs} = rac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)$$

- As n increases, the distribution of s_x/\sqrt{n} becomes very close to σ_x/\sqrt{n} , and the t-statistic becomes very similar to the z-statistic.
- This comparison of means can be easily extended to $H_0: \mu_{obs} = \mu_0$, $H_0: \mu_1 = \mu_2$ (equivalent to $H_0: \mu_1 \mu_2 = 0$), and paired T-tests

Examples to come

F-distribution: Ratio of χ^2

$$F = rac{Y_{
u_1}/
u_1}{Y_{
u_2}/
u_2}$$

where: $Y_{
u_1} \sim \chi^2(
u_1)$

and: $Y_{\nu_2} \sim \chi^2(\nu_2)$

then:

$$F \sim \mathcal{F}(\nu_1, \nu_2)$$

where $\mathcal{F}(\nu)$ is Fisher's F-distribution with ν_1 and ν_2 degrees of freedom.

F-distribution

Name: Fisher's F Models: $F = s_1^2/s_2^2$

Support: x $(0,\infty)$

Parameters: $\nu_1, \nu_2 \in (1, 2, 3, ..., \infty)$ degrees of freedom

pdf $f(x|\nu_1,\nu_2) = \frac{\sqrt{\frac{(\nu_1 x)^{\nu_1} \nu_2^{\nu_2}}{(\nu_1 x + \nu_2)^{\nu_1 + \nu_2}}}}{\frac{x B(\frac{\nu_1}{2}, \frac{\nu_2}{2})}{x}}$

mean E(X) $\frac{\nu_2}{\nu_2-2}$

variance Var(X) $\frac{2 \nu_2^2 (\nu_1 + \nu_2 - 2)}{\nu_1 (\nu_2 - 2)^2 (\nu_2 - 4)}$

R code *f argument: df1, df2

The F-statistic for comparing sample variances

$$egin{array}{lll} {\cal F}_{obs} &=& rac{s_1^2}{s_2^2} \ &\sim & {\cal F}(
u_1=n_1-1,
u_2=n_2-1) \end{array}$$

The *F*-statistic allows us to compare two *sample variances*.

F-statistic

- F-distributions are right-skewed
- If $s_1 = s_2$, peak is near one (esp. with large sample sizes)
- Values very far from 1 are evidence against H_0

F-statistic

- F-distributions are right-skewed
- If $s_1 = s_2$, peak is near one (esp. with large sample sizes)
- Values very far from 1 are evidence against H_0

