6.2 实验二 数据选择器与数据分配器

1. 实验介绍

在本次实验中,我们将使用 Verilog HDL 语言实现数据选择器和数据分配器的设计 和仿真。

2. 实验目标

- 深入了解数据选择器与数据分配器的原理。
- 使用logicsim画出数据选择器和数据分配器的逻辑电路。
- 学习使用 Verilog HDL 语言设计实现数据选择器和数据分配器。

3. 实验原理

1) 数据选择器实验

数据选择器(MUX)是一种多路输入、单路输出的标准化逻辑构件。所要建模的 4 选 1 数据选择器及其真值表如图 6.2.1 所示。选择器的开关由两根控制线 s0 和 s1 的编码控制, 选择 4 路输入中的一路作为输出。输出 z 的逻辑值将和被选中的输入逻辑值相同。

输出

сO

с1

c2

с3

c2

X

 \times

c2

X

с3

 \times

 \times

 \times

с3

图 6.2.1 4 选 1 数据选择器及其真值表

● 接口定义:

```
module selector41(
                    //四位输入信号 c0
    input [3:0] iC0,
                    //四位输入信号 c1
    input [3:0] iC1,
                    //四位输入信号 c2
    input [3:0] iC2,
                    //四位输入信号 c3
    input [3:0] iC3,
                    //选择信号 s1
    input iS1,
                    //选择信号 s0
    input iS0,
                    //四位输出信号 z
    output [3:0] oZ
```

● XDC 文件配置

变量	iC0	iC1	iC2	iC3	is1	is0	οZ
N4 板上 的管脚	SW0~3	SW4~7	SW8~11	SW12~15		BTNC BTNR (N17)	LD0~3
	(J15、	(R17、	(T8、	(H6、			(H17、
	L16、	T18、	U8、	U12、			K15、
	M13、	U18、	R16、	R16、 U11、			J13、
	R15)	R13)	T13)	V10)			N14)

2) 数据分配器实验

数据分配器(DMUX)的功能与多路选择器相反,它是一种单路输入、多路输出的逻辑构件。图 6.2.2 为 1 线-4 线数据分配器的功能框图,表 3.2 为其真值表。图 3.2 中 c 为数据输入端,s1,s0 为选择控制输入端,z0~z3 为数据输出端。

选择	输入	输出				
S1	S0	Z0	Z1	Z2	Z3	
0	0	D	1	1	1	
0	1	1	D	1	1	
1	0	1	1	D	1	
1	1	1	1	1	D	

图 6.2.2 1 线-4 线数据分配器及其真值表

● 接口定义:

```
module de_selector14(
    input iC, //输入信号 c
    input iS1, //选择信号 s1
    input iS0, //选择信号 s0
    output oZ0, //输出信号 z0
    output oZ1, //输出信号 z1
    output oZ2, //输出信号 z2
    output oZ3, //输出信号 z3
);
```

● XDC 文件配置:

变量	iC	is1	is0	oZ0	oZ1	oZ2	oZ3
N4 板上的管脚	SW0	SW15	SW14	LD0	LD1	LD2	LD3
	(J15)	(V10)	(U11)	(H17)	(K15)	(J13)	(N14)

3)8路数据传输实验

在数据选择器和数据分配器实验基础上实现图 6.2.3 中 8 路数据传输模块的建模。数据的传输由输入控制端 ABC 的编码决定,例如当 ABC=101 时,实现 D5->f5 的数据传输。

图 6.2.3 8 路数据传输原理图

● 接口定义:

```
module transmission8(
    input [7:0] iData //输入信号 D7~D0
    input A,B,C, //选择信号 S2~S0
    output [7:0] oData //输出信号 f0~f7
);
```

● XDC 文件配置:

变量	iData[0]~[7]	A, B, C	oData[0]~[7]		
N4 板上的 管脚	SW0~7	SW15~13	LD0~7		
	(J15、L16、M13、R15、	(V10、U11、	(H17、K15、J13、N14、		
	R17、T18、U18、R13)	U12)	R18、V17、U17、U16)		

4. 实验步骤

- 1. 根据图 6.2.1 和图 6.2.2 中的真值表列写数据选择器和数据分配器的逻辑表达式,并用用 logisim 画出 1 位四选一数据选择器、4 位四选一数据选择器、1 线-4 线数据分配器的电路原理图,并验证逻辑。
- 2. 新建 Vivado 工程,编写各个模块。
- 3.用 ModelSim 仿真测试各模块。
- 4. 配置 XDC 文件,综合下板,并观察实验现象。
- 5. 按照要求书写实验报告。