USP - Universidade de São Paulo

IME - Instituto de Matemática e Estatística

Departamento de Matemática Aplicada

Disciplina: MAP 0216/MAT 0206/MAP 5706

Professor: Rodrigo Bissacot

PROVA 2.1

Aluna(o): N° USP: Data:20.11.2020

OBSERVAÇÕES:

Boa prova!

(1) (3 pontos)

Sejam $(x_n)_{n\in\mathbb{N}}$ e $(y_n)_{n\in\mathbb{N}}$ sequências limitadas de números reais.

Sejam $A = \limsup x_n \in B = \limsup y_n$.

Mostre que:

(a) $\liminf (-x_n) = -A$

- (b) Suponha que $\lim x_n = x_0$. Mostre que $\limsup (x_n y_n) \ge x_0 B$.
- (2) (2 pontos)
 - (a) Seja $X_{\alpha} := \{m + n \cdot \alpha; m \in \mathbb{Z} \text{ e } n \in \mathbb{Z}\}$ e α irracional.

Sejam $f:\mathbb{R}\to\mathbb{R}$ e $g:\mathbb{R}\to\mathbb{R}$ funções contínuas.

Suponha que f(x) = g(x) para todo $x \in X_{\alpha}$. Mostre que f = g.

- (b) Se α for racional, a implicação do item (a) ainda é verdade? Prove ou dê contra-exemplo.
- (c) Seja $f: \mathbb{R} \to \mathbb{R}$ contínua. É possível existir $g: \mathbb{R} \to \mathbb{R}$ descontínua em todos os pontos tal que f(x) = g(x) para todo $x \in X_{\alpha}$ com α irracional? Exiba g ou prove que é impossível.
- **(3)** (2 pontos)

Sejam A e B conjuntos não-vazios e compactos de números reais. Definindo $d(A, B) = \inf\{|a - b|; a \in A \text{ e } b \in B\}$. Mostre que:

- (a) Prove que se $A \cap B = \emptyset$ então d(A, B) > 0.
- (b) Prove que se $A \cap B = \emptyset$ então existem $a \in A$ e $b \in B$ tais que d(A, B) = |a b|.
- (c) Dê exemplo de A e B conjuntos não-vazios e fechados de números reais tais que $A \cap B = \emptyset$ e d(A, B) = 0.

QUESTÃO EXTRA.

Seja $X \subset \mathbb{R}$, $f: X \to \mathbb{R}$ e $x_0 \in X$.

Diremos que f tem a propriedade (U) no ponto $x_0 \in X$ quando:

 $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{tal que } f(x) < f(x_0) + \varepsilon, \text{ para todo } x \in (x_0 - \delta, x_0 + \delta) \cap X.$

(a) Prove que f tem a propriedade (U) no ponto $x_0 \in X$ se, e somente se, para toda sequência $(x_n)_{n \in \mathbb{N}}$ em X tal que $\lim x_n = x_0$ temos que $\lim \sup f(x_n) \leq f(x_0)$.

Faça um desenho de uma função com essa propriedade.

(b) Suponha que f tem a propriedade (U) em todo $x \in X$ e que X seja compacto. Mostre que f(x) atinge seu máximo em algum ponto de X, ou seja, existe $x_0 \in X$ tal $f(x_0) \ge f(x)$ para todo $x \in X$.