

Première année de Licence MIASHS

TD corrigé – Analyse 1¹

Julien GREPAT²

1 Éléments de logique

Exercice 1.1

- (i) Dire si la proposition est vraie ou fausse. (On pourra rappeler les tables de vérité des principaux opérateurs logiques)
 - (a) (2 > 0) et $(2 \ge 1)$;

Correction. La proposition (2 > 0) est vraie. La proposition $(2 \ge 1)$ est vraie. Si P et Q sont des propositions vraies, alors (P et Q) est vraie. Donc la proposition $((2 > 0) \text{ et } (2 \ge 1))$ est vraie.

- (b) (2 > 0) ou $(2 \le 1)$;
 - **Correction.** La proposition (2 > 0) est vraie. La proposition $(2 \le 1)$ est fausse. Dès qu'une proposition est vraie, alors (P ou Q) est vraie. Donc la proposition $((2 > 0) \text{ ou } (2 \le 1))$ est vraie.
- (c) (2 > 0) et $(2 \le 1)$.

Correction. La proposition (2 > 0) est vraie. La proposition $(2 \le 1)$ est fausse. Dès qu'une proposition est fausse, alors (P et Q) est fausse. Donc la proposition $((2 > 0) \text{ et } (2 \le 1))$ est fausse.

(ii) Écrire la négation de la proposition suivante, où x et y désignent des nombres réels fixés.

$$(x > 3)$$
 et $(y > 10)$.

Correction. La négation de $(P \ et \ Q) \ est \ ((non \ P) \ ou \ (non \ Q))$. Ici, c'est donc $((x \le 3) \ ou \ (y \le 10))$.

(iii) (a) ((x > 2) ou (x < 2));

Correction. Si x = 2, alors la proposition est fausse. Si x = 3, la proposition est vraie. Donc la proposition est parfois vraie et parfois fausse.

¹Reproduction et diffusion interdite sans l'accord de l'auteur

²Contact: julien.grepat@univ-grenoble-alpes.fr

(b) $(x > 3) \implies (x > 2)$;

Correction. L'implication $(P \Longrightarrow Q)$ est équivalente à la disjonction $((non\ P)\ ou\ Q)$. Donc ici, la proposition peut s'écrire $((x \le 3)\ ou\ (x > 2))$. Pour qu'elle soit fausse, il faut x > 3 et x < 2. Or il n'existe pas de tel x. Donc la proposition est toujours vraie.

- (iv) Écrire la contraposée des implications suivantes, où x et y désignent des nombres réels fixés.
 - (a) $(x > 3) \implies (x > 2)$;

Correction. La contraposée de $(x > 3) \implies (x > 2)$ est

$$(non (x > 2)) \implies (non (x > 3)),$$

c'est à dire,

$$(x \le 2) \implies (x \le 3)$$
.

(b) $(x > 0 \text{ et } y > 0 \text{ et } x > y) \implies \left(\frac{1}{x} < \frac{1}{y}\right)$;

Correction. à vérifier La contraposée de $(x>0\ et\ y>0\ et\ x>y)\implies \left(\frac{1}{x}<\frac{1}{y}\right)$ est

$$\left(non \left(\frac{1}{x} < \frac{1}{y}\right) \implies (x > 0 \ et \ y > 0 \ et \ x > y\right),$$

c'est à dire,

$$\left(\frac{1}{x} \ge \frac{1}{y}\right) \implies (x \le 0 \text{ ou } y \le 0 \text{ ou } x \le y).$$

- (v) Écrire la proposition à l'aide du connecteur \implies , et indiquer (sans preuve) si elle est vraie pour toute valeur de $n \in \mathbb{N}$. Indication. $2^{10} = 1024$.
 - (a) pour que $2^n \ge 1000$, il faut que $n \ge 15$;

Correction. La proposition signifie : si $2^n \ge 1000$, alors $n \ge 15$.

Elle s'écrit $(2^n \ge 1000 \implies n \ge 15)$.

C'est une proposition fausse car si par exemple n=10, alors $(2^n \ge 1000)$ est vraie et $(n \ge 15)$ est fausse, et donc $(2^n \ge 1000)$ $\implies n \ge 15$ est fausse.

(b) pour que $2^n \ge 1000$, il suffit que $n \ge 15$.

Correction. La proposition signifie : si $n \ge 15$, alors $2^n \ge 1000$.

Elle s'écrit $(n > 15 \implies 2^n > 1000)$.

C'est une proposition vraie.

Exercice 1.2

- (i) Traduire à l'aide des quantificateurs les propositions suivantes :
 - (a) Dans \mathbb{R} , il y a au moins un nombre, qui une fois inversé, est un entier. Correction. La proposition se formalise en : $(\exists x \in \mathbb{R}, \frac{1}{x} \in \mathbb{N})$.
 - (b) Tout nombre réel positif ou nul est égal au carré d'un nombre réel positif ou nul. Correction. La proposition se formalise en : $(\forall x \in [0, +\infty[, \exists y \in [0, +\infty[, x = y^2].$

(ii) Écrire la négation de la proposition suivante, puis indiquer (sans preuve) si la proposition est vraie ou si sa négation est vraie.

$$\forall x \in [1, +\infty[, \quad x^2 \ge x.$$

Correction. La négation de la proposition est : $\exists x \in [1, +\infty[, x^2 < x]]$

L'inéquation $x^2 \ge x$ est vérifiée pour tout $x \in [1, +\infty[$, donc la proposition initiale est vraie.

(En effet, $x^2 \ge x \iff x^2 - x \ge 0 \iff x(x-1) \ge 0 \iff x \in]-\infty,0] \cup [1,+\infty[,\ donc\ si\ x \ge 1,\ alors\ x^2 \ge x.)$

(iii) Pour l'assertion suivante, indiquer si elle est vraie ou fausse. Si elle est fausse, modifier un unique quantificateur pour qu'elle devienne vraie.

$$\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \qquad x + y = 2.$$

Correction. La proposition est fausse, car sa négation $(\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y \neq 2)$ est vraie (x = 0 et y = 0 conviennent). La proposition modifiée suivante est vraie.

$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \qquad x + y = 2.$$

En effet, soit $x \in \mathbb{R}$. Je pose y = 2 - x. Alors x + y = x + 2 - x = 2.

Exercice 1.3

(i) Démontrer la proposition suivante.

$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, \qquad y > x.$$

Correction. Soit $x \in \mathbb{R}$. Je pose y = x + 1. De 1 > 0, je déduis, par addition de x que

$$x+1>x+0,$$
 c'est à dire, $y>x.$

(ii) Montrer la proposition suivante à l'aide d'un raisonnement par l'absurde.

Le nombre 0 n'a pas d'inverse.

Indication. On dit qu'un nombre réel a possède un inverse s'il existe un réel b tel que $a \times b = 1$.

Correction. Je suppose, par l'absurde, que 0 possède un inverse. D'après la définition, il existe donc $b \in \mathbb{R}$ tel que $0 \times b = 1$.

 $Or \ 0 \times b = 0$. Par conséquent 0 = 1. Contradiction.

- (iii) Montrer les implications suivantes soit directement, soit en considérant leur contraposée.
 - (a) Quel que soit n ∈ N, ou bien n est pair, ou bien n + 1 est pair.
 Indication. Utiliser: (1) Un entier est pair (resp. impair) s'il peut s'écrire 2k (resp. 2k + 1) avec k un entier, et (2) Tout entier est ou bien pair ou bien impair.
 Correction. Soit n ∈ N. D'après (2), je peux distinguer les cas: n est pair, et n est impair.

Cas 1 : Si n est pair, la propriété désirée (n est pair ou n+1 est pair) est vraie.

Cas 2: Si n est impair, alors d'après (1), il existe $k \in \mathbb{N}$ tel que n = 2k + 1.

Dans ce cas, n + 1 = (2k + 1) + 1 = 2k + 2 = 2(k + 1).

Or $k+1 \in \mathbb{N}$, donc d'après (1), n+1 est pair.

Ainsi, la propriété désirée (n est pair ou n+1 est pair) est vraie.

(b) Quel que soit $n \in \mathbb{N}$, si n^2 est pair, alors n est pair.

Correction. On raisonne par contraposée $((P \Longrightarrow Q) \iff (nonQ \Longrightarrow nonP))$ et montre que si n est impair alors n^2 est impair. On pose

$$n = 2k + 1, \qquad k \in \mathbb{Z}.$$

Alors

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1.$$

Puisque 4l est pair pour tout $l \in \mathbb{Z}$, il suit que $4k^2 + 4k$ et pair et que, donc, $n^2 = 4k^2 + 4k + 1$ est impair.

Exercice 1.4 (Bornes)

On considère l'ensemble A contenu dans \mathbb{R} défini par $A = \left\{\frac{n-1}{n+1} : n \in \mathbb{N}^*\right\}$. Quelques éléments de A ont été représentés dans la figure ci-dessous (sur l'axe des ordonnées).

L'objectif de cet exercice est de montrer sup A = 1, c'est à dire :

- L'ensemble A est majoré par $1: \forall x \in A, x \leq 1$
- L'ensemble A n'est majoré par aucun réel inférieur à $1: \forall \varepsilon > 0, \exists x \in A, x > 1 \varepsilon$.
- (i) Exemples:
 - Montrer que $0.9 \in A$, $0.92 \in A$, mais $0.91 \notin A$.

Correction. Montrons que $0.9 \in A$, résolvons

$$\frac{n-1}{n+1} = 0.9$$
 \iff $n-1 = 0.9(n+1)$ \iff $0.1n = 1.9$ \iff $n = 19 \in \mathbb{N}.$

Donc 0.9 est bien dans A. Il en est de même pour 0.92, en prenant n=24. Par contre, la résolution de l'équation liée à la valeur 0.91 amène à

$$\frac{n-1}{n+1} = 0.91$$
 \iff $n-1 = 0.91(n+1)$ \iff $0.09n = 1.91$ \iff $n \approx 21, 22 \notin \mathbb{N}.$

• Comment formaliser la propriété : $x \in A$?

Correction.

$$x \in A$$
 \iff $\exists n \in \mathbb{N}, \quad x = \frac{n-1}{n+1}.$

(ii) (a) Montrer: $\forall x \in A, x \leq 1$.

Correction.

Soit $x \in A$, alors $\exists n \in \mathbb{N}$, $x = \frac{n-1}{n+1}$, ≤ 1 (dès lors que n-1 < n+1). Il suit que l'ensemble A est majoré par 1.

- (b) Soit $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$.
 - On suppose $\varepsilon > 1$. Quel est le signe de 1ε ?

Correction.

Soit $\varepsilon > 1$, alors $1 - \varepsilon < 0$. Si $n \in \mathbb{N}^*$, alors n - 1 > 0 et n + 1 > 0. Il suit que pour $x \in A$ et $x > 0 > 1 - \varepsilon$. Ce qu'il fallait démontrer.

• On suppose $\varepsilon \leq 1$. Déterminer un $n \in \mathbb{N}^*$ tel que $\frac{n-1}{n+1} > 1 - \varepsilon$.

Correction.

$$\frac{n-1}{n+1} > 1 - \varepsilon \qquad \iff \qquad n-1 > (1-\varepsilon)(n+1)$$

$$\iff \qquad \varepsilon n > 2 - \varepsilon$$

$$\iff \qquad n > \frac{2-\varepsilon}{\varepsilon}.$$

Il suffit donc de choisir n le premier entier supérieur à $\frac{2+\varepsilon}{\varepsilon}$ pour que

$$x = \frac{n-1}{n+1} > 1 - \varepsilon.$$

D'où le résultat.

(iii) Conclure.

Correction.

On a donc montré que A est majoré par 1 et qu'on peut trouver un élément de A arbitrairement proche de 1. Donc la borne supérieure de A est 1.

Exercice 1.5 Soit $A = \{\frac{1}{n} : n \in \mathbb{N}\}$. Montrer que inf A = 0.

Correction.

Naturellement, si n > 0, alors 1/n > 0. Ainsi A est minoré par 0. Montrons que l'ensemble A n'est minoré par aucun réel supérieur à 0:

$$\forall \varepsilon > 0, \exists x \in A, \qquad 0 < x = \frac{1}{n} < \varepsilon.$$

Prenons n le plus petit entier supérieur à $1/\varepsilon$. En posant $x=\frac{1}{n}$, il suit que

$$n>\frac{1}{\varepsilon}>0 \quad \Longleftrightarrow \quad \frac{1}{n}<\varepsilon \quad \Longleftrightarrow \quad x<\varepsilon.$$

D'où le résultat.