## **AMENDMENTS TO THE CLAIMS**

## 1-27 Cancelled

- 28. (Currently Amended) A proton-conducting polymer membrane based on polyazoles which is obtained by a process comprising
- A) mixing one or more aromatic tetraamino compound(s) with one or more aromatic carboxylic acids or their esters, which contain at least two acid groups per carboxylic acid monomer, or mixing one or more aromatic and/or heteroaromatic diaminocarboxylic acids in organic phosphonic acid anhydrides with formation of a solution and/or dispersion,
- B) applying a layer using the mixture in accordance with step A) to a support or to an electrode,
- C) heating the flat structure/layer obtainable in accordance with step B) under inert gas to temperatures of up to 350°C, with formation of the polyazole polymer, and
- D) treating the membrane formed in step C) (until it is self-supporting) until it is self-supporting by a partial hydrolysis of the organic phosphonic acid anyhydride.
- 29. (Previously Presented) The membrane according to claim 28, wherein said aromatic tetraamino compound(s) are 3,3',4,4'-tetraaminobiphenyl, 2,3,5,6-tetraaminopyridine, 1,2,4,5-tetraaminobenzene, 3,3',4,4'-tetraaminodiphenyl sulphone, 3,3',4,4'-tetraaminodiphenyl ether, 3,3',4,4'-tetraaminobenzophenone, 3,3',4,4'-tetraaminodiphenylmethane or 3,3',4,4'-tetraaminodiphenyldimethylmethane.
- 30. (Previously Presented) The membrane according to claim 28, wherein said one or more aromatic carboxylic acids or their esters are isophthalic acid, terephthalic acid, phthalic acid, 5-hydroxylisophthalic acid, 4-hydroxylisophthalic acid, 2-hydroxylterephthalic acid, 5-aminoisophthalic acid, 5-N,N-diethylaminoisophthalic acid, 5-N,N-diethylaminoisophthalic acid, 2,5-dihydroxylterephthalic acid, 2,5-dihydroxylterephthalic acid, 2,3-dihydroxylterephthalic

acid, 2,4-dihydroxyphthalic acid, 3,4-dihydroxyphthalic acid, 3-fluorophthalic acid, 5-fluoroisophthalic acid, 2-fluoroterephthalic acid, tetrafluorophthalic acid, tetrafluoroterephthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenic acid, 1,8-dihydroxynaphthalene-3,6-dicarboxylic acid, diphenyl ether-4,4'-dicarboxylic acid, benzophenone-4,4'-dicarboxylic acid, diphenylsulphone-4,4'-dicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, 4-trifluoromethylphthalic acid, 2,2-bis(4-carboxyphenyl)hexafluoropropane, 4,4'-stilbenedicarboxylic acid, 4-carboxycinnamic acid or their C1-C20 alkyl esters or C5-C12 aryl esters or their acid anhydrides or their acid chlorides.

- 31. (Previously Presented) The membrane according to claim 28, wherein said aromatic carboxylic acid, tricarboxylic acids, tetracarboxylic acids or their C1-C20 alkyl esters or C5-C12 aryl esters or their acid anhydrides or their acid chlorides are used.
- 32. (Previously Presented) The membrane according to claim 28, wherein said aromatic carboxylic acid, tetracarboxylic acids, their C1-C20 alkyl esters or C5-C12 aryl esters or their acid anhydrides or their acid chlorides are used.
- 33. (Previously Presented) The membrane according to claim 31, wherein the content of tricarboxylic acid or tetracarboxylic acids (based on dicarboxylic acid used) is 0.1 and 30 mol-%.
- 34. (Previously Presented) The membrane according to claim 28, wherein, as heteroaromatic carboxylic acids, heteroaromatic dicarboxylic acids and tricarboxylic acids and tetracarboxylic acids are used, which contain at least one nitrogen, oxygen, sulphur or phosphorus atom in the aromatic group.
- 35. (Previously Presented) The membrane according to claim 28, wherein in step A), organic phosphonic anhydrides of the formula

or linear compounds of the formula

or anhydrides of the multiple organic phosphonic acids of the formula

wherein the radicals R and R' are identical or different and represent a  $C_1$ - $C_{20}$  carbon-containing group.

- 36. (Previously Presented) The membrane according to claim 28, wherein, in step A), a polyphosphoric acid having a content of at least 83%, calculated as P<sub>2</sub>O<sub>5</sub> (by acidimetry), is additionally used.
- 37. (Previously Presented) The membrane according to claim 28, wherein, in step A), P<sub>2</sub>O<sub>5</sub> is additionally used.
- 38. (Previously Presented) The membrane according to claim 28, wherein, in step A) or step B), a solution or a dispersion/suspension is produced.
- 39. (Previously Presented) The membrane according to claim 28, wherein, in step C), a polymer based on polyazole containing recurring azole units of the general formula (I)

and/or (II) and/or (III) and/or (IV) and/or (V) and/or (VI) and/or (VII) and/or (VIII) and/or (IX) and/or (X) and/or (XI) and/or (XII) and/or (XIII) and/or (XIV) and/or (XV) and/or (XVI) and/or (XVII) and/or (XVIII) and/or (XIII) and/or (XIX) and/or (XXIII) and/or (XXIII) and/or (XXIII)

$$\begin{array}{c} \longrightarrow X \\ X \end{array} Ar \begin{array}{c} N \\ X \end{array} Ar \begin{array}{c} \longrightarrow \\ X \end{array} Ar \begin{array}{c} \longrightarrow \\ N \end{array} Ar \begin{array}{c} \longrightarrow \\ X \end{array} Ar \begin{array}{c} \longrightarrow \\ X$$

$$+Ar^{4} \xrightarrow{X} Ar^{3} \xrightarrow{N} Ar^{4} \xrightarrow{I}_{n} \qquad (III)$$

$$+Ar^{4} \xrightarrow{X} Ar^{4} \xrightarrow{I}_{n} \qquad (III)$$

$$+Ar^6 + Ar^6 +$$

$$-[-Ar^7 - \sqrt{N-Ar^7}]_n$$
 (VI)

$$X \longrightarrow N$$
 (XI)

$$N_{N}$$
 (XII)

$$X = N$$
 (XIII)

$$\begin{array}{c|c} N & & \\ \hline & & \\ N & & \end{array}$$
 (XIX)

$$R_n$$
 (XX)

## wherein

Ar are identical or different and represent a tetracovalent aromatic or heteroaromatic group which can be mononuclear or polynuclear,

Ar<sup>1</sup> are identical or different and represent a bicovalent aromatic or heteroaromatic group which can be mononuclear or polynuclear,

Ar<sup>2</sup> are identical or different and represent a bicovalent or tricovalent aromatic or heteroaromatic group which can be mononuclear or polynuclear,

Ar<sup>3</sup> are identical or different and represent a tricovalent aromatic or heteroaromatic group which can be mononuclear or polynuclear,

Ar<sup>4</sup> are identical or different and represent a tricovalent aromatic or heteroaromatic group which can be mononuclear or polynuclear,

Ar<sup>5</sup> are identical or different and represent a tetracovalent aromatic or heteroaromatic group which can be mononuclear or polynuclear,

Ar<sup>6</sup> are identical or different and represent a bicovalent aromatic or heteroaromatic group which can be mononuclear or polynuclear,

Ar<sup>7</sup> are identical or different and represent a bicovalent aromatic or heteroaromatic group which can be mononuclear or polynuclear,

Ar<sup>8</sup> are identical or different and represent a tricovalent aromatic or heteroaromatic group which can be mononuclear or polynuclear,

Ar<sup>9</sup> are identical or different and represent a bicovalent or tricovalent or tetracovalent aromatic or heteroaromatic group which can be mononuclear or polynuclear,

Ar<sup>10</sup> are identical or different and represent a bicovalent or tricovalent aromatic or heteroaromatic group which can be mononuclear or polynuclear,

Ar<sup>11</sup> are identical or different and represent a bicovalent aromatic or heteroaromatic group which can be mononuclear or polynuclear,

X are identical or different and represent oxygen, sulphur or an amino group which carries a hydrogen atom, a group having 1 - 20 carbon atoms,

R are identical or different and represent hydrogen, an alkyl group and an aromatic group, with the proviso that R in formula (XX) is not hydrogen, and

n and m are each an integer greater than or equal to 10, is formed.

- 40. (Previously Presented) The membrane according to claim 28, wherein, in step C), a polymer selected from the group consisting of polybenzimidazole, poly(pyridines), poly(pyrimidines), polyimidazoles, polybenzothiazoles, polybenzoxazoles, polyoxadiazoles, polyquinoxalines, polythiadiazoles and poly(tetrazapyrenes) is formed.
- 41. (Currently Amended) The membrane according to claim 28, wherein, in step C), a polymer containing recurring benzimidazole units selected from the group of the formula consisting of

<u>and</u>

where n and m are each an integer greater than or equal to 10 is formed.

42. (Previously Presented) The membrane according to claim 28, wherein, after step C) and before step D), the viscosity is adjusted by addition of phosphoric acid and/or organophosphonic acids.

- 43. (Previously Presented) The membrane according to claim 28, wherein the membrane produced in accordance with step D) is treated in the presence of moisture at temperatures and for a period of time until the membrane is self-supporting and can be detached from the support without any damage.
- 44. (Previously Presented) The membrane according to claim 28, wherein the treatment of the membrane in step D) is performed at temperatures of more than 0°C and less than 150°C in the presence of moisture or water and/or steam.
- 45. (Previously Presented) The membrane according to claim 28, wherein the treatment of the membrane in step D) is for 10 seconds to 300 hours.
- 46. (Previously Presented) The membrane according to claim 28, wherein, in step B), an electrode is chosen as the support and the treatment in accordance with step D) is such that the membrane formed is no longer self-supporting.
- 47. (Previously Presented) The membrane according to claim 28, wherein, in step B), a layer having a thickness of 20 to 4000 μm is produced.
- 48. (Previously Presented) The membrane according to claim 28, wherein the membrane formed in step D) has a thickness between 15 and 3000 μm.
- 49. (Currently Amended) An electrode having a proton-conducting polymer coating based on polyazoles which can be obtained by a process comprising the steps of
- A) mixing one or more aromatic tetraamino compounds with one or more aromatic carboxylic acids or their esters, which contain at least two acid groups per carboxylic acid

Serial No. 10/584,957 15588-00048

monomer, or mixing one or more aromatic and/or heteroaromatic diaminocarboxylic acids in organic phosphonic acid anhydrides with formation of a solution and/or dispersion,

- B) applying a layer using the mixture in accordance with step A) to an electrode,
- C) heating the flat structure/layer obtainable in accordance with step B) under inert gas to temperatures of up to 350°C, with formation of the polyazole polymer,
- D) treatment of treating the layer formed in step C). by a partial hydrolysis of the organic phosphonic acid anyhydride
- 50. (Previously Presented) The electrode according to claim 49 where the coating has a thickness between 2 and 3000  $\mu$ m.
- 51. (Previously Presented) The electrode according to claim 49 where the coating has a thickness between in between 5 and 1500  $\mu$ m.
- 52. (Previously Presented) A membrane electrode unit containing at least one electrode and at least one membrane according to claim 29.
- 53. (Previously Presented) The membrane electrode unit containing at least one electrode according to claim 51.
- 54. (Previously Presented) A fuel cell containing one or more membrane electrode units according to claim 52.
- 55. (Previously Presented) The membrane according to claim 31, wherein the content of tricarboxylic acid or tetracarboxylic acids (based on dicarboxylic acid used) is between 0.5 and 10 mol-%.
- 56. (Previously Presented) The membrane according to claim 28, wherein, as heteroaromatic carboxylic acids, pyridine-2,5-dicarboxylic acid, pyridine-3,5-dicarboxylic acid, pyridine-2,6-dicarboxylic acid, pyridine-2,4-dicarboxylic acid, 4-phenyl-2,5-

pyridinedicarboxylic acid, 3,5-pyrazoledicarboxylic acid, 2,6-pyrimidinedicarboxylic acid, 2,5-pyrazinedicarboxylic acid, 2,4,6-pyridinetricarboxylic acid, benzimidazole-5,6-dicarboxylic acid as well as their C1-C20 alkyl esters or C5-C12 aryl esters or their acid anhydrides or their acid chlorides.

- 57. (Previously Presented) The membrane according to claim 28, wherein benzene-1,2,4,5-tetracarboxylic acids; naphthalene-1,4,5,8-tetracarboxylic acids; 3,5,3',5'-biphenyltetracarboxylic acid; benzophenonetetracarboxylic acid, 3,3',4,4'-biphenyltetracarboxylic acid, 2,2',3,3'-biphenyltetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, are used.
- 58. (Previously Presented) The membrane according to claim 28, wherein 1,3,5-benzenetricarboxylic acid (trimesic acid), 1,2,4-benzenetricarboxylic acid (trimellitic acid); (2-carboxyphenyl)iminodiacetic acid, 3,5,3'-biphenyltricarboxylic acid, 3,5,4'-biphenyltricarboxylic acid and/or 2,4,6-pyridinetricarboxylic acid, are used.
- 59. (Currently Amended) The membrane according to claim 28, wherein during or after step A) and/other and/or before step B), a further polymer is added as blend material.