## Kazánok energetikai kérdései

#### **Baumann Mihály**

óraadó

PTE PMMK Épületgépészeti Tsz.



### 2002/91/EK direktíva

- Szabályozás kidolgozása új épületek tervezéséhez (felújításokra is kiterjedő számítási módszer és követelményrendszer)
- Megújuló energia felhasználás, kapcsolt energiatermelés favorizálása
- Épületek energetikai minőségtanúsítása (új épületek használatbavétele, meglévők tulajdonos/bérlő változása esetén)
- Tanúsítói jogosítványok feltételeinek szabályozása
- Minőségtanúsítás közzététele középületekben
- Kazánok rendszeres energetikai felülvizsgálata (20 kW felett, 2-4 éves gyakorisággal)
- Klímaberendezések rendszeres energetikai felülvizsgálata (12 kW felett, 2-4 éves gyakorisággal)
- 15 évnél régebbi hőtermelővel üzemelő fűtési rendszerek egyszeri felülvizsgálata



## Kazánok csoportosítása

- Hagyományos kazánok
- Alacsonyhőmérsékletű kazánok
- Kondenzációs kazánok



### Kazán hatásfok

- Tüzeléstechnikai hatásfok
- Kazánhatásfok
- Kazán éves hatásfok
- Készenléti veszteség



# Érezhető égéstermékveszteség

$$P_{ch,on,s} = \left(\Theta_{fl} - \Theta_{air}\right) \cdot \left(\frac{A}{21 - O_{2,fl,dry}} + B\right)$$

Θ<sub>fl</sub> égéstermék hőmérséklete [°C]
 Ο<sub>2,fl,dry</sub> száraz égéstermék oxigén tartalma [%]
 Θ<sub>air</sub> égési levegő hőmérséklete az égőnél [°C]

A és B konstansok:

|   | Tüzelőolaj | Földgáz | PB    |
|---|------------|---------|-------|
| A | 0,68       | 0,66    | 0,63  |
| В | 0,007      | 0,009   | 0,008 |



### Tüzeléstechnikai hatásfok

$$\eta_{cn} = \frac{1 - P_{ch,on,s}}{100} \quad [\%]$$



### Tüzeléstechnikai hatásfok a kazánvízhőmérséklet függvényében



# M

# Sugárzási veszteség

$$\begin{split} & \Phi_{gn,env} = \sum_{i} A_{i} \cdot \alpha_{i} \cdot (\Theta_{i} - \Theta_{int}) \quad [W] \\ & P_{gn,env} = \frac{\Phi_{gn,env}}{\Phi_{er}} \quad [-] \end{split}$$

Φ<sub>qn,env</sub> burkolaton keresztüli hőveszteség [W]

A<sub>i</sub> i-ik felületelemének mérete [m<sup>2</sup>]

α<sub>i</sub> i-ik felületelem hőátadási tényezője [W/m²K]

θ<sub>i</sub> i-ik felületelem felületi hőmérséklete [°C]

θ<sub>int</sub> kazánház belső hőmérséklete [°C]

P<sub>gn,env</sub> burkolaton keresztüli fajlagos hőveszteség [-]

Φ<sub>cn</sub> kazán névleges hőterhelése [W]



### Kazánhatásfok névleges terhelésen

$$\eta_{100} = \eta_{cn} - P_{gn,env} \quad [-]$$

```
\eta_{100} a kazán hatásfoka teljes terhelésen [-] a kazán tüzeléstechnikai hatásfoka [-]
```

P<sub>gn,env</sub> a burkolaton keresztüli fajlagos hőveszteség [-]



# Égéstermék veszteség égő kikapcsolt állapotában

| Leírás                                                                                                                                                                         | P <sub>ch,off</sub> [%] |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Olaj- vagy gázüzemű blokkégővel felszerelt túlnyomásos tűzterű kazán, levegő bevezetésben automatikus zárású csappantyúval                                                     | 0,2                     |
| Gázüzemű turbó falikazán, fali égéstermék kivezetéssel                                                                                                                         | 0,4                     |
| Olaj- vagy gázüzemű blokkégővel felszerelt túlnyomásos tűzterű kazán, levegő bevezetésben <u>nincs</u> automatikus zárású csappantyú Kémény magasság <10m Kémény magasság >10m | 1,0<br>1,2              |
| Atmoszférikus égőjű gázkazán<br>Kémény magasság <10m<br>Kémény magasság >10m                                                                                                   | 1,2<br>1,6              |



# Összes készenléti veszteség

$$P_0 = P_{gn,env} + P_{ch,off} \quad [-]$$

P<sub>0</sub> az összes készenléti veszteség [-]

P<sub>ch.off</sub> az égéstermék rendszeren keresztüli veszteség [-]

P<sub>gn,env</sub> a burkolaton keresztüli fajlagos hőveszteség [-]

#### Mérési módszerek:

- Kazán készenléti állapotban való üzemeltetése (Stand-By üzem)
- Segédfűtés módszere



# Készenléti veszteség a kazánvízhőmérséklet függvényében





### Kazánterhelés és túlméretezés

$$\varphi = \frac{\left(t_h - t_k\right)}{\left(t_h - t_{km}\right)} \quad \left[-\right] \qquad L = \frac{\Phi_n}{\Phi_{Avg}} \quad \left[-\right]$$

$$arphi_{kor} = rac{arphi}{L} \quad igl[-igr]$$

```
\begin{array}{ll} t_h & \text{a helyiséghőmérséklet [°C]} \\ t_k & \text{a pillanatnyi külső hőmérséklet [°C]} \\ t_{km} & \text{a méretezési külső hőmérséklet [°C]} \\ \phi & \text{a kazánterhelés [-]} \\ \Phi_n & \text{a kazán névleges teljesítménye [W]} \\ \Phi_{\text{Avg}} & \text{az épület méretezési hővesztesége [W]} \\ \phi_{\text{kor}} & \text{a korrigált kazánterhelés [-]} \end{array}
```



### Kazánhatásfok részterhelésen

$$\eta_{g,x} = \frac{\eta_{100}}{\left(\frac{1}{\varphi_{kor}} - 1\right) \cdot P_t + 1} \quad [\%]$$

 $\eta_{g,x}$  a kazán hatásfoka  $\phi_{kor}$  részterhelésen [-]

η<sub>100</sub> a kazán hatásfoka teljes terhelésen [-]

φ<sub>kor</sub> a korrigált kazánterhelés [-]

P<sub>t</sub> a kazán fajlagos készenléti vesztesége a φ

kazánterheléshez tartozó t<sub>köz</sub> kazánvíz hőmérsékleten [-]

# Fűtővíz szabályozása

$$t_{e} = \left(t_{viz,m} - t_{h}\right) \cdot \varphi^{\frac{1}{1+M}} + \frac{\varphi}{2} \cdot \left(t_{em} - t_{vm}\right) + t_{h}$$

$$t_{v} = \left(t_{viz,m} - t_{h}\right) \cdot \varphi^{\frac{1}{1+M}} - \frac{\varphi}{2} \cdot \left(t_{em} - t_{vm}\right) + t_{h}$$

```
t<sub>h</sub> a helyiséghőmérséklet [°C]
t<sub>k</sub> a pillanatnyi külső hőmérséklet [°C]
t<sub>km</sub> a méretezési külső hőmérséklet [°C]
φ a kazánterhelés [-]
t<sub>em</sub> a fűtővíz előremenő hőm. méretezési állapotban [°C]
t<sub>vm</sub> a fűtővíz visszatérő hőm. méretezési állapotban [°C]
t<sub>viz,m</sub> a átlagos hőmérséklete méretezési állapotban [°C]
t<sub>e</sub> a fűtővíz előremenő hőmérséklete [°C]
t<sub>v</sub> a radiátor hőmérséklet kitevője [-]
```



# Különböző kazántípusok kazánhatásfoka





### Szabványos kazán túlméretezése





### Alacsonyhőmérsékletű kazán túlméretezése



# M

Höfokgyakoriság és kazánterhelés





### Kazán éves hatásfoka

| 0,128 | 0,303 | 0,388 | 0,476 | 0,626 |
|-------|-------|-------|-------|-------|
|       |       |       |       |       |

$$\eta_{NN} = \frac{5}{\sum_{i=1}^{5} \frac{1}{\eta_{g,i}}} \quad [-]$$



### Esettanulmányok

|                                  | 1. eset | 2. eset | 3. eset | 4. eset | 5. eset |
|----------------------------------|---------|---------|---------|---------|---------|
| Kazánhatásfok 62,6 % terhelésnél | 90.7    | 93.7    | 92.2    | 92.8    | 85.4    |
| Kazánhatásfok 47,6 % terhelésnél | 89.0    | 93.4    | 91.7    | 92.3    | 82.4    |
| Kazánhatásfok 38,8 % terhelésnél | 87.4    | 93.1    | 91.2    | 91.8    | 79.7    |
| Kazánhatásfok 30,3 % terhelésnél | 85.1    | 92.7    | 90.4    | 91.0    | 76.0    |
| Kazánhatásfok 12,8 % terhelésnél | 73.0    | 90.3    | 86.0    | 86.5    | 58.6    |
| Kazán éves hatásfoka             | 84.5    | 92.6    | 90.2    | 90.8    | 75.1    |

- 1. eset: Szabványos kazán, állandó (80/60 °C) kazánvíz hőmérsékletű üzem
- 2. eset: Alacsonyhőmérsékletű kazán, időjárásfüggő szabályozással
- s. eset: Alacsonyhőmérsékletű kazán, állandó (80/60 °C) kazánvíz hőmérsékletű üzem
- 4. eset: Alacsonyhőmérsékletű kazán 2x túlméretezéssel, időjárásfüggő szab.
- 5. eset: Szabványos kazán 2x túlméretezéssel, állandó (80/60 °C) kazánvíz hőm. üzem

# Köszönöm megtisztelő figyelmüket!