Mathematics

Robin Adams

July 30, 2023

Chapter 1

Sets and Classes

1.1 Classes

Our language is the language of first-order logic with equality over one primitive binary predicate \in . We call all the objects we reason about *sets*. When $a \in b$, we say a is a *member* or *element* of b, or b contains a. We write $b \ni a$ for $a \in b$, and $a \notin b$ for $\neg(a \in b)$. We write $\forall x \in a.\phi$ as an abbreviation for $\forall x(x \in a \to \phi)$, and $\exists x \in a.\phi$ as an abbreviation for $\exists x(x \in a \land \phi)$.

We shall speak informally of *classes* as an abbreviation for talking about predicates. A *class* is determined by a unary predicate $\phi[x]$ (possibly with parameters). We write $\{x \mid \phi[x]\}$ or $\{x : \phi[x]\}$ for the class determined by $\phi[x]$. We write 'a is an element of $\{x \mid \phi[x]\}$ ' or ' $a \in \{x \mid \phi[x]\}$ ' for $\phi[a]$.

We write $\{t[x_1, ..., x_n] \mid P[x_1, ..., x_n]\}$ for $\{y \mid \exists x_1, ..., x_n (y = t[x_1, ..., x_n]) \land P[x_1, ..., x_n]\}$.

We say two classes **A** and **B** are *equal*, and write $\mathbf{A} = \mathbf{B}$, iff $\forall x (x \in \mathbf{A} \leftrightarrow x \in \mathbf{B})$.

Proposition Schema 1.1.1. For any class A, the following is a theorem.

$$A = A$$

PROOF: We have $\forall x (x \in \mathbf{A} \Leftrightarrow x \in \mathbf{A})$. \square

Proposition Schema 1.1.2. For any classes **A** and **B**, the following is a theorem.

If
$$\mathbf{A} = \mathbf{B}$$
 then $\mathbf{B} = \mathbf{A}$.

PROOF: If $\forall x (x \in \mathbf{A} \Leftrightarrow x \in \mathbf{B})$ then $\forall x (x \in \mathbf{B} \Leftrightarrow x \in \mathbf{A})$. \square

Proposition Schema 1.1.3. For any classes A, B and C, the following is a theorem.

If
$$A = B$$
 and $B = C$ then $A = C$.

PROOF: If $\forall x (x \in \mathbf{A} \Leftrightarrow x \in \mathbf{B})$ and $\forall x (x \in \mathbf{B} \Leftrightarrow x \in \mathbf{C})$ then $\forall x (x \in \mathbf{A} \Leftrightarrow x \in \mathbf{C})$. \Box

1.1.1 Subclasses

Definition 1.1.4 (Subclass). We say a class **A** is a *subclass* of **B**, or **B** is a *superclass* of **A**, or **B** *includes* **A**, and write $\mathbf{A} \subseteq \mathbf{B}$ or $\mathbf{B} \supseteq \mathbf{A}$, iff every element of **A** is an element of **B**. Otherwise we write $\mathbf{A} \not\subseteq \mathbf{B}$ or $\mathbf{B} \not\supseteq \mathbf{A}$.

We say **A** is a *proper* subclass of **B**, **B** is a *proper* superclass of **A**, or **B** properly includes **A**, and write $\mathbf{A} \subsetneq \mathbf{B}$ or $\mathbf{B} \supsetneq \mathbf{A}$, iff $\mathbf{A} \subseteq \mathbf{B}$ and $\mathbf{A} \neq \mathbf{B}$.

Proposition Schema 1.1.5. For any class **A**, the following is a theorem.

$$\mathbf{A} \subseteq \mathbf{A}$$

PROOF: Every element of **A** is an element of **A**. \square

Proposition Schema 1.1.6. For any classes **A** and **B**, the following is a theorem.

If
$$A \subseteq B$$
 and $B \subseteq A$ then $A = B$.

PROOF: If every element of A is an element of B, and every element of B is an element of A, then A and B have exactly the same elements. \Box

Proposition Schema 1.1.7. For any classes A, B and C, the following is a theorem.

If
$$A \subseteq B$$
 and $B \subseteq C$ then $A \subseteq C$.

PROOF: If every element of A is an element of B and every element of B is an element of C then every element of A is an element of C.

1.1.2 Constructions of Classes

Definition 1.1.8 (Empty Class). The *empty class* \emptyset is $\{x \mid \bot\}$. Every other class is *nonempty*.

Definition 1.1.9 (Universal Class). The universal class V is $\{x \mid \top\}$.

Definition 1.1.10 (Enumeration). Given objects a_1, \ldots, a_n , we define the class $\{a_1, \ldots, a_n\}$ to be the class $\{x \mid x = a_1 \lor \cdots \lor x = a_n\}$.

Definition 1.1.11 (Intersection). For any classes **A** and **B**, the *intersection* $\mathbf{A} \cap \mathbf{B}$ is $\{x \mid x \in \mathbf{A} \land x \in \mathbf{B}\}.$

Definition 1.1.12 (Union). For any classes **A** and **B**, the *union* $\mathbf{A} \cup \mathbf{B}$ is $\{x \mid x \in \mathbf{A} \lor x \in \mathbf{B}\}.$

Definition 1.1.13 (Relative Complement). Let **A** and **B** be classes. The *relative complement* of **B** in **A** is the class $\mathbf{A} - \mathbf{B} := \{x \in \mathbf{A} \mid x \notin \mathbf{B}\}.$

Definition 1.1.14 (Symmetric Difference). For any classes **A** and **B**, the *symmetric difference* is the class $\mathbf{A} + \mathbf{B} := (\mathbf{A} - \mathbf{B}) \cup (\mathbf{B} - \mathbf{A})$.

Definition 1.1.15 (Pairwise disjoint). Let **A** be a class. We say the elements of **A** are *pairwise disjoint* iff, for all $x, y \in \mathbf{A}$, if $x \cap y \neq \emptyset$ then x = y.

1.2 Sets and the Axiom of Extensionality

Axiom 1.2.1 (Extensionality). If two sets have exactly the same members, they are equal.

Thanks to this axiom, we may identify a set a with the class $\{x \mid x \in a\}$. Our use of the symbols \in and = is consistent. We say a class \mathbf{A} is a set iff there exists a set a such that $a = \mathbf{A}$; that is, $\{x \mid \phi[x]\}$ is a set iff $\exists a \forall x (x \in a \leftrightarrow \phi[x])$. Otherwise, \mathbf{A} is a proper class.

Definition 1.2.2 (Subset). If A is a set and $A \subseteq \mathbf{B}$, we say A is a *subset* of **B**.

Definition 1.2.3 (Union). The *union* of a class **A** is $\{x \mid \exists X \in \mathbf{A}. x \in X\}$. We write $\bigcup_{P(x)} t(x)$ for $\bigcup \{t(x) \mid P(x)\}$.

Definition 1.2.4 (Intersection). The *intersection* of a class **A** is $\{x \mid \forall X \in \mathbf{A}.x \in X\}$. We write $\bigcap_{P(x)} t(x)$ for $\bigcap \{t(x) \mid P(x)\}$.

Definition 1.2.5 (Power Class). For any class **A**, the *power class* \mathcal{P} **A** is $\{X \mid X \subseteq \mathbf{A}\}$.

1.3 The Other Axioms

Axiom 1.3.1 (Union). The union of a set is a set.

Axiom 1.3.2 (Power Set). The power class of a set is a set, which we call a power set.

Axiom 1.3.3 (Infinity). There exists a set I such that:

- There exists an element of I that has no members
- For every $x \in I$, there exists a set $y \in I$ such that the elements of y are exactly x and the members of x.

Axiom 1.3.4 (Choice). For any set A of pairwise disjoint, nonempty sets, there exists a set C such that, for all $x \in A$, we have $x \cap C$ has exactly one element.

Axiom Schema 1.3.5 (Replacement). For any predicate P(x, y), the following is an axiom:

Let A be a set. Assume that, for all $x \in A$, there exists at most one y such that P(x,y). Then $\{y \mid \exists x \in A.P(x,y)\}$ is a set.

Axiom 1.3.6 (Regularity). For any A, if A has a member, then there exists $m \in A$ such that $m \cap A = \emptyset$.

1.4 Consequences of the Axioms

Proposition 1.4.1. The empty class \emptyset is a set.

PROOF: Immediate from the Axiom of Infinity. \square

Proposition 1.4.2 (Russell's Paradox). The class $\{x \mid x \notin x\}$ is a proper class.

PROOF: Assume for a contradiction $R = \{x \mid x \notin x\}$ is a set. Then $R \in R$ if and only if $R \notin R$, which is impossible. \square

Proposition 1.4.3 (Pairing). For any sets a and b, the class $\{a,b\}$ is a set.

Proof:

- (1)1. Let: P(x,y) be the predicate $(x = \emptyset \land y = a) \lor (x = \mathcal{P}\emptyset \land y = b)$.
- $\langle 1 \rangle 2$. For all $x \in \mathcal{PP}\emptyset$, there exists at most one y such that P(x,y).
 - $\langle 2 \rangle 1$. Let: $x \in \mathcal{PP}\emptyset$
 - $\langle 2 \rangle 2$. Let: y and y' be sets.
 - $\langle 2 \rangle 3$. Assume: P(x,y) and P(x,y')
 - $\langle 2 \rangle 4. \ (x = \emptyset \land y = a) \lor (x = \mathcal{P} \emptyset \land y = b)$

PROOF: From $\langle 2 \rangle 3$.

 $\langle 2 \rangle 5. \ (x = \emptyset \land y' = a) \lor (x = \mathcal{P}\emptyset \land y' = b)$

PROOF: From $\langle 2 \rangle 3$.

 $\langle 2 \rangle 6. \ \emptyset \neq \mathcal{P} \emptyset$

PROOF: Since $\emptyset \in \mathcal{P}\emptyset$ and $\emptyset \notin \emptyset$.

 $\langle 2 \rangle 7. \ y = y'$

 $\langle 1 \rangle 3$. Let: A be the set $\{ y \mid \exists x \in \mathcal{PP}\emptyset.P(x,y) \}$.

$$\langle 1 \rangle 4. \ A = \{a, b\}$$

Proposition 1.4.4. The union of two sets is a set.

PROOF: Because $A \cup B = \bigcup \{A, B\}$. \square

Proposition Schema 1.4.5. For any number n, the following is a theorem: For any sets a_1, \ldots, a_n , the class $\{a_1, \ldots, a_n\} = \{x \mid x = a_1 \lor \cdots \lor x = a_n\}$ is a set.

PROOF: The case n=1 follows from Pairing since $\{a\}=\{a,a\}$. If we have proved the theorem for n we have $\{a_1,\ldots,a_n,a_{n+1}\}=\{a_1,\ldots,a_n\}\cup\{a_{n+1}\}$. \square

Proposition Schema 1.4.6 (Comprehension). For any predicate P(x), the following is a theorem:

For any set A, the class $\{x \in A \mid P(x)\}\$ is a set.

Proof:

- $\langle 1 \rangle 1$. Let: A be a set.
- $\langle 1 \rangle 2$. Let: Q(x,y) be the predicate $P(x) \wedge y = x$.
- $\langle 1 \rangle 3$. For all $x \in A$, there exists at most one y such that Q(x,y).

1.4. CONSEQUENCES OF THE AXIOMS

 $\langle 2 \rangle 1$. Let: $x \in A$

 $\langle 2 \rangle 2$. Let: y and y' be sets.

 $\langle 2 \rangle 3$. Assume: Q(x,y) and Q(x,y')

 $\langle 2 \rangle 4. \ x \in A \land P(x) \land y = x \land y' = x$

Proof: From $\langle 2 \rangle 3$.

 $\langle 2 \rangle 5. \ y = y'$

PROOF: From $\langle 2 \rangle 4$.

 $\langle 1 \rangle 4$. Let: B be the set $\{y \mid \exists x \in A.Q(x,y)\}$

PROOF: This is a set by an Axiom of Replacement and $\langle 1 \rangle 3$.

 $\langle 1 \rangle 5. \ B = \{ y \in A \mid P(y) \}$

Proof:

$$y \in B \Leftrightarrow \exists x \in A.Q(x,y)$$
 (\langle 1\rangle 4)

$$\Leftrightarrow \exists x \in A(P(x) \land y = x) \tag{\langle 1 \rangle 2}$$

7

 $\Leftrightarrow P(y)$

П

Corollary Schema 1.4.6.1. For any class A, the following is a theorem:

For any set B, if $\mathbf{A} \subseteq B$ then \mathbf{A} is a set.

Corollary 1.4.6.1. The universal class V is a proper class.

Corollary 1.4.6.2. The intersection of a set and a class is a set.

Corollary 1.4.6.3. The relative complement of a class in a set is a set.

Corollary 1.4.6.4. The symmetric difference of two sets is a set.

Corollary 1.4.6.5. The intersection of a nonempty class is a set.

Proposition Schema 1.4.7. For any classes **A** and **B**, the following is a theorem:

If $\mathbf{A} \subseteq \mathbf{B}$ then $\mathcal{P}\mathbf{A} \subseteq \mathcal{P}\mathbf{B}$.

PROOF: Every subset of **A** is a subset of **B**. \square

Proposition Schema 1.4.8. For any class **A**, the following is a theorem:

$$\mathbf{A} = \bigcup \mathcal{P} \mathbf{A}$$

Proof:

 $\langle 1 \rangle 1$. $\mathbf{A} \subseteq \bigcup \mathcal{P} \mathbf{A}$

PROOF: For all $x \in \mathbf{A}$ we have $x \in \{x\} \in \mathcal{P}\mathbf{A}$.

 $\langle 1 \rangle 2$. $\bigcup \mathcal{P} \mathbf{A} \subseteq \mathbf{A}$

- $\langle 2 \rangle 1$. Let: $x \in \bigcup \mathcal{P} \mathbf{A}$
- $\langle 2 \rangle 2$. PICK $X \in \mathcal{P}\mathbf{A}$ such that $x \in X$
- $\langle 2 \rangle 3. \ X \subset \mathbf{A}$
- $\langle 2 \rangle 4. \ x \in \mathbf{A}$

П

1.5 Transitive Classes

Definition 1.5.1 (Transitive Class). A class **A** is a *transitive class* iff whenever $x \in y \in \mathbf{A}$ then $x \in \mathbf{A}$.

Proposition Schema 1.5.2. For any class **A**, the following is a theorem: The following are equivalent.

- 1. A is a transitive class.
- $2. \mid \mathbf{J} \mathbf{A} \subseteq \mathbf{A}$
- 3. Every element of A is a subset of A.
- 4. $\mathbf{A} \subseteq \mathcal{P}\mathbf{A}$

PROOF: Immediate from definitions.

Proposition Schema 1.5.3. For any class A, the following is a theorem: If A is a transitive class then $\bigcup A$ is a transitive class.

PROOF

- $\langle 1 \rangle 1$. Assume: **A** is a transitive class.
- $\langle 1 \rangle 2$. Let: $x \in y \in \bigcup \mathbf{A}$
- $\langle 1 \rangle 3. \ y \in \mathbf{A}$

PROOF: Since $\bigcup \mathbf{A} \subseteq \mathbf{A}$ by Proposition 1.5.2.

 $\langle 1 \rangle 4. \ x \in \bigcup \mathbf{A}$

Proposition Schema 1.5.4. For any class A, the following is a theorem: We have A is a transitive class if and only if PA is a transitive class.

Proof:

- $\langle 1 \rangle 1$. If **A** is a transitive class then $\mathcal{P}\mathbf{A}$ is a transitive class.
 - $\langle 2 \rangle 1$. Assume: **A** is a transitive class.
 - $\langle 2 \rangle 2$. $\mathbf{A} \subseteq \mathcal{P} \mathbf{A}$

Proof: Proposition 1.5.2.

 $\langle 2 \rangle 3$. $\mathcal{P} \mathbf{A} \subset \mathcal{P} \mathcal{P} \mathbf{A}$

Proof: Proposition 1.4.7.

 $\langle 2 \rangle 4$. $\mathcal{P}\mathbf{A}$ is a transitive class.

Proof: Proposition 1.5.2.

- $\langle 1 \rangle 2$. If $\mathcal{P}\mathbf{A}$ is a transitive class then \mathbf{A} is a transitive class.
 - $\langle 2 \rangle 1$. Assume: $\mathcal{P}\mathbf{A}$ is a transitive class.
 - $\langle 2 \rangle 2. \bigcup \mathcal{P} \mathbf{A} \subseteq \mathcal{P} \mathbf{A}$

Proof: Proposition 1.5.2.

 $\langle 2 \rangle 3$. $\mathbf{A} \subseteq \mathcal{P} \mathbf{A}$

PROOF: Proposition 1.4.8.

 $\langle 2 \rangle 4$. **A** is a transitive class.

Proof: Proposition 1.5.2.

Proposition Schema 1.5.5. For any class A, the following is a theorem: If every member of A is a transitive set then $\bigcup A$ is a transitive class.

Proof:

- $\langle 1 \rangle 1$. Assume: Every member of **A** is a transitive set.
- $\langle 1 \rangle 2$. Let: $x \in y \in \bigcup \mathbf{A}$
- $\langle 1 \rangle 3$. Pick $A \in \mathbf{A}$ such that $y \in A$.
- $\langle 1 \rangle 4. \ x \in A$

PROOF: Since A is a transitive set.

$$\langle 1 \rangle 5. \ x \in \bigcup \mathbf{A}$$

Proposition Schema 1.5.6. For any class A, the following is a theorem: If every member of A is a transitive set then $\bigcap A$ is a transitive class.

Proof:

- $\langle 1 \rangle 1$. Assume: Every member of **A** is a transitive set.
- $\langle 1 \rangle 2$. Let: $x \in y \in \bigcap \mathbf{A}$ Prove: $x \in \bigcap \mathbf{A}$
- $\langle 1 \rangle 3$. Let: $A \in \mathbf{A}$
- $\langle 1 \rangle 4. \ y \in A$
- $\langle 1 \rangle 5. \ x \in A$

PROOF: Since A is a transitive set.

Chapter 2

Relations

2.1 Ordered Pairs

Definition 2.1.1 (Ordered Pair). For any sets a and b, the *ordered pair* (a, b) is defined to be $\{\{a\}, \{a, b\}\}.$

Theorem 2.1.2. For any sets a, b, c, d, we have (a,b) = (c,d) if and only if a = c and b = d.

Proof:

```
\langle 1 \rangle 1. If (a, b) = (c, d) then a = c and b = d.
    \langle 2 \rangle 1. Assume: \{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}
    \langle 2 \rangle 2. \cap \{\{a\}, \{a, b\}\} = \bigcap \{\{c\}, \{c, d\}\}\
    \langle 2 \rangle 3. \{a\} = \{c\}
    \langle 2 \rangle 4. a = c
    \langle 2 \rangle 5. \bigcup \{\{a\}, \{a, b\}\} = \bigcup \{\{c\}, \{c, d\}\}\
    \langle 2 \rangle 6. \ \{a,b\} = \{c,d\}
    \langle 2 \rangle 7. b = c or b = d
    \langle 2 \rangle 8. a = d or b = d
    \langle 2 \rangle 9. If b = c and a = d then b = d
        Proof: By \langle 2 \rangle 4.
    \langle 2 \rangle 10. b=d
        PROOF: From \langle 2 \rangle 7, \langle 2 \rangle 8, \langle 2 \rangle 9.
\langle 1 \rangle 2. If a = c and b = d then (a, b) = (c, d).
    PROOF: First-order logic.
```

Definition 2.1.3 (Cartesian Product). The *Cartesian product* of classes **A** and **B** is the class $\mathbf{A} \times \mathbf{B} := \{(x,y) \mid x \in \mathbf{A}, y \in \mathbf{B}\}.$

Proposition 2.1.4. For any sets A and B, the class $A \times B$ is a set.

PROOF: It is a subset of $\mathcal{PP}(A \cup B)$. \square

Proposition Schema 2.1.5. For any classes **A**, **B** and **C**, the following is a theorem:

$$\mathbf{A} \times (\mathbf{B} \cup \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \cup (\mathbf{A} \times \mathbf{C})$$

Proof:

$$(x,y) \in \mathbf{A} \times (\mathbf{B} \cup \mathbf{C}) \Leftrightarrow x \in \mathbf{A} \wedge (y \in \mathbf{B} \vee y \in \mathbf{C})$$
$$\Leftrightarrow (x \in \mathbf{A} \wedge y \in \mathbf{B}) \vee (x \in \mathbf{A} \wedge y \in \mathbf{C})$$
$$\Leftrightarrow (x,y) \in (\mathbf{A} \times \mathbf{B}) \cup (\mathbf{A} \times \mathbf{C})$$

Proposition Schema 2.1.6. For any classes **A** and **B**, the following is a theorem:

If
$$\mathbf{A} \times \mathbf{B} = \mathbf{A} \times \mathbf{C}$$
 and \mathbf{A} is nonempty then $\mathbf{B} = \mathbf{C}$.

Proof:

 $\langle 1 \rangle 1$. Pick $a \in \mathbf{A}$

 $\langle 1 \rangle_{\underline{}}^2$. For all x we have $x \in \mathbf{B}$ iff $x \in \mathbf{C}$.

Proof:

$$x \in \mathbf{B} \Leftrightarrow (a, x) \in \mathbf{A} \times \mathbf{B}$$

 $\Leftrightarrow (a, x) \in \mathbf{A} \times \mathbf{C}$
 $\Leftrightarrow x \in \mathbf{C}$

Proposition Schema 2.1.7. For any classes **A** and **B**, the following is a theorem:

$$\mathbf{A} \times \bigcup \mathbf{B} = \{(a,b) \mid \exists Y \in \mathbf{B}. (a \in \mathbf{A} \land b \in Y)\}\$$

Proof:

$$(x,y) \in A \times \bigcup \mathbf{B} \Leftrightarrow x \in A \land \exists Y \in \mathbf{B}. y \in Y$$
$$\Leftrightarrow \exists Y \in \mathbf{B}(x \in A \land y \in Y)$$

2.2 Relations

Definition 2.2.1 (Relation). A relation \mathbf{R} between classes \mathbf{A} and \mathbf{B} is a subclass of $\mathbf{A} \times \mathbf{B}$.

A (binary) relation on **A** is a relation between **A** and **A**. We write $x\mathbf{R}y$ for $(x,y) \in \mathbf{R}$.

2.2.1 Identity Functions

Definition 2.2.2 (Identity Function). For any class A, the *identity function* or *diagonal relation* id_A on A is

$$id_{\mathbf{A}} := \{(x, x) \mid x \in \mathbf{A}\} .$$

2.2. RELATIONS 13

2.2.2 Inverses

Definition 2.2.3 (Inverse). The *inverse* of a relation \mathbf{R} between \mathbf{A} and \mathbf{B} is the relation \mathbf{R}^{-1} between \mathbf{B} and \mathbf{A} defined by

$$b\mathbf{R}^{-1}a \Leftrightarrow a\mathbf{R}b$$
.

Proposition Schema 2.2.4. For any classes A, B and R, the following is a theorem:

If **R** is a relation between **A** and **B**, we have $(\mathbf{R}^{-1})^{-1} = \mathbf{R}$.

Proof:

$$x(\mathbf{R}^{-1})^{-1}y \Leftrightarrow y\mathbf{R}^{-1}x$$

 $\Leftrightarrow x\mathbf{R}y$

2.2.3 Composition

Definition 2.2.5 (Composition). Let \mathbf{R} be a relation between \mathbf{A} and \mathbf{B} , and \mathbf{S} be a relation between \mathbf{B} and \mathbf{C} . The *composition* $\mathbf{S} \circ \mathbf{R}$ is the relation between \mathbf{A} and \mathbf{C} defined by

$$a(\mathbf{S} \circ \mathbf{R})c \Leftrightarrow \exists b(a\mathbf{R}b \wedge b\mathbf{S}c)$$
.

Proposition Schema 2.2.6. For any classes **A**, **B**, **C**, **R** and **S**, the following is a theorem:

If ${\bf R}$ is a relation between ${\bf A}$ and ${\bf B}$, and ${\bf S}$ is a relation between ${\bf B}$ and ${\bf C}$, then

$$(\mathbf{S} \circ \mathbf{R})^{-1} = \mathbf{R}^{-1} \circ \mathbf{S}^{-1}$$
.

Proof:

$$z(\mathbf{S} \circ \mathbf{R})^{-1}x \Leftrightarrow x(\mathbf{S} \circ \mathbf{R})z$$

$$\Leftrightarrow \exists y.(x\mathbf{R}y \wedge y\mathbf{S}z)$$

$$\Leftrightarrow \exists y.(y\mathbf{R}^{-1}x \wedge z\mathbf{S}^{-1}y)$$

$$\Leftrightarrow z(\mathbf{R}^{-1} \circ \mathbf{S}^{-1})x$$

2.2.4 Properties of Relaitons

Definition 2.2.7 (Reflexive). Let **R** be a binary relation on **A**. Then **R** is reflexive on **A** iff $\forall x \in \mathbf{A}.(x,x) \in \mathbf{R}$.

Proposition Schema 2.2.8. For any classes **A** and **R**, the following is a theorem:

If **R** is a reflexive relation on **A** then so is \mathbf{R}^{-1} .

Proof:

 $\langle 1 \rangle 1$. Let: $x \in \mathbf{A}$

 $\langle 1 \rangle 2$. $x \mathbf{R} x$

PROOF: Since \mathbf{R} is reflexive.

$$\langle 1 \rangle 3. \ x \mathbf{R}^{-1} x$$

Definition 2.2.9 (Irreflexive). A relation **R** is *irreflexive* iff there is no x such that $(x, x) \in \mathbf{R}$.

Definition 2.2.10 (Symmetric). A relation **R** is *symmetric* iff, whenever $(x, y) \in \mathbf{R}$, then $(y, x) \in \mathbf{R}$.

Definition 2.2.11 (Antisymmetric). A relation **R** is *antisymmetric* iff, whenever $x\mathbf{R}y$ and $y\mathbf{R}x$, then x=y.

Proposition Schema 2.2.12. For any classes **A** and **R**, the following is a theorem:

If **R** is an antisymmetric relation on **A** then so is \mathbf{R}^{-1} .

Proof:

- $\langle 1 \rangle 1$. Assume: $x \mathbf{R}^{-1} y$ and $y \mathbf{R}^{-1} x$
- $\langle 1 \rangle 2$. $y\mathbf{R}x$ and $x\mathbf{R}y$
- $\langle 1 \rangle 3. \ x = y$

PROOF: Since \mathbf{R} is antisymmetric.

Definition 2.2.13 (Transitive). A relation **R** is *transitive* iff, whenever $(x, y), (y, z) \in \mathbf{R}$, then $(x, z) \in \mathbf{R}$.

Proposition Schema 2.2.14. For any classes A, B and R, the following is a theorem:

If **R** is a transitive relation between **A** and **B** then \mathbf{R}^{-1} is transitive.

Proof

- $\langle 1 \rangle 1$. Assume: $(x,y), (y,z) \in \mathbf{R}^{-1}$
- $\langle 1 \rangle 2. \ (y, x), (z, y) \in \mathbf{R}$
- $\langle 1 \rangle 3. \ (z, x) \in \mathbf{R}$
- $\langle 1 \rangle 4. \ (x,z) \in \mathbf{R}^{-1}$

2.3 *n*-ary Relations

Definition Schema 2.3.1. For any sets a_1, \ldots, a_n , define the *ordered n-tuple* (a_1, \ldots, a_n) by

$$(a_1) := a_1$$

 $(a_1, \dots, a_n, a_{n+1}) = ((a_1, \dots, a_n), a_{n+1})$

Definition Schema 2.3.2. An n-ary relation on A is a class of ordered n-tuples all of whose components are in A.

Chapter 3

Functions

3.1 Functions

Definition 3.1.1 (Function). A function from **A** to **B** is a relation **F** between **A** and **B** such that, for all $x \in \mathbf{A}$, there is only one y such that $x\mathbf{F}y$. We denote this y by $\mathbf{F}(x)$.

A binary operation on a class **A** is a function $\mathbf{A}^2 \to \mathbf{A}$.

Definition 3.1.2 (Closed). Let **F** be a function and $\mathbf{A} \subseteq \text{dom } \mathbf{F}$. Then **A** is *closed* under **F** iff $\forall x \in \mathbf{A}.\mathbf{F}(x) \in \mathbf{A}$.

Proposition 3.1.3. For any class **A**, the following is a theorem:

$$\mathrm{id}_A:A\to A$$

PROOF: For all $x \in \mathbf{A}$, the only y such that $(x, y) \in \mathrm{id}_{\mathbf{A}}$ is y = x. \square

Proposition Schema 3.1.4. For any classes A, B, C, F and G, the following is a theorem:

Assume $\mathbf{F}: \mathbf{A} \to \mathbf{B}$ and $\mathbf{G}: \mathbf{B} \to \mathbf{C}$. Then $\mathbf{G} \circ \mathbf{F}: \mathbf{A} \to \mathbf{C}$ and, for all $x \in \mathbf{A}$, we have

$$(\mathbf{G} \circ \mathbf{F})(x) = \mathbf{G}(\mathbf{F}(x))$$
.

Proof:

 $\langle 1 \rangle 1. \ \forall x \in \mathbf{A}.(x, \mathbf{G}(\mathbf{F}(x))) \in \mathbf{G} \circ \mathbf{F})$

PROOF: Because $(x, \mathbf{F}(x)) \in \mathbf{F}$ and $(\mathbf{F}(x), \mathbf{G}(\mathbf{F}(x))) \in \mathbf{G}$.

- $\langle 1 \rangle 2$. If $(x, z) \in \mathbf{F} \circ \mathbf{G}$ then $z = \mathbf{G}(\mathbf{F}(x))$
 - $\langle 2 \rangle 1$. Pick $y \in \mathbf{B}$ such that $x \mathbf{F} y$ and $y \mathbf{G} z$
 - $\langle 2 \rangle 2. \ y = \mathbf{F}(x)$
 - $\langle 2 \rangle 3. \ z = \mathbf{G}(y)$
- $\langle 2 \rangle 4. \ z = \mathbf{G}(\mathbf{F}(x))$

Proposition 3.1.5. For any set A there exists a function $F : \mathcal{P}A - \{\emptyset\} \to A$ (a choice function for A) such that, for every nonempty $B \subseteq A$, we have $F(B) \in B$.

```
Proof:
 \langle 1 \rangle 1. Let: A be a set.
 \langle 1 \rangle 2. Let: \mathcal{A} = \{ \{B\} \times B \mid B \in \mathcal{P}A - \{\emptyset\} \}
 \langle 1 \rangle 3. Every member of \mathcal{A} is nonempty.
 \langle 1 \rangle 4. Any two distinct members of \mathcal{A} are disjoint.
 \langle 1 \rangle5. PICK a set C such that, for all X \in \mathcal{A}, we have C \cap X is a singleton.
    PROOF: Axiom of Choice.
 \langle 1 \rangle 6. Let: F = C \cap \bigcup \mathcal{A}
 \langle 1 \rangle 7. \ F : \mathcal{P}A - \{\emptyset\} \to A
     \langle 2 \rangle 1. F is a function.
         (3)1. \text{ Let: } (B,b), (B,b') \in F
         \langle 3 \rangle 2. \ (B,b), (B,b') \in \{B\} \times B
            PROOF: Since (B, b), (B, b') \in \bigcup A.
         (3)3. (B,b), (B,b') \in C \cap (\{B\} \times B)
         \langle 3 \rangle 4. \ (B,b) = (B,b')
            PROOF: From \langle 1 \rangle 5.
         \langle 3 \rangle 5. b = b'
     \langle 2 \rangle 2. dom F = \mathcal{P}A - \{\emptyset\}
        PROOF:
        B \in \operatorname{dom} F \Leftrightarrow \exists b.(B,b) \in F
                             \Leftrightarrow \exists b.((B,b) \in \bigcup A \land (B,b) \in C)
                             \Leftrightarrow \exists b. \exists B' \in \mathcal{P}A - \{\emptyset\}. ((B,b) \in \{B'\} \times B' \land (B,b) \in C)
                             \Leftrightarrow B \in \mathcal{P}A - \{\emptyset\} \land \exists b \in B.(B,b) \in C
                             \Leftrightarrow B \in \mathcal{P}A - \{\emptyset\}
                                                                                                                                    (\langle 1 \rangle 5)
     \langle 2 \rangle 3. ran F \subseteq A
\langle 1 \rangle 8. For every nonempty B \subseteq A we have F(B) \in B
```

Proposition 3.1.6. For any relation R between A and B, there exists a function $H:A\to B$ such that $H\subseteq R$ (i.e. $\forall x\in A.xRH(x)$).

Proof:

- $\langle 1 \rangle 1$. Let: R be a relation between A and B.
- $\langle 1 \rangle 2$. PICK a choice function G for B.
- $\langle 1 \rangle 3$. Define $H: A \to B$ by $H(x) = G(\{y \mid xRy\})$
- $\langle 1 \rangle 4. \ H \subseteq R$

3.1.1 Injective Functions

Definition 3.1.7 (Injective). A function $\mathbf{F} : \mathbf{A} \to \mathbf{B}$ is one-to-one, injective or an injection, $\mathbf{F} : \mathbf{A} \to \mathbf{B}$, iff, for all $x, y \in \mathbf{A}$, if $\mathbf{F}(x) = \mathbf{F}(y)$, then x = y.

Proposition 3.1.8. For any class A, the following is a theorem: $id_A : A \to A$ is injective.

3.1. FUNCTIONS 17

PROOF: If $id_{\mathbf{A}}(x) = id_{\mathbf{A}}(y)$ then immediately x = y. \square

Proposition Schema 3.1.9. For any classes A, B, C, F, G, the following is a theorem:

Assume $\mathbf{F}: \mathbf{A} \rightarrow \mathbf{B}$ and $\mathbf{G}: \mathbf{B} \rightarrow \mathbf{C}$. Then $\mathbf{G} \circ \mathbf{F}: \mathbf{A} \rightarrow \mathbf{C}$.

Proof:

- $\langle 1 \rangle 1$. Let: $x, y \in \mathbf{A}$
- $\langle 1 \rangle 2$. Assume: $(\mathbf{G} \circ \mathbf{F})(x) = (\mathbf{G} \circ \mathbf{F})(y)$
- $\langle 1 \rangle 3. \ \mathbf{G}(\mathbf{F}(x)) = \mathbf{G}(\mathbf{F}(y))$
- $\langle 1 \rangle 4$. $\mathbf{F}(x) = \mathbf{F}(y)$

PROOF: Since G is injective.

 $\langle 1 \rangle 5. \ x = y$

Proof: Since \mathbf{F} is injective.

Proposition 3.1.10. Let $F: A \to B$ where A is nonempty. There exists $G: B \to A$ (a left inverse) such that $G \circ F = \mathrm{id}_A$ if and only if F is one-to-one.

Proof:

- $\langle 1 \rangle 1$. If there exists $G: B \to A$ such that $G \circ F = \mathrm{id}_A$ then F is one-to-one.
 - $\langle 2 \rangle 1$. Assume: $G: B \to A$ and $G \circ F = I_A$
 - $\langle 2 \rangle 2$. Let: $x, y \in A$
 - $\langle 2 \rangle 3$. Assume: F(x) = F(y)
 - $\langle 2 \rangle 4$. x = y

PROOF: x = G(F(x)) = G(F(y)) = y

- $\langle 1 \rangle 2$. If F is one-to-one then there exists $G: B \to A$ such that $G \circ F = I_A$.
 - $\langle 2 \rangle 1$. Assume: F is one-to-one.
 - $\langle 2 \rangle 2$. Pick $a \in A$
 - $\langle 2 \rangle 3$. Let: $G: B \to A$ be the function defined by: G(b) is the (unique) $x \in A$ such that F(x) = b if there exists such an x, G(b) = a otherwise.
 - $\langle 2 \rangle 4$. For all $x \in A$ we have G(F(x)) = x.

П

3.1.2 Surjective Functions

Definition 3.1.11 (Surjective). Let $F:A\to B$. We say that F is *surjective*, or maps A onto B, and write $F:A\twoheadrightarrow B$, iff for all $y\in B$ there exists $x\in A$ such that F(x)=y.

Proposition Schema 3.1.12. For any class A, the following is a theorem: $id_A : A \to A$ is surjective.

PROOF: For any $y \in \mathbf{A}$ we have $\mathrm{id}_{\mathbf{A}}(y) = y$. \square

Proposition Schema 3.1.13. For any classes A, B, C, F and G, the following is a theorem:

If $\mathbf{F} : \mathbf{A} \twoheadrightarrow \mathbf{B}$ and $\mathbf{G} : \mathbf{B} \twoheadrightarrow \mathbf{C}$, then $\mathbf{G} \circ \mathbf{F} : \mathbf{A} \twoheadrightarrow \mathbf{C}$.

```
Proof:
```

- $\langle 1 \rangle 1$. Let: $c \in \mathbf{C}$
- $\langle 1 \rangle 2$. Pick $b \in \mathbf{B}$ such that $\mathbf{G}(b) = c$.
- $\langle 1 \rangle 3$. Pick $a \in \mathbf{A}$ such that $\mathbf{F}(a) = b$.
- $\langle 1 \rangle 4. \ (\mathbf{G} \circ \mathbf{F})(a) = c$

Proposition 3.1.14. Let $F: A \to B$. There exists $H: B \to A$ (a right inverse) such that $F \circ H = \mathrm{id}_B$ if and only if F maps A onto B.

Proof:

- $\langle 1 \rangle 1$. If F has a right inverse then F is surjective.
 - $\langle 2 \rangle 1$. Assume: F has a right inverse $H: B \to A$.
 - $\langle 2 \rangle 2$. Let: $y \in B$
 - $\langle 2 \rangle 3. \ F(H(y)) = y$
 - $\langle 2 \rangle 4$. There exists $x \in A$ such that F(x) = y
- $\langle 1 \rangle 2$. If F is surjective then F has a right inverse.
 - $\langle 2 \rangle 1$. Assume: F is surjective.
 - $\langle 2 \rangle 2$. PICK a function $H: B \to A$ such that $H \subseteq F^{-1}$ PROOF: Proposition 3.1.6.
 - $\langle 2 \rangle 3. \ F \circ H = \mathrm{id}_B$
 - $\langle 3 \rangle 1$. Let: $y \in B$
 - $\langle 3 \rangle 2. \ (y, H(y)) \in F^{-1}$
 - $\langle 3 \rangle 3$. F(H(y)) = y

3.1.3 Bijections

Definition 3.1.15 (Bijection). Let $\mathbf{F}: \mathbf{A} \to \mathbf{B}$. Then \mathbf{F} is *bijective* or a *bijection*, $\mathbf{F}: \mathbf{A} \approx \mathbf{B}$, iff it is injective and surjective.

Proposition Schema 3.1.16. For any class A, the following is a theorem: The identity function $\mathrm{id}_A : A \approx A$ is a bijection.

Proof: Proposition 3.1.8 and 3.1.12. \square

Proposition Schema 3.1.17. For any classes A, B and F, the following is a theorem:

If $\mathbf{F} : \mathbf{A} \approx \mathbf{B}$ then $\mathbf{F}^{-1} : \mathbf{B} \approx \mathbf{A}$.

Proof:

- $\langle 1 \rangle 1. \ \mathbf{F}^{-1} : \mathbf{B} \to \mathbf{A}$
 - $\langle 2 \rangle 1$. Let: $b \in \mathbf{B}$
 - $\langle 2 \rangle 2$. Pick $a \in \mathbf{A}$ such that $\mathbf{F}(a) = b$.

Proof: Since \mathbf{F} is surjective.

- $\langle 2 \rangle 3. \ (b,a) \in \mathbf{F}^{-1}$
- $\langle 2 \rangle 4$. If $(b, a') \in \mathbf{F}^{-1}$ then a' = a.
 - $\langle 3 \rangle 1$. Let: $a' \in \mathbf{A}$ such that $(b, a') \in \mathbf{F}^{-1}$

3.1. FUNCTIONS 19

$$\langle 3 \rangle 2$$
. $\mathbf{F}(a') = \mathbf{F}(a)$

$$\langle 3 \rangle 3. \ a' = a$$

PROOF: Since \mathbf{F} is injective.

 $\langle 1 \rangle 2$. \mathbf{F}^{-1} is injective.

$$\langle 2 \rangle 1$$
. Let: $x, y \in \mathbf{B}$

$$\langle 2 \rangle 2$$
. Assume: $\mathbf{F}^{-1}(x) = \mathbf{F}^{-1}(y)$

$$\langle 2 \rangle 3. \ x = y$$

PROOF:
$$x = \mathbf{F}(\mathbf{F}^{-1}(x)) = \mathbf{F}(\mathbf{F}^{-1}(y)) = y$$
.

 $\langle 1 \rangle 3$. \mathbf{F}^{-1} is surjective.

PROOF: For all $a \in \mathbf{A}$ we have $\mathbf{F}^{-1}(\mathbf{F}(a)) = a$.

Proposition Schema 3.1.18. For any classes A, B, C, F and G, the following is a theorem:

If
$$\mathbf{F} : \mathbf{A} \approx \mathbf{B}$$
 and $\mathbf{G} : \mathbf{B} \approx \mathbf{C}$ then $\mathbf{G} \circ \mathbf{F} : \mathbf{A} \approx \mathbf{C}$.

Proof: Propositions 3.1.9 and 3.1.13. \square

3.1.4 Restrictions

Definition 3.1.19 (Restriction). Let $\mathbf{F} : \mathbf{A} \to \mathbf{B}$. Let $\mathbf{C} \subseteq \mathbf{A}$. The *restriction* of \mathbf{F} to \mathbf{C} , denoted $\mathbf{F} \upharpoonright \mathbf{C}$, is the function

$$\mathbf{F} \upharpoonright \mathbf{C} : \mathbf{C} \to \mathbf{B}$$
$$(\mathbf{F} \upharpoonright \mathbf{C})(x) = \mathbf{F}(x) \qquad (x \in \mathbf{C})$$

3.1.5 Images

Definition 3.1.20 (Image). Let $F:A\to B$ and $C\subseteq A$. The *image* of C under F is the class

$$\mathbf{F}(\mathbf{C}) := \{ \mathbf{F}(x) \mid x \in \mathbf{C} \} .$$

Proposition Schema 3.1.21. For any classes **F**, **A** and **B**, the following is a theorem.

If $\mathbf{F}: \mathbf{A} \to \mathbf{B}$, then for any subset $S \subseteq \mathbf{A}$, the class $\mathbf{F}(S)$ is a set.

PROOF: By an Axiom of Replacement.

Proposition Schema 3.1.22. For any classes A, B, C and F, the following is a theorem:

Assume $\mathbf{F}: \mathbf{A} \to \mathbf{B}$ and $\mathbf{C} \subseteq \mathcal{P}\mathbf{A}$. Then

$$\mathbf{F}\left(\bigcup\mathbf{C}\right) = \{y \mid \exists X \in \mathbf{C}.y \in \mathbf{F}(X)\}$$

Proof:

$$y \in \mathbf{F}\left(\bigcup \mathbf{C}\right) \Leftrightarrow \exists x \in \bigcup \mathbf{C}. y = \mathbf{F}(x)$$

 $\Leftrightarrow \exists x. \exists X. X \in \mathbf{C} \land x \in X \land y = \mathbf{F}(x)$
 $\Leftrightarrow \exists X \in \mathbf{C}. y \in \mathbf{F}(X)$

Proposition Schema 3.1.23. For any classes A, B, C, D and F, the following is a theorem:

Assume $\mathbf{F}: \mathbf{A} \to \mathbf{B}$ and $\mathbf{C}, \mathbf{D} \subseteq \mathbf{A}$. Then

$$\mathbf{F}(\mathbf{C} \cup \mathbf{D}) = \mathbf{F}(\mathbf{C}) \cup \mathbf{F}(\mathbf{D})$$
.

Proof:

$$y \in \mathbf{F}(\mathbf{C} \cup \mathbf{D}) \Leftrightarrow \exists x \in \mathbf{C} \cup \mathbf{D}.y = \mathbf{F}(x)$$
$$\Leftrightarrow \exists x \in \mathbf{C}.y = \mathbf{F}(x) \lor \exists x \in \mathbf{D}.y = \mathbf{F}(x)$$
$$\Leftrightarrow y \in \mathbf{F}(\mathbf{C}) \cup \mathbf{F}(\mathbf{D})$$

Proposition 3.1.24. For any classes **F**, **A**, **B**, **C** and **D**, the following is a theorem:

Assume $\mathbf{F}: \mathbf{A} \to \mathbf{B}$ and $\mathbf{C}, \mathbf{D} \subseteq \mathbf{A}$. Then

$$\mathbf{F}(\mathbf{A} \cap \mathbf{B}) \subseteq \mathbf{F}(\mathbf{A}) \cap \mathbf{F}(\mathbf{B})$$
.

Equality holds if \mathbf{F} is injective.

Proof:

- $\langle 1 \rangle 1$. $\mathbf{F}(\mathbf{A} \cap \mathbf{B}) \subseteq \mathbf{F}(\mathbf{A}) \cap \mathbf{F}(\mathbf{B})$
 - $\langle 2 \rangle 1$. Let: $y \in \mathbf{F}(\mathbf{A} \cap \mathbf{B})$
 - $\langle 2 \rangle 2$. PICK $x \in \mathbf{A} \cap \mathbf{B}$ such that $y = \mathbf{F}(x)$
 - $\langle 2 \rangle 3. \ y \in \mathbf{F}(\mathbf{A})$

PROOF: Since $x \in \mathbf{A}$.

 $\langle 2 \rangle 4. \ y \in \mathbf{F}(\mathbf{B})$

PROOF: Since $x \in \mathbf{B}$.

- $\langle 1 \rangle 2$. If **F** is injective then $\mathbf{F}(\mathbf{A} \cap \mathbf{B}) = \mathbf{F}(\mathbf{A}) \cap \mathbf{F}(\mathbf{B})$.
 - $\langle 2 \rangle 1$. Assume: **F** is injective.
 - $\langle 2 \rangle 2$. Let: $y \in \mathbf{F}(\mathbf{A}) \cap \mathbf{F}(\mathbf{B})$
 - $\langle 2 \rangle 3$. Pick $x \in \mathbf{A}$ such that $y = \mathbf{F}(x)$
 - $\langle 2 \rangle 4$. Pick $x' \in \mathbf{B}$ such that $y = \mathbf{F}(x')$
 - $\langle 2 \rangle 5. \ x = x'$

Proof: $\langle 2 \rangle 1$

- $\langle 2 \rangle 6. \ x \in \mathbf{A} \cap \mathbf{B}$
- $\langle 2 \rangle 7. \ y \in \mathbf{F}(\mathbf{A} \cap \mathbf{B})$

Proposition Schema 3.1.25. For any classes **F**, **A**, **B**, and **C**, the following is a theorem:

Let $\mathbf{F}: \mathbf{A} \to \mathbf{B}$ and $\mathbf{C} \subseteq \mathcal{P}\mathbf{A}$. Then

$$\mathbf{F}\left(\bigcap \mathbf{C}\right) \subseteq \bigcap \{\mathbf{F}(X) \mid X \in \mathbf{A}\}$$
.

Equality holds if **F** is injective and **A** is nonempty.

Proof:

$$\langle 1 \rangle 1. \ \mathbf{F} (\bigcap \mathbf{A}) \subseteq \bigcap \{ \mathbf{F}(X) \mid X \in \mathbf{A} \}$$

3.1. FUNCTIONS 21

```
\langle 2 \rangle 1. Let: y \in \mathbf{F}(\bigcap \mathbf{A})
     \langle 2 \rangle 2. PICK x \in \bigcap \mathbf{A} such that y = \mathbf{F}(x)
     \langle 2 \rangle 3. Let: X \in \mathbf{A}
    \langle 2 \rangle 4. \ x \in X
    \langle 2 \rangle 5. \ y \in \mathbf{F}(X)
\langle 1 \rangle 2. If F is injective then \mathbf{F}(\bigcap \mathbf{A}) = \bigcap \{ \mathbf{F}(X) \mid X \in \mathbf{A} \}
    \langle 2 \rangle 1. Assume: F is injective.
    \langle 2 \rangle 2. Assume: A is nonempty.
    \langle 2 \rangle 3. Let: y \in \bigcap \{ \mathbf{F}(X) \mid X \in \mathbf{A} \}
    \langle 2 \rangle 4. Pick X_0 \in \mathbf{A}
    \langle 2 \rangle5. Pick x \in X_0 such that (x,y) \in \mathbf{F}
    \langle 2 \rangle 6. \ x \in \bigcap \mathbf{A}
         \langle 3 \rangle 1. Let: X \in \mathbf{A}
         \langle 3 \rangle 2. PICK x' \in X such that (x', y) \in \mathbf{F}.
         \langle 3 \rangle 3. \ x = x'
              Proof: \langle 2 \rangle 1
          \langle 3 \rangle 4. \ x \in X
    \langle 2 \rangle 7. \ y \in \mathbf{F}(\bigcap \mathbf{A})
```

Proposition 3.1.26. For any classes A, B, C, D and F, the following is a theorem:

Assume $\mathbf{F}: \mathbf{A} \to \mathbf{B}$ and $\mathbf{C}, \mathbf{D} \subseteq \mathbf{A}$. Then

$$\mathbf{F}(\mathbf{C}) - \mathbf{F}(\mathbf{D}) \subseteq \mathbf{F}(\mathbf{C} - \mathbf{D}) \ .$$

Equality holds if \mathbf{F} is injective.

```
Proof:
```

```
\langle 1 \rangle 1. \ \mathbf{F}(\mathbf{C}) - \mathbf{F}(\mathbf{D}) \subseteq \mathbf{F}(\mathbf{A} - \mathbf{B})
      \langle 2 \rangle 1. Let: y \in \mathbf{F}(\mathbf{A}) - \mathbf{F}(\mathbf{B})
      \langle 2 \rangle 2. Pick x \in \mathbf{A} such that y = \mathbf{F}(x)
      \langle 2 \rangle 3. \ x \notin \mathbf{B}
     \langle 2 \rangle 4. \ x \in \mathbf{A} - \mathbf{B}
      \langle 2 \rangle 5. \ y \in \mathbf{F}(\mathbf{A} - \mathbf{B})
\langle 1 \rangle 2. If F is injective then \mathbf{F}(\mathbf{A}) - \mathbf{F}(\mathbf{B}) = \mathbf{F}(\mathbf{A} - \mathbf{B})
     \langle 2 \rangle 1. Assume: F is injective.
      \langle 2 \rangle 2. Let: y \in \mathbf{F}(\mathbf{A} - \mathbf{B})
      \langle 2 \rangle 3. Pick x \in \mathbf{A} - \mathbf{B} such that y = \mathbf{F}(x)
      \langle 2 \rangle 4. \ y \in \mathbf{F}(\mathbf{A})
     \langle 2 \rangle 5. \ y \notin \mathbf{F}(\mathbf{B})
           \langle 3 \rangle 1. Assume: for a contradiction y \in \mathbf{F}(\mathbf{B})
           \langle 3 \rangle 2. Pick x' \in \mathbf{B} such that y = \mathbf{F}(x')
           \langle 3 \rangle 3. \ x = x'
                Proof: \langle 2 \rangle 1
           \langle 3 \rangle 4. \ x \in \mathbf{B}
           \langle 3 \rangle5. Q.E.D.
```

Proof: This contradicts $\langle 2 \rangle 3$.

3.1.6 Inverse Images

Definition 3.1.27 (Inverse Image). Let $F : A \to B$ and $C \subseteq B$. Then the *inverse image* of C under F is

$$\mathbf{F}^{-1}(\mathbf{C}) = \{ x \in \mathbf{A} \mid \mathbf{F}(x) \in \mathbf{C} \} .$$

Proposition Schema 3.1.28. For any classes A, B, C and F, the following is a theorem:

Assume $\mathbf{F}: \mathbf{A} \to \mathbf{B}$ and $\mathbf{C} \subseteq \mathcal{P}\mathbf{B}$. Then

$$\mathbf{F}^{-1}\left(\bigcap \mathbf{C}\right) = \bigcap \{\mathbf{F}^{-1}(X) \mid X \in \mathbf{C}\}\ .$$

Proof:

$$x \in \mathbf{F}^{-1}\left(\bigcap \mathbf{C}\right) \Leftrightarrow \mathbf{F}(x) \in \bigcap \mathbf{C}$$

 $\Leftrightarrow \forall X \in \mathbf{C}.\mathbf{F}(x) \in X$
 $\Leftrightarrow \forall X \in \mathbf{C}.x \in \mathbf{F}^{-1}(X)$

Proposition Schema 3.1.29. For any classes A, B, C, D and F, the following is a theorem:

Assume $\mathbf{F}: \mathbf{A} \to \mathbf{B}$ and $\mathbf{C}, \mathbf{D} \subseteq \mathbf{B}$. Then

$$\mathbf{F}^{-1}(\mathbf{C}-\mathbf{D}) = \mathbf{F}^{-1}(\mathbf{C}) - \mathbf{F}^{-1}(\mathbf{D}) \ .$$

Proof:

$$x \in \mathbf{F}^{-1}(\mathbf{C} - \mathbf{D}) \Leftrightarrow \mathbf{F}(x) \in \mathbf{C} - \mathbf{D}$$

 $\Leftrightarrow \mathbf{F}(x) \in \mathbf{C} \wedge \mathbf{F}(x) \notin \mathbf{D}$
 $\Leftrightarrow x \in \mathbf{F}^{-1}(\mathbf{C}) \wedge x \in \mathbf{F}^{-1}(\mathbf{D})$
 $\Leftrightarrow x \in \mathbf{F}^{-1}(\mathbf{C}) - \mathbf{F}^{-1}(\mathbf{D})$

3.1.7 Function Sets

Proposition 3.1.30. For any classes **B** and **F**, the following is a theorem: Let A be a set. If $F: A \to B$ then F is a set.

PROOF: By an Axiom of Replacement, we have $R = \{ \mathbf{F}(x) \mid x \in A \}$ is a set. Hence \mathbf{F} is a set since $\mathbf{F} \subseteq A \times R$. \square

Definition 3.1.31 (Dependent Product Class). Let I be a set and let $\mathbf{H}(i)$ be a class for all $i \in I$. We write $\prod_{i \in I} \mathbf{H}(i)$ for the class of all functions $f: I \to \bigcup_{i \in I} \mathbf{H}(i)$ such that $\forall i \in I. f(i) \in \mathbf{H}(i)$.

We write \mathbf{B}^I for $\prod_{i \in I} \mathbf{B}$ where \mathbf{B} does not depend on I.

```
Proposition Schema 3.1.32. Let I be a set. Let H(i) be a set for every i \in I. Then \prod_{i \in I} \mathbf{H}(i) is a set.
```

```
PROOF:  \begin{array}{l} \langle 1 \rangle 1. \ \{ \mathbf{H}(i) \mid i \in I \} \text{ is a set.} \\ \text{PROOF: By an Axiom of Replacement.} \\ \langle 1 \rangle 2. \ \bigcup_{i \in I} \mathbf{H}(i) \text{ is a set.} \\ \langle 1 \rangle 3. \ \prod_{i \in I} \mathbf{H}(i) \text{ is a set.} \\ \text{PROOF: It is a subset of } \mathcal{P} \left( I \times \bigcup_{i \in I} \mathbf{H}(i) \right). \end{array}
```

Proposition 3.1.33. Let I be a set. Let H(i) be a set for all $i \in I$. If $\forall i \in I. H(i) \neq \emptyset$ then $\prod_{i \in I} H(i) \neq \emptyset$.

```
PROOF:  \langle 1 \rangle 1. \text{ Assume: } \forall i \in I.H(i) \neq \emptyset \\ \langle 1 \rangle 2. \text{ Let: } R = \{(i,x) \mid i \in I, x \in H(i)\} \\ \langle 1 \rangle 3. \text{ Pick a function } f:I \rightarrow \bigcup_{i \in I} H(i) \text{ such that } f \subseteq R \\ \text{Proof: Proposition } 3.1.6. \\ \langle 1 \rangle 4. \ f \in \prod_{i \in I} H(i) \\ \square
```

3.2 Equinumerosity

Definition 3.2.1 (Equinumerous). Sets A and B are equinumerous, $A \approx B$, iff there exists a bijection between A and B.

Theorem 3.2.2 (Cantor 1873). No set is equinumerous to its power set.

```
Proof:
```

```
\begin{array}{l} \langle 1 \rangle 1. \  \, \text{Assume: for a contradiction } f: A \approx \mathcal{P}A \\ \langle 1 \rangle 2. \  \, \text{Let: } S = \{x \in A \mid x \notin f(x)\} \\ \langle 1 \rangle 3. \  \, \text{Pick } a \in A \text{ such that } f(a) = S \\ \langle 1 \rangle 4. \  \, a \in S \text{ if and only if } a \notin S \\ \langle 1 \rangle 5. \  \, \text{Q.E.D.} \\ \text{Proof: This is a contradiction.} \end{array}
```

3.3 Domination

Definition 3.3.1 (Dominate). A set A is dominated by a set B, $A \leq B$, iff there exists an injection $A \rightarrow B$.

Proposition 3.3.2. Given sets A and B, if $A \neq \emptyset$ or $B = \emptyset$, then we have $A \preceq B$ iff there exists a surjective function $B \to A$.

Proof:

- $\langle 1 \rangle 1$. If $A \leq B$ and $A \neq \emptyset$ then there exists a surjective function $B \to A$.
 - $\langle 2 \rangle 1$. Assume: $f: A \to B$ be injective.
 - $\langle 2 \rangle 2$. Pick $a \in A$
 - $\langle 2 \rangle$ 3. Let: $g: B \to A$ be the function defined by $g(b) = f^{-1}(b)$ if $b \in \operatorname{ran} f$, and g(b) = a otherwise.
 - $\langle 2 \rangle 4$. g is surjective.
- $\langle 1 \rangle 2$. If there exists a surjective function $B \to A$ then $A \leq B$.
 - $\langle 2 \rangle 1$. Assume: there exists a surjective function $g: B \to A$
 - $\langle 2 \rangle 2$. $\forall a \in A. \exists b \in B. g(b) = a$
 - $\langle 2 \rangle 3$. Choose a function $f: A \to B$ such that $\forall a \in A.g(f(a)) = a$
 - $\langle 2 \rangle 4$. f is injective.

Chapter 4

Equivalence Relations

Definition 4.0.1 (Equivalence Relation). An *equivalence relation* on a class **A** is a binary relation on **A** that is reflexive, symmetric and transitive.

Proposition 4.0.2. Equinumerosity is an equivalence relation on the class of all sets.

PROOF: Propositions 3.1.16, 3.1.17, 3.1.18.

Definition 4.0.3 (Respects). Let **R** be an equivalence relation on **A** and **F** : $\mathbf{A} \to \mathbf{B}$. Then **F** respects **A** iff, whenever $(x, y) \in \mathbf{R}$, then $\mathbf{F}(x) = \mathbf{F}(y)$.

Definition 4.0.4 (Equivalence Class). Let **R** be an equivalence relation on **A** and $a \in \mathbf{A}$. The *equivalence class* of a modulo **R** is

$$[a]_{\mathbf{R}} := \{x \mid a\mathbf{R}x\} .$$

Proposition Schema 4.0.5. For any classes A and R, the following is a theorem.

Assume **R** be an equivalence relation on **A**. Let $a, b \in \mathbf{A}$. Then $[a]_{\mathbf{R}} = [b]_{\mathbf{R}}$ if and only if $a\mathbf{R}b$.

Proof:

- $\langle 1 \rangle 1$. If $[a]_{\mathbf{R}} = [b]_{\mathbf{R}}$ then $a\mathbf{R}b$.
 - $\langle 2 \rangle 1$. Assume: $[a]_{\mathbf{R}} = [b]_{\mathbf{R}}$
 - $\langle 2 \rangle 2$. $b\mathbf{R}b$

PROOF: Reflexivity

- $\langle 2 \rangle 3. \ b \in [b]_{\mathbf{R}}$
- $\langle 2 \rangle 4. \ b \in [a]_{\mathbf{R}}$
- $\langle 2 \rangle 5$. $a\mathbf{R}b$
- $\langle 1 \rangle 2$. If $a\mathbf{R}b$ then $[a]_{\mathbf{R}} = [b]_{\mathbf{R}}$.
 - $\langle 2 \rangle 1$. For all $x, y \in \mathbf{A}$, if $x \mathbf{R} y$ then $[y]_{\mathbf{R}} \subseteq [x]_{\mathbf{R}}$
 - $\langle 3 \rangle 1$. Let: $x, y \in \mathbf{A}$
 - $\langle 3 \rangle 2$. Assume: $x \mathbf{R} y$

```
\langle 3 \rangle 3. \text{ Let: } t \in [y]_{\mathbf{R}}
\langle 3 \rangle 4. y\mathbf{R}t
\langle 3 \rangle 5. x\mathbf{R}t
\text{Proof: Transitivity, } \langle 3 \rangle 2, \langle 3 \rangle 4.
\langle 3 \rangle 6. t \in [x]_{\mathbf{R}}
\langle 2 \rangle 2. \text{ Assume: } a\mathbf{R}b
\langle 2 \rangle 3. [b]_{\mathbf{R}} \subseteq [a]_{\mathbf{R}}
\text{Proof: } \langle 2 \rangle 1, \langle 2 \rangle 2.
\langle 2 \rangle 4. b\mathbf{R}a
\text{Proof: Symmetry, } \langle 2 \rangle 2.
\langle 2 \rangle 5. [a]_{\mathbf{R}} \subseteq [b]_{\mathbf{R}}
\text{Proof: } \langle 2 \rangle 1, \langle 2 \rangle 4.
\langle 2 \rangle 6. [a]_{\mathbf{R}} = [b]_{\mathbf{R}}
\text{Proof: } \langle 2 \rangle 3, \langle 2 \rangle 5.
```

Definition 4.0.6 (Partition). A partition Π of a set A is a set of nonempty subsets of A that is disjoint and exhaustive, i.e.

- 1. no two different sets in Π have any common elements, and
- 2. each element of A is in some set in Π .

Definition 4.0.7. Let R be an equivalence relation on a set A. The *quotient* set A/R is the set of all equivalence classes.

Theorem 4.0.8. Let A be a set and \mathbf{B} a class. Let R be an equivalence relation on A and $F:A\to \mathbf{B}$. Then F respects R if and only if there exists $\hat{F}:A/R\to \mathbf{B}$ such that

$$\forall a \in A.\hat{F}([a]_R) = F(a)$$
.

In this case, \hat{F} is unique.

Proof:

```
\langle 1 \rangle 1. If F respects R then there exists \hat{F}: A/R \to \mathbf{B} such that \forall a \in A.\hat{F}([a]_R) = F(a).
```

- $\langle 2 \rangle 1$. Assume: F respects R.
- $\langle 2 \rangle 2$. Let: $\hat{F} = \{ ([a]_R, F(a)) \mid a \in A \}$
- $\langle 2 \rangle 3$. \hat{F} is a function.
 - $\langle 3 \rangle 1$. Assume: $a, a' \in A$ and $[a]_R = [a']_R$ Prove: F(a) = F(a')
 - $\langle 3 \rangle 2. \ (a, a') \in R$

Proof: Proposition 4.0.5.

- $\langle 3 \rangle 3$. F(a) = F(a')
 - Proof: $\langle 2 \rangle 1$
- $\langle 2 \rangle 4$. dom $\hat{F} = A/R$
- $\langle 2 \rangle 5$. ran $\hat{F} \subseteq \mathbf{B}$
- $\langle 2 \rangle 6. \ \forall a \in A. \hat{F}([a]_R) = F(a)$

```
\langle 2 \rangle 1. Assume: \hat{F}: A/R \to \mathbf{B} and \forall a \in A.\hat{F}([a]_R) = F(a)
   \langle 2 \rangle 2. Let: a, a' \in A
   \langle 2 \rangle 3. Assume: (a, a') \in R
   \langle 2 \rangle 4. [a]_R = [a']_R
      Proof: Proposition 4.0.5.
   \langle 2 \rangle 5. F(a) = F(a')
      Proof: \langle 2 \rangle 1
\langle 1 \rangle 3. If G, H : A/R \to \mathbf{B} and \forall a \in A.G([a]_R) = H([a]_R) then G = H.
Proposition 4.0.9. Let R be an equivalence relation on a set A. Then A/R is
a partition of A.
Proof:
\langle 1 \rangle 1. Every member of A/R is nonempty.
   PROOF: Since a \in [a]_R by reflexivity.
\langle 1 \rangle 2. No two different sets in A/R have any common elements.
   \langle 2 \rangle 1. Let: [a]_R, [b]_R \in A/R
   \langle 2 \rangle 2. Let: c \in [a]_R \cap [b]_R
           PROVE: [a]_R = [b]_R
   \langle 2 \rangle 3. aRc
      Proof: \langle 2 \rangle 2
   \langle 2 \rangle 4. \ bRc
      Proof: \langle 2 \rangle 2
   \langle 2 \rangle 5. cRb
      Proof: Symmetry, \langle 2 \rangle 4
   \langle 2 \rangle 6. aRb
      Proof: Transitivity, \langle 2 \rangle 3, \langle 2 \rangle 5
   \langle 2 \rangle 7. [a]_R = [b]_R
      Proof: Proposition 4.0.5, \langle 2 \rangle 6
\langle 1 \rangle 3. Each element of A is in some set in A/R.
   PROOF: Since a \in [a]_R by reflexivity.
Proposition 4.0.10. For any partition P of a set A, there exists a unique
equivalence relation R on A such that A/R = P, namely xRy iff \exists X \in P(x \in P)
X \wedge y \in X).
Proof: Easy.
```

Definition 4.0.11 (Natural Map). Let A be a set and R an equivalence relation on A. The natural map $A \to A/R$ is the function that maps $a \in A$ to $[a]_R$.

 $\langle 1 \rangle 2$. If there exists $\hat{F}: A/R \to \mathbf{B}$ such that $\forall a \in A.\hat{F}([a]_R) = F(a)$ then F

Chapter 5

Ordering Relations

5.1 Partial Orders

Definition 5.1.1 (Partial Ordering). Let **A** be a class. A *partial ordering* on **A** is a relation **R** on **A** that is reflexive, antisymmetric and transitive.

We often write \leq for a partial ordering, and then write x < y for $x \leq y \land x \neq y$.

Proposition Schema 5.1.2. For any classes **A** and **R**, the following is a theorem:

If **R** is a partial order on **A** then so is \mathbf{R}^{-1} .

```
Proof:
```

```
\langle 1 \rangle 1. \mathbf{R}^{-1} is reflexive.

PROOF: Proposition 2.2.8.

\langle 1 \rangle 2. \mathbf{R}^{-1} is antisymmetric.

PROOF: Proposition 2.2.12.

\langle 1 \rangle 3. \mathbf{R}^{-1} is transitive.

\langle 2 \rangle 1. ASSUME: x\mathbf{R}^{-1}y and y\mathbf{R}^{-1}z

\langle 2 \rangle 2. y\mathbf{R}x and z\mathbf{R}y

\langle 2 \rangle 3. z\mathbf{R}x

PROOF: Since \mathbf{R} is transitive.

\langle 2 \rangle 4. x\mathbf{R}^{-1}z
```

Proposition Schema 5.1.3. For any classes **A**, **B**, **F** and **R**, the following is a theorem:

Assume **R** is a partial order on **B** and $\mathbf{F} : \mathbf{A} \to \mathbf{B}$ is injective. Define **S** on **A** by $x\mathbf{S}y$ iff $\mathbf{F}(x)\mathbf{R}\mathbf{F}(y)$. Then **S** is a partial order on **A**.

Proof:

 $\langle 1 \rangle 1$. **S** is reflexive.

PROOF: For any $x \in \mathbf{A}$ we have $\mathbf{F}(x)\mathbf{RF}(x)$.

```
\langle 1 \rangle2. S is antisymmetric.

\langle 2 \rangle1. Let: x, y \in \mathbf{A}

\langle 2 \rangle2. Assume: x\mathbf{S}y and y\mathbf{S}x

\langle 2 \rangle3. \mathbf{F}(x)\mathbf{R}\mathbf{F}(y) and \mathbf{F}(y)\mathbf{R}\mathbf{F}(x)

\langle 2 \rangle4. \mathbf{F}(x) = \mathbf{F}(y)

PROOF: R is antisymmetric.

\langle 2 \rangle5. x = y

\langle 1 \rangle3. S is transitive.
```

Corollary Schema 5.1.3.1. For any classes A, B and R, the following is a theorem:

Assume **R** be a partial order on **A** and **B** \subseteq **A**. Then **R** \cap **B**² is a partial order on **B**.

Definition 5.1.4 (Partially Ordered Set). A partially ordered set or poset is a pair (A, \leq) where A is a set and \leq is a partial ordering on A. We often write just A for (A, \leq) .

If (A, \leq) is a poset and $B \subseteq A$ we write just B for the poset $(B, \leq \cap B^2)$.

Definition 5.1.5 (Strictly Monotone). Let $(A, <_A)$ and $(B, <_B)$ be posets. A function $f: A \to B$ is *strictly monotone* iff, whenever $x <_A y$, then $f(x) <_B f(y)$.

Definition 5.1.6 (Minimal). Let \leq be a partial order on **A**. An element $m \in \mathbf{A}$ is *minimal* iff there is no $x \in \mathbf{A}$ such that x < m.

Definition 5.1.7 (Maximal). Let \leq be a partial order on \mathbf{A} . An element $m \in \mathbf{A}$ is maximal iff there is no $x \in \mathbf{A}$ such that m < x.

Definition 5.1.8 (Least). Let \leq be a partial order on \mathbf{A} . An element $m \in \mathbf{A}$ is *least* iff for all $x \in \mathbf{A}$ we have $m \leq x$.

Proposition 5.1.9. A partial order has at most one least element.

PROOF: If m and m' are least then $m \leq m'$ and $m' \leq m$, so m = m'. \square

Definition 5.1.10 (Greatst). Let \leq be a partial order on **A**. An element $m \in \mathbf{A}$ is greatest iff for all $x \in A$ we have $x \leq m$.

Proposition 5.1.11. A poset has at most one greatest element.

PROOF: If m and m' are greatest then $m \leq m'$ and $m' \leq m$, so m = m'. \square

Definition 5.1.12 (Upper Bound). Let \leq be a partial ordering on **A** and $\mathbf{B} \subseteq \mathbf{A}$. Let $u \in \mathbf{A}$. Then u is an *upper bound* for **B** iff $\forall x \in \mathbf{B}.x \leq u$.

Definition 5.1.13 (Lower Bound). Let \leq be a partial ordering on **A** and $\mathbf{B} \subseteq \mathbf{A}$. Let $l \in \mathbf{A}$. Then l is a *lower bound* for **B** iff $\forall x \in \mathbf{B}.l \leq x$.

Definition 5.1.14 (Bounded Above). Let \leq be a partial ordering on **A** and $\mathbf{B} \subseteq \mathbf{A}$. Then **B** is *bounded above* iff it has an upper bound.

Definition 5.1.15 (Bounded Below). Let \leq be a partial ordering on **A** and $\mathbf{B} \subseteq \mathbf{A}$. Then **B** is *bounded below* iff it has a lower bound.

Definition 5.1.16 (Least Upper Bound). Let \leq be a partial ordering on \mathbf{A} and $\mathbf{B} \subseteq \mathbf{A}$. Let $s \in \mathbf{A}$. Then s is the *least upper bound* or *supremum* of \mathbf{B} iff s is an upper bound for \mathbf{B} and, for every upper bound u for \mathbf{B} , we have $s \leq u$.

Definition 5.1.17 (Greatest Lower Bound). Let \leq be a partial ordering on \mathbf{A} and $\mathbf{B} \subseteq \mathbf{A}$. Let $i \in \mathbf{A}$. Then i is the *greatest lower bound* or *infimum* of \mathbf{B} iff i is a lower bound for \mathbf{B} and, for every lower bound l for \mathbf{B} , we have $i \leq l$.

Definition 5.1.18 (Complete). A partial order is *complete* iff every nonempty subset bounded above has a supremum, and every nonempty subset bounded below has an infimum.

Definition 5.1.19 (Order Isomorphism). Let A and B be posets. An order isomorphism between A and B, $f:A \cong B$, is a bijection $f:A \approx B$ such that f and f^{-1} are monotone.

Theorem 5.1.20 (Knaster Fixed-Point Theorem). Let A be a complete poset with a greatest and least element. Let $\phi: A \to A$ be monotone. Then there exists $a \in A$ such that $\phi(a) = a$.

```
Proof:
```

```
\begin{array}{l} \langle 1 \rangle 1. \text{ Let: } B = \{x \in A \mid x \leq \phi(x)\} \\ \langle 1 \rangle 2. \text{ Let: } a = \sup B \\ \text{Proof: } B \text{ is nonempty because the least element of } A \text{ is in } B, \text{ and it is bounded above by the greatest element of } A. \\ \langle 1 \rangle 3. \text{ For all } b \in B \text{ we have } b \leq \phi(a) \\ \langle 2 \rangle 1. \text{ Let: } b \in B \\ \langle 2 \rangle 2. \ b \leq \phi(b) \\ \langle 2 \rangle 3. \ b \leq a \\ \langle 2 \rangle 4. \ \phi(b) \leq \phi(a) \\ \langle 2 \rangle 5. \ b \leq \phi(a) \\ \langle 1 \rangle 4. \ a \leq \phi(a) \\ \langle 1 \rangle 5. \ \phi(a) \leq \phi(\phi(a)) \\ \langle 1 \rangle 6. \ \phi(a) \in B \\ \langle 1 \rangle 7. \ \phi(a) \leq a \\ \langle 1 \rangle 8. \ \phi(a) = a \\ \end{array}
```

Definition 5.1.21 (Dense). Let \leq be a partial order on \mathbf{A} and $\mathbf{B} \subseteq \mathbf{A}$. Then \mathbf{B} is *dense* iff, for all $x,y \in \mathbf{A}$, if x < y then there exists $z \in \mathbf{B}$ such that x < z < y.

Proposition 5.1.22. Let A be a complete poset with no least element. Let $B \subseteq A$ be dense. Let $\theta : A \to A$ be a monotone map that is the identity on B. Then $\theta = \mathrm{id}_A$.

Proof:

```
\langle 1 \rangle 1. Let: a \in A
        PROVE: \theta(a) = a
\langle 1 \rangle 2. Let: S(a) = \{ b \in B \mid b < a \}
\langle 1 \rangle 3. S(a) is nonempty and bounded above.
   \langle 2 \rangle 1. S(a) is nonempty.
       \langle 3 \rangle 1. Pick a_1 < a
          PROOF: Since a is not least.
       \langle 3 \rangle 2. There exists b \in B such that a_1 < b < a.
   \langle 2 \rangle 2. S(a) is bounded above by a.
\langle 1 \rangle 4. sup S(a) \leq a
\langle 1 \rangle 5. sup S(a) = a
   \langle 2 \rangle 1. Assume: for a contradiction sup S(a) < a
   \langle 2 \rangle 2. Pick b \in B such that \sup S(a) < b < a
   \langle 2 \rangle 3. \ b \in S(a)
   \langle 2 \rangle 4. Q.E.D.
      PROOF: This contradicts the fact that \sup S(a) < b.
\langle 1 \rangle 6. For all b \in S(a) we have b \leq \theta(a)
   \langle 2 \rangle 1. Let: b \in S(a)
   \langle 2 \rangle 2. b < a
   \langle 2 \rangle 3. \ \theta(b) \le \theta(a)
   \langle 2 \rangle 4. \ b \leq \theta(a)
      PROOF: \theta(b) = b
\langle 1 \rangle 7. a \leq \theta(a)
   PROOF: Since a = \sup S(a) and \theta(a) is an upper bound for S(a).
\langle 1 \rangle 8. \ a \not< \theta(a)
   \langle 2 \rangle 1. Assume: for a contradiction a < \theta(a).
   \langle 2 \rangle 2. Pick b \in B such that a < b < \theta(a)
   \langle 2 \rangle 3. \theta(a) < \theta(b) = b
   \langle 2 \rangle 4. Q.E.D.
      PROOF: This contradicts the fact that b < \theta(a).
\langle 1 \rangle 9. \ \theta(a) = a
```

Theorem 5.1.23. Let A and P be complete posets with no least or greatest element. Let B be dense in A and Q be dense in P. Every order isomorphism $\phi: B \cong Q$ extends uniquely to an order isomorphism $A \cong P$.

Proof:

```
\langle 1 \rangle1. For a \in A, let S(a) = \{b \in B \mid b < a\}.

\langle 1 \rangle2. Define \overline{\phi} : A \to P by \overline{\phi}(a) = \sup \phi(S(a)).

\langle 2 \rangle1. \phi(S(a)) is nonempty.

\langle 3 \rangle1. PICK a_1 < a

PROOF: Since a is not least.

\langle 3 \rangle2. PICK b \in B such that a_1 < b < a.

\langle 3 \rangle3. \phi(b) \in \phi(S(a))

\langle 2 \rangle2. \phi(S(a)) is bounded above.

\langle 3 \rangle1. PICK a_2 > a
```

```
PROOF: Since a is not greatest.
       \langle 3 \rangle 2. Pick b \in B such that a < b < a_2
       \langle 3 \rangle 3. \phi(b) is an upper bound for \phi(S(a)).
\langle 1 \rangle 3. \phi is monotone.
   PROOF: If a \leq a' then S(a) \subseteq S(a') and so \overline{\phi}(a) \leq \overline{\phi}(a').
\langle 1 \rangle 4. \overline{\phi} extends \phi.
   \langle 2 \rangle 1. Let: b \in B
             Prove: \phi(b) = \sup \phi(S(b))
    \langle 2 \rangle 2. \phi(b) is an upper bound for \phi(S(b))
   \langle 2 \rangle 3. Let: u be any upper bound for \phi(S(b))
             Prove: \phi(b) < u
   \langle 2 \rangle 4. Assume: for a contradiction u < \phi(b)
    \langle 2 \rangle5. Pick q \in Q such that u < q < \phi(b)
    \langle 2 \rangle 6. Pick b' \in B such that \phi(b') = q
    \langle 2 \rangle 7. \ b' < b
    \langle 2 \rangle 8. \ b' \in S(b)
   \langle 2 \rangle 9. \ q = \phi(b') \le u
   \langle 2 \rangle 10. Q.E.D.
       PROOF: This is a contradiction.
\langle 1 \rangle 5. Let: \psi = \phi^{-1}
\langle 1 \rangle 6. Let: \overline{\psi}: P \to A be the function \overline{\psi}(p) = \sup \{ \psi(q) \mid q \in Q, q 
\langle 1 \rangle 7. \overline{\psi} is monotone and extends \psi
   Proof: Similar.
\langle 1 \rangle 8. \ \overline{\psi} \circ \overline{\phi} : A \to A \text{ is monotone and the identity on } B.
\langle 1 \rangle 9. \ \overline{\psi} \circ \overline{\phi} = \mathrm{id}_A
   Proof: Proposition 5.1.22.
\langle 1 \rangle 10. \ \overline{\phi} \circ \overline{\psi} = \mathrm{id}_B
   Proof: Proposition 5.1.22.
\langle 1 \rangle 11. If \phi^* : A \cong P is any order isomorphism that extends \phi then \phi^* = \overline{\phi}.
   \langle 2 \rangle 1. Let: a \in A
             PROVE: \phi^*(a) = \sup \phi(S(a))
    \langle 2 \rangle 2. \phi^*(a) is an upper bound for \phi(S(a))
   \langle 2 \rangle 3. Let: u be any upper bound for \phi(S(a))
             Prove: \phi^*(a) \leq u
    \langle 2 \rangle 4. Assume: for a contradiction u < \phi^*(a)
    \langle 2 \rangle5. Pick q \in Q such that u < q < \phi^*(a)
    \langle 2 \rangle 6. Pick b \in B such that q = \phi(b)
   \langle 2 \rangle 7. \ b < a
   \langle 2 \rangle 8. \ b \in S(a)
   \langle 2 \rangle 9. \ q = \phi(b) \le u
   \langle 2 \rangle 10. Q.E.D.
       PROOF: This is a contradiction.
```

Definition 5.1.24 (Initial Segment). Let \leq be a partial order on **A** and $t \in A$.

The *initial segment* up to t is the class

$$\operatorname{seg} t := \{ x \in \mathbf{A} \mid x < t \} .$$

Definition 5.1.25 (Lexicographic Ordering). Let **R** be a partial order on **A** and **S** a partial order on **B**. The *lexicographic ordering* \leq on **A** \times **B** is defined by:

$$(a,b) \le (a',b') \Leftrightarrow (a\mathbf{R}a' \wedge a \ne a') \vee (a = a' \wedge b\mathbf{S}b')$$
.

Proposition Schema 5.1.26. For any classes A, B, R and S, the following is a theorem:

If **R** is a partial order on **A** and **S** is a partial order on **B** then the lexicographic ordering on $\mathbf{A} \times \mathbf{B}$ is a partial order.

Proof:

- $\langle 1 \rangle 1$. Let: \leq be the lexicographic ordering on $\mathbf{A} \times \mathbf{B}$
- $\langle 1 \rangle 2. \leq \text{is reflexive.}$

PROOF: For any $a \in \mathbf{A}$ and $b \in \mathbf{B}$ we have a = a and $b\mathbf{S}b$, so $(a, b) \leq (a, b)$.

- $\langle 1 \rangle 3. \leq \text{is antisymmetric.}$
 - $\langle 2 \rangle 1$. Assume: $(a,b) \leq (a',b')$ and $(a',b') \leq (a,b)$
 - $\langle 2 \rangle 2$. $(a\mathbf{R}a' \wedge a \neq a') \vee (a = a' \wedge b\mathbf{S}b')$
 - $\langle 2 \rangle 3. \ (a' \mathbf{R} a \wedge a' \neq a) \vee (a' = a \wedge b \mathbf{S} b')$
 - $\langle 2 \rangle 4$. Case: a = a'

PROOF: Then $b\mathbf{S}b'$ and $b'\mathbf{S}b$ hence b=b' and (a,b)=(a',b').

 $\langle 2 \rangle 5$. Case: $a \neq a'$

PROOF: Then $a\mathbf{R}a'$ and $a'\mathbf{R}a$ hence a=a' which is a contradiction.

- $\langle 1 \rangle 4. \leq \text{is transitive.}$
 - $\langle 2 \rangle 1$. Assume: $(a_1, b_1) \leq (a_2, b_2) \leq (a_3, b_3)$
 - $\langle 2 \rangle 2$. $(a_1 \mathbf{R} a_2 \wedge a_1 \neq a_2) \vee (a_1 = a_2 \wedge b_1 \mathbf{S} b_2)$
 - $\langle 2 \rangle 3. \ (a_2 \mathbf{R} a_3 \wedge a_2 \neq a_3) \vee (a_2 = a_3 \wedge b_2 \mathbf{S} b_3)$
 - $\langle 2 \rangle 4$. Case: $a_1 \mathbf{R} a_2, a_1 \neq a_2, a_2 \mathbf{R} a_3, a_2 \neq a_3$
 - $\langle 3 \rangle 1. \ a_1 \mathbf{R} a_3$

PROOF: Since \mathbf{R} is transitive.

 $\langle 3 \rangle 2$. $a_1 \neq a_3$

PROOF: If $a_1 = a_3$ then $a_1 \mathbf{R} a_2$ and $a_2 \mathbf{R} a_1$ so $a_1 = a_2$ which is a contradiction.

 $\langle 2 \rangle 5$. Case: $a_1 \mathbf{R} a_2, a_1 \neq a_2, a_2 = a_3, b_2 \mathbf{S} b_3$

PROOF: Then $a_1 \mathbf{R} a_3$ and $a_1 \neq a_3$.

 $\langle 2 \rangle 6$. Case: $a_1 = a_2, b_1 \mathbf{S} b_2, a_2 \mathbf{R} a_3, a_2 \neq a_3$

PROOF: Then $a_1 \mathbf{R} a_3$ and $a_1 \neq a_3$.

 $\langle 2 \rangle 7$. Case: $a_1 = a_2, b_1 \mathbf{S} b_2, a_2 = a_3, b_2 \mathbf{S} b_3$

PROOF: Then $a_1 = a_3$ and $b_1 Sb_3$.

5.2 Linear Orders

Definition 5.2.1 (Linear Ordering). Let **A** be a class. A *linear ordering* or *total ordering* on **A** is a partial ordering \leq on **A** that is *total*, i.e.

$$\forall x,y \in \mathbf{A}.x \leq y \vee y \leq x$$

We often use the symbol < for a linear ordering, and then write x < y for $(x, y) \in <$.

Proposition Schema 5.2.2 (Trichotomy). For any classes **A** and \leq , the following is a theorem:

Assume \leq be a linear ordering on **A**. For any $x, y \in \mathbf{A}$, exactly one of x < y, x = y, y < x holds.

PROOF: Immediate from definitions.

Proposition Schema 5.2.3. For any classes **A** and <, the following is a theorem:

Let < be a transitive relation on \mathbf{A} that satisfies trichotomy. Define \leq on \mathbf{A} by $x \leq y$ iff x < y or x = y. Then \leq is a linear ordering on \mathbf{A} and x < y iff $x \leq y$ and $x \neq y$.

Proof:

 $\langle 1 \rangle 1. \leq \text{is reflexive.}$

PROOF: By definition we have $\forall x \in \mathbf{A}.x \leq x$.

- $\langle 1 \rangle 2. \leq \text{is antisymmetric.}$
 - $\langle 2 \rangle 1$. Assume: $x \leq y$ and $y \leq x$
 - $\langle 2 \rangle 2$. x < y or x = y
 - $\langle 2 \rangle 3$. y < x or y = x
 - $\langle 2 \rangle 4$. We cannot have x < y and y < x

PROOF: Trichotomy.

- $\langle 2 \rangle 5. \ x = y$
- $\langle 1 \rangle 3. \leq \text{is transitive.}$
 - $\langle 2 \rangle 1$. Assume: $x \leq y$ and $y \leq z$
 - $\langle 2 \rangle 2$. x < y or x = y
 - $\langle 2 \rangle 3$. y < z or y = z
 - $\langle 2 \rangle 4$. Case: x < y and y < z

PROOF: Then x < z by transitivity, so $x \le z$.

 $\langle 2 \rangle 5$. Case: x = y

PROOF: Then we have $y \leq z$ and so $x \leq z$.

 $\langle 2 \rangle 6$. Case: y = z

PROOF: Then we have $x \leq y$ and so $x \leq z$.

 $\langle 1 \rangle 4$. \leq is total.

PROOF: Immediate from trichotomy.

Proposition Schema 5.2.4. For any classes **A** and **R**, the following is a theorem:

If **R** is a linear ordering on **A** then \mathbf{R}^{-1} is also a linear ordering on **A**.

```
Proof:
```

 $\langle 1 \rangle 1$. \mathbf{R}^{-1} is a partial order on \mathbf{A} .

Proof: Proposition 5.1.2.

- $\langle 1 \rangle 2$. \mathbf{R}^{-1} is total.
 - $\langle 2 \rangle 1$. Let: $x, y \in \mathbf{A}$
 - $\langle 2 \rangle 2$. $x \mathbf{R} y$ or $y \mathbf{R} x$.
 - $\langle 2 \rangle 3$. $y \mathbf{R}^{-1} x$ or $x \mathbf{R}^{-1} y$.

Proposition Schema 5.2.5. For any classes A, B, F, R, S, the following is a theorem:

Assume **R** is a linear order on **A**, **S** is a partial order on **B**, and **F** : $\mathbf{A} \to \mathbf{B}$. If **F** is strictly monotone then it is injective.

Proof:

- $\langle 1 \rangle 1$. Let: $x, y \in \mathbf{A}$
- $\langle 1 \rangle 2$. Assume: $x \neq y$

PROVE: $\mathbf{F}(x) \neq \mathbf{F}(y)$

 $\langle 1 \rangle 3$. Assume: w.l.o.g. $x \mathbf{R} y$

PROOF: \mathbf{R} is total.

 $\langle 1 \rangle 4$. $\mathbf{F}(x)\mathbf{SF}(y)$ and $\mathbf{F}(x) \neq \mathbf{F}(y)$

PROOF: \mathbf{F} is strictly monotone.

Proposition Schema 5.2.6. For any classes A, B, \leq , \preccurlyeq and F, the following is a theorem:

Assume \leq is a linear order on \mathbf{A} and \preccurlyeq is a linear order on \mathbf{B} . Assume $\mathbf{F}: \mathbf{A} \to \mathbf{B}$ and \mathbf{F} is strictly monotone. For all $x, y \in \mathbf{A}$, if $\mathbf{F}(x) \prec \mathbf{F}(y)$ then x < y.

Proof:

 $\langle 1 \rangle 1$. $\mathbf{F}(x) \neq \mathbf{F}(y)$ and $\mathbf{F}(y) \not\prec \mathbf{F}(x)$

PROOF: Trichotomy.

 $\langle 1 \rangle 2$. $x \neq y$ and $y \not< x$

Proof: \mathbf{F} is strictly monotone.

 $\langle 1 \rangle 3. \ x < y$

Proof: Trichotomy.

П

Corollary Schema 5.2.6.1. For any classes A, B, \leq , \preccurlyeq and F, the following is a theorem:

Assume \leq is a linear order on \mathbf{A} and \preccurlyeq is a linear order on \mathbf{B} . Assume $\mathbf{F}: \mathbf{A} \to \mathbf{B}$ and \mathbf{F} is strictly monotone. Then \mathbf{F} is an order isomorphism.

Proposition Schema 5.2.7. For any classes A, B, F and S, the following is a theorem:

Assume **S** is a linear order on **B** and **F**: $\mathbf{A} \rightarrow \mathbf{B}$. Define **R** on **A** by $x\mathbf{R}y$ if and only if $\mathbf{F}(x)\mathbf{SF}(y)$. Then **R** is a linear order on **A**.

```
PROOF: \langle 1 \rangle 1. R is a partial order on A. PROOF: Proposition 5.1.3. \langle 1 \rangle 2. R is total. PROOF: For all x, y \in \mathbf{A} we have \mathbf{F}(x)\mathbf{SF}(y) or \mathbf{F}(y)\mathbf{SF}(x).
```

Corollary Schema 5.2.7.1. For any classes A, B and R, the following is a theorem:

Assume **R** be a linear order on **A** and **B** \subseteq **A**. Then **R** \cap **B**² is a linear order on **B**.

Proposition Schema 5.2.8. For any classes A, B, R and S, the following is a theorem:

Assume \mathbf{R} is a linear order on \mathbf{A} and \mathbf{S} is a linear order on \mathbf{B} . Then the lexicographic ordering is a linear order on $\mathbf{A} \times \mathbf{B}$.

Proof:

```
⟨1⟩1. Let: ≤ be the lexicographic order on \mathbf{A} \times \mathbf{B} ⟨1⟩2. ≤ is a partial order.

PROOF: Proposition 5.1.26. ⟨1⟩3. ≤ is total.

⟨2⟩1. Let: a, a' \in \mathbf{A} and b, b' \in \mathbf{B} ⟨2⟩2. Case: a\mathbf{R}a' and a \neq a'

PROOF: Then (a, b) \leq (a', b').

⟨2⟩3. Case: a = a'

PROOF: We have b\mathbf{S}b' or b'\mathbf{S}b, so (a, b) \leq (a', b') or (a', b') \leq (a, b).

⟨2⟩4. Case: a'\mathbf{R}a and a \neq a'

PROOF: Then (a', b') \leq (a, b).
```

5.3 Well Orderings

Definition 5.3.1 (Well Ordering). A well ordering on a class A is a linear ordering on A such that:

- For all $t \in \mathbf{A}$ we have seg t is a set.
- Every nonempty subset of **A** has a least element.

Proposition Schema 5.3.2. For any classes A, B and \leq , the following is a theorem:

Assume \leq well orders \mathbf{A} and $\mathbf{B} \subseteq \mathbf{A}$ is nonempty. Then \mathbf{B} has a least element.

Proof:

```
\langle 1 \rangle 1. Pick b \in \mathbf{B}
\langle 1 \rangle 2. Let: S = \sec b \cap \mathbf{B}
```

 $\langle 1 \rangle 3$. Case: $S = \emptyset$

PROOF: In this case b is the least element of **B**.

 $\langle 1 \rangle 4$. Case: $S \neq \emptyset$

PROOF: In this cases S has a least element, which is the least element of \mathbf{B} .

Proposition Schema 5.3.3. For any classes A, B, F and S, the following is a theorem:

Assume **S** well orders **B** and **F** : $\mathbf{A} \rightarrow \mathbf{B}$. Define **R** on **A** by $x\mathbf{R}y$ if and only if $\mathbf{F}(x)\mathbf{SF}(y)$. Then **R** well orders **A**.

Proof:

 $\langle 1 \rangle 1$. **R** linearly orders **A**.

Proof: Proposition 5.2.7.

- $\langle 1 \rangle 2$. For all $t \in \mathbf{A}$ we have $\{x \in \mathbf{A} \mid x\mathbf{R}t \land x \neq t\}$ is a set.
 - $\langle 2 \rangle 1$. Let: $t \in \mathbf{A}$
 - $\langle 2 \rangle 2$. Let: $S = \{ y \in \mathbf{B} \mid y\mathbf{SF}(t) \land y \neq \mathbf{F}(t) \}$
 - $\langle 2 \rangle 3$. Let: P(x,y) be the property $\mathbf{F}(y) = x$
 - $\langle 2 \rangle 4$. For all $x \in S$ there exists at most one y such that P(x, y) PROOF: **F** is injective.
 - $\langle 2 \rangle$ 5. Let: $T = \{ y \mid \exists x \in S.P(x, y) \}$

PROOF: Axiom of Replacement.

- $\langle 2 \rangle 6. \ T = \{ x \in \mathbf{A} \mid x\mathbf{R}t \land x \neq t \}$
- $\langle 1 \rangle 3$. Every nonempty subset of **A** has a least element.
 - $\langle 2 \rangle 1$. Let: S be a nonempty subset of **A**.
 - $\langle 2 \rangle 2$. Let: y be the least element of $\mathbf{F}(S)$.
 - $\langle 2 \rangle 3$. Pick $x \in S$ such that $\mathbf{F}(x) = y$.
 - $\langle 2 \rangle 4$. x is least in S.

Corollary Schema 5.3.3.1. For any classes A, B and R, the following is a theorem:

If **R** well orders **B** and $\mathbf{A} \subseteq \mathbf{B}$ then $\mathbf{R} \cap \mathbf{A}^2$ well orders **A**.

5.3.1 Transfinite Induction

Theorem Schema 5.3.4 (Transfinite Induction Principle). For any classes A, B and \leq , the following is a theorem:

Assume \leq is a well ordering on **A** and **B** \subseteq **A**. Assume that, for all $t \in$ **A**,

$$seg t \subseteq \mathbf{B} \Rightarrow t \in \mathbf{B}$$
.

Then $\mathbf{B} = \mathbf{A}$.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction $\mathbf{B} \neq \mathbf{A}$
- $\langle 1 \rangle 2$. Let: m be the least element of $\mathbf{A} \mathbf{B}$

Proof: Proposition 5.3.2.

```
\langle 1 \rangle3. seg m \subseteq \mathbf{B}
PROOF: By leastness of m.
\langle 1 \rangle4. m \in \mathbf{B}
\langle 1 \rangle5. Q.E.D.
PROOF: This is a contradiction.
```

Theorem 5.3.5. Let \leq be a linear ordering on A. Assume that, for any $B \subseteq A$ such that $\forall t \in A$. seg $t \subseteq B \Rightarrow t \in B$, we have B = A. Then \leq is a well ordering on A.

Proof:

```
\langle 1 \rangle 1. Let: C \subseteq A be nonempty.
```

$$\langle 1 \rangle 2$$
. Let: $B = \{ t \in A \mid \forall x \in C . t < x \}$

$$\langle 1 \rangle 3. \ B \cap C = \emptyset$$

$$\langle 1 \rangle 4. \ B \neq A$$

 $\langle 1 \rangle$ 5. PICK $t \in A$ such that $\operatorname{seg} t \subseteq B$ and $t \notin B$

 $\langle 1 \rangle 6$. t is least in C.

Proposition Schema 5.3.6. For any classes A, B, F, G, \leq and \preccurlyeq , the following is a theorem:

Assume \leq well orders \mathbf{A} and \leq well orders \mathbf{B} . Assume \mathbf{F} and \mathbf{G} are order isomorphisms between \mathbf{A} and \mathbf{B} . Then $\mathbf{F} = \mathbf{G}$.

Proof:

```
\langle 1 \rangle 1. For all x \in \mathbf{A}, if \forall t < x.\mathbf{F}(t) = \mathbf{G}(t), then \mathbf{F}(x) = \mathbf{G}(x) \langle 2 \rangle 1. Let: x \in \mathbf{A} \langle 2 \rangle 2. Assume: \forall t < x.\mathbf{F}(t) = \mathbf{G}(t) \langle 2 \rangle 3. \mathbf{F}(\sec x) = \mathbf{G}(\sec x) \langle 2 \rangle 4. \mathbf{F}(x) is the least element of \mathbf{B} - \mathbf{F}(\sec x) \langle 2 \rangle 5. \mathbf{G}(x) is the least element of \mathbf{B} - \mathbf{G}(\sec x) \langle 2 \rangle 6. \mathbf{F}(x) = \mathbf{G}(x) \langle 1 \rangle 2. \forall x \in \mathbf{A}.\mathbf{F}(x) = \mathbf{G}(x) Proof: Transfinite induction.
```

5.3.2 Transfinite Recursion

Theorem Schema 5.3.7 (Transfinite Recursion Theorem Schema). For any property G(x, y), the following is a theorem:

Assume that < is a well ordering on a set A. Assume that, for any f, there exists a unique y such that G(f,y). Then there exists a unique function F such that $\operatorname{dom} F = A$ and

$$\forall t \in A.G(F \upharpoonright \operatorname{seg} t, F(t))$$
.

Proof:

 $\langle 1 \rangle 1$. For $t \in A$, let us say that a function v is G-constructed up to t iff dom $v = \{x \in A \mid x \leq t\}$ and

```
\forall x \in \text{dom } v.G(v \upharpoonright \text{seg } x, v(x)).
```

- $\langle 1 \rangle 2$. For all $t_1, t_2 \in A$ with $t_1 \leq t_2$, if v_1 is G-constructed up to t_1 and v_2 is G-constructed up to t_2 , then $\forall x \leq t_1.v_1(x) = v_2(x)$.
 - $\langle 2 \rangle 1$. Let: $x \in A$
 - $\langle 2 \rangle 2$. Assume: $\forall y < x. (y \le t_1 \Rightarrow v_1(y) = v_2(y))$
 - $\langle 2 \rangle 3$. Assume: $x \leq t_1$
 - $\langle 2 \rangle 4$. $G(v_1 \upharpoonright \operatorname{seg} x, v_1(x))$
 - $\langle 2 \rangle 5$. $G(v_2 \upharpoonright \operatorname{seg} x, v_2(x))$
 - $\langle 2 \rangle 6. \ v_1 \upharpoonright \operatorname{seg} x = v_2 \upharpoonright \operatorname{seg} x$
 - $\langle 2 \rangle 7. \ v_1(x) = v_2(x)$
 - $\langle 2 \rangle 8$. Q.E.D.

PROOF: By transfinite induction.

 $\langle 1 \rangle 3$. Let \mathcal{K} be the set of all functions v such that there exists $t \in A$ such that v is G-constructed up to t.

PROOF: By an Axiom of Replacement using $\langle 1 \rangle 2$.

- $\langle 1 \rangle 4$. Let: $F = \bigcup \mathcal{K}$
- $\langle 1 \rangle 5$. F is a function.
 - $\langle 2 \rangle 1$. Let: $(x, y_1), (x, y_2) \in F$
 - $\langle 2 \rangle 2$. PICK $v_1, v_2 \in \mathcal{K}$ such that $v_1(x) = y_1$ and $v_2(x) = y_2$.
 - $\langle 2 \rangle 3$. PICK $t_1, t_2 \in A$ such that v_1 is G-constructed up to t_1 and v_2 is G-constructed up to t_2 .
 - $\langle 2 \rangle 4$. Assume: w.l.o.g. $t_1 \leq t_2$
 - $\langle 2 \rangle 5. \ v_1(x) = v_2(x)$

Proof: $\langle 1 \rangle 2$.

- $\langle 2 \rangle 6. \ y_1 = y_2$
- $\langle 1 \rangle 6. \ \forall x \in \text{dom } F.G(F \upharpoonright \text{seg } x, F(x))$
 - $\langle 2 \rangle 1$. Let: $x \in \text{dom } F$
 - $\langle 2 \rangle 2$. Pick $v \in \mathcal{K}$ such that v(x) = F(x)
 - $\langle 2 \rangle 3$. PICK t such that v is G-constructed up to t.
 - $\langle 2 \rangle 4$. $G(v \upharpoonright \operatorname{seg} x, v(x))$
 - $\langle 2 \rangle 5. \ v \upharpoonright \operatorname{seg} x = F \upharpoonright \operatorname{seg} x$
 - $\langle 3 \rangle 1$. Let: y < x

PROVE: v(y) = F(y)

 $\langle 3 \rangle 2. \ y \in \text{dom } F$

PROOF: Since $y \in \text{dom } v$ and $v \in \mathcal{K}$.

- $\langle 3 \rangle 3$. PICK $u \in \mathcal{K}$ such that u(y) = F(y)
- $\langle 3 \rangle 4. \ u(y) = v(y)$

Proof: $\langle 1 \rangle 2$.

- $\langle 3 \rangle 5. \ v(y) = F(y)$
- $\langle 2 \rangle 6$. $G(F \upharpoonright \operatorname{seg} x, F(x))$
- $\langle 1 \rangle 7$. dom F = A
 - $\langle 2 \rangle 1$. Assume: dom $F \neq A$
 - $\langle 2 \rangle 2$. Let: t be least in $A \operatorname{dom} F$
 - $\langle 2 \rangle 3$. seg t = dom F

5.3. WELL ORDERINGS

41

- $\langle 2 \rangle 4$. Let: y be the unique object such that G(F,y)
- $\langle 2 \rangle 5$. Let: $v = F \cup \{(t,y)\}$
- $\langle 2 \rangle 6$. v is G-constructed up to t.
- $\langle 2 \rangle 7$. $t \in \text{dom } F$
- $\langle 2 \rangle 8$. Q.E.D.

PROOF: This is a contradiction.

 $\langle 1 \rangle 8$. F is unique.

PROOF: If F' also satisfies the theorem, prove F(x) = F'(x) by transfinite induction on x.

Theorem 5.3.8. Let A and B be well ordered sets. Then one of the following holds: $A \cong B$; there exists $b \in B$ such that $A \cong \operatorname{seg} b$; there exists $a \in A$ such that $\operatorname{seg} a \cong B$.

Proof:

- $\langle 1 \rangle 1$. PICK e that is not in A or B.
- $\langle 1 \rangle 2$. Let: $F: A \to B \cup \{e\}$ be the function defined by transfinite recursion thus:

$$F(t) = \begin{cases} \text{the least element of } B - F(\sec t) & \text{if } B - F(\sec t) \neq \emptyset \\ e & \text{if } B - F(\sec t) = \emptyset \end{cases}$$

- $\langle 1 \rangle 3$. Case: $e \in \operatorname{ran} \vec{F}$
 - $\langle 2 \rangle 1$. Let: t be least such that F(t) = e
 - $\langle 2 \rangle 2$. $F \upharpoonright \operatorname{seg} t : \operatorname{seg} t \cong B$
- $\langle 1 \rangle 4$. Case: ran F = B

PROOF: We have $F:A\cong B$

- $\langle 1 \rangle$ 5. Case: ran $F \subseteq B$
 - $\langle 2 \rangle 1$. Let: b be the least element of $B \operatorname{ran} F$
 - $\langle 2 \rangle 2$. $F: A \cong \operatorname{seg} b$

Chapter 6

Ordinal Numbers

Definition 6.0.1 (Ordinal Number). An *ordinal (number)* is a transitive set α that is *well-ordered by* \in ; that is, such that $\{(x,y) \in \alpha^2 \mid x \in y \lor x = y\}$ well orders α .

Given $x, y \in \alpha$, we write x < y iff $x \in y$, and $x \le y$ iff $x \in y$ or x = y. Let **On** be the class of ordinal numbers.

Proposition 6.0.2. For any ordinal numbers α and β , if $\alpha \cong \beta$ then $\alpha = \beta$.

```
Proof:
\langle 1 \rangle 1. Let: f : \alpha \cong \beta
\langle 1 \rangle 2. For all x \in \alpha, if \forall t < x. f(t) = t then f(x) = x
    \langle 2 \rangle 1. \ f(x) \subseteq x
        \langle 3 \rangle 1. Let: y \in f(x)
        \langle 3 \rangle 2. \ y \in \beta
        \langle 3 \rangle 3. Pick t \in \alpha such that f(t) = y
            Proof: f is surjective.
        \langle 3 \rangle 4. \ f(t) \in f(x)
        \langle 3 \rangle 5. \ t \in x
            PROOF: Since f is an order isomorphism.
        \langle 3 \rangle 6. f(t) = t
            PROOF: Induction hypothesis.
        \langle 3 \rangle 7. \ y = t
        \langle 3 \rangle 8. \ y \in x
    \langle 2 \rangle 2. \ x \subseteq f(x)
        \langle 3 \rangle 1. Let: t \in x
        \langle 3 \rangle 2. \ f(t) \in f(x)
        \langle 3 \rangle 3. \ f(t) = t
        \langle 3 \rangle 4. \ t \in f(x)
\langle 1 \rangle 3. \ \forall x \in \alpha. f(x) = x
    PROOF: Transfinite induction.
\langle 1 \rangle 4. \ \alpha = \beta
    PROOF: Since \beta = \{f(t) \mid t \in \alpha\} = \{t \mid t \in \alpha\} = \alpha.
```

П

Theorem 6.0.3. Every well-ordered set is isomorphic to a unique ordinal.

PROOF

- $\langle 1 \rangle 1$. For any well-ordered set A, there exists an ordinal α such that $A \cong \alpha$.
 - $\langle 2 \rangle 1$. Let: A be a well-ordered set.
 - $\langle 2 \rangle 2$. Define the function E on A by transfinite recursion thus:

$$E(t) = \{ E(x) \mid x < t \}$$
 $(t \in A)$.

- $\langle 2 \rangle 3$. Let: $\alpha = \{ E(x) \mid x \in A \}$
- $\langle 2 \rangle 4$. α is an ordinal.
 - $\langle 3 \rangle 1$. α is a transitive set.
 - $\langle 4 \rangle 1$. Let: $x \in y \in \alpha$
 - $\langle 4 \rangle 2$. Pick $t \in A$ such that y = E(t)
 - $\langle 4 \rangle 3. \ x \in E(t) = \{ E(s) \mid s < t \}$
 - $\langle 4 \rangle 4$. PICK s < t such that x = E(s)
 - $\langle 4 \rangle 5. \ x \in \alpha$
 - $\langle 3 \rangle 2$. α is well-ordered by \in .
 - $\langle 4 \rangle 1$. Let: $\langle = \{(x,y) \in \alpha \mid x \in y\}$
 - $\langle 4 \rangle 2$. < is transitive.
 - $\langle 5 \rangle 1$. Let: $x, y, z \in \alpha$ with $x \in y \in z$
 - $\langle 5 \rangle 2$. Pick $t \in A$ such that z = E(t)
 - $\langle 5 \rangle 3$. Pick $s \in A$ such that s < t and y = E(s)
 - $\langle 5 \rangle 4$. Pick $r \in A$ such that r < s and x = E(r)
 - $\langle 5 \rangle 5$. r < t
 - $\langle 5 \rangle 6. \ x \in z$
 - $\langle 4 \rangle 3$. < satisfies trichotomy.
 - $\langle 5 \rangle 1$. Let: $x, y \in \alpha$
 - $\langle 5 \rangle 2$. PICK $s, t \in A$ such that E(s) = x and E(t) = y
 - $\langle 5 \rangle 3$. Exactly one of s < t, s = t, t < s holds.
 - $\langle 5 \rangle 4$. Case: s < t
 - $\langle 6 \rangle 1. \ x \in y$
 - $\langle 6 \rangle 2$. $x \neq y$ and $y \notin x$

PROOF: Axiom of Regularity.

- $\langle 5 \rangle 5$. Case: s = t
 - $\langle 6 \rangle 1. \ x = y$
 - $\langle 6 \rangle 2$. $x \notin y$ and $y \notin x$

PROOF: Axiom of Regularity.

 $\langle 5 \rangle 6$. Case: t < s

PROOF: Similar to $\langle 5 \rangle 4$.

 $\langle 4 \rangle 4$. \leq is a linear order on α .

Proof: Proposition 5.2.3.

- $\langle 4 \rangle$ 5. Every nonempty subset of α has a least element.
 - $\langle 5 \rangle$ 1. Let: S be a nonempty subset of α
 - $\langle 5 \rangle 2$. Let: $T = \{x \in A \mid E(x) \in S\}$
 - $\langle 5 \rangle 3$. Let: t be the least element of T.

PROVE: E(t) is least in S

```
\langle 5 \rangle 4. Let: y \in S
              \langle 5 \rangle 5. PICK s \in T such that E(s) = y
              \langle 5 \rangle 6. \ t \leq s
              \langle 5 \rangle 7. \ x \leq y
   \langle 2 \rangle 5. E is surjective.
       PROOF: By definition of \alpha.
    \langle 2 \rangle 6. E is strictly monotone.
       PROOF: If s < t then E(s) \in E(t) by definition of E(t).
    \langle 2 \rangle 7. Q.E.D.
       Proof: Corollary 5.2.6.1.
\langle 1 \rangle 2. For any ordinals \alpha and \beta, if \alpha \cong \beta then \alpha = \beta.
   Proof: Proposition 6.0.2.
Proposition 6.0.4. The class On is a transitive class. That is, every element
of an ordinal is an ordinal.
Proof:
\langle 1 \rangle 1. Let: \alpha be an ordinal.
\langle 1 \rangle 2. Let: \beta \in \alpha
\langle 1 \rangle 3. \beta is a transitive set.
    \langle 2 \rangle 1. Let: x \in y \in \beta
   \langle 2 \rangle 2. \ y \in \alpha
       PROOF: \alpha is transitive.
    \langle 2 \rangle 3. \ x \in \alpha
       PROOF: \alpha is transitive.
    \langle 2 \rangle 4. \ x \in \beta
       PROOF: Since \{(x,y) \in \alpha^2 \mid x \in y\} is transitive.
\langle 1 \rangle 4. \beta is well ordered by \in.
   Proof: By Corollary 5.3.3.1.
Proposition 6.0.5. Given two ordinal numbers \alpha, \beta, exactly one of \alpha \in \beta,
\alpha = \beta, \ \beta \in \alpha \ holds.
Proof:
\langle 1 \rangle 1. At most one holds.
   PROOF: Since every ordinal is a transitive set and we never have \alpha \in \alpha.
\langle 1 \rangle 2. At least one holds.
   \langle 2 \rangle 1. Either \alpha \cong \beta or \exists t \in \beta . \alpha \cong \text{seg } t or \exists t \in \alpha . \text{seg } t \cong \beta .
   \langle 2 \rangle 2. Case: \alpha \cong \beta
       PROOF: Then \alpha = \beta by Proposition 6.0.2.
    \langle 2 \rangle 3. Case: There exists t \in \beta such that \alpha \cong \operatorname{seg} t
       \langle 3 \rangle 1. t is an ordinal number.
          Proof: Proposition 6.0.4.
       \langle 3 \rangle 2. t = \sec t
           \langle 4 \rangle 1. t \subseteq \operatorname{seg} t
```

```
\langle 5 \rangle 1. Let: s \in t
                 \langle 5 \rangle 2. \ s \in \beta
                     PROOF: \beta is a transitive set.
                 \langle 5 \rangle 3. \ s \in \operatorname{seg} t
            \langle 4 \rangle 2. seg t \subseteq t
                PROOF: Immediate from definitions.
         \langle 3 \rangle 3. \ \alpha = t
            Proof: Proposition 6.0.2.
         \langle 3 \rangle 4. \ \alpha \in \beta
     \langle 2 \rangle 4. Case: There exists t \in \alpha such that \operatorname{seg} t \cong \beta
        PROOF: \beta \in \alpha similarly.
```

Proposition 6.0.6. Any nonempty set S of ordinal numbers has a least element.

```
Proof:
\langle 1 \rangle 1. Pick \beta \in S
\langle 1 \rangle 2. Case: \beta \cap S = \emptyset
   PROOF: Then \beta is least in S.
\langle 1 \rangle 3. Case: \beta \cap S \neq \emptyset
```

PROOF: The least element of $\beta \cap S$ is least in S.

Theorem 6.0.7. The class **On** is well ordered by \in .

```
PROOF:
```

```
\langle 1 \rangle 1. Let: \mathbf{E} = \{ (x, y) \in \mathbf{On}^2 \mid x \in y \}
```

 $\langle 1 \rangle 2$. **E** is transitive.

PROOF: If $\alpha \in \beta \in \gamma$ then $\alpha \in \gamma$ because every ordinal is a transitive set.

 $\langle 1 \rangle 3$. **E** satisfies trichotomy. Proof: Proposition 6.0.5.

 $\langle 1 \rangle 4$. **E** linearly orders **On**.

Proof: Proposition 5.2.3.

 $\langle 1 \rangle 5$. For any $\alpha \in \mathbf{On}$, the class $\{ \beta \in \mathbf{On} \mid \beta \mathbf{E} \alpha \}$ is a set.

PROOF: It is equal to α .

 $\langle 1 \rangle 6$. Every nonempty subset of **On** has an **E**-least element.

Proof: Proposition 6.0.6.

Corollary 6.0.7.1 (Burali-Forti Paradox). The class On is a proper class.

PROOF: If it were a set, it would be a transitive set well-ordered by \in , and hence a member of itself, contradicting the Axiom of Regularity.

Proposition 6.0.8. Any transitive set of ordinal numbers is an ordinal number.

PROOF: It is well-ordered by \in by the above propositions. \square

Proposition 6.0.9. \emptyset *is an ordinal number.*

PROOF: Vacuously, it is a transitive set well-ordered by \in .

Definition 6.0.10. We define $0 = \emptyset$.

Definition 6.0.11 (Successor). The *successor* of a set a is the set $a^+ := a \cup \{a\}$.

Proposition 6.0.12. A set a is a transitive set if and only if

$$\bigcup (a^+) = a .$$

Proof:

- $\langle 1 \rangle 1$. If a is a transitive set then $\bigcup (a^+) = a$.
 - $\langle 2 \rangle 1$. Assume: a is a transitive set.
 - $\langle 2 \rangle 2$. $\bigcup (a^+) \subseteq a$
 - $\langle 3 \rangle 1$. Let: $x \in \bigcup (a^+)$

Prove: $x \in a$

- $\langle 3 \rangle 2$. PICK $y \in a^+$ such that $x \in y$.
- $\langle 3 \rangle 3. \ y \in a \text{ or } y = a.$
- $\langle 3 \rangle 4$. Case: $y \in a$

PROOF: Then $x \in a$ because a is a transitive set.

 $\langle 3 \rangle 5$. Case: y = a

PROOF: Then $x \in a$ immediately.

 $\langle 2 \rangle 3. \ a \subseteq \bigcup (a^+)$

PROOF: Since $a \in a^+$.

- $\langle 1 \rangle 2$. If $\bigcup (a^+) = a$ then a is a transitive set.
 - $\langle 2 \rangle 1$. Assume: $\bigcup (a^+) = a$
 - $\langle 2 \rangle 2$. $\bigcup a \subseteq a$

Proof:

$$\bigcup a \subseteq \bigcup (a^+)$$
 (Proposition ??)
= a ($\langle 2 \rangle 1$)

 $\langle 2 \rangle 3$. a is a transitive set.

Proof: Proposition 1.5.2.

Proposition 6.0.13. For any set a, we have a is a transitive set if and only if a^+ is a transitive set.

PROOF:

 $\langle 1 \rangle 1$. If a is a transitive set then a^+ is a transitive set.

PROOF: If a is a transitive set then $\bigcup (a^+) = a \subseteq a^+$ by Proposition 6.0.12 and so a^+ is a transitive set.

- $\langle 1 \rangle 2$. If a^+ is a transitive set then a is a transitive set.
 - $\langle 2 \rangle 1$. Assume: a^+ is a transitive set.
 - $\langle 2 \rangle 2$. Let: $x \in y \in a$
 - $\langle 2 \rangle 3. \ x \in y \in a^+$
 - $\langle 2 \rangle 4. \ x \in a^+$

Proof: $\langle 2 \rangle 1$

```
\langle 2 \rangle 5. \ x \neq a
      PROOF: From \langle 2 \rangle 2 and the Axiom of Regularity.
    \langle 2 \rangle 6. \ x \in a
Definition 6.0.14. We write 0 for \emptyset, 1 for \emptyset^+, 2 for \emptyset^{++}, etc.
Proposition 6.0.15. Let 2 = \{\emptyset, \{\emptyset\}\}\. For any set A we have \mathcal{P}A \approx 2^A.
PROOF: The function H: \mathcal{P}A \to 2^A defined by H(S)(a) = \{\emptyset\} if a \in S and \emptyset if
a \notin S is a bijection. \square
Proposition 6.0.16. For any ordinal number \alpha we have \alpha^+ is an ordinal
number.
Proof:
\langle 1 \rangle 1. \alpha^+ is a transitive set.
   Proof: Proposition 6.0.13.
\langle 1 \rangle 2. \alpha^+ is well-ordered by \in.
   \langle 2 \rangle 1. For all x, y, z \in \alpha^+, if x \in y \in z then x \in z
       \langle 3 \rangle 1. Case: z = \alpha
          PROOF: Then x \in \alpha since \alpha is a transitive set.
       \langle 3 \rangle 2. Case: z \in \alpha
          PROOF: Then x \in z since \alpha is well-ordered by \in.
    \langle 2 \rangle 2. For all x, y \in \alpha^+ we have x \in y or x = y or y \in x
       \langle 3 \rangle 1. Case: x, y \in \alpha
          PROOF: The result follows because \alpha is well-ordered by \in.
       \langle 3 \rangle 2. Case: x \in \alpha, y = \alpha
          PROOF: Then x \in y.
       \langle 3 \rangle 3. Case: x = \alpha, y \in \alpha
          PROOF: Then y \in x.
       \langle 3 \rangle 4. Case: x = \alpha, y = \alpha
          PROOF: Then x = y.
    \langle 2 \rangle 3. Every nonempty subset of \alpha^+ has an \in-least element.
       \langle 3 \rangle 1. Let: S \subseteq \alpha^+ be nonempty
       \langle 3 \rangle 2. Case: S = \{\alpha\}
          PROOF: \alpha is least in S.
       \langle 3 \rangle 3. Case: S \neq \{\alpha\}
          \langle 4 \rangle 1. S - \{\alpha\} is a nonempty subset of \alpha
          \langle 4 \rangle 2. Let: \beta be least in S - \{\alpha\}
          \langle 4 \rangle 3. \beta is least in S.
```

Proposition 6.0.17. If A is a set of ordinal numbers then $\bigcup A$ is an ordinal number.

Proof:

 $\langle 1 \rangle 1$. $\bigcup A$ is a transitive set.

```
Proof: Proposition 1.5.3.
\langle 1 \rangle 2. \bigcup A is a set of ordinals.
Theorem 6.0.18 (Burali-Forti). The class of ordinal numbers is a proper class.
PROOF: If it is a set then it is a transitive set of ordinal numbers, hence an
ordinal number, hence a member of itself, which is impossible. \square
Theorem 6.0.19 (Hartogs). For any set A, there exists an ordinal not domi-
nated by A.
Proof:
\langle 1 \rangle 1. Let: \alpha be the class of all ordinals \beta such that \beta \leq A
        PROVE: \alpha is a set.
\langle 1 \rangle 2. Let: W = \{(B, R) \mid B \subseteq A, R \text{ is a well ordering on } B\}
\langle 1 \rangle 3. \alpha is the class of the ordinals of the elements of W.
   \langle 2 \rangle 1. For all (B,R) \in W, the ordinal of (B,R) is in \alpha.
       \langle 3 \rangle 1. Let: (B, R) \in W
       \langle 3 \rangle 2. Let: \beta be the ordinal of (B, R)
       \langle 3 \rangle 3. Let: E: B \cong \beta be the canonical isomorphism.
       \langle 3 \rangle 4. Let: i: B \hookrightarrow A be the inclusion
      \langle 3 \rangle 5. i \circ E^{-1} is an injection \beta \to A
       \langle 3 \rangle 6. \ \beta \in \alpha
   \langle 2 \rangle 2. For all \beta \in \alpha, there exists (B,R) \in W such that \beta is the ordinal number
           of (B,R).
      \langle 3 \rangle 1. Let: \beta \in \alpha
       \langle 3 \rangle 2. PICK an injection f: \beta \to A
      \langle 3 \rangle 3. Define \leq on ran f by f(x) \leq f(y) iff x \leq y
      \langle 3 \rangle 4. (\operatorname{ran} f, \leq) \in W
      \langle 3 \rangle 5. \beta is the ordinal number of (\operatorname{ran} f, \leq)
\langle 1 \rangle 4. \alpha is a set.
   Proof: By an Axiom of Replacement.
\langle 1 \rangle 5. \alpha is an ordinal.
   PROOF: It is a transitive set of ordinals.
\langle 1 \rangle 6. \ \alpha \not \preccurlyeq A
   PROOF: Since \alpha \notin \alpha.
Theorem 6.0.20 (Numeration Theorem). Every set is equinumerous with some
ordinal.
PROOF:
\langle 1 \rangle 1. Let: A be any set.
\langle 1 \rangle 2. PICK an ordinal \alpha not dominated by A.
\langle 1 \rangle 3. Pick a choice function G for A.
\langle 1 \rangle 4. Pick e \notin A
```

 $\langle 1 \rangle$ 5. Let: $F : \alpha \to A \cup \{e\}$ by transfinite recursion:

$$F(\gamma) = \begin{cases} G(A - F(\{\delta \mid \delta < \gamma\}) & \text{if } A - F(\{\delta \mid \delta < \gamma\}) \neq \emptyset \\ e & \text{if } A - F(\{\delta \mid \delta < \gamma\}) = \emptyset \end{cases}$$

- $\langle 1 \rangle 6. \ e \in \operatorname{ran} F$
 - $\langle 2 \rangle 1$. Assume: for a contradiction $e \notin \operatorname{ran} F$
 - $\langle 2 \rangle 2$. F is an injection $\alpha \to A$.
 - $\langle 3 \rangle$ 1. Let: $\beta, \gamma \in \alpha$ with $\beta \neq \gamma$ Prove: $F(\beta) \neq F(\gamma)$
 - $\langle 3 \rangle 2$. Assume: w.l.o.g. $\beta < \gamma$
 - $\langle 3 \rangle 3. \ F(\gamma) \in A F(\{\delta \mid \delta < \gamma\})$
 - $\langle 3 \rangle 4. \ F(\gamma) \notin F(\{\delta \mid \delta < \gamma\})$
 - $\langle 3 \rangle 5. \ F(\gamma) \neq F(\beta)$
 - $\langle 2 \rangle 3$. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 2$.

- $\langle 1 \rangle 7$. Let: δ be least such that $F(\delta) = e$
- $\langle 1 \rangle 8. \ F \upharpoonright \delta : \delta \approx A$

Theorem 6.0.21 (Well-Ordering Theorem). Any set can be well ordered.

PROOF

- $\langle 1 \rangle 1$. Pick an ordinal δ and a bijection $F: A \approx \delta$
- $\langle 1 \rangle 2$. Define \leq on A by $F(x) \leq F(y)$ iff $x \leq y$ for $x, y \in \delta$
- $\langle 1 \rangle 3. \leq \text{is a well ordering on } A.$

Theorem 6.0.22 (Zorn's Lemma). Let \mathcal{A} be a set such that, for every chain $\mathcal{B} \subseteq \mathcal{A}$, we have $\bigcup \mathcal{B} \in \mathcal{A}$. Then \mathcal{A} has a maximal element.

Proof:

- $\langle 1 \rangle 1$. Pick a well ordering $\langle 0 \rangle A$.
- $\langle 1 \rangle 2$. Let: $F: \mathcal{A} \to 2$ be the function defined by transfinite recursion by:

$$F(A) = \begin{cases} 1 & \text{if } A \text{ includes every set } B < A \text{ for which } F(B) = 1 \\ 0 & \text{otherwise} \end{cases}$$

 $\langle 1 \rangle 3$. Let: $\mathcal{C} = \{ A \in \mathring{\mathcal{A}} \mid F(A) = 1 \}$

PROVE: $\bigcup \mathcal{C}$ is a maximal element of \mathcal{A}

- $\langle 1 \rangle 4$. For all $A \in \mathcal{A}$, we have $A \in \mathcal{C}$ iff $\forall B < A.B \in \mathcal{C} \Rightarrow B \subseteq A$
- $\langle 1 \rangle 5$. C is a chain.
 - $\langle 2 \rangle 1$. Let: $A, A' \in \mathcal{C}$
 - $\langle 2 \rangle 2$. Assume: w.l.o.g. $A \leq A'$
 - $\langle 2 \rangle 3. \ A \subseteq A'$

PROOF: By $\langle 1 \rangle 4$

- $\langle 1 \rangle 6. \bigcup \mathcal{C} \in \mathcal{A}$
- $\langle 1 \rangle 7$. $\bigcup \mathcal{C}$ is maximal in \mathcal{A} .
 - $\langle 2 \rangle 1$. Let: $A \in \mathcal{A}$ and $\bigcup \mathcal{C} \subseteq A$
 - $\langle 2 \rangle 2$. $A \in \mathcal{C}$

PROOF: By $\langle 1 \rangle 4$ since $\forall B \in \mathcal{C}.B \subseteq A$.

$$\langle 2 \rangle 3. \ A \subseteq \bigcup \mathcal{C}$$

 $\langle 2 \rangle 4. \ A = \bigcup \mathcal{C}$

Proposition 6.0.23 (Teichmüller-Tukey Lemma). Let A be a nonempty set such that, for every B, we have $B \in \mathcal{A}$ if and only if every finite subset of B is a member of A. Then A has a maximal element.

Proof:

```
\langle 1 \rangle 1. For every chain \mathcal{B} \subseteq \mathcal{A}, we have \bigcup \mathcal{B} \in \mathcal{A}
     \langle 2 \rangle 1. Let: \mathcal{B} \subseteq \mathcal{A} be a chain.
     \langle 2 \rangle 2. Every finite subset of \bigcup \mathcal{B} is a member of \mathcal{A}.
```

 $\langle 3 \rangle 1$. Let: C be a finite subset of $\bigcup \mathcal{B}$.

 $\langle 3 \rangle 2$. Pick $B \in \mathcal{B}$ such that $C \subseteq B$.

 $\langle 3 \rangle 3. \ B \in \mathcal{A}$

 $\langle 3 \rangle 4$. Every finite subset of B is in \mathcal{A} .

 $\langle 3 \rangle 5. \ C \in \mathcal{A}$

 $\langle 2 \rangle 3$. $\bigcup \mathcal{B} \in \mathcal{A}$.

 $\langle 1 \rangle 2$. Q.E.D.

Proof: Zorn's lemma.

Chapter 7

Cardinal Numbers

7.1 Cardinal Numbers

Definition 7.1.1 (Cardinality). For any set A, the *cardinality* |A| of A is the least ordinal equinumerous with A.

Proposition 7.1.2. For any sets A and B, we have $A \approx B$ iff |A| = |B|.

Proof: Easy. \square

Definition 7.1.3 (Addition). Given cardinal numbers κ and λ , we define $\kappa + \lambda$ to be $|A \cup B|$ where A and B are disjoint sets of cardinality κ and λ respectively. We prove this is well-defined.

Proof:

- $\langle 1 \rangle 1$. Assume: $A \approx A'$, $B \approx B'$, and $A \cap B = A' \cap B' = \emptyset$
- $\langle 1 \rangle 2$. Pick bijections $f: A \approx A'$ and $g: B \approx B'$
- $\langle 1 \rangle 3$. The function $A \cup B \to A' \cup B'$ that maps $a \in A$ to f(a) and $b \in B$ to g(b) is a bijection.

Proposition 7.1.4. For any cardinal number κ , we have $\kappa + 0 = \kappa$.

PROOF: Let A and B be disjoint sets of cardinality κ and A. Then $A = \emptyset$ so $A \cup B = A$ and so $A \cup B = \kappa$. \Box

Theorem 7.1.5 (Associative Law for Addition). For any cardinal numbers κ , λ , μ we have $\kappa + (\lambda + \mu) = (\kappa + \lambda) + \mu$.

PROOF: Since $A \cup (B \cup C) = (A \cup B) \cup C$. \square

Proposition 7.1.6. For any cardinal numbers κ and λ we have $\kappa + \lambda = \lambda + \kappa$.

PROOF: Since $A \cup B = B \cup A$. \square

Definition 7.1.7 (Multiplication). For κ and λ cardinal numbers, we define $\kappa\lambda$ to be the cardinal number of $A\times B$, where $|A|=\kappa$ and $|B|=\lambda$.

We prove this is well-defined.

PROOF: If $f: A \approx A'$ and $g: B \approx B'$ then the function that maps (a,b) to (f(a),g(b)) is a bijection $A \times B \approx A' \times B'$. \square

Proposition 7.1.8. For any cardinal number κ we have $\kappa \cdot 0 = 0$.

PROOF: Since $A \times \emptyset = \emptyset$. \square

Proposition 7.1.9. For any cardinal number κ we have $\kappa \cdot 1 = \kappa$.

PROOF: The function that maps (a, e) to a is a bijection $A \times \{e\} \approx A$. \square

Theorem 7.1.10 (Distributive Law). For any cardinal numbers κ , λ and μ , we have $\kappa(\lambda + \mu) = \kappa\lambda + \kappa\mu$.

PROOF: Since $A \times (B \cup C) = (A \times B) \cup (A \times C)$. \square

Theorem 7.1.11 (Associative Law for Multiplication). For any cardinal numbers κ , λ and μ , we have $\kappa(\lambda\mu) = (\kappa\lambda)\mu$.

PROOF: Since $A \times (B \times C) \approx (A \times B) \times C$. \square

Theorem 7.1.12 (Commutative Law for Multiplication). For any cardinal numbers κ and λ , we have $\kappa\lambda = \lambda\kappa$.

PROOF: Since $A \times B \approx B \times A$. \square

Theorem 7.1.13. For any cardinal numbers κ and λ , if $\kappa\lambda = 0$ then $\kappa = 0$ or $\lambda = 0$.

PROOF: if $A \times B = \emptyset$ then $A = \emptyset$ or $B = \emptyset$. \square

Definition 7.1.14 (Exponentiation). Given cardinal numbers κ and λ , we define κ^{λ} to be $|A^{B}|$, where $|A| = \kappa$ and $|B| = \lambda$.

We prove this is well-defined.

PROOF:If $f: A \approx A'$ and $g: B \approx B'$, then the function that maps $h: B \to A$ to $f \circ h \circ g^{-1}$ is a bijection $A^B \approx A'^{B'}$. \square

Proposition 7.1.15. For any cardinal numbers κ , λ and μ ,

$$\kappa^{\lambda+\mu} = (\kappa^{\lambda})^{\mu}$$

PROOF: The function that maps $f: A \times B \to C$ to $\lambda a \in A.\lambda b \in B.f(a,b)$ is a bijection $A^{B \times C} \approx (A^B)^C$. \square

Proposition 7.1.16. For any cardinal numbers κ , λ and μ ,

$$(\kappa\lambda)^{\mu} = \kappa^{\mu}\lambda^{\mu}$$
.

PROOF: The function $f: A^C \times B^C \to (A \times B)^C$ with f(g,h)(c) = (g(c),h(c)) is a bijection. \square

Proposition 7.1.17. For any cardinal numbers κ , λ and μ , we have

$$\kappa^{\lambda+\mu} = \kappa^{\lambda} \kappa^{\mu} .$$

PROOF: If $B \cap C = \emptyset$, then $f: A^B \times A^C \to A^{B \cup C}$ given by f(g,h)(b) = g(b) and f(g,h)(c) = h(c) is a bijection. \square

Proposition 7.1.18. For any cardinal number κ , we have $\kappa^0 = 1$.

PROOF: For any set A, we have $A^{\emptyset} = \{\emptyset\}$. \square

Proposition 7.1.19. For any cardinal number κ , we have $\kappa^1 = \kappa$.

PROOF: For any sets A and B, if $B = \{b\}$ then the function $f: A \to A^B$ with f(a)(b) = a is a bijection. \square

Proposition 7.1.20. For any non-zero cardinal number κ we have $0^{\kappa} = 0$.

PROOF: If A is nonempty then there is no function $A \to \emptyset$. \square

Proposition 7.1.21. For any set A we have $|\mathcal{P}A| = 2^{|A|}$.

PROOF: The function $f: \mathcal{P}A \to 2^A$ where f(X)(a) = 0 if $a \notin X$ and f(X)(a) = 1 if $a \in X$. \square

Corollary 7.1.21.1. For any cardinal number κ we have $2^{\kappa} \neq \kappa$.

PROOF: By Cantor's Theorem. \square

7.2 Ordering on Cardinal Numbers

Definition 7.2.1 (Domination). A set A is dominated by a set B, $A \leq B$, iff there exists an injection $A \to B$.

Definition 7.2.2. Given cardinal numbers κ and λ , we write $\kappa \leq \lambda$ iff $A \leq B$ where $|A| = \kappa$ and $|B| = \lambda$. We write $\kappa < \lambda$ iff $\kappa \leq \lambda$ and $\kappa \neq \lambda$. We prove this is well-defined.

PROOF: If $f: A \approx A', g: B \approx B'$, and $h: A \to B$ is an injection, then $g \circ h \circ f^{-1}$ is an injection $A' \to B'$. \square

Proposition 7.2.3. For any cardinal number κ we have $\kappa \leq \kappa$.

PROOF: For any set A we have id_A is an injection $A \to A$.

Proposition 7.2.4. For any cardinal numbers κ , λ and μ , if $\kappa \leq \lambda$ and $\lambda \leq \mu$ then $\kappa \leq \mu$.

PROOF: If $f: A \to B$ and $g: B \to C$ are injective then so is $g \circ f: A \to C$. \square

Proposition 7.2.5. For any cardinal number κ we have $0 \leq \kappa$.

PROOF: For any set A, we have \emptyset is an injection $\emptyset \to A$. \square

Proposition 7.2.6. For any cardinal number κ we have $\kappa < 2^{\kappa}$.

PROOF: The function that maps a to $\{a\}$ is an injection $A \to \mathcal{P}A$, so $\kappa \leq 2^{\kappa}$. They are unequal by Cantor's Theorem. \square

Corollary 7.2.6.1. There is no largest cardinal number.

Proposition 7.2.7. For any cardinal numbers κ , λ , μ , if $\kappa \leq \lambda$ then $\kappa + \mu \leq \lambda + \mu$.

PROOF: If $f: A \to B$ is injective, and $A \cap C = B \cap C = \emptyset$, then the function $A \cup C \to B \cup C$ that maps a to f(a) and maps c to c is an injection. \square

Proposition 7.2.8. For any cardinal numbers κ , λ , μ , if $\kappa \leq \lambda$ then $\kappa \mu \leq \lambda \mu$.

PROOF: If $f:A\to B$ is injective, then the function $A\times C\to B\times C$ that maps (a,c) to (f(a),c) is injective. \square

Proposition 7.2.9. For any cardinal numbers κ , λ , μ , if $\kappa \leq \lambda$ then $\kappa^{\mu} \leq \lambda^{\mu}$.

PROOF: Given an injection $f: A \to B$, the function that maps $A^C \to B^C$ that maps g to $f \circ g$ is an injection. \square

Proposition 7.2.10. For any cardinal numbers κ , λ , μ , if $\kappa \leq \lambda$ and μ and κ are not both 0, then $\mu^{\kappa} \leq \mu^{\lambda}$.

Proof:

- $\langle 1 \rangle 1$. Let: A, B and C be sets with A and C not both empty.
- $\langle 1 \rangle 2$. Let: $f: A \to B$ be an injection. Prove: $C^A \preceq C^B$

 $\langle 1 \rangle 3$. Case: $C = \emptyset$

PROOF: Then $A \neq \emptyset$ so $C^A = \emptyset \preceq C^B$.

- $\langle 1 \rangle 4$. Case: $C \neq \emptyset$
 - $\langle 2 \rangle 1$. Pick $c \in C$
 - (2)2. Let: $g: C^A \to C^B$ be the function g(h)(f(a)) = h(a), g(h)(b) = c if $b \notin f(A)$

 $\langle 2 \rangle 3$. g is an injection.

Proposition 7.2.11. Let A be a set such that $\forall X \in A | X | \leq \kappa$. Then

$$\left|\bigcup \mathcal{A}\right| \leq |\mathcal{A}|\kappa$$
.

Proof:

- $\langle 1 \rangle 1$. For $X \in \mathcal{A}$, choose a surjection $f_X : \kappa \to X$.
- $\langle 1 \rangle 2$. Define $g: \mathcal{A} \times \kappa \to \bigcup \mathcal{A}$ by $g(X, \alpha) = f_X(\alpha)$
- $\langle 1 \rangle 3$. g is surjective.

Chapter 8

Natural Numbers

8.1 Inductive Sets

Definition 8.1.1 (Inductive). A set I is *inductive* iff $\emptyset \in I$ and $\forall x \in I.x^+ \in I$.

Definition 8.1.2 (Natural Number). A *natural number* is a set that belongs to every inductive set.

Theorem 8.1.3. The class \mathbb{N} of natural numbers is a set.

```
PROOF: \langle 1 \rangle 1. PICK an inductive set I. PROOF: Axiom of Infinity. \langle 1 \rangle 2. \mathbb{N} \subseteq I
```

Theorem 8.1.4. \mathbb{N} is inductive, and is a subset of every other inductive set.

```
PROOF: \langle 1 \rangle 1. \mathbb{N} is inductive, and is a subset of even PROOF: \langle 1 \rangle 1. \mathbb{N} is inductive. \langle 2 \rangle 1. 0 \in \mathbb{N}
PROOF: Since 0 is a member of every inductive set. \langle 2 \rangle 2. \forall n \in \mathbb{N}. n^+ \in \mathbb{N}
\langle 3 \rangle 1. Let: n \in \mathbb{N}
\langle 3 \rangle 2. Let: n \in \mathbb{N}
\langle 3 \rangle 2. Let: n \in \mathbb{N}
\langle 3 \rangle 3. n \in \mathbb{N}
PROVE: n^+ \in \mathbb{N}
\langle 3 \rangle 3. n \in \mathbb{N}
PROOF: \langle 3 \rangle 1, \langle 3 \rangle 2
\langle 3 \rangle 4. n^+ \in \mathbb{N}
PROOF: \langle 3 \rangle 2, \langle 3 \rangle 3
\langle 1 \rangle 2. \mathbb{N} is a subset of every inductive set.
PROOF: Immediate from definitions.
```

Corollary 8.1.4.1 (Induction Principle for \mathbb{N}). Any inductive subset of \mathbb{N} coincides with \mathbb{N} .

Theorem 8.1.5. Every natural number except 0 is the successor of some natural number.

Proof: Trivially by induction. \square

Proposition 8.1.6. Every natural number is a transitive set.

Proof:

 $\langle 1 \rangle 1$. 0 is a transitive set.

PROOF: Vacuously, if $x \in y \in 0$ then $x \in 0$.

 $\langle 1 \rangle 2$. For every natural number n, if n is a transitive set then n^+ is a transitive set.

Proof: Proposition 6.0.13. \Box

Proposition 8.1.7. For natural numbers m and n, if $m^+ = n^+$ then m = n.

PROOF: If
$$m^+ = n^+$$
 then $m = \bigcup (m^+)$ (Proposition 6.0.12)
$$= \bigcup (n^+)$$
 = n (Proposition 6.0.12)

Proposition 8.1.8. \mathbb{N} is a transitive set.

Proof:

- $\langle 1 \rangle 1. \ 0 \subseteq \mathbb{N}$
- $\langle 1 \rangle 2. \ \forall n \in \mathbb{N}. n \subseteq \mathbb{N} \Rightarrow n^+ \subseteq \mathbb{N}$
- $\langle 1 \rangle 3. \ \forall n \in \mathbb{N}. n \subseteq \mathbb{N}$

PROOF: From $\langle 1 \rangle 1$ and $\langle 1 \rangle 2$ by induction. \Box

Proposition 8.1.9 (Dependent Choice). Let A be a nonempty set and R a relation on A such that $\forall x \in A. \exists y \in A. (y, x) \in R$. Then there exists a function $f: \mathbb{N} \to A$ such that $\forall n \in \mathbb{N}. (f(n+1), f(n)) \in R$.

Proof:

- $\langle 1 \rangle 1$. PICK a choice function F for A.
- $\langle 1 \rangle 2$. Pick $a \in A$
- $\langle 1 \rangle 3$. Define $f : \mathbb{N} \to A$ by f(0) = a and $f(n+1) = F(\{y \in A \mid (y, f(n)) \in R\})$.

8.2 Ordering on \mathbb{N}

Proposition 8.2.1. For any natural numbers m and n, we have m < n if and only if $m^+ < n^+$.

```
Proof:
```

```
\langle 1 \rangle 1. For any natural numbers m and n, if m < n then m^+ < n^+.
```

 $\langle 2 \rangle 1$. For any natural number m, if m < 0 then $m^+ < 0^+$

Proof: Vacuous.

 $\langle 2 \rangle 2.$ For any natural number n, if $\forall m < n.m^+ < n^+$ then $\forall m < n^+.m^+ < n^{++}$

```
\langle 3 \rangle 1. Let: m < n^+
```

$$\langle 3 \rangle 2$$
. $m < n$ or $m = n$

$$\langle 3 \rangle 3$$
. Case: $m < n$

$$\langle 4 \rangle 1. \ m^+ < n^+$$

PROOF: Induction hypothesis.

$$\langle 4 \rangle 2. \ m^+ < n^{++}$$

 $\langle 3 \rangle 4$. Case: m=n

Proof: $m^+ = n^+ < n^{++}$.

 $\langle 1 \rangle 2$. For any natural numbers m and n, if $m^+ < n^+$ then m < n.

$$\langle 2 \rangle 1$$
. We never have $m^+ < 0^+$.

$$\langle 3 \rangle 1. \ m^+ \not< 0$$

$$\langle 3 \rangle 2. \ m^+ \neq 0$$

$$\langle 3 \rangle 3. \ m^+ \not< 0^+$$

$$\langle 2 \rangle 2$$
. For any natural number n , if $\forall m.m^+ < n^+ \Rightarrow m < n$, then $\forall m.m^+ < n^{++} \Rightarrow m < n^+$.

$$\langle 3 \rangle 1$$
. Let: *n* be a natural number.

$$\langle 3 \rangle 2$$
. Assume: $\forall m.m^+ < n^+ \Rightarrow m < n$

$$\langle 3 \rangle 3$$
. Let: m be a natural number.

$$\langle 3 \rangle 4$$
. Assume: $m^+ < n^{++}$

$$(3)5. m^+ < n^+ \text{ or } m^+ = n^+$$

$$\langle 3 \rangle 6$$
. Case: $m^+ < n^+$

 $\langle 4 \rangle 1. \ m < n$

PROOF: Induction hypothesis.

$$\langle 4 \rangle 2$$
. $m < n^+$

$$\langle 3 \rangle 7$$
. Case: $m^+ = n^+$

PROOF: $m = n < n^+$ by Proposition 8.1.7.

Corollary 8.2.1.1. For natural numbers m and n, we have $m \le n$ if and only if $m \subseteq n$.

Proof:

- $\langle 1 \rangle 1$. If $m \leq n$ then $m \subseteq n$
 - $\langle 2 \rangle 1$. Assume: $m \leq n$
 - $\langle 2 \rangle 2$. Let: $p \in m$
 - $\langle 2 \rangle 3$. Case: m < n

PROOF: Then $p \in n$ by Proposition 8.1.6.

 $\langle 2 \rangle 4$. Case: m = n

PROOF: Then $p \in n$ immediately.

- $\langle 1 \rangle 2$. If $m \subseteq n$ then $m \leq n$
 - $\langle 2 \rangle 1$. Assume: $m \subseteq n$

8.3

 $\langle 2 \rangle 2$. $n \not< m$

PROOF: If n < m then $n \in n$ contradicting the Axiom of Regularity.

 $\langle 2 \rangle 3. \ m \leq n$

PROOF: By trichotomy.

Recursion

Theorem 8.3.1. Let < be a linear ordering on A. Then < is a well ordering on A if and only if there does not exist a function $f: \mathbb{N} \to A$ such that $\forall n \in \mathbb{N}. f(n+1) < f(n)$.

Proof:

 $\langle 1 \rangle 1$. If there exists a function $f : \mathbb{N} \to A$ such that $\forall n \in \mathbb{N}. f(n+1) < f(n)$ then < is not a well ordering on A.

PROOF: ran f is a nonempty subset of A with no least element.

- $\langle 1 \rangle 2$. If < is not a well ordering on A then there exists a function $f: \mathbb{N} \to A$ such that $\forall n \in \mathbb{N}. f(n+1) < f(n)$.
 - $\langle 2 \rangle 1$. Assume: \langle is not a well ordering on A.
 - $\langle 2 \rangle 2$. PICK a nonempty subset $B \subseteq A$ that has no least element.
 - $\langle 2 \rangle 3. \ \forall x \in B. \exists y \in B. y < x$
 - $\langle 2 \rangle 4$. Choose a function $g: B \to B$ such that $\forall x \in B. g(x) < x$
 - $\langle 2 \rangle$ 5. Pick $b \in B$
 - $\langle 2 \rangle 6$. Define $f: \mathbb{N} \to A$ recursively by f(0) = b and $\forall n \in \mathbb{N}. f(n+1) = g(f(n))$
 - $\langle 2 \rangle 7. \ \forall n \in \mathbb{N}. f(n+1) < f(n)$

8.4 Cardinality

Theorem 8.4.1 (Schröder-Bernstein). For any cardinal numbers κ and λ , if $\kappa \leq \lambda$ and $\lambda \leq \kappa$ then $\kappa = \lambda$.

Proof:

 $\langle 1 \rangle 1.$ Let: $f:A \to B$ and $g:B \to A$ be injections. Prove: $A \approx B$

 $\langle 1 \rangle 2$. Define the sets C_n for $n \in \mathbb{N}$ by recursion:

$$C_0 := A - \operatorname{ran} g$$

$$C_{n+1} := g(f(C_n))$$

 $\langle 1 \rangle 3$. Let: $h: A \to B$ be the function

$$h(x) = \begin{cases} f(x) & \text{if } \exists n.x \in C_n \\ g^{-1}(x) & \text{otherwise} \end{cases}$$

 $\langle 1 \rangle 4$. For $n \in \mathbb{N}$, LET: $D_n = f(C_n)$

 $\langle 1 \rangle 5$. h is injective.

```
\langle 2 \rangle 1. Let: x, x' \in A
   \langle 2 \rangle 2. Assume: h(x) = h(x')
   \langle 2 \rangle 3. Case: x \in C_m and x' \in C_n
      PROOF: We have f(x) = f(x') so x = x'.
   \langle 2 \rangle 4. Case: x \in C_m and \forall n.x' \notin C_n
      PROOF: We have f(x) = g^{-1}(x') so x' = g(f(x)) \in C_{m+1} which is a
      contradiction.
   \langle 2 \rangle5. Case: \forall n.x \notin C_n \text{ and } x' \in C_n
      Proof: Similar.
   \langle 2 \rangle 6. Case: \forall n.x \notin C_n and \forall n.x' \notin C_n
      PROOF: We have g^{-1}(x) = g^{-1}(x') so x = x'.
\langle 1 \rangle 6. h is surjective.
   \langle 2 \rangle 1. Let: y \in B
   \langle 2 \rangle 2. Case: y \in D_n
       \langle 3 \rangle 1. PICK x \in C_n such that y = f(x)
       \langle 3 \rangle 2. \ y = h(x)
   \langle 2 \rangle 3. Case: \forall n.y \notin D_n
       \langle 3 \rangle 1. \ \forall n.g(y) \notin C_n
      \langle 3 \rangle 2. h(g(y)) = y
П
Definition 8.4.2 (Finite). A set is finite iff it is equinumerous to some natural
```

number; otherwise it is *infinite*.

Theorem 8.4.3 (Pigeonhole Principle). No natural number is equinumerous to a proper subset of itself.

```
Proof:
```

```
\langle 1 \rangle 1. Let: P(n) be the property: any one-to-one function n \to n is surjective.
\langle 1 \rangle 2. P(0)
```

PROOF: The only function $0 \to 0$ is injective.

- $\langle 1 \rangle 3$. For every natural number n, if P(n) then P(n+1).
 - $\langle 2 \rangle 1$. Assume: P(n)
 - $\langle 2 \rangle 2$. Let: f be a one-to-one function $n+1 \to n+1$
 - $\langle 2 \rangle 3$. $f \upharpoonright n$ is a one-to-one function $n \to n+1$
 - $\langle 2 \rangle 4$. Case: $n \notin ranf$
 - $\langle 3 \rangle 1. \ f \upharpoonright n : n \to n$
 - $\langle 3 \rangle 2$. ran $(f \upharpoonright n) = n$
 - $\langle 3 \rangle 3.$ f(n) = n

Proof: $\langle 2 \rangle 1$.

- $\langle 3 \rangle 4$. ran f = n + 1
- $\langle 2 \rangle 5$. Case: $n \in \operatorname{ran} f$
 - $\langle 3 \rangle 1$. PICK $p \in n$ such that f(p) = n
 - $\langle 3 \rangle 2$. Let: $\hat{f}: n \to n$ be the function

$$\hat{f}(p) = f(n)$$

$$\hat{f}(x) = f(x) \qquad (x \neq p)$$

```
\langle 3 \rangle 3. \hat{f} is one-to-one \langle 3 \rangle 4. ran \hat{f} = n PROOF: \langle 2 \rangle 1 \langle 3 \rangle 5. ran f = n + 1 \langle 1 \rangle 4. For every natural number n, P(n).
```

Corollary 8.4.3.1. No finite set is equinumerous to a proper subset of itself.

Corollary 8.4.3.2. Every natural number is a cardinal number.

PROOF: For any natural number n, we have that n is the least ordinal such that $n \approx n$. \square

Corollary 8.4.3.3. \mathbb{N} is infinite.

PROOF: The function that maps n to n+1 is a bijection between \mathbb{N} and $\mathbb{N}-\{0\}$. \square

Proposition 8.4.4. If C is a proper subset of a natural number n, then there exists m < n such that $C \approx m$.

Proof:

- $\langle 1 \rangle 1$. Let: P(n) be the property: for every proper subset C of n, there exists a natural number m such that $C \approx m$.
- $\langle 1 \rangle 2$. P(0)

Proof: Vacuous.

- $\langle 1 \rangle 3$. For every natural number n, if P(n) then P(n+1).
 - $\langle 2 \rangle 1$. Let: n be a natural number.
 - $\langle 2 \rangle 2$. Assume: P(n)
 - $\langle 2 \rangle$ 3. Let: C be a proper subset of n+1
 - $\langle 2 \rangle 4$. Case: C = n

Proof: $C \approx n < n + 1$

 $\langle 2 \rangle 5$. Case: $C \subseteq n$

PROOF: There exists m < n such that $C \approx m$ by $\langle 2 \rangle 2$.

- $\langle 2 \rangle 6$. Case: $n \in C$
 - $\langle 3 \rangle 1$. $C \{n\} \subseteq n$
 - $\langle 3 \rangle 2$. Pick m < n such that $C \{n\} \approx m$
 - $\langle 3 \rangle 3$. $C \approx m+1$
- $\langle 1 \rangle 4$. For every natural number n, P(n).

Corollary 8.4.4.1. Any subset of a finite set is finite.

Proposition 8.4.5. For any natural numbers m and n we have $m + n^+ = (m+n)^+$.

Proof:

 $\langle 1 \rangle 1$. PICK disjoint sets A and B of cardinalities m and n.

 $\langle 1 \rangle 2$. PICK an element $e \notin A \cup B$

$$\langle 1 \rangle 3. \ A \cup B \cup \{e\} \approx m + n^+$$

$$\langle 1 \rangle 4. \ A \cup B \cup \{e\} \approx (m+n)^+$$

Proposition 8.4.6. For any natural numbers m and n we have m + n is a natural number.

Proof: Induction on n. \square

Proposition 8.4.7. For any natural numbers m and n we have $m \cdot n^+ = mn + m$.

Proof:

 $\langle 1 \rangle 1$. PICK sets A and B of cardinality m and n respectively.

 $\langle 1 \rangle 2$. Pick $e \notin B$

$$(1)3. \ A \times (B \cup \{e\}) = (A \times B) \cup (A \times \{e\})$$

Corollary 8.4.7.1. For any natural numbers m and n, we have mn is a natural number.

Corollary 8.4.7.2. If A and B are finite sets then $A \times B$ is finite.

Proposition 8.4.8. The union of a finite set of finite sets is finite.

Proof: By induction on the number of elements. \Box

Proposition 8.4.9. $\mathbb{N}^2 \approx \mathbb{N}$

PROOF: The function $J: \mathbb{N}^2 \to \mathbb{N}$ defined by $J(m,n) = ((m+n)^2 + 3m + n)/2$ is a bijection. \square

Corollary 8.4.9.1. For any natural numbers m and n, we have m^n is a natural number.

PROOF: By induction on n since $m^0 = 1$ and $m^{n+1} = m^n m$. \square

Corollary 8.4.9.2. If A and B are finite sets then A^B are finite.

Definition 8.4.10. Let $\aleph_0 := |\mathbb{N}|$.

Proposition 8.4.11. For any infinite cardinal κ we have $\aleph_0 \leq \kappa$.

Proof:

 $\langle 1 \rangle 1$. Let: A be an infinite set.

Prove: $\mathbb{N} \preceq A$

 $\langle 1 \rangle 2$. PICK a choice function F for A.

 $\langle 1 \rangle 3$. Define $h : \mathbb{N} \to \{ X \in \mathcal{P}A \mid X \text{ is finite} \}$ by $h(0) = \emptyset$

$$h(n+1) = h(n) \cup \{F(A - \{h(m) \mid m < n\})\}\$$

 $\langle 1 \rangle 4$. Define $g : \mathbb{N} \to A$ by $g(n) = F(A - \{h(m) \mid m < n\})$

 $\langle 1 \rangle 5$. q is injective.

PROOF: If m < n then $g(m) \neq g(n)$.

L

8.5 Countable Sets

Definition 8.5.1 (Countable). A set A is countable iff $|A| \leq \aleph_0$.

Theorem 8.5.2. The union of a countable set of countable sets is countable.

Proof: Proposition 7.2.11. \square

8.6 Arithmetic

Definition 8.6.1 (Even). A natural number n is *even* iff there exists $m \in \mathbb{N}$ such that n = 2m.

Definition 8.6.2 (Odd). A natural number n is odd iff there exists $p \in \mathbb{N}$ such that n = 2p + 1.

Proposition 8.6.3 (Division Algorithm). Let m be a natural number and d a nonzero natural number. Then there exist natural numbers q and r such that m = dq + r and r < d.

Proof:

- $\langle 1 \rangle 1$. Let: d be a nonzero natural number.
- $\langle 1 \rangle 2$. $\exists q, r.0 = dq + r \land r < d$

PROOF: Take q = r = 0.

- $\langle 1 \rangle 3$. For any natural number m, if $\exists q, r.m = dq + r \land r < d$ then $\exists q, r.m^+ = dq + r \land r < d$
 - $\langle 2 \rangle 1$. Let: m be a natural number.
 - $\langle 2 \rangle 2$. Assume: m = dq + r and r < d
 - $\langle 2 \rangle 3. \ r^+ \leq d$
 - $\langle 2 \rangle 4$. Case: $r^+ < d$

PROOF: In this case we have $m^+ = dq + r^+$.

 $\langle 2 \rangle 5$. Case: $r^+ = d$

PROOF: In this case we have $m^+ = dq^+ + 0$.

Proposition 8.6.4. Every natural number is either even or odd.

Proof:

 $\langle 1 \rangle 1$. 0 is even.

Proof: $0 = 2 \times 0$.

 $\langle 1 \rangle 2$. For any natural number n, if n is either even or odd then n^+ is either even or odd.

Proof:

- $\langle 2 \rangle 1$. Let: $n \in \mathbb{N}$
- $\langle 2 \rangle 2$. If n is even then n^+ is odd.

PROOF: If n = 2p then $n^+ = 2p + 1$.

 $\langle 2 \rangle 3$. If n is odd then n^+ is even.

PROOF: If n = 2p + 1 then $n^{+} = 2(p + 1)$.

8.6. ARITHMETIC

65

Proposition 8.6.5. No natural number is both even and odd.

Proof:

П

 $\langle 1 \rangle 1$. 0 is not odd.

PROOF: For any p we have $2p + 1 = (2p)^+ \neq 0$.

- $\langle 1 \rangle 2$. For any natural number n, if n is not both even and odd, then n^+ is not both even and odd.
 - $\langle 2 \rangle 1$. Let: n be a natural number.
 - $\langle 2 \rangle 2$. If n^+ is even then n is odd.
 - $\langle 3 \rangle 1$. Assume: n^+ is even.
 - $\langle 3 \rangle 2$. PICK p such that $n^+ = 2p$
 - $\langle 3 \rangle 3. \ p \neq 0$

PROOF: Since $n^+ \neq 0$.

 $\langle 3 \rangle 4$. Pick q such that $p = q^+$

PROOF: Theorem 8.1.5.

 $\langle 3 \rangle 5. \ n^+ = 2q + 2$

Proof: $\langle 3 \rangle 2$, $\langle 3 \rangle 4$.

 $\langle 3 \rangle 6. \ \ n = 2q + 1$

Proof: Proposition 8.1.7, $\langle 3 \rangle 5$

- $\langle 3 \rangle$ 7. *n* is odd.
- $\langle 2 \rangle 3$. If n^+ is odd then n is even.
 - $\langle 3 \rangle 1$. Assume: n^+ is odd.
 - $\langle 3 \rangle 2$. PICK p such that $n^+ = 2p + 1$
 - $\langle 3 \rangle 3$. n = 2p

Proof: Proposition 8.1.7, $\langle 3 \rangle 2$

 $\langle 3 \rangle 4$. *n* is even.

П

Proposition 8.6.6. For any natural numbers m and n, we have m < n if and only if there exists $p \in \mathbb{N}$ such that $n = m + p^+$.

Proof:

- $\langle 1 \rangle 1$. For any natural numbers m and p we have $m < m + p^+$.
 - $\langle 2 \rangle 1. \ \forall m.m < m + 0^+$

PROOF: Since $m \in m^+ = m + 0^+$.

- $\langle 2 \rangle 2$. For any natural number p, if $\forall m.m < m + p^+$ then $\forall m.m < m + p^{++}$ PROOF: If $m \in m + p^+$ then $m \in (m + p^+)^+ = m + p^{++}$.
- $\langle 1 \rangle 2$. For any natural numbers m and n, if m < n then there exists p such that $n = m + p^+.$
 - $\langle 2 \rangle 1. \ \forall m < 0. \exists p. 0 = m + p^+$

Proof: Vacuous.

- $\langle 2 \rangle 2$. For any natural number n, if $\forall m < n. \exists p. n = m + p^+$, then $\forall m < m > 0$ $n^+ . \exists p. n^+ = m + p^+.$
 - $\langle 3 \rangle 1$. Let: *n* be a natural number.
 - $\langle 3 \rangle 2$. Assume: $\forall m < n. \exists p. n = m + p^+$

```
⟨3⟩3. Let: m < n^+
⟨3⟩4. m < n or m = n
⟨3⟩5. Case: m < n
⟨4⟩1. Pick p such that n = m + p^+
⟨4⟩2. n^+ = m + p^{++}
⟨3⟩6. Case: m = n
Proof: Then n^+ = m + 0^+.
```

Theorem 8.6.7. For natural numbers m, n and p, if m+p=n+p then m=n.

Proof: By trichotomy. \square

Theorem 8.6.8. For natural numbers m, n and p, if m < n and $p \neq 0$ then mp < np.

Proof:

- $\langle 1 \rangle 1$. Let: m and n be natural numbers.
- $\langle 1 \rangle 2$. Assume: m < nProve: $\forall p.mp^+ < np^+$

 $\langle 1 \rangle 3. \ m0^+ < n0^+$

PROOF: Proposition ??.

 $\langle 1 \rangle 4$. For any natural number p, if mp < np then $mp^+ < np^+$

Proof:

$$mp^+ = mp + m$$

 $< np + m$ (induction hypothesis. Theorem ??)
 $< np + n$ ($\langle 1 \rangle 2$, Theorem ??)
 $= np^+$

Corollary 8.6.8.1. For natural numbers m, n and p, if $p \neq 0$ then m < n if and only if mp < np.

Proof: Proposition 5.2.6. \square

Corollary 8.6.8.2. For natural numbers m, n and p, if mp = np and $p \neq 0$ then m = n.

Proof: By trichotomy. \square

Proposition 8.6.9. Let m, n, p, q be natural numbers. Assume m+n=p+q. Then m < p if and only if q < n.

Proof:

 $\langle 1 \rangle 1$. If m < p then q < n.

PROOF: If m < p and $n \le q$ then m + n .

 $\langle 1 \rangle 2$. If q < n then m < p.

PROOF: Similar.

Proposition 8.6.10. Let m, n, p and q be natural numbers. Assume n < m and q < p. Then

$$mq + np < mp + nq$$
 .

Proof:

 $\langle 1 \rangle 1$. Pick positive natural numbers a and b such that m=n+a and p=q+b.

 $\langle 1 \rangle 2$. mp + nq > mq + np

Proof:

$$mp + nq = (n+a)(q+b) + nq$$

$$= 2nq + nb + aq + ab$$

$$mq + np = (n+a)q + n(q+b)$$

$$= 2nq + aq + nb$$

$$\therefore mp + nq = mq + np + ab$$

$$> mq + np$$

8.7 Sequences

Definition 8.7.1 (Sequence). Let A be a set. A *finite sequence* in A is a function $a:n\to A$ for some natural number n; we write it as $(a(0),a(1),\ldots,a(n-1))$. An *(infinite) sequence* in A is a function $\mathbb{N}\to A$.

We write A^* for the set of all finite sequences in A.

Proposition 8.7.2. If A is countable then A^* is countable.

PROOF: For any n, the set A^n is countable, and A^* is equinumerous with $\bigcup_n A^n$.

Chapter 9

Group Theory

9.1 Groups

Definition 9.1.1 (Group). A group G consists of a set G and a function $\cdot: G^2 \to G$ such that:

- $1. \cdot is associative$
- 2. There exists $e \in G$ such that $\forall x \in G.xe = x$ and $\forall x \in G.\exists y \in G.xy = e$.

Proposition 9.1.2. The inverse of an element in a group is unique.

Proof:

 $\langle 1 \rangle 1$. Assume: b and b' are inverses of a.

 $\langle 1 \rangle 2. \ b = b'$

Proof:

$$b = be$$

$$= bab'$$

$$= eb'$$

$$= b'$$

Definition 9.1.3. We write x^{-1} for the inverse of x.

Proposition 9.1.4. In any group, if ab = ac then b = c.

Proof:

$$b = eb$$

$$= a^{-1}ab$$

$$= a^{-1}ac$$

$$= ec$$

$$= c$$

9.2 Abelian Groups

Definition 9.2.1 (Abelian group). An *Abelian group* is a group whose multiplication is commutative.

We may say we are writing an Abelian group *additively*, meaning we write a + b for ab, 0 for e and -a for a^{-1} . In this case we write a - b for ab^{-1} .

Chapter 10

Ring Theory

10.1 Rings

Definition 10.1.1 (Commutative Ring). A *commutative ring* consists of a set R and two binary operations +, \cdot on R such that:

- D is an Abelian group under +. Let us write 0 for its identity element.
- \bullet · is commutative and associative, and distributes over +.
- \bullet · has an identity element 1 that is different from 0.

Proposition 10.1.2. In any commutative ring, 0x = 0.

Proof:

$$(0+0)x = 0x$$

$$\therefore 0x + 0x = 0x + 0$$

$$\therefore 0x = 0$$
 (Proposition 9.1.4)

Proposition 10.1.3. In any commutative ring, (-a)b = -(ab).

Proof:

$$ab + (-a)b = (a + (-a))b$$

= $0b$
= 0 (Proposition 10.1.2) \square

10.2 Ordered Rings

Definition 10.2.1 (Ordered Commutative Ring). An ordered commutative ring consists of a commutative ring R with a linear order < on R such that:

• for all $x, y, z \in R$, we have x < y if and only if x + z < y + z.

• for all $x, y, z \in R$, if 0 < z then we have x < y if and only if xz < yz.

Proposition 10.2.2. In any ordered commutative ring, 0 < 1.

PROOF: If 1 < 0 then we have 0 < -1 and so 0 < (-1)(-1) = 1, which is a contradiction. \square

Proposition 10.2.3. The ordering on an ordered commutative ring is dense; that is, if x < y then there exists z such that x < z < y.

PROOF: Take z = (x + y)/2. \square

10.3 Integral Domains

Definition 10.3.1 (Integral Domain). An *integral domain* is a commutative ring such that, for all $a, b \in D$, if ab = 0 then a = 0 or b = 0.

Proposition 10.3.2. In any integral domain, if ab = ac and $a \neq 0$ then b = c.

PROOF: We have a(b-c)=0 and $a\neq 0$ so b-c=0 hence b=c. \square

Definition 10.3.3 (Ordered Integral Domain). An *ordered integral domain* is an ordered commutative ring that is an integral domain.

Chapter 11

Field Theory

11.1 Fields

Definition 11.1.1 (Field). A *field* F is a commutative ring such that $0 \neq 1$ and, for all $x \in F$, if $x \neq 0$ then there exists $y \in F$ such that xy = 1.

Proposition 11.1.2. Every field is an integral domain.

PROOF: If ab = 0 and $a \neq 0$ then $b = a^{-1}ab = 0$. \square

Proposition 11.1.3. In any field F, we have $F - \{0\}$ is an Abelian group under multiplication.

PROOF: Immediate from the definition. \Box

Definition 11.1.4 (Field of Fractions). Let D be an integral domain. The *field* of fractions of D is the quotient set $F = (D \times (D - \{0\})) / \sim$ where

$$(a,b) \sim (c,d) \Leftrightarrow ad = bc$$

under

$$[(a,b)] + [(c,d)] = [(ad+bc,bd)]$$
$$[(a,b)][(c,d)] = [(ac,bd)]$$

We prove this is a field.

Proof:

 $\langle 1 \rangle 1$. \sim is an equivalence relation on $D \times (D - \{0\})$. PROOF:

 $\langle 2 \rangle 1$. \sim is reflexive.

PROOF: We always have ab = ba.

 $\langle 2 \rangle 2$. \sim is symmetric.

PROOF: If ad = bc then cb = da.

```
\langle 2 \rangle 3. \sim is transitive.
     \langle 3 \rangle 1. Assume: (a,b) \sim (c,d) \sim (e,f)
     \langle 3 \rangle 2. ad = bc and cf = de
     \langle 3 \rangle 3. adf = bde
        PROOF: adf = bcf = bde
     \langle 3 \rangle 4. af = be
        Proof: Proposition 10.3.2.
\langle 1 \rangle 2. Addition is well-defined.
  Proof:
  \langle 2 \rangle 1. If b \neq 0 and d \neq 0 then bd \neq 0.
     PROOF: Since D is an integral domain.
  \langle 2 \rangle 2. If ab' = a'b and cd' = c'd then (ad + bc)b'd' = (a'd' + b'c')bd.
     Proof:
                                 (ad + bc)b'd' = ab'dd' + bb'cd'
                                                 = a'bdd' + bb'c'd
                                                 = (a'd' + b'c')bd
\langle 1 \rangle 3. Multiplication is well-defined.
  Proof:
  \langle 2 \rangle 1. If b \neq 0 and d \neq 0 then bd \neq 0.
     PROOF: Since D is an integral domain.
  (2)2. If [(a,b)] = [(a',b')] and [(c,d)] = [(c',d')] then [(ac,bd)] = [(a'c',b'd')].
     PROOF: If ab' = a'b and cd' = c'd then acb'd' = a'c'bd.
\langle 1 \rangle 4. Addition is commutative.
  PROOF: [(a,b)] + [(c,d)] = [(ad+bc,bd)] = [(cb+da,db)] = [(c,d)] + [(a,b)] \sqcup
\langle 1 \rangle5. Addition is associative.
  Proof:
          [(a,b)] + ([(c,d)] + [(e,f)]) = [(a,b)] + [(cf + de, df)]
                                            = [(adf + bcf + bde, bdf)]
                                            = [(ad + bc, bd)] + [(e, f)]
                                            = ([(a,b)] + [(c,d)]) + [(e,f)]
                                                                                       \langle 1 \rangle 6. For any x \in F we have x + [(0,1)] = x
  PROOF: [(a,b)] + [(0,1)] = [(a \cdot 1 + b \cdot 0, b \cdot 1)] = [(a,b)] \sqcup
\langle 1 \rangle 7. For any x \in F, there exists y \in F such that x + y = [(0,1)].
  PROOF: [(a,b)] + [(-a,b)] = [(ab-ab,b^2)] = [(0,b^2)] = [(0,1)]
\langle 1 \rangle 8. Multiplication is commutative.
  PROOF: [(a,b)][(c,d)] = [(c,d)][(a,b)] = [(ac,bd)].
\langle 1 \rangle 9. Multiplication is assocative.
  PROOF: [(a,b)]([(c,d)][(e,f)]) = ([(a,b)][(c,d)])[(e,f)] = [(ace,bdf)].
\langle 1 \rangle 10. For any x \in F we have x[(1,1)] = x
  PROOF: [(a,b)][(1,1)] = [(a,b)]
\langle 1 \rangle 11. For any non-zero x \in F, there exists y \in F such that xy = [(1,1)].
```

11.1. FIELDS 75

```
Proof:
```

```
 \begin{array}{l} \langle 2 \rangle 1. \ \ \text{Let:} \ [(a,b)] \in \mathbb{Q} \\ \langle 2 \rangle 2. \ \ \text{Assume:} \ [(a,b)] \neq [(0,1)] \\ \langle 2 \rangle 3. \ \ a \neq 0 \\ \langle 2 \rangle 4. \ \ [(a,b)][(b,a)] = [(1,1)] \\ \square \\ \end{array}
```

Definition 11.1.5. For any field F, let N(F) be the intersection of all the subsets $S \subseteq F$ such that $1 \in S$ and $\forall x \in S.x + 1 \in S$.

Definition 11.1.6 (Characteristic Zero). A field F has *characteristic* 0 iff $0 \notin N(F)$.

Proposition 11.1.7. In a field F with characteristic 0, the function $n : \mathbb{N} \to N(F)$ defined by

$$n(0) = 1$$
$$n(x+1) = n(x) + 1$$

is a bijection.

Proof:

 $\langle 1 \rangle 1$. *n* is injective.

 $\langle 2 \rangle 1$. Assume: for a contradiction n(i) = n(j) with $i \neq j$

 $\langle 2 \rangle 2$. Assume: w.l.o.g. i < j

 $\langle 2 \rangle 3$. n(j-i)=0

 $\langle 2 \rangle 4$. Q.E.D.

PROOF: This contradicts the fact that F has characteristic 0.

 $\langle 1 \rangle 2$. *n* is surjective.

PROOF: Since ran n is a subset of F that includes 1 and is closed under +1.

Definition 11.1.8. In any field F, let

$$I(F) = N(F) \cup \{0\} \cup \{-x \mid x \in N(F)\}\$$

Definition 11.1.9. In any field F, let

$$Q(F) = \{x/y \mid x, y \in I(F), y \neq 0\}$$

Proposition 11.1.10. Q(F) is the smallest subfield of F.

PROOF: Q(F) is closed under + and \cdot , and any subset of F closed under + and \cdot that contains 0 and 1 must include Q(F). \square

Theorem 11.1.11. Let F and G be fields of characteristic 0. Then there exists a unique field isomorphism between Q(F) and Q(G).

- $\langle 1 \rangle 1$. Let: $\phi: N(F) \to N(G)$ be the unique function such that $\phi(1) = 1$ and $\forall x \in N(F). \phi(x+1) = \phi(x) + 1$.
- $\langle 1 \rangle 2$. ϕ is a bijection.

Proof: Similar to Proposition 11.1.7.

 $\langle 1 \rangle 3. \ \forall x, y \in N(F).\phi(x+y) = \phi(x) + \phi(y)$

PROOF: Induction on y.

 $\langle 1 \rangle 4. \ \forall x, y \in N(F). \phi(xy) = \phi(x)\phi(y)$

PROOF: Induction on y.

- $\langle 1 \rangle$ 5. Extend ϕ to a bijection $I(F) \cong I(G)$ such that $\forall x, y \in I(F).\phi(x+y) = \phi(x) + \phi(y)$ and $\forall x, y \in I(F).\phi(xy) = \phi(x)\phi(y)$
 - $\langle 2 \rangle 1$. Define $\phi(0) = 0$ and $\phi(-x) = -\phi(x)$ for $x \in N(F)$
 - $\langle 3 \rangle 1. \ 0 \notin N(F)$
 - $\langle 3 \rangle 2$. For all $x \in N(F)$ we have $-x \notin N(F)$

PROOF: Then we would have $x + -x = 0 \in N(F)$.

- $\langle 3 \rangle 3$. For all $x \in N(F)$ we have $-x \neq 0$
- $\langle 2 \rangle 2$. For all $x, y \in I(F)$ we have $\phi(x+y) = \phi(x) + \phi(y)$

PROOF: Case analysis on x and y.

 $\langle 2 \rangle 3$. For all $x, y \in I(F)$ we have $\phi(xy) = \phi(x)\phi(y)$

PROOF: Case analysis on x and y.

- (1)6. Extend ϕ to a bijection $Q(F) \cong Q(G)$ such that $\forall x, y \in Q(F).\phi(x+y) = \phi(x) + \phi(y)$ and $\forall x, y \in Q(F).\phi(xy) = \phi(x)\phi(y)$
 - $\langle 2 \rangle 1$. Define $\phi(x/y) = \phi(x)/\phi(y)$
- $\langle 1 \rangle 7$. ϕ is unique.
 - $\langle 2 \rangle 1$. Let: θ satisfy the theorem.
 - $\langle 2 \rangle 2$. For all $x \in N(F)$ we have $\theta(x) = \phi(x)$
 - $\langle 2 \rangle 3$. For all $x \in I(F)$ we have $\theta(x) = \phi(x)$
 - $\langle 2 \rangle 4$. For all $x \in Q(F)$ we have $\theta(x) = \phi(x)$

11.2 Ordered Fields

Definition 11.2.1 (Ordered Field). An *ordered field* is an ordered commutative ring that is a field.

Proposition 11.2.2. Every ordered field F has characteristic θ .

PROOF: We have 0 < n for all $n \in N(F)$. \square

Proposition 11.2.3. Let F be a field of characteristic 0. Then there exists a unique relation < on Q(F) that makes Q(F) into an ordered field.

Proof: Easy. \square

Corollary 11.2.3.1. Let F and G be ordered fields. Let ϕ be the unique field isomorphism between Q(F) and Q(G). Then ϕ is an ordered field isomorphism.

Definition 11.2.4 (Archimedean). An ordered field F is Archimedean iff

$$\forall x \in F. \exists n \in N(F). n > x .$$

Proposition 11.2.5. Let F be an Archimedean ordered field. Let $x, y \in F$ with x > 0. Then there exists $n \in N(F)$ such that nx > y.

PROOF: Pick n > y/x. \square

Proposition 11.2.6. Let F be an Archimedean ordered field. For all $x, y \in F$, if x < y, then there exists $r \in Q(F)$ such that x < r < y.

Proof:

- $\langle 1 \rangle 1$. Case: x > 0
 - $\langle 2 \rangle 1$. PICK $n \in N(F)$ such that n(y-x) > 1

Proof: Proposition 11.2.5.

- $\langle 2 \rangle 2$. ny > 1 + nx
- $\langle 2 \rangle$ 3. Let: m be the least element of N(F) such that m > nx.
- $\langle 2 \rangle 4$. $m-1 \leq nx$
- $\langle 2 \rangle 5$. nx < m < ny
- $\langle 2 \rangle 6$. x < m/n < y
- $\langle 1 \rangle 2$. Case: $x \leq 0$
 - $\langle 2 \rangle 1$. PICK $k \in N(F)$ such that k > -x
 - $\langle 2 \rangle 2$. 0 < x + k < y + k
 - $\langle 2 \rangle$ 3. Pick $r \in Q(F)$ such that x + k < r < y + k

Proof: $\langle 1 \rangle 1$

 $\langle 2 \rangle 4$. x < r - k < y

Definition 11.2.7 (Complete). An ordered field F is *complete* iff every nonempty subset of F bounded above has a least upper bound.

Proposition 11.2.8. Every complete ordered field is Archimedean.

Proof:

- $\langle 1 \rangle 1$. Let: F be a complete ordered field.
- $\langle 1 \rangle 2$. Let: $x \in F$
- $\langle 1 \rangle 3$. Assume: for a contradiction there is no member of N(F) greater than x.
- $\langle 1 \rangle 4$. x is an upper bound for N(F).
- $\langle 1 \rangle 5$. Let: $y = \sup N(F)$
- $\langle 1 \rangle 6$. Pick $n \in N(F)$ such that y 1 < n
- $\langle 1 \rangle 7$. y < n+1
- $\langle 1 \rangle 8$. Q.E.D.

Proof: This is a contradiction.

Proposition 11.2.9. Let F be a complete ordered field and $a \in F$ be nonnegative. Then there exists $b \in F$ such that $b^2 = a$.

- $\langle 1 \rangle 1$. Let: $B = \{ x \in F \mid 0 \le x \le 1 + a \}$
- $\langle 1 \rangle 2$. Let: $\phi : B \to B$ be the function

$$\phi(x) = x + \frac{1}{2(1+a)}(a-x^2) .$$

- $\langle 1 \rangle 3$. ϕ is strictly monotone.
 - $\langle 2 \rangle$ 1. Let: $0 \le x < y \le 1 + a$ $\langle 2 \rangle$ 2. $1 \frac{x+y}{2(1+a)} > 0$

 - $\langle 2 \rangle 3. \ \phi(y) \phi(x) = (y x)(1 \frac{x+y}{2(1+a)}) > 0$
 - $\langle 2 \rangle 4. \ \phi(x) < \phi(y)$
- $\langle 1 \rangle 4$. Pick $b \in B$ such that $\phi(b) = b$.

PROOF: Knaster Fixed-Point Theorem.

$$\langle 1 \rangle 5. \ b^2 = a$$

Theorem 11.2.10 (Uniqueness of the Complete Ordered Field). If F and G are complete ordered fields, then there exists a unique bijection $\phi: F \cong G$ such that, for all $x, y \in F$,

$$\phi(x+y) = \phi(x) + \phi(y)$$
$$\phi(xy) = \phi(x)\phi(y)$$

This bijection also satisfies: for all $x, y \in F$,

$$x < y \Leftrightarrow \phi(x) < \phi(y)$$
.

Proof:

 $\langle 1 \rangle 1$. Pick a bijection $\phi: Q(F) \cong Q(G)$ such that, for all $x, y \in Q(F)$, $\phi(x+y) = \phi(x) + \phi(y)$

$$\phi(xy) = \phi(x)\phi(y)$$
$$x < y \Leftrightarrow \phi(x) < \phi(y)$$

Proof: Corollary 11.2.3.1.

 $\langle 1 \rangle 2$. Q(F) intersects every interval in F.

Proof: Proposition 11.2.6.

 $\langle 1 \rangle 3$. Q(G) intersects every interval in G.

Proof: Proposition 11.2.6.

 $\langle 1 \rangle 4$. PICK an order isomorphism $\psi : F \cong G$ that extends ϕ .

PROOF: Theorem 5.1.23.

- $\langle 1 \rangle 5. \ \forall x, y \in F. \psi(x+y) = \psi(x) + \psi(y)$
 - $\langle 2 \rangle 1$. Let: $x, y \in F$
 - $\langle 2 \rangle 2$. $\psi(x) + \psi(y) \not< \psi(x+y)$
 - $\langle 3 \rangle 1$. Assume: for a contradiction $\psi(x) + \psi(y) < \psi(x+y)$
 - $\langle 3 \rangle 2$. Pick $r' \in Q(G)$ such that $\psi(x) < r' < \psi(x+y) \psi(y)$
 - $\langle 3 \rangle 3$. Pick $s' \in Q(G)$ such that $\psi(y) < s' < \psi(x+y) r'$
 - $\langle 3 \rangle 4. \ r' + s' < \psi(x+y)$
 - $\langle 3 \rangle 5$. Pick $r, s \in Q(F)$ such that $\phi(r) = r'$ and $\phi(s) = s'$
 - $\langle 3 \rangle 6. \ \phi(r+s) = r' + s'$
 - $\langle 3 \rangle 7. \ \psi(x) < \psi(r)$
 - $\langle 3 \rangle 8. \ \psi(y) < \psi(s)$
 - $\langle 3 \rangle 9. \ \psi(x+y) > \psi(r+s)$
 - $\langle 3 \rangle 10. \ x < r$

```
\langle 3 \rangle 11. \ y < s
       \langle 3 \rangle 12. x + y > r + s
       \langle 3 \rangle 13. Q.E.D.
           PROOF: This is a contradiction.
   \langle 2 \rangle 3. \ \psi(x+y) \not< \psi(x) + \psi(y)
       Proof: Similar.
\langle 1 \rangle 6. \ \forall x, y \in F. \psi(xy) = \psi(x) \psi(y)
    \langle 2 \rangle 1. Let: x, y \in F
   \langle 2 \rangle 2. Case: x and y are positive.
       \langle 3 \rangle 1. \ \psi(x)\psi(y) \not< \psi(xy)
           \langle 4 \rangle1. Assume: for a contradiction \psi(x)\psi(y) < \psi(xy)
           \langle 4 \rangle 2. PICK r' \in Q(G) such that \psi(x) < r' < \psi(xy)/\psi(y)
           \langle 4 \rangle 3. Pick s' \in Q(G) such that \psi(y) < s' < \psi(xy)/r'
           \langle 4 \rangle 4. r's' < \psi(xy)
           \langle 4 \rangle5. PICK r, s \in Q(F) such that \phi(r) = r' and \phi(s) = s'
           \langle 4 \rangle 6. \ \phi(rs) = r's'
           \langle 4 \rangle 7. x < r, y < s \text{ and } rs < xy
           \langle 4 \rangle 8. Q.E.D.
              PROOF: This is a contradiction.
       \langle 3 \rangle 2. \ \psi(xy) \not< \psi(x)\psi(y)
           PROOF: Similar.
   \langle 2 \rangle 3. Case: x and y are not both positive.
       PROOF: Follows from \langle 2 \rangle 2 since \psi(-x) = -\psi(x) by \langle 1 \rangle 5.
\langle 1 \rangle 7. For any field isomorphism \theta : F \cong G, we have \theta = \psi.
   \langle 2 \rangle 1. \ \theta \upharpoonright Q(F) = \phi
       PROOF: Theorem 11.1.11.
   \langle 2 \rangle 2. \theta is strictly monotone.
       \langle 3 \rangle 1. Let: x, y \in F with x < y
       \langle 3 \rangle 2. y - x > 0
       \langle 3 \rangle 3. Pick z \in F such that z^2 = y - x
       \langle 3 \rangle 4. \theta(z)^2 = \theta(y) - \theta(x)
       \langle 3 \rangle 5. \theta(y) - \theta(x) > 0
       \langle 3 \rangle 6. \ \theta(x) < \theta(y)
   \langle 2 \rangle 3. \ \theta = \psi
       PROOF: By the uniqueness of \psi.
```

Chapter 12

Number Systems

12.1 The Integers

Definition 12.1.1. The set of integers \mathbb{Z} is the quotient set \mathbb{N}^2/\sim , where $(m,n)\sim(p,q)$ iff m+q=n+p.

We prove \sim is an equivalence relation on \mathbb{N}^2 .

```
Proof:
```

 $\langle 1 \rangle 1$. \sim is reflexive.

PROOF: For all $m, n \in \mathbb{N}$ we have m + n = n + m.

 $\langle 1 \rangle 2$. \sim is symmetric.

PROOF: If m + q = n + p then p + n = q + m.

 $\langle 1 \rangle 3$. \sim is transitive.

- $\langle 2 \rangle 1$. Assume: $(m,n) \sim (p,q) \sim (r,s)$
- $\langle 2 \rangle 2$. m+q=n+p and p+s=q+r
- $\langle 2 \rangle 3$. m+q+s=n+q+r
- $\langle 2 \rangle 4$. m+s=n+r

Proof: Corollary ??.

Definition 12.1.2 (Addition). Define $addition + \text{ on } \mathbb{Z}$ by [(m,n)] + [(p,q)] = [(m+p,n+q)].

We prove this is well-defined.

PROOF: If m+n'=n+m' and p+q'=q+p' then m+p+n'+q'=n+q+m'+p'.

Proposition 12.1.3. Addition on \mathbb{Z} is commutative.

Proof:
$$[(m,n)] + [(p,q)] = [(m+p,n+q)] = [(p+m,q+n)] = [(p,q)] + [(m,n)]$$
.

Proposition 12.1.4. Addition on \mathbb{Z} is associative.

PROOF: [(m,n)] + ([(p,q)] + [(r,s)]) = [(m+p+r,n+q+s)] = ([(m,n)] + [(p,q)]) + [(r,s)].

Proposition 12.1.5. Given natural numbers m and n, we have [(m,0)] = [(n,0)] iff m = n.

PROOF: Immediate from definitions.

Definition 12.1.6. We identify any natural number n with the integer [(n,0)].

Proposition 12.1.7. Addition on integers agrees with addition on natural numbers.

PROOF: Since [(m,0)] + [(n,0)] = [(m+n,0)].

Proposition 12.1.8. For all $a \in \mathbb{Z}$ we have a + 0 = a.

PROOF: [(m, n)] + [(0, 0)] = [(m + 0, n + 0)] = [(m, n)].

Proposition 12.1.9. For all $a \in \mathbb{Z}$, there exists $b \in \mathbb{Z}$ such that a + b = 0.

PROOF: [(m,n)] + [(n,m)] = [(m+n,m+n)] = [(0,0)]

Proposition 12.1.10. The integers form an Abelian group under addition.

PROOF: Proposition 12.1.3, 12.1.4, 12.1.8, 12.1.9.

Definition 12.1.11. Define multiplication \cdot on \mathbb{Z} by: [(m,n)][(p,q)] = [(mp + nq, mq + np)].

We prove this is well defined.

Proof:

- $\langle 1 \rangle 1.$ Assume: m+n'=n+m' and p+q'=q+p' Prove: mp+nq+m'q'+n'p'=mq+np+m'p'+n'q'
- $\langle 1 \rangle 2$. mp + n'p = np + m'p
- $\langle 1 \rangle 3$. nq + m'q = mq + n'q
- $\langle 1 \rangle 4$. m'p + m'q' = m'q + m'p'
- $\langle 1 \rangle 5. \ n'q + n'p' = n'p + n'q'$
- (1)6. mp + n'p + nq + m'q + m'p + m'q' + n'q + n'p' = np + m'p + mq + n'q + m'q + m'p' + n'p + n'q'
- $\langle 1 \rangle$ 7. mp + nq + m'q' + n'p' = mq + np + m'p' + n'q'PROOF: Corollary ??.

П

Proposition 12.1.12. Multiplication on integers agrees with multiplication on natural numbers.

PROOF: Since [(m,0)][(n,0)] = [(mn+0,m0+n0)] = [(mn,0)].

Proposition 12.1.13. *Multiplication on* \mathbb{Z} *is commutative.*

Proof: [(m,n)][(p,q)] = [(mp+nq,mq+np)] = [(pm+qn,pn+qm)] = [(p,q)][(m,n)].

Proposition 12.1.14. *Multiplication on* \mathbb{Z} *is associative.*

Proof:

$$\begin{split} [(m,n)]([(p,q)][(r,s)]) &= [(m,n)][(pr+qs,ps+qr)] \\ &= [(mpr+mqs+nps+nqr,mps+mqr+npr+nqs)] \\ &= [(mp+nq,mq+np)][(r,s)] \\ &= ([(m,n)][(p,q)])[(r,s)] \end{split}$$

Proposition 12.1.15. Multiplication distributes over addition.

Proof:

$$\begin{split} [(m,n)]([(p,q)]+[(r,s)]) &= [(m,n)][(p+r,q+s)] \\ &= [(mp+mr+nq+ns,np+nr+mq+ms)] \\ [(m,n)][(p,q)]+[(m,n)][(r,s)] &= [(mp+nq,mq+np)]+[(mr+ns,ms+nr)] \\ &= [(mp+nq+mr+ns,mq+np+ms+nr)] \end{split}$$

Proposition 12.1.16. For any integer a we have a1 = a.

PROOF: Since
$$[(m,n)][(1,0)] = [(m1+n0,m0+n1)] = [(m,n)]$$
.

Proposition 12.1.17. For any integers a and b, if ab = 0 then a = 0 or b = 0.

Proof:

```
\langle 1 \rangle 1. Assume: [(m,n)][(p,q)] = [(0,0)]
\langle 1 \rangle 2. mp + nq = mq + np
\langle 1 \rangle 3. Assume: [(m,n)] \neq [(0,0)]
\langle 1 \rangle 4. m \neq n
```

1)4. $m \neq n$

PROVE: p = q $\langle 1 \rangle 5$. Case: m < n

 $\langle 2 \rangle 1. \ p \not< q$

PROOF: If p < q then mq + np < mp + nq by Proposition 8.6.10.

 $\langle 2 \rangle 2$. $q \not< p$

PROOF: If q < p then mp + nq < mq + np by Proposition 8.6.10.

 $\langle 2 \rangle 3. \ p = q$

PROOF: By trichotomy.

 $\langle 1 \rangle 6$. Case: n < m

Proof: Similar.

Proposition 12.1.18. The integers \mathbb{Z} form an integral domain.

PROOF: Propositions 12.1.13, 12.1.14, 12.1.15, 12.1.16, 12.1.17, 12.1.10.

Definition 12.1.19. Define < on \mathbb{Z} by [(m,n)] < [(p,q)] if and only if m+q < n+p.

We prove this is well-defined.

(Theorem ??)

$$\begin{array}{ll} \langle 1 \rangle 1. & \text{Assume: } m+n'=n+m' \text{ and } p+q'=q+p'. \\ & \text{Prove: } m+q < n+p \text{ if and only if } m'+q' < n'+p' \\ \langle 1 \rangle 2. & m+q < n+p \text{ if and only if } m'+q' < n'+p' \\ & \text{Proof: } \\ & m+q < n+p \Leftrightarrow m+n'+q < n+n'+p \\ & \Leftrightarrow m'+n+q < n+n'+p \\ & \Leftrightarrow m'+q+p' < n'+p \end{array} \qquad \begin{array}{l} \text{(Theorem ??)} \\ \Leftrightarrow m'+q+p' < n'+p+p' \\ & \Leftrightarrow m'+q+p' < n'+p+p' \end{array}$$

 $\Leftrightarrow m' + q' < n' + p'$

Proposition 12.1.20. The ordering on the integers agrees with the ordering on the natural numbers.

PROOF: We have [(m,0)] < [(n,0)] iff m < n. \square

Proposition 12.1.21. < is a linear order on \mathbb{Z} .

Proof:

 $\langle 1 \rangle 1$. < is irreflexive.

PROOF: We never have m + n < m + n.

- $\langle 1 \rangle 2$. < is transitive.
 - $\langle 2 \rangle 1$. Assume: [(m,n)] < [(p,q)] < [(r,s)]
 - $\langle 2 \rangle 2$. m+q < n+p and p+s < q+r
 - $\langle 2 \rangle 3$. m+q+s < n+q+r

PROOF: m + q + s < n + p + s < n + q + r

 $\langle 2 \rangle 4$. m+s < n+r

PROOF: Theorem ??.

 $\langle 1 \rangle 3.$ < is total.

PROOF: Given natural numbers m, n, p and q, either m+q < n+p, or m+q=n+p, or n+p < m+q.

Definition 12.1.22 (Positive). An integer a is positive iff a > 0.

Theorem 12.1.23. For any integers a, b and c, we have a < b if and only if a + c < b + c.

- $\langle 1 \rangle 1$. If a < b then a + c < b + c.
 - $\langle 2 \rangle 1$. Let: a = [(m, n)], b = [(p, q)] and c = [(r, s)].
 - $\langle 2 \rangle 2$. Assume: a < b
 - $\langle 2 \rangle 3. \ m+q < n+p$
 - $\langle 2 \rangle 4$. m + r + q + s < n + r + p + s
 - $\langle 2 \rangle 5. [(m+r, n+s)] < [(p+r, q+s)]$
 - $\langle 2 \rangle 6$. a+c < b+c

```
\langle 1 \rangle2. If a+c < b+c then a < b.
PROOF: From \langle 1 \rangle1 and Proposition 5.2.6.
```

Proposition 12.1.24. Let a, b and c be integers. If 0 < c, then a < b if and only if ac < bc.

```
PROOF: \langle 1 \rangle 1. Let: c = [(r, s)] \langle 1 \rangle 2. Assume: 0 < c \langle 1 \rangle 3. s < r \langle 1 \rangle 4. For all integers a and b, if a < b then ac < bc \langle 2 \rangle 1. Let: a = [(m, n)], b = [(p, q)]. \langle 2 \rangle 2. Assume: a < b \langle 2 \rangle 3. m + q < n + p \langle 2 \rangle 4. (m + q)r + (p + n)s < (m + q)s + (p + n)r Proof: Proposition 8.6.10, \langle 1 \rangle 3, \langle 2 \rangle 3. \langle 2 \rangle 5. mr + ns + ps + qr < ms + nr + pr + qs \langle 2 \rangle 6. [(mr + ns, ms + nr)] < [(pr + qs, ps + qr)] \langle 2 \rangle 7. ac < bc \langle 1 \rangle 5. For all integers a and b, if ac < bc then a < b Proof: From \langle 1 \rangle 4 and Proposition 5.2.6.
```

Proposition 12.1.25. Let a be a positive integer. For any integer b, there exists $k \in \mathbb{N}$ such that b < ak.

```
PROOF: \langle 1 \rangle 1. Case: b \leq 0
PROOF: Take k = 1. \langle 1 \rangle 2. Case: b > 0
```

PROOF: Take k = b + 1.

12.2 The Rationals

Definition 12.2.1 (Rational Numbers). The set \mathbb{Q} of rational numbers is the field of fractions over the integers.

Proposition 12.2.2. For any integers a and b, we have [(a,1)] = [(b,1)] iff a = b.

Proof: Immediate from definitions.

Henceforth we identify any integer a with the rational number [(a, 1)].

Proposition 12.2.3. Addition on the rationals agrees with addition on the integers.

PROOF:
$$[(a, 1)] + [(b, 1)] = [(a \cdot 1 + b \cdot 1, 1 \cdot 1)] = [(a + b, 1)].$$

Proposition 12.2.4. Multiplication on the rationals agrees with multiplication on the integers.

PROOF:
$$[(a, 1)][(b, 1)] = [(ab, 1)]$$

Definition 12.2.5. Define the ordering < on the rationals by: if b and d are positive, then [(a,b)] < [(c,d)] iff ad < bc.

We prove this is well-defined.

Proof:

 $\langle 1 \rangle 1$. For any rational q, there exist integers a, b with b positive such that q = [(a, b)].

PROOF: Since [(a,b)] = [(-a,-b)], and if $b \neq 0$ then one of b and -b is positive.

 $\langle 1 \rangle$ 2. If b, b', d and d' are positive, [(a,b)] = [(a',b')], and [(c,d)] = [(c',d')], then ad < bc iff a'd' < b'c'.

Proof:

- $\langle 2 \rangle 1$. If ad < bc then a'd' < b'c'.
 - $\langle 3 \rangle 1$. Assume: ad < bc
 - $\langle 3 \rangle 2$. ab'd < bb'c
 - $\langle 3 \rangle 3$. a'bd < bb'c
 - $\langle 3 \rangle 4$. a'd < b'c
 - $\langle 3 \rangle 5$. a'dd' < b'cd'
 - $\langle 3 \rangle 6$. a'dd' < b'c'd
 - $\langle 3 \rangle 7$. a'd' < b'c'
- $\langle 2 \rangle 2$. If a'd' < b'c' then ad < bc.

PROOF: Similar.

П

Proposition 12.2.6. The ordering on the rationals agrees with the ordering on the integers.

Proof: We have [(a,1)] < [(b,1)] if and only if a < b. \square

Proposition 12.2.7. The relation < is a linear ordering on \mathbb{Q} .

Proof:

 $\langle 1 \rangle 1$. < is irreflexive.

PROOF: We never have ab < ab.

- $\langle 1 \rangle 2$. < is transitive.
 - $\langle 2 \rangle 1$. Assume: [(a,b)] < [(c,d)] < [(e,f)] where b, d and f are positive.
 - $\langle 2 \rangle 2$. ad < bc and cf < de
 - $\langle 2 \rangle 3$. adf < bde

Proof: adf < bcf < bde

- $\langle 2 \rangle 4$. af < be
- $\langle 1 \rangle 3. < \text{is total.}$

PROOF: For any integers a, b, c, d, we have ad < bc or ad = bc or bc < ad.

Proposition 12.2.8. For any rationals r, s and t, we have r < s if and only if r + t < s + t.

Proof:

 $\langle 1 \rangle 1$. Let: a, b, c, d, e, f be integers with b, d and f positive.

 $\langle 1 \rangle 2$. [(a,b)] + [(e,f)] < [(c,d)] + [(e,f)] if and only if [(a,b)] < [(c,d)]. PROOF:

$$\begin{split} [(a,b)] + [(e,f)] < [(c,d)] + [(e,f)] &\Leftrightarrow [(af+be,bf)] < [(cf+de,df)] \\ &\Leftrightarrow (af+be)df < (cf+de)bf \\ &\Leftrightarrow afdf + bedf < cfbf + debf \\ &\Leftrightarrow afdf < cfbf \\ &\Leftrightarrow ad < bc \\ &\Leftrightarrow [(a,b)] < [(c,d)] \end{split}$$

Corollary 12.2.8.1. For any rational r, we have r < 0 if and only if 0 < -r.

Definition 12.2.9 (Absolute Value). For any rational r, the absolute value of r is defined by

$$|r| := \begin{cases} -r & \text{if } 0 < -r \\ r & \text{otherwise} \end{cases}$$

Proposition 12.2.10. For any rationals r, s and t, if t is positive then r < s iff rt < st.

Proof:

 $\langle 1 \rangle 1$. Let: r = [(a, b)], s = [(c, d)] and t = [(e, f)] where b, d and f are positive.

 $\langle 1 \rangle 2$. Assume: 0 < t

 $\langle 1 \rangle 3. \ e > 0$

 $\langle 1 \rangle 4$. rt < st iff r < s

Proof:

$$rt < st \Leftrightarrow [(ae, bf)] < [(ce, df)]$$

 $\Leftrightarrow aedf < cebf$
 $\Leftrightarrow ad < bc$
 $\Leftrightarrow r < s$

Corollary 12.2.10.1. The rationals form an ordered field.

Proposition 12.2.11. *Let* p *be a positive rational. For any rational number* r, *there exists* $k \in \mathbb{N}$ *such that* r < pk.

Proof:

 $\langle 1 \rangle 1$. Let: p = a/b and r = c/d where a, b and d are positive.

```
\langle 1 \rangle 2. PICK k \in \mathbb{N} such that bc < adk PROOF: Proposition 12.1.25. \langle 1 \rangle 3. r < pk
```

Proposition 12.2.12. $\mathbb{Q} \approx \mathbb{N}$

PROOF: Arrange the rationals in order 0/1, 1/1, 1/2, 0/2, -1/2, -1/1, -2/1, -2/2, -2/3, -1/3, 0/3, 1/3, 2/3, etc. then remove all duplicates. \Box

12.3 The Real Numbers

Definition 12.3.1 (Cauchy Sequence). A Cauchy sequence is a sequence (q_n) of rationals such that, for every positive rational ϵ , there exists $k \in \mathbb{N}$ such that $\forall m, n > k. |q_m - q_n| < \epsilon$.

Definition 12.3.2 (Dedekind Cut). A *Dedekind cut* is a set $x \subseteq \mathbb{Q}$ such that:

- 1. $\emptyset \neq x \neq \mathbb{Q}$
- 2. x is closed downwards.
- 3. x has no greatest member.

The set \mathbb{R} of *real numbers* is the set of Dedekind cuts.

Proposition 12.3.3. For any rational q, we have $\{r \in \mathbb{Q} \mid r < q\} \in \mathbb{R}$.

Proof:

- $\langle 1 \rangle 1$. Let: $q \in \mathbb{Q}$
- $\langle 1 \rangle 2$. Let: $q \downarrow = \{r \mid r < q\}$
- $\langle 1 \rangle 3. \ \ q \downarrow \neq \emptyset$

PROOF: We have $q - 1 \in q \downarrow$.

 $\langle 1 \rangle 4. \ \ q \downarrow \neq \mathbb{Q}$

PROOF: Since $q \notin q \downarrow$.

 $\langle 1 \rangle 5$. $q \downarrow$ is closed downwards.

PROOF: Trivial.

 $\langle 1 \rangle 6$. $q \downarrow$ has no greatest element.

PROOF: For all $r \in q \downarrow$ we have $r < (q+r)/2 \in q \downarrow$.

Proposition 12.3.4. For rationals q and r, we have q = r if and only if $\{s \in \mathbb{Q} \mid s < q\} = \{s \in \mathbb{Q} \mid s < r\}.$

Proof:

- $\langle 1 \rangle 1$. Let: $q \downarrow = \{ s \in \mathbb{Q} \mid s < q \}$
- $\langle 1 \rangle 2$. Let: $r \downarrow = \{ s \in \mathbb{Q} \mid s < r \}$
- $\langle 1 \rangle 3$. If q = r then $q \downarrow = r \downarrow$

PROOF: Trivial.

```
\begin{split} &\langle 1 \rangle 4. \text{ If } q < r \text{ then } q \downarrow \neq r \downarrow \\ &\text{PROOF: We have } q \in r \downarrow \text{ and } q \notin q \downarrow. \\ &\langle 1 \rangle 5. \text{ If } r < q \text{ then } q \downarrow \neq r \downarrow \\ &\text{PROOF: We have } r \in q \downarrow \text{ and } q \notin q \downarrow. \\ &\square \end{split} Henceforth we identify a rational q with the real number \{r \in \mathbb{Q} \mid r < q\}.
```

Definition 12.3.5. Define the ordering < on \mathbb{R} by: x < y iff $x \subseteq y$.

Proposition 12.3.6. The ordering on the reals agrees with the ordering on the rationals.

```
Proof:
\langle 1 \rangle 1. Let: q, r \in \mathbb{Q}
\langle 1 \rangle 2. Let: q \downarrow = \{ s \in \mathbb{Q} \mid s < q \}.
\langle 1 \rangle 3. Let: r \downarrow = \{ s \in \mathbb{Q} \mid s < r \}.
            Prove: q < r \text{ iff } q \downarrow \subsetneq r \downarrow
\langle 1 \rangle 4. If q < r then q \downarrow \subseteq r \downarrow
     \langle 2 \rangle 1. Assume: q < r
     \langle 2 \rangle 2. q \downarrow \subseteq r \downarrow
          Proof: If s < q then s < r.
     \langle 2 \rangle 3. \ \ q \downarrow \neq r \downarrow
          Proof: Proposition 12.3.4.
\langle 1 \rangle 5. If q \downarrow \subsetneq r \downarrow then q < r
     \langle 2 \rangle 1. Assume: q \downarrow \subsetneq r \downarrow
     \langle 2 \rangle 2. Pick s \in r \downarrow such that s \notin q \downarrow
     \langle 2 \rangle 3. \ q \leq s < r
```

Proposition 12.3.7. The ordering < is a linear ordering on \mathbb{R} .

```
Proof:
```

```
\langle 1 \rangle 1. < is irreflexive.
```

PROOF: No set is a proper subset of itself.

 $\langle 1 \rangle 2$. < is transitive.

PROOF: Since the relationship \subseteq is transitive on the class of all sets.

- $\langle 1 \rangle 3$. < is total.
 - $\langle 2 \rangle 1$. Let: x, y be Dedekind cuts.
 - $\langle 2 \rangle 2$. Assume: $x \nsubseteq y$ Prove: $y \subsetneq x$
 - $\langle 2 \rangle 3$. PICK $q \in x$ such that $q \notin y$
 - $\langle 2 \rangle 4$. Let: $r \in y$ Prove: $r \in x$
 - $\langle 2 \rangle 5. \ q \not\leq r$

PROOF: Since y is closed downwards.

- $\langle 2 \rangle 6. \ r < q$
- $\langle 2 \rangle 7. \ r \in x$

PROOF: Since x is closed downwards.

Proposition 12.3.8. Any bounded nonempty subset of \mathbb{R} has a least upper bound.

Proof:

- $\langle 1 \rangle 1$. Let: A be a bounded nonempty subset of \mathbb{R} .
- $\langle 1 \rangle 2$. $\bigcup A$ is a Dedekind cut.
 - $\langle 2 \rangle 1. \bigcup A \neq \emptyset$
 - $\langle 3 \rangle 1$. Pick $x \in A$
 - $\langle 3 \rangle 2$. Pick $q \in x$
 - $\langle 3 \rangle 3. \ q \in \bigcup A$
 - $\langle 2 \rangle 2$. $\bigcup A \neq \mathbb{Q}$
 - $\langle 3 \rangle 1$. Pick an upper bound u for A
 - $\langle 3 \rangle 2$. Pick $q \notin u$ Prove: $q \notin \bigcup A$
 - $\langle 3 \rangle 3$. Assume: for a contradiction $q \in \bigcup A$
 - $\langle 3 \rangle 4$. PICK $x \in A$ such that $q \in x$
 - $\langle 3 \rangle 5. \ x \leq u$
 - $\langle 3 \rangle 6. \ q \in u$
 - $\langle 3 \rangle$ 7. Q.E.D.

PROOF: This is a contradiction.

- $\langle 2 \rangle 3$. $\bigcup A$ is closed downwards.
 - $\langle 3 \rangle 1$. Let: $q \in \bigcup A$ and r < q
 - $\langle 3 \rangle 2$. PICK $x \in A$ such that $q \in x$
 - $\langle 3 \rangle 3. \ r \in x$
 - $\langle 3 \rangle 4. \ r \in \bigcup A$
- $\langle 2 \rangle 4$. $\bigcup A$ has no greatest element.
 - $\langle 3 \rangle 1$. Let: $q \in \bigcup A$
 - $\langle 3 \rangle 2$. PICK $x \in A$ such that $q \in x$
 - $\langle 3 \rangle 3$. Pick $r \in x$ such that q < r
 - $\langle 3 \rangle 4. \ r \in \bigcup A$
- $\langle 1 \rangle 3$. $\bigcup A$ is an upper bound for A.

PROOF: For all $x \in A$ we have $x \subseteq \bigcup A$.

 $\langle 1 \rangle 4$. For any upper bound u for $\bigcup A$ we have $\bigcup A \leq u$.

PROOF: If $\forall x \in A.x \subseteq u$ we have $\bigcup A \subseteq u$.

Definition 12.3.9 (Addition). Define addition + on the reals by

$$x + y := \{q + r \mid q \in x, r \in y\}$$
.

We prove this is well-defined.

Proof:

 $\langle 1 \rangle 1$. Let: $x, y \in \mathbb{R}$

PROVE: X + y is a Dedekind cut.

```
\langle 1 \rangle 2. \ x + y \neq \emptyset
   PROOF: Pick q \in x and r \in y; then q + r \in x + y.
\langle 1 \rangle 3. \ x + y \neq \mathbb{Q}
   \langle 2 \rangle 1. PICK q \notin x and r \notin y
           PROVE: q + r \notin x + y
   \langle 2 \rangle 2. Assume: for a contradiction q + r \in x + y
   \langle 2 \rangle 3. Pick q' \in x and r' \in y such that q + r = q' + r'
   \langle 2 \rangle 4. q' < q and r' < r
   \langle 2 \rangle 5. q' + r' < q + r
   \langle 2 \rangle 6. Q.E.D.
      PROOF: This is a contradiction.
\langle 1 \rangle 4. x + y is closed downwards.
   \langle 2 \rangle 1. Let: q \in x and r \in y
   \langle 2 \rangle 2. Let: s < q + r
            PROVE: s \in x + y
   \langle 2 \rangle 3. \ s - r < q
   \langle 2 \rangle 4. \ s - r \in x
   \langle 2 \rangle 5. s = (s - r) + r \in x + y
\langle 1 \rangle 5. x + y has no greatest element.
   \langle 2 \rangle 1. Let: q \in x and r \in y
            PROVE: There exists s \in x + y such that q + r < s
   \langle 2 \rangle 2. Pick q' \in x and r' \in y such that q < q' and r < r'
   \langle 2 \rangle 3. \ \ q + r < q' + r' \in x + y
```

Proposition 12.3.10. Addition on the reals agrees with addition on the rationals.

```
PROOF: \begin{split} &\langle 1 \rangle 1. \text{ Let: } q,r \in \mathbb{Q} \\ &\langle 1 \rangle 2. \ q \downarrow + r \downarrow \subseteq (q+r) \downarrow \\ &\text{PROOF: If } s_1 < q \text{ and } s_2 < r \text{ then } s_1 + s_2 < q + r. \\ &\langle 1 \rangle 3. \ (q+r) \downarrow \subseteq q \downarrow + r \downarrow \\ &\langle 2 \rangle 1. \text{ Let: } s < q + r \\ &\langle 2 \rangle 2. \ s - r < q \\ &\langle 2 \rangle 3. \text{ PICK } t \text{ such that } s - r < t < q \\ &\langle 2 \rangle 4. \ s - t < r \\ &\langle 2 \rangle 5. \ s = t + (s-t) \in q \downarrow + r \downarrow \end{split}
```

Proposition 12.3.11. Addition is associative.

Proof:

$$x + (y + z) = \{q + r \mid q \in x, r \in y + z\}$$

$$= \{q + s_1 + s_2 \mid q \in x, s_1 \in y, s_2 \in z\}$$

$$= \{r + s_2 \mid r \in x + y, s_2 \in z\}$$

$$= (x + y) + z$$

П

Proposition 12.3.12. Addition is commutative.

Proof:

$$x + y = \{q + r \mid q \in x, r \in y\}$$

$$= \{r + q \mid r \in y, q \in x\}$$

$$= y + x$$

Proposition 12.3.13. For any $x \in \mathbb{R}$ we have x + 0 = x.

Proof:

 $\langle 1 \rangle 1$. $x + 0 \subseteq x$

PROOF: If $q \in x$ and r < 0 then q + r < q so $q + r \in x$.

- $\langle 1 \rangle 2. \ x \subseteq x + 0$
 - $\langle 2 \rangle 1$. Let: $q \in x$
 - $\langle 2 \rangle 2$. Pick $r \in x$ such that q < r.

PROOF: x has no greatest element.

- $\langle 2 \rangle 3. \ q-r < 0$
- $\langle 2 \rangle 4. \ \ q = r + (q r) \in x + 0$

Definition 12.3.14. For $x \in \mathbb{R}$, define $-x := \{q \in \mathbb{Q} \mid \exists r > q. -r \notin x\}$.

Proposition 12.3.15. For all $x \in \mathbb{R}$ we have $-x \in \mathbb{R}$.

Proof:

- $\langle 1 \rangle 1$. Let: $x \in \mathbb{R}$
- $\langle 1 \rangle 2. -x \neq \emptyset$
 - $\langle 2 \rangle 1$. Pick $s \notin x$
 - $\langle 2 \rangle 2$. $-s-1 \in -x$
- $\langle 1 \rangle 3. -x \neq \mathbb{Q}$
 - $\langle 2 \rangle 1$. Pick $s \in x$

Prove: $-s \notin -x$

- $\langle 2 \rangle 2$. Assume: for a contradiction $-s \in -x$
- $\langle 2 \rangle 3$. PICK r > -s such that $-r \notin x$
- $\langle 2 \rangle 4$. -r < s
- $\langle 2 \rangle 5$. Q.E.D.

PROOF: This contradicts the fact that x is closed downwards.

 $\langle 1 \rangle 4$. -x is closed downwards.

PROOF: Immediate from definition.

- $\langle 1 \rangle 5$. -x has no greatest element.
 - $\langle 2 \rangle 1$. Let: $q \in -x$
 - $\langle 2 \rangle 2$. PICK r > q such that $-r \notin x$
 - $\langle 2 \rangle 3$. Pick s such that q < s < r
- $\langle 2 \rangle 4. \ s \in -x$

Lemma 12.3.16. Let p be a positive rational number. For any real number x, there exists a rational $q \in x$ such that $p + q \notin x$.

```
Proof:
\langle 1 \rangle 1. Pick q_0 \in x
\langle 1 \rangle 2. There exists k \in \mathbb{N} such that q_0 + kp \notin x
    \langle 2 \rangle 1. Pick q_1 \notin x
    \langle 2 \rangle 2. PICK k \in \mathbb{N} such that q_1 - q_0 < pk
       Proof: Proposition 12.2.11.
    \langle 2 \rangle 3. \ q_1 < q_0 + kp
    \langle 2 \rangle 4. \ q_0 + kp \notin x
\langle 1 \rangle 3. Let: k be the least natural number such that q_0 + kp \notin x
\langle 1 \rangle 4. \ k \neq 0
   Proof: \langle 1 \rangle 1
\langle 1 \rangle 5. Let: q = q_0 + (k-1)p
\langle 1 \rangle 6. \ q \in x \text{ and } q + p \notin x.
Proposition 12.3.17. For every real x we have x + (-x) = 0.
Proof:
\langle 1 \rangle 1. Let: x be a real number.
\langle 1 \rangle 2. x + (-x) \subseteq 0
    \langle 2 \rangle 1. Let: q_1 \in x and q_2 \in -x
    \langle 2 \rangle 2. PICK r > q_2 such that -r \notin x
    \langle 2 \rangle 3. \ q_1 < -r
    \langle 2 \rangle 4. r < -q_1
    \langle 2 \rangle 5. q_2 < -q_1
    \langle 2 \rangle 6. \ q_1 + q_2 < 0
\langle 1 \rangle 3. \ 0 \subseteq x + (-x)
    \langle 2 \rangle 1. Let: p < 0
    \langle 2 \rangle 2. 0 < -p
    \langle 2 \rangle 3. Pick q \in x such that q - p/2 \notin x
       Proof: Lemma 12.3.16.
    \langle 2 \rangle 4. Let: s = p/2 - q
    \langle 2 \rangle 5. -s \notin x
    \langle 2 \rangle 6. \ p - q < s
    \langle 2 \rangle 7. \ p-q \in -x
    \langle 2 \rangle 8. \ p \in x + (-x)
```

Corollary 12.3.17.1. The reals form an Abelian group under addition.

Proposition 12.3.18. For any reals x, y and z, we have x < y if and only if x + z < y + z.

```
\begin{split} &\langle 1 \rangle 1. \  \, \forall x,y,z \in \mathbb{R}. x \leq y \Rightarrow x+z \leq y+z \\ &\langle 2 \rangle 1. \  \, \text{Let:} \  \, x,y,z \in \mathbb{R} \\ &\langle 2 \rangle 2. \  \, \text{Assume:} \  \, x \leq y \\ &\langle 2 \rangle 3. \  \, \text{For all} \, \, q \in x \, \, \text{and} \, \, r \in z \, \, \text{we have} \, \, q+r \in y+z \end{split}
```

 $\langle 1 \rangle 2. \ \forall x, y, z \in \mathbb{R}. x + z = y + z \Leftrightarrow x = y$

Proof: Proposition 9.1.4.

- $\langle 1 \rangle 3. \ \forall x, y, z \in \mathbb{R}. x < y \Rightarrow x + z < y + z$
- $\langle 1 \rangle 4$. Q.E.D.

Proof: Proposition 5.2.6.

Γ

Definition 12.3.19 (Absolute Value). The *absolute value* of a real number x is defined to be

$$|x| = \begin{cases} x & \text{if } 0 \le x \\ -x & \text{if } x < 0 \end{cases}$$

Definition 12.3.20 (Multiplication). Define *multiplication* \cdot on \mathbb{R} as follows:

• If x and y are non-negative then

$$xy = 0 \cup \{rs \mid 0 \le r \in x \land 0 \le s \in y\} .$$

• If x and y are both negative then

$$xy = (-x)(-y) .$$

• If one of x and y is negative and one is non-negative then

$$xy = -(|x||y|) .$$

We prove this is well-defined.

Proof:

 $\langle 1 \rangle 1$. Let: x and y be non-negative reals.

PROVE: xy is real.

 $\langle 1 \rangle 2$. $xy \neq \emptyset$

PROOF: Since $-1 \in xy$.

 $\langle 1 \rangle 3. \ xy \neq \mathbb{Q}$

 $\langle 2 \rangle 1$. Pick $r \notin x$ and $s \notin y$

Prove: $rs \notin xy$

 $\langle 2 \rangle 2$. $0 \le r$ and $0 \le s$

PROOF: Since $0 \subseteq x$ and $0 \subseteq y$.

- $\langle 2 \rangle 3$. Assume: for a contradiction $rs \in xy$
- $\langle 2 \rangle 4$. Pick r' and s' such that $0 \leq r' \in x$, $0 \leq s' \in y$ and rs = r's'
- $\langle 2 \rangle 5. \ r' < r$
- $\langle 2 \rangle 6. \ s' < s$
- $\langle 2 \rangle 7$. r's' < rs
- $\langle 2 \rangle 8$. Q.E.D.

PROOF: This is a contradiction.

- $\langle 1 \rangle 4$. xy is closed downwards.
 - $\langle 2 \rangle 1$. Let: $q \in xy$ and r < q

```
\langle 2 \rangle 2. Case: q \in 0
      PROOF: Then r < q < 0 so r \in xy
   \langle 2 \rangle 3. Case: q = s_1 s_2 where 0 \le s_1 \in x and 0 \le s_2 \in y
      \langle 3 \rangle 1. Assume: w.l.o.g. 0 \le r
      \langle 3 \rangle 2. 0 < s_1 and 0 < s_2
      \langle 3 \rangle 3. \ r/s_2 < s_1
      \langle 3 \rangle 4. \ r/s_2 \in x
      \langle 3 \rangle 5. r = (r/s_2)s_2 \in xy
\langle 1 \rangle 5. xy has no greatest element.
   \langle 2 \rangle 1. Let: q \in xy
   \langle 2 \rangle 2. Case: q \in 0
      Proof: q < q/2 \in 0
   \langle 2 \rangle 3. Case: q = rs where 0 \le r \in x and 0 \le s \in y
      \langle 3 \rangle 1. Pick r' and s' with r < r' \in x and s < s' \in y
      \langle 3 \rangle 2. q < r's' \in xy
П
Proposition 12.3.21. Multiplication is commutative.
Proof: Immediate from definition.
Proposition 12.3.22. Multiplication is associative.
Proof:
\langle 1 \rangle 1. For non-negative reals x, y and z, we have x(yz) = (xy)z
   PROOF: It computes to 0 \cup \{qrs \mid 0 \le q \in x, 0 \le r \in y, 0 \le s \in z\}.
\langle 1 \rangle 2. For all reals x, y and z, we have x(yz) = (xy)z
   PROOF: It is equal to |x||y||z| if an even number of them are negative, and
   -(|x||y||z|) otherwise.
Proposition 12.3.23. Multiplication distributes over addition.
\langle 1 \rangle 1. For all non-negative reals x, y and z, we have x(y+z) = xy + xz
   \langle 2 \rangle 1. Let: x, y and z be non-negative reals.
   \langle 2 \rangle 2. x(y+z) \subseteq xy+xz
      \langle 3 \rangle 1. Let: q \in x(y+z)
      \langle 3 \rangle 2. Case: q < 0
         PROOF: Then we have q/2 \in xy and q/2 \in xz so q \in xy + xz.
      \langle 3 \rangle 3. Case: q = rs where 0 \le r \in x and 0 \le s \in y + z
         \langle 4 \rangle 1. PICK s_1 \in y and s_2 \in z such that s = s_1 + s_2
         \langle 4 \rangle 2. \ rs_1 \in xy
            PROOF: If s_1 < 0 then rs_1 < 0 so rs_1 \in xy. If 0 \le s_1 then we also
            have rs_1 \in xy.
         \langle 4 \rangle 3. \ rs_2 \in xz
            PROOF: Similar.
         \langle 4 \rangle 4. \ \ q \in xy + xz
```

PROOF: Since $q = rs_1 + rs_2$.

- $\langle 2 \rangle 3. \ xy + xz \subseteq x(y+z)$
 - $\langle 3 \rangle 1$. Let: $q \in xy$ and $r \in xz$.

PROVE: $q + r \in x(y + z)$

 $\langle 3 \rangle 2$. Case: q < 0 and r < 0

PROOF: Then q + r < 0 so $q + r \in x(y + z)$.

- $\langle 3 \rangle 3$. Case: q < 0 and $r = r_1 r_2$ where $0 \le r_1 \in x$ and $0 \le r_2 \in z$
 - $\langle 4 \rangle 1. \ q + r < r$
 - $\langle 4 \rangle 2. \ q + r \in xz$
 - $\langle 4 \rangle 3$. Assume: w.l.o.g. $0 \le q + r$

PROOF: Otherwise $q + r \in x(y + z)$ immediately.

- $\langle 4 \rangle 4$. PICK s_1, s_2 with $0 \leq s_1 \in x$, $0 \leq s_2 \in y$ and $q + r = s_1 s_2$
- $\langle 4 \rangle 5. \ s_2 \in y + z$

PROOF: Since $0 \in z$ so $s_2 = s_2 + 0 \in y + z$.

- $\langle 4 \rangle 6. \ q+r \in x(y+z)$
- $\langle 3 \rangle 4$. CASE: $q = q_1 q_2$ where $0 \le q_1 \in x$ and $0 \le q_2 \in y$ and r < 0 PROOF: Similar.
- $\langle 3 \rangle$ 5. Case: $q = q_1q_2$ where $0 \le q_1 \in x$ and $0 \le q_2 \in y$ and $r = r_1r_2$ where $0 \le r_1 \in x$ and $0 \le r_2 \in z$
 - $\langle 4 \rangle 1$. Assume: w.l.o.g. $q_1 \leq r_1$
 - $\langle 4 \rangle 2. \ \ q + r \le r_1(q_2 + r_2) \in x(y + z)$
- $\langle 1 \rangle$ 2. For any negative real x and non-negative reals y and z, we have x(y+z)=xy+xz

Proof:

$$x(y+z) = -(-x)(y+z) = -((-x)y + (-x)z)$$

$$= -((-x)y) - ((-x)z)$$

$$= xy + xz$$
(\langle 1\rangle 1)

- $\langle 1 \rangle$ 3. For any non-negative real x and reals y and z with one negative and one non-negative, we have x(y+z)=xy+xz
 - $\langle 2 \rangle 1$. Assume: w.l.o.g. y is negative and z is non-negative.
 - $\langle 2 \rangle 2$. Case: $0 \le y + z$

$$xy + xz = xy + x(-y + y + z)$$

$$= -(x(-y)) + x(-y + y + z)$$

$$= -(x(-y)) + x(-y) + x(y + z)$$

$$= x(y + z)$$
(\langle 1\rangle 1)

- $\langle 2 \rangle 3$. Case: y + z < 0
 - $\langle 3 \rangle 1. -y z > 0$
 - $\langle 3 \rangle 2$. -y = z y z
 - $\langle 3 \rangle 3$. xy + xz = x(y+z)

Proof:

$$xy + xz = -(x(-y)) + xz$$

$$= -(x(z - y - z)) + xz$$

$$= -(xz + x(-y - z)) + xz \qquad (\langle 1 \rangle 1)$$

$$= -xy - x(-y - z) + xz$$

$$= -x(-y - z)$$

$$= x(y + z)$$

 $\langle 1 \rangle 4$. For any non-negative real x and negative reals y and z, we have x(y+z)=xy+xz

Proof:

$$x(y+z) = -x(-y-z)$$

$$= -(x(-y) + x(-z))$$

$$= -x(-y) - x(-z)$$

$$= xy + xz$$

$$(\langle 1 \rangle 1)$$

- $\langle 1 \rangle$ 5. For any negative real x and reals y and z with one negative and one non-negative, we have x(y+z)=xy+xz
 - $\langle 2 \rangle 1$. Assume: w.l.o.g. y is negative and z is non-negative.
 - $\langle 2 \rangle 2$. Case: $0 \le y + z$

Proof:

$$x(y+z) = -((-x)(y+z))$$

$$= -((-x)y + (-x)z)$$

$$= -((-x)y) - ((-x)z)$$

$$= (-x)(-y) - ((-x)z)$$

$$= xy + xz$$
(\langle 1\rangle 3)

 $\langle 2 \rangle 3$. Case: y + z < 0

Proof:

$$x(y+z) = (-x)(-y-z)$$

$$= (-x)(-y) + (-x)(-z)$$

$$= xy + xz$$

$$(\langle 1 \rangle 3)$$

 $\langle 1 \rangle$ 6. For any negative reals x, y and z, we have x(y+z) = xy + xz Proof:

$$x(y+z) = (-x)(-y-z) = (-x)(-y) + (-x)(-z) = xy + xz$$
 (\langle 1\rangle 1)

Proposition 12.3.24. For any real x we have x1 = x.

- $\langle 1 \rangle 1$. Case: $0 \le x$
 - $\langle 2 \rangle 1. \ x1 \subseteq x$
 - $\langle 3 \rangle 1$. Let: $q \in x1$

$$\langle 3 \rangle 2. \text{ CASE: } q < 0$$

$$\text{PROOF: Then } q \in x \text{ because } 0 \leq x.$$

$$\langle 3 \rangle 3. \quad q = rs \text{ where } 0 \leq r \in x \text{ and } 0 \leq s < 1$$

$$\text{PROOF: Then } q < r \text{ so } q \in x.$$

$$\langle 2 \rangle 2. \quad x \subseteq x1$$

$$\langle 3 \rangle 1. \text{ Let: } q \in x$$

$$\langle 3 \rangle 2. \text{ Assume: w.l.o.g. } 0 \leq q$$

$$\langle 3 \rangle 3. \text{ PICK } r \text{ such that } q < r \in x$$

$$\langle 3 \rangle 4. \quad 0 \leq q/r < 1$$

$$\langle 3 \rangle 5. \quad q = r(q/r) \in x1$$

$$\langle 1 \rangle 2. \text{ CASE: } x < 0$$

$$\text{PROOF:}$$

$$x1 = -((-x)1)$$

$$= -(-x)$$

$$= x$$

$$(\langle 1 \rangle 1)$$

Lemma 12.3.25. Let $x \in \mathbb{R}$ and c be a positive rational. Then there exists $a \in x$ and a non-least rational upper bound b for x such that b - a = c.

PROOF:

- (1)1. PICK $a_1 \in x$ such that if x has a rational supremum s then $a_1 > s c$
- $\langle 1 \rangle 2$. There exists a natural number n such that $a_1 + nc$ is an upper bound for x.
 - $\langle 2 \rangle 1$. PICK a non-least upper bound b_1 for x.
 - $\langle 2 \rangle 2$. PICK a natural number n such that $nc > b_1 a_1$

PROOF: Proposition 12.2.11.

- $\langle 2 \rangle 3$. $a_1 + nc > b_1$
- $\langle 2 \rangle 4$. $a_1 + nc$ is an upper bound for x.
- $\langle 1 \rangle 3$. Let: k be the least natural number such that $a_1 + kc$ is an upper bound for x.
- $\langle 1 \rangle 4. \ a_1 + (k-1)c \in x$
- $\langle 1 \rangle 5$. $a_1 + kc$ is not the supremum of x.
 - $\langle 2 \rangle 1$. Assume: for a contradiction $a_1 + kc$ is the supremum of x.
 - $\langle 2 \rangle 2$. $a_1 > a_1 + (k-1)c$

Proof: $\langle 1 \rangle 1$

 $\langle 2 \rangle 3$. Q.E.D.

PROOF: This is a contradiction.

- $\langle 1 \rangle 6$. Let: $a = a_1 + (k-1)c$
- $\langle 1 \rangle 7$. Let: $b = a_1 + kc$
- $\langle 1 \rangle 8. \ b-a=c$

Ù.

Proposition 12.3.26. For any non-zero real x, there exists a real y such that xy = 1.

```
\langle 1 \rangle 1. Case: 0 < x
    \langle 2 \rangle 1. Let: y = \{q \in \mathbb{Q} \mid q \leq 0\} \cup \{u^{-1} \mid u \text{ is an upper bound for } x \text{ but not the supremum of } x\}
   \langle 2 \rangle 2. y is a real number.
       \langle 3 \rangle 1. \ y \neq \emptyset
           PROOF: Since 0 \in y.
       \langle 3 \rangle 2. \ y \neq \mathbb{Q}
           \langle 4 \rangle 1. PICK q \in x such that 0 < q
           \langle 4 \rangle 2. \ q^{-1} \notin y
       \langle 3 \rangle 3. y is closed downwards.
           \langle 4 \rangle 1. Let: q \in y and r < q
                    Prove: r \in y
           \langle 4 \rangle 2. Assume: w.l.o.g. 0 < r
           \langle 4 \rangle 3. q^{-1} is a non-least upper bound for x. \langle 4 \rangle 4. q^{-1} < r^{-1}
           \langle 4 \rangle 5. r^{-1} is a non-least upper bound for x.
           \langle 4 \rangle 6. \ r \in y
       \langle 3 \rangle 4. y has no greatest element.
           \langle 4 \rangle 1. Let: q \in y
                    PROVE: There exists r \in y such that q < r
           \langle 4 \rangle 2. Case: q \leq 0
               \langle 5 \rangle 1. PICK a non-least upper bound u for x.
               \langle 5 \rangle 2. \ q < u^{-1} \in x
           \langle 4 \rangle 3. Case: q = u^{-1} where u is a non-least upper bound for x.
               \langle 5 \rangle1. PICK a non-least upper bound v with v < u
               \langle 5 \rangle 2. \ u^{-1} < v^{-1} \in y
    \langle 2 \rangle 3. \ 0 < y
    \langle 2 \rangle 4. xy \subseteq 1
       \langle 3 \rangle 1. Let: q \in xy
       \langle 3 \rangle 2. Assume: w.l.o.g. 0 < q
       \langle 3 \rangle 3. Pick 0 < r \in x and 0 < s \in y such that q = rs
       \langle 3 \rangle 4. \ s^{-1} is a non-least upper bound for x
       \langle 3 \rangle 5. \ r < s^{-1}
       \langle 3 \rangle 6. \ rs < 1
    \langle 2 \rangle 5. 1 \subseteq xy
       \langle 3 \rangle 1. Let: q < 1
                Prove: q \in xy
       \langle 3 \rangle 2. Assume: w.l.o.g. 0 < q
       \langle 3 \rangle 3. PICK a_1 with 0 < a_1 \in x
       \langle 3 \rangle 4. \ (1-q)a_1 > 0
       \langle 3 \rangle 5. Pick a \in x and a non-least upper bound w of x such that w - a =
                (1-q)a_1
           Proof: Lemma 12.3.25.
       \langle 3 \rangle 6. \ \ w - a < (1 - q)w
       \langle 3 \rangle 7. qw < a
       \langle 3 \rangle 8. \ w < a/q
       \langle 3 \rangle 9. a/q is a non-least upper bound for x
```

 $\langle 3 \rangle 10. \ q/a \in y$ $\langle 3 \rangle 11. \ q \in xy$ $\langle 1 \rangle 2. \ \text{Case:} \ x < 0$ $\langle 2 \rangle 1. \ \text{Pick} \ y \ \text{such that} \ (-x)y = 1$ $\text{Proof:} \ \langle 1 \rangle 1$ $\langle 2 \rangle 2. \ x(-y) = 1$

Proposition 12.3.27. For real numbers x, y and z, if 0 < z then x < y if and only if xz < yz.

Proof:

- $\langle 1 \rangle 1$. For any real numbers x, y and z, if 0 < z and x < y then xz < yz
 - $\langle 2 \rangle 1$. Let: x, y and z be real numbers.
 - $\langle 2 \rangle 2$. Assume: 0 < z and x < y.
 - $\langle 2 \rangle 3. \ y = x + (y x)$
 - $\langle 2 \rangle 4$. y x > 0
 - $\langle 2 \rangle 5$. (y-x)z > 0
 - $\langle 2 \rangle 6$. yz > xz

Proof:

$$yz = (x + (y - x))z$$
$$= xz + (y - x)z$$
$$> xz$$

 $\langle 1 \rangle 2$. For any real numbers x, y and z, if 0 < z and xz < yz then x < y PROOF: Proposition 5.2.6.

Corollary 12.3.27.1. The real numbers form a complete ordered field.

Proposition 12.3.28.

$$(0,1) \approx \mathbb{R}$$

PROOF: The function $f(x) = (2x-1)/(x-x^2)$ is a bijection between (0,1) and \mathbb{R} . \square

Proposition 12.3.29.

$$|\mathbb{R}| = 2^{\aleph_0}$$

Proof:

 $\langle 1 \rangle 1. \ (0,1) \leqslant 2^{\mathbb{N}}$

PROOF: The function H where H(x)(n) is the nth binary digit of the binary expansion of x is an injection.

 $\langle 1 \rangle 2. \ 2^{\mathbb{N}} \preccurlyeq \mathbb{R}$

PROOF: Map f to the real number in [0,1/9] whose n+1st decimal digit is f(n).

Proposition 12.3.30. The set of algebraic numbers is countable.

PROOF: Ther	e are countably	many integer	polynomials,	each witl	h finitely	many
roots. \square						

Corollary 12.3.30.1. There are uncountably many transcendental numbers.

Proposition 12.3.31. Let A be a set of disks in the plane, no two of which intersect. Then A is countable.

PROOF: Every circle includes a point with rational coordinates. Define $f:\{q\in\mathbb{Q}^2\mid\exists C\in A.q\in C\}\to A$ by f(q)=C iff $q\in C$. Then f is surjective. \square

Proposition 12.3.32. There exists an uncountable set of circles in the plane that do not intersect.

Proof: The set of all circles with origin O is uncountable. \square

Chapter 13

Complex Analysis

Definition 13.0.1. For $p \ge 1$, let l^p be the set of all sequences of complex numbers (x_n) such that $\sum_{n=1}^{\infty} |x_n|^p < \infty$.

Proposition 13.0.2. If $(x_n), (y_n) \in l^p$ then $(x_n + y_n) \in l^p$.

Proof:

$$\begin{array}{l} \langle 1 \rangle 1. \ \ \text{Let:} \ \ (x_n), (y_n) \in l^p \\ \langle 1 \rangle 2. \ \ \sum_{n=1}^{\infty} |x_n + y_n|^p \leq 2^p (\sum_{n=1}^{\infty} |x_n|^p + \sum_{n=1}^{\infty} |y_n|^p) \\ \text{Proof:} \\ \langle 2 \rangle 1. \ \ \text{For all} \ \ n \in \mathbb{N} \ \ \text{we have} \ \ |x_n + y_n|^p \leq 2^p (|x_n|^p + |y_n|^p). \\ \text{Proof:} \\ |x_n + y_n|^p \leq (|x_n| + |y_n|)^p \qquad \qquad \text{(Triangle Inequality)} \\ \leq (2 \max(|x_n|, |y_n|))^p \end{array}$$

 $\leq 2^p(|x_n|^p + |y_n|^p)$

Theorem 13.0.3 (Hölder's Inequality). Let p and q be reals such that p > 1, q > 1 and 1/p + 1/q = 1. Let $(x_n) \in l^p$ and $(y_n) \in l^q$. Then

$$\sum_{n} |x_n y_n| \le \left(\sum_{n} |x_n|^p\right)^{1/p} \left(\sum_{n} |y_n|^q\right)^{1/q}$$

Proof:

 $\langle 1 \rangle 1$. Assume: w.l.o.g. neither (x_n) nor (y_n) are all zero.

 $\langle 1 \rangle 2$. For $0 \le x \le 1$ we have

1)2. For
$$0 \le x \le 1$$
 we have
$$x^{1/p} \le \frac{1}{p}x + \frac{1}{q}.$$

$$\langle 2 \rangle 1. \text{ Let: } f(x) = x/p + 1/q - x^{1/p}$$

$$\langle 2 \rangle 2. \ f'(x) = 1/p(1 - x^{(1-p)/p})$$

$$\langle 2 \rangle 3. \ f'(x) \ge 0 \text{ for all } x \in [0, 1]$$

$$\langle 2 \rangle 4. \ f \text{ is a monotonically decreasing function on}$$

$$\langle 2 \rangle 2$$
, $f'(x) = 1/n(1 - x^{(1-p)/p})$

$$\langle 2 \rangle 3$$
. $f'(x) > 0$ for all $x \in [0, 1]$

 $\langle 2 \rangle 4$. f is a monotonically decreasing function on [0, 1]

$$\langle 2 \rangle 5. \ f(0) = 1/q$$

$$\langle 2 \rangle 6. \ f(1) = 0$$

$$\langle 2 \rangle 7$$
. $f(x) \geq 0$ for all $x \in [0,1]$

 $\langle 1 \rangle 3$. For any $a, b \geq 0$ we have

$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}$$
.

$$\langle 3 \rangle 1. \ ab^{-q/p} \leq \frac{1}{p} \frac{a^p}{b^q} + \frac{1}{q}$$

$$\langle 3 \rangle 2$$
. $ab^{1-q} \leq \frac{1}{p} \frac{a^p}{b^q} + \frac{1}{q}$

 $\langle 2 \rangle 1. \text{ Case: } a^p \leq b^q$ $\langle 3 \rangle 1. \ ab^{-q/p} \leq \frac{1}{p} \frac{a^p}{b^q} + \frac{1}{q}$ Proof: Substituting $x = a^p/b^q$ in $\langle 1 \rangle 2$. $\langle 3 \rangle 2. \ ab^{1-q} \leq \frac{1}{p} \frac{a^p}{b^q} + \frac{1}{q}$ Proof: From $\langle 3 \rangle 1$ since 1 - q = -q/p. $\langle 3 \rangle 3. \ ab \leq \frac{a^p}{p} + \frac{b^q}{q}$ Proof: Multiplying $\langle 3 \rangle 2$ by b^q .

$$\langle 3 \rangle 3$$
. $ab \leq \frac{a^p}{p} + \frac{b^q}{q}$

PROOF: Multiplying $\langle 3 \rangle 2$ by b^q .

 $\langle 2 \rangle 2$. Case: $b^q \leq a^p$

Proof: Similar.

TROOF. Similar.
$$\langle 1 \rangle 4$$
. For any integers $1 \le j \le n$, we have
$$\frac{|x_j|}{\left(\sum_{k=1}^n |x_k|^p\right)^{1/p}} \frac{|y_j|}{\left(\sum_{k=1}^n |y_k|^q\right)^{1/q}} \le \frac{1}{p} \frac{|x_j|^p}{\sum_{k=1}^n |x_k|^p} + \frac{1}{q} \frac{|y_j|^q}{\sum_{k=1}^n |y_k|^q}$$
PROOF: From $\langle 1 \rangle 3$ substituting
$$a = \frac{|x_j|}{\left(\sum_{k=1}^n |x_k|^p\right)^{1/p}} \text{ and } b = \frac{|y_j|}{\left(\sum_{k=1}^n |y_k|^q\right)^{1/q}}$$
/1\(\frac{5}{5}\). For any positive integer n we have

$$a = \frac{|x_j|}{\left(\sum_{k=1}^n |x_k|^p\right)^{1/p}}$$
 and $b = \frac{|y_j|}{\left(\sum_{k=1}^n |y_k|^q\right)^{1/q}}$

(1)5. For any positive integer
$$n$$
 we have
$$\frac{\sum_{k=1}^{n} |x_k| |y_k|}{\left(\sum_{k=1}^{n} |x_k|^p\right)^{1/p} \left(\sum_{k=1}^{n} |y_k|^q\right)^{1/q}} \le 1$$
Proof:

Proof:

FROOF:
$$\frac{\sum_{j=1}^{n} |x_j| |y_j|}{\left(\sum_{k=1}^{n} |x_k|^p\right)^{1/p} \left(\sum_{k=1}^{n} |y_k|^q\right)^{1/q}} \le \frac{1}{p} + \frac{1}{q} \quad \text{(Summing } \langle 1 \rangle 4 \text{ from } j = 1 \text{ to } n\text{)}$$

$$= 1$$

 $\langle 1 \rangle 6$.

$$\sum_{n} |x_n y_n| \le \left(\sum_{n} |x_n|^p\right)^{1/p} \left(\sum_{n} |y_n|^q\right)^{1/q}$$

PROOF: Taking the limit $n \to \infty$ in $\langle 1 \rangle 5$

Theorem 13.0.4 (Minkowski's Inequality). Let $p \geq 1$. Let $(x_n), (y_n) \in l^p$. Then

$$\left(\sum_{n=1}^{\infty} |x_n + y_n|^p\right)^{1/p} \le \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} + \left(\sum_{n=1}^{\infty} |y_n|^p\right)^{1/p}$$

Proof:

 $\langle 1 \rangle 1$. Case: p = 1

PROOF: This is just the Triangle Inequality.

 $\langle 1 \rangle 2$. Case: p > 1

$$\langle 2 \rangle 1$$
. Let: $q = p/(p-1)$

$$\langle 2 \rangle 2$$
.

$$\sum_{n=1}^{\infty} |x_n + y_n|^p \le \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} \left(\sum_{n=1}^{\infty} |x_n + y_n|^{q(p-1)}\right)^{1/q} + \left(\sum_{n=1}^{\infty} |y_n|^p\right)^{1/p} \left(\sum_{n=1}^{\infty} |x_n + y_n|^{q(p-1)}\right)^{1/q}$$

Proof:

 $\langle 3 \rangle 1. \ (|x_n + y_n|^{p-1}) \in l^q$ PROOF:

$$\sum_{n=1}^{\infty} |x_n + y_n|^{(p-1)q} = \sum_{n=1}^{\infty} |x_n + y_n|^p$$

$$< \infty$$
 (Proposition 13.0.2)

 $\langle 3 \rangle 2$. Q.E.D.

PROOF:
$$\sum_{n=1}^{\infty} |x_n + y_n|^p = \sum_{n=1}^{\infty} |x_n + y_n| |x_n + y_n|^{p-1}$$

$$\leq \sum_{n=1}^{\infty} |x_n| |x_n + y_n|^{p-1} + \sum_{n=1}^{\infty} |y_n| |x_n + y_n|^{p-1}$$

$$\leq \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} \left(\sum_{n=1}^{\infty} |x_n + y_n|^{q(p-1)}\right)^{1/q}$$

$$+ \left(\sum_{n=1}^{\infty} |y_n|^p\right)^{1/p} \left(\sum_{n=1}^{\infty} |x_n + y_n|^{q(p-1)}\right)^{1/q}$$
(Hölder's Inequality, $\langle 2 \rangle 2$)

 $\langle 2 \rangle 3$.

$$\sum_{n=1}^{\infty} |x_n + y_n|^p \le \left\{ \left(\sum_{n=1}^{\infty} |x_n|^p \right)^{1/p} + \left(\sum_{n=1}^{\infty} |y_n|^p \right)^{1/p} \right\} \left(\sum_{n=1}^{\infty} |x_n + y_n|^p \right)^{1/q}$$

 $\langle 3 \rangle 1. \ q(p-1) = p$

Proof: $\langle 2 \rangle 2$

 $\langle 3 \rangle 2$. Q.E.D.

PROOF: From $\langle 2 \rangle 2$, $\langle 3 \rangle 1$.

Part I Linear Algebra

Chapter 14

Vector Spaces

14.1 Vector Spaces

Definition 14.1.1 (Vector Space). Let K be either \mathbb{R} or \mathbb{C} . A vector space over K is a triple $(V, +, \cdot)$ such that:

- \bullet V is a nonempty set, whose elemnts are called *vectors*;
- $\bullet \ +: V^2 \to V$
- $\bullet : K \times V \to V$

such that the following hold for all $u, v, w \in V$ and $\alpha, \beta \in K$:

- 1. u + v = v + u
- 2. u + (v + w) = (u + v) + w
- 3. For every $u,v\in V$ there exists $w\in V$ such that u+w=v
- 4. $\alpha(\beta v) = (\alpha \beta)v$
- 5. $(\alpha + \beta)v = \alpha v + \beta v$
- 6. $\alpha(u+v) = \alpha u + \alpha v$
- 7. 1v = v

Elements of K are called *scalars*.

We write real vector space for 'vector space over \mathbb{R} ', and complex vector space for 'vector space over \mathbb{C} '.

Proposition 14.1.2. Let K be either \mathbb{R} and \mathbb{C} . The set $\{0\}$ is a vector space over K under the unique functions $+: \{0\}^2 \to \{0\}, : K \times \{0\} \to \{0\}$.

PROOF: Each axiom holds trivially because x = y holds for all $x, y \in \{0\}$. \square

Proposition 14.1.3. The set \mathbb{R} is a real vector space under real addition and real multiplication.

PROOF: TODO — after we have proved these facts about \mathbb{R} . \square

Proposition 14.1.4. The set \mathbb{C} is a real vector space under complex addition and complex multiplication.

PROOF: TODO

Proposition 14.1.5. The set \mathbb{C} is a complex vector space under complex addition and complex multiplication.

PROOF: TODO

Proposition 14.1.6. Let K be either \mathbb{R} or \mathbb{C} . Let $\{V_i\}_{i\in I}$ be a family of vector spaces over K. Then $\prod_{i\in I} V_i$ is a vector space over K under the operations given by

$$\{x_i\}_{i \in I} + \{y_i\}_{i \in I} = \{x_i + y_i\}_{i \in I}$$

$$\alpha \{x_i\}_{i \in I} = \{\alpha x_i\}_{i \in I}$$

PROOF: Each axiom follows from the corresponding axiom in V_i .

Corollary 14.1.6.1. Let V be a vector space over K. For any set I, we have V^I is a vector space over K.

Corollary 14.1.6.2. Let $n \in \mathbb{Z}_+$. Then \mathbb{R}^n is a real vector space, and \mathbb{C}^n is both a real and a complex vector space, under

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$$

 $\lambda(x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n)$

Proposition 14.1.7. Let V be a vector space over K. Then there exists a unique $0 \in V$ such that, for all $v \in V$, we have v + 0 = v.

Proof:

- $\langle 1 \rangle 1$. There exists $0 \in V$ such that $\forall v \in V.v + 0 = v$
 - $\langle 2 \rangle 1$. Pick $v \in V$
 - $\langle 2 \rangle 2$. Pick $0 \in V$ such that v + 0 = v

Proof: Axiom 3.

- $\langle 2 \rangle 3$. For all $u \in V$, we have u + 0 = u
 - $\langle 3 \rangle 1$. Let: $u \in V$
 - $\langle 3 \rangle 2$. Pick $u' \in V$ such that v + u' = u

Proof: Axiom 3.

 $\langle 3 \rangle 3$. u + 0 = u

$$u + 0 = v + u' + 0 \tag{\langle 3 \rangle 2}$$

$$= v + u' \tag{22}$$

$$=u$$
 $(\langle 3 \rangle 2)$

```
\langle 1 \rangle 2. If 0, 0' \in V are such that \forall v \in V.v + 0 = v and \forall v \in V.v + 0' = v, then 0 = 0'.
```

- $\langle 2 \rangle 1$. Let: $0, 0' \in V$
- $\langle 2 \rangle 2$. Assume: $\forall v \in V.v + 0 = v$
- $\langle 2 \rangle 3$. Assume: $\forall v \in V.v + 0' = v$
- $\langle 2 \rangle 4. \ \ 0 = 0'$

$$0 = 0 + 0' \tag{\langle 2 \rangle 2}$$

$$=0' \qquad (\langle 2 \rangle 3)$$

Proposition 14.1.8. Let V be a vector space. For any $v \in V$, there exists a unique $-v \in V$ such that v + (-v) = 0.

Proof:

- $\langle 1 \rangle 1$. Let: $v \in V$
- $\langle 1 \rangle 2$. There exists $-v \in V$ such that v + (-v) = u

Proof: Axiom 3.

- $\langle 1 \rangle 3$. If v + x = 0 and v + y = 0 then x = y
 - $\langle 2 \rangle 1$. Assume: v + x = 0
 - $\langle 2 \rangle 2$. Assume: v + y = 0
 - $\langle 2 \rangle 3. \ x = y$

Proof:

$$x = x + 0$$
 (Proposition 14.1.7)
 $= x + v + y$ ($\langle 2 \rangle 2$)
 $= 0 + y$ ($\langle 2 \rangle 1$)
 $= y$ (Proposition 14.1.7)

Proposition 14.1.9. Let V be a vector space. For any $u, v \in V$, there exists a unique $u - v \in V$ such that v + (u - v) = u, namely u - v = u + (-v).

Proof:

- $\langle 1 \rangle 1$. Let: $u, v \in V$
- $\langle 1 \rangle 2. \ v + (u + (-v)) = u$

Proof:

$$v + u + (-v) = u + 0$$
 (Proposition 14.1.8)
= u (Proposition 14.1.7)

 $\langle 1 \rangle 3$. For all $x \in V$, if v + x = u then x = u + (-v).

- $\langle 2 \rangle 1$. Let: $x \in V$
- $\langle 2 \rangle 2$. Assume: v + x = u
- $\langle 2 \rangle 3$. x = u + (-v)

$$u + (-v) = v + x + (-v)$$
 ($\langle 2 \rangle 2$)
= $x + 0$ (Proposition 14.1.8)
= x (Proposition 14.1.7)

П

Proposition 14.1.10. Let V be a vector space over K. Let $u, v, w \in V$. If u + v = u + w then v = w.

Proof:

$$\langle 1 \rangle 1$$
. Assume: $u + v = u + w$

 $\langle 1 \rangle 2$. v = w

Proof:

$$v = v + 0$$
 (Proposition 14.1.7)
 $= v + u + (-u)$ (Proposition 14.1.8)
 $= w + u + (-u)$ ($\langle 1 \rangle 1$)
 $= w + 0$ (Proposition 14.1.8)
 $= w$ (Proposition 14.1.7)

Proposition 14.1.11. Let V be a vector space over K. Let $\lambda \in K$. Then $\lambda 0 = 0$.

Proof:

$$\langle 1 \rangle 1$$
. $\lambda 0 + \lambda 0 = \lambda 0 + 0$

Proof:

$$\lambda 0 + \lambda 0 = \lambda (0 + 0)$$
 (Axiom 6)
= $\lambda 0$ (Proposition 14.1.7)

 $\langle 1 \rangle 2$. $\lambda 0 = 0$

Proof: Proposition 14.1.10.

П

Proposition 14.1.12. Let V be a vector space over K. Let $\lambda \in K$ and $v \in V$. If $\lambda v = 0$ then $\lambda = 0$ or v = 0.

Proof:

- $\langle 1 \rangle 1$. Assume: $\lambda \neq 0$
- $\langle 1 \rangle 2$. Assume: $\lambda v = 0$
- $\langle 1 \rangle 3. \ v = 0$

Proof:

$$v = 1v$$
 (Axiom 7)
 $= \lambda^{-1} \lambda v$
 $= \lambda^{-1} 0$ ($\langle 1 \rangle 2$)
 $= 0$

Proposition 14.1.13. Let V be a vector space over K. For all $v \in V$ we have 0v = 0.

$$\langle 1 \rangle 1$$
. $0v + 0 = 0v + 0v$

$$0v + 0 = 0v \qquad (Proposition 14.1.7)$$

$$= (0+0)v$$

$$= 0v + 0v \qquad (Axiom 5)$$

$$\langle 1 \rangle 2. \ 0v = 0$$

$$PROOF: Proposition 14.1.10, \langle 1 \rangle 1.$$

$$\square$$

Proposition 14.1.14. Let V be a vector space over K. Let $v \in V$. Then (-1)v = -v.

PROOF: $\langle 1 \rangle 1. \ v + (-1)v = 0 \\ \text{PROOF:} \\ v + (-1)v = 1v + (-1)v \qquad \qquad \text{(Axiom 7)} \\ = (1 + (-1))v \qquad \qquad \text{(Axiom 5)} \\ = 0v \qquad \qquad = 0 \\ \langle 1 \rangle 2. \ \text{Q.E.D.} \\ \text{PROOF: Proposition 14.1.8.}$

14.2 Subspaces

Definition 14.2.1 (Subspace). Let V be a vector space over K and $U \subseteq V$. Then U is a *subspace* of V iff $\forall \alpha, \beta \in K. \forall u, v \in U. \alpha u + \beta v \in U$. It is a *proper* subspace iff in addition $U \neq V$.

Proposition 14.2.2. Let V be a vector space over K and U a subspace of V. Then U is a vector space over K under the restrictions of the operations of V.

PROOF: Each of the axioms follows from the corresponding axiom in V. For axiom 3, we have if $u, v \in U$ then $v - u = 1v + (-1)u \in U$. \square

Proposition 14.2.3. Every vector space is a subspace of itself.

Proof: Trivial.

Proposition 14.2.4. Let Ω be a subset of \mathbb{R}^N . Let $\mathcal{C}(\Omega)$ be the set of all continuous functions $\Omega \to \mathbb{C}$. Then $\mathcal{C}(\Omega)$ is a subspace of \mathbb{C}^{Ω} .

PROOF: If $f, g: \Omega \to \mathbb{C}$ are continuous then so is $\alpha f + \beta g$. \square

Proposition 14.2.5. Let Ω be an open set in \mathbb{R}^N . Let $\mathcal{C}^k(\Omega)$ be the set of all continuous functions $\Omega \to \mathbb{C}$ with continuous partial derivatives of order k. Then $\mathcal{C}^k(\Omega)$ is a subspace of \mathbb{C}^{Ω} .

PROOF: If $f, g: \Omega \to \mathbb{C}$ have continuous partial derivatives of order k then so does $\alpha f + \beta g$. \square

Proposition 14.2.6. Let Ω be an open set in \mathbb{R}^N . Let $\mathcal{C}^{\infty}(\Omega)$ be the set of all infinitely differentiable functions $\Omega \to \mathbb{C}$. Then $\mathcal{C}^{\infty}(\Omega)$ is a subspace of \mathbb{C}^{Ω} .

PROOF: If $f, g: \Omega \to \mathbb{C}$ are infinitely differentiable then so is $\alpha f + \beta g$. \square

Proposition 14.2.7. Let Ω be an open set in \mathbb{R}^N . Let $\mathcal{P}(\Omega)$ be the set of all polynomials in N variables considered as functions $\Omega \to \mathbb{C}$. Then $\mathcal{P}(\Omega)$ is a subspace of \mathbb{C}^{Ω} .

PROOF: If $f, g: \Omega \to \mathbb{C}$ are polynomials in N variables then so is $\alpha f + \beta g$. \square

Proposition 14.2.8. Let V be a vector space and U_1 , U_2 subspaces of V. If $U_1 \subseteq U_2$ then U_1 is a subspace of U_2 .

PROOF: Trivial. \square

Proposition 14.2.9. Let V be a vector space over K. The intersection of a set of subspaces of V is a subspace of V.

Proof:

$$\begin{split} &\langle 1 \rangle 1. \text{ Let: } \mathcal{U} \text{ be a set of subspaces of } V. \\ &\langle 1 \rangle 2. \text{ Let: } u,v \in \bigcap \mathcal{U} \text{ and } \lambda,\mu \in K \\ &\langle 1 \rangle 3. \ \lambda u + \mu v \in \bigcap \mathcal{U} \\ &\langle 2 \rangle 1. \text{ Let: } \mathcal{U} \in \mathcal{U} \\ &\langle 2 \rangle 2. \ u,v \in \mathcal{U} \\ &\text{PROOF: } \langle 1 \rangle 2,\ \langle 2 \rangle 1. \\ &\langle 2 \rangle 3. \ \lambda u + \beta v \in \mathcal{U} \\ &\text{PROOF: } \langle 1 \rangle 1,\ \langle 1 \rangle 2,\ \langle 2 \rangle 1,\ \langle 2 \rangle 2. \\ &\Box \end{split}$$

Proposition 14.2.10. The set of all bounded complex sequences is a proper subspace of $\mathbb{C}^{\mathbb{N}}$.

PROOF: If (x_n) and (y_n) are bounded then so is $(\lambda x_n + \mu y_n)$. \square

Proposition 14.2.11. The set of all convergent complex sequences is a proper subspace of the space of all bounded complex sequences.

PROOF: If (x_n) and (y_n) converge then so does $(\lambda x_n + \mu y_n)$. \square

Proposition 14.2.12. The set l^p of all sequences (x_n) in \mathbb{C} such that $\sum_n |x_n|^p < \infty$ is a subspace of $\mathbb{C}^{\mathbb{N}}$.

PROOF: It is closed under addition by Proposition 13.0.2, and it is easy to see that it is closed under scalar multiplication. \Box

14.3 Linear Independence and Bases

Definition 14.3.1 (Linear Combination). Let V be a vector space over K. Let $v, v_1, \ldots, v_n \in V$. Then v is a *linear combination* of v_1, \ldots, v_n iff there exist scalars $\lambda_1, \ldots, \lambda_n \in K$ such that

$$v = \lambda_1 v_1 + \dots + \lambda_n v_n$$
.

Definition 14.3.2 (Linearly Independent). Let V be a vector space over K. Let $A \subseteq V$. Then A is linearly independent iff, for all $\lambda_1, \ldots, \lambda_n \in K$ and $v_1, \ldots, v_n \in A$, if $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$ then $\lambda_1 = \cdots = \lambda_n = 0$.

Definition 14.3.3 (Span). Let V be a vector space over K and $A \subseteq V$. The span of A, or the subspace of V spanned by A, is the set of all linear combinations of vectors in A.

Proposition 14.3.4. Let V be a vector space over K and $A \subseteq V$. Then span A is a subspace of V.

PROOF: Given $\alpha, \beta \in K$ and $\lambda_1 u_1 + \cdots + \lambda_m u_m, \mu_1 v_1 + \cdots + \mu_n v_n \in \operatorname{span} A$, we have

$$\alpha(\lambda_1 u_1 + \dots + \lambda_m u_m) + \beta(\mu_1 v_1 + \dots + \mu_n v_n)$$

$$= \alpha \lambda_1 u_1 + \dots + \alpha \lambda_m u_m + \beta \mu_1 v_1 + \dots + \beta \mu_n v_n$$

$$\in \operatorname{span} A$$

Definition 14.3.5 (Basis). Let V be a vector space over K and $B \subseteq V$. Then B is a *basis* for V iff B is linearly independent and span B = V.

Definition 14.3.6 (Finite Dimensional). A vector space is *finite dimensional* iff there exists a finite basis; otherwise it is *infinite dimensional*.

Proposition 14.3.7. In a finite dimensional space, any two bases have the same size.

TODO

Definition 14.3.8 (Dimension). The *dimension* of a finite dimensional vector space V, dim V, is the number of vectors in any basis.

Proposition 14.3.9. Let K be either \mathbb{R} or \mathbb{C} . Then K^n as a vector space over K has dimension n.

PROOF: The vectors with one component 1 and all other components 0 form a basis. \Box

Proposition 14.3.10. As a real vector space, \mathbb{C}^n has dimension 2n.

PROOF: The vectors with one component either 1 or i and all other components 0 form a basis. \square

Proposition 14.3.11. Let Ω be a nonempty open set in \mathbb{R}^n . The space $\mathcal{C}(\Omega)$ is infinite dimensional.

PROOF: Let $\pi_1 : \mathbb{R}^n \to \mathbb{R}$ be the first projection. The functions $1, \pi_1(x), \pi_1(x)^2, \pi_1(x)^3, \ldots$ form an infinite linearly independent set in $\mathcal{C}(\Omega)$. \square

Proposition 14.3.12. The spaces $C^k(\mathbb{R}^n)$ and $C^{\infty}(\mathbb{R}^n)$ are infinite dimensional

Proof: The monomials 1, x, x^2 , ... form an infinite linearly independent set. \sqcap

14.4 Linear Mappings

Definition 14.4.1 (Kernel). Let U and V be vector spaces and $T: U \to V$. The kernel of T is

$$\ker T := \{ u \in U \mid T(u) = 0 \}$$
.

Definition 14.4.2 (Linear Mapping). Let U and V be vector spaces over K. A function $L: U \to V$ is a linear mapping iff $\forall x, y \in U. \forall \alpha, \beta \in K. L(\alpha x + \beta y) = \alpha L(x) + \beta L(y)$.

Proposition 14.4.3. Let U and V be vector spaces over K. The set of linear mappings from U to V is a subspace of V^U .

14.5 Eigenvalues and Eigenvectors

Definition 14.5.1 (Eigenvalue and Eigenvector). Let V be a vector space over K. Let $A: V \to V$ be a linear transformation. Let $v \in V$ and $\lambda \in K$. Then v is an eigenvector of A with eigenvalue λ iff $A(v) = \lambda v$.

Chapter 15

Normed Spaces

Definition 15.0.1 (Norm). Let K be either \mathbb{R} or \mathbb{C} . Let V be a vector space over K. A *norm* on V is a function $\| \ \| : V \to \mathbb{R}$ such that, for all $u, v \in V$ and $\lambda \in K$:

- 1. If ||v|| = 0 then v = 0.
- $2. \|\lambda v\| = |\lambda| \|v\|$
- 3. (Triangle Inequality) $||u+v|| \le ||u|| + ||v||$

A normed space over K is a pair (V, || ||) where V is a vector space over K and || || is a norm on V.

Proposition 15.0.2. In a normed space, ||0|| = 0.

PROOF:
$$||0|| = |0|||0|| = 0$$
 by Axiom 2. \square

Proposition 15.0.3. Let V be a normed vector space over K. For all $v \in V$ we have $||v|| \ge 0$.

Proof:

$$0 = ||0||$$
 (Proposition 15.0.2)
$$= ||v - v||$$

$$\leq ||v|| + ||-v||$$
 (Triangle Inequality)
$$= 2||v||$$
 (Axiom 2)

Proposition 15.0.4. Let V be a normed space. Let $u, v \in V$. Then

$$|||u|| - ||v||| \le ||u - v||$$
.

Proof:

$$\|u\| \le \|u - v\| + \|v\|$$
 (Triangle Inequality)

$$\therefore \|u\| - \|v\| \le \|u - v\|$$
 (Triangle Inequality)

$$\|v\| \le \|v - u\| + \|u\|$$
 (Axiom 2)

$$\therefore \|v\| - \|u\| \le \|u - v\|$$

Definition 15.0.5 (Euclidean Norm). The *Euclidean norm* on K^n is defined by

$$||(x_1,\ldots,x_n)|| = \sqrt{|x_1|^2 + \cdots + |x_n|^2}$$
.

Proposition 15.0.6. The Euclidean norm on K^n is a norm.

Proof:

$$\langle 1 \rangle 1$$
. If $\|\vec{x}\| = 0$ then $\vec{x} = \vec{0}$
PROOF: If $\sqrt{|x_1|^2 + \cdots + |x_n|^2} = 0$ then $x_1 = \cdots = x_n = 0$. $\langle 1 \rangle 2$. $\|\lambda \vec{x}\| = |\lambda| \|\vec{x}\|$
PROOF:

$$\|\lambda \vec{x}\| \sqrt{|\lambda x_1|^2 + \dots + |\lambda x_n|^2}$$

$$= \sqrt{|\lambda|^2 |x_1|^2 + \dots + |\lambda|^2 |x_n|^2}$$

$$= |\lambda| \sqrt{|x_1|^2 + \dots + |x_n|^2}$$

$$= |\lambda| \|\vec{x}\|$$

$$\langle 1 \rangle 3. \ \|\vec{u} + \vec{v}\| \leq \|\vec{u}\| + \|\vec{v}\|$$

Proof:

$$\|\vec{u} + \vec{v}\|^{2} = |u_{1} + v_{1}|^{2} + \dots + |u_{n} + v_{n}|^{2}$$

$$= |u_{1}|^{2} + \dots + |u_{n}|^{2} + |v_{1}|^{2} + \dots + |v_{n}|^{2}$$

$$+ 2|u_{1}||v_{1}| + \dots + 2|u_{n}||v_{n}|$$

$$\leq \|\vec{u}\|^{2} + \|\vec{v}\|^{2} + 2|u_{1}v_{1} + \dots + u_{n}v_{n}|$$

$$\leq \|\vec{u}\|^{2} + \|\vec{v}\|^{2} + 2\|\vec{u}\|\|\vec{v}\| \qquad \text{(Cauchy-Schwarz)}$$

$$= (\|\vec{u}\| + \|\vec{v}\|)^{2}$$

Corollary 15.0.6.1. The absolute value function | | is a norm on K.

Proposition 15.0.7. The function $\|\vec{x}\| = |x_1| + \cdots + |x_n|$ is a norm on \mathbb{C}^n .

$$\langle 1 \rangle 1$$
. If $||\vec{x}|| = 0$ then $\vec{x} = \vec{0}$
PROOF: If $|x_1| + \dots + |x_n| = 0$ then $x_1 = \dots = x_n = 0$. $\langle 1 \rangle 2$. $||\lambda \vec{x}|| = |\lambda| ||\vec{x}||$

Proof:

$$\|\lambda \vec{x}\| |\lambda x_1| + \dots + |\lambda x_n|$$

$$= |\lambda| (|x_1| + \dots + |x_n|)$$

$$= |\lambda| \|\vec{x}\|$$

$$\langle 1 \rangle 3. \|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$$
PROOF:
$$\|\vec{u} + \vec{v}\|^2 = |u_1 + v_1| + \dots + |u_n + v_n|$$

$$\le |u_1| + |v_1| + \dots + |u_n| + |v_n|$$

$$= \|\vec{u}\| + \|\vec{v}\|$$

Proposition 15.0.8. The function $\|\vec{x}\| = \max(|x_1|, \dots, |x_n|)$ is a norm on \mathbb{C}^n .

Proof:

TROOF:
$$\langle 1 \rangle 1. \text{ If } ||\vec{x}|| = 0 \text{ then } \vec{x} = \vec{0}$$
PROOF: If $\max(|x_1|, \dots, |x_n|) = 0 \text{ then } x_1 = \dots = x_n = 0.$

$$\langle 1 \rangle 2. ||\lambda \vec{x}|| = |\lambda| ||\vec{x}||$$
PROOF:
$$||\lambda \vec{x}|| = \max(|\lambda x_1|, \dots, |\lambda x_n|)$$

$$= |\lambda| \max(|x_1|, \dots, |x_n|)$$

$$= |\lambda| ||\vec{x}||$$

$$\langle 1 \rangle 3. ||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}||$$
PROOF:
$$||\vec{u} + \vec{v}|| = \max(|u_1 + v_1|, \dots, |u_n + v_n|)$$

$$\le \max(|u_1| + |v_1|, \dots, |u_n| + |v_n|)$$

$$\le \max(|u_1|, \dots, |u_n|) + \max(|v_1|, \dots, |v_n|)$$

Definition 15.0.9 (Uniform Convergence Norm). Let Ω be a closed bounded subset of \mathbb{R}^n . The *uniform convergence norm* on $\mathcal{C}(\Omega)$ is the function defined by $||f|| = \max_{x \in \Omega} |f(x)|$.

Proposition 15.0.10. Let Ω be a closed bounded subset of \mathbb{R}^n . The uniform convergence norm is a norm on $\mathcal{C}(\Omega)$.

$$\begin{split} \langle 1 \rangle 1. & \text{ If } \|f\| = 0 \text{ then } f = 0 \\ & \text{Proof: If } \max_x |f(x)| = 0 \text{ then } f(x) = 0 \text{ for all } x. \\ \langle 1 \rangle 2. & \|\lambda f\| = |\lambda| \|f\| \\ & \text{Proof:} \\ & \|\lambda f\| = \max_x |\lambda f(x)| \\ & = |\lambda| \max_x |f(x)| \\ & = |\lambda| \|f\| \end{split}$$

 $\langle 1 \rangle 3. \| f + g \| \le \| f \| + \| g \|$ PROOF:

$$||f + g|| = \max_{x} |f(x) + g(x)|$$

$$\leq \max_{x} (|f(x)| + |g(x)|)$$

$$\leq \max_{x} |f(x)| + \max_{x} |g(x)|$$

$$= ||f|| + ||g||$$

Proposition 15.0.11. Let $p \ge 1$. The function $||(z_n)|| = (\sum_{n=1}^{\infty} |z_n|^p)^{1/p}$ is a norm on l^p .

Proof:

 $\langle 1 \rangle 1$. If $||(z_n)|| = 0$ then $(z_n) = (0)$ PROOF: If $(\sum_n |z_n|^p)^{1/p} = 0$ then $\sum_n |z_n|^p = 0$ so $|z_n|^p = 0$ for all n, and so $z_n = 0$ for all n.

 $\langle 1 \rangle 2$. $\|(\lambda z_n)\| = |\lambda| \|(z_n)\|$ PROOF:

 $\|(\lambda z_n)\| = \left(\sum_n |\lambda z_n|^p\right)^{1/p}$ $= |\lambda| \left(\sum_n |z_n|^p\right)^{1/p}$

 $= |\lambda| |(z_n)|$

 $\langle 1 \rangle 3$. The triangle inequality holds.

PROOF: This is Minkowski's Inequality.

Proposition 15.0.12. Let V be a normed space and U a vector subspace of V. Then U is a normed space under the restriction of the norm to U.

PROOF: Each axiom follows from the fact it holds in V. \square

Proposition 15.0.13. Let V be a normed space over K. Let x_1, \ldots, x_n be linearly independent elements of V. Then there exists a real number c > 0 such that, for all $\alpha_1, \ldots, \alpha_n \in K$, we have

$$\|\alpha_1 x_1 + \dots + \alpha_n x_n\| \ge c(|\alpha_1| + \dots + |\alpha_n|).$$

Proof:

 $\langle 1 \rangle 1$. Define $f: K^n \to \mathbb{R}$ by

$$f(\alpha_1, \dots, \alpha_n) = \|\alpha_1 x_1 + \dots + \alpha_n x_n\|$$

 $\langle 1 \rangle 2$. f is continuous.

 $\langle 2 \rangle 1$. Let: $(\alpha_1, \ldots, \alpha_n) \in K^n$ and $\epsilon > 0$

 $\langle 2 \rangle 2$. Let: $\delta = \epsilon/(\|x_1\| + \cdots + \|x_n\|)$

PROOF: x_1, \ldots, x_n are not all zero because they are linearly independent.

 $\langle 2 \rangle 3$. Let: $(\beta_1, \ldots, \beta_n)$ with $|\alpha_i - \beta_i| < \delta$ for all i

```
\langle 2 \rangle 4. \|(\alpha_1 x_1 + \dots + \alpha_n x_n) - (\beta_1 x_1 + \beta_n x_n)\| < \epsilon
                  \|(\alpha_1 x_1 + \dots + \alpha_n x_n) - (\beta_1 x_1 + \beta_n x_n)\|
               \leq |\alpha_1 - \beta_1| ||x_1|| + \dots + |\alpha_n - \beta_n| ||x_n||
                                                                                      (Axioms 2 and 3)
               <\delta(||x_1|| + \cdots + ||x_n||)
                                                                                                         (\langle 2 \rangle 3)
                                                                                                         (\langle 2 \rangle 2)
\langle 1 \rangle 3. Pick (\beta_1, \dots, \beta_n) \in \{(\beta_1, \dots, \beta_n) \in K^n \mid |\beta_1| + \dots + |\beta_n| = 1\} at which
         f attains its minimum.
   PROOF: Extreme Value Theorem.
\langle 1 \rangle 4. Let c = f(\beta_1, \dots, \beta_n)
\langle 1 \rangle 5. \ c > 0
   Proof: Linear independence.
\langle 1 \rangle 6. Let: \alpha_1, \ldots, \alpha_n \in K
\langle 1 \rangle 7. \|\alpha_1 x_1 + \dots + \alpha_n x_n\| \ge c(|\alpha_1| + \dots + |\alpha_n|)
   \langle 2 \rangle 1. Assume: w.l.o.g. \alpha_1 \ldots, \alpha_n are not all zero.
   \langle 2 \rangle 2. Let: \beta_i = \alpha_i/(|\alpha_1| + \cdots + |\alpha_n|) for i = 1, \dots, n
   \langle 2 \rangle 3. |\beta_1| + \cdots + |\beta_n| = 1
   \langle 2 \rangle 4. \ f(\beta_1, \dots, \beta_n) \ge c
   \langle 2 \rangle5. Q.E.D.
       PROOF: Multiply both sides by |\alpha_1| + \cdots + |\alpha_n|.
П
Proposition 15.0.14. Let V be a normed space over K. Define d: V^2 \to \mathbb{R}
by d(x,y) = ||x-y||. Then d is a metric on V.
Proof:
\langle 1 \rangle 1. For all x, y \in V we have d(x, y) \geq 0
   Proof: Proposition 15.0.3.
\langle 1 \rangle 2. For all x, y \in V we have d(x, y) = 0 iff x = y
   \langle 2 \rangle 1. If d(x,y) = 0 then x = y
       Proof: Axiom 1.
   \langle 2 \rangle 2. If x = y then d(x, y) = 0
       Proof: Proposition 15.0.2.
\langle 1 \rangle 3. \ \forall x, y \in V.d(x, y) = d(y, x)
   PROOF: By Axiom 2.
\langle 1 \rangle 4. \ \forall x, y, z \in V.d(x, z) \le d(x, y) + d(y, z)
   Proof: By Axiom 3.
```

Henceforth we identify any normed space with this metric space.

15.1 Convergence

Proposition 15.1.1. Let V be a normed space over K. Let (x_n) be a sequence in V and $l \in V$. Then $x_n \to l$ as $n \to \infty$ in V if and only if $||x_n - l|| \to 0$ as $n \to \infty$ in \mathbb{R} .

PROOF: Immediate from definitions.

Proposition 15.1.2. In a normed space, a sequence has at most one limit.

Proof:

- $\langle 1 \rangle 1$. Let: V be a vector space over K.
- $\langle 1 \rangle 2$. Assume: $x_n \to l$ and $x_n \to m$ as $n \to \infty$.
- $\langle 1 \rangle 3$. Assume: for a contradiction $l \neq m$
- $\langle 1 \rangle 4$. Let: $\epsilon = ||l m||/2$
- (1)5. PICK N such that $\forall n \geq N. ||x_n l|| < \epsilon$ and $\forall n \geq N. ||x_n m|| < \epsilon$ PROOF: $\langle 1 \rangle 2, \langle 1 \rangle 4$
- $\langle 1 \rangle 6. \ \|l m\| < \|l m\|$

Proof:

$$\begin{split} \|l-m\| &\leq \|x_N-l\| + \|x_N-m\| & \text{(Triangle Inequality)} \\ &< 2\epsilon & \text{($\langle 1\rangle 5$)} \\ &= \|l-m\| & \text{($\langle 1\rangle 4$)} \end{split}$$

 $\langle 1 \rangle 7$. Q.E.D.

PROOF: This is a contradiction.

Definition 15.1.3 (Bounded). Let V be a normed space over K. A sequence (x_n) in V is bounded iff there exists B such that $\forall n \leq N . ||x_n|| < B$.

Proposition 15.1.4. Every convergent sequence is bounded.

Proof:

- $\langle 1 \rangle 1$. Let: $x_n \to l$ as $n \to \infty$
- $\langle 1 \rangle 2$. Pick N such that $\forall n \geq N . ||x_n l|| < 1$
- $\langle 1 \rangle 3$. Let: $B = \max(||x_1||, ||x_2||, \dots, ||x_{N-1}||, ||l|| + 1)$
- $\langle 1 \rangle 4$. Let: $n \in \mathbb{N}$
- $\langle 1 \rangle 5. \|x_n\| \leq B$
 - $\langle 2 \rangle 1$. Case: n < N

PROOF: $||x_n|| \leq B$ from $\langle 1 \rangle 3$.

 $\langle 2 \rangle 2$. Case: $n \geq N$

Proof:

$$||x_n|| \le ||l|| + ||x_n - l||$$
 (Triangle Inequality)
 $< ||l|| + 1$ ($\langle 1 \rangle 2$)
 $\le B$ ($\langle 1 \rangle 3$)

Proposition 15.1.5. Let V be a normed space over K. If $x_n \to l$ as $n \to \infty$ in V, and $\lambda_n \to \lambda$ as $n \to \infty$ in K, then $\lambda_n x_n \to \lambda l$ as $n \to \infty$.

- $\langle 1 \rangle 1$. Let: V be a normed space over K.
- $\langle 1 \rangle 2$. Let: $x_n \to l$ as $n \to \infty$
- $\langle 1 \rangle 3$. Let: $\lambda_n \to \lambda$ as $n \to \infty$

$$\begin{array}{ll} \langle 1 \rangle 4. & \text{Let: } \epsilon > 0 \\ \langle 1 \rangle 5. & \text{Pick } N \text{ such that, for all } n \geq N, \text{ we have } \|x_n - l\| < \epsilon/2 |\lambda| \text{ and } |\lambda_n - \lambda| < \sqrt{\epsilon/2} \text{ and } \|x_n\| < \sqrt{\epsilon/2} \\ \langle 1 \rangle 6. & \text{Let: } n \geq N \\ \langle 1 \rangle 7. & \|\lambda_n x_n - \lambda l\| < \epsilon \\ & \text{Proof:} \\ & \|\lambda_n x_n - \lambda l\| \leq \|\lambda_n x_n - \lambda x_n\| + \|\lambda x_n - \lambda l\| & \text{(Triangle Inequality)} \\ & = |\lambda_n - \lambda| \|x_n\| + |\lambda| \|x_n - l\| & \text{(Axiom 2)} \\ & < \sqrt{\epsilon/2} \sqrt{\epsilon/2} + |\lambda| \epsilon/2 |\lambda| & \text{($\langle 1 \rangle 5$)} \\ & = \epsilon \end{array}$$

Proposition 15.1.6. Let V be a normed space over K. If $x_n \to l$ and $y_n \to m$ as $n \to \infty$, then $x_n + y_n \to l + m$ as $n \to \infty$.

Proof:

$$\langle 1 \rangle 1$$
. Let: $\epsilon > 0$

 $\langle 1 \rangle 2$. PICK N such that, for all $n \geq N$, we have $||x_n - l|| < \epsilon/2$ and $||y_n - m|| < \epsilon/2$

$$\langle 1 \rangle 3$$
. Let: $n \geq N$

$$\langle 1 \rangle 4. \ \|(x_n + y_n) - (l+m)\| < \epsilon$$

Proof:

$$\|(x_n+y_n)-(l+m)\| \leq \|x_n-l\|+\|y_n-m\|$$
 (Triangle Inequality)
$$<\epsilon/2+\epsilon/2$$
 (\langle 1\rangle 2)
$$=\epsilon$$

Definition 15.1.7 (Uniform Convergence). Let Ω be a closed bounded subset of \mathbb{R}^n . Let (f_n) be a sequence in $\mathcal{C}(\Omega)$ and $f \in \mathcal{C}(\Omega)$. Then (f_n) converges uniformly to f iff, for every $\epsilon > 0$, there exists N such that $\forall x \in \Omega. \forall n \geq N. |f_n(x) - f(x)| < \epsilon$.

Proposition 15.1.8. Let Ω be a closed bounded subset of \mathbb{R}^n . Let (f_n) be a sequence in $\mathcal{C}(\Omega)$ and $f \in \mathcal{C}(\Omega)$. Then (f_n) converges uniformly to f iff f_n converges to f under the uniform convergence norm.

Proof:

$$(f_n)$$
 converges to f under the uniform convergence norm $\Leftrightarrow \forall \epsilon > 0. \exists N. \forall n \geq N. ||f_n - f|| < \epsilon$ $\Leftrightarrow \forall \epsilon > 0. \exists N. \forall n \geq N. \forall x \in X. |f_n(x) - f(x)| < \epsilon$

Definition 15.1.9 (Pointwise Convergence). Let (f_n) be a sequence in $\mathcal{C}([0,1])$ and $f \in \mathcal{C}([0,1])$. Then (f_n) converges pointwise to f iff, for all $t \in [0,1]$, we have $|f_n(t) - f(t)| \to 0$ as $n \to \infty$.

Proposition 15.1.10. There is no norm n on C([0,1]) such that, for every sequence (f_n) and function f in C([0,1]), we have (f_n) converges pointwise to f if and only if (f_n) converges to f under n.

Proof:

 $\langle 1 \rangle 1$. Assume: for a contradiction $\| \|$ is a norm on $\mathcal{C}([0,1])$ such that, for every sequence (f_n) and function f in $\mathcal{C}([0,1])$, we have (f_n) converges pointwise to f if and only if (f_n) converges to f under $\| \|$.

 $\langle 1 \rangle 2$. For $n \in \mathbb{Z}_+$, define $g_n \in \mathcal{C}([0,1])$ by

$$g_n(t) = \begin{cases} 2^n t & \text{if } 0 \le t \le 2^{-n} \\ 2 - 2^n t & \text{if } 2^{-n} \le t \le 2^{1-n} \\ 0 & \text{if } 2^{1-n} \le t \le 1 \end{cases}$$

 $\langle 1 \rangle 3$. For all n, $||g_n|| \neq 0$

Proof: Axiom 1.

 $\langle 1 \rangle 4$. For $n \in \mathbb{Z}_+$, define $f_n \in \mathcal{C}([0,1])$ by $f_n = g_n / \|g_n\|$

 $\langle 1 \rangle 5$. For all n, $||f_n|| = 1$

Proof: Axiom 2.

 $\langle 1 \rangle 6$. (f_n) does not converge under $\| \|$

 $\langle 1 \rangle 7$. (f_n) converges pointwise to 0.

 $\langle 1 \rangle 8$. This is a contradiction.

Definition 15.1.11 (Equivalence of Norms). Let $\| \|_1$ and $\| \|_2$ be two norms on the same vector space V. Then the norms are *equivalent* if and only if, for any sequence (x_n) in V and $l \in V$, we have that (x_n) converges to l under $\| \|_1$ if and only if (x_n) converges to l under $\| \|_2$.

Theorem 15.1.12. Let $\| \|_1$ and $\| \|_2$ be two norms on the same vector space E over K. Then $\| \|_1$ and $\| \|_2$ are equivalent if and only if there exist positive real numbers α and β such that, for all $x \in E$,

$$\alpha ||x||_1 \le ||x||_2 \le \beta ||x||_1$$
.

- $\langle 1 \rangle 1$. If $\| \|_1$ and $\| \|_2$ are equivalent then there exist positive real numbers α and β such that, for all $x \in E$, $\alpha \|x\|_1 \leq \|x\|_2 \leq \beta \|x\|_1$.
 - $\langle 2 \rangle 1$. Assume: $\| \|_1$ and $\| \|_2$ are equivalent.
 - $\langle 2 \rangle 2$. There exists $\alpha > 0$ such that, for all $x \in E$, we have $\alpha ||x||_1 \leq ||x||_2$
 - $\langle 3 \rangle 1$. Assume: for a contradiction there is no $\alpha > 0$ such that, for all $x \in E$, we have $\alpha ||x||_1 \le ||x||_2$.
 - $\langle 3 \rangle 2$. For all $n \in \mathbb{Z}_+$, PICK $x_n \in E$ such that $1/n ||x_n||_1 > ||x||_2$
 - $\langle 3 \rangle 3$. For all $n \in \mathbb{Z}_+$, Let:

$$y_n = \frac{1}{\sqrt{n}} \frac{x_n}{\|x_n\|_2}$$

- $\langle 3 \rangle 4$. (y_n) converges to 0 under $\| \|_2$
- $\langle 3 \rangle 5.$ (y_n) converges to 0 under $\| \|_1$
- $\langle 3 \rangle 6$. For all $n \in \mathbb{Z}_+$, we have $||y_n|| > \sqrt{n}$
- $\langle 3 \rangle 7$. This is a contradiction.
- $\langle 2 \rangle$ 3. There exists $\beta > 0$ such that, for all $x \in E$, we have $||x||_2 \le \beta ||x||_1$ PROOF: Similar.

- $\langle 1 \rangle 2$. If there exist positive real numbers α and β such that, for all $x \in E$, $\alpha \|x\|_1 \leq \|x\|_2 \leq \beta \|x\|_1$, then $\| \cdot \|_1$ and $\| \cdot \|_2$ are equivalent.
 - $\langle 2 \rangle 1$. Assume: α and β are positive reals with $\forall x \in E.\alpha ||x||_1 \leq ||x||_2 \leq \beta ||x||_1$.
 - $\langle 2 \rangle 2$. Let (x_n) be a sequence in E and $l \in E$
 - $\langle 2 \rangle 3$. If (x_n) converges to l under $\| \|_1$ then (x_n) converges to l under $\| \|_2$.
 - $\langle 3 \rangle 1$. Assume: (x_n) converges to l under $\| \|_1$
 - $\langle 3 \rangle 2$. Let: $\epsilon > 0$
 - $\langle 3 \rangle 3$. Pick N such that $\forall n \geq N . ||x_n l||_1 < \epsilon/\beta$
 - $\langle 3 \rangle 4. \ \forall n \geq N. ||x_n l||_2 < \epsilon$
 - $\langle 2 \rangle 4$. If (x_n) converges to l under $|| ||_2$ then (x_n) converges to l under $|| ||_1$. PROOF: Similar.

Theorem 15.1.13. Any two norms on a finite dimensional vector space are equivalent.

Proof:

- $\langle 1 \rangle 1$. Let: V be a finite dimensional vector space over K.
- $\langle 1 \rangle 2$. Assume: w.l.o.g. dim V > 0
- $\langle 1 \rangle 3$. PICK a basis $\{e_1, \ldots, e_n\}$ for V.
- $\langle 1 \rangle 4$. Let: $\| \|_0 : V \to \mathbb{R}$ be the function: $\| \alpha_1 e_1 + \dots + \alpha_n e_n \|_0 = |\alpha_1| + \dots + |\alpha_n|$.
- $\langle 1 \rangle 5$. $\| \|_0$ is a norm.
 - $\langle 2 \rangle 1$. If $||v||_0 = 0$ then v = 0

PROOF: If $|\alpha_1| + \dots + |\alpha_n| = 0$ then $\alpha_1 = \dots = \alpha_n = 0$ so $\alpha_1 e_1 + \dots + \alpha_n e_n = 0$

 $\langle 2 \rangle 2$. $\|\lambda v\|_0 = |\lambda| \|v\|_0$

Proof:

$$\|\lambda(\alpha_1 e_1 + \dots + \alpha_n e_n)\|_0 = \|\lambda \alpha_1 e_1 + \dots + \lambda \alpha_n e_n\|_0$$

$$= |\lambda \alpha_1| + \dots + |\lambda \alpha_n| \qquad (\langle 1 \rangle 4)$$

$$= |\lambda|(|\alpha_1| + \dots + |\alpha_n|)$$

$$= |\lambda|\|\alpha_1 e_1 + \dots + \alpha_n e_n\|_0 \qquad (\langle 1 \rangle 4)$$

 $\langle 2 \rangle 3. \|u + v\|_0 \le \|u\|_0 + \|v\|_0$

Proof:

$$\|(\alpha_1 e_1 + \dots + \alpha_n e_n) + (\beta_1 e_1 + \dots + \beta_n e_n)\| = |\alpha_1 + \beta_1| + \dots + |\alpha_n + \beta_n|$$

$$\leq |\alpha_1| + \dots + |\alpha_n| + |\beta_1| + \dots + |\beta_n|$$

$$= \|\alpha_1 e_1 + \dots + \alpha_n e_n\|_0 + \|\beta_1 e_1 + \dots + \beta_n e_n\|_0$$

- $\langle 1 \rangle 6$. Any norm on V is equivalent to $\| \|_0$.
 - $\langle 2 \rangle 1$. Let: $\| \|$ be any norm on V.
 - $\langle 2 \rangle 2$. PICK $\alpha > 0$ such that, for all $\alpha_1, \ldots, \alpha_n \in K$, we have $\|\alpha_1 e_1 + \cdots + \alpha_n e_n\| \ge \alpha(|\alpha_1| + \cdots + |\alpha_n|)$

PROOF: Proposition 15.0.13, $\langle 2 \rangle 1$, $\langle 1 \rangle 3$.

- $\langle 2 \rangle 3$. Let: $\beta = \max(\|e_1\|, \dots, \|e_n\|)$
- $\langle 2 \rangle 4. \ \beta > 0$

PROOF: e_1, \ldots, e_n cannot all be zero by $\langle 1 \rangle 3$.

- $\langle 2 \rangle 5$. For all $x \in V$ we have $\alpha ||x||_0 \le ||x|| \le \beta ||x||_0$
 - $\langle 3 \rangle 1$. Let: $x \in V$
 - $\langle 3 \rangle 2$. $\alpha ||x||_0 \leq ||x||$

Proof: $\langle 1 \rangle 3$, $\langle 1 \rangle 4$, $\langle 2 \rangle 2$.

 $\langle 3 \rangle 3$. $||x|| \leq \beta ||x||_0$

 $\langle 4 \rangle 1$. Let: $x = \alpha_1 e_1 + \cdots + \alpha_n e_n$

 $\langle 4 \rangle 2$. Q.E.D.

Proof:

$$||x|| = ||\alpha_1 e_1 + \dots + \alpha_n e_n|| \qquad (\langle 4 \rangle 1)$$

$$\leq |\alpha_1| ||e_1|| + \dots + |\alpha_n| ||e_n|| \qquad (\langle 2 \rangle 1)$$

$$\leq \beta(|\alpha_1| + \dots + |\alpha_n|) \tag{(2)3}$$

$$=\beta \|x\|_0 \tag{(1)4}$$

 $\langle 2 \rangle 6$. Q.E.D.

PROOF: Theorem 15.1.12, $\langle 1 \rangle 5$, $\langle 2 \rangle 1$, $\langle 2 \rangle 2$, $\langle 2 \rangle 4$, $\langle 2 \rangle 5$.

Definition 15.1.14 (Open Ball). Let V be a normed space over K. Let $x \in V$. Let r > 0. The *open ball* with *centre* x and *radius* r is

$$B(x,r) := \{ y \in V \mid ||y - x|| < r \} .$$

Definition 15.1.15 (Closed Ball). Let V be a normed space over K. Let $x \in V$. Let r > 0. The closed ball with centre x and radius r is

$$\overline{B}(x,r) := \{ y \in V \mid ||y - x|| \le r \}$$
.

Definition 15.1.16 (Sphere). Let V be a normed space over K. Let $x \in V$. Let r > 0. The *sphere* with *centre* x and *radius* r is

$$S(x,r) := \{ y \in V \mid ||y - x|| = r \} .$$

Definition 15.1.17 (Open Set). Let V be a normed space over K. A set $S \subseteq V$ is *open* iff, for all $x \in S$, there exists $\epsilon > 0$ such that $B(x, \epsilon) \subseteq S$.

Proposition 15.1.18. Equivalent norms define the same set of open sets.

- $\langle 1 \rangle 1$. Let: V be a normed space over K.
- $\langle 1 \rangle 2$. Let: $\| \|_1$ and $\| \|_2$ be equivalent norms on V.
- (1)3. PICK reals $\alpha, \beta > 0$ such that, for all $x \in V$, we have $\alpha ||x||_1 \le ||x||_2 \le \beta ||x||_1$
- $\langle 1 \rangle 4$. Let: $S \subseteq V$
- $\langle 1 \rangle 5$. If S is open under $\| \|_1$ then S is open under $\| \|_2$.
 - $\langle 2 \rangle 1$. Assume: S is open under $\| \|_1$.
 - $\langle 2 \rangle 2$. Let: $x \in S$
 - $\langle 2 \rangle 3$. Pick $\epsilon > 0$ such that $\{ y \in V \mid \|x y\|_1 < \epsilon \} \subseteq S$.
 - $\langle 2 \rangle 4$. Let: $\delta = \alpha \epsilon$

$$\langle 2 \rangle$$
5. $\{ y \in V \mid \|x - y\|_2 < \delta \} \subseteq S$
 $\langle 1 \rangle$ 6. If S is open under $\| \ \|_2$ then S is open under $\| \ \|_1$.
PROOF: Similar.

Proposition 15.1.19. Every open ball is open.

PROOF:

- $\langle 1 \rangle 1$. Let: V be a normed space over K.
- $\langle 1 \rangle 2$. Let: $c \in V$ and r > 0Prove: B(c, r) is open.
- $\langle 1 \rangle 3$. Let: $x \in B(c,r)$
- $\langle 1 \rangle 4$. Let: $\epsilon = r ||x c||$ Prove: $B(x, \epsilon) \subseteq B(c, r)$
- $\langle 1 \rangle$ 5. Let: $y \in B(x, \epsilon)$ Prove: $y \in B(c, r)$
- $\langle 1 \rangle 6$. ||y c|| < r

Proof:

$$||y-c|| \le ||y-x|| + ||x-c||$$
 (Triangle Inequality)
 $< \epsilon + ||x-c||$ ($\langle 1 \rangle 5$)
 $= r$ ($\langle 1 \rangle 4$)

Proposition 15.1.20. Let Ω be a closed bounded set in \mathbb{R}^n . Let $f \in \mathcal{C}(\Omega)$. Then $U = \{g \in \mathcal{C}(\Omega) \mid \forall x \in \Omega. g(x) < f(x)\}$ is open.

Proof:

- $\langle 1 \rangle 1$. Let: $g \in U$
- $\langle 1 \rangle 2$. Let: $\epsilon = \max_{x \in \Omega} (f(x) g(x))$ Prove: $B(g, \epsilon) \subseteq S$

 $\langle 1 \rangle 3. \ \epsilon > 0$

 $\langle 1 \rangle 4$. Let: $h \in B(g, \epsilon/2)$

Prove: $h \in S$

- $\langle 1 \rangle 5$. Let: $x \in \Omega$
- $\langle 1 \rangle 6. \ h(x) < f(x)$

Proof:

$$h(x) \le g(x) + \epsilon/2 \tag{\langle 1 \rangle 4}$$

$$\langle g(x) + \epsilon \rangle$$
 (\langle 1\rangle 3)

$$\leq f(x)$$
 $(\langle 1 \rangle 2)$

Proposition 15.1.21. Let Ω be a closed bounded set in \mathbb{R}^n . Let $f \in \mathcal{C}(\Omega)$. Then $U = \{g \in \mathcal{C}(\Omega) \mid \forall x \in \Omega. g(x) > f(x)\}$ is open.

PROOF: Given $g \in U$, let $\epsilon = \max_x (g(x) - f(x))/2$. Then $B(g, \epsilon) \subseteq U$. \square

Proposition 15.1.22. Let Ω be a closed bounded set in \mathbb{R}^n . Let $f \in \mathcal{C}(\Omega)$ be such that f(x) > 0 for all $x \in \Omega$. Then $U = \{g \in \mathcal{C}(\Omega) \mid \forall x \in \Omega. |g(x)| < f(x)\}$ is open.

PROOF: Given $g \in U$, let $\epsilon = \max_x (f(x) - |g(x)|)/2$. Then $B(g, \epsilon) \subseteq U$. \square

Proposition 15.1.23. Let Ω be a closed bounded set in \mathbb{R}^n . Let $f \in \mathcal{C}(\Omega)$ be such that f(x) > 0 for all $x \in \Omega$. Then $U = \{g \in \mathcal{C}(\Omega) \mid \forall x \in \Omega. |g(x)| > f(x)\}$ is open.

PROOF: Given $g \in U$, let $\epsilon = \max_{x} (|g(x)| - f(x))/2$. Then $B(g, \epsilon) \subseteq U$. \square

Proposition 15.1.24. The union of a set of open sets is open.

Proof:

- $\langle 1 \rangle 1$. Let: V be a normed space over K.
- $\langle 1 \rangle 2$. Let: \mathcal{U} be a set of open sets in V.
- $\langle 1 \rangle 3$. Let: $x \in \bigcup \mathcal{U}$
- $\langle 1 \rangle 4$. PICK $U \in \mathcal{U}$ such that $x \in U$.
- $\langle 1 \rangle 5$. Pick $\epsilon > 0$ such that $B(x, \epsilon) \subseteq U$
- $\langle 1 \rangle 6. \ B(x, \epsilon) \subseteq \bigcup \mathcal{U}$

Proposition 15.1.25. The intersection of two open sets is open.

PROOF

- $\langle 1 \rangle 1$. Let: V be a normed space over K.
- $\langle 1 \rangle 2$. Let: U_1 and U_2 be open sets in V.
- $\langle 1 \rangle 3$. Let: $x \in U_1 \cap U_2$
- $\langle 1 \rangle 4$. Pick $\epsilon_1 > 0$ such that $B(x, \epsilon_1) \subseteq U_1$
- $\langle 1 \rangle 5$. Pick $\epsilon_2 > 0$ such that $B(x, \epsilon_2) \subseteq U_2$
- $\langle 1 \rangle 6$. Let: $\epsilon = \min(\epsilon_1, \epsilon_2)$
- $\langle 1 \rangle 7. \ B(x,\epsilon) \subseteq U_1 \cap U_2$

Proposition 15.1.26. In any normed space, \emptyset is open.

Proof: Vacuous.

Proposition 15.1.27. In any normed space V, the whole space V is open.

PROOF: For any $x \in V$ we have $B(x,1) \subseteq V$. \square

Definition 15.1.28 (Closed Set). Let V be a normed space over K. A set $S \subseteq V$ is *closed* iff V - S is open.

Proposition 15.1.29. Every closed ball is closed.

- $\langle 1 \rangle 1$. Let: V be a normed space over K.
- $\begin{array}{ll} \langle 1 \rangle 2. \ \ \mathrm{Let:} \ \ c \in V \ \ \mathrm{and} \ \ r > 0 \\ & \mathrm{Prove:} \ \ \overline{B}(c,r) \ \mathrm{is} \ \mathrm{closed}. \end{array}$
- $\langle 1 \rangle 3$. Let: $x \in V \overline{B}(c, r)$
- $\langle 1 \rangle 4$. Let: $\epsilon = ||x c|| r$ Prove: $B(x, \epsilon) \subseteq V - \overline{B}(c, r)$

$$\begin{array}{l} \langle 1 \rangle 5. \ \epsilon > 0 \\ \text{PROOF: Since } \|x-c\| > r \text{ by } \langle 1 \rangle 3. \\ \langle 1 \rangle 6. \ \text{Let: } y \in B(x,\epsilon) \\ \langle 1 \rangle 7. \ \|y-c\| > r \\ \text{PROOF: } \\ \|y-c\| \geq \|x-c\| - \|x-y\| \\ & > \|x-c\| - \epsilon \\ & = r \end{array} \qquad \text{(Triangle Inequality)}$$

Proposition 15.1.30. The intersection of a set of closed sets is closed.

PROOF: From Proposition 15.1.24.

Proposition 15.1.31. The union of two closed sets is closed.

Proof: From Proposition 15.1.25. \square

Proposition 15.1.32. Every sphere is closed.

PROOF: $S(c,r) = \overline{B}(c,r) - B(c,r)$.

Proposition 15.1.33. Let Ω be a closed bounded set in \mathbb{R}^n . Let $f \in \mathcal{C}(\Omega)$. Then $\{g \in \mathcal{C}(\Omega) \mid \forall x \in \Omega. g(x) \leq f(x)\}$ is closed.

PROOF: It is $\mathcal{C}(\Omega) - \{g \mid \forall x \in \Omega. g(x) > f(x)\}.$

Proposition 15.1.34. Let Ω be a closed bounded set in \mathbb{R}^n . Let $f \in \mathcal{C}(\Omega)$. Then $\{g \in \mathcal{C}(\Omega) \mid \forall x \in \Omega. g(x) \geq f(x)\}$ is closed.

PROOF: It is $\mathcal{C}(\Omega) - \{g \mid \forall x \in \Omega. g(x) < f(x)\}.$

Proposition 15.1.35. Let Ω be a closed bounded set in \mathbb{R}^n . Let $f \in \mathcal{C}(\Omega)$. Then $\{g \in \mathcal{C}(\Omega) \mid \forall x \in \Omega. | g(x)| \leq f(x)\}$ is closed.

PROOF: It is $\mathcal{C}(\Omega) - \{g \mid \forall x \in \Omega . |g(x)| > f(x)\}.$

Proposition 15.1.36. Let Ω be a closed bounded set in \mathbb{R}^n . Let $f \in \mathcal{C}(\Omega)$. Then $\{g \in \mathcal{C}(\Omega) \mid \forall x \in \Omega. | g(x)| \geq f(x)\}$ is closed.

PROOF: It is $C(\Omega) - \{g \mid \forall x \in \Omega . |g(x)| < f(x)\}.$

Proposition 15.1.37. Let Ω be a closed bounded set in \mathbb{R}^n . Let $x_0 \in \Omega$ and $\lambda \in \mathbb{C}$. Then $C = \{g \in \mathcal{C}(\Omega) \mid g(x_0) = \lambda\}$ is closed.

PROOF: Given $g \in \mathcal{C}(\Omega) - C$, let $\epsilon = |g(x_0) - \lambda|/2$. Then $B(g, \epsilon) \subseteq \mathcal{C}(\Omega) - C$. \square

Proposition 15.1.38. In any normed space V, we have \emptyset is closed.

PROOF: Since $V - \emptyset = V$ is open. \square

Proposition 15.1.39. In any normed space V, the whole space V is closed.

PROOF: Since $V - V = \emptyset$ is open. \square

Theorem 15.1.40. Let V be a normed space over K. Let S be a subset of V. Then S is closed if and only if, for any sequence (x_n) in S, if $x_n \to l$ as $n \to \infty$ then $l \in S$.

Proof:

- $\langle 1 \rangle 1$. If S is closed then, for any sequence (x_n) in S, if $x_n \to l$ as $n \to \infty$ then $l \in S$.
 - $\langle 2 \rangle 1$. Assume: S is closed.
 - $\langle 2 \rangle 2$. Let: (x_n) be a sequence in S.
 - $\langle 2 \rangle 3$. Assume: $x_n \to l$ as $n \to \infty$.
 - $\langle 2 \rangle 4$. Assume: for a contradiction $l \notin S$.
 - $\langle 2 \rangle$ 5. Pick $\epsilon > 0$ such that $B(l, \epsilon) \subseteq V S$
 - $\langle 2 \rangle 6$. Pick N such that $\forall n \geq N.x_n \in B(l, \epsilon)$
 - $\langle 2 \rangle 7. \ x_N \in V S$
 - $\langle 2 \rangle 8$. This contradicts $\langle 2 \rangle 2$.
- $\langle 1 \rangle 2$. If, for any sequence (x_n) in S, if $x_n \to l$ as $n \to \infty$ then $l \in S$, then S is closed.
 - $\langle 2 \rangle 1$. Assume: for any sequence (x_n) in S, if $x_n \to l$ as $n \to \infty$ then $l \in S$.
 - $\langle 2 \rangle 2$. Let: $x \in V S$
 - $\langle 2 \rangle 3$. Assume: for a contradiction there is no $\epsilon > 0$ such that $B(x, \epsilon) \subseteq V S$.
 - $\langle 2 \rangle 4$. For $n \in \mathbb{Z}_+$, Pick $x_n \in B(x, 1/n) \cap S$
 - $\langle 2 \rangle 5. \ x_n \to x \text{ as } n \to \infty$
 - $\langle 2 \rangle 6. \ x \in S$
 - $\langle 2 \rangle 7$. This contradicts $\langle 2 \rangle 2$.

Definition 15.1.41 (Closure). Let V be a normed space over K. Let S be a subset of V. The *closure* of S, $\operatorname{cl} S$, is the intersection of the set of closed sets that include S.

Proposition 15.1.42. Let V be a normed space over K. Let S be a subset of V. Then the closure of S is the smallest closed set that includes S.

Proof: Proposition 15.1.30. \square

Theorem 15.1.43. Let V be a normed space over K. Let S be a subset of V. Then

$$\operatorname{cl} S = \{ l \in V \mid \exists \text{ a sequence } (x_n) \text{ in } S.x_n \to l \text{ as } n \to \infty \} .$$

Proof:

- $\langle 1 \rangle 1$. For all $l \in \operatorname{cl} S$, there exists a sequence (x_n) in S such that $x_n \to l$ as $n \to \infty$.
 - $\langle 2 \rangle 1$. Let: $l \in \operatorname{cl} S$
 - $\langle 2 \rangle 2$. For $n \in \mathbb{Z}_+$, pick $x_n \in B(l, 1/n) \cap S$

PROOF: There must be such an x_n otherwise S - B(l, 1/n) would be a smaller closed set that includes S.

 $\langle 2 \rangle 3. \ x_n \to l \text{ as } n \to \infty$

 $\langle 1 \rangle 2$. For any sequence (x_n) in S, if $x_n \to l$ as $n \to \infty$ then $l \in \operatorname{cl} S$.

PROOF: Theorem 15.1.40.

Definition 15.1.44 (Dense). Let V be a normed space over K. Let $S \subseteq V$. Then S is dense if and only if cl S = V.

Theorem 15.1.45 (Weierstrass Approximation Theorem). Let a and b be real numbers with a < b. In C([a,b]), the set of polynomials is dense.

PROOF:TODO

Proposition 15.1.46. *Let* $p \ge 1$. *The set of all sequences that have only finitely* many non-zero terms is dense in l^p .

Proof:

 $\langle 1 \rangle 1$. Let: $(z_n) \in l^p$

 $\langle 1 \rangle 2$. Let: $\epsilon > 0$

PROVE: There exists a sequence (x_n) with only finitely many non-zero terms such that $(\sum_{n=1}^{\infty}|z_n-x_n|^p)^{1/p}<\epsilon$ $\langle 1\rangle 3$. PICK N such that $|\sum_{n=1}^{\infty}|z_n|^p-\sum_{n=1}^{N}|z_n|^p|<\epsilon^p$ $\langle 1\rangle 4$. Let: (x_n) be the sequence that agrees with (z_n) up to term N, and then

zeros after that. $\langle 1 \rangle$ 5. $(\sum_{n=1}^{\infty} |z_n - x_n|^p)^{1/p} < \epsilon$

Proof:

$$\left(\sum_{n=1}^{\infty} |z_n - x_n|^p\right)^{1/p} = \left(\sum_{n=N+1}^{\infty} |z_n|^p\right)^{1/p}$$

$$< \epsilon$$

$$(\langle 1 \rangle 4)$$

Theorem 15.1.47. Let V be a normed space over K. Let $S \subseteq V$. Then the following are equivalent.

- 1. S is dense.
- 2. For all $l \in V$, there exists a sequence (x_n) in S such that $x_n \to l$ as
- 3. Every nonempty open subset of V intersects S.

Proof:

 $\langle 1 \rangle 1$. $1 \Leftrightarrow 2$

PROOF: Theorem 15.1.43.

- $\langle 1 \rangle 2. \ 1 \Rightarrow 3$
 - $\langle 2 \rangle 1$. Assume: S is dense.
 - $\langle 2 \rangle 2$. Let: U be a nonempty open subset of V.
 - $\langle 2 \rangle 3$. X U does not include S.

```
PROOF: Lest we have \operatorname{cl} S \subseteq X - U. \langle 2 \rangle 4. U intersects S. \langle 1 \rangle 3. 3 \Rightarrow 1 \langle 2 \rangle 1. Assume: Every nonempty subset of V intersects S. \langle 2 \rangle 2. Every closed proper subset of V does not include S. \langle 2 \rangle 3. \operatorname{cl} S = V
```

Definition 15.1.48 (Compact). Let V be a normed space over K and $S \subseteq V$. Then S is *compact* if and only if every sequence in S has a convergent subsequence whose limit is in S.

Proposition 15.1.49. In K^n , a set is compact if and only if it is bounded and closed.

PROOF: TODO

Definition 15.1.50 (Bounded). Let V be a normed space over K and $S \subseteq V$. Then S is bounded iff there exists r > 0 such that $V \subseteq B(0, r)$.

Theorem 15.1.51. Every compact set is closed and bounded.

```
Proof:
\langle 1 \rangle 1. Let: V be a normed space over K.
\langle 1 \rangle 2. Let: S \subseteq V be compact.
\langle 1 \rangle 3. S is closed.
    \langle 2 \rangle 1. Let: (x_n) be a sequence in S that converges to l
    \langle 2 \rangle 2. PICK a sequence (x_{n_r}) that converges to x \in S
       Proof: \langle 1 \rangle 2, \langle 2 \rangle 1
    \langle 2 \rangle 3. \ x_{n_r} \to l \text{ as } n \to \infty
       Proof: \langle 2 \rangle 1, \langle 2 \rangle 2
    \langle 2 \rangle 4. \ l = x
       Proof: Proposition 15.1.2.
    \langle 2 \rangle 5. \ l \in S
       Proof: \langle 2 \rangle 2, \langle 2 \rangle 4
    \langle 2 \rangle 6. Q.E.D.
       Proof: Theorem 15.1.40.
\langle 1 \rangle 4. S is bounded.
    \langle 2 \rangle 1. Assume: for a contradiction S is unbounded.
    \langle 2 \rangle 2. For n \in \mathbb{Z}_+, PICK x_n \in S - B(0, n)
    \langle 2 \rangle 3. Pick a convergent subsequence (x_{n_r}) that converges to l, say.
    \langle 2 \rangle 4. Pick N \in \mathbb{Z}_+ such that ||l|| < N
    \langle 2 \rangle5. PICK r such that n_r > N and ||x_{n_r} - l|| < N - ||l||
    \langle 2 \rangle 6. \|x_{n_r}\| < N < n_r
    \langle 2 \rangle 7. This contradicts \langle 2 \rangle 2.
```

Proposition 15.1.52. In C([0,1]), the closed ball $\overline{B}(0,1)$ is closed and bounded but not compact.

PROOF: The sequence of functions (x^n) is in $\overline{B}(0,1)$ but has no convergent subsequence. \square

Theorem 15.1.53 (Riesz's Lemma). Let V be a normed vector space over K. Let X be a closed proper subspace of V. Let $0 < \epsilon < 1$. Then there exists $x \in V$ such that ||x|| = 1 and $\forall y \in X. ||x - y|| \ge \epsilon$.

Proof:

$$\langle 1 \rangle 1$$
. Pick $z \in V - X$

$$\langle 1 \rangle 2$$
. Let: $d = \inf_{x \in X} ||z - x||$

$$\langle 1 \rangle 3. \ d > 0$$

PROOF: Since X is closed, there exists e > 0 such that $B(z,d) \subseteq V - X$ and hence $||z - x|| \ge d$ for all $x \in X$.

 $\langle 1 \rangle 4$. PICK $x_0 \in X$ such that $d \leq ||z - x_0|| \leq d/\epsilon$

PROOF: One exists since d/ϵ is not a lower bound for $\{||z-x|| \mid x \in X\}$.

$$\langle 1 \rangle 5$$
. Let: $x = (z - x_0) / ||z - x_0||$

$$\langle 1 \rangle 6$$
. Let: $y \in X$

$$\langle 1 \rangle 7. \|x - y\| \ge \epsilon$$

Proof:

$$||x - y|| = \left\| \frac{z - x_0}{||z - x_0||} - y \right\|$$

$$= \frac{1}{||z - x_0||} ||z - (x_0 + ||z - x_0||y)||$$

$$\geq \frac{1}{||z - x_0||} d$$

$$\geq \epsilon$$

$$(\langle 1 \rangle 2)$$

$$\geq \epsilon$$

$$(\langle 1 \rangle 4)$$

Theorem 15.1.54. Let V be a normed space over K. Then V is finite dimensional if and only if $\overline{B}(0,1)$ is compact.

- $\langle 1 \rangle 1$. If V is finite dimensional then $\overline{B}(0,1)$ is compact.
 - $\langle 2 \rangle 1$. Assume: V is finite dimensional.
 - $\langle 2 \rangle 2$. Pick a basis $\{e_1, \ldots, e_n\}$
 - $\langle 2 \rangle 3$. Assume: w.l.o.g. $\|\alpha_1 e_1 + \cdots + \alpha_n e_n\| = |\alpha_1| + \cdots + |\alpha_n|$
 - $\langle 2 \rangle 4$. Let: $(\alpha_{k1}e_1 + \cdots + \alpha_{kn}e_n)$ be a sequence in $\overline{B}(0,1)$
 - $\langle 2 \rangle$ 5. PICK a convergent subsequence $(\alpha_{k_r 1})$ of (α_{k1}) , a convergent subsequence $(\alpha_{k'_r} 2)$ of $(\alpha_{k_r 2}), \ldots,$ a convergent subsequence $(\alpha_{k''_r} n)$.
 - $\langle 2 \rangle 6$. $(\alpha_{k_r''1}e_1 + \cdots + \alpha_{k_r''n})$ converges.
- $\langle 1 \rangle 2$. If V is infinite dimensional then $\overline{B}(0,1)$ is not compact.
 - $\langle 2 \rangle 1$. Assume: V is infinite dimensional.
 - $\langle 2 \rangle 2$. Choose a sequence (x_n) with $||x_n|| = 1$ and $||x_m x_n|| \ge 1/2$ for $m \ne n$
 - $\langle 3 \rangle 1$. Assume: x_1, \ldots, x_n satisfy $||x_i|| = 1$ and $||x_i x_j|| \ge 1/2$ for $i \ne j$
 - (3)2. PICK $x_{n+1} \in V$ such that $||x_{n+1}|| = 1$ and for all $y \in \text{span}\{x_1, \dots, x_n\}$ we have $||x_{n+1} y|| \ge 1/2$

```
\langle 4 \rangle 1. span\{x_1, \ldots, x_n\} is closed.
              \langle 5 \rangle 1. Let: S = \operatorname{span}\{x_1, \dots, x_n\}
              \langle 5 \rangle 2. Let: (a_n) be a sequence in S that converges to a \in V
                      Prove: a \in S
              \langle 5 \rangle 3. (a_n) is a Cauchy sequence in V.
              \langle 5 \rangle 4. (a_n) is a Cauchy sequence in S.
              \langle 5 \rangle 5. A finite dimensional normed space is a Banach space.
              \langle 5 \rangle 6. S is complete.
              \langle 5 \rangle 7. \ a \in S
          \langle 4 \rangle 2. span\{x_1, \ldots, x_n\} is a proper subspace of V.
             Proof: \langle 2 \rangle 1
          \langle 4 \rangle3. Q.E.D.
             Proof: Riesz's Lemma.
    \langle 2 \rangle 3. Assume: for a contradiction (x_{n_r}) is a subsequence that converges to l
    \langle 2 \rangle 4. For all r \in \mathbb{N}, we have ||x_{n_r} - l|| + ||x_{n_{r+1}} - l|| \ge 1/2
    \langle 2 \rangle5. This is a contradiction.
```

Proposition 15.1.55. Let V be a normed space. The closure of a subspace of V is a subspace.

```
Proof:
```

```
\langle 1 \rangle 1. Let: U be a subspace of V \langle 1 \rangle 2. Let: x, y \in \operatorname{cl} U and \alpha, \beta \in K \langle 1 \rangle 3. Pick sequences (x_n), (y_n) in U that converge to x and y respectively. \langle 1 \rangle 4. \alpha x_n + \beta y_n \to \alpha x + \beta y as n \to \infty \langle 1 \rangle 5. \alpha x + \beta y \in \operatorname{cl} U
```

15.2 Continuous Linear Mappings

Definition 15.2.1 (Continuous). Let U and V be normed spaces. Let $f: U \to V$ and $x \in U$. Then f is continuous at x iff, for any sequence (x_n) in U, if $x_n \to x$ as $n \to \infty$ then $f(x_n) \to f(x)$ as $n \to \infty$. The function f is continuous iff f is continuous at every point.

Proposition 15.2.2. *Let* V *be a normed space. Then the norm is a continuous function* $V \to \mathbb{R}$.

Proof: From Proposition 15.0.4. \square

Proposition 15.2.3. Let U and V be normed space. Let $f: U \to V$. Then the following are equivalent.

- 1. f is continuous.
- 2. For any open set S in V, we have $f^{-1}(S)$ is open in U.

3. For any closed set C in V, we have $f^{-1}(C)$ is closed in U.

Proposition 15.2.4. Let U and V be normed spaces over K. Let $T: U \to V$ be a linear transformation. If T is continuous at some point, then it is continuous.

Proof:

- $\langle 1 \rangle 1$. Assume: T is continuous at u_0
- $\langle 1 \rangle 2$. Let: $x_n \to l$ as $n \to \infty$ in U
- $\langle 1 \rangle 3$. $x_n l + u_0 \to u_0$ as $n \to \infty$.
- $\langle 1 \rangle 4$. $T(x_n l + u_0) \to T(u_0)$ as $n \to \infty$.
- $\langle 1 \rangle 5$. $T(x_n) T(l) + T(u_0) \to T(u_0)$ as $n \to \infty$.
- $\langle 1 \rangle 6. \ T(x_n) \to T(l) \text{ as } n \to \infty.$

Definition 15.2.5 (Bounded). Let U and V be normed spaces over K. Let $T: U \to V$ be a linear transformation. Then T is bounded iff there exists $\alpha > 0$ such that, for all $x \in U$, we have $||T(x)|| \le \alpha ||x||$.

Theorem 15.2.6. Let U and V be normed spaces over K. Let $T: U \to V$ be a linear transformation. Then T is continuous if and only if it is bounded.

Proof:

- $\langle 1 \rangle 1$. If T is continuous then T is bounded.
 - $\langle 2 \rangle 1$. Assume: T is not bounded.
 - $\langle 2 \rangle 2$. For $n \in \mathbb{Z}_+$, PICK $x_n \in U$ such that $||T(x_n)|| > n||x_n||$.
 - $\langle 2 \rangle 3$. For $n \in \mathbb{Z}_+$, LET:

$$y_n = \frac{x_n}{n||x_n||}$$

- $\langle 2 \rangle 4$. $y_n \to 0$ as $n \to \infty$
- $\langle 2 \rangle 5$. $T(y_n) \not\to 0$ as $n \to \infty$
- $\langle 2 \rangle 6$. T is not continuous.
- $\langle 1 \rangle 2$. If T is bounded then T is continuous.
 - $\langle 2 \rangle 1$. Assume: T is bounded.
 - $\langle 2 \rangle 2$. PICK $\alpha > 0$ such that $\forall x \in U ||T(x)|| \leq \alpha ||x||$.
 - $\langle 2 \rangle 3$. T is continuous at 0.
 - $\langle 3 \rangle 1$. Let: (x_n) be a sequence that converges to 0 in U
 - $\langle 3 \rangle 2$. $T(x_n) \to 0$ as $n \to \infty$

Proof:

$$||T(x_n)|| \le \alpha ||x_n||$$
 $(\langle 2 \rangle 2)$
 $\to 0$ as $n \to \infty$

 $\langle 2 \rangle 4$. T is continuous.

Proof: Proposition 15.2.4.

Proposition 15.2.7. Let U and V be normed spaces over K where U is finite dimensional. Let $T: U \to V$ be a linear transformation. Then T is bounded.

Proof:

- $\langle 1 \rangle 1$. PICK a basis $\{e_1, \ldots, e_n\}$ of unit vectors for U.
- $\langle 1 \rangle 2$. Let: $M = \max(||T(e_1)||, \dots, ||T(e_n)||)$
- $\langle 1 \rangle 3$. Pick C > 0 such that, for all $\alpha_1, \ldots, \alpha_n \in K$, we have $|\alpha_1| + \cdots + |\alpha_n| \leq$ $C\|\alpha_1e_1+\cdots+\alpha_ne_n\|$

PROOF: Theorem 15.1.13.

 $\langle 1 \rangle 4$. Let: $x \in U$

PROVE: $||T(x)|| \le CM||x||$

- $\langle 1 \rangle 5$. Let: $x = \alpha_1 e_1 + \cdots + \alpha_n e_n$
- $\langle 1 \rangle 6$. $||T(x)|| \leq CM||x||$

Proof:

$$||T(x)|| = ||\alpha_1 T(e_1) + \dots + \alpha_n T(e_n)||$$
 (T linear)

$$\leq |\alpha_1||T(e_1)|| + \dots + |\alpha_n||T(e_n)||$$
 (Triangle inequality)

$$\leq M(|\alpha_1| + \dots + |\alpha_n|)$$
 (\langle 1\rangle 2)

$$\leq CM||x||$$
 (\langle 1\rangle 3)

 $(\langle 1 \rangle 3)$

Corollary 15.2.7.1. Let U and V be normed spaces over K where U is finite dimensional. Let $T: U \to V$ be a linear transformation. Then T is continuous.

Proposition 15.2.8. Let U and V be normed spaces over K. Let $T: U \to V$ be a linear transformation. If T is continuous, then T is uniformly continuous.

Proof:

- $\langle 1 \rangle 1$. Assume: T is continuous
- $\langle 1 \rangle 2$. Pick B > 0 such that $\forall x \in U ||T(x)|| \leq B||x||$
- $\langle 1 \rangle 3$. Let: $\epsilon > 0$
- $\langle 1 \rangle 4$. Let: $\delta = \epsilon/B$
- $\langle 1 \rangle 5$. Let: $x, y \in U$
- $\langle 1 \rangle 6$. Assume: $||x y|| < \delta$
- $\langle 1 \rangle 7$. $||T(x) T(y)|| < \epsilon$

Proof:

$$||T(x) - T(y)|| = ||T(x - y)||$$

$$\leq B||x - y||$$

$$< B\delta$$

$$= \epsilon$$

$$(\langle 1 \rangle 2)$$

$$(\langle 1 \rangle 6)$$

$$(\langle 1 \rangle 4)$$

Proposition 15.2.9. Let U and V be normed spaces over K. The set $\mathcal{B}(U,V)$ of all bounded linear maps from U to V forms a subspace of the space of all linear maps from U to V.

- $\langle 1 \rangle 1$. Let: $S, T : U \to V$ be bounded linear maps and $\alpha, \beta \in K$. PROVE: $\alpha S + \beta T$ is bounded.
- $\langle 1 \rangle 2$. PICK B, C > 0 such that $\forall x \in U ||S(x)|| \leq B||x||$ and $||T(x)|| \leq C||x||$
- $\langle 1 \rangle 3. \ \forall x \in U. \|(\alpha S + \beta T)(x)\| \le (|\alpha|B + |\beta|C)\|x\|$

Proposition 15.2.10. Let U and V be normed spaces over K. Define the operator norm $\| \|$ on $\mathcal{B}(U,V)$ by $\|T\| := \sup\{\|T(x)\| \mid x \in U, \|x\| = 1\}$. Then $\| \|$ is a norm on $\mathcal{B}(U,V)$.

Proof:

```
\langle 1 \rangle 1. For all T \in \mathcal{B}(U, V), the set \{ ||T(x)|| \mid x \in U, ||x|| = 1 \} is bounded above.
```

$$\langle 2 \rangle 1$$
. Let: $T \in \mathcal{B}(U, V)$

$$\langle 2 \rangle 2$$
. PICK B such that $\forall x \in U . ||T(x)|| \leq B||x||$.

$$\langle 2 \rangle 3$$
. B is an upper bound for $\{ ||T(x)|| \mid x \in U, ||x|| = 1 \}$.

$$\langle 1 \rangle 2$$
. If $||T|| = 0$ then $T = 0$.

$$\langle 2 \rangle 1$$
. Assume: $||T|| = 0$

$$\langle 2 \rangle 2$$
. Let: $x \in U$

PROVE:
$$T(x) = 0$$

$$\langle 2 \rangle 3$$
. Assume: w.l.o.g. $||x|| \neq 0$

$$\langle 2 \rangle 4$$
. Let: $y = x/||x||$

$$\langle 2 \rangle 5$$
. $||y|| = 1$

$$\langle 2 \rangle 6. \ \|T(y)\| = 0$$

$$\langle 2 \rangle 7$$
. $T(y) = 0$

$$\langle 2 \rangle 8. \ T(x) = 0$$

$$\langle 1 \rangle 3$$
. For all $\lambda \in K$ and $T \in \mathcal{B}(U, V)$, we have $\|\lambda T\| = |\lambda| \|T\|$

$$\langle 2 \rangle 1$$
. Let: $\lambda \in K$ and $T \in \mathcal{B}(U, V)$

$$\langle 2 \rangle 2$$
. $||\lambda T|| = |\lambda|||T||$

Proof:

$$\begin{split} \|\lambda T\| &= \sup\{\|\lambda T(x)\| \mid x \in U, \|x\| = 1\} \\ &= \sup\{|\lambda| \|T(x)\| \mid x \in U, \|x\| = 1\} \\ &= |\lambda| \sup\{\|T(x)\| \mid x \in U, \|x\| = 1\} \\ &= |\lambda| \|T\| \end{split}$$

 $\langle 1 \rangle 4$. For all $S, T \in \mathcal{B}(U, V)$, we have $||S + T|| \le ||S|| + ||T||$.

$$\langle 2 \rangle 1$$
. Let: $S, T \in \mathcal{B}(U, V)$

$$\langle 2 \rangle 2. \|S + T\| \le \|S\| + \|T\|$$

Proof:

$$\begin{split} \|S+T\| &= \sup\{\|S(x)+T(x)\| \mid x \in U, \|x\| = 1\} \\ &\leq \sup\{\|S(x)\| + \|T(x)\| \mid x \in U, \|x\| = 1\} \\ &\leq \sup\{\|S(x)\| \mid x \in U, \|x\| = 1\} + \sup\{\|T(x)\| \mid x \in U, \|x\| = 1\} \\ &= \|S\| + \|T\| \end{split}$$

Proposition 15.2.11. Let U and V be normed spaces. Let $T \in \mathcal{B}(U,V)$. Then ||T|| is the least number such that $\forall u \in U. ||T(u)|| \leq ||T|| ||u||$.

```
\langle 1 \rangle 1. \ \forall u \in U. ||T(u)|| \le ||T|| ||u||
```

$$\langle 2 \rangle 1$$
. Let: $u \in U$

$$\langle 2 \rangle 2$$
. Let: $v = u/||u||$

```
 \begin{array}{l} \langle 2 \rangle 3. \ \|T(v)\| \leq \|T\| \\ \langle 2 \rangle 4. \ \|T(u)\| \leq \|T\| \|u\| \\ \langle 1 \rangle 2. \ \text{If } \alpha \ \text{satisfies} \ \forall u \in U. \|T(u)\| \leq \alpha \|u\|, \ \text{then} \ \|T\| \leq \alpha \\ \langle 2 \rangle 1. \ \text{Assume:} \ \forall u \in U. \|T(u)\| \leq \alpha \|u\| \\ \langle 2 \rangle 2. \ \text{For all} \ x \in U, \ \text{if} \ \|x\| = 1 \ \text{then} \ \|T(x)\| \leq \alpha \\ \langle 2 \rangle 3. \ \|T\| \leq \alpha \\ \hline \square  \end{array}
```

Proposition 15.2.12. Let V be a normed space. Then id_V is a bounded linear function $V \to V$, and $\|id_V\| = 1$.

Proposition 15.2.13. Let U and V be normed spaces. The constant zero function $U \to V$ is a bounded linear transformation with norm 0.

Proposition 15.2.14. Let $N \in \mathbb{N}$. Let $T : \mathbb{C}^N \to \mathbb{C}^N$ be a linear transformation with matrix $A = (a_{ij})$. Then T is bounded and

$$||T|| \le \sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N} |a_{ij}|^2}$$
.

Definition 15.2.15 (Uniform Convergence). Let U and V be normed spaces. Let (T_n) be a sequence in $\mathcal{B}(U,V)$ and $T \in \mathcal{B}(U,V)$. Then (T_n) converges uniformly to T iff (T_n) converges to T under the standard norm defined above.

Theorem 15.2.16. Let U and V be normed spaces. Let $T: U \to V$ be a continuous linear function. Then $\ker T$ is a closed subspace of U.

Proof:

 $\langle 1 \rangle 1$. ker T is a subspace of U

PROOF: If $x, y \in \ker T$ and $\alpha, \beta \in K$ then $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y) = 0$. $\langle 1 \rangle 2$. $\ker T$ is closed.

PROOF: Let (x_n) be a sequence in ker T and $x_n \to l$. Then $T(l) = \lim_{n \to \infty} T(x_n) = 0$.

Theorem 15.2.17. Let U and V be normed spaces. Let W be a closed subspace of U and $T: W \to V$ be a continuous linear mapping. Then the graph $G = \{(x, T(x)) \mid x \in W\}$ is closed in $U \times V$.

- $\langle 1 \rangle 1$. Assume: w.l.o.g. $T \neq 0$
- $\langle 1 \rangle 2$. Let: $(x,y) \in (U \times V) G$, i.e. $y \neq T(x)$
- $\langle 1 \rangle 3$. Let: $\epsilon = ||y T(x)|| > 0$
- $\langle 1 \rangle 4$. Let: $x' \in W$ with $||x x'|| < \epsilon/3||T||$
- $\langle 1 \rangle 5$. Let: $y' \in V$ with $||y y'|| < \epsilon/3$
- $\langle 1 \rangle 6. \ y' \neq T(x')$

Proof:

$$||y' - T(x')|| \ge ||y - T(x)|| - ||y - y'|| - ||T(x) - T(x')||$$

$$> \epsilon/3$$

$$> 0$$

Theorem 15.2.18 (Diagonal Theorem). Let E be a normed space over K. Let (x_{ij}) be an infinite matrix of elements of V. If:

- 1. For all $j \in \mathbb{Z}_+$, we have $x_{ij} \to 0$ as $i \to \infty$;
- 2. Every increasing sequence of positive integers (p_j) has a subsequence (p_{j_r}) such that

$$\sum_{s=1}^{\infty} x_{p_{j_r}p_{j_s}} \to 0 \text{ as } r \to \infty$$

then $x_{ii} \to 0$ as $i \to \infty$.

- $\langle 1 \rangle 1$. Assume: for a contradiction $x_{ii} \not\to 0$ as $i \to \infty$
- $\langle 1 \rangle 2$. PICK $\epsilon > 0$ such that, for all N, there exists $n \geq N$ such that $||x_{nn}|| \geq \epsilon$
- $\langle 1 \rangle 3$. PICK an increasing sequence of integers (p_j) such that $||x_{p_jp_j}|| \geq \epsilon$ for all j.
- $\langle 1 \rangle 4$. PICK a subsequence (q_i) such that $\sum_{j=1}^{\infty} x_{q_i q_j} \to 0$ as $i \to \infty$
- $\langle 1 \rangle$ 5. For all i, we have $x_{q_i q_j} \to 0$ as $j \to \infty$ $\langle 1 \rangle$ 6. For all j, we have $x_{q_i q_j} \to 0$ as $i \to \infty$
- $\langle 1 \rangle 7$. Define a subsequence (r_n) of (q_i) by $r_1 = q_1$ and, for all n, r_{n+1} is the first entry such that $r_{n+1} > r_n$, $||x_{q_i r_n}|| < \epsilon/2^{n+1}$ for all $q_i \ge r_{n+1}$, and $||x_{r_j r_{n+1}}|| < \epsilon/2^{n+2}$ for $j = 1, \ldots, n$.
- $\langle 1 \rangle 8$. $||x_{r_i r_j}|| < \epsilon/2^{j+1}$ for all i, j such that $i \neq j$ $\langle 1 \rangle 9$. PICK a subsequence (s_j) of (r_j) such that $\sum_{j=1}^{\infty} x_{s_i s_j} \to 0$ as $i \to \infty$ $\langle 1 \rangle 10$. For all i we have $||\sum_{j=1}^{\infty} x_{s_i s_j}|| \geq \epsilon/2$

Proof

$$\left\| \sum_{j=1}^{\infty} x_{s_i s_j} \right\| = \left\| x_{s_i s_i} + \sum_{i \neq j} x_{s_i s_j} \right\|$$

$$\geq \left\| \|x_{s_i s_i}\| - \left\| \sum_{i \neq j} x_{s_i s_j} \right\|$$

$$\geq \left\| \|x_{s_i s_i}\| - \sum_{i \neq j} \|x_{s_i s_j}\| \right\|$$

$$\geq \epsilon/2$$

$$(\langle 1 \rangle 2, \langle 1 \rangle 8)$$

 $\langle 1 \rangle 11$. Q.E.D.

PROOF: $\langle 1 \rangle 9$ and $\langle 1 \rangle 10$ form a contradiction.

15.3 Banach Spaces

Definition 15.3.1 (Cauchy Sequence). Let V be a normed space over K. A Cauchy sequence is a sequence of points (x_n) such that, for every $\epsilon > 0$, there exists N such that $\forall m, n \geq N . ||x_m - x_n|| < \epsilon$.

Theorem 15.3.2. Let V be a normed space over K. Let (x_n) be a sequence in V. The following are equivalent.

- 1. (x_n) is Cauchy.
- 2. For every pair of increasing sequences of positive integers (p_n) and (q_n) , we have $||x_{p_n} x_{q_n}|| \to 0$ as $n \to \infty$.
- 3. For every increasing sequence of positive integers (p_n) , we have $||x_{p_n} x_n|| \to 0$ as $n \to \infty$.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: (x_n) is Cauchy.
 - $\langle 2 \rangle 2$. Let: (p_n) and (q_n) are increasing sequences of positive integers.
 - $\langle 2 \rangle 3$. Let: $\epsilon > 0$
 - $\langle 2 \rangle 4$. PICK N such that $\forall m, n \geq N . ||x_m x_n|| < \epsilon$
 - $\langle 2 \rangle$ 5. $\forall n \geq N. ||x_{p_n} x_{q_n}|| < \epsilon$ PROOF: Since $p_n, q_n \geq n \geq N$.
- $\langle 1 \rangle 2. \ 2 \Rightarrow 3$

Proof: Trivial.

- $\langle 1 \rangle 3. \ 2 \Rightarrow 1$
 - $\langle 2 \rangle 1$. Assume: (x_n) is not Cauchy
 - $\langle 2 \rangle 2$. Pick $\epsilon > 0$ such that, for every $N \in \mathbb{Z}_+$, there exist $m_N, n_N \geq N$ such that $||x_{m_N} x_{n_N}|| \geq \epsilon$
 - $\langle 2 \rangle 3$. Assume: w.l.o.g. (m_N) and (n_N) are increasing sequences.
- $\langle 2 \rangle 4$. $||x_{m_N} x_{n_N}|| \not\to 0$ as $N \to \infty$.
- $\langle 1 \rangle 4. \ 3 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: 3
 - $\langle 2 \rangle 2$. Let: (p_n) and (q_n) be increasing sequences of positive integers.
 - $\langle 2 \rangle 3$. Let: $\epsilon > 0$
 - $\langle 2\rangle 4.$ Pick N such that $\forall n\geq N.\|x_{p_n}-x_n\|<\epsilon/2$ and $\forall n\geq N.\|x_{q_n}-x_n\|<\epsilon/2$
- $\langle 2 \rangle 5. \ \forall n \ge N. \|x_{p_n} x_{q_n}\| < \epsilon$

Proposition 15.3.3. Every convergent sequence is Cauchy.

- $\langle 1 \rangle 1$. Let: $x_n \to l$ as $n \to \infty$.
- $\langle 1 \rangle 2$. Let: $\epsilon > 0$
- $\langle 1 \rangle 3$. PICK N such that $\forall n \geq N . ||x_n l|| < \epsilon/2$

 $\langle 1 \rangle 4$. For all $m, n \geq N$ we have $||x_m - x_n|| < \epsilon$.

Proposition 15.3.4. In $\mathcal{P}([0,1])$, let

$$P_n(x) = 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!}$$
.

Then (P_n) is Cauchy but does not converge.

PROOF: It converges to e^x in $\mathcal{C}([0,1])$, therefore it is Cauchy in $\mathcal{C}([0,1])$, hence Cauchy in $\mathcal{P}([0,1])$. Since $e^x \notin \mathcal{P}([0,1])$, it does not converge in that space. \sqcup

Proposition 15.3.5. Let V be a normed space over K. Let (x_n) be a Cauchy sequence in V. Then $(\|x_n\|)$ converges in \mathbb{R} .

Proof:

- $\langle 1 \rangle 1$. ($||x_n||$) is Cauchy.
 - $\langle 2 \rangle 1$. Let: $\epsilon > 0$
 - $\langle 2 \rangle 2$. PICK N such that $\forall m, n \geq N . ||x_m x_n|| < \epsilon$
 - $\langle 2 \rangle 3. \ \forall m, n \geq N. ||x_m|| ||x_n||| < \epsilon$

Proof: Proposition 15.0.4.

 $\langle 1 \rangle 2$. Q.E.D.

PROOF: Since every Cauchy sequence in \mathbb{R} converges.

Proposition 15.3.6. Every Cauchy sequence is bounded.

Proof:

- $\langle 1 \rangle 1$. Let: V be a normed space over K.
- $\langle 1 \rangle 2$. Let: (x_n) be a Cauchy sequence in V.
- $\langle 1 \rangle 3$. PICK N such that $\forall m, n \geq N . ||x_m x_n|| < 1$.
- $\langle 1 \rangle 4$. Let: $B = \max(||x_1||, \dots, ||x_{N-1}||, ||x_N|| + 1)$
- $\langle 1 \rangle 5. \ \forall n. ||x_n|| \le B$

a Banach space iff every Cauchy sequence converges.

Proposition 15.3.8. l^2 is complete.

Proof:

- $\langle 1 \rangle 1$. Let: (a_n) be a Cauchy sequence in l^2 where $a_n = (\alpha_{n1}, \alpha_{n2}, \ldots)$. $\langle 1 \rangle 2$. For all $\epsilon > 0$, there exists $n_0 \in \mathbb{Z}_+$ such that $\forall m, n \geq n_0$. $\sum_{k=1}^{\infty} |\alpha_{mk} \alpha_{mk}| = 1$

Definition 15.3.7 (Banach Space). A normed space V over K is complete or

- $\langle 1 \rangle 3$. For every $k \in \mathbb{Z}_+$ and $\epsilon > 0$, there exists $n_0 \in \mathbb{Z}_+$ such that $\forall m, n \geq 1$ $n_0.|\alpha_{mk}-\alpha_{nk}|<\epsilon.$
- $\langle 1 \rangle 4$. For every $k \in \mathbb{Z}_+$, (α_{nk}) is Cauchy in \mathbb{C} .
- $\langle 1 \rangle 5$. For every $k \in \mathbb{Z}_+$, (α_{nk}) converges in \mathbb{C} .
- $\langle 1 \rangle 6$. For $k \in \mathbb{Z}_+$,

```
Let: \alpha_k = \lim_{n \to \infty} \alpha_{nk}
\langle 1 \rangle 7. Let a be the sequence (\alpha_k)
(1)8. For all \epsilon > 0, there exists n_0 such that \forall n \geq n_0. \sum_{k=1}^{\infty} |\alpha_k - \alpha_{nk}|^2 \leq \epsilon^2.
   PROOF: Letting m \to \infty in \langle 1 \rangle 2.
\langle 1 \rangle 9. \ a \in l^2
    \langle 2 \rangle 1. PICK n_0 such that \forall n \geq n_0. \sum_{k=1}^{\infty} |\alpha_k - \alpha_{nk}|^2 \leq 1
    \langle 2 \rangle 2. \ (\alpha_k - \alpha_{n_0 k}) \in l^2
\langle 2 \rangle 3. \ (\alpha_{n_0 k}) \in l^2
       PROOF: By \langle 1 \rangle 1 since the sequence is a_{n_0}.
    \langle 2 \rangle 4. \ (\alpha_k) \in l^2
       Proof: Proposition 13.0.2.
\langle 1 \rangle 10. \ a_n \to a \text{ as } n \to \infty
   PROOF: By \langle 1 \rangle 8 since ||a - a_n|| = \sqrt{\sum_{k=1}^{\infty} |\alpha_k - \alpha_{nk}|^2}.
Proposition 15.3.9. Let a and b be real numbers with a < b. The space C([a,b])
is complete.
Proof:
\langle 1 \rangle 1. Let: X = [a, b]
\langle 1 \rangle 2. Let: (f_n) be a Cauchy sequence in \mathcal{C}([a,b]).
\langle 1 \rangle 3. For all \epsilon > 0, there exists n_0 such that \forall n, m \geq n_0 . ||f_n - f_m|| < \epsilon.
\langle 1 \rangle 4. For all \epsilon > 0, there exists n_0 such that \forall n, m \geq n_0 . \forall x \in X. | f_n(x) - f_n(x)| = 0
          |f_m(x)| < \epsilon.
\langle 1 \rangle 5. For all x \in [a, b], (f_n(x)) is Cauchy.
\langle 1 \rangle 6. Define f: [a,b] \to \mathbb{C} by f(x) = \lim_{n \to \infty} f_n(x).
\langle 1 \rangle 7. For all \epsilon > 0, there exists n_0 such that \forall n \geq n_0 . \forall x \in X . |f_n(x) - f(x)| < \epsilon
   PROOF: Letting m \to \infty in \langle 1 \rangle 4.
\langle 1 \rangle 8. f is continuous
    \langle 2 \rangle 1. Let: x_0 \in X
    \langle 2 \rangle 2. Let: \epsilon > 0
    \langle 2 \rangle 3. PICK n_0 such that \forall n \geq n_0 . \forall x \in X . |f_n(x) - f(x)| < \epsilon/3
       PROOF: By \langle 1 \rangle 7.
    \langle 2 \rangle 4. Pick \delta > 0 such that \forall x \in X | |x - x_0| < \delta \Rightarrow |f_{n_0}(x) - f_{n_0}(x_0)| < \epsilon/3
       PROOF: Since f_{n_0} is continuous.
    \langle 2 \rangle 5. Let: x \in X
    \langle 2 \rangle 6. Assume: |x - x_0| < \delta
    \langle 2 \rangle 7. |f(x) - f(x_0)| < \epsilon
       Proof:
       |f(x) - f(x_0)| \le |f(x) - f_{n_0}(x)| + |f_{n_0}(x) - f_{n_0}(x_0)| + |f_{n_0}(x_0) - f(x_0)| (Triangle Inequality)
                                 <\epsilon/3+\epsilon/3+\epsilon/3
                                                                                                                                                       (\langle 2 \rangle 3, \langle 2 \rangle 4)
\langle 1 \rangle 9. (f_n) converges to f uniformly.
    Proof: From \langle 1 \rangle 7
```

Definition 15.3.10 (Series). Let V be a normed space over K. A convergent series in V is a sequence (x_n) in V such that $(x_1 + \cdots + x_n)$ is a convergent sequence, in which case we write $\sum_{n=1}^{\infty} x_n$ for its limit.

Definition 15.3.11 (Absolutely Convergent Series). Let V be a normed space over K. An absolutely convergent series in V is a sequence (x_n) such that $\sum_{n=1}^{\infty} \|x_n\| < \infty.$

Proposition 15.3.12. In $\mathcal{P}([0,1])$, the series $\sum_{n=0}^{\infty} x^n/n!$ is absolutely convergent but not convergent.

Proof: Proposition 15.3.4.

Theorem 15.3.13. A normed space is complete if and only if every absolutely convergent series is convergent.

Proof:

- $\langle 1 \rangle 1$. Let: V be a normed space over K.
- $\langle 1 \rangle 2$. If V is complete then every absolutely convergent series is convergent.

 - $\langle 2 \rangle 1$. Assume: V is complete. $\langle 2 \rangle 2$. Let: $\sum_{n=1}^{\infty} a_n$ be absolutely convergent in V. $\langle 2 \rangle 3$. For $n \in \mathbb{Z}_+$, Let: $s_n = \sum_{k=1}^n a_k$
 - $\langle 2 \rangle 4$. (s_n) is Cauchy.
 - $\langle 3 \rangle 1$. Let: $\epsilon > 0$
 - $\langle 3 \rangle$ 2. PICK k such that $\sum_{n=k+1}^{\infty} ||a_n|| < \epsilon$
 - $\langle 3 \rangle 3$. Let: m > n > k
 - $\langle 3 \rangle 4$. $||s_m s_n|| < \epsilon$

$$||s_m - s_n|| = \left\| \sum_{i=n+1}^m a_i \right\|$$
 (\langle 2\rangle 3, \langle 3\rangle 3)
$$\leq \sum_{i=s+1}^m ||a_i||$$
 (Triangle inequality)
$$\leq \sum_{i=k+1}^\infty ||a_i||$$

$$< \epsilon$$
 (\langle 3\rangle 2, \langle 3\rangle 3)

- $\langle 2 \rangle 5$. (s_n) converges.
- $\langle 1 \rangle 3$. If every absolutely convergent series is convergent then V is complete.
 - $\langle 2 \rangle 1$. Assume: Every absolutely convergent series in V is convergent.
 - $\langle 2 \rangle 2$. Let: (a_n) be a Cauchy sequence in V.
 - $\langle 2 \rangle 3$. PICK a strictly increasing sequence of positive integers (p_n) such that $\forall k. \forall m, n \ge p_k. ||x_m - x_n|| < 2^{-k}.$
 - $\langle 2 \rangle 4$. $\sum_{k=1}^{\infty} (x_{p_{k+1}} x_{p_k})$ is absolutely convergent.

$$\sum_{k=1}^{\infty} \|x_{p_{k+1}} - x_{p_k}\| < \sum_{k=1}^{\infty} 2^{-k}$$
 (\langle 2\rangle 3)

$$\langle 2 \rangle 5$$
. $\sum_{k=1}^{\infty} (x_{p_{k+1}} - x_{p_k})$ is convergent. PROOF: $\langle 2 \rangle 1$, $\langle 2 \rangle 5$

$$\langle 2 \rangle 6$$
. Let: $s = \sum_{k=1}^{\infty} (x_{p_{k+1}} - x_{p_k})$

$$\langle 2 \rangle 7$$
. $x_{p_k} \to s + x_{p_1}$ as $k \to \infty$.

PROOF:
$$\langle 2 \rangle 1$$
, $\langle 2 \rangle 3$
 $\langle 2 \rangle 6$. Let: $s = \sum_{k=1}^{\infty} (x_{p_{k+1}} - x_{p_k})$
 $\langle 2 \rangle 7$. $x_{p_k} \to s + x_{p_1}$ as $k \to \infty$.
 $\langle 3 \rangle 1$. $\sum_{i=1}^{k} (x_{p_{i+1}} - x_{p_i}) \to s$ as $k \to \infty$
PROOF: $\langle 2 \rangle 6$

$$\langle 3 \rangle 2$$
. $x_{p_{k+1}} - x_{p_1} \to s \text{ as } k \to \infty$

$$\langle 2 \rangle 8. \ x_n \to s + x_{p_1} \text{ as } k \to \infty.$$

Proof:

 $\langle 3 \rangle 1$. Let: $\epsilon > 0$

 $\langle 3 \rangle 2$. PICK N such that $\forall k \geq N . ||x_{p_k} - (s + x_{p_1})|| < \epsilon/2$ and $\forall m, n \geq 1$ $N.||x_m - x_n|| < \epsilon/2$

Proof: $\langle 2 \rangle 2$, $\langle 2 \rangle 7$

 $\langle 3 \rangle 3. \ \forall n \geq N. \|x_n - (s + x_{p_1})\| < \epsilon$

Theorem 15.3.14. A closed vector subspace of a Banach space is a Banach space.

Proof:

 $\langle 1 \rangle 1$. Let: V be a Banach space over K.

 $\langle 1 \rangle 2$. Let: U be a closed vector subspace of V.

 $\langle 1 \rangle 3$. Let: (a_n) be a Cauchy sequence in U.

 $\langle 1 \rangle 4$. (a_n) is a Cauchy sequence in V.

 $\langle 1 \rangle 5$. Let: $l = \lim_{n \to \infty} a_n$

 $\langle 1 \rangle 6. \ l \in U$

PROOF: Theorem 15.1.40.

$$\langle 1 \rangle 7$$
. $a_n \to l$ as $n \to \infty$ in U .

Definition 15.3.15 (Completion). Let V be a normed space over K. A completion of V consists of a normed space W over K and an injection $\phi: V \to W$ such that:

1.
$$\forall x, y \in V. \forall \alpha, \beta \in K. \phi(\alpha x + \beta y) = \alpha \phi(x) + \beta \phi(y)$$

2.
$$\forall x \in V . ||\phi(x)|| = ||x||$$

- 3. $\phi(V)$ is dense in W.
- 4. W is complete.

Proposition 15.3.16. Every normed space has a completion.

- $\langle 1 \rangle 1$. Let: V be a normed space over K.
- $\langle 1 \rangle 2$. Let us say two Cauchy sequences (x_n) , (y_n) ore equivalent iff $x_n y_n \to 0$ as $n \to \infty$.
- $\langle 1 \rangle 3$. Equivalence is an equivalence relation on the set of Cauchy sequences.
- $\langle 1 \rangle 4$. Let: W be the set of Cauchy sequences in V quotiented by equivalence.
- $\langle 1 \rangle$ 5. Define addition and multiplication on W by

$$[(x_n)] + [(y_n)] = [(x_n + y_n)]$$

 $\lambda[(x_n)] = [(\lambda x_n)]$

- $\langle 1 \rangle 6$. Define a norm on W by $||[(x_n)]|| = \lim_{n \to \infty} ||x_n||$
- $\langle 1 \rangle 7$. Define $\phi : V \to W$ by $\phi(v) = [(v)]$.
- $\langle 1 \rangle 8$. ϕ is injective.
- $\langle 1 \rangle 9. \ \forall x, y \in V. \forall \alpha, \beta \in K. \phi(\alpha x + \beta y) = \alpha \phi(x) + \beta \phi(y)$
- $\langle 1 \rangle 10. \ \forall x \in V. \| \phi(x) \| = \| x \|$
- $\langle 1 \rangle 11$. $\phi(V)$ is dense in W.
 - $\langle 2 \rangle 1$. Let: $[(a_n)] \in W$ and $\epsilon > 0$.

PROVE: $B([(a_n)], \epsilon)$ intersects $\phi(V)$.

- $\langle 2 \rangle 2$. PICK N such that $\forall m, n \geq N . ||a_m a_n|| < \epsilon/2$
- $\langle 2 \rangle 3. \ \phi(a_N) \in B([(a_n)], \epsilon)$

Proof:

$$\|[(a_n)] - \phi(a_N)\| = \lim_{n \to \infty} \|a_n - a_N\|$$

$$\leq \epsilon/2$$

$$< \epsilon$$

$$(\langle 2 \rangle 2)$$

- $\langle 1 \rangle 12$. W is complete.
 - $\langle 2 \rangle 1$. Let: (X_n) be a Cauchy sequence in W.
 - $\langle 2 \rangle 2$. For $n \in \mathbb{Z}_+$, PICK $x_n \in V$ such that

$$\|\phi(x_n) - X_n\| < 1/n.$$

- $\langle 2 \rangle 3$. (x_n) is Cauchy in V.
 - $\langle 3 \rangle 1$. Let: $\epsilon > 0$
 - $\langle 3 \rangle 2$. PICK N such that $\forall m, n \geq N . ||X_n X_m|| < \epsilon/3$ and $1/N < \epsilon/3$
 - $\langle 3 \rangle 3$. Let: $m, n \geq N$
 - $\langle 3 \rangle 4$. $||x_m x_n|| < \epsilon$

Proof:

$$||x_m - x_n|| = ||\phi(x_m) - \phi(x_n)||$$

$$\leq ||\phi(x_m) - X_m|| + ||X_m - X_n|| + ||X_n - \phi(x_n)||$$

$$< ||X_m - X_n|| + 1/m + 1/n$$

$$< \epsilon$$

- $\langle 2 \rangle 4$. Let: $X = [(x_n)]$
- $\langle 2 \rangle 5. \ X_n \to X \text{ as } n \to \infty$

Proof:

$$||X_n - X|| \le ||X_n - \phi(x_n)|| + ||\phi(x_n) - X||$$

 $< ||\phi(x_n) - X|| + 1/n$
 $\to 0$ as $n \to \infty$

Proposition 15.3.17. Let U be a normed space and V a Banach space. Then $\mathcal{B}(U,V)$ is a Banach space.

Proof:

- $\langle 1 \rangle 1$. Let: (T_n) be a Cauchy sequence in $\mathcal{B}(U,V)$
- $\langle 1 \rangle 2$. For all $u \in U$, $(T_n(u))$ is a Cauchy sequence in V.
 - $\langle 2 \rangle 1$. Let: $u \in U$
 - $\langle 2 \rangle 2$. Let: $\epsilon > 0$

PROVE:
$$\exists N. \forall m, n \geq N. ||T_m(u) - T_n(u)|| < \epsilon$$

- $\langle 2 \rangle 3$. Assume: w.l.o.g. $u \neq 0$
- $\langle 2 \rangle 4$. PICK N such that $\forall m, n \geq N . ||T_m T_n|| < \epsilon / ||u||$
- $\langle 2 \rangle 5$. Let: $m, n \geq N$
- $\langle 2 \rangle 6$. $||T_m(u) T_n(u)|| < \epsilon$

Proof:

$$||T_m(u) - T_n(u)|| \le ||T_m - T_n|| ||u||$$
 (Proposition 15.2.11)

- $\langle 1 \rangle 3$. Define $T: U \to V$ by $T(u) = \lim_{n \to \infty} T_n(u)$
- $\langle 1 \rangle 4. \ T \in \mathcal{B}(U, V)$
 - $\langle 2 \rangle 1$. For all $x, y \in U$ and $\alpha, \beta \in K$ we have $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$
 - $\langle 3 \rangle 1$. Let: $x, y \in U$
 - $\langle 3 \rangle 2$. Let: $\alpha, \beta \in K$
 - $\langle 3 \rangle 3. \ T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$

Proof:

$$T(\alpha x + \beta y) = \lim_{n \to \infty} T_n(\alpha x + \beta y)$$
$$= \lim_{n \to \infty} (\alpha T_n(x) + \beta T_n(y))$$
$$= \alpha T(x) + \beta T(y)$$

- $\langle 2 \rangle 2$. T is bounded.
 - $\langle 3 \rangle 1$. PICK N such that $\forall n \geq N . ||T_n T|| < 1$
 - $\langle 3 \rangle 2$. Pick B > 0 such that $\forall x \in U . ||T_N(x)|| \leq B||x||$
 - $\langle 3 \rangle 3$. Let: $x \in U$
 - $\langle 3 \rangle 4. \ \|T(x)\| \le (B+1)\|x\|$

Proof:

$$||T(x)|| \le ||T_N(x) - T(x)|| + ||T(x)||$$
 (Triangle inequality)
 $\le ||T_N - T|| ||x|| + ||T|| ||x||$ (Proposition 15.2.11)
 $< ||x|| + B||x||$ ($\langle 3 \rangle 1, \langle 3 \rangle 2$)
 $= (B+1)||x||$

- $\langle 1 \rangle 5. \ T_n \to T \text{ as } n \to \infty$
 - $\langle 2 \rangle 1$. Let: $\epsilon > 0$
 - $\langle 2 \rangle 2$. Pick N such that $\forall m, n \geq N . ||T_m T_n|| < \epsilon/2$
 - $\langle 2 \rangle 3$. Let: $n \geq N$ Prove: $||T_n - T|| < \epsilon$
 - $\langle 2 \rangle 4$. Let: $x \in U$ with ||x|| = 1
 - $\langle 2 \rangle 5. \ \|T_n(x) T(x)\| \le \epsilon/2$

PROOF: Let $n \to \infty$ in $\langle 2 \rangle 2$.

Corollary 15.3.17.1. For any normed space V over K, the space $\mathcal{B}(V,K)$ is a Banach space.

Theorem 15.3.18. Let U be a normed space and V a Banach space. Let W be a subspace of U. Let $T: W \to V$ be a continuous linear transformation. Then T has a unique extension to a continuous linear transformation $\operatorname{cl} W \to V$.

Proof:

- $\langle 1 \rangle 1$. Define $S: \operatorname{cl} W \to V$ by: $S(x) = \lim_{n \to \infty} T(x_n)$, where (x_n) is any sequence in W that converges to x.
 - $\langle 2 \rangle 1$. For all $x \in \operatorname{cl} W$, there exists a sequence (x_n) in W that converges to x. PROOF: Theorem 15.1.43.
 - $\langle 2 \rangle 2$. If (x_n) is a Cauchy sequence in W then $(T(x_n))$ is Cauchy in V.
 - $\langle 3 \rangle 1$. Assume: w.l.o.g. $T \neq 0$
 - $\langle 3 \rangle 2$. Let: (x_n) be a Cauchy sequence in W.
 - $\langle 3 \rangle 3$. Pick B > 0 such that $\forall x \in W . ||T(x)|| \leq B||x||$
 - $\langle 3 \rangle 4$. Let: $\epsilon > 0$
 - $\langle 3 \rangle$ 5. PICK N such that $\forall m, n \geq N . ||x_m x_n|| < \epsilon / ||T||$
 - $\langle 3 \rangle 6$. Let: $m, n \geq N$
 - $\langle 3 \rangle 7. \|T(x_m) T(x_n)\| < \epsilon$
 - $\langle 2 \rangle$ 3. If (x_n) and (y_n) are sequences in W that converge to the same element in cl W then $(T(x_n))$ and $(T(y_n))$ have the same limit in V.
 - $\langle 3 \rangle 1$. Assume: w.l.o.g. $T \neq 0$
 - $\langle 3 \rangle 2$. Assume: $x_n \to l$ and $y_n \to l$ as $n \to \infty$
 - $\langle 3 \rangle 3$. Let: $T(x_n) \to a$ and $T(y_n) \to b$ as $n \to \infty$
 - $\langle 3 \rangle 4$. Assume: for a contradiction $a \neq b$
 - $\langle 3 \rangle 5$. Let: $\epsilon = ||a b||$
 - (3)6. PICK N such that $\forall n \geq N. \|x_n l\| < \epsilon/3 \|T\|$ and $\forall n \geq N. \|y_n l\| < \epsilon/3 \|T\|$
 - $\langle 3 \rangle 7. \ \forall n \geq N. ||T(x_n) T(y_n)|| < 2\epsilon/3$
 - $\langle 3 \rangle 8$. $||a-b|| \leq 2\epsilon/3$
 - $\langle 3 \rangle 9$. This contradicts $\langle 3 \rangle 5$.
- $\langle 1 \rangle 2$. S extends T
 - $\langle 2 \rangle 1$. Let: $w \in W$
 - $\langle 2 \rangle 2$. $w \to w$ as $n \to \infty$
 - $\langle 2 \rangle 3$. $T(w) \to T(w)$ as $n \to \infty$
 - $\langle 2 \rangle 4$. S(w) = T(w)
- $\langle 1 \rangle 3$. S is bounded.
 - $\langle 2 \rangle 1$. Let: $x \in \operatorname{cl} W$

PROVE: $||S(x)|| \le ||T|| ||x||$

- $\langle 2 \rangle 2$. PICK a sequence (x_n) in W that converges to x.
- $\langle 2 \rangle 3$. $||T(x_n)|| \le ||T|| ||x_n||$ for all n.
- $\langle 2 \rangle 4. \ \| S(x) \| \le \| T \| \| x \|$

PROOF: Taking the limit as $n \to \infty$.

 $\langle 1 \rangle 4$. S is linear.

- $\langle 2 \rangle 1$. Let: $x, y \in \operatorname{cl} W$ and $\alpha, \beta \in K$
- $\langle 2 \rangle 2$. PICK sequences (x_n) and (y_n) in W that converge to x and y.
- $\langle 2 \rangle 3$. $T(\alpha x_n + \beta y_n) = \alpha T(x_n) + \beta T(y_n)$ for all n.
- $\langle 2 \rangle 4$. $S(\alpha x + \beta y) = \alpha S(x) + \beta S(y)$

PROOF: Taking the limit as $n \to \infty$.

- $\langle 1 \rangle 5$. S is unique.
 - $\langle 2 \rangle 1$. Let: S' be a continuous linear extension of S defined on cl W.
 - $\langle 2 \rangle 2$. Let: $x \in W$ Prove: S(x) = S'(x)
 - $\langle 2 \rangle 3$. PICK a sequence (x_n) in W that converges to x.
 - $\langle 2 \rangle 4$. $T(x_n) = S'(x_n) \to S'(x)$ as $n \to \infty$
- $\langle 2 \rangle 5. \ S'(x) = S(x)$

Corollary 15.3.18.1. Let U be a normed space and V a Banach space. Let W be a dense subspace of U. Let $T:W\to V$ be a continuous linear transformation. Then T has a unique extension to a continuous linear transformation $U\to V$.

Definition 15.3.19 (Functional). Let V be a normed space over K. A functional on V is a bounded linear mapping $V \to K$. The dual space of V is the space $\mathcal{B}(V,K)$ of all functionals.

Theorem 15.3.20 (Banach-Steinhaus Theorem). Let \mathcal{T} be a family of bounded linear mappings from a Banach space X into a normed space Y. If, for every $x \in X$, there exists a constant M_x such that $\forall T \in \mathcal{T}. ||T(x)|| \leq M_x$, then there exists a constant M > 0 such that $\forall T \in \mathcal{T}. ||T|| \leq M$.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction no such M exists.
- $\langle 1 \rangle 2$. For $n \in \mathbb{Z}_+$, PICK $T_n \in \mathcal{T}$ such that $||T_n|| > n2^n$.
- $\langle 1 \rangle 3$. For $n \in \mathbb{Z}_+$, PICK $x_n \in X$ such that $||x_n|| = 1$ and $||T_n(x_n)|| > n2^n$.
- $\langle 1 \rangle 4$. For $n \in \mathbb{Z}_+$,

$$\left\| \frac{1}{n} T_n \left(\frac{x_n}{2^n} \right) \right\| > 1 .$$

- $\langle 1 \rangle$ 5. For $i, j \in \mathbb{Z}_+$, LET: $y_{ij} = \frac{1}{i} T_i(\frac{x_j}{2^j})$.
- $\langle 1 \rangle 6$. For all $j \in \mathbb{Z}_+$, $y_{ij} \to 0$ as $i \to \infty$
 - $\langle 2 \rangle 1$. Let: $j \in \mathbb{Z}_+$
 - $\langle 2 \rangle 2$. Pick M such that $\forall T \in \mathcal{T} . ||T(x_i/2^j)|| \leq M$
 - $\langle 2 \rangle 3$. For all $i, ||y_{ij}|| \leq M/i$
- $\langle 1 \rangle$ 7. For any increasing sequence of positive integers (p_i) , we have $\sum_{j=1}^{\infty} y_{p_i p_j} \to 0$ as $i \to \infty$
 - $\langle 2 \rangle 1$. Let: (p_i) be an increasing sequence of positive integers.
 - $\langle 2 \rangle 2$. Let: $z = \sum_{j=1}^{\infty} x_{p_j}/2^{p_j}$

PROOF: This converges by Theorem 15.3.13.

- $\langle 2 \rangle 3$. PICK C such that $\forall T \in \mathcal{T} . ||T(z)|| \leq C$
- $\langle 2 \rangle 4$. For all i, $\|\sum_{j=1}^{\infty} y_{p_i p_j}\| \leq C/p_i$.

PROOF:
$$\left\|\sum_{j=1}^{\infty}y_{p_{i}p_{j}}\right\| = \left\|\sum_{j=1}^{\infty}\frac{1}{p_{i}}T_{p_{i}}\left(\frac{x_{p_{j}}}{2^{p_{j}}}\right)\right\| \qquad (\langle 1\rangle 5)$$

$$= \frac{1}{p_{i}}\left\|T_{p_{i}}\left(\sum_{j=1}^{\infty}\frac{x_{p_{j}}}{2^{p_{j}}}\right)\right\| \qquad (T_{p_{i}} \text{ continuous})$$

$$= \frac{1}{p_{i}}\left\|T_{p_{i}}(z)\right\| \qquad (\langle 2\rangle 2)$$

$$\leq \frac{C}{p_{i}} \qquad (\langle 2\rangle 5. \sum_{j=1}^{\infty}y_{p_{i}p_{j}} \to 0 \text{ as } i \to \infty$$

$$\langle 2\rangle 5. \sum_{j=1}^{\infty}y_{p_{i}p_{j}} \to 0 \text{ as } i \to \infty$$

$$\langle 1\rangle 8. \ y_{ii} \to 0 \text{ as } i \to \infty$$
PROOF: Diagonal Theorem, $\langle 1\rangle 6$, $\langle 1\rangle 7$.
$$\langle 1\rangle 9. \ \text{Q.E.D.}$$

15.4 Contraction Mappings

PROOF: $\langle 1 \rangle 4$ and $\langle 1 \rangle 8$ form a contradiction.

Definition 15.4.1 (Contraction Mapping). Let E be a normed space over K. Let $A \subseteq E$. A function $f: A \to E$ is a contraction (mapping) iff there exists a real α such that $0 < \alpha < 1$ and

$$\forall x, y \in A. ||f(x) - f(y)|| \le \alpha ||x - y||.$$

Proposition 15.4.2. Contraction mappings are uniformly continuous.

Proof:

- $\langle 1 \rangle 1$. Let: E be a normed space over K.
- $\langle 1 \rangle 2$. Let: $A \subseteq E$
- $\langle 1 \rangle 3$. Let: $f: A \to E$ be a contraction mapping.
- $\langle 1 \rangle 4$. PICK α such that $0 < \alpha < 1$ and $\forall x, y \in A . || f(x) f(y) || \le \alpha || x y ||$.
- $\langle 1 \rangle 5$. Let: $\epsilon > 0$
- $\langle 1 \rangle 6$. Let: $\delta = \epsilon / \alpha$
- $\langle 1 \rangle$ 7. For all $x, y \in A$, if $||x y|| < \delta$ then $||f(x) f(y)|| < \epsilon$.

Theorem 15.4.3 (Banach Fixed Point Theorem). Let E be a Banach space over K. Let F be a nonempty closed subset of E. Let $f: F \to F$ be a contraction mapping. Then there exists a unique $z \in F$ such that f(z) = z.

Proof:

 $\langle 1 \rangle 1$. PICK α such that $0 < \alpha < 1$ and

$$\forall x, y \in F. ||f(x) - f(y)|| \le \alpha ||x - y||.$$

 $\langle 1 \rangle 2$. Pick $x_0 \in F$

$$\langle 1 \rangle 3$$
. For $n \in \mathbb{Z}_+$,
LET: $x_n = f^n(x_0)$.

- $\langle 1 \rangle 4$. (x_n) is a Cauchy sequence.
 - $\langle 2 \rangle 1$. For all $n \in \mathbb{Z}_+$ we have $||x_{n+1} x_n|| \le \alpha^n ||x_1 x_0||$.
 - $\langle 2 \rangle 2$. For all $m, n \in \mathbb{Z}_+$ with m < n we have $||x_n x_m|| < \alpha^m ||x_1 x_0||/(1-\alpha)$.

$$||x_{n} - x_{m}|| \le ||x_{n} - x_{n-1}|| + ||x_{n-1} - x_{n-2}|| + \dots + ||x_{m+1} - x_{m}|| \quad \text{(Triangle inequality)}$$

$$\le (\alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^{m}) ||x_{1} - x_{0}||$$

$$< \frac{||x_{1} - x_{0}||}{1 - \alpha} \alpha^{m}$$

$$\langle 2 \rangle 3. \text{ Let: } \epsilon > 0$$

- $\langle 2 \rangle 4$. PICK N such that $\alpha^N ||x_1 x_0||/(1 \alpha) < \epsilon$
- $\langle 2 \rangle 5$. For all $m, n \geq N$, we have $||x_n x_m|| < \epsilon$
- $\langle 1 \rangle 5$. Let: $z = \lim_{n \to \infty} x_n$
- $\langle 1 \rangle 6. \ f(z) = z$

Proof:

$$f(z) = f\left(\lim_{n \to \infty} x_n\right)$$

$$= \lim_{n \to \infty} f(x_n)$$
 (Proposition 15.4.2)
$$= \lim_{n \to \infty} x_{n+1}$$

$$= z$$

- $\langle 1 \rangle 7$. For any $w \in F$, if f(w) = w then w = z.
 - $\langle 2 \rangle 1$. Let: $w \in F$
 - $\langle 2 \rangle 2$. Assume: f(w) = w
 - $\langle 2 \rangle 3. \|z w\| \le \alpha \|z w\|$

PROOF:
$$||z - w|| = ||f(z) - f(w)|| \le \alpha ||z - w||$$

- $\langle 2 \rangle 4. \ \|z w\| = 0$
- $\langle 2 \rangle 5. \ z = w$

Chapter 16

Inner Product Spaces

Definition 16.0.1 (Inner Product Space). Let E be a complex vector space. An *inner product* on E is a function $\langle \ , \ \rangle : E^2 \to \mathbb{C}$ such that, for all $x,y,z \in E$ and $\alpha,\beta \in \mathbb{C}$, we have:

- 1. $\langle x, y \rangle = \overline{\langle y, x \rangle}$
- 2. $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$
- 3. $\langle x, x \rangle \geq 0$
- 4. If $\langle x, x \rangle = 0$ then x = 0

An inner product space consists of a complex vector space V and an inner product on V.

Proposition 16.0.2. *Let* E *be an inner product space. For any* $x \in E$ *, we have* $\langle x, x \rangle$ *is real.*

Proof: Since $\langle x, x \rangle = \overline{\langle x, x \rangle}$. \square

Proposition 16.0.3.

$$\langle x,\alpha y+\beta z\rangle=\overline{\alpha}\langle x,y\rangle+\overline{\beta}\langle x,z\rangle$$

Proposition 16.0.4.

$$\langle 0, y \rangle = \langle x, 0 \rangle = 0$$

Proposition 16.0.5. The function $\langle \vec{x}, \vec{y} \rangle = \sum_{i=1}^{n} x_i \overline{y_i}$ is an inner product on \mathbb{C}^n .

Proposition 16.0.6. The function $\langle (x_n), (y_n) \rangle = \sum_{i=1}^{\infty} x_i \overline{y_i}$ is an inner product on l^2 .

Proposition 16.0.7. The function $\langle f, g \rangle = \int_a^b f(x) \overline{g(x)} dx$ is an inner product on $\mathcal{C}([a,b])$.

Proposition 16.0.8. Let p > 1 and $\Omega \subseteq \mathbb{R}^N$. Let $L^p(\Omega)$ be the set of all functions $f: \Omega \to \mathbb{C}$ such that $|f|^p$ is Lebesgue integrable.

The function $\langle f, g \rangle = \int_{\Omega} f(x) \overline{g(x)} dx$ is an inner product on $L^2(\Omega)$.

Proposition 16.0.9. Let E_1 and E_2 be inner product spaces. Then the function $\langle (e_1, e_2), (e'_1, e'_2) \rangle = \langle e_1, e'_1 \rangle + \langle e_2, e'_2 \rangle$ is an inner product on $E_1 \times E_2$.

Definition 16.0.10 (Norm). In an inner product space, define $||x|| = \sqrt{\langle x, x \rangle}$.

Proposition 16.0.11 (Schwarz's Inequality). In any inner product space,

$$|\langle x, y \rangle| \le ||x|| ||y||$$
.

Equality holds iff x and y are linearly dependent.

Proof:

- $\langle 1 \rangle 1$. Assume: w.l.o.g. $y \neq 0$
- $\langle 1 \rangle 2. \ |\langle x, y \rangle| \le ||x|| ||y||$
 - $\langle 2 \rangle 1$. For all $\alpha \in \mathbb{C}$ we have $\langle x, x \rangle + \overline{\alpha} \langle x, y \rangle + \alpha \langle y, x \rangle + |\alpha|^2 \langle y, y \rangle$
 - PROOF: The right-hand side is $\langle x + \alpha y, x + \alpha y \rangle$. $\langle 2 \rangle 2$. $\langle x, x \rangle \langle y, y \rangle |\langle x, y \rangle|^2 \ge 0$

Proof: Taking $\alpha = -\langle x, x \rangle / \langle y, y \rangle$ in $\langle 2 \rangle 1$.

- $\langle 1 \rangle 3$. If $|\langle x, y \rangle| = ||x|| ||y||$ then x and y are linearly dependent.
 - $\langle 2 \rangle 1$. Assume: $|\langle x, y \rangle| = ||x|| ||y||$
 - $\langle 2 \rangle 2. \ \langle x, y \rangle \langle y, x \rangle = \langle x, x \rangle \langle y, y \rangle$
 - $\langle 2 \rangle 3. \ \langle y, y \rangle x \langle x, x \rangle y = 0$

Proof:

$$\langle \langle y, y \rangle x - \langle x, y \rangle y, \langle y, y \rangle x - \langle x, y \rangle y \rangle = \langle y, y \rangle^2 \langle x, x \rangle - \langle y, y \rangle \langle y, x \rangle \langle x, y \rangle - \langle x, y \rangle \langle y, x \rangle \langle y, x \rangle + \langle x, y \rangle \langle y, x \rangle \langle$$

- $\langle 1 \rangle 4$. If x and y are linearly dependent then $|\langle x, y \rangle| = ||x|| ||y||$
 - $\langle 2 \rangle 1$. Assume: x and y are linearly dependent.
 - $\langle 2 \rangle 2$. Let: $y = \alpha x$
 - $\langle 2 \rangle 3. \ |\langle x, y \rangle| = ||x|| ||y||$

Proof:

$$\begin{aligned} |\langle x, y \rangle| &= |\langle x, \alpha x \rangle| \\ &= |\alpha| |\langle x, x \rangle| \\ &= |\alpha| ||x||^2 \\ &= ||x|| ||\alpha x|| \\ &= ||x|| ||y|| \end{aligned}$$

Corollary 16.0.11.1 (Triangle Inequality). In any inner product space,

$$||x + y|| \le ||x|| + ||y||$$

$$||x + y||^2 = \langle x + y, x + y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$\leq \langle x, x \rangle + 2|\langle x, y \rangle| + \langle y, y \rangle$$

$$\leq ||x||^2 + 2||x|| ||y|| + ||y||^2 \qquad \text{(Schwarz's Inequality)}$$

$$= (||x|| + ||y||)^2 \qquad \Box$$

Corollary 16.0.11.2. The norm in an inner product space is a norm.

Theorem 16.0.12 (Parallelogram Law). In any inner product space,

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

Proof:

$$\begin{array}{ll} \langle 1 \rangle 1. \ \|x+y\|^2 = \|x\|^2 + \langle x,y \rangle + \langle y,x \rangle + \|y\|^2 \\ \langle 1 \rangle 2. \ \|x-y\|^2 = \|x\|^2 - \langle x,y \rangle - \langle y,x \rangle + \|y\|^2 \\ \langle 1 \rangle 3. \ \mathrm{Q.E.D.} \end{array}$$

PROOF: Add $\langle 1 \rangle 1$ and $\langle 1 \rangle 2$.

Proposition 16.0.13. Let E be a normed space over \mathbb{C} . Then there exists an inner product on E that induces the norm of E iff E satisfies the Parallelogram Law.

Proof: If E satisfies the parallelogram law, define

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2)$$
.

Definition 16.0.14 (Orthogonal). Vectors x and y in an inner product space are *orthogonal*, $x \perp y$, iff $\langle x, y \rangle = 0$.

Theorem 16.0.15 (Pythagorean Formula). If x and y are orthogonal then

$$||x+y||^2 = ||x||^2 + ||y||^2$$
.

Definition 16.0.16 (Weak Convergence). Let E be an inner product space. Let (x_n) be a sequence in E and $l \in E$. Then (x_n) weakly converges to l, $x_n \stackrel{w}{\to} l$ as $n \to \infty$, iff $\forall y \in E. \langle x_n, y \rangle \to \langle l, y \rangle$ as $n \to \infty$.

Proposition 16.0.17. In any inner product space E, the inner product $\langle , \rangle : E^2 \to \mathbb{C}$ is continuous.

Proof:

$$\langle 1 \rangle 1$$
. Let: $x_n \to x$ and $y_n \to y$ in E . $\langle 1 \rangle 2$. $\langle x_n, y_n \rangle \to \langle x, y \rangle$

Proof:

$$\begin{aligned} |\langle x_n, y_n \rangle - \langle x, y \rangle| &\leq |\langle x_n, y_n \rangle - \langle x_n, y \rangle| + |\langle x_n, y \rangle - \langle x, y \rangle| \\ &= |\langle x_n, y_n - y \rangle| + |\langle x_n - x, y \rangle| \\ &\leq \|x_n\| \|y_n - y\| + \|x_n - x\| \|y\| \end{aligned} \qquad \text{(Schwarz's Inequality)}$$

$$\to 0$$

using the fact that (x_n) is bounded.

Theorem 16.0.18. $x_n \to l$ if and only if $x_n \stackrel{w}{\to} l$ and $||x_n|| \to ||x||$.

 $\langle 1 \rangle 1$. If $x_n \to l$ then $x_n \stackrel{w}{\to} l$ and $||x_n|| \to ||l||$.

PROOF: Easy using the fact that the inner product is continuous.

- $\langle 1 \rangle 2$. If $x_n \stackrel{w}{\to} l$ and $||x_n|| \to ||l||$ then $x_n \to l$.
 - $\langle 2 \rangle 1$. Assume: $x_n \stackrel{w}{\to} l$ and $||x_n|| \to ||l||$ $\langle 2 \rangle 2$. $\langle x_n, l \rangle \to ||l||^2$

 - $\langle 2 \rangle 3. \|x_n l\| \to 0$

Proof:

$$||x_n - l||^2 = \langle x_n - l, x_n - l \rangle$$

$$= \langle x_n, x_n \rangle - \langle x_n, l \rangle - \langle l, x_n \rangle + \langle l, l \rangle$$

$$= ||x_n||^2 - \langle x_n, l \rangle - \overline{\langle x_n, l \rangle} + ||l||^2$$

$$\rightarrow ||l||^2 - 2||l||^2 + ||l||^2$$

$$= 0$$

Theorem 16.0.19. Let S be a subset of an inner product space E such that span S is dense in E. If (x_n) is a bounded sequence in E and, for all $y \in S$, we have $\langle x_n, y \rangle \to \langle x, y \rangle$ then $x_n \stackrel{w}{\to} x$.

Proof:

- $\langle 1 \rangle 1$. For all $y \in \operatorname{span} S$, we have $\langle x_n, y \rangle \to \langle x, y \rangle$
- $\langle 1 \rangle 2$. Let: $z \in E$

Prove: $\langle x_n, z \rangle \to \langle x, z \rangle$

 $\langle 1 \rangle 3$. Let: $\epsilon > 0$

PROVE: There exists n_0 such that $\forall n \geq n_0 . |\langle x_n, z \rangle - \langle x, z \rangle| < \epsilon$

- $\langle 1 \rangle 4$. PICK M > 0 such that $||x|| \leq M$ and $\forall n \in \mathbb{Z}_+ . ||x_n|| \leq M$.
- $\langle 1 \rangle 5$. Pick $y_0 \in \operatorname{span} S$ such that $||z y_0|| < \epsilon/3M$
- $\langle 1 \rangle 6$. Pick $n_0 \in \mathbb{Z}_+$ such that, for all $n \geq n_0$, we have $|\langle x_n, y_0 \rangle \langle x, y_0 \rangle| < \epsilon/3$
- $\langle 1 \rangle 7$. Let: $n \geq n_0$
- $\langle 1 \rangle 8. \ |\langle x_n, z \rangle \langle x, z \rangle| < \epsilon$

Proof:

$$\begin{aligned} |\langle x_n, z \rangle - \langle x, z \rangle| &\leq |\langle x_n, z \rangle - \langle x_n, y_0 \rangle| + |\langle x_n, y_0 \rangle - \langle x, y_0 \rangle| + |\langle x, y_0 \rangle - \langle x, z \rangle| \\ &< \|x_n\| \|z - y_0\| + \epsilon/3 + \|x\| \|y_0 - z\| \\ &< M(\epsilon/3M) + \epsilon/3 + M(\epsilon/3M) \\ &= \epsilon \end{aligned}$$

16.1 Orthonormal Bases

Definition 16.1.1 (Orthogonal). Let V be an inner product space and $S \subseteq V$. Then S is *orthogonal* iff any two distinct elements of S are orthogonal.

Definition 16.1.2 (Orthonormal). Let V be an inner product space and $S \subseteq V$. Then S is orthonormal iff it is orthogonal and $\forall x \in S. ||x|| = 1$.

Proposition 16.1.3. Orthonormal sets are linearly independent.

Proof:

 $\langle 1 \rangle 1$. Let: S be orthonormal

 $\langle 1 \rangle 2$. Assume: $\alpha_1 e_1 + \cdots + \alpha_n e_n = 0$ where $e_1, \ldots, e_n \in S$

$$\langle 1 \rangle 3$$
. $|\alpha_1|^2 + \cdots + |\alpha_n|^2 = 0$

Proof:

$$0 = \sum_{m=1}^{n} \langle 0, \alpha_m e_m \rangle$$

$$= \sum_{m=1}^{n} \langle \sum_{k=1}^{n} \alpha_k e_k, \alpha_m e_m \rangle$$

$$= \sum_{m=1}^{n} \sum_{k=1}^{n} \alpha_k \overline{\alpha_m} \langle e_k, e_m \rangle$$

$$= \sum_{k=1}^{n} |\alpha_k|^2$$

$$\langle 1 \rangle 4. \ \alpha_1 = \dots = \alpha_n = 0$$

Proposition 16.1.4. In l^2 , let e_n be the sequence whose nth element is 1 and whose other elements are 0. Then $\{e_n \mid n \in \mathbb{Z}_+\}$ is orthonormal.

Proposition 16.1.5. In $L^2([-\pi, \pi])$, let $\phi_n(x) = e^{inx}/\sqrt{2\pi}$ for $n \in \mathbb{Z}$. Then $\{\phi_n \mid n \in \mathbb{Z}\}$ is orthonormal.

Definition 16.1.6 (Legendre Polynomials). The *Legendre polynomials* $P_n \in \mathbb{Q}[x]$ for $n \in \mathbb{N}$ are defined by

$$P_0 = 1$$

$$P_n = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

Proposition 16.1.7. Let P_n be the nth Legendre polynomial. Then $\{P_n \mid n \in \mathbb{N}\}$ is orthogonal in $L^2([-1,1])$.

Definition 16.1.8 (Hermite Polynomial). The Hermite polynomials $H_n \in \mathbb{R}[x]$ for $n \in \mathbb{N}$ are defined by

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$
.

Proposition 16.1.9. Let H_n be the nth Hermite polynomial. Then $\{e^{-x^2/2}H_n(x) \mid n \in \mathbb{N}\}$ is orthogonal in $L^2(\mathbb{R})$.

Theorem 16.1.10. Let V be an inner product space. If $x_1, \ldots, x_n \in V$ are orthogonal then

$$\left\| \sum_{i=1}^{n} x_i \right\|^2 = \sum_{i=1}^{n} \|x_i\|^2.$$

Theorem 16.1.11 (Bessel's Equality). Let V be an inner product space. Let $x_1, \ldots, x_n \in V$ be orthonormal. Let $x \in V$. Then

$$\left\| x - \sum_{k=1}^{n} \langle x, x_k \rangle x_k \right\|^2 = \|x\|^2 - \sum_{k=1}^{n} |\langle x, x_k \rangle|^2.$$

PROOF:

$$\left\| x - \sum_{k=1}^{n} \langle x, x_k \rangle x_k \right\|^2 = \left\langle x - \sum_{k=1}^{n} \langle x, x_k \rangle x_k, x - \sum_{k=1}^{n} \langle x, x_k \rangle x_k \right\rangle$$

$$= \langle x, x \rangle - \left\langle x, \sum_{k=1}^{n} \langle x, x_k \rangle x_k \right\rangle - \left\langle \sum_{k=1}^{n} \langle x, x_k \rangle x_k, x \right\rangle$$

$$+ \left\langle \sum_{k=1}^{n} \langle x, x_k \rangle x_k, \sum_{k=1}^{n} \langle x, x_k \rangle x_k \right\rangle$$

$$= \langle x, x \rangle - 2 \sum_{k=1}^{n} \langle x, x_k \rangle \langle x_k, x \rangle + \sum_{i=1}^{n} \sum_{j=1}^{n} \langle x, x_i \rangle \langle x_j, x \rangle \langle x_i, x_j \rangle$$

$$= \|x\|^2 - 2 \sum_{k=1}^{n} |\langle x, x_k \rangle|^2 + \sum_{i=1}^{n} \langle x, x_i \rangle \langle x_i, x \rangle$$

$$= \|x\|^2 - \sum_{k=1}^{n} |\langle x, x_k \rangle|^2$$

Corollary 16.1.11.1 (Bessel's Inequality). Let V be an inner product space. Let $x_1, \ldots, x_n \in V$ be orthonormal. Let $x \in E$. Then

$$\sum_{k=1}^{n} |\langle x, x_k \rangle|^2 \le ||x||^2.$$

Corollary 16.1.11.2. Orthonormal sequences are weakly convergent to θ .

PROOF: Let (x_n) be an orthonormal sequence. Taking the limit in Bessel's inequality we have $\sum_{k=1}^{\infty} |\langle x, x_k \rangle|^2 \leq ||x||^2 < \infty$ and so $\langle x, x_k \rangle \to 0$ as $k \to \infty$.

Corollary 16.1.11.3 (Generalized Fourier Series). Let V be an inner product space. Let (e_n) be an orthonormal sequence in V. For any $x \in V$, the generalized Fourier series of x is

$$\sum_{n=1}^{\infty} \langle x, e_n \rangle e_n ,$$

and $\langle x, e_n \rangle$ is called the nth generalized Fourier coefficient of x with respect to (e_n) . We have $(\langle x, e_n \rangle e_n)_n \in l^2$.

Definition 16.1.12 (Complete Orthonormal Sequence). Let E be an inner product space. Let (x_n) be an orthonormal sequence in E. Then (x_n) is *complete* iff, for all $x \in E$, we have

$$\sum_{n=1}^{\infty} \langle x, x_n \rangle x_n = x .$$

Chapter 17

Hilbert Spaces

Definition 17.0.1 (Hilbert Space). A *Hilbert space* is a complete inner product space.

Proposition 17.0.2. For $n \in \mathbb{N}$, \mathbb{C}^n is a Hilbert space.

Proposition 17.0.3. l^2 is a Hilbert space.

Proposition 17.0.4. $L^2(\mathbb{R})$ is a Hilbert space.

Proposition 17.0.5. $L^2([a,b])$ is a Hilbert space.

Proposition 17.0.6. Let ρ be a measurable function on [a,b] such that $\rho(x) > 0$ almost everywhere. Let $L^{2\rho}([a,b])$ be the set of all measurable functions $f:[a,b] \to \mathbb{C}$ such that

$$\int_{a}^{b} |f(x)|^{2} \rho(x) dx < \infty .$$

Define an inner product on $L^{2\rho}([a,b])$ by

$$\langle f,g\rangle = \int_a^b f(x)\overline{g(x)}\rho(x)dx \ .$$

Then $L^{2\rho}([a,b])$ is a Hilbert space.

Proposition 17.0.7. Let m and N be positive integers. Let Ω be an open set in \mathbb{R}^N . Let $\tilde{H}^m(\Omega)$ be the set of all $f \in \mathcal{C}^m(\Omega)$ such that, for every $\alpha = (\alpha_1, \ldots, \alpha_N) \in \mathbb{Z}_+^N$ with $|\alpha| := \alpha_1 + \cdots + \alpha_N \leq m$, we have

$$D^{\alpha} f := \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \cdots \partial x_N^{\alpha_N}} \in L^2(\Omega) .$$

Define an inner product on $\tilde{H}^m(\Omega)$ by

$$\langle f, g \rangle := \int_{\Omega} \sum_{\alpha} D^{\alpha} f \overline{D^{\alpha} g} .$$

Let $H^m(\Omega)$ be the completion of $\tilde{H}^m(\Omega)$. Then $H^m(\Omega)$ is a Hilbert space.

Theorem 17.0.8. Weakly convergent sequences in a Hilbert space are bounded.

 $\langle 1 \rangle 1$. Let: H be a Hilbert space.

 $\langle 1 \rangle 2$. Let: (x_n) be a weakly convergent sequence in H.

 $\langle 1 \rangle 3$. For $n \in \mathbb{Z}_+$, Let: $f_n: H \to \mathbb{C}, f_n(x) = \langle x, x_n \rangle$

 $\langle 1 \rangle 4$. For $n \in \mathbb{Z}_+$, f_n is a bounded linear functional.

 $\langle 1 \rangle 5$. For every $x \in H$, the sequence $(f_n(x))$ is bounded.

PROOF: Since it converges.

 $\langle 1 \rangle 6$. PICK M > 0 such that, for all $n \in \mathbb{Z}_+$, we have $||f_n|| \leq M$. PROOF: Banach-Steinhaus Theorem, $\langle 1 \rangle 4$, $\langle 1 \rangle 5$.

 $\langle 1 \rangle 7. \ \forall n \in \mathbb{Z}_+. ||f_n|| = ||x_n||$

 $\langle 2 \rangle 1$. Let: $n \in \mathbb{Z}_+$

 $\langle 2 \rangle 2$. $||f_n|| \leq ||x_n||$

PROOF: Since for all $x \in H$ we have $|f_n(x)| = |\langle x, x_n \rangle| \leq ||x|| ||x_n||$ by Schwarz's Inequality.

 $\langle 2 \rangle 3$. $||x_n|| \leq ||f_n||$

PROOF: Since $||x_n||^2 = |\langle x_n, x_n \rangle| = |f_n(x_n)| \le ||f_n|| ||x_n||$.

 $\langle 1 \rangle 8. \ \forall n \in \mathbb{Z}_+. ||x_n|| \leq M$

Proof: $\langle 1 \rangle 6$, $\langle 1 \rangle 7$

Theorem 17.0.9. Let H be a Hilbert space. Let (x_n) be an orthonormal sequence in H and let (α_n) be a sequence of complex numbers. Then the series $\sum_{n=1}^{\infty} \alpha_n x_n$ converges in H if and only if $\sum_{n=1}^{\infty} |\alpha_n|$ converges in \mathbb{R} , in which

$$\left\| \sum_{n=1}^{\infty} \alpha_n x_n \right\|^2 = \sum_{n=1}^{\infty} |\alpha_n|^2.$$

PROOF:

 $\langle 1 \rangle 1$. For m > k > 0 we have

$$\left\| \sum_{n=k}^{m} \alpha_n x_n \right\|^2 = \sum_{n=k}^{m} |\alpha_n|^2.$$

PROOF: Theorem 16.1.10.

 $\langle 1 \rangle 2$. If $\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty$ then $\sum_{n=1}^{\infty} \alpha_n x_n$ converges. $\langle 2 \rangle 1$. Assume: $\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty$

 $\langle 2 \rangle 2$. $(\sum_{n=1}^{m} \alpha_n x_n)_m$ is Cauchy. PROOF: From $\langle 1 \rangle 1$.

 $\langle 2 \rangle 3. \sum_{n=1}^{\infty} \alpha_n x_n$ converges. $\langle 1 \rangle 3. \text{ If } \sum_{n=1}^{\infty} \alpha_n x_n$ converges then $\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty$.

PROOF: From $\langle 1 \rangle 1$. $\langle 1 \rangle 4$. If $\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty$ then

$$\left\| \sum_{n=1}^{\infty} \alpha_n x_n \right\|^2 = \sum_{n=1}^{\infty} |\alpha_n|^2.$$

Proof: From $\langle 1 \rangle 1$.

Proposition 17.0.10. Every complete orthonormal sequence in a Hilbert space is a basis.

Proof:

- $\langle 1 \rangle 1$. Let: E be an inner product space.
- $\langle 1 \rangle 2$. Let: (e_n) be a complete orthonormal sequence in E.
- $\langle 1 \rangle 3$. For all $x \in E$, there exists a sequence (α_n) in \mathbb{C} such that $x = \sum_n \alpha_n e_n$. PROOF: Immediate from $\langle 1 \rangle 2$.
- $\langle 1 \rangle 4$. If $\sum_{n} \alpha_{n} e_{n} = \sum_{n} \beta_{n} e_{n}$ then $\alpha_{n} = \beta_{n}$ for all n. $\langle 2 \rangle 1$. Let: $x = \sum_{n} \alpha_{n} e_{n} = \sum_{n} \beta_{n} e_{n}$ $\langle 2 \rangle 2$. $\sum_{n} |\alpha_{n} \beta_{n}|^{2} = 0$

Proof:

$$0 = \|x - x\|^{2}$$

$$= \left\| \sum_{n=1}^{\infty} \alpha_{n} e_{n} - \sum_{n=1}^{\infty} \beta_{n} e_{n} \right\|^{2}$$

$$= \left\| \sum_{n=1}^{\infty} (\alpha_{n} - \beta_{n}) e_{n} \right\|^{2}$$

$$= \sum_{n=1}^{\infty} |\alpha_{n} - \beta_{n}|^{2}$$
(Theorem 17.0.9)

 $\langle 2 \rangle 3$. $\alpha_n = \beta_n$ for all n.

Theorem 17.0.11. An orthonormal sequence (x_n) in a Hilbert space H is complete if and only if, for all $x \in H$, if $\forall n. \langle x, x_n \rangle = 0$ then x = 0.

Proof:

- $\langle 1 \rangle 1$. If (x_n) is complete then, for all $x \in H$, if $\forall n. \langle x, x_n \rangle = 0$ then x = 0.
 - $\langle 2 \rangle 1$. Assume: (x_n) is complete.
 - $\langle 2 \rangle 2$. Let: $x \in H$
- $\langle 2 \rangle 3$. Assume: $\forall n. \langle x, x_n \rangle = 0$ $\langle 2 \rangle 4$. $x = \sum_{n=1}^{\infty} \langle x, x_n \rangle x_n = 0$ $\langle 1 \rangle 2$. If, for all $x \in H$, if $\forall n. \langle x, x_n \rangle = 0$ then x = 0, then (x_n) is complete.
 - $\langle 2 \rangle 1$. Assume: For all $x \in H$, if $\forall n. \langle x, x_n \rangle = 0$, then x = 0. $\langle 2 \rangle 2$. Let: $y = x \sum_{n=1}^{\infty} \langle x, x_n \rangle x_n$ $\langle 2 \rangle 3$. For all $n, \langle y, x_n \rangle = 0$

 - - $\langle 3 \rangle 1$. Let: $n \in \mathbb{Z}_+$
 - $\langle 3 \rangle 2. \ \langle y, x_n \rangle = 0$

$$\langle y, x_n \rangle = \left\langle x - \sum_{m=1}^{\infty} \langle x, x_m \rangle x_m, x_n \right\rangle$$
$$= \langle x, x_n \rangle - \sum_{m=1}^{\infty} \langle x, x_m \rangle \langle x_m, x_n \rangle$$
$$= \langle x, x_n \rangle - \langle x, x_n \rangle$$
$$= 0$$

$$\langle 2 \rangle 4. \ y = 0$$

 $\langle 2 \rangle 5. \ x = \sum_{n=1}^{\infty} \langle x, x_n \rangle x_n$

Theorem 17.0.12 (Parseval's Formula). Let H be a Hilbert space. Let (x_n) be an orthonormal sequence in H. Then (x_n) is complete if and only if, for all $x \in H$,

$$||x||^2 = \sum_{n=1}^{\infty} |\langle x, x_n \rangle|^2.$$

Proof:

- $\langle 1 \rangle 1$. If (x_n) is complete then for all $x \in H$ we have $||x||^2 = \sum_{n=1}^{\infty} |\langle x, x_n \rangle|^2$.
 - $\langle 2 \rangle 1$. Assume: (x_n) is complete.

 - $\langle 2 \rangle 2$. Let: $x \in H$ $\langle 2 \rangle 3$. $||x||^2 = \sum_{n=1}^{\infty} |\langle x, x_n \rangle|^2$ PROOF:

$$||x||^2 = \left\| \sum_{n=1}^{\infty} \langle x, x_n \rangle x_n \right\|^2$$

$$= \sum_{n=1}^{\infty} |\langle x, x_n \rangle|^2$$
(Theorem 17.0.9)

- $\langle 1 \rangle 2$. If, for all $x \in H$, we have $||x||^2 = \sum_{n=1}^{\infty} |\langle x, x_n \rangle|^2$, then (x_n) is complete. $\langle 2 \rangle 1$. Assume: For all $x \in H$, we have $||x||^2 = \sum_{n=1}^{\infty} |\langle x, x_n \rangle|^2$
- $\langle 2 \rangle 2$. Let: $x \in H$ $\langle 2 \rangle 3$. $x = \sum_{n=1}^{\infty} \langle x, x_n \rangle x_n$

Proposition 17.0.13. For $n \in \mathbb{Z}$, let $\pi_n(x) = e^{inx}/\sqrt{2\pi}$. Then $\{\pi_n \mid n \in \mathbb{Z}\}$ is a complete orthonormal set in $L^2([-\pi,\pi])$.

TODO

Proposition 17.0.14. $B = \{1/\sqrt{2\pi}\} \cup \{\cos nx/\sqrt{\pi} \mid n \in \mathbb{Z}_+\} \cup \{\sin nx/\sqrt$ $n \in \mathbb{Z}_+$ is a complete orthonormal set in $L^2([-\pi, \pi])$.

Proof:

 $\langle 1 \rangle 1$. For all $f \in B$ we have ||f|| = 1 $\langle 2 \rangle 1. \ \|1/\sqrt{2\pi}\| = 1$

$$||1/\sqrt{2\pi}|| = \int_{-\pi}^{\pi} dx/2\pi$$

 $\langle 2 \rangle 2$. For all $n \in \mathbb{Z}_+$ we have $\|\cos nx/\sqrt{\pi}\| = 1$ Proof:

$$\|\cos nx/\sqrt{\pi}\| = 1/\pi \int_{-\pi}^{\pi} \cos^2 nx \, dx$$

$$= 1/2\pi \int_{-\pi}^{\pi} (\cos 2nx + 1) dx$$

$$= 1/2\pi \left[1/2n \sin 2nx + x \right]_{-\pi}^{\pi}$$

$$= (1/2\pi)(2\pi)$$

$$= 1$$

 $\langle 2 \rangle 3$. For all $n \in \mathbb{Z}_+$ we have $\|\sin nx/\sqrt{\pi}\| = 1$ PROOF:

$$\|\sin nx/\sqrt{\pi}\| = 1/\pi \int_{-\pi}^{\pi} \sin^2 nx \, dx$$

$$= -1/2\pi \int_{-\pi}^{\pi} (\cos 2nx - 1) dx$$

$$= -1/2\pi \left[1/2n \sin 2nx - x \right]_{-\pi}^{\pi}$$

$$= (-1/2\pi)(-2\pi)$$

$$= 1$$

 $\langle 1 \rangle 2.$ For all $f,g \in B$ with $f \neq g$ we have $\langle f,g \rangle = 0$

 $\langle 2 \rangle 1. \ \langle 1, \cos nx \rangle = 0$ PROOF:

$$\int_{-\pi}^{\pi} \cos nx \, dx = \left[1/n \sin nx\right]_{-\pi}^{\pi}$$

 $\langle 2 \rangle 2$. $\langle 1, \sin nx \rangle = 0$ PROOF:

$$\int_{-\pi}^{\pi} \sin nx \, dx = \left[-1/n \cos nx \right]_{-\pi}^{\pi}$$
$$= -1/n \cos n\pi + 1/n \cos n\pi$$
$$= 0$$

 $\langle 2 \rangle 3$. If $m \neq n$ then $\langle \cos mx, \cos nx \rangle = 0$

PROOF:
$$\int_{-\pi}^{\pi} \cos mx \cos nx \, dx = 1/2 \int_{-\pi}^{\pi} (\cos(n+m)x - \cos(n-m)x) dx$$
$$= 1/2 \left[\frac{1}{n+m} \sin(n+m)x - \frac{1}{n-m} \sin(n-m)x \right]_{-\pi}^{\pi}$$
$$= 0$$

 $\langle 2 \rangle 4. \ \langle \cos mx, \sin nx \rangle = 0$

PROOF:

$$\int_{-\pi}^{\pi} \cos mx \sin nx \, dx = 1/2 \int_{-\pi}^{\pi} (\sin(n+m)x - \sin(n-m)x) dx$$

$$= 1/2 \left[-\frac{1}{n+m} \cos(n+m)x + \frac{1}{n-m} \cos(n-m)x \right]_{-\pi}^{\pi}$$

$$= 0 \qquad (\cos \text{ is odd})$$

 $\langle 2 \rangle 5$. If $m \neq n$ then $\langle \sin mx, \sin nx \rangle = 0$

PROOF:

$$\int_{-\pi}^{\pi} \sin mx \sin nx \, dx = 1/2 \int_{-\pi}^{\pi} (\cos(n-m)x - \cos(n+m)x) dx$$

$$= 1/2 \left[\frac{1}{n-m} \sin(n-m)x - \frac{1}{n+m} \sin(n+m)x \right]_{-\pi}^{\pi}$$

- $\langle 1 \rangle 3.$ For all $f \in L^2([-\pi,\pi]),$ if $\forall g \in B. \langle f,g \rangle = 0$ then f=0 $\langle 2 \rangle 1.$ Let: $f \in L^2([-\pi,\pi])$

 - $\langle 2 \rangle 2$. Assume: $\forall g \in B. \langle f, g \rangle = 0$

 $\langle 2 \rangle 3$. For all $n \in \mathbb{Z}$, $\langle f, e^{inx} \rangle = 0$ PROOF: Since $e^{inx} = \cos nx + i \sin nx$.

 $\langle 2 \rangle 4$. f = 0

Proof: From Proposition 17.0.13.

Proposition 17.0.15. $\{\frac{1}{\sqrt{\pi}}\}\cup\{\sqrt{\frac{2}{\pi}}\cos nx\mid n\in\mathbb{Z}_+\}\ is\ a\ complete\ orthonormal$ set in $L^{2}([0,\pi])$.

Proposition 17.0.16. $\{\sqrt{\frac{2}{\pi}}\sin nx \mid n \in \mathbb{Z}_+\}\ is\ a\ complete\ orthonormal\ set\ in$ $L^2([0,\pi]).$

Definition 17.0.17 (Signum). The *signum* function sgn : $\mathbb{R} \to \mathbb{R}$ is defined by

$$\operatorname{sgn} x = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$$

Definition 17.0.18 (Rademacher Functions). The Rademarcher functions R: $\mathbb{N} \times [0,1] \to \{-1,0,1\}$ are defined by

$$R(m,x) = \operatorname{sgn}(\sin(2^m \pi x)) .$$

Proposition 17.0.19. The Rademacher functios $\{R(m, -) \mid m \in \mathbb{N}\}$ are orthonormal in $L^2([0,1])$.

Proof:

 $\langle 1 \rangle 1. \ \forall m \in \mathbb{N}. ||R(m, -)|| = 1$

PROOF: $\int_0^1 \operatorname{sgn}(\sin(2^m \pi x))^2 dx = 1$ since the integrand is 1 except for finitely many points in [0,1].

- $\langle 1 \rangle 2$. Given natural numbers $m \neq n$, we have $\langle R(m,-), R(n,-) \rangle = 0$
 - $\langle 2 \rangle 1$. Given reals a, b and a natural number m, we have $\int_a^b R(m,x)dx = 0$ whenever $2^m(b-a)$ is an even integer.

PROOF: If m > 0, or if m = 0 and b - a is an even integer, then the regions where R(m, x) = 1 are isometric with the regions where R(m, x) = -1.

- $\langle 2 \rangle 2$. Let: m and n be natural numbers with n < m.
- $\langle 2 \rangle 3. \langle R(m,-), R(n,-) \rangle = 0$

Proof:

$$\int_{0}^{1} R(m,x)R(n,x)dx = \sum_{k=1}^{2^{n}} \int_{\frac{k-1}{2^{n}}}^{\frac{k}{2^{n}}} R(m,x)R(n,x)dx$$

$$= \sum_{k=1}^{2^{n}} (-i)^{k+1} \int_{\frac{k-1}{2^{n}}}^{\frac{k}{2^{n}}} R(m,x)dx$$

$$= 0 \qquad (\langle 2 \rangle 1, 2^{m} \left(\frac{k}{2^{n}} - \frac{k-1}{2^{n}}\right) = 2^{m-n} \text{ is an even integer})$$

Proposition 17.0.20. The set of Rademacher functions is not complete.

Proof:

- (1)1. Define $f:[0,1]\to\mathbb{C}$ by f(x)=0 if $0\leq x<1/4$, f(x)=1 if $1/4\leq x\leq 1$ 3/4, f(x) = 0 if $3/4 < x \le 1$.
- $\langle 1 \rangle 2. \ f \in L^2([0,1])$
- $\langle 1 \rangle 3. \ \langle R(0, -), f \rangle = 1/2$
- $\langle 1 \rangle 4$. $\langle R(m, -), f \rangle = 0$ for $m \ge 1$
- $\langle 1 \rangle 5. \ f \neq 1/2R(0, -)$

Definition 17.0.21 (Walsh Functions). Define the Walsh functions $W: \mathbb{N} \times$ $[0,1] \to \{-1,0,1\}$ as follows. Given $m \in \mathbb{N}$, let $m = \sum_{k=1}^n 2^{k-1} a_k$ where each a_k is either 0 or 1. Then

$$W(m,x) = \prod_{k=1}^{n} R(k,x)^{a_k}$$
.

Proposition 17.0.22. The set of Walsh functions $\{W(m,-) \mid m \in \mathbb{N}\}$ is a compete orthonormal set.

TODO