11: Methods for incorporating non-random mixing into models

Sebastian Funk

London School of Hygiene & Tropical Medicine
20 June 2018

Objectives

By the end of this session, you should:

- Be able to define and set up "Who Acquires Infection from Whom" (WAIFW) matrices
- Be able to use force of infection estimates to calculate WAIFW matrices
- Understand the impact of non-random (heterogeneous) mixing patterns between individuals on the transmission dynamics and control of infectious diseases (practical session)

Possible explanations for heterogeneity in the force of infection

- Age-dependent mixing patterns
- · Age-dependent differences in susceptibility
- Genetic differences in susceptibility/exposure
- High/low risk groups
- Different area / countries / towns
- In zoonoses: different species
- .

In this lecture, we will focus on age-dependent mixing, but all the methods apply generally

Heterogeneity has important implications for designing control strategies, as we shall see.

Suppose the same proportion of children are vaccinated against a new strain of pandemic influenza in both populations, no adults vaccinated.

Q: In which population will the vaccine have a stronger effect?

Answer: childhood vaccination most effective in population B Think about what the net reproduction number would be if all children were to be vaccinated with a vaccine with 100% efficacy. Population B Population B R_n = 2 R_n = 1

The relationship between the force of infection, β , and the number of infectious persons for randomly-mixing populations (revision)

The force of infection at time t, $\lambda(t)$ is given by the equation:

$$I(t) = bI(t)$$

- β is the rate at which 2 specific individuals come into effective contact per unit time;
- *I(t)* is the number of infectious individuals at time *t*.

Calculating β for heterogeneously mixing populations Example: population in which contact patterns of young individuals differ from those of the old Split the force of infection in young individuals, $\overline{I_y(t)}$, into two parts: force of infection attributable to contact with other young individuals $I_{yy}(t)$ + force of infection attributable to contact with old individuals $I_{yy}(t)$ i.e. $\overline{I_y(t)} = I_{yy}(t) + I_{yy}(t)$

Similarly, stratify the force of infection in old individuals, $I_o(t)$ into:

force of infection attributable to contact with the young $I_{oy}(t)$

force of infection attributable to contact with old individuals $I_{m}(t)$

 $\overline{I_o(t)} = I_{oy}(t) + I_{oo}(t)$

Can be expressed in terms of the number of young and old infectious people

Deriving expressions for λ_{yy} , λ_{yo} , λ_{oy} , λ_{oy} , λ_{oo}

Recall that for randomly-mixing populations $\lambda(t) = \beta I(t)$

Using the same reasoning, $\lambda_{yy}(t) = \beta_{yy}I_y(t)$ where

 β_{yy} = rate at which a specific young individual comes into effective contact with a specific young individual per unit time

*I*_v(t) = number of infectious young individuals in the population

Similarly $\lambda_{yo}(t) = \beta_{yo}I_o(t)$ where

 $\pmb{\beta_{yo}} =$ rate at which a specific young individual comes into effective with a specific old individual per unit time

 $I_o(t)$ = number of infectious old individuals in the population

A note on notation

Denotes category of the infectious person Denotes category of the susceptible person (or the

recipient of the infection)

 ${m eta_{yo}}$ = rate at which a specific young (susceptible) individual comes into effective with a specific old (infectious) individual per unit time

Deriving expressions for force of infection

We return to the expression $\sqrt{f_y(t)} = f_{yy}(t) + f_{yo}(t)$

and substitute in $\lambda_{vv}(t) = \beta_{vv}I_v(t)$ and $\lambda_{vo}(t) = \beta_{vo}I_o(t)$ to get

$$\overline{I_{y}(t)} = b_{yy}I_{y}(t) + b_{yo}I_{o}(t)$$

Similar reasoning gives:
$$\overline{I_o(t)} = b_{oy}I_y(t) + b_{oo}I_o(t)$$

We can summarize these two equations using matrix notation

What are matrices?

- •Matrices are useful ways to arrange sets of numbers.
- •They let us summarise systems of equations that have to be satisfied simultaneously:

Examples: converting sets of equations into matrices

Examples: matrices into converting sets of equations

Expressions for the force of infection using matrix notation

The equations:
$$\overline{I_y(t)} = \mathcal{D}_{yy}I_y(t) + \mathcal{D}_{yo}I_o(t)$$

$$\overline{I_o(t)} = \mathcal{D}_{ov}I_v(t) + \mathcal{D}_{oo}I_o(t)$$

can be summarized using the following matrix equation:

Matrix of "Who Acquires Infection From Whom" (WAIFW)

Calculating the number of infectious individuals

The average number of infectious individuals in a population can be estimated using the following approximation:

Prevalence ≈ Incidence × duration of infectiousness

(assuming that people become infectious shortly after infection)

Average number of infectious individuals ≈ Average incidence × D

All ages: λS Children: $\lambda_y S$ Adults: $\lambda_a S$

Calculating the average number of susceptible individuals

 S_y , S_{σ} and S can be calculated by summing the area under the curve of the age specific number susceptible for the age group of interest

From the session on analysing seroprevalence data:

See maths refresher for methods for integration (i.e for calculating areas under curves).

Calculating β values for WAIFW matrices

$$\frac{\overline{I_y(t)} = b_{yy}I_y(t) + b_{yo}I_o(t)}{\overline{I_o(t)} = b_{oy}I_y(t) + b_{oo}I_o(t)}$$

We have **2 equations** with **4 unknowns** i.e. β_{yy} , $\beta_{y\sigma}$, β_{oy} and β_{oo}

- => impossible to calculate unique values for each of these
- => Need to reduce the equations to 2 equations in 2 unknowns

Unless we can measure effective contacts directly (which we usually can't), we need to impose constraints on the WAIFW matrix

Possible constraints for WAIFW matrices

1. Symmetrical contact: rate at which a child contacts and infects an adult = rate at which an adult contacts and infects a child

i.e.
$$\beta_{vo} = \beta_{ov}$$

2. Rate at which an adult contacts and infects a child = $\begin{bmatrix} x & b_1 & b_2 & \ddot{0} \\ c & b_1 & b_2 & \frac{\ddot{0}}{\dot{0}} \\ b_2 & b_2 & \frac{\ddot{0}}{\dot{0}} \end{bmatrix}$

Calculating β parameters

If β_{yy} , $\beta_{y\sigma}$, β_{oy} and β_{oo} are assumed to be constant over time, they can be estimated from the following equations (assuming a given WAIFW structure) if the values for $I_y(t)$, $I_o(t)$, $I_v(t)$ and $I_o(t)$ are known at some time t.

$$\overline{I_y(t)} = b_{yy}I_y(t) + b_{yo}I_o(t)$$

$$\overline{I_o(t)} = b_{ov}I_v(t) + b_{oo}I_o(t)$$

In practice, the values for $I_y(t)$, $I_o(t)$, $\overline{I_o(t)}$ and $\overline{I_o(t)}$ are usually taken to be those calculated at equilibrium (e.g. from cross-seroprevalence data).

Example 1: Calculating β parameters

Suppose $\lambda_y=0.12/{\rm year}$, $\lambda_o=0.05/{\rm year}$ and $I_y=29$, $I_o=6$ then we need to solve the following equations,

If the WAIFW matrix has the following structure $\overset{\text{\tiny d.}}{\dot{c}} \quad \mathcal{D}_1 \quad 0 \quad \overset{\ddot{0}}{\dot{c}} \quad \dot{\mathcal{D}}_2 \quad \dot{\dot{\sigma}}_2 \quad \dot{\dot{\sigma}}_3$

then we would need to solve the following equations:

Example 1: Calculating β parameters (cont)

can be rewritten as:

$$0.12 = 29\beta_1$$

 $0.05 = 6\beta_2$

=>
$$\beta_1$$
 = 0.12/29 = 0.00413/year β_2 = 0.05/6 = 0.008/year

Example 2: Calculating β parameters

Suppose $\lambda_y = 0.12$ /year, $\lambda_o = 0.05$ /year and I_y =29 , I_o =6 (as before)

If the WAIFW matrix has the following structure: $\begin{bmatrix} x & b_1 & b_2 & \ddot{0} \\ \dot{c} & b_2 & b_2 & \ddot{\dot{\eta}} \end{bmatrix}$

then we would need to solve the following equations:

These can be written as:

$$0.12 = 29\beta_1 + 6\beta_2$$
 eqn 1
 $0.05 = (29 + 6)\beta_2$ eqn 2

Eqn 2 can be solved to give β_2 =0.0014/year. Substituting for β_2 into eqn 1 gives β_7 =0.0038/year

Summary: calculating WAIFW matrices

- If we're lucky, we can measure effective contacts (semi-)directly, and use this matrix of β values.
- If not, we usually have to make assumptions about the structure of the WAIFW matrix.
- Having settled on a matrix structure, we can use estimates of the force of infection and number of infectious individuals in each group to calculate the matrix.
- If we haven't measured the number of infectious individuals, we can estimate it using the force of infection, the duration of infectiousness, and the number of susceptibles in each group.

Practical: How do different assumptions about mixing patterns influence the effectiveness of vaccination?