Лекция III

B., c. 258-264; **K.**, c. 90-96; **Φ.**, c. 335-339.

Диагональная матрица как раз и является «наиболее простым» видом матрицы линейного оператора. Если мы смогли привести матрицу оператора к диагональному виду, то легко можем найти любою степень оператора. Это открывает путь к вычислению, например, многочленов от операторов. Но как показывает предыдущий пример, линейный оператор может не иметь собственного базиса из даже в том случае, когда все корни его характеристического многочлена лежат в поле, над которым определено векторное пространство. Далее мы введём понятие корневого вектора, обобщающее понятие собственного вектора, и покажем, что в случае, когда спектр линейного оператора содержится в поле, над которым определено векторное пространство, пространство раскладывается в прямую сумму так называемых корневых подпространств.

§7. Корневые векторы и корневые подпространства

Определение 7.1. Вектор $x \in V$ называется корневым вектором оператора \mathcal{A} , отвечающим собственному значению $\lambda \in F$, если существует такое целое неотрицательное число k, что $(\mathcal{A} - \lambda \mathcal{E})^k x = 0$. Наименьшее такое k называется высотой корневого вектора x.

Замечание 7.1. Если x — корневой вектор высоты k, то $\widetilde{x} = (\mathcal{A} - \lambda \mathcal{E})x$ является корневым вектором высоты k-1.

Пример 7.1. а) Корневые векторы высоты 0 — нулевые векторы;

- б) Корневые векторы высоты 1- собственные векторы;
- в) Каждый многочлен есть корневой вектор с собственным числом 0 оператора дифференцирования пространства многочленов, причём высота многочлена как корневого вектора равна n+1, где n степень этого многочлена;

Пример 7.2. Пусть V — пространство бесконечно дифференцируемых функций на вещественной прямой с вещественными значениями, \mathcal{D} — оператора дифференцирования. Тогда:

- 1) $f \in V$ собственный с собственным значением λ : $\mathcal{D}f = f' = \lambda f$. Следовательно $\frac{f'}{f} = \lambda \Leftrightarrow \ln |f| = \lambda x + C \Leftrightarrow |f| = e^C e^{\lambda t} \Leftrightarrow f = C e^{\lambda t}, \ C \in R \setminus \{0\}.$
- 2) Корневые векторы: положим $f(t)=e^{\lambda t}g(t),\ g\in V,$ тогда $(\mathcal{D}-\lambda\mathcal{E})f=f'(t)-\lambda f(t)=\lambda e^{\lambda t}g(t)+e^{\lambda t}g'(t)-\lambda f(t)=e^{\lambda t}g'(t).$ То есть f корневой тогда и только тогда, когда существует такое k, что $g^{(k)}(t)=0$, то есть $g\in\mathbb{R}[t].$ Таким образом, корневые векторы для оператора дифференцирования это функции вида $e^{\lambda t}g(t)$, где g(t) многочлен. Высота такого корневого вектора равна $\deg g+1$. Они называются квазимногочленами. Вспомните о них, когда будете изучать линейные дифференциальные уравнения $\mathfrak G$

Корневые векторы, отвечающие собственному значению λ , высоты $\leqslant k$ — это $\mathrm{Ker}(\mathcal{A}-\lambda\mathcal{E})^k\leqslant V$. Возникает цепочка подпространств

$$V_{\lambda} = \operatorname{Ker}(A - \lambda \mathcal{E}) \leqslant \operatorname{Ker}(A - \lambda \mathcal{E})^{2} \leqslant \ldots \operatorname{Ker}(A - \lambda \mathcal{E})^{k} \leqslant \ldots \leqslant V^{\lambda},$$

где $V^{\lambda}=\{$ все корневые векторы с собственным значение $\lambda\}$ — **корневое под- пространство** с собственным значением λ :

$$V^{\lambda} = \bigcup_{i=1}^{\infty} \operatorname{Ker}(\mathcal{A} - \lambda \mathcal{E})^{i}.$$

В конечномерном случае эта цепочка с некоторого момента стабилизируются — размерности подпространств растут до тех пор, пока мы не дойдём до размерности корневого подпространства. Будем считать, что $\dim V < \infty$.

Теорема 7.1. (свойства корневых подпространств)

- 1) V^{λ} \mathcal{A} -инвариантно;
- 2) $(\mathcal{A} \lambda \mathcal{E})|_{V^{\lambda}} = \mathcal{N}$ **нильпотентный** оператор, то есть существует такое неотрицательное целое m, то $\mathcal{N}^m = \mathcal{O}$;
- 3) $(\mathcal{A} \mu \mathcal{E})|_{V^{\lambda}}$ невырожден при $\mu \neq \lambda$;
- 4) $\dim V^{\lambda} = m(\lambda)$ (геометрический смысл алгебраической кратности).

Доказательство.

- 1) Пусть $V_k^{\lambda} = \operatorname{Ker}(\mathcal{A} \lambda \mathcal{E})^k$, тогда $V_{\lambda} \leqslant V_1^{\lambda} \leqslant V_2^{\lambda} \leqslant \ldots \leqslant V_m^{\lambda} = V^{\lambda}$. Заметим, что $(\mathcal{A} \lambda \mathcal{E})V_k^{\lambda} \leqslant V_{k-1}^{\lambda} \leqslant V_k^{\lambda}$. То есть, V_k^{λ} инвариантно относительно $\mathcal{A} \lambda \mathcal{E}$, следовательно, V_k^{λ} и \mathcal{A} -инвариантно. Это верно и для $V_m^{\lambda} = V^{\lambda}$.
- 2) Выберем в V^{λ} базис, согласованный с цепочкой подпространств V_i^k : e_1, \ldots, e_{l_1} базис $V_1^{\lambda}, e_1, \ldots, e_{l_1}, \ldots, e_{l_2}$ базис V_2^{λ} и т.д., e_1, \ldots, e_{l_m} базис $V_m^{\lambda} = V^{\lambda}$. $\mathcal{N}(V_k^{\lambda}) \leqslant V_{k-1}^{\lambda}$ (положим $V_0^{\lambda} = \{0\}$). Из этого следует, что $\mathcal{N}e_j \in \langle e_1, \ldots, e_{j-1} \rangle$, следовательно $\mathcal{N}^{l_m} = \mathcal{O}$, где $l_m = \dim V^{\lambda}$.
- 3) В базисе $e_1, \ldots, e_{l_1}, \ldots, e_{l_m}$ матрица оператора $\mathcal N$ верхнетреугольная с нулями на главной диагонали ($\mathbf sepx$ ненильтреугольная), тогда матрица оператора $\mathcal A|_{V^\lambda} = \mathcal N + \lambda \mathcal E$ верхнетреугольная с λ -ми на главной диагонали, а матрица оператора $(\mathcal A \mu \mathcal E)|_{V^\lambda}$ верхнетреугольная с $\lambda \mu$ на главной диагонали. Следовательно (так как $\lambda \neq \mu$) она невырожденная и, значит, оператор $(\mathcal A \mu \mathcal E)|_{V^\lambda}$ тоже невырожден.
- 4) Дополним базис V^{λ} до базиса всего пространства V. В этом базисе матрица оператора $\mathcal A$ имеет блочно-треугольный вид:

$$\begin{pmatrix} A|_{V^{\lambda}} & D \\ 0 & C \end{pmatrix}.$$

Тогда $\chi_{\mathcal{A}}(t)=\chi_{A|_{V^{\lambda}}}(t)\det(tE-C)=(t-\lambda)^{l_m}\det(tE-C)$. Нужно показать, что λ не является собственным значением оператора \mathcal{C} в пространстве $\langle e_{l_m+1},\ldots,e_n\rangle$ с матрицей C. Пусть существует такой вектор $0\neq x\in\langle e_{l_m+1},\ldots,e_n\rangle$, что

 $\mathcal{C}x=\lambda x.$ Это означает, что $\mathcal{A}x=\lambda x+y,\ y\in V^{\lambda}.$ Следовательно, $(\mathcal{A}-\lambda\mathcal{E})x=y$ — корневой вектор, но тогда и x — корневой вектор, что противоречит определению $V^{\lambda}.$

Теорема 7.2. Корневые подпространства, отвечающие различным собственным значениями, линейно независимы.

Доказательство. Аналогично доказательству теоремы 6.1. См. В., с. 260.

§8. Структура нильпотентных операторов

Пусть \mathcal{N} — нильпотентный оператор, то есть существует такое неотрицательное целое m, что $\mathcal{N}^m = \mathcal{O}$. Наименьшее из таких m называют **высотой** нильпотентного оператора. Для него <u>все</u> векторы V — корневые с собственным значением 0, высоты не больше m.

Пример 8.1. Оператор дифференцирования в пространстве $\mathbb{R}[x]_n$ — нильпотентный высоты n+1.

В силу пункта 3 теоремы 7.1 изучение произвольного оператора сводится к изучению нильпотентного оператора на соответствующем корневом подпространстве.

Лемма 8.1. Пусть $x \in V$ — вектор высоты k > 0. Тогда векторы $x, \mathcal{N}x, \dots, \mathcal{N}^{k-1}x$ линейно независимы.

Доказательство. Индукция по k. Если k=1, в этом случае $x\neq 0$ и доказывать нечего. Пусть $\alpha_0x+\alpha_1\mathcal{N}x+\ldots+\alpha_{k-1}\mathcal{N}^{k-1}x=0$. Применим оператора N к обеим частям равенства, получим $\alpha_0\mathcal{N}x+\alpha_1\mathcal{N}^2x+\ldots+\alpha_{k-2}\mathcal{N}^{k-1}x=0$, так как $\mathcal{N}^kx=0$. Пусть $\mathcal{N}x=y$, его высота k-1 и $\alpha_0y+\alpha_1\mathcal{N}y+\ldots+\alpha_{k-2}\mathcal{N}^{k-2}y=0$. Поскольку по предположению индукции векторы $y,\mathcal{N}y,\ldots,\mathcal{N}^{k-1}y$ линейно независимы, то $\alpha_0=\ldots=\alpha_{k-2}=0$. Но тогда и $\alpha_{k-1}\mathcal{N}x=0$. Так как высота x равна k, то $\mathcal{N}^{k-1}x\neq 0$, значит, $\alpha_{k-1}=0$, следовательно, $x,\mathcal{N}x,\ldots,\mathcal{N}^{k-1}x$ линейно независимы.

Определение 8.1. Подпространство $U = \langle x, \mathcal{N} x, \mathcal{N}^2 x, \dots, \rangle$ называется $\boldsymbol{uu\kappa}$ -лическим подпространством нильпотентного оператора \mathcal{N} , порождённым вектором x.

Циклическое подпространство U — наименьшее $\mathcal N$ -инвариантное подпространство, содержащее x, $\dim U=k$, где k — высота вектора x.

Базис $U: x_1, x_2, \dots x_k$, где $x_i = N^{k-i}x$. Такой базис называется **жордановой цепочкой**: $0 \stackrel{\mathcal{N}}{\longleftarrow} x_1 \stackrel{\mathcal{N}}{\longleftarrow} x_2 \stackrel{\mathcal{N}}{\longleftarrow} \dots \stackrel{\mathcal{N}}{\longleftarrow} x_{k-1} \stackrel{\mathcal{N}}{\longleftarrow} x_k$, то есть первый вектор переходит при действии \mathcal{N} в нулевой, второй — в первый и т.д, последний —

в предпоследний. Следовательно, матрица оператора $\mathcal N$ в базисе $x_1,x_2,\dots x_k$ имеет вид

$$J_k(0) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix},$$

называемый *нильпотентной экордановой клеткой* порядка k.

Пример 8.2. Пусть $\mathcal{N}=\mathcal{D}^2=\frac{d^2}{dx^2}\colon \mathbb{R}[x]_7\to \mathbb{R}[x]_7,\ f_i=\frac{x^k}{k!},\ i=\overline{0,7}$ — базис $\mathbb{R}[x]_7$. Действие \mathcal{N} на базисных векторах даёт следующие жордановы цепочки

$$0 \stackrel{\mathcal{N}}{\longleftarrow} f_1 \stackrel{\mathcal{N}}{\longleftarrow} f_3 \stackrel{\mathcal{N}}{\longleftarrow} f_5 \stackrel{\mathcal{N}}{\longleftarrow} f_7,$$
$$0 \stackrel{\mathcal{N}}{\longleftarrow} f_0 \stackrel{\mathcal{N}}{\longleftarrow} f_2 \stackrel{\mathcal{N}}{\longleftarrow} f_4 \stackrel{\mathcal{N}}{\longleftarrow} f_6.$$

Теорема 8.1. (основная теорема о структуре нильпотентного оператора) Π усть \mathcal{N} — нильпотентный оператор на V. Тогда существует разложение пространства V в прямую сумму циклических подпространств этого оператора $V = \bigoplus U_i$. Количество слагаемых в таком разложении равно $\dim \operatorname{Ker} \mathcal{N}$.

Пример 8.3. В предыдущем примере $\mathbb{R}[x]_7 = \langle f_1, f_3, f_5, f_7 \rangle \oplus \langle f_0, f_4, f_2, f_6 \rangle$. $\dim \operatorname{Ker} \mathcal{N} = \dim \langle f_0, f_1 \rangle = \dim \mathbb{R}[x]_1 = 2$. Нетрудно заметить, что в данном случае разложение в прямую сумму циклических — это разложение в прямую сумму подпространств чётных и нечётных многочленов степени не выше 7.

Наглядно можно изображать структуру нильпотентного оператора с помощью так называемой ∂ иаграммы HOнга, которая в данном случае схематически показывает, как действует нильпотентный оператор на базисных векторах жорданова базиса:

 ${\bf C}$ помощью такой диаграммы нильпотентный оператор задаётся однозначно. Квадратики — векторы жорданова базиса, нильпотентный оператор действует на них сверху вниз.

• Высота строки соответствует высоте базисного вектора, а высота произвольного вектора (линейной комбинации базисных) определяется как наибольшая высота базисного вектора, входящего в эту линейную комбинацию с ненулевым коэффициентом

- i-тый столбец соответствует жордановой цепочке базису циклического пространства U_i
- Ядро оператора \mathcal{N}^k линейная оболочка векторов, стоящих в строках высоты не больше k
- Векторы, лежащие в нижней строке, при действии оператора переходят в нулевые

Пример 8.4. Для примеров 8.2 и 8.3 диаграмма Юнга имеет вид:

Высота вектора $2f_4 - 8f_1$ равна $\max\{3,1\} = 3$, $\operatorname{Ker} \mathcal{N}^2 = \langle f_0, f_1, f_2, f_3 \rangle$.