PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ RACIOCÍNIO ALGORÍTMICO PROF. JEAN PAUL BARDDAL

ATIVIDADE PRÁTICA 01 – RESOLUÇÃO DE PROBLEMAS LÓGICOS, RELACIONAIS E ARITMÉTICOS

Neste primeiro trabalho, você e sua equipe foram incumbidos de resolver problemas usando a linguagem Python em sua versão 3. Cada enunciado abaixo deverá, obrigatoriamente, ser resolvido em um arquivo Python (.py) diferente com nome também definido a seguir.

q1.py: Uma P.A. (progressão aritmética) fica determinada pela sua razão (r) e pelo primeiro termo (a_1) . Escreva um algoritmo que seja capaz de determinar qualquer termo de uma P.A., dado a razão e o primeiro termo.

$$a_n = a_1 + r(n-1)$$

q2.py: Faça um programa que receba 3 valores a, b, e c que representam os lados de um triângulo, e retorne a sua área. Para calcular a área, use a fórmula de Herão, fornecida abaixo, onde p é o semi-perímetro:

$$A = \sqrt{p(p-a)(p-b)(p-c)}$$
, sendo que $p = \frac{a+b+c}{2}$

q3.py: Construir um algoritmo que leia dois números e efetue a adição. Caso o valor somado seja maior que 20, este deverá ser apresentado somando-se a ele mais 8; caso o valor somado seja menor ou igual a 20, este deverá ser apresentado subtraindo-se 5.

q4.py: Construa um algoritmo para determinar se o indivíduo está com um peso favorável. Essa situação é determinada através do IMC (Índice de Massa Corpórea), que é definida como sendo a relação entre o peso (PESO) e o quadrado da Altura (ALTURA) do indivíduo. Ou seja, $IMC = \frac{PESO}{ALTURA^2}$ e a situação seja dada pela tabela abaixo:

Condição	Situação
Abaixo de 17	Muito abaixo do peso
Entre 17 e 18,49	Abaixo do peso
Entre 18,5 e 24,99	Peso normal
Entre $25 e 29,99$	Acima do peso
Entre 30 e 34,99	Obesidade I
Entre 35 e 39,99	Obesidade II (severa)
Acima de 40	Obesidade III (mórbida)

q5.py: Escreva um algoritmo que leia um número e informe se ele é divisível por 3 e por 7, de forma concomitante.

q6.py: Dados três valores A, B e C, construa um algoritmo, que imprima os valores de forma ascendente (do menor para o maior). Realize esta implementação sem laços de repetição ou funções auxiliares (ex.: sort).

q7.py: Construir um algoritmo para calcular as raízes de uma equação do 20 grau, sendo que os valores dos coeficientes A, B, e C devem ser fornecidos pelo usuário através do teclado. Caso não existam reais, o usuário deverá ser informado.

q8.py: Criar um algoritmo que a partir da idade e peso do paciente calcule a dosagem de determinado medicamento e imprima a receita informando quantas gotas do medicamento o paciente deve tomar por dose. Considere que o medicamento em questão possui 500 mg por ml, e que cada ml corresponde a 20 gotas.

- Adultos ou adolescentes desde 12 anos, inclusive, se tiverem peso igual ou acima de 60 quilos devem tomar 1000 mg; com peso abaixo de 60 quilos devem tomar 875 mg.
- Para crianças e adolescentes abaixo de 12 anos a dosagem é calculada pelo peso corpóreo conforme a tabela a seguir:

Peso	Dosagem
5 kg a 9 kg	125 mg
9.1 kg a 16 kg	250 mg
16.1 kg a 24 kg	375 mg
24.1 kg a 30 kg	500 mg
Acima de 30 kg	750 mg

NOTAS IMPORTANTES

- Esta atividade deverá ser realizada em TRIOS.
- Entregas atrasadas terão dedução de 0,5 (meio ponto) por dia de atraso.
- Todos os integrantes da equipe deverão realizar o teste de auditoria. A não participação acarretará o decréscimo de 30% do valor total da atividade.
- A data de entrega e da vista dos trabalhos estão dispostas no ambiente virtual de aprendizagem (*Blackboard*).