Courbes & Surfaces de subdivision

Nicolas SZAFRAN

2012-2013

Interpolation d'un maillage par une surface lisse (G^1)

Maillage initial (polyèdre avec topologie arbitraire)

Interpolation d'un maillage par une surface lisse (G^1)

Interpolation (des sommets) par une surface lisse composée de patchs de Bézier

Interpolation d'un maillage par une surface lisse (G^1)

Interpolation (des sommets) par une surface lisse composée de patchs de Bézier

Raccord G^1 entre deux Bézier triangulaires

Plans tangents Π_1 et Π_2 égaux en tout point $P \in B_1 \cap B_2$

Raccord G^1 entre deux Bézier triangulaires

Polyèdres de contrôle correspondants

Raccord G^1 entre deux Bézier triangulaires

Ruban de tangence entre les deux polyèdres de contrôle

Ruban de tangence entre n triangles voisins

Ruban de tangence entre *n* triangles voisins

Compatibilité des twists • autour d'un sommet •

Peu adapté à des topologies quelconques (difficulté de gérer les raccords "lisses")

Peu adapté à des topologies quelconques (difficulté de gérer les raccords "lisses") Calculs couteux dans le cas de B-splines non uniformes

Peu adapté à des topologies quelconques (difficulté de gérer les raccords "lisses")
Calculs couteux dans le cas de B-splines non uniformes

→ généralisation de la subdivision dans le cas des B-splines uniformes

Peu adapté à des topologies quelconques (difficulté de gérer les raccords "lisses")
Calculs couteux dans le cas de B-splines non uniformes
→ généralisation de la subdivision dans le cas des B-splines uniformes

courbes et surfaces de subdivision

Peu adapté à des topologies quelconques (difficulté de gérer les raccords "lisses") Calculs couteux dans le cas de B-splines non uniformes \rightarrow généralisation de la subdivision dans le cas des B-splines uniformes

courbes et surfaces de subdivision

Cadre mathématique : années 1970 Utilisation pratique (surfaces de subdivision en synthèse d'image) : années 1990

Maillage initial à topologie quelconque

Surface lisse obtenue par subdivision du maillage initial

Surface lisse obtenue par subdivision du maillage initial

Geri's game - Pixar Animation Studio (1997)

Geri's game - Pixar Animation Studio (1997)

Polygone initial et courbe

Polygone après 1 subdivision

Polygone après 2 subdivisions

Polygone après 3 subdivisions

Subdivision d'une B-spline quadrique à noeuds équidistants

Subdivision d'une B-spline quadrique à noeuds équidistants

Subdivision d'une B-spline quadrique à noeuds équidistants

Schéma de subdivision - Exemple de Chaïkin

Représentation matricielle : $\overline{D} = S D$

Schéma de subdivision - Exemple de Chaïkin

```
3/4
                                 3/4
                                          1/4
                                 1/4
                                          3/4
                                                    0
\bar{D}_{2i}
                                          3/4
                                                   1/4
                                  0
\bar{D}_{2i+1}
                                                   3/4
                                  0
                                          1/4
\bar{D}_{2i+2}
                                                   3/4
                                                            1/4
                                   0
                                            0
ar{D}_{2i+3} \ ar{D}_{2i+4}
                                                   1/4
                                                            3/4
                                   0
                                            0
                                   0
                                            0
                                                    0
                                                            3/4
```

 $\begin{bmatrix}
\vdots \\
D_{i-1} \\
D_{i} \\
D_{i+1} \\
D_{i+2} \\
\vdots
\end{bmatrix}$

Masque de subdivision

Schéma de subdivision - Exemple de Chaïkin

Règles de subdivision

Le polygone initial P

Etape 0 :
$$D^{(0)} = P$$

Etape 1 :
$$D^{(1)} = S D^{(0)} = S P$$

Etape 2 :
$$D^{(2)} = S D^{(1)} = S^2 P$$

Etape 3 :
$$D^{(3)} = S D^{(2)} = S^3 P$$

Etape 4 :
$$D^{(4)} = S D^{(3)} = S^4 P$$

Schéma de subdivision d'un polygone

Courbe finale : $D^{(\infty)} = S^{\infty} P$

Schéma de subdivision approximant

Exemple du schéma de Catmull-Clark

Polygone initial

Schéma de subdivision approximant

Exemple du schéma de Catmull-Clark

Polygone initial et courbe finale

Schéma de subdivision interpolant

Exemple du schéma à 4 points

Polygone initial

Schéma de subdivision interpolant

Exemple du schéma à 4 points

Polygone initial et courbe finale

Exemple du schéma de Chaikin

\sqcap : \sqcap		÷	:	:	:	
\bar{D}_{2i-3}		 3/4	0	0	0	
\bar{D}_{2i-2}		 3/4	1/4	0	0	
\bar{D}_{2i-1}		 1/4	3/4	0	0	
$ar{D}_{2i}$	_	 0	3/4	1/4	0	
\bar{D}_{2i+1}	_	 0	1/4	3/4	0	
\bar{D}_{2i+2}		 0	0	3/4	1/4	
\bar{D}_{2i+3}		 0	0	1/4	3/4	
\bar{D}_{2i+4}		 0	0	0	3/4	
_ : _		÷	;	;	:	

 $\begin{bmatrix} \vdots \\ D_{i-1} \\ D_i \\ D_{i+1} \\ D_{i+2} \\ \vdots \end{bmatrix}$

Masque de subdivision

Exemple du schéma de Chaikin

		i	:	:	:	
\bar{D}_{2i-3}		 3/4	0	0	0	
\bar{D}_{2i-2}	<u></u>	 3/4	1/4	0	0	
\bar{D}_{2i-1}		 1/4	3/4	0	0	
\bar{D}_{2i}		 0	3/4	1/4	0	
\bar{D}_{2i+1}	_	 0	1/4	3/4	0	
\bar{D}_{2i+2}		 0	0	3/4	1/4	
\bar{D}_{2i+3}		 0	0	1/4	3/4	
\bar{D}_{2i+4}		 0	0	0	3/4	
_ ; _		:	:	:	:	

 $\begin{bmatrix} \vdots \\ D_{i-1} \\ D_i \\ D_{i+1} \\ D_{i+2} \\ \vdots \end{bmatrix}$

Exemple du schéma de Chaikin

$$M = \left(\begin{array}{cccc} 3/4 & 1/4 & 0 & 0 \\ 1/4 & 3/4 & 0 & 0 \\ 0 & 3/4 & 1/4 & 0 \\ 0 & 1/4 & 3/4 & 0 \end{array}\right)$$

Exemple du schéma de Chaikin

$$M = \left(\begin{array}{cccc} 3/4 & 1/4 & 0 & 0 \\ 1/4 & 3/4 & 0 & 0 \\ 0 & 3/4 & 1/4 & 0 \\ 0 & 1/4 & 3/4 & 0 \end{array}\right)$$

Valeurs propres (par ordre décroissant) :

$$\{\lambda_1 = 1 > \lambda_2 = 0.5 > \lambda_3 = 0.25 > \lambda_4 = 0\}$$

Vecteurs propres :

$$\{v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} -1 \\ 1 \\ 3 \\ 5 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 3 \end{pmatrix}, v_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}\}$$

Exemple du schéma de Catmull-Clark

$$M = \left(\begin{array}{ccccc} 1/8 & 6/8 & 1/8 & 0 & 0 \\ 0 & 4/8 & 4/8 & 0 & 0 \\ 0 & 1/8 & 6/8 & 1/8 & 0 \\ 0 & 0 & 4/8 & 4/8 & 0 \\ 0 & 0 & 1/8 & 6/8 & 1/8 \end{array}\right)$$

Exemple du schéma de Catmull-Clark

Valeurs propres (par ordre décroissant) :

$$\{\lambda_1 = 1 > \lambda_2 = 0.5 > \lambda_3 = 0.25 > \lambda_4 = \lambda_5 = 1/8\}$$

Vecteurs propres :

$$\begin{cases}
v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \\ -1 \\ -2 \end{pmatrix}, v_3 = \begin{pmatrix} 11 \\ 2 \\ -1 \\ 2 \\ 11 \end{pmatrix}, v_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, v_5 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$v_4 = \left(egin{array}{c} 0 \ 0 \ 0 \ 0 \ 1 \end{array}
ight), v_5 = \left(egin{array}{c} 1 \ 0 \ 0 \ 0 \ 0 \ 0 \end{array}
ight)
ight\}$$

Eléments propres

Condition de continuité C^k du schéma

M : sous-matrice carrée (de dim. n) du masque vérifie

Condition de continuité Ck du schéma

M: sous-matrice carrée (de dim. n) du masque vérifie

- $\{v_1, v_2, \dots, v_n\}$ forme une base
- les k + 2 premières valeurs propres sont non nulles

$$1 = \lambda_1 > \lambda_2 > \dots > \lambda_{k+2} \ge |\lambda_{k+3}| \ge \dots \ge 0$$

Condition de continuité Ck du schéma

M : sous-matrice carrée (de dim. n) du masque vérifie

- $\{v_1, v_2, \dots, v_n\}$ forme une base
- les k + 2 premières valeurs propres sont non nulles

$$1 = \lambda_1 > \lambda_2 > \dots > \lambda_{k+2} \ge |\lambda_{k+3}| \ge \dots \ge 0$$

$$\{\lambda_1 = 1 > \lambda_2 = 0.5 > \lambda_3 = 0.25 > \lambda_4 = 0\}$$

Condition de continuité Ck du schéma

M : sous-matrice carrée (de dim. n) du masque vérifie

- $\{v_1, v_2, \dots, v_n\}$ forme une base
- les k + 2 premières valeurs propres sont non nulles

$$1 = \lambda_1 > \lambda_2 > \dots > \lambda_{k+2} \ge |\lambda_{k+3}| \ge \dots \ge 0$$

$$\{\lambda_1 = 1 > \lambda_2 = 0.5 > \lambda_3 = 0.25 > \lambda_4 = 0\}$$

$$\{\lambda_1=1>\lambda_2=0.5>\lambda_3=0.25>\lambda_4=\lambda_5=1/8\}$$

Polygone initial

Subdivision suivant le paramètre 1

Subdivision suivant le paramètre 2

Règles pour le schéma de Catmull-Clark (B-spline d'ordre 4)

Règles de subdivision (mailles internes)

Règles pour le schéma de Catmull-Clark (B-spline d'ordre 4)

Règles de subdivision (mailles internes)

Règles pour le schéma de Catmull-Clark (B-spline d'ordre 4)

Règles de subdivision (mailles externes)

Règles pour le schéma de Catmull-Clark (B-spline d'ordre 4)

 $\frac{1}{8}$	6/8	1/8	 $\frac{1}{2}$	$\frac{1}{2}$

Règles de subdivision (mailles externes)

Exemple du schéma de Catmull-Clark

Maillage initial

Exemple du schéma de Catmull-Clark

Maillage après 1 subdivision

Exemple du schéma de Catmull-Clark

Maillage après 2 subdivisions

Exemple du schéma de Catmull-Clark

Maillage après 3 subdivisions

Schéma de subdivision d'une quadrangulation Schéma approximant

Règles pour les sommets issus de sommets internes de degré n

$$\begin{cases} Q_i = \frac{1}{4}(A_i + B_i + A_{i+1} + S), \ R_i = \frac{1}{2}(A_i + S) \\ Q = \frac{1}{n}\sum_{i=1}^n Q_i, \ R = \frac{1}{n}\sum_{i=1}^n R_i \text{ et } S' = \frac{1}{n}(Q + 2R + (n-3)S) \end{cases}$$

Règles pour les sommets issus d'arêtes internes

Règles pour les sommets issus de quadrangles

Règles pour les sommets issus de sommets externes

Règles pour les sommets issus d'arêtes externes

Un exemple

Maillage initial

Surface de subdivision - schéma de Catmull-Clark Un exemple

Maillage après 1 subdivision

Surface de subdivision - schéma de Catmull-Clark Un exemple

Maillage après 2 subdivisions

Surface de subdivision - schéma de Catmull-Clark Un exemple

Maillage après 3 subdivisions

Surface de subdivision - schéma de Catmull-Clark Un exemple

Maillage après 4 subdivisions

Surface de subdivision - schéma de Catmull-Clark Un exemple

Surface finale

Surface de subdivision - schéma de Doo-Sabin

Schéma de subdivision d'une quadrangulation Schéma approximant

Surface de subdivision - schéma de Doo-Sabin

Règles pour les sommets issus de faces à n sommets

$$\alpha_0 = \frac{1}{4} + \frac{5}{4n}$$
 et $\alpha_i = \frac{3 + 2\cos(2i\pi/n)}{4n}$ pour $1 \le i \le n-1$

Surface de subdivision - schéma de Doo-Sabin

Un exemple

Maillage après 1 subdivision

Maillage après 2 subdivisions

Maillage après 3 subdivisions

Surface finale

Schéma de subdivision d'une triangulation Schéma approximant

Règles pour les sommets issus de sommets internes de degré n

$$\beta = \frac{1}{n} \left(\frac{5}{8} - \left[\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{n} \right]^2 \right)$$

Règles pour les sommets issus d'arêtes internes

Règles pour les sommets issus de sommets externes

Règles pour les sommets issus d'arêtes externes

Cas d'une triangulation régulière (sommets internes de degré 6)

Cas d'une triangulation régulière (sommets internes de degré 6) Règles pour les sommets issus de sommets internes

Un exemple

Maillage initial

Maillage après 2 subdivisions

Maillage après 2 subdivisions

Schéma de subdivision d'une triangulation Schéma interpolant

Règles pour les sommets issus de sommets

Maillage initial

Maillage initial

Maillage après 4 subdivisions

Surface finale lisse (G^1)

Exemple d'un maillage quelconque

Maillage initial

Exemple d'un maillage quelconque

Surface obtenue par le schéma Butterfly

→ surface lisse sauf aux sommets extraordinaires

Exemple d'un maillage quelconque

Surface obtenue par le schéma Butterfly modifié \rightarrow surface lisse partout

Quelques schémas de subdivision classiques

			Continuité
Nom	Maillage	Type	de la surface
Catmull-Clark	Quadrangle	Approximant	$C^{2}(C^{1} \text{ s.e.})$
Doo-Sabin	Quadrangle	Approximant	C^{1} (C^{0} s.e.)
Loop	Triangle	Approximant	C^{2} (C^{1} s.e.)
Butterfly	Triangle	Interpolant	C^{1} (C^{0} s.e.)
Butterfly modif.	Triangle	Interpolant	C^1
$\sqrt{3}$	Triangle	Approximant	C^{2} (C^{1} s.e.)
Kobbelt	Quadrangle	Interpolant	C^1

 C^2 (C^1 s.e.) : surface C^2 partout sauf aux sommets extraordinaires (seulement C^1)

