Proof of Theorem 1 (II)

We want to show that the above choice of δ satisfies (*).

2) Suppose $||\mathbf{x}_0|| \le \delta$, then from (2*)

$$V(t_0, \mathbf{x}_0) \le \beta(t_0, \delta) \le \alpha(\epsilon_1)$$

since $\dot{V}(t,x) \le 0$ whenever $||x|| \le \delta \le \varepsilon_1 \le r$ It follows that

$$V[t, s(t, t_0, \mathbf{x}_0)] \le V(t_0, \mathbf{x}_0) \le \alpha(\varepsilon_1) \qquad \forall \ t \ge t_0 \quad (3^*)$$

Now since by definition of lpdf

$$\alpha(||s(t,t_0,\mathbf{x}_0)||) \le V[t,s(t,t_0,\mathbf{x}_0)]$$
 (4*)

then (3*) & (4*) imply that

$$\alpha(||s(t,t_0,\mathbf{x}_0)||) \le \alpha(\varepsilon_1) \qquad \forall \ t \ge t_0$$

since α is of class K, hence strictly increasing, it follows

$$||s(t, t_0, \mathbf{x}_0)|| < \varepsilon_1 \le \varepsilon \qquad \forall \ t \ge t_0$$

Conclusion:

$$\|\mathbf{x}_0\| < \delta \implies \|s\| < \epsilon$$

Lyapunov's Direct Method - Theorem 2

Theorem 2: [Uniform Stability]

The equilibrium 0 of \sum is <u>uniformly stable</u> if :

 \exists a \mathbb{C}^1 , lpdf, decrescent $V: \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}$ and a constant r > 0 s.t.:

$$V(t, \mathbf{x}) \le 0, \quad \forall t \ge 0, \forall \mathbf{x} \in B_r$$

where V is evaluated along the solution trajectories of Σ .

Proof of Theorem 2

Since V is decrescent, the function

$$\beta(t_0, \delta) = \sup_{\|\mathbf{x}\| < \delta} \sup_{t \ge 0} V(t_0, \mathbf{x})$$

is - finite for all sufficiently small δ ;

- non-decreasing in δ .

Now let $\varepsilon_1 = \min\{ \varepsilon, r, s \}$ and pick $\delta > 0$ s.t. $\beta(\delta) < \alpha(\varepsilon_1)$

Proceed as before.

Remarks (I)

- Theorem 1 and Theorem2 give sufficient conditions for stability and uniform stability.
 - No function V, nothing can be said.
 - We will see that the <u>converse</u> of these theorems is also true. So in fact they are <u>necessary & sufficient</u>.

- The ε-δ definitions of stability are qualitative:
 ⇒ given ε>0, required to demonstrate the existence of a suitable δ.
 - Thm1 & Thm2 are also qualitative in the sense that they provide conditions under which the existence of a suitable δ can be concluded.

Remarks (II)

- (3) Convention:
 - Lyapunov function candidate: is a Lyapunov function that satisfies the conditions imposed on by the stability theorem. (ex: V is \mathbb{C}^1 , lpdf)
 - Lyapunov function: if in addition the conditions on its \dot{V} imposed by the theorem are satisfied.
- (4) Since \dot{V} is allowed to be zero for $||\mathbf{x}|| \neq 0$, all coordinates need not to show up in expression of \dot{V} .

Nevertheless, all coordinates NEED to show up in expression of V. \leftarrow This is crucial!

Example (I)

(1) Simple Pendulum

$$\Sigma: \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -\sin x_1 \end{cases}$$

Total energy:

$$V(x_1, x_2) = \underbrace{(1 - \cos x_1)}_{\text{P.E.}} + \underbrace{\frac{1}{2} x_2^2}_{\text{K.E.}}$$
, $V(x_1, x_2)$ is C^1 , lpdf

 $\Rightarrow V(x_1, x_2)$ is a suitable Lyapunov function candidate for applying Theorem 1.

$$\dot{V}(x_1, x_2) = \sin x_1 \dot{x}_1 + x_2 \dot{x}_2$$

$$= x_2 \sin x_1 - x_2 \sin x_1$$

$$= 0$$

- \Rightarrow \dot{V} also satisfies the requirements of Thm 1. Hence V is actually a Lyapunov function, and the equilibrium O is stable by Thm 1.
- \rightarrow Furthermore, since Σ is autonomous, θ is a uniformly stable equilibrium.

Example (II)

(2) Damped Mathiew Equation

$$\Sigma : \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_2 - (2 + \sin t)x_1 \end{cases}$$

- No physical intuituion readily available to guide us in the choices of a suitable V.
- After a great deal of trial & error $V(t, x_1, x_2) = x_1^2 + \frac{x_2^2}{2 + \sin t}$.

Note: V is C^1 , and

$$W_1 = x_1^2 + \frac{x_2^2}{3} \le V(t, x_1, x_2) \le x_1^2 + x_2^2 = W_2$$

So $V(t, x_1, x_2)$ is pdf & decrescent and V is a suitable Lyapunov function candidate for applying Theorem2.

Example (III)

Now

$$\dot{V}(t,x_1,x_2) = 2x_1\dot{x}_1 - x_2^2 \frac{\cos t}{(2+\sin t)^2} + \frac{2x_2\dot{x}_2}{2+\sin t}$$

$$= 2x_1x_2 - x_2^2 \frac{\cos t}{(2+\sin t)^2} + \frac{2x_2[-x_2 - (2+\sin t)x_1]}{2+\sin t}$$

$$= -\frac{4+2\sin t + \cos t}{(2+\sin t)^2} x_2^2$$

$$\leq 0 \qquad \forall t \geq 0, \quad \forall x_1,x_2$$

Thus requirements on \dot{V} in Thm2 are also met. Hence V is a Lyapunov function

and 0 is a uniformly stable equilibrium.

Example (IV)

(3) Using Lyapunov theory to obtain stability conditions involving parameters of systems

$$\Sigma: \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -p(t)x_2 - e^{-t}x_1 \end{cases}$$

- Want to find conditions on p(t) that insure stability of equilibrium 0.
- Choose $V(t,x_1,x_2) = x_1^2 + e^t x_2^2$.
- V is \mathbb{C}^1
- $V(t,x_1,x_2) \ge W = x_1^2 + x_2^2$, hence V is p.d.f.
- V is a suitable <u>Lyapunov function candidate</u> for applying <u>Theorem1</u>.
- Note that V is NOT decrescent (why?), hence V is NOT a suitable Lyapunov function candidate for applying Theorem2.
- ⇒ Using this particular V, we can not hope to establish uniform stability.

Example (IV) - continued

•
$$\dot{V}(t,x_1,x_2) = 2x_1x_2 + e^t x_2^2 + 2e^t x_2[-p(t)x_2 - e^{-t}x_1]$$

= $e^t x_2^2[-2p(t) + 1]$

if
$$p(t) \ge \frac{1}{2}$$
, $\forall t \ge 0$ (*)

$$\Rightarrow \dot{V}(t,x_1,x_2) \leq 0.$$

Thus equilibrium O is stable provided condition (*) holds.

- Note:
- By employing a different Lyapunov function candidate, we might be able to obtain entirely different stability condition involving $p(\bullet)$.

Theorems on Asymptotic Stability - Theorem 3 (I)

Theorem 3: [Uniform Asymptotic Stability]

The equilibrium 0 of Σ is <u>uniformly asymptotically stable</u> if Ξ a \underline{C}^1 decrescent lpdf V s.t.

 $-\dot{V}$ is an lpdf.

Remarks:

- Compare with Thm 2. (- $\dot{V} \ge \alpha(||\mathbf{x}||)$) all coordinates need to show up in expression of \dot{V} !
- Uniform asymptotic stability means uniform stability & uniform attractivity, hence $s(t, t_0, \mathbf{x}_0) \rightarrow 0$ as $t \rightarrow \infty$.
- Intuitively, since \dot{V} is an lpdf (i.e. $\dot{V} < 0$ and $\dot{V} = 0$ only when $\mathbf{x} = 0$. Then indeed $s(t, t_0, \mathbf{x}_0) \rightarrow 0$ as $t \rightarrow \infty$!)

Theorems on Asymptotic Stability - Theorem 3 (II)

Proof of Theorem 3:

If $-\dot{V}$ is an lpdf, then clearly \dot{V} satisfies the hypothesis of Thm2, so that O is a uniformly stable equilibrium.

Thus, it only remains to prove that O is uniformly attractive (Why?) Precisely, it is necessary to show the existence of a δ_1 >0 s.t. for each ϵ >0 \exists a $T(\epsilon)$ < ∞ s.t.

$$\|\mathbf{x}\| < \delta_1, \ t \ge 0 \Rightarrow \|s(t_0 + t, t_0, \mathbf{x}_0)\| \le \varepsilon, \ \forall \ t \ge T(\varepsilon).$$

• The hypothesis on V and \dot{V} imply that there are functions $\alpha(\bullet)$, $\beta(\bullet)$, $\gamma(\bullet)$ of class K and a constant r>0 s.t.

$$\alpha(||\mathbf{x}||) \le V(t, x) \le \beta(||\mathbf{x}||) \ \forall \ t \ge t_0, \ \forall \ \mathbf{x} \in B_r$$

$$\dot{V} \qquad (t, x) \le -\gamma(||\mathbf{x}||), \ \forall \ t \ge t_0, \ \forall \ \mathbf{x} \in B_r$$

Theorems on Asymptotic Stability - Theorem 3 (III)

• Now choose $\varepsilon > 0$ and define (a) $\delta_1 > 0$ s.t. $\beta(\delta_1) < \alpha(r)$

Copyright Fathi H. Ghorbel 2018

(b) $\delta_2 > 0$ **s.t.** $\beta(\delta_2) < \min\{\alpha(\epsilon), \beta(\delta_1)\}$

$$\delta_2 < \delta_1$$
since $\alpha(\epsilon) < \beta(\epsilon) \Rightarrow \delta_2 < \epsilon$

Theorems on Asymptotic Stability - Theorem 3 (IV)

(C) Define
$$T = \frac{\beta(\delta_1)}{\gamma(\delta_2)}$$
 (*)

We now show that these are the required constants.

Next, it is shown that:

$$||\mathbf{x}_0|| < \delta_2 \Rightarrow ||S(t_1, t_0, \mathbf{x}_0)|| \le \delta_2$$
, for some $t_1 \in [t_0, t_0 + T]$ (*)

To prove, (*) suppose by way of contradiction that (*) is false, so that

$$\|\mathbf{x}_0\| < \delta_2 \Rightarrow \|s(t_1, t_0, \mathbf{x}_0)\| \le \delta_2, \ \forall t_1 \in [t_0, t_0 + T]$$

$$\Rightarrow 0 < \alpha(\delta_2) \leq V(t_0 + T, s(t_0 + T, t_0, x_0))$$

$$= \underbrace{V(t_0, x_0)}_{\leq \beta(||\mathbf{x}_0||)} + \underbrace{\int_{t_0}^{t_0+T} \dot{V}[\tau, s(\tau, t_0, x_0)] d\tau}_{\leq \beta(\delta_1) \text{ if } ||\mathbf{x}_0|| < \delta_1} + \underbrace{\int_{t_0}^{t_0+T} \dot{V}[\tau, s(\tau, t_0, x_0)] d\tau}_{\leq \int_{t_0}^{t_0+T} -\gamma(||S(\tau, t_0, x_0)||) d\tau}_{\leq \int_{t_0}^{t_0+T} -\gamma(\delta_2) d\tau = -T\gamma(\delta_2)}$$

 $\leq \beta(\delta_1) - T\gamma(\delta_2)$

$$=0 \quad \text{by} \quad (*)$$

This contradiction shows that (*) is true!

Theorems on Asymptotic Stability - Theorem 3 (V)

• To complete the proof, suppose $t \ge t_0 + T$. then, with $t_1 \in [t_0, t_0 + T]$ defined in (*), we have $\Omega[\|s(t,t_0,\mathbf{x}_0)\|] \le V[t,s(t,t_0,\mathbf{x}_0)] \le V[t_1,s(t_1,t_0,\mathbf{x}_0)] \text{ since } \dot{V} < 0 \text{ for } x \ne 0.$ Finally, $V[t_1, s(t_1, t_0, \mathbf{x}_0)] \le \beta[\|s(t_1, t_0, \mathbf{x}_0)\|] \le \beta(\delta_2) \text{ by } (*).$ Hence, $\alpha \lceil \|s(t_1, t_0, \mathbf{x}_0)\| \rceil \leq \beta(\delta_2) \leq \alpha(\varepsilon).$ that is $||s(t,t_0,\mathbf{X}_0)|| \leq \varepsilon.$ So we have shown uniform attractivity, i.e. For each $\varepsilon > 0$, $\exists \delta_1 > 0$ and $T(\varepsilon) < \infty$ s.t. $||\mathbf{x}|| < \delta_1, t \ge 0 \Rightarrow ||s(t_0 + t, t_0, \mathbf{x}_0)|| \le \varepsilon, \ \forall \ t \ge T(\varepsilon).$

Theorems on Asymptotic Stability - Theorem 4

Theorem 4: [Global Uniform Asymptotic Stability]

The equilibrium 0 of \sum is globally uniformly asymptotically stable if \exists a function $V: \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}$ s.t.

- (i) V is C^1 , decrescent, pdf & radially unbounded;
- (ii) $-\dot{V}$ is a pdf.

Remarks:

- The assumption that V is radially unbounded is indispensable. Without this assumption, the theorem is not valid.
- V is required to be radially unbounded but $-\dot{V}$ is not.

Theorems on Asymptotic Stability

Theorem 5: [Exponential Stability]

Suppose \exists constants a,b,c,r>0, $p\geq 1$, and a C^1 function $V: \mathbb{R}^+\times\mathbb{R}^n\to\mathbb{R}$ s.t.

- (i) $a||\mathbf{x}||^p \le V(t,x) \le b||\mathbf{x}||^p$, $\forall t \ge 0$, $\forall \mathbf{x} \in B_r$
- (ii) $\dot{V}(t,x) \leq -c||\mathbf{x}||^p, \forall t \geq 0, \forall \mathbf{x} \in B_r$.

Then, the equilibrium O of \sum is exponentially stable.

Proof of Theorem 5:

Define
$$\eta = r \left[\frac{a}{b} \right]^{\frac{1}{p}} \le r$$

And suppose $\forall \mathbf{x}_0 \in B_r$, $t_0 \ge 0$.

Let $\mathbf{x}(t)$ denote the solution $s(t, t_0, \mathbf{x}_0)$,

Proof of Theorem 5 - continued

$$\frac{d}{dt}V[t, \mathbf{x}(t)] \le -c \|\mathbf{x}(t)\|^{p} \le -\frac{c}{b}V[t, \mathbf{x}(t)]$$
i.e.
$$\dot{V} + \frac{c}{b}V \le 0 \qquad \Rightarrow (\dot{V} + \frac{c}{b}V)e^{\frac{c}{b}t} \le 0$$

$$\frac{d}{dt}[Ve^{\frac{c}{b}t}] \le 0$$

 \therefore for any $t_0 \ge 0$ and $\forall t \ge t_0$

$$V(t)e^{\frac{c}{b}t} \le V(t_0)e^{\frac{c}{b}t_0} \qquad \Rightarrow V(t) \le V(t_0)e^{-\frac{c}{b}(t-t_0)} \qquad \forall t \ge t_0 \ge 0$$

or
$$V(t+t_0) \le V(t_0)e^{-\frac{c}{b}t}$$

i.e
$$V[t+t_0, x(t+t_0)] \le V[t_0, x_0]e^{-\frac{c}{b}t} \quad \forall t \ge 0$$

Proof of Theorem 5 - continued

But since

$$V[t_0, x_0] \le b \|x_0\|^P$$
, and
 $a \|x(t_0 + t)\|^P \le V[t + t_0, x(t + t_0)]$

it follows that

$$a \| x(t_0 + t) \|^P \le b \| x_0 \|^P e^{-\frac{c}{b}t} \quad \forall t \ge 0$$

Finally,

$$||x(t_0+t)|| \le \left[\frac{b}{a}\right]^{\frac{1}{p}} ||x_0|| e^{-\frac{c}{bP}t} \quad \forall t \ge 0$$

Note that:

$$||x(t_0 + t)|| = S(t_0 + t, t_0, x_0)$$

and that $||S(t_0 + t, t_0, x_0)|| \le r$ (why?)

Thus O of \sum is an exponentially stable equilibrium.

Theorems on Asymptotic Stability - Theorem 6

Theorem 6: [Global Exponential Stability]

The equilibrium 0 of \sum is globally exponentially stable

if \exists constants a,b,c>0, $p\geq 1$, and a C^1 function $V: \mathbb{R}^+\times\mathbb{R}^n\to\mathbb{R}$ s.t.

- (i) $a||\mathbf{x}||^p \le V(t,x) \le b||\mathbf{x}||^p$, $\forall t \ge 0$, $\forall \mathbf{x} \in \mathbf{R}^n$
- (ii) $\dot{V}(t,x) \leq -c||\mathbf{x}||^p$, $\forall t \geq 0$, $\forall \mathbf{x} \in \mathbf{R}^n$

Proof of Theorem 6:

Entirely analogous to that of Theorem 5.

Example

$$\sum \begin{cases} \dot{x}_1 = -a(t)x_1 - bx_2 \\ \dot{x}_2 = bx_1 - c(t)x_2 \end{cases}$$

- b = constant > 0
- a(t), c(t) continuous $\forall t \ge 0$ s.t.

$$a(t) \ge \delta > 0$$

and

$$c(t) \ge \delta > 0$$

 δ = constant.

Example- Continued

• 0 is the only equilibrium point. WHY?

• Choose
$$W(x) = \frac{1}{2}(x_1^2 + x_2^2)$$

 $\dot{W} = x_1[-a(t)x_1 - bx_2] + x_2[bx_1 - c(t)x_2]$
 $= -a(t)x_1^2 - c(t)x_2^2$
 $< -\delta(x_1^2 + x_2^2)$

• So in Theorem 6, $a = \frac{1}{2}$, b = 1, p = 2, $c = \delta$ and 0 of Σ is globally exponentially stable.

An Instability Theorem

Theorem 7: [Instability]

The equilibrium 0 of \sum is <u>unstable</u>

if \exists a C^1 decrescent function $V: \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}$ and a time t_0 s.t.

- (i) $\dot{V}(t,x)$ is an lpdf
- (ii) $V(t,0) = 0 \quad \forall \ t \ge t_0$, and
- (iii) \exists points $x_o \neq 0$ arbitrarily close to 0 s.t. $V(t_o, x_o) \geq 0$.

Remark:

In contrast to previous stability theorems, the Lyapunov function V in Theorem 7 above can assume both positive as well as negative values.

Example

$$\sum \begin{cases} \dot{x}_1 = x_1 - x_2 + x_1 x_2 \\ \dot{x}_2 = -x_2 - x_2^2 \end{cases}$$

Choose the Lyapunov function candidate

$$V(x_1,x_2) = (2x_1 - x_2)^2 - x_2^2$$

• *V* assumes both positive and negative values . but *V* assumes nonnegative values arbitrarily close to the origin as required by (iii) in Thm 7.

Hence *V* is a suitable Lyapunov function candidate.

•
$$\dot{V}(x_1, x_2) = 2(2x_1 - x_2)(2\dot{x}_1 - \dot{x}_2) - 2x_2\dot{x}_2^2$$

= $[(2x_1 - x_2)^2 + x_2^2](1 + x_2)$

 \Rightarrow \dot{V} is lpdf over the ball B_{1-d} , $d \in (0,1)$

and all conditions of Thm 7 are satisfied.

It follows that O of $\sum_{\text{Copyright Fathi H. Ghorbel 2018}}$ is an unstable equilibrium.