© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°11

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Exercice 1 E3A MP 2021

Soient X et Y deux variables aléatoires indépendantes à valeurs dans $\mathbb N$ définies sur un même espace probabilisé $(\Omega, \mathcal A, \mathbb P)$.

Pour |t| < 1, on définit les fonctions génératrices de X et de Y respectivement par :

•
$$G_X(t) = \frac{1}{2-t}$$

•
$$G_{Y}(t) = 2 - \sqrt{2 - t}$$

- 1. Déterminer le développement en série entière de la fonction G_X .
- **2.** Donner le terme d'ordre $n \in \mathbb{N}^*$ du développement en série entière de la fonction $t \mapsto (1+t)^{1/2}$.
- 3. En déduire le développement en série entière de la fonction $G_{\rm Y}$.
- **4.** Pour tout $n \in \mathbb{N}$, calculer $\mathbb{P}(X = n)$ et $\mathbb{P}(Y = n)$.
- **5.** Soient S = X + Y et $n \in \mathbb{N}$. Déterminer $\mathbb{P}(S = n)$.
- 6. Calculs d'espérances et de variances.
 - **a.** Justifier que la variable aléatoire X + 1 suit une loi géométrique dont on déterminera le paramètre.
 - b. En déduire l'espérance et la variance de la variable aléatoire X.
 - **c.** Déterminer à l'aide de la fonction génératrice G_Y l'espérance des variables aléatoires Y et Y(Y-1).
 - d. En déduire la variance de la variable aléatoire Y.
 - e. Déterminer l'espérance et la variance de la variable aléatoire S.

© Laurent Garcin MP Dumont d'Urville

Problème 1 – CCP MP Maths1 2011 – Autour de la transformation de Laplace

Dans tout ce problème, on note :

- $\mathcal{F}(\mathbb{R}_+,\mathbb{R})$ l'ensemble des applications de \mathbb{R}_+ dans \mathbb{R} ;
- E l'ensemble des applications $f: \mathbb{R}_+ \to \mathbb{R}$ continues, telles que, pour tout x > 0, l'application $t \mapsto f(t)e^{-xt}$ soit intégrable sur \mathbb{R}_+ ;
- F l'ensemble des applications continues et bornées sur R₊.

Pour tout $f \in E$, on appelle *transformée de Laplace* de f et on note $\mathcal{L}(f)$ l'application définie pour tout réel x > 0 par :

$$\mathcal{L}(f)(x) = \int_0^{+\infty} f(t)e^{-xt} dt$$

Question préliminaire. Soient $a \in \mathbb{R}$ et $f : [a, +\infty[\to \mathbb{R}$ une fonction continue par morceaux. Pour tout $x \in [a, +\infty[$, on pose

$$F(x) = \int_{a}^{x} f(t) dt$$

On considère les propositions suivantes :

- (i) f est intégrable sur $[a, +\infty[$;
- (ii) F admet une limite finie en $+\infty$.

Donner, sans démonstration, toutes les implications possibles entre (i) et (ii) lorsque :

- **1.a** f est positive sur $[a, +\infty[$;
- **1.b** f n'est pas positive sur $[a, +\infty[$.

I Exemples et propriétés

- **2.a** Démontrer que E est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R}_+, \mathbb{R})$.
 - 2.b Démontrer que F est un sous-espace vectoriel de E.
 - **2.c** Justifier que \mathcal{L} est une application linéaire de E dans $\mathcal{F}(\mathbb{R}_+^*, \mathbb{R})$, espace vectoriel des applications de $]0, +\infty[$ dans \mathbb{R} .
- **3.a** On considère la fonction U : $\mathbb{R}_+ \to \mathbb{R}$ définie par U(t) = 1. Déterminer $\mathcal{L}(U)$.
 - **3.b** Soit un réel $\lambda \geq 0$. On considère la fonction $h_{\lambda} : \mathbb{R}_{+} \to \mathbb{R}$ définie par $h_{\lambda}(t) = e^{-\lambda t}$. Démontrer que $h_{\lambda} \in \mathbb{E}$ et déterminer $\mathcal{L}(h_{\lambda})$.
- Soient $f \in E$ et $n \in \mathbb{N}$. On considère $g_n : t \in \mathbb{R}_+ \mapsto t^n f(t)$. Montrer que $g_n \in E$.
- **Transformée de Laplace d'une dérivée.** Soit $f \in E$ de classe C^1 , croissante et bornée sur \mathbb{R}_+ . Démontrer que $f' \in E$ et que

$$\forall x \in \mathbb{R}_+^*, \ \mathcal{L}(f')(x) = x\mathcal{L}(f)(x) - f(0)$$

- 6 Régularité d'une transformée de Laplace.
 - **6.a** Démontrer que pour tout $f \in E$, la fonction $\mathcal{L}(f)$ est de classe \mathcal{C}^1 sur \mathbb{R}_+^* et que l'on a $\mathcal{L}(f)' = -\mathcal{L}(g_1)$ où g_1 a été définie à la question **4**.
 - **6.b** Démontrer que pour tout $f \in E$, la fonction $\mathcal{L}(f)$ est de classe \mathcal{C}^{∞} sur \mathbb{R}_+^* et pour x > 0 et $n \in \mathbb{N}$, déterminer $\mathcal{L}(f)^{(n)}(x)$ à l'aide d'une transformée de Laplace.

II Comportements asymptotiques de la transformée de Laplace

Dans toute cette partie, f est un élément de E.

- $\boxed{7}$ On suppose dans cette question que $f \in F$.
 - **7.a** Déterminer la limite en $+\infty$ de $\mathcal{L}(f)$.
 - **7.b** Théorème de la valeur initiale. On suppose de plus que f est de classe \mathcal{C}^1 et croissante sur \mathbb{R}_+ , avec f' bornée sur \mathbb{R}_+ .

Démontrer que $\lim_{x \to +\infty} x \mathcal{L}(f)(x) = f(0)$.

- **8** Théorème de la valeur finale. On suppose dans cette question que $\lim_{t\to +\infty} f(t) = \ell \in \mathbb{R}$. Soit (a_n) une suite de réels strictement positifs qui converge vers 0.
 - **8.a** Démontrer que $f \in F$.
 - **8.b** Soit $n \in \mathbb{N}$. Démontrer que $a_n \mathcal{L}(f)(a_n) = \int_0^{+\infty} h_n(x) \, \mathrm{d}x$ où h_n est la fonction définie sur \mathbb{R}_+ par $h_n(x) = e^{-x} f\left(\frac{x}{a_n}\right)$.
 - **8.c** En déduire, à l'aide du théorème de convergence dominée, que $\lim_{n \to +\infty} a_n \mathcal{L}(f)(a_n) = \ell$.
 - **8.d** Lorque $\ell \neq 0$, déterminer un équivalent de $\mathcal{L}(f)(x)$ quand x tend vers 0.
- Dans cette question, on suppose que f est intégrable sur \mathbb{R}_+ et on pose $R(x) = \int_x^{+\infty} f(t) dt$ pour tout $x \in \mathbb{R}_+$.
 - **9.a** Démontrer que R est une fonction de classe \mathcal{C}^1 sur \mathbb{R}_+ et déterminer R'. En déduire que pour tout réel x > 0, $\mathcal{L}(f)(x) = \mathrm{R}(0) x\mathcal{L}(\mathrm{R})(x)$.
 - **9.b** On fixe $\varepsilon > 0$. Justifier l'existence d'un réel positif A tel que pour tout $t \ge A$, on ait $|R(t)| \le \varepsilon$. En déduire que, pour tout x > 0, on a:

$$|\mathcal{L}(f)(x) - R(0)| \le x \int_0^A |R(t)| dt + \varepsilon$$

9.c Démontrer que $\mathcal{L}(f)$ se prolonge par continuité en 0 (on précisera la valeur en 0 de ce prolongement).

III Application : calcul de l'intégrale de Dirichlet

Dans cette partie, f est la fonction définie par f(0) = 1 et $f(t) = \frac{\sin t}{t}$ pour tout réel t > 0.

- 10 Démontrer que la fonction F définie sur \mathbb{R}_+ par $F(x) = \int_0^x f(t) dt$ admet une limite finie ℓ en $+\infty$.
- 11 En considérant la série $\sum_{n\geq 0} u_n$ où $u_n = \int_{n\pi}^{(n+1)\pi} |f(t)| dt$, démontrer que f n'est pas intégrable sur \mathbb{R}_+ .
- 12 Soit x > 0. Démontrer, en détaillant les calculs, que pour tout X > 0,

$$\int_0^X \sin(t)e^{-xt} dt = -\frac{1}{1+x^2} \left(e^{-xX} (x \sin X + \cos X) - 1 \right)$$

Démontrer que la fonction $t\mapsto \sin(t)e^{-xt}$ est intégrable sur \mathbb{R}_+ .

Déterminer alors $\int_0^{+\infty} \sin(t)e^{-xt} dt$.

Déterminer, pour x > 0, une expression simple de $\mathcal{L}(f)(x)$ et en déduire ℓ .

Pour cela, on pourra utiliser le résultat suivant (la démarche de la preuve étant identique à celle de la question 9):

Lorsque
$$f \in E$$
 vérifie $\lim_{x \to +\infty} \int_0^x f(t) dt = \ell \in \mathbb{R}$, alors $\lim_{x \to 0} \mathcal{L}(f)(x) = \ell$.

On notera que, par rapport à la question $\mathbf{9}$, on a remplacé l'hypothèse «f intégrable sur \mathbb{R}_+ » par l'hypothèse « $\lim_{x\to+\infty}\int_0^x f(t) \; \mathrm{d}t = \ell \in \mathbb{R}$ ».