Prof. Dr. R. Weissauer Dr. Mirko Rösner Blatt 5

Abgabe auf Moodle bis zum 11. Dezember

Die obere Halbebene ist $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$. Darauf operiert die Modulgruppe $\Gamma = \text{SL}(2, \mathbb{Z})$ durch Möbius-Transformationen

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \langle \tau \rangle = \frac{a\tau + b}{c\tau + d} \ .$$

Der abgeschlossene Fundamentalbereich $\overline{\mathcal{F}} = \{ \tau \in \mathbb{H} \mid |\tau| \geq 1 , |\text{Re}(\tau)| \leq \frac{1}{2} \}$ ist der grüne Bereich in Abbildung 1. Die besten vier Aufgaben werden gewertet.

19. Aufgabe: (2+4=6 Punkte) Sei $f \in [\Gamma, k]$ eine holomorphe elliptische Modulform vom Gewicht k. Wir nehmen an, f hat keine Nullstelle auf dem Rand des Fundamentalbereichs \mathcal{F} , außer eventuell in $\rho = \exp(\pi i/3)$ und $\rho^2 = \rho - 1$. Sei $\epsilon > 0$ klein genug, sodass f auf der Kreisscheibe $D_{0,\epsilon}(\rho)$ um ρ keine Nullstelle hat. Wir definieren eine nicht-geschlossene Kurve γ wie folgt:

Sei $B = \rho^2 + i\epsilon \in \mathbb{H}$ und $B' = B + 1 = \rho + i\epsilon \in \mathbb{H}$. Sei $C \in \mathbb{H}$ der eindeutige Punkt mit |C| = 1 und $|C - \rho^2| = \epsilon$ auf dem Rand des Fundamentalbereichs und sei $C' = -\overline{C}$. Sei γ ein stückweise glatter Weg von B nach B' wie folgt: Zunächst von Bim Uhrzeigersinn entlang des Kreisbogens um ρ^2 vom Radius ϵ nach C, dann von C im Uhrzeigersinn entlang des Einheitskreises nach C' und dann von C' im Uhrzeigersinn entlang des Kreisbogen um ρ vom Radius ϵ nach B', siehe Abbildung 1. Zeigen Sie:

- (a) Das Integral $I_{\epsilon} = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z) dz}{f(z)}$ ist unabhängig von ϵ für hinreichend kleine ϵ .
- (b) Das Integral ist gleich $I_{\epsilon} = \frac{k}{12} \frac{1}{3} \operatorname{ord}_{\rho}(f)$.

Hinweis zu (b): Finden Sie eine Matrix $M \in \Gamma$ mit $M \langle \rho^2 \rangle = \rho^2$ und $M \langle C \rangle = C' - 1$. Zerlegen Sie das Pol- und Nullstellenzählende Integral um ρ^2 in drei Teile entlang C, C' - 1 und $M^2 \langle C \rangle$. Betrachten Sie $\epsilon \to 0$ für das Integral von C nach C'.

Lösung

(a) Wir fixieren ein $\epsilon_0 > 0$, das die Voraussetzungen der Aufgabe erfüllt. Dann können wir jedes $0 < \epsilon < \epsilon_0$ betrachten. Sei γ_ϵ der in der Aufgabe beschriebene Weg. Sei δ die Verbindungsgerade von B_ϵ nach B_{ϵ_0} und $\delta + 1$ die Gerade von B'_ϵ nach B'_{ϵ_0} Dann bildet die Hintereinanderausführung von $\gamma_\epsilon \cdot \delta^{-1} \cdot \gamma_{\epsilon_0}^{-1} \cdot (\delta')^{-1}$ einen geschlossenen Weg, in dessen Inneren nach Annahme keine Nullstellen liegen. Nach dem Cauchy-Integralsatz verschwindet also das Integral

$$I_{\epsilon} + \int_{\delta} \frac{f'(z)}{f}(z) dz - I_{\epsilon_0} - \int_{\delta'} \frac{f'}{f} dz = 0.$$

Da f eine Modulform ist, gilt f(z) = f(z+1) und ebenso für die Ableitung. Damit ist

$$\int_{\delta} \frac{f'}{f} dz = \int_{\delta'} \frac{f'}{f} dz$$

und die entsprechenden Terme kürzen sich aus obigem Ausdruck. Wir erhalten $I_{\epsilon} = I_{\epsilon_0}$.

Abbildung 1: Der Integrationspfad γ (rot) für Aufgabe 19.

(b) Da f eine Modulform ist, ist f(z) = f(z-1). Wir können also $\widetilde{C'} := C'-1$ setzen. Sei α eine Kurve von $\widetilde{C'}$ nach C über den oberen Teil des Kreises um ρ^2 vom Radius ϵ (blau im Diagramm). Das Integral über α ist dann gleich dem Integral über die "äußeren" Stücke von γ , also von B nach C und von C' nach B'.

Die Matrix $M = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$ erfüllt $M^3 = -E_2$ und $M \langle C \rangle = \widetilde{C}'$. Sei $C'' = M \left\langle \widetilde{C}' \right\rangle = M^2 \left\langle C \right\rangle$, dann ist $M \left\langle \alpha \right\rangle$ eine Kurve von C'' nach \widetilde{C}' (blau punktiert). Entsprechend ist $M^2 \left\langle \alpha \right\rangle$ eine Kurve von C nach \widetilde{C}' (blau gestrichelt). Alle drei Kurvenstücke zusammen liefern einen geschlossenen Weg mit genau Umlaufzahl 1 um ρ^2 . [Skizze oder Beweis durch Homotopie.] Damit liefert das Null- und Polstellenzählende Integral

$$\int_{\alpha} \frac{f'}{f} dz + \int_{M \circ \alpha} \frac{f'}{f} dz + \int_{M^2 \circ \alpha} \frac{f'}{f} dz = 2\pi i \operatorname{ord}_{\rho^2}(f) .$$

Außerdem ist $\tau^k f(\tau) = f(M \langle \tau \rangle)$ und Ableiten liefert $\tau^k f'(\tau) + k\tau^{k-1} f(\tau) = f'(M \langle \tau \rangle)\tau^{-2}$. Wir erhalten für die blau punktierten Kurve

$$\int_{M \circ \alpha} \frac{f'(z)}{f(z)} dz = \int_{\alpha} \frac{f'(M(z))}{f(M(z))} dz = \int_{\alpha} \left(\frac{f'(\tau)\tau^2}{f((\tau)} + \frac{k}{\tau}\right) d(M\tau) = \int_{\alpha} \left(\frac{f'(\tau)}{f((\tau)} + \frac{k}{\tau^3}\right) d(\tau) \right) dt$$

Das Differential ist $\mathrm{d}(M\tau)=\tau^{-2}\mathrm{d}\tau$, also ist dieser Ausdruck gleich $\int_{\alpha}(\frac{f'(\tau)}{f(\tau)}\mathrm{d}\tau+\int_{\alpha}\frac{k}{\tau^{3}})\mathrm{d}\tau$. Der Fehlerterm $\int_{\alpha}\frac{k}{\tau^{3}}\mathrm{d}\tau$ geht gegen Null für $\epsilon\to 0$ nach der Standardintegralabschätzung. Die blau gestrichelte Kurve $M^{2}\circ\alpha$ behandelt man genauso und erhält

$$\lim_{\epsilon \to 0} \int_{M^2 \circ \alpha} \frac{f'(z)}{f(z)} dz - \int_{\alpha} \frac{f'(z)}{f(z)} dz = 0.$$

Insgesamt also $\lim_{\epsilon\to 0}\int_{\alpha}\frac{f'(z)\mathrm{d}z}{f(z)}=\frac{2\pi i}{3}\mathrm{ord}_{\rho^2}(f)$.

Das verbleibende Integral von C nach C' liefert den Wert $\lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_C^{C'} \frac{f'}{f} dz = \frac{k}{12}$, siehe Freitag Busam Funktionentheorie 1, §VI2. Es gilt $f(-1/\tau) = \tau^k f(\tau)$ indem man die

Modulsubstitution $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Ableiten liefert $f'(-1/\tau)\tau^{-2} = \tau^k f'(\tau) + k\tau^{k-1}f(\tau)$, also erhält man für $g(\tau) = f'(\tau)/f(\tau)$ die Identität

$$g(-1/\tau)\tau^{-2} = g(\tau) + \frac{k}{\tau}$$
.

Sei β_1 der Weg von C nach i, dann ist $\beta_2(\tau) = -1/\beta_1(\tau)$ der gespiegelte Weg von C' nach i entlang des Einheitskreises. Wir erhalten

$$\int_{C}^{C'} g(\tau) d\tau = \int_{\beta_{1}} g(\tau) d\tau - \int_{\beta_{2}} g(\tau) d\tau
= \int_{0}^{1} g(\beta_{1}(t)\beta'_{1}(t) dt - \int_{0}^{1} g(\beta_{2}(t))\beta'_{2}(t) dt
= -\int_{0}^{1} \frac{k}{\beta_{1}(t)} \beta'_{1}(t) dt = -k(\log(i) - \log(C')).$$

Für $\epsilon \to 0$ geht das gegen $\lim_{\epsilon \to 0} k(\log(C') - \log(i)) = k(\log(\rho^2) - \log(i)) = 2\pi i \cdot \frac{k}{12}$.

20. Aufgabe: (4 Punkte) Seien $f,g \in [\Gamma,k]$ Modulformen vom Gewicht $k \geq 0$ zur Modulgruppe Γ . Zeigen Sie: h = f'g - fg' ist eine Modulform vom Gewicht 2k + 2 zu Γ .

Lösung Für $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ gilt $f(Mz) = (cz+d)^k f(z)$ und Ableiten liefert $f'(Mz)(cz+d)^{-2} = (cz+d)^k f'(z) + kc(cz+d)^{k-1} f(z)$. Einsetzen liefert $h(Mz) = (cz+d)^{2k+2} h(z)$, also die gesuchte Transformationseigenschaft für h. Außerdem ist h holomorph (klar) und beschränkt für $\text{Im}(z) \to 0$, weil dies für die einzelnen Faktoren gilt. Wenn f beschränkt ist in einem Gebiet, dann ist auch f' beschränkt wegen der Cauchy-Integralformel.

21. Aufgabe: (4 Punkte) Für natürliche Zahlen $k \in \mathbb{N}_0$ seien $F_k : \mathbb{H} \to \mathbb{C} \cup \{\infty\}$ meromorphe Funktionen mit $F_k(M\langle \tau \rangle) = (c\tau + d)^k F_k(\tau)$ für alle $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$. Zeigen Sie für $N \in \mathbb{N}_0$ die Aussage:

Wenn $\sum_{k=0}^{N} F_k \equiv 0$ dann $F_k \equiv 0$ für alle $0 \le k \le N$.

Hinweis: Betrachten Sie $M = \begin{pmatrix} 0 & -1 \\ 1 & n \end{pmatrix}$ für $n \in \mathbb{Z}$.

Lösung: Angenommen, nicht alle F_k sind Null, dann sei OBdA F_N nicht konstant Null. Für $M_n = \begin{pmatrix} 0 & -1 \\ 1 & n \end{pmatrix}$ gilt

$$0 \equiv \sum_{k=0}^{N} F_k(M_n \langle \tau \rangle) = \sum_{k=0}^{N} (-\tau - n)^k F_k(\tau) .$$
 (1)

Nun fixieren wir τ mit $F_N(\tau) \neq 0$ und fassen $F_k(\tau)$ als Konstanten auf. Dies liefert ein Polynom in der Variable n vom Grad N. Der führende Koeffizient ist genau $\pm F_k(\tau)$. Für jede natürliche Zahl n ist dieses Polynom jeweils Null, also ist das Polynom selbst gleich Null. Das liefert einen Widerspruch zur Wahl von N und τ und zeigt damit die Aussage. Also ist $F_k = 0$ für alle k.

22. Aufgabe: (1+3=4 Punkte) Sei $P \in \mathbb{C}[X,Y]$ ein Polynom in zwei Variablen sodass gilt $P(G_4,G_6)\equiv 0$ für die Eisensteinreihen $G_k:\mathbb{H}\to\mathbb{C}$. Wir bezeichnen die Koeffizienten von P mit $c_{a,b}$, also $P(X,Y)=\sum_{a,b\in\mathbb{N}_0}c_{a,b}X^aY^b$. Zeigen Sie:

- (a) $\sum_{4a+6b=2k} c_{a,b} G_4^a G_6^b \equiv 0$ für alle ganzen k. Hinweis: Aufgabe 21.
- (b) Folgern Sie $c_{a,b} = 0$ für alle a, b indem Sie die bekannten Nullstellen von G_4 und G_6 ausnutzen. Hinweis: Aufgabe 12.

Lösung:

- (a) Man setze $F_{2k} = \sum_{4a+6b=2k} c_{a,b} G_4^a G_6^b$, dann folgt die Aussage aus der letzten Aufgabe.
- (b) Wir liefern ein alternatives Argument zur Vorlesung. Wenn nur positive a>0 zur Summe $\sum_{4a+6b=2k} c_{a,b} G_4^a G_6^b \equiv 0$ beitragen, dann kann man G_4 ausklammern. Es bleibt ein Polynom $\sum_{4a+6b=2k} d_{a,b} G_4^a G_6^b \equiv 0$ mit der Eigenschaft $d_{0,b} \neq 0$. Nun setzen wir die bekannte Nullstelle i ein mit $G_4(\rho)=0$ ein mit $G_6(\rho)\neq 0$. Dann verschwindet jeder Summand im Punkt i außer $d_{0,b} G_6^b$. Damit ist $d_{0,b}=0$ und das liefert einen Widerspruch. Man argumentiert entsprechend für den Punkt ρ . Also ist das Polynom P konstant und damit identisch Null
- **23.** Aufgabe: (2+1+1=4 Punkte) Seien a und b ganze Zahlen. Zeigen Sie:
 - (a) Es gibt eine ganze Zahl $g \in \mathbb{Z}$ mit $a\mathbb{Z} + b\mathbb{Z} = g\mathbb{Z}$ und diese ist eindeutig bis auf das Vorzeichen.

Wir schreiben dann ggT(a, b) := g für positives g. Entsprechend definieren wir für ganzzahlige a, b, c den größten gemeinsamen Teiler ggT(a, b, c) als die positive ganze Zahl g mit $a\mathbb{Z} + b\mathbb{Z} + c\mathbb{Z} = g\mathbb{Z}$. Zeigen Sie:

- (b) ggT(a, b, c) = ggT(ggT(a, b), c),
- (c) Für gegebene ganze Zahlen a, b gibt es genau dann ganze c, d mit $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$ wenn ggT(a, b) = 1.

Hinweis zu (a): Euklidischer Algorithmus.

Lösung: Das ist ein Standard-Argument aus der elementaren Zahlentheorie.

- (a) Der eukl. Algorithmus macht \mathbb{Z} zu einem faktoriellen Ring. Also ist \mathbb{Z} ein Hauptidealring. Das Ideal $a\mathbb{Z} + b\mathbb{Z}$ wird also von einem g erzeugt, dieses ist eindeutig bis auf eine Einheit. Also gibt es ein eindeutiges $g \geq 0$, genannt $\operatorname{ggT}(a,b)$.
- (b) g = ggT(a, b, c) ist der Erzeuger des Ideals $a\mathbb{Z} + b\mathbb{Z} + c\mathbb{Z}$. Also ist $g\mathbb{Z} = a\mathbb{Z} + b\mathbb{Z} + c\mathbb{Z} = (a\mathbb{Z} + b\mathbb{Z}) + c\mathbb{Z} = (ggT(a, b)\mathbb{Z}) + c\mathbb{Z} = ggT((ggT(a, b), c)\mathbb{Z}$.
- (c) Wenn $\operatorname{ggT}(a,b)=1$, dann ist $1\in a\mathbb{Z}+b\mathbb{Z}$. Damit gibt es also ganze c,d mit 1=ad+b(-c). Umkehrung: Angenommen, es gibt c,d mit ad-bc=1, dann wäre jeder gemeinsame Teiler von a,b schon ein Teiler von 1. Also liegt 1 im Ideal $a\mathbb{Z}+b\mathbb{Z}$ und damit wird dieses erzeugt von 1. Also ist $\operatorname{ggT}(a,b)=1$.