Chapter 5: Context-Free Languages

Vocabulary

- grammar
- context-free
- regular language
- derivation
- parsing
- Syntax
- Semantics

- linear grammar
- left linear grammar
- right linear grammar
- sentential form
- yield of the tree
- positive closure

Context-Free Languages (CFLs)

- If a language is regular, then we know there's a CFG for that language which means that every regular language is also a context-free.
- CFGs exists for languages known to not be regular.

• CFLs describe features that are important in the design of programming languages (*syntax*) but not **semantics**.

Grammars

- Grammars are used to describe languages
- $\bullet \ G = (V, T, S, P)$
 - V finite set of variables
 - T Finite set of terminal symbols
 - *S* the start variable
 - *P* finite set of productions

Grammars

Productions are given in the form

$$x \rightarrow y$$

- In general, the left side of the production indicates the symbols and/or terminals that can be replaced by the right handed side of the production.
- All the strings that can be derived from the productions of a grammar defines the language of the grammar.
- For grammar G, the language produced from the grammar is denoted L(G).

Context-Free Grammars (CFGs)

A grammar is context-free given the definition

$$G = (V, T, S, P)$$

V – Finite set of variables

T – Finite set of terminal symbols

S – Start variable

P − Finite set of productions

All proudctions of the form: $A \rightarrow x$ where

 $A \in V$ and $x \in (V \cup T)^*$.

A language is context-free iff there exist a CFG such that L = L(G).

CFGs

So what does "context" mean?

abSbbbaSabb

bSb - > baabbabab

aSa -> abbbababa

$$G = (\{S\}, \{a, b\}, S, P)$$

$$S \to aSb$$

$$S \to \lambda$$

Does the grammar produce all strings in the language above and only strings apart of that language?

Yes.

Is the grammar context-free?

Yes.

THE LANGUAGE L(G) IS A CONTEXT-FREE LANGUAGE.

Example 2: Is $L = \{ww^r : w \in \{a, b\}^*\}$ a CFL?

$$G = (\{S\}, \{a, b\}, S, P)$$

$$S \to aSa$$

$$S \to bSb$$

$$S \to \lambda$$

Does the grammar produce all strings in the language above and only strings apart of that language?

Yes.

Is the grammar context-free?

Yes.

THE LANGUAGE L(G) IS A CONTEXT-FREE LANGUAGE.

Two conditions

n < m	$\underline{n > m}$
$\overline{S \to Bb}$	$S \rightarrow aA$
$B \rightarrow Bb$	$A \rightarrow aA$
$B \rightarrow aBb$	$A \rightarrow aAb$
$B \to \lambda$	$A \rightarrow \lambda$

Two conditions

n < m	$\underline{n > m}$
$\overline{S \to Bb}$	$S \rightarrow aA$
$B \rightarrow Bb$	$A \rightarrow aA$
$B \rightarrow aBb$	$A \rightarrow aAb$
$B \to \lambda$	$A \rightarrow \lambda$

Two conditions

$\frac{n < m}{S \to Bb} \qquad \frac{n > m}{S \to aA} \\ B \to Bb \qquad A \to aA \\ B \to aBb \qquad A \to aAb \\ A \to \lambda$

Combined Condition

$$\frac{n \neq m}{S \rightarrow aA}
S \rightarrow Bb
A \rightarrow aA
A \rightarrow aAb
A \rightarrow \lambda
B \rightarrow Bb
B \rightarrow aBb
B \rightarrow \lambda$$

Two conditions

n < m	n > m
$\overline{S \to Bb}$	$S \rightarrow aA$
$B \rightarrow Bb$	$A \rightarrow aA$
$B \rightarrow aBb$	$A \rightarrow aAb$
$B \to \lambda$	$A o \lambda$

Combined Condition

$$\frac{n \neq m}{S \rightarrow aA}
S \rightarrow Bb
A \rightarrow aA
A \rightarrow aAb
A \rightarrow \lambda
B \rightarrow Bb
B \rightarrow aBb
B \rightarrow \lambda$$

$$G = (\{S, A, B\}, \{a, b\}, S, P)$$

$$S \to aA \mid Bb$$

$$A \to aA \mid aAb \mid \lambda$$

$$B \to Bb \mid aBb \mid \lambda$$

Does the grammar produce all strings in the language above and only strings apart of that language?

Yes.

Is the grammar context-free?

Yes.

THE LANGUAGE L(G) IS A CONTEXT-FREE LANGUAGE.

Leftmost and Rightmost Derivation

When grammars are nonlinear and contain multiple variables in the sentential forms, their can be a difference in the order in which the variables are replaced.

Left and Right Derivations

 $S \rightarrow aABb$

```
G = (\{A, B, S\}, \{a, b\}, S, P)
S \to AB
A \to aaA
A \to \lambda
B \to bB
B \to \lambda
```

$$G = (\{A, B, S\}, \{a, b\}, S, P)$$

- 1. $S \rightarrow AB$
- 2. $A \rightarrow aaA$
- $3. A \rightarrow \lambda$
- 4. $B \rightarrow bB$
- 5. $B \rightarrow \lambda$

$$L(G) = \{a^{2n}b^m : n \ge 0, m \ge 0\}$$

$$S \stackrel{1}{\Rightarrow} AB \stackrel{2}{\Rightarrow} aaAB \stackrel{3}{\Rightarrow} aaB \stackrel{4}{\Rightarrow} aabB \stackrel{5}{\Rightarrow} aab$$

Leftmost Derivation

String: aab

$$G = (\{A, B, S\}, \{a, b\}, S, P)$$

- 1. $S \rightarrow AB$
- 2. $A \rightarrow aaA$
- 3. $A \rightarrow \lambda$
- 4. $B \rightarrow bB$
- 5. $B \rightarrow \lambda$

$$L(G) = \{a^{2n}b^m : n \ge 0, m \ge 0\}$$

$$S \stackrel{1}{\Rightarrow} AB \stackrel{4}{\Rightarrow} AbB \stackrel{5}{\Rightarrow} Ab \stackrel{2}{\Rightarrow} aaAb \stackrel{3}{\Rightarrow} aab$$

Rightmost Derivation

String: aab

Leftmost Derivation

String: aab

B b B a

Rightmost Derivation

String: aab

Parsing and Ambiguity

Parsing and Membership

- Can we find a derivation of grammar G that generates a given w
 - if so, $w \in L(G)$.
 - if not, $w \notin L(G)$.
- Exhaustive search parsing is inefficient and may never terminate if $w \notin L(G)$.

Consider the grammar $G = (\{S\}, \{a, b\}, S, P)$ with productions

$$S \rightarrow SS$$

$$S \rightarrow aSb$$

$$S \rightarrow bSa$$

$$S \rightarrow \lambda$$

Round 1

Deriving the string

aabb

Consider the grammar $G = (\{S\}, \{a, b\}, S, P)$ with productions

$$S \rightarrow SS$$

 $S \rightarrow aSb$

 $S \rightarrow bSa$

 $S \rightarrow \lambda$

Deriving the string

aabb

Consider the grammar $G = (\{S\}, \{a, b\}, S, P)$ with productions

$$S \rightarrow SS$$

 $S \rightarrow aSb$

 $S \rightarrow bSa$

 $S \rightarrow \lambda$

Round 2

Deriving the string

aabb

Parsing and Ambiguity

• Productions with a lambda (decreases the size of the sentential form) $A \rightarrow \lambda : A \in V$

Variable simply derives another variable

$$A \rightarrow B : A, B \in V$$

Simple Grammar (s-grammar)

$$G = (V, T, S, P)$$

Restrict Productions to:

- $A \rightarrow ax : A \in V, a \in T, x \in V^*$
- \bullet (A, a)

$$S \rightarrow aS \mid bSS \mid c$$

$$S \rightarrow aS \mid bSS \mid aSS \mid c$$

Ambiguity in Grammars and Languages

A context-free grammar G is said to be ambiguous if $w \in L(G)$ and there is at least 2 distinct derivation trees for w.

Example 5 Revisited

Consider the grammar $G = (\{S\}, \{a, b\}, S, P)$ with productions

$$S \rightarrow SS$$

$$S \rightarrow aSb$$

$$S \rightarrow bSa$$

$$S \rightarrow \lambda$$

Inherently Ambiguous Language

• If every grammar that generates L is ambiguous, then L is an inherently ambiguous language.