Kapittel 18: Kombinatorikk

Nettkurs

Boka

Inklusjon-og-eksklusjonsprinsippet for to mengder

Definisjon (Inklusjon-og-eksklusjonsprinsippet for to mengder)

Når A og B er to endelige mengder, sier inklusjon-og-eksklusjonsprinsippet (eng: inclusion–exclusion principle):

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Inklusjon-og-eksklusjonsprinsippet for tre og flere mengder

Multiplikasjonsprinsippet

 Hvis vi skal treffe en rekke uavhengige valg, er det totale antallet muligheter produktet av antall muligheter ved hvert valg. Dette kalles multiplikasjonsprinsippet (rule of product / multiplication principle).

Permutasjon

- En **permutasjon** (*permutation*) av en mengde er en ordning av elementene i den.
- Hvis vi allerede har en ordning, er en permutasjon en endring av rekkefølgen.

- Funksjonene som representerer forskjellige permutasjoner er alle bijektive funksjoner.
- For å regne ut antall permutasjoner for en mengde med gitt antall elementer n, må vi ta fakultet av n, altså n!.

Ordnet utvalg, eller k-permutasjon

- Hvis en mengde med n elementer er gitt, og vi ønsker å velge k av disse i rekkefølge, er det n(n-1)(n-2)...(n-(k-1)) måter å gjøre det på. Dette kalles et **ordnet utvalg** (ordered selection), eller en k-permutasjon , av n elementer.
- Notasjon: ${}^nP_k=rac{n!}{(n-k)!}$. En annen skrivemåte for dette tallet er $n^{\underline{k}}$.

Kombinasjon

- En **kombinasjon** (combination) er et utvalg av elementer fra en mengde hvor rekkefølgen ikke spiller ingen rolle. En k-kombinasjon av en mengde A er en delmengde av A med k elementer.
- Hvis antall måter å velge tre elementer av fem i rekkefølge på er $^5P_3=5 imes 4 imes 3=60$, så for å regne ut antall kombinasjoner, må vi dele dette med antall permutasjoner av en mengde med tre elementer, altså 3!=6.
- Så antall kombinasjoner av tre elementer i en mengde av fem elementer er $^nC_k=60/6=10$ (C står for combination).
- ullet En annen måte å skrive dette på er $inom{n}{k}$, som leses "n velg k".
- Tallet $\binom{n}{k}$ angir hvor mange forskjellige delmengder med k elementer det er av en mengde med n elementer.

Binomialkoeffisient

- Hvis n og k er naturlige tall slik at $k \leqslant n$, defineres som $\binom{n}{k} = \frac{n!}{(n-k)!k!}$. Slikt tallet kalles **binomialkoeffisient** (*binomial coefficient*).
- Legg merke til at $\binom{n}{k} = \binom{n}{n-k}$.

Gjentakelser og overtelling

- Noen ganger teller vi for mye (overcounting) og da må vi kompensere for det på riktig måte.
- Vi har allerede sett dette i inklusjon-og-eksklusjonsprinsippet (se øverst).

• Men vi kan også telle for mye når vi teller permutasjoner.

Generelle formelen