CS1231S Cheatsheet

for midterms AY23-24, Sem 1 $\,$

m. zaidan

Sets

 \mathbb{N} natural numbers $\{\mathbb{Z}^+ \text{ and } 0\}$

 \mathbb{Z} integer

 \mathbb{Q} rational numbers

 \mathbb{R} real numbers

 \mathbb{C} complex numbers

Symbols

 \in member of $(x \in \mathbb{Z})$

 \sim negation (not)

 \land conjunction (and)

∨ disjunction (or)

≡ logically equivalent

Definitions

Tautology Statement that is always true Contradiction Statement that is always false

Even integers $even(n) \iff \exists k \in \mathbb{Z},$

(n=2k)

 $\mathbf{Odd\ integers} \qquad \qquad odd(n) \iff \exists k \in \mathbb{Z},$

(n=2k+1)

Divisibility $d|n \iff \exists k \in \mathbb{Z}, (n = dk)$

Theorem 4.3.1: $\forall a, b \in \mathbb{Z}^+, a|b \to a < b$

Theorem 4.3.2: The only divisors of 1 are 1 and -1.

Theorem 4.3.3: $\forall a, b, c \in \mathbb{Z}^+, (a|b \wedge b|c) \rightarrow (a|c)$

 $\textbf{Rational numbers} \qquad rational(r) \iff \exists a,b \in \mathbb{Z},$

 $(r = \frac{a}{b} \wedge b \neq 0)$

Theorem 4.2.1: Every integer is a rational number

Theorem 4.2.2: The sum of any two rational numbers is rational

Corollary 4.2.3: The double of a rational number is rational

 $(n > 1) \land \forall r, s \in \mathbb{Z}^+,$ $(n = rs \rightarrow (r = 1 \land s = n))$

 $\forall (r=n \land s=1)) \ \textit{or}$

 $((r > 1) \land (s > 1)) \ or$ $((r > 1) \land (s > 1) \rightarrow rs \neq n)$

Composite numbers $composite(n) \iff \exists r, s \in \mathbb{Z}^+,$

 $(n = rs \land (1 < r < n) \land$

(1 < s < n)

Congruence $\iff a,b\in\mathbb{Z},n\in\mathbb{Z}^+$

 $a \equiv b(modn) \qquad (n|(a-b))$

Proofs

Existential Statements

Proof by **constructive proof**: Find x in D that makes Q(x) true.

Universal Statements

Proof by **exhaustion** (for finite sets or finite amount of element satisfy the if condition.

Proof by generalizing from the generic particular:

Generic proof

Disproof by counterexample

Indirect Proof

Proof by **contraposition**: Prove *contrapositive* with a direct proof.

Proof by **contradiction**: Prove *negation* is false.

Logical Equivalences

Theorem 2.1.1 Logical Equivalences

Theorem 2.1.1 Logical Equivalences		
Commutative	$p \wedge q \equiv q \vee p$	$p \vee q \equiv q \vee p$
Associative	$p \wedge q \wedge r$	$p \vee q \vee r$
	$\equiv (p \wedge q) \wedge r$	$\equiv (p \vee q) \vee r$
	$\equiv p \wedge (q \wedge r)$	$\equiv p \lor (q \lor r)$
Distributive	$p \wedge (q \vee r)$	$p \lor (q \land r)$
	$\equiv (p \land q) \lor (p \land r)$	$\equiv (p \vee q) \wedge (p \vee r)$
Identity	$p \wedge true \equiv p$	$p \vee false \equiv p$
Negation	$p \vee \sim \! p \equiv true$	$p \land \sim p \equiv false$
Double negative	$\sim (\sim p)$	
Idempotent	$p \wedge p \equiv true$	$p\vee p\equiv p$
Universal bound	$p \vee true \equiv true$	$p \wedge false \equiv false$
De Morgan's	$\sim (p \land q) \equiv \sim p \lor \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$
Absorption	$p \lor (p \land q) \equiv p$	$p \wedge (p \vee q) \equiv p$
Negation of true & false	$\sim true \equiv false$	$\sim false \equiv true$

Translations

Conditional Statements Translations

	$p \to q$
contrapositive	$\sim q \rightarrow \sim p$
converse	$q \to p$
inverse	$\sim p \rightarrow \sim q$
if p then q	$p \rightarrow q$
p implies q	p o q

p implies q $p \to q$ p only if q $\sim q \to \sim p$ $p \to q$

p if, and only if, q $p \leftrightarrow q$ p iff q $p \leftrightarrow q$

p is sufficient for q $p \rightarrow q$

p is necessary for q $q \to p$ or $\sim p \to \sim q$

Quantified Statements Translations

Truth set	$x \in D P(x)$
For all x in D , $Q(x)$	$\forall x \in D, Q(x)$
There is a x in D s.t. $Q(x)$	$\exists x \in D, Q(x)$
There exists x in D s.t. $Q(x)$	$\exists x \in D, Q(x)$
There is a unique x in D s.t.	$\exists ! x \in D, Q(x)$
Q(x)	
For all x, P(x) is a sufficient	$\forall x (P(x) \to Q(x))$
condition for $Q(x)$	
For all x , $P(x)$ is a necessary	$\forall x(Q(x) \to P(x))$
condition for $Q(x)$	
For all x , $P(x)$ only if $R(x)$	$\forall x (P(x) \to Q(x))$

Rules of Inference

Table 2.3.1 Rules of Inference

Modus Ponens	$p \rightarrow q$	
Í	p	
Í	$\therefore q$	
Modus Tollens	$p \rightarrow q$	
1	$\sim q$	
1	$\therefore \sim p$	
Generalization	p	q
Í	$p \lor q$	$\therefore p \lor q$
Specialization	$p \wedge q$	$p \wedge q$
1	$\therefore p$	∴ q
Conjunction	p	
	\overline{q}	
Í	$p \wedge q$	
Elimination	$p \lor q$	$p \lor q$
Í	$\sim q$	$\sim p$
	$\therefore p$	$\therefore q$
Transitivity	p o q	
	$q \rightarrow r$	
Í	$\therefore p \to r$	
Proof by division	$p \lor q$	
into cases	p o r	
Í	q o r	
Í	$\therefore r$	
	Errors	
Converse Error	p o q	
Í	q	
	$\therefore p$	
Inverse Error	p o q	
	$\sim p$	
	$\therefore \sim q$	

Quantified Statements

Theorem 3.2.1

 $\sim (\forall x \in D, Q(x)) \equiv \exists x \in D, \sim Q(x)$

Theorem 3.2.2

 $\sim (\exists x \in D, Q(x)) \equiv \forall x \in D, \sim Q(x)$

 $\forall x \in D(P(x) \to Q(x)) \\ \text{contrapositive} \qquad \forall x \in D(\sim Q(x) \to \sim P(x)) \\ \text{converse} \qquad \forall x \in D(Q(x) \to P(x)) \\ \text{inverse} \qquad \forall x \in D(\sim P(x) \to \sim Q(x)) \\ \end{cases}$

Quantified Rules of Inference

Qualitation Ituies of	inici chec
Universal Modus Ponens	$\forall x \in D(P(x) \to Q(x))$
	P(a) for a particular a
	$\therefore Q(a)$
Universal Modus Tollens	$\forall x \in D(P(x) \to Q(x))$
	$\sim Q(a)$ for a particular a
	$\therefore \sim P(a)$
Universal Transitivity	$\forall x \in D(P(x) \to Q(x))$
	$\forall x \in D(Q(x) \to R(x))$
	$\therefore \forall x \in D(P(x) \to R(x))$
Universal Instantiation	$\forall x \in D P(x)$
	$\therefore \forall P(a) \ if \ a \in D$
Universal Generalization	$P(a)$ for every $a \in D$
	$\forall x \in DP(x)$
Existential Instantiation	$\exists x \in D P(x)$
	$\therefore \exists P(a) \ if \ a \in D$
Existential Generalization	$P(a)$ for some $a \in D$
	$\therefore \exists x \in DP(x)$
Erro	ors
Converse Error	$\forall x \in D(P(x) \to Q(x))$

Converse Error	$\forall x \in D(P(x) \to Q(x))$
	$Q(a) for\ a\ particular\ a$
	$\therefore P(a)$
Inverse Error	$\forall x \in D(P(x) \to Q(x))$
	$\sim P(a)$ for a particular a
	$\therefore \sim Q(a)$

Set Theory Symbols

 \subseteq subset of \subsetneq proper subset of $\not\subseteq$ not subset of

Set Identities

Theorem 6.2.2 Set Identities

Commutative	$A \cup B = B \cup A$	$A \cap B = B \cap A$
Associative	$(A \cup B) \cup C$	$(A \cap B) \cap C$
	$= A \cup (B \cup C)$	$=A\cap (B\cap C)$
Distributive	$A \cup (B \cap C)$	$A \cap (B \cup C)$
	$= (A \cup B) \cap (A \cup C)$	$= (A \cap B) \cup (A \cap C)$
Identity	$A \cup \emptyset = A$	$A \cap U = A$
Complement	$A \cup \bar{A} = U$	$A \cap \bar{A} = \emptyset$
Double complement	$\bar{A} = A$	
Idempotent	$A \cup A = A$	$A \cap A = A$
Universal bound	$A \cup U = U$	$A \cap \emptyset = \emptyset$
De Morgan's	$\overline{A \cup B} = \bar{A} \cap \bar{B}$	$\overline{A \cap B} = \bar{A} \cup \bar{B}$
Absorption	$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$
Complements of $U \& \emptyset$	$\bar{U} = \emptyset$	$\bar{\emptyset} = U$
Set difference law	$A \backslash B = A \cap \bar{B}$	

Theorems

Theorem 4.4.1: Quotient-Remainder Theorem $\forall n \in \mathbb{Z}, d \in \mathbb{Z}^+, \exists !q, r \in \mathbb{Z}((n=dq+r) \land (0 \leq r < d))$ **Theorem:** Cardinality of Power Set of a Finite Set $(|A|=n \land n \neq \infty) \rightarrow (|\mathfrak{P}(A)|=2^n)$ **Theorem 6.3.1:** $|\mathfrak{P}(A)|=2^{|A|}$

Properties

*			1
Inclusion of Intersection	$A \cap B \subseteq A$	$A \cap B \subseteq B$	xRy
Inclusion of Union	$A \supseteq A \cup B \subseteq A$	$B \supset A \cup B$	Doma
Transitive Property of Subsets	$A \subseteq B \land B \subseteq C$		Co-do
T · · · · · · · · · · · · · · · · · · ·			D

Definitions

Definitions	
Cardinality $ S $	number of elements in S
Subset $A \subseteq B$	$\forall m(m \in n \rightarrow m \in R)$
Superset $B \supseteq A$	$\iff \forall x (x \in a \Rightarrow x \in B)$
Proper subset $A \subsetneq B$	$\iff A \subseteq B \land A \neq B$
Ordered pair $(a, b) = (c, d)$	$\iff (a=c) \land (b=d)$
Cartesian product $A \times B$	$= \{(a,b) : a \in A \land b \in B\}$
Set equality $A = B$	$A \subseteq B \land B \subseteq A \ or$
Set equality $A = D$	$\forall x (x \in A \iff x \in B)$
(procedural)	$(x,y) \in A \times B \iff x \in A \land y \in B$
Union $A \cup B$	$\{x \in U : x \in A \lor x \in B\}$
(procedural)	$x \in A \cup B \iff x \in A \lor x \in B$
Intersection $A \cap B$	$\{x \in U : x \in A \land x \in B\}$
(procedural)	$x \in A \cap B \iff x \in A \land x \in B$
Difference $A \setminus B$	$\{x \in U : x \in A \land x \not\in B\}$
(procedural)	$x \in A - B \iff x \in A \land x \not\in B$
Complement \bar{A}	$\{x \in U \mid x \not\in A\}$
(procedural)	$x \in \bar{A} \iff x \not\in \bar{A}$
$\bigcup_{i=0}^{n} A_i$	$A_0 \cup A_1 \cup \cup A_n$
(procedural)	$\{x \in U \mid x \in A_i, \exists i = [0, n]\}$
$\bigcap_{i=0}^{n} A_i$	$A_0 \cap A_1 \cap \cap A_n$
(procedural)	$\{x \in U \mid x \in A_i, \forall i = [0, n]\}$
Disjoint	$A \cap B = \emptyset$
Mutually disjoint	$\forall i, j (i \neq j \to (A_i \cap A_j = \emptyset))$
	all subsets are mutually disjoint
Partition of A	all subsets are non empty
	union of subsets $= A$
Power set $\mathcal{P}(A)$	set of all subsets of A

Relations

Theorems/Lemmas/Propositions

Proposition (lecture 6, pg 18): Composition is Associative **Proposition** (lecture 6, pg 18): Inverse of Composition $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$

Theorem 8.3.1: Relation Induced by a Partition If R is a relation induced by the partition of a set A, R is reflexive, symmetric and transitive.

Lemma Rel. 1: Equivalence Classes

If \sim is a equivalence relation on A, $\therefore \forall x, y \in A$,

 $x \sim y = ([x] = [y]) = ([x] \cap [y] \neq \emptyset)$

Theorem 8.3.4: Partition Induced by an Equivalence Relation If R is an equivalence relation on A, the distinct equivalence classes of R form a partition of A; union of equivalence classes is A and the intersection of any two distinct classes is \emptyset

Proposition (lecture 6, pg 54): Congruence-mod n is equivalence relation on \mathbb{Z} for every $n \in \mathbb{Z}^+$

Theorem Rel.2: Equivalence classes form partition A/\sim is a partition of A

Proposition (lecture 6, pg 83): A smallest element is minimal on a partial order \preccurlyeq on A

Definitions

2109	· / (2, 9) C 10
Domain of R from A to B	$\{a \in A : aRb \ for \ some \ b \in B\}$
Co-domain of R from A to B	B
Range of R from A to B	$\{b \in B : aRb \ for \ some \ a \in A\}$
Composition of R with S	$\forall x \in A, \forall z \in C$
$(S \circ R)$	$(xS \circ Rz \iff (\exists y \in B(xRy \land ySz))$
Inverse R^{-1}	$\{(y,x)\in B\times A:(x,y)\in R\}$
Relation on A	Relation from A to A
Transitive Closure R^t	R^t is transitive
	$R \subseteq R^t$
	if \overline{S} transitive and contains R ,
	$R^t \subseteq S$
Partition C	$\forall S \in \mathcal{C}(\emptyset \neq S \subseteq A)$
	$\forall x \in A \exists ! S \in C(x \in S)$
Relation induced by Partition C	$\forall x, y \in A, xRy \iff$
Ţ.	$\exists S \ of \ \mathbb{C}(x, y \in S)$
Equivalence Relation	$\iff R$ is reflexive, symmetric
	and transitive.
Equivalence Class $[a]_{\sim}$	$\{x \in A : a \sim x\}$
Set of Eq. Class A/\sim	$\{x_{\sim}:x\in A\}$
$[A/\sim = \mathcal{C}]$ Set of eq. class	is a partition (Tut. 4 Q9(b))
(procedural)	$\forall x \in A(x \in [a]_{\sim} \iff a \sim x)$
Partial Order Relation	$\iff R$ is reflexive,
	antisymmetric and transitive.
Comparability	$a \preccurlyeq b \lor b \preccurlyeq a$
Comparability	$\exists c \in A(a \preccurlyeq c \land b \preccurlyeq c)$
Maximal Element	$\forall x \in A(c \preccurlyeq x \Rightarrow c = x)$
Minimal Element	$\forall x \in A (x \leqslant c \Rightarrow c = x)$
Largest Element	$\forall x \in A(c \preccurlyeq x)$
Smallest Element	$\forall x \in A(x \leqslant c)$
Total Order Relation	$\iff R \text{ is partial order } \land$
	$x, y \in A(xRy \vee yRx)$
iff R is a partial order and all ele	ements are comparable to each other
Linearisation \leq^*	$\forall x, y \in A(x \leqslant y \Rightarrow X \preccurlyeq^* y)$

 $\iff (x,y) \in R$

iff every non empty subset of A contains a smallest element.

 $\forall S \in \mathcal{P}(A), S \neq \emptyset \iff$

 $(\exists x \in S \ \forall y \in S(x \leq y))$

Properties of General Relations

Well Ordered Set

Reflexive	\iff	$\forall x \in A(xRx)$
Symmetric	\iff	$\forall x, y \in A(xRy \Rightarrow yRx)$
Antisymmetric	\iff	$\forall x, y \in A(xRy \land yRx \to x = y)$
Asymmetric	\iff	$\forall x, y \in A(xRy \Rightarrow y\cancel{R}x)$
Asymmetric rela	tions	must be antisymmetric (Tut. 5 Q6(c))
Transitive	\iff	$\forall x \ u \ z \in A(xRu \land uRz \rightarrow xRz)$

Properties of Real Numbers

(Appendix A)

Domain is \mathbb{R} unless stated otherwise.

Field Axioms

F1: Commutative laws

a+b=b+a, ab=ba

F2: Associative laws

(a + b) + c = a + (b + c), (ab)c = a(bc)

F3: Distributive laws

a(b+c) = ab + ac, (b+c)a = ba + ca

F4: Existence of Identity Elements

0 + a = a + 0 = a, $1 \times a = a \times 1 = a$

F5: Existence of Additive Inverses

a + (-a) = (-a) + a = 0

F6: Existence of Reciprocals

 $a \times \frac{1}{a} = \frac{1}{a} \times a = 1$

Derived Algebraic Properties

T1: Cancellation Law for Addition

 $(a+b=a+c) \to (b=c)$

T2: Possibility of Subtraction

 $\exists ! x(a+x=b)$, where x=b-a

T3: b - a = b + (-a)

T4: -(-a) = a

T5: a(b-c) = ab - ac

T6: $0 \times a = a \times 0 = 0$

T7: Cancellation Law for Multiplication

 $(ab = ac \land a \neq 0) \rightarrow (b = c)$

T8: Possibility of Division

 $\exists ! x \in \mathbb{R} \setminus \{0\} (ax = b)$, where $x = \frac{b}{a}$

T9: $a \neq 0 \rightarrow \frac{b}{a} = b \times a^{-1}$ **T10**: $a \neq 0 \rightarrow (a^{-1})^{-1} = a$

T11: Zero Product Property

 $ab = 0 \rightarrow (a = 0 \lor b = 0)$

T12: Rule for Multiplication with Negative Signs

 $(-a)b = a(-b) = -(ab), (-a)(-b) = ab, -\frac{a}{b} = -\frac{-a}{b} = \frac{a}{-b}$

T13: Equivalent Fractions Property

 $(b \neq 0 \land c \neq 0) \rightarrow (\frac{a}{b} = \frac{ac}{bc})$

T14: Rule for Addition of Fractions $(b \neq 0 \land d \neq 0) \rightarrow (\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd})$ **T15**: Rule for Multiplication of Fractions

 $(b \neq 0 \land d \neq 0) \rightarrow (\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd})$ **T16**: Rule for Division of Fractions

 $(b \neq 0 \land c \neq 0 \land d \neq 0) \rightarrow (\frac{\frac{a}{b}}{\frac{c}{c}} = \frac{ad}{bc})$

Order Axioms

Ord1: $\forall a, b \in \mathbb{R}, (a > 0 \land b > 0) \rightarrow (a + b > 0 \land ab > 0)$

Ord2: $\forall a \in \mathbb{R} \setminus \{0\}, (a > 0 \lor -a > 0 \land \sim (a > 0 \land -a > 0))$

Ord3: 0 is not positive.

Derived Rules for Calculating with Inequalities

T17: Trichotomy Law

 $a < b \lor b < a \lor a = b$

T18: Transitive Law

 $(a < b \land b < c) \rightarrow a < c$

T19: $(a < b) \rightarrow (a + c < b + c)$

T20: $(a < b \land c > 0) \to ac < bc$

T21: $(a \neq 0) \rightarrow (a^2 = 0)$

T22: 1 > 0

T23: $(a < b \land c < 0) \rightarrow ac > bc$

T24: $(a < b) \to (-a > -b)$

T25: $(ab > 0) \rightarrow (a > 0 \land b > 0) \lor (a < 0 \land b < 0)$

T26: $((a < c) \land (b < d)) \rightarrow (a + b < c + d)$

T27: $((0 < a < c) \land (0 < b < d)) \rightarrow 0 < ab < cd$