

Apache Spark

Ильнур Шугаепов

MapReduce

Основные приложения MR¹

Interactive data-mining

Map Reduce is Good Enough?

Jimmy Lin. "Mapreduce is good enough? if all you have is a hammer, throw away everything that's not a nail!" In: Big Data 1.1 (2013), pp. 28–37.

Ограничения MapReduce

- Сохраняет (временные) результаты всегда на HDFS
- 2 Ничего не знает про структуру данных
- Написание программ из большого числа map,reduce фаз проблематично

Ограничения MapReduce

Hivedata wearehousing solution

Частичные решения

Pig dataflow system

Hive² Main components

HiveQL

SQL like query language

Metastore Compiler

catalog with metadata about tables

converts query to a execution plan

²Ashish Thusoo et al. "Hive: a warehousing solution over a map-reduce framework". In: *Proceedings of the VLDB* Endowment 2.2 (2009), pp. 1626-1629.

Pig³

Like Hive but with different query language and without Metastore

³Alan F Gates et al. "Building a high-level dataflow system on top of Map-Reduce: the Pig experience". In: *Proceedings of the VLDB Endowment* 2.2 (2009), pp. 1414–1425.

Table of Contents

- 1. Ограничения MapReduce
- 2. Основные понятия
 Пример
 RDD abstraction
 Lineage graph / Lazy computation
- 3. Производительность
- 4. Implementation

Spark Program

Figure: The user's *driver* program launches multiple *workers*, which read data blocks from a distributed file system

Пример

Поиск по логам

```
lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
errors.persist()

ferrors.count()

// Count errors mentioning MySQL:
errors.filter(_.contains("MySQL")).count()

// Return the time fields of errors mentioning
// HDFS as an array (assuming time is field
// number 3 in a tab-separated format):
errors.filter(_.contains("HDFS"))
map(_.split('\t')(3))
.collect()
```


Lineage graph

Figure: Boxes represent RDDs and arrows represent transformations

RDD abstraction

Definition 1 (RDD):

- Resilient отказоустойчивый
- Distributed разбитый на партиции
- Dataset

read-only, partitioned collection of records

Efficient Fault-tolerance

- Запомним граф вычислений (lineage)
- Тогда если часть данных будет потеряна, то их легко можно восстановить
- RDD знает от каких данных (других RDD) он зависит

Построение RDD

- Из данных находящихся на HDFS или в RAM
- Выполнив операцию над существующим RDD:
 - Transformations
 - Actions

Persistance and Partitioning

- Пользователь может задать каким образом будет храниться RDD
- Пользователь может указать способ партицирования для RDD

Lazy computation

- Spark computes RDDs lazily the first time they are used in an action, so that it can pipeline transformations.
- Spark keeps persistent RDDs in memory by default, but it can spill them to disk if there is not enough RAM.

Основные понятия

Краткий итог

- Программы на спарке высокоуровневое описание манипуляций над RDDs.
- 2 Все вычисления ленивые
- ③ Пользователь может управлять тем, где будут храниться временные результаты
- 4 Граф зависимостей обеспечивает высокую надежность вычислений

Table of Contents

- 1. Ограничения MapReduce
- 2. Основные понятия
- 3. Производительность
 Transformations and Actions
 Примеры
- 4. Implementation

Transformations

Types

```
map(f: T \Rightarrow U) : RDD[T] \Rightarrow RDD[U]
            filter(f: T \Rightarrow Bool) : RDD[T] \Rightarrow RDD[T]
       flatMap(f: T \Rightarrow Seq[U]) : RDD[T] \Rightarrow RDD[U]
       sample(fraction: Float) : RDD[T] \Rightarrow RDD[T]
                 groupByKey() : RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])]
 reduceByKey(f: (V, V) \Rightarrow V) : RDD[(K, V)] \Rightarrow RDD[(K, V)]
                        union(): (RDD[T], RDD[T]) \Rightarrow RDD[T]
                          join(): (RDD[(K, V)], RDD[(K, W)])
                                          \Rightarrow RDD[(K, (V, W))]
                      cogroup(): (RDD[(K, V)], RDD[(K, W)])
                                          \Rightarrow RDD[(K, (Seq[V], Seq[W]))]
                 crossProduct() : (RDD[T], RDD[U]) \Rightarrow RDD[(T, U)]
        mapValues(f: V \Rightarrow W) : RDD[(K, V)] \Rightarrow RDD[(K, W)]
       sort(c: Comparator[K]) : RDD[(K, V)] \Rightarrow RDD[(K, V)]
partitionBy(p: Partitioner[K]) : RDD[(K, V)] \Rightarrow RDD[(K, V)]
```

Actions

Types

```
count() : RDD[T] \Rightarrow Long
```

 $collect() : RDD[T] \Rightarrow Seq[T]$ $reduce(f: (T, T) \Rightarrow T) : RDD[T] \Rightarrow T$

 $lookup(k: K) : RDD[(K, V)] \Rightarrow Seq[V]$

save(path: String) : Outputs RDD to a storage system

Logistic Regression⁴

Code

```
val points = spark.textFile(...)

.map(parsePoint).persist()

3 var w = // random initial vector

4 for (i <- 1 to ITERATIONS) {

5 val gradient = points.map{ p => p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

7 }.reduce((a,b) => a+b)

8 w -= gradient

9 }

.X \in \mathbb{R}^n

\hat{y} = \delta(\omega \cdot x)

\omega \in \mathbb{R}^n

\omega \in \mathbb{R}^n
```

⁴Trevor Hastie, Robert Tibshirani, and Jerome Friedman. *The elements of statistical learning: data mining, inference, and prediction.* Springer Science & Business Media, 2009.

Logistic Regression

Performance

Figure: Duration of the first and later iterations in Hadoop, HadoopBinMem and Spark for logistic regression and k-means using 100 GB of data on a 100-node cluster.

Logistic Regression

Performance

Figure: Running times for iterations after the first in Hadoop, HadoopBinMem, and Spark

Keeping points in memory across iterations can yield a $20\times$ speedup

PageRank⁵⁶

Code

```
val links = spark.textFile(...).map(...).persist
       ()
var ranks = // RDD of (URL, rank) pairs
3 for (i <- 1 to ITERATIONS) {
    // Build an RDD of (targetURL, float) pairs
    // with the contributions sent by each page
    val contribs = links.join(ranks).flatMap {
      (url. (links. rank)) =>
8
        links.map(dest => (dest. rank/links.size))
0
    // Sum contributions by URL and get new ranks
                                                            = + (1-x) = r (t-1) / m
    ranks = contribs.reduceByKey((x,y) => x+y)
               .mapValues(sum => a/N + (1-a)*sum)
12
13 }
```

⁵Lawrence Page et al. *The pagerank citation ranking: Bringing order to the web.* Tech. rep. Stanford InfoLab, 1999. ⁶Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. *Mining of massive data sets*. Cambridge university press, 2019.

PageRank

Linage graph

PageRank

Performance

Preserving partitioning might help

If ranks and links are co-partitioned then join requires no communication

PageRank

Performance

Figure: Performance of PageRank on Hadoop and Spark.

Производительность

Краткий итог

- Spark работает в 20-100 раз быстрее чем MapReduce
- 2 Писать программы можно сильно быстрее

Table of Contents

- 1. Ограничения MapReduce
- 2. Основные понятия
- 3. Производительность
- 4. Implementation Representing RDDs Job Scheduling

Representing RDDs

Граф

Dependencies — dependencies on parent RDDs

Dependencies

Figure: Examples of narrow and wide dependencies. Each box is an RDD, with partitions shown as shaded rectangles.

Dependencies

Narrow

- Narrow dependencies allow for pipelined execution on one cluster node
- Recovery after a node failure is more efficient with a narrow dependency

Spark Application Pipeline

Spark Application Tree

Замечания

- One node can have multiple Spark executors, but an executor cannot span multiple nodes.
- An RDD will be evaluated across the executors in partitions (shown as red rectangles).
- Each executor can have multiple partitions, but a partition cannot be spread across multiple executors.

Замечания

SparkContext

Definition 2 (SparkContext): Connection between user's program and cluster. Containes information about requested resources, type of resources allocation (dynamic/static), etc

Замечания

Figure: Boxes with solid outlines are RDDs. Partitions are shaded rectangles, in black if they are already in memory.

Итог

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media, 2009.

Karau, Holden and Rachel Warren. High performance Spark: best practices for scaling and optimizing Apache Spark." O'Reilly Media, Inc.", 2017.

Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. *Mining of massive data sets*. Cambridge university press, 2019.

Lin, Jimmy. "Mapreduce is good enough? if all you have is a hammer, throw away everything that's not a nail!" In: *Big Data* 1.1 (2013), pp. 28–37.

Page, Lawrence et al. The pagerank citation ranking: Bringing order to the web. Tech. rep. Stanford InfoLab, 1999.

Spark Overview. https://spark.apache.org/docs/latest/index.html.

Thusoo, Ashish et al. "Hive: a warehousing solution over a map-reduce framework". In: Proceedings of the VLDB Endowment 2.2 (2009), pp. 1626–1629.

Vavilapalli, Vinod Kumar et al. "Apache hadoop yarn: Yet another resource negotiator". In: Proceedings of the 4th annual Symposium on Cloud Computing. 2013, pp. 1–16.

Zaharia, Matei et al. "Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing". In: Presented as part of the 9th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 12). 2012, pp. 15–28.

Zaharia, Matei et al. "Spark: Cluster computing with working sets.". In: *HotCloud* 10.10-10 (2010), p. 95.

Вопросы?