Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»		
КАФЕДРА	ИУК4 «Программное обеспечение ЭВМ,		
информационные технологии»			

Домашняя работа №2

«Имитационное моделирование»

ДИСЦИПЛИНА: «Моделирование»

Выполнил: студент гр. ИУК4-72Б		(Сафронов Н.С.
• •	(подпись)		(Ф.И.О.)
Проверил:		_ (_	Никитенко У.В.
	(подпись)		(Ф.И.О.)
Дата сдачи (защиты):			
Результаты сдачи (защиты):			
- Балльная	оценка:		
- Оценка:			

Калуга, 2023

Цель работы: разработать имитационную модель на высокоуровневом языке программирования для решения поставленной задачи.

Постановка задачи

На станции техобслуживания работает a мастеров. Каждые 3 мин. приезжает клиент. Время обслуживания одного клиента составляет 4 мин. Промоделировать работу станции техобслуживания в течение рабочей смены. Рассмотреть варианты с 2-3 комбинациями законов распределения. Сделать вывод о лучшем и худшем сочетаниях законов распределения. Неизвестные параметры законов распределения выбрать усмотрению. Рассмотреть один закон распределения с различными параметрами. Рассмотреть заданные законы распределения с различными отклонениями, промоделировать работу для 1, 3 и 10 рабочих смен.

Вариант 3

a	b	c
4	Гауссовское	Дискретное
	распределение с	равномерное
	матожиданием 6 и СКО	распределение в
	1	диапазоне 5–8

Ход выполнения работы

Промоделируем работу станции техобслуживания в течение рабочей смены. Параметрами, для которых применяется заданный закон распределения, являются интервал между приездами двух клиентов и время обслуживания клиентов.

В качестве комбинаций законов распределения используем следующие:

- 1. Только Гауссовское распределение с матожиданием 6 и СКО 1 для времени обслуживания клиента и времени приезда клиента.
- 2. Только дискретное равномерное распределение в диапазоне 5–8 для времени обслуживания клиента и времени приезда клиента.
- 3. Гауссовское распределение с матожиданием 6 и СКО 1 для времени обслуживания клиента и дискретное равномерное распределение в диапазоне 5–8 для времени приезда клиента.

4. Дискретное равномерное распределение в диапазоне 5–8 для времени обслуживания клиента и Гауссовское распределение с матожиданием 6 и СКО 1 для времени приезда клиента.

```
Имитационное моделирование только с распределением Гаусса:
Результат среднего времени ожидания для количества смен 1: 1.23 мин
Результат среднего времени ожидания для количества смен 10: 1.19 мин

Имитационное моделирование только с дискретным равномерным распределением:
Результат среднего времени ожидания для количества смен 1: 1.25 мин
Результат среднего времени ожидания для количества смен 3: 1.29 мин
Результат среднего времени ожидания для количества смен 3: 1.29 мин
Результат среднего времени ожидания для количества смен 10: 1.28 мин

Имитационное моделирование с дискретным равномерным распределением времени обслуживания и распределением Гаусса для времени ожидания:
Результат среднего времени ожидания для количества смен 1: 1.25 мин
Результат среднего времени ожидания для количества смен 3: 1.30 мин
Результат среднего времени ожидания для количества смен 10: 1.31 мин

Имитационное моделирование с распределением Гаусса для времени обслуживания и дискретным равномерным распределением времени ожидания:
Результат среднего времени ожидания для количества смен 1: 1.19 мин
Результат среднего времени ожидания для количества смен 1: 1.19 мин
Результат среднего времени ожидания для количества смен 3: 1.18 мин
Результат среднего времени ожидания для количества смен 3: 1.21 мин
```

Рисунок 1 - Моделирование работы станции техобслуживанием с использованием различных комбинаций распределений

Также для заданных законов распределения рассмотрим варианты с разными значениями параметров:

- 1. Только Гауссовское распределение с матожиданием 12 и СКО 2 для времени обслуживания клиента и времени приезда клиента.
- 2. Только дискретное равномерное распределение в диапазоне 7–8 для времени приезда клиента для времени обслуживания клиента и времени приезда клиента.

```
Имитационное моделирование только с дискретным равномерным распределением в диапазоне 7-8: 
Результат среднего времени ожидания для количества смен 1: 1.51 мин 
Результат среднего времени ожидания для количества смен 3: 1.50 мин 
Результат среднего времени ожидания для количества смен 10: 1.50 мин 
Имитационное моделирование только с распределением Гаусса с матожиданием 12 и СКО 2: 
Результат среднего времени ожидания для количества смен 1: 2.31 мин 
Результат среднего времени ожидания для количества смен 3: 2.40 мин 
Результат среднего времени ожидания для количества смен 10: 2.41 мин
```

Рисунок 2 - Моделирование работы станции техобслуживанием с варьированием параметров распределений

Для анализа рассмотрим только распределения и их сочетания с указанными в варианте значениями параметров.

В результате анализа было выявлено, что сочетание «моделирование с распределением Гаусса для времени обслуживания и дискретным равномерным распределением времени ожидания» имеет наилучшие показатели.

Худшим сочетанием является «моделирование с дискретным равномерным распределением времени обслуживания и распределением Гаусса для времени ожидания», если рассматривать сильное различие с сочетанием «моделирование только с распределением Гаусса» в случае работы 10 смен. В случае работы 1 или 3 смен худшим сочетанием также является «моделирование с дискретным равномерным распределением времени обслуживания и распределением Гаусса для времени ожидания».

Вывод: в ходе выполнения домашней работы была разработана имитационная модель на высокоуровневом языке программирования для решения поставленной задачи.

ПРИЛОЖЕНИЯ

Листинг программы

```
import random
import typing
import numpy as np
def uniform distribution():
    return np.random.uniform(5, 8)
def gauss distribution():
    return random.gauss(6, 1)
def uniform distribution 7 8():
    return np.random.uniform(7, 8)
def gauss distribution 12 2():
    return random.gauss(12, 2)
def get imitation modeling result(
        num shifts: int,
        service time distribution: typing.Callable[[], float],
        interarrival time distribution: typing.Callable[[],
floatl
):
   masters num = 5
    total clients = 0
    total service time = 0
    for in range (num shifts):
        time elapsed = 0
        clients served = 0
        while time elapsed < 480:
            interarrival time = interarrival time distribution()
            arrival time = time elapsed + interarrival time
            service time = service time distribution()
            time elapsed = arrival time
            clients served += 1
            total service time += service time
            time elapsed += service time
        total clients += clients served
```

```
average service time = total service time / total clients /
masters num
    return average service time
if __name__ == '__main__':
    shifts counts = [1, 3, 10]
    distributions = [
        {
            'title': 'Имитационное моделирование только с
распределением Гаусса',
            'service': gauss distribution,
            'interarrival': gauss distribution
        },
            'title': 'Имитационное моделирование только с
дискретным равномерным распределением',
            'service': uniform distribution,
            'interarrival': uniform distribution
        },
            'title': 'Имитационное моделирование с дискретным
равномерным распределением времени обслуживания и распределением
Гаусса для времени ожидания',
            'service': uniform distribution,
            'interarrival': gauss distribution
        },
            'title': 'Имитационное моделирование с
распределением Гаусса для времени обслуживания и дискретным
равномерным распределением времени ожидания',
            'service': gauss distribution,
            'interarrival': uniform distribution
        } ,
            'title': 'Имитационное моделирование только с
дискретным равномерным распределением в диапазоне 7-8',
            'service': uniform distribution 7 8,
            'interarrival': uniform distribution 7 8
        },
            'title': 'Имитационное моделирование только с
распределением Гаусса с матожиданием 12 и СКО 2',
            'service': gauss distribution 12 2,
            'interarrival': gauss distribution 12 2
    ]
    for distribution in distributions:
        print(f"{distribution['title']}:")
        for shifts count in shifts counts:
            result = get imitation modeling result(
```