### 2 Naive Bayes

### 2.1 Data Pre-Processing & Visualisation

Data Distribution Plots after CATEGORICAL ENCODING



### 2.2 Prior Probabilities



#### 2.3 Likelihood Probabilities

| OUTLOOK  | P(yes)   | P(no)    |
|----------|----------|----------|
| Overcast | 0.428571 | 0.000000 |
| Rainy    | 0.285714 | 0.600000 |
| Sunny    | 0.285714 | 0.400000 |

# 2.4 Making Predictions based on proportional probabilities

| Test-Case | P(yes)               | P(no)                | Prediction |
|-----------|----------------------|----------------------|------------|
| 1         | 0.024295432458697763 | 0.005333333333333333 | yes        |
| 2         | 0.005830903790087463 | 0.0                  | yes        |

#### 2.5 Likelihood Probabilities after Laplace smoothing

1.  $\alpha = 0.01$ 

| OUTLOOK  | P(yes)   | P(no)    |
|----------|----------|----------|
| Overcast | 0.428165 | 0.001988 |
| Rainy    | 0.285917 | 0.598410 |
| Sunny    | 0.285917 | 0.399602 |

#### Making Predictions based on proportional probabilities after Laplace smoothing

| Test-Case | P(yes)               | P(no)                  | Prediction |
|-----------|----------------------|------------------------|------------|
| 1         | 0.02428843241892867  | 0.005359877943368312   | yes        |
| 2         | 0.005854456555063937 | 0.00015854490113897748 | yes        |

#### 2. $\alpha = 0.1$

| OUTLOOK  | P(yes)   | P(no)    |
|----------|----------|----------|
| Overcast | 0.424658 | 0.018868 |
| Rainy    | 0.287671 | 0.584906 |
| Sunny    | 0.287671 | 0.396226 |

| Temp | P(yes)   | P(no)    |
|------|----------|----------|
| Cool | 0.424658 | 0.207547 |
| Hot  | 0.287671 | 0.396226 |
| Mild | 0.287671 | 0.396226 |

## Making Predictions based on proportional probabilities after Laplace smoothing

| Test-Case | P(yes)               | P(no)                | Prediction |
|-----------|----------------------|----------------------|------------|
| 1         | 0.02422060697754426  | 0.005588315294667817 | yes        |
| 2         | 0.006062135771772901 | 0.001464182382915439 | yes        |

3.  $\alpha = 1$ 

| OUTLOOK  | P(yes)   | P(no)    |
|----------|----------|----------|
| Overcast | 0.400000 | 0.125000 |
| Rainy    | 0.300000 | 0.500000 |
| Sunny    | 0.300000 | 0.375000 |

| Temp | P(yes)   | P(no)    |
|------|----------|----------|
| Cool | 0.400000 | 0.250000 |
| Hot  | 0.300000 | 0.375000 |
| Mild | 0.300000 | 0.375000 |

## Making Predictions based on proportional probabilities after Laplace smoothing

| Test-Case | P(yes)                 | P(no)                | Prediction |
|-----------|------------------------|----------------------|------------|
| 1         | 0.02333333333333333333 | 0.007174744897959183 | yes        |
| 2         | 0.007777777777777776   | 0.007971938775510204 | no         |

4.  $\alpha = 10$ 

| OUTLOOK  | P(yes)   | P(no)    |
|----------|----------|----------|
| Overcast | 0.351351 | 0.285714 |
| Rainy    | 0.324324 | 0.371429 |
| Sunny    | 0.324324 | 0.342857 |

| Temp | P(yes)   | P(no)    |
|------|----------|----------|
| Cool | 0.351351 | 0.314286 |
| Hot  | 0.324324 | 0.342857 |
| Mild | 0.324324 | 0.342857 |

## Making Predictions based on proportional probabilities after Laplace smoothing

| Test-Case | P(yes)               | P(no)                | Prediction |
|-----------|----------------------|----------------------|------------|
| 1         | 0.018937856775694616 | 0.010344489795918368 | yes        |
| 2         | 0.0131302473644816   | 0.011885714285714286 | yes        |

#### 5. $\alpha = 100$

| OUTLOOK  | P(yes)   | P(no)    |
|----------|----------|----------|
| Overcast | 0.335505 | 0.327869 |
| Rainy    | 0.332248 | 0.337705 |
| Sunny    | 0.332248 | 0.334426 |

| Temp | P(yes)   | P(no)    |
|------|----------|----------|
| Cool | 0.335505 | 0.331148 |
| Hot  | 0.332248 | 0.334426 |
| Mild | 0.332248 | 0.334426 |

## Making Predictions based on proportional probabilities after Laplace smoothing

| Test-Case | P(yes)               | P(no)               | Prediction |
|-----------|----------------------|---------------------|------------|
| 1         | 0.016568313127134977 | 0.01142360680677749 | yes        |
| 2         | 0.015788362604415428 | 0.01164533786645278 | yes        |

#### 2.6 observed differences in predictions

- We see that probability of not playing while OUTLOOK is Overcast is zero
- Assigning zero probability means ruling out unseen events from consideration, which is not be desired
- After Laplace smoothing with smoothing parameter alpha we overcome this problem
- Hence probability of not playing in Test-Case 2 is not 0 anymore and makes more sense
- We see a regular trend not matter what alpha value we have taken except for the case where alpha = 1
- Here the probability of not playing overtakes that of playing in test case 2 and hence accuracy drops down from 1 to 0.5
- Later on (alpha more than 1) the overtaking doesn't occur
- hence hyper-parameter tuning has also been done