

Analog IC Design

Lecture 12 The Five-Transistor (5T) OTA

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

- Recapping previous key results
- Op-amp vs OTA
- Differential to single-ended conversion
- ☐ Five-transistor OTA Analysis
 - A. Small signal analysis
 - 1. Diff small signal analysis
 - 2. CM small signal analysis
 - B. Large signal analysis
 - 1. Diff large signal analysis
 - 2. CM large signal analysis
- Effect of mismatch
- ☐ 5T OTA frequency response

- Recapping previous key results
- Op-amp vs OTA
- Differential to single-ended conversion
- Five-transistor OTA Analysis
 - A. Small signal analysis
 - 1. Diff small signal analysis
 - 2. CM small signal analysis
 - B. Large signal analysis
 - 1. Diff large signal analysis
 - 2. CM large signal analysis
- Effect of mismatch
- ☐ 5T OTA frequency response

MOSFET in Saturation

☐ The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$V_{GD} \leq V_{TH} \quad OR \quad V_{DS} \geq V_{ov}$$

Square-law (long channel MOS)

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

$$V_{SB} \uparrow \Rightarrow V_{TH} \uparrow$$

Regions of Operation Summary

High Frequency Small Signal Model

$$g_m = \frac{\partial I_D}{\partial V_{GS}} = \mu C_{ox} \frac{W}{L} V_{ov} = \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_D} = \frac{2I_D}{V_{ov}}$$
$$g_{mb} = \eta g_m \qquad \qquad \eta \approx 0.1 - 0.25$$

$$r_{o} = \frac{1}{\partial I_{D}/\partial V_{DS}} = \frac{V_{A}}{I_{D}} = \frac{1}{\lambda I_{D}}$$
 $V_{A} \propto L \leftrightarrow \lambda \propto \frac{1}{L}$ $V_{DS} \uparrow V_{A} \uparrow$ $C_{gb} \approx 0$ $C_{gs} \gg C_{gd}$ $C_{sb} > C_{db}$

Rin/out Shortcuts Summary

Summary of Basic Topologies

	CS	CG	CD (SF)
	R_D v_{in} R_S	R_D v_{out} R_S	R_D $v_{in} \circ v_{out}$ R_S
	Voltage & current amplifier	Voltage amplifier Current buffer	Voltage buffer Current amplifier
Rin	∞	$R_S \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$	∞
Rout	$R_D r_o[1+(g_m+g_{mb})R_S]$	$R_D r_o$	$R_S \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$
Gm	$\frac{-g_m}{1+(g_m+g_{mb})R_S}$	$g_m + g_{mb}$	$\frac{g_m}{1+R_D/r_o}$

Differential Amplifier

	Pseudo Diff Amp	Diff Pair (w/ ideal CS)	Diff Pair (w/ R _{SS})
A_{vd}	$-g_m R_D$	$-g_m R_D$	$-g_m R_D$
A_{vCM}	$-g_m R_D$	0	$\frac{-g_m R_D}{1 + 2(g_m + g_{mb})R_{SS}}$
A_{vd}/A_{vCM}	1	∞	$2(g_m + g_{mb})R_{SS} \\ \gg 1$

$$A_{vCM2d} = \frac{v_{od}}{v_{iCM}} \approx \frac{\Delta R_D}{2R_{SS}} + \frac{\Delta g_m R_D}{2g_{m1,2}R_{SS}}$$

$$CMRR = \frac{A_{vd}}{A_{vCM2d}}$$

- ☐ Recapping previous key results
- Op-amp vs OTA
- ☐ Differential to single-ended conversion
- ☐ Five-transistor OTA Analysis
 - A. Small signal analysis
 - 1. Diff small signal analysis
 - 2. CM small signal analysis
 - B. Large signal analysis
 - 1. Diff large signal analysis
 - 2. CM large signal analysis
- Effect of mismatch
- 5T OTA frequency response

Op-Amp

- ☐ An op-amp is simply a high gain differential amplifier
 - The gain can be increased by using cascodes and multi-stage amplification
- The diff amp is a key block in many analog and RF circuits
 - DEEP understanding of diff amp is ESSENTIAL

Op-Amp vs OTA

- \Box Ideal op-amp has infinite R_{in} , infinite gain, and zero R_{out}
- oxdot Practical op-amp has HIGH R_{in} , HIGH gain, and LOW R_{out}
 - LOW R_{out} required to avoid loading when driving resistive loads
 - The op-amp is usually implemented as a multistage amplifier
 - The last stage (output stage) is a buffer to provide LOW R_{out}
- IC CMOS op-amps usually drive capacitive loads
 - Usually, there is no need for LOW R_{out}
 - The output stage (buffer) is not required
 - These modern integrated op-amps are usually called Operational Transconductance Amplifiers (OTAs)

12: 5T OTA 12: 5T OTA

Op-Amp vs OTA

- ☐ In short, an OTA is an op-amp without an output stage (buffer)
- ☐ Some designers just use op-amp name and symbol for both

	Op-amp	ОТА
Rout	LOW	HIGH
Model	$v_{in} \bigcirc \downarrow i_{in} \bigcirc \downarrow i_{out} \bigcirc v_{out}$	$v_{in} \bigcirc \downarrow i_{in} \bigcirc v_{out}$ $\downarrow R_{in} \bigcirc G_m v_{in} \bigcirc \downarrow R_{out} \bigcirc \downarrow I_{out} \bigcirc v_{out}$
Diff input, SE output		
Fully diff		

- ☐ Recapping previous key results
- Op-amp vs OTA
- ☐ Differential to single-ended conversion
- ☐ Five-transistor OTA Analysis
 - A. Small signal analysis
 - 1. Diff small signal analysis
 - 2. CM small signal analysis
 - B. Large signal analysis
 - 1. Diff large signal analysis
 - 2. CM large signal analysis
- Effect of mismatch
- ☐ 5T OTA frequency response

How to Get SE Output?

- Trivial solution: discard one output!
 - But the gain is halved (and the CMRR is poor $\sim g_m R_{SS}$)
- Better solution: use a diff to single-ended (SE) converter (but how?!)

5T OTA

- ☐ A.k.a. diff pair with active load, diff pair with CM load, unbalanced diff pair.
- Can be viewed in two ways
 - 1. We use a current mirror to transfer the small signal current from the left side to the right side.
 - 2. M3 is a diode-connected load and M4 is a CS amplifier that transfers the small signal voltage from the left side to the right side.

- Recapping previous key results
- Op-amp vs OTA
- Differential to single-ended conversion
- ☐ Five-transistor OTA Analysis
 - A. Small signal analysis
 - 1. Diff small signal analysis
 - 2. CM small signal analysis
 - B. Large signal analysis
 - 1. Diff large signal analysis
 - 2. CM large signal analysis
- Effect of mismatch
- 5T OTA frequency response

5T OTA Analysis

- ☐ In general, half-circuit principle cannot be used due to asymmetry
- Similar to diff amp, we carry four types of analysis:
 - A. Small signal analysis
 - 1. Diff small signal analysis
 - 2. CM small signal analysis
 - B. Large signal analysis
 - 1. Diff large signal analysis
 - 2. CM large signal analysis

A1. Diff Small Signal Analysis

- ☐ Solve it using superposition as a whole using GmRout (Can we use half-circuit? Why?)
- \Box Each side contributes to i_{out} twice: directly and through the mirror

$$i_{out} = i'_{out} + i''_{out}$$

$$i_{out} \approx \frac{g_{m1}}{1 + g_{m1}(1/g_{m2})} \cdot \mathbf{2} \cdot \frac{v_{id}}{2} + \frac{g_{m2}}{1 + g_{m2}(1/g_{m1})} \cdot \mathbf{2} \cdot \frac{v_{id}}{2}$$

$$G_m = \frac{i_{out}}{v_{id}} \approx g_{m1,2}$$

A1. Diff Small Signal Analysis

☐ Can we use half-circuit? Why?

$$R_{out} = \frac{v_x}{i_x} = \frac{v_x}{2i_y} || r_{o4}$$

$$\frac{v_x}{i_y} = R_{LFD,M2} \approx r_{o2} (1 + g_{m2} R_{LFS,M1}) \approx 2r_{o2}$$

$$R_{out} \approx r_{o2} || r_{o4}$$

$$A_{vd} = \frac{v_{out}}{v_{id}} \approx g_{m1,2} (r_{o2} || r_{o4})$$

- ☐ If the tail CS is ideal
 - The two sides will generate current in the same direction
 - Thus both currents must be zero

$$v_{out} = 0 \implies A_{vCM} = \frac{v_{out}}{v_{iCM}} = 0 \implies CMRR = \frac{A_{vd}}{A_{vCM}} \to \infty$$

- ☐ For non-ideal tail CS: $A_{vCM} \neq 0$ and $CMRR \neq \infty$
- The presence of R_{SS} complicates the analysis. Using SLiCAP yields:

$$H_s = -\frac{1.0\,g_{\rm m12}\,r_{\rm o12}\,r_{\rm o34}}{2.0\,R_{\rm SS} + r_{\rm o12} + r_{\rm o34} + 2.0\,R_{\rm SS}\,g_{\rm m12}\,r_{\rm o12} + 2.0\,R_{\rm SS}\,g_{\rm m34}\,r_{\rm o34} + g_{\rm m34}\,r_{\rm o12}\,r_{\rm o34} + 2.0\,R_{\rm SS}\,g_{\rm m12}\,g_{\rm m34}\,r_{\rm o12}\,r_{\rm o34}}$$

$$A_{vCM} \approx -\frac{1}{2g_{m3,4}R_{SS}}$$

Can we derive the same result intuitively?

- \square M1 and M2 have the same V_{GS} : Difference in I_D depends on V_{DS}
- \square M3 and M4 have the same V_{GS} : Difference in I_D depends on V_{DS}
- \square Assume $V_F < V_{out}$
 - $I_{D1} < I_{D2}$ and $I_{D3} > I_{D4}$ → Not a valid assumption
- \square Assume $V_F > V_{out}$
 - $I_{D1} > I_{D2}$ and $I_{D3} < I_{D4} \rightarrow$ Not a valid assumption
- lacktriangle The only valid assumption is $V_F = V_{out} o$ As if there is a s.c.!

- \square For CM input, V_{out} follows $V_F \rightarrow$ As if there is a s.c. between them
- ☐ The circuit becomes symmetric → Apply half circuit principle

$$A_{vCM} = \frac{V_{out}}{V_{iCM}} = G_m R_{out} \approx \frac{-g_{m1,2}}{1 + 2g_{m1,2}R_{SS}} \frac{1}{g_{m3,4}} \approx -\frac{1}{2g_{m3,4}R_{SS}}$$

☐ Same as SLiCAP's result ⓒ

- lacktriangle Method #2: Ignore $r_{o1,2}$ for simplicity (CLM of M1,2 ignored) o apply half-circuit at the sources
- ☐ M1 and M2 generate the same current $(\Delta i_d) \rightarrow \therefore$ M3 and M4 have the same current \rightarrow \therefore Not just their V_{GS} is equal, but their V_{DS} must be equal \rightarrow \therefore $V_{out} = V_F$
- \square s.c. between V_{out} and $V_F \rightarrow$ apply half-circuit at the drains

$$A_{vCM} = \frac{V_{out}}{V_{iCM}} = G_m R_{out} \approx \frac{-g_{m1,2}}{1 + 2g_{m1,2}R_{SS}} \frac{1}{g_{m3,4}} \approx -\frac{1}{2g_{m3,4}R_{SS}}$$

- \Box Strictly speaking, R_{out} for diff and cm must be the same!
 - R_{out} is independent of input type and location (we already deactivate the input when we calculate Rout)

$$R_{out} \approx r_{o2} || r_{o4}$$

 \square It can be shown that G_m is actually given by

$$G_m \approx \frac{-g_{m1,2}}{1 + 2g_{m1,2}R_{SS}} \frac{1}{g_{m3,4}(r_{o2}//r_{o4})} \approx -\frac{1}{2g_{m3,4}R_{SS}(r_{o2}//r_{o4})}$$

An intuitive derivation is not very easy.

$$A_{vCM} = \frac{V_{out}}{V_{iCM}} = G_m R_{out} \approx -\frac{1}{2g_{m3,4}R_{SS}}$$

 \square Method #3: Use GmRout (Neglect $r_{o1,2}$ BUT do NOT neglect r_{o3} , otherwise $A_{vCM} \rightarrow 0$)

$$G_{m} = \frac{i_{o,sc}}{v_{iCM}} = \frac{g_{m1}}{1 + 2g_{m1}R_{SS}} \cdot \left(\frac{1}{g_{m3}}||r_{o3}\right) \cdot g_{m4} - \frac{g_{m2}}{1 + 2g_{m2}R_{SS}}$$

$$= \frac{g_{m1,2}}{1 + 2g_{m1,2}R_{SS}} \left(\frac{g_{m3,4}r_{o3,4}}{1 + g_{m3,4}r_{o3,4}} - 1\right) \approx \frac{-1}{2g_{m3,4}r_{o3,4}R_{SS}}$$

$$A_{vCM} = G_{m}R_{out} \approx \frac{-1}{2g_{m3,4}r_{o3,4}R_{SS}} \cdot r_{o4} = -\frac{1}{2g_{m3,4}R_{SS}}$$

CMRR

$$A_{vd} = \frac{V_{out}}{V_{id}} \approx g_{m1,2}(r_{o2}//r_{o4})$$

$$A_{vCM} = \frac{V_{out}}{V_{iCM}} \approx -\frac{1}{2g_{m3,4}R_{SS}}$$

$$CMRR \approx g_{m1,2}(r_{o2}//r_{o4}) \cdot 2g_{m3,4}R_{SS} \sim (g_m r_o)^2$$

- ☐ The CMRR is much better than the trivial case of getting SE output by dropping one differential output
 - For the trivial case $CMRR \approx g_m R_{SS} \sim g_m r_o$
- ☐ CM noise will affect the SE output even in the case of perfect symmetry
 - A clear disadvantage compared to fully diff OTA
- \Box The effective R_{SS} degrades at high frequency

- ☐ Recapping previous key results
- Op-amp vs OTA
- Differential to single-ended conversion
- ☐ Five-transistor OTA Analysis
 - A. Small signal analysis
 - 1. Diff small signal analysis
 - 2. CM small signal analysis
 - B. Large signal analysis
 - 1. Diff large signal analysis
 - 2. CM large signal analysis
- Effect of mismatch
- ☐ 5T OTA frequency response

B1. Diff Large Signal Analysis

$$\Box V_{id} = (V_{in1} - V_{in2}) \gg 0$$

- M1 and M3 ON → M4 ON (triode) → small resistance
- M2 OFF → large resistance
- $V_{out} \approx V_{DD}$

B1. Diff Large Signal Analysis

$$\Box V_{id} = (V_{in1} - V_{in2}) \ll 0$$

- M1 and M3 OFF → M4 OFF → large resistance
- M2 and M5 ON (triode) → small resistance
- $V_{out} \approx 0$

B2. CM Large Signal Analysis

☐ All transistors must be in saturation

☐ Tail CS in sat

$$V_{iCM} \ge V_{THN} + V_{ov1} + V_{ov5}$$

Input pair in sat

$$V_{iCM} \le V_{DD} - |V_{THP}| - |V_{ov3}| + V_{THN}$$

- ☐ Recapping previous key results
- Op-amp vs OTA
- Differential to single-ended conversion
- ☐ Five-transistor OTA Analysis
 - A. Small signal analysis
 - 1. Diff small signal analysis
 - 2. CM small signal analysis
 - B. Large signal analysis
 - 1. Diff large signal analysis
 - 2. CM large signal analysis
- Effect of mismatch
- 5T OTA frequency response

Effect of Mismatch (in Input Pair)

☐ Use superposition (left + right)

$$A_{vCM} = \frac{v'_{out}}{v_{iCM}} + \frac{v''_{out}}{v_{iCM}} \approx \left(\frac{2g_{m1}}{1 + g_{m1}\left(\frac{1}{g_{m2}}||R_{SS}\right)} - \frac{2g_{m2}}{1 + g_{m2}\left(\frac{1}{g_{m1}}||R_{SS}\right)}\right) R_{out}$$

$$= \frac{2\Delta g_m R_{out}}{1 + (g_{m1} + g_{m2})R_{SS}} \approx \frac{\Delta g_m R_{out}}{g_{m1,2}R_{SS}}$$

CMRR with Mismatch

☐ Overall CM small signal response (matched + mismatch)

$$A_{vCM} \approx \frac{-\frac{g_{m1,2}}{g_{m3,4}}}{1 + 2g_{m1,2}R_{SS}} + \frac{2\Delta g_m R_{out}}{1 + 2g_{m1,2}R_{SS}} \approx \frac{-\frac{g_{m1,2}}{g_{m3,4}} + 2\Delta g_m R_{out}}{2g_{m1,2}R_{SS}}$$

☐ Common-mode rejection ratio (CMRR) (@low frequency!)

$$A_{vd} = g_{m1,2} R_{out}$$

$$CMRR = \frac{A_{vd}}{A_{vCM}} \approx \frac{2g_{m1,2}R_{SS}}{-\frac{1}{g_{m3,4}R_{out}} + 2\frac{\Delta g_m}{g_{m1,2}}}$$

- ☐ Recapping previous key results
- Op-amp vs OTA
- Differential to single-ended conversion
- ☐ Five-transistor OTA Analysis
 - A. Small signal analysis
 - 1. Diff small signal analysis
 - 2. CM small signal analysis
 - B. Large signal analysis
 - 1. Diff large signal analysis
 - 2. CM large signal analysis
- Effect of mismatch
- 5T OTA frequency response

Differential Frequency Response: Poles

 \Box Output pole: $C_{out} \approx C_{db4} + C_{db2} + f(C_{gd4}) + C_{gd2} + C_L$

$$\omega_{p1} \approx \frac{1}{R_{out}C_{out}}$$

 \square Mirror pole: $C_{mirr} \approx C_{gs3} + C_{gs4} + C_{db3} + C_{db1} + C_{gd1} + f(C_{gd4})$

$$\omega_{p2} \approx \frac{g_{m3}}{C_{mirr}}$$

 v_p acts as virtual ground at high frequency (why?)

Differential Frequency Response: LHP Zero

$$g_{m1}\left(\frac{1}{g_{m3}}||\frac{1}{s_z C_{mirr}}\right) \cdot g_{m4} \cdot v_{in1} = g_{m2} \cdot v_{in2}$$

$$s_z = -\frac{2g_{m3,4}}{C_{mirr}} \Rightarrow \omega_z = 2\omega_{p2}$$

- Can we get same result by inspection?
 - What happens to $i_{out,sc}$?

 v_p acts as virtual ground at high frequency (why?)

Thank you!

References

- ☐ A. Sedra and K. Smith, "Microelectronic Circuits," 7th ed., Oxford University Press, 2015
- ☐ B. Razavi, "Fundamentals of Microelectronics," 2nd ed., Wiley, 2014
- ☐ B. Razavi, "Design of Analog CMOS Integrated Circuits," McGraw-Hill, 2nd ed., 2017
- □ T. C. Carusone, D. Johns, and K. W. Martin, "Analog Integrated Circuit Design," 2nd ed., Wiley, 2012