Homework 2

Kevin Guillen

Problem 2.6. Show that for any non-empty subset X of a group G, the normalizer of X, $N_G(X)$ and the centralizer of X, $C_G(X)$ is again a subgroup of G. Show also that $C_G(X)$ is contained in $N_G(X)$.

Proof. **Normalizer** We know the normalizer of a subset X is defined as the following,

$$N_G(X) = \left\{ g \in G \mid gXg^{-1} = X \right\}.$$

So consider $x, y \in N_G(x)$. Let z = xy, we want to show that $z \in N_G(X)$. In other words we want to show $zXz^{-1} = X$, based on the above. We can see through the following that this is indeed true,

$$zXz^{-1} = (xy)X(xy)^{-1}$$
 $(xy)^{-1} = y^{-1}x^{-1}$
 $= xyXy^{-1}x^{-1}$ $y \in N_G(x)$
 $= xXx^{-1}$ $x \in N_G(x)$

Meaning $N_G(X)$ is closed under group operation.

Let $y \in N_G(X)$, based on the definition of the normalizer though,

$$yXy^{-1} = X$$
 taking y on the right $yX = Xy$ taking y^{-1} on the left $X = y^{-1}Xy$ $y = (y^{-1})^{-1}$ $X = y^{-1}X(y^{-1})^{-1}$

that y^{-1} is indeed in $N_G(X)$. Thus by the subgroup criterion, $N_G(X)$ is indeed a subgroup. **Centralizer:** We know the definition of the centralizer of a subset X is the following,

$$C_G(X) = \left\{ g \in G \mid gxg^{-1} = x, \forall x \in X \right\}.$$

So consider $a, b \in C_G(X)$. Let z = ab, we want to show that $z \in C_G(X)$. In other words we want to show $zxz^{-1} = x$ for all $x \in X$. We see through the following that this does indeed hold.

$$\begin{split} zxz^{-1} &= (\mathfrak{a}\mathfrak{b})x(\mathfrak{a}\mathfrak{b})^{-1} & (\mathfrak{a}\mathfrak{b})^{-1} = \mathfrak{b}^{-1}\mathfrak{a}^{-1} \\ &= (\mathfrak{a}\mathfrak{b})x(\mathfrak{b}^{-1}\mathfrak{a}^{-1}) & \text{We know associativity holds in G} \\ &= \mathfrak{a}(\mathfrak{b}x^{-1})\mathfrak{a}^{-1} & \mathfrak{b} \in C_G(X) \\ &= \mathfrak{a}x\mathfrak{a}^{-1} & \mathfrak{a} \in C_G(X) \\ &= \mathfrak{x} \end{split}$$

Meaning $C_G(X)$ is closed under group operation.

Let $y \in C_G(X)$. By definition that means for all $x \in X$, $yxy^{-1} = x$, but consider the following,

$$yxy^{-1} = x$$
 taking y^{-1} on the left $xy^{-1} = y^{-1}x$ taking y on the right $x = y^{-1}xy$ $y = (y^{-1})^{-1}$ $x = y^{-1}x(y^{-1})^{-1}$.

This means that for any $y \in C_G(X)$, that y^{-1} is also in $C_G(X)$. Thus $C_G(X)$ is a subgroup.

Now we want to show that the centralizer is contained in the normalizer. Expanding on the definition of the normalizer $gXg^{-1} = X \to gX = Xg$. This means there exists some $s, t \in X$ such that gs = tg. What we see though is that this is simply a weaker property when compared to the centralizer definition. Expanding on the definition of the centralizer, for all $x \in X$ we have $gxg^{-1} = x \to gx = xg$. Meaning any $g \in C_G(X)$ has the property that gs = tg where t = s = x, which means it is also in $N_G(X)$, thus $C_G(X) \subset N_G(X)$

Problem 2.7. Let $f : G \to H$ be a group homomorphism.

- (a) If $U \leq G$ then $f(U) \leq H$.
- (b) If $V \leq H$ then $f^{-1}(V) = \{g \in G \mid f(g) \in V\}$ is a subgroup of G.
- (c) Show that f is injective if and only if $ker(f) = \{1\}$

Proof. (a) Let $x, y \in f(U)$, and let z = xy, we want to show $z \in f(U)$. Since $x, y \in f(U)$, that means there exists $x', y' \in U$ such that f(x') = x and f(y') = y. Giving us,

$$z = xy$$

= $f(x')f(y')$ f is a homomorphism so,
= $f(x'y')$

Because U is a subgroup then $x'y' \in U$, meaning $z = f(x'y') \in f(U)$, thus f(U) is closed under group operation.

Given $x \in f(U)$, we want to show $x^{-1} \in f(U)$. By $x \in f(U)$ that means there exists $x' \in U$ such that x = f(x'). Since U is a subgroup there exists $x'^{-1} \in U$, meaning $f(x'^{-1}) \in f(U)$. Recall though f is a homomorphism that means it respects inverses, thus $f(x'^{-1}) = f(x')^{-1}$, which will be x^{-1} . We verify through the following,

$$xx^{-1} = f(x')f(x')^{-1}$$

= $f(x'x'^{-1})$
= $f(1)$
= 1

new page