

UVIC | UVIC·UCC

### ANALYSIS OF ONE VARIABLE

| Continuous variable  | x continuous variable                                 |  |
|----------------------|-------------------------------------------------------|--|
|                      | <ul> <li>Summary statistics</li> </ul>                |  |
|                      | summary(x) # most important summary statistics        |  |
|                      | min(x) # minimum                                      |  |
|                      | max(x) # maximum                                      |  |
|                      | mean(x) # mean, average                               |  |
|                      | median(x) # median                                    |  |
|                      | sd(x) # standard deviation                            |  |
|                      | IQR(x) # interquartile rang                           |  |
|                      | quantile( , ) # Ex. 95% percentile: quantile(x, 0.95) |  |
|                      | o Dot plot                                            |  |
|                      | plot(x)                                               |  |
|                      | o Histogram                                           |  |
|                      | hist(x)                                               |  |
|                      | ○ Box plot or Box-and-whisker plot                    |  |
|                      | boxplot(x)                                            |  |
|                      | <ul> <li>Density function</li> </ul>                  |  |
|                      | plot(density(x))                                      |  |
|                      | Empirical cumulative distribution                     |  |
|                      | plot(ecdf(x))                                         |  |
|                      | x categorical variable                                |  |
| Categorical variable | Frequency table                                       |  |
|                      | table(x)                                              |  |
|                      | prop.table(table(x)) # Table of relative frequencies  |  |
|                      | 100*prop.table(table(x)) # Table of percentages       |  |
|                      | o Bar plot                                            |  |
|                      | barplot(table(x))                                     |  |
|                      | o Pie chart                                           |  |
|                      | pie(table(x))                                         |  |
|                      | 1                                                     |  |

## RELATION BETWEEN TWO VARIABLES

|               | Relation between two variables                                                                                      |  |  |
|---------------|---------------------------------------------------------------------------------------------------------------------|--|--|
|               | x and y continuous variables                                                                                        |  |  |
|               | Correlation coefficient                                                                                             |  |  |
| Continuous    | cor(x,y) # Pearson correlation coefficient                                                                          |  |  |
| & continuous  | cor(x,y, method="spearman") # Spearman correlation coefficient                                                      |  |  |
|               | cor(M, use="pairwise.complete.obs") # M is a matrix                                                                 |  |  |
|               | <ul> <li>○ Regression line equation<br/> m(y~x)</li> </ul>                                                          |  |  |
|               | <ul> <li>Scatter plot and regression line</li> </ul>                                                                |  |  |
|               | plot(x,y) # independent before dependent (x,y)                                                                      |  |  |
|               | abline( $Im(y^{\sim}x)$ ) # dependent before independent $(y,x)$                                                    |  |  |
|               | dbiine(iiii(y x)) # dependent before independent (y,x)                                                              |  |  |
|               | y continuous, x categorical                                                                                         |  |  |
|               | <ul> <li>Numerical summaries of the continuous variable by each category<br/>of the categorical variable</li> </ul> |  |  |
| Continuous    | tapply( <continuous>, <categorical>, <function> )</function></categorical></continuous>                             |  |  |
| & categorical | # Example:                                                                                                          |  |  |
|               | tapply(y, x, mean) # mean of y for each category of x                                                               |  |  |
|               | tapply(y, x, summary) # summary of y for each category of x                                                         |  |  |
|               | <ul> <li>Multiple box plot</li> </ul>                                                                               |  |  |
|               | boxplot( <continuous> ~<categorical> )</categorical></continuous>                                                   |  |  |
|               | # Example:                                                                                                          |  |  |
|               | boxplot(y~x)                                                                                                        |  |  |
|               | x and y categorical variables                                                                                       |  |  |
|               | <ul> <li>2 by 2 table / Contingency table</li> </ul>                                                                |  |  |
| Categorical & | table(x,y) # absolute frequencies                                                                                   |  |  |
| categorical   | prop.table(table(x,y)) # total proportions                                                                          |  |  |
| Ü             | prop.table(table(x,y),1) # row proportions                                                                          |  |  |
|               | prop.table(table(x,y),2) # column proportions                                                                       |  |  |
|               | 100*prop.table(table(x,y),1) # row percentages                                                                      |  |  |
|               | <ul><li>Bar plot</li></ul>                                                                                          |  |  |
|               | barplot(table(x,y))                                                                                                 |  |  |
|               | barplot(prop.table(table(x,y)))                                                                                     |  |  |
|               |                                                                                                                     |  |  |

### RANDOM VARIABLES WITH R

| f(x) or              | P(X=x)       | $P(X \le x)$ | $P(X \leq$     | $q) = \alpha$    |
|----------------------|--------------|--------------|----------------|------------------|
|                      |              | 1            |                |                  |
| Table 3.2: Built-in- | unctions for | random       | variables used | in this chapter. |

|              | para-         |                                |                                |                                     | random                          |
|--------------|---------------|--------------------------------|--------------------------------|-------------------------------------|---------------------------------|
| Distribution | meters        | density                        | distribution                   | quantiles                           | sampling                        |
| Bin          | n, p          | $\mathtt{dbinom}(x,n,p)$       | pbinom(x, n, p)                | $qbinom(\alpha, n, p)$              | rbinom(10, n, p)                |
| Normal       | $\mu, \sigma$ | $\mathtt{dnorm}(x,\mu,\sigma)$ | $\mathtt{pnorm}(x,\mu,\sigma)$ | $\mathtt{qnorm}\;(lpha,\mu,\sigma)$ | $\mathtt{rnorm}(10,\mu,\sigma)$ |
| Chi-squared  | m             | dchisq(x,m)                    | pchisq(x, m)                   | $qchisq(\alpha, m)$                 | rchisq(10, m)                   |
| Т            | m             | dt(x,m)                        | pt(x,m)                        | $qt(\alpha,m)$                      | rt(10, m)                       |
| F            | m,n           | df(x, m, n)                    | pf(x, m, n)                    | $qf(\alpha, m, n)$                  | rf(10, m, n)                    |

#### • Other distributions:

Geometric: dgeom()

Negative Binomial: dnbinom()

Poisson: dpois()

Hipergeometric: dhyper()

Exponential: dexp()

#### • Examples Binomial distribution

X Binomial with parameters n=8 i p=0.35

P(X = 4): dbinom(4, 8, 0.35)  $P(X \le 4)$ : pbinom(4, 8, 0.35)

95% Percentile: qbinom(0.95, 8, 0.35)

Random sample of 25 values of X: rbinom(25, 8, 0.35)

#### • Examples Normal distribution

X Normal of parameters  $\mu = 10$  i  $\sigma = 3$ 

 $P(X \le 15)$ : pnorm(15, 10, 3)

P(X > 20): 1-pnorm(20, 10, 3)

 $P(12 \le X \le 20)$ : pnorm(20, 10, 3)- pnorm(12, 10, 3)

95% Percentile: qnorm(0.95, 10, 3)

Random sample of 25 values of X: rnorm(25, 10, 3)

## STATISTICAL TESTS WITH R

|                                  | Normality Test: Shapiro-Wilk                                                               |                                       |  |
|----------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------|--|
| y continuous variable            | H0: Data follow a normal distribution                                                      |                                       |  |
| x categorical variable           | H1: Data do not follow a normal distribution                                               |                                       |  |
|                                  | tapply( <continuous>,<categorical>,function(x) shapiro.test(x))</categorical></continuous> |                                       |  |
|                                  | If Shapiro p-value > alpha                                                                 | If Shapiro p-value < alpha            |  |
|                                  | Data follow a normal                                                                       | Data DO NOT follow a normal           |  |
|                                  | distribution                                                                               | distribution                          |  |
| Test for the mean                | T-test t for one sample                                                                    | Wilcoxon test for one sample          |  |
| H0: mean=prespecified value      |                                                                                            |                                       |  |
| H1: mean≠ prespecified value     | t.test(y, mu=value)                                                                        | wilcox.test(y, mu=value)              |  |
| Test for the equality of two     | T-test for independent samples                                                             | Wilcoxon test for independent samples |  |
| means                            | (previously, you should test for the                                                       | (also known as Wilcoxon–Mann–         |  |
| H0: mean1=mean2                  | equality of variances)                                                                     | Whitney test)                         |  |
| H1: mean1≠ mean2                 |                                                                                            |                                       |  |
|                                  | t.test(y~x, var.equal=T) # if                                                              |                                       |  |
|                                  | variances are equal                                                                        | wilcox.test(y~x)                      |  |
|                                  | t.test(y~x,var.equal=F) # if variances                                                     |                                       |  |
|                                  | are different                                                                              |                                       |  |
| Test for the equality of two     | T-test for paired samples                                                                  | Wilcoxon test for paired samples      |  |
| means with paired samples        |                                                                                            |                                       |  |
| H0: mean1=mean2                  | d<-y1-y2                                                                                   | wilcox.test(y1,y2,paired=TRUE)        |  |
| H1: mean1≠ mean2                 | t.test(d,mu=0)                                                                             |                                       |  |
| Test for the equality of more    | one-factor ANOVA                                                                           | Kruskal-Wallis test                   |  |
| than two means                   | (Requires normality and                                                                    |                                       |  |
| H0: mean1 = mean2 = =            | homoscedasticity)                                                                          | kruskal.test(y~x)                     |  |
| meank                            | aov(y~x)                                                                                   |                                       |  |
| H1: at least one of the means    | Normality:                                                                                 |                                       |  |
| is different                     | shapiro.test(residuals(lm(y~x)))                                                           |                                       |  |
|                                  | Post-hoc analysis: TukeyHSD(aov)                                                           |                                       |  |
|                                  | Robust ANOVA (if homoscedasticity                                                          |                                       |  |
|                                  | is not fulfilled): <i>oneway.test(y~x)</i>                                                 |                                       |  |
|                                  | two-factor ANOVA                                                                           |                                       |  |
|                                  | aov(y~x1*x2)                                                                               |                                       |  |
| Test for the equality of two     | F test for the equality of variances                                                       |                                       |  |
| variances                        |                                                                                            |                                       |  |
| H0: variance1= variance2         | var.test(y~x)                                                                              |                                       |  |
| H1: variance1≠ variance2         |                                                                                            |                                       |  |
| Test for the equality of several | Homoscedasticity test                                                                      |                                       |  |
| variances                        | install.packages("Imtest")                                                                 |                                       |  |
| H0: var1 = var2 = = vark         | library(Imtest)                                                                            |                                       |  |
| H1: at least one of the means    | $bptest(Im(y \sim x), studentize = F)$                                                     |                                       |  |
| is different                     |                                                                                            |                                       |  |

| Test for one proportion                             | Binomial test for one proportion                                |  |
|-----------------------------------------------------|-----------------------------------------------------------------|--|
| H0: p= prespecified value p0                        |                                                                 |  |
| H1: p≠ p0                                           | binom.test(k,n,p0)                                              |  |
| Test for equality of                                | Test for the equality of two proportions                        |  |
| proportions                                         |                                                                 |  |
| H0: proportion1= proportion2                        | prop.test(table(x1,x2)) # x1 i x2 are factors with 2 categories |  |
| H1: proportion1≠ proportion2                        |                                                                 |  |
| Multinomial test                                    | Multinomial test for proportions                                |  |
| $H_0: (\pi_{1,\ldots},\pi_m) = (p_{1,\ldots},p_m)$  |                                                                 |  |
| $H_1: (\pi_1, \dots, \pi_m) \neq (p_1, \dots, p_m)$ | $prop.test(x=c(n_1,,n_m),p=c(p_1,,p_m))$                        |  |
| Test for independence of 2                          | Chi-squared test for independence of 2 factors                  |  |
| categorical variables                               |                                                                 |  |
| H0: X and Y are independent                         | chisq.test(table(x1,x2)) # x1 and x2 are categorical variables  |  |
| H1: X and Y are related                             |                                                                 |  |
| Test for independence of 2                          | Fisher test for independence of 2 factors (2x2 tables)          |  |
| categorical variables with 2                        |                                                                 |  |
| categories                                          | fisher.test(table(x1,x2)) # x1 and x2 are categorical variables |  |
| H0: X and Y are independent                         |                                                                 |  |
| H1: X and Y are related                             |                                                                 |  |
| Test for odds ratio                                 | Odds ratio test for 2 factors (2x2 tables)                      |  |
| H0: OR=1                                            |                                                                 |  |
| H1: OR ≠ 1                                          | install.packages("epitools")                                    |  |
|                                                     | library("epitools")                                             |  |
|                                                     | oddsratio(table(x1, x2))                                        |  |
|                                                     | oddsratio(table, rev="c") # reverse columns                     |  |
|                                                     | oddsratio(table, rev="both") #reverse both, columns and rows    |  |
| Test for independence of two                        | Correlation tost                                                |  |
| Test for independence of two continuous variables   | Correlation test                                                |  |
| HO: X and Y are not correlated                      | cor.test(x,y) # Pearson correlation                             |  |
| H1: X and Y are correlated                          | cor.test(x,y, method=c("spearman")) # Spearman correlation      |  |
| 111. A and I are correlated                         | contest(x,y, method=c( spearman )) # spearman correlation       |  |
| Outliers test                                       | Outliers test                                                   |  |
| H0: No outliers                                     | library(outliers)                                               |  |
| H1: data contain outliers                           | grubbs.test(x)                                                  |  |
|                                                     | g. 2020-1400-(r.y                                               |  |
| Correction for multiple testing                     | Benjamini and Hochberg FDR control                              |  |
|                                                     | p.adjust(p, method = "fdr", n = length(p))                      |  |
|                                                     |                                                                 |  |

# Regression models with R

| Linear regression Y continuous X1, X2 explanatory            | model<-lm(y~x1+x2, data = data) summary(model)  Check normality of residuals: shapiro.test(residuals(model)) |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Logistic regression  Y binary  X1, X2 explanatory            | model<-glm(y~x1+x2, data = data, family = "binomial")<br>summary(model)                                      |
| Seleccion of variables in regression (step-wise regression)  | step(model)                                                                                                  |
| Diagnostics in regression:<br>Residuals vs predictions Plots | plot(predict(model), residuals(model))<br>abline(a=0, b=0)                                                   |