Introduction to R Session 2

Department of Sociology | University of Oxford

Casey Breen

2023-10-06

Intro to R - Housekeeping

- Course materials available from:
 - www.github.com/caseybreen/intro_r
- My email: casey.breen@sociology.ac.uk.ox

Recap of session 1

- What's the difference between R and RStudio?
- What's a vector? What's a data. frame?
- What does the \$ operator do? What does data\$column_b
 do?
- What does %in% operator do?
- What does the ! operator do?

Session 2

- Reading in data
- Data manipulation (dplyr)
- Data visualization (ggplot2)
- Best practices: coding style, commenting, and documentation
- Resources for self-study

Reading in data: paths

- **Absolute Path**: Specifies the full URL or address to locate a file or directory. Starts with the root directory.
 - Windows: C:\Users\username\folder\file.csv
 - macOS/Linux: /home/username/folder/file.csv
- Relative Path: Specifies how to find the file or directory based on the current working directory.
 - folder/file.csv

Getting working directory

- The working directory is the folder where your R session or script looks for files to read, or where it saves files you write
- Commands like read.csv("file.csv") or write.csv(data, "file.csv") will read from or write to this directory by default
- You can check the current working directory with getwd()
 and set it with setwd("/path/to/folder") in R

```
1 getwd()
```

[1] "/Users/caseybreen/workspace/teaching/intro_r/slides"

Reading in .csv files

- To read in .csv files use read_csv()
 - This will read in the .csv file into memory as a data frame

```
1 library(tidyverse)
2 df <- read_csv("dataset.csv")</pre>
```

Write out .csv file using write_csv():

```
1 write_csv(data, "dataset_v2.csv")
```

In-class exercise 1

- Load and install the tidyverse packages using the commands install packages () and library ()
- 2. Use the read_csv() function to read in the dataset and assign it to the object censoc
- 3. Use the head command to look at the first 5 rows
- 4. How many columns are in the dataset?
- 5. How many rows are in the dataset?
- 6. List the column names. What are a few research questions that could be addressed using this dataset?

Exercise 1 solutions

1. Load and install the tidyverse packages using the commands install.packages() and library()

```
1 install.packages(tidyverse)
2 library(tidyverse)
```

3. Use the read_csv() function to read in the dataset and assign it to the object censoc

```
1 censoc <- read_csv("censoc_numident_demo_codebook_v2.1.pdf")</pre>
```

3. Use the head () command to look at the first 5 rows

```
1 head(censoc)
```

Exercise 1 solutions (cont.)

4. How many columns are in the dataset?

```
1 ncol(censoc)
[1] 39
```

5. How many rows are in the dataset?

```
1 nrow(censoc)
[1] 85865
```

6. List the column names.

```
1 names(censoc)
 [1] "histid"
                                     "byear"
 [3] "bmonth"
                                     "dyear"
 [5] "dmonth"
                                     "death age"
                                     "race first cyear"
 [7] "race first"
 [9] "race last"
                                     "bpl string"
[11] "zip residence"
                                     "socstate"
[13] "socstate string"
                                     "age first application"
[15] "link abe exact conservative"
                                     "weight"
[17] "weight conservative"
                                     "perwt"
                                     "sex"
[19] "age"
[21] "bpl"
                                     "mbp1"
[23] "fbpl"
                                     "educd"
[25] "empstatd"
                                     "hispan"
[27] "incnonwg"
                                     "incwage"
[29] "marst"
                                     "nativity"
```

[31] "occ"	"occscore"
[33] "ownershp"	"pernum"
[35] "race"	"rent"
[37] "serial"	"statefip"
[39] "urban"	

Break

• 10 minutes

Tidyverse

- Packages: Collection of R packages designed for data science.
- Data manipulation: Simplifies data cleaning and transformation with dplyr.
- Data Visualization: Enables advanced plotting with ggplot2.

Data Manipulation using dplyr

filter: Select rows based on conditions.

```
1 filtered_df <- filter(df, age > 21)
```

select: choose specific columns

```
1 filtered_df <- select(df)</pre>
```

mutate: Add or modify columns

```
1 df <- mutate(df, age_next_year = age + 1)</pre>
```

summarize or summarise: aggregate or summarize data based on some criteria

```
1 filtered_df <- summarize(df, mean(age))</pre>
```

group_by: Group data by variables. Often used with **summarise()**.

```
1 filtered_df <- df %>%
2 group_by(gender) %>%
3 summarize(mean(age))
```

The Pipe Operator %>% (or >) in R

- Takes the output of one function and passes it as the first argument to another function
- Simply put: "And then do…"
- What's the below code doing?

```
1 filtered_df <- df %>%
2 group_by(gender) %>%
3 summarize(mean(age))
```

Live coding demo - data manipulation

- Filter data
- Selecting data
- Calculating summary statistics
- Calculating summary statistics by group
- Creating new variable

In-class exercise 2

- Filter the censoc data frame to include only women (sex == 2). Use the filter command.
- 2. Filter the dataset to only include people born between 1905 and 1920 using the byear variable.
- 3. Select the columns histid, death_age, sex, and ownershp
- 4. Calculate the average age of death for women (hint: refer to question 1)

Exercise 2 solutions

1. Filter the censoc data frame to include only women (sex == 2). Use the filter command.

```
1 censoc %>%
2 filter(sex == 2)
```

2. Filter the dataset to only include people born between 1905 and 1920 using the byear variable. Do this two different ways.

```
1 ## method 1
2 censoc %>%
3  filter(byear >= 1905 & byear <=1920)
4
5 ## method 2
6 censoc %>%
7  filter(byear >= 1904 & byear <=1920)</pre>
```

Exercise 2 solutions (cont.)

3. Select the columns histid, death_age, sex, and ownershp

```
censoc select <- censoc %>%
      select(histid, death age, sex, ownershp)
  4 head(censoc select)
# A tibble: 6 \times 4
  histid
                                        death age
                                                    sex ownershp
  <chr>
                                            <dbl> <dbl>
                                                            <db1>
1 235C4FA2-B407-4E61-A31D-DBF299C1C120
2 ODE161A7-34A7-47EA-B053-EA8549172CCC
3 EFF79CEC-DA83-482A-AB9A-FFCAC3C9A6A5
4 B51D01FA-54A4-4E5E-8BCF-B6D9521A2983
5 D545AEB1-C5C3-4E32-BB22-4BF58CF50311
6 A71A537B-C440-4E85-A276-334B05B723A7
```

4. Calculate the average age of death for women (hint: refer to question 1)

Data visualization using ggplot

- ggplot2 provides a powerful and flexible system for creating a variety of data visualizations
- aes: Defines what data to show
- geoms: Chooses the type of plot
 - geom_point(): Scatter plot
 - geom_line(): Line plot
 - geom_bar(): Bar chart
 - geom_histogram(): Histogram

Data visualization using ggplot

Break

• 10 minutes

Understanding NA Values in R

- NA represents missing or undefined data.
 - Can vary by data type (e.g., NA_character_ and NA_integer_)
- NA values can affect summary statistics and data visualization.
- What happens when you run the code below?

```
1 vec <- c(1, 2, 3, NA)
2 mean(vec)</pre>
```

Recoding values in R

- Sometime you want to recode a variable to take different values (e.g., recoding exact income to binary high/low income variable)
- The case_when() function in R is part of the dplyr
 package and is used for creating new variables based on
 multiple conditions:

```
1 new_var <- case_when(
2   condition1 ~ value1,
3   condition2 ~ value2,
4   TRUE ~ value_otherwise
5 )</pre>
```

In-class exercise 3

- 1. Make a histogram of the variable death_age. When are most people dying?
- 2. Make a histogram of the variable byear. When are most people born?
- 3. Recode the variable sex from numeric (1, 2) to take values "men" and "women"
- 4. Calculate the mean of of death for both men and women using group_by() and summarize(). Do men or women live longer?
- 5. Make a histogram of the variable death_age for both men and women. Use the filter() command.
- 6. Now try adding the following line to the histogram you made in question 1: + facet_wrap(~sex)

In-class exercises 3

1. Make a histogram of the variable death_age. When are most people dying?

```
1 ggplot(data = censoc) +
2 geom_histogram(aes(x = death_age))
```

2. Make a histogram of the variable byear. When are most people born?

```
1 ggplot(data = censoc) +
2 geom_histogram(aes(x = death_age))
```

3. Calculate the mean of of death for both men and women using group_by() and summarize(). Do men or women live longer?

```
1 ggplot(data = censoc) +
2 geom_histogram(aes(x = death_age))
```

In-class exercises 3 (cont.)

4. Make a histogram of the variable death_age for both men and women. Use the filter() command.

```
1 ## filter
2 censoc_men <- censoc %>% filter(sex == 1)
3 censoc_women <- censoc %>% filter(sex == 2)

4
5 ## histogram for men
6 ggplot(data = censoc_men) +
7     geom_histogram(aes(x = death_age))

8
9 ## histogram for women
10 ggplot(data = censoc_women) +
11     geom_histogram(aes(x = death_age))
```

5. Now try adding the following line to the histogram you made in question 1: + facet_wrap(~sex)

```
1 ggplot(data = censoc) +
2 geom_histogram(aes(x = death_age)) +
3 facet_wrap(~sex)
```


Best practices (opinionated)

- Style: use descriptive names and "snake_case"
- Documentation: Start commenting your code early, it's a good habit for the future.
- Learn tidyverse: It offers a more coherent syntax and is widely used in data science.
- Eventually: R-packages, github integration, etc.

When you're stuck

- Google
 - Lots of packages have documentation available online
 - Stack overflow excellent resource
- Use help syntax (e.g., ?dplyr)
- GPT4 (decent, but be careful!)

Resources for learning more

Questions?

In-class exercise 4

Do homeowners in the United States live longer than renters in the United States?

- 1. Google "IPUMS ownershp variable" and look at what each numerical value means.
- 2. Recode ownershp to create a character variable homeowner that takes value "homeowner" or "renter". Filter out cases where we don't know whether someone was a homeowner or not.
- 3. Make a histogram on the age of death for "homeowner" and "renter" groups using ggplot
- 4. Calculate the average age of death for "homeowner" and "renter" groups. Which group lives longer, on average? Does this analysis tell us anything about homeownership and longevity?

Exercise 4 solution

2. Recode ownershp to create a character variable homeowner that takes value "homeowner" or "renter". Filter out cases where we don't know whether someone was a homeowner or not.

```
1 censoc <- censoc %>%
2  filter(ownershp != 0) %>%
3  mutate(homeowner = case_when(
4   ownershp == 1 ~ "homeowner",
5   ownershp == 2 ~ "renter"
6  ))
```

3. Make a histogram on the age of death for "homeowner" and "renter" groups using ggplot

```
1 censoc %>%
2 ggplot(aes(x = death_age)) +
3 geom_histogram() +
4 facet_wrap(~homeowner)
```

Exercise 4 solution (cont.)

4. Calculate the average age of death for "homeowner" and "renter" groups. Which group lives longer, on average? Does this analysis tell us anything about homeownership and longevity?

Thank you

- Course materials available from:
 - www.github.com/caseybreen/intro_r
- Recommendation: try to finish exercises
- Questions: casey.breen@sociology.ox.ac.uk