

CSCI-GA.3205 Applied Cryptography & Network Security

Department of Computer Science New York University

PRESENTED BY DR. MAZDAK ZAMANI mazdak.zamani@NYU.edu

Public key encryption ElGamal encryption Digital signatures

Asymmetric encryption

- Public-key encryption is sometimes called *asymmetric encryption* to denote the fact that the encryptor uses one key, pk, and the decryptor uses a different key, sk.
- The basic idea of public-key encryption is that the receiver, Bob in this case, runs a key generation algorithm G, obtaining a pair of keys:

$$(pk, sk) \stackrel{\text{\tiny R}}{\leftarrow} G()$$

• The key pk is Bob's public key, and sk is Bob's secret key. As their names imply, Bob should keep sk secret, but may publicize pk.

Asymmetric encryption

- To send Bob an encrypted email message, Alice needs two things: Bob's email address, and Bob's public key pk.
- So let us assume now that Alice has Bob's email address and public key pk. To send Bob an encryption of her email message m, she computes the ciphertext: $c \stackrel{\mathbb{R}}{\leftarrow} E(pk, m)$
- She then sends c to Bob, using his email address. At some point later, Bob receives the ciphertext c, and decrypts it, using his secret key:

$$m \leftarrow D(sk, c)$$

Public-key encryption scheme

Definition 11.1. A public-key encryption scheme $\mathcal{E} = (G, E, D)$ is a triple of efficient algorithms: a key generation algorithm G, an encryption algorithm E, a decryption algorithm D.

- G is a probabilistic algorithm that is invoked as $(pk, sk) \stackrel{\mathbb{R}}{\leftarrow} G()$, where pk is called a public key and sk is called a secret key.
- E is a probabilistic algorithm that is invoked as $c \stackrel{\mathbb{R}}{\leftarrow} E(pk, m)$, where pk is a public key (as output by G), m is a message, and c is a ciphertext.
- D is a deterministic algorithm that is invoked as m ← D(sk, c), where sk is a secret key (as output by G), c is a ciphertext, and m is either a message, or a special reject value (distinct from all messages).

Attack Game (semantic security)

Attack Game 11.1 (semantic security). For a given public-key encryption scheme $\mathcal{E} = (G, E, D)$, defined over $(\mathcal{M}, \mathcal{C})$, and for a given adversary \mathcal{A} , we define two experiments.

Experiment b (b = 0, 1):

- The challenger computes $(pk, sk) \stackrel{\mathbb{R}}{\leftarrow} G()$, and sends pk to the adversary.
- The adversary computes $m_0, m_1 \in \mathcal{M}$, of the same length, and sends them to the challenger.
- The challenger computes $c \stackrel{\mathbb{R}}{\leftarrow} E(pk, m_b)$, and sends c to the adversary.
- The adversary outputs a bit $\hat{b} \in \{0, 1\}$.

Experiment b of Attack Game (semantic security)

If W_b is the event that \mathcal{A} outputs 1 in Experiment b, we define \mathcal{A} 's advantage with respect to \mathcal{E} as

$$\operatorname{SSadv}[\mathcal{A}, \mathcal{E}] := \Big| \operatorname{Pr}[W_0] - \operatorname{Pr}[W_1] \Big|. \quad \Box$$

Definition 11.2 (semantic security). A public-key encryption scheme \mathcal{E} is semantically secure if for all efficient adversaries \mathcal{A} , the value SSadv[\mathcal{A} , \mathcal{E}] is negligible.

Implications of semantic security

- We first show that any semantically secure public-key scheme must use a randomized encryption algorithm.
- We also show that in the public-key setting, semantic security implies CPA security.
 - This was not true for symmetric encryption schemes: the one-time pad is semantically secure, but not CPA secure.

The need for randomized encryption

Let $\mathcal{E} = (G, E, D)$ be a semantically secure public-key encryption scheme defined over $(\mathcal{M}, \mathcal{C})$ where $|\mathcal{M}| \geq 2$. We show that the encryption algorithm E must be randomized, otherwise the scheme cannot be semantically secure.

To see why, suppose E is deterministic. Then the following adversary A breaks semantic security of $\mathcal{E} = (G, E, D)$:

The need for randomized encryption

- \mathcal{A} receives a public key pk from its challenger.
- \mathcal{A} chooses two distinct messages m_0 and m_1 in \mathcal{M} and sends them to its challenger. The challenger responds with $c := E(pk, m_b)$ for some $b \in \{0, 1\}$.
- \mathcal{A} computes $c_0 := E(pk, m_0)$ and outputs 0 if $c = c_0$. Otherwise, it outputs 1.

Because E is deterministic, we know that $c = c_0$ whenever b = 0. Therefore, when b = 0 the adversary always outputs 0. Similarly, when b = 1 it always outputs 1. Therefore

$$\operatorname{SSadv}[\mathcal{A},\mathcal{E}]=1$$

Random oracles

- The idea is that we simply model a hash function H *as if* it were a truly random function O. The random oracle is implemented using an associative array Map : $G^2 \rightarrow K$.
- If H maps M to T, then O is chosen uniformly at random from the set Funs[M; T].
- We can translate any attack game into its random oracle version:
- The function O is called a **random oracle** and security in this setting is said to hold in the random oracle model.

Attack Game (PRF in the random oracle model)

- We have a PRF F that uses a hash function H as an oracle,
- We denote by F^O the function that uses the random oracle O in place of H.

Definition 8.5. We say that a PRF F is secure in the random oracle model if for all efficient adversaries A, the value PRF^{ro}adv[A, F] is negligible.

- Let F be a PRF defined over (K; X; Y) that uses a hash function H defined over (M; T) as an oracle.
- For a given adversary A, we define two experiments, Experiment 0 and Experiment 1. For b = 0; 1, we define:

Attack Game (PRF in the random oracle model)

• Experiment b:

- $\mathcal{O} \stackrel{R}{\leftarrow} \operatorname{Funs}[\mathcal{M}, \mathcal{T}].$
- The challenger selects $f \in \text{Funs}[\mathcal{X}, \mathcal{Y}]$ as follows:

if
$$b = 0$$
: $k \stackrel{\mathbb{R}}{\leftarrow} \mathcal{K}$, $f \leftarrow F^{\mathcal{O}}(k, \cdot)$;
if $b = 1$: $f \stackrel{\mathbb{R}}{\leftarrow} \text{Funs}[\mathcal{X}, \mathcal{Y}]$.

- The adversary submits a sequence of queries to the challenger.
 - F-query: respond to a query $x \in \mathcal{X}$ with $y = f(x) \in \mathcal{Y}$.
 - \mathcal{O} -query: respond to a query $m \in \mathcal{M}$ with $t = \mathcal{O}(m) \in \mathcal{T}$.
- The adversary computes and outputs a bit $\hat{b} \in \{0, 1\}$.

For b = 0, 1, let W_b be the event that \mathcal{A} outputs 1 in Experiment b. We define \mathcal{A} 's advantage with respect to F as

$$\operatorname{PRF}^{\operatorname{ro}}\operatorname{\mathsf{adv}}[\mathcal{A},F] := \left|\operatorname{Pr}[W_0] - \operatorname{Pr}[W_1]\right|. \quad \Box$$

Semantic security against chosen plaintext attack

- In the public-key setting, the adversary can encrypt any message he likes, without knowledge of any secret key material.
- The adversary does so by using the given public key and never needs to issue encryption queries to the challenger.
- In contrast, in the symmetric key setting, the adversary cannot encrypt messages on his own.

Attack Game (CPA security)

Attack Game 11.2 (CPA security). For a given public-key encryption scheme $\mathcal{E} = (G, E, D)$, defined over $(\mathcal{M}, \mathcal{C})$, and for a given adversary \mathcal{A} , we define two experiments.

Experiment b (b=0,1):

- The challenger computes $(pk, sk) \stackrel{\mathbb{R}}{\leftarrow} G()$, and sends pk to the adversary.
- The adversary submits a sequence of queries to the challenger.

For i = 1, 2, ..., the *i*th query is a pair of messages, $m_{i0}, m_{i1} \in \mathcal{M}$, of the same length.

The challenger computes $c_i \leftarrow E(pk, m_{ib})$, and sends c_i to the adversary.

• The adversary outputs a bit $\hat{b} \in \{0, 1\}$.

If W_b is the event that \mathcal{A} outputs 1 in Experiment b, then we define \mathcal{A} 's advantage with respect to \mathcal{E} as

$$\operatorname{CPAadv}[\mathcal{A}, \mathcal{E}] := \left| \operatorname{Pr}[W_0] - \operatorname{Pr}[W_1] \right|. \quad \Box$$

Semantic security against chosen plaintext attack

Definition 11.4 (CPA security). A public-key encryption scheme \mathcal{E} is called semantically secure against chosen plaintext attack, or simply CPA secure, if for all efficient adversaries \mathcal{A} , the value CPAadv[\mathcal{A} , \mathcal{E}] is negligible.

Theorem 11.1. If a public-key encryption scheme \mathcal{E} is semantically secure, then it is also CPA secure.

In particular, for every CPA adversary A that plays Attack Game 11.2 with respect to \mathcal{E} , and which makes at most Q queries to its challenger, there exists an SS adversary \mathcal{B} , where \mathcal{B} is an elementary wrapper around A, such that

$$CPAadv[\mathcal{A}, \mathcal{E}] = Q \cdot SSadv[\mathcal{B}, \mathcal{E}].$$

Encryption based on a trapdoor function scheme

Our encryption scheme is called \mathcal{E}_{TDF} , and is built out of several components:

- a trapdoor function scheme $\mathcal{T} = (G, F, I)$, defined over $(\mathcal{X}, \mathcal{Y})$,
- a symmetric cipher $\mathcal{E}_s = (E_s, D_s)$, defined over $(\mathcal{K}, \mathcal{M}, \mathcal{C})$,
- a hash function $H: \mathcal{X} \to \mathcal{K}$.

Encryption based on a trapdoor function scheme

The message space for \mathcal{E}_{TDF} is \mathcal{M} , and the ciphertext space is $\mathcal{Y} \times \mathcal{C}$. We now describe the key generation, encryption, and decryption algorithms for \mathcal{E}_{TDF} .

- The key generation algorithm for \mathcal{E}_{TDF} is the key generation algorithm for \mathcal{T} .
- For a given public key pk, and a given message $m \in \mathcal{M}$, the encryption algorithm runs as follows:

$$E(pk,m) := x \stackrel{\mathbb{R}}{\leftarrow} \mathcal{X}, \quad y \leftarrow F(pk,x), \quad k \leftarrow H(x), \quad c \stackrel{\mathbb{R}}{\leftarrow} E_{s}(k,m)$$
 output (y,c) .

• For a given secret key sk, and a given ciphertext $(y,c) \in \mathcal{Y} \times \mathcal{C}$, the decryption algorithm runs as follows:

$$D(sk, (y, c)) := x \leftarrow I(sk, y), \quad k \leftarrow H(x), \quad m \leftarrow D_s(k, c)$$
 output m .

Encryption based on a trapdoor function with RSA

- This scheme is parameterized by two quantities: the length *l* of the prime factors of the RSA modulus, and the encryption exponent *e*, which is an odd, positive integer.
- Let us assume that X is a fixed set into which we may embed \mathbb{Z}_N , for every RSA modulus n generated by RSAGen(l; e) (for example, we could take X = { 0, 1} 2l).
- The scheme also makes use of a symmetric cipher $\xi = (E_s; D_s)$ defined over (K; M; C), as well as a hash function $H : X \rightarrow K$.

Encryption based on a trapdoor function with RSA

- The basic RSA encryption scheme is $\xi_{RSA} = (G; E; D)$, with message space **M** and ciphertext space $X \times C$, where
 - the key generation algorithm runs as follows:

$$G() := (n, d) \stackrel{\mathbb{R}}{\leftarrow} RSAGen(\ell, e), \quad pk \leftarrow (n, e), \quad sk \leftarrow (n, d)$$

output (pk, sk) ;

• for a given public key pk = (n, e), and message $m \in \mathcal{M}$, the encryption algorithm runs as follows:

$$E(pk, m) := x \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_n, \quad y \leftarrow x^e, \quad k \leftarrow H(x), \quad c \stackrel{\mathbb{R}}{\leftarrow} E_s(k, m)$$

output $(y, c) \in \mathcal{X} \times \mathcal{C}$;

• for a given secret key sk = (n, d), and a given ciphertext $(y, c) \in \mathcal{X} \times \mathcal{C}$, where y represents an element of \mathbb{Z}_n , the decryption algorithm runs as follows:

$$D(sk, (y, c)) := x \leftarrow y^d, \quad k \leftarrow H(x), \quad m \leftarrow D_s(k, c)$$
 output m .

Incorrect use of a Trapdoor Function (TDF)

Never encrypt by applying F directly to plaintext:

E(pk, m):
output
$$c \leftarrow F(pk, m)$$

$$\frac{\mathbf{D}(\mathbf{sk}, \mathbf{c})}{\text{output } \mathbf{F}^{-1}(\mathbf{sk}, \mathbf{c})}$$

Problems:

• Deterministic functions will not be semantically secure if used for publickey encryption from TDFs! Why?

Public-key encryption from TDFs

 (G, F, F^{-1}) : secure TDF $X \rightarrow Y$

(E_s, D_s): symmetric auth. encryption defined over (K,M,C)

 $H: X \to K$ a hash function

$$\begin{array}{c} \underline{\mathbf{E(\ pk,\ m)}}:\\ & x \leftarrow X, & y \leftarrow F(pk,\ x)\\ & k \leftarrow H(x), & c \leftarrow E_s(k,\ m)\\ & \text{output} & (y,\ c) \end{array}$$

$$\begin{array}{c} \underline{\mathbf{D(sk,(y,c))}:} \\ & x \leftarrow F^{\text{-1}}(sk,\,y), \\ & k \leftarrow H(x), \quad m \leftarrow D_s(k,\,c) \\ & \text{output} \quad m \end{array}$$

ElGamal encryption

The encryption scheme is a variant of a scheme first proposed by ElGamal, and we call it \mathcal{E}_{EG} . It is built out of several components:

- a cyclic group \mathbb{G} of prime order q with generator $g \in \mathbb{G}$,
- a symmetric cipher $\mathcal{E}_{s} = (E_{s}, D_{s})$, defined over $(\mathcal{K}, \mathcal{M}, \mathcal{C})$,
- a hash function $H: \mathbb{G}^2 \to \mathcal{K}$.

The message space for \mathcal{E}_{EG} is \mathcal{M} , and the ciphertext space is $\mathbb{G} \times \mathcal{C}$. We now describe the key generation, encryption, and decryption algorithms for \mathcal{E}_{EG} .

ElGamal encryption

• the key generation algorithm runs as follows:

$$G() := \begin{array}{ccc} \alpha \xleftarrow{\mathbb{R}} \mathbb{Z}_q, & u \leftarrow g^{\alpha} \\ pk \leftarrow u, & sk \leftarrow \alpha \\ \text{output } (pk, sk); \end{array}$$

• for a given public key $pk = u \in \mathbb{G}$ and message $m \in \mathcal{M}$, the encryption algorithm runs as follows:

$$E(pk, m) := \beta \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_q, \quad v \leftarrow g^{\beta}, \quad w \leftarrow u^{\beta}, \quad k \leftarrow H(v, w), \quad c \leftarrow E_{s}(k, m)$$
 output (v, c) ;

• for a given secret key $sk = \alpha \in \mathbb{Z}_q$ and a ciphertext $(v, c) \in \mathbb{G} \times \mathcal{C}$, the decryption algorithm runs as follows:

$$D(sk, (v, c)) := w \leftarrow v^{\alpha}, k \leftarrow H(v, w), m \leftarrow D_{s}(k, c)$$

output m .

Thus, $\mathcal{E}_{EG} = (G, E, D)$, and is defined over $(\mathcal{M}, \mathbb{G} \times \mathcal{C})$.

Note that the description of the group \mathbb{G} and generator $g \in \mathbb{G}$ is considered to be a system parameter, rather than part of the public key.

Diffie-Hellman protocol (1977) in ElGamal pub-key encryption (1984)

Fix a finite cyclic group G (e.g. $G = (Z_p)^*$) of order nFix a generator g in G (i.e. $G = \{1, g, g^2, g^3, \dots, g^{n-1}\}$)

Alice

 $\underline{\mathbf{Bob}}$

choose random \mathbf{a} in $\{1,...,n\}$

choose random \mathbf{b} in $\{1,...,n\}$

$$A = g^a$$

$$B = g^b$$

$$B^a = (g^b)^a = k_{AB} = g^{ab} = (g^a)^b = A^b$$

To encrypt: compute g^{ab} = A^b , derive symmetric key k, encrypt message m with k To decrypt: compute g^{ab} = B^a , derive k, and decrypt

The ElGamal system (a modern view)

- G: finite cyclic group of order n
- (E_s, D_s): symmetric auth. encryption defined over (K,M,C)
- H: $G^2 \rightarrow K$ a hash function

$$\begin{split} \underline{\mathbf{E}(\ \mathbf{pk=(g,u),\ m)}:} \\ b \leftarrow Z_n \,, \ v \leftarrow g^b \,, \ w \leftarrow u^b \\ k \leftarrow H(v,w) \,, \ c \leftarrow E_s(k,m) \\ \text{output} \ (v,c) \end{split}$$

```
\begin{array}{c} \underline{D(\ sk=a,\,(v,c)\ )}:\\ w\leftarrow v^a\\ k\leftarrow H(v,\,w)\ ,\quad m\leftarrow D_s(k,\,c)\\ output\quad m \end{array}
```


Secrecy vs Integrity

	Private-Key Setting	Public-Key Setting
Secrecy	Private-key encryption	Public-key encryption
Integrity	Message authentication codes	Digital signature schemes

Digital signatures

- Functionally, a digital signature is similar to a MAC.
- In a MAC, both the signing and verification algorithms use the same secret key.
- In a signature scheme, the signing algorithm uses one key, sk, while the verification algorithm uses another, pk.

Digital signatures

- Functionally, a digital signature is similar to a MAC.
- In a MAC, both the signing and verification algorithms use the same secret key.
- In a signature scheme, the signing algorithm uses one key, sk, while the verification algorithm uses another, pk.

Definition 13.1. A signature scheme S = (G, S, V) is a triple of efficient algorithms, G, S and V, where G is called a key generation algorithm, S is called a signing algorithm, and V is called a verification algorithm. Algorithm S is used to generate signatures and algorithm V is used to verify signatures.

Digital signatures

- G is a probabilistic algorithm that takes no input. It outputs a pair (pk, sk), where sk is called a secret signing key and pk is called a public verification key.
- S is a probabilistic algorithm that is invoked as $\sigma \stackrel{\mathbb{R}}{\leftarrow} E(sk, m)$, where sk is a secret key (as output by G) and m is a message. The algorithm outputs a signature σ .
- V is a deterministic algorithm invoked as $V(pk, m, \sigma)$. It outputs either accept or reject.
- We require that a signature generated by S is always accepted by V. That is, for all (pk, sk) output by G and all messages m, we have

$$\Pr[V(pk, m, S(sk, m)) = \mathsf{accept}] = 1.$$

As usual, we say that messages lie in a finite message space \mathcal{M} , and signatures lie in some finite signature space Σ . We say that $\mathcal{S} = (G, S, V)$ is defined over (\mathcal{M}, Σ) .

Secure signatures

The definition of a secure signature scheme is similar to the definition of secure MAC. We give the adversary the power to mount a **chosen message attack**, namely the attacker can request the signature on any message of his choice. Even with such power, the adversary should not be able to create an **existential forgery**, namely the attacker cannot output a valid message-signature pair (m, σ) for some new message m. Here "new" means a message that the adversary did not previously request a signature for.

More precisely, we define secure signatures using an attack game between a challenger and an adversary A. The game is described below and in Fig. 13.1.

Attack Game (Signature security)

Attack Game 13.1 (Signature security). For a given signature scheme S = (G, S, V), defined over (\mathcal{M}, Σ) , and a given adversary \mathcal{A} , the attack game runs as follows:

- The challenger runs $(pk, sk) \stackrel{\mathbb{R}}{\leftarrow} G()$ and sends pk to \mathcal{A} .
- \mathcal{A} queries the challenger several times. For i = 1, 2, ..., the *i*th signing query is a message $m_i \in \mathcal{M}$. Given m_i , the challenger computes $\sigma_i \stackrel{\mathbb{R}}{\leftarrow} S(sk, m_i)$, and then gives σ_i to \mathcal{A} .
- Eventually \mathcal{A} outputs a candidate forgery pair $(m, \sigma) \in \mathcal{M} \times \Sigma$.

Attack Game (Signature security)

We say that the adversary wins the game if the following two conditions hold:

- $V(pk, m, \sigma) = \text{accept}$, and
- m is new, namely $m \notin \{m_1, m_2, \ldots\}$.

We define \mathcal{A} 's advantage with respect to \mathcal{S} , denoted SIGadv[\mathcal{A} , \mathcal{S}], as the probability that \mathcal{A} wins the game. Finally, we say that \mathcal{A} is a Q-query adversary if \mathcal{A} issues at most Q signing queries.

Definition 13.2. We say that a signature scheme S is secure if for all efficient adversaries A, the quantity SIGadv[A, S] is negligible.

In case the adversary wins Attack Game 13.1, the pair (m, σ) it outputs is called an existential forgery. Systems that satisfy Definition 13.2 are said to be existentially unforgeable under a chosen message attack.

Signature attack game

Figure 13.1: Signature attack game (Attack Game 13.1)

Software distribution:

- Suppose a software company releases a software update for its product.
- Customers download the software update file U Before installing U on their machine.
- Customers want to verify that U really is from the company.
- A MAC system is of no use in this setting because the company does not maintain a shared secret key with each of its customers.

The signing process works as follows:

- The company generates a secret signing key sk along with some corresponding public key denoted pk and keeps the secret key sk to itself.
- To sign a software update file U, the company runs a signing algorithm S that takes (sk; U) as input and outputs a short signature σ .
- The company then ships the pair $(U; \sigma)$ to all its customers.
- A customer given the update $(U; \sigma)$ and the public key pk, checks validity of this message signature pair using a signature verification algorithm V that takes $(pk; U; \sigma)$ as input.

Authenticated email:

- Suppose Bob receives an email claiming to be from his friend Alice. Bob wants to verify that the email really is from Alice. A MAC system would do the job but requires that Alice and Bob have a shared secret key. What if they never met before and do not share a secret key?
- Digital signatures provide a simple solution.
- First, Alice generates a public/secret key pair (pk; sk). When sending an email m to Bob, Alice generates a signature σ on m derived using her secret key. She then sends (m; σ) to Bob.
- Bob receives $(m; \sigma)$ and verifies that m is from Alice in two steps. First, Bob retrieves Alice's public key pk. Second, Bob runs the signature verification algorithm on the triple $(pk; m; \sigma)$.

Certificates:

• We could assume that public keys are obtained from a read-only public directory. In practice, however, there is no public directory. Instead, Alice's public key pk is certified by some third party called a *certificate authority* or CA for short.

To generate a certified public key:

- Alice first generates a public/private key pair (pk; sk) and presents her public key pk to the CA. The CA then verifies that Alice is who she claims to be.
- The CA signs the message m using its own secret key sk_{CA} and sends the pair $Cert := (m; \sigma_{CA})$ back to Alice. This pair Cert is called a **certificate** or pk.
- Bob obtains Alice's certificate from Alice and verifies the CA's signature in the certificate. If the signature is valid, Bob has some confidence that pk is Alice's public key.

Non-repudiation:

- An interesting property of the authenticated email system above is that Bob now has evidence that the message m is from Alice.
- He could show the pair $(m; \sigma)$ to a judge who could also verify Alice's signature.
- This property provided by digital signatures is called **non-repudiation**.

