WHAT IS CLAIMED IS:

1	1.	A method for temporal drift correction in a real-time electronic communication			
2	comp	comprising:			
3		measuring a size of a receiving data buffer;			
4		comparing the measured size to a predetermined nominal data buffer size;			
5		determining an amount of temporal drift based on the comparison of the measured			
6	data b	data buffer size and the nominal data buffer size;			
7		determining a number of samples to be inserted in or removed from a playback data			
8	block	block to correct the temporal drift; and			
9		modifying the number of samples in the playback data block to correct the temporal			
10	drift.				
1	2.	The method of claim 1 wherein the number of samples is modified without			
2	introd	ducing audible artifacts.			
1	3.	The method of claim 1 wherein measuring the size of the receiving data buffer			
2		rises measuring an instantaneous size of the receiving data buffer.			
1	4.	The method of claim 3 wherein measuring the size of the receiving data buffer			
2	comp				
3	- F	measuring an instantaneous communication delay associated with the receiving data			
4	buffe	r two or more times; and			
5		averaging the measurements.			
1	5.	The method of claim 1 wherein the real-time electronic communication includes an			
2		communication.			
4	audio	Communication.			

- 1 6. The method of claim 5 wherein modifying the number of samples comprises
- 2 performing heuristic resampling of the playback data block.

1

2

1

2

3

4

5

6

7

8

9

10

11

8.

1	7.	The method of claim 6 wherein performing heuristic resampling comprises:
2		analyzing multiple consecutive samples of audio data in the playback data block;
3		identifying consecutive samples with minimal variation in a parameter of their data;
4	and	
5		adjusting the number of samples in the identified consecutive samples.

a sample from the identified consecutive samples. 1 9.

The method of claim 7 wherein adjusting the number of samples comprises removing

- The method of claim 7 wherein adjusting the number of samples comprises adding a 2 sample to the identified consecutive samples.
 - A computer program, residing on a computer-readable medium, for correcting 10. temporal drift in a real-time electronic communication, comprising instructions for causing a computer to:

measure a size of a receiving data buffer;

compare the measured size to predetermined nominal data buffer size;

determine an amount of temporal drift based on the comparison of the measured data buffer size and the nominal data buffer size;

determine a number of samples to be inserted in or removed from a playback data block to correct the temporal drift; and

modify the number of samples in the audio playback data block to correct the temporal drift.

- 1 11. The computer program of claim 10 wherein the number of samples is modified 2 without introducing audible artifacts.
- 1 12. The computer program of claim 10 wherein instructions for causing a computer to 2 measure the size of the receiving data buffer comprise instructions for causing a computer to 3 measure an instantaneous size of the receiving data buffer.

10

1	13.	The computer program of claim 12 wherein instructions for causing a computer to
2	measi	are the communication delay comprise instructions for causing a computer to:
3		measure the instantaneous size of the receiving data buffer two or more times; and
4		average the measurements.
1	14.	The computer program of claim 10 wherein the real-time electronic communication
2	includ	des an audio communication.
1	15.	The computer program of claim 14 wherein instructions for causing a computer to
2	modif	by the number of samples comprises instructions for causing a computer to perform
3	heuris	stic resampling of the playback data block.
1	16.	The computer program of claim 15 wherein instructions for causing a computer to
2	perfo	rm heuristic resampling comprise instructions for causing a computer to:
3	,	analyze multiple consecutive samples of audio data in the playback data block;
4		identify consecutive samples with minimal variation in a parameter of their data;
5		and adjust the number of samples in the identified consecutive samples.
1	17.	A computer system running programmed processes comprising a process
2	for co	rrecting temporal drift in a real-time electronic communication, the process causing the
3	comp	uter system to:
4		measure a size of a receiving data buffer;
5		compare the measured size to predetermined nominal data buffer size;
6		determine an amount of temporal drift based on the comparison of the measured data-
7	buffe	r size and the nominal data buffer size;
8		determine a number of samples to be inserted in or removed from a playback data
9	block	to correct the temporal drift; and
0		modify the number of samples in the playback data block to correct the temporal drift.

- 1 18. The computer system of claim 17 wherein the number of samples is modified without
- 2 introducing audible artifacts.
- 1 19. The computer system of claim 17 wherein measuring the size of the receiving data
- 2 buffer comprises measuring an instantaneous size of the receiving data buffer.
- 1 20. The computer system of claim 19 wherein measuring the size of the receiving data
- 2 buffer comprises:
- 3 measuring the instantaneous communication delay associated with the receiving data
- 4 buffer two or more times; and
- 5 averaging the measurements.
- 1 21. The computer system of claim 17 wherein the real-time electronic communication includes an audio communication.
- 1 22. The computer system of claim 21 wherein modifying the number of samples comprises performing heuristic resampling of the audio playback data block.
- 1 23. The computer system of claim 22 wherein performing heuristic resampling comprises:
- analyzing multiple consecutive samples of audio data in the playback data block;
- 4 identifying consecutive samples with minimal variation in a parameter of their data;
- 5 and
- adjusting the number of samples in the identified consecutive samples.