

Biomolecules

Enzymes:

- (i) Biocatalysts.
- (ii) They are specific for a particular reaction and for a particular substrate.

For example, maltase catalyses hydrolysis of maltose

$$C_{12}H_{22}O_{11} \xrightarrow{\text{Maltase}} 2C_6H_{12}O_6$$
Maltose Glucose

- (iii) Oxidoreductase: Enzymes which simultaneously catalyse the oxidation of one substrate and the reduction of another substrate.
- (iv) Enzymes reduce the magnitude of activation energy of a reaction

Vitamins: Organic compounds required in small amounts in the diet, whose deficiency causes specific diseases.

Classification of vitamins

Fat-soluble vitamins: Vitamins A, D, E and K

Water-soluble vitamins: Vitamin C and B group vitamins

S.No.	Vitamin	Sources	Deficiency
1.	IA	Fish, liver, oil, carrots, butter and milk	Xerophthalmia (hardening of cornea of
			eye), night
			blindness.
2.	B1(Thiamine)	Yeast, milk, green vegetables	Beri beri (loss of appetite, retarded and
			cereals growth)
3.	B2 (Riboflavin)	Milk, egg white, liver, kidney	Cheilosis (fissuring at corners of mouth
			and lips), digestive disorders and
			burning sensation of the skin
4.	Vitamin B6	Yeast, milk, egg yolk, cereals and grams	Convulsions
	(Pyridoxine)		
5.	B12	Meat, fish, egg and curd	Pernicious anaemia (RBC-deficiency
			in haemoglobin)
6.	C (Ascrobic	Citrus fruits, amla and green leafy vegetables	Scurvy (bleeding gums)
	acid)		
7.	D	Exposure to sunlight, fish and egg yolk	Rickets (bone deformities in children)
			and osteomalacia (soft bones and joint
			pain in adults)
8.	E	Vegetable oils like wheat germ	Increased fragility of RBCs and
		oil, sunflower oil, etc.	muscular weaknes

Nucleic acids:

Polymers of nucleotides

Mainly two types Deoxyribonucleic acid (DNA) Ribonucleic acid (RNA)

DNA: Sugar moiety β –D–2–Deoxyribose

Bases: adenine (A), guanine (G), cytosine (C) and thymine (T)

RNA: Sugar moiety β –D–ribose

Bases adenine (A), guanine (G), cytosine (C) and uracil (U)

HOH₂
$$\overset{\circ}{C}$$
 OH
H H H H
OH OH
 β – D – ribose

Structure of a nucleoside

Structure of a nucleotide

Formation of dinucleotide

Primary structure – Sequence of nucleotides in the chain

Secondary structure – Double-strand helix structure for DNA. The two strands are complimentary. This is because H–bonds are formed between specific pairs of bases.

A - T

C - G

RNA is single stranded

Classification of RNA on the basis of their functions:

- (i) Messenger RNA (m-RNA)
- (ii) Ribosomal RNA (r-RNA)
- (iii) Transfer RNA (t-RNA)

Biological functions of nucleic acids

DNA

- (i) Maintains the identity of different species
- (ii) Stores the message for the synthesis of a particular protein

RNA

(i) Carries out protein synthesis in the cell