Московский авиационный институт (национальный исследовательский университет)

Факультет информационных технологий и прикладной математики

Кафедра вычислительной математики и программирования

Лабораторная работа №1 по курсу «Искусственный интеллект»

Студент: В. И. Лобов Преподаватель: С. Х. Ахмед Группа: М8О-306Б

> Дата: Оценка:

Подпись:

Лабораторная работа №1

Задача: Ваша задача познакомиться с платформой Azure Machine Learning, реализовав полный цикл разработки решения задачи машинного обучения, использовав три различных алгоритма, реализованные на этой платформе.

Требования:

- 1. Уникальность решения
- 2. Обоснованность выбора той или иной операции
- 3. В отчете должны быть указаны алгоритмы, которые применялись, результаты применения этих алгоритмов, а также скрины некоторых этапов обработки данных

Выбранные алгоритмы:

- 1. Poisson Regression
- 2. Linear Regression
- 3. Neural Network Regression

1 Описание

Имея на руках датасет с котировками акций американских компаний, попробуем смоделировать цену акций Apple на момент открытия биржи. Рассмотрим 3 различных модели регрессии и проанализируем, какие из них лучше всего справляются с задачей. Разделим данные котировок в отношении 7:3, при этом обучим модель на 70% данных.

Poisson Regression.

Пуассоновская регрессия - обобщённая форма модели линейной регрессии. Предполагается, что оцениваемая величина Y распределена по Пуассоновскому закону $(Y|P(\lambda))$ и что логарифм от математического ожидания Y может быть представлен в виде линейной комбинации некоторых параметров θ , поэтому она также называется линеарифметической: $log(E(Y|x)) = log(exposure) + \theta x$.

Распределение ошибки похоже на Пуассоновское, и сама величина ошибки достаточно велика. Взглянув на распределение признака Ореп всего датасета, видим:

Apple Inc

Распределение не похоже на Пуассоновское, следовательно, в данном случае Пуассоновская не позволяет добиться высокой точности. Построив зависимость предсказываемой величины от предсказанной, можно в этом убедиться:

Neural Network Regression.

Регрессия на основе нейронных сетей - адаптирование нейронных сетей, решающих сложные задачи глубокого обучения или распознавания изображений, к задачам регрессии. Любой класс статистической модели может быть представлен в виде нейронной сети, если она использует адаптивные веса и может апроксимировать нелинейные

функции на входе. Эта модель может помочь тогда, когда традиционные алгоритмы регрессии не справляются с задачей.

В отличие от Пуассоновской регрессии, ошибка значительно меньше, что подтверждается на графике зависимости признаков:

Тем не менее, среднее отклонение составляет 0.27\$, а это около 17,26 рублей по текущему курсу. Погрешность достаточно высока, но хотя бы не Пуассон.

Linear Regression.

Линейная регрессия - используемая в статистике регрессионная модель зависимости одной (объясняемой, зависимой) переменной y от другой или нескольких других переменных (факторов, регрессоров, независимых переменных) x с линейной функцией зависимости. Модель линейной регрессии является часто используемой и наиболее

изученной в эконометрике (наука, изучающая количественные и качественные экономические взаимосвязи с помощью математических и статистических методов и моделей). С эконометрической точки зрения более важное значение имеет линейность по параметрам, чем линейность по факторам модели.

В случае акций Apple можно сделать вывод, что данная модель подходит лучше всего, так как необходимые нам признаки линейны отонсительно друг друга. Построим данную модель:

В сравнении с нейронной сетью, ошибка стала более чем в 2 раза меньше: 0.1\$. Благодаря этому график зависимости предсказываемой величины от предсказанной будет похож на линейную функцию с углом наклона $\frac{\pi}{4}$:

Date	Open	High	Low	Close	Volume	OpenInt	Scored Labels
	<u></u>	<u></u>			l.		
1994-03-11T00:00:00	1.1845	1.2089	1.1768	1.1921	45134439	0	1.189675
2005-06-16T00:00:00	4.7626	4.8768	4.7151	4.8637	154511983	0	4.749716
2012-03-21T00:00:00	77.187	78.073	77.017	77.159	179612258	0	77.789226
1985-11-22T00:00:00	0.30351	0.30733	0.30095	0.30351	35907642	0	0.309175
2007-04-11T00:00:00	12.026	12.032	11.823	11.857	153101090	0	11.961613
1990-11-02T00:00:00	0.9758	1.0374	0.9758	1.0167	41445591	0	1.005443
2005-04-21T00:00:00	4.6591	4.7652	4.5974	4.7615	212976462	0	4.629449
1987-02-18T00:00:00	1.0629	1.0757	1.0118	1.0144	131186589	0	1.074128
2003-02-10T00:00:00	0.913	0.9334	0.9005	0.9184	46821115	0	0.901432
1995-03-16T00:00:00	1.1283	1.1526	1.1206	1.1283	88332295	0	1.137694
1989-02-22T00:00:00	1.1921	1.2013	1.1679	1.1768	66464748	0	1.192978
2000-01-13T00:00:00	3.0246	3.1618	2.9608	3.0977	287998280	0	3.052719
1985-08-13T00:00:00	0.24333	0.24715	0.24333	0.24333	11819300	0	0.25076
2010-12-16T00:00:00	41.12	41.312	40.994	41.139	89597178	0	41.113795
1992-12-17T00:00:00	1.7684	1.8414	1.7684	1.821	65221594	0	1.797958
1995-12-05T00:00:00	1.2321	1.2768	1.2241	1.2653	101400980	0	1.239016
1996-03-13T00:00:00	0.8286	0.8362	0.821	0.8246	27799075	0	0.822722
1993-12-20T00:00:00	0.936	0.9526	0.9039	0.9117	52718267	0	0.938334

Сравнив работу 3-х различных моделей регрессии, можно сделать вывод, что наиболее подходящей для решения задач является именно линейная модель. К сожалению, это утверждение верно не для всех котировок акций. В большинстве случаев зависимость признаков друг от друга линейная, но это не есть правило. Таким образом, задача предсказания котировок акций достаточно сложна и характеризуется не только данными о предыдущих ценах, но и другими зависимостями.