Linear Algebra Standards

Module	E: How can we solve systems of linear equations?
□ □ E 1.	Systems as matrices. I can translate back and forth between a system of linear equations and the corresponding augmented matrix.
□ □ E2.	Row reduction. I can put a matrix in reduced row echelon form.
□ □ E3.	Systems of linear equations. I can compute the solution set for a system of linear equations.
Module	V: What is a vector space?
□ □ V1 .	Vector spaces. I can explain why a given set with defined addition and scalar multiplication does satisfy a given vector space property, but nonetheless isn't a vector space.
\square \square V2.	Linear combinations. I can determine if a Euclidean vector can be written as a linear combination of a given set of Euclidean vectors.
\square \square $\mathbf{V3}$.	Spanning sets. I can determine if a set of Euclidean vectors spans \mathbb{R}^n .
□ □ V4.	Subspaces. I can determine if a subset of \mathbb{R}^n is a subspace or not.
$\square \square V5.$	Linear independence. I can determine if a set of Euclidean vectors is linearly dependent or independent.
$\square \square V6.$	Basis verification. I can determine if a set of Euclidean vectors is a basis of \mathbb{R}^n .
□ □ V7.	Basis computation. I can compute a basis for the subspace spanned by a given set of Euclidean vectors.
\square \square $\mathbf{V8}$.	Dimension. I can compute the dimension of a subspace of \mathbb{R}^n .
□ □ V 9.	Abstract vector spaces. I can compute a basis for the subspace spanned by a given set of polynomials or matrices.
\square \square V10.	Basis of solution space. I can find a basis for the solution set of a homogeneous system of equations.
Module	A: How can we understand linear maps algebraically?
	A: How can we understand linear maps algebraically?Linear map verification. I can determine if a map between vector spaces of polynomials is linear or not.
□ □ A1.	Linear map verification. I can determine if a map between vector spaces of polynomials is linear or
□ □ A1.	Linear map verification. I can determine if a map between vector spaces of polynomials is linear or not. Linear maps and matrices. I can translate back and forth between a linear transformation of Euclidean
□ □ A1. □ □ A2. □ □ A3.	Linear map verification. I can determine if a map between vector spaces of polynomials is linear or not. Linear maps and matrices. I can translate back and forth between a linear transformation of Euclidean spaces and its standard matrix, and perform related computations.
□ □ A1. □ □ A2. □ □ A3. □ □ A4.	 Linear map verification. I can determine if a map between vector spaces of polynomials is linear or not. Linear maps and matrices. I can translate back and forth between a linear transformation of Euclidean spaces and its standard matrix, and perform related computations. Kernel and Image. I can compute a basis for the kernel and a basis for the image of a linear map.
□ □ A1.□ □ A2.□ □ A3.□ □ A4.Module	Linear map verification. I can determine if a map between vector spaces of polynomials is linear or not. Linear maps and matrices. I can translate back and forth between a linear transformation of Euclidean spaces and its standard matrix, and perform related computations. Kernel and Image. I can compute a basis for the kernel and a basis for the image of a linear map. Injectivity and surjectivity. I can determine if a given linear map is injective and/or surjective.
 □ □ A1. □ □ A2. □ □ A3. □ □ A4. Module □ □ M1 	Linear map verification. I can determine if a map between vector spaces of polynomials is linear or not. Linear maps and matrices. I can translate back and forth between a linear transformation of Euclidean spaces and its standard matrix, and perform related computations. Kernel and Image. I can compute a basis for the kernel and a basis for the image of a linear map. Injectivity and surjectivity. I can determine if a given linear map is injective and/or surjective. M: What algebraic structure do matrices have?
 □ □ A1. □ □ A2. □ □ A3. □ □ A4. Module □ □ M1 □ □ M2 	Linear map verification. I can determine if a map between vector spaces of polynomials is linear or not. Linear maps and matrices. I can translate back and forth between a linear transformation of Euclidean spaces and its standard matrix, and perform related computations. Kernel and Image. I can compute a basis for the kernel and a basis for the image of a linear map. Injectivity and surjectivity. I can determine if a given linear map is injective and/or surjective. M: What algebraic structure do matrices have? Matrix Multiplication. I can multiply matrices.
 □ □ A1. □ □ A2. □ □ A3. □ □ A4. Module □ □ M1 □ □ M2 □ □ M3 	Linear map verification. I can determine if a map between vector spaces of polynomials is linear or not. Linear maps and matrices. I can translate back and forth between a linear transformation of Euclidean spaces and its standard matrix, and perform related computations. Kernel and Image. I can compute a basis for the kernel and a basis for the image of a linear map. Injectivity and surjectivity. I can determine if a given linear map is injective and/or surjective. M: What algebraic structure do matrices have? Matrix Multiplication. I can multiply matrices. Invertible Matrices. I can determine if a square matrix is invertible or not.
 □ A1. □ A2. □ A3. □ A4. Module □ M1 □ M2 □ M3 □ M4 	Linear map verification. I can determine if a map between vector spaces of polynomials is linear or not. Linear maps and matrices. I can translate back and forth between a linear transformation of Euclidean spaces and its standard matrix, and perform related computations. Kernel and Image. I can compute a basis for the kernel and a basis for the image of a linear map. Injectivity and surjectivity. I can determine if a given linear map is injective and/or surjective. M: What algebraic structure do matrices have? Matrix Multiplication. I can multiply matrices. Invertible Matrices. I can determine if a square matrix is invertible or not. Matrix inverses. I can compute the inverse matrix of an invertible matrix. Row operations as multiplication. I can describe the row reduction of a matrix as matrix multipli-
 □ □ A1. □ □ A2. □ □ A3. □ □ A4. Module □ □ M1 □ □ M2 □ □ M3 □ □ M4 Module 	Linear map verification. I can determine if a map between vector spaces of polynomials is linear or not. Linear maps and matrices. I can translate back and forth between a linear transformation of Euclidean spaces and its standard matrix, and perform related computations. Kernel and Image. I can compute a basis for the kernel and a basis for the image of a linear map. Injectivity and surjectivity. I can determine if a given linear map is injective and/or surjective. M: What algebraic structure do matrices have? Matrix Multiplication. I can multiply matrices. Invertible Matrices. I can determine if a square matrix is invertible or not. Matrix inverses. I can compute the inverse matrix of an invertible matrix. Row operations as multiplication. I can describe the row reduction of a matrix as matrix multiplication.
 □ □ A1. □ □ A2. □ □ A3. □ □ A4. Module □ □ M1 □ □ M2 □ □ M3 □ □ M4 Module □ □ G1. 	Linear map verification. I can determine if a map between vector spaces of polynomials is linear or not. Linear maps and matrices. I can translate back and forth between a linear transformation of Euclidean spaces and its standard matrix, and perform related computations. Kernel and Image. I can compute a basis for the kernel and a basis for the image of a linear map. Injectivity and surjectivity. I can determine if a given linear map is injective and/or surjective. M: What algebraic structure do matrices have? Matrix Multiplication. I can multiply matrices. Invertible Matrices. I can determine if a square matrix is invertible or not. Matrix inverses. I can compute the inverse matrix of an invertible matrix. Row operations as multiplication. I can describe the row reduction of a matrix as matrix multiplication. G: How can we understand linear maps geometrically?
 □ □ A1. □ □ A2. □ □ A3. □ □ A4. Module □ □ M2 □ □ M3 □ □ M4 Module □ □ G1. □ □ G2. 	Linear map verification. I can determine if a map between vector spaces of polynomials is linear or not. Linear maps and matrices. I can translate back and forth between a linear transformation of Euclidean spaces and its standard matrix, and perform related computations. Kernel and Image. I can compute a basis for the kernel and a basis for the image of a linear map. Injectivity and surjectivity. I can determine if a given linear map is injective and/or surjective. M: What algebraic structure do matrices have? Matrix Multiplication. I can multiply matrices. Invertible Matrices. I can determine if a square matrix is invertible or not. Matrix inverses. I can compute the inverse matrix of an invertible matrix. Row operations as multiplication. I can describe the row reduction of a matrix as matrix multiplication. G: How can we understand linear maps geometrically? Row operations. I can describe how a row operation affects the determinant of a matrix.