INICIAÇÃO CIENTÍFICA

RELATÓRIO FINAL

Desigualdades de Clarkson

Universidade de São Paulo Instituto de Ciências Matemáticas e Computação

Aluno: Lucas Giraldi Almeida Coimbra

Orientador: Éder Rítis Aragão Costa

Agosto de 2024 São Carlos

Conteúdo

1	Teoria da Medida e Espaços L^p	4
	1.1 O problema da medida em \mathbb{R}^n	6

1 Teoria da Medida e Espaços L^p

O primeiro passo para o estudo das desigualdades de Clarkson é a construção de alguns conceitos de teoria da medida.

1.1 O problema da medida em \mathbb{R}^n

Considere a família $\mathcal{P}(\mathbb{R}^n)$ de todos os subconjuntos de \mathbb{R}^n . Se $\{a_i\}_{i=1}^n$ e $\{b_i\}_{i=1}^n$ são conjuntos em \mathbb{R} tais que $a_i < b_i$ para todo $i = 1, \ldots, n$, então podemos definir

$$\ell\left(\prod_{i=1}^{n} [a_i, b_i]\right) = \prod_{i=1}^{n} |b_i - a_i|$$

como o volume do n-retângulo dado pelo cartesiano acima. O que procuramos a seguir é uma função $\ell \colon \mathcal{P}(\mathbb{R}^n) \to [0, \infty]$ que estenda de maneira "minimamente razoável" o volume de n-retângulos em \mathbb{R}^n . Com "minimamente razoável", queremos dizer que a nossa esperança é de que:

• se $x \in \mathbb{R}^n$ e $A \subset \mathbb{R}^n$, então

$$\ell(A+x) = \ell(A);$$

• se $\{A_i\}_{i=1}^n\subset\mathcal{P}(\mathbb{R}^n)$ é tal que $A_i\cap A_j=\emptyset$ para $i\neq j$, então

$$\ell\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \ell(A_i).$$

O texto produzido aqui pode ser de cunho acadêmico, mas o que seria de nós, autores, se não ensinássemos alguma coisa sobre a vida fora da matemática? Nossa primeira lição, portanto, é que esperança não serve de nada. Provaremos isso mostrando que tal extensão ℓ não pode existir. Para cumprir tal tarefa, definimos uma relação: se $x, y \in \mathbb{R}^n$ escrevemos

$$x \sim y$$
 se, e somente se, $x - y \in \mathbb{Q}^n$.

Proposição 1. A relação definida acima é de equivalência.

Demonstração. De fato,

- a relação é simétrica, já que $x x = 0 \in \mathbb{Q}^n$;
- a relação é reflexiva, já que se $x-y\in\mathbb{Q}^n$, então $-(x-y)\in\mathbb{Q}^n$, e-(x-y)=y-x;
- a relação é transitiva, já que se $x-y,y-z\in\mathbb{Q}^n$, então $x-z=(x-y)-(y-z)\in\mathbb{Q}^n$.