EV - 2013

Schriftliche Prüfung aus Energieversorgung, am 29.01.2013

Name/Vorname:	/ MatrNr./Knz.:	/
runie, runiumer		

1. Leitungsgleichungen (24 Punkte)

Auf einem Donaumast ist ein 380 kV-Drehstromfreileitungssystem bestehend aus Dreierbündel mit den folgenden geometrischen Daten der Aufhängung aufgezogen (Koordinatenursprung = Mastfußpunkt):

Leiter A:
$$x = -7m$$
, $y = 18m$
Leiter B: $x = +6m$, $y = 20m$
Leiter C: $x = -2m$, $y = 22m$

Der gegenseitige Abstand der Leiter a im Dreierbündel beträgt $20\ cm$. Der Querschnitt eines Leiterseils beträgt $187,233\ mm^2$. Die Leitung ist $400\ km$ lang und verdrillt. Die thermische Dauerstrombelastbarkeit eines Leiterseils beträgt $346\ A$.

- a. (3) Zeichnen Sie eine schematische Skizze der Leiteraufhängung, beschriften Sie die Leiter und bemaßen Sie die Leiterabstände in beiden Koordinatenachsen.
- b. (6) Wie groß ist die längenbezogene symmetrische **Betriebsinduktivität** und **Betriebskapazität** der Leitung?
- c. (3) Wie groß ist der Wellenwiderstand der verlustlosen Leitung $(R'=0\frac{\Omega}{km},G'=0\frac{S}{km})?$
- d. (3) Die Leitung wird im Leerlauf betrieben. Wie groß ist die Spannung am Ende der verlustlosen Leitung?
- e. (3) Berechnen Sie die thermisch übertragbare Scheinleistung der Leitung.

Die Leitung wird an ihrem Ende mit einer dreiphasigen, ohmschinduktiven Last abgeschlossen (siehe Bild rechts) und am Leitungsanfang mit Nennspannung betrieben.

- f. (2) Wie groß ist die Mitimepdanz der ohmsch-induktiven Last?
- g. (4) Wie groß ist die ist die Eingangsimpedanz Z₁ der verlustlosen Leitung?

EV - 2013

2. Wasserkraft (24 Punkte)

Der Obersee (OS) ist über ein Pumpspeicherkraftwerk (PSKW) mit dem Untersee (US) verbunden. Mit je einem Pump- und Turbinensatz können die Wassermengen zwischen Ober- und Untersee bewegt werden.

Zusätzlich besteht über ein **Speicherkraftwerk (SKW)** die Möglichkeit den Inhalt des **Untersees (US)** in Richtung **Fluss** hin abzuarbeiten. Dieses abgelassene Wasser kann aus dem Fluss nicht mehr hochgepumpt werden.

Kenndaten des Pumpspeicherkraftwerks zwischen Obersee (OS) und Untersee (US):

Volumen Obersee	V_{os}	20	Mio. m³
Volumen Untersee	V_{US}	20	Mio. m³
mittlere Fallhöhe	h	150	m
Nenndurchfluss	Q_N	25	m³/s
Gesamtwirkungsgrad - Turbinenbetrieb	η_{Turb}	93	%
Gesamtwirkungsgrad - Pumpbetrieb	η_{Pump}	85	%

Das Speicherkraftwerk zwischen Untersee (US) und Fluss weist folgende Kenndaten auf:

mittlere Fallhöhe	h	564 m
Nenndurchfluss	Q_N	35 m³/s
Gesamtwirkungsgrad - Turbinenbetrieb	η_{Turb}	90 %

- a. (6) Welche elektrische Energie kann (in einem Zyklus) maximal verpumpt werden? Welchen Anfangs- und Endfüllstand müssen hierzu Ober- und Untersee aufweisen?
- b. (6) Welche elektrische Energie kann in Summe über das Pumpspeicherkraftwerk und das Speicherkraftwerk im Turbinenbetrieb entnommen werden? Welchen Anfangs- und Endfüllstand müssen hierzu Ober- und Untersee aufweisen?

Hinweis: Die Wassermengen sollen zur Gänze hinunter zum Fluss abgearbeitet werden.

- c. (4) Welche elektrischen Verluste entstehen durch einen vollständigen Umwälz-Zyklus des Pumpspeichervorgangs?
- d. (4) Wie lange dauert der Pumpvorgang aus (a) unter Nennbedingungen?
- e. (4) Wie lange dauert die vollständige Abarbeitung der Wassermengen aus Punkt (b)?

EV - 2013

3. Wirtschaftlichkeitsvergleich (24 Punkte)

Über das als Versuchsanlage gebaute Solarkraftwerk "Gemasolar" (solarthermisches Kraftwerk mit Salzschmelze und Speicher) in Spanien sind folgende Angaben bekannt:

Leistung 19,9 MW_{el}
Errichtungskosten 230 Mio. €
geschätzte Jahresenergieeinspeisung 110 GWh/a

leistungsabhängige Kosten 6% der Errichtungskosten pro Jahr

Um die Wirtschaftlichkeit dieser Versuchsanlage beurteilen zu können, soll ein konventionelles GuD-Kraftwerk mit folgenden Daten betrachtet werden:

spezifische Errichtungskosten 650 €/kW_{el}
leistungsabhängige Kosten 95 €/kW_{el}a
Brennstoffkosten 0,40 €/m³ Erdgas

Heizwert von Erdgas H_u 30 MJ/m³ Gesamtwirkungsgrad 58 %

betriebsabhängige Kosten 0,001 €/kWh_{el}

Für beide Anlagen sollen eine Nutzungsdauer von 25 Jahren und ein Zinssatz am Kapitalmarkt von 7% gelten.

- a. (7) Ermitteln Sie die Stromgestehungskosten für das Versuchskraftwerk "Gemasolar".
- b. (4) Wie hoch sind die Stromgestehungskosten des GuD-Kraftwerks, wenn es die gleiche Volllaststundenzahl pro Jahr aufweist, wie das Versuchskraftwerk?
- c. (6) Wie hoch dürften die spezifischen Errichtungskosten von "Gemasolar" maximal sein, damit dieses mit dem konventionellen GuD-Kraftwerk konkurrieren kann?

Hinweis: Auch die leistungsabhängigen Kosten ändern sich, sie belaufen sich weiterhin auf 6% der jeweiligen Errichtungskosten!

 d. (7) Um zusätzliche 25 Mio. € könnte das Versuchskraftwerk "Gemasolar" mit größeren Speichern ausgestattet werden, wodurch sich die Volllaststundenzahl um 15% erhöht. Wäre dies eine sinnvolle Investition? (Es gilt hier ebenso der Hinweis von Punkt c.)

4. Fünf Sicherheitsregeln (4 Punkte)

Bringen Sie die fünf Sicherheitsregeln in die richtige Reihenfolge:

Erden und kurzschließen
Gegen Wiedereinschalten sichern
Benachbarte, unter Spannung stehende Teile abdecken oder abschranken
Spannungsfreiheit allpolig feststellen
Freischalten (d.h. allpoliges Trennen einer elektrischen Anlage von
spannungsführenden Teilen)

5. Kurzschlussberechnung (24 Punkte)

Die Netzeinspeisung (50Hz) weist folgende Kenndaten auf:

Nennspannung	U_{nQ}	110 kV
Kurzschlussleistung	$S_{kQ}^{"}$	4,5 <i>GVA</i>
Sicherheitsfaktor	С	1,1
Resistanz-Reaktanz-Verhältnis	$R_Q / X_Q $	0,5

Der Transformator weist folgende Kenndaten auf:

Primärspannung	U_1	110	kV
Sekundärspannung	U_2	30	kV
Nennscheinleistung	S_N	40	MVA
Kurzschlussspannung	u_k	0,16	
Kurzschlussverluste	P_k	500	kW

Die Leitung weist folgende Kenndaten auf:

Widerstandsbelag	R'	0,24	Ω/km
Induktivitätsbelag	L'	1,145	mH/km
Kapazitätsbelag	<i>C'</i>	9	nF/km
Länge	l	50	km

Am Ende der Leitung ereignet sich ein 2-poliger Kurzschluss ohne Erdberührung.

- a. (3) Berechnen Sie die Netzimpedanz (Resistanz und Reaktanz) bezogen auf die Kurzschlussseite (Leitung).
- b. (3) Berechnen Sie die Transformatorimpedanz (Resistanz und Reaktanz) bezogen auf die Kurzschlussseite (Leitung).
- c. (2) Berechnen Sie die Leitungslängsimpedanz (Resistanz und Reaktanz) bezogen auf die Kurzschlussseite (Leitung).
- d. (4) Wie muss das Komponentensystem bei einem zweipoligen Kurzschluss ohne Erdberührung verschaltet sein (Skizze)? Berechnen Sie damit die im Kurzschluss wirksame Gesamtimpedanz (Resistenz und Reaktanz) bezogen auf die Kurzschlussseite (Leitung).
- e. (5) Berechnen Sie den Betrag des **Anfangs-Kurzschlussstrom** $I_{k2p}^{"}$. **Hinweis:** Verwenden Sie $\underline{Z}_{(0)}=15\Omega-\mathrm{j}2500\Omega;\ \underline{Z}_{(1)}=\underline{Z}_{(2)}=15\Omega+\mathrm{j}20\Omega$
- f. (4) Wie hoch ist der Betrag des Anfangs-Kurzschlussstrom $I_{k2p}^{"}$, wenn der zweipolige **Fehler** nicht am Ende der Leitung sondern auf der **Primärseite** des **Transformators** erfolgt?
- g. (3) Für die Auslegung der mechanischen Festigkeit wird der dreipolige Kurzschlussstrom benötigt. Berechnen Sie den Betrag des maximalen **Stoßstroms** i_p , wenn der Anfangs-Kurzschlussstrom $I_{k3p}^{"}=0.95~kA$ beträgt.

Hinweise: $i_p = \sqrt{2} \left(1 + e^{-t.R/L}\right) I_{k3p}^{"}$; "worst case" bei $t \cong 10~ms$; Verwenden Sie die Impedanzen aus Punkt e.