

(wpisuje zdający przed rozpoczęciem pracy)									
KOI) ZI)AJ	ĄCI	E GO					

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

Arkusz I Poziom podstawowy

Czas pracy 120 minut

Instrukcja dla zdającego:

- 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 12 stron. Ewentualny brak należy zgłosić przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi należy zapisać czytelnie w miejscu na to przeznaczonym przy każdym zadaniu.
- 3. Proszę pisać tylko w kolorze czarnym; nie pisać ołówkiem.
- 4. W rozwiązaniach zadań trzeba przedstawić tok rozumowania prowadzący do ostatecznego wyniku.
- 5. Nie wolno używać korektora.
- 6. Błędne zapisy trzeba wyraźnie przekreślić.
- 7. Brudnopis nie będzie oceniany.
- 8. Obok każdego zadania podana jest maksymalna liczba punktów, którą można uzyskać za jego poprawne rozwiązanie.
- 9. Podczas egzaminu można korzystać z cyrkla, linijki i kalkulatora.

Życzymy powodzenia!

ARKUSZ I Poziom podstawowy

> CZERWIEC 2004 ROK

Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów

	(wpisuje zdający przed rozpoczęciem pracy)												
PESEL ZDAJĄCEGO													

Zadanie 1. (2 pkt)

Miejscem zerowym funkcji f(x) = -3x + b jest $\sqrt{2}$. Oblicz b.

Zadanie 2. (3 pkt)

Dana jest funkcja f określona wzorem f(x) = (1-x)(x+1) + 2x. Wyznacz zbiór wartości funkcji f.

Zadanie 3. (4 pkt)

Widownia wokół boiska do koszykówki podzielona jest na cztery sektory. W pierwszym rzędzie każdego sektora jest 8 miejsc, a w każdym następnym rzędzie o 2 miejsca więcej niż w rzędzie poprzednim. W każdym sektorze są 22 rzędy. Oblicz liczbę wszystkich miejsc na widowni.

Zadanie 4. (5 pkt)

Na poniższym rysunku przedstawiono równoramienny trójkąt ABC (o podstawie AC) oraz prostokątny równoramienny trójkąt BDC (o podstawie BC). Uzasadnij, że $\cos(\angle ACD) < \frac{1}{2}$.

Zadanie 5. (4 pkt)

W architekturze islamu często stosowanym elementem był "łuk podkowiasty". Schemat okna w kształcie takiego łuku (łuku okręgu) przedstawiono na rysunku poniżej. Korzystając z danych na rysunku oblicz wysokość okna h i największy prześwit d.

Zadanie 6. (3 pkt)

Funkcja f przyporządkowuje każdej liczbie rzeczywistej iloczyn tej liczby przez liczbę o 3 od niej mniejszą.

- a. Podaj wzór funkcji f
- b. Zbadaj, ile rozwiązań ma równanie f(x)+3=0.

Zadanie 7. (5 pkt)

Pole trójkąta o wierzchołkach A = (1, 2), B = (3, 0), C = (2, 4) można obliczyć stosując następującą metodę:

- zaznaczamy w układzie współrzędnych punkty ABC;
- rysujemy prostokąt *KLMN* w sposób przedstawiony na rysunku (odpowiednie boki prostokąta mają być równoległe do osi układu współrzędnych);
- odczytujemy długości odpowiednich odcinków: |KL| = 2, |LM| = 4, |AK| = 2, |MC| = 1, |CN| = 1 |NA| = 2;
- obliczamy pole prostokąta: $P_{KLMN} = |KL| \cdot |LM| = 2 \cdot 4 = 8$;
- obliczamy pola odpowiednich trójkątów prostokątnych:

$$\begin{split} P_{\Delta AKL} &= \frac{1}{2} \left| AK \right| \cdot \left| KL \right| = \frac{1}{2} \cdot 2 \cdot 2 = 2 \\ P_{\Delta LMC} &= \frac{1}{2} \cdot \left| LM \right| \cdot \left| MC \right| = \frac{1}{2} \cdot 4 \cdot 1 = 2 \\ P_{\Delta CNA} &= \frac{1}{2} \cdot \left| CN \right| \cdot \left| NA \right| = \frac{1}{2} \cdot 1 \cdot 2 = 1; \end{split}$$

• od pola prostokąta odejmujemy sumę pól trójkątów: $P_{\Delta ABC} = 8 - (2 + 2 + 1) = 3$.

Stosując <u>opisana wyżej</u> metodę, oblicz pole trójkąta o wierzchołkach A = (1, 0), B = (5, 1), C = (3, 4).

Zadanie 8. (6 pkt)

Ciąg (a_n) określony jest wzorem $a_n = n^2 - 5$.

- a. Wyznacz liczbę ujemnych wyrazów tego ciągu.
 b. Sprawdź, na podstawie definicji, czy ciąg (a_n) jest ciągiem geometrycznym.

Zadanie 9. (7 pkt)

Punkty A = (-1, -2), B = (2, -1), C = (1, 2) są wierzchołkami trójkąta ABC.

- a. Oblicz długość odcinka \overline{AB} .
- b. Napisz równanie prostej m, do której należą punkty B i C.
- c. Napisz równanie prostej k prostopadłej do prostej m takiej, że $A \in k$.
- d. Uzasadnij, że środek okręgu opisanego na trójkącie ABC nie należy do prostej k.

Zadanie 10. (6 pkt)

Dane są liczby $a = \frac{\sqrt{3} - 2}{5}$ i $b = \frac{\sqrt{3} + 2}{5}$.

- a. Sprawdź, czy $\frac{a-b}{a \cdot b} = 20$
- b. Oblicz $\left| \frac{a}{b} \right|$

Zadanie 11. (5 pkt)

Dane są wielomiany $Q(x) = x^3 - x^2 + 2$ i $S(x) = -2x^2 - 2x + 4$.

- a. Sprawdź, czy liczba 2 jest pierwiastkiem wielomianu Q(x).
- b. Wielomian P(x) jest sumą wielomianów Q(x) i S(x). Rozłóż wielomian P(x) na czynniki liniowe.

Brudnopis

