Función de convolución

ArcMap 10.8

Archivo de ayuda

ArcGIS Desktop se encuentra en <u>fase final de soporte</u> y se retirará el 1 de marzo de 2026. No está previsto que haya versiones futuras de ArcGIS Desktop y se recomienda migrar a ArcGIS Pro. Consulte <u>Migrar de ArcGIS Pro</u> para obtener más información.

Información general

La función de convolución realiza el filtrado de los valores de píxel de una imagen, lo que se puede utilizar para aumentar su nitidez, difuminarla, detectar sus ejes u otros realces basados en el kernel. Los filtros se utilizan para mejorar la calidad de la imagen de ráster al eliminar datos falsos o mejorar las entidades de los datos. Estos filtros de convolución se aplican a un kernel móvil o superpuesto (ventana o vecindad), como 3 x 3. Los filtros de convolución actúan calculando el valor de píxel en función de la ponderación de sus vecinos.

Notas

Hay varios tipos de filtros de convolución que puede seleccionar en esta función. También puede especificar un tipo Definido por el usuario y escribir sus propios valores de kernel.

Para obtener unos resultados de visualización óptimos, quizás desee redimensionar el histograma para ajustar el contraste de la imagen o el brillo a fin de resaltar entidades.

Parámetros

Parámetro	Descripción
Ráster	El dataset ráster de entrada.
Tipo	Seleccione el tipo de filtrado que desee realizar Hay opciones para aumentar la nitidez, difuminar y detectar bordes. También puede definir su propio filtro basado en el kernel
Kernel	En esta tabla se muestra cómo se ponderará cada píxel en el proceso de filtrado. Esta tabla se puede editar si elige Definido por el usuario como Tipo.

Más información sobre cómo funciona la convolución

En las tablas siguientes, cada filtro se aplica a una de estas dos imágenes:

Imagen de escala de grises sin filtrar

Imagen en color sin filtrar

Filtros de detección de arista

Tipos de gradiente

Los filtros de gradiente se pueden utilizar para la detección de aristas en incrementos de 45 grados.

Tipo	Descripción	Ejemplo
Gradiente este	Un filtro de 3 por 3 1 0 -1 2 0 -2 1 0 -1	
Gradiente norte	Un filtro de 3 por 3 -1 -2 -1 0 0 0 1 2 1	
Gradiente noreste	Un filtro de 3 por 3 0 -1 -2 1 0 -1 2 1 0	

Tipo	Descripción	Ejemplo
Gradiente noroeste	Un filtro de 3 por 3 -2 -1 0 -1 0 1 0 1 2	
Gradiente sur	Un filtro de 3 por 3 1 2 1 0 0 0 -1 -2 -1	
Gradiente oeste	Un filtro de 3 por 3 -1 0 1 -2 0 2 -1 0 1	

Tipos Laplacian

Los filtros Laplacian se suelen utilizar para la detección de arista. Se suelen aplicar a una imagen que primero se ha suavizado para reducir su sensibilidad al ruido.

Tipo	Descripción	Ejemplo
Laplacian 3x3	Un filtro de 3 por 3 0 -1 0 -1 4 -1 0 -1 0	

Tipo	Descripción	Ejemplo
Laplacian 5x5	Un filtro de 5 por 5 0 0 -1 0 0 0 -1 -2 -1 0 -1 -2 17 -2 -1 0 -1 -2 -1 0 0 0 -1 0 0	

Tipos de detección de línea

Los filtros de detección de línea, como los filtros de gradiente, se pueden utilizar para realizar la detección de arista.

Es posible que consiga mejores resultados si aplica un algoritmo de suavizado antes de un algoritmo de detección de arista.

Tipo	Descripción	Ejemplo
Horizontal de detección de línea	Un filtro de 3 por 3 -1 -1 -1 2 2 2 -1 -1 -1	
Diagonal izquierda de detección de línea	Un filtro de 3 por 3 2 -1 -1 -1 2 -1 -1 -1 2	
Diagonal derecha de detección de línea	Un filtro de 3 por 3 -1 -1 2 -1 2 -1 2 -1 -1	

Tipo	Descripción	Ejemplo
Vertical de detección de línea	Un filtro de 3 por 3 -1 0 -1 -1 2 -1 -1 2 -1	

Tipos Sobel

El filtro Sobel se utiliza para la detección de arista.

Tipo	Descripción	Ejemplo
Horizontal de Sobel	Un filtro de 3 por 3 -1 -2 -1 0 0 0 1 2 1	
Vertical de Sobel	Un filtro de 3 por 3 -1 0 1 -2 0 2 -1 0 1	

Filtros de nitidez y de suavizado

Tipos de nitidez

El filtro de nitidez (paso alto) acentúa la diferencia comparativa de los valores con sus vecinos. Un filtro de paso alto calcula la estadística de suma focal de cada celda de la entrada mediante una vecindad de kernel ponderada. Resalta los límites entre entidades (por ejemplo, donde una masa de agua se une al bosque), aumentando así la nitidez de las aristas entre objetos. El filtro de paso alto se conoce como un filtro de realce de arista. El kernel del filtro de paso alto identifica qué celdas se van a utilizar en la vecindad y cuánto se van a ponderar (multiplicar por).

Tipo	Descripción	Ejemplo
Nitidez	Un filtro de 3 por 3 0 -0.25 0 -0.25 2 -0.25 0 -0.25 0	
Aumentar nitidez II	Un filtro de 3 por 3 -0.25 -0.25 -0.25 -0.25 3 -0.25 -0.25 -0.25 -0.25	
Nitidez 3x3	Filtro de paso alto de 3 por 3 -1 -1 -1 -1 9 -1 -1 -1 -1	
Nitidez 5x5	Filtro de paso alto de 5 por 5 -1 -3 -4 -3 -1 -3 0 6 0 -3 -4 6 21 6 -4 -3 0 6 0 -3 -1 -3 -4 -3 -1	

Tipo	Descripción	Ejemplo

Tipos de suavizado

Los filtros de suavizado (paso bajo) suavizan los datos al reducir la variación local y quitar el ruido. El filtro de paso bajo calcula la media (valor medio) de cada vecindad. El efecto es que los valores altos y bajos se promedian en cada vecindad, y se reducen los valores extremos en los datos.

Tipo	Descripción	Ejemplo
Suavizar valor medio aritmético	Un filtro de 3 por 3 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111	
Suavizado 3x3	Filtro de paso bajo de 3 por 3 1 2 1 2 4 2 1 2 1	

Tipo	Descripción	Ejemplo
Suavizado 5x5	Filtro de paso bajo de 5 por 5 1 1 1 1 1 1 4 4 4 1 1 4 12 4 1 1 4 4 4 1 1 1 1 1 1	

Otros filtros

Tipo de punto extendido

La función de punto extendido refleja la distribución de la luz desde un origen de punto a través de una lente. Esto introducirá un efecto de difuminado ligero.

Tipo	Descripción	Ejemplo
Extensión de punto	Un filtro de 3 por 3 -0.627	

Temas relacionados

- ¿Cuáles son las funciones utilizadas por un dataset ráster o de mosaico? Editar cadenas de funciones en un dataset de mosaico