- 1. For the Independent Jeffreys Reference prior $p(\beta, \phi) \propto 1$ and model $\mathbf{Y} \mid \beta, \phi \sim \mathsf{N}(\mathbf{X}\beta, \phi^{-1}\mathbf{I}_n)$ where \mathbf{X} is of full column rank p, derive/validate the results from class
 - (a) $p(\boldsymbol{\beta} \mid \phi, \mathbf{Y})$
 - (b) $p(\phi \mid \mathbf{Y})$
 - (c) $p(\boldsymbol{\beta} \mid \mathbf{Y})$
- 2. If $p(\log(\sigma^p)) \propto 1$, find $p(\sigma^p)$ (up to proportionality)
- 3. If $p(\phi) \propto \phi^{-1}$, find $p(\sigma^2)$ (upto proportionality) (can you use the previous result?)
- 4. Consider the model

$$\mathbf{Y} \sim \mathsf{N}(\mathbf{X}_0 \alpha + \mathbf{X} \boldsymbol{\beta}, \phi^{-1} \mathbf{I}_n)$$

with the blocked Zellner g-prior:

$$p(\alpha, \phi) \propto \phi^{-1}$$
 (1)

$$p(\alpha, \phi) \propto \phi^{-1}$$

$$\boldsymbol{\beta} \mid \phi \sim \mathsf{N}(0, \frac{g}{\phi} (\mathbf{X}^{T} (\mathbf{I} - \mathsf{P}_{\mathbf{X}_{0}}) \mathbf{X})^{-1})$$

$$(1)$$

where \mathbf{X}_0 and \mathbf{X} are not orthogonal. Find $p(\alpha \mid \mathbf{Y}, \boldsymbol{\beta}\phi, p(\boldsymbol{\beta} \mid \mathbf{Y}, \phi))$ and $\phi \mid \mathbf{Y}$ (hint: decompose \mathbf{Y} and **X** into parts that are in $C(\mathbf{X}_0)$ and the orthogonal complement $C(\mathbf{X}_0)^{\perp}$ using appropriate projections and decompose the likelihood into three terms. Are α and β independent given Y and ϕ ? Find the distribution of α given Y and ϕ . (Hint if they are not independent use iterated expectations!)