

Fenômeno da natureza

regido pela função $f(d) = a * e^d - 4 * d^2$

Encontrar o valor de d

utilizando métodos numéricos, **d** não pode ultrapassar 0.7 cm

Analisar a variação

do parâmetro **a** para o cálculo do deslocamento

Fornecer quadro

com as informações mais relevantes de cada método

Metodologia

Linguagem C++

C++ é rápido e variado em suas estruturas de dados eficientes

• • •

Exportação

O resultado é exportado em formato CSV ao final do programa

. . .

Modularização

Cada pedaço de código foi escrito independentemente, que facilita o reuso de código

. . .

Métodos Implementados

Método de Newton-Raphson

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

. . .

Vantagens do Newton-Raphson

Metódo bastante eficiente

Convergência é quadrática

Desvantagens do Newton-Raphson

Convergência não é assegurada

Precisa do cálculo da derivada

Divisão por zero

Método de Newton Modificado

$$x_1 = x_1 - \frac{f(x_1)}{f'(x_0)}$$

. . .

Vantagens do Newton Modificado

Assim como o método de Newton-Raphson, temos a segurança de ser um método bem rápido

Também mantém uma convergência ao menos quadrática

Permite certas otimizações em termos de implementação, quando comparado ao Newton-Raphson

Desvantagens do Newton Modificado

Necessita cálculo antecipado da derivada de f(x)

Apesar de calcular a derivada uma única vez, se f'(x) = 0, o método pode recorrer em erros

A precisão do método pode ser um pouco menor quando comparado ao Newton-Raphson. Além disso, não possui a convergência garantida

Vantagens do Método da Secante

Convergência rápida

Não requer cálculo de derivadas

Flexibilidade

Desvantagens do Método da Secante

Convergência não é assegurada

Precisa de duas aproximações iniciais

Não garante convergência quadrática

Mais iterações que o Método de Newton-Raphson

Método de Newton-Raphson

K	d	f(d)	erro
T01	0.775901	-0.235543	0.275901
T02	0.717522	-0.010002	0.05838
T03	0.714812	-0.000022	0.00271

Método de Newton-Raphson

Método de Newton Modificado

K	d	f(d)	erro
T01	0.775901	-0.235543	0.275901
T02	0.675725	0.13904	0.100176
T03	0.734859	-0.074883	0.059134
T04	0.703011	0.042926	0.031848
T05	0.721268	-0.02387	0.018257
T06	0.711116	0.013518	0.010152
T07	0.716865	-0.007581	0.005749
T08	0.713641	0.004275	0.003224
T09	0.71546	-0.002403	0.001818
T10	0.714437	0.001354	0.001022
T11	0.715013	-0.000762	0.000576
T12	0.714689	0.000429	0.000324
T13	0.714872	-0.000241	0.000182
T14	0.714769	0.000136	0.000103
T15	0.714827	-0.000076	0.000058

Erro bem menor que ao método anterior

Método de Newton Modificado

Método da Secante

K	d	f(d)	erro
T01	0.668024	0.165354	0.331976
T02	0.705959	0.032278	0.037934
T03	0.715159	-0.0013	0.009201
T04	0.714803	0.000009	0.000356

Erro bem menor que Newton-Raphson e maior que Newton Modificado

Método da Secante

Interessante Citar

O erro dos métodos não conseguem reduzir deslocamento para abaixo da margem de risco

Poder de precisão do Newton Modificado e sua vantagem de não recalcular denominador

Quadro Comparativo: a = 1; d0 = 0.5; $e = 10^{-4}$

Quadro Comparativo: a = 1; d0 = 0.5; $e = 10^{-4}$

Quadro Comparativo: a = 1; d0 = 0.5; $e = 10^{-4}$

as tabelas para a = 0

Metodo Secante

K	d	f(d)	erro
T01	00.333333	-0.444444	00.666667
T02	00.250000	-0.250000	00.083333
T03	00.142857	-0.081633	00.107143
T04	00.090909	-0.033058	00.051948
T05	00.055556	-0.012346	00.035354
T06	00.034483	-0.004756	00.021073
T07	00.021277	-0.001811	00.013206
T08	00.013158	-0.000693	00.008119
T09	00.008130	-0.000264	00.005028
T10	00.005025	-0.000101	00.003105
T11	00.003106	-0.000039	00.001920

as tabelas para a = 0

Newton-Raphson

K	d	f(d)	erro
T01	00.250000	-0.250000	00.250000
T02	00.125000	-0.062500	00.125000
T03	00.062500	-0.015625	00.062500
T04	00.031250	-0.003906	00.031250
T05	00.015625	-0.000977	00.015625
T06	00.007812	-0.000244	00.007812
T07	00.003906	-0.000061	00.003906

as tabelas para a = 0

Newton Modificado

K	d	f(d)	erro
T01	00.250000	-0.250000	00.250000
T02	00.187500	-0.140625	00.062500
T03	00.152344	-0.092834	00.035156
T04	00.129135	-0.066704	00.023209
T05	00.112459	-0.050588	00.016676
T06	00.099812	-0.039850	00.012647
T07	00.089850	-0.032292	00.009962

. . .

T97	00.009671	-0.000374	00.000095
T98	00.009577	-0.000367	00.000094
T99	00.009486	-0.000360	00.000092
T100	00.009396	-0.000353	00.000090

as tabelas para a=1

Metodo Secante

K	d	f(d)	erro
T01	00.668024	00.165354	00.331976
T02	00.705959	00.032278	00.037934
T03	00.715159	-0.001300	00.009201
T04	00.714803	00.000009	00.000356

Newton-Raphson

K	d	f(d)	erro
T01	00.775901	-0.235543	00.275901
T02	00.717522	-0.010002	00.058380
T03	00.714812	-0.000022	00.002710

Ultrapassaram o limite de 0.7cm

as tabelas para a=1

Newton-Raphson

K	d	f(d)	erro
T01	00.775901	-0.235543	00.275901
T02	00.675725	00.139040	00.100176
T03	00.734859	-0.074883	00.059134
T04	00.703011	00.042926	00.031848
T05	00.721268	-0.023870	00.018257
T06	00.711116	00.013518	00.010152
T07	00.716865	-0.007581	00.005749
T08	00.713641	00.004275	00.003224
T09	00.715460	-0.002403	00.001818
T10	00.714437	00.001354	00.001022
T11	00.715013	-0.000762	00.000576
T12	00.714689	00.000429	00.000324
T13	00.714872	-0.000241	00.000182
T14	00.714769	00.000136	00.000103
T15	00.714827	-0.000076	00.000058

Ultrapassou o limite de 0.7cm

as tabelas para a=2

Metodo Secante

K	d	f(d)	erro
T01	01.834359	-0.937252	00.834359
T02	01.504929	-0.051579	00.329429
T03	01.485745	00.006760	00.019185
T04	01.487968	-0.000017	00.002223

Ultrapassou o limite de 0.7cm

as tabelas para a=2

Newton-Raphson

K	d	f(d)	erro
T01	03.770113	29.914947	03.270113
T02	03.241665	09.118982	00.528448
T03	02.880077	02.451915	00.361588
T04	02.685336	00.482140	00.194741
T05	02.623867	00.039173	00.061469
T06	02.617920	00.000345	00.005947
T07	02.617867	00.00000	00.000053

Ultrapassou o limite de 0.7cm

as tabelas para a=2

Newton Modificado

K	d	f(d)	erro
T01	03.770113	29.914947	03.270113
		269562660401	
		037344768.000	
T02	46.350185	000	42.580072
	383687707106		38368770710
	972467200.000		6972467200.
T03	000	000000inf	000000
T04	000000inf	00000-nan	000000inf

Não convergiu!

Hands on!

Agora vamos ver como se comporta nosso software

Obrigado!

Alguma dúvida?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik and illustrations by Stories

