PAT-NO:

JP409260808A

DOCUMENT-IDENTIFIER: JP 09260808 A

TITLE:

METHOD OF FORMING METAL WIRING BY PHOTOCATALYSTIC

REACTION AND BASE BOARD

PUBN-DATE:

October 3, 1997

INVENTOR-INFORMATION: NAME KAWANO, HIROYASU TANI, MOTOAKI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

FUJITSU LTD

N/A

APPL-NO:

JP08063028

APPL-DATE:

March 19, 1996

INT-CL (IPC): H05K003/18

ABSTRACT:

PROBLEM TO BE SOLVED: To enable the forming of a metal wiring by irradiation of a visible light at forming such metal wiring by the low temp. process or direct laser beam patterning with a metal contacted with a base board after causing an optical reductive reaction through a photocatalystcontained substance, without using any resist resin.

SOLUTION: A substance having a photocatalyst-optically intensified by a pigment 3 is formed on the surface of a base board 1, the board is then immersed in a metal ion-contained water soln. 11 contg. at least alcohol, a laser beam 12 adapted to the optical absorption range of the pigment is used to form specified pattern on the board 1, the board 1 is immersed in a water soln. 4 having a complex-forming power to remove adsorbed metal ions, thus forming a patterned metal film 13 composed of the adsorbed metal atoms only.

COPYRIGHT: (C)1997,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-260808

(43)公開日 平成9年(1997)10月3日

(51) Int.Cl.8

識別記号

庁内整理番号

ΓI

技術表示箇所

H 0 5 K 3/18

7511-4E

H05K 3/18

•

審査請求 未請求 請求項の数5 OL (全 9 頁)

(21)出願番号

特願平8-63028

(22)出顧日

平成8年(1996)3月19日

(71)出願人 000005223

富士通株式会社

神奈川県川崎市中原区上小田中4丁目1番

1号

(72)発明者 川野 浩康

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(72)発明者 谷 元昭

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(74)代理人 弁理士 石田 敬 (外3名)

(54) 【発明の名称】 光触媒反応による金属配線の形成方法及び基材

(57)【要約】

【課題】 光触媒能を有する物質を介して、光に還元反応を誘起させて基材上に金属を接触させ、レジスト樹脂を使用することなく、低温プロセスにより、あるいは、レーザ直描により金属配線を形成する場合において、可視光の照射でこのような金属配線の形成を可能にすることを目的とする。

【解決手段】 色素3により光増感された光触媒能を有する物質2が表面に形成された基材1を、少なくともアルコールを含む金属イオン含有水溶液11中に浸漬し、色素の光吸収域に応じたレーザ光12により所定のパターンで基材上に描画し、該基材を、錯体形成能を有する水溶液4中に浸漬して吸着金属イオンを除去することにより吸着金属原子のみから成るパターニングされた金属膜13を形成する。

【特許請求の範囲】

【請求項1】 色素により光増感された光触媒能を有する物質が表面に形成された基材を、少なくともアルコールを含む金属イオン含有水溶液中に浸漬し、色素の光吸収域に応じたレーザ光により所定のパターンで基材上に描画し、該基材を、錯体形成能を有する水溶液中に浸漬して吸着金属イオンを除去することにより吸着金属原子のみから成るパターニングされた金属膜を形成する方法。

【請求項2】 光触媒能を有する物質が表面に形成され 10 た基材を、少なくともアルコールおよび色素を含む金属イオン含有水溶液中に浸漬し、色素の光吸収域に応じたレーザ光により所定のパターンで基材上に描画し、該基材を、錯体形成能を有する水溶液中に浸漬して吸着金属イオンを除去することにより吸着金属原子のみから成るパターニングされた金属膜を形成する方法。

【請求項3】 色素により光増感された光触媒能を有する物質が表面に形成された基材を、少なくともアルコールを含むパラジウムイオン含有水溶液中に浸漬し、色素の光吸収域に応じたレーザ光により所定のパターンで基 20 材上に描画し、該基材を、錯体形成能を有する水溶液中に浸漬して吸着パラジウムイオンを除去することにより吸着パラジウム原子のみを基材の前記パターン上に選択的に残すことによりパターンニングされた金属膜を形成する方法。

【請求項4】 光触媒能を有する物質が表面に形成された基材を、少なくともアルコールおよび色素を含むパラジウムイオン含有水溶液中に浸漬し、色素の光吸収域に応じたレーザ光により所定のパターンで基材上に描面し、該基材を、錯体形成能を有する水溶液中に浸漬して 30 吸着パラジウムイオンを除去することにより吸着パラジウム原子のみを基材の前記パターン上に選択的に残すことによりパターニングされた金属膜を形成する方法。

【請求項5】 光触媒能を有する物質が表面に形成された基材を100℃以上に加熱した後、少なくとも70℃以上まで冷却された基材を、少なくとも色素が溶解されたアルコール溶液中に浸漬することにより得られる、色素により光増感された光触媒能を有する物質が表面に形成された基材。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光触媒反応を利用した、めっき法による金属配線の形成方法に関する。電子機器に使用される回路基板は、プリント基板に代表されるように、絶縁性の基材(層間絶縁層を含む)と導電性の配線(金属、導電性酸化物を含む)から形成されている。配線の形成方法には大別して導電ペーストを用いる厚膜法と箔やめっき膜、蒸着膜(スパック膜やCVD膜を含む)を用いる薄膜法が存在する。配線のパターニングは、厚膜法の場合、達電ペースト印刷技術に上れ来

成することが多く、薄膜法の場合、レジスト樹脂を用いたエッチング技術により形成することが多い。

【0002】このように、配線形成には多種多様な技術が存在し、目的に応じて適当な方法が選択されている。本発明は、このような配線形成技術のうち、所謂薄膜法の技術に属するが、光触媒反応を効果的に利用することにより、容易に金属配線が形成できる方法に関する。【0003】

【従来の技術】従来の薄膜法による配線形成技術には、 主としてめっき及びエッチングの2通りの方法が存在する。これらの方法について下記の通り説明する。

めっき技術

絶縁性基材表面を密着性向上のため梨子地化した後、スズ(IV)イオンおよびパラジウム(II)イオンにより絶縁性基材表面全面に触媒活性化処理を施し、無電解めっき(化学めっき)技術により極薄い種金属膜を絶縁性基材表面全面に形成する。

【0004】この極薄い種金属膜上にめっきレジスト樹脂を塗布し、配線を形成する部分のめっきレジスト樹脂部が開口するようにめっきレジスト樹脂をパターニングする。極薄い種金属膜をカソード(陰極)として電気めっき技術により、めっきレジスト樹脂開口部のみに電気めっき膜を成長させる。

【0005】めっきレジスト樹脂を溶剤等により除去し、電気めっき膜が成長していない極薄い種金属膜だけが露出している部分をエッチング処理し、不要な極薄い種金属膜を除去することにより配線パターンを形成する。

エッチング技術

総経性基材表面に金属箔を貼り付けるか真空成膜法あるいは電気めっき法により金属膜を成膜し、絶縁性基材表面全面に金属膜を形成する。

【0006】この金属膜上にレジスト樹脂を塗布し、配線を形成する金属膜部分の上にのみレジスト樹脂が残るように(すなわち、配線となる金属膜部分だけにレジスト樹脂によりマスキングを施すように)レジスト樹脂をパターニングする。適当なエッチャントとエッチング技術により不要な金属膜部分にエッチング処理を施し除去することにより配線パターンを形成する。

40 【0007】上記の2通りの配線形成技術に共通することは、レジスト樹脂を用いることである。また、上記していないが、このレジスト樹脂のパターニングにはフォトマスク(ガラスマスク)を用いた紫外線露光プロセス(所謂フォトリソグラフィ技術)が必要である。上記の2通りの方法に対し、最近、次のような方法も注目されている。

【0008】Arレーザ光直描技術

る學展法と滔やめっき膜、烝看膜(スパッタ膜やCVD ところで、最近、このフォトマスクを用いた紫外線露光膜を含む)を用いる薄膜法が存在する。配線のパターニ プロセスによるレジスト樹脂のパターニング技術の抱え ングは、厚膜法の場合、導電ペースト印刷技術により形 50 る問題点、即ち、フォトマスクの製造に要する工数・費

用の発生を削減するため、紫外線領域にのみ感じていた レジスト樹脂を改善して可視光領域(波長488 n m付 近) に感じるようにしたレジスト樹脂とビーム直径30 ~50 mm程度(現状)のアルゴン(Ar)レーザービ ームを用いたArレーザ光直描技術が開発され一部実用 化されている。このAァレーザ光直描技術では、レジス ト樹脂を必要とはするものの、従来のフォトマスクを介 して露光処理していた工程が、Arレーザ光の利用によ り、あたかもペンでパターンを描くかのようにレジスト 樹脂を直接描画(直描)できるため、フォトマスクその 10 ものが不要となり、フォトマスクの製造に要する工数・ 費用の発生を削減することができる。

【0009】しかし、このArレーザ光直描技術でさ え、レジスト樹脂の使用を省くことは困難である。 ZnOの光触媒性を利用したCuめっき

一方、フォトマスクを用いた紫外線露光プロセスは利用 するが、配線パターンの形成にレジスト樹脂を用いない 技術が開発された(例えば、「エレクトロニクス実装技 術」1995.6 (Vol.11, No. 6) P.32-36参照)。

【0010】この技術は半導性酸化物として知られる酸 20 化亜鉛 (ZnO) の紫外光のみに対し作用する光触媒性を 利用することが最大の特徴である。概略は以下の通りで ある。

プロセス概略

アルミナのような耐熱性基材上にスプレーパイロリシス (噴霧熱分解)法により ZnO膜を1μm程度成膜する。 【0011】この基材をpH調整した塩化パラジウム (II) 水溶液中に浸漬してパラジウムイオン (Pd2+) を ZnO膜表面全面に吸着させ、その後、メタノールやエ タノール雰囲気中でフォトマスクを介して紫外線露光す 30 ることにより ZnO膜の光触媒反応 (価電子帯に存在する 電子が紫外光を吸収することにより伝導帯に励起され、 この励起電子が ZnO表面から外部に取り出されることで 還元作用を引き起こす。この事例では、パラジウムイオ ンを金属パラジウムに還元することで励起電子は消費さ れる。一方、光励起により価電子帯に生じた正孔は励起 電子同様、 ZnO表面から外部に取り出されることで酸化 作用を引き起こす。この事例では、メタノールやエタノ ールをホルムアルデヒドやアセトアルデヒドなどのアル デヒド物質に酸化することで正孔は消費される。)を誘 40 起させ、紫外線照射部のみパラジウムイオンを金属パラ ジウム(Pd)に還元する。または、pH調整した塩化 パラジウム(II)水溶液とメタノールやエタノールの混 合溶液中に基材を浸漬して、フォトマスクを介して紫外 線露光することにより ZnO膜の光触媒反応を誘起させ、 ZnO膜表面へのパラジウムイオン吸着と金属パラジウム への選択的還元を同時進行させる。

【0012】パラジウムイオンおよび金属パラジウムが 吸着した基材を、pH調整したエチレンジアミン (ED

要なパラジウムイオンをEDA錯体として除去し、 (無 電解めっきに対して触媒能を有する)金属パラジウムの みをZnO 膜表面に選択的に残す。 金属パラジウムのみが 吸着した基材を無電解Cuめっき液に浸漬することによ り、金属パラジウムを触媒核として無電解Cuめっき膜が 析出し、膜厚は薄いものの配線パターンがレジスト樹脂 をまったく使用せずに形成できる。

【0013】しかし、この技術はレジスト樹脂の使用は 無いものの、 ZnOが紫外光に対してのみ光触媒性を示す ため、紫外光による露光処理 (パターニング) のために フォトマスクを利用しなければならない。また、 ZnO膜 の形成に際し、スプレーパイロリシス法が高温を有する プロセスであるため、基材が耐熱性のものに限定される こと、あるいは、真空成膜法を利用した場合、基材への 制限は緩和されるものの真空プロセスであるため、生産 コストの上昇につながることが懸念される。

【0014】Zn0の水溶液(めっき)合成

最近、 ZnO膜やTiO₂膜の水溶液(めっき)法による低温 での直接合成法が開発され、注目を浴びている。この技 術は電気めっき、無電解めっきを問わず、従来のめっき プロセスと同様の方法で容易に ZnO膜やTiOz膜を熱処理 等の後工程無しに低温で直接合成できる点に特徴があ る。

【0015】<u>特開平6-77626号</u>

この先行技術では、基材の表面に触媒金属錯イオンを含 有する触媒処理液を付着させ、次いでパターンマスクを 用いて光照射し、光照射部分の触媒活性を失活させ、そ の後基材を無電解めっき浴中に入れ、光未照射部分にN i等のめっき回路を形成させるものである。

【0016】特開昭57-173996号

基板上に、無電解めっきの核たり得る貴金属を還元可能 な酸化状態で含み且つ酸化状態の貴金属に対する錯化剤 を含む感光剤層を形成し、この感光剤層を露光すること により触媒核たる金属粒子を還元析出させ、感光剤層の 未露光部分を除去した後、無電解めっきにより導体回路 層を形成するものである。

【0017】<u>特開平7-336022</u>号

光反応性重合触媒を施した絶縁基板の表面に、マスクパ ターンを通して光照射した後、導電性高分子のモノマー の蒸気又は溶液と接触させると、光の遮られた部分に導 電性高分子が重合生成する。この導電性高分子パターン を塩化パラジウム溶液に浸漬後、無電解めっきすると導 電性高分子パターン部分のみに金属が析出し、導電性高 分子パターンに沿った金属回路が形成される。

[0018]

【発明が解決しようとする課題】本発明の前提となる技 術は、◎光を吸収することにより光励起電子が発生する 物質(即ち、光触媒)を介して、②光触媒の表面と接す る金属イオンを直接還元することにより、③光触媒の表 A)水溶液(錯体形成能を有する水溶液)に浸漬して不 50 面上にレジスト樹脂を一切用いないで、無電解めっき法

5

により金属膜パターンを析出させる、ことである(図1 参照)。

【0019】したがって、光照射部分のみが化学活性な 状態となるため、光照射の段階で、金属イオンが金属状 態に還元され、光照射部分にのみ無電解めっき金属膜が 析出する。また、光未照射部分に残留する金属イオン は、錯体形成能をもつ水溶液中にて金属錯体として光触 媒の表面から遊離・除去されるため、光未露光部分には 無電解めっき金属膜が析出しない(図2参照)。

【0020】しかしながら、上記事項は、紫外光に対し 10 て公知であるが、可視光では従来実現されていなかっ た。そこで、本発明は、光触媒能を有する物質を介し て、光により還元反応を誘起させて基材上に金属を接触 させ、レジスト樹脂を使用することなく、場合によって は真空プロセスを使用することなく、あるいは、低温プ ロセスにより、あるいは、レーザ直描により金属配線を 形成する場合において、可視光の照射でこのような金属 配線の形成を可能にすることを目的とする。

[0021]

【課題を解決するための手段】ZnOは光吸収端が390 nm程度にあるため、そのままでは紫外光に対してのみ 光吸収を示すが、可視光に対しては光吸収しない。そこ で、本発明では、電子写真の分野で利用されている樹脂 感光体(色素)による増感処理により、可視光に対して も光吸収を誘起させることが可能になる、という事実を 利用した。

【0022】即ち、請求項1によれば、色素により光増 感された光触媒能を有する物質が表面に形成された基材 を、少なくともアルコールを含む金属イオン含有水溶液 中に浸漬し、色素の光吸収域に応じたレーザ光により所 30 定のパターンで基材上に描画し、該基材を、錯体形成能 を有する水溶液中に浸漬して吸着金属イオンを除去する ことにより吸着金属原子のみから成るパターニングされ た金属膜を形成する。

【0023】請求項2によれば、光触媒能を有する物質 が表面に形成された基材を、少なくともアルコールおよ び色素を含む金属イオン含有水溶液中に浸漬し、色素の 光吸収域に応じたレーザ光により所定のパターンで基材 上に描画し、該基材を、錯体形成能を有する水溶液中に 浸漬して吸着金属イオンを除去することにより吸着金属 原子のみから成るパターニングされた金属膜を形成す

【0024】請求項3では、色素により光増感された光 触媒能を有する物質が表面に形成された基材を、少なく ともアルコールを含むパラジウムイオン含有水溶液中に 浸漬し、色素の光吸収域に応じたレーザ光により所定の パターンで基材上に描画し、該基材を、錯体形成能を有 する水溶液中に浸漬して吸着パラジウムイオンを除去す ることにより吸着パラジウム原子のみを基材の前記パタ ーン上に選択的に残すことによりパターンニングされた 50 ち、硫酸やフッ酸等の強酸性溶液や水酸化ナトリウムや

金属膜を形成する。

【0025】請求項4では、光触媒能を有する物質が表 面に形成された基材を、少なくともアルコールおよび色 素を含むパラジウムイオン含有水溶液中に浸漬し、色素 の光吸収域に応じたレーザ光により所定のパターンで基 材上に描画し、該基材を、錯体形成能を有する水溶液中 に浸漬して吸着パラジウムイオンを除去することにより 吸着パラジウム原子のみを基材の前記パターン上に選択 的に残すことによりパターニングされた金属膜を形成す る。

6

【0026】請求項5によれば、光触媒能を有する物質 が表面に形成された基材を100℃以上に加熱した後、 少なくとも70℃以上まで冷却された基材を、少なくと も色素が溶解されたアルコール溶液中に浸漬することに より得られる、色素により光増感された光触媒能を有す る物質が表面に形成された基材が提供される。本発明に よれば、基材上に形成された光触媒能を有する薄膜状物 質(光増感された物質を含む)に特定波長の可視光を照 射することにより光励起電子を発生させ、この光励起電 20 子により金属イオンを直接還元して基材表面に、レジス ト樹脂を一切使用しないで、金属膜を選択的に析出・堆 積させることができる。

[0027]

【実施例】

実施例1

図3(a)~(c)は本発明の第1実施例に基づいて、 光触媒反応を利用しためっき法により、絶縁性基材上に 金属配線を形成する工程を示した図である。図中、1は 絶縁性基材、例えば、ガラス板やガラスエポキシ板、2 は光触媒能を有する物質、例えば、ZnO、3は色素、 例えば、シアニン系色素やキサンテン系色素、11は低 級アルコールを含む塩化パラジウム水溶液、12はレー ザ光、4は錯体形成能を有する水溶液、例えば、エチレ ンジアミン水溶液、5は無電解(化学)金属めっき液、 例えば、無電解Cuめっき液、13は金属めっき膜であ る。

【0028】以下に工程順に説明する。

Φ 絶縁性基材1の表面の清浄化(主として脱脂)を目 的として、イソプロピルアルコール (IPA) やアセト ンに代表される有機溶剤等の溶液中で洗浄処理する。こ の際に超音波洗浄を併用することにより洗浄効果を向上 させることが可能である。

【0029】また、有機溶剤等による洗浄処理に先立 ち、絶縁性基材1を洗剤により洗浄処理することも絶縁 性基材1の表面の清浄化に効果がある。

② 絶縁性基材1の表面に光触媒能を有する物質2を薄 膜状に形成する。光触媒能を有する物質2の膜厚は0. 1~1μm程度でよい。薄膜形成手段として、無電解 (化学)めっきを用いる。但し、無電解めっきに先立

水酸化カリウム等の強アルカリ性溶液等により、絶縁性基材1の表面を梨子地化(Ra=10~50nm程度)することにより、無電解めっきにより形成される光触媒能を有する物質2の絶縁性基材1への密着力を向上させることが好ましい。

【0030】別の薄膜形成手段として、電気めっきを用いる。但し、電気めっきに先立ち、絶縁性基材1の表面を導電性に改質する必要があるため、絶縁性基材1に耐熱性がない場合、絶縁性基材1の表面全面に無電解めっき法によりNi膜やCu膜等を形成するか、イオンプレーティングやスパッタリング等の真空成膜法により導電性膜を形成しなければならない。絶縁性基材1に耐熱性がある場合、同様に無電解めっき法や真空成膜法により導電性膜を形成してもよいし、例えば、ゾルーゲル法やペースト印刷法により導電性酸化物膜であるITO膜やRuO2膜、導電性金属膜であるCu膜やAg-Pd膜を形成してもよい。

【0031】更に別の薄膜形成手段として、イオンプレーティングやスパッタリング等の真空成膜法を用いてもよい。この成膜に先立ち逆スパッタ(スパッタエッチン 20 グ)を絶縁性基材1の表面に施すことにより、光触媒能を有する物質2の絶縁性基材1への密着力を向上させることが好ましい。更に別の薄膜形成手段として、絶縁性基材1に耐熱性がある場合、ゾルーゲル法やスプレーパイロリシス(噴霧熱分解)法等を用いてもよい。

② ②で得られた絶縁性基材1を、メチルアルコール等の有機溶剤に色素(3)を溶解した溶液中に含浸して、色素3を絶縁性基材1の表面、即ち、光触媒能を有する物質2の表面に吸着させる。この際、溶液中に無水フタル酸やヨウ素等の電子受容性物質を10-3mol/1程度添 30加し、②で得られた、絶縁性基材1、即ち光触媒能を有する物質2の色素増感効果を向上させることが好ましい。

● 図3(a)に示すように、メチルアルコール等の低級アルコールを含む塩化パラジウム水溶液11(塩化パラジウム濃度1~4×10⁻³mol/1、pH1~4)中に③で得られた絶縁性基材1を浸漬し、色素3の光吸収域に応じた波長を発するレーザ光12、例えば、波長488nmのArレーザ光をビーム状に絞り(集光し)、ペンで配線パターンを描くように、このレーザ光を用いて40③で得られた絶縁性基材1上に直接描画(直描)し、パラジウムイオンPd²+の絶縁性基材1への吸着および金属パラジウムPdへの選択的還元を行う。

【0032】この場合において、上記②と②の工程をあわせても処理しても同様の効果が得られる。即ち、メチルアルコール等の低級アルコールを含む塩化パラジウム水溶液11(塩化パラジウム濃度1~4×10^{-3mol/l}、pH1~4)中に色素3を溶解し、この溶液中に②で得られた絶縁性基材1を浸漬し、色素3に応じた波長を発するレーザ光、例えば、波長488nmのArレー

ザ光をビーム状に絞り(集光し)、ペンで配線パターンを描くように、このレーザ光を用いて②で得られた絶縁性基材1上に直接描画(直描)し、パラジウムイオンPd²⁺絶縁性基材1への吸着および金属パラジウムPdへの選択的還元を行うようにしても良い。

- **⑤** 図3(b)に示すように、錯体形成能を有する水溶液4に**④**で得られた絶縁性基材1を浸漬し、パラジウムイオンPd²⁺の除去を行う。
- 図3(c)に示すように、⑤で得られた絶縁性基材
 1を無電解(化学)金属めっき液5に浸漬し、無電解金属めっき膜13を形成する。膜厚は0.1~0.5μm程度である。
 - ⑦ ⑥で得られた絶縁性基材1を電気金属めっき液(図示せず)に浸漬し、無電解金属めっき膜に通電して必要な膜厚になるまで電気金属めっき膜を成長させる。 【0033】実施例2

図4(a)及び(b)は本発明の第2実施例に係る、光触媒反応を利用しためっき法により、絶縁性基材上に金属配線を形成する工程図である。第1実施例と異なる点についてのみ説明する。図中、1は絶縁性基材、例えば、ガラス板やガラスエポキシ板、2は光触媒能を有する物質、例えば、ZnO、3は色素、例えば、シアニン系色素やキサンテン系色素、12はレーザ光、14はメチルアルコール等の低級アルコールを含む硫酸銅水溶液、4は錯体形成能を有する水溶液、例えば、エチレンジアミン水溶液、である。

【0034】以下に工程順に説明する。 の及びの 第1.実験例におけるのみびの。

Φ及び② 第1実施例におけるΦ及び②の工程と同じである。

③ メチルアルコール等の有機溶剤に色素(3)を溶解した溶液中に②で得られた絶縁性基材1を1,00℃以上に加熱し、70℃程度に冷却後含浸して、この色素3を絶縁性基材1の表面、即ち、光触媒能を有する物質2の表面に吸着させる。この際、第1実施例と同様に、溶液中に無水フタル酸やヨウ素等の電子受容性物質を10-3 mol/1 程度添加し、絶縁性基材1の色素増感効果を向上させることが好ましい。

② 図4(a)に示すように、メチルアルコール等の低級アルコールを含む硫酸銅水溶液14(硫酸銅濃度1~4×10⁻³ mol/1、pH1~4)中に③で得られた絶縁性基材1を浸漬し、色素3の光吸収域に応じた波長を発するレーザ光、例えば、波長488 nmのA rレーザ光をビーム状に絞り(集光し)、ペンで配線パターンを描くように、このレーザ光を用いて③で得られた絶縁性基材1上に直接描画(直描)し、銅イオンCu²・の④で得られた絶縁性基材1上に直接描画(直描)し、銅イオンCu²・の④で得られた絶縁性基材1への吸着および金属銅Cuへの選択的還元を行う。

、pH1~4)中に色素3を溶解し、この溶液中に② 【0035】この場合において、第1実施例と同様、上で得られた絶縁性基材1を浸漬し、色素3に応じた波長 記③と④の工程をあわせても処理しても同様の効果が得を発するレーザ光、例えば、波長488 n m の A r レー 50 られる。即ち、メチルアルコール等の低級アルコールを

含む硫酸銅水溶液14(硫酸銅濃度1~4×10⁻³ mol/ I、pH1~4)中に色素3を溶解する。 ②で得られた 絶縁性基板1をこの溶液14中に、浸漬し、色素3に応 じた波長を発するレーザ光、例えば、波長488nmの Arレーザ光をビーム状に絞り(集光し)、ペンで配線 パターンを描くように、このレーザ光を用いて絶縁性基 材1上に直接描画(直描)し、銅イオンCu²⁺の②で得ら れた絶縁性基材1への吸着および金属銅Cuへの選択的還 元を行うようにしても良い。

- 5 図4(b)に示すように、錯体形成能を有する水溶 10 液4にΦで得られた絶縁性基材1を浸漬し、銅イオンの 除去を行う。
- ⑤ ⑤で得られた絶縁性基材1を電気金属めっき液(図 示せず)に浸漬し、通電して必要な膜厚になるまで電気 金属めっき膜を成長させる。

【0036】なお、④で得られた金属銅の膜厚が薄い場 合、無電解めっき法により銅の膜厚を少し厚くした後、 **6**の電気金属めっきを施すことが好ましい。

実施例3

図5(a)及び(b)は本発明の第3実施例に係る、光 20 触媒反応を利用しためっき法により、絶縁性基材上に金 属配線を形成する工程図である。

【0037】図5において、7は耐熱・絶縁性基材、例 えば、ガラス板、2は光触媒能を有する物質、例えば、 TiO2、8は吸水性物質に塩化パラジウム水溶液および低 級アルコールを吸収させたもの、例えば、ポリビニルア ルコールに塩化パラジウム水溶液およびエチルアルコー ルを吸収させたもの、15はフォトマスク、16は紫外 光、4は錯体形成能を有する水溶液、例えば、エチレン ジアミン水溶液、5は無電解(化学)金属めっき液、例 30 えば、無電解Cuめっき液、である。

【0038】上記実施例と異なる点についてのみ、工程 順に説明する。

- する。
- 耐熱・絶縁性基材7の表面に光触媒能を有する物質 2を薄膜状に形成する。薄膜形成手段として、イオンプ レーティングやスパッタリング等の真空成膜法を用い る。この際に成膜に先立ち逆スパッタ(スパッタエッチ ング)を耐熱・絶縁性基材7の表面に施すことにより、 光触媒能を有する物質2の耐熱・絶縁性基材7への密着 力を向上させることが可能である。あるいは、薄膜形成 手段として、ゾルーゲル法やスプレーパイロリシス (噴 霧熱分解)法等の非真空プロセスを用いてもよい。光触 媒能を有する物質2の膜厚は0.1~1μm程度でよ 110
- ③ 吸水性物質に塩化パラジウム水溶液(塩化パラジウ ム濃度1~4×10⁻³mol/l 、pH1~4)および低級 アルコールを吸収させたもの8を②で得られた耐熱・絶 緑性基材7に塗布する。塗布手段はスピンコートやスク 50 @ ②で得られた膜8を絶縁性基材1から純水洗浄にて

1.0 リーン印刷等の方法を用いる。膜8の膜厚は0.05~ 1 mm程度でよい。

- ④ ③で得られた耐熱・絶縁性基材7にフォトマスク1 5を介して紫外線16の露光を施し、パラジウムイオン Pd2+の光触媒能を有する物質2への吸着および金属パラ ジウムPdへの選択的還元を行う(図5(a))。
- 5 3で得られた膜8を耐熱・絶縁性基材7から純水洗 浄にて除去する(図5(b))。
- **⑥** 錯体形成能を有する水溶液4に**⑤**で得られた耐熱・ 絶縁性基材7を浸漬し、パラジウムイオンPd2+の除去を 行う(図5(c))。
 - ② ⑥で得られた耐熱・絶縁性基材7を無電解(化学) 金属めっき液5に浸漬し、無電解金属めっき膜を形成す る(図5(d))。膜厚は0.1~0.5μm程度であ る。
 - ❷ ②で得られた耐熱・絶縁性基材7を電気金属めっき 液(図示せず)に浸漬し、無電解金属めっき膜に通電し て必要な膜厚になるまで電気金属めっき膜を成長させ

【0039】実施例4

図6(a)~(c)は本発明の第4実施例に基づいて、 光触媒反応を利用しためっき法により、絶縁性基材上に 金属配線を形成する工程図である。図6において、1は 絶縁性基材、例えば、ガラス板やガラスエポキシ板、2 は光触媒能を有する物質、例えば、ZnO、3は色素、 例えば、シアニン系色素やキサンテン系色素、8は吸水 性物質に塩化パラジウム水溶液および低級アルコールを 吸収させたもの、例えば、ポリビニルアルコールに塩化 パラジウム水溶液およびエチルアルコールを吸収させた もの、12はレーザ光、4は錯体形成能を有する水溶 液、例えば、エチレンジアミン水溶液、5は無電解 (化 学) 金属めっき液、例えば、無電解Cuめっき液、であ る。

【0040】以下に工程順に説明する。

- ①、②及び③ 第1実施例における①、②及び③の工程 と同じである。
- ② 吸水性物質に塩化パラジウム水溶液(塩化パラジウ ム濃度1~4×10-3 mol/1 、pH1~4)および低級 アルコールを吸収させたもの8を3で得られた耐熱・絶 緑性基材7に塗布する。塗布手段はスピンコートやスク リーン印刷等の方法を用いる。膜8の厚さは0.05~ 1 mm程度でよい。
 - ⑤ ④で得られた絶縁性基材1に、色素3の光吸収域に 応じた波長を発するレーザ光、例えば、波長488nm のArレーザ光をビーム状に絞り(集光し)、ペンで配 線パターンを描くように、レーザ光を用いてので得られ た絶縁性基材1上に直接描画(直描)し、パラジウムイ オンPd2+の④で得られた絶縁性基材1への吸着および金 属パラジウムPdへの選択的還元を行う。

除去する。

【0041】なお、3~6の工程をあわせても行っても 同様の効果が得られる。即ち、吸水性物質に塩化パラジ ウム水溶液(塩化パラジウム濃度1~4×10-3 mol/1 、pH1~4)および低級アルコールおよび色素3を 吸収させたものを②で得られた絶縁性基材1に塗布し、 色素3の光吸収域に応じた波長を発するレーザ光、例え ば、波長488nmのArレーザ光をビーム状に絞り (集光し)、ペンで配線パターンを描くように、レーザ 光を用いて得られた絶縁性基材1上に直接描画 (直描) し、パラジウムイオンPd2+の絶縁性基材1への吸着およ び金属パラジウムPdへの選択的還元を行う。その後、絶 縁性基材 1 上の吸水性物質に塩化パラジウム水溶液およ び低級アルコールおよび色素3を吸収させたものを納水 洗浄にて除去する。

- の 錯体形成能を有する水溶液4に6で得られた絶縁性 基材1を浸漬し、パラジウムイオンPd2+の除去を行う (図6(b))。
- ❸ ⑦で得られた絶縁性基材1を無電解(化学)金属め っき液5に浸漬し、無電解金属めっき膜を形成する(図 20 ② 錯体形成能を有する水溶液4に⑤で得られた絶縁性 6(c))。膜厚は0.1~0.5μm程度である。
- ⑨ ❸で得られた耐熱・絶縁性基材7を電気金属めっき 液(図示せず)に浸漬し、無電解金属めっき膜に通電し て必要な膜厚になるまで電気金属めっき膜を成長させ る。

【0042】実施例5

図7(a)及び(b)は本発明の第5実施例に係る、光 触媒反応を利用しためっき法により、絶縁性基材上に金 属配線を形成する工程図である。図中、1は絶縁性基 材、例えば、ガラス板やガラスエポキシ板、2は光触媒 30 能を有する物質、例えば、ZnO、3は色素、例えば、 シアニン系色素やキサンテン系色素、9は吸水性物質に 硫酸銅水溶液および低級アルコールを吸収させたもの、 例えば、ポリビニルアルコールに硫酸銅水溶液およびエ チルアルコールを吸収させたもの、12はレーザ光、4 は錯体形成能を有する水溶液、例えば、エチレンジアミ ン水溶液、である。

【0043】以下に、上記実施例と異なる点についての み、製造工程を説明する。

- ①、②及び③ 第1実施例における①、②及び③の工程 40 と同じである。
- ④ 吸水性物質に硫酸銅水溶液 (硫酸銅濃度1~4×1 O-3mol/1 、pH1~4)および低級アルコールを吸収 させたもの9を3で得られた絶縁性基材1に塗布する。 塗布手段はスピンコートやスクリーン印刷等の方法を用 いる。膜9の膜厚は0.05~1mm程度でよい。
- ⑤ ②で得られた絶縁性基材1に、色素3の光吸収域に 応じた波長を発するレーザ光、例えば、波長488 n m のA r レーザ光をビーム状に絞り (集光し)、ペンで配 線パターンを描くように、レーザ光を用いて得られた絶 50 1…絶縁性基材

12 縁性基材1上に直接描画(直描)し、銅イオンCu²+の❷

で得られた絶縁性基材1への吸着および金属銅Cuへの選 択的還元を行う。

6 ⑤で得られた絶縁性基材1上の吸水性物質に硫酸銅 水溶液および低級アルコールを吸収させたもの9を純水 洗浄にて除去する。

【0044】なお、3~6の工程をあわせても行っても 同様の効果が得られる。即ち、吸水性物質に硫酸銅水溶 液(硫酸銅濃度1~4×10⁻³mol/l 、pH1~4) お よび低級アルコールおよび色素3を吸収させたものを② で得られた絶縁性基材1に塗布し、色素3の光吸収域に 応じた波長を発するレーザ光、例えば、波長488nm のArレーザ光をビーム状に絞り(集光し)、ペンで配 線パターンを描くように、レーザ光を用いて得られた絶 縁性基材1上に直接描画(直描)し、銅イオンCu2+の絶 縁性基材 1 への吸着および金属銅Cuへの選択的還元を行 う。その後、絶縁性基材1上の吸水性物質に硫酸銅水溶 液および低級アルコールおよび色素3を吸収させたもの を純水洗浄にて除去する。

- 基材1を浸漬し、銅イオンCu2+の除去を行う。
- ❷ ⑦で得られた絶縁性基材1を電気金属めっき液(図 示せず) に浸漬し、通電して必要な膜厚になるまで電気 金属めっき膜を成長させる。

【0045】なお、⑦で得られた金属鋼の膜厚が薄い場 合、無電解めっき法により銅の膜厚を少し厚くした後、 電気金属めっきを施すことが望ましい。以上、添付図面 を参照して本発明の実施例について詳細に説明したが、 本発明は上記の実施例に限定されるものではなく、本発 明の精神ないし範囲内において種々の形態、変形、修正 等が可能であることに留意すべきである。

[0046]

【発明の効果】以上説明したように、本発明によれば光 触媒反応を効果的に利用することにより、レジスト樹脂 を使用することなく、容易にめっき法により金属配線を 形成することが可能となり、回路基板製造の低コスト化 に寄与するところが大きい。また、本発明によれば、光 触媒能が色素により光増感されているので、可視光を照 射することにより光励起電子を発生させることができる ので、めっき処理の適用を広げることができる。

【図面の簡単な説明】

- 【図1】本発明の前提となる原理を説明する図である。
- 【図2】本発明の原理を説明する図である。
- 【図3】本発明の第1実施例の構成図である。
- 【図4】本発明の第2実施例の構成図である。
- 【図5】本発明の第3実施例の構成図である。
- 【図6】本発明の第4実施例の構成図である。
- 【図7】本発明の第5実施例の構成図である。 【符号の説明】

- 2…光触媒能を有する物質
- 3…色素

.

- 4…錯体形成能を有する水溶液
- 5…無電解(化学)金属めっき液
- 6…電気金属めっき液
- 7…耐熱·絶縁性基材
- 8…吸水性物質に塩化パラジウム水溶液及び低級アルコ
- ールを吸収させたもの

【図1】

【図3】

- 9…吸水性物質に金属イオン含有水溶液及び低級アルコ ールを吸収させたもの
- 11…低級アルコールを含む塩化パラジウム水溶液
- 12…レーザ光
- 13…金属膜
- 14…低級アルコールを含む硫酸銅水溶液
- 15…フォトマスク
- 16…紫外光

【図2】

- A …悪材 B …光触媒能を有する薄膜状物質 C …金属膜 D …未算光部 E …光

【図4】

実施例 2

- 1 --・絶縁性基材 2 --・光触媒能を有する物質
- 3…色素 4…鎖件形成能を有する水溶液
- 12… レーザ光 14… 低級アルコールを含む硫酸銅水溶液

【図7】

実施例5

- | …絶縁性基材 2 …光触媒能を有する物質 3 …色素 4 …鏡体形成能を有する水溶液 9 …吸水性物質に金属イオン含有水溶液及び 低級アルコールを吸収させたもの 12…レーザ光