Spis treści

Przegląd podstawowych zagadnień związanych z wielomianami	1
Postawowe definicje	1
Postać iloczynowa wielomianu i dzielenie wielomianu	2
Pochodna wielomianu i jej obliczanie	2
Metoda Newtona oraz wielowymiarowa metoda Newtona	2
Opis klasycznej metody Newtona	2
Zastosowanie klasycznej metody Newtona do szukania zer wielomianu	3
Metoda Newtona dla wielu funkcji wielu zmiennych	3
Metoda Newtona dla funkcji zespolonych	4
Wybrane metody wyszukiwania miejsc zerowych wielomianu	5
Metoda Laguerre'a	5
Metoda Mullera	
Metoda Bairstowa	6
Opis metody Bairstowa	6
Analiza teoretyczna metody Bairstowa	7
Przykłady rozbieżności metody Bairstowa	
Testy numeryczne	7

Przegląd podstawowych zagadnień związanych z wielomianami

Postawowe definicje

Definicja 1. Wielomianem stopnia $n \in \mathbb{N}$ nad ciałem \mathbb{K} będziemy nazywać przekształcenie $\mathbb{K}^n \mapsto \mathbb{K}$ zadane wzorem $W(x) = a_0 + a_1x + \ldots + a_nx^n$, gdzie a_i to pewne współczynniki z ciała \mathbb{K} .

Definicja 2. Niech W będzie pewnym wielomianem (nad ciałem \mathbb{K}). Liczbę a, taką że W(a) = 0, będziemy nazywać pierwiastkiem wielomianu.

Uwaga 1. Z faktu, że wielomian W ma współczynniki z ciała \mathbb{K} , nie wynika fakt, że jego pierwiastki również będą należeć do \mathbb{K} . Klasycznym przykładem jest wielomian x^2+1 , który ma współczynniki rzeczywiste, a jego pierwiastkami są liczby zespolone.

Uwaga 2. Istnieją takie ciała \mathbb{K} , że dla dowolnego wielomianu stopnia większego od 0 wszystkie jego pierwiastki należą do \mathbb{K} . Ciała takie będziemy nazywać algebraicznie domkniętymi. Przykładem takiego ciała jest \mathbb{C} , czego nie będziemy dowodzić.

Podczas całego tego sprawozdania będziemy zajmować się następującym problemem:

Problem znajdowania miejsc zerowych wielomianu

Niech W będzie wielomianem. Celem jest znaleźć zbiór $ker(W) = \{a \mid W(a) = 0\}.$

Powyższy problem, choć pozornie prosty, jest sformułowany bardzo ogólnie. Na potrzeby tej pracy od tej pory ograniczymy się tylko do \mathbb{R} oraz \mathbb{C} , choć nic nie staje na przeszkodzie by poeksperymentować z innymi ciałami. Aktualnie nie wiemy czy każdy wielomian ma pierwiastki, a jeśli ma to czy ich zbiór jest skończony. Nie znamy również żadnych metod rozwiazywania W(x) = 0. By lepiej zrozumieć podane zagadnienie przejdźmy przez

ciąg różnych definicji, algorytmów, twierdzeń i lematów związanych z wielomianami (warto je zrozumieć, gdyż kolejne rozdziały będą z nich korzystać).

Twierdzenie 1. Każdy wielomian W(x) nad \mathbb{C} stopnia $n \in \mathbb{N}_+$ ma co najmniej jeden pierwiastek.

Dowód. To twierdzenie jest nazywane zasadniczym twierdzeniem algebry. Dowód [1] s. 105.

Wniosek 1. $|ker(W)| \leq n$, gdzie n to stopień wielomianu W.

Postać iloczynowa wielomianu i dzielenie wielomianu

Definicja 3. Wielomian W(x) nazywamy podzielnym przez wielomian P(x), różny od wielomianu zerowego, wtedy i tylko wtedy, gdy istnieje taki wielomian Q(x), że W(x) = Q(x) * P(x). Wielomian Q(x) nazywamy ilorazem wielomianu W(x) przez P(x). Mówimy, że wielomian P(x) jest dzielnikiem wielomianu P(x).

Definicja 4. Dowolny wielomian W(x) możemy zapisać jako $W(x) = P(x) \cdot Q(x) + R(x)$ dla pewnych wielomianów P, Q, R. Mówimy, że wielomian W(x) jest podzielny przez Q(x) jeżeli R(x) = 0.

Twierdzenie 2. Wielomian W(x) jest podzielny przez wielomian Q(x) = (x - a) wtedy i tylko wtedy, gdy W(a) = 0.

$$Dowód.$$
 W [2]

Chcielibyśmy umieć w efektywny sposób realizować procedurę dzielenie wielomianu przez jednomiany postaci x - a. Służy do tego następujący algorytm:

- 1. $P(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$
- 2. Niech $\alpha = a_n$
- 3. Kolejno dla $k=n-1,n-2,\ldots 0$ wykonaj $\alpha:=a_k+x\alpha.$
- 4. Wynik to $p(x) = \alpha$.

Dokładny opis metody oraz jej analizę możemy znaleźć w [3] (s 103).

Pochodna wielomianu i jej obliczanie

TUTAJ DODAĆ OPIS DOTYCZĄCY POCHODNYCH I OBLICZANIA ICH DLA WIELOMIANU.

Metoda Newtona oraz wielowymiarowa metoda Newtona

Opis klasycznej metody Newtona

Klasyczną metodą Newtona zastosowaną dla pewnego punktu startowego p oraz funkcji $f: \mathbb{R} \to \mathbb{R}$ klasy C^1 nazywać będziemy metodę iteracyjną postaci:

$$x_n = \begin{cases} p, & gdy \ n = 0 \\ x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}, & w.p.p. \end{cases}$$

Można pokazać, że x_n zbiega do pewnego pierwiastka funkcji f. Analizę klasycznej metody Newtona można znaleźć w [3] na stronach 71-81.

Zastosowanie klasycznej metody Newtona do szukania zer wielomianu

Jeśli mamy wielomian o współczynnikach i pierwiastkach rzeczywistych możemy policzyć jego pierwiastki za pomocą klasycznej metody Newtona. Podstawiamy za f z poprzedniego opisu nasz wielomian, a f' to jego pochodna. Po znalezieniu jednego pierwiastka (nazwijmy go a) dzielimy nasz wielomian przez x-a i uruchamiamy program dla otrzymanego wielomianu. Proces kontynuujemy tak długo, aż dojdziemy do wielomianu o stopniu 0.

Uwaga 3. Wartość w punkcie wielomianu i jego pochodnej możemy wyznaczyć z pomocą schematu Hornera, który był omówiony wcześniej (w kodzie przykładowym skorzystaliśmy z funkcji bibliotecznych dla większej czytelności).

```
using Polynomials
# W - wielomian, n - stopnien wielomianu, p - punkt startowy, eps - dokladnosc

function klasyczna_metoda_newtona(W, n, p, eps)
   dW = polyint(W)  # oblicza pochodna wielomianu
   x_n = p

   while abs(polyval(W, x_n)) >= eps  # dopoki blad >= prezycja
   x_n = x_n - (polyval(W, x_n)/polyval(dW, x_n))
   end

return x_n  # zwroc szukany pierwiastek
end
```

Uwaga 4. Powyższa metoda nie nadaje się do obliczania miejsc zerowych wielomianu, którego pierwiastki są zespolone (z powodu tego, że operujemy tutaj na tylko rzeczywistych przybliżeniach x_n).

Metoda Newtona dla wielu funkcji wielu zmiennych

Załóżmy, że mamy do rozwiazania układ równań:

$$\begin{cases} f_1(x_1, x_2, \dots, x_n) = 0 \\ f_2(x_1, x_2, \dots, x_n) = 0 \\ & \dots \\ f_n(x_1, x_2, \dots, x_n) = 0 \end{cases}$$

gdzie $f_i \in \mathbb{R}^n \mapsto \mathbb{R}^n$ jest klasy C^1 .

Każdą z tych funkcji możemy rozpisać ze wzoru Taylora jako:

$$0 = f_i(x_1 + h_1, x_2 + h_2, \dots, x_n + h_n) \approx f_i(x_1, x_2, \dots, x_n) + \sum_{i=1}^n h_j \cdot \frac{\partial f_i}{\partial x_j}(x_1, x_2, \dots, x_n)$$

Powyższy układ możemy zapisać w postaci macierzowej:

$$\begin{pmatrix} f_1(x_1, x_2, \dots, x_n) \\ f_2(x_1, x_2, \dots, x_n) \\ \dots \\ f_n(x_1, x_2, \dots, x_n) \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_1, x_2, \dots x_n) & \frac{\partial f_1}{\partial x_2}(x_1, x_2, \dots x_n) & \dots & \frac{\partial f_1}{\partial x_1}(x_1, x_2, \dots x_n) \\ \frac{\partial f_2}{\partial x_2}(x_1, x_2, \dots x_n) & \frac{\partial f_2}{\partial x_2}(x_1, x_2, \dots x_n) & \dots & \frac{\partial f_2}{\partial x_1}(x_1, x_2, \dots x_n) \\ \dots & \dots & \dots & \dots & \dots \\ \frac{\partial f_n}{\partial x_1}(x_1, x_2, \dots x_n) & \frac{\partial f_n}{\partial x_2}(x_1, x_2, \dots x_n) & \dots & \frac{\partial f_n}{\partial x_1}(x_1, x_2, \dots x_n) \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \\ \dots \\ h_n \end{pmatrix}$$

Aby nieco skrócić ten układ, będziemy go zapisywać jako $F(X) = -J \cdot H$. Jeśli macierz J jest nieosobliwa, to układ ma rozwiązanie w postaci:

$$-J^{-1} \cdot F(X) = H$$

Ostatecznie wzór Newtona dla układu funkcji wielu zmiennych możemy wzorem:

$$X_{k+1} = X_k + H_k = X_k - J^{-1}(X_k)F(X_k)$$

Metoda Newtona dla funkcji zespolonych

Lemat 1. Dowolną funkcję analityczną $f: \mathbb{C} \mapsto \mathbb{C}$ możemy zapisać jako

$$f(z) = f(x+yi) = P(x,y) + iQ(x,y),$$

 $gdzie \ x, y \in \mathbb{R}, \ P(x, y) \in \mathbb{R}, Q(x, y) \in \mathbb{R}$

Przykład 1.

$$f(z) = z^3 - 2z = f(x+iy) = (x+iy)^3 - 2(x+iy) = (x^3 - 3xy^2 - 2x) + i(3x^2y - y^3 - 2y) = P(x,y) + iQ(x,y)$$

Niech f(z) = P(x,y) + iQ(x,y). Równanie f(z) = 0 możemy sprowadzić do układu równań Q(x,y) = 0 i P(x,y) = 0. Taki układ równań rozwiązujemy za pomocą metody Newtona dla funkcji wielu zmiennych.

$$v_{n+1} = v_n - \frac{f(v_n)}{f'(v_n)}$$

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} x_n \\ y_n \end{pmatrix} - J^{-1} \begin{pmatrix} P(x_n, y_n) \\ Q(x_n, y_n) \end{pmatrix} = \begin{pmatrix} x_n \\ y_n \end{pmatrix} - \begin{pmatrix} \frac{\partial P}{\partial x}(x_n, y_n) & \frac{\partial P}{\partial y}(x_n, y_n) \\ \frac{\partial Q}{\partial x}(x_n, y_n) & \frac{\partial Q}{\partial y}(x_n, y_n) \end{pmatrix}^{-1} \begin{pmatrix} P(x_n, y_n) \\ Q(x_n, y_n) \end{pmatrix}$$

Ponieważ wielomian jest funkcją holomorficzną, to zachodzi równanie Cauchy'ego-Riemanna:

$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}, \ -\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Oznaczając $P = P(x_n, y_n), Q = Q(x_n, y_n), P_x = \frac{\partial P}{\partial x}(x_n, y_n), Q_x = \frac{\partial Q}{\partial x}(x_n, y_n)$ oraz korzystając ze wzoru na macierz odwrotną możemy uprościć wzór na metodę Newtona do postaci:

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} x_n - \frac{PP_x + QQ_x}{Px^2 + Qx^2} \\ y_n - \frac{PP_y + QQ_y}{Px^2 + Qx^2} \end{pmatrix}$$

```
using MultiPoly

### a - lista wspolczynnikow wielomianu (np. [1,2,3] reprezentuje wielomian 1 +

# Funkcja dzielaca wielomian przez pierwiastek uzywajac schematu Hornera

function horner(a, x0)

n = length(a) - 1

b = Array(Complex{BigFloat}, n)

b[n] = a[n+1]
```

for _k in 0:(n-2) $i = n - _k$ b[i-1] = a[i] + b[i]*x0

return b

end

```
#W− wspolczynniki wielomianu jw, n− stopien wielomianu, x0 + i y0 − punkt st¤rtowy, eps
function complex_newton (W, n:: Int, x0:: Float64, y0:: Float64, eps:: Float64)
  if n = 0
    return
  elseif n == 1
    w = Complex 128(-W[1]) / Complex 128(W[2])
    @printf("%.16lf\bot+\t\bot%.16lf\boti\n\bot", real(w), imag(w))
    return
  end
  x, y = generators(MPoly\{Float64\}, :x, :y) \# zmienne w wielomianie
  p = zero(MPoly{Complex128})
  for i in 1:(n+1)
    p = p + W[i] * (x+y*im)^(i-1)
  end
  xn = x0; yn = y0; P = real(p); Q = imag(p-P)
  Px = diff(P, :x); Py = diff(P, :y)
  Qx = diff(Q, :x); Qy = diff(Q, :y)
  while ( abs ( evaluate (p, xn, yn) ) >= eps )
    eP = evaluate(P, xn, yn); eQ = evaluate(Q, xn, yn)
    ePx = evaluate(Px, xn, yn); eQy = evaluate(Qy, xn, yn)
    ePy = evaluate(Py, xn, yn); eQx = evaluate(Qx, xn, yn)
    xn = xn - (eP * ePx + eQ * eQx)/(ePx^2 + eQx^2)
    yn = yn - (eP * ePy + eQ * eQy)/(ePx^2 + eQx^2)
  \quad \text{end} \quad
  @printf("%.16lf\perp+\t\perp%.16lf\perpi\n\perp", xn, yn)
  complex_newton(horner(W, complex(xn, yn)), n-1, x0, y0, eps)
end
```

Wybrane metody wyszukiwania miejsc zerowych wielomianu

Metoda Laguerre'a

Jedną z metod iteracyjnych wyszukiwania pierwiastków wielomianu używanych w nowoczesnych systemach informatycznych jest metoda Laguerre'a.

Niech p(z) będzie wielomianem stopnia n, którego pierwiastki mamy znaleźć. Kolejne kroki w metodzie obliczamy za pomocą nastepujących wzorów:

$$A = \frac{-p'(z)}{p(z)}, \ B = A^2 - \frac{p''(z)}{p(z)}, \ C = \frac{A \pm \sqrt{(n-1)(nB - A^2)}}{n}, \ z_{nowe} = z + \frac{1}{C}$$

Metoda Laguerre'a jest bardzo efektywnym algorytmem, ponieważ w okolicach pojedynczego pierwiastka wielomianu p jest zbieżna sześciennie. Dokładną analizę tej metody pozostawiamy czytelnikowi do przeczytania w [3] (s 112-116).

Metoda Mullera

Metoda Newtona jest modyfikacją metody stycznych. Zamiast przybliżać nasz wielomian f funkcją liniową będziemy go aproksymować funkcją kwadratową.

Rozważmy trzy punkt x_0, x_1, x_2 wraz z wartościami funkcji f w tych punktach. Przyjmujmy, że x_2 jest aktualnym przybliżeniem rozwiązania. Oznaczmy $z = x - x_2$, $h_0 = x_0 - x_2$, $h_1 = x_1 - x_2$.

Oznaczmy szukaną parabolę przez $g(z) = az^2 + bz + c$. Z definicji paraboli w punkcie $z - x_k$ dostajemy, że

$$2a = f''(x_k), b = f'(x_k), c = f(x_k),$$

co prowadzi do wzoru

$$x_{k+1} = x_k - \frac{2f(x_k)}{f'(x_k) + sgn(f'(x_k)) \cdot \sqrt{(f'(x_k))^2 - 2f(x_k)f''(x_k)}}$$

Metoda Bairstowa

Opis metody Bairstowa

Kolejną i zarazem najważniejsza metodą, którą omówimy w sprawozdaniu będzie metoda Bairstowa. Wiemy, że nawet jeśli wielomian ma współczynniki rzeczywiste, to może mieć pierwiastki zespolone (np. $x^2 + 1$). Metoda Bairstowa pozwala na obliczenie wszystkich pierwiastków bez użycia arytmetyki zespolonej.

Lemat 2. Jeżeli w jest pierwiastkiem nierzeczywistym wielomianu p(z), a p(z) jest wielomianem o współczynnikach rzeczywistych, to pierwiastkiem p(z) jest również \overline{w} . Iloczyn $(x-w)(x-\overline{w})$ jest czynnikiem kwadratowym o współczynnikach rzeczywistych.

$$Dowód$$
. Dowód w [3] s. 108.

Zauważmy, że pierwiastki zespolone możemy wyszukiwać parami. Zamiast wyszukiwać pierwiastki pojedynczo, będziemy wyszukiwać dwumianu postaci $z^2 - uz - v$.

Lemat 3. Dowolny wielomian $p(z) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ możemy zapisać w postaci

$$p(z) = (b_n x^{n-2} + b_{n-1} z^{n-3} + \dots + b_3 z + b_2) (z^2 - uz - v) + b_1 (z - u) + b_0$$

Wielomian $(b_n x^{n-2} + b_{n-1} z^{n-3} + \ldots + b_3 z + b_2)$ będziemy dalej oznaczać jako Q(z, u, v). Powyższe współczynniki możemy obliczać rekurencyjnie według wzorów:

$$b_{n+1} = b_{n+2} = 0, \quad b_k = ub_{k+1} + vb_{k+2} \quad (n \ge k \ge 0).$$

Dowód. Dowód w [3] s. 109.

Chcemy by nasz wyjściowy wielomian był podzielny przez $z^2 - uz - v$. Zatem musi zachodzić $b_0 = b_1 = 0$. Potraktujmy podane współczynniki jako funkcje zmiennych u, v. Wtedy dostajemy do rozwiązania układ równań:

$$\begin{cases} b_0(u,v) = 0 \\ b_1(u,v) = 0 \end{cases}$$

Podany układ możemy rozwiązać przedstawioną wcześniej metodą Newtona dla wielu funkcji wielu zmiennych. Po znalezieniu współczynników u,v dzielimy wyjściowy wielomian przez otrzymany dwumian i kontynuujemy proces wyszukiwania pierwiastków dla mniejszego wielomianu (z uwzględnieniem tego, że przypadki dla wielomianu stopnia 0 i 1 traktujemy osobno).

Analiza teoretyczna metody Bairstowa

Lemat 4. Metoda Bairstowa jest zbieżna lokalnie.

Dowód. Wynika to bezpośrednio z tego, że metoda Newtona jest zbieżna lokalnie.

Głównym założeniem w lokalnej zbieżności metody Bairstowa jest to, że jakobian wyliczany przy metodzie Newtona się nie zeruje dla podanych wcześniej punktów startowych i kolejnych przybliżeń. Zastanówmy się w jaki sposób zerowanie się jakobianu zależy od punktów startowych oraz pierwiastków wielomianu.

Twierdzenie 3. Niech u, v będą dowolnie wybranymi liczbami rzeczywistymi. Jakobian dla algorytmu Bairstowa jest macierzą odwracalną wtedy i tylko wtedy gdy $z^2 - uz - v$ oraz wielomian Q(z, u, v) nie mają wspólnych pierwiastków. Rząd jakobianu jest jeden wtedy i tylko wtedy kiedy liczba wspólnych pierwiastków (z krotnościami) jest równa jeden. Jakobian się zeruje wtedy i tylko wtedy gdy $z^2 - uz - z$ dzieli Q(z, u, v).

Twierdzenie 4. Załóżmy, że $P(z) = Q(z, u, v)(x^2 - u^*z - v^*)$ i załóżmy, że wyrażenia po prawej stronie nie mają wspólnego pierwiastka. Wtedy istnieje dodatnia liczba d taka że ciąg (u_k, v_k) generowany przez metodę Bairstowa jest zbieżny kwadratowo do (u^*, v^*) , gdzie $|u_0 - u^*| < d \land |v_0 - v^*| < d$.

Dowód. Twierdzenia te zostały udowodnione przez autorów Tibora Fialę oraz Annę Krebsz w 1987 roku. Kompletne dowody można przeczytać w [5].

Analiza zbieżności oraz rozbieżności metody Bairstowa stanowiła podstawę do napisaniu kilku (choć niestety niewielu prac). Zainteresowanego czytelnika odsyłamy do [5], [6] oraz [7].

Przykłady rozbieżności metody Bairstowa

Testy numeryczne

Literatura

- [1] Leja, Franciszek. Funkcje zespolone, Warszawa: PWN, 1976
- [2] Aleksiej I., Kostrikin Wstep do algebry. Podstawy algebry, Warszawa: PWN, 2008
- [3] David Kincaid, Ward Cheney Analiza numeryczna, Warszawa: WNT, 2006
- [4] Lily Yau, Adi Ben-Israel *The Newton and Halley Methods for Complex Roots*, The American Mathematical Monthly 105(1998), 806–818
- [5] Tibor Fiala, Anna Krebsz On the Convergence and Divergence of Bairstow's Method, Journal Numerische Mathematik, Volume 50 Issue 4, FEB. 1987, 477 482
- [6] Wolfgang Gabler Invariances and convergence properties of Bairstow's method, International Journal of Pure and Applied Mathematics Volume 27 No. 4 2006, 523-576
- [7] Sofo, Anthony and Glasson, Alan Singularities in Bairstow's method, Gazette of the Australian Mathematical Society, 37 (2). pp. 93-100. ISSN 0311-0729 1326-2297