

《SMFL integrating spectrum and mutation for fault localization》	2019	DSA
《Technique of software fault localization based on hierarchical slicing spectrum》	2013	Journal of Software
《HSFal: Effective fault localization using hybrid spectrum of full slices and execution slices》	2015	JSS
《Lightweight fault-localization using multiple coverage types》	2009	ICSE
《Cleansing test suites from coincidental correctness to enhance fault-localization》	2010	ICST

Cleansing Test Suites from Coincidental Correctness to Enhance Fault-Localization

作者:Wes Masri

汇报人:陈冰婷 导师:邹卫琴

PART 03 Results

Coincidental Correctness

1) The defect is executed or reached

2) The program has transitioned into an infectious state

3) The infection has propagated to the output

Motivation

The prevalence of coincidental correctness

Its safety reducing effect on fault localization

Technique-I

```
1. CCE \leftarrow \emptyset
2. for each e in \bigcup_{t \in T} E(t)
3. if f_T(e) = 1.0 and p_T(e) \leq \theta
4. CCE \leftarrow CCE \cup \{e\}
5. CCT \leftarrow \emptyset
6. for each t in T
7. if E(t) \cap CCE \neq \emptyset
8. CCT \leftarrow CCT \cup \{t\}
```

$$T_F$$
 T_P T_{CC}

CCE: the set of program elements

CCT: any test that induces one or more CCE

False Negative:
$$|T_{CC}|$$

False Positive:

$$\frac{|(T_P - T_{CC}) \cap CCT|}{|T_P - T_{CC}|}$$

Program	Fault Type	T	$ T_F $	$ T_P \text{-} T_{CC} $	$ T_{CC} $	$ T_{CC} / T_P $
print_tokens_v1	wrong case	4070	6	3645	419	0.10
print_tokens_v2	added code	4070	48	3590	432	0.18
print_tokens_v5	missing assignment	4070	150	2670	1250	0.32
print_tokens_v6	constant mutations	4070	186	2953	931	0.24
tot_info_v4	altered conditional	1052	33	822	197	0.19
tot_info_v5	altered statement	1052	29	858	165	0.16
tot_info_v7	altered conditional	1052	123	923	6	0.01
tot_info_v9	altered statement	1052	37	831	184	0.18
tot_info_v11	altered statement	1052	199	824	29	0.03
tot_info_v12	altered return	1052	33	323	696	0.68
tot_info_v13	altered conditional	1052	128	917	7	0.01
tot_info_v15	altered conditional	1052	199	824	29	0.03
tot_info_v17	altered statement	1052	44	384	624	0.62
tot_info_v23	wrong initialization	1052	71	384	597	0.61
schedule_v2	altered statement	2650	210	1263	1177	0.48
schedule_v3	altered statement	2650	159	2345	146	0.06
schedule_v4	altered conditional	2650	294	1740	616	0.26
schedule_v8	deleted code	2650	31	2457	162	0.06

Subject Programs

18 seeded versions that are part of the Siemens test suite

Figure 3. Cleansing accuracy w.r.t. θ

Technique-II

Assumption: a cct containing a large number of cce's and/or cce's with a high average weight is more likely to be a coincidentally correct test than another that does not.

Figure 5. Cleansing accuracy w.r.t. top ranked c (using $\theta = 0.7$)

Figure 7. Cleansing accuracy w.r.t. top ranked cc_t 's considered (using $\theta = 0.9$)

 $g\theta = 0.8$

Technique-III

Assumption: coincidentally correct tests will cluster together.

$\theta = 0.7$								$\theta = 0.8$						$\theta = 0.9$						
Program		Sele	ction					Selection						Selection						
		expect	actual	# C	# CC	%FN	%FP	expect	actual	# C	# CC	%FN	%FP	expect	actual	# C	# CC	%FN	%FP	
print_tokens_1	c_I		1	3309	0	100	90.8	1	1	2757	306	27	75.6			1422	142	33.9	61	
34 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	c_2	~		194	419					888	113			∀	*	2223	277		802 ·	
print_tokens_2	c_I			1758	0	0	1.1			1758	0	0	1.1			1758	0	0	1.1	
,	c_2	~	1	39	432			-	1	39	432			·	1	39	432			
print_tokens_5	c_I	V	.✓.	0	1210	3.2	0	į,	-	2380	0	0	0			2590	0	0	0	
	c_2			7	40			✓	✓	0	1250	1,000		V	V	0	1250			

Comparison

False Negative	Technique I > Technique II > Technique III
Safety	Technique I > Technique II ≈ Technique III
Precision	Technique III > Technique II

THANK YOU FOR YOUR LISTENING.

谢谢您的聆听