

Computer Engineering WS 2012

Serielle Busse

HTM - SHF - SWR

Hamburg University of Applied Sciences

Hochschule für Angewandte Wissenschaften Hamburg

CE WS12

Übersicht

- Einleitung
 - Kodierung, Dekodierung
 - Taktrückgewinnung
 - Galvanische Trennung
- ▶ RS232
- ▶ I2C, SPI

LPC 2468: Serielle Bussysteme

Name	Anzahl	Geschwindigkeit
RS232	4	300 Bit/s bis 4 MBit/s
I2C	3	bis 400kBit/s
CAN	2	25 kBit/s bis 1 MBit/s
125	1	bis 6,144 MBit/s
SPI	3	bis 24 MBit/s
USB 2.0	1	12 MBit/s
Ethernet	1	10 MBit/s, 100 MBit/s

Hamburg University of Applied Sciences

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

CE WS12

Serielle Übertragung

- Übertragungsgeschwindigkeit:
 - festgelegt durch Taktrate
- Taktrate bestimmt die Anzahl Schritte pro Sekunde
 - = Baudrate
- Übertragungsverfahren:
 - Bit: Synchron
 - Byte: Asynchron
- Implementierung:
 - **▶** SPI

Serielle Busse

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

CE WS12

Start-/Stopperkennung

- Spezielle
 Kennzeichnung von
 Datenanfang und –
 ende erforderlich
- z.B.: Start-/Stoppbits (RS232)
 - Ein Startbit,
 - z. B. == 0
 - Ein oder mehrere Stoppbits
 - · z. B. == 1
- Achtung:
 - Erkennung ist nicht immer eindeutig!

Hamburg University of Applied Sciences

CE WS12

Taktrückgewinnung

- Synchronisation mittels Flanken auf der Datenleitung
- Garantiert:
 - Fallende Flanke zu Beginn des Startbits
 - ⇒ Referenzpunkt für Taktsynchronisation
- Erforderliche Genauigkeit des Taktgenerators?

CE WS12

Data Encoding / Decoding

Optimierungskriterien:

- 1. Gute Taktrückgewinnung: Möglichst viele Flanken.
- 2. Geringe Bandbreite: Möglichst wenig zusätzliche Bits.
- 3. Einfache galvanische Trennung: Mittelwert des Signals konstant.
- 4. Vertauschung der Adern erlaubt.

CE WS12

Galvanische Trennung von Sender und Empfänger

- Ziel: Sender und Empfänger sollen nicht leitend miteinander verbunden sein.
- Erforderlich zur
 - Vermeidung von elektromagnetischen Störungen.
 - Verbesserung der elektromagnetischen Verträglichkeit (EMV).
 - Vermeidung von "Brummschleifen" (z.B.: Messtechnik, Audioanwendungen).
 - Erhöhung der Sicherheit (z.B.: Medizintechnik).
- Realisierung: Übertrager, Optokoppler.

CE WS12

Galvanische Trennung von Sender und Empfänger

Realisierung mit Übertrager:

Vorteile:

Nachteile:

Hamburg University of Applied Sciences

CE WS12

Galvanische Trennung von Sender und Empfänger

Realisierung mit Optokoppler:

Vorteile:

Nachteile:

Hamburg University of Applied Sciences

CE WS12

RS232

Anwendung

- Standardisiert f
 ür Verbindung zwischen Endger
 ät (PC, Drucker, Terminal) und Modem
- Heute: Direkte Verbindung zwischen Endgeräte (Nullmodem)

Eigenschaften:

Anzahl Daten:5 bis 8 Bits

1 Startbit

1 bis 2 Stoppbits

Parität: keine, gerade, ungerade

Datenraten, z.B.: 300, 2400,

300, 2400, 9600, 19200 57600, 115200

• Spannungspegel:

Mark (1) = -5 bis -15 Volt Space (0) = +5 bis +15 Volt

Hamburg University of Applied Sciences

CE WS12

Data Encoding / Decoding: RS232

- Taktrückgewinnung:
- 2. Bandbreite:
- 3. Galvanische Trennung:
- 4. Vertauschung der Adern:

Hamburg University of Applied Sciences

CE WS12

Data Encoding / Decoding: Manchester-Kodierung

Kodierung mittels Flanken: negative Flanke = 0, positive Flanke = 1

- Taktrückgewinnung:
- 2. Bandbreite:
- 3. Galvanische Trennung:
- 4. Vertauschung der Adern:

Hamburg University of Applied Sciences

CE WS12

Data Encoding / Decoding: Differentielle Manchester-Kodierung

Kodierung mittels Flanken: Flanke = 0, keine Flanke = 1

- Taktrückgewinnung:
- 2. Bandbreite:
- 3. Galvanische Trennung:
- 4. Vertauschung der Adern:

Hamburg University of Applied Sciences

CE WS12

Übersicht

- Einleitung
 - Kodierung, Dekodierung
 - Taktrückgewinnung
 - Galvanische Trennung

- ▶ RS232
- ▶ I2C, SPI

Hamburg University of Applied Sciences

CE WS12

Verbindung von Komponenten auf einer Leiterplatte:

I₂C und SPI

	I2C	SPI
Master	Multi Master	Single Master
Datenleitungen	2	>= 4
Übertragung	Half Duplex	Full Duplex
Geschwindigkeit	400 kBit/s	24 MBit/s
Overhead	hoch	gering

Hamburg University of Applied Sciences

CE WS12

Serial Peripheral Interface (SPI)

- Entwicklung der Fa. Motorola.
- Ziel: kostengünstiger Anschluss von Peripheriekomponenten.
- Wenig spezifiziert.

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

CE WS12

Serial Peripheral Interface (SPI)

- Synchrone Übertragung
- 4 verschiedene Betriebsarten:
 - positive oder negative aktive Flanke.
 - SCK in Ruhe Low oder High
- Vollduplex-Übertragung

Implementierung im LPC2468: SSP0 und SSP1

- **Eigenschaften:**
 - Verschiedene Protokolle:
 - Motorola SPI
 - 4-wire Texas Instruments SSI
 - National Semiconductor Microwire
 - Master oder Slave Betrieb
 - 8 Frames FIFOs für Empfangs- und Senderichtung
 - Framelänge 4 bis 16 Bits
 - Direct Memory Access (DMA) Betrieb möglich
 - Maximale Taktfrequenz: PCLCK/2 (bei f_{SYS} = 48 MHz: 24 MHz)

Implementierung im LPC2468: Register

SPI

Description
Control Register 0. Selects the serial clock rate, bus type, and data size.
Control Register 1. Selects master/slave and other modes.
Data Register. Writes fill the transmit FIFO, and reads empty the receive FIFO.
Status Register
Clock Prescale Register
Interrupt Mask Set and Clear Register
Raw Interrupt Status Register
Masked Interrupt Status Register
SSPICR Interrupt Clear Register
DMA Control Register

Implementierung im LPC2468: Initialisierung

- Einstellungen in:
 - **PCONP**
 - Komponente einschalten.
 - **▶ PCLKSELx**
 - Taktfrequenz f
 ür Komponente einstellen.
 - **▶ PINSELx**
 - Sonderfunktionen der Pins aktivieren.
 - > SSP0CR0, SSP0CR1, SSP0CPSR
 - Konfiguration der SPI-Schnittstelle

SPI

CE WS12

Implementierung im LPC2468: SSPn Control Register 0

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Bit	Symbol	Value	Description
3:0	DSS		Data Size Select. This field controls the number of bits transferred in each frame. Values 0000-0010 are not supported and should not be used.
		0011	4 bit transfer
		0100	5 bit transfer
		0101	6 bit transfer
		0110	7 bit transfer
		0111	8 bit transfer
		1000	9 bit transfer
		1001	10 bit transfer
		1010	11 bit transfer
		1011	12 bit transfer
		1100	13 bit transfer
		1101	14 bit transfer
		1110	15 bit transfer
		1111	16 bit transfer
5:4	FRF		Frame Format.
		00	SPI
		01	TI
		10	Microwire
		11	This combination is not supported and should not be used.
6	CPOL		Clock Out Polarity. This bit is only used in SPI mode.
		0	SSP controller maintains the bus clock low between frames.
		1	SSP controller maintains the bus clock high between frames.
7	СРНА		Clock Out Phase. This bit is only used in SPI mode.
		0	SSP controller captures serial data on the first clock transition of the frame, that is, the transition away from the inter-frame state of the clock line.
		1	SSP controller captures serial data on the second clock transition of the frame, that is, the transition back to the inter-frame state of the clock line.
15:8	SCR		Serial Clock Rate. The number of prescaler-output clocks per bit on the bus, minus one. Given that CPSDVSR is the prescale divider, and the APB clock PCLK clocks the prescaler, the bit frequency is PCLK / (CPSDVSR × [SCR+1])

Implementierung im LPC2468: SSPn Control Register 1

Bit	Symbol	Value	Description
0	LBM		Loop Back Mode.
		0	During normal operation.
		1	Serial input is taken from the serial output (MOSI or MISO) rather than the serial input pin (MISO or MOSI respectively).
1 SSE	SSE		SSP Enable.
		0	The SSP controller is disabled.
		1	The SSP controller will interact with other devices on the serial bus. Software should write the appropriate control information to the other SSP registers and interrupt controller registers, before setting this bit.
2	MS		Master/Slave Mode.This bit can only be written when the SSE bit is 0.
		0	The SSP controller acts as a master on the bus, driving the SCLK, MOSI, and SSEL lines and receiving the MISO line
		1	The SSP controller acts as a slave on the bus, driving MISO line and receiving SCLK, MOSI, and SSEL lines.
3	SOD		Slave Output Disable. This bit is relevant only in slave mode (MS = 1). If it is 1, this blocks this SSP controller from driving the transmit data line (MISO).
7:4	(#)()		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.

Implementierung im LPC2468:

CPOL = 0 und CPHA = 0

Implementierung im LPC2468:

CPOL = 1 und CPHA = 1

Ruhezustand von SCK: High

Aktive Flanke: Zweite Flanke nach Aktivierung von SSEL

Implementierung im LPC2468:

Implementierung im LPC2468:

Bit	Symbol	Description
0	TFE	Transmit FIFO Empty. This bit is 1 is the Transmit FIFO is empty, 0 if not.
1	TNF	Transmit FIFO Not Full. This bit is 0 if the Tx FIFO is full, 1 if not.
2	RNE	Receive FIFO Not Empty. This bit is 0 if the Receive FIFO is empty, 1 if not.
3	RFF	Receive FIFO Full. This bit is 1 if the Receive FIFO is full, 0 if not.
4	BSY	Busy. This bit is 0 if the SSPn controller is idle, or 1 if it is currently sending/receiving a frame and/or the Tx FIFO is not empty.
7:5	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.