Lab 2 Report

Applications of Quantum Information Processing

Author: B08901049 Yuan-Chia Chang

Instructor: Professor Hao-Chung Cheng

TA: Chia-Yi Chou

Created: 10/11/2021(Mon) Last edited: 10/19/2021(Tue)

Contact: b08901049@ntu.edu.tw

Collaborator: B08901002 Chen-Han Lin, B08901209 Yu-Hsiang Lin

```
Q1[1]
```

(a)

alice bits = [0,0,0,1]

if we use the qasm_simulator, bob_bits will always identify with alice_bits [0,0,0,1]

BER = 0%

SER = 0%

BER = 0.00%

SER = 0.00%

The relation between BER and SER is the same, 0%.

(b)

alice bits = [0,1,0,1], on real devices

BER = 6.592%

SER = 12.402%

BER = 6.592%

SER = 12.402%

We can see that the SER is approximately twice of BER.

Using the mathematical analysis, the probability of a bit corrected transmitted is 1-BER. A system contains 2 bit string. The transmission between two bits is independent. Hence the probability of a system corrected transmitted is $(1-BER)^2$. SER = $1-(1-BER)^2=2BER-BER^2$, which is approximately 2BER when BER is small. For the more accurate calculation of SER = $2BER-BER^2$ = 12.75%, which is 0.99% from the real SER. By comparison, SER = 2BER = 13.184%,

which is 6.3% from the real SER.

Q2[2]
Prepare for initial state(From Lab1 1(h))

(i) $|\psi\rangle_{B} = [0.55768 - 0.21132i, 0.78868 - 0.14943i]$ $|\psi'\rangle_{B} = [0.55768 - 0.21132i0.78868 - 0.14943i]$ $|\langle\psi\mid_{B}|\psi'\rangle_{B}|_{^{2}} = 1$

(ii) Ry(1.9106) $Rx(\pi/6)$ q_0: q_1: Χ q_2: crz: 1/= 0 crx: 1/= 0 c8: 1/= q_0: q_1: - $Rx(-\pi/6)$ Ry(-1.9106) q_2: -«crz: 1/= « c8: 1/=

The measurement is to the third classical bit, which is 100% 0 state.

The measurement is to the third classical bit, which is 100% 1 state. The result means that the two qubit state is identical.

We create a function to validate which state is $|q0q3\rangle$ and add the cnot gate between q[0] and q[3] and the h gate on q[0] for reversing the Φ^+ state to 00 state.

The result of |q0q3>

0 I C D

The result shows that the q[0] and q[3] are always 0. Hence, before reversing, we create an entangled state Φ^+ between Alice and Bob through Charlie.

Q3

(a)

correct percentage: 75.0 %

(b)

correct percentage: 85.8 %

Bonus

correct percentage: 67.3000000000000 %

correct percentage: 76.8 %

Appendix

 $\textbf{Code:}\ \underline{https://github.com/yuanchiachang/CommLab/blob/main/Lab1/src/Lab1.ipynb}$

Reference:

- $\hbox{[1] https://qiskit.org/textbook/ch-algorithms/superdense-coding.html}\\$
- [2] https://qiskit.org/textbook/ch-algorithms/teleportation.html
- [3] https://github.com/SowmitraDas/Quantum-Repeater-using-Quantum-Circuits/blob/main/Elements%20-%20Entanglement%20Swapping.ipynb
- [4]https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html