Gaussian Paragraphs of Pseudolinear Arrangements

Jesús Leaños (with Drago Bokal, Maribor University)

Universidad Autónoma de Zacatecas

ECCO 2016

Content

- Gauss words
- 2 Pseudolinear arrangements
- 3 Double ocurrence paragraphs
- **4** n-DOP's coming from n-SPA's
- **5** Main result

Gauss words

Gauss words

Gauss words are finite sequences of letters associated with self-intersecting closed curves in the plane. (These curves have no triple self-intersections.)

Figure: The Gauss words corresponding to these curves.

Gauss words

The following questions arise:

- (i) Which words over some alphabet are realizable as Gaussian words?
- (ii) Which curves can be uniquely reconstructed from their Gaussian words?
- (iii) What is the common structure of curves having the same Gaussian word?

Subwords

- (i) Given a word $\omega = x\alpha x\beta$, we define the *vertex split* at x to be the word $\omega_a = \alpha^{-1}\beta$.
- (ii) Given a word $\omega = x\alpha x\beta$. We define the *loop removal* at x to be the word obtained by deleting x and both ocurrences of the letters in α .
- (iii) A *subword* of a word ω is any word obtained by a sequence of vertex splits and loop removals.

First characterization of Gauss words:

Theorem (Lovász and Marx, 1976)

A word ω is realizable if and only if it contains no subwords of the form

$$x_1x_2...x_nx_1x_2...x_n$$
, with n even.

A no realizable word:

A *pseudoline* is a continuous curve ℓ in \mathbb{R}^2 such that $\mathbb{R}^2 \setminus \ell$ consists of exactly two infinite connected regions.

Figure: Three pseudolines.

Pseudolinear arrangements

An arrangement of pseudolines is a collection $L = \{p_0, p_1, \dots, p_m\}$ of pseudolines that intersect (necessarily cross) pairwise exactly once. We will say that L is simple if no point of \mathbb{R}^2 belongs to more than two pseudolines.

Figure: Only the left collection of pseudolines form a simple arrangement of pseudolines.

Let Σ be a finite set of letters, say $a,b,c\ldots$ Any finite sequence of letters of Σ will be called a *word* over Σ . A set of n words $W=\{w_1,w_2,\ldots,w_n\}$ over Σ is a n-double occurrence paragraph if and olny if

- (C1) Every letter appears exactly two times in $w_1 \cup w_2 \cup \ldots \cup w_n$.
- (C2) No letter appears twice in any word.
- (C3) There is a unique letter in every pair of words.

For example

$$W = \{abc, aef, cde, bdf\}$$

is a 4-DOP with

$$\Sigma = \{a, b, c, d, e, f\}$$

Let G(W) be the graph with vertex set Σ in which two letters x and y are joined if and only if x and y are adjacent in some word of W.

Let $\overline{G}(W)$ be the graph obtained from G(W) by adding a new vertex v^* and joining v^* to every vertex of G(W) with degree at most 3.

For example

$$W = \{abc, aef, cde, bdf\}$$

is a 4-DOP with

$$\Sigma = \{a, b, c, d, e, f\}$$

Figure: G(W) and $\overline{G}(W)$

Proposition

If W is n-DOP over Σ , then the number of letters in every word is exactly n-1 and $|\Sigma|=\binom{n}{2}$.

Proposition

Let $n \geq 2$ be an integer. Any n-SPA can be encoded by an n-DOP.

Sketch of the proof:

{ xyz, qyz, szw, sqx }

On the other hand, not every $n ext{-}\mathsf{DOP}$ is the code of some $n ext{-}\mathsf{SPA}$. If W is a $n ext{-}\mathsf{DOP}$ for which there exists a L $n ext{-}\mathsf{SPA}$ such that W encodes L, we say that W is $\mathit{realizable}$.

On the other hand, not every $n ext{-}\mathsf{DOP}$ is the code of some $n ext{-}\mathsf{SPA}$. If W is a $n ext{-}\mathsf{DOP}$ for which there exists a L $n ext{-}\mathsf{SPA}$ such that W encodes L, we say that W is $\mathit{realizable}$. For example,

$$\{abd, afc, bec, def\}$$

is not realizable.

Throughout this section, W is a realizable $n\text{-}\mathsf{DOP}$ and A is the $n\text{-}\mathsf{SPA}$ encoded by W. A crossing of A corresponding to a vertex of degree 2 in G(W) will be called a *sharp crossing*.

Lemma

G(W) has at least three vertices of degree two.

Sketch of the proof:

Lemma

G(W) has at most $f(n):=2\lfloor n/2\rfloor+(-1)^{n+1}$ vertices of degree two.

Sketch of the proof: It is easy to see that G(W) has at most n sharp crossings. Since f(n) = n and f(n) = n - 1 for n odd and even, respectively, we need to check only the case n even.

Proposition

G(W) is 2-connected.

Sketch of the proof: Let x and y be two vertices of G(W). We analyze two cases:

Proposition

 $\overline{G}(W)$ is 3-connected.

Sketch of the proof: Since G(W) is 2-connected, it is enough to show that for every $x \in V(G)$, $\overline{G}(W)$ has at least 3 internally disjoint x, v^* -paths. Again we analyze two cases:

Main result

Crossing property

Let W be an n-DOP and let Λ be a planar embedding of $G:=\overline{G}(W)$. Let v^* be the apex vertex of G and let $u\neq v^*$ be a vertex of G. Now consider the cyclic order in which the neighbors of u appear in Λ . We will say that the neighbors of u are interlaced in Λ if any two consecutive of them are not both in a single word of W. If the neighbors of every vertex of $G\setminus\{v^*\}$ are interlaced in Λ , then Λ has the crossing property.

Main result

Theorem

Let W, G, and v^* be as in previous paragraph. Then W is realizable as a pseudo-linear arrangement if and only if G has a planar embedding Π which has the crossing property. Moreover, if the embedding Π exists, it is unique up to a homeomorphism.

Corollary

Determining if a Gaussian paragraph is realizable can be done in time linear in the number of crossings (or quadratic in the number of lines).

