MA502 Fall 2019 – Homework 1. Due August 29th, 2019

- 1. Consider the space V of all vectors
 - $\{v = (v_1, ..., v_n) \in \mathbb{R}^n \text{ such that } v = \nabla f(0) = (\partial_1 f(0), \partial_2 f(0), ..., \partial_n f(0))$ for some C^1 function f defined in a neighborhood of the origin $\}$.
 - (1) Prove that V, equipped with the usual operations of vector sum and multiplication by a scalar is a vector space. (2) Prove that $V = \mathbb{R}^n$.
- 2. Show that if \mathbb{X} and \mathbb{Y} are subspaces of a vector space \mathbb{V} , then $\mathbb{X} \cap \mathbb{Y}$ is also a subspace of \mathbb{V} .
- 3. Consider

$$\mathbb{X} = \left\{ x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \middle| a_1 x_1 + a_2 x_2 + a_3 x_3 = 0 \right\}, \tag{1}$$

$$\mathbb{Y} = \left\{ x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} | b_1 x_1 + b_2 x_2 + b_3 x_3 = 0 \right\}, \tag{2}$$

where the a_i 's and b_i 's are given real numbers.

- (1) Prove that X and Y are vector spaces.
- (2) Describe $\mathbb{X} \cap \mathbb{Y}$ in geometric terms, considering all possible choices of the coefficients. Is $\mathbb{X} \cap \mathbb{Y}$ a vector space?
- 4. Which of the following are subspaces of the given vector spaces? Justify rigorously your answers. (1) $\{x \in \mathbb{R}^n : Ax = 0\} \subseteq \mathbb{R}^n$, where A is a given $m \times n$ matrix.
 - (2) $\{p \in \mathbb{P} : p(x) = p(-x) \text{ for all } x \in \mathbb{R}\} \subseteq \mathbb{P}$, where \mathbb{P} is the set of all polynomials with real coefficients.
 - (3) $\{p \in \mathbb{P} : p \text{ has degree less or equal than } n\} \subseteq \mathbb{P}$.
 - (4) $\{f \in C[0,1]: f(1) = 2f(0)\} \subseteq C[0,1]$, where C[0,1] is the set of all continuous functions on [0,1].
 - (5) The unit sphere in \mathbb{R}^n .

- 5. In the following, determine the dimension of each subspace and find a basis for it.
 - (1) $\left\{ x = (x_1, x_2) \mid x_1 + x_3 = 0 \right\} \subseteq \mathbb{R} \times \mathbb{R}.$
 - (2) The set of all $n \times n$ square matrices with real coefficients that are equal to their transpose.
 - $(3)\{p \in \mathbb{P}_2 : p(0) = 0\} \subseteq \mathbb{P}_2$, where \mathbb{P}_2 is the set of all polynomials of degree ≤ 2 .