C2 Aircraft Flight and Propulsion – Lecture 3

Prof L. He 4 lectures

Climbing flight

Consider an aircraft climbing at an angle γ with the thrust acting in the direction of velocity. The rate of climb v_c is the vertical component of velocity.

(T-D) is the excess thrust required to climb.

 $(T-D)v = W v \sin \gamma = W v_c$ is the excess power required to climb.

Rate of climb:
$$v_c = \frac{(T-D)v}{W} = \frac{\text{excess power}}{\text{weight}}$$
. (3-1)

The maximum rate of climb is when excess power $(P_{av} - P_r)$ is a maximum.

For a <u>propeller</u>-driven aircraft, the approximation that P_{av} = constant gives maximum rate of climb $v_{c max}$ at the velocity for minimum power, which occurs at $\left(\frac{C_L^{3/2}}{C_D}\right)_{max}$ (lecture 2). For a <u>jet</u>, the climb rate can get small if the

aircraft is flying too slowly, and the flight velocity for maximum rate of climb is higher than the velocity for minimum power.

As altitude increases, P_{av} and T_{av} decrease and maximum rate of climb falls. The rate of climb is zero at maximum altitude.

Angle of climb,
$$\gamma = \sin^{-1} \left(\frac{v_c}{v} \right)$$

$$\sin \gamma = \frac{(T - D)}{W} = \frac{\text{excess thrust}}{\text{weight}}$$
(3-2)

The angle of climb is a maximum when excess thrust $(T_{av} - T_r)$ is a maximum.

For a <u>jet</u> aircraft, where T_{av} is approximately constant with velocity at a given altitude, maximum angle of climb γ_{max} is at minimum drag, i.e. at v_{md} or $\left(\frac{L}{D}\right)_{max}$.

Gliding flight

With gliding flight there is no engine so *L*, *W*, and *D* are in equilibrium:

$$D = W \sin \gamma \qquad \text{and} \quad L = W \cos \gamma$$

$$\frac{\sin \gamma}{\cos \gamma} = \frac{D}{L} \rightarrow \tan \gamma = \frac{1}{L/D}$$
(3-3)

Glide angle γ is a function only of L/D; to minimise glide angle \rightarrow maximise L/D (i.e. maximise C_L/C_D). This is the same condition for minimum thrust in level flight, which is reasonable since $W \sin \gamma$ is the 'forward thrust' for the glider. Flying at minimum glide angle will maximise <u>range</u>, the horizontal distance covered by the aircraft.

To determine the required glide velocity: $L = \frac{1}{2} \rho v^2 SC_L = W \cos \gamma$

$$V = \sqrt{\frac{2}{\rho C_L} \frac{W}{S} \cos \gamma}$$

Flying at constant glide angle corresponds to flying at constant L/D, and hence constant incidence, and constant C_L . Glide velocity therefore decreases with

altitude due to increasing density; equivalent airspeed (and indicated airspeed) remains constant.

 C_L for maximum L/D is given by $(C_L)_{max\,L/D} = \sqrt{\frac{\pi A C_{D0}}{k}}$ (from lecture 2), so the velocity for minimum glide angle is given by:

$$V_{\min \gamma} = \left(\frac{2}{\rho} \frac{W}{S} \cos \gamma\right)^{\frac{1}{2}} \left(\frac{k}{\pi A C_{D0}}\right)^{\frac{1}{4}}$$

For sail planes, usually $\frac{L}{D} > 15$, so $\gamma < \tan^{-1} \left(\frac{1}{L/D} \right) = 3.8^{\circ}$, and $\cos \gamma > 0.998 \approx 1$

so to a close approximation,
$$v_{\min \gamma} \approx \left(\frac{2}{\rho} \frac{W}{S}\right)^{\frac{1}{2}} \left(\frac{k}{\pi A C_{D0}}\right)^{\frac{1}{4}}$$
 (3-4)

The <u>sink rate</u>, v_s is given by: $v_s = v \sin \gamma = \frac{v}{(L/D)} \cos \gamma$

$$V = \sqrt{\frac{2L}{\rho C_L S}} \qquad \rightarrow \qquad V_s = \sqrt{\frac{2W \cos \gamma}{\rho C_L S}} \frac{1}{(C_L/C_D)} \cos \gamma$$

$$v_s = \left(\frac{2W}{\rho S}\right)^{\frac{1}{2}} \frac{1}{\left(C_L^{3/2}/C_D\right)} \cos^{3/2} \gamma$$

For minimum sink rate, maximise $\left(\frac{C_L^{3/2}}{C_D}\right) \rightarrow \left(\frac{C_L^{3/2}}{C_D}\right)_{\text{max}} = \frac{1}{4} \left(\frac{3\pi A}{k}\right)^{\frac{3}{4}} \frac{1}{\left(C_{D0}\right)^{\frac{1}{4}}}$.

This is the same condition for minimum power in level flight, (lecture 2), which is reasonable since during glide, potential energy Wz is used at a rate Wv_s .

Minimum sink rate
$$\rightarrow v_{smin} = 4 \left(\frac{2W}{\rho S}\right)^{\frac{1}{2}} \left(\frac{k}{3\pi A}\right)^{\frac{3}{4}} C_{D0}^{1/4} \cos^{3/2} \gamma$$
 (3-5)

and using the approximation that $\cos \gamma \approx 1$: $v_{s \min} \approx 4 \left(\frac{2W}{\rho S}\right)^{\frac{1}{2}} \left(\frac{k}{3\pi A}\right)^{\frac{3}{4}} C_{D0}^{\frac{1}{4}}$

At
$$\left(\frac{C_L^{3/2}}{C_D}\right)_{\text{max}}$$
, the drag coefficient $C_D \left(=C_{D0}+\frac{kC_L^2}{\pi A}\right)=4C_{D0}$ (lecture 2), hence

$$C_L = \left(\frac{3\pi A C_{D0}}{k}\right)^{\frac{1}{2}}.$$

The glide velocity for minimum sink rate v_{ms} is therefore given by:

$$V = \sqrt{\frac{2L}{\rho C_L S}} \qquad \rightarrow \qquad V_{ms} = \left(\frac{2}{\rho} \frac{W}{S} \cos \gamma\right)^{\frac{1}{2}} \left(\frac{k}{3\pi A C_{D0}}\right)^{\frac{1}{4}}$$

$$V_{ms} = \left(\frac{1}{3}\right)^{\frac{1}{4}} V_{\min \gamma} = 0.76 V_{\min \gamma}$$

The velocity for minimum sink is lower than the velocity for best glide. For this reason, glider pilots fly at v_{ms} in thermals (regions of hot air rising) in order to gain altitude, then accelerate to v_{min_y} for best glide to maximise range when flying to the next thermal.

Specific fuel consumption (sfc)

For a <u>piston-driven propeller engine</u>, the rate of fuel consumption is a function of the power output. The specific fuel consumption is defined as

sfc,
$$c = -\frac{\dot{W}_f}{P_{av}} = \frac{\text{Weight of fuel consumed / second}}{\text{Brake power}}$$
 (m-1)

For a <u>jet</u> engine, the fuel consumption is approximately proportional to thrust, and the specific fuel consumption is defined as

sfc,
$$c = -\frac{\dot{W}_f}{T_{av}} = \frac{\text{Weight of fuel consumed / second}}{\text{Thrust}}$$
 (s-1)

Specific air range (SAR)

Range *R* is defined as the horizontal distance covered over the ground during flight. The <u>specific air range</u> of an aircraft is defined as the rate of increase of range with respect to the weight of fuel consumed:

$$SAR = -\frac{dR}{dW_f}$$
 (3-8)

This can be written:
$$SAR = -\frac{dR/dt}{dW_f/dt} = -\frac{v}{\dot{W}_f} = \frac{Airspeed}{Rate of fuel consumption}$$

For a propeller-driven aircraft,
$$SAR = -\frac{v}{\dot{W}_f} = \frac{v}{cP_{av}} = \frac{\eta_p v}{cP_r}$$

In steady level flight, $P_r = T_r v$, and $T_r = \frac{W}{(C_L/C_D)}$

$$\underline{\text{propeller}}: \quad \mathsf{SAR} = \frac{\eta_p}{c} \left(\frac{C_L}{C_D} \right) \frac{1}{W}$$
 (3-9)

i.e. specific air range is a maximum at max C_L/C_D , i.e. at minimum drag speed.

For a jet engine:
$$SAR = -\frac{V}{\dot{W}_t} = \frac{V}{cT_{av}}$$

In steady level flight, T = D, and $SAR = \frac{v}{cD} = \frac{v}{cD} \times \frac{L}{L} = \frac{v}{c} \left(\frac{C_L}{C_D}\right) \frac{1}{W}$

$$v = \sqrt{\frac{2W}{\rho C_L S}} \rightarrow \frac{\underline{jet}}{c} \qquad SAR = \frac{1}{c} \left(\frac{C_L^{\frac{1}{2}}}{C_D} \right) \left(\frac{2}{\rho S} \right)^{\frac{1}{2}} \frac{1}{\sqrt{W}} \qquad (3-10)$$

Range

The weight of an aircraft W at any instant is given by its empty fuel weight W_0 , plus the weight of fuel W_f carried

$$W = W_0 + W_f$$

As the aircraft flies, it consumes fuel at a rate $-\frac{dW_f}{dt}$, hence the aircraft's weight

SAR

decreases at the same rate, $-\frac{dW}{dt} = -\frac{dW_f}{dt}$.

The specific air range can be written

$$\mathsf{SAR} = -\frac{dR}{dW}$$

The range is given by:

$$R = \int_{1}^{2} dR = \int_{1}^{2} \frac{\partial R}{\partial W} dW$$

note that SAR is higher for low W

area = range

W₂

W₁

For an aircraft taking off with weight W_1 and landing with weight W_2 :

$$R = \int_{W1}^{W2} - SAR \, dW = \int_{W2}^{W1} SAR \, dW$$

The Breguet range equation - for a propeller-driven aircraft

$$R = \int_{W_2}^{W_1} SAR \ dW = \int_{W_2}^{W_1} \frac{\eta_p}{c} \left(\frac{C_L}{C_D} \right) \frac{1}{W} \ dW$$

Assuming that the specific fuel consumption and propeller efficiency are constant during flight, and that the aircraft is flown at a fixed incidence (*L/D* remains constant):

Breguet range equation:
$$R = \frac{\eta_p}{c} \left(\frac{C_L}{C_D} \right) \ln \left(\frac{W_1}{W_2} \right)$$
 propeller (3-11)

Since $W = L = \frac{1}{2} \rho v^2 SC_L$, the aircraft flies slower as W reduces.

This shows that R for a propeller-driven aircraft is independent of density, and hence of altitude if η_p , c and C_L/C_D are not affected.

To maximise range:

- (i) use an efficient propeller \rightarrow maximise η_p ;
- (ii) use an efficient engine \rightarrow minimise c;
- (iii) fly at $(C_L/C_D)_{max}$, i.e. at minimum drag speed v_{md} .

Range equation for a jet aircraft

$$R = \int_{W_2}^{W_1} SAR \ dW = \int_{W_2}^{W_1} \frac{1}{c} \left(\frac{C_L^{\frac{1}{2}}}{C_D} \right) \left(\frac{2}{\rho S} \right)^{\frac{1}{2}} \frac{1}{\sqrt{W}} \ dW$$

Flying at constant incidence (constant $C_L^{\frac{1}{2}}/C_D$), constant altitude (ρ is constant), and assuming that c is constant,

$$R = 2\left(\frac{2}{\rho S}\right)^{\frac{1}{2}} \frac{1}{c} \left(\frac{C_L^{\frac{1}{2}}}{C_D}\right) \left(\sqrt{W_1} - \sqrt{W_2}\right) \qquad \underline{jet} \qquad (3-12)$$

To maximise range for a jet at constant altitude:

(i) use an efficient engine \rightarrow minimise c;

(ii) fly at
$$(C_L^{1/2}/C_D)_{\text{max}} \to \text{from the drag polar} \left(C_D = C_{D0} + \frac{kC_L^2}{\pi A} \right)$$
,

$$\frac{C_D}{C_L^{1/2}} = \frac{C_{D0}}{C_L^{1/2}} + \frac{kC_L^{3/2}}{\pi A}$$

$$\frac{d}{dC_L} \left(\frac{C_D}{C_I^{1/2}} \right) = -\frac{1}{2} \frac{C_{D0}}{C_I^{3/2}} + \frac{3}{2} \frac{kC_L^{1/2}}{\pi A} = 0 \qquad \rightarrow \qquad C_L = \left(\frac{\pi A C_{D0}}{3k} \right)^{\frac{1}{2}}$$

$$v = \sqrt{\frac{2W}{\rho C_L S}}$$
 $\rightarrow v = \left(\frac{2W}{\rho S}\right)^{\frac{1}{2}} \left(\frac{3k}{\pi A C_{D0}}\right)^{\frac{1}{4}} = (3)^{\frac{1}{4}} v_{md} = 1.32 v_{md}$

(iii) fly at high altitude since $R \propto \frac{1}{\sqrt{\rho}}$ \rightarrow this is the main reason

for the high cruising altitudes of jet aircraft.

Maximise altitude to maximise range for constant altitude cruise

For a constant altitude cruise, the altitude and hence range R are limited by the thrust available and the weight at the start of cruise W_1 :

The thrust available is given by

$$T = (\dot{m}_a + \dot{m}_f) v_e - \dot{m}_a v_\infty + (\rho_e - \rho_\infty) A_e.$$

The $(p_e-p_\infty)A_e$ term is generally much smaller than the rate of change of momentum terms, and $\dot{m}_f << \dot{m}_a$ hence $T \approx \dot{m}_a (v_e-v_\infty)$ or

 $T \approx \rho_{\infty} A_{\infty} v_{\infty} (v_e - v_{\infty})$. To a reasonable approximation, the thrust available at altitude is then given by $T_{av} = \frac{\rho}{\rho_0} T_0$, where T_0 and ρ_0 are the thrust available and density at sea level.

Maximum altitude occurs when $T_{av} = T_r = D$

$$T_{av} = \frac{\rho}{\rho_0} T_0 = D \times \frac{L}{L} = \frac{C_D}{C_L} W_1$$

$$\rho = \rho_0 \frac{C_D}{C_L} \frac{W_1}{T_0}$$
(3-13)

More powerful engines enable flight at higher altitudes; also lower weight enables higher altitudes.

Maximum range at constant altitude

$$R = 2 \left(\frac{2T_0}{\rho_0 S}\right)^{\frac{1}{2}} \frac{1}{c} \left(\frac{C_L}{C_D}\right)^{\frac{1}{2}} \left(\frac{C_L^{\frac{1}{2}}}{C_D}\right) \frac{1}{\sqrt{W_1}} \left(\sqrt{W_1} - \sqrt{W_2}\right)$$

$$R = 2 \left(\frac{2T_0}{\rho_0 S}\right)^{\frac{1}{2}} \frac{1}{c} \left(\frac{C_L}{C_D^{3/2}}\right) \frac{1}{\sqrt{W_1}} \left(\sqrt{W_1} - \sqrt{W_2}\right)$$
(3-14)

To maximise range for constant altitude flight, maximise $(C_L^{1/2}/C_D)_{max}$

$$\rightarrow C_L = \left(\frac{\pi A C_{D0}}{3k}\right)^{\frac{1}{2}} \text{ and } C_D = \frac{4}{3}C_{D0}$$

$$R_{\text{max},\rho=\text{const}} = \frac{3}{2^{3/2} cC_{D0}} \left(\frac{\pi A T_0}{k \rho_0 S} \right)^{\frac{1}{2}} \left(1 - \frac{\sqrt{W_2}}{\sqrt{W_1}} \right)$$
(3-15)

Cruise climb

From the condition for maximum altitude for a given weight W: $\rho = \rho_0 \frac{C_D}{C_L} \frac{W}{T_0}$,

as the weight of the aircraft decreases during flight due to the consumption of fuel, the aircraft is able to fly at higher altitudes (lower ρ). Substituting this expression for ρ into the expression of SAR for a jet-powered aircraft,

$$\mathsf{SAR}_{\mathsf{cc}} = \frac{1}{c} \left(\frac{C_L}{C_D^{3/2}} \right) \left(\frac{2T_0}{\rho_0 \mathsf{S}} \right)^{\frac{1}{2}} \frac{1}{W}$$

Maximum range now occurs at $\left(\frac{C_L}{C_D^{3/2}}\right)_{\max}$ o this is at $\left(\frac{C_D}{C_L^{2/3}}\right)_{\min}$

From the drag polar
$$\rightarrow \frac{C_D}{C_I^{2/3}} = \frac{C_{D0}}{C_I^{2/3}} + \frac{kC_L^{4/3}}{\pi A}$$

Differentiate: $\frac{d}{dC_L} \left(\frac{C_D}{C_L^{2/3}} \right) = -\frac{2}{3} \frac{C_{D0}}{C_L^{5/2}} + \frac{4}{3} \frac{kC_L^{1/3}}{\pi A} = 0$

$$\rightarrow C_L = \left(\frac{\pi A C_{D0}}{2k}\right)^{\frac{1}{2}} \quad \text{and } C_D = \frac{3}{2}C_{D0}$$

$$v = \sqrt{\frac{2W}{\rho C_L S}}$$
 $\rightarrow v = \left(\frac{2W}{\rho S}\right)^{\frac{1}{2}} \left(\frac{2k}{\pi A C_{D0}}\right)^{\frac{1}{4}} = (2)^{1/4} v_{md} = 1.19 v_{md}$

So for cruise-climb, fly slower and at a higher C_L compared to constant altitude cruise.

$$SAR_{cc} = \left(\frac{2}{3}\right)^{\frac{3}{2}} \left(\frac{\pi A T_0}{k \rho_0 S}\right)^{\frac{1}{2}} \frac{1}{cC_{D0}} \frac{1}{W}$$
 (3-16)

Cruise-climb range

Range:
$$R = \int_{W2}^{W1} SAR \, dW = \int_{W2}^{W1} \left(\frac{2}{3}\right)^{\frac{3}{2}} \left(\frac{\pi A T_0}{k \rho_0 S}\right)^{\frac{1}{2}} \frac{1}{c C_{D0}} \frac{1}{W} \, dW$$

$$R = \left(\frac{2}{3}\right)^{\frac{3}{2}} \left(\frac{\pi A T_0}{k \rho_0 S}\right)^{\frac{1}{2}} \frac{1}{c C_{D0}} \ln\left(\frac{W_1}{W_2}\right)$$
(3-17)

c.f. maximum constant altitude range:

$$R_{\text{max},\rho=\text{const}} = \frac{3}{2^{3/2} c C_{D0}} \left(\frac{\pi A T_0}{k \rho_0 S} \right)^{\frac{1}{2}} \left(1 - \frac{\sqrt{W_2}}{\sqrt{W_1}} \right)$$

$$\frac{R}{\left(\frac{1}{c C_{D0}} \right) \sqrt{\frac{\pi A T_0}{k \rho_0 S}}} \begin{array}{c} 0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0 \\ 1 \end{array} \begin{array}{c} \text{constant} \\ \text{altitude} \\ 0.1 \\ 0 \\ 1 \end{array} \begin{array}{c} \text{constant} \\ \text{altitude} \\ 0.1 \\ 0 \\ 1 \end{array} \begin{array}{c} \text{constant} \\ \text{altitude} \\ 0.1 \\ 0 \\ 1 \end{array}$$

Cruise-climb gives a useful increase of range when W_1/W_2 is large i.e. with a heavy fuel load.

Endurance

Endurance is defined as the length of time that an aircraft can remain airborne on one tank of fuel. This will be important for air surveillance missions, e.g. maritime patrol, the monitoring a hurricane, or if an aircraft had to wait to land at a destination.

From specific air range:

SAR =
$$-\frac{dR}{dW} = -\frac{dR}{dt} \frac{dt}{dW} = -v \frac{dt}{dW}$$

$$dt = -\frac{SAR}{v} dW$$
Endurance: $T_E = \int_{W2}^{W1} \frac{SAR}{v} dW$

$$v = \sqrt{\frac{2W}{\rho C_L S}} \rightarrow T_E = \int_{W2}^{W1} \sqrt{\frac{\rho S}{2}} C_L^{1/2} \frac{SAR}{\sqrt{W}} dW$$
(3-18)

Endurance - propeller

$$T_{E} = \int_{W2}^{W1} \sqrt{\frac{\rho S}{2}} C_{L}^{1/2} \frac{SAR}{\sqrt{W}} dW$$

$$SAR = \frac{\eta_{\rho}}{c} \left(\frac{C_{L}}{C_{D}}\right) \frac{1}{W}$$

$$T_{E} = \int_{W2}^{W1} \frac{\eta_{\rho}}{c} \sqrt{\frac{\rho S}{2}} \left(\frac{C_{L}^{3/2}}{C_{D}}\right) \frac{1}{W^{3/2}} dW$$

Assuming all but *W* is constant in flight:

$$T_E = \frac{\eta_p}{c} \sqrt{2\rho S} \left(\frac{C_L^{3/2}}{C_D} \right) \left(\frac{1}{\sqrt{W_2}} - \frac{1}{\sqrt{W_1}} \right) \text{ propeller}$$
 (3-19)

To maximise T_E (for a propeller-driven aircraft):

- (i) use efficient propeller \rightarrow maximise η_p ;
- (ii) use an efficient engine \rightarrow minimise c;
- (iii) fly at $(C_L^{3/2}/C_D)_{\text{max}}$, i.e. at minimum power speed V_{mp} ;
- (iv) $T_E \propto \rho^{1/2} \rightarrow \text{fly low.}$

<u>Endurance – jet</u>

$$T_E = \int_{W2}^{W1} \frac{SAR}{v} dW$$

From the specific air range:

$$SAR = -\frac{v}{\dot{W}_f} = \frac{v}{cT_{av}} = \frac{v}{cD}$$

$$\rightarrow \frac{SAR}{v} = \frac{1}{cD} \times \frac{L}{L} = \frac{1}{c} \frac{C_L}{C_D} \frac{1}{W}$$

$$T_E = \int_{W2}^{W1} \frac{1}{c} \left(\frac{C_L}{C_D}\right) \frac{1}{W} dW$$

assuming all but W constant in flight:

$$T_E = \frac{1}{c} \left(\frac{C_L}{C_D} \right) \ln \left(\frac{W_1}{W_2} \right) \quad \underline{\text{jet}}$$
 (3-20)

Note that for a jet, endurance is independent of density \rightarrow fly at any altitude. To maximise T_E (for a jet):

- (i) use an efficient engine \rightarrow minimise c;
- (ii) fly at $(C_L/C_D)_{max}$, i.e. at minimum drag speed v_{md} ;

Note that the Range and Endurance equations are approximations that make a number of assumptions, however they are an extremely useful guide.