# 浙江水学

## 本科实验报告

| 课程名称: | 数字逻辑设计     |
|-------|------------|
| 姓 名:  | 王浩雄        |
| 学 院:  | 竺可桢学院      |
| 系:    | 混合班        |
| 专业:   | 计算机科学与技术   |
| 学 号:  | 3230106032 |
| 指导教师: | 马德         |

2025 年 2 月 20 日

## 浙江大学实验报告

| 课程名称:   | 数字逻辑设计 |            | 实验类   | 实验类型: |          |        |
|---------|--------|------------|-------|-------|----------|--------|
| 实验项目名称: |        | 常用电子位      | 义器的使用 |       |          |        |
| 学生姓名:   | 王浩雄    | _ 专业: _    | 混合班   | 学号:   | 323010   | 06032  |
| 同组学生姓名: |        | 无          |       | 导老师:  | - 马德     |        |
| 实验地点:   | 紫金港东   | 紫金港东 4-509 |       | 公日期:  | 2025 年 2 | 月 20 E |

## 一、 实验目的和要求

- 1. 认识常用电子器件;
- 2. 学会数字示波器、数字信号发生器(函数信号发生器)、万用表等常用电子仪器的使用;
- 3. 掌握用数字示波器来测量脉冲波形及幅度和 频率的参数;
- 4. 掌握万用表测量电压、电阻及二极管的通断的判别

## 二、 实验内容和原理

- 1. 测量实验箱中的直流电源;
- 2. 用示波器测量正弦波信号;
- 3. 测量 YB1638 型函数信号发生器输出电压;
- 4. 测量二极管的单向导通特性。

## 三、 主要仪器设备

- 1. 数字示波器 RIGOL-DS162 1 台
- 2. 函数发生器 YB1638 1 台
- 3. 数字万用表 1 只
- 4. 电路设计实验箱 1台
- 5. 常用电子器件 若干

#### 四、 操作方法与实验步骤

#### 1、测量试验箱中的直流电源

- ① 将万用表红表笔插入实验台 5V 插孔,黑表笔插入 GND 插孔,万用表的功能 开关置于直流电压档,选择合适量程,记录万用表的显示电压;
- ② 将示波器信号探头接 5V 插孔,信号地接 GND 插孔,测量示波器的电压波形 与 0 电平标记之间的格数,计算出测量到的电压值。

#### 2、用示波器测量正弦波信号

- ① 通过选择频率范围开关和频率调节旋钮,使函数信号发生器发出频率分别为 100Hz、10KHz 和 100KHz 的正弦波,用示波器测出上述信号的周期和频率;
- ② 其中,在调节函数信号发生器的频率时,应通过频率波段选择范围按键、频率微调旋钮进行调节,并通过数码管显示进行观察。

#### 3、测量 YB1638 型函数信号发生器输出电压

- ① 让信号发生器输出 1KHz、1-3V 任意的正弦波信号,将信号发生器的输出接到示波器,用示波器测量峰峰值;
- ② 将万用表功能量程开关置于交流电压档位和合适量程,测量信号发生器输出的信号的有效值;
- ③ 将示波器测量的峰峰值折算成有效值,与万用表用交流档读取的有效值进行比较。

#### 4、测量二极管的单向导通特性

- ① 将万用表功能量程开关置于"二极管"档,把红黑表笔分别接到实验台上的二极管的两极:
- ② 如果显示屏上显示 0.6 0.7 的数字,此时二极管正向导通,显示的数字是 PN 结的电压,红表笔接的极是二极管的正极,黑表笔接的是负极;
- ③ 如果显示屏上显示的数字是"1",此时二极管反向截止,红表笔接的是二极管 负极,黑表笔接的是正极。

## 五、 实验数据记录和处理

## 1、测量试验箱中的直流电源

| 直流稳压 | 二冲鬼净粉   | 灵敏度       | 示波器折算值 | 万用表读数 |
|------|---------|-----------|--------|-------|
| 电源输出 | 示波器读数   |           |        |       |
| +5V  | 4.90Div | 1.00V/Div | 4.90V  | 4.94V |

测试照片:



由上述实验数据观察、分析得:万用表读数和示波器折算值略小于稳压电源输出,相对误差分别为 2%和 1.2%,误差在实验允许范围内。推测误差可能来自于导线电阻及万用表的内阻。

#### 2、用示波器测量正弦波信号

| 组别  |       | 函数发生器输出  | 示波器读数  | 灵敏度        | 实     | 测值     |
|-----|-------|----------|--------|------------|-------|--------|
| 峰峰值 |       | 10.1V    | 5.0Div | 2.00V/Div  | 10.0V |        |
| 1   | 周期/频率 | 10.02Hz  | 2.0Div | 50.0ms/Div | 100ms | 10Hz   |
| 峰峰值 |       | 10.1V    | 5.0Div | 2.00V/Div  | 10.0V |        |
| 2   | 周期/频率 | 9.995KHz | 2.0Div | 0.05ms/Div | 0.1ms | 10KHz  |
| 2   | 峰峰值   | 10.1V    | 5.0Div | 2.00V/Div  | 10.0V |        |
| 3   | 周期/频率 | 100.4KHz | 2.0Div | 5.00μs/Div | 10μs  | 100KHz |

由上述实验数据观察、分析得:实测值与函数发生器输出相差较少,较为精确。 但由于本实验要求示波器读数时需用肉眼观察所占格数,所以因估读准确度限制 而产生了部分误差。

### 3、测量 YB1638 型函数信号发生器输出电压

| 函数发生器    | 二州里    | 思:去粉:     | <b>北</b> 曾 | 万田丰法取估 |  |
|----------|--------|-----------|------------|--------|--|
| 输出频率     | 示波器读数  |           | 折算有效值      | 万用表读取值 |  |
| 10.02Hz  | 5.0Div | 2.00V/Div | 3.54V      | 3.439V |  |
| 9.995KHz | 5.0Div | 2.00V/Div | 3.54V      | 0.179V |  |
| 100.4KHz | 5.0Div | 2.00V/Div | 3.54V      | 0.000V |  |

#### 测试照片:







由上述实验数据观察、分析得:

(1) 在频率较低时,示波器读数的折算有效值和万用表测得的函数发生器输出 电压误差较小,在实验允许范围内。误差原因可能为读数不准,电压分摊到 了导线或者其他电阻上。 (2) 当频率为 10kHz 或更高时,测量值将不正确。推测原因可能为高频交流 电压的频率比较高,所以要求采样率也要高,万用表电路满足不了如此高频率的 采样率。

#### 4、测量二极管的单向导通特性

| 二极管情况 | 万用表示数  |
|-------|--------|
| 正向导通  | 0.608V |
| 反向截止  | .0L    |

#### 测试照片:





由上述实验数据观察、分析得:二极管具有单向导通的特性。在正向导通时,二极管可视为阻值很小的电阻;当反向导通时,二极管可视为开路。

## 六、 实验结果与分析

(请见上方分析)

## 七、 讨论、心得

本次课程是我首次完成《数字逻辑设计》的实验项目。尽管我曾修读过本门课程的后置课程《计算机组成》,但通过这次实验,我更加深刻地理解了《数字逻辑设计》这门课程的地位和作用。《计算机组成》虽然也涉及硬件知识,但更多是从计算机系统的整体架构出发,关注指令集和处理器设计;而《数字逻辑设计》则更注重硬件实现的基础层面,要求我们掌握数字电路、逻辑门以及电路设

计等核心内容。在本学期的学习中,我将脚踏实地,努力学好相关知识与技能。