日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 6月 9日

出 願 番 号 Application Number:

人

特願2003-163471

[ST. 10/C]:

[JP2003-163471]

REC'D 15 JUL 2004

出 Magneticant (s):

ソニー株式会社

WIPO PCT

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 2月27日

【書類名】

特許願

【整理番号】

0390304104

【提出日】

平成15年 6月 9日

【あて先】

特許庁長官 太田 信一郎 殿

【国際特許分類】

G11B 20/10

G06F 17/30

【発明者】

【住所又は居所】

東京都品川区北品川6丁目7番35号 ソニー株式会社

内

【氏名】

川上 高

【特許出願人】

【識別番号】

000002185

【氏名又は名称】

ソニー株式会社

【代理人】

【識別番号】

100082762

【弁理士】

【氏名又は名称】

杉浦 正知

【電話番号】

03-3980-0339

【選任した代理人】

【識別番号】

100120640

【弁理士】

【氏名又は名称】

森幸一

【手数料》表示】

【予納台帳番号】

043812

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0201252

【プルーフの要否】 要

【発明の名称】 情報処理システム、方法およびプログラム、ならびに、情報処理プログラムが記録された記録媒体

【特許請求の範囲】

【請求項1】 第1の記録媒体と第2の記録媒体とでデータの転送およびデータの戻しを行う情報処理システムにおいて、

コンテンツ供給源と、

上記第2の記録媒体の記録再生を行う記録再生装置と、

上記コンテンツ供給源から新規コンテンツを導入し、導入した上記新規コンテンツをコンテンツ毎にユニークなコンテンツ識別子と関連付けて上記第1の記録媒体に蓄積する蓄積手段と、コンテンツ識別子と記録媒体毎にユニークな記録媒体識別子とを関連付けて該コンテンツ識別子で識別されるコンテンツのチェックアウトの予約を行う予約手段とを有するコンテンツサーバと、

上記コンテンツサーバと上記記録再生装置とを接続する接続手段と、

上記接続手段により、上記予約手段でチェックアウトの予約がなされたコンテンツのコンテンツ識別子と関連付けた記録媒体識別子で識別される上記第2の記録媒体が接続されたと判別されたときに、上記チェックアウトの予約がなされたコンテンツを上記第2の記録媒体にチェックアウトするチェックアウト手段とを備えた

ことを特徴とする情報処理システム。

【請求項2】 請求項1に記載の情報処理システムにおいて、

上記第2の記録媒体は、上記記録再生装置に対して着脱可能なディスク状記録 媒体であることを特徴とする情報処理システム。

【請求項3】 請求項1に記載の情報処理システムにおいて、

上記予約手段におけるコンテンツ識別子と記録媒体識別子との関連付けは、該 記録媒体識別子と関連付けられたグループを指定することによりなされることを 特徴とする情報処理システム。

【請求項4】 請求項1に記載の情報処理システムにおいて、

上記予約手段は、さらに、登録されていない記録媒体識別子で識別され、且つ

【請求項5】 請求項1に記載の情報処理システムにおいて、

上記記録媒体識別子と該記録媒体識別子で識別される上記第2の記録媒体の容量に関する情報とが関連付けて管理され、さらに上記コンテンツ識別子と該コンテンツ識別子に対応するコンテンツのサイズとが関連付けて管理されており、上記容量に関する情報と上記チェックアウトの予約がなされたコンテンツの上記サイズとを比較して、チェックアウトを行った場合に、上記第2の記録媒体の容量が不足する場合には、該容量の不足が解消されるようにチェックインの予約を行うことを特徴とする情報処理システム。

【請求項6】 第1の記録媒体と第2の記録媒体とでデータの転送およびデータの戻しを行う情報処理方法において、

コンテンツ供給源と、

上記第2の記録媒体の記録再生を行う記録再生装置と、

上記コンテンツ供給源から新規コンテンツを導入し、導入した上記新規コンテンツをコンテンツ毎にユニークなコンテンツ識別子と関連付けて上記第1の記録媒体に蓄積する蓄積のステップと、コンテンツ識別子と記録媒体毎にユニークな記録媒体識別子とを関連付けて該コンテンツ識別子で識別されるコンテンツのチェックアウトの予約を行う予約のステップとを行うコンテンツサーバと、

上記コンテンツサーバと上記記録再生装置とを接続する接続のステップと、

上記接続のステップにより、上記予約のステップでチェックアウトの予約がなされたコンテンツのコンテンツ識別子と関連付けた記録媒体識別子で識別される上記第2の記録媒体が接続されたと判別されたときに、上記チェックアウトの予約がなされたコンテンツを上記第2の記録媒体にチェックアウトするチェックアウトのステップとを備え、

上記蓄積のステップを行っているときに上記予約のステップを行う ことを特徴とする情報処理方法。

【請求項7】 第1の記録媒体と第2の記録媒体とでデータの転送およびデ

ータの戻しをコンピュータに実行させる情報処理プログラムにおいて、

コンテンツ供給源から新規コンテンツを導入し、導入した上記新規コンテンツをコンテンツ毎にユニークなコンテンツ識別子と関連付けて上記第1の記録媒体に蓄積する蓄積のステップと、

コンテンツ識別子と記録媒体毎にユニークな記録媒体識別子とを関連付けて該コンテンツ識別子で識別されるコンテンツのチェックアウトの予約を行う予約のステップと、

上記第2の記録媒体の記録再生を行う記録再生装置と接続する接続のステップ と、

上記接続のステップにより、上記予約のステップで上記チェックアウトの予約がなされたコンテンツのコンテンツ識別子と関連付けた記録媒体識別子で識別される上記第2の記録媒体が接続されたと判別されたときに、上記チェックアウトの予約がなされたコンテンツを上記第2の記録媒体にチェックアウトするチェックアウトのステップと

をコンピュータに実行させることを特徴とする情報処理プログラム。

【請求項8】 請求項7に記載の情報処理プログラムにおいて、

上記第2の記録媒体は、上記記録再生装置に対して着脱可能なディスク状記録 媒体であることを特徴とする情報処理プログラム。

【請求項9】 請求項7に記載の情報処理プログラムにおいて、

上記予約のステップにおけるコンテンツ識別子と記録媒体識別子との関連付けは、該記録媒体識別子と関連付けられたグループを指定することによりなされることを特徴とする情報処理プログラム。

【請求項10】 請求項7に記載の情報処理プログラムにおいて、

上記予約のステップは、さらに、登録されていない記録媒体識別子で識別され、且つコンテンツが記録されていない上記第2の記録媒体に対して、チェックアウトするコンテンツを上記コンテンツ識別子に基づいて予約することを特徴とする情報処理プログラム。

【請求項11】 請求項7に記載の情報処理プログラムにおいて、

上記記録媒体識別子と関連付けられている該記録媒体識別子で識別される上記

第2の記録媒体の容量に関する情報と、上記コンテンツ識別子と関連付けられている該コンテンツ識別子に対応するコンテンツのサイズとを比較して、チェックアウトを行った場合に、上記第2の記録媒体の容量が不足する場合には、該容量の不足が解消されるようにチェックインの予約を行うことを特徴とする情報処理プログラム。

【請求項12】 第1の記録媒体と第2の記録媒体とでデータの転送および データの戻しをコンピュータに実行させる情報処理プログラムが記録されたコン ピュータ読み取り可能な記録媒体において、

コンテンツ供給源から新規コンテンツを導入し、導入した上記新規コンテンツをコンテンツ毎にユニークなコンテンツ識別子と関連付けて上記第1の記録媒体に蓄積する蓄積のステップと、

コンテンツ識別子と記録媒体毎にユニークな記録媒体識別子とを関連付けて該コンテンツ識別子で識別されるコンテンツのチェックアウトの予約を行う予約のステップと、

上記第2の記録媒体の記録再生を行う記録再生装置と接続する接続のステップと、

上記接続のステップにより、上記予約のステップで上記チェックアウトの予約がなされたコンテンツのコンテンツ識別子と関連付けた記録媒体識別子で識別される上記第2の記録媒体が接続されたと判別されたときに、上記チェックアウトの予約がなされたコンテンツを上記第2の記録媒体にチェックアウトするチェックアウトのステップと

をコンピュータに実行させる情報処理プログラムが記録されたことを特徴とする コンピュータ読み取り可能な記録媒体。

【請求項13】 請求項12に記載の記録媒体において、

上記第2の記録媒体は、上記記録再生装置に対して着脱可能なディスク状記録 媒体であることを特徴とする記録媒体。

【請求項14】 請求項12に記載の記録媒体において、

上記予約のステップにおけるコンテンツ識別子と記録媒体識別子との関連付けは、該記録媒体識別子と関連付けられたグループを指定することによりなされる

ことを特徴とする記録媒体。

【請求項15】 請求項12に記載の記録媒体において、

上記予約のステップは、さらに、登録されていない記録媒体識別子で識別され 、且つコンテンツが記録されていない上記第2の記録媒体に対して、チェックア ウトするコンテンツを上記コンテンツ識別子に基づいて予約することを特徴とす る記録媒体。

【請求項16】 請求項12に記載の記録媒体において、

上記記録媒体識別子と関連付けられている該記録媒体識別子で識別される上記第2の記録媒体の容量に関する情報と、上記コンテンツ識別子と関連付けられている該コンテンツ識別子に対応するコンテンツのサイズとを比較して、チェックアウトを行った場合に、上記第2の記録媒体の容量が不足する場合には、該容量の不足が解消されるようにチェックインの予約を行うことを特徴とする記録媒体

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この発明は、情報処理システム、方法およびプログラム、ならびに、情報処理 プログラムが記録された記録媒体に関し、特に音楽、映像等の情報を利用するた めの情報処理システム、方法およびプログラム、ならびに、情報処理プログラム が記録された記録媒体に関する。

[0002]

【従来の技術】

近年では、音楽などの記録再生を行うようにされた携帯型の記録再生装置においても、ハードディスクドライブを内蔵し尚かつ極めて小型に構成された製品が 出現している。このような携帯型の記録再生装置は、通常、記録されている音楽 データの管理を、パーソナルコンピュータと接続して行う。

[0003]

例えば、パーソナルコンピュータが有するハードディスクドライブに多数の音楽データを格納してライブラリを構築して、パーソナルコンピュータでミュージ

[0004]

このパーソナルコンピュータと携帯型の記録再生装置をケーブル接続して、パーソナルコンピュータのライブラリに格納されている音楽データを携帯型の記録再生装置に転送する。携帯型の記録再生装置では、転送された音楽データを内蔵されるハードディスクドライブに記録する。ユーザは、携帯型の記録再生装置を持ち歩くことで、パーソナルコンピュータ内に構成されたライブラリに格納された音楽データを、例えば屋外で楽しむことができる。

[0005]

このような環境をより快適なものとするために、さまざまな提案がなされている。例えば、下記の特許文献1には、音楽などのコンテンツを管理するプログラムを実行するパーソナルコンピュータにおいて、外部機器IDと、メモリカードを例にしたメディアIDとに基づいて、パーソナルコンピュータからコンテンツを利用するポータブルデバイスへの、コンテンツに関するデータの記憶を自動で行うことが記載されている。

[0006]

【特許文献1】

特開2003-77214号公報

[0007]

また、下記の特許文献2には、デジタルメモリプレーヤのメモリの容量及びメモリのIDに基づいて、パーソナルコンピュータからデジタルメモリプレーヤへ楽曲についての情報を転送することが記載されている。

[0008]

【特許文献2】

特開2003-29795号公報

[0009]

一方、ディジタルオーディオデータを記録再生するための記録媒体として、カ

[0010]

MDシステムでは、このように、パーソナルコンピュータにおいて一般的なFAT (File Allocation Table)に基づくファイルシステムとは異なるファイル管理方法を用いているため、パーソナルコンピュータのような汎用コンピュータとの互換性を有していなかった。そこで、例えばFATシステムなどの汎用の管理システムを導入して、パーソナルコンピュータとの互換性を高めたシステムが提案されている。

[0011]

このような、パーソナルコンピュータとの互換性を考慮されたディスクを記録 媒体として用いた携帯型の記録再生装置を、上述のパーソナルコンピュータを用 いたミュージックサーバに接続し、ミュージックサーバ内のライブラリをディス クに記録することが考えられる。

[0012]

ここで、現行のMDシステムのディスクは、記録容量が160MB程度であるが、現行のMDとの互換性を確保しつつ、記録容量を増大させたディスクを用いることで、上述したハードディスクドライブを用いた携帯型の記録再生装置と同等の機能を実現することが可能であると考えられる。現行のMDシステムのディスクの大容量化を図るためには、レーザ波長や光学ヘッドの開口率NAを改善する必要がある。しかしながら、レーザ波長や光学ヘッドの開口率NAの改善には限界がある。そのため、磁気超解像度などの技術を用いて大容量化するシステム

[0013]

【発明が解決しようとする課題】

ところで、上述のようにしてパーソナルコンピュータをミュージックサーバとして用い、パーソナルコンピュータから携帯型の記録再生装置に音楽データを転送するようにした場合、CDからのリッピングやネットワークからのダウンロードなどにより、音楽データをパーソナルコンピュータに取り込む作業と、取り込んだ音楽データを携帯型の記録再生装置にチェックアウトする作業とを必要とする。

[0014]

音楽データのチェックアウト先である携帯型の記録再生装置、記録媒体などの機器は、通常小さな構造とされているため、鞄の中や部屋の隅に紛れてしまって見つけられないことがある。したがって、音楽データの取り込み作業と音楽データのチェックアウトとを一度に済ますことができず、2度手間となってしまい効率が悪いという問題点があった。

[0015]

また、例えば、携帯型の記録再生装置が記録媒体として上述のMDシステムのディスクを使用するものである場合、パーソナルコンピュータから携帯型の記録再生装置に新規に取り込んだ音楽データを自動的にチェックアウトするようにしておくと、同じディスクにさまざまなジャンルの音楽データが存在してしまう。したがって、パーソナルコンピュータ上に携帯型の記録再生装置へチェックアウト可能な音楽データが増えると、音楽データの管理、利用が複雑となるという問題点があった。

[0016]

したがって、この発明の目的は、コンテンツの管理および利用を効率よく、且 つ容易に行うことができる情報処理システム、方法およびプログラム、ならびに 、情報処理プログラムが記録された記録媒体を提供することにある。

[0017]

【課題を解決するための手段】

[0018]

また、この発明は、第1の記録媒体と第2の記録媒体とでデータの転送および データの戻しを行う情報処理方法において、コンテンツ供給源と、第2の記録媒体の記録再生を行う記録再生装置と、コンテンツ供給源から新規コンテンツを導入し、導入した新規コンテンツをコンテンツ毎にユニークなコンテンツ識別子と 関連付けて第1の記録媒体に蓄積する蓄積のステップと、コンテンツ識別子と記録媒体毎にユニークな記録媒体識別子とを関連付けて該コンテンツ識別子で識別されるコンテンツのチェックアウトの予約を行う予約のステップとを行うコンテンツサーバと、コンテンツサーバと記録再生装置とを接続する接続のステップと、接続のステップにより、予約のステップでチェックアウトの予約がなされたコンテンツのコンテンツ識別子と関連付けた記録媒体識別子で識別される第2の記録媒体が接続されたと判別されたときに、チェックアウトの予約がなされたコンテンツを第2の記録媒体にチェックアウトするチェックアウトのステップとを備え、蓄積のステップを行っているときに予約のステップを行うことを特徴とする情報処理方法である。

[0019]

[0020]

また、この発明は、第1の記録媒体と第2の記録媒体とでデータの転送および データの戻しをコンピュータに実行させる情報処理プログラムが記録されたコンピュータ読み取り可能な記録媒体において、コンテンツ供給源から新規コンテンツを導入し、導入した新規コンテンツをコンテンツ毎にユニークなコンテンツ識別子と関連付けて第1の記録媒体に蓄積する蓄積のステップと、コンテンツ識別子と記録媒体毎にユニークな記録媒体識別子とを関連付けて該コンテンツ識別子で識別されるコンテンツのチェックアウトの予約を行う予約のステップと、第2の記録媒体の記録再生を行う記録再生装置と接続する接続のステップと、接続のステップにより、予約のステップでチェックアウトの予約がなされたコンテンツのコンテンツ識別子と関連付けた記録媒体識別子で識別される第2の記録媒体が接続されたと判別されたときに、チェックアウトの予約がなされたコンテンツを第2の記録媒体にチェックアウトするチェックアウトのステップとをコンピュータに実行させる情報処理プログラムが記録されたことを特徴とするコンピュータに実行させる情報処理プログラムが記録されたことを特徴とするコンピュータ読み取り可能な記録媒体である。

[0021]

[0022]

【発明の実施の形態】

以下、この発明の実施の一形態について説明する。先ず、この発明の実施の一 形態の説明に先立って、この発明に適用可能なディスクシステムについて、下記 の9のセクションに従い説明する。

- 1. 記録方式の概要
- 2. ディスクについて
- 3. 信号フォーマット
- 4. 記録再生装置の構成
- 5. 次世代MD1および次世代MD2によるディスクの初期化処理について
- 6. 音楽データの第1の管理方式について
- 7. 音楽データの管理方式の第2の例
- 8. パーソナルコンピュータとの接続時の動作について
- 9. ディスク上に記録されたオーディオデータのコピー制限について 【0023】

1. 記録方式の概要

この発明の実施の一形態では、記録媒体として光磁気ディスクが使用される。 フォームファクタのような、ディスクの物理的属性は、いわゆるMD(Mini-Disc

[0024]

より具体的には、この発明の実施の一形態に適用される装置は、オーディオデータのようなコンテンツデータを記録再生するために、ファイル管理システムとしてFAT (File Allocation Table)システムを使用している。これによって、当該装置は、現行のパーソナルコンピュータに対して互換性を保証することができる。

[0025]

ここでは、「FAT」又は「FATシステム」という用語は、種々のPCベースのファイルシステムを指すのに総称的に用いられ、DOS(Disk Operating System)で用いられる特定のFATベースのファイルシステム、Windows (登録商標) 95/98で使用されるVFAT(Virtual FAT)、Windows 98/ME/2000で用いられるFAT32、及びNTFS(NT File System (New Technology File System とも呼ばれる))のどれかを示すことを意図したものではない。NTFSは、WindowsNTオペレーティングシステム、又は(オプションにより)Windows2000で使用されるファイルシステムであり、ディスクに対する読み出し/書き込みの際に、ファイルの記録及び取り出しを行う。

[0026]

また、この発明の実施の一形態では、現行のMDシステムに対して、エラー訂正方式や変調方式を改善することにより、データの記録容量の増大を図るとともに、データの信頼性を高めるようにしている。更に、この実施の一形態では、コンテンツデータを暗号化するとともに、不正コピーを防止して、コンテンツデータの著作権の保護が図れるようにしている。

[0027]

記録再生のフォーマットとしては、現行のMDシステムで用いられているディスクと全く同様のディスク(すなわち、物理媒体)を用いるようにした次世代MD

1の仕様と、現行のMDシステムで用いられているディスクとフォームファクター及び外形は同様であるが、磁気超解像度(MSR)技術を使うことにより、線記録方向の記録密度を上げて、記録容量をより増大した次世代MD2の仕様とがあり、これらが本願発明者により開発されている。

[0028]

現行のMDシステムでは、カートリッジに収納された直径64mmの光磁気ディスクが記録媒体として用いられている。ディスクの厚みは1.2mmであり、その中央に11mmの径のセンターホールが設けられている。カートリッジの形状は、長さ68mm、幅72mm、厚さ5mmである。

[0029]

次世代MD1の仕様でも次世代MD2の仕様でも、これらディスクの形状やカートリッジの形状は、全て同じである。リードイン領域の開始位置についても、次世代MD1の仕様および次世代MD2の仕様のディスクも、29mmから始まり、現行のMDシステムで使用されているディスクと同様である。

[0030]

トラックピッチについては、次世代MD 2 では、 1.2μ mから 1.3μ m (例えば 1.25μ m) とすることが検討されている。これに対して、現行のMD システムのディスクを流用する次世代MD 1 では、トラックピッチは 1.6μ m とされている。ビット長は、次世代MD 1 が 0.44μ m / ビットとされ、次世代MD 2 が 0.16μ m / ビットとされる。冗長度は、次世代MD 1 および次世代MD 2 ともに、20.50%である。

[0031]

次世代MD2の仕様のディスクでは、磁気超解像技術を使うことにより、線密度方向の記録容量を向上するようにしている。磁気超解像技術は、所定の温度になると、切断層が磁気的にニュートラルな状態になり、再生層に転写されていた磁壁が移動することで、微少なマークがビームスポットの中で大きく見えるようになることを利用したものである。

[0032]

すなわち、次世代MD2の仕様のディスクでは、透明基板上に、少なくとも情

[0033]

また、次世代MD2の仕様のディスクでは、デトラックマージン、ランドからのクロストーク、ウォブル信号のクロストーク、フォーカスの漏れを改善するために、グルーブを従来のMDディスクより深くし、グルーブの傾斜を鋭くしている。次世代MD2の仕様のディスクでは、グルーブの深さは例えば160nmから180nmであり、グルーブの傾斜は例えば60度から70度であり、グルーブの幅は例えば600nmから700nmである。

[0034]

また、光学的の仕様については、次世代MD1の仕様では、レーザ波長λが780nmとされ、光学ヘッドの対物レンズの開口率NAが0.45とされている。次世代MD2の仕様も同様に、レーザ波長λが780nmとされ、光学ヘッドの開口率NAが0.45とされている。

[0035]

記録方式としては、次世代MD1の仕様も次世代MD2の仕様も、グルーブ記録方式が採用されている。つまり、グルーブ(ディスクの盤面上の溝)をトラックとして記録再生に用いるようにしている。

[0036]

エラー訂正符号化方式としては、現行のMDシステムでは、ACIRC (Advanced Cross Interleave Reed-Solomon Code) による畳み込み符号が用いられていたが、次世代MD1および次世代MD2の仕様では、RS-LDC (Reed Solomon-Long Distance Code) とBIS (Burst Indicator Subcode) とを組み合わせたブロック完結型の符号が用いられている。ブロック完結型のエラー訂正符号を採用することにより、リンキングセクタが不要になる。LDCとBISとを組

[0037]

アドレス方式としては、シングルスパイラルによるグループを形成したうえで、このグループの両側に対してアドレス情報としてのウォブルを形成したウォブルドグループ方式が採用されている。このようなアドレス方式は、ADIP (Address in Pregroove) と呼ばれている。現行のMDシステムと、次世代MD1および次世代MD2の仕様では、線密度が異なると共に、現行のMDシステムでは、エラー訂正符号として、ACIRCと呼ばれる畳み込み符号が用いられているのに対して、次世代MD1および次世代MD2の仕様では、LDCとBISとを組み合わせたブロック完結型の符号が用いられているため、冗長度が異なり、ADIPとデータとの相対的な位置関係が変わっている。そこで、現行のMDシステムと同じ物理構造のディスクを流用する次世代MD1の仕様では、ADIP信号の扱いを、現行のMDシステムのときとは異なるようにしている。また、次世代MD2の仕様では、次世代MD2の仕様では、次世代MD2の仕様では、次世代MD2の仕様により合致するように、ADIP信号の仕様に変更を加えている。

[0038]

変調方式については、現行のMDシステムでは、EFM(8 to 14 Modulation)が用いられているのに対して、次世代MD1および次世代MD2の仕様では、RLL(1,7)PP(RLL;Run Length Limited,PP;Parity Preserve/Prohibit rmtr(repeated minimum transition runlength))(以下、1-7pp変調と称する)が採用されている。また、データの検出方式は、次世代MD1ではパーシャルレスポンスPR(1,2,1)MLを用い、次世代MD2ではパーシャルレスポンスPR(1,-1)MLを用いたビタビ復号方式とされている。

[0039]

また、ディスク駆動方式はCLV (Constant Linear Verocity) またはZCAV (Zone Constant Angular Verocity) で、その標準線速度は、次世代MD1の仕様では、2.4m/秒とされ、次世代MD2の仕様では、1.98m/秒とさ

[0040]

現行のMDシステムで用いられるディスクをそのまま流用する次世代MD1の 仕様では、ディスク1枚当たりのデータ総記録容量は約300Mバイト(80分 ディスクを用いた場合)になる。変調方式がEFMから1-7pp変調とされる ことで、ウィンドウマージンが0.5から0.666となり、この点で、1.3 3倍の高密度化が実現できる。また、エラー訂正方式として、ACIRC方式からBISとLDCを組み合わせたものとしたことで、データ効率が上がり、この 点で、1.48倍の高密度化が実現できる。総合的には、全く同様のディスクを 使って、現行のMDシステムに比べて、約2倍のデータ容量が実現されたことに なる。

[0041]

磁気超解像度を利用した次世代MD2の仕様のディスクでは、更に線密度方向の高密度化が図られ、データ総記録容量は、約1Gバイトになる。

[0042]

データレートは標準線速度にて、次世代MD1では4.4Mビット/秒であり 、次世代MD2では、9.8Mビット/秒である。

[0043]

2. ディスクについて

図1は、次世代MD1のディスクの構成を示すものである。次世代MD1のディスクは、現行のMDシステムのディスクをそのまま流用したものである。すなわち、ディスクは、透明のポリカーボネート基板上に、誘電体膜と、磁性膜と、誘電体膜と、反射膜とを積層して構成される。更に、その上に、保護膜が積層される。

[0044]

次世代MD1のディスクでは、図1に示すように、ディスクの内周(ディスクのレコーダブル領域の最も内側の周(「最も内側」は、ディスクの中心から放射状に延びる方向において最も内側を示す)のリードイン領域に、P-TOC(プ

リマスタードTOC (Table Of Contents)) 領域が設けられる。ここは、物理的な構造としては、プリマスタード領域となる。すなわち、エンボスピットにより、コントロール情報等が、例えば、P-TOC情報として記録されている。

[0045]

P-TOC領域が設けられるリードイン領域の外周(ディスクの中心から放射状に延びる方向において外側の周)は、レコーダブル領域(光磁気記録可能な領域)とされ、記録トラックの案内溝としてグルーブが形成された記録再生可能領域となっている。このレコーダブル領域の内周には、U-TOC(ユーザTOC)が設けられる。

[0046]

U-TOCは、現行のMDシステムでディスクの管理情報を記録するために用いられているU-TOCと同様の構成のものである。U-TOCは、現行のMDシステムにおいて、トラック(オーディオトラック/データトラック)の曲順、記録、消去などに応じて書き換えられる管理情報であり、各トラック(トラックを構成するパーツ)について、開始位置、終了位置や、モードを管理するものである。

[0047]

U-TOCの外周には、アラートトラックが設けられる。このトラックには、ディスクが現行のMDシステムにロードされた場合に、MDプレーヤによって起動(出力)される警告音が記録される。この警告音は、そのディスクが次世代MD1方式で使用され、現行のシステムでは再生できないことを示すものである。レコーダブル領域の残りの部分(詳しくは、図2に示されている)は、リードアウト領域まで、放射状に延びる方向に広がっている。

[0048]

図2は、図1に示す次世代MD1の仕様のディスクのレコーダブル領域の構成を示すものである。図2に示すように、レコーダブル領域の先頭(内周側)には、U-TOCおよびアラートトラックが設けられる。U-TOCおよびアラートトラックが含まれる領域は、現行のMDシステムのプレーヤでも再生できるように、EFMでデータが変調されて記録される。EFM変調でデータが変調されて

[0049]

1-7pp変調でデータが変調されて記録される領域の先頭(内周側)には、DDT (Disc Description Table) 領域と、リザーブトラックが設けられる。DDT領域には、物理的に欠陥のある領域に対する交替処理をするために設けられる。DDT領域には、さらに、ディスク毎に固有の識別コードが記録される。以下、このディスク毎に固有の識別コードをUID (ユニークID) と称する。次世代MD1の場合、UIDは、例えば所定に発生された乱数に基づき生成され、例えばディスクの初期化の際に記録される(詳細は後述する)。UIDを用いることで、ディスクの記録内容に対するセキュリティ管理を行うことができる。リザーブトラックは、コンテンツの保護を図るための情報が格納される。

[0050]

更に、1-7pp変調でデータが変調されて記録される領域には、FAT (Fi le Allocation Table) 領域が設けられる。FAT領域は、FATシステムでデータを管理するための領域である。FATシステムは、汎用のパーソナルコンピュータで使用されているFATシステムに準拠したデータ管理を行うものである。FATシステムは、ルートにあるファイルやディレクトリのエントリポイントを示すディレクトリと、FATクラスタの連結情報が記述されたFATテーブルとを用いて、FATチェーンによりファイル管理を行うものである。なお、FATの用語は、前述したように、PCオペレーティングシステムで利用される、様々な異なるファイル管理方法を示すように総括的に用いられている。

[0051]

次世代MD1の仕様のディスクにおいては、U-TOC領域には、アラートトラックの開始位置の情報と、1-7pp変調でデータが変調されて記録される領

域の開始位置の情報が記録される。

[0052]

現行のMDシステムのプレーヤに、次世代MD1のディスクが装着されると、 U-TOC領域が読み取られ、U-TOCの情報から、アラートトラックの位置 が分かり、アラートトラックがアクセスされ、アラートトラックの再生が開始さ れる。アラートトラックには、このディスクが次世代MD1方式で使用され、現 行のMDシステムのプレーヤでは再生できないことを示す警告音が記録されてい る。この警告音から、このディスクが現行のMDシステムのプレーヤでは使用で きないことが知らされる。

[0053]

なお、警告音としては、「このプレーヤでは使用できません」というような言語による警告とすることができる。勿論、単純なビープ音、トーン、又はその他の警告信号とするようにしても良い。

[0054]

次世代MD1に準拠したプレーヤに、次世代MD1のディスクが装着されると、U-TOC領域が読み取られ、U-TOCの情報から、1-7pp変調でデータが記録された領域の開始位置が分かり、DDT、リザーブトラック、FAT領域が読み取られる。1-7pp変調のデータの領域では、U-TOCを使わずに、FATシステムを使ってデータの管理が行われる。

[0055]

図3は、次世代MD2のディスクを示すものである。ディスクは、透明のポリカーボネート基板上に、誘電体膜と、磁性膜と、誘電体膜と、反射膜とを積層して構成される。更に、その上に、保護膜が積層される。

[0056]

次世代MD2のディスクでは、図3Aに示すように、ディスクの内周(ディスクの中心から放射状に延びる方向において内側の周)のリードイン領域には、ADIP信号により、コントロール情報が記録されている。次世代MD2のディスクには、リードイン領域にはエンボスピットによるP-TOCは設けられておらず、その代わりに、ADIP信号によるコントロール情報が用いられる。リード

[0057]

次世代MD2の仕様のディスクでは、図3Bに示すように、磁性膜として、情報を記録する記録層となる磁性層101と、切断層102と、情報再生用の磁性層103とが積層されたものが用いられる。切断層102は、交換結合力調整用層となる。所定の温度になると、切断層102が磁気的にニュートラルな状態になり、記録層101に転写されていた磁壁が再生用の磁性層103に転写される。これにより、記録層101では微少なマークが再生用の磁性層103のビームスポットの中に拡大されて見えるようになる。

[0058]

図示しないが、次世代MD2の使用のディスクでは、記録可能領域の内周側の、コンシューマ向けの記録再生装置で再生可能であるが記録不可であるような領域に、上述したUIDが予め記録される。次世代MD2のディスクの場合、UIDは、例えばDVD(Digital Versatile Disc)で用いられているBCA(Burst Cutting Area)の技術と同様の技術により、ディスクの製造時に予め記録される。ディスクの製造時にUIDが生成され記録されるため、UIDの管理が可能となり、上述の次世代MD1による、ディスクの初期化時などに乱数に基づきUIDを生成する場合に比べ、セキュリティを向上できる。UIDのフォーマットなど詳細については、後述する。

[0059]

なお、繁雑さを避けるために、次世代MD2においてUIDが予め記録されるこの領域を、以降、BCAと呼ぶことにする。

[0060]

次世代MD1であるか次世代MD2であるかは、例えば、リードインの情報から判断できる。すなわち、リードインにエンボスピットによるP-TOCが検出されれば、現行のMDまたは次世代MD1のディスクであると判断できる。リードインにADIP信号によるコントロール情報が検出され、エンボスピットによ

[0061]

図4は、次世代MD2の仕様のディスクのレコーダブル領域の構成を示すものである。図4に示すように、レコーダブル領域では全て1-7pp変調でデータが変調されて記録され、1-7pp変調でデータが変調されて記録される領域の先頭(内周側)には、DDT領域と、リザーブトラックが設けられる。DDT領域は、物理的に欠陥のある領域に対する交替領域を管理するための交替領域管理データを記録するために設けられる。

[0062]

具体的には、DDT領域は、物理的に欠陥のある上記領域に替わるレコーダブル領域を含む置き換え領域を管理する管理テーブルを記録する。この管理テーブルは、欠陥があると判定された論理クラスタを記録し、その欠陥のある論理クラスタに替わるものとして割り当てられた置き換え領域内の論理クラスタ(1つ又は複数)も記録する。さらに、DDT領域には、上述したUIDが記録される。リザーブトラックは、コンテンツの保護を図るための情報が格納される。

[0063]

更に、1-7pp変調でデータが変調されて記録される領域には、FAT領域が設けられる。FAT領域は、FATシステムでデータを管理するための領域である。FATシステムは、汎用のパーソナルコンピュータで使用されているFATシステムに準拠したデータ管理を行うものである。

[0064]

次世代MD2のディスクにおいては、U-TOC領域は設けられていない。次世代MD2に準拠したプレーヤに、次世代MD2のディスクが装着されると、所定の位置にあるDDT、リザーブトラック、FAT領域が読み取られ、FATシ

ステムを使ってデータの管理が行われる。

[0065]

次世代MD1および次世代MD2のディスクでは、時間のかかる初期化作業は不要とされる。すなわち、次世代MD1および次世代MD2の仕様のディスクでは、DDTやリザーブトラック、FATテーブル等の最低限のテーブルの作成以外に、初期化作業は不要で、未使用のディスクからレコーダブル領域の記録再生を直接行うことが可能である。

[0066]

なお、次世代MD2のディスクは、上述のように、ディスクの製造時にUIDが生成され記録されるため、より強力にセキュリティ管理を行うことが可能である一方、現行のMDシステムで用いられるディスクに比べて膜の積層数が多く、より高価である。そこで、ディスクの記録可能領域およびリードイン、リードアウト領域は、次世代MD1と共通とし、UIDのみ、DVDと同様のBCAを用いて次世代MD2と同様にしてディスクの製造時に記録するようにしたディスクシステム(次世代MD1.5と称する)が提案されている。

[0067]

なお、以下では、次世代MD1.5に関して、特に必要となる場合を除き、説明を省略する。すなわち、次世代MD1.5は、UIDに関しては次世代MD2に準じ、オーディオデータの記録再生などに関しては次世代MD1に準ずるものとする。

[0068]

UIDについて、より詳細に説明する。上述したように、次世代MD2のディスクにおいて、UIDは、DVDで用いられているBCAと称される技術と同様の技術により、ディスクの製造時に予め記録される。図5は、このUIDの一例のフォーマットを概略的に示す。UIDの全体をUIDレコードブロックと称する。

[0069]

UIDブロックにおいて、先頭から2バイト分がUIDコードのフィールドと される。UIDコードは、2バイトすなわち16ビットのうち上位4ビットがデ

[0070]

UIDコードの次に1バイトのバージョンナンバのフィールドが配され、その次に、1バイトでデータ長のフィールドが配される。このデータ長により、データ長の次に配されるUIDレコードデータのフィールドのデータ長が示される。UIDレコードデータのフィールドは、UID全体のデータ長が188バイトを超えない範囲で、 $4m(m=0,1,2,\cdots)$ バイト分、配される。UIDレコードデータのフィールドに、所定の方法で生成したユニークなIDを格納することができ、これにより、ディスク個体が識別可能とされる。

[0071]

なお、次世代MD1のディスクでは、このUIDレコードデータのフィールドに、乱数に基づき生成されたIDが記録される。

[0072]

UIDレコードブロックは、最大188バイトまでのデータ長で、複数個、作ることができる。

[0073]

3. 信号フォーマット

次に、次世代MD1および次世代MD2のシステムの信号フォーマットについて説明する。現行のMDシステムでは、エラー訂正方式として、畳み込み符号であるACIRCが用いられており、サブコードブロックのデータ量に対応する2352バイトからなるセクタを記録再生のアクセス単位としている。畳み込み符号の場合には、エラー訂正符号化系列が複数のセクタに跨るため、データを書き換える際には、隣接するセクタ間に、リンキングセクタを用意する必要がある。アドレス方式としては、シングルスパイラルによるグループを形成したうえで、

このグループの両側に対してアドレス情報としてのウォブルを形成したウォブルドグループ方式であるADIPが使われている。現行のMDシステムでは、2352バイトからなるセクタをアクセスするのに最適なように、ADIP信号が配列されている。

[0074]

これに対して、次世代MD1および次世代MD2のシステムの仕様では、LDCとBISとを組み合わせたブロック完結型の符号が用いられ、64Kバイトを記録再生のアクセス単位としている。ブロック完結型の符号では、リンキングセクタは不要である。そこで、現行のMDシステムのディスクを流用する次世代MD1のシステムの仕様では、ADIP信号の扱いを、新たな記録方式に対応するように、変更するようにしている。また、次世代MD2のシステムの仕様では、次世代MD2の仕様により合致するように、ADIP信号の仕様に変更を加えている。

[0075]

図6、図7、および図8は、次世代MD1および次世代MD2のシステムで使用されるエラー訂正方式を説明するためのものである。次世代MD1および次世代MD2のシステムでは、図6に示すようなLDCによるエラー訂正符号化方式と、図7および図8に示すようなBIS方式とが組み合わされている。

[0076]

図6は、LDCによるエラー訂正符号化の符号化ブロックの構成を示すものである。図6に示すように、各エラー訂正符号化セクタのデータに対して、4バイトのエラー検出コードEDCが付加され、水平方向に304バイト、垂直方向に216バイトのエラー訂正符号化ブロックに、データが二次元配列される。各エラー訂正符号化セクタは、2Kバイトのデータからなる。図6に示すように、水平方向に304バイト、垂直方向に216バイトからなるエラー訂正符号化ブロックには、2Kバイトからなるエラー訂正符号化セクタが32セクタ分配置される。このように、水平方向に304バイト、垂直方向に216バイトに二次元配列された32個のエラー訂正符号化セクタのエラー訂正符号化ブロックのデータに対して、垂直方向に、32ビットのエラー訂正用のリード・ソロモンコードの

パリティが付加される。

[0077]

図 7 および図 8 は、B I S の構成を示すものである。図 7 に示すように、3 8 バイトのデータ毎に、1 バイトのB I S が挿入され、(3 $8 \times 4 = 1$ 5 2 バイト)のデータと、3 バイトのB I S データと、2 . 5 バイトのフレームシンクとの合計 1 5 7 . 5 バイトが 1 フレームとされる。

[0078]

図8に示すように、このように構成されるフレームを496フレーム集めて、BISのブロックが構成される。BISデータ($3\times496=1488$ バイト)には、576バイトのユーザコントロールデータと、144バイトのアドレスユニットナンバと、768バイトのエラー訂正コードが含められる。

[0079]

このように、BISデータには、1488バイトのデータに対して768バイトのエラー訂正コードが付加されているので、強力にエラー訂正を行うことができる。このBISコードを38バイト毎に埋め込んでおくことにより、バーストエラーが発生したときに、エラーロケーションが検出できる。このエラーロケーションを使って、LDCコードにより、イレージャ訂正を行うことができる。

[0080]

ADIP信号は、図9に示すように、シングルスパイラルのグルーブの両側に対してウォブルを形成することで記録される。すなわち、ADIP信号は、FM変調されたアドレスデータを有し、ディスク素材にグルーブのウォブルとして形成されることにより記録される。

[0081]

図10は、次世代MD1の場合のADIP信号のセクタフォーマットを示すものである。

[0082]

図10に示すように、ADIP信号の1セクタ(ADIPセクタ)は、4ビットのシンクと、8ビットのADIPクラスタナンバの上位ビットと、8ビットのADIPセクタナンバと、

[0083]

シンクは、ADIPセクタの先頭を検出するための所定パターンの信号である。従来のMDシステムでは、畳み込み符号を使っているため、リンキングセクタが必要になる。リンキング用のセクタナンバは、負の値を持ったセクタナンバで、「FCh」、「FPh」、「FFh」(hは16進数を示す)のセクタナンバのものである。次世代MD1では、現行のMDシステムのディスクを流用するため、このADIPセクタのフォーマットは、現行のMDシステムのものと同様である。

[0084]

次世代MD1のシステムでは、図11に示すように、ADIPセクタナンバ「FCh」から「FFh」および「0Fh」から「1Fh」までの36セクタで、ADIPクラスタが構成される。そして、図10に示すように、1つのADIPクラスタに、2つのレコーディングブロック(64Kバイト)のデータを配置するようにしている。

[0085]

図12は、次世代MD2の場合のADIPセクタの構成を示すものである。次世代MD2の仕様では、ADIPセクタが16セクタで、ADIPセクタが構成される。したがって、ADIPのセクタナンバは、4ビットで表現できる。また、次世代MDでは、ブロック完結のエラー訂正符号が用いられているため、リンキングセクタは不要である。

[0086]

次世代MD2のADIPセクタは、図12に示すように、4ビットのシンクと、4ビットのADIPクラスタナンバの上位ビットと、8ビットのADIPクラスタナンバの中位ビットと、4ビットのADIPクラスタナンバの下位ビットと、4ビットのADIPセクタナンバと、18ビットのエラー訂正用のパリティとからなる。

[0087]

シンクは、ADIPセクタの先頭を検出するための所定パターンの信号である

[0088]

図14は、次世代MD1の場合のADIPクラスタとBISのフレームとの関係を示すものである。

[0089]

図11に示したように、次世代MD1の仕様では、ADIPセクタ「FC」~「FF」およびADIPセクタ「00」~「1F」の36セクタで、1つのADIPクラスタが構成される。記録再生の単位となる1レコーディングブロック(64 Kバイト)のデータは、1つのADIPクラスタに、2つ分配置される。

[0090]

図14に示すように、1つのADIPセクタは、前半の18セクタと、後半の18セクタとに分けられる。

[0091]

記録再生の単位となる1レコーディングブロックのデータは、496フレームからなるB I Sのブロックに配置される。このB I Sのブロックに相当する496フレーム分のデータのフレーム(フレーム「10」からフレーム「505」)の前に、10フレーム分のプリアンブル(フレーム「0」からフレーム「9」)が付加され、また、このデータのフレームの後に、6フレーム分のポストアンブルのフレーム(フレーム506からフレーム511)が付加され、合計、512フレーム分のデータが、AD I Pセクタ「FCh」からAD I Pセクタ「0D h」のAD I P クラスタの前半に配置されるとともに、AD I P セクタ「0E h」からAD I P セクタ「1F h」の1P クラスタの後半に配置される。データフレームの前のプリアンブルのフレームと、データの後ろのポストアンブルのフ

レームは、隣接するレコーディングブロックとのリンキング時にデータを保護するのに用いられる。プリアンブルは、データ用PLLの引き込み、信号振幅制御、信号オフセット制御などにも用いられる。

[0092]

レコーディングブロックのデータを記録再生する際の物理アドレスは、ADIPクラスタと、そのクラスタの前半か後半かにより指定される。記録再生時に物理アドレスが指定されると、ADIP信号からADIPセクタが読み取られ、ADIPセクタの再生信号から、ADIPクラスタナンバとADIPセクタナンバが読み取られ、ADIPクラスタの前半と後半とが判別される。

[0093]

図15は、次世代MD2の仕様の場合のADIPクラスタとBISのフレームとの関係を示すものである。図13に示したように、次世代MD2の仕様では、ADIPセクタが16セクタで、1つのADIPクラスタが構成される。1つのADIPクラスタに、1レコーディングブロック(64Kバイト)のデータが配置される。

[0094]

図15に示すように、記録再生の単位となる1レコーディングブロック(64 Kバイト)のデータは、496フレームからなるBISのブロックに配置される。このBISのブロックに相当する496フレーム分のデータのフレーム(フレーム「10」からフレーム「505」)の前に、10フレーム分のプリアンブル(フレーム「0」からフレーム「9」)が付加され、また、このデータのフレームの後に、6フレーム分のポストアンブルのフレーム(フレーム506からフレーム511)が付加され、合計、512フレーム分のデータが、ADIPセクタ「0h」からADIPセクタ「0h」からな0h0 から0h1 からな0h1 ののでころのでころに配置される。

[0095]

データフレームの前のプリアンブルのフレームと、データの後ろのポストアンブルのフレームは、隣接するレコーディングブロックとのリンキング時にデータを保護するのに用いられる。プリアンブルは、データ用PLLの引き込み、信号振幅制御、信号オフセット制御などにも用いられる。

レコーディングプロックのデータを記録再生する際の物理アドレスは、ADIPクラスタで指定される。記録再生時に物理アドレスが指定されると、ADIP信号からADIPセクタが読み取られ、ADIPセクタの再生信号から、ADIPクラスタナンバが読み取られる。

[0097]

ところで、このようなディスクでは、記録再生を開始するときに、レーザパワーの制御等を行うために、各種のコントロール情報が必要である。次世代MD1の仕様のディスクでは、図1に示したように、リードイン領域にP-TOCが設けられており、このP-TOCから、各種のコントロール情報が取得される。

[0098]

次世代MD2の仕様のディスクには、エンボスピットによるP-TOCは設けられず、コントロール情報がリードイン領域のADIP信号により記録される。また、次世代MD2の仕様のディスクでは、磁気超解像度の技術が使われるため、レーザのパワーコントロールが重要である。次世代MD2の仕様のディスクでは、リードイン領域とリードアウト領域には、パワーコントロール調整用のキャリブレーション領域が設けられる。

[0099]

すなわち、図16は、次世代MD2の仕様のディスクのリードインおよびリードアウトの構成を示すものである。図16に示すように、ディスクのリードインおよびリードアウト領域には、レーザビームのパワーコントロール領域として、パワーキャリブレーション領域が設けられる。

[0100]

また、リードイン領域には、ADIPによるコントロール情報を記録したコントロール領域が設けられる。ADIPによるコントロール情報の記録とは、ADIPクラスタナンバの下位ビットとして割り当てられている領域を使って、ディスクのコントロール情報を記述するものである。

[0101]

すなわち、ADIPクラスタナンバは、レコーダブル領域の開始位置から始ま

[0102]

なお、ADIPクラスタの上位ビットは、そのまま残されているので、現在位置は、ある程度の精度で知ることができる。また、ADIPセクタ「0」と、ADIPセクタ「8」は、ADIPクラスタナンバの下位8ビットを残しておくことにより、所定間隔で、ADIPクラスタを正確に知ることができる。

[0103]

ADIP信号によるコントロール情報の記録については、本願出願人が先に提案した特願2001-123535号の明細書中に詳細に記載してある。

[0104]

4. 記録再生装置の構成

次に、図17、図18により、次世代MD1および次世代MD2システムで記録/再生に用いられるディスクに対応するディスクドライブ装置(記録再生装置)の構成を説明する。

[0105]

図17には、ディスクドライブ装置1が、例えばパーソナルコンピュータ10 0と接続可能なものとして示している。

[0106]

ディスクドライブ装置 1 は、メディアドライブ部 2、メモリ転送コントローラ 3、クラスタバッファメモリ 4、補助メモリ 5、 U S B (Universal Serial Bus) インターフェース 6, 8、 U S Bハブ 7、システムコントローラ 9、オーディオ処理部 1 0 を備えている。

[0107]

[0108]

メモリ転送コントローラ3は、メディアドライブ部2からの再生データやメディアドライブ部2に供給する記録データについての受け渡しの制御を行う。

[0109]

クラスタバッファメモリ4は、メモリ転送コントローラ3の制御に基づいて、 メディアドライブ部2によってディスク90のデータトラックからレコーディン グブロック単位で読み出されたデータのバッファリングを行う。

[0110]

補助メモリ5は、メモリ転送コントローラ3の制御に基づいて、メディアドライブ部2によってディスク90から読み出された各種管理情報や特殊情報を記憶する。

[0111]

システムコントローラ9は、ディスクドライブ装置1内の全体の制御を行うと共に、接続されたパーソナルコンピュータ100との間の通信制御を行う。

[0112]

すなわち、システムコントローラ9は、USBインターフェース8、USBハブ7を介して接続されたパーソナルコンピュータ100との間で通信可能とされ、書込要求、読出要求等のコマンドの受信やステイタス情報その他の必要情報の送信などを行う。

[0113]

システムコントローラ9は、例えばディスク90がメディアドライブ部2に装填されることに応じて、ディスク90からの管理情報等の読出をメディアドライブ部2に指示し、メモリ転送コントローラ3によって読み出した管理情報等を補助メモリ5に格納させる。

[0114]

パーソナルコンピュータ100からのあるFATセクタの読出要求があった場合は、システムコントローラ9はメディアドライブ部2に、そのFATセクタを含むレコーディングブロックの読み出しを実行させる。読み出されたレコーディングブロックのデータはメモリ転送コントローラ3によってクラスタバッファメモリ4に書き込まれる。

[0115]

システムコントローラ9はクラスタバッファメモリ4に書き込まれているレコーディングブロックのデータから、要求されたFATセクタのデータを読み出させ、USBインターフェース6、USBハブ7を介してパーソナルコンピュータ100に送信させる制御を行う。

[0116]

パーソナルコンピュータ100からのあるFATセクタの書き込み要求があった場合は、システムコントローラ9はメディアドライブ部2に、まずそのFATセクタを含むレコーディングブロックの読み出しを実行させる。読み出されたレコーディングブロックはメモリ転送コントローラ3によってクラスタバッファメモリ4に書き込まれる。

[0117]

システムコントローラ9は、パーソナルコンピュータ100からのFATセクタのデータ(記録データ)をUSBインターフェース6を介してメモリ転送コントローラ3に供給させ、クラスタバッファメモリ4上で、該当するFATセクタのデータの書き換えを実行させる。

[0118]

システムコントローラ9は、メモリ転送コントローラ3に指示して、必要なFATセクタが書き換えられた状態でクラスタバッファメモリ4に記憶されているレコーディングブロックのデータを、記録データとしてメディアドライブ部2に転送させる。メディアドライブ部2では、そのレコーディングブロックの記録データを変調してディスク90に書き込む。

[0119]

システムコントローラ9に対して、スイッチ50が接続される。このスイッチ

[0120]

ディスクドライブ装置1に対して、例えばLCD(Liquid Crystal Display)からなるディスプレイ51が設けられる。ディスプレイ51は、テキストデータや簡単なアイコンなどの表示が可能とされ、システムコントローラ9から供給される表示制御信号に基づき、このディスクドライブ装置1の状態に関する情報や、ユーザに対するメッセージなどを表示する。

[0121]

オーディオ処理部10は、入力系として、例えばライン入力回路/マイクロホン入力回路等のアナログ音声信号入力部、A/D変換器や、ディジタルオーディオデータ入力部を備える。また、オーディオ処理部10はATRAC圧縮エンコーダ/デコーダや、圧縮データのバッファメモリを備える。更に、オーディオ処理部10は、出力系として、ディジタルオーディオデータ出力部や、D/A変換器およびライン出力回路/ヘッドホン出力回路等のアナログ音声信号出力部を備える。

[0122]

ディスク90が現行のMDのディスクの場合には、ディスク90に対してオーディオトラックが記録されるときに、オーディオ処理部10にディジタルオーディオデータ(またはアナログ音声信号)が入力される。入力されたリニアPCMディジタルオーディオデータ、あるいはアナログ音声信号で入力されA/D変換器で変換されて得られたリニアPCMオーディオデータは、ATRAC圧縮エンコードされ、バッファメモリに蓄積される。そして所定タイミング(ADIPク

ラスタ相当のデータ単位)でバッファメモリから読み出されてメディアドライブ 部2に転送される。メディアドライブ部2では、転送されてくる圧縮データを、 EFMで変調してディスク90にオーディオトラックとして書き込みを行う。

[0123]

ディスク90が現行のMDシステムのディスクの場合には、ディスク90のオーディオトラックが再生されるときには、メディアドライブ部2は再生データをATRAC圧縮データ状態に復調して、メモリ転送コントローラ3を介してオーディオ処理部10に転送する。オーディオ処理部10は、ATRAC圧縮デコードを行ってリニアPCMオーディオデータとし、ディジタルオーディオデータ出力部から出力する。あるいはD/A変換器によりアナログ音声信号としてライン出力/ヘッドホン出力を行う。

[0124]

なお、パーソナルコンピュータ100との接続はUSBでなく、IEEE(Institute of Electrical and Electronics Engineers) 1 3 9 4 等の他の外部インターフェースが用いられても良い。また、パーソナルコンピュータ100との接続は有線に限らず、電波、赤外線などを利用した無線接続であっても良い。

[0125]

記録再生データ管理は、FATシステムを使って行われ、レコーディングブロックとFATセクタとの変換については、本願出願人が先に提案した特願200 1-289380号の明細書中に詳細に記載してある。

[0126]

続いて、データトラックおよびオーディオトラックの両方について記録再生を 行う機能を有するものとしてのメディアドライブ部2の構成を図18を参照して 説明する。

[0127]

図18は、メディアドライブ部2の構成を示すものである。メディアドライブ部2は、現行のMDシステムのディスクと、次世代MD1のディスクと、次世代MD2のディスクとが装填されるターンテーブルを有しており、メディアドライブ部2では、ターンテーブルに装填されたディスク90をスピンドルモータ29

[0128]

光学ヘッド19は、記録時には記録トラックをキュリー温度まで加熱するための高レベルのレーザ出力を行い、また再生時には磁気カー効果により反射光からデータを検出するための比較的低レベルのレーザ出力を行う。このため、光学ヘッド19には、ここでは詳しい図示は省略するがレーザ出力手段としてのレーザダイオード、偏光ビームスプリッタや対物レンズ等からなる光学系、および反射光を検出するためのディテクタが搭載されている。光学ヘッド19に備えられる対物レンズとしては、例えば2軸機構によってディスク半径方向およびディスクに接離する方向に変位可能に保持されている。

[0129]

また、ディスク90を挟んで光学ヘッド19と対向する位置には磁気ヘッド18が配置されている。磁気ヘッド18は記録データによって変調された磁界をディスク90に印加する動作を行う。また、図示しないが光学ヘッド19全体および磁気ヘッド18をディスク半径方向に移動させためスレッドモータおよびスレッド機構が備えられている。

[0130]

光学ヘッド19および磁気ヘッド18は、次世代MD2のディスクの場合には、パルス駆動磁界変調を行うことで、微少なマークを形成することができる。現行MDのディスクや、次世代MD1のディスクの場合には、DC発光の磁界変調方式とされる。

[0131]

このメディアドライブ部2では、光学ヘッド19、磁気ヘッド18による記録 再生ヘッド系、スピンドルモータ29によるディスク回転駆動系のほかに、記録 処理系、再生処理系、サーボ系等が設けられる。

[0132]

なお、ディスク90としては、現行のMD仕様のディスクと、次世代MD1の 仕様のディスクと、次世代MD2の仕様のディスクとが装着される可能性がある

[0133]

記録処理系では、現行のMDシステムのディスクの場合に、オーディオトラックの記録時に、ACIRCでエラー訂正符号化を行い、EFMで変調してデータを記録する部位と、次世代MD1または次世代MD2の場合に、BISとLDCを組み合わせた方式でエラー訂正符号化を行い、1-7pp変調で変調して記録する部位が設けられる。

[0134]

再生処理系では、現行のMDシステムのディスクの再生時に、EFMの復調とACIRCによるエラー訂正処理と、次世代MD1または次世代MD2システムのディスクの再生時に、パーシャルレスポンスおよびビタビ復号を用いたデータ検出に基づく1-7復調と、BISとLDCによるエラー訂正処理とを行う部位が設けられる。

[0135]

また、現行のMDシステムや次世代MD1のADIP信号よるアドレスをデコードする部位と、次世代MD2のADIP信号をデコードする部位とが設けられる。

[0136]

光学ヘッド19のディスク90に対するレーザ照射によりその反射光として検 出された情報(フォトディテクタによりレーザ反射光を検出して得られる光電流)は、RFアンプ21に供給される。

[0137]

RFアンプ21では入力された検出情報に対して電流ー電圧変換、増幅、マトリクス演算等を行い、再生情報としての再生RF信号、トラッキングエラー信号TE、フォーカスエラー信号FE、グループ情報(ディスク90にトラックのウ

[0138]

現行のMDシステムのディスクを再生するときには、RFアンプで得られた再生RF信号は、EFM復調部24およびACIRCデコーダ25で処理される。 すなわち再生RF信号は、EFM復調部24で2値化されてEFM信号列とされた後、EFM復調され、更にACIRCデコーダ25で誤り訂正およびデインターリーブ処理される。すなわちこの時点でATRAC圧縮データの状態となる。

[0139]

そして現行のMDシステムのディスクの再生時には、セレクタ26はB接点側が選択されており、その復調されたATRAC圧縮データがディスク90からの再生データとして出力される。

[0140]

一方、次世代MD1または次世代MD2のディスクを再生するときには、RFアンプで得られた再生RF信号は、RLL(1-7)PP復調部22およびRSーLDCデコーダ23で処理される。すなわち再生RF信号は、RLL(1-7)PP復調部22において、PR(1,2,1)MLまたはPR(1,-1)MLおよびビタビ復号を用いたデータ検出によりRLL(1-7)符号列としての再生データを得、このRLL(1-7)符号列に対してRLL(1-7)復調処理が行われる。そして更にRS-LDCデコーダ23で誤り訂正およびデインターリーブ処理される。

[0141]

そして次世代MD1または次世代MD2のディスクの再生時には、セレクタ26はA接点側が選択されており、その復調されたデータがディスク90からの再生データとして出力される。

[0142]

RFアンプ21から出力されるトラッキングエラー信号TE、フォーカスエラー信号FEはサーボ回路27に供給され、グルーブ情報はADIP復調部30に供給される。

[0143]

[0144]

現行のMDシステムのディスクまたは次世代MD1のシステムのディスクでは、図10に示したように、ADIPセクタナンバが8ビットになっている。これに対して、次世代MD2のシステムのディスクでは、図12に示したように、ADIPセクタナンバが4ビットになっている。アドレスデコーダ32は、現行のMDまたは次世代MD1のADIPアドレスをデコードする。アドレスデコーダ33は、次世代MD2のアドレスをデコードする。

[0145]

アドレスデコーダ32および33でデコードされたADIPアドレスは、ドライブコントローラ31に供給される。ドライブコントローラ31ではADIPアドレスに基づいて、所要の制御処理を実行する。またグルーブ情報はスピンドルサーボ制御のためにサーボ回路27に供給される。

[0146]

サーボ回路27は、例えばグループ情報に対して再生クロック(デコード時の PLL系クロック)との位相誤差を積分して得られる誤差信号に基づき、CLV またはCAVサーボ制御のためのスピンドルエラー信号を生成する。

[0147]

またサーボ回路27は、スピンドルエラー信号や、RFアンプ21から供給されたトラッキングエラー信号、フォーカスエラー信号、あるいはドライブコントローラ31からのトラックジャンプ指令、アクセス指令等に基づいて各種サーボ制御信号(トラッキング制御信号、フォーカス制御信号、スレッド制御信号、スピンドル制御信号等)を生成し、モータドライバ28に対して出力する。すなわち上記サーボエラー信号や指令に対して位相補償処理、ゲイン処理、目標値設定処理等の必要処理を行って各種サーボ制御信号を生成する。

[0148]

[0149]

現行のMDシステムのディスクでオーディオデータを記録するときには、セレクタ16がB接点に接続され、したがってACIRCエンコーダ14およびEFM変調部15が機能することになる。この場合、オーディオ処理部10からの圧縮データはACIRCエンコーダ14でインターリーブおよびエラー訂正コード付加が行われた後、EFM変調部15でEFM変調が行われる。

[0150]

そしてEFM変調データがセレクタ16を介して磁気ヘッドドライバ17に供給され、磁気ヘッド18がディスク90に対してEFM変調データに基づいた磁界印加を行うことでオーディオトラックの記録が行われる。

[0151]

次世代MD1または次世代MD2のディスクにデータを記録するときには、セレクタ16がA接点に接続され、したがってRS-LDCエンコーダ12およびRLL(1-7)PP変調部13が機能することになる。この場合、メモリ転送コントローラ3からの高密度データはRS-LDCエンコーダ12でインターリーブおよびRS-LDC方式のエラー訂正コード付加が行われた後、RLL(1-7)PP変調部13でRLL(1-7)変調が行われる。

[0152]

そしてRLL(1-7)符号列としての記録データがセレクタ16を介して磁気ヘッドドライバ17に供給され、磁気ヘッド18がディスク90に対して変調データに基づいた磁界印加を行うことでデータトラックの記録が行われる。

[0153]

[0154]

すなわち、図示していないが、光学ヘッド19内にはレーザパワーモニタ用のディテクタが設けられ、そのモニタ信号がレーザドライバ/APC20にフィードバックされる。レーザドライバ/APC20は、モニタ信号として得られる現在のレーザパワーを、設定されているレーザパワーと比較して、その誤差分をレーザ駆動信号に反映させることで、レーザダイオードから出力されるレーザパワーが、設定値で安定するように制御している。

[0155]

なお、レーザパワーとしては、再生レーザパワー、記録レーザパワーとしての 値がドライブコントローラ31によって、レーザドライバ/APC20内部のレ ジスタにセットされる。

[0156]

ドライブコントローラ31は、システムコントローラ9からの指示に基づいて、以上の各動作(アクセス、各種サーボ、データ書込、データ読出の各動作)が 実行されるように制御を行う。

[0157]

なお、図18において一点鎖線で囲ったA部、B部は、例えば1チップの回路 部として構成できる。

[0158]

5. 次世代MD1および次世代MD2によるディスクの初期化処理について

次世代MD1および次世代MD2によるディスクには、上述したように、FAT外にUID(ユニークID)が記録され、この記録されたUIDを用いてセキュリティ管理がなされる。次世代MD1および次世代MD2に対応したディスクは、原則的には、ディスク上の所定位置にUIDが予め記録されて出荷される。次世代MD1に対応したディスクでは、UIDが例えばリードイン領域に予め記録される。この場合、UIDが予め記録される位置は、リードイン領域に限られ

[0159]

一方、次世代MD1によるディスクは、現行のMDシステムによるディスクを 用いることが可能とされている。そのため、UIDが記録されずに既に出回って いる、多数の現行のMDシステムによるディスクが次世代MD1のディスクとし て使用されることになる。

[0160]

そこで、このような、UIDが記録されずに出回ってしまった現行のMDシステムによるディスクに対しては、規格にて守られたエリアを設け、当該ディスクの初期化時にそのエリアにディスクドライブ装置1において乱数信号を記録し、これを当該ディスクのUIDとして用いる。また、ユーザがこのUIDが記録されたエリアにアクセスすることは、規格により禁止する。なお、UIDは、乱数信号に限定されない。例えば、メーカーコード、機器コード、機器シリアル番号および乱数を組み合わせて、UIDとして用いることができる。さらに、メーカーコード、機器コードおよび機器シリアル番号の何れかまたは複数と、乱数とを組み合わせて、UIDとして用いることもできる。

[0161]

図19は、次世代MD1によるディスクの一例の初期化処理を示すフローチャートである。最初のステップS100で、ディスク上の所定位置がアクセスされ、UIDが記録されているかどうかが確認される。UIDが記録されていると判断されれば、そのUIDが読み出され、例えば補助メモリ5に一時的に記憶される。

[0162]

ステップS100でアクセスされる位置は、例えばリードイン領域のような、 次世代MD1システムによるフォーマットのFAT領域外である。当該ディスク 90が、例えば過去に初期化されたことがあるディスクのように、既にDDTが 設けられていれば、その領域をアクセスするようにしてもよい。なお、このステ

[0163]

次に、ステップS101で、U一TOCがEFM変調により記録される。このとき、U一TOCに対して、アラートトラックと、上述の図2におけるDDT以降のトラック、すなわち1-7pp変調でデータが変調されて記録される領域とを確保する情報が書き込まれる。次のステップS102で、ステップS101でU一TOCにより確保された領域に対して、アラートトラックがEFM変調により記録される。そして、ステップS103で、DDTが1-7pp変調により記録される。

[0164]

ステップS104では、UIDがFAT外の領域、例えばDDT内に記録される。上述のステップS100で、UIDがディスク上の所定位置から読み出され補助メモリ5に記憶されている場合、そのUIDが記録される。また、上述のステップS100で、ディスク上の所定位置にUIDが記録されていないと判断されていた場合、または、上述のステップS100が省略された場合には、乱数信号に基づきUIDが生成され、この生成されたUIDが記録される。UIDの生成は、例えばシステムコントローラ9によりなされ、生成されたUIDがメモリ転送コントローラ3を介してメディアドライブ2に供給され、ディスク90に記録される。

[0165]

次に、ステップS105で、FATなどのデータが、1-7pp変調でデータが変調されて記録される領域に対して記録される。すなわち、UIDの記録される領域は、FAT外の領域になる。また、上述したように、次世代MD1においては、FATで管理されるべきレコーダブル領域の初期化は、必ずしも必要ではない。

[0166]

図20は、次世代MD2および次世代MD1.5によるディスクの一例の初期 化処理を示すフローチャートである。最初のステップS110でディスク上のB CAに相当する領域がアクセスされ、UIDが記録されているかどうかが確認さ

[0167]

次のステップS111で、DDTが1-7pp変調で記録される。次に、ステップS112で、UIDがFAT外の領域、例えばDDTに記録される。このとき記録されるUIDは、上述のステップS110でディスク上の所定位置から読み出され補助メモリ5に記憶されたUIDが用いられる。ここで、上述のステップS110で、ディスク上の所定位置にUIDが記録されていないと判断されていた場合には、乱数信号に基づきUIDが生成され、この生成されたUIDが記録される。UIDの生成は、例えばシステムコントローラ9によりなされ、生成されたUIDがメモリ転送コントローラ3を介してメディアドライブ2に供給され、ディスク90に記録される。

[0168]

そして、ステップS113で、FATなどが記録される。すなわち、UIDの 記録される領域は、FAT外の領域になる。また、上述したように、次世代MD 2においては、FATで管理されるべきレコーダブル領域の初期化は、行われな い。

[0169]

6. 音楽データの第1の管理方式について

前述したように、この発明の実施の一形態で適用可能な次世代MD1および次世代MD2のシステムでは、FATシステムでデータが管理される。また、記録されるオーディオデータは、所望の圧縮方式で圧縮され、著作者の権利の保護のために、暗号化される。オーディオデータの圧縮方式としては、例えば、ATRAC3、ATRAC5等を用いることが考えられている。勿論、MP3(MPEG1 Audio Layer-3)やAAC (MPEG2 Advanced Audio Coding)等、それ以外の圧縮方式を用いることも可能である。また、オーディオデータばかりでなく、静止画

データや動画データを扱うことも可能である。勿論、FATシステムを使っているので、汎用のデータの記録再生を行うこともできる。更に、コンピュータが読み取り可能でかつ実行可能な命令をディスク上に符号化することもでき、従って、次世代MD1または次世代MD2は、実行可能ファイルを含むこともできることになる。

[0170]

このような次世代MD1および次世代MD2の仕様のディスクにオーディオデータを記録再生するときの管理方式について説明する。

[0171]

次世代MD1のシステムや次世代MD2のシステムでは、長時間で高音質の音楽データが再生できるようにしたことから、1枚のディスクで管理される楽曲の数も、膨大になっている。また、FATシステムを使って管理することで、コンピュータとの親和性が図られている。このことは、本願発明者の認識によれば、使い勝手の向上が図れるというメリットがある反面、音楽データが違法にコピーされてしまい、著作権者の保護が図られなくなる可能性がある。この発明が適用された管理システムでは、このような点に配慮が配られている。

[0172]

図21は、オーディオデータの管理方式の第1の例である。図21に示すように、第1の例における管理方式では、ディスク上には、トラックインデックスファイルと、オーディオデータファイルとが生成される。トラックインデックスファイルおよびオーディオデータファイルは、FATシステムで管理されるファイルである。

[0173]

オーディオデータファイルは、図22に示すように、複数の音楽データが1つのファイルとして納められたものであり、FATシステムでオーディオデータファイルを見ると、巨大なファイルに見える。オーディオデータファイルは、その内部がパーツとして区切られ、オーディオデータは、パーツの集合として扱われる。

[0174]

[0175]

プレイオーダテーブルは、デフォルトで定義された再生順序を示すテーブルである。プレイオーダテーブルは、図24に示すように、各トラックナンバ(曲番)についてのトラックインフォメーションテーブルのトラックデスクリプタ(図27)へのリンク先を示す情報TINF1、TINF2、…が格納されている。トラックナンバは、例えば「1」から始まる連続したナンバである。

[0176]

プログラムドプレイオーダテーブルは、再生手順を各ユーザが定義したテーブルである。プログラムドプレイオーダテーブルには、図25に示すように、各トラックナンバについてのトラックデスクリプタへのリンク先の情報トラック情報PINF1、PINF2、…が記述されている。

[0177]

グループインフォメーションテーブルには、図26に示すように、グループに関する情報が記述されている。グループは、連続したトラックナンバを持つ1つ以上のトラックの集合、または連続したプログラムドトラックナンバを持つ1つ以上のトラックの集合である。グループインフォメーションテーブルは、図26Aに示すように、各グループのグループデスクリプタで記述されている。グループデスクリプタには、図26Bに示すように、そのグループが開始されるトラックナンバと、終了トラックのナンバと、グループネームと、フラグが記述される

[0178]

トラックインフォメーションテーブルは、図27に示すように、各曲に関する情報が記述される。トラックインフォメーションテーブルは、図27Aに示すよ

[0179]

パーツインフォメーションテーブルは、図28に示すように、パーツナンバから実際の楽曲の位置をアクセスするポインタが記述されている。パーツインフォメーションテーブルは、図28Aに示すように、各パーツ毎のパーツデスクリプタからなる。パーツとは、1トラック(楽曲)の全部、または1トラックを分割した各パーツである。図28Bは、パーツインフォメーションテーブル内のパーツデスクリプタのエントリを示している。各パーツデスクリプタは、図28Bに示すように、オーディオデータファイル上のそのパーツの先頭のアドレスと、そのパーツの終了のアドレスと、そのパーツに続くパーツへのリンク先とが記述される。

[0180]

なお、パーツナンバのポインタ情報、ネームテーブルのポインタ情報、オーディオファイルの位置を示すポインタ情報として用いるアドレスとしては、ファイルのバイトオフセット、パーツデスクリプタナンバ、FATのクラスタナンバ、記録媒体として用いられるディスクの物理アドレス等を用いることができる。ファイルのバイトオフセットは、この発明において実施されうるオフセット方法のうちの特定の実施態様である。ここで、パーツポインタ情報は、オーディオファイルの開始からのオフセット値であり、その値は所定の単位(例えば、バイト、ビット、nビットのブロック)で表される。

[0181]

ネームテーブルは、ネームの実体となる文字を表すためのテーブルである。ネームテーブルは、図29Aに示すように、複数のネームスロットからなる。各ネ

[0182]

この発明が適用されたシステムにおけるオーディオデータの管理方式の第1の例では、図30に示すように、プレイオーダテーブル(図24)により、再生するトラックナンバが指定されると、トラックインフォメーションテーブルのリンク先のトラックデスクリプタ(図27)が読み出され、このトラックデスクリプタから、符号化方式、著作権管理情報、コンテンツの復号鍵情報、その楽曲が開始するパーツナンバへのポインタ情報、アーチストネームおよびタイトルネームのポインタ、元曲順情報、録音時間情報等が読み出される。

[0183]

トラックインフォメーションテーブルから読み出されたパーツナンバの情報から、パーツインフォメーションテーブル(図28)にリンクされ、このパーツインフォメーションテーブルから、そのトラック(楽曲)の開始位置に対応するパーツの位置のオーディオデータファイルがアクセスされる。オーディオデータファイルのパーツインフォメーションテーブルで指定される位置のパーツのデータがアクセスされたら、その位置から、オーディオデータの再生が開始される。このとき、トラックインフォメーションテーブルのトラックデスクリプタから読み出された符号化方式に基づいて復号化が行われる。オーディオデータが暗号化されている場合には、トラックデスクリプタから読み出された鍵情報が使われる。

[0184]

そのパーツに続くパーツがある場合には、そのパーツのリンク先がパーツデス

クリプタが記述されており、このリンク先にしたがって、パーツデスクリプタが 順に読み出される。このパーツデスクリプタのリンク先を辿っていき、オーディ オディデータファイル上で、そのパーツデスクリプタで指定される位置にあるパ ーツのオーディオデータを再生していくことで、所望のトラック(楽曲)のオー ディオディオデータが再生できる。

[0185]

また、トラックインフォメーションテーブルから読み出されたアーチストネームやタイトルネームのポインタにより指し示される位置(ネームポインタ情報)にあるネームテーブルのネームスロット(図29)が呼び出され、その位置にあるネームスロットから、ネームデータが読み出される。ネームポインタ情報は、例えば、ネームスロットナンバ、FATシステムにおけるクラスタナンバ、または記録媒体の物理アドレスであってもよい。

[0186]

なお、前述したように、ネームテーブルのネームスロットは、複数参照が可能である。例えば、同一のアーチストの楽曲を複数記録するような場合がある。この場合、図31に示すように、複数のトラックインフォメーションテーブルからアーチストネームとして同一のネームテーブルが参照される。図31の例では、トラックデスクリプタ「1」とトラックデスクリプタ「2」とトラックデスクリプタ「4」は、全て同一のアーチスト「DEF BAND」の楽曲であり、アーチストネームとして同一のネームスロットを参照している。また、トラックデスクリプタ「3」とトラックデスクリプタ「5」とトラックデスクリプタ「6」は、全て同位置のアーチスト「GHQ GIRLS」の楽曲であり、アーチストネームとして同一のネームスロットを参照している。このように、ネームテーブルの容量を節約できる。

[0187]

これとともに、例えば、同一のアーチストネームの情報を表示するのに、このネームテーブルへのリンクが利用できる。例えば、アーチスト名が「DEF BAND」の楽曲の一覧を表示したいような場合には、「DEF BAND」のネ

[0188]

新たにオーディオデータを記録する場合には、FATテーブルにより、所望の数のレコーディングブロック以上、例えば、4つのレコーディングブロック以上連続した未使用領域が用意される。所望のレコーディングブロック以上連続した領域を確保するのは、なるべく連続した領域にオーディオデータを記録した方がアクセスに無駄がないためである。

[0189]

オーディオデータを記録するための領域が用意されたら、新しいトラックデスクリプターがトラックインフォメーションテーブル上に1つ割り当てられ、このオーディオディデータを暗号化するためのコンテンツの鍵が生成される。そして、入力されたオーディオデータが暗号化され、用意された未使用領域に、暗号化されたオーディオデータが記録される。このオーディオデータが記録された領域がFATのファイルシステム上でオーディオデータファイルの最後尾に連結される。

[0190]

新たなオーディオデータがオーディオデータファイルに連結されたのに伴い、この連結された位置の情報が作成され、新たに確保されたパーツデスクリプションに、新たに作成されたオーディオデータの位置情報が記録される。そして、新たに確保されたトラックデスクリプターに、鍵情報やパーツナンバが記述される。更に、必要に応じて、ネームスロットにアーチストネームやタイトルネーム等が記述され、トラックデスクリプターに、そのネームスロットにアーチストネー

[0191]

オーディオデータを再生する場合には、プレイオーダーテーブルから、指定されたトラックナンバに対応する情報が求められ、再生すべきトラックのトラックデスクリプタが取得される。

[0192]

トラックインフォメーションテーブルのそのトラックデスクリプタから、鍵情報が取得され、また、エントリのデータが格納されている領域を示すパーツデスクリプションが取得される。そのパーツデスクリプションから、所望のオーディオデータが格納されているパーツの先頭のオーディオデータファイル上の位置が取得され、その位置に格納されているデータが取り出される。そして、その位置から再生されるデータに対して、取得された鍵情報を用いて暗号が解読され、オーディオデータの再生がなされる。パーツデスクリプションにリンクがある場合には、指定されてパーツにリンクされて、同様の手順が繰り返される。

[0193]

[0194]

プレイオーダテーブルで、トラックナンバ「n」であった楽曲を削除する場合には、プレイオーダテーブル内のトラック情報TINFnから、そのトラックの情報が記述されているトラックデスクリプタDnが取得される。プレイオーダテーブル内のトラック情報のエントリ、TINFn+1から後の有効なトラックデスクリプタナンバが全て1つ前に移動される。更に、トラック「n」は、消され

[0195]

例えば、図32Aにおいて、パーツA、パーツB、パーツCはそれまで連結しており、その中から、パーツBを削除するものとする。パーツAパーツBは同じオーディオブロックを(かつ同じFATクラスタを)共有しており、FATチェーンが連続しているとする。パーツCは、オーディオデータファイルの中ではパーツBの直後に位置しているが、FATテーブルを調べると、実際には離れた位置にあるとする。

[0196]

この例の場合には、図32Bに示すように、パーツBを削除したときに、実際にFATチェーンから外す(空き領域に戻す)ことができるのは、現行のパーツとクラスタを共有していない、2つのFATクラスタである。すなわち、オーディオデータファイルとしては4オーディオブロックに短縮される。パーツCおよびそれ以降にあるパーツに記録されているオーディオブロックのナンバは、これに伴い全て4だけ小さくなる。

[0197]

なお、削除は、1トラック全てではなく、そのトラックの一部に対して行うことができる。トラックの一部が削除された場合には、残りのトラックの情報は、トラックインフォメーションテーブルでそのパーツデスクリプタ P n から取得さ

れたそのトラックに対応する符号化方式、復号鍵を使って復号することが可能である。

[0198]

プレイオーダテーブル上のトラックnとトラックn+1とを連結する場合には、プレイオーダテーブル内のトラック情報TINFnから、そのトラックの情報が記述されているトラックデスクリプタナンバDnが取得される。また、プレイオーダテーブル内のトラック情報TINFn+1から、そのトラックの情報が記述されているトラックデスクリプタナンバDmが取得される。プレイオーダテーブル内のTINFn+1から後の有効なTINFの値(トラックデスクリプタナンバ)が全て1つ前のTINFに移動される。プログラムドプレイオーダテーブルを検索して、トラックデスクリプタDmを参照しているトラックが全て削除される。新たな暗号化鍵を発生させ、トラックデスクリプタDnから、パーツデスクリプタのリストが取り出され、そのパーツデスクリプタのリストの最後尾に、トラックデスクリプタDmから取り出したパーツデスクリプタのリストが連結される。

[0199]

トラックを連結する場合には、双方のトラックデスクリプタを比較して、著作権管理上問題のないことを確認し、トラックデスクリプタからパーツデスクリプタを得て、双方のトラックを連結した場合にフラグメントに関する規定が満たされるかどうか、FATテーブルで確認する必要がある。また、必要に応じて、ネームテーブルへのポインタの更新を行う必要がある。

[0200]

トラックnを、トラックnとトラックn+1に分割する場合には、プレイオーダテーブル内のTINFnから、そのトラックの情報が記述されているトラックデスクリプタナンバDnが取得される。プレイオーダテーブル内のトラック情報TINFn+1から、そのトラックの情報が記述されているトラックデスクリプタナンバDm取得される。そして、プレイオーダテーブル内のTINFn+1から後の有効なトラック情報TINFの値(トラックデスクリプタナンバ)が、全て1つ後に移動される。トラックデスクリプタDnについて、新しい鍵が生成さ

れる。トラックデスクリプタDnから、パーツデスクリプタのリストが取り出される。新たなパーツデスクリプタが割り当てられ、分割前のパーツデスクリプタの内容がそこにコピーされる。分割点の含まれるパーツデスクリプタが、分割点の直前までに短縮される。また分割点以降のパーツデスクリプタのリンクが打ち切られる。新たなパーツデスクリプタが分割点の直後に設定される。

[0201]

7. 音楽データの管理方式の第2の例

次に、オーディオデータの管理方式の第2の例について説明する。図33は、オーディオデータの管理方式の第2の例である。図33に示すように、第2の例における管理方式では、ディスク上には、トラックインデックスファイルと、複数のオーディオデータファイルとが生成される。トラックインデックスファイルおよび複数のオーディオデータファイルは、FATシステムで管理されるファイルである。

[0202]

オーディオデータファイルは、図34に示すように、原則的には1曲が1ファイルの音楽データが納められたものである。このオーディオデータファイルには、ヘッダが設けられている。ヘッダには、タイトルと、復号鍵情報と、著作権管理情報とが記録されるとともに、インデックス情報が設けられる。インデックスは、1つのトラックの楽曲を複数に分割するものである。ヘッダには、インデックスにより分割された各トラックの位置がインデックスナンバに対応して記録される。インデックスは、例えば、255箇設定できる。

[0203]

トラックインデックスファイルは、オーディオデータファイルに納められた音楽データを管理するための各種の情報が記述されたファイルである。トラックインデックスファイルは、図35に示すように、プレイオーダテーブルと、プログラムドプレイオーダテーブルと、グループインフォメーションテーブルと、トラックインフォメーションテーブルと、ネームテーブルとからなる。

[0204]

プレイオーダテーブルは、デフォルトで定義された再生順序を示すテーブルで

[0205]

プログラムドプレイオーダテーブルは、再生手順を各ユーザが定義したテーブルである。プログラムドプレイオーダテーブルには、図37に示すように、各トラックナンバについてのトラックデスクリプタへのリンク先の情報トラック情報PINF1、PINF2、…が記述されている。

[0206]

グループインフォメーションテーブルには、図38に示すように、グループに関する情報が記述されている。グループは、連続したトラックナンバを持つ1つ以上のトラックの集合、または連続したプログラムドトラックナンバを持つ1つ以上のトラックの集合である。グループインフォメーションテーブルは、図38Aに示すように、各グループのグループデスクリプタで記述されている。グループデスクリプタには、図38Bに示すように、そのグループが開始されるトラックナンバと、終了トラックのナンバと、グループネームと、フラグが記述される。

[0207]

トラックインフォメーションテーブルは、図39に示すように、各曲に関する情報が記述される。トラックインフォメーションテーブルは、図39Aに示すように、各トラック毎(各曲毎)のトラックデスクリプタからなる。各トラックデスクリプタには、図39Bに示すように、その楽曲が納められているオーディオデータファイルのファイルのポインタ、インデックスナンバ、アーチストネーム、タイトルネーム、元曲順情報、録音時間情報等が記述されている。アーチストネーム、タイトルネームは、ネームそのものではなく、ネームテーブルへのポインタが記述されている。

[0208]

ネームテーブルは、ネームの実体となる文字を表すためのテーブルである。ネ

[0209]

オーディオデータの管理方式の第2の例では、図41に示すように、プレイオーダテーブル(図36)により、再生するトラックナンバが指定されると、トラックインフォメーションテーブルのリンク先のトラックデスクリプタ(図39)が読み出され、このトラックデスクリプタから、その楽曲のファイルポインタおよびインデックスナンバ、アーチストネームおよびタイトルネームのポインタ、元曲順情報、録音時間情報等が読み出される。

[0210]

その楽曲のファイルのポインタから、そのオーディオデータファイルがアクセスされ、そのオーディオデータファイルのヘッダの情報が読み取られる。オーディオデータが暗号化されている場合には、ヘッダから読み出された鍵情報が使われる。そして、そのオーディオデータファイルが再生される。このとき、もし、インデックスナンバが指定されている場合には、ヘッダの情報から、指定されたインデックスナンバの位置が検出され、そのインデックスナンバの位置から、再生が開始される。

[0211]

また、トラックインフォメーションテーブルから読み出されたアーチストネームやタイトルネームのポインタにより指し示される位置にあるネームテーブルのネームスロットが呼び出され、その位置にあるネームスロットから、ネームデー

タが読み出される。

[0212]

新たにオーディオデータを記録する場合には、FATテーブルにより、所望の数のレコーディングブロック以上、例えば、4つのレコーディングブロック以上連続した未使用領域が用意される。

[0213]

オーディオデータを記録するための領域が用意されたら、トラックインフォメーションテーブルに新しいトラックデスクリプタが1つ割り当てられ、このオーディオディデータを暗号化するためのコンテンツ鍵が生成される。そして、入力されたオーディオデータが暗号化され、オーディオデータファイルが生成される

[0214]

新たに確保されたトラックデスクリプタに、新たに生成されたオーディオデータファイルのファイルポインタや、鍵情報が記述される。更に、必要に応じて、ネームスロットにアーチストネームやタイトルネーム等が記述され、トラックデスクリプターに、そのネームスロットにアーチストネームやタイトルネームにリンクするポインタが記述される。そして、プレイオーダーテーブルに、そのトラックデスクリプターのナンバが登録される。また著作権管理情報の更新がなされる。

[0215]

オーディオデータを再生する場合には、プレイオーダーテーブルから、指定されたトラックナンバに対応する情報が求められ、トラックインフォメーションテーブルの再生すべきトラックのトラックデスクリプタが取得される。

[0216]

そのトラックデスクリプタから、またその音楽データが格納されているオーディオデータのファイルポインタおよびインデックスナンバが取得される。そして、そのオーディオデータファイルがアクセスされ、ファイルのヘッダから、鍵情報が取得される。そして、そのオーディオデータファイルのデータに対して、取得された鍵情報を用いて暗号が解読され、オーディオデータの再生がなされる。

[0217]

トラックnを、トラックnとトラックn+1に分割する場合には、プレイオーダテーブル内のTINFnから、そのトラックの情報が記述されているトラックデスクリプタナンバDnが取得される。プレイオーダテーブル内のトラック情報TINFn+1から、そのトラックの情報が記述されているトラックデスクリプタナンバDmが取得される。そして、プレイオーダテーブル内のTINFn+1から後の有効なトラック情報TINFの値(トラックデスクリプタナンバ)が、全て1つ後に移動される。

[0218]

図42に示すように、インデックスを使うことにより、1つのファイルのデータは、複数のインデックス領域に分けられる。このインデックスナンバとインデックス領域の位置がそのオーディオトラックファイルのヘッダに記録される。トラックデスクリプタDnに、オーディオデータのファイルポインタと、インデックスナンバが記述される。トラックデスクリプタDmに、オーディオデータのファイルポインタと、インデックスナンバが記述される。これにより、オーディオファイルの1つのトラックの楽曲M1は、見かけ上、2つのトラックの楽曲M11とM12とに分割される。

[0219]

プレイオーダテーブル上のトラック n とトラック n + 1 とを連結する場合には、プレイオーダテーブル内のトラック情報TINF n から、そのトラックの情報が記述されているトラックデスクリプタナンバD n が取得される。また、プレイオーダテーブル内のトラック情報TINF n + 1 から、そのトラックの情報が記述されているトラックデスクリプタナンバDmが取得される。プレイオーダテーブル内のTINF n + 1 から後の有効なTINFの値(トラックデスクリプタナンバ)が全て1つ前に移動される。

[0220]

ここで、トラック n とトラック n + 1 とが同一のオーディオデータファイル内

[0221]

トラックnが1つのオーディオデータファイルをインデックスで分割した後半であり、トラックn+1が別のオーディオデータファイルの先頭にある場合には、図44に示すように、インデックスで分割されていたトラックn0データにヘッダが付加され、楽曲M320オーディオデータファイルが生成される。これに、トラックn+10オーディオデータファイルのヘッダが取り除かれ、この楽曲M410トラックn+10オーディオデータが連結される。これにより、2つのトラックの楽曲M32とM41は、100トラックの楽曲M51として連結される。

[0222]

以上の処理を実現するために、インデックスで分割されていたトラックに対して、ヘッダを付加し、別の暗号鍵で暗号化して、インデックスによるオーディオデータを1つのオーディオデータファイルに変換する機能と、オーディオデータファイルのヘッダを除いて、他のオーディオデータファイルに連結する機能が持たされている。

[0223]

8. パーソナルコンピュータとの接続時の動作について

次世代MD1および次世代MD2では、パーソナルコンピュータとの親和性を 持たせるために、データの管理システムとしてFATシステムが採用されている 。したがって、次世代MD1および次世代MD2によるディスクは、オーディオ データのみならず、パーソナルコンピュータで一般的に扱われるデータの読み書 きにも対応している。

[0224]

ここで、ディスクドライブ装置1において、オーディオデータは、ディスク9 0上から読み出されつつ、再生される。そのため、特に携帯型のディスクドライブ装置1のアクセス性を考慮に入れると、一連のオーディオデータは、ディスク

上に連続的に記録されることが好ましい。一方、パーソナルコンピュータによる 一般的なデータ書き込みは、このような連続性を考慮せず、ディスク上の空き領 域を適宜、割り当てて行われる。

[0225]

そこで、この発明の実施の一形態で適用可能な記録再生装置では、パーソナルコンピュータ100とディスクドライブ装置1とをUSBハブ7によって接続し、パーソナルコンピュータ100からディスクドライブ装置1に装着されたディスク90に対する書き込みを行う場合において、一般的なデータの書き込みは、パーソナルコンピュータ側のファイルシステムの管理下で行われ、オーディオデータの書き込みは、ディスクドライブ装置1側のファイルシステムの管理下で行われるようにしている。

[0226]

図45は、このように、パーソナルコンピュータ100とディスクドライブ装置1とが図示されないUSBハブ7で接続された状態で、書き込むデータの種類により管理権限を移動させることを説明するための図である。図45Aは、パーソナルコンピュータ100からディスクドライブ装置1に一般的なデータを転送し、ディスクドライブ装置1に装着されたディスク90に記録する例を示す。この場合には、パーソナルコンピュータ100側のファイルシステムにより、ディスク90上のFAT管理がなされる。

[0227]

・なお、ディスク90は、次世代MD1および次世代MD2の何れかのシステムでフォーマットされたディスクであるとする。

[0228]

すなわち、パーソナルコンピュータ100側では、接続されたディスクドライブ装置1がパーソナルコンピュータ100により管理される一つのリムーバブルディスクのように見える。したがって、例えばパーソナルコンピュータ100においてフレキシブルディスクに対するデータの読み書きを行うように、ディスクドライブ装置1に装着されたディスク90に対するデータの読み書きを行うことができる。

[0229]

なお、このようなパーソナルコンピュータ100側のファイルシステムは、パーソナルコンピュータ100に搭載される基本ソフトウェアであるOS (Operating System)の機能として提供することができる。OSは、周知のように、所定のプログラムファイルとして、例えばパーソナルコンピュータ100が有するハードディスクドライブに記録される。このプログラムファイルがパーソナルコンピュータ100の起動時に読み出され所定に実行されることで、OSとしての各機能を提供可能な状態とされる。

[0230]

図45Bは、パーソナルコンピュータ100からディスクドライブ装置1に対してオーディオデータを転送し、ディスクドライブ装置1に装着されたディスク90に記録する例を示す。例えば、パーソナルコンピュータ100において、パーソナルコンピュータ100が有する例えばハードディスクドライブ(以下、HDD)といった記録媒体にオーディオデータが記録されている。

[0231]

なお、パーソナルコンピュータ100には、オーディオデータをATRAC圧縮エンコードすると共に、ディスクドライブ装置1に対して、装着されたディスク90へのオーディオデータの書き込みおよびディスク90に記録されているオーディオデータの削除を要求するユーティリティソフトウェアが搭載されているものとする。このユーティリティソフトウェアは、さらに、ディスクドライブ装置1に装着されたディスク90のトラックインデックスファイルを参照し、ディスク90に記録されているトラック情報を閲覧する機能を有する。このユーティリティソフトウェアは、例えばパーソナルコンピュータ100のHDDにプログラムファイルとして記録される。

[0232]

一例として、パーソナルコンピュータ100の記録媒体に記録されたオーディオデータを、ディスクドライブ装置1に装着されたディスク90に記録する場合について説明する。上述のユーティリティソフトウェアは、予め起動されているものとする。

[0233]

先ず、ユーザにより、パーソナルコンピュータ100に対して、HDDに記録された所定のオーディオデータ(オーディオデータAとする)をディスクドライブ装置1に装着されたディスク90に記録するよう操作がなされる。この操作に基づき、オーディオデータAのディスク90に対する記録を要求する書込要求コマンドが当該ユーティリティソフトウェアにより出力される。書込要求コマンドは、パーソナルコンピュータ100からディスクドライブ装置1に送信される。

[0234]

続けて、パーソナルコンピュータ100のHDDからオーディオデータAが読み出される。読み出されたオーディオデータAは、パーソナルコンピュータ100に搭載された上述のユーティリティソフトウェアによりATRAC圧縮エンコード処理が行われ、ATRAC圧縮データに変換される。このATRAC圧縮データに変換されたオーディオデータAは、パーソナルコンピュータ100からディスクドライブ装置1に対して転送される。

[0235]

ディスクドライブ装置1側では、パーソナルコンピュータから送信された書込 要求コマンドが受信されることで、ATRAC圧縮データに変換されたオーディ オデータAがパーソナルコンピュータ100から転送され、且つ、転送されたデ ータをオーディオデータとしてディスク90に記録することが認識される。

[0236]

ディスクドライブ装置1では、パーソナルコンピュータ100から送信されたオーディオデータAを、USBハブ7から受信し、USBインターフェイス6およびメモリ転送コントローラ3を介してメディアドライブ部2に送る。システムコントローラ9では、オーディオデータAをメディアドライブ部2に送る際に、オーディオデータAがこのディスクドライブ装置1のFAT管理方法に基づきディスク90に書き込まれるように制御する。すなわち、オーディオデータAは、ディスクドライブ装置1のFATシステムに基づき、4レコーディングブロック、すなわち64kバイト・4を最小の記録長として、レコーディングブロック単位で連続的に書き込まれる。

[0237]

なお、ディスク90へのデータの書き込みが終了するまでの間、パーソナルコンピュータ100とディスクドライブ装置1との間では、所定のプロトコルでデータやステータス、コマンドのやりとりが行われる。これにより、例えばディスクドライブ装置1側でクラスタバッファ4のオーバーフローやアンダーフローが起こらないように、データ転送速度が制御される。

[0238]

パーソナルコンピュータ100側で使用可能なコマンドの例としては、上述の 書込要求コマンドの他に、削除要求コマンドがある。この削除要求コマンドは、 ディスクドライブ装置1に装着されたディスク90に記録されたオーディオデー タを削除するように、ディスクドライブ装置1に対して要求するコマンドである

[0239]

例えば、パーソナルコンピュータ100とディスクドライブ装置1とが接続され、ディスク90がディスクドライブ装置1に装着されると、上述のユーティリティソフトウェアによりディスク90上のトラックインデックスファイルが読み出され、読み出されたデータがディスクドライブ装置1からパーソナルコンピュータ100に送信される。パーソナルコンピュータでは、このデータに基づき、例えばディスク90に記録されているオーディオデータのタイトル一覧を表示することができる。

[0240]

パーソナルコンピュータ100において、表示されたタイトル一覧に基づきあるオーディオデータ(オーディオデータBとする)を削除しようとした場合、削除しようとするオーディオデータBを示す情報が削除要求コマンドと共にディスクドライブ装置1に送信される。ディスクドライブ装置1では、この削除要求コマンドを受信すると、ディスクドライブ装置1自身の制御に基づき、要求されたオーディオデータBがディスク90上から削除される。

[0241]

オーディオデータの削除がディスクドライブ装置1自身のFATシステムに基

[0242]

9. ディスク上に記録されたオーディオデータのコピー制限について

ディスク90上に記録されたオーディオデータの著作権を保護するためには、ディスク90上に記録されたオーディオデータの、他の記録媒体などへのコピーに制限を設ける必要がある。例えば、ディスク90上に記録されたオーディオデータを、ディスクドライブ装置1からパーソナルコンピュータ100に転送し、パーソナルコンピュータ100のHDDなどに記録することを考える。

[0243]

なお、ここでは、ディスク90は、次世代MD1または次世代MD2のシステムでフォーマットされたディスクであるものとする。また、以下に説明するチェックアウト、チェックインなどの動作は、パーソナルコンピュータ100上に搭載される上述したユーティリティソフトウェアの管理下で行われるものとする。

[0244]

先ず、図46Aに示されるように、ディスク90上に記録されているオーディオデータ200がパーソナルコンピュータ(PC)100にムーブされる。ここでいうムーブは、対象オーディオデータ200がパーソナルコンピュータ100にコピーされると共に、対象オーディオデータが元の記録媒体(ディスク90)から削除される一連の動作をいう。すなわち、ムーブにより、ムーブ元のデータは削除され、ムーブ先に当該データが移ることになる。

[0245]

なお、ある記録媒体から他の記録媒体にデータがコピーされ、コピー元データのコピー許可回数を示すコピー回数権利が1減らされることを、チェックアウトと称する。また、チェックアウトされたデータをチェックアウト先から削除し、チェックアウト元のデータのコピー回数権利を戻すことを、チェックインと称する。

[0246]

オーディオデータ200がパーソナルコンピュータ100にムーブされると、パーソナルコンピュータ100の記録媒体、例えばHDD上に当該オーディオデータ200が移動され(オーディオデータ200')、元のディスク90から当該オーディオデータ200が削除される。そして、図46Bに示されるように、パーソナルコンピュータ100において、ムーブされたオーディオデータ200'に対して、チェックアウト(CO)可能(な又は所定の)回数201が設定される。ここでは、チェックアウト可能回数201は、「●黒丸」で示されるように、3回に設定される。すなわち、当該オーディオデータ200'は、このパーソナルコンピュータ100から外部の記録媒体に対して、チェックアウト可能回数201に設定された回数だけ、さらにチェックアウトを行うことが許可される

[0247]

ここで、チェックアウトされたオーディオデータ200が元のディスク90上から削除されたままだと、ユーザにとって不便であることが考えられる。そこで、パーソナルコンピュータ100に対してチェックアウトされたオーディオデータ200'が、ディスク90に対して書き戻される。

[0248]

当該オーディオデータ 200'をパーソナルコンピュータ 100 から元のディスク 90 に書き戻すときには、図 46 Cに示されるように、チェックアウト可能回数が 10 回消費され、チェックアウト可能回数が(3-1=2)回とされる。このときには、パーソナルコンピュータ 100 のオーディオデータ 200'は、チェックアウトできる権利が後 2 回分、残っているため、パーソナルコンピュータ 100 上からは削除されない。すなわち、パーソナルコンピュータ 100 上のオーディオデータ 200'は、パーソナルコンピュータからディスク 90 にコピーされ、ディスク 90 上には、オーディオデータ 200'が記録されることになる。

[0249]

なお、チェックアウト可能回数201は、トラックインフォメーションテーブ ルにおけるトラックデスクリプタの著作権管理情報により管理される(図27B 参照)。トラックデスクリプタは、各トラック毎に設けられるため、チェックアウト可能回数201を各トラック(音楽データ)毎に設定することができる。ディスク90からパーソナルコンピュータ100にコピーされたトラックデスクリプタは、パーソナルコンピュータ100にムーブされた対応するオーディオデータの制御情報として用いられる。

[0250]

例えば、ディスク90からパーソナルコンピュータ100に対してオーディオデータがムーブされると、ムーブされたオーディオデータに対応したトラックデスクリプタがパーソナルコンピュータ100にコピーされる。パーソナルコンピュータ100上では、ディスク90からムーブされたオーディオデータの管理がこのトラックデスクリプタにより行われる。オーディオデータがムーブされパーソナルコンピュータ100のHDDなどに記録されるのに伴い、トラックデスクリプタ中の著作権管理情報において、チェックアウト可能回数201が規定の回数(この例では3回)に設定される。

[0251]

なお、著作権管理情報として、上述のチェックアウト可能回数201の他に、チェックアウト元の機器を識別するための機器ID、チェックアウトされたコンテンツ(オーディオデータ)を識別するためのコンテンツIDも管理される。例えば、上述した図46Cの手順では、コピーしようとしているオーディオデータに対応する著作権管理情報中の機器IDに基づき、コピー先の機器の機器IDの認証が行われる。著作権管理情報中の機器IDと、コピー先機器の機器IDとが異なる場合、コピー不可とすることができる。

[0252]

上述した図46A~図46Cによる一連のチェックアウト処理では、ディスク 90上のオーディオデータを一度パーソナルコンピュータ100に対してムーブ し、再びパーソナルコンピュータ100からディスク90に書き戻しているため 、ユーザにとっては、手順が煩雑で煩わしく、また、ディスク90からオーディ オデータを読み出す時間と、ディスク90にオーディオデータを書き戻す時間と がかかるため、時間が無駄に感じられるおそれがある。さらに、ディスク90上 からオーディオデータが一旦削除されてしまうことは、ユーザの感覚に馴染まないことが考えられる。

[0253]

そこで、ディスク90に記録されたオーディオデータのチェックアウト時に、上述の途中の処理を行ったものと見なして省き、図46Cに示される結果だけが実現されることが可能なようにする。その手順の一例を以下に示す。以下に示される手順は、例えば「ディスク90に記録された××というオーディオデータをチェックアウトせよ」といったような、ユーザからの単一の指示により実行されるものである。

[0254]

(1) ディスク90に記録されているオーディオデータをパーソナルコンピュータ100のHDDにコピーすると共に、ディスク90上の当該オーディオデータを、当該オーディオデータの管理データの一部を無効にすることで消去する。例えば、プレイオーダーテーブルから当該オーディオデータに対応するトラックデスクリプタへのリンク情報TINFnと、プログラムドファイルオーダーテーブルから当該オーディオデータに対応するトラックデスクリプタへのリンク情報PINFnとを削除する。当該オーディオデータに対応するトラックデスクリプタそのものを削除するようにしてもよい。これにより、当該オーディオデータがディスク90上で使用不可の状態とされ、当該オーディオデータがディスク90からパーソナルコンピュータ100にムーブされたことになる。

[0255]

(2)なお、手順(1)において、オーディオデータのパーソナルコンピュータ 100へのコピーの際に、当該オーディオデータに対応するトラックデスクリプタも、共にパーソナルコンピュータ100のHDDにコピーされる。

[0256]

(3) 次に、パーソナルコンピュータ100において、ディスク90からコピーされた、ムーブされたオーディオデータに対応するトラックデスクリプタにおける著作権管理情報内のチェックアウト可能回数に、規定回数、例えば3回が記録される。

[0257]

(4) 次に、パーソナルコンピュータ100において、ディスク90からコピー されたトラックデスクリプタに基づき、ムーブされたオーディオデータに対応す るコンテンツIDが取得され、当該コンテンツIDがチェックイン可能なオーディオデータを示すコンテンツIDとして記録される。

[0258]

(5) 次に、パーソナルコンピュータ100において、ムーブされたオーディオデータに対応するトラックデスクリプタにおける著作権管理情報内のチェックアウト可能回数が、上述の手順(3)で設定された規定回数から1だけ減じられる。この例では、チェックアウト可能回数が(3-1=2)回とされる。

[0259]

(6)次に、ディスク90が装着される図示されないディスクドライブ装置1において、ムーブされたオーディオデータに対応するトラックデスクリプタが有効化される。例えば、上述の手順(1)において削除されたリンク情報TINFnおよびPINFnをそれぞれ復元または再構築することで、当該オーディオデータに対応するトラックデスクリプタが有効化される。上述の手順(1)において当該オーディオデータに対応するトラックデスクリプタを削除した場合には、当該トラックデスクリプタが再構築される。パーソナルコンピュータ100上に記録されている、対応するトラックデスクリプタをディスクドライブ装置1に転送し、ディスク90に記録するようにしてもよい。

[0260]

以上の(1)~(6)の手順により、一連のチェックアウト処理が完了したと見なす。こうすることで、ディスク90からパーソナルコンピュータ100へのオーディオデータのコピーがオーディオデータの著作権保護を図りつつ実現されると共に、ユーザの手間を省くことができる。

[0261]

なお、この(1)~(6)の手順によるオーディオデータのコピーは、ユーザ がディスクドライブ装置1を用いて、ディスク90に自分で録音(記録)したオ ーディオデータに対して適用されるようにすると、好ましい。

[0 2 6 2]

また、チェックアウトされた後でチェックインする際には、パーソナルコンピュータ100は、自分自身が記録しているオーディオデータおよびトラックデスクリプタ中の制御情報、例えば著作権管理情報を検索し、検索されたオーディオデータおよび制御情報に基づき判断を行い、チェックインを実行する。

[0263]

図47は、この発明の実施の一形態の情報処理システムに適用可能な一例のソフトウェア構成を示す。なお、本明細書中における「システム」とは、複数のものが論理的に集合したものであり、それぞれのものが同一筐体中にあるか否かは問わない。

[0264]

コンテンツサーバであるパーソナルコンピュータ100に、ジュークボックスアプリケーション300が搭載される。ジュークボックスアプリケーション300は、CD(Compact Disc)からのリッピングや、インターネットといったネットワークを介した音楽配信サーバなどからのダウンロードにより得られたコンテンツ(音楽データ)を蓄積してライブラリを構築し、ライブラリを操作するためのユーザインターフェイスを提供する。ジュークボックスアプリケーション300は、さらに、パーソナルコンピュータ100とディスクドライブ装置1との接続制御を行う。また、上述したユーティリティソフトウェアの機能をジュークボックスアプリケーション300に含ませることができる。すなわち、図47に示すソフトウェアは、第1の記録媒体であるパーソナルコンピュータ100のハードディスクドライブなどの記録媒体と第2の記録媒体であるディスク90とで、データの転送およびデータの戻しを行う。

[0265]

ジュークボックスアプリケーション300は、ディスクIDデータベース301を有し、ディスク90を識別するためのディスクIDと、ライブラリ内のグループとを関連付けて管理する。この実施の一形態では、UIDをディスクIDとして用いる。グループおよびディスクIDデータベース301の詳細については、後述する。

[0266]

ジュークボックスアプリケーション300は、パーソナルコンピュータ100 において、OS303上で、セキュリティモジュール302を介して動作する。セキュリティモジュール302は、SDMI (Secure Digital Music Initiative)に規定されるライセンス適合モジュール (LCM) を有し、ジュークボックスアプリケーション300とディスクドライブ装置1との間で認証処理を行う。セキュリティモジュール302では、コンテンツIDとUIDとの整合性のチェックなども行う。ジュークボックスアプリケーション300とディスクドライブ装置1とのコンテンツのやりとりは、全てセキュリティモジュール302を介して行われる。

[0267]

一方、ディスクドライブ装置1には、ディスクドライブ装置1自身の動作を制御するソフトウェアとして、次世代MDドライブファームウェア320が搭載される。パーソナルコンピュータ100によるディスクドライブ装置1の制御や、パーソナルコンピュータ100とディスクドライブ装置1との間のデータのやりとりは、次世代MDドライブファームウェア320とOS303の間で次世代MDデバイスドライバ304を介して通信することにより制御される。

[0268]

なお、次世代MDドライブファームウェア320は、例えばパーソナルコンピュータ100とディスクドライブ装置1とを接続する所定のケーブル310を介して、パーソナルコンピュータ100側からバージョンアップなどを行うことができる。

[0269]

また、ジュークボックスアプリケーション300は、例えばCD-ROM(Compact Disc-Read Only Memory)などの記録媒体に記録されて提供される。パーソナルコンピュータ100にこの記録媒体を装填し、所定の操作を行うことで、例えば当該記録媒体に記録されたジュークボックスアプリケーション300がパーソナルコンピュータ100の例えばハードディスクドライブに所定に格納される。これに限らず、ジュークボックスアプリケーション300(またはジュークボ

[0270]

次に、ディスクIDデータベース301について説明する。ライブラリでは、 グループを設定することができ、コンテンツを適当な基準に基づきグループに関 連付けることで、コンテンツを分類することができる。この発明の実施の一形態 では、さらに、ディスク90のそれぞれを識別するためのディスクIDとグルー プとを関連付けることができる。ディスクIDとしては、上述したUIDが用い られる。

[0271]

図48を用いてジュークボックスアプリケーション300で管理されるデータベースについて、概略的に説明する。図48Aは、ディスクIDデータベースの一例の構成を示す。このディスクIDデータベースでは、ディスクIDに対してグループを関連付けて管理する。より具体的な例として、図48Aに例示されるように、ディスクIDに対してグループ、当該ディスクIDで識別されるディスク90の容量に関する情報およびチェックアウト予約情報が関連付けられる。ディスクIDに対してさらに他の属性、例えばアルバム名、アルバムのジャンル、アーティスト名、データ(圧縮)形式、データベースへの登録日、コンテンツの入手元等の情報を関連付けてもよい。

[0272]

なお、この図48に例示されるデータベースの構成は、この発明の実施の一形態を実施可能とする一例であって、この構成に限定されるものではない。

[0273]

図48Aに示すフィールド「ディスクID」は、ディスクIDが登録されるフィールドである。ディスクIDは、ディスク90毎にユニークな記録媒体識別子である。

[0274]

フィールド「グループ名」は、グループの名前が登録されるフィールドである。グループ名は、ユーザがジュークボックスアプリケーション300を用いて設

[0275]

フィールド「ディスク容量」は、ディスク90の容量に関する情報が登録されるフィールドである。ディスク90の容量に関する情報は、例えばディスク90の残容量の情報であり、この情報により、ディスク90に記録可能なデータ量がわかる。

[0276]

フィールド「予約情報」は、チェックアウトの予約に関する情報が登録されるフィールドである。このチェックアウトの予約に関する情報により、チェックアウトの予約が行われているか否かの判別およびチェックアウト先のディスクの特定が可能である。チェックアウトの予約が行われているか否かの判別は、例えば、フィールド「予約情報」のデータの有無を調べることや、特定ビットを利用することで可能である。また、特定ビットを利用することで、登録されていない新規ディスクを予約先とする場合などにも対応することができる。チェックアウト先のディスクの特定は、例えば、フィールド「予約情報」にディスクIDに関する情報を登録することで可能である。なお、フィールド「予約情報」には、チェックアウトと同様の方法で、チェックインの予約に関する情報を登録してもよい

[0277]

一方、コンテンツ毎にユニークなコンテンツ識別子であるコンテンツIDのそれぞれに対して、ディスクIDおよびコンテンツに関する情報が関連付けられる。図48Bは、このコンテンツに関する情報が関連付けられるコンテンツデータベースの一例の構成を示す。

[0278]

フィールド「コンテンツID」は、コンテンツIDが登録されるフィールドで

ある。コンテンツIDは、例えば128ビットのデータ長を有し、コンテンツがジュークボックスアプリケーション300に取り込まれライブラリに格納される際に、セキュリティモジュール302により割り当てられる。ライブラリに格納されるコンテンツのそれぞれは、コンテンツIDで識別することができる。

[0279]

図48Bのフィールド「ディスクID」は、図48Aのフィールド「ディスクID」である。したがって、ディスクIDデータベース301とコンテンツデータベースとは、ディスクIDにより関連付けられており、ディスクIDとコンテンツIDにより、コンテンツに関する情報は一意的に管理される。

[0280]

さらに、コンテンツIDのそれぞれに対して、当該コンテンツの属性、ディスクIDが関連付けられる。図48Bの例では、フィールド「ディスクID」に、ディスクIDが登録され、フィールド「CO可能回数」に、CO(チェックアウト)可能回数が登録され、フィールド「サイズ」に、コンテンツのサイズ、すなわちデータ量が登録され、フィールド「コンテンツID」に格納されたコンテンツIDと関連付けられる。勿論、さらに他の情報をコンテンツIDに関連付けることができる。

[0281]

図48Bでは、ライブラリに登録された各コンテンツIDそれぞれに対してディスクIDを関連付けたが、ディスクIDに対してコンテンツIDを関連付ける構成としてもよい。また、コンテンツIDにグループを関連付ける構成や、ディスクIDにCO可能回数を関連付ける構成としてもよい。これらに限らず、ライブラリを、上述した音楽データの第1の管理方法や第2の管理方法に基づいて管理することもできる。

[0282]

ここで、この発明の実施の一形態について説明する。以下説明する実施の一形態は、上述したソフトウェアにより新規オーディオデータを導入した際に、チェックアウトの予約を行うものである。なお、新規コンテンツの導入とは、リッピングなどにより新規コンテンツを取り込むことだけを意味するものでなく、新規

コンテンツを再生するなど、新規コンテンツを他に利用することも含む。

[0283]

図49および図50は、実施の一形態によるソフトウェアの動作の一例を示す。以下、図49および図50を参照して、この発明の実施の一形態について説明する。

[0284]

図49は、新規コンテンツをリッピングにより蓄積する際のソフトウェアの動作である。リッピングとは、音楽CDなどコンテンツが収録されているオリジナルの記録媒体から、コンテンツをデジタルデータのまま読み出して、コンピュータのファイルなどとして取り出すこと(データを「吸い出す」ともいう)である。リッピングは、オリジナルの記録媒体からデジタルデータのままコンテンツを取り出すので、音質などコンテンツの質は、ほとんど劣化しない特徴を有する。

[0285]

リッピングにより、コンテンツがパーソナルコンピュータ100に取り込まれるとともに、ディスクIDデータベース301が更新され、リッピングにより取り込まれた新規コンテンツのディスクID、グループ、ディスク容量などのディスク情報が登録される。また、コンテンツデータベースが更新され、リッピングにより取り込まれた新規コンテンツのコンテンツID、ディスクID、サイズ、CO可能回数等のコンテンツ情報が登録される。

[0286]

ここでは、新規コンテンツの蓄積としてリッピングを適用しているが、インターネットなどのネットワークを利用した電子音楽配信サービスなどを利用して、ネットワークからコンテンツをダウンロードする際についても同様に適用することができる。したがって、コンテンツの供給源をCDやDVDなどの記録媒体とし、当該記録媒体からリッピングによりコンテンツをデータベースに蓄積するだけでなく、コンテンツの供給源をインターネットのコンテンツ配信サービスサーバ等のネットワーク上のサーバとして、ダウンロードによりコンテンツをデータベースに蓄積することもできる。

[0287]

[0288]

ステップS201では、ステップS200での問い合わせの結果が判定される。ステップS201で、チェックアウトの予約を行わない、すなわち「NO」と判定された場合には、通常通りリッピングを行いリッピングの終了により処理が終了する。

[0289]

ステップS201でチェックアウトの予約を行う、すなわち「YES」と判定された場合には、ディスクIDデータベース301への問い合わせが行われる(ステップS202)。そして、ユーザインターフェースを通じてユーザにチェックアウトを予約するディスクの指定を行わせる(ステップS203)。

[0290]

リッピング中のコンテンツがチェックアウトを予約するコンテンツとなる。コンテンツ全て、すなわちアルバム単位でチェックアウトを行うとしても良いし、曲単位でチェックアウトを行うとしても良い。なお、チェックアウトを予約するコンテンツは、リッピング中のコンテンツに限らず、すでにライブラリに存在するコンテンツを選択可能としても良い。これにより、リッピング中の時間を更に有効に使うことができる。

[0291]

チェックアウトの予約の対象がアルバム単位である場合には、ディスクIDまたはコンテンツIDによりコンテンツの識別が可能である。チェックアウトの予約の対象が曲単位である場合には、ディスクIDとコンテンツIDによりコンテンツの識別が可能である。

[0292]

リッピングなど、パーソナルコンピュータ100で新規コンテンツを導入した

とき、上述したディスクIDデータベース301に新規コンテンツの情報が追加される。このとき、例えば、ユーザにユーザインターフェースを通じて、「新規ディスクをデータベースに登録しますか?(Y/N)」などの問い合わせを行い、新規コンテンツのディスク情報およびコンテンツ情報の登録の許可を得るようにしても良い。

[0293]

チェックアウト先のディスクは、ディスクIDにより識別される。上述したディスクIDデータベース301では、ディスクIDとグループとが関連付けられて管理されているため、グループに基づきチェックアウト先のディスクの指定が可能である。チェックアウト先のディスクの指定は、ユーザにユーザインターフェースを通じて、ディスクIDと関連付いたグループなどの情報を提供し、提供された情報からチェックアウトを予約するディスクを指定することで行われる。

[0294]

したがって、ステップS203では、コンテンツIDとディスクIDとを関連付けて、当該コンテンツIDで識別されるコンテンツのチェックアウトの予約が行われる。

[0295]

また、ディスクIDデータベース301に登録されていない新たなグループに チェックアウトしたい場合に対応するように、新規ディスクにチェックアウトを 行う「新規ディスク用」などといったオプションの選択項目を用意しても良い。 この「新規ディスク用」をチェックアウト先のディスクとして選択した場合には 、例えば新規ディスクのプロファイルを設定するようにしても良い。

[0296]

ステップS203でチェックアウトの予約を行うコンテンツおよびチェックアウト先のディスクの指定がなされたら、チェックアウトの予約を行うコンテンツのサイズとチェックアウト先のディスクの記録可能な容量とが比較され、チェックアウトした際に、チェックアウト先のディスクの容量が十分であるか否かが判定される(ステップS204)。チェックアウト先のディスクがディスクIDデータベース301に登録されている場合には、ディスクIDデータベース301

[0297]

ステップS204で記録容量が十分でなく不足する、すなわち「NO」と判定された場合には、ユーザにユーザインターフェースを通じて記録容量の不足を解消するようにチェックインの予約をするか否かの問い合わせが行われる(ステップS206)。例えば、「チェックインの予約を行いますか?(Y/N)」などのメッセージをパーソナルコンピュータ100の画面に表示して、ユーザからYES/NOの指示を受け取る。

[0298]

ステップS207では、ステップS206での問い合わせの結果が判定される。ステップS207で、チェックインの予約を行わない、すなわち、「NO」と判定された場合には、通常通りリッピングを行い、リッピングの終了により処理が終了する。ユーザにチェックアウトの対象を減らさせたり、チェックアウト先のディスクを変更させたりした後、ステップS204に戻るようにしても良い。

[0299]

ステップS207で、チェックインの予約を行う、すなわち、「YES」と判定された場合には、チェックインの予約が行われる(ステップS208)。チェックインの予約でのコンテンツおよびチェックイン先の指定は、上述したチェックアウトの予約の場合と同じ要領で行われる。但し、コンテンツの流れはチェックアウトの場合と反対となる。

[0300]

チェックインの予約後、処理がステップS204に戻される。なお、ディスクドライブ装置1上でコンテンツが削除され、そのコンテンツをみなしチェックインする場合があるので、チェックインの予約に関するステップS206からステップS208の処理は必須ではない。その場合、ステップS204で記録容量が不十分である、すなわち「NO」と判定された場合には、通常通りリッピングを

行い、リッピングの終了により処理が終了する。ユーザに警告してチェックアウトの対象を減らさせたり、チェックアウト先のディスクを変更させたりした後、ステップS204に戻るようにしても良い。

[0301]

ステップS204で、記録容量が十分である、すなわち「YES」と判定された場合には、チェックアウトの予約を行う(ステップS205)。例えば、ディスクIDデータベース301のフィールド「予約情報」に予約済、予約先ディスク等の情報を登録し、ディスクIDデータベース301が更新されることで、チェックアウトの予約の処理が行われる。

[0302]

チェックアウトの予約およびリッピングが終了したら、処理が終了する。このリッピングの際の予約の処理は、ディスクIDデータベース301に登録してあるディスクIDを利用してディスクを識別するか、新規ディスクを指示するため、ディスクドライブ装置1は、パーソナルコンピュータ100に接続して行う必要はない。

[0303]

リッピング完了後、チェックアウトが予約されていれば、ディスクドライブ装置1およびディスクドライブ装置1内のディスクの状態を確認し、予約した条件と一致した場合に、予約したチェックアウト(以下、予約チェックアウト)の処理が行われる。以下に説明する図50に示す予約チェックアウトの処理は、このリッピングの直後にディスクが挿入されたディスクドライブ装置1(図50ではPD:Portable Deviceと表記)が接続されている場合、およびディスクが挿入されたディスクドライブ装置1がリッピングの終了後に新たに接続された場合、またはディスク90が入れ替わった場合に自動で行われる。

[0304]

予約チェックアウトの処理では、まず、ユーザにユーザインターフェースを通じて、チェックアウトを行うか否かが問い合わされる(ステップS209)。例えば、「チェックアウトを行いますか?(Y/N)」などのメッセージをパーソナルコンピュータ100の画面に表示して、ユーザからYES/NOの指示を受

け取る。

[0305]

ステップS210では、ステップS209での問い合わせの結果が判定される。ステップS210で、チェックアウトを行わない、すなわち「NO」と判定された場合には、ディスクドライブ装置1に挿入されているディスクでの予約チェックアウトの処理が終了する。

[0306]

ステップS210で、チェックアウトを行う、すなわち「YES」と判定された場合には、引き続き、ディスクドライブ装置1内のディスクのディスクIDがディスクIDデータベース301に登録されているか否かが判定される(ステップS211)。なお、ステップS209およびステップS210での、ユーザへのチェックアウトを実行するか否かの確認は、省略することも可能である。

[0307]

ステップS211で、ディスクドライブ装置1内のディスクから読み取ったディスクIDがディスクIDデータベース301に登録されていない場合、すなわち「NO」と判定された場合には、引き続き、ディスクドライブ装置1内のディスク中にコンテンツ、すなわちオーディオデータが存在するか否かが判定される(ステップS218)。なお、ステップS211で、ディスクドライブ装置内のディスクのディスクIDが正常に読み取れなかった場合には、ディスクドライブ装置1に挿入されているディスクでの予約チェックアウトの処理が終了する。

[0308]

ステップS218で、ディスクドライブ装置1内のディスク中にオーディオデータが存在する、すなわち「YES」と判定された場合には、友人のディスクなどの未登録ディスクと判断され、ユーザインターフェースを通じて、ユーザに対してディスクドライブ装置1内のディスクのディスク1Dの登録を行うか否かの問い合わせが行われる(ステップS221)。例えば、「ドライブに挿入されているディスクを登録しますか?(Y/N)」などのメッセージをパーソナルコンピュータ100の画面に表示して、ユーザからYES/NOの指示を受け取る。

[0309]

[0310]

ステップS222で、ディスクIDの登録を行う、すなわち、「YES」と判定された場合には、ディスクIDデータベース301へディスクドライブ装置I内のディスクのディスクID、グループ、容量等のディスク情報が登録される(ステップS223)。そして、処理がステップS209に戻される。

[0311]

ステップS218で、ディスクドライブ装置1内のディスク中にコンテンツ、すなわちオーディオデータが存在しない、すなわち「NO」と判定された場合には、新規ディスク(ブランクディスク)と判断し、ディスクIDデータベース301へディスクドライブ装置1内のディスクのディスクID、グループ、容量等のディスク情報が登録される(ステップS219)。なお、ディスク中にオーディオデータ以外のデータが存在し、ディスクが空でない場合でも、オーディオデータが存在しなければ、ステップS218では、「NO」と判定される。

[0312]

ブランクディスクの情報の登録後、新規ディスクに対するチェックアウトの予約が行われているか否かが判定される(ステップS220)。この判定は、ディスクIDデータベース301のフィールド「予約情報」を参照することで可能である。ステップS220で、新規ディスクに対する予約が行われていない、すなわち「NO」と判定された場合には、ディスクドライブ装置1に挿入されているディスクでの予約チェックアウトの処理が終了する。

[0313]

ステップS220で、新規ディスクに対する予約が行われている、すなわち「YES」と判定された場合には、ディスクドライブ装置1内のディスクに対して チェックアウトの予約がなされていたコンテンツがチェックアウトされる(ステップS217)。このとき、ディスクの空き容量とチェックアウトするコンテン

[0314]

ステップS211で、ディスクドライブ装置1内のディスクから読み取ったディスクIDがディスクIDデータベース301に登録されている、すなわち「YES」と判定された場合には、引き続き、読み取ったディスクドライブ装置1内のディスクのディスクIDが予約したディスクのディスクIDと一致するか否かがディスクIDデータベース301を参照して判定される(ステップS212)。すなわち、ここではチェックアウトの予約がなされたコンテンツのコンテンツIDと関連付けたディスクIDで識別されるディスク90が接続されたか否かが判別されることとなる。

[0315]

ステップS212で、読み取ったディスクドライブ装置1内のディスクのディスクIDと予約ディスクのディスクIDとが一致しない、すなわち、「NO」と判定された場合には、ディスクドライブ装置1に挿入されているディスクでの予約チェックアウトの処理が終了する。

[0316]

ステップS212で、読み取ったディスクドライブ装置1内のディスクのディスクIDと予約ディスクのディスクIDとが一致する、すなわち、「YES」と判定された場合には、引き続き、チェックインの予約がされているか否かがディスクIDデータベース301を参照して判定される(ステップS213)。

[0317]

ステップS213で、チェックインの予約がされていない、すなわち、「NO」と判定された場合には、ディスクドライブ装置1内のディスクに対してチェックアウトの予約がなされていたコンテンツがチェックアウトされる(ステップS217)。このとき、ディスクの空き容量とチェックアウトするコンテンツの容量との整合性を確認し、空き容量が十分であるか否かを確認しても良い。なお、

[0318]

ステップS213で、チェックインの予約がされている、すなわち、「YES」と判定された場合には、ユーザにユーザインターフェースを通じて、チェックインを行うか否かが問い合わされる(ステップS214)。例えば、「チェックインを行いますか?(Y \angle N)」などのメッセージをパーソナルコンピュータ100画面に表示して、ユーザからYES \angle NOの指示を受け取る。

[0319]

ステップS215では、ステップS214での問い合わせの結果が判定される。ステップS215で、チェックインを行わない、すなわち「NO」と判定された場合には、ディスクドライブ装置1に挿入されているディスクでの予約チェックアウトの処理が終了する。

[0320]

ステップS215で、チェックインを行う、すなわち「YES」と判定された場合には、ディスクドライブ装置1内のディスクからチェックインを予約したコンテンツIDに対応するコンテンツのチェックインが行われる(ステップS216)。ステップS214およびステップS215での、ユーザへのチェックインを実行するか否かの確認は、省略することも可能である。なお、チェックインにより、ディスクIDデータベース301等のデータベースの内容が最新の情報に更新される。

[0321]

チェックインが終了したら、引き続きディスクドライブ装置1内のディスクに対してチェックアウトの予約がなされていたコンテンツがチェックアウトされる (ステップS217)。このとき、ディスクの空き容量とチェックアウトするコンテンツの容量との整合性を確認し、空き容量が十分であるか否かを確認しても良い。なお、チェックアウトにより、ディスクIDデータベース301等のデータベースの内容が最新の情報に更新される。そして、予約チェックアウトの処理が完了する。

なお、上述したように、この図50に示す予約チェックアウトの処理は、リッピング終了直後だけでなく、リッピングの終了後に新たにディスクドライブ装置 1が接続される、または着脱可能なディスク状記録媒体であるディスク90が入れ替わるたびに実行される。

[0323]

以上説明したように、この発明の実施の一形態によれば、リッピングの際に、チェックアウトの予約を行うことができるため、リッピング中の無駄な時間を効率よく利用することができる。また、予約の際にディスクIDを用いることで、リッピング中にチェックアウト用のディスクが存在しなくても、チェックアウト先のディスクの指定を行うことができる。リッピング中にチェックアウト先を指定することができるので、チェックアウト先の指定に用いられたディスクIDで識別されるディスクが接続されたときに、自動でチェックアウトをすることが可能である。

[0324]

また、アーティスト別、シーン別、ジャンル別などで分けられたグループとディスクIDとを関連づけて管理していることにより、これらグループ毎のディスクを容易に作成することができ、コンテンツの利用、管理が容易となる。

[0325]

また、ディスクIDとともにディスクの容量に関する情報を管理していることにより、チェックアウトするコンテンツのサイズと、チェックアウト先のディスクの記録可能な容量との比較を行い、チェックアウトにより容量が不足するか否かを判定することができる。容量が不足した場合には、チェックアウトに加えてチェックインの予約も行うことで、効率良くチェックアウトを行うことができる

[0326]

また、チェックアウトを予約するときに、チェックアウト先のディスクとして 、新規ディスクを指定できるようにしておくことで、ディスクIDがディスクI Dデータベース301に未登録であるブランクディスクに対しても、チェックア

ウトの予約を行うことができる。

[0327]

この発明は、上述したこの発明の実施の一形態に限定されるものでは無く、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。例えば、上述した実施の一形態によるソフトウェアの動作での各ステップは、記載された順序で時系列的に処理が行われることだけに限定されるものではなく、必ずしも時系列的に処理が行われなくとも、並列的、個別的に処理が行われても良い。

[0328]

また、ディスク90に対して1のグループをチェックアウトするように説明したが、これはこの例に限定されない。例えば、ディスク90の記録容量に十分な余裕があれば、1枚のディスク90に対して複数のグループをチェックアウトすることも可能である。ディスク90上では、グループインフォメーションテーブルを参照することにより、複数のグループをそれぞれ識別することができる。

[0329]

このような場合、例えば、当該ディスク90が装填されたディスクドライブ装置1がパーソナルコンピュータ100と接続された際に、ジュークボックスアプリケーション300によりディスク90のディスクIDがディスクIDデータベース301に登録されているか否かが調べられる。それと共に、ジュークボックスアプリケーション300によりディスク90のグループインフォメーションテーブルの情報が調べられ、グループデスクリプタの中に動的グループとしてチェックアウトしたグループがあるか否かが調べられる。動的グループとしてチェックアウトしたグループがあれば、そのグループに関して、上述したような方法により、ライブラリが同期される。ディスク90上の複数のグループが動的グループとしてチェックアウトされたグループであれば、それらのグループそれぞれに関して、上述したような方法により、ライブラリがそれぞれ同期される。勿論、ディスク90上に1のグループのコンテンツのみが記録されている場合にも、この方法が適用できる。

[0330]

上述した実施の一形態のソフトウェアによる処理は、コンピュータ読み取り可

は、その処理の一部または全てをハードウェアにより実行することも可能である

[0331]

また、上述した実施の一形態では、チェックアウト先の記録媒体であるディスク90として、次世代MD1、次世代MD2などのユニークな識別子を有するMDを適用して説明したが、これに限らず、ユニークな識別子を有する他の記録媒体、例えば、書き換え可能な光ディスク、磁気ディスク、磁気テープ、メモリカードなどを適用することも可能である。

[0332]

【発明の効果】

この発明によれば、新規コンテンツを導入し、第2の記録媒体に蓄積するときに、チェックアウトの予約を記録媒体毎にユニークな識別子を利用して行うことができるので、予約の際に利用した識別子で識別される記録媒体が接続されたときに、該記録媒体へのチェックアウトを自動的に行うことが可能となる。また、記録媒体毎にユニークな識別子を利用して第2の記録媒体へのチェックアウトを行うため、コンテンツの管理を容易に行うことができる。

[0333]

すなわち、新規コンテンツの導入とチェックアウト先の記録媒体の指定とを同時に行うことができ、オーディオデータ等のコンテンツの管理および利用を効率良く、且つ容易に行うことが可能な環境を構築することができるという効果がある。

【図面の簡単な説明】

【図1】

次世代MD1システムの仕様のディスクの説明に用いる図である。

次世代MD1システムの仕様のディスクの記録領域の説明に用いる図である。

【図3】

次世代MD2システムの仕様のディスクの説明に用いる図である。

【図4】

次世代MD2システムの仕様のディスクの記録領域の説明に用いる図である。

[図5]

UIDの一例のフォーマットを概略的に示す略線図である。

【図6】

次世代MD1および次世代MD2のエラー訂正符号化処理の説明に用いる図である。

【図7】

次世代MD1および次世代MD2のエラー訂正符号化処理の説明に用いる図である。

【図8】

次世代MD1および次世代MD2のエラー訂正符号化処理の説明に用いる図である。

【図9】

ウォブルを用いたアドレス信号の生成の説明に用いる斜視図である。

【図10】

現行のMDシステムおよび次世代MD1システムのADIP信号の説明に用いる図である。

【図11】

現行のMDシステムおよび次世代MD1システムのADIP信号の説明に用いる図である。

【図12】

次世代MD2システムのADIP信号の説明に用いる図である。

【図13】

次世代MD2システムのADIP信号の説明に用いる図である。

【図14】

現行のMDシステムおよび次世代MD1システムでのADIP信号とフレームとの関係を示す図である。

【図15】

次世代MD1システムでのADIP信号とフレームとの関係を示す図である。

【図16】

次世代MD2システムでのコントロール信号の説明に用いる図である。

【図17】

ディスクドライブ装置のブロック図である。

【図18】

メディアドライブ部の構成を示すブロック図である。

【図19】

次世代MD1によるディスクの一例の初期化処理を示すフローチャートである

【図20】

次世代MD2によるディスクの一例の初期化処理を示すフローチャートである

【図21】

オーディオデータの管理方式の第1の例の説明に用いる図である。

【図22】

オーディオデータの管理方式の第1の例によるオーディオデータファイルの説明に用いる図である。

【図23】

オーディオデータの管理方式の第1の例によるトラックインデックスファイル の説明に用いる図である。

【図24】

オーディオデータの管理方式の第1の例によるプレイオーダテーブルの説明に 用いる図である。

【図25】

オーディオデータの管理方式の第1の例によるプログラムドプレイオーダテーブルの説明に用いる図である。

【図26】

オーディオデータの管理方式の第1の例によるグループインフォメーションテーブルの説明に用いる図である。

【図27】

オーディオデータの管理方式の第1の例によるトラックインフォメーションテーブルの説明に用いる図である。

【図28】

オーディオデータの管理方式の第1の例によるパーツインフォメーションテーブルの説明に用いる図である。

【図29】

オーディオデータの管理方式の第1の例によるネームテーブルの説明に用いる 図である。

【図30】

オーディオデータの管理方式の第1の例による一例の処理を説明するための図である。

【図31】

ネームテーブルのネームスロットが複数参照可能であることを説明するための 図である。

【図32】

オーディオデータの管理方式の第1の例でオーディオデータファイルからパー ツを削除する処理の説明に用いる図である。

【図33】

オーディオデータの管理方式の第2の例の説明に用いる図である。

【図34】

オーディオデータの管理方式の第2の例によるオーディオデータファイルの構造を示す図である。

【図35】

【図36】

オーディオデータの管理方式の第2の例によるプレイオーダテーブルの説明に 用いる図である。

【図37】

オーディオデータの管理方式の第2の例によるプログラムドプレイオーダテーブルの説明に用いる図である。

【図38】

オーディオデータの管理方式の第2の例によるグループインフォメーションテーブルの説明に用いる図である。

【図39】

オーディオデータの管理方式の第2の例によるトラックインフォメーションテーブルの説明に用いる図である。

【図40】

オーディオデータの管理方式の第2の例によるネームテーブルの説明に用いる図である。

【図41】

オーディオデータの管理方式の第2の例による一例の処理を説明するための図である。

【図42】

オーディオデータの管理方式の第2の例で、インデックスにより1つのファイルのデータが複数のインデックス領域に分けられることを説明するための図である。

【図43】

オーディオデータの管理方式の第2の例で、トラックの連結の説明に用いる図である。

【図44】

オーディオデータの管理方式の第2の例で、別の方法によるトラックの連結の

説明に用いる図である。

【図45】

パーソナルコンピュータとディスクドライブ装置とが接続された状態で、書き込むデータの種類により管理権限を移動させることを説明するための図である。

【図46】

オーディオデータの一連のチェックアウトの手順を説明するための図である。

【図47】

この発明の実施の一形態に適用可能な一例のソフトウェア構成を示す略線図である。

【図48】

ジュークボックスアプリケーションで管理されるデータベースの一例の構成を 示す略線図である。

【図49】

この発明の実施の一形態に適用可能な一例のソフトウェアによりリッピングする際の一例の処理を示すフローチャートである。

【図50】

この発明の実施の一形態に適用可能な一例のソフトウェアによる予約チェック アウトの一例の処理を示すフローチャートである。

【符号の説明】

1・・・ディスクドライブ装置、2・・・メディアドライブ部、3・・・メモリ 転送コントローラ、4・・・クラスタバッファメモリ、5・・・補助メモリ、6 , 8・・・USBインターフェイス、7・・・USBハブ、10・・・オーディ オ処理部、12・・・RS-LDCエンコーダ、13・・・1-7pp変調部、14・・・ACIRCエンコーダ、15・・・EFM変調部、16・・・セレクタ、17・・・磁気ヘッドドライバ、18・・・磁気ヘッド、19・・・光学ヘッド、22・・・1-7復調部、23・・・RS-LDCデコーダ、23・・・ EFM変調部、24・・・ACIRCデコーダ、26・・・セレクタ、30・・・ADIP復調部、32,33・・・アドレスデコーダ、50・・・スイッチ、90・・・ディスク、100・・・パーソナルコンピュータ、300・・・ジュ

ークボックスアプリケーション、301・・・ディスクIDデータベース、30 2・・・セキュリティモジュール

図面

【図1】

【図7】

【図10】	
14ピット	CRC
8ピット	<i>६५</i> २diqy
8ピット	ADIPクラスタ 下位ピット
8ピット ー	ADIPクラスタ 上位ピット
4-4ピットー	かいか

【図12】	
18ピット	/የሀディ
←-4ピットー	४८मdidy
	ADIPクラスタ 下位ピット
	ADIPクラスタ 中位ピット
━−4ビット─━━−4ピット─━	ADIPクラスタ 上位ピット
4-4ピット→	67.5

【図13】

【図20】

【図21】

【図22】

オーディオブロック1	
オーディオブロック2	
オーディオブロック3	
オーディオブロックn	

【図23】

プレイオーダテーブル プログラムドプレイオーダテーブル グループインフォメーションテーブル トラックインフォメーションテーブル パートインフォメーションテーブル ネームテーブル 【図24】

TINF1
TINF2
TINF3
:
TINFn

【図25】

PINF1
PINF2
PINF3
PINFo

【図26】

Α	グループデスクリプタO
	グループデスクリプタ1
	グループデスクリプタ2
	•
	グループデスクリプタn

B 開始トラック 終了トラック グループネーム フラグ

【図27】

A	トラックデスクリプタO
	トラックデスクリプタ1
	トラックデスクリプタ2
	••••
	トラックデスクリプタn

符号化方式

鍵情報

著作権管理情報 B パートナンバ アーチストネームタイトル 元曲順 録音時刻

Α	パーツデスクリプタロ	
	パーツデスクリプタ1	
	パーツデスクリプタ2	
	パーツデスクリプタn	

B パーツの先頭アドレス パーツの終了アドレス リンク

【図29】

B ネームデータ ネームタイプ リンク

パーツ

オーディオデータファイル

パーツ

パーツ

パーツ

パーツ

出証特2004-3014764

【図31】

【図35】

プレイオーダテーブル
プログラムドプレイオーダテーブル
グループインフォメーションテーブル
トラックインフォメーションテーブル
ネームテーブル

【図36】

TINFO
TINF1
TINF2
TINFn

【図37】

PINFO
PINF1
PINF2
•
PINFn

出証特2004-3014764

【図38】

グループデスクリプタ0	
グループデスクリプタ1	
グループデスクリプタ2	
:	
グループデスクリプタn	

開始トラック ナンバ	終了トラック ナンバ	ネームポインタ	フラグ
---------------	---------------	---------	-----

【図39】

Ī	トラックデスクリプタ0
	トラックデスクリプタ1
٨	トラックデスクリプタ2
A	
1	
	トラックデスクリプタn

B

符号化方式				
オーディオ ファイル	インデックス	アーチストネーム	タイトル	
元曲順		録音時間		

[図40]

	ネームスロット0
Α	ネームスロット1
	ネームスロット2
^	
	ネームスロットn

B ネームデータ ネームタイプ リン

【図42】

【図43】

【図48】

Д

L	ディスクID	グループ名	ディスク容量	予約情報	T
L	××××	××××	×××	×××××	
L	00000	0000	000	000000	
L	ΔΔΔΔΔ	ΔΔΔΔ	ΔΔΔ	ΔΔΔΔΔΔ	
L		0000	000	000000	
:					}
į					
'	i	;			

B

コンテンツID	ディスクID	サイズ	CO可能回数	
×O×O×O×	×××××	××OO	3	
0×0×0×0	×××××	OO××	2	
ΟΔΟΔΟΔΟ	00000	ΟΟΔΔ	2	
$\Delta\Box\Delta\Box\Delta\Box\Delta$	ΔΔΔΔΔ	ΔΔΟΟ	3	
	ΔΔΔΔΔ		1	
	00000	0000	0	
ΔΟΔΟΔΟΔ	00000	ΔΔΟΟ	2	
į				
:	į			

【書類名】

**64. **

【要約】

【課題】 コンテンツの管理および利用を効率よく、且つ容易に行うことができるようにする。

【解決手段】 予めディスク毎にユニークなディスクIDに関連した情報で構成されたディスクIDデータベースを構築しておく。ディスクIDデータベースは、未登録の新規ディスクが利用されたときや、チェックアウト、チェックインなどが行われたときに更新される。CD等のリッピングの際に、ディスクIDデータベースに登録されているディスクIDと関連付けてチェックアウトの予約ディスクの指定を行う。チェックアウトの予約の終了後、予約に用いたディスクIDを有するディスクが接続されたときに、チェックアウトを自動で行う。これにより、コンテンツの管理および利用を効率よく、且つ容易に行えるようにする。

【選択図】

図49

特願2003-163471

識別番号

[000002185]

1. 変更年月日 [変更理由] 住 所

氏 名

1990年 8月30日

理由] 新規登録

東京都品川区北品川6丁目7番35号

ソニー株式会社