Monday, December 4, 2017 8:19 PM				
$- \int \frac{d^2 \phi(x)}{dx^2}$	$2 + \sum_{\alpha} \phi_{(x)} = S($	*) B		
$m^2 + (6) n$	$1 - \underbrace{\Sigma a}_{D} = -\underbrace{J_{o}}_{D}$	=0		$f_{ar} \chi \in [-\alpha, \alpha]$
$(m + L) ($ $\varphi_{e}(x) = A$	m-L) =0 ×/L		recall \[\frac{\z_{\pi}}{D} = \lambda^2 \]	
	e + Be			
$\frac{d^2 d}{dx^2} + ($	(0) d d - L2 6	= - <u>S</u> D		
guess $\phi_{\overline{p}} = A S_0$				
$-L^{2}\left(\frac{AS_{-}}{S_{-}}\right) =$	SUrpping -S- D	d'2 \$		
$AL^2 = \frac{2L}{D}$				
A = 1 $1 + 3$ $4 = 5 = 5 = 5$ $5 = 5 = 5$				
F.na.lly 0(x) = Qe	(x) + (p (x)			
ф (x)= A e	-x/L + Be x/L + So 5a			
Solve A and				
$B.c.$ $C(\pm a) =$				
the S(X) :	در –	-a (5 a	
note \max $\frac{d \phi}{dx} = 0$	at X=0			

Solve at
$$X = 0$$

$$\frac{\partial \phi(x)}{\partial x} = \frac{-A}{L} e^{-x/L} + \frac{B}{L} e^{x/L}$$

$$0 = \frac{-A}{L} + \frac{B}{L}$$
So
$$A = B$$

$$A = B$$

Solve at
$$X = a$$

$$\varphi(a) = 0 = Ae + Ae + SE$$

$$A = -SE = \left(e^{-a/L} + e^{-L}\right)^{-1}$$
Solve at $X = a$

$$\phi(x) = A\left(e^{-x/L} + e^{x/L}\right) + \frac{s_0}{s_0}$$

$$\phi(x) = -\frac{s_0}{s_0} \left(\frac{e^{-x/L} + e^{x/L}}{e^{-x/L} + e^{-x/L}}\right) + \frac{s_0}{s_0}$$

$$\phi(x) = -\sum_{\alpha} \left(\frac{e^{-x/L} + e^{-x/L}}{e^{-\alpha/L} + e^{-\alpha/L}} \right) + \frac{S_0}{\Sigma_{\alpha}}$$

$$a = 4 cm$$
 $\xi_a = .2 cm^{-1}$
 $D = 1 cm$ $S = 8 n$
 $h = .1 cm$ $cm^3 \cdot S$