Теория принятия решений

Лисид Лаконский

October 2023

Содержание

1	Лек	ция —	- 23.10.2023
	1.1	Решен	ие задач линейного программирования
		1.1.1	Геометрический способ решения
2	Практическое занятие $-\ 27.10.2023$		
	2.1	Решение задач линейного программирования	
		2.1.1	Геометрический способ решения
		2.1.2	Аналитические методы решение
		2.1.3	Домашнее задание

1 Лекция -23.10.2023

Докажем следующее утверждение: множество всех допустимых решений системы ограничений задачи линейного программирования является выпуклым множеством.

$$F(\overline{x}) = \sum_{i=1}^n C_i x_i \to max(min)$$
 $AX = B, \ A = (a_{ij})_{m \times n}, \ X = (x_1, \dots, x_n)^T, \ B = (b_1, \dots, b_m)^T$ Пусть $X_1^*, \ X_2^*$ — решение системы ограничений, то есть, $AX_1^* = AX_2^* = B$ Покажем, что $X^* = \alpha X_1^* + (1-\alpha)X_2^*, \ \text{где} \ 0 \le \alpha \le 1$ также является решением системы ограничений. $AX^* = A(\alpha X_1^* + (1-\alpha)X_2^*) = \alpha * AX_1^* + (1-\alpha) * AX_2^* = \alpha B + (1-\alpha)B - B$ Так как X^* — это выпуклое множество...

1.1 Решение задач линейного программирования

Теорема 1 Если задача линейного программирования (далее — ЗЛП) имеет оптимальное решение, то линейная функция $F(\overline{x})$ достигает своего оптимума (то есть, максимума или минимума) в одной из угловых точек многогранника (многоугольника на плоскости) решений.

Отметим, что если оптимальное решение достигается более чем в одной точке, то оно является выпуклой линейной комбинацией этих точек.

Теорема 2 Каждому допустимому базисному решению $X^* = (x_1^*, x_2^*, x_n^*)$ ЗЛП соответствует одна из угловых точек многогранника (многоугольника на плоскости) решений.

Таким образом, **любое оптимальное решение ЗЛП является одной из угловых точек**, то есть **допустимым базисным решением**.

1.1.1 Геометрический способ решения

Рассмотрим решение на плоскости. Оно возможно в следующих случаях:

- 1. Имеем две переменные: n = 2
- 2. Количество неизвестных минус количество уравнений равно двум: n-m=2

Чтобы показать геометрическое решение, необходимо выбрать m переменных из x_1, \ldots, x_n в качестве основных (главных, базисных), а остальные переменные назовем свободными.

Пусть x_1, x_2 — свободные переменные, а x_3, \ldots, x_n — базисные.

$$a_{i1}x_1 + \dots + a_{in}x_n = b_i \implies$$

$$\begin{cases} x_3 = \beta_3 + \alpha_{31}x_1 + \alpha_{32}x_2 \\ \dots \\ x_n = \beta_n + \alpha_{n1}x_1 + \alpha_{n2}x_2 \end{cases}$$

Так как
$$x_i \ge 0, \, \forall i=\overline{1,n} \implies \begin{cases} \beta_i + \alpha_{i1}x_1 + \alpha_{i2}x_2 \ge 0 \\ x_1,x_2 \ge 0 \end{cases}$$

Нужно показать геометрически множество решений этой системы, которое является выпуклым многоугольником.

- 1. Если нет пересечений в системе ограничений, то решение не существует.
- 2. Если есть пересечение, то решение будет.

 $F(\overline{x})$ выше было записано в следующем виде: $F(\overline{x}) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$. Необходимо переписать ее, выразив базисные переменные через свободные в следующем виде: $F(\overline{x}) = \gamma_1 x_1 + \gamma_2 x_2 + \gamma_0$

Если рассматривается задача на максимум, то решение нужно искать в направлении возрастания функции $F(\overline{x})$. Направление возрастания функции $F(\overline{x})$ — вектор градиент: $\operatorname{grad} F = \{\frac{\delta F}{\delta x_1}, \dots, \frac{\delta F}{\delta x_n}\}$. В нашем случае: $\operatorname{grad} F = \{\gamma_1, \gamma_2\}$.

То есть, **необходимо нарисовать на плоскости** x_1ox_2 **уравнение прямых** $\gamma_1x_1 + \gamma_2x_2 = c$ (опорные прямые), перпендикулярные qrad F

Если мы хотим найти максимум, то на многоугольнике решений надо найти точку, через которую проходит линия уровня (то есть, опорная прямая) с наибольшим значением уровня (то есть, константы c). Получающаяся точка и является оптимальным решением.

В случае **задачи на минимум** необходимо двигаться в направлении -grad F.

Пример №1 Решить геометрически задачу линейного программирования:

$$F(\overline{x}) = 2x_1 + 3x_2 \rightarrow max$$

При ограничениях:

$$\begin{cases} x_1 + 3x_2 \le 18 \implies \frac{x_1}{18} + \frac{x_2}{6} \le 1\\ 2x_1 + x_2 \le 16 \implies \frac{x_1}{8} + \frac{x_2}{16} \le 1\\ x_2 \le 5\\ x_1 \le 7\\ x_1, x_2 \ge 0 \end{cases}$$

Нарисуем все эти ограничения на плоскости $x_1 o x_2$. В результате получаем выпуклый шестиугольник. $qradient \ F = (2,3)$

Опорная прмая: $2x_1 + 3x_2 = c$

Рассмотрим:

$$\begin{cases} x_1 + 3x_2 = 18 \implies x_1 = 18 - 3x_2 \\ 2x_1 + x_2 = 16 \implies 36 - 6x_2 + x_2 = 16 \implies x_2 = 4 \implies x_1 = 6 \end{cases}$$

Получаем решение: $X^* = (6,4), F(X^*) = 24$

Пример №2 Найти геометрически решение ЗЛП:

$$F(\overline{x}) = 4x_1 - 3x_2 - x_4 + x_5 \to min$$

При ограничениях:

$$\begin{cases}
-x_1 + 3x_2 + x_4 = 13 \\
4x_1 + x_2 + x_5 = 26 \\
-2x_1 + x_2 + x_3 = 1 \\
x_1 - 3x_2 + x_6 = 0 \\
x_i \ge 0, i = \overline{1, 6}
\end{cases}$$

Мы можем найти решение графически, так как n=6, m=4, n-m=2. Из этой системы мы можем получить:

$$\begin{cases} x_4 = 13 + x_1 - 3x_2 \ge 0 \\ x_5 = 26 - 4x_1 - x_2 \ge 0 \\ x_3 = 1 + 2x_1 - x_2 \ge 0 \\ x_6 = -x_1 + 3x_2 \ge 0 \\ x_1x_2 \ge 0 \end{cases} \implies \begin{cases} x_1 - 3x_2 \ge -13 \\ 4x_1 + x_2 \le 26 \\ x_2 \le 1 + 2x_1 \\ x_1 \le 3x_2 \\ x_1x_2 \ge 0 \end{cases}$$

Нарисуем все эти ограничения на плоскости $x_1 o x_2$. Получаем многоугольник. Преобразуем $F(\overline{x})$, чтобы определить, какая из угловых точек является решением:

$$F(\overline{x}) = 4x_1 - 3x_2 - (13 + x_1 - 3x_2) + (26 - 4x_1 - x_2) = -x_1 - x_2 + 13$$

Таким образом:

$$\gamma_1 = 1, \gamma_2 = 2, \gamma_3 = 13$$

gradient
$$F = \{-1, -1\}, -gradient \ F = \{1, 1\}$$

Построим его на графике вместе с опорными линиями в его направлении. Видим: $A = \{5,6\}, F(A) = -5-6+13=2$. Проверим другие точки: $B = \{6,2\}, F(B) = -6-2+13=5, C = \{2,5\}, F(C) = -2-5+13=6$. Окончательно убеждаемся: A — т. min

$$x_4 = x_5 = 0, x_3 = 1 + 2 * 5 - 6 = 5, x_6 = -5 + 3 * 6 = 13 \implies X^* = (5, 6, 5, 0, 0, 13), F(X^*) = 2$$

Пример №3 Найти геометрически решение ЗЛП:

$$F(\overline{x}) = x_1 + 3x_2 + 3x_4 - x_3 \to max$$

При ограничениях:

$$\begin{cases} x_1 - 3x_2 + 3x_3 - 6x_4 = 0\\ 3x_2 - 2x_3 + 6x_4 = 2\\ x_i \ge 0, i = \overline{1, 4} \end{cases}$$

Сложим вместе первое и второе уравнение:

$$x_1 + x_3 = 2 \implies x_3 = 2 - x_1 \ge 0$$

Сложим первое уравнение дважды и второе уравнение трижды:

$$2x_1 + 3x_2 + 6x_4 = 6 \implies x_4 = 1 - \frac{1}{3}x_1 - \frac{1}{2}x_2 \ge 0$$

Получили:

$$\begin{cases} 2 - x_1 \ge 0\\ \frac{x_1}{3} + \frac{x_2}{2} \le 1\\ x_1, x_2 \ge 0 \end{cases}$$

Нарисуем все эти ограничения на плоскости $x_1 o x_2$. Получаем четырехугольник. Преобразуем $F(\overline{x})$, чтобы определить, какая из угловых точек является решением:

$$F(\overline{x}) = x_1 + 3x_2 + 3(1 - \frac{1}{3}x_1 - \frac{1}{2}x_2) - (2 - x_1) = x_1 + 3x_2 + 3 - x_1 - \frac{3x_2}{2} - 2 + x_1 = x_1 + \frac{3x_2}{2} + 1$$

gradient
$$F = \{1, \frac{3}{2}\}$$

Нарисуем этот вектор на плоскости. Кроме того, имеем линию уровня:

$$x_1 + \frac{3}{2}x_2 = c$$

Видим, что $gradient\ F$ перепендикулярен второй линии.

$$F(2; \frac{2}{3}) = 2 + \frac{3}{2} * \frac{2}{3} + 1 = 4$$

$$F(0;2) = 0 + \frac{3}{2} * 2 + 1 = 4$$

Так как решением являются две точки, то **оптимальным вектором решений является их выпуклая линейная** комбинация:

$$X^* = \alpha * A + (1 - \alpha)B, \quad 0 \le \alpha \le 1$$

, где т. $A(2,\frac{2}{3})$, т. B(0,2)

$$X^* = (2\alpha, \frac{2}{3}\alpha + 2(1-\alpha))$$

$$X_3^* = 2 - 2\alpha, X_4^* = 1 - \frac{1}{3} * 2\alpha - \frac{1}{2} (\frac{2}{3}\alpha + 2(1 - \alpha))$$

2 Практическое занятие — 27.10.2023

2.1 Решение задач линейного программирования

2.1.1 Геометрический способ решения

Пример №4 Найти геометрически решение ЗЛП:

$$F(\overline{x}) = x_1 + 4x_2 + x_3 - x_4 \to max$$

При ограничениях:

$$\begin{cases} 2x_1 - x_3 + x_4 = 4\\ x_1 - 2x_2 - 2x_3 + x_4 = -1\\ x_i \ge 0, i = \overline{1, 4} \end{cases}$$

 $n = 4, m = 2 \implies n - m = 2$ — следовательно, геометрическое решение возможно.

Выберем переменные x_1 , x_2 в качестве свободных, выразим через них переменные x_3 , x_4 : вычтем из первого уравнения второе, получим

$$x_1 + x_3 + 2x_2 = 5 \implies x_3 = 5 - x_1 - 2x_2 \ge 0$$

Вычтем из второго уравнения два первых уравнения:

$$-3x_1 - 2x_2 - x_4 = -9 \implies x_4 = 9 - 3x_1 - 2x_2 \ge 0$$

Таким образом, мы получили систему неравенств на две переменные x_1, x_2 :

$$\begin{cases} 5 - x_1 - 2x_2 \ge 0 \\ 9 - 3x_1 - 2x_2 \ge 0 \\ x_1, x_2 \ge 0 \end{cases} \implies \begin{cases} x_1 + 2x_2 \le 5 \\ 3x_1 + 2x_2 \le 9 \\ x_1, x_2 \ge 0 \end{cases}$$

Построим на плоскости $x_1 o x_2$ область, отвечающую двум данным неравенствам. Получаем четырехугольник. Чтобы найти оптимальное решение, необходимо найти градиент. Перепишем $F(\overline{x})$:

$$F(\overline{x}) = x_1 + 4x_2 + 5 - x_1 - 2x_2 - (9 - 3x_1 - 2x_2) = -4 + 3x_1 + 4x_2$$

gradient
$$F = \{3, 4\}$$

Обозначим на графике в качестве точки и проведем из нуля вектор. Кроме того, необходимо найти линию уровня, имеющую наибольшее пересечение с угловой точкой. Линия уровня в нашем случае имеет уравнение:

$$3x_1 + 4x_2 = c$$

Решение является т. A — пересечение двух прямых:

$$\begin{cases} x_1 + 2x_2 = 5 \\ 3x_1 + 2x_2 = 9 \end{cases} \implies \begin{cases} x_1 = 5 - 2x_2 \\ 4x_2 = 6 \end{cases} \implies \begin{cases} x_1 = 2 \\ x_2 = \frac{3}{2} \end{cases}$$

 x_3, x_4 в данной точке будет равняться нулю. Так что имеем вектор решения: $x^* = (2; \frac{3}{2}; 0; 0),$ $F(x^*) = -4 + 3 * 2 + 1 * \frac{3}{2} = 8$ — максимальное значение

2.1.2 Аналитические методы решение

Одним из аналитических методов решения ЗЛП является так называемый **симплекс-метод**. Его суть заключается в том, что мы обходим угловые точки, но делаем это не геометрически, а аналитическим способом. Для его реализации необходимо установить следующие элементы:

1. **Способ определения** какого-либо изначального допустимого базисного решения — то есть, удовлетворяющего системе ограничений:

$$AX = B$$

$$X = (\beta_1, \dots, \beta_m, 0, \dots, 0), \ \beta_i > 0, \ \forall i = \overline{1, m}$$
 — допустимое базисное решение;

- 2. Набор правил, определющих переход к наилучшему по сравнению с предыдущим решению;
- 3. Критерий проверки оптимальности найденного решения.

На начальном этапе необходимо выбрать m базисных переменных и выразить эти переменные через оставшиеся, свободные (количество которых равно n-m)

Пусть базисными являются переменные x_1, x_2, \ldots, x_m :

$$x_i = \alpha i_{m+1} x_{m+1} + \dots + \alpha i_n + \beta i, \ i = \overline{1.m}$$

Начальное допустимое базисное решение:

$$X^{(0)} = \{\beta_1, \beta_2, \dots, \beta_m, 0, \dots, 0\}$$

где

$$x_{m+1} = \cdots = x_n = 0, \beta_i > 0, \forall i = \overline{1, m}$$

В изначальное уравнение подставляем базисные переменные, выраженные через свободные:

$$F(\overline{x}) = \sum_{i=m+1}^{n} \gamma_i x_i + \gamma_0 \to max$$

Критерий оптимальности: если все коэффициенты γ_i в выражении $F(\overline{x})$ через свободные переменные будет отрицательным, то данное решение будет оптимальным; если же существуют $\gamma_k > 0$, то решение не является оптимальным. И номер k показывает, какую переменную необходимо перевести в базис. Но в базисе **не может быть** больше n переменных. Следовательно, необходимо убрать одну из предыдущих базисных переменных. Это и есть переход к наилучшему по сравнению с предыдущим решению.

Пример №1 Решить аналитически ЗЛП:

$$F(\overline{x}) = 2x_1 + 3x_2 \rightarrow max$$

При ограничениях:

$$\begin{cases} x_1 + 3x_2 \le 18 \\ 2x_1 + x_2 < 16 \\ x_2 \le 5 \\ 3x_1 \le 21 \\ x_1 x_2 \ge 0 \end{cases}$$

Мы не можем запустить симплекс-метод для данной системы неравенств. Необходимо выполнить переход к канонической ЗЛП:

$$\begin{cases} x_1 + 3x_2 + x_3 = 18 \\ 2x_1 + x_2 + x_4 = 16 \\ x_2 + x_5 = 5 \\ 3x_1 + x_6 = 21 \end{cases}$$

Все данные переменные неотрицательны. Далее необходимо выбрать базисные переменные. Пусть ими будут x_3, x_4, x_5, x_6 , так как они легко выражаются через x_1, x_2 :

$$\begin{cases} x_3 = 18 - x_1 - 3x_2 \ge 0 \\ x_4 = 16 - 2x_1 - x_2 \ge 0 \\ x_5 = 5 - x_2 \ge 0 \\ x_6 = 21 - 3x_1 \ge 0 \end{cases}$$

Необходимо проверить решение на оптимальность. Для этого в $F(\overline{x})$ необходимо подставить только свободные переменные — так уже есть. Видим, что коэффициенты в $F(\overline{x}) = 2x_1 + 3x_2$ положительны.

Если $x_1 = x_2 = 0$, то $x^{(0)} = (0, 0, 18, 16, 5, 21)$ — допустимое базисное решение. Не является оптимальным, так как $\gamma_1 > 0$ и $\gamma_i > 0$

В базис вводят переменную, у которой γ_i максимально. В нашем случае $max \ \gamma_i = \gamma_2 = 3$. Следовательно, вводим x_2 в базис. Подставим в систему выше $x_1 = 0$:

$$\begin{cases} x_2 \leq 6 \\ x_2 \leq 16 \\ x_2 \leq 5 \\ \text{нет ограничений}: x_2 \geq 0 \end{cases}$$

Надо выбрать минимальное ограничение: $x_2 \le 5$. Следовательно, с строчки $x_5 = 5 - x_2 \ge 0$ необходимо начать. Следовательно, заменим x_5 в базисе на x_2 (уберем x_5 , введем x_2)

$$\begin{cases} x_5 = 5 - x_5 \ge 0 \\ x_3 = 18 - x_1 - 3(5 - x_5) = 3 - x_1 + 3x_5 \ge 0 \\ x_4 = 16 - 2x_1 - (5 - x_5) = 11 - 2x_1 + x_5 \ge 0 \\ x_6 = 21 - 3x_1 \ge 0 \end{cases}$$

 $x_1,\,x_2$ — свободные переменные. Следовательно, $x^{(1)}=(0,5,3,11,0,21),\,F(x^0)=2x_1+3(5-x_5)=15+2x_1-3x_5.$ Решение не является оптимальным, так как $\gamma_1>0$ — следовательно, x_1 переводим в базис. $x_5=0$:

$$\begin{cases} 5 \ge 0 \\ x_1 \le 3 \\ x_1 \le \frac{11}{2} \\ x_1 \le \frac{21}{3} \end{cases}$$

Меньшим является $x_1 \le 3$, соответствующее строке $x_3 = 18 - x_1 - 3(5 - x_5) = 3 - x_1 + 3x_5 \ge 0$ в предыдущей системе. Следовательно, необходимо удалить x_3 . Перепишем данное уравнение. Необходимо x_1 выразить через x_3, x_5 :

$$\begin{cases} x_1 = 3 - x_3 + 3x_5 \ge 0 \\ x_2 = 5 - x_5 \ge 0 \\ x_4 = 11 - 2(3 - x_3 + 3x_5) + x_5 = 5 + 2x_3 - 5x_5 \ge 0 \\ x_6 = 21 - 3(3 - x_3 + 3x_5) = 12 + 3x_3 - 9x_5 \ge 0 \end{cases}$$

 $x_3 = x_5 = 0 \implies x^{(2)} = (3, 5, 0, 5, 0, 12)$

 $F(\overline{x}) = 15 + 2 * (3 - x_3 + 3x_5) - 3x_5 = 21 - 2x_3 + 3x_5$. В этом решении $F(x^{(2)}) = 21 > F(x^{(1)})$. Решение неоптимально, необходимо переводить x_5 в базис.

Подставим $x_3 = 0$:

$$\begin{cases} 3+3x_5\geq 0 \implies x_5\geq -1 \implies \text{ ограничений нет}\\ x_5\leq 5\\ x_5\leq 1\\ x_5\leq \frac{12}{9}\leq \frac{4}{3} \end{cases}$$

Меньшим является $x_5 \le 1$, соответствующее строке $x_4 = 11 - 2(3 - x_3 + 3x_5) + x_5 = 5 + 2x_3 - 5x_5 \ge 0$ в предыдущей системе. Необходимо x_5 выразить через x_4 , x_3 :

$$x_5 = 1 + \frac{2}{5}x_3 + \frac{1}{5}x_4$$

Теперь это уравнение подставим в оставшиеся:

$$\begin{cases} x_1 = 3 - x_3 + 3(1 + \frac{2}{5}x_3 + \frac{1}{5}x_4) = 6 + \frac{1}{5}x_3 - \frac{3}{5}x_4 \\ x_2 = 5 - (1 + \frac{2}{5}x_3 + \frac{1}{5}x_4) = 4 - \frac{2}{5}x_3 + \frac{1}{5}x_4 \\ x_6 = 12 + 3x_3 - 9(1 + \frac{2}{5}x_3 + \frac{1}{5}x_4) = 3 - \frac{3}{5}x_3 + \frac{9}{5}x_4 \ge 0 \end{cases}$$

 $x_3 = x_4 = 0 \implies x^{(3)} = (6, 4, 0.0, 1, 3)$

 $F(\overline{x})=21-2x_3+3(1+\frac{2}{5}x_3+\frac{1}{5}x_4)=24-\frac{4}{5}x_3-\frac{3}{5}x_4$. Оптимальное решение достигнуто: $x^*=x^{(3)}=(6,4,0,0,1,3)$. Решение исходной задачи: $x^*_{\text{нсх}}=(6,4)$

Пример №2 Найти аналитически решение ЗЛП:

$$F(\overline{x}) = x_1 + 4x_2 + x_3 - x_4 \to max$$

При ограничениях:

$$\begin{cases} 2x_1 - x_3 + x_4 = 4\\ x_1 - 2x_2 - 2x_3 + x_4 = -1\\ x_i \ge 0, i = \overline{1, 4} \end{cases}$$

Выберем переменные x_1 , x_2 в качестве свободных, выразим через них переменные x_3 , x_4 : вычтем из первого уравнения второе, получим

$$x_1 + x_3 + 2x_2 = 5 \implies x_3 = 5 - x_1 - 2x_2 > 0$$

Вычтем из второго уравнения два первых уравнения:

$$-3x_1 - 2x_2 - x_4 = -9 \implies x_4 = 9 - 3x_1 - 2x_2 \ge 0$$

Таким образом, мы получили систему неравенств на две переменные x_1, x_2 . $x_1 = x_2 = 0 \implies x^{(0)} = (0,0,5,9)$. Перепишем $F(\overline{x})$, получим $F(\overline{x}) = -4 + 3x_1 + 4x_2$ — решение неоптимально, $F(x^{(0)}) = -4$. Переводим в базис переменную x_2 , так как у нее наибольший коэффициент. $x_1 = 0$:

$$\begin{cases} x_3 = 5 - 2x_2 \ge 0 \implies x_3 \le \frac{5}{2} \\ x_4 = 3 - 2x_2 \ge 0 \implies x_2 \le \frac{3}{2} \end{cases}$$

Минимальное из них $\frac{5}{2}$. Следовательно, необходимо избавляться от x_3 .

$$\begin{cases} x_2 = \frac{5}{2} - \frac{1}{2}x_1 - \frac{1}{2}x_3 \ge 0\\ x_4 = 9 - 3x_1 - 2(\frac{5}{2} - \frac{1}{2}x_1 - \frac{1}{2}x_3) = 4 - 2x_1 + x_3 \ge 0 \end{cases}$$

Перепишем $F(\overline{x}) = -4 + 3x_1 + 4(\frac{5}{2} - \frac{1}{2}x_1 - \frac{1}{2}x_3) = 6 + x_1 - 2x_3$, $x^{(1)} = (0, \frac{5}{2}, 0, 4)$, $F(x^{(1)}) = 6$. Решение неоптимально, так как имеем положительный коэффициент. Переведём x_1 в базис. $x_3 = 0$:

$$\begin{cases} x_2 = \frac{5}{2} - \frac{1}{2}x_1 \ge 0 \implies x_1 \le 5 \\ x_4 = 4 - 2x_1 \ge 0 \implies x_1 \le 2 - \text{минимальное} \end{cases}$$

Следовательно, второе уравнение необходимо переписать. Получим:

$$\begin{cases} x_1 = 2 + \frac{1}{2}x_3 - \frac{1}{2}x_4 \ge 0\\ x_2 = \frac{5}{2} - \frac{1}{2}(2 + \frac{1}{2}x_3 - \frac{1}{2}x_4) - \frac{1}{2}x_3 = \frac{3}{2} - \frac{3}{4}x_3 + \frac{1}{4}x_4 \ge 0 \end{cases}$$

Перепишем $F(\overline{x}) = 6 + 2 + \frac{1}{2}x_3 - \frac{1}{2}x_4 - 2x_3 = 8 - \frac{3}{2}x_3 - \frac{1}{2}x_4$, $x^{(2)} = (2, \frac{3}{2}, 0, 0)$, $F(x^{(2)}) = 8$. Оптимальное решение, так как все с отрицательным коэффициентом.

2.1.3 Домашнее задание

Решить геометрически и аналитически ЗЛП:

$$F(\overline{x}) = x_1 + 3x_2 + 3x_4 \to max$$

При ограничениях:

$$\begin{cases} x_1 - 3x_2 + 3x_3 - 6x_4 = 0\\ 3x_2 - 2x_3 + 6x_4 = 2\\ x_i \ge 0, i = \overline{1, 4} \end{cases}$$