

Financial Market Regime Analysis

Al For Investment Management

Professor: Dr. Pavel Paramonov

Team 4

Content:

Findings and Recommendations

Market Behaviour

Visualization to compare price movement over time for each asset

2007- Financial Crisis

2020-Covid-19 Pandemic

The share price of Assets 2005-2023

Market Behaviour

Daily return patterns of three different assets in separate subplots, allowing for a comparative analysis of their performance over time.

Daily returns of Assets 2005-2023

Hidden states of Markov Model

High-volatility and Low-volatility are the two states identified, with A3 following a more consistent upward trend

Asset returns based on Hidden States

A3 is outperforming A1 and A2 in both high- and low-volatility states

Correlation between assets

Assets' correlation changes according to the market states

Historical Returns

Historical Returns

A3 has historically outperformed the other two assets

Covariance Matrix

	A1	A2	А3
A1	0.001500	0.001269	0.000685
A2	0.001269	0.001811	0.000694
А3	0.000685	0.000694	0.000608

High-Volatility State

	A1	A2	А3
A 1	0.000134	0.000049	0.000026
A2	0.000049	0.000088	0.000040
А3	0.000026	0.000040	0.000064

Hidden State Transition Probabilities

Using Hidden Markov Model (HMM), the hidden state transition probabilities refer to the probabilities of transitioning between different hidden states over time

Portfolio optimization Overall

71.6%

A3

	Tangency (max. Sharpe ratio) portfolio	Hierarchical Risk Parity (HRP) portfolio
Expected annual return	9.9%	10.9%
Annual volatility	17.1%	18.2%
Sharpe Ratio	0.46	0.49

Portfolio optimization Overall

Portfolio optimization Low Volatility

	Tangency (max. Sharpe ratio) portfolio	Hierarchical Risk Parity (HRP) portfolio
Expected annual return	11.7%	20.5%
Annual volatility	16.0%	11.5%
Sharpe Ratio	0.60	1.60

HRP portfolio weights

Portfolio optimization Low Volatility

Portfolio optimization High Volatility

	Tangency (max. Sharpe ratio) portfolio	Hierarchical Risk Parity (HRP) portfolio
Expected annual return	100.9%	48.7%
Annual volatility	49.4%	42.6%
Sharpe Ratio	2.00	-1.19

HRP portfolio weights

Portfolio optimization High Volatility

Findings and Recommendations

Maximum Sharpe portfolio appears to outperform in the majority of the identified states the HRP portfolio

Low-volatility State

Tangent std: 0.317 HRP std: 0.257

Q3 and Q4 of 2022 represent the crucial point where the Maximum Sharpe portfolio outperforms the HRP

Original state

The two strategies perform in a similar way throughout the analyzed time window

High-volatility State

With few data points available in this state, the HRP slightly outperforms the Maximum Sharpe portfolio

Appendix

Main part of the code (Market Behaviour)


```
In [4]: tickers = list(df.columns)
                                                                                                                                In [6]: # daily returns
                                                                                                                                          plt.figure(figsize = (25, 10))
In [5]: # asset prices
                                                                                                                                          plt.subplot(3,1,1)
        plt.figure(figsize = (25, 10))
                                                                                                                                          plt.plot(df.index, df[tickers[0]].pct change())
       plt.subplot(3.1.1)
                                                                                                                                          plt.title(tickers[0])
       plt.plot(df.index, df[tickers[0]])
       plt.title(tickers[0])
                                                                                                                                          plt.grid(True)
       plt.grid(True)
                                                                                                                                          plt.subplot(3,1,2)
       plt.subplot(3,1,2)
                                                                                                                                         plt.plot(df.index, df[tickers[1]].pct change())
       plt.plot(df.index, df[tickers[1]])
       plt.title(tickers[1])
                                                                                                                                          plt.title(tickers[1])
       plt.grid(True)
                                                                                                                                          plt.grid(True)
       plt.subplot(3,1,3)
                                                                                                                                          plt.subplot(3,1,3)
       plt.plot(df.index, df[tickers[2]])
                                                                                                                                         plt.plot(df.index, df[tickers[2]].pct_change())
       plt.title(tickers[2])
       plt.grid(True)
                                                                                                                                          plt.title(tickers[2])
       plt.show()
                                                                                                                                          plt.grid(True)
                                                                                                                                          plt.show()
```

Main part of the code (Hidden states of Markovitz Model)

Main part of the code (Correlation between assets)

```
In [25]: low_vol_avg_returns = pd.DataFrame(low_vol_stats.loc["mean"])
low_vol_avg_returns["state"] = states_dict[1]

high_vol_avg_returns = pd.DataFrame(high_vol_stats.loc["mean"])
high_vol_avg_returns["state"] = states_dict[0]

original_avg_returns = pd.DataFrame(original_stats.loc["mean"])
original_avg_returns["state"] = states_dict[2]

avg_returns_df = pd.concat([low_vol_avg_returns, high_vol_avg_returns, original_avg_returns]).sort_index()
avg_returns_df.drop("state", inplace = True)

ax = avg_returns_df.pivot(columns="state").plot.barh()
plt.title('AVG Returns per Regime')

# Add a line at 0
ax.axvline(0, color='black', linewidth=0.5)
# Add a line at each maximum value
plt.show()
```

```
In [27]: corr_matrix = high_vol_returns_df[["A1","A2","A3"]].corr()

mask = np.triu(np.ones_like(corr_matrix, dtype=bool))

# Plot the correlation matrix as a heatmap
sns.heatmap(corr_matrix, annot=True, vmin=-1, vmax=1, cmap="vlag", mask=mask)
plt.show()
```



```
In [28]: corr matrix = low vol returns df[["A1","A2","A3"]].corr()
         mask = np.triu(np.ones_like(corr_matrix, dtype=bool))
          # Plot the correlation matrix as a heatmap
         sns.heatmap(corr matrix, annot=True, vmin=-1, vmax=1, cmap="vlag", mask=mask)
         plt.show()
                                                                              - 1.00
                                                                              - 0.75
                                                                              - 0.50
                                                                              - 0.25
                     0.45
                                                                              - 0.00
                                                                             - -0.25
                                                                              - -0.50
                     0.28
                                                                              - -0.75
                                                                                -1.00
                      A1
                                         A2
                                                            АЗ
```

```
In [29]: corr_matrix = states_returns_df[["A1","A2","A3"]].corr()
          mask = np.triu(np.ones like(corr matrix, dtype=bool))
         # Plot the correlation matrix as a heatmap
          sns.heatmap(corr_matrix, annot=True, vmin=-1, vmax=1, cmap="vlag", mask=mask)
          plt.show()
                                                                               - 1.00
                                                                              - 0.75
                                                                               - 0.50
                                                                              - 0.25
                                                                              - 0.00
                                                                              - -0.25
                                                                               - -0.50
                                                                                -0.75
                                                                                 -1.00
                      A1
                                                             АЗ
```

Main part of the code (OVERALL)


```
In [37]: # find the tangency (max. Sharpe ratio) portfolio
           ret_tangent, std_tangent, _ = ef_tangent.portfolio_performance(verbose=True)
          Expected annual return: 9.9%
           Sharpe Ratio: 0.46
In [38]: # tangency portfolio weights
  tangent_weights = ef_tangent.clean_weights()
Out[38]: OrderedDict([("A1", 0.0), ("A2", 0.0), ("A3", 1.0)])
In [39]: # generate random portfolios for visualization
           n_samples = 10000
w = np.random.dirichlet(np.ones(ef.n_assets), n_samples)
           stds = np.sqrt(np.diag(w @ ef.cov_matrix @ w.T))
           sharpes = rets / stds
Out[39]: array([0.25608359, 0.47823743, 0.30080144, ..., 0.52275217, 0.26077736,
                 0.38856064])
In [48]: # Hierarchical Risk Parity (HRP) portfolio
hrp = HRPOpt(states_returns_train)
           hrp_weights = hrp.optimize()
Out[40]: OrderedDict([('Al', 0.14004440170405413).
                         ("A2", 0.14309429590602324),
("A3", 0.7169613023899226)1
In [41]: ret_hrp, std_hrp, _ = hrp.portfolio_performance(verbose=True)
           Expected annual return: 10.9%
           Sharpe Ratio: 0.49
In [42]: # Hierarchical Clustering dendrogram
plotting.plot_dendrogram(hrp, showfig = True)
```



```
In [43]: fig, ax = plt.subplots(figsize=(9,8))
plotting.plot_efficient_frontier(ef_cp, ax=ax, show_assets=False)
ax.scatter(stds, rets, marker=".", c=sharpes, cmap="viridis_")
ax.scatter(std_tangent, ret_tangent, marker="x", s=100, c="r", label="Max Sharpe")
ax.scatter(std_hrp, ret_hrp, marker="0", s=100, c="r", label="HSP")
ax.set_fitle("Efficient Frontier with random portfolios")
ax.legend()
plt.tight_layout()
plt.tight_layout()
plt.show()
```


Main part of the code (Findings and Recommendations)

In [66]: # out-of-sample performance

```
In [44]: # construct portfolio returns: testing time period
          states_returns_test['port_tangent'] = 0
          for ticker, weight in tangent weights.items():
             states_returns_test['port_tangent'] += states_returns_test[ticker]*weight
In [45]: states_returns_test['port_hrp'] = 0
          for ticker, weight in hrp weights.items():
             states_returns_test['port_hrp'] += states_returns_test[ticker]*weight
In [46]: # cumulative equity curve (recall from the financial data practice earlier)
         port_equity_tangent = (1 + states_returns_test['port_tangent']).cumprod() - 1
         port equity hrp = (1 + states returns test['port hrp']).cumprod() - 1
         port_equity = port_equity_tangent.to_frame().join(port_equity_hrp)
In [48]: # out-of-sample performance
          port_equity.plot()
          <AxesSubplot:xlabel='Date'>
                        port tangent
                        port hrp
             0.2
             0.1
             0.0
           -0.1
           -0.2
```

-0.3

In [80]: # construct portfolio returns: testing time period high_vol_returns_test['port_tangent'] = 0 for ticker, weight in tangent_weights.items():

high_vol_returns_test['port_tangent'] += high_vol_returns_test[ticker]*weight

INTERNATIONAL BUSINESS SCHOOL

In [81]: high_vol_returns_test['port_hrp'] = 0 for ticker, weight in hrp_weights.items(): high_vol_returns_test['port_hrp'] += high_vol_returns_test[ticker]*weight

In [82]: # cumulative equity curve (recall from the financial data practice earlier) port_equity_tangent = (1 + high_vol_returns_test['port_tangent']).cumprod() - 1 port_equity_hrp = (1 + high_vol_returns_test['port_hrp']).cumprod() - 1 port_equity = port_equity_tangent.to_frame().join(port_equity_hrp)

In [84]: # out-of-sample performance port equity.plot()

<AxesSubplot:xlabel='Date'

