MPTEST_WIFI 测试工具使用说明

一、测试说明

SDK 工具包里面的测试固件已经包含了蓝牙的 FCC 测试程序、WIFI 的非信模式和信令模式测试程序,用户需要根据测试需求修改固件包里面的 cfg/wifi_init.txt 文件,如下图所示。修改完成后,下载程序进入样机进行对应模式的测试。如需切换 WIFI 非信令模式与信令模式,需修改 cfg/wifi_init.txt 文件并重新下载程序。

{"mode":"mp_test", "ssid":"CMW-AP", "pwd":"", "pa":"5 5 2 3 11 0", "xosc":"11 10", "power":"32", "debug_io":"PC00", "reg_pwr":6, "force_bt_test":0, "ble_pwr_set": 2}

备注,配置参数说明如下:

mode: mp_test->WIFI 非信令测试模式, sta->WIFI 信令模式; WIFI 两种模式下均可通过 force_bt_test=0 或开机时 DP 接低电平配置为蓝牙 FCC 测试模式;

ssid: 信令模式下仪器 CMW270 设置成 AP 模式,并配置相应的 SSID 名称,建议不要设置 pwd pa: 开机默认的 PA 参数

xosc: 开机默认的晶振频偏参数 (经过校准后会保存到 VM 里面)

power: 发射功率数字增益,一共 128 级,默认 32,填 0 时使用 VM 保存好的配置参数

debug io: 串口打印 IO, 不能设置成 USB 的 DP/DM 脚

reg_pwr(可选): WIFI 与 BLE 发射功率模拟增益, 0-6 级, 默认 设成 6, 一般情况不需要改动, 如蓝 牙功率超标, 可适当改小该模拟增益;

force_bt_test(可选): 1->开机后强制进入蓝牙 FCC 测试模式; 0->开机后根据 DP 脚的电平选择进入 WIFI 还是蓝牙的测试模式,默认进入 WIFI 测试模式,DP 接地线开机 3 秒后进入蓝牙 FCC 模式。

ble pwr set(可选): BLE 发射功率数字增益, 0-11 级, 默认为 2。

二、测试准备

步骤 1、

样机端下载好对应的测试程序,并接好串口线。需要两个串口工具,其中一个用于发送接收命令,另一个用于查看打印信息。接线说明如下表格所示:

	接线	作用			
X	串口工具 1 连接电脑端引出串口的 TX, 并连	命令接收			
接线1	接到样机端的 USB_DM 脚(USB_DM 为 RX	波特率为 115200			
	功能)				
接线 2	串口工具1引出串口的RX,并连接到样机端	命令回复			
	的 USB_DP 脚(USB_DP 为 TX 功能)	波特率为 115200			
接线3	串口工具 2 连接电脑端引出串口的 TX,连接	串口打印信息			
	wifi_init.txt 里面配置好的 debug_io	波特率为 115200			

备注: 串口需接上地线, 串口线建议不要太长

步骤 2、

打开电脑端的 MP TEST 工具(双击 "FCCShow.exe"),打开后如下图,选择对应串口,波特率设为 115200,点击"打开串口"。

三、发送测试

步骤 1、

在结构体中选择 "_FCC_CP...不限封包数量..."项,设置要测试的频道 mp_channel(可设置范围 1~13),设置发送功率级数 pathx_txpower(可设置范围 1~128)及发送的速率 mp_rate(B/G/N 模式各有不同的速率选择),设置发送包长度 packet_len(一般设为 128/256/512/1024)及发送包间隔 send_interval(可根据实际情况进行调整),最后点击 "发送数据"。

备注 1: 测试频道 mp_channel 的频道频率对应关系如下

频道	1	2	3	4	5	6	7	8	9	10	11	12	13
频率 (MHz)	2412	2417	2422	2427	2432	2437	2442	2447	2452	2457	2462	2467	2472

备注 2: 发送功率级数 pathx_txpower 一般设置为 32 级,可通过此项调整发送功率的大小(级数可设置范围为 1~128 级)

注意: 当 pathx_txpower 设为 0 时,默认使用设备 VM 保存的数字增益配置

备注 3: 发送速率 mp rate 的模式与速率对应关系如下

模式	B模式	G 模式	N模式
速率(Mbps)	1、2、	6、9、12、18、	6.5(MCS0)、13(MCS1)、19.5(MCS2)、26(MCS3)、
	5.5、11	24、36、48、54	39(MCS4)、52(MCS5)、58.5(MCS6)、65(MCS7)

备注 4:包长度 packet_len 一般设置为 1024 及包间隔 send_interval 一般设置为 1000(单位为 us), 两个值亦可根据实际的情况进行调整

步骤 2(PA 设置). 若使用 cfg/wifi_init.txt 中配置的 PA 值无法满足指标要求,可在 MP TEST 工具选择" FCC SE...设置 PA 值"项重新自定义调整 PA 参数,设置完后点击"发送数据"。

步骤 3(频偏设置). 若发现有频偏问题,可在 MP TEST 工具选择 "_FCC_SE...晶振电容" 项设置调整芯片内部电容值的寄存器,默认为 xosc_l:11, xosc_r:10, 可根据实际需要调整,设置完后点击"发送数据"。

- 备注 1: xosc_l 与 xosc_r 的设置范围均为 0~15(对应芯片内部 7~22P 的电容值);
- 备注 2: 点击"发送数据"后样机会自动重启,注意样机重启后需要等待 5 秒后才能重新发送命令, 此时需重新操作步骤 1 (若 PA 值需要调整的,步骤 2 也需重新操作);
- 备注 3: 步骤 3 设置的晶振参数会写到样机 FLASH, 重启或重新上电参数依然保持有效;

四、接收测试

在结构体中选择"_FCC_RX 接收测试"项,设置接收的频道(可设置范围 1~13),最后点击"发送数据"。

备注:接收测试完成后,想回测其他项需把样机重启。

五. 单载波测试

选择"载波发射测试···",设置要测试的频道 mp_channel(可设置范围 1~13),设置发送功率级数 pathx_txpower(可设置范围 0~128)及发送的速率 mp_rate(B/G/N 模式各有不同的速率选择),npackets 默认 1000。最后点击"发送数据。

使用频谱仪 E4405B 扫频,设置对应频道中心频率: 2.412G,扫描带宽 20M,扫描时间设置到 4ms。其扫描结果如下图所示:

