12. SVM & Flexible Discriminants

Introduction

- Review for LDA: Linear Discriminant Analysis
- CCA: Canonical Correlation Analysis
- LDA & CCA
- FDA: Flexible Discriminant Analysis

Review for LDA

• For training set $\{x_i,g_i\}_1^N$ where $x_i \in \mathbb{R}^p$, $g_i \in \mathcal{G} = \{1,...,K\}$,

$$\hat{G}(x) = \max_{k} \hat{P}r(G = k \mid X = x) = \max_{k} \frac{\hat{P}r(X = x \mid G = k)Pr(G = k)}{\hat{P}r(X = x)} = \max_{k} \frac{\hat{f}_{k}(x)\hat{\pi}_{k}}{\sum \hat{\pi}_{k}f_{k}(x)}$$

where
$$\hat{\pi}_k = N_k/N$$
, $X|_{G=k} \sim \mathcal{N}(\hat{\mu}_k, \hat{\Sigma}_W)$, $\hat{\mu}_k = \sum_{g_i = k} x_i/N_k$, $\hat{\Sigma}_W = \sum_k \sum_{g_i = k} (x_i - \hat{\mu}_k)(x_i - \hat{\mu}_k)^T/(N - K)$, $\forall k$

- Assume $\hat{\pi}_k$ are same for all k, then $\hat{G}(x) = \min_k (x \hat{\mu}_k)^T \hat{\Sigma}_W^{-1} (x \hat{\mu}_k)$. i.e. $\hat{G}(x)$ is classified to the class with centroid closest to x, where distance is measured in the **Mahalanobis metric** using the pooled within group covariance matrix $\hat{\Sigma}_W$.
- The decision boundaries created by LDA: $\log \frac{f_k(x)}{f_l(x)} = x^T \hat{\Sigma}_W^{-1}(\hat{\mu}_k \hat{\mu}_l) + C = 0$ which is linear in x.

Review for LDA

- (Sphering: Mahalanobis to Euclidean metric). Since Σ_W is symmetric, SVD of Σ_W is $UDU^T = \|\sqrt{D}U\|^2$. Now for input x, let $x^* = UD^{-1/2}x$. Then $Var(x^*) = D^{-1/2}U^T\Sigma_WUD^{-1/2} = I_p$ i.e. The decision rule is $\arg\min_k \|x^* \mu_k^*\|^2$. Denote $\Sigma_W^{-1/2} = D^{-1/2}U^T$. Then $\arg\min_k \|x^* \mu_k^*\|^2 = \arg\min_k \|\Sigma_W^{-1/2}(x \mu_k)\|^2$
- LDA provides natural low-dimensional views of the data: Since $\mu_k = \mu_K + (\mu_k \mu_K)$ for k = 1,...,K-1, the K-centroids in \mathbb{R}^p lies in affine subspace of dimension at most K-1, denote H_{K-1} .
- (PCA, Optimal scoring) Moreover, we can get L < K 1-dimensional subspace $H_L \subset H_{K-1}$ optimal for LDA. In other words, the projected centroids were spread out as much as possible.
 - Compute the covariance matrix of $\{\mu_1^*,\ldots,\mu_K^*\}$, Σ_B^* and also compute its eigen vector, eigen value matrix V^*,D_B , respectively. $(D_B=diag(d_1,\ldots,d_K))$. Then d_l be the l-th largest eigen value and corresponding to the eigen vector v_l^* .
 - $v_l = \Sigma_W^{-1/2} v_l^*$ is called the l-th canonical or discriminant vector. Let $U = (v_1, \dots, v_L)$. Then $H_L = \{U^T x : x \in \mathbb{R}^p\}$.

Review for LDA

• Summary:

- 1. Gaussian classification with common covariances leads to linear decision boundaries
- 2. Since only the relative distances to the centroids count, one can confine the data to the subspace spanned by the centroids in the sphered space H_K .
- 3. H_K can be further decomposed into successively optimal subspaces $H_L \subset H_K$ in term of centroid separation. The reduced subspaces have been motivated as a data reduction (for viewing) tool and also be used for classification.

- We can recast LDA as a regression problem.
- Let $Y \in \mathbb{R}^{N \times K}$ be one-hot encoded target vector in training set and suppose that $\theta : \mathcal{G} \to \mathbb{R}$ is a function that assigns scores to the classes s.t. $\theta(\cdot)$'s are optimally predicted by linear regression on $X \in \mathbb{R}^{N \times p}$. e.g. a linear map $\eta(x) = x^T \beta$.
- In general, we can find L-sets of independent scorings $\{\theta_1,\dots\theta_L\}$ and L-corresponding linear maps $\eta(x)=x^T\beta_l,\ \forall\, l$.
- $\Theta = (\theta_1, \dots, \theta_L) \in \mathbb{R}^{K \times L}$ where $\theta_l = (\theta_l(1), \dots, \theta_l(K))^T \in \mathbb{R}^K$, $l = 1, \dots, L$ and $B = (\beta_1, \dots, \beta_L)$, $\beta_l \in \mathbb{R}^p$, $\forall l$ are the parameters for CCA. Our goal is to find the optimal (Θ, B) pairs that minimize:

$$ASR = \sum_{l=1}^{L} \sum_{i=1}^{N} (\theta_l(g_i) - x_i^T \beta_l)^2 / N = tr(||Y\Theta - XB)||^2) / N$$

- Note. Let $\Theta^* = Y\Theta$, then $\{\Theta^*\}_{il} = \theta_l(g_i)$ and $\{\|Y\Theta XB\|^2\}_{lk} = \sum_{i=1}^N (\theta_l(g_i) x_i^T\beta_l)(\theta_k(g_i) x_i^T\beta_k)$.
- $\theta_l^{*^T}\theta_l^*=1$, $\forall l$ and $\theta_l^{*^T}\theta_k^*=0$, $\forall l\neq k$ to prevent trivial 0 solutions.

- For fixed Θ , $\hat{\beta}_l=(X^TX)^{-1}X^T\theta_l^*$, $\forall l$ i.e. $\hat{B}=(X^TX)^{-1}X^T\Theta^*$.
- Theorem. The sequence of canonical vectors v_l is identical to the sequence of β_l up to a constant.
- Then for $\hat{\beta}$, the optimization problem is minimizes $ASR(\Theta) = tr(\|\Theta^* X\hat{B})\|^2)/N = tr(\Theta^{*^T}(I P_X)\Theta^*)/N$ subject to $\Theta^{*^T}\Theta^* = I_L$ (or $\theta_l^{*^T}\theta_l^* = 1$, $\forall l$ and $\theta_l^{*^T}\theta_l^* = 0$, $\forall l \neq k$) i.e. L + L(L-1)/2 constraints.
- Then the constraint term in Lagrange multiplier is $\lambda_1(\theta_1^{*^T}\theta_1^*-1)+\ldots+\lambda_L(\theta_L^{*^T}\theta_L^*-1)+\lambda_1'(\theta_1^{*^T}\theta_2^*-0)+\lambda_1'(\theta_2^{*^T}\theta_1^*-0)+\ldots+\lambda_{L(L-1)/2}'(\theta_{L-1}^{*^T}\theta_L^*-0)=tr(\Lambda(\Theta^{*^T}\Theta^*-I_L))$ where Λ is **symmetric** with positive elements.
- Since Λ is symmetric, SVD of Λ is $V\Sigma V^T$ where $V^TV=I$ i.e. $\mathscr{L}=tr(\Theta^{*^T}(I-P_X)\Theta^*)/N-tr(\Lambda(\Theta^{*^T}\Theta^*-I_L))=tr(M^T(I-P_X)M)-tr(\Sigma(M^TM-I_L))$ where $M=\Theta^*V$. As both Λ and Σ are dummy variables and can have any name, we can initially assume that Λ is diagonal.
- Consider the optimization problem: $\min_{\Theta} \left[tr(\Theta^T Y^T (I P_X) Y \Theta) / N tr(\Lambda(\Theta^T Y^T Y \Theta I_L)) \right]$

•
$$\frac{\partial}{\partial \Theta} \left[tr(\Theta^T Y^T (I - P_X) Y \Theta) / N - tr(\Lambda(\Theta^T Y^T Y \Theta - I_L)) \right] = 2Y^T (I - P_X) Y \Theta / N - 2Y^T Y \Theta \Lambda = 0$$

• $Y^TY\Theta(I/N-\Lambda)=Y^TP_XY\Theta/N$. Since Y is one-hot encoded, $Y^TY=diag(N_1,\ldots,N_K)$ i.e. $(Y^TY)^{-1}=diag(1/N_1,\ldots,1/N_K)$. Denote $\Lambda'=(I_L/N-\Lambda)=diag(1/N-\lambda_1,\ldots,1/N-\lambda_L)$. Then, $\Theta\Lambda'=(Y^TY)^{-1}Y^TP_XY/N\Theta$. Therefore, Θ is eigen vector matrix of $(Y^TY)^{-1}Y^TP_XY/N$ corresponding to eigen value matrix Λ' .

• Specifically, $U^Tx = (x^Tv_1, \dots x^Tv_L)^T = (d_1x^T\beta_1, \dots, d_Lx^T\beta_L)^T = DB^Tx$ where $d_l = 1/\alpha_l^2(1-\alpha_l^2)$ and α_l is the l-th largest eigen values computed in Λ' .

- LDA by optimal scoring (Thus, L = K or $\Theta \in \mathbb{R}^{K \times K}$ case):
 - **1. Initialize.** Form one-hot encoded vector $Y \in \mathbb{R}^{N \times K}$ and set $\Theta_0 = I_K$ i.e. $\Theta_0^* = Y$.
 - 2. Multivariate regression. Regress $\Theta^* = Y\Theta$ on X; Set $\hat{Y} = P_X Y = XB$ where $B \in \mathbb{R}^{p \times K}$ is the coefficient matrix.
 - 3. Optimal scores. Obtain the eigen vector matrix Θ of $(Y^TY)^{-1}Y^TP_XY/N = (Y^TY)^{-1}Y^T\hat{Y}/N = (Y^TY)^{-1}Y^TXB/N$
 - **4.** Update. Update the coefficients $B \leftarrow B\Theta$.

• In above procedure, we compute $Y^T P_X Y$ without explicitly computing P_X itself.

FDA: Flexible Discriminant Analysis

- Then we can generalize $\eta(x) = x^T B$ to $h(x)^T B$ where $h(x) = (h_1(x), \dots, h_M(x)) \in \mathbb{R}^m$ e.g. MARS, BRUTO, PPR, NNs...
- When the non-parametric regression procedure can be represented as a **linear operator**; $\hat{Y} = S_{\lambda}Y$, then the procedures of FDA is same as LDA by optimal scoring with one change: Replace P_X with S_{λ}
- Additive splines have this property, if the smoothing promoters λ are fixed: MARS, BRUTO.
- After Initialize Multivariate regression Optimal scores Update step, we can get the optimal fit $\eta(\cdot)$ and fitted class centroids $\bar{\eta}^k = \sum_i \eta(x_i)/N_k, \ \forall k$.
- For input x, the decision rule is: $\delta(x,k) = \|D(\eta(x) \bar{\eta}^k)\|^2$. Note. $\eta(x)$ has at most (K-1)-elements.

PDA: Penalized Discriminant Analysis

- For some classes of problems, involving the basis expansion, is not needed; we already have far too many (correlated) predictors. e.g. spoken speech data, image data,...
- Positively correlated predictors lead to noisy, negatively correlated coefficients estimates, and this noise results in un-wanted sampling variance. A reasonable strategy is to regularize the coefficients to be smooth over the spatial domain.
- e.g. Consider MARS procedure $(f(x) = \alpha + f_1(x_1) + \dots, f_p(x_p))$ using spline), the optimization problem is:

$$\frac{1}{N}\sum_{l=1}^{L}\sum_{i=1}^{N}\left[\theta_{l}(g_{i})-\sum_{j=1}^{p}f_{lj}(x_{ij})^{2}\right]+\sum_{l=1}^{L}\sum_{j=1}^{p}\lambda_{j}\int f_{lj}''(t)^{2}dt \quad \text{where } \lambda_{j} \text{ is roughness penalty for the } j\text{-term.}$$
 (trade off between fit and smoothness.)

Note. λ_i are same for L-models i.e. Non-parametric regression must be able to handle a multiple response variables when selecting λ .

- Then we know that solution is a finite dimensional form: $f_{lj}(x_j) = h_{jl}(x_j)^T \beta_{jl}$ with $\beta_{lj} \in \mathbb{R}^N$.
- And the optimization problem is : $\|\Theta^* HB\|^2 + B^T \Omega B$ where $\Omega_{\lambda} = diag(\lambda_1 \Omega_1, \dots, \lambda_p \Omega_p) \in \mathbb{R}^{Np \times Np}$, $\Omega_j \in \mathbb{R}^{N \times N} \ \forall j$, $B = (\beta_1, \dots, \beta_L) \in \mathbb{R}^{Np \times K}$, $\beta_l = (\beta_{l1}^T, \dots, \beta_{lp}^T)^T \in \mathbb{R}^{Np} \ \forall l, H = (h(x_1), \dots, h(x_N))^T \in \mathbb{R}^{N \times Np}$, $h(x_i) = (h_1(x_i), \dots, h_{Np}(x_i))^T \ \forall i$.
- Then the regression operator has the form: $S_{\lambda} = H(H^T H + \Omega_{\lambda})^{-1} H^T$ and Θ minimizes $tr(\Theta^T Y^T (I S_{\lambda}) Y \Theta)/N$.

PDA: Penalized Discriminant Analysis

- This optimization problem corresponding to a form of PDA: Penalized Discriminant Analysis.
- Let Σ_B be the between-group covariance matrix for h(x) and let $\Sigma_W + \Omega$ be the penalized within-group covariance matrix. Then, we define: **A PDA finds a matrix** U to maximize $tr(U^T\Sigma_B U)$ subject to $U^T(\Sigma_W + \Omega)U = I$.
- Using Lagrange multiplier, $\Sigma_B U = (\Sigma_W + \Omega)U\Lambda$, $U\Lambda^{-1} = (\Sigma_B + \epsilon I)^{-1}(\Sigma_W + \Omega)U$ where $\Lambda = diag(\lambda_1, \dots, \lambda_p)$. Thus, U is approximately the eigen vector matrix for $(\Sigma_B + \epsilon I)^{-1}(\Sigma_W + \Omega)$.
- And the penalized Mahalanobis distances from class centroids in the augmented space of h(x) is given by:

$$\delta(x,k) = (h(x) - \bar{h}^k)^T (\Sigma_W + \Omega)^{-1} (h(x) - \bar{h}^k) = \|D(\eta(x) - \bar{\eta}^k)\|^2$$

• Loosely speaking, the penalized Mahalanobis distance tends to give less weight to "rough" coordinates, and more weight to "smooth" ones.

PDA: Penalized Discriminant Analysis

• Model selection: Choosing λ via cross validation

$$GCV(c,\lambda) = \frac{ASR(\lambda)}{[1 - \{1 + c \cdot df(\lambda)\}/N]^2}$$

- $df(\lambda)$ is the effective degrees of freedom in the model. For MARS, $df(\lambda)$ is the number of independent basis functions, whreas for a BRUTO it measures the amount of smoothing. In both cases, $df(\lambda) = tr(S_{\lambda}) 1$.
- c is called the cost per degree of freedom. Based on the work of Friedman(1991) and Owen (1991), it seems that reasonable values are 2 for additive models(BRUTO, degree-1 MARS), and 3 for higher-degree MARS.

MDA: Mixture Discriminant Analysis

- LDA can be viewed as a **prototype** classifier: Each class is represented by its class centroid, and we classify to the closest using an appropriate metric.; In many cases, a single prototype is insufficient to represent inhomogeneous classes.
- e.g. GMM for the k-th class has density: $Pr(X \mid G = k) = \sum_{r=1}^{R_k} \pi_{kr} \phi(X; \mu_{kr}, \Sigma)$ subject to $\pi_{k1} + \ldots + \pi_{kR_k} = 1$, $\forall k$. Then the decision rule is given by:

$$\arg\max_{k} Pr(G=K|X=x) = \arg\max_{k} \sum_{r=1}^{R_k} \pi_{kr} \phi(x;\mu_{kr},\Sigma) \Pi_k \text{ where } \Pi_k = Pr(G=k).$$

• Given R_k s, we estimate the set of parameters $\theta = \{\pi_{kr}, \mu_{kr}, \Pi_k, \Sigma\}; (2*(R_1 + \ldots + R_K) + K + p(p+1)/2)$ -parameters. Often Π_k are known or proportion in trining data. Thus, set $\theta = \{\pi_{kr}, \mu_{kr}, \Sigma\}$.

$$\arg\max_{\theta} l(\theta) \text{ where } l(\theta) = \sum_{k} \sum_{g_i = k} \log[\sum_{r=1}^{R_k} \pi_{kr} \phi(x_i; \mu_{kr}, \Sigma) \Pi_k]$$

Sum within the log form i.e. hard to optimize directly \rightarrow Use EM algorithms.

MDA: Mixture Discriminant Analysis

• (E-step) Given the current parameters, compute the responsibility of subclass c_{kr} within class k:

For each class
$$k$$
, $W(c_{kr} | x_i, g_i) = \frac{\pi_{kr} \phi(x_i; \mu_{kr}, \Sigma)}{\sum_{l=1}^{R_k} \pi_{kl} \phi(x_i; \mu_{kl}, \Sigma)}$ where $r = 1, ..., R_k$.

• (M-step) Compute the weighted MLEs for the parameters of each of the component Gaussians within each of the classes, using the weights from the E-step.

For each class
$$k$$
, compute $\hat{\pi}_{kr} \propto \sum_{g_i=k} W(c_{kr} | x_i, g_i)$ subject to $\sum_r \hat{\pi}_{kr} = 1$,

$$\hat{\mu}_{kr} = \frac{\sum_{g_i = k} W(c_{kr} | x_i, g_i) x_i}{\sum_{g_i = k} W(c_{kr} | x_i, g_i)} \quad \text{where } r = 1, ..., R_k,$$

$$\hat{\Sigma} = \frac{1}{N - K} \sum_{k} \sum_{g_i = k} \sum_{r} W(c_{kr} | x_i, g_i) (x_i - \hat{\mu}_{kr}) (x_i - \hat{\mu}_{kr})^T$$

MDA: Mixture Discriminant Analysis

• Model selection: Choosing R_k , and initial values of $W(c_{kr}|x_i,g_i)$, $\{\mu_{kr}\}$, Σ via k-means clustering:

For each class k, we choose a fixed number of clusters R_k and then use k-means clustering to estimate $\{\mu_{kr}\}$. Then for all observations in class k, $W(c_{kr} | x_i, g_i)$ is set to 1 if μ_{kr} is closest centroid to x_i and to 0 o.t.

- MDA by optimal scoring: Optimal scoring procedure is carries over to the M-step of the MDA. Instead of using one-hot encoded response $Y \in \mathbb{R}^{N \times K}$, we use blurred response $Z \in \mathbb{R}^{N \times R}$ where $R = R_1 + \ldots + R_K$, whose row consist of the current subclass probabilities for each observation.
 - **1. Initialization** via k-means clustering.
 - 2. Multivariate regression Z on X : \hat{Z} be the fitted values and H be the vector of fitted regression functions.
 - 3. Optimal scoring: Obtain the eigen vector matrix Θ of $(Z^TZ)^{-1}Z^TS_{\lambda}Z$.
 - 4. Update $B=B\Theta$ and $W(c_{kr}|x_i,g_i)$, π_{kr} 's in M-step.