CS 663 Assignment 4

Sarthak Consul - 16D100012 Parthasarathi Khirwadkar - 16D070001 Bhishma Dedhia - 16D170005

QUESTION 5

$$egin{aligned} J(oldsymbol{e}) &= \sum_{i=1}^N ||oldsymbol{x_i} - ar{oldsymbol{x}} - oldsymbol{e}^\intercal (oldsymbol{x_i} - ar{oldsymbol{x}}) oldsymbol{e}||^2 \ &= \sum_{i=1}^N ||oldsymbol{x_i} - ar{oldsymbol{x}}||^2 - oldsymbol{e}^\intercal oldsymbol{S} oldsymbol{e} & (oldsymbol{S} = (N-1)oldsymbol{C}) \end{aligned}$$

Thus the direction, e, for which J(e) is minimized is that which maximizes $e^{\tau}Ce$.

Let the eigenvalues of S be $\lambda_1 > \lambda_1 > \cdots > \lambda_{n-1}$

To find the f that maximizes J(f) given $f \perp e$ and ||f|| = 1, applying the Lagrangian Multiplier Test,

$$\nabla_f \Big[\boldsymbol{f}^{\mathsf{T}} \boldsymbol{S} \boldsymbol{f} - \lambda (\boldsymbol{f}^{\mathsf{T}} \boldsymbol{f} - 1) - \beta (\boldsymbol{e}^{\mathsf{T}} \boldsymbol{f}) \Big] = 0$$
$$2 \boldsymbol{S} \boldsymbol{f} - 2\lambda \boldsymbol{f} - \beta \boldsymbol{e} = 0$$

Pre-multipying both sides with e^{\dagger} ,

$$2(\mathbf{S}^{\mathsf{T}}\mathbf{e})^{\mathsf{T}}\mathbf{f} - 2\lambda\mathbf{e}^{\mathsf{T}}\mathbf{f} - \beta\mathbf{e}^{\mathsf{T}}\mathbf{e} = 0$$

As $f \perp e$, $e^{\dagger} f = 0$. Also S is symmetric and so $S^{\dagger} e = Se = \lambda_1 e$ and finally $e^{\dagger} e = 1$

$$\implies 2\lambda_1 \mathbf{e}^{\mathsf{T}} \mathbf{f} - \beta = 0$$

$$\implies \beta = 0$$

Thus $\mathbf{S}\mathbf{f} = \lambda \mathbf{f}$ (i.e. \mathbf{f} is an eigenvector of \mathbf{S})

Let the eigenvalue of S corresponding to f be μ

$$J(\mathbf{f}) = \mu^2$$
 (As \mathbf{f} is of unit norm)

Maximizing J(f) would mean that (f) corresponds to the largest eigenvalue, given that it should be orthogonal to e. $\mu \neq \lambda_1$ as it is given that C and so S has distinct eigenvalues and if $\mu = \lambda_1$, that would mean f = e (and so $f \not\perp e$) $\Rightarrow \leftarrow$ The next best choice of μ is λ_2 and since eigenvectors of symmetric matrices are orthogonal, no contradictions arise. Thus f has to be the eignevector corresponding to the second largest eigenvalue