Umberto SAETTI

310 Davis Hall, Auburn University, Atlanta, AL 36849, USA • saetti@auburn.edu • umbertosaetti.com

Nationality: Italian, Immigration Status: Permanent US Resident / Green Card Holder

EDUCATION

Georgia Institute of Technology

Atlanta, GA

Postdoctoral Fellow in School of Aerospace Engineering Advisors: Jon Rogers, J.V.R. Prasad

Ph.D. Aerospace Engineering (*Flight Dynamics and Controls*)

August 2019 – May 2021

Pennsylvania State University

University Park, PA

August 2016 – August 2019

Minor: Computational Science Dissertation Title: "Rotorcraft Flight Control Design with Alleviation of Unsteady Rotor Loads"

Committee: Joe Horn (Chair), Ed Smith, J.V.R. Prasad, Constantino Lagoa

M.S. Electrical Engineering (*Control Systems*) *August 2017 – August 2019* Thesis Title: "Dynamic Inversion and Explicit Model Following Flight Control Laws for Quadrotors" Advisor: Constantino Lagoa

M.S. Aerospace Engineering (*Flight Dynamics and Control*) *August 2014 – August 2016* Thesis Title: "Rotorcraft Simulations with Coupled Flight Dynamics, Free Wake, and Acoustics" Advisors: Joe Horn (Advisor), Kenneth Brentner (Co-Advisor)

Polytechnic University of Milan

Milan, Italy

B.S. Aerospace Engineering Advisor: Marco Borri

September 2010 – July 2014

RESEARCH EXPERIENCE

Auburn University

Auburn, AL

Assistant Professor, Department of Aerospace Engineering

June 2021- Present

Georgia Tech School of Aerospace Engineering

Atlanta, GA

Postdoctoral Fellow, Advisors: Jon Rogers, J.V.R. Prasad

August 2019 – May 2021

- Project Title: "Probabilistic Methods for Advanced Regime Recognition Verification and Validation"
 - Developed a methodology to perform rotorcraft regime recognition based on motion primitives
 - Applied the methodology to SH-60 Seahawk flight-test data
 - Reported completed tasks to NAVAIR
- Project Title: "Explicit Uncertainty Quantification for Probabilistic Handling Qualities Assessment"
 - Extended the Koopman operator to propagate model parametric uncertainty to handling qualities
 - Applied the methodology to small-scale UAS and full-scale rotorcraft
- Project Title: "Harmonic Balance Trim Solution Method for Periodically-Forced Flight Vehicles"
 - O Developed a numerical scheme for determining the solution of nonlinear time-periodic systems
 - Applied the methodology to study the stability of flapping-wing MAVs
 - Used the method to assess the vibratory loads on flapping-tail concept airplanes and helicopters
- Project Title: "Flare Control Law using Tau Theory and Dynamic Inversion for Autonomous Helicopter Autorotation"
 - Developed advanced trajectory generation and flight control laws for autonomous autorotation
 - o Performed research as part of the Georgia Tech Vertical Lift Research Center of Excellence (VLRCOE)

NASA Ames, U.S. Army Aviation Development Directorate (ADD)

Moffett Field, CA

Visiting Scholar, Advisors: Mark Tischler, Tom Berger

December 2018

- Project Title: "Identification of Linear Time-Periodic Systems from Rotorcraft Flight Test Data"
 - o Developed a methodology to identify linear time-periodic systems from rotorcraft flight test data
 - o Implemented the methodology in CIFER, extending software capabilities
 - O Successfully applied the methodology to RASCAL JUH-60 flight test data

Penn State Vertical Lift Research Center of Excellence (VLRCOE)

University Park, PA

Ph.D. Candidate, Graduate Research Assistant

August 2016 – August 2019

- Project Title: "Load Alleviation Control Design Using High Order Dynamic Models"
 - o Developed load alleviation flight control laws for conventional and compound rotorcraft
 - o Integrated flight control laws in real-time piloted simulations
 - o Assessed the impact of load alleviation control on rotorcraft handling qualities
 - o Reported completed tasks to the U.S. Army ADD
- Project Title: "Design of Dynamic Inversion and Explicit Model Following Control Laws for Quadrotor Inner and Outer Loops"
 - Performed system identification and advanced flight control design on quadrotor UAS Reported completed tasks to the U.S. Army ADD
- Project Title: "Performance and Design Optimization of the F-Helix eVTOL Concept"
 - o Performed basic configuration analysis and optimization
 - Studied the aeromechanical stability of the rotor system Developed a mathematical model of the aircraft in MATLAB/Simulink
 - o Synthesized and integrated a partial authority Stability and Control Augmentation System (SCAS)

Penn State Vertical Lift Research Center of Excellence (VLRCOE)

University Park, PA

M.S. Candidate, Graduate Research Assistant

January 2015 – August 2016

- Project Title: "Rotorcraft Noise Abatement Operating Conditions Modeling"
 - o Advanced Dynamic Inversion control laws for a Bell 430
 - o Developed helicopter simulations with coupled flight dynamics, free wake, and acoustics
 - O Designed a noise abatement tool for customers' use
 - Reported results to the Federal Aviation Administration (FAA) through the Aviation Sustainability Center of Excellence (ASCENT)

Milan Polytechnic Skyward Experimental Rocketry

Milan, Italy

Flight Dynamics & Control Lead

April 2012 – July 2014

- Project Title: "Modeling and Simulation of the Rocksanne I-X Missile"
 - o Determined the stability and control derivatives (Missile DATCOM)
 - o Developed 6 DoF nonlinear simulations for stability analysis
 - o Incorporated Monte Carlo Dispersions for trajectory and landing point prediction analysis
 - Launched the first successful university designed Italian rocket in November, 2013

INDUSTRY EXPERIENCE

MathWorks, Inc. Milan, Italy

Software Engineer Intern

April 2013 – July 2014

- Project Title: "Aeronautical Systems Guidance and Control"
 - Developed and lectured a project-based short course in collaboration with Polytechnic University of Milan and Skyward Experimental Rocketry
 - o Developed software to interface MATLAB/Simulink with Arduino
 - o Integrated simple flight control laws on a small-scale airship
 - Managed data acquisition from sensors to increase product capability

- Office of Naval Research (ONR) Young Investigator Program (YIP) Award, Jan 2022.
- **Barnes McCormick Memorial Scholarship**, Vertical Flight Foundation, May 2019. Awarded for outstanding research as a Ph.D. Candidate in the vertical flight field.

PUBLICATIONS (Manuscript under Review *, Manuscript in Preparation **)

Journal Papers

- 1. **Saetti U.**, Lovera M., "*Time-Periodic and High-Order Time-Invariant Linearized Models of Rotorcraft: A Survey*," Journal of the American Helicopter Society, Vol. 67, No. 1, Jan 2022, DOI: 10.4050/JAHS.67.012008.
- 2. Musso D., **Saetti U.**, and Rogers J. D., "*Probabilistic Fatigue Damage Estimation for Rotorcraft Life-Limited Components.*" Journal of Aircraft, Published Online, Sep 2021. DOI: 10.2514/1.C036561.
- 3. **Saetti U.**, Rogers, J.D., "Motion Primitive Approach to Rotorcraft Regime Recognition," Journal of the American Helicopter Society, Vol. 66, No. 4, Oct 2021, DOI: 10.4050/JAHS.66.042006.
- 4. **Saetti U.**, Rogers, J.D., "Revisited *Harmonic Balance Trim Solution Method for Periodically-Forced Aerospace Vehicles*," Journal of Guidance, Control, and Dynamics, Vol. 44, No. 5, May 2021, DOI: 10.2514/1.G004406.
- 5. **Saetti U.**, Horn J.F., Berger T., and Tischler M. B., "*Handling-Qualities Perspective on Load Alleviation Control*," Journal of Guidance, Control, and Dynamics, Vol. 43, No. 10, October 2020, pp. 1792-1804, DOI: 10.2514/1.G004965.
- 6. **Saetti U.**, and Horn J.F. "Load Alleviation Flight Control Design Using High Order Dynamic Models," Journal of the American Helicopter Society, Vol. 65, No. 3, May 2020, DOI: 10.4050/JAHS.65.032009.
- 7. **Saetti U.**, Horn J.F., Lakhmani, S., Lagoa C., and Berger, T. "*Dynamic Inversion and Explicit Model Following Flight Control Laws for Quadrotor UAS*," Journal of the American Helicopter Society, Vol. 65, No. 3, May 2020, DOI: 10.4050/JAHS.65.032006.
- 8. **Saetti** U., Horn J.F., Berger T., Lopez M., and Tischler M. B., "*Identification of Linear Time-Periodic Systems from Rotorcraft Flight Test Data*," Journal of Guidance, Control, and Dynamics, Vol. 42, No. 10, June 2019, pp. 2288-2296, DOI: 10.2514/1.G004406.
- 9. *Saetti U., and Rogers, J.D., "Harmonic Decomposition Models of Flapping-Wing Flight for Stability Analysis and Control Design." (under review by the Journal of Guidance, Control, and Dynamics)
- 10. *Saetti U., Enciu, J. and Horn J.F., "Flight Dynamics and Control of an eVTOL Concept Aircraft with a Propeller-Driven Rotor." (under review by the Journal of the American Helicopter Society)
- 11. *Saetti U., and Horn J. F., "Linear Time-Invariant Approximations of Nonlinear Time-Periodic Systems." (under review, Journal of the American Helicopter Society)
- 12. **Saetti U., Rogers, J.D., "Koopman Operator Approach to Probabilistic Assessments of Rotorcraft Handling Qualities."

Conference Papers

- 13. **Saetti U., and Sharan, N., "Linear Time-Invariant Approximations of Periodically-Forced Flows," AIAA Aviation Forum, Chicago, IL, Jun 27 Jul 1, 2022.
- 14. **Saetti U., "Linearized State-Space Free-Vortex Wake Models for Prediction and Control of Shipboard Interactions," AIAA Aviation Forum, Chicago, IL, Jun 27 Jul 1, 2022.
- 15. **Saetti U., and Horn J. F., "State-Space Free-Vortex Wake Model for Flapping-Wing Flight," 78th Annual Forum of the Vertical Flight Society, Fort Worth, TX, May 10-12, 2022.
- 16. **Saetti U., and Horn J. F., "Implementation and Linearization of a Rotor Simulation with a State-Space Free-Vortex Wake Model," 78th Annual Forum of the Vertical Flight Society, Fort Worth, TX, May 10-12, 2022.

- 17. Hayajnh, M. A., **Saetti U.**, and Prasad, J. V. R., "Identification of High-Order Linear Time-Invariant Models from Periodic Nonlinear System Responses," Transformative Vertical Flight 2022 Meeting, San Jose, CA, Jan 25-27, 2022.
- 18. **Saetti U.**, and Horn J. F., "Flight Simulation and Control Using the Julia Language," AIAA Scitech Forum, San Diego, CA, Jan 3-7, 2022.
- 19. **Saetti U.**, and Rogers J. D., "Dynamic-Inversion Based Flare Control Law for Autonomous Helicopter Autorotation," AIAA Scitech Forum, San Diego, CA, Jan 3-7, 2022.
- 20. Horn J. F., Scaramal M., and **Saetti U**., "Load Alleviation Control using Dynamic Inversion with Direct Load Feedback," Vertical Flight Society 77th Annual Forum, Virtual, May 10-14, 2021.
- 21. **Saetti U.**, Rogers J. D., "Linear Time-Invariant Models of the Dynamics of Flapping-Wing Flight," Vertical Flight Society 77th Annual Forum, Virtual, May 10-14, 2021.
- 22. **Saetti U.**, Horn J. F., and Brentner, K. S., "High-Order Linear Time-Invariant Models of Rotorcraft Flight Dynamics, Vibrations, and Acoustics," Vertical Flight Society 77th Annual Forum, Virtual, May 10-14, 2021.
- 23. **Saetti** U., and Rogers J. D., "A Motion Primitive Prospective on Rotorcraft Regime Recognition," Vertical Flight Society 76th Annual Forum, Virginia Beach, VA, Oct 6-8, 2020.
- 24. **Saetti U.**, and Rogers J. D., "Explicit Uncertainty Quantification for Probabilistic Handling Qualities Assessment," Vertical Flight Society 76th Annual Forum, Virginia Beach, VA, Oct 6-8, 2020.
- 25. **Saetti U.**, Enciu, J. and Horn J.F., "Flight Dynamics and Control of an eVTOL with a Propeller-Driven Rotor," Vertical Flight Society 76th Annual Forum, Virginia Beach, VA, Oct 6-8, 2020.
- 26. **Saetti** U., and Rogers J. D., "A probabilistic Approach to Pilot/Vehicle System Performance and Perceived Rotorcraft Handling Qualities," Vertical Flight Society Rotorcraft Handling Qualities Technical Meeting, Huntsville, AL, Feb 18-19, 2020.
- 27. **Saetti U.**, Horn J. F., Berger T., and Tischler M. B., "*Rotorcraft Flight Control Design with Alleviation of Unsteady Rotor Loads*," Vertical Flight Society 75th Annual Forum, Philadelphia, PA, May 13-16, 2019.
- 28. **Saetti U.**, Enciu, J., and Horn J.F., "Performance and Design Optimization of the F-Helix eVTOL Concept," Vertical Flight Society 75th Annual Forum, Philadelphia, PA, May 13-16, 2019.
- 29. **Saetti U.**, Horn J. F., Lakhmani, S., Lagoa C., and Berger, T., "Design of Dynamic Inversion and Explicit Model Following Control Laws for Quadrotor Inner and Outer Loops," American Helicopter Society 74th Annual Forum, Phoenix, AZ, May 14-17, 2018.
- 30. **Saetti U.**, and Horn J. F., "Load Alleviation Control Design Using Harmonic Decomposition Models, Rotor State Feedback, and Redundant Control Effectors," American Helicopter Society 74th Annual Forum, Phoenix, AZ, May 14-17, 2018.
- 31. **Saetti U.**, and Horn J. F., "Use of Harmonic Decomposition Models in Rotorcraft Control Design with Alleviation of Vibratory Loads," 43rd European Rotorcraft Forum, Milan, Italy, Sep 12-15, 2017.
- 32. **Saetti U.**, Villafana W., Wachspress D., Brentner K. S., and Horn J. F. "*Rotorcraft Simulations with Coupled Flight Dynamics, Free Wake, and Acoustics,*" American Helicopter Society 72nd Annual Forum, West Palm Beach, FL, May 16-19, 2016.
- 33. Li Y., **Saetti U.**, Sharma K., Wachspress D., Horn J. F., and Brentner K. S., "*Tools for Development and Analysis of Rotorcraft Noise Abatement*," American Helicopter Society Sustainability 2015, Montreal, Canada, Sep 22-24, 2015.

RESEARCH FUNDING

1. PI: J. F. Horn

Co-PI: U. Saetti

Project Title: "Performance and Design Optimization of the F-Helix eVTOL Concept"

Sponsor: Vinati S.R.L. Budget: \$ 63,000

Dates: 11/1/2018 – 10/31/2019

2. PIs: U. Saetti

Co-PIs: J. F. Horn, K. S. Brentner

Project Title: "State-Variable Implementation and Linearization of Simulations with Multi-Disciplinary

Aeromechanics"

Sponsor: Department of the Army – Vertical Lift Research Center of Excellence (VLRCOE)

Budget: \$ 379,907 (AU provides an additional \$ 192,809 in cost share)

Dates: 01/2022 - 12/2026

Status: Awarded

3. PI: U. Saetti

Project Title: "Auburn University Startup Package"

Sponsor: Department of Aerospace Engineering, Auburn University

Budget: \$ 473,000 (\$ 365,000 equipment support + \$ 108,000 student support)

Dates: 08/2021 - 07/2024

Status: Awarded

4. PI: U. Saetti

Project Title: "Linearized High-Fidelity Aeromechanics for Extended Reality Simulation and Control of

Shipboard Interactions"

Sponsor: Office of Naval Research (ONR) – Young Investigators Program (YIP)

Budget: \$ 510,000

Dates: 04/2022 - 04/2025

Status: Awarded

5. PI: U. Saetti

Project Title: "State Variable Implementation of Simulations with High-Fidelity Aeromechanics for

Stability Analysis, Control, and Noise Prediction of Bio-Inspired Flight"

Sponsor: National Science Foundation (NSF) – Dynamics, Control, and System Diagnostics (DCSD)

Budget: \$ 320,000

Dates: 06/2022 – 06/2025 Status: In preparation

TEACHING EXPERIENCE

Auburn University

- AERO 3230 Dynamics of Flight: Course Instructor (Spring 2022).
- AERO 4970/7970 Rotorcraft Aeromechanics: Course Instructor (Fall 2021).

Georgia Institute of Technology

- AE 4531 Aircraft Flight Dynamics: Guest Lecturer (Spring 2020), Course Instructor (Spring 2021).
- AE 4071 Rotorcraft Aeromechanics: Course Instructor (Spring 2020).

Pennsylvania State University

• AERSP 518 - Dynamics and Control of Aerospace Vehicles: Guest Lecturer (Spring 2018).

Polytechnic University of Milan

- Theoretical Mechanics: Guest Lecturer (Fall 2014).
- Developed and lectured for the joint MathWorks, Inc. and Skyward Experimental Rocketry project-based short course "Aeronautical Systems Guidance and Control" (Fall 2014).

PRESENTATIONS / TALKS

Guest Lectures

- "Networked Flight Simulation and Control Lab", Department of Aerospace Engineering, Auburn University, Auburn, AL, April 9, 2021.
- "Rotorcraft Flight Control Design with Alleviation of Unsteady Rotor Loads", School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, January 5, 2021.
- "Rotorcraft Flight Control Design with Alleviation of Unsteady Rotor Loads", Department of Aerospace Engineering, Auburn University, Auburn, AL, December 8, 2020.
- "Rotorcraft Flight Control Design with Alleviation of Unsteady Rotor Loads", Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada, November 24, 2020.
- "Methods in the Stability Analysis and Control of Periodically-Forced Aerospace Vehicles", Department of Aerospace Engineering, Pennsylvania State University, University Park, PA, November 19, 2020.
- "Rotorcraft Flight Control Design with Alleviation of Unsteady Rotor Loads", Department of Mechanical Engineering, University of South Carolina, Columbia, SC, November 6, 2020.
- "Rotorcraft Flight Control Design with Alleviation of Unsteady Rotor Loads", Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, October 28, 2020.
- "Rotorcraft Flight Control Design with Alleviation of Unsteady Rotor Loads", Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, March 12, 2020.
- "Rotorcraft Flight Control Design with Alleviation of Unsteady Rotor Loads", Department of Aerospace Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL, October 24, 2019.
- "Rotorcraft Flight Control Design with Alleviation of Unsteady Rotor Loads", Network for Innovative Rotorcraft Safety (NITROS), Department of Aerospace Engineering, Polytechnic University of Milan (broadcasted live to Delft University of Technology, University of Liverpool, and University of Glasgow), Milan, Italy, July 1, 2019.
- "Rotorcraft Flight Control Design with Alleviation of Unsteady Rotor Loads", School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, April 17, 2019.
- "Rotorcraft Flight Control Design with Alleviation of Unsteady Rotor Loads", AIAA Penn State Chapter, Department of Aerospace Engineering, Pennsylvania State University, University Park, PA, April 11, 2019.
- "Identification of Linear Time-Periodic Systems from Flight Test Data", U.S. Army Aviation Development Directorate (ADD), NASA Ames Research Center, Moffett Field, CA, December 10, 2018.
- "Skyward Experimental Rocketry: The Tsiolkovsky Rocket Equation", Theoretical Mechanics Class, Department of Aerospace Engineering, Polytechnic University of Milan, Milan, Italy, November 12, 2013.
- "Skyward Experimental Rocketry: A students' Way to Space", Department of Aerospace Engineering, Polytechnic University of Milan, Italy, October 18, 2012.

Conference Presentations

- "Flight Simulation and Control Using the Julia Language", AIAA SciTech Forum, San Diego, CA, Jan 3-7, 2022.
- "Dynamic-Inversion Based Flare Control Law for Autonomous Helicopter Autorotation", AIAA SciTech Forum, San Diego, CA, Jan 3-7, 2022.
- "Linear Time-Invariant Models of the Dynamics of Flapping-Wing Flight," Vertical Flight Society 77th Annual Forum, Virtual, May 10-14, 2021.
- "High-Order Linear Time-Invariant Models of Rotorcraft Flight Dynamics, Vibrations, and Acoustics," Vertical Flight Society 77th Annual Forum, Virtual, May 10-14, 2021.

- "A Motion Primitive Prospective on Rotorcraft Regime Recognition," Vertical Flight Society 76th Annual Forum, Virginia Beach, VA, Oct 6-8, 2020.
- "Explicit Uncertainty Quantification for Probabilistic Handling Qualities Assessment," Vertical Flight Society 76th Annual Forum, Virginia Beach, VA, Oct 6-8, 2020.
- "A probabilistic Approach to Pilot/Vehicle System Performance and Perceived Rotorcraft Handling Qualities," Vertical Flight Society Rotorcraft Handling Qualities Technical Meeting, Huntsville, AL, Feb 18-19, 2020.
- "Load Alleviation Control Design Using High Order Dynamic Models", Vertical Lift Research Center of Excellence (VLRCOE) Annual Review, University Park, PA, November 19, 2019.
- "Rotorcraft Flight Control Design with Alleviation of Unsteady Rotor Loads", Vertical Flight Society 75th Annual Forum, Philadelphia, PA, May 15, 2019.
- "Performance and Design Optimization of the F-Helix eVTOL Concept", Vertical Flight Society 75th Annual Forum, Philadelphia, PA, May 15, 2019.
- "Load Alleviation Control Design Using High Order Dynamic Models", Vertical Lift Research Center of Excellence (VLRCOE) Annual Review, University Park, PA, November 6, 2018.
- "Design of Dynamic Inversion and Explicit Model Following Control Laws for Quadrotor Inner and Outer Loops", American Helicopter Society 74th Annual Forum, Phoenix, AZ, May 15, 2018.
- "Load Allevition Control Design Using Harmonic Decomposition Models, Rotor State Feedback, and Redundant Control Effectors", American Helicopter Society 74th Annual Forum, Phoenix, May 14, AZ, 2018.
- "Load Alleviation Control Design Using High Order Dynamic Models", Vertical Lift Research Center of Excellence (VLRCOE) Annual Review, University Park, PA, November 14, 2017.
- "Use of Harmonic Decomposition Models in Rotorcraft Control Design with Alleviation of Vibratory Loads", 43rd European Rotorcraft Forum, Milan, Italy, September 12, 2017.
- "Rotorcraft Simulations with Coupled Flight Dynamics, Free Wake, and Acoustics" American Helicopter Society 72nd Annual Forum, West Palm Beach, FL, May 17, 2016.

AFFILIATIONS

- Vertical Flight Society (VFS)
- American Institute of Aeronautics and Astronautics (AIAA)

SERVICE

- Associate Editor, Journal of Aerospace Engineering
- Handling Qualities Technical Committee Member, Vertical Flight Society (VFS)
- Reviewer, Journal of Guidance, Control, and Dynamics (JGCD)
- Reviewer, Journal of the American Helicopter Society (JAHS)
- Reviewer, Journal of Optimization Theory and Applications (JOTA)
- Reviewer, International Journal of Aerospace Engineering
- Reviewer, Aerospace Science and Technology
- Reviewer, Council of European Aerospace Societies (CEAS) Aeronautical Journal
- Reviewer, IEEE International Conference on Robotics and Automation (ICRA)

RESEACRH SUPERVISION

• Outside Examiner, Daniele Maggiore, "Model identification and inversion-based control for multirotor UAVs", M.S. Thesis, Politecnico di Milano, September 2019.

RELEVANT SKILLS

Software: C, C++, MATLAB/Simulink, Fortran, Julia, FLIGHTLAB, CIFER, CONDUIT **Language:** Italian (native speaker), English (TOEFL IBT 103/120), Spanish (beginner)

RELEVANT COURSE WORK

- Controls: Linear Systems, Nonlinear Control, Robust Control, Adaptive Control, Digital Control
- Estimation: Linear and Nonlinear Estimation, Kalman Filtering
- Flight Dynamics and Control: Aircraft Stability and Control, Rotorcraft Stability and Control, Spacecraft Dynamics, Dynamics and Control of Aerospace Vehicles
- Dynamics: Structural Dynamics and Vibrations, Rotorcraft Dynamics, Aerospace Systems Dynamics
- Aerodynamics: Rotorcraft Aerodynamics, Introduction to CFD, Foundations of Fluid Mechanics
- Mathematics: Foundations of Engineering System Analysis, Theoretical Mechanics
- Computer Science: Advanced Computer Programming
- Experimental Methods: Advanced Experimental Methods
- Other: Orbital Mechanics, Aerospace Propulsion, Aerospace Systems, Road Vehicle Dynamics

INVOLVEMENT

Penn State American Helicopter Society
President
Penn State Club Tennis
Travel Team Capitan
Milan Polytechnic Varsity Tennis
Team Captain

University Park, PA
May 2018 – Present
University Park, PA
August 2018 – Present
Milan, Italy
September 2011 – July 2014