Ashwin Sudarshan

(240)960-9664 | ashwin.sudarshan@outlook.com |

https://www.linkedin.com/in/ashwinsudarshan/ | https://github.com/ashwinsudarshan

Summary

Mechanical engineer focused on design, reliability, and manufacturability, with achievements including 35% faster burner changeouts at Novelis (\$30K/yr), gear pump end-cover redesign at Bosch, saving \$0.25/unit and validated by ABAQUS FEA, and JEDEC-style accelerated testing at UMD CALCE, skilled in 3D CAD, FEA, Python, and Power BI.

EDUCATION

University of Maryland

Master of Science in Mechanical Engineering, GPA 3.7

RV College of Engineering

 $Bachelor's\ in\ Mechanical\ Engineering$

College Park, MD Aug. 2023 – May 2025

Bangalore, India

Aug. 2018 - Aug. 2022

TECHNICAL SKILLS

CAD: Creo, SolidWorks, CATIA V5, Inventor, AutoCAD, GD&T

FEA: ANSYS, ABAQUS, thermal/structural FEA

Test & Failure Analysis: Thermal cycling, HAST, mechanical shock; SEM/EDS, real-time continuity monitoring Data & Automation: Python (automation, data handling), MATLAB/Simulink, Power BI, Microsoft Excel, Machine Learning, Artificial Intelligence

Quality & Manufacturing: DFM/DFA, FMEA, SPC, Gauge R&R, Lean/Six Sigma, Root cause analysis

Certifications: Six Sigma Black Belt, Agile(Atlassian), Bosch-certified in 8D

WORK EXPERIENCE

Mechanical Engineer (Research Assistant)

Feb. 2025 – present

College Park, MD

University of Maryland

- Selected and specified daisy-chain dummy dies with the supplier and mapped pad nets; decided on wedge bonding and defined pad breakout to the PCB, enabling reliable continuity monitoring on the test boards.
- Defined the FR-4 test board architecture and materials, including a six to eight layer stack, daisy-chain routing, test points, and encapsulant thickness targets, creating a consistent baseline to compare package-level failure modes.
- Built the accelerated-test plan and data acquisition setup with an Agilent 34970A data logger, using JEDEC standards to set thermal cycling from 40 to 125 °C (10-minute dwells, under 20 °C/min, up to 1,000 cycles), HAST at 110 °C and 85% RH for 264 hours, and 1,500 g shock; defined failure as an open or a 20 percent resistance rise.

Mechanical Engineering Intern

Jun. 2024 – Aug. 2024

Novel is

Oswego, NY

- Re-engineered burner changeout system in Autodesk Inventor, validated in field trials; cut maintenance time by 35%, saved 150 tech-hours/year, and projected \$30K/year cost savings.
- Performed volumetric studies on three industrial furnaces and recalibrated radar-level sensors, preventing four overfill incidents/year
- Standardized new burner setup procedures with zero safety incidents during adoption.

Mechanical Design Engineer

Apr. 2022 – Jul. 2023

Bangalore, India

Bosch

- Redesigned the external gear-pump end cover in Creo, removing non-critical material while preserving stiffness, which reduced part mass and cut material cost by about \$0.25 per unit.
- Validated the redesigned cover with an Abaqus model using 230–280 bar internal pressure, 26 kN M12 bolt pretension, and housing/bushing contacts; after mesh refinement varying from 33k to 576k elements, the maximum principal stress at the joint converged to 243–247 MPa at 280 bar with stable deformation.
- A 400-bar burst test matched the model, with crack initiating at the predicted hotspot and propagating perpendicular to the principal-stress direction, leading to the adoption of the converged, validated model as the design baseline.
- Developed Power BI dashboards tracking 45 quality metrics across APAC; identified three high-impact failure modes, helping cut defect rates by up to 15%.
- Coordinated with 15 suppliers quarterly to reinforce design/quality standards, reducing delays by 8% and compliance issues by 35%.