Redes neuronales y el mundial

IA

- robots vs programas ◀
- tipos, límites borrosos <
 - para qué? ◀
 - humo vs realidad <

IAs en el mundo real

Redes Neuronales

Redes Neuronales

una técnica para crear lAs que aprenden aprenden a partir de datos, generalizan muy muy poderosas

Cómo aprenden?

Cómo aprenden?

Cómo aprenden?

gente que patea una pelota ◀ pelota en el arco del otro equipo → bueno ◀ qué país tiene los mejores peloteadores? ◀

problema de "juguete", pero caso real discusión familiar: predecir fútbol con ML

problema de "juguete", pero caso real discusión familiar: predecir fútbol con ML prode familiar! el último cocina

entradas

salida ◀

entradas → salida ◀ quiénes juegan quién gana

entradas → salida ◀ quiénes juegan quién gana

aprender a partir de ejemplos pasados 🔻

suele renegarse ◀

- suele renegarse <
- Wikipedia!... html no estandarizado ◀

- suele renegarse <
- Wikipedia!... html no estandarizado ◀
 - Python! scrapeo → csv ◀
- y arreglos a mano (ej: países cambian...) ◀

id	year	team1	score1	score2	team2
0	1950	Brazil	4	0	Mexico
1	1950	Yugoslavia	3	0	Switzerland
2	1950	Brazil	2	2	Switzerland
3	1950	Yugoslavia	4	1	Mexico
4	1950	Brazil	2	0	Yugoslavia
5	1950	Switzerland	2	1	Mexico
6	1950	England	2	0	Chile
7	1950	Spain	3	1	United States
8	1950	Spain	2	0	Chile
۵	1050	Unitad States	1	n	England

texto vs función matemática 🔻


```
texto vs función matemática 
salida: winner -1 / 0 / 1 
entradas: stats, orden ◀
```

```
texto vs función matemática 
salida: winner -1 / 0 / 1 
entradas: stats, orden 
sets de train vs test ◀
```

- texto vs función matemática ◀ salida: winner -1 / 0 / 1 ◀
 - entradas: stats, orden ◀
 - sets de train vs test ◀
- Pandas y Scikit-Learn al rescate! ◀

```
matches = matches[matches.score1 != matches.score2] # remove ties
matches['winner'] = matches.score1 > matches.score2
```

```
train, test = train_test_split(matches, test_size=0.2)
```

mal Regresión Logística:

Regresión Logística: mal ◀ KNN: mal ◀

```
Regresión Logística: mal \triangleleft
```

KNN: mal ◀

Red Neuronal: overfit

el problema de los empates ◀ salida binaria: winner 1 / 0

el problema de los empates ◀ salida binaria: winner 1 / 0

menos stats (prevenir overfit) ◀

	уеаг	matches_won_percent	podium_score_yearly	matches_won_percent_2	podium_score_yearly_2	winner
1521	2014	0.391304	0.500000	0.735294	3.250000	False
1522	2014	0.428571	0.000000	0.307692	0.000000	True
1523	2014	0.375000	0.000000	0.250000	0.000000	False
1524	2014	0.470588	2.000000	0.685185	3.375000	True
1526	2014	0.409091	0.000000	0.000000	0.000000	True
1528	2014	0.666667	2.857143	0.357143	0.000000	True
1529	2014	0.111111	0.000000	0.333333	0.000000	False
1530	2014	0.762500	5.875000	0.272727	0.000000	True
1531	2014	0.44444	0.000000	0.590909	1.000000	False
1537	2N1/I	<u> </u>	U 32UUUU	በ ንን7ን73	ი	Тгид

Paso 4: red neuronal

Paso 4: red neuronal

PyBrain ◀

PyBrain ◀

Keras/TensorFlow! ◀


```
network = Sequential([
   Input((5, )),
   Normalization(),
    Dense(10, activation='sigmoid'),
    Dense(10, activation='sigmoid'),
    Dense(1, activation='sigmoid'),
network.compile(
    optimizer='adam',
    loss='binary_crossentropy',
    metrics=['accuracy',],
```

entrenarla! ◀


```
network.fit(
    train[input_cols], train[output_col],
    epochs=50,
    batch_size=128,
)
```

accuracy: % de aciertos ◀

accuracy: % de aciertos <a>con los datos de train <a>

- accuracy: % de aciertos ◀ con los datos de train ◀
 - con los datos de test ◀

accuracy: % de aciertos con los datos de train con los datos de test Scikit-learn :) ◀

```
train_predictions = network.predict(train[input_cols])
accuracy_score(train[output_col], train_predictions.round())
74 %

test_predictions = network.predict(test[input_cols])
accuracy_score(test[output_col], test_predictions.round())
76 %
```

el piso es 50% eh ◀ 75% es not great, not bad ◀

- el piso es 50% eh ◀
- 75% es not great, not bad ◀
- suficiente para no salir último ;) ◀

Paso 6: a producción

Paso 6: a producción

EL PRODE PIDE GOLES!!!

Paso 6: a producción

datos al rescate

resultado más común: 2-1 ◀

prode familiar, 10 personas

prode familiar, 10 personas ◀ ler puesto :)

prode familiar, 10 personas <- li>ler puesto :)

web El Ega, 250 personas ◀

prode familiar, 10 personas <- li>ler puesto :)

web El Ega, 250 personas ◀ ler puesto :D :D

probar temprano, iterar ◀

probar temprano, iterar ****"good enough for prod" ****

- probar temprano, iterar \blacktriangleleft
- "good enough for prod" ◀
- pensar cómo se va a usar en prod!

- probar temprano, iterar \triangleleft
- "good enough for prod" ◀
- pensar cómo se va a usar en prod!
- mirar la data puede ayudar mucho \blacktriangleleft

probar temprano, iterar "good enough for prod" pensar cómo se va a usar en prod! mirar la data puede ayudar mucho ◀

no esperar a ser Google o OpenAl

Muchas gracias!

bit.ly/neuronas_mundial