Evaluating Non-Clairvoyant Mechanisms: Theory and Experiment

Shan Gui¹ Daniel Houser²

¹Shanghai University of Finance and Economics

 2 George Mason University

Oct, 2024

Optimal Dynamic Mechanism Design

- ▶ To maximize the revenues (payoff), the seller (principle) sets rules of allocations and prices over multi-period as the buyer (agent) receives private information over time.
 - Repeated selling of perishable goods
 - ► Long-term principal-agent relationship
- ▶ Dynamic mechanism improves revenue and efficiency (Baron & Besanko, 1984).

A "Simple" Example

Scenario U (Mirrokni et al 2017)

- two-period, single-buyer (with a quasi-linear utility function)
- ▶ the seller sells one item in each period; zero production cost
- ▶ distribution of Buyer's value: $F_1 = U[0,1] = F_2$, independent draws

What are the best rules of allocation and price?

- ▶ Dynamic IC: the buyer reports the true value in each period
- Ex-post IR: the buyer gains a non-negative payoff after the realization of values

A complicated Answer

Buyer knows the clairvoyant bundle:

$$p_2 = 1 - \sqrt{2p_1 - 0.5}$$

- ▶ Buyer makes a bid in Period 1, pays p_1 if $b_1 \ge p_1$
- $ightharpoonup p_1$ is a function of b_1

Clairvoyant mechanism is hard to solve, understand, and implement

Clairvoyant Mechanisms

▶ Full information design \Rightarrow Future demand (F_2) is used to design the structure

Why not clairvoyant mechanism in real-life?

- ▶ Difficult to compute (Papadimitriou et al., 2022)
- ▶ Not intuitive (Mirrokni et el. 2020)
- ▶ Require to share a common unbiased belief
- ► Lack of a general form
- ▶ Real revenue is not as expected (Gui and Houser, 2024)

Non-Clairvoyance Environment: more practical

Future demand is not accessible at the beginning.

- ▶ No need to share the unbiased belief.
- ▶ General Form.

 F_2 is unknown in Day 1

 $v_1 \sim F_1$

 $v_2 \sim F_2$?

Non-Clairvoyant Mechanisms: general form

The clairvoyant revenue Rev^* is not achievable.

RS: Optimal Repeated Static mechanism (Myerson, 1981)

▶ Rules in two days are independent of each other

Maximize intra-period revenue for each period separately.

 $\Rightarrow \frac{Rev^{RS*}}{Rev^*}$ could be arbitrarily small (Papadimitriou et al., 2022)

NC: Optimal Non-clairvoyant dynamic mechanism (Mirrokni et al., 2020)

▶ Rules on Day 2 depend on bids on Day 1

Best Revenue Guarantee: $\Rightarrow \frac{Rev^{NC*}}{Rev^*} \ge \frac{1}{a}$

Achieve at least $\frac{1}{2}$ revenue produced by optimal clairvoyant mechanism under all scenarios in **two-period single-buyer** case.

Constructing Non-clairvoyant Mechanisms

Three Basic Mechanisms satisfies IC and IR

- ▶ Myerson Auction (M): get the item if $b \ge r$, pay r
- ► Give-for-free (F): Free item
- Posted-price Auction (P): pay upfront fee $s = \min[u_{-1}, \mathbb{E}(v)]$, get the item if $b \geq r$, such that $\mathbb{E}[v r | v \geq r] = s$

NC, RS in a two-period case

- ▶ RS: M in Period 1 and Period 2;
- NC: Uniform combination of F and M in Period 1; Uniform combination of P and M in Period 2

When can NC do better than RS?

Relative size of optimal intra- and inter-period revenues is the key.

▶ NC Better Scenario: Optimal inter - period revenue is larger ⇒ NC outperforms.

$$F_1 = F_A = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{2})\}, \qquad \mathbb{E}_A = 3.$$

$$F_2 = F_B = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{8}), (16, \frac{1}{16}), (32, \frac{1}{16})\}, \qquad \mathbb{E}_B = 6.$$

$$REV^{RS} = 4, REV^{NC} = 4.5 \uparrow 12.5\%$$

▶ RS Better Scenario: Optimal intra - period revenue is larger \Rightarrow RS outperforms.

$$F_1 = F_B, F_2 = F_A$$
 $REV^{RS} = 4, REV^{NC} = 3.5 \downarrow 12.5\%$

Experimental Design 2 * 2

Two Mechanisms * Two Scenarios

- \triangleright NC
- ightharpoons RS

- ▶ NC Better Scenario
- ► RS Better Scenario

Non-Clairvoyant Environment

- ▶ Participants as the **Buyer** trading with **Robot Seller**, c = 0,
- ▶ Two periods: The buyer can buy one item in each period from the seller
- **Non-clairvoyance**: The distribution of buyer's value (F_t) is common knowledge only in that period
- ▶ **Incomplete Information**: Only the buyer knows his value for the item in each period, v_t , independent draw.
- ightharpoonup Endowment = 50

Mechanism - Optimal Repeated Static (RS)

Period 1

- \triangleright Seller sets a reserve price r_1 based on the distributional knowledge F_1 .
- ▶ Buyer learns his value (v_1) , makes a bid: b_1
- ▶ Buyer can get the item only when $b_1 \ge r_1$ and pay $p_1 = r_1$.

Period 2

 $ightharpoonup F_2 \Rightarrow r_2, v_2 \Rightarrow b_2, \text{ pays } p_2 = r_2 \text{ if } b_2 \geq r_2$

Myerson's Auction

monopoly price:
$$r_1 = r_2 = 2$$
 $r_A = 2 \in \{arg \max_r r \cdot P(v_A > r)\}, \quad r_B = 2 \in \{arg \max_r r \cdot P(v_B > r)\}$

Mechanism - Optimal Non-Clairvoyant Dynamic (NC)

How the dynamic mechanism work?

Half chance of free item in period 1

Half chance of upfront fee in period 2

NC in Period 1

- \triangleright Seller sets a fixed reserve price r_1 based on the distribution F_1 .
- ▶ Buyer learns his value (v_1) , makes a bid : b_1
- ▶ Buyer has 50% chance to get the item for free: $p_1 = 0$; Otherwise, buyer can get the item only when $b_1 \ge r_1$ and pay $p_1 = r_1$.

NC in Period 2

- ▶ Seller sets an upfront fee $s_2 = \min(b_1, E(v_2))$.
- \triangleright Buyer decides to pay or leave. Game ends if the buyer leaves (enter = 0).
- ▶ If the buyer pays (enter = 1),
 - ▶ Buyer learns their value (v_2) and makes a bid (b_2)
 - ▶ Buyer has 50% chance to get refund on the upfront fee (luck = 1).
 - Seller sets two reserve prices (r_2) based on the F_2 , luck for each given m_2 , Buyer can get the item only when $b_2 \geq r_2$ and pay $p_2 = r_2$

Hypotheses

Hypothesis 1 - On Revenue Comparison

- ▶ In the NC Better Scenario, NC gains more revenue than RS;
- ▶ In the RS Better Scenario, NC gains less revenue than RS.

Hypothesis 2 - On Individual Rationality

Some buyers choose not to pay the upfront fee, such that the experimental revenue of NC is less than its theoretical prediction.

Hypothesis 3 - On Incentive Compatibility

▶ Participants' bids are closer to true value under NC than RS.

The Experiment

▶ 256 George Mason Students. September to November 2021.

Treatment	NC Bette	er Scenario RS	RS Better NC	r Scenario RS
Age	21.6	22.3	21.9	22.7
Gender (Male=1)	0.48	0.44	0.52	0.47
Risk aversion	4.46	4.90	4.55	4.63
Observation	64	64	64	64

Table 1: Summary Statistic

Results

Result 1.

Experimental observations match theoretical predictions.

- ▶ In the NC Better Scenario, NC gains more revenue than RS.
- ▶ In the RS Better Scenario, NC gains less revenue than RS.

Experimental Revenue Comparison - Period 1

Figure 3: Revenues of Period 1 in each Treatment

Experimental Revenue Comparison - Period 1 & Period 2

Figure 4: Revenues in each Treatment

Results

Result 2.

Risk aversion deters buyers from participating in the second period in NC.

- ▶ In the NC Better Scenario, 4 buyers quit the second period, and the number doubles in the RS Better Scenario.
- ▶ Revenue from NC being less than theoretically predicted.

Revenue Loss Decomposition

Figure 5: Revenues Increase if all Buyers enter in Period 2.

Why not Pay the Upfront Fee (membership fee)

- ▶ "Since I got a profit the first time I didn't want to go again with my luck"
- ▶ "Risk vs Reward..... I got lucky and did not have to pay."
- ▶ "Based on the membership fee."
- "didn't want to take any big risks so I just lowballed my offers and refused to take the membership"
- "i read the instructions carefully. i think the second period isn't worth losing the points i had to pay membership fee and could only get the item by bidding higher than the price set by the seller..... honestly, i haven't been feeling lucky so i'd rather not take my chances. so i tried not to lose money in the first period and just left it as is."

Risk Aversion Affects Participation in Period 2 Indirectly

	DV: Enter in Period	2 (=1)
	(1)	(2)
NC Better Scenario (=1)	0.17**	0.25*
	(0.08)	(0.13)
$notfree_1 (= 1)$	0.07	0.08
	(0.07)	(0.11)
NC Better Scenario * notfree ₁	-0.18^*	-0.14
	(0.10)	(0.17)
risk aversion	-0.01	-0.03
	(0.01)	(0.02)
$payof f_1$	0.00	0.00
	(0.01)	(0.01)
$upfront_2$	-0.01	-0.03
	(0.03)	(0.05)
Controls		✓

Table 2: Regression of Participation Choice on Risk attitude.

Results

Result 3.

- ► Generally overbid.
- ▶ Buyers overbid less under NC when the distribution of their valuation has low variance.

Bid-Value Ratio Comparison

Bid/value	Non-Clairvoyant Dynamic	Repeated Static	(p-value) ¹
F_A (Low variance)	$1.264 \ (0.04)$	1.379(0.04)	0.060*
F_B (High variance)	$1.194\ (0.05)$	$1.251 \ (0.04)$	0.392
(p-value)	0.116	0.008***	

Table 3: Bid-Value Ratio Comparison

What we learn (so far)

Practical value of non-clairvoyant mechanisms

- ▶ We find non-clairvoyant mechanisms work as intended: NC outperforms RS when it is predicted to do so.
- ▶ Buyers' risk attitudes matter in the success of NC.
- ▶ Randomization in NC leads buyers to overbid less.

Further Questions

- \blacktriangleright How does the optimal clairvoyant mechanism perform? \Rightarrow New treatment OC
- ► How does the deterministic implementation of NC perform? ⇒ New treatment NCD

The Optimal Clairvoyant Mechanism (OC) in the NC Better scenario

Clairvoyant menu:

$$\{(p_1, p_2)\} = \{(2, 8), (4, 2)\}$$

- \Rightarrow Cannot discriminate in Period 2:
- \Rightarrow Extract the whole expected value in Period 1:

$$REV_2^{OC} = 2$$

 $REV_1^{OC} = 3$

Check IC and IR $u(b_1)$

- ▶ if $v_1 = 2$: $u(2) = 0 + 4 \frac{1}{4} * 8 = 2$, u(4) = -2 + 4 = 2
- ightharpoonup if $v_1 = 4$: u(2) = 2 + 2 = 4, u(4) = 0 + 4 = 4

Implementations of OC in the NC Better scenario

Free item in Period 1 (Give for Free)

- ▶ Buyer makes a bid in Period 1 (or quit), pays p_1 if $b_1 \ge p_1$
- $ightharpoonup p_1 = 0$, get the item for free in Period 1

Upfront fee in Period 2 (Posted-Price Auction)

- ▶ Upfront fee equals to past bid: $s_2 = b_1$, buyer pays or quit
- ▶ Buyer makes a bid in Period 2 if enter pays p_2 if $b_2 \ge p_2$

The Optimal Clairvoyant Mechanism (OC) in the RS Better scenario

Clairvoyant menu:

$$\{(p_1, p_2)\} = \{(2, 4), (4, 1)\}$$

- ▶ Buyer makes a bid in Period 1 (or quit), pays p_1 if $b_1 \ge p_1$
- $ightharpoonup p_1 = 2 \text{ or } p_1 = 4 \text{ with equal chance}$
 - \Rightarrow Cannot discriminate in Period 2:

$$\Rightarrow$$
 Cannot discriminate among $v_1 \ge 4$:

$$REV_2^{OC} = 2$$

$$REV_1^{OC} = \frac{1}{2}(2+3) = 2.5$$

Check IC and IR $u(b_1)$

- if $v_1 = 2$: u(2) = 0 + 0 = 0, u(4) = -2 + 2 = 0
- if $v_1 = 4$: u(2) = 2 + 0 = 2, u(4) = 0 + 2 = 2

With and without Randomization in Period 1

Without Randomization (NCD, two small items in Period 1)

With or without Randomization in Period 2

Without Randomization (NCD, two small items in Period 2)

Design of Experiment 2

Two Mechanisms * Two Scenarios

- ▶ Optimal Clairvoyant Mechanism (OC)
- ▶ NC in Deterministic form (NCD)

- ► NC Better Scenario
- ► RS Better Scenario

- ▶ 128 Participants as the **Buyer** trading with **Robot Seller**, c = 0,
- ▶ Between Subject: Buyers are assigned to only one treatment
- ▶ Within Subject: All buyers participate two scenarios.

Results: OC does not do better than NC/NCD

Figure 6: Revenue Comparison

Conclusion

- ▶ We highlight the practical importance of non-clairvoyant mechanisms.
 - consistent with theory prediction; robust performance
- ▶ We provide behavioral insights for future mechanism design theory.
 - ► risk attitude matters; randomization advantage

Discussion

- ▶ Middle ground of dynamic mechanism design: partially future information design
- ▶ Multi-period game with competition among buyers

From the seller side

How should sellers choose between mechanisms?

- ▶ NC generates more revenue when the scenario is "good".
- ▶ NC encourages more accurate valuation information.
- ▶ NC works better when buyers are not risk-averse.

What do human sellers select?

- ▶ Can they learn the intuition of the revenue comparison and choose correctly?
- ▶ Are they willing to select NC more if setting up NC is easier?

Sellers learn the intuition when they get experienced (Gui and Houser 2024b)

% of Choosing correct Mechanism

Thank you!

Requirements of Mechanisms under Non-clairvoyant Environment

Seller sets up:

- ightharpoonup Allocation rule $x \in \{0,1\}$: whether buyer can get the item or not
- ▶ Price rule $p \in \mathcal{R}$: how much to pay if buyer gets the item

Buyer:
$$\max_{\{b_1,b_2\}} u_1 + u_2 = (x_1v_1 - p_1) + (x_2v_2 - p_2)$$

- ▶ Dynamic Incentive Compatibility (DIC)

 For a buyer, it is optimal to bid true value in each period
- Ex-post Individual Rationality (EPIR) $u_1 + u_2 > 0$, for all realization of v_1, v_2

Intra-period Revenue & Inter-period Revenue

- ▶ Intra-period revenue: independent revenue, using information within that period ⇒bounded my Myerson's revenue.
- ► Inter-period revenue: dependent revenue, linking past periods with current period ⇒ bounded by current-period expected value.

Revenue Comparison in Scenario A

$$F_1 = F_A = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{2})\} \mathbb{E}_1 = 3.$$

$$F_2 = F_B = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{8}), (16, \frac{1}{16}), (32, \frac{1}{16})\}, \mathbb{E} = 6.$$

▶ Non-Clairvoyant Mechanism increases revenue, ↑ 12.5%

Revenue in NC Better Scenario	NC		RS			
Period 1	Give for Free (F) Myerson Auction (M)	0 2	Myerson Auction (M)	2		
Period 2	Posted-price Auction (P) Myerson's Auction (M)	5 2	Myerson Auction (M)	2		
Total		4.5		4		
Intra-period Revenue Inter-period Revenue		$\frac{2}{2.5}$		4 0		

Table 4: Theoretical Revenues in NC Better Scenario

Revenue Comparison in RS Better Scenario

$$\begin{split} F_1 &= F_B = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{8}), (16, \frac{1}{16}), (32, \frac{1}{16})\}, \ \mathbb{E}_1 = 6. \\ F_2 &= F_A = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{2})\}, \ \mathbb{E}_2 = 3. \end{split}$$

 \triangleright NC gains less revenue, $\downarrow 12.5\%$

Revenue in RS Better Scenario	NC RS			
Period 1	Give for Free (F) Myerson Auction (M)	$0 \\ 2$	Myerson Auction (M)	2
Period 2	Posted-price Auction (P) Myerson Auction (M)	3 2	Myerson Auction (M)	2
Total		3.5		4
Intra-period Revenue Inter-period Revenue		2 1.5		4 0

Table 5: Theoretical Revenues in RS Better Scenario

Reserve price (r_1, r_2) in NC Better Scenario

$$\begin{array}{l} F_1=F_A=\{v,p(v)\}=\{(2,\frac{1}{2}),(4,\frac{1}{2})\},\ \mathbb{E}_1=3.\\ F_2=F_B=\{v,p(v)\}=\{(2,\frac{1}{2}),(4,\frac{1}{4}),(8,\frac{1}{8}),(16,\frac{1}{16}),(32,\frac{1}{16})\},\ \mathbb{E}_2=6. \end{array}$$

Period 1

▶ Myserson Auction: $r_1 = 2$

Period 2

- ▶ If luck = 1, Myserson's Auction: $r_2 = 2$
- ▶ If luck = 0, Posted Price Auction: r_2 satisfies

$$E_{v_2}[(v_2 - r_2)^+] = min(b_1, E(v_2)) = upfrong \ fee.$$

Piece-wise function: $r_2^P = 0$ if $b_1 \ge 6$, $r_2^P = 2$ if $b_1 = 4$, $r_2^P = 8$ if $b_1 = 2$, and $r_2^P = 32$ if $b_1 = 0$.

Reserve price (r_1, r_2) in RS Better Scenario

$$F_1 = F_B = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{8}), (16, \frac{1}{16}), (32, \frac{1}{16})\}, \ \mathbb{E}_1 = 6.$$

$$F_2 = F_A = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{2})\}, \ \mathbb{E}_2 = 3.$$

Period 1

▶ Myserson's Auction: $r_1 = 2$

Period 2

- ▶ If luck = 1, Myserson's Auction: $r_2 = 2$
- ▶ If luck = 0, Posted Price Auction: r_2 satisfies

$$E_{v_2}[(v_2 - r_2)^+] = min(b_1, E(v_2)) = upfront \ fee.$$

Piece-wise function: $r_2^P = 0$ if $b_1 \ge 3$, $r_2^P = 1$ if $b_1 = 2$ and $r_2^P = 4$ if $b_1 = 0$.

Experimental Revenue Decomposition in NC Better Scenario

	NC			\mathbf{RS}			
Revenue in NC Better Scenario	Theory		Experiment	Theory		Experiment	
Period 1	Give for Free Myerson auction	0 2	0 1.94(0.06)	Myerson	2	1.94(0.04)	
Period 2	Post Price Auction Myerson auction	5 2	$4.84(0.47) \\ 1.94(0.06)$	Myerson	2	1.91(0.05)	
Total	v	5	4.35 (0.32)		4	3.84 (0.07)	

Table 6: Revenue decomposition in NC Better Scenario

Experimental Revenue Decomposition in RS Better Scenario

	NC			RS			
Revenue in RS Better Scenario	Theory		Experiment	Theory		Experiment	
D : 14	Give for Free	0	0	2.6	2	1.91(0.05)	
Period 1	Myerson auction	2	1.93(0.06)	Myerson			
Period 2	Post Price Auction	3	2.25(0.21)	Myerson	2	1.97(0.03)	
renod 2	Myerson auction	2	1.75(0.12)	Wiyerson	2	1.97(0.03)	
Total		3.5	2.91 (0.18)		4	3.88(0.06)	

Table 7: Revenue decomposition in RS Better Scenario