Foundations of Data Science:
Hypothesis testing eT sting for goodness-of-fit

Multiple categories

American Civil Liberties Union report in Lo jury selection in Alameda County, Ca L2010)

	Caucasian	Black/AA	Hispanic	Asian/PI	Other	Total
Population %	54	18	12	15	1	100
Observed panel numbers	780	117	114	384	58	1453
Expected panel numbers	784.62	261.54	174.36	217.95	14.53	1453.00
(Observed-Expected) ² Expected	0.03	79.88	20.90	126.51	130.05	357.36

Ho: The panels were chosen by random selection from the population

Ha: The panels were chosen by some other, unspecified method.

$$\chi^2 = \sum_{i=1}^{R} \left(\frac{n_i - n_{pi}}{n_{pi}} \right)^2$$

"chi - squared"

e.g. $np_1 = 100$ $n_1 = 95$ $np_2 = 10 \quad n_2 = 5$ $5 \quad 50\%$

In e.g. 72 = 357 - 36

Statistical simulations

2 - way contingency tables

	Female	Male	Total
Depressed	30	12	42
Not depressed	2048	1663	3711
Total	2078	1675	3753

	Population 1	Population 2	Total
Category 1	n_{11}	n_{12}	$n_{1\bullet}$
Category 2	n_{21}	n_{22}	$n_{2\bullet}$
Total	$n_{\bullet 1}$	$n_{\bullet 2}$	n_{ullet}

Ho: Being severely depressed is independent of being female or male

Ha = Some other, unspecifiéd hypothes.

He =
$$P(X = x | Y = y) = P(X = x) P(Y = y)$$

Pi = $\frac{n_{io}}{n_{oo}}$
Po j = $\frac{n_{oj}}{n_{oo}}$
E ij = n_{oo} Pi · Po j = $\frac{n_{io}}{n_{oo}}$

Multivay contingency tables

J=2

		Female	Male	Total
2{	Depressed Not depressed Total		12 1663 1675	

	Population 1	Population 2	Total
Category 1	n_{11}	n_{12}	$n_{1\bullet}$
Category 2	n_{21}	n_{22}	$n_{2\bullet}$
Total	$n_{ullet 1}$	$n_{\bullet 2}$	n_{ullet}

	Female	Male
Depressed	23.25	18.75
Not depressed	2054.75	1656.25

$$7^{2} = (Observed - Expected)^{2}$$

$$= Z' \overline{Z} \cdot (his - \hat{\epsilon}ij)^{2}$$

$$= 4 \cdot 433$$

$$+ d \cdot f = (I - 1)(J - 1) + 1 = 1$$

$$p = 0.035$$