YONMOQUE-HEX

ASSIGNMENT 1

Adversarial Search Methods for Two-Player Board Games

GRUPO A1_63

- Beatriz Pereira, up202207380
- João Silva, up202108713
- Luana Lima, up202206845

ESPECIFICAÇÃO DO TRABALHO

O Yonmoque-Hex é um jogo de tabuleiro para dois jogadores onde o objetivo é **alinhar quatro peças da mesma cor consecutivamente ao mover as peças** já colocadas no tabuleiro, e não apenas ao posicionálas. O jogador perde se tiver cinco peças consecutivas da sua cor em qualquer momento

OBJETIVO

Desenvolver uma aplicação que implementa o Yonmoque-Hex, com diferentes níveis de dificuldade para os agentes de IA, utilizando dois métodos principais de pesquisa adversarial: **Humano vs. Humano**, **Humano vs. Computador** e **Computador vs. Computador**

ALGORITMOS A UTILIZAR

- Minimax com αβ pruning;
- Monte Carlo Tree Search (MCTS).

Figura 1. Tabuleiro genérico 5x5

FORMULAÇÃO DO PROBLEMA

REPRESENTAÇÃO DO ESTADO

- **Tabuleiro:** Grafo com nós neutros, brancos e azuis.
- Células: Vazia, Azul ou Branca

ESTADO INICIAL

- Tabuleiro vazio
- Definição do jogador inicial (azul ou branco)
- Cada jogador inicia com 6 peças
 da sua cor

REGRAS DE MOVIMENTAÇÃO

- Na primeira jogada, o primeiro jogador não pode colocar a sua peça num dos 4 cantos de cor neutra;
- Peças podem mover-se para qualquer célula adjacente em qualquer uma das seis direções;
- O movimento que resulta em "sandwiching" (encaixar uma peça adversária entre duas peças da própria cor) causa a inversão da peça adversária;
- Vencer requer alinhar quatro peças consecutivas movendo uma peça, não apenas posicionando-a;
- Um jogador **perde se tiver cinco peças consecutivas na mesma linha** em qualquer momento.

FORMULAÇÃO DO PROBLEMA

OPERADORES

Colocar peça (insert_piece)

Pré-condições: Célula vazia, peça disponível **Efeitos:** Coloca a peça na célula selecionada

Mover peça (move_piece)

Pré-condições: Célula inicial ocupada pela peça do jogador, célula final vazia

Efeitos: Move a peça para uma célula adjacente

Trocar cor da peça (flip_piece)

Pré-condições: Peça do adversário está entre duas peças do jogador. Esta posição foi causada ao mover uma peça e não ao colocar uma peça.

Efeitos: A peça do adversário é invertida para a cor do jogador

HEURÍSTICA

- Número de peças conectadas ao caminho mais curto
- Distância mínima até ao objetivo
- Localização no tabuleiro
- Minimização do valor do oponente

CUSTO DE CADA JOGADA

-

IMPLEMENTAÇÃO

A linguagem escolhida para o desenvolvimento do jogo Yonmoque-Hex foi **Python**, sendo utilizada a biblioteca **PyGame.** Todo o projeto foi desenvolvido no Visual Studio Code.

O jogo irá tem 3 modos: Humano vs Humano, Humano vs PC e PC vs PC.

Nos modos Humano vs PC e PC vs PC, o utilizador pode escolher entre MiniMax e Monte Carlo, tendo estes 3 dificuldades cada:

- Fácil
- Médio
- Difícil.

ALGORITMOS MINIMAX COM ALPHA-BETA PRUNING

MINIMAX

Algoritmo recursivo que explora os estados possíveis até uma determinada profundidade. O jogador atual tenta maximizar a sua pontuação, assumindo que o adversário joga da melhor forma possível (minimizador).

ALPHA-BETA PRUNING

Otimização do Minimax que evita explorar ramos do jogo que não influenciam a decisão final. Utiliza dois limites:

- α (alpha) melhor valor possível para o jogador maximizador (IA)
- β (beta) melhor valor possível para o jogador minimizador (adversário)

SELEÇÃO DA MELHOR JOGADA

Caso existam jogadas imediatamente vencedoras, são escolhidas diretamente. Caso contrário, todas as jogadas são avaliadas com Minimax, e é escolhida uma das melhores de forma aleatória.

COMPLEXIDADE

Temporal: $O(b \wedge d)$ com Alpha-Beta Pruning $O(b \wedge (d/2))$

Espacial: O(b*d)

(sendo b o número médio de jogadas possíveis e d a profundidade do algoritmo)

ALGORITMOS MONTE CARLO TREE SEARCH (MCTS)

ESTRUTURA DO ALGORITMO

A implementação baseia-se na criação de uma árvore de decisões, onde cada nó representa um estado do jogo. Cada nó armazena os movimentos possíveis como filhos não testados (*untried moves*).

OPERADORES

- Seleção: Através da fórmula UCT(Upper Confidence Bound), o nó filho com maior valor de UCT é selecionado, equilibrando a exploração de movimentos menos explorados e a exploração de movimentos com melhor desempenho.
- Expansão: Adiciona novos nós quando movimentos não foram testados.
- Simulação: A partir do novo estado, é realizada uma simulação aleatória até ao fim do jogo e no fim é avaliada utilizando uma heurística de avaliação para determinar o vencedor.
- Backpropagação: Atualiza estatísticas de vitória nos nós após a simulação.

COMPLEXIDADE

Temporal: O(b^d) **Espacial:** O(b*d)

(onde b é o número médio de filhos por nó e d é a profundidade da árvore de decisão)

ANÁLISE DE RESULTADOS

ANÁLISE DO TEMPO TOTAL POR ALGORITMO

Impacto do nível de dificuldade:

- Minimax mostra um **aumento moderado** e previsível do tempo **com a profundidade** (ex.: profundidade *Easy* vs. *Medium* vs. *Hard*).
- MonteCarlo, por outro lado, tem um aumento
 exponencial no tempo entre níveis, especialmente do
 nível Easy para o Medium.

Comparação direta entre algoritmos:

- Em confrontos diretos, como Minimax(Medium) vs MonteCarlo(Medium), o **MonteCarlo demora muito mais tempo**.
- Isso sugere que MonteCarlo sacrifica eficiência temporal por decisões potencialmente melhores, o que pode não compensar em todas as situações.

ANÁLISE DE RESULTADOS

ANÁLISE DO NÚMERO DE JOGADAS POR ALGORITMO

Tendência geral entre algoritmos:

- MonteCarlo tende a ter partidas com mais jogadas do que Minimax, especialmente em confrontos de maior dificuldade.
- Isto pode indicar que o **MonteCarlo promove jogos mais longos e estratégicos**, com menos vitórias rápidas.

Evolução com o nível de dificuldade:

- Em ambos os algoritmos, o número de jogadas tende a diminuir com a dificuldade, mas a diminuição é mais evidente no Minimax.
- Por exemplo, o confronto MonteCarlo(Medium) vs MonteCarlo(Hard) teve o maior número de jogadas (29), sugerindo um duelo prolongado e mais equilibrado.

Comparação entre algoritmos:

- No duelo direto Minimax(Medium) vs MonteCarlo(Medium), o jogo teve apenas 13 jogadas, um número bastante inferior comparado com jogos entre dois MonteCarlo.
- Isto pode significar que o **Minimax tem uma abordagem mais** "**decisiva**" ou menos exploratória, terminando os jogos mais rapidamente.

CONCLUSÕES

Com este projeto, foi possível aprofundar o entendimento sobre o funcionamento e comportamento de algoritmos de decisão (Minimax e Monte Carlo Tree Search) aplicados a um jogo competitivo entre dois jogadores.

Relativamente ao algoritmo considerado **mais eficiente**, destacamos o **Minimax**, que apresentou um excelente desempenho em termos de tempo de execução e número reduzido de jogadas, mesmo com o aumento da profundidade.

Por outro lado, o **Monte Carlo Tree Search**, embora apresente jogos mais longos e com decisões aparentemente mais ponderadas, revelou-se **significativamente mais lento**, especialmente a níveis de dificuldade mais elevados.

Concluímos que, no contexto do jogo desenvolvido, o **Minimax representa uma melhor relação entre performance e tempo**, sendo a opção mais adequada para uma IA eficiente. No entanto, o Monte Carlo mostra potencial para simular estratégias mais humanas, sendo interessante para futuras abordagens híbridas ou contextuais.

REFERÊNCIAS

- Yonmoque Hex | Board Game
- <u>Kickstarter Yonmoque Hex by Mitsuo Yamamoto</u>

