

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING DEGREE PROGRAMME IN ELECTRONICS AND COMMUNICATIONS ENGINEERING

Statistical Signal Processing I

MATLAB Homework 4

Athmajan Vivekananthan Hathurusingha Anjalee Anuththara De Silva

avivekan23@student.oulu.fi hdesilva23@student.oulu.fi

1 ESTIMATION OF SINUSOIDAL

The task in hand is to estimate A, f_0 , ϕ of the sinusoidal observations done in AWGN channel. In order to estimate the values a complex and long calculation is understood as per explained in the coursebook [1] which is not included here.

However to summarize how the values were obtained,

1. Estimation of f_0 :

Given that the range of frequency is between 0 and 0.5 but not close to the extreme values, the value that maximizes the periodogram defined by equation 1 is done. An instant of the behaviour of the said periodogram for the given range is shown in figure 1.1. Therefore arg max was used in the simulation to obtain the frequency values \hat{f}_0 that maximizes this curve at each Monte Carlo Loop.

$$I(f) = \frac{1}{N} \left| \sum_{n=1}^{5} x[n] \exp(-j2\pi f n) \right|^{2}$$
 (1.1)

2. Estimation of *A*:

As per the equation 2 the estimation of the A was done.

$$\hat{A} = \frac{2}{5} \left| \sum_{n=1}^{5} x[n] \exp(-j2\pi \hat{f}_0 n) \right|$$
 (1.2)

3. Estimation of ϕ :

As per the equation 3 the estimation of the ϕ was done.

$$\phi = \arctan \frac{-\sum_{n=0}^{5} x[n] \sin 2\pi \hat{f}_{0}n}{\sum_{n=0}^{5} x[n] \cos 2\pi \hat{f}_{0}n}$$
(1.3)

Finally the estimated simulation values are gathered in an array and their variance are compared against the CRLB values obtained from the coursebook [1](3.41).

Figure 1.1. Periodogram for the range of frequencies given

```
% Defining parameters

N = 5; % Number of observations
A = 1; % True value of A
sigma2 = 0.001; % Variance of WGN
f0 = 0.25; % True value of fundamental frequency
phi = pi/3; % True value of Phi
numMonteCLoops = 1E5; % Number of monte carlo loops

% Initiate estimates array
estimate_f0 = ones(1,numMonteCLoops)*NaN;
estimate_A = ones(1,numMonteCLoops)*NaN;
estimate_Phi = ones(1,numMonteCLoops)*NaN;
```

```
% Monte Carlo Loops
for MC=1:numMonteCLoops
    w = randn(1,N)*sqrt(sigma2).*(1:N); % the WGN part
    ang1 = 2*pi*f0.*(1:N);
    ang2 = ang1 + phi;
    x = A*cos(ang2) + w;
    % The periogram which is maximized by MLE of f0
    f = 0:0.01:0.5;
    xx = zeros(size(f));
    for n = 1 : 5
        xInst = x(n) * exp(-1j * 2 * pi .*f * n);
        xx = xx + xInst;
    end
    If = 0.2* abs(xx).^2;
    if MC == 1
       % Plot squares_of_absolute_values against f
       plot(f, If);
       xlabel('f');
       ylabel('I(f)');
       title('Periodogram');
       grid on;
       disp('Periodogram for one loop to observe the behavior');
    end
    % Find the arg max of If as in (7.66)
    [max_value, index] = max(If);
    % Get the corresponding frequency value
    f0_{est} = f(index);
```

Figure 1.2. Task Matlab Code - Page 1

```
% calculation of A_est as in (7.66)
    A_{est} = 0;
    for n = 1 : 5
        xInst = x(n) * exp(-1j * 2 * pi *f0_est * n);
        A_{est} = A_{est} + xInst;
    end
    A_{est} = 0.4* abs(A_{est});
    % calculation of Phi_est (7.66)
    Phi_est_Num = 0;
    Phi_est_Dem = 0;
    for n = 1 : 5
        xInst = x(n) *sin(2*pi*f0_est*n);
        Phi_est_Num = Phi_est_Num + xInst;
        xInst1 = x(n) *cos(2*pi*f0_est*n);
        Phi_est_Dem = Phi_est_Dem + xInst1;
    end
    Phi_est = atan(-1*Phi_est_Num/Phi_est_Dem);
    estimate_f0(MC) = f0_est;
    estimate_A(MC) = A_est;
    estimate_Phi(MC) = Phi_est;
end
```

Figure 1.3. Task Matlab Code - Page 2

Periodogram for one loop to observe the behavior

```
% Variance of MLE of f0
std(estimate_f0)^2
ans = 2.3713e-05
% Variance of MLE of A
std(estimate_A)^2
ans = 0.0053
% Variance of MLE of Phi
std(estimate_Phi)^2
```

ans = 0.0062

```
%% Defining CRLB Values as per (3.41)
eta = A^2/(2*sigma2);
CRLB_A = 2*sigma2/N;
CRLB_f0 = 12 / (((2*pi)^2)*eta*N*((N^2)-1));
CRLB_phi = (2*(2*N -1)) / (eta*N*(N+1));
if std(estimate_f0)^2 >= CRLB_f0
    disp('The CRLB is satisfied for MLE of f0');
```

Figure 1.4. Task Matlab Code - Page 3

```
end
The CRLB is satisfied for MLE of f0

if std(estimate_A)^2 >= CRLB_A
    disp('The CRLB is satisfied for MLE of A');
end

The CRLB is satisfied for MLE of A

if std(estimate_Phi)^2 >= CRLB_phi
    disp('The CRLB is satisfied for MLE of Phi');
end
```

The CRLB is satisfied for MLE of Phi

Figure 1.5. Task Matlab Code - Page 4

2 Least Sqaures Estimation

2. The same data

$$x[n] = A \cos(2\pi f o n + \varphi) + w[n]$$

Implement LSE estimator for frequency fo and phase φ as a phase locked loop with 10 times iteration.

with n = -M,...,0,...,M.

Parameter values are used as follows:

M=2;

A = 1; $\sigma^2 = 0.001;$

fo = 1/4;

 $\varphi = \pi/3$; Iteration = 10;

w[n] is the AWGN with zero mean and σ^2 variance.

LSE estimator for frequency and phase is calculated in a phase locked loop. A new estimate for frequency and phase is being calculated in each iteration. The equations for frequency and phase are obtained as follows.

The LSE is used. $H(\theta)$ is determined where $\theta = [f_0 \varphi]^T$. Then $H^T(\theta) * H(\theta)$ is obtained.

$$x[n] = A \cos(2\pi f o n + \varphi) + w[n]$$

Let's derivate it with respect to f_o and φ .

1. f_o

 $\frac{\partial w(n)}{\partial fo} = 0$, Because w(n) is a constant with respect to f_o

$$\frac{\partial x[n]}{\partial fo} = -A2\pi n \sin(2\pi f_0 + \varphi)$$

2. φ

$$\frac{\partial x(n)}{\partial \varphi} = -A\sin\left(2\pi f \cos + \varphi\right)$$

$$f_{0_{k+1}} = f_{0_k} - \frac{3}{4\pi M^3} \sum_{n=-M}^{M} \text{nx}[n] \sin(2\pi f_{0_k} n + \varphi_k)$$

$$\varphi_{k+1} = \varphi_k - \sum_{n=-M}^{M} x[n] \sin(2\pi f_{0_k} n + \varphi_k)$$

Figure 2.1. Task 2 Page 1


```
%Task 2

clear all;
close all;

M = 2;
A = 1;
prize a = 0.001;
fo = 1/4;
phase = pi/3;
Iteration = 10;
n = -M:IM;

freq_estimation = zeros(1,Iteration);
phase_estimation = zeros(1,Iteration);

for i=1:Iteration
wn = sqrt(variance)*randn(1,2*M*+1); % Zero Mean Additive White Gaussian
wn = sqrt(variance)*randn(1,2*M*+1); % Zero Mean Additive White Gaussian
xn = A*cos(2*pi**fo**n + phase) + wn; % Signal

if(i == 1)
freq_estimation(i) = fo; % Initial Frequency Estimate
phase_estimation(i) = phase; % Initial Phase Estimate
else

for y=-M:1M
freq_estimation(i) = freq_estimation(i) + y*xn(y*M*+1)*sin(2*pi**freq_estimation(i-1)*y + phase_estimation(i-1)); %Fr
phase_estimation(i) = phase_estimation(i) + xn(y*M*+1)*sin(2*pi**freq_estimation(i-1)*y + phase_estimation(i-1)); %Pr
end

freq_estimation(i) = freq_estimation(i) - freq_estimation(i)*3/(4*pi**freq_estimation(i-1)*y + phase_estimation(i-1)); %Pr
end

freq_estimation(i) = freq_estimation(i-1) - freq_estimation(i)*3/(4*pi**(M*3)); % substract from estimate of Previous It
phase_estimation(i) = phase_estimation(i-1) - phase_estimation(i)*/M; % substract from estimate of Previous It
```

Figure 2.2. Task 2 Page 2

```
else

for y=M:1:M
    freq_estimation(i) = freq_estimation(i) + y*xn(y+M+1)*sin(2*pi*freq_estimation(i-1)*y + phase_estimation(i-1)); %Fr
    phase_estimation(i) = phase_estimation(i) + xn(y+M+1)*sin(2*pi*freq_estimation(i-1)*y + phase_estimation(i-1)); %Pr
    end

freq_estimation(i) = freq_estimation(i-1) - freq_estimation(i)*3/(4*pi*(M^3)); % substract from estimate of Previous It phase_estimation(i) = phase_estimation(i-1) - phase_estimation(i)/M; % substract from estimate of Previous Iteration end
end
subplot(1,2,1);
plot([1:Iteration], freq_estimation, 'color', [1,0,0]);
xlabel('No.of Iteration');
ylabel('Frequency');
title('Estimation of Frequency');

ylabel('No.of Iteration');
ylabel('No.of Iteration');
ylabel('No.of Iteration');
ylabel('Phase');
title('Estimation of Phase');
```

3 REFERENCES

[1] Kay S.M. (1993) Fundamentals of Statistical Signal Processing, Volume 1: Estimation Theory. Pearson Education.