Numele şi prenumele ...Voinea Ana Maria Grupa ...133

La toate problemele veti lua valorile:

 $\alpha =$ numărul de litere al primului nume = ..6... $\beta =$ numărul de litere al primului prenume = .3.....

Subjectul I.

Fie funcția f : ℝ → ℝ definită prin

$$f(x) = \left\{ \begin{array}{ll} \alpha x + 1 & , x \leq -\frac{1}{\alpha} \\ x^2 + x + 1 & , x > -\frac{1}{2}. \end{array} \right.$$

Este funcția f injectivă? Dar surjectivă? Calculați mulțimile f([-2,0]) și $f^{-1}([-3,3])$. (6 pct.)

2. Pe $\mathbb R$ definim relația " \sim " astfel: $x \sim y$ dacă și numai dacă f(x) = f(y), unde f este funcția de la punctul anterior. Să arate că \sim este o relație de echivalență și să se determine clasa de echivalență a numărului real 2022 în raport cu relația \sim . (3 pct.)

Subjectul II.

- 1. Determinați elementele de ordin 3 și elementele de ordin 4 din grupul $(\mathbb{Z}_{\alpha+6},+)$. (3 pct.)
- 2. Determinați elementele de ordin 6 din grupul ($\mathbb{Z}_{\alpha+6} \times \mathbb{Z}_{\beta+10}$, +). (3 pct.)
- 3. Conține grupul $(\mathbb{Z}_{\alpha} \times \mathbb{Z}_{\beta}, +)$ un element de ordin $\alpha \cdot \beta$? (3 pct.)

La fiecare subiect, înlocuiți α și β cu valorile specificate mai sus! Toate răspunsurile trebuie justificate. Fiecare subiect trebuie scris pe foi separate.

Timp de lucru 2 ore. Succes!

1

Subiectul III. Se consideră permutarea

- 1. Descompuneți σ în produs de cicluri disjuncte și în produs de transpoziții. (3 pct.)
- 2. Aflați ordinul și signatura permutării σ . Calculați $\sigma^{2022+\alpha}$. (3 pct.)
- 3. Determinați permutările $\tau \in S_{10}$ cu proprietatea că $\tau^2 = \sigma^{\beta}$. (3 pct.)

Subjectul IV.

- 1. Să se determine c
mmdc al polinoamelor $X^3+X^2+\alpha$ și $X^3-X+\beta$ în
 $\mathbb{Q}[X].$ (3 pct.)
- 2. Să se determine câtul și restul împărțirii polinomului $X^5 + X^2 + \hat{\alpha}$ la polinomul $X^3 + X^2 + \hat{\beta}X + \hat{1}$ în $\mathbb{Z}_2[X]$. (3 pct.)
- Să se determine numărul elementelor inversabile, al elementelor nilpotente şi al elementelor idempotente din inelul Z_{6α+1}. (3 pct.)

¹Toate subjectele sunt obligatorii.

Voimea Ama-clloria Grupa 133

Exomen la algebra

Subsectul I

$$\pm (x) = \int_{x^{2}(x)} \frac{x}{2} + x + \tau^{2} \qquad x > -\frac{\tau}{7}$$

$$x^{2}+x+1=0=$$
 $0 = 1-4=-3 < 0$
 $x \in \mathbb{R}$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 $0 > 1 = 1 - 4 = -3 < 0$
 0

·
$$\dot{\text{enj}}$$
: $(-\infty,0] \cap (-\frac{1}{\alpha},\infty) = (-\frac{1}{\alpha},0] \neq \emptyset$ -

 $= 1 \text{ and este anj}$

, surj:
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int$$

$$\frac{1}{4} \left(\begin{bmatrix} -3 & 3 \end{bmatrix} \right) \\
\frac{1}{4} \left(\begin{bmatrix} -3 & 0 \end{bmatrix} \right) 0 + \frac{1}{2} \left(\left(\frac{3}{4} , 3 \right] \right) \\
-3 & \leq 6x + 1 \leq 0 \\
-\frac{2}{3} & \leq x \leq -\frac{1}{4}$$

$$\times c \left[-\frac{2}{3} , -\frac{1}{6} \right] \Phi$$

$$\frac{3}{4} & \leq x^2 + x + 1 \leq 3$$

$$\chi^2 + x + 1 \leq 3$$

$$\chi^2 + x - 2 \leq 0$$

7)
$$\delta ol$$
: (1) $O(2)$
 $\times c\left[-\frac{2}{3}, -\frac{1}{6}\right] O\left[-\frac{1}{2}, 1\right]$

ord(k) - ord(k, 1) - (m, k), (2m,+)

ord 3:
$$3 = \frac{12}{(a,12)} = 1$$
 $(a,12) = 4$ $a \in 3, \hat{9}$

$$6 = \frac{12}{(a_1/2)}$$
 $= 2$ $= 2 + \frac{12}{2}, 69$

$$L = \frac{13}{(6,13)}$$
 = 13 $b \in [5]$
= 13 $b \in [5]$

=) Ordinal moxim al pereclui este 6
$$((6,3)=3)$$

1)
$$T = (492)(351086)(4117)$$
 - produs de juncte $T = (49)(92)(35)(5.10)(108)(86)(411)(4147)$ - produs de tran sportii

2) od
$$(\sigma) = e.m.m. m = (3,5) = 15$$

$$E(\tau) = (-1)^8 = 1 =) \text{ permutore para}$$

$$T^{3022+6} = T^{2028} = T^{2025} = T^{3025} = 0$$

$$T^3 = ((192)(35 10 86)(4117)^3$$

$$= (192)^3 (35 10 86)^3 (4117)^3$$

$$= (35 10 86)^3 = (385)^3 = ($$

3)
$$TeS_{10}$$
 $T^2 = T^3$
 $T^2 = T^3 \Rightarrow E(T^2) = E(T^3)$
 $T^3 = (3856(0) \Rightarrow E(T^3) = (-1)^4 = -1 \Rightarrow Permutor$
 $E(T^2) = -1 \Rightarrow Permutore inspara$

T2= T3 (1, T2= (38,5,6,10)

Pp. ca existà T a.i. $T^2 = T^3$ The $T = C_{i_1} \cdot C_{i_1} \cdot ... \cdot C_{i_n}$ desc. in prod. de ciclii disjuncti is $+ x_1 + ... + x_n = 11$ $C_{ij} = ach de lungtime ij$ $T^2 = C_i' \cdot C_i' \cdot ... \cdot C_i;$

 $\frac{1}{5}$ $\frac{215}{5}$, $\frac{1}{5}$ va fi un ciclu de lugime $\frac{1}{5}$ 7/ $\frac{1}{5}$ $\frac{1}{5}$ = $\frac{1}{5}$ 8 5 6 10) = $\frac{1}{5}$ $\frac{1}{5}$ = $\frac{1}{5}$ 6 8 10 5)

T = (368105) = (1254567896)

Sulpheetul I

2)
$$(x^5 + x^2 + \hat{c}) \cdot (x^3 + x^2 + \hat{3} \times + \hat{1})$$
, $2 \cdot 2 \cdot 2 \cdot x$

$$\frac{x^{5} + x^{2} + 6 | x^{3} + x^{2} + 1x + 1}{x^{5} - x^{5} - x^{3} - x^{2}} \times x^{2} - x$$

$$\frac{x^{5} - x^{5} - x^{3} - x^{2}}{-x^{5} - x^{3}} \times x^{2} - x$$

$$\frac{x^{6} + x^{3} + x^{2} + x}{x^{2} + x} = x^{2} + x$$

$$\frac{x^{6} + x^{3} + x^{2} + x}{x^{2} + x} = x^{2} + x$$

$$\frac{x^{6} + x^{3} + x^{2} + x}{x^{2} + x} = x^{2} + x$$

$$\frac{x^{6} + x^{3} + x^{2} + x}{x^{2} + x} = x^{2} + x$$

4)
$$\text{Tile: } P = x^3 - x^2 + 6$$

 $Q = x^3 - x + 3$

Pas 1:
$$\frac{x^3 - x^2 + 6 + x^3 - x + 3}{-x^3 + x - 3 - 1}$$

Pax 2:
$$x^3 - x + 3 - x^2 + x + 3$$

$$-x^3 + x^2 + 3x + x + 4$$

$$-x^2 + x + 3$$

$$-x^2 + x + 3$$

$$-x^2 + x + 3$$