Análisis Funcional: Taller 2

8 de mayo de 2025

Universidad Nacional de Colombia

Oscar Guillermo Riaño Castañeda

Andrés David Cadena Simons acadenas@unal.edu.co

Problema 1:

Sea $(E, \|\cdot\|)$ un espacio vectorial normado. Dado r > 0, considere $C = B(0, r) = \{y \in E : \|y\| < r\}$. Determine el funcional de Minkowski¹ de C.

Solución:

Note que C es abierto ya que C = B(0, r), veamos que es convexo. Sean $x, y \in C$, entonces el camino convexo entre ellos es (1 - t)x + ty, ahora veamos que para todo $t \in [0, 1]$ se cumple que $(1 - t)x + ty = z \in C$ ya que

$$||z|| = ||(1 - t)x + ty||,$$

 $\leq (1 - t)||x|| + t||y||,$
 $< (1 - t)r + tr,$
 $< r.$

Luego podemos afirmar que C es un conjunto abierto, convexo y además que $0 \in C$, por lo que definiremos

$$\rho: E \to \mathbb{R},$$

$$x \to \inf\{\alpha > 0: \alpha^{-1}x \in C\}.$$

Note que si $\alpha^{-1}x \in C$, entonces

$$\|\alpha^{-1}x\| = \frac{\|x\|}{\alpha} < r.$$

Lo que implica que $\alpha > \frac{\|x\|}{r}$, lo que nos permite razonar de la siguiente manera

$$: E \to \mathbb{R},$$

$$x \to \inf\{\alpha > 0 : \alpha^{-1}x \in C\} = \inf\left\{\alpha > 0 : \alpha > \frac{\|x\|}{r}\right\}.$$

$$= \frac{\|x\|}{r}.$$

Es decir

$$\rho(x) = \frac{\|x\|}{r}.$$

¹Recuerde que dado C abierto, convexo con $0 \in C$, el funcional de Minkowski se define como $\rho(x) = \inf\{\alpha > 0 : \alpha^{-1}x \in C\}, x \in E$.

Veamos que este es un funcional de Minkowski. Dado $x \in E$ y $\lambda > 0$ se satisface que

$$\rho(\lambda x) = \frac{\|\lambda x\|}{r},$$
$$= \lambda \frac{\|x\|}{r},$$
$$= \lambda \rho(x).$$

Además dados $x,y\in E$ se cumple que

$$\rho(x+y) = \frac{\|x+y\|}{r},$$

$$\leq \frac{\|x\| + \|y\|}{r},$$

$$\leq \frac{\|x\|}{r} + \frac{y}{r},$$

$$\leq \rho(x) + \rho(y).$$

Por lo que podremos afirmar que el funcional de Minkowski de ${\cal C}$ es

$$\rho(x) = \frac{\|x\|}{r}.$$

Lo que nos permite concluir el ejercicio.

Problema 2:

Sea E espacio vectorial normado.

- (I) Sea $W \subset E$ un subespacio propio de E y $x_0 \in E \setminus W$, tal que $d := d(x_0, W) > 0$. Demuestre que existe $f \in E^*$ tal que f = 0 restricto a W, $f(x_0) = d$ y $||f||_{E^*} = 1$.
- (II) Sea $W \subset E$ un subespacio propio cerrado de E y $x_0 \in E \setminus W$. Demuestre que existe $f \in E^*$ tal que f = 0 restricto a W y $f(x_0) \neq 0$.

Solución:

1. Suponga $V = W \times \{tx_0\}$ y definamos el siguiente funcional

$$g: V = W \times \{tx_0\} \to \mathbb{R},$$

 $(x, tx_0) \to td.$

Note que si tomamos $x + (0)x_0 \in V$ tal que t = 0 (es decir $x \in W$), entonces

$$g(x + (0)x_0) = (0)d = 0.$$

Por otro lado si tomamos $0 + (1)x_0 \in V$ (es decir $x_0 \in E \setminus W$), entonces

$$g(0+(1)x_0) = (1)d = d.$$

Se puede verificar que g es lineal ya que si suponemos $x,y\in V$ con sus t_1 y t_2 respectivos y λ escalar, entonces

$$g(x + \lambda y) = (t_1 + \lambda t_2)d,$$

= $t_1d + \lambda t_2d,$
= $g(x) + \lambda g(y).$

Ahora veamos que $||g||_{V^*} = 1$.

Primero tome $a = x + tx_0 \in V$ arbitrario, entonces

$$\begin{aligned} |g(a)| &= |td|, \\ &= \left| t \inf_{y \in W} \|x_0 - y\| \right|, \\ &\leq \left| t \left\| x_0 - \left(-\frac{x}{t} \right) \right\| \right|, \\ &\leq \left\| tx_0 + x \right\|, \\ &\leq \left\| a \right\|. \end{aligned}$$

Por lo que podemos asegurar que $\|g\|_{V^*} \leq 1$. Pero note que como $d = \inf_{y \in W} \|x_0 - y\|$, entonces podemos escoger una sucesión $\{y_n\} \subset W$ tal que $\|x_0 - y_n\| \to d$ por encima

Suponga $\{v_n\}=\left\{\frac{x_0-y_n}{\|x_0-y_n\|}\right\}$ y note que $\|g\|_{V^*}=\sup_{\substack{x\in V,\\ \|x\|=1}}|g(x)|,$

$$||x|| = 1$$

$$\geq \lim_{v_n \to \infty} |g(v_n)|,$$

$$\geq \lim_{v_n \to \infty} \frac{|g(x_0) - g(y_n)|}{||x_0 - y_n||},$$

$$\geq \lim_{n \to \infty} \frac{d}{||x_0 - y_n||},$$

Luego podemos asegurar que $\|g\|_{V^*}=1.$ Ahora, definamos

$$\rho(x) = ||x|| \quad , x \in E.$$

Veamos que ρ domina a g, es decir, $g(x) \leq \rho(x)$ para todo $x \in V$. Suponga $a = x + tx_0 \in V$, entonces

$$g(a) = td,$$

 $\leq ||tx_0||,$
 $\leq ||x + tx_0||,$
 $\leq ||a|| = \rho(a).$

lo que nos permite concluir que ρ domina a g. Ahora tenemos que

- $g \in V^*$.
- $||g||_{V^*} = 1.$
- $g|_{w} = 0 \text{ y } g(x_{0}) = d.$
- ullet ρ es un funcional de Minkowski que domina a g.

Luego, usando el teorema de Helly, Hahn-Banach en su forma analítica podemos asegurar que existe $f \in E^*$ tal que f = 0 restricto a W, $f(x_0) = d$ y $||f||_{E^*} = 1$.

2. Note que como W es un subespacio propio cerrado, entonces en particular es un subespacio propio, además como este subespacio es cerrado si $x \in E \setminus W$, entonces $x \notin \overline{W}$, ya que $W = \overline{W}$ y $x_0 \in E/W$, por lo que podemos afirmar que $d := d(x_0, W) > 0$, luego por (I) podemos afirmar que existe $f \in E^*$ tal que f = 0 restricto a W y $f(x_0) = d \neq 0$.

Problema 3:

Sea $(E, \|\cdot\|_E)$ y $(F, \|\cdot\|_F)$ espacios de Banach.

- (I) Sea $K \subset E$ un subespacio cerrado de E. Definimos la relación sobre E dada por $x \sim_K y$ si y solo si $x y \in K$.
 - (a) Muestre que \sim_K es una relación de equivalencia sobre E.
 - (b) Muestre que el espacio cociente E/K es un espacio de Banach con la norma

$$||x + K||_{E/K} = \inf_{k \in K} ||x - k||, \quad x \in E.$$

Es decir, debe verificar que el espacio cociente es un espacio vectorial normado, cuya norma lo hace completo.

(II) Sea $T \in L(E, W)$ tal que existe c > 0 para el cual

$$||Tx||_F \ge c \, ||x||_E,$$

para todo $x \in E$. Si K denota el espacio nulo de T y R(T) el rango de T, muestre que $\overline{T}: E/K \to R(T)$ dada por $\widetilde{T}(x+K) = T(x), x \in E$, está bien definida y es un isomorfismo. Esto es $\widetilde{T} \in L(E/K, R(T))$ y $\widetilde{T}^{-1} \in L(R(T), E/K)$.

Solución:

(I)

- (a) Veamos que \sim_K es una relación de equivalencia sobre E.
 - Reflexiva. Note que $x \sim_K x$, ya que $x - x = 0 \in K$ por ser K subespacio de E para todo $x \in E$, lo que nos permite concluir la reflexividad.
 - Simétrica. Note que si asumimos que $x \sim_K y$, entonces $x y \in K$, pero como K es subespacio, entonces $-(x y) = y x \in K$, por lo que podemos asegurar que $y \sim_K x$, lo que nos permite concluir la simetría en la relación.
 - Transitiva. Note que si asumimos que $x \sim_K y$ y $y \sim_K z$, entonces $x - y \in K$ y $y - z \in K$, pero como K es un subespacio cerrado, entonces $(x - y) + (y - z) = x - z \in K$ y por ende $x \sim_K z$, lo que nos permite concluir la transitividad.
- (b) Veamos que el espacio $(E/K, ||\cdot||_{E/K})$ es Banach.
 - Veamos que $(E/K, \|\cdot\|_{E/K})$ es un espacio vectorial normado. Note que si $y - x = k \in K$, entonces y = x + k con $x \in E$ y cualquier $k \in K$, por lo que escribiremos a y = x + K, luego los elementos de E/K serán de la forma $[a] = \{a = x + k : k \in K, x \in E\}$, además podemos afirmar que E/K

es cerrado, ya que K es cerrado, entonces $\lambda[a]+[b]=\lambda(x+k_1)+y+k_2=(\lambda x+y)+\widetilde{k}=[\lambda a+b].$ Veamos que la norma está bien definida, es decir, dados $x+K,y+K\in E/K$ y λ escalar, entonces

$$\begin{split} \|\lambda(x+K)\|_{E/K} &= \inf_{k \in K} \|\lambda(x-k)\|\,, \\ &= \lambda \inf_{k \in K} \|x-k\|\,, \\ &= \lambda \, \|x+K\|_{E/K}\,. \end{split}$$

Además si tomamos $0 \in E/K$, es decir, $x \in K$, como K es subespacio cerrado, entonces $x - k, 0 \in K$ y por ende podemos afirmar que

$$\begin{split} \|x+K\|_{E/K} &= \inf_{k \in K} \|x-k\|\,, \\ &= \inf_{k \in K} \|k\|\,, \\ &= 0. \end{split}$$

Y por último sabemos que la desigualdad triangular se cumple por las propiedades de la norma en E y del ínfimo, primero note que dado $\epsilon > 0$ existe $k_1, k_2 \in K$ tales que

$$\begin{aligned} \|x+K\|_{E/K} &= \inf_{k \in K} \|x-k\| \,, \\ &\leq \|x-k_1\| \,, \\ &\leq \|x+K\|_{E/K} + \epsilon/2 \,, \\ \|y+K\|_{E/K} &= \inf_{k \in K} \|y-k\| \,, \\ &\leq \|y-k_2\| \,, \\ &\leq \|y+K\|_{E/K} + \epsilon/2 \,. \end{aligned}$$

Luego

$$\begin{split} \|x+K+y+K\|_{E/K} &= \|(x+y)+K\|_{E/K}\,,\\ &\leq \inf_{k\in K} \|x+y-k\|\,,\\ &\leq \|x+y-(k_1+k_2)\|\,,\\ &\leq \|x-k_1\|+\|y-k_2\|\,,\\ &\leq \|x+K\|_{E/K} + \|y+K\|_{E/K} + \epsilon. \end{split}$$

Pero como la desigualdad se tiene para $\epsilon > 0$ arbitrario, entonces

$$||(x+y)+K||_{E/K} \le ||x+K||_{E/K} + ||y+K||_{E/K}$$
.

Lo que concluye la desigualdad triangular y a su vez nos permite afirmar que $(E/K, \|\cdot\|_{E/K})$ es un espacio vectorial normado.

■ Ahora veamos que $(E/K, \|\cdot\|_{E/K})$ es Banach. Suponga $\{a_n\} \subset E/K$ sucesión de Cauchy, por facilidad tomaremos al representante $a_n = x_n + k$ con k fijo, entonces note que dado $\epsilon > 0$ existe N > 0 tal que si n, m > N entonces

$$||a_n - a_m||_{E/K} = ||(x_n - x_m) + K||,$$

= $\inf_{k \in K} ||x_n - x_m - k|| < \epsilon.$

Vamos a tomar una subsucesión $\{a_i\}$ tal que para todo $j \in \mathbb{Z}$ se tenga que

$$||a_j - a_{j+1}||_{E/K} < \frac{1}{2j}.$$

¿Por qué se puede obtener esta subsucesión? Note que si tomamos $\epsilon = \frac{1}{2^j}$ existe $N_0 > 0$ tal que si $n_0, m_0 > N_0$, entonces $\|x_{n_0} - x_{m_0}\| < \frac{1}{2^j}$, luego si tomamos por otro lado $\epsilon = \frac{1}{2^{j-1}}$, note que para todo n, m tal que $n, m > N_0$ se satisface la condición, ya que $\frac{1}{2^j} < \frac{1}{2^{j-1}}$, la idea es tomar n, m adecuados que cumplan de forma consecutiva las condiciones.

Siendo así, note que razonando de forma análoga a cuando demostramos la desigualdad triangular por propiedades del ínfimo se tiene que dado $\delta>0$ existe $k\in K$ tal que

$$\begin{aligned} \|a_{j} - a_{j+1}\|_{E/K} &= \inf_{k \in K} \|(x_{j} - x_{j+1}) - k\|, \\ &\leq \|(x_{j} - x_{j+1}) - k\|, \\ &\leq \|a_{j} - a_{j+1}\|_{E/K} + \delta, \\ &< \frac{1}{2^{j}} + \delta. \end{aligned}$$

Tome $\delta > 0$ tal que $\frac{1}{2^j} + \delta = \frac{1}{2^{j-1}}$, entonces tomando ese $k = k_j - k_{j+1}$ tenemos que para cada j se cumple que tomando $y_j = x_j - k_j$ se tiene que

$$||(x_j - x_{j+1} - k)|| = ||(x_j - k_j) - (x_{j+1} - k_{j+1})||,$$

$$= ||y_j - y_{j+1}||,$$

$$\leq \frac{1}{2^{j-1}}.$$

Luego, es claro que $\{y_j\} \subset E$ es una sucesión de Cauchy y por ende como E es Banach, entonces existe $y \in E$ tal que $y_j \to y = x + k_0$ para algún $k_0 \in K$ (esto porque K es subespacio, entonces en el peor de los casos $k_0 = 0$.) cuando $j \to \infty$. Ahora, tome $a = x + K \in E/K$, y luego dadas las condiciones anteriores, dado

 $\epsilon > 0$ existe J > 0 tal que si j > J, entonces

$$||a_{j} - a||_{E/K} = \inf_{k \in K} ||(x_{j} - x) - k||,$$

 $\leq ||(x_{j} - k_{j}) - (x - k_{0})||,$
 $\leq ||y_{j} - y||,$
 $\leq \epsilon.$

Luego podemos afirmar que $a_j \to a$ cuando $j \to \infty$ y por ende $a_n \to a$ cuando $n \to \infty$, lo que nos permite concluir que $(E/K, \|\cdot\|_{E/K})$ es un espacio de Banach.

(c) Veamos que \widetilde{T} está bien definido.

Note que si tomamos $x \sim_K x'$ entonces $x - x' \in K$ por lo que se cumple que x = x' + K, luego

$$\begin{split} \widetilde{T}(x+K) &= T(x), \\ &= T(x'+K), \\ &= T(x') + T(K) \qquad \text{como } K \text{ es el espacio nulo,} \\ &= T(x'), \\ &= \widetilde{T}(x'+K). \end{split}$$

Lo que nos asegura que \widetilde{T} está bien definida.

Veamos que $\widetilde{T} \in L(E/K, R(T))$.

Veamos que es lineal gracias a la linealidad de T ya que si tomamos $x+K,y+K\in E/K$ y λ entonces

$$\begin{split} \widetilde{T}(x+K+\lambda(y+K)) &= \widetilde{T}((x+\lambda y)+K), \\ &= T(x+\lambda y), \\ &= T(x)+\lambda T(y), \\ &= \widetilde{T}(x+K)+\lambda T(y+K). \end{split}$$

Veamos que \widetilde{T} es continua gracias a la continuidad de T ya que se puede ver que $\|x+K\|_{E/K} \leq 1$, entonces $\|x\| \leq 1$ ya que $0 \in K$, luego

$$\begin{split} \left\|\widetilde{T}\right\| &= \sup_{\substack{x \in E, \\ \|x+K\|_{E/K} \leq 1}} \left\|\widetilde{T}(x+K)\right\|_{R(T)}, \\ &\leq \sup_{\substack{x \in E, \\ \|x\| \leq 1}} \left\|T(x)\right\|_{W}, \\ &\leq \|T\|. \end{split}$$

Lo que concluye que $\widetilde{T}\in L(E/K,R(T)).$ Veamos ahora que $\widetilde{T}^{-1}\in L(R(T),E/K),$ note que

$$\widetilde{T}^{-1}: R(T) \to E/K,$$

 $y = T(x) \to x + K.$

Sean $y_1, y_2 \in R(T)$ y λ escalar, entonces

$$\begin{split} \widetilde{T}^{-1}(y_1 + \lambda y_2) &= \widetilde{T}^{-1} \left(T(x_1) + \lambda T(x_2) \right), \\ &= \widetilde{T}^{-1} (T(x_1 + \lambda x_2)), \\ &= \widetilde{T}^{-1} (\widetilde{T} ((x_1 + \lambda x_2) + K), \\ &= (x_1 + \lambda x_2) + K, \\ &= (x_1 + K) + \lambda (x_2 + K), \\ &= \widetilde{T}^{-1} (y_1) + \lambda \widetilde{T}^{-1} (y_2). \end{split}$$

Y veamos que la hipótesis faltante nos da la continuidad, ya que si suponemos $\widetilde{T}^{-1}(y)=x+K,$ entonces

$$\begin{split} \left\| \widetilde{T}^{-1}(y) \right\|_{E/K} &= \|x + K\|_{E/K} \,, \\ &\leq \|x\|_E \,, \\ &\leq \frac{1}{c} \, \|T(x)\|_F \,, \\ &\leq \frac{1}{c} \, \|y\|_{R(T)} \,. \end{split}$$

Luego podemos afirmar que $\widetilde{T}^{-1} \in L(R(T), E/K)$ y por ende es un isomorfismo.

Problema 4:

Considere los espacios C([0,1]) y $C^1([0,1])$ ambos equipados con la norma del supremo $\|f\|_{L^\infty} = \sup_{x \in [0,1]} |f(x)|$. Definimos el operador derivada $D: C^1([0,1]) \to C([0,1])$ dado por $f \to f'$. Muestre que D es un operador no acotado, pero su gráfico G(D) es cerrado.

Solución:

Solución.