$$\alpha(x) = \begin{cases} x \\ \frac{1}{1+e^{-kx}} \\ \frac{e^x - e^{-x}}{e^x + e^{-x}} \end{cases}$$

$$\langle x \rangle$$

$$\chi_{\rho}(ghg^{-1}) = \operatorname{Tr}(\rho_{ghg^{-1}}) = \operatorname{Tr}(\rho_{g} \circ \rho_{h} \circ \rho_{g}^{-1}) = \operatorname{Tr}(\rho_{h}) \stackrel{\operatorname{Tr}(AB) = \operatorname{Tr}(BA)}{=} \chi_{\rho}(h) \oplus_{x \in X}$$

$$\operatorname{Mat}(\rho_{g}) = (a_{ij}(g))_{\substack{1 \leq i \leq d \\ 1 \leq j \leq d}} \text{ et } \operatorname{Mat}(\rho'_{g}) = (a'_{ij}(g))_{\substack{1 \leq i' \leq d' \\ 1 \leq j' \leq d'}}$$

$$\int_{a}^{b} \mathbb{R}^2 g(u, v) \, \mathrm{d}P_{XY}(u, v) = \iint_{x \to \infty} g(u, v) f_{XY}(u, v) \mathrm{d}\lambda(u) \mathrm{d}\lambda(v)$$

$$\lim_{x \to \infty} f(x)$$

$$\iiint_{V} \mu(t, u, v, w) \, dt \, du \, dv \, dw$$

$$\sum_{1 \leq i \leq d} \sum_{j = 1}^{n} e^{-jt} = 1$$

Typesetting test $\sum_{i}^{n} \neq 60 \pm \infty \pi \triangle \neg \approx \sqrt{j} \int h \leq \ge$

Définition 1. Si X et Y sont 2 v.a. ou definit la COVARIANCE entre X et Y comme $\text{Cov}(X,Y) \stackrel{\text{def}}{=} \mathbb{E}\left[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$.

Chapitre 1

Base de Probablite

1.1 Espase Probabilisé

Soit Ω est Univers (est random ensemble).

Définition 2 (σ - algebra). La famille des ensembles \mathcal{A} s'appelle σ -ALGEBRA si :

- 1. $\Omega \in \mathcal{A}$
- 2. Pour tout $A \in \mathcal{A}, A^c \in \mathcal{A} \ (A^C = \bar{A})$
- 3. Si $\{A_k\}_{k=1}^{\infty} \in \mathcal{A}: \cup_{k=1}^{\infty} A_k \in \mathcal{A}$

Définition 3 (Probabilité).

- 1. $\mathbb{P}(\Omega) = 1$
- 2. Si $\{A_k\}_k^{\infty}$ disjoint (pour tout $i \neq j$: $A_i \cup A_j = \emptyset$):

$$\mathbb{P}(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mathbb{P}(A_k)$$

Espasce probabilisable ($\underbrace{\Omega}_{\text{univers}}$, $\underbrace{\mathcal{A}}_{\text{tribu}}$).

Espase probabillisé $(\Omega, \mathcal{A}, \mathbb{P})$.

VARIABLE ALÉATOIRE (random variable) est fonction measurable X:

$$X:\Omega\to\mathbb{R}$$

Soit Ω un ensemble. Soit $\mathcal F$ un famille d'ensembles de Ω , qui n'est pas forcément une σ -algèbre.

Définition 4. On appelle σ -algèbre engendrée par \mathcal{F} , dénotée $\sigma(\mathcal{F})$ la plus petite σ -algèbre que contient \mathcal{F} .

Définition 5. Borel (\mathcal{B}) est la σ -algebre engendrée par les intervalles ouvertes de \mathbb{R} c'est-â-dire de la forme $(a, b), |a|, |b| < \infty$ (famile \mathcal{F}_0).

 ∞ (famile \mathcal{F}_{FN}). Remarque. $\sigma(\mathcal{F}_0) = \sigma(\mathcal{F}_{FN})$

On dit Borel (\mathcal{B}) est aussi σ -algebre engendrée par des intervalles de la forme $(-\infty, |a|], |a| < 1$

Proposition 1. Pour verifier la measurable il suffit de la tester sur une famille qui engendrée la σ -algèbre de Borele.

Exercice. (simple mais important)

Soit Ω un ensemble. $\mathcal{P}=\{P_1,\ P_2,\dots,\ P_k\}$ est une partition finit de Ω , c'est-â-dire $\bigcup_{j=1}^k P_j=\Omega$ et $P_\alpha\cap P_\beta=\varnothing$.

1. Trouve $\sigma(\mathcal{P})$. Réponse :

 $\sigma(\mathcal{P})$ contient tout reunion d'éléments \mathcal{P} .

(En partiqulier si $A \in \sigma(\mathcal{P}) : A = \bigcup_{k=1}^{l} P_{i_k}$)

2. Trouve comment sont faites les v.a. par rapport â $\sigma \mathcal{P}$.

Réponse :

Consider $\Omega = \mathbb{R}$. $X(\omega) = \alpha$. α est l'image ω . Le point α est aussi un ensemble, qu'on denote $\{\alpha\}$: "singlitore" qui est un borelien. Car X est measurable par rapport $\hat{a} \ \sigma(\mathcal{P}), X^{-1}(\{\alpha\}) = \cup P_{i_k}$.

Une function measurable pour rapport à $\sigma(\mathcal{P})$ est constante par morceaux sr les éléments de la partition.

On replace X avec autre object qui "approxime" X est measurable par rapport â $\sigma(\mathcal{P})$.

Espace probabilisé (Ω , \mathcal{A} , \mathbb{P}). $X:\Omega \to \mathbb{R}$, X est v.a.

Loi de X on définir un mesure de probabilite sur $(\mathbb{R}, \mathcal{B})$ de la manière suivante si $(\mathbb{R}, \mathcal{B}, P_{\mathbb{R}}(P)) = \mathbb{P}(X^{-1}(P))$

 $B \in \mathcal{B}: P_X(B) = \mathbb{P}(X^{-1}(B)).$

On appelle P_X de LA LOI DE X.

 $X: \Omega \to \mathbb{R}$ On pourra écrite X de la maniere suivante : $X(\omega) = \sum_{k=1}^{\infty} x_k \mathbb{1}_{A_k}(\omega)$, $A_k = \{\omega \mid X(\omega) \in A_k\}$. Calculer P_X (la loi de X) :

Si $B \in \mathcal{F}$, $P_X(B) = \mathbb{P}(X^{-1}(B))$.

On appelle D l'ensemble valeur de $X: D = \{x_1, X_2, \dots x_k \dots\}$.

 $P_X(B) = P_X(B \cap D) = P_X(B \cap \bigcup_{k=1}^{\infty} \{x_k\}) = P_X(\bigcup_{k=1}^{\infty} (B \cap \{x_k\})) = \sum_{k=1}^{\infty} P_X(B \cap \{x_k\}) = \sum_{k=1}^{\infty} P(X = x_k) \delta_{\{x_k\}}(B) = \sum_{k=1}^{\infty} p_k \delta_{\{x_k\}}(B)$

$$\delta_a(B) = \begin{cases} 1 & \text{si } a \in B \\ 0 & \text{si } a \notin B \end{cases}$$

On introduit la measure de Dirrac :

$$X = \sum_{k=1}^{\infty} x_k \mathbb{1}_{A_k}$$

$$P_x = \sum_{k=1}^{\infty} p_k \delta_{\{x_k\}}$$

$$P_x = \mathbb{P}(A_k)$$
v.a. discrete

Exemple. (v.a. discrete)

1. B(n, p) binomiale Valeurs : $X = \{0, 1, ... n\}$.

$$P_k = \mathbb{P}(X = k) = C_n^k p^k (1 - p)^{n-k}, \ i \in \{0, \dots, n\}$$

2. Poisson $P(\lambda)$. Valeurs $X = \{0, 1, 2, ...\}$ - dénombrable.

$$P_X(\{k\}) = \mathbb{P}(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$$

Rappel. $X:\Omega \to \mathbb{R}$ est une variable aléatoire

 $\mathbb{E}(X) = \int_{\Omega} X(\omega) \, d\mathbb{P}(\omega) - esperance, \, \mathbb{V}(X) = \mathbb{E}[[X - \mathbb{E}(X)]^2] - variance.$

Supposons $\mathbb{E}(X) = 0 \Rightarrow \mathbb{V}(X) = \mathbb{E}(X^2)$.

$$g(t) = t^2$$
, $g \circ X = X^2$. Si $g \circ X = X \circ g$, g — identité.

Rappel. Variable aléatoire à valeurs réelle : $X : \Omega - > \mathbb{R}$. Loi de X : une measure de probabilité sur \mathbb{R} $P_X(B) = \mathbb{P}(X^{-1}(B)), B \in \mathcal{B}$.

Theorem 1. Soit $X: \Omega - > \mathbb{R}$ une v.a. sur l'espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ et soit $g: \mathbb{R} - > \mathbb{R}$ une fonction mesurable. si l'intégrale $\int_{\Omega} g \circ X d\mathbb{P}$ existe on a

$$\int_{\Omega} g(X(\omega)) d\mathbb{P}(\omega) = \int_{\mathbb{R}} g(t) dP_X(t)$$

Exemple 1.1.1. Supposons que X est discrète... P1/2

Définition 6. $X: \Omega - > \mathbb{R}$ v.a.

$$F(t) := \mathbb{P}(X \le t) = \mathbb{P}(\omega : X(\omega) \le t) = P_X((-\infty, t])$$

Proposition 2. Toute fonction de repartition F vérifie les propriétés suivantes :

- 1. F est non-negative et croissante.
- 2. F est continue à droite.
- 3. F est discontinue dans plus un nombre dénombrée de point.

4.
$$\begin{cases} \lim_{t \to +\infty} F(t) = 1\\ \lim_{t \to -\infty} F(t) = 0 \end{cases}$$

1.1.1 Rappel de Th. de la measure

Soit F une fonction croissante réelle positive (en particulier F est la fonction de repartition d'une v.a.).

Ou définit une fonction d'ensemble sur \mathbb{R} :

$$\tilde{F}((a,b]) = F(b) - F(a) \tag{*}$$

Il y a un théorème de théorie de la measure que dit que la fonction d'ensemble \tilde{F} défini sur la famille $\{[a,b]\}$ peut s'étendre à une measure sur la σ -algebra engendrée par cette famille $(\mathcal{B}$ — Borel) et la restriction de cette mesure sur la famille $\{[a,b]\}$ vérifie l'égalité (??).

Cette measure est appelle la mesure le LEBÉSGUE-STILTYES. $F(t) = \mathbb{P}(X \leq t)$.

1.2 Indépendances

A, B deux événements (c'est-à-dire $A, B \in \mathcal{A}$).

Définition 7. On dira que A et B sont INDÉPENDANTS si

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

Définition 8. On appelle σ -algèbre engendrée par une variable aléatoire X, $\sigma(X)$ la plus petite σ -algèbre pour rapport à la quelle X est mesurable.

Proposition 3. $\sigma(X) = \{X^{-1}(B) \mid B \in \mathcal{B}\}\$

Définition 9. Deux v.a. X et Y définies sur le même espace $(\Omega, \mathcal{A}, \mathbb{P})$ sont l'indépendantes si $\sigma(X)$ et $\sigma(Y)$ sont indépendantes.

On appelle σ -algèbre engendrée par une variable aléatoire X, $\sigma(X)$ la plus petite σ -algèbre pour rapport à la quelle X est mesurable.

Si X et Y sont indépendantes si

$$P_{XY}(X \in A, Y \in B) = P_X(A)P_Y(B)$$

Produit direct de deux mesure? Considéré $S=S_1\times S_2$. Di ou construit l'espace mesurable $(S_1\times S_2,\ \mathcal{A}_1\times \mathcal{A}_2)$. Il existe une seule mesure $\bar{\mu}$ telle que :

$$\bar{\mu}(A_1 \times A_2) = \mu_1(A_1) \cdot \mu_2 A_2$$

Cette mesure $\bar{\mu}$ est le produit direct de μ_1 et μ_1 , dénote $\bar{\mu} = \mu_1 \times \mu_1$.

Theorem 2. Deux variables aléatoire X et Y sont indépendantes ssi la loi conjointe coïncide avec le produit direct des lois marginales. C'est- \hat{a} -dire :

$$P_{XY} = P_X \times P_Y$$

Ex

$$\int_{\mathbb{R}} f(t, u) \, dP_{XY}(t, u) \mu$$

On a besoin d'une autre quantité; fonction de répartition de deux variables.

Définition 10. Si X et Y sont 2 v.a. ou définit

$$F_{xy}(u, v) = \mathbb{P}(X \le u, Y \le v)$$

Proposition 4. Si ou connaît la fonction de répartition du couple (X, Y) on peut calculer les fonctions de répartition marginales

$$F_X(u) = \lim_{v \to +\infty} F_{XY}(u, v)$$

$$F_Y(v) = \lim_{u \to +\infty} F_{XY}(u, v)$$

Démonstration. $F_X(u) = \mathbb{P}(X \leq u) = P_X((-\infty, u])$. Utilise $\mathbb{R} = \bigcup_{k=1}^{\infty} (-\infty, k] \ (-\infty, k)$ est croissant. $\mathbb{P}(X \leq u) = \mathbb{P}(X \leq u, Y \in \mathbb{R}) = \mathbb{P}(X \leq u, Y \in \bigcup_{k=1}^{\infty} (-\infty, k])$. $F_X(u) = \mathbb{P}(X \leq u) = P_X((-\infty, u])$.

Proposition 5. Si X est Y sont indépendant v.a. donc $F_{XY}(u, v) = F_x(U)F_Y(V)$

$$D\acute{e}monstration....$$

Proposition 6. Si on $a: F_{XY} = (u, v) = F_X(u)F_Y(v)$ cest-a que X et Y sont indépendante ? Oui.

Démonstration.

$$P_{XY}(X \le u, Y \le v) = P_X(X \le u)P_Y(Y \le u)$$

la borelien de la forme $\{(-\infty, u], |u| < \infty\}$ vérifier le propriété de l'intersection firme.

Définition 11. La mesure de lebegue dans \mathbb{R}^2 est la mesure produit direct des mesure des lebesgue dans \mathbb{R} .

Convention $\int f d\lambda(x) = \int f dx$.

Définition 12. Un couple de v.a (X,Y) a une loi conjointe P_{XY} a density si pour toute borelie $B \in \mathcal{B}^{(2)}$ (σ -algèbre produite), on a

$$P_{XY}(B) = \iint_{B} f_{XY}(u, v) \, d\lambda(u) \, d\lambda(v)$$

. En particulier s ou a $g(u,v) \in L^1(P_{XY})$ on a :

$$\iint\limits_{\mathbb{R}^2} g(u,v) \, dP_{XY}(u,v) = \iint g(u,v) f_{XY}(u,v) \, d\lambda(u) \, d\lambda(v)$$

Questions

- 1. Donner les proprettes de f_{XY} quand X et Y sont indépendants.
- 2. Si on connait $F_{XY}(u,v)$ est-ce qu'on peut calculer les marginales $f_X(u)$, f_Yv ?

Proposition 7 (générale). Si on connait $f_{XY}(u,v)$ on a: $\begin{cases} f_X(u) = \int_{\mathbb{R}} F_{XY}(u,v) dv \\ f_X(v) = \int_{\mathbb{R}} F_{XY}(u,v) du \end{cases}$

Démonstration.
$$F_X(t) = \lim_{r \to \infty} F_{XY}(t,r) = |$$

$$F_{XY}(t,r) = \mathbb{P}(X \leq t, Y \leq r) = P_{XY}((-\infty,t] \times (-\infty,r]) = \int_{-\infty}^{t} \int_{-\infty}^{r} d\lambda(u) \, d\lambda(v) = F_{XY}(t,r)$$

$$|=|\lim_{r\to\infty}\iint_{-\infty-\infty}^t f_{XY}(u,v)\,d\lambda(u)\,d\lambda(v)=\lim_{r\to\infty}\iint_{-\infty-\infty}^t f_{XY}(u,v)\mathbb{1}(u)\mathbb{1}(v)\,d\lambda(u)\,d\lambda(v)=$$
 | Par Fubini ou sont étirer les intégrales : |

Frair Fubilit out sont either less integrates:
$$= \lim_{r \to \infty} \int_{\mathbb{R}} du \int_{\mathbb{R}} dv \mathbb{1}(u) \mathbb{1}(v) f_{XY}(u,v) = \lim_{r \to \infty} \int_{-\infty}^{t} du \int_{-\infty}^{r} dv f_{XY}(u,v) = |\text{B. Levi}| == \int_{\mathbb{R}} du \lim_{r \to \infty} \int_{\mathbb{R}} dv \mathbb{1}(u) \mathbb{1} f_{XY}(u,v) F_{X}(t) = \int_{\mathbb{R}} du \int_{\mathbb{R}} dv \mathbb{1}(u) \mathbb{1} f_{XY}(u,v).$$

Si
$$X$$
 est à densité $F_X(T) = \int_{-\infty}^{t} f_X(u) du$.

Question (Indépendantes et densités)

Proposition 8. Ou a deux parties.

- 1. Si 2 v.a. X et Y admettait, des densités f_X et f_Y admettent des densités f_X et f_y et X et Y sont indépendantes, alors le couple (X, Y) admet une loi conjointe a densité et $f_{XY} = f_X f_Y$.
- 2. Si le couple (X, Y) admet une densité f_{XY} produit de deux fonctions intégrable f_1 et f_2 alors f_1 et f_2 sont les dentistes (à une constant pvit) de X et Y et X et Y sont indépendantes.

Exercice On a un couple de v.a. (X,Y) à valeurs dans \mathbb{R}^2 de loi conjointe :

$$P_{(XY)}(B) = \sum_{l=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{2^{k+l}} \delta_{\{k,l\}}(B)$$

Determiner la loi de $Z = \sup\{X, Y\}$.

1. question. Déterminer P_X , P_Y oui $P_X(X=k)$. Si X et Y sont discrète $\mathbb{P}(X=k)=\sum_{i}\mathbb{P}(X=k,\ Y=j)$.

$$P_X(\{x\} = \sum_{j} P_{XY}(\{k, j\})$$

$$\mathbb{P}(X = k) = P_X(\{k\}) = \sum_{i=1}^{\infty} \frac{1}{2^{k+j}}$$

$$\mathbb{P}(Z \le k) = \mathbb{P}(X \le k, Y \le k) = \int \mathbb{1}_{[0,k]^2}(X,Y) \, d\mathbb{P} = \iint \mathbb{1}_{[0,k]^2} \, dP_{XY}(u,v) = \sum_{k=1}^{\infty} \frac{1}{2^{i+l}} \mathbb{1}_{[1,k]^2}(i,l) = \sum_{k=1}^{k} \sum_{l=1}^{k} \frac{1}{2^{i+l}}$$

1.3 Leçon 4

Il fallait montrer que si les variables aléatoires (X_1, X_2) ont une densité $f_{X_1X_2}$ produit direct de deux fonctions f_1 et f_2 , alors a une constante près, f_1 et f_2 sont le densité de X_1 et X_2 et ces deux variables sont indépendantes.

L'autre partie (exercice),

Si X_1 et X_2 sont indépendant de densités respectives f_{X_1} et f_{X_2} , alors le vecteur $(X_1,\ X_2)$ a densité : $f_{X_1X_2}=f_{X_1}f_{X_2}$.

 $D\acute{e}monstration.$ Par Hyp : $f_{X_1X_2}(u,v)=f_{X_1}(u)f_{X_2}(v).$ D'art- cette on sait que en général :

$$f_{X_1}(u) = \int_{\mathbb{R}} f_{X_1 X_2}(u, v) \, d\lambda v$$
$$f_{X_2}(v) = \int_{\mathbb{R}} f_{X_1 X_2}(u, v) \, d\lambda u$$

Objectif : Montrer que, a une constante près $f_1=f_{X_1},\, f_2=f_{X_2}.$ On observe que :

$$f_{X_1}(u) = \int_{\mathbb{R}} f_{X_1 X_2}(u, v) \, dv = f_1(u) \int_{\mathbb{R}} f_2(v) \, dv$$
$$f_{X_2}(v) = \int_{\mathbb{R}} f_{X_1 X_2}(u, v) \, du = f_1(v) \int_{\mathbb{R}} f_1(u) \, du$$

On multiple les deux expressions :

$$f_{X_1}(u)f_{X_2}(v) = f_1(u)f_2(v) \int_{\mathbb{R}} f_2(v) \, dv \int_{\mathbb{R}} f_1(u) \, du = f_1(u)f_2(v) \iint_{\mathbb{R} \times \mathbb{R}} f_2(v)f_1(u) \, du \, dv$$

Donc on a montré que $f_1(u)f_2(v) = f_{X_1}(u)f_{X_2}(v)$.

Remarque. À des constants prés on pourra identifier f_{X_1} avec f_1 et f_{X_2} avec f_2 . Pour terminer : La loi du couple (X_1, X_2) $P_{X_1X_2}$ on soit que peut l'écrire.

Notation, Si on a une mesure P avec densité f on l'écrira comme ça : P = f dx, $P(A) = \int_A f dx$. $\int g df = \int g f dx$.

$$P_{X_1X_2} = f_{X_1X_2}(u, v) \, d\lambda u \, d\lambda v = f_1(u) f_2(v) \, d\lambda u \, d\lambda v = f_{X_1}(u) f_{X_2}(v) \, d\lambda u \, d\lambda v = P_{X_1} \otimes P_{X_2}$$
(product direct des lois marginales)

Proposition 9. Si X_1 et X_2 sont deux v.a., le trois assertions suivantes sont équivalentes :

- 1. X_1 et X_2 sont indépendantes
- 2. \forall fonctions g_1 et g_2 réels et positive on a:

$$\int g_1 \circ X_1 \cdot g_2 \circ X_2 \, \mathrm{d}\mathbb{P} = \int g_1 \circ X_1 \, \mathrm{d}\mathbb{P} \int g_2 \circ X_2 \, \mathrm{d}\mathbb{P}$$

3. Pur tout fonctions réels bornées, g_1 et g_2 on a:

$$\int g_1 \circ X_1 \cdot g_2 \circ X_2 \, \mathrm{d}\mathbb{P} = \int g_1 \circ X_1 d\mathbb{P} \int g_2 \circ X_2 \, \mathrm{d}\mathbb{P}$$

Applications. Supposons que g_1 et g_2 sont l'identité et que X_1 et X_2 sont indépendantes :

$$\mathbb{E}(X_1 \cdot X_2) = \mathbb{E}(X_1) \times \mathbb{E}(X_2)$$
$$\int 1 \circ X_1 \cdot 2 \circ X_2 \, d\mathbb{P} = \int 1 \circ X_1 d\mathbb{P} \int 1 \circ X_2 \, d\mathbb{P}$$

!?

Exemple 1.3.1.
$$X_1$$
 et X_2 indépendant $\int X_1^2 \sin X_2 d\mathbb{P} = \int X_1^2 d\mathbb{P} \int \sin X_2 d\mathbb{P}$.

Démonstration. (Idée)

Remarque. Si x_1 et X_2 sont indépendants : $\mathbb{V}(X_1 + X_2) = \mathbb{V}(X_1) + \mathbb{V}(X_2)$. $\mathbb{E}([(X_1 = X_2) - (X_1 + X_2)]^2)$ On développe ce carré.

Exemple 1.3.2. Sur l'espace probabilité $(\omega, \mathcal{A}, \mathbb{P})$ on considère le couple (X, Y) ave loi conjomte- P_{XY} à densité

$$f_{XY}(u,v) = \alpha(1-u^2) \mathbf{1}_{[0,1)}(u) v e^{-3v} \mathbf{1}_{(0,+\infty)}$$

- 1. déterminer le valeur de α
- 2. déterminer la lois marginales.

Exemple 1.3.3. Sur l'espace $(\Omega, \mathcal{A}, \mathbb{P})$ ou le vecteur aléatoire (X, Y)de loi

$$P_{XY} = \alpha(\mu_1 + \mu_2 + \mu_3)$$

où α est un paramètre et μ est une mesure à densité avec densité :

$$f_1(u,v) = \frac{1}{u^2} e^{-v} \mathbf{1}_{[1,+\infty)}(u) \mathbf{1}_{[0,+\infty)}(v)$$

 μ_2 : mesure uniformément distribuée sur $[0,1]\times[0,1].$ $\mu_3=\delta_{\{1,1\}}+$ $\delta_{\{-1,2\}}.$ Déterminer α et le lois marginales de X et de Y. Est que X et Y sont indépendantes?

Exercice 1. Soit (X,Y) un vecteur aléatoire à valeurs dans \mathbb{R}^2 .

1. suppose que le loi du couple (X,Y) est connue :

$$d_{XY}(u,v) = \lambda \rho e^{-\lambda u - \rho v} \mathbf{1}_{\mathbb{R}^2_+}(u,v) \, \mathrm{d}u \, \mathrm{d}v$$

Déterminer la loi de la v.a. $W = \min\{X, Y\}$

Deux méthodes (équivalentes). 1ère méthode :
$$F_W(t) = \mathbb{P}(W \le t) = 1 - \mathbb{P}(W > t) = 1 - \mathbb{P}(X > t, Y > t) = 1 - \int\limits_{\Omega} \mathbb{1}_{(t, +\infty)} X \cdot \mathbb{1}_{(t, +\infty)} Y \, \mathrm{d}\mathbb{P} = \int\limits_{\mathbb{R} \times \mathbb{R}} \mathbb{1}_{(t, +\infty) \times (t, +\infty)} \, \mathrm{d}P_{XY}(u, v)$$

$$\iint_{\mathbb{R}\times\mathbb{R}} \mathbb{1}_{(t,+\infty)\times(t,+\infty)} \lambda \rho e^{-\lambda u} e^{-\rho v} du dv, \quad t \geq 0 = 1 - \int_{t}^{\infty} du \int_{t}^{\infty} dv \, \lambda \rho e^{-\lambda u} e^{-\rho v} = 1 - \lambda \int_{t}^{\infty} e^{-\lambda} du \, \rho \int_{t}^{\infty} e^{-\rho v} dv = [1 - e^{-(\lambda - \rho)t}] \mathbb{1}_{[0,\infty]}(t).$$

On sait que:

$$F_W(t) = \int_{-\infty}^t f_W(s) \, \mathrm{d}s.$$

Si on connait f_X , ou peut calculer F_W ?

F—distribution function (function de repartition).

f—probability density function (fonction de densité).

 $F'_W(t) = (\lambda + \rho)e^{-(\lambda + \rho)t}$ Mais $F'_W = (\lambda + \rho)$ from +, but 0 from -0.

Il v a 2 cas:

(i)
$$t \in (-\infty, 0)$$
 $F_W(t) = 0 \Rightarrow f_W(t) = 0$

(ii)
$$t \ge 0 \ [1 - e^{(\lambda + \rho)t}] = \int_{\infty}^{t} f_W(s) \, ds$$

Est-ce que X et Y sont indépendantes? Yes. $f_X \cdot f_Y$.

Méthode tris générale pour construire des variables aléatoires.

On construit une nouvelle v.a. $g \circ X = Y$. Question Si on connaît la loi de X, peut on calculer la loi de Y? Ex X a nue loi $\exp: f_X(u) = \lambda e^{-\lambda u}$; calcules la loi de $\sqrt[2]{X} = Y$.

Chourinevousm- une fonction test non-négative $h: \mathbb{R} \to \mathbb{R}_+$ et ou eousitere-:

$$\mathbb{E}(h\circ Y) = \int_{\Omega} h\circ Y\,\mathrm{d}\mathbb{P} = \int_{\Omega} h\circ g\circ X\,\mathrm{d}P$$

$$\int_{\Omega} h \circ Y \, d\mathbb{P} = \int_{\mathbb{R}} h(v) f_Y(v) \, dv$$

 $u(\omega) = q_2(X(\omega), Y(\omega))$

 $==\int_{\mathbb{R}} h(g(u)) dP_X(u) = \int_{\mathbb{R}} h(g(u)) f_x(u) du$

 $\mathbb{E}(h(W)) \stackrel{\text{\tiny si on l'est, comme ca}}{=} \int_{\mathbb{R}} h(y) f_W(y) \, \mathrm{d}y, \ f_W \ \text{la densit\'e de W. h -fonction test.}$ $\mathbb{E}(h(W)) = \int_{\Omega} h \circ W \, \mathrm{d}\mathbb{P} = \int_{\Omega} h \circ \min(X, Y) \, \mathrm{d}\mathbb{P} = \iint_{\mathbb{R} \times \mathbb{R}} h(\min(u, v)) \lambda e^{-\lambda u} \rho e^{-\rho v} \, \mathrm{d}u \, \mathrm{d}v = \int_{\Omega} h \circ \min(X, Y) \, \mathrm{d}\mathbb{P} = \iint_{\mathbb{R} \times \mathbb{R}} h(\min(u, v)) \lambda e^{-\lambda u} \rho e^{-\rho v} \, \mathrm{d}u \, \mathrm{d}v = \int_{\Omega} h \circ \min(X, Y) \, \mathrm{d}\mathbb{P}$ $\iint h(u)\lambda e^{-\lambda u}\rho e^{-\rho v} du dv + \iint h(u)\lambda e^{-\lambda u}\rho e^{-\rho v} du dv = \int_0^{+\infty} h(u)e^{-(\lambda+\rho)u}(u) du = \int_0^{+\infty} h(u)e^{-(\lambda+\rho)u}(u)$

On a: $\int_{\mathbb{R}} h(g(u)) f_X(u) d(u) = (\text{Particular case}) = \lambda \int_{\mathbb{R}} h(\sqrt{u}) e^{-\lambda u} du$

2.

On a un vecteur aléatoire (X,Y) a valeurs dans \mathbb{R}^2 , avec loi :

Loi de $Y = \sqrt{X}$ est : $f_Y(v) = 2\lambda v e^{-\lambda v^2} \mathbb{1}_{[0,+\infty)}(v)$.

On a un vecteur aleatoire
$$(X, Y)$$
 a valeurs dans \mathbb{R}^2 , avec lo

 $f_{XY}(u,v) = \frac{1}{4\pi} e^{-\frac{u}{2}} \mathbf{1}_{\{u \ge 0\}} \mathbf{1}_{[0,2\pi]}$

Déterminer loi du vecteur aléatoire
$$(\sqrt{X}\cos Y, \sqrt{X}\sin Y)$$
.

 $\omega \to (X(\omega), Y(\omega))$

$$\omega o (X(\omega), Y(\omega))$$

$$g: \left\{ \begin{array}{lcl} u &=& g_1(x,y) \\ v &=& g_2(x,y) \end{array} \right.$$

 $v(\omega) = q_1(X(\omega), Y(\omega))$

On pose $\sqrt{u} = v \, dv = \frac{1}{2v} \, du$ $==2\lambda \int_0^\infty h(v)e^{-\lambda v^2}v\,\mathrm{d}v.$

U vecteur :
$$(g_1 \circ (X, Y), g_2 \circ (X, Y))$$
.

Test function
$$h, h : \mathbb{R}^2 \to \mathbb{R}$$
.

1.4

 $\int h(\alpha,\beta)f(\alpha,\beta)\,\mathrm{d}\alpha\,\mathrm{d}\beta$

leçon

 $g = (g_1, g_2)$

 ρ) du

(X,Y) 2 v.a. et exulte ou avait une fonction vectorielle $g=(g_1,g_2)$ $g:\mathbb{R}^2\to\mathbb{R}^2$ et on définit 2 nouvelle v.a. U et V de cette façon : $U = g_1 \circ (X, Y), V = g_2 \circ (X, Y)$ et

definit 2 nouvelle v.a.
$$U$$
 et V de cette façon : $U = g_1 \circ (X, Y), V = g_2 \circ (X)$

$$\begin{cases} U(\omega) &= g_1(X(\omega), Y(\omega)) \\ V(\omega) &= g_2(X(\omega), Y(\omega)) \end{cases}, \ \omega \in \Omega \text{ (espace des éléments)}$$

Cas particulier (Exercice) (X, Y) une couple de v.a. de loi cougointe-

 $f_{XY} = \frac{1}{4\pi} e^{-\frac{u}{2}} \mathbf{1}_{u \ge 0}(u) \mathbf{1}_{[0,2\pi]}(v) du dv$

 $(\sqrt{X}\cos Y, \sqrt{X}\sin Y) = (U, V)$

Sait $h: \mathbb{R}^2 \to \mathbb{R}$ une fonction test non-négative.

$$\mathbb{E}(h \circ g(X,Y)) = \int_{\Omega} h \circ g(X,Y) \, d\mathbb{P} = \iint_{\mathbb{P}^2} h(g_1(x,y), g_2(x,y)) f_{XY}(x,y) \, dx \, dy \stackrel{?}{=} \iint_{\mathbb{P}^2} h(u,v) f_{UV}(x,y) \, dx \, dy = 0$$

Question: Trouver la loi du couple:

$$g(X,Y) d\mathbb{P} = \iint\limits_{\mathbb{R}^2} h(g_1(x))$$

$$\begin{cases} u = \sqrt{x} \cos y \\ v = \sqrt{x} \sin y \end{cases}$$

 $g: \left\{ \begin{array}{rcl} u & = & g_1(x,y) \\ v & = & g_2(x,y) \end{array} \right.$ $g=(g_1,g_2)$. Pour pouvoir effectuer un changement de variable, il faut que g soit un

difféomorphisme entre 2 ouverts. $g:\mathcal{O}_1\to\mathcal{O}_2$ difféomorphisme cute deux ouverts. Condition équivalents pour avoir un difféomorphisme:

1. g est injective sur \mathcal{O}_1 à valeurs dans \mathcal{O}_2 . 2. g est de classe $b^{(1)}(\mathcal{O}_1)$, c'est-à dire les deciver- peut eller- de g existe tout caitunes-.

 $g: \left\{ \begin{array}{lcl} u & = & g_1(x,y) & \text{il faut inverser} \\ v & = & g_2(x,y) \end{array} \right.$

3. Le déterminant de $(g^{-1})' \neq 0 \operatorname{sur} \mathcal{O}_2$

Nous son défini

$$g^{-1}: \left\{ \begin{array}{lcl} x & = & \Phi_1(u,v) \\ y & = & \Phi_2(u,v) \end{array} \right.$$

$$\Phi = (\Phi_1, \Phi_2)$$

On construit la invariante Jacobienne (dérives) de $g^{-1} = \Phi$:

$$J_{\Phi}(u,v) = \begin{pmatrix} \frac{\partial \Phi_1}{\partial u} & \frac{\partial \Phi_1}{\partial v} \\ \frac{\partial \Phi_2}{\partial u} & \frac{\partial \Phi_2}{\partial v} \end{pmatrix}$$
$$|\det J_{\Phi}(u,v)|$$

 $= \iint h(u,v)f_{XY}(\Phi_1(u,v),\Phi_2(u,v))|\det J_{\Phi}(u,v)|\,\mathrm{d}u\,\mathrm{d}v$

Trouve le nouvelle domaine d'intégration.

La densité de (U, V) est donc :

La densite de
$$(U,V)$$
 est donc :

 $q(O_1)=O_2$

Continue with exercice:

Continue with exercice:
$$\iint_{-\infty}^{\infty} \frac{2\pi}{r} h(\sqrt{r}\cos u, \sqrt{r}\sin u) \frac{1}{r} e^{-\frac{\pi}{2}} dr du =$$

 $\iint_{0}^{\infty} \frac{2\pi}{0} h(\sqrt{x}\cos y, \sqrt{x}\sin y) \frac{1}{4\pi} e^{-\frac{x}{2}} dx dy =$

$$g: \begin{cases} u = \sqrt{x} \cos y \\ v = \sqrt{x} \sin y \end{cases}$$

 $f_{UV}(u,v) = f_{XY}(\Phi_1(u,v),\Phi_2(u,v)) \cdot |\det J_{\Phi}(u,v)| \cdot \mathbf{1}_{g(\mathcal{O}_1)}(u,v)$

 $\Rightarrow \Phi : \left\{ \begin{array}{rcl} x & = & u^2 + v^2 \\ y & = & \arctan\left(\frac{v}{u}\right) \end{array} \right.$

$$\operatorname{ctan}\left(\frac{v}{u}\right)$$

$$= \iint\limits_{\mathbb{R}\times\mathbb{R}} du \,dv \,h(u,v) \,\frac{1}{4\pi} e^{\frac{-(u^2+v^2)}{2}} \cdot |\det J_{\Phi}(u,v)|$$

$$J_{\Phi}(u,v) = \begin{pmatrix} 2u & 2v \\ \frac{-v}{u^2 + v^2} & \frac{u}{u^2 + v^2} \end{pmatrix}$$

$$\det J_{\Phi}(u,v) = \frac{2u^2}{u^2 + v^2} + \frac{2v^2}{u^2 + v^2} = 2$$

— U et V sont indépendant? Oui car $f=f_1\cdot f_2$ — Lui de U et $V:\frac{1}{\sqrt{2\pi}}e^{\frac{-(u^2+v^2)}{2}}$ et $\frac{1}{\sqrt{2\pi}}e^{\frac{-(u^2+v^2)}{2}}$

Exercice Soit (X,Y) une vecteur aléatoire de loi $f_{XY}(x,y)=\frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}$. Calculer la loi de (X + Y, Y). Objectif calcul la lui de la somme.

 $\iint_{\mathbb{R}^{3}} h(x+y,y) \frac{1}{2\pi} e^{-\frac{x^{2}+y^{2}}{2}} dxdy$

$$g: \left\{ egin{array}{ll} u &= g_1(x,y) &= x+y \ v &= g_2(x,y) &= y \end{array}
ight. \ \Phi: \left\{ egin{array}{ll} x &= u-v \ y &= v \end{array}
ight. \ \left| \det J_{\Phi}(u,v)
ight| = 1 \ = \iint_{\mathbb{R}^n \setminus \mathbb{R}^n} h(u,v) rac{1}{2\pi} e^{-rac{(u-v)^2+v^2}{2}} \mathrm{d}u \mathrm{d}v \end{array}
ight.$$

Densité de (X+Y,Y) est $\frac{1}{2\pi}e^{-\frac{u^2-2uv+2v^2}{2}}.$ Densité de (X+Y) :

$$f_U(u) = \int_{-\infty}^{\infty} f_{UV}(u, v) dv = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(u^2 - 2uv + 2v^2)} dv$$

—produit de convolution.

Question:

Si X et Y sont indépendant de loi marginal f_X et f_Y alors la v.a. X+Y est à densité est $f_{X+Y}(u) = \int_{\mathbb{R}} f_Y(u) \cdot f_X(u-v) dv \stackrel{\text{def}}{=} f_Y * f_X$ —produit de convolution.

Exercice 2. Soit (U,V) un couple de variables aléatoires de densité conjointe :

$$f_{UV}(u,v) = \begin{cases} \gamma(2u^2v+1), (v,v) \in D \\ 0, \text{ ailleurs} \end{cases}$$

où $D = \{(u, v) \in \mathbb{R}^2 \mid |u| < 1, |u - 1| < 1\}.$

Questions.

1. déterminer la valeur de γ

- 2. déterminer si (U, V) sont indépendantes
- 3. déterminer si (U, V) sont corrélées
- 4. déterminer la loi du couple (A, B): où $A = U \cdot V$, B = V
- h: function test: $\int h(A,B) d\mathbb{P} = \int h(U \cdot V,V) d\mathbb{P} = \iint_{D} h(uv,v) f_{UV}(u,v) du dv =$ $\iint_{D'} h(a,b) f(...) dadb$

$$J_{g^{-1}}(a,b)=egin{pmatrix} rac{1}{b} & -rac{a}{b^2} \ 0 & 1 \end{pmatrix}$$

$$g: \left\{ \begin{array}{ll} a=uv \\ b=v \end{array} \right. \ g^{-1}: \left\{ \begin{array}{ll} u=\frac{a}{b} \\ v=b \end{array} \right.$$

 $|\det J_{g^{-1}}| = \frac{1}{b} = \frac{3}{20} \iint_{D'=g(D)} h(a,b) (2\frac{a^2}{b} + 1) \frac{1}{b} \mathrm{d}a \mathrm{d}b => f_{AB}(a,b) = \frac{3}{20} (2\frac{a^2}{b} + 1) \frac{1}{b} {1\!\!1}_{D'}(a,b)$ Draw $D' = g(D) = \{(a,b), b \in [0,2] - b < a < b\}$ Is it difféomorphisme? Yes, car ...

Définition 13. Si X et Y sont 2 v.a. ou définit la COVARIANCE entre X et Y comme $\text{Cov}(X,Y) \stackrel{\text{def}}{=} \mathbb{E}\left[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$.

Exercice 3. Soit X une v.a. de loi N(0,1) et Y une v.a. discrète de loi $\frac{1}{2}\{\delta_{(-1)}+\delta_1\}$ indépendante de X.

- Montrer que la loi de $Z = X \cdot Y$ est N(0,1)
- Montrer que (X, Z) ne sont pas corrélées
- Calculer $\mathbb{E}(X^2Z^2)$
- Déterminer si (X, Z) sont indépendantes

Loi de \mathbb{Z} .

$$F(t) = \mathbb{P}(Z \le t) = \int_{\mathbb{R}} \mathbb{1}_{\{x \cdot y \le t\}}(x \cdot y) \, dP_{XY}(x, y) \stackrel{ind pendantes}{=} \int \int \mathbb{1}_{\{x \cdot y \le t\}}(x \cdot y) \, dP_Y \, dP_X$$

$$= \int dP_X \left(\frac{1}{2} \mathbb{1}_{-x \le t}(-x) + \frac{1}{2} \mathbb{1}_{+x \le t}(x) \right) = \frac{1}{\sqrt{2\pi}} \int dx \, e^{-\frac{x^2}{2}} \left(\frac{1}{2} \mathbb{1}_{-x \le t}(-x) + \frac{1}{2} \mathbb{1}_{+x \le t}(x) \right) + \frac{1}{\sqrt{2\pi}} \frac{1}{2} \int_{-\infty}^{t} dx \, e^{-x^2/2} = \frac{1}{2} \int_{\infty}^{t} e^{-\frac{x^2}{2}} \, dx \simeq N(0, 1)$$

Exercice 4. Soient X et Y deux va indépendantes dont X est un variable de Bernoulli B(1/2) et Y suivra deux lois i Y est une variable normale N(0,1) ii Y a fonction de répartition $F_y(t) = tt \in [0,1]$. Dans les deux cas calculer la fonction de répartition $Z = X \cdot Y$.

1.5 Fonction génératrice

X set une v.a. discrète a valeurs dans $\mathbb{N} \cup \{0\}$

Ex Bernoulli (0,1) B(p) $P_X = (1-p)\delta_0 + p\delta_1$ Binomiale B(n,l) valeurs 1,...,N $\mathbb{P}(x=k) = C_n^k p^k (1-p)^{N-k}$ Géométrique Valeurs de $G = \{0,1,2,...\}$ $\mathbb{P}(G=k)(1-p)^{k-1}p$

Poisson valeurs $0, 1, 2, \dots \mathbb{P}(p = k) = \frac{e^{-\lambda} \lambda^k}{k!}$ Résultat très intéressant Binomiale N très grand p très petite $N \cdot p = O(1)$ $\mathbb{P}(X = k) = C_n^k p^k (1-p)^{N-k} G(N \cdot p)$

Définition 14. Fonction Génératrice de X:

$$g_x(s) = \sum_{i=0}^{+\infty} p_i s^i$$

(série entière, "power" séries), où la loi de X est $P_X = \sum_{i=0}^{\infty} p_i \delta_{\{i\}}$.

Proposition 10. Si on connaît $g_X(s)$ on connaît la loi, c-a-d les $\{p_i\}_{i=0}^{\infty}$.

Démonstration. D'abord la série converge pour $s \in [-1,1]$ et uniformément pour $s \in$ (-1,1). La série peut être dérivée terme-à-terme pour $s \in (-1,1)$. $g_X'(s) = \sum_{i=1}^{\infty} p_i i s^{t-1} g_X''(s) = \sum_{i=1}^{\infty} p_i i s^{t-1} g_X''(s)$ $\sum_{i=2}^{\infty} p_i i(i-1) s^{t-1} g_X^{(k)}(s) = \sum_{i=k}^{\infty} p_i i(i-1) ... (i-k+1) s^{i-k} \text{ On calcul } g^{(k)}(0).$

$$p_k = \frac{g^{(k)}(0)}{k!}$$

Attention. $g_X(s) - \sum_{i=1}^{\infty} i - 0 p_i s^i$ On dérive $g_X'(s) = \sum_{i=1}^{\infty} p_i i s^{i-1}$ Supposons qu'on puisse étendre la denrée dans s=1 $g_X'(1) = \sum_{i=1}^{\infty} p_i i = \mathbb{E}(X)$ Application.

X v.a. B(N,p) $\mathbb{E}(x) = \sum_{k=0}^{N} kC_N^k p^k (1-p)^{N-k} = ?Np$ On utilise la fonction génératrice : $g_X(s) = \sum_{k=0}^{N} C_N^k p^k (1-p)^{N-k} s^k = \sum_{k=0}^{N} C_n^k (ps)^k (1-p)^{N-k} = [ps+(1-p)]^N$ $g_X'(s)|_{s=1} = N[p+(1-p)]^{N-1} \cdot p|_{s=1} = Np$ X v.a. Poisson $\mathbb{E}(P)=\lambda$ $\mathbb{E}(P)=\sum_{k=0}^{\infty}k\frac{\lambda^{\hat{k}}e^{-\lambda}}{k!}$ $g_P=\sum_{k=0}^{\infty}...=e^-\lambda e^{\lambda}s$

Lemme 1. (Abel)

- 1. Si la série $\sum_{i=0}^{\infty} \alpha_i = \alpha$ alors $\lim_{s\to 1^-} \sum_{i=0}^{\infty} \alpha_i s^i = \alpha$ 2. Si les α_i sont positifs et si $\lim_{s\to 1^-} \sum_{i=0}^{\infty} \alpha_i s^i = \alpha < +\infty$, alors $\sum_{i=0}^{\infty} \alpha_i = \alpha$.
- Démonstration. $g_X(s) = \sum_{i=0}^{\infty} p_i s^i$ (1) Supposons que $\mathbb{E}(X) < +\infty <=> \sum_{i=0}^{\infty} i p_i =$

$$\lim_{s} \to 1^{-} \sum_{i=0}^{\infty} i p_{i} s^{i} = \mathbb{E}(X) = \lim_{s \to 1^{-}} g_{;x}(s)$$

$$\lim_{s} \to 1^{-} \sum_{i=0}^{\infty} i p_{i} s^{i} = \mathbb{E}(X) = \lim_{s \to 1^{-}} g_{;x}(s)$$

Proposition 11. On a $\mathbb{E}(X(X-1)...(X-r+1)) = \lim_{s\to 1^-} g_X^{(r)}(s) := g_X^{(r)}(1)$. Cas particulier $\mathbb{V}(X) = g_X''(1) + g'(1) - [g_X'(1)]^2$

Fonction génératrice des moments 1.5.1

 $\mathbb{E}(X)$ donc on est dans la partie 1 du Lemme Donc