

Computer Networks
Class 2: Physical Layer
(Continued)

Physical Layer Overview/roadmap: Preliminaries Guided Transmission Wireless Transmission Using the Spectrum for Transmission Fundamentals of Digital Communication

Physical Layer

Fundamentals of Digital Communication - Example: Transmitting "b"

- 8-bit ASCII "b": 0110 0010
- Power (Voltage) x Time signal representation:

• Given that T=8, we have:

$$a_n = \frac{1}{\pi n} \left[\cos(\pi n/4) - \cos(3\pi n/4) + \cos(6\pi n/4) - \cos(7\pi n/4) \right]$$

$$b_n = \frac{1}{\pi n} \left[\sin(3\pi n/4) - \sin(\pi n/4) + \sin(7\pi n/4) - \sin(6\pi n/4) \right]$$

$$c = 3/4.$$

Dauphine | PSL⋅★

Physical Layer

Fundamentals of Digital Communication - Bandwidth

• Transmitted Power $\propto \text{RMS}_n = \sqrt{a_n^2 + b_n^2}$

- · Different media, different amplitude attenuation
- Cutoff frequency f_c: severe attenuation (beyond recovery possibility)

Pauphine I PSL★

The Maximum Data Rate of a Channel

Shannon's Capacity

• Channel subject to thermal noise

• Signal-to-Noise Ratio (SNR): S/N

- S: Signal's transmission power [W]

- N: Random thermal noise [W]

- S/N is often expressed in dB

• dB=10 log10(S/N)

Maximum data rate

(Channel Capacity) $r_{\text{max}} = B \cdot \log_2(1 + S/N)$ [bps]

