FPGA Technology at Crossroads

Vaughn Betz, Derek Chiou, Franz Franchetti, <u>James C. Hoe</u>, David Z. Pan, Vyas Sekar, Justine Sherry

Intel/VMware Crossroads 3D-FPGA
Academic Research Center

with generous support from Intel and VMware

What is an FPGA?

• If you asked as recently as 2015

Screenshots from AMD/Xilinx and Intel/Altera's websites in 2015. Which is which?

Today's FPGAs not RTL targets

CMU/ECE/CALCM/Hoe

FPGA's Role in Heterogeneity

- Nothing beats ASICs in what it is designed to do
- BUT, ASICs horrible at what it is not designed to do
 - function and optimization locked at design time
 - limited applicability in the field
 - limited useful shelf life

ASIC designs deliberately de-tuned to compensate

- Programmable logic value proposition
 - allow ASIC parts to be common-case only
 - programmable upgrade/update around fixed ASIC functions
 - generality of compute, control, and interface

Programmable entity that augments and keeps pace

Intel EMIB: add your custom chips/chiplets here

From "Field Programmable" to "Programmable"

- When FPGAs used as ASICs
 - field programmability avoided manufacturing NRE
 - BUT once power-on, FPGAs acted like fixed ASICs
- When FPGAs used for computing
 - "role-and-shell" partial reconfiguration allows repurposing
 - BUT roles individually still designed to act like fixed ASICs
- Truly use FPGA programmability to be more than ASICs?
 - multi-tenant dynamic allocation and sharing
 - dynamic reprogramming as design optimization

Static vs Dynamic Perspective to Logic Design

Basic questions in ASIC design:

- (1) what to include, and
- (2) how much "resource" to spend on each?

Fabric fully allocated in static thinking Area_{used} = $A_1 + A_2 + A_3$, but . . .

Underutilization is possible in area-time volume

"Slack" = Area_{used}
$$\bullet$$
t_{total} -
 $(A_1 \bullet t_1 + A_2 \bullet t_2 + A_3 \bullet t_3)$

Reprogramming as Design Optimization

Outline

- 2023 FPGA and beyond?
 - distinct value proposition in a heterogenous system
 - programmability a feature not overhead

- Crossroads 3D-FPGA for Datacenters
- Crossroads Research Center

What is the role for Programmable Logic in future datacenter servers?

Network-Driven, Data-Centric Computing

Data

Tasks

Network

CRNCH Summit, February 2023, slide-9

Crossroads FPGA: New Central Fixture

- Programmable active dataplane (switching and processing):
 - 1. data movement without CPU in the loop
 - 2. manipulate on-the-move data
 - 3. lend smarts to single-minded commodity HW

3D Hybrid Strategy

- General programmable logic fabric top die
 - retaining basic fabric and EDA know-how's
 - network-on-chip on-ramps
- Hardened specialized base die
 - datacenter IPs and NoC
 - single-minded primitives to hit perf/area/energy
 - leverage access to soft-logic for extensible specialization

CMU/ECE/CALCM/Hoe

CRNCH Summit, February 2023, slide-11

Sectorized PR Logic Fabric with NoC

- Dynamic multi-tenant sharing by partial reconfiguration
 - "quantized" regular sectors for relocatable PR bitstream
 - whole sector as units of PR
 - fabric remains seamless for multi-sector PR module
- NoC for transport & virtualization
 - PR modules interact only through NoC
 - <u>latency-insensitive</u> messagepassing or streaming

Think of managing sectors like managing DRAM pages

"Application Programming Interface"

- Application exists as one or more PR modules
 - user, library services, and infrastructure
 - each module exists in a whole-number tile context
 - interact through latency-insensitive, messages and streams
- Restricted global knowledge
 - defer binding decision
 - Compiler and runtime optimizations

CMU/ECE/CALCM/Hoe

Putting it Together:

Dynamic, Sharable, and Managed

Outline

• 2023 FPGA and beyond?

- Crossroads 3D-FPGA for Datacenters
 - bit/cycle-granularity, data-on-the-move acceleration
 - programmable, dynamic, and adaptive processing resource
 - purposeful heterogenous architecture

Crossroads Research Center

Crossroads Research Vectors

CMU/ECE/CALCM/Hoe

Crossroads Pls

www.crossroadsfpga.org

Franchetti

Pan

RV4

Sekar

(U Toronto)

Betz

(UT Austin)

RV2/RV3

Chiou

RV2

(CMU)

Hoe

(CMU)

RV1/RV3/RV5

(UT Austin)

Sherry

(CMU) (CMU)

RV1 RV1

FPGA, EDA, **VLSI**

RV1/RV3/RV4

architecture, FPGA, data center

compiler, algorithm, performance

architecture, EDA, VLSI, reconfig ML computing,

acceleration

networking, networking, middle box, security, cloud systems

CMU/ECE/CALCM/Hoe CRNCH Summit, February 2023,

RV1 Applications — Data-on-the-Move

- "Data on the Move" Apps:
 - high traffic I/O from NIC to CPU to disk to accelerators
 - processing performed on data"in flight" between platforms
 - standardized "boilerplate", and parallelizable code
- Driving examples:
- Pigasus Intrusion Detection

- Showcase: Pigasus 100Gbps IDS [CMU]
 - FPGA-first hybrid architecture

FPGA saves 100x cores from SW-only

github.com/crossroadsfpga/pigasus

CRNCH Summit, February 2023, slide-18

RV2 Overlays — Time-to-Solution

- Time-to-solution (dev/debug/deploy) important in datacenters
- FPGA fast to rollout compared to ASICs, but slow compared to CPU

- SW programmable overlay
 - custom generated efficient datapath
 - rapid development/debug/deploy

- Showcase: Primate [UT Austin]
 - generate overlay processor tuned to core C++ app set
 - rapidly compile and deploy new apps

CRNCH Summit, February 2023, slide-19

RV3 Architecture —

Heterogenous, Adaptive, Systems

- How to architect Crossroads?
 - large new design space
 - co-design with application
 - end-to-end quantitative evaluation: performance + silicon

- Showcase: RAD-Sim [U of Toronto]
 - specify RAD arch parameters (NoC specs, module freq, etc.)
 - prototype application modules in SystemC and NoC connections
 - cycle-accurate simulation
 - tweak **both** application and architecture ⇒ repeat
- Also: RAD-Gen to estimate silicon speed and cost

Boutros, et al. IEEE Access, 2022 github.com/andrewboutros/rad-flow

RV4 FPGA CAD — 3D and NoC-Aware

 Pathfind EDA approaches for novel Crossroads features: 3D, NoC, partial reconfiguration

You cannot use what EDA cannot target

Map real designs onto virtual
 Crossroads FPGA fabric for research

You cannot improve what you cannot measure

 Enable community with a flexible, scalable and re-usable EDA platform (verilogtorouting.org)

- Showcase: NoC driven placement in VPR [U of Toronto]
 - extend VTR's architecture description with NoC router
 - analyze application traffic flow over logical routers
 - place app module and virtual routers to minimize bandwidth and latency cost functions

RV5 Dynamic Reconfiguration — Field Programmable to Programmable

- PR as basic mode of operation
- New design and usage mindset
 - what is instantiated on fabric can change
 - resources one don't use, other can
- Research needs:
 - programming abstraction and tools
 - virtualized execution environment
 - needed hardware support

- Showcase: FPGA as a System [CMU]
 - new applications
 - irregular and data-dependent
 - dynamically varying tuning
 - service level performance objectives

- systems methodology for FPGA design
 - services and buffers abstraction
 - queuing and stochastic modeling
 - SLO and TCO optimization metrics

CMU/ECE/CALCM/Hoe

Crossroads Mission Sum Up

www.crossroadsfpga.org

- Data-on-the-move acceleration as a new role for programmable logic in future datacentric computing
 - new fixture device architected to purpose
 - programmable logic as distinct dimension to HW vs SW heterogeneity
- Commitment to public dissemination and technology transfer
 - opensource and community building
 - Intel and VMware collaborations

Check out our seminar, GitHub and YouTube