heart2svm

April 22, 2023

Heart Disease Prediction Machine Learning Project with the implentation of the Support Vector Machine learning model.

Importing all the neccessary libraries and packages

```
[1]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  from pandas import *
  from numpy import *
  from matplotlib.pyplot import *
```

Reading the data and creating the dataframe

```
[3]: data=read_csv("Heart_Disease_Prediction.csv")
data.head()
```

[3]:	Age	Sex	Chest pain type	BP	Cholesterol	FBS over 120	EKG results \setminus
0	70	1	4	130	322	0	2
1	67	0	3	115	564	0	2
2	57	1	2	124	261	0	0
3	64	1	4	128	263	0	0
4	74	0	2	120	269	0	2

	Max HR	Exercise angina	ST depression	Slope of ST	\
0	109	0	2.4	2	
1	160	0	1.6	2	
2	141	0	0.3	1	
3	105	1	0.2	2	
4	121	1	0.2	1	

	Number	of	vessels	fluro	Thallium	Heart Disease
0				3	3	Presence
1				0	7	Absence
2				0	7	Presence
3				1	7	Absence
4				1	3	Absence

Checking the statistics of the dataset

[4]: data.describe()

[4]:		Age	Sex	Chest pain typ	е ВР	Cholesterol	\
	count	270.000000	270.000000	270.00000	0 270.000000	270.000000	
	mean	54.433333	0.677778	3.17407	4 131.344444	249.659259	
	std	9.109067	0.468195	0.95009	0 17.861608	51.686237	
	min	29.000000	0.000000	1.00000	0 94.000000	126.000000	
	25%	48.000000	0.000000	3.00000	0 120.000000	213.000000	
	50%	55.000000	1.000000	3.00000	0 130.000000	245.000000	
	75%	61.000000	1.000000	4.00000	0 140.000000	280.000000	
	max	77.000000	1.000000	4.00000	0 200.000000	564.000000	
		FBS over 120	EKG result	s Max HR	O	-	sion \
	count	270.000000			270.0000	00 270.00	0000
	mean	0.148148	1.02222	22 149.677778	0.3296	30 1.05	5000
	std	0.355906	0.99789	23.165717	0.4709	52 1.14	521
	min	0.000000	0.00000	71.000000	0.0000	0.00	000
	25%	0.000000	0.00000	0 133.000000	0.0000	0.00	000
	50%	0.000000	2.00000	0 153.500000	0.0000	00.80	000
	75%	0.000000	2.00000	0 166.000000	1.0000	00 1.60	000
	max	1.000000	2.00000	0 202.000000	1.0000	00 6.20	000
		Slope of ST	Number of v	ressels fluro	Thallium		
	count	270.000000			270.000000		
	mean	1.585185		0.670370	4.696296		
	std	0.614390		0.943896	1.940659		
	min	1.000000		0.000000	3.000000		
	25%	1.000000		0.000000	3.000000		
	50%	2.000000		0.000000	3.000000		
	75%	2.000000		1.000000	7.000000		
	max	3.000000		3.000000	7.000000		

Checking if there is any missing value/ blank data in the dataset.. In case of null values we have to clean and filter the data

[5]: data.isnull().sum()

```
[5]: Age
                                 0
    Sex
                                 0
                                 0
     Chest pain type
    ΒP
                                 0
     Cholesterol
                                 0
    FBS over 120
                                 0
    EKG results
                                 0
    Max HR
                                 0
    Exercise angina
                                 0
    ST depression
                                 0
     Slope of ST
                                 0
```

```
Number of vessels fluro 0
Thallium 0
Heart Disease 0
dtype: int64
```

Checking the distribution of the target variable

```
[6]: data["Heart Disease"].value_counts()
```

```
[6]: Absence 150
Presence 120
```

Name: Heart Disease, dtype: int64

Plotting the Age vs Blood Pressure Graph

```
[21]: plt.figure()
   plt.scatter(data["Age"],data["BP"],c="red",s=10)
   plt.title("Age vs Blood Pressure")
   plt.xlabel("Age")
   plt.ylabel("Blood Pressure")
   plt.legend()
```

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

[21]: <matplotlib.legend.Legend at 0x20a42df67d0>

Separating the independent and the dependent variable ie spliting the dataframe into target dataframe and features dataframe

```
[8]: X=data.drop("Heart Disease",axis=1) #this will have the independent features_
\(\text{\text{\text{Variable}}}\) X
```

[8]:		Age	Sex	Chest pain	type	BP	Cholesterol	FBS over 120	<pre>EKG results \</pre>
	0	70	1		4	130	322	0	2
	1	67	0		3	115	564	0	2
	2	57	1		2	124	261	0	0
	3	64	1		4	128	263	0	0
	4	74	0		2	120	269	0	2
					•••		•••		
	265	52	1		3	172	199	1	0
	266	44	1		2	120	263	0	0
	267	56	0		2	140	294	0	2
	268	57	1		4	140	192	0	0
	269	67	1		4	160	286	0	2

```
Max HR
                    Exercise angina
                                       ST depression
                                                       Slope of ST
     0
              109
                                                  2.4
                                                                   2
              160
                                                  1.6
                                                                   2
     1
                                   0
     2
                                   0
                                                  0.3
              141
                                                                   1
     3
              105
                                    1
                                                  0.2
                                                                   2
     4
                                                  0.2
              121
                                    1
                                                                   1
                                   0
                                                  0.5
                                                                   1
     265
              162
     266
                                                  0.0
                                                                   1
              173
                                   0
     267
              153
                                   0
                                                  1.3
                                                                   2
     268
                                                                   2
              148
                                                  0.4
                                    0
     269
              108
                                    1
                                                  1.5
                                                                   2
           Number of vessels fluro
                                       Thallium
     0
                                    3
                                               3
                                               7
     1
                                   0
     2
                                               7
                                   0
                                               7
     3
                                    1
     4
                                               3
                                    1
     . .
                                               7
     265
                                   0
     266
                                   0
                                               7
     267
                                   0
                                               3
     268
                                               6
                                   0
     269
                                   3
                                               3
     [270 rows x 13 columns]
[9]: y=data["Heart Disease"] #this will have the dependent target variable
[9]: 0
             Presence
     1
              Absence
     2
             Presence
     3
              Absence
     4
              Absence
     265
              Absence
     266
              Absence
     267
              Absence
     268
              Absence
     269
             Presence
     Name: Heart Disease, Length: 270, dtype: object
    Importing the train_test_split module from the model selection package of the sklearn library
```

[22]: from sklearn.model_selection import train_test_split

Spliting the data into training data and the testing data using the train test split module

```
[23]: X_train, X_test, y_train, y_test=train_test_split(X,y,test_size=0.2)
```

Checking the Split data

60

155

[25]: print("The X training data \n", X_train)
print("The X testing data \n", X_test)

The	X train	ning	data											
	Age	Sex	Chest	pain	type	BP	Choles	terol	FBS	over	120	EKG	results	\
264	48	1			2	110		229			0		0	
125	54	0			3	160		201			0		0	
40	40	1			4	152		223			0		0	
154	51	0			3	130		256			0		2	
30	57	1			3	128		229			0		2	
				•••			••	•••			•••			
130	63	0			4	108		269			0		0	
95	47	1			4	110		275			0		2	
253	51	1			3	110		175			0		0	
60	57	1			3	150		126			1		0	
155	46	0			2	105		204			0		0	
	Max HF	R. F.x	cercise	angir	na S'	Γ depre	ession	Slope	of S	т \				
264	168			~0	0	- uop-	1.0	z=cpc		- ` 3				
125	163				0		0.0			1				
40	181				0		0.0			1				
154	149				0		0.5			1				
30	150				0		0.4			2				
	•••					•••		•••						
130	169)			1		1.8			2				
95	118	3			1		1.0			2				
253	123	3			0		0.6			1				
60	173	3			0		0.2			1				
155	172	2			0		0.0			1				
	Number	of	vessels	s flui	o Ti	nallium	n							
264					0		 7							
125					1		3							
40					0		7							
154					0		3							
30					1		7							
					-		•							
130				•••	2		3							
95					1		3							
253					0		3							
200					~	,	-							

7

1

[216 rows x 13 columns]

The X testing data

	Age	Sex	Chest pain	type	BP	Cholesterol	FBS over 120	EKG results \
102	49	0		4	130	269	0	0
115	49	0		2	134	271	0	0
233	52	1		4	128	255	0	0
235	62	0		4	160	164	0	2
141	59	1		4	138	271	0	2
127	52	0		3	136	196	0	2
200	68	1		3	118	277	0	0
51	52	1		2	128	205	1	0
47	44	1		4	110	197	0	2
118	66	0		1	150	226	0	0
169	65	1		1	138	282	1	2
52	65	0		3	140	417	1	2
114	42	1		2	120	295	0	0
136	67	0		3	152	277	0	0
215	41	0		2	130	204	0	2
227	43	0		4	132	341	1	2
134	54	1		3	150	232	0	2
71	57	0		4	120	354	0	0
76	45	1		4	104	208	0	2
245	60	1		4	130	253	0	0
231	39	1		4	118	219	0	0
252	44	1		4	112	290	0	2
57	60	0		3	120	178	1	0
191	70	1		4	145	174	0	0
26	46	0		4	138	243	0	2
251	44	1		2	130	219	0	2
39	48	1		4	122	222	0	2
24	54	0		2	132	288	1	2
201	58	1		4	125	300	0	2
128	52	1		2	134	201	0	0
260	58	0		3	120	340	0	0
268	57	1		4	140	192	0	0
214	29	1		2	130	204	0	2
226	62	0		3	130	263	0	0
11	53	1		4	142	226	0	2
135	46	0		3	142	177	0	2
144	54	1		2	192	283	0	2
220	54	1		4	110	239	0	0
43	46	1		2	101	197	1	0
256	61	1		3	150	243	1	0
218	54	1		3	120	258	0	2
133	64	1		4	120	246	0	2
180	42	1		3	120	240	1	0
239	52	1		2	120	325	0	0

0.40	20	4		_	100		074		
240	68	1		3	180		274		
185	43	1		3	130		315		
221	65	1		4	135		254		
1	67	0		3	115		564		
197	54	0		3	110		214		
126	62	1		4	120		267		
59	62	1		2	120		281		
216	63	0		3	135		252		
42	44	1		3	130		233		
139	57	1		4	132		207		
	Max HR	Exercise	angina	S	T depre	ession	Slope	of ST	\
102	163		0		_	0.0	_	1	
115	162		0			0.0		2	
233	161		1			0.0		1	
235	145		0			6.2		3	
141	182		0			0.0		1	
127	169		0			0.1		2	
200	151		0			1.0		1	
51	184		0			0.0		1	
47	177		0			0.0		1	
118	114		0			2.6		3	
169	174		0			1.4		2	
52	157		0			0.8		1	
114	162		0			0.0		1	
136	172		0			0.0		1	
215	172		0			1.4		1	
227	136		1			3.0		2	
134	165		0			1.6		1	
71	163		1			0.6		1	
71 76	148		1			3.0		2	
76 245			1					1	
	144					1.4			
231	140		0			1.2		2	
252	153		0			0.0		1	
57	96		0			0.0		1	
191	125		1			2.6		3	
26	152		1			0.0		2	
251	188		0			0.0		1	
39	186		0			0.0		1	
24	159		1			0.0		1	
201	171		0			0.0		1	
128	158		0			0.8		1	
260	172		0			0.0		1	
268	148		0			0.4		2	
214	202		0			0.0		1	
226	97		0			1.2		2	
11	111		1			0.0		1	
135	160		1			1.4		3	

144	195	0	0.0	1
220	126	1	2.8	2
43	156	0	0.0	1
256	137	1	1.0	2
218	147	0	0.4	2
133	96	1	2.2	3
180	194	0	0.8	3
239	172	0	0.2	1
240	150	1	1.6	2
185	162	0	1.9	1
221	127	0	2.8	2
1	160	0	1.6	2
197	158	0	1.6	2
126	99	1	1.8	2
59	103	0	1.4	2
216	172	0	0.0	1
42	179	1	0.4	1
139	168	1	0.0	1

	Number	of	vessels	fluro	Thallium
102				0	3
115				0	3
233				1	7
235				3	7
141				0	3
127				0	3
200				1	7
51				0	3
47				1	3
118				0	3
169				1	3
52				1	3
114				0	3
136				1	3
215				0	3
227				0	7
134				0	7
71				0	3
76				0	3
245				1	7
231				0	7
252				1	3
57				0	3
191				0	7
26				0	3
251				0	3
39				0	3
24				1	3

```
7
     128
                                   1
                                             3
     260
                                   0
                                             3
     268
                                   0
                                             6
                                   0
                                             3
     214
     226
                                             7
                                   1
                                             7
                                   0
     11
     135
                                   0
                                             3
     144
                                   1
                                             7
     220
                                   1
                                             7
     43
                                   0
                                             7
     256
                                   0
                                             3
     218
                                   0
                                             7
     133
                                   1
                                             3
                                             7
     180
                                   0
     239
                                   0
                                             3
     240
                                   0
                                             7
     185
                                   1
                                             3
                                             7
     221
                                   1
                                             7
     1
                                   0
     197
                                   0
                                             3
                                   2
                                             7
     126
     59
                                   1
                                             7
     216
                                   0
                                             3
     42
                                   0
                                             3
     139
                                   0
                                             7
[26]: print("The Y training data \n",y_train)
      print("The Y testing data \n",y_test)
     The Y training data
      264
              Presence
     125
              Absence
     40
             Presence
     154
              Absence
     30
             Presence
     130
             Presence
     95
             Presence
     253
              Absence
     60
              Absence
     155
              Absence
     Name: Heart Disease, Length: 216, dtype: object
     The Y testing data
      102
               Absence
     115
              Absence
```

Presence

Presence

1.1.1	A 1
141	Absence
127	Absence
200	Absence
51	Absence
47	Presence
118	Absence
169	Presence
52	Absence
114	Absence
136	Absence
215	Absence
227	Presence
134	Absence
71	Absence
76	Absence
245	Presence
231	Presence
252	Presence
57	Absence
191	Presence
26	Absence
251	Absence
39	Absence
24	Absence
201	Presence
128	Absence
260	Absence
268	Absence
214	Absence
226	Presence
11	Absence
135	Absence
144	Presence
220	Presence
43	Absence
256	Absence
218	
133	Absence
	Presence
180	Absence
239	Absence
240	Presence
185	Absence
221	Presence
1	Absence
197	Absence
126	Presence
59	Presence
216	Absence

```
42 Absence
139 Absence
Name: Heart Disease, dtype: object
```

Importing the learning model. I this case we are importing the Support Vector Classifier(SVC) module from the Support Vector Machine(SVM) package of the Sklearn Library.

```
[30]: from sklearn.svm import SVC
```

Fit the training data into the model

```
[35]: classifier = SVC(kernel="rbf") classifier.fit(X_train,y_train)
```

[35]: SVC()

Now make predictions on the testing set

```
[37]: y_pred=classifier.predict(X_test)
print(y_pred)
```

```
['Absence' 'Absence' 'Absence' 'Absence' 'Absence' 'Absence' 'Absence' 'Absence' 'Absence' 'Absence' 'Presence' 'Absence' 'Presence' 'Absence' 'Presence' 'Absence' 'Absence' 'Presence' 'Absence' 'Absence'
```

Making a dataframe to compare the actual data and the predicted data

```
[38]: df= DataFrame({"Actual":y_test,"Prediction":y_pred})
df.head(10)
```

```
[38]:
             Actual Prediction
      102
            Absence
                        Absence
      115
            Absence
                        Absence
      233 Presence
                        Absence
      235 Presence
                        Absence
      141
            Absence
                        Absence
      127
            Absence
                        Absence
      200
            Absence
                        Absence
      51
            Absence
                        Absence
      47
           Presence
                        Absence
      118
            Absence
                       Presence
```

Importing the accuracy score and the confusion matrix modules from the metrics package of sklearn library inorder to evalute the performance of the model.

```
[39]: from sklearn.metrics import

accuracy_score,confusion_matrix,classification_report
accuracy=accuracy_score(y_test,y_pred)
print("Accuracy: ",accuracy)
```

Accuracy: 0.6851851851852

```
[43]: cnfmatrix=confusion_matrix(y_test,y_pred) print("The confusion matrix:\n",cnfmatrix)
```

```
The confusion matrix : [[29 7] [10 8]]
```

```
[44]: report=classification_report(y_test,y_pred) print("The classification report is :\n",report)
```

The classification report is :

	precision	recall	f1-score	support
Absence	0.74	0.81	0.77	36
Presence	0.53	0.44	0.48	18
accuracy			0.69	54
macro avg	0.64	0.62	0.63	54
weighted avg	0.67	0.69	0.68	54

This model has been made by Aditya Kundu, Arnab Bera, Arnab Manna, Debojjo Talukdar, Biraj Naskar