Problème de satisfaction de contraintes

- Formellement, un problème de satisfaction de contraintes (ou CSP pour Constraint Satisfaction Problem) est défini par :
 - un ensemble fini de variables $V = \{X_1, ..., X_N\}$
 - » chaque variable X_i a un **domaine** D_i de valeurs possibles
 - \diamond un **ensemble fini de contraintes** $C_1, ..., C_M$ sur les variables.
 - » une contrainte restreint les valeurs pour un sous-ensemble de variables
- Un état (nœud) d'un problème CSP est défini par une assignation de valeurs $\{X_i=v_i, X_i=v_i,...\}$ à certaines variables ou à toutes les variables
 - une assignation qui viole aucune contrainte est dite compatible ou légale
 - une assignation est complète si elle concerne toutes les variables
 - une solution à un problème CSP est une assignation complète et compatible

Algorithme Depth-First-Search pour CSP

- On peut utiliser la recherche dans un graphe avec les paramètres suivants :
 - un état est une assignation
 - état initial : assignation vide { }
 - fonction de transition : assigne une valeur à une variable non encore assignée
 - ◆ fonction but : retourne vrai si l'assignation est complète et compatible
- L'algorithme est général et s'applique à tous les problèmes CSP
- Comme la solution doit être complète, elle apparaît à une profondeur N

Limitations de l'approche précédente

- Taille de l'arbre de recherche :
 - le nombre de branches au premier niveau, dans l'arbre est de N*D (D est la taille du domaine), parce que nous avons N variables, chacune pouvant prendre D valeurs
 - ◆ au prochain niveau, on a (N-1) D successeurs pour chaque nœud
 - ainsi de suite jusqu'au niveau N
 - \diamond cela donne $N!*D^N$ nœuds, pour seulement D^N assignations complètes
- L'algorithme ignore la commutativité des transitions :
 - ◆ SA=R suivi de WA=B est équivalent à WA=B suivi de SA=R
 - ♦ si on tient compte de la commutativité, le nombre de nœuds générés est D^N
- Idée 1 : considérer une seule variable à assigner à chaque niveau

Limitations de l'approche précédente

- Inutile de continuer à assigner des variables à un état s'il y a déjà des contraintes qui sont violées
- Idée 2 : reculer (backtrack) lorsqu'aucune nouvelle assignation compatible est possible
- Le backtracking-search est le résultat de la combinaison de ces deux idées
 - c'est l'algorithme de base pour résoudre les problèmes CSP

Algorithme backtracking-search

Algorithme BACKTRACKING-SEARCH(CSP)

retourner BACKTRACK({ }, csp)

Algorithme BACKTRACK(assignation, csp)

- 1. si assignation est complète, retourner assignation
- 2. X = VAR-NON-ASSIGNÉE(assignation, csp)
- pour chaque v dans valeurs-ordonnées(X, assignation, csp)
 - 4. SICOMPATIBLE((X = v), assignation, csp)
 - 5. ajouter (X = v) à assignation
 - 6. $csp^* = csp$ mais où DOMAINE(X, csp^*) est { v }
 - 7. csp^* , $ok = inférence(csp^*) ext{ } e$
 - 8. $\sin ok = vrai$
 - 9. résultat = BACKTRACK(assignation, csp*)
 - 10. si *résultat* ≠ faux, retourner *résultat*
 - 11. enlever (X = v) de assignation
- retourner faux

information sur les variables, domaines et contraintes du problème CSP

assignation de variables à des valeurs

choix de prochaine variable

ordre des valeurs à essayer

> tente de simplifier le problème CSP (si détecte conflit, ok = faux)

Illustration de backtracking-search

Illustration de backtracking-search

Illustration de backtracking-search

