Summary in Graph

Exam Summary (GO Classes Test Series 2024 | Discrete Mathematics | Test 2)

Qs. Attempted:	11 5 + 6	Correct Marks:	11 3+8
Correct Attempts:	7 3 + 4	Penalty Marks:	0
Incorrect Attempts:	4 2+2	Resultant Marks:	11 3+8

EXAM RESPONSE EXAM STATS FEEDBACK

Technical

Multiple Choice Type Award: 1 Penalty: 0.33 Set Theory & Algebra

Let A and B be arbitrary sets and consider the set S defined below:

$$S = \{x \mid \neg(x \in A
ightarrow x \in B)\}$$

What is the correct expression for S in terms of A and B using the standard set operators?

- A. $A \cup B$
- B. $A\cap B$
- $\operatorname{C.} A \backslash B$
- D. $B \setminus A$

Your Answer: C Correct Answer: C Correct Discuss

Q #2 Numerical Type Award: 1 Penalty: 0 Set Theory & Algebra

Let $A=\{1,2,3,4,5\}$ and $B=\{2,3,4\}$. How many sets C have the property that $C\subseteq A$ and $B\subseteq C$?

Your Answer: 4 Correct Answer: 4 Correct Discuss

Multiple Select Type Award: 1 Penalty: 0 Set Theory & Algebra

Suppose that S and T are sets. Which of the following first-order logic statements are translations of the statement " S is not a subset of T?" Check all that apply.

- A. $\forall x. (x \in S \rightarrow x \notin T)$
- B. $\forall x. (x \in S \land x \notin T)$
- C. $\exists x. (x \in S \rightarrow x \notin T)$
- D. $\exists x. (x \in S \land x \not\in T)$

Your Answer: C;D Correct Answer: D Incorrect Discuss

Q #4 Numerical Type Award: 1 Penalty: 0 Set Theory & Algebra

Given a set of values $R = \{1, 2, 3, 4, 5, 6, 7\}$. The number of relations on this set which are both partial-order and equivalence relation is?

Your Answer: 128 Correct Answer: 1 Incorrect Discuss

Q #5 Multiple Choice Type Award: 1 Penalty: 0.33 Set Theory & Algebra

Let R be a relation from a set A to a set B. The inverse relation from B to A, denoted by R^{-1} , is the set of ordered pairs $\{(b,a) \mid (a,b) \in R\}$.

- S1: R is reflexive relation iff $R^{-1} = R$
- S2: R is a symmetric relation iff $R^{-1} = R$

Which one of the following statements is true?

- A. Only S1
- B. Only ${
 m S2}$
- C. Both S1 and S2
- D. None of the above

Your Answer: B Correct Answer: B Correct Discuss

Q #6 Multiple Choice Type Award: 2 Penalty: 0.67 Set Theory & Algebra

Let f be a function from a set X to a set Y. Consider the following statements.

- ullet P : For each $x\in X$, there exists $y\in Y$ such that f(x)=y.
- ullet Q : For each $y\in Y$, there exists $x\in X$ such that f(x)=y.
- ullet R : There exist $x_1,x_2\in X$ such that $x_1
 eq x_2$ and $f\left(x_1
 ight)=f\left(x_2
 ight)$.

The negation of the statement " f is one-to-one and onto Y " is

- A. P or not R
- B. R or not P
- $\mathsf{C}.\ R$ or not Q
- D . P and not R

Your Answer: C Correct Answer: C Discuss

https://gateoverflow.in/quiz/results.php

Let's suppose that we have a function $f: \mathbb{R} \to \mathbb{R}$. We'll say that f is an odd function if the following is true:

$$\forall x \in \mathbb{R}. \ f(-x) = -f(x)$$

We can define even functions as follows. A function $f:\mathbb{R}\to\mathbb{R}$ is called even if the following is true:

$$\forall x \in \mathbb{R}. \ f(-x) = f(x)$$

Which of the following statements is/are correct?

- A. If $f:\mathbb{R} o \mathbb{R}$ and $g:\mathbb{R} o \mathbb{R}$ are odd, then $g\circ f$ is also odd.
- B. If $f:\mathbb{R} o \mathbb{R}$ is odd and is a bijection, then f^{-1} is also odd.
- C. If $f:\mathbb{R} \to \mathbb{R}$ is an even function, then f is not a bijection.
- D. Let $f:\mathbb{R} o\mathbb{R}$ be any function. Then $g:\mathbb{R} o\mathbb{R}$ defined as g(x)=f(x)-f(-x) is odd.

Your Answer: A;B;C;D Correct Answer: A;B;C;D Correct Discuss

Let R be an equivalence relation on a non-empty set A. Let $a,b\in A$.

For any $x \in A$, let [x] denote the equivalence class of R containing x.

Which of the following is/are correct statements?

- A. aRb iff [a] = [b]
- B. $a\mathrm{R}b$ iff $[a]\cap [b]
 eq \phi$
- C. If A is non-empty finite set then R can never have more than |A| equivalence classes, where |A| is the cardinality of A.
- D. $R = A \times A$ iff R has only one equivalence class.

Your Answer: A;B;C;D Correct Answer: A;B;C;D Correct Discuss

Let A,B be two non-empty sets, with cardinality 3,4 respectively. Let R be a relation defined on the power set of $A\times B$. Relation R is reflexive, symmetric, transitive, and antisymmetric. Hence, Relation R is also equivalence relation. The cardinality of the largest equivalence class of relation R is?

Your Answer: Correct Answer: 1 Not Attempted Discuss

Consider the Hasse diagram shown below-

Which of the following is/are true about the lattice L that is represented by the above Hasse diagram:

- A. L is a distributive lattice.
- B. L is a complemented lattice.
- C. The subset $\{1, 2, 3, 4, 5, 6\}$ is a sub-lattice of L under the same relation.
- D. The subset $\{1,3,4,5,6\}$ is a sub-lattice of L under the same relation.

A relation on an n-element set $A = \{a_0, a_1, \dots, a_{n-1}\}$ can be represented by an $n \times n$ adjacency matrix of Boolean values.

	a_0	a_1	• • •	a_{n-1}
a_0	$b_{0,0}$	$b_{0,1}$		$b_{0,n-1}$
a_1	$b_{1,0}$	$b_{1,1}$	• • •	$b_{1,n-1}$
÷	:	÷		:
a_{n-1}	$b_{n-1,0}$	$b_{n-1,1}$		$b_{n-1,n-1}$

where the entries $b_{i,j}$ are Boolean values such that $b_{i,j}=1$ if a_i is related to a_j and $b_{i,j}=0$ otherwise.

Which of the following is/are correct about the matrix representation of various types of relations?

- A. For antisymmetric relation, for all $0 \le i, j \le n-1$, exactly one of the entries $b_{i,j}, b_{j,i}$ is 1.
- B. For reflexive relation, there are at least n 1-entries in the adjacency matrix.
- C. The number of 1-entries in the adjacency matrix is the cardinality of the relation.
- D. For symmetric relation, for all $0 \leq i, j \leq n-1, b_{i,j} = b_{j,i}$.

For any set X, let |X| be the cardinality of set X. Let A and B be two finite sets such that |A| = |B|. There is a one to one function f from A to B.

Which of the following must be true for f?

- S1: *f* is onto function
- ullet S2: f has an inverse

A. Only S1

- B. Only S2
- C. Both S1 and S2
- D. None of the above

Your Answer: C Correct Discuss

Let L be a lattice [S, #], where S is the base set and # is a relation defined on S. If for every subset A of S, [A, #] is also a lattice then L must be?

- A. Total order
- B. Bounded lattice
- C. Distributive lattice
- D. Boolean lattice

Your Answer: Correct Answer: A;C Not Attempted Discuss

A binary relation R on a set A is called connected iff for all elements x and y of A, either xRy or yRx or both. i.e. R is connected iff $\forall x, y \in A((xRy) \lor (yRx))$

Which of the following is/are true?

- A. Every connected relation is reflexive.
- B. Every connected relation is partial order.
- C. Every connected relation is symmetric.
- D. Every connected relation is transitive.

In set theory, an urelement or ur-element is an object that is not a set, but that may be an element of a set. It is also referred to as an atom or individual. In this case, if X is an urelement, it makes no sense to say $y \in X$, although $X \in U$ is perfectly legitimate.

Let A be any set in which every element is ur-element.

- We define set B which is union of A and power set of A.
- ullet We define a relation ${
 m R}$ on ${
 m B}$ as following $:a{
 m R}b$ if and only if $a\in b.$

Which of the following properties is/are satisfied by R?

- A. Reflexivity
- B. Symmetric
- C. Transitive
- D. Anti-symmetric

Your Answer: C;D Not Attempted Discuss

https://gateoverflow.in/quiz/results.php

<u>Copyright & Stuff</u>

https://gateoverflow.in/quiz/results.php