CIND-221: Problema de flujo máximo

Felipe Osorio

f.osoriosalgado@uandresbello.edu

Facultad de Ingeniería, UNAB

Motivación:

Considere una red por la que pasa un fluido (gas, corriente electrica, etc.) que ingresa por el nodo f llamado fuente y sale por el nodo s llamado sumidero.

Suponemos que el fluido se desplaza por los arcos que representan canales cuyos valores indican la capacidad que puede fluir.

Observación:

Es posible formular el problema de flujo máximo como un problema de programación lineal. Sin embargo, existe un método más directo y eficiente conocido como algoritmo Ford-Fulkerson.

Idea:

El método realiza los siguientes supuestos:

- La cantidad que se desea transportar sale desde la fuente y termina en el sumidero.
- La cantidad máxima que se puede pasar a través de la ruta es igual al valor mínimo de las capacidades de los arcos.

Definición:

Se denomina corte a un conjunto de arcos, tales que si estos son suprimidos causan una interrupción total del flujo entre la fuente y el sumidero.

Definición:

La capacidad del corte corresponde a la suma de las capacidades de sus arcos asociados.

Observación:

Entre todos los cortes posibles¹ el que tenga la menor capacidad permite el flujo máximo en la red.

¹Enumerar todos los cortes posibles **no** es una tarea sencilla.

Ejemplo:

Considere la siguiente red:

De este modo,²

corte	arcos	capacidad
1	(A,B),(A,C)	10 + 20 = 30
2	(A,B),(B,E),(C,E)	10 + 16 + 8 = 34
3	(B, D), (B, E), (C, E)	5 + 16 + 8 = 29
4	(D,F),(E,F)	17 + 15 = 32
5	(A,B),(E,F)	10 + 15 = 25
6	(A,B),(C,E)	10 + 8 = 18

 $^{^{2}}$ El flujo máximo no puede ser mayor que 18 unidades.

Notación:

Considere el arco (i,j) con i< j. Usamos la notación $(\overline{C}_{ij},\overline{C}_{ji})$, para representar las capacidades de flujo en las 2 direcciones, $i\to j$, y $j\to i$, respectivamente.

Para eliminar ambiguedades se anotará \overline{C}_{ij} en el arco junto al nodo i, mientras que \overline{C}_{ji} se ubicará junto al nodo j. Tal como en la siguiente figura:

Ejemplo:

Considere la siguiente red:

En este caso tenemos que, para el arco (A,C), $\overline{C}_{AC}=20$, mientras que $\overline{C}_{CA}=0$. Es decir, se puede enviar 20 unidades de A a C, y ninguna de C a A.

Definición:

La capacidad residual de una arista dirigida es la capacidad menos el flujo.

Notación:

Para el arco (i,j) con capacidades iniciales $(\overline{C}_{ij},\overline{C}_{ji})$ se asocia una red de capacidades remanentes (o residuales), llamada red residual, cuyos residuales serán denotados por (c_{ij},c_{ji}) .

Para el nodo j que recibe flujo desde el nodo i, se define la etiqueta $[a_j,i]$ donde a_j es el flujo desde el nodo i al nodo j.

Algoritmo de Ford-Fulkerson:

Considere una red G = (N, A) con nodos $N = \{1, \dots, n\}$.³

- Paso 1: Para todos los arcos (i,j) igualar la capacidad residual con la capacidad inicial, es decir, $(c_{ij},c_{ji})=(\overline{C}_{ij},\overline{C}_{ji})$. Sea $a_1=\infty$ y etiquetar el nodo fuente (nodo 1) como $[\infty,-]$. Hacer i=1 y continuar con el Paso 2.
- Paso 2: Determinar S_i el conjunto de todos los nodos j no etiquetados que se pueden alcanzar directamente desde el nodo i, con arcos residuales positivos (esto es $c_{ij}>0, \ \forall \ i\in S_i$). Si $S_i\neq\varnothing$ ir al Paso 3, sino ir al Paso 4.
- Paso 3: Determinar $k \in S_i$, tal que

$$c_{ik} = \max_{j \in S_i} \{c_{ij}\},\,$$

Hacer $a_k=c_{ik}$ y etiquetar el nodo k con $[a_k,i]$. Si k=n, entonces se ha etiquetado el nodo sumidero y de este modo se ha encontrado una ruta de irrupción. Ir al Paso 5. En caso contrario, hacer i=k e ir al Paso 2.

 $^{^{\}mathbf{3}}$ En este contexto el nodo 1 es fuente, y el nodo n sumidero.

- Paso 4: (Retroceso) Si i=1, no hay otras irrupciones posibles, ir al Paso 6. Sino, sea r el nodo que se ha etiquetado inmediatamente antes del nodo actual i, y remover i del conjunto de nodos adyacentes a r. Igualar i=r, y volver al Paso 2.
- Paso 5: (Determinación de la red residual) Sea $N_p = \{1, k_1, k_2, \ldots, n\}$, los nodos de la p-ésima ruta de irrupción del nodo fuente (nodo 1) al nodo sumidero (nodo n). Entonces el flujo máximo por la ruta se calcula como

$$f_p = \min\{a_1, a_{k_1}, a_{k_2}, \dots, a_n\},\$$

la capacidad residual de cada arco a lo largo de la ruta de irrupción se disminuye en f_p unidades en la dirección del flujo y se aumenta en la dirección contraria, esto es, para los nodos i y j en la ruta, el flujo residual se cambia del actual (c_{ij},c_{ij}) a:

- $(c_{ij} f_p, c_{ji} + f_p)$ si el flujo va de i a j.
- $(c_{ij} + f_p, c_{ji} f_p)$ si el flujo va de j a i.

Se reinstalan todos los nodos que se hayan eliminado en el Paso 4. Hacer i=1 y regresar al Paso 2 para intentar una nueva ruta de irrupción.

Paso 6: (Solución)

ullet Si se han determinado m rutas de irrupción el flujo máximo de la red es:

$$F = f_1 + f_2 + \cdots + f_m.$$

• Como los residuales inicial y final del arco (i,j) se obtienen con $(\overline{C}_{ij},\overline{C}_{ji})$ y (c_{ij},c_{ji}) , respectivamente. El flujo óptimo en el arco (i,j) se calcula como: Sea

$$(\alpha, \beta) = (\overline{C}_{ij} - c_{ij}, \overline{C}_{ji} - c_{ji}),$$

si $\alpha>0$ el flujo óptimo de i a j es α . Si $\beta>0$ el flujo óptimo de i a j es $\beta.^4$

⁴no es posible que ambos α y β sean positivos.

Ejemplo:

Considere la red G=(N,A), con $N=\{1,2,3,4,5\}$ donde el nodo 1 es el nodo fuente, mientras que el nodo 5 es el nodo sumidero.

Inicialización:

Tenemos que,

$$\overline{C}_{12} = 20, \ \overline{C}_{21} = 0, \quad \overline{C}_{13} = 30, \ \overline{C}_{31} = 0, \dots, \quad \overline{C}_{45} = 20, \ \overline{C}_{54} = 0.$$

De este modo,

$$\overline{C} = \begin{pmatrix} - & 20 & 30 & 10 & - \\ 0 & - & 40 & - & 30 \\ 0 & 0 & - & 10 & 20 \\ 0 & - & 5 & - & 20 \\ - & 0 & 0 & 0 & - \end{pmatrix}, \qquad \mathbf{c} = \begin{pmatrix} - & 20 & 30 & 10 & - \\ 0 & - & 40 & - & 30 \\ 0 & 0 & - & 10 & 20 \\ 0 & - & 5 & - & 20 \\ - & 0 & 0 & 0 & - \end{pmatrix},$$

pues hacemos $c_{ij}=\overline{C}_{ij}$ y $c_{ji}=\overline{C}_{ji}.$

Iteración 1:

Paso 1: Hacer $a_1 = \infty$ y etiquetar el nodo 1 como $[\infty, -]$. Hacer i = 1.

Paso 2: $S_1 = \{2, 3, 4\} \ (\neq \varnothing).$

Paso 3: k = 3, pues

$$c_{13} = \max\{c_{12}, c_{13}, c_{14}\} = \max\{20, 30, 10\} = 30.$$

Tomar $a_3=c_{13}$ y etiquetar el nodo 3 como [30,1]. Hacer i=3 y volver al Paso 2.

Paso 2: $S_3 = \{4, 5\}.$

Iteración 1: (continuación)

Paso 3: k = 3, con

$$a_5 = c_{35} = \max\{c_{34}, c_{35}\} = \max\{10, 20\} = 20.$$

Se etiqueta el nodo 5 como [20,3] y se obtiene una irrupción. Ir al Paso 5.

Paso 5: La ruta de irrupción es:

$$(5) \rightarrow [20, 3] \rightarrow (3) \rightarrow [30, 1] \rightarrow (1).$$

Es decir, $N_1 = \{1, 3, 5\}$, y

$$f_1 = \min\{a_1, a_3, a_5\} = \min\{\infty, 30, 20\} = 20.$$

Las capacidades a lo largo de la ruta N_1 son:

$$(c_{13}, c_{31}) = (30 - 20, 0 + 20) = (10, 20),$$

 $(c_{35}, c_{53}) = (20 - 20, 0 + 20) = (0, 20).$

Iteración 1: (continuación)

De ahí que actualizamos $oldsymbol{c}$ como:

$$c = \begin{pmatrix} - & 20 & \mathbf{10} & 10 & - \\ 0 & - & 40 & - & 30 \\ \mathbf{20} & 0 & - & 10 & \mathbf{0} \\ 0 & - & 5 & - & 20 \\ - & 0 & \mathbf{20} & 0 & - \end{pmatrix}.$$

Iteración 2:

Paso 1: Hacer $a_1 = \infty$ y etiquetar el nodo 1 como $[\infty, -]$. Hacer i = 1.

Paso 2: $S_1 = \{2, 3, 4\}$

Paso 3: k=2, además

$$a_2 = c_{12} = \max\{c_{12}, c_{13}, c_{14}\} = \max\{20, 10, 10\} = 20.$$

Etiquetar el nodo 2 como [20,1]. Hacer i=2 y volver al Paso 2.

Iteración 2: (continuación)

Paso 2:
$$S_2 = \{3, 5\}$$

Paso 3:
$$k = 3$$
, con

$$a_3 = c_{23} = \max\{c_{23}, c_{25}\} = \max\{40, 30\} = 40.$$

Etiquetar el nodo 3 como [40,2]. Hacer i=3 y volver al Paso 2.

Paso 2: $S_3 = \{4\}^5$

Paso 3: k = 4, con

$$a_4 = c_{34} = \max\{c_{34}\} = 10.$$

Etiquetar el nodo 4 como [10,3]. Hacer i=4 y volver al Paso 2.

⁵Pues $c_{35} = 0$ así, no podemos incluir el nodo 5.

Iteración 2: (continuación)

Paso 2: $S_4 = \{5\}^6$

Paso 3: k = 5, con

$$a_5 = c_{45} = \max\{c_{45}\} = 20.$$

Etiquetar el nodo 5 como $\left[20,4\right]$ y hemos obtenido una irrupción. Ir al Paso 5.

 $^{^{}f 6}$ Nodos 1 y 3 ya se han etiquetado y no pueden ser incluídos en S_4 .

Iteración 2: (continuación)

Paso 5: La ruta de irrupción resulta:

$$(5) \rightarrow [20,4] \rightarrow (4) \rightarrow [10,3] \rightarrow (3) \rightarrow [40,2] \rightarrow (2) \rightarrow [20,1] \rightarrow (1)$$

Es decir, $N_2 = \{1, 2, 3, 4, 5\}$, y

$$f_2 = \min\{a_1, a_2, a_3, a_4, a_5\} = \min\{\infty, 20, 40, 10, 20\} = 10.$$

Los residuales a lo largo de la ruta son:

$$(c_{12}, c_{21}) = (20 - 10, 0 + 10) = (10, 10),$$

$$(c_{23}, c_{32}) = (40 - 10, 0 + 10) = (30, 10),$$

$$(c_{34}, c_{43}) = (10 - 10, 5 + 10) = (0, 15),$$

$$(c_{45}, c_{54}) = (20 - 10, 0 + 10) = (10, 10).$$

Iteración 2: (continuación)

De ahí que actualizamos $oldsymbol{c}$ como:

$$\boldsymbol{c} = \begin{pmatrix} - & 10 & 10 & 10 & - \\ 10 & - & 30 & - & 30 \\ 20 & 10 & - & 0 & 0 \\ 0 & - & 15 & - & 10 \\ - & 0 & 20 & 10 & - \end{pmatrix}.$$

Iteración 3:

- **Paso 1:** Hacer $a_1 = \infty$ y etiquetar el nodo 1 como $[\infty, -]$. Hacer i = 1.
- Paso 2: $S_1 = \{2, 3, 4\}$
- Paso 3: k=2, además

$$a_2 = c_{12} = \max\{c_{12}, c_{13}, c_{14}\} = \max\{10, 10, 10\} = 10.$$

Observación: Los empates se rompen de forma arbitraria, usaremos el nodo más pequeño, en este caso i=2. Se etiqueta el nodo 2 como [10,1]. Hacer i=2 y volver al Paso 2.

Iteración 3: (continuación)

Paso 2: $S_2 = \{3, 5\}$

Paso 3: k=3, además

$$a_3 = c_{23} = \max\{c_{23}, c_{25}\} = \max\{30, 30\} = 30.$$

Etiquetar el nodo 3 como [30,2]. Hacer i=3 y volver al Paso 2.

Iteración 3: (continuación)

Paso 2: $S_3 = \emptyset$. Ir al Paso 4 para retroceder.

Paso 4: La etiqueta [30,2] lleva aal nodo inmedianto anterior r=2. Sacar el nodo 3.

Paso 2: $S_2 = \{5\}.8$

Paso 3: k = 5, con

$$a_5 = c_{25} = \max\{c_{25}\} = 30.$$

Etiquetar el nodo 5 como $\left[30,2\right]$ y se obtiene una irrupción. Continuar con el Paso 5.

 $^{^{7}}$ pues $c_{34} = c_{35} = 0.$

⁸el nodo 3 ha sido eliminado

Iteración 3: (continuación)

Paso 5: De este modo, la ruta de irrupción es dada por:

$$(5) \rightarrow [30, 2] \rightarrow (2) \rightarrow [10, 1] \rightarrow (1)$$

Es decir, $N_3 = \{1, 2, 5\}$, con

$$f_3 = \min\{a_1, a_2, a_5\} = \min\{\infty, 10, 30\} = 10.$$

y los residuales son dados por:

$$(c_{12}, c_{21}) = (10 - 10, 10 + 10) = (0, 20),$$

 $(c_{25}, c_{52}) = (30 - 10, 0 + 10) = (20, 10).$

Iteración 3: (continuación)

De este modo:

$$c = \begin{pmatrix} - & 0 & 10 & 10 & -\\ 20 & - & 30 & - & 20\\ 20 & 10 & - & 0 & 0\\ 0 & - & 15 & - & 10\\ - & 10 & 20 & 10 & - \end{pmatrix}.$$

Iteración 4:

Verifique que (Ejercicio de clase):

$$N_4 = \{1, 3, 2, 5\}, \qquad f_4 = 10$$

Iteración 5:

Verifique que (Ejercicio de clase):

$$N_5 = \{1, 4, 5\}, \qquad f_5 = 10$$

Iteración 6:

Todos los arcos que salen del nodo 1 tienen residuales cero. Así no hay más irrupciones posibles.

Paso 6: El flujo máximo de la red es:

$$F = f_1 + f_2 + f_3 + f_4 + f_5$$

= 20 + 10 + 10 + 10 + 10 = 60.

Iteración 6: (continuación)

Finalmente,

$$\boldsymbol{c} = \begin{pmatrix} - & 0 & 0 & 0 & - \\ 20 & - & 40 & - & 10 \\ 30 & 0 & - & 30 & 0 \\ 10 & - & 15 & - & 0 \\ - & 20 & 20 & 20 & - \end{pmatrix}.$$

Iteración 6: (continuación)

El flujo óptimo de los distintos arcos se calcula restando los últimos residuales (c_{ij},c_{ji}) en la 6ta iteración de las capacidades iniciales $(\overline{C}_{ij},\overline{C}_{ji})$. En efecto:

arco	$(\overline{C}_{ij},\overline{C}_{ji})-(c_{ij},c_{ji})^{(6)}$	flujo	dirección
(1,2)	(20,0) - (0,20) = (20,-20)	20	$1 \rightarrow 2$
(1, 3)	(30,0) - (0,30) = (30,-30)	30	$1 \rightarrow 3$
(1, 4)	(10,0) - (0,10) = (10,-10)	10	$1 \rightarrow 4$
(2,3)	(40,0) - (40,0) = (0,0)	0	_
(2, 4)	(30,0) - (10,20) = (20,-20)	20	$2 \rightarrow 4$
(3, 4)	(10,5) - (0,15) = (10,-10)	10	$3 \rightarrow 4$
(3,5)	(20,0) - (0,20) = (20,-20)	20	$3 \rightarrow 5$
(4, 5)	(20,0) - (0,20) = (20,-20)	20	$4 \rightarrow 5$

Ejercicio propuesto:

Halle el flujo máximo en la siguiente red:

