Other finite difference formulas

Friday, September 25, 2020

1:39 PM

$$f(x_0 + h) - f(x_0)$$

We saw $f(x_0 + h) - f(x_0)$. Let's work w) many nodes on an equisposed grid,

(generic finite-difference formula

(generic finite-difference formula

$$f'(x_0) \approx \frac{1}{L} \frac{g}{2} \alpha_k \cdot f(x_0 + k \cdot h)$$
 (that's for x_0 , but the weights are

translation invariant, so some formula works for X1, X2, etc provided indices don't go out-of-bounds)

Ex: more forward filite diff. formulas

The formulas are good if you are at a <u>left</u> endpoint (and equivalent backward formulas are good at right andpoint Xn, just note that now h is negative)

But for interior nodes, we can do better by using symmetric "centered difference" formulas Ex

Order	-4h	-3L	-2h	-h	0	h	2h	3 L	44	Nice! for j'est 2 function evaluations.
2	"3 pt."			-1/2	0	1/2			1 0(h2)	for just 2 function evaluations.
4	"5 pt."		Ίz	-2/3	O	2/3	-/z			V
6	"7 pt."	-1/60	3/20	-3/4	٥	3/4	3/20	160		
8	1/280	-4/105	/ 5	-4/5	0	4/5	- h ²	4/105	-1/280	

EX: Show the 3-pt forward diff. method is
$$O(h^2)$$

 $(-3f(x)^4 + 4f(x+h)^5 - f(x+2h)^6)$
 $2h D$

Solin: Taylor expand
$$-3f(x)^{6} + 4(f(x) + hf(x) + hf(x) + hf(x) + 0(h^{3})) \\
-(f(x) + 2hf(x) + (2h)_{2}^{7}f'(x) + 0(h^{3})) \\
(-3+4-1)f(x) + (4-2)hf(x) + (\frac{1}{2} + \frac{-2^{2}}{2})h^{2}f'(x) + 0(h^{3})$$

$$= 2hf'(x) + 0(h^{3})$$

$$= f'(x) + 0(h^{2}) \checkmark$$

Higher-order derivatives

We can also approximate
$$f''(x)$$
 (and you'll see a $\frac{1}{h^2}$ instead of $\frac{1}{h}$)

i.e.,
$$f''(x) \approx f(x-h) - 2f(x) + f(x+h)$$

Show this is o(h2):

$$f(x-h) = f(x) - hf(x) + h_{/2}^{7} f''(x) - h_{/2}^{3} f''(x) + O(h^{4})$$

$$-2f(x) = -2f(x)$$

$$f(x+h) = f(x) + hf(x) + h_{/2}^{7} f''(x) + h_{/2}^{3} f''(x) + h_{/2}^{3} f''(x) + o(h^{4})$$

$$= h^{2} f''(x) + o(h^{4})$$

$$= f''(x) + o(h^{2})$$

Stability and roundoff

But we also have randoff error due to finite precision.

Work w/ imprecise input
$$\tilde{\chi}$$
 aka $f(x)$, and assume $\tilde{\chi} = (1+\epsilon) \times \text{for } |\epsilon| \pm \epsilon_{\text{machine}} \approx 10^{-16}$

Let
$$f = f(x+h) - f(x)$$
 so $f'(x) = f + o(h)$

but we have roundoff error when computing of,
let I be actual floating point version.

Recall our relative condition number kg means

Can we write

$$\begin{aligned}
& \times = (1+\varepsilon) \overset{\sim}{\times} + 00 \overset{\sim}{?} \\
& \text{Stert } \omega_1 \overset{\sim}{\times} = (1+\varepsilon) \times \\
& \times = \frac{1}{1+\varepsilon} \overset{\sim}{\times} + 0(\varepsilon^2) \\
& \approx (1-\varepsilon) \overset{\sim}{\times}
\end{aligned}$$

```
is the size of th
why? =\frac{c \cdot t}{(e3)^{x/y}} =\frac{f(f)(x)}{h} =\frac{f(f)(x)}{h} =\frac{f(f)(x)}{h} =\frac{c \cdot t}{(e3)^{x/y}} =\frac{c \cdot t}{(e3)^{x/y}
                                                                                                                                                                                             \approx \left( \left\{ (x+y) + K^{1}(x+y) \cdot \left\{ (x+y) \right\} \right\} - \left( \left\{ (x) + K^{1}(x) \cdot \left\{ (x) \right\} \right\} \right)
                    KO(N=2
                                                                                                                                                                                               = \underbrace{f(x+r)-f(x)}_{p} \rightarrow K^{2}(x)\cdot f(x) O(181)
                                                                                                                   So, |f'(x) - f((S))| \le |f'(x) - S| + |f((S) - S|)

what

computer
controlly dies truncation

Usually O(L), U(L^2), etc.
                                                                                                                                              So |error | = O(hk) + Kx(x)f(x) · Emoch
                                                                                                                     We get to choose h, so choose h to minimize this bound (usually K_f(x) \cdot f(x) is unknown, so guess \approx 1 ... one reason it's usually nike to scale theys)
                                                                                                                                                              If error = h + \frac{c \cdot \epsilon}{h}, what's best h \stackrel{?}{=}
g(h), \quad \text{min } g(h) \quad \text{by } (1) \text{ Check endpoints } (h=0)
h^{2}o \qquad (2) \text{ Set } g'(h) = 0
                                                                                                                                                                                                            So g'(h) = 1 - c \cdot \varepsilon = 0, h = \sqrt{c \cdot \varepsilon} So e^{mx} = \sqrt{c \cdot \varepsilon} + \frac{c \cdot \varepsilon}{\sqrt{c \cdot \varepsilon}}
                                                                                                                                                                                                                  "Walker, Pernice" 1998 rule-of-thumb here is
                                                                                                                                                                                                                                                        K= VE·(1+ |x1)
                                                                                                                                                  If error = \frac{1}{2} + \frac{c \cdot \epsilon}{h}, now g'(h) = h - \frac{c \cdot \epsilon}{h^2}, h = (c \cdot \epsilon)^{\frac{1}{3}}
                                                                                                                                                                                                                                                                                                                                               and error is (c \varepsilon)^{\frac{2}{3}} + \frac{c \cdot \varepsilon}{(a \varepsilon)^{\frac{2}{3}}} = 2 \cdot \frac{(c \varepsilon)^{\frac{2}{3}}}{(a \varepsilon)^{\frac{2}{3}}}
                                                                                                                                 To summorize: O(L)

2 pt forward diff, total error (truncation + roundary) ~ TEmoch.
                                                                                                                                                                                      Spt centered diff total error (" _____ ") ≈ E<sup>2/3</sup>
```

If $E = (0^{-16})$, 2pt. forwal, error $\approx 10^{-8}$ 3pt. central, error $\approx 10^{-10.67}$. Better

Rule of Humb Higher order methods have overall (truncation + randoff) better accuracy

Why not use 1000 pt. formulas then?
- must deal us many special cases due to boundaries and programming / book keeping / speed isn't worth it - more computation, and at some point improvey from 10^{-15} to $10^{-15.5}$ releven in the worth it

If we have $f(x_0), f(x_1), f(x_2), f(x_3)$ $(x_1 = x_0 + h, x_2 = x_0 + 2h,...)$

then I can use 3 pt. centered diff. here)

but for _ points, we forward or boetward.

I can't use a 5 pt. centered diff. formula for any of these points