УДК 622.24

ПРОМЫСЛОВЫЙ ОПЫТ ПРОМЫВКИ СКВАЖИН НА МЕСТОРОЖДЕНИЯХ СУРГУТСКОГО СВОДА

FIELD EXPERIENCE OF WELL WASHING IN OIL FIELDS SURGUT ARCH

Паршукова Людмила Александровна

кандидат технических наук, доцент, доцент кафедры бурение нефтяных и газовых скважин, Тюменский Индустриальный Университет a-parshukova@mail.ru

Аннотация. Успешность гидравлической программы промывки скважины зависит от правильно подобранных параметров и компонентного состава буровых промывочных жидкостей.

Ключевые слова: биополимерные ингибирующие буровые растворы, реологические, структурные и фильтрационные характеристики буровых промывочных жидкостей.

Parshukova Lyudmila Aleksandrovna

Candidate of Technical Sciences, Associate Professor, Associate Professor of Oil and Gas Drilling Department, Tyumen Industrial University a-parshukova@mail.ru

Annotation. The success of the hydraulic well flushing program depends on the correct parameters and the component composition of the drilling flushing fluids.

Keywords: biopolymer inhibitory drilling fluids, rheological, structural and filtration characteristics of drilling flushing fluids.

О бщеизвестно, что в процессе бурения буровой раствор должен выполнять множество технологических функций. Приоритетность (ранжирование) осуществления тех или иных назначений, безусловно, зависят от геолого-технологических и термобарических условий бурения, но в любом случае главенствующее значение, по мнению автора, имеют следующие функции:

- Очистка забоя от разрушенной горной породы, обусловленная реологическими и тесно связанными с ними структурными параметрами бурового раствора.
- Поддержание устойчивости стенок скважины, представленных на 80–90 % глинистыми и глиносодержащими горными породами. Устойчивость этих пород зависит от первоначальной физикомеханической прочности и влажностного состояния глин, гидростатического давления бурового раствора и его ингибирующей способности.
- Сохранение фильтрационно-емкостных свойств (ФЕС) пласта коллектора терригенного типа, который в той или иной степени также заглинизирован. Кроме того, в большинстве скважин продуктивный пласт бурится по горизонтальному профилю, поэтому реологические, структурные и фильтрационные характеристики бурового раствора здесь играют первостепенную роль.

В работе приводятся промысловые данные бурения скважины на пласт БС10 (табл. 1) [1].

Таблица 1 – Параметры бурового раствора

Параметр	Значение	Интервал 1810-3113 м
Плотность	г / см ³	1,12 ± 0,03
Условная вязкость	сек / кварта (АРІ)	40–60
Пластическая вязкость	мПа * с	10–20
Динамическое напряжение сдвига	фунт / 100фут (API)	14–26
СНС 10 сек / 10 мин	фунт / 100фут (АРІ)	3–10 / 6–15
Фильтрация	мл / 30 мин (API)	≤4
Толщина фильтрационной корки	ММ	≤0,5
pH	-	9–11
Содержание Ca ²⁺	мг/л	≤200
Содержание хлорид-ионов	мг/л	≥35000
Содержание K ⁺	мг/л	≥30000
МВТ (коллоидная фаза)	кг / м ³	≤14,25
Содержание смазки	%	≥5
Содержание твёрдой фазы	%	≤15
Содержание выбуренной породы	%	≤3
Содержание песка	%	≤0,5
Содержание СаСО₃	кг / м ³	≥80** Микрокальцит (10 мкм) – 34% Микрокальцит (40–60 мкм) – 33 % Микрокальцит (100–160 мкм) – 33 %
KTK-2	коэф.	≤0,05

Для бурения данного интервала используется Биополимерный ингибирующий буровой раствор [2, 3].

Перечень химических реагентов для приготовления и обработки биополимерных ингибирующих буровых растворов, как для приготовления основного состава, так и для приготовления составов специального назначения и дополнительной обработки бурового раствора при возникновении технологической необходимости представлены в таблице 2.

Таблица 2 – Перечень химических реагентов

Химический реагент	Состав	Назначение
Микрокальцит	Карбонат кальция	Кольматант
Калий хлористый	Калия хлорид	Ингибитор неустойчивых пород
Бурамил-БТ м. А	Модифицированный крахмал	Понизитель фильтрации
Камедь	Биополимер (ксантановая камедь)	Структурообразователь
Реопак В	Полианионная целлюлоза (высоко-вязкая)	Регулятор фильтрации и реологии
Реопак Н	Полианионная целлюлоза (низко-вязкая)	Регулятор фильтрации
Бурфлюб СДГ	Смазывающая добавка	Смазывающая добавка
Натр едкий технический	Сода каустическая	Регулятор рН
САФ СДГ	Сульфированный битум, асфальтены	Микрокольматант, стабилизатор слан- цев
Сода кальцинированная	Понизитель жесткости	Регулятор жесткости
ДЕФОБУР М	Пеногаситель	Пеногаситель
Биоцид-БТ	Бактерицид	Бактерицид
Натрия хлорид	Натрия хлорид	Утяжелитель
Баритовый концентрат	Утяжелитель баритовый	Утяжелитель
Кальций хлористый	CaCL ₂ для приготовления жидкости заканчивания	Утяжелитель для жидкости заканчивания
Нитрат кальция	Раствор на основе нитратов кальция	Утяжелитель для жидкости заканчивания
Кольматант органический (крупный)	ореховая скорлупа	ликвидация поглощений
Кольматант органический (мелкий)	ореховая скорлупа	ликвидация поглощений
Кольматант органический (средний)	ореховая скорлупа	ликвидация поглощений
Глинопорошок бентонитовый ППБ	глинопорошок	Структурообразователь
Глинопорошок бентонитовый ПБМВ	глинопорошок	Структурообразователь
Р-СИЛ А	метасиликат натрия	Ингибитор неустойчивых пород
Реоксан м. Г.	полисахарид	Структурообразователь
Гринвик	комплекс солей	ликвидация поглощений
Мрамор молотый	карбонат кальция	ликвидация поглощений
Праестол 2540, 2500, 2300 или аналоги	полиактриламид	Инкапсулятор
Ингор-ГЛ		Органический ингибитор

Для обеспечения низких значений показателя фильтрации и регулирования реологических свойств буровой раствор обрабатывается реагентами Бурамил-БТ м. А, Камедь.

Для улучшения качества фильтрационной корки и снижения вероятности возникновения дифференциальных прихватов раствор обрабатывается кольматантом Микрокальцит. Учитывая, что в процессе бурения часть кольматанта отделяется как на системе очистки, так и для формирования фильтрационной корки необходима постоянная дообработка бурового раствора этим реагентом.

В процессе бурения, через каждые 100–150 м проходки (при необходимости – чаще) прокачивать высоковязкие пачки (при зенитном угле менее 60 градусов) и тандемные пачки (при зенитном угле более 60 градусов): низковязкую пачку и следом высоковязкую.

Высоковязкая пачка готовиться на исходном растворе путем обработки его Камедью до вязкости 100–120 с (API). Объем каждой пачки рассчитывается, исходя из того, что при прохождении по стволу пачка должна заполнять не менее 200 м затрубного объема.

Необходимо обеспечить наличие на кустовой площадке материалов для борьбы с поглощениями: кольматанты органические трёх разных фракций в количестве 3000 кг (по 1000 кг каждой).

В интервалах 1998–2093 м, 2549–2673 м, 2783–3113 м, при возможных поглощениях, производить прокачки кольматационных пачек в объеме не менее 2 м^3 (концентрация кольматанта 100–150 кг / м^3) каждые 50 м бурения, поддерживая минимально возможную плотность бурового раствора.

Рекомендуется снизить реологические свойства бурового раствора до минимальных значений, обеспечивающих вынос шлама, соответствующий объёму выбуренной породы, с целью снижения гидродинамического воздействия на стенки скважины.

При бурении, за 30–50 метров до интервалов ожидаемых поглощений, подобрать минимально возможную производительность насосов (при которой ВЗД и ЗТС работают корректно), а также увеличить время плавного выхода с минимального литража на рабочий не менее 3-х минут. Придерживаться данных режимов при бурении в интервалах 1998—2093 м, 2549—2673 м, 2783—3113 м, а также при проработках по окончании бурения, перезаписи гамма-каротажа.

Перед спуском хвостовика установить смазывающую пачку на основе бурового раствора в объеме открытого ствола, содержание смазки не менее 8 %.

Соблюдение данных рекомендаций при бурении скважин с горизонтальным окончанием на пласт БС10 позволило повысить ТЭП бурения путем снижения непроизводительного времени, затрачиваемого на ликвидацию осложнений, связанных с устойчивостью ствола скважины (дополнительные циклы промывки скважин), а также исключения дифференциальных прихватов.

Литература:

- 1. Практический опыт бурения наклонно-направленных и горизонтальных скважин в Сургутском УБР-1 / Р.Р. Зарипов [и др.] // Бурение и нефть. 2013. № 10. С. 12–14.
- 2. Паршукова Л.А. Опыт устранения и предупреждения осложнений, обусловленных устойчивостью стенок скважины // Бурение и нефть. 2016. № 1. С. 28–34.
- 3. Ингибирующие буровые растворы и устойчивость глинистых пород / А.А. Хуббатов [и др.] // Нефтяное хозяйство. 2015. № 5. С. 64–67.

References:

- 1. Practical experience of drilling directional and horizontal wells in Surgut UBR-1 / R.R. Zaripov [et al.] // Drilling and Oil. 2013. № 10. P. 12–14.
- 2. Parshukova L.A. Experience of elimination and prevention of complications caused by wellbore stability // Drilling and Oil. -2016. No. 1. P. 28-34.
- 3. Inhibiting drilling fluids and stability of clayey rocks / A.A. Khubbatov [et al.] // Oil Economy. 2015. № 5. P. 64–67.