Características gerais dos métodos espectroscópicos

Belarmino Matsinhe

August 9, 2023

Conteúdo da aula

- Mecanismos de interacção radiação-matéria;
- Quantificação de energia;
- Transições energéticas;
- Sinais espectrais;
- Análise espectral.

Interação da radiação electromagnética com a matéria

Simulação da interação da radiação não ionizante

Acesse aqui

https://phet.colorado.edu/pt_BR/simulations/

molecules-and-light

Interacção da radiação electromagnética com a matéria

Figure: Mecanismos de interacção da radiação com a matéria

Interacção da radiação electromagnética com a matéria

O que realmente, interage com a matéria?

Interacção da radiação electromagnética com a matéria

As propriedades ondulatórias correspondem às variações dos campos eléctricos e magnéticos. São estes campos eléctricos e magnéticos, responsáveis pela interaçção com a matéria, resultando num espectro. Este espectro, nos revela a estrutura da matéria irradiada.

Quantificação de energia

Aproximação de Born-Openheimer

$$E = E_{rot} + E_{vib} + E_{ele} + \tag{1}$$

Condição de ressonância: Equação de Einstein

$$\Delta E = h\nu \tag{2}$$

Condição de absorção: lei de Beer-Lambert

$$A = \varepsilon Cd \tag{3}$$

Onde; "d" [cm], "C" [mol/litro] ou [M], e " ε " [litros/(mol.cm)].

Secção de Física Médica

Regras de seleção

São previsões da Mecânica quântica que determinam quais níveis de energia de um sistema atómico ou molecular irão participar de uma transição espectral (de um nível para o outro).

Transições energéticas

Probabilidade de transição

$$P(\alpha) = g(\alpha)e^{-(\frac{E_{\alpha}}{kT})}$$
 (4)

$$P(\beta) = g(\beta)e^{-(\frac{E_{\beta}}{kT})}$$
 (5)

Lei de distribuição de partículas de Boltzmann

$$\frac{N_{\beta}}{N_{\alpha}} = g(\alpha + 1)e^{-(\frac{\Delta E}{kT})}$$
 (6)

Secção de Física Médica

Figure: Sinal-Ruído

O que causa o ruído espectral?

Figure: Diagrama dos componêntes de um espectrômetro

Poder de resolução

Em espectroscopia é definido pelo número de linhas espectrais e pela amplitude do intervalo de frequências ou comprimento de onda de cada banda.

Sinal espectral: Poder de resolução

Seccão de Física Médica

Poder de resolução

$$R = \frac{FwHM}{x} \tag{7}$$

Poder de resolução: Largura espectral

$$\Delta v = \frac{32\pi^3 v^3}{(4\pi\varepsilon_0)3hc^3} |R_{\alpha,\beta}|^2 \tag{8}$$

Factores que influenciam o Poder de resolução

- Efeito Doppler;
- Interação entre moléculas;
- Intensidade dos campos electromagnéticos (Efeito Zeeman ou Stark).

Intensidade do sinal espectral

- A probabilidade de transição;
- A população atómica dos estados energéticos;
- A concentração da amostra.

Análise espectral

Como um sinal espectal é Processado?

