제 2 장 흙의 기본적 특성

2.1 흙입지

(1) 흙입자의 크기에 따른 구분

세립분		조립분						석분	
점토	실트	모래			자갈			바위	
		가는모래	중간모래	큰모래	가는자갈	중간자갈	큰자갈	옥석	전석
(입경) 0.005 0.075 0.25 0.85 2.0 4.75 19 75 300 (mm)									
토질재료 <:-> 암석재료									

가. 조립토

- 자갈(gravel)
- 모래(sand)

나. 세립토

- 실트(silt)
- 점토(clay)

(2) 흙입자 분류 예

분류법 1	1 100 1111111	10	111	입자 크기(1 0.1	(mn	0.01	0.001 0.000 	
통일분류법	0 24 7171		모래	모래 세립토(<u> </u> 트와 점토)		
0 2 2 11 1	75	4.	75	0.0	75			
AASHTO	옥석	자갈		모래		실트	점토	
	75		2		0.0	5 0.0	02	
MIT	자갈			모래 실트		실트	점토	
1411 1	2		0.06		0.002			
ASTM		자갈		모래	실트		점토	
1101111	4.75			0.075		0.0	002	
USDA	옥석	자갈		모래		실트	점토	
CODIT			2		0.0	5 0.0	002	

그림 2-1 크기에 따른 흙입자의 분류

⊠ 통일분류법(USCS): Unified Soil Classification System

AASHTO: American Association of State Highway and Transportation Officials

MIT: Massachusetts Institute of Technology

ASTM: American Society for Testing and Materials

미국농무성(USDA): US Department of Agriculture

2.2 흙입자의 비중

- 흙입자의 비중 (specific gravity): Gs

그림 2-2 흙입자의 비중 측정

- (1) 흙입자의 중량과 같은 부피의 15℃ 증류수의 중량과의 비
- (2) 흙입자의 단위중량 (ys) 와 15°C 증류수의 단위중량 (yw) 과의 비
- (3) t[°]C에서 흙입자의 비중 Gt

$$G_t = \frac{\gamma_s}{\gamma_w} = \frac{W_s}{W_w} = \frac{W_s}{W_s + W_a - W_b}$$

Wa: 부피 50cm3 이상의 비중병 (pycnometer) 에 t[°] 의 증류수를 가득 채웠을 때의 중량

Ws: 노건조한 흙시료의 중량

Wb: 비중병에 건조한 흙시료를 넣고 증류수로 채웠을 때의 중량

Ww: 흙시료와 같은 부피의 물의 무게

 $G_s = K \times G_t$ (K: 온도에 따른 비중 수정계수)

2.3 입도분석

2.3.1 개요

(1) 흙속에 있는 입자들의 크기 정도 결정

(2) 종류: 한국산업규격 KS F 2302

- 체분석(sieve analysis): 흙입자 직경 0.075 이상인 경우
- 비중계분석(hydrometer analysis): 흙입자 직경 0.075 이하인 경우

2.3.2 체분석(sieve analysis)

	체 번호	구멍 크기(mm)
	4	4.750
CALL THE TANK	6	3.350
	8	2.360
THE RESIDENCE OF THE PARTY OF T	10	2.000
Transmiss of the second	18	1.000
	20	0.850
	30	0.600
The same of the sa	40	0.425
	50	0.300
CALL AND ADDRESS OF THE PARTY O	60	0.250
	80	0.180
The state of the s	100	0.150
EFL 2 mk3	140	0.106
The second state of	170	0.088
	200	0.075

그림 2-3. 체진동기 및 표준체의 번호와 눈금의 크기

2.3.3 비중계분석 (hydrometer analysis)

- (1) 방법: 물속으로 가라앉는 흙입자의 침강원리
- (2) 대상 흙입자의 <u>크기: 0.0005mm</u> < 비중계분석 < 0.2mm
- (3) 각 흙입자 비중의 다양성, 침강중 흙입자간의 간섭 등으로 신뢰성이 낮음
- (4) Stokes 법칙: 흙입자를 구라고 가정한 흙입자의 침강속도

$$v = \frac{\gamma_s - \gamma_w}{18\eta} D^2$$

 γ_s : 흙입자의 단위중량

 γ_w : 물의 단위중량

η: 물의 점성계수

D: 흙입자의 직경

2.3.4 입도분포곡선 (particle size distribution curve)

- (1) 체분석과 비중계분석 결과를 반대수용지(semi-log paper)에 표시한 것
- (2) 흙입자의 직경 (mm) vs 흙입자의 통과중량 백분율 (%)

지반지질공학 및 실습 강의노트

(3) 예: 흙 A의 통일분류법에 의한 분류

가. 자갈 (4.75mm 이상): 0%

나. 모래 (4.75 ~ 0.075mm): 38%

다. 실트와 점토 (0.075mm 이하): 62%

그림 2-4 입도분포곡선

(4) 여러 입자크기의 분포형태

그림 2-5 여러 가지 형태의 입도분포곡선

가. 곡선 [: 입도분포 불량한 흙 (poorly graded soil)

나. 곡선 II: 입도분포 양호한 흙 (well graded soil)

다. 곡선 [III: 2개 이상 균등분포된 흙 (계단식 입도, gap graded)

2.3.5 유효입경, 균등계수 및 곡률계수

- (1) 입도분포곡선 형상을 특징짓는 요소: 유효입경, 균등계수, 곡률계수
- (2) <u>유효입경(effective</u> size), <u>D10</u>: <mark>중량통과 백분율</mark> 10%에 해당하는 <u>입자의</u> 직경
- [(3)] 균등계수(uniformity coefficient): 입도분포 특성을 나타내는 값인 곡선의 경사

$$C_u = \frac{D_{60}}{D_{10}}$$

D₆₀ : 중량통과 백분율 60%에 해당하는 입경

(4) 곡률계수 (coefficient of gradation) : 곡선의 단계적인 상태

$$C_c = \frac{D_{30}^2}{D_{60} \times D_{10}}$$

D₃₀ : 중량통과 백분율 30%에 해당하는 입경

입도분포가 좋은 흙	입도분포가 나쁜 흙	입도의 특징	
	$C_{u} < 10$	균등입도	
$C_u \geq 10$ $1 < C_c \leq \sqrt{U_c}$	$C_u \ge 10$ $C_c \le 1$	레티기이트	
	$C_u \ge 10$ $C_c > \sqrt{U_c}$	계단식입도	

(5) 흙시료의 입도분포 판정 (일본 토질공학회)

예제) 그림 [2-4] 에서 흙 B에 대하여 $D_{10}=0.096$ mm, $D_{30}=0.16$ mm, $D_{60}=0.24$ mm일 때, 균등계수와 곡률계수를 구하시오.

$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.24}{0.096} = 2.5$$

$$C_c = \frac{D_{30}^2}{D_{60} \times D_{10}} = \frac{0.16^2}{0.24 \times 0.096} = 1.11$$

2.4 흙의 구성

(체적 *V*)

V : 흙 전체의 체적

(질량<u>m</u>) (중량 W)

m, W : 흙 전체의 질량, 중량

그림 2-6 흙의 구성도

2.4.1 구성요소의 부피

(1) 흙의 전체부피

 $V = \, V_s + \, V_v = \, V_s + \, V_w + \, V_a \ \, , \ \, m = m_a + m_w + m_s = m_w + m_s \,$

 $V_v = V_a + V_w = V - V_s$, $W = W_a + W_w + W_s = W_w + W_s$

Vs : 흙입자의 부피

Vv : 간극의 부피

Vw : 간극속의 물의 부피

Va: 간극속의 공기의 부피

ma, Wa : 간극 중 공기의 질량, 중량 (= 0)

mw, Ww : 간극 중 물의 질량, 중량 ms, Ws : 토립자 부분의 질량, 중량

(2) 흙의 상태에 대한 기본적인 생각

	상태	관계	값
	수분 포함 상태	질량과의 관계	함수비(<i>w</i>)
흙의 상태	결합상태 (다짐상	체적에 대한	습윤밀도(ρ/),
	태)	질량의 관계	건조밀도(ρ <i>d</i>)
	틈의 양 (간극의 양)	체적의 관계	간극비(<i>e</i>), 포화도(<i>S</i>)

지반지질공학 및 실습 강의노트

(3) 간극비(void ratio, e): 흙의 압축성 판단

$$e=rac{$$
 흙의 간극의 체적 $}{$ 흙의 토립자 부분의 체적 $}=rac{V_{v}}{V_{s}}$

(4) 간극률(porosity, n):

$$n = \frac{\frac{1}{5} \cdot \frac{1}{5}}{\frac{1}{5}} \cdot \frac{1}{5} \cdot \frac{1}{5}$$

(5) 간극비와 간극률 사이의 관계

$$e = \frac{V_v}{V_s} = \frac{V_v}{V - V_v} = \frac{\frac{V_v}{V}}{1 - \frac{V_v}{V}} = \frac{n}{1 - n}$$

$$e = \frac{V_v}{V_s} = \frac{V_v}{V - V_v} = \frac{\frac{V_v}{V}}{1 - \frac{V_v}{V}} = \frac{n}{1 - n}$$

$$n = \frac{V_v}{V} = \frac{V_v}{V_s + V_v} = \frac{\frac{V_v}{V_s}}{\frac{V_s}{V_s} + \frac{V_v}{V_s}} = \frac{e}{1 + e}$$

(6) 포화도(degree of saturation, S):

그림 2-7 포화상태 따른 흙의 분류

$$S = \frac{\text{간극에 차지하는 물의 체적}}{\text{흙의 간극의 체적}} \times 100 = \frac{V_w}{V_v} \times 100 \, (\%)$$

2.4.2 구성요소의 무게

(1) 함수비(moisture content, w): 훍의 간극에 함유된 물의 양의 비

$$w = \frac{\text{간극에 포함된 물의 질량(중량)}}{\text{토립자 부분의 질량(중량)}} \times 100 = \frac{m_w}{m_s} (또는, \frac{W_w}{W_s}) \times 100 \left(\% \right)$$

지반지질공학 및 실습 강의노트

그림 2-8 함수비의 측정과 계산

- (2) 습윤밀도와 건조밀도: 흙의 결합과 다짐 등의 상태, 단위체적당 질량
- 나. 건조밀도(dry density, pd): 토립자만의 질량

$$\begin{split} \rho_d &= \frac{\tilde{\mathbf{s}}\, \mathrm{의}\, \mathbf{E}\, \mathbf{G}\, \mathrm{N}\, \dot{\mathbf{F}}\, \dot{\mathbf{E}}\, \mathrm{의}\, \underline{\mathcal{G}}\, \dot{\mathbf{g}}}{\tilde{\mathbf{s}}\, \mathrm{의}\, \mathbf{Z}\, \dot{\mathbf{M}}\, \mathbf{Q}} = \frac{m_s}{V} \left(g/cm^3\right) \\ \rho_t &= \frac{m}{V} = \frac{m_s + m_w}{V} = \frac{m_s \left(1 + m_w/m_s\right)}{V} = \rho_d (1+w) \\ \rho_d &= \frac{\rho_t}{\left(1 + w\right)} \left(g/cm^3\right) \end{split}$$

- (3) 전체단위중량(= 습윤단위중량)과 건조단위중량: 중량으로 생각하는 경우의 밀도
- 가. 전체단위중량(total unit weight, γ) 또는 습윤단위중량 (moist unit weight, γ t): $\gamma = \gamma_t = \frac{W}{V} = \frac{mg}{V} = \rho_t g \left(N/m^3, kN/m^3 \right)$
- 나. 건조단위중량(dry unit weight, yd):

$$\gamma_{d} = \frac{W_{s}}{V} = \frac{m_{s}g}{V} = \rho_{d}g\left(N/m^{3}, kN/m^{3}\right)$$

g: 중력가속도(= 9.81m/sec2)

다. 전체단위중량, 건조단위중량, 함수비와의 관계

2.4.3 포화도, 간극비, 함수비, 비중 사이의 관계

그림 2-9 흙입자의 부피가 1일 때 흙요소의 3가지 성분

(1) Vs= 1 일 때 흙입자와 물의 무게

가. 흙입자의 무게

$$W_s = \gamma_s V_s = \gamma_w G_s V_s (=1) = \gamma_w G_s$$
 $G_s = \gamma_s / \gamma_w, \gamma_s = G_s \gamma_w$

나. 물의 무게

$$\boxed{W_w = \gamma_w \, V_w = \gamma_w \, V_v S = \gamma_w \, V_s \, (=1) e \, S = \gamma_w e \, S}$$

$$S = \left. V_w \right/ V_v, \; V_w = S V_v$$

Gs : 흙입자의 비중

γw : 물의 단위중량

다. 전체단위중량 및 건조단위중량과의 관계

$$\boxed{\gamma = \frac{W}{V} = \frac{W_s + W_w}{V_s + V_v} = \frac{(\gamma_w G_s) + (\gamma_w eS)}{1 + e} = \frac{G_s + (eS)}{1 + e} \gamma_w}$$

$$\gamma_d = \frac{W_s}{V} = \frac{G_s \gamma_w}{V_s + V_v} = \frac{G_s}{1 + e} \gamma_w$$

라. 포화단위중량(saturated unit weight, γsat, S=100%): 간극이 완전히 물로 채워져 있는 경우

$$\gamma_{sat} = \frac{W}{V} = \frac{W_s + W_w}{V_s + V_v} = \frac{(\gamma_w G_s) + (\gamma_w e S (=1))}{1 + e} = \frac{G_s + e}{1 + e} \gamma_w$$

마. 수중단위중량(submerged unit weight, үзиb): 흙이 지하수위 아래에 있을 경우 부

력에 의한 영향

기한 영향
$$\begin{split} \gamma' &= \gamma_{sat} - \gamma_w \\ &= \frac{W}{V} - \gamma_w = \frac{W_s + W_w}{V_s + V_v} - \gamma_w \\ &= \frac{(\gamma_w G_s) + (\gamma_w e S(=1))}{1 + e} - \gamma_w \\ &= \frac{G_s + e}{1 + e} \gamma_w - \gamma_w \\ &= \frac{G_s - 1}{1 + e} \gamma_w \end{split}$$

바. 포화도, 간극비, 함수비, 비중 사이의 관계

$$w = \frac{W_w}{W_s} = \frac{\gamma_w eS}{\gamma_w G_s} = \frac{eS}{G_s}$$
$$Se = G_s \times w$$

2.4.4 상대밀도

(1)상대밀도(relative density, Dr): 사질토의 조밀하거나 느슨한 정도

$$D_r = \frac{e_{\text{max}} - e}{e_{\text{max}} - e_{\text{min}}}$$

e: 자연상태에서 흙의 간극비

 emax:
 가장 느슨한
 상태에서
 흙의
 간극비

 emin:
 가장 조밀한
 상태에서
 흙의
 간극비

(2) 건조단위중량을 이용한 상대밀도 계산

$$D_r = \frac{\gamma_d - \gamma_{dmin}}{\gamma_{dmax} - \gamma_{dmin}} \frac{\gamma_{dmax}}{\gamma_d}$$

yd: 자연상태에서 흙의 건조단위중량

Ydmin:가장 느슨한 상태에서의 흙의 최소건조단위증량 (ASTM D-2049)Ydmax:가장 조밀한 상태에서의 흙의 최대건조단위증량 (ASTM D-2049)