Hallar el módulo del vector que tiene origen en (20; -5; 8) y extremo en (-4; -3; 2).

EJERCICIO 2

Hallar las componentes cartesianas de los siguientes vectores:

EJERCICIO 3

Determinar el módulo y la dirección de los siguientes vectores y representarlos gráficamente.

- (a) $\mathbf{A} = (3; 3)$
- (b) $\mathbf{B} = (2;0)$
- (c) $\mathbf{C} = -4\hat{x} 3\hat{y}$
- (d) $\mathbf{D} = -5\hat{x}$

EJERCICIO 4

¿Qué propiedades tienen los vectores ${\bf A}$ y ${\bf B}$ que cumplen las siguientes condiciones?

- (a) $\mathbf{A} + \mathbf{B} = \mathbf{C} \text{ y } |\mathbf{A}| + |\mathbf{B}| = |\mathbf{C}|$
- (b) $\mathbf{A} + \mathbf{B} = \mathbf{A} \mathbf{B}$
- (c) $\mathbf{A} + \mathbf{B} = \mathbf{C} \ y \ \mathbf{A}^2 + \mathbf{B}^2 = \mathbf{C}^2$

¹v2023.1.0

El producto escalar entre dos vectores se define como $\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos \theta$, donde θ es el ángulo que forman los dos vectores. La base canónica de la terna derecha se define con los vectores $\hat{x} = (1; 0; 0)$, $\hat{y} = (0; 1; 0)$ y $\hat{z} = (0; 0; 1)$. Calcular $\hat{x} \cdot \hat{x}$, $\hat{x} \cdot \hat{y}$, $\hat{x} \cdot \hat{z}$, $\hat{y} \cdot \hat{y}$, $\hat{y} \cdot \hat{z}$, $\hat{z} \cdot \hat{z}$ y $\hat{y} \cdot \hat{x}$.

EJERCICIO 6

Haciendo uso de la propiedad distributiva del producto escalar respecto de la suma, $\mathbf{C} \cdot (\mathbf{E} + \mathbf{F}) = \mathbf{C} \cdot \mathbf{E} + \mathbf{C} \cdot \mathbf{F}$, y de los resultados obtenidos en el ejercicio 5, demostrar que si $\mathbf{A} = A_x \hat{x} + A_y \hat{y} + A_z \hat{z}$ y $\mathbf{B} = B_x \hat{x} + B_y \hat{y} + B_z \hat{z}$, entonces

$$\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z.$$

EJERCICIO 7

Teoremas del coseno y del seno

(a) Utilizando el teorema de Pitágoras y la definición de las funciones trigonométricas, demostrar en el triángulo de la figura el teorema del coseno:

$$b^2 = c^2 + a^2 - 2ca\cos\beta.$$

Ayuda: considere los triángulos rectángulos ABD y ADC.

(b) Utilizando la definición del seno, demostrar sobre los mismos triángulos que

$$\frac{b}{\sin \beta} = \frac{c}{\sin \gamma}.$$

Generalizar el resultado para demostrar el teorema del seno:

$$\frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = \frac{a}{\sin \alpha}.$$

EJERCICIO 8

Producto vectorial de dos vectores

Sean \hat{x} , \hat{y} y \hat{z} los versores de la terna mostrada en la figura. Usando la definición del producto vectorial, calcular:

- (a) $\hat{x} \times \hat{y}$
- (b) $\hat{z} \times \hat{x}$
- (c) $\hat{y} \times \hat{z}$
- (d) $\hat{x} \times \hat{x}$
- (e) $\hat{y} \times \hat{y}$
- (f) $\hat{z} \times \hat{z}$

Demostrar las siguientes declaraciones.

(a) El producto vectorial no es asociativo y dados los vectores ${\bf A},\,{\bf B}$ y ${\bf C},$ se cumple que

$$\mathbf{A}\times\left(\mathbf{B}\times\mathbf{C}\right)=\mathbf{B}\left(\mathbf{A}\cdot\mathbf{C}\right)-\mathbf{C}\left(\mathbf{A}\cdot\mathbf{B}\right).$$

(b) Cualesquiera sean los vectores, se cumple que

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) + \mathbf{B} \times (\mathbf{C} \times \mathbf{A}) + \mathbf{C} \times (\mathbf{A} \times \mathbf{B}) = 0.$$

- (c) El producto mixto de tres vectores cualesquiera **A**, **B** y **C** es igual al volumen del paralelepípedo construido sobre los mismos una vez llevados a su origen común.
- (d) La condición necesaria y suficiente para que tres vectores \mathbf{A} , \mathbf{B} y \mathbf{C} sean paralelos a un mismo plano es que su producto mixto sea nulo.

EJERCICIO 10

Un cuerpo que en el instante t=0 se encuentra en un punto A, viaja en línea recta con velocidad constante de módulo desconocido v. Cuando transcurre un tiempo T, el móvil pasa por un punto B que está a distancia d de A.

- (a) Hallar v.
- (b) Dar dos expresiones para la posición del cuerpo en función del tiempo, una considerando un sistema de coordenadas con origen en A y otra considerando un sistema de coordenadas con origen en B, y graficarlas.

Un automóvil viaja en línea recta con velocidad constante desde A hasta C, pasando por B. Se sabe que pasa por A a las 12:00, por B a las 13:00 y por C a las 15:00. (AB = 50 km, BC = desconocido).

- (a) Elegir un origen de tiempo y un sistema de referencia.
- (b) Elegir un instante t_0 . ¿Cuánto vale x_0 ? Escribir la ecuación de movimiento.
- (c) Elegir otro instante t_0 . ¿Cuánto vale x_0 ? Escribir la ecuación de movimiento.
- (d) Calcular la velocidad del auto y la distancia BC.

EJERCICIO 12

Un móvil 1 viaja en línea recta desde A hacia B (distancia $AB = 300 \,\mathrm{km}$) a $80 \,\mathrm{km/h}$ y otro móvil 2 lo hace desde B hacia A a $50 \,\mathrm{km/h}$. El móvil 2 parte 1 hora antes que el móvil 1.

- (a) Elegir un origen de tiempo y un sistema de referencia.
- (b) Escribir los vectores velocidad \mathbf{v}_1 y \mathbf{v}_2 de los móviles 1 y 2, respectivamente.
- (c) En un mismo gráfico, representar la posición en función del tiempo para ambos móviles. ¿Cuál es el significado del punto de intersección de ambas curvas?
- (d) En un mismo gráfico, representar la velocidad en función del tiempo para ambos móviles. ¿Cómo podría encontrarse en este gráfico el tiempo de encuentro?

EJERCICIO 13

Repetir el problema 12 para el caso en que ambos móviles viajan desde A hacia B.

EJERCICIO 14

Un cuerpo viaja en línea recta con aceleración constante de módulo desconocido a y dirección como la de la figura. En el instante t=0 el móvil pasa por el punto A con velocidad v_0 como la de la figura, en $t=t_0$ el móvil pasa por B y tiene velocidad nula y en $t=t_1$ el móvil pasa por C.

- (a) Elegir un sistema de referencia y escribir las expresiones para la posición y la velocidad del móvil en función del tiempo, x(t) y v(t).
- (b) Hallar a y la distancia AB.
- (c) Calcular la distancia BC y la velocidad del móvil cuando pasa por C, ¿se pueden usar para este cálculo las expresiones x(t) y v(t) del inciso (a)?
- (d) Hallar la velocidad media entre A y B y entre A y C. ¿Coinciden estas dos velocidades medias? ¿Por qué?

Un auto viaja por una ruta a 20 m/s cuando un perro se cruza a 50 m.

- (a) ¿Cómo deben ser los sentidos de los vectores aceleración y velocidad para que el auto frene?
- (b) ¿Cuál es la desaceleración mínima que debe imprimirse al automóvil para no chocar al perro?
- (c) Idem (b) teniendo en cuenta que el tiempo de respuesta del chofer es 0,3 s.
- (d) Mostrar la situación calculada en (b) y en (c) en un gráfico de posición en función del tiempo.

EJERCICIO 16

Un cuerpo se deja caer desde un globo aerostático que desciende con velocidad 12 m/s.

- (a) Elegir un sistema de referencia y escribir las ecuaciones que describen el movimiento del cuerpo.
- (b) Calcular la velocidad y la distancia recorrida por el cuerpo al cabo de 10 s.
- (c) Resolver los incisos (a) y (b) considerando que el globo asciende a 12 m/s.

EJERCICIO 17

Una piedra en caída libre recorre 67 m en el último segundo de su movimiento antes de tocar el piso. Suponiendo que partió del reposo, determinar la altura desde la cual cayó, el tiempo que tarda en llegar al piso y la velocidad de llegada.

EJERCICIO 18

Desde una terraza a 40 m del suelo se lanza hacia arriba una piedra con velocidad 15 m/s.

- (a) ¿Con qué velocidad vuelve a pasar por el nivel de la terraza?
- (b) ¿Cuándo llega al suelo?
- (c) ¿Cuándo y dónde se encuentra con una piedra arrojada desde el suelo hacia arriba con una velocidad de 55 m/s y que parte desde el suelo en el mismo instante que la anterior?
- (d) Representar gráficamente.

Un automóvil cuya velocidad es $90\,\mathrm{km/h}$ pasa ante un control policial. En ese instante sale en su persecución un patrullero que parte del reposo y acelera uniformemente de modo que alcanza una velocidad de $90\,\mathrm{km/h}$ en $10\,\mathrm{s}$. Hallar:

- (a) El tiempo que dura la persecución.
- (b) El punto en que el patrullero alcanza el automóvil.
- (c) La velocidad del patrullero en el punto de alcance.