```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt  #car price prediction
df=pd.read_csv('/content/train-data.csv')
df
```

\rightarrow		Unnamed:	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmissio	
	0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manu	
	1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manu:	
	2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manua	
	3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manua	
	4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automat	
	6014	6014	Maruti Swift VDI	Delhi	2014	27365	Diesel	Manua	
	6015	6015	Hyundai Xcent 1.1 CRDi S	Jaipur	2015	100000	Diesel	Manu	
	6016	6016	Mahindra Xylo D4 BSIV	Jaipur	2012	55000	Diesel	Manu	
	6017	6017	Maruti Wagon R VXI	Kolkata	2013	46000	Petrol	Manu	
	6018	6018	Chevrolet Beat Diesel	Hyderabad	2011	47000	Diesel	Manua	
	6019 rows × 14 columns								

Next steps: Generate code with df View recommended plots

df.isna().sum()

$\overline{\pm}$	Unnamed: 0	0
	Name	0
	Location	0
	Year	0
	Kilometers_Driven	0
	Fuel_Type	0
	Transmission	0
	Owner_Type	0
	Mileage	2
	Engine	36
	Power	36
	Seats	42
	New_Price	5195
	Price	0
	dtype: int64	

df.dtypes

₹	Unnamed: 0 Name Location Year Kilometers Driven	int64 object object int64 int64
	Fuel_Type Transmission Owner_Type Mileage Engine Power	object object object object object

Seats float64
New_Price object
Price float64
dtype: object

df['Location'].value_counts()

 \rightarrow Location 790 Mumbai Hyderabad 742 Kochi 651 Coimbatore 636 Pune 622 Delhi 554 Kolkata 535 Chennai Jaipur 413 Bangalore 358 224 Ahmedabad Name: count, dtype: int64

#graph
plt.hist(df['Location'])
plt.xlabel("LOCATION",color="g")
plt.ylabel("COUNT",color='g')
plt.title("LOCATION_COUNT GRAPH",color="g")

→ Text(0.5, 1.0, 'LOCATION_COUNT GRAPH')

df['Fuel_Type'].value_counts()

Fuel_Type
Diesel 3205
Petrol 2746
CNG 56
LPG 10
Electric 2
Name: count, dtype: int64

plt.hist(df['Fuel_Type'])
plt.xlabel("FUEL_TYPE",color="b")
plt.ylabel("COUNT",color="b")
plt.title("FUEL_TYPE GRAPH",color="b")

FUEL_TYPE

df['Transmission'].value_counts()

Transmission
Manual 4299
Automatic 1720
Name: count, dtype: int64

plt.hist(df['Transmission'])
plt.xlabel("TRANSMISSION",color="y")
plt.ylabel("COUNT",color="y")
plt.title("TRANSMISSION COUNT GRAPH",color="y")

Text(0.5, 1.0, 'TRANSMISSION COUNT GRAPH')

df['Owner_Type'].value_counts()

Owner_Type
First 4929
Second 968
Third 113
Fourth & Above 9
Name: count, dtype: int64

df['Name'].value_counts()

Name
Mahindra XUV500 W8 2WD 49
Maruti Swift VDI 45
Honda City 1.5 S MT 34
Maruti Swift Dzire VDI 34
Maruti Swift VDI BSIV 31

```
Ford Fiesta Titanium 1.5 TDCi 1
Mahindra Scorpio S10 AT 4WD 1
Hyundai i20 1.2 Era 1
Toyota Camry W4 (AT) 1
Mahindra Xylo D4 BSIV 1
Name: count, Length: 1878, dtype: int64
```

plt.hist(df['Owner_Type'],color='m')
plt.xlabel("OWNER_TYPE",color="red")
plt.ylabel("COUNT",color="red")
plt.title("OWNER_COUNT GRAPH",color="red")

Text(0.5, 1.0, 'OWNER_COUNT GRAPH')

df['Fuel_Type'].unique() #to find unique values

⇒ array(['CNG', 'Diesel', 'Petrol', 'LPG', 'Electric'], dtype=object)

#encoding

#new encoding technique get dummies

get dummies is not a encoding in machine learning

it is a pandas encoding technique

df1=pd.get_dummies(df[['Location','Transmission','Owner_Type']],drop_first=True)

df1

 $\overline{\geq}$

	Location_Bangalore	Location_Chennai	Location_Coimbatore	Location_Delhi	Loc
0	False	False	False	False	
1	False	False	False	False	
2	False	True	False	False	
3	False	True	False	False	
4	False	False	True	False	
6014	False	False	False	True	
6015	False	False	False	False	
6016	False	False	False	False	
6017	False	False	False	False	
6018	False	False	False	False	
0040	4.4				

6019 rows × 14 columns

Next steps: Generate code with df1 View recommended plots

dfe=pd.concat([df,df1],axis=1)
dfe

	Unnamed:	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmissio
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manua
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manu
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manua
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manua
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automat
601	4 6014	Maruti Swift VDI	Delhi	2014	27365	Diesel	Manua
601	5 6015	Hyundai Xcent 1.1 CRDi S	Jaipur	2015	100000	Diesel	Manua
601	6 6016	Mahindra Xylo D4 BSIV	Jaipur	2012	55000	Diesel	Manua
601	7 6017	Maruti Wagon R VXI	Kolkata	2013	46000	Petrol	Manua
601	8 6018	Chevrolet Beat Diesel	Hyderabad	2011	47000	Diesel	Manua
6019	rows × 28 col	umns					
4							>

#tuesday'

#drop unwanted file.

dfe.drop(['Unnamed: 0','Name','Location','Transmission','Owner_Type','New_Price'],axis=1,inplace=True)
dfe

	Year	Kilometers_Driven	Fuel_Type	Mileage	Engine	Power	Seats	Price	Locat
0	2010	72000	CNG	26.6 km/kg	998 CC	58.16 bhp	5.0	1.75	
1	2015	41000	Diesel	19.67 kmpl	1582 CC	126.2 bhp	5.0	12.50	
2	2011	46000	Petrol	18.2 kmpl	1199 CC	88.7 bhp	5.0	4.50	
3	2012	87000	Diesel	20.77 kmpl	1248 CC	88.76 bhp	7.0	6.00	
4	2013	40670	Diesel	15.2 kmpl	1968 CC	140.8 bhp	5.0	17.74	
6014	2014	27365	Diesel	28.4 kmpl	1248 CC	74 bhp	5.0	4.75	
6015	2015	100000	Diesel	24.4 kmpl	1120 CC	71 bhp	5.0	4.00	
6016	2012	55000	Diesel	14.0 kmpl	2498 CC	112 bhp	8.0	2.90	
6017	2013	46000	Petrol	18.9 kmpl	998 CC	67.1 bhp	5.0	2.65	
6018	2011	47000	Diesel	25.44 kmpl	936 CC	57.6 bhp	5.0	2.50	
6019 rows × 22 columns		2 columns							

dfe['Mileage']=dfe['Mileage'].str.replace('km/kg','')
dfe['Mileage']=dfe['Mileage'].str.replace('kmpl','')
dfe['Engine']=dfe['Engine'].str.replace('CC','')
dfe['Power']=dfe['Power'].str.replace('bhp','')
dfe['Mileage']=dfe['Mileage'].str.replace('null','0')
dfe['Engine']=dfe['Engine'].str.replace('null','0')

dfe['Power']=dfe['Power'].str.replace('null','0')

dfe

 $\overline{\Rightarrow}$

	Year	Kilometers_Driven	Fuel_Type	Mileage	Engine	Power	Seats	Price	Locat
0	2010	72000	CNG	26.6	998	58.16	5.0	1.75	
1	2015	41000	Diesel	19.67	1582	126.2	5.0	12.50	
2	2011	46000	Petrol	18.2	1199	88.7	5.0	4.50	
3	2012	87000	Diesel	20.77	1248	88.76	7.0	6.00	
4	2013	40670	Diesel	15.2	1968	140.8	5.0	17.74	
6014	2014	27365	Diesel	28.4	1248	74	5.0	4.75	
6015	2015	100000	Diesel	24.4	1120	71	5.0	4.00	
6016	2012	55000	Diesel	14.0	2498	112	8.0	2.90	
6017	2013	46000	Petrol	18.9	998	67.1	5.0	2.65	
6018	2011	47000	Diesel	25.44	936	57.6	5.0	2.50	

6019 rows × 22 columns

dfe.dtypes

\rightarrow	Year	int64
	Kilometers_Driven	int64
	Fuel_Type	object
	Mileage	object
	Engine	object
	Power	object
	Seats	float64
	Price	float64
	Location_Bangalore	bool
	Location_Chennai	bool
	Location_Coimbatore	bool
	Location_Delhi	bool
	Location Hyderabad	bool

```
Location_Jaipur
                                     bool
     Location_Kochi
                                     bool
     Location_Kolkata
                                     bool
     Location_Mumbai
                                     bool
     Location_Pune
                                     bool
     Transmission_Manual
                                     bool
     Owner_Type_Fourth & Above
                                     bool
     Owner_Type_Second
                                     bool
     Owner_Type_Third
                                     boo1
     dtype: object
#converting datatypes
                       #datatype conversion
dfe['Mileage']=dfe['Mileage'].astype(float)
dfe['Engine']=dfe['Engine'].astype(float)
dfe['Power']=dfe['Power'].astype(float)
dfe.dtypes
                                    int64

→ Year

     Kilometers_Driven
                                    int64
                                   object
     Fuel_Type
     Mileage
                                  float64
     Engine
                                   float64
     Power
                                  float64
     Seats
                                   float64
     Price
                                  float64
     Location_Bangalore
                                     bool
     Location_Chennai
                                     boo1
     Location_Coimbatore
                                     hoo1
     Location_Delhi
                                     bool
     Location_Hyderabad
                                     bool
     Location_Jaipur
                                     bool
     Location_Kochi
                                     bool
     Location_Kolkata
                                     bool
     Location_Mumbai
                                     bool
     Location_Pune
                                     bool
     Transmission_Manual
                                     bool
     Owner_Type_Fourth & Above
                                     bool
     Owner_Type_Second
Owner_Type_Third
                                     bool
                                     bool
     dtype: object
#Replace a numerical value that is 0
# o t o NAN
dfe.loc[dfe.Engine==0,'Engine']=np.NaN
dfe.loc[dfe.Mileage==0,'Mileage']=np.NaN
dfe.loc[dfe.Power==0,'Power']=np.NaN
dfe.isna().sum()
→ Year
     Kilometers_Driven
                                    0
     Fuel_Type
                                    0
     Mileage
                                   70
     Engine
                                   36
                                  143
     Power
     Seats
                                   42
     Price
                                    0
     Location_Bangalore
                                    0
     Location_Chennai
     Location_Coimbatore
                                    0
     Location_Delhi
     Location_Hyderabad
     Location_Jaipur
     Location_Kochi
Location_Kolkata
     Location_Mumbai
                                    0
     Location_Pune
     Transmission_Manual
                                    0
     Owner_Type_Fourth & Above
                                    0
     Owner_Type_Second
     Owner_Type_Third
                                    0
     dtype: int64
df.isna().sum()
→ Unnamed: 0
                             0
     Name
                             0
     Location
                             a
     Year
                             0
     Kilometers_Driven
                             0
     Fuel_Type
                             0
```

```
Transmission
                               0
     Owner_Type
                               0
     Mileage
                               2
     Engine
                              36
                              36
                              42
     Seats
     New Price
                            5195
     Price
                               0
     dtype: int64
dfe['Mileage']=dfe['Mileage'].fillna(dfe['Mileage'].mean())
dfe['Engine']=dfe['Engine'].fillna(dfe['Engine'].mean())
dfe['Power']=dfe['Power'].fillna(dfe['Power'].mean())
dfe['Seats']=dfe['Seats'].fillna(dfe['Seats'].mode() [0])
dfe.isna().sum()

→ Year

     Kilometers_Driven
                                    0
     Fuel_Type
                                    0
                                    0
     Mileage
     Engine
                                    0
     Power
                                    0
     Seats
                                    0
     Price
                                    0
     Location_Bangalore
                                    0
     Location_Chennai
                                    0
     Location_Coimbatore
                                    0
     Location_Delhi
     Location_Hyderabad
Location_Jaipur
                                    0
                                    0
     Location_Kochi
                                    0
     Location_Kolkata
                                    0
     Location_Mumbai
                                    0
     Location_Pune
                                    0
     Transmission_Manual
                                    0
     Owner_Type_Fourth & Above
                                    0
     Owner_Type_Second
                                    0
     Owner_Type_Third
                                    0
     dtype: int64
from sklearn.preprocessing import LabelEncoder
end=LabelEncoder()
dfe['Fuel_Type'] =end.fit_transform(dfe['Fuel_Type'])
# seperate x and y
x=dfe.drop(['Price'],axis=1)
\overline{z}
            Year Kilometers_Driven Fuel_Type Mileage
                                                           Engine
                                                                    Power Seats Location Ba
        0
            2010
                               72000
                                               0
                                                     26.60
                                                             998 0
                                                                     58 16
                                                                              5.0
        1
            2015
                               41000
                                               1
                                                     19.67
                                                            1582.0
                                                                    126.20
                                                                               5.0
        2
            2011
                               46000
                                               4
                                                     18.20
                                                            1199.0
                                                                     88.70
                                                                               5.0
        3
                               87000
                                                            1248.0
            2012
                                                     20.77
                                                                     88.76
                                                                              7.0
        4
            2013
                                40670
                                                     15.20
                                                            1968.0
                                                                    140.80
                                                                               5.0
      6014 2014
                               27365
                                                     28.40
                                                            1248.0
                                                                     74.00
                                                                              5.0
           2015
                               100000
      6015
                                               1
                                                     24.40
                                                            1120.0
                                                                     71.00
                                                                               5.0
      6016 2012
                               55000
                                               1
                                                     14.00
                                                            2498.0
                                                                   112.00
                                                                              8.0
      6017 2013
                               46000
                                               4
                                                     18.90
                                                             998.0
                                                                     67.10
                                                                               5.0
      6018 2011
                               47000
                                                     25.44
                                                             936.0
                                                                     57.60
                                                                              5.0
     6019 rows × 21 columns
y=dfe['Price']
\overline{\pm}
     0
              1.75
              12.50
     1
     2
              4.50
     3
              6.00
```

4

17.74

```
6014 4.75
6015 4.00
6016 2.90
6017 2.65
6018 2.50
```

Name: Price, Length: 6019, dtype: float64

performing same operation in testing data

data=pd.read_csv('/content/test-data.csv')
data

$\overline{\Rightarrow}$		Unnamed:	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmiss:
•	0	0	Maruti Alto K10 LXI CNG	Delhi	2014	40929	CNG	Man
	1	1	Maruti Alto 800 2016- 2019 LXI	Coimbatore	2013	54493	Petrol	Man
	2	2	Toyota Innova Crysta Touring Sport 2.4 MT	Mumbai	2017	34000	Diesel	Man
	3	3	Toyota Etios Liva GD	Hyderabad	2012	139000	Diesel	Man
	4	4	Hyundai i20 Magna	Mumbai	2014	29000	Petrol	Man
	1229	1229	Volkswagen Vento Diesel Trendline	Hyderabad	2011	89411	Diesel	Man
	1230	1230	Volkswagen Polo GT TSI	Mumbai	2015	59000	Petrol	Automa
	1231	1231	Nissan Micra Diesel XV	Kolkata	2012	28000	Diesel	Man
	1232	1232	Volkswagen Polo GT TSI	Pune	2013	52262	Petrol	Automa
	1233	1233	Mercedes- Benz E- Class 2009- 2013 E 220 CDI Avan	Kochi	2014	72443	Diesel	Automa

1234 rows × 13 columns

Next steps: Generate code with data View recommended plots

data.isna().sum()

→ Unnamed: 0 0 Name 0 Location 0 Year Kilometers_Driven Fuel_Type 0 Transmission Owner_Type Mileage 0 0 Engine Power 10 10 Seats 11 New_Price 1052 dtype: int64

```
→ Unnamed: 0
                           int64
                          object
    Location
                          object
                           int64
    Year
    Kilometers_Driven
                           int64
    Fuel_Type
                          object
    Transmission
                          object
    Owner_Type
                          object
    Mileage
                          object
    Engine
                          object
    Power
                          object
    Seats
                         float64
    New_Price
                          object
    dtype: object
```

data['Location'].value_counts()

$\overrightarrow{\Rightarrow}$	Location		
	Mumbai	159	
	Pune	143	
	Coimbatore	136	
	Hyderabad	134	
	Kochi	121	
	Kolkata	119	
	Delhi	106	
	Chennai	97	
	Jaipur	86	
	Bangalore	82	
	Ahmedabad	51	
	Name: count,	dtype:	int64

#graph plt.hist(data['Location']) plt.xlabel("LOCATION",color="g") plt.ylabel("COUNT",color='g') plt.title("LOCATION_COUNT GRAPH",color="g")

Text(0.5, 1.0, 'LOCATION_COUNT GRAPH')


```
data['Fuel_Type'].value_counts()

Fuel_Type
    Diesel 647
    Petrol 579
    CNG 6
    LPG 2
    Name: count, dtype: int64

plt.hist(data['Fuel_Type'])
plt.xlabel("FUEL_TYPE",color="b")
plt.ylabel("COUNT",color="b")
plt.title("FUEL_TYPE GRAPH",color="b")
```


data['Transmission'].value_counts()

Transmission
Manual 905
Automatic 329
Name: count, dtype: int64

plt.hist(data['Transmission'])

plt.nist(data['Iransmission'])
plt.xlabel("TRANSMISSION",color="y")
plt.ylabel("COUNT",color="y")
plt.title("TRANSMISSION COUNT GRAPH",color="y")

→ Text(0.5, 1.0, 'TRANSMISSION COUNT GRAPH')

TRANSMISSION COUNT GRAPH 800 - 600 - 200 - 200 - Manual Automatic

TRANSMISSION

data['Owner_Type'].value_counts()

→ Owner_Type

First 1023
Second 184
Third 24
Fourth & Above 3
Name: count, dtype: int64

plt.hist(data['Owner_Type'])
plt.xlabel("Owner_Type",color="y")
plt.ylabel("COUNT",color="y")
plt.title("Owner_Type COUNT GRAPH",color="y")

data['Name'].value_counts()

$\overrightarrow{\Rightarrow}$	Name	
	Maruti Alto LXi	9
	Honda City 1.5 V MT	8
	Maruti Swift Dzire VDI	8
	Volkswagen Polo 1.2 MPI Highline	8
	Hyundai i10 Magna	7
	Hyundai Santro GLS I - Euro II	1
	Honda City i DTec VX Option BL	1
	Land Rover Discovery 4 SDV6 SE	1
	Hyundai Verna CRDi 1.6 SX Option	1
	Mercedes-Benz E-Class 2009-2013 E 220 CDI Avantgarde	1
	Name: count, Length: 769, dtype: int64	

#encoding

data1=pd.get_dummies(data[['Location','Transmission','Owner_Type']],drop_first=True)

data1

 $\overline{\Rightarrow}$

	Location_Bangalore	Location_Chennai	Location_Coimbatore	Location_Delhi	Loc
0	False	False	False	True	
1	False	False	True	False	
2	False	False	False	False	
3	False	False	False	False	
4	False	False	False	False	
1229	False	False	False	False	
1230	False	False	False	False	
1231	False	False	False	False	
1232	False	False	False	False	
1233	False	False	False	False	

1234 rows × 14 columns

Next steps: Generate code with data1 View recommended plots

datacon=pd.concat([data,data1],axis=1) datacon

	Unnamed:	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmiss:
0	0	Maruti Alto K10 LXI CNG	Delhi	2014	40929	CNG	Man
1	1	Maruti Alto 800 2016- 2019 LXI	Coimbatore	2013	54493	Petrol	Man
2	Toyota Innova 2 2 Crysta Touring Sport 2.4 MT		Mumbai	2017	34000	Diesel	Man
3	3	Toyota Etios Liva GD	Hyderabad	2012	139000	Diesel	Man
4	4	Hyundai i20 Magna	Mumbai	2014	29000	Petrol	Man
1229	1229	Volkswagen Vento Diesel Trendline	Hyderabad	2011	89411	Diesel	Man
1230	1230	Volkswagen Polo GT TSI	Mumbai	2015	59000	Petrol	Automa
1231	1231	Nissan Micra Diesel XV	Kolkata	2012	28000	Diesel	Man
1232	1232	Volkswagen Polo GT TSI	Pune	2013	52262	Petrol	Automa
1233	1233	Mercedes- Benz E- Class 2009- 2013 E 220 CDI Avan	Kochi	2014	72443	Diesel	Automa
1234 rd	ows × 27 coli	umns					
4							+

 $\label{location', 'Owner_Type', 'New_Price'], axis=1, inplace=True)} datacon$

	_
	_
⇒	v

	Year	Kilometers_Driven	Fuel_Type	Mileage	Engine	Power	Seats	Location_Bar
0	2014	40929	CNG	32.26 km/kg	998 CC	58.2 bhp	4.0	
1	2013	54493	Petrol	24.7 kmpl	796 CC	47.3 bhp	5.0	
2	2017	34000	Diesel	13.68 kmpl	2393 CC	147.8 bhp	7.0	
3	2012	139000	Diesel	23.59 kmpl	1364 CC	null bhp	5.0	
4	2014	29000	Petrol	18.5 kmpl	1197 CC	82.85 bhp	5.0	
1229	2011	89411	Diesel	20.54 kmpl	1598 CC	103.6 bhp	5.0	
1230	2015	59000	Petrol	17.21 kmpl	1197 CC	103.6 bhp	5.0	
1231	2012	28000	Diesel	23.08 kmpl	1461 CC	63.1 bhp	5.0	
1232	2013	52262	Petrol	17.2 kmpl	1197 CC	103.6 bhp	5.0	
1233	2014	72443	Diesel	10.0 kmpl	2148 CC	170 bhp	5.0	
1234 rd	ows × 2	1 columns						
4								

datacon['Mileage']=datacon['Mileage'].str.replace('km/kg','')
datacon['Mileage']=datacon['Mileage'].str.replace('kmpl','')
datacon['Engine']=datacon['Engine'].str.replace('CC','')
datacon['Power']=datacon['Power'].str.replace('bhp','')
datacon['Mileage']=datacon['Mileage'].str.replace('null','0')
datacon['Engine']=datacon['Engine'].str.replace('null','0')

datacon['Power']=datacon['Power'].str.replace('null','0') datacon

-	\neg
٠.	

	Year	Kilometers_Driven	Fuel_Type	Mileage	Engine	Power	Seats	Location_Bar
0	2014	40929	CNG	32.26	998	58.2	4.0	
1	2013	54493	Petrol	24.7	796	47.3	5.0	
2	2017	34000	Diesel	13.68	2393	147.8	7.0	
3	2012	139000	Diesel	23.59	1364	0	5.0	
4	2014	29000	Petrol	18.5	1197	82.85	5.0	
1229	2011	89411	Diesel	20.54	1598	103.6	5.0	
1230	2015	59000	Petrol	17.21	1197	103.6	5.0	
1231	2012	28000	Diesel	23.08	1461	63.1	5.0	
1232	2013	52262	Petrol	17.2	1197	103.6	5.0	
1233	2014	72443	Diesel	10.0	2148	170	5.0	

1234 rows × 21 columns

datacon.dtypes

\rightarrow	Year	int64
	Kilometers_Driven	int64
	Fuel_Type	object
	Mileage	object
	Engine	object
	Power	object
	Seats	float64
	Location_Bangalore	bool
	Location_Chennai	bool
	Location_Coimbatore	bool
	Location_Delhi	bool
	Location_Hyderabad	bool
	Location Jaipur	bool

```
Location_Kochi
                                     bool
     Location_Kolkata
                                     bool
     Location_Mumbai
                                     bool
     Location_Pune
                                     bool
     Transmission_Manual
                                     bool
     Owner_Type_Fourth & Above
                                     bool
    Owner_Type_Second
Owner_Type_Third
                                     bool
                                     bool
     dtype: object
#converting datatypes #datatype conversion
datacon['Mileage']=datacon['Mileage'].astype(float)
datacon['Engine']=datacon['Engine'].astype(float)
datacon['Power']=datacon['Power'].astype(float)
datacon.dtypes
→ Year
                                    int64
     Kilometers_Driven
                                    int64
     Fuel_Type
                                   object
                                  float64
     Mileage
     Engine
                                  float64
     Power
                                  float64
     Seats
                                  float64
     Location Bangalore
                                     bool
     Location_Chennai
                                     bool
     Location_Coimbatore
                                     bool
     Location_Delhi
                                     boo1
     Location_Hyderabad
                                     hoo1
     Location_Jaipur
                                     bool
     Location_Kochi
                                     bool
     Location_Kolkata
                                     bool
     Location_Mumbai
                                     bool
     Location_Pune
                                     bool
     Transmission_Manual
                                     bool
     Owner_Type_Fourth & Above
                                     bool
     Owner_Type_Second
                                     bool
     Owner_Type_Third
                                     bool
     dtype: object
datacon.loc[datacon.Engine==0,'Engine']=np.NaN
```

#Replace a numerical value that is 0 # o t o NAN

datacon.loc[datacon.Mileage==0,'Mileage']=np.NaN datacon.loc[datacon.Power==0,'Power']=np.NaN

datacon.isna().sum()

→ Year 0 Kilometers_Driven 0 Fuel_Type Mileage 13 Engine 10 Power Seats 11 Location_Bangalore 0 Location_Chennai 0 Location_Coimbatore 0 Location_Delhi 0 Location_Hyderabad Location_Jaipur 0 Location_Kochi Location_Kolkata Location_Mumbai Location_Pune 0 Transmission Manual 0 Owner_Type_Fourth & Above 0 Owner_Type_Second 0 Owner_Type_Third 0 dtype: int64

data.isna().sum()

→ Unnamed: 0 Name Location 0 Year Kilometers_Driven 0 Fuel_Type 0 Transmission 0 Owner_Type 0 Mileage 0

```
Engine 10
Power 10
Seats 11
New_Price 1052
dtype: int64
```

#fillng missing values

```
datacon['Mileage']=datacon['Mileage'].fillna(datacon['Mileage'].mean())
datacon['Engine']=datacon['Engine'].fillna(datacon['Engine'].mean())
datacon['Power']=datacon['Power'].fillna(datacon['Power'].mean())
datacon['Seats']=datacon['Seats'].fillna(datacon['Seats'].mode() [0])
```

datacon.isna().sum()

\rightarrow	Year	0
	Kilometers_Driven	0
	Fuel_Type	0
	Mileage	0
	Engine	0
	Power	0
	Seats	0
	Location_Bangalore	0
	Location_Chennai	0
	Location_Coimbatore	0
	Location_Delhi	0
	Location_Hyderabad	0
	Location_Jaipur	0
	Location_Kochi	0
	Location_Kolkata	0
	Location_Mumbai	0
	Location_Pune	0
	Transmission_Manual	0
	Owner_Type_Fourth & Above	0
	Owner_Type_Second	0
	Owner_Type_Third	0
	dtype: int64	

datacon

7		Year	Kilometers_Driven	Fuel_Type	Mileage	Engine	Power	Seats	Location_Bangalore	Location_Chennai	Location_Coimbato
	0	2014	40929	CNG	32.26	998.0	58.20000	4.0	False	False	Fal