FLUID MECHANICS

Mohamed Thebti

9 décembre 2023

Table des matières

1	Introduction	3				
2	Reynolds Number					
3	3 Techniques					
4	Schéma cinématique 4.1 Vecteurs positions	6				
5	5.2 Condition of stability	7 7 7 8				
6	Conclusion	8				

1 Introduction

The objective of this report is record all the features that an aircraft must have.

2 Reynolds Number

The Reynolds number is an non-dimensional number, and used to define if the fluid flow is laminar or turbulent.

$$Re = \frac{\rho \cdot u \cdot L}{\mu} \tag{1}$$

 ρ : density of the fluid

u: flow speed

L: characteristic linear dimension

 μ : dynamic viscosity of the fluid

The characteristic linear dimension ${\cal L}$ depends on the shape of the object of study. Here some example :

- Plane wing: length of the wing
- Hydraulic pipe : diameter of the pipe
- Complex shape: the biggest dimension

Depending of the result, the flow can have 3 regimes

- If Re < 2040, the flow is still considered laminar
- If Re > 2100, the flow is turbulent
- If 1800 < Re < 2100, the flow is in the transition/intermediary range, which is a mix of laminar and turbulent ¹

For each regime, the drag force is different. For turbulent and laminar regimes, the formula is as follows:

$$F_d^{turbulent} = \frac{1}{2} \cdot \rho \cdot C_D \cdot S \cdot u^2 \tag{2}$$

$$F_d^{laminar} = C_F \cdot \rho \cdot D^2 \cdot u^2 \tag{3}$$

S: cross frontal section

 C_D : turbulent drag coefficient C_F : laminar drag coefficient

^{1.} https://en.wikipedia.org/wiki/Laminar_flow

The intermediary regime is a mix from the 2 base regimes. In this situation, an approximation can be evaluated by computed the percent Re compared to 1800 and 2100.

$$F_d^{transition} = \left(1 - \frac{Re - 1800}{2100 - 1800}\right) \cdot F_d^{laminar} + \frac{Re - 1800}{2100 - 1800} \cdot F_d^{turbulent} \tag{4}$$

Fluid Mechanics 3 TECHNIQUES

3 Techniques

Prefabricated parts (PFP) /pre-manufactured parts (PMP)

Instead of creating the same parts again and again, design the components and make them easily modifiable. for example, combine 2 parts to create a third one, which is useful in an other application. Then add them to the system in the assembly Example: threads: try the smallest possible size, for example M3 to M20.

Test them with small parts and check the tolerances. The next step is to prepare small parts ready to be added to system parts. The final step is the merge the bodies. table

TABLE 1 – Holes and threaded holes						
Screw	Threaded hole diameter	Bore Hole (clearance)				
M3	2.8	3.2				
4	35	144				
5	45	300				

Clearance To fix two part together, a clearance is needed. When two parts must be assembled together, a clearance of 0.1mm is enough. Then use the glue to fix the assembly.

TABLE 2 – Nonlinear Model Results					
Case	Method#1	Method#2	Method#3		
1	50	837	970		
2	47	877	230		
3	31	25	415		
4	35	144	2356		
5	45	300	556		

$$Length_{lattitude}(\phi) = 111132.92 - 559.82 \cdot cos(2 \cdot \phi) + 1.175 * cos(4 \cdot \phi) - 0.0023 \cdot cos(6 \cdot \phi) = ...[m/degree] \tag{5}$$

1 degree longitude at latitude phi

$$Length_{longitude}(\phi) = 111412.84 - 93.5 \cdot cos(3 \cdot \phi) + 0.118 \cdot cos(5 \cdot \phi) = ...[m/degree]$$
 (6)

4 Schéma cinématique

4.1 Vecteurs positions

origine : centre de rotation verticale se trouvant sous les pâles principales.

position des pâles principales (pp) : vecteur verticale

position de l'hélice arrière : vecteur allant de l'origine vers l'hélice (h) arrière.

5 Angular momentum

5.1 Formula

$$\vec{L} = \vec{OA} \otimes \vec{P} = \vec{r} \otimes \vec{P} = \vec{r} \otimes m \cdot \vec{v} = \vec{I} \otimes \vec{\omega} \tag{7}$$

 $ec{L}$: Angular Momentum [$kg\cdotrac{m^2}{s}$]

 \vec{OA} and r : position of the mass [m] according to a reference

 \vec{P} : linear momentum $[kg \cdot \frac{m}{s}]^2$

 \vec{v} : velocity $[\frac{m}{s}]\,I$: moment of inertia $[m^2\cdot kg\cdot]$

 ω : angular speed $[\frac{rad}{s}]$

Torque:

$$M = \frac{d\vec{L}}{dt} = \frac{d(\vec{I} \otimes \vec{\omega})}{dt} \tag{8}$$

if we consider a particule of mass m, \vec{r} is the position of the center of mass. If it is a solid object, L is first computed according to the axis of rotation of the object:

$$\vec{L}_{ar} = \vec{I}_{ar} \otimes \vec{\omega}_{ar} \tag{9}$$

To compute the angular moment according to an other axis of rotation (new referance), we use the Huygens-Steiner theorem (or the Parallel axis theorem) :

$$\vec{L}_0 = \vec{I}_0 \otimes \vec{\omega}_{cm} \tag{10}$$

$$\vec{I}_0 = \vec{I}_{ar} + m \cdot d^2 \tag{11}$$

with d the distance between the axis of rotation of the object and the new reference.

5.2 Condition of stability

Main rotor(s):

$$\vec{L}_{mr} = \vec{r}_{mr} \otimes m_{mr} \cdot \vec{v_{mr}} = \vec{I_{mr}} \otimes \vec{\omega_{mr}}$$
 (12)

Rear rotor:

$$\vec{L}_{rr} = \vec{r}_{rr} \otimes m_{rr} \cdot \vec{v_{rr}} = \vec{I_r r} \otimes \vec{\omega_{rr}}$$
 (13)

assurer la stabilité lors du vol : les moments cinétiques doivent s'annuler. (poser la formule et résoudre)

$$\vec{L_{mr}} = \vec{L_{rr}} \tag{14}$$

or

The generated torque is compensated:

$$\sum \vec{M_{mr}} = \sum \vec{M_{rr}} \tag{15}$$

find a relation between ω_{mr} and ω_{rr} -> determine the transmission ratio

2. \vec{L} is perpendicular to both \vec{P} and \vec{r}

Fluid Mechanics 6 CONCLUSION

5.3 Pivots à droite et à gauche

pour tourner à gauche ou doite, on ne doit plus satisfaire la condition de stabilité. le pilote utiliser le pédalier pour accélérer/ralentir l'hélice arrière. ainsi les moments cinétiques ne sont plus égaux.

calculer l'effet de rotation sur l'hélicoptère si l'hélice est accélérée/ralentie de 10,20,30,... %. mettre un tableau. calculer la vitesse de rotation dans ces cas-là.

$$\begin{bmatrix} 0 \\ 0 \\ l_1 \end{bmatrix}_{R_1} \vec{AB}_{R_2} = \begin{bmatrix} 0 \\ l_2 \\ 0 \end{bmatrix}_{R_2} \vec{BC}_{R_3} = \begin{bmatrix} l_3 \\ 0 \\ 0 \end{bmatrix}_{R_3} \vec{CD}_{R_4} = \begin{bmatrix} 0 \\ 0 \\ -l_4 \end{bmatrix}_{R_4}$$
(16)

$$\vec{OE}_R = \vec{OA}_R + \vec{AB}_R + \vec{BB}_{1R} + \vec{B_1C}_{1R} + \vec{C_1C}_R + \vec{CC}_{2R} + \vec{C_2D}_R + \vec{DD}_{1R} + \vec{D_1E}_R$$
(17)

$$\vec{OF}_R = \vec{OA}_R + \vec{AB}_R + \vec{BB}_{1R} + \vec{B_1C}_{1R} + \vec{C_1C}_R + \vec{CC}_{2R} + \vec{C_2D}_R + \vec{DD}_{1R} + \vec{D_1E}_R + \vec{EF}_R$$
(18)

$$\vec{OG_R} = \vec{OA_R} + \vec{AB_R} + \vec{BB_{1R}} + \vec{B_1C_{1R}} + \vec{C_1C_R} + \vec{CC_{2R}} + \vec{C_2D_R} + \vec{DD_{1R}} + \vec{D_1E_R} + \vec{EF_R} + \vec{FF_{3R}} + \vec{F_3G_R}$$
(19)

$$\vec{OH}_R = \vec{OA}_R + \vec{AB}_R + \vec{BB}_{1R} + \vec{B_1C}_{1R} + \vec{C_1C}_R + \vec{CC}_{2R} + \vec{C_2D}_R + \vec{DD}_{1R} + \vec{D_1E}_R + \vec{EF}_R + \vec{FF}_{3R} + \vec{F_3G}_R + \vec{GH}_R$$
(20)

6 Conclusion