

CD4020BMS, CD4024BMS, CD4040BMS

CMOS Ripple-Carry BinaryCounter/Dividers

FN3300 Rev 1.00 October 1996

Features

- · High Voltage Types (20V Rating)
- Medium Speed Operation
- · Fully Static Operation
- · Buffered Inputs and Outputs
- 100% Tested for Quiescent Current at 20V
- Standardized Symmetrical Output Characteristics
- Common Reset
- 5V, 10V and 15V Parametric Ratings
- Maximum Input Current of 1μa at 18V Over Full Package-Temperature Range;
 - 100nA at 18V and 25°C
- Noise Margin (Over Full Package Temperature Range):
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications For Description Of 'B' Series CMOS Devices"

Applications

- Control Counters
- Timers
- Frequency Dividers
- · Time-Delay Circuits

Description

CD4020BMS - 14 Stage CD4024BMS - 7 Stage CD4040BMS - 12 Stage

CD4020BMS, CD4024BMS, and CD4040BMS are ripple-carry binary counters. All counter stages are master-slave flip-flops. The state of a counter advances one count on the negative transition of each input pulse; a high level on the RESET line resets the counter to its all zeros state. Schmitt trigger action on the input-pulse line permits unlimited rise and fall times. All inputs and outputs are buffered.

The CD4020BMS, CD4024BMS and the CD4040BMS is supplied in these 14 lead outline packages:

	CD4020B	CD4024B	CD4040B
Braze Seal DIP	H4W	H4Q	H4X
Frit Seal DIP	H1F	H1B	H1F
Ceramic Flatpack	H6W	H3W	H6W

Pinouts

CD4020BMS TOP VIEW

CD4024BMS TOP VIEW

NC = NO CONNECTION

CD4040BMS TOP VIEW

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD) ... -0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs ... -0.5V to VDD +0.5V DC Input Current, Any One Input ... ± 10 mA Operating Temperature Range ... -55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG) ... -65°C to +150°C Lead Temperature (During Soldering) ... ± 265 °C At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for 10s Maximum

Reliability Information

Thermal Resistance	θ_{ja}	$\theta_{\sf ic}$
Ceramic DIP and FRIT Package	80°Č/W	20°C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PD	O) at +125°C	0
For TA = -55°C to +100°C (Package Ty	pe D, F, K)	500mW
For TA = $+100^{\circ}$ C to $+125^{\circ}$ C (Package 7	Type D, F, k	() Derate
Lin	earity at 12	mW/°C to 200mW
Device Dissipation per Output Transistor.		100mW
For TA = Full Package Temperature Ra	inge (All Pa	ckage Types)
Junction Temperature		+175°C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	10	μΑ
				2	+125°C	-	1000	μА
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	10	μА
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	•	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load (Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4	VDD = 5V, VOUT = 0.4V		+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V		1	+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V		1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.0	VDD = 5V, VOUT = 4.6V		+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5	5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9).5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	3.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μΑ	١	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VD	D or GND	7	+25°C	VOH >	VOL <	V
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2 VDD/2		
		VDD = 18V, VIN = VD	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	5.5V,	1, 2, 3	+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	5.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIM	IITS		
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS	

plemented.

2. Go/No Go test with limits applied to inputs

NOTES: 1. All voltages referenced to device GND, 100% testing being im- 3. For accuracy, voltage is measured differentially to VDD. Limit is 0.050V max.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIM	STII	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	360	ns
0 To Q1	TPLH1		10, 11	+125°C, -55°C	-	486	ns
Propagation Delay Qn To Qn + 1	TPHL2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	330	ns
	TPLH2		10, 11	+125°C, -55°C	-	446	ns
Propagation Delay	TPLH3 TPHL3	VDD = 5V, VIN = VDD or GND	9	+25°C	-	280	ns
Reset To Q			10, 11	+125°C, -55°C	-	378	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
Q1	TTLH		10, 11	+125°C, -55°C	-	270	ns
Maximum Clock Input Fre-	FCL	VDD = 5V, VIN = VDD or GND	9	+25°C	3.5	-	MHz
quency			10, 11	+125°C, -55°C	2.22	-	MHz

NOTES:

- 1. VDD = 5V, CL = 50pF, RL = 200K
- 2. -55° C and $+125^{\circ}$ C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μΑ
				+125°C	1	150	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μА
				+125°C	-	300	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	600	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, - 55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, - 55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, - 55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, - 55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
		-55°C -		-2.0	mA		
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	=	-0.9	mA
				-55°C	=	-1.6	mA
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	=	-2.4	mA
				-55°C	-	-4.2	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, - 55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, - 55°C	7	-	V
Propagation Delay	TPHL1 VDD = 10V		1, 2, 3	+25°C	-	160	ns
Input To Q1	TPLH1	VDD = 15V	1, 2, 3	+25°C	-	130	ns
Propagation Delay TPHL		VDD = 10V	1, 2, 3	+25°C	-	80	ns
QN To QN + 1	TPLH2	VDD = 15V	1, 2, 3	+25°C	=	60	ns
Propagation Delay	TPHL3	VDD = 10V	1, 2, 3	+25°C	=	120	ns
Reset To Q		VDD = 15V	1, 2, 3	+25°C	=	100	ns
Transition Time	TTHL	VDD = 10V	2, 3	+25°C	=	100	ns
	TTLH	VDD = 15V	2, 3	+25°C	-	80	ns
Maximum Clock Input Fre-	FCL	VDD = 10V	1, 2, 3	+25°C	8	-	MHz
quency		VDD = 15V	1, 2, 3	+25°C	12	-	MHz
Minimum Reset Pulse	TW	VDD = 5V	1, 2, 3	+25°C	=	200	ns
Width		VDD = 10V	1, 2, 3	+25°C	=	80	ns
		VDD = 15V	1, 2, 3	+25°C	=	60	ns
Reset Removal Time	TREM	VDD = 5V	1, 2, 3	+25°C	-	350	ns
		VDD = 10V	1, 2, 3	+25°C	-	150	ns
		VDD = 15V	1, 2, 3	+25°C	-	100	ns
Minimum Input Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	140	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	60	ns
		VDD = 15V	1, 2, 3	+25°C	-	40	ns
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μА
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μ A	1, 4	+25°C	-2.8	-0.2	V

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
N Threshold Voltage Delta	ΔVTND	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVTPD	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND	1		VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS $+25^{\rm O}{\rm C}$

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	± 1.0μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (P	re Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 2	2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)		100% 5004	1, 7, 9, Deltas	
Interim Test 3 (Post Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample 5005	1, 7, 9	
Group D	•	Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1. 5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND	RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD POST-IRRAD		PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCILLATOR	
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
PART NUMBER	CD4020BMS					

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS (Continued)

FUNCTION	OPEN	GROUND	VDD	9V ± -0.5V	OSCILLATOR	
					50kHz	25kHz
Static Burn-In 1 Note 1	1 - 7, 9, 12 - 15	8, 10, 11	16			
Static Burn-In 2 Note 1	1 - 7, 9, 12 - 15	8	10, 11, 16			
Dynamic Burn- In Note 1	-	8, 11	16	1 - 7, 9, 12 - 15	10	
Irradiation Note 2	1 - 7, 9, 12 - 15	8	10, 11, 16			
PART NUMBER	CD4024BMS		•	•		•
Static Burn-In 1 Note 1	3 - 6, 8 - 13	1, 2, 7	14			
Static Burn-In 2 Note 1	3 - 6, 8 - 13	7	1, 2, 14			
Dynamic Burn- In Note 1	8, 10, 13	2, 7	14	3 - 6, 9, 11, 12	1	
Irradiation Note 2	3 - 6, 8 - 13	7	1, 2, 14			
PART NUMBER	CD4040BMS					1
Static Burn-In 1 Note 1	1 - 7, 9, 12 - 15	8, 10, 11	16			
Static Burn-In 2 Note 1	1 - 7, 9, 12 - 15	8	10, 11, 16			
Dynamic Burn- In Note 1	-	8, 11	16	1 - 7, 9, 12 - 15	10	
Irradiation Note 2	1 - 7, 9, 12 - 15	8	10, 11, 16			

NOTE:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K ± 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = 10V ± 0.5V

Functional Diagrams

Logic Diagrams

FIGURE 1. LOGIC DIAGRAM FOR CD4020BMS

FIGURE 2. LOGIC DIAGRAM FOR CD4024BMS

FIGURE 3. LOGIC DIAGRAM FOR CD4040BMS

Typical Performance Characteristics

FIGURE 4. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 6. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 5. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 7. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

Typical Performance Characteristics (Continued)

FIGURE 8. TYPICAL TRANSITION TIME AS A FUNCTION OF LOAD CAPACITANCE

FIGURE 10. TYPICAL DYNAMIC POWER DISSIPATION AS A FUNCTION OF INPUT PULSE FREQUENCY FOR CD4020BMS

* ON FIRST STAGE ONLY

FIGURE 11. DETAIL OF TYPICAL FLIP-FLOP STAGES

Chip Dimensions and Pad Layouts

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch)

DIMENSIONS AND PAD LAYOUT FOR CD4020BMS. DIMENSIONS AND PAD LAYOUT FOR CD4040BMS ARE IDENTICAL

DIMENSIONS AND PAD LAYOUT FOR CD4024BMSH

METALLIZATION: Thickness: 11kÅ - 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

© Copyright Intersil Americas LLC 1999. All Rights Reserved.
All trademarks and registered trademarks are the property of their respective owners.

For additional products, see $\underline{www.intersil.com/en/products.html}$

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

