

实用Python程序设计

郭炜

微信公众号

微博: http://weibo.com/guoweiofpku

学会程序和算法,走遍天下都不怕! 讲义照片均为郭炜拍摄

➤ 教材 Python程序设计基础及实践(慕课版)

郭炜 编著

人民邮电出版社

> 慕课:

中国大学MOOC 实用Python程序设计

https://www.icourse163.org/course/PKU-1460924165?from=searchPage

Python Programming Language

Python 程序设计基础及实践

慕课版

郭/ (4) 编

- 零基础,不踩坑
- 内容从零开始。特别指出初学者常犯的大量典型错误 入门编程不踩坑
- 大广度,重实用
 - 涵盖大部分常用第三方库。围绕数据的获取、分析、 处理和展示展开实践,切实解决工作中的问题
 - 配套多,资源全
 - 提供慕课、重点难点视频、讲义、程序源码等丰富 配套资源,配有在线评测网站,便于布置、提交、评判作业

数据分析相关库

numpy和pandas

信息科学技术学院

多维数组库numpy

内蒙古浑善达克沙地

numpy简介

- > 多维数组库, 创建多维数组很方便, 可以替代多维列表
- > 速度比多维列表快
- > 支持向量和矩阵的各种数学运算
- > 所有元素类型必须相同

pip install numpy 安装

numpy创建数组的函数

	函数	功能
	array(x)	根据列表或元组x创建数组
	arange(x,y,i)	创建一维数组,元素等价于range(x,y,i)
	linespace(x,y,n)	创建一个由区间[x,y]的n-1等分点构成的一维数组,包含x和y
	random.randint()	创建一个元素为随机整数的数组
	zeros(n)	创建一个元素全为0.0的长度为n数组
-//x	ones(n)	创建一个元素全为1.0的长度为n数组

numpy创建数组示例

```
#以后numpy简写为np
import numpy as np
print(np.array([1,2,3])) #>>[1 2 3]
print(np.arange(1,9,2)) \#>>[1 3 5 7]
print(np.linspace(1,10,4)) #>>[ 1. 4. 7. 10.]
print(np.random.randint(10,20,[2,3]))
#>>[[12 19 12]
#>> [19 13 10]]
print(np.random.randint(10,20,5)) #>>[12 19 19 10 13]
a = np.zeros(3)
print(a)
                         #>>[ 0. 0. 0.]
                        #>>[0.0, 0.0, 0.0]
print(list(a))
a = np.zeros((2,3),dtype=int) #创建一个2行3列的元素都是整数0的数组
```

numpy数组常用属性和函数

属性或函数	含义或功能		
dtype	数组元素的类型	. 300	. 100
ndim	数组是几维的		
shape	数组每一维的长度		
size	数组元素个数		
argwhere()	查找元素		200
tolist()	转换为list		
min()	求最小元素		**
max()	求最大元素		
reshape()	改变数组的形状		200
flatten()	转换成一维数组		7/1/2

numpy数组常用属性和函数

```
import numpy as np
b = np.array([i for i in range(12)])
#b是[0 1 2 3 4 5 6 7
a = b.reshape((3,4)) #转换成3行4列的数组,b不变
print(len(a))
           #>>3 a有3行
print(a.size) #>>12 a的元素个数是12
              #>>2 a是2维的
print(a.ndim)
             #>>(3, 4) a是3行4列
print(a.shape)
                           a的元素类型是32位的整数
              #>>int32
print(a.dtype)
                #转换成列表,a不变
L = a.tolist()
print(L)
#>>[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
b = a.flatten() #转换成一维数组
print(b)
                #>>[0
```

numpy数组元素增删

函数	功能
append(x,y)	若y是数组、列表或元组,就将y的元素添加进数组x得新数组。否则将y本身添加进数组x得新数组
concatenate()	拼接多个数组或列表
delete()	删除数组元素得新数组

numpy数组一旦生成,元素就不能增删。上面函数返回一个新的数组。

numpy添加数组元素

```
import numpy as np
                        #a是[1 2 3]
a = np.array((1,2,3))
                        #a不会发生变化
b = np.append(a, 10)
print(b)
                              #>>[ 1
                                    2 3 10 201
print(np.append(a,[10,20]))
c = np.zeros((2,3),dtype=int) #c是2行3列的全0数组
print(np.append(a,c)) #>>[1 2 3 0 0
print(np.concatenate((a,[10,20],a)))
#>> [ 1 2 3 10 20 1 2 31
print(np.concatenate((c,np.array([[10,20,30]]))))
#c拼接一行[10,20,30]得新数组
print(np.concatenate((c,np.array([[1,2],[10,20]])),axis=1))
#c的第0行拼接了1,2两个元素、第1行拼接了10,20两个新元素后得到新数组
```

numpy删除数组元素

```
import numpy as np
a = np.array((1,2,3,4))
b = np.delete(a,1) #删除a中下标为1的元素,a不会改变
print(b)
                 #>>[1 3 4]
b = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])
                              #删除b的第1行得新数组
print(np.delete(b,1,axis=0))
#>> [ 9 10 11 12]]
                              #删除b的第1列得新数组
print(np.delete(b,1,axis=1))
                              #删除b的第1行和第2行得新数组
print(np.delete(b,[1,2],axis=0))
                              #删除b的第1列和第3列得新数组
print(np.delete(b,[1,3],axis=1))
```

在numpy数组中查找元素

```
import numpy as np
a = np.array((1,2,3,5,3,4))
pos = np.argwhere(a==3)  #pos是[[2] [4]]
a = np.array([[1,2,3],[4,5,2]])
print(2 in a)  #>>True
pos = np.argwhere(a==2)  #pos是[[0 1] [1 2]]
b = a[a>2]  #抽取a中大于2的元素形成一个一维数组
print(b)  #>>[3 4 5]
a[a > 2] = -1  #a变成[[ 1 2 -1] [-1 -1 2]]
```

numpy数组的数学运算

```
import numpy as np
a = np.array((1,2,3,4))
b = a + 1
print(b)  #>>[2 3 4 5]
print(a*b)  #>>[ 2 6 12 20]  a,b对应元素相乘
print(a+b)  #>>[3 5 7 9] a,b对应元素相加
c = np.sqrt(a*10)  #a*10是[10 20 30 40]
print(c)  #>>[ 3.16227766 4.47213595 5.47722558 6.32455532]
```

numpy数组的切片

```
numpy数组的切片是"视图",
是原数组的一部分,而非一部分的拷贝
```

```
import numpy as np
                   #a是[0 1 2 3 4 5 6 7]
a = np.arange(8)
                   #注意,b是a的一部分
b = a[3:6]
                   #>>[3 4 5]
print(b)
c = np.copy(a[3:6]) #c是a的一部分的拷贝
                  #会修改a
b[0] = 100
                   #>> [ 0 1 2 100
print(a)
                   #>>[3 4 5] c不受b影响
print(c)
a = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]])
b = a[1:3,1:4]  #b\(\mathcal{E}\)>[[ 6 7 8] [10 11 12]]
```


数据分析库pandas DataFrame的构造和访问

锡林郭勒草原

pandas 简介

- ▶ 核心功能是在二维表格上做各种操作,如增删、修改、求一列数据的和、方差、中位数、平均数等
- ➤ 需要numpy支持
- ▶ 如果有openpyxl或xlrd或xlwt支持,还可以读写excel文档。
- ➤ 最关键的类: DataFrame,表示二维表格

pip install pandas 安装

pandas的重要类: Series

```
> Series是一维表格,每个元素带标签且有下标,兼具列表和字典的访问形式
import pandas as pd
s = pd.Series(data=[80,90,100],index=['语文','数学','英语'])
for x in s:
                          #>>80 90 100
      print(x,end=" ")
print("")
print(s['语文'],s[1])
                                  标签和序号都可以作为下标来访问元素
                         #>>80 90
print(s[0:2]['数学'])
                         #>>90 s[0:2]是切片
print(s['数学':'英语'][1]) #>>100
                                #>>语文 数学 英语
for i in range(len(s.index)):
      print(s.index[i],end = " ")
                          #在尾部添加元素,标签为 体育 , 值为110
s['体育'] = 110
s.pop('数学')
                          #删除标签为'数学'的元素
s2 = s.append(pd.Series(120,index = ['政治'])) #不改变s
print(s2['语文'],s2['政治']) #>>80 120
                          #>>[80, 100, 110, 120]
print(list(s2))
```

pandas的重要类: Series

DataFrame的构造和访问

```
DataFrame是带行列标签的二维表格, 的每一列都是一个Series
import pandas as pd
pd.set option('display.unicode.east asian width', True)
#输出对齐方面的设置
scores = [['男',108,115,97],['女',115,87,105],['女',100,60,130],
           ['男',112,80,50]]
names = ['刘一哥','王二姐','张三妹','李四弟']
courses = ['性别','语文','数学','英语']
df = pd.DataFrame(data=scores,index = names,columns = courses)
print(df)
                  性别 语文 数学 英语。
             刘一哥 男 108
                           115 97 v
             王二姐 女 115 87 105.
             张三妹 女 100
                            60 130<sub>+</sub>
             李四弟 男 112
                            80
                                50 ₽
```

DataFrame的构造和访问

```
print(df.values[0][1],type(df.values))#>>108 <class 'numpy.ndarray'>
print(list(df.index)) #>>['刘一哥', '王二姐', '张三妹', '李四弟']
print(list(df.columns)) #>>['性别', '语文', '数学', '英语']
print(df.index[2],df.columns[2]) #>>张三妹 数学
s1 = df['语文'] #s1是个Series,代表'语文'那一列
print(s1['刘一哥'],s1[0]) #>>108 108 刘一哥语文成绩
print(df['语文']['刘一哥']) #>>108 列索引先写
s2 = df.loc['王二姐'] #s2也是个Series,代表 "王二姐"那一行
print(s2['性别'],s2['语文'],s2[2])
#>>女 115 87 王二姐的性别、语文和数学分数
```

 性别
 语文
 数学
 英语。

 刘一哥
 男
 108
 115
 97。

 王二姐
 女
 115
 87
 105。

 张三妹
 女
 100
 60
 130。

 李四弟
 男
 112
 80
 50。

数据分析库pandas DataFrame的切片和统计

云南石林

 性别
 语文
 数学
 英調。

 王二姐
 女
 115
 87
 105。

 张三妹
 女
 100
 60
 130。

```
df2 = df.iloc[:,0:3] #列切片(是视图),选0、1、2三列df2 = df.loc[:,'性别':'数学'] #和上一行等价print(df2)
```

	性别	语文	数学。
刘一哥	男	108	115 v
王二姐	女	115	87.
张三妹	女	100	60 ↔
李四弟	男	112	80 + z

```
df2 = df.iloc[:2,[1,3]] #行列切片
df2 = df.loc[:'王二姐',['语文','英语']] #和上一行等价
print(df2)
```

语文 英语↓ 刘一哥 108 97↓ 王二姐 115 105↓

```
df2 = df.iloc[[1,3],2:4] #取第1、3行,第2、3列
df2 = df.loc[['王二姐','李四弟'],'数学':'英语'] #和上一行等价
print(df2)
```

	数学	英语↓
王二姐	87	105 ₽
李四弟	80	50 ₽

DataFrame的分析统计

```
print("---下面是DataFrame的分析和统计---")
print(df.T) #df.T是df的转置矩阵,即行列互换的矩阵
print(df.sort values('语文',ascending=False)) #按语文成绩降序排列
print(df.sum()['语文'],df.mean()['数学'],df.median()['英语'])
#>>435 85.5 101.0 语文分数之和、数学平均分、英语中位数
print(df.min()['语文'],df.max()['数学'])
#>>100 115 语文最低分,数学最高分
print(df.max(axis = 1)['王二姐']) #>>115 王二姐的最高分科目的分数
print(df['语文'].idxmax()) #>>王二姐 语文最高分所在行的标签
print(df['数学'].argmin()) #>>2
                               数学最低分所在行的行号
print(df.loc[(df['语文'] > 100) & (df['数学'] >= 85)])
```

```
性别 语文 数学 英语↓
刘一哥 男 108 115 97↓
王二姐 女 115 87 105↓
```

sort_values(....inplace=True,axis=1....)
则原地排序,将各列排序

DataFrame的修改和增删

```
print("---下面是DataFrame的增删和修改---")
df.loc['王二姐','英语'] = df.iloc[0,1] = 150 #修改王二姐英语和刘一哥语文成绩
                         #为所有人添加物理成绩这一列
df('\mathrm{\square}{m}\mathrm{\pi}') = [80,70,90,100]
df.insert(1,"体育",[89,77,76,45])
                                          #为所有人插入体育成绩到第1列
df.loc['李四弟'] = ['男',100,100,100,100,100] #修改李四弟全部信息
df.loc[:,'语文'] = [20,20,20,20]
                                                 #修改所有人语文成绩
df.loc['钱五叔'] = ['男',100,100,100,100]
                                                 #加—行
                                                 #>>所有人英语加10分
df.loc[:,'英语'] += 10
df.columns = ['性别','体育','语文','数学','English','物理'] #改列标签
print(df)
                                               初始的df:
              性别 体育 语文 数学 English 物理。
              男 89
                       20
                                107
                          115
                                     80 ₽
                                                    性别
                                                        语文 数学
                                                               英语↓
         王二姐 女 77
                                     70 ₽
                       20
                           87
                                160
                                                     男
                                                        108
                                                            115
                                                                 97√
         张三妹
                   76
                           60
                                     90 ↔
                                140
                                               王二姐 女
                                                        115
                                                                105+
         李四弟。
                  100
                       20
                          100
                                110
                                     100
                                               张三妹 女
                                                        100
                                                             60
                                                                130 ₽
         钱五叔
                  100
                           100
                                110
                                    100 -
                      100
                                               李四弟
                                                     男
                                                             80
                                                        112
                                                                 50₽
```

DataFrame的修改和增删

```
df.drop(['体育','物理'],axis=1, inplace=True)#删除体育和物理成绩df.drop('王二姐',axis = 0, inplace=True)#删除 王二姐那一行print(df)
```

	性别	语文	数学	English.
刘一哥	男	20	115	107
张三妹	女	20	60	140 .
李四弟	男	20	100	110+
钱五叔	男	100	100	110 ₽

```
df.drop([df.index[i] for i in range(1,3)],axis=0,inplace = True)
#删除第1,2行
df.drop([df.columns[i] for i in range(3)],axis = 1,inplace =
True) #删除第0到2列
```


数据分析库pandas 读写excel和csv文档

北京房山红井路

用pandas读excel文档

- > 需要openpyxl(对.xlsx文件)或xlrd或xlwt支持(老的.xls文件)
- ➤ 读取的每张工作表都是一个DataFrame

	A	В	c	D	E	F
1	产品类别	数量	销售额	成本	利润	
2	睡袋	4080	224, 192. 97	180, 501. 27	43, 691. 70	
3	彩盒	502		62, 452. 41	-62, 452. 41	
4	宠物用品	437	51, 558. 43		51, 558. 43	
5	警告标	382	36, 796. 62	32, 100. 23	4, 696. 40	
6	总针	5401	312548. 0199	275053.904	37494.11589	
7	0			10	100	
	>	销售情况	CVOID odd	()		

用pandas读excel文档

```
import pandas as pd
pd.set option('display.unicode.east asian width',True)
dt = pd.read_excel("excel sample.xlsx", sheet name=['销售情况',1],
                   index col=0) #读取第0和第1张工作表
                                #dt是字典, df是DataFrame
df = dt['销售情况']
print(df.iloc[0,0],df.loc['睡袋','数量']) #>>4080 4080
print(df)
                                     成本
                  数量
                          销售额
                                               利润。
           产品类别
           睡袋
                  4080 224192, 969785 180501, 266580 43691, 703206
           彩盒 502
                            NaN
                                62452, 410032 -62452, 410032 v
           宠物用品
                  437 51558, 425403
                                     NaN 51558. 425403 ₽
           警告标
                  382 36796. 624662 32100. 227353 4696. 397309
           总计
                  5401 312548. 019850 275053. 903964 37494. 115886 »
print(pd.isnull(df.loc['彩盒','销售额']))
                                                 #>>True
                                                 #将所有NaNa用0替换
df.fillna(0,inplace=True)
print(df.loc['彩盒','销售额'],df.iloc[2,2])
                                                 #>>0.00.0
```

用pandas写excel文档

```
df.to_excel(filename, sheet_name="Sheet1", na_rep='', .....)
```

- ▶ 将DataFrame对象df中的数据写入excel文档filename中的"Sheet1"工作表,NaN用'' 代替。
- ➤ 会覆盖原有的filename文件
- ▶ 如果要在一个excel文档中写入多个工作表,需要用 ExcelWrite

用pandas写excel文档

#(接上面程序)

用pandas读写csv文件

```
df = pd.read_csv("result.csv")
```