We claim:

5

լ15

20

35

40

- A process for preparing catalyst systems of the Ziegler-Natta type, which comprises the following steps:
 - A) bringing an inorganic metal oxide into contact with a tetravalent titanium compound and
- bringing the intermediate obtained from step A) into contact with a magnesium compound MgR¹_nX¹_{2-n}, where X¹ are each, independently of one another, fluorine, chlorine, bromine, iodine, hydrogen, NR^x₂, OR^x, SR^x, SO₃R^x or OC(O)R^x, and R¹ and R^x are each, independently of one another, a linear, branched or cyclic C₁-C₂₀-alkyl, a C₂-C₁₀-alkenyl, an alkylaryl having 1-10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or a C₆-C₁₈-aryl and n is 1 or 2,
 - bringing the intermediate obtained from step B) into contact with a halogenating reagent, and
 - D) bringing the intermediate obtained from step C) into contact with a donor compound.
- 2. A process for preparing catalyst systems as claimed in claim 1, wherein a magnesium compound MgR¹₂ is used in step B).
- 3. A process for preparing catalyst systems as claimed in claim 1 or 2, wherein the halogenating reagent used in step C) is chloroform.
 - 4. A process for preparing catalyst systems as claimed in any of claims 1 to 3, wherein the inorganic metal oxide used in step A) is a silica gel.
- 30 5. A process for preparing catalyst systems as claimed in any of claims 1 to 4, wherein the tetravalent titanium compound used in step A) is titanium tetrachloride.
 - 6. A process for preparing catalyst systems as claimed in claims 1 to 5, wherein the donor compound used in step D) contains at least one nitrogen atom.
 - 7. A catalyst system of the Ziegler-Natta type which can be prepared by a process as claimed in any of claims 1 to 6.

- 8. A prepolymerized catalyst system comprising a catalyst system as claimed in claim 7 and linear C₂-C₁₀-1-alkenes polymerized onto it in a mass ratio of from 1:0.1 to 1:200.
- A process for the polymerization or copolymerization of olefins at from 20 to 150°C and
 pressures of from 1 to 100 bar in the presence of at least one catalyst system as claimed in claim 7 or 8 and, if appropriate, an aluminum compound as cocatalyst.
 - 10. A process for the polymerization or copolymerization of olefins as claimed in claim 9, wherein a trialkylaluminum compound whose alkyl groups each have from 1 to 15 carbon atoms is used as aluminum compound.
 - 11. A process for the polymerization or copolymerization of olefins as claimed in claim 9 or 10, wherein ethylene or a mixture of ethylene and C_3 - C_8 - α -monoplefins is (co)polymerized.
- 15 12. The use of a catalyst system as claimed in claim 7 or 8 for the polymerization or copolymerization of olefins.

20

10

25

30

35