Střední průmyslová škola a Vyšší odborná škola Brno, Sokolská, příspěvková organizace

ROČNÍKOVÁ PRÁCE z Fyziky

Kalibrace HPGe detektoru

Studijní obor: Technické lyceum 78 – 42 - M/01

Třída: L3A

Školní rok: 2021/2022

Jméno: David

Příjmení: Škrob

Prohlašuji, že jsem tuto práci vypracoval samostatně a použil jse	m literárních nramenů
a informací, které cituji a uvádím v seznamu použité literatury a z	
, v	•
V Brně dne :	
	David Škrob

Obsah

Za	ıdání		3										
Ú٧	vod		4										
1 Detekce ionizujícího záření													
	1.1	Detekce fotoelektrického jevu	5										
	1.2	Detekce Comptnova jevu	5										
	1.3	Detekce páru pozitron-elektron	6										
2	Měř	ení účinnosti	6										
	2.1	Vliv energie	6										
	2.2	Energetická kalibrace detektoru	7										
	2.3	Výpočet efektivity detektoru	7										
3	Roz	díly při měření v různých vzdálenostech	8										
	3.1	Teoretický pokles intenzity	8										
	3.2	Skutečná ztráta intenzity	8										
4	Jiné	vlivy na měření ionizujícího záření	9										
	4.1	Mrtvá doba detektoru	9										
	4.2	Radiační pozadí	10										
Zá	ívěr		11										
Se	znam	použitých značek a symbolů	12										
Se	znam	2.3 Výpočet efektivity detektoru Rozdíly při měření v různých vzdálenostech 3.1 Teoretický pokles intenzity 3.2 Skutečná ztráta intenzity Jiné vlivy na měření ionizujícího záření 4.1 Mrtvá doba detektoru 4.2 Radiační pozadí věr znam použitých značek a symbolů znam použitých odborných výrazů	13										
Se	znam	literatury, pramenů a internetových zdrojů	14										

Zadání

Popište jak funguje polovodičová detekce gama záření. Pomocí sady kalibračních zářičů stanovte účinnost detekce gama záření HPGe (High Purity Germanium) detektorem pro vybranou měřící pozici. Pomocí statistických metod a teoretických znalostí určete, s čím ztráty souvisí.

Úvod

Gama záření je vysokoenergetické elektromagnetické záření, které vzniká v jádru atomu při radioaktivních přeměnách. Rozdíl mezi zářením gama a zářením rentgenovým je v původu záření. Rentgenové záření vzniká v atomovém obalu, a má většinou nižší energii (1 keV až6000 keV v extrémnínch připadech až 6000 keV). Gama záření pochází z atomvého jádra, má vyšší energie (100 keV, ale někdy i tak málo jako 0,007 keV).

Gama záření můžeme měřit buď pouze bez rozlišení, například Geigerův–Müllerův počítačem, nebo můžeme měřit energii dopadajících fotonů, třeba pomocí scintilačních detektorů, nebo detektorů polovodičových, jako je HPGe.

Tato ročníková práce se bude zabývat vlivem ztráty signálu gama záření v závislosti na vzdálenosti. Bude se též zabývat rozlišovací schopností detektoru při různých energiích fotonu. Snaha této práce je najít takové funkce, aby bylo možné tyto vlivy odfiltrovat při měření neznámého vzorku.

1 Detekce ionizujícího záření

Hlavním důvodem, proč se používají HPGe detektory: Jsou lépe schopné určit, o jakou energii se jedná, čehož můžeme využít při rozlišování jednotlivých radioaktivních izotopů. Tak můžeme zjistit, zda se v přepravě radioaktivních materiálů nesnaží někdo přepravit speciální jaderný materiál, který by mohl být použit na výrobu jaderných zbraní [16].

HPGe detektory mají vyšší tepelný šum, který by při pokojové teplotě přehlušil měřený signál. Potřebují taky napétí v řádu kV, které by jsme při pokojové teplotě nemohly použít. Proto jej chladíme kapalným dusíkem na teplotu -196 °C [3, 6].

Energii z dopadajících fotonů můžeme detekovat nejen pomocí fotoelektrického jevu, ale taky pomocí 2 dalších jevů. Tyto jevy jsou ovšem spíše jako parazitní, protože často se nepohltí celá energie fotonu.

1.1 Detekce fotoelektrického jevu

Když se do citlivé vrstvy detektoru (u germania díky speciální technice výroby velmi čistého germania v řádu cm, u křemíku v řádu mm) [9] dostane γ foton, tak díky fotoelektrickému jevu gama foton uvolní e^- z elektronového obalu. Asi $3\,\mathrm{eV}$ jsou potřeba na uvolnění e^- z valenční vrstvy. (V případě Germania asi $3.6\,\mathrm{eV}$, v případě křemíku asi $2.9\,\mathrm{eV}$) [4, 13].

Tato energie je nutná na odtržení e^- od atomu. Zbylá energie gama fotonu se stane kinetickou energií e^- . "V polovodiči fotoelektron ztratí svou kinetickou energii při interakci elektromagnetickými silami s elektrony v polovodičové mřížce, čímž vzniká mnoho párů elektron-díra. Počet vytvořených párů elektron-děr je přímo úměrný energii dopadajícího fotonu." [1] Na diodu detektoru přivedeme v závěrném směru napětí, řadově tisíce V [12]. Jakmile se vytvoří pár e^- díra, tak se e^- přesouvá ke kladně nabité elektrodě, díra k záporně nabité, vzniká proud, a ten potom zaznamenáváme [8, 9].

1.2 Detekce Comptnova jevu

Prvním z nich je Comptonův jev, kde gama foton část své energie předá e^- , který je vychýlen ze své původní dráhy. Foton změní směr pohybu a zvýší se jeho vlnová délka. [10] Tento foton může dále reagovat v detektoru, až dokud se nedostane mimo citlivou vrstvu detektoru, nebo dokud není zcela pohlcen.

1.3 Detekce páru pozitron-elektron

Druhým z nich je tvorba páru elektron-pozitron, kdy pokud se γ foton přiblíží k jádru atomu, tak se z jeho energie vytvoří pár e^- , e^+ . Musí se vytvořit oba, aby platil zákon zachování náboje. Jejich vytvoření neporušuje zákon zachování hmoty, protože platí teorie relativity, ze které vyplývá:

$$E^{2} = (mc^{2})^{2} + (pc)^{2}$$
(1)

Kde E je energie fotonu, m je hmotnost e^- a e^+ , kteří se vytvoří a p je hybnost, která je rozdělena mezi ně a jádro atomu, u kterého se tato přeměna stane. Pokud měl foton větší energii než $1022 \, \mathrm{keV}$ ($m_e = 9,109\,384 \times 10^{-31} \, \mathrm{kg}$, $E = mc^2 \implies E = 9,109\,384 \times 10^{-31} \, \mathrm{kg}$. [$299\,792\,458 \, \mathrm{m\,s^{-1}}$] $^2 = 8,187\,106 \times 10^{-14} \, \mathrm{J} = 510,999 \, \mathrm{keV^1}$, je energie e^- a protože vytváříme pár e^- a e^+ , potřebujeme 2 násobnou energii tj. $1021,998 \, \mathrm{keV}$). Pokud má γ záření větší energii, tak tato energie je převedena na hybnost e^- a e^+ [1, 5].

2 Měření účinnosti

Tato kapitola se bude zabývat, jaké vlivy má energie dopadajícího γ fotonu. Jak působí energie na rozlišovací schopnost detektoru a jakým způsobem energeticky kalibrujeme detektor.

2.1 Vliv energie

U vlivu energie řešíme, jaké rozlišení má detektor při dané energii. Používáme při tom FWHM, kde můžeme snadno určit, jak je peak široký, a kdy by nám již 2 peaky splynuly v jeden [15, 8]. "Systémy s malým germaniovým detektorem mají FWHM přibližně 150-250 eV při 5,9 keV, kdy se FWHM zvyšuje na 400-600 eV při 122 keV. Větší koaxiální detektory mají hodnoty FWHM mezi 0,8 keV až 1,2 keV při 122 keV, kdy se zvýší na 1,7 keV až 2,3 keV při 1333 keV." [9]

 $^{^1{}m eV}$ je jednotka energie, je definována jako kinetická energie, kterou ve vakuu e^- dostane při urychlení napětím $1{
m V}$. Energie komára je $1\times 10^{12}{
m eV}$, jednotka je proto využívána v místech, kde jsou energie velmi malé, jako například v částicové fyzice.

2.2 Energetická kalibrace detektoru

Při kalibraci jsem použil software GAMWIN, který je určený na ovládání a kalibraci gama detektorů. K změřeným kalibračním vzorkům (²⁴¹Am, ⁵⁷Co, ⁶⁰Co, ¹³⁷Cs, ⁸⁸Y, ⁶⁵Zn) jsem našel na *Database WWW Table of Radioactive Isotopes*² jejich energie gama rozpadu. Tyto energie jsem přiřadil k datům, která jsem naměřil, a program GAMWIN tyto data proložil vhodnou funkcí. [8, 11]

2.3 Výpočet efektivity detektoru

Graf 1: Závislost účinnosti na energii, pro pozici 5 mm nad detektorem.

Na výpočet efektivity detektoru, jsem použil rovnici (2), která určí pro danou energii peakovou účinnost. Druhý člen je na kompenzaci pro přeměnu mezi referenčním datem a datem měření. Třetí člen je zde pro kompenzaci přeměny během měření.

$$\varepsilon = \frac{S_{peaku} \lambda_{t_{live}}^{t_{real}}}{A_0 I_{\gamma}} \cdot \frac{1}{e^{-\lambda t_0}} \cdot \frac{1}{1 - e^{-\lambda t_{real}}}$$
 (2)

Kde ε je peaková účinnost, S_{peaku} je plocha peaku, bez plochy radiačního pozadí, λ poločas přeměny t_{real} je doba, jak dlouho probíhalo celé měření, t_{live} doba, jak dlouho detektor měřil (doba měření bez mrtvé doby detektoru), A_0 referenční aktivita kalibračního zdroje, I_{γ} je tabulková intenzita kalibračního zdroje a t_0 je doba mezi měřením a měřením referenční aktivity.

²http://nucleardata.nuclear.lu.se/toi/nucSearch.asp

3 Rozdíly při měření v různých vzdálenostech

Měříme v různých vzdálenostech protože v nízké geometrii může intenzivní vzorek zahltit detektor, a v vysoké geometrii může málo intenzivní vzorek být téměř nepatrný.

3.1 Teoretický pokles intenzity

Jak dobře známe, tak platí zákon převrácených čtverců, který nám říká, že intenzita klesá se čtvercem vzdálenosti.

$$\frac{I_1}{I_2} = \frac{h_1^2}{h_2^2} \implies I_1 = I_2 \cdot \frac{h_1^2}{h_2^2} \tag{3}$$

Kde I_1 je intenzita v bodě 1, I_2 je intenzita v bodě 2, h_1^2 vzdálenost bodu 1 od zdroje a h_2^2 vzdálenost bodu 2 od zdroje.

I přes to, že neměříme ve vakuu a vzorek pokládáme na plastovou destičku, tak tyto ztráty zanedbáme, protože budou mnohonásobně menší než ztráty způsobené zákonem převrácených čtverců. Například abychom ztratili polovinu fotonů o energii $100 \, \mathrm{keV}$, tak bychom potřebovali $35 \, \mathrm{m}$ vysoký sloup vzduchu [7].

3.2 Skutečná ztráta intenzity

Graf 2: Porovnání závislosti účinnosti na energii při různých vzdálenostech, kde osa y je logaritmická.

Na grafu 2 vidíme, že účinnost se vzdáleností rychle klesá. Dále si můžeme povšimnout, že citlivost na energii zůstává stejná, takže pokles účinnosti je zde závislý na vzdálenosti.

4 Jiné vlivy na měření ionizujícího záření

Při měření na HPGe detektoru si musíme dát pozor i na jiné vlivy, jako je například koincidenční detekce fotonů a přirozené radiační pozadí. Také měření ovlivní konstrukce detektoru a s tím související jeho mrtvá doba

4.1 Mrtvá doba detektoru

Mrtvá doba detektoru, je doba, kdy detektor není citlivý na detekci dalšího fotonu. Při měření ji vyjadřujeme jako procentní podíl z celkového času měření.

Dělíme ji na nekumulativní a kumulativní.

Nekumulativní - foton, který není registrován, nemá vliv na samotný detektor. Většinou je způsobena tím, že detekční člen dokáže registrovat fotony rychleji než elektronika stíhá zpracovávat signál [8].

$$n = \frac{N}{1 + N * \tau} \tag{4}$$

Kde n je počet registrovaných fotonů, N je počet fotonů, které zasáhly detektor a τ je mrtvá doba detektoru, definovaná jako doba, po kterou detektor není schopen zaznamenat další foton. Kumulativní - foton, který není registrován, prodlouží mrtvou dobu detektoru. Je způsobena tím, že je přehlcen detekční člen. Při zvyšování četnosti je zpočátku odezva téměř lineární, při dalším navýšení četnosti počet registrovaných impulzů začne klesat [8].

$$n = N \cdot e^{-N*\tau} \tag{5}$$

Obrázek 1: Kumulativní (nahoře) a nekumulativní (dole) mrtva doba. Zdroj: [9]

Mrtvou dobu můžeme měřit několika způsoby, mezi nejrozšířenější patří "metoda postupného oddalování (nebo přibližování) zdroje, až dokud není dosažena maximální četnost, kterou je detektor schopen měřit. Další zvyšovaní četnosti již nevede k zvyšování počtu zaznamenaných impulzů." [8]

4.2 Radiační pozadí

V Zemské kůře jsou radioaktivní prvky, které vyzařují gama záření. Z vesmíru se při různých dějích vytváří γ záření. Tato záření jsou sice málo intenzivní, přesto vytváří šum na detektoru.

Obrázek 2: Spektrum měření přirozeného pozadí. Zdroj dat: Dušan Král

Závěr

Díky mé ročníkové práci jsem si mohl prohlédnout na Fakultu elektrotechniky a komunikačních technologií VUT. Povedlo se mi detektor nakalibrovat v programu GAMWIN a spočítat jeho efektivitu. Ale pro přesnějši kalibraci, bych potřeboval naměřit vzorek s zářením o energii asi $500 \, \mathrm{keV}$. Kalibraci HPGe detektoru jsem dělal, abych mohl při navazující maturitní práci využit energetickou kalibraci pro určování energii k odpovídajícím peakům. A abych byl schopen určit, jakou má vzorek intenzitu, díky peakové účinnosti. Se stářím detektoru a měnícím se podmínkám v laboratoři je potřeba dělat tuto kalibraci a určování peakové účinnosti.

Seznam použitých značek, symbolů a zkratek

```
A_0 – aktivita kalibračního zářiče k referenčnímu datu
c – rychlost světla ve vakuu
e^-– elektron
e^+ – pozitron, antičástice k e^-
\varepsilon – efektivita
eV – elektron volt – je to energie, kterou má jeden elektron urychlený napětím 1 V
FWHM – Full Width at Half Maximum – šířka na poloviční výšce peaku
\gamma – gama záření – elektromagnetické záření, původem z jaderných reakcí
h – Planckova konstanta – 6,626\,070\times10^{-34}\,\mathrm{J\,s}
\hbar – redukovaná Plankova konstanta – \hbar = \frac{h}{2\pi}
HPGe – High-Purity Germanium – detektor z velmi čistého germania
I_{\gamma} – intenzita gama přechodu
\lambda – rozpadová konstanta
n – registrovaná četnost
N – skutečná četnost
\nu – frekvence fotonu
S_{peaku} – plocha peaku, bez pozadí
t<sub>0</sub> – doba mezi referenčním datem a datem měření
T_{1/2} – poločas přeměny – doba, za kterou se přemění \frac{1}{2} celkového počtu jader
t_{live} – čistý čas měření
t_{real} – celková doba měření
	au – mrtvá doba detektoru
```

Seznam použitých odborných výrazů

- Fotoelektrický jev jev, při kterém foton vytrhne elektron z elektronového obalu. Popsal jej Albert Einstein v roce 1905. Nezáleží na intenzitě světla, pouze na jeho frekvenci.
- Comptonův jev $-\gamma$ (popř. rentgenový) foton narazí na e^- , předá část své hybnosti e^- . Foton (protože ztratí část energie) má v důsledku nižší frekvenci (= větší vlnovou délku), a je vychýlen od původního směru. Objevil jej Arthur Holly Compton v roce 1923.
- Vytváření páru pozitron elektron Foton s energií alespoň $1020 \,\mathrm{keV}$ se v blízkosti atomového jádra přemění na pár e^+ , e^- . Objevili jej Blackett a Occhialini v roce 1933.
- Elektromagnetické záření postupné vlnění magnetického a elektrického pole. Objevil je Michael Faraday v roce 1845.
- Spektroskopie obor fyziky, který se snaží zachytit vliv elektromagnetického záření na danou látku.

Seznam literatury, pramenů a internetových zdrojů

- [1] BEER, Albert, Robert Willardson, Eicke Weber, Semiconductors for Room Temperature Nuclear Detector Applications, Volume 43, San Diego, California, Academic Press, 1995, 595 s. ISBN: 0-12-752143-7
- [2] BURIAN, Jiří, Charakterizace neutronového AMBE zdroje pomocí prahových aktivačních detektorů, bakalářská práce, Ústav elektroenergeriky, 2019. Ve Fakultě elektrotechniky a komunikačních technologií VUT v Brně [online],[cit. 2022-04-25] Dostupné z: https://wwww.vut.cz/www_base/zav_prace_soubor_verejne.php?file_id=195526
- [3] CONNOR, Nick, What is Advantage and Disadvantage of Germanium Detectors, [online], (14.12.2019), [cit. 2022-04-25] Dostupné z: https://www.radiation-dosimetry.org/what-is-advantage-and-disadvantage-of-germanium-detectors-definition/
- [4] Detekce a spektrometrická analýza fotonového a korpuskulárního záření pro výzkum, technologické aplikace a medicínu [online], Vojtěch Ullmann, [cit. 2022-04-25]. Dostupné z: https://astronuklfyzika.cz/DetekceSpektrometrie.htm
- [5] D'ALESSANDRIS, Paul, Pair Production [online], [cit. 2022-04-25] Dostupné z: https://phys.libretexts.org/@go/page/10492
- [6] HRUŠKA, František, SENZORY, Fyzikální principy, úpravy signálů, praktické použití, Zlín: Univerzita Tomáše Bati ve Zlíně, 2010, 202 s, ISBN: 978-80-7454-096-7
- [7] Interaction of Gamma Radiation with Matter [online], Nuclear Power, [cit. 2022-04-25]

 Dostupné z: https://www.nuclear-power.com/nuclear-power/reactor
 -physics/interaction-radiation-matter/interaction-gamma-rad
 iation-matter/
- [8] Jaderně energetická zařízení Laboratorní cvičení, Brno, FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ, 2021, 34 s.
- [9] KNOLL, Glenn Frederick, Radiation Detection and Measurement, 4th Edition, University of Michigan, John Wiley & Sons, Inc., 2010, 819 s. ISBN: 978-0-470-13148-0

- [10] MACKŮ, Robert, Meze klasické fyziky, fotoelektrický jev, Comptonův posuv, dualismus vlna-částice, vlnová funkce. [přednáška], FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ: 10. listopadu 2021
- [11] NUSOFT GAMWIN, Softwarový balíček pro analýzu gama a alfa spektrometrie [online], nuviatech instruments, [cit. 2022-04-25] Dostupné z: https://www.nuviatech-instruments.com/cz/Produkt/nusoft-gamwin/
- [12] Pehl, Richard & Cordi, Richard & Goulding, Fred. (1972). High-Purity Germanium: Detector Fabrication and Performance, IEEE Transactions on Nuclear Science, Květen 1972, (1):265 269, DOI: http://dx.doi.org/10.1109/TNS.1972.4326520
- [13] Principle of Operation of HPGe Detectors [online], Nuclear Power [cit. 2022-04-26] Dostupné z: https://www.nuclear-power.com/nuclear-engineering/radiation-detection/semiconductor-detectors/high-purity-germanium-detectors-hpge/principle-of-operation-of-hpge-detectors
- [14] Wikipedia contributors, Gamma spectroscopy, Wikipedia, The Free Encyclopedia, [cit. 2022-04-25] Dostupné z: https://en.wikipedia.org/w/index.php?title=G amma_spectroscopy&oldid=1068003477
- [15] What is Full Width at Half Maximum (FWHM)? [online], StellarNet, Inc., [cit. 2022-04-25] Dostupné z: https://www.stellarnet.us/what-is-full-width-at-half-maximum-fwhm/
- [16] Why High-Purity Germanium (HPGe) Radiation Detection Technology is Superior to Other Detector Technologies for Isotope Identification, ORTEC AMETEK, [online], AMETEK Inc., [cit. 2022-05-26], Dostupné z: https://www.ortec-online.com/-/media/ametekortec/technical%20papers/homeland%20security%20applications%20and%20chemical%20weapons%20assay%20pins/whyhighpuritygermaniumhpgeradiationdetectiontechnologysuperiorotherdetectortechnologiesisotopeidentification.pdf?la=e

Seznam tabulek a příloh

Tabulka 1: Seznam zářičů, s referenčním datem a referenční aktivitou

Seznam zářičů	referenční datum	referenční aktivivta [Bq]
Am 241	1.2.2015	467 000
Co 57	30.12.2018	8 287 000
Co 60	30.12.2018	231 500
Zn65	30.12.2018	816 800
Cs 137	30.12.2018	307 000
Y 88	30.12.2018	70 040

Tabulka 2: Naměřené hodnoty pro výšku $5\,\mathrm{mm}$

izotop	real time	live time	plocha peaku	intenzita	energie [keV]	datum měření	$T_{1/2}$	t_0	λ	Efektivita
Am241	$43,3 {\rm s}$	41,6 s	94 274	0,359	59,5412	19.1.2022	$13638914655\mathrm{s}$	$219888000\mathrm{s}$	$5,082129\times10^{-11}$	0,013669
Co57	75 s	$33.7\mathrm{s}$	1 344 620	0,856	122,0614	21.10.2021	23 482 656 s	88 732 800 s	$2,951741 \times 10^{-8}$	0,077 195
C037	138	35,78	167 786	0,1068	136,4743	21.10.2021		00 132 000 8		0,008 241
Co60	230,1 s	167,3 s	220 462	0,999736	1173,237	21.10.2021	166 349 316 s	88 732 800 s	$4,166817\times10^{-9}$	0,010 566
C000			197287	0,999856	1332,501					0,018 320
Zn65	$602,5\mathrm{s}$	$586,2\mathrm{s}$	138 838	0,506	1115,546	21.10.2021	$21104064\mathrm{s}$	$88732800\mathrm{s}$	$3,284425 \times 10^{-8}$	0,013 213
Cs137	$109,1 {\rm s}$	79,7 s	355 503	0,851	661,657	19.1.2022	948 917 546 s	$96508800\mathrm{s}$	$7,304609 \times 10^{-10}$	0,077 205
Y88	56 381,1 s	56 364,9 s	61 572	0,937	898,042	21.10.2021	$9214560\mathrm{s}$	88 732 800 s	$7,522304\times10^{-8}$	0,007 374
100	00 301,18		31 432	0,992	1836,063			00 102 000 8		0,006371

Tabulka 3: Naměřené hodnoty pro výšku $30\,\mathrm{mm}$

izotop	real time	live time	plocha peaku	intenzita	energie [keV]	datum měření	$T_{1/2}$	t_0	λ	Efektivita
Am241	128,4 s	$126.7\mathrm{s}$	10 738	0,359	59,5412	19.1.2022	$13638914655\mathrm{s}$	$219888000\mathrm{s}$	$5,082129\times10^{-11}$	0,000 511
Co57	138,6 s	$106.7{\rm s}$	1 406 624	0,856	122,0614	21.10.2021	23 482 656 s	88 732 800 s	$2,951741 \times 10^{-8}$	0,025505
C037		100,78	167 798	0,1068	136,4743			00 102 000 8	2,951 741 X 10	0,024 386
Co60	394,9 s	$353,4\mathrm{s}$	171 947	0,999736	1173,237	21.10.2021	166 349 316 s	88 732 800 s	$4,166817\times10^{-9}$	0,003 043
C000			151 913	0,999 856	1332,501					0,002 688
Cs137	111,6 s	$100.8 \mathrm{s}$	140 981	0,851	661,657	19.1.2022	948 917 546 s	$96508800\mathrm{s}$	$7,304609 \times 10^{-10}$	0,002 159
Y88	273 450,8 s	273 409,5 s	100 769	0,937	898,042	21.10.2021	9 214 560 s	88 732 800 s	$7,522304\times10^{-8}$	0,000 001
100			50 629	0,992	1836,063					0,000 001

Tabulka 4: Naměřené hodnoty pro výšku $80\,\mathrm{mm}$

izotop	real time	live time	plocha peaku	intenzita	energie [keV]	datum měření	$T_{1/2}$	t_0	λ	Efektivita
Am241	411,8 s	410,4 s	82 324	0,359	59,5412	19.1.2022	$13638914655\mathrm{s}$	$219888000\mathrm{s}$	$5,082129\times10^{-11}$	0,001 210
Co57	$305,4\mathrm{s}$	284,4 s	897 749	0,856	122,0614	21.10.2021	$23482656\mathrm{s}$	88 732 800 s	$2,951741\times10^{-8}$	0,006 107
			114 190	0,1068	136,4743					0,006226
Co60	1089,6 s	1054,5 s	145 734	0,999736	1173,237	21.10.2021	166 349 316 s	88 732 800 s	$4,166817\times10^{-9}$	0,000 864
C000	1009,08		129943	0,999856	1332,501			00 132 000 8		0,002688
Cs137	$338,4\mathrm{s}$	$328,\!6\mathrm{s}$	122 983	0,851	661,657	19.1.2022	$948917546\mathrm{s}$	$96508800\mathrm{s}$	$7,304609 \times 10^{-10}$	0,000 578

Tabulka 5: Naměřené hodnoty pro výšku $120\,\mathrm{mm}$

izotop	real time	live time	plocha peaku	intenzita	energie [keV]	datum měření	$T_{1/2}$	t_0	λ	Efektivita
Am241	599,4 s	$598,3\mathrm{s}$	57 393	0,359	59,5412	19.1.2022	$13638914655\mathrm{s}$	$219888000\mathrm{s}$	$5,082129\times10^{-11}$	0,000 579
Co57	462 s	444,5 s	720 853	0,856	122,0614	21.10.2021	23 482 656 s	88 732 800 s	$2,951741 \times 10^{-8}$	0,003 138
C037			92 322	0,1068	136,4743					0,003 221
Co60	1932,5 s	1897 s	142 709	0,999736	1173,237	21.10.2021	166 349 316 s	88 732 800 s	$4,166817\times10^{-9}$	0,000 470
C000			126605	0,999856	1332,501					0,000 417
Cs137	570,8 s	$561,5 { m s}$	112 993	0,851	661,657	19.1.2022	$948917546\mathrm{s}$	$96508800\mathrm{s}$	$7,304609 \times 10^{-10}$	0,000 311

Tabulka 6: Naměřené hodnoty pro výšku $205\,\mathrm{mm}$

izotop	real time	live time	plocha peaku	intenzita	energie [keV]	datum měření	$T_{1/2}$	t_0	λ	Efektivita
Am241	$1149,2 \mathrm{s}$	$1148,4\mathrm{s}$	41 095	0,359	59,5412	19.1.2022	$13638914655\mathrm{s}$	$219888000\mathrm{s}$	$5,082129\times10^{-11}$	0,000 216
Co57	$625,5\mathrm{s}$	615,8 s	379 140	0,856	122,0614	21.10.2021	$23482656\mathrm{s}$	88 732 800 s	$2,951741 \times 10^{-8}$	0,001 191
			48 776	0,1068	136,4743					0,001 228
Co60	2418,7 s	2398,7 s	71 489	0,999736	1173,237	21.10.2021	166 349 316 s	88 732 800 s	$4,166817\times10^{-9}$	0,000 186
C000			63 585	0,999856	1332,501			00 102 000 8		0,000 166
Cs137	$2637,7\mathrm{s}$	$2618,\!6\mathrm{s}$	207 473	0,851	661,657	19.1.2022	$948917546\mathrm{s}$	$96508800\mathrm{s}$	$7,304609 \times 10^{-10}$	0,000 122