Primer Certamen

Introducción a la Informática Teórica

10 de mayo de 2003

- 1. Determine cuáles de los siguientes conjuntos son regulares. Justifique sus respuestas.
 - a) $\{0^n 10^n : 1 \le n \le 100\}$
 - b) $\{a^mb^nc^{2m+3n}: m \ge 1 \text{ y } n \ge 1\}$
 - c) $\{a^{\left\lfloor \sqrt{n} \right\rfloor} : n \geq 1\}$ ($\left\lfloor x \right\rfloor$ es el entero inmediatamente inferior a x, o sea, $\left\lfloor 3/2 \right\rfloor = 1$ y $\left\lfloor 5 \right\rfloor = 5$)
 - d) El conjunto de strings que no contienen 010 ni 1100

(20 puntos)

2. Considere el lenguaje $\mathcal{L}=\{a^{2n}b^{3n}:n\geq 1\}$. Determine las clases de equivalencia de la relación $R_{\mathcal{L}}$ que aparece en el teorema de Myhill-Nerode. ¿Que puede decir de \mathcal{L} en vista de sus resultados?

(20 puntos)

3. Demuestre que los lenguajes reconocidos por PDAs son cerrados respecto de intersección con lenguajes regulares

(25 puntos)

- 4. Determine la validez de las equivalencias siguientes para expresiones regulares R y S:
 - a) $(R + S)^* = R^* + S^*$
 - b) $(R^*S^*)^* = (R+S)^*$

(10 puntos)

- 5. Clasifique las gramáticas siguientes en la jerarquía de Chomsky:
 - a) $S \rightarrow aA$, $A \rightarrow aA|Bc$, $B \rightarrow b$
 - b) $S \rightarrow aSa|\epsilon$
 - c) $S \rightarrow aA|bB, A \rightarrow bA|aB, B \rightarrow c|d$
 - d) $S \rightarrow aAbBc$, $Ab \rightarrow bbA$, $ABc \rightarrow cBa$
 - e) $S \rightarrow aABc$, $A \rightarrow bc|Ab$, $B \rightarrow Ad$

(15 puntos)

6. Construya una gramática para el conjunto $\{a^nb^{2n}c^{3n}: n \geq 1\}$.

(15 puntos)

HvB/LATEX 2ε