La molécule organique

C3 – Chimie organique – Chapitre 1

I. Effets inducteurs

1. Définition

$$\begin{array}{c|cccc} CH_3 & & \overline{CI} & \\ & \delta^+ & \overline{\delta}^- & CI : Effet -I & & CH_3 & -Li \\ & \delta^- & \delta^+ & Li : Effet +I \end{array}$$

2. Echelle

II. Effet mésomère (résonance)

1. Définition

+ M

Certaines espèces peuvent avoir plusieurs représentations de Lewis : ce sont les hybrides de résonance.

(B + électronégatif que A)

2. Règles pour déterminer l'édifice majoritaire

- Respect de la règle de l'octet pour un maximum d'atomes
- Charges en accord avec l'électronégativité (charge - sur l'électronégatif et charge + sur l'électropositif)
- Charges semblables voisines défavorisées (par exemple pas 2 charges + côte à côte)
- Déplacement des électrons ne peut se faire que si la structure est plane ou pratiquement (recouvrement des orbitales)
- Séparation de charges minimale (écrire le moins de charges)

$$\begin{array}{c} \oplus \\ \text{H}_2\text{C}-\text{CH}=\text{CH}-\overset{\oplus}{\text{N}}, \overset{\ominus}{\text{O}}, \overset{\ominus}{\text{O}} \\ & & \text{CH}-\overset{\oplus}{\text{CH}}-\overset{\ominus}{\text{N}}, \overset{\ominus}{\text{N}}, \overset{\ominus}{\text{O}}, \overset{\frown}{\text{O}}, \overset{\frown}{\text{O}$$

La molécule organique

C3 – Chimie organique – Chapitre 1

III. Conséquence sur l'acidité

1. Principe de l'étude

$$\underbrace{R - COOH}_{acide} \stackrel{1}{\rightleftharpoons} \underbrace{R - COO^{-}}_{base} + H^{+}$$

Acide fort/Base faible \Leftrightarrow acide instable/base stable \Leftrightarrow sens 1 privilégié \Leftrightarrow pK_a faible

On étudie donc la stabilité de la base. Plus les électrons du groupement COO sont dispersés, plus la base est stable.

2. **Effet inducteur**

L'effet inducteur déplace les électrons du doublet.

$$X - CH_2 - CO$$

Les électrons sont plus proche du COO⁻. La base est donc moins stable. L'acide est plus faible.

$$X-CH_2$$

Les électrons sont plus loin du COO⁻. La base est donc plus stable. L'acide est plus fort.

Effet mésomère 3.

L'effet mésomère délocalise les charges et augmente donc la stabilité de la base. Plus il y a de formes mésomères, plus la base est stable.

$$H_3C-\overline{\underline{O}}I$$

Base forte car fort excès d'électrons

$$H_3C$$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C

Base plus faible car la charge est dispersée par résonance (plus stable)

IV. Récapitulatif

Effet	Effet inducteur		Effet mésomère	
	+I	-I	+M	-M
Schéma	CH ₃ Li δ ⁻ δ ⁺	$CH_3 \rightarrow \overline{CI}I$ δ^+ $\overline{\delta}^-$	Molécule Z	Molécule — A
Base	Plus stable	Moins stable	Plus stable	