Оптимальный план исполнения заявки для случая детерминированной структуры ликвидности

Токаева Александра Александровна

МГУ им. М. В. Ломоносова

31 июля 2022

Постановка задачи, часть 1/2

1)

Мы хотим купить x акций, где x - достаточно большое, то есть агент своими действиями по покупке влияет на цену. Важно, что допускаются только монотонные стратегии.

2)

Мы хотим купить эти x акций монотонно, причем так, чтобы минимизировать издержки от своего импакта на цену из-за покупки этих акций (формула для издержек будет дана ниже). Импакт от трейда бывает временный и постоянный: временный заключается в том, что мы в момент трейда откусили кусок ордер-бука и этим подвинули цену, а постоянный - в том, что этот наш текущий трейд будет в будущем тоже влиять на цену (например, трейдеры увидели нашу заявку и тоже стали покупать эти акции, тем самым повышая цену).

Постановка задачи, часть 2/2

3)

То, как сильно наши трейды влияют на цену — определяется параметрами ликвидности рынка: глубиной δ_t и упругостью r_t . От них и будет зависеть наша стратегия.

4)

В моделях Обижаевой-Ванга δ_t и r_t были постоянными, а в нашей модели они будут зависеть от времени (но они детерминированные функции). Если взять δ_t и r_t постоянными и применить полученную формулу для оптимальной стратегии — то получится как раз оптимальная стратегия, полученная Обижаевой и Вангом.

5)

Мы найдем явный вид для оптимальной стратегии с помощью выпуклых оболочек и условий 1-го порядка (которые являются следствием выпуклости).

Обозначения

- Процесс $X=(X_t)_{t\geq 0}$ непрерывный справа возрастающий процесс с $X_{0-}=0$. Он отвечает за то, сколько у нас акций в момент времени t.
- ullet Время идет с t=0-, а не просто с t=0, чтобы разрешить процессу в момент t=0 делать скачок.
- Отклонение цены от "unaffected price"описывает процесс η_t^X : $d\eta_t^X = \frac{dX_t}{\delta_t} r_t \eta_t dt. \ \eta_{0-}^X = \eta_0 \geq 0.$
- ullet У этого СДУ есть решение $\eta_t^X=rac{\eta_0+\int_{[0,t]}rac{
 ho_s}{\delta_s}dX_s}{
 ho_t}$, где $ho_t=e^{\int_0^t r_s ds}$

Предположения относительно r_t и δ_t

- ullet $r_t:[0,\infty) o (0,\infty)$ строго положительно и локально интегрируемо по Лебегу
- $\delta_t:(0,\infty) \to (0,\infty)$ неотрицательно, не тождественно ноль, полунепрерывно сверху, и еще $\limsup_{t\to\infty} \frac{\delta_t}{\rho_t}=0$

Функционал издержек

Минимизируемый функционал задается формулой:

$$C(X) = \int_{[0,+\infty)} \left(\eta_{t-}^X + \frac{\Delta_t X}{2\delta_t} \right) dX_t$$

Наша задача - минимизировать этот функционал на множестве $X\in\mathbb{X}$, где \mathbb{X} — множество непрерывных справа возрастающих процессов с $X_{0-}=0, X_{\infty}=x, C(X)\leq\infty$. Здесь $\Delta_t X=X_{t+}-X_{t-}; X_{\infty}=\lim_{t\to\infty}X_t$.

Главная теорема

Теорема 3.1

Пусть выполнены предположения относительно r_t и ρ_t . Обозначим $\lambda_t:=rac{\delta_t}{\rho_t},\ \widetilde{\lambda_t}=\sup_{u\geq t}\lambda_u,\ L_t^*=\inf_{u< t}rac{\widetilde{\lambda_u}-\widetilde{\lambda_t}}{\frac{\widetilde{\lambda_u}-\widetilde{\lambda_t}}{\rho_u}-\frac{\widetilde{\lambda_t}}{\rho_t}}.$

Тогда оптимальная стратегия имеет вид:

$$X_t^* = \lambda_0 (y^* L_0^* - \eta_0)^+ + \int_{(0,t]} \lambda_s dsup_{0 \le v \le s} [(y^* L_v^*) \lor \eta_0]$$

Константа $y^*>0$ выбирается так, чтобы $x^*_\infty=x$. Это можно сделать, если правая часть выражения при $y^*=1$ ограничена при $t\to\infty$, иначе решения нет. Отметим, что если взять решение теоремы 1 для константных r_t и δ_t , то получится в точности результат, полученный Обижаевой и Вангом.

План доказательства

- Предл. 3.2: перепараметризацией процесса и введением параметров $\lambda=\frac{\delta}{\rho}, \kappa=\frac{\lambda}{\rho}$ сводим задачу минимизации функционала C(X) к задаче минимизации функционала $K(Y)=0.5\int_{[0,\infty)}\kappa_t d(Y_t^2)$
- Предл. 3.3: Находим условие на κ , чтобы функционал K(Y) был выпуклым.
- Теорема 3.4: Вводим выпуклую задачу $\widetilde{K}(\widetilde{Y})$, которая эквивалентна задаче с K(Y), и причем при некоторых условиях решение задачи $\widetilde{K}(\widetilde{Y})$ является решением задачи K(Y).
- ullet Предл. 3.5: Условие 1-го порядка, чтобы проверять, является ли какой-то $\widetilde{Y^*}$ решением задачи $\widetilde{K}(\widetilde{Y})$.
- ullet Теорема 3.6: Предъявляем $\widetilde{Y_t^*} = y \partial \Lambda_{\widetilde{\kappa_t}} \wedge \eta_0$
- Предл. 3.7: находим условия, при которых y_0^* можно выбрать так, чтобы удовлентворить начальные условия.
- ullet Теорема 3.1: Вводим L_t^* и получаем требуемое.

Предложение 3.2

Пусть выполнены предположения относительно δ_t и r_t .

$$\lambda = \frac{\delta}{\rho}, \ \frac{\lambda}{\rho} = \frac{\delta}{\rho^2}$$

 $Y = (Y_t)_{t \ge 0}$ — возрастающий и непрерывный справа.

$$K(Y) = 0.5 \int_{[0,\infty)} k_t d(Y_t^2)$$

Тогда

$$\begin{cases} Y_t = \eta_0 + \int_{[0,t]} \frac{dX_s}{\lambda_s} & Y_{0-} = \eta_0 \\ X_t = \int_{[0,t]} \lambda_s dY_s & X_{0-} = 0 \end{cases}$$

это взяимно-однозначное отображение из $\mathbb X$ в $\mathbb X$, где $\mathbb Y$ -множество $(\mathsf Y_t)_{t\geq 0}$ - непрерывен справа, возрастает,

$$Y_{0-} = \eta_0; \int_{[0,\infty)} \bar{\lambda}_t dY_t = x, \ K(Y) < \infty.$$

При этом
$$C(X) = K(Y)$$
.

Предложение 3.3

Для полунепрерывной сверху k, функционал K=K(Y) является (строго) выпуклым для непрерывного справа Y с $Y_{0-}=\eta_0$ тогда и только тогда, когда k (строго) положительна и (строго) убывает.

Теорема 3.4

Пусть
$$\lambda=\frac{\delta}{\rho},\ \frac{\lambda}{\rho}=\frac{\delta}{\rho^2}$$
 Тогда задача с $K(Y)$ имеет то же оптимальное значение функционала, что и выпуклая задача минимизации $\widetilde{K}(\widetilde{Y})=0.5\int_{[0,\infty)}\widetilde{k}_td(\widetilde{Y}_t^2)$ по $\widetilde{Y}\in\widetilde{\mathbb{Y}}$ Здесь $\widetilde{k}_t=\frac{\widetilde{\lambda}_t}{\rho_t},\ \widetilde{\lambda}_t=\sup_{u\geq t}\lambda_u$ $\widetilde{\mathbb{Y}}$ — множество (\widetilde{Y}_t) - непрерывных справа, возрастает, $\widetilde{Y}_{0-}=\eta_0,\int_{[0,\infty)}\widetilde{\lambda}_td\widetilde{Y}_t=x,\ \widetilde{K}(\widetilde{Y})<\infty$ Более того, если \widetilde{Y}^* — решение задачи для $\widetilde{K}(\widetilde{Y})$ с условием $\{\widetilde{Y}^*>0\}\in\{\widetilde{\lambda}=\lambda\}$ - то это решение задачи с $K(Y)$.

Предложение 3.5 (проверялка)

Для $k,\lambda \geq 0$ как в предыдущей теореме, $\widetilde{Y}^* \in \widetilde{\mathbb{Y}}$ решение задачи с $\widetilde{K}(\widetilde{Y})$ тогда и только тогда, когда существует y>0 такой что: $-\int_{[t,\infty)} \widetilde{Y}_u^* d\widetilde{k}_u \geq y\widetilde{\lambda}_t$, причем равенство достигается тогда и только тогда, когда $d\widetilde{Y}_t^*>0$.

Теорема 3.6

Пусть выполнены предположения про δ_t и $r_t.//$ Рассмторим $au_k=\inf_{t\geq 0: \widetilde{k}_t\leq k}$ (ну \widetilde{k}_t убывает); $\widetilde{\Lambda_k}:=k\rho_{\tau_k}; k\in(0,\widetilde{k_0}]; \widetilde{\Lambda_0}:=0.$ Тогда:

- ullet $\widetilde{\Lambda}$ непрерывно возрастающее отображение на $[0,\widetilde{k_0}]$
- Его выпуклая оболочка $\hat{\Lambda}$ абсолютно непрерывна с непрерывной слева убывающей плотностью $\partial \hat{\Lambda} = (\partial \hat{\Lambda_k})_{0 < k \leq \widetilde{k} \geq 0}.$
- Более того, положив $\partial \hat{\Lambda_0} = \partial \hat{\Lambda_0^+}$, мы имеем $\widetilde{Y_t^*} = (y \partial \hat{\Lambda_{\widetilde{k_t}}}) \vee \eta_0, \widetilde{Y_{0-}^*} = \eta_0$ дает непрерывный справа возрастающий процесс, который удовлетворяет условию 1-го порядка (прогверялке).

Пример

Пусть $\delta_t = \delta_0 I_{[0,T]}(t)$, $r_t = r_0 \ge 0$, $\eta_0 = 0$.

То есть параметры ликвидности рынка у нас постоянные. Мы хотим убедиться, что полученный нами ответ в таком частном случае совпадает с ответом из Обижаевой и Ванга.

Имеем:
$$\lambda_t = \frac{\delta_t}{\rho_t}$$
, $\rho_t = e^{\int_0^t r_s ds} = e^{tr_0}$ $\Rightarrow \lambda_t = \widetilde{\lambda}_t = \delta_0 e^{-r_0 t} I_{[0,T]}(t)$ $k_t = \widetilde{k}_t = \delta_0 e^{-2r_0 t} I_{[0,T]}(t)$ $\tau_k := \inf(t \geq 0 : \widetilde{k}_t \leq k)$ Ищем τ_k , то есть хотим, чтобы $\delta_0 e^{-2r_0 \tau_k} I_{[0,T]}(t) = k$ Если $t \in [0,T]$, то $r_0 \tau_k = 0.5 ln\left(\frac{\delta_0}{k}\right)$ А если нет, то $r_0 \tau_k = 0.5 ln\left(\frac{\delta_0}{k\tau}\right)$

Пример продолжение

$$\Rightarrow
ho_{ au_k} = \mathrm{e}^{ au_k r_0} = \mathrm{e}^{0.5 ln \left(rac{\delta_0}{max(k,k_T)}
ight)} = \sqrt{rac{\delta_0}{max(k,k_T)}}$$
 $\Rightarrow \Lambda_{ au_k} = k
ho_{ au_k} = k \sqrt{rac{\delta_0}{max(k,k_T)}} = \sqrt{\delta_0 k} \wedge \sqrt{rac{\delta_0}{k_T} k}; 0 \le k \le \delta_0$
Л уже выпукло вверх, поэтому его менять не нужно.

$$\begin{split} \partial \Lambda_k &= \begin{cases} 0.5 \frac{\sqrt{\delta_0}}{\sqrt{k}} & k \geq k_T \\ \sqrt{\frac{\delta_0}{k_T}} = \sqrt{e^{2r_0T}} = e^{r_0T} & k \leq k_T \end{cases} \\ \Rightarrow Y_t := \partial \Lambda_{k_\tau} &= \begin{cases} 0.5 \frac{\sqrt{\delta_0}}{\sqrt{k_t}} = 0.5 e^{r_0t} & t \leq T \\ \sqrt{\frac{\delta_0}{k_T}} = e^{r_0T} & t \geq T \end{cases} \end{split}$$

Теперь берем нашу формулу для X_t^* , и пока туда просто какое-то $y \geq 0$ подставляем, не обязательно оптимальное y_0^* :

$$X_t^* = \lambda_0 (y^* \Lambda_{k_0}^* - \eta_0)^+ + \int_{(0,t]} \lambda_s d \left[(y^* \partial \Lambda_{k_s}^*) \vee \eta_0 \right]$$

Получаем
$$X_t^y=0.5y\delta_0(1+r_0(t\wedge T))+I_{[T,+\infty)}(t)$$
 Мы хотим $X_T^y=x$, то есть $0.5y\delta_0(2+r_0T)=x$, откуда $y^*=rac{x}{\delta_0(1+0.5r_0T)}$

Спасибо за внимание!