МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Параллельные алгоритмы»

Тема: Реализация структур данных без блокировок

Студентка гр. 0304	 Нагибин И.С
Преподаватель	 Сергеева Е.И

Санкт-Петербург 2023

Цель работы.

Изучить принцип построения потокобезопасных структур данных без блокировками.

Задание.

Выполняется на основе работы 2.

Реализовать очередь, удовлетворяющую lock-free гарантии прогресса.

Протестировать доступ к реализованной структуре данных в случае нескольких потоков производителей и потребителей.

В отчёте: Сравнить производительность с реализациями структур данных из работы В отчёте сформулировать инвариант структуры данных.

Выполнение работы.

1. Описание lock-free очереди с гарантией прогресса

Для выполнения лабораторной работы была написана lock-free очередь Майкла-Скотта, удовлетворяющая гарантии прогресса. Для очереди был написан класс LockFreeQueue.

В основе реализации очереди лежит односвязный список, имеющий два публичных метода: добавление в конец (push) и удаление с начала (pop). Оба метода содержат бесконечные циклы, в которых происходят попытки атомарной замены указателей.

Для того, чтобы алгоритм удовлетворял гарантии lock-free прогресса, необходимо использовать механизмы «помощи» другим потокам, если будет обнаружено промежуточное состояние очереди.

2. Сравнение потокобезопасных очередей с блокировками и потокобезопасной очереди без .

Сравнение очередей осуществлялось при помощи измерений обработки очереди 300\2 задач по умножению матриц 300x300. Было рассмотрено

множество случаев перебором возможных комбинаций числа производителей и потребителей от 1 до 10.

В таблице 1 представлено время работы обеих очередей при 10 потребителях и 10 производителях.

Таблица 1. Сравнение очередей при 10 производителях и 10 потребителях.

Очередь время, с «Грубые» 0.257324

блокировки

«Тонкие» 0.241226

блокировки

Lock free 0.238485

Таблица 2. Сравнение очередей при 4 производителях и 10 потребителях.

Очередь время, с «Грубые» 0.272833

блокировки

«Тонкие» 0.24891

блокировки

Lock free 0.244317

Таблица 3. Сравнение очередей при 10 производителях и 4 потребителях.

Очередь «Грубые»	время, с 0.296366
блокировки «Тонкие»	0.280616
блокировки Lock free	0.235564

Таблица 4. Сравнение пяти лучших результатов очередей.

BlockingQueue	FineBlockingQueue	LockFreeQueue
Время 0.2459 s	Время 0.241226 s	Время 0.197939 s
Время 0.249219	Время 0.241966 s	Время 0.200421 s
S		
Время 0.252214	Время 0.242351 s	Время 0.204938 s
S		
Время 0.253436	Время 0.242793 s	Время 0.206643 s
S		
Время 0.253603	Время 0.243309 s	Время 0.208477 s
S		

Таблица 5. Среднее время для обработки всех случаев.

BlockingQueue	FineBlockingQueue	LockFreeQueue
Время 0.313579 s	Время 0.302918 s	Время 0.272109 s

После рассмотрения полученных данных можно сделать следующие выводы. В лучшем случае очередь с lock-free гарантией работает быстрее,

чем очереди с блокировкой. В среднем случае разница очередь без блокировок также показывает лучшее время, отрываясь от блокирующих очередей на 3 сотых секунды для очереди с «тонкой» блокировкой и на 4 для очереди с «грубой» блокировкой. Также можно отметить, что при равном количестве потребителей и производителей очереди показывают результаты лучше, чем при разном.

Выводы.

В ходе работы были изучены принципы работы с потокобезопасной очередью без блокировок. Был сформирован инвариант lock-free очереди: для создания очереди используется фиктивный узел. Также было выявлено, что в среднем и лучшем случаях производительность lock-free очереди лучше, чем у очередей с блокировками.