Example Performance Statistics

Below you will find the performance statistics of the symbolic fuzzer that was implemented by one of our TAs last year. Performance statistics shown here **are not the answer** to the lab assignment and should be used as a reference. Results are highly dependent on your implementation, thus your results may vary from the statistics shown below.

Problem Number	Number of unique branches visited	Number of unique error codes triggered	Triggered error codes
11	306	18	0,9,13,24,26,39,42,48,52,60,62, 74,75,82,91,93,94,95
12	381	11	3,8,10,25,28,37,65,73,74,77,79
13	397	20	1,3,10,16,23,30,31,34,35,37,49, 52,68,70,71,72,74,75,82,90
14	1174	15	4,15,18,25,27,28,36,41,59,60, 73,76,77,90,97
15	1607	15	8,16,20,21,24,28,31,33,46,54, 72,82,88,90,95
17	4884	30	0,2,11,12,19,22,23,25,31,35,37,46, 50,51,53,56,61,63,66,69,72,76,78, 79,85,86,95,96,97,99