ACÁMICA

¡Bienvenidos/as a Data Science!

Agenda

¿Cómo anduvieron?

Repaso

Hands-On

Explicación: Datasets Desbalanceados

Break

Hands-On

Explicación: Teorema de Bayes

Cierre

¿Cómo anduvieron?

Proyecto 2: Modelado

Análisis Exploratorio de Datos (EDA)

fase	ADQUISICIÓN	Y EXPLORACIÓN	MODELADO				DEPLOY
entrega	Exploración de datos	Feature Engineering	Machine Learning: Clasificación y Regresión	Optimización de parámetros	Procesam. del lenguaje natural	Sistema de recomendación	Publicación de modelos
od	SEM 1	SEM 5	SEM 8	SEM 12	SEM 14	SEM 18	SEM 22
tiempo	SEM 2	SEM 6	SEM 9	SEM 13	SEM 15	SEM 19	SEM 23
	SEM 3	SEM 7	SEM 10		SEM 16	SEM 20	SEM 24
	SEM 4		SEM 11		SEM 17	SEM 21	

Proyecto EDA: Hoja de ruta

SEM 8

- Intro a Machine Learning
- Aprendizaje
 Supervisado: Clasificación
- Árboles de Decisión
- Overfitting y Underfitting, Train/Test Split

SEM 9

- k-Vecinos más cercanos
- Métricas de Evaluación para Clasificación
- Repaso

SEM 10

- Aprendizaje
 Supervisado:
 Regresión
- Métrica de Evaluación para Regresión

Entrega 3

Usted Está Aquí

SEM 11

- Datasets Desbalanceados
- Curva ROC

SEM 12

- Optimización de Parámetros
- GridSearch y Random Search

Entrega 4

Repaso

Aprendizaje supervisado: Clasificación

Modelos

- Árboles de decisión (Hiperparámetros: profundidad, criterio de entrenamiento, etc.)
- **KNN** (Hiperparámetros: cantidad de vecinos, distancia, etc.)

Métricas de evaluación

- Exactitud
- Precisión/Exhaustividad
- F-Score
- Matriz de Confusión¹

¹Bueno, técnicamente no es una métrica

Hands-on training

Hands-on training

DS_Encuentro_21_DDesb.ipynb

Parte 1 y 2

Datasets Desbalanceados

Un **dataset balanceado** es aquel que tiene - aproximadamente - la misma proporción de instancias de cada clase.

Por ejemplo, en el caso, binario, alrededor de 50:50 (1:1) de cada clase.

Un **dataset desbalanceado** - en el caso binario - es aquel que tiene muchas instancias de una clase y muy pocas de la otra, dificultando el entrenamiento.

Por ejemplo, 80:20, 90:10, 99:1, y peor.

Un poco de desbalance de clases es esperable, y no afecta a nuestro análisis.

Pero en algunas áreas suelen haber datasets muy desbalanceados:

- Detección de fraudes
- Diagnóstico médico
- Deforestación

Cuando trabajemos con estos datasets, tenemos que tener cuidado con:

- Cómo entrenamos nuestros modelos.
- Qué métricas usamos para evaluarlo.

Cuando trabajemos con estos datasets, tenemos que tener cuidado con:

- Cómo entrenamos nuestros modelos.
- Qué métricas usamos para evaluarlo.

Uno de los malos de la película:

La paradoja de la exactitud (suena mejor en inglés, <u>Accuracy Paradox</u>)

A medida que el desbalance de clases es mayor, la exactitud aumenta, por más que nuestro modelo sea muy malo.

¿Por qué? https://xkcd.com/1723/*

Algunas técnicas para trabajar correctamente con estos datasets:

- 1 ¿Podemos recolectar nuevos datos?
- Elegir la **métrica de performance** apropiada para nuestro problema (¡Olvidarse de Exactitud!). Matriz de Confusión, Precisión y Exhaustividad (recall) suelen ser las primeras opciones, pero hay más. ¿Un Falso Positivo tiene el mismo costo que un Falso Negativo?
- Resamplear el dataset.
 - a. Oversampling: generar nuevas instancias de la clase minoritaria, ya sea copiando instancias preexistentes, o generando instancias sintéticas (ver SMOTE).
 - b. Undersampling: eliminar instancias de la clase sobrerrepresentada.
- **Probar diferentes modelos** (modelos de ensamble suelen ser buenos) y/o agregarle peso a la clase subrepresentada (fácil desde Scikit-Learn).
- Las **opciones no se terminan acá.** Es un área de contínuo desarrollo. Para tener en cuenta: One-Class classification.

Recursos

<u>8 Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset</u>: El artículo en el que nos basamos. Claro y sencillo.

<u>Credit Fraud Detector</u>: Un muy lindo kernel de Kaggle aplicado a un dataset MUY desbalanceado.

<u>Handling imbalanced datasets in machine learning</u>: Explicación mucho más técnica, pero exhaustiva.

Hands-on training

Hands-on training

DS_Encuentro_21_DDesb.ipynb

Parte 3 y 4

Un examen médico tiene una probabilidad de detección de 0.99 y una probabilidad de Falso Positivo de 0.01. El objetivo del Test es detectar una enfermedad de relativa baja prevalencia, que solo la tiene una persona en mil. Hacer el examen a 100000 personas y completar la matriz de confusión (es decir, calcular, en promedio, cuántos aciertos esperan obtener, cuántos Falsos Negativos, FP y Verdaderos Negativos).

Un examen médico tiene una probabilidad de detección de 0.99 y una probabilidad de Falso Positivo de 0.01. El objetivo del Test es detectar una enfermedad de relativa baja prevalencia, que solo la tiene una persona en mil. Hacer el examen a 100000 personas y completar la matriz de confusión (es decir, calcular, en promedio, cuántos aciertos esperan obtener, cuántos Falsos Negativos, FP y Verdaderos Negativos).

Pistas:

En 100.000 mil personas, hay ___ casos positivos. De esos ___ casos positivos, si hago el test, espero que dé positivo en ___ .

De los casos negativos, espero que ___ sean identificados correctamente como negativos y ... como falsos positivos.

Un examen médico tiene una probabilidad de detección de 0.99 y una probabilidad de Falso Positivo de 0.01. El objetivo del Test es detectar una enfermedad de relativa baja prevalencia, que solo la tiene una persona en mil. Hacer el examen a 100000 personas y completar la matriz de confusión (es decir, calcular, en promedio, cuántos aciertos esperan obtener, cuántos Falsos Negativos, FP y Verdaderos Negativos).

Pistas:

En 100.000 mil personas, hay ____ casos positivos. De esos ___ casos positivos, si hago el test, espero que dé positivo en ___ .

De los casos negativos, espero que ___ sean identificados correctamente como negativos y ___ como falsos positivos.

¿Cuál es la probabilidad de que una persona tenga la enfermedad si el examen dio positivo?

Predicha / Verdadera	Positivos	Negativos
Positivos	99	999
Negativos	1	98901

Un examen médico tiene una probabilidad de detección de 0.99 y una probabilidad de Falso Positivo de 0.01. El objetivo del Test es detectar una enfermedad de relativa baja prevalencia, que solo la tiene una persona en mil. Hacer el examen a 100000 personas y completar la matriz de confusión (es decir, calcular, en promedio, cuántos aciertos esperan obtener, cuántos Falsos Negativos, FP y Verdaderos Negativos).

Pistas:

En 100.000 mil personas, hay ___ casos positivos. De esos ___ casos positivos, si hago el test, espero que dé positivo en ___ .

De los casos negativos, espero que ___ sean identificados correctamente como negativos y ... como falsos positivos.

¿Cuál es la probabilidad de que una persona tenga la enfermedad si el examen dio positivo?

Predicha / Verdadera	Positivos	Negativos	
Positivos	99	999	
Negativos	1	98901	

¿Cuál es la probabilidad de que una persona tenga la enfermedad si el examen dio positivo?

Predicha / Verdadera	Positivos	Negativos	
Positivos	99	999	
Negativos	1	98901	

¡De 1098 predichos, 99 eran verdaderos positivos! Es decir, ~9% (o probabilidad = 0.0902).

¿Cuál es la probabilidad de que una persona tenga la enfermedad si el examen dio positivo?

Predicha / Verdadera	Positivos	Negativos	
Positivos	99	999	
Negativos	1	98901	

¡De 1098 predichos, 99 eran verdaderos positivos! Es decir, ~9% (o probabilidad = 0.0902).

¿A qué métrica vista corresponde este resultado?

The Bayesian Trap

Dados dos eventos A y B:

- P(A) es la probabilidad del evento A
- P(B) es la probabilidad del evento B
- P(A|B) es la probabilidad condicional del evento A dado que *ocurrió* B
- P(B|A) es la probabilidad condicional del evento B dado que *ocurrió* A

¡No implica causalidad!

• Si P(A|B) = P(A) y P(B|A) = P(B), los eventos son independientes.

En general, $P(A|B) \neq P(B|A)$. Para obtener uno dado el otro, necesitamos el Teorema de Bayes: —

Dados dos eventos A y B:

- P(A) es la probabilidad del evento A
- P(B) es la probabilidad del evento B

Dados dos eventos A y B:

- P(A) es la probabilidad del evento A
- P(B) es la probabilidad del evento B
- P(A|B) es la probabilidad condicional del evento A dado que *ocurrió* B
- P(B|A) es la probabilidad condicional del evento B dado que *ocurrió* A

Dados dos eventos A y B:

- P(A) es la probabilidad del evento A
- P(B) es la probabilidad del evento B
- P(A|B) es la probabilidad condicional del evento A dado que ocurrió B
- P(B|A) es la probabilidad condicional del evento B dado que *ocurrió* A

¡No implica causalidad!

• Si P(A|B) = P(A) y P(B|A) = P(B), los eventos son independientes.

Dados dos eventos A y B:

- P(A) es la probabilidad del evento A
- P(B) es la probabilidad del evento B
- P(A|B) es la probabilidad condicional del evento A dado que ocurrió B
- P(B|A) es la probabilidad condicional del evento B dado que *ocurrió* A

¡No implica causalidad!

• Si P(A|B) = P(A) y P(B|A) = P(B), los eventos son independientes.

En general, $P(A|B) \neq P(B|A)$. Para obtener uno dado el otro, necesitamos el Teorema de Bayes: ——

A: estar enfermo **E+** B: dio positivo **T+**

Volviendo al ejemplo anterior...

A: estar enfermo **E+** B: dio positivo **T+**

P(A|B): posterior o probabilidad a posteriori

P(E+|T+): probabilidad de estar enfermo dado que el test dio positivo.

A: estar enfermo **E+**B: dio positivo **T+**

P(A|B): posterior o probabilidad a posteriori

P(E+|T+): probabilidad de estar enfermo dado que el test dio positivo.

A: estar enfermo **E+**B: dio positivo **T+**

P(A|B): posterior o probabilidad a posteriori

P(E+|T+): probabilidad de estar enfermo dado que el test dio positivo.

A: estar enfermo **E+** B: dio positivo **T+**

Si ponemos todo junto:

P(E+|T+) = P(T+|E+)*P(E+)/(P(T+|E+)*P(E+) + P(T+|E-)*P(E-)) = 0.99*0.001/0.01098 = 0.0902

¿Para qué sirve?

- 1. El Teorema de Bayes tiene en cuenta automáticamente la prevalencia de las clases (en el caso visto Enfermos/No-Enfermos)
- 2. Dada una clasificación Binaria entre C+ y C-, llamamos X a los atributos, la formulación más general del problema de clasificación es:

$$P(C+|X) = P(X|C+)P(C+)/P(X) y P(C-|X) = P(X|C-)P(C-)/P(X)$$

¿Para qué sirve?

- 1. El Teorema de Bayes tiene en cuenta automáticamente la prevalencia de las clases (en el caso visto Enfermos/No-Enfermos)
- 2. Dada una clasificación Binaria entre C+ y C-, llamamos X a los atributos, la formulación más general del problema de clasificación es:

$$P(C+|X) = P(X|C+)P(C+)/P(X) y P(C-|X) = P(X|C-)P(C-)/P(X)$$

En general, es muy difícil formular de manera completa este problema. Necesitaríamos saber de qué tipo de distribución viene cada feature, cómo están correlacionados, etc.

Para la próxima

- 1. Ver los videos de la plataforma "Ajustes del Modelo"
- 2. Completar Notebook de hoy y atrasados.
- 3. Trabajar en la Entrega 03.

ACAMICA