PHYC40210 Problem Sheet 2, due 5th April 2024

- Q1. For a Gaussian laser pulse with intensity $I(t) = I_0 \exp[-2.77(t/\tau)^2]$, focussed into an optical fibre, calculate the maximum frequency shift that will be obtained and explain its dependence on laser pulse duration and fibre length. (I_0 is maximum intensity and τ is the FWHM of the pulse).
- **Q2.** Extreme nonlinear optics occurs when the incident optical field approaches the characteristic atomic field $E = e/(4\pi\epsilon_0)a_0^2$, where a_0 is the Bohr radius. At such high electric fields, the atom simply ionises.
 - i) Calculate E and its corresponding irradiance I.
 - ii) What is the pulse energy required to achieve this irradiance for a 25 fs laser pulse focused to $10 \, \mu m$ radius focal spot?
- Q3. In an experiment to produce high harmonics a Ti:Sapphire laser pulse ($\lambda = 820 \text{ nm}$) pulse was focussed to a power density of 10^{16} Wcm^{-2} .

If the ionisation potential of He is 24.587 eV, what will be the wavelength of the highest harmonic produced?

Q4 Consider the following laser pulses focused into a He gas jet:

Laser A: $\lambda = 300$ nm, pulse energy 5 mJ, pulse duration = 7 fs, focal radius = 30 μ m

Laser B: $\lambda = 700$ nm, pulse energy 5 mJ, pulse duration = 7 fs, focal radius = 40 μ m

Laser C: $\lambda = 3200$ nm, pulse energy 5 mJ, pulse duration = 35 fs, focal radius = 60 μ m

Which of the lasers would you expect to produce the highest energy harmonic?

Q5. Two high intensity pulses with the same wavelength, one with a pulse duration of 100 fs and the other with a pulse duration of 5.4 fs, are available for a high harmonic generation experiment.

What is the appropriate experimental technique(s) to ensure a single attosecond pulse is generated in the case of each laser.