CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INFORMATICA

FOGLIO DI ESERCIZI 8- GEOMETRIA E ALGEBRA LINEARE 2016/17

Esercizio 8.1. [8.40] Sia $T: \mathbb{R}^2 \to \mathbb{R}^3$ l'applicazione definita da T(x,y) = (2x, x-y, 2y), e siano $\mathcal{B} = ((1,0), (1,1))$ e $\mathcal{B}' = ((1,1,0), (0,1,1), (0,0,2))$ due basi di \mathbb{R}^2 e \mathbb{R}^3 rispettivamente. Determinare la matrice $A = M_{\mathcal{B}}^{\mathcal{B}'}(T)$ associata a T rispetto alle basi $\mathcal{B} \in \mathcal{B}'$.

Esercizio 8.2. [8.44] Sia $S: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare associata a:

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$

rispetto alla base ((1,1,1), (0,2,2), (0,0,3)) di \mathbb{R}^3 .

- a) Si scriva la matrice associata a S rispetto alla base canonica.
- b) Determinare basi dell'immagine Im(S) e del nucleo N(S).

Esercizio 8.3. [8.36] Sia $S: \mathbb{R}^4 \to \mathbb{R}^3$ la funzione lineare

$$S(x_1, x_2, x_3, x_4) = (3x_1 - 2x_3 + x_4, 4x_1 - 2x_2 + 2x_3 + 3x_4, x_1 + 2x_3 + 2x_4).$$

- a) Si trovi una base del nucleo di S e una base dell'immagine di S.
- b) Sia $\mathcal E$ la base canonica di $\mathbb R^4$ e sia $\mathcal B$ la base di $\mathbb R^3$ costituita dai vettori

$$v_1 = (1, 0, 1), \ v_2 = (1, 0, 0), \ v_3 = (1, 1, 1)$$

Si determini la matrice $M_{\mathfrak{S}}^{\mathcal{B}}(S)$ associata a S.

Esercizio 8.4. [8.35] Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita da

$$T(x, y, z) = (x + y, 2x - y - z, 2y + z)$$

e sia $\mathcal{B} = ((1,2,-4), (0,1,1), (1,0,-7))$ una base di \mathbb{R}^3 .

- a) Stabilire se T è iniettiva e/o suriettiva.
- b) Si determini la matrice $M_{\mathcal{E}}^{\mathcal{E}}(T)$ associata a T rispetto alla base \mathcal{B} e alla base canonica \mathcal{E} . c) Si determini la matrice $M_{\mathcal{E}}^{\mathcal{B}}(T)$ associata a T rispetto alla base \mathcal{B} e alla base canonica \mathcal{E} .
- d) Si determini la matrice $M_{\mathcal{B}}^{\mathcal{B}}(T)$ associata a T rispetto alla base \mathcal{B} .

hhh

Esercizio 8.5 (8.50). *Sia*

$$\mathcal{B} = \{v_1 = (1,0,1), v_2 = (0,-1,0), v_3 = (2,0,0)\}$$

una base di \mathbb{R}^3 e sia T l'endomorfismo di \mathbb{R}^3 così definito:

$$T(v_1) = (3, 1, 2),$$
 $T(v_2) = (0, 1, 1),$ $T(v_3) = (6, 4, 6)$

- a) Si determini la matrice M(T) associata a T rispetto alla base canonica.
- b) Si determini base e dimensione dell'Immagine e del Nucleo di T.
- c) Si stabilisca per quali valori di k il vettore $v_k = (k+1,0,k)$ appartiene all'Immagine di T.

Esercizio 8.6. [9.1] Verificare che v = (1,0,0,1) è autovettore dell'applicazione lineare T così definita

$$T(x_1, x_2, x_3, x_4) = (2x_1 - 2x_3, -x_1 + 2x_2 + x_3 + x_4, x_3, x_1 - 2x_3 + x_4)$$

Determinare inoltre il relativo autovalore.

Esercizio 8.7 (9.3). Sia T l'endomorfismo di \mathbb{R}^3 definito da

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

- a) Stabilire se esistono autovettori di T ed eventualmente determinarli.
- b) Stabilire se T è diagonalizzabile.
- c) Determinare la base rispetto alla quale T ha matrice associata D diagonale e determinare la matrice diagonale D e la matrice P diagonalizzante (cioé tale che $P^{-1}AP = D$).

Esercizio 8.8. [Esercizio 9) cap. 7 del testo Geometria e algebra lineare di Manara, Perotti, Scapellato] Riconoscere che le due seguenti matrici M sono diagonalizzabili, e calcolare per ciascuna di esse una matrice P diagonalizzante (tale cioè che valga $P^{-1}MP = D$, con D matrice diagonale; ricordiamo che P è una matrice le cui colonne sono autovettori di M).

$$M = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 1 \\ 0 & 0 & 4 \end{bmatrix}, \qquad M = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 3 & 4 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

Esercizio 8.9 (9.6). Date le matrici

$$A = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} -1 & 2 \\ -3 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} -3 & 4 \\ 1 & 0 \end{bmatrix}$$

- a) Si determini il polinomio caratteristico di ciascuna matrice.
- b) Si determinino gli autovalori, e i relativi autospazi, di ciascuna matrice.
- c) Si stabilisca se le matrici sono diagonalizzabili.

Esercizio 8.10 (9.7). Date le matrici

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$$

- a) Si determini il polinomio caratteristico di ciascuna matrice.
- b) Si determinino gli autovalori, e i relativi autospazi, di ciascuna matrice.
- c) Si stabilisca se le matrici sono diagonalizzabili.

Esercizio 8.11 (9.8). Si consideri la matrice

$$A = \begin{bmatrix} 0 & 6 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

- a) Determinare autovalori e autovettori di A.
- b) Stabilire se la matrice A è diagonalizzabile.

Esercizio 8.12 (9.9). Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorfismo a cui è associata la matrice

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -2 & -6 \\ 0 & 2 & 5 \end{bmatrix}$$

- a) Si determinino gli autovalori di T e si stabilisca se T è diagonalizzabile.
- b) Si determini una base di R³ formata da autovettori di T.

Esercizio 8.13. [Esercizio 21) cap. 7 del testo Geometria e algebra lineare di Manara, Perotti, Scapellato] Discutere la diagonalizzabilità delle seguenti matrici al variare del parametro reale k.

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & k & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & k & 1 \\ 0 & 0 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 3 & 1 & 5 \\ 0 & k & 4 \\ 0 & 0 & 1 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 1 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Esercizio 8.14 (9.15). Sia T l'endomorfismo di \mathbb{R}^3 cosí definito:

$$T(x_1, x_2, x_3) = \left(x_1, x_1 - \frac{1}{2}x_3, x_2\right).$$

- a) Calcolare gli autovalori e gli autovettori di T.
- b) T diagonalizzabile?
- c) Se al campo dei numeri reali si sostituisce quello dei numeri complessi, l'endomorfismo di \mathbb{C}^3 che si ottiene è diagonalizzabile?