习题 3.4(P176)

1. 试求下列函数的单调区间及极值点.

$$(1) y = 2x - \ln x$$

$$\mathbf{m}: \ \diamondsuit \ \mathbf{y'} = \mathbf{2} - \frac{1}{x} = \mathbf{0}, \ \text{得驻点} \frac{1}{2}, \ \mathbf{定义域内无不可导点}$$

x	$(0,\frac{1}{2})$	$\frac{1}{2}$	$(\frac{1}{2},+\infty)$
y'	_		+
у	减	极小	增

(2)
$$y = \frac{(x+1)^{\frac{2}{3}}}{x-1}$$

解:
$$y' = \frac{-\frac{1}{3}x - \frac{5}{3}}{(x-1)^2\sqrt[3]{x+1}} = 0$$
, 得驻点 -5 , 不可导点为 -1 , 1

x	(-∞,-5)	-5	(-5,-1)	-1	(-1,1)	1	(1,+∞)
y'	_		+		_		_
у	减	极小	增	极大	减		减

(3)
$$y = \arctan x - \frac{1}{2} \ln(1 + x^2)$$

x	(-∞,1)	1	(1,+∞)
y'	+		_
у	增	极大	减

$$(4) y = x + \left| \sin 2x \right|$$

 \mathbf{M} : 在 $\mathbf{x} = \mathbf{k}\pi$ 处,由导数的定义可得,函数在 $\mathbf{x} = \mathbf{k}\pi$ 处不可导。

令
$$y'=0$$
 得驻点 $k\pi+\frac{\pi}{3}$ 或 $k\pi+\frac{5\pi}{6}$, $k\in \mathbb{Z}$, 不可导点为 $k\pi+\frac{\pi}{2},(k+1)\pi$,

$$(k = 0, \pm 1, \pm 2, \cdots)$$

对于给定的k,我们只在第一、二象限中或第三、四象限中讨论由驻点及不可导点的情况列表如下: $(k = 0, \pm 1, \pm 2, \cdots)$

x	$(k\pi, k\pi + \frac{\pi}{3})$	$k\pi + \frac{\pi}{3}$	$(k\pi+\frac{\pi}{3},k\pi+\frac{\pi}{2})$	$k\pi + \frac{\pi}{2}$
y'	+		-	
у	增	极大	减	极小

x	$(k\pi + \frac{\pi}{2}, k\pi + \frac{5\pi}{6}) \qquad k\pi + \frac{5\pi}{6}$		$(k\pi + \frac{5\pi}{6}, (k+1)\pi)$	$(k+1)\pi$	
y'	+		_		
y	增	极大	减	极小	

$$\int_{(5)} x = t^2$$

$$y = 3t + t^3$$

解: 设
$$x = x(y)$$
,则 $\frac{dx}{dy} = \frac{x'_t}{y'_t} = \frac{2t}{3(1+t^2)}$, 令 $\frac{dx}{dy} = 0$, 得 $t = 0$

由驻点的情况列表如下:

t	(-∞, 0)	0	$(0, +\infty)$
x'	_		+
x	减	极小	增

2. 求下列函数的极值点及极值.

$$(1) y = e^x \cos x$$

$$y'' = -2e^x \sin x$$
。当 $x = 2k\pi + \frac{\pi}{4}$ 时, $y'' < 0$,所以 $x = 2k\pi + \frac{\pi}{4}$ 是极大值点,极大值

为
$$y(2k\pi + \frac{\pi}{4}) = \frac{\sqrt{2}}{2}e^{2k\pi + \frac{\pi}{4}}$$
;

当
$$x=2k\pi+\frac{5\pi}{4}$$
 时, $y''>0$, 所以 $x=2k\pi+\frac{5\pi}{4}$ 是 极 小 值 点 , 极 小 值 为

$$y(^{2k\pi+\frac{5\pi}{4}}) = -\frac{\sqrt{2}}{2}e^{2k\pi+\frac{5\pi}{4}}$$
.

$$(2) \mathbf{y} = \left| \mathbf{x} (\mathbf{x}^2 - \mathbf{1}) \right|$$

解:
$$y' = \begin{cases} 3x^2 - 1 & x(x^2 - 1) > 0 \\ 1 - 3x^2 & x(x^2 - 1) < 0 \end{cases}$$

不存在 $x(x^2 - 1) = 0$

令
$$y' = 0$$
, 得驻点 $-\frac{\sqrt{3}}{3}$ 或 $\frac{\sqrt{3}}{3}$, 不可导点为 0 , -1 , 1 .

x	(-∞,-1)	-1	$(-1, -\frac{\sqrt{3}}{3})$	$-\frac{\sqrt{3}}{3}$	$(-\frac{\sqrt{3}}{3},0)$	0
$x(x^2-1)$	< 0		> 0		> 0	
y'表达式	$1-3x^2$		$3x^2-1$		$3x^2 - 1$	
y' 符号	_		+		_	
y	减	极小	增	极大	增	极小

所以 x = -1 是极小值点,极小值为0; $x = -\frac{\sqrt{3}}{3}$ 是极大值点,极大值为 $\frac{2\sqrt{3}}{9}$;

x = 0 是极大值点,极大值为0; 由于此函数是偶函数,对称的,有 $x = \frac{\sqrt{3}}{3}$ 是极大值点,

极大值为 $\frac{2\sqrt{3}}{9}$; x=1是极小值点,极小值为0。

 $(3) y = x^2 \ln x$

解: 令 $y' = x(2\ln x + 1) = 0$ 得驻点 $x = e^{-\frac{1}{2}}$, $y'' = 2\ln x + 3$, $y''\big|_{x=e^{-\frac{1}{2}}} = 2 > 0$, 所以 $x = e^{-\frac{1}{2}}$ 是极小值点,极小值为一 $\frac{1}{2e}$.

第3章 微分中值定理及其应用 第4节 函数性态的研究 5/20

(4)
$$y = (x-1)^2(x+1)^3$$

解: 令
$$y' = 2(x-1)(x+1)^3 + 3(x-1)^2(x+1)^2 = (x-1)(x+1)^2(5x-1) = 0$$
, 得驻点

$$-1, 1, \frac{1}{5}$$
.

当x < -1时, y' > 0,当-1 < x < 0时, y' > 0,所以x = -1不是极值点;

当
$$\frac{1}{2}$$
< x < 1 时, y' < 0 ,当 x > 1 时, y' > 0 ,所以 x = 1 是极小值点;极小值为 0 ;

当
$$x < \frac{1}{5}$$
 时, $y' > 0$,当 $\frac{1}{5} < x < 1$ 时, $y' < 0$,所以 $x = \frac{1}{5}$ 是极大值点;极大值为 $\frac{3456}{3125}$.

3. a 为何值时,函数 $f(x) = a \sin x + \frac{1}{3} \sin 3x$ 在 $x = \frac{\pi}{3}$ 处取得极值? 并求此极值.

$$\mathbb{H}: f'(x) = a\cos x + \cos 3x, \quad f''(x) = -a\sin x - 3\sin 3x$$

由费马定理知 f(x) 在 $x = \frac{\pi}{3}$ 处取得极值,则必有 $f'(\frac{\pi}{3}) = 0$,即 $a\cos\frac{\pi}{3} + \cos\pi = 0$,

故 a=2,而 $f''(\frac{\pi}{3})=-2\sin\frac{\pi}{3}-3\sin\pi=-\sqrt{3}<0$,由判别极值的第二充分定理知:

$$f(x)$$
 在 $x = \frac{\pi}{3}$ 处取得极大值 $f(\frac{\pi}{3}) = 2\sin\frac{\pi}{3} + \frac{1}{3}\sin\pi = \sqrt{3}$

注: 题目要求求极值时,必须指出是极大值还是极小值.

4. 设 $f(x) = a \ln x + bx^2 + x$ 在 $x_1 = 1$, $x_2 = 2$ 处取得极值, 试求 a 与 b 的值, 并计算

极值.

解:
$$f'(x) = \frac{a}{x} + 2bx + 1$$
, $f''(x) = -\frac{a}{x^2} + 2b$, 由费马定理知 $f'(1) = a + 2b + 1 = 0$,

$$f'(2) = \frac{a}{2} + 4b + 1 = 0$$
, 解得: $a = -\frac{2}{3}$, $b = -\frac{1}{6}$; 所以, $f''(x) = \frac{2}{3x^2} - \frac{1}{3}$, 又

$$f''(1) = \frac{2}{3} - \frac{1}{3} = \frac{1}{3} > 0$$
, $f''(2) = \frac{1}{6} - \frac{1}{3} = -\frac{1}{6} < 0$, 由判别极值的第二充分定理知:

$$f(x)$$
在 $x = 1$ 处取得极小值 $f(1) = -\frac{2}{3} \cdot \ln 1 + (-\frac{1}{6}) \cdot 1^2 + 1 = \frac{5}{6}$

$$f(x)$$
在 $x = 2$ 处取得极大值 $f(2) = -\frac{2}{3} \cdot \ln 2 + (-\frac{1}{6}) \cdot 2^2 + 2 = \frac{2(2 - \ln 2)}{3}$

5. 求下列函数的最值.

(1)
$$y = \frac{x-1}{x+1}$$
, $x \in [0,4]$

解:
$$y = 1 - \frac{2}{x+1}$$
, $y' = \frac{2}{(x+1)^2} > 0$, 当 $x \in [0, 4]$ 时, 函数无不可导点, 所以此函

数在此区间内单调增,最小值点是 x=0,最小值 $y_{\min}=-1$,最大值点是 x=4,最大值

$$y_{\text{max}} = \frac{3}{5} .$$

$$(2) y = 2 \tan x - \tan^2 x, \quad x \in \left[0, \frac{\pi}{2}\right]$$

 $y = 2 \tan x - \tan^2 x$ 无不可导点, $x \in (\frac{\pi}{4} - \delta, \frac{\pi}{4})$ 时, y' > 0 ; $x \in (\frac{\pi}{4}, \frac{\pi}{4} + \delta)$ 时,

y' < 0, 故最大值点是 $x = \frac{\pi}{4}$, 最大值 $y_{\text{max}} = 1$ 。

(3)
$$y = \frac{a^2}{x} + \frac{b^2}{1-x}$$
, $a > b > 0$, $x \in (0,1)$

解: 因为 $\lim_{x\to 0^+} y = +\infty$,所以函数无最大值。 $y' = -\frac{a^2}{x^2} + \frac{b^2}{(1-x)^2}$,令 y' = 0,得

$$\frac{a^2}{x^2} = \frac{b^2}{(1-x)^2}$$
, 因为 $a > b > 0$, $x \in (0,1)$, 所以 $\frac{a}{x} = \frac{b}{1-x}$, 解得驻点 $x = \frac{a}{a+b}$ 。

因为 $y'' = \frac{2a^2}{x^3} + \frac{2b^2}{(1-x)^3} > 0, x \in (0,1)$,所以函数在 $x = \frac{a}{a+b}$ 取得极小值,由于

 $x \in (0,1)$ 时,函数无不可导点,所以 $x = \frac{a}{a+b}$ 是最小值点,最小值 $y_{\min} = \left(a+b\right)^2$ 。

(4)
$$y = \max\{x^2, (1-x)^2\}$$

解: 因为 $y = \max\{x^2, (1-x)^2\} \ge x^2$, $y = x^2$ 无最大值,故 $y = \max\{x^2, (1-x)^2\}$ 也无最大值。

$$y = \max\left\{x^{2}, (1-x)^{2}\right\} = \begin{cases} x^{2} & x^{2} \ge (1-x)^{2} \\ (1-x)^{2} & x^{2} < (1-x)^{2} \end{cases}, \quad \exists y = \begin{cases} x^{2} & x \ge \frac{1}{2} \\ (1-x)^{2} & x < \frac{1}{2} \end{cases}$$

最小值为 $y_{\min} = \frac{1}{4}$ 。

- 6. 设 $f(x) = x \cos x \ (0 \le x \le \pi)$, 求适合下列条件的点x.
- (1) f(x)的最大、最小值点.
- (2) f(x)增加最快、最慢的点.
- (3) f(x) 图像的切线斜率增加最快的点.

解: $(1) f'(x) = 1 + \sin x \ge 0$,故 f(x) 单调递增,所以 f(x) 的最大值点为 $x = \pi$,最小值点为 x = 0.

(2) f(x) 增加最快、最慢的点,即求 $f'(x)=1+\sin x \stackrel{\Delta}{=} g(x)$ 的最大、最小值点. 令

$$g'(x) = \cos x = 0$$
,得驻点 $x = \frac{\pi}{2}$,由于 $g(0) = 1$, $g(\frac{\pi}{2}) = 2$, $g(\pi) = 1$,故 $g(x)$ 最

大值点(即 f(x) 增加最快的点)为 $x = \frac{\pi}{2}$,最小值点(即 f(x) 增加最慢的点)为 $x = 0, x = \pi$.

(3) f(x) 图像的切线斜率增加最快的点,即求 $f''(x) = \cos x \stackrel{\triangle}{=} h(x)$ 的最大值点.由于 $h'(x) = -\sin x \le 0$,故h(x) 单调递减,故h(x) 最大值点(即 f(x) 图像的切线斜率增加最快的点)为 x = 0.

注: (2)、(3) 小题说明时候可不按照严格求导办法,因为 $\sin x$, $\cos x$ 都是最基本初等函数,最大最小值点在哪里产生应可以直接使用

7. 甲乙两地用户共用一台变压器, 问变压器 *C* 设在输电干线何处时, 所用输电线最短(见图 3-16) 解:将点 *A* 设为原点,*A* 、*B* 两点的连 线(输电干线)设为 *x* 轴, *x* 轴的正向与 有向线段 *AB* 相同,设变压器 *C* 置于 *x* 处

时,所用输电线长度为L(x),所用输电线最短即求L(x)的最小值.由题意知:

$$L(x) = \sqrt{1 + x^2} + \sqrt{(3 - x)^2 + 1.5^2}$$
 $(0 \le x \le 3)$

则
$$L'(x) = \frac{x}{\sqrt{1+x^2}} - \frac{3-x}{\sqrt{(3-x)^2+1.5^2}}$$
,令 $L'(x) = 0$, 得唯一驻点 $x = 1.2$

由问题的实际意义知唯一驻点 x = 1.2 即是使输电线最短的位置,故变压器 C 应置于距 A 点 1.2km 处.

8. 设曲线 $y = 4 - x^2$ 与 y = 2x + 1 相交于 $A \setminus B$ 两点,C 为弧段 AB 上的一点,问C 在何处时, ΔABC 的面积最大? 并求此最大面积.

解法 1: 联立曲线方程
$$\begin{cases} y = 4 - x^2 \\ y = 2x + 1 \end{cases}$$
 得交点 $A(-3, -5)$, $B(1, 3)$,

设
$$C(x_0,4-x_0^2)$$
 $(-3 \le x_0 \le 1)$, C 到弦 AB 的垂足为 D ,则

直线段
$$CD$$
的方程为 $y-(4-x_0^2)=-\frac{1}{2}(x-x_0)$,即 $y=-\frac{1}{2}x+4-x_0^2+\frac{1}{2}x_0$

联立直线段
$$CD$$
与直线段 AB 的方程得 $D(\frac{2}{5}[-x_0^2+\frac{x_0}{2}+3], \frac{4}{5}[-x_0^2+\frac{x_0}{2}+3]+1)$

所以
$$|AB| = \sqrt{(1+3)^2 + (3+5)^2} = 4\sqrt{5}$$
,

$$|CD| = \sqrt{\left(\frac{2}{5}\left[-x_0^2 + \frac{x_0}{2} + 3\right] - x_0^2\right)^2 + \left(\frac{4}{5}\left[-x_0^2 + \frac{x_0}{2} + 3\right] + 1 - 4 + x_0^2\right)^2}$$
$$= \frac{\sqrt{5}}{5}\sqrt{\left(x_0^2 + 2x_0 - 3\right)^2}$$

$$S_{\Delta ABC} = \frac{1}{2} |AB| \cdot |CD| = 2\sqrt{(x_0^2 + 2x_0 - 3)^2}$$
,函数 $d = (x_0^2 + 2x_0 - 3)^2$ 与函数 $S_{\Delta ABC}$ 有

相同的极值点,而
$$d' = 2(x_0^2 + 2x_0 - 3)(2x_0 + 2) = 4(x_0 - 1)(x_0 + 3)(x_0 + 1)$$

令
$$d'=0$$
 , 得惟一驻点 $x_0=-1$, 又 $S_{\Delta ABC}(-3)=0$, $S_{\Delta ABC}(-1)=8$, $S_{\Delta ABC}(1)=0$

故
$$C(-1,3)$$
, max $\{S_{\Delta ABC}\}$ =8

解法 2: 本题等价于在弧段 AB 上找一点 C ,使点 C 到直线 AB 的距离最大,由几何知识,曲线在点 C 的切线应该平行于直线 AB ,因此曲线在点 C 的切线的斜率为 AB 。设 AB 点坐标

为
$$(x_0, y_0)$$
,则应有 $y'|_{x=x_0} = -2x_0 = 2$,解得 $x_0 = -1$,故 $C(-1, 3)$,由点到直线距离

公 式 , 知 此 最 大 三 角 形 的 高 为
$$h = \frac{|2(-1)-3+1|}{\sqrt{2^2+(-1)^2}} = \frac{4}{\sqrt{5}}$$
 , $|AB| = \sqrt{(1+3)^2+(3+5)^2} = 4\sqrt{5}$,所以 $\max\{S_{AABC}\} = 8$

9. 设测变量 x 的值时,得到 n 个略有偏差的数 a_1,a_2,\cdots,a_n ,问怎样取 x ,才能使函数 $f(x)=(x-a_1)^2+(x-a_2)^2+\cdots+(x-a_n)^2$ 达到最小. 解:令 $f'(x)=2(x-a_1)+2(x-a_2)+\cdots+2(x-a_n)=0$,得驻点

 $x = \frac{a_1 + a_2 + \dots + a_n}{n}$, 由于是实际问题,且驻点唯一,此即为最小值点。

10. 设货车以每小时 xkm 的速度匀速行驶 130km,规定 $50 \le x \le 100$. 假设汽油的价格是 2元/L,汽车耗油与行驶速度的关系是 $(2+\frac{x^2}{360})L/h$,司机的工资是 14元/h. 试问最经济的车速是多少?行驶的总费用是多少?(L一升,h一小时).

解: 当货车以每小时xkm的速度行驶时,设行驶的总费用为R(x)元,则每小时的费用为

$$2 \cdot (2 + \frac{x^2}{360}) + 14 = 2 \cdot (9 + \frac{x^2}{360})$$
, 共行驶了 $\frac{130}{x}$ 小时, 最经济的车速即 $R(x)$ 的最小值,

因而,
$$R(x) = 2 \cdot (9 + \frac{x^2}{360}) \cdot \frac{130}{x} = 260(\frac{9}{x} + \frac{x}{360})$$
, $\Rightarrow R'(x) = 260(\frac{x^2 - 3240}{360x^2}) = 0$,

得惟一驻点 $x=18\sqrt{10}\approx 57$ (由于题中假设 $50\leq x\leq 100$,故 $x=-18\sqrt{10}$ 舍去),由问题的实际意义即知 $x=18\sqrt{10}\approx 57$ 为 R(x)的最小值点, $R(57)\approx 82.8$ 故最经济的车速是 57km/h, 行驶的总费用 82.2 元.

11.周长为2l 的等腰三角形,绕其底边旋转形成旋转体,求所得体积为最大的那个等腰三角形.

解: 设等腰三角形的底边边长为x,则其腰长为 $l-\frac{x}{2}$,如图,则形成的旋转体可视为两个同体积的圆锥,圆锥的高为 $\frac{x}{2}$ 、母线长为 $l-\frac{x}{2}$,则底半径为 $\sqrt{l^2-lx}$,故

旋转体的体积
$$V=rac{2}{3}\pi(l^2-lx)\cdot rac{x}{2}=rac{\pi}{3}(l^2x-lx^2)$$
,令 $V'=rac{\pi}{3}(l^2-2lx)=0$,得惟一驻

点
$$x = \frac{l}{2}$$
, 由问题的实际意义即知 $x = \frac{l}{2}$ 为体积的最大值点, $V_{\max} = \frac{\pi \ l^3}{12}$, 故等腰三角

形的底边边长为 $\frac{l}{2}$, 腰长为 $\frac{3l}{4}$ 时, 旋转体体积最大.

12.将正数S分为两个正数之和,使其乘积最大.

解:设其中一个正数是x,则另一正数是S-x,问题转化为求函数f(x)=x(S-x)

$$(x>0)$$
 的最大值。令 $f'(x)=S-2x=0$ 得唯一驻点 $x=\frac{S}{2}$,由于实际问题最大值存

在,所以此即为最大值点。即
$$S = \frac{S}{2} + \frac{S}{2}$$

13. 将正数P分为两个正数之积,使其和最小.

解: 设其中一个正数是
$$x$$
,则另一正数是 $\frac{P}{x}$,问题转化为求函数 $f(x) = x + \frac{P}{x}$ ($x > 0$)

的最小值。令
$$f'(x)=1-\frac{P}{x^2}=0$$
得唯一驻点 $x=\sqrt{P}$,由于实际问题最小值存在,所以

此即为最小值点。即
$$P = \sqrt{P} \cdot \sqrt{P}$$

14. 求下列函数的上下凸区间及拐点.

(1)
$$y = e^{-x^2}$$

解:
$$y' = -2xe^{-x^2}$$
, $y'' = (4x^2 - 2)e^{-x^2}$, $\Leftrightarrow y'' = 0$, 得 $x = \pm \frac{\sqrt{2}}{2}$
$$x \in \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$
时, $y'' < 0$, $x \in \left(-\infty, -\frac{\sqrt{2}}{2}\right)$ 时, $y'' > 0$, $x \in \left(\frac{\sqrt{2}}{2}, +\infty\right)$ 时, $y'' > 0$, 故上凸区间为 $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$, 下凸区间为 $\left(-\infty, -\frac{\sqrt{2}}{2}\right)$, $\left(\frac{\sqrt{2}}{2}, +\infty\right)$,

$$x = \pm \frac{\sqrt{2}}{2}$$
 时, $y = e^{-\frac{1}{2}}$, 故拐点为 $\left(-\frac{\sqrt{2}}{2}, e^{-\frac{1}{2}}\right)$, $\left(\frac{\sqrt{2}}{2}, e^{-\frac{1}{2}}\right)$.

$$(2) y = x + \frac{1}{x}$$

解:
$$y'=1-\frac{1}{r^2}$$
, 有不可导点 $x=0$, $y''=\frac{2}{r^3}$, 无 $y''=0$ 的点,

$$x \in (-\infty, 0)$$
 时, $y'' < 0$, $x \in (0, +\infty)$ 时, $y'' > 0$,

故上凸区间为 $(-\infty,0)$,下凸区间为 $(0,+\infty)$,无拐点。

(3)
$$y = x^2 + \frac{1}{x}$$

解: 函数的定义域为:
$$x \neq 0$$
. $y' = 2x - \frac{1}{x^2}$, $y'' = 2 + \frac{2}{x^3}$, $\Rightarrow y'' = 0$ 得 $x = -1$

$$x \in (-\infty, -1)$$
时, $y'' > 0$, $x \in (-1,0)$ 时, $y'' < 0$, $x \in (0,+\infty)$ 时, $y'' > 0$,

故上凸区间为(-1,0),下凸区间为 $(-\infty,-1)$, $(0,+\infty)$,故拐点为(-1,0).

$$\begin{cases} x = t^2 \\ y = 3t + t^3 \end{cases}$$

解: 设
$$y = y(x)$$
, 则 $\frac{dy}{dx} = \frac{3+3t^2}{2t}$, $\left(\frac{3+3t^2}{2t}\right)' = \frac{3t^2-3}{2t^2}$,

$$t \in (-\infty, -1) \; , \; \frac{d^2y}{d^2x} < 0 \; , \; \; t \in (-1, 0) \; , \; \frac{d^2y}{d^2x} > 0 \; , \; \; t \in (0, 1) \; , \; \frac{d^2y}{d^2x} < 0 \; , \; \; t \in (1, +\infty) \; ,$$

$$\frac{d^2y}{d^2x} > 0$$
, 故上凸区间为 $(-\infty, -1)$, $(0,1)$, 下凸区间为 $(-1,0)$, $(1,+\infty)$. $t = -1$ 时,

$$x = 1, y = -4, t = 1$$
时, $x = 1, y = 4, t = 0$ 时, $x = 0, y = 0$, 故拐点为 $(1, -4)$, $(1, 4)$, $(0, 0)$.

15. 证明下列不等式成立.

(1)
$$|3x - x^3| \le 2$$
, $x \in [-2, 2]$

证明: (最大最小值法) 即证 $(3x-x^3)^2 \le 4$, $x \in [-2,2]$, 设 $f(x) = 4 - (3x-x^3)^2$,

$$\Rightarrow f'(x) = -6x(3-x^2)(1-x^2) = 0$$
, $x = 0$, $x = \pm 1$, $x = \pm \sqrt{3}$, $f(0) = 4$,

$$f(\pm 1) = 0 \; , \quad f(\pm \sqrt{3}) = 4 \; , \quad f(\pm 2) = 0 \; , \quad \text{in } f(x) \geq f_{\min}(x) = 0 \quad x \in [-2, 2] \; .$$

(2)
$$(\frac{1}{x} + \frac{1}{2})\ln(1+x) > 1$$
, $x \in (0, +\infty)$

证明: (利用单调性) 即证 $(2+x)\ln(1+x)-2x>0$, $x\in(0,+\infty)$, 设

$$f(x) = (2+x)\ln(1+x) - 2x$$
,则 $f'(x) = \frac{(1+x)\ln(1+x) - x}{1+x}$ (看不出符号情况),令

$$g(x) = (1+x)\ln(1+x) - x$$
, $\pm g'(x) = \ln(1+x) > 0$, $g_{\min}(x) = g(0) = 0$, \oplus

$$g(x) > 0$$
 , $\text{M} \equiv f'(x) = \frac{(1+x)\ln(1+x)-x}{1+x} > 0$, $\text{H} = f_{\min}(x) = f(0) = 0$ M ,

f(x) > 0 $x \in (0, +\infty)$.

(3)
$$e^x \le \frac{1}{1-x}$$
 $x \in (-\infty, -1)$

证明: 即证 $1-(1-x)e^x \ge 0$,设 $f(x) = 1-(1-x)e^x$, $f'(x) = xe^x$, $f''(x) = e^x(1+x)$,

法 1 (利用单调性)
$$f'(x) < 0$$
 $x \in (-\infty, -1)$, 故 $f(x) \ge f_{\min}(x) = f(-1) = 1 - \frac{2}{e} > 0$

法 2 (利用函数的凸性) 由于 f''(x) < 0 $x \in (-\infty, -1)$, 故函数 f(x) 在区间 $(-\infty, -1)$ 上

是 上 凸 的 ,
$$f(-1) = 1 - \frac{2}{e} > 0$$
 , $\lim_{x \to -\infty} f(x) = 1 - (1 - x)e^x = 1 > 0$, 所 以

$$f(x) \ge \min\{f(-1), f(-\infty)\} > 0$$

(4)
$$x \ln x + y \ln y > (x + y) \ln \frac{x + y}{2}$$

证明: (利用函数的凸性)设 $f(x) = x \ln x$ (x > 0),则 $f'(x) = 1 + \ln x$,

第3章 微分中值定理及其应用 第4节 函数性态的研究 14/20

$$f''(x) = \frac{1}{x} > 0$$
,故函数 $f(x)$ 在区间 $(0, +\infty)$ 上是严格下凸的,由严格下凸函数的定义

$$\lambda f(x_1) + (1-\lambda)f(x_2) > f(\lambda x_1 + (1-\lambda)x_2) , \quad \mathbb{R} \lambda = \frac{1}{2} , \quad \mathbb{R} \forall x, y \in (0,+\infty) , \quad \mathbb{R} \lambda = \frac{1}{2} , \quad \mathbb{R} \lambda = \frac{1}{2}$$

有
$$\frac{x \ln x + y \ln y}{2} > (\frac{x+y}{2}) \ln \frac{x+y}{2}$$
, 即 $x \ln x + y \ln y > (x+y) \ln \frac{x+y}{2}$

(5)
$$2\arctan\frac{a+b}{2} > \arctan a + \arctan b \quad (a > 0, b > 0)$$

证明: (利用函数的凸性) 设
$$f(x) = \arctan x$$
 $(x > 0)$, 则 $f'(x) = \frac{1}{1+x^2}$,

$$f''(x) = -\frac{2x}{(1+x^2)^2} < 0$$
, 故函数 $f(x)$ 在区间 $(0, +\infty)$ 上是严格上凸的, 由严格上凸函

数 的 定 义
$$\lambda f(x_1) + (1-\lambda)f(x_2) < f(\lambda x_1 + (1-\lambda)x_2)$$
 , 取 $\lambda = \frac{1}{2}$, 则 对

$$\forall a, b \in (0, +\infty)$$
, $\forall a = \frac{\arctan a + \arctan b}{2} < \arctan \frac{a+b}{2}$,

(6)
$$1 + x \ln(x + \sqrt{1 + x^2}) \ge \sqrt{1 + x^2}$$

证 明:
$$f(x) = 1 + x \ln(x + \sqrt{1 + x^2}) - \sqrt{1 + x^2}$$
, 则 $f'(x) = \ln(x + \sqrt{1 + x^2})$,

$$f''(x) = \frac{1}{\sqrt{1+x^2}} > 0 ,$$

法 1 (最大最小值法)令 f'(x) = 0 得唯一驻点 x = 0,又 f''(0) = 1 > 0,故 x = 0为最小值

点, 即
$$f(x) \ge f_{\min}(x) = f(0) = 0$$

法 2 (利用拉格朗日公式) f(x) 满足拉格朗日中值定理,故在[0,x]或[x,0]上应有

$$1 + x \ln(x + \sqrt{1 + x^2}) - \sqrt{1 + x^2} = x \ln(\xi + \sqrt{1 + \xi^2})$$
 (*ξ*介于 0 与 *x* 之间),当 $x \le 0$

时,
$$x \ln(\xi + \sqrt{1 + \xi^2}) \ge 0$$
 ; 当 $x > 0$ 时, $x \ln(\xi + \sqrt{1 + \xi^2}) > 0$, 总之,

$$1 + x \ln(x + \sqrt{1 + x^2}) - \sqrt{1 + x^2} \ge 0$$

16. 试求k 的值,使曲线 $y = k(x^2 - 3)^2$ 的拐点处的法线通过原点.

解: $y' = 4kx(x^2 - 3)$, $y'' = 12k(x^2 - 1)$, 令 y'' = 0, 得 $x = \pm 1$, 且在 $x = \pm 1$ 的两侧 y'' 变号,故拐点为 (-1, 4k), (1, 4k); 又 y'(-1) = 8k , y'(1) = -8k ,故点 $(\pm 1, 4k)$ 处

的法线为
$$y-4k=\pm\frac{1}{8k}[x-(\pm 1)]$$
,即 $-4k=-\frac{1}{8k}$,推得 $k=\pm\frac{\sqrt{2}}{8}$

17. a, b 为何值时,点(1,3)为曲线 $y = ax^3 + bx^2$ 的拐点?

解: $y' = 3ax^2 + 2bx$, y'' = 6ax + 2b, 欲使点 (1,3) 为曲线的拐点,则必有 y''(1) = 0,

即
$$6a+2b=0$$
,又点 $(1,3)$ 满足曲线方程,即 $a+b=3$,解得 $a=-\frac{3}{2},\ b=\frac{9}{2}$

18. 设 f(x) 在点 x_0 处三阶可导,且 $f''(x_0) = 0$, $f'''(x_0) \neq 0$,证明:点 $(x_0, f(x_0))$ 为 曲线 y = f(x) 的拐点.

证明: 法 1: 因为 $f'''(x_0) \neq 0$,不妨设 $f'''(x_0) > 0$,由三阶导数的定义及 $f''(x_0) = 0$,

有
$$f'''(x_0) = \lim_{x \to x_0} \frac{f''(x) - f''(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f''(x)}{x - x_0} > 0$$

由极限的保号性知, $\exists x_0$ 的去心邻域 $\overset{0}{N}(x_0,\delta)$, 使得 $\dfrac{f''(x)}{x-x_0}>0$, 因此, 当

 $x \in (x_0 - \delta, x_0)$ 时, f''(x) < 0 ,即 f(x) 在区间 $(x_0 - \delta, x_0)$ 内严格上凸; 当 $x \in (x_0, x_0 + \delta)$ 时, f''(x) > 0 ,即 f(x) 在区间 $(x_0, x_0 + \delta)$ 内严格下凸;于是点 $(x_0, f(x_0))$ 为曲线 y = f(x) 的拐点.

法 2: 对函数 f''(x) 运用一阶泰勒公式: $f''(x) = f''(x_0) + f'''(x_0)(x - x_0) + o(x - x_0)$

当 $|x-x_0|$ 很小时,右端的符号取决于 $f'''(x_0)(x-x_0)$ 的符号,故在 x_0 的较小邻域内,

第3章 微分中值定理及其应用 第4节 函数性态的研究 16/20

 $x > x_0$ 与 $x < x_0$ 时f''(x)的符号相反,故点 $(x_0, f(x_0))$ 为曲线y = f(x)的拐点.

19. 设f'(x)的图形分别如图 3—17 所示,指出f(x)的单调区间、上下凸区间,极值点及曲线拐点的横坐标.

图 3-17

解: (1) 因 $x \in (a,x_1)$ 时,f'(x) < 0,所以 (a,x_1) 是单调减区间;

 $x \in (x_1, x_3)$ 时,f'(x) > 0,所以 (x_1, x_3) 是单调增区间;

 $x \in (x_3, x_4)$ 时,f'(x) < 0,所以 (x_3, x_4) 是单调减区间;

 $x \in (x_4, b)$ 时,f'(x) > 0,所以 (x_4, b) 是单调增区间;

可能的极值点: 驻点 x_1 , x_3 , 不可导点 x_4 , 根据左右两侧一阶导数符号的变化, 可 知 $x=x_1$ 或 x_4 是极小值点, $x=x_3$ 是极大值点。

因 f'(x) 在 $x = x_2$, x_5 处有水平切线, 所以 f'(x) , $f''(x_5) = 0$

当 $x \in (a,x_2)$ 时,f'(x)单调增,即f''(x) > 0,所以 (a,x_2) 是下凸区间;

当 $x \in (x_2, x_4)$ 时, f'(x) 单调减,即 f''(x) < 0,所以 (x_2, x_4) 是上凸区间;

当 $x \in (x_4, x_5)$ 时,f'(x)单调减,即f''(x) < 0,所以 (x_4, x_5) 是上凸区间;

当 $x \in (x_5,b)$ 时,f'(x)单调增,即f''(x) > 0,所以 (x_5,b) 是下凸区间;

拐点的横坐标可能为: x_2 , x_5 (二阶导数为 0), 不可导点 x_4 ,

根据左右两侧二阶导数符号的变化,可知 $x=x_2$, $x=x_5$ 是拐点的横坐标。

(2) 因 $x \in (a, x_2)$ 或 (x_4, b) 时,f'(x) > 0,所以 (a, x_2) 或 (x_4, b) 是单调增区间; $x \in (x_2, x_4)$ 时,f'(x) < 0,所以 (x_2, x_4) 是单调减区间;

可能的极值点: 驻点 x_2 , x_4 , x_6 , 根据左右两侧一阶导数符号的变化,可知 $x=x_2$ 是极大值点, $x=x_4$ 是极小值点, $x=x_6$ 不是极值点。

因 f'(x) 在 $x = x_1$, x_3 , x_5 , x_6 , x_7 处有水平切线, 所以 $f''(x_1) = 0$, $f''(x_3) = 0$, $f''(x_5) = 0$, $f''(x_6) = 0$, $f''(x_7) = 0$,

当 $x \in (a,x_1)$ 时,f'(x)单调增,即f''(x) > 0,所以 (a,x_1) 是下凸区间;

当 $x \in (x_1, x_3)$ 时,f'(x)单调减,即f''(x) < 0,所以 (x_1, x_3) 是上凸区间;

同理 (x_3, x_5) , (x_6, x_7) 是下凸区间, (x_5, x_6) , (x_7, b) 是上凸区间,

拐点的横坐标可能为: $x = x_1$, x_3 , x_5 , x_6 , x_7 ,

根据左右两侧二阶导数符号的变化,可知 $x=x_1$, x_3 , x_5 , x_6 , x_7 都是拐点的横坐标。

20. 图 3—18 中有两幅包含三条曲线a、b、c 的图形,试判断每幅图中f(x),f'(x),f''(x)分别对应着a、b、c 中的哪条曲线?

解: a、b不可能是 f(x),否则 f''(x) < 0,所以c是 f(x),由于c单调减,所以a是 f'(x),因而b是 f''(x)。

(2)a不可能是f(x),假设a是f(x),当a单调减时,b、c均有函数值大于0,这说明b、c都不可能是f(x)的导数图像;

 $m{b}$ 不可能是 $m{f}(m{x})$,假设 $m{b}$ 是 $m{f}(m{x})$,从 $m{x}$ 轴负半轴看,当 $m{b}$ 单调减时, $m{a}$ 、 $m{c}$ 已有函数值大于 $m{0}$,所以 $m{a}$ 、 $m{c}$ 不可能是它的一阶导数;

因此c是f(x),x轴负半轴,c单增;x轴正半轴,c单减,故b是f'(x),因而a是f''(x)。

21. 求下列函数的渐近线.

$$(1) \quad y = x \ln(e + \frac{1}{x})$$

解: 因为
$$\lim_{x\to -\frac{1}{2}+0} x \ln(e+\frac{1}{x}) = +\infty$$
,故 $x = -\frac{1}{e}$ 为函数的一条铅直渐近线,

$$\angle \lim_{x \to \infty} \frac{x \ln(e + \frac{1}{x})}{x} = 1, \quad \lim_{x \to \infty} \left[x \ln(e + \frac{1}{x}) - x \right] = \lim_{x \to 0} \frac{\ln(e + x) - 1}{x} = \lim_{x \to 0} \frac{\frac{1}{e + x}}{1} = \frac{1}{e}$$

故 $y = x + \frac{1}{e}$ 为函数的一条斜渐近线.

(2)
$$y = \frac{(x+1)^3}{(x-1)^2}$$

解: 因为
$$\lim_{x\to 1} \frac{(x+1)^3}{(x-1)^2} = +\infty$$
,故 $x = 1$ 为函数的一条铅直渐近线,

$$\angle \lim_{x \to \infty} \frac{\frac{(x+1)^3}{(x-1)^2}}{x} = 1, \quad \lim_{x \to \infty} \left[\frac{(x+1)^3}{(x-1)^2} - x \right] = \lim_{x \to \infty} \frac{5x^2 + 2x + 1}{(x-1)^2} = 5,$$

故 v = x + 5 为函数的一条斜渐近线.

(3)
$$y = \frac{x^2}{\sqrt{x^2 - 1}}$$

解: 因为
$$\lim_{x\to 1^+} \frac{x^2}{\sqrt{x^2-1}} = +\infty$$
,故 $x=1$ 为函数的一条铅直渐近线,

$$\lim_{x\to -1^-} \frac{x^2}{\sqrt{x^2-1}} = +\infty, \text{ if } x = -1 \text{ big by more } x = -1$$

$$\angle \lim_{x \to -\infty} \frac{\frac{x^2}{\sqrt{x^2 - 1}}}{x} = -1, \quad \lim_{x \to -\infty} \left(\frac{x^2}{\sqrt{x^2 - 1}} + x \right) = \lim_{x \to -\infty} \frac{x^2}{\sqrt{x^2 - 1} \cdot \left(x^2 - x\sqrt{x^2 - 1} \right)} = 0,$$

故y = -x为函数的一条斜渐近线,

$$\lim_{x \to +\infty} \frac{\frac{x^2}{\sqrt{x^2 - 1}}}{x} = 1, \quad \lim_{x \to +\infty} \left(\frac{x^2}{\sqrt{x^2 - 1}} - x \right) = \lim_{x \to -\infty} \frac{x^2}{\sqrt{x^2 - 1} \cdot \left(x^2 + x\sqrt{x^2 - 1} \right)} = 0,$$

故y = x为函数的一条斜渐近线.

(4)
$$y = x - 2 \arctan x$$

解: 因为
$$\lim_{x\to+\infty} \frac{x-2\arctan x}{x} = 1$$
, $\lim_{x\to+\infty} (x-2\arctan x-x) = -\pi$,

故 $y = x - \pi$ 为函数的一条斜渐近线,

因为
$$\lim_{x\to-\infty} \frac{x-2\arctan x}{x} = 1$$
, $\lim_{x\to-\infty} (x-2\arctan x - x) = \pi$,

故 $y = x + \pi$ 为函数的一条斜渐近线