Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/003080

International filing date: 18 February 2005 (18.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-040927

Filing date: 18 February 2004 (18.02.2004)

Date of receipt at the International Bureau: 07 April 2005 (07.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

18.02.2005

JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2月18日 2004年

願 出 Application Number: 特願2004-040927

[ST. 10/C]:

[JP2004-040927]

出 願 Applicant(s):

ソニー株式会社

2005年

3月24日

特許願 【書類名】 0490043302 【整理番号】 平成16年 2月18日 【提出日】 特許庁長官 殿 【あて先】 【国際特許分類】 H05B 44/14 H05B 44/10 【発明者】 東京都品川区北品川6丁目7番35号 ソニー株式会社内 【住所又は居所】 鬼島 靖典 【氏名】 【特許出願人】 000002185 【識別番号】 ソニー株式会社 【氏名又は名称】 【代理人】 100086298

【識別番号】

【弁理士】 【氏名又は名称】

船橋 國則 【電話番号】 046-228-9850

【手数料の表示】

007364 【予納台帳番号】 21,000円 【納付金額】

【提出物件の目録】

特許請求の範囲 1 【物件名】

明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【物件名】 9904452 【包括委任状番号】

【書類名】特許請求の範囲

【請求項1】

陰極と陽極との間に、少なくとも有機発光層を含む発光ユニットが複数個積層され、当 該各発光ユニット間に電荷発生層が挟持された表示素子において、

前記電荷発生層は、アルカリ金属酸化物およびアルカリ土類金属酸化物の少なくとも一 方を含んでいる

ことを特徴とする表示素子。

【請求項2】

請求項1記載の表示素子において、

前記電荷発生層に含まれる前記金属酸化物は、当該電荷発生層における前記陽極側の界 面層を構成している

ことを特徴とする表示素子。

【請求項3】

請求項1記載の表示素子において、

前記電荷発生層に含まれるアルカリ金属酸化物は、Li2SiO3である

ことを特徴とする表示素子。

【請求項4】

請求項1記載の表示素子において、

前記電荷発生層における前記陰極側の界面層は、フタロシアニン骨格を有する有機材料を用いて構成されている

ことを特徴とする表示素子。

【請求項5】

請求項1記載の表示素子において、

前記電荷発生層は絶縁性である

ことを特徴とする表示素子。

【請求項6】

陰極と陽極との間に、少なくとも有機発光層を含む発光ユニットが複数個積層され、当該各発光ユニット間に電荷発生層が挟持された表示素子において、

前記電荷発生層における前記陽極側の界面には、アルカリ金属フッ化物およびアルカリ 土類金属フッ化物の少なくとも一方を用いた界面層が設けられている

ことを特徴とする表示素子。

【請求項7】

請求項6記載の表示素子において、

前記界面層は、導電性材料層と、当該導電性材料層における前記陽極側に配置されたアルカリ金属フッ化物およびアルカリ土類金属フッ化物の少なくとも一方からなる層とで構成された

ことを特徴とする表示素子。

【請求項8】

請求項7記載の表示素子において、

前記導電性材料層がマグネシウム、銀、およびアルミニウムの少なくとも1つを含む ことを特徴とする表示素子。

【請求項9】

請求項6記載の表示素子において、

前記電荷発生層における前記陰極側の界面層は、フタロシアニン骨格を有する有機材料を用いて構成されている

ことを特徴とする表示素子。

【請求項10】

請求項6記載の表示素子において、

前記界面層に接する前記電荷発生層部分は絶縁性である

ことを特徴とする表示素子。

【書類名】明細書

【発明の名称】表示素子

【技術分野】

[0001]

本発明は、カラーディスプレイなどに用いられる表示素子に関し、特には有機層を備えた自発光型の表示素子に関する。

【背景技術】

[0002]

近年、マルチメディア指向の商品を初めとし、人間と機械とのインターフェースの重要性が高まってきている。人間がより快適に効率良く機械操作するためには、操作される機械からの情報を誤りなく、簡潔に、そして瞬時に、充分な量取り出す必要があり、その為にディスプレイを初めとする様々な表示素子について研究が行われている。

[0003]

また、機械の小型化に伴い、表示素子の小型化、薄型化に対する要求も日々、高まっているのが現状である。例えば、ノート型パーソナルコンピュータ、ノート型ワードプロセッサなどの、表示素子一体型であるラップトップ型情報処理機器の小型化には目を見張る進歩があり、それに伴い、その表示素子である液晶ディスプレイに関しての技術革新も素晴らしいものがある。液晶ディスプレイは、様々な製品のインターフェースとして用いられており、ラップトップ型情報処理機器はもちろんのこと、小型テレビや時計、電卓を初めとし、我々の日常使用する製品に多く用いられている。

[0004]

ところが、液晶ディスプレイは、自発光性でないためバックライトを必要とし、このバックライト駆動に液晶を駆動するよりも電力を必要する。また、視野角が狭いため、大型ディスプレイ等の大型表示素子には適していない。さらに、液晶分子の配向状態による表示方法なので、視野角の中においても、角度によりコントラストが変化してしまう。しかも、液晶は基底状態における分子のコンフォメーションの変化を利用して表示を行っているので、ダイナミックレンジが広くとれない。これは、液晶ディスプレイが動画表示には向かない理由の一つになっている。

[0005]

これに対し、自発光性表示素子は、プラズマ表示素子、無機電界発光素子、有機電界発光素子等が研究されている。

[0006]

プラズマ表示素子は低圧ガス中でのプラズマ発光を表示に用いたもので、大型化、大容量化に適しているものの、薄型化、コストの面での問題を抱えている。また、駆動に高電圧の交流バイアスを必要とし、携帯用デバイスには適していない。

[0007]

無機電界発光素子は、緑色発光ディスプレイ等が商品化されたが、プラズマ表示素子と同様に、交流バイアス駆動であり駆動には数百 V必要であり、ユーザーに受け入れられなかった。しかし、技術的な発展により、今日ではカラーディスプレイ表示に必要な R G B 三原色の発光には成功しているが、青色発光材料が高輝度、長寿命で発光可能なものが無く、また、無機材料のために、分子設計などによる発光波長等の制御は困難である。

[0008]

2000年には、無機電界発光素子を用いたフルカラーディスプレイが発表されたが、色変換方式を用いており、理想的な独立三原色駆動方式でのデバイス化は難しい。

[0009]

一方、有機化合物による電界発光現象は、1960年代前半にHelfrichらにより強く蛍光を発生するアントラセン単結晶への、キャリア注入による発光現象が発見されて以来、長い期間、研究されてきたが、低輝度、単色で、しかも単結晶であった為、有機材料へのキャリア注入という基礎的研究として行われていた。

[0010]

しかし、1978年にEastman Kodak社のTangらが低電圧駆動、高輝度発光が可能なアモルファス発光層を有する積層構造の有機電界発光素子を発表して以来、各方面でRGB三原色の発光、安定性、輝度上昇、積層構造、作製法等の研究開発が盛んに行なわれている。C. Adachi、S. Tokito、T. Tsutsui、S. Saito等の Japanese Journal of Applied Physics第27卷2号L269~L271頁(1988年)掲載の研究報告に記載されているように、正孔輸送材料、発光材料、電子輸送材料の3層構造(ダブルヘテロ構造の有機EL素子)が開発され、更に、C. W. Tang、S. A. VanSlyke、C. H. Chen等の Journal of Applied Physics 第6589号3610~3616頁(1989年)掲載の研究報告に記載されているように、電子輸送材料中に発光材料を含ませた素子構造などが開発されてきた。

$[0\ 0\ 1\ 1]$

また、有機材料の特徴である分子設計等により様々な新規材料が発明され、直流低電圧 駆動、薄型、自発光性等の優れた特徴を有する有機電界発光素子のカラーディスプレイへ の応用研究も盛んに行われ始めている。

[0012]

図4には、このような表示素子(有機電界発光素子)の一構成例を示す。この図に示す表示素子 1 は、例えばガラス等からなる透明な基板 2 上に設けられている。この表示素子 1 は、基板 2 上に設けられた I T O(Indium Tin Oxide:透明電極)からなる陽極 3、この陽極 3 上に設けられた有機層 4、さらにこの上部に設けられた陰極 5 とで構成されている。有機層 4 は、陽極側から、例えば正孔注入層 4 a、正孔輸送層 4 b および電子輸送性の発光層 4 c を順次積層させた構成となっている。このように構成された表示素子 1 では、陰極から注入された電子と陽極から注入された正孔とが発光層 4 c にて再結合する際に生じる光が基板 2 側から取り出される。

[0013]

またこのような構成の他にも、基板2側から順に、陰極5、有機層4、陽極3を順次積層した構成や、さらには上方に位置する電極(上部電極)を透明材料で構成することで、基板2と反対側から光を取り出すようにした、いわゆる上面発光型の表示素子もある。そして特に、基板上に薄膜トランジスタ(thin film transistor:以下TFTと記す)を設けて成るアクティブマトリックス型の表示装置においては、TFTが形成された基板上に上面発光型の表示素子を設けた、いわゆる上面発光素子構造とすることが、発光部の開口率を向上させる上で有利になる。

[0014]

このような上面発光素子構造の表示装置において、上部電極が陰極である場合、この上部電極は、例えばLiF、Li2〇や、Cs〇等の金属フッ化物或いは酸化物層を用いて注入電極が構成される。また、これらの注入電極上にMgAg層を積層させる場合もある

[0015]

また、上面発光素子構造では、陽極としてITO等の透明電極を用いることで両サイドからの光の取り出しも可能であるが、一般的には不透明電極が用いられ、キャビティ構造を形成する。キャビティ構造の有機層膜厚は、発光波長によって規定され、多重干渉の計算から導くことが可能である。上面発光素子構造では、このキャビティ構造を積極的に用いることにより、外部への光取り出し効率の改善や発光スペクトルの制御を行うことが可能である。

[0016]

ところで、有機電界発光素子の実用化に付いては、主にカーオーディオ、携帯電話、デ ジタルカメラを中心に年々、参入メーカーが増えてきているのが実状である。

[0017]

用いている有機材料も、年々改良が加えられ、蛍光発光材料でも外部量子効率が5%を超えるものも報告され、りん光材料に至っては20%近い値も報告されている。一般的に内部量子効率は外部量子効率の約5倍近いと見積もることが出来、りん光材料に至っては

限界に近い値になってきている。

[0018]

しかしながら、効率が改善されているのに比べ、信頼性の一つの指針である連続駆動寿命に至っては、発光色にもよるが、初期輝度が数百~数千cd/m2からの半減寿命が1~4万時間程度と開きが大きく、思ったほど延びていないのが実状である。

[0019]

この事が、有機電界発光素子が次世代テレビの有力候補と言われながら、なかなか大型 化ができず、また寿命が厳しく要求される製品として実用化に至っていない要因の一つに 挙げられる。

[0020]

有機電界発光素子の寿命は、一般的には注入された電荷によって決まっており、この事は駆動における初期輝度を落すことで解決することはできる。しかしながら、初期輝度を落すことは、実用化におけるアプリケーションが制限され、有機電界発光素子の潜在的な可能性を自ら否定することになり、次世代テレビの実現は不可能になる。

[0021]

この問題を解決するためには、駆動電流を変えずに輝度を上げる、即ち効率を改善するか、或いは駆動電流を下げても同様の輝度を得ることができる素子構成を実現する必要がある。

[0022]

この課題を解決するために、複数の有機発光素子を重ねて配置したスタック型のマルチフォトンエミッション素子(MPE素子)が提案されている。この場合、例えば、複数の有機発光素子のユニットが中間導電層を介して電気的に直列に接合されている素子が提案されている(下記特許文献1)。

[0023]

しかしながら、中間導電層を介して有機発光素子を重ねた素子構成では、複数の素子を平面的に配列して表示装置を構成する場合の中間導電層からの漏れ電流が懸念され、特にパッシブマトリックスにとっては、画像表示を行う上では致命的な欠陥となりかねない。そこで、図5に示すように、陽極3と陰極5との間に、少なくとも発光層4cを有する有機層からなる複数の発光ユニット4-1,4-2,…を、絶縁性の電荷発生層6を介して重ねて配置したMPE素子(表示素子1')の構成が提案されている。ここで、電荷発生層6とは、電圧印加時において、電荷発生層6の陰極5側に配置された発光ユニット4-2に対して正孔を注入する一方、電荷発生層6の陽極3側に配置された発光ユニット4-1に対して電子を注入する役割を果たす層であり、酸化バナジウム(V_2O_5)や7酸化レニウム(V_2O_7)のような金属酸化物を用いて構成されている。

[0024]

また、このような電荷発生層 6 から陽極 3 側の発光ユニット 4 -1への電子注入効率を上げるために、「その場反応生成層」となる電子注入層 7 を電荷発光層 6 の陽極 3 側に設けることが好ましい。このような「その場反応生成層」となる電子注入層 7 としては、例えばバソクプロイン (BCP) と金属セシウム (Cs) との混合層や、(8 ーキノリノラト) リチウム錯体とアルミニウムとの積層膜が用いられる。

[0025]

以上のような電荷発生層 6 を介して発光ユニット 4 –1, 4 –2, …を積層させたスタック型の有機電界発光素子では、2 つの発光ユニットを積層した場合には、理想的には発光効率 $[1\,m/W]$ は変ること無しに輝度 $[c\,d/A]$ を 2 倍に、3 つの発光ユニットを積層した場合には、理想的には $[1\,m/W]$ は変ること無しに $[c\,d/A]$ を 3 倍にすることが可能であるとされている(以上、下記特許文献 2 ,3 参照)。

[0026]

【特許文献1】特開平11-329748号公報

【特許文献2】特開2003-45676号公報

【特許文献3】特開2003-272860号公報

【発明の開示】

【発明が解決しようとする課題】

[0027]

しかしながら、図 5 を用いて説明したような電荷発生層 6 を介して発光ユニット 4 -1, 4 -2 を積層する構成の表示素子 1 においては、電荷発生層 6 の陽極 3 側に配置されるその場反応生成層としての電子注入層 7 を構成する材料が、非常に不安定である。このため、電子注入層 7 を構成するそれぞれの材料の化学量論比が重要であり、このバランスが崩れると層としても不安定になると考えられる。

[0028]

例えば、BCPは錯形成能に富み、フリーな金属成分が有った場合、または、活性部位を有する有機材料が存在した場合等は、周辺材料と錯体を形成する可能性が大きく、素子の安定性といった点を考慮すれば用いるのには困難である。加えて、BCPを用いた素子では、耐環境性に対して信頼性が乏しい事も問題点として考えられる。

[0029]

そして、このようなスタック型の有機電界発光素子においては、 V_2O_5 やRe $_2O_7$ のような金属酸化物を用いて電荷発生層 6 を構成した場合、一般的なAlq $_3$ の様な電子輸送層を直接、電荷発生層 6 にコンタクトすることにより注入される電子の効率は極めて低い。したがって、電荷発生層 6 の陽極 3 側の界面構成が極めて重要なポイントとなる。

[0030]

そこで本発明は、有機層からなる発光ユニットを積層させたスタック型の表示素子において、安定材料を用いることで耐環境性の向上を図ることができ、かつ発光ユニット間に狭持された電荷発生層から発光ユニットへの電荷の注入効率の向上を図ることができ、これにより、高輝度で長期信頼性に優れると共に作製が容易な表示素子を提供することを目的とする。

【課題を解決するための手段】

[0031]

このような目的を達成するために本発明の第1の表示素子は、陰極と陽極との間に、少なくとも有機発光層を含む発光ユニットが複数個積層され、当該各発光ユニット間に電荷発生層が挟持された表示素子において、電荷発生層がアルカリ金属酸化物およびアルカリ土類金属酸化物の少なくとも一方を含んでいることを特徴としている。そして、電荷発生層に含まれるこれらの金属酸化物は、上記した陽極側における電荷発生層の界面層を構成していることとする。また電荷発生層に含まれるアルカリ金属酸化物としては、一般的な酸化物および複合酸化物を用いることができるが、この中でも特に、 Li_2SiO_3 が好ましく用いられる。尚、電荷発生層は絶縁性であることとする。

[0032]

このような構成の第1の表示素子では、電荷発生層がアルカリ金属酸化物およびアルカリ土類金属酸化物の少なくとも一方を含んでいることにより、電荷発生層から発光ユニット側への電子の注入効率が向上する。特に、上記した陽極側における電荷発生層の界面にアルカリ金属酸化物およびアルカリ土類金属酸化物の少なくとも一方を含んでいる界面層を設けることにより、当該電荷発生層の陽極側に配置されている発光ユニットに対しての、当該電荷発生層からの電子の注入効率が向上する。しかも、電荷発生層中におけるアルカリ金属酸化物およびアルカリ土類金属酸化物は、成膜段階からアルカリ金属酸化物およびアルカリ土類金属酸化物の形態で用いられて安定である。このため、これを用いた荷電発生層の安定化が図られる。

[0033]

また本発明の第2の表示素子は、陰極と陽極との間に、少なくとも有機発光層を含む発光ユニットが複数個積層され、当該各発光ユニット間に電荷発生層が挟持された表示素子において、上記した陽極側における電荷発生層の界面に、アルカリ金属フッ化物およびアルカリ土類金属フッ化物の少なくとも一方を用いた界面層が設けられていることを特徴としている。そして、この界面層は、導電性材料層と、当該導電性材料層の陽極側に配置さ

[0034]

このような構成の第2の表示素子では、アルカリ金属フッ化物およびアルカリ土類金属フッ化物の少なくとも一方を用いた界面層を、上記した陽極側における電荷発生層の界面に設けることにより、電荷発生層の陽極側に配置された発光ユニットに対しての、当該電荷発生層からの電子の注入効率が向上する。しかも、電荷発生層中におけるアルカリ金属フッ化物およびアルカリ土類金属フッ化物は、成膜段階からアルカリ金属フッ化物およびアルカリ土類金属フッ化物の形態で用いられて安定である。このため、これを用いた荷電発生層の安定化が図られる。

【発明の効果】

[0035]

以上説明したように、第1の発明および第2の発明の表示素子によれば、アルカリ金属酸化物、アルカリ土類金属酸化物、アルカリ金属フッ化物、アルカリ土類金属フッ化物と言った安定的な材料を用いて構成された電荷発生層から発光ユニットへの電荷の注入の向上を図ることが可能になる。この結果、有機層からなる発光ユニットを積層させたスタック型の表示素子において、輝度の向上および耐環境性の向上による寿命特性の向上、すなわち長期信頼性の向上を図ることが可能になる。また、安定的な材料を用いて、このような電荷の注入特性に優れた電荷発生層が構成されるため、その作製においても化学量論比を考慮した成膜などを行う必要はなく、容易に作製可能となる。

【発明を実施するための最良の形態】

[0036]

図1は、本発明の表示素子の一構成例を示す断面図である。この図に示す表示素子11は、発光ユニットを積層してなるスタック型の表示素子11であり、基板12上に設けられた陽極13、この陽極13上に重ねて設けられた複数の発光ユニット14-1、14-2、… (ここでは2個)、これらの発光ユニット14-1,14-2間に設けられた電荷発生層15、そして最上層の発光ユニット14-2上に設けられた陰極16を備えている。

[0037]

以下の説明においては、陽極13から注入された正孔と電荷発生層15において発生した電子が発光ユニット14-1内で結合する際に生じた発光光と、同時に陰極16から注入された電子と電荷発生層15において発生した正孔が発光ユニット14-2内で結合する際に生じた発光とを、基板2と反対側の陰極16側から取り出す上面発光方式の表示素子の構成を説明する。

[0038]

先ず、表示素子11が設けられる基板12は、ガラスのような透明基板や、シリコン基板、さらにはフィルム状のフレキシブル基板等の中から適宜選択して用いられることとする。また、この表示素子11を用いて構成される表示装置の駆動方式がアクティブマトリックス方式である場合、基板12として、画素毎にTFTを設けてなるTFT基板が用いられる。この場合、この表示装置は、上面発光方式の表示素子11をTFTを用いて駆動する構造となる。

[0039]

そして、この基板 1 2 上に下部電極として設けられる陽極 1 3 は、効率良く正孔を注入するために電極材料の真空準位からの仕事関数が大きいもの、例えばクロム(C r)、金(A u)、酸化スズ(S n O 2)とアンチモン(S b)との合金、酸化亜鉛(Z n O)とアルミニウム(A 1)との合金、さらにはこれらの金属や合金の酸化物等を、単独または混在させた状態で用いることができる。

[0040]

表示素子11が上面発光方式の場合は、陽極13を高反射率材料で構成することで、干 渉効果及び高反射率効果で外部への光取り出し効率を改善することが可能であり、この様 な電極材料には、例えばA1、Ag等を主成分とする電極を用いることが好ましい。これ らの高反射率材料層上に、例えばITOのような仕事関数が大きい透明電極材料層を設け ることで電荷注入効率を高めることも可能である。

[0041]

尚、この表示素子11を用いて構成される表示装置の駆動方式がアクティブマトリック ス方式である場合、陽極13は、TFTが設けられている画素毎にパターニングされてい ることとする。そして、陽極13の上層には、ここでの図示を省略した絶縁膜が設けられ 、この絶縁膜の開口部から、各画素の陽極13表面を露出させていることとする。

$[0\ 0\ 4\ 2]$

また、発光ユニット14-1, 14-2は、陽極13側から順に、正孔注入層14a、正孔 輸送層14b、発光層14c及び電子輸送層14dを積層してなる。これらの各層は、例 えば真空蒸着法や、例えばスピンコート法などの他の方法によって形成された有機層から なる。各有機層を構成する材料に限定条件はなく、例えば正孔輸送層14bであるならば ベンジジン誘導体、スチリルアミン誘導体、トリフェニルメタン誘導体、ヒドラゾン誘 導体などの正孔輸送材料を用いることができる。

[0043]

もちろん、各層が他の要件を備えることは、これを妨げず、例えば発光層 1 4 c が電子 輸送層14dを兼ねた電子輸送性発光層であることも可能であり、発光層14cは、正孔 輸送性の発光層14cであっても良く、また、各層が積層構造になることも可能である。 例えば発光層14cが、さらに青色発光部と緑色発光部と赤色発光部から形成される白色 発光素子であっても良い。

[0044]

また、発光層14cは、ベリレン誘導体、クマリン誘導体、ピラン系色素、トリフェニ ルアミン誘導体等の有機物質を微量含む有機薄膜であっても良く、この場合には発光層 1 4 c を構成する材料に対して微量分子の共蒸着を行うことで形成される。

[0045]

また、以上の各有機層、例えば正孔注入層 1 4 a 、正孔輸送層 1 4 b は、それぞれが複 数層からなる積層構造であっても良い。

[0046]

さらに、以上の各発光ユニット14-1、14-2は、全く同一の構造でも良いが、他の構 造にすることも可能である。例えば、発光ユニット14-1を橙色発光素子用の有機層構造 、発光ユニット14-2を青緑色発光素子用の有機層構造として形成することにより、発光色 は白色となる。

[0047]

そして、これらの発光ユニット14-1と発光ユニット14-2との間に設けられた電荷発 生層15は、一般的には、特開2003-45676号公報及び特開2003-2728 60号公報に記載されている電荷発生層である V_2O_5 を用いて構成されている。そして、 本発明におけるこの電荷発生層15は、アルカリ金属酸化物およびアルカリ土類金属酸化 物の少なくとも一方を含んでいるか、またはアルカリ金属フッ化物およびアルカリ土類金 属フッ化物の少なくとも一方を含んでいることが特徴である。

$[0\ 0\ 4\ 8]$

特に電荷発生層 1 5 は、陽極 1 3 側の界面を構成する界面層 1 5 a と、この界面層 1 5 a上の真性電荷発生層15bとを備えた積層構造となっていることが好ましい。尚、この 界面層15aは、陽極13に対向配置された陰極として作用することになる。このため、 以下においては、この界面層15aを中間陰極層15aと記す。そして、この中間陰極層 15 aが、アルカリ金属酸化物およびアルカリ土類金属酸化物の少なくとも一方で構成さ れているか、またはアルカリ金属フッ化物およびアルカリ土類金属フッ化物の少なくとも 一方で構成されている。また、中間陰極層 1 5 a に接して設けられた真性電荷発生層 1 5 bが、上述した特開2003-45676号公報及び特開2003-272860号公報 に記載されている電荷発生層である V₂O₅を用いて構成されていることとする。

[0049]

ここで、この中間陰極層 1 5 a を構成するアルカリ金属酸化物およびアルカリ土類金属 酸化物としては、一般的な酸化物及び複合酸化物が用いられ、具体的にはメタ硼酸化物、 テトラ硼酸化物、ゲルマン酸化物、モリブデン酸化物、ニオブ酸化物、珪酸化物、タンタ ル酸化物、チタン酸化物、バナジン酸化物、タングステン酸化物、ジルコン酸化物、炭酸 化物、蓚酸化物、亜クロム酸化物、クロム酸化物、重クロム酸化物、フェライト、亜セレ ン酸化物、セレン酸化物、スズ酸化物、亜テルル酸化物、テルル酸化物、ビスマス酸化物 、テトラホウ酸化物、メタホウ酸化物の内から少なくとも1種類以上選ばれる。

[0050]

この中でも特に、中間陰極層15aは、Li2Si〇3からなることが好ましい。

$[0\ 0\ 5\ 1]$

一方、この中間陰極層15aにアルカリ金属フッ化物およびアルカリ土類金属フッ化物 の少なくとも一方を用いる場合には、この中間陰極層15aを、導電性材料層と、この導 電性材料層の陽極13側に配置されたアルカリ金属フッ化物およびアルカリ土類金属フッ 化物の少なくとも一方からなる層との積層構成とすることが好ましい。

[0052]

この場合、この中間陰極層15aを構成するアルカリ金属フッ化物およびアルカリ土類 金属フッ化物としては、具体的にはフッ化リチウム(LiF)、CsF、CaF2を例示 することができる。また中間陰極層15aの導電性材料層は、マグネシウム(Mg)、銀 (Ag)、およびアルミニウム (A1) の少なくとも1つを含むこととする。具体的には 、MgAgやAlからなる導電性材料層が例示される。

[0053]

そして、以上の中間陰極層15aと真性電荷発生層15bとは、必ずしも明確に分離さ れている構成に限定されることはなく、中間陰極層 15 a 内に真性電荷発生層 15 b を構 成する材料が含有されていたり、またこの逆であっても良い。

[0054]

尚、電荷発生層15は、中間陰極層15aと真性電荷発生層15bと共に、さらに真性 電荷発生層15bの陰極16側の界面に、中間陽極層(図示省略)を積層させた構成であ っても良い。この中間陽極層は、フタロシアニン骨格を有する有機材料を用いて構成され 、具体的には銅フタロシアニン(CuPc)からなる中間陽極層が例示される。

[0055]

次に、陰極16は、陽極13側から順に第1層16a、第2層16b、場合によっては 第3層16cを積層させた3層構造で構成されている。

[0056]

第1層16aは、仕事関数が小さく、かつ光透過性の良好な材料を用いて構成される。 このような材料として、例えばリチウム(Li)の酸化物であるLi2Oや、セシウム(Cs)の酸化物であるCs2O、さらにはこれらの酸化物の混合物を用いることができる 。また、第1層16aはこのような材料に限定されることはなく、例えば、カルシウム(Ca)、バリウム(Ba)等のアルカリ土類金属、リチウム(Li),セシウム(Cs) 等のアルカリ金属、さらにはインジウム(In)、マグネシウム(Mg)、銀(Ag)等 の仕事関数の小さい金属、さらにはこれらの金属のフッ化物、酸化物等を、単体でまたは これらの金属およびフッ化物、酸化物の混合物や合金として安定性を高めて使用しても良 1,70

[0057]

また、第2層16 bは、MgAg等のアルカリ土類金属で構成される電極或いはA1等 の電極で構成される。上面発光素子の様に半透過性電極で陰極16を構成する場合には、 薄膜のMgAg電極やCa電極を用いることで光を取り出すことが可能である。光透過性 を有しかつ導電性が良好な材料で構成することで、この表示素子11が、特に陽極13と 陰極16との間で発光光を共振させて取り出すキャビティ構造で構成される上面発光素子 の場合には、例えばMg-Agのような半透過性反射材料を用いて第2層16bを構成す る。これにより、この第2層16bの界面と、光反射性を有する陽極13の界面で発光を 反射させてキャビティ効果を得る。

[0058]

さらに第3層16cは、電極の劣化抑制のために透明なランタノイド系酸化物を設ける ことで、発光を取り出すこともできる封止電極として形成することも可能である。

[0059]

尚、以上の第1層16a、第2層16b、および第3層16cは、真空蒸着法、スパッ タリング法、さらにはプラズマCVD法などの手法によって形成される。また、この表示 素子を用いて構成される表示装置の駆動方式がアクティブマトリックス方式である場合、 陰極16は、ここでの図示を省略した陽極13の周縁を覆う絶縁膜および発光ユニット1 4-1~発光ユニット14-2の積層膜によって、陽極13に対して絶縁された状態で基板1 2上にベタ膜状で形成され、各画素に共通電極として用いても良い。

[0060]

また、ここに示した陰極16の電極構造は3層構造である。しかしながら、陰極16は 、陰極16を構成する各層の機能分離を行った際に必要な積層構造であれば、第2層16 bのみで構成したり、第1層16aと第2層16bとの間にさらにITOなどの透明電極 を形成したりすることも可能であり、作製されるデバイスの構造に最適な組み合わせ、積 層構造を取れば良いことは言うまでもない。

$[0\ 0\ 6\ 1]$

以上説明した構成の表示素子11においては、電荷発生層15が、その中間陰極層15 a を構成する材料としてアルカリ金属酸化物およびアルカリ土類金属酸化物の少なくとも 一方、またはアルカリ金属フッ化物およびアルカリ土類金属フッ化物の少なくとも一方を 含んでいることにより、電荷発生層15から陽極13側の発光ユニット14-1への電子の 注入効率が向上する。そして特に、電荷発生層 1 5 における中間陰極層 1 5 a を構成する アルカリ金属酸化物およびアルカリ土類金属酸化物、さらにはアルカリ金属フッ化物およ びアルカリ土類金属フッ化物と言った材料は、成膜段階から安定的な材料として供給され る。このため、これを用いた中間陰極層 1 5 a 、すなわち荷電発生層 1 5 の安定化が図ら れる。

[0062]

尚、特に、中間陰極層15aがアルカリ金属フッ化物およびアルカリ土類金属フッ化物 の少なくとも一方を用いて構成される場合には、この中間陰極層15aを、MgAgのよ うな導電性材料層と、この導電性材料層の陽極13側に配置されたアルカリ金属フッ化物 およびアルカリ土類金属フッ化物の少なくとも一方からなる層とで構成することにより、 陽極13側の発光ユニット14-1に対する電子の注入効率を高める効果を高めることがで きる。

[0063]

また、電荷発生層15の陰極16側の界面にフタロシアニン骨格を有する有機材料から なる中間陽極層(図示省略)を設けることにより、電荷発生層15の陰極16側に配置さ れた発光ユニット14-2への電荷発生層15からの正孔の注入効率を高めることができる

[0064]

以上の結果、本発明によれば、有機層からなる発光ユニット14-1, 14-2を積層させ たスタック型の表示素子11において、輝度の向上だけではなく、耐環境性の向上による 寿命特性の向上、すなわち長期信頼性の向上を図ることが可能になる。また、安定的な材 料を用いて、このような電荷の注入特性に優れた電荷発生層15が構成されるため、その 作製においても化学量論比を考慮した成膜などを行う必要はなく、このような長期信頼性 に優れたスタック型の表示素子11の作製を容易にすることが可能である。

[0065]

尚、本発明の表示素子は、TFT基板を用いたアクティブマトリックス方式の表示装置 に用いる表示素子に限定されることはなく、パッシブ方式の表示装置に用いる表示素子と しても適用可能であり、同様の効果(長期信頼性の向上)を得ることができる。

[0066]

また、以上の実施形態においては、基板12と反対側に設けた陰極16側から発光を取 り出す「上面発光型」の場合を説明した。しかし本発明は、基板12を透明材料で構成す ることで、発光を基板12側から取り出す「透過型」の表示素子にも適用される。この場 合、図1を用いて説明した積層構造において、透明材料からなる基板12上の陽極13を 、例えばITOのような仕事関数が大きい透明電極材料を用いて構成する。これにより、 基板12側および基板12と反対側の両方から発光光が取り出される。また、このような 構成において、陰極16を反射材料で構成することにより、基板12側からのみ発光光が 取り出される。この場合、陰極6の最上層にAuGeやAu、Pt等の封止電極を付けて も良い。

[0067]

さらに、図1を用いて説明した積層構造を、透明材料からなる基板12側から逆に積み 上げて陽極13を上部電極とした構成であっても、基板12側から発光光を取り出す「透 過型」の表示素子を構成することができる。この場合においても、上部電極となる陽極1 3を透明電極に変更することで、基板12側および基板12と反対側の両方から発光光が 取り出される。

【実施例】

[0068]

次に、本発明の具体的な実施例 $1\sim 1$ 3、およびこれらの実施例に対する比較例 $1\sim 6$ の表示素子の製造手順と、これらの評価結果を説明する。

[0069]

<実施例1~12>

各実施例1~12では、上述した実施の形態で図1を用いて説明した表示素子11の構 成において、電荷発生層15をそれぞれの材料及び積層構造として各表示素子11を作製 した。以下に先ず、実施例1~12の表示素子11の製造手順を説明する。

[0070]

30mm×30mmのガラス板からなる基板12上に、陽極13としてITO(膜厚約 120nm)を形成し、さらにSiO2蒸着により2mm×2mmの発光領域以外を絶縁 膜(図示省略)でマスクした有機電界発光素子用のセルを作製した。

[0071]

次に、第1層目の発光ユニット14-1を構成する正孔注入層14aとして、出光興産株 式会社製正孔注入材料 H I -4 0 6 を真空蒸着法により 1 5 n m (蒸着速度 0. 2 \sim 0. 4 n m/s e c) の膜厚で形成した。

[0072]

次いで、正孔輸送層14bとして、下記式(1)に示すα-NPD(α-naphtyl phenil diamine)を、真空蒸着法により15 nm (蒸着速度0.2~0.4 nm/sec)の膜 厚で形成した。

【化1】

$$\begin{array}{c} \alpha - \mathsf{NPD} \\ \\ \\ \end{array}$$

[0073]

さらに、発光層14cとして、下記式(2)に示すADNをホストにし、ドーパントと してBD-052x (出光興産株式会社:商品名)を用い、真空蒸着法によりこれらの材 料を32 nmの合計膜厚で膜厚比で5%になるように成膜した。

【化2】

[0074]

最後に、電子輸送層 1 4 d として、下記式 (3) に示す A l q 3 (8-hydroxy quinorine alminum) を、真空蒸着法により 1 8 n m の 膜厚で蒸着成膜した。

【化3】

[0075]

以上のようにして第 1 層目の発光ユニット 1 4 – 1 を形成した後、電荷発生層 1 5 を下記表 1 に示す材料をそれぞれの膜厚で蒸着した。

【表1】

			電荷発生層15			
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	由体画拉黎化國15h	雌厚(A)	陰極側界面層15c	膜厚(A)
	陽極側界面層15a	腹厚(A)	吴] 上电闸九工眉 100	200		1
· 四种田	Li2Si03	15	V205	120		
	LIAIO2	15	"	"	1	i
米配別~	1.2Mo.04	15	11	"	1	1
米害を らせれ	LITAO3	15	II	"	1	1
	1 i2Ti03	15	11	"	1	1
米配約の	1:27:03	15	11 .	"	1	1
来配例 6	00000	15	"	"	1	1
実施例 /	0022000		"	"	1	I
実施例 8	WiginzO4	2 4	"	"	l	i
実施例 9	Li20	13		:	GIO	20
車格倒 10	Li2Si03	15	"	*	5	
New Y						
ı		1 /50	"	"	1	i
実施例 11	LIF / IMBAB	20 1		"	l	1
実施例 12	LiF/MgAg	15/20				
			第一次 1 「・ 十			
上數極 1			ナノユーンド生			
上較個 2	1	1	1			1
1	1	1	V205	120		1
比較例 4	ΗÜ	4	"	"		
	LiF	15	"	"		

[0076]

ここで実施例1~10においては、電荷発生層15の中間陰極層15aとして、上記表 1に示す各材量を15Åの膜厚で成膜した。一方、実施例11,12においては、電荷発 生層15の中間陰極層15aとして、下層LiF膜と上層MgAg(組成比10:1)膜 との積層膜を、それぞれの膜厚で成膜した。

[0077]

次に、実施例1~12ともに、真性電荷発生層15bとして、V2O5を120Åの膜厚 で蒸着した。

[0078]

そして、実施例 10 のみにおいては、さらに中間陽極層として銅フタロシアニン(Cu Pc)を 20 Åの膜厚で蒸着した。

[0079]

以上の後、第2層目の発光ユニット14-2を、第1層目の発光ユニット14-1と同様に 形成した。

[0080]

次に、陰極16の第1層16 aとして、L i F を真空蒸着法により約0. 3 nm(蒸着速度 ~ 0 . 0 1 nm/s e c)の膜厚で形成し、次いで、第2層16 bとしてM g A g を真空蒸着法により1 0 nmの膜厚で形成し、最後に第3層16 c としてA l を30 0 nmの膜厚で形成した。

[0081]

<比較例1>

図1を用いて説明した表示素子の構成において、陽極13上に発光ユニット14-1を設け、この発光ユニット14-1上に直接陰極16を設けたモノユニットの表示素子を作製した。作製手順は、上述した実施例の作製手順において、陽極13、発光ユニット14-1、陰極16aのみを同様の手順で形成した。

[0082]

<比較例2>

図1を用いて説明した表示素子の構成において、陽極13上に発光ユニット14-1を設け、さらに電荷発生層15を介することなく発光ユニット14-2を直接積層し、この上部に陰極16を設けた表示素子を作製した。作製手順は、上述した実施例の作製手順において電荷発生層15の形成のみを省いた手順とした。

[0083]

<比較例3~5>

図1を用いて説明した表示素子の構成において、電荷発生層15の構成を上記表1に示す構成とした表示素子を作製した。作製手順は、上述した実施例の作製手順と同様とした。ただし、比較例3では、電荷発生層15の形成において、真性電荷発生層15bのみを V_2O_5 を120Åの膜厚で蒸着した。また比較例4,5では、電荷発生層15の形成において、中間陰極層15aとしてLiFをそれぞれの膜厚で形成し、次いで真性電荷発生層15bとして V_2O_5 を120Åの膜厚で蒸着した。

[0084]

<評価結果>

図 2 には、上述のようにして作製した実施例 1 および実施例 1 0、比較例 $1 \sim 5$ の表示素子の発光効率を示した。このグラフに示すように、比較例 1 のモノユニット型の発光素子の発光効率に対して、実施例 1 , 1 0 の表示素子では、その発光効率が 2 倍になった。また、実施例 9 , 1 1 , 1 2 は、実施例 1 とほぼ同等であり、さらに他の実施例 $2 \sim 8$ の表示装置においても、比較例 1 のモノニット型の発光素子の発光効率に対して、その発光効率が 2 倍になった。これにより、スタック型を形成している本発明における電荷発生層 1 5 の効果が確認できた。

[0085]

特に、電荷発生層 15 が、その陰極 16 側の界面に中間陽極層(CuPc)を有している実施例 10 では、他の実施例と比較してさらに発光効率の上昇が確認された。これにより、このような中間陽極層を設けたことにより、電荷発生層 15 の陰極 16 側に配置された発光ユニット 14-2への正孔の注入効率が向上することを確認できた。

[0086]

尚、比較例 2 の発光ユニットを直接積層した構成の表示素子に付いては、比較例 1 のモノユニット型よりも効率を得ることができず、電荷発生層 1 6 の必要性が示された。比較例 3 の V_2 O_5 単層の電荷発生層を用いた構成の表示素子では、電荷発生層から電子輸送層 1 4 d 及び正孔注入層 1 4 a に効果的にそれぞれ電子及び正孔が注入することができず、比較例 1 とほぼ同等の効率しか得ることができなかった。

[0087]

比較例 4 および比較例 5 に付いては、アルカリ金属フッ化物であるLiFを直接電荷発生層 1 5 の V_2 O_5 (真性電荷発生層 1 5 a b) に積層しても、良好な電子の注入を行うことができず、実施例 1 1 及び実施例 1 2 の様に導電性材料層(M g A g)を介することで電子の注入が効果的に行えることが示された。

[0088]

さらに比較例 5 の結果からは、駆動電圧を上げていくと、電荷発生層 1 5 における界面が破壊され、急に効率が上昇していると考えられ、この事からもアルカリ金属フッ化物である L i F を直接電荷発生層 1 5 0 V 2 O 5 (真性電荷発生層 1 5 a b) に積層した構成では効率的な電荷注入が行われていないことが示唆され、この間に導電性材料層(M g A g 等)を設けることによる効果が確認された。

[0089]

また、以上の実施例 $1\sim12$ においては、特に不安定な材料を用いることで化学量論比的に組成がシビアな膜形成を行うことなく、安定材料のみを用いて容易に各表示素子の作製を行うことが可能であった。

[0090]

<実施例13>

図1を用いて説明した表示素子の構成において、基板12と反対側から発光光を取り出す上面発光型の表示素子を作製した。ここでは、実施例1で説明した表示素子の作製手順において、陽極13としてCr(膜厚約100nm)を形成したことと、陰極16の第3層16cとしてIZO(インジウム亜鉛複合酸化物)を200m形成したこと以外は、実施例1と同様の手順で表示素子を作製した。

[0091]

<比較例6>

比較例1で作製したモノユニット型の表示素子の構成において、基板12と反対側から発光光を取り出す上面発光型の表示素子を作製した。ここでは、比較例1で説明した表示素子の作製手順において、陽極13としてAg合金(膜厚約100nm)を形成したことと、陰極16の第3層16cとしてIZO(インジウム亜鉛複合酸化物)を200m形成したこと以外は、比較例1と同様の手順で表示素子を作製した。

[0092]

<評価結果>

以上のようにして作製した実施例 1 3 と比較例 6 の表示素子について、初期輝度を 3 0 0 c d / m^2 として寿命測定を行った結果を図 3 に示した。この結果から、上面発光素子においても、比較例 6 のモノユニット型の表示素子に対して、実施例 1 3 で作製したスタック型の表示素子における半減寿命が大きく改善され、長期信頼性の向上に効果的であることが確認された。

[0093]

また、以上の実施例6においても、特に不安定な材料を用いることで化学量論比的に組成がシビアな膜形成を行うことなく、安定材料のみを用いて容易に表示素子の作製を行うことが可能であった。

【図面の簡単な説明】

[0094]

- 【図1】本発明の表示素子の一構成例を示す断面図である。
- 【図 2 】実施例 1 , 1 0 および比較例 $1 \sim 5$ における表示素子の発光効率を示すグラフである。
- 【図3】実施例13および比較例6における表示素子の相対輝度の経時変化を示すグラフである。
- 【図4】従来の表示素子の断面図である。
- 【図5】従来の表示素子の他の構成を示す断面図である。

【符号の説明】

[0095]

11…表示素子、13…陽極、14-1、14-2…発光ユニット、14c…発光層(有機 発光層)、15…電荷発生層、15a…中間陰極層、15b…真性電荷発生層、16…陰 極

【書類名】図面【図1】

【図3】

【図4】

【図5】

【要約】

【課題】有機層からなる発光ユニットを積層させたスタック型の表示素子において、安定 材料を用いることで耐環境性の向上を図ることができ、かつ電荷発生層から発光ユニット への電荷の注入効率の向上を図ることができ、作製の容易な表示素子を提供する。

【解決手段】陰極16と陽極13との間に、少なくとも有機発光層14cを含む発光ユニット14-1, 14-2が複数個積層され、各発光ユニット14-1, 14-2間に電荷発生層15が挟持された表示素子11において、電荷発生層15は、アルカリ金属酸化物およびアルカリ土類金属酸化物の少なくとも一方を含んだ中間陰極層15aを有している。

【選択図】図1

特願2004-040927

出願人履歴情報

識別番号

[000002185]

1. 変更年月日 [変更理由] 住 所

氏 名

1990年 8月30日

新規登録

東京都品川区北品川6丁目7番35号

ソニー株式会社