

DATASET: In Hospital Mortality Prediction

from Kaggle.com

Our motivation: We wanted to work with data that had meaning and could impact everyday life.

It is essential to understand what features can lead to hospital mortality and what other diseases could possibly hold more weight in predictions.

VARIABLES

What are the predictors? What are we predicting?

Age, Gender, BMI, Hypertensive, Atrialfibrillation, CHD with no MI, Diabetes, Deficiencyanemias, Depression, Hyperlipemia, Renal failure, COPD, Heart Rate, Systolic blood pressure, Diastolic blood pressure, Respiratory rate, Temperature, SP O2, Urine output, Hematocrit, RBC, MCH, MCHC, MCV, RDW, Leucocyte, Platelets, Neutrophils, Basophils, Lymphocyte, INR, NT-proBNP, Creatine kinase, Creatinine, Urea nitrogen, Glucose, Blood potassium, Blood sodium, Blood calcium, Chloride, Anion gap, Magnesium ion, PH, Bicarbonate, Lactic acid, PCO2, EF

DATA CLEANING & STANDARDIZING

- Check NULL Values
- Drop them
- Z-scale to make sure all variables are on the same scale

What are the most common health conditions that lead to in-hospital mortality?

```
print("Accuracy: ", accuracy_score(y_test, predictedVals))
print("F1 Score: ", f1_score(y_test, predictedVals))
print("Recall: ", recall_score(y_test, predictedVals))
print("Precision: ", precision score(y test, predictedVals))
Accuracy: 0.8953488372093024
F1 Score: 0.6086956521739131
Recall: 0.5
Precision: 0.7777777777778
# metrics
print("Accuracy: ", accuracy_score(y_train, myLogit.predict(X_train)))
print("F1 Score: ", f1_score(y_train, myLogit.predict(X_train)))
print("Recall: ", recall_score(y_train, myLogit.predict(X_train)))
print("Precision: ", precision_score(y train, myLogit.predict(X train)
Accuracy: 0.9239766081871345
F1 Score: 0.6904761904761905
Recall: 0.5686274509803921
Precision: 0.87878787878788
```


When considering features BMI, Glucose, and Urine Output, what clusters may emerge and how can we characterize those clusters?

When considering features BMI, Glucose, and Urine Output, what clusters may emerge and how can we characterize those clusters?

Are there any differences in the predictive performance of our model across different subgroups of patients, such as patients who are diagnosed with depression, or comorbidity status (renal failure, diabetes, hypertensive)?

Accuracy Scores:

Accuracy (Depression): 0.8255

Accuracy (Renal Failure): 0.8605

Accuracy (Diabetes): 0.8604

Accuracy (Hypertensive): 0.8372

Accuracy (All): 0.8139

Odds Coefficients:

Coe	ef	Names	Odds
0 -1.23298	33 depr	ression (0.291422
1 -0.74178	32 Renal f	ailure (0.476264
2 -0.00507	79 di	labetes	0.994934
3 -0.00483	30 hypert	censive (0.995182
4 -1.44475	56 int	ercept (0.235804

Are there any differences in the predictive performance of our model across different subgroups of patients, such as patients who are diagnosed with depression, or comorbidity status (renal failure, diabetes, hypertensive)?

Are there any differences in the predictive performance of our model across different subgroups of patients, such as patients who are diagnosed with depression, or comorbidity status (renal failure, diabetes, hypertensive)?

How does the mean absolute error differ between the train and test data when using Principle Component Analysis on all continuous variables, and retaining enough Principle Components to keep 90% of the variance, to predict hospital mortality with our model(s)?

Using 25 PCs for 90% variance

How does the mean absolute error differ between the train and test data when using Principle Component Analysis on all continuous variables, and retaining enough Principle Components to keep 90% of the variance, to predict hospital mortality with our model(s)?

Logistic Regression Results:

Accuracy for Original Train Set: 0.9239

Accuracy for Original Test Set: 0.8953

Accuracy for PCA Train Set: 0.8976

Accuracy for PCA Test Set: 0.8721

How does the mean absolute error differ between the train and test data when using Principle Component Analysis on all continuous variables, and retaining enough Principle Components to keep 90% of the variance, to predict hospital mortality with our model(s)?

Out of the 48 variables observed in the dataset (excluding ground and ID), how can we utilize the Regularization method LASSO to select which variables have the most impact in predicting hospital mortality?

	Coefficients	Predictors	
0	0.033263	age	
1	0.000000	gendera	
2	0.023522	BMI	
3	-0.000000	hypertensive	
4	-0.010378	atrialfibrillation	
5	0.027015	CHD with no MI	
6	-0.016475	diabetes	
7	-0.000000	deficiencyanemias	
8	-0.002012	depression	
9	0.000000	Hyperlipemia	
10	0.000000	Renal failure	
11	0.000000	COPD	
12	-0.000000	heart rate	
13	0.009652	Systolic blood pressure	
14	0.000000	Diastolic blood pressure	
15	0.009747	Respiratory rate	
16	-0.041035	temperature	
17	-0.000000	SP 02	
18	0.000000	Urine output	
19	-0.016460	hematocrit	
20	0.000000	RBC	
21	0.022599	MCH	
22	0.000355	MCHC	
23	0.005712	MCV	
24	-0.021458	RDW	
25	0.054432	Leucocyte	
26	0.011131	Platelets	
27	0.000000	Neutrophils	
		•	

neastophitts		_,
Basophils	0.000000	28
Lymphocyte	-0.053990	29
PT	0.000000	30
INR	0.064715	31
NT-proBNP	0.000000	32
Creatine kinase	-0.005930	33
Creatinine	4 -0.014864	34
Urea nitrogen	0.028233	35
glucose	0.034051	36
Blood potassium	7 0.006354	37
Blood sodium	0.000000	38
Blood calcium	0.000000	39
Chloride	-0.000000	40
Anion gap	0.000000	41
Magnesium ion	0.00000	42
PH	-0.033004	43
Bicarbonate	4 -0.000000	44
Lactic acid	0.000000	45
PCO2	-0.124233	46
EF	7 -0.000000	47

PENALTY: 0.01

TRAIN: 0.3396888666530895 TEST : 0.3918317430757958

Predictors that got shrunk to 0:

- gender
- Chloride
- hypertensive
- Anion gap
- Hyperlipemia
- Magnesium ion • Bicarbonate
- Renal failure
- COPD
- Lactic acid
- heart rate
- FF
- Diastolic blood pressure
- SP O2
- Urine output
- RBC
- Neutrophils
- Basophils
- PT
- NT-proBNP
- Blood sodium
- Blood calcium

How can healthcare providers and policymakers use the results of this study to improve healthcare outcomes and reduce costs?

A model that could predict hospital mortality could be greatly beneficial for multiple parties, including healthcare providers, policymakers, and patients. First and foremost, with the prediction model, healthcare providers could easily identify patients that are at higher risk. This could allow the providers to pay extra attention to these high-risk patients and provide interventions and treatment at an early stage. Additionally, the ability to identify patients could also help healthcare providers to reduce costs and allocate resources, such as doctor/nurse staffing, medicine, and hospital equipment more efficiently. On the other hand, for policymakers, with the mortality prediction, policymakers could also utilize the results to make decisions on the distribution of funds to hospitals and healthcare providers. Moreover, policymakers could also apply the prediction results to conduct research and push for the demand to develop medicine to certain subgroups facing various medical conditions or diseases.

For example, we could use the logistic regression model from our first response to monitor the patients. According to the coefficient graph from our first response, we can see that feature "PC O2" is one of the health conditions that increase the odds of mortality. With that said, healthcare providers could tag those patients with these health conditions as the model indicates that they are at higher risk. In addition, with the predicted data, hospitals could delegate staffing and provide interventions/treatment more efficiently.

Another example, healthcare providers or policymakers could use the clustering model from our second response to study and develop pharmaceuticals for particular subgroups within the patients. Based on the clustering graphs from our second response, we can characterize the patients and classify them into different groups. With the classification, providers and policymakers can dive into patient groups, research their conditions for further purposes, and distribute resources and funds.