MATH300 Homework 8 (Due Monday, 4/1)

- 1. (8 pts) For $i \in \mathbb{Z}^+$, let $A_i = (-i, i)$. Find the following (you do not need to prove your answers.)
 - (a) $\bigcup_{i=1}^{\infty} A_i$
 - (b) $\bigcap_{i=1}^{\infty} A_i$

- 2. (8 pts) For $i \in \mathbb{Z}^+$, let $A_i = \left[1 \frac{1}{i}, 3 \frac{1}{i}\right)$. Find the following (you do not need to prove your answers.)
 - (a) $\bigcup_{i \in \mathbb{Z}^+} A_i$
 - (b) $\bigcap_{i\in\mathbb{Z}^+} A_i$

3. (16 pts) Determine whether the following diagrams define functions from A to B. If not, give a reason. If yes, find its range.

4. (14 pts) Let $f:[-2,\infty)\to\mathbb{R}$ be defined by $f(x)=\sqrt[4]{x+2}$. Prove that $[0,\infty)\subseteq\mathrm{Ran}(f)$.

5. (18 pts) Let $f: \mathbb{R} - \{3\} \to \mathbb{R}$ be defined by $f(x) = \frac{x}{x-3}$. Prove that $\operatorname{Ran}(f) = \mathbb{R} - \{1\}$.

6. (18 pts) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = -x^2$. Prove that $Ran(f) = (-\infty, 0]$.

- 7. (18 pts) Let $A = \{a, b, c, d, e\}, B = \{w, x, y, z\}, \text{ and } C = \{0, 1, 3, 6, 10\}.$
 - (a) Using a graph (not diagram), define a function $f:A\to C$ whose range coincides with its codomain.

(b) Using a graph, define a function $g:B\to C$ so that w is mapped to 10 under g and z is a preimage of 0 under g.