Ноябрь 2022г.

ИТОГОВАЯ РАБОТА

курс «SQL и получение данных»

Белов Константин DAU-40

Содержание

1.	Используемый тип подключение, восстановление бэкапа базы данных.	3
2.	ER-диаграмма базы данных.	3
3.	Краткое описание базы данных - из каких таблиц и представлений состоит.	4
4.	Развернутый анализ базы данных.	5
	4.1 Описание таблиц, логики, связей и бизнес области. 4.2 Бизнес задачи, которые можно решить, используя базу данных.	5 10
5	Список SOL запросов с описанием погики их выполнения	10

1. Используемый тип подключение, восстановление бэкапа базы данных.

Локальный Клиент ...

В работе использовался локальный тип подключения:

Рис. 1 Восстановление базы из backup - файла **☆** ▼ □ | = ↔ 8 □ Базы данных X
Проекты Beautre vacts insens of sector and noncoa

N postgres netology_cloud - 51,250.106.132.19001

N postgres D, 14 - localhosts432

S postgreSQ, 14 - localhosts432

S my_home Настройки восстановле Настройки восстановления Настройки восстановления Настройки > s new_database
> postgres
> пом_датаразе
> пом_д Формат: Custom ∨ Уничтожить (DROP) объекты БД перед их восстановля Create database ☑ Пропустить указание на владельца > III postgreSQL14 test - localhost:5432 Ввод Файл резерва: D:\Нетология\SQL\avia.backup Доп. аргументы команды: Перезаписать пользовательские данные ("postgres") для объекта "". Внешняя программа вроде psql или pg_dump может требовать другой расстановки разрешений. Аутентификация Вернуть к стандартному Сохранить задачу Конфигурация локального клиента для 'postg... Локальный клиент: PostgreSQL Binaries Локальный Клиент ... Старт Отмена ОК Отмена 329 CREATE TABLE Project - General X 🌣 = + ↔ 🗖 🗍 33 ID serial NOT Рис. 2 Завершение восстановления базы 🥃 Базы данных 🗙 🤚 Проекты Введите часть имени объекта для поиска
> ♥ postgres_netology_cloud - 51.250.106.132.19001

• № postgreSQL 14 - localhost:5432 Восстановление. Лог выполнения роздувань данных

> З my_home

> S new_database

✓ S postgres pg_restore: creating FK CONSTRAINT "bookings.flights flights_arrival_airport_fkey" Восстановление в процессе pg_restore: creating FK CONSTRAINT "bookings.flights flights_departure_airport_fkey" > Схемы
> Событийные триггеры
> З Расширения
> Хранилище
> Системные объекты pg_restore: creating FK CONSTRAINT "bookings.seats seats_aircraft_code_fkey" pg_restore: creating FK CONSTRAINT "bookings.ticket_flights ticket_flights_flight_id_fkey" pg_restore: creating FK CONSTRAINT "bookings.ticket_flights ticket_flights_ticket_no_fkey" > 🌅 Роли pg_restore: creating FK CONSTRAINT "bookings.tickets tickets_book_ref_fkey" > E Системные объекты

рostgreSQL14_test - local pg_restore: creating MATERIALIZED VIEW DATA "bookings.routes" pg_restore: warning: errors ignored on restore: 35 Task 'PostgreSQL restore' finished at Mon Oct 17 13:36:16 MSK 2022 Сохранить задачу

2. ER-диаграмма базы данных.

Старт Отмена

3. Краткое описание базы данных - из каких таблиц и представлений состоит.

База данных состоит из следующих таблиц:

Aircrafts

Поля:

aircraft_code - Код самолета, IATA - первичный ключ

model – Модель самолета

range - Максимальная дальность полета, км

• Airports

Поля:

airport_code - Код аэропорта - первичный ключ

airport_name - Название аэропорта

city – Город, рядом с которым находится аэропорт

longitude – Координаты аэропорта: долгота

latitude – Координаты аэропорта: широта

timezone – Временная зона аэропорта

Boarding_passes

Поля:

ticket_no - Номер билета

flight_id - Идентификатор рейса

ticket no u flight id образуют составной первичный ключ данной таблицы

boarding_no - номер посадочного талона

seat_no - номер места

Bookings

Поля:

book_ref - Номер бронирования - первичный ключ

book_date - Дата бронирования

total_amount – Полная сумма бронирования

• Flights

Поля.

flight_id - Идентификатор рейса – первичный ключ

flight_no - Номер рейса

scheduled_departure – Время вылета по расписанию

scheduled_arrival – Время прилета по расписанию

departure_airport – Аэропорт отправления – внешний ключ к таблице Airports

arrival_airport – Аэропорт прибытия - внешний ключ к таблице Airports

status - Статус рейса

aircraft_code - Код самолета, IATA – внешний ключ к таблице Aircrafts

actual_departure - Фактическое время вылета

actual_arrival - Фактическое время прилёта

Seats

Поля:

aircraft_code - Код самолета, IATA – первичный ключ, одновременно является внешним ключем к таблице Aircrafts

seat no – Номер места

fare_conditions - Класс обслуживания

Ticket_flights

Поля:

ticket_no – Номер билета

flight_id - Идентификатор рейса

ticket_no и flight_id образуют составной первичный ключ данной таблицы. При этом они являются внешним ключом к таблице Boarding passes. Столбец ticket no является внешним ключом к таблице Tickets.

fare_conditions — Класс обслуживания amount — Стоимость перелета

Tickets

Поля:

ticket_no - Номер билета - первичный ключ

book_ref - Номер бронирования - внешний ключ к таблице Bookings

passenger_id – Идентификатор пассажира

passenger_name - Имя пассажира

contact data - Контактные данные пассажира

Так же в базе данных есть следующие представления:

• Flights_v – нематериализованное представление

Поля:

flight_id - Номер рейса

scheduled_departure - Время вылета по расписанию

scheduled_departure_local - Время вылета по расписанию, местное время в пункте отправления scheduled_arrival - Время прилёта по расписанию

scheduled_arrival_local - Время прилёта по расписанию, местное время в пункте прибытия scheduled_duration

- Планируемая продолжительность полета

departure_airport - Код аэропорта отправления

departure_airport_name - Название аэропорта отправления

departure_city - Город отправления

arrival_airport - Код аэропорта прибытия

arrival airport name - Название аэропорта прибытия

arrival_city - Город прибытия

status - Статус рейса

aircraft code - Код самолета, IATA

actual_departure - Фактическое время вылета

actual_departure_local - Фактическое время вылета, местное время в пункте отправления actual_arrival - Фактическое время прилёта

actual_arrival_local - Фактическое время прилёта, местное время в пункте прибытия actual_duration - Фактическая продолжительность полет

• *Routes* - материализованное представление

Поля:

flight_no - Номер рейса

departure_airport - Код аэропорта отправления

departure_airport_name - Название аэропорта отправления

departure_city - Город отправления

arrival_airport - Код аэропорта прибытия

arrival_airport_name - Название аэропорта прибытия

arrival_city - Город прибытия

aircraft_code - Код самолета, IATA

duration - Продолжительность полета

days_of_week - Дни недели, когда выполняются рейсы

4. Развернутый анализ базы данных.

4.1 Описание таблиц, логики, связей и бизнес области.

4.1.1 Таблица bookings.aircrafts

Каждая модель воздушного судна идентифицируется своим трехзначным кодом (aircraft_code). Указывается также название модели (model) и максимальная дальность полета в километрах (range).

Столбец	Тип данных	Модификаторы	Описание
aircraft_code	char(3)	NOT NULL	Код самолета, ІАТА
model	text	NOT NULL	Модель самолета
range	integer	NOT NULL	Максимальная дальность полета, км

Индексы:

Ограничения-проверки:

CHECK (range > 0)

Ссылки извне:

TABLE "flights" FOREIGN KEY (aircraft_code)
REFERENCES aircrafts(aircraft_code)
TABLE "seats" FOREIGN KEY (aircraft_code)
REFERENCES aircrafts(aircraft_code) ON DELETE CASCADE

4.1.2 Таблица bookings.airports

Аэропорт идентифицируется трехбуквенным кодом (airport_code) и имеет свое имя (airport_name). Для города не предусмотрено отдельной сущности, но название (city) указывается и может служить для того, чтобы определить аэропорты одного города. Также указывается широта (longitude), долгота (latitude) и часовой пояс (timezone).

Столбец	Тип данных	Модификаторы	Описание
airport_code	char(3)	NOT NULL	Код аэропорта
airport_name	text	NOT NULL	Название аэропорта
city	integer	NOT NULL	Город
longitude	float	NOT NULL	Координаты аэропорта: долгота
latitude	float	NOT NULL	Координаты аэропорта: широта
timezone	text	NOT NULL	Временная зона аэропорта

Индексы:

PRIMARY KEY, btree (airport code)

Ссылки извне:

TABLE "flights" FOREIGN KEY (arrival_airport)
REFERENCES airports(airport_code)
TABLE "flights" FOREIGN KEY (departure_airport)
REFERENCES airports(airport_code)

4.1.3 Таблица bookings.boarding passes

При регистрации на рейс, которая возможна за сутки до плановой даты отправления, пассажиру выдается посадочный талон. Он идентифицируется также, как и перелет — номером билета и номером рейса. Посадочным талонам присваиваются последовательные номера (boarding_no) в порядке регистрации пассажиров на рейс (этот номер будет уникальным только в пределах данного рейса). В посадочном талоне указывается номер места (seat_no).

Столбец	Тип данных	Модификаторы	Описание
ticket_no	char(13)	NOT NULL	Номер билета
flight_id	integer	NOT NULL	Идентификатор рейса
boarding_no	integer	NOT NULL	Номер посадочного талона
seat_no	varchar(4)	NOT NULL	Номер места

Индексы:

PRIMARY KEY, btree (ticket_no, flight_id)
UNIQUE CONSTRAINT, btree (flight_id, boarding_no)
UNIQUE CONSTRAINT, btree (flight_id, seat_no)

Ограничения внешнего ключа:

FOREIGN KEY (ticket_no, flight_id)
REFERENCES ticket_flights(ticket_no, flight_id)

4.1.4 Таблица bookings.bookings

Пассажир заранее (book_date, максимум за месяц до рейса) бронирует билет себе и, возможно, нескольким другим пассажирам. Бронирование идентифицируется номером (book_ref, шестизначная комбинация букв и цифр). Поле total_amount хранит общую стоимость включенных в бронирование перелетов всех пассажиров.

Столбец	Тип данных	Модификаторы	Описание
book_ref	char(6)	NOT NULL	Номер бронирования

book_date	timestamptz	NOT NULL	Дата бронирования
total_amount	numeric(10,2)	NOT NULL	Полная сумма бронирования

Индексы:

PRIMARY KEY, btree (book_ref)

Ссылки извне:

TABLE "tickets" FOREIGN KEY (book_ref) REFERENCES bookings(book_ref)

4.1.5 Таблица bookings.flights

Естественный ключ таблицы рейсов состоит из двух полей — номера рейса (flight_no) и даты отправления (scheduled_departure). Чтобы сделать внешние ключи на эту таблицу компактнее, в качестве первичного используется суррогатный ключ (flight_id).

Рейс всегда соединяет две точки — аэропорты вылета (departure_airport) и прибытия (arrival_airport). Такое понятие, как «рейс с пересадками» отсутствует: если из одного аэропорта до другого нет прямого рейса, в билет просто включаются несколько необходимых рейсов.

У каждого рейса есть запланированные дата и время вылета (scheduled_departure) и прибытия (scheduled arrival). Реальные время вылета (actual departure) и прибытия (actual arrival)

могут отличаться: обычно не сильно, но иногда и на несколько часов, если рейс задержан. Статус рейса (status) может принимать одно из следующих значений:

Schedulea

Рейс доступен для бронирования. Это происходит за месяц до плановой даты вылета; до этого запись о рейсе не существует в базе данных.

• On Time

Рейс доступен для регистрации (за сутки до плановой даты вылета) и не задержан.

• Delayed

Рейс доступен для регистрации (за сутки до плановой даты вылета), но задержан.

• Departed

Самолет уже вылетел и находится в воздухе.

Arrived

Самолет прибыл в пункт назначения.

• Cancelled

Рейс отменен.

Столбец	Тип данных	Модификаторы	Описание
flight_id	serial	NOT NULL	Идентификатор рейса
flight_no	char(6)	NOT NULL	Номер рейса
scheduled_departure	timestamptz	NOT NULL	Время вылета по расписанию
scheduled_arrival	timestamptz	NOT NULL	Время прилёта по расписанию
departure_airport	char(3)	NOT NULL	Аэропорт отправления
arrival_airport	char(3)	NOT NULL	Аэропорт прибытия
status	varchar(20)	NOT NULL	Статус рейса
aircraft_code	char(3)	NOT NULL	Код самолета, ІАТА
actual_departure	timestamptz		Фактическое время вылета
actual_arrival	timestamptz		Фактическое время прилёта

Индексы:

PRIMARY KEY, btree (flight_id)

UNIQUE CONSTRAINT, btree (flight_no, scheduled_departure)

Ограничения-проверки:

CHECK (scheduled_arrival > scheduled_departure)

CHECK ((actual_arrival IS NULL)

OR ((actual_departure IS NOT NULL AND actual_arrival IS NOT NULL)

AND (actual_arrival > actual_departure)))

CHECK (status IN ('On Time', 'Delayed', 'Departed', 'Arrived', 'Scheduled', 'Cancelled'))

Ограничения внешнего ключа:

FOREIGN KEY (aircraft_code)

REFERENCES aircrafts(aircraft_code)

FOREIGN KEY (arrival_airport) REFERENCES airports(airport_code) FOREIGN KEY (departure_airport) REFERENCES airports(airport_code)

Ссылки извне:

TABLE "ticket_flights" FOREIGN KEY (flight_id) REFERENCES flights(flight_id)

4.1.6 Таблица bookings.seats

Места определяют схему салона каждой модели. Каждое место определяется своим номером(seat_no) и имеет закрепленный за ним класс обслуживания (fare_conditions) — Economy, Comfort или Business.

Столбец	Тип данных	Модификаторы	Описание
aircraft_code	char(3)	NOT NULL	Код самолета, ІАТА
seat_no	varchar(4)	NOT NULL	Номер места
fare_conditions	varchar(10)	NOT NULL	Класс обслуживания

Индексы:

PRIMARY KEY, btree (aircraft_code, seat_no)

Ограничения-проверки:

CHECK (fare_conditions IN ('Economy', 'Comfort', 'Business'))

Ограничения внешнего ключа:

FOREIGN KEY (aircraft_code)

REFERENCES aircrafts(aircraft_code) ON DELETE CASCADE

4.1.7 Таблица bookings.ticket_flights

Перелет соединяет билет с рейсом и идентифицируется их номерами. Для каждого перелета указываются его стоимость (amount) и класс обслуживания (fare_conditions).

Столбец	Тип данных	Модификаторы	Описание
ticket_no	char(13)	NOT NULL	Номер билета
flight_id	integer	NOT NULL	Идентификатор рейса
fare_conditions	varchar(10)	NOT NULL	Класс обслуживания
amount	numeric(10,2)	NOT NULL	Стоимость перелета

Индексы:

PRIMARY KEY, btree (ticket_no, flight_id)

Ограничения-проверки:

CHECK (amount ≥ 0)

CHECK (fare_conditions IN ('Economy', 'Comfort', 'Business'))

Ограничения внешнего ключа:

FOREIGN KEY (flight_id) REFERENCES flights(flight_id) FOREIGN KEY (ticket_no) REFERENCES tickets(ticket_no)

Ссылки извне:

TABLE "boarding_passes" FOREIGN KEY (ticket_no, flight_id) REFERENCES ticket_flights(ticket_no, flight_id)

4.1.8 Таблица bookings.tickets

Билет имеет уникальный номер (ticket_no), состоящий из 13 цифр.

Билет содержит идентификатор пассажира (passenger_id) — номер документа, удостоверяющего личность, — его фамилию и имя (passenger_name) и контактную информацию (contact_date).

Ни идентификатор пассажира, ни имя не являются постоянными (можно поменять паспорт, можно сменить фамилию), поэтому однозначно найти все билеты одного и того же пассажира невозможно.

Столбец	Тип данных	Модификаторы	Описание
ticket_no	char(13)	NOT NULL	Номер билета
book ref	char(6)	NOT NULL	Номер бронирования

passenger_id	varchar(20)	NOT NULL	Идентификатор пассажира
passenger_name	text	NOT NULL	Имя пассажира
contact_data	jsonb		Контактные данные пассажира

Индексы:

PRIMARY KEY, btree (ticket_no)

Ограничения внешнего ключа:

FOREIGN KEY (book_ref) REFERENCES bookings(book_ref)

Ссылки извне:

TABLE "ticket_flights" FOREIGN KEY (ticket_no) REFERENCES tickets(ticket_no)

4.1.9 Представление "bookings.flights_v"

Над таблицей flights создано представление flights_v, содержащее дополнительную информацию:

- расшифровку данных об аэропорте вылета (departure_airport, departure_airport_name, departure_city)
- расшифровку данных об аэропорте прибытия (arrival_airport, arrival_airport_name, arrival_city)
- местное время вылета (scheduled_departure_local, actual_departure_local)
- местное время прибытия (scheduled_arrival_local, actual_arrival_local)
- *продолжительность полета* (scheduled_duration, actual_duration).

Столбец	Тип данных	Описание
flight_id	integer	Идентификатор рейса
flight_no	char(6)	Номер рейса
scheduled_departure	timestamptz	Время вылета по расписанию
scheduled_departure_local	timestamp	Время вылета по расписанию, местное время в пункте
		отправления
scheduled_arrival	timestamptz	Время прилёта по расписанию
scheduled_arrival_local	timestamp	Время прилёта по расписанию, местное время в пункте
		прибытия
scheduled_duration	interval	Планируемая продолжительность полета
departure_airport	char(3)	Код аэропорта отправления
departure_airport_name	text	Название аэропорта отправления
departure_city	text	Город отправления
arrival_airport	char(3)	Код аэропорта прибытия
arrival_airport_name	text	Название аэропорта прибытия
arrival_city	text	Город прибытия
status	varchar(20)	Статус рейса
aircraft_code	char(3)	Код самолета, ІАТА
actual_departure	timestamptz	Фактическое время вылета
actual_departure_local	timestamp	Фактическое время вылета, местное время в пункте
		отправления
actual_arrival	timestamptz	Фактическое время прилёта, местное время в пункте
		прибытия
actual_duration	interval	Фактическая продолжительность полета

4.1.10. Материализованное представление bookings.routes

Таблица рейсов содержит избыточность: из нее можно было бы выделить информацию о маршруте (номер рейса, аэропорты отправления и назначения), которая не зависит от конкретных дат рейсов.

Именно такая информация и составляет материализованное представление routes.

Столбец	Тип данных	Описание
flight_no	char(6)	Номер рейса
departure_airport	char(3)	Код аэропорта отправления
departure_airport_name	text	Название аэропорта отправления
departure_city	text	Город отправления
arrival_airport	char(3)	Код аэропорта прибытия
arrival_airport_name	text	Название аэропорта прибытия
arrival_city	text	Город прибытия
aircraft_code	char(3)	Код самолета, ІАТА
duration	interval	Продолжительность полета
days_of_week	integer	Дни недели, когда выполняются рейсы

4.2. Бизнес задачи, которые можно решить, используя базу данных.

- 4.2.1 Проведя анализ заполняемости рейсов по каждому из направлений можно решить следующие задачи:
 - Рейсы, с маленькой заполняемостью можно совершать реже, дабы увеличить заполняемость, либо вовсе сделать чартерными.
 - При малой заполняемости рейса можно изменить тип самолета с большей загрузкой на тип самолета с меньшей загрузкой, тем самым повысить рентабельность рейса.
 - Анализ заполняемости рейсов в зависимости от сезона так же позволит более эффективно управлять парком самолетов перебрасывать свободные борта на популярные направления, а также планировать график прохождения капитального технического обслуживания бортов, не выводя их из эксплуатации в высокий сезон.
 - Для руководства аэропорта: анализ сезонности перелетов так же позволит получить информацию о загруженности аэропортов, а значит, позволит лучше спланировать график проведения ремонта, технического обслуживания и модернизации наземного оборудования, поддерживающего функциональность аэропорта.
 - Корректировать стоимость билетов в зависимости от популярности маршрута и % заполняемости рейса.
- 4.2.2. Данные о количестве отмененных броней могут служить материалом для дополнительного исследования о причинах отмены брони, и как следствие, об эффективности службы бронирования.
- 4.2.3. На основании данных о задержках рейсов можно провести анализ эффективности работы как сотрудников авиакомпании, так и наземных служб, и инфраструктуры аэропорта. Возможно, причина задержек связана с недостаточным количеством взлетных полос, и для нормального функционирования аэропорта необходима его модернизация.
- 4.2.4. По каждой паре городов, между которыми нет прямых рейсов можно узнать информацию о количестве пассажиров, которые в данный момент совершают перелет из одного города в другой с пересадками. Если количество таких пассажиров велико имеет смысл организовать прямой рейс между двумя городами.
- 4.2.5. Данные о пассажирах, воспользовавшихся услугами авиакомпании позволяют реализовать следующие мероприятия:
 - Отследить сезонные перемещения пассажира и на основании этих данных организовать отправку сообщений о доступности рейсов в зависимости от сезона. Это возможно реализовать, даже при условии непостоянности идентификатора пассажира. Идентифицировать его можно по контактным данным (при смене фамилии контактный телефон и электронная почта может не измениться)
 - Разработать программу лояльности, предоставляя скидки и преференции постоянным клиентам.
 - Как следствие реализации предыдущего пункта: в случае, если места эконом-класса на рейс выкуплены, а места в бизнес-классе свободны, можно предложить пассажиру эконом-класса, который является постоянным клиентом, пересесть в бизнес-класс бесплатно, либо за символическую плату. Освободившееся место в эконом-классе мы можем продать другому пассажи, повысив тем самым заполняемость рейса.

5. Список SQL запросов с описанием логики их выполнения.

Данный список представлен в отдельном sql-файле, отправленным вместе с данной Итоговой работой.