Data Cleaning with Minimal Information Disclosure

Dhruv Gairola

Supervisor : Dr. Fei Chiang

June 22, 2015

Overview

- Background
- 2 Problems
- 3 Contributions
- 4 Example
- 5 Experiments

Background

 Most raw datasets contain errors (e.g., misspellings, missing values, etc). Estimated loss of around 600 billion to U.S businesses.

Table: Addresses

	Name	Postal Code
t_1	John Perry	P4M 4K4
t_2	John Perry	P4M 4K4
t ₃	John Perry	L4M 5P3

 $Name \rightarrow Postal Code$

Background

 Most raw datasets contain errors (e.g., misspellings, missing values, etc). Estimated loss of around 600 billion to U.S businesses.

Table: Addresses

	Name	Postal Code
t_1	John Perry	P4M 4K4
t_2	John Perry	P4M 4K4
t ₃	John Perry	L4M 5P3

 $Name \rightarrow Postal Code$

Data cleaning systems

Table: Target data

	Name	Postal Code
t_1	John Perry	P4M 4K4
t_2	John Perry	P4M 4K4
t ₃	John Perry	L4M 5P3

Table: Clean master data

	Name	Postal Code
m_1	John Kerry	Z4M 5P3
m_2	Susie Kerry	Z4M 5P3
m ₃	Susie Kerry	Z4M 5P3
m_4	Susie Kerry	Z4M 5P3
m_5	Alice Robertson	B2R 6K6
m_6	Alice Robertson	B2R 6K6

• Existing research does not take privacy considerations into account.

- Existing research does not take privacy considerations into account.
- Cannot assume that master data is public.

- Existing research does not take privacy considerations into account.
- Cannot assume that master data is public.
- Different records have different privacy requirements.

- Existing research does not take privacy considerations into account.
- Cannot assume that master data is public.
- Different records have different privacy requirements.
- Want to minimize the amount of information disclosed from the master data.

- Existing research does not take privacy considerations into account.
- Cannot assume that master data is public.
- Different records have different privacy requirements.
- Want to minimize the amount of information disclosed from the master data.
- Want the target data to maximally clean its values using information from master data.

• Data cleaning framework: (i) master data discloses a minimal amount of info. and (ii) target data uses this to maximally clean its values.

- Data cleaning framework: (i) master data discloses a minimal amount of info. and (ii) target data uses this to maximally clean its values.
- Propose two measures: (i) information disclosure and (ii) data cleaning utility.

- Data cleaning framework: (i) master data discloses a minimal amount of info. and (ii) target data uses this to maximally clean its values.
- Propose two measures: (i) information disclosure and (ii) data cleaning utility.
- Oefine a multi-objective problem based on above two measures. Four optimization functions to model problem.

- Data cleaning framework: (i) master data discloses a minimal amount of info. and (ii) target data uses this to maximally clean its values.
- Propose two measures: (i) information disclosure and (ii) data cleaning utility.
- Oefine a multi-objective problem based on above two measures. Four optimization functions to model problem.
- Perform experiments on datasets containing up to 3 million records.

Note: Our algorithms work on embedded(obfuscated) records, not actual records. This protects the privacy of individual records.

Step 1: Embedding

Table: Target data

	Name	Postal Code
t ₁	John Perry	P4M 4K4
t ₂	John Perry	P4M 4K4
t ₃	John Perry	L4M 5P3

	Name	Postal Code
t ₁	[0.51, 0.57, 0.46, 0.46]	[0.48, 0.55, 0.48, 0.48]
t ₂	[0.51, 0.57, 0.46, 0.46]	[0.48, 0.55, 0.48, 0.48]
t ₃	[0.51, 0.57, 0.46, 0.46]	[0.5, 0.5, 0.5, 0.5]

Table: Master data

	Name	Postal Code
m_1	John Kerry	Z4M 5P3
m ₂	Susie Kerry	Z4M 5P3
m ₃	Susie Kerry	Z4M 5P3
m ₄	Susie Kerry	Z4M 5P3
m ₅	Alice Robertson	B2R 6K6
m ₆	Alice Robertson	B2R 6K6

	Name	Postal Code
m ₁	[0.47, 0.59, 0.47, 0.47]	[0.48, 0.55, 0.48, 0.48]
m ₂	[0.49, 0.54, 0.49, 0.49]	[0.48, 0.55, 0.48, 0.48]
m ₃	[0.49, 0.54, 0.49, 0.49]	[0.48, 0.55, 0.48, 0.48]
m ₄	[0.49, 0.54, 0.49, 0.49]	[0.48, 0.55, 0.48, 0.48]
m ₅	[0.57, 0.46, 0.5, 0.46]	[0.5, 0.5, 0.5, 0.5]
m ₆	[0.57, 0.46, 0.5, 0.46]	[0.5, 0.5, 0.5, 0.5]

Step 2: Record matching

Table: Embedded target data

	Name	Postal Code
t ₁	[0.51, 0.57, 0.46, 0.46]	[0.48, 0.55, 0.48, 0.48]
t ₂	[0.51, 0.57, 0.46, 0.46]	[0.48, 0.55, 0.48, 0.48]
t ₃	[0.51, 0.57, 0.46, 0.46]	[0.5, 0.5, 0.5, 0.5]

Table: Embedded reference data

	Name	Postal Code
m_1	[0.47, 0.59, 0.47, 0.47]	[0.48, 0.55, 0.48, 0.48]
m ₂	[0.49, 0.54, 0.49, 0.49]	[0.48, 0.55, 0.48, 0.48]
m ₃	[0.49, 0.54, 0.49, 0.49]	[0.48, 0.55, 0.48, 0.48]
m ₄	[0.49, 0.54, 0.49, 0.49]	[0.48, 0.55, 0.48, 0.48]
m ₅	[0.57, 0.46, 0.5, 0.46]	[0.5, 0.5, 0.5, 0.5]
m ₆	[0.57, 0.46, 0.5, 0.46]	[0.5, 0.5, 0.5, 0.5]

- t_3 matches m_1 . Multiple matches allowed.
- Used normalized euclidean distance for matching.

• How much info is disclosed if m_1 is revealed? Does it benefit the target data?

- How much info is disclosed if m_1 is revealed? Does it benefit the target data?
- Decompose each match to *units*. e.g., $(t_3, m_1, Name)$ and $(t_3, m_1, Postal Code)$. Easy to visualize, easy to design algorithms.

- How much info is disclosed if m_1 is revealed? Does it benefit the target data?
- Decompose each match to *units*. e.g., $(t_3, m_1, Name)$ and $(t_3, m_1, Postal Code)$. Easy to visualize, easy to design algorithms.
- $\mathcal{U} = \{ (t_3, m_1, Name), (t_3, m_1, Postal Code) \}.$

• Optimization problem : find $C_{opt} \in \mathcal{P}(\mathcal{U})$ where C_{opt} minimizes information disclosure and maximizes data cleaning utility.

Step 3: Optimization, measuring information disclosure

Table: I₁

Α	В	C
1		3
1	2	4

Table: *I*₂

Α	В	С
	2	3
1	2	4

$$\mathsf{A}\to\mathsf{B}$$

• Grey cell in I_1 contains less info. than grey cell in I_2 .

Step 3: Optimization, measuring information disclosure

Table: I₃

Α	В	С
1		3
1	2	4

Table: I₄

Α	В	С
1		3
1	2	4
1	2	5

$$A \rightarrow B$$

- Grey cell in I_3 contains same amount info. as grey cell in I_4 .
- We don't want this. Hence, we introduce frequency information into the privacy measure.

Step 3: Optimization, measuring information disclosure

Table: Clean master data

	Name	Postal Code
m_1	John Kerry	Z4M 5P3
m_2	Susie Kerry	Z4M 5P3
<i>m</i> ₃	Susie Kerry	Z4M 5P3
<i>m</i> ₄	Susie Kerry	Z4M 5P3
m_5	Alice Robertson	B2R 6K6
m_6	Alice Robertson	B2R 6K6

Table: Info content table

	Name	Postal Code
m_1	0.82	0.99
m_2	0.82	0.46
<i>m</i> ₃	0.82	0.46
<i>m</i> ₄	0.82	0.46
m ₅	0.67	0.67
<i>m</i> ₆	0.67	0.67

 $\mathsf{Name} \to \mathsf{Postal} \; \mathsf{Code}$

Step 3: Optimization, data cleaning utility

- Use information dependency ind to measure data cleaning utility.
- For $C \in \mathcal{P}(\mathcal{U})$, apply C to target table, and then measure ind.
- $ind(C) = H(X \cup Y) H(X)$ for an FD $F : X \rightarrow Y$.

Step 3: Optimization, example

- $\mathcal{U} = \{ (t_3, m_1, Name), (t_3, m_1, Postal Code) \}.$
- One example of $C \in \mathcal{P}(\mathcal{U})$ is $C = \{(t_3, m_1, Name)\}.$
- Info disclosure, pvt(C) = 0.82.

Table: Info content table

	Name	Postal Code
m_1	0.82	0.99
m_2	0.82	0.46
<i>m</i> ₃	0.82	0.46
m_4	0.82	0.46
m_5	0.67	0.67
<i>m</i> ₆	0.67	0.67

Step 3: Optimization, example

• Data cleaning utility, ind(C) = 0 where $C = \{(t_3, m_1, Name)\}.$

	Name	Postal Code
t_1	[0.51, 0.57, 0.46, 0.46]	[0.48, 0.55, 0.48, 0.48]
t_2	[0.51, 0.57, 0.46, 0.46]	[0.48, 0.55, 0.48, 0.48]
t ₃	[0.51, 0.57, 0.46, 0.46] [0.47, 0.59, 0.47, 0.47]	[0.5, 0.5, 0.5, 0.5]

ind(C) = 0, that is the same as

	Name	Postal Code
t_1	John Perry	P4M 4K4
t ₂	John Perry	P4M 4K4
t ₃	John Perry John Kerry	L4M 5P3

$$ind(C) = 0$$

- We showed how *pvt* and *ind* can be calculated for some $C \in \mathcal{P}(\mathcal{U})$.
- How to find best candidate $C_{opt} \in \mathcal{P}(\mathcal{U})$ s.t. pvt is minimized and ind is minimized?

Step 3: Optimization

• Given an objective function e.g., fn(C) = 0.5 * pvt(C) + 0.5 * ind(C).

- Given an objective function e.g., fn(C) = 0.5 * pvt(C) + 0.5 * ind(C).
 - **1** Pick random solution *C*. Mark it as current solution.

- Given an objective function e.g., fn(C) = 0.5 * pvt(C) + 0.5 * ind(C).
 - 1 Pick random solution C. Mark it as current solution.
 - 2 Loop *k* times:

- Given an objective function e.g., fn(C) = 0.5 * pvt(C) + 0.5 * ind(C).
 - 1 Pick random solution C. Mark it as current solution.
 - 2 Loop *k* times:
 - **3** Get a random neighbor of current solution. Denoted C_n .

- Given an objective function e.g., fn(C) = 0.5 * pvt(C) + 0.5 * ind(C).
 - 1 Pick random solution C. Mark it as current solution.
 - 2 Loop *k* times:
 - **3** Get a random neighbor of current solution. Denoted C_n .
 - 4 If C_n better than C, mark C_n as current soln.

- Given an objective function e.g., fn(C) = 0.5 * pvt(C) + 0.5 * ind(C).
 - **1** Pick random solution *C*. Mark it as current solution.
 - 2 Loop *k* times:
 - **3** Get a random neighbor of current solution. Denoted C_n .
 - 4 If C_n better than C, mark C_n as current soln.
 - **5** Else, mark C_n as current soln with some probability P.

- Given an objective function e.g., fn(C) = 0.5 * pvt(C) + 0.5 * ind(C).
 - 1 Pick random solution C. Mark it as current solution.
 - 2 Loop *k* times:
 - **3** Get a random neighbor of current solution. Denoted C_n .
 - 4 If C_n better than C, mark C_n as current soln.
 - **5** Else, mark C_n as current soln with some probability P.
 - End Loop

• Example:

- Example:
 - **1** $C = \{ (t_3, m_1, Name), (t_3, m_1, Postal Code) \}$

- Example:
 - **1** $C = \{ (t_3, m_1, Name), (t_3, m_1, Postal Code) \}$
 - 2 Loop 100 times:

- Example:
 - **1** $C = \{ (t_3, m_1, Name), (t_3, m_1, Postal Code) \}$
 - 2 Loop 100 times:
 - **3** C_n . e.g., $C_n = \{(t_3, m_1, Name)\}$

- Example:
 - **1** $C = \{ (t_3, m_1, Name), (t_3, m_1, Postal Code) \}$
 - 2 Loop 100 times:
 - **3** C_n . e.g., $C_n = \{(t_3, m_1, Name)\}$
 - 4 if $fn(C_n) < fn(C)$, current soln is C_n

- Example:
 - **1** $C = \{ (t_3, m_1, Name), (t_3, m_1, Postal Code) \}$
 - 2 Loop 100 times:
 - **3** C_n . e.g., $C_n = \{(t_3, m_1, Name)\}$
 - 4 if $fn(C_n) < fn(C)$, current soln is C_n

- Example:
 - **1** $C = \{ (t_3, m_1, Name), (t_3, m_1, Postal Code) \}$
 - 2 Loop 100 times:
 - **3** C_n . e.g., $C_n = \{(t_3, m_1, Name)\}$
 - \bullet if $fn(C_n) < fn(C)$, current soln is C_n
 - **5** else, current soln is C_n with some probability P
 - End Loop

Flow diagram

Flow diagram

Step 4: Revealing data repairs

• We have solved the multi-objective problem to get optimal solution C_{opt} . e.g., $\{(t_3, m_1, Name)\}$

Step 4: Revealing data repairs

- We have solved the multi-objective problem to get optimal solution C_{opt} . e.g., $\{(t_3, m_1, Name)\}$
- Third-party does not know any values inside the solution.

Step 4: Revealing data repairs

- We have solved the multi-objective problem to get optimal solution C_{opt} . e.g., $\{(t_3, m_1, Name)\}$
- Third-party does not know any values inside the solution.
- Asks master data to directly reveal the data values to the target data. e.g., reveal $m_1[Name]$, which is "John Kerry" to target data for $t_3[Name]$.

Experiments

- IMDB: 14 attributes; 1.2 million records.
- Books: 12 attributes; 3 million records.
- Java 1.7; 4 virtual CPUs (2.1 GHz each); 32 GB of memory

Experiments

- Accuracy : measure quality of data repairs.
- Performance : running time.
- Comparative.

Experiments : Accuracy

• Inverse correlation between utility and privacy.

Experiments : Performance

• Slowest function takes 2 hrs on average for 0.5-3 million tuples (with 8% error rate).

30 / 35

Experiments : Performance

• Slowest function takes 30 mins on average for 2-14% error rate (with 0.5 million tuples).

Experiments : Comparative

• Data cleaning framework: (i) master data discloses a minimal amount of info. and (ii) target data uses this to maximally clean its values.

- Data cleaning framework: (i) master data discloses a minimal amount of info. and (ii) target data uses this to maximally clean its values.
- Propose two measures: (i) information disclosure and (ii) data cleaning utility.

- Data cleaning framework: (i) master data discloses a minimal amount of info. and (ii) target data uses this to maximally clean its values.
- Propose two measures: (i) information disclosure and (ii) data cleaning utility.
- Opening a multi-objective problem based on above two measures. Four optimization functions to model problem (not described in this presentation).

- Data cleaning framework: (i) master data discloses a minimal amount of info. and (ii) target data uses this to maximally clean its values.
- Propose two measures: (i) information disclosure and (ii) data cleaning utility.
- Opening a multi-objective problem based on above two measures. Four optimization functions to model problem (not described in this presentation).
- Perform experiments on datasets containing up to 3 million records.

Future work

• Try other models for information disclosure.

Future work

- Try other models for information disclosure.
- Explore other constraints e.g., matching dependencies for the record matching step.

Thank you

Simulated annealing

• If the simulated annealing algorithm is iterated enough, it will find the global optimum with probability approaching 1 (Geman and Geman, 1984).

Simulated annealing

- If the simulated annealing algorithm is iterated enough, it will find the global optimum with probability approaching 1 (Geman and Geman, 1984).
- We are minimizing information disclosure and maximizing data cleaning utility.

Simulated annealing

- If the simulated annealing algorithm is iterated enough, it will find the global optimum with probability approaching 1 (Geman and Geman, 1984).
- We are minimizing information disclosure and maximizing data cleaning utility.
- We have 4 optimization functions to model our problem statement.

Optimization functions

Weighted method.

$$\min_{C} \quad \alpha * pvt(C) + \beta * ind(C, T') + \gamma * changes(C)$$

Constrained method.

Optimization functions

Dynamic method.

Hierarchical method.

$$\begin{array}{cccc} \min\limits_{C} & \mathit{pvt}(C) \\ & \min\limits_{R} & \mathit{ind}(C,T') \\ & \mathrm{s.t.} & \mathit{pvt}(C) & \leq & \varepsilon_k \\ & \min\limits_{C} & \mathit{changes}(C) \\ & \mathrm{s.t.} & \mathit{pvt}(C) & \leq & \varepsilon_k \\ & \mathit{ind}(C,T') & \leq & \varepsilon_l \end{array}$$

Embedding distortion

- (Bourgain) For every n-point metric space there exists an embedding into Euclidean space with distortion O(log n). [Advances in Metric Embedding Theory, Abraham, 2006]
- Experimentally, for a 20-dimensional metric space, we observed 88% precision.

Information disclosure

$$P(a) = \begin{cases} 0 & \textit{M}_{c \leftarrow a} \nvDash F_i \\ \frac{1}{|b|} & \textit{otherwise} \end{cases}$$

$$b = \{a | \textit{M}_{c \leftarrow a} \vDash F_i \}$$

$$inf(c) = H(\mathcal{E}(M, c)) = \sum_{a \in adom(A) \cup v} P(a) \log \frac{1}{P(a)}$$

Information disclosure : our measure

$$P'(a) = freq(a) * P(a)$$

 $einf(c) = \sum_{a \in adom(A) \cup v} P'(a) \log \frac{1}{P'(a)}$