Recurrent neural networks

Lecture 12

Changho Suh

January 25, 2024

Outline

Will study LSTM in detail.

1. Discuss a brief history and key aspects of LSTM.

2. Discuss the key idea of LSTM.

3. Study how it works.

LSTM cell (1997)

Inventors:

Sepp Hochreiter Jürgen Schmidhuber

Performs much better by simply replacing a basic cell.

Offers faster training and detects dependencies in data.

Idea of LSTM cell

Split a state into two:

- 1. Short-term state \mathbf{h}_t
- 2. Long-term state \mathbf{c}_t

Design a cell so that the network can learn:

- What to throw away (forget);
- 2. What to remember (input);
- 3. What to read (output).

Mathematical expression

$$\begin{aligned} &\mathbf{f}_{t} = \sigma \left(\mathbf{W}_{xf} \mathbf{x}_{t} + \mathbf{W}_{hf} \mathbf{h}_{t-1} + \mathbf{b}_{f} \right) \\ &\mathbf{g}_{t} = \tanh \left(\mathbf{W}_{xg} \mathbf{x}_{t} + \mathbf{W}_{hg} \mathbf{h}_{t-1} + \mathbf{b}_{g} \right) \\ &\mathbf{i}_{t} = \sigma \left(\mathbf{W}_{xi} \mathbf{x}_{t} + \mathbf{W}_{hi} \mathbf{h}_{t-1} + \mathbf{b}_{i} \right) \\ &\mathbf{c}_{t} = \mathbf{f}_{t} \otimes \mathbf{c}_{t-1} + \mathbf{i}_{t} \otimes \mathbf{g}_{t} \\ &\mathbf{o}_{t} = \sigma \left(\mathbf{W}_{xo} \mathbf{x}_{t} + \mathbf{W}_{ho} \mathbf{h}_{t-1} + \mathbf{b}_{o} \right) \\ &\mathbf{y}_{t} = \mathbf{h}_{t} = \mathbf{o}_{t} \otimes \tanh(\mathbf{c}_{t}) \end{aligned}$$

A simplified version of LSTM

A simplified version was developed in 2014:

Gated Recurrent Unit (GRU)

Both states are merged into one.

Yet it performs just as well.

Kyunghyun Cho

Applications

Turns out: LSTM and/or its variants work well in many applications:

Machine translation

Text generation

Grammar correction

Any natural language processing (NLP) applications

So far ...

Studied several models:

Least squares

Logistic regression

DNN

CNN

RNN

Questions

1. What if still unsatisfactory performances?

A better approach for the small data regime?

2. What about interpretability of DNNs?

Day 5 lectures

Will explore a technique that may enable a better performance for the small data regime, as well as offer model interpretability:

Random forests (RFs)

The most powerful ML algorithm in industry

Outline of Day 5 lectures

Will study:

1. Decision trees (DTs):

Fundamental components of RFs

2. Ensemble learning:

A generic technique that includes RFs as a special case.

3. RFs in depth