笔记前言:

本笔记的内容是去掉步骤的概述后,视频的所有内容。 本猴觉得,自己的步骤概述写的太啰嗦,大家自己做笔记时, 应该每个人都有自己的最舒服最简练的写法,所以没给大家写。 再是本猴觉得,不给大家写这个概述的话,大家会记忆的更深, 掌握的更好!

所以老铁!一定要过呀!不要辜负本猴的心意! ~~~

【祝逢考必过,心想事成~~~~】

【一定能过!!!!!】

ZINOC MAZINOC MAZINOC

画信号流图

例. 如图是某系统的结构图, 试画出系统的信号流图

梅逊法求传递函数

例1. 如图是某系统的结构图, 求传递函数 $\frac{C(s)}{R(s)}$

求 $\frac{C(s)}{R(s)}$: $\frac{C(s)}{R(s)} = \frac{\text{每} \land p \cdot (1-b) \text{结果} \land n}{1-L_n + a}$ 求 $\frac{C(s)}{N(s)}$: 将上述步骤里所有的R(s)改成N(s)即可

例1(改).如图是某系统的结构图,求传递函数 $\frac{C(s)}{N(s)}$

求闭环传递函数 $\frac{C(s)}{R(s)}$ 和开环传递函数 G(s)H(s)

例1. 已知单位反馈系统的开环传递函数 $G(s) = \frac{K}{Ks^2+s+s^3} (K \neq 0)$,求闭环传递函数 $\frac{C(s)}{R(s)}$ 和开环传递函数 G(s)H(s)

$$\frac{G(s)}{R(s)} = \frac{G(s)}{1 + G(s)} = \frac{K}{Ks^2 + s + s^3 + K}$$
$$G(s)H(s) = G(s) = \frac{K}{Ks^2 + s + s^3}$$

已知单位反馈系统的开环传递函数 G(s): $\frac{C(s)}{R(s)} = \frac{G(s)}{1+G(s)},$

$$G(s)H(s) = G(s)$$

例2. 已知单位反馈系统的开环传递函数 $G(s) = \frac{1}{s(s+0.56)}$,求闭环传递函数 $\frac{C(s)}{R(s)}$ 和开环传递函数 G(s)H(s)

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1+G(s)} = \frac{1}{s^2+0.56s+1}$$
$$G(s)H(s) = G(s) = \frac{1}{s(s+0.56)}$$

例3. 已知单位反馈系统的开环传递函数 $G(s) = \frac{K_1}{s(s+10)(0.2s+1)}$,求闭环传递函数 $\frac{C(s)}{R(s)}$ 和开环传递函数 G(s)H(s)

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1+G(s)} = \frac{K_1}{s(s+10)(0.2s+1)+K_1}$$
$$G(s)H(s) = G(s) = \frac{K_1}{s(s+10)(0.2s+1)}$$

和开环传递函数 G(s)H(s)

原则四

原则二

$$R(s) \longrightarrow \bigcirc \qquad \qquad \frac{\frac{5}{6}}{6}$$

$$Q(s) \longrightarrow \bigcirc \qquad \qquad \frac{\frac{2}{s^2}}{\frac{2}{s^2}}$$

$$\frac{C(s)}{R(s)} = \frac{A}{1 \mp A \cdot B} = \frac{5s^2}{6s^2 + 10}$$

$$G(s)H(s) = A \cdot B = \frac{5}{3s^2}$$

已知结构图:

$$\frac{C(s)}{R(s)} = \frac{A}{1 \mp A \cdot B}; G(s)H(s) = A \cdot B$$
原则一: \rightarrow 可变成 \rightarrow 原则二: \rightarrow a \rightarrow b 可变成 \rightarrow a \rightarrow b 可变成 \rightarrow a \rightarrow b \rightarrow 可变成 \rightarrow a \rightarrow 1 \rightarrow 4 \rightarrow 0 \rightarrow 0

例5. 如图是某系统的结构图,求闭环传递函数 $\frac{C(s)}{R(s)}$ 和开环传

例6. 如图是某系统的结构图,求闭环传递函数 $\frac{C(s)}{R(s)}$ 和开环传

$$G(s)H(s) = A \cdot B = \frac{1}{s+1}$$

二阶系统欠阻尼动态分析

	`^` _='/\(\)
名称	结果
衰减系数σ	ξω _n
阻尼振荡频 率 ω _d	$\omega_n\sqrt{1-\xi^2}$
阻尼角β	$\frac{\pi}{180^{\circ}}$ arccos ξ
上升时间 t _r	$\frac{\pi - \beta}{\omega_d}$
峰值时间tp	$\frac{\pi}{\omega_d}$
调节时间+	$\Delta = 0.05$ 时, $\frac{3.5}{\sigma}$
调节时间 t _s	$\Delta=0.02$ 时, $\frac{4.4}{\sigma}$
超调量 $\sigma_p\%$	$e^{-\frac{\pi\xi}{\sqrt{1-\xi^2}}} \times 100\%$

输入信号为单位阶跃信号时:

名称	结果
稳态值	$\lim_{s\to 0} \frac{C(s)}{R(s)}$
峰值	(σ _p % + 1) · 稳态值
概略曲线	a、
,0	与 t 轴交点为 t_s f、给峰值、稳态值、 t_s 填上具体值

例1. 某单位反馈系统的开环传递函数 $G(s) = \frac{1}{s(s+0.56)}$,

求衰减系数 σ 、阻尼振荡频率 ω_d 、阻尼角 β 、上升时间 t_r 、

峰值时间 t_p 、 $\Delta=0.05$ 时的调节时间 t_s 、超调量 σ_p %,

输入信号为单位阶跃信号时的稳态值、峰值、概略响应曲线。

- ① $\frac{C(s)}{R(s)} = \frac{1}{s^2 + 0.56s + 1} \left[\hat{\pi} \hat{\pi} \hat{\pi} \hat{\pi} \hat{\pi} \right]$
- ② 化简 $\frac{C(s)}{R(s)}$, 得到a、b,求出 ω_n 、 ξ

$$a = 0.56$$
, $b = 1$

$$\omega_n = \sqrt{b} = 1$$

$$\xi = \frac{a}{2\sqrt{b}} = 0.28$$

- ③ $\sigma = 0.28$
- $\omega_{\rm d} = 0.96 \, {\rm rad/s}$
- $\beta = 1.29 \text{ rad}$
- $t_p = 3.27 \text{ s}$ $t_s = 12.5 \text{ s}$
- $\sigma_p\% = 40\%$

稳态值:
$$\lim_{s\to 0} \frac{C(s)}{R(s)} = \lim_{s\to 0} \frac{1}{s^2 + 0.56s + 1} = 1$$

峰值: $(\sigma_p\% + 1)$ ·稳态值 = 1.4

 $t_r = 1.93 \text{ s}$

劳斯判据

例1. 已知系统的特征方程为 2 - 3s + s³ = 0, 试用 劳斯判据判断系统稳定性并判断正实部根的个数

特征式子 = $2 - 3s + s^3$

s^3	100	-3	
s^2	0	2	
s ¹	\$ ^{\tau}		
s ⁰	2		

s^3	A: 1	C: -3	
s ²	Β: ε	D: 2	
s ¹	$\frac{BC-AD}{B} =$	$\frac{\varepsilon \cdot (-3) - 1 \cdot 2}{\varepsilon} = \frac{-3\varepsilon - 2}{\varepsilon}$	
s ⁰	2	-	

s^3	A: 1	-3 C: 0
s^2	Β: ε	2 D: 0
s ¹	$\frac{-3\mathcal{E}-2}{\mathcal{E}}$	$\frac{BC-AD}{B} = \frac{\varepsilon \cdot 0 - 1 \cdot 0}{\varepsilon} = 0$
s^0	2	

s^3	1 正3
s^2	ε 正 2 2
s ¹	$\frac{-3\epsilon-2}{\epsilon}$ 负 第一次切换 \rangle 共切换2次
s ⁰	2 正 }第二次切换

系统不稳定,且系统正实部根的个数=2

例2. 已知单位反馈系统的开环传递函数G(s)= K/(Ks²+s+s³ (K≠0) 试用劳斯判据判断系统稳定性并判断正实部根的个数

$$\frac{C(s)}{R(s)} = \frac{K}{Ks^2 + s + s^3 + K}$$

特征式子 = $Ks^2 + s + s^3 + K$

s^3	A: 1	C: 1
s^2	B: K	D: K
s ¹		
s^0	K	

s^3	A: 1	C: 1	
s^2	B: K	D: K	
s ¹	$\frac{BC-AD}{B} =$	$= \frac{K \cdot 1 - 1 \cdot K}{K} = 0$	
s ⁰	K		~

S	\mathbf{S}^3	A: 1	1 C: 0
S	₅ 2	B: K	K D: 0
S	\mathbf{s}^{1}	0	$\frac{BC-AD}{B} = \frac{K \cdot 0 - 1 \cdot 0}{K} = 0$
S	30	K	

,	s ^{最高} s ^{最高-1}	s ^{最高} 的系数 s ^{最高-1} 的系数	s ^{最高-2} 的系数 s ^{最高-3} 的系数	s ⁰ 的系数(即常数	项)
	s^0	常数项			X

填行公式:

s ^{a+2}	A			С	
s ^{a+1}	В	7/		D	
s ^a			BC-AD B		

	s^3	1	1	1 100	
Q.	s^2	К		ζ , , , , , , , , , , , , , , , , , , ,	
V	s^1	上面的数×[上面 头s的指数+2-2		数×[上面行表 旨数+2-2×2]	
	s^0	К	1 > 1		

335	. 778	. 33
s^3	1 正	1
s^2	K 负 {	K
s ¹	2K 负 \	$c \mid 0$
s^0	K 负	

当 K>0 时,

系统稳定,且系统正实部根的个数=0

当 K<0 时,

系统不稳定,且系统正实部根的个数=1

静态误差系数法求稳态误差

例1. 某单位反馈系统的开环传递函数 $G(s) = \frac{K_1}{s(s+10)(0.2s+1)}$ 设输入信号是单位斜坡输入信号,若系统稳定,用静态误差系数法求输入信号作用下的稳态误差 $e_{ss}(\infty)$

①
$$G(s)H(s) = \frac{K_1}{s(s+10)(0.2s+1)}$$
 ② 第一章第3课学过 ③
$$= \frac{K_1 \cdot s^0}{0.2s^3 + 3s^2 + 10s}$$

②
$$k_p = \infty$$

$$k_v = \frac{K_1}{10}$$

$$k_a = 0$$

例2. 如图是某系统的结构图,设输入信号 r(t) = 2 + 3t,若 系统稳定,用静态误差系数法求输入信号作用下的稳态

①
$$G(s)H(s) = \frac{20}{(0.2s+1)(0.1s+1)}$$
 ② 第一章第3课学过 ②
$$= \frac{20 \cdot s^0}{0.02s^2 + 0.3s^1 + 1 \cdot s^0}$$

②
$$k_p = 20$$

$$k_v = 0$$

$$k_a = 0$$

③
$$e_{ss}(\infty) = \frac{2}{1+k_p} + \frac{3}{k_v}$$
 【求极限时, $\frac{非零数}{0} = \infty$ 】
$$= \infty$$
 【数 + ∞ = ∞ 】

【K=分子里s的最小指数所在项前的系数】 分母里s的最小指数所在项前的系数】

分母里s的最小指数	k _p	k _v	ka
0	К	0	0
1	8	K	0
2	∞	8	К
3	∞	∞	8

若输入信号是汉字,则
$$e_{ss}(\infty)= \begin{cases} 输入单位阶跃, \frac{1}{1+k_p} \\ 输入单位斜坡, \frac{1}{k_v} \\ 输入单位加速度, \frac{1}{k_a} \end{cases}$$

终值定理法求稳态误差

例1. 某单位反馈系统的开环传递函数 $G(s) = \frac{K_1}{s(s+10)(0.2s+1)}$,设输入信号是单位斜坡输入信号,若系统稳定,用终值定理法求输入信号作用下的稳态误差 $e_{ss}(\infty)$

R(s) $s(s+10)(0.2s+1)+K_1$ -----

②
$$H(s) = 1$$

③
$$R(s) = \frac{1}{s^2}$$

$$\begin{split} \textcircled{4} \ e_{ss}(\infty) &= \limsup_{s \to 0} \cdot \left[1 - \frac{C(s)}{R(s)} \, H(s) \, \right] \cdot R(s) \\ &= \lim_{s \to 0} \cdot \left[1 - \frac{K_1}{s(s+10)(0.2s+1) + K_1} \times 1 \right] \cdot \frac{1}{s^2} \\ &= \lim_{s \to 0} \cdot \frac{s(s+10)(0.2s+1)}{s(s+10)(0.2s+1) + K_1} \cdot \frac{1}{s^2} \\ &= \lim_{s \to 0} \frac{(s+10)(0.2s+1)}{s(s+10)(0.2s+1) + K_1} \left[\underbrace{ \underbrace{ \underbrace{ (0+10) \times (0.2 \times 0 + 1)}_{0 \times (0+10) \times (0.2 \times 0 + 1) + K_1}}_{0 \times (0+10) \times (0.2 \times 0 + 1) + K_1} \right] = \frac{10}{K_1} \end{split}$$

若输入信号是汉字,则
$$R(s) = \begin{cases} 输入单位阶跃, \frac{1}{s} \\ 输入单位斜坡, \frac{1}{s^2} \\ 输入单位加速度, \frac{1}{s^3} \end{cases}$$

若输入信号是 R(s),则 R(s)保持不变

稳态误差
$$e_{ss}(\infty) = \lim_{s \to 0} \cdot \left[1 - \frac{C(s)}{R(s)} H(s)\right] \cdot R(s)$$

例2. 如图是某系统的结构图,设输入信号 r(t) = 2 + 3t,若系统稳定,用终值定理法求输入信号作用下的稳态误差 $e_{ss}(\infty)$

①
$$\frac{C(s)}{R(s)} = \frac{20(0.1s+1)}{(0.2s+1)(0.1s+1)+20}$$
 第一章第3课学过

$$20 \cdot \frac{1}{0.2s+1} = \frac{20}{0.2s+1}$$

$$C(s)$$

$$H(s) = \frac{1}{0.1s+1}$$

③
$$R(s) = \frac{2}{s} + \frac{3}{s^2}$$

求开环零点与开环极点

例1. 某系统的开环传递函数为 $G(s)H(s) = \frac{K^*(s+2)}{s^2+2s+4}$, 试求出该

系统的开环零点和开环极点,并将开环零点和开环极点

画到坐标系上

- ① $G(s)H(s) = \frac{K^*(s+2)}{s^2+2s+4}$

分母: $s^2 + 2s + 4 = 0$

$$\Rightarrow \begin{cases} s_1 = \frac{-2 + \sqrt{2^2 - 4 \times 4}}{2} \\ s_2 = \frac{-2 - \sqrt{2^2 - 4 \times 4}}{2} \end{cases} \Rightarrow \begin{cases} s_1 = \frac{-2 + \sqrt{-12}}{2} \\ s_2 = \frac{-2 - \sqrt{-12}}{2} \end{cases} \Rightarrow \begin{cases} s_1 = \frac{-2 + \sqrt{12} \, \mathrm{j}}{2} \\ s_2 = \frac{-2 - \sqrt{12} \, \mathrm{j}}{2} \end{cases} \Rightarrow \begin{cases} s_1 = -1 + \sqrt{3} \, \mathrm{j} \\ s_2 = -1 - \sqrt{3} \, \mathrm{j} \end{cases} \end{cases} \begin{cases} s_1 = -1 + \sqrt{3} \, \mathrm{j} \\ s_2 = -1 - \sqrt{3} \, \mathrm{j} \end{cases}$$
$$\Rightarrow p_1 = s_1 = -1 + \sqrt{3} \, \mathrm{j}, \quad p_2 = s_2 = -1 - \sqrt{3} \, \mathrm{j} \end{cases}$$

$$s^{2} + bs + c = 0 \text{ in } \text{ in } \beta \begin{cases} s_{1} = \frac{-b + \sqrt{b^{2} - 4c}}{2} \\ s_{2} = \frac{-b - \sqrt{b^{2} - 4c}}{2} \end{cases}$$

- -2 -1 0 $\times -\sqrt{3}$
- 例2. 某系统的开环传递函数为 $G(s)H(s) = \frac{K^*(s+1)}{s^2(s+4)(s+6)}$, 试求

出该系统的开环零点和开环极点,并将开环零点和开环

极点画到坐标系上

- ① $G(s)H(s) = \frac{K^*(s+1)}{s^2(s+4)(s+6)}$
- 分母: $s^2(s+4)(s+6)=0$

$$\Rightarrow s \cdot s \cdot (s+4)(s+6) = 0 \Rightarrow \begin{cases} s_1 = 0 \\ s_2 = 0 \\ s_3 = -4 \\ s_4 = -6 \end{cases}$$

$$\Rightarrow \begin{cases} p_1 = s_1 = 0 = 0 + 0 \cdot j \\ p_2 = s_2 = 0 \\ p_3 = s_3 = -4 = -4 + 0 \cdot j \\ p_4 = s_4 = -6 = -6 + 0 \cdot j \end{cases}$$

-4 p₃

求开环零点与开环极点

例3. 某系统的开环传递函数为 $G(s)H(s) = \frac{K^*(s+2)^3}{(s+1)^3}$,试求出该系统的开环零点和开环极点,并将开环零点和开环极点画到坐标系上

①
$$G(s)H(s) = \frac{K^*(s+2)^3}{(s+1)^3}$$

② :
$$K^*(s+2)^3=0 \Longrightarrow (s+2)^3=0 \Longrightarrow (s+2)\cdot (s+2)\cdot (s+2)=0$$

$$\Rightarrow \begin{cases} s_1 = -2 \\ s_2 = -2 \\ s_3 = -2 \end{cases} \Rightarrow \begin{cases} z_1 = s_1 = -2 = -2 + 0 \cdot j \\ z_2 = s_2 = -2 = -2 + 0 \cdot j \\ z_3 = s_3 = -2 = -2 + 0 \cdot j \end{cases}$$

分母:
$$(s+1)^3 = 0$$

$$\Rightarrow (s+1) \cdot (s+1) \cdot (s+1) = 0 \Rightarrow \begin{cases} s_1 = -1 \\ s_2 = -1 \\ s_3 = -1 \end{cases} \Rightarrow \begin{cases} p_1 = s_1 = -1 = -1 + 0 \cdot j \\ p_2 = s_2 = -1 = -1 + 0 \cdot j \\ p_3 = s_3 = -1 = -1 + 0 \cdot j \end{cases}$$

180°根轨迹法-求分离点坐标

例1. 某系统的开环传递函数为 $G(s)H(s) = \frac{K^*(s+1)}{s^2(s+4)(s+6)}$, 求根轨迹分离点坐标

$$z_1=-1$$

$$p_1=0\ ,\ p_2=0\ ,\ p_3=-4\ ,\ p_4=-6\$$
 [第三章第1课学过]

不存在分离点

例2. 某系统的开环传递函数为 $G(s)H(s) = \frac{K^*(s+2)}{s^2+2s+4}$, 求根轨迹

分离点坐标

$$z_1 = -2$$
、 $p_1 = -1 + \sqrt{3}$ j、 $p_2 = -1 - \sqrt{3}$ j [第三章第1课学过]

$$\frac{1}{d-p_1} + \frac{1}{d-p_2} = \frac{1}{d-z_1}$$

$$\Rightarrow \frac{1}{d-(-1+\sqrt{3}j)} + \frac{1}{d-(-1-\sqrt{3}j)} = \frac{1}{d-(-2)}$$

$$\Rightarrow \frac{1}{(d+1)-\sqrt{3}j} + \frac{1}{(d+1)+\sqrt{3}j} = \frac{1}{d+2}$$

$$\Rightarrow \frac{(d+1)-\sqrt{3}j}{[(d+1)-\sqrt{3}j]\cdot[(d+1)-\sqrt{3}j]} = \frac{1}{d+2}$$

$$\Rightarrow \frac{2d+2}{(d+1)^2 - (\sqrt{3}j)^2} = \frac{1}{d+2}$$

$$\Rightarrow$$
 (2d + 2)(d + 2) = (d + 1)² - $(\sqrt{3} j)^2$

$$\Rightarrow$$
 2d² + 4d + 2d + 4 = d²+2d +1-(-3)

$$\Rightarrow$$
 d²+4d = 0

$$\Rightarrow$$
 d(d + 4) = 0

$$\Rightarrow$$
 d = 0 \neq d = -4

根轨迹分离点坐标是 (-4,0)

若 p 和 z 都求出: 列
$$\frac{1}{d-p_1} + \frac{1}{d-p_2} + \dots = \frac{1}{d-z_1} + \frac{1}{d-z_2} + \dots$$
, 求 d

若只求出 p: 列
$$\frac{1}{d-p_1} + \frac{1}{d-p_2} + \dots = 0$$
, 求 d

证明点是否在根轨迹上

例1. 某单位反馈系统的开环传递函数为 $G(s)H(s) = \frac{K^*(s+2)}{s^2+2s+4}$,试证明点 $s=-3+\sqrt{3}$ j 是否在根轨迹上

- - $\alpha_{_{\sharp 0}} = \alpha = 120^{\circ}$
- (4) $\beta = 180^{\circ} \times 1 = 180^{\circ}$
 - $\beta = 120^{\circ} \times 1 = 120^{\circ}$
 - $\beta_{\text{FD}} = 180^{\circ} + 120^{\circ} = 300^{\circ}$
- 奇数
- ⑤ $\alpha_{\text{FD}} \beta_{\text{FD}} = 120^{\circ} 300^{\circ} = -180^{\circ} = -1 \times 180^{\circ}$

要证明的点在根轨迹上

180°根轨迹法-画起始角

例1. 某系统的开环传递函数为 $G(s)H(s) = \frac{K^*(s+2)}{s^2+2s+4}$, 画起始角

- $4) \beta_{\text{FI}} = \beta = 90^{\circ}$

⑤
$$\theta_{\text{起点}} = \frac{180^{\circ} + \alpha_{\pi} - \beta_{\pi}}{\text{起点处p} \, \text{的个数}} = 150^{\circ}$$

180°根轨迹法-画终止角

例1. 某系统的开环传递函数为 $G(s)H(s) = \frac{K^*(s+2)^3}{(s+1)^3}$,

画终止角

1

2

4

$$\beta=\,180^{\circ}\,\times 3=540^{\circ}$$

$$\beta_{\text{FD}} = \beta = 540^{\circ}$$

(5

$$\theta_{\text{ex}} = \frac{-180^{\circ} + \beta_{\text{A}} - \alpha_{\text{A}}}{\text{exclusion}} = \frac{-180^{\circ} + 540^{\circ} - 0}{3} = 120^{\circ}$$

6

180°根轨迹法-画根轨迹图

例1. 某系统的开环传递函数为 $G(s)H(s) = \frac{K^*(s+1)}{s^2(s+4)(s+6)}$, 画系统的概略根轨迹图

$$z_1 = -1$$
 $p_1 = 0$
 $p_2 = 0$
 $p_3 = -4$
 $p_4 = -6$

$$\phi_a = rac{$$
找到的奇数×180°}{|p的个数 - z的个数|} = $rac{1 \times 180^\circ}{|4-1|} = 60^\circ$

$$G(j\omega)H(j\omega) = \frac{K^*(j\omega+1)}{(j\omega)^2(j\omega+4)(j\omega+6)}$$

$$(j\omega)^2(j\omega + 4)(j\omega + 6) + K^*(j\omega + 1) = 0$$

$$\Rightarrow \omega^{4} - 10\omega^{3}j - 24\omega^{2} + K^{*}j\omega + K^{*} = 0$$

$$\Rightarrow (\omega^{4} - 24\omega^{2} + K^{*}) + (K^{*}\omega - 10\omega^{3})j = 0 \Rightarrow \begin{cases} a = 0 \\ b = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \omega^{4} - 24\omega^{2} + K^{*} = 0 \\ K^{*}\omega - 10\omega^{3} = 0 \end{cases} \Rightarrow \begin{cases} (\omega^{2})^{2} - 24\omega^{2} + K^{*} = 0 \\ \omega(K^{*} - 10\omega^{2}) = 0 \end{cases} \Rightarrow \begin{cases} (\omega^{2})^{2} - 24\omega^{2} + K^{*} = 0 \\ \omega(K^{*} - 10\omega^{2}) = 0 \end{cases} \Rightarrow \begin{cases} \omega = \sqrt{14} \\ K^{*} = 140 \end{cases} \Rightarrow \begin{cases} \omega = \sqrt{14} \\ K^{*} = 140 \end{cases} \Rightarrow \begin{cases} \omega = \sqrt{14} \\ K^{*} = 140 \end{cases} \Rightarrow \begin{cases} (K^{*} - 10\omega^{2}) = 0 \text{ pr } \omega^{2} = \frac{K^{*}}{2} \end{cases} \begin{bmatrix} (K^{*} - 10\omega^{2}) = 0 \text{ pr } \omega^{2} = \frac{K^{*}}{2} \end{cases} \begin{bmatrix} (K^{*} - 10\omega^{2}) = 0 \text{ pr } \omega^{2} = \frac{K^{*}}{2} \end{cases} \begin{bmatrix} (K^{*} - 10\omega^{2}) = 0 \text{ pr } \omega^{2} = \frac{K^{*}}{2} \end{cases} \begin{bmatrix} (K^{*} - 10\omega^{2}) = 0 \text{ pr } \omega^{2} = \frac{K^{*}}{2} \end{cases} \begin{bmatrix} (K^{*} - 10\omega^{2}) = 0 \text{ pr } \omega^{2} = \frac{K^{*}}{2} \end{cases} \begin{bmatrix} (K^{*} - 10\omega^{2}) = 0 \text{ pr } \omega^{2} = \frac{K^{*}}{2} \end{cases} \begin{bmatrix} (K^{*} - 10\omega^{2}) = 0 \text{ pr } \omega^{2} = \frac{K^{*}}{2} \end{cases} \begin{bmatrix} (K^{*} - 10\omega^{2}) = 0 \text{ pr } \omega^{2} = \frac{K^{*}}{2} \end{bmatrix}$$

$$\Rightarrow \begin{cases} \omega^4 - 24\omega^2 + K^* = 0 \\ K^*\omega - 10\omega^3 = 0 \end{cases} \Rightarrow \begin{cases} (\omega^2)^2 - 24\omega^2 + K^* = 0 \\ \omega(K^* - 10\omega^2) = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \omega = \sqrt{14} \\ K^* = 140 \end{cases}$$

(5)

情况二: $(K^* - 10\omega^2) = 0$ 即 $\omega^2 = \frac{K^*}{10}$ 【将其代入式子①,可求得 $\begin{cases} \omega^2 = 14 \\ K^* = 140 \end{cases}$ 】

例2. 某系统的开环传递函数为 $G(s)H(s) = \frac{K^*(s+2)}{s^2+2s+4}$,

画系统的概略根轨迹图

$$z_1 = -2$$
 $p_1 = -1 + \sqrt{3} j$
 $p_2 = -1 - \sqrt{3} j$
根轨迹分离点坐标 (-4,0)

③ 找不到

③ 找不到
④
$$G(j\omega)H(j\omega) = \frac{K^*(j\omega+2)}{(j\omega)^2+2j\omega+4}$$
 $(j\omega)^2 + 2j\omega + 4 + K^*(j\omega + 2) = 0$
 $\Rightarrow -\omega^2 + 2j\omega + 4 + K^*j\omega + 2K^* = 0$
 $\Rightarrow 2K^* - \omega^2 + 4 + (K^*\omega + 2\omega)j = 0$
 $\Rightarrow \begin{cases} 2K^* - \omega^2 + 4 = 0 \\ K^*\omega + 2\omega = 0 \end{cases} \Rightarrow \begin{cases} 2K^* - \omega^2 + 4 = 0 & 1 \\ \omega(K^* + 2) = 0 & 2 \end{cases}$
 $\Rightarrow \begin{cases} \omega = 0 \\ K^* = -2 \end{cases}$
 $\Rightarrow \begin{cases} \omega = 0 \\ K^* = -2 \end{cases}$
 $\Rightarrow \begin{cases} \omega = 0 \\ K^* = -2 \end{cases}$
 $\Rightarrow \begin{cases} \omega = 0 \\ K^* = -2 \end{cases}$
 $\Rightarrow \begin{cases} \omega = 0 \\ K^* = -2 \end{cases}$
 $\Rightarrow \begin{cases} \omega = 0 \\ K^* = -2 \end{cases}$
 $\Rightarrow \begin{cases} \omega = 0 \\ K^* = -2 \end{cases}$
 $\Rightarrow \begin{cases} \omega = 0 \\ K^* = -2 \end{cases}$
 $\Rightarrow \begin{cases} \omega = 0 \\ K^* = -2 \end{cases}$
 $\Rightarrow \begin{cases} \omega = 0 \\ K^* = -2 \end{cases}$
 $\Rightarrow \begin{cases} \omega = 0 \\ K^* = -2 \end{cases}$
 $\Rightarrow \begin{cases} \omega = 0 \\ K^* = -2 \end{cases}$
 $\Rightarrow \begin{cases} \omega = 0 \\ K^* = -2 \end{cases}$
 $\Rightarrow \begin{cases} \omega = 0 \\ K^* = -2 \end{cases}$
 $\Rightarrow \begin{cases} \omega = 0 \\ K^* = -2 \end{cases}$
 $\Rightarrow \begin{cases} \omega = 0 \\ K^* = -2 \end{cases}$

【将其代入式子①,可求得 $\omega = 0$ 】

求根轨迹增益K*与开环增益K

例1. 某系统的开环传递函数为 $G(s)H(s) = \frac{K^*}{(s+1)(s+2)(s+4)}$,求点 $s_1 = -1 + \sqrt{3}$ j 处的根轨迹增益 K^* 和开环增益 K

①
$$G(s)H(s) = \frac{K^*}{(s+1)(s+2)(s+4)}$$
② $\left| \frac{K^*}{(-1+\sqrt{3}j+1)(-1+\sqrt{3}j+2)(-1+\sqrt{3}j+4)} \right| = 1$
 $\Rightarrow \left| \frac{K^*}{\sqrt{3}j\cdot(1+\sqrt{3}j)\cdot(3+\sqrt{3}j)} \right| = 1$
 $\Rightarrow \frac{|K^*|}{|\sqrt{3}j\cdot(1+\sqrt{3}j)\cdot(3+\sqrt{3}j)|} = 1$
 $\Rightarrow \frac{|K^*|}{|\sqrt{3}j|\cdot|1+\sqrt{3}j|\cdot|3+\sqrt{3}j|} = 1$
 $\Rightarrow \frac{|K^*|}{|0+\sqrt{3}j|\cdot|1+\sqrt{3}j|\cdot|3+\sqrt{3}j|} = 1$
 $\Rightarrow \frac{|K^*|}{|0+\sqrt{3}j|\cdot|1+\sqrt{3}j|\cdot|3+\sqrt{3}j|} = 1$
 $\Rightarrow \frac{|K^*|}{\sqrt{0^2+\sqrt{3}^2}\cdot\sqrt{1^2+\sqrt{3}^2}\cdot\sqrt{3^2+\sqrt{3}^2}} = 1$
 $\Rightarrow |K^*| = 12$

例2. 某系统的开环传递函数为
$$G(s)H(s) = \frac{K}{(s+1)(\frac{1}{2}s+1)(\frac{1}{4}s+1)}$$
,

求点
$$s_1 = -1 + \sqrt{3}$$
 j 处的根轨迹增益 K^* 和开环增益 K
① $G(s)H(s) = \frac{K}{(s+1)(\frac{1}{2}s+1)(\frac{1}{4}s+1)} = \frac{K}{\frac{1}{8}s^3 + \frac{7}{8}s^2 + \frac{7}{4}s+1}$
② $\left| \frac{K}{(-1+\sqrt{3}j+1)[\frac{1}{2}\times(-1+\sqrt{3}j)+1][\frac{1}{4}\times(-1+\sqrt{3}j)+1]} \right| = 1$

$$\Rightarrow \left| \frac{K}{\sqrt{3}j\cdot(\frac{1}{2}+\frac{\sqrt{3}}{2}j)\cdot(\frac{3}{4}+\frac{\sqrt{3}}{4}j)} \right| = 1$$

$$\Rightarrow \frac{|K|}{\left|\sqrt{3}j\cdot(\frac{1}{2}+\frac{\sqrt{3}}{2}j)\cdot(\frac{3}{4}+\frac{\sqrt{3}}{4}j)\right|} = 1$$

④ $K = \frac{G(s)H(s)分子里不含s的项}{G(s)H(s)分母里不含s的项} = \frac{K^*}{8} = \frac{3}{2}$

$$\Rightarrow \frac{|K|}{|\sqrt{3}j| \cdot \left| \frac{1}{2} + \frac{\sqrt{3}}{2}j \right| \cdot \left| \frac{3}{4} + \frac{\sqrt{3}}{4}j \right|} = 1$$

$$\Rightarrow \frac{|K|}{|0 + \sqrt{3}j| \cdot \left| \frac{1}{2} + \frac{\sqrt{3}}{2}j \right| \cdot \left| \frac{3}{4} + \frac{\sqrt{3}}{4}j \right|} = 1$$

$$\Rightarrow \frac{|K|}{\sqrt{0^2 + \sqrt{3}^2} \cdot \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} \cdot \sqrt{\left(\frac{3}{4}\right)^2 + \left(\frac{\sqrt{3}}{4}\right)^2}} = 1$$

$$\Rightarrow |K| = \frac{3}{2}$$

 $\implies K^* = 12$

$$\Rightarrow K = \frac{3}{2}$$
④ $K^* = \frac{G(s)H(s)分子里s最高的系数}{G(s)H(s)分母里s最高的系数} = \frac{K}{\frac{1}{8}} = 1$

求开环频率特性

例1. 某单位反馈系统的开环传递函数为

$$G(s)H(s) = \frac{300}{s(s+10)(0.2s+1)}, \quad \text{$\Re $\%$}$$

的开环幅频特性和开环相频特性

①
$$G(s)H(s) = \frac{300}{s(s+10)(0.2s+1)}$$

$$\downarrow \qquad \qquad 0$$

$$\downarrow \qquad \qquad \uparrow$$

$$G(j\omega)H(j\omega) = \frac{300}{(j\omega)^{1}(1\cdot j\omega+10)^{1}(0.2j\omega+1)^{1}}$$

$$\downarrow \qquad \qquad \downarrow$$

$$1\times 90^{\circ}+1\cdot \arctan\frac{1\cdot \omega}{10}+1\cdot \arctan\frac{0.2\omega}{1}$$

$$2 \quad A(\omega) = \left| \frac{300}{j\omega(j\omega+10)(0.2j\omega+1)} \right| \left| A(\omega) = |G(j\omega)H(j\omega)| \right|$$

$$= \frac{|300|}{|j\omega|\cdot|j\omega+10|\cdot|0.2j\omega+1|}$$

$$= \frac{300}{|0+\omega j|\cdot|10+\omega j|\cdot|1+0.2\omega j|}$$

$$= \frac{300}{\sqrt{0^2+\omega^2}\cdot\sqrt{10^2+\omega^2}\cdot\sqrt{1^2+(0.2\omega)^2}}$$

$$= \frac{300}{\omega\cdot\sqrt{100+\omega^2}\cdot\sqrt{1+0.04\omega^2}}$$

原则一:不含j的项的相位角为0

原则二: $(j\omega)^n$ 的相位角为 $n\cdot 90^\circ$

原则三: (a·jω+b)ⁿ的相位角为 n·arctan aω

原则四: 若 分子/分母=项1.项2....

则 分子/分母的相位角=项1的相位角+项2的相位角+…

$$\phi(\omega) = 0 - \left(1 \times 90^{\circ} + 1 \cdot \arctan \frac{1 \cdot \omega}{10} + 1 \cdot \arctan \frac{0.2\omega}{1}\right) = -90^{\circ} - \arctan(0.1\omega) - \arctan(0.2\omega)$$

$$\left[\phi(\omega) = G(j\omega)H(j\omega) 分 + 相位角 - G(j\omega)H(j\omega) 分 + 相位角 \right]$$

例2. 某单位反馈系统的开环传递函数为

$$G(s)H(s) = \frac{(s+1)^2}{s^3}$$
, 求系统的开环

频率特性

①
$$G(s)H(s) = \frac{(s+1)^2}{s^3}$$

$$2 \quad A(\omega) = \left| \frac{(j\omega+1)^2}{(j\omega)^3} \right|$$

$$= \frac{|(j\omega+1)\cdot(j\omega+1)|}{|(j\omega)\cdot(j\omega)\cdot(j\omega)|}$$

$$= \frac{|j\omega+1|\cdot|j\omega+1|}{|j\omega|\cdot|j\omega|}$$

$$= \frac{|1+\omega j|\cdot|1+\omega j|}{|0+\omega j|\cdot|0+\omega j|\cdot|0+\omega j|}$$

$$= \frac{\sqrt{1^2+\omega^2}\cdot\sqrt{1^2+\omega^2}}{\sqrt{0^2+\omega^2}\cdot\sqrt{0^2+\omega^2}\cdot\sqrt{0^2+\omega^2}}$$

$$\varphi(\omega) = 2 \cdot \arctan \frac{1 \cdot \omega}{1} - 3 \times 90^{\circ} = 2 \arctan \omega - 270^{\circ}$$

求闭环频率特性和输出信号

- 例1. 某单位反馈系统的闭环传递函数为 $\frac{C(s)}{R(s)} = \frac{1}{s+2}$,输入信号为 $r(t) = 3\sin(2t + 30^\circ)$,求系统的闭环幅频特性、闭环相频特性以及输出信号
- 例2. 某单位反馈系统的闭环传递函数为 $\frac{C(s)}{R(s)} = \frac{1}{s+2}$,输入信号为 $r(t) = 3\sin(2t + 30^\circ)$,求系统的闭环频率特性以及输出信号

 $\varphi(\omega) = 0 - 1 \cdot \arctan \frac{1 \cdot \omega}{2} = -\arctan \frac{\omega}{2}$ 闭环相频特性: $\varphi(\omega) = \frac{C(j\omega)}{R(j\omega)}$ 分子相位角 $-\frac{C(j\omega)}{R(j\omega)}$ 分母相位角

③ a = 3、 $\omega_0 = 2$ 、 $\alpha = 30^\circ$ $A(\omega_0) = \frac{1}{\sqrt{4 + \omega_0^2}} \qquad \varphi(\omega_0) = -\arctan\frac{\omega_0}{2} \left[\frac{1}{2} \frac{1}{2} \sin \left[\frac{1}{2} \sin \left[2t + 30^\circ + \left(-\arctan\frac{2}{2} \right) \right] \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3}{2\sqrt{2}} \sin \left[2t + 30^\circ + \left(-45^\circ \right) \right] = \frac{3$

画奈奎斯特曲线/开环幅相曲线

- 例1. 某单位反馈系统的开环传递函数为 $G(s)H(s) = \frac{(s+1)^2}{s^3}$,请画出系统的奈奎斯特曲线
- 例2. 某单位反馈系统的开环传递函数为 $G(s)H(s) = \frac{(s+1)^2}{s^3}$,请画出系统的开环幅相曲线

②
$$G(s)H(s) = \frac{(s+1)^2}{s^3}$$

$$(3) G(j\omega)H(j\omega) = \frac{(j\omega+1)^2}{(j\omega)^3}$$

$$= -\frac{2}{\omega^2} + \frac{1-\omega^2}{\omega^3} j$$

(1)
$$-\frac{2}{0^2} + \frac{1-0^2}{0^3} j = -\infty + \infty \cdot j$$

(2)
$$-\frac{2}{(+\infty)^2} + \frac{1-(+\infty)^2}{(+\infty)^3} j = 0 + 0 \cdot j$$

(3)
$$\frac{1-\omega^2}{\omega^3} = 0 \implies 1 - \omega^2 = 0 \implies \omega = \pm 1$$

$$-\frac{2}{(\pm 1)^2} + \frac{1-(\pm 1)^2}{(\pm 1)^3} j = -2 + 0 \cdot j$$

$$(4) - \frac{2}{\omega^2} = 0 \implies \mathcal{K}$$

④
$$\varphi(\omega) = 2\arctan \omega - 270^{\circ}$$
 [第四章第1课学过]
$$\varphi(0) = 2\arctan 0 - 270^{\circ} = 2 \times 0 - 270^{\circ} = -270^{\circ}$$

$$\varphi(+\infty) = 2\arctan(+\infty) - 270^{\circ} = 2 \times 90^{\circ} - 270^{\circ} = -90^{\circ}$$

奈奎斯特稳定判据

例1. 某单位反馈系统的开环传递函数G(s)H(s) = $\frac{(s+1)^2}{s^3}$, 试通过奈奎斯特稳定判据判断系统的稳定性, 并判断 s 右半平面闭环极点的个数。

①
$$G(s)H(s) = \frac{(s+1)^2}{s^3}$$

③
$$s^3 = 0$$

 $\Rightarrow s \cdot s \cdot s = 0$
 $\Rightarrow \begin{cases} s_1 = 0 \\ s_2 = 0 \\ s_3 = 0 \end{cases}$
 $\Rightarrow P = 0$
④ 演算纸:
 $N = 0$

⑤ $P - 2N = 0 - 2 \times 0 = 0$

系统稳定, {正实部闭环极点个数 为 0 s 右半平面闭环极点个数 为 0

画开环对数幅频渐进特性曲线/伯德图

例1. 某单位反馈系统的开环传递函数为 $G(s)H(s) = \frac{300}{(s^2+10s)(0.2s+1)}$,试画出系统开环对数幅频渐进特性曲线

①
$$G(s)H(s) = \frac{300}{(s^2+10s)(0.2s+1)}$$

$$= \frac{300\times1\times1}{10\cdot s\cdot (0.1s+1)\cdot (0.2s+1)}$$

$$= 30\cdot \frac{1}{s^1} \cdot \frac{1}{(0.1s+1)\cdot (0.2s+1)}$$

$$\omega = \frac{1}{0.1} = 10$$

$$\Re \text{ \mathbb{Z} } \text{ $\mathbb{Z}$$$

首段经过点: (1,20·lg30)≈(1,30)

初始斜率: $-20 \times 1 = -20$

根据伯德图求开环传递函数

例1. 已知某系统的伯德图如下, 求该系统的开环传递函数

①
$$v = \frac{-20}{-20} = 1$$

$$K = 30^1 = 30$$

② 式子 =
$$\frac{1}{\frac{1}{5} \cdot s + 1} = \frac{1}{0.2s + 1}$$

式子 =
$$\frac{1}{\frac{1}{10} \cdot s + 1} = \frac{1}{0.1s + 1}$$

开环传递函数
$$G(s)H(s) = 30 \cdot \frac{1}{s^1} \cdot \left(\frac{1}{0.2s+1} \cdot \frac{1}{0.1s+1}\right) = \frac{30}{s(0.2s+1)(0.1s+1)}$$

开环传递函数 $G(s)H(s) = K \cdot \frac{1}{s^v} \cdot$ 每个转折点式子的乘积

根据伯德图求ω

例1. 已知某系统的伯德图如下,求 ω_c

$$|-40| \cdot \lg \frac{12}{10} = |-60| \cdot \lg \frac{\omega_c}{10} \left[|\Re \mathbb{1} \cdot \lg \frac{\omega_\gamma}{\omega_\alpha} = |\Re \mathbb{2}| \cdot \lg \frac{\omega_\beta}{\omega_\alpha} \right]$$

$$\Rightarrow 40 \cdot \lg \frac{12}{10} = 60 \cdot \lg \frac{\omega_c}{10}$$

$$\implies 2 \cdot \lg \frac{6}{5} = 3 \cdot \lg \frac{\omega_c}{10}$$

$$\Rightarrow \qquad \lg\left(\frac{6}{5}\right)^2 = \lg\left(\frac{\omega_c}{10}\right)^3 \quad \left[a \cdot \lg b = \lg b^a\right]$$

$$\Rightarrow \qquad \left(\frac{6}{5}\right)^2 = \left(\frac{\omega_c}{10}\right)^3 \qquad \left[\lg a = \lg b \Rightarrow a = b\right]$$

$$\Rightarrow \frac{36}{25} = \frac{\omega_c^3}{1000}$$

$$\Rightarrow$$
 $\omega_c^3 = 1440$

$$\Rightarrow$$
 $\omega_c = 11.29 \text{ rad/s}$

根据伯德图求截止频率ωc

例1. 已知某系统的伯德图如下,求截止频率 ω_c

 $ω_c = 11.29 \text{ rad/s}$ 第四章第7课学过

求系统的稳定裕度

例1. 某单位反馈系统的开环传递函数 $G(s)H(s) = \frac{300}{s(s+10)(0.2s+1)}$

系统的伯德图如下, 求该系统的相角裕度γ和幅值裕度 h

- ① $\phi(\omega) = -90^\circ \arctan(0.1\omega) \arctan(0.2\omega)$ 第四章第1课学过 $\omega_c = 11.29 \text{ rad/s }$ 第四章第8课学过
- ② $\gamma = 180^\circ + (-204.58^\circ) = -24.58^\circ$ 【相角裕度 $\gamma = 180^\circ + \phi(\omega_c)$ 】 【 $\phi(\omega_c) = -90^\circ \arctan(0.1 \times 11.29) \arctan(0.2 \times 11.29) = -204.58^\circ$ 】
- 3 -90° arctan $(0.1\omega_g)$ arctan $(0.2\omega_g)$ = -180°

$$\arctan(0.1\omega_g) + \arctan(0.2\omega_g) = 90^{\circ} \quad \left| \arctan a + \arctan b = c \right| \Rightarrow \frac{a+b}{1-a\cdot b} = \tan c \right|$$

$$\frac{0.1\omega_g + 0.2\omega_g}{1 - 0.1\omega_g \cdot 0.2\omega_g} = \tan 90^{\circ} \left| \arctan a - \arctan b = c \right| \Rightarrow \frac{a-b}{1+a\cdot b} = \tan c \right|$$

$$\frac{0.3\omega_g}{1 - 0.02(\omega_g)^2} = +\infty$$

$$1 - 0.02(\omega_g)^2 = 0$$

$$\omega_g = \sqrt{50} \text{ rad/s}$$

$$(4) \quad G(j\omega_g)H(j\omega_g) = \frac{300}{j\omega_g(j\omega_g+10)(0.2j\omega_g+1)} = \frac{300}{j\times\sqrt{50}\times(j\times\sqrt{50}+10)(0.2j\times\sqrt{50}+1)}$$

$$\begin{split} h &= \frac{1}{\frac{300}{|\mathsf{j} \times \sqrt{50} \times (\mathsf{j} \times \sqrt{50} + 10)(0.2\mathsf{j} \times \sqrt{50} + 1)}} \, dB \, \left[\, \text{left} \, \hat{a} \, \hat{B} \, h = \frac{1}{|\mathsf{G}(\mathsf{j}\omega_g)\mathsf{H}(\mathsf{j}\omega_g)|} \, dB \right] \\ &= \frac{1}{\frac{|\mathsf{300}|}{|\mathsf{j} \times \sqrt{50}| \cdot |\mathsf{j} \times \sqrt{50} + 10| \cdot |0.2\mathsf{j} \times \sqrt{50} + 1|}} \, dB \\ &= \frac{1}{\frac{300}{|\mathsf{0} + \sqrt{50}\mathsf{j}| \cdot |\mathsf{10} + \sqrt{50}\mathsf{j}| \cdot |\mathsf{1} + 0.2 \times \sqrt{50}\mathsf{j}|}} \, dB \\ &= \frac{1}{\frac{300}{\sqrt{0^2 + \sqrt{50}^2} \cdot \sqrt{10^2 + \sqrt{50}^2} \cdot \sqrt{1^2 + (0.2 \times \sqrt{50})^2}}} \, dB \\ &= \frac{1}{2} \, dB \end{split}$$

线性系统的串联校正

例1. 某系统开环传递函数 $G(s)H(s) = \frac{300}{s(s+10)(0.2s+1)}$, 伯德图如下, 要求校正后:截止频率≥2.3 rad/s,相角裕度≥40°,判断该系 统应该采用的校正方式,并写出校正函数以及校正后的开环

- ① $G(s)H(s) = \frac{300}{s(s+10)(0.2s+1)}$ 第一章第3课和第四章第6课学过
- ② $\omega_c = 11.29 \text{ rad/s}$ 第四章第8课学过
- ③ γ = -24.58° 第四章第9课学过
- (4) a, $\omega_c^* = 2.3 \text{ rad/s}$

b, $y^* = 40^{\circ}$

c、 $\omega_c^* < \omega_c$, $\gamma^* > \gamma$ \Rightarrow 校正方式为串联滞后校正

串联超前校正: $G_c(s) = \frac{\sqrt{\frac{1+\sin(\gamma^*-\gamma+7)}{1-\sin(\gamma^*-\gamma+7)}}}{1}$ $(5) G(j\omega_c^*)H(j\omega_c^*) = \frac{300}{j\omega_c^*(j\omega_c^*+10)(0.2j\omega_c^*+1)} = \frac{300}{j\times 2.3\times (j\times 2.3+10)(0.2j\times 2.3+1)}$ 串联滞后校正:用 $j\omega_c^*$ 替换 G(s)H(s)中的 s, 得到 $G(j\omega_c^*)H(j\omega_c^*)$,

校正函数:

校正后的开环传递函数 = $\frac{300}{s(s+10)(0.2s+1)} \cdot \frac{4.35s+1}{50.22s+1}$ 校正后的开环传递函数 = 原来的 $G(s)H(s)\cdot G_c(s)$ s(s+10)(0.2s+1)(50.22s+1)