## **Human Pose Detection in 3D with Deep Learning and RGB-D Cameras**

Participating researchers: Anthony Tzes, Merritt Moore
Vinicius Goncalves, Halil Utku, Nikolaos Giakoumidis, Aris Panousopoulos

## **Enabling Human-Robot Interaction in Dancing**

- •Overview: Exploring the integration of MediaPipe and Intel RealSense for advanced 3D human pose detection. Focused application in human-robot interaction for dancing.
- •MediaPipe Framework: <a href="https://github.com/google/mediapipe">https://github.com/google/mediapipe</a>
  Utilizes machine learning to facilitate real-time hand and pose tracking. Essential for interpreting complex human movements in 3D space.
- •Intel RealSense Technology: Provides depth sensing and 3D vision capabilities. Enhances accuracy in detecting and mapping human movements.
- •Application in Dancing: Enables robots to perceive and mimic human dance movements, creating interactive and responsive dance partners.



Photo by James Coleman on Unsplash

# Technical Details of MediaPipe and Intel RealSense Integration

#### Enhancing 3D Human Pose Detection

- MediaPipe Mechanics: Employs a complex pipeline of machine learning models for pose estimation. Processes visual data from multiple sources, including Intel RealSense cameras.
- Intel RealSense's Role: Offers depth data and infrared imaging. Crucial for enhancing the 3D spatial perception capabilities of MediaPipe.
- Real-Time Processing: Integration allows for real-time interpretation of complex dance movements. Key for dynamic and responsive human-robot dancing interaction.
- Accuracy and Precision: Combination ensures high accuracy and precision in pose detection. Essential for nuanced dance movements and synchronization with a robotic partner.



## Code Implementation and Live Demo

#### **Human-Robot Dance Interaction**

- •Code Overview: Python script integrates MediaPipe and Intel RealSense for 3D pose detection. Configures streams, initiates MediaPipe Pose, and uses RealSense depth data.
- •Real-Time Landmark Detection: Script captures and processes video frames in real-time. Extracts pose landmarks and overlays them on RGB images for visual verification.
- •3D Coordinates Extraction: Combines color and depth information to calculate precise 3D coordinates for each landmark. Displays these coordinates on the live feed.
- **Demo Application:** Demonstrates the practical use of the script with a live dance interaction scenario, showcasing human-robot synchronization.



## Challenges in Choreography and Robot-Human Synchronization

## Innovating Dance Partnerships

- •Choreography Design: Creating dance sequences that can be interpreted and performed by robots in sync with humans. Requires understanding of motion dynamics and robot capabilities.
- •Synchronization Issues: Addressing latency and precision in robot movements to match human dancers. Essential for seamless and coordinated dance performances.
- Utilizing UNITREE Robots: Leveraging the capabilities of UNITREE robots (<a href="https://dev-z1.unitree.com/">https://dev-z1.unitree.com/</a> and <a href="https://github.com/unitreerobotics/unitree\_ros/tree/master/robots">https://github.com/unitreerobotics/unitree\_ros/tree/master/robots</a>)
   known for their agility and human-like movement patterns.
- •Real-World Application: Applying these technologies in live performances showcases the potential of advanced robotics and Al in entertainment and beyond.





## **Choreography Innovation for Limited Spaces**

## Maximizing Visibility for Pose Detection

- •Space-Conscious Choreography: Designing dance moves that fit within confined areas while ensuring the dancer's full body is in the camera's view for accurate pose detection.
- •Creative Movement Solutions: Utilizing vertical space and layered positioning to maximize the use of limited floor space. Incorporating poses that maintain visibility of all limbs.
- •Visibility and Pose Detection: Choreography must facilitate unobstructed visibility of key movement points to ensure accurate pose detection and analysis by the system.
- •Interaction Dynamics: Crafting choreography that allows for interactive elements with the robot, considering its range of motion and response time.



Photo by Suhyeon Choi on Unsplash

#### 3D Human Pose Demo

#### Use <a href="https://www.intelrealsense.com/depth-camera-d455/">https://www.intelrealsense.com/depth-camera-d455/</a> **RGB-D** camera

Features

Use environment:

Ideal Range:

Indoor/Outdoor

Global Shutter

.6 m to 6 m

Image sensor technology:

Inertial measurement unit:

Bosch BMI055

Depth

Depth technology:

Depth Field of View (FOV): 87° × 58°

Stereoscopic

Minimum Depth Distance (Min-Z) at Max Resolution: Depth output resolution:

~52 cm

Up to 1280 × 720

Depth Accuracy:

Depth frame rate:

<2% at 4 m<sup>1</sup>

Up to 90 fps

RGB

RGB frame resolution:

RGB sensor FOV (H × V):

90 × 65°

Up to 1280 × 800 RGB frame rate:

RGB sensor resolution:

30 fps

1 MP

RGB sensor technology:

Global Shutter



#### **3D Human Pose Alternatives**

Use Nexus for Vicon Motion Capture System <a href="https://www.vicon.com/software/nexus/">https://www.vicon.com/software/nexus/</a>



Use Shogun for Vicon Motion Capture System <a href="https://www.vicon.com/software/shogun/">https://www.vicon.com/software/shogun/</a>



## **Objective**

- 1. Submit an article to ArtsIT Conference <a href="https://artsit.eai-conferences.org/2024/">https://artsit.eai-conferences.org/2024/</a> [Deadline June 15]
- 2. Present this article in November 2024

# **Next Steps**

- 1. Decide on RGB-D or use of Motion Capture System (today)
- 2. Record dance by human-leader (by April 9)
- 3. Record 3D-pose of human-leader (by April 11)
- 4. Suggest robot motion based on Haussdorf distance metric (by April 15)
- 5. Robot Choreography, others, music...
- 6. Multiple cameras