Network Fundamentals

From Zero to HTTP

Original content: Tom nom nom

Translate to Persian: Chaos Nexus

فهرست

یک به یک (One To One)	4
چگونه آدرس MAC مقصد را میفهمد؟	
دريافت اطلاعات رابط شبكه شما	
آيا كسى آنجاست؟	8
پروتکل تحلیل آدرس (Address Resolution Protocol)	9
بيام بعدى	10
حافظه نهان The ARP Cache) ARP)	11
مشاهده حافظه نهان ARP شما	12
مشاهده حافظه نهان ARP شما بیش از دو دستگاه	13
Hubs	14
Switching	15
Switches	16
Subnets	17
Subnet Masks	18

t.me/Chaos nexus tech نمادگذاری CIDR Notation) CIDR (جامات) نمادگذاری Since The Control of the Control نتخاب حندگانه مجموعه پروتکل اینترنت (The Internet Protocol Suite)......م

t.me/Chaos nexus tech 37......CNAMEs 38 Load Balancers 39 Transport Layer Load Balancers 40 Application Layer Load Balancers 41 _____Network Address Translation (NAT) نكتهى فرعى: فضاى رزرو شدهى Pv4 (Reserved IPvfour Space) المسلمة (Reserved IPvfour Space) المسلمة على المسلمة

پک به یک (One To One)

- دو دستگاه می توانند با یکدیگر صحبت کنند
 - هر دستگاه دارای یک رابط شبکه است
- رابطهای شبکه ٔ می توانند مستقیماً از طریق کابل شبکه به یکدیگر متصل شوند
- هر رابط شبکه دارای یک آدرس کنترل دسترسی به رسانه (MAC) (همچنین به عنوان آدرس سختافزاری نیز شناخته میشود) است
 - آدرسهای MAC به این شکل هستند: 50:46:5d:54:94:23
 - آدرسهای MAC به صورت جهانی منحصر به فرد هستند (حداقل در تئوری)
 - دادهها در قطعاتی به نام «فریم» ارسال میشوند
 - هر فریم دارای یک آدرس MAC منبع و مقصد است

چگونه آدرس MAC مقصد را میفهمد؟

- آنها این کار را نمی کنند!
- آنها آدرس IP را میدانند (چون شما آن را به آنها می گویید)
 - یک آدرس ۱۲۷۵ به این شکل است: 168.0.1
- در عین حال ۱۲۷۵ هم وجود دارد، اما ما در اینجا به آن نمی پردازیم
- یک ماشین میتواند از کل شبکه بپرسد که چه کسی یک IP خاص دارد.
- ماشینها فریمهایی را که MAC آنها به عنوان مقصد نیست، نادیده می گیرند.
 - اما یک MAC خاص «هرکسی» یا «پخش» وجود دارد: ff:ff:ff:ff:ff:ff

² منظور از آنها ماشین ها یا کامپیوتر ها در ارتباط با یکدیگر است

دریافت اطلاعات رابط شبکه شما در لینوکس

ifconfig enp3s0

Link encap: Ethernet HWaddr 50:46:5d:54:94:23 enp3s0 inet addr:192.168.1.30 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::5246:5dff:fe54:9423/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:48241295 errors:0 dropped:0 overruns:0 frame:0 TX packets:24083899 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:49741929087 (49.7 GB) TX bytes:2925004440 (2.9 GB)

ip a show dev enp3s0

```
2: enp3s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
   link/ether 50:46:5d:54:94:23 brd ff:ff:ff:ff:ff
    inet 192.168.1.30/24 brd 192.168.1.255 scope global enp3s0
      valid lft forever preferred lft forever
    inet6 fe80::5246:5dff:fe54:9423/64 scope link
      valid_lft forever preferred_lft forever
```


🔽 ip config /all

Ethernet adapter Ethernet0:

Connection-specific DNS Suffix: localdomain

Description: Intel(R) Ethernet Adapter

Physical Address (MAC): 00-1A-2B-3C-4D-5E

DHCP Enabled: Yes

IPv4 Address: 192.168.1.100 Subnet Mask: 255.255.255.0 Default Gateway: 192.168.1.1

DNS Servers: 8.8.8.8

توجه داشته باشید که در سیستم شما این نتایج ممکن است متفاوت باشد

آیا کسی آنجاست؟

- ماشین A می خواهد با ماشین B صحبت کند
- ماشین A دارای IP 192.168.0.1 است
 - ماشین B دارای IP 192.168.0.2 و MAC bb:bb:bb:bb:bb
 - ماشین A فریمی مانند این ارسال می کند:
 - aa:aa:aa:aa:aa:aa:aa منبع: MAC o
 - o MAC مقصد: ff:ff:ff:ff:ff
- داده: "چه کسی 192.168.0.2 را دارد؟ به 192.168.0.1 بگویید!"
 - ماشین B با فریمی مانند این پاسخ میدهد:
 - o مک مبدا: bb:bb:bb:bb:bb:bb
 - o مک مقصد: aa:aa:aa:aa:aa
 - داده: "192.168.0.2 در bb:bb:bb:bb:bb:bb
- هر دو ماشین ۱۹ها و MACهای مربوطه را در حافظه پنهان پروتکل تفکیک آدرس (ARP) خود برای استفادههای بعدی ذخیره میکنند.

پروتکل تحلیل آدرس (Address Resolution Protocol)

پیام بعدی

- ماشین A میخواهد دوباره با ماشین B صحبت کند
- این بار ماشین A می تواند آدرس MAC را در حافظه پنهان ARP خود پیدا کند
 - ماشین A فریمی ارسال می کند که به این شکل است:
 - ه مک مبدا: aa:aa:aa:aa:aa:aa
 - o مک مقصد: bb:bb:bb:bb:bb:bb
 - ٥ داده: ...
 - درون دادهها یک «بسته» IP وجود دارد که به این شکل است:
 - آیپی مبدا: 192.168.0.1
 - o آیپی مقصد: 192.168.0.2
 - ۰ داده: ۰۰۰
 - دادههای اسلاید آخر در واقع یک بسته ARP بودند.
 - چرا مک و آیپی؟
- ماشینها می توانند بیش از یک آدرس IP داشته باشند و دلایل دیگری نیز وجود دارد

حافظه نهان (The ARP Cache) ARP

مشاهده حافظه نهان ARP شما

در لینوکس

🔽 ip n

```
192.168.1.170 dev enp3s0 lladdr 00:17:88:49:a0:62 STALE
192.168.1.138 dev enp3s0 lladdr 94:44:44:ed:f5:c8 STALE
192.168.1.114 dev enp3s0 lladdr f4:5c:89:c1:ed:5f STALE
192.168.1.60 dev enp3s0 lladdr 00:18:a9:74:a5:88 STALE
192.168.1.1 dev enp3s0 lladdr 98:fc:11:85:74:6c REACHABLE
192.168.1.179 dev enp3s0 lladdr dc:3a:5e:5d:e0:9d STALE
192.168.1.163 dev enp3s0 lladdr 70:48:0f:c9:19:42 STALE
192.168.1.23 dev enp3s0 lladdr 38:ea:a7:a9:34:f3 STALE
192.168.1.134 dev enp3s0 lladdr 8c:f5:a3:30:af:a7 STALE
192.168.1.10 dev enp3s0 lladdr 44:d9:e7:62:ab:cc REACHABLE
```

در ویندوز

🔽 arp -a

Interface: 192.168.1.100 --- 0x10
Internet Address Physical Address Type
192.168.1.1 00-11-22-33-44-55 dynamic
192.168.1.101 aa-bb-cc-dd-ee-ff dynamic
192.168.1.255 ff-ff-ff-ff-ff static
224.0.0.22 01-00-5e-00-00-16 static

بیش از دو دستگاه

- بیش از دو ماشین میتوانند به یک هاب متصل شوند
 - هاب خیلی بیمعنی است
- فقط هر چیزی را که دریافت می کند به تمام پورتها ارسال می کند
- ماشینها فریمهایی را که برای آنها در نظر گرفته نشده است نادیده می گیرند، بنابراین همه چیز (عمدتاً) خوب است
 - هر چیزی که برای دو ماشین کار می کرد، دقیقاً به یک شکل کار می کند
 - اما:
 - کند است (۱۰ مگابیت، اگر خوش شانس باشید ۱۰۰ مگابیت)
 - با تصادم مواجه میشوید (ماشینها سعی میکنند با یکدیگر صحبت کنند)
 - مىتوانىم بهتر عمل كنيم

Hubs

Switching

- سوئیچهای شبکه هوشمندتر و کارآمدتر هستند
- سوئیچها MACهای منبعی را که در هر پورت دیدهاند به خاطر میسپارند.
 - فریمها فقط به پورتی ارسال میشوند که MAC به آن متصل است.
 - اگر سوئیچ نداند MAC کجاست: به همه پورتها ارسال می کند.
- هرگز نمیداند ff:ff:ff:ff:ff:ff:ff
 کجاست، بنابراین همیشه به همه پورتها ارسال میشود!
 - تصادم كمتر!
 - بسیار سریعتر!
 - سرعت 10 گیگابیت در شبکههای سوئیچینگ نسبتاً رایج است.

Switches

Subnets

- ماشینها فقط می توانند بستههای IP را مستقیماً به ماشینهای همان شبکه ارسال کنند.
 - خب... چگونه یک شبکه (از نظر فنی یک زیرشبکه) را تعریف کنیم؟
 - علاوه بر IP، هر ماشین یک ماسک زیرشبکه نیز دارد.
 - آنها به این شکل هستند: 255.255.
- Subnet mask در ترکیب با IP منبع و مقصد استفاده می شود تا مشخص شود که آیا آنها در یک زیر شبکه هستند یا خیر.
 - در واقع درک آن به صورت دودویی بسیار آسانتر است!

Subnet Masks

• دو ماشین در یک زیرشبکه هستند اگر بیتهای موجود در IP آنها با بیت متناظر در subnet mask که ۱ است، مطابقت داشته باشد.

These two are on the *same* subnet:

Source: 192.168.0.1 11000000.10101000.00000000.00000001
Destination: 192.168.0.2 11000000.10101000.00000000.00000010
Subnet Mask: 255.255.255.0 111111111.1111111.1111111.00000000

These two are on *different* subnets:

Source: 192.168.0.1 11000000.10101000.00000000.00000001
Destination: 192.168.31.2 11000000.10101000.00011111.00000010
Subnet Mask: 255.255.255.0 111111111.1111111.1111111.00000000

نمادگذاری CIDR Notation) CIDR)

- مشخص کردن IP و ماسک زیرشبکه کمی خسته کننده می شود.
- می توانید به جای آن از نمادگذاری مسیریابی بین دامنهای بدون کلاس استفاده کنید.
 - تعداد ۱ها را در subnet mask بشمارید!

10.0.0.1/255.255.255.0

10.0.0.1/24

مسيريابي (Routing)

- برای ارسال یک بسته به دستگاهی در زیرشبکه دیگر، فریم به یک روتر ارسال میشود.
 - یک روتر معمولاً بیش از یک رابط شبکه (و آدرس MAC) دارد.
 - یک روتر همیشه بیش از یک آدرس IP دارد (حداقل یکی برای هر زیرشبکه)
- Machine A (subnet one):
 - MAC: aa:aa:aa:aa:aa:aa
 - o IP: 192.168.0.1 / 255.255.255.0
- Machine B (subnet two):
 - MAC: bb:bb:bb:bb:bb
 - o IP: 192.168.1.1 / 255.255.255.0
- Router (both subnets):
 - MAC1: cc:cc:cc:cc:cc
 - o IP1: 192.168.0.254 / 255.255.255.0
 - MAC2: dd:dd:dd:dd:dd
 - IP2: 192.168.1.254 / 255.255.255.0

مثالی از Hop

- ماشین A میخواهد با ماشین B صحبت کند، اما ماشین B در زیرشبکه متفاوتی قرار دارد.
- بنابراین، یک فریم با استفاده از MAC برای دروازه پیشفرض خود به عنوان مقصد ارسال می کند:
 - o منبع: aa:aa:aa:aa:aa:aa منبع:
 - MAC مقصد: CC:CC:CC:CC:CC (اولین MAC روتر!)
 - امنبع: 192.168.0.1
 - O P مقصد: IP) 192.168.1.1 دستگاه B!)
 - روتر فریم را دریافت می کند و سپس موارد زیر را ارسال می کند:
 - MAC منبع: dd:dd:dd:dd:dd (دومین MAC روتر)
 - o MAC مقصد: bb:bb:bb:bb:bb
 - ۱۹2.168.0.1 منبع: 192.168.0.1
 - ۱۹ مقصد: 192.168.1.1
 - روتر، MACهای مبدا و مقصد را تغییر داد و دستگاه B فریم را از روتر دریافت می کند :)

انتخاب چندگانه

- ماشین A فریم را به عنوان آخرین راه چاره به دروازه پیشفرض خود ارسال کرد.
 - ممکن است گزینه دیگری در جدول مسیریابی خود داشته باشد:

Network	Subnet Mask	Gateway
0.0.0.0	0.0.0.0	192.168.0.254
192.168.1.0	255.255.255.0	192.168.0.253
192.168.2.0	255.255.255.0	192.168.0.252

- با این جدول، MAC برای 192.168.0.253 مقصد خواهد بود.
- چندین شبکه متصل از طریق روترها چیزی را تشکیل میدهند که ما آن را اینترنت مینامیم :)

The OSI Model

#	Name	Unit	What?
7	Application	Data	HTTP, FTP etc
6	Presentation	Data	Encryption! TLS etc
5	Session	Data	PPTP, SOCKS
4	Transport	Segments	TCP, UDP
3	Network	Packets	IP and routing
2	Data-Link	Frames	MAC addresses and the like
1	Physical	Bits	Electricity on a wire

مجموعه پروتکل اینترنت (The Internet Protocol Suite)

- یک مدل جایگزین و بسیار سادهتر
- هنوز فقط یک مدل است؛ همه چیز به خوبی تعریف نشده است

#	Name	Unit	What?
4	Application	Data	HTTP, FTP etc
3	Transport	Segments	TCP, UDP
2	Internet	Packets	IP and routing
1	Link	Frames	MAC addresses and the like

کنترل حمل و نقل (Transport Control)

- تاكنون ما فقط به ارتباط يك طرفه پرداختهايم.
- شبکه غیرقابل اعتماد است، اما ما به ارتباط قابل اعتماد نیاز داریم.
- چگونه متوجه میشوید که کسی نامه شما را دریافت کرده است؟
 - از آنها بخواهید که نامهای برای شما ارسال کنند!
- اگر پس از مدتی پاسخی دریافت نکردید، نامه دیگری ارسال کنید :)
 - TCP قابلیت اطمینان را برای بستههای IP فراهم می کند.
- TCP پورتها را اضافه می کند تا بتوانیم بیش از یک مکالمه بین دو IP داشته باشیم.
- پورتها فقط اعداد هستند. شما به یک پورت منبع و یک پورت مقصد نیاز دارید.
- اگر به قابلیت اطمینانی که TCP ارائه میدهد نیاز ندارید، میتوانید از UDP استفاده کنید.

بیایید باهم با حالت TCP صحبت کنیم

Machine A		Machine B
Hey, can we talk?	\rightarrow	
	←	Sure.
OK! Let's talk!	\rightarrow	
So, can you do this thing for me?	\rightarrow	
		Yes, I hear you.
		Here's the thing you wanted.
Got it!		
	←	I'm leaving.
Fine! Me too!	\rightarrow	
	←	Good.

نسخه واقعى

192.168.0.1:56789		192.168.0.2:80
SYN	\rightarrow	
	←	SYN, ACK
ACK	\rightarrow	
DATA		
		ACK
		DATA
ACK		
	←	FIN
FIN, ACK	\rightarrow	
	←	ACK

ارسال مجدد

• اگر فرستنده پس از مدتی ACK دریافت نکند، دادهها را دوباره ارسال خواهد کرد

192.168.0.1:56789		192.168.0.2:80
	handshake	
DATA	\rightarrow	
	←	ACK
		DATA
	time passes	
	←	DATA
ACK	→	
	termination	

از چند لایه گذر میکنیم (حداقل برای OS۱)^۳

- HTTP یک پروتکل لایه کاربرد است
- HTTP نسخه ۱.۱ فقط متن ساده است
- آنقدر ساده که میتوانید آن را با دست بنویسید!
- ممکن است مثلاً با TLS رمزگذاری شده باشد، اما فعلاً آن را نادیده می گیریم
 - HTTP نسخه ۲ متن ساده نیست، اما آن را هم نادیده می گیریم
- وقتی در مورد یک پروتکل لایه کاربرد صحبت می کنیم، می توانیم (عمدتاً) لایه های پایین تر را نادیده بگیریم:)

³ خودتان مطالعه کنید و یاد بگیرید!

بياييد باهم با حالت HTTP صحبت كنيم

192.168.0.1:56789		192.168.0.2:80
	handshake	
GET /index.html HTTP/1.1 Host: example.com Connection: close User-Agent: slidedeck/0.3 Accept: */*	→	
	←	HTTP/1.1 200 OK Content-Type: text/html Content-Length: 1337 html <html></html>
	termination	

درخواست

- هر خط در درخواست توسط یک کاراکتر بازگشت به سطر و یک کاراکتر تغذیه سطر (دنباله CRLF) از هم جدا می شود.
 - درخواست توسط دو دنباله CRLF خاتمه می یابد.
 - هدرها به شکل کلید: مقدار ارسال میشوند.

What	What?
GET /index.html HTTP/1.1	Get me the file at /index.html; I'm using HTTP version 1.1
Host: example.com	The name of the host I'm connecting to is example.com
Connection: close	Please close the TCP connection when you've sent me the data
User-Agent: slidedeck/0.3	Just FYI, my client software is slidedeck 0.3
Accept: */*	I'll accept any kind of data in response!

- هدرهای پاسخ نیز توسط توالیهای CRLF از هم جدا میشوند
 - بدنه پاسخ توسط دو توالی CRLF از هدرها جدا میشود

What	What?
HTTP/1.1 200 OK	I'm using HTTP version 1.1; that request is OK!
Content-Type: text/html	I'm going to send you some text that happens to be HTML
Content-Length: 1337	You'll need to read 1337 bytes to get all of the response body
html <html> </html>	The response body

اسمات چیست؟

- ما تمام این مدت در مورد آدرسهای IP صحبت می کردیم
- به خاطر سپردن «example.com» به جای «93.184.216.34» آسانتر است.

○ و خيلي آسان تر از به خاطر سپردن «2606:2800:220:1:248:1893:25c8:1946» :)

- DNS) Domain Name System) نامها را به آدرسهای IP تبدیل می کند.
 - DNS (بیشتر اوقات) از UDP استفاده می کند.
 - معمولاً به پورت ۵۳ گوش میدهد.
 - کلاینتها از سرورهای DNS درخواست رکورد می کنند.

انواع ركورد (ليست ناقص است)

- انواع مختلفی از رکورد DNS وجود دارد؛ هر کدام هدف متفاوتی دارند.
 - هر رکورد در مقابل نامی مانند «example.com» ذخیره می شود.

Туре	Example	What?
A	93.184.216.34	An IPv4 Address
AAAA	2606:2800:220:1:248:1893:25c8:1946	An IPv6 Address
CNAME	origin.example.com	An alias for another name
MX	mail.example.com	A mail exchange handler
NS	ns1.webhost.com	An authoritative nameserver
TXT	Clacks-Overhead=GNU Terry Pratchett	Some human-readable text

بررسی یک مثال

- کوئریهای ٔٔ DNS از UDP استفاده میکنند، بنابراین هیچ handshake وجود ندارد.
- این همچنین به این معنی است که مرتبط کردن درخواستها و پاسخها میتواند دشوار باشد.
 - پاسخ شامل کوئری است، بنابراین کلاینت میداند که به چه چیزی پاسخ میدهد.
- درخواست و پاسخ در واقع متن ساده نیستند، اما خواندن متن دودویی در مثالها دشوار است.

192.168.0.1:56789		8.8.8.53
Query: A example.com	\rightarrow	
	←	Query: A example.com Answer: A 93.184.216.34

⁴ فرآیندی که در آن یک دستگاه (مانند رایانه یا تلفن هوشمند) از یک سرور سامانه نام دامنه (DNS) آدرس IP مرتبط با یک نام دامنه خاص را درخواست می کند.

CNAMEs

- برای برقراری ارتباط با یک میزبان به یک آدرس IP نیاز داریم.
- اگر هیچ رکورد A برای نام وجود نداشته باشد، اما یک رکورد CNAME وجود داشته باشد، سرور DNS با رکورد CNAME و در صورت وجود رکورد A برای آن نام، پاسخ خواهد داد.

192.168.0.1:56789		8.8.8.53
Query: A example.com	\rightarrow	
	←	Query: A example.com Answer: CNAME origin.example.com Answer: CNAME webserver.example.com Answer: A 93.184.216.34

Load Balancers

- یک سرور به ندرت برای مدیریت تمام ترافیک شما کافی است.
- Load balancer، درخواستهای ورودی را بین چندین سرور تقسیم میکنند.
 - برخی از Load balancer ها در لایه انتقال (TCP و غیره) کار می کنند.
 - برخی دیگر در لایه کاربرد (HTTP و غیره) کار میکنند.
 - لایه transport «اَسان تر» است (یعنی به زمان CPU کمتری نیاز دارد).
 - در لایه application قدرتمندتر است.
- می توانید در خواستها را مثلاً برای یک نقطه پایانی HTTP خاص به مجموعهای متفاوت از سرورها ارسال کنید.
 - میتوانید به برخی از درخواستها بدون برخورد با سرور backend پاسخ دهید.
 - هر دو نوع الگوریتمهای Load balancer متعددی دارند.
 - Round Robin / Weighted Round Robin O
 - Least Connections O
 - (Source IP مثلاً) Hashed on some property of connection O
 - Random O

Transport Layer Load Balancers

- تمام بستههای مربوط به یک جلسه TCP به یک سرور backend ارسال و از آن دریافت میشوند.
 - برای هر سرویس backend که از TCP استفاده می کند، کار می کند.
 - ⊃ این شامل اکثر سرویسهای backend میشود.
 - سرورهای وب
 - سرورهای پایگاه داده
 - Toasterهای فعال در اینترنت
- مىتوانند براى UDP نيز كار كنند، اما پروتكل لايه كاربرد در بالا بايد بدون وضعيت باشد و/يا بايد از يك الگوريتم Load balancer مبتنى بر هش استفاده كنيد.
 - نیازی به رمزگشایی ترافیک در حال انتقال نیست.
 - درخواستها را می توان فقط بر اساس جزئیات سطح انتقال یا اینترنت/شبکه مانند آدرس IP منبع تقسیم کرد.
 - به طور کلی قابلیتهای آنها نسبتاً محدود است.

Application Layer Load Balancers

- آنها در واقع پروتکل لایه برنامه (مثلاً HTTP) را درک میکنند.
- این به شما امکان میدهد کارهای مفیدی مانند موارد زیر انجام دهید:
- تقسیم درخواستها بر اساس جزئیات لایه برنامه (مثلاً مسیر HTTP، رشته پرس و جو، کوکیها)
 - پاسخ به برخی درخواستها بدون نیاز به سرور backend (مثلاً هدایت HTTP به HTTP)
 - Edge Side Includes (یعنی فراخوانی بیش از یک سرور backend برای تشکیل یک پاسخ)
- مسدود کردن درخواستهایی که مشکوک به مخرب بودن آنها هستید (مثلاً درخواست HTTP حاوی بار XSS احتمالی است) قدرت پردازش بسیار بیشتری برای اجرا نیاز دارد
- معمولاً فقط برای یک پروتکل ساخته شده است (مثلاً یک Load Balancer HTTP واقعاً نمیتواند کاری با اتصالات MySQL انجام دهد)
- اگر از یک انتقال رمزگذاری شده مانند TLS استفاده می کنید، Load Balancer باید ترافیک ورودی را قبل از پردازش رمزگشایی کند.
 - این بدان معناست که باید کلیدهای خصوصی خود را در Load Balancers خود مستقر کنید.
 - گاهی اوقات ممکن است لازم باشد بعداً دوباره رمزگذاری کنید (مثلاً برای دادههای دارنده کارت)

Network Address Translation (NAT)

- فضای ۱P۷4 محدود است آدرسهای ۱P۷4 اعداد صحیح بدون علامت ۳۲ بیتی هستند.
 - حداکثر آدرسها: ۴,۲۹۴,۹۶۷,۲۹۵
 - با کم کردن محدودههای رزرو شده، در واقع فقط ۳,۷۰۲,۲۵۸,۴۳۰ میشود.
 - بیش از ۷٫۶۰۷٫۰۰۰٫۰۰۰ نفر در زمین تا مارس ۲۰۱۸
 - چند دستگاه متصل به اینترنت دارید؟
- آخرین باری که بررسی کردم، بیش از ۳۰ دستگاه در شبکه خانه ی من وجود داشت.
- NAT یک راه حل برای مشکل فضای ۱Pv4 است، اما همچنین راهی خوب برای اطمینان از خصوصی بودن واقعی شبکه شما نیز هست.
 - به عنوان مثال، آدرسهای خصوصی را نمیتوان از اینترنت عمومی مسیریابی کرد، مگر اینکه صریحاً اجازه دهید.

نکتهی فرعی: فضای رزرو شدهی Pv feserved IPvfour Space) IPv (Reserved IPvfour Space)

• محدودههای استفاده خصوصی (Private-use Ranges):

- O 10.0.0.0/8
- 172.16.0.0/12
- O 192.168.0.0/16
- O 127.0.0.0/8
- 0.0.0.0/8

• محلی / حلقه برگشتی (Local / loopback):

- و حدود 10 محدوده یا بیشتر که به دلایل مختلف رزرو شدهاند
- o به عنوان مثال مستندات، محدودههای پخش، «برای استفادههای آینده هستند»

نحوه به کار گیری NAT

- دستگاه A (192.168.0.10) در شبکه شما و پشت NAT قرار دارد.
- میخواهد به سرورهای DNS گوگل (پورت 53، 8.8.8) متصل شود.
 - دستگاه A یک بسته ارسال می کند:
 - ه مک مبدا: aa:aa:aa:aa:aa:aa
- o مک مقصد: CC:CC:CC:CC:CC (رابط داخلی روی دروازه پیشفرض)
 - o آى پى اپورت مبدا: 192.168.0.10:34567 (آى پى دستگاه A
 - آي پي/پورت مقصد: 8.8.8.8:53
- دروازه پیشفرض بسته را دریافت می کند و آی پی /پورت مبدا را قبل از ارسال به آدرس زیر بازنویسی می کند:
 - 💿 آي پي/پورت مبدا: 62.52.42.32:45678 (آي پي عمومي دروازه)
 - آی پی/پورت مقصد: 8.8.8.55
 - ترجمه ضبط می شود تا ترافیک برگشتی بتواند IP مقصد و پورت خود را ترجمه کند.

