Regression: Housing price prediction

Linear regression model

Cost function

$$f_{w,b}(x) = wx + b$$
 $J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$

Gradient descent algorithm

repeat until convergence {

$$w = w - \alpha \frac{\partial}{\partial w} J(w, b) \longrightarrow \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(w, b) \longrightarrow \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})$$

except that it doesn't have that xi term at the end.

(Optional)
$$\frac{\partial}{\partial w} J(w,b) = \frac{1}{J_{w}} \frac{1}{2m} \sum_{i=1}^{m} \left(f_{w,b}(x^{(i)}) - y^{(i)} \right)^{2} = \frac{J}{J_{w}} \frac{1}{2m} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^{2}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right) 2 x^{(i)} = \frac{1}{m} \sum_{i=1}^{m} \left(f_{w,b}(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

$$\frac{\partial}{\partial w} J(w,b) = \frac{J}{J_{w}} \sum_{i=1}^{m} \left(f_{w,b}(x^{(i)}) - y^{(i)} \right)^{2} = \frac{J}{J_{w}} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^{2}$$

$$= 2m \sum_{i=1}^{m} (w_{i} x^{(i)} + b - y^{(i)}) = \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})$$
Now you have these two

expressions for the derivatives.

Parameters and features

$$\overrightarrow{\mathbf{w}} = \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix} \qquad \mathbf{n} = 3$$

b is a number

$$\vec{\mathbf{x}} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$$

NumPy ®

linear algebra: count from 1

$$w = np.array([1.0, 2.5, -3.3])$$

$$b = 4 \qquad \qquad \chi[o] \ \chi[1] \ \chi[2]$$

$$x = np.array([10,20,30])$$

code: count from 0

Without vectorization 1=100,000

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

$$f = w[0] * x[0] + w[1] * x[1] + w[2] * x[2] + b$$

Without vectorization

$$f_{\vec{w},b}(\vec{x}) = \left(\sum_{j=1}^{n} w_j x_j\right) + b \quad \sum_{j=1}^{n} \rightarrow j = 1...n$$

range(
$$o, n$$
) $\rightarrow j = 0 \dots n-1$

Vectorization

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

$$f = np.dot(w,x) + b$$

But is fp equals np

dot dot w comma x and

Gradient descent

One feature

repeat {

$$w = w - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)}) \mathbf{x}^{(i)}$$

$$\mathbf{b} = \mathbf{b} - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{\mathbf{w},\mathbf{b}}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})$$

simultaneously update w, b

different with multiple features

Feature and parameter values

$$\widehat{price} = w_1 x_1 + w_2 x_2 + b$$
size #bedrooms

 x_1 : size (feet²) x_2 : # bedrooms

range: 300 - 2,000 range: 0 - 5

large Small

House:
$$x_1 = 2000$$
, $x_2 = 5$, $price = 500 k

one training example

size of the parameters w_1, w_2 ?

$$w_1 = 50$$
, $w_2 = 0.1$, $b = 50$
 $price = 50 * 2000 + 0.1 * 5 + 50$
 $price = 50 * 2000 + 0.1 * 5 + 50$
 $price = 0.1 * 2000 k + 50 * 5 + 50$
 $price = 0.1 * 2000 k + 50 * 5 + 50$
 $price = 0.1 * 2000 k + 50 * 5 + 50$

$$w_1 = 0.1$$
, $w_2 = 50$, $b = 50$
Small large
 $price = 0.1 * 2000k + 50 * 5 + 50$
 $200K$ 250K 50K

price = \$100,050.5k = Likewise, when the possible more reasonable values of the feature are small,

Feature size and parameter size

	size of feature x_j	size of parameter w_j
size in feet ²		
#bedrooms		

Z-score normalization

Make sure gradient descent is working correctly

 $J(\vec{\mathbf{w}}, \mathbf{b})$ should decrease objective: $\min_{\overrightarrow{w}, b} J(\overrightarrow{w}, b)$ after every iteration learning curve $J(\overrightarrow{\mathbf{w}}, \mathbf{b})$ $I(\overrightarrow{w}, b)$ after 100 iterations $J(\vec{w}, b)$ after 200 iterations $J(\vec{\mathbf{w}}, \mathbf{b})$ likely converged by 400 iterations 100 200 300 400 # iterations

iterations needed varies In one application, it may

Identify problem with gradient descent

or learning rate is too large

$$w_1 = w_1 + \alpha d_1$$
use a minus sign
 $w_1 = w_1 - \alpha d_1$

Adjust learning rate

With a small enough α , $J(\vec{w}, b)$ should decrease on every iteration

Stanford ONLINE

ODeeplearning.Al

Andrew Na

Want outputs between 0 and 1

the graph on the left and right are different.

Want outputs between 0 and 1

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}})$$

$$z = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

$$y$$

$$y$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

logistic function

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = g(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$$

outputs between 0 and 1

$$g(z) = \frac{1}{1+e^{-z}}$$
 $0 < g(z)$ and what it does is it inputs feature or set

"logistic regression"

Squared error cost

$$J(\overrightarrow{\mathbf{w}}, b) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (f_{\overrightarrow{\mathbf{w}}, b}(\overrightarrow{\mathbf{x}}^{(i)}) - \mathbf{y}^{(i)})^{2}$$

linear regression

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

logistic regression

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$$

Logistic loss function

$$L(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) = \begin{cases} -\log\left(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)})\right) & \text{if } \mathbf{y}^{(i)} = 1\\ -\log\left(1 - f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)})\right) & \text{if } \mathbf{y}^{(i)} = 0 \end{cases}$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) \qquad \log(f)$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) \qquad \log(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)})$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) \rightarrow 1 \text{ then loss } \rightarrow 0 \text{ if } f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)})$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) \rightarrow 1 \text{ then loss } \rightarrow 0 \text{ if } f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)})$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) \rightarrow 1 \text{ then loss } \rightarrow 0 \text{ if } f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)})$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) \rightarrow 1 \text{ then loss } \rightarrow 0 \text{ if } f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)})$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) \rightarrow 0 \text{ then loss } \rightarrow 0 \text{ if } f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)})$$

Logistic loss function

$$L(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) = \begin{cases} -\log\left(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)})\right) & \text{if } \mathbf{y}^{(i)} = 1\\ -\log\left(1 - f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)})\right) & \text{if } \mathbf{y}^{(i)} = 0 \end{cases}$$

$$As \ f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \to 0 \text{ then } loss \to 0 \quad \downarrow \downarrow \qquad \qquad -\log(1 - f)$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) \quad \text{if } \mathbf{y}^{(i)} = 0$$

$$f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \to 1 \text{ the patient's tumor is}$$

Simplified loss function

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = \begin{cases} -\log(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})) & \text{if } y^{(i)} = 1\\ -\log(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = -y^{(i)}\log(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})) - (1 - y^{(i)})\log(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}))$$

$$\text{if } y^{(i)} = 1: \qquad (1 - 0)$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = -\log(f(\overrightarrow{x}))$$

$$\text{if } y^{(i)} = 0:$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = \text{equivalent to the more} \begin{cases} 1 - 0 \\ 1 - 0 \end{cases} \log(1 - f(\overrightarrow{x}))$$

$$\text{complex expression up here,}$$

Simplified cost function

$$L(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) = \frac{1}{m} \sum_{i=1}^{m} \left[L(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[L(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[\mathbf{y}^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) + (1 - \mathbf{y}^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right]$$

statistics using a statistical principle

Gradient descent for logistic regression

} simultaneous updates

- (learning curve)
- Vectorized implementation

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

Logistic regression

fgradient descent for logistic regression.

Regression example

underfit

 Does not fit the training set well

high bias

 Fits training set pretty well

that the algorithm has high variance.

 Fits the training set extremely well

high varian.

Classification

$$z = w(x_1) + w_2(x_2) + b$$
$$f_{\overrightarrow{W},b}(\overrightarrow{x}) = g(z)$$

$$z = w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_2^2 + w_5 x_1 x_2 + b$$

g is the sigmoid function Having all these higher-order polynomial features

$$z = w_1 x_1 + w_2 x_2 + w_3 x_1^2 x_2 + w_4 x_1^2 x_2^2 + w_6 x_1^3 x_2 + \cdots + b$$

Regularization

Reduce the size of parameters w_i

$$f(x) = 28x - 385x^2 + 39x^3 - 174x^4 + 100$$

$$f(x) = 13x - 0.23x^2 + 0.000014x^3 - 0.0001x^4 + 10$$

Sbut they just prevents

large values for Wj the features from values for Wj

Addressing overfitting

Options

- 1. Collect more data
- 2. Select features
 - Feature selection in course 2
- 3. Reduce size of parameters
 - "Regularization"

This will be the subject of the next video as well.

Regularization

Regularization

mean squared error

$$J(\vec{w},b) = \min_{\vec{w},b} \left(\frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2 \right)$$

fit data

Keep wj small

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + b$$

$$f_{\vec{w},b}(\vec{x}) = w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + b$$

which will tend to reduce overfitting.

Regularized linear regression

$$\min_{\vec{w},b} J(\vec{w},b) = \min_{\vec{w},b} \left[\frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2 \right]$$

Gradient descent

Regularized logistic regression

$$\vec{z} = w_1 x_1 + w_2 x_2
+ w_3 x_1^2 x_2 + w_4 x_1^2 x_2^2
+ w_5 x_1^2 x_2^3 + \dots + b$$

$$f_{\vec{w},b}(\vec{x}) = \frac{1}{1 + e^{-z}}$$

Cost function

$$J(\vec{\mathbf{w}},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[\mathbf{y}^{(i)} \log \left(\mathbf{f}_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}^{(i)}) \right) + \left(1 - \mathbf{y}^{(i)} \right) \log \left(1 - \mathbf{f}_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{m} \mathbf{w}_{j}^{2}$$
where the transformation with the state of the state

wb that includes the regularization term? "↓

Cost function

In a previous lab, you developed the *logistic loss* function. Recall, loss is defined to apply to one example. Here you combine the losses to form the **cost**, which includes all the examples.

Recall that for logistic regression, the cost function is of the form

$$J(\mathbf{w}, b) = \frac{1}{m} \sum_{i=0}^{m-1} \left[loss(f_{\mathbf{w}, b}(\mathbf{x}^{(i)}), y^{(i)}) \right]$$
(1)

where

• $loss(f_{\mathbf{w},b}(\mathbf{x}^{(i)}), \mathbf{y}^{(i)})$ is the cost for a single data point, which is:

$$loss(f_{\mathbf{w},b}(\mathbf{x}^{(i)}), y^{(i)}) = -y^{(i)} \log(f_{\mathbf{w},b}(\mathbf{x}^{(i)})) - (1 - y^{(i)}) \log(1 - f_{\mathbf{w},b}(\mathbf{x}^{(i)}))$$
(2)

where m is the number of training examples in the data set and:

$$f_{\mathbf{w},b}(\mathbf{x}^{(i)}) = g(z^{(i)}) \tag{3}$$

$$z^{(i)} = \mathbf{w} \cdot \mathbf{x}^{(i)} + b \tag{4}$$

$$g(z^{(i)}) = \frac{1}{1 + e^{-z^{(i)}}} \tag{5}$$