Лабораторная работа 2.2.6

Определение энергии активации по температурной зависимости вязкости жидкости

Шерхалов Денис Б02-204

11 апреля 2023 г.

Цель работы: 1) измерение скорости падения шариков при разной температуре жидкости; 2) вычисление вязкости жидкости по закону Стокса и расчет энергии активации.

В работе используются: стеклянный цилиндр с исследуемой жидкостью (глицерин); термостат; секундомер; горизонтальный компаратор; микроскоп; мелкие шарики (диаметром 1-2 мм).

1. Введение

Для того чтобы перейти в новое состояние, молекула жидкости должна преодолеть участки с большой потенциальной энергией, превышающей среднюю тепловую энергию молекул. Для этого тепловая энергия молекул должна — вследствие флуктуации — увеличиться на некоторую величину W, называемую энергией активации. Температурная зависимость вязкости жидкости при достаточно грубых предположениях можно описать формулой

$$\eta \sim Ae^{W/kT}$$
(1)

Из формулы (1) следует, что существует линейная зависимость между величинами $\ln \eta$ и 1/T, и энергию активации можно найти по формуле

$$W = k \frac{d(\ln \eta)}{d(1/T)} \tag{2}$$

По формуле Стокса, если шарик радиусом r и со скоростью v движется в среде с вязкостью η , и при этом не наблюдается турбулентных явлении, тормозящую силу можно найти по формуле (3)

$$F = 6\pi \eta r v \tag{3}$$

Для измерения вязкости жидкости рассмотрим свободное падение шарика в жидкости. При медленных скоростях на шарик действуют силы Архимеда и Стокса, выражения для которых мы знаем. Отсюда находим выражения для установившейся скорости шарика и вязкости жидкости

$$v_{\rm ycr} = \frac{2}{9}gr^2\frac{\rho - \rho_{\rm x}}{\eta}, \qquad \tau = \frac{2r^2\rho}{9\eta}$$
 (4)

$$\eta = \frac{2}{9}gr^2 \frac{\rho - \rho_{\mathsf{x}}}{v_{\mathsf{vcT}}} \tag{5}$$

$$Re = \frac{\rho_{xx}vd}{\eta}, \qquad S = v_{ycr}\tau$$

Как видим, измерив установившуюся скорость шарика и параметры системы можно получить вязкость по формуле (5).

Экспериментальная установка Для измерений используется стеклянный цилиндрический сосуд В, наполненный исследуемой жидкостью (глицерин). Диаметр сосуда ≈ 3 см, длина h=20 см. На стенках сосуда нанесены две метки на некотором расстоянии друг от друга. Верхняя метка должна располагаться ниже уровня жидкости с таким расчетом, чтобы скорость шарика к моменту прохождения этой метки успевала установиться. Измеряя расстояние между метками, b время падения определяют установившуюся скорость шарика $v_{\rm уст}$. Сам сосуд В помещен в рубашку D, омываемую водой из термостата. При работающем термостате температура воды в рубашке D, а потому и температура жидкости 12 равна температуре воды в термостате. Схема прибора (в разрезе) показана на рис.1.

Рис. 1: Установка для определения коэффициента вязкости жидкости.

Рис. 2: Зависимость плотности глицерина от температуры.

2. Выполнение

1. Отберём 20 шариков — 10 стеклянных и 10 стальных. Измерим их размеры с помощью микроскопа. Будем измерять в двух перпендикулярных плоскостях и усреднять.

$$ho_{
m ctekino} = 2.5\,{}^{
m r}/{}_{
m cm^3} \qquad
ho_{
m ctajb} = 7.8\,{}^{
m r}/{}_{
m cm^3}$$

2. Измерим установившиеся скорости падения шариков и вычислим вязкость η по формуле (5). Измерения выполним для 5 значений температуры в интервале от комнатной до $60^{\circ}C$. Для каждого значения температуры определим плотность жидкости $\rho_{\text{ж}}$ по графику, приложенному к работе (рис. 2).

Таблица 1: Значение плотности глицерина в зависимости от температуры

	20.5				
$\rho_{\scriptscriptstyle m K}, {}^{\scriptscriptstyle \Gamma}/{}_{\scriptscriptstyle m CM}$ 3	1.260	1.255	1.250	1.245	1.240

3. Оценим погрешности:

$$\begin{split} \Delta t_{\text{пад}} &= 0.2\,c, \qquad \Delta T = 0.5\,K \\ \Delta v_{\text{уст}} &= \Delta t_{\text{пад}}\,\frac{h}{t_{\text{пад}}^2} \\ \Delta \eta &= \frac{2}{9}gr^2\,\frac{\rho - \rho_{\text{ж}}}{v_{\text{уст}}^2}\Delta v_{\text{уст}} \end{split}$$

4. Теперь построим график $\ln \eta(T^{-1})$ (График №1).

$$\left(\frac{d(\ln\,\eta)}{d(1/T)}\right)_{\rm ctajb} = (6686\pm142)\,K \ \Rightarrow \ W_{\rm ctajb}/k = (6686\pm142)\,K$$

$$\left(\frac{d(\ln\,\eta)}{d(1/T)}\right)_{\rm ctekjo} = (6329\pm36), K \ \Rightarrow \ W_{\rm ctekjo}/k = (6361\pm36)\,K$$

$$\left(\frac{d(\ln\,\eta)}{d(1/T)}\right)_{\rm cpeqh} = (6524\pm162), K \ \Rightarrow \ W_{\rm cpeqh}/k = (6524\pm162)\,K$$

Таблица 2: Измерения времени для стальных шариков

$N_{\bar{0}}$	$T,^{\circ}C$	d, mm	$t_{ m nag}, { m c}$	v, cm/c	$\Delta v, \mathrm{cm/c}$	η , м $\Pi a \cdot c$	$\Delta \eta$, м $\Pi a \cdot c$	au, MC	Re	S, μ_{M}
1	20.5	0.80	81.77	0.245	0.001	933	2	0.30	0.003	0.73
2		0.90	72.55	0.276	0.001	1048	3	0.33	0.003	0.92
3	31.0	0.70	69.66	0.287	0.001	609	2	0.35	0.004	1.00
4		0.70	63.06	0.317	0.001	551	2	0.39	0.005	1.22
5	40.8	0.80	29.34	0.682	0.004	335	2	0.83	0.020	5.64
6		0.90	23.41	0.854	0.007	339	3	1.04	0.028	8.86
7	50.1	0.85	9.82	2.037	0.041	127	3	2.47	0.170	50.3
8		0.88	10.02	1.996	0.040	139	3	2.42	0.158	48.3
9	60.0	0.80	6.03	3.317	0.110	69	2	4.02	0.477	133.3
10		0.65	9.60	2.083	0.043	73	2	2.52	0.231	52.6

Таблица 3: Измерения для стеклянных шариков

$N_{\bar{0}}$	$T,^{\circ}C$	d, mm	$t_{\rm пад}, { m c}$	v, cm/c	$\Delta v, \mathrm{cm/c}$	η , м Π а · с	$\Delta \eta$, м $\Pi a \cdot c$	τ , MC	Re	S, μ_{M}
1	20.5	2.00	67.28	0.297	0.001	910	3	0.611	0.008	1.82
2		2.05	68.60	0.292	0.001	975	3	0.599	0.008	1.75
3	31.0	2.00	36.16	0.553	0.003	491	3	1.132	0.028	6.26
4		2.10	36.03	0.555	0.003	539	3	1.136	0.027	6.30
5	40.8	2.05	18.39	1.088	0.012	263	3	2.216	0.106	24.10
6		2.10	17.88	1.119	0.013	269	3	2.279	0.109	25.49
7	50.1	2.05	8.70	2.299	0.053	125	3	4.665	0.469	107.3
8		2.05	8.80	2.273	0.052	127	3	4.612	0.458	104.8
9	60.0	2.05	5.44	3.676	0.135	79	3	7.432	1.190	273.2
10		2.10	5.29	3.781	0.143	80	3	7.642	1.228	288.9

Рис. 3: График №1 ln $\eta(T^{-1})$

3. Вывод

Во-первых, так как в каждом опыте значение числа Рейнольдса Re было очень маленьким (меньше 1.5), поэтому можно считать, что обтекание шарика жидкостью действительно имело ламинарный характер и формула Стокса справедлива в данной лабораторной работе.

Так же мы вычислили вязкость исследуемой жидкости (глицерина) по закону Стокса, например при $T=323~{\rm K}~\eta=(130~\pm~7)~{\rm m}\Pi{\rm a}\cdot{\rm c},$ что соотвествует табличному значению раствора глицерина. И вычислили энергию активации глицерина $W=(90\pm2)$ зептоДж.