Reinforcement Learning Project: Open Al Robotic Hand (Robby)

Patrick Matthäi & Andrea Maldonado

Setup

- Simulation/Physic Engine: MuJoCo
- Environment: gym + mujoco-py
- **Python** 3.7
- **Frameworks**: tensorflow, tflearn, matplotlib
- Dependencies: pydmps, deep-rl

Task

Train a simulated robot hand to throw a ball as high as possible

Challenges:

- Project setups (Licensing)
- Creating a new environment for the task
- Environmental Constraints: Gravity, losing touch and physiology
- Sparse Reward Problem: Promoting a throwing motion

Sparse Reward Problem

- Promoting a throwing motion
 - Losing ball's touch is losing control
 - Gravity and ball max height as goal: height and velocity (after turning point)
 - Preventing the Cobra Effect when designing Rewards

Policy Gradient Methods

Deep Deterministic Policy Gradient

- Model-free, off-policy, actor-critic learning algorithm
 Goal: Represent the policy function independently of the value function.
- Actor network: Policy function
- Critic network: Value function

Deterministic Policy Gradient Theorem

$$abla_{ heta^{\mu}}\mupprox \mathbb{E}_{\mu'}ig[
abla_a Q(s,a| heta^Q)|_{s=s_t,a=\mu(s_t)}
abla_{ heta^{\mu}}\mu(s| heta^{\mu})|_{s=s_t}ig]$$

Dynamic Movement Primitives

- Goal: Reduce the search space
- Reducing freedom
- Dividing complex into simple
- Trajectory to emulate throwing motion for position, velocity and acceleration.
- 20 steps lasting throwing motion

Combining DDPG with DMPs

- Usual approach: Generate data with DMP to train DDPG
- Our approach: combine the DMP and DDPG action for each step and just feed the DDPG portion to the replay buffer for learning

Evaluation: DDPG

Evaluation: DMP

Evaluation: DDPG+DMP

Conclusion:

"We can teach an old robot a new trick!"

Successes:

- New environment
- Exciting insight using combined methods
- Learning about multiple challenges e.g. Sparse Reward Problem

Future Work:

- Further reward functions
- Hyper parameter tuning
- Further Algorithms e.g. Proximal Policy Optimization, Hindsight Experience Replay, etc.

Literatur & Quellen

- https://medium.com/datadriveninvestor/training-a-robotic-arm-to-do-human-like-tasks-using-rl-8d3106c87aaf
- https://blog.floydhub.com/robotic-arm-control-deep-reinforcement-learning/
- http://gazebosim.org/
- https://ai.googleblog.com/2019/01/soft-actor-critic-deep-reinforcement.html
- https://github.com/Unity-Technologies/ml-agents
- https://openai.com/blog/learning-dexterity/
- https://bair.berkeley.edu/blog/2018/08/31/dexterous-manip/
- https://gym.openai.com/envs/HandManipulateEgg-v0/
- https://arxiv.org/pdf/1701.08878.pdf
- https://github.com/pemami4911/deep-rl

Reinforcement Learning & Process Mining

Environment and agent changes

Source Environment and agent:
 Open Al Robotics ⇒ "HandManipulateEgg-v0"

Changes:

- Collision detection between ball and floor ⇒ Reset environment
- Mobility of hand joints (actuation range, damping)
- Lighter ball (reduce mass from 1 to 0.1)
- New reward function (ball height, ball velocity)
- Visual changes (moved camera, floor-Mesh, coloring)

Reward function

Ball height

Ball velocity on height axis

Ball distance to target

Depenalizing falling

Environment and agent

Action space:

- Rotation of a subset of hand joints
- 20 Dimensions

State space:

- Hand: Positions of all hand joints and velocities in all dimensions
- Ball: Positions and positional velocities in all dimensions
- Goal: Positions and positional velocities in all dimensions
- 54 Dimensions

Sparse Reward Problem's Challenges

- Promoting a throwing motion
 - Losing ball's touch is losing control
 - Gravity and ball max height as goal:
 height and velocity after turning point
 - Preventing the Cobra Effect when designing Rewards

Episode

- 1. Place ball in palm
- 2. Start in a given inertial position
- 3. Move joints by one of our solutions
 - a. If ball collides with floor \rightarrow reset environment and start at 1.