Data-driven machine learning

AI, Machine Learning, Deep Learning

AI, Machine Learning, Deep Learning

Neuron

Input: Electric signals

https://en.wikipedia.org/wiki/Neuronsheck fig. for neuronsheck

http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

Artificial Neural Network

Neural Networks

Feedforward neural network with 2 hidden layers

http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

input dimension = # input neurons (3 dim in the fig.) output dimension = # output neurons (2 dim in the fig.)

- Each layer outputs activation functions composed with the linear combinations of its inputs.
- The neurons are all parallel in the same layers.

Linear hidden layers can be reduced to a single layer

Example: In case of the activation function f = Id (ide ntity), all hidden layers can be reduced to one hidden linear layer. Then the data will be underfitted. To bett er fit, nonlinear activation function f will be needed.

Deep Learning via Deep Neural Network (DNN)

Back propagation performs Gradient descent search over a vector space

Example of Activation functions

ReLU

Deep network if the number of hidden layers is greater than or equal to 2.

Learning via Neural Networks = Find f_{θ}

- 1. Given training data,
- 2. Choose Output function,
- 3. Choose Objective (Loss) function,
- 4. Find the minimizer such that

$$\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$$

$$\hat{m{y}}_i = f_{m{ heta}}(m{x}_i)$$

$$\ell(\hat{ extbf{y}}_i, extbf{y}_i) \in \mathbb{R}$$

5. Train with Stochastic Gradient Descent arg $\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$ $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$

Underfit, Overfit

CPU vs GPU

https://blogs.nvidia.com/blog/2009/12/16 /whats-the-difference-between-a-cpu-and -a-gpu/

CPU	GPU
Central Processing Unit	Graphics Processing Unit
Several cores	Many cores
Low latency	High throughput
Good for serial processing	Good for parallel processing
Can do a handful of operations at on ce	Can do thousands of operations at onc e

Types of Machine Learning

https://medium.com/intro-to-artificial-intelligence/reinforce-a-policy-gradient-based-reinforcement-learning-algorithm-84bde440c816

Types of Machine Learning (I)

Supervised learning: The training data you feed to the algorithm includes the desired solutions, called labels.

Regression: Predict a target numeric value, such as the price of a car, given a

set of features (mileage, age, brand, etc.), or estimate the model

Classify a given data. For example, a spam filter is trained with (Linear models for regression: LS, ML and MAP approach, SVM, Decision Trees, Neural Networks)

example emails (training set) along with their class (spam or ham; labels), and it

must learn how to classify new emails

(k-Negrests Heighbor, Logistic regression, SVM Desciping the Ass., Neural networks)

Figure 1-5. A labeled training set for supervised learning (e.g., spam classification

Supervised Learning

Example: Hand-written digits (MNIST)

• Machine Learning (Supervised) C(x) is called a classifier

 Design C(x) so that the output becomes the same with the known output corresponding to each training (feature)
 Veretorised Learning with labeled training vectors)

Types of Machine Learning (II)

Unsupervised learning: The training data is unlabeled. The system tries to learn

wit**Chustering**chærtect groups of data with similar characteristics (k-Means, Expectation maximization (EM), Hierarchical cluster analysis)

Dimensionality reduction: Simplify the data without loosing much information

Reinforcement learning. The learning system (agent) observes the environment,

selects and performs actions, and get rewards/penalties in return. Then it learnsple: DeepMind's AlphaGo, and algorithms for robot walking

by itself what is the best strategy (policy), to get the most reward over time

SW Tools for Machine Learning (I)

Language	python	 The basic programming development language Intuitive, friendly and easy for use
Development Program	Jupyter Jupyter notebook	 Can be executed in block unit Internet connection required
	PyCharm	 File structure views and quick jumping between files Python development for Google app engine
Package Management	Anaconda	 Aims to simplify package installation and management Manages package groups in an independent environment Preventing collisions due to package-specific compatibility issues

SW Tools for Machine Learning (II)

Package (Library)	Pytorch	' PyTorc	 Developed for deep learning neural networks Developed by Facebook
	Keras	K Keras	 Designed to enable fast experimentation with deep neural networks Focuses on being user-friendly, modular, and extensible.
	Numpy	NumPy	Specialized for matrix operations.
	Pandas	$\begin{array}{c} pandas \\ y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it} \end{array}$	Specialized for data processinge.g., merging, deleting, reshaping
	Scikit-Learn	lear in matpl tlib	 Includes various machine learning algorithms e.g., regression, clustering
	matplotlib	geneim	Specialized for graph plotting
	gensim	961131111	 Robust open-source for vector space modeling Uses Numpy, SciPy and optionally Cython for performance

SW Tools for Machine Learning Projects

Google colab

https://colab.research.google.com/

https://www.kaggle.com/

Software Tools for Machine Learning

- 1. Python Guide
 - Jump to Python (Korean) https://wikidocs.net/book/1
 - 2. A Byte of Python (English) https://python.swaroopch.com/modules.html
- 2. Pytorch Guide
 - 1. Pytorch website (English) https://pytorch.org/tutorials/
- 3. Numpy Guide
 - 1. Scipy website (English) https://docs.scipy.org/doc/numpy-1.14.0/search.html
- 4. Matplotlib Guide
 - 1. Matplotlib website (English) https://matplotlib.org/

Dataset

MNIST dataset

- Hand written digit
- 28x28 pixels, 70,000 images
- http://yann.lecun.com/exdb/mnist/
 28
- 6 R 3 6 1 8 4 3 9 1 3 9 1 5 2 0 9 7 0 9 4 8 7 8 6 6 6 8 4 4 4 4 8 4 A 8 6 R 3 6 2 1 0 2 9 1 3 9 2 8 9 9 4 7 0 9 9 3 0 7 6 6 6 8

CIFAR - 10

- Color images in 10 classes
- 32x32 pixels, 60,000 images
- https://www.cs.toronto.edu/~kriz/cifar.html

Popular open data repositories

UC Irvine Machine Learning Repository (http://archive.ics.uci.edu/ml/)

Kaggle (http://www.kaggle.com/datasets)

Amazon's AWS datasets (http://aws.amazon.com/fr/datasets/)

Dataset: batch size, iterations, epochs

