ATOMES ET ELEMENTS

Exercice n°1

Lorsqu'on chauffe dans une flamme un composé contenant un métal alcalin, celui-ci émet de la lumière dont la couleur est caractéristique de la nature de ce métal. Lors de cette émission, un atome de potassium subit une variation d'énergie de 4.91 10^{-19} J, un atome de sodium, une variation d'énergie de 3.38 10^{-19} J. La figure ci-dessous donne les domaines de longueur d'onde des différentes couleurs du spectre dans le visible.

Quelles sont les couleurs qui révèlent la présence de ces éléments dans un échantillon ?

Violet	Bleu	Vert	Jaune	Orange	Rouge
400nm		500nm		600nm	700 nm

On donne: $h = 6.63 \cdot 10^{-34} \text{ J.s}$

Exercice n°2

Le spectre de l'hydrogène comporte plusieurs séries de raies, dont l'une dans l'ultra-violet (série de Lyman), une deuxième dans le visible (série de Balmer) et une troisième dans l'infrarouge (série de Paschen). Une raie très intense apparaît à 656 nm.

Répondre par vrai ou faux aux affirmations suivantes, en justifiant votre réponse.

Elle s'observe en raison d'une absorption d'énergie par l'atome d'hydrogène.

Elle correspond à une différence d'énergie de 3.03 10⁻¹⁹ J.

Elle correspond à une transition électronique dans le domaine du visible.

Elle pourrait correspondre à la transition $n = 2 \rightarrow n = 1$.

On donne : $h = 6.63 \cdot 10^{-34} \text{ J.s}$; $c = 3.00 \cdot 10^8 \text{ m/s}$

Exercice n°3

L'iode compte 37 isotopes identifiés, parmi lesquels un seul est stable : ¹²⁷₅₃I. Les autres sont radioactifs.

- 1. Donner la composition du noyau d'iode 127.
- 2. Définir des isotopes
- 3. L'iode 123 et l'iode 125 sont utilisés en médecine. Leurs temps de demi-vie sont respectivement de 13 heures et de 59 jours.
- 3.1. Préciser la composition des noyaux d'iodes 123 et d'iode 125. Donner la notation ^AZX associé à ces noyaux.
- 3.2. Lequel de ces isotopes est plus adapté à une utilisation en tant que « traceur radioactif » en imagerie médicale ? Justifier.
- 4. L'iode 131 se désintègre selon une émission de type β avec émission d'un électron.2crire l'équation de désintégration associée. Identifier le noyau-fils issu de cette désintégration.

Données : Te (Z = 52) ; Xe (Z = 54)

Exercice n°4

Le soufre naturel est principalement constitué de trois isotopes : ³²S ; ³³S et ³⁴S. Le soufre 32 est l'isotope le plus abondant, avec un pourcentage massique égal à 95.02% dans le soufre naturel. On donne cidessous les masses molaires atomiques du soufre naturel et de ses différents isotopes. Déterminer les pourcentages massiques des deux isotopes 33 et 34.

	Soufre naturel	Isotope 32S	Isotope 33S	Isotope 34S
Masse molaire (g.mol ⁻¹)	32.0660	31.9721	32.9715	33.9679

Exercice n°5

A la suite d'expériences, un chercheur mesure la masse d'un atome ainsi que la charge de son noyau. Il obtient : $m = 3,2.10^{-26}$ kg et $q = 1,4.10^{-18}$ C.

Déterminez A et Z et donnez le symbole de son noyau.

Donnée: masse d'un nucléon $m_n = 1.7 \cdot 10^{-27} \text{ kg}$, charge d'un électron e = -1.6 $\cdot 10^{-19} \text{C}$