

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/005632

International filing date: 25 May 2005 (25.05.2005)

Document type: Certified copy of priority document

Document details: Country/Office: DE

Number: 10 2004 026 432.5

Filing date: 29 May 2004 (29.05.2004)

Date of receipt at the International Bureau: 25 August 2005 (25.08.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

Aktenzeichen: 10 2004 026 432.5

Anmeldetag: 29. Mai 2004

Anmelder/Inhaber: SCHOTT AG, 55122 Mainz/DE

Erstanmelder: SCHOTT Spezialglas AG,
55122 Mainz/DE

Bezeichnung: Glaszusammensetzungen als antimikrobieller Zusatz
für Dentalmaterialien und deren Verwendung

IPC: A 61 K 6/02

**Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ur-
sprünglichen Unterlagen dieser Patentanmeldung.**

München, den 5. August 2005
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

Stark

Glaszusammensetzungen als antimikrobieller Zusatz für
Dentalmaterialien und deren Verwendung

Die Erfindung betrifft antimikrobielle Zusätze für Materialien zur Zahnrestauration,
beispielsweise antimikrobielle Zusätze für Dentalgläser sowie antimikrobielle
Materialien zur Zahnrestauration, sogenannte antimikrobielle Dentalgläser. Die
Materialien zur Zahnrestauration umfassen insbesondere Materialien zur
Zahnfüllung, wobei die Materialien zur Zahnfüllung Glasionomerzement,
Komposite oder Kompomer umfassen. Des weiteren werden unter Materialien zur
Zahnrestauration auch Zusätze, insbesondere antimikrobielle Zusätze in
Beschichtungs- oder Verblendmaterialien für keramische Dentalstrukturen sowie
Dentalgläser verstanden. Dentalgläser sind beispielsweise in der DE 4323143 C1
offenbart, deren Offenbarungsgehalt vollumfänglich in den der vorliegenden
Anmeldung mitaufgenommen wird.

Bei diesen antimikrobiellen Zusätzen handelt es sich um antimikrobielle und/oder
desinfizierende Glaszusammensetzungen oder Glaskeramiken.

Die Glaszusammensetzungen werden bevorzugt als Pulver, Fasern, Flakes oder
Kugeln zugegeben.

Die Verwendung derartiger antimikrobieller Zusätze findet insbesondere im
Bereich der Materialien zur Zahnfüllung statt.

Die Materialien zur Zahnfüllung sind nach Journal de l'Association dentaire
canadienne, Okt. 1999, Vol. 65, N° 9, p 500-504 in drei Klassen eingeteilt,
Glasionomerzemente, Komposite und Compomere.

Der oben genannte Artikel wird vollumfänglich in den Offenbarungsgehalt der
vorliegenden Anmeldung mitaufgenommen.

2

Gemäß Journal de l'Association dentaire canadienne, Okt. 1999, Vol. 65, № 9, p 500-504 vereinen Komposite als Materialien zur Zahnfüllung zwei unterschiedliche Materialien, die gemeinsam, beispielsweise als Mischung Eigenschaften entwickeln, die jedes Material für sich alleine nicht besitzt. Komposite, wie sie aus dem Stand der Technik bekannt sind, umfassen eine Harz-Matrix und verschiedene anorganischen Füllstoffen.

Die Harz-Matrix eines Komposites besteht aus einer Mischung unterschiedlicher Monomere, die je nach Mengenverhältnis in Verbindung mit Art und Mischung der Füllstoffe unterschiedliche Eigenschaften- bzw. Eigenschaftsabstufungen ergeben.

Die Harz-Matrix besteht in der Hauptsache aus den Acrylat-Monomeren PMMA (Polymethylmethacrylat), TEGDMA (Triethylenglycoldimethacrylat) und BIS-GMA (Bisphenol Glycidylmethacrylate Komposit). Derartige Harzsysteme sind lichtaushärtbar. Weitere Bestandteile der Harz-Matrix sind häufig Beschleuniger, Verzögerer, Stabilisatoren, Initiatoren.

Als Füllstoffe eines Komposites finden hauptsächlich Gläser, (Glas)-Keramik, Quarz, Sol-Gel-Materialien und Aerosile Verwendung.

Der Füllstoff wird in den Matrix eingebettet um das physikalische und chemische Verhalten des Verbunds also des Komposites zu steuern. Die Füllstoffe verbessern insbesondere den Polymerisationsschrumpfung und verbessern beispielsweise die mechanischen Eigenschaften wie E-Modul, Biegefestigkeit, Härte und Abrasionsfestigkeit.

Die Festigkeit sowie die Härte der Komposite wird durch Wärme und/oder mit dem durch Polymerisation mit Licht eingestellt. Unter dem Einfluss von Licht, beispielsweise Licht einer UV-Lampe einer Halogen-Lampe einer Plasma-Lampe oder einer LED-Lampe (Light Emitting Device), insbesondere einer LED die Wellenlängen im Blauen emittiert und im Zusammenspiel mit Zusatzstoffen werden reaktive Radikale gebildet. Diese Radikale setzen beispielsweise eine

Kettenreaktion in Gang, bei der die Monomere des Matrixmaterials z.B Bis-GMA über eine radikalische Zwischenprodukt zu immer längere Kettenmolekülen zusammengesetzt wird und der Kunststoff so aushärtet. Bei dem Prozess handelt es sich also um eine „Radikalische Polymerisation“. Bei der radikalischen

5 Polymersiation lagert sich das Zwischenprodukt beispielsweise an die Kohlenstoffdoppelbindung eines weiteren Monomers an. Dadurch entsteht wieder ein Radikal usw., so dass eine Kettenreaktion eintritt.

Weiterhin ist es bevorzugt, dass die Füllstoffe des Komposites nicht erkennbar sind, was eine möglichst kleine Korngröße erfordert und wiederum die

10 Polierbarkeit der gesamten Füllung, d.h. des Komposites verbessert. Dafür sind die Partikel mit Korngrößen kleiner als 100 µm, bevorzugt kleiner 50 µm, ganz besonders bevorzugt kleiner 10 µm geeignet. Unterschreitet die Partikelgröße einen Wert kleiner als 2 nm, bevorzugt kleiner als 5 nm besonders bevorzugt

15 kleiner als 10 nm so sind die mechanischen Eigenschaften der Komposite zu gering.

Bei den Füllstoffen ist es auch möglich Mischungen von Partikel unterschiedlicher Größe zu benutzen, beispielsweise ein Pulver mit einer mittleren Korngröße im 20 nm-Bereich und ein Pulver mit einer mittleren Korngröße im Bereich von µm. Mit einer solchen Mischung kann die Polierbarkeit und die mechanische Eigenschaften des Komposites erhöht werden:

25 Die Komposite gemäß dem Stand der Technik weisen einen geringen Polymerisationsschrumpfung auf. Ist die Polymersiationsschrumpfung zu hoch, so würden hohe Spannungen zwischen Zahnwand und Füllung auftreten. Bei zu großer Polymerisationsschrumpfung kann im Extremfall sogar eine Zahnwand brechen. Ist die Adhäsion zwischen Füllung und Zahnwand schlecht, und/oder schrumpft das Material zur Zahnfüllung zu stark, so kann es zur Bildung von
30 Randspalten kommen, was in der Folge wieder zu Sekundärkaries führen kann. Zur Zeit erhältliche handelsübliche Materialien schrumpfen um ca. 1,5-2%.

Insbesondere für Anwendungen im Frontzahnbereich weisen die Komposite, eine Farbe und Transluzenz auf, so der Komposit nicht von der umgebenden gesunden Zahnsubstanz unterscheidbar ist. Deshalb ist das Material im wesentlichen farbneutral und die Transluzenz entspricht im wesentlichen der eines natürlichen Zahns.

5 Betreffend die mechanischen Eigenschaften ist es vorteilhaft, wenn die bruchmechanischen Eigenschaften so sind, dass die Füllung bei Kauvorgängen nicht zu stark verschleißt und andererseits der gegenüberliegende Zahn nicht geschädigt wird.

10

Betreffend die thermische Ausdehnung des Komposites ist es vorteilhaft, wenn diese weitgehend der thermischen Ausdehnung der Zahnsubstanz angepasst ist.

15 Betreffend die chemische Beständigkeit des Komposites ist dieser so ausgebildet, dass der Komposit gegen basische Angriffe eine ausreichende Stabilität besitzt.

20

Des weiteren weist der Komposit, eine Röntgenopazität auf, so dass die Füllung im Röntgenbild vom gesunden Zahn und etwaigem Sekundärkaries unterscheidbar ist.

25

Betreffend die Rheologie ist das Harz Vorteilhafterweise thixotrop, d.h. unter Ausübung von Druck nimmt die Viskosität ab, danach wieder zu. Dieses Verhalten ist deswegen von Vorteil, da das Harz aus Kartuschen in die Cavität eingefüllt werden muss andererseits aber auch vor der Aushärtung möglichst formstabil sein muss.

30

Der Begriff Glasionomerenzement ist in der ISO 7484 definiert, deren Offenbarungsgehalt vollumfänglich in die vorliegende Anmeldung mitaufgenommen wird.

Als Glasionomerenzement sind beispielsweise wässrige Poly-(Carbonsäure)-Zement-Zusammensetzungen bekannt und werden bereits in der Zahnheilkunde eingesetzt. Glasionomerzemente umfassen ein Polymer, das freie Carbonsäuregruppen, typischerweise ein Homo- oder Co-Polymer einer Acrylsäure enthält und ein Ionen freisetzendes Glas wie zum Beispiel ein Calcium-Aluminiumfluorosilikatglas.

5
10
15
10
15
15
20
25
30

Glasionomerzementen bilden sich über eine Säure-Basen-Reaktion in wässriger Lösung. In Gegenwart von Wasser setzt das Glas polyvalente Metallionen, wie zum Beispiel Aluminium- und Calcium-Ionen frei. Diese dienen einer Vernetzung des Polymers. So wird eine starre gelatineartige Struktur erhalten. Zur gleichen Zeit reagiert das Material im Glas mit Wasser und bildet Kieselsäure. Als Ergebnis dieser Gel bildenden Reaktion bildet sich ein Zement, der für Dentalanwendungen geeignet ist.

Weiterhin bekannt sind polymerisierbare Zemente, wie sie zum Beispiel in EP-A-0219058 beschrieben werden und unter der Bezeichnung Kompomer und „kunststoffverstärkter Glasionomerzement“ bekannt sind.

Bei dem kunststoffverstärkten Glasionomerenzement Kompomer handelt es sich um ein Material, das die Vorzüge eines Kompositwerkstoffes und die eines Glasionomeren miteinander vereint. Das Material umfasst Dimethylmetacrylat-Monomere mit zwei Carboxylgruppen und ein Füllmaterial, das im wesentlichen ein ionenabgebendes Glas ist. Das Verhältnis der Carboxylgruppen zu den Kohlenstoffatomen des Rückgrates beträgt 1:8. Die Zusammensetzung ist wasserfrei und das ionenabgebende Glas ist teilweise silanisiert, um eine Bindung mit der Matrix sicherzustellen. Die mit Kompomer bezeichneten Materialien werden durch eine Polymerisation freier Radikale erhalten. Die Kompomere enthalten keinerlei Wasser. Kompomere werden auch als „hybride Glasionomeren“ bezeichnet. Sie haben eine niedrigere Biegefesteitigkeit, eine niedrige Druckfestigkeit, eine niedrige Bruchfestigkeit und Härte. Die Kompomere

sind einsetzbar als Kleber in der Kiefernorthopädie, als Amalgan-Bonding-System und im Bereich der Veterinärmedizin.

5 Für alle Arten von Materialien zur Zahnfüllung, also Glasionomere, Komposite und Compomere gilt, dass sie als Füll- oder Zuschlagstoffe neben den inerten oder reaktiven Dentalgläsern als weitere Füllstoffe Aerosile, bspw. pyrogene Kieseläsäure enthalten können, die zur Einstellung der Rheologie eingesetzt werden. Die Aerosile haben im Gegensatz zu den gemahlenen Glaspulvern sphärische Form und Partikelgrößen von ca. 50 - 300 nm.

10

Als weitere Füllstoffe können Pigmente zur Einstellung der Zahngarben enthalten sein, sowie Stoffe zum Erreichen der Röntgenopazität. Derartige Stoffe sind beispielsweise BaSO_4 , ZrO_2 , YbF_3 .

15

Auch Sol-Gel-Materialien wie z. B. Zr-Silikate als Füllmaterial, das Röntgenopazität aufweist, sind denkbar.

Des weiteren können organische Fluoreszenzfarbstoff zur Nachbildung der Fluoreszenzeigenschaften des natürlichen Zahnes vorgesehen sein.

20

Nachteilig an den bekannten Materialien im Bereich der Zahnheilkunde, insbesondere den Glasionomerenzementen, den Kompositen und den Compomeren war, dass sie keine antimikrobielle Wirkung aufweisen und somit vor antimikrobiell ausgelösten Zahnerkrankungen wie beispielsweise

25 Sekundärkaries, Wurzelentzündungen oder Parodontose nicht schützen.

30

Die antimikrobielle, entzündungshemmende und wundheilende Wirkung von Gläsern, insbesondere hieraus hergestellten Glaspulvern ist aus nachfolgenden Schriften bekannt geworden, deren Offenbarungsgehalt volumnäßig in die vorliegende Anmeldung miteingeschlossen wird:

WO 03/018498

WO 03/018499

5 Die WO03/018496 und die WO03/018499 zeigen ein entzündungshemmendes und wundheilendes Silicatglasplver.

Aus der WO 03/018498 ist antimikrobielles, entzündungshemmendes Glas und Glaspulver bekannt geworden, dass in der Glaszusammensetzung mehr als 10 ppm Jod enthält. Aus WO02/072038 und EP-A-1365727, deren
10 Offenbarungsgehalt vollumfänglich in die vorliegende Anmeldung mitaufgenommen wird, ist die Verwendung von Alkali-Erdalkaligläsern ohne Ag, Zn, Cu in Dentalmaterialien bekannt.

15 Aufgabe der Erfindung ist es, die Nachteile des Standes der Technik zu überwinden und insbesondere Zusätze für Dentalmaterialien bereitzustellen, die eine antimikrobielle und desinfizierende, entzündungshemmende und wundheilende Wirkung besitzen.

20 Gelöst wird die Aufgabe gemäß den unabhängigen Ansprüchen. Vorteilhafte Weiterbildungen sind Gegenstand der Unteransprüche.

In einer besonders bevorzugten Ausführungsform fungieren die antimikrobiellen Zusätze, die im folgenden auch als antimikrobielle Dentalglasplver bezeichnet werden, selbst als Glasionomere, d.h. sie besitzen neben der antimikrobiellen
25 Wirkung noch die Funktion als Initiator für eine Polymerisation von Monomeren zu dienen bzw. die für die Aushärtreaktion zu einem Glasionomerenzement notwendigen Ionen, bspw. die Ca^{2+} , Al^{3+} -Ionen zur Verfügung. Beispielsweise bewirkt die Auslaugung von Ca^{2+} , Al^{3+} -Ionen zusammen mit z. B. den Polycarbonsäure der Kunststoffe des Zementes die Aushärtung. Es handelt sich
30 also in diesem Fall um reaktive antimikrobielle Dentalglasplver.

In einer alternativen Ausführungsform hat das antimikrobielle Glas selbst keine Ionomereneigenschaften, sondern fungiert als Zuschlagmaterial, das die antimikrobielle Wirkung zur Verfügung stellt. Es handelt sich also um ein inertes antimikrobielles Dentalglaspulver, wie es beispielsweise in Kompositen eingesetzt wird. Wird das antimikrobielle Dentalglaspulver lediglich als Zuschlagstoff, also als inertes antimikrobielles Dentalglaspulver eingesetzt, so kann die Polymerisation der Monomere beispielsweise durch Licht z. B. UV-Strahlung oder Wärme erreicht werden.

- 5 10 In einer weitergebildeten Ausführungsform ist das inerte oder auch das reaktive antimikrobielle Dentalglaspulver derart ausgestaltet, dass der Schrumpf des sich nach der Polymersiation ergebenden Glasionomerenzementes, Komposites oder Compomeres verringert oder Röntgenopacität erzielt wird. Auch die Ausgestaltung des antimikrobiellen Dentalglaspulvers derart, dass eine 15 Remineralisierung des Zahnschmelzes unterstützt wird, ist möglich.

Selbstverständlich sind auch Mischungen des erfindungsgemäßen antimikrobiellen Dentalglaspulvers mit anderen Dentalfüllern, beispielsweise herkömmlichen Dentalgläsern möglich.

- 20 25 In einer bevorzugten Ausführungsform der Erfindung ist der thermische ausdehnungskoeffizient, die CTE des antimikrobiellen Dentalglaspulvers sehr klein und liegt zwischen $3 \cdot 10^{-6}$ / K und $8 \cdot 10^{-6}$ /K.
- Bevorzugt ist der Brechungsindex des antimikrobiellen Dentalglaspulvers so gewählt, dass der Brechungsindex weitgehend an den der Matrix angepasst ist, wobei das Glaspulver selbst weitgehend frei von färbenden Ionen ist.

- 30 In einer weitergebildeten Ausführungsform sind die Glaspulveroberfläche des antimikrobiellen Dentalglaspulvers silanisiert, so dass ein chemischer Verbund zwischen Füllstoffpartikel und Harzmatrix ermöglicht wird. Dies wiederum hat

9

verbesserte mechanische und rheologische Eigenschaften der Füllung bzw. der Formulierung zur Folge.

5 Besonders bevorzugt ist es, wenn das antimikrobielle Dentalglaspulver eine gute chemische und hydrolytische Beständigkeit sowie eine hohe Röntgenopazität (RO) aufweist.

Eine hohe Röntgenopazität wird insbesondere durch Zugabe von schweren Elementen, wie Sr oder Ba erreicht.

10

Um die Ästhetik und die Polierbarkeit zu verbessern, sind kleine Korngrößen des antimikrobiellen Dentalglaspulvers von d50 zwischen 0,4 - 1,5 µm bevorzugt.

15 Besonders bevorzugt sind Ausführungsformen, die antimikrobielle Langzeitwirkung besitzen.

20

Bevorzugt finden die erfindungsgemäßen antimikrobiellen Glas Verwendung in Beschichtungs- Füll- oder Verblendmaterialien für die Zahnheilkunde.

25

Im Gegensatz zu Implantatmaterialien, die in den Kiefer eingebracht werden, werden die in dieser Anmeldung beschriebenen Materialien bevorzugt im bzw. am Zahn verwendet.

30

In einer besonderen Anwendung in Glasionomerenzementen umfassen die Zemente den antimikrobiellen Glaszusatz oder die antimikrobielle Glaskeramik in einer Konzentration im Bereich von 0,01 – 99,5 Gew% Bevorzugt sind 0,1 bis 80 Gew%, insbesondere bevorzugt sind 1 bis 20 Gew% antimikrobieller Glaszusatz oder Glaskeramikzusatz in Glasionomerenzementen enthalten.

Die antimikrobiell wirkenden Gläser gemäß der Erfindung können auch mit bekannten Glaspulvern, die als Dentalfüllmaterialien eingesetzt werden, gemischt werden.

5

Die Partikelgrösse der antimikrobiellen Glaspulver ist beispielsweise bei d50-Werten grösser als 0,1 µm, bevorzugt grösser als 0,5 µm noch bevorzugter grösser als 1µm.

10

Die Partikelgrösse der antimikrobiellen Glaspulver ist bei d50-Werten beispielsweise kleiner als 200 µm bevorzugt kleiner als 100 µm noch bevorzugter kleiner als 20 µm. Am bevorzugsten sind Partikelgrössenverteilungen mit Partikelgrössen grösser als 0,1 µm und 10 µm, insbesondere wegen der besseren Polierbarkeit zwischen 0,1 – 1,5 µm .

15

Die Gläser enthalten in bevorzugten Ausführungsbeispielen antimikrobiell wirksame Elemente bzw. Ionen wie z. B. Ag, Zn, Cu. Die Freisetzungsratender antimikrobiell wirkenden Ionen sind in den Glasmatrizen so gering, dass kein Gesundheitsrisiko besteht andererseits aber eine hinreichende antimikrobielle Wirkung erzielt wird.

20

Beispielsweise wird bei der Freisetzung von Silber als antimikrobiellem Ion eine hinreichende Freisetzung für eine antimikrobielle Wirkung erreicht, die noch nicht zu gesundheitlichen Schäden führt, wenn die Freisetzungsraten von z. B. Silber in Wasser aus den erfindungsgemäßen Gläsern unterhalb von 1000mg/l bevorzugt < 500mg/l und <100mg/l liegt. Besonders bevorzugt liegen diese <50 mg/l und < 20mg/l. In einer ganz bevorzugten Ausführungsform liegen diese < 10mg/l.

25

Ist das antimikrobielle Glas erfindungsgemäß in ein Kompositmaterial eingebracht, so werden in Kontakt mit Flüssigkeit wie z. B. Wasser oder Mundspeichel noch geringere Mengen Silber freigesetzt, als aus dem freien Glas in Wasser.

11

Freisetzungsraten von z. B. Silber in Wasser aus den erfindungsgemässen Kompositit, oder Glassionomerzement oder Compomer unterhalb von 10 mg/l bevorzugt < 1 mg/l ganz bevorzugt < 0,1 mg/L.

- 5 Um eine ausreichende antimikrobielle Wirkung zur Verfügung zu stellen liegen die Freisetzungsraten beispielsweise für Ag oberhalb von 0,0001 mg/l, bevorzugt oberhalb von 0,001 mg/l und ganz besonders bevorzugt oberhalb von 0,01 mg/l. Als Basisgläser kommen Phosphat-, Borat und Silicat-Gläser infrage, die keine zu hohe chemische Beständigkeit aufweisen.

10

Vorteilhaft ist, dass diese Gläser in ihrer Brechzahl anpassbar sind.

- 15 Um eine antimikrobielle und desinfizierende Wirkung zu erhalten ist der Gehalt von Ionen wie bspw. Ag, Zn, Cu im Glasionomer grösser als 0,01 Gew%, bevorzugt grösser als 0,1 Gew% noch bevorzugt grösser als 0,5 Gew%. Besteht in einer bevorzugten Ausführungsform eine erfindungsgemäße Mischung aus einem antimikrobiellen Glaspulver, das auch in dieser Anmeldung als antimikrobielles Dentalglasplver bezeichnet wird und einem Glasionomeren und/oder einem Dentalglasplver, so ist das Verhältnis von 20 antimikrobiellem Glaspulver / Glasionomer und/oder Dentalglasplver > 0,0001 bevorzugt grösser als 0,001 ganz bevorzugt grösser als 0,01. Ist der Gehalt an antimikrobiellem Glaspulver zu niedrig, d.h. ist das Verhältnis antimikrobielles Glaspulver / Glasionomer und/oder Dental-glasplver < 0,0001 so wird keine ausreichende antimikrobielle und desinfizierende Wirkung der 25 Mischung mehr erzielt.

Bevorzugt ist das Verhältnis von antimikrobiellem Glaspulver / Glasionomer und/oder Dentalglasfüller < 200 bevorzugt kleiner als 100, ganz bevorzugt kleiner als 10.

30

Weist die Mischung ein Verhältnis von antimikrobiellem Glaspulver / Glasionomer und/oder Dentalglasfüller auf, das grösser als 200 ist, so wird keine

12

ausreichende Initierung der Polymerisation der Monomere durch das Glas Ionomere mehr erzielt.

In einer besonderen Ausführungsform stellt das antimikrobielle Pulver, wenn es in
5 Kontakt mit Wasser bspw. Mundspeichel etc kommt durch Ionenaustausch mit der Glasmatrix einen basischen pH, d.h. einen pH-Wert >7 ein. Dieser neutralisiert Säuren, die durch Kariesbakterien gebildet werden, und den Zahn bzw. den Zahnschmelz angreifen können. Insbesondere verhindert diese Reaktion den Angriff in den Zwischenräumen zwischen dem Dentalmaterial und dem Zahn.

10

Die Kombination der antimikrobiellen Glaspulver mit besonders remineralisierenden Glaspulvern, wie z. B. einem Glaspulver wie in der EP-A-1365727 offenbart ist möglich und bevorzugt. Dadurch wird zum einen eine enge Verbindung zwischen Zahn und Dentalmaterial erreicht und zum anderen, da 15 remineralisierende Glaspulver wie z. B. die Glaspulver aus der EP-A-1365727 ebenfalls eine geringe antimikrobielle Wirkung besitzen ein antimikrobieller synergistischer Effekt erzielt. In der EP-A-1365727 ist die Verwendung von bioaktivem Glas zur Herstellung eines Mittels für eine permanente Zahnfüllung beschrieben. Das bioaktive Glas ist vorzugsweise in 20 einem Bindemittel zur Verbindung einer Zahnfüllung mit einem Zahn, in einem Glas-Ionomer-Zement, in einem Glas-Kunststoff-Composit, in einem compositverstärktem Glas-Ionomer-Zement und/oder in einem Mittel zur Behandlung der Zahnwurzel, des Zahnhalzes und/oder der Zahnkrone enthalten und enthält vorzugsweise Fluoridionen.

25

Eine antimikrobielle Wirkung beispielsweise durch die Freisetzung von Ag, Zn oder Cu-Ionen wird in dem Glas-Ionomeren-Zement, in dem Glas-Kunststoff-Composit, in dem compositverstärkten Glas-Ionomeren-Zement und/oder in dem 30 Mittel zur Behandlung der Zahnwurzel, des Zahnhalzes und/oder der Zahnkrone, dass das bioaktive Glas, das in der EP-A-1365727 beschrieben ist, enthält, nicht beschrieben. Besonders bevorzugt besitzt das Glas eine hohe Röntgenopazität.

In einer bevorzugten Ausführungsform setzt der antimikrobielle Glaszusatz Fluorid frei, wie beispielsweise die Glaszusammensetzung, die in der WO 03/018499 offenbart ist. Die Auswahl eines derartigen antimikrobiellen Glaspulvers beugt der Bildung von Karies vor. Bevorzugt besitzt das antimikrobielle Glaspulver
5 remineralisierende Eigenschaften.

In einer weitergebildeten Ausführungsform fungiert der antimikrobielle Zusatz selbst als Glasionomer, d.h. er stellt die für die Aushärtreaktion zu einem Glasionomerenzement notwendigen Ionen, bspw. die Ca^{2+} , Al^{3+} -Ionen zur
10 Verfügung. Die Auslaugung von Ca^{2+} , Al^{3+} -Ionen bewirkt zusammen mit z. B. den Polycarbonsäure der Kunststoffe die Aushärtung des Zementes
Für die remineralisierende Eigenschaften sind Glaszusammensetzungen
15 bevorzugt einzusetzen, die Ca und/oder Phosphorionen und / oder Natrium und/oder Verbindungen, die Ca oder Phosphor enthalten freisetzen, und so die Remineralisierung der Zähne unterstützen.

Bekannte Glasionomerzemente bestehen häufig aus einem Pulver-Flüssigkeit-System.

20 Der Glasionomerenzement entsteht durch eine Abbindereaktion der flüssigen Komponente mit dem Glasionomeren wie unten beschrieben.

25 In der Regel werden die organischen Bestandteile zu einer Flüssigkeit verarbeitet, ergebend die flüssige Komponente, die erst direkt vor der Anwendung vom Zahnarzt mit der festen Komponente, insbesondere dem Pulver, insbesondere dem Glaspulver, dem sogenannten Glasionomeren innig vermischt wird. Die Flüssigkeiten bestehen zum Beispiel aus Polyacrylsäuren, Weinsäure, destilliertem Wasser, Drei-Harz-Komplexen wie beispielsweise 2-Hydroxyethylmethacrylate (HEMA). Auch üblich sind Paste-Paste-Systeme, bei
30 denen die Bestandteile, die alleine noch keine Reaktion mit dem Glasionomeren bzw. der erfindungsgemäßen Mischung aus Glasionomeren und antimikrobiellem Glaspulver erzielen, mit diesem zu einer Paste vermischt werden, z. B. 2-Hydroxy-

14.

ethyl-methacrylat, Dimethacrylate oder Pigmente. Die anderen Bestandteile wie Polyacrylsäuren, Wasser, Pyrogenkieselsäure werden in einer zweiten Paste vermischt. Beim Zahnarzt wird dann durch intensives Vermischen der Pasten die Abbindereaktion in Gang gesetzt, die den Glasionomerenzement ergibt.

5

Es sind auch verstärkte Systeme bekannt, in denen zum Beispiel auch Methacrylat-modifizierte Polycarbonsäuren eingesetzt werden.

10 Soll der Zement dualhärtend ausgestattet sein, ist die Verwendung von Photoinitiatoren wie zum Beispiel Campherchinon möglich.

15 Der Vorteil einer Mischungen von antimikrobiell wirkenden Glaspulvern mit nicht antimikrobiell wirksamen Glasionomeren gemäß der Erfindung besteht darin, dass die antimikrobielle Wirkung der Mischung die antimikrobielle Einzelwirkung des Glaspulvers übersteigt, da die Freisetzung antimikrobiell wirksamen Ionen wie z. B. Ag aus dem antimikrobiellen Glaspulver durch die freigesetzten Ionen aus dem Glasionomer angeregt wird.

20 Ein weiterer Vorteil besteht darin, dass durch den Zusatz von ionenfreisetzendem antimikrobiellem Pulver die radikalische Polymerisation (initiiert durch z. B. Licht oder Wärme) d.h. der Polymerisationsgrad und somit der Festigkeitsgrad (z. B. E-Modul etc.) sowie die Kinetik der Polymerisation des Zementes synergistisch unterstützt wird.

25 Sind bei Kompositen die oben beschriebenen Füllstoffe Glasfüller, die biozide Ionen wie z. B. Ag^+ , Zn^{2+} , Cu^{2+} enthalten, so kann durch die Freisetzung dieser Ionen aus dem Glas der gesamte Komposit eine antimikrobielle Wirkung aufweisen. Dadurch, dass der gesamte Komposit eine antimikrobielle Wirkung aufweist, wird die Bildung von Sekundärkaries vermieden, zumindest aber deutlich 30 verlangsamt.

15

Die als Füllstoff verwendeten Glasfüller können selbst keine antimikrobielle Wirkung aufweisen, aber Teil einer Mischung aus Glasfüller und antimikrobiellem Glaspulver sein.

- 5 Bei den Glasionomerenzementen ist es durch den Zusatz von antimikrobiellen Gläsern möglich, dass die karboxylhaltigen Gruppen der Polyalkenoatketten das Kalzium der Hydroxylapatitschicht des antimikrobiellen Glaspulvers chelieren, um den Kleber zu mineralisiertem Hartzahngewebe abzubinden. Durch die Zugabe von antimikrobiellem Glaspulver in ein Glasionomerenzement ist es also erstmals möglich, zu mineralisiertem Hartzahngewebe abzubinden.

10

Darüberhinaus induzieren die Ionen der Reaktion, die zur Einstellung der Glasionomerzement verwendet werden, dass Kalzium, Aluminium, Natrium, Fluorid und Kieselsäureionen vom säurelöslichen Glas freigegeben werden.

15

20

Unter einem strukturellen Gesichtspunkt ist ein Glasionomerzement einen Komposite, in dem die unreagierten Glaspartikel der Materialfüller sind und die Kalzium-Aluminium querverbundenen Polyalkenoatketten die Matrix bilden. Die von der Matrix umschlossenen Glaspartikel stellen dann eine Bindung zwischen dem Füller und der Matrix dar.

25

Die ionischen Bindungen sind für die Vernetzung der Polymerketten und die Einstellungen des Glasionomerenzementes verantwortlich. Die große Anzahl sekundärer Bindungen spielen eine wichtige Rolle bei der Einstellung der mechanischen Eigenschaften des Zementes.

30

Glasionomerzement sind spröde und haben einen niedrigen Elastizitätsmodus, sie sind unter Zugspannung schwach und haben eine niedrige Bruchfestigkeit. Wegen ihrer schlechten mechanischen Eigenschaften ist ihre Verwendung beschränkt.

Eine Möglichkeit die mechanischen Eigenschaften von Glasionomerenzementen zu verbessern, besteht in einer verbesserten Matrix. Hier wurden Fortschritte gegenüber dem Stand der Technik erzielt, indem man zur Verstärkung der Matrix

antimikrobielle Gläser einsetzt, die zu der oben beschriebenen Abbindereaktion führen.

Bei Kompomeren wird durch die Zugabe antimikrobieller Glaspulver der Vorteil erzielt, dass der Schrumpf geringer wird. Des weiteren werden die mechanischen Eigenschaften von Glassionomeren verbessert und ein starker Bindungseffekt der Komposite erzielt.

Nachfolgend soll die Erfindung anhand von Ausführungsbeispielen erläutert werden ohne hierauf beschränkt zu sein.

Als antimikrobieller Glaszusatz zu einem Glassionomeren in einem Glassionomerenzement, insbesondere in Form eines antimikrobiellen Glaspulvers sind beispielsweise Borosilikatgläser geeignet. Zunächst sollen

Ausführungsbeispiele für Borosilikatgrundgläser gegeben werden, die keiner besonderen Behandlung zur Erzielung eines phasenentmischten Systems unterzogen wurden.

Die Gläser wurden dadurch erhalten, dass aus den Rohstoffen ein Glas erschmolzen wurde, das anschließend zu Ribbons geformt wurde. Diese Ribbons wurden mittels Trockenmahlung zu Pulver mit einer Partikelgröße $d_{50} = 4 \mu\text{m}$ weiterverarbeitet.

In Tabelle 1 sind Glaszusammensetzungen in Gew% auf Oxidbasis erfindungsgemäßer Borosilikatgläser angegeben, die zu einem Glaspulver gemahlen werden können und in dem Glassionomerenzement Verwendung finden.

Tabelle 1:

Zusammensetzungen in Gew% auf Oxidbasis von erfindungsgemäßen Borosilikatgläsern

	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18
SiO ₂	63,5	63,5	62,5	71	61	69	61	61	64,5	60,99	56,2	63,5	77	70	57	63,5	61	65
B ₂ O ₃	30	29,9	28	21	21	16	22	36	25,5	22	18	29	14,5	10,7	27	29	37	33
Al ₂ O ₃			4			2,75					6,63		4	4				
P ₂ O ₅						2,75												
Na ₂ O	6,5	6,5		7		6	3	2,99	4,7	5	3,7	6,5	3,5	2,8	6	5,5		
Li ₂ O											1,84							
K ₂ O							4				5,64		1	3,6				
BaO			5															
CaO						3									2,1			
MgO																		
SrO																		
ZnO					18		9,95				0,28			2,5	10			
SO ₃											5,37							
Ag ₂ O	0,1	0,5	1		0,5	0,05	0,01	5	0,01	0,21	1				2	2	2	
CuO										2	2,07							
GeO ₂																		
TeO ₂											1	0,04						
Cr ₂ O ₃											1	0,01						
ZrO ₂															4,3			
Jod												0,01						
Br																		
Cl																		
La ₂ O ₃								0,3										

5 In Tabelle 2 sind Borosilikatgläser angegeben, die einem definierten Temperungsprozess unterzogen wurden. Durch diese Temperung wurde eine definierte Entmischung in Mehrphasensysteme, insbesondere ein 2-Phasen-System erreicht. Die Gläser wurden aus den Rohstoffen wie für die jeweiligen Ausführungsbeispiele in Tabelle 1 angegeben erschmolzen und anschließend zu 10 Ribbons geformt. Sodann wurde die in Tabelle 2 angegebene Temperung bei den angegebenen Temperaturen für die angegebene Zeit durchgeführt. In Tabelle 2 ist für die unterschiedlichen Glaszusammensetzungen gemäß Tabelle 1 die Tempertemperatur, die Temperzeit sowie die Größe der entmischten Bereiche, bei einem 2-Phasensystem, die so genannte Entmischungsgröße, angegeben.

Tabelle 2:

Größe der entmischten Bereiche für unterschiedliche Glaszusammensetzungen für unterschiedlichen Temperaturen und Temperzeiten

Probe	Glaszusammensetzung gemäß Tabelle 1	Temperung an	Temperatur (°C)	Zeit (h)	Entmischungs- größe
Ausf. 1-a	Ausf. 1	Ribbon	560	10	30 nm
Ausf. 1-b	Ausf. 1	Ribbon	560	20	60 nm
Ausf. 1-c	Ausf. 1	Ribbon	620	10	40 nm
Ausf. 1-d	Ausf. 1	Ribbon	620	20	80 nm
Ausf. 2-a	Ausf. 2	Ribbon	560	10	40 nm
Ausf. 2-b	Ausf. 2	Ribbon	560	20	100 nm
Ausf. 2-c	Ausf. 2	Ribbon	620	10	70 nm
Ausf. 2-d	Ausf. 2	Ribbon	620	20	150 nm
Ausf. 12a	Ausf. 12	Ribbon	560	10	50 nm
Ausf. 12b	Ausf. 12	Ribbon	560	20	150 nm
Ausf. 12c	Ausf. 12	Ribbon	620	10	80 nm
Ausf. 12d	Ausf. 12	Ribbon	620	20	200 nm
Ausf. 14a	Ausf. 14	Ribbon	820	5	40 nm

5

Bei den Systemen gemäß Tabelle 2 handelt es sich um Zwei-Phasen-Systeme, wobei die Zusammensetzungen der beiden Phasen unterschiedlich sind. Die eine Phase ist eine Phase, in der Bor angereichert ist, die andere Phase ist eine Phase, in der Silikon angereichert ist. Durch die niedrigere chemische Beständigkeit der borreichen Phase, wird die antimikrobielle Wirksamkeit erhöht, da die Abgabe von antimikrobiellen Ionen, wie z. B. Silber schneller erfolgen kann.

10

In den Tabellen 3 bis 5 ist für unterschiedliche Ausführungsbeispiele von Glaszusammensetzungen gemäß Tabelle 1 die antimikrobielle Wirkung angegeben. Es handelt sich bei der Ermittlung der antimikrobiellen Wirkung in allen Fällen um Messungen aus den Gläsern der jeweiligen Glaszusammensetzung erhaltenen Glaspulvern, die durch Mahlung aus dem Ribbon erhalten wurden. Eine Temperung am Ribbon wurde lediglich für das in Tabelle 3 angegeben Glaspulver verwendet.

15

Tabelle 3:

20

Antibakterielle Wirkung eines Glaspulvers nach Europ. Pharmakopoe (3. Auflage) für eine Glaszusammensetzung gemäß Ausführungsbeispiel 2 in Tabelle 1 mit einer Partikelgröße von 4 µm in einer wässrigen Suspension bei einer Konzentration von 0,01 Gew%. Das Glas wurde vor der Mahlung nicht getempert.

5

	E. coli	P. aeruginosa	S. aureus	C. albicans	A. niger
Start	350000	250000	270000	333000	240000
2 Tage	0	0	< 100	0	240000
7 Tage	0	0	0	0	180000
14 Tage	0	0	0	0	50000
21 Tage	0	0	0	0	16000
28 Tage	0	0	0	0	4000

Tabelle 4:

Antibakterielle Wirkung eines Glaspulvers nach Europ. Pharmakopoe (3. Auflage) für eine Glaszusammensetzung gemäß Ausführungsbeispiel 12 mit einer

10 Partikelgröße von 4 µm in einer wässrigen Suspension bei einer Konzentration von 0,001 Gew%. Das Glas wurde vor der Mahlung wie in Ausführungsbeispiel 12c gemäß Tabelle 2 bei 620°C für 10 h am Ribbon getempert, so dass ein in zwei Phasen entmischt Glas mit einer Entmischungsgröße von 80 nm erhalten wurde.

15

	E. coli	P. aeruginosa	S. aureus	C. albicans	A. niger
Start	270000	260000	260000	240000	240000
2 Tage	0	0	0	< 100	180000
7 Tage	0	0	0	0	100000
14 Tage	0	0	0	0	60000
21 Tage	0	0	0	0	12000
28 Tage	0	0	0	0	6000

Tabelle 5:

Antibakterielle Wirkung eines Glaspulvers nach Europ. Pharmakopoe (3. Auflage) für eine Glaszusammensetzung gemäß Ausführungsbeispiel 11 in Tabelle 1 mit

20 einer Partikelgröße von 4 µm in einer wässrigen Suspension bei einer Konzentration von 0,01 Gew%. Das Glas wurde vor der Mahlung nicht getempert.

	E. coli	P. aeruginosa	S. aureus	C. albicans	A. niger
Start	290000	220000	250000	270000	280000
2 Tage	0	0	100	< 100	100000
7 Tage	0	0	0	0	30000
14 Tage	0	0	0	0	22000
21 Tage	0	0	0	0	14000
28 Tage	0	0	0	0	14000

Bei den vorangegangenen Tabellen 3 bis 5 bezeichnet der Startwert die Anzahl der zu Beginn der Messungen eingesetzten Bakterien. Liegt ein Wert von 0 vor, so sind keine Bakterien mehr messbar. Dies ist ein Nachweis für die antimikrobielle Wirkung des Glaspulvers.

Zum Nachweis der Freisetzung antimikrobieller Ionen über die Zeit wird in Tabelle 6 die Freisetzung von Ag-Ionen aus Glaspulver in eine wässrige Lösung angegeben.

In Tabelle 6 ist die Ionen-Freisetzung für Si, Na, B und Ag in mg/L unter kontinuierliche Auslaugung nach 1 Stunde, nach 24 Stunde, nach 72 Stunde und nach 168 Stunde gemäß Ausführungsbeispiel 2 in Tabelle 1 und 2-c in Tabelle 2 mit einer Korngröße von 5µm, in einer wässrigen Suspension bei einer Konzentration von 1 Gew% angegeben.

Tabelle 6

nach 1 Std (mg/L)	SiO ₂	Na ₂ O	B ₂ O ₃	Ag
Ausf.2	227	1283	6929	0,63
Ausf.2-c	781	3384	14019	6,1

nach 24 Std (mg/L)	SiO ₂	Na ₂ O	B ₂ O ₃	Ag
Ausf.2	121	74	274	0,035
Ausf.2-c	164	37,6	36,1	0,44

nach 72 Std (mg/L)	SiO ₂	Na ₂ O	B ₂ O ₃	Ag
Ausf.2	70,8	23,8	60,8	0,02
Ausf.2-c	61,3	4,6	4,70	0,36

nach 168 Std (mg/L)	SiO ₂	Na ₂ O	B ₂ O ₃	Ag
Ausf.2	51,4	9,5	14,1	0,01
Ausf.2-c	16,3	2,62	2,89	0,3

Unter kontinuierlicher Auslaugung wird in dieser Anmeldung verstanden, dass
 5 nach z. B. 72 St. Wasserdurchfluss, bei einem Glas gemäß Ausführungsbeispiel
 2c beispielsweise noch 0,36 mg/l Silber freigesetzt werden, wie in Tabelle 6
 angegeben.

Erkennbar ist, dass das entmischtte Glas deutlich mehr Bor, Natrium und
 10 insbesondere Silber-Ionen als das nicht entmischtte Glas am Anfang der
 Auslaugung freisetzt. Durch die niedrigere chemische Beständigkeit der
 borhaltigen Phase, wird die antimikrobielle Wirksamkeit erhöht.

Die borhaltige Phase ist die hochreaktive Phase des 2 Phasen Systems mit einer
 15 sehr schnellen Silberionen-Freisetzung, bzw. einer sehr starken kurzfristigen
 antimikrobiellen Wirkung. Die silikathaltige Phase sorgt durch ihre höher

22

chemische Beständigkeit für eine langsame Silberfreisetzung und die Langzeit antimikrobielle Wirkung des Glases.

Als alternative Glaszusammensetzung können Zinkphosphatgläser als
5 antimikrobielle Zusätze in Dentalmaterialien verwendet werden. Diese
Glaszusammensetzungen sind in den Tabellen 8 und 9 angegeben:

Tabelle 8:

Zusammensetzungen (Synthesewerte) [Gew%] von erfindungsgemäßen
10 Glaszusammensetzungen

	A19	A20	A21	A22	A23	A24	A25	A26	A27	A28	A29	A30	A31	A32	A33	A34	A35	A36
O ₅	66,1	70	68	66,1	67	75	67,5	65,9	65,9	75	67	72	67	80	65,9	66,3	66	69
SO ₃																		
B ₂ O ₃										1						7,2	7	
Al ₂ O ₃	6,9	7	6,5	6,9	7	7	7	6,2	6,2	0	0	5	5	3	6,2	0,4		6
SiO ₂																0,7	0,5	4
Li ₂ O																		
Na ₂ O	10	10,5	9	10	12,2	9,0	11								2,7			
K ₂ O																		
CaO			8		13			11,9	11,9		11	20	8	5		9,7	10	3
MgO										8,5						13,7	13,5	15
SrO																		
BaO										13						11,90		
ZnO	16	12	8,5	10		10	13,5	15	16	2	22	2	20	9	15			
Ag ₂ O	0,01	0,5		0,5	0,8	2,0	1	1		0,5		1			1	2	2	2
O ₃				0,01											0,3			
O ₂																1	1	

In Tabelle 9 ist die antimikrobielle Wirkung für das Ausführungsbeispiel 20 gemäß Tabelle 8 angegeben.

15

Tabelle 9:

Antibakterielle Wirkung der Pulver nach Europ. Pharmakopoe (3. Auflage) in 0,001 Gew% wässriger Lösung. Ausführungsbeispiel 25 Korngröße 4 µm:

	E. coli	P. aeruginosa	S. aureus	C. albicans	A. niger

Start	260000	350000	280000	360000	280000
2 Tage	0	0	0	0	0
7 Tage	0	0	0	0	0
14 Tage	0	0	0	0	0
21 Tage	0	0	0	0	0
28 Tage	0	0	0	0	0

Das Ausführungsbeispiel 25 besitzt in 1%iger wässriger Lösung einen pH-Wert von ca. 5,0.

- 5 In Tabelle 10 ist die antimikrobielle Wirkung für das Ausführungsbeispiel 26 gemäß Tabelle 8 angegeben. Es wurden 0,001 Gew% Glaspulver mit einer Partikelgröße von $d_{50}=4\mu\text{m}$ des Ausführungsbeispiels 26 in einer wässrigen Suspension gemessen.

- 10 Tabelle 10: Antibakterielle Wirkung der Pulver nach Europ. Pharmakopoe (3. Auflage) in 0,001 Gew% wässriger Suspension:
Ausführungsbeispiel 26 gemäß Tabelle 8; Korngröße 4 μm

	E.coli	P. aeruginosa	S. aureus	C. albicans	A. niger
Start	240000	340000	240000	330000	280000
2 Tage	0	0	0	55000	220000
7 Tage	0	0	0	40000	200000
14 Tage	0	0	0	0	0
21 Tage	0	0	0	0	0
28 Tage	0	0	0	0	0

- 15 Die Tabelle 11 ist die antimikrobielle Wirkung für das Ausführungsbeispiel 26 gemäß Tabelle 8 angegeben. Es wurden 0,01 Gew% Glaspulver mit einer Partikelgröße von $d_{50}=4\mu\text{m}$ des Ausführungsbeispiels 26 in einer wässrigen Suspension gemessen.

Tabelle 11: Antibakterielle Wirkung der Pulver nach Europ. Pharmakopoe (3. Auflage) in 0,01 Gew% wässriger Suspension:
Ausführungsbeispiel 26 gemäß Tabelle 8: Korngröße 4 µm

5

	E.coli	P. aeruginosa	S. aureus	C. albicans	A. niger
Start	240000	340000	240000	330000	280000
2 Tage	0	100	100	32000	260000
7 Tage	0	0	0	12000	240000
14 Tage	0	0	0	4400	200000
21 Tage	0	0	0	1000	140000
28 Tage	0	0	0	1000	140000

Als weitere besonders bevorzugte Glaszusammensetzung können Sulfophosphatgläser als Zusätze zu Dentalmaterialien eingesetzt werden. Derartige Gläser sind in den Tabellen 13 bis 15 angegeben.

10

Tabelle 13:

Zusammensetzungen (Synthesewerte) [Gew%] von erfindungsgemäßen Glaszusammensetzungen

25

ZnO	33,6	33,6	33,6		26,5	33,6	33,6	25
Ag ₂ O		1	0,0001	0,5	0,5	0,1		
CuO						0,3		
GeO ₂								
TeO ₂								
Cr ₂ O ₃						0,6		
J							1	

Tabelle 14:

Antibakterielle Wirkung der Pulver nach Europ. Pharmakopoe (3. Auflage) in 0,001 Gew% eines Glaspulvers gemäß Ausführungsbeispiel 38 mit einer mittleren Korngröße von 4 µm in wässriger Suspension.

5

	E. coli	P. aeruginosa	S. aureus	C. albicans	A. niger
Start	270000	260000	260000	240000	240000
2 Tage	0	0	0	0	160000
7 Tage	0	0	0	0	160000
14 Tage	0	0	0	0	140000
21 Tage	0	0	0	0	120000
28 Tage	0	0	0	0	10000

Tabelle 15 zeigt die antimikrobielle Wirkung eines Glaspulvers gemäß Ausführungsbeispiel 38 in einer 0,1 Gew%-igen wässrigen Suspension.

10

	E. coli	P. aeruginosa	S. aureus	C. albicans	A. niger
Start	250000	210000	240000	270000	280000
2 Tage	0	0	0	0	140000
7 Tage	0	0	0	0	20000
14 Tage	0	0	0	0	1500
21 Tage	0	0	0	0	100
28 Tage	0	0	0	0	100

Auch auf der Basis von Silicatgläsern können Zusätze von Dentalmaterialien erhalten werden. Derartige Gläser sind in Tabelle 16 angegeben.

15

Tabelle 16:

Zusammensetzungen (Synthesewerte) [Gew%] von erfindungsgemäßen
Glaszusammensetzungen

Gew%.	A45	A46	A47	A48	A49	A50	A51	A52	A53	A54	A55
SiO ₂	71,00	45,00	44,50	35,00	34,90	44,	60	59	47	45	46,5
Na ₂ O	14,10	22,00	24,50	27,50	29,50	24,50	20	20	26,5	24,50	26,5
CaO	10,00	22,00	24,50	27,50	29,50	24,50	20	20	26,5	24,50	26,5
P ₂ O ₅	-	6,00	6,00	5,80	6,00	6,00				6,00	
Al ₂ O ₃	-	-	-	-	-	-				-	
MgO	4,70	-	-	-	-	-				-	
Ag ₂ O	0,2	-	0,50	0,2	0,10	1		1			0,5
AgJ	-	-	-	-	-						
NaJ	-	-	-	-	-						
TiO ₂	-	-	-	-	-						
K ₂ O	-	-	-	-	-						
ZnO	-	5,0	-	4,0	-						

- 5 In Tabelle 17 ist die Ionen- Freisetzung für Ag in mg/L unter stehender Auslaugung nach 1 Stunde und nach 24 Stunde gemäß Ausführungsbeispiel 12, 12c, 15,19,25,26,33 und 36 Tabelle 8 mit einer Korngröße von 5µm, in einer wässrigen Suspension und einer Konzentration von 1 Gew% angegeben.

10 Tabelle 17

Silber Freisetzung in mg/L	1 Std	24 Std
Ausf. 12	9	10,8
Ausf. 12-c	32,9	68,6
Ausf. 15	28,5	23,5
Ausf. 19	28,5	50,5
Ausf 25	2,3	11
Ausf 26	2,9	17
Ausf 33	2,2	6,4
Ausf 36	7,89	47,4

Wie aus Tabelle 17 in Verbindung mit Tabelle 8 hervorgeht ist die Freisetzungsraten einstellbar durch die Glasszusammensetzung durch den Grad der Keramisierung sowie durch die Silberkonzentration.

- 5 In Tabelle 18 sind weitere Zusammensetzungen in Gew% für Dentalglasfüller angegeben, die beispielsweise in Glasionomeren wie in Tabelle 19 beschrieben, eingesetzt werden können. Dentalglasfüller gemäß Tabelle 18 weisen alle bis auf das Ausführungsbeispiel 70 eine antimikrobielle Wirkung auf. In Tabelle 18 des weiteren angegeben ist die thermische Längenausdehnung (CTE), die Brechzahl nD, die Transformationstemperatur Tg, die für 10 Dentalfüller wichtige Radiopatizität für eine 2 mm dicke Probe, die Silberionenfreisetzung (Ag-Freisetzung) sowie das Onset OD.

Tabelle 18: Zusammensetzungen für Dentalglasfüller

	A56	A57	A58	A59	A60	A61	A62	A63	A64	A65	A66	A67	A68	A69	A70
O ₂	60	50	99,5	45	30	30	30	50	50	54,5	50	60	30	5	55
I ₂ O ₃	20	20		10	30	20	20	9,9	10	10	15	14	5		10
I ₂ O ₃				10					10	10	10	15	15	5	19,9
NO						15	10							10	20
aO				35					30	30	25				25
aO					10								5		
rO															
I ₂ O ₅		5			9,5	3									
I ₂ I ₃ O ₃		10											5	35	
rO ₂	5	5													
I ₂ O	5	5													
gO	5														
I ₂ O	1														
I ₂ O					2								5		
rO ₂													10		
O ₂														5	
I ₂ I ₃ O ₃														10	
I ₂ I ₃ O ₅	1	1													
/O ₃							20	20				20	15	25	
rO														5	
g ₂ O	1	2	0,5	1	0,5			2	0,1	1	0,5	1	1		0,1
				1	10	10	18		1			2			
TE (-30/+70)	c.a.	c.a.	0,6		10	7	7	5	5	4	4	3	8	6	4
D-6/K	1.	1													
D	1,52	1,58	1,46	1,56	1,47	1,51	1,51	1,55	1,53	1,53	1,52	1,5	1,6	1,83	1,53
g ISO 7884-8	> 800	> 800	nicht bestimmt		440	512	505	630	595	630	680	610	530	585	630
Dicke (g/cm ³)	2,6	2,9	2,2		2,6	3,1	3,1	3	2,9	2,8	2,6	2,46	3,42	4,55	2,8
radio Opazität SO 4049) mm glass dicke)	1,5 (75 %)	4,4 (220 %)	c.a. 5	c.a. (260 %)	c.a. (50 %)	c.a. (250 %)	c.a. (5 %)	4,8 (240 %)	4,8 (240 %)	4,2 (210 %)	4,2 (210 %)	c.a. 4	c.a. 6	c.a. 8	4,2 (210 %)
g Freisetzung ng/L) nach 24 d		0,03 1						0,04 2				0,03 9			
Inset OD absolut		18,5				16,8	18,2	5,7			6,8	15,9			2,8
Ewertung		antibiotisch				antibiotisch	antibiotisch	sehr gering antibiotisch			gering antibiotisch	antibiotisch			kein aktivität

Nachfolgend sollen Beispiele für erfindungsgemäße Zusammensetzungen für Glasionomerenzemente angegeben werden.

- 5 Die Angaben beziehen sich auf Gew% der Gesamtzusammensetzung.

Glasionomer mit antimikrobiellem Glaspulver flüssige Komponente oder
Glasionomer mit antimikrobieller Wirkung

10	50 Gew%	50 Gew% Polyacrylsäure
	47,5 Gew%	47,5 Gew% Polyacrylsäure
		5 Gew% Weinsäure
15	45 Gew%	45Gew%% Polyacrylsäure
		5 Gew% Weinsäure
		5 Gew% CH ₃ OH
	75 Gew%	15 Gew% Polyacrylsäure
20		10 Gew% Weinsäure
	64,3 Gew%	25,7 Gew% Polyacrylsäure
		10 Gew% Weinsäure

- Bei den oben angegebenen Zusammensetzungen können sämtlich hier genannten Glaspulver mit antimikrobieller Wirkung verwandt werden. Auch Mischungen von antimikrobiellen Glaspulvern mit herkömmlichen Glaspulvern sind möglich. Der Anteil an antimikrobiellem Glaspulver in der Mischung mit herkömmlichen Glasionomeren beträgt bevorzugt 0,5 bis 25 Gew%, bevorzugt 5 bis 15 Gew%. Alternativ kann das Glasionomere selbst ein antimikrobielles Glaspulver sein.

In nachfolgender Tabelle 19 sind Ausführungsbeispiele angegeben, bei dem einem Methacrylat-Monomer (einem sogenannten Bis-GMA) mit einem nicht antimikrobiellen Dentalglasfüller A70 gemäss Tabelle 18 und einem antimikrobiellen Dentalglasfüller in der angegebenen Konzentration gemäß 5 Tabelle 1,2,8,13 und 18 zu einem Glasmonomerenzement gemischt wurde.

Tabelle 19: Komponenten für einen Glasmonomerenzement in Gew% der Gesamtzusammensetzung

Monomerprobe				Transparenz [%]	Transluzenz [%]	Onset OD (absolut Werte)	Bewertung	Ag Freisetzung nach 24 Std (mg/L)
Bis GMA [%]	A70 [%]	AM- Pulver		Transparenz [%]	Transluzenz [%]	Onset OD (absolut Werte)	Bewertung	Ag Freisetzung nach 24 Std (mg/L)
		Glass	[%]					
100				92,1	77,9	1,9	kein aktivität	
50	50			52,2	26,5	1,8	kein aktivität	
50	45	A46	5	51,4	26,5	5,9	gering antibakt eriel	
50	48	A46	2	51,6	26,3	2,9	sehr gering aktivität	
50	20	A21	30	51,5	28,8	15,3	antibakt eriel	
50	35	A21	15	51,4	27,3	6,2	gering antibakt eriel	
50	45	A26	5	51,0	27,8		antibakt eriel	0,029
50	48	A26	2	51,7	27,4		antibakt eriel	0,018
50	45	A16	5	39,9	18,5	18,9	antibakt eriel	0,046
50	48	A16	2	45,9	23,1	16,1	antibakt eriel	0,035
50	45	A12-c	5	33,2	16,5	17,7	antibakt eriel	0,041
50	48	A12-C	2	42,9	22,7	15,9	antibakt eriel	0,029
50	45	A27	5	50,1	26,7	15,6	antibakt eriel	
50	48	A27	2	49,1	25,0	14,9	antibakt eriel	
50	45	A33	5	49,9	26,7	15,3	antibakt eriel	

31

50	48	A33	2	51,4	27,0	6,2	gering antibakt erial	
50	45	A17	5	40,2	17,4			
50	48	A17	2	45,3	21,7			

In Tabelle 20 sind die beobachtete Proliferation über 48 h gezeigt für ein Glaspulver mit einer Partikelgröße zwischen d50 von 4 µm und einer Glaszusammensetzung gemäß 1, das homogen in den angegebenen Konzentrationen (Gew%) in Zement eingebracht wurde.

5

Unter Onset OD wird die optische Dichte im umgebenden Nährmedium verstanden. Durch Proliferation (Bildung von Tochterzellen) und Abgabe der Zellen von der Oberfläche in das umgebende Nährmedium erfolgt eine 10 Beeinträchtigung der Transmission des Nährmediums. Diese Absorption bei bestimmten Wellenlängen korreliert mit der antimikrobiellen Wirksamkeit der Oberfläche. Je höher der Onset OD Wert, desto stärker antimikrobiell wirksam ist die Oberfläche.

Patentansprüche

1. Verwendung von Glaszusammensetzungen mit antimikrobieller und/oder desinfizierender Wirkung in Materialien zur Zahnrestauration,
ausgenommen Implantate.
- 5
2. Verwendung von Glaszusammensetzungen mit antimikrobieller und/oder desinfizierender Wirkung gemäß Anspruch 1 im Bereich der Zahnpfüller.
- 10
3. Verwendung von Glaszusammensetzungen mit antimikrobieller und/oder desinfizierender Wirkung gemäß Anspruch 2, wobei die Zahnpfüller ein Material ausgewählt aus der nachfolgenden Gruppe ist:
ein Kompositmaterial
ein Glasionomerenzement
15
ein Compomer
4. Verwendung von Glaszusammensetzungen mit antimikrobieller und/oder desinfizierender Wirkung in Beschichtungs-, Füll- oder Verblendmaterialien für keramische Dentalsuprastrukturen.
- 20
5. Verwendung nach Anspruch 1, wobei die Glaszusammensetzung oxidisch ist.
6. Verwendung nach einem der Ansprüche 1 bis 5 , wobei die
25
Glaszusammensetzung die nachfolgenden Komponenten (in Gew% auf Oxidbasis) umfasst:

SiO ₂	0 – 99,5 Gew%
P ₂ O ₅	0 – 80 Gew%
SO ₃	0 – 40 Gew%
B ₂ O ₃	0 – 80 Gew%
Al ₂ O ₃	0 – 30 Gew%

33

	Li_2O	0 – 30 Gew%
	Na_2O	0 – 40 Gew%
	K_2O	0 – 30 Gew%
	CaO	0 – 25 Gew%
5	MgO	0 – 15 Gew%
	SrO	0 – 30 Gew%
	BaO	0 – 40 Gew%
	ZnO	0 – 40 Gew%
	TiO_2	0 – 10 Gew%
10	ZrO_2	0 – 15 Gew%
	CeO_2	0 – 10 Gew%
	Ag_2O	0 – 5 Gew%
	F	0 – 70 Gew%
	J	0 – 10 Gew%
15	Fe_2O_3	0 – 5 Gew%

und gegebenenfalls Spurenelemente und/oder übliche Läutermittel in gängigen Mengen, wobei die Summe von $\text{SiO}_2 + \text{P}_2\text{O}_5 + \text{SO}_3 + \text{B}_2\text{O}_3 + \text{Al}_2\text{O}_3$ größer als 20 Gew% und maximal 99,5 Gew% und die Summe $\text{ZnO} + \text{Ag}_2\text{O} + \text{CuO} + \text{GeO}_2 + \text{TeO}_2 + \text{Cr}_2\text{O}_3 > 0,01$ Gew% ist.

7. Verwendung nach einem der Ansprüche 1 bis 5, wobei die Glaszusammensetzung die nachfolgenden Komponenten (in Gew% auf Oxidbasis) umfasst:

	SiO_2	0 – 80 Gew%
	P_2O_5	0 – 80 Gew%
	SO_3	0 – 40 Gew%
	B_2O_3	0 – 80 Gew%
30	Al_2O_3	0 – 30 Gew%
	Li_2O	0 – 30 Gew%
	Na_2O	0 – 40 Gew%

34

	K ₂ O	0 – 30 Gew%
	CaO	0 – 25 Gew%
	MgO	0 – 15 Gew%
	SrO	0 – 30 Gew%
5	BaO	0 – 40 Gew%
	ZnO	5 – 40 Gew%
	Ag ₂ O	0 – 5 Gew%
	F	0 – 65 Gew%
	J	0 – 10 Gew%
10	Fe ₂ O ₃	0 – 5 Gew%
	Ag ₂ O	0 – 5 Gew%

10

15

und gegebenenfalls Spurenelemente und/oder übliche Läutermittel in gängigen Mengen, wobei die Summe von SiO₂ + P₂O₅ + SO₃ + B₂O₃ + Al₂O₃ größer als 20 Gew% und maximal 80 Gew% ist.

20

8. Verwendung nach einem der Ansprüche 1 bis 5 wobei die Glaszusammensetzung die nachfolgenden Komponenten (in Gew% auf Oxidbasis) umfasst:

25

30

	SiO ₂	0 – 99,5 Gew%
	P ₂ O ₅	0 – 80 Gew%
	SO ₃	0 – 40 Gew%
	B ₂ O ₃	0 – 80 Gew%
25	Al ₂ O ₃	0 – 30 Gew%
	Li ₂ O	0 – 30 Gew%
	Na ₂ O	0 – 40 Gew%
	K ₂ O	0 – 30 Gew%
	CaO	0 – 25 Gew%
30	MgO	0 – 15 Gew%
	SrO	0 – 30 Gew%
	BaO	0 – 40 Gew%

35

	ZnO	0 – 40 Gew%
	Ag ₂ O	0 – 5 Gew%
	F	0 – 65 Gew%
	J	0 – 10 Gew%
5	Fe ₂ O ₃	0 – 5 Gew%
	Ag ₂ O	0,01 – 5 Gew%

und gegebenenfalls Spurenelemente und/oder übliche Läutermittel in gängigen Mengen, wobei die Summe von SiO₂ + P₂O₅ + SO₃ + B₂O₃ + Al₂O₃ größer als 20 Gew% und maximal 99,5 Gew% ist.

9. Verwendung gemäß einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Glaszusammensetzung ZnO im Bereich 0,25 bis 20 Gew%, bevorzugt 2,5 bis 10 Gew% umfasst.
10. Verwendung gemäß einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass die Glaszusammensetzung Ag₂O im Bereich 0,01 bis 5 Gew%, bevorzugt 0,05 bis 2 Gew%, besonders bevorzugt 0,5 bis 2 Gew% umfasst.
11. Verwendung gemäß einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass die Summe BaO + SrO größer 10 Gew% ist.
12. Ionen-freisetzende Glaszusammensetzung mit antimikrobieller Wirkung zur Verwendung als Materialen zur Zahnrestauration, insbesondere in Materialien zur Zahnfüllung, wobei die Materialien zur Zahnfüllung Glasionomeren, Komposite, Compromere umfassen, wobei die Glaszusammensetzung die nachfolgenden Komponenten umfasst (in Gew% auf Oxidbasis):

36

	P ₂ O ₅	> 66 – 80 Gew%
	SO ₃	0 – 40 Gew%
	B ₂ O ₃	0 – 1 Gew%
	Al ₂ O ₃	> 6,2 – 10 Gew%
5	SiO ₂	0 – 10 Gew%
	Li ₂ O	0 – 25 Gew%
	Na ₂ O	> 9 – 20 Gew%
	CaO	0 – 25 Gew%
	MgO	0 – 15 Gew%
10	SrO	0 – 15 Gew%
	BaO	0 – 15 Gew%
	ZnO	0 – 25 Gew%
	Ag ₂ O	0 – 5 Gew%
	CuO	0 – 10 Gew%
15	GeO ₂	0 – 10 Gew%
	TeO ₂	0 – 15 Gew%
	Cr ₂ O ₃	0 – 10 Gew%
	J	0 – 10 Gew%
	F	0 – 3 Gew%

20 wobei die Summe ZnO + Ag₂O + CuO + GeO₂ + TeO₂ + Cr₂O₃ + J > 0,01 Gew% ist.

25 13. Ionen-freisetzende Glaszusammensetzung mit antimikrobieller Wirkung zur Verwendung als Materialien zur Zahnerstauration, insbesondere in Materialien zur Zahnpfüllung, wobei die Materialien zur Zahnpfüllung Glasionomeren, Komposite, Compromere umfassen, wobei die Glaszusammensetzung die nachfolgenden Komponenten umfasst (in Gew% auf Oxidbasis):

30	P ₂ O ₅	> 66 – 80 Gew%
	SO ₃	0 – 40 Gew%
	B ₂ O ₃	0 – 1 Gew%

Al_2O_3 0 – 3,9 Gew%

SiO_2 0 – 10 Gew%

CaO 0 – 25 Gew%

MgO 0 – 15 Gew%

5 SrO 0 – 15 Gew%

BaO 0 – 15 Gew%

ZnO 1 – 25 Gew%

Ag_2O 0 – 5 Gew.%

CuO 0 – 10 Gew%

10 GeO_2 0 – 10 Gew%

TeO_2 0 – 15 Gew%

Cr_2O_3 0 – 10 Gew%

J 0 – 10 Gew%

F 0 – 3 Gew.%

15 wobei die Summe $\text{ZnO} + \text{Ag}_2\text{O} + \text{CuO} + \text{GeO}_2 + \text{TeO}_2 + \text{Cr}_2\text{O}_3 + \text{J} > 1$ Gew% ist.

14. Ionen-freisetzende Glaszusammensetzung mit antimikrobieller Wirkung zur Verwendung als Materialien zur Zahnrestauration, insbesondere in Materialien zur Zahnfüllung, wobei die Materialien zur Zahnfüllung Glasionomeren, Komposite, Compromere umfassen, wobei die Glaszusammensetzung die nachfolgenden Komponenten umfasst (in Gew% auf Oxidbasis):

25 $\text{P}_2\text{O}_5 > 45-90$ Gew%

B_2O_3 0 – 60 Gew%

SiO_2 0 – 40 Gew%

Al_2O_3 0 – 20 Gew%

SO_3 0 - 30 Gew%

30 Li_2O 0 – 0,1 Gew%

Na_2O 0 – 0,1 Gew%

K_2O 0 – 0,1 Gew%

CaO 0 – 40 Gew%

MgO 0 – 40 Gew%

SrO 0 – 15 Gew%

BaO 0 – 40 Gew%

5 ZnO 0 – 40 Gew%

Ag₂O 0 – 5 Gew%

CuO 0 – 15 Gew%

Cr₂O₃ 0 – 10 Gew%

J 0 – 10 Gew%

10 TeO₂ 0 - 10 Gew%

GeO₂ 0 - 10 Gew%

TiO₂ 0 - 10 Gew%

ZrO₂ 0 - 10 Gew%

La₂O₃ 0 - 10 Gew%

15 Nb₂O₃ 0 - 5 Gew%

CeO₂ 0 - 5 Gew%

Fe₂O₃ 0 - 5 Gew%

WO₃ 0 - 5 Gew%

Bi₂O₃ 0 - 5 Gew%

20 MoO₃ 0 - 5 Gew%

wobei die Summe ZnO + Ag₂O + CuO + GeO₂ + TeO₂ + Cr₂O₃ + J !> 0,001
Gew% ist.

- 25 15. Ionen-freisetzende Glaszusammensetzung mit antimikrobieller Wirkung zur Verwendung als Materialien zur Zahnerstauration, insbesondere in Materialien zur Zahnpfüllung, wobei die Materialien zur Zahnpfüllung Glasionomeren, Komposite, Compromere umfassen, wobei die Glaszusammensetzung die nachfolgenden Komponenten umfasst (in Gew% auf Oxidbasis):

30

SiO₂ 40 – 80 Gew%

B₂O₃ 5 – 40 Gew%

Al₂O₃ 0 – 10 Gew.- %

	P ₂ O ₅	0 – 30 Gew%
	Li ₂ O	0 – 25 Gew%
	Na ₂ O	0 – 25 Gew%
	K ₂ O	0 – 25 Gew%
5	CaO	0 – 25 Gew%
	MgO	0 – 15 Gew%
	SrO	0 – 15 Gew%
	BaO	0 – 15 Gew%
	ZnO	0 – 30 Gew%
10	Ag ₂ O	0 – 5 Gew%
	CuO	0 – 10 Gew%
	GeO ₂	0 – 10 Gew%
	TeO ₂	0 – 15 Gew%
	Cr ₂ O ₃	0 – 10 Gew%
15	J	0 – 10 Gew%
	F	0 – 10 Gew%

wobei die Summe ZnO + Ag₂O + CuO + GeO₂ + TeO₂ + Cr₂O₃ + J zwischen 5 und 70 Gew% liegt.

- 20 16. Glaszusammensetzung gemäß einem der Ansprüche 12 bis 15,
dadurch gekennzeichnet, dass
die Glaszusammensetzung ZnO im Bereich 0,25 bis 20 Gew%, bevorzugt
2,5 bis 10 Gew% umfasst.
- 25 17. Glaszusammensetzung gemäß einem der Ansprüche 12 bis 16,
dadurch gekennzeichnet, dass
die Glaszusammensetzung Ag₂O im Bereich 0,01 bis 5 Gew%, bevorzugt
0,05 bis 2 Gew%, besonders bevorzugt 0,5 bis 2 Gew% umfasst
- 30 18. Glaszusammensetzung gemäß einem der Ansprüche 12 bis 17,
dadurch gekennzeichnet, dass

40

die Glaszusammensetzung BaO und SrO enthält und die Summe BaO + SrO größer 10 Gew% ist.

19. Ionen-freisetzende Glaszusammensetzung gemäß Anspruch 12 bis 18,
5 dadurch

gekennzeichnet, dass in der Glaszusammensetzung mindestens zwei
Glasphasen ausgebildet werden.

- 10 20. Ionen-freisetzende Glaszusammensetzung gemäß Anspruch 19, dadurch
gekennzeichnet, dass in der Glaszusammensetzung mindestens zwei
Glasphasen unterschiedliche Zusammensetzungen aufweisen.

- 15 21. Ionen-freisetzende Glaszusammensetzung gemäß einem der Ansprüche
19 bis 20, dadurch gekennzeichnet, dass die Glaszusammensetzung
eine Borosilikatglaszusammensetzung ist.

- 20 22. Ionen-freisetzende Glaskeramik mit antimikrobieller Wirkung zur
Verwendung als Materialien zur Zahnrestauration, insbesondere in
Materialien zur Zahnfüllung, wobei die Materialien zur Zahnfüllung
Glasionomeren, Komposite, Compromere umfassen, wobei das
Ausgangsglas der
Glaskeramik die nachfolgenden Komponenten umfasst (in Gew% auf
Oxidbasis) umfasst:

SiO ₂	20 – 90 Gew%
CaO	0 – 45 Gew%
Na ₂ O	0 – 40 Gew%
P ₂ O ₅	0 – 15 Gew%
Ag ₂ O	0 – 5 Gew%
ZnO	0 – 20 Gew%

30

wobei die Summe ZnO + Ag₂O + CuO + GeO₂ + TeO₂ + Cr₂O₃ + J
grösser 0,001 Gew% ist

23. Ionen-freisetzende Glaskeramik nach Anspruch 21,
dadurch gekennzeichnet, dass die kristallinen Hauptphasen Alkali-
Erdalkali-Silicate und/oder Alkali-Silicate und/oder Erdalkali-Silicate
umfassen, ausgenommen eine Glaskeramik mit der einzigen kristallinen
Hauptphase $1 \text{ Na}_2\text{O} \cdot 2 \text{ CaO} \cdot 3 \text{ SiO}_2$ und der Hauptphase
 $\text{Na}_4\text{Ca}_3\text{Si}_6\text{O}_{16}(\text{OH}_2)$
- 5
24. Verfahren zur Herstellung einer Ionen freisetzenden
Glaszusammensetzung
gemäß einem der Ansprüche 19 bis 21,
dadurch gekennzeichnet, dass
die mindestens zwei Phasen durch Temperiern in einem Temperaturbereich
 $\text{Tg} \leq T \leq \text{Tg} + 300^\circ\text{C}$ erhalten werden wobei Tg die
10 Transformationstemperatur des Glases ist
- 15
25. Verfahren zur Herstellung einer Ionen freisetzenden Glaskeramik gemäß
einem der Ansprüche 22 bis 23
dadurch gekennzeichnet, dass das Ausgangsglas für die Glaskeramik
20 gemahlen wird und daran anschließend eine Keramisierung des
pulverförmigen Ausgangsglases erfolgt.
- 25
26. Verfahren zur Herstellung einer Ionen freisetzenden Glaskeramik gemäß
einem der Ansprüche 22 bis 23
dadurch gekennzeichnet, dass das Ausgangsglas für die Glaskeramik
zunächst keramisiert wird und daran anschließend gemahlen wird.
- 30
27. Glasionomerzement für Dentalanwendungen, umfassend:
ein Polymer, das freie Carbonsäuregruppen enthält
eine Ionen-freisetzende Glasionomeren-Glaszusammensetzung

sowie eine Ionen-freisetzende antimikrobielle Glaszusammensetzung oder eine Ionen freisetzende antimikrobielle Glaskeramik gemäß einem der Ansprüche 12 bis 23.

- 5 28. Glasionomerzement gemäß Anspruch 27,
dadurch gekennzeichnet, dass
der Glasionomerenzement 1 – 90% Gew% der
Gesamtzusammensetzung eine Ionen freisetzendes Glas-/Glaskeramik-
zusammensetzung ist, wobei die ionenfreisetzende
10 Glaszusammensetzung einen ionenfreisetzende antimikrobielle
Glaszusammensetzung oder eine ionenfreisetzende Glaskeramik
umfasst oder eine Mischung aus einer ionenfreisetzenden
Glasionomerenzusammensetzung mit einer ionenfreisetzenden
15 antimikrobiellen Glaszusammensetzung oder einer ionenfreisetzenden
Glaskeramik ist
- 20 29. Glasionomerzement gemäß einem der Ansprüche 27bis 28, dadurch
gekenzeichnet, dass der
Ag₂O Gehalt > 0,01 Gew% ist
- 25 30. Glasionomerzement gemäß einem der Ansprüche 27 bis 29, dadurch
gekennzeichnet, dass
das Verhältnis von antimikrobiellem Glaspulver/Glasionomer und/oder
Dentalglaspulver > 0,0001 ist.
- 30 31. Glasionomerenzement gemäß einem der Ansprüche 27 bis 30,
dadaurch gekennzeichnet, dass das
Verhältnis von antimikrobiellem Glaspulver / Glasionomer und/oder
Dentalglasfüller < 200 benvorzugt kleiner als 100, ganz benvorzugt kleiner
als 10 ist

32. Beschichtungs- oder Verblendungsmaterial für keramische
Dentalsuprastrukturen, umfassend
ein Grundmaterial, bevorzugt einen Dentalfüller
eine Ionen freisetzende antimikrobielle Glaszusammensetzung oder eine
Ionen freisetzende Glaskeramik gemäß einem der Ansprüche 12 bis 23.

5

Glaszusammensetzungen als antimikrobieller Zusatz für
Dentalmaterialien und deren Verwendung

Zusammenfassung

5

Die Erfindung betrifft eine Verwendung von Glaszusammensetzungen mit antimikrobieller und/oder desinfizierender Wirkung in Materialien zur Zahnrestauration, ausgenommen Implantate.

10