Examen d'introduction à l'IA : théorie et algorithmes

16 décembre 2021

2 feuilles de notes manuscrites autorisées. La clarté et la précision de la rédaction seront prises en compte dans l'évaluation. Le barème est indicatif.

> Aucune question ne pourra être posée durant l'examen. En cas de doute concernant le sujet, vous poursuivrez votre réponse en expliquant vos hypothèses.

> > Merci de bien indiquer votre numéro de groupe.

Durée: 2h

Exercice 1 /4 pt

On considère un problème de classification dans lequel nous avons n variables explicatives et une classe avant m valeurs (modalités) possibles.

Pour résoudre ce problème nous créons un réseau de neurones ayant nbc couches cachées.

On appelle nn_i le nombre de neurones de la couche cachée i (i = 1, ..., nbc).

- 1. Donnez le nombre total de poids et de biais de ce réseau. On veillera à donner les détails du calcul.
- 2. Expliquez brièvement (3-4 phrases) comment sont calculés ces poids et ces biais.

Exercice 2

On souhaite déterminer si un patient risque de faire un infarctus en fonction de:

- son age
- S'il est inanimé ou non
- S'il a des douleurs à la poitrine ou ailleurs

On va apprendre deux modèles, arbre de décision et réseau de neurones, sur la base d'apprentissage suivante.

	Douleur	Age	Inanimé	Infarctus		Douleur	Age	Inanimé	Infarctus
1	ailleurs	21	non	non	11	poitrine	35	non	oui
2	ailleurs	25	non	non	12	ailleurs	34	oui	oui
3	ailleurs	31	non	non	13	ailleurs	34	oui	oui
4	ailleurs	34	non	non	14	poitrine	25	oui	oui
5	ailleurs	35	non	non	15	poitrine	35	oui	oui
6	ailleurs	36	non	non	16	poitrine	45	oui	oui
7	ailleurs	36	non	non	17	poitrine	45	oui	oui
8	ailleurs	48	non	non	18	poitrine	48	oui	oui
9	poitrine	41	oui	non	19	poitrine	70	oui	oui
10	poitrine	52	oui	non	20	poitrine	70	oui	oui

Partie 1 : Arbre de décision /4 pt

- 1. Quelle est l'entropie de la variable cible?
- 2. On obtient l'arbre complet de la figure ci-dessous. Donnez, au choix, le gain ou l'entropie résiduelle après le 1er split.

3. A partir du graphique de l'erreur en fonction de la complexité de l'arbre, déterminez l'arbre optimal (meilleur élagage). Dessinez-le sans oublier les valeurs des feuilles terminales.

- 4. Quel est le diagnostic prédit pour un individu de 52 ans, inanimé, ayant une douleur à la poitrine :
 - (a) avec l'arbre complet?
 - (b) avec l'arbre optimal?
- 5. Calculer la matrice de confusion et en déduire le taux d'erreur.

Partie 2 : Réseau de neurones /4 pt

Ci-dessous, le résultat de l'apprentissage d'un réseau à 2 neurones avec comme fonction d'activation la fonction sigmoïde,

$$f(x) = 1/(1 + exp(-x))$$

- 1. Écrire les neurones cachés H1 et H2 en fonction des entrées.
- 2. À quoi correspond le neurone de sortie. Exprimer le neurone de sortie en fonction des neurones cachés H1 et H2.
- 3. Quel est le diagnostic prédit pour un individu de 52 ans, inanimé, sans douleur à la poitrine? Expliquez vos calculs.

Exercice 3: /4 pt

Soit l'arbre de jeux suivant où la racine correspond au joueur Max.

- 1. Quelle est la signification des valeurs des feuilles? De quelle(s)manière ont-elles pu être obtenues ?
- 2. Appliquez l'algorithme Minimax. Quelle est la signification de la valeur de la racine ?
- 3. Quelle utilisation le joueur Max ferait-il du résultat de l'application de MiniMax ?
- 4. Appliquez l'algorithme Alpha-beta.

Exercice 4 /4 pt

Soit la matrice suivante représentant un TSP asymétrique :

	1	2	3	4	5
1	∞	20	30	10	11
2	15	∞	16	4	2
3	3	5	∞	2	4
4	19	6	18	∞	3
5	16	4	7	16	∞

- 1. Appliquer l'algorithme de Little pour trouver la solution à ce TSP. Vous devez justifier toutes les branches que vous coupez.
- 2. Combien de noeuds avez-vous évités de parcourir par rapport à l'algorithme naïf qui teste tous les chemins hamiltoniens ?