Università di Catania Corso di Laurea in Fisica Compito scritto di Fisica Generale I M.G. Grimaldi – A. Insolia

Catania, 16 Febbraio 2022

Per la prova in itinere svolgere i problemi 1, 2, 3 (tempo 2h) Per la prova completa svolgere i problemi 2, 3, 4, 5 (tempo 3 h).

Problema n.1

All'istante t=0 un punto materiale, inizialmente fermo nel punto A (con riferimento alla figura di seguito) alla quota h=10 m su un piano liscio inclinato di α =30° rispetto all'orizzontale (asse x di figura), viene lasciato libero. Allo stesso istante t=0 il corpo B viene lanciato con velocità v_0 inclinata di α verso l'alto dall'origine del sistema di riferimento O. Se i due corpi si incontrano nel punto C dove il piano inclinato incontra l'asse x, determinare la posizione del punto C.

Problema n.2

Un corpo di massa m_1 =1.00 kg, inizialmente in quiete, è lasciato cadere da un'altezza h, con h=12.0 m. Nello stesso istante in cui il corpo 1 inizia il suo moto, un secondo corpo, di massa m_2 =2.00 kg, viene lanciato da terra con velocità v_{20} , lungo la stessa verticale. Date le condizioni, i due corpi si scontreranno; indichiamo con t_c e y_c l'istante e la quota a cui avviene la collisione. Sapendo che l'urto tra i due corpi è completamente anelastico e che dopo l'urto il corpo derivante dall'unione dei due (di massa m_1+m_2) raggiunge una quota massima pari ad h, determinare:

- a) la velocità v₂₀ con cui è stato lanciato il corpo 2;
- b) l'istante t_c e la quota y_c a cui avviene l'urto;
- c) l'energia persa nella collisione.

[Trattare i corpi come puntiformi, trascurare ogni attrito e supporre l'urto istantaneo]

Problema n.3

Un disco omogeneo di raggio R=40 cm e massa m=25 kg è posto su un piano orizzontale scabro. Al disco è applicata una coppia di forze che determina un momento applicato sull'asse del disco di modulo M=50 Nm, perpendicolare al foglio ed entrante. I coefficienti di attrito statico e dinamico tra disco e piano sono rispettivamente: μ_s =0.30 e μ_d =0.25.

- a) Determinare se il moto del disco è di puro rotolamento.
- b) Calcolare l'accelerazione angolare con cui il disco ruota e l'accelerazione del centro di massa.

Problema n.4

Un corpo, di massa m_1 =1000 kg, viene lanciato in direzione radiale dalla superficie terrestre con una velocità iniziale v_0 pari a 3/5 della sua velocità di fuga, v_{fuga} .

a) Determinare la massima distanza r_{max} dal centro della Terra che raggiunge il corpo.

Nell'esatto momento in cui il corpo si trova alla distanza r_{max} (quella calcolata nel punto precedente), viene colpito da un meteorite di massa $m_2=2m_1$. Sapendo che l'urto con il meteorite è completamente anelastico e che il corpo venutosi a formare prende a ruotare intorno alla Terra sull'orbita circolare di raggio r_{max} , determinare:

- b) il tempo che impiega il corpo a fare un giro completo intorno alla Terra;
- c) la velocità v₂ che il meteorite aveva prima dell'urto, specificandone la direzione;
- d) l'energia persa nell'urto.

[Nei calcoli trascurare sia la resistenza dell'atmosfera che la rotazione terrestre. Per la massa e il raggio terrestri utilizzare i seguenti valori: $M=5.98 \cdot 10^{24}$ kg, $R=6.37 \cdot 10^6$ m]

Problema n.5

Una mole di gas monoatomico ideale inizialmente alla pressione $P_A=2x10^5$ Pa e volume $V_A=10$ dm³ compie il ciclo termodinamico reversibile: $A\rightarrow B\rightarrow C\rightarrow D\rightarrow A$, con AB isobara, BC adiabatica, CD isobara, DA trasformazione lineare che riporta il gas nelle condizioni iniziali (si veda la figura). Sia $V_B=1.5V_A$. Scegliere il valore della pressione p_D in modo che la differenza di entropia tra gli stati B e D sia pari a 2 J/K. Determinare, poi, il rendimento del ciclo.

