www.crackjee.xyz

Electromagnetic Waves

CHAPTER 22

- 1. Electromagnetic waves are transverse in nature is evident by [2002]
 - (a) polarization
- (b) interference
- (c) reflection
- (d) diffraction
- 2. An electromagnetic wave of frequency v = 3.0 MHz passes from vacuum into a dielectric medium with permittivity $\epsilon = 4.0$. Then [2004]
 - (a) wave length is halved and frequency remains unchanged
 - (b) wave length is doubled and frequency becomes half
 - (c) wave length is doubled and the frequency remains unchanged
 - (d) wave length and frequency both remain unchanged.
- 3. An electromagnetic wave in vacuum has the electric and magnetic field \vec{E} and \vec{B} , which are always perpendicular to each other. The direction of polarization is given by \vec{X} and that of wave propagation by \vec{k} . Then [2012]
 - (a) $\vec{X} \parallel \vec{B}$ and $\vec{k} \parallel \vec{B} \times \vec{E}$
 - (b) $\vec{X} \parallel \vec{E}$ and $\vec{k} \parallel \vec{E} \times \vec{B}$
 - (c) $\vec{X} \parallel \vec{B}$ and $\vec{k} \parallel \vec{E} \times \vec{B}$
 - (d) $\vec{X} \parallel \vec{E}$ and $\vec{k} \parallel \vec{B} \times \vec{E}$
- 4. The magnetic field in a travelling electromagnetic wave has a peak value of 20 nT. The peak value of electric field strength is: [2013]
 - (a) 3 V/m
- (b) 6V/m
- (c) 9 V/m
- (d) 12 V/m
- 5. During the propagation of electromagnetic waves in a medium: [2014]

- (a) Electric energy density is double of the magnetic energy density.
- (b) Electric energy density is half of the magnetic energy density.
- (c) Electric energy density is equal to the magnetic energy density.
- (d) Both electric and magnetic energy densities are zero
- 6. Match List I (Electromagnetic wave type) with List II (Its association/application) and select the correct option from the choices given below the lists: [2014]

List	t 1				List 2					
1.	Infra	red wa	ives	(i)	To treat muscular strain					
2.	Radi	o wave	es	(ii)	For broadcasting					
3.	X-ra	ys		(iii)	To detect fracture of					
					bones					
4.	Ultra	violet	rays	(iv)	Absorbed by the					
					ozone layer of the					
					atmosphere					
	1	2	3	4	4					
(a)	(iv)	(iii)	(ii)	(i	i)					
(b)	(i)	(ii)	(iv)	(i	iii)					
(c)	(iii)	(ii)	(i)	(i	iv)					
(d)	(i)	(ii)	(iii)	(i	iv)					

7. Arrange the following electromagnetic radiations per quantum in the order of increasing energy:

[2016]

A : Blue light	B: Yellow light					
C: X-ray	D: Radiowave					
(a) C, A, B, D	(b) B, A, D, C					
(c) D, B, A, C	(d) A, B, D, C					

Electromagnetic Waves

P-141

	Answer Key													
1	2	3	4	5	6	7								
(a)	(a)	(b)	(b)	(c)	(d)	(c)								

SOLUTIONS

- **1. (a)** The phenomenon of polarisation is shown only by transverse waves.
- **2. (a)** Frequency remains constant during refraction

$$v_{\text{med}} = \frac{1}{\sqrt{\mu_0 \in_0 \times 4}} = \frac{c}{2}$$

$$\frac{\lambda_{\text{med}}}{\lambda_{\text{air}}} = \frac{v_{\text{med}}}{v_{\text{air}}} = \frac{c/2}{c} = \frac{1}{2}$$

: wavelength is halved and frequency remains unchanged

3. (b) ∴ The E.M. wave are transverse in nature i.e.,

$$=\frac{\vec{k}\times\vec{E}}{\mu\omega}=\vec{H}\qquad ...(i)$$

where $\vec{H} = \frac{\vec{B}}{\vec{B}}$

and
$$\frac{\vec{k} \times \vec{H}}{\omega \varepsilon} = -\vec{E}$$
 ... (ii)

 \vec{k} is $\perp \vec{H}$ and \vec{k} is also \perp to \vec{E} or In other words $\vec{X} \parallel \vec{E}$ and $\vec{k} \parallel \vec{E} \times \vec{B}$

4. (b) From question,

$$B_0 = 20 \text{ nT} = 20 \times 10^{-9} \text{T}$$

(: velocity of light in vacuum $C = 3 \times 10^8$ ms⁻¹)

$$\vec{E}_0 = \vec{B}_0 \times \vec{C}$$

$$|\vec{E}_{0}| = |\vec{B}| \cdot |\vec{C}| = 20 \times 10^{-9} \times 3 \times 10^{8}$$

= 6 V/m.

5. **(c)** $E_0 = CB_0 \text{ and } C = \frac{1}{\sqrt{\mu_0 \, \varepsilon_0}}$

Electric energy density = $\frac{1}{2} \varepsilon_0 E_0^2 = \mu_E$

Magnetic energy density = $\frac{1}{2} \frac{Bo^2}{\mu_0} = \mu_B$

Thus, $\mu_E = \mu_B$

Energy is equally divided between electric and magnetic field

- 6. (d)
 - (1) Infrared rays are used to treat muscular strain because these are heat rays.
 - (2) Radio waves are used for broadcasting because these waves have very long wavelength ranging from few centimeters to few hundred kilometers
 - (3) X-rays are used to detect fracture of bones because they have high penetrating power but they can't penetrate through denser medium like dones.
 - (4) Ultraviolet rays are absorbed by ozone of the atmosphere.

E, Decreases

Radio wave < yellow light < blue light < X-rays

(Increasing order of energy)