

Assignment

Group Members

Sarmad Ali Jalbani	Uzair Ahmed	Rana Hamza Ali Khan
CSC-21S-121	CSC-21F-130	CSC-21F-105

Semester : 6-C

Session : Spring 2024

Course : Digital Image Processing

Course Instructor : Sir Anwar Ali Sathio

Comparative Analysis of Faster RCNN and YOLO

Faster R-CNN and YOLO (You Only Looks One) are two popular deep learning-based object detection models that serve the same fundamental purpose—identifying and locating objects within an image. However, they approach the task in distinct ways, leading to differences in speed, accuracy, and application suitability.

1. Architecture:

Faster RCNN

a) Region Proposal Network (RPN): Faster R-CNN integrates a Region Proposal Network to generate candidate object bounding boxes. The RPN is a fully convolutional network that predicts object bounds and objectness scores at each position.

- b) Two-stage process:
 - 1. **Stage 1 (RPN):** Generates region proposals.
 - Stage 2 (Fast R-CNN): Classifies the proposals and refines the bounding boxes.
- c) Backbone Network: Commonly uses feature extractors like VGG or ResNet to generate feature maps.
- **d)** Output: Delivers a set of bounding boxes along with the class labels and their respective probabilities.

YOLO

- a) Single-stage detector: YOLO treats object detection as a single regression problem, straight from image pixels to bounding box coordinates and class probabilities.
- b) Grid-based approach: The input image is divided into an S x S grid. Each grid cell predicts B bounding boxes and class probabilities.
- c) Backbone Network: Uses a convolutional network to extract features from the entire image (commonly Darknet).
- **d) Output:** Each grid cell predicts bounding boxes, objectness scores, and class probabilities for the bounding boxes.

2. Speed vs. Accuracy:

Faster RCNN	YOLO
a) Accuracy: Generally achieves higher accuracy due to its two-stage process, which allows for precise region proposals and detailed refinement. b) Speed: Slower than YOLO, as it processes region proposals and classifications in separate steps. Typically operates at around 5-7 FPS on standard hardware.	 a) Speed: Designed for real-time processing, significantly faster than Faster R-CNN. YOLOv3, for instance, can operate at 45 FPS, while YOLOv4 and YOLOv5 have even better performance. b) Accuracy: While fast, it may sacrifice some accuracy, particularly in detecting small objects and dealing with overlapping objects. YOLO's
•	with overlapping objects. YOLO's grid approach can sometimes struggle with objects that fall into
	multiple cells or are too small for the grid resolution.

3. Complexity and Implementation:

Faste	r RCNN	YOLO	
a)	Complexity: More complex due to its	a)	Complexity: Simpler due to its
	two-stage architecture. Requires		single-stage architecture. End-to-
	separate training of the RPN and the		end training is straightforward.
	classification layers.	b)	Implementation: Easier to
b)	Implementation: Can be more		implement and train. Requires fewer
	challenging to implement and		computational resources compared
	requires more computational		to Faster R-CNN.
	resources and memory. Fine-tuning	c)	Frameworks: Available in
	can be more involved.		frameworks such as Darknet (original
c)	Frameworks: Widely available in		implementation), as well as
	frameworks like TensorFlow and		adaptations in TensorFlow and
	PyTorch, often as part of libraries like		PyTorch.
	Detectron2 or TensorFlow Object		
	Detection API.		

4. Applications:

Faste	r RCNN	YOLO	
a)	High-accuracy requirements: Ideal	a)	Real-time applications: Preferred for
	for applications where detection		applications requiring real-time
	accuracy is paramount, such as		processing, such as video
	autonomous driving, medical		surveillance, live object tracking, and
	imaging, and surveillance.		robotics.
b)	High-resolution images: Better	b)	Resource-constrained
	suited for images with high		environments: Suitable for
	resolution or containing small		deployment on devices with limited
	objects.		computational power, like mobile
			and embedded devices.

5. Variants and Evolution:

Faster RCNN	YOLO
a) Variants: Improvements and	a) Variants: YOLO has evolved through
variations include Mask R-CNN (adds	several versions (YOLOv2, YOLOv3,
segmentation capabilities) and	YOLOv4, YOLOv5), each iteration
Feature Pyramid Networks (FPN) for	focusing on better accuracy, speed,
handling scale variance.	and handling of diverse object sizes.
b) Evolution : Has inspired many	b) Evolution: Newer versions
subsequent models focusing on	incorporate advancements like
improving proposal generation and	PANet for better feature fusion,
speed without compromising	CSPNet for reducing computation,
accuracy.	and other techniques to improve
	both performance and accuracy.

Conclusion:

In conclusion, the choice between Faster R-CNN and YOLO depends on the specific requirements of the task at hand. Faster R-CNN is typically favored for applications needing high accuracy and can afford the computational cost. In contrast, YOLO is preferred for scenarios demanding real-time processing and where speed is crucial. Both models continue to evolve, incorporating advancements from the field of deep learning to improve their respective strengths.