

Systemtheorie der Sinnesorgane – Übung 4

Allgemeine Hinweise: Denken Sie beim Abspielen von Tönen an die Rampen, um das breite Einschaltspektrum zu minimieren. Lassen Sie die Werte abgespielter Signale nicht außerhalb des Bereichs ±1 laufen, damit keine Clipping-Effekte das Signal verzerren. Nützlicher Befehl für die Fensterung: tukeywin(window_length, ramp_percentage)

1 Signaladdition

Addieren Sie zwei sinusförmige Signale mit den Frequenzen $f_1 = 400 \,\text{Hz}$ und $f_2 = 404 \,\text{Hz}$. Plotten Sie das Gesamtsignal für Töne derselben Amplituden, und lassen Sie das Audiosignal abspielen. Klingt dieses Signal wie eine Addition zweier Sinustöne (probieren Sie zum Beispiel auch $f_2 = 500 \,\text{Hz}$)? Schreiben Sie die Formel für die Addition zweier Sinustöne so um, dass sie der Wahrnehmung besser entspricht.

2 Amplitudenmoduliertes Signal

Geben Sie zunächst eine allgemeine Formel für ein amplitudenmoduliertes, sinusförmiges Signal an. Berechnen und plotten Sie einen Sinuston der Trägerfrequenz $f_T = 1000 \,\mathrm{Hz}$, welches mit $f_M = 4 \,\mathrm{Hz}$ und einem Modulationsgrad m = 0.5 moduliert wird. Stellen Sie das einseitige Amplitudenspektrum des Signals dar.

3 Frequenzmoduliertes Signal

Geben Sie jetzt die Formel für ein frequenzmoduliertes, sinusförmiges Signal an. Erzeugen Sie einen mit $f_M=3$ Hz frequenzmodulierten Sinuston der Trägerfrequenz $f_T=1000$ Hz und einem Frequenzmodulationshub $\Delta f_T=30$ Hz. Berechnen und plotten Sie das Langzeitspektrum des Signals, sowie ein Spektrogramm. Generieren Sie hier auch Audiosignale, und hören Sie sich Signale mit verschiedenen Modulationsparametern $(f_T, f_M, 2\Delta f_T)$ an.

4 Zu höheren Modulationsfrequenzen

Erzeugen Sie jetzt analog zu Aufgabe 2 einen AM-Ton, diesmal mit $f_M = 200 \,\mathrm{Hz}$. Generieren Sie die Audiosignale, und hören Sie sich die Töne an. Was ist bei diesem Ton der Unterschied der Tonqualität im Vergleich zum Fall mit $f_M = 4 \,\mathrm{Hz}$? Wie erklären Sie das, wenn Sie das Innenohr in Betracht ziehen?

5 Frewillige Fleißaufgabe

Erzeugen Sie jetzt zwei Sinustöne der Länge $10\,\mathrm{s}$ mit $f_1=400\,\mathrm{Hz}$ und $f_2=f_1+\Delta f$. Die Effekte sind leichter wahrzunehmen, wenn die Töne zusätzlich amplituden-moduliert sind. Nehmen Sie für beide Töne die Parameter $f_M=5\,\mathrm{Hz}$ und m=1. Spielen Sie die Töne durch getrennte Kanäle von Kopfhörern ab, sodass jeweils an den Ausgängen nur reine Sinustöne liegen. Wie ist der Klang mit $\Delta f=100\,\mathrm{Hz}$, und wie mit $0.25\,\mathrm{Hz}$? Wo kommt im letzteren Fall der Höreindruck her? Hinweis: Sie können eine $n\times 2$ -Matrix als Eingang für den Befehl sound() benutzen.

Viel Erfolg!