THE SPEARMAN MODEL

JAN DE LEEUW

1. Spearman Correlations

Definition 1.1. A *correlation function* or CF on a set T is a function ρ : $T \otimes T \Rightarrow \mathbb{R}$ such that

- $\rho(t,t) = 1$ for all $t \in T$,
- $\rho(s,t) = \rho(t,s)$ for all $s,t \in T$,
- If $\{t_1, \dots, t_n\}$ is a finite set of elements of T, then the $n \times n$ matrix with elements $\rho_{ij} = \rho(t_i, t_j)$ is positive semi-definite.

Definition 1.2. A correlation ρ is a Spearman correlation function or SCF if there exist $\alpha: T \Rightarrow \mathbb{R}$ with $-1 \le \alpha(t) \le +1$ for all $t \in T$ such that $\rho(s,t) = \alpha(s)\alpha(t)$ for all $s \ne t$. An SCF is *proper* or a PSCF if $0 < \alpha(t) < 1$ for all $t \in T$.

Definition 1.3. We call $\alpha^2(t)$ the *common variance* at t and $\omega^2(t) \stackrel{\Delta}{=} 1 - \alpha^2(t)$ the *unique variance* at t.

Theorem 1.1. If ρ is an SFT then there is a partition of T into subsets T_0 , T_1 , and T_{\star} such that

- If $t \in T_0$ then $\rho(t,s) = 1$ for t = s and $\rho(t,s) = 0$ otherwise.
- If $t \in T_1$ then $\rho(t, s) = 1$ for $s \in T_1$ and $\rho(t, s) = 0$ otherwise.
- If $t \in T_+$ then $\rho(t,s) \neq 0$ for all $s \in T$.

Proof. The three blocks correspond with $\alpha(t) = 0$, $\alpha(t) = 1$, and $-1 < \alpha(t) < +1$.

Thus ρ is the direct sum of three blocks, where block on T_0 ρ is the identity, on block T_1 it is identically one, and on block T_+ it is non-zero

Date: Thursday 25th June, 2009.

everywhere. By allowing for sign changes, we can choose ρ on block T_+ to be positive, which means it is a PSCF on T_+ .

Theorem 1.2. A correlation ρ on T is a PSCF if and only if

- (1) $\rho(s,t) > 0$ for all $s, t \in T$,
- (2) $\rho(s,t)\rho(u,v) = \rho(s,v)\rho(t,u)$ for all quadruples (s,t,u,v) of distinct elements of T,
- (3) $\rho(t,u) > \rho(t,s)\rho(s,u)$ for all triples (s,t,u) of distinct elements of T.

Proof. The proof is exactly the same as the one in Bekker and De Leeuw [1987] for the case in which T is finite. The 2×2 matrices

$$\begin{bmatrix} \rho(s,u) & \rho(s,v) \\ \rho(t,u) & \rho(t,v) \end{bmatrix}$$

must be of rank one. This is condition (2). We set

$$\hat{\alpha}(s,u,v) \stackrel{\Delta}{=} \sqrt{\frac{\rho(s,u)\rho(s,v)}{\rho(u,v)}}.$$

Then condition (2) shows that the value of $\hat{\alpha}(s) \stackrel{\Delta}{=} \hat{\alpha}(s, u, v)$ is independent of u and v and that $\rho(s, t) = \hat{\alpha}(s)\hat{\alpha}(t)$. Condition (3) comes from the fact that the 2×2 matrices

$$\begin{bmatrix} 1 & \rho(s,u) \\ \rho(t,s) & \rho(t,u) \end{bmatrix}$$

must be positive definite. It guarantees that $\hat{\alpha}^2(s) < 1$.

2. LINEAR SPEARMAN STRUCTURES

Suppose \mathcal{Y} is a separable pre-Hilbert space with inner product $\langle \bullet, \bullet \rangle$ and with unit sphere $S \stackrel{\triangle}{=} \{ \gamma \in \mathcal{Y} \mid \langle \gamma, \gamma \rangle = 1 \}$.

Definition 2.1. A function y on a set T with values in S is a *Linear Spearman Structure* or LSS if there exist

- an element $u \in S$,
- a function *e* on *T* with values in *S*,
- a real-valued function α on T, with $-1 \le \alpha(t) \le +1$ for all $t \in T$,

such that

- $y(t) = \alpha(t)u + \omega(t)e(t)$ for all $t \in T$,
- $\langle u, e(t) \rangle = 0$ for all $t \in T$,
- $\langle e(s), e(t) \rangle = 0$ for all $s \neq t \in T$.

The LSS is proper, or a PLSS, if $-1 \le \alpha(t) \le +1$ for all $t \in T$.

As before, we use the shorthand $\omega(t)\tilde{n} \stackrel{\Delta}{=} \sqrt{1 - \alpha^2(t)}$.

Theorem 2.1. If y is an LSS, then the CF defined by $\rho(s,t) = \langle y(s), y(t) \rangle$ is an SCF.

Proof. Definition 2.1 gives
$$\langle \gamma(s), \gamma(t) \rangle = \alpha(s)\alpha(t) + \omega^2(t)\delta^{st}$$
.

Note that in addition in an LSS

(1a)
$$\langle y(t), u \rangle = \alpha(t)$$
 for all $t \in T$,

(1b)
$$\langle \gamma(t), e(s) \rangle = \omega(t)\delta^{st}$$
.

$$y(t) = \sum_{i=0}^{\infty} \eta_i(t) z_i,$$

$$e(t) = \sum_{i=0}^{\infty} \epsilon_i(t) z_i,$$

$$u = \sum_{i=0}^{\infty} \mu_i z_i.$$

$$\eta_i(t) = \alpha(t)\mu_i + \omega(t)\epsilon_i(t)$$

Suppose [Y] is the span of y, i.e. the set of all finite linear combinations $\sum_{i=1}^{n} \beta_i y(t_i)$. Moreover $\overline{[Y]}$ is the closure of the span. Also $[Y]_{\perp}$ is the perp of y, i.e. the closed linear subspace of all $z \in \mathcal{Y}$ such that $\langle z, y(t) \rangle = 0$ for all $t \in T$.

3. FUNDAMENTAL THEOREM OF FACTOR ANALYSIS

3.1. Existence.

Theorem 3.1. If $\{y_j \in \mathcal{Y}\}_{1 \leq j \leq m}$ is a Spearman sequence, then C with elements $c_{j\ell} = \langle y_j, y_\ell \rangle$ is a Spearman matrix. Conversely, if C is a Spearman matrix, then there exists a Spearman sequence $\{y_j \in \mathcal{Y}\}_{1 \leq j \leq m}$ with $c_{j\ell} = \langle y_j, y_\ell \rangle$.

Proof. The first part is a simple calculation.

3.2. Indeterminacy.

4. PROPERTIES OF SPEARMAN MATRICES

4.1. Canonical Form.

Definition 4.1. A Spearman matrix is *regular* if

- $\alpha_i > 0$ for all $1 \le j \le m$,
- $\delta_1^2 > \delta_2^2 > \cdots > \delta_m^2$.

A regular Spearman matrix is *complete* if $\delta_m^2 > 0$, otherwise it is *incomplete*.

Theorem 4.1. Each Spearman matrix is (orthogonally) similar to the direct sum of a regular Spearman matrix and a diagonal matrix.

Proof. We first permute rows and columns of the Spearman matrix C such that those with both $\alpha_j = 0$ and $\delta_j^2 = 0$ come last. Suppose there are m_{00} of these.

Then permute again so that the, say, m_{01} rows and columns with $\alpha_j = 0$ and $\delta_j^2 > 0$ come before these. We then have

$$C \sim \begin{bmatrix} \tilde{C} & 0 & 0 \\ 0 & \tilde{\Delta}^2 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Now look at the submatrix \tilde{C} , for which all $\alpha_j \neq 0$. Permute again to make the δ_j^2 non-increasing along the diagonal. Suppose the δ_j^2 have r

different values, and that value δ_s^2 has multiplicity k_s . Write α_s for the subvector of α corresponding to δ_s^2 .

Construct the r orthonormal matrices L_s , of order k_s , whose first columns are equal to $\alpha_s/\|\alpha_s\|$, and whose remaining columns are orthogonal to α_s , and to each other. Premultiply \tilde{C} with the direct sum of the L_s , and again permute rows and columns to obtain

(2)
$$\tilde{C} \sim \begin{bmatrix} \overline{C} & 0 \\ 0 & \overline{\Delta}^2 \end{bmatrix}.$$

Here \overline{C} is of order r and has elements

$$\overline{c}_{st} = \begin{cases} \|\alpha_s\|^2 + \delta_s^2 & \text{for all } 1 \le j \le r, \\ \|\alpha_s\| \|\alpha_t\| & \text{for all } 1 \le s \ne t \le r. \end{cases}$$

Moreover $\overline{\Delta}^2$ is diagonal, with r diagonal blocks, where block s of order $k_s - 1$ has all diagonal elements equal to δ_s^2 . Thus

$$C \sim \begin{bmatrix} \overline{C} & 0 & 0 & 0 \\ 0 & \overline{\Delta}^2 & 0 & 0 \\ 0 & 0 & \tilde{\Delta}^2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

and because \overline{C} is a regular Spearman matrix this completes the proof. \Box

4.2. **Determinant.** Because of Theorem 4.1 it clearly suffices to compute the determinant of a regular Spearman matrix.

Theorem 4.2. Regular Spearman matrices are non-singular (and thus positive definite).

Proof. This is trivial for complete Spearman matrices. An incomplete Spearman matrix C can be written as

$$C = \begin{bmatrix} \Delta_{\overline{m}}^2 + \alpha_{\overline{m}} \alpha'_{\overline{m}} & \alpha_m \alpha_{\overline{m}} \\ \alpha_m \alpha'_{\overline{m}} & \alpha_m^2 \end{bmatrix},$$

where $\Delta_{\overline{m}}^2$ is Δ^2 with its last row and column deleted, and $\alpha_{\overline{m}}$ is α with its last element deleted. If Cx = 0 then we can suppose without loss

of generality that $x_m = 1$ (we cannot have $x_m = 0$ because the leading submatrix of c is complete and thus nonsingular). Now

$$x'Cx = x'_m \Delta_m^2 x_m + (x'_m \alpha_m + \alpha_m)^2.$$

The first term can only be zero if $x_m = 0$, but then the second term is non-zero, because α_m is non-zero.

Theorem 4.3. A complete Spearman matrix $C = \alpha \alpha' + \Delta^2$ has determinant

$$\det(C) = \det(\Delta^2)(1 + \alpha' \Delta^{-2} \alpha).$$

An incomplete Spearman matrix has determinant

$$\det(C) = \alpha_m^2 \det(\Delta_{\overline{m}}^2).$$

Proof. For a complete Spearman matrix, we twice apply the classical theorem ?? on partitioned determinants (or Schur complements) to the matrix

$$D = \begin{bmatrix} \Delta^2 & \alpha \\ -\alpha' & 1 \end{bmatrix}.$$

This gives $\det(D) = \det(\Delta^2)(1 + \alpha'\Delta^{-2}\alpha) = \det(1)\det(\Delta^2 + \alpha\alpha')$, which proves the first part.

The second part follows by taking the limit if $\delta_m^2 \to 0$. Using the notation in the proof of Theorem 4.2,

$$\begin{aligned} \det(C) &= \delta_m^2 \det(\Delta_{\overline{m}}^2) (1 + \alpha_{\overline{m}}' \Delta_{\overline{m}}^{-2} \alpha_{\overline{m}} + \frac{\alpha_m^2}{\delta_m^2}) = \\ &= \det(\Delta_{\overline{m}}^2) (\delta_m^2 (1 + \alpha_{\overline{m}}' \Delta_{\overline{m}}^{-2} \alpha_{\overline{m}}) + \alpha_m^2), \end{aligned}$$

which obviously has the limit in the theorem.

Alternatively, we can use the partitioning used in the proof Theorem 4.2 and apply the partitioned determinant result to show that

$$\det(\Delta^2 + \alpha \alpha') = \alpha_m^2 \det(\Delta_{\overline{m}}^2 + \alpha_{\overline{m}} \alpha'_{\overline{m}} - \frac{\alpha_m \alpha_{\overline{m}} \alpha_m \alpha'_{\overline{m}}}{\alpha_m^2}) = \alpha_m^2 \det(\Delta_{\overline{m}}^2).$$

4.3. Inverse.

4.4. Eigenvalues.

REFERENCES

P. Bekker and J. De Leeuw. The Rank of Reduced Dispersion Matrices. *Psychometrika*, 52:125–135, 1987.

UCLA STATISTICS

E-mail address: deleeuw@stat.ucla.edu