Exercice 1: D. For a given CERd, bear, Acirnad, min $C^T n$ st An = 5 (p) and max $b^T y$ st $A^T y \in C$ (D)1) For (P), we have: $g(1, v) = \inf_{x \in D} \left(L(x, 1, v) \right)$ st: $L(n, \lambda, \delta) = c^{\dagger}n + \delta^{\dagger}(4n-6) - \lambda^{\dagger}n$ = $-6^{\dagger}\lambda + (c + A^{\dagger}\lambda - A)^{\dagger}n$ L'is linear in π , hence: $g(d, \vec{v}) = \int_{-\infty}^{\infty} b^{T} \vec{v} dt = 0$ otherwise bence it is concerne. lower bound property: pt > -5 > if ATN+C20 Dal publem : maximite -672 (p')
subject to ATD+C>0

2). Le problème (D) est egenalent à résordre le publime servent: -min (-6 Ty)
ty ATy-c <0 On peut défiuir la fonction de Lagrange?
associéé (sans prendre en compte pour le
moment le signe "-" devant le min(-6 y))) 2 (y, d) = - bt y + 1 (AT y - c) = (A 2 - 6) y - 2TC $g(\lambda) = \inf_{y} \chi(y, \lambda) = \begin{cases} -\lambda^{T} e & \text{if } A\lambda - b = 0 \\ -\infty & \text{otherwise} \end{cases}$ bouer boud property: P*>, -I'c if Ad-40 In our public here we need to have on upper bond property (due to the "-") Langrage date problem: minimite - 1 c subject to A1-6=0 (D')

and 1>0

Paul CHAUVIN ×1:3) We have: (D) $max(-5^T v)$ $st A^T v + c > 0$ (P): min CTN
xst Ax-6
x>0 dual (P'): max - 57 dual g(D'): min - 37C af P st Al-6=0 $and \lambda > 0$ Hence, here, the publim we have is actually (P) - (D) be cause min cTx-bty = min cTn - max(-bty) st 2 >0 ATYSC Hence, the dual of our problem is actually $P' - D' = max(-5^Tv) - min(-1)$ = P - Dconclusion: The problem is self-dual.

Ex1. 4: & we have min cTx - bTy - min CTR - max (-bty) We can minimite the 1st term with m, and maximite the 2nd terms with y, Hence we can find nx and y's independantly from each other. we obtain no by solving P and you by solving D, 42 9x 4 · solution of P y 2 · solution of D (P) is the dral of D, and we have strant, hence $x^{\pm} - y^{\pm}$ and CTR = by = because CT & bT => x = y == 0 conclusion: The optimal value for the self-dual problem is exactly 0.

Parl CHAUVIN Exercice 2 1). Let's compute the conjugate of 11x11s If llyll > 1, by definition of the dual morm, there is a 3 EA with light \ 1 and letting n = t2 and letting t > +\infty, we have

Hence, \(f^*(y) = +\infty. \) Conversely, if NyNx \(\) \(\) we have yon (11) \\

for all \(\) \(\) Then, for all \(\) , yon -11n11 \(\) \(\) \(\) \(\) therefore, \(\) \(\) \(\) is the value that maximizes \(\) Conclusion: gt (y) = 10 ||y||_{\pm} \le 1

We have Ex2.2: $V\left(\|An-5\|_{2}^{2}+\|n\|_{1}\right)$ = 2 (ATAN - AT6) + 23 Vence, we need to have ATAn - AT6 -3 our problem hence be come: max g(1) - mox(11 A(ATA) - (AT6-3) - 61/2 St 1>0 + 3 (ATA) - (AT6-3) $= \max_{3} 3^{T} B_{3} - 3^{T} \chi_{LS}$ $5t - \lambda \leq 3 \leq \lambda$ $with BAT 6 = \chi_{LS}$

Ex 31. min 1 = 2 (u, x; yi) + 3 11 w112 is equivalent to mn 1 2 max (0; 1-y; (wTri)) + 1 ||wl/2 is equivalent to min 1 1 3 + 1 11 w/22 st 3: >, 1 - y; (wrn) Vie1, ... n 3 30 Conclusion: (Sept) (3 (Sept)

Ex3.2: The dual of Sep (2) is max 1 1 + 1 | I dag(y) x ||2 - (T dag(y) x) st 1 1 - 1 > 0

2 > 0