Biyoistatistik Lecture 8

Msc.Ali Mertcan KÖSE

İstanbul Kent Üniversitesi

lki kitle ortalaması arasındaki karşılaştırma, uygulamada çok karşılaşılan problemdir. Örneğin eşit ise, işik, nem şartları altında iki tohum cinsinin verim farkı ile ilgili olarak iki bağımsız örneklemden bulunan sonuçlardan yararlanılarak kitle ortalaması arasındaki fark hakkında bilgi edinilebilir.

- Bağımsız Gruplarda İki Örneklem Testleri
 - Parametrik testler (Bağımsız T testi, Oran Testi)
 - Parametrik Olmayan testler(Mann-Whitney U tesi)

Örnekler

- Kız ve erkek öğrenciler arasında ders kurulu sınav notları bakımından istatistiksel olarak anlamlı farklılık var mıdır?
- Genç ve yaşlı hastalar arasında tedavi olma süreleri bakımından istatistiksel olarak anlamlı farklılık var mıdır?
- Solunum fonksiyonu testi değeri bakımından sigara içenler ve içmeyenler arasında istatiksel olarak anlamlı farklılık var mıdır?
- Günde 1 paket sigara içen ile 2 paket sigara içen arasında solunum fonksiyon testi değerleri bakımından fark var mı?

Parametrik test varsayımları (normallik ve varyansların homojenliği) sağlandığında, ölçümle belirtilen sürekli bir değişken yönünden bağımsız iki grup arasında fark olup olmadığını test etmek için kullanılan bir önemlilik testidir.

- Bu testte iki grubun aritmetik ortalamaları karşılaştırılmaktadır. Bu nedenle aşırı değerlerin aritmetik ortalamaya yapacağı olumsuz etkiler göz önünde bulundurulmalıdır.
- Parametrik bir test olduğu için parametrik testlerle ilgili varsayımlar yerine getirilmelidir.
- Gruplar birbirinden bağımsız olmalıdır. Bağımlı gruplara bu test uygulanamaz.
- Veri ölçümle belirtilen sürekli bir değişken olmalıdır. Ayrıca, örneklem büyüklüğü(n) yeterli olduğunda sayısal olarak belirtilen (ölen, doğan, hastalanan, yaşayan sayısı gibi) sürekli olmayan değişkenlere de uygulanabilir. Niteliksel verilere uygulanamaz

Test Süreci

- Hipotezlerin belirlenmesi
- 2 Test istatistiğinin hesaplanması
- Yanılma düzeyinin belirlenmesi
- İstatistiksel karar.

Hipotez Testi

- $\textbf{ 1} \text{ Hipotez Kurulur } \left(\sigma_1^2 \text{ ve } \sigma_2^2 \text{ biliniyor }\right)$
 - $H_0: \mu_1 = \mu_2$
 - $H_1: \mu_1 < \mu_2$
 - $H_1: \mu_1 > \mu_2$
 - $H_1: \mu_1 \neq \mu_2$

Bağımsız İki Gruplara İlişkin t Testi

$$Z_h = \frac{(\bar{x_1} - \bar{x_2}) - (\mu_1 - \mu_2)}{\sigma_{\bar{x_1} - \bar{x_2}}} \sim Z$$
 $\sigma_{\bar{x_1} - \bar{x_2}} = \sqrt{\frac{\sigma_1}{n_1} + \frac{\sigma_2}{n_2}}$
 $H_1 : \mu > \mu_0, \ z_h > z_k \ H_0 \ \text{red}$
 $H_1 : \mu < \mu_0, \ z_h < z_k \ H_0 \ \text{red}$
 $H_1 : \mu \neq \mu_0, \ z_h < -z_k, \alpha/2 \ z_h > z_k, \alpha/2 \ H_0 \ \text{red}$

Bağımsız İki Gruplara İlişkin t Testi

Güven aralığı
$$P((\bar{x_1} - \bar{x_2}) - z_{\alpha/2} \times \sigma_{\bar{x_1} - \bar{x_2}} \leq \mu_1 - \mu_2 \leq (\bar{x_1} - \bar{x_2}) + z_{\alpha/2} \times \sigma_{\bar{x_1} - \bar{x_2}}) = 1 - \alpha$$

A ilacının ortalama etki süresinin B ilacının etki süresinden daha büyük olduğu öne sürülmektedir. A ilacı verilen hastaların etki süresine göre dağılımı normal ve varyansı 30 olarak bilinmektedir. B ilacı verilen hastaların etki süresine göre dağılımı da normal ve varyansı 36 olarak bilinmektedir. Rasgele seçilen 5 hastaya A ilacı verilmiş ve Ortalama etki süresi 51 olarak bulunmuş ve yine rasgele seçilen 7 hastaya B ilacı verilmiş ve ortalama etki süresi 39.57 olarak bulunmuştur. Buna göre %95 güven düzeyinde iddiayı test ediniz. A ve B ilaçlarının ortalama etki süreleri arasındaki fark için %95'lik güven sınırlarını belirleyiniz.

 $H_0: \mu_A = \mu_B \rightarrow A$ ve B ilacı etkileri süreleri arasında fark yoktur.

 $H_1: \mu_A > \mu_B \to A$ ilacının ortalama etkisi süresi B ilacının ortalama etkisinden fazladır.

$$n_A = 5$$
, $n_B = 7$, $\bar{x_A} = 51$, $\bar{x_B} = 39.57$, $\sigma_A^2 = 30$, $\sigma_B^2 = 36$

$$Z_h = \frac{(\bar{x_1} - \bar{x_2}) - (\mu_1 - \mu_2)}{\sigma_{\bar{x_1} - \bar{x_2}}} = \frac{(51 - 39.57) - (0)}{\sqrt{\frac{30}{5} + \frac{36}{7}}} = \frac{11.43}{\sqrt{11.14}} = 3.42$$

 Z_h =3.42 > $Z_t, \alpha=1.64$ olduğundan H_0 red edilir. Buna göre A ilacının ortalama etki süresi B ilacının ortalama etki süresinden fazladır denilebilir.

Güven aralığı

$$P((\bar{x_1} - \bar{x_2}) \pm z_{\alpha/2} \ \sigma_{\bar{x_1} - \bar{x_2}} = (51\text{-}39.57 \pm 1.96 \ \sqrt{11.14})$$

 $\mu_1-\mu_2:[4.89,17.97] o$ Bu aralığın $\mu_1-\mu_2$ 'yü içeren aralıklardan biri olması olasılığı %95'dir.

①
$$H_0: \mu_1 = \mu_2 \ (\sigma_1^2 \text{ ve } \sigma_2^2 \text{ bilinmiyor })$$

•
$$H_0: \mu_1 = \mu_2 \rightarrow H_0: \mu_1 - \mu_2 = 0$$

$$s_1, s_2 x_1 - x_2 \sim Z$$

$$s_1^2 = s_2^2$$
 ise;

$$s_{\bar{x_1}-\bar{x_2}} = \sqrt{\frac{s_1^2(n_1-1)+s_2^2(n_2-1)}{n_1+n_2-2}(\frac{1}{n_1}+\frac{1}{n_2})}$$

$$t_h = \frac{(\bar{x_1} - \bar{x_2}) - (\mu_1 - \mu_2)}{s_{\bar{x_1} - \bar{x_2}}} \sim t_{n1+n2-2}$$

$$H_1: \mu_1 > \mu_2, \ t_h > t_{n-2}, \alpha \ H_0 \ {
m red}$$
 $H_1: \mu_1 < \mu_2, \ t_h < t_{n-2}, \alpha \ H_0 \ {
m red}$ $H_1: \mu_1 \neq \mu_2, \ t_h < -t_{n-2}, \alpha/2 \ t_h > t_{n-2}, \alpha/2 \ H_0 \ {
m red}$ $s_1^2 \neq s_2^2 \ {
m ise};$ $s_{ar{x}1-ar{x}2} = \sqrt{ig(rac{S_1^2}{n_1} + rac{S_2^2}{n_2}ig)}$

Güven aralığı

$$P((\bar{x}_1 - \bar{x}_2) - t_{T\alpha/2, n1+n2-2} \times s_{\bar{x}_1 - \bar{x}_2} \leq \mu_1 - \mu_2 \leq (\bar{x}_1 - \bar{x}_2) + t_{T\alpha/2, n1+n2-2} \times s_{\bar{x}_1 - \bar{x}_2})$$

Yapılan bir çalışmada 12 karditli hastanın sedimantasyon hızı ortalaması $\bar{x_1}=87.29$ mm ve $s_1{=}18.4$ mm, 15 romantizmalı hastanın sedimantasyon hızı ortalaması $\bar{x_1}{=}69.03$ mm ve $s_1{=}21.4$ mm olarak hesaplanmıştır. Karditli ve romantizmalı hastaların kitle ortalamaları arasında fark olup olmadığını %5 anlamlılık düzeyinde belirleyiniz. İki kitle ortalaması farkı %95'lik güven sınırlarını bulunuz. Varyanslar bilinmiyor buna göre;

• İlk olarak $\sigma_1^2 = \sigma_2^2 = \sigma^2$ birbirine eşit kabul edilsin

$$H_0: \mu_1 = \mu_2$$

$$H_1: \mu_1 \neq \mu_2$$

$$n_1 = 12$$
, $n_2 = 15$, $\bar{x_1} = 87.29$, $\bar{x_2} = 69.03$, $s_1 = 18.4$, $s_2 = 21.4$

$$s_{\bar{x}1-\bar{x}2} = \sqrt{\frac{s_1^2(n_1-1)+s_2^2(n_2-1)}{n_1+n_2-2}(\frac{1}{n_1}+\frac{1}{n_2})}$$

$$s_{\bar{s_{x1}}-\bar{s_{x2}}} = \sqrt{\frac{18.4^2(12-1)21.4^2(15-1)}{12+15-2}} (\frac{1}{12} + \frac{1}{15}) = 7.80$$

$$t_h = \frac{(\bar{x_1} - \bar{x_2}) - (\mu_1 - \mu_2)}{s_{\bar{x_1} - \bar{x_2}}} = \frac{87.29 - 69.03}{7.80} = 2.34$$

 $t_h = 2.34 > t_{T(\alpha/2,n1+n2-2)} = 2.060$ olduğundan olduğundan H_0 red edilir. Yani iki kitle ortalması arasında fark vardır.

Güven aralığı

$$P((\bar{x_1} - \bar{x_2}) \pm t_{T\alpha/2, n1+n2-2} \ s_{\bar{x_1} - \bar{x_2}} = (87.29-69.03 \pm 2.06 \times 7.80)$$

 $\mu_1-\mu_2:[3.52,33] \to {\sf Bu}$ aralığın $\mu_1-\mu_2$ 'yü içeren aralıklardan biri olması olasılığı %95'dir.

•
$$\sigma_1^2 \neq \sigma_2^2$$

$$s_{\bar{x}1-\bar{x}2} = \sqrt{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)} = \sqrt{\left(\frac{18.4^2}{12} + \frac{21.4^2}{15}\right)} = 7.66$$

$$t_h = \frac{(\bar{x_1} - \bar{x_2}) - (\mu_1 - \mu_2)}{s_{\bar{x_1}} - \bar{x_2}} = \frac{87.29 - 69.03}{7.66} = 2.38$$

 $t_h = 2.38 > t_{T(\alpha/2,n1+n2-2)} = 2.060$ olduğundan olduğundan H_0 red edilir. Yani iki kitle ortalaması arasında fark vardır.

$$P((\bar{x_1} - \bar{x_1}) \pm t_{T\alpha/2,n1+n2-2} \ s_{\bar{x_1} - \bar{x_2}}) = (87.29\text{-}69.03 \pm 2.06 \times 7.66)$$

 $\mu_1 - \mu_2 : [2.49,34.03] \rightarrow \text{Bu aralığın } \mu_1 - \mu_2 \text{ 'yü içeren aralıklardan biri olması olasılığı } \%95\text{'dir}.$

- $H_0: \pi_1 = \pi_2$
 - $H_1: \pi_1 > \pi_2$
 - $H_1: \pi_1 < \pi_2$
 - $H_1: \pi_1 \neq \pi_2$

$$Z_{h} = \frac{(\bar{p}_{1} - \bar{p}_{2}) - (\pi_{1} - \pi_{2})}{\sigma_{p_{1} - p_{2}}} \sim Z$$

$$\sigma_{p_{1} - p_{2}} = \sqrt{\left(\frac{p_{1}(1 - p_{1})}{n_{1}} + \frac{p_{2}(1 - p_{2})}{n_{2}}\right)}$$

$$H_{1} : \pi_{1} > \pi_{2}, z_{h} > z_{k} H_{0} \text{ red}$$

$$H_{1} : \pi_{1} < \pi_{2}, z_{h} < z_{k} H_{0} \text{ red}$$

$$H_{1} : \pi_{1} \neq \pi_{2}, z_{h} < -z_{k}, \alpha/2 z_{h} > z_{k}, \alpha/2 H_{0} \text{ red}$$

Güven aralığı

$$P((p_1 - p_2) - Z_{\alpha/2} \times \sigma_{p_1 - p_2} \le \pi_1 - \pi_2 \le (p_1 - p_2) + Z_{\alpha/2} \times \sigma_{p_1 - p_2})$$
= 1 - \alpha

Aynı dersi alan öğrencilerin bir grubu "Test tipi" sorularla diğer grubu "Klasik tip" sorularla sınav olmuştur. Test tipi sorularla sınav olan 280 öğrencinin 168' başarılı olurken, klasik tip sorularla sınav olan 200 kişinin 104'ü başarılı olmuştur. Soru tiplerine göre başarı oranları arasında fark var mıdır? %99 güvenle test ediniz ve güven aralığını oluşturunuz.

$$H_0: \pi_1 = \pi_2$$

$$H_1: \pi_1 \neq \pi_2$$

$$p_1 = \frac{168}{280} = 0.60$$

$$p_2 = \frac{104}{200} = 0.52$$

$$\sigma_{p_1 - p_2} = \sqrt{\left(\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}\right)} = \sqrt{\frac{0.60(1 - 0.60)}{280} + \frac{0.52(1 - 0.52)}{200}}$$

$$= 0.046$$

$$Z_h = \frac{(\bar{p}_1 - \bar{p}_2) - (\pi_1 - \pi_2)}{\sigma_{p_1 - p_2}} = \frac{(0.60 - 0.52) - (0)}{0.046} = 1.74$$

 $Z_h{=}1.74 < Z_h, \alpha/2 = 2.58$ olduğundan H_0 red edilemez. Buna göre klasik sınav türü ile test sınav türü arasında istatistiksel olarak bir farklılık olmadığı %99 güvenle söylenebilir.

Güven aralığı
$$P((p_1-p_2)-Z_{\alpha/2}\times\sigma_{p_1-p_2}\leq\pi_1-\pi_2\leq(p_1-p_2)+Z_{\alpha/2}\times\sigma_{p_1-p_2})=1$$
 - $\alpha=(0.60\text{-}0.52\pm2.58\times0.046)$

 $\pi_1-\pi_2:[0,0.19] o \mathsf{Bu}$ aralığın $\pi_1-\pi_2$ 'yü içeren aralıklardan biri olması olasılığı %99'dir.

İki ortalama arasındaki farkın önemlilik testinin parametrik olmayan karşılığıdır.

İki ortalama arasındaki farkın önemlilik testi parametrik bir test olduğu için, parametrik test varsayımları sağlandığında ölçümle belirtilen sürekli bir değişken yönünden bağımsız iki grup arasında fark olup olmadığını test etmek için kullanılıyordur.

Parametrik test varsayımları sağlanmadan iki ortalama arasındaki farkın önemlilik testinin uygulanması, varılan kararın hatalı olmasına neden olabilir.

Veri parametrik test varsayımlarını sağlamıyor ise iki ortalama arasındaki farkın önemlilik testi yerine kullanılabilecek en güçlü test *Mann-Whitney U Testi* dir.

$$U_1 = n_1 n_2 + \frac{n_1(n_1+1)}{2} - R_1$$

$$U_2 = n_1 n_2 - U_1$$

 $n_1 = Birinci gruptaki denek sayısı$

 $n_2 = \dot{l}$ kinci gruptaki denek sayısı

 $R_1 = Birinci gruptaki değerlerin sıra numaraları toplamı$

İstatistiksel Karar

 U_1 ve U_2 değerlerinden büyük olanı (U_{max}) test istatistiği olarak seçilir ve belirlenen α yanılma düzeyinde n_1 ve n_2 serbestlik dereceli U_{tablo} istatistiği ile karşılaştırılır. $U_h > U_{tablo}$ ie H_0 hipotezi reddedilir.

$$z = \frac{U - \frac{n_1 n_2}{2}}{\sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}}$$

 n_1 : Birinci dağılımdaki denek sayısı

n₂ : İkinci dağılımdaki denek sayısı

U: U_1 veya U_2 den herhangi birisi kullanılabilir. testin sonucunu etkilemez. Sadece bulunacak Z değerlerinin işareti farklı olur

İstatistiksel Karar

Hesapla bulunan z değerine karşılık gelen olasılık z tablosundan bulunur. Bulunan olasılık değeri 0.5'den çıkartılır. Hipotez çift yönlü ise bulunan olasılık değeri 2 ile çarpılır. Bu değer, seçilen α yanılma olasılığından küçük ise H_0 hipotezi reddedilir.

lki farklı hastalığa sahip 16-18 yaşlarındaki bireylerin beden kitle indeksleri hesaplanıyor. Beden kitle indeksleri hastalık gruplarına göre değişmekte midir?

 $H_A = 18.60 \ 19.55 \ 20.45 \ 23.50 \ 25.55 \ 28.50 \ 28.65 \ 28.65 \ 29.15$

 $H_B = 16.15 \ 17.15 \ 17.70 \ 18.10 \ 18.60 \ 18.60 \ 21.00 \ 21.10 \ 23.50 \ 27.75$

Küçükten Büyüğe Sıralanır

Grup	Sıra	Sira no	Yeni sıra no
В	16,15	1	1
В	17,15	2	2
В	17,70	3	3
В	18,10	4	4
В	18,60	5	6
В	18,60	6	6
Α	18,60	7	6
Α	19,65	8	8
Α	20,45	9	9
В	21,00	10	10
В	21,10	11	11
В	23,50	12	12,5
Α	23,50	13	12,5
Α	25,55	14	14
В	27,75	15	15
Α	28,50	16	16
Α	28,65	17	17,5
Α	28,65	18	17,5
Α	29.15	19	19

Figure 1: Sıra tablosu.

 H_0 : İki dağılım arasında fark yoktur.

 H_1 : İki dağılım arasında fark vardır.

$$U_1 = 9 \times 10 + \frac{9 \times (9+1)}{2} - (6+8+9+12.5+14+16+17.5+17.5+19)$$

= 15.5

$$U_2 = 9 \times 10 - 15.5 = 74.5$$

$$U = Max(U_1=15.5, U_2=74.5) = 74.5$$

 $\alpha = 0.05$ olarak alınmıştır.

0.05 anlamlılık düzeyinde ve (9,10) serbestlik derecesindeki U tablo istatistiği $66\ dir.$

istatiksel karar:

$$U_{Hesap} = 74.5 > U_{Tablo} = 66$$

 H_0 hipotezi reddedilir ve iki hasta grubuna ilişkin beden kitle indeksi değerleri arasında fark olduğu söylenir.

n_1	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
3	9	12	14	16	19	21	23	26	28	31	33	35	38	40	42	45	47	49
4	12	15	18	21	24	27	30	33	36	39	42	45	48	50	53	56	59	62
5	14	18	21	25	29	32	36	39	43	47	50	54	57	61	65	68	72	75
6	16	21	25	29	34	38	42	46	50	55	59	63	67	71	76	80	84	88
7	19	24	29	34	38	43	48	53	58	63	67	72	77	82	86	91	96	101
8	21	27	32	38	43	49	54	60	65	70	76	81	87	92	97	103	108	113
9	23	30	36	42	48	54	60	66	72	78	84	90	96	102	108	114	120	126
10	26	33	39	46	53	60	66	73	79	86	93	99	106	112	119	125	132	138
11	28	36	43	50	58	65	72	79	87	94	101	108	115	122	130	137	144	151
12	31	39	47	55	63	70	78	86	94	102	109	117	125	132	140	148	156	163
13	33	42	50	59	67	76	84	93	101	109	118	126	134	143	151	159	167	176
14	35	45	54	63	72	81	90	99	108	117	126	135	144	153	161	170	179	188
15	38	48	57	67	77	87	96	106	115	125	134	144	153	163	173	182	191	200
16	40	50	61	71	82	92	102	112	122	132	143	153	163	173	183	193	203	213
17	42	53	65	76	86	97	108	119	130	140	151	161	172	183	193	204	214	225
18	45	56	68	80	91	103	114	125	137	148	159	170	182	193	204	215	226	237
19	47	59	72	84	96	108	120	132	144	156	167	179	191	203	214	226	238	250
20	49	62	75	88	101	113	126	138	151	163	176	188	200	213	225	237	250	262

Figure 2: Mann-Whitney U tablosu.

ÖDEV 1

10 Erkek ve 9 kız bebekten elde edilen örneklem üzerindeki kan değerlerin elde edilmiştir. Kandaki demir seviyesi kızlarda ortalama 45 ve 37.6 varyans, erkeklerde ortalama 36 ve 26.5 varyans olarak incelemiştir. Kitle varyansı bilinmediğine ve varyansların homojen olmadığına göre 0.05 anlamlılık düzeyinde erkek ve kız bebekler arasındaki kandaki demir seviyesinde farklılık var mıdır? 0.05 anlamlılık düzeyine güven aralığını oluşturunuz.

ÖDEV 2

İlaç verilen hasta grubunda ve kontrol grubunda kan ALP değerleri aşağıdaki gibi bulunmuştur. Hastalarda AIP değeri daha mı yüksektir?(Veriler normal dağılıma uygun değildir.)

Hasta: 75- 76-99-95-110

Kontrol: 56-75-68-65-74

ÖDEV 3

Araştırmacılar normal bireyler ve down sendromlu bireyler arasındaki ortalama urik asit düzeylerindeki farklılığı göstermek için yeterli düzeyde kanıt sağlamak amacıyla verilerini toplamışlardır. 12 down sendromlu ve 15 normal birey üzerinden ürik asit değerlerinden oluşan veride, down sendromluluların 4.5 mg/100ml ortalama ve 1 varyansa, normal bireylerin 3.4 ortalama ve 1.5 varyansa sahip olduğu hesaplanmıştır. Kitle varyansları bilindiğine göre 0.05 anlamlılık düzeyinde farklılık olup olmadığını test ediniz ve güven aralığını oluşturunuz.