

Radio Telescope Receivers

Alex Dunning

25th September 2017

CSIRO ASTRONOMY AND SPACE SCIENCE www.csiro.au

"A radio receiver is an electronic device that receives radio waves and converts the information carried by them to a usable form" Wikipedia

Ours look more like this

- Captures the signal reflected from the antenna
- Determines the beam shape
- Amplifies the signal
- Conditions the signal for digitisation

Parkes 10/40cm Receiver

On the outside...

Feed Horns

Vacuum Dewar

Control and Monitoring electronics

On the inside...

Noise coupled in through small holes

7mm waveguide coupler

Noise coupled in through vane

21cm waveguide coupler

12mm noise source

Separating the Polarisations: The OMT

$$T_{system} = T_1 + \frac{T_2}{Gain_{LNA}} + \frac{T_3}{Gain_{LNA} \times G_2} + \frac{T_4}{Gain_{LNA} \times G_2 \times G_3} \dots$$

10Jy radio source → ~1K additional noise

Your hand → ~300K additional noise

Mobile Phone at 1 km \rightarrow ~1 × 10¹¹ K !! (in primary beam)

Noise contributions of a typical receiver

Part	Room Temperature	Cryogenic	Ratio
Sky + CMB (T _{sky})	6K	6K	1
Spillover (T _{spill})	3K	3K	1
Feed + OMT	10K	2K	5
LNA (T _{Ina})	35K	5K	7
Rest of the System	1K	1K	1
Total (T _{sys})	55K	17K	~3

The RF System

Contains:

- More amplification
- Band defining filters
- Frequency conversion
- Level adjustment
- Signal detection
- Band shaping

Mixer (Multiplier)

 $\cos(\omega_1 t) \cos(\omega_2 t) = \frac{1}{2} [\cos((\omega_1 + \omega_2)t) + \cos((\omega_1 - \omega_2)t)]$

Mixer (Multiplier) Signal 1 Local Oscillator

 $\cos(\omega_1 t) \cos(\omega_{LO} t) \rightarrow \% \cos[(\omega_1 \text{-} \omega_{LO}) t]$

Mixer (Multiplier) Signal 1 Band pass filter Cocal Oscillator

Photo credit: Wheeler Studios

Thank you

CSIRO Astronomy and Space Science Alex Dunning

+61 2 9372 4346

alex.dunning@csiro.au www.csiro.au/cass

CSIRO ASTRONOMY AND SPACE SCIENCE

www.csiro.au

