

HAMMING-CODE

Ein Lösungsraster

1) Nutzdaten codieren: F (z.B. ASCII-Tabelle)

				Bit 7		0	0	0	0	0	0	0	0
				Bit 6		0	0	0	0	1	1	1	1
	Binär			Bit 5		0	0	1	1	0	0	1	1
						0	1	0	1	0	1	0	1
Bit 3	Bit 2	Bit 1	Bit 0	Hex		0	1	2	3	4	5	6	7
					Dezi	0	16	32	48	64	80	96	112
0	0	0	0	0	0	NUL	DLE		0	@	Р	5	р
0	0	0	1	1	1	SOH	DC1	I	1	Α	Q	а	q
0	0	1	0	2	2	STX	DC2	н	2	В	R	b	r
0	0	1	1	3	3	EXT	DC3	#	3	С	S	С	s
0	1	0	0	4	4	EOT	DC4	\$	4	D	Т	d	t
0	1	0	1	5	5	ENQ	NAK	%	5	Е	U	е	u
0	1	1	0	6	6	ACK	SYN	&	6	F	V	f	V
0	1	1	1	7	7	BEL	ETB	1	7	G	W	g	w
1	0	0	0	8	8	BS	CAN	(8	Н	Х	h	х
1	0	0	1	9	9	HAT	EM)	9	1	Y	i	У
1	0	1	0	Α	10	IF	SUB	*	3	J	Z	j	Z
1	0	1	1	В	11	VT	ESC	+	;	К	1	k	{
1	1	0	0	С	12	FF	FS	,	<	L	١	1	1
1	1	0	1	D	13	CR	GS	•	=	М]	m	}
1	1	1	0	Е	14	SOH	RS	٠	>	N	۸	n	~
1	1	1	1	F	15	SI	US	1	?	О	_	o	DEL

ASCII	Binär	Hex	Dez
F	0100 ' 0110	46	70

Bin	Dez	Hex
0000	00	0
0001	01	1
0010	02	2
0011	03	3
0100	04	4
0101	05	5
0110	06	6
0111	07	7
1000	08	8
1001	09	9
1010	10	A
1011	11	В
1100	12	С
1101	13	D
1110	14	E

Page **1** of **6**

3) Hamming-Bits berechnen (Redundanz erhöhen)

Alle Reihennummern mit dem Bit 1 übernehmen und binär codieren

5) Bits senden (fehlerfrei und mit Fehler)

Bits	0	1	0	0	1	0	1	1	0	0	0	0

Page **2** of **6** 15.12.19

Bits	n	1	1	0	1	0	1	1	0	^	•	0
DILS				U		U			U	U	U	U

6) Übermittlung fehlerfrei: Empfangene 12-Bits überprüfen

Reihe	12	11	10	9	8	7	6	5	4	3	2	1
	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Bits	0	1	0	0	1	0	1	1	0	0	0	0

Alle Reihennummern mit dem Bit 1 binär codieren:

→ Bei 0₁₀: Kein Übermittlungsfehler! Zeichen kann decodiert werden!

Reihe	12	11	10	9	8	7	6	5	4	3	2	1
	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Bits	0	1	0	0	1	0 /	1 /	1 /	0	0	0	0
						/	/	/		/		
7) 8-Datenbi	7) 8-Datenbits nach ASCII Tabelle decodieren:											
ASCII	0	1	0	0	0	1	1	0				
	→ F											

Page **3** of **6** 15.12.19

6a) Übermittlung mit Fehler: Empfangene 12-Bits überprüfen

Fehler heisst in der Digitaltechnik: eine 1 wird zu einer 0 oder umgekehrt! In diesem Beispiel wurde das Bit 10 bei der Übermittlung gekehrt.

Reihe	12	11	10	9	8	7	6	5	4	3	2	1
	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Bits	0	1	1	0	1	0	1	1	0	0	0	0

Alle Reihennummern mit dem Bit 1 binär codieren:

→ Bei ungleich 0₁₀: Ein Fehler ist bei Bit in Reihe 10₁₀ passiert! Korrigieren: 1 wird zu einer 0

Page **4** of **6**

Spiel

Nun spielen Sie **Sender** und **Empfänger** und dazu bilden Sie 2-er Gruppen!

Anleitung:

- 1. Schreiben Sie mit Bleistift, so können Sie radieren.
- 2. **Schreiben** Sie ein Wort mit 4 Buchstaben in die grünen Felder der **Sender-Tabelle** (von oben nach unten)
- 3. Aus der **ASCII-Tabelle** lesen Sie den Binär-Code jedes gewählten Buchstabens heraus und tragen diese 0 und 1 in die pinken Felder in der jeweiligen Zeile der **Sender-Tabelle (Codieren)** und lassen Sie diese Codierung von einem anderen Spieler (nicht Ihr Empfänger) überprüfen.
- 4. Entscheiden Sie sich für Even oder Uneven und kreisen Sie Ihre Entscheidung auf dem Blatt ein.
- 5. **Berechnen** Sie für jede Zeile die 4 Hamming-Bits und tragen Sie diese in den blauen Felder der **Sender-Tabelle** ein. Dafür können Sie die 4 leeren weissen Tabellen verwenden.
- 6. Lassen Sie die fertig ausgefüllte Sender-Tabelle vom Lehrer kontrollieren.
- 7. **Übertragen** Sie nun die 12-Bits der pinken und blauen Felder der **Sender-Tabelle** in die pinken Felder der **Empfänger-Tabelle**, wobei Sie in der 2,3 und 4 pro Zeile maximal **einen Fehler** (ein 0 anstatt eine 1 oder umgekehrt) eintragen. Zeile eins übertragen Sie fehlerlos.
- 8. **Falten** sie das Blatt der gestrichelten Linie entlang, so dass die **Sender-Tabelle nicht mehr sichtbar** ist.
- 9. **Tauschen** Sie das Blatt mit Ihrem Kollegen / Ihrer Kollegin.
- 10. Überprüfen Sie nun jede Zeile der Empfänger-Tabelle und berechnen Sie falls nötig die Korrektur.
- 11. Markieren Sie in der Empfänger-Tabelle die Spalten mit den Hamming-Bits mit einem blauen Leuchtstift.
- 12. **Decodieren** Sie die 8-Datenbits und schreiben Sie den Buchstaben in die grünen Felder der **Empfangs-Tabelle**.
- 13. **Entfalten** Sie nun das Blatt und **vergleichen** Sie die 4 Buchstaben in der **Sender-Tabelle** mit den 4 Buchstaben der **Empfänger-Tabelle**. Falls diese nicht übereinstimmen suchen Sie zusammen mit dem Kollegen / der Kollegin den Fehler!
- 14. Beantworten Sie folgende Fragen für sich:
 - a. Auf was muss ich beim Codieren / Hamming-Bits berechnen besonders achten?
 - b. Worauf muss ich bei der Korrektur-Berechnung und dem Decodieren besonders achten?
 - c. Was darf mit nicht mehr passieren?

Page **5** of **6**

Page **6** of **6** 15.12.19