Sistemas Digitales

Algebra Booleana y Simplificación Lógica:

Leyes y Reglas del Álgebra de Boole

Leyes y Reglas del Álgebra de Boole

• Al igual que en otras áreas de las matemáticas, existen en el álgebra de Boole una serie de reglas y leyes bien determinadas que se tienen que seguir para aplicarlas correctamente.

Las leyes básicas del álgebra de Boole (las leyes conmutativas de la suma y la multiplicación, y las leyes asociativas de la suma y la multiplicación y la ley distributiva) son las mismas que las del álgebra ordinaria.

Leyes conmutativas

De la suma y el producto

La ley conmutativa de la suma para dos variables se escribe como sigue:

$$A + B = B + A$$

$$\begin{array}{c|c}
A & \longrightarrow & \\
B & \longrightarrow & \\
B & \longrightarrow & \\
A & \longrightarrow & \\
B & \longrightarrow$$

La ley conmutativa de la multiplicación para dos variables es:

$$AB = BA$$

$$\begin{array}{c|c}
A & & \\
B & & \\
\end{array}$$

$$AB & \equiv \begin{array}{c}
B & \\
A & \\
\end{array}$$

$$BA$$

Leyes asociativas

De la suma y el producto

La ley asociativa de la suma para tres variables se escribe como sigue:

$$A + (B + C) = (A + B) + C$$

$$A \longrightarrow A + (B + C)$$

$$B \longrightarrow B + C$$

$$A \longrightarrow A + (B + C)$$

$$C \longrightarrow A + B$$

La ley asociativa de la multiplicación para tres variables se escribe como sigue:

$$A(BC) = (AB)C$$

$$A = A(BC)$$

$$B = A = AB$$

$$C = AB = AB$$

$$C = AB$$

Ley distributiva

■ La ley distributiva para tres variables se escribe como sigue:

$$A(B+C) = AB + AC$$

Existen 12 reglas básicas

• Muy útiles, para la manipulación y simplificación de expresiones booleanas.

Reglas básicas del algebra de Boole.

1.
$$A + 0 = A$$

2.
$$A + 1 = 1$$

3.
$$A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

5.
$$A + A = A$$

6.
$$A + \overline{A} = 1$$

7.
$$A \cdot A = A$$

8.
$$A \cdot \overline{A} = 0$$

9.
$$\overline{\overline{A}} = A$$

10.
$$A + AB = A$$

11.
$$A + \overline{A}B = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

Regla 1: A + 0 = A

Si aplicamos la operación OR a una variable cualquiera y a 0, el resultado es siempre igual a la variable. Si A es 1, la salida es igual a 1 y, por tanto, igual a A. Si A es 0, la salida es 0 e igualmente idéntica a A.

$$A = 1$$

$$0$$

$$X = 1$$

$$0$$

$$X = A + 0 = A$$

Regla 2: A + 1 = 1

Si se aplica la operación OR a una variable y a 1, el resultado es siempre igual a 1. Un 1 en una entrada de una puerta OR produce siempre un 1 en la salida, independientemente del valor de la otra entrada.

$$A = 1$$

$$1$$

$$X = 1$$

$$X = A + 1 = 1$$

$$X = A + 1 = 1$$

Regla 3: $A \cdot 0 = 0$

Si se aplica la operación AND a una variable y a 0, el resultado es siempre igual a 0. Siempre que una de las entradas de una puerta AND sea 0, la salida siempre es 0, independientemente del valor de la otra entrada.

$$A = 1$$

$$0$$

$$X = 0$$

$$0$$

$$X = A \cdot 0 = 0$$

Regla 4: $A \cdot 1 = A$

Si se aplica la operación AND a una variable y a 1, el resultado es siempre igual a la variable. Si la variable A es 0, la salida de la puerta AND será siempre 0, mientras que si A es 1, la salida será 1, dado que las dos entradas son 1.

$$A = 0$$

$$1$$

$$X = 0$$

$$1$$

$$X = A \cdot 1 = A$$

Regla 5: A + A = A

Si se aplica la operación OR a una variable consigo misma, el resultado es siempre igual a la variable. Si A es 0, entonces 0 + 0 = 0, mientras que si A es 1, 1 + 1 = 1.

$$A = 0$$

$$A = 0$$

$$X = 0$$

$$A = 1$$

$$X = 1$$

$$X = A + A = A$$

Regla 6: $A + \overline{A} = 1$

Si se aplica la operación OR a una variable y a su complemento, el resultado es siempre igual a 1. Si A es 0, entonces $0 + \overline{0} = 0 + 1 = 1$. Si A es 1, entonces $1 + \overline{1} = 1 + 0 = 1$.

$$A = 0$$

$$\overline{A} = 1$$

$$X = 1$$

$$\overline{A} = 0$$

$$X = 1$$

$$X = A + \overline{A} = 1$$

Regla 7: $A \cdot A = A$

Si se aplica la operación AND a una variable consigo misma, el resultado siempre es igual a la variable. Si A = 0, entonces $0 \cdot 0 = 0$, y si A = 1, entonces $1 \cdot 1 = 1$.

$$A = 0$$

$$A = 0$$

$$X = 0$$

$$X = A \cdot A = A$$

$$X = A \cdot A = A$$

Regla 8: $A \cdot \bar{A} = 0$

Si se aplica la operación AND a una variable y a su complemento, el resultado es siempre igual a 0. Esta regla se basa en que siempre A o \overline{A} será 0, y además en que cuando se aplica un 0 a una de las entradas de una puerta AND, la salida siempre es 0.

$$A = 1$$

$$\overline{A} = 0$$

$$X = 0$$

$$\overline{A} = 1$$

$$X = 0$$

$$X = A \cdot \overline{A} = 0$$

Regla 9: $\bar{\bar{A}} = A$

El complemento del complemento de una variable es siempre la propia variable. El complemento de la variable A es \overline{A} y el complemento de \overline{A} será de nuevo A, que es la variable original.

$$\overline{A} = 0$$

$$\overline{A} = A$$

Regla 10:
$$A + AB = A$$

Esta regla se puede obtener aplicando la ley distributiva y las reglas 2 y 4, de la siguiente forma:

$$A + AB = A(1 + B)$$
 Sacar factor común (ley distributiva)
= $A \cdot 1$ Regla 2: $1 + B = 1$
= A Regla 4: $A \cdot 1 = A$

La demostración se muestra en la siguiente tabla, la cual incluye la tabla de verdad y la simplificación del circuito lógico resultante.

A	В	AB	A + AB	
0	0	0	0	$A \longrightarrow$
0	1	0	0	
1	0	0	1	$B \longrightarrow B$
1	1	1	1	
	igu	ıa1 ———		Aconexión directa

Regla 11: $A + \overline{A}B = A + B$

Esta regla puede demostrarse de la siguiente forma:

$$A + \bar{A}B = (A + AB) + \bar{A}B$$
 Regla 10: $A = A + AB$
 $= (AA + AB) + \bar{A}B$ Regla 7: $A = AA$
 $= AA + AB + A\bar{A} + \bar{A}B$ Regla 8: sumar $A\bar{A} = 0$
 $= (A + \bar{A})(A + B)$ Sacar factor común
 $= 1 \cdot (A + B)$ Regla 6: $A + \bar{A} = 1$
 $= A + B$ Regla 4: eliminar el 1

La demostración se muestra en la siguiente tabla, la cual incluye la tabla de verdad y la simplificación del circuito lógico resultante.

A	В	$\overline{A}B$	$A + \overline{A}B$	A + B	_
0	0	0	0	0	$A \longrightarrow$
0	1	1	1	1	
1	0	0	1	1	В
1	1	0	1	1	$A \longrightarrow$
			igu	ıal _	$B \longrightarrow$

Regla 12:
$$(A + B)(A + C) = A + BC$$

Esta regla puede demostrarse de la siguiente forma:

$$(A+B)(A+C) = AA + AC + AB + BC$$

$$= A + AC + AB + BC$$

$$= A(1+C) + AB + BC$$

$$= A \cdot 1 + AB + BC$$

$$= A(1+B) + BC$$
Regla 2: $1 + C = 1$

$$= A(1+B) + BC$$
Sacar factor común (ley distributiva)
$$= A \cdot 1 + BC$$
Regla 2: $1 + B = 1$

$$= A + BC$$
Regla 4: $A \cdot 1 = A$

La demostración se muestra en la siguiente tabla, la cual incluye la tabla de verdad y la simplificación del circuito lógico resultante.

A	В	C	A + B	A + C	(A+B)(A+C)	BC	A + BC	
0	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	$A \rightarrow A$
0	1	0	1	0	0	0	0	
0	1	1	1	1	1	1	1	c
1	0	0	1	1	1	0	1	
1	0	1	1	1	1	0	1	
1	1	0	1	1	1	0	1	A R
1	1	1	1	1	1	1	1	$\stackrel{\scriptscriptstyle D}{\scriptscriptstyle C}$
					<u> </u>	— igual ——		