Calculus I Derivative of a^x

Todor Milev

2019

Todor Milev Derivative of a^{x} 2019

Differentiate $y = 2^x$.

Differentiate
$$y = 2^x$$
. $y = (e^?)^x$

Differentiate
$$y = 2^x$$
.

$$y = \left(e^{\ln 2}\right)^x$$

Differentiate
$$y = 2^x$$
.
$$y = \left(e^{\ln 2}\right)^x$$

$$y = e^{x \ln 2}$$
.

Differentiate
$$y = 2^x$$
.
$$y = \left(e^{\ln 2}\right)^x$$

$$y = e^{x \ln 2}.$$
 Let $u = ?$

Differentiate
$$y = 2^x$$
. $y = (e^{\ln 2})^x$ $y = e^{x \ln 2}$. Let $u = x \ln 2$.

Differentiate
$$y = 2^x$$
. $y = (e^{\ln 2})^x$ $y = e^{x \ln 2}$. Let $u = x \ln 2$. Then $y = e^u$.

Differentiate
$$y = 2^x$$
. $y = \left(e^{\ln 2}\right)^x$ $y = e^{x \ln 2}$. Let $u = x \ln 2$. Then $y = e^u$. Chain Rule: $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}x}$

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (?)(?)$

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (e^u)(?)$

Differentiate
$$y = 2^x$$
.
 $y = \left(e^{\ln 2}\right)^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= \left(e^u\right)(?)$

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (e^u)(\ln 2)$

Differentiate
$$y = 2^x$$
.
 $y = \left(e^{\ln 2}\right)^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (e^u)(\ln 2)$
 $= \left(e^{(?)}\right)(\ln 2)$

Differentiate
$$y = 2^x$$
.
 $y = \left(e^{\ln 2}\right)^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (e^u)(\ln 2)$
 $= \left(e^{(x \ln 2)}\right)(\ln 2)$

Differentiate
$$y = 2^x$$
.
 $y = \left(e^{\ln 2}\right)^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= \left(e^u\right) \left(\ln 2\right)$
 $= \left(e^{\ln 2}\right)^x \left(\ln 2\right)$

Differentiate
$$y = \frac{2^x}{2}$$
.
 $y = \left(e^{\ln 2}\right)^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (e^u)(\ln 2)$
 $= \left(e^{(x \ln 2)}\right)(\ln 2)$
 $= \left(e^{\ln 2}\right)^x(\ln 2)$
 $= \frac{2^x}{2} \ln 2$.

Differentiate
$$y = 2^x$$
.
 $y = \left(e^{\ln 2}\right)^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (e^u)(\ln 2)$
 $= \left(e^{(x \ln 2)}\right)(\ln 2)$
 $= \left(e^{\ln 2}\right)^x(\ln 2)$
 $= 2^x \ln 2$.

Differentiate
$$y = a^x$$
.
 $y = \left(e^{\ln a}\right)^x$
 $y = e^{x \ln a}$.
Let $u = x \ln a$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (e^u)(\ln a)$
 $= \left(e^{(x \ln a)}\right)(\ln a)$
 $= \left(e^{\ln a}\right)^x(\ln a)$
 $= a^x \ln a$.

Theorem (The Derivative of a^x)

$$\frac{\mathsf{d}}{\mathsf{d}x}(a^x) = a^x \ln a.$$