import numpy as np import pandas as pd

df=pd.read_csv("/content/iris.csv") df

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target		
0	5.1	3.5	1.4	0.2	setosa		
1	4.9	3.0	1.4	0.2	setosa		
2	4.7	3.2	1.3	0.2	setosa		
3	4.6	3.1	1.5	0.2	setosa		
4	5.0	3.6	1.4	0.2	setosa		
145	6.7	3.0	5.2	2.3	virginica		
146	6.3	2.5	5.0	1.9	virginica		
147	6.5	3.0	5.2	2.0	virginica		
148	6.2	3.4	5.4	2.3	virginica		
149	5.9	3.0	5.1	1.8	virginica		
150 rows × 5 columns							

df.head(5)

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
		·	·	·	· · · · · · · · · · · · · · · · · · ·

df.tail(5)

df.shape

(150, 5)

df.dtypes

sepal length (cm) float64
sepal width (cm) float64
petal length (cm) float64
petal width (cm) float64
target object
dtype: object

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype				
0	sepal length (cm)	150 non-null	float64				
1	sepal width (cm)	150 non-null	float64				
2	petal length (cm)	150 non-null	float64				
3	petal width (cm)	150 non-null	float64				
4	target	150 non-null	object				
dtypos: float64(4) = object(1)							

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

df.describe()

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) import seaborn as sb import statistics as stat 4.300000 2.000000 1.000000 0.100000 stat.mean(df['sepal length (cm)']) 5.843333333333334 75% 1 200000 stat.median(df['sepal length (cm)']) 5.8 stat.mode(df['sepal length (cm)']) 5.0 np.percentile(df['sepal length (cm)'], 50) 5.8 df['sepal length (cm)'].quantile([0.05,0.25,0.5,0.75]) 0.05 4.6 0.25 5.1 0.50 5.8 0.75 Name: sepal length (cm), dtype: float64 stat.variance(df['sepal length (cm)']) 0.6856935123042506 xstd= np.std(df['sepal length (cm)']) print(xstd) 0.8253012917851409 sb.set(style='darkgrid') sb.distplot(df['sepal length (cm)'])

r/local/lib/python3.8/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distparnings.warn(msg, FutureWarning)

tplotlib.axes._subplots.AxesSubplot at 0x7f4367e087f0>

sb.distplot(df['sepal length (cm)'],kde=False,bins=30)

/usr/local/lib/python3.8/dist-packages/seaborn/distributions.py:2619: FutureWarning: `d warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4362ef8d60>

df.isnull().sum()

```
sepal length (cm) 0
sepal width (cm) 0
petal length (cm) 0
petal width (cm) 0
target 0
dtype: int64
```

X=df.drop('target',axis=1)

```
Y=df['target']
print(X)
print(Y)
          sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
                        5.1
                                                            1.4
                                                                              0.2
                        4.9
                                          3.0
                                                            1.4
                                                                              0.2
                                          3.2
                                                            1.3
                                                                              0.2
                       4.6
                                                            1.5
                                                                              0.2
                        5.0
                                          3.6
                                                            1.4
                                                                              0.2
     145
                                         3.0
                                                            5.2
     146
                       6.3
                                          2.5
                                                            5.0
                                                                              1.9
     147
                       6.5
                                         3.0
                                                            5.2
                                                                              2.0
     148
     149
                                         3.0
                                                                              1.8
     [150 rows x 4 columns]
               setosa
               setosa
               setosa
               setosa
               setosa
     145
           virginica
            virginica
     146
     147
            virginica
     148
            virginica
     149
            virginica
     Name: target, Length: 150, dtype: object
data = Y.value_counts()
data
     setosa
     versicolor
                   50
     virginica
     Name: target, dtype: int64
from sklearn.preprocessing import LabelEncoder
lb = LabelEncoder()
Y = lb.fit transform(Y)
sb.set(style='darkgrid')
sb.distplot(Y,kde=False,bins=10)
```


from sklearn.model_selection import train_test_split

```
X_train, X_test, Y_train, Y_test =train_test_split(X,Y,test_size=0.2)
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
gnb.fit(X_train, Y_train)
    GaussianNB()
gnb.score(X_test,Y_test)*100
    93.33333333333333
from sklearn.metrics import accuracy score
X train prediction=gnb.predict(X train)
training_data_accuracy=accuracy_score(X_train_prediction,Y_train)
print('Accuracy score of the training data: ',training_data_accuracy*100)
    Accuracy score of the training data: 95.833333333333334
X_test_prediction=gnb.predict(X_test)
testing_data_accuracy=accuracy_score(X_test_prediction,Y_test)
print('Accuracy score of the testing data: ',testing_data_accuracy*100)
```

