2015年亞太數學奧林匹亞競賽, 初選考試試題

2014年12月14日

說明: 本試題共一頁, 七題, 每題七分。

將答案標示在答案卡之「解答欄」所標示的列號處。

答錯不倒扣,未完全答對者,不給分。

答案卡填答注意事項: 答案的數字位數少於填答空格數時, 請適度地在前面填入 0.

一、(7分) 設 $M_k = P_1 \cdot P_2 \cdots P_k$, 其中 P_1, P_2, \cdots, P_k 是由小到大排列的質數: $2, 3, 5, \cdots$ 中前 k 個質數。若 s, t 是兩個正整數, 其中 t > s, 使 $M_t - M_s = 510300$, 則 t + s 的值是 ①② .

答: 11

二、(7分) 在凸四邊形 ABCD 中, $\angle ABD = \angle CBD = \angle ADC = 45^\circ$, $\overline{AB} = a$, $\overline{BC} = b$, $\overline{CD} = c$, $\overline{DA} = d$ $(a \neq b)$. 試問 $\frac{a^2 - b^2}{c^2 - d^2}$ 之值的範圍,即求

答:
$$1 < \frac{a^2 - b^2}{c^2 - d^2} < \sqrt{2}$$

三、(7分) 在 1 到 100 的正整數中, 有 <u>⑤⑥</u> 個無法寫成兩個正整數的平方差 (即形如 $a^2 - b^2$)。

答: 27

四、(7分) 如下圖, 在 2×7 的方格 (方格的編號爲 $1 \sim 14$) 中選取若干個格子塗成黑色 (也可以全部不選), 使得任兩個黑色的格子都不共邊的方法有 ⑦⑧⑨ 種。

1	2	3	4	5	6	7
8	9	10	11	12	13	14

答: 577

五、(7分) 已知點 $O \in \triangle ABC$ 的外心, 點 $H \in \triangle ABC$ 的垂心。令 $\overline{BC} = a$, $\overline{CA} = b$, $\overline{AB} = c$, $\triangle ABC$ 的外接圓半徑爲 R. 試以 a, b, c, R 表示 \overline{OH} 的長, 即

$$\overline{OH} = \sqrt{\alpha R^2 + (\beta a^2 + \gamma b^2 + \delta c^2)}$$
, 其中 $\alpha, \beta, \gamma, \delta$ 爲常數。

試求 $\alpha + \beta + \gamma + \delta = 000$ 。

答: 6 (塡 06)

六、(7分) 化簡 $\sin 12^{\circ} \sin 24^{\circ} \sin 36^{\circ} \sin 48^{\circ} \sin 60^{\circ} \sin 72^{\circ} \sin 84^{\circ} = \frac{\sqrt{200}}{4\sqrt{1300}}$ 。 (請寫成最簡根數)

答:
$$\frac{\sqrt{15}}{128}$$

七、(7分) 考慮下面的河內塔問題。有甲、乙、丙三根柱子,一開始在甲柱由上到下疊了 1 號到 10 號的 10 個圓盤, 號碼愈大的圓盤其直徑愈大; 而乙、丙兩根柱子上沒有圓盤。現在每次將一個圓盤由一根柱子搬到另一根柱子, 並且較大的圓盤不可放在較小的圓盤上方。如果最後的狀態是 1,3,5,7,9 號圓盤在乙柱、2,4,6,8,10 號圓盤在 丙柱,則移動次數最少爲 ①⑧⑨。

答: 731