Lecture 38

Cyclical Behavior and Periodicity: Part 2

Arnab Hazra

Frequency and period of a time series (recap)

- We measure frequency ω by cycles per time point.
- In the Johnson & Johnson data set, the predominant frequency of oscillation is one cycle per year (4 quarters), or $\omega = 0.25$ cycles per observation.
- The predominant frequency in the SOI and fish populations series is 1 cycle every 12 months, or $\omega=0.083$ cycles per observation.
- ► For a discrete time series, we will need at least two points to determine a cycle, so the highest frequency, called the folding frequency, is 0.5.
- ▶ The period of a time series is the number of points in a cycle, i.e., $1/\omega$.
- ► The predominant period of the Johnson & Johnson series is 1/0.25 or 4 quarters per cycle.
- ▶ The predominant period of the SOI series is 12 months per cycle.

Periodic process (recap)

- ▶ We first define a cycle as one complete period of a sine or cosine function defined over a unit time interval.
- We consider the periodic process

$$X_t = A\cos(2\pi\omega t + \phi)$$

for $t = 0, \pm 1, \pm 2, \ldots$, where ω is a frequency index.

- Here A determines the height or amplitude of the function and ϕ , called the phase, determining the start point of the cosine function.
- We can introduce random variation in this time series by allowing the amplitude and phase to vary randomly.

Periodic process (contd., recap)

 \triangleright For purposes of data analysis, it is easier to write X_t as

$$X_t = U_1 \cos(2\pi\omega t) + U_2 \sin(2\pi\omega t),$$

where $U_1 = A\cos(\phi)$ and $U_2 = -A\sin(\phi)$.

- ▶ We then often take U_1 and U_2 to be normally distributed.
- ▶ The amplitude is $A = \sqrt{U_1^2 + U_2^2}$ and the phase is $\phi = \tan^{-1}(-U_2/U_1)$.
- ► Here, A and ϕ are independent random variables if U_1 and U_2 are independent standard normal random variables.
- ▶ Then $A^2 \sim \chi_2^2$ and $\phi \sim \text{Unif}(-\pi, \pi)$.
- Straightforward Jacobian calculations show that the reverse is also true.

Moments of X_t (recap)

If we assume that U_1 and U_2 are uncorrelated random variables with mean 0 and variance σ^2 , then

- ightharpoonup Mean $E(X_t) = 0$.
- Covariance $Cov(X_{t+h}, X_t) = \sigma^2 \cos(2\pi\omega h)$.
- ▶ Variance $Var(X_t) = \sigma^2$
- ▶ If we observe U_1 and U_2 , an estimate of σ^2 is the sample variance

$$S^2 = \frac{U_1^2 + U_2^2}{2 - 1} = U_1^2 + U_2^2.$$

Further generalization of periodic processes (recap)

 We can allow mixtures of periodic series with multiple frequencies and amplitudes,

$$X_t = \sum_{k=1}^K [U_{k1} \cos(2\pi\omega_k t) + U_{k2} \sin(2\pi\omega_k t)]$$

where U_{k1} , U_{k2} , for k = 1, 2, ..., K, are uncorrelated zero-mean random variables with variances σ_k^2 , and the ω_k are distinct frequencies.

- Notice that the process is a sum of uncorrelated components, with variance σ_k^2 for frequency ω_k .
- \triangleright The autocovariance function of X_t is

$$\operatorname{Cov}(X_{t+h}, X_t) = \sum_{k=1}^K \sigma_k^2 \cos(2\pi\omega_k h), \quad \operatorname{Var}(X_t) = \sum_{k=1}^K \sigma_k^2.$$

► Here $\widehat{\text{Var}}(X_t) = \sum_{k=1}^K \hat{\sigma}_k^2 = \sum_{k=1}^K [U_{k1}^2 + U_{k2}^2].$

Sum of periodic functions (recap)

Fig. 4.1. Periodic components and their sum as described in Example 4.1.

Our goal (recap)

- ► The systematic sorting out of the essential frequency components, including their relative contributions, is one of the main objectives of *spectral analysis*.
- ightharpoonup The moments of X_t only discuss the population properties but no statistical inference.
- ▶ If we can observe U_{k1} and U_{k2} , then $\hat{\sigma}_k^2 = U_{k1}^2 + U_{k2}^2$.
- ▶ In practice, we only observe $X_1, ..., X_T$ but not U_{k1} 's and U_{k2} 's.
- ▶ Hence, we next discuss the practical aspects of how, given data X_1, \ldots, X_T , to actually estimate the variance components $\sigma_k^2, k = 1, \ldots, K$.

Estimation: Periodogram

- ▶ Think of X_t as a color (waveform) made up of primary colors X_{t1} , X_{t2} , X_{t3} at various strengths (amplitudes).
- ▶ Then the periodogram is like a prism that decomposes the color X_t into its primary colors (spectrum). Hence the term spectral analysis.
- For any time series sample X_1, \ldots, X_T , where T is odd, we may write, exactly

$$X_t = a_0 + \sum_{j=1}^{(T-1)/2} [a_j \cos(2\pi t j/T) + b_j \sin(2\pi t j/T)],$$

for t = 1, ..., T and suitably chosen coefficients.

▶ If T is even, the representation can be modified by summing to (T/2 - 1) and adding an additional component given by $a_{T/2}\cos(2\pi t \frac{1}{2}) = a_{T/2}(-1)^t$.

Estimation: Periodogram (contd.)

▶ Using the regression results, a_i and b_i are of the form

$$a_j = \frac{2}{T} \sum_{t=1}^{T} X_t \cos(2\pi t j/T), \quad b_j = \frac{2}{T} \sum_{t=1}^{T} X_t \sin(2\pi t j/T).$$

- We then define the scaled periodogram to be $P(j/T) = a_j^2 + b_j^2$.
- The scaled periodogram is simply the sample variance at each frequency component and consequently is an estimate of σ_j^2 corresponding to the sinusoid oscillating at a frequency of $\omega_j = j/T$.

Scaled periodogram

Fig. 4.2. The scaled periodogram (4.12) of the data generated in Example 4.1.

Estimation: Periodogram (contd.)

- Note that P(j/T) = P(1 j/T), j = 0, 1, ..., T 1, so there is a mirroring effect at the folding frequency of 1/2.
- Consequently, the periodogram is typically not plotted for frequencies higher than the folding frequency.
- In addition, note that the heights of the scaled periodogram shown in the figure are

$$P\left(\frac{6}{100}\right) = P\left(\frac{94}{100}\right) = 13, \ P\left(\frac{10}{100}\right) = P\left(\frac{90}{100}\right) = 41, \ P\left(\frac{40}{100}\right) = P\left(\frac{60}{100}\right) = 85$$
 and $P(j/T) = 0$ otherwise.

Periodogram for Star Magnitude

Fig. 4.3. Star magnitudes and part of the corresponding periodogram.

Star magnitude

- ► The data are the magnitude of a star taken at midnight for 600 consecutive days.
- Note that the $29(\approx 1/.035)$ day cycle and the $24(\approx 1/.041)$ day cycle are the most prominent periodic components of the data.
- We can interpret this result as we are observing an amplitude modulated signal.
- For example, suppose we are observing signal-plus-noise, $X_t = S_t + V_t$, where $S_t = \cos(2\pi\omega t)\cos(2\pi\delta t)$, and δ is very small.
- In this case, the process will oscillate at frequency ω , but the amplitude will be modulated by $\cos(2\pi\delta t)$.
- Since $2\cos(\alpha)\cos(\delta) = \cos(\alpha + \delta) + \cos(\alpha \delta)$, the periodogram of data generated as X_t will have two peaks close to each other at $\alpha \pm \delta$.

Discrete Fourier transform

- ▶ It is not necessary to run a large regression to obtain the values of a_i and b_j because they can be computed quickly if T is a highly composite integer.
- ► The discrete Fourier transform (DFT) is a complex-valued weighted average of the data given by

$$d(j/T) = T^{-1/2} \sum_{t=1}^{T} X_t \exp[-2\pi \iota \ t \ j/T]$$

for
$$j = 0, 1, ..., T - 1$$
.

- \blacktriangleright Here the frequencies j/T are the Fourier or fundamental frequencies.
- ▶ Because of a large number of redundancies in the calculation, d(j/T) may be computed quickly using the fast Fourier transform (FFT).

Periodogram

Here

$$d(j/T) = T^{-1/2} \left\{ \sum_{t=1}^{T} X_t \cos(2\pi t \, j/T) - \iota \sum_{t=1}^{T} X_t \sin(2\pi t \, j/T) \right\}.$$

Periodogram is defined as

$$|d(j/T)|^2 = T^{-1} \left(\sum_{t=1}^T X_t \cos(2\pi t \, j/T) \right)^2 + T^{-1} \left(\sum_{t=1}^T X_t \sin(2\pi t \, j/T) \right)^2.$$

Recall that the scaled periodogram is

$$P(j/T) = \left(\frac{2}{T}\sum_{t=1}^{T}X_{t}\cos(2\pi t j/T)\right)^{2} + \left(\frac{2}{T}\sum_{t=1}^{T}X_{t}\sin(2\pi t j/T)\right)^{2}.$$

► Hence, $P(j/T) = 4T^{-1}|d(j/T)|^2$.

Thank you!