

奇思妙想-Oracle跨平台迁移升级

最佳实践

2015中国数据库技术大会

DATABASE TECHNOLOGY CONFERENCE CHINA 2015 大数据技术探索和价值发现

Who am I

- □ 李真旭 云和恩墨专项交付部 技术总
 - □ 网名Roger,超过7年的0racle技术积累
 - □ ACOUG核心会员;
 - □ 2014年被授予 Oracle ACE 称号;
 - □ 致力于技术分享与传播
 - o ACOUG和数据库大会演讲者;
 - 参与翻译《Export Oracle RAC 12c 》;
 - o 博客: http://www.killdb.com
 - 微博: @oracledatabase12c Phone:18610980520
- □ 云和恩墨 国内综合数据服务领导者
 - □ 汇聚 Oracle ACE 总监, Oracle ACE, SQL大赛冠军, 以及数十位 OCM专家, 同时具备MySQL和DB2专家;
 - □ 为包括电信、金融、保险、电商、能源等行业200多家客户提供服务和解决方案;

- ◆ 为什么要升级、迁移?
- ◆ 跨平台数据库升级迁移的方法
- ◆ 如何确保数据库升级迁移后的性能
- ◆ 跨平台最佳迁移实践案例
- ◆ 如何选择最佳的迁移升级方案

为什么要升级、迁移?

- Not Support
- ◆ X86架构的崛起
- ◆ 追求新的数据库特性
- ◆ 去IOE风波的蔓延
- ◆ 不能落后于人

为什么要升级 - Oracle产品支持周期

为什么要升级 – 成本

电子x	aix5308	oracle 10.2
代码x	axi5308	oracle 11.1
CA	linux	oracle 10.
数据x	windows	oracle 11.2
外网x	redhat	oracle 10.2
集中x	aix6.1	oracle 11.2
财务x	win2003	oracle 10.1
质量x	hpux 11.23	oracle 10.2
代码x	hpux 11.23	oracle 9i
老电x	hpux 11.11	oracle 9i
全文x	Sun 5.8	oracle 817

不同的操作系统、各种存储型号 不同的数据库版本 运维难度成本较高

为什么要升级- X86的崛起

CPU 处理效率提升 8 - 10x

DRAM处理速度提升 7 - 9x

Network 处理速度提升 100x

Bus 处理速度提升 20x

Disk 处理速度提升 1. 2x

生产厂商	服务器	CPU型号	吞吐量	CPU详细说明
IBM	x3950 X6	Intel Xeon E7-8890 v2, 2.80 GHz	4530	8路共120核,每核2线程
IBM	x3850 X6	Intel Xeon E7-4850 v2, 2.30 GHz	1580	4路共48核,每核2线程
IBM	x3650 M4	Intel Xeon E5-2643 v2, 3.50 GHz	602	2路共12核,每核2线程
HP	DL580 Gen8	Intel Xeon E7-8891 v2, 3.20 GHz	1740	4路共40核,每核2线程
HP	DL580 Gen8	Intel Xeon E7-4880 v2, 2.50GHz	2050	4路共60核,每核2线程
华为	Huawei RH5885H v3	Intel Xeon E7-4890 v2, 2.80GHz	2340	4路共60核,每核2线程
IBM	Power 780	IBM Power7 3.44 GHz	3070	16路共96核,每核4线程
IBM	Power 780	IBM Power7 3.92 GHz	2420	8路共64核,每核4线程
IBM	Power 770	IBM Power7 4.2 GHz	2170	16路共48核,每核4线程
IBM	Power 750 Express	IBM Power7 3.5 GHz	1150	8路共32核,每核4线程
IBM	Power 595	IBM Power6 4.2 GHz	1420	32路共64核,每核2线程
1.1.64				

为什么要升级- 追求数据库新特性

◆ Oracle Optimizer的不断演进

Oracle 11g Active DataGuard

◆ Oracle 11gR2 RAC SCAN IF

Oracle 11gR2 ACFS

◆ Oracle 12c RAC Failover 支持DML

为什么要升级- 去IOE风波

2013年6月,前中情局(CIA)职员爱德华·斯诺登将两份绝密资料交给英国 《卫报》和美国《华盛顿邮报》,披露了令举世震惊的"棱镜"项目。信息安 全成为任何国家和组织都异常关注的问题,而摆脱国际巨头的控制——去IOE化 成为一种时髦的提法。

议题

- ◆ 为什么要升级、迁移?
- ◆ 跨平台数据库升级迁移的方法
- ◆ 如何确保数据库升级迁移后的性能
- ◆ 跨平台最佳迁移实践案例
- ◆ 如何选择最佳的迁移升级方案

跨平台数据库升级迁移的方法

- ◆ 数据逻辑迁移(Exp/Expdp/自开发工具)
- GoldenGate/DSG/DDS/SharePlex

- DataGuard
- ◆ TTS/XTTS/XTTS增强版
- ◆ Vertias SF/存储迁移

影响迁移升级的因素

数据量

Time

- 复杂程度
- 安全性
- 回退方案

议题

◆ 为什么要升级、迁移?

◆ 跨平台数据库升级迁移的方法

◆ 如何确保数据库升级迁移后的性能

◆ 跨平台最佳迁移实践案例

◆ 如何选择最佳的迁移升级方案

如何确保数据库升级迁移后的性能

Real Application Testing (RAT)

- → Database Replay
- → SQL Performance Analyzer (SPA)

- ◆ 通过SPM(SQLT) 稳定SQL性能
- ◆ 屏蔽已知数据库相关特性或Bug

确保性能- DB Replay

◆ 捕获负载数据

通过实际负载、时限和并行等方式捕获生产负载将捕获的负载数据移到测试系统

◆重放负载

在测试系统中做出需要的更改 使用完整生产特性重放负载 执行提交排序

◆ Report 错误 数据差异 性能差异 捕获业务高峰 期数据,同时 避免对生产系 统产生影响!

确保性能- Oracle SPA

- Oracle 9i只能通过10046 trace进行抓取SQL
- Oracle 10g+可以抓取AWR数据及Cursor
- 如何进行SPA的并行处理

确保性能- Oracle SPA

Report Summary

Projected Workload Change Impact:

Overall Impact : 11.22% Improvement Impact: 11.22%

Regression Impact : 0%

SQL Statement Count

SQL Category	SQL Count	Plan Change Count
Overall	55852	7171
Improved	6	3
Unchanged	45540	7168
with Errors	892	0
Unsupported	9414	0

Top 100 SQL Sorted by Absolute Value of Change Impact on the Workload

object_id	sql_id		Execution Frequency			Impact on SQL	Plan Change
57785	<u>0kd6jz1ntnt∨7</u>	5.1%	4582400	693112.682515494	61	99.99%	
77019	64y1y3zng0jfy	1.59%	27860040	46298.1731406703	10838	76.59%	n
81768	7ha8ps4zd56a1	1.26%	2664768	295539.104428228	73	99.98%	У
59829	15r302jykhd04	1.14%	437655340	24561.3358804328	22932	6.63%	y /
58318	0rgff52nc4s3j	1.11%	55720104	15926.2405054377	3484	78.12%	n
102180	d9h6bubvuw0rt	1.02%	58577	23989465.1554023	13141191	45.22%	n
98757	cagq5d6std9vk	.71%	560759	793354.091814844	115	99.99%	у

议题

- ◆ 为什么要升级、迁移?
- ◆ 跨平台数据库升级迁移的方法
- ◆ 如何确保数据库升级迁移后的性能
- ◆ 跨平台最佳迁移实践案例
- ◆ 如何选择最佳的迁移升级方案

案例- 利用Veritas SF迁移升级

背景:

某运营商xx系统

数据量: 5TB

数据库版本: 9.2.0.8

操作系统:AIX 5308

是否裸设备: Yes

需求:

- → 从AIX迁移至Sun T5-8 Sparc.
- → 升级至11.2.0.4.3
- \rightarrow RAW \longrightarrow FS
- → Downtime <6h

案例- 利用Veritas SF迁移升级

- → 在中间库安装Veritas
- → 配置中间库与原生产库的DataGuard同步
- → 停业务—DG Failover—升级—卸载SF—新环境主机 挂载SF一启动DB 一测试应用

案例- 该方案的优势与缺陷

- ◆ 优势
 - → 数据的物理迁移,无需进行数据校对
 - → 操作流程相对简单
 - → 对原环境改动较小,几乎无需回退操作

- ◆ 缺陷
 - → 操作系统字节序必须一致
 - → 新环境必须使用Vertias 文件系统
 - → 需要购买Veritas,成本较高

案例- 利用GoldenGate迁移升级

背景:

某公安xx系统

数据量: 10TB

数据库版本: 10.2.0.4

操作系统:AIX 5.3

是否裸设备: Yes

需求:

- → 将DB从AIX迁移至Linux .
- → 升级至10.2.0.5
- \rightarrow Downtime < 2h

案例- GoldenGate面临的问题

- ◆ 数据初始化较慢(ogg 12c有所提升)
- ◆ Add trandata log可能产生影响
- ◆ 大多数业务系统面临缺乏主键的问题
- ◆ DDL支持问题
- ◆ 大事务的支持处理
- ◆ 数据校验工作量较大

案例- GoldenGate的一些处理方法

- ◆ 通过添加伪列处理缺乏主键的问题
 - → Add Primary Key (Unique Index)
 - → Add OGG_KEY_ID
 - → Rowid
- ◆ 控制GoldenGate进程资源消耗
 - → CACHEMGR CACHESIZE

- ◆ 进程拆分与资源消耗的平衡
 - → Extract进程不宜过多
 - → 抽取Archivelog(Standby)
 - → 目标端的SQL性能

案例- 利用GoldenGate迁移10TB RAC

- →初始化(多网卡、CATS、EXPDP)
- →数据校验
- →业务切换

案例- 利用XTTS进行跨平台迁移升级

背景:

某运营商xx系统(2套)

数据量: 9TB

数据库版本: 11.2.0.3.9 (RAC)

操作系统:AIX 5.3

需求:

- → 从AIX(RAW)迁移至Linux(ASM)
- → Downtime < 8h
- → 版本不变化

案例- XTTS的优劣势

优势:

- XTTS支持跨平台
- 支持数据增量(11.2.0.4 or+)
- 物理迁移、无需数据校验
- 无需单独升级数据库
- ◆ 支持0racle 10.2+版本

劣势:

- 存在相关限制
- 目标端必须借助Oracle 11.2.0.4(+)版本

案例-XTTS增量的方式

DBMS FILE TRANSFER

- ◆ 目标端数据库必须>= 11.2.0.4
- ◆ TNSNAMES配置

RMAN BACKUP

- ◆ 如何目标端数据库版本低于11.0.2.4
- ◆ 必须安装11.2.0.4(或更高版本)

限制:

- ◆ 无论哪种方式,源数据库COMPATIBLE必须是10.2.0(+)
- ◆ 无论哪种方式,目标数据库COMPATIBLE必须大于等于源端
- ◆ 源端数据库是归档模式,迁移表空间不能包含offline文件

案例-XTTS的迁移案例

- ◆ 原生产库为11.2.0.3、Database不能升级
- ◆ 目标端新环境需要同时安装11.2.0.3/4 Grid/DB
- ◆ 目标端新环境使用ASM
- ◆ 必须运行roothas.pl -deconfig
- ◆ 中间库打开Block change tracking

案例- How to do XTTS Incremental

- ◆ 利用0racle提供的脚本
 - → rman_xttconvert_1.4.2.1.zip
 - > xtt. properties
 - → \$ORACLE HOME/perl/bin/perl xttdriver.pl -p
 - 1) Precheck
 - 2) 产生xttplan.txt、rmanconvert.cmd(需要传到目标端)
 - → \$ORACLE HOME/per1/bin/per1 xttdriver.pl -c
 - → \$ORACLE_HOME/perl/bin/perl xttdriver.pl -I
 - 1) xttplan. txt
 - 2) tsbkumap. txt
 - → \$ORACLE_HOME/per1/bin/per1 xttdriver.pl -r -d

案例- How to do XTTS Incremental

◆ 纯手工

1 convert datafile

```
convert from platform 'AIX-Based Systems (64-bit)'
datafile '/.../lv_vg06_20g_065' format
  '+DG_DATA01/.../%N_%f.dbf' parallelism n;
```

2 backup incremental

```
run {
  allocate channel t1 type disk;
  backup incremental from scn N tablespace
  'HSS_DATA_01',...., 'ACCT_GROUP' format '/.../ACCTA_%U.bak';
  release channel t1:
   . . . . . . }
```


案例- How to do XTTS Inchemental ?

3. convert backuppiece

```
sys.dbms_backup_restore.backupBackupPiece(bpname =>
'/.../ACCTA_xxx_1.bak',fname => '/.../ACCTA_xxx_con_1.bak',...,pltfrmfr=> 6);
```

4. apply backuppiece

```
DECLARE
.....
   devtype := sys.dbms_backup_restore.deviceAllocate;
   sys.dbms_backup_restore.applySetDatafile(check_logical => FALSE, cleanup => FALSE);
   sys.dbms_backup_restore.applyDatafileTo(dfnumber => 6, toname => '+data/.../HSS_6.dbf',...);
    sys.dbms_backup_restore.restoreSetPiece(handle => '/.../ACCTA_feq2rmd4_con_1.bak', tag => null,...);
   sys.dbms_backup_restore.restoreBackupPiece(done => done,...);
   .....
```

同步元数据、重建序列、编译对象

案例- How to do XTTS Incremental

议题

◆ 为什么要升级、迁移?

◆ 跨平台数据库升级迁移的方法

◆ 如何确保数据库升级迁移后的性能

◆ 跨平台最佳迁移实践案例

◆ 如何选择最佳的迁移升级方案

如何选择最佳的升级迁移方案

如何选择最佳的升级迁移方案

如何选择最佳的升级迁移方案

诚聘英才:核心专家团队众志成城

云和恩墨汇聚业界一批对技术狂热的专家,以技术服务客户,以技术创造未来,我们诚邀数据英才 – Oracle/MySQL/DB2/PostgresQL等技术方向,共同开拓大数据时代的明日辉煌! 我们的使命:数据驱动,成就未来!

lane Di

