(1)

A 100-kVA 8000/277-V distribution transformer has the following resistances and reactances:

$$R_P = 5 \Omega$$
  $R_S = 0.005 \Omega$   $X_P = 6 \Omega$   $X_S = 0.006 \Omega$   $X_M = 10 \text{ k}\Omega$ 

The excitation branch impedances are given referred to the high-voltage side of the transformer.

(The values on the nameplate are rated line voltage and line current)

- (a) Find the equivalent circuit of this transformer referred to the low-voltage side.
- (b) Assume that this transformer is supplying rated load at 277 V and 0.85 PF lagging. What is this transformer's input voltage? What is its voltage regulation?
- (c) What are the copper losses and core losses in this transformer under the conditions of part (b)?
- (d) What is the transformer's efficiency under the conditions of part (b)?

(2)

The nameplate on a 25-MVA, 60-Hz single-phase transformer indicates that it has a voltage rating of 8.0-kV:78-kV. A short-circuit test from the high-voltage side (low-voltage winding short circuited) gives readings of 4.53 kV, 321 A, and 77.5 kW. An open-circuit test is conducted from the low-voltage side and the corresponding instrument readings are 8.0 kV, 39.6 A, and 86.2 kW.

- a. Calculate the equivalent series impedance of the transformer as referred to the high-voltage terminals.
- b. Calculate the equivalent series impedance of the transformer as referred to the low-voltage terminals.



| (d) |      | p =       | V. T.               |          | )            |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|-----|------|-----------|---------------------|----------|--------------|----------|------|--------|-----|---|----|------|-------|-----|------------------|----------------|---------|----------|-------|------|----|---|--|--|
| (a) |      |           |                     |          |              |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      | 3         | 5 0050              |          |              |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      | =         | 85 kw               |          |              |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      |           |                     |          |              |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      |           | Р                   |          | <b>√1009</b> |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     | r    | 1 = P     | + Pa +              | Pfe      | V100/8       |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      | = _       | 85000               |          | Υ            | 100%     |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      | 85        | 85 000<br>1000 + 14 | 62 + 131 | 2 ,          | , , 0    |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      | = 96      | .85%                |          |              |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
| (2) | C- 1 | 12eg, H1  | Use ,               | rl<br>   | 4530         | 2        | ΙЦ   | Пo     |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
| (1) | (a)  | 1 teg, HI | = I <sub>sc, </sub> | H        | 32           |          | 176  | ,, ,,  |     |   |    | Χ,   | eq.,H | = ( | J12.             | g-, )+         | 1 - Re  | 2<br>8 H | =     | 14.1 | υſ | _ |  |  |
|     |      | 13        | = Psi<br>= I'si     | ,14      | 7750         | )<br>_ = |      | m 7()  | 1 0 |   | ノ  |      | υ,    |     |                  |                |         |          |       |      |    |   |  |  |
|     |      | Keg, H    | = I's.              | ,н =     | 32           |          |      | J. 152 | IJL |   |    |      |       |     | 2 <sub>eu.</sub> | н <del>Т</del> | 0.752   | t.i      | 14.10 | r    |    |   |  |  |
|     |      |           |                     |          |              |          |      |        |     |   |    |      |       |     |                  |                |         | , u      |       |      |    |   |  |  |
|     |      |           | 78                  |          |              |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     | (b)  | N = .     | 8 =                 | 9.15     |              |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      |           | 0                   | n        | าณไ          |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      | Reyil     | = RayH              | = -9     | 75 2         | = 0.0    | 079  | 13 ك   |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      |           | X au                | н        | 14.10        |          |      |        |     | 5 | =) | 2 .4 | . ,L  | =   | 0.007            | 912 -          | f j 0.1 | 4835     | 2_    |      |    |   |  |  |
|     |      | X eq.i    | = Xey,              | - =      | 9.752        | 2        | 0.14 | 23 N   |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      |           |                     |          |              |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      |           |                     |          |              |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      |           |                     |          |              |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      |           |                     |          |              |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      |           |                     |          |              |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      |           |                     |          |              |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      |           |                     |          |              |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      |           |                     |          |              |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      |           |                     |          |              |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      |           |                     |          |              |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      |           |                     |          |              |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      |           |                     |          |              |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      |           |                     |          |              |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |
|     |      |           |                     |          |              |          |      |        |     |   |    |      |       |     |                  |                |         |          |       |      |    |   |  |  |