

Final project Design of an active suspension system

Automatic Control

Giorgio Checola

matr. 215475

Department of Industrial Engineering

Università degli studi di Trento

1 Introduction

The project concerns a wheel-suspension assembly of a car. When there is no control action on the system the suspension is called "passive", while it is "active" when there is a force, provided by an actuator placed between the wheel center and the car body, that acts as the control input for the system. My objective has been to solve a simplified version of the problem in order to reduce the impact of an uneven road on the vertical acceleration of the car body.

2 Answers

1. By considering the passive suspension system (i.e. u = 0), we can verify if the system is stable with the eigenvalues test: all eigenvalues of the matrix A have negative real part $(Re(\lambda_i) < 0)$, so it is stable.

The convergence rate α is smaller than 1.5 because the biggest eigenvalue of the matrix A is -1.327. It must be verified the inequality $Re(\lambda_i(A)) < -\alpha$.

The \mathcal{L}_2 gain of a system is the maximum value of the ratio between energy of the output and energy of the noise. I can compute this value using the function getPeakGain. The result is: $\mathcal{L}_2 = 21.4026878512419$.

In the image below we can see the Bode plot of the transfer function of the passive suspension system. The red horizontal line is the value of the \mathcal{L}_2 gain obtained before, and it corresponds exactly to the peak of the transfer function.

Figure 1: Bode plot of the open loop system

2. Before synthesizing a full-state feedback controller u = Kx for the active suspension system, we have to know if we can control it, so we check the controllability of the system. Since the controllability matrix is full rank I can place the real parts of the eigenvalues of the closed-loop system wherever I want in the negative half plane.

The constraints of the LMI problem are:

$$\begin{cases}
W \ge \rho I_{nxn} \\
\rho \ge 0 \\
He(AW + BX) & E & (CW + DX)^{\mathrm{T}} \\
E^{\mathrm{T}} & -\gamma \cdot I_{dxd} & F^{\mathrm{T}} \\
(CW + DX) & F & -\gamma \cdot I_{mxm}
\end{cases} \le 0 \tag{1}$$

$$\begin{bmatrix}
k \cdot \rho \cdot I_{nxn} & X^{\mathrm{T}} \\
X & k \cdot \rho \cdot I_{pxp}
\end{bmatrix} \ge 0$$

The matrix K needs to have norm k smaller than $2 \cdot 10^5$, so I fix this value and I search for the desired controller and its parameters: by means of the solver I find the optimal solution for γ , and then K with the corresponding matrix M and X.

As you can see, we confirm that it is possible to obtain a \mathcal{L}_2 smaller than 10. The following picture shows the Bode plot of the closed loop system.

Figure 2: Bode plot of the closed loop system $(k = 2 \cdot 10^5)$

3. In order to obtain a convergence rate α greater than 1.5, I have to find a new matrix K such that $Re(\lambda_i(A_{cl})) < -1.5$. I can get it by solving the previous LMI (I keep the norm value k fixed) with an additional constraint: $He(AW + BX) \leq -2\alpha^*W$ where $\alpha^* = 1.5$.

Finally I obtain these results:

$$\rightarrow K_b = \begin{bmatrix} 11691.6768 & 37832.7639 & -875.028917 & 78.4479637 \end{bmatrix}$$

 $\rightarrow \alpha_b = 2.4143$
 $\rightarrow \gamma_b = 10.3393$

The new matrix A_{cl} has all the eigenvalues with real part smaller than $-\alpha_b$. The Bode plot of the new transfer function of the system is shown below.

Figure 3: Bode plot of the closed loop system $(k = 2 \cdot 10^5 \text{ and } \alpha > 1.5)$

Despite the results of the two cases I think it is possible to obtain a controller which satisfies both requirements ($\gamma < 10$ and $\alpha > 1.5$).

4. If you use an optimization solver with both requirements as input, you get the following gain matrix K:

$$K_c = \begin{bmatrix} 12674 & 31347 & -168.3 & 92.5 \end{bmatrix} \tag{2}$$

and the corresponding \mathcal{L}_2 gain and convergence rate α that satisfy the conditions ($\gamma_c = 9.35$ and $\alpha_c = 1.53$).

With my LMI formulation I didn't obtain this result because I am looking for a single Lyapunov function that satisfies two different conditions, but it is wrong. I should use two functions with different matrix variables, but then the problem would become nonconvex, and I can't solve it with LMI anymore.

List of Figures

1	Bode plot of the open loop system	2
2	Bode plot of the closed loop system $(k=2\cdot 10^5)$	3
3	Bode plot of the closed loop system $(k = 2 \cdot 10^5 \text{ and } \alpha > 1.5) \dots \dots \dots$	4