Image Processing Toolbox for Julia

Release 1.0

Michael A. Wirth*
School of Computer Science
University of Guelph

January, 2017

Abstract

This note describes a toolbox of image processing algorithms for Julia.

Introduction

Julia is a new language for scientific computing, and due to its similarity to MATLAB, is an excellent conduit for image processing. This toolbox contains functions to perform elementary image processing operations. The toolbox is completely free of dependencies, meaning it does not require any other packages to work (except for the use of GadFly to visualize histograms).

The toolbox contains the following packages: **Image I/O**: text image files, and PGM images

Binarization: Local and global thresholding algorithms

Colour spaces: Conversion from RGB to YIQ, HSV, YCbCr, and CIELab (and back) **Segmentation**: General segmentation algorithms, e.g. histogram back projection

Edge processing: Edge enhancement and detection algorithms **Morphology**: A vast repoitoire of functions for morphological analysis

Spatial transformation: Various geometrical algorithms, e.g. rotation, flipping

Image sharpening: various unsharp masking filters

 $\textbf{Noise suppression} : a \ series \ of \ varied \ filters \ to \ perform \ noise \ suppression$

Histogram functions: generate and manipulate histograms, eg. histogram equalization

Noise generation: Functions to generate noise in images

Skin: Skin segmentation algorithms

Algorithms

Image Sharpening Filters

Traditional unsharp masking	filter_sharpUSM	imageFILTER
UM with Order Statistic Laplacian	filter_sharpUMOSLap	imageFILTER
UM with Laplacian of Gaussian	filter_sharpUSMLofG	imageFILTER
UM with Gaussian smoothing	filter_sharpUSMgauss	imageFILTER

Basic Filters

Image convolution	filter_CONV	imageFILTER

^{*} Contact: mwirth@uoguelph.ca

Noise Suppression (smoothing)

Gaussian smoothing	filter_GAUSSIAN	imageFILTER
Median filtering	filter_MEDIAN	imageFILTER
Truncated median filter	enh_truncMedian	imageENH
Mean (averaging) filter	filter_MEAN	imageENH
Hybrid median filter	enh_hybridMedian	imageENH
Alpha-Trimmed Means filter	enh_alphaTMean	imageENH
Weighted-median filter	filter_wMEDIAN	imageENH

Histogram Functions

Generate image histogram	getIMhist()	gray	imageHIST
Calculate cumulative histogram	cumulativeHist()	gray	imageHIST
Histogram equalization	histEQ()	gray	imageHIST
Histogram hyperbolization	histHYPER()	gray	imageHIST
Bi-histogram equalization	bihistEQ()	gray	imageHIST

Colour Image Functions

Convert RGB to YIQ colour space	rgb2yiq()	colour	colourSPACE
Convert YIQ to RGB colour space	yiq2rgb()	colour	colourSPACE
Convert RGB to HSV colour space	rgb2hsv()	colour	colourSPACE
Convert HSV to RGB colour space	hsv2rgb()	colour	colourSPACE
Convert RGB to CIELab	rgb2lab()	colour	colourSPACE
Convert CIELab to RGB	lab2rgb()	colour	colourSPACE
Convert RGB to CIE XYZ	rgb2xyz()	colour	colourSPACE
Convert CIE XYZ to RGB	xyz2rgb()	colour	colourSPACE

Image Thresholding Functions (grayscale images)

 $\begin{array}{lll} \text{C= clustering} & \text{E= entropy} & \text{S= shape} \\ \text{A= attribute} & \text{S= spatial} & \text{L= local} \\ \end{array}$

Binarize an image	im2BW()		imageBINARIZE
Calculate entropy	entropy()		imageBINARIZE
Otsu's algorithm	otsu()	С	imageBINARIZE
Minimum Error algorithm	minimumError()	С	imageBINARIZE
Maximum Entropy algorithm	maximumEntropy()	Е	imageBINARIZE
Niblack algorithm	niblack()	L	imageBINARIZE
Bernsen's algorithm	bernsen()	L	imageBINARIZE

Sauvola's algorithm	sauvola()	L	imageBINARIZE
Moment preservation algorithm	moments()	Α	imageBINARIZE
Histogram entropy algorithm	entropyPun()	Е	imageBINARIZE

Image Input/Output

Input a grayscale text image	imreadGray()	gray	imageI0
Output a grayscale text image	imwriteGray()	gray	imageIO
Plot an image histogram	plotIMGhist()	gray	imageIO
Read a PGM image file header	readPGMheader()		PGMimages
Read a type P2/P5 PGM image	readPGM()	gray	PGMimages
Write a type P2/P5 PGM image	writePGM()	gray	PGMimages
Read a type P6 colour PGM image	readPGMc()	colour	PGMimages
Write a type P6 colour PGM image	writePGMc()	colour	PGMimages

Image Noise Generation Functions

Impulse noise	impulse()	gray	imageNoise
Gaussian noise	gaussian()	gray	imageNoise
Raleigh noise	raleigh()	gray	imageNoise
Negative exponential noise (speckle)	speckle()	gray	imageNoise
Gamma noise	gamma()	gray	imageNoise
Uniform noise	uniform()	gray	imageNoise

Spatial Transformation Functions

Flipping images vertically and horizontally	flip()	gray	imageTRANS
	rotate()	gray	imageTRANS
Rotation about an arbitrary degree	rotatefree()	gray	imageTRANS

Edge Algorithms

Sobel edge enhancement	sobel(), sobel2()	gray	imageEDGE
Prewitt edge enhancement	prewitt()	gray	imageEDGE
Kirsch edge enhancement	kirsch()	gray	imageEDGE
Canny edge detection	canny()	gray	imageEDGE

Segmentation Algorithms

Parametric segmentation	parametricSEG()	colour	imageSEG
Histogram backprojection	backPROJECT()	colour	backPROJ

Skin Segmentation Algorithms

Skin segmentation using RGB	skinRGB()	colour	skinSeg
Skin segmentation using RGB/HSV	skinHSVrgb()	colour	skinSeg

Morphological Analysis

Image union	imUnion()	gray	imageSET
Image intersection	<pre>imIntersect()</pre>	gray	imageSET
lmage complement	imComplement()	binary	imageSET
ls an image binary?	isBinary()	binary	imageSET
Connected components labelling	labelBW()	binary	imageSET
Labelled region statistics	regionStats()	gray	imageSET
Remove region < size	fillIt()	gray	imageSET
Make a structuring element	makeSE()	binary	imageMORPH
Binary dilation	dilate()	binary	imageMORPH
Binary erosion	erode()	binary	imageMORPH
Binary opening	open()	binary	imageMORPH
Binary closing	close()	binary	imageMORPH
Grayscale dilation	dilateG()	gray	imageMORPH
Grayscale erosion	erodeG()	gray	imageMORPH
Grayscale opening	openG()	gray	imageMORPH
Grayscale closing	closeG()	gray	imageMORPH
Morphological sharpening	sharpen()	gray	imageMORPH
Toggle contrast enhancement	toggleCE()	gray	imageMORPH
Top-hat filtering	tophat()	gray	imageMORPH
Bottom-hat filtering	bothat()	gray	imageMORPH
Morphological contrast enhancement	morphCE()	gray	imageMORPH
Alternating sequential filter	morphASF()	gray	imageMORPH
Conditional dilation	condDilate()	gray	imageMORPH
Area opening	areaOpen()	gray, binary	imageMORPH