

MASTER THESIS

Ondřej Ježil

Pseudofinite structures

Department of Algebra

Supervisor of the master thesis: prof. RNDr. Jan Krajíček Ph.D.

Study programme: Matemathics

Study branch: Mathemathics for Information

technologies

I declare that I comind out this procton thesis is described and a 1 1 1 1 1 1
I declare that I carried out this master thesis independently, and only with the cited sources, literature and other professional sources. It has not been used to obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the Charles University has the right to conclude a license agreement on the use of this work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.
In date
Author's signature

Dedication.

Title: Pseudofinite structures

Author: Ondřej Ježil

Department: Department of Algebra

Supervisor: prof. RNDr. Jan Krajíček Ph.D., Department of Algebra

Abstract: Abstract.

Keywords: key words

Contents

Introduction	2
1 $F = F_{tree}$ 1.1 Basic observations	3 3 7
Conclusion	8
Bibliography	9
List of Figures	10
List of Tables	11
List of Abbreviations	12
A Attachments A.1 First Attachment	13

Introduction

1. $F = F_{tree}$

1.1 Basic observations

Example 1. Let

 $\mathcal{G}_k = \{([k], E); E \text{ consists of exactly one } n/2\text{-clique}\},$

and $F = F_{tree}$.

We will prove that for every $t > \mathbb{N}$:

$$[\Gamma \text{ has an } n^{1/t}\text{-clique}]$$
 (1.1)

$$= [(\exists \Lambda)(\forall u)(\forall v)(((u, v \le n^{1/t}) \to \Gamma(\Lambda(u), \Lambda(v))) \land (\Lambda : [n^{1/t}] \hookrightarrow \mathcal{M}))] \quad (1.2)$$

$$= \bigvee_{n} \bigwedge_{v} \prod_{v} [(u \neq v < n^{1/t}) \to (\Gamma(\Lambda(u), \Lambda(v)) \land \Lambda(u) \neq \Lambda(v))]$$
 (1.3)

$$=1. (1.4)$$

For $j \in [n^{1/t}]$ let Λ_j to be a tree of depth $j \cdot (n^{1/t})^2$ which first tries to find an edge $1 \leftrightarrow k$ for $k \in [n^{1/t}]$ if it fails than it tries to find $2 \leftrightarrow k$ and so on. Once it finds some edge (i, k), then it starts again but from i + 1 until it finds the first j elelements of Δ_{ω} and responds with the j-th element. Since j is always bounded by $n^{1/t}$, Λ really sends F to F.

Example 2. Let

$$\mathcal{G}_k = \{([k], E); E \text{ consists of exactly one edge}\}$$

and $F = F_{tree}$.

We will prove that

$$[\![(\exists x)(\exists y)\Gamma(x,y)]\!] = \mathbf{0}.$$

Let T be any binary tree of depth $n^{1/t}$, $t > \mathbb{N}$, whose leaves are labeled by unordered pairs of edges.

Start from the root of T and always choose the path that corresponds to an edge not existing. At the end we obtain some answer, that gives us a set of at most $2 \cdot n^{1/t} + 2$ vertices. Now we can find at least:

$$\binom{n-2n^{1/t}-2}{2} = \frac{(n-2n^{1/t}-2)(n-2n^{1/t}-3)}{2}$$
 (1.5)

$$=: m$$
 (1.6)

different $\omega \in \Omega$ such that $T(\omega)$ is not an edge in ω . The standard part of the ratio the number of these counterexamples to $\operatorname{st}(\frac{m}{|\mathcal{G}_n|}) = 1$.

This proves that the boolean value we are considering is $\mathbf{0}$ since we can combine the two witnesses for x and y into a tree that could find an edge with depth $n^{1/t}$ for some $t > \mathbb{N}$.

Theorem 1. Let $\varphi = (\forall \overline{x})\varphi_0(\overline{x})$ be a universal $\{E\}$ -sentence, such that

$$\lim_{k \to \infty} \Pr_{G \in \mathcal{G}_k}(G \models \varphi) = 1.$$

Then φ is valid in the pseudofinite limit.

Proof. From \aleph_1 -saturation of \mathcal{M} and our assumption, we know that for each $m \in \mathbb{N}$ there exists a $k_0 \in \mathbb{N}$ such that

$$\mathcal{M} \models (\forall k > k_0) \left(\Pr_{G \in \mathcal{G}_k} (G \models \varphi) > 1 - 1/m \right).$$

Therefore, since $n > \mathbb{N}$, we have that $\operatorname{st}(\operatorname{Pr}_{G \in \mathcal{G}_n}(G \models \varphi)) = 1$ and therefore $\llbracket \varphi_0(\overline{\alpha}) \rrbracket = \mathbf{1}$ for each tuple $\overline{\alpha}$ in F.

Therefore

$$\llbracket \varphi \rrbracket = \bigwedge_{\overline{\alpha}} \llbracket \varphi_0(\overline{\alpha}) \rrbracket$$

$$= \bigwedge_{\overline{\alpha}} \mathbf{1}$$
(1.8)

$$= \bigwedge_{\overline{\alpha}} \mathbf{1} \tag{1.8}$$

$$= 1. (1.9)$$

Theorem 2. Let $F = F_{tree}$. Let $\varphi_0(x_0, \ldots, x_{l-1})$ be a q.f. $\{E\}$ -formula. Let $0 , consider subset <math>A \subseteq [g_k]^l$ such that for all $\overline{a} \in A$

$$\Pr_{G \in \mathcal{G}_k}(G \models \varphi_0(\overline{a})) \ge p$$

and

 $\{\{G \models \varphi_0(\overline{a})\} \subseteq \mathcal{G}_k; \overline{a} \in A\}$ are mutually independent.

moreover let A_k be the set with the largest cardinality that has this property.

If $\lim_{k\to\infty} |A_k| = \infty$, then $[(\exists \overline{x})\varphi_0(\overline{x})] = 1$.

Proof. Let $\overline{x} = (x_0, \dots, x_{l-1})$. Let $T_{\overline{a}}$ be a tree of some standard depth d, that tests whether $G \models \varphi_0(\overline{a})$.

From \aleph_1 -saturation of \mathcal{M} we have $n' > \mathbb{N}$ many tuples $\overline{a}_0, \ldots, \overline{a}_{n'-1} \in A_n$, such that $\Pr_{G \in \mathcal{G}_k}(G \models \varphi_0(\overline{a}_i)) \geq p$, we can assume $n' < n^{1/t_0}$ for some $t_0 > \mathbb{N}$.

For $j \in [l]$ construct a tree T_j inductively as follows: Start with $T_{\overline{a}_0}$. Replace the label of every accepting leaf by $(\overline{a}_0)_i$ and remove the label of every rejecting leaf. Call this tree T_i^0 . Assume we have already constructed T_i^m . Construct T_i^{i+1} by appending $T_{\overline{a}_{m+1}}$ to every undefined leaf, relabeling every satisfied leaf to $(\overline{a}_{i+1})_j$ and removing labels from every rejecting leaf. We will define T_j as $T_j^{n'}$ with undefined leafs labeled by 0. (This can be done, because all instances of induction are in Th(N).) Note that $dp(T_i) = d \cdot n' < n^{1/t}$ for some t > N.

Call $\overline{\alpha}$ the tuple computed by T_0, \ldots, T_{l-1} . We will prove that probability of $\overline{\alpha}$ being a witness to $\varphi_0(\overline{x})$ is 1. For each \overline{a}_i we have, that the probability of $G \models \varphi_0(\overline{a}_i)$ is at least p. The mutual independence of $\{G \models \varphi_0(\overline{a}_i); i \in [n']\}$ and the construction of T_j implies that T_j has a probability of $(1-p)^{n'}$ of failing, which is obviously almost 0.

Example 3. Let

 $\mathcal{G}_k = \{([k], E); E \text{ has at least one edge, and can have a second one } 0E1\},$

and let
$$F = F_{tree}$$
. Then $\mu(\llbracket (\exists x)(\exists y)\Gamma(x,y)\rrbracket) = \frac{1}{2}$.

Proof. Let T_0 be a tree that always outputs 0 and T_1 be a tree that always outputs 1. We can prove that $\llbracket \Gamma(0,1) \rrbracket \geq \llbracket \Gamma(\alpha,\beta) \rrbracket$ for any α,β .

Example 4. Let

 $\mathcal{G}_k = \{([k], E); E \text{ at least one edge, and may have exactly } k/2 \text{ more from start}\}$ and let $F = F_{tree}$. Then $\mu([\![(\exists x)(\exists y)\Gamma(x,y)]\!]) = \frac{1}{2}$.

Definition 1. We say that $\{\mathcal{G}_k\}_{k=0}^{\infty}$ is **isomorphism closed**, if there is k_0 such that for every $k > k_0$ if we have that $G_1 \in \mathcal{G}_k$, $V_{G_2} = [g_k]$ and $G_1 \cong G_2$ then $G_2 \in \mathcal{G}_k$.

We say that $\{\mathcal{G}_k\}_{k=0}^{\infty}$ is **categorical** if there is k_0 such that for every $k > k_0$ if we have $G_1, G_2 \in \mathcal{G}_k$ then $G_1 \cong G_2$. For a categorical sequence $\{G_k\}_{k=0}^{\infty}$ we denote G_k the lexicographically minimal element of \mathcal{G}_k .

Lemma 1. Let $\{\mathcal{G}_k\}_{k=0}^{\infty}$ be categorical and isomorphism closed, then for large enough k

$$|\mathcal{G}_k| = \frac{g_k!}{|\operatorname{Aut}(G_k)|}.$$

Proof. Every $\rho \in S_{g_k}$ defines an isomorphism $\rho : G_k \to \rho(G_k)$, where $\rho(G_k)$ is a graph obtained from G_k by renaming every vertex v to $\rho(v)$.

Claim: For any $\rho, \pi \in S_{g_k}$:

$$\rho(G_k) = \pi(G_k) \iff \exists \tau \in \operatorname{Aut}(G_k) : \rho \circ \tau = \pi.$$

Proof of claim. " \Rightarrow " Let $\rho(G_k) = \pi(G_k)$, therefore $\tau := \rho^{-1} \circ \pi \in \operatorname{Aut}(G_k)$ and $\rho \circ \tau = \rho \circ \rho^{-1} \circ \pi = \pi$.

"\(\Lefta \)" Let
$$\rho \circ \tau = \pi$$
. Then $\pi(G_k) = \rho(\tau(G_k)) = \rho(G_k)$. \square

Notice that the τ in the statement of the claim is uniquely determinted by $\rho^{-1} \circ \pi$. Therefore if we defined a quotient set S_{g_k}/\sim with $\rho \sim \pi \iff \rho(G_k) = \pi(G_k)$ then $|S_{g_k}/\sim| = \frac{g_k!}{|\operatorname{Aut}(G_k)|}$.

The Lemma follows from noticing that if we start with $\{G_k\}$ and then we build \mathcal{G}_k by finding isomorphic graphs on the vertex set $[g_k]$ we can only do so by trying different permutation from S_{g_k} and these permutations find the same graph if and only if they are in the same \sim -class. Therefore there is a bijection between S_{g_k}/\sim and \mathcal{G}_k .

Lemma 2 (Candidate for optimal search trees). Let $\{\mathcal{G}_k\}_{k=0}^{\infty}$ be categorical and isomorphism closed, let $\varphi(x_0,\ldots,x_{l-1})$ be an open $\{E\}$ -formula, let $\models \varphi(\overline{x}) \to \bigwedge_{i,j=0}^{l-1,l-1} x_i =^{b_{ij}} x_j$ for some $b_{ij} \in \{0,1\}$, let $k_0 \geq 0$ and define $\{q_k\}_{k=k_0}^{\infty}$ as follows

$$q_k := \frac{g_k!}{|\mathrm{Aut}(G_k)|} \cdot \frac{|\varphi(G_k)|}{|\bigcup_{G \in \mathcal{G}} \varphi(G_k)|}.$$

Then there is $c \in \mathbb{N}$ and trees T_0, \ldots, T_{l-1} of depth $n^{(r)} \cdot c$, (with $n^{(r)}$ being defined in the proof) such that for the $\overline{\alpha}$ computed by \overline{T} we have $[\![\varphi(\overline{\alpha})]\!] = \mathbf{1}$.

Proof. We will use the identity from the statement to construct a search tree (iterated $T_{\overline{a}}$) which almost always finds a witness to φ .

We will analyze the problem in the finite case for big enough k > 0. We should only check those tuples included in $\bigcup_{G \in \mathcal{G}_k} \varphi(G)$. For example, if we are trying to find an edge then we need not check the constant tuples (a, a). Moreover, to succeed we only need to check one specific tuple in each $\varphi(G)$, $G \in \mathcal{G}_k$.

Consider the set $S = \{(G, \overline{a}); G \in \mathcal{G}_k, G \models \varphi(\overline{a})\}$ and a projection to the second coordinate $p_2: S \to \bigcup_{G \in \mathcal{G}_k} \varphi(G)$. Since $|S| = \frac{g_k!}{|\operatorname{Aut}(G)|} \cdot |\varphi(G_k)|$ we have that q_k is the average size of a p_2 preimage of any $\overline{a} \in \bigcup_{G \in \mathcal{G}_k} \varphi(G)$.

Claim: For all $\overline{a}, \overline{b} \in \bigcup_{G \in \mathcal{G}_k} \varphi(G)$ we have $|p_2^{-1}[\overline{a}]| = |p_2^{-1}[\overline{b}]| = q_k$.

Proof of claim. We will prove that for any $\overline{a}, \overline{b} \in \bigcup_{G \in \mathcal{G}_k} \varphi(G)$ we have $|p_2^{-1}[\overline{a}]| \leq$ $|p_2^{-1}[\overline{b}]|$, by symmetry, they must be equal and also equal to q_k which is the average size of any singleton preimage.

Let $p_2^{-1}[\overline{a}] = \{G_0, \dots, G_{s-1}\} \times \{\overline{a}\}$ and let $\rho = (b_0 \ a_0) \dots (b_{l-1} \ a_{l-1})$, this is a permutation from the condition on φ . Then

$$p_2^{-1}[\overline{b}] \supseteq \{\rho(G_0), \dots, \rho(G_{s-1})\} \times \{\rho(\overline{a}) = \overline{b}\}. \quad \square$$

Now consider the multiset $M = (\bigcup_{G \in \mathcal{G}_k} \varphi(G), \text{count} : \overline{a} \mapsto |p_2^{-1}[\overline{a}]|)$, we will construct the searching tree by plucking elements from this multiset in the following way.

Let $M^{(0)} := M$, $\mathcal{G}_k^{(0)} = \mathcal{G}_k$. For $i \geq 0$ and $M^{(i)}$, $\mathcal{G}_k^{(i)}$ built, take some $\overline{a} \in M^{(i)}$ with maximal count (\overline{a}) , put $\mathcal{G}_k^{(i+1)} = \mathcal{G}_k^{(i)} \setminus p_2^{-1}[\overline{a}]$ and form $M^{(i+1)}$ by removing \overline{a} , and for every $\overline{b} \in p_1[p_2^{-1}[\overline{a}]] \setminus {\overline{a}}$ setting $\operatorname{count}_{M^{(i+1)}}(\overline{b}) = \max\{0, \operatorname{count}_{M^{(i)}}(\overline{b}) - \operatorname{count}_{M^{(i)}}(\overline{b}) = \max\{0, \operatorname{count}_{M^{(i)}}(\overline{b}) - \operatorname{count}_{M^{(i)}}(\overline{b}) = \max\{0, \operatorname{count}_{M^{(i)}}(\overline{b}) - \operatorname{count}_{M^{(i)}}(\overline{b}) = \operatorname{count}_{M^{(i)}}(\overline{b}$ $(\varphi(G_k))$. We also add $T_{\overline{a}}$ to the leaves of the tree we are constructing T_i and call it T_{i+1} .

For each $i \geq 0$ we have that T_i finds a witness in $G \in \mathcal{G}_k$ iff $G \notin \mathcal{G}_k^{(i)}$. So to calculate the probability of success of T_i we just need to find upper bounds on the cardinality of $\mathcal{G}_k^{(i)}$.

Define $m_i := \max\{\operatorname{count}(\overline{a}); \overline{a} \in M^{(i)}\}$. Let $k^{(0)} \geq 0$ be the greatest number such that for all $i < k^{(0)}$: $m_i = q_k$.

Define a set $M_m^{(i)} = \{\overline{a}; \operatorname{count}_{M_i}(\overline{a}) = m_i\}$. We can see, that $k^{(0)} \geq 1$ and $M^{(0)} = \bigcup_{G \in \mathcal{G}_k} \varphi(G)$. At each step $i < k^{(0)}$ we construct T_{i+1} by searching for some $\overline{a} \in M_m^{(i)}$, this results in $\left|\mathcal{G}_k^{(i+1)}\right| = |\mathcal{G}_k^i| - q_k$. We also remove one instance of every $\overline{b} \in p_1[p_2^{-1}(\overline{a})] \setminus \{\overline{a}\}$ from $M^{(i)}$ to form $M^{(i+1)}$, this results in $\left|M_m^{(i+1)}\right| \geq 1$ $\left| M_m^{(i)} \right| - 1 - q_k \cdot (|\varphi(G_k) - 1|).$ Therefore

$$k^{(0)} \ge \left| \frac{\left| M_m^{(0)} \right|}{q_k \cdot |\varphi(G_k)|} \right| \tag{1.10}$$

$$= \left| \frac{\left| \bigcup_{G \in \mathcal{G}_k} \varphi(G) \right|}{q_k \cdot |\varphi(G_k)|} \right|, \tag{1.11}$$

$$\left| \begin{array}{c} q_k \cdot |\varphi(G_k)| \end{array} \right|^{\gamma}$$
 and
$$\left| \mathcal{G}_k^{(k^{(0)})} \right| = |\mathcal{G}_k| - k^{(0)} \cdot q_k = \frac{|\operatorname{Aut}(G_k)|}{g_k!} - \left\lfloor \frac{\left| \cup_{G \in \mathcal{G}_k} \varphi(G) \right|}{q_k \cdot |\varphi(G_k)|} \right\rfloor \cdot q_k \leq \frac{|\operatorname{Aut}(G_k)|}{g_k!} - \left\lfloor \frac{\left| \cup_{G \in \mathcal{G}_k} \varphi(G) \right|}{|\varphi(G_k)|} \right\rfloor.$$

However the right hand side of the last inequality is rarely ≤ 0 , so generally one has to continue with plucking even after $k^{(0)}$ -many steps. We define $k^{(j)}$ as the greatest number such that for all $i < k^{(j)} : m_i \geq q_k - j$ and continue for $k^{(r)}$ steps, where r is the smallest number such that

$$\left| \mathcal{G}_k^{k^{(r)}} \right| = \left| \mathcal{G}_k \right| - k^{(0)} \cdot q_k - \sum_{j=1}^r (k^{(j)} - k^{(j-1)}) \cdot (q_k - j)$$
 (1.12)

$$=0. (1.13)$$

However, this requires a general analysis of $k^{(j)}$ and I haven't manage to compute that.

For
$$k = n$$
 in \mathcal{M} we put $n^{(r)} := k^{(r)}$.

1.2 $\mathcal{G}_k = \mathbf{ALL}_k$

Theorem 3 (Everything exists). Let $\varphi(\overline{x}, \overline{y}) = \bigwedge_{i=0}^{m-1} \psi_i(\overline{x}, \overline{y}) \wedge \bigwedge_{i=0}^{l-1} \vartheta_i(\overline{y})$, where ψ_i, ϑ_i are literals and ψ_i are not of the form $(y_i = y_j)^b$, $E(y_i, y_j)^b$, $x_i \neq x_i$, $E(x_i, x_i), b \in \{0, 1\}$.

Let $\overline{\beta}$ be a tuple of vertices computed by F_{tree} of the same length as \overline{y} . Then $[(\exists \overline{x})\varphi^{\Gamma}(\overline{x},\overline{\beta})] = [\![\bigwedge_{i=0}^{l-1} \vartheta_i(\overline{\beta})]\!]$, specifically if l=0 then $(\exists \overline{x})\varphi_0(\overline{x},\overline{\beta})$ is valid in the b.v. graph.

Proof. We will construct one tree T computing the whole tuple of witnesses $\overline{\alpha}$, such a construction can be straightforwardly split into a tuple of tree each computing the specific element.

First we concatenate all the trees used to compute $\overline{\beta}$. At each leave we can now proceed knowing the value of $\overline{\beta}$ at the specific $\omega \in \Omega$. Now we just construct a tree as in Theorem 2 but searching only over edges not checked previously and only to fulfill each ψ_i . Luckily we have so far searched only an infinitesimal part of the edges and since we assume $\mathcal{G}_k = \mathrm{ALL}_k$ both of the conditions of the theorem are satisfied, so by analogous argument, we have a tree that finds a witness all of the $\psi_i(\overline{x}, \overline{\beta})$ with probability infinitesimally close to 1.

Therefore

$$[\![(\exists \overline{x})\varphi^{\Gamma}(\overline{x},\overline{\beta})]\!] = [\![(\exists \overline{x}) \bigwedge_{i=0}^{m-1} \psi_i(\overline{x},\overline{\beta})]\!] \wedge [\![\bigwedge_{i=0}^{l-1} \vartheta_i(\overline{\beta})]\!]$$
(1.14)

$$= \left[\bigwedge_{i=0}^{l-1} \vartheta_i(\overline{\beta}) \right]. \tag{1.15}$$

Corollary 1. For each $\varphi(\overline{x})$ that is not a tautology in the theory of graphs we have that $[(\forall \overline{x})\varphi^{\Gamma}(\overline{x})] = \mathbf{0}$.

Corollary 2. For each $\varphi(\overline{x}, \overline{y})$ that is not falsifiable by \overline{y} in the theory of graphs we have that $\llbracket(\forall \overline{y})(\exists \overline{x})\varphi^{\Gamma}(\overline{x})\rrbracket = \mathbf{1}$.

7

Conclusion

Bibliography

List of Figures

List of Tables

List of Abbreviations

A. Attachments

A.1 First Attachment