Deep Learning models for ASR

3. Transformer audio-to-text

<u>Summary</u>

- Audio-to-text transformer
- Optimizations:
 - Easy implementation: einops, rearrange
 - Rotary positional encoding
 - Flash Attention
 - Sliding window attention

ASR: benchmarks

Automatic Speech Recognition ASR

https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-other

Speech Recognition on LibriSpeech test-other

ASR: seq2seq

Automatic Speech Recognition ASR

- **Seq2seq RNN model:** state is a bottleneck
- Decoder: uses previous outputs as input

ASR: transformer speech-to-text

ASR: transformer speech-to-text


```
class Encoder(torch.nn.Module):
    def __init__(self, nb_layers=6, seq_len=400, **kwargs):
        super().__init__()
        self.pos = torch.nn.Parameter(torch.randn(1, seq_len, kwargs['d_model']))
        self.att = torch.nn.ModuleList([SelfAttention(**kwargs) for _ in range(nb_layers)])
        self.ff = torch.nn.ModuleList([FeedForward(**kwargs) for _ in range(nb_layers)])

def forward(self, x):
        b, t, d = x.shape
        x = x + self.pos[:, :t, :]
        for att, ff in zip(self.att, self.ff):
              x = x + att(x)
              x = x + ff(x)
        return x
```

ASR: transformer speech-to-text

```
class Decoder(torch.nn.Module):
    def __init__(self, nb_layers=6, seq_len=400, **kwargs):
        super().__init__()
        self.pos = torch.nn.Parameter(torch.randn(1, seq_len, kwargs['d_model']))
        self.att = torch.nn.ModuleList([CausalSelfAttention(**kwargs) for _ in range(nb_layers)])
        self.cross_att = torch.nn.ModuleList([CrossAttention(**kwargs) for _ in range(nb_layers)])
        self.ff = torch.nn.ModuleList([FeedForward(**kwargs) for _ in range(nb_layers)])

def forward(self, x, enc):
        b, t, d = x.shape
        x = x + self.pos[:, :t, :]
        for att, cross_att, ff in zip(self.att, self.cross_att, self.ff):
        x = x + att(x)
        x = x + cross_att(x, enc)[0]
        x = x + ff(x)
        return x
```


Models

Automatic Speech Recognition ASR: extra inputs

<u>Summary</u>

- Audio-to-text transformer
 - Generation/decoding
 - Attention
- Optimizations:
 - Easy implementation: einops, rearrange
 - Rotary positional encoding
 - Flash Attention
 - Slide attention

Autoregressive models

How do we generate samples ?

- **Predict**: We use the probability distribution provided by the model at time t given the previous context to obtain the discrete distribution: $p(x_t|x_t^{t-1})$
- **Sample**: We sample from the distribution: $x_t \sim p(x_t | x_1^{t-1})$
 - Problem: slow generation

- The distributions can be controlled to follow the most probable symbols (low temperature) or a more uniform distribution high temperature
 - This effect is controlled by a simple scale before the softmax operation

$$softmax_{T}(\mathbf{x},\tau) = \frac{\exp x_{c}/\tau}{\sum_{c'} \exp x_{c'}/\tau}$$

 $\tau = 0.1$ (low temperature)

 $\tau = 10.0$ (high temperature)

Autoregressive models

Modelo de lenguaje: partes de palabra (tokens)

Autoregressive models

Modelo de lenguaje: generación

- How to generate optimal sequences?
 - Multiple active hypotheses + beam
 - For example with **beam 3**, active hyps in the example would be:

```
_un + idas : 0.48 * 0.99 = 0.4752

_y + _pue: 0.04 * 0.21 = 0.0084

_en + _la: 0.03 * 0.13 = 0.0039
```

LLAMA 7B (two steps)

(0.99)
(0.00)
(0.00)
(0.00)
(0.00)
(0.21)
(0.07)
(0.04)
(0.04)
(0.04)
(0.13)
(0.13)
(0.05)
(0.04)
(0.03)

<u>Summary</u>

Audio-to-text transformer

- Generation/decoding
- Attention
- Optimizations:
 - Easy implementation: einops, rearrange
 - Rotary positional encoding
 - Flash Attention
 - Slide attention

Cross-Attention

DG90323101

Scores: (#C #S #D #I) 28 0 0 0

REF: el centro alfarero de toro se caracteriza por la pesadez y el grosor de sus piezas asi como por su botijo de carro que no tiene lado plano HYP: el centro alfarero de toro se caracteriza por la pesadez y el grosor de sus piezas asi como por su botijo de carro que no tiene lado plano

Cross-Attention

Cross-Attention

whisper medium model

<u>Summary</u>

- Audio-to-text transformer
- Optimizations:
 - Easy implementation: einops, rearrange
 - Flash Attention
 - Rotary Positional Embedding
 - Sliding window attention

Flash attention, Flash attention2

Dao, T., Fu, D., Ermon, S., Rudra, A., & Ré, C. (2022). Flashattention: Fast and memory-efficient exact attention with io-awareness. Advances in Neural Information Processing Systems, 35, 16344-16359. Dao, T. (2023). Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv preprint arXiv:2307.08691...

- Attention matrix is never computed completely: smaller tiles are computed for each query row -> output
- Very dependent on the GPU arquitecture, increased gains for modern GPUs small precision types like float16

Einops, rearrange

Rearrange allows to execute multiple operations reshape, permute in a single call

```
q = self.to_q(q).view(b, -1, h, d)
k = self.to_k(k).view(b, -1, h, d)
v = self.to_v(v).view(b, -1, h, d)
q = rearrange(self.to_q(q), 'b t (h d) -> (b h) t d', h=h)
v = self.to_v(v).view(b, -1, h, d)
q = q.permute(2, 0, 1, 3).contiguous().view(b*h, -1, d)
k = k.permute(2, 0, 1, 3).contiguous().view(b*h, -1, d)
v = v.permute(2, 0, 1, 3).contiguous().view(b*h, -1, d)
```

Einops follows Einstein's tensor notation and allows to calculate products, reductions...

```
scores = torch.matmul(q, k.transpose(-1,-2))
scores = torch.einsum('bihd,bjhd->bhij', q, k)
```


Rotary Positional Embedding (RoPE)

Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., & Liu, Y. (2021). Roformer: Enhanced transformer with rotary position embedding. arXiv preprint arXiv:2104.09864..

- q and k sequences are modulated by a complex exponential
 - The inner product is equivalent to the scalar product and a term dependent on the relative difference of indices

$$egin{aligned} ext{RoPE}(x,m) &= xe^{miarepsilon} \ \langle ext{RoPE}(q_j,m), ext{RoPE}(k_j,n)
angle &= \langle q_j e^{miarepsilon}, k_j e^{niarepsilon}
angle \ &= q_j k_j e^{miarepsilon} \ &= q_j k_j e^{(m-n)iarepsilon} \ &= ext{RoPE}(q_j k_j, m-n) \end{aligned}$$

- Useful for flash attention type models:
 - applied to q and k before product

Sliding window attention

Beltagy, I., Peters, M. E., & Cohan, A. (2020). Longformer: The long-document transformer. arXiv preprint arXiv:2004.05150....

	The	cat	sat	on	the
The	1	0	0	0	0
cat	1	1	0	0	0
sat	1	1	1	0	0
on	0	1	1	1	0
the	0	0	1	1	1

- It is implemented in flash attention2
- Similarly to causal conv1d (i.e. wavenet) the attention mask defines a finite distance attention. Computational gains and still good result. Example the recent LLM mistral
 - https://github.com/mistralai/mistral-src