CH-3: Working With Combinational Logic

Contemporary Logic Design

YONSEI UNIVERSITY

Fall 2016

Working with Combinational Logic

- Simplification
 - two-level simplification
 - exploiting don't cares
 - algorithm for simplification
- Logic realization
 - two-level logic and canonical forms realized with NANDs and NORs
 - multi-level logic, converting between ANDs and ORs
- Time behavior
- Hardware description languages (HDL)

Design Example: Two-bit Comparator

Α	В	С	D	LT	EQ	GT
0	0	0 0 1 1	0	0	1	0
		0	1 0	1	Ō	0 0 0
		1		1	0	0
			1	1	0	
0	1	0	0	0	0 1 0	1
		0	1 0	0	1	0
		1	0	1	0	0
		1	1	1	0	0
1	0	0 0 1	0	1 0 0	0 0 0	1 0 0 0 1 1
		0	1	0	0	1
		1	0	0	1	0
		1	1	1	0	0
1	1	0	0	0	0	1 1
		0	1	0	0	
		1	0	0	0	1
		1	1	0	1	0

we'll need a 4-variable Karnaugh map for each of the 3 output functions

Design Example: Two-bit Comparator

K-map for EQ

K-map for GT

$$LT = A'B'D + A'C + B'CD$$

$$EQ = A'B'C'D' + A'BC'D + ABCD + AB'CD' = (AxnorC) \bullet (BxnorD)$$

$$GT = BC'D' + AC' + ABD'$$

LT and GT are similar (flip A/C and B/D)

Design Example: Two-bit Comparator

two alternative implementations of EQ with and without XOR

XNOR is implemented with at least 3 simple gates

Design Example: 2x2-bit Multiplier

Block diagram and truth table

A2	A 1	B2	В1	P8	P4	P2	P1
0	0	0	0	0	0	0	0 0 0
		0	1	0	0	0	0
		1	0	0	0	0	0
		1	1	0	0	0	0
0	1	0	0	0	0	0	0
		0	1	0	0	0	1
		1	0	0	0	1	0
		1	1	0	0	1	1
$\overline{1}$	0	0	0	0	0	0	0
		0	1	0	0	1	0 0 0
		1	0	0	1	0	0
		1	1	0	1	1	0
$\overline{1}$	1	0	0	0	0	0	0
		0	1	0	0	1	1
		1	0	0	1	1	0
		1	1	1	0	0	1

4-variable K-map for each of the 4 output functions

Design Example: 2x2-bit Multiplier

Design Example: BCD Increment by 1

Block diagram and truth table

8 I4	I2 I1	08	04	02	01
0	0 0 0	0	0	0 1	1
Ŏ	$\tilde{1}$ $\tilde{0}$	Ö	Ŏ	ī	ĭ
0	1 1	0	1	0	0
1	0 0	0	1	0	1
$\frac{1}{4}$	0 1	0	1	1	Ų
. <u>1</u>	I U	U 1	Ų	Ų	Ų
Ų	ח ה	†	0	0	1
Ŏ		Ō	Ŏ	Ŏ	Ō
0	1 0	X	X	X	X
0	1 1	X	X	X	X
1	0 0	X	X	X	X
<u> </u>	U I	X	X	X	X
1	1 1	\	X	X	X
0		_	0001111000XXXXX	10011000XXXXXX	101010XXXXXXX

4-variable K-map for each of the 4 output functions

Design Example: BCD Increment by 1

Defining Terms for 2-level Simplification

- Implicant
 - single element of ON-set or DC-set or any group of these elements that can be combined to form a subcube
- Prime implicant
 - implicant that <u>can't be combined with another</u> to form a larger subcube
- Essential prime implicant
 - prime implicant is essential if it alone covers an element of ON-set
 - will participate in ALL possible covers of the ON-set
 - DC-set used to form prime implicants but not to make implicant essential
- Objective:
 - grow implicant into prime implicants (minimize literals per term)
 - cover the ON-set with as few prime implicants as possible (minimize number of product terms)

Examples to Illustrate Terms

Algorithm for Two-level Simplification

- Algorithm: minimum sum-of-products expression from a Karnaugh map
 - Step 1: choose an element of the ON-set
 - Step 2: find "maximal" groupings of 1s and Xs adjacent to that element
 - consider top/bottom row, left/right column, and corner adjacencies
 - □ this forms prime implicants (number of elements always a power of 2)
 - Repeat Steps 1 and 2 to find all prime implicants
 - Step 3: revisit the 1s in the K-map
 - if covered by single prime implicant, it is essential, and participates in final cover
 - 1s covered by essential prime implicant do not need to be revisited
 - Step 4: if there remain 1s not covered by essential prime implicants
 - select the smallest number of prime implicants that cover the remaining 1s

Algorithm for 2-level Simplification: EX

2 primes around A'BC'D'

2 primes around ABC'D

minimum cover (3 primes)

Activity

List all prime implicants for the following K-map:

		A			
	X	0	X	0	
	0	1	Χ	1	D
	0	Х	Χ	0	
С	Χ	1	1	1	
			3		•

- Which are essential prime implicants?
- What is the minimum cover?

5-Variable K-maps

 $F(A,B,C,D,E) = \Sigma m(2,5,7,8,10, 13,15,17,19,21,23,24,29 31)$

=

5-Variable K-maps

 $F(A,B,C,D,E) = \Sigma m(2,5,7,8,10, 13,15,17,19,21,23,24,29 31)$

= C E + A B' E + B C' D' E' + A' C' D E'

6- Variable K-Maps

F(A,B,C,D,E,F) = Σm(2,8,10,18,24, 26,34,37,42,45,50, 53,58,61) =

6- Variable K-Maps

 $F(A,B,C,D,E,F) = \Sigma m(2,8,10,18,24, 26,34,37,42,45,50, 53,58,61)$

= D' E F' + A D E' F + A' C D' F'

Quine-McCluskey Method

Tabular method to systematically find all prime implicants

 $F(A,B,C,D) = \Sigma m(4,5,6,8,9,10,13) + \Sigma d(0,7,15)$

Stage 1: Find all prime implicants

Step 1: Fill Column 1 with ON-set and DC-set minterm<u>indices</u>. Group by number of 1's.

Implication Table		
Column I		
0000		
0100		
1000		
0101		
0110		
1001		
1010		
0111		
1101		
1111		

Quine-McCluskey Method

 $F(A,B,C,D) = \Sigma m(4,5,6,8,9,10,13) + \Sigma d(0,7,15)$

Stage 1: Find all prime implicants

Step 1: Fill Column 1 with ON-set and DC-set minterm indices. Group by number of 1's.

Step 2: Apply Uniting Theorem

Compare elements of group w/ N 1's against those with N+1 1's. Differ by one bit implies adjacent. Eliminate variable and place in next column.

E.g., 0000 vs. 0100 yields 0-00 0000 vs. 1000 yields -000

When used in a combination, mark with a check. If cannot be combined, mark with a star. These are the prime implicants.

Implication Table			
Column I	Column II		
0000 √	0-00		
_	-000		
0100 √			
1000 √	010-		
,	01-0		
0101 √	100-		
0110 √	10-0		
1001 √			
1010 √	01-1		
	-101		
0111 √	011-		
1101 √	1-01		
4444	444		
1111 √	-111		
	11-1		

Repeat until no further combinations can be made.

Quine-McCluskey Method

 $F(A,B,C,D) = \Sigma m(4,5,6,8,9,10,13) + \Sigma d(0,7,15)$

- **Stage 1: Find all prime implicants**
- Step 1: Fill Column 1 with ON-set and DC-set minterm indices. Group by number of 1's.
- Step 2: Apply Uniting Theorem
 Compare elements of group w/
 N 1's against those with N+1 1's.
 Differ by one bit implies adjacent.
 Eliminate variable and place in
 next column.

E.g., 0000 vs. 0100 yields 0-00 0000 vs. 1000 yields -000

When used in a combination, mark with a check. If cannot be combined, mark with a star. These are the prime implicants.

Implication Table			
Column I	Column II	Column III	
0000 √	0-00 *	01 *	
	-000 *		
0100 √		-1-1 *	
1000 √	010- √		
	01-0 √		
0101 √	100- *		
0110 √	10-0 *		
1001 √	,		
1010 √	01-1 √		
,	-101 √		
0111 √	011- √		
1101 √	1-01 *		
1111 √	-111 √ 11-1 √		

Repeat until no further combinations can be made.

Quine-McCluskey Method Continued

Prime Implicants:

$$-000 = B' C' D'$$

$$10-0 = A B' D'$$

$$1-01 = A C' D$$

$$01 - = A' B$$

$$-1-1 = B D$$

Quine-McCluskey Method Continued

Prime Implicants:

$$-1-1 = B D$$

Stage 2: find smallest set of prime implicants that cover the ON-set recall that essential prime implicants must be in all covers another tabular method?the prime implicant chart

Prime Implicant Chart

rows = prime implicants
columns = ON-set elements
place an "X" if ON-set element is
covered by the prime implicant

rows = prime implicants
columns = ON-set elements
place an "X" if ON-set element is
covered by the prime implicant

If column has a single X, than the implicant associated with the row is essential. It must appear in minimum cover

Prime Implicant Chart (Continued)

Eliminate all columns covered by essential primes

Prime Implicant Chart (Continued)

Eliminate all columns covered by essential primes

Find minimum set of rows that cover the remaining columns

F= A B' D' + A C' D + A' B

Implementations of Two-level Logic

- Sum-of-products
 - AND gates to form product terms (minterms)
 - OR gate to form sum

- Product-of-sums
 - OR gates to form sum terms (maxterms)
 - AND gates to form product

Two-level Logic using NAND Gates

Replace minterm AND gates with NAND gates -

Place compensating inversion at inputs of OR gate.

Two-level Logic using NAND Gates

- OR gate with inverted inputs is a NAND gate
 - ◆ de Morgan's: A' + B' = (A B)'
- Two-level NAND-NAND network
 - inverted inputs are not counted
 - in a typical circuit, inversion is done once and signal distributed

Two-level Logic using NOR Gates

Replace maxterm OR gates with NOR gates

Place compensating inversion at inputs of AND gate.

Two-level Logic using NOR Gates

- AND gate with inverted inputs is a NOR gate
 - ◆ de Morgan's: A' B' = (A + B)'
- Two-level NOR-NOR network
 - inverted inputs are not counted
 - in a typical circuit, inversion is done once and signal distributed

Two-level Logic using NAND/NOR Gates

- NAND-NAND and NOR-NOR networks
 - ◆ de Morgan's law: (A + B)' = A' B'
 (A B)' = A' + B'
 - written differently: $A + B = (A' \cdot B')'$ $(A \cdot B) = (A' + B')'$
- In other words
 - OR is the same as NAND with complemented inputs
 - AND is the same as NOR with complemented inputs
 - NAND is the same as OR with complemented inputs
 - NOR is the same as AND with complemented inputs

Conversion Between Forms

- Convert from networks of ANDs and ORs to networks of NANDs and NORs
 - introduce appropriate inversions ("bubbles")
- Each introduced "bubble" must be matched by a corresponding "bubble"
 - conservation of inversions
 - do not alter logic function

Conversion Between Forms

Example: verify equivalence of two forms

$$Z = [(A \cdot B)' \cdot (C \cdot D)']'$$

= $[(A' + B') \cdot (C' + D')]'$
= $[(A' + B')' + (C' + D')']$
= $(A \cdot B) + (C \cdot D) \checkmark$

Conversion Between Forms

Example: map AND/OR network to NOR/NOR network

Conversion Between Forms

Example: verify equivalence of two forms

$$Z = \{ [(A' + B')' + (C' + D')']' \}'$$

$$= \{ (A' + B') \cdot (C' + D') \}'$$

$$= (A' + B')' + (C' + D')'$$

$$= (A \cdot B) + (C \cdot D) \checkmark$$

Multi-level Logic

- x = ADF + AEF + BDF + BEF + CDF + CEF + G = [(A+B+C)D + (A+B+C)E]F + G = (A+B+C)(D+E)F + G
 - 6 x 3-input AND gates + 1 x 7-input OR gate (that may not even exist!)
 - 25 wires (19 literals plus 6 internal wires)

Multi-level Logic

- x = ADF + AEF + BDF + BEF + CDF + CEF + G = [(A+B+C)D + (A+B+C)E]F + G = (A+B+C)(D+E)F + G
- x = (A + B + C) (D + E) F + G
 - factored form not written as two-level S-o-P
 - 1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate
 - 10 wires (7 literals plus 3 internal wires)

Multi-level Logic to NAND Gates

Conversion of Multi-level Logic to NORs

CH3 - Working Comb-Logic

Conversion Between Forms

Example

add double bubbles to invert output of AND gate

add double bubbles to invert all inputs of OR gate

insert inverters to eliminate double bubbles on a wire

AND-OR-invert Gates

- AOI function: three stages of logic AND, OR, Invert
 - multiple gates "packaged" as a single circuit block

logical concept

2x2 AOI gate symbol

possible implementation

3x2 AOI gate symbol

Conversion to AOI Forms

- General procedure to place in AOI form
 - compute the complement of the function in sum-of-products form
 - by grouping the 0s in the Karnaugh map
- Example: XOR implementation
 - ◆ F = A xor B = A' B + A B', F' = XNOR = A'B' + AB
 - AOI form:

$$\Box$$
 F = (A' B' + A B)'

Examples of using AOI Gates

- Example:
 - F' = A' B' + A' C + B' C
 - ◆ F = (A' B' + A' C + B' C)'
 - Implemented by 2-input 3-stack AOI gate
 - F' = (A' + B') (A' + C) (B' + C)
 - F = [(A' + B') (A' + C) (B' + C)]'
 - Implemented by 2-input 3-stack OAI gate
- Example: 4-bit equality function
 - Z = (A0 B0 + A0' B0')(A1 B1 + A1' B1')(A2 B2 + A2' B2')(A3 B3 + A3' B3')

each implemented in a single 2x2 AOI gate

Examples of using AOI Gates

Example: AOI implementation of 4-bit equality function

Summary for Multi-level Logic

- Advantages
 - circuits may be smaller
 - gates have smaller fan-in
 - circuits may be faster
- Disadvantages
 - more difficult to design
 - tools for optimization are not as good as for two-level
 - analysis is more complex

Time Behavior of Comb-Networks

Waveforms

- visualization of values carried on signal wires over time
- useful in explaining sequences of events (changes in value)
- Simulation tools are used to create these waveforms
 - input to the simulator includes gates and their connections
 - input stimulus, that is, input signal waveforms

Some terms

- gate delay time for change at input to cause change at output
 - min delay typical/nominal delay max delay
 - careful designers design for the worst case
- rise time time for output to transition from low to high voltage
- fall time time for output to transition from high to low voltage
- pulse width time that an output stays high or stays low between changes

Momentary Changes in Outputs

- Can be useful pulse shaping circuits
- Can be a problem incorrect circuit operation (glitches/hazards)
- Example: pulse shaping circuit
 - ♠ A' A = 0
 - delays matter

Oscillatory Behavior

Another pulse shaping circuit

- Unwanting switching at the outputs
- Occur because
 - delay paths through the circuit experience
 - different propagation delays
- Danger if logic "makes a decision" while output is unstable asynchronous input :these respond immediately to changes rather than waiting for a synchronizing signal called a *clock*)
- Solutions
 - wait until signals are <u>stable</u> (by using a clock)
 - never use circuits with asynchronous inputs
 - design <u>hazard-free circuits</u>

Input change causes output to go from 1 to 0 to 1

Input change causes output to go from 0 to 1 to 0

Input change causes a double change from 0 to 1 to 0 to 1 OR from 1 to 0 to 1 to 0

Assumption: the unexpected changes in the outputs are in response to <u>single-bit changes</u> in the inputs

ABCD = 1101

ABCD = $0101 \overline{(A)}$ is still 0)

G2

Static 1-hazard

G2

G2

 $ABCD = 0101 (\overline{A} \text{ is } 1)$

- Static 1-hazard : occurs in sum of products form.
- Solution

General Strategy: add redundant terms

How about 0-hazard? Occurs in POS form

Re-express F in PoS form:

$$F' = AC + A'D'$$

$$F = (A' + C')(A + D)$$

Glitch present!: 0110 to 1110

Add term: (C' + D)

This expression is equivalent to the hazard-free SoP form of F

All single-bit input changes should be covered by one implicant

Start with expression that is free of static 1-hazards

$$F = AC' + A'D + C'D$$

Work with complement:

covers all the adjacent 0's in the K-map

free of static-1 and static-0 hazards!

Hardware Description Languages (HDL)

- Describe hardware at varying levels of abstraction
- Structural description
 - textual replacement for schematic
 - hierarchical composition of modules from primitives
- Behavioral/functional description
 - describe what module does, not how
 - synthesis generates circuit for module
- Simulation semantics

HDLs

- Abel (circa 1983) developed by Data-I/O
 - targeted to programmable logic devices
 - not good for much more than state machines
- ISP (circa 1977) research project at CMU
 - simulation, but no synthesis
- Verilog (circa 1985) developed by Gateway (absorbed by Cadence)
 - similar to Pascal and C
 - delays is only interaction with simulator
 - fairly efficient and easy to write
 - IEEE standard
- VHDL (circa 1987) DoD sponsored standard
 - similar to Ada (emphasis on re-use and maintainability)
 - simulation semantics visible
 - very general but verbose
 - IEEE standard

Verilog

- Supports structural and behavioral descriptions
- Structural
 - explicit structure of the circuit
 - e.g., each logic gate instantiated and connected to others
- Behavioral
 - program describes input/output behavior of circuit
 - many structural implementations could have same behavior
 - e.g., different implementation of one Boolean function
- We'll mostly be using behavioral Verilog in Aldec ActiveHDL
 - rely on schematic when we want structural descriptions

Working with Comb-Logic Summary

- Design problems
 - filling in truth tables
 - incompletely specified functions
 - simplifying two-level logic
- Realizing two-level logic
 - NAND and NOR networks
 - networks of Boolean functions and their time behavior
- Time behavior
- Hardware description languages
- Later
 - combinational logic technologies
 - more design case studies