

SCC0240 - Bases de Dados

Prof. Jose Fernando Rodrigues Junior

Material original editado: Elaine Parros Machado de Sousa

Mapeamento entre Modelos Parte 1

Mapeamento entre Esquemas – Mapeamento MER → MRel

- MER modelo conceitual
 - especifica conceitualmente a estrutura dos dados
 - Projeto Conceitual descrição semântica
- Modelo Relacional modelo de implementação
 - suporta a implementação de aplicações
 - Projeto Lógico
 - SGBDR ⇒ SGBD que se baseia no modelo relacional

Como mapear Conjuntos de Entidades?

4

Atributo Composto

Pessoa = {Nome, <u>NUSP</u>, **Rua**, **Número**, **CEP**, **Cidade**}

Passo 2

Como mapear Conjuntos de Entidades Fracas?

Entidades fracas

Aula_Prática = {Código, Horário, Laboratório, Número, Sigla}

Passo 3

 Como mapear Conjuntos de Relacionamentos Binários com Cardinalidade 1:1?

Relacionamentos Binários

Cardinalidade 1:1

Há 4 soluções:

- 1) A recebe a chave de B como chave secundária
- 2) B recebe a chave de A como chave secundária
- 3) Cria-se uma única relação com todos os atributos de A e B
- 4) Cria-se uma 3a. relação R

1

Relacionamentos Binários

Cardinalidade 1:1

Conferência = {Nome, Local}

Comissão = {Cod, NroMembros, Conferência, DtaInst}

4

Relacionamentos Binários

Cardinalidade 1:1

Conferência = {Nome, Local, <u>CodComissão</u>, <u>DtaInst</u>}

Comissão = {<u>Cod</u>, NroMembros}

Relacionamentos Binários

Cardinalidade 1:1

- Mapeamento usual:
 - Conferência = {Nome, Local, CodComissão, DataInstalação}
 - Comissão = $\{\underline{Cod}, NroMembros\}$
- Alternativa uma só relação:

⇒ As chaves primaria e secundaria garantem a cardinalidade 1:1 (faça o teste); usar uma única relação e NOT NULL garante participação total

ConfCom = {Nome, CodComissão, NroMembros, DataInstalação}

→ ATENÇÃO: Chave primária é NOT NULL por definição

Mapeamento alternativo com 3^a. Tabela

```
Mulher = {Nome, Idade}

Homem = {Nome, Idade}

Nomem, Idade}
```

Mapeamento alternativo com 3^a. Tabela

```
Mulher = {Nome, Idade}

Homem = {Nome, Idade}

Namoro = {NomeH, NomeM, tempo}
```

Desvantagem: mais relações e mais junções

Relacionamentos Binários

Cardinalidade 1:1

Há 4 soluções:

- 1) A recebe a chave de B como chave secundária Para garantir participação total de B (NOT NULL)
- 2) B recebe a chave de A como chave secundária Para garantir participação total de A (NOT NULL)
- 3) Cria-se uma única relação com todos os atributos de A e B Quando uma delas não possui outros relacionamentos
- 4) Cria-se uma 3a. relação R Quando há muitos valores nulos

4

Auto-relacionamento 1:1

Extra: em caso de auto-relacionamento → uma única relação que referencia a si mesma

Passo 4

 Como mapear Conjuntos de Relacionamentos Binários com Cardinalidade 1:N?

Há 2 soluções:

- 1) A relação com participação N recebe a chave da relação com participação 1
- 2) Cria-se uma 3a. relação

Relacionamentos Binários

Cardinalidade 1:N

Professor = $\{Nome, Endereco\}$

Disciplina = {Sigla, Nome, Créditos, Professor, Horário}

Mapeamento alternativo com 3ª. tabela
 Disciplina = {Sigla, NCréditos}
 Aluno = {NUSP, Nome}
 Monitora = {NUSP, Sigla, Horário}

Obs: NOT NULL para o atributo Monitora(*Sigla*) evita tuplas inúteis em Monitora

Passo 5

 Como mapear Conjuntos de Relacionamentos Binários com Cardinalidade M:N?

Relacionamentos Binários -

Cardinalidade M:N

Passo 6

Como mapear Conjuntos de Relacionamentos com grau > 2?

- 1) criar uma 4a. relação
- 2) adicionar as chaves de todas as entidades
- 3) sua chave será composta pelas chaves de todas as entidades com participação > 1;
- 4) acrescentar os atributos do relacionamento

Leitura tripla:

- 1) Um par professor-disciplina pode se relacionar com um único aluno
- Ex.: Prof.Caetano-BD → Mônica rof.Caetano-Alg → Ana
- 2) Um par aluno-professor pode se relacionar com N diferentes disciplinas
- Ex.: Mônica-Prof.Caetano → BD Mônica-Prof.Caetano → Lógica
- 3) Um par aluno-disciplina pode se relacionar com M diferentes professores
- Ex.: Mônica-BD → Prof.Caetano Mônica-BD → Profa.Agma

→ Teste as 3 leituras

- Relacionamentos com cardinalidade > 2, n-ários, ficam mais claros quando é feito o mapeamento para o relacional, quando é possível testar quais dados são aceitos
- Nem sempre é possível converter um relacionamento nário em um conjunto de relacionamentos binários, pois a semântica pode ser perdida
- Conversão: o relacionamento torna-se uma entidade que possui relacionamentos binários com todas as outras entidades

Como mapear atributos multivalorados?

Atributos Multivalorados

- 1ª Opção de Mapeamento
 - Equivale a 1:N

```
Aluno ----→ Aluno = {Nome, NSerMed}

N.Ser.Med.

Telefones = {Nome, NroTelefone}
```

Atributos Multivalorados

- 2ª Opção de Mapeamento
 - Equivale a N:M

4

Atributos Multivalorados

- 3ª Opção de Mapeamento
 - Equivale a 1:Cardinalidade_conhecida

Aluno = {NUSP, Nome, Pai, Mae}

Mapeamento entre Esquemas – Os 6 Passos do Procedimento

Heurística de 6 passos:

- 1. Mapear todos os CE
- 2. Mapear todos os CE Fracas
- 3. Mapear todos os CR de cardinalidade 1:1
- 4. Mapear todos os CR de cardinalidade 1:N
- Mapear todos os CR de cardinalidade N:N
- 6. Mapear todos os atributos multivalorados

→ Heurístico não é o mesmo que algorítmico – a solução tende a ser boa, mas não se sabe se será a mais correta.

Exercício – mapear para o Modelo Relacional

