QUESTÕES AULA 9 TEORÍA

Problema 9.1. Considere o contador ilustrado na figura. Utilizando o mínimo de lógica combinatória adicional, ligue dois contadores deste tipo de modo a concretizar um contador binário com módulo 60 (ex: 0,1,2,...57,58,59,0,1,2,...).

Problema 9.2. Considere o registo de deslocamento ilustrado na figura ao lado. Utilizando o mínimo de lógica combinatória adicional e assumindo um deslocamento à <u>direita</u>, ligue dois registos deste tipo de modo a implementar um circuito que realize:

- A conversão série-paralelo de um sinal de entrada X_{in} correspondente a uma sequência de bits, de forma a mostrar nas saídas Q_i os últimos 8 bits do sinal de entrada;
- A detecção do padrão de bits "01111110" nas saídas Qi do registo;
- O carregamento paralelo do padrão "11011011" sempre que o padrão "0111110" for detectado na saída do registo.

Problema 9.3. Pretende-se implementar um circuito que implemente o padrão de contagem representado na Figura, correspondente a um sinal de 8 bits (b_0 a b_7). Este padrão corresponde à contagem de 8 estados, que se repetem ao longo do tempo:

- a) Utilizando o mínimo de lógica combinatória adicional, ligue dois registros Multi-modo apresentados na Figura de modo a implementar o circuito gerador deste padrão;
- b) Indique na tabela, para cada estado, a operação e valor de (S_1,S_0) realizada pelo registros Multi-modo.

ESTADO	b ₇	b ₆	b ₅	b ₄	b ₃	b ₂	b ₁	p ⁰	(S_1, S_0)	Operação	(S_1, S_0)	Operação
E0	1	1	1	1	1	1	1	1				
E1	0	1	1	1	1	1	1	1				
E2	0	0	1	1	1	1	1	1				
E3	0	0	0	1	1	1	1	1				
E4	0	0	0	0	1	1	1	1				
E5	0	0	0	0	0	1	1	1				
E6	0	0	0	0	0	0	1	1				
E7	0	0	0	0	0	0	0	1				
E0	1	1	1	1	1	1	1	1				
E1	0	1	1	1	1	1	1	1				
E2	0	0	1	1	1	1	1	1				

Problema 9.4. Pretende-se implementar um circuito que implemente o padrão de contagem representado na Figura, correspondente a um sinal de 8 bits (b_0 a b_7). Este padrão corresponde à contagem de 8 estados, que se repetem ao longo do tempo:

- a) Utilizando o mínimo de lógica combinatória adicional, ligue dois registros Multi-modo apresentados na Figura de modo a implementar o circuito gerador deste padrão;
- b) Indique na tabela, para cada estado, a operação e valor de (S_1,S_0) realizada pelo registros Multi-modo.

ESTADO	b ₇	b ₆	b ₅	b ₄	b ₃	b ₂	b ₁	p ⁰	(S ₁ ,S ₀)	Operação	(S ₁ ,S ₀)	Operação
E0	0	0	0	0	0	0	0	0				
E1	1	0	0	0	0	0	0	1				
E2	1	1	0	0	0	0	1	1				
E3	1	1	1	0	0	1	1	1				
E4	1	1	1	1	1	1	1	1				
E5	0	1	1	1	1	1	1	0				
E6	0	0	1	1	1	1	0	0				
E7	0	0	0	1	1	0	0	0				
E0	0	0	0	0	0	0	0	0				
E1	1	0	0	0	0	0	0	1				
E2	1	1	0	0	0	0	1	1				

Desloca à esquerda Q

REG1 REG2

Problema 9.5. Pretende-se implementar um circuito que implemente o padrão de contagem em hexadecimal $03 \rightarrow 86 \rightarrow C9 \rightarrow EC \rightarrow FF \rightarrow 03 \rightarrow 86...$, correspondente a um sinal de 8 bits (b_0 a b_7). Este padrão corresponde à contagem de 5 estados, que se repetem ao longo do tempo. Utilizando o mínimo de lógica combinatória adicional, ligue dois registros Multi-modo apresentado na Figura de modo a

implementar o circuito gerador deste padrão

Problema 9.6. Obtenha a forma de onda para a saída Q de 4-bits do registrador Multimodo apresentado.

Problema 9.7. Projete um circuito que fornece a sequencia apresentada usando o contador dado e portas logicas de duas entradas.

Problema 9.8. Considere o contador de 4 bits com *load, count* e *reset*. Utilizando o mínimo de lógica combinatória adicional, implemente um circuito que realize a contagem binária da sequência de todos os números <u>ímpares</u> entre 13 e 27 (i.e.: ...,13,15,17,19,21,23,25,27,13,15,17,...)

Problema 9.9. Complete o diagrama de ondas, o qual descreve o funcionamento do circuito apresentado. **Atenção:** todas as partes em cinza do diagrama devem ser completadas.

Problema 9.10. (Prova 2019.1) Pretende-se obter um circuito que implemente o padrão de contagem cíclico de 6 estados em hexadecimal $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 7 \rightarrow F \rightarrow 0 \rightarrow 1...$, correspondente a um sinal de saída C de 4 bits, C = {c3c2c1c0}. Implemente o circuito gerador deste padrão:

- 1) Utilizando apenas um registrador Multi-modo, apresentado na Figura (a) e o mínimo de lógica combinatória adicional;
- 2) Utilizando apenas um contador com carga e *reset*, todos síncronos com o relógio, apresentado na Figura (b) e o mínimo de lógica combinatória adicional.

Dica : Considere o estado inicial, C = "0000", na saída do contador e registrador Multimodo.

