

Programação Avançada

2a

Árvores | Estruturas de dados ~ Conceitos

Bruno Silva, Patrícia Macedo

Sumário 🗾

- Árvores como estruturas de dados hierárquicas
- Conceitos
 - Grau, Ordem, Níveis, Altura e Sub-árvores
 - Travessia (inglês: traversal) de árvores
 - breadth-first e depth-first
 - Árvores binárias
- Exercícios

Árvores

- As árvores, no contexto das ciências da computação, são estruturas de dados não-lineares e hierárquicas.
- Permitem representar (informação de) elementos com relações hierárquicas, i.e., relações de pai, filho, ascendente e descendente. Exemplo:

Árvores | Conceitos

- Uma árvore é composta por nós;
- No topo da árvore existe um nó especial, a raiz; não possui ascendentes - nó a.
- Dos restantes, um nó pode ter vários filhos (descendentes diretos), mas apenas um pai (ascendente direto).
 - Em relação ao nó c:
 - filhos: {e, f} e irmãos entre si, e;
 - descendentes: {e, f, h, i, j}.

Árvores | Conceitos

 Nós que não têm descendentes são chamados de nós externos ou folhas.

 Nós que não são a raiz e não são folhas são chamados de nós internos.

Árvores | Grau e Ordem

 O grau de um nó corresponde ao seu número de filhos

o e.g., a: 2, b: 1, f: 3

- A ordem de uma árvore consiste no grau máximo permitido para os seus nós.
 - e.g., árvores binárias são de ordem 2.

Árvores | Níveis e Altura

- As árvores podem ser organizadas em níveis
 - Raiz está no nível 0;
 - O nível 2 contém todos os filhos do nível 1, etc.
- A altura da árvore corresponde <u>ao</u> maior nível da árvore
 - (ou, equivalente) <u>ao maior</u>
 <u>caminho</u> presente na árvore;
 - o Na figura 🔁, a altura é 4;

Árvores | Níveis e Altura

- A altura da árvore corresponde <u>ao</u> maior nível da árvore
 - o (...)
 - Uma árvore "vazia" tem altura-1;
 - Uma árvore contendo apenas a raiz tem altura 0 (zero).

Árvores | Sub-árvores

- Dado uma àrvore e um nó n, o conjunto de todos os nós que possuem n como <u>ascendente</u> é chamada a sub-árvore com raiz em n.
- Exemplos:
 - \circ sub-árvore com raiz em d
 - o sub-árvore com raiz em *c*

Árvores | Sub-árvores

- Isto permite a abstração recursiva de uma árvore:
 - Uma árvore é composta por um nó (raiz) que possui um determinado número de filhos, que por sua vez representam árvores menores.

Árvores | Travessia

Em largura (breadth-first traversal):

- [esq/dir] **a b c d e f g h i j k l**
- [dir/esq] a c b f e d j i h g l k

Árvores | Travessia

Em **profundidade** (*depth-first traversal*):

- [pré-ordem] a b d g k l c e f h i j
 - Os nós são visitados <u>antes</u> dos seus descendentes.
- [pós-ordem] k l g d b e h i j f c a
 - Os nós são visitados <u>depois</u> dos seus descendentes.

Nota: Nos exemplos os descendentes são visitados da esquerda para a direita.

Árvores | Árvores Binárias

Consistem em árvores de **ordem 2**, i.e., cada nó pode ser no máximo de *grau 2* (máx. dois filhos).

Na figura um exemplo de uma árvore binária para representar uma expressão matemática.

Árvores | Árvores Binárias

A travessia de árvores binárias contempla um modo adicional emordem (antes de um nó ser visitado é visitado o seu filho esquerdo; e no final o filho direito):

- [em-ordem]: a * b + c / d
 - Notação Convencional
- [pré-ordem]: + * a b / c d
 - Notação Polaca
- [pós-ordem]: a b * c d / +
 - Notação Polaca Invertida

Exercícios 🖍

Elabore a ficha de atividades disponível no Moodle:

2a_FichaAtividades.pdf