基于 logisim 的多周期 MIPSCPU 硬布线控制器设计

学	号	E12214052	专	业	计算机科学与技术	姓	名	赵宸宇
实验	日期	2024年9月26日	教师	签字		成	绩	

摘要

基于前两次实验报告中提出的工作展望,在本次附加实验对其进行实现。

在前一次实验中,我完成了纯硬控制器的设计工作。但没有处理历史遗留的数据通 路不美观的问题。这个问题将在本次实验中得到解决。

本次实验**在第二次实验**"多周期微程序 mips 处理器设计"已经完成数据通路设计和"纯"硬布线控制器设计的基础上,着重对数据通路和微命令字段进行了重构。目的是增加电路的鲁棒性、修复历史小错误、增加电路美观程度。经过本次附加实验的重构工作,学生对 CPU 工作原理理解更加深刻,设计的电路更美观,更耐用了。

本次实验的实验产出有:

- 1. 数据通路(2张)完全重构的电路图;见实验2.2文件夹
- 2. tex 附加实验的实验报告
- 3. 支撑材料 (用于命令字段重构的 xlsx 表格、py 程序、分析记录等)
- 4. 头哥网再次通关(用于测试重构的电路)
- 5. gitee 仓库增量更新请见https://gitee.com/cslearnerer/AHU-CSHT

目录

_	、【实验目的】			•	•	 	•		•	•	•	•	 		•		 		•	•	•	3
=	、【实验内容】					 							 				 					3
	2.1 数据通路重	构 .				 							 				 					3
	2.2 微命令字段	重构				 							 				 					4
	2.3 头哥网再次	通关				 							 				 					4
	2.4 gitee 记录					 							 			•	 					4
Ξ	、【小结讨论】					 							 				 					4

一、【实验目的】

- 1. 对第一版数据通路进行重构,以提升性能,美化外观,划分功能区;
- 2. 对第一版控制电路的 **ALUOP** 硬件电路和微命令字段中存在的和 MOOC 视频中不一样的地方,通过修改,和 MOOC 进行统一。(即我个人使用的 **ALUOP** 的 **11 控制信号对应了 MOOC** 中的 **10 控制信号**,虽不造成电路运行错误,但是应当纠正)
 - 3. 对微命令字段进行简化, 更改 ALUOP 的 11 信号为 10 信号;
 - 4. 测试调通新电路

二、【实验内容】

2.1 数据通路重构

通过一下午的绘图、测试,数据通路的各项指标都得到了极大改善。如图1所示,数

图 1

据通路被划分为了存储区 (左侧第二行)、地址区 (左第一行)、指令拆析区和立即数解析区 (左 3)、地址载入布尔值计算区 (左 4)、reg 堆 (中央)、AB 锁存器和 ALU 计算区 (右侧中间)、控制逻辑区 (右上)。

通过将数据通路按功能进行划分,可以在之后的工作中很方便地对各个模块进行维护、增删改查。

微指令功能	状态	微指令地址	数矩形令	PcSrc	AluA	AluB	MToR	RDst	写IR	写PC	RWrite	MWrite	MRead	BEQ	BNE	Alu-op	P	下址	微指令	十六进制
取指令	0	0000	0	0	0	01	0	0	1	1	0	0	1	0	0	00	0	0001	000010011001000000001	13201
译码	1	0001	0	0	0	11	0	0	0	0	0	0	0	0	0	00	1	0000	0001100000000000010000	30010
LW1	2	0010	0	0	1	10	0	0	0	0	0	0	0	0	0	00	0	0011	00110000000000000000011	60003
LW2	3	0011	1	0	0	00	0	0	0	0	0	0	1	0	0	00	0	0100	1000000000001000000100	100204
LW3	4	0100	0	0	0	00	1	0	0	0	1	0	0	0	0	00	0	0000	00000100010000000000000	8800
SW1	5	0101	0	0	1	10	0	0	0	0	0	0	0	0	0	00	0	0110	00110000000000000000110	60006
SW2	6	0110	1	0	0	00	0	0	0	0	0	1	0	0	0	00	0	0000	1000000000100000000000	100400
R1	7	0111	0	0	1	00	0	0	0	0	0	0	0	0	0	10	0	1000	001000000000001001000	40048
R2	8	1000	0	0	0	00	0	1	0	0	1	0	0	0	0	00	0	0000	00000010010000000000000	4800
BEQ	9	1001	0	1	1	00	0	0	0	0	0	0	0	1	0	00	0	0000	011000000000100000000	C0100
BNE	10	1010	0	1	1	00	0	0	0	0	0	0	0	0	1	00	0	0000	011000000000010000000	C0080
ADDI1	11	1011	0	0	1	10	0	0	0	0	0	0	0	0	0	00	0	1100	0011000000000000001100	6000C
ADDI2	12	1100	0	0	0	00	0	0	0	0	1	0	0	0	0	00	0	0000	000000001000000000000	800
CALL	13	1101	1	0	0	00	0	0	0	0	0	0	0	0	0	10	0	1101	1000000000000001001101	10004D

图 2

如图 2所示,在新的字段中,ALUOP 的值和 MOOC 规范相统一。从原先采用值 00-加,01-减,11-由 Func 决定,变为了 00-加,01-减,10-由 Func 决定。后面的方案和课程设计相统一,体现电路设计规范性。

2.2 微命令字段重构

2.3 头哥网再次通关

在重构完数据通路、控制电路(alu部分)、微命令字段相关的微程序组件和硬布线组件后。

我去头哥网做了重构后测试,得到以下结果:

图 **3** 如图 **3**所示,新的电路设计是完备的。

2.4 gitee 记录

最后,我将以上实验记录包括本报告放入实验 2.2 文件夹,并将记录 push 到 gitee。

三、【小结讨论】

通过本次实验,电路的鲁棒性、修复历史小错误、增加电路美观程度增加。学生对CPU工作原理理解更加深刻,设计的电路更美观,更耐用了。