УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ

Геометрија И-смер део 9: Полигони

Тијана Шукиловић

3. децембар 2023.

Полигонска линија и полигон

Дефиниција 1.1

Полигонска линија $A_0 \dots A_{n-1} A_n$ је унија дужи $A_0 A_1, \dots,$ $A_{n-1}A_n$ које називамо ивице полигонске линије. Тачке $A_0, \ldots A_n$ називају се темена полигонске линије.

Полигонска линија и полигон

Дефиниција 1.1

Полигонска линија $A_0 \dots A_{n-1} A_n$ је унија дужи $A_0 A_1, \dots, A_{n-1} A_n$ које називамо ивице полигонске линије. Тачке $A_0, \dots A_n$ називају се темена полигонске линије.

- затворена полигонска линија = полигон
- суседна темена/ивице
- прост/сложен полигон
- дијагонала полигона
- унутрашња дијагонала полигона

Унутршњост полигона

Слика 1: Унутрашьост простог и сложеног полигона

Површина простог полигона

• Оријентисана површина полигона $P(A_0A_1...A_{n-1})$

Површина простог полигона

• Оријентисана површина полигона $P(A_0A_1...A_{n-1})$

Теорема 1.1

За прост полигон $A_0A_1\dots A_{n-1}$ и произвољну тачку равни A важи:

$$P(A_0, A_1, \dots, A_{n-1}) = P(A, A_0, A_1) + \dots + P(A, A_{n-1}, A_0).$$

Површина простог полигона

• Оријентисана површина полигона $P(A_0A_1...A_{n-1})$

Теорема 1.1

За прост полигон $A_0A_1\dots A_{n-1}$ и произвољну тачку равни A важи:

$$P(A_0, A_1, \dots, A_{n-1}) = P(A, A_0, A_1) + \dots + P(A, A_{n-1}, A_0).$$

$$P(A_0, A_1, \dots, A_{n-1}) = \frac{1}{2} \sum_{k=0}^{n-1} (x_k y_{k+1} - x_{k+1} y_k)$$
$$= \frac{1}{2} \sum_{k=0}^{n-1} x_k (y_{k+1} - y_{k-1})$$

Пример

Пример 1

У равни су дате тачке $P_0 = (1, -3), P_1 = (2, -2),$

 $P_2 = (-1, 2), P_3 = (4, -1), P_4 = (0, 3).$

Испитати да ли је полигон $P_0P_1P_2P_3P_4$ прост.

Ако није, сортирати тачке $P_0, \dots P_4$ тако да полигон буде прост.

Израчунати површину тако добијеног простог полигона.

Конвексни омотач

- конвексан лик
- конвексан омотач скупа тачака

Слика 2: Пример конвексног омотача скупа од 11 тачака

• Временска сложеност $O(n^3)$

Слика 3: Пример – 11 тачака

• Временска сложеност $O(n^3)$

Слика 3: Пример – унутрашња дуж

• Временска сложеност $O(n^3)$

Слика 3: Пример – ивична дуж

• Временска сложеност $O(n^3)$

Слика 3: Пример – унутрашња дуж

Слика 3: Пример – унутрашња дуж

Слика 3: Пример – унутрашња дуж

Слика 3: Пример – ивична дуж

Слика 3: Пример – омотач

• Временска сложеност $O(n^2)$

Слика 4: Пример – P_0^{\bullet} = најнижа (крајња десна) тачка

ullet Временска сложеност $O(n^2)$

Слика 4. Пример – корак 1

• Временска сложеност $O(n^2)$

Слика 4. Пример – корак 2

• Временска сложеност $O(n^2)$

Слика 4. Пример – корак 4

Слика 5: Пример – почетни четвороугао

• Временска сложеност $O(n \log n)$

Слика 5: Пример – доњи десни

• Временска сложеност $O(n \log n)$

Слика 5: Пример – најдаља од нове

• Временска сложеност $O(n \log n)$

Слика 5: Пример – горњи леви

• Временска сложеност $O(n \log n)$

Слика 🤁 Пример – омотач

• Временска сложеност $O(n \log n)$

Слика 6: Пример – P_0 = најнижа (крајња десна) тачка

Слика 6: Пример - сортиране тачке (према углу)

Слика 6: Пример – стек: [10 0]

Слика 6: Пример – стек: [10 0 1]

Слика 6: Пример – стек: [10 0 1 2 3]

Слика 6: Пример – стек: [10 0 1 2 3 4]

Слика 6: Пример – стек: [10 0 1 2 3 ¥ 5]

Слика 6: Пример – стек: [10 0 1 2 3 🕱 6]

Слика 6: Пример – стек: [10 0 1 2 3 6 7]

Слика 6: Пример – стек: [10 0 1 2 3 6 7 8]

Слика 6: Пример – стек: [10 0 1 2 3 6 7 № 9]

Слика 6: Пример – стек: [10 0 1 2 3 6 💢 9]

Слика 6: Пример – омотач [10 0 1 2 3 6 9]

Примери

Пример 2

Одредити конвексни омотач скупа тачака $P_0=(1,3)$, $P_1=(-2,0),\ P_2=(-3,5),\ P_3=(4,2),\ P_4=(1,1),\ P_5=(6,4),$ $P_6=(2,-3),\ P_7=(5,5),\ P_8=(5,-1).$ Задатак решити:

- а) Цртањем.
- б) Грахамовим алгоритмом.

• Триангулација је разлагање неког лика на троуглове.

- Триангулација је разлагање неког лика на троуглове.
- Триангулација простог полигона је разлагање његове унутрашьости унутрашьим дијагоналама које се међусобно не секу.

- Триангулација је разлагање неког лика на троуглове.
- Триангулација простог полигона је разлагање његове унутрашњости унутрашњим дијагоналама које се међусобно не секу.

Лема 3.1

Сваки прост полигон са више од 3 темена има унутрашњу дијагоналу.

- Триангулација је разлагање неког лика на троуглове.
- Триангулација простог полигона је разлагање његове унутрашњости унутрашњим дијагоналама које се међусобно не секу.

Лема 3.1

Сваки прост полигон са више од 3 темена има унутрашњу дијагоналу.

Теорема 3.1

Сваки прост полигон допушта триангулацију и свака триангулација полигона са n темена се састоји од тачно n-2 троугла.

Примери

Пример 3

Од датих тачака у равни формирати прост полигон, а затим га триангулисати.

- a) $P_0 = (0,0), P_1 = (5,-1), P_2 = (3,2), P_3 = (6,4), P_4 = (-1,3).$
- 6) $P_0 = (-1,3), P_1 = (2,1), P_2 = (0,0), P_3 = (4,-1), P_4 = (5,3), P_5 = (3,4).$

Проблем: Поставити минималан број чувара који покривају читаву галерију.

Проблем: Поставити минималан број чувара који покривају читаву галерију.

Галерија = прост полигон са n ивица; Чувари = тачке унутар полигона.

Проблем: Поставити минималан број чувара који покривају читаву галерију.

Галерија = прост полигон са n ивица; Чувари = тачке унутар полигона.

Chvátal: Горња граница = $\frac{n}{3}$ чувара!

Проблем: Поставити минималан број чувара који покривају читаву галерију.

Галерија = прост полигон са n ивица; Чувари = тачке унутар полигона.

Chvátal: Горња граница = $\frac{n}{3}$ чувара!

- Алгоритам:
 - Триангулисати полигон;
 - Обојити темена подеоних троуглова (3-бојење);
 - Изабрати за чуваре темена обојена истом бојом.

Проблем уметничке галерије – примери

Слика: Примери: Чувари – плаве тачке

Алгоритми за триангулацију полигона

- унутрашњим дијагоналама
- "завртањем ушију"
- триангулација монотоних полигона и монотоних планина
- Делонијева триангулација
- триангулација у линеарном времену

Делонијева триангулација

Слика 8: Делонијева триангулација

Делонијева триангулација

Слика 8: Делонијева триангулација

Делонијева триангулација минимизује максималан полупречник круга описаног око троугла триангулације.

Делонијева триангулација

Слика 8: Делонијева триангулација

Делонијева триангулација минимизује максималан полупречник круга описаног око троугла триангулације. Поступком максимизације најмањег угла се не минимизује највећи угао, нити се минимизују дужине страница.

Делонијева триангулација - примери

Слика 9: Триангулација која није Делонијева

Делонијева триангулација - примери

Слика 9: Делонијева триангулација

Локално Делонијеве ивице

Дефиниција 3.1

Унутрашња ивица AB је локално Делонијева ако тачка D не припада унутрашњости круга који садржи тачке A, B и C.

Слика 10: Делонијева ивица неконвексног четвороугла

Теорема 3.2

Ако је \mathcal{T} триангулација чије су све ивице локално Делонијеве, тада је \mathcal{T} Делонијева триангулација.

Обртање ивица (flip algorithm)

Теорема 3.3

Алгоритам "обртања ивица" се зауставља након $\binom{n}{2} = O(n^2)$ корака и његов резултат је Делонијева триангулација која максимизује најмањи угао на скупу свих триангулација.

"Криволинијска" триангулација¹

Слика: Безијеов троугао са контролним полигоном

- Пример 1
- Пример 2
- Пример 3

¹Материјале уступио Hagen Wille