Definitions

Average value of a function. Let f be integrable on [a, b]. The average value of f over [a, b] is defined as

$$\frac{1}{b-a} \int_a^b f(x) \, dx.$$

Difference-evaluation notation. Let g be a real-valued function, and let a, b be elements of the domain of g. The notation $\left[g(x)\right]_a^b$ is defined as follows:

$$\left[g(x)\right]_a^b = g(b) - g(a).$$

It is worthwile recording some simple identities involving this notation:

$$\left[f(x) \pm g(x)\right]_a^b = \left[f(x)\right]_a^b \pm \left[g(x)\right]_a^b$$
$$\left[cg(x)\right]_a^b = c\left[g(x)\right]_a^b$$

We will often abbreviate the notation $\left[g(x)\right]_a^b$ to $g(x)\Big]_a^b$.

Theory

Fundamental theorem of calculus (I). Let f be continuous on an open interval I containing a. Let F(x) be the function defined on I as

$$F(x) = \int_{a}^{x} f(t) dt.$$

Then F(x) is differentiable on I and

$$F'(x) = \frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$$

for all $x \in I$.

Corollary. If f is continuous on the open interval I, then f has an antiderivative on I.

Fundamental theorem of calculus (II). Let f be continuous on the interval [a, b]. If F(x) is an antiderivative of f(x) on [a, b], then

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

FTC II: rate of change version. Suppose g is differentiable on [a, b]. The derivative function g' computes the (instantaneous) rate of change of g with respect to x. By FTC II, we have:

$$\int_a^b g'(x) dx = g(b) - g(a).$$

In other words, the integral of the *rate of change* of a function over [a, b] is the *net change* of that function from a to b.

Procedures

Antiderivative method of computing integrals. Suppose f(x) is continuous on [a, b]. The antiderivative method for computing $\int_a^b f(x) dx$ proceeds as follows:

- 1. Find an antiderivative of f: i.e., find F such that F'(x) = f(x) for all $x \in [a, b]$.
- 2. By the fundamental theorem of calculus (II) we have

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Examples

1. Use the fundamental theorem of calculus to compute the following definite integrals.

(a)
$$\int_{a}^{b} 1 - x^{3} dx$$

(b)
$$\int_0^{10} \frac{1}{\sqrt{2t+1}} dt$$

(c)
$$\int_{3\pi/4}^{\pi} \sec^2 u \, du$$
.

2. Let $f(x) = \sin(x/3)$, and let \mathcal{C} be the graph of f.

For each region \mathcal{R} compute the area of \mathcal{R} and the signed area of \mathcal{R} .

Include a diagram of C and R. Make sure your answer is consistent with your graph. If your answer happens to be 0, use the diagram to explain why.

- (a) \mathcal{R} is the region between \mathcal{C} and the x-axis, from $x = -\pi$ to $x = \pi$.
- (b) \mathcal{R} is the region between \mathcal{C} and the x-axis, from $x = -\pi$ to $x = \pi/2$.
- (c) \mathcal{R} is the region between \mathcal{C} and the x-axis, from x=0 to $x=6\pi$.
- 3. Let $F(x) = \int_1^x \frac{1}{t^2} dt$. Make a table of values of F(x) for x = 1, 2, 3, 4, 5. Explain graphically what F(b) is for any $b \ge 1$.
- 4. For each F(x) defined below, use the fundamental theorem of calculus (along with some other useful pieces of theory) to compute $F'(x) = \frac{d}{dx}F(x)$.

2

(a)
$$F(x) = \int_{x}^{5} \sqrt{t+1} \, dt$$

(b)
$$F(x) = \int_{-2}^{\sin x} \cos(u^2) du$$

(c)
$$F(x) = \int_{4x}^{\sqrt{x^2+1}} \sin(s^2) ds$$