MATLAB 프로그래밍 및 실습

3강. 시각화 기초

키 사람수

한국 남성 키 분포

프로그래머가 가장 힘들어하는 일은?

(IT)WORLD

오늘 배울 내용

- 2차원 그래프
 - 선 스타일 지정
 - 여러 plot 겹쳐 그리기
 - subplot
- 3차원 그래프
 - meshgrid
 - surf, mesh
 - colormap

2차원 그래프

시작은 간단히 plot(x, y)로

* 조작패널을 간단히 이용해보자.

```
close all
clear

x = 0:0.1:1;
y = x.^2;
plot(x, y)
```

- x와 y의 값을 확인해보자.
 - workspace에서 확인
 - 그래프에서 점을 찍어 확인
 - 2차원 그래프는 각 점을 잇는 선분의 모음

plot(x, y)

- x와 y는 길이가 같은 벡터
 - 길이가 다르면 에러
- 실습
 - $y = \sin(x)$
 - $y = \exp(-x)$
 - 연대측정 (¹⁴C)

•
$$N(t) = N_0 e^{-\lambda t}$$

- 감쇠진동
 - $A(t) = 3.5^{-0.5t} \sin(2\pi t)$

※ 도움말을 읽자.

plot(x, y)

- y가 M×N 행렬이라면?
 - 뒤에 나옴
- x, y 중 하나 이상이 스칼라이면?
 - 아무것도 안 나옴
 - 왜? -> 도움말을 읽어보자.
- x, y는 <u>길이</u>가 같으면 한다.
 - 행벡터, 열벡터 조합도 된다.
 - 그래도 가급적 맞추자.

이것만으로는 부족하다...

우리가 그리고 싶은 것

선 스타일을 바꾸고 싶다.

• I want to draw...

red line	_	\rightarrow	plot(x, y, 'r')	
 blue line 	_	\rightarrow	plot(x, y, 'b')	
 dashed line 		\rightarrow	plot(x, y, '')	
 red dotted line 	••••	\rightarrow	plot(x, y, ':r')	색, 스타일은
 magenta dash-dot line 		\rightarrow	plot(x, y, 'm')	순서 바뀌어도 됨
 black solid line 	_	\rightarrow	plot(x, y, 'k-')	
			plot(x, y, 'k')	solid line이 기본값

선 스타일 총정리

Line Color	Specifier
red	r
green	g
blue	b
cyan	С

Line Color	Specifier	
magenta	m	
yellow	У	
black	k	
white	W	

Line Style	Specifier	
solid (default)	-	
dashed		

Line Style	Specifier	
dotted	:	
dash-dot		

데이터 점에 마커를 붙이고 싶다.

• I want to draw...

• — + * marker

• --- + () marker

• --- + \Diamond marker

• ···· + \(\square\) marker

plot(x, y, 'b-*')

plot(x, y, '--oc')

plot(x, y, 'k-.d')

plot(x, y, 'rs:')

색, 스타일, 마커끼리 순서 바뀌어도 됨

Marker Type	Specifier	Marker Type	Specifier
plus sign	+	square	S
circle	0	diamond	d
asterisk	*	five-pointed star	р
point		six-pointed star	h
cross	Х	triangle (pointed left)	<
triangle (pointed up)	^	triangle (pointed right)	>
triangle (pointed down)	V		

+		
0		\
*		û
٠	,	≎
×		◁
Δ		\triangleright

line specifier 정리

plot(x, y, 'lineSpec')

- line specifier에서 선 색, 스타일, 마커 종류 지정
 - 색, 스타일, 마커 간에는 **순서 변경 가능**
 - 색을 생략하면? → 기본값 = #0072BD
 - 스타일을 생략하면? → 기본값 = solid line
 - 마커를 생략하면 → 기본값 = 마커 없음
- 주의
 - 마커를 지정하고 스타일을 지정하지 않을 경우
 → 선은 그리지 않고 마커만 그림

나는 아직 배고프다...

rgbmcykw가 아닌 색을 쓰고 싶다.

- 우선 컴퓨터가 색을 어떻게 만드는지 알아보자.
- 컴퓨터가 표현하는 모든 색은 RGB의 조합으로 이루어진다. (feat. 그림판)

- Recall: 컴퓨터는 모든 것을 0과 1로만 받아들인다.
 - 0 = 0b00000000 또는 0x00
 - 255 = 0b11111111 또는 0xFF

rgbmcykw가 아닌 색을 쓰고 싶다.

• 컴퓨터가 표현하는 모든 색 = 8비트 RGB의 조합

색	색 조합	8비트 조합	매트랩 표현	색 코드
RED	RED only	255, 0, 0	[1, 0, 0] 또는 'r'	(#FF0000)
GREEN	GREEN only	0, 255, 0	[0, 1, 0] 또는 'g'	(#00FF00)
BLUE	BLUE only	0, 0, 255	[0, 0, 1] 또는 'b'	(#0000FF)
MAGENTA	RED + BLUE	255, 0, 255	[1, 0, 1] 또는 'm'	(#FF00FF)
CYAN	GREEN + BLUE	0, 255, 255	[0, 1, 1] 또는 'c'	(#00FFFF)
YELLOW	RED + GREEN	255, 255, 0	[1, 1, 0] 또는 'y'	(#FFFF00)
BLAC K	NO COLOR	0, 0, 0	[0, 0, 0] 또는 'k'	(#000000)
HITE	ALL COLORS	255, 255, 255	[1, 1, 1] 또는 'w'	(#FFFFFF)

그럼 rgbmcykw에 속하지 않는 색은 어떻게 표시할까?

색

8비트 조합

매트랩 표현

색 코드

20

```
주황색 2
고동색
국방색
용달블루
다라이레드 1
마미손핑크 2
```

```
255, 128, 0
73, 56, 49
83, 99, 73
0, 52, 88
168, 49, 43
236, 92, 93
```

```
[255, 128, 0]/255 = [1.0000, 0.5020, 0] #FF8000

[73, 56, 49]/255 = [0.2863, 0.2196, 0.1922] #493831

[83, 99, 73]/255 = [0.3255, 0.3882, 0.2863] #536349

[0, 52, 88]/255 = [0, 0.2039, 0.3451] #003458

[168, 49, 43]/255 = [0.6588, 0.1922, 0.1686] #A8312B

[236, 92, 93]/255 = [0.9255, 0.3608, 0.3647] #EC5C5D
```


property는 사실 color만 있는게 아니다.

```
x = 0:0.1:1;y = x.^2;plot(x, y, 'LineSpec', 'propertyName', propertyValue)
```

	propertyName	의미	값	line specifier?	default
	marker	마커 종류	+o*.x^vsdph<>	Υ	none
마커	markeredgecolor	마커 테두리 색	rgbmcykw 또는	N	auto
	markerfacecolor	마커 면 색	1x3 벡터	N	none
	markersize	마커 크기	양의 실수	N	6
	color	선 색	rgbmcykw 또는 1x3 벡터	Υ	[0 0.4470 0.7410]
선	linestyle	선 스타일	- , , : ,	Υ	solid (-)
	linewidth	선 두께	양의 실수	N	0.5

- ※ marker, color, linestyle은 LineSpec과 propertyName 모두 가능
- ※ property는 여러 개 동시 설정 가능

맨 처음 나왔던 그래프를 그려보자.

```
close all
clc
x = 10:0.1:22;
y = 95000./(x.^2);
xd = 10:2:22;
yd = [950 640 460 340 250 180 140];
plot(x,y,'-','linewidth',1.0)
plot(xd,yd,'ro--', ...
    'linewidth',1.0, 'markersize',4)
```



```
x = 0:0.1:1;
y = x.^2;
u = 0:0.2:1;
v = exp(u)-1;
t = linspace(0,1,20);
h = tan(pi/4*t);
plot(x, y, u, v, t, h)
```

- 각 (x, y) pair 뒤에 line specifier를 적을 수 있음
- 장점
 - 여러 (x, y) pair를 한줄컷 가능
 - 각 pair의 길이가 달라도 됨
- 단점
 - (x, y) pair마다 property를 다르게 하지 못함 (동일한 property는 가능)


```
x = 0:0.1:1;
y = x.^2;
u = 0:0.2:1;
v = exp(u)-1;
t = linspace(0,1,20);
h = tan(pi/4*t);

plot(x, y, 'r*-', 'linewidth', 1)
hold on,
plot(u, v, 'g', 'marker', 'v')
plot(t, h, 'b-.x')
```

- 장점
 - 겹침/안겹침을 하나씩 제어 가능
 - plot마다 line specifier와 property 설정 가능
- 단점

• 여러 줄 써야 함

```
x = 0:0.1:1;
y = x.^2;
u = 0:0.2:1;
v = exp(u)-1;
t = linspace(0,1,20);
h = tan(pi/4*t);
line(x, y)
line(u, v)
line(t, h)
```

- 장점
 - hold on 없이 간단하게 겹쳐 그릴 수 있음
- 단점
 - line specifier를 쓰지 못하며, 모든 설정은 property로만 가능


```
x = 0:0.1:1;
u = x.^2;
v = exp(x)-1;
w = tan(pi/4*x);
y = [u; v; w];
plot(x, y, 'rs-', 'linewidth', 2)
```

- x도 행렬일 경우 → x, y의 각 column을 pair로 plot
- 장점
 - 한줄컷 가능
- 단점
 - 선마다 line specifier 또는 property 지정 불가 (동일하게는 가능)
 - 모든 pair의 길이가 같아야 함

맨 처음 나왔던 그래프를 다시 그려보자.

```
close all
clc
x = 10:0.1:22;
y = 95000./(x.^2);
xd = 10:2:22;
yd = [950 640 460 340 250 180 140];
plot(x,y,'-','linewidth',1.0)
hold on
plot(xd,yd,'ro--', ...
    'linewidth',1.0, 'markersize',4)
```


title, axis label, legend, textbox

```
xlabel('DISTANCE (cm)')
ylabel('INTENSITY (lux)')
title('Light Intensity as a Function of Distance');
legend('Theory', 'Experiment');
text(14, 700, 'Comparison between theory and experiment.');
```

- 이 항목들도 property를 설정할 수 있다.
 - 어떤 항목들이 있는지는 도움말을 보자.
- 텍스트를 따로 변수로 두고 써도 된다.
- legend는 figure 창에 plot한 순서대로 매겨진다.
- gtext: 마우스로 textbox의 위치 지정 가능

축 범위를 조절해보자.

```
axis([8 24 0 1200]) % [xmin, xmax, ymin, ymax]
xlim([8 24]) % [xmin, xmax]
ylim([0 1200]) % [ymin, ymax]
```

• axis off : 축 지우기

• axis on : 축 표시하기

• axis tight : 여백 없애기

• axis square : 축을 정사각형으로

• axis auto : 알아서 해줘

• axis equal : x, y 같은 스케일로

Light Intensity as a Function of Distance

Theory

Experiment

1200

눈금과 테두리를 넣어보자.

```
grid on % <-> grid off
box on % <-> box off
```


축을 log scale로 바꿔보자.

```
x = 10:0.1:22;
y = 95000./(x.^2);
xd = 10:2:22;
yd = [950 640 460 340 250 180 140];
loglog(x,y,'-','linewidth',1.0) hold on
plot(xd,yd,'ro--', ...
'linewidth',1.0,'markersize',4)
```

- semilogx > x축은 log, y축은 linear
- semilogy > x축은 linear, y축은 log
- loglog > x, y축 모두 log
- 주의

그래프에 error bar를 추가해보자.

```
x = 10:0.1:22;
y = 95000./(x.^2);
xd = 10:2:22;
yd = [950 640 460 340 250 180 140];
ydErrNeg = [30 20 18 15 20 30 10];
ydErrPos = [20 10 5 35 10 5 15];
plot(x,y,'-','linewidth',1.0)
hold on
errorbar(xd, yd, ydErrNeg, ydErrPos, ...
    'ro--', 'linewidth',1.0, 'markersize', 4)
```


- 상한=하한이라면 error term은 한번만 적으면 됨
 - errorbar(xd, yd, ydErr, ...)

툴바와 조작패널을 이용해보자.

- legend on/off
- 그래픽 객체 선택 및 이동
- 데이터 브러쉬
- 데이터 팁
 - 팁 버튼 눌렀을 때 vs 안 눌렀을 때
 - 팁 지우기

Figure 1

1200

1000

№ ■

Light Intensity as a Function c → () ⊕ ⊕ ⊕ ⊕ ⇔

Theory

Experiment

 \times

특별한 그래프들 ※도움말을 보자.

히스토그램을 그려보자.

```
close all
clear

x = rand(10000,1);
histogram(x, 30)
histogram(x, linspace(0,1,100))

xn = randn(10000,1);
histogram(xn, 30)
histogram(xn, linspace(-3,3,100))
```


figure 창을 여러 개 띄워보자.

- 지금까지는 하나의 figure 창에 덮어썼다. (hold on, hold off로 조절)
 - plot을 할 때마다 <u>현재 figure 창</u>에 덮어쓴다. (현재 figure 창 = 현재 <u>활성화</u>된 창)
- 새로운 figure 창을 띄우고 싶다면?

tip. 현재 활성화된 창 번호? gcf

figure; % 새로운 창이 생성되고, 창 번호가 부여됨과 동시에 활성화

• 특별한 번호를 가진 창을 생성하고 싶다면?

```
figure(2); % 2번 창이: 없다면 2번 창이 생성됨, 있다면 2번 창 활성화 figure(100); % 100번 창이: 없다면 100번 창이 생성됨, 있다면 100번 창 활성화
```

- 이 방식으로 figure 창 간 전환도 가능 (창 전환 = **활성화**)
- 없는 창은 생성과 동시에 **활성화**
- 3번 figure 창에 plot하고 싶다면?

figure(3); % 3번 창이: 없다면 3번 창이 생김, 있다면 3번 창 활성화 plot(x, y, ...)

여러 창에 plot을 해보자.

```
x = linspace(-pi/3,pi/3);
sinx = sin(x);
cosx = cos(x);
tanx = tan(x);
figure, % opening figure(1)
plot(x, sinx, 'r*-', 'linewidth', 1)
figure, % opening figure(2)
plot(x, cosx, 'marker', 'v')
figure(1), % activating figure(1)
hold on
plot(x, tanx, 'b-.x')
```


창이 너무 많다. 좀 닫고 싶은데...

```
clear
        * CCC 패턴
close all
clc
x = linspace(-pi/3,pi/3);
sinx = sin(x);
cosx = cos(x);
tanx = tan(x);
figure, plot(x, sinx, 'r*-', 'linewidth', 1)
figure, plot(x, cosx, 'marker', 'v')
figure, plot(x, tanx, 'b-.x')
close(1) % closing figure(1)
close all % closing all figures
```


한 figure 창에 여러 그래프를 그려보자.

```
Figure 1
clear
                                                                        보기(V) 삽입(I) 툴(T) 데스크탑(D) 창(W) 도움말(H)
close all
                                                                 🖺 😅 🔙 🦫 📳 🔳
clc
                                                                             testing subplot(2,3,n)
x = linspace(-pi/3,pi/3);
                                                                              0.6
figure,
subplot(2,3,1), plot(x, sin(x)), title('sin')
subplot(2,3,2), plot(x, cos(x)), title('cos')
subplot(2,3,3), plot(x, tan(x)), title('tan')
subplot(2,3,4), plot(x, x.^2), title('x^2')
subplot(2,3,5), plot(x, x.^3), title('x^3')
subplot(2,3,6), plot(x, exp(x)), title('exp(x)')
subplot(2,3,1), title('sin(x)') % activating subplot(2,3,1)
                                                                                 (2,3,1) | (2,3,2) | (2,3,3)
subplot(2,3,2), title('cos(x)') % activating subplot(2,3,2)
                                                                                 (2,3,4) | (2,3,5) | (2,3,6)
subplot(2,3,3), title('tan(x)') % activating subplot(2,3,3)
sgtitle('testing subplot(2,3,n)')
```


그래프를 저장하자.

- 그림 저장하는 방법
 - 파일 메뉴 or 조작패널
 - .fig 파일로 저장
 - 그림 파일로 저장
 - 명령창에서 저장
 - saveas(figure번호,'파일명')
 - ※ save와 헷갈리지 말 것 ※ 헷갈리면 자동완성 이용
 - 마우스(GUI) vs 명령창(CUI)

3차원 그래프

Three dimensional Brownian Motion, d=20.6188 units

https://bit.ly/3hs1Y7U

https://bit.ly/3mdJrzY

42

plot이 2차원? 3차원은 plot3!

* 조작패널을 간단히 이용해보자.

```
t = 0:0.1:10*pi;

x = sin(2*t);
y = cos(2*t);
z = t;

figure,
plot3(x, y, z)
xlabel('x'), ylabel('y'), zlabel('z')
title('3d spiral')
```

- x, y, z 값을 확인해보자.
 - workspace에서 확인
 - 그래프에서 점을 찍어 확인
 - 3차원 그래프는 각 점을 잇는 선분의 모음

plot3도 문법은 plot과 똑같다.

```
t = 0:0.1:10*pi;
plot3(sin(2*t), cos(2*t), t)
plot(x, y, 'LineSpec', 'propertyName', propertyValue)
```

	propertyName	의미	값	line specifier?	default
마커	marker	마커 종류	+o*.x^vsdph<>	Υ	none
	markeredgecolor	마커 테두리 색	rgbmcykw	N	auto
	markerfacecolor	마커 면 색	또는 1x3 벡터	N	none
	markersize	마커 크기	양의 실수	N	6
선	color	선 색	rgbmcykw 또는 1x3 벡터	Υ	[0 0.4470 0.7410]
	linestyle	선 스타일	-,,:,	Υ	solid (-)
	linewidth	선 두께	양의 실수	N	0.5

plot3도 문법은 plot과 똑같다.

```
t = 0:pi/20:10*pi;
xt = sin(t);
yt = cos(t);
plot3(xt,yt,t,'-o','Color','b','MarkerSize',10,'MarkerFaceColor','#D9FFFF')
```


이번엔 면(surface)을 그려보자.

• 변수가 2개인 그래프: z = f(x, y)

$$ex.) Z = \frac{xy^2}{x^2 + y^2}$$

```
clear
close all
x = -1:3;
y = 1:4;
[xx, yy] = meshgrid(x, y);
zz = xx.*yy.^2./(xx.^2+yy.^2);
figure,
subplot(2,1,1), mesh(xx, yy, zz)
xlabel('x'); ylabel('y'); zlabel('z')
subplot(2,1,2), surf(xx, yy, zz)
xlabel('x'); ylabel('y'); zlabel('z')
```


meshgrid

```
x = -1:3;
y = 1:4;
[xx, yy] = meshgrid(x, y);
```


(-1, 2) (0, 2) (1, 2) (2, 2) (3, 2)

(-1, 1) (0, 1) (1, 1) (2, 1) (3, 1)

 \mathcal{X}

$$X = \begin{bmatrix} -1 & 0 & 1 & 2 & 3 \\ -1 & 0 & 1 & 2 & 3 \\ -1 & 0 & 1 & 2 & 3 \\ -1 & 0 & 1 & 2 & 4 \end{bmatrix} \quad \text{and} \quad Y = \begin{bmatrix} 4 & 4 & 4 & 4 & 4 \\ 3 & 3 & 3 & 3 & 3 \\ 2 & 2 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

meshgrid -> surf

```
x = -1:3;
y = 1:4;
[xx, yy] = meshgrid(x, y);
zz = xx.*yy.^2./(xx.^2+yy.^2);
surf(xx, yy, zz)
xlabel('x'); ylabel('y'); zlabel('z')
```



```
[xx, yy] = meshgrid(x, y);
>> x = -1:3;
>> [xx, yy] = meshgrid(x, y)
\chi\chi =
```

>> zz = xx.*yy.^2./(xx.^2+yy.^2)							
ZZ =							
-0.5000	0	0.5000	0.4000	0.3000			
-0.8000	0	0.8000	1.0000	0.9231			
-0.9000	0	0.9000	1.3846	1.5000			
-0.9412	0	0.9412	1.6000	1.9200			

간격을 바꿔보자. + shading 옵션

```
dx = 1;
dy = 1;
x = -1:dx:3;
y = 1:dy:4;
[xx, yy] = meshgrid(x, y);
zz = xx.*yy.^2./(xx.^2+yy.^2);
figure,
subplot(2,1,1), surf(xx, yy, zz), shading flat
xlabel('x'); ylabel('y'); zlabel('z')
subplot(2,1,2), surf(xx, yy, zz), shading interp
xlabel('x'); ylabel('y'); zlabel('z')
```

※ 기본값은 shading faceted

colormap을 바꿔보자. + colorbar를 달아보자.

※ 도움말 – colormap

그 외 이상한 3차원 그래프들

그 외 이상한 3차원 그래프들

그래프를 돌려보자.

- 조작패널 이용
 - 그냥 회전시킬 때 vs 조작패널로 회전시킬 때
- view(az, el)
- view(2): 2차원 보기
 - view(0, 90)과 같음
- view(3): 3차원 보기
 - view(-37.5, 30)과 같음

기타

- 탭 자동완성
 - 우리가 배운 것보다 훨씬 많은 옵션들이 있다.
- clf = clear figure
- cla = clear axes

saddle point

매트랩 로고를 그려보자.

- https://www.mathworks.com/help/matlab/visualize/creating-the-matlab-logo.html
- 명령창에 아래 입력
 - web(fullfile(docroot, 'matlab/visualize/creating-the-matlablogo.html?s_tid=doc_srchtitle'))

Q&A

