

# ME6210



## 500mA, Low Quiescent, Low Dropout LDO Linear Regulators

### **General Description**

**ME6210** series are low quiescent, low-dropout linear voltage regulators.ME6210 series are based on the CMOS process and allow high voltage input .The allow operation voltage as high as 18V. ME6210 series have short circuit protection function.

### **Features**

• High output accuracy: ± 2%

Input voltage: 2V to 18 V

Output voltage: 1.5V ~ 5.0V

Ultra-low quiescent current (Typ. = 1.5 μ A)

Output Current: lout = 500mA
 (When Vin = 4V and Vout = 3V)
 Low dropout voltage: 11mV@ lout = 10mA (Typ.
 Vout = 3.0V)

Input good stability: Typ. 0.03% / V

Short-circuit Current:: Typ. 50mA

Ceramic capacitor can be used

## **Typical Application**

- Power source for home electric/electronic appliances
- Power source for battery-powered devices
- Power source for personal communication devices

### **Package**

• 3-pin SOT89-3, SOT23-3, SOT23, TO92

## **Typical Application Circuit**





### **Selection Guide**



| product series | product description                      |
|----------------|------------------------------------------|
| ME6210A30PG    | V <sub>OUT</sub> =3.0V; Package: SOT89-3 |
| ME6210A28M3G   | V <sub>OUT</sub> =2.8V; Package: SOT23-3 |
| ME6210A33M3G   | V <sub>OUT</sub> =3.3V; Package: SOT23-3 |

#### NOTE:

- 1. At present ,there are five kinds of voltage value: 2.5 \, 2.8V \, 3.0V \, 3.3V \, 3.6V \, 4.0V \, 5.0V \,
- 2. If you need other voltage and package, please contact our sales staff.

V05 <u>www.microne.com.cn</u> Page 2 of 12



# **Pin Configuration**



# Pin Assignment

### ME6210Axx

|         | Pin Nur | nber  |       |      |          |
|---------|---------|-------|-------|------|----------|
| М3      | Р       | X     | Т     | Name | Function |
| SOT23-3 | SOT89-3 | SOT23 | TO-92 |      |          |
| 1       | 1       | 1     | 1     | VSS  | Ground   |
| 2       | 3       | 2     | 3     | VOUT | Output   |
| 3       | 2       | 3     | 2     | VIN  | Input    |

# **Absolute Maximum Ratings**

| Parame            | ter         | Symbol           | Description        | Units        |
|-------------------|-------------|------------------|--------------------|--------------|
| Input Volt        | age         | V <sub>IN</sub>  | 18                 | V            |
| Output Cu         | rrent       | I <sub>OUT</sub> | 700                | mA           |
| Output Vo         | Itage       | V <sub>OUT</sub> | Vss-0.3 ~ Vout+0.3 | V            |
|                   | SOT23-3     | Pd               | 300                | mW           |
| Dower Dissipation | SOT89-3     | Pd               | 500                | mW           |
| Power Dissipation | SOT23       | Pd               | 250                | mW           |
|                   | TO-92       | Pd               | 500                | mW           |
| Operating Ambient | Temperature | T <sub>Opr</sub> | -25 ~ +85          | $^{\circ}$ C |
| Storage Temp      | perature    | T <sub>stg</sub> | -40 ~ +125         | $^{\circ}$ C |
| Lead Temperat     | ture        |                  | 260°C, 10sec       |              |

V05 <u>www.microne.com.cn</u> Page 3 of 12



# **Block Diagram**



### **Electrical Characteristics**

#### ME6210A30

 $(V_{IN}=V_{OUT}+1.0V, C_{IN}=C_{OUT}=10uF, Ta=25^{\circ}C, unless otherwise noted)$ 

| Parameter                               | Symbol                                                | Conditions                                                           | Min.   | Тур.                             | Max.   | Units |
|-----------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|--------|----------------------------------|--------|-------|
| Output Voltage                          | V <sub>OUT</sub> (E)<br>(Note 2)                      | I <sub>OUT</sub> =40mA,<br>V <sub>IN</sub> =Vout+1V                  | X 0.98 | V <sub>OUT</sub> (T)<br>(Note 1) | X 1.02 | V     |
| Input Voltage                           | $V_{\text{IN}}$                                       |                                                                      |        |                                  | 18     | V     |
| Maximum Output Current                  | I <sub>OUT</sub> _max                                 | V <sub>IN</sub> =Vout+1V                                             |        | 500                              |        | mA    |
| Load Regulation                         | $\Delta V_OUT$                                        | V <sub>IN</sub> =Vout+1V,<br>1mA≤I <sub>OUT</sub> ≤200mA             |        | 12                               | 30     | mV    |
|                                         | $V_{DIF1}$                                            | I <sub>OUT</sub> =10mA                                               |        | 11                               | 14     | mV    |
| Dropout Voltage<br>(Note 3)             | $V_{DIF2}$                                            | I <sub>OUT</sub> =100mA                                              |        | 110                              | 140    | mV    |
| (************************************** | $V_{DIF3}$                                            | I <sub>OUT</sub> =200mA                                              |        | 220                              | 280    | mV    |
| Supply Current                          | I <sub>SS</sub>                                       | V <sub>IN</sub> =Vout+1V                                             |        | 1.5                              | 2.5    | μА    |
| Line Regulations                        | $\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$ | I <sub>OUT</sub> =10mA<br>Vout+1V ≤V <sub>IN</sub> ≤18V              |        | 0.03                             | 0.1    | %/V   |
| Temperature coefficient                 | $\frac{\Delta V_{OUT}}{\Delta Ta \times V_{OUT}}$     | V <sub>IN</sub> =Vout+1V ,I <sub>OUT</sub> =10mA<br>-40 °C≤Ta≤125 °C |        | ±60                              | ±100   | Ppm/℃ |
| Short-circuit Current                   | Ishort                                                | V <sub>IN</sub> =Vout+1V                                             |        | 50                               | 70     | mA    |



### ME6210A33

 $(V_{\text{IN}}\text{=}\ V_{\text{OUT}}\text{+}1.0V,\ \ C_{\text{IN}}\text{=}C_{\text{OUT}}\text{=}10u\text{F},\ \ \text{Ta}\text{=}25^{\text{O}}\text{C}, \text{unless otherwise noted})$ 

| Parameter                   | Symbol                                                | Conditions                                                       | Min.   | Тур.                             | Max.   | Units |
|-----------------------------|-------------------------------------------------------|------------------------------------------------------------------|--------|----------------------------------|--------|-------|
| Output Voltage              | V <sub>OUT</sub> (E)<br>(Note 2)                      | I <sub>OUT</sub> =40mA,<br>V <sub>IN</sub> =Vout+1V              | X 0.98 | V <sub>OUT</sub> (T)<br>(Note 1) | X 1.02 | V     |
| Input Voltage               | V <sub>IN</sub>                                       |                                                                  |        |                                  | 18     | V     |
| Maximum Output<br>Current   | I <sub>OUT</sub> _max                                 | V <sub>IN</sub> =Vout+1V                                         |        | 500                              |        | mA    |
| Load Regulation             | $\Delta V_OUT$                                        | V <sub>IN</sub> =Vout+1V,<br>1mA≤I <sub>OUT</sub> ≤200mA         |        | 12                               | 30     | mV    |
|                             | $V_{DIF1}$                                            | I <sub>OUT</sub> =10mA                                           |        | 10                               | 13     | mV    |
| Dropout Voltage<br>(Note 3) | V <sub>DIF2</sub>                                     | I <sub>OUT</sub> =100mA                                          |        | 100                              | 130    | mV    |
| (1333 5)                    | $V_{DIF3}$                                            | I <sub>OUT</sub> =200mA                                          |        | 200                              | 260    | mV    |
| Supply Current              | I <sub>SS</sub>                                       | V <sub>IN</sub> =Vout+1V                                         |        | 1.6                              | 2.5    | μА    |
| Line Regulations            | $\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$ | I <sub>OUT</sub> =10mA<br>Vout+1V ≤V <sub>IN</sub> ≤18V          |        | 0.03                             | 0.1    | %/V   |
| Temperature coefficient     | $\frac{\Delta V_{OUT}}{\Delta Ta \times V_{OUT}}$     | V <sub>IN</sub> =Vout+1V ,I <sub>OUT</sub> =10mA<br>-40℃≤Ta≤125℃ |        | ±60                              | ±100   | Ppm/℃ |
| Short-circuit Current       | Ishort                                                | V <sub>IN</sub> =Vout+1V                                         |        | 50                               | 70     | mA    |

#### ME6210A50

 $(V_{IN}=V_{OUT}+1.0V, C_{IN}=C_{OUT}=10uF, Ta=25^{\circ}C, unless otherwise noted)$ 

| Parameter                   | Symbol                                                                  | Conditions                                                           | Min.   | Тур.                             | Max.   | Units |
|-----------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|--------|----------------------------------|--------|-------|
| Output Voltage              | V <sub>OUT</sub> (E)<br>(Note 2)                                        | I <sub>OUT</sub> =40mA,<br>V <sub>IN</sub> =Vout+1V                  | X 0.98 | V <sub>OUT</sub> (T)<br>(Note 1) | X 1.02 | V     |
| Input Voltage               | V <sub>IN</sub>                                                         |                                                                      |        |                                  | 18     | V     |
| Maximum Output<br>Current   | I <sub>OUT</sub> _max                                                   | V <sub>IN</sub> =Vout+1V                                             |        | 500                              |        | mA    |
| Load Regulation             | $\Delta V_OUT$                                                          | V <sub>IN</sub> =Vout+1V,<br>1mA≤I <sub>OUT</sub> ≤200mA             |        | 10                               | 30     | mV    |
|                             | $V_{DIF1}$                                                              | I <sub>OUT</sub> =10mA                                               |        | 8                                | 11     | mV    |
| Dropout Voltage<br>(Note 3) | V <sub>DIF2</sub>                                                       | I <sub>OUT</sub> =100mA                                              |        | 80                               | 110    | mV    |
| (1313 3)                    | V <sub>DIF3</sub>                                                       | I <sub>OUT</sub> =200mA                                              |        | 160                              | 220    | mV    |
| Supply Current              | I <sub>SS</sub>                                                         | V <sub>IN</sub> =Vout+1V                                             |        | 1.7                              | 2.5    | μА    |
| Line Regulations            | $\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$                   | I <sub>OUT</sub> =10mA<br>Vout+1V ≤V <sub>IN</sub> ≤18V              |        | 0.03                             | 0.1    | %/V   |
| emperature coefficient      | $\frac{\Delta V_{\text{OUT}}}{\Delta \text{Ta } \times V_{\text{OUT}}}$ | V <sub>IN</sub> =Vout+1V ,I <sub>OUT</sub> =10mA<br>-40 °C≤Ta≤125 °C |        | ±60                              | ±100   | Ppm/℃ |
| Short-circuit Current       | Ishort                                                                  | V <sub>IN</sub> =Vout+1V                                             |        | 50                               | 70     | mA    |





Note:

1. V<sub>OUT</sub> (T): Specified Output Voltage

2.V<sub>OUT</sub> (E) : Effective Output Voltage (ie. The output voltage when "V<sub>OUT</sub> (T)+1.0V" is provided at the Vin pin while maintaining a certain lout value.)

3.V<sub>DIF</sub>: V<sub>IN1</sub> –V<sub>OUT</sub> (E)'

 $V_{IN1}$ : The input voltage when  $V_{OUT}(E)$  appears as input voltage is gradually decreased.

 $V_{\text{OUT}}$  (E)'=A voltage equal to 98% of the output voltage whenever an amply stabilized lout and  $\{V_{\text{OUT}}(T)\}$ 

+1.0V} is input.

#### **Precautions**

- During the test, if AC/DC power supply and the ceramic chip capacitors collocation is used, there may be serious voltage spike phenomenon instantaneously. When the power supply access to 15V, the voltage is rushed to about 30V instantaneously. Because of exceeding the limit voltage of chip, the chip is damaged. If you string a small resistance of 1 ohm in the input end during the test, the peak phenomenon can be avoided.
- In the test, there is serious burr phenomenon only when the AC/DC power is used with ceramic chip capacitors. But electrolytic capacitors and tantalum capacitance won't appear above phenomenon. Please be sure to pay attention to this point when you use AC/DC power.
- In normal use, when any type of capacitor is used with battery or the supply of fire power, the above phenomenon doesn't occur.

V05 <u>www.microne.com.cn</u> Page 6 of 12



### **Type Characteristics**

(1) Output Voltage VS. Output Current ( Ta = 25 °C, VIN=4V) ME6210A30



(2) Output Voltage VS. Input Voltage (Ta = 25 °C, lout=10mA) ME6210A30



(3) Dropout Voltage VS. Output Current ( Ta = 25 °C) ME6210A30



(4) Supply Current VS. Input Voltage ( Ta = 25 °C) ME6210A30



(5) Output Voltage VS. Temperature (VIN=4V ,lout=10mA) ME6210A30





# **Packaging Information**

## • SOT89-3



| DIM | Millin | neters | Ir     | nches  |
|-----|--------|--------|--------|--------|
| DIM | Min    | Max    | Min    | Max    |
| А   | 1.4    | 1.6    | 0.0551 | 0.0630 |
| A1  | 1.4    | 1.6    | 0.0551 | 0.0630 |
| а   | 0.36   | 0.48   | 0.0142 | 0.0189 |
| b   | 0.41   | 0.53   | 0.0161 | 0.0209 |
| С   | 0.36   | 0.48   | 0.0142 | 0.0189 |
| d   | 1.4    | 1.75   | 0.0551 | 0.0689 |
| В   | 0.38   | 0.43   | 0.015  | 0.0169 |
| С   | 1.4    | 1.6    | 0.0551 | 0.0630 |
| D   | 4.4    | 4.6    | 0.1732 | 0.181  |
| E   | -      | 4.25   | -      | 0.1673 |
| е   | 2.4    | 2.6    | 0.0945 | 0.1023 |
| L1  | 0.4    | -      | 0.0157 | -      |
| L2  | 0.8    | -      | 0.0315 | -      |



## • SOT23-3



| DIM | Millim | eters | Inche  | es     |
|-----|--------|-------|--------|--------|
| DIM | Min    | Max   | Min    | Max    |
| Α   | 2.7    | 3.1   | 0.1063 | 0.122  |
| В   | 1.7    | 2.1   | 0.0669 | 0.0827 |
| b   | 0.35   | 0.5   | 0.0138 | 0.0197 |
| С   | 1.0    | 1.2   | 0.0394 | 0.0472 |
| С   | 0.1    | 0.25  | 0.0039 | 0.0098 |
| d   | 0.2    | -     | 0.0079 | -      |
| Е   | 2.6    | 3.0   | 0.1023 | 0.1181 |
| е   | 1.5    | 1.8   | 0.059  | 0.0708 |



## • SOT23



| DIM | Millir | neters | Inche  | ;      |  |
|-----|--------|--------|--------|--------|--|
| DIM | Min    | Max    | Min    | Max    |  |
| А   | 2.7    | 3.1    | 0.1063 | 0.122  |  |
| В   | 1.7    | 2.1    | 0.0669 | 0.0827 |  |
| b   | 0.35   | 0.5    | 0.0138 | 0.0197 |  |
| С   | 1.0    | 1.2    | 0.0394 | 0.0472 |  |
| С   | 0.1    | 0.25   | 0.0039 | 0.0098 |  |
| d   | 0.2    | -      | 0.0079 | -      |  |
| Е   | 2.1    | 2.64   | 0.0827 | 0.1039 |  |
| е   | 1.2    | 1.4    | 0.0472 | 0.0551 |  |



## ● TO-92





| DIM   | Millin | neters | Inc    | hes    |
|-------|--------|--------|--------|--------|
| DIIVI | Min    | Max    | Min    | Max    |
| Α     | 3.3    | 3.7    | 0.1299 | 0.1457 |
| A1    | 1.1    | 1.4    | 0.0433 | 0.0551 |
| b     | 0.38   | 0.55   | 0.015  | 0.0217 |
| С     | 0.36   | 0.51   | 0.0142 | 0.0201 |
| D     | 4.3    | 4.7    | 0.1693 | 0.185  |
| D1    | 3.43   | _      | 0.135  | _      |
| Е     | 4.3    | 4.7    | 0.1693 | 0.185  |
| е     | 2.4    | 2.7    | 0.0945 | 0.1063 |
| e1    | 2.44   | 2.64   | 0.0961 | 0.1039 |
| L     | 14.1   | 14.5   | 0.5551 | 0.5709 |
| h     | 0      | 0.38   | 0      | 0.015  |
| Ф     | _      | 1.6    | _      | 0.063  |



- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams
  described herein whose related industrial properties, patents, or other rights belong to third parties.
  The application circuit examples explain typical applications of the products, and do not guarantee the
  success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality
  and reliability, the failure or malfunction of semiconductor products may occur. The user of these
  products should therefore give thorough consideration to safety design, including redundancy,
  fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community
  damage that may ensue.