Adithi S Upadhya

Atlanta, Georgia 30308

J 470-530-7680 ■ adithi.u7@gmail.com in linkedin.com/in/adithi-su

Education

Georgia Institute of Technology

April 2025

MS in Electrical and Computer Engineering, GPA: 3.75

Atlanta, Georgia

National Institute of Technology Karnataka

May 2023

B. Tech in Electronics and Communication Engineering

Mangalore, India

Relevant Coursework

Advanced Computer Architecture, Computer Organization & Architecture, Hardware/Software Co-design for ML, Digital System Design, Microprocessors, VLSI Design/CAD, Low-Power VLSI Design, Parallel Programming for FPGAs, Physical Design Automation

Experience

Samsung Austin R&D Center

May 2024 - Dec 2024

GPU RTL Design Intern

Austin, Texas

- Implemented System Verilog Assertions for critical interface timing, enhancing signal synchronization and detecting power-related bugs in GPU architecture.
- Optimized power efficiency through strategic clock gating and PTPX analysis.
- Engineered RTL feature in texture subsystem for masked data write-back to Shader and aided in the development of directed tests to enhance verification coverage, expanding stimulus generation for comprehensive design validation.
- Created Python scripts to run Lint and Formality.

Intel August 2022 – Jan 2023

RTL Design Intern

Bangalore, India

- Used FW-build-IDE of the CPU, to compile and build binaries for C code, and ran them on Verilog simulations. C-code for performance evaluation of CPU's load/store was written, built and simulated on Verilog platform.
- Performed simulations using a basic AXI initiator agent to assess the fundamental functionality of the SRAM controller IP.

Projects

End-to-End Framework and Simulator for Systolic Array | Verilog

- Developed custom RTL for GEMM operations based on a Systolic Array architecture, processing input from a PyTorch model.
- Implemented a parameterized dense systolic array (output stationary dataflow) featuring a PE Grid, Controller, SRAM Banks, and Instruction Reader.

Superscalar Pipeline with Branch Prediction $\mid C++$

- Implemented data dependency tracking, data forwarding and related stalls for a N-wide Superscalar.
- Integrated the pipeline design with perfect and GShare Branch Prediction.

CMP Memory System Design $\mid C++$

- Designed and implemented a multi-level cache system with separate L1 instruction and data caches (32KB), and a unified L2 cache (1MB) and DRAM (16 banks, row buffer).
- Utilized 64-byte cache lines for efficient data transfer and spatial locality exploitation and LRU replacement policy to optimize temporal locality.

VLSI Design using Openlane | Verilog

• Executed RTL to GDSII flow for 16-bit counter with Openlane using Skywater130nm PDK. Performed design exploration and used regression to find the best set of parameters (Gate count: 50, Are: 391.63μm², Delay: 865.79ps).

Technical Skills

Languages: Verilog, System Verilog, Python, ARM v7, MIPS and RISC-V ISA

Developer Tools: Cadence Virtuoso, Cadence Innovus, Synopsys Verdi, Vivado, Synopsys PrimeTime PX, Matlab, ModelSim, LT Spice, NG Spice, MAGIC VLSI, Keil Vision, OpenLane, Arduino, Git, Linux

Achievements

 Recipient of the 2021 APAC Generation Google Scholarship: for women in Computer Science, formerly known as Women Techmakers Scholarship.