Pre-lecture brain teaser

Write a (very simple) recursive algorithm that calcuates the

ECE-374-B: Lecture 12 - Dynamic Programming I

Instructor: Abhishek Kumar Umrawal

October 05, 2022

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Write a (very simple) recursive algorithm that calcuates the Fibonnacci n^{th} number.

$$F_n = F_{n-1} + F_{n-2}$$
 where $F_0 = 0, F_1 = 1$

Learning Objectives

Learning Objectives

At the end of the lecture, you should be able to understand

- the concepts of the memoizationand dynamic programming,
- how to improve the time and space complexities of recursive algorithms using the above concepts,
- dynamic programming for the fibonacci numbers and longest increasing subsequence problem, and
- where and how to use dynamic programming to refine recursive algorithms.

Recursion and Memoization

Fibonacci Numbers

Fibonacci numbers defined by recurrence:

$$F(n) = F(n-1) + F(n-2)$$
 and $F(0) = 0, F(1) = 1$.

These numbers have many interesting properties. A journal $\underline{\mathsf{The}}$ Fibonacci Quarterly $^1!$

4

Fibonacci Numbers

Fibonacci numbers defined by recurrence:

$$F(n) = F(n-1) + F(n-2)$$
 and $F(0) = 0, F(1) = 1.$

These numbers have many interesting properties. A journal <u>The</u> Fibonacci Quarterly¹!

• Binet's formula:
$$F(n) = \frac{\varphi^n - (1-\varphi)^n}{\sqrt{5}} \approx \frac{1.618^n - (-0.618)^n}{\sqrt{5}} \approx \frac{1.618^n}{\sqrt{5}}$$

 φ is the golden ratio $(1+\sqrt{5})/2\simeq 1.618$.

•
$$\lim_{n\to\infty} F(n+1)/F(n) = \varphi$$

$$\phi = \left(\frac{1 + \sqrt{5}}{2}\right)$$

Photo fram

Question: Given \underline{n} , compute $\underline{F(n)}$.

```
Fib(n):

if (n = 0) return 0 else if (n = 1) return 1 return 1 return Fib(n - 1) + Fib(n - 2)
```

Question: Given n, compute F(n).

```
Fib(n):

if (n = 0)

return 0

else if (n = 1)

return 1

else

return Fib(n - 1) + Fib(n - 2)
```

Running time? Let T(n) be the number of additions in Fib(n).

Question: Given n, compute F(n).

```
en n, compute F(n).

Fib(n):

if (n = 0)

return 0

else if (n = 1)

return 1

else

return Fib(n - 1) + Fib(n - 2)
```

Running time? Let T(n) be the number of additions in Fib(n).

$$T(n) = T(n-1) + T(n-2) + 1$$
 and $T(0) = T(1) = 0$

The more per level is increasing and hence the total work is # of leaves = $O(2^n)$ $\Rightarrow T(n) = O(2^n)$

of leaves =
$$O(2^n)$$
 $\Rightarrow T(n) = O(2^n)$
 $n-1$
 $n-2$
 $n-2$
 $n-3$
 $n-3$

Question: Given n, compute F(n).

```
Fib(n):

if (n = 0)

return 0

else if (n = 1)

return 1

else

return Fib(n - 1) + Fib(n - 2)
```

Running time? Let T(n) be the number of additions in Fib(n).

$$T(n) = T(n-1) + T(n-2) + 1$$
 and $T(0) = T(1) = 0$
Roughly same as $F(n)$: $T(n) = \Theta(\varphi^n)$. $\Phi = \frac{1.6...}{1 + \sqrt{5}}$

The number of additions is exponential in n. Can we do better?

5

An iterative algorithm for Fibonacci numbers

```
Fiblter(n):
    if (n = 0) then
        return 0
    if (n = 1) then
        return 1
    F[0] = 0
    F[1] = 1
    for i = 2 to n do
        F[i] = F[i-1] + F[i-2]
    return F[n]
```

$$F(m) = F(m-1) + F(m-2)$$

4 of unique subpostumes $O(m)$.

An iterative algorithm for Fibonacci numbers

```
クロニケ
Fiblter(n):
    if (n = 0) then
                                      -F(0) = 0
         return 0
                                       F(1) = 1
    if (n = 1) then
         return 1
                                       F(2) = F(1) + F(0)
    F[0] = 0
    F[1] = 1
    for i = 2 to n do
        F[i] = F[i-1] + F[i-2]
    return F[\widehat{n}]
```

What is the running time of the algorithm?

An iterative algorithm for Fibonacci numbers

```
Fiblter(n):
    if (n = 0) then
        return 0
    if (n = 1) then
        return 1
    F[0] = 0
    F[1] = 1
    for i = 2 to n do
        F[i] = F[i-1] + F[i-2]
    return F[n]
```

What is the running time of the algorithm? O(n) additions.

What is the difference?

- Recursive algorithm is computing the same numbers again and again.
- <u>Iterative algorithm</u> is <u>storing computed values</u> and <u>building</u> bottom up the final value.

What is the difference?

- Recursive algorithm is computing the same numbers again and again.
- Iterative algorithm is storing computed values and building bottom up the final value. Memoization

What is the difference?

- Recursive algorithm is computing the same numbers again and again.
- Iterative algorithm is storing computed values and building bottom up the final value. Memoization.

Dynamic Programming: Finding a recursion that can be effectively refficiently memorized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input size.

"efficient" algo $O(n^k)$ k is indep of n = pdy time

Implicit vs. explicit memoization

Can we <u>convert recursive algorithm</u> into an <u>efficient algorithm</u> without explicitly doing an iterative algorithm?

Compler will do it!

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

```
Fib(n):

if (n = 0)

return 0

if (n = 1)

return 1

Sif (Fib(n) was previously computed)

return stored value of Fib(n)

else

return Fib(n - 1) + Fib(n - 2)
```

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

```
Fib(n):
    if (n = 0)
        return 0
    if (n = 1)
        return 1
    if (Fib(n) was previously computed)
        return stored value of Fib(n)
    else
        return Fib(n - 1) + Fib(n - 2)
```

How do we keep track of previously computed values?

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

```
Fib(n):
    if (n = 0)
        return 0
    if (n = 1)
        return 1
    if (Fib(n) was previously computed)
        return stored value of Fib(n)
    else
        return Fib(n - 1) + Fib(n - 2)
```

How do we keep track of previously computed values? Two methods: explicitly and implicitly (via data structure)

Initialize a (dynamic) dictionary data structure D to empty

```
Fib(n):
         if (n = 0)
              return 0
         if (n=1)
              return 1
         if (n is already in D)
              return value stored with n in D
          val \Leftarrow \mathbf{Fib}(n-1) + \mathbf{Fib}(n-2)
         Store (n, val) in D
         return val
```

Use <u>hash-table</u> or a <u>map</u> to remember which values were already computed.

Explicit (not automatic) memoization

• Initialize table/array M of size n: M[i] = -1 for $i = 0, \dots, n$.

Explicit (not automatic) memoization

- Initialize table/array M of size n: M[i] = -1 for i = 0, ..., n.
- Resulting code:

```
\begin{aligned} &\textbf{Fib}(n):\\ &\textbf{if}\ (n=0)\\ &\textbf{return}\ 0\\ &\textbf{if}\ (n=1)\\ &\textbf{return}\ 1\\ &\textbf{if}\ (M[n]\neq -1)\ //\ M[n]: \ \ \textbf{stored value of } \textbf{Fib}(n)\\ &\textbf{return}\ M[n]\\ &M[n]\Leftarrow \textbf{Fib}(n-1) + \textbf{Fib}(n-2)\\ &\textbf{return}\ M[n] \end{aligned}
```

Explicit (not automatic) memoization

- Initialize table/array M of size n: M[i] = -1 for i = 0, ..., n.
- Resulting code:

```
\begin{aligned} &\textbf{Fib}(n):\\ &\textbf{if}~(n=0)\\ &\textbf{return}~0\\ &\textbf{if}~(n=1)\\ &\textbf{return}~1\\ &\textbf{if}~(M[n]\neq -1)~//~M[n]:~\textbf{stored value of }\textbf{Fib}(n)\\ &\textbf{return}~M[n]\\ &M[n]\Leftarrow \textbf{Fib}(n-1)+\textbf{Fib}(n-2)\\ &\textbf{return}~M[n] \end{aligned}
```

 Need to know upfront the number of sub-problems to allocate memory.

Implicit or automatic memoization

• Recursive version:

$$f(x_1, x_2, \ldots, x_d)$$
: CODE

• Recursive version with memoization:

```
g(x_1,x_2,\ldots,x_d):
    if f already computed for (x_1,x_2,\ldots,x_d) then return value already computed NEW_CODE
```

- NEW CODE:
 - Replaces any "return α " with
 - Remember " $f(x_1, \ldots, x_d) = \alpha$ "; **return** α .

• Explicit memoization (on the way to iterative algorithm) preferred:

• analyze problem ahead of time

Overlupping Subpordens

Y A recursive solution

Contains a "small"

number of distinct

Subpossions reperted

many times.

- Explicit memoization (on the way to iterative algorithm) preferred:
 - analyze problem ahead of time
 - Allows for efficient memory allocation and access.

- Explicit memoization (on the way to iterative algorithm) preferred:
 - analyze problem ahead of time
 - Allows for efficient memory allocation and access.
- Implicit (automatic) memoization:
 - problem structure or algorithm is not well understood.

- Explicit memoization (on the way to iterative algorithm) preferred:
 - analyze problem ahead of time
 - Allows for efficient memory allocation and access.
- Implicit (automatic) memoization:
 - problem structure or algorithm is not well understood.
 - Need to pay overhead of data-structure.

- Explicit memoization (on the way to iterative algorithm) preferred:
 - analyze problem ahead of time
 - Allows for efficient memory allocation and access.
- Implicit (automatic) memoization:
 - problem structure or algorithm is not well understood.
 - Need to pay overhead of data-structure.
 - <u>Functional languages</u> (e.g., <u>LISP</u>) <u>automatically do</u> <u>memoization</u>, usually via hashing based dictionaries.

Explicit/implicit memoization for Fibonacci

```
Init: M[i] = -1, i = 0, ..., n.
Fib(k):
     if (k = 0)
          return 0
     if (k = 1)
          return 1
     if (M[k] \neq -1)
          return M[n]
     M[k] \Leftarrow \text{Fib}(k-1) + \text{Fib}(k-2)
     return M[k]
```

```
Init:
       Init dictionary D
Fib(n):
    if (n = 0)
         return 0
    if (n = 1)
         return 1
    if (n is already in D)
         return value stored
              with n in D
          val \Leftarrow \mathbf{Fib}(n-1) + \mathbf{Fib}(n-2)
     Store (n, val) in D
     return val
```

Explicit memoization

Implicit memoization

Dynamic programming

Removing the recursion by filling the table in the right order

```
\begin{aligned} &\textbf{Fib}(n): \\ &\textbf{if} \quad (n=0) \\ &\textbf{return} \quad 0 \\ &\textbf{if} \quad (n=1) \\ &\textbf{return} \quad 1 \\ &\textbf{if} \quad (M[n] \neq -1) \\ &\textbf{return} \quad M[n] \\ &M[n] \Leftarrow \underbrace{\textbf{Fib}}_{}(n-1) + \underbrace{\textbf{Fib}}_{}(n-2) \\ &\textbf{return} \quad M[n] \end{aligned}
```

```
Recursive algo
```

```
Fiblter(n):
    if (n = 0) then
        return 0
    if (n = 1) then
        return 1
    F[0] = 0
    F[1] = 1
    for i = 2 to n do
        F[i] = F[i-1] + F[i-2]
    return F[n]
```

territive algo.

Dynamic programming: Saving space!

Saving space. Do we need an array of *n* numbers? Not really.

```
Fiblter(n):
    if (n = 0) then
        return 0
    if (n = 1) then
        return 1
    F[0] = 0
    F[1] = 1
    for i = 2 to n do
        F[i] = F[i-1] + F[i-2]
    return F[n]
```

```
Fiblter(n):
   if (n = 0) then
       return 0
   if (n = 1) then
       return 1
   prev1 = 1
   for i = 2 to n do
        temp = prev1 + prev2
       prev2 = prev1
       prev1 = temp
    return prev1
```

Dynamic programming – quick review

Dynamic Programming is smart recursion

Dynamic programming – quick review

Dynamic Programming is smart recursion

+ explicit memoization

Dynamic programming – quick review

Dynamic Programming is smart recursion

- + explicit memoization
- + filling the table in right order
- $+ \ {\sf removing} \ {\sf recursion}.$

Suppose we have a recursive program foo(x) that takes an input x.

- On input of size \underline{n} the number of distinct sub-problems that foo(x) generates is at most A(n)
- foo(x) spends at most B(n) time not counting the time for its recursive calls.

Es.
$$\frac{F_b(n)}{B(n)} = 1$$
 $A(n) = n$ $O(n) = O(A(n), B(n))$

Suppose we have a recursive program foo(x) that takes an input x.

- On input of size n the number of distinct sub-problems that foo(x) generates is at most A(n)
- foo(x) spends at most B(n) time not counting the time for its recursive calls.

Suppose we memorize the recursion.

Assumption: Storing and retrieving solutions to pre-computed problems takes O(1) time.

Suppose we have a recursive program foo(x) that takes an input x.

- On input of size n the number of distinct sub-problems that foo(x) generates is at most A(n)
- foo(x) spends at most B(n) time not counting the time for its recursive calls.

Suppose we memorize the recursion.

Assumption: Storing and retrieving solutions to pre-computed problems takes O(1) time.

Q: What is an upper bound on the running time of memorized version of foo(x) if |x| = n?

Suppose we have a recursive program foo(x) that takes an input x.

- On input of size n the number of distinct sub-problems that foo(x) generates is at most A(n)
- foo(x) spends at most B(n) time not counting the time for its recursive calls.

Suppose we memorize the recursion.

Assumption: Storing and retrieving solutions to pre-computed problems takes O(1) time.

Q: What is an upper bound on the running time of memorized version of foo(x) if |x| = n? O(A(n)B(n)).

Longest Increasing Sub-sequence Revisited

$$\mathcal{O}(n2^n) \longrightarrow \mathcal{O}(2^n) \longrightarrow \mathcal{O}(n^2) ?$$

Sequences

Definition

<u>Sequence</u>: an ordered list a_1, a_2, \ldots, a_n . <u>Length</u> of a sequence is number of elements in the list.

Definition

$$a_{i_1}, \ldots, a_{i_k}$$
 is a sub-sequence of a_1, \ldots, a_n if $1 \le i_1 < i_2 < \ldots < i_k \le n$.

Definition

A sequence is increasing if $a_1 < a_2 < \ldots < a_n$. It is non-decreasing if $a_1 \le a_2 \le \ldots \le a_n$. Similarly decreasing and non-increasing.

Sequences - Example...

Example

- Sequence: 6, 3, 5, 2, 7, 8, 1
- Subsequence of above sequence: 5, 2, 1
- Increasing sequence: 3, 5, 9, 17, 54
- Decreasing sequence: 34, 21, 7, 5, 1
- Increasing subsequence of the first sequence: 2, 7, 8.
- Longest Increasing subsequence of the first sequence: 3, 5, 7, 8.

Longest Increasing Subsequence Problem

Input A sequence of numbers $a_0, a_1, \ldots, a_{n-1}$ **Goal** Find an increasing subsequence $a_{i_0}, a_{i_1}, \ldots, a_{i_k}$ of maximum length

Longest Increasing Subsequence Problem

- **Input** A sequence of numbers $a_0, a_1, \ldots, a_{n-1}$
 - **Goal** Find an increasing subsequence $a_{i_0}, a_{i_1}, \ldots, a_{i_k}$ of maximum length

Example

- Sequence: 6, 3, 5, 2, 7, 8, 1
- Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- Longest increasing subsequence: 3, 5, 7, 8

Naive Recursion Enumeration - State Tree

- This is just for [6,3,5,2,7]! (Tikz won't print larger trees)
- How many leafs are there for the full [6,3,5,2,7, 8, 1] sequence
- What is the running time?

$$O(n2^n)$$

Naive Recursion Enumeration - Code

Assume a_1, a_2, \ldots, a_n is contained in an array A

```
\begin{aligned} & \textbf{algLISNaive}(A[1..n]): \\ & \textit{max} = 0 \\ & \textbf{for} \text{ each subsequence } B \text{ of } A \textbf{ do} \\ & \textbf{if } B \text{ is increasing and } |B| > \textit{max} \textbf{ then} \\ & \textit{max} = |B| \end{aligned}
```

Running time: $O(n2^n)$.

 2^n subsequences of a sequence of length n and O(n) time to check if a given sequence is increasing.

Backtracking Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS
$$(A[0..n-1])$$
:

Backtracking Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[0..n-1]):

- Case 1: Does not contain A[n-1] in which case LIS(A[0..n-1]) = LIS(A[0..(n-1)])
- Case 2: contains A[n-1] in which case LIS(A[0..n-1]) is not so clear.

Observation

For second case we want to find a subsequence in A[1..(n-2)] that is restricted to numbers less than A[n-1]. This suggests that a more general problem is LIS_smaller(A[0..n-1], x) which gives the longest increasing subsequence in A where each number in the sequence is less than x.

Example

Sequence: A[0..6] = 6, 3, 5, 2, 7, 8, 1

$$0(2^n)$$

LIS(A[1..n]): the length of longest increasing subsequence in A

LIS_smaller(A[1..n], x): length of longest increasing subsequence in A[1..n] with all numbers in subsequence less than x

```
\begin{split} \textbf{LIS\_smaller}(A[1..i], x) : \\ & \textbf{if } i = 0 \textbf{ then return } 0 \\ & m = \textbf{LIS\_smaller}(A[1..i-1], x) \\ & \textbf{if } A[i] < x \textbf{ then} \\ & m = max(m, 1 + \textbf{LIS\_smaller}(A[1..i-1], A[i])) \\ & \texttt{Output } m \end{split}
```

```
 \begin{split} \textbf{LIS}\left(A[1..n]\right): \\ \textbf{return LIS\_smaller}\left(A[1..n],\infty\right) \end{split}
```

```
\begin{split} \textbf{LIS\_smaller}(A[1..i], x) : \\ & \textbf{if } i = 0 \textbf{ then return } 0 \\ & m = \textbf{LIS\_smaller}(A[1..i-1], x) \\ & \textbf{if } A[i] < x \textbf{ then} \\ & m = max(m, 1 + \textbf{LIS\_smaller}(A[1..i-1], A[i])) \\ & \texttt{Output } m \end{split}
```

```
 \begin{aligned} \textbf{LIS}\left(A[1..n]\right): \\ \textbf{return LIS\_smaller}\left(A[1..n], \infty\right) \end{aligned}
```

• How many distinct sub-problems will LIS_smaller $(A[1..n], \infty)$ generate?

```
\begin{split} \textbf{LIS\_smaller}(A[1..i],x): \\ \textbf{if } i &= 0 \textbf{ then return } 0 \\ m &= \textbf{LIS\_smaller}(A[1..i-1],x) \\ \textbf{if } A[i] &< x \textbf{ then} \\ m &= max(m,1+ \textbf{LIS\_smaller}(A[1..i-1],A[i])) \\ \textbf{Output } m \end{split}
```

```
 \begin{aligned} \textbf{LIS}(A[1..n]): \\ \textbf{return LIS\_smaller}(A[1..n], \infty) \end{aligned}
```

• How many distinct sub-problems will **LIS_smaller**($A[1..n], \infty$) generate? $O(n^2)$

```
\begin{split} \textbf{LIS\_smaller}(A[1..i],x): \\ & \textbf{if } i = 0 \textbf{ then return } 0 \\ & m = \textbf{LIS\_smaller}(A[1..i-1],x) \\ & \textbf{if } A[i] < x \textbf{ then} \\ & m = max(m,1+\textbf{LIS\_smaller}(A[1..i-1],A[i])) \\ & \texttt{Output } m \end{split}
```

```
 \begin{aligned} \textbf{LIS}\left(A[1..n]\right): \\ \textbf{return LIS\_smaller}\left(A[1..n], \infty\right) \end{aligned}
```

- How many distinct sub-problems will **LIS_smaller**($A[1..n], \infty$) generate? $O(n^2)$
- What is the running time if we memorize recursion?

```
\begin{split} \textbf{LIS\_smaller}(A[1..i], x) : \\ & \textbf{if } i = 0 \textbf{ then return } 0 \\ & m = \textbf{LIS\_smaller}(A[1..i-1], x) \\ & \textbf{if } A[i] < x \textbf{ then} \\ & m = max(m, 1 + \textbf{LIS\_smaller}(A[1..i-1], A[i])) \\ & \texttt{Output } m \end{split}
```

- How many distinct sub-problems will **LIS_smaller**($A[1..n], \infty$) generate? $O(n^2)$
- What is the running time if we memorize recursion? $Q(n^2)$ since each call takes O(1) time to assemble the answers from to recursive calls and no other computation.

```
\begin{split} \textbf{LIS\_smaller}(A[1..i], x) : \\ & \textbf{if } i = 0 \textbf{ then return } 0 \\ & m = \textbf{LIS\_smaller}(A[1..i-1], x) \\ & \textbf{if } A[i] < x \textbf{ then} \\ & m = max(m, 1 + \textbf{LIS\_smaller}(A[1..i-1], A[i])) \\ & \texttt{Output } m \end{split}
```

```
 \begin{aligned} \textbf{LIS}(A[1..n]): \\ \textbf{return LIS\_smaller}(A[1..n], \infty) \end{aligned}
```

- How many distinct sub-problems will **LIS_smaller**($A[1..n], \infty$) generate? $O(n^2)$
- What is the running time if we memorize recursion? $O(n^2)$ since each call takes O(1) time to assemble the answers from to recursive calls and no other computation.
- How much space for memoization?

```
\begin{split} \textbf{LIS\_smaller}(A[1..i], x) : \\ & \textbf{if } i = 0 \textbf{ then return } 0 \\ & m = \textbf{LIS\_smaller}(A[1..i-1], x) \\ & \textbf{if } A[i] < x \textbf{ then} \\ & m = max(m, 1 + \textbf{LIS\_smaller}(A[1..i-1], A[i])) \\ & \texttt{Output } m \end{split}
```

```
 \begin{aligned} \textbf{LIS}\left(A[1..n]\right): \\ \textbf{return LIS\_smaller}\left(A[1..n], \infty\right) \end{aligned}
```

- How many distinct sub-problems will **LIS_smaller**($A[1..n], \infty$) generate? $O(n^2)$
- What is the running time if we memorize recursion? $O(n^2)$ since each call takes O(1) time to assemble the answers from to recursive calls and no other computation.
- How much space for memoization? $O(n^2)$

Naming sub-problems and recursive equation

After seeing that number of sub-problems is $O(n^2)$ we name them to help us understand the structure better. For notational ease we add ∞ at end of array (in position n+1)

LIS(i, j): length of longest increasing sequence in A[1..i] among numbers less than A[j] (defined only for i < j)

Naming sub-problems and recursive equation

After seeing that number of sub-problems is $O(n^2)$ we name them to help us understand the structure better. For notational ease we add ∞ at end of array (in position n+1)

LIS(i, j): length of longest increasing sequence in A[1..i] among numbers less than A[j] (defined only for i < j)

Base case: LIS(0,j) = 0 for $1 \le j \le n+1$ Recursive relation:

- LIS(i,j) = LIS(i-1,j) if $A[i] \ge A[j]$
- $LIS(i,j) = \max\{LIS(i-1,j), 1 + LIS(i-1,i)\}\ \text{if}\ A[i] < A[j]$

Output: LIS(n, n + 1).

Sequence:
$$A[1 \dots 7] = [6, 3, 5, 2, 7, 8, 1] \begin{cases} 0 & i = 0 \\ LIS(i - 1, j) & A[i] \ge A[j] \\ \max \begin{cases} LIS(i - 1, j) & A[i] < A[j] \\ 1 + LIS(i - 1, i) \end{cases}$$

$$LIS(i,j) = \\ Sequence: \\ A[1 \dots 7] = [6,3,5,2,7,8,1] \begin{cases} 0 & i = 0 \\ LIS(i-1,j) & A[i] \geq A[j] \\ \max \begin{cases} LIS(i-1,j) & A[i] < A[j] \end{cases} \end{cases}$$

Sequence:
$$A[1...7] = [6, 3, 5, 2, 7, 8, 1] \begin{cases} 0 & i = 0 \\ LIS(i-1,j) & A[i] \ge A[j] \\ \max \begin{cases} LIS(i-1,j) & A[i] < A[j] \end{cases} \end{cases}$$

Sequence:
$$A[1 \dots 7] = [6, 3, 5, 2, 7, 8, 1] \begin{cases} 0 & i = 0 \\ LIS(i - 1, j) & A[i] \ge A[j] \\ \max \begin{cases} LIS(i - 1, j) & A[i] < A[j] \\ 1 + LIS(i - 1, i) \end{cases}$$

represents sub-array

Sequence:
$$A[1 \dots 7] = [6, 3, 5, 2, 7, 8, 1] \begin{cases} 0 & i = 0 \\ LIS(i - 1, j) & A[i] \ge A[j] \\ \max \begin{cases} LIS(i - 1, j) & A[i] < A[j] \\ 1 + LIS(i - 1, i) \end{cases}$$

	A[1] = 6	A[2] = 3	A[3]=5	A[4]=2	A[5]=7	A[6]=8	A[7]=1	inf	Represents limiter
	1	2	3	4	5	6	7	8	j
[] 0	0	0	0	0	0	0	0	0	
[6] 1		0	0	0	1	1	0	1	
[6,3] 2			1	0	1	1	0	1	
[6,3,5] 3				0	2	2	0	2	
[6,3,5,2] 4					2	2	0	2	
[6,3,5,2,7] 5									
[6,3,5,2,7,8] 6									
[6,3,5,2,7,8,1] 7									

Represents sub-array

Sequence:
$$A[1...7] = [6, 3, 5, 2, 7, 8, 1] \begin{cases} 0 & i = 0 \\ LIS(i-1,j) & A[i] \ge A[j] \\ \max \begin{cases} LIS(i-1,j) & A[i] < A[j] \end{cases} \end{cases}$$

		A[1] = 6	A[2] = 3	A[3]=5	A[4]=2	A[5]=7	A[6]=8	A[7]=1	inf	Represents limiter
		1	2	3	4	5	6	7	8	j
	0	0	0	0	0	0	0	0	0	
[6]	1		0	0	0	1	1	0	1	
[6,3]	2			1	0	1	1	0	1	
[6,3,5]	3				0	2	2	0	2	
[6,3,5,2]	4					2	2	0	2	
[6,3,5,2,7]	5						3	0	3	
[6,3,5,2,7,8]	6									
[6,3,5,2,7,8,1]	7									

Represents sub-array

Sequence:
$$A[1...7] = [6, 3, 5, 2, 7, 8, 1] \begin{cases} 0 & i = 0 \\ LIS(i-1,j) & A[i] \ge A[j] \\ \max \begin{cases} LIS(i-1,j) & A[i] < A[j] \end{cases} \end{cases}$$

		A[1] = 6	A[2] = 3	A[3]=5	A[4]=2	A[5] = 7	A[6] = 8	A[7]=1	inf	Represents limite
		1	2	3	4	5	6	7	8	j
	0	0	0	0	0	0	0	0	0	
[6]	1		0	0	0	1	1	0	1	
[6,3]	2			1	0	1	1	0	1	
[6,3,5]	3				0	2	2	0	2	
[6,3,5,2]	4					2	2	0	2	
[6,3,5,2,7]	5						3	0	3	
[6,3,5,2,7,8]	6							0	4	
[6,3,5,2,7,8,1]	7									
_	-									•

Represents sub-array

Sequence:
$$A[1...7] = [6, 3, 5, 2, 7, 8, 1] \begin{cases} 0 & i = 0 \\ LIS(i-1,j) & A[i] \ge A[j] \\ \max \begin{cases} LIS(i-1,j) & A[i] < A[j] \end{cases} \end{cases}$$

		Λ[1] _ 6	2 _ [د] ۸	V[3]_E	Λ[4]_2	Λ[E]_7	V[6]—6	۸[7]_1	inf	Represents limite
		A[1] = 0	A[2] = 3	A[3]=5				A[I]=1		Represents limite
		1	2	3	4	5	6	7	8	j
	0	0	0	0	0	0	0	0	0	
[6]	1		0	0	0	1	1	0	1	
[6,3]	2			1	0	1	1	0	1	
[6,3,5]	3				0	2	2	0	2	
[6,3,5,2]	4					2	2	0	2	
[6,3,5,2,7]	5						3	0	3	
[6,3,5,2,7,8]	6							0	4	
[6,3,5,2,7,8,1]	7								4	
P	-									

Represents sub-array

Sequence:
$$A[1...7] = [6, 3, 5, 2, 7, 8, 1] \begin{cases} 0 & i = 0 \\ LIS(i-1,j) & A[i] \ge A[j] \\ \max \begin{cases} LIS(i-1,j) & A[i] < A[j] \end{cases} \end{cases}$$

Iterative algorithm

The dynamic program for longest increasing subsequence

```
LIS-Iterative(A[1..n]):
    A[n+1]=\infty
    int LIS[0..n-1,0..n]
    for i = 0 \dots n) if A[i] \leq A[j] then L/S[0][j] = 1
    for i = 1 \dots n-1 do
         for j = i \dots n-1 do
              if (A[i] > A[i])
                   LIS[i, j] = LIS[i - 1, j]
              else
                   LIS[i, j] = \max(LIS[i-1, j], 1 + LIS[i-1, i])
    Return LIS[n, n+1]
```

Running time: $O(n^2)$ Space: $O(n^2)$

Iterative algorithm

The dynamic program for longest increasing subsequence

```
LIS-Iterative(A[1..n]):
    A[n+1]=\infty
    int LIS[0..n-1,0..n]
    for i = 0 \dots n) if A[i] \leq A[j] then LIS[0][j] = 1
    for i = 1 \dots n-1 do
         for j = i \dots n-1 do
              if (A[i] > A[i])
                   LIS[i, j] = LIS[i - 1, j]
              else
                   LIS[i, j] = \max(LIS[i-1, j], 1 + LIS[i-1, i])
    Return LIS[n, n+1]
```

Running time: $O(n^2)$

Space: $O(n^2)$ Can be done in linear space. How?

Two comments

Question: Can we compute an optimum solution and not just its value?

Two comments

Question: Can we compute an optimum solution and not just its value?

Yes! See notes.

Finding the sub-sequence

		A[1] = 6	A[2] = 3	A[3]=5	A[4]=2	A[5]=7	A[6]=8	A[7]=1	inf	Represer
		1	2	3	4	5	6	7	8	j
	0	0	0	0	0	0	0	0	0	
[6]	1		0	0	0	1	1	0	1	
[6,3]	2			1	0	1	1	0	1	
[6,3,5]	3				0	2	2	0	2	
[6,3,5,2]	4					2	2	0	2	
[6,3,5,2,7]	5						3	0	3	
[6,3,5,2,7,8]	6							0	4	
[6,3,5,2,7,8,1]	7								4	
D	- :									

Sequence:

$$A[1...7] = [6,3,5,2,7,8,1]$$
 LIS $(i,j) =$

$$LIS = [3, 5, 7, 8]$$

$$LIS(i,j) =$$

$$A[1...7] = [0,3,5,2,7,8,1] \qquad LIS(i,j) = \\ We know the LIS length (4) \\ but how do we find the LIS \\ itself? \\ LIS = [3,5,7,8] \qquad \begin{cases} 0 & i = 0 \\ LIS(i-1,j) & A[i] \ge A[j] \\ \max \begin{cases} LIS(i-1,j) & A[i] < A[j] \\ 1 + LIS(i-1,i) \end{cases} \end{cases}$$

Finding the sub-sequence

Represents sub-array

Sequence:

$$A[1...7] = [6, 3, 5, 2, 7, 8, 1]$$

We know the LIS length (4) but how do we find the LIS itself?

$$LIS = [3, 5, 7, 8]$$

$$LIS(i,j) =$$

$$\begin{cases} 0 & i = 0 \\ LIS(i-1,j) & A[i] \ge A[j] \\ \max \begin{cases} LIS(i-1,j) & A[i] < A[j] \\ 1 + LIS(i-1,i) \end{cases} \end{cases}$$

Two comments

Question: Can we compute an optimum solution and not just its value?
Yes!

Question: Is there a faster algorithm for LIS?

Two comments

Question: Can we compute an optimum solution and not just its value?
Yes!

Question: Is there a faster algorithm for LIS? Yes! Using a different recursion and optimizing one can obtain an $O(n \log n)$ time and O(n) space algorithm. $O(n \log n)$ time is not obvious. Depends on improving time by using data structures on top of dynamic programming.

programming algorithm: summary

How to come up with dynamic

 Find a "smart" recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.

- Find a "smart" recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.

- Find a "smart" recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
- This gives an upper bound on the total running time if we use memoization.

- Find a "smart" recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
- This gives an upper bound on the total running time if we use memoization.
- Come up with an explicit memoization algorithm for the problem.

- Find a "smart" recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
- This gives an upper bound on the total running time if we use memoization.
- Come up with an explicit memoization algorithm for the problem.
- Eliminate recursion and find an iterative algorithm.

- Find a "smart" recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
- This gives an upper bound on the total running time if we use memoization.
- Come up with an explicit memoization algorithm for the problem.
- Eliminate recursion and find an iterative algorithm.
- We need to find the right order of evaluating the sub-problems.
 This leads to an a dynamic programming algorithm.

- Find a "smart" recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
- This gives an upper bound on the total running time if we use memoization.
- Come up with an explicit memoization algorithm for the problem.
- Eliminate recursion and find an iterative algorithm.
- We need to find the right order of evaluating the sub-problems.
 This leads to an a dynamic programming algorithm.
- Optimize the resulting algorithm further.

- Find a "smart" recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
- This gives an upper bound on the total running time if we use memoization.
- Come up with an explicit memoization algorithm for the problem.
- Eliminate recursion and find an iterative algorithm.
- We need to find the right order of evaluating the sub-problems.
 This leads to an a dynamic programming algorithm.
- Optimize the resulting algorithm further.

• ...

- Find a "smart" recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
- This gives an upper bound on the total running time if we use memoization.
- Come up with an explicit memoization algorithm for the problem.
- Eliminate recursion and find an iterative algorithm.
- We need to find the right order of evaluating the sub-problems.
 This leads to an a dynamic programming algorithm.
- Optimize the resulting algorithm further.
- ...
- Get rich!

35