Теория вероятностей «Условное математическое ожидание»

Условное математическое ожидание относительно события ненулевой меры

Условная вероятность относительно события ненулевой меры является вероятностной мерой на исходном измеримом пространстве (Ω, \mathcal{F}) . Следовательно, относительно неё можно ввести интеграл Лебега и определенть математическое ожидание. Однако мы начнём с эквивалентного определения, записанного в другой форме.

Определение 1. Пусть $(\Omega, \mathcal{F}, \mathbb{P})$ — вероятностное пространство, $B \in \mathcal{F}$ — событие ненулевой вероятностной меры, ξ — случайная величина на $(\Omega, \mathcal{F}, \mathbb{P})$. Условным математическим ожиданием случайной величины ξ относительно события B называется величина

$$\mathbb{E}[\xi|B] \stackrel{\text{def}}{=} \frac{\mathbb{E}\left[\xi \cdot \mathbb{I}_{B}\right]}{\mathbb{P}\{B\}}.$$

Замечание 1. Введённое определение обобщает понятие условной вероятности. Действительно, если рассмотреть произвольное измеримое множество $A \in \mathcal{F}$ и его индикаторную случайную величину $\xi = \mathbb{I}_A$, то её условное математическое ожидание относительно множества B совпадает с условной вероятностью A при условии B:

$$\mathbb{E}[\xi|B] = \frac{\mathbb{E}\left[\mathbb{I}_A \cdot \mathbb{I}_B\right]}{\mathbb{P}\{B\}} = \frac{\mathbb{E}\left[\mathbb{I}_{A \cap B}\right]}{\mathbb{P}\{B\}} = \frac{\mathbb{P}\left\{A \cap B\right\}}{\mathbb{P}\{B\}} = \mathbb{P}\{A|B\}.$$

Из определения следует, что

$$\mathbb{E}[\xi|B] = \frac{1}{\mathbb{P}\{B\}} \int_{\Omega} \xi \cdot \mathbb{I}_B d\mathbb{P}(\omega) = \int_{B} \xi \frac{d\mathbb{P}(\omega)}{\mathbb{P}\{B\}} = \int_{B} \xi d\mathbb{P}(\omega|B) = \int_{\Omega} \xi d\mathbb{P}(\omega|B),$$

где последнее равенство следует, из того, что $\mathbb{P}\{\overline{B}|B\}=0$. Итак, условное математическое ожидание относительно события ненулевой вероятностной меры есть интеграл Лебега относительно вероятностной меры $\mathbb{P}\{\cdot\mid B\}$. Если переписать это утверждение через интеграл Стильтьеса, то получим

$$\mathbb{E}[\xi|B] = \int_{\mathbb{R}^n} x dF_{\xi}(x|B),$$

где $F_{\xi}(x|B) = \mathbb{P}\{\xi < x|B\}.$

Пусть теперь B_1, B_2, \ldots — конечное или счётное объединение попарно непересекающихся множеств ненулевой меры. Тогда из формулы полной вероятности

$$F(x) = \sum_{i} \mathbb{P}\{B_i\} F(x|B_i)$$

и представления условного математического ожидания относительно события через интеграл Стильтьеса получаем формулу полного математического ожидания:

$$\mathbb{E}\xi = \sum_{i} \mathbb{P}\{B_i\} \mathbb{E}[\xi|B_i].$$

Данная формула оказывается очень удобной для вычисления математических ожиданий.

Пример 1. Пусть ξ_1, ξ_2, \ldots — независимые одинаково распределённые случайные величины с конечными математическими ожиданиями, N — случайная величина, независящая от них, принимающая натуральные значения и имеющая конечное математическое ожидание. Определим случайную величину $\eta = \sum_{i=1}^{N} \xi_i$. Докажите тождество Вальда:

$$\mathbb{E}\eta = \mathbb{E}\xi_1 \cdot \mathbb{E}N.$$

Доказательство. Рассмотрим события $B_n = \{N = n\}$. Тогда

$$\mathbb{E}\eta = \sum_{n=1}^{\infty} \mathbb{P}\{N=n\}\mathbb{E}[\eta|B_n] = \sum_{n=1}^{\infty} \mathbb{P}\{N=n\}\mathbb{E}\left[\sum_{i=1}^{n} \xi_i\right]$$

 $= \sum_{n=1}^{\infty} \mathbb{P}\{N=n\} \cdot n\mathbb{E}\xi_1 = \mathbb{E}\xi_1 \sum_{n=1}^{\infty} n\mathbb{P}\{N=n\} = \mathbb{E}\xi_1 \cdot \mathbb{E}N.$

Условное математическое ожидание относительно разбиения

Двигаясь от частного к общему, мы сначала определим условное математическое ожидание относительно разбиения для дискретных случайных величин, а затем дадим определение в общем случае.

Итак, пусть $(\Omega, \mathcal{F}, \mathbb{P})$ — дискретное вероятностное пространство и $D = \{B_1, \dots, B_n\}$ — разбиение Ω , т. е. $B_i \in \mathcal{F}, \mathbb{P}\{B_i\} > 0$ и $\bigcup_{i=1}^{\infty} B_i = \Omega$.

Определение 2. Условной вероятностью события $A \in \mathcal{F}$ относительно разбиения D называется *случайная величина*

$$\mathbb{P}\{A|D\}(\omega) \stackrel{\text{def}}{=} \sum_{i=1}^{n} \mathbb{P}\{A|B_i\}\mathbb{I}_{B_i}(\omega).$$

Отметим, что данная случайная величина является простой и принимает на множествах B_i значения $\mathbb{P}\{A|B_i\}$. Перечислим простейшие свойства условной вероятности относительно разбиения.

1. Для любых $A,B\in\mathcal{F}$ таких, что $A\cap B=\varnothing$, выполнено: $\mathbb{P}\{A\cup B|D\}(\omega)=\mathbb{P}\{A|D\}(\omega)+\mathbb{P}\{B|D\}(\omega)$.

- 2. Если $D = \{\Omega\}$ (тривиальное разбиение), то $\mathbb{P}\{A|D\}(\omega) = \mathbb{P}\{A\}$.
- 3. $\mathbb{E}[\mathbb{P}\{A|D\}(\omega)] = \mathbb{P}\{A\}$ (формула полной вероятности).

Рассмотрим теперь некоторую случайную величину η , принимающую конечное число значений:

$$\eta(\omega) = \sum_{i=1}^{n} y_i \mathbb{I}_{B_i}(\omega),$$

где $B_i = \{\omega \mid \eta(\omega) = y_i\}$. Разбиение $D_{\eta} = \{B_1, \dots, B_n\}$ называется **разбиением, порождаемым случайной величиной** η .

Определение 3. Условной вероятностью события $A \in \mathcal{F}$ относительно случайной величины η , принимающей конечный набор значений будем называть следующую случайную величину:

$$\mathbb{P}\{A|\eta\} \stackrel{\text{def}}{=} \mathbb{P}\{A|D_{\eta}\}.$$

Данное определение легко обобщается на случай конечного числа случайных величин η_1, \ldots, η_m , имеющих конечное множество значений. Рассмотрим разбиение $D_{\eta_1, \ldots, \eta_m}$, состоящее из событий

$$D_{y_1,\ldots,y_m} = \{\omega \mid \eta_1(\omega) = y_1,\ldots,\eta_m(\omega) = y_m\}$$

для всех возможных наборов (y_1, \ldots, y_m) .

Определение 4. Условной вероятностью события $A \in \mathcal{F}$ относительно случайных величин η_1, \dots, η_m , принимающих конечный набор значений будем называть следующую случайную величину:

$$\mathbb{P}\{A|\eta_1,\ldots,\eta_m\} \stackrel{\text{def}}{=} \mathbb{P}\{A|D_{\eta_1,\ldots,\eta_m}\}.$$

Рассмотрим случайную величину ξ , принимающую конечное число значений,

$$\xi = \sum_{i=1}^{m} x_i \mathbb{I}_{A_i}, \quad A_i = \{\omega \mid \xi(\omega) = x_i\}$$

и некоторое разбиение $D = \{B_1, \dots, B_m\}$. Математическое ожидание ξ , как мы знаем, определяется через вероятности $\mathbb{P}\{A_i\}$ по формуле

$$\mathbb{E}\xi = \sum_{i=1}^{m} x_i \mathbb{P}\{A_i\}.$$

Если в данной формуле заменить $\mathbb{P}\{A_i\}$ на $\mathbb{P}\{A_i|D\}$, то получим определение **условного математического ожидания** ξ , принимающей конечный набор значений, относительно разбиения D:

$$\mathbb{E}[\xi|D](\omega) \stackrel{\text{def}}{=} \sum_{i=1}^{m} x_i \mathbb{P}\{A_i|D\}(\omega).$$

Отметим, что условное математическое ожидание относительно разбиения — это случайная величина. Кроме того, $\mathbb{E}[\xi|D](\omega)$ для всех ω из одного элемента разбиения B_i принимает одно и то же значение $\sum_{j=1}^m x_j \mathbb{P}\{A_j|B_i\} \stackrel{\text{def}}{=} \mathbb{E}[\xi|B_i]$. Данное наблюдение приводит нас к общему определению математического ожидания относительно разбиения.

Определение 5. Условным математическим ожиданием случайной величины ξ относительно разбиения $D=\{B_1,\dots,B_n\}$ называется случайная величина

$$\mathbb{E}[\xi|D](\omega) \stackrel{\text{def}}{=} \sum_{i=1}^{n} \mathbb{E}[\xi|B_i] \mathbb{I}_{B_i}(\omega).$$

Перечислим некоторые важные свойства условного математического ожидания относительно разбиения (ξ , η — случайные величины, имеющие конечные мат. ожидания).

- 1. $\mathbb{E}[a\xi + b\eta|D](\omega) = a\mathbb{E}[\xi|D](\omega) + b\mathbb{E}[\eta|D](\omega)$, где a, b константы.
- 2. $\mathbb{E}[\xi|\{\Omega\}](\omega) = \mathbb{E}\xi$.
- 3. $\mathbb{E}[C|D] = C$, где C константа.
- 4. $\mathbb{E}[\mathbb{I}_A|D] = \mathbb{P}\{A|D\}.$
- 5. $\mathbb{E}\left[\mathbb{E}[\xi|D]\right] = \mathbb{E}\xi$ (обобщение формулы полной вероятности). Действительно,

$$\mathbb{E}\left[\mathbb{E}[\xi|D]\right] = \mathbb{E}\left[\sum_{i=1}^{n} \mathbb{E}[\xi|B_{i}]\mathbb{I}_{B_{i}}\right] = \sum_{i=1}^{n} \mathbb{E}[\xi|B_{i}]\mathbb{E}[\mathbb{I}_{B_{i}}] =$$

$$= \sum_{i=1}^{n} \frac{\mathbb{E}[\xi \mathbb{I}_{B_i}]}{\mathbb{P}\{B_i\}} \cdot \mathbb{P}\{B_i\} = \sum_{i=1}^{n} \mathbb{E}[\xi \mathbb{I}_{B_i}] = \mathbb{E}\left[\xi \sum_{i=1}^{n} \mathbb{I}_{B_i}\right] = \mathbb{E}\xi$$

в силу того, что B_i образуют разбиение Ω .

6. Если $\eta = \sum_{i=1}^n x_i \mathbb{I}_{B_i}$, то $\mathbb{E}[\xi \eta | D](\omega) = \eta(\omega) \mathbb{E}[\xi | D](\omega)$. Действительно, для всех $\omega \in B_i$ выполняется $\mathbb{E}[\xi \eta | D](\omega) = \mathbb{E}[\xi \eta | B_i] = x_i \mathbb{E}[\xi | B_i] = \eta(\omega) \mathbb{E}[\xi | D](\omega)$.

Упражнение 1. (The Coin Flip Conundrum). Два брата Орвилл и Уилбур¹ спорят за право первым испытать самолёт, который они построили. Для этого Уилбур, более сведующий в теории вероятностей, предложил решить спор следующей игрой. Братья по очереди бросают симметричную монетку (считаем, что сжульничать в броске невозможно). Если раньше выпадут два орла подряд, то выигрывает Орвил, а если раньше выпадет сначала орёл, а потом решка, то выигрывает Уилбур. Так как Орвилл плохо знает теорию вероятностей и полностью доверяет своему брату, он согласился на эту игру. Насколько честна такая игра?

¹https://en.wikipedia.org/wiki/Wright_brothers

Решение. Покажем, что игра нечестна. Отдельно рассмотрим, сколько раз в среднем нужно бросить монетку, чтобы выпало два подряд орла. Пусть X — число бросков монеты до первого выпадения двух орлов подряд, X_1 — число бросков монеты до первого выпадения орла, X_2 — число бросков монеты после выпадения первого орла. Нам нужно найти $\mathbb{E}[X]$. Заметим, что $X = X_1 + X_2 \Rightarrow \mathbb{E}[X] = \mathbb{E}[X_1] + \mathbb{E}[X_2]$.

$$\mathbb{P}{X_1 = k} = \frac{1}{2} \cdot \frac{1}{2^{k-1}} = \frac{1}{2^k} \Rightarrow \mathbb{E}[X_1] = \sum_{i=1}^{\infty} \frac{k}{2^k} \stackrel{\text{①}}{=} 2,$$

где равенство 1 доказывается в конце этого документа (см. пример про алгоритм типа "Лас-Вегас"). Итак, $\mathbb{E}[X] = 2 + \mathbb{E}[X_2]$. Пользуясь формулой для полного математического ожидания, получаем

$$\mathbb{E}[X_2] = \frac{1}{2}\mathbb{E}[X_2 \mid$$
 на шаге $(X_1 + 1)$ выпала решка] $+ \frac{1}{2}\mathbb{E}[X_2 \mid$ на шаге $(X_1 + 1)$ выпал орёл] $= \frac{1}{2}(1 + \mathbb{E}[X]) + \frac{1}{2} = \frac{1}{2}\mathbb{E}[X] + 1,$

откуда

$$\mathbb{E}[X] = 2 + \frac{1}{2}\mathbb{E}[X] + 1 \Rightarrow \mathbb{E}[X] = 6,$$

то есть среднее число бросков до первого выпадения двух подряд орлов равно 6.

Аналогчино рассмотрим, сколько раз в среднем нужно бросить монетку, чтобы выпал сначала орёл, а затем сразу решка. Пусть Y — число бросков монеты до первого выпадения орла и следом за ним решка, Y_1 — число бросков монеты до первого выпадения орла, Y_2 — число бросков монеты после выпадения первого орла. Нам нужно найти $\mathbb{E}[Y]$. Заметим, что $Y = Y_1 + Y_2 \Rightarrow \mathbb{E}[Y] = \mathbb{E}[Y_1] + \mathbb{E}[Y_2]$. Так как $\mathbb{E}[Y_1] = \mathbb{E}[X_1] = 2$, то $\mathbb{E}[Y] = 2 + \mathbb{E}[Y_2]$. Пользуясь формулой для полного математического ожидания, получаем

$$\mathbb{E}[Y_2] = \frac{1}{2}\mathbb{E}[Y_2 \mid$$
 на шаге (Y_1+1) выпала решка] $+\frac{1}{2}\mathbb{E}[Y_2 \mid$ на шаге (Y_1+1) выпал орёл] $=\frac{1}{2}+\frac{1}{2}\left(1+\mathbb{E}[Y_2]\right)=\frac{1}{2}\mathbb{E}[Y_2]+1\Rightarrow \mathbb{E}[Y_2]=2,$

откуда

$$\mathbb{E}[Y] = 2 + 2 = 4,$$

то есть среднее число бросков до первого выпадения орла, а затем сразу решки равно 4. Таким образом, Уилбур предложил нечестные правила игры.

Упражнение 2. Показать, что если $\mathbb{D}\xi < \infty$, то $\mathbb{E}[\xi|D]$ минимизирует средний квадрат отклонения $\mathbb{E}\left[(\xi-\eta)^2\right]$ среди всех случайных величин η , измеримых относительно σ -алгебры, порождённой разбиением D.

Доказательство. Во-первых, заметим, что случайные величины, измеримые относительно σ -алгебры, порождённой разбиением D, являются те и только те случайные величины, которые принимают постоянные значения на элементах разбиения B_i . Во-вторых, используя формулу полного математического ожидания, получим

$$\mathbb{E}\left[(\xi - \eta)^{2}\right] = \sum_{i=1}^{n} \mathbb{E}\left[(\xi - \eta)^{2} | B_{i}\right] \mathbb{P}\{B_{i}\} = \sum_{i=1}^{n} \mathbb{E}\left[(\xi - x_{i})^{2} | B_{i}\right] \mathbb{P}\{B_{i}\},$$

где x_i — значения, принимаемые случайной величиной η , на элементах разбиения B_i . Напомним, что $a*=\mathbb{E}\xi$ минимизирует выражение $\mathbb{E}\left[(\xi-a)^2\right]$ по a. Аналогично и здесь можно показать, что оптимальные значения случайной величины на элементах разбиения будут равны $y_i^*=\mathbb{E}[\xi|B_i]$ (нужно лишь заметить, что $\mathbb{E}[\xi|B_i]$ обладает всеми необходимыми свойствами $\mathbb{E}\xi$, которые использовались для аналогичного результата для дисперсии).

Данное упражнение показывает, что условное математическое ожидание случайной величины ξ относительно разбиения D — это проекция в пространстве L_2 случайной величины ξ на подпространство случайных величин, измеримых относительно $\sigma(D)$, то есть оператор условного математического ожидания относительно разбиения является проектором на указанное подпространство.

Рассмотрим конечное число случайных величин η_1, \ldots, η_m , имеющих конечное множество значений. Рассмотрим разбиение D_{η_1,\ldots,η_m} , состоящее из событий

$$D_{y_1,...,y_m} = \{ \omega \mid \eta_1(\omega) = y_1, ..., \eta_m(\omega) = y_m \}$$

для всех возможных наборов (y_1, \ldots, y_m) .

Определение 6. Условным математическим ожиданием случайной величины ξ относительно случайных величин η_1, \ldots, η_m будем называть следующую случайную величину:

$$\mathbb{E}[\xi|\eta_1,\ldots,\eta_m] \stackrel{\text{def}}{=} \mathbb{E}[\xi|D_{\eta_1,\ldots,\eta_m}].$$

Некоторые свойства, следующие из определения:

- 1) если ξ и η независимы, то $\mathbb{E}[\xi|\eta] = \mathbb{E}\xi$;
- 2) $\mathbb{E}[\eta|\eta] = \eta$.

Условное математическое ожидание относительно σ -алгебры

Рассмотрим вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$ и некоторую σ -алгебру $\mathcal{D} \subseteq \mathcal{F}$ $(\mathcal{D} - \sigma$ -подалгебра $\mathcal{F})$. Пусть ξ — некоторая случайная величина. Мы определяли математического ожидание случайной величины ξ (интеграл Лебега по вероятностной мере) в два этапа: сначала это было сделано для неотрицательных случайных величин, а затем и в общем случае мат. ожидание было определено формулой:

$$\mathbb{E}\xi=\mathbb{E}\xi^+-\mathbb{E}\xi^-$$
 при условии, что $\min\{\mathbb{E}\xi^-,\mathbb{E}\xi^+\}<\infty$.

Подобная же конструкция используется для определения условного мат. ожидания относительно σ -алгебры.

- Определение 7. 1. Условным математическим ожиданием неотрицательной случайной величины ξ относительно σ -алгебры \mathcal{D} называется расширенная случайная величина $\mathbb{E}[\xi|\mathcal{D}](\omega)$ (т.е. принимающая значения из $\overline{\mathbb{R}} = [-\infty, +\infty]$), такая, что
 - а) $\mathbb{E}[\xi|\mathcal{D}](\omega)$ является \mathcal{D} -измеримой;

b) для любого события $A \in \mathcal{D}$ выполняется:

$$\int_{A} \xi d\mathbb{P} = \int_{A} \mathbb{E}[\xi|\mathcal{D}]d\mathbb{P}.$$

2. Условным математическим ожиданием произвольной случайной величины ξ относительно σ -алгебры \mathcal{D} называется расширенная случайная величина

$$\mathbb{E}[\xi|\mathcal{D}](\omega) \stackrel{\mathrm{def}}{=} \mathbb{E}[\xi^{+}|\mathcal{D}](\omega) - \mathbb{E}[\xi^{-}|\mathcal{D}](\omega)$$

при условии, что с вероятностью 1 выполнено неравенство:

$$\min\{\mathbb{E}[\xi^{-}|\mathcal{D}](\omega), \mathbb{E}[\xi^{+}|\mathcal{D}](\omega)\} < \infty,$$

причём на множестве нулевой вероятностной меры $\{\omega \in \Omega \mid \min\{\mathbb{E}[\xi^-|\mathcal{D}](\omega), \mathbb{E}[\xi^+|\mathcal{D}](\omega)\} = \infty\}$ значение условного математического ожидание определяется произвольным образом. Если же $\mathbb{P}\{\omega \in \Omega \mid \min\{\mathbb{E}[\xi^-|\mathcal{D}](\omega), \mathbb{E}[\xi^+|\mathcal{D}](\omega)\} = \infty\} > 0$, то условное математическое ожидания ξ относительно σ -алгебры \mathcal{D} неопределено.

Замечание 2. Существование условного математического ожидания для неотрицательных случайных величин гарантирует теорема Радона-Никодима. Для этого рассмотрим неотрицательную случайную величину ξ и функцию множеств

$$Q(A) = \int_{A} \xi d\mathbb{P}, \quad A \in \mathcal{D}.$$

Легко показать, что $Q(\cdot)$ является мерой на (Ω, \mathcal{D}) , которая абсолютно непрерывна относительно меры \mathbb{P} (по определению, это означает, что из $\mathbb{P}\{A\} = 0, A \in \mathcal{D}$ следует Q(A) = 0). Тогда по теореме Радона-Никодима существует такая неотрицательная \mathcal{D} -измеримая расширенная случайная величина $\mathbb{E}[\xi|\mathcal{D}](\omega)$, что

$$Q(A) = \int_{A} \mathbb{E}[\xi|\mathcal{D}]d\mathbb{P}.$$

Она определена с точностью до множества Р-меры нуль.

Замечание 3. Отметим, что свойство (b) из определения будет выполнено, если положить $\mathbb{E}[\xi|\mathcal{D}] = \xi$. Но так сделать в общем случае нельзя, т. к. ξ не обязана быть \mathcal{D} -измеримой.

Замечание 4. В случае тривиальной σ -алгебры $\mathcal{D} = \{\varnothing, \Omega\}$ получаем, что $\mathbb{E}[\xi | \mathcal{D}] = \mathbb{E}\xi$.

Определение 8. Условной вероятностью события $B \in \mathcal{F}$ относительно σ -алгебры \mathcal{D} называется обобщённая случайная величина

$$\mathbb{P}\{B|\mathcal{D}\}(\omega) \stackrel{\text{def}}{=} \mathbb{E}[\mathbb{I}_B|\mathcal{D}](\omega).$$

Из введённых определений следует, что для каждого фиксированного $B \in \mathcal{F}$ выполнено:

- а) $\mathbb{P}\{B|\mathcal{D}\}(\omega)$ является \mathcal{D} -измеримой;
- b) для любого $A \in \mathcal{D}$

$$\mathbb{P}\{A \cap B\} = \int_{A} \mathbb{P}\{B|\mathcal{D}\}d\mathbb{P}.$$

Определение 9. Условным математическим ожиданием случайной величины ξ относительно случайной величины η называется обобщённая случайная величина

$$\mathbb{E}[\xi|\eta](\omega) \stackrel{\text{def}}{=} \mathbb{E}[\xi|\mathcal{D}_{\eta}](\omega),$$

где $\mathcal{D}_{\eta}-\sigma$ -алгебра, порождённая случайной величиной η (при условии, что $\mathbb{E}[\xi|\mathcal{D}_{\eta}](\omega)$ определено).

Определение 10. Условной вероятностью события $B \in \mathcal{F}$ относительно случайной величины η называется обобщённая случайная величина

$$\mathbb{P}\{B|\eta\}(\omega) \stackrel{\text{def}}{=} \mathbb{P}\{\mathbb{I}_B|\mathcal{D}_{\eta}\}(\omega),$$

где $\mathcal{D}_{\eta}-\sigma$ -алгебра, порождённая случайной величиной η (при условии, что $\mathbb{P}\{B|\mathcal{D}_{\eta}\}(\omega)$ определена).

Следующая теорема показывает, что введённое определение условного математического ожидания согласуется с определением, данным на прошлом семинаре.

Теорема 1. Пусть $D = \{B_1, \dots, B_n\}$ — некоторое разбиение вероятностного пространства $(\Omega, \mathcal{F}, \mathbb{P})$. Пусть $\mathcal{D} = \sigma(D)$ и ξ — некоторая случайная величина, для которой $\mathbb{E}\xi$ определено. Тогда с вероятностью 1 выполнено равенство

$$\mathbb{E}[\xi|\mathcal{D}] = \mathbb{E}[\xi|D].$$

Доказательство. Действительно, если случайная величина $\mathbb{E}[\xi|\mathcal{D}]$ является \mathcal{D} -измеримой, то она принимает постоянные значения на элементах разбиения B_i (с вероятностью 1), т.е. с вероятностью 1 выполняется равенство

$$\mathbb{E}[\xi|\mathcal{D}] = \sum_{i=1}^{n} x_i \mathbb{I}_{B_i}.$$

Тогда для всех B_i из определения условного математического ожидания относительно σ -алгебры имеем:

$$\int_{B_i} \xi d\mathbb{P} = \int_{B_i} \mathbb{E}[\xi|\mathcal{D}] d\mathbb{P} = x_i \mathbb{P}\{B_i\} \Rightarrow x_i = \frac{1}{\mathbb{P}\{B_i\}} \int_{B_i} \xi d\mathbb{P} \stackrel{\text{def}}{=} \mathbb{E}[\xi|B_i],$$

то есть

$$\mathbb{E}[\xi|\mathcal{D}] = \sum_{i=1}^{n} x_i \mathbb{I}_{B_i} = \sum_{i=1}^{n} \mathbb{E}[\xi|B_i] \mathbb{I}_{B_i} \stackrel{\text{def}}{=} \mathbb{E}[\xi|D].$$

Перечислим теперь важные свойства условного математического ожидания относительно σ -алгебры.

1. Если c — константа и $\xi = c$ с вероятностью 1, то с вероятностью 1 $\mathbb{E}[\xi|\mathcal{D}] = c$. Данное свойство следует из того, что константная функция измерима относительно σ -алгебры \mathcal{D} и удовлетворяет равенству:

$$\int_{A} \xi d\mathbb{P} = \int_{A} cd\mathbb{P}, \quad \forall A \in \mathcal{D}.$$

2. Если $\xi\leqslant\eta$ с вероятностью 1, то $\mathbb{E}[\xi|\mathcal{D}]\leqslant\mathbb{E}[\eta|\mathcal{D}]$ с вероятностью 1. Действительно, мы имеем

$$\int_{A} \xi d\mathbb{P} \leqslant \int_{A} \eta d\mathbb{P}, \quad \forall A \in \mathcal{D},$$

а значит,

$$\int_{A} \mathbb{E}[\xi|\mathcal{D}]d\mathbb{P} \leqslant \int_{A} \mathbb{E}[\eta|\mathcal{D}]d\mathbb{P}, \quad \forall A \in \mathcal{D}.$$

Последнее означает, что $\mathbb{E}[\xi|\mathcal{D}] \leq \mathbb{E}[\eta|\mathcal{D}]$ с вероятностью 1 (это следует из свойств интеграла Лебега и того факта, что $\mathbb{E}[\xi|\mathcal{D}]$ и $\mathbb{E}[\eta|\mathcal{D}]$ измеримы относительно \mathcal{D}).

- 3. $|\mathbb{E}[\xi|\mathcal{D}]| \leq \mathbb{E}[|\xi||\mathcal{D}]$ с вероятностью 1. Данное свойство вытекает из предыдущего.
- 4. Если a, b постоянные и $a\mathbb{E}\xi + b\mathbb{E}\eta$ определено, то с вероятностью 1 выполнено равенство

$$\mathbb{E}[a\xi + b\eta | \mathcal{D}] = a\mathbb{E}[\xi | \mathcal{D}] + b\mathbb{E}[\eta | \mathcal{D}].$$

Данное свойство следует из линейности интеграла Лебега.

5. Если $\mathcal{D}_* = \{\emptyset, \Omega\}$ — тривиальная σ -алгебра, то $\mathbb{E}[\xi|\mathcal{D}_*] = \mathbb{E}\xi$. Это свойство следует из того, что константа $\mathbb{E}\xi$ является \mathcal{D}_* -измеримой функцией и если $A = \emptyset$ или $A = \Omega$, то выполняется

$$\int_{A} \xi d\mathbb{P} = \int_{A} \mathbb{E} \xi d\mathbb{P}.$$

6. $\mathbb{E}[\xi|\mathcal{F}] = \xi$ с вероятностью 1. Поскольку $\xi - \mathcal{F}$ -измерима и

$$\int_{A} \xi d\mathbb{P} = \int_{A} \xi d\mathbb{P}, \quad \forall A \in \mathcal{F},$$

то $\mathbb{E}[\xi|\mathcal{F}] = \xi$ с вероятностью 1.

7. Если $\mathcal{D}_1 \subseteq \mathcal{D}_2$, то с вероятностью 1

$$\mathbb{E}\left[\mathbb{E}[\xi|\mathcal{D}_2]|\mathcal{D}_1\right] = \mathbb{E}[\xi|\mathcal{D}_1].$$

Действительно, для любого множества $A \in \mathcal{D}_1 \subseteq \mathcal{D}_2$

$$\int_{A} \mathbb{E}[\xi|\mathcal{D}_{1}]d\mathbb{P} = \int_{A} \xi d\mathbb{P}$$

И

$$\int_{A} \mathbb{E}\left[\mathbb{E}[\xi|\mathcal{D}_{2}]|\mathcal{D}_{1}\right] d\mathbb{P} = \int_{A} \mathbb{E}[\xi|\mathcal{D}_{2}] d\mathbb{P} = \int_{A} \xi d\mathbb{P}.$$

Тогда для всех $A \in \mathcal{D}_1$

$$\int_{A} \mathbb{E}[\xi|\mathcal{D}_{1}]d\mathbb{P} = \int_{A} \mathbb{E}\left[\mathbb{E}[\xi|\mathcal{D}_{2}]|\mathcal{D}_{1}\right]d\mathbb{P},$$

откуда следует, что \mathcal{D}_1 -измеримые функции $\mathbb{E}[\xi|\mathcal{D}_1]$ и $\mathbb{E}[\mathbb{E}[\xi|\mathcal{D}_2]|\mathcal{D}_1]$ совпадают с вероятностью 1.

8. Если $\mathcal{D}_1 \supseteq \mathcal{D}_2$, то с вероятностью 1

$$\mathbb{E}\left[\mathbb{E}[\xi|\mathcal{D}_2]|\mathcal{D}_1\right] = \mathbb{E}[\xi|\mathcal{D}_2].$$

Действительно, $\mathbb{E}[\xi|\mathcal{D}_2]$ является \mathcal{D}_2 -измеримой случайной величиной, а значит, и \mathcal{D}_1 -измеримой. Кроме того,

$$\int_{A} \mathbb{E}\left[\mathbb{E}[\xi|\mathcal{D}_{2}]|\mathcal{D}_{1}\right] d\mathbb{P} = \int_{A} \mathbb{E}[\xi|\mathcal{D}_{2}] d\mathbb{P}.$$

Значит, $\mathbb{E}[\xi|\mathcal{D}_2]$ является одним из вариантов условного математического ожидания $\mathbb{E}\left[\mathbb{E}[\xi|\mathcal{D}_2]|\mathcal{D}_1\right]$.

- 9. С вероятностью 1 выполнено равенство $\mathbb{E}\left[\mathbb{E}[\xi|\mathcal{D}]\right] = \mathbb{E}\xi$. Данное свойство следует из свойства 7, если взять $\mathcal{D}_1 = \mathcal{D}_* = \{\varnothing, \Omega\}$ и $\mathcal{D}_2 = \mathcal{D}$ и воспользоваться свойством 5.
- 10. Если для случайной величины ξ определено математическое ожидание $\mathbb{E}\xi$ и она не зависит от σ -алгебры \mathcal{D} (то есть не зависит от \mathbb{I}_A для всех $A \in \mathcal{D}$), то с вероятностью 1

$$\mathbb{E}[\xi|\mathcal{D}] = \mathbb{E}\xi.$$

Это так, поскольку $\mathbb{E}\xi$ является \mathcal{D} -измеримой случайной величиной и верна цепочка равенств

$$\int_{A} \xi d\mathbb{P} = \mathbb{E}[\xi \mathbb{I}_{A}] = \mathbb{E}\xi \cdot \mathbb{E}\mathbb{I}_{A} = \mathbb{E}\xi \cdot \mathbb{P}\{A\} = \int_{A} \mathbb{E}\xi d\mathbb{P}.$$

11. Если $\eta-\mathcal{D}$ -измеримая случайная величина, $\mathbb{E}|\eta|<\infty$ и $\mathbb{E}|\xi\eta|<\infty$, то с вероятностью 1

$$\mathbb{E}[\xi\eta|\mathcal{D}] = \eta\mathbb{E}[\xi|\mathcal{D}].$$

В частности,

$$\mathbb{E}[\xi\eta|\eta]=\eta\mathbb{E}[\xi|\mathcal{D}]$$

с вероятностью 1. Данное свойство доказывается сначала для простых функций η , а потом для произвольных \mathcal{D} -измеримых функций путём предельного перехода.

Определение 11. Пусть ξ и η — случайные величины и $\mathbb{E}\xi$ определено. Условным математическим ожиданием случайной величины ξ при условии, что $\eta=y$ называется борелевская функция $\mathbb{E}[\xi|\eta=y]\stackrel{\mathrm{def}}{=} m(y)$ такая, что

$$\int_{\{\omega \in \Omega \mid \eta(\omega) \in B\}} \xi(\omega) d\mathbb{P}(\omega) = \int_{B} m(y) d\mathbb{P}_{\eta}(y), \quad \forall B \in \mathcal{B}(\mathbb{R}).$$

Существование такой функции показывается аналогичными рассуждениями с использованием теоремы Радона-Никодима, что и при доказательстве существования условного математического ожидания относительно σ -алгебры.

Применяя теорему о замене переменных под знаком интеграла Лебега, получим, что

$$\int\limits_{\{\omega\in\Omega|\eta(\omega)\in B\}}\xi(\omega)d\mathbb{P}(\omega)=\int\limits_{B}m(y)d\mathbb{P}_{\eta}(y)=\int\limits_{\{\omega\in\Omega|\eta(\omega)\in B\}}m(\eta(\omega))d\mathbb{P}(\omega),\quad\forall B\in\mathcal{B}(\mathbb{R}).$$

Случайная величина $m(\eta)$ является \mathcal{D}_{η} -измеримой, а множествами $\{\omega \in \Omega \mid \xi(\omega) \in B\}B \in \mathcal{B}(\mathbb{R})$ исчерпываются все множества из \mathcal{D}_{η} . Следовательно, $m(\eta) = \mathbb{E}[\xi|\eta]$ с вероятностью 1. Отсюда следует, что можно восстановить $\mathbb{E}[\xi|\eta]$, зная $\mathbb{E}[\xi|\eta=y]$, и, наоборот, по $\mathbb{E}[\xi|\eta]$ можно найти $\mathbb{E}[\xi|\eta=y]$.

Можно показать, что для любой $\mathcal{B}(\mathbb{R}^2)$ -измеримой функции $\varphi(x,y)$ и независимых случайных величин ξ и η таких, что $\mathbb{E}|\varphi(\xi,\eta)|<\infty$, то с вероятностью 1

$$\mathbb{E}[\varphi(\xi,\eta)|\eta=y] = \mathbb{E}[\varphi(\xi,y)].$$

Данный факт оказывается очень полезным при решении задач, но мы его оставим без доказательства.

Определение 12. Условной вероятностью события $A \in \mathcal{F}$ при условии, что $\eta = y$ будем называть расширенную случайную величину

$$\mathbb{P}\{A|\eta=y\} \stackrel{\text{def}}{=} \mathbb{E}[\mathbb{I}_A|\eta=y].$$

Заметим, что из данного определения следует определение условной вероятности $\mathbb{P}\{A|\eta=y\}$:

$$\mathbb{P}\left\{A \cap \{\omega \in \Omega \mid \eta(\omega) \in B\}\right\} = \int_{B} \mathbb{P}\left\{A \mid \eta = y\right\} d\mathbb{P}_{\eta}(y), \quad \forall B \in \mathcal{B}(\mathbb{R}).$$

Пример 2. Пусть (ξ, η) — пара случайных величин, имеющих совместное абсолютно непрерывное распределение с плотностью $f_{\xi,\eta}(x,y)$. Пусть $f_{\xi}(x)$ и $f_{\eta}(y)$ — плотности распределения ξ и η соответственно. Теперь мы готовы обосновать факт, что плотность условного распределения $\xi|\eta$ равна

$$f_{\xi|\eta}(x|y) = g(x,y),$$

где $g(x,y)=\frac{f_{\xi,\eta}(x,y)}{f_{\eta}(y)}$, причём g(x,y) положим равной нулю, если $f_{\eta}(y)=0$. Иными словами, нам нужно показать, что

$$\mathbb{P}\{\xi \in C | \eta = y\} = \int_C g(x, y) dx, \quad \forall C \in \mathcal{B}(\mathbb{R}).$$

Для этого воспользуемся определением условной вероятности:

$$\mathbb{P}\left\{\left\{\omega\in\Omega\mid\xi(\omega)\in C\right\}\cap\left\{\omega\in\Omega\mid\eta(\omega)\in B\right\}\right\}=\int\limits_{B}\mathbb{P}\left\{\xi\in C|\eta=y\right\}d\mathbb{P}_{\eta}(y),\quad\forall B\in\mathcal{B}(\mathbb{R}).$$

Используя теорему Фубини, получим

$$\begin{split} \int_{B} \left[\int_{C} g(x,y) dx \right] d\mathbb{P}_{\eta}(y) &= \int_{B} \left[\int_{C} g(x,y) dx \right] d\mathbb{P}_{\eta}(y) \\ &= \int_{B} \left[\int_{C} g(x,y) dx \right] f_{\eta}(y) dy \\ &= \int_{C \times B} g(x,y) = \frac{f_{\xi,\eta}(x,y)}{f_{\eta}(y)} f_{\eta}(y) dx dy \\ &= \int_{C \times B} f_{\xi,\eta}(x,y) dx dy \\ &= \mathbb{P} \{ \xi \in C, \eta \in B \}, \end{split}$$

откуда следует, что

$$\mathbb{P}\{\xi \in C | \eta = y\} = \int_C g(x, y) dx, \quad \forall C \in \mathcal{B}(\mathbb{R}).$$

Аналогичным образом, можно показать, что

$$\mathbb{E}[\xi|\eta=y] = \int_{\mathbb{R}} x f_{\xi|\eta}(x|y) dx.$$

Замечание 5. Если в определении $\mathbb{P}\{A|\eta=y\}$ взять $B=\mathbb{R},$ то получим формулу полной вероятности:

$$\mathbb{P}{A} = \int_{\mathbb{R}} \mathbb{P}{A|\eta = y} d\mathbb{P}_{\eta}(y).$$

Например, если $A=\{\omega\in\Omega|\varphi(\xi,\eta)<0\}\stackrel{\mathrm{def}}{=}\{\varphi(\xi,\eta)<0\}$, где $\varphi(x,y)$ — некоторая борелевская функция, а ξ и η — независимые случайные величины, то

$$\mathbb{P}\{\varphi(\xi,\eta)<0\}=\int\limits_{\mathbb{P}}\mathbb{P}\{\varphi(\xi,\eta)<0|\eta=y\}d\mathbb{P}_{\eta}(y)=\int\limits_{\mathbb{P}}\mathbb{P}\{\varphi(\xi,y)<0\}d\mathbb{P}_{\eta}(y).$$