Current aerosol results from ACCESS and the new GLOMAP-mode scheme

Julie Noonan and Peter Vohralik

CMIP5 sstClim experiments

- sstClim an atm-only run driven by prescribed SST and sea ice (long term av PI control run)
- sstClimAerosol sstClim but year 2000 aerosols
- 30 year run after spin up

sstClimAerosol - sstClim

estimate aerosol forcing for the year 2000 relative to 1850

ERF – Effective Radiative Forcing

- change in the net radiation at the TOA from pre-industrial to present day - ocean conditions held fixed, all other processes allowed to respond to the aerosol changes
- direct aerosol-radiation interactions (scattering and absorption of radiation)
- aerosol-cloud interactions (aerosol indirect effects, such as changes in cloud albedo and lifetime)

ACCESS-1.0 – MOSES land surface, HadGEM2

ACCESS-1.3 – CABLE land surface, PC2 clouds, HadGEM3

ACCESS-1.4 – Updated 1.3, newer version of CABLE, improved dust uplift

UM-UKCA GLOMAP-mode and CHeST

- UM vn8.4
- Matt Woodhouse, Marcus Thatcher, Lauren Stevens (model and emissions database)

UKCA

- United Kingdom Chemistry and Aerosol framework for putting chemistry and aerosols into UM
- CHeST chemistry for stratosphere and troposphere

GLOMAP

- Global Model of Aerosol Processes simulates evolution of particle composition across the size spectrum over several different components
- GLOMAP-bin typically 20 bins spanning the size spectrum (expensive)
- GLOMAP-mode same process representations but modal version of GLOMAP

CLASSIC(Coupled Large-scale Aerosol Simulator for Studies In Climate)

- sulphate, black carbon, organic carbon, sea-salt, biomass burning, dust, secondary organic aerosols
- aerosol mass per component is predicted
- bulk approach, number of particles derived from an assumed fixed size distribution for each aerosol component
- external mixtures (particles consist of only one component)

GLOMAP-mode

- sulphate, black carbon, organic carbon, sea-salt, dust (from CLASSIC)
- aerosol microphysics scheme predicts particle number and mass concentrations, enabling changes in the particle size distribution in time and space
- 5 modes (4 soluble, 1 insoluble)
- internally mixed (important for optical properties, etc)
- new particle formation (nucleation) and growth (by coagulation, condensation and cloud processing).

GLOMAP-mode aerosol configuration

Mode	Soluble	Size boundaries (nm) d = dry diameter	Composition
Nucleation	Yes	d < 10	SU, OC
Aitken	Yes	10 < d < 100	SU, BC, OC
Accumulation	Yes	100 < d < 1000	SU, BC, OC, SS
Coarse	Yes	1000 < d	SU, BC, OC, SS
Aitken	no	10 < d < 100	BC, OC

SU – sulphate, BC – black carbon, OC – organic carbon, SS – sea-salt

Aerosol Optical Depth 550nm

MACC AOD

Atmos. Chem. Phys., 13, 3027-3044, 2013

GLOMAP-mode

Annual mean aerosol burden

sulphate

Geosci. Model Dev., 3, 519-551, 2010

G. W. Mann et al.: GLOMAP-mode description and evaluation

Annual-mean particle number concentration

Accumulation-soluble mode

Zonal mean

Geosci. Model Dev., 3, 519-551, 2010

G. W. Mann et al.: GLOMAP-mode description and evaluation

Thank you

Division/Unit Name

Presenter Name Presenter Title

t +61 2 9123 4567

e firstname.surname@csiro.au

w www.csiro.au/lorem

Division/Unit Name

Presenter Name Presenter Title

t +61 2 9123 4567

e firstname.surname@csiro.au

w www.csiro.au/lorem

ADD BUSINESS UNIT/FLAGSHIP NAME

www.csiro.au

MACC – (Monitoring Atmosphere Composition and Climate) re-analysis.

The MACC re-analysis uses an aerosol model (Morcrette et al., 2009) embedded into the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) model.

IFS 4D variational assimilation system, assimilates Moderate Resolution Imaging Spectro-radiometer (MODIS) total AOD at 0.55 um – corrects the modelled total AODs for departure form obs.

ACCMIP – Atmospheric Chemistry and Climate Model Intercomparison Project

10 models included aerosols - 8 also in CMIP5

Intended primarily to examine the anthropogenic drivers of climate change in CMIP5

- reproduce total AOD relatively well, though many are biased low
- most models underestimate east Asian AOD
- Strongly underestimate absorbing AOD in many regions

AERONET - AErosol RObotic NETwork

Models

GFDL-CM3 - Geophysical Fluid Dynamics Laboratory (NOAA)

MIROC5 - Model for Interdisciplinary Research on Climate (MIROC5)
Atmosphere and Ocean Research Institute (The University of Tokyo),
National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology

MRI-CGCM3 - Meteorological Research Institute, Japan

ERF Aerosol

Radiative forcing in the ACCMIP historical and future climate simulations

D. T. Shindell¹, J.-F. Lamarque², M. Schulz³, M. Flanner⁴, C. Jiao⁴, M. Chin⁵, P. J. Young^{6,*}, Y. H. Lee¹, L. Rotstayn⁷, N. Mahowald⁸, G. Milly¹, G. Faluvegi¹, Y. Balkanski⁹, W. J. Collins^{10,**}, A. J. Conley², S. Dalsoren¹¹, R. Easter¹², S. Ghan¹², L. Horowitz¹³, X. Liu¹², G. Myhre¹¹, T. Nagashima¹⁴, V. Naik¹⁵, S. T. Rumbold¹⁰, R. Skeie¹¹, K. Sudo¹⁶, S. Szopa⁹, T. Takemura¹⁷, A. Voulgarakis^{1,18}, J.-H. Yoon¹², and F. Lo⁸

Atmos. Chem. Phys., 13, 2939–2974, 2013

GLOMAP

ACCESS 1.4

Aerosol optical depth from dust, ACCESS-1.4 model, 1990-1999

(Peter Vohralik)

