Plan du cours

I.	Limites de suites		1
	1.	Limite d'une suite	1
	2.	Limites et comparaison	3
	3.	Comportement des suites géométriques	4
H.	Recherche d'un seuil		5
III.	Sui	tes arithmético-géométriques	6

Activité d'introduction 1

PARTIE A

On s'intéresse au nombre d'abonnés d'une plate-forme de streaming de musique de France. En 2020, on compte 30 000 abonnés à la plate-forme. Chaque année, 90 % des abonnés se réabonnent, et il y a 10 000 nouveaux abonnés.

- 1) Déterminer le nombre d'abonnés en 2021 et en 2022.
- 2) On note u_n le nombre d'abonnés en milliers en 2020 + n.
- (a) Exprimer u_{n+1} en fonction de u_n . Calculer ensuite les valeurs u_{40} et u_{50} à l'aide de la calculatrice.
- **(b)** Représenter graphiquement la suite sur la calculatrice. Interpréter.

PARTIE B

On s'intéresse à l'évolution d'une population de singe dans une réserve naturelle.

En 2020, il y a 100 singes dans la réserve. Chaque année, la population de singes augmente de 10 % par rapport à l'année précédente.

- 1) Déterminer le nombre de singes en 2021 et en 2022.
- 2) On note v_n le nombre de singes en 2020 + n.
- (a) Exprimer v_n en fonction de n. Calculer ensuite les valeurs v_{40} et v_{50}
- **(b)** Représenter graphiquement la suite sur la calculatrice. Interpréter. Que peut-on penser de cette évolution?

I. Limites de suites

Étudier la limite d'une suite (u_n) c'est chercher ce que deviennent les nombres u_n lorsque n devient grand (tend vers l'infini); plus précisément :

- Les nombres u_n finissent-ils par se rapprocher d'un nombre fixe?
- Les nombres u_n finissent-ils par dépasser n'importe quel nombre aussi grand que l'on veut?

1. Limite d'une suite

Définition Les suites convergentes

Une suite u converge lorsqu'il existe un réel ℓ tel que tout intervalle ouvert I centré en ℓ contient tous les termes de la suite à partir d'un certain rang.

On écrit :
$$\lim_{n\to +\infty} u_n = \ell$$

Définition

Les suites divergentes

Une suite u diverge vers $+\infty$ (respectivement $-\infty$) si, pour tout réel A>0 (respectivement B<0), il existe un rang p à partir duquel tous les termes de la suite sont plus grands que A (respectivement B).

On écrit : $\lim_{n\to+\infty} u_n = +\infty$ (respectivement $\lim_{n\to+\infty} u_n = -\infty$)

Exemples:

• Déterminer $\lim_{n\to+\infty} \left(-\frac{2}{n}\right)$ et en déduire si la suite converge ou diverge.

.....

.....

• Déterminer $\lim_{n \to +\infty} \left(\frac{1}{e^n} + n^2 \right)$ et en déduire si la suite converge ou diverge.

.....

......

Chapitre 2 : Suites arithmético-géométriques

• Déterminer $\lim_{n \to +\infty} \left(\frac{3-e^n}{1+e^{-n}} \right)$ et en déduire si la suite converge ou diverge.

.....

.....

2. Limites et comparaison

Propriété

Soient deux suites (u_n) et (v_n) telles que, à partir d'un certain rang, $u_n \leq v_n$.

•
$$\lim_{n\to+\infty} u_n = +\infty$$
 alors $\lim_{n\to+\infty} v_n = +\infty$

•
$$\lim_{n\to+\infty} v_n = -\infty$$
 alors $\lim_{n\to+\infty} u_n = -\infty$

Exemples:

1) Etudier la limite de la suite (u_n) définie sur $\mathbb N$ par $u_n=(-1)^n+3n$

.....

.....

2) Soit (u_n) la suite définie sur \mathbb{N} par $u_n = n + 2sin(n)$.

Montrer que pour tout $n \in \mathbb{N}$, $u_n \ge n-2$ et en déduire la limite de la suite (u_n) .

.....

Théorème

Théorème des gendarmes

Soient trois suites (u_n) , (v_n) et (w_n) telles que, à partir d'un certain rang, $u_n \le v_n \le w_n$.

Si
$$\lim_{n \to +\infty} u_n = \ell$$
 et si $\lim_{n \to +\infty} w_n = \ell$ alors $\lim_{n \to +\infty} v_n = \ell$

Exemple : Etudier la limite de la suite (u_n) définie sur \mathbb{N}^* par $u_n=3+\frac{(-1)^n}{n}$

3. Comportement des suites géométriques

Revenons un instant sur les suites géométriques.

Théorème

Soit la suite de terme général q^n , où q est un réel positif.

- Si q>1 alors la suite a pour limite $+\infty$. On note alors $\lim_{n\to+\infty}q^n=+\infty$ et on dit que la suite est divergente.
- Si q=1 alors la suite est constante égale à 1.
- Si 0 < q < 1 alors la suite a pour limite 0. On note $\lim_{n \to +\infty} q^n = 0$. On dit, dans ce cas, que la suite converge vers 0.