can you answer while you wait?

luís cruz-filipe¹ (joint work with graça gaspar² & isabel nunes²)

¹department of mathematics and computer science university of southern denmark ²department of informatics faculty of sciences, university of lisbon

> acp seminar june 17th, 2022

Outline

introduction•000

- *introduction*

the context

continuous queries over data streams

- modern-day distributed systems
- information pouring in from e.g. sensors
- queries need to be answered in real-time
- answers are output as information arrives

the context

continuous queries over data streams

- modern-day distributed systems
- information pouring in from e.g. sensors
- queries need to be answered in real-time
- answers are output as information arrives

several models

common approach: rule-based reasoning

- usually based on variants of datalog
- set of facts dynamically obtained from a data stream D
- common problems: blocking queries, unbound wait

initial contribution (aaai'20)

online algorithm with offline pre-processing outputting partial information

- information that an answer may be output in the future
- fundamentation for such hypothetical answers

initial contribution (aaai'20)

online algorithm with offline pre-processing outputting partial information

- information that an answer may be output in the future
- fundamentation for such hypothetical answers

practical relevance

partial information allows for preventive measures to be taken

- ullet an action might be required \leadsto maybe prepare for it
- a failure might occur \rightsquigarrow steps may be taken to prevent it the justification for *why* the hypothetical answer is output can be used to evaluate its likelihood

$$\mathsf{Temp}(X,\mathsf{high},T) o \mathsf{Flag}(X,T)$$
 $\mathsf{Flag}(X,T) \wedge \mathsf{Flag}(X,T+1) o \mathsf{Cool}(X,T+1)$
 $\mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) o \mathsf{Shdn}(X,T+1)$

- a data center managing a set of wind turbines receives temperature readings Temp(Device, Level, Time) from sensors in each turbine
- the data centre tracks activation of cooling measures in each turbine, recording shutdowns by means of a program in temporal datalog

$$\mathsf{Temp}(X,\mathsf{high},T) \to \mathsf{Flag}(X,T)$$

$$\mathsf{Flag}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Cool}(X,T+1)$$

$$\mathsf{Cool}(X,T) \land \mathsf{Flag}(X,T+1) \to \mathsf{Shdn}(X,T+1)$$

query: Q = Shdn(X, T)

if:

Temp(wt25, high,
$$i$$
) $i = 0, 1, 2$

all arrive at the data stream, then $\{X:=\mathrm{wt}25,\,T:=2\}$ is an answer to Q

$$\mathsf{Temp}(X,\mathsf{high},T) \to \mathsf{Flag}(X,T)$$

$$\mathsf{Flag}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Cool}(X,T+1)$$

$$\mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Shdn}(X,T+1)$$

query: Q = Shdn(X, T)

but: once

arrives, we already know that $\{X := \text{wt25}, T := 2\}$ might become an answer to Q

$$\mathsf{Temp}(X,\mathsf{high},T) \to \mathsf{Flag}(X,T)$$

$$\mathsf{Flag}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Cool}(X,T+1)$$

$$\mathsf{Cool}(X,T) \land \mathsf{Flag}(X,T+1) \to \mathsf{Shdn}(X,T+1)$$

query: Q = Shdn(X, T)

in the original work, since

does not arrive, we know that $\{X := wt42, T := 2\}$ cannot become an answer to Q

$$\mathsf{Temp}(X,\mathsf{high},T) \to \mathsf{Flag}(X,T)$$

$$\mathsf{Flag}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Cool}(X,T+1)$$

$$\mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Shdn}(X,T+1)$$

assumption (aaai'20)

we assume that the data stream D is complete at each time point, i.e. at time τ it contains all facts with timestamps $\leq \tau$ we call this set of facts the τ -history D_{τ}

$$\mathsf{Temp}(X,\mathsf{high},T) \to \mathsf{Flag}(X,T)$$

$$\mathsf{Flag}(X,\,\mathcal{T}) \land \mathsf{Flag}(X,\,\mathcal{T}+1) \to \mathsf{Cool}(X,\,\mathcal{T}+1)$$

$$\mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Shdn}(X,T+1)$$

assumption (aaai'20)

we assume that the data stream D is complete at each time point, i.e. at time τ it contains all facts with timestamps $\leq \tau$ we call this set of facts the τ -history D_{τ}

current contribution

this work removes this assumption

Outline

- 1 introduction
- 2 denotational semantics
- Operational semantics
- What about delays?
- (5) conclusions

syntax

ingredients

- temporal datalog: no negation, no function symbols, predicates have exactly one temporal argument (the last) – the timestamp
- a datastream D: a family $\{D|_{\tau} \mid \tau \in \mathbb{N}\}$, where $D|_{\tau}$ contains the facts that arrive at time instant τ
 - \leadsto for now: no delays all elements of τ have timestamp τ
- a program Π : a set of rules defining additional predicates
- a query Q: a (typically non-ground) fact

terminology

two sorts of predicates

we assume that the predicate symbols occurring in ${\it D}$ do not appear in heads of rules in Π

- *intensional predicates* are defined by their instances (from *D*)
- extensional predicates are defined by rules (in Π)

denotational semantics (i/ii)

hypothetical answers

a hypothetical answer to a query Q over a program Π and a history D_{τ} is a pair $\langle \theta, H \rangle$, where θ is a substitution and H is a finite set of ground extensional atoms (the hypotheses) such that:

- ullet heta only instantiates variables free in Q
- H only contains atoms with timestamp au' > au
- $\Pi \cup D_{\tau} \cup H \models Q\theta$
- H is minimal with respect to set inclusion

→ the blue ingredients are new wrt classical sld-resolution

our example program

$$\mathsf{Temp}(X,\mathsf{high},T) o \mathsf{Flag}(X,T)$$

$$\mathsf{Flag}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Cool}(X,T+1)$$

$$\mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Shdn}(X,T+1)$$

query

$$Q = \mathsf{Shdn}(X, T)$$

our example program

$$\mathsf{Temp}(X,\mathsf{high},T) o \mathsf{Flag}(X,T)$$

$$\mathsf{Flag}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Cool}(X,T+1)$$

$$\mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Shdn}(X,T+1)$$

query

$$Q = \mathsf{Shdn}(X, T)$$

$Temp(wt25, high, 0) \in D_0$

 $\langle \{X := \text{wt25}, T := 2\}, H \rangle$ is a hypothetical answer to Q for $H = \{\text{Temp}(\text{wt25}, \text{high}, i) \mid i = 1, 2\}$

our example program

$$\mathsf{Temp}(X,\mathsf{high},T) o \mathsf{Flag}(X,T)$$

$$\mathsf{Flag}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Cool}(X,T+1)$$

$$\mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Shdn}(X,T+1)$$

query

$$Q = \mathsf{Shdn}(X,T)$$

Temp(wt42, high, 0) $\notin D_0$

 $\langle \{X:= \mathsf{wt42}, \, T:=2\}, H\rangle$ is not a hypothetical answer to Q for any H

denotational semantics (ii/ii)

supported answers

- a non-empty set of facts $E \subseteq D_{\tau}$ is *evidence* supporting a hypothetical answer $\langle \theta, H \rangle$ if E is a minimal set s.t. $\Pi \cup E \cup H \models P\theta$
- a supported answer to Q over D_{τ} is a triple $\langle \theta, H, E \rangle$ where E is evidence supporting $\langle \theta, H \rangle$

supported answers

- a non-empty set of facts $E \subseteq D_{\tau}$ is *evidence* supporting a hypothetical answer $\langle \theta, H \rangle$ if E is a minimal set s.t. $\Pi \cup E \cup H \models P\theta$
- a supported answer to Q over D_{τ} is a triple $\langle \theta, H, E \rangle$ where E is evidence supporting $\langle \theta, H \rangle$

in our example program

the fact

Temp(wt25, high, 0)
$$\in D_0$$

is evidence for the hypothetical answer

$$\{X := \text{wt25}, T := 2\}, \{\text{Temp(wt25, high, } i) \mid i = 1, 2\} \}$$

Outline

- 1 introduction
- 2 denotational semantics
- Operational semantics
- What about delays?
- 6 conclusions

$$\mathsf{Temp}(X,\mathsf{high},T) \to \mathsf{Flag}(X,T)$$

$$\mathsf{Flag}(X,\, T) \land \mathsf{Flag}(X,\, T+1) \to \mathsf{Cool}(X,\, T+1)$$

$$\mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) o \mathsf{Shdn}(X,T+1)$$

$$\mathsf{Temp}(X,\mathsf{high},T) \to \mathsf{Flag}(X,T)$$

$$\mathsf{Flag}(X,T) \land \mathsf{Flag}(X,T+1) \to \mathsf{Cool}(X,T+1)$$

$$\mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Shdn}(X,T+1)$$

$$\leftarrow \mathsf{Shdn}(X,T)$$

$$\mathsf{Temp}(X,\mathsf{high},T) o \mathsf{Flag}(X,T)$$
 $\mathsf{Flag}(X,T) \wedge \mathsf{Flag}(X,T+1) o \mathsf{Cool}(X,T+1)$
 $\mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) o \mathsf{Shdn}(X,T+1) \Longleftrightarrow$

$$\leftarrow \mathsf{Shdn}(X,T)$$

$$\downarrow$$

$$\leftarrow \mathsf{Cool}(X,T-1),\mathsf{Flag}(X,T)$$

$$\mathsf{Temp}(X,\mathsf{high},T) o \mathsf{Flag}(X,T)$$
 $\mathsf{Flag}(X,T) \wedge \mathsf{Flag}(X,T+1) o \mathsf{Cool}(X,T+1) \quad \Leftarrow$
 $\mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) o \mathsf{Shdn}(X,T+1)$

$$\leftarrow \mathsf{Shdn}(X,T)$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\leftarrow \mathsf{Cool}(X,T-1),\mathsf{Flag}(X,T)$$

$$\downarrow \qquad \qquad \qquad \qquad \downarrow$$

$$\leftarrow \mathsf{Flag}(X,T-2),\mathsf{Flag}(X,T-1),\mathsf{Flag}(X,T)$$

$$\mathsf{Temp}(X,\mathsf{high},T) o \mathsf{Flag}(X,T) \ \Leftarrow \ \mathsf{Flag}(X,T) \wedge \mathsf{Flag}(X,T+1) o \mathsf{Cool}(X,T+1) \ \mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) o \mathsf{Shdn}(X,T+1)$$

an atom $P(t_1,\ldots,t_n)$ is a future atom wrt τ if the time term t_n either contains a temporal variable or is a time instant $t_n > \tau$

future atom

an atom $P(t_1,\ldots,t_n)$ is a future atom wrt τ if the time term t_n either contains a temporal variable or is a time instant $t_n > \tau$

sld-refutation, revisited

an sld-refutation with future premises of Π and Q over D_{τ} is a finite sld-derivation of $\Pi \cup D_{\tau} \cup \{\neg Q\}$ whose last goal only contains extensional future atoms wrt τ

future atom

an atom $P(t_1,\ldots,t_n)$ is a future atom wrt τ if the time term t_n either contains a temporal variable or is a time instant $t_n > \tau$

sld-refutation, revisited

an sld-refutation with future premises of Π and Q over D_{τ} is a finite sld-derivation of $\Pi \cup D_{\tau} \cup \{\neg Q\}$ whose last goal only contains extensional future atoms wrt τ

computed answer with premises

if \mathcal{D} is an sld-refutation with future premises of Q over D_{τ} with last goal $G = \neg \wedge_i \alpha_i$ and θ is the restriction of the composition of the substitutions in \mathcal{D} to var(Q), then $\langle \theta, \wedge_i \alpha_i \rangle$ is a *computed* answer with premises to Q over D_{τ}

independence of the computation rule

from classical results about sld-resolution, we can reorder the steps of any sld-refutation with future premises to use the facts from D_τ in temporal order

independence of the computation rule

from classical results about sld-resolution, we can reorder the steps of any sld-refutation with future premises to use the facts from D_τ in temporal order

key idea

this simple observation gives us an incremental algorithm

- at each step, update any "ongoing" derivations with the new facts
- any derivations expecting facts that did not arrive are forgotten
- some pre-processing allows us to identify relevant facts

a two-stage algorithm

pre-processing step

we compute answers with premises to Q over $D_{-1}=\emptyset$

- ullet we store the minimal answers wrt set inclusion in a set $\mathcal{P}_{\mathcal{Q}}$
- ullet we initialize the set \mathcal{S}_{-1} of schematic supported answers to \emptyset

a two-stage algorithm

pre-processing step

we compute answers with premises to Q over $D_{-1} = \emptyset$

- ullet we store the minimal answers wrt set inclusion in a set $\mathcal{P}_{\mathcal{Q}}$
- ullet we initialize the set \mathcal{S}_{-1} of schematic supported answers to \emptyset

online step

to compute $S_{\tau+1}$ from S_{τ} and $D_{\tau+1} \setminus D_{\tau}$:

- for each answer in \mathcal{P}_Q , we perform sld-resolution between its set of elements with minimal timestamps and $D_{\tau+1} \setminus D_{\tau}$
- for each element of $\mathcal{S}_{ au}$, we perform sld-resolution between its set of elements with timestamp au+1 and $D_{ au+1}\setminus D_{ au}$

each refutation yields an element in $\mathcal{S}_{ au+1}$

under suitable assumptions, the pre-processing step terminates

termination (i)

under suitable assumptions, the pre-processing step terminates

termination (ii)

the online step terminates in polynomial time in the size of \mathcal{S}_{τ} , \mathcal{P}_{Q} and $D_{\tau+1}\setminus D_{\tau}$

termination (i)

under suitable assumptions, the pre-processing step terminates

termination (ii)

the online step terminates in polynomial time in the size of \mathcal{S}_{τ} , \mathcal{P}_{Q} and $D_{\tau+1}\setminus D_{\tau}$

soundness

every instantiation of an element of $\mathcal{S}_{ au}$ is a supported answer to Q over Π and $D_{ au}$

termination (i)

under suitable assumptions, the pre-processing step terminates

termination (ii)

the online step terminates in polynomial time in the size of \mathcal{S}_{τ} , \mathcal{P}_{Q} and $D_{\tau+1}\setminus D_{\tau}$

soundness

every instantiation of an element of $\mathcal{S}_{ au}$ is a supported answer to Q over Π and $D_{ au}$

completeness

every supported answer to Q over Π and D_{τ} is an instantiation of an element of \mathcal{S}_{τ}

Outline

- what about delays?

but in practice...

$communication\ delays$

communication is not perfect

- there are delays
- there are errors
- there are losses

but in practice...

communication delays

communication is not perfect

- there are delays
- there are errors
- there are losses

delays are the most essential!

good communication protocols can ensure* no errors and no losses

(* with a high enough probability assuming no hardware failures)

a revised hypothesis

delay

for each fact α we assume there is a value $\delta(\alpha)$ (the *delay* of α) such that: if the timestamp of α is τ , then α can only appear in $D|_{\tau}, \ldots, D|_{\tau + \delta(\alpha)}$

→ reasonable in practice

a revised hypothesis

delay

for each fact α we assume there is a value $\delta(\alpha)$ (the *delay* of α) such that: if the timestamp of α is τ , then α can only appear in $D|_{\tau},\ldots,D|_{\tau+\delta(\alpha)}$

- extends in the obvious way: if some of t_1, \ldots, t_n are not ground, then $\delta(P(t_1, \ldots, t_n)) = \max\{\delta(P(t_1', \ldots, t_n'))\}$ where (t_1', \ldots, t_n') range over the ground instances of t_1, \ldots, t_n
- in particular, $\delta(P) = \delta(P(X_1,\ldots,X_n)) = \max\{\delta(P(t_1',\ldots,t_n'))\} \text{ where } (t_1',\ldots,t_n') \text{ range over all (valid) ground terms}$
- we assume $\delta(P) < \infty$

do the old definitions work?

denotational semantics: only minor tweaks

an atom $P(t_1, \ldots, t_n)$ is future-possible wrt τ if the time term t_n either contains a temporal variable or is a time instant $t_n > \tau - \delta(P(t_1, \ldots, t_n))$

→ all definitions work, replacing future with future-possible

do the old definitions work?

denotational semantics: only minor tweaks

an atom $P(t_1, \ldots, t_n)$ is future-possible wrt τ if the time term t_n either contains a temporal variable or is a time instant $t_n > \tau - \delta(P(t_1, \ldots, t_n))$

→ all definitions work, replacing *future* with *future-possible*

but operational semantics, alas...

one must be careful with unification

- previously, schematic hypothetical answers were progressively unified; non-generated substitutions were irrelevant
- in the presence of delays, unification may lose answers

a look at the problem

our example program

$$\mathsf{Temp}(X,\mathsf{high},T) o \mathsf{Flag}(X,T)$$
 $\mathsf{Flag}(X,T) \wedge \mathsf{Flag}(X,T+1) o \mathsf{Cool}(X,T+1)$
 $\mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) o \mathsf{Shdn}(X,T+1)$

$D|_0 = \{\mathsf{Temp}(\mathsf{wt25},\mathsf{high},0)\}$

- $\langle \{X := \text{wt25}, T := 2\}, H \rangle$ is a hypothetical answer to Q for $H = \{\text{Temp}(\text{wt25}, \text{high}, i) \mid i = 1, 2\}$
- $\langle \{X := \text{wt42}, T := 2\}, H \rangle$ is a hypothetical answer to Q for $H = \{\text{Temp}(\text{wt42}, \text{high}, i) \mid i = 0, 1, 2\}$

```
(assuming \delta(\mathsf{Temp}) > 0)
```

a look at the problem

our example program

$$\mathsf{Temp}(X,\mathsf{high},T) o \mathsf{Flag}(X,T)$$
 $\mathsf{Flag}(X,T) \wedge \mathsf{Flag}(X,T+1) o \mathsf{Cool}(X,T+1)$
 $\mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) o \mathsf{Shdn}(X,T+1)$

$D|_0 = \{\mathsf{Temp}(\mathsf{wt25},\mathsf{high},0)\}$

but unifying

 $\{\mathsf{Temp}(X,\mathsf{high},T),\mathsf{Temp}(X,\mathsf{high},T+1),\mathsf{Temp}(X,\mathsf{high},T+2)\}$

with $D|_0$ will only keep the first answer...

solution: local mgus

we must be able to wait

uninstantiated answers must be kept in case they may be unified later

- theoretically: a local mgu (see paper)
- in practice: consider *all* substitutions (not just the leaves) appearing in *any* sld-derivation (order matters)

solution: local mgus

we must be able to wait

uninstantiated answers must be kept in case they may be unified later

- theoretically: a local mgu (see paper)
- in practice: consider *all* substitutions (not just the leaves) appearing in *any* sld-derivation (order matters)

was there a typo in there?

consider all substitutions appearing in any sld-derivation

- yes, that's an exponential blowup
- hopefully, minor in practice
- ... and it's substitutions, not nodes (so not all is lost)

$minimal\ example$

hypotheses: $\{p(X,T), q(X,Y,T), r(Y,T)\}\$ data stream: $\{p(a,1), q(a,b,1), r(b,1)\}\$

minimal example

hypotheses: $\{p(X, T), q(X, Y, T), r(Y, T)\}\$ data stream: $\{p(a, 1), q(a, b, 1), r(b, 1)\}\$

only 4 instantiations

• we have e.g. [X := a, T := 1] and \emptyset , but not [T := 1]

minimal example

hypotheses: $\{p(X, T), q(X, Y, T), r(Y, T)\}\$ data stream: $\{p(a, 1), q(a, b, 1), r(b, 1)\}\$

only 4 schematic answers

we now apply each substitution to the set of hypotheses and unify with the data stream to obtain schematic answers

- $\langle \emptyset, \emptyset, \{p(X,T), q(X,Y,T), r(Y,T)\} \rangle$
- $\langle [X := a, T := 1], \{p(a,1)\}, \{q(a,Y,1), r(Y,1)\} \rangle$
- $\bullet \ \langle [Y := b, T := 1], \{r(b,1)\}, \{p(X,1), q(X,b,1)\} \rangle$
- $\langle [X := a, Y := b, T := 1], \{p(a,1), q(a,b,1), r(b,1)\}, \emptyset \rangle$

Outline

- 1 introduction
- 2 denotational semantic
- Operational semantics
- 4 what about delays?
- 6 conclusions

conclusions

main achievements

achievements:

- extended previous formalism with communication delays
- denotational semantics for more general setting
- operational semantics for more general setting, uses local mgu

what we lost:

• negation :-(

future work

- negation :-)
- an implementation...

thank you!