Exercises 7-31.

Ex 7. a) True. $2^{n+1} = 2 \cdot 2^n$, but when c = 3 we have that $2 \cdot 2^n \le 3 \cdot 2^n = c \cdot 2^n$ for all positive n.

Ex 7. b) False. Observe that $2^{2n} = 2^n \cdot 2^n$. There exists no positive constants c and n_0 such that $2^n \ge c$ for all $n \ge n_0$.

Ex 8. a) Note that $f(n) = log(n^2) = 2log(n)$. Then for all $n \ge b^5$ where b is the base of the logarithm

$$2log(n) \le 3log(n) + 15 = c_1(log(n) + 5)$$
 when $c_1 = 3$
 $2log(n) \ge log(n) + 5 = c_2(log(n) + 5)$ when $c_2 = 1$

Thus $f(n) \in \Theta(log(n) + 5)$.

Ex 8. b) We show that $f(n) \in \Omega(g(n))$. Because $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{1}{2} \cdot \lim_{n \to \infty} \frac{\sqrt{n}}{\log(n)} = \infty$, it follows that there exists positive constants c and n_0 such that $\frac{f(n)}{g(n)} \ge c$ for all $n \ge n_0$. This is equivalent to the big-Omega definition.

Ex 8. c) Observe that when c=1 and $n \geq b$ where b is the base of the logarithm, it follows that $f(n) = log(n)log(n) \geq log(n) = c \cdot g(n)$. Thus $f(n) \in \Omega(g(n))$.

Ex 8. d) We show that $f(n) \in \Omega(g(n))$. Because $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n}{\log^2(n)} = \infty$, it follows that there exists positive constants c and n_0 such that $\frac{f(n)}{g(n)} \ge c$ for all $n \ge n_0$. This is equivalent to the big-Omega definition.

Ex 8. e) We show that $f(n) \in \Omega(g(n))$. Because $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n \log(n) + n}{\log(n)} = \lim_{n \to \infty} n + \frac{n}{\log(n)} = \infty$, it follows that there exists positive constants c and n_0 such that $\frac{f(n)}{g(n)} \ge c$ for all $n \ge n_0$. This is equivalent to the big-Omega definition.

Ex 8. f) Note that both f(n) and g(n) are constant functions. In other words, they do not depend on n. Then let d = log(10) > 0 and observe that

$$10 \ge 1 = \frac{1}{d} \cdot d = c_1 \cdot d$$
 where $c_1 = \frac{1}{d}$
$$10 \le 11 = \frac{11}{d} \cdot d = c_2 \cdot d$$
 where $c_2 = \frac{11}{d}$

Thus $f(n) \in \Theta(g(n))$.

Ex 8. g) We show that $f(n) \in \Omega(g(n))$. Because $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{2^n}{10n^2} = \infty$, it follows that there exists positive constants c and n_0 such that $\frac{f(n)}{g(n)} \ge c$ for all $n \ge n_0$. This is equivalent to the big-Omega definition.

Ex 8. h) Observe that $c \cdot g(n) = 3^n \ge 2^n$ when c = 1 for all positive n. Thus $f(n) \in O(g(n))$.

Ex 9. a) Observe that $c \cdot f(n) = \frac{n^2 - n}{2} \ge 6n = g(n)$ when c = 1 for all $n \ge 13$. Thus $g(n) \in O(f(n))$.

Ex 9. b) Observe that $c \cdot g(n) = 100n^2 \ge n + 2\sqrt{n} = f(n)$ when c = 100 for all $n \ge 1$. Thus $f(n) \in O(g(n))$.

Ex 9. c) We show that $f(n) \in O(g(n))$. Because $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{nlog(n)}{n\frac{\sqrt{n}}{2}} = \lim_{n \to \infty} \frac{log(n)}{\frac{\sqrt{n}}{2}} = 0$, it

follows that there exists positive constants c and n_0 such that $\frac{f(n)}{g(n)} \le c$ for all $n \ge n_0$. This is equivalent to the big-O definition.

Ex 9. d) Observe that $f(n) = n + log(n) \ge n \ge \sqrt{n} = g(n)$ for all positive n. Thus $g(n) \in O(f(n))$.

Ex 9. e) We show that $g(n) \in O(f(n))$. Because $\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{\log(n) + 1}{2(\log(n))^2} = \lim_{n \to \infty} \frac{1}{2\log(n)} + \frac{1}{2(\log(n))^2} = 0$, it follows that there exists positive constants c and n_0 such that $\frac{g(n)}{f(n)} \le c$ for all $n \ge n_0$. This is equivalent to the big-O definition.

Ex 9. f) We show that $f(n) \in O(g(n))$. Because $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{4n \log(n) + n}{\frac{n^2 - n}{2}} = 0$, it follows that

there exists positive c and n_0 such that $\frac{f(n)}{g(n)} \le c$ for all $n \ge n_0$. This is equivalent to the big-O definition.

Ex 10. Proposition: $n^3 - 3n^2 - n + 1 \in \Theta(n^3)$.

Proof. (Direct.)
Because

$$\lim_{n \to \infty} \frac{n^3 - 3n^2 - n + 1}{n^3} = \lim_{n \to \infty} 1 - \frac{3}{n} - \frac{1}{n^2} + \frac{1}{n^3} = 1$$

, it follows that there exists positive constants c_1, c_2 , and n_0 such that $\frac{n^3-3n^2-n+1}{n^3} \geq c_1$ for all $n \geq n_0$ and $\frac{n^3-3n^2-n+1}{n^3} \leq c_2$ for all $n \geq n_0$. These two statements are respectively equivalent to the big-Omega and big-O definition. Thus we have shown $n^3-3n^2-n+1 \in \Omega(n^3)$ and $n^3-3n^2-n+1 \in O(n^3)$. Consequently $n^3-3n^2-n+1 \in O(n^3)$.

Ex 11. Proposition: $n^2 \in O(2^n)$.

Proof. (Direct.)

Because $\lim_{n\to\infty}\frac{n^2}{2^n}=0$, it follows that there exists positive c and n_0 such that $\frac{n^2}{2^n}\leq c$ for all $n\geq n_0$. This is equivalent to the big-O definition. Thus $n^2\in O(2^n)$.

Ex 12. a) c = 1.5

Ex 12. b) c = 2

Ex 12. c) c = 2

Ex 13. Proposition: If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then $f_1(n) + f_2(n) \in O(g_1(n) + g_2(n))$. *Proof.* (Direct.) Suppose $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$.

By our supposition it follows that there exists positive constants c_1, c_2, n_1, n_2 such that $f_1(n) \leq c_1 \cdot g_1(n)$ for all $n \geq n_1$ and $f_2(n) \leq c_2 \cdot g_2(n)$ for all $n \geq n_2$. Then let $c_3 = \max(c_1, c_2)$ and $n_3 = \max(n_1, n_2)$. So $f_1(n) \leq c_3 \cdot g_1(n)$ and $f_2(n) \leq c_3 \cdot g_2(n)$ for all $n \geq n_3$. After adding the second inequality to the first, we have that $f_1(n) + f_2(n) \leq c_3 \cdot (g_1(n) + g_2(n))$ for all $n \geq n_3$. Consequently $f_1(n) + f_2(n) \in O(g_1(n) + g_2(n))$.

Ex 14. Proposition: If $f_1(n) \in \Omega(g_1(n))$ and $f_2(n) \in \Omega(g_2(n))$, then $f_1(n) + f_2(n) \in \Omega(g_1(n) + g_2(n))$. Proof. (Direct.) Suppose $f_1(n) \in \Omega(g_1(n))$ and $f_2(n) \in \Omega(g_2(n))$.

By our supposition it follows that there exists positive constants c_1, c_2, n_1, n_2 such that $f_1(n) \geq c_1 \cdot g_1(n)$ for all $n \geq n_1$ and $f_2(n) \geq c_2 \cdot g_2(n)$ for all $n \geq n_2$. Then let $c_3 = \min(c_1, c_2)$ and $n_3 = \max(n_1, n_2)$. So $f_1(n) \geq c_3 \cdot g_1(n)$ and $f_2(n) \geq c_3 \cdot g_2(n)$ for all $n \geq n_3$. After adding the second inequality to the first, we have that $f_1(n) + f_2(n) \geq c_3 \cdot (g_1(n) + g_2(n))$ for all $n \geq n_3$. Consequently $f_1(n) + f_2(n) \in \Omega(g_1(n) + g_2(n))$.

Ex 15. Proposition: If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then $f_1(n) \cdot f_2(n) \in O(g_1(n) \cdot g_2(n))$. Proof. (Direct.) Suppose $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$.

By our supposition it follows that there exists positive constants c_1, c_2, n_1, n_2 such that $f_1(n) \leq c_1 \cdot g_1(n)$ for all $n \geq n_1$ and $f_2(n) \leq c_2 \cdot g_2(n)$ for all $n \geq n_2$. Then let $c_3 = max(c_1, c_2)$ and $n_3 = max(n_1, n_2)$. So $f_1(n) \leq c_3 \cdot g_1(n)$ and $f_2(n) \leq c_3 \cdot g_2(n)$ for all $n \geq n_3$. After multiplying the second inequality with the first, we have that $f_1(n) \cdot f_2(n) \leq (c_3)^2 \cdot (g_1(n) \cdot g_2(n))$ for all $n \geq n_3$. Consequently $f_1(n) \cdot f_2(n) \in O(g_1(n) \cdot g_2(n))$.

Ex 16. Proposition: For all $k \ge 1$ and all sets of constants $\{a_k, a_{k-1}, a_{k-2}, ..., a_1, a_0\} \in \mathbb{R}$, $a_k n^k + a_{k-1} n^{k-1} + a_{k-2} n^{k-2} + ... + a_1 n + a_0 \in O(n^k)$.

Proof. (Direct.)

Because

$$\lim_{n \to \infty} \frac{a_k n^k + a_{k-1} n^{k-1} + a_{k-2} n^{k-2} + \ldots + a_1 n + a_0}{n^k} = \lim_{n \to \infty} a_k + \frac{a_{k-1}}{n} + \frac{a_{k-2}}{n^2} + \ldots + \frac{a_1}{n^{k-1}} + \frac{a_0}{n^k} = a_k$$

, it follows that there exists positive constants c and n_0 such that $\frac{a_k n^k + a_{k-1} n^{k-1} + a_{k-2} n^{k-2} + \ldots + a_1 n + a_0}{n^k} \leq c \text{ for all } n \geq n_0. \text{ This is equivalent to the big-O definition. Thus } a_k n^k + a_{k-1} n^{k-1} + a_{k-2} n^{k-2} + \ldots + a_1 n + a_0 \in O(n^k).$

Ex 17. Proposition: $(n+a)^b = \Theta(n^b)$ for any real constants a and b, b > 0.

Proof. (Direct.)

Observe that when we multiply $(n+a)^b$ with $\frac{n^b}{n^b}$ we get $(n+a)^b \cdot \frac{n^b}{n^b} = \frac{(n+a)^b}{n^b} \cdot n^b = \left(1 + \frac{a}{n}\right)^b \cdot n^b$.

Then $\lim_{n\to\infty} \frac{\left(1+\frac{a}{n}\right)^b n^b}{n^b} = \lim_{n\to\infty} \left(1+\frac{a}{n}\right)^b = 1$ implies that $(n+a)^b = \Theta(n^b)$.

Ex 18.
$$lg(lg(n)) \ll ln(n) \equiv lg(n) \ll (lg(n))^2 \ll \sqrt{n} \ll n \ll nlog(n) \ll n^{1+\varepsilon} \ll n^2 + lg(n) \equiv n^2 \ll n^3 \ll n - n^3 + 7n^5 \ll 2^n \equiv 2^{n-1} \ll e^n \ll n!$$

 $\left(\frac{1}{3}\right)^n \ll 6 \ll \log(\log(n)) \ll \log(n) \equiv \ln(n) \ll (\log(n))^2 \ll n^{1/3} + \log(n) \ll \sqrt{n} \ll \frac{n}{\log(n)} \ll n \ll n$ $nlog(n) \ll n^2 + log(n) \equiv n^2 \ll n^3 \ll n - n^3 + 7n^5 \ll \left(\frac{3}{2}\right)^n \ll 2^n \ll n!$

Ex 20. a) Let f(n) = n and $g(n) = n^2$. Then $f(n) \in o(g(n))$, but $f(n) \notin \Theta(g(n))$.

Ex 20. b) None

Ex 20. c) None

Ex 20. d) Let $f(n) = n^2$ and g(n) = n. Then $f(n) \in \Omega(g(n))$, but $f(n) \notin O(g(n))$.

Ex 21. a) True b) False c) True d) False e) True f) True g) False

Ex 22. a) $f(n) \in \Omega(g(n))$ b) $f(n) \in O(g(n))$ c) $f(n) \in \Omega(g(n))$

Ex 23. a) Yes. $O(n^2)$ in worst case does not preclude O(n) for some other case.

Ex 23. b) Technically yes. Big-O is an upper bound, if an algorithm always runs in constant time, we can technically say that worst case is $O(2^n)$. Likewise, worst case $O(n^2)$ can always run in O(n).

Ex 23. c) Yes, the lower bound of n^2 (theta specifices lower and upper bound) only applies for the worst-case input.

Ex 23. d) No, this conclusion follows from the definition of theta. The worst-case input has a lower bound of n^2 .

Ex 23. e) Yes.

Ex 24. a) No b) Yes c) Yes d) Yes. All answers based on the definitions of Big-O and Big-Omega.

Ex 25. a) g(n) = f(n) b) g(n) = n c) $g(n) = n \log(n)$ d) $g(n) = \log(n!)$

Ex 26. $f_4 \ll f_2 \ll f_1 \ll f_3$

Ex 27. $f_1 \ll f_2 \ll f_3 \ll f_4$

Ex 28. a) $q(n) = n^4$ b) $q(n) = 4^n$ c) $q(n) = 9^n$

Ex 29. a) True b) True c) True

Ex 30. a) $g(n) = 4^n$ b) g(n) = nlog n c) $g(n) = log(n)^{10}$ d) $g(n) = n^{100}$

Ex 31.

- a) A is Ω and ω of B.
- b) A is Ω and ω of B.
- c) None
- d) A is Ω and ω of B.
- e) A is Ω and ω of B.
- f) A is Ω and ω of B.