Statistique : Statistiques descriptives

Joseph Salmon

Septembre 2014

Statistique

- ▶ On observe des réalisations (y_1, \ldots, y_n) de variables aléatoires inconnues (éventuellement vectorielles)
- ▶ On suppose ici que les variables sont indépendantes et identiquement distribuées (i.i.d.) selon une loi \mathbb{P}_Y

But de l'estimation

Comment apprendre certaines caractéristiques de \mathbb{P}_Y à partir de (y_1,\ldots,y_n) ?

Souvent : on se prépare à observer y_{n+1} .

Cas de la prédiction

Que peut-on attendre de y_{n+1} ? (en moyenne, ou avec une certaine probabilité ?)

Vocabulaire

- ▶ Observations $\mathbf{y} = y_{1:n} = (y_1, \dots, y_n)$: échantillon de taille n.
- Frandeurs théoriques : dépendant de la loi \mathbb{P}_Y inconnue **Exemple**: l'espérance de la variable y sous la loi \mathbb{P}_Y .
- ► Grandeurs empiriques : calculées à partir des observations y_i . Exemple: $\bar{y}_n = \frac{1}{n} \sum_{i=1}^n y_i$ est la moyenne empirique
- ▶ Objectif général : apprendre les caractéristiques théoriques de \mathbb{P}_Y à partir de résumés empiriques.

Statistique exploratoire et descriptive

- ightharpoonup Première analyse sans hypothèse sur la loi \mathbb{P}_Y .
- ► Analyse qualitative du jeu de données /échantillon

Définition : Statistique

Une statistique est une fonction des observations (y_1, \ldots, y_n) .

Moyenne

Défintion : Moyenne

$$\overline{y}_n = \frac{1}{n} \sum_{i=1}^n y_i$$

Notons $\mathbf{1}_n$ le vecteur $(1,\ldots,1)\in\mathbb{R}^n$. La moyenne est (à facteur 1/n près) un produit scalaire dans \mathbb{R}^n :

$$\overline{y}_n = \langle \mathbf{y}, \mathbf{1}_n / n \rangle$$

cf. McKinney (2012) pour les statistiques avec python

Médiane empirique

On ordonne les $y_i: y_{(1)} \leq y_{(2)} \leq \ldots \leq y_{(n)}$

$$\mathrm{Med}_n(\mathbf{y}) = \begin{cases} \frac{y_{(\lfloor \frac{n}{2} \rfloor)} + y_{(\lfloor \frac{n}{2} \rfloor + 1)}}{2} & \text{Si } n \text{ est pair} \\ y_{(\frac{n+1}{2})} & \text{Si } n \text{ est impair} \end{cases}$$

Moyenne vs médiane

- ▶ Les deux statistiques ne coïncident pas
- Une médiane est plus robuste aux points atypiques (en anglais : outliers)

Dispersion

Variance empirique

Moyenne des écarts quadratiques à la moyenne (empirique)

$$\operatorname{var}_{n}(\mathbf{y}) = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \overline{y}_{n})^{2} = \frac{1}{n} \|\mathbf{y} - \overline{y}_{n} \mathbf{1}_{n}\|^{2}$$

 $(\|\cdot\|:$ norme euclidienne dans $\mathbb{R}^n)$

Écart-type empirique

$$s_n(\mathbf{y}) = \sqrt{\operatorname{var}_n}(\mathbf{y}) \qquad \left(= \frac{1}{\sqrt{n}} \|\mathbf{y} - \overline{y}_n \mathbf{1}_n\| \right)$$

Dispersion

Mean Absolute deviation

Déviation médiane absolue :

$$MAD_n(\mathbf{y}) = Med(|Med(\mathbf{y}) - \mathbf{y}|),$$

Histogramme

Répartition des données dans des « cases » L'aire de chaque case est proportionnelle à la fraction des données qui « tombent » dans la case.

L'histogramme est une approximation de la $\operatorname{densit\acute{e}}$ de y

Fonction de répartition empirique

Nombre d'échantillons : n = 30

- Rappel : Fonction de répartition : $F(u) = \mathbb{P}_Y(-\infty, u]$
- lacktriangle Version empirique : proportion des données en-dessous de $\it u$

$$F_n(u) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{y_i \le u\}}$$

Quantiles empiriques

Nombre d'échantillons : n = 30

- ▶ Inverse de la fonction de répartition empirique.
- ▶ Soit $\lceil u \rceil$ le nombre entier tel que $\lceil u \rceil 1 < u \le \lceil u \rceil$.

Quantiles empiriques

quantile d'ordre
$$p=y_{(\lceil np \rceil)} \quad (p \in [0,1])$$

$$=F_n^{\leftarrow}(p)$$

Covariance et corrélation empirique

Covariance empirique

Pour deux échantillons $x_{1:n}$ et $y_{1:n}$ de moyennes et variances empiriques $\mathbf{x} = \overline{x}_n$, $\mathbf{y} = \overline{y}_n$ et $\operatorname{var}_n(\mathbf{x})$, $\operatorname{var}_n(\mathbf{y})$:

$$\operatorname{cov}_n(x,y) = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)(y_i - \overline{y}_n)$$
 c'est-à-dire

$$\operatorname{cov}_n(x,y) = \frac{1}{n} \langle x_{1:n} - \overline{x}_n \mathbf{1}_n, y_{1:n} - \overline{y}_n \mathbf{1}_n \rangle$$

Corrélation empirique

$$\rho = \operatorname{corr}_n(x, y) = \frac{\operatorname{cov}_n(x, y)}{\sqrt{\operatorname{var}_n(\mathbf{x})} \sqrt{\operatorname{var}_n(\mathbf{y})}}, \quad \text{c'est-à-dire}$$

$$\rho = \frac{\langle x_{1:n} - \overline{x}_n \mathbf{1}_n, y_{1:n} - \overline{y}_n \mathbf{1}_n \rangle}{\|x - \overline{x}_n\| \|y - \overline{y}_n\|} = \cos(x_{1:n} - \overline{x}_n \mathbf{1}_n, y_{1:n} - \overline{y}_n \mathbf{1}_n)$$

Interprétation pour n=3 et $\|\mathbf{x}\|=\|\mathbf{y}\|=1$

Exemples de corrélations

Exemples de corrélations proches de zéros

Exemples de corrélations proches de zéros

Exemples de corrélations proches de zéros

Exemples de visualisation

Références I

► W. McKinney.

Python for Data Analysis : Data Wrangling with Pandas, NumPy, and IPython.

O'Reilly Media, 2012.