南京大学数学系期末试卷

2020/2021		21 学年	学年第二学期		考试形式 闭卷		程名称_	高等代数		
院系	院系数学		级 学号							
考试时	间	2021.06.	1.06.21任课教师			考试成绩				
题号			三	四	五.	六	七	总分		
得分										

- 一. 判断下列叙述是否正确; 正确的在()内打√; 错误的在()内打×. 每小题 2分, 共 20分.
- 1. 设 $W \in V = \mathbb{Q}^n (n \ge 2)$ 的非平凡真子空间,则存在无穷多个子空间 U 使得 $V = W \oplus U$. ()
- 2. n 维欧氏空间 V 的正交变换在 V 的任意一个基下的矩阵都是正交矩阵. ()
- 3. 设 $A \in n$ 级实可逆方阵, 则 $A \in r$ 个实根当且仅当 $A^* \in r$ 个实根. ()
- 4. 设 A 为 n 级复方阵, 则 $\operatorname{rank}(AA') = \operatorname{rank}(A)$.
- 5. 设欧氏空间 V 的内积为 (α, β) , $\alpha_1, \dots, \alpha_n \in V$, 令 $a_{ij} = (\alpha_i, \alpha_j)$, 则 $A = (a_{ij})_{n \times n}$ 半正定.()
- 6. 设 A 为 $n(n \ge 2)$ 级复对称矩阵, 则 A 可以对角化. (
- 7. 设实对称矩阵 A 与实对称矩阵 B 相似, 则 A 与 B 正交相似. ()
- 8. 两个 n 级正定矩阵矩阵的乘积仍是正定矩阵. ()
- 9. 具有相同的特征多项式的正交矩阵是相似的. (
- 10. 设 A 为 n 阶实对称矩阵, 且 X'AX = 0 的解集合为一个子空间, 则 A 半正定或半负定. ()
- 二. 填空题,每小题 5 分,共 25 分.
- 1. 实二次型 $\sum_{i=1}^{21} x_i^2 + 2 \sum_{i=1}^{21} x_i x_{22-i}$ 的秩为 ______, 正惯性指数为 ______.

2.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$
的初等因子为______.

3.
$$A = \begin{pmatrix} 4 & 4 \\ -3 & 3 \end{pmatrix}$$
 的奇异值为_____.

4. 设
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$$
, 则对 $X \in S^2 = \{X \in \mathbb{R}^3 \mid |X| = 1\}$, $X'AX$ 的最大值为______.

5. 矩阵
$$A = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$
 的极分解为_____.

三. (20 分) 给定实二次型 $f(x_1, x_2, x_3) = tx_1^2 + (t+1)x_2^2 + (t+2)x_3^2 + 4x_1x_2 + 4x_2x_3$.

- 1) t 取何值时 f 正定?
- 2) t 取何值时 f 负定?

第一页(共六页)

第二页(共六页)

四. (10 分) 求线性方程组

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 3 \\ 4 \end{pmatrix}$$

的最小二乘解.

五. $(20 \ \%)$ 设 3 级正定矩阵 A 的三个特征值为 6,3,3, 又 (1,1,1)' 是 A 的属于特征值 6 的特征向量. (1) 求 A 的属于特征值 3 的两个线性无关的特征向量; (2) 求 A.

第三页(共六页)

六. (10 分) 设 V 是 n 维欧氏空间, σ 为 V 上的正交变换, 证明: 存在 $\sigma_1, \sigma_2 \in \operatorname{End}(V)$ 使得 $\sigma = \sigma_1 \sigma_2$, 并且 σ_1, σ_2 既是对称变换又是正交变换.

七. (15 分) 设 n 是正整数. 对任意 $f(x), g(x) \in \mathbb{R}[x]_n = \left\{\sum_{i=0}^{n-1} a_i x^i \mid a_i \in \mathbb{R}, i = 0, 1, 2, \dots, n-1\right\},$ 定义 $(f(x), g(x)) = \sum_{k=0}^{n-1} f^{(k)}(1)g^{(k)}(1).$

- (1) (9 分) 证明: (,) 是 $\mathbb{R}[x]_n$ 上的内积;
- (2) (6 分) 试求 $\mathbb{R}[x]_n$ 的一组标准正交基.

第五页(共六页)