The problem

A retiming of a circuit $G = \langle V, E, d, w \rangle$ is a function $r: V \mapsto \mathbb{Z}$ that transforms G into $G_r = \langle V, E, d, w_r \rangle$, where

$$w_r(e) = w(e) + r(v) - r(u)$$
.

Algorithm CP

Compute the clock period $\Phi(G)$ for a synchronous circuit G.

- 1. Let G_0 be the (acyclic) subgraph of G that contains precisely those edges e: w(e) = 0.
- 2. Perform a topological sort on G_0 .
- 3. Go through the vertices in the topological order. For each vertex v
 - A. if there is no incoming edge to v, set $\Delta(v) \leftarrow d(v)$;
 - B. otherwise, set $\Delta(v) \leftarrow d(v) + \max\{\Delta(u) : u \stackrel{e}{\rightarrow} v \text{ and } w(e) = 0\}$.
- 4. $\Phi(G) = \max\{\Delta(v)\}.$