

FIGURE 1

Double Stranded or Single Stranded DNA or RNA

FIGURE 2

FIGURE 3

5-APAS-UTP

5-APAS-CTP

5-SH-UTP

5-SF-UTP

8-APAS-ATP

FIGURE 4

pyrene

stilbene

coumarine

bimane

naphthalene

pyridyloxazole

naphthalimide

NBD

fluorescein

BODIPY™

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

+

where N_3 is a terminator

EXAMPLE

FIGURE 10

FIGURE 11

FIGURE 12

FIGURE 13

FIGURE 14

FIGURE 15

FIGURE 16

Target SNP = 3'----dN_(-2')p dN_(-1')p dN_{T'}---- 5'

FIGURE 17

FIGURE 18

FIGURE 19

SIGNALS

FIGURE 20

FIGURE 21

FIGURE 22

FIGURE 23

FIGURE 24

FIGURE 25

FIGURE 26

FIGURE 27

FIGURE 28

Assay Optimization - Kinetics of FRET

FIGURE 29A

FIGURE 29B

FIGURE 29C

ATTATCCAGT
AGGCAGATTAAGCATGTGCTTAAGGCATCAGCAAAGCTGAGCAATCCATTAAAACGTAGTACATGTTT
TGATAAGCTAAAAAGTAGTAGTCACAGGAAAAATTAGAACCTTACCTCCTGCGCTTGTATACTCTTAGT
GCTGTTAACCTTCTTGTAAAGTGAGGGTGGAGGGTGCCTACATCTTCAAGGGAGTAAGTTCTTCTT
GGTCTT
GGCGCGATCTGGCTCACTGCAACCTCCGCCTCTCCTGGGTCAGCGATTCTCTACATCAGCCTCCGA
GTAGCTGGGATTACAGGCATGCGCCACCAAGCCCCGTAATTGTATTAGTAGAGACAGGGTTCGC
CATGTTGGTCAGGCTTGTCTGAACTCCTGGCCTCAGGTGATCCGCTGTCTGGCCTCCAGAATGCTGG
GATTATAGACGTGAGCCACCGCATTCCGGACTTCTTATGTAATAGTGATAATTCTATCCAAAGCATT
TTTTTTGAGTCGGAGTCTCATTCTGTCAACCAGGCTGGAGGGTGGCGCGATCTCGCTTACTGCAA
CCTCTGCCTCCCAGGTTCAAGCGATTCTCTGCCTCAGCCTCTGAGTAGCTGGAATTACACACGTGCGCCA
CCATGGCCAGCTAATTGTATTAGTAGAGACAGGGTGTCAACCATTGGCCAAGCTGGCCTCGAAC
CTGACCTCAGGTGATCTGCCCGCTGGCTCCCAAAGTGCTGGGATTACAGGTGAGGCCACCGCGTCT
GCTCCAAGCATTCTTCTATGCCTCAAAACAAGATTGCAAGCCAGTCTCAAAGCGGATAATTCAAGAGC
TAACAGGTATTAGCTTAGGATGTGGCACTGTTCTAAGGCTTATATGTATTAAACATCATTAAACTCACA
ACAACCCCTATAAAGCAGGGGGCACTCATATTCCCTCCCCCTTATAATTACGAAAAATGCAAGGTATT
AGTAGGAAAAGAGAAAATGTGAGAAGTGTGAAGGAGACAGGACAGTATTGAAGCTGGTCTGGATCA
CTGAACTCTGCTTCTAGAACACTGAGCACTTTCTGGCTAGGAATTATGACTTGAGAATGGAGTCCGCTT
CCAATGACTCCCTCCCCATTCTATCTGCCTACAGGCAGAATTCTCCCCGTCCTATTAAATAACCTCA
TCTTTCAGAGTCTGCTCTTATACCAAGGCAATGTACACGTCTGAGAAACCTTGGCCAGACAGCGTT
ACGCAGGAGGGAAAGGGAGGGAGAGCAGTCCGACTCTCCAAAAGGAATCCTTGAACTAGGG
TTCTGACTTAGTGAACCCCGCGCTCTGAAAATCAAGGGTTGAGGGGGTAGGGGGACACTTCTAGTC
CAGGTGATTGATTCTGGTGGGCTCTCACAACACTAGGAAAGAATAGTTGCTTTCTATGATTAAAAGA
AGAAGCCATACTTCCCTATGACACCAAACACCCCGATTCAATTGGCAGTTAGGAAGGTTATCGCGGAG
GAAGGAAACGGGGCGGGGGCGGATTCTTTAACAGAGTGAACGCACTCAAACACGCCTTGCTGGCAGG
CGGGGGAGCGCGGCTGGAGCAGGGAGGGCGAGGGCGGTGTTGGGGCAGGTGGGAGGAGCCAGT
CCTCCTTCTTGCAACGCTGGCTCTGGCGAGGGCTGCTCCGGCTGGTGCCTCCGGAGACCCAACC
TGGGGCGACTTCAGGGTGCCACATTGCTAAGTGCTCGAGTTAATAGCACCTCCTCCGAGCACTCGCT
ACGGCGTCCCCCTGCTGGAAAGATACCGCGGTCCCTCCAGAGGATTGAGGGACAGGTGGAGGGGC
TCTTCCGCCAGCACCGAGGAAGAAAGAGGAGGGGCTGGCTGGTACCCAGAGGTTGGGGCGACCGCGT
GCGCTCGCGGCTCGGGAGAGGGAGAGCAGGCAGCGGGCGGGAGCAGCATGGAGCCGGCG
GGGGAGCAGCATGGAGCCCTCGGCTGACTGGCTGGCCACGGCCAGGGCGGGGGTGGTAGAGGAGGT
GCGGGCGCTGCTGGAGGGGGCGCTGCCAACGGCACCGAATAGTTACGGTGGAGGGCGATCCAGGT
GGTAGAGGGCTGCAAGCGGGAGCAGGGGATGGCGGGGAGACTCTGGAGGGAGCAAGTTGCAGGGGAATT
GGAATCAGGTAGCGCTCGATTCTCGGAAAAAGGGAGGCTTCTGGGAGTTTCAGAAGGGTTGTA
ATCACAGACCTCCCTGGCGACGCCCTGGGGCTTGGGAAGCCAAGGAAGAGGAATGAGGAGCCACGCC
CGTACAGATCTCTCGAATGCTGAGAACATCTGAAGGGGGAAACATATTGTATTAGATGGAAGTATGCT
ATCAGATAACAAATTACGAACGTTGGATAAAAAGGGAGTCTAAAGAAATGTAAGATGTGCTGGACTAC
TTAGCCTCCAATTACAGATACTGAGTGGAGCTTATCTTCTTACTAGGAGGGATTATCAGTGGAAATCTGT
GGTGTATGTTGGAAATAATCGAATATAAATTITGATCGAAATTATTGAGTCTTCTTACTAGGAGGG
ACGCCTTGTAAATCCCTCATTGGAGATCAAGGCAGGGGGAAATCACCTGAGGTCGGAGGTTGAGACCA
GCCTGGCAACAGGTGAAACACTCGCCTCTACTAAAAATACAAAAAGTAGCCGGGGGGTGGCAGGCGCCT
GTAATCCCAGCTACTCGGGAGGTTGAGGCAGGAGAATCGCTGAACCCGGGAGGCTGAGGTTGAGTGAAC
AGCGAGATGGAGGCCACTTCACTCCAGCCTGGTGACAGAGTGAAGACTTGTGAAAGAAAGAAAGAGAGAA
AGAGAGAGAGAAAAATTATTCAAGAACACTACATATTGTTTATTAACTGAGTAGGGCAAATAAATATA
TGTGCTGAGGAACTTAGGAAATAATGAGGCCACATTGATGTGATCATTCTCAGAGGTAATATGAGTACCAT
TTGGGAATATCTGCTAACATTGCTCTTACTATCTTACTGCTTACTGATATAGTTATTGTGATAAGAG
TTTCAATTCTCATTTGAACAGAGGTGTTCTCTCCCTACTCTGTTGAGGGAGTTAGGGAG
GATTTAAAAGTAATTAAATACATGGGTAACCTAGCATCTCTAAAATTGCCAACAGCTTGAACCCGGGAGTTG
GCTTGTAGTCCTACAATATCTAGAAGAGACCTTATTGTTAAAACAAAAGGAAAAGAAAAGTGGATAG
TTTGACAATTAAATGGAG

Figure 30

FIGURE 31