Task 1 - Ordinary Least Squares (OLS) Example

Consider a data set with three data points, $x_1 = 0$, $x_2 = 1$, $x_3 = 2$ with respective labels $y_1 = 0$, $y_2 = 1$, $y_2 = 0$.

1. We want to fit a simple linear model $f(x) = \omega \cdot x$ to the data using Ordinary Least Squares (OLS). Recall the OLS solution is obtained as

$$\omega = \underset{\omega}{\operatorname{argmin}} \sum_{n=1}^{N} (y_n - f(x_n))^2 = (XX^{\top})^{-1} X y^{\top}$$
 (1)

where N=3 is the number of data points, $X=[x_1,x_2,x_3]$ and $y=[y_1,y_2,y_3]$. Compute ω .

2. Now we want to fit a polynomial model $g(x) = w_1 \cdot x + w_2 \cdot x^2 = \mathbf{w}^T \cdot \phi(x)$ where we have defined a mapping $\phi : \mathbb{R} \ni x \mapsto \begin{bmatrix} x \\ x^2 \end{bmatrix} \in \mathbb{R}^2$ and a weight vector $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$. Recall the OLS solution is obtained as

$$\mathbf{w} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n=1}^{N} (y_n - g(x_n))^2 = (XX^{\top})^{-1} X y^{\top}$$
 (2)

where N and y are defined as above and $X = [\phi(x_1), \phi(x_2), \phi(x_3)] = \begin{bmatrix} x_1 & x_2 & x_3 \\ (x_1)^2 & (x_2)^2 & (x_3)^2 \end{bmatrix}$. Compute \mathbf{w} and the corresponding function g(x).

(You might need a calculator and the following formula: $\begin{bmatrix} a & b \\ b & c \end{bmatrix}^{-1} = \frac{1}{ac-b^2} \begin{bmatrix} c & -b \\ -b & a \end{bmatrix}.$)

3. Draw a 2D plot with the data points and the functions f(x) and g(x).

Task 2 - Variance of OLS Estimation

The following pseudocode computes the variance of the OLS estimator $\hat{\omega}$ of a simple regression:

Algorithm 1: Variance of the OLS Estimator

Require: Number of Data points N, Noise variance σ_{ϵ}^2 , true slope ω

- 1: # Generate N data points $X = [x_1, \dots, x_N]$ from a Gaussian distribution, $x_i \sim \mathcal{N}(0, 1)$
- 2: for Repetition $r = 1, \dots, 10^5$ do
- 3: # Generate N noise terms $E = [\epsilon_1, \dots, \epsilon_N]$ from a Gaussian distribution, $\epsilon_i \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$
- 4: # Compute $y = \omega \cdot X + E$
- 5: # Compute OLS estimate $\hat{\omega}[r] = (XX^{\top})^{-1}Xy^{\top}$
- 6: end for
- 7: **Output:** Variance of $\hat{\omega}$

Which of the input parameters influences the variance of $\hat{\omega}$ in which way? Complete the following statements:

- 1. If the number of data points N increases, the variance of $\hat{\omega}$ will
 - (a) decrease (b) increase (c) remain the same.
- 2. If the noise variance σ_{ϵ}^2 increases, the variance of $\hat{\omega}$ will
 - (a) decrease (b) increase (c) remain the same.

Task 3 - Bias-Variance Tradeoff

Suppose there is a true, but unknown, non-linear relationship between a one-dimensional input x and a one-dimensional output y,

$$y = f(x) + \epsilon$$

where ϵ is uncorrelated noise. Suppose we oberseve N data points and model the relationship as an mth order polynomial, i.e.

$$\hat{f}(x) = w_0 + w_1 x + w_2 x^2 + \ldots + w_m x^m.$$

The number of training points is fixed, and the parameters w_0, w_1, \dots, w_m are estimated by ordinary least squares regression (OLS), i.e. chosen such that $\sum_{n=1}^{N} (y_n - \hat{f}(x_n))^2$ is minimized.

- 1. Draw a sketch showing two curves: training error vs. the number of features m and test error vs. the number of features m.
- 2. Annotate the plot with the two terms "Overfitting" and "Underfitting"
- 3. Draw two more curves (in the sketch or in a second sketch): The bias of \hat{f} and the variance of \hat{f} . Recall: A low bias means that on average (over different training sets) we accurately estimate f. A low variance of the model means that the estimated \hat{f} won't change much if the training set varies.
- 4. Suppose we chose m such that we are in the "Overfitting" region, but we use Ridge Regression with a regularisation parameter $\lambda > 0$, i.e. we chose w_0, w_1, \ldots, w_m such that $\sum_{n=1}^{N} (y_n \hat{f}(x_n))^2 + \lambda \sum_{i=1}^{m} w_i^2$ is minimized. Compared to OLS,
 - (a) will the training error decrease or increase? (Or is it ambigious?)
 - (b) will the test error decrease or increase? (Or is it ambigious?)
 - (c) will the bias of \hat{f} decrease or increase? (Or is it ambigious?)
 - (d) will the variance of \hat{f} decrease or increase? (Or is it ambigious?)

Task 4 - Invariance under transformations

In this task we want to analyse if the OLS estimator and the Ridge estimator are invariant under certain transformations. Using the notation of the lecture $X \in \mathbb{R}^{d \times N}$ and $y \in \mathbb{R}^{1 \times N}$, the estimators are given as:

$$\hat{\mathbf{w}}_{ols} = (XX^{\top})^{-1}Xy^{\top}$$

$$\hat{y}_{ols} = \hat{\mathbf{w}}_{ols}^{\top}X$$

$$\hat{\mathbf{w}}_{ridge} = (XX^{\top} + \lambda I)^{-1}Xy^{\top}$$

$$\hat{y}_{ridge} = \hat{\mathbf{w}}_{ridge}^{\top}X$$

We analyse invariance with respect to linear transformations of the data, $X \mapsto AX$ where $A \in \mathbb{R}^{d \times d}$ is an invertible matrix. Invariance means that the estimator is the same on the original data than on the transformed data.

- 1. Show that \hat{y}_{ols} is invariant under arbitrary transformations A, but $\hat{\mathbf{w}}_{ols}$ is not.
- 2. Show that \hat{y}_{ridge} is invariant under orthogonal transformations A (i.e. $AA^{\top} = A^{\top}A = I$).