10.31.2018

HOMEWORK 3

* due friday!!!

RECAP

- * correlation
 - * tells you about the (linear)
 relationship between two samples
 - * similar to covariance (but scaled)
 - * significance can be tested by various methods (bootstrap, permutation, exact test)

- * lots of experimental data (especially neural recordings) are **timeseries**
- * this happens when data is recorded at fixed intervals in time
 - * e.g. in fMRI we usually get one data point every 2 seconds
 - * electrophysiological recordings (HW 3
 data!) get up to 25,000 data points per
 second

- * timeseries are not like other data
- * timeseries are special
- * timeseries have specific properties that should & must be accounted for in analyses

* what is it that makes timeseries special?

- * it's that data from nearby times are related
- * i.e. each data point is not independent
 of the others

- * the degree of relatedness often depends on how close two data points are to each other in time
 - * points that are very nearby are often very related
 - * points that are far away are usually not too related

AUTOCORRELATION

- * convolution is the most basic & important operation in timeseries analysis
- * the convolution between f and g is defined as:

$$(fst g)[n] = \sum_{m=-\infty}^{\infty} f[m]g[n-m]$$

- * another term for convolution that you will often hear is filtering
- * filtering means convolving your data with a **filter** (often aka a **kernel**)
- * a filter/kernel is typically a small array with some specific properties

- * for example, we could filter a signal with a kernel that looks like this:
- * kernel = [0.25, 0.25, 0.25, 0.25]

- * for example, we could filter a signal with a kernel that looks like this:
- * kernel = [0.25, 0.25, 0.25, 0.25]
- * ^ this will take a running average of every 4 timepoints in the signal!

- * convolution is also important in statistics!
 - * suppose X ~ U{1,6}, a random number in the range 1..6 (like throwing dice)
 - * suppose also Y ~ U{1,6}
- * what is the distribution of X + Y?

* X + Y ~ U{1,6} \star U{1,6}, the convolution of the two probability distributions

* generally, for the sum of any two random numbers, the distribution is the convolution of their two distributions

* where else have we talked about adding together random numbers, and what happens to their distributions...?

* by the central limit theorem, if you convolve anything with itself enough times, the result will be a gaussian distribution

NEXT TIME

* Fourier!

