System Design Part 4

ALU Input list:

Name	Bit-size	Description
IN 1.16	16	16-bit input
FEEDBACK	16	16-bit input (from register)
OP 1.4	4	4-bit operation code input
CLK	1	Clock

ALU Output list:

Name	Bit-size	Description
OUT 1.32	32	32-bit arithmetic output
OUT 2.2	2	2-bit error output

calculateGrid Input list

Name	Bit-size	Description
P1_action	4	4-bit input action of Player 1
P2_action	4	4-bit input action of Player 2
oldGrid	400	10 by 10 by 4 grid representing old grid of game
CLK	1	40-tick clock (20 high, 20 low)

calculateGrid Output list

Name	Bit-size	Description
newGrid	400	10 by 10 by 4 grid representing new grid of game

Interfaces:

For simplicity of wording, the value stored in the register is considered to be an input.

Name	Bit-size	Description
Mode	1	1-bit command the controls Addsub
Select	16	16-bit one hot selector
Channel 0	32	Reset - returns all 0's
Channel 1	32	Result of summation between the two inputs to the multiplexor
Channel 2	32	Preset- returns all 1's
Channel 3	32	No-op - Do nothing
Channel 4	32	And - returns the bitwise AND of the two inputs
Channel 5	32	Result of difference between the two inputs to the multiplexor
Channel 6	32	Or - returns the bitwise OR of the two inputs
Channel 7	32	Not - returns the bitwise NOT of the two inputs
Channel 8	32	Nand - returns the bitwise NAND of the two inputs
Channel 9	32	Nor - returns the bitwise NOR of the two inputs
Channel 10	32	Result of multiplication between the two inputs to the multiplexor
Channel 11	32	Xor- returns the bitwise XOR of the two inputs
Channel 12	32	Xnor - returns the bitwise XNOR of the two inputs
Channel 14	32	Result of division between the two inputs to the multiplexor
Channel 15	32	Result of modulo between the two inputs to the multiplexor

Part List:

- 1 comparator
 - Compares constant 0001 to opcode input to select the AddSub mode.
- 1 32-bit Adder-Subtractor
 - Takes two 16-bit input and adds them into a 32-bit output or subtracts them into a 32-bit output based on the mode.
 - Outputs a 1-bit error code that is 1 if there is an overflow or underflow, or 0 if there is none.
- 1 32-bit multiplier
 - Takes two 16-bit input and adds them into a 32-bit output.
- 1 32-bit divider
 - Takes two 16-bit input and adds them into a 32-bit output.
 - Outputs a 1-bit error code if the input is divided by zero.
- 1 32-bit modulo
 - o Takes two 16-bit input and adds them into a 32-bit output.
 - Outputs a 1-bit error code if the input is divided by zero.
- 1 4-to-16 decoder
 - Takes the 4-bit opcode input and outputs a 16-bit one hot.
- 1 16 channel 32-bit with a one-hot selector multiplexer
 - Has 16 channels and outputs a 32-bit output.
- 2 OR gates
- 1 bit shifter
 - Shifts 1-bit input logically left by 1 bit and outputs a 2-bit output
- 2 bit extenders
- 1 32-bit register
- 1 clock
- 1 16-bit AND gate
- 1 16-bit OR gate
- 1 16-bit NOT gate
- 1 16-bit NAND gate
- 1 16-bit NOR gate
- 1 16-bit XOR gate
- 1 16-bit XNOR gate
- 1 calculateGrid Module
 - Constructed from several ALU and gates according to the system design
 - Calculates the next state of the grid with player actions as inputs and outputs the new state of the grid for the game
 - States are as followed: Empty: E , Player 1: X, Player 2: Y, Destructible Wall: D, Unbreakable Wall: W, Bombs : B, Bomb 2: B, Player 1 on a bomb: J, Player 2 on a bomb: K, Explosion: 9, Player dead: O

ALU Circuit Diagram:

calculateGrid Circuit diagram:

ALU State Machine:

ALU State Table:

Current State	Trigger	Next State
Unknown	Reset	Ready
Ready	No-Op	Ready
Ready	Multiplication	Mult
Ready	MOD/ADD/DIV/SUB	MADS
Ready	Logic	Logic
Math(&Mod)	No-Op	Ready
Add	Carry	Error
MOD/ADD/DIV/SUB	Divide by 0/Overflow	Error
Logic	No-Op	Ready
Error	Reset	Ready

calculateGrid State Machine:

*Player represents Player 1 and Player 2

calculateGrid State Table:

Current State	Trigger	State Diagram
EndGame	Not End	Ready
Ready	Empty	EndGame
Ready	Player	Player
Ready	Destructible	EndGame
Ready	Wall	EndGame
Ready	Bomb Timer	Bomb
Player	None	EndGame
Player	Up/Down/Left/Right	Movement
Player	Placing Bomb	Place Bomb
Movement	Empty Space	Change Player Coordinate
Movement	Non-Empty Space	EndGame
Change Player Coordinate	None	EndGame
Place Bomb	Valid Space	EndGame
Place Bomb	invalid Space	EndGame
Bomb	Player Near	Player Die
Bomb	Destructible Near	Destroy Destructible
Player Die	None	EndGame
Destroy Destructible	None	EndGame