The following is a complete listing of all claims in the application, with an indication of the status of each:

Listing of claims:

1 (Currently amended). An A computer-implemented auction method for holding an 1 2 auction for a product comprising the steps of: 3 receiving bids from at least one computer or from multiple computers within a 4 network of computers, for each product type of multiple product types in a 5 transaction, that include minimum desired volumes and maximum desired volumes 6 and evaluation prices for said product; 7 generating, using computing resources, a finite set of bids that include as an 8 element said bids that were received from said at least one computer or from multiple 9 computers within said network of computers; and 10 employing dynamic programming using said computing resources to generate, 11 using said bid set bids that were received in said receiving bids step, a subset of bids 12 wherein the a maximum gain is obtained within a range represented by the a count of 13 said product available for sale; and 14 identifying or accepting a bid from said subset of bids. 1 2 (Original). The auction method according to claim 1, wherein said evaluation prices 2 for said product are represented as a non-linear function relative to the desired volume 3 of said product type in said transaction. 1 3 (Currently amended). The auction method according to claim 1, further comprising 2 the steps of: 3 allocating a two-dimensional array V to a memory area by using said dynamic 4 programming using said computing resources;

5 initializing said two-dimensional array V; and recursively solving the recursive equation for said two-dimensional array V, 6 7 wherein $V(k, j) := \max\{V(k+1, j), V(k, j+1), \max_{1k \le n \le hk} \{V(k+1, j+x) + e_k(x)\}\}$ 8 9 is used as the recursive equation, where V(k, j) denotes said two-dimensional array V populated with said evaluation prices; where k denotes an integer equal to or greater 10 than 1 and equal to or smaller than n; j denotes an integer equal to or greater than 0 11 and equal to or smaller than s; n denotes the number of bids; s denotes the number of 12 13 products available for the transaction; ek denotes the evaluation price when x units of products are purchased according to the bid b_k; l_k denotes the minimum volume of the 14 bid b_k; and h_k denotes the maximum volume of the bid b_k. 15 1 4 (Original). The auction method according to claim 3, wherein a bid according to 2 which said product is optimally distributed is selected by back tracking of said 3 two-dimensional array V from the element on the smallest row and in the smallest 4 column. 5 (Currently amended). The auction method according to claim 1, further comprising: 1 allocating two-dimensional arrays V and Q to a memory area by using said 2 3 dynamic programming; 4 initializing said two-dimensional arrays V and Q; and 5 recursively solving recursive equations for said two-dimensional arrays V and 6 Q using said computing resources, wherein said evaluation prices for said product represent a linear function 7 8 relative to the volumes for said product desired for said transaction, and 9 wherein

$$V(k,j) := \begin{cases} V(k+1,j) \\ V(k,j+1) \\ V(k,j+1) + e_k & \text{if } 1k \le Q(k,j+1) < h_k) \\ V(k+1,j+1_k) + e_k 1_k \end{cases}$$

10
$$Q(k,j) := \begin{cases} Q(k,j+1)+1 & (if \ V(k,j)=V(k,j+1)+e_k \\ 1_k & (if \ (k,j)=V(k+1,j+1_k)+e_k 1_k \\ Q(k,j+1) & (if \ V(k,j)=Vk,j+1) \\ 0 & (otherwise) \end{cases}$$

11 is employed as said recursive equation, where V(k, j) denotes said two-dimensional 12 array V populated with said evaluation prices; where Q (k, j) denotes said twodimensional array Q populated with said count of said product available for sale; 13 where k denotes an integer equal to or greater than 1 and equal to or smaller than n; j 14 denotes an integer equal to or greater than 0 and equal to or smaller than s; n denotes 15 the number of bids; s denotes the number of products available for the transaction; e_k 16 denotes the evaluation price when x units of products are purchased according to the 17 bid b_k ; l_k denotes the minimum volume of the bid b_k ; and h_k denotes the maximum 18 19 volume of the bid b_k.

- 6 (Original). The auction method according to claim 5, wherein a bid according to which said product is optimally distributed is selected by back tracking of said two-dimensional array V from the element on the smallest row and in the smallest-column.
- 1 7-12. Canceled

1

2

3

4

JP92000-253 10/003,684 00280823AA

1	13 (Currently amended). An auction system of computing resources for holding an
2	auction for a product comprising:
3	means for receiving bids from at least one computer or from multiple
4	computers within a network of computers, for each product type of multiple product
5	types in a transaction, that include minimum desired volumes and maximum desired
6	volumes and evaluation prices for said product;
7	means for generating, using computing resources, a finite set of bids that
8	include as an element said bids that were received from at least one computer or from
9	multiple computers within said network of computers; and
10	means for employing dynamic programming using said computing resources
11	to generate, using said bid set bids that were received from said at least one computer
12	or from multiple computers within said network of computers, a subset of bids
13	wherein the a maximum gain is obtained within a range represented by the a count of
14	said product available for sale; and
15	means for identifying or accepting a bid from said subset of bids.
1	14 (Original). The auction system according to claim 13, wherein said evaluation
2	prices for said product are represented as a non-linear function relative to the desired
3	volume of said product type in said transaction.
1	15 (Currently amended). The auction system according to claim 13, further
2	comprising:
3	means for allocating a two-dimensional array V to a memory area by using
4	said dynamic programming using said computing resources;
5	means for initializing said two-dimensional array V;
6	and recursively solving the recursive equation for said two-dimensional array
7	V, wherein
8	$V(k, j) := \max \{V(k+1, j), V(k, j+1), \max_{1 \le n \le hk} \{V(k+1, j+x) + e_k(x)\}\}$

JP92000-253 10/003,684 00280823AA

9	is used as the recursive equation, where V(k, j) denotes said two-dimensional array V
10	populated with said evaluation prices; where Q (k, j) denotes said two-dimensional
11	array Q populated with said count of said product available for sale; where k denotes
12	an integer equal to or greater than 1 and equal to or smaller than n; j denotes an
13	integer equal to or greater than 0 and equal to or smaller than s; n denotes the number
14	of bids; s denotes the number of products available for the transaction; e_k denotes the
15	evaluation price when x units of products are purchased according to the bid b_k ; l_k
16	denotes the minimum volume of the bid b _k ; and h _k denotes the maximum volume of
17	the bid b _k .
1	16 (Original). The auction system according to claim 15, further comprising:
2	means for selecting a bid according to which said product is optimally
3	distributed by back tracking of said two-dimensional array V from the element on the
4	smallest row and in the smallest column.
1	17 (Currently amended). The auction system according to claim 13, further
2	comprising:
3	means for allocating two-dimensional arrays V and Q to a memory area by
4	using said dynamic programming using said computing resources;
5	means for initializing said two-dimensional arrays V and Q;
6	and means for recursively solving recursive equations for said
7	two-dimensional arrays V and Q, wherein said evaluation prices for said product
8	represent a linear function relative to the volumes for said product desired for said
9	transaction, and
10	wherein

$$V(k,j) := \begin{cases} V(k+1,j) \\ V(k,j+1) \\ V(k,j+1) + e_k & \text{if } 1k \le Q(k,j+1) < h_k) \\ V(k+1,j+1_k) + e_k 1_k \end{cases}$$

$$Q(k,j) := \begin{cases} Q(k,j+1) + 1 & (if \ V(k,j) = V(k,j+1) + e_k \\ 1_k & (if \ (k,j) = V(k+1,j+1_k) + e_k 1_k \\ Q(k,j+1) & (if \ V(k,j) = Vk,j+1) \\ 0 & (otherwise) \end{cases}$$

is employed as said recursive equation, where V(k,j) denotes said two-dimensional array V populated with said evaluation prices; where Q(k,j) denotes said two-dimensional array Q populated with said count of said product available for sale; where k denotes an integer equal to or greater than 1 and equal to or smaller than k; k denotes an integer equal to or greater than 0 and equal to or smaller than k; k denotes the number of bids; k denotes the number of products available for the transaction; k denotes the evaluation price when k units of products are purchased according to the bid k; k denotes the minimum volume of the bid k; and k denotes the maximum volume of the bid k.

18 (Original). The auction system according to claim 17, wherein a bid according to which said product is optimally distributed is selected by back tracking of said

3	two-dimensional array V from the element on the smallest row and in the smallest
4	column.
1	19-24. Canceled
1	25 (Currently amended). A computer-readable storage medium on which a program
2	for holding an auction for a product is stored, said program permitting enabling a
3	computer computing resources to perform:
4	a function process for receiving bids from at least one computer or from
5	multiple computers within a network of computers, for each product type of multiple
6	product types in a transaction, that include minimum desired volumes and maximum
7	desired volumes and evaluation prices for said product;
8	a function process for generating, using computing resources, a finite set of
9	bids that include as an element said bids that were received from said at least one
10	computer or from multiple computers within said network of computers; and
11	a function process for employing dynamic programming using said computing
12	resources to generate, using said bid set that were received while using said process
13	for receiving bids, a subset of bids wherein the a maximum gain is obtained within a
14	range represented by the a count of said product available for sale; and
15	a process for identifying or accepting a bid from said subset of bids.
1	26. Canceled
1	27 (Currently amended). An A computer-implemented auction method for holding an
2	auction for a product comprising the steps of:
3	receiving bids from at least one computer or from multiple computers within a
4	network of computers, for each product type of multiple product types in a
5	transaction, that include a condition concerning said products

JP92000-253 10/003,684 00280823AA

6	generating, using computing resources, a finite set of bids that include as an
7	element said bids that were received from said at least one computer or from multiple
8	computers within said network of computers; and
9	employing dynamic programming using said computing resources to generate,
10	using said bid set bids that were received in said receiving bids step, a subset of bids
11	wherein the a maximum gain is obtained within a range represented by the a count of
12	said product available for sale; and
13	identifying or accepting a bid from said subset of bids.