Unspanned Macroeconomic Risks in Oil Futures

Davidson Heath

USC Marshall

Motivation

- How do commodity futures interact with the real economy?
 - "Higher output coupled with weaker demand from China and Europe has driven the price of crude down to \$85"
 - "Low oil prices can help boost economic growth by reducing fuel bills and leaving consumers and companies with more money to spend on other things"
- Average daily volumes for October 2014:
 - NYSE + NASDAQ, all stocks: \$129B
 - WTI + Brent crude oil futures: \$120B (1.4 billion barrels)

Motivation

How do expected returns to crude oil futures vary over time?

Standard pricing models say, not much

This Paper

- A "macro-finance" model for futures
 - Model both pricing and macroeconomic state variables
 - Incorporates unspanned macroeconomic risks:
 - State variables that affect expected returns and/or price forecasts, but are not identified in contemporaneous asset prices

This Paper

Results:

- Negative feedback between oil prices and real activity
 - Mediated by slope of the futures curve
- An unspanned procyclical risk premium in oil futures
- Strong relation between inventories and slope of the futures curve
- Applications to measuring the cost of carry and pricing real options

Prior Literature

- 1. Affine pricing models for commodities
 - Gibson and Schwartz (1990), Schwartz (1997), Schwartz and Smith (2000), Casassus and Collin-Dufresne (2005), Casassus, Liu and Tang (2013), Hamilton and Wu (2014)
 - Estimated from asset prices: no macroeconomic information
- 2. VARs with macroeconomic indexes and a spot price of oil
 - Hamilton (1983), Bernanke et al (1997), Hamilton (2003), Kilian (2009), Alquist and Kilian (2010), Coibion and Chinn (2013), Kilian and Vega (2013)
 - Silent on risk premia, term structure of futures prices

Data

Summarize the data and show three stylized facts

Data

- Monthly data, 1986 2013
- NYMEX crude oil futures prices $F'_t = (F_t^{1m}, ..., F_t^{12m})$
 - Take logs $f'_t = (f_t^{1m}, ..., f_t^{12m})$
- Chicago Fed National Activity Index (CFNAI) "GRO"
- Log of EIA's U.S. crude oil inventory ex SPR "INV"

Data

Fact 1

► The first two PCs explain > 99% of variation in log futures prices

Similar for returns or changes in log prices

Fact 2

- GRO and INV are not well captured (spanned) by futures prices
- ▶ Project [GRO, INV] on futures prices:
 - First two PCs: $R^2 = [7\%, 27\%]$
 - First five PCs: $R^2 = [15\%, 30\%]$
 - All 12 futures maturities: $R^2 = [19\%, 31\%]$

Fact 3

► GRO has forecasting power for oil prices over and above the PCs

$$\Delta PC_{t+1} = \alpha + \beta_{1-5}PC_t^{1-5} + \beta_{GRO}GRO_t + \beta_{INV}INV_t + \epsilon_{t+1}$$

	ΔPC	
	Level	Slope
$eta_{ extsf{GRO}}$	0.068**	-0.008
	(0.028)	(0.005)
eta_{INV}	0.040	-0.032
	(0.236)	(0.047)
Adjusted $R^2(PC^{1-5})$	-0.6%	8.0%
Adj. $R^2(PC^{1-5} + M_t)$	1.7%	8.5%
F-ratio	9.5***	1.9

- Spanned vs unspanned risks
- Model and estimate

Spanned Risks

▶ Affine pricing model: state vector X_t , with dimension N:

$$f_t = A + BX_t + \epsilon_t$$

If B is full rank, we can rotate and translate to:

$$f_t = \hat{A} + \hat{B}\mathcal{P}_t + \hat{\epsilon}_t$$

where P_t are **any** N independent linear combinations of f_t

Spanned Risks

$$f_t = \hat{A} + \hat{B}\mathcal{P}_t + \hat{\epsilon}_t$$

- Implicit in previous affine pricing models
- Consequences:
 - 1. \mathcal{P}_t and X_t have the same dimension
 - 2. Regressing elements of X_t on \mathcal{P}_t has R^2 of 100%
 - 3. No information can forecast returns or prices conditional on \mathcal{P}_t

Unspanned Risks

- ► Suppose instead that some subspace of dimension *L* < *N* is spanned by futures prices
- Consequences:
 - 1. $dim(\mathcal{P}_t) < dim(X_t)$
 - 2. Regressing elements of X_t on \mathcal{P}_t has $R^2 < 100\%$
 - 3. Other information can forecast returns or prices conditional on \mathcal{P}_t

- Recalling our three stylized facts, the model assumes:
 - 1. Two pricing factors \mathcal{P}_t summarize log futures prices
 - 2. Macro factors M_t are not fully spanned by \mathcal{P}_t
 - 3. M_t can predict prices and/or returns conditional on \mathcal{P}_t

- ▶ After estimation, rotate the spanned factors from \mathcal{P}_t to $(s_t, c_t)'$
- s_t is the log spot price implied by the model
- ▶ The cost of carry c_t is defined by no-arbitrage:

$$S_t e^{c_t} = F_t^1 \quad \Rightarrow \quad c_t = f_t^1 - s_t$$

▶ Think $c_t = r_t + storage_t - convyield_t$

The model can be summarized in two equations:

$$\text{Physical:} \left[\begin{array}{c} \Delta s_{t+1} \\ \Delta c_{t+1} \\ \Delta M_{t+1} \end{array} \right] = \left[\begin{array}{c} \mathcal{K}_{0sc}^{\mathbb{P}} \\ \mathcal{K}_{0M}^{\mathbb{P}} \end{array} \right] + \left[\begin{array}{cc} \mathcal{K}_{sc,sc}^{\mathbb{P}} & \mathcal{K}_{sc,M}^{\mathbb{P}} \\ \mathcal{K}_{M,sc}^{\mathbb{P}} & \mathcal{K}_{MM}^{\mathbb{P}} \end{array} \right] \left[\begin{array}{c} s_{t} \\ c_{t} \\ M_{t} \end{array} \right] + \Sigma \epsilon_{t+1}^{\mathbb{P}}$$

$$\text{Pricing:} \left[\begin{array}{c} \Delta s_{t+1} \\ \Delta c_{t+1} \end{array} \right] = \textit{K}_{0}^{\mathbb{Q}} + \textit{K}_{1}^{\mathbb{Q}} \left[\begin{array}{c} s_{t} \\ c_{t} \end{array} \right] + \Sigma_{sc} \epsilon_{t+1}^{\mathbb{Q}}$$

► Estimate on (f¹⁻¹², GRO, INV) from 1986-2013

Model Estimate

		Feedback Matrix			
		s_t	c_t	GRO_t	INV_t
s_{t+1}	0.008	0.994	0.061*	0.025***	0.038
	(0.006)	(0.009)	(0.033)	(0.008)	(0.082)
c_{t+1}	-0.007	0.016*	0.874	-0.015	-0.045
	(0.005)	(0.008)	(0.031)	(0.008)	(0.078)
GRO_{t+1}	0.001	-0.115**	0.051	0.618	-0.194
	(0.030)	(0.046)	(0.171)	(0.043)	(0.433)
INV_{t+1}	0.002	0.000	0.032***	-0.002	0.888
	(0.002)	(0.002)	(0.009)	(0.002)	(0.023)

	Snock volatilities			
	s	С	GRO	INV
s	0.103			
С	-81%	0.057		
GRO	5%	-2%	0.530	
INV	-22%	27%	4%	0.028

Impulse Responses

- ► About 60% of a typical oil shock is expected to persist indefinitely
- Lowers GRO indefinitely

Impulse Responses

ightharpoonup A transient shock to s_t lowers *GRO* transiently

Impulse Responses

▶ A 1% shock to *GRO* dies out, raises s_t by 6% indefinitely

Summary

- Feedback relationship between s_t and GRO
 - Persistent shocks to s_t lower GRO persistently
 - Transient shocks to s_t lower GRO transiently
 - Transient shocks to GRO raise s_t persistently
- ightharpoonup Higher c_t forecasts higher inventories
- ▶ INV_t doesn't forecast anything but is strongly correlated with s_t , c_t
 - ▶ Physical inventories spanned by s_t , c_t

Risk Premiums – Spanned-Risk Model

		s_t	c_t	
Spot risk premium Λ_t^s	0.012	-0.003	-0.031	-
	(0.014)	(0.015)	(0.046)	
Carry risk premium Λ_t^c	-0.010	0.025	-0.029	
	(0.017)	(0.020)	(0.060)	

Risk Premiums - Macro Model

		s_t	c_t	GRO_t	INV_t
Spot risk premium Λ_t^s	0.012	-0.003	-0.031	0.025***	0.075
	(0.014)	(0.015)	(0.046)	(0.009)	(0.102)
Carry risk premium Λ_t^c	-0.010	0.025	-0.029	-0.013	0.003
	(0.017)	(0.020)	(0.060)	(0.008)	(0.096)

► The premium to bearing spot price risk is procyclical

Risk Premiums

Risk Premiums - Rationale

ICAPM: State variables are total wealth and the quantity of oil:

$$\Lambda_t^s = \beta_t^s \lambda_t^{mkt} - \lambda_t^{oil}$$

- Being long s_t provides a hedge against oil shocks
- ▶ In slumps, λ_t^{oil} is larger \Rightarrow procyclical risk premium

Applications

Two applications:

- 1. Measuring the cost of carry
- 2. Valuing real options

Application – Cost of Carry

- ► Cross-section of prices = "snapshots of Q-forecast"
- Factor structure in futures prices
- ▶ Consequence: Q-parameters are precisely estimated

Application – Cost of Carry

• c_t is defined by the \mathbb{Q} -measure:

$$c_t = f_t^1 - s_t = E^{\mathbb{Q}} [\Delta s_t]$$

Consequence: c_t is precisely estimated

Cost of carry vs basis

- ► The *basis* is the log spread $f_t^2 f_t^1$
- Often used as a proxy for c_t
- How do the two compare?
 - c_t assumes the affine model
 - basis assumes no errors in $F_t^{1,2}$

Cost of carry vs basis

- c_t : AR(1) = 0.88, $\sigma = 10.0\%$
- $basis_t : AR(1) = 0.74, \sigma = 16.9\%$

Cost of carry vs basis

- ightharpoonup Measure c_t from WTI (U.S.) and Brent (North Sea) oil futures
- ► Measure *basis*_t from U.S. oil futures
- How do we know which is more meaningful?
 - Correlation with inventories: c_t 0.52, basis_t 0.42
 - Horse race forecasting future inventories

c_t drives out the basis

		ΔINV_{t+1}	
c_t	0.031***		0.038***
	(0.008)		(0.010)
basis _t		0.016*	-0.009
		(0.009)	(0.012)
INV_t	-0.112***	-0.088***	-0.112***
	(0.022)	(0.023)	(0.022)
adj. R ²	6.4%	3.9%	6.2%
T	330	330	330

c_t^{BRENT} drives out the basis

		ΔINV_{t+1}	
c_t^{BRENT}	0.039***		0.035**
	(0.011)		(0.015)
basis _t		0.016*	0.004
		(0.009)	(0.013)
INV_t	-0.105***	-0.088***	-0.107***
	(0.026)	(0.023)	(0.028)
adj. R ²	6.3%	7.4%	6.0%
T	281	281	281

Application – Real Options

- Real options valuation
 - Classic topic for affine spanned-risk models
- ▶ Unspanned factors M_t cannot affect financial option prices
- But what if a real option's payoff depends on M_t
 - Pindyck (1993): Time-varying costs with a CAPM beta
- ▶ Moel and Tufano (2002) find time-varying costs at gold mines

Application - Real Options

- ► Classic example: Oil well
- ▶ Model as a strip of options to extract at lifting cost L_t and sell at S_t
- Exercised if $S_t > L_t$
- Log lifting cost I_t covaries with s_t and GRO

Real Options

Real Options

- Spanned-risk models miss a component of option value
 - Not because l_t varies less but because it has dynamics with s_t , c_t
- Adding unspanned macro risk raises well value by 35%-405%
 - More for 'out of the money' higher-cost wells
- Risk premium effect is much smaller
 - Adding a risk premium to GRO adds 0.99%-1.27% to well value

Conclusion

- Construct & estimate a macro-finance model for futures
 - Estimate on oil futures data, CFNAI real activity, and oil inventories
 - Feedback relationship between real activity and oil prices
 - Strong relationship between cost of carry and inventories

Conclusion

Two applications

- Measuring the physical cost of carry
 - Precisely pinned down by the data
 - Less volatile + slower moving than the basis
 - More related to current and futures inventories
- Valuing real options
 - Dynamics of unspanned macro risks generate large option value
 - Macro risk premiums have a smaller effect