Projektowanie z bramkami NAND

Projektowanie z bramkami NOR

Zadania

1. Dany jest układ zbudowany na bramkach NAND jak na rysunku

- a) Wypełnić mapę Karnaugh'a odpowiadającą temu układowi.
- b) Znaleźć minimalną postać sumacyjną funkcji realizowanej przez dany układ.
- c) Zrealizować na bramkach NAND układ składający się z najmniejszej liczby układów scalonych.
- d) Z Ilu i jakich bramek składa się rozwiązanie tego zadania jeśli wzbudzenie $x_3x_2x_1x_0$ (1110) nie występuje (funkcja jest nieokreślona).

Zadania

- 2. Dane są dwie funkcje: $y_1 = \Sigma (1,2,3,6)$ i $y_2 = \Pi (0,2)$.
- A. Zaprojektować układ realizujący obydwie funkcje. Czy istnieje rozwiązanie wykorzystujące tylko jeden układ scalony zawierający 4 dwuwejściowe bramki NAND.

3. Zaprojektować układ sprawdzający, czy liczba jedynek w trzybitowym słowie wejściowym jest większa lub równa 2. Wykorzystać tylko bramki NAND.

DEKODER TRZYBITOWY

TABELA PRAWDY DEKODERA

<u>E</u>	Х2	X ₁	ΧO	У7	У6	У5	У4	Уз	У2	У1	Уо
1	0	0	0	0	0	0	0	0	0	0	1
1	0	0	1	0	0	0	0	0	0	1	0
1	0	1	0	0	0	0	0	0	1	0	0
1	0	1	1	0	0	0	Ο	1	0	0	0
1	1	Ο	0	0	0	0	1	O	0	0	0
1	1	Ο	1	0	0	1	Ο	0	0	0	0
1	1	1	0	0	1	0	Ο	0	0	0	0
1	1	1	1	1	0	0	Ο	0	0	0	0
0	X	X	X	0	0	0	0	0	0	0	0

OZNACZENIE DEKODERA

Skł adanie dekoderów

Skł adanie dekoderów

Wyświetlacz 7-segmentowy

Tabela prawdy dekodera 7-seg

	wej.	segmenty			
		abcdefg			
0	0000	1111110			
1	0001	0110000			
2	0010	1101101			
3	0011	1111001			
4	0100	0110011			
5	0101	1011011			
6	0110	1011111			
7	0111	1110000			
8	1000	1111111			
9	1001	1110011			
Α	1010	1110111			
В	1011	0011111			
С	1100	1001110			
D	1101	0111101			
Е	1110	1001111			
F	1111	1000111			

Wejścia i wyjścia dekodera

Końcówki dekodera 7-seg

dwa wejścia sterujące:

- LT wejście testowe (zapalają się wszystkie segmenty),
- RBI wejście wygaszania (wyłączenie wszystkich segmentów), oraz końcówkę wejście/wyjście:
 - BI/RBO jeśli jest wejściem, to służy do wygaszenia danego segmentu,
 - jeśli jest wyjściem, to służy do wygaszenia segmentów bardziej znaczących cyfr.

Koder 8-wejściowy

X ₇	Xe	5 X 5	5 X 4	į Хз	$_3X_2$	X ₁	X _O	Y ₂	Y ₁	Y ₀
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	O	1
O	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0 0 0 0 0 0	1	1	1

Konwerter kodu NKB na kod Gray'a

Konwersja kodów NKB i Gray'a

 $g_i=b_i$ (suma mod2) b_{i+1} .

Multiplekser 4-wejściowy

Demultiplekser 4-wyjściowy

MUX i DEMUX grupowe

Realizacja funkcji dla segmentu a za pomocą multiplekserów

