

(12) 特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

PCT

(43) 国際公開日
2006年6月1日 (01.06.2006)

(10) 国際公開番号
WO 2006/057033 A1

(51) 国際特許分類:
G02B 21/10 (2006.01)

(21) 国際出願番号: PCT/JP2004/017427

(22) 国際出願日: 2004年11月24日 (24.11.2004)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(71) 出願人および

(72) 発明者: 吉峰 貴司 (YOSHIMINE, Takashi) [JP/JP];
〒3350025 埼玉県戸田市南町五丁目3番107号
Saitama (JP).

(74) 代理人: 大森 純一 (OMORI, Junichi); 〒1070062 東京都港区南青山2-13-7 マトリス4F Tokyo (JP).

(81) 指定国(表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG,

BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK,
DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD,
SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG,
US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD,
SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY,
KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG,
CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,
IS, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

添付公開書類:
— 國際調査報告書

(続葉有)

(54) Title: OBJECTIVE LENS AND CONDENSER

(54) 発明の名称: 対物レンズ及びコンデンサ

(57) Abstract: An annular light path (5) through which dark field illumination light passes is between a lens barrel (1) and an inner tube (3) of an objective lens (100), and shield plates (7) each having a ring section (7a) engaging with an engagement section (3a) of the inner tube (3) and having a blade section (7b) for shielding the light path (5) are disposed in the light path (5). The shield plates (7) are pivotable about the optical axis. As the shield plates (7) pivot, the blade sections (7b) move horizontally on the annular light path (5) to change the area of incidence and the direction of incidence of the dark field illumination light. This enables finer flaws, unevenness, and foreign objects that are impossible to detect by an ordinary dark field observation to be observed and also enables flaws with specific directionality to be observed.

WO 2006/057033 A1

(続葉有)

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(57) 要約:

対物レンズ(100)の鏡筒(1)と内筒(3)との間の暗視野照明光が通る環状の光路(5)に、前記内筒(3)の係合部(3a)と係合するリング部(7a)と前記環状の光路(5)を遮蔽するブレード部(7b)とで構成される複数の遮蔽板(7)が設けられ、前記複数の遮蔽板(7)が光軸を軸として回動可能に構成され、回動に伴って前記ブレード部(7b)が前記環状の光路(5)上を水平方向に移動することにより、暗視野照明光の入射面積及び入射方向を可変としている。

これにより、通常の暗視野観察においては検出不可能なより微細な傷、凹凸、異物を観察したり、特定の方向性を持った傷を観察したりすることができる。

明細書

対物レンズ及びコンデンサ

技術分野

[0001] 本発明は、顕微鏡等に搭載され、暗視野観察が可能な対物レンズ及びコンデンサに関する。

背景技術

[0002] 従来から、顕微鏡等に用いられる対物レンズやコンデンサにおいては、一般的な明視野観察とともに暗視野観察も可能なものが知られている。当該暗視野観察は、対物レンズやコンデンサレンズの光学系の周囲から光束を供給して物体面に導くことで、明視野観察においては検出不可能な微細な傷、異物、凹凸、段差、あるいは反射率の低い試料の観察等を行なうことが可能となっている(例えば、特許文献1参照)。

特許文献1:特開昭60-225817号公報(図1等)

発明の開示

発明が解決しようとする課題

[0003] しかしながら、上述のような対物レンズやコンデンサで暗視野観察を行なう場合、光学系の周囲からリング状の光束が一様に照射されるため、傷や異物等の更に細かい部分を検出したり、特定の方向性を持った傷等を検出したりすることができなかつた。

[0004] 以上のような事情に鑑み、本発明の目的は、暗視野観察よりも更に微細な観察を行なうことが可能な対物レンズ及びコンデンサを提供することにある。

課題を解決するための手段

[0005] 上述の課題を解決するため、本発明の主たる観点に係る対物レンズは、対象物の拡大像を得るための第1の光学系と、前記対象物へ暗視野照明光を導くための第2の光学系と、前記第1の光学系及び第2の光学系を内部に有し、前記第1の光学系の周囲に前記暗視野照明用の光路を有する鏡筒と、前記光路上に設けられ、前記第2の光学系における前記暗視野照明光の入射面積を可変するよう前記暗視野照明光を遮蔽する遮蔽機構とを具備する。

- [0006] 上記第1の光学系は、例えば反射型の照明観察において一般的に用いられるレンズ群である。また上記第2の光学系は、例えば上記光路の開口部付近に設けられ、暗視野照明光の入射面をスリガラスのような拡散面にしたリング状のレンズや、鏡筒先端の絞り部に設けられたミラー部材等で構成することができる。上記対象物とは例えば半導体基板等の精密部品や金属材料等である。
- [0007] 本発明によれば、上記第2の光学系への暗視野照明光の入射面積を可変することで、上記暗視野照明光を観察対象物の一部のみに照射したり、観察対象物に対して任意の方向から照射したりすることができる。よって、通常の暗視野観察では検出不可能な微細な傷や異物等を検出したり、特定の方向性を持った傷のみを検出したりする等、より微細な観察を行なうことが可能となる。
- [0008] 本発明の一の形態によれば、前記遮蔽機構は、前記第1の光学系の光軸方向で積層されるように設けられ、前記入射面積を可変させるために前記光軸を軸として回動することで開閉可能な複数の遮蔽板を有している。当該遮蔽板が閉じることで光路が狭まって入射面積が小さくなり、遮蔽板が開くことで光路が広がって入射面積が大きくなる。複数の遮蔽板を積層されるように設けたことで、上記入射面積を段階的に可変することができ、対象物のより詳細な観察が可能となる。
- [0009] 本発明の一の形態によれば、前記鏡筒は、前記第1の光学系を保持する保持部材を有し、前記各遮蔽板は、前記各遮蔽板が開閉可能に前記保持部材と係合する第1の係合部と、前記各第1の係合部が前記保持部材と係合した状態で前記各遮蔽板を連動して開閉させるために互いに係合する第2の係合部とを有している。上記保持部材は例えば上記第1の光学系の周囲に円筒状に設けられ、第1の係合部は当該円筒状の保持部材に係合するように例えばリング状に設けられる。第2の係合部により各遮蔽板が連動して開閉するため、例えば一の遮蔽板を操作して開閉させるだけで容易に入射面積の調整を行なうことができ、操作性が向上する。
- [0010] 本発明の一の形態によれば、前記各第2の係合部は、前記遮蔽板の上面に設けられ、隣接する上層の遮蔽板と係合するための係合突起と、前記遮蔽板の下面に設けられ、隣接する下層の遮蔽板が有する前記係合突起と係合して開閉時に該係合突起を案内する案内溝とからなる。これにより、各遮蔽板の係合突起が他の遮蔽板の

案内溝と係合して回動することで、各遮蔽板が連動して開閉し、上記入射面積を容易に可変することができる。

- [0011] また、前記各第2の係合部は、前記遮蔽板の下面に設けられ、隣接する下層の遮蔽板と係合するための係合突起と、前記遮蔽板の上面に設けられ、隣接する上層の遮蔽板が有する前記係合突起と係合して開閉時に該係合突起を案内する案内溝とからなるようにしても構わない。
- [0012] 本発明の一の形態によれば、前記係合された各遮蔽板は前記入射面積が最小となるように回動したときに、それぞれが互いに所定の面積分オーバーラップしている。これにより、各遮蔽板が閉じた場合に隣接する各遮蔽板の間から暗視野照明光が漏れることを防止して確実に遮蔽することができ、精度の高い観察を行なうことができる。
。
- [0013] 本発明の一の形態によれば、前記各遮蔽板のうち少なくとも一つは、前記鏡筒から突出する取手部材を有している。当該取手部材は、例えば最上層と最下層の各遮蔽板にそれぞれ設けるようにしてもよい。これにより、操作者は当該取手により力を加えて一の遮蔽板を回動させることで他の遮蔽板も連動して開閉して、入射面積を容易に可変することができる。
- [0014] 本発明の一の形態によれば、前記遮蔽機構は、前記各遮蔽板のうち連動可能な第1の遮蔽板群と、前記第1の遮蔽板群とは独立して動作可能であって連動可能な第2の遮蔽板群とを有する。これにより、第1の遮蔽板群と第2の遮蔽板群とをそれぞれまとめて回動させることで、遮蔽板が開いた場合に光路から第2の光学系に入射される暗視野照明光の入射面積のみならず、入射方向も自在に可変することができるため、対象物に任意の方向から暗視野照明光を照射することが可能となる。
- [0015] 本発明の他の観点に係るコンデンサは、暗視野照明光をリング状に絞る絞り機構と、前記絞り機構により絞られた暗視野照明光を対象物に導くコンデンサレンズと、前記コンデンサレンズに入射される前記暗視野照明光の入射面積を可変する前に前記暗視野照明光を遮蔽する遮蔽機構とを具備する。
- [0016] 当該コンデンサは、透過型の照明観察において用いられるものである。この構成によれば、上記コンデンサレンズへの暗視野照明光の入射面積を可変することで、暗

視野照明光を観察対象物の一部のみに照射したり、観察対象物に対して任意の方向から照射したりすることができる。よって、上記対物レンズと同様、通常の暗視野観察では検出不可能な微細な傷や異物等を検出したり、特定の方向性を持った傷のみを検出したりする等、より微細な観察を行なうことが可能となる。

- [0017] 本発明の一の形態によれば、上記コンデンサにおいて、前記遮蔽機構は、前記コンデンサレンズの光軸方向で積層されるように設けられ、前記入射面積を可変させるために前記光軸を軸として回動することで開閉可能な複数の遮蔽板を有する。
- [0018] 本発明の一の形態によれば、上記コンデンサは、前記遮蔽板を回動させるための回動軸を更に具備し、前記各遮蔽板は、前記各遮蔽板が開閉可能に前記回動軸と係合する第1の係合部と、前記各第1の係合部が前記保持部材と係合した状態で前記各遮蔽板を連動して開閉させるために互いに係合する第2の係合部とを有する。
- [0019] 本発明の一の形態によれば、上記コンデンサにおいて、前記各第2の係合部は、前記遮蔽板の上面に設けられ、隣接する上層の遮蔽板と係合するための係合突起と、前記遮蔽板の下面に設けられ、隣接する下層の遮蔽板が有する前記係合突起と係合して開閉時に該係合突起を案内する案内溝とからなる。
- [0020] 本発明の一の形態によれば、上記コンデンサにおいて、前記各第2の係合部は、前記遮蔽板の下面に設けられ、隣接する下層の遮蔽板と係合するための係合突起と、前記遮蔽板の上面に設けられ、隣接する上層の遮蔽板が有する前記係合突起と係合して開閉時に該係合突起を案内する案内溝とからなる。
- [0021] 本発明の一の形態によれば、上記コンデンサにおいて、前記係合された各遮蔽板は前記入射面積が最小となるように回動したときに、それぞれが互いに所定の面積分オーバーラップしている。
- [0022] 本発明の一の形態によれば、上記コンデンサにおいて、前記各遮蔽板のうち少なくとも一つは、前記遮蔽板を開閉させるための取手部材を有する。
- [0023] 本発明の一の形態によれば、上記コンデンサにおいて、前記遮蔽機構は、前記各遮蔽板のうち連動可能な第1の遮蔽板群と、前記第1の遮蔽板群とは独立して動作可能であって連動可能な第2の遮蔽板群とを有する。

発明の効果

[0024] 本発明によれば、暗視野観察よりも更に微細な観察を行なうことが可能な対物レンズ及びコンデンサを提供することができる。

発明を実施するための最良の形態

[0025] 以下、本発明の実施の形態を図面に基づき説明する。

[0026] (第1実施形態)

まず、本発明の第1の実施形態について説明する。図1は、本実施形態における顕微鏡用の対物レンズ100の外観を示す斜視図であり、図2は対物レンズ100の分解断面斜視図である。なお、顕微鏡の照明系は大別すると反射型(金属のように観察対象物が光を透過せず反射のみする場合)と透過型(微生物のように観察対象物が光を透過する場合)に分類されるが、本実施形態における対物レンズ100は、反射型の照明系に用いられる対物レンズである。

[0027] 対物レンズ100の鏡筒1は、上筒部1a、中筒部1b、下筒部1c及び絞り部1dで構成されている。また鏡筒1の内部には同心円の内筒3が設けられ、鏡筒1と内筒3とは接続部材4により接続されている。内筒3の内部には、後述する光源から供給される明視野照明光を集光するための中央レンズ群2が保持されている。上筒部1aの上端には、この対物レンズ100を図示しない顕微鏡に装着するためのネジ部1fが設けられている。

[0028] 鏡筒1と内筒3との間には、上記光源から、後述するリング絞りを介して供給されるリング状の暗視野照明光が通る、環状の光路5が形成されている。また上記光路5上かつ鏡筒1の絞り部1dの上方近傍には、上記光路5を通る暗視野照明光を集光して観察対象物に入射させるためのリング状レンズ6が設けられている。当該リング状レンズ6は、上記暗視野照明光を拡散させて対象物への照射ムラを少なくするため、例えば表面がスリガラス状に形成されている。

[0029] また、上記内筒3は下方に凹状の係合部3aを有し、当該係合部3aには、光路5を通り上記リング状レンズ6へ入射される暗視野照明光を遮蔽するための遮蔽板7が係合している。当該遮蔽板7について以下詳説する。

[0030] 図3は、対物レンズ100の垂直方向の断面図であり、図4は図3における遮蔽板7の分解断面図であり、図6は遮蔽板7を上方から見た分解斜視図であり、図7は遮蔽板

7を下方から見た底面斜視図である。

- [0031] 遮蔽板7は、中央レンズ群2の光軸方向に例えば12枚積層されているが、この枚数に限定されるものではない。各遮蔽板7は、上記係合部3aに係合するためのリング部7aと、上記光路5を遮蔽するための略台形状のブレード部7bとで構成される(図2ー図7参照)。リング部7aは上記内筒3の係合部3aに係合しながら中央レンズ群2の光軸を軸として回動可能となっており、当該回動によりブレード部7bが光路5上を水平方向に移動することで遮蔽板7の開閉が行なわれる。当該遮蔽板7が開いた場合には当該開いた部分のみから暗視野照明光が光路5へと通じ、リング状レンズ6を介して対象物に入射される。
- [0032] リング部7aの上面であってブレード部7bとの境界付近にはガイドピン7cが設けられ(図4及び図5参照)、リング部7aの下面であって同じくブレード部7bとの境界付近にはガイド溝7dが設けられている(図4及び図6参照)。各遮蔽板7のガイドピン7cとそれに隣接する上層の遮蔽板7のガイド溝7dとが係合することにより各遮蔽板7同士が係合する。そして、ガイドピン7cがガイド溝7dに案内され、ガイド溝7dの端部に係合することで、ガイドピン7cに加えられる力により各遮蔽板7が連動して回動することが可能となっている。
- [0033] 各遮蔽板7のガイドピン7c及びガイド溝7dは、遮蔽板7が閉じる方向に回動して、各遮蔽板7のガイドピン7cが上層の隣接する遮蔽板のガイド溝7dの端部に係合したときに、所定の面積分オーバーラップするように設けられている。これにより、各遮蔽板7の間から暗視野照明光が漏れるのを防ぎ、光路5を確実に遮蔽することができる。
- [0034] 図6に示すように、ガイド溝7dの長さd1が、各ブレード部7bの最内周の幅d2よりわずかに短く設定され、かつ、ガイドピン7cが、そのブレード部7bの最内周の幅d2の範囲内に位置するように設けられている。このような構成により、各遮蔽板7のガイドピン7c及びガイド溝7dは、遮蔽板7が閉じる方向に回動して、各遮蔽板7のガイドピン7cが上層の隣接する遮蔽板のガイド溝7dの端部に係合したときに、図9(a)に示すように、それぞれが互いに所定の面積Sの分だけオーバーラップする。これにより、各遮蔽板7の間から暗視野照明光が漏れるのを防ぎ、光路5を確実に遮蔽することができる。

きる。

- [0035] また、6枚目の遮蔽板7-6の下面のガイド溝7dは、リング部7a全体に環状に設けられており(図6参照)、7枚目の遮蔽板7-7のガイドピン7cが当該環状のガイド溝7dに係合して案内されることにより、遮蔽板7-7は遮蔽板7-6とは連動せずに360度回動することが可能となっている。すなわち、遮蔽板7は、上部6枚と下部6枚とがそれぞれ連動して回動し、6枚目と7枚目の遮蔽板7は連動せずそれぞれの回動とは無関係に回動する。これにより、遮蔽板7が開いた場合に光路5からリング状レンズ6に入射される暗視野照明光の入射面積のみならず、入射方向も自在に可変することができるため、対象物に任意の方向から暗視野照明光を照射することが可能となる。例えば、対物レンズ100の一側及びそれとは反対側である他側の光路5を遮蔽して左右2方向から暗視野照明光が入射するようにすることもできるし、12枚の遮蔽板を全て対物レンズ100の奥や手前、左右いずれかの箇所にまとめて、任意の一方向から暗視野照明光が入射するようにすることもできる。
- [0036] また遮蔽板7-1、7-6、7-7及び7-12にはそれぞれ取手7eが設けられており、ユーザが当該各取手7eを持って水平方向に力を加えることで上部6枚と下部6枚の遮蔽板7をそれぞれ連動させて開閉させることができるのである。なお、図1及び図2に示すように、鏡筒1の中筒部1bには、当該各取手7eを鏡筒1から突出させて回動可能とするためのスリット部1eが設けられている。
- [0037] 図7は、光源から対物レンズ100を介して対象物へ照明光が照射される様子を示した図である。同図(a)は明視野照明光、同図(b)は暗視野照明光の様子をそれぞれ示している。
- [0038] 同図(a)に示すように、明視野観察を行なう場合、光源8から照射された明視野照明光11は、明視野観察用の開口絞り9によって絞られ、反射鏡10に反射されて対物レンズ100の中央レンズ群2を介してステージ13上の対象物12へ導かれる。この場合明視野照明光11は対象物12に対して垂直な方向から入射される。入射された明視野照明光11は、中央レンズ群2へ反射し、更に図示しない接眼レンズへ導かれることにより観察可能となる。
- [0039] 一方、同図(b)に示すように、暗視野観察を行なう場合、光源8から照射された暗視

野照明光15は、暗視野観察用のリング絞り14によりリング状に絞られ、反射鏡10に反射されて対物レンズ100の光路5を通り、リング状レンズ6を介して対象物12へ導かれる。各遮蔽板7によって光路5の一部が遮蔽されている場合には、暗視野照明光15は当該遮蔽されている部分以外の部分の光路5を通って対象物12へ照射される。当該対象物へ照射された暗視野照明光15は、上記明視野照明光11と同様に中央レンズ群2へ反射し、接眼レンズを介して観察可能となる。

- [0040] この場合暗視野照明光15は対象物12へ斜め方向から照射され、対象物12に乱反射した光のみが観察されるため、上記明視野観察の場合とは逆に、背景及び対象物12の表面は暗く、対象物の凹凸や傷等が明るく見えることになる。なお、対象物12は例えば半導体基板や金属材料等である。
- [0041] 次に、以上のように構成された対物レンズ100の動作について説明する。図8は、上記図7(b)に示した暗視野観察を行なう場合において、遮蔽板7の開閉時の様子を対物レンズ100の上方から段階的に示した図であり、図9は、同じく遮蔽板7の様子を段階的に示した斜視図である。
- [0042] 遮蔽板7が全て閉じた状態(両図(a)参照)から、例えばユーザが遮蔽板7-6及び7-7の各取手7eを持って矢印A及びBの方向に力を加えると、上述のガイドピン7c及びガイド溝7dにより、両図(b)に示すように遮蔽板7-6、7-5…が連動して、また遮蔽板7-7、7-8…が連動して内筒3の係合部3aを回動することで遮蔽板7が開き、光路5が現れる(両図(b)参照)。そして、さらに上記矢印A及びB方向に力を加えて遮蔽板7を開くことにより光路5の断面積が大きくなていき、上下各6枚ずつの遮蔽板7がそれぞれ完全に重なる状態まで光路5を開くことができる(両図(c)参照)。これにより、光路5の断面積、すなわち暗視野照明光のリング状レンズ6及び対象物12に対する入射面積を可変することができ、通常の暗視野観察では観察し得なかつた微細な傷や凹凸等を観察することが可能となる。
- [0043] 勿論、遮蔽板7-6及び7-7の各取手7eだけでなく、ユーザが遮蔽板7-1及び7-12の各取手7eに力を加えることによっても開閉可能である。また上述したように遮蔽板7-6と遮蔽板7-7とは連動しないため、上部6枚及び下部6枚の遮蔽板7をそれぞれまとめて任意の位置に回動させることにより、光路5の遮蔽位置(遮蔽方向)も任意

に調整することができる。これにより、上記入射面積のみならず、入射位置(入射方向)も任意に可変することができるため、例えば対象物中の、特定の方向性を持った傷や凹凸等を容易に観察することが可能となる。

- [0044] なお、上述したが、図9に示すように、各遮蔽板7は、閉じる方向(同図矢印A及びBとは逆方向)に回動した場合でも、所定の面積分オーバーラップしており、暗視野照明光を確実に遮蔽することが可能となっている。
- [0045] 次に、本実施形態における対物レンズ100を用いて暗視野観察を行なった場合の効果について説明する。図10(a)は、回路基板を対象物12として明視野観察を行なった場合の観察像を示した図であり、図10(b)は遮蔽板7を有しない一般的な対物レンズで回路基板の暗視野観察を行なった場合の観察像を示した図である。
- [0046] 両図に示すように、回路基板の観察像の中央には横縞状の微小の傷があり、傷の左側には配線が、また傷の右側には縦のラインが観察できる。同図(b)の暗視野像においては、リング状の光束が回路基板に一様に照射されることで基板表面が黒く見え、傷、配線及びラインが白く光って観察されている。
- [0047] 図11は遮蔽板7を開く位置及び面積を変更して回路基板の暗視野観察を行なった場合の遮蔽板7の様子及び観察像を示した図である。
- [0048] 同図(a)は対物レンズ100の手前側から暗視野照明光が当たるように遮蔽板7を開いて暗視野観察を行なった様子を示している。同図に示すように、上記図10(b)の暗視野像に比べて、放射状の配線の上部が消え、中央の傷の観察が容易になり、図10(b)の暗視野像では観察しにくかった傷の上部の模様がはつきり観察できるようになった。
- [0049] 同図(b)は対物レンズ100の右側から暗視野照明光が当たるように遮蔽板7を開いて暗視野観察を行なった様子を示している。同図に示すように、上記図10(b)の暗視野像に比べて、右側の縦のライン及び左側の配線の下方の一部が消えて傷の観察が容易になり、また傷の下部の模様がはつきり観察できるようになった。
- [0050] 同図(c)は対物レンズ100の左右から暗視野照明光が当たるように遮蔽板7を開いて暗視野観察を行なった様子を示している。同図に示すように、上記図10(b)の暗視野像に比べて、右側の縦のラインが消え、傷の観察が容易になり、また傷の上下

の模様がはつきり観察できるようになった。

- [0051] このように、遮蔽板7を用いることで、上記配線や縦のラインのように傷の観察には邪魔な部分を隠すことができ、微細な傷や凹凸を通常の暗視野観察に比べてより容易に観察することができる。また暗視野照明光が照射される方向を可変する事が可能なため、特定の方向性をもった傷等を容易に観察することができる。
- [0052] なお、回路基板や金属材料のような産業サンプルだけでなく、例えば医療サンプルにも本実施形態の対物レンズ100を応用することで、病理試料の観察における極微小な異変や特定変異の兆候等の観察を行なうことも可能となる。
- [0053] (第2実施形態)
- 次に、本発明の第2実施形態について説明する。上述の第1実施形態においては、反射型の暗視野観察に用いられる対物レンズについて説明したが、本実施形態においては、本発明を透過型の暗視野観察において用いられるコンデンサに適用する。上述したように、透過型の照明系は、例えば微生物のように照明光を透過させる有機物を観察する場合に用いられる。
- [0054] 図12は、本実施形態におけるコンデンサ200の構成及び暗視野照明光の経路を示した図であり、図13は、コンデンサ200を下面側から見た図である。なお、上記第1実施形態と同様の構成となる部分については同一の符号を付し、説明を簡略化または省略する。
- [0055] 同図に示すように、本実施形態におけるコンデンサ200は、コンデンサレンズ部16とターレット17とからなる。ターレット17は、上部の固定部17aと下部の回転部17bとで構成され、回転部17bは明視野観察用光路19と暗視野観察用光路18とを有する。回転部17bを、回転軸24を軸として水平方向に回転させることにより、明視野観察と暗視野観察とを切り替えることが可能となっている。暗視野観察用光路18上には、暗視野照明光25をリング状に絞るためのリング絞り23が設けられている。
- [0056] また暗視野観察用光路18には内筒21が設けられ、接続部材22により回転部17bに固定されている。内筒21は係合部21aを有し、当該係合部21aには遮蔽板20が係合されている。遮蔽板20の基本的構成は上記第1実施形態における遮蔽板7と同様である。また遮蔽板20には取手20aが回転部17bの下面から突出するように設け

られており、ユーザが当該取手20aに水平方向に力を加えることにより、上記第1実施形態の場合と同様に、当該内筒21を軸として図13の矢印方向に回動することで遮蔽板20を開閉可能となっている。

- [0057] 暗視野照明光25は、光源29から照射され、反射鏡30に反射されて暗視野観察用光路18からリング絞り23へ導かれ、コンデンサレンズ部16を介してステージ28上の対象物27へ照射されるが、遮蔽板20が閉じた状態においては当該遮蔽板20に遮蔽される。なお、対象物27に照射された暗視野照明光25は、対象物27を透過して対物レンズ26へ導かれ、図示しない接眼レンズ等により暗視野像を観察することが可能となっている。
- [0058] このように、遮蔽板20をコンデンサ200に設けることで、透過型の暗視野観察においても、上記第1実施形態と同様に暗視野照明光25を遮蔽して、対象物27に入射される暗視野照明光の入射面積及び入射方向を可変することができ、一般的な透過型の暗視野観察に比べてより詳細な観察を行なうことができる。
- [0059] なお、本発明は、上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
- [0060] 上記第1及び第2実施形態においては、遮蔽板はリングを有する台形状であったが、遮蔽板の形状はこれに限られるものではなく、暗視野照明光を遮蔽できるものであればどのような形状でも構わない。
- [0061] 上記第1及び第2実施形態においては、各遮蔽板の上面にガイドピンが、下面にガイド溝が設けられていたが、逆に、上面にガイド溝を、下面にガイドピンを設けるようにしても構わない。
- [0062] 上記第1及び第2実施形態においては、遮蔽板は上部6枚と下部6枚とに分割され、上部と下部がそれぞれ連動して回動するように構成されていたが、例えば6枚目の遮蔽板のガイド溝を他の遮蔽板と同様に構成して、全ての遮蔽板が連動して回動するような構成にしても構わない。また、最上層又は最下層の遮蔽板を鏡筒や上記コンデンサの内筒に固定して、一の取手に力を加えるだけで遮蔽板が開閉できるようにしても構わない。
- [0063] また上記第1実施形態の対物レンズ100においては、絞り部1dの上方にリング状レ

ンズ6を設けて暗視野照明光を集光し、暗視野照明光が対象物に斜め方向の角度から照射されるようにしていたが、当該リング状レンズ6以外でも、例えば絞り部1dの内側にミラーを設けたり、また絞り部1dの内面自体をミラー上に形成したりすることによっても暗視野照明光を集光することができる。

[0064] 上記第2の実施形態においては、ターレットの回転部を回転させることで明視野観察と暗視野観察を両方が可能なコンデンサに本発明を適用しているが、暗視野観察専用のコンデンサに適用することも勿論可能である。

図面の簡単な説明

[0065] [図1]本発明の第1実施形態における対物レンズ100の外観を示す斜視図である。

[図2]対物レンズ100の分解断面斜視図である。

[図3]対物レンズ100の垂直方向の断面図である。

[図4]図3における遮蔽板7の分解断面図である。

[図5]遮蔽板7を上方から見た分解斜視図である。

[図6]遮蔽板7を下方から見た分解斜視図である。

[図7]光源から対物レンズ100を介して対象物へ照明光が照射される様子を示した図である。

[図8]遮蔽板7の開閉時の様子を対物レンズ100の上方から段階的に示した図である。

[図9]遮蔽板7の様子を段階的に示した斜視図である。

[図10]通常の明視野観察及び暗視野観察を行なった場合の回路基板の観察像をそれぞれ示した図である。

[図11]遮蔽板7を開く位置及び面積を変更して回路基板の暗視野観察を行なった場合の遮蔽板7の様子及び観察像を示した図である。

[図12]本発明の第2実施形態におけるコンデンサ200の構成を示した図である。

[図13]コンデンサ200の回転部17bを下面側から見た図である。

請求の範囲

- [1] 対象物の拡大像を得るための第1の光学系と、
前記対象物へ暗視野照明光を導くための第2の光学系と、
前記第1の光学系及び第2の光学系を内部に有し、前記第1の光学系の周囲に前
記暗視野照明用の光路を有する鏡筒と、
前記光路上に設けられ、前記第2の光学系における前記暗視野照明光の入射面
積を可変するように前記暗視野照明光を遮蔽する遮蔽機構と
を具備することを特徴とする対物レンズ。
- [2] 請求項1に記載の対物レンズであつて、
前記遮蔽機構は、前記第1の光学系の光軸方向で積層されるように設けられ、前
記入射面積を可変させるために前記光軸を軸として回動することで開閉可能な複数
の遮蔽板を有することを特徴とする対物レンズ。
- [3] 請求項2に記載の対物レンズであつて、
前記鏡筒は、前記第1の光学系を保持する保持部材を有し、
前記各遮蔽板は、
前記各遮蔽板が開閉可能に前記保持部材と係合する第1の係合部と、
前記各第1の係合部が前記保持部材と係合した状態で前記各遮蔽板を連動して
開閉させるために互いに係合する第2の係合部と
を有することを特徴とする対物レンズ。
- [4] 請求項3に記載の対物レンズであつて、
前記各第2の係合部は、
前記遮蔽板の上面に設けられ、隣接する上層の遮蔽板と係合するための係合突起
と、
前記遮蔽板の下面に設けられ、隣接する下層の遮蔽板が有する前記係合突起と
係合して開閉時に該係合突起を案内する案内溝とからなることを特徴とする対物レン
ズ。
- [5] 請求項3に記載の対物レンズであつて、
前記各第2の係合部は、

前記遮蔽板の下面に設けられ、隣接する下層の遮蔽板と係合するための係合突起と、

前記遮蔽板の上面に設けられ、隣接する上層の遮蔽板が有する前記係合突起と係合して開閉時に該係合突起を案内する案内溝とからなることを特徴とする対物レンズ。

[6] 請求項3に記載の対物レンズであって、

前記係合された各遮蔽板は前記入射面積が最小となるように回動したときに、それぞれが互いに所定の面積分オーバーラップしていることを特徴とする対物レンズ。

[7] 請求項2に記載の対物レンズであって、

前記各遮蔽板のうち少なくとも一つは、前記鏡筒から突出する取手部材を有することを特徴とする対物レンズ。

[8] 請求項3に記載の対物レンズであって、

前記遮蔽機構は、

前記各遮蔽板のうち連動可能な第1の遮蔽板群と、

前記第1の遮蔽板群とは独立して動作可能であって連動可能な第2の遮蔽板群とを有することを特徴とする対物レンズ。

[9] 暗視野照明光をリング状に絞る絞り機構と、

前記絞り機構により絞られた暗視野照明光を対象物に導くコンデンサレンズと、

前記コンデンサレンズに入射される前記暗視野照明光の入射面積を可変するよう前に前記暗視野照明光を遮蔽する遮蔽機構と

を具備することを特徴とするコンデンサ。

[10] 請求項9に記載のコンデンサであって、

前記遮蔽機構は、前記コンデンサレンズの光軸方向で積層されるように設けられ、

前記入射面積を可変させるために前記光軸を軸として回動することで開閉可能な複数の遮蔽板を有することを特徴とするコンデンサ。

[11] 請求項11に記載のコンデンサであって、

前記遮蔽板を回動させるための回動軸を更に具備し、

前記各遮蔽板は、

前記各遮蔽板が開閉可能に前記回動軸と係合する第1の係合部と、

前記各第1の係合部が前記保持部材と係合した状態で前記各遮蔽板を連動して開閉させるために互いに係合する第2の係合部と
を有することを特徴とするコンデンサ。

[12] 請求項12に記載のコンデンサであって、

前記各第2の係合部は、

前記遮蔽板の上面に設けられ、隣接する上層の遮蔽板と係合するための係合突起と、

前記遮蔽板の下面に設けられ、隣接する下層の遮蔽板が有する前記係合突起と係合して開閉時に該係合突起を案内する案内溝とからなることを特徴とするコンデンサ。

[13] 請求項12に記載のコンデンサであって、

前記各第2の係合部は、

前記遮蔽板の下面に設けられ、隣接する下層の遮蔽板と係合するための係合突起と、

前記遮蔽板の上面に設けられ、隣接する上層の遮蔽板が有する前記係合突起と係合して開閉時に該係合突起を案内する案内溝とからなることを特徴とするコンデンサ。

[14] 請求項12に記載のコンデンサであって、

前記係合された各遮蔽板は前記入射面積が最小となるように回動したときに、それぞれが互いに所定の面積分オーバーラップしていることを特徴とするコンデンサ。

[15] 請求項11に記載のコンデンサであって、

前記各遮蔽板のうち少なくとも一つは、前記遮蔽板を開閉させるための取手部材を有することを特徴とするコンデンサ。

[16] 請求項12に記載のコンデンサであって、

前記遮蔽機構は、

前記各遮蔽板のうち連動可能な第1の遮蔽板群と、

前記第1の遮蔽板群とは独立して動作可能であって連動可能な第2の遮蔽板群と

を有することを特徴とするコンデンサ。

[図1]

[図2]

[図3]

[図4]

[図5]

[図6]

[図7]

(a)

(b)

[図8]

[図9]

(a)

(b)

(c)

[図10]

(a)

(b)

[図11]

(a)

(b)

(c)

[図12]

[図13]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/017427

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl' G02B21/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl' G02B21/10

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1926-1996 Toroku Jitsuyo Shinan Koho 1994-2005
Kokai Jitsuyo Shinan Koho 1971-2005 Jitsuyo Shinan Toroku Koho 1996-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 10-31164 A (Olympus Optical Co., Ltd.), 03 February, 1998 (03.02.98),	1-2
Y		7, 9-10, 15
A	Full text; all drawings (Family: none)	3-6, 8, 11-14, 16
X	JP 10-39227 A (Olympus Optical Co., Ltd.), 13 February, 1998 (13.02.98),	9-10, 15
Y		1-2, 7
A	Full text; all drawings (Family: none)	3-6, 8, 11-14, 16
X	JP 9-68655 A (Olympus Optical Co., Ltd.), 11 March, 1997 (11.03.97),	1-2, 7
Y		9, 10, 15
A	Full text; all drawings (Family: none)	3-6, 8, 11-14, 16

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
09 February, 2005 (09.02.05)Date of mailing of the international search report
01 March, 2005 (01.03.05)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/017427

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y A	JP 3-157609 A (Olympus Optical Co., Ltd.), 05 July, 1991 (05.07.91), Full text; all drawings (Family: none)	9,10,15 11-14,16