#### Appendix A. N-way Design Rational

After the integration process, as shown in Figure A.10, POLYMER provides users with merging documentation, referred to as NDR (N-way Design Rationale). This documentation allows users to verify the equivalence of elements during the merge. For example, in the tenth row of Figure A.10, the user confirms that the class Staff from version V1 is equivalent to Personnel from another version.

It's important to emphasize that the algorithms integrated into POLYMER are deterministic. This means that if the merging process is executed with the same inputs, it will consistently yield the same results. Similarly, Reuling's N-way merging approach [16] also exhibits this deterministic behavior, ensuring reliable and reproducible outcomes in both merging processes.



Figure A.10: Design rationale window to report merger decisions for the running example.

### Appendix B. NML Editor

Figure B.11 illustrates a segment of the integration rules specified for a UML class diagram within the implemented 1010 NML editor. As shown in the Figure, the NML program is structured around two key components: a set of imported models and a collection of merging rules. These rules include mergeOctopus, mergeOurs, and transfer, each playing a specific role in the merging process. This organization of rules allows NML to efficiently manage and merge different model versions.

```
NML Editor
                                                                      File Edit Run
 1 import Version1 :
                     "V1.uml";
 2 import Version2 : "V2.uml";
 3 import Version3 : "V3.uml";
 4 import TargetModel : "Target.uml";
 5 import BaseModel : "Base.uml";
 6 rule CL OctopusA
        mergeOctopus v1 : Version1!Class
       with v2 : Version2!Class , v3 : Version3!Class
       withBase v0 : BaseModel!Class
10
       into vt : TargetModel!Class [
11
            vt.name = v0.name ;
12
            vt.isAbstract = v1.isAbstract;
            vt.package = v2.package.equivalent() ;
14 rule CL OursB
       mergeOurs v1 : Version1!Class
16
        with v2 : Version2!Class , v3 : Version3!Class
       withBase v0 : BaseModel!Class
       exists_in 2
       priority P1 : [v1, v2, v3, v0] , P2 : [v3, v2, v1, v0]
       into vt : TargetModel!Class [
20
21
            vt.name = P1.name ;
22
            vt.isAbstract = P2.isAbstract;
            vt.package = P2.package.equivalent() ;
23
24 rule CL Transfer
25
        transfer vs : Source!Class
26
        from Source : (Version1, Version2, Version3)
27
        to vt : TargetModel!Class (
28
            vt.name = vs.name ;
29
             vt.isAbstract = vs.isAbstract ;
30
             vs.eContainer.equivalent().packagedElement.add(vt);
```

Figure B.11: Excerpt of the specification of integration rules for UML class in the NML editor

### Appendix C. The usability evaluation

We conduct a workshop to evaluate usability of the proposed approach. The workshop began with a 25-minute introduction to NML, where we explained the language and its editor. We used NML to design integration rules for an example of a UML state machine, which included the original version and three distinct versions of a state machine diagram for a bank ATM system. Participants were then shown different versions of a UML class diagram for a School Management System and asked to answer two sets of questions based on the example.

The first set of questions consisted of five items assessing usability through ease of use (Table C.5). Questions Q1, Q2, and Q3 aimed to evaluate whether participants comprehended the NML structure. The fourth question (Q4) tested participants' ability to choose the appropriate NML rule type, while the fifth (Q5) examined their ability to write correct rules.

The second set of questions, listed in Table C.6, evaluated usability based on three quality characteristics: effectiveness, efficiency, and satisfaction. Assessing NML's usability through quantitative metrics presents challenges, so we defined a usability evaluation model tailored to the NML language. Table C.7 presents the usability evaluation model for the NML language, structured using the Goal Question Metric (GQM) approach. In this model, the usability of NML is evaluated based on the ISO 9241-11 framework, which defines effectiveness, efficiency, and satisfaction as the primary quality characteristics for usability assessment. Additionally, the time spent by each participant on answering the questions was recorded to further analyze the usability and cognitive load. The time data for each participant is visualized in Figure C.12, offering insights into the overall time efficiency of the approach.

Table C.5: The answers to the questions of the workshop

|            | Table C.5: The answers to the questions of the workshop                                             |      |      |          |          |          |      |          |      |      |          |                        |
|------------|-----------------------------------------------------------------------------------------------------|------|------|----------|----------|----------|------|----------|------|------|----------|------------------------|
| <b>Q</b> # | Question                                                                                            | P1   | P2   | P3       | P4       | P5       | P6   | P7       | Р8   | P9   | P10      | $\mathbf{C}\mathbf{A}$ |
| Q1         | How many octopus rules are<br>required for merging only the<br>classes in different versions?       | 2    | 2    | 3        | 3        | 3        | 3    | 2        | 2    | 2    | 3        | 2                      |
| Q2         | How many ours rules are required<br>for merging only the attributes in<br>different versions?       | 1    | 2    | 2        | 2        | 2        | 2    | 1        | 1    | 2    | 2        | 2                      |
| Q3         | How many transfer rules are<br>required for merging only the<br>associations in different versions? | 2    | 1    | 2        | 2        | 2        | 2    | 1        | 1    | 1    | 2        | 1                      |
| Q4         | Which rule is required to integrate the attribute teacherID in the first and third versions?        | Ours | Ours | Ours     | Ours     | Ours     | Ours | Ours     | Ours | Ours | Ours     | Ours                   |
| Q5         | Write the appropriate rule for<br>merging class Room in the first,<br>second, and third versions?   | ~    | ~    | <b>~</b> | <b>~</b> | <b>~</b> | ~    | <b>~</b> | ~    | ~    | <b>✓</b> | check by<br>syntax     |

The answer to questions Q1, Q2, and Q3 can be a  $number \ge 0$ .

The answer to question Q4 can be one of the NML types rules.

 $<sup>\</sup>checkmark$  Means that the participant answered the question correctly.

CA: Correct Answer.

Table C.6: Results of online user survey regarding usability

| <b>Q</b> # | ${f Question}$                                                                              | P1 | P2 | Р3 | P4 | P5 | P6 | P7 | Р8 | <b>P</b> 9 | P10 |
|------------|---------------------------------------------------------------------------------------------|----|----|----|----|----|----|----|----|------------|-----|
| Q6         | Is the proposed language easy to learn?                                                     | 3  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4          | 5   |
| Q7         | How do you evaluate the readability<br>and comprehensibility of NML<br>language?            | 3  | 5  | 5  | 4  | 5  | 4  | 5  | 4  | 4          | 4   |
| Q8         | To what extent are the NML keywords semantic transparent?                                   | 3  | 5  | 3  | 4  | 5  | 4  | 4  | 5  | 5          | 5   |
| Q9         | To what extent can the integration description language facilitate the integration process? | 4  | 5  | 4  | 4  | 4  | 4  | 4  | 4  | 5          | 4   |
| Q10        | How useful is the integration description language?                                         | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 5  | 5          | 4   |
| Q11        | Is the created editor appropriate for writing NML integration rules?                        | 3  | 4  | 5  | 3  | 3  | 4  | 3  | 3  | 4          | 4   |
| Q12        | To what extent is the editor user-friendly?                                                 | 3  | 4  | 4  | 3  | 4  | 4  | 3  | 2  | 3          | 4   |

Strongly disagree (1) Disagree (2) Neutral (3) Agree (4) Strongly agree (5)



Figure C.12: Response time of each participant regarding Table C.5

Table C.7: Evaluation model for NML language

| Quality characteristics | Goals          | Question                                                                                       | Metrics                                     |
|-------------------------|----------------|------------------------------------------------------------------------------------------------|---------------------------------------------|
| Effectiveness           | Simplicity     | Is the proposed language easy to learn?                                                        | Satisfaction with help provided             |
|                         |                |                                                                                                | Time taken to learn                         |
|                         |                |                                                                                                | Number of mistakes while learning           |
|                         |                | How do you evaluate the readability and<br>comprehensibility of NML language?                  | Satisfaction with writing merging rules     |
|                         |                |                                                                                                | Satisfaction with finding appropriate rules |
|                         |                | To what extent are the NML keywords semantic transparent?                                      | Satisfaction while learning                 |
|                         |                |                                                                                                | Satisfaction while working with rules       |
|                         |                |                                                                                                | Satisfaction with understandable            |
| Efficiency              | Features       | To what extent can the integration description<br>language facilitate the integration process? | Number of models provided for merging       |
|                         |                |                                                                                                | Time taken to write rules                   |
|                         |                | How useful is the integration description language?                                            | Time taken to merging models                |
|                         |                |                                                                                                | Satisfaction with reusability of written ru |
|                         |                |                                                                                                | Satisfaction with merged model              |
|                         |                | How much NML can facilitate the integration process of large models?                           | Size of models provided for merging         |
|                         |                |                                                                                                | Satisfaction with covering all scenarios    |
| Satisfaction            | Attractiveness | Is the created editor appropriate for writing NML integration rules?                           | Satisfaction with help provided             |
|                         |                |                                                                                                | Satisfaction while writing rules            |
|                         |                | To what extent is the editor user-friendly?                                                    | Satisfaction with interface graphics        |
|                         |                |                                                                                                | Satisfaction with interface arrangement     |

## **Appendix D. The performance results**

The experimental subjects were executed ten times on the proposed approach to ensure consistent and reliable results. Table D.8 provides detailed information about the runtimes of the proposed approach when applied to three different systems: Hospital, Warehouse, and PPU (Pick and Place Unit).

Table D.8: Runtimes of proposed approach on Hospital, Warehouse, and PPU systems.

|           |               |                         |                   |                    |                   | . ,    |       | ,                 |                    | U                 |                   |  |
|-----------|---------------|-------------------------|-------------------|--------------------|-------------------|--------|-------|-------------------|--------------------|-------------------|-------------------|--|
|           |               | Run (Proposed Approach) |                   |                    |                   |        |       |                   |                    |                   |                   |  |
| System    | Operation     | #1                      | #2                | #3                 | #4                | #5     | #6    | #7                | #8                 | #9                | #10               |  |
|           | Compare       | 1.93s                   | 0.68s             | 1.61s              | 0.62s             | 1.66s  | 0.49s | 0.53s             | 0.42s              | 0.50s             | 0.56s             |  |
| Hospital  | Merge         | 4.96s                   | 4.20s             | 4.90s              | 6.43s             | 5.16s  | 4.86s | 3.50s             | 7.38s              | $5.67\mathrm{s}$  | 3.03s             |  |
|           | Total Process | 6.89s                   | 4.88s             | 6.51s              | 7.05s             | 6.82s  | 5.35s | 4.03s             | 7.80s              | 6.17s             | 3.59s             |  |
|           | Compare       | 4.09s                   | 1.87s             | 1.33s              | 7.30s             | 1.34s  | 1.63s | 3.75s             | 1.73s              | 1.48s             | 1.20s             |  |
| Warehouse | Merge         | 11.02s                  | $12.85\mathrm{s}$ | $15.36 \mathrm{s}$ | 7.83s             | 9.79s  | 8.06s | 9.68s             | 11.21s             | 11.15s            | $14.42\mathrm{s}$ |  |
|           | Total Process | 15.11s                  | $14.72\mathrm{s}$ | $16.69 \mathrm{s}$ | $15.13\mathrm{s}$ | 11.13s | 9.69s | $13.43\mathrm{s}$ | $12.94 \mathrm{s}$ | $12.63\mathrm{s}$ | $15.62\mathrm{s}$ |  |
|           | Compare       | 1.13s                   | 0.38s             | 0.40s              | 0.22s             | 0.25s  | 0.26s | 0.23s             | 0.25s              | 0.25s             | 0.25s             |  |
| PPU       | Merge         | 1.14s                   | 0.87s             | 1.73s              | 0.78s             | 0.79s  | 2.88s | 0.90s             | 0.80s              | 0.80s             | 0.71s             |  |
|           | Total Process | 2.27s                   | 1.25s             | 2.13s              | 1.00s             | 1.04s  | 3.14s | 1.13s             | 1.05s              | 1.05s             | 0.96s             |  |

# **Appendix E. The scalability results**

Table E.9 displays the runtimes for the merging process across ten subsets of the Warehouse dataset, each with a different number of elements. The subsets were generated by randomly modifying the original dataset to include varying proportions of model elements, with sizes ranging from 366 to 3646 elements per subset.

Table E.9: Runtimes of merging process across Warehouse subsets

|        |          | Run (Proposed Approach) |                  |        |        |        |        |        |                  |        |        |  |
|--------|----------|-------------------------|------------------|--------|--------|--------|--------|--------|------------------|--------|--------|--|
| Subset | Elements | #1                      | #2               | #3     | #4     | #5     | #6     | #7     | #8               | #9     | #10    |  |
| 1      | 366      | 1.68s                   | 1.17s            | 1.05s  | 1.01s  | 0.80s  | 1.53s  | 0.98s  | 0.87s            | 0.94s  | 0.83s  |  |
| 2      | 730      | 4.12s                   | $3.27\mathrm{s}$ | 4.35s  | 3.15   | 3.74s  | 2.89s  | 3.53s  | 2.62s            | 3.78s  | 2.56s  |  |
| 3      | 1094     | 5.74s                   | 6.06s            | 5.61s  | 4.21s  | 7.11s  | 4.10s  | 7.23s  | 4.13s            | 11.58s | 4.82s  |  |
| 4      | 1458     | 8.94s                   | 9.19s            | 9.30s  | 5.56s  | 10.08s | 9.59s  | 5.44s  | $8.37\mathrm{s}$ | 9.06s  | 9.81s  |  |
| 5      | 1826     | 15.11s                  | 14.72s           | 16.69s | 15.13s | 11.13s | 9.69s  | 13.43s | 12.94s           | 12.63s | 15.62s |  |
| 6      | 2190     | 14.93s                  | 17.51s           | 15.11s | 13.22s | 15.41s | 16.98s | 16.87s | 17.70s           | 12.88s | 16.64s |  |
| 7      | 2554     | $16.37\mathrm{s}$       | 19.78s           | 18.96s | 11.88s | 15.68s | 20.67s | 18.31s | 14.09s           | 16.07s | 17.41s |  |
| 8      | 2918     | 15.28s                  | 17.17s           | 19.73s | 16.95s | 18.62s | 20.42s | 18.61s | 22.79s           | 18.71s | 15.44s |  |
| 9      | 3274     | 17.58s                  | 17.22s           | 22.26s | 19.58s | 21.87s | 17.96s | 18.70s | 20.09s           | 19.92s | 21.04s |  |
| 10     | 3646     | 18.09s                  | 26.99s           | 19.26s | 19.26s | 17.33s | 18.19s | 18.85s | 18.79s           | 20.77s | 20.03s |  |