ラインセンサの最適化。

プルダウン抵抗の選定

白線検知のための照度センサの感度を最大化するためには、 緑色と白色で値の差が大きくなる必要があります。そのため にプルダウン抵抗値を比較する実験を行いました。

実験結果

抵抗値	値 [緑]	値[白]	差
10ΚΩ	19	43	24
22ΚΩ	36	90	54
30ΚΩ	40	113	73
50ΚΩ	90	220	130
100ΚΩ	242	489	247

※ センサと地面の距離: 10mm 照度センサ: NJL7502L 電源: 5.0V LED: OSWT3166B LED用抵抗: 330Ω N = 100

プルダウン抵抗値が 100 K Ω の時にセンサ値の差が最大にな りました。この結果を踏まえ、センサの出力に使用するプル ダウン抵抗は 100KΩ のものを使用しています。

LEDの選定

プルダウン抵抗の選定に加えて、「一番白線を検知しやすい LED」を求めて、LEDの色と輝度の2つの観点を比較する実験 を行いました。

実験結果

LED型番	値 [緑]	値[白]	差
OSWT3166B	203	917	714
OSR5JA3Z74A	206	222	16
OS5RKA3131A	195	950	755

※ センサと地面の距離: 4mm 照度センサ: NJL7502L 電源: 5.0V

実験に使用したLED

LED型番	色	標準輝度	順方向電圧	
OSWT3166B	白	1500 mcd	3.4 V	
OSR5JA3Z74A	赤	330 mcd	2.1 V	
OS5RKA3131A	赤	20000 mcd		

低輝度の赤色LEDは反応が非常に鈍く、実機投入は厳しいこ とが判明しました。一方で高輝度のLEDは、白色/赤色ともに センサ値の差が大きかったです。

高輝度LEDの方がセンサ値の差が大きかったという結果に加 え、赤色・高輝度LEDと白色・高輝度LEDを比較して、順方向 電圧の値から同じ抵抗値での消費電流を算出し、より電池消 費の少ない白色・高輝度LEDを採用しました。

確実なグリップ。

ロボットがコート上で動き回るためには、当然のことながら タイヤと地面の摩擦が必要です。ロボットが確実に地面をつ かむことができるよう、オムニホイールの設計にこだわりま

当初の設計では1ホイールあたり18コの小車輪を使用してい ましたが、18輪だと思うようにロボットが進まないという問 題が発生しました。そこで、1オムニホイールあたりにつけ る小車輪の数を20コに増やし、各ホイールがコートと接する **面積を広げて、**小車輪のゴムがより広い面積でコートに当た る状況をつくることでグリップ力向上を図りました。

R=55 / W=18

R=55 / W=20

基板を丁寧につくる。

基板の動作不良は、ロボットの故障の中でも、修理に必要な 手間の多さが圧倒的です。予備基板の準備という対策に加 え、そもそも基板の設計不良が原因の故障を起こさないため に、以下のような「ノイズ対策」と「ユーザビリティ向上」 の2点を意識して基板設計を進めました。

ノイズ対策

- + **ベタGND**を必ず作成
- + バイパスコンデンサは各部品の電源ピン間近に配置
- + 消費電流の大きい基板にバルクコンデンサを配置
- + ボタンにはチャタリング防止用コンデンサを配置
- + シリアル通信の信号用配線を短く

ユーザビリティ向上

- + FPCの電源を左右非対称にして誤接続時のショート防止
- + テストポイントを作成して導通・電圧等の確認を楽に

主要な使用部品

マイコン

- + PJRC Teensy4.1
- + Seeed Studio XIAO ESP32C3
- + Arduino mega 2560 Pro Board

電源関連

- + Melasta Ni-MH 9.6V 1600mAh
- + ムラタ OKL-T/6-W12N-C
- + エーモン ガラス管ヒューズ 15A

ボールセンサ

- + Vishay TSSP4038
- + チップコンデンサ 0.33μF
- + チップ抵抗 39ΚΩ

姿勢センサ

+ BNO055使用 9軸センサ

カメラ

- + Pixy2.1
- + M5STACK Unit CamS3
- + 塩ビミラーシート 0.5mm厚

モーター

- + maxon RE16 9V 4.5W
- + maxon GP16A 19:1
- + Pololu 25D 12V 9.7:1

キッカー

- + タカハ機工 CB1037 10Ω
- + 昇圧モジュール XL6009
- + 東芝 フォトカプラ TLP2361

ラインセンサ

- + 日清紡 NJL7502L
- + OptoSupply OSWT3166B
- + TI LM393DR

MD

+ TI DRV8874

UI

- + SSD1306使用 ディスプレイ
- + ブザー PKM13EPYH4000
- +トグル/タクトスイッチ

ゆがみ無しの映像を。

1つのカメラでうまく前後のゴールを一度に認識する方法を夏 のオープン大会で着想を得て実現させました。私たちはこの 方法を「V字ミラー」と呼んでいます。

この方法のメリットは、

- + 前後のゴールを1つのカメラで認識できる
- + ミラーが平面で構成されているため、ゆがみがほぼ無い
- + V字面の角度を調整することで、視野を制限できる などがあります。

この方法を使うこと で、カメラの台数が抑 えられ必要コストが減 り、かつ前後を1度に 認識できるためプログ ラムの処理速度も高速 化できました。

全コートに瞬時に対応。

大会では、試合によって異なるコートでロボットを動かさなければなりません。このよう なシステムの問題点として、会場の照明条件やコート位置によって白線の見え方が変化し てしまいます。

これに対応するため、ラインセンサの「アナログ読み」と「デジタル読み」を使い分ける ことで、どのようなコートの照明条件であったとしても対応できるようにしました。

てデジタル読みで値を取得します。コンパレータの 比較対象はマイコンからPWM出力した電圧をローパ スフィルタで平滑化したものを使用します。

試合中、全てのラインセンサはコンパレータを通し

この比較用のPWM出力を予めキャリブレーションし ておきます。具体的には、試合前にコート上で白線 をアナログ読みしておき、その時の値にオフセット をかけたものを比較用のPWM出力のDuty比に使用し ます。これにより、どのようなコート条件にも対応 可能になります。

直接センサを AnalogRead()

平均化・オフセットをかける

PWM出力のDuty比に設定

コートの特性設定が完了

TOINIOT²

メンバー

寺田侑史 設計/回路·PCB

安部律希 プログラム/回路·PCB

音羽優 組み立て / プログラム 土岐光稀 組み立て/電池管理

所属

和歌山ノード 関西ブロック

和歌山県立桐蔭高校 科学部

スポンサー

maxon DigiKey I TAKAHA

交流・情報発信

X: @toiniot2

Blog: https://toiniot2-wakayama.github.io/Main/

WSL-999