A framework for reducing the overhead of the quantum oracle for use with Grover's algorithm with applications to cryptanalysis of SIKE

Jean-François Biasse¹, **Benjamin Pring**¹ 18th August 2019

¹University of South Florida

Overview of the talk

- 1. Motivation
- 2. Grover's algorithm what you need to know
- 3. A framework for preprocessing quantum oracles
- 4. Applications
- 5. Conclusions

The search problem

 $N=2^n$ items and there exist M items that satisfies a property

The search problem

Let $\chi:\{0,1\}^n\longrightarrow\{0,1\}$ be such that

$$\chi(x) \mapsto \begin{cases} 1 & \text{if } x \text{ is one of the } M \text{ items we are looking for} \\ 0 & \text{otherwise.} \end{cases}$$

and say we have a circuit that implements χ .

$$x$$
 — O_{χ} — $\chi(x)$

Classical queries required: $O(\frac{N}{M})$

(exhaustive search)

Quantum queries required: $O(\sqrt{\frac{N}{M}})$

(Grover's algorithm)

The search problem

Let $\chi: \{0,1\}^n \longrightarrow \{0,1\}$ be such that M elements satisfy $\chi(x)=1$

$$x$$
 — \mathcal{O}_{χ} — $\chi(x)$

Classical queries required: $O(\frac{N}{M})$

(exhaustive search)

Quantum queries required: $O(\sqrt{\frac{N}{M}})$

(Grover's algorithm)

Cost of classical search:
$$O\left(\frac{N}{M} \cdot poly(n)\right)$$

$$\begin{array}{l} \text{Cost of classical search:} & O\Big(\frac{N}{M} \cdot poly(n)\Big) \\ \text{Cost of quantum search:} & O\Big(\sqrt{\frac{N}{M}} \cdot poly(n)\Big) \end{array} \right\} \mathcal{O}_{\chi} \text{ costs } poly(n) \text{ gates}$$

An n-qubit quantum state can be written in the computational basis as

$$|\psi\rangle = \sum_{x \in \{0,1\}^n} \alpha_x \, |x\rangle \qquad \quad \text{where } \alpha_x \in \mathbb{C} \quad \text{and } \sum_{x \in \{0,1\}^n} |\alpha_x|^2 = 1.$$

An n-qubit quantum state can be written in the computational basis as

$$|\psi\rangle = \sum_{x \in \{0,1\}^n} \alpha_x \, |x\rangle \qquad \quad \text{where } \alpha_x \in \mathbb{C} \quad \text{and } \sum_{x \in \{0,1\}^n} |\alpha_x|^2 = 1.$$

Natural interretation = superposition of bitstrings.

An n-qubit quantum state can be written in the computational basis as

$$|\psi\rangle = \sum_{x \in \{0,1\}^n} \alpha_x \, |x\rangle \qquad \quad \text{where } \alpha_x \in \mathbb{C} \quad \text{and } \sum_{x \in \{0,1\}^n} |\alpha_x|^2 = 1.$$

Natural intepretation = superposition of bitstrings.

Measurement in the computational basis results in $x \in \{0,1\}^n$ with probability $|\alpha_x|^2$. Crucially, measurement collapses the state to $1 \cdot |x\rangle$.

An n-qubit quantum state can be written in the computational basis as

$$|\psi\rangle = \sum_{x \in \{0,1\}^n} \alpha_x \, |x\rangle \qquad \quad \text{where } \alpha_x \in \mathbb{C} \quad \text{and } \sum_{x \in \{0,1\}^n} |\alpha_x|^2 = 1.$$

Natural interretation = superposition of bitstrings.

Measurement in the computational basis results in $x \in \{0,1\}^n$ with probability $|\alpha_x|^2$. Crucially, measurement collapses the state to $1 \cdot |x\rangle$.

Quantum algorithm design: evolving an initial quantum state to one whose amplitudes which encode useful information are amplified.

Quantum states and quantum gates I

Quantum states can be viewed as vectors of coefficients.

$$|\psi\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle = \begin{bmatrix} \alpha_{00} \\ \alpha_{01} \\ \alpha_{10} \\ \alpha_{11} \end{bmatrix}$$
 (1)

Quantum states and quantum gates I

Quantum states can be viewed as vectors of coefficients.

$$|\psi\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle = \begin{bmatrix} \alpha_{00} \\ \alpha_{01} \\ \alpha_{10} \\ \alpha_{11} \end{bmatrix}$$
 (1)

Processes which evolve one quantum state to another in a period of continuous time are *unitary operators* acting upon these vectors.

$$U\ket{\psi_{t_0}}=\ket{\psi_{t_1}}$$
 where $U^\dagger U=UU^\dagger=I$ (2)

Note: $U^{\dagger} = (U^T)^*$ — the conjugate transpose.

Quantum states and quantum gates I

Quantum states can be viewed as vectors of coefficients.

$$|\psi\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle = \begin{bmatrix} \alpha_{00} \\ \alpha_{01} \\ \alpha_{10} \\ \alpha_{11} \end{bmatrix}$$
 (1)

Processes which evolve one quantum state to another in a period of continuous time are *unitary operators* acting upon these vectors.

$$U\ket{\psi_{t_0}}=\ket{\psi_{t_1}}$$
 where $U^\dagger U=UU^\dagger=I$ (2)

Note: $U^\dagger = (U^T)^*$ — the conjugate transpose.

This connection to linear algebra both simplifies and complicates the implementation of Grover's algorithm.

Quantum states and quantum gates III

A key component of Grover is the concept of the *quantum oracle*, a unitary operator defined by a boolean function $\chi: \{0,1\}^n \longrightarrow \{0,1\}$.

$$\chi(x) = \begin{cases} 1 & \text{if } x \text{ is a target} \\ 0 & \text{otherwise} \end{cases} \qquad \mathcal{O}_{\chi} \left| x \right\rangle = \begin{cases} -\left| x \right\rangle & \text{if } \chi(x) = 1 \\ \left| x \right\rangle & \text{if } \chi(x) = 0 \end{cases}$$

Quantum states and quantum gates III

A key component of Grover is the concept of the *quantum oracle*, a unitary operator defined by a boolean function $\chi:\{0,1\}^n\longrightarrow\{0,1\}$.

$$\chi(x) = \begin{cases} 1 & \text{if } x \text{ is a target} \\ 0 & \text{otherwise} \end{cases} \qquad \mathcal{O}_{\chi} \left| x \right\rangle = \begin{cases} -\left| x \right\rangle & \text{if } \chi(x) = 1 \\ \left| x \right\rangle & \text{if } \chi(x) = 0 \end{cases}$$

Linearity of unitary operators reduces the design of quantum oracles to the problem of implementing a circuit that is correct on bitstrings

$$\mathcal{O}_{\chi} \left(\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle \right) = \sum_{x \in \{0,1\}^n} \alpha_x \mathcal{O}_{\chi} |x\rangle$$

Quantum states and quantum gates IV

A unitary operator implementing $\chi:\{0,1\}^n\longrightarrow\{0,1\}$ on bitstrings is enough to realise \mathcal{O}_χ .

Say we have the unitary $\mathcal{O}_\chi^{(b)}$

$$\mathcal{O}_{\chi}^{(b)} |x\rangle |y\rangle \mapsto |x\rangle |y \oplus \chi(x)\rangle$$

Quantum states and quantum gates IV

A unitary operator implementing $\chi:\{0,1\}^n\longrightarrow\{0,1\}$ on bitstrings is enough to realise \mathcal{O}_χ .

Say we have the unitary $\mathcal{O}_\chi^{(b)}$

$$\mathcal{O}_{\chi}^{(b)} |x\rangle |y\rangle \mapsto |x\rangle |y \oplus \chi(x)\rangle$$

then replacing y with the state (where H is the Hadamard gate)

$$H|1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

gives us

$$\mathcal{O}_{\chi}^{(b)} \left| x \right\rangle \left(\frac{\left| 0 \right\rangle - \left| 1 \right\rangle}{\sqrt{2}} \right) \mapsto \left| x \right\rangle \left(\frac{\left| 0 \oplus \chi(x) \right\rangle - \left| 1 \oplus \chi(x) \right\rangle}{\sqrt{2}} \right) = (-1)^{\chi(x)} \left| x \right\rangle \left(\frac{\left| 0 \right\rangle - \left| 1 \right\rangle}{\sqrt{2}} \right).$$

Building reversible boolean circuits from logical quantum gates

$$\begin{array}{c|c} |x_1\rangle & \longrightarrow & |x_1\rangle \\ |x_2\rangle & \longrightarrow & |x_1 \oplus x_2\rangle \end{array}$$

A CNOT gate acting as $x \oplus y$.

$$|x\rangle$$
 $-X$ $-X$ $|x\oplus 1\rangle$

An X gate acting as negation.

$$\begin{vmatrix} x_1 \\ x_2 \\ \end{vmatrix} \xrightarrow{\bullet} \begin{vmatrix} x_1 \\ x_2 \\ \end{vmatrix}$$

$$|x_3\rangle \xrightarrow{\bullet} |x_3 \oplus x_1 \cdot x_2 \rangle$$

A Toffoli gate acting as $x \cdot y$.

Building reversible boolean circuits from logical quantum gates

$$\begin{array}{c|c} |x_1\rangle & \longrightarrow & |x_1\rangle \\ |x_2\rangle & \longrightarrow & |x_1 \oplus x_2\rangle \end{array}$$

 $|x\rangle$ -X -X $|x\oplus 1\rangle$

A CNOT gate acting as $x \oplus y$.

An X gate acting as negation.

$$\begin{vmatrix} x_1 \\ x_2 \\ \end{vmatrix} \xrightarrow{\bullet} \begin{vmatrix} x_1 \\ x_2 \\ \end{vmatrix}$$

$$|x_3\rangle \xrightarrow{\bullet} |x_3 \oplus x_1 \cdot x_2 \rangle$$

A Toffoli gate acting as $x \cdot y$.

Classicial universal gate set: $\{\oplus, \neg, \wedge\} \leftrightarrow \{\mathsf{CNOT}, X, \mathsf{Toffoli}\}$

Building reversible boolean circuits from logical quantum gates

$$|x_1\rangle \longrightarrow |x_1\rangle |x_2\rangle \longrightarrow |x_1 \oplus x_2\rangle$$

A CNOT gate acting as $x \oplus y$.

$$\begin{vmatrix} x_1 \rangle & & & |x_1 \rangle \\ |x_2 \rangle & & & |x_2 \rangle \\ |x_3 \rangle & & & |x_3 \oplus x_1 \cdot x_2 \rangle \end{vmatrix}$$

A Toffoli gate acting as $x \cdot y$.

$$|x\rangle$$
 $-X$ $|x\oplus 1\rangle$

An X gate acting as negation.

$$|x_{1}\rangle \longrightarrow |x_{1}\rangle$$

$$\vdots \qquad \vdots$$

$$|x_{k-1}\rangle \longrightarrow |x_{k-1}\rangle$$

$$|x_{k}\rangle \longrightarrow |x_{k} \oplus x_{1} \cdots x_{k-1}\rangle$$

A k-bit Toffoli gate acting as $\bigwedge_{i=1}^{k-1} x_i$.

Classicial universal gate set: $\{\oplus, \neg, \wedge\} \leftrightarrow \{CNOT, X, Toffoli\}$

Reversibility

Implementations of boolean circuits are required to be *reversible* because of the unitary condition

$$U^{\dagger}U = UU^{\dagger} = I.$$

Impact: all boolean circuits must implement permutations.

Use of ancillae qubits is crucial for efficient realisation.

Grover basics

Grover's algorithm consists of the following steps.

- 1. Initialise the quantum register to $|0^n\rangle$
- 2. Apply the Hadamard transform to compute $|\psi_0
 angle=H^{\otimes n}\,|0^n
 angle$
- 3. Compute $|\psi_k\rangle=G^k\,|\psi_0\rangle$, via successive applications of $G=\mathcal{R}_\psi\mathcal{O}_\chi$.
- 4. Perform a measurement in the computational basis.

If $k=\left\lfloor \frac{\pi}{4}\cdot\sqrt{\frac{N}{M}}\right\rfloor$, then with high probability measurement will collapse the state to an element $x\in\{0,1\}^n$ that we are searching for.

Grover's quantum search algorithm and query complexity VI

Let E_A be the cost of implementing the unitary/circuit A.

The cost (circuit-depth or circuit-size) of Grover's algorithm is

$$\left\lfloor \frac{\pi}{4} \cdot \sqrt{\frac{N}{M}} \right\rfloor \cdot \left(E_{\mathcal{O}_{\chi}} + E_{\mathcal{R}_{\psi}} \right)$$

and usually $E_{\mathcal{O}_\chi}\gg E_{\mathcal{R}_\psi}$.

The number of qubits required is dependent upon the circuit-width of the quantum oracle and is at least n.

Grover's quantum search algorithm and query complexity VII

Let $N = 2^{100}$ and M = 1.

Say $E_{\mathcal{O}_{\chi}} + E_{\mathcal{R}_{\psi}} \approx E_{\mathcal{O}_{\chi}} = n^3$

- Query complexity advantage: 2^{50} versus 2^{100} .
- Actual advantage: $2^{69.93}$ versus $2^{119.93}$.
- Each quantum operation will be slower and more expensive.
- Advantageous and easy to run classical search in parallel.
- Disadvantageous to run quantum search in parallel.

$$\left| \frac{\pi}{4} \cdot \sqrt{\frac{N}{M}} \right| \cdot \left(E_{\mathcal{O}_{\chi}} + E_{\mathcal{R}_{\psi}} \right).$$

How to optimise?

- Optimise the circuit for \mathcal{O}_{χ} (sometimes involves a tradeoff).
- Use fewer Grover iterations (lower success probability).
- Tradeoff between information obtained and complexity.

(3)

Grover 101: Circuits for unitaries

Structure in the quantum bit oracle $\mathcal{O}_{\chi}^{(b)}$

 $\bullet \ \chi : \{0,1\}^n \longrightarrow \{0,1\}$

Structure in the quantum bit oracle $\mathcal{O}_{\chi}^{(b)}$

$$\bullet \ \chi : \{0,1\}^n \longrightarrow \{0,1\}$$

Structure in the quantum bit oracle $\mathcal{O}_\chi^{(b)}$

- $\bullet~\chi:\{0,1\}^n \longrightarrow \{0,1\}$
- $g_n: \{0,1\}^n \longrightarrow \{0,1\}^w$ depends upon $x_1 \dots x_n \in \{0,1\}^n$.

Structure in the quantum bit oracle $\mathcal{O}_\chi^{(b)}$

- $\bullet~\chi:\{0,1\}^n \longrightarrow \{0,1\}$
- $g_i: \{0,1\}^i \longrightarrow \{0,1\}^w$ depends only upon $x_1 \dots x_i \in \{0,1\}^i$.

$$|g_{i-1}(x_1 \dots x_{i-1})\rangle - U_{\chi_i} - |g_i(x_1 \dots x_i)\rangle$$
 $|x\rangle - |x\rangle$

Structure in the quantum bit oracle $\mathcal{O}_{\chi}^{(b)}$

$$U_{\chi_{1}}^{\dagger} \cdots U_{\chi_{n}}^{\dagger} U_{\chi_{*}} U_{\chi_{n}} \cdots U_{\chi_{1}} |0^{w}\rangle |x\rangle |b\rangle \mapsto |0^{w}\rangle |x\rangle |b \oplus \chi(x)\rangle$$

$$|0^{w}\rangle \not\longrightarrow U_{\chi_{1}} \cdots U_{\chi_{n}} \qquad U_{\chi_{n}} \cdots U_{\chi_{n}} \qquad U_{\chi_{n}} \cdots U_{\chi_{1}} \qquad |x\rangle$$

$$|b\rangle \longrightarrow \cdots \longrightarrow |b \oplus \chi(x)\rangle$$

- $\bullet \ \chi : \{0,1\}^n \longrightarrow \{0,1\}$
- $g_i: \{0,1\}^i \longrightarrow \{0,1\}^w$ depends only upon $x_1 \dots x_i \in \{0,1\}^i$.

$$|g_{i-1}(x_1 \dots x_{i-1})\rangle$$
 U_{χ_i} $|g_i(x_1 \dots x_i)\rangle$ $|x\rangle$

Structure in the quantum bit oracle $\mathcal{O}_{\chi}^{(b)}$

Definition (Bitwise decomposition of $\mathcal{O}_{\mathcal{V}}^{(b)}$)

The sequence of n+1 unitaries $U_{\chi_1},\dots,U_{\chi_n},U_{\chi_*}$ is a bitwise decomposition of $\mathcal{O}_\chi^{(b)}$ if $\left(\mathcal{I}^{\otimes w}\otimes O_\chi^{(b)}\right)=U_{\chi_n}^\dagger\cdots U_{\chi_1}^\dagger U_{\chi_*}U_{\chi_n}\cdots U_{\chi_1}$ where $U_{\gamma_i}=U_{\gamma}'\otimes\mathcal{I}^{\otimes n-i+1}$ and

where
$$U_{\chi_i}=U_\chi'\otimes\mathcal{I}^{\otimes n-i+1}$$
 and $U_{\chi_i}'\ket{g_{i-1}(x_1\ldots x_{i-1})}\ket{x_1\ldots x_i}\mapsto \ket{g_i(x_1\ldots x_i)}\ket{x_1\ldots x_i}$

 $|b \oplus \chi(x_1 \dots x_n)\rangle$

Structure in the quantum bit oracle $\mathcal{O}_{\chi}^{(b)}$: sanity check

Definition (Bitwise decomposition of $\mathcal{O}_{\chi}^{(b)}$)

 $U_{\chi_1},\dots,U_{\chi_n},U_{\chi_*}$ is a bitwise decomposition of $\mathcal{O}_\chi^{(b)}$ if

$$\left(\mathcal{I}^{\otimes w} \otimes O_{\chi}^{(b)}\right) = U_{\chi_n}^{\dagger} \cdots U_{\chi_1}^{\dagger} U_{\chi_*} U_{\chi_n} \cdots U_{\chi_1}$$

where $U_{\chi_i} = U_\chi' \otimes \mathcal{I}^{\otimes n-i+1}$ and

$$U'_{\chi_i} | g_{i-1}(x_1 \dots x_{i-1}) \rangle | x_1 \dots x_i \rangle \mapsto | g_i(x_1 \dots x_i) \rangle | x_1 \dots x_i \rangle$$

$$U_{\chi_*} | g_n(x_1 \dots x_n) \rangle | x_1 \dots x_n \rangle | b \rangle \mapsto | g_n(x_1 \dots x_n) \rangle | x_1 \dots x_n \rangle | b \oplus \chi(x_1 \dots x_n) \rangle$$

Trivial decomposition: if we have circuit for $\mathcal{O}_\chi^{(b)}$ using $w' \leq w$ ancilla

$$U'_{\chi_i} = \mathcal{I}^{\otimes w + n - i} \qquad \qquad \text{and} \qquad \qquad U_{\chi_*} = \mathcal{I}^{\otimes w - w'} \otimes \mathcal{O}_\chi^{(b)}$$

Structure in the quantum bit oracle $\mathcal{O}_{\chi}^{(b)}$: sanity check

Definition (Bitwise decomposition of $\mathcal{O}_{\chi}^{(b)}$ **)**

 $U_{\chi_1},\dots,U_{\chi_n},U_{\chi_*}$ is a bitwise decomposition of $\mathcal{O}_\chi^{(b)}$ if

$$\left(\mathcal{I}^{\otimes w} \otimes O_{\chi}^{(b)}\right) = U_{\chi_n}^{\dagger} \cdots U_{\chi_1}^{\dagger} U_{\chi_*} U_{\chi_n} \cdots U_{\chi_1}$$

where $U_{\chi_i} = U_\chi' \otimes \mathcal{I}^{\otimes n-i+1}$ and

$$U'_{\chi_i} | g_{i-1}(x_1 \dots x_{i-1}) \rangle | x_1 \dots x_i \rangle \mapsto | g_i(x_1 \dots x_i) \rangle | x_1 \dots x_i \rangle$$

$$U_{\chi_*} | g_n(x_1 \dots x_n) \rangle | x_1 \dots x_n \rangle | b \rangle \mapsto | g_n(x_1 \dots x_n) \rangle | x_1 \dots x_n \rangle | b \oplus \chi(x_1 \dots x_n) \rangle$$

$$f(x_1, x_2, x_3, x_4, x_5) = x_1 x_2 + x_1 x_5 + x_3 x_5 + x_3 x_4 + x_2 + x_4 + x_5 + 1$$

Structure in the quantum bit oracle $\mathcal{O}_{\chi}^{(b)}$: sanity check

Definition (Bitwise decomposition of $\mathcal{O}_{\chi}^{(b)}$)

 $U_{\chi_1},\dots,U_{\chi_n},U_{\chi_*}$ is a bitwise decomposition of $\mathcal{O}_\chi^{(b)}$ if

$$\left(\mathcal{I}^{\otimes w} \otimes O_{\chi}^{(b)}\right) = U_{\chi_n}^{\dagger} \cdots U_{\chi_1}^{\dagger} U_{\chi_*} U_{\chi_n} \cdots U_{\chi_1}$$

where
$$U_{\chi_i} = U_\chi' \otimes \mathcal{I}^{\otimes n-i+1}$$
 and

$$U'_{\chi_i} | g_{i-1}(x_1 \dots x_{i-1}) \rangle | x_1 \dots x_i \rangle \mapsto | g_i(x_1 \dots x_i) \rangle | x_1 \dots x_i \rangle$$

$$U_{\chi_*} | g_n(x_1 \dots x_n) \rangle | x_1 \dots x_n \rangle | b \rangle \mapsto | g_n(x_1 \dots x_n) \rangle | x_1 \dots x_n \rangle | b \oplus \chi(x_1 \dots x_n) \rangle$$

$$f(x_1, x_2, x_3, x_4, x_5) = 1 + x_2 \cdot \underbrace{(x_1 + 1)}_{y_1} + x_4 \cdot \underbrace{(x_3 + 1)}_{y_4} + x_5 \cdot \underbrace{(1 + x_1 + x_3)}_{y_5}$$

Structure in the quantum bit oracle $\mathcal{O}_{x}^{(b)}$: sanity check

Definition (Bitwise decomposition of $\mathcal{O}_{\gamma}^{(b)}$ **)**

$$U_{\chi_1},\dots,U_{\chi_n},U_{\chi_*}$$
 is a bitwise decomposition of $\mathcal{O}_\chi^{(b)}$ if

$$\left(\mathcal{I}^{\otimes w}\otimes O_\chi^{(b)}\right)=U_{\chi_n}^\dagger\cdots U_{\chi_1}^\dagger U_{\chi_*}U_{\chi_n}\cdots U_{\chi_1}$$

where $U_{\chi_i} = U'_{\chi} \otimes \mathcal{I}^{\otimes n-i+1}$ and

where
$$U_{\chi_i} = U_{\chi} \otimes L^{\circ}$$
 and

$$U'_{\chi_i} |g_{i-1}(x_1 \dots x_{i-1})\rangle |x_1 \dots x_i\rangle$$

$$U'_{\chi_i}|g_{i-1}(x_1\ldots x_{i-1})\rangle|x_1\ldots x_i\rangle$$

$$\mapsto |g_n(x_1 \dots x_n)\rangle$$

$$f(x_1, x_2, x_3, x_4, x_5) = 1 + x_2 \cdot \underbrace{(x_1 + 1)}_{} + x_4 \cdot \underbrace{(x_3 + 1)}_{} + x_5 \cdot \underbrace{(1 + x_1 + x_3)}_{}$$

$$y_1$$

$$U_{\chi_i} \mid_{i=1}^{i-1} x_i y_i \rangle \mid x_1 \dots x_i \rangle \mapsto \mid_{i=1}^{i} x_i y_i \rangle \mid x_1 \dots x_i \rangle$$

$$U'_{\chi_i} | g_{i-1}(x_1 \dots x_{i-1}) \rangle | x_1 \dots x_i \rangle \mapsto | g_i(x_1 \dots x_i) \rangle | x_1 \dots x_i \rangle$$

$$U'_{\chi_i} | g_n(x_1 \dots x_n) \rangle | x_1 \dots x_n \rangle | b \rangle \mapsto | g_n(x_1 \dots x_n) \rangle | x_1 \dots x_n \rangle | b \oplus \chi(x_1 \dots x_n) \rangle$$

$$_{i}y_{i}\rangle\left| x_{1}\ldots x_{i}\right\rangle$$

Computational gains

Assume
$$E_{\mathcal{O}_{\chi}^{(b)}}\gg E_{\mathcal{R}_n}\in O(n)$$

Cost of Grover for $\chi:\{0,1\}^n\longrightarrow\{0,1\}$ and $M=|\chi^{-1}(1)|$

$$\approx \underbrace{\frac{\pi}{4} \cdot \frac{2^{n/2}}{\sqrt{M}}}_{\begin{subarray}{c} Query \\ {\rm complexity} \end{subarray}} \cdot E_{O_\chi^{(b)}} \label{eq:Query_cost}$$

Computational gains

Assume
$$E_{\mathcal{O}_\chi^{(b)}} \gg E_{\mathcal{R}_n} \in O(n)$$

Cost of Grover for
$$\chi:\{0,1\}^n\longrightarrow\{0,1\}$$
 and $M=|\chi^{-1}(1)|$

$$\approx \underbrace{\frac{\pi}{4} \cdot \frac{2^{n/2}}{\sqrt{M}}}_{\text{Query complexity}} \cdot \underbrace{E_{O_{\chi}^{(b)}}}_{\text{Cost of oracle}} = \underbrace{\frac{\pi}{4} \cdot \frac{2^{n/2}}{\sqrt{M}}}_{\text{Query complexity}} \cdot \underbrace{\left(2 \sum_{i=1}^{n} E_{U_i} + U_{\chi_*}\right)}_{\substack{\text{Cost of decomposed oracle}}}$$

Computational gains

Assume
$$E_{\mathcal{O}_\chi^{(b)}}\gg E_{\mathcal{R}_n}\in O(n)$$

Cost of Grover for $\chi:\{0,1\}^n \longrightarrow \{0,1\}$ and $M=|\chi^{-1}(1)|$

$$\approx \underbrace{\frac{\pi}{4} \cdot \frac{2^{n/2}}{\sqrt{M}}}_{\text{Query complexity}} \cdot \underbrace{E_{O_\chi^{(b)}}}_{\text{Cost of complexity}} = \underbrace{\frac{\pi}{4} \cdot \frac{2^{n/2}}{\sqrt{M}}}_{\text{Query complexity}} \cdot \underbrace{\left(2 \sum_{i=1}^n E_{U_i} + U_{\chi_*}\right)}_{\substack{\text{Cost of decomposed oracle}\\ \text{oracle}}}$$

Basic idea: modify the oracle to work on a smaller search-space

- Increases the cost contribution of the quantum oracle
- Decreases the number of queries
- Can balance costs for certain problems
- Can apply preprocessing to decrease cost of additional queries

Adding additional targets to the search-space

Goal: modify the oracle to use Grover on a search-space of size 2^{n-k}

• Choose a $0 \le k < n$ and compute

$$U_{\chi_{n-k}}\cdots U_{\chi_1}|0^w\rangle|x_1\ldots x_{n-k}\rangle|0^k\rangle\mapsto|g_{n-k}(x_1\ldots x_{n-k})\rangle|0^k\rangle$$

- For $z_1 \dots z_k \in \{0,1\}^k$:
 - ullet Change the last register to $|z_1\dots z_k
 angle$
 - Execute $U_k = U_{\chi_{n-k+1}}^{\dagger} \cdots U_{\chi_n}^{\dagger} U_{\chi_*} U_{\chi_n} \cdots U_{\chi_{n-k+1}}$
- Restore the last register to the state $|0^k\rangle$ and execute $U_{\chi_1}^{\dagger}\cdots U_{\chi_{n-k}}^{\dagger}$:

$$|0^w\rangle |x_1 \dots x_{n-k}\rangle |0^k\rangle |b \bigoplus_{z_1 \dots z_k \in \{0,1\}^k} \chi(x_1 \dots x_{n-k} z_1 \dots z_k)\rangle$$

$$\mathsf{Cost} \approx \quad \frac{\pi}{4} \cdot \frac{2^{(n-k)/2}}{\sqrt{M}} \cdot \left(2 \cdot \sum_{i=1}^{n-k} E_{U_i} + 2 \cdot 2^k \sum_{i=1}^k E_{U_i} + 2^k U_{\chi_*} \right)$$

Preprocessing

Preprocessing only helps!

- · Allows shifting of costs to earlier part
- Allows us to reduce or remove quantum gates

$$|a_1a_2a_3a_40\rangle|b\rangle \mapsto |a_1a_2a_3a_40\rangle|b\oplus (a_1\wedge a_2\wedge a_3\wedge a_4\wedge 0)\rangle$$

can be removed, whilst

$$|a_1 a_2 a_3 a_4 1\rangle |b\rangle \mapsto |a_1 a_2 a_3 a_4 1\rangle |b \oplus (a_1 \wedge a_2 \wedge a_3 \wedge a_4 \wedge 1)\rangle$$

becomes

$$|a_1a_2a_3a_4\rangle |b\rangle \mapsto |a_1a_2a_3a_4\rangle |b\oplus (a_1\wedge a_2\wedge a_3\wedge a_4)\rangle.$$

• In particular, this can drop the cost of $E_{U_{\chi_{n-k+1}}},\dots,E_{U_{\chi_n}},E_{U_{\chi_*}}$

Preprocessing

Preprocessing only helps!

- · Allows shifting of costs to earlier part
- Allows us to reduce or remove quantum gates
- In particular, this can drop the cost of $E_{U_{\chi_{n-k+1}}},\dots,E_{U_{\chi_n}},E_{U_{\chi_*}}$
- · After hardwiring we can remove qubits

$$|0^w\rangle |x_1 \dots x_{n-k}\rangle |0^k\rangle |b \bigoplus_{z_1 \dots z_k \in \{0,1\}^k} \chi(x_1 \dots x_{n-k} z_1 \dots z_k)\rangle$$

$$\mathsf{Cost} \approx \quad \frac{\pi}{4} \cdot \frac{2^{(n-k)/2}}{\sqrt{M}} \cdot \left(2 \cdot \sum_{i=1}^{n-k} E_{U_i} + 2 \cdot 2^k \sum_{i=1}^k E_{U_i} + 2^k U_{\chi_*} \right)$$

Preprocessing

Preprocessing only helps!

- · Allows shifting of costs to earlier part
- Allows us to reduce or remove quantum gates
- In particular, this can drop the cost of $E_{U_{\chi_{n-k+1}}},\dots,E_{U_{\chi_n}},E_{U_{\chi_*}}$
- · After hardwiring we can remove qubits

$$|0^w\rangle |x_1 \dots x_{n-k}\rangle |b \bigoplus_{z_1 \dots z_k \in \{0,1\}^k} \chi(x_1 \dots x_{n-k} z_1 \dots z_k)\rangle$$

$$\mathsf{Cost} \approx \quad \frac{\pi}{4} \cdot \frac{2^{(n-k)/2}}{\sqrt{M}} \cdot \left(2 \cdot \sum_{i=1}^{n-k} E_{U_i} + 2 \cdot 2^k \sum_{i=1}^k E_{U_i} + 2^k U_{\chi_*} \right)$$

Application: Multivariate Quadratic oracle

Problem: find a zero of $f^{(1)},\ldots,f^{(m)}\in\mathbb{F}_2[x_1,\ldots,x_n]$ in \mathbb{F}_2 .

$$f^{(k)}(x_1,\ldots,x_n) = c^{(k)} + \sum_{1 \le i \le n} x_i y_i^{(k)} \quad \text{where} \quad y_i^{(k)} = b_i^{(k)} + \sum_{1 \le j < n}^{i-1} a_{j,i}^{(k)} x_j$$

- Original cost of quantum search if n = m: $O(2^{n/2}mn^2)$.
- Using preprocessing reduces this to $O(2^{n/2}mn^{3/2})$
- Shifting computation of $y_i^{(k)}$ reduces this to $O(2^{n/2}mn)$

$$O\left(2^{n/2}2^{-k/2}\cdot\left(m(n-k)^2+2^km\cdot(n-k)\right)\right)$$
 (optimal $kpprox \log_2 n$)

$$O\left(2^{n/2}2^{-k/2}\cdot\left(mn^2+2^km\right)\right)$$
 (optimal $k\approx 2\log_2 n$)

Definition (Claw finding problem)

Given finite sets $\mathcal{X},\mathcal{Y},\mathcal{Z}$ and functions $f:\mathcal{X}\longrightarrow\mathcal{Z}$ and $g:\mathcal{Y}\longrightarrow\mathcal{Z}$, find $(x,y)\in\mathcal{X}\times\mathcal{Y}$ such that f(x)=g(y).

Goal: find a degree- 2^e isogeny between two elliptic curves E_0/\mathbb{F}_{p^2} and E_1/\mathbb{F}_{p^2} , where $e\approx \frac{\log p}{2}$ using

$$\underbrace{f_{e_1}:\{0,1\}^{e_1}\longrightarrow \mathbb{F}_{p^2}}_{\text{Computes an isogeny-path from }E_0} \text{ and } \underbrace{g_{e_2}:\{0,1\}^{e_2}\longrightarrow \mathbb{F}_{p^2}}_{\text{Computes an isogeny-path from }E_1} \text{ st. }e_1+e_2=e$$

ullet Classical algorithm for f_{e_1}, g_{e_2} is $O(e \log e)$ EC operations [JDF11]

Question[JS19a]: Might Grover competitive with Tani's claw-finding algorithm?

Find a degree- 2^e isogeny between E_0/\mathbb{F}_{p^2} and E_1/\mathbb{F}_{p^2} where $e pprox \frac{\log p}{2}$

$$\underbrace{f_{e_1}:\{0,1\}^{e_1}\longrightarrow \mathbb{F}_{p^2}}_{\text{Computes an isogeny-path from }E_0} \quad \text{and} \quad \underbrace{g_{e_2}:\{0,1\}^{e_2}\longrightarrow \mathbb{F}_{p^2}}_{\text{Computes an isogeny-path from }E_1} \quad \text{st. } e_1+e_2=e$$

- ullet Assume cost for evaluating degree- 2^e isogeny is C_e
- Tactic used for comparison with Tani's algorithm:
 - Choose $e_1 \approx e_2$
 - ullet Set $U_{\chi_{e-e_1}}\cdots U_{\chi_1}$ to evaluate and store $f_{e_1}(x_1\dots x_{e_1})$
 - ullet Set $U_{\chi_e}\cdots U_{\chi_{e-e_1+1}}$ to evaluate and store $g_{e_2}(x_1\dots x_{e_1})$
 - \bullet Set U_{χ_*} to compare the two stored values and output if they match

$$O(p^{1/4}C_e)$$

Find a degree- 2^e isogeny between E_0/\mathbb{F}_{p^2} and E_1/\mathbb{F}_{p^2} where $e pprox \frac{\log p}{2}$

$$\underbrace{f_{e_1}:\{0,1\}^{e_1}\longrightarrow \mathbb{F}_{p^2}}_{\text{Computes an isogeny-path from }E_0} \quad \text{and} \quad \underbrace{g_{e_2}:\{0,1\}^{e_2}\longrightarrow \mathbb{F}_{p^2}}_{\text{Computes an isogeny-path from }E_1} \quad \text{st. } e_1+e_2=e$$

- ullet Assume cost for evaluating degree- 2^e isogeny is C_e
- Tactic used for comparison with Tani's algorithm:
 - ullet Require that $e_1+e_2=e$ and use a preprocessed secondary-search
 - ullet Set $U_{\chi_{e-e_1}}\cdots U_{\chi_1}$ to evaluate and store $f_{e_1}(x_1\dots x_{e_1})$
 - $\bullet \ U_{\chi_e} \cdots U_{\chi_{e-e_1+1}}$ evaluates $g_{e_2}(x_1 \dots x_{e_1})$ using only $O(\log p) \ X$ gates
 - \bullet Set U_{χ_*} to compare the two stored values and output if they match

$$O\left(p^{1/4}2^{-e_2/2}\cdot\left(2C_{e_1}+2^{e_2}\log p\right)\right)$$

Find a degree- 2^e isogeny between E_0/\mathbb{F}_{p^2} and E_1/\mathbb{F}_{p^2} where $e pprox \frac{\log p}{2}$

$$\underbrace{f_{e_1}:\{0,1\}^{e_1}\longrightarrow \mathbb{F}_{p^2}}_{\text{Computes an isogeny-path from }E_0} \quad \text{and} \quad \underbrace{g_{e_2}:\{0,1\}^{e_2}\longrightarrow \mathbb{F}_{p^2}}_{\text{Computes an isogeny-path from }E_1} \quad \text{st. } e_1+e_2=e$$

- ullet Assume cost for evaluating degree- 2^e isogeny is C_e
- Tactic used for comparison with Tani's algorithm:
 - ullet Optimal $e_2pprox \log_2\left(rac{C_e}{\log p}
 ight)$ with a preprocessed secondary-search
 - ullet Set $U_{\chi_{e-e_1}}\cdots U_{\chi_1}$ to evaluate and store $f_{e_1}(x_1\dots x_{e_1})$
 - $\bullet \ U_{\chi_e} \cdots U_{\chi_{e-e_1+1}}$ evaluates $g_{e_2}(x_1 \dots x_{e_1})$ using only $O(\log p) \ X$ gates
 - ullet Set U_{χ_*} to compare the two stored values and output if they match

$$O\left(p^{1/4} \cdot \sqrt{C_e \log p}\right)$$

Improvement:

$$O\left(p^{1/4}C_e\right) \longrightarrow O\left(p^{1/4}\sqrt{C_e\log p}\right)$$

- $C_e \in O(e \log e)$ elliptic curve operations
- Elliptic curve operations $\in O(\log p \log \log p)$ (conservative [JS19b])

$$O\left(p^{1/4}\log^2 p(\log\log p)^2\right) \longrightarrow O\left(p^{1/4}\log^{3/2} p(\log\log p)\right)$$

• Elliptic curve operations $\in O(\log^2 p \log \log p)$ (realistic [RNSL17])

$$O\left(p^{1/4}\log^3 p(\log\log p)^2\right) \longrightarrow O\left(p^{1/4}\log^2 p(\log\log p)\right)$$

Improvement:

$$O\left(p^{1/4}C_e\right) \longrightarrow O\left(p^{1/4}\sqrt{C_e\log p}\right)$$

- $C_e \in O(e \log e)$ elliptic curve operations
- ullet Elliptic curve operations $\in O(\log p \log \log p)$ (conservative [JS19b])

$$O\left(p^{1/4}\log^2 p(\log\log p)^2\right) \longrightarrow O\left(p^{1/4}\log^{3/2} p(\log\log p)\right)$$

ullet Elliptic curve operations $\in O(\log^2 p \log \log p)$ (realistic [RNSL17])

$$O\left(p^{1/4}\log^3 p(\log\log p)^2\right) \longrightarrow O\left(p^{1/4}\log^2 p(\log\log p)\right)$$

Conservative/unoptimised more realistic/optimised $O\left(p^{1/4}\log^2p(\log\log p)^2\right) \qquad \text{vs} \qquad O\left(p^{1/4}\log^2p(\log\log p)\right)$

	SIKE-434			SIKE-610		
Attack cost	G	D	W	G	D	W
Grover [JS19b]	132	122	10	177	167	10
Grover (Ours with assumptions from [JS19b])	126	116	10	171	160	10
Grover (Ours with higher costs)	130	120	10	175	165	10
Tani[JS19b] (optimal # gates)	124	114	25	169	159	25
Tani[JS19b] (optimal $D \times W$)	131	122	10	177	166	10
VW [JS19b] (optimal # gates)	132	14	128	177	14	173
VW [JS19b] (optimal $D imes W$)	132	14	128	177	14	173

- Grover may be superior in the Depth \times Width-cost metric. For SIKE-434: 2^{126} for Grover's algorithm compared to 2^{132} for Tani.
- Grover may be competitive in the gate based metric. For SIKE-434: 2^{126} for Grover's algorithm compared to 2^{124} for Tani.

Conclusions

- Generic framework easily applicable to problems
- Optimisation of older algorithm to solve an instance of $\mathcal{MQ}(\mathbb{F}_2,n,m)$

$$O\left(2^{n/2}mn^2\right) \longrightarrow O\left(2^{n/2}mn\right)$$

• Minor improvements in claw-finding techniques using Grover

$$O\left(p^{1/4}C_e\right) \longrightarrow O\left(p^{1/4}\sqrt{C_e\log p}\right)$$

- Optimisations only increase query-complexity
- Cost of Grover may be slightly lower than thought
- Using Grover as a black-box with overheads may be risky

References i

- David Jao and Luca De Feo, <u>Towards quantum-resistant</u> cryptosystems from supersingular elliptic curve isogenies, International Workshop on Post-Quantum Cryptography, Springer, 2011, pp. 19–34.
- Samuel Jaques and John M. Schanck, <u>Quantum cryptanalysis in the ram model</u>: <u>Claw-finding attacks on sike</u>, Advances in Cryptology CRYPTO 2019 (Cham) (Alexandra Boldyreva and Daniele Micciancio, eds.), Springer International Publishing, 2019, pp. 32–61.
- Samuel Jaques and John M Schanck, Quantum cryptanalysis in the RAM model: Claw-finding attacks on SIKE, Tech. report, Cryptology ePrint Archive, Report 2019/103, 2019. https://eprint.iacr. org ..., 2019.

References ii

Martin Roetteler, Michael Naehrig, Krysta M Svore, and Kristin Lauter, Quantum resource estimates for computing elliptic curve discrete logarithms, International Conference on the Theory and Application of Cryptology and Information Security, Springer, 2017, pp. 241–270.