# Dog Vs Labrador Vs German Shepherd



PyData Meetup 11, Mumbai, Aug 11, 2018

Pratik Bhavsar Senior Data Scientist Morningstar



# Dog Vs Labrador Vs German Shepherd

Machine Learning Vs Deep Learning Vs Reinforcement Learning







## **Machine Learning**

Supervised



Unsupervised







## **Deep Learning**

- Universal approximation theorem
- ► XOR function

input layer





$$z = w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$
$$y = \frac{1}{1 + e^{-z}}$$





#### **Deep Learning - Supervised**

 $f_{W,b}(x) \approx y$ 



IS THIS A CAT & DOG?









## **Deep Learning - Unsupervised**





#### **Reinforcement Learning**

► Supervised Or Unsupervised?

#### Instruction based

► Supervised ML

#### **Evaluation** based

► Reinforcement learning







#### n-Armed Bandit Problem – A stationary problem

► Exploration Vs Exploitation

Agent's goal is to maximize the reward it receives in the long run.

How might this be formally defined?

$$Q_t(a) = \frac{R_1 + R_2 + \cdots + R_{K_a}}{K_a}$$



Average performance of  $\varepsilon$ -greedy action-value methods on the 10-armed testbed





#### n-Armed Bandit Problem – A stationary problem

- ► Exploration Vs Exploitation
  - Exploring restaurants

$$Q_t(a) = rac{R_1 + R_2 + \cdots + R_{K_a}}{K_a}$$





Average performance of  $\varepsilon$ -greedy action-value methods on the 10-armed testbed





#### **Reinforcement Learning Tasks**

- ► Episodic tasks
  - ▶ Mario

- ► Continuous tasks
  - ▶ pubg

$$G_t = R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_{T_t}$$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$



#### **The Markov Property**

- A stochastic process has the **Markov property** if the conditional probability distribution of **future** states of the process (conditional on both past and present states) **depends** only upon the **present** state, not on the sequence of events that preceded it.
- ► TLDR: Future can be predicted by just the present state. History is irrelevant.

$$\mathbf{Pr}\{R_{t+1} = r, S_{t+1} = s' \mid S_t, A_t\}$$



#### **Recycling Robot MDP**

- Actively search for a can
- 2. Remain stationary and wait for someone to bring it a can
- 3. Go back to home base to recharge its battery.

| s    | s'   | a        | p(s' s,a)  | r(s, a, s')           |
|------|------|----------|------------|-----------------------|
| high | high | search   | $\alpha$   | $r_{\mathtt{search}}$ |
| high | low  | search   | $1-\alpha$ | $r_{\mathtt{search}}$ |
| low  | high | search   | $1-\beta$  | -3                    |
| low  | low  | search   | $\beta$    | $r_{\mathtt{search}}$ |
| high | high | wait     | 1          | $r_{\mathtt{wait}}$   |
| high | low  | wait     | 0          | $r_{\mathtt{wait}}$   |
| low  | high | wait     | 0          | $r_{\mathtt{wait}}$   |
| low  | low  | wait     | 1          | $r_{\mathtt{wait}}$   |
| low  | high | recharge | 1          | 0                     |
| low  | low  | recharge | 0          | 0.                    |



#### **Recycling Robot MDP**



Transition graph for the recycling robot example





#### **Value functions**

- ► Value function = state—action pairs
  - Predict how good it is for the agent to perform a given action in a given state
  - Goodness is defined in terms of future reward that can be expected

$$v_\pi(s) = \mathbb{E}_\pi[G_t \mid S_t\!=\!s] = \mathbb{E}_\piigg[\sum_{k=0}^\infty \gamma^k R_{t+k+1} \mid S_t\!=\!sigg]$$
 Reward of B.Tech

Choosing career

State-value function for policy  $\pi$ 

What to do after B.Tech? 
$$q_\pi(s,a)=\mathbb{E}_\pi[G_t\mid S_t\!=\!s,A_t=a]=\mathbb{E}_\pi\!\left[\sum_{k=0}^\infty \gamma^k R_{t+k+1}\mid S_t\!=\!s,A_t\!=\!a\right]$$

State-action function for policy  $\pi$ 





#### **Policy?**

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a\right]$$

#### Action

$$Q = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 0 & 80 & 0 \\ 1 & 0 & 0 & 0 & 64 & 0 & 100 \\ 0 & 0 & 0 & 64 & 0 & 0 \\ 3 & 0 & 80 & 51 & 0 & 80 & 0 \\ 4 & 64 & 0 & 0 & 64 & 0 & 100 \\ 5 & 0 & 80 & 0 & 0 & 80 & 100 \end{bmatrix}$$



## **Reinforcement Learning – Q Learning**





#### **Reinforcement Learning – Q Learning**

Q(state, action) = R(state, action) + Gamma \* Max[Q(next state, all actions)]



Q(state, action) = R(state, action) + Gamma \* Max[Q(next state, all actions)]

http://mnemstudio.org/path-finding-q-learning-tutorial.htm



#### **Reinforcement Learning – Q Learning**



Q(state, action) = R(state, action) + Gamma \* Max[Q(next state, all actions)]

http://mnemstudio.org/path-finding-q-learning-tutorial.htm





## **Reinforcement Learning**

- Applications
  - ▶ Finance
  - ► Game Theory and Multi-Agent Interaction
  - ▶ Robotics
  - ▶ Vehicular Navigation





#### Free Kicks in FIFA 2018 - Reinforcement Learning







#### What make Reinforcement Learning special?





# Q/A Session

