Homework # 2

Modern Coding Theory Due: April 13, 2022

1. Consider the [15,11] binary Hamming code ${\cal C}$ with parity-check matrix given by

- (a) Find the WEF of the code C.
- (b) Find the IOWEF of the code C.
- (c) Find the IRWEF of the code C.
- (d) Find the conditional IRWEF of the code C.
- 2. Consider the [8,4] binary systematic code $\mathcal C$ with parity-check matrix given by

$$H = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

- (a) Find the generator matrix G of the code C.
- (b) Find the weight enumerating function (WEF) A(X) of the code C.
- (c) Using A(X) in (b), estimate an upper bound on the word error probability P_W over the AWGN channel.
- (d) Find the input-output weight enumerating function (IOWEF) $A^{IO}(W,X)$ of the code \mathcal{C} .
- (e) Compute the error coefficient B_i for i = 1, ..., 8.
- (f) Using the results in (e), estimate an upper bound on the bit error probability P_b over the AWGN channel.
- (g) For all $w \geq 0$, find the conditional IOWEF $A_w^{IO}(X)$ of the code $\mathcal C$
- (h) Find the input-redundancy weight enumerating function (IRWEF) $A^{IR}(W,Z)$ of the code \mathcal{C} .

- (i) For all $w \geq 0$, find the conditional IRWEF $A_w^{IR}(Z)$ of the code $\mathcal{C}.$
- (j) Find the minimum-distance asymptote of the code \mathcal{C} , when E_b/N_0 goes to infinity
- 3. Prove that the BER of the Turbo code is bounded as

$$P_b \le \sum_{w=1}^{N} \frac{w}{2N} W^w A_w^{IR}(Z) \bigg|_{W=Z=e^{-R\frac{E_b}{N_0}}}$$

where N is the interleaver size.