Workshop 2: Linear Regression using Gradient Descent.

In this practical, we address the problem of Linear Regression using Gradient Descent. Model answers are provided in the weekly lectures.

Task 1

We will minimize a toy example function:

$$f(x) = X^2$$

which has the following gradient:

$$\nabla = \frac{\partial}{\partial x} f(x) = 2x$$

Run a gradient descent algorithm for four iterations, starting with an arbitrary point: x=-2 and a step size of 0.1 [5 marks]

Example iteration 1:

 $X (next step) = X - \eta^* \nabla (f(X))$

Starting point is: X= -2

$$X (next step) = (-2) - 0.1*(2X)$$

$$X (next step) = (-2) - 0.1 (-4)$$

$$X (next step) = -2 + (0.1)4$$

$$X (next step) = -2 + 0.4$$

$$X (next step) = -1.6$$

Iteration 2:

 $X (next step) = X - \eta^* (\nabla) f(X)$

$$X = X - (\eta)(2X)$$

$$X = -1.6 - (0.1)(2(-1.6))$$

$$X = -1.6 + 0.32$$

$$X = -1.28$$

$$X (next step) = X - \eta^* (\nabla) f(X)$$

$$X = X - (\eta)(2X)$$

$$X = -1.28 - (0.1)(2(-1.28))$$

$$X = -1.28 + 0.256$$

$$X = -1.024$$

Iteration 4:

$$X \text{ (next step)} = X - \eta^* (\nabla)f(X)$$

$$X = X - (\eta)(2X)$$

$$X = -1.024 - (0.1)(2(-1.024))$$

$$X = -1.024 + 0.2048$$

$$X = -0.8192$$

Task 2: Develop, train, and test a Linear Regression Model with Boston housing dataset using Gradient Descent. Goal is to predict the houses price in Boston.

- 2.1. Please run the jupyter notebook provided on Canvas to plot the predictions after 100, 1000, 10000, and 40000 iterations, and explain the results. [2 marks]
 - a. After 100 iterations:

b. After 1000 iterations:

c. After 10000 iterations:

d. After 40000 iterations:

From the plot, it can be seen that the predicted prices improve after each iteration. The first 100 iterations behaved very badly and follows no visible trend as the true price. After 40000 iterations, the model behaves way better and follows the true price trend very closely.

2.2. After 40000 iterations, compare the results with WS1-task 1 and explain the difference in your own words [2 marks]

After 4000 iterations the difference looks something like is:

The current workshop model fares better at predicting the price .

2.3 After 40000 iterations, print network weights and identify the inputs with the highest weight. Compare with the results of WS1-task 2.2 [1 mark]

Use the table below to compare the weights.

Input		Weights Wk 1	Theta_Best (10000 its.) Wk 2
CRIM	Per capita crime rate by town	-0.088559	-1.273796
ZN	Proportion of residential land zoned for lots over 25000 sq.ft	0.035083	6.467136
INDUS	Proportion of non-retail business acres per town	0.013968	-1.469107
CHAS	Charles River dummy variable	1.672166	0.060507
NOX	Nitric oxides concentration (parts per 10 million)	-5.153234	0.004018
RM	Average number of rooms per dwelling	6.849525	0.929855
AGE	Proportion of owner-occupied units built prior to 1940	-0.015810	-2.024326
DIS	Weighted distances to five Boston employment centres	-1.016778	0.202150
RAD	Index of accessibility to radial highways	0.266278	-0.150592

TAX	Full-value property-tax rate per	-0.013787	-2.786779
	\$10000		
PTRATIO	Pupil-teacher ratio by town	-0.591467	-0.213424
В	1000(Bk-0.63)^2 where Bk is the proportion of blacks by town	0.014715	19.184033
LSTAT	% lower status of the population	-0.332065	-4.213052

Note:

Input with highest weight week2: B Input with highest weight week 1: RM