INGENIERÍA DE SOFTWARE

CRIPTOGRAFÍA

Guía de Estudio Examen Parcial 1

- 1.- ¿Qué es la criptografía?
- 2.- Explique los motivos por los cuales la criptografía se considera una ciencia importante hoy en día
- 3.- ¿De qué manera están involucradas la Teoría de la Información y la Teoría de Números en la criptografía?
- 4.- ¿Cuál es la diferencia entre la criptografía y el criptoanálisis?
- 5.- ¿Qué es un criptosistema?
- 6.- Explique de manera general la forma de funciomaniento de un criptosistema de clave privada
- 7.- Explique de manera general la forma de funcionamiento de un criptosistema de clave pública
- 8.- Explique de qué manera se mezclan los criptosistemas de clave privada y los de clave pública para lograr un sistema eficiente en la práctica.
- 9.- Explique el concepto de "esteganografía"
- 10.- ¿Por qué es importante tomar en cuenta la vida útil de la información que se pretende proteger al momento de elegir el criptosistema que se utilizará?.
- 11.- Explique de manera general el concepto de "firma digital"
- 12.- ¿Cuál es el principio básico de la criptografía?
- 13.- ¿Cuál se considera el primer caso claro del uso de métodos criptográficos?
- 14.- ¿A qué se refiere el término "cifrado de sustitución"?
- 15.- ¿A qué se refiere el término "cifrado polialfabético"?
- 16.- ¿Cuál es la diferencia entre los ataques pasivos y los ataques activos a la información?
- 17.- ¿Cuáles de los siguientes conceptos son ofrecidos por los sistemas de cifrado vistos hasta ahora? En cada concepto justifique por qué si o por qué no.
 - Confidencialidad
 - Integridad de los datos
 - Autenticación del origen de los datos
- 18.- Si se desea cifrar información valiosa para determinada empresa, ¿Usted utilizaría algún algoritmo clásico ya conocido o uno novedoso desarrollado específicamente para ese caso? ¿Por qué?
- 19.- ¿Qué es la Teoría de la Información?

23.- Explique si el cifrado cesar implementa "confusión" y/o "difusión" y por qué? 24.- Explique el concepto de "Avalancha" en criptografía 25.- ¿Qué es el peso de Hamming? 26.- ¿Qué es la distancia de Hamming? 27.- ¿A qué se refiere el Kerckhoff's principle/Shannon's maxim? 28.- ¿Qué es un conjunto reducido de residuos módulo n? 29.- ¿Cuándo se dice que dos números son coprimos? 30.- Escriba 5 ejemplos de pares de números coprimos 31.- Calcular los siguientes conjuntos: Z۶ Z_{10} Z₁₅ Z_{18} **Z**₁₉ 32.- Aplicar el algoritmo extendido de Euclides para encontrar las siguientes inversas: Inversa de 25 módulo 16 Inversa de 254 módulo 15 • Inversa de 29 módulo 32 Inversa de 127 módulo 56 Inversa de 415 módulo 72 33.- Verificar si se cumplen o no las siguientes congruencias: $25 \equiv 7 \mod 4$ $18 \equiv 27 \mod 3$ • $23 \equiv 51 \mod 7$ $72 \equiv 30 \mod 4$ $66 \equiv 21 \mod 6$ 34.- Resolver los siguientes sistemas de congruencias utilizando el teorema chino del residuo Sistema 1: \circ X = 1 mod 2 \circ X = 5 mod 7 \circ X = 1 mod 3

20.- Explique el concepto de "entropía de la información" dentro de esta área.

21.- Explique el concepto de "confusión" en criptografía

22.- Explique el concepto de "difusión" en criptografía

Sistema 2:
X ≡ 2 mod 5
X ≡ 4 mod 7
$\circ X \equiv 5 \mod 9$
Sistema 3:
$\circ X \equiv 2 \mod 3$
$\circ X \equiv 3 \bmod 4$
• Sistema 4:
$\circ X \equiv 6 \mod 7$
$\circ X \equiv 2 \mod 6$
X ≡ 1 mod 5
• Sistema 5:
○ X ≡ 8 mod 13
 X ≡ 3 mod 11 X = 5 mod 8
35 ¿Por qué es importante la exponenciación modular en criptografía?
36 ¿Por qué el método de exponenciación binaria es más eficiente que el método tradicional?
37 ¿Por qué es importante el concepto de números primos en criptografía?
38 ¿Por qué es importante el concepto de factorización en criptografía?
39 Aplicar el algoritmo de factorización de Fermat para factorizar los siguientes números:
• 416
• 724
• 2564
• 10865
• 119360
40 ¿Qué es una prueba de primalidad?
41 ¿Cuál es el método más sencillo (pero ineficiente) para comprobar si un número es primo o no?
42 Aplicar el método "raíz de n" para encontrar si los siguientes números son primos o no:
• 26
• 79
• 117
• 228
• 317
43 ¿Cuál es la idea general de la prueba de primalidad de Fermat?
44 ¿Cuál es la idea general de la prueba primalidad de Wilson?