能量枢纽作业

题目1:

考虑如图的冷热电三联产能量枢纽,元件和支路编号已在图上给出。背压运行的 CHP 气转电效率 $\eta_1=0.3$, 气转热效率 $\eta_2=0.4$, CERG 电转冷效率 $\eta_3=3$, WARG 热转冷效率 $\eta_4=0.8$ 。

- 1) 分别给出 CHP, CERG, WARG 的能量转换特性矩阵 H_1 , H_2 , H_3 ; 端口-支路关联矩阵 A_1 , A_2 , A_3 ; 节点能量转换特性矩阵 Z_1 , Z_2 , Z_3 。
- 2) 给出能量枢纽的输入节点端口-支路关联矩阵 X, 输出节点端口-支路关联矩阵 Y。(输入、输出元素均按照 电、气、冷、热 的顺 序排列)
- 3) 给出 V_{in} 和 V_{out} 满足的表达式(输入、输出元素均按照 电、气、冷、热 的顺序排列),分析该能量枢纽的自由度。

题目 2:

考虑下列区域综合能源系统(CHP 仅考虑背压式运行)。采用能量枢纽模型,对元件、支路进行编号并编写代码,计算对应的 A、H、X、Y、Z矩阵。

题目 3:

基于题目 2 建立的能量枢纽, 给定一天 24 个小时的电热冷负荷曲线,假设电力需求侧自建分布式光伏,输出功率曲线已知,同时已知购电与购气成本,试通过优化计算分析系统在一天内的最优运行情况,要求计算内容包括:

- 1) 系统在一天内的最优运行成本(直接填写);
- 2) 系统24小时电输入和气输入数据与曲线(表格与图片)。

注:以上两问结果请<u>直接体现</u>在作业报告之中,不要仅仅在程序之中体现。

所需数据如下所示:

电热冷日负荷数据				
时段	电负荷(MW)	热负荷	冷负荷	光伏出力
	电贝彻(MW) 	(MW)	(MW)	(MW)

多能源系统建模与分析 第2次作业

0	318.8516	0.00	0.00	0.00
1	332.6351	0.00	0.00	0.00
2	316.9691	0.00	0.00	0.00
3	322.8072	0.00	0.00	0.00
4	305.4065	0.00	0.00	0.00
5	315.7278	0.00	0.00	3.48
6	305.1108	0.00	0.00	16.40
7	310.4598	1.47	28.43	33.95
8	325.9509	109.25	54.40	56.68
9	323.6447	79.92	82.90	78.05
10	321.3868	55.66	110.06	85.30
11	319.7204	64.83	113.39	89.11
12	317.2207	62.64	111.79	80.23
13	306.3876	60.75	114.04	80.23
14	337.2988	49.48	117.54	69.13
15	354.3739	48.20	129.12	58.18
16	332.9536	55.61	127.62	35.95
17	334.074	41.23	114.34	16.40
18	302.6254	14.81	82.20	3.50
19	306.9791	0.00	52.37	0.00
20	318.1435	0.00	38.88	0.00
21	306.6222	0.00	31.47	0.00
22	307.9189	0.00	16.51	0.00
23	320.0218	0.00	0.00	0.00

峰谷电价(元/kWh)与气价				
时段	电价	气价		
0	0.2989	0.318		
1	0.2989	0.318		
2	0.2989	0.318		
3	0.2989	0.318		
4	0.2989	0.318		
5	0.2989	0.318		
6	0.2989	0.318		
7	0.2989	0.318		
8	0.2989	0.318		
9	0.9947	0.318		
10	0.9947	0.318		
11	0.9947	0.318		
12	0.9947	0.318		
13	0.5968	0.318		
14	0.5968	0.318		

多能源系统建模与分析 第2次作业

15	0.5968	0.318
16	0.5968	0.318
17	0.5968	0.318
18	0.9947	0.318
19	0.9947	0.318
20	0.9947	0.318
21	0.9947	0.318
22	0.5968	0.318
23	0.5968	0.318

各能量转换元件的容量数值如下。转换效率中的气、热、电单位 均以功率单位 MW 计量:

	In_Max	Out_Max
热电联产机组	200MW	电: 60MW, 热: 80MW
压缩式制冷机	50MW	150MW
燃气锅炉	100MW	95MW
吸收式制冷机	100MW	80MW

截止时间: 2024年11月6日 星期三 23:59, 即第九周上课当天。

作业提交要求:

作业包含报告与代码两部分,其中报告为.pdf 格式,代码推荐为 mat lab 代码 (不强制要求)。请以压缩文件格式.zip 提交至网络学堂,文件命名为【学号_姓名】,如:2024210xx1_李xx。