

Deep Learning

Session 3

The Perceptron

Applied Data Science 2024/2025

Perceptron

Perceptron

• First binary classifier based on supervised learning;

Foundation of modern artificial neural networks;

Perceptron (Frank Rosenblatt, 1958)

Representation of the Perceptron

• Parameters of the perceptron:

Activation function

■ w_k: weights

■ b: bias

Training → adjusting the weights and bias.

Alternative Representation of the Perceptron

Perceptron Examples

$$z = \frac{1, if \ w \cdot x > \theta}{0, \ w \cdot x <= \theta}$$

Perceptron Learning Rule

• Suppose that x is a feature vector, y is the correct class label, and y' is the predicted class label computed using the current weights.

• The purpose of activation functions is to introduce non-linearities

into the network.

• The purpose of activation functions is to **introduce non-linearities** into the network.

What if we wanted to build a neural network to distinguish green vs red points?

• The purpose of activation functions is to **introduce non-linearities** into the network.

Linear activations produce linear decisions no matter the network size.

• The purpose of activation functions is to **introduce non-linearities** into the network.

Linear activations produce linear decisions no matter the network size.

Non-linearities allow us to approximate arbitrarly complex functions.

Perceptron Limitation: XOR Problem

- XOR = "Exclusive Or"
 - Input: two binary values x₁ and x₂
 - Output:
 - 1, when exactly one input equals 1
 - 0, otherwise

X ₁	X ₂	x ₁ XOR x ₂
0	0	?
0	1	?
1	0	?
1	1	?

Perceptron Limitation: XOR Problem

 Cannot solve XOR problem and so separate 1s from 0s with a perceptron (linear function):

X ₁	X ₂	x ₁ XOR x ₂
0	0	0
0	1	1
1	0	1
1	1	0

AKA Artificial Neural Networks

each "hidden layer" uses outputs of units (i.e., neurons) and provides them as inputs to other units (i.e., neurons)

How does this relate to a perceptron?

 Unit: takes as input a weighted sum and applies an activation function

How does this relate to a perceptron?

 Unit: takes as input a weighted sum and applies an activation function

How does this relate to a perceptron?

 Unit: takes as input a weighted sum and applies an activation function

- Inter-connection of several artificial neurons (also called nodes or units);
- Each "level" in the graph is called a lauer:
 - Input layer;
 - Hidden layer(s);
 - Output layer.
- Each neuron in the hidden layers acts as a classifier / feature detector;
- Fedforward neural network (no cycles):
 - First na simplest type of neural network;
 - Information moves in one direction.

$$h_1 = g_1 \left(w_{11}^1 x_1 + w_{12}^1 x_2 + w_{13}^1 x_3 + b_1^1 \right)$$

$$h_2 = g_1 \left(w_{21}^1 x_1 + w_{22}^1 x_2 + w_{23}^1 x_3 + b_2^1 \right)$$

$$h_3 = g_1 \left(w_{31}^1 x_1 + w_{32}^1 x_2 + w_{33}^1 x_3 + b_3^1 \right)$$

$$h_4 = g_1 \left(w_{41}^1 x_1 + w_{42}^1 x_2 + w_{43}^1 x_3 + b_4^1 \right)$$

$$y_1 = g_2 \left(w_{11}^2 h_1 + w_{12}^2 h_2 + w_{13}^2 h_3 + w_{14}^2 h_4 + b_1^2 \right)$$

$$y_2 = g_2 \left(w_{21}^2 h_1 + w_{22}^2 h_2 + w_{23}^2 h_3 + w_{24}^2 h_4 + b_2^2 \right)$$

- w^kij weight between previous node j and next node i at layer k;
- gk is any activation function applied to each its input vector

$$h_{1} = g_{1} \left(w_{11}^{1} x_{1} + w_{12}^{1} x_{2} + w_{13}^{1} x_{3} + b_{1}^{1} \right)$$

$$h_{2} = g_{1} \left(w_{21}^{1} x_{1} + w_{22}^{1} x_{2} + w_{23}^{1} x_{3} + b_{2}^{1} \right)$$

$$h_{3} = g_{1} \left(w_{31}^{1} x_{1} + w_{32}^{1} x_{2} + w_{33}^{1} x_{3} + b_{3}^{1} \right)$$

$$h_{4} = g_{1} \left(w_{41}^{1} x_{1} + w_{42}^{1} x_{2} + w_{43}^{1} x_{3} + b_{4}^{1} \right)$$

$$h = g_{1} \left(\mathbf{W}_{1} \mathbf{x} + \mathbf{b}_{1} \right)$$

$$\mathbf{y}_{1} = g_{2} \left(w_{11}^{2} h_{1} + w_{12}^{2} h_{2} + w_{13}^{2} h_{3} + w_{14}^{2} h_{4} + b_{1}^{2} \right)$$

$$\mathbf{y}_{2} = g_{2} \left(w_{21}^{2} h_{1} + w_{22}^{2} h_{2} + w_{23}^{2} h_{3} + w_{24}^{2} h_{4} + b_{2}^{2} \right)$$

$$\mathbf{y}_{3} = g_{2} \left(\mathbf{W}_{2} \mathbf{h} + \mathbf{b}_{2} \right)$$

• The matrices W_k and biases b_k are learned from labeled training data.

- It can have 1 hidden layer only (shallow network);
- It can have more than 1 hidden layer (deep network);
- Each layer can have a different size, and hidden and output layers often have different activation functions.

Non-linear function: separate 1s from 0s

X ₁	X ₂	x ₁ XOR x ₂
0	0	0
0	1	1
1	0	1
1	1	0

Non-linear function: separate 1s from 0s

Approach: use the ReLU activation function

y=0

X ₁	X ₂	x ₁ XOR x ₂
0	0	0
0	1	1
1	0	1
1	1	0

Non-linear function: separate 1s from 0s

Approach: use the ReLU activation function

y=0

X ₁	X ₂	x ₁ XOR x ₂
0	0	0
0	1	1
1	0	1
1	1	0

Non-linear function: separate 1s from 0s

Approach: use the ReLU activation function

y=0

X ₁	X ₂	x ₁ XOR x ₂
0	0	0
0	1	1
1	0	1
1	1	0

• Non-linear function: separate 1s from 0s

Neural networks can solve the XOR problem!

And so model non-linear functions!

X ₁	X ₂	x ₁ XOR x ₂
0	0	0
0	1	1
1	0	1
1	1	0

Bias = 0	Bias = 0
$\frac{1}{1}$	
$1 \sim$	$\begin{pmatrix} 1 \end{pmatrix}$
$\begin{pmatrix} 0 \end{pmatrix}_{1} \begin{pmatrix} 0 \end{pmatrix}$	-2
Bias = -1	

Desired output driven by task

Linear (No Activation Function)

Desired output driven by task

Sigmoid for Binary Classification

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

If >= 0.5, output 1;

Else, outputs 0

Softmax for Multiclass Classification

Converts vector of scores into a probability distribution that sums to 1; e.g.,

Softmax for Multiclass Classification

Converts vector of scores into a probability distribution that sums to 1; e.g.,

Softmax for Multiclass Classification

Converts vector of scores into a probability distribution that sums to 1

Softmax for Multiclass Classification

Converts vector of scores into a probability distribution that sums to 1; e.g.,

Softmax for Multiclass Classification

Converts vector of scores into a probability distribution that sums to 1; e.g.,

	Scoring Function
Dog	-3.44
Cat	1.16
Boat	-0.81
Airplane	3.91

Softmax for Multiclass Classification

Converts vector of scores into a probability distribution that sums to 1; e.g.,

ozi

Softmax for Multiclass Classification

Converts vector of scores into a probability distribution that sums to 1; e.g.,

		e^{z_i}	$rac{E^{K}}{\sum_{j=1}^{K}e^{z_{j}}}$
	Scoring Function	Unnormalized Probabilities	Normalized Probabilities
Dog	-3.44	0.0321	0.0006
Cat	1.16	3.1899	0.0596
Boat	-0.81	0.4449	0.0083
Airplane	3.91	49.8990	0.9315

Softmax for Multiclass Classification

Converts vector of scores into a probability distribution that sums to 1; e.g.,

Softmax for Multiclass Classification

Converts vector of scores into a probability distribution that sums to 1; e.g.,

	Scoring Function	Unnormalized Probabilities	Normalized Probabilities
Dog	-3.44	0.0321	0.0006
Cat	1.16	3.1899	0.0596
Boat	-0.81	0.4449	0.0083
Airplane	3.91	49.8990	0.9315

Example Problem

Will I pass this class?

Let's start with a simple two feature model

 x_1 = Numbers of lectures you attend

 x_2 = Hours spent on the final project

Quantifying Loss

The loss of our network measures the cost incurred from incorrect predictions

Empirical Loss

The empirical loss measures the total loss over our entire dataset

Also known as: Objective function

- Cost function
- Empirical Risk

Predicted

Actual

Session 3 The Perceptron

Binary Cross Entropy Loss

Cross entropy loss can be used with models that output a probability between 0 and 1

$$J(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} y^{(i)} \log \left(f(\mathbf{x}^{(i)}; \mathbf{W}) \right) + (1 - y^{(i)}) \log \left(1 - f(\mathbf{x}^{(i)}; \mathbf{W}) \right)$$
Actual Predicted Actual Predicted

Mean Squared Error Loss

Mean squared error loss can be used with regression models that output continuous real numbers

The Perceptron from Scratch

• Let's implement the perceptron architecture from scratch using only numpy.

• Use the *perceptron.py* script as a starting point.