# TUGAS BESAR 2 **IF3170 - Inteligensi Buatan**

# Deteksi Bentuk Geometri Berdasarkan *Knowledge Based System*



## Oleh:

| Pandyaka Aptanagi      | / 13517003 |
|------------------------|------------|
| I Putu Gede Wirasuta   | / 13517015 |
| M. Rifky I. Bariansyah | / 13517081 |
| Gardahadi              | / 13517144 |

#### BAB I

# Tahapan dalam Pembangunan Aplikasi

Aplikasi yang kami bangun terdiri atas *image processing application, rule-based system,* dan *graphical user interface* 

## 1.1 Tahapan Pembangunan Image Processing Application

Aplikasi menerima informasi mengenai gambar melalui *Image Processing Application*. Aplikasi ini dibangun menggunakan library image processing OpenCV. Berikut tahapan pembangunannya:

- Aplikasi menerima image menggunakan cv2.imread()
- 2. Aplikasi melakukan deteksi sisi menggunakan cv2.Canny() yang disimpan pada variabel edge
- 3. Dengan variabel edge ini kemudian akan dipanggil cv2.HoughLinesP()untuk mendapatkan semua garis probabilistik dari gambar
- 4. Dengan menggunakan metode tersebut akan dihasilkan garis probabilistik luar dan dalam untuk sebuah garis pada gambar. Maka dari itu aplikasi akan mem-filter kedua garis tersebut menjadi satu garis dengan fungsi bantuan similiarLine() dengan parameter threshold klasifikasi garis yang dianggap sama
- 5. Aplikasi menggunakan fungsi bantuan countGradient() untuk menghitung gradien
- 6. Aplikasi menggunakan fungsi bantuan adjacentLine() untuk mengembalikan semua garis yang bertemu pada sebuah titik
- 7. Aplikasi kemudian mengembalikan <u>garis</u>, <u>gradien</u>, dan <u>garis</u> <u>garis</u> yang bertemu berdasarkan masukan gambar.

Informasi ini kemudian akan menjadi masukan bagi *rule-based system*.

## 1.2 Tahapan Pembangunan Rule-Based System

Rule-based sistem pada aplikasi ini dibangun menggunakan wrapper **clipspy**. Untuk membangun rule-based system, diperlukan komponen *rules* dan fakta.

Fakta diimplemnetasikan dengan menggunakan (assert <fact>+) yang berfungsi untuk menambahkan fakta kedalam *facts-list. Rules* diimplementasikan dengan menggunakan defrule memiliki struktur seperti dibawah ini:

defrule digunakan untuk menyimpan pola sifat suatu bangunan. Misalnya pada implementasi check\_triangle ,rule yang menentukan apakah masukan merupakan segitiga atau bukan,

```
(defrule check_triangle
        (adjacent 3)
        =>
        (assert (triangle))
);
```

Melakukan pengecekan apabila terdapat fakta (adjacent 3) yang artinya terdapat tiga sisi yang saling berhubungan. Bila ya, maka akan ditambahkan fakta dengan (assert(triangle)) ke facts-list.

## 1.2 Tahapan Pembangunan Graphical User Interface

Aplikasi ini dikembangkan dengan menggunakan bahasa pemrograman *python 3* dengan memanfaatkan *library tkinter* dan *PIL*.

- 1. Aplikasi terdiri dari beberapa *frame* yang disediakan oleh *tkinter*. Frame-frame tersebut berguna sebagai *container* dari komponen-komponen yang ada di *graphical user interface* ini.
- 2. Untuk *frame* pada bagian *source image, detection image, detection result, matched facts,* dan *hit rules* akan diisi dengan komponen *canvas*. Komponen ini dapat memunculkan gambar atau teks sesuai kebutuhan.
- 3. Untuk *frame* pada bagian *menu button*, terdiri dari beberapa komponen *button* atau tombol, yang ketika dipilih akan men-*trigger function* sesuai dengan fungsi dari tombol-tombol tersebut. Komponen ini dibuat dengan menggunakan *button*.
- 4. Untuk *frame* pada bagian *menu shapes*, terdiri dari komponen *treeview*. Komponen ini akan membentuk sebuah 'pohon' dari pilihan-pilihan yang ada. Jika salah satu menu di-klik, akan memunculkan bentuk *shape* pada frame *detection image*.
- GUI akan menerima masukan image dari pengguna, kemudian mengirimkan image tersebut untuk dilakukan ke tahap selanjutnya (image processing dan detection)

# BAB II Dokumentasi dan *Repository* Aplikasi

## 2.1 Dokumentasi Aplikasi

Aplikasi ini dikembangkan dengan menggunakan bahasa pemrograman *python 3* dengan memanfaatkan beberapa *library* utama yaitu *tkinter* untuk pengembangan *graphical user interface (GUI)*, *PIL* untuk merekayasa gambar, *opencv* untuk mencari *fact*s dan *rule* dari sebuah gambar, dan *clipspy*.

File utama dari aplikasi ini adalah file **main.py** yang akan menampilkan *graphical user interface* dari aplikasi ini. Pada *GUI* terdapat beberapa pilihan bentuk geometri yang ingin dideteksi pada sebuah gambar. Hasil dari deteksi bentuk akan ditampilkan hasilnya pada kotak *detection result, matched facts,* dan *hit rules*.





# 2.2 Repository Aplikasi

Source code aplikasi ini tersimpan pada repository **GitHub** yang ada pada:

https://github.com/pandyakaa/KBS-shape-detection

# BAB III User Manual

1. Lakukan *clone* terhadap *repository* aplikasi

```
git clone https://github.com/pandyakaa/KBS-shape-detection
```

2. Install requirements yang dibutuhkan untuk menjalankan aplikasi

```
pip install requirements.txt
```

3. Jalankan file **main.py** untuk menggunakan aplikasi

- 4. Akan muncul tampilan *graphical user interface* dari aplikasi
  - a. Untuk memasukkan gambar yang ingin dideteksi, pilih tombol *Open Image*
  - b. Untuk memasukkan *shape* sebagai pendeteksi, pilih melalui kotak menu *Shapes*
  - c. Untuk memunculkan Rule Editor, pilih tombol Open Rule Editor
  - d. Untuk memunculkan daftar rules, pilih tombol Show Rules
  - e. Untuk memunculkan daftar facts, pilih tombol Show Facts
- 5. Setelah memilih gambar yang ingin dideteksi dan *shape* pendeteksi, maka aplikasi akan secara otomatis memunculkan hasil dari deteksi

## **BAB IV**

# Proses Updating dan Inferencing pada Fakta yang Terlibat

Inference Engine mengontrol jalannya eksekusi secara keseluruhan. Inference Engine mencocokkan semua fakta dengan rules yang ada menggunakan cara kerja **recognize-act cycle**, yaitu

- 1. Cocokan facts dengan rules yang ada
- 2. Pilih instansiasi rules yang akan dijalankan
- 3. Eksekusi aksi yang terkait dengan rule terpilih
  - a. Updating dan inferencing pada kelompok segi tiga tak beraturan



#### b. Updating dan inferencing pada kelompok segi empat tak beraturan



#### c. Updating dan inferencing pada kelompok segi lima tak beraturan



### d. Updating dan inferencing pada kelompok segi enam tak beraturan

