

РЕИНЖИНИРИНГ ЦИФРОВЫХ УСТРОЙСТВ И ВСТРАИВАНИЕ СРЕДСТВ ТЕСТИРОВАНИЯ НА БАЗЕ МНОГОУРОВНЕВЫХ МОДЕЛЕЙ

Специальность 05.13.05

"Элементы и устройства вычислительной техники и систем управления"

Аспирант каф. КСПТ Ненашев О.В.

Научный руководитель Филиппов А.С.

Задача реинжиниринга

Реинжиниринг - это систематическая трансформация существующей системы с целью улучшения ее характеристик*

Реинжиниринг – часть процесса проектирования устройств и СнК

*Ахтырченко К.В., Сорокваша Т.П., 2003

Процесс реинжиниринга систем

Примеры задач реинжиниринга СнК

- 1. Изменение функциональных характеристик
 - Повышение надёжности и отказоустойчивости
 - Встраивание средств внутрисхемного тестирования
 - Встраивание периферийных блоков
 - Оптимизация по системным ресурсам
- 2. Перенос устройства между платформами
 - Перенос между HDL: VHDL -> Verilog
 - Реализация на ПЛИС -> Заказная СБИС
- 3. Рефакторинг исходных описаний и кодов

Встраивание средств тестирования

- Требуется модификация архитектуры устройства и СнК
 => повышение тестопригодности
- Необходимо учитывать другие требования:
 - по системным ресурсам (площадь кристалла, N_{вентилей})
 - по временным характеристикам

Требуются новые инструментальные средства

Требуются алгоритмы и методы реинжиниринга

Требуются модели представления устройств

Характеристика исследований в

предметной области

Существуют примеры решения частных задач:

- Остаются непокрытые области применения
- Нет единого инструментария для решения задач
- Недостаточная научная база

Актуальна задача разработки новых моделей и методов для обобщённого случая реинжиниринга

- Единые средства для решения существующих частных задач
- Расширенные возможности тестирования

Подходы к представлению устройств

Использование структурных моделей (нетлисты)

- Максимальное упрощение структуры модели
- Ориентация на задачи оптимизации
- Пример Группы из MIT и Upenn

Использование высокоуровневых описаний

- Использование высокоуровневых HDL (UML, SystemC)
- Ориентация на верификацию и анализ
- Пример работы группы СМИ

Жёсткая привязка к исходному HDL

- Использование синтаксических и семантических деревьев
- Основное применение рефакторинг HDL
- Пример модели в инструментариях DMS SRT, MARTE, ...

Недостатки существующих подходов

Использование структурных моделей (нетлисты)

- Потеря информации об архитектуре
- Используется только один тип описаний => недостаток информации для анализа устройств

Использование высокоуровневых описаний

- Затруднена программная обработка
- Для задач анализа и оптимизации устройств необходима информация о результатах синтеза

Жёсткая привязка к исходному HDL

- Отдаление от аппаратной специфики
- Затруднено использование нескольких HDL => ограничена область применения

- Подходы оперируют частными свойствами системы
- Подходы мало применимы для задач реинжиниринга

Предлагаемый подход

- Одновременная обработка описаний на нескольких уровнях
- Экспорт описания на требуемом уровне описания

Цель исследования

Разработка новых моделей, методов анализа, трансформации и контроля элементов и устройств вычислительной техники

- ... с использованием многоуровневых моделей устройств
- ... для применения в маршрутах проектирования СнК
- ... и улучшения технико-экономических и эксплуатационных характеристик устройств
- … при решении задач реинжиниринга и внутрисхемного тестирования устройств

Постановка задач исследования

Анализ предметной области Анализ задач реинж-га устройств

Формирование критериев оценки

Анализ > существующих подходов

Разработка гибридной модели устройств

Постановка требований Разработка и обоснование гибридной модели

Обеспечение совместимости с существующими HDL

Разработка общих методов работы с моделью

Язык задания алгоритмов реинж-га Ввод-вывод описаний из HDL

Специализация модели

Разработка методов встраивания средств тестирования Встраивание средств тестирования устройства

Совместная верификация модели и устройства

Прототипирование подходов

Прототипиров ание САР Решение задач встраивания СТ Внедрение в проектах

Основные положения, выносимые на защиту

- 1. Разработана гибридная модель устройств, которая применима для построения моделей в задачах внутрисхемного тестирования устройств, совместима с существующими языками описания устройств и применима в задачах анализа, модификации и синтеза элементов
- 2. Предложены функционально-полный набор базовых операций над моделью, методики построения модели из исходных описаний и её специализации, позволяющие эффективно описывать алгоритмы реинжиниринга устройства
- **3. Предложены** методики встраивания средств тестирования и самодиагностики, которые снижают затраты на проведение тестирования и риск возникновения ошибок, а также могут быть интегрированы в типовые маршруты проектирования цифровых устройств.
- **4. Разработана** методика совместной верификации устройств на базе средств моделирования и аппаратных прототипов с использованием единого набора тестов

Научная значимость

- 1. Предложена новая модель представления устройств
- 2. Разработаны методы работы с моделью и её специализации для частных задач реинжиниринга
- 3. Предложены методы для решения задач встраивания средств тестирования на базе предложенных моделей и методик
- Предложен подход к совместной верификации модели и аппаратной реализации устройства с использованием единого средства тестирования

Практическая значимость

- 1. Разработан новый инструментарий, применимый для решения задач реинжиниринга однокристальных цифровых устройств
- Возможно применение инструментария для построения новых систем автоматизации проектирования (САПР)
- 3. Разработаны прототипы программ для ЭВМ на базе предложенного инструментария, решающие частные задачи встраивания средств внутрисхемного тестирования

Положения, выносимые на защиту

ПОЛОЖЕНИЕ 1

Гибридная модель представления устройств

- > Требования к модели и проблемы её построения
- Элементы гибридной модели
- Отличительные особенности

Проблематика построения модели

- Требуется формализация для алгоритмов реинжиниринга
- Большое число элементов в низкоуровневых представлениях
 - Пример: Миллионы логических вентилей в современных устройствах
- Гибкость модели требует сложной структуры компонентов
- Классы задач реинжиниринга требуют разной информации

Невозможно построить полностью универсальную модель

Предлагается использовать расширяемую модель устройства ("метамодель")

Сформированы требования к метамодели

- 1. Универсальность представления устройств
 - Возможность переноса модели между представлениями
 - Совместимость с существующими форматами описания
 - HDL: VHDL, Verilog, SystemC, System Verilog, ...
 - Нетлисты: EDIF
- 2. Функционально полный набор операций над моделью
 - Доступ ко всей информации об устройстве посредством прямой и косвенной адресации
 - Возможность преобразования любой исходной модели в требуемую за ограниченное число операций
- 3. Возможность валидации и верификации модели
- 4. Возможность расширения и специализации для частных классов задач реинжиниринга

Структурный уровень

Высокоуровневое описание

Предложена гибридная метамодель цифровых устройств

- Два уровня описания
- Минимальный набор типов элементов
- Каждый элемент составной объект
- Встроенные средства специализации

Элементы гибридной метамодели

Обозначения:

R – корневой элемент,

D – устройство

В – блок

L – библиотека

Представление - Направленный ациклический граф (орграф)

$$G = (V, A),$$

где:

- V множество элементов модели;
- А ориентированное множество дуг.

Элементы модели: V = (A, I, P, L, C, M), где:

А – внутренние свойства (атрибуты), специфичные для каждого типа;

I – ссылка на базовый элемент, из которого наследуются свойства;

Р – ссылка на родительский элемент;

L — список внешних ссылок на элемент;

C — массив ссылок на дочерние элементов;

M — дополнительные метаданные.

Отличительные особенности гибридной метамодели

- Поддержка элементов высокоуровневых HDL:
 - Наследование, интерфейсы, типизация данных
 - Статическая параметризация (generic)
 - Условная генерация (макросы, шаблоны)
 - Механизм ссылок между элементами
- Одновременная работа с несколькими устройствами
- Совместимость с современными HDL:
 - На примере вырожденного случая доказана совместимость с любым HDL
 - Предложены рекомендации по отражению HDL на гибридную модель

Положения, выносимые на защиту

ПОЛОЖЕНИЕ 2

Методы работы с гибридной моделью устройств

- > Набор базовых операций над моделью
- Специализация модели для частных классов задач реинжиниринга
- Построение модели из исходных описаний

Язык задания алгоритмов реинжиниринга

 Необходим язык для задания алгоритмов реинжиниринга в рамках гибридной модели

• В качестве универсального языка предлагается использовать Tcl

Набор операций над гибридной моделью

- Критерии функциональной полноты набора:
 - "Модель можно преобразовать из любого начального состояния в любое конечное за ограниченное число операций"
 - Доступность полной информации о модели

$$\begin{cases} \forall \ V \in G(V_{1..m}, V_{root}) \ \exists \ f_{1..N}, n \in N : \ V = f_n\left(f_{n-1}\left(\dots f_1(V_{root})\right)\right) \\ \forall \ V \in G(V_{1..m}, V_{root}), \quad \exists \ f : (A, I, P, L, C, M) = f(V) \\ \forall \ T \in Types \ \exists f_{createT} : \ V_{new} = f_{createT}(A, I, P, L, C, M) \\ \forall \ V_{device} \ \exists f_{add} : V_{device} \ \cap f_{add} \left(V_{root}, V_{device}\right) \ ! = \emptyset \\ \forall \ V_{device} \ \exists f_{delete} : V_{device} \ \cap \ f_{delete} \left(V_{root}, V_{device}\right) = \emptyset \end{cases}$$

- На базе критериев предложен базовый набор операций
- Набор операций может быть расширен

Предложенный базовый набор операций

Категория	Примеры операций	Комментарии
Алгоритмические операции Системные вызовы	Ветвления, циклы, вызов процедур, Команды управления САР	Реализуются при помощи универсального языка программирования (Tcl); не взаимодействуют с моделью напрямую
Навигация по модели	Поиск элементов в иерархии, проход по дереву элементов, получение списка ссылок	Операции не вносят изменений в модель $E = f(G,A); E = f(G,P); E = f(G,L,C)$
Изменение структуры модели	Добавление и удаление элементов	Меняется только родительский элемент модели $G = f_{create}(G, V); G = f_{delete}(G, V)$
Изменение свойств элементов	Изменение атрибутов и связей	Меняются только элементы модели, её структура остаётся неизменной. $V = f_m(V,A); \ A = f_m(V); \ V = f_m(V,P,L,C)$
Работа с метаданными	Задание и считывание метаданных	Операции используются для расширения модели нестандартными данными $M = f(V, M); V = f_m(V, M)$
Обработчики событий	Условная генерация устройств, валидация вносимых изменений	Специальные команды обратного вызова для обработки событий изменения модели. $G = f_{x}(G, E)$

- Операции используют ограниченное число объектов модели
- Упрощён вывод алгоритмов

Специализация модели

- Формирует производную модель из гибридной метамодели
- Требуется для эффективного решения частных задач реинжиниринга

Гибридная модель

Является базой для построения модели для частных задач реинжиниринга

Расширение структуры:

- Наследование элементов => специализированные типы
- Добавление метаданных в элементы
- Задание зависимостей через ссылки

Расширение набора операций:

- Создание специализированных наборов операций
- Регистрация команд обратного вызова для обработки изменений
- Условная генерация компонентов

Расширение программной реализации:

- Использование средств объектноориентированных языков
- Интеграция со сторонними САПР

Специализированная модель

- Расширена для решения частной задачи реинжиниринга
- Обладает специализированным набором операций

Методы построения модели

 На первом шаге строятся две независимые модели:

Высокоуровневая (HDL)

Низкоуровневая (Нетлист)

 Слияние даёт частичную "гибридную" модель

 После слияние модель дополняется за счёт анализа HDL и анализа нетлиста

• Производится оптимизация и удаление технических компонентов

^{*} АСД – Абстрактное Синтаксическое Дерево

Проблематика объединения моделей

- Необходимость объединения двух описаний различной природы
- Низкоуровневые описания могут быть оптимизированы => выявление и восстановление логики
- Нефункциональные компоненты: элементы ввода-вывода, повторители
- Сквозные сигналы в нетлистах

- Требуется специализированный анализ для различных HDL
- В работе рассмотрен импорт комбинаций VHDL+EDIF и VHDL+VHDL Netlist

Предложен метод объединения моделей

Положения, выносимые на защиту

ПОЛОЖЕНИЯ 3 И 4

Методика использования модели для задач тестирования и самодиагностики цифровых устройств

- Встраивание средств тестирования в устройства
- > Совместное тестирование устройства и модели

Задачи, решаемые при встраивании СТ

Цель – функциональная верификация модуля в составе СнК

Изоляция тестируемого модуля системы

- Внешние части системы не должны влиять на тестируемый компонент
- Тестируемый компонент не должен влиять на систему

Обеспечение полной управляемости

• Перевод тестируемого модуля в исходное состояние для проведения тестирования

Обеспечение частичной наблюдаемости

• Принятие решения о корректности или исправности тестируемого модуля

Встраивание СУ тестированием

• Встраиваются компоненты управления, принятия решений и их передачи на верхний уровень

- Задачи решаются разными путями в зависимости от маршрута проектирования, аппаратной платформы и требований к системе
- Предложен универсальный тестовый агент

Предложенная структура тестового агента

^{*} Отражена часть связей и блоков

Метод встраивания средств тестирования

- 1. Синтез исходного описания в сторонней САПР.
- 2. Импорт гибридной модели из исходных описаний.
- 3. Импорт списка компонентов, которые должны быть инструментированы для проведения тестов.
- 4. Импорт библиотечных компонентов.
- 5. Генерация тестовых агентов и СУТ из библиотечных компонентов в соответствии со списком тестируемых модулей.
- 6. Подключение тестовых агентов к СУТ через уровни иерархии.
- 7. Генерация выходного описания.
- 8. Повторный синтез сгенерированного описания для получения тестовой конфигурации устройства.
- 9. Анализ соответствия устройства требованиям и принятие решения о завершении реинжиниринга.
- Рассмотрены задачи встраивания СТ в условиях ограничений
 по системным ресурсам и временным характеристикам

Повторное использование тестов

- Актуальна задача повторного использования тестов
- Один из подходов использование тестов для систем симуляции
- Единые тесты => снижение затрат на проведение тестирования

Средства реинжиниринга могут быть использованы для синтеза средств тестирования по описаниям тестов

Подход к совместной верификации

- Могут быть использованы средства симуляции для проведения тестов
- Возможна кросс-верификация модели и устройства

ПРОТОТИПИРОВАНИЕ И АПРОБАЦИЯ РАБОТЫ

- Прототипирование модели и методик в составе САПР
- Внедрение прототипа САР в реальных проектах
- Апробация работы

Прототипирование инструментария

- Создан прототип расширяемой САПР на базе предложенных моделей и методов реинжиниринга (САР)
- Разработано 14 расширений для типовых задач
- На базе прототипа решены следующие практические задачи реинжиниринга устройств:
 - Внесение средств тестирования и самодиагностики
 - Внесение структурной избыточности для повышения отказоустойчивости
 - Замена блоков памяти
 - Построение интегрированной среды отладки устройств на ПЛИС
 - Тестирование устойчивости систем к однократным сбоям памяти
 - **–** ...

Встраивание САР в маршрут проектирования цифровых устройств

- Предлагается применить подход с двойным синтезом описаний
 - Расширяемое САР может взаимодействовать с другими САПР и САР

Внедрения

- На предприятиях:
 - 000 «Синопсис СПб»
 - ООО «ЭсДиСи»

- В учебный процесс:
 - ФГАОУ ВО «СПБПУ»

Пример задачи встраивания средств тестирования

Эксперимент	F _{max} , MHz	LCELL	Реги стры	Блочная память, Бит
Исходное устройство	39,31	8055	3105	53888
<i>'</i> .	FC 11	F1C	270	0
Тестовые интерфейсы	56,14	516	270	U
Ввод-вывод в САР	37,18	8247	3105	53888
без преобразований				
Ручная модификация	39,15	8752	3417	53888
Автоматическая модификация	37,02	8916	3417	53888

- Синтез для Cyclone IV фирмы Altera
- 8 тестовых агентов подключают 68 управляемых сигналов и 84-наблюдаемых

- Ухудшаются характеристики устройства
- Характеристики приемлемы для прототипирования при разработке

Проверка моделей и методов с использованием прототипа САР

- Использована в проектах по разработках СнК в "Ситроникс Микродизайн"
- Снижение общих затрат на верификацию прототипов (>50%)

Апробация диссертационной работы

- Результаты представлены на 12 конференциях и семинарах
- В том числе:
 - Конференция по тестированию встраиваемых систем (Embedded Testing 2015, Мюнхен)
 - VI Всероссийская научно-техническая конференция "Проблемы разработки перспективных микро- и наноэлектронных систем" (MES 2014, Москва)
 - Симпозиум по автоматизации проектирования СнК (Хайдарабад, 2014)
 - IX Европейская конференция про разработке программного обеспечения (ESEC 2013, СПб)
 - Симпозиум по верификации встраиваемых систем VES2013, в рамках конференции CAV2013 (2013, Санкт-Петербург)

Публикации по теме работы

- 10 публикаций по тематике работы
- 3 в изданиях из Перечня ВАК + 2 приравненных к ним
- 5 публикаций на английском языке
- Основные публикации:
 - Ненашев О.В. Методы встраивания средств тестирования в устройства с использованием средств автоматизации реинжиниринга. // Проблемы разработки перспективных микро- и наноэлектронных систем. 2014. № 2. С. 101–106.
 - Ненашев О. Расширяемый инструментарий для автоматизации реинжиниринга цифровых систем на кристалле. // Университетский Научный Журнал. 2014. С. 194–203.
 - Мамутова О.В., Ненашев О.В., Филиппов А.С. Автоматизация низкоуровневого оснащения СнК средствами эмуляции внесения сбоев в память. // Известия вузов. Электроника.- М.:МИЭТ, 2015.- № 2.- С. 50-57

– ...

Заключение

- Получены значимые результаты в научных областях реинжиниринга и верификации цифровых устройств и СнК
 - Произведено исследование существующих подходов к построению моделей устройств, сформированы критерии их оценки
 - Разработана новая гибридная модель представления устройств
 - Разработаны методы работы с моделью при решении задач реинжиниринга
 - Разработаны методы встраивания средств внутрисхемного тестирования
- На примере прототипа САР и частных задач реинжиниринга
 - Подтверждена применимость предлагаемых моделей и методов
 - Предложены пути совершенствования модели
- Подходы внедрены в ряде проектов по разработке СнК

Контакты

Ненашев Олег Вячеславович, аспирант СПбПУ, <u>nenashev@kspt.icc.spbstu.ru</u>

Личный вклад автора диссертации

- Постановка задач исследования и первичный анализ выполнены автором совместно с к.т.н. А.С.
 Филипповым и ст. преп. С.Л. Максименко.
- Разработка многоуровневой ("гибридной") метамодели устройств и методик её специализации выполнены автором лично.
- Методики построения гибридной модели разработаны автором лично.
- Разработка методов реинжиниринга устройств для частных задач повышения отказоустойчивости и BCBT выполнена автором лично.

Личный вклад автора диссертации

При прототипировании и внедрении:

- 1. Прототипирование модели, методик и средств выполнено автором **лично**.
- 2. Разработка методик внесения неисправностей в память устройств выполнена совместно с О.В. Мамутовой (ст. преп. каф. КСПТ).
- 3. Прототипирование методов анализа структуры нетлистов и поиска элементов выполнена совместно с И.В. Егоровым (аспирант каф. КСПТ)
- 4. Внедрение САПР на базе прототипа инструментария для задач ВСВТ в устройства проводилось совместно с инженерами ООО «ЭсДиСи» и ООО «Синопсис СПб».
- 5. Иные задачи решены автором лично.

Перечень сокращений

Сокращение	Расшифровка
АСД	Абстрактное синтаксическое дерево (AST – Abstract Syntax Tree)
ПЛИС	Программируемая Логическая Интегральная Схема
САПР	Система Автоматизации Проектирования
CAP	Системы Автоматизации Реинжиниринга (тип САПР)
СТ	Средство Тестирования
HDL	Hardware Description Language Язык описания аппаратуры
UML	Unified Modeling Language Универсальный язык моделирования

ОТВЕТЫ НА ВОПРОСЫ И ЗАМЕЧАНИЯ

- Выбор номера специальности
- Замечания ведущей организации
- Замечания оппонентов
- Замечания из отзывов на автореферат

Процесс внутрисхемного тестирования

- 1. Формирование тестовых планов и векторов
- 2. Встраивание средств тестирование (СТ) в устройство
 - Диагностические выводы, отладочные интерфейсы
 - Комплексные системы верификации для сложных систем
 - Средства самодиагностики
- 3. Выполнение тестов
- 4. Анализ результатов
- 5. Принятие решения о корректности устройства
- Невозможно полностью предусмотреть СТ при проектировании (подход DFT – "Design For Test")
- Тесты через внешние интерфейсы и программные тесты не всегда обеспечивают требуемое покрытие
- Тестовая инфраструктура зачастую избыточна
- Актуальна задача встраивания СТ в готовые архитектуры

Механизмы адресации в модели

- В алгоритмах реинжиниринга используется строковая запись
- Типы адресации:

Тип адресации	Примеры				
Абсолютная адресация	\[l]basic\[I]not\[S]in\ test:\clk~clkctrl\[S]outclk\ [D]test\[B]clk~clkctrl\[S]outclk\				
Косвенная адресация	\ clk~clkctrl\[S]outclk\\\ [S]outclk\\clk~clkctrl\\ clk~clkctrl\[S]outclk				
Адресация по идентификатору	@11235813 @42				
Адресация к параметрам и атрибутам	Name ports/clk/type				

```
# Загрузка расширений и импорт устройства

phrt::system::load_extensions {quartus vhdl_netlist memfault_inject }

phrt::vhdl_netlist::import openRISC1200.vhd /test/

# Поиск блочной памяти в устройстве и инструментирование

set mem_list [phrt:find_refs /test/or1200_top -R ALTSYNCRAM]

phrt::memfault_inject:instrument $mem_list

# Экспорт модифицированного нетлиста

phrt::vhdl_netlist::export /test out.vhd
```

Замечания оппонентов

 "Не пояснено, как будет выглядеть модель в случае, если в модели на VHDL в модели одному Entity соответствует несколько вариантов Architecture"

Замечания ведущей организации

- Рис. 5.11 "Алгоритм проведения тестирования устройства на ПЛИС в системе непрерывной интеграции Jenkins CI"
- Замечание: не отражено, как организуется «сбор и обработка результатов» тестирования.
- Результаты тестирования передаются с ТА в СУТ
- СУТ отгружает результаты в систему принятия решений
- Обработка происходит во внешней системе

Прототип САР. Архитектура

- Модульная архитектура обеспечивает дополнительную гибкость САР
- Гибридная модель расширена средствами языков программирования

Паспорт специальности 05.13.05

"Элементы и устройства автоматики и вычислительной техники" Область исследования:

- 1. Разработка научных основ создания и исследования общих свойств и принципов функционирования элементов, схем и устройств вычисл-й техники и систем управления.
 - 2. Теоретический анализ и экспериментальное исследование функционирования элементов и устройств вычислительной техники и систем управления в нормальных и специальных условиях с целью улучшения технико-экономических и эксплуатационных характеристик.
 - 3. Разработка принципиально новых методов анализа и синтеза элементов и устройств вычислительной техники и систем управления с целью улучшения их технических характеристик.
 - 4. Разработка **научных подходов, методов, алгоритмов и программ**, обеспечивающих **надежность, контроль и диагностику функционирования** элементов и устройств вычислительной техники и систем управления.

Специальность не включает исследования в области:

1. Исследования систем автоматизации проектирования относится => 05.13.12

2....

Паспорт специальности 05.13.12

"Системы автоматизации проектирования"

- 4. Разработка новых методов и средств взаимодействия проектировщик система.
- 5. Разработка научных основ обучения автоматизированному проектированию
- 6.Разработка научных основ реализации жизненного цикла проектирование производство эксплуатация, ...
 - 7.Разработка научных основ построения средств автоматизации документирования ... 8.Разработка научных основ построения средств компьютерной графики, методов геометрического моделирования проектируемых объектов и ...

Почему выбрана специальность 05.13.05? Причина 1. Цель исследования

Разработка моделей, методов, алгоритмов и программ для обеспечения контроля, анализа и диагностики устройств автоматики и вычислительной техники...

- ... в задачах внутрисхемного тестирования
- ... на базе многоуровневых моделей устройств
- ... для последующего их использования в маршрутах проектирования и реинжиниринга цифровых систем
- ✓ Соответствует п. 4 сп. 05.13.05
- **Ж** Не входит в области исследования сп. 05.13.12

Почему выбрана специальность 05.13.05? Причина 2. Состав исследования

- В современном мире маршруты проектирования устройств предполагают использование САПР
- Невозможна разработка новых методов анализа, синтеза и контроля цифровых систем без учёта их использования в САПР
- Использование САПР в представляемой работе:
 - В работе построение САПР используется для апробации моделей и методик
 - Предлагаемые модели и методики применимы вне САР
 - Отсылки к САПР и САР в работе объясняются спецификой современных маршрутов проектирования, которые должны быть учтены в работе
 - Разработанная САР не выносится в основные положения

Задача внутрисхемного тестирования

Верификация аппаратного обеспечения:

- Ведётся на всех этапах разработки
- Модульное и интеграционное тестирование требуют модификации устройства

Проблематика встраивания СТ

Общие проблемы реинжиниринга

Реинжиниринг...

- требует квалифицированных разработчиков
- занимает много времени
- включает множество рутинных операций
- риск внесения новых неисправностей

- Актуальна задача автоматизации
- Требуется инструментальная поддержка со стороны средств проектирования

Частные проблемы в области

- Тестовые модули могут вносить новые ошибки
- Ухудшаются характеристики системы
- Тестовая версия системы значительно отличается от исходной
- Множество форматов описаний устройств в одном проекте

- Требуется предварительный анализ устройства
- Необходим контроль аппаратных и временных характеристик

Требуются специализированные модели устройств и методики работы с ними

Введение

Реинжиниринг...

- требует квалифицированных разработчиков
- занимает много времени
- включает множество рутинных операций
- риск внесения новых неисправностей

Реинжиниринг...

- 1. актуален для сложных систем
- 2. требуются специализированные модели устройств и методики работы с ними
- 3. требуется инструментальная поддержка со стороны средств автоматизации реинжиниринга (САР)

Примеры построения моделей

Встраивание средств самодиагностики выпускаемых изделий

- Нетлисты дают достаточную информацию о структуре устройства
- Необходимо учитывать требования к характеристикам устройства
 - Используемые системные ресурсы
 - Временные характеристики

- Один уровень описания
- Большое число специальных метрик
- Многократное выполнение анализа и трансформации

Встраивание средств функционального тестирования прототипов

- Необходима информация об архитектуре устройства для проведения анализа
- Для встраивания средств тестирования нужны нетлисты
- Критерии по системным ресурсам являются пороговыми

- Используется два уровня описания
- Не требуются дополнительные данные
- Однократный анализ, многократная трансформация

- Требуется использовать различные модели
- Выявлены общие составляющие моделей для различных задач

Примеры специализации модели

Встраивание средств самодиагностики

- Структурная специализация:
 - Добавление метаданных о характеристиках элементов в модели
- Набор операций
 - Расширение команд верификации модели при преобразовании
- Программная реализация:
 - Использование САПР для синтеза и получения характеристик устройства

Встраивание средств тестирования

- Структурная специализация:
 - Создание специализированных компонентов тестовой инфраструктуры
- Набор операций
 - Добавление тестовых точек и интерфейсов
- Программная реализация:
 - Экспорт описаний тестовой инфраструктуры для
 - Синтез параметризуемых компонентов

Цикл реинжиниринга устройств

- САР работает с уже готовым описанием устройства
- На выходе готовое к синтезу модифицированное описание

Сравнение с другими подходами

- Критерии и веса сформированы на базе экспертного опроса
- Участники 20 экспертов в области проектирования цифровых устройств (Intel, Synopsys, Mentor, ...)
- Общее число критериев ~30

Группа критериев	Bec	Модель Вилси	Модель Басаргина	UML	Чистое АСД	Гибридная модель
Расширяемость	3	2	2	5	0	4
Независимость от HDL	2	2	3	5	0	4
Переносимость	1	2	3	4	1	4
Простота обработки	3	4	2	2	4	5
Полнота информации	5	3	4	5	5	5
Прочие	6	2	4	2	1	3
Итого	-	2.55	3.25	3.6	2.2	4.1

Гибридные модели превосходят другие подходы в рамках сформированных критериев оценки

Рефакторинг с использованием гибридной модели

- В чистом виде модель рефакторинг не поддерживает
- Для его проведения можно использовать метаданные

Защита от реверс-инжиниринга

- Предлагаемые подходы могут быть использованы для реверс-инжиниринга защищённых IP-блоков
- Восстановление архитектуры может быть затруднено за счёт...
 - Использования "плоских" нетлистов
 - Использования сквозных ссылок
 - Объединения блоков памяти разного назначения в массивы
 - Объединения схожих логических функций
- Все перечисленные методы являются стандартными средствами обфускации нетлистов

Тестируемость устройств

Тестируемость — совокупность свойств системы, характеризующая усилия, необходимые для её проверки после проведения какого-либо видоизменения [3]

- Требуется обеспечить:
 - Полную управляемость системы
 - Частичную наблюдаемость
- Обеспечение тестируемости готового устройства требует проведения реинжиниринга системы

Обеспечение тестируемости всей системы

- Тестовый агент должен быть подключен к каждому тестируемому модулю
- Иерархии тестовых агентов
- Должны быть средства отключения модулей
 - На первых этапах общий сигнал сброса

Внедрение в ООО «Синопсис СПб»

Система непрерывной интеграции на базе Jenkins

Пример использования. Внесение структурной избыточности

Валидация и верификация устройств

- В модель заложены следующие средства:
 - Системные команды для проверки модели
 - Обратные вызовы для валидации при изменениях в структуре модели (валидация "на лету")
- Сформированы критерии верифицируемости модели:
 - модель является целостной;
 - на любой некорневой элемент модели существует хотя бы одна внешняя ссылка;
 - возможность вызова произвольных операций на языке управления преобразованиями для проведения сложного анализа с использованием сторонних средств.