ECON484 Machine Learning

1. Concepts of Machine Learning (2/2)

Lecturer:

Bora GÜNGÖREN

bora.gungoren@atilim.edu.tr

- We will look at the basic problem of polynomial curve fitting (adapted from Bishop 2006).
 - This will involve optimizing the parameters (polynomial coefficients) ad be classified as an estimation problem.

•

• Our actual function is a sine wave $t=\sin(2\pi x)$.

- We are given a training set $X=(x_1, x_2, ..., x_N)^T$
- The data set has generated data and some (Gaussian) noise.

- We should have a model and the model parameters.
 - $w=(w_0, w_1, w_2,...w_M)$ are the model parameters where M is the dimension of the polynomial.

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$
 (1.1)

- · Our parameter estimation problem is now expressed as "estimate **w** (as vector) to minimize".
 - · Error is defined as E(w) which is calculated using estimated y_N and actual t_N in the training set.

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$
(1.2)

- M=3 has more error in the training data set than M=9, however it will give a better overall fit for the curve.
 - This is why actual performance should be measured with practical application.
 - The problem with M=9 is what we call overfitting.

- To measure
 performance, we
 generate a new test
 data set (again by
 adding noise) of size
 100.
 - Then we define the error measure as E_{RMS} .
 - Let's calculate E_{RMS}

$$E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N} \tag{1.3}$$

- · What we see
 - In the overtrained model, E_{RMS} increases wildly with test data set.
 - From M=3 to M=8 the error looks minimal.
 - So we keep the simplest form, M=3.

• A way to reduce the error with M=9 model would be to train with a larger training data set.

- · It seems that having a larger training data set solves some problems.
 - But it is not practical to assume we have a larger training data set in all practical settings.
 - One approach is to retrain our data models frequently.
 - · Another approach is to employ different models.
- Model complexity should reflect the complexity of the real world.

- · In the example case, the reason for the large fluctuation of estimated values is the very large coefficients in the model we obtain after training.
 - · The better models include smaller coefficients.
 - So why not penalize very large coefficients in the model?

- We penalize very large coefficients through a modified error definition.
 - This modification type is called a shrinkage (or weight decay), and this particular one is called a ridge regression.

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$
 (1.4)

- Our selection of model modification has added a new parameter to optimize
 - Lambda which symbolized how important the shrinkage is.
 - We should also select this parameter.

- · Another approach to the same estimation problem would be Bayesian.
 - Let our training data $D=(t_1, t_2, ..., t_N)$ represent a number of observations.
 - Let us assume our parameter set w is now probabilistic with a probability distribution p(w).
 - · We try define all quantities as a function of **w**.

With p(D|w) as the likelihood function:

$$p(\mathbf{w}|\mathcal{D}) = \frac{p(\mathcal{D}|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D})}$$
(1.43)

$$p(\mathcal{D}) = \int p(\mathcal{D}|\mathbf{w})p(\mathbf{w}) \,d\mathbf{w}. \tag{1.45}$$

- With the frequentist school of thought, we usually use a maximum likelihood estimator, to maximize the likelihood function p(D|w).
 - The error is defined as the negative logarithm of likelihood function. As one increases the other should decrease.
 - However the fundamental difference is that we see w as a constant and discuss the variation of D given a w.

- With the Bayesian school of thought, there is only the observations D, and we evaluate the uncertainty in w, after we observed D.
 - Therefore D is a constant, and there is a variation in w, which we discuss (and optimize).
- · Also note that the likelihood function is not a probability distribution.
- The Bayesian approach requires a lot more computation than the frequentist approach, and is often infeasible to compute by hand.
 - · But with computer resources at hand, it has become more popular.

- So how to approach curve fitting from a Bayesian perspective?
 - We treat the observations $t=(t_1,t_2,...,t_N)^T$ as having some uncertainty with a selected probability density function (pdf). Our **model selection** is now based on our choice of PDF.
 - This is a **very big** issue. Frequentists often criticize Bayesian approach saying "selection of PDF after observation of training data is cheating".
 - Let's assume that the distribution of error is Gaussian (which we know to be true in this case).

- With this model selection any observation t has now a conditional probability based on x with the parameters w, and beta.
 - We use the training data set and a maximum likelihood estimator to find the parameter values.
 - In order to minimize error, defined as negative logarithm of the maximum likelihood function, we will try to maximize the logarithm of the maximum likelihood function, with respect to beta.
 - · Once we have the parameters, we can start making predictions.

$$p(t|x, \mathbf{w}, \beta) = \mathcal{N}\left(t|y(x, \mathbf{w}), \beta^{-1}\right)$$
(1.60)

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}\left(t_n | y(x_n, \mathbf{w}), \beta^{-1}\right). \tag{1.61}$$

$$\ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi).$$
 (1.62)

$$\frac{1}{\beta_{\rm ML}} = \frac{1}{N} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}_{\rm ML}) - t_n \right\}^2.$$
 (1.63)

- Having determined w and beta, we can make predictions.
 - What we have is a predictive distribution p(t | x, w, beta) which gives a probability distribution over t, not a point estimate.
 - We could also assume w is probabilistic, and have hyperparameters on the distribution of w.

- · When we assume w is probabilistic, we estimate the **most** likely value of w given the observations D.
 - · This is equivalent to minimizing the error function to find w.
 - Note that in Bayesian approach we take integrals which is computationally expensive.
- In the maximum likelihood approach we have demonstrated the importance of overfitting, and having a large training data set.
- In the Bayesian approach we have demonstrated how complex it could become, and how much computation intensive our tasks can become.

How to work with a small training data set?

- · This is an essential question.
 - · When there is a large training data set, we select some for training and some for validation.
 - When there is a small training data set, we employ cross-validation.
 - · In this approach, we have multiple runs, each time with a different part of the training set reserved for validation.
 - We develop descriptive statistics (ie. averages) from the performance of these runs and evaluate the performance based on these descriptives.

How to work with a small training data set?

- · S-fold cross-validation
 - We create S (equal sized)
 parts of the training
 data set.
 - We train using the majority (white) and validate with the withheld (red) data set.
 - We take the average of performance values.
- Extreme case is to haveS=N runs, which is also

- · In our simple example we discussed how we develop a model to **estimate a function of a single variable**.
 - When we have multiple variables (higher dimensionality) this becomes much more complex.

- We will again use the example from Bishop 2006.
 - The example involves focusing on two variables (out of 12) in a classification problem.
 - The proposed technique divides the space into "zones" which belong to the majority class in the test data set.
 - · If a point falls into a zone, then it is classified as from that class.

- This approach works "OK" for 3 classes and a 2-dimensional space.
 - How about more classes and the full 12dimensional space?
 - How many zones do we have? 2¹²? 3¹²? 4¹²?
 - How many coefficients will we need? 12²? 12³?
 12⁴?
- · Naive approaches just don't work with higher dimensions.
 - This is called the curse of dimensionality

Decision Theory and Machine Learning

- Decision theory proposed many methods to make decisions. They usually focus on optimizing some parameters in order to:
 - · Minimizing false decisions
 - Minimizing expected losses
 - · Detecting hard to make decisions

Decision Theory and Machine Learning

- · Also consider von Neumann's minimax theorem and Yao's principle with multiple turn decision making in a competitive environment.
 - The observations **D** we have on the competitor's decisions under partially observed environment (test data set) can be used to learn about (ie. estimate a range on) the parameters (**w**), hence **the range of decisions provided by a particular decision making model** we assume she is using.
 - Model selection, parameters as probability distributions, observations as given facts...
 - · These are the cornerstones of a Bayesian approach.

- As we see, we usually design our model prior to training it with the training data set, and then validate it with the validation data set.
 - We should be able to observe problems with the model before we use it in practice.
- · Hence we need some model evaluation criteria.

- · In classification problems we will have multiple type of problems.
 - The core performance measure, **classification accuracy** is the ratio of correct predictions (true positives and true negatives) to total predictions made. However in many cases, **error rate** as the rate of all other cases (false negatives, false positives) is also important.
 - · In the two-class problem we define the true positive, false positive, true negative, false negative approach easily.

- Sensitivity (recall) and specificity are two important performance criteria we use. (Figure from is from Wikipedia).
 - High sensitivity is always good.
 - High specificity may be more important than high sensitivity because in many applications false positives cause hard to repair damages.

- A confusion matrix is a technique for summarizing the performance of a classification algorithm.
 - We have a series of classifications, actual and predicted and we see their true/false positive/negative nature.
 - We summarize using a matrix.
 - We calculate precision, accuracy and recall.

		CONDITION determined by "Gold Standard"			
	TOTAL POPULATION	CONDITION POS	CONDITION NEG	PREVALENCE CONDITION POS TOTAL POPULATION	
TEST OUT- COME	TEST POS	True Pos TP	Type I Error False Pos FP	Precision Pos Predictive Value PPV = TP TEST P	False Discovery Rate FDR = FP TEST P
	TEST NEG	Type II Error False Neg FN	True Neg TN	False Omission Rate FOR = FN TEST N	Neg Predictive Value NPV = TN TEST N
	ACCURACY ACC ACC = <u>TP+TN</u> TOT POP	Sensitivity (SN), Recall Total Pos Rate TPR TPR TPCONDITION POS Miss Rate False Neg Rate FNR FNR = FN CONDITION POS	Fall-Out False Pos Rate FPR FPR = FP CONDITION NEG Specificity (SPC) True Neg Rate TNR TNR = TN CONDITION NEG	Pos Likelihood Ratio LR + LR + = TPR FPR Neg Likelihood Ratio LR - LR - = TNR FNR	Diagnostic Odds Ratio DOR DOR = <u>LR+</u> LR -

· When we have more than 2 classes, calculating TP, TN, etc becomes more complex, but not more difficult.

- R² (coefficient of determination) is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).
 - · It is used to evaluate the performance of regression based estimation models.
 - An R² of 1 indicates that the regression predictions perfectly fit the data.
 - · However, a high R² can occur in the presence of misspecification of the functional form of a relationship or in the presence of outliers that distort the true relationship.
 - In many cases SSE (sum of squared errors) is preferred over R².

Homework Assignment #2

- On preparing a Confusion Matrix.
- · Details will be announced on Github.
- · Submission: March 28

Homework Assignment #3

- · About the design of a classifier.
 - · It will consist of two parts.
 - The first part is the report and preliminary work evaluation.
 - · The second part is the data analysis.
- · Details will be announced on Github.
- · Submission
 - · Part One: April 4
 - Part Two: April 11

Questions?

CONTACT:

bora.gungoren@atilim.edu.tr

License: Creative Commons Attribution Non-Commercial Share Alike 4.0 International (CC BY-NC-SA 4.0)