Stock Prices Prediction using traditional and machine learning methods ARIMA, PCA+DNN

Grzegorz Pielot Damian Burczyk

Koło Naukowe Finansów Obliczeniowych MIMUW, 2019

1 / 28

Pielot, Burczyk Stock Prices Prediction MIMUW 2019

Table of Contents

- 4 Autoregressive integrated moving average
- Machine Learning
 - Principal component analysis
 - Deep Neural Network

ARIMA

Avaliable packages:

- statsmodels
 statsmodels.tsa.arima_model.ARIMA(endog, order, exog=None, dates=None, freq=None, missing='none')
 - p order (number of time lags) of the autoregressive model
 - d degree of differencing
 - q order of the moving-average model

ARIMA(5,1,0), test ratio = 20%, predicting from Close

Mean Square Error = 0.0465

Pielot, Burczyk Stock Prices Prediction MIMUW 2019 4 / 28

ARIMA(5,1,0), test ratio = 0.5%, predicting from Close

Mean Square Error = 0.0107

Pielot, Burczyk Stock Prices Prediction MIMUW 2019 5 / 28

ARIMA(5,1,0), test ratio = 20%, predicting from ROI

 $Mean\ Square\ Error=0.0532$

Pielot, Burczyk Stock Prices Prediction MIMUW 2019 6 / 28

ARIMA(5,1,0), test ratio = 0.5%, predicting from ROI

 $Mean\ Square\ Error=0.0132$

Pielot, Burczyk Stock Prices Prediction MIMUW 2019 7 / 28

$\overline{ARIMA(5,1,0)}$, official tests, predicting from Close

Mean Square Error = 0.0260

Pielot, Burczyk Stock Prices Prediction MIMUW 2019 8 / 28

ARIMA(5,1,0), official tests, predicting from ROI

Mean Square Error = 0.0296

Pielot, Burczyk Stock Prices Prediction MIMUW 2019 9 / 28

ARIMA other orders

Mean square error with (1, 0, 0) is 0.0181 Mean square error with (1, 1, 0) is 0.0185 Mean square error with (0, 1, 1) is 0.0185 Mean square error with (1, 2, 1) is 0.0185 Mean square error with (3, 0, 0) is 0.0185 Mean square error with (3, 1, 1) is 0.0187 Mean square error with (1, 2, 3) is 0.0185 Mean square error with (4, 0, 0) is 0.0186 Mean square error with (5, 1, 0) is 0.0187 Mean square error with (5, 1, 1) is 0.0187

Machine Learning

Based on "Stock prediction using deep learning" by Ritika Singh and Shashi Srivastava

11 / 28

Machine Learning

Machine Learning

Table 1 Input variables for the stock market data set

Name of the Variable	Description and Formula
$I_I = x_o(t)$	Open Price
$I_2 = x_h(t)$	High Price
$I_3 = x_i(t)$	Low Price
$I_d = x(t)$	Close Price
$I_5 = MA5$, $I_6 = MA10$, $I_7 = MA20$	Moving Average
$I_8 = BIAS5$, $I_9 = BIAS10$	BIAS
$I_{10} = DIFF$	EMA12-EMA26
$I_{II} = BU$	$(x(t)-bollinger_{upper})/bollinger_{upper}$
$I_{I2}=BL$	(x(t)-bollinger lower)/bollinger tower
$I_{IS} = K, I_{Id} = D$	Stochastic Fast %K ,Fast %D
$I_{1S} = ROC$	Price rate of change
$I_{I6} = TR$	True range of price movements
I_{17} = $MTM6$, I_{18} = $MTM12$	Momentum
$I_{19} = WR\% 10, I_{20} = WR\% 5$	Williams index
$I_{21} = OSC6, I_{22} = OSC12$	Oscillator
$I_{23} = RSI6$, $I_{24} = RSI12$	Relative strength index
$I_{2\beta} = PSY$	Psychological line
I_{26}	K(t)- $K(t-1)$
I_{27}	D(t)- $D(t$ - $I)$
I_{28}	(x(t)-x(t-1))/x(t-1)
I_{29}	$(x(t)-x_o(t))/x_o(t)$
I_{10}	$(x(t)-x_i(t))/(x_h(t)-x_i(t))$
I_{SI}	(MA5(t)-MA5(t-I))/MA5(t-I)
I_{32}	(MA20(t)-MA20(t-1))/MA20(t-1)
I_{33}	(MA.5(t)-MA.2.0(t-1))/MA.2.0(t-1)
I_{3d}	(x(t)-MA20(t))/MA20(t)
I_{35}	(x(t)-min(x(t-I),x(t-2),,x(t-N)))/min(x(t),x(t-I),x(t-2),,x(t-N))
I_{16}	(x(t)-max(x(t-1),x(t-2),,x(t-N)))/max(x(t),x(t-1),x(t-2),,x(t-N))

Deep Neural Network

ML, test ratio = 20%, garbage data, Close

MSE: 1E = 7.4694, 5E = 7.3964, 10E = 7.4152, 100E = 7.2695

ML, test ratio = 20%, garbage data, Close, train on tests

MSE: 1E = 0.2584, 5E = 0.3740, 10E = 0.3790, 100E = 0.3819

ML, test ratio = 20%, garbage data, Close, better constants

MSE: 1E = 0.1311, 5E = 0.1286, 10E = 0.1173, 100E = 0.1089

Pielot, Burczyk Stock Prices Prediction MIMUW 2019

17 / 28

ML, test ratio = 20%, proper data, Close

MSE: 1E = 0.1249, 5E = 0.0972, 10E = 0.0936, 100E = 0.0833

ML, test ratio = 20%, proper data, Close, additional line, index randomization, don't train on tests

1E = 0.3484, 5E = 0.1586, 10E = 0.0707, 100E = 0.0592, 1000E = 0.0579

Pielot, Burczyk Stock Prices Prediction MIMUW 2019 19 / 28

ML, official tests, proper data, Close

1E = 0.3603, 5E = 0.1012, $10\ E = 0.0712$, $100\ E = 0.1091$, 1000E = 0.0331

Pielot, Burczyk Stock Prices Prediction MIMUW 2019 20 / 28

ARIMA(5,1,0), official tests, predicting from Close

Mean Square Error = 0.0260

Pielot, Burczyk Stock Prices Prediction MIMUW 2019 21 / 28

ML, test ratio = 20%, proper data, ROI, don't train on tests

1E = 0.0400, 5E = 0.0507, 10E = 0.0472, 100E = 0.0400, 1000E = 0.0419

Pielot, Burczyk Stock Prices Prediction MIMUW 2019 22 / 28

ML, official tests, proper data, ROI, don't train on tests

1E = 0.0263, 5E = 0.0258, 10E = 0.0267, 100E = 0.0259, 1000E = 0.0283

ARIMA(5,1,0), official tests, predicting from Close

Mean Square Error = 0.0260

Pielot, Burczyk Stock Prices Prediction MIMUW 2019 24 / 28

ML, test ratio = 20%, proper data, ROI, train on tests

 $1\mathsf{E} = 0.0673,\, 5\mathsf{E} = 0.0494,\, 10\mathsf{E} = 0.0423,\, 100\mathsf{E} = 0.0393,\, 1000\mathsf{E} = 0.0388$

ML, official tests, proper data, ROI, train on tests

1E = 0.0444, 5E = 0.0305, 10E = 0.0298, 100E = 0.0265, 1000E = 0.0267

ARIMA(5,1,0), official tests, predicting from Close

Mean Square Error = 0.0260

Pielot, Burczyk Stock Prices Prediction MIMUW 2019 27 / 28

Stock Prices Prediction

The End

