Semestre 23-3

Práctica # 2

Interpolación y aproximación numérica

Instrucciones

- Este Laboratorio se divide en dos secciones; Teoría, en esta sección se debe responder a una serie de preguntas y planteamientos. Esta primera sección requiere el conocimiento de álgebra lineal. Práctica, en esta sección se deben resolver problemas planteados, y requiere el conocimiento y uso de: Python, Jupyter Notebook, y CoLab.
- Los participantes deberán crear varios notebook si lo considera necesario y generar los documentos, a entregar para su calificación, en formato PDF conforme a las pautas establecidas para la elaboración del mismo.
- Los documentos elaborados por el participante se deben enviar a la dirección de correo, una.universidad.ucv@gmail.com, siguiendo los lineamientos establecidos para tal fin. Recordar enviar también el link para el trabajo en la nube.
- Este trabajo se debe entregar el día 18 de diciembre 2023.

Teoría

- 1. Establecer en que consiste la interpolación y aproximación polinomial.
- 2. Establecer la existencia y unicidad del polinomio interpolante.
- 3. Describir los métodos de interpolación; coeficientes indeterminados, Lagrange, Newton.
- 4. Deducir las ecuaciones normales para el ajuste de datos por el método de mínimos cuadrados.
- 5. Definir la serie de Forrier.
- 6. Describir la aproximación por polinomios trigonométricos.

Práctica

- 1. Programar funciones para que dada una tabla de datos se pueda;
- 1.a) Ajustar los datos por un polinomio interpolante obtenido por coeficientes indeterminados.
- 1.b) Ajustar los datos suministrados con un polinomio interpolante de Lagrage.
- 1.c) Obtener una tabla de diferencias divididas, y guardar los resultados en un archivo de texto plano.
- 1.d) Ajustar la data con un polinomio interpolante de Newton.
- 1.e) Ajustar los datos por mínimos cuadrados a un modelo dado.
- 1.f) Ajustar un registro de datos periódicos o no, con una aproximación trigonométrica.
- 2. Para cada uno de los programas elaborados en el numeral 1, se debe construir un problema test, con una data de 6 elementos.
- 3. Dada la siguiente data,

	0.0	1.5	3.0	4.5	6.0	7.5	9.0	10.5	12.0	13.5	15.0	16.5	18.0	19.5
Γ	-1.000	-3.625	5.000	45.125	137.000	300.875	557.000	925.625	1427.000	2081.375	2909.000	3930.125	5165.000	6633.875

Hallar el polinomio interpolante por:

- 3.a) método de los coeficientes indeterminado.
- 3.b) método de Lagrange.
- 3.c) método de Newton.
- 3.d) de tercer grado por mínimos cuadrados.

4. Dada la siguiente tabla,

1	2	3	4	5	6	7	8	9	10	11	12
0.500	0.143	0.071	0.044	0.029	0.021	0.016	0.013	0.010	0.008	0.007	0.006

Establecer cuál de los siguientes modelos ajusta mejor la data, si en ambos caso se utiliza el método de mínimos cuadrados.

Modelo 1

$$y = \frac{1}{ax^2 + bx + c}$$

Modelo 2

$$y = ae^{bx}$$

Modelo 3

$$y = ax^{-2b}$$

5. Dada la siguiente tabla,

ſ	1.0000	1.7854	2.5708	3.3562	4.1416	4.9270	5.7124	6.4978	7.2832	8.0686	8.8540	9.6394	10.4248	11.2102	11.9956
	-2.5509	1.6598	4.8982	5.2674	2.5509	-1.6598	-4.8982	-5.2674	-2.5509	1.6598	4.8982	5.2674	2.5509	-1.6598	-4.8982

Obtener el polinomio trigonométrico que ajusta la data.

NOTA: En cada caso estudiado se debe hacer un análisis del error asociado a cada método de interpolación.