اصول پردازش تصویر Principles of Image Processing

مصطفی کمالی تبریزی ۱۲ مهر ۱۳۹۹ جلسه پنجم

Image Enhancement (Spatial Filtering)

Neighborhood in Spatial Domain

FIGURE 3.1

A 3 \times 3 neighborhood about a point (x, y) in an image in the spatial domain. The neighborhood is moved from pixel to pixel in the image to generate an output image.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	182	177	178	181	181	182	183	181	185	185	187	188	187	188	188
2	180	184	181	182	182	185	181	186	184	189	185	188	189	187	186
3	181	183	181	182	182	189	187	187	187	189	189	190	189	186	190
4	179	183	183	180	184	181	187	185	188	199	189	192	199	198	192
5	185	187	185	186	184	191	195	169	49	15	10	10	11	12	15
6	181	181	188	187	186	191	37	13	21	12	11	11	11	12	12
7	185	183	181	186	187	100	13	18	18	15	12	17	12	12	10
8	184	183	186	189	192	148	15	10	9	9	9	11	12	12	11
9	185	182	184	185	194	14	10	10	8	8	8	10	15	10	13
10	182	177	182	187	88	11	10	10	9	9	10	12	10	11	13
11	183	179	183	190	17	9	8	9	9	9	9	8	11	13	11
12	183	186	189	201	11	9	10	10	9	9	9	11	13	11	9
13	185	183	186	196	11	10	10	10	9	9	8	10	10	11	10
14	184	185	190	11	9	9	9	10	9	56	89	10	8	10	10
15	185	189	193	18	10	9	10	9	20	163	21	11	9	11	42

30 ´ 30

Every other row and column

Image

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	182	177	178	181	181	182	183	181	185	185	187	188	187	188	188
2	180	184	181	182	182	185	181	186	184	189	185	188	189	187	186
3	181	183	181	182	182	189	187	187	187	189	189	190	189	186	190
4	179	183	183	180	184	181	187	185	188	199	189	192	199	198	192
5	185	187	185	186	184	191	195	169	49	15	10	10	11	12	15
6	181	181	188	187	186	191	37	13	21	12	11	11	11	12	12
7	185	183	181	186	187	100	13	18	18	15	12	17	12	12	10
8	184	183	186	189	192	148	15	10	9	9	9	11	12	12	11
9	185	182	184	185	194	14	10	10	8	8	8	10	15	10	13
10	182	177	182	187	88	11	10	10	9	9	10	12	10	11	13
11	183	179	183	190	17	9	8	9	9	9	9	8	11	13	11
12	183	186	189	201	11	9	10	10	9	9	9	11	13	11	9
13	185	183	186	196	11	10	10	10	9	9	8	10	10	11	10
14	184	185	190	11	9	9	9	10	9	56	89	10	8	10	10
15	185	189	193	18	10	9	10	9	20	163	21	11	9	11	42

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Image

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	182	177	178	181	181	182	183	181	185	185	187	188	187	188	188
2	180	184	181	182	182	185	181	186	184	189	185	188	189	187	186
3	181	183	181	182	182	189	187	187	187	189	189	190	189	186	190
4	179	183	183	180	184	181	187	185	188	199	189	192	199	198	192
5	185	187	185	186	184	191	195	169	49	15	10	10	11	12	15
6	181	181	188	187	186	191	37	13	21	12	11	11	11	12	12
7	185	183	181	186	187	100	13	18	18	15	12	17	12	12	10
8	184	183	186	189	192	148	15	10	9	9	9	11	12	91	11
9	185	182	184	185	194	14	10	10	8	8	8	10	15	10	13
10	182	177	182	187	88	11	10	10	9	9	10	12	10	11	13
11	183	179	183	190	17	9	8	9	9	9	9	8	11	13	11
12	183	186	189	201	11	9	10	10	9	9	9	11	13	11	9
13	185	183	186	196	11	10	10	10	9	9	8	10	10	11	10
14	184	185	190	11	9	9	9	10	9	56	89	10	8	10	10
15	185	189	193	18	10	9	10	9	20	163	21	11	9	11	42

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

195	169	49
37	13	21
13	18	18

$$\frac{195 + 169 + 49 + 37 + 13 + 21 + 13 + 18 + 18}{9} = 59.22$$

Image

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1															
2															
3															
4															
5															
6								59							
7															
8															
9															
10															
11															
12															
13		_													
14															
15															

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Image

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	182	177	178	181	181	182	183	181	185	185	187	188	187	188	188
2	180	184	181	182	182	185	181	186	184	189	185	188	189	187	186
3	181	183	181	182	182	189	187	187	187	189	189	190	189	186	190
4	179	183	183	180	184	181	187	185	188	199	189	192	199	198	192
5	185	187	185	186	184	191	195	169	49	15	10	10	11	12	15
6	181	181	188	187	186	191	37	13	21	12	11	11	11	12	12
7	185	183	181	186	187	100	13	18	18	15	12	17	12	12	10
8	184	183	186	189	192	148	15	10	9	9	9	11	12	12	11
9	185	182	184	185	194	14	10	10	8	8	8	10	15	10	13
10	182	177	182	187	88	11	10	10	9	9	10	12	10	11	13
11	183	179	183	190	17	9	8	9	9	9	9	8	11	13	11
12	183	186	189	201	11	9	10	10	9	9	9	11	13	11	9
13	185	183	186	196	11	10	10	10	9	9	8	10	10	11	10
14	184	185	190	11	9	9	9	10	9	56	89	10	8	10	10
15	185	189	193	18	10	9	10	9	20	163	21	11	9	11	42

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

9	9	8
9	9	11
9	8	10

$$\frac{9+9+8+9+9+11+9+8+10}{9} = 9.11$$

Image

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1															
2															
3															
4															
5															
6								59							
7															
8															
9															
10															
11															
12											9				
13															
14															
15															

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

$$g[\cdot,\cdot]_{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
Ŭ								Ŭ	
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}^{\frac{1}{1}}_{\frac{1}{1}}^{\frac{1}{1}}_{\frac{1}{1}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

in Python:

cv2.filter2D
scipy.signal.convolve2D

Smoothing (Box Filter)

$$g[\cdot,\cdot]$$

What does it do?

Replaces each pixel with an average of its neighborhood

 Achieves smoothing effect (removes sharp features)

1
9

1	1	1
1	1	1
1	1	1

Smoothing, Blurring

■ Box filter

FIGURE 3.34 (a) Image of size 528 × 485 pixels from the Hubble Space Telescope. (b) Image filtered with a 15 × 15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)

a b c

\sim	•	•	1
O_1	119	211	ıal
	_	_	

0	0	0
0	1	0
0	0	0

Original

Filtered (no change)

\sim .	•	1
Orı	gin	al
	0	

0	0	0
0	0	1
0	0	0

Original

Shifted left by 1 pixel

0	0	0	1	1	1	1
0	2	0	<u> </u>	1	1	1
0	0	0	9	1	1	1

?

Original

0	0	0	1	1	1	1
0	2	0		1	1	1
0	0	0	9	1	1	1

Original

Sharpening filter

- Accentuates differences with local average

Cross-Correlation Filtering

Assume the averaging window is (2k+1)(2k+1)

$$h[m,n] = \frac{1}{(2k+1)^2} \sum_{j=-k}^{k} \sum_{i=-k}^{k} f[m+i,n+j]$$

Generalization:

$$h[m,n] = \sum_{j} \sum_{i} g[i,j] f[m+i,n+j]$$

$$h[m,n] = \sum_{j=-k}^{k} \sum_{i=-k}^{k} g[k+1+i,k+1+j]f[m+i,n+j]$$

Cross-Correlation Operation: $H = G \otimes F$

Convolution

$$h[m,n] = \sum_{j=-k}^{k} \sum_{i=-k}^{k} g[k+1-i,k+1-j]f[m+i,n+j]$$

$$h[m,n] = \sum_{j} \sum_{i} g[-i,-j] f[m+i,n+j]$$

Convolution is nice!

Convolution is a multiplication-like operation:

- Commutative: f * g = g * f
- Associative: $g_1 * (g_2 * f) = (g_1 * g_2) * f$
- Distributes over addition: $g * (f_1 + f_2) = (g * f_1) + (g * f_2)$
- Scalars factor out: $\alpha g * f = g * \alpha f = \alpha (g * f)$

Under proper conditions:

- Convolution theorem: $g * f \leftrightarrow G.F$ and $g.f \leftrightarrow G * F$
- Derivatives: (g * f)' = g' * f = g * f'

Practical matters

- What is the size of the output?
- Python: convolve2D(g, f, mode)
 - mode = 'full': output size is sum of sizes of f and g
 - mode = 'same': output size is same as f
 - mode = 'valid': output size is difference of sizes of f and g

Convolutional Neural Networks (CNNs)

An early (Le-Net5) Convolutional Neural Network design, LeNet-5, used for recognition of digits

- Padding
- Stride
- Kernel Size

Correlation vs. Convolution

2d correlation

```
im_fil = cv2.filter2D(im, -1, fil)
```

2d convolution

```
im_fil = scipy.signal.convolve2D(im, fil, [opts])
```

"convolve" mirrors the kernel, while "filter" doesn't

```
cv2.filter2d(im, -1, cv2.flip(fil,-1)) same as
signal.convolve2d(im, fil, mode='same', boundary='symm')
```


Weighted Averaging

	1	1	1
$\frac{1}{9}$ ×	1	1	1
	1	1	1

	1	2	1
$\frac{1}{16} \times$	2	4	2
	1	2	1

a b

FIGURE 3.32 Two 3 × 3 smoothing (averaging) filter masks. The constant multiplier in front of each mask is equal to 1 divided by the sum of the values of its coefficients, as is required to compute an average.

Gaussian (Normal) Distribution (Probability Density Function)

$$f(x, m, s) = \frac{1}{s\sqrt{2p}}e^{-\frac{(x-m)^2}{2s^2}}$$

Important Filter: Gaussian

Spatially-weighted average

$$5 \times 5$$
, $\sigma = 1$

$$G_{s} = \frac{1}{2\rho s^{2}} e^{-\frac{(x^{2}+y^{2})}{2s^{2}}}$$

Gaussian Filter

$$G_{S}(x,y) = \frac{1}{Z} e^{-\frac{(x^{2}+y^{2})}{2S^{2}}}$$
Compute empirically

 ${\rm Input\ image}\ f$

Filter h

Output image g

Gaussian Filter **Box Filter**

Gaussian vs. Mean Filters

What does real blur look like?

Gaussian Filters

- What parameters matter here?
- Variance of Gaussian: determines extent of smoothing

Smoothing with a Gaussian

Parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.

Practical matters

How big should the filter be?

- Values at edges should be near zero
- Rule of thumb for Gaussian: set kernel half-width to $\geq 3 \sigma$

Combining Gaussian Filters

$$(f * g_S) * g_{S'} = f * (g_S * g_{S'}) = f * g_{S''}$$

$$S'' = \sqrt{S^2 + S'^2}$$

More blur than either individually (but less than S + S')

Separable Filters

$$G_{S} = G_{S}^{x} * G_{S}^{y}$$

Compute Gaussian in horizontal direction, followed by the vertical direction.

$$G_{S}^{x}(x,y) = \frac{1}{Z_{y}}e^{-\frac{x^{2}}{2S^{2}}} \qquad G_{S}^{y}(x,y) = \frac{1}{Z_{x}}e^{-\frac{y^{2}}{2S^{2}}}$$

Not all filters are separable.

References

 Weighted Averaging Gonzalez, Section 3.4 & 3.5 Szeliski, Section 3.2