HW 2

CS 216, Everything Data, Spring 2020

DUE: Monday Feb. 3 by 4:40 pm (class time)

This assignment is in two parts. In the first part, you will initialize a local relational database using sqlite3 with information about the United States Congress. In the second part, you will write sql queries to answer a number of questions. You will include all of your answers for this assignment within this notebook. You will then convert your notebook to a .pdf and a .py file to submit to gradescope (submission instructions are included at the bottom).

Please take note of the <u>course collaboration policy (https://sites.duke.edu/compsci216s2020/policies/)</u>. You may work alone or with a single partner. If you work with a partner, you may not split up the assignment; you should work together in-person or complete parts independently and come together to discuss your solutions. In either case, you are individually responsible for your work, and should understand everything in your submission.

Name and NetID

Joe Cusano (jgc28) and Pierce Forte (phf7)

Part 1: Getting Started ¶

We will use the SQLite command line interface for working with the database in this assignment. First we will need to set up the necessary tools.

Terminal

You will need access to a unix style terminal (or bash shell), the basic non-graphical interface with which all computer scientists (and likely all data scientists) need to be familiar. If your operating system is a Linux distribution or any MacOS distribution, this part should be easy for you: simply open the terminal application and you are looking at a bash shell.

If your device uses Windows 10, a unix style terminal is not included by default (the Windows Command Prompt is not the same). You have some options. The easiest is likely to use sqlite3.exe to open a command line as discussed at https://www.sqlite.org/cli.html (https://www.sqlite.org/cli.html); you can find the relevant file at https://www.sqlite.org/cli.html); you can find the relevant file at https://www.sqlite.org/cli.html); you can find the relevant file at https://www.sqlite.org/cli.html); you can find the relevant file at https://www.sqlite.org/download.html); under the tools download for Precompiled Binaries for Windows. If you wish, you can also explore tools for obtaining a unix style terminal (among other features) on Windows 10 such as https://www.microsoft.com/en-us/p/ubuntu-1804-lts/9n9tngvndl3q?activetab=pivot:overviewtab) or https://www.microsoft.com/en-us/p/windows-terminal-preview/9n0dx20hk701?activetab=pivot:overviewtab).

If you have never used a unix style terminal before, we strongly reccomend that you look at this very short tutorial (created by a previous year's CS 216 student) to familiarize yourself with the basic look and function: https://www2.cs.duke.edu/courses/spring17/compsci216/help/shell-tutorial.pdf).

SQLite

Now we need to confirm that you have SQLite set up on your device. SQLite is included in most distributions of Python, so most of you shouldn't need to do anything. Simply open your terminal and type "sqlite3" then press enter (or just run sqlite3.exe if you are using the sqlite command line tool for Windows). You should see sqlite3 load as in the getting started section of https://sqlite.org/cli.html (https://sqlite.org/cli.html). You can quit the SQLite command line interface and return to the standard unix terminal at any time by pressing ctrl+d (that is, hold down the ctrl button and then press d).

Note that SQLite is one of many implementations of relational databases using the language SQL. There are abundant resources and references for learning SQL, but you might consider viewing these resources for an introduction to SQL from a SQLite perspective:

- Getting started guide for the SQLite command line interface: https://sqlite.org/cli.html)
- Tutorial and reference: https://www.w3resource.com/sqlite/index.php)
- Another tutorial and reference: https://www.tutorialspoint.com/sqlite/index.htm
 (https://www.tutorialspoint.com/sqlite/index.htm)

Once you have successfully opened the SQLite command line interface, you can move on and start loading the database. Otherwise you will need to go to https://www.sqlite.org/download.html) and install sqlite3 on your device.

Loading the Congress Database

First, you will need to download the folder from box containing hw 2 and all of the related files to a working directory (folder) on your device (make sure to unzip the folder if it downloads in a compressed format). Once you have done that, open up your terminal, and navigate to the same working directory; you should be able to see <code>load.sql</code> and a folder titled <code>load</code>. Now you can open your SQLite command line tool (simply type "sqlite3" and press enter). To create and load the database, simply enter ".read load.sql" into the SQLite command line tool (should take just a couple of seconds to load).

Congratulations, you now have a local (on your device only) relational database containing the history of the US Congress through the 115th Congress (which ended in Jan. 2019). You see a visual representation of this database in the database_visual_schema.pdf document included on box. You can query this database using sql commands, and there are two ways to do so. First, you can enter commands directly into the command line interface. Second, you can execute a query stored in a local file using the .read command. We have included a few files with SQL queries from class for you to try on your own. For instance,

```
.read price-pelosi.sql
```

would result in the output:

agree	total	percent
1411	2649	53.2653831634579086

What to Turn in

Nothing for Part 1

Part 2: SQL Queries on the Congress Database

Write SQL queries to answer the following questions. Note that some queries may be long enough to make it cumbersome to type them all directly into the command line tool, in case you need to edit them multiple times. We reccomend that you work with a two window setup: one window with the SQLite command line tool open and connected to the database, and another window open with a plain text editor where you write and edit your queries. You can either execute those queries by saving them as plain text files and using the .read command (e.g., save queryA.sql and then enter ".read queryA.sql" into the SQLite command line tool) or simply copying them into the SQLite command line tool. When you are satisfied that you have answered the question, simply write your answer and the sql query you used to arrive at that answer, along with any other explanation if needed.

Problem A

List all past and present female members of the Congress who were born in the 1970s. Give their first name, last name, and birthday.

first_name	last_name	birthday	gender
Jaime	Herrera Beutler	1978-11-03	F
Kristi	Noem	1971-11-30	F
Martha	Roby	1976-07-27	F
Kyrsten	Sinema	1976-07-12	F
Grace	Meng	1975-10-01	F
Mia	Love	1975-12-06	F
Joni	Ernst	1970-07-01	F
Nanette	Barragán	1976-09-15	F
Stephanie	Murphy	1978-09-16	F
Jenniffer	González-Colón	1976-08-05	F
Stephanie	Herseth Sandlin	1970-12-03	F
Gabrielle	Giffords	1970-06-08	F

```
SQL Query:
-----
SELECT first_name, last_name, birthday, gender
   FROM persons
WHERE gender = 'F'
AND birthday >= '1970-01-01'
AND birthday < '1980-01-01'</pre>
```

Problem B

Which state is represented by the most of the 25 youngest current members of congress (senators/representatives)? How many of those 25 members represent that state?

Florida is represented by the most of the young members with 6 young members representing the state. We found this number by counting from the table below.

first_name	last_name	state	birthday
Elise	Stefanik	NY	1984-07-02
Mike	Gallagher	WI	1984-03-03
Trey	Hollingswo	IN	1983-09-12
Matt	Gaetz	FL	1982-05-07
Tulsi	Gabbard	HI	1981-04-12
Eric	Swalwell	CA	1980-11-16
Joseph	Kennedy	MA	1980-10-04
Brian	Mast	FL	1980-07-10
Jason	Smith	MO	1980-06-16
Ruben	Kihuen	NV	1980-04-25
Justin	Amash	MI	1980-04-18
Carlos	Curbelo	FL	1980-03-01
Lee	Zeldin	NY	1980-01-30
Ruben	Gallego	AZ	1979-11-20
Jim	Banks	IN	1979-07-16
Scott	Taylor	VA	1979-06-27
Pete	Aguilar	CA	1979-06-19
Jaime	Herrera Be	WA	1978-11-03
Seth	Moulton	MA	1978-10-24
Stephanie	Murphy	FL	1978-09-16
Ron	DeSantis	FL	1978-09-14
Adam	Kinzinger	IL	1978-02-27
Darren	Soto	FL	1978-02-25
Will	Hurd	TX	1977-08-19
Markwayne	Mullin	OK	1977-07-26

SQL Query:

SELECT first_name, last_name, state, birthday
FROM cur_members
ORDER BY birthday DESC LIMIT 25;

Problem C

List all North Carolina Democratic senators (past and present), together with their terms as a North Carolina senator. Output only first name, last name, birthday, as well as the start and end dates of the term. Order the results by start dates, most recent first. Here are some example output rows (the answer has more):

first_name	last_name	birthday	start_date	end_date
Kay	Hagan	1953-05-26	2009-01-06	2015-01-03
John	Edwards	1953-06-10	1999-01-06	2005-01-03
James	Sanford	1917-08-20	1986-11-05	1993-01-03
Robert	Morgan	1925-10-05	1975-01-14	1981-01-03
Benjamin	Jordan	1896-09-08	1958-01-01	1973-01-03
William	Scott	1896-04-17	1954-01-01	1959-01-03
Samuel	Ervin	1896-09-27	1954-01-01	1975-01-03
Alton	Lennon	1906-08-17	1953-01-03	1955-01-03
Willis	Smith	1887-12-19	1950-01-01	1953-12-31
Frank	Graham	1886-10-14	1949-01-03	1951-01-03
Joseph	Broughton	1888-11-17	1948-12-31	1949-03-06
William	Umstead	1895-05-13	1946-01-01	1949-01-03
Clyde	Ноеу	1877-12-11	1945-01-03	1955-01-03
Robert	Reynolds	1884-06-18	1932-12-05	1945-01-03
Josiah	Bailey	1873-09-14	1931-12-07	1947-01-03
Cameron	Morrison	1869-10-05	1930-01-01	1933-03-03
Lee	Overman	1854-01-03	1903-11-09	1930-12-12
Furnifold	Simmons	1854-01-20	1901-12-02	1931-03-03
Thomas	Jarvis	1836-01-18	1894-01-01	1895-12-31
Zebulon	Vance	1830-05-13	1879-03-18	1895-03-03
Augustus	Merrimon	1830-09-15	1873-12-01	1879-03-03
Matt	Ransom	1826-10-08	1872-01-01	1895-03-03
Thomas	Bragg	1810-11-09	1859-12-05	1861-12-31
Thomas	Clingman	1812-07-27	1858-01-01	1861-03-03
Asa	Biggs	1811-02-04	1855-12-03	1859-03-03
David	Reid	1813-04-19	1854-01-01	1859-03-03
William	Haywood	1801-10-23	1843-12-04	1847-03-03
Robert	Strange	1796-09-20	1836-01-01	1841-03-03
Bedford	Brown	1795-06-06	1835-12-07	1841-03-03

```
SQL Query:
-----
SELECT p.first_name, p.last_name, p.birthday, MIN(pr.start_date) AS start_da
te,
          MAX(pr.end_date) AS end_date
FROM persons p, person_roles pr
WHERE pr.party = 'Democrat'
        AND pr.person_id = p.id
        AND pr.state = 'NC'
        AND pr.type = 'sen'
GROUP BY pr.person_id
ORDER BY start_date DESC;
```

Problem D

Find the past and present members of congress from North Carolina who have served both in the House and the Senate. Output the id, first_name and last_name.

HINT: You can use SELECT COUNT(DISTINCT column) to find the number of distinct values on given column.

person_id	first_name	last_name
B000456	Asa	Biggs
B000563	Timothy	Bloodworth
B000763	John	Branch
B000966	James	Broyhill
B001135	Richard	Burr
C000524	Thomas	Clingman
E000211	Samuel	Ervin
F000344	Jesse	Franklin
Н000679	Clyde	Ноеу
L000240	Alton	Lennon
M000034	Nathaniel	Macon
M000096	Willie	Mangum
M000993	Cameron	Morrison
R000144	David	Reid
S000415	Furnifold	Simmons
S000955	David	Stone
U000005	William	Umstead
V000021	Zebulon	Vance

```
SQL Query:
-----
WITH temp_table(person_id, first_name, last_name, type_count, state) AS
(SELECT p.id, p.first_name, p.last_name, COUNT(DISTINCT pr.type), pr.state
FROM persons p, person_roles pr
WHERE pr.state = 'NC'
    AND pr.person_id = p.id
GROUP BY p.id)
SELECT person_id, first_name, last_name
FROM temp_table
WHERE type count > 1;
```

Problem E

One of the important votes cast is for electing the Speaker of the House. You can find these votes by looking for value Election of the Speaker in the question column of votes table. For the most recent such vote, who won the election? Output the vote_id, date, result and count.

id	date	result	vote_count
h581-114.2015	2015-10-29T10:46:00-04:00	Rvan (WI)	435

```
WITH temp_table(id, date, result, vote_count) AS
(SELECT v.id, v.date, v.result, COUNT(p_vote.person_id)
FROM votes v, person_votes p_vote
WHERE v.question = 'Election of the Speaker' AND v.id = p_vote.vote_id
GROUP BY v.id)
SELECT id, date, result, vote_count
FROM temp_table
ORDER BY date DESC LIMIT 1;
```

Problem F

For the election from problem E, can you identify who were the people who recieved votes for this position? (you may directly use useful values from previous answer).

```
Colin Powell
Cooper
Lewis
Pelosi
Ryan (WI)
Webster (FL)
```

```
SQL Query:
-----
SELECT vote
FROM person_votes
WHERE vote_id = 'h581-114.2015'
        AND NOT vote = 'Not Voting'
GROUP BY vote;
```

Problem G

How many members in each state voted for Paul Ryan for this position?

state	COUNT(DISTINCT person_id)
AK	1
AL	6
AR	4
AZ	4
CA	14
CO	4
FL	13
GA	10
IA	3
ID	2
IL	8
IN	7
KS	4
KY	4
LA	5
MD	1

state	COUNT(DISTINCT person_id)
ME	1
MI	9
MN	3
MO	6
MS	3
МТ	1
NC	9
ND	1
NE	2
NH	1
NJ	6
NM	1
NV	3
NY	9
ОН	12
OK	5
OR	1
PA	13
SC	6
SD	1
TN	7
TX	23
UT	4
VA	7
WA	4
WI	4
WV	3
WY	1

SQL Query:

```
_____
```

```
WITH temp_table(person_id, state) AS
(SELECT pv.person_id, pr.state
FROM person_votes pv, person_roles pr
WHERE pv.vote_id = 'h581-114.2015'
    AND pv.person_id = pr.person_id
    AND pv.vote = 'Ryan (WI)')
SELECT state, COUNT(DISTINCT person_id)
FROM temp_table
GROUP BY state;
```

Problem H

In Lecture 2, we showed how queries computing vote correlations for David Price (D-NC) with Nancy Pelosi (D-CA) revealed unexpected results. Can you explain why it seems that Price votes so infrequently with Pelosi (when compared with another Representative from NC, Butterfield)? What is the correct percentage of votes on which Price and Pelosi agreed?

For your convenience, the file price-pelosi.sql contains the SQL query used in the class. You may edit this file to run variations of this query to help you debug.

If we run the original price-pelosi.sql file, we get the following result:

agree	total	percent
1411	2649	53.2653831634579

If we run the butterfield-pelosi.sql file, we get the following result:

agree	total	percent
1100	1325	83.0188679245283

For Pelosi and Price, the total number of votes is 2649, whereas the total for Pelosi and Butterfield is 1325. Thus, price-pelosi.sql suggests that there were nearly twice the number of votes as butterfield-pelosi.sql suggests, yet both cover data over the same period of time.

This led us to believe that some votes were counted twice for the price-pelosi.sql. In order to remedy this, we changed COUNT(*) to COUNT(DISTINCT vote_id) so that it would not count any votes with the same vote id twice.

The modified file returned this:

agree	total	percent
1181	1325	89.1320754716981

This seems much more accurate, and the vote total now matches the vote total for butterfield-pelosi. Our modified code is included below.

What to Turn in

For each of the questions (A, B, ...), give your answer, along with a sql query that generates or supports that answer. Provide any additional description that helps explain how your answer derives from the results of the sql query.

Submitting HW 2

- 1. Double check that you have written all of your answers along with your supporting work in this notebook.

 Make sure you save the complete notebook.
- 2. Double check that your entire notebook runs correctly and generates the expected output. To do so, you can simply select Kernel -> Restart and Run All.
- 3. You will download two versions of your notebook to submit, a .pdf and a .py. To create a PDF, we reccomend that you select File --> Download as --> HTML (.html). Open the downloaded .html file; it should open in your web broser. Double check that it looks like your notebook, then print a .pdf using your web browser (you should be able to select to print to a pdf on most major web browsers and operating systems). Check your .pdf for readability: If some long cells are being cut off, go back to your notebook and split them into multiple smaller cells. To get the .py file from your notebook, simply select File -> Download as -> Python (.py) (note, we recognize that you may not have written any Python code for this assignment, but will continue the usual workflow for consistency).
- 4. Upload the .pdf to gradescope under hw2 report and the .py to gradescope under hw2 code. If you work with a partner, only submit one document for both of you, but be sure to add your partner using the group feature on gradescope (https://www.gradescope.com/help#help-center-item-student-group-members).

```
In [ ]:
```