Course: Engineering Physics PHY 1701

13-01-2020

Dr. R. Navamathavan
Physics Division
School of Advanced Sciences (SAS)

navamathavan.r@vit.ac.in

Outline

- Introduction
- Quantum Confinement
- Quantum Well, Wire and Dots
- CNT

Division of Physics School of Advanced Sciences

Quantum Confinement

- The diameter of the material **!**
 - the electron wave function

their electronic and optical properties deviate substantially from those of bulk materials

Quantum confinement in semiconductor nanocrystals

Division of Physics School of Advanced Sciences

Quantum Confinement

Quantum Confinement

The confining dimension is large compared to the wavelength of the particle

the bandgap remains at its original energy due to a continuous energy state.

However, as the confining dimension decreases and reaches a certain limit, *typically in nanoscale*, the energy spectrum turns to discrete.

As a result, the bandgap becomes size dependent.

This ultimately results in a blue shift in optical illumination as the size of the particles decreases.

Nanostructures

Quantum well

A thin layer of material (typically between 1 and 10 nanometers thick) within which the potential energy of an electron is less than outside the layer, so that the motion of the electron perpendicular to the layer is quantized

Quantum wire

A strip of conducting material about 10 nanometers or less in width and thickness that displays quantum-mechanical effects

Quantum dot

A quantized electronic structure in which electrons are confined with respect to motion in all three dimensions

Nanoparticles and Quantum Dots

- "Zero-dimensional" particle
- Surface effects/chemistry important
- Radius < 100 nm
- < 10⁶ atoms per nanoparticle
- Size smaller than critical length scales (e.g. mean free path, wavelength)
- Nano/quantum physical phenomena present
- "Large" nanoparticles have same structure as bulk; "small" may be different
- Synthesis: RF plasma, chemical, thermolysis, pulsed laser
- "Old" examples

Vellore Institute of Technology

- Stained glass small metal oxide clusters comparable in size to the wavelength of light
- Photography small colloidal silver particles for image formation

Nanoparticles and Quantum Dots

Metalic nanoparticles

Gradient of gold nanoparticles on a silica surface

Si nanoparticle; singlecrystal; hexagonal shape

Density of States

This animation of a rotating Carbon nanotube shows its 3D structure.

The animation of single and multi wall CNT

Carbon nanotube properties:

- One dimensional sheets of hexagonal network of carbon rolled to form tubes
- Approximately 1 nm in diameter
- Can be microns long
- Essentially free of defects
- Ends can be "capped" with half a buckyball

Varieties include single-wall and multi-wall

nanotubes, ropes, bundles, arrays

- Structure (chirality, diameter) influences properties:
 - Semiconducting vs. metallic
 - Thermal, electrical conductance
 - Mechanical strength, elasticity

Multi-wall carbon nanotube

Chiral

Carbon nanotube is a new carbon allotrope that was first discovered in 1991 by Dr. Sumio lijima. It has a nanometer-scale hollow tubular structure and a different atomic arrangement from graphite, diamond and C_{60} . Its unique and promising properties have attracted the attention of researcher around the world and led to active R&D efforts in the commercial industries.

Single-Wall Nanotube (SWNT)

Multi-Wall Nanotube (MWNT)

CNT is a tubular form of carbon with diameter as small as 1 nm. Length: few nm to microns.

CNT is configurationally equivalent to a two dimensional graphene sheet rolled into a tube.

A CNT is characterized by its Chiral Vector: $\mathbf{C}_h = \mathbf{n} \ \hat{\mathbf{a}}_1 + \mathbf{m} \ \hat{\mathbf{a}}_2$, $\theta \rightarrow$ Chiral Angle with respect to the zigzag axis.

Why do Carbon Nanotube form?

Finite size of graphene layer has dangling bonds. These dangling bonds correspond to high energy states.

Carbon Nanotube: Growth Method

- a) Arc Discharge
- b) Laser Abalation
- Involve condensation of C-atoms generated from evaporation of solid carbon sources. Temperature ~ 3000-4000 K, close to melting point of graphite.
- Both produce high-quality SWNTs and MWNTs.
- MWNT: 10's of μm long, very straight & have 5-30 nm diameter.
- SWNT: needs metal catalyst (Ni,Co etc.).

 Produced in form of ropes consisting of 10's of individual nanotubes close packed in hexagonal crystals.

Carbon Nanotube: Growth Method

c) Chemical Vapor Deposition:

Hydrocarbon + Fe/Co/Ni catalyst ______ CNT

Steps:

- Dissociation of hydrocarbon.
- Dissolution and saturation
 of C atoms in metal nanoparticle.
- Precipitation of Carbon.

Choice of catalyst material?

Base Growth Mode or Tip Growth Mode?

Metal support interactions

Carbon Nanotube: Properties

- the highest elastic module, and mechanical strength that is approximately 200 times stronger than steel
- novel electronic properties
- high thermal conductivity
- excellent chemical and thermal stability
- promising electron field emission properties
- high chemical (such as lithium) storag capacity

Carbon Nanotube: Applications

Nanowires

FET

Biosensor

H₂ Storage

Field Emission

Carbon Nanotube: Applications

CNT growth on a patterned 6-inch wafer

