Diskrete Strukturen (WS 2023-24) - Halbserie 3

Bitte nur Probleme 3.1, 3.2 und 3.3 einreichen.

3.1

Sei I eine Menge, und seien A_i und B_i Mengen für jedes $i \in I$.

(a) Zeigen Sie, dass

$$\bigcap_{i \in I} A_i \cup \bigcap_{i \in I} B_i \subset \bigcap_{i \in I} (A_i \cup B_i)$$

(b) Geben Sie ein Beispiel, dass zeigt, dass die andere Teilmengerelation kann falsch sein.

Solution.

- (a) Sei $x \in \bigcap_{i \in I} A_i \cup \bigcap_{i \in I} B_i$. Dann ist $x \in \bigcap_{i \in I} A_i$ oder $x \in \bigcap_{i \in I} B_i$. Daraus folgt, dass entweder $\exists i \text{ mit } x \in A_i \text{ oder } \exists i \text{ mit } x \in B_i$. Wir stellen fest, dass für alle i haben wir $A_i \subset A_i \cup B_i$ und $B_i \subset A_i \cup B_i$. Daraus leiten wir ab, dass $\exists i \text{ mit } x \in A_i \cup B_i$. Dies bedeutet, dass $x \in \bigcap_{i \in I} (A_i \cup B_i)$.
- (b) $I := \{-1, 1\}, A_i := \{i\}, B_i := \{-i\}.$ Die linke Seite ist \emptyset , die rechte Seite ist $\{-1, 1\}.$

 $3.2 ag{4}$

Zeigen Sie durch vollständige Induktion, dass für jede natürliche Zahl $n \geq 1$ gilt:

$$\sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)} = \frac{n}{2n+1}.$$

Schreiben Sie explizit was sind Induktionsanfang, Induktionshypothese und Induktionsbehauptung. Markieren Sie, wo im Beweis die Induktionshypothese verwendet wird.

Solution. IA: Linke Seite wenn n=1: $\frac{1}{(2-1)(2+1)}$. Rechte Seite $\frac{1}{3}$, also die Aussage ist wahr.

IH: $\sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)} = \frac{n}{2n+1}$.

IB: Zu zeigen ist $\sum_{i=1}^{n+1} \frac{1}{(2i-1)(2i+1)} = \frac{n+1}{2(n+1)+1}$.

Beweis der IB: Linke Seite ist gleich $\sum_{i=1}^n \frac{1}{(2i-1)(2i+1)} + \frac{1}{(2(n+1)-1)(2(n+1)+1)}$. Mit IH das ist gleich

$$\frac{n}{2n+1} + \frac{1}{(2n+1)(2n+3)} = \frac{2n^2 + 3n + 1}{(2n+1)(2n+3)} = \frac{(2n+1)(n+1)}{(2n+1)(2n+3)} = \frac{n+1}{2n+3}$$

Das ist gleich der rechten Seite, was beenden den Beweis.

Seien A_1, \ldots, A_n Mengen. Zeigen Sie, dass für jede natürliche Zahl $n \geq 1$ gilt:

$$A_1 \cup A_2 \cup \ldots \cup A_n =$$

$$A_1 \cap A_2 \cap \ldots \cap A_n) \cup (A_1 \setminus A_2) \cup (A_2 \setminus A_3) \cup \ldots \cup (A_{n-1} \setminus A_n) \cup (A_n \setminus A_1).$$

Ursprünglich sollte diese Übung mit Induktion gelöst werden. Obwohl das möglich ist, war das ein Fehler - ein Beweis ohne Induktion ist viel natürlicher. Deswegen bekommen alle 4 Punkte für dieses Problem.

Solution.

Sei $L := A_1 \cup A_2 \cup \ldots \cup A_n$, und

$$R := A_1 \cap A_2 \cap \ldots \cap A_n \cup (A_1 \setminus A_2) \cup (A_2 \setminus A_3) \cup \ldots \cup (A_{n-1} \setminus A_n) \cup (A_n \setminus A_1).$$

Erst zeigen wir $R \subset L$. Wir haben $A_1 \cap A_2 \cap \ldots \cap A_n \subset A_1$ und $A_i \setminus A_{i+1} \subset A_i$, $A_n \setminus A_1 \subset A_n$, deswegen (durch Monotonie) haben wir auch $R \subset L$.

Zunächst zeigen wir $L \subset R$. Sei $x \in L$.

Fall 1) $x \in A_1 \cap ... \cap A_n$. Dann gilt (durch Abschwächung) auch $x \in R$.

Fall 2) $x \notin A_1 \cap \ldots \cap A_n$. Dann wir können das kleinste i betrachten so dass $x \notin A_i$.

Unterfall 2a) i=1. Sei j das grösste natürliche Zahl mit $x\in A_j$. Falls j< n dann $x\in A_j\setminus A_{j-1}$. Falls j=n dann $x\in A_n\setminus A_1$. Im jeden Fall haben wir $x\in R$.

Unterfall 2b) i > 1 Dann $x \in A_{i-1} \setminus A_i$, und deswegen wieder $x \in R$.

3.4 Zeigen Sie durch die vollständige Induktion, dass für jede natürliche Zahl $n \geq 0$ gilt:

$$\sum_{i=1}^{n} (2 \cdot i - 1) = n^2.$$

Schreiben Sie explizit was sind Induktionsanfang, Induktionshypothese und Induktionsbehauptung. Markieren Sie, wo im Beweis die Induktionshypothese verwendet wird.

Solution. Induktionsanfang: Für n = 0 gilt $\sum_{i=1}^{n} (2i - 1) = 0 = n^2$. Induktionsschritt: Sei $n \in \mathbb{N}$ und gelte

- Induktionshypothese: $\sum_{i=1}^{n} (2 \cdot i 1) = n^2$.
- Induktionsbehauptung: Zu zeigen ist $\sum_{i=1}^{n+1} 2 \cdot i 1 = (n+1)^2$.

$$\sum_{i=1}^{n+1} (2 \cdot i - 1) = \sum_{i=1}^{n} (2 \cdot i - 1) + 2(n+1) - 1$$

$$\stackrel{IH}{=} \qquad n^2 + 2(n+1) - 1$$

$$= \qquad n^2 + 2n + 2 - 1$$

$$= \qquad n^2 + 2n + 1$$

$$= \qquad (n+1)^2$$

 ${\bf 3.5}~$ Sei Meine Menge mit n Elementen. Beweisen Sie mittels vollständiger Induktion, dass die Potenzmenge von M dann

$$\frac{n \cdot (n-1) \cdot (n-2)}{6}$$

Teilmengen mit genau drei Elementen enthält.

Schreiben Sie explizit was sind Induktionsanfang, Induktionshypothese und Induktionsbehauptung. Markieren Sie, wo im Beweis die Induktionshypothese verwendet wird.

Solution. Vollständige Induktion über n.

• Induktionsanfang: n = 0. Dann ist $M = \emptyset$ und damit $\mathcal{P}(M) = \{\emptyset\}$. Also enthält die Potenzmenge keine dreielementigen Teilmengen ("3-Menge") und in der Tat gilt

$$\frac{0 \cdot (0-1) \cdot (0-2)}{6} = 0.$$

- Induktionshypothese: Angenommen, die Aussage gilt für beliebiges, aber festes $n \in \mathbb{N}$. Dann enthält die Potenzmenge einer Menge M mit |M| = n nach Induktionsvoraussetzung $\frac{n \cdot (n-1) \cdot (n-2)}{6}$ 3-Mengen.
- \bullet Induktionsbehauptung: Zu zeigen: Die Potenzmenge einer (n+1)-elementigen Menge enthält

$$\frac{(n+1)\cdot((n+1)-1)\cdot((n+1)-2)}{6} = \frac{(n+1)\cdot n\cdot(n-1)}{6}$$

3-Mengen.

• Beweis der IB: Betrachte $M' := M \cup \{\bot\}$, womit |M'| = |M| + 1 = n + 1 gilt. Offensichtlich gilt

$$\mathcal{P}(M') = \mathcal{P}(M) \ \dot{\cup} \ \underbrace{\{X \ \dot{\cup} \ \{\bot\} \mid X \in \mathcal{P}(M)\}}_{=:\mathcal{X}}.$$

Nach IH enthält $\mathcal{P}(M)$ $\frac{n \cdot (n-1) \cdot (n-1)}{6}$ 3-Mengen. Andererseits ist eine Menge aus \mathcal{X} genau dann eine 3-Menge, wenn X $(\in \mathcal{P}(M))$ eine 2-Menge ist. Wegen |M| = n

enthält $\mathcal{P}(M)$ nach Aufgabe 3.4 $\frac{n \cdot (n-1)}{2}$ solche Mengen. Da \mathcal{X} und $\mathcal{P}(M)$ disjunkt sind, folgt nun für die Anzahl der 3-Mengen in $\mathcal{P}(M')$:

$$\frac{n \cdot (n-1) \cdot (n-2)}{6} + \frac{n \cdot (n-1)}{2} = \frac{n \cdot (n-1) \cdot (n-2) + 3n \cdot (n-1)}{6}$$
$$= \frac{n \cdot (n-1) \cdot (n-2+3)}{6}$$
$$= \frac{(n+1) \cdot n \cdot (n-1)}{6}$$

3.6 Gegeben sei die Menge $M = \{0, 5, 7\}$ und die Äquivalenzrelation $R \subseteq \mathbb{N} \times \mathbb{N}$ definiert durch

 $(x,y) \in R$ genau dann, wenn für alle $m \in M$ die folgenden Bedingungen gelten:

- (i) x = m genau dann, wenn y = m,
- (ii) x < m genau dann, wenn y < m,
- (iii) x > m genau dann, wenn y > m.

Geben Sie alle $\ddot{\mathbf{A}}$ quivalenzklassen von R an.

Solution.
$$\{0\}, \{1, 2, 3, 4\}, \{5\}, \{6\}, \{7\}, \{x \in \mathbb{N} \mid x > 7\}.$$

3.7 Gegeben sei die Menge $M = \{a, b, c\}$.

Geben Sie alle **Zerlegungen** von M an.

Solution. Es gibt die folgenden Zerlegungen $\mathcal{N}_i \subseteq \mathcal{P}(M)$ für $i \in \{1, 2, 3, 4, 5\}$:

$$\mathcal{N}_1 = \{\{a\}, \{b\}, \{c\}\};\$$

$$\mathcal{N}_2 = \{\{a\}, \{b, c\}\};$$

$$\mathcal{N}_3 = \{\{a,b\},\{c\}\};$$

$$\mathcal{N}_4 = \{\{a, c\}, \{b\}\};$$

$$\mathcal{N}_5 = \{ \{a, b, c\} \}.$$

3.8 Seien A, B, C Mengen.

Sind die folgenden Aussagen über das kartesische Produkt wahr? Beweisen Sie Ihre Antwort.

1.
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

2.
$$A \cap (B \times C) = (A \cap B) \times (A \cap C)$$

Solution.

1. Wahr. Es gilt:

$$(x,y) \in A \times (B \cup C) \Leftrightarrow x \in A \land y \in B \cup C$$
$$\Leftrightarrow x \in A \land (y \in B \lor y \in C)$$
$$\Leftrightarrow (x \in A \land y \in B) \lor (x \in A \land y \in C)$$
$$\Leftrightarrow (x,y) \in (A \times B) \cup (A \times C)$$

2. Falsch , wähle z.B. $A=B=C=M=\{1\}.$

3.9 Sei $M = \{a, b, c\}$ und die **Relation** $R \subseteq M \times M$ definiert durch

$$R = \{(a, a), (b, b), (c, c), (a, b), (b, a), (a, c), (c, b)\}.$$

Welche der folgenden **Eigenschaften** besitzt R? Beweisen Sie Ihre Antwort.

- 1. reflexiv $J_{a}, (a, a), (b, b), (c, c) \in R$
- 4. antisymmetrisch Nein, $(a, b), (b, a) \in R$ und $a \neq b$

2. irreflexiv Nein, $(a, a) \in R$

- 5. transitiv Nein, $(b, a), (a, c) \in R$ und $(b, c) \notin R$
- 3. symmetrisch Nein, $(a, c) \in R$ und $(c, a) \notin R$
- 6. vollständig

 Ja, weil $(a, a), (b, b), (c, c) \in R$ und $(a, b), (a, c), (c, b) \in R$

3.10 Sei M eine Menge und $R \subseteq M \times M$ eine **Relation** auf M. Beweisen Sie die folgende Aussage durch einen **direkten Beweis**:

Falls R symmetrisch und vollständig ist, so ist R auch reflexiv und transitiv.

Solution. Sei R symmetrisch und vollständig.

Sei $a \in M$. Da R vollständig ist, gilt $(a, a) \in R$ (oder $(a, a) \in R$), somit ist R reflexiv. Seien $a, b, c \in M$ mit $(a, b) \in R$ und $(b, c) \in R$. Da R vollständig ist, gilt (i) $(a, c) \in R$ oder (ii) $(c, a) \in R$. Wir machen eine Fallunterscheidung:

- (i) Gelte $(a,c) \in R$. Die für die Transitivität geforderte Bedingung ist sofort erfüllt.
- (ii) Gelte $(c, a) \in R$. Weil R symmetrisch ist, gilt auch $(a, c) \in R$.

In jedem der Fälle gilt $(a,c) \in R$. Es folgt, dass R transitiv ist.