Двоичные алгебры

9. Двоичные алгебры

9.1. Понятие двоичной (бинарной) операции

Пусть A — непустое множество. Двоичной операцией на A называется отображение

$$*: A \times A \longrightarrow A, \quad (x,y) \mapsto x * y.$$

Интуиция: берём два элемента из A, «складываем» их по правилу * и получаем снова элемент из A.

9.2. Свойства двоичной операции

Пусть * — двоичная операция на A. Говорят, что * обладает свойствами:

- Замкнутость: по определению $x * y \in A$ для любых $x, y \in A$.
- Ассоциативность:

$$(x*y)*z = x*(y*z), \quad \forall x, y, z \in A.$$

Позволяет не ставить скобок при многократном применении.

• Коммутативность:

$$x * y = y * x, \quad \forall x, y \in A.$$

• Нейтральный (единичный) элемент: существует $e \in A$ такое, что

$$e * x = x * e = x, \quad \forall x \in A.$$

Его часто обозначают 0 или 1 в зависимости от контекста.

• Обратимые элементы: элемент $x \in A$ называется обратимым, если существует $y \in A$ такой, что

$$x * y = y * x = e.$$

Тогда y называют *обратным* к x и обозначают x^{-1} .

9.3. Классификация двоичных алгебр

- 1) **Магма**: (A,*) любое множество с двоичной операцией (требуется лишь замкнутость).
- 2) Полугруппа: магма с ассоциативной операцией.
- 3) **Моноид**: полугруппа, в которой есть единица e.
- 4) Группа: моноид, в котором каждый элемент обратим.
- 5) Абелева (коммутативная) группа: группа с коммутативным *.

9.4. Примеры

- 1) $(\mathbb{Z},+)$ абелева группа, где единица 0, обратный к x есть -x.
- 2) $(\mathbb{N},+)$ моноид (нет обратных элементов, кроме 0).
- 3) $(\{0,1\},\wedge)$ коммутативная монода, где $0 \wedge 1 = 0$, единица 1.
- 4) $(\{0,1\},\oplus)$ (сумма по модулю 2) абелева группа:

$$0 \oplus 0 = 0$$
, $0 \oplus 1 = 1$, $1 \oplus 1 = 0$; $e = 0$, $x^{-1} = x$.

5) $(M_n(\mathbb{R}), \cdot)$ — полугруппа матриц; моноид при наличии единичной матрицы.

9.5. Таблица Кэли

Для конечных алгебр удобно задавать операцию таблицей. Пример: группа $(\{0,1\},\oplus):$

$$\begin{array}{c|cccc} \oplus & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

9.6. Связь с булевыми алгебрами

Булева алгебра — это расширенная коммутативная группа с дополнительными операциями «и», «или» и «не» на множестве $\{0,1\}$. В частности, структура $(\{0,1\},\wedge,\vee,\neg)$ удовлетворяет ряду аксиом идемпотентности и дистрибутивности.

9.7. Зачем нужны двоичные алгебры?

- Моделирование и анализ абстрактных операций (сложение, умножение, логические связки).
- Основа теории групп и её приложений: симметрии, криптография, теории кодирования.
- В информатике: операции над битами, булевы функции, конечные автоматы.

Источники

- С. Ланг, Алгебра.
- Д. С. Джонсонбауг, Дискретная математика, Pearson.
- Википедия: Бинарная операция.