Université Paris 1 Panthéon Sorbonne Master 2: Ingénierie Mathématique de la Finance

Programming in C++ FINAL EXAM

BY Natalia Piątkowska, MSc January 11, 2018

The task

Write a function that calculates **yield to maturity**. You can find the elaboration on the topic in the class notes. Assume yearly coupons.

The function should <u>at minimum</u> take the following arguments:

- c coupon value
- d year fraction until next coupon payment
- FV face (future) value of a bond
- PV present value of a bond (its price)
- N number of full years until maturity

Example 1:

Bond of face value of 100, with a coupon rate of 5%, paid yearly, traded at 95, maturing on 2019-12-31, will have the following input data as of 2018-01-01:

- c = 5 (FV times coupon rate, which is $100 \times 5\% = 5$)
- d = 1 (coupon has just been paid, we wait 1 year for another one)
- FV = 100 (given)
- PV = 95 (given)
- N = 1 (d + N must equal to period from valuation date to maturity date, there are 2 years, first was assigned to d, second to N)

For the input given above, $YTM \approx 0.078$ (or, equivalently, 7.8%)

Take into account special cases that simplify calculations, such as: zero-coupon bond, coupon payment day is today, bond's price is equal to its par (face) value.

Please find below example input and expected result:

Example 1:

If bond is traded at par and we are at coupon date (coupon has just been paid), YTM should be equal to coupon rate.

```
INPUT: c = 2.5, d = 1, FV = 100, PV = 100, N = 10 gives YTM = 0.025 (or, equivalently, 2.5\%)
```

Example 2:

If bond is traded at discount, i.e. PV < FV, YTM will be higher than coupon rate. INPUT: c = 1.0, d = 0.96, FV = 100, PV = 99.06, N = 7 gives $YTM \approx 0.011$ (or, equivalently, 1.1%)

Example 3:

If bond is traded at premium, i.e. FV < PV, YTM will be lower than coupon rate. INPUT: c = 2.625, d = 0.42, FV = 100, PV = 105.5, N = 2 gives YTM ≈ 0.009 (or, equivalently, 0.9%)

Contact

Please put any questions in the **comments under blog post**, so that everybody can follow questions and answers.

In case of any specific problem, you may contact me via:

• e-mail n.piatkowska@outlook.com

• WhatsApp: +48 517 455 124

Cooperation rule

You are encouraged to cooperate, use the Internet, friends, and every other source / opportunity you can find to help you but, everybody needs to **submit the exam separately**. Obviously, the solutions you submit may be identical if you work together.

Good programming practices

Remember about good programming practices. Certain points will be granted solely for sticking to those rules, in particular:

- names name modules, classes, methods, functions, variables so that everybody can understand what a given object is or what it does
- indents use a certain indent convention, that is clear and helps you to understand the code structure at one quick glance
- avoid duplicating if you use a certain piece of instruction in many places, it is better to extract it to separate place, and then call it multiple times

Submitting

There are three ways I see to submit the project (1 point is dedicated solely to the way of submitting):

- Op pasting the code in the e-mail or sending in a .txt file
- 0.5p sending *.cpp, optionally supporting *.h files in an e-mail; and optionally along with compiled executive file
 - 1p setting up account on github (or another online code repository) and sending me a link to the repository with the project

Deadline

Starting from 2018-01-11 at 19:00 UTC+1:00, you have full 24 hours to complete the task.

Ultimate deadline is Friday, 2018-01-12 at 21:00 UTC+1:00. Every hour of delay (time is rounded up to hours) decreases final score by 0.5 p.

Example: You submitted on 2018-01-12 at 22:15 UTC+1:00, which is 1h 15min overdue. Rounded up gives us 2h, equivalent to -1.0 point added to the final score.