Announcements

Midterm is graded, grades out tonight after I review a thing.

CS61B: 2019

Lecture 14: Disjoint Sets

- Dynamic Connectivity and the Disjoint Sets Problem
- Quick Find
- Quick Union
- Weighted Quick Union
- Path Compression (CS170 Preview)

Meta-goals of the Coming Lectures: Data Structure Refinement

Next couple of weeks: Deriving classic solutions to interesting problems, with an emphasis on how sets, maps, and priority queues are implemented.

Today: Deriving the "Disjoint Sets" data structure for solving the "Dynamic Connectivity" problem. We will see:

- How a data structure design can evolve from basic to sophisticated.
- How our choice of underlying abstraction can affect asymptotic runtime (using our formal Big-Theta notation) and code complexity.

The Disjoint Sets Data Structure

The Disjoint Sets data structure has two operations:

- connect(x, y): Connects x and y.
- isConnected(x, y): Returns true if x and y are connected. Connections can

be transitive, i.e. they don't need to be direct.

Example:

- connect(China, Vietnam)
- connect(China, Mongolia)
- isConnected(Vietnam, Mongolia)? true
- connect(USA, Canada)
- isConnected(USA, Mongolia)? false
- connect(China, USA)
- isConnected(USA, Mongolia)? true

The Disjoint Sets Data Structure

The Disjoint Sets data structure has two operations:

connect(x, y): Connects x and y.

• isConnected(x, y): Returns true if x and y are connected. Connections can

be transitive, i.e. they don't need to be direct.

Useful for many purposes, e.g.:

- Percolation theory:
 - Computational chemistry.
- Implementation of other algorithms:
 - Kruskal's algorithm.

- Force all items to be integers instead of arbitrary data (e.g. 8 instead of USA).
- Declare the number of items in advance, everything is disconnected at start.

```
ds = DisjointSets(7)
ds.connect(0, 1)
ds.connect(1, 2)
ds.connect(0, 4)
ds.connect(3, 5)
ds.isConnected(2, 4): true
ds.isConnected(3, 0): false
```


- Force all items to be integers instead of arbitrary data (e.g. 8 instead of USA).
- Declare the number of items in advance, everything is disconnected at start.

```
ds = DisjointSets(7)
ds.connect(0, 1)
ds.connect(1, 2)
ds.connect(0, 4)
ds.connect(3, 5)
ds.isConnected(2, 4): true
ds.isConnected(3, 0): false
ds.connect(4, 2)
```


- Force all items to be integers instead of arbitrary data (e.g. 8 instead of USA).
- Declare the number of items in advance, everything is disconnected at start.

```
ds = DisjointSets(7)
ds.connect(0, 1)
ds.connect(1, 2)
ds.connect(0, 4)
ds.connect(3, 5)
ds.isConnected(2, 4): true
ds.isConnected(3, 0): false
ds.connect(4, 2)
ds.connect(4, 6)
```


- Force all items to be integers instead of arbitrary data (e.g. 8 instead of USA).
- Declare the number of items in advance, everything is disconnected at start.

```
ds = DisjointSets(7)
ds.connect(0, 1)
ds.connect(1, 2)
ds.connect(0, 4)
ds.connect(3, 5)
ds.isConnected(2, 4): true
ds.isConnected(3, 0): false
ds.connect(4, 2)
ds.connect(4, 6)
ds.connect(3, 6)
```


- Force all items to be integers instead of arbitrary data (e.g. 8 instead of USA).
- Declare the number of items in advance, everything is disconnected at start.

```
ds = DisjointSets(7)
ds.connect(0, 1)
ds.connect(1, 2)
ds.connect(0, 4)
ds.connect(3, 5)
ds.isConnected(2, 4): true
ds.isConnected(3, 0): false
ds.connect(4, 2)
ds.connect(4, 6)
ds.connect(3, 6)
ds.isConnected(3, 0): true
```


The Disjoint Sets Interface

Goal: Design an efficient DisjointSets implementation.

- Number of elements N can be huge.
- Number of method calls M can be huge.
- Calls to methods may be interspersed (e.g. can't assume it's only connect operations followed by only isConnected operations).

The Naive Approach

Naive approach:

- Connecting two things: Record every single connecting line in some data structure.
- Checking connectedness: Do some sort of (??) iteration over the lines to see if one thing can be reached from the other.

A Better Approach: Connected Components

Rather than manually writing out every single connecting line, only record the sets that each item belongs to.

```
\{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}
                            \{0, 1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}
connect(0, 1)
                            \{0, 1, 2\}, \{3\}, \{4\}, \{5\}, \{6\}
connect(1, 2)
                          \{0, 1, 2, 4\}, \{3\}, \{5\}, \{6\}
connect(0, 4)
                            \{0, 1, 2, 4\}, \{3, 5\}, \{6\}
connect(3, 5)
isConnected(2, 4): true
isConnected(3, 0): false
                             \{0, 1, 2, 4\}, \{3, 5\}, \{6\}
connect(4, 2)
                            \{0, 1, 2, 4, 6\}, \{3, 5\}
connect(4, 6)
                            \{0, 1, 2, 3, 4, 5, 6\}
connect(3, 6)
isConnected(3, 0): true
```


A Better Approach: Connected Components

For each item, its *connected component* is the set of all items that are connected to that item.

- Naive approach: Record every single connecting line somehow.
- Better approach: Model connectedness in terms of sets.
 - How things are connected isn't something we need to know.
 - Only need to keep track of which connected component each item belongs to.

Quick Find

Before connect(2, 3) operation:

After connect(2, 3) operation:

$$\{ 0, 1, 2, 4 \}, \{3, 5\}, \{6\}$$

$$\{0, 1, 2, 4, 3, 5\}, \{6\}$$

Assume elements are numbered from 0 to N-1.

Map<Integer, Integer> -- first number represents set and second represents item

 Slow because you have to iterate to find which set something belongs to.

Assume elements are numbered from 0 to N-1.

After connect(2, 3) operation:

$$\{ 0, 1, 2, 4 \}, \{3, 5\}, \{6\}$$

$$\{0, 1, 2, 4, 3, 5\}, \{6\}$$

Map<Integer, Integer> -- first number represents the item, and the second is the set number.

 More or less what we get to shortly, but less efficient for reasons I will explain.

Assume elements are numbered from 0 to N-1.

Before connect(2, 3) operation:

After connect(2, 3) operation:

$$\{ 0, 1, 2, 4 \}, \{3, 5\}, \{6\}$$

$$\{0, 1, 2, 4, 3, 5\}, \{6\}$$

Idea #1: List of sets of integers, e.g. [{0, 1, 2, 4}, {3, 5}, {6}]

- In Java: List<Set<Integer>>.
- Very intuitive idea.

If nothing is connected:

0 1 2 3 4 5 6

- Idea #1: List of sets of integers, e.g. [{0}, {1}, {2}, {3}, {4}, {5}, {6}]
 - In Java: List<Set<Integer>>.
 - Very intuitive idea.
 - Requires iterating through all the sets to find anything. Complicated and slow!
 - \circ Worst case: If nothing is connected, then isConnected(5, 6) requires iterating through N-1 sets to find 5, then N sets to find 6. Overall runtime of $\Theta(N)$.

Performance Summary

Implementation	constructor	connect	isConnected
ListOfSetsDS	Θ(N)	O(N)	O(N)

Constructor's runtime has order of growth N no matter what, so $\Theta(N)$.

ListOfSetsDS is *complicated* and slow.

Worst case is $\Theta(N)$, but other cases may be better. We'll say O(N) since O means "less than or equal".

- Operations are linear when number of connections are small.
 - Have to iterate over all sets.
- Important point: By deciding to use a List of Sets, we have doomed ourselves to complexity and bad performance.

My Approach: Just Use a Array of Integers

Idea #2: list of integers where ith entry gives set number (a.k.a. "id") of item i.

connect(p, q): Change entries that equal id[p] to id[q]

QuickFindDS

```
public class QuickFindDS implements DisjointSets {
    private int[] id;
                                                Very fast: Two array accesses: Θ(1)
    public boolean isConnected(int p, int q) {
        return id[p] == id[q];
                                           Relatively slow: N+2 to 2N+2 array accesses: Θ(N)
    public void connect(int p, int q) {
        int pid = id[p];
                                                  public QuickFindDS(int N) {
        int qid = id[q];
                                                       id = new int[N];
        for (int i = 0; i < id.length; i++) {</pre>
                                                       for (int i = 0; i < N; i++)
            if (id[i] == pid) {
                                                           id[i] = i;
                 id[i] = qid;
```

Performance Summary

Implementation	constructor	connect	isConnected
ListOfSetsDS	Θ(N)	O(N)	O(N)
QuickFindDS	Θ(N)	Θ(N)	Θ(1)

QuickFindDS is too slow for practical use: Connecting two items takes N time.

Instead, let's try something more radical.

Quick Union

Approach zero: Represent everything as boxes and lines. Overly complicated.

ListOfSets: Represent everything as connected components. Represented connected components as list of sets of integers.

QuickFind: Represent everything as connected components. Represented connected components as a list of integers, where value = id.

QuickFind: Represent everything as connected components. Represented connected components as a list of integers where value = id.

Bad feature: Connecting two sets is slow!

Next approach (QuickUnion): We will still represent everything as connected components, and we will still represent connected components as a list of integers. However, values will be chosen so that connect is fast.

Hard question: How could we change our set representation so that combining two sets into their union requires changing **one** value?

Improving the Connect Operation (Your Answer)

Hard question: How could we change our set representation so that combining two sets into their union requires changing **one** value?

Hard question: How could we change our set representation so that combining two sets into their union requires changing **one** value?

- Idea: Assign each item a parent (instead of an id). Results in a tree-like shape.
 - An innocuous sounding, seemingly arbitrary solution.
 - Unlocks a pretty amazing universe of math that we won't discuss.

connect(5, 2)

- How should we change the parent list to handle this connect operation?
 - If you're not sure where to start, consider: why can't we just set id[5] to 2?

Improving the Connect Operation (Your Answer)

connect(5, 2)

- One possibility, set id[3] = 2
- Set id[3] = 0

{6}

connect(5, 2)

- Find root(5). // returns 3
- Find root(2). // returns 0
- Set root(5)'s value equal to root(2).

© O S O

connect(5, 2)

- Find root(5). // returns 3
- Find root(2). // returns 0
- Set root(5)'s value equal to root(2).

datasi

Set Union Using Rooted-Tree Representation

connect(5, 2)

Make root(5) into a child of root(2).

What are the potential performance issues with this approach?

Compared to QuickFind, we have to climb up a tree.

datastructur.e

Set Union Using Rooted-Tree Representation

connect(5, 2)

Make root(5) into a child of root(2).

What are the potential performance issues with this approach?

Tree can get too tall! root(x) becomes expensive.

(6)

The Worst Case

If we always connect the first item's tree below the second item's tree, we can end up with a tree of height M after M operations:

- connect(4, 3)
- connect(3, 2)
- connect(2, 1)
- connect(1, 0)

For N items, what's the worst case runtime...

- For connect(p, q)?
- For isConnected(p, q)?

The Worst Case

If we always connect the first item's tree below the second item's tree, we can end up with a tree of height M after M operations:

- connect(4, 3)
- connect(3, 2)
- connect(2, 1)
- connect(1, 0)

For N items, what's the worst case runtime...

- For connect(p, q)? $\Theta(N)$
- For isConnected(p, q)? Θ(N)

QuickUnionDS

```
public class QuickUnionDS implements DisjointSets {
    private int[] parent;
    public QuickUnionDS(int N) {
        parent = new int[N];
        for (int i = 0; i < N; i++)
          { parent[i] = -1; }
                                      For N items, this means a worst case runtime of \Theta(N).
    private int find(int p) {
                                    public boolean isConnected(int p, int q) {
                                        return find(p) == find(q);
        int r = p;
        while (parent[r] >= 0)
          { r = parent[r]; }
        return r;
                                    public void connect(int p, int q) {
                                        int i = find(p);
```

int j = find(q);

parent[i] = j;

Here the find operation is the same as the "root(x)" idea we had in earlier slides.

Performance Summary

Implementation	Constructor	connect	isConnected
ListOfSetsDS	Θ(N)	O(N)	O(N)
QuickFindDS	Θ(N)	Θ(N)	Θ(1)
QuickUnionDS	Θ(N)	O(N)	O(N)

Using O because runtime can be between constant and linear.

QuickFindDS defect: QuickFindDS is too slow: Connecting takes Θ(N) time.

QuickUnion defect: Trees can get tall. Results in potentially even worse performance than QuickFind if tree is imbalanced.

Observation: Things would be fine if we just kept our tree balanced.

Weighted Quick Union

A Choice of Two Roots: http://yellkey.com/reveal

Suppose we are trying to connect(2, 5). We have two choices:

A. Make 5's root into a child of 2's root.

A Choice of Two Roots

Suppose we are trying to connect(2, 5). We have two choices:

A. Make 5's root into a child of 2's root.

Weighted QuickUnion: http://yellkey.com/society

Modify quick-union to avoid tall trees.

Track tree size (number of elements).

0

0

0

0

New rule: Always link root of smaller tree to larger tree.

New rule: If we call connect(3, 8), which entry (or entries) of parent[] changes?

- B. parent[0]
- C. parent[8]
- D. parent[6]

parent

Improvement #1: Weighted QuickUnion

Modify quick-union to avoid tall trees.

- Track tree size (number of elements).
- New rule: Always link root of smaller tree to larger tree.

New rule: If we call connect(3, 8), which entry (or entries) of parent[] changes?

Implementing WeightedQuickUnion

Minimal changes needed:

- Use parent[] array as before.
- isConnected(int p, int q) requires no changes.
- connect(int p, int q) needs to somehow keep track of sizes.
 - See the Disjoint Sets lab for the full details.
 - Two common approaches:
 - Use values other than -1 in parent array for root nodes to track size.
 - Create a separate size array.

Let's consider the worst case where the tree height grows as fast as possible.

N	Н	
1	0	

0

N	Н
1	0
2	1

Ν	Н
1	0
2	1

0	
1	2
	3

N	Н
1	0
2	1
4	2

N	Н
1	0
2	1
4	2

N	Н
1	0
2	1
4	2

N	Н
1	0
2	1
4	2

N	Н
1	0
2	1
4	2
8	3

Let's consider the worst case where the tree height grows as fast as possible.

Worst case tree height is $\Theta(\log N)$. N Н 16 4 10 13 14 15

Performance Summary

Implementation	Constructor	connect	isConnected
ListOfSetsDS	Θ(N)	O(N)	O(N)
QuickFindDS	Θ(N)	Θ(N)	Θ(1)
QuickUnionDS	Θ(N)	O(N)	O(N)
WeightedQuickUnionDS	Θ(N)	O(log N)	O(log N)

QuickUnion's runtimes are O(H), and WeightedQuickUnionDS height is given by H = O(log N). Therefore connect and isConnected are both O(log N).

By tweaking QuickUnionDS we've achieved logarithmic time performance.

Fast enough for all practical problems.

Why Weights Instead of Heights?

We used the number of items in a tree to decide upon the root.

- Why not use the height of the tree?
 - \circ Worst case performance for HeightedQuickUnionDS is asymptotically the same! Both are $\Theta(\log(N))$.
 - Resulting code is more complicated with no performance gain.

Path Compression (CS170 Spoiler)

What We've Achieved

Implementation	Constructor	connect	isConnected
ListOfSetsDS	Θ(N)	O(N)	O(N)
WeightedQuickUnionDS	Θ(N)	O(log N)	O(log N)

Performing M operations on a DisjointSet object with N elements:

- For our naive implementation, runtime is O(MN).
- For our best implementation, runtime is O(N + M log N).
- For N = 10^9 and M = 10^9 , difference is 30 years vs. 6 seconds.
 - Key point: Good data structure unlocks solutions to problems that could otherwise not be solved!
- Good enough for all practical uses, but could we theoretically do better?

170 Spoiler: Path Compression: A Clever Idea

Below is the topology of the worst case if we use WeightedQuickUnion.

- Clever idea: When we do isConnected(15, 10), tie all nodes seen to the root.
 - Additional cost is insignificant (same order of growth).

170 Spoiler: Path Compression: A Clever Idea

Below is the topology of the worst case if we use WeightedQuickUnion

- Clever idea: When we do isConnected(15, 10), tie all nodes seen to the root.
 - Additional cost is insignificant (same order of growth).

Below is the topology of the worst case if we use WeightedQuickUnion

- Clever idea: When we do isConnected(15, 10), tie all nodes seen to the root.
 - Additional cost is insignificant (same order of growth).

170 Spoiler: Path Compression: A Clever Idea

Path compression results in a union/connected operations that are very very close to amortized constant time (amortized constant means "constant on average").

M operations on N nodes is O(N + M lg* N) - you will see this in CS170.

Path Compression: Theoretical Performance (Bonus)

Path compression results in a union/connected operations that are very very close to amortized constant time.

- M operations on N nodes is O(N + M lg* N).
- A tighter bound: $O(N + M \alpha(N))$, where α is the inverse Ackermann function.

A Summary of Our Iterative Design Process

And we're done! The end result of our iterative design process is the standard way disjoint sets are implemented today - quick union and path compression.

The ideas that made our implementation efficient:

- Represent sets as connected components (don't track individual connections).
 - ListOfSetsDS: Store connected components as a List of Sets (slow, complicated).
 - QuickFindDS: Store connected components as set ids.
 - QuickUnionDS: Store connected components as parent ids.
 - WeightedQuickUnionDS: Also track the size of each set, and use size to decide on new tree root.
 - WeightedQuickUnionWithPathCompressionDS: On calls to connect and isConnected, set parent id to the root for all items seen.

Performance Summary

Implementation	Runtime
ListOfSetsDS	O(NM)
QuickFindDS	Θ(NM)
QuickUnionDS	O(NM)
WeightedQuickUnionDS	O(N + M log N)
WeightedQuickUnionDSWithPathCompression	$O(N + M \alpha(N))$

Runtimes are given assuming:

- We have a DisjointSets object of size N.
- We perform M operations, where an operation is defined as either a call to connected or isConnected.

Citations

Nazca Lines:

http://redicecreations.com/ul_img/24592nazca_bird.jpg

The proof of the inverse ackermann runtime for disjoint sets is given here: http://www.uni-trier.de/fileadmin/fb4/prof/INF/DEA/Uebungen_LVA-Ankuendigungen/ws07/KAuD/effi.pdf

as originally proved by Tarjan here at UC Berkeley in 1975.

