Forces conservatives: el treball no depèn del camí seguit.

Podem definir una funció energia potencial associada a la força conservativa. La definim com el treball, canviat de signe, realitzat per aquesta força sobre la partícula entre un punt que escollit com a origen d'energia potencial i un punt final de vector de posició \vec{r} .

$$U(\vec{r}) = -\int_{\vec{r}_0}^{\vec{r}} \vec{F} \cdot d\vec{r}$$

Calcularem l'energia potencial elàstica, associada a la força elàstica o recuperadora d'una molla (llei de Hooke)

$$U(x) = -\int_{x_{0=0}}^{x} \vec{F} \cdot d\vec{x} = -\int_{0}^{x} -Kx \, dx = \left[\frac{1}{2} K x^{2}\right]_{0}^{x} = \frac{1}{2} K x^{2}$$

$$U(x) = \frac{1}{2} K x^{2}$$

x_o és l'origen d'energia potencial elàstica

Representem gràficament l'energia potencial elàstica:

$$U(x) = \frac{1}{2} K x^2$$

$$\vec{F} = -\frac{dU(x)}{dx}\vec{i}$$

$$E_{\text{mec}} = E_{\text{cinet}}(x) + U(x) = \text{constant}$$

Tenint en compte la corba d'energia potencial associada a la força de tipus elàstic, l'energia mecànica de la partícula ha de ser $E \ge 0$, ja que si $U(x)>E_{mec} \Rightarrow E_{cinet} < 0$ (No té sentit físic).

Si $E=0 \Rightarrow$ La partícula només es pot trobar a x=0 en repòs (punt d'equilibri estable, F=0)

Si E>0 \Rightarrow La partícula oscil·larà entre dos punts de retorn (A i –A). Amplitud del moviment =A. La força anirà dirigida cap a al mínim d'energia potencial, a x=0

La força de tipus elàstic sempre va dirigida cap a la posició d'equilibri.

CORBES D'ENERGIA POTENCIAL EN SISTEMES

UNIDIMENSIONALS CONSERVATIUS

Punt d'equilibri estable. El valor de l'energia mecànica coincideix amb el mínim d'U(x). Forces dirigides cap al mínim i en el mínim Força = 0.

Punt d'equilibri inestable. El valor de l'energia mecànica coincideix amb el màxim d'U(x). Forces dirigides allunyant-se del màxim i en el màxim Força = 0.

Punt d'equilibri indiferent. El valor de l'energia mecànica coincideix la zona plana d'U(x). La Força = 0 en el centre de la zona plana (punt d'equilibri indiferent) i també al seu voltant.

$$\frac{\mathrm{d}\mathrm{U}(\mathrm{x})}{\mathrm{d}\mathrm{x}} = 0$$

pels valors de x corresponents a un mínim, un màxim o una zona plana de la funció energia potencial.

Exemple:

Zones permeses per la partícula: La partícula la podem trobar en l'interval $[x_1,x_2]$, o bé en l'interval $[x_3,x_4]$ o entre x_5 i l'infinit, depenent de les condicions inicials.

En aquestes zones es compleix: $E_{mec} \ge U(x) \implies E_{cinet} \ge 0$

 x_1 , x_2 , x_3 , x_4 i x_5 són punts de retorn (v = 0 i $F \ne 0$).

Exemple:

Per aquest valor de l'energia, la partícula es pot trobar en una de les tres situacions següents (depèn de les condicions inicials):

- En l'interval [x₁,x₂], oscil·lant entre x₁ i x₂ (punts de retorn). Quan arriba a x₁ o bé x₂, la partícula té v=0, però com que F ≠ 0 i va dirigida cap al mínim, la partícula gira. Quan passa pel valor de x corresponent al mínim, l'energia cinètica de la partícula és màxima, ja que l'energia potencial és mínima. A partir d'aquí es va frenant fins arribar a l'altre punt de retorn amb v=0 i gira.
- Si la partícula es troba en l'interval $[x_3,x_4]$, oscil·larà entre aquests dos punts de forma simular al que hem explicat per l'interval anterior.
- Si la partícula es troba a la dreta de x_5 , anirà directament cap a l'infinit, si la velocitat inicial era cap a les x positives. Si inicialment es dirigia cap al punt de retorn x_5 , hi arribarà amb v=0, girarà i anirà cap a l'infinit.

Força sobre la partícula

$$F = -\frac{dU(x)}{dx}$$

En els mínims i també en els màxims

$$\frac{\mathrm{d}\mathrm{U}(\mathrm{x})}{\mathrm{d}\mathrm{x}} = 0$$

$$F = 0$$