Комплексные числа

Определение

Комплексное число - число, состоящее из упорядоченной пары вещественных чисел.

$$\mathbb{C} = \{(a,b): a,b \in \mathbb{R}\}$$

Иногда комплексные числа записываются в виде:

$$a + bi$$
, где i = (0, 1)

- ▼ Базовые операции
 - Сложение: (a,b)+(a',b'):=(a+a',b+b')Легко проверить, записав в виде: a+bi+a'+b'=(a+a')+(b+b')i
 - Умножение: $(a,b)\cdot (a',b')=(aa'-bb',ab'+ba')$ Данная формула аналогично выводится через $(a+bi)\cdot (a'+b'i)$

\mathbb{C} – поле

- 1. Ассоциативность из и коммутативность сложения наследуются из \mathbb{R} (так как складываем по компонентно)
- 2. Ноль это (0, 0)
- 3. Обратный элемент к (a, b) это (-a, -b)
- 4. Коммутативность, дистрибутивность и ассоциативность умножения легко проверяется по определению
- Единица это 1 := (1, 0)

6. Обратный элемент $z^{-1}:=(rac{a}{N(z)},rac{-b}{N(z)})$

Принятые обозначения

- $z=(a,b)\in\mathbb{C}$
- Вещественная часть z это Re(Z) := a
- ullet Мнимая часть z это Im(z) := b
- Комплексное сопряженное: $ar{z}:=(a,-b)$

$$z \cdot \bar{z} = N(z)$$

- Норма z это $N(z) := a^2 + b^2$
- ullet Модуль z это $|z|:=\sqrt{N(z)}=\sqrt{a^2+b^2}$

Геометрическая интерпретация $\mathbb C$ и тригонометрическая запись

Существует еще один способ задать комплексное число - записать его в геометрическом представлении внутри системы координат $\mathbb{R}^2.$

- ullet $z=(r,\phi)$, где $r=|z|,\,\phi=arq(z)$
- $a = r\cos(\phi), b = r\sin(\phi)$
- $z = (r\cos\phi, r\sin\phi)$
- $e^{\alpha i} = (\cos(\alpha), \sin(\alpha))$

arg(z) - это направленные угол от оси абсцисс до луча Оz против часовой стрелки. Вычисляется с точностью до добавления $2\pi k$, где $k\in\mathbb{Z}$

$$arg(z) = atan2(a, b)$$

Операции с геометрическим представление комплексного числа

Пусть $x,y\in\mathbb{C}$. Тогда $|xy|=|x|\cdot|y|$ и arg(xy)=arg(x)+arg(y)

▼ Пример

$$x=(r,\phi)$$

$$y = (p, \psi)$$

$$x\cdot y = (rp\cos(\phi+\psi), rp\sin(\phi+\psi) = (rp, \phi+\psi)$$

Формула Муавра

Пусть $z\in\mathbb{C},n\in\mathbb{N}.$ Тогда:

1.
$$|z^n| = |z|^n$$

2.
$$arg(z^n) = n \cdot arg(z)$$

Извлечение корня из комплексного числа

Пусть $a\in\mathbb{C}, n\in\mathbb{N}\ \wedge a
eq 0$

Решим уравнение $z^n = a$

$$z=(p,\phi)$$

$$a=(r,\psi)$$

По формуле Муавра

1.
$$p=\sqrt[n]{r}$$

2.
$$n\psi = \phi + 2\pi k, k \in \mathbb{Z}$$

$$\psi = \frac{\phi}{n} + \frac{2\pi k}{n}$$

3. Считаем для $k \in \{0, 1, \dots, n-1\}$

▼ Пример

$$z^4 = 1$$

а - искомое число (
$$a=(p,\psi)$$
)

$$p=\sqrt[4]{(1)}=1$$

$$\psi = rac{0}{4} + rac{2\pi k}{4} = \{0, rac{\pi}{2}, \pi, rac{3\pi}{2}\}$$

