

Networked System Security

Cryptography, Key Exchange and Jamming

Module TAs: Thanassis Giannetsos, athgia@kth.se Kewei Zhang, kewei@kth.se

> Panos Papadimitratos http://www.ee.kth.se/nss

- Recap
 - Cryptography basics (Definitions, Security Services, etc.)
 Hash functions, Data Integrity methods (MACs)
- Symmetric Encryption
 - ➤ Block Ciphers vs. Stream Ciphers
 - Design principles, DES, AES, Modes of operations
- Public key Cryptography
 Diffie-Helman, RSA, El Gamal
 Certificates

- Key Exchange
- Symmetric vs. Asymmetric Key Exchange and Authentication
- Jamming
 - Physical Layer Security

2014-11-5

EP2500 NETWORKED SYSTEMS SECURITY

2014-11-5

Security Goals (not only...)

- Derived requirements, e.g.,

 Authentication: Who is who?
- > Access Control: Only selective access is authorized

Security Services

- Confidentiality protection from passive attacks (eavesdropping)
- Encryption

EP2500 NETWORKED SYSTEMS SECURITY

- Authentication you are who you say you are
 Integrity received as sent, no modifications, insertions, shuffling or replays Message Authentication Code (MAC)
- Non-repudiation can't deny a message was sent or received
 Digital Signatures
- Access Control ability to limit and control access to host systems and apps
- Availability attacks affecting loss or reduction on availability

Model for Network Security

- Models information flowing over an insecure communications channel, in the presence of possible opponents
 - > An appropriate security transform (encryption algorithm) can be used, with suitable keys, possible negotiated using the presence of a trusted third party

2014-11-5 EP2500 NETWORKED SYSTEMS SECURITY

2014-11-5

Model for Network Security

- What is needed
 - > Design a suitable algorithm for the security transformation
 - > Generate the secret information (keys) used by the algorithm
 - > Develop methods to distribute and share the secret key information
 - Specify a protocol enabling the principals to use the transformation and secret information for a security service
- Cryptosystem: An Encryption/Decryption algorithm plus the description of the format of messages and keys. Consists of:
 - > Plaintext and Ciphertext message spaces
 - > Set of possible encryption/decryption keys
 - > An efficient key generation algorithm
 - > Efficient encryption/decryption algorithms
- Can be categorized as symmetric key and public key (asymmetric)

EP2500 NETWORKED SYSTEMS SECURITY

Symmetric Encryption

- Also known as private-key
- Sender and recipient share a common key
- All classical encryption algorithms are private-key
- $C = E_K(m)$ and $m = D_K(c)$
- Both E and D should be public
 - > Secrecy of m given c depends totally on the secrecy of k.

- Stream and Block ciphers
 - > Stream ciphers process messages a bit or byte at a time
- > Block ciphers work on a block at a time, each of which is then encrypted/decrypted

EP2500 NETWORKED SYSTEMS SECURITY

Stream vs. Block ciphers

- Stream ciphers properties
 - Replace the random key in one time pad by a pseudo-random sequence, generated by a cryptographic pseudo-random generator that is 'seeded' with the key
 - Short key, but only practical security
 - > Statistically random, long period with no repetitions
 - Depends on large enough keys (must defend against brute force attacks)
 - Encryption in small quantities
 - No error propagation + Very fast
 - Reused Key Attack + Bit Flipping Attack

Pseudo-random sequence

11010010100001010010101...

- Block ciphers
- Typically blocks have length 64 or 128 bits.
- They have a substitution-permutation network structure
- > Large chunks of data + "carry over" from previous blocks
- Many current ciphers are block ciphers, hence our focus

EP2500 NETWORKED SYSTEMS SECURITY 2014-11-5

What is a block cipher?

Function E: $\{0,1\}^k \times \{0,1\}^L \rightarrow \{0,1\}^L$ that takes two inputs, a k-bit key K and an L-bit plaintext M, to return n L-bit encryption C = E(K, M)

- A block cipher is a permutation on I-bit strings, which means that there exists an inverse function by Ex-1 or D.
- Figure Hence $\mathsf{E}_{\mathsf{K}}^{-1}(\mathsf{E}_{\mathsf{K}}(M)) = M$ and $\mathsf{E}_{\mathsf{K}}(\mathsf{E}_{\mathsf{K}}^{-1}(\mathsf{C})) = C$
- The block cipher is a public and fully specified algorithm
- Security lies on the secrecy of the key, so the key recovery by an adversary should be a difficult problem

EP2500 NETWORKED SYSTEMS SECURITY

2014-11-5

Block Cipher Principles

Partitions input block into two halves. Then process through multiple rounds which

L₁₋₁

R_{i-1}

R,

- > Perform a substitution on left data half based on round function of right half & sub key
- > Then have permutation swapping halves

Data Encryption Standard (DES)

- ➤ Has a key length of k = 56 bits block length L = 64 bits
- > 56-bit keys have $2^{56} = 7.2 \times 10^{16}$ values (exhaustive search concerns) $> L_i = R_{i-1}$
- $R_i = L_{i-1} \oplus \mathsf{F}(R_{i-1}, K_i)$

EP2500 NETWORKED SYSTEMS SECURITY

Double DES, Triple DES, AES

Multiple encryptions with DES and multiple keys

- > 2- DES M → E(K₁, M) → E(K₂, E(K₁, M)) = C
- > Not safe due to a Meet-in-the middle attack Encrypt M using all 2⁵⁶ possible keys $(M \rightarrow E(K_1, M))$
 - Then, decrypt C using 2^{56} possible keys
 - $(\mathsf{D}(\mathsf{K}_2,\ C)=\mathsf{D}(\mathsf{K}_2,\ \mathsf{E}(\mathsf{K}_2,\ \mathsf{E}(\mathsf{K}_1,\ M)))\to\mathsf{E}(\mathsf{K}_1,\ M))$

E_k(M)

 $E_{k_2}(M)$

 $E_{k_3}(M)$

E_{k256}(M)

D_k(C)

D_{k2}(C)

D_{k3}(C)

D_{k-56}(C)

· Check for a match

3-DES with 3 different keys

- E(K3, D(K2, E(K1, M)))
- Decryption (?)
- Cost of exhaustive search is of the order 2¹¹²

AES

- ➤ Block cipher: 128-bit blocks, 128/192/256-bit keys
- > Strength 3-DES, efficiency much higher

EP2500 NETWORKED SYSTEMS SECURITY

Modes of Operation

- Block ciphers for a basic building block, which encrypt a fixed sized block of data (of length L)
 - > Typically the block size is 64 or 128 bits
 - > To use these in practise, we need to handle arbitrary amounts of data
 - > To do that we use a block cipher in some mode of operation

Message L bits L bits L bits

- Description of 2 of them that exhibit different kind of features
 - Electronic Code-Book (ECB)
 - > Cipher Block Chaining (CBC)
 - ➤ CTR
 - In all cases the input string is a multiple of block length. If not padding is used (padding, however, introduces security risks)

Electronic Codebook Book (ECB)

The message is broken into blocks which are encoded independently of the other blocks

- Deterministic mode
 - > Repetitions in message may show in ciphertext
 - > Blocks can be shuffled/ inserted without affecting the en/decryption of each block

Encrypt $(\langle m_1, m_2, ..., m_n \rangle)$ for i=1 to n do $c_i = E_K(m_i)$ return (<c,,c,,...,c,>)

 $\frac{\text{Decrypt}}{\text{for } i=1 \text{ to } n \text{ do}} (\langle c_1, c_2, ..., c_n \rangle)$ return $(\langle m_1, m_2, \dots, m_n \rangle)$

 $m_n \longrightarrow E_K \longrightarrow c_n$

12

Main use is when only a single block of info needs to be sent (e.g., a session key encrypted using a master key)

2014-11-5

EP2500 NETWORKED SYSTEMS SECURITY

2014-11-5

EP2500 NETWORKED SYSTEMS SECURITY

Cipher Block Chaining (CBC)

- Message is broken into blocks but these are linked together in the encryption operation
 - Each previous cipher block is chained with current plaintext block
 - > Attempts to make the ciphertext depend on all blocks before it
- $$\begin{split} & \underbrace{\text{Encrypt}}_{\text{Let } IV} \ (<& \mathbf{m}_1, \mathbf{m}_2, ..., \mathbf{m}_n >) \\ & \text{Let } IV =_{\mathbf{m}} \{0, 1\}^2 \\ & \text{for } i = 1 \text{ to } n \text{ do} \\ & c_i = \mathbf{E}_{\mathbf{g}}(\mathbf{m}_i \oplus \mathbf{c}_{i-1}) \\ & \text{return } (<& IV, c_1, c_2, ..., c_n >) \end{split}$$
 Random Initial Vector (IV) to start the process CBC mode is applicable whenever
 - large amounts of data needs to be sent securely, provided that it's available in advance (e.g., mail, FTP, web, etc.)

Advantages – Disadvantages?

EP2500 NETWORKED SYSTEMS SECURITY

Counter (CTR)

- Counter mode uses an auxiliary value (IV) which is an integer in the range 0...2^L-1
 - ➤ In the following addition is done modulo 2^L
- Efficiency
- > Parallel encryptions
- Provides random access to encrypted data blocks
- Provable security
- > Must ensure never reuse key/ counter values, otherwise could
- Encrypt $(\langle \mathbf{m}_1, \mathbf{m}_2, ..., \mathbf{m}_n \rangle)$ Let $IV =_{\mathbb{R}} \{0, 1\}^L$ for i=1 to n do $c_i = E_x(IV+i) \oplus \mathbf{m}_i$ return $(\langle IV, c_1, c_2, ..., c_n \rangle)$ $\begin{array}{l} \underline{\text{Decrypt}} & (< c_0\,,\, c_1\,,\, c_2\,,\, \dots\,,\, c_n >) \\ \text{for } i = 1 & \text{to } n & \text{do} \\ \\ m_i &= E_K\,(IV\!+i) \oplus c_i \\ \text{return} & (< m_1\,,\, m_2\,,\, \dots\,,\, m_n >) \end{array}$

Uses: high-speed network encryptions

Key Exchange and Authentication

- So for all cryptosystems discussed, we assumed the existence of a symmetric private key
 - > All classical, and modern block and stream ciphers are of this form
 - > If the key is disclosed communications are compromised
- How to achieve key establishment between entities?
 - > Process by which two parties agree on a secret key as a means for building a secure communication channel between them
 - Generally, is a sub-task of entity authentication protocols for bootstrapping higher secure communications
 - > Also form important protocol messages which should be the subject for dataorigin authentication
- Classical vs. Public key exchange and authentication

Authentication Servers

- If two users that have never met before wish to communicate securely, they can do so through an authentication server (AS)
 - > An AS is like a name registration authority, who maintains a database with the
 - Can deliver information computed from a key shared with each principal
 - Trusted by principals to always behave honestly (Trusted Third Party call it Trent)

- Simple protocol for authenticated key establishment
 - Possible attacks? (check 1st and 2nd message)
 - Nothing guarantees the freshness of messages

2014-11-5

EP2500 NETWORKED SYSTEMS SECURITY

2014-11-5

EP2500 NETWORKED SYSTEMS SECURITY

Challenge-Response Authentication

- There are many methods to ensure that a message is not a replay of an old message. One well known is called challenge-response authentication (or handshake)
 - > One party sends a challenge message
 - Second party sends a response in a pre-agreed manner that indicates freshness
 - Use of time constraint; if the response doesn't arrive on time, authentication fails
 - > Nonces (Random "numbers used once"), Timestamps, Sequence numbers

Needham-Schroeder[1978]

- Possible attacks?
 - > Denning and Sacco (1981)
 - Focus on messages 3, 4 and 5

2014-11-5 EP2500 NETWORKED SYSTEMS SECURITY

Needham-Schroeder

- There are many methods to ensure that a message is not a replay of an old message. One well known is called challenge-response authentication (or handshake)
 - Eve blocks Alice's 3rd message and injects her own which is a replay of an old run
 - ➤ Had all the time to break the old session key, she manages to fool Bob
 - > Failed to provide liveness of Trent...
- Fix with timestamps
 - > Tight synchronization is required

 $\{I'm\ Bob!, N_3\}_{E}$

Alice!, Ng-1}E

 $\{N_A, K, Bob, \{K, Alice\}_{E_{BT}}\}_{E_{AT}}$

2014-11-5

EP2500 NETWORKED SYSTEMS SECURITY

Otway-Rees

- Otway-Rees avoided the synchronization limitation by not using timestamps but a session identifier
 - > Attack?

```
\begin{array}{l} 1.\ A \to B: M, A, B, \{N_A, M, A, B\}_{KAS} \\ 2.\ B \to \top: M, A, B, \{N_A, M, A, B\}_{KAS}, \{N_B, M, A, B\}_{KBS} \\ 3.\ T \to B: M, \{N_A, K_AB\}_{KAS}, \{N_B, K_{AB}\}_{KBS} \\ 4.\ B \to A: M, \{N_A, K_AB\}_{KAS} \end{array}
```

- Kerberos solution
- In general

2014-11-5

- > Message freshness and principal's liveness
 - Instead of nonces, better to use MACs or a signature scheme Data Integrity
- > Mutual authentication

EP2500 NETWORKED SYSTEMS SECURITY

Public key Cryptographic Key Exchange and Authentication

- Recap certificates
 - Every user submits their public key to the CA. The CA concatenates
 - User name, User public key (encryption or verification), Name of the CA, Expiration date, Serial Number of Certificate,...
 - · And generates a signature (of the CA) on this data string
- The combination of the data and signature is the public key certificate. This is sent back to the user
 - Anyone with the CA's public key can verify the users public key certificate, and so obtain a trusted copy of the users public key
 - Certificates can be stored in repositories and retrieved as needed
 - ightharpoonup Since they are digitally signed, there's no need to be secured
- Diffie-Helman, RSA, El Gamal

2014-11-5 EP2500 NETWORKED SYSTEMS SECURITY

Jamming

Security in Wireless Systems

Inherent openness in wireless communications channel: Common attacks at the physical layer

- Eavesdropping
 - Needs more powerful solutions compared to wire-line
 - But at least, there are some conventional techniques
- · Jamming attacks (Denial-of-service)
 - Error correcting codes (at a higher layer)
 - Physical layer solutions
 - · Coding theory and information theory based approaches
 - · Beam-forming (signal processing based approaches)
 - Spread spectrum techniques

2014-11-5

EP2500 NETWORKED SYSTEMS SECURITY

2014-11-5

EP2500 NETWORKED SYSTEMS SECURITY

22

Eavesdropping (confidentiality) Wireless networks

Cryptography

- At higher layers of the protocol stack
- Based on the assumption of <u>limited computational power</u> at Eve
- Vulnerable to large-scale implementation of quantum computers

Wireless networks

- $\bullet \quad \text{ Open nature} \to \text{intercept the transmission of secret keys}$
- Lack of infrastructure (key distribution)
- Dynamic topology (key management)

2014-11-5

EP2500 NETWORKED SYSTEMS SECURITY

Physical layer solutions Confidentiality

Information-theoretic security

- Idea: use the inherent randomness of medium (the difference between the channels)
- Eliminate the key management issues: lower complexity and resources
- No assumption on Eve's computational power
- No assumption on Eve's available information
- Unbreakable, provable, and quantifiable (in bits/sec/hertz)

2014-11-5

EP2500 NETWORKED SYSTEMS SECURITY

6

Anti-jamming solutions Physical layer approaches

Coding theory and information theory based approaches

Beam-forming (signal processing based approaches) or cooperative jamming

Spread spectrum techniques

- At the physical layer
- Based on the assumption of <u>limited knowledge at Eve</u>
- Code Division Multiple Access (CDMA)

Spread spectrum techniques

Direct Sequence (DS)

The modulated signal is multiplied by a spreading code

Frequency Hopping (FH)

- Signal hops from frequency to frequency at fixed intervals
- The frequency sequence is dictated by the spreading code

Time Hopping (TH)

2014-11-5

-11-5 EP2500 NETWORKED SYSTEMS SECURITY

2014-11-5

Random number generation

Must be sent to receiver: securely

EP2500 NETWORKED SYSTEMS SECURITY

Pseudorandom Number (PN) sequences

Deterministic (non-random) sequence

- Looks random: in some welldefined statistical sense
 - Uniform distribution of bits
 - Independence: No one subsequence in the sequence can be inferred from the others
 - Some statistical tests

2014-11-5

EP2500 NETWORKED SYSTEMS SECURITY

7

Linear Feedback Shift Registers (LFSRs)

Characteristic polynomial

$$f(x) = 1 + C_1 x + ... + C_{n-1} x^{n-1} + x^n = \sum_{i=0}^{n} C_i x^i$$

• $C_i \in \{0,1\}$

2014-11-5

M-sequence (Maximal length sequence)

Period= 2ⁿ − 1 (cycle)

EP2500 NETWORKED SYSTEMS SECURITY

An exercise

Jamming in Frequency Hopping Spread Spectrum

A transmitter-receiver pair wishes to communicate \emph{k} messages (pieces of data)

- Number of successful transmission = k
- Transmission time for each message = T
- Number of available channels = C
- Use one channel to transmit each message and then (after T ms) hop uniformly to another one
- Jammer can prevent communication across \mathcal{C}_{jam} channels
- Number of transmitted messages (maybe jammed) = n

Notes

· Recall Binomial distribution

14-11-5 EP2500 NETWORKED SYSTEMS SECURITY

30

2014-11-5

EP2500 NETWORKED SYSTEMS SECURITY

8