Discrete Mathematics HW8

20180617 You SeungWoo

November 13, 2023

Problem 1

Solution. They are G and \overline{G} .

Since G does not contain K_3 and \overline{G} does not contain K_4 , by the definition of Ramsey number, it is a counter example for R(3,4)=8. Therefore, R(3,4)>8.

Proof. Skipped. Just try it as following:

- Divide inner, outer, and bridge edges.
- Show that inner and outer have no cycle with length ≤ 4, and we cannot make such cycle even if using bridge.

Proof. Skipped. Check the additional file 1.1.30.

3

Solution. Skipped. Just check the followings if not isomorphic.

- Degree. All degrees of vertices should be conserved.
- Connection. All connection(weight of edges, degree of vertices, or else) are the same.
- Cycle. All cycles are preserved.

If you claim the isomorphism, then use the following form:

Let $f: G \to H$ be a graph mapping with $f(a) = 1, f(b) = 2, \cdots$ (The alphabet is the node of G, and the number is the node of H. Lists ways to correspond nodes in G to nodes in G.) Then $G \simeq H$ under f.

Solution.

Proof. First, note that the *Euler formula*: [For planer graph, v - e + f = 2]. Suppose there is no cycle. Then f = 1, so v - e = 1.

$$4 \le v$$

$$\Rightarrow \frac{7}{2} \le 4 \le v$$

$$\Rightarrow \frac{7}{3} \le \frac{2}{3}v$$

$$\Rightarrow v \le \frac{2}{3}v - \frac{7}{3} + v$$

$$\Rightarrow e = v - 1 \le \frac{5}{3}v - \frac{10}{3}$$

If there are cycles, then since each deg f is at least 5(because the graph has no simple cycles of length ≤ 4), $2e = \sum \deg f \geq 5f$. By Euler, apply f = 2 - v + e.

$$2e \ge 5f = 5(2 - v + e)$$
$$-3e \ge 10 - 5v$$
$$e \le \frac{5}{3}v - \frac{10}{3}$$

Proof. If Peterson Graph G is a planar, then it should satisfies the above problem because G has no cycle with length ≤ 4 . G has v=10 and e=15. This gives f=2-v+e=7 if G is a planar. However, from the above problem, we get $2e\geq 5f$, contradiction. Therefore, G is not planar.

Proof. Denote that X(G) = 1 means the crossing number of G is 1. We can find one example for $X(K_{3,3}) \leq 1$.

If we show that $X(K_{3,3}) \neq 0$ i.e. $K_{3,3}$ is not planar, then $X(K_{3,3}) = 1$. We can prove this by applying *Euler formula* as the Problem 6. Therefore, $X(K_{3,3}) = 1$. Similarly, we can find $X(K_{3,4}) \leq 2$ (note that $X(K_{4,3}) = X(K_{3,4})$).

Suppose $X(K_{3,4})=1$. Remove one blue vertex(in 4-node set) who occurs the crossing(note that crossing occurs between 4 vertices). Then there is no crossing, the graph forms $K_{3,3}$. i.e. $X(K_{3,3})=0$, contradiction. Therefore, $X(K_{3,4})>1$, so $X(K_{3,4})=2$. Similarly, we can find $X(K_{4,4})\leq 4$.

Suppose $X(K_{4,4}) = 3$. Note that crossing needs at least 4 vertices. Since $K_{4,4}$ has 8 vertices, there is at least one vertex which occurs at least 2 crossing. It is impossible to create 3 crossings with only 8 nodes so that every node participates in the crossing only once. So choose the node who occurs 2 crossing and remove it. Then the graph is $K_{3,4}$ with 1 crossing, contradiction. Therefore, $X(K_{4,4}) > 3$, so $X(K_{4,4}) = 4$.

Solution. Skipped. Just drawing and show that it is impossible with only 2 time zones(height of tree). The answer is it needs at least 3 time zones.

Appendix

For a graph G, the diameter of the graph G is the greatest distance between any pair of vertices in G. In other words, the diameter d is

$$d = \max_{(u,v) \in V \times V} d(u,v)$$

Show that the diameter of a graph is a graph invariant.

Proof. Suppose G has a diameter d with n nodes. Then there is a path from u to v which make d. Let $u = v_1$ and $v = v_k (1 \le k \le n)$. Note that this k is fixed. Consider another graph $H \simeq G$. Then there is $\{u_i\}_{ji=1}^k \subseteq H$ such that $u_i \mapsto v_i$ (we can indexing in such way). Also, isomorphism preserves the edge-weight, this new path has the same cost. By the isomorphism, there is no higher path in H. Therefore, d is graph invariant