UNCLASSIFIED

AD NUMBER

AD389104

CLASSIFICATION CHANGES

TO: unclassified

FROM: confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational; Mar 1968. Other requests shall be referred to Air Force Rocket Propulsion Lab, Edwards AFB CA.

AUTHORITY

Mar 1980 - Group 4, DoDD 5200.10, 26 Jul 1962; DoDD 5230.24, 18 Mar 1987

AFRPL-TR-68-49

This Document
Reproduced From
Best Available Copy

389104

(Unclassified Title)

CRITICAL REVIEW OF THE CHEMISTRY OF ADVANCED OXIDIZERS AND FUELS: SUPPLEMENTARY REVIEW OF OXIDIZERS, 1965-1967

Edward W. Lawless
Thomas Lapp
Hope M. Howard
Midwest Research Institute

March 1968

In addition to security requirements which must be met, this document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (RPPR/STINFO), Edwards, California 93523.

Air Force Rocket Propulsion Laboratory
Directorate of Laboratories
Air Force Systems Command
Edwards AFB, California 93523

APR 1 2 1968

NOTICE

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

AFRPL-TR-68-49

GROUP - 4

DOWNGRADED AT 8 YEAR INTERVALS: DECLASSIFIED AFTER 12 YEARS

(Unclassified Title)

CRITICAL REVIEW OF THE CHEMISTRY OF ADVANCED OXIDIZERS AND FUELS: SUPPLEMENTARY REVIEW OF OXIDIZERS, 1965-1967

Edward W. Lawless
Thomas Lapp
Hope M. Howard
Midwest Research Institute

NOTICE — THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS FITLE 18, U.S.C. SECTIONS 793 AND 794. ITS TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

In addition to security requirements which must be met, this document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (RPPR/STINFO), Edwards, California 93523.

FOREWORD

This program has been conducted at Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri, 64110, under Contract No. F04611-67-C-0079 (Midwest Research Institute Project No. 3044-C) and covers the period 1 February 1967 - 31 January 1968. Project personnel have consisted of Dr. Edward W. Lawless, who served as project leader, Dr. Thomas Lapp and Miss Hope M. Howard, all under the general supervision of Dr. Albert D. McElroy, Head of MRI's Physical and Inorganic Chemistry Section. Drs. Lapp and Lawless contributed the chapters on organic and inorganic derivatives, respectively, and Miss Howard prepared the physical properties tables and provided general assistance in document acquisition, control and publication. Dr. Harold Orel reviewed the manuscript editorially. Lt. C. S. Stone, Lt. Thomas E. McCann and Dr. L. Quinn have served as Project Engineers for the Air Force Rocket Propulsion Laboratory.

Under a previous contract, Midwest Research Institute completed and distributed two reviews related to the advanced propellant ingredients: "A Critical Review of the Chemistry of Advanced Oxidizers, Volumes I and II" (31 December 1935) and "A Critical Review of the Chemistry of Advanced Fuels" (1 March 1966). Because of the continuing research on such materials and the Air Force's interest in advanced propellant chemistry, the present review program was initiated with the objective of preparing three annual supplements to the previous MRI reviews. Because of funding cutbacks, this program was terminated during the first year. This review therefore covers only a portion of the propellant chemistry included in the previous review.

Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

This technical report has been reviewed and is approved.

W. H. EBELKE, Colonel, USAF Chief, Propellant Division

ABSTRACT

This review summarizes much of the chemistry of advanced oxidizers which have been reported since the completion of the previous MRI report, "A Critical Review of the Chemistry of Advanced Oxidizers," Volumes I and II, 31 December 1965, which was prepared for the Advanced Research Projects Agency under Contract DA-31-ARO(D)-18, Mod. Mo. 2 & 3. The present review covers the areas of inorganic N-F, Cl-F and O-F oxidizers and organic NF oxidizers with N-containing functional groups, or N-N bonds. Other advanced oxidizers and advanced fuels which were described in the previous review could not be covered in detail in the present review because of contract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236 pages.

TABLE OF CONTENTS

		Page No
I. Introduc	ction	1
Chapter I	Consonia NE Compounds, Autua Mineralina and Autua	
cuapter T	- Organic NF Compounds: Amines, Fluoramines, and Amine Fluorinations	5
	2.402.4404.40	-
	I-A. Amines and Fluoramines	2
	I-B. Amine Fluorinations	7
Chapter II	- Cyanides (Nitriles) and Isocyanates	9
	II-A. Cyanides (Nitriles)	9
	II-B. Isocyanates	10
Obasstan TIT	And does Controlled and Trans.	10
Chapter III	- Amides, Carbamates and Ureas	16
	III-A. Amides	16
	III-B. Carbamates	18
	III-C. Ureas	19
Chapter IV	- Imino Compounds	24
	IV-A. Fluorimines	24
	IV-B. N,N,N'-Trifluoramidines	28
	IV-C. Fluorinated Guanidines	29
	IV-D. Perfluoroguanidines (Code Name: PFG)	30
Chapter V	- NF Compounds which Contain NN Bonds	39
	V-A. Hydrazine Derivatives	39
	V-B. Diimide Derivatives	39
	V-C. NNO and NNO ₂ Derivatives	44
Chanter VT	- Inorganic Nitrogen Fluorides and Derivatives	46
011012 71	Tro-Dame Heardon Indonesia and Sorting	
	VI-A. Nitrogen Trifluoride	46
	VI-B. NF4 ⁺ Salts	46
	VI-C. NH ₃ F+ Salts	52
	VI-D. Difluorodiazine	53
	VI-E. N ₂ F+ Salts	53
	VI-F. Tetrafluorohydrazine	57
	VI-G. $N_2F_3^+$ Salts	6 2
	VI-H. Difluoramine	62
	VI-I. Trifluoramine Oxide	65 65
	VI-J. Complexes of NF30 and the NF20+ Salts	65 70
	VI-K. Chlorodifluoramine and Dichlorofluoramine	70
	VI-L. Miscellaneous N-O-F Compounds iv	71

TABLE OF CONTENTS (Continued)

		Page No.
Chapter VII	- Inorganic Halogen Fluorides and Derivatives	. 76
	VII-A. Chlorine Pentafluoride	. 77
	VII-C. Chlorine Trifluoride and Derivatives	
	VII-D. Chlorine Trifluoride Oxide and Related Compounds.	
	VII-E. Miscellaneous Halogen Compounds	. 98
Chapter VIII	- Oxygen Fluorides, O-F Derivatives and Miscellaneous	100
	Fluorinations	•
	VIII-A. Oxygen Fluorides and Derivatives	
	VIII-B. Miscellaneous Fluorinations	. 107
Appendix A -	Melting Points, Boiling Points, Densities and	
	Refractive Indexes	• 109
Appendix B -	Thermodynamic Properties	. 123
Appendix C -	Mass, Infrared and Nuclear Magnetic Resonance Spectra	. 133
Bibliography	• • • • • • • • • • • • • • • • • • • •	. 175
Open Literat	ure References	. 221
	<u>List of Figures</u>	
Figure No.	<u>Title</u>	Page No.
1	Preparation and Reactions of Difluoramino-substituted	
	Piperazine Compounds	4
2	Side Reactions in the Production of FA-TNEEG	37
	List of Tables	
Table No.	<u>Title</u>	Page No.
I	Dehydrofluorination Reactions	5
II	Reactions of Adduct, TFGI, and TRIS-I	11
III	Reactions of Glyoxal with Substituted Ureas	20
IV	Reactions of Fluorimines with Difluoramine	25
V	Reactions of Perfluoroguanidine (PFG)	31
VI	Reactions of (NF ₂) ₃ CON=CCl ₂	38
	v	

TABLE OF CONTENTS (Continued)

<u>List of Tables</u> (Continued)

Table No.	<u>Title</u> <u>Page</u>	No.
VII	Reactions of F10ADF and F8ADF with CO	2
VIII		17
IX		4
X		8
XI		3
XII		6
XIII		8
VIV		2
XV	Miscellaneous N-O-F Reactions	' 3
IVX	Reactions of ClF ₅	8'
XVII		4
XVIII		16
XIX		8
XX		2
XXI	Alternate Routes to C1F30 9	3
XXII		4
XXIII	Reactions of ClO ₂ F	Ю
XXIV	Studies of Clo ₃ F	1
XXV	Studies of Oxygen Fluorides and Derivatives 10	2
IVXX	Miscellaneous Fluorinations 10	7
XXVII	Melting Points, Boiling Points, Densities and	
	Refractive Indexes	0
XXVIII	Thermodynamic Properties	
XXIX	Mass, Infrared and Nuclear Magnetic Resonance Spectra 13	4

I. INTRODUCTION

The intense research effort on advanced oxidizers and fuels during the period 1955 - 1965 has recently been critically reviewed (284a). Although Government support of advanced propellant chemistry has since been much reduced, a substantial number of sponsored programs have continued and new research results are regularly appearing in the literature from industrial, academic and foreign laboratories. Hence, the objective of this program was to provide three annual supplementary critical reviews of the chemistry of advanced oxidizers and fuels. Because of the abrupt contract termination during the first year, the scope of this supplement was necessarily reduced to those chapters most nearly completed. This supplement is not, therefore, to be considered a complete review, even for the chapters included. Also, the recent flood of published papers resulting from declassification of much of the oxidizer chemistry could not be fully integrated. In order to make this document as useful as possible to the reader, extensive bibliographies have been made of technical reports received for review and of published papers noted in literature searches.

In general, the text is limited to coverage of one area of organic CNF oxidizers and the inorganic NF, ClF and OF, oxidizers. The properties tabulations include all data accumulated on oxidizers and fuels. The organic oxidizer area describes NF compounds with N-containing functional groups or NN bonds. These chapters summarize reactions of compounds which have, in addition to their NF2 content, one or more of the following N-containing groups or structural elements: amide (-C(=0)N<), amidine (-C(=N)N<), amine $(-NH_2)$, biguanide (>N-C(=N)NC(=N)NC), biguanidine (>NC(=N)N-NC(=N)N<), biurea (>NC(=O)N-NC(=O)N<), cyanamide (>N-CN), cyanide (-NC(=N)N<), imine (>C=N), isocyanate (NCO), or urea (>NC(=O)N<); N-containing rings such as piperidine, pyrrolidine or triazine, N-N, N=N and N-NO2. This portion is arranged into chapters divided according to the following general classes: (1) amines, (2) cyanides (nitriles), (3) amides, (4) imines, and (5) NN bonded compounds.

CHAPTER I

ORGANIC NF COMPOUNDS: AMINES, FLUORAMINES, AND AMINE FLUORINATIONS

I-A. Amines and Fluoramines

Relatively few investigations have been conducted using fluorine-containing amines because of their strong tendencies to eliminate hydrogen fluoride or difluoramine.

The formation of 1:1 complexes and amine salts has been reported for a limited number of amines. Tris(difluoramino)methylamine (code name: Tris-A) was found to form a 1:1 complex with triphenylphosphine oxide (85b). Addition of a solution of perchloric acid in ethanol to 2,2',2"-tris(difluoroamino)triethylamine resulted in the formation of a white hygroscopic solid, which probably is the normal amine perchlorate salt: (NF₂CH₂CH₂)₃NH ClO₄ (268). The reaction of existing amine salts in acetic acid with tetrafluorohydrazine has been utilized for the production of 2,3-bis(difluoramino)propylmethylammonium perchlorate (code name: AMAP-A) from the corresponding 2-propenylmethylammonium perchlorate (176). In an analogous reaction, the same investigators also produced 3,4-bis(difluoramino)-butylammonium perchlorate (code name: BAP-A):

BAP-A

In addition to tetrafluorohydrazine, difluoramine (HNF₂) has also been utilized in the preparation of fluorine-containing amine salts, as well as the free amines. The reaction of α , α , α -chloro-(difluoramino-(2-methoxy-2-aziridyl)-toluene with difluoramine in BF₃, followed by treatment with dry HCl, produces the substituted propylamine hydrochloride (451a, 453).

In a similar manner the reaction shown below resulted in hydrolysis instead of the anticipated product (449).

$$X = \frac{1}{N_L^5} + \frac{1}{N_L^5} + \frac{CH^5CI^5}{N_L^5} \times \frac{1}{N_L^5} \times \frac{1$$

X = -H or -Cl

Using HNF2 in fuming sulfuric acid, N,N-dimethyl-4-piperidinium methylsulfate can be converted to the corresponding N,N-dimethyl-4,4-bis(difluoramino)piperidinium methylsulfate. The product was identified in the reaction mixture but all attempts to isolate the pure material were unsuccessful (449). In a similar manner, HNF2 in 96% H₂SO₄ readily converts N,N'-bis(methanesulfonyl)-1,2-dihydroxyethylenediamine to the corresponding 1,2-bis(difluoramino)-substituted compound (270). Treatment of ammonium chloride with difluoramine in a 37% formalin solution resulted in the formation of 2,2',2"-tris(difluoramino)trimethylamine (code name: TMDA) (269).

The reaction of difluoramine with substituted piperazine compounds has been investigated. These results are summarized in Figure 1 (267a, 268, 269, 270). The underlined percentages indicate the yield for that reaction.

4-Difluoramino-4-difluoraminomethyl-1,3-dioxolane-2-one was produced by the treatment of a difluoramino-substituted tetraoxaspiro[2.2] nonane with difluoramine (453).

Tris(difluoramino)fluoraminomethane (code name: H-Delta) reacts with HNCO to yield multiple products as shown below (291):

$$(NF_2)_3CNFH + HNCO \xrightarrow{urea} F_2NCNF_2 + HNF_2 + O$$

$$(code name: PFG)$$

Dehydrofluorination of difluoramino-substituted compounds to produce the corresponding fluorimino-compounds has been reported for a number of materials. These reactions are summarized in Table I.

Associated Reactions

TABLE I

DEHYDROFLUORINATION REACTIONS

Starting Compound	Product	Conditions	Ref.
NF ₂	NF ₂ NF ₂	⊙ OCH3 in CH3OH	(441)
O NF2	O NF	11	(441)
ON NF	CH ₃ OC(CH ₂) ₃ CN	**	(441)
NF ₂ NF ₂ CH ₃ C—CHCH ₂ CH ₂ Cl	C1 NF CH3C — C-CH=CH2	Et ₃ N in CH ₂ Cl ₂ at 0°C	(44 1, 44 7)
ch3cch2nf2 nf2	ch3ccn NF2	Et ₃ N in xylene at r.t.	(447)
n-c4H9OCHCH2NF2	n-C4H9OCCN	Et3N	(449)
NF2 CH2OCHCH2NF2 NF2 CHOCHCH2NF2 NF2 CH2OCHCH2NF2 (code name: TVOPA)	CH2OCCN NF CHOCCN CH2OCCN NF	Norite-A in CH ₂ Cl ₂	(449)

TABLE I (Concluded)

Starting Compound	Product	Conditions	Ref.
$\mathbb{C}^{\mathrm{H}(\mathrm{NF}_{2})_{2}}$	NF NF ØCNF ₂ + ØCF (tentative)	strong base	(554)
MŁ ^S H	NF	strong base	(354)
H NF2	(tentative)	Amberlite IR- 4 5 in CH ₂ Cl ₂	(354)
сн ₃ (сн ₂) ₅ сн(NF ₂) ₂	CH3(CH2)4CH—C=NF	strong base	(354)
F ₂ N NF ₂ NH ₂ NF ₂ CHO (DFTDP)	no reaction	metal hydrides i.e.: LiAlH ₄ also: NaBH ₄ , PtO ₂ , LiBH ₄	(268)
ne ⁵ ehncuhe ne ⁵	SiF ₄ + HNF ₂ + others	P ₂ 0 ₅ at r.t.	(291)

confidential

The reaction of 1,2-bis(difluoramino)cyclohexane with fluorsulfonic acid at -80°C resulted in nitrogen insertion via a ring opening and closing process (46).

I-B. Amine Fluorinations

Early attempts to fluorinate amine-N-oxides usually resulted in a vigorous reaction, but no stable NF or NOF compounds could be isolated (Crit.Rev. I, 284a). Recent investigations have shown that the room temperature reaction of difluoramine, using fuming H₂SO₄ as a catalyst and CH₂Cl₂ as a solvent, with 3,4-diacetyl-1,2,5-oxadiazole-2-N-oxide, produced 3,4-bis[1,1-bis(difluoramino)ethyl]-1,2,5-oxadiazole-2-N-oxide (451a). The same product was also obtained if chloroform was used as the solvent instead of methylene chloride (453). If Amberlyst-15 was added to the methylene chloride reaction mixture, the product formed was 4-acetyl-3-[1-difluor-amino-1-hydroxyethyl]-1,2,5-oxadiazole-2-N-oxide (451a).

The use of elemental fluorine, an effective fluorinating agent, very often resulted in degradation of the starting material and a complex mixture of products. This can be illustrated by the results of the reactions shown below.

NH
$$NOCH_{2}^{"}CNH_{2}\cdot HC1 + 10\% F_{2}/N_{2} \xrightarrow{NaF; -10^{\circ}C} complex mixture including (294)$$

$$3 \text{ hr.} (NF_{2})_{2}CFCHO$$

$$\begin{array}{c} \text{NH} & \text{unident.} \\ \text{NH}_2\text{CSO}_2\text{H} + \text{IO}\% \text{ F}_2/\text{N}_2 \xrightarrow{\text{NaF; O°C}} \text{SO}_2\text{F}_2 + \text{CF}_2(\text{NF}_2)_2 + \text{NF}_2\text{SO}_2\text{F}} + \text{product} & (294) \\ & \text{(small (small amount) amount)} \end{array}$$

Elemental fluorine has been utilized for the fluorination of some aromatic systems; however, the degree of fluorine substitution is often difficult to control. The reaction of 1,3,5-triamino-2,4-dinitrobenzene with fluorine in liquid hydrogen

fluoride at -58°C gave 1,2,5,4,5,6-hexafluoro-1,3,5-tris(difluoramino)-2,4-dinitro-cyclohexane as the major product with only small quantities of perfluoroaniline (497). With 2,3,4,5,6-pentafluoroaniline, a dimerization occurred upon treatment with fluorine in CH₅CN at -55°C to yield N,N'-(perfluorophenyl)fluorohydrazine as the major product with only small quantities of perfluoroaniline (497). In liquid hydrogen fluoride, fluorination of 3,4-diamino-1,2,5-oxadiazole resulted in the formation of an unidentified polymeric material (497).

Cesium fluoride at 90°C was used to fluorinate CF_3NHF to a mixture of $CF_2=NF$ and CF_3N_{N} CF_2 (296).

confidential

CHAPTER II

CYANIDES (NITRILES) AND ISOCYANATES

II-A. Cyanides (Nitriles)

A large number of nitriles containing difluorsmino groups have been prepared by reacting N_2F_4 with the appropriate elefinic compound. The direct fluorination of nitriles and addition of selected nitriles to PFG have also been utilized as methods of preparation.

The photolysis of a mixture of cyanogen and N_2F_4 proceeded at room temperature to yield a mixture of perfluoroethylenediamine and 2,2-difluoro-2-difluoraminoacetonitrile (220a).

A detailed study of the kinetics of the reaction of the two isomers of n-butoxycyanoformamidine with potassium fluoride dihydrate in methanol has been studied (453).

The rate of disappearance was found to be first order with respect to both isomer (1) and isomer (2). Graphical analysis of the change in rate constant as a function of temperature showed an activation energy for isomer (1) to be 15.9 Kcal/mole, while that for isomer (2) was found to be 14.2 Kcal/mole.

A number of studies on the reactions of substituted cyanofluoroformamidines (453, 455) have been conducted. Selected examples of these reactions are given below:

Dimethylformamide has been found to decompose tris-(difluoramino)acetonitrile (code name: RN) in the presence of NaCN at room temperature to an unidentified compound, containing a tris-(difluoramino)methyl group (293). Recent studies have shown that the conversion of a perfluoronitrile to a difluoramino-substituted perfluoroether, via an amidine intermediate, can readily be made (497).

II-B. Isocyanates

In the synthesis of tetrakis(difluoramino)methane (code name: Delta) cyanic acid was condensed with perfluoroguanidine (code name: PFG) at -80°C in the presence of 0.2 - 0.5% pyridine. The resulting compound (NF2)2C(NFH)NCO (code name: Adduct) was then fluorinated under mild conditions to yield a mixture of tris-(difluoramino)acetonitrite (code name: Tris-I) and Delta. In recent work, numerous studies have been conducted on the reaction of the two other products of this reaction: Adduct and Tris-I. Adduct was found to undergo a catalyzed rearrangement to yield trifluoroguanyl isocyanate (code name: TFGI) and difluoramine (85b). Several catalysts were utilized in this study and 100% H₂SO₄ was found to produce the best yields. Among the other catalysts were NaF, a mixture of KCN and KOCN, and a mixture of KSCN in liquid SO₂. Sodium fluoride was unsuitable since it deactivated quickly and produced many side products. Neither of the two mixtures produced any appreciable conversion. A number of typical reactions of Adduct, TFGI, and Tris-I are shown in Table II.

TABLE II

REACTIONS OF ADDUCT, TFGI, AND TRIS-I

	Reactant	Products	Conditions	Reference
1.	(NF ₂) ₃ CNCO	Code Name: Tris-I		
	0=As ø 3	$(NF_2)_3CNH_2 + others$	$c_{6}H_{6}$, ϕ NCO, r.t., 1 day	85 a
	0=PØ3	no reaction	C ₆ H ₆ , HCl, r.t., 6 days	85b
	NH ₃	(NF ₂)3CNHCNH ₂	Et ₂ O, 2 hr., r.t.	856
	CH2=CHCH2OH	ch ₂ =chch ₂ ocnhc(nf ₂) ₃	r.t., 17 hr.	8 5 b
	H ² O	(NF2)3CNH2	FC4-11, r.t., 5 days	86
	н г	(NF ₂) ₃ CNHCF	CsF, r.t., 7 days	293
2.	NF NF ₂ -C-NCO	Code Name: TFGI		
	H ₂ O	nf nf ₂ cn ₁₂ + co ₂	r.t.	85 a
	HNCO	N-F containing oil	KSCN, O°C, 18 hr.	85b
	NF ₂ C-NH ₂	nf o nf nf ₂ cnhcnhcnf	ø ₃ №, с ₆ н ₆	85c
	с н _з он	nf o nf ₂ cnhcoch ₃	O°C, 1 day	85 c
	NF ₃	NF O NF ₂ CNHCNH ₂ (several isomers)	Et ₂ 0, -78°C	85c

TABLE II (Concluded)

	Reactant	Products	Conditions	Reference
3,	(NF ₂) ₂ CNCO	Code Name: Adduct		
	NOC1, HC1	(NF ₂) ₂ CFNHCC1 + (NF ₂) ₂ C NCO	Not stated	594
	NOF	(NF ₂) ₂ CFNCO (50%)	r.t., 16 hr.	594

In addition to those reactions listed in Table II, the tris(diffuoramino)-acetonitrile molecule has been the subject of numerous other studies. Reaction of Tris-I with pyridine led to the formation of a solid product which has not been positively identified (85a). A partial analysis of the solid material has shown that the Tris-I and pyridine are in a ratio of 1:1. The structure has been suggested to be one of the two shown below:

$$(NF_2)_3$$
CNC N or $(NF_2)_3$ CN $(NF_2)_3$

Further reaction of the Tris-I pyridine complex with acetic acid resulted in the formation of Tris-A, acetic anhydride, pyridine, and ${\rm CO_2}$ (85b). The products were identified by NMR and not isolated from the reaction mixture. Hydrolysis of Tris-I, using quinoline as a catalyst, leads to the formation of Tris-A, which upon further treatment with OF₂ in Kel-F oil at room temperature for 22 hr. resulted in the decomposition of the Tris-A to perfluoroguanidine (code name: PFG) and silicon tetrafluoride (15a).

Although Tris-A does not react with triphenylphosphine oxide, it does undergo a condensation reaction with a similar molecule (85a).

$$(NF_2)_3$$
CNC0 + $(NF_2)_3$ CN=P $(N$

Attempts to further fluorinate Tris-I with HF, using trimethylamine as a catalyst, at room temperature for 5 days were unsuccessful (293). An explosive mixture is formed when Tris-I and n-BuSnOCH₃, condensed together at low temperature, are allowed to warm to room temperature (86). Addition of methanol to Tris-I results in esterification to yield (NF₂)₃CNHCO₂CH₃ (294). Fluorinations of the ester with either a 10% F_2/N_2 mixture at 0°C or 100% F_2 at room temperature were unsuccessful.

The incorporation of Tris-I into polymeric materials has been the subject of a number of studies. Among the species utilized as potential prepolymers were ethylene oxide, ethylenimine, and allyl alcohol.

$$(NF_2)_3$$
CNCO + H_2 C CH_2 CH_2 CH_2 CH_2 CH₂ CH_2 CH

$$(NF_2)_3 CNCC + CH_2 = CHCH_2OH \xrightarrow{\text{Et}_2O} CH_2 = CHCH_2OCNHC(NF_2)_3 \xrightarrow{100 \, ^{\circ}\text{C}} 24 \, \text{hr.}$$

$$17 \, \text{hr.}$$

$$CH_2 = CHCH_2OH C(NF_2)_3 \xrightarrow{100 \, ^{\circ}\text{C}} (594)_3$$

$$CH_2 = CHCH_2OCNHC(NF_2)_3 \xrightarrow{CH_2OCNHC(NF_2)_3} (594)_3 \xrightarrow{CH_2OCNHC($$

$$(NF_2)_3$$
CNCO + H_2 C O CH pyridine $(NF_2)_3$ C-NCH₂CH₂O O C + others (85c) also for: TFGI

The polymeric material prepared by the second reaction, using allyl alcohol, was found to decompose at approximately 200°C and to have a molecular weight in the range of 429 - 1,165. Catalysts other than pyridine have been attempted in the reaction of Tris-I with ethylene oxide, with varying degrees of success. Sulfuric acid as a catalyst at -23°C produced no reaction, while fuming $\rm H_2SO_4$ at -23°C and $\rm SO_3$ at -23°C yielded a nonvolatile unidentified oil. Without a catalyst, using dioxane as the solvent, heating the mixture to 45°C produced an unidentified oil. When tetraethylammonium bromide was added as a catalyst, no reaction occurred. If the ethylene oxide and Tris-I were allowed to react at room temperature without a catalyst, a cyclic condensation product was among the products (86).

$$(NF_2)_3$$
CNCO + H_2 C CH_2 $T.t.$ $(NF_2)_3$ C $N-C$ + others H_2 C $C=NC(NF_2)_3$

Attempts to incorporate Tris-I into a polymeric material with polyvinylamine (PVAm) were unsuccessful (85c). A suspension of the two substances in SO₂ + Et₂O yielded no reaction, while the mixture in DMSO at room temperature exploded after I/2 hr. Reaction of Tris-I with 2,3-epoxy-1-propanol resulted in the formation of the corresponding epoxy-ester (594); however, further treatment of the ester with BF₅ did not produce the desired polymerization. The use of polyglycidol did result in the incorporation of Tris-I into a polymer (594).

Considerably fewer studies have been conducted on the reactions of trifluoroguanyl isocyanate (code name: TFGI). Like Tris-I, TFGI did not react with triphenylphosphine oxide in benzene after 16 hr. at room temperature (85a). However, if water was added to the reaction mixture and the temperature maintained at O°C, the TFGI underwent a dimerization, and the resulting product, N,N'-bis(trifluoroguanyl)-urea, formed a 1:1 complex with the triphenylphosphine oxide (85c).

No reaction was observed when vinyl isocyanate and Tris-A were mixed in methylene chloride and allowed to stand at room temperature for 3 days. If, however, triphenylphosphine oxide was added as a catalyst, a polymerization occurred after 3 days (85c).

$$CH_2=CHNCO + (NF_2)_3CNH_2 \xrightarrow{\phi_3PO} CH_2CH_1 \\ CH_2CH_2 \\ CH_2 \\ C$$

This reaction was also found to occur if quinoline was used as the catalyst in acetonitrile with the temperature maintained at -20° C for 1 hr. (85c).

CHAPTER III

AMIDES, CARBAMATES AND UREAS

The various types of compounds which contain the -N-CO- (amide) group are discussed in this chapter; included also are those containing additional oxygen or nitrogen, e.g., -N-CO-O- (carbamate) or -N-CO-N- (urea).

III-A. Amides

Glyoxal has been utilized as a condensation agent with amides to form amido-substituted diols. These diols can be subsequently reacted with difluoramine to yield the corresponding difluoramino-substituted compounds. In this manner, trifluoroacetamide was reacted with aqueous glyoxal to form 1,2-bis(trifluoroacetamido)-1,2-dihydroxyethane. Reaction of the diol with difluoramine in 96% sulfuric acid led to the replacement of the hydroxyl groups with difluoramino groups (269).

$$2CF_3CNH_2 + (CHO)_2 \xrightarrow{H_2O} HOCHNHCCF_3 \xrightarrow{96\% H_2SO_4} F_2NCNHCCF_3$$

$$+ OCHNHCCF_3 \xrightarrow{96\% H_2SO_4} F_2NCNHCCF_3$$

If the original amide contained unsaturation, such as acrylamide, the reaction with difluoramine also occurred with the unsaturated portion of the molecule (270).

$$(CHO)_2 + 2CH_2 = CHCNH_2 \longrightarrow HOCHNHCCH=CH_2 HNF_2 H2SO_4 F_2NCHNHCCH_2CH_2NF_2 HOCHNHCCH=CH_2 H2SO_4 F_2NCHNHCCH_2CH_2NF_2 H2SO_4 HOCHNHCCH=CH_2 H2SO_4 H2SO_5 H2S$$

The same reaction occurred if the intermediate diol was converted to the methoxy-substituted compound and then treated with HNF_2 (270). Molecules containing acetylenic linkages, such as propiolamiae, undergo reaction with $(\mathrm{CHO})_2$ and HNF_2 in the same manner as those containing the carbon-carbon double bond (273). If the starting compound was a hydroxyl-substituted amide, which also contains unsaturation, reaction with difluoramine or fluosulfonic acid did not affect the unsaturated portion of the molecule (271).

Direct fluorination of simple substituted amides with fluorine-nitrogen mixtures often results in decomposition and/or explosions. Reaction of N,N'-methylene-bis-formamide with 10% F_2/N_2 over NaF at 0°C for 8 hr. resulted in severe decomposition of the starting material to a complex mixture containing NF₃, COF₂, CH₂FNF₂ and others (292). Likewise, treatment of tris(difluoramino)acetamide with 3% F_2/N_2 at 0°C resulted in an explosion (291).

NOH
HCNH₂ ·HClO₄ + F₂NCNF₂ urea
(PFG) 1 hr.

$$[H_2NCH=NOC(NF_2)_2]$$
 3% F₂/N₂

-30°C product

The product of the above reaction could not be isolated from the reaction mixture; however, it was shown to contain a tris(difluoramino)methyl group. Fluorination with elemental fluorine using liquid hydrogen fluoride as the solvent has also been a successful method of preventing decomposition (497).

The product N^2 , N^4 -diffuoro-isomelamine dihydrofluoride, hydrolyzed to give CO_2 and unidentified compounds (497). Hydrolysis and aminolysis of substituted perfluoro-formamides led to the expected products (292).

$$(NF_2)_2$$
CFNFCF + H_2 O $\xrightarrow{r.t.}$ NF_2 CNF2 (code name: PFG)
 $(NF_2)_2$ CFNFCF + NH_3 $\xrightarrow{Et_2O}$ $(NF_2)_2$ CFNFCNH2

Cyclic compounds, containing difluoramino groups, undergo ring enlargement upon treatment with HNF_2 in sulfuric acid. Subsequent reaction of these cyclic amides with strong base resulted in ring opening (441, 451, 453, 455).

III-B. Carbamates

Carbamates, and related compounds, undergo condensation reactions with glyoxal in the same manner as the amides (268). Thus, oxamic acid, methyl carbamate, and ethyl carbamate reacted with glyoxal to form substituted diols, which were then further reacted with difluoramine in sulfuric acid.

Direct fluorination of N-substituted ethylcarbamates with elemental fluorine in either water or acetonitrile resulted in complete decomposition of the starting material (251). Treatment of N-tris(difluoramino)methyl allylcarbamate with 3% benzoyl peroxide at 88°C for 26 hr. produced an unidentified, brown, viscous syrup (85c). Acid hydrolysis of N-chloro-N-tris(difluoramino)methoxy-ethylcarbamate with 70% perchloric acid at room temperature resulted in the loss of the chlorine to form N-tris(difluoramino)methoxy-ethylcarbamate (291).

The formation of 3,5-substituted-1,2,4-oxadiazoles was readily accomplished by the reaction of ethylcarbamate with an aldehyde (451a).

III-C. Ureas

The reaction of glyoxal with numerous ureas has been shown to be analogous to the reaction with amides (see Section A). Substituted-2-imidazolidones were initially formed, and then further reacted with difluoramine in sulfuric acid to yield the corresponding difluoramino-substituted compounds. A brief survey of these reactions is presented in Table III.

Mono-substituted ureas: Nitration of ureas has been attempted, with nitric acid being used in the presence of sulfuric acid at room temperature. The resulting nitro-substituted compounds are usually unstable at ambient temperatures (85b).

$$(NF_2)_3CNHCNH_2 + HNO_3 \xrightarrow{H_2SO_4} (NF_2)_3CNHCNH$$
 unstable at code name: CH_2Cl_2 NO_2 unstable at room temp.

The above reaction has been attempted with trifluoroacetic anhydride as catalyst instead of sulfuric acid (85b). Within 1 hr. at ambient temperature, decomposition of the intermediate product resulted in the formation of Tris-I, nitrous oxide, and water. Reaction of Tris-U with trifluoroacetic anhydride in ether for 3 days at room temperature produced acylation on the unsubstituted NH₂- group (85c). At 40°C, trifluoroperoxyacetic acid in methylene chloride did not undergo reaction with Tris-U (85b), and the addition of boron trifluoride resulted only in the formation of a BF₃-Tris-U complex. Tris-U was found to react with triphenylphosphine oxide

TABLE III

REACTIONS OF GLYOXAL WITH SUBSTITUTED UREAS

TABLE III (Concluded)

R,R'	Intermediate	Froduct	Reference
nh ⁵ cnh ⁵ 8	HIN C NIH	(BDI) NH;* (27% yield)	272

* If HCHO is added in second step, S is retained 268.

in methylene chloride at ambient temperature to produce a white solid, which was identified as the 1:1 complex shown below (85c).

The fluorination of ureas has been attempted with urea, itself, and guanylurea. Fluorination of urea with HNF2 in the presence of sulfuric acid and trichloroacetaldehyde (or tribromoacetaldehyde) resulted in the formation of an intermediate product, which did not undergo further reaction with HNF2 (271).

The fluorination of guanylurea sulfate with 10% F_2/N_2 over NaF at -7°C for 8 hr. resulted in decomposition of the starting materials to PFG and $CF(NF_2)_3$ plus small amounts of other products (292).

Disubstituted ureas: An improved method for the production of bis-[tris(difluoramino)methyl]-urea (code name: BTU) has been reported with an overall yield of 49% (162a).

$$(NF_2)_3$$
CNCO + ϕ_3 PO + H_2 O $\xrightarrow{C_6H_6}$ $\xrightarrow{F_3$ CCO₂H $\xrightarrow{C_6H_6}$ $\xrightarrow{C_6H_6}$ $(NF_2)_3$ CNHCNHC(NF₂)₃
(BTU)

The use of $tri(\underline{n}$ -butyl)phosphine oxide has been attempted. Preliminary results indicate it may provide a better yield than the triphenylphosphine oxide currently being used. Dimethylsulfoxide (DMSO) has been found to decompose BTU to produce Tris-A plus other products (85a).

<u>Cyclic ureas</u>: Trinitromethane has been reacted with N-substituted cyclic ureas to produce the corresponding trinitromethyl-substituted compounds, which were then treated with difluoramine in H_2SO_4 . The reaction products were highly dependent upon the initial purity of the cyclic urea and upon the quantity of trinitromethane used (271 and 272).

If the starting material was not carefully purified, the reaction with excess trinitromethane, followed by reaction with diffuoramine, resulted in the formation of N-diffuoraminomethyl-N'-2,2,2-trinitroethyl-urea instead of the anticipated product (272). The reaction of compound (I) from above with diffuoramine in $\rm H_2SO_4$ at ambient temperature and autogenous pressure yielded N,N'-tris(diffuoraminomethyl)-N'-2,2,2-trinitroethyl-urea (272).

Nitric acid has been used with difluoramino-substituted 2-imidazolidones to produce the corresponding N-nitro-2-imidazolidones, which contain both a nitro and a difluoramino group (270, 272).

R = -OCH3 or -CH2OH

CHAPTER IV

IMINO COMPOUNDS

In this chapter, compounds containing the C=NF group could be considered. The first portion, fluorimines, will consider those molecules which contain groups other than $-NF_2$ attached to the carbon atom. The remainder of the chapter will be devoted to the discussion of compounds which contain the $-NF_2$ attached to the carbon atom.

IV-A. Fluorimines

The preparation of fluorimine compounds has utilized several methods, with one of the most general methods being the dehydrofluorination of difluoramino compounds (see Table I). 2,3,5,6-Tetra(fluorimino)piperazine (code name: TFP) has been produced by the reaction of HNF₂ with 1,4-dinitro-2,3,5,6-tetra(acetyl)piperazine in the presence of sulfuric acid (269).

Reaction of <u>n</u>-butylnitrite with substituted ethylenimines has also been found to yield fluorimines (451a).

Numerous studies have been conducted on the reaction of difluoramine with a wide variety of fluorimino compounds. A detailed discussion or listing of all reactions is precluded by the number of investigations in this area. A representative sample of the various types of fluorimino compounds which have been studied is given in Table IV. Additional examples of these reactions may be obtained from the work referenced in the table.

TABLE IV

REACTIONS OF FLUORIMINES WITH DIFLUORAMINE

TABLE IV (Concluded)

Reactant	Conditions	Produst	Reference
¢c — cch=ch2 x	ef ₃	Ç1 ¢Ç-X F	451
CH3O-C=NCCH3	BF ₃ , CH ₂ Cl ₂	$CH^2O - CM + CH^2CX^2$	4 53
х nf ch ₃ c-cch ₃ х	^H 2 ^{SO} 4	ch ₃ cnhcch ₃ x	501a
х иг сн ₃ (сн ₂) ₂ с-сс ₂ н ₅	hso ₃ f	unident. product; not the expected 1,1,1-tris-difluoramino)butane	 501a

Reaction of strong base, i.e., methoxide ion, with fluorimines haw been shown to result in the formation of the three-membered ethylenimine ring (441, 451a, 455).

Similar reactions have also been found to occur for 1,1-bis(difluoramino) - 2-fluorimino-cyclohexane, 1-chloro-1-difluoramino-2-fluorimino-cyclopentane, and 2,2-bis(difluoramino)-3-fluorimino-butane (441). If the ring compound was further treated with hydrogen chloride, ring cleavage occurred and the corresponding amine salt formed. Reaction of the amine salt with alkoxide ion resulted in recyclization to form a substituted pyrazole (451a).

If the original fluorimino compound had been reacted with i-propoxide or t-butoxide, treatment with hydrogen chloride did not result in the formation of the amine salt (455).

Attempts to oxidize fluorimines with peroxide have not been successful. Reaction of 1,2-bis(fluorimino)-cyclohexane with benzoyl peroxide in methylene chloride at room temperature for 4 hr. did not show any appreciable reaction (356).

Fluorulfonic acid, often used as a catalyst in reactions of difluoramine, has been found to react with fluorimines via the Beckman Rearrangement (451a).

A similar type of reaction has been found to occur with 1,1-bis(difluoramino)-2-fluorimino-cyclohemane upon treatment with trifluoroacetic acid in BF₃ in HSO₃F (447).

The hydrogenation of 2,3,5,6-tetra(fluorimino)-piperazine (code name: TFP) has been conducted with a platinum dioxide catalyst (269).

IV-B. N,N,N'-Trifluoramidines

A general method for the preparation of fluorinated amidines by the reaction of elemental fluorine with the corresponding amidine has been developed (497).

The hydrolysis of gem-bis(difluoramino) compounds with base has also been utilized as a method for the preparation of fluorinated amidines (497).

Fluorination with elemental fluorine in liquid hydrogen fluoride has been successful in converting amidines to fluoroamidines (497).

Reaction of 2-nitro-perfluoroacetamidine with methanol in acetonitrile, followed by fluorination with elemental fluorine, resulted in the formation of methyl[2,2-difluoro-2-nitro-1,1-bis(difluoramino)] ethyl ether, presumably by a mechanism similar to the addition of methanol to perfluoroguanidine (code name: FFG) (497). However, the addition of n-butanol to N,N,N'-trifluorobenzamidine did not show any reaction after 15 hr. at room temperature (354).

IV-C. Fluorinated Guanidines

Fluorination of guanylcarbamate esters has been utilized as a convenient method for the preparation of fluorinated guanidines (46).

$$\begin{array}{c} \text{NH} & \text{NF} \\ \text{RO}_2\text{CNHCNHCO}_2\text{R} + \text{F}_2 & \xrightarrow{\text{CH}_3\text{CN}} & \text{F}_2\text{NCNF}_2 + \text{CO}_2 + \text{ROH} \\ & \text{(PFG)} \end{array}$$

Partially fluorinated guanidines have been obtained by the reaction of nitroguanidine or substituted nitroguanidines with elemental fluorine in liquid hydrogen fluoride (497, 501).

$$\begin{array}{c} \text{NNO}_2 \\ \text{H}_2 \text{NCNH}_2 \\ + \text{F}_2 / \text{N}_2 \\ \hline \text{O°C} \\ \end{array} \xrightarrow{\text{HF}} \begin{array}{c} \text{NNO}_2 \\ \text{H}_2 \text{NCNF}_2 \\ \text{or F}_2 \text{NCNF}_2 \\ \end{array} \text{(not isolated)} \\ \text{(NO}_2)_3 \text{CCH}_2 \text{NHCNH}_2 \\ + \text{F}_2 / \text{N}_2 \\ \hline \end{array} \xrightarrow{\text{HF}} \begin{array}{c} \text{NNO}_2 \\ \text{(NO}_2)_3 \text{CCH}_2 \text{NHCNF}_2 \\ \end{array}$$

The attempted reduction of fluoro-bis(difluoramino) mathyl perfluoroguanidine (code name: $F_{\rm c}BG$) with lithium amide resulted in the formation of two unidentified products: a tan solid and a colorless liquid (253).

IV-D. Perfluoroguanidine (Code Name: PFG)

The development of perfluoroguanidine has provided the propellant synthesis groups with an extremely prolific "building-block" material. This molecule has been utilized in numerous reactions, and shown to react with all compounds containing an active hydrogen. Since a detailed discussion of the various reactions involving PFG would be quite lengthy, a tabulation of the reactions reported during the review period is given in Table V. A few studies of PFG and PFG adducts, not listed in the table, will be discussed in the following paragraphs.

Battelle Institute (115) has conducted an investigation into the polymerication of PFG at high pressures. Thus far, the results have not been encouraging. A sample of PFG at 20 kilobars for 6 hr. in either a stainless steel or nickel capsule was shown to yield only metal fluorides. The use of a prefluorinated nickel capsule and 6-7 kilobars pressure led to an explosion. The use of solvents, such as acetonitrile, C_3F_8 , CH_3NO_2 , and C_4F_8 , with 10 kilobars of compound has also been unsuccessful in producing any polymerization.

Many additional reactions of fluorinated adducts of PFG have been studied. The reaction of the fluorinated adduct of ethylglycolate (see Table V) with ammonia in methanol at room temperature for 2.5 hr. yielded tris(difluoramino)methoxyacetamide (code name: GA) (295). This compound is reported to be less sensitive to shock than many of the other tris-domino compounds, such as INFO. A similar molecule, the fluorinated adduct of N-ethyl-N-hydroxyethylcarbamate, underwent decomposition to a mixture of products when treated with ammonium hydroxide (292), but formed the N-chloro compound when reacted with (CH₃)₃COCl at ambient temperature.

TABLE V

REACTIONS OF PERFLUOROGUANIDINE (PFG)

Products Reference	W_{2}^{RP} Hypes 1966 $W_{2}^{CNH}_{2} + W_{2}P_{2}$ Prop. Ingr. $(P_{3}G)$	at 0°C - explodes			nt. prod.			292, 295 NF2 H-ANNEGAPH 292		
Conditions	Freon 113; -80°C (Et20; -196°C	C ₆ H ₆ ; R.T.	CH ₂ CN; 0°C	acetone; R.T. ur	CH2CN	1) urea, Et ₂ O, R.T. 2) 10% F ₂ /N ₂ ; -50°C (N		R.T. B.F.	
Reactant I. Inorganic Compounds	Linh ₂ + KCNO	Lå CH ₃	Lin(CH ₃) ₂	03/05	H2S	NH4ClO4	^H 20 ₂	$^{N_{ m 2}H_{f 4}}$	$^{ m BF}_3$	II. Organic Compounds
П				3	51					ij

colorless oil

dimethylurea, CH2CN, R.T.

A. Alcohols, Diols and Hydroxy Compounds

 $(HOCH_{2}CH_{2})_{3}$ N· $HC10_{4}$

TABLE V (Continued)

Reartant	Conditions	Producte	Deference
veachann	COURTETOUS	Hoducts	Kelererce
$(\text{HOCH}_2\text{CH}_2)_3\text{N}$	CHZCN	exp1odes	267a
CH ₃ CH ₂ WCO ₂ Et OH	1) urea, CH_2CN 2) $10\% F_2/N_2$, -30°C	$({ m NR}_3){ m confeco}_2{ m Et}$	88
СІСН ₂ СН ₂ ОН (от) ВтСН ₂ СН ₂ ОН	1) urea, R.T. 2) 5\$ F2/N2, -45°C	${ m CLCH_2CH_2OC(NF_2)_3}$ BrcH_2CH_2OC(NF_2)_3	294
НОСН ₂ СИ ₂ ОН (excess)	1) R.T., 15 hr. 2) 5\$ F2/N2, -50°C	HOCH2CH2OC(NF2)3	284
HOCH2CNH2	urea, CHzCN	MH2CCH2OC(NP2)3	294
$c_{\rm 5^{ m H}_{11}^{ m OH}}$	urea, r.t.	C5H110C(NF2)2 NFH	354
OH OH (trans)	1) urea; CH ₃ CN 2) 20£ F ₂ /N ₂ ; -25°C	$(NF_2)_5 c_0 \qquad c_0 (NF_2)_5$	174
HOCH2CH2CN	1) urea; CHzCN 2) 20% F2/N2; -25°C	(NF ₂) ₃ сосн ₂ сн ₂ ся	175
(одиоснд)зссндон	1) urea; CH ₂ CN 2) 25% F ₂ /N ₂ ; -10°C	$(0_2 \text{NOCH}_2)_3 \text{CCH}_2 \text{OC} (\text{NF}_2)_3$ (PA-PERLIN)	175

	Reference	175	175	175	175	5 2T	176	176	178
TABLE V (Continued)	Products	$(O_2NOCH_2)_2C[CH_2OC(NF_2)_3]_2$	$({ m NO}_2)_3{ m CCH}_2{ m CHCH}_2{ m OC}({ m MF}_2)_3 \ { m OC}({ m MF}_2)_3 \ ({ m FA-TMEEG})$	$(M_2)_2$ CFCHCH $_2$ OC $(MF_2)_3$ OC $(MF_2)_3$, 0, CH ₂ -CHCH ₂ OC(NF ₂) ₃ (FAG)	(C ₂ H ₅ O ₂ C-CR;HCO ₂ C ₂ H ₅)C(NF ₂)3 (FA-DET)	$(NO_2)_3$ CCH $_2$ NCH $[CH_2$ CC(NF $_2$) $_3$ $[PA-TNEND)$	0_2 NOCH $_2$ C $\left[\mathrm{CH}_2$ OC $\left(\mathrm{NF}_2\right)_3\right]_3$ (FA-FEMON)	$\begin{bmatrix} (NP_2)_3 COCH_2 CCH_2 \\ MO_2 \end{bmatrix}_2$ (FA-TWH)
	Conditions	1) urea; CH_2CN 2) $25\% F_2/N_2$; -10°C	1) CHzCN; NaCN; pyridine 2) $F_{\hat{Z}}/N_{\hat{Z}}$; -25°C	1) CH ₃ CN; NaCN 2) 20% F ₂ /N ₂ ; -25°C	1) urea; CH_3CN 2) F_2/N_2 ; -25°C	1) urea; $\mathrm{CH_{2}CN}$ 2) $\mathrm{F_{2}/N_{2}}$; -25°C	1) ures; $CH_{2}CN$ 2) $\geq 0 \% \ F_{2}/N_{2}$; -10°C	1) urea; CH ₂ CN 2) 25% F ₂ /N ₂ ; -10°C	1) urea; CH ₃ CN 2) 25% F ₂ /N ₂ ; -10°C
	Reactant	(0 ₂ NOCH ₂) ₂ C(CH ₂ OH) ₂	(No ₂) ₅ cch ₂ chch ₂ oh Oh	(NO ₂) ₂ CFCHCH ₂ OH OH	CH - CHCH OH	он С2H5O2C-CH-СНСО2C2H5 ОF (d-form)	(NO ₂) ₃ cch ₂ uch(ch ₂ oh) ₂ NO ₂	$^{\mathrm{O_{2}NOCH_{2}C(CH_{2}OH)_{3}}}$	$\begin{pmatrix} NO_2 \\ HCCH_2CCH_2 \end{pmatrix}$

53 CONFIDENTIAL

293

HON=CC12

 $\mathtt{CF}_2(\mathtt{OF})_2$

 ${\rm CH_3NO_2}$

NOH HCNH₂

 $(NF_2)_2$ CFON=CC1 $_2$

Reference 267a 267a 179 $(NF_2)_3 COCH_2 (CH_2)_6 CH_2 OC (NF_2)_3$ 179 (FA-OD) 233 285 285 183 (NF₂)₃COCH₂CCH₂NCH₂ (NF2)3COCH2CO2C2H5 NH2CH=NOC(NF2)2MFH Products unident. product $(\mathrm{NF}_2)_3^{\mathrm{CON}=\mathrm{CC1}_2}$ $(\mathrm{NF}_2)_3^{\mathrm{CON}=\mathrm{CC1}_2}$ $(NF_2)_5$ CHCO (FA-HADD) n.r. TABLE V (Continued) 1) urea; CH₂CN 2) 25% F₂/N₂; -10°C 1) urea; $\mathrm{CH_{2}CN}$ 2) $5\%~\mathrm{F_{2}/N_{2}};~\mathrm{CH_{3}CN}$ 3) $\mathrm{CFCL_{3}};~\mathrm{CF_{2}(OF)_{2}}$ Conditions 1) urea; CH₅CN 2) 20% F₂/N₂; -10°C 1) urea; CH₃CN 2) 5% F₂/N₂; CFCI₃ dimethylurea urea; CH2CN CH₂CN F_2/N_2 CH3CN B. Miscellaneous Compounds носн₂ (сн₂)₆сн₂ он $\frac{\text{HON=C-NH}_2}{\text{HON=C-NH}_2} \cdot \frac{2\text{HC}10_4}{\text{HON=C-NH}_2}$ HOCH CCH NO2 NO2 NO2 NO2 NO2 NO2 Reactant носн2со2с245

34 CONFIDENTIAL

	Reference	294	15a	497
TABLE V (Concluded)	Products	n.r.	mixture of products	$\frac{\mathrm{MF}}{\mathrm{MF}} = \frac{\mathrm{C}(\mathrm{NO}_2)_3}{\mathrm{MF}_2}$
	Conditions	$\mathrm{CH_{3}CN}$; $(\mathrm{CH_{3}})_{\mathrm{3}}\mathrm{N}$	urea; CH ₂ CN	KNCS
	Reactant	снзсно	FHNCO2C2H5	HC(NO ₂) ₃

Heating the adduct of <u>n</u>-pentyl alcohol with PFG has been shown to yield the corresponding N_1N_1 -trifluoroamidine (354).

$$C_5H_{11}$$
 O_5H_{11}
 O_5H_{11}
 O_5H_{11}
 O_5H_{11}
 O_5H_{11}

The reaction of perfluoroguanidine with 2,2,2'-trinitroethylethylene glycol (code name: TNEEG) and subsequent fluorination to FA-TNEEG has also been shown to yield a number of side products (175), as shown in Figure 2.

The fluorinated adduct of phosgene oxime and perfluoroguanidine has received considerable study as a potential starting material for the formation of other triscompounds. A survey of these reactions is given in Table VI.

Treatment of the fluorinated adduct of ethylene glycol (see Table V) with trifluoracetic anhydride led to a mixture of products, with the major product being addition of the trifluoracetyl group (294). This compound was found to undergo complete decomposition upon heating to 350°C. At 290°C partial decomposition occurred, while at 240°C no reaction was observed.

$$\text{HOCH}_2\text{CH}_2\text{OC}(\text{NF}_2)_3 + \begin{bmatrix} \text{F}_3\text{CC} \\ \text{F}_3\text{CC} \end{bmatrix}_2\text{O} \longrightarrow \text{F}_3\text{CCOCH}_2\text{CH}_2\text{OC}(\text{NF}_2)_3 + \text{others}$$

$$(\text{major product})$$

Figure 2 - Side Reactions in the Production of FA-TNEEG

37

TABLE VI

REACTIONS OF (NF2)3CON=CCl2

Reactant	Conditions	Products	Ref.
сн ₃ он	NaOH; CFC13	$(\mathrm{NF}_2)_3\mathrm{CON}=\mathrm{C}(\mathrm{OCH}_3)_2$	296
(CH ₃) ₂ NH	cfc13	(NF2)3CON=C N(CH3)2 2	29 6
Na ₂ S·9H ₂ O	сн ₃ он	decomposes	296
C1 (or)	CHCl ₃) CH ₃ Cl ₂ H)	no reaction	295
CF2N2 or N2F4	cfc13	no reaction	296
NH ₃		$(\mathrm{NF}_2)_3\mathrm{CON} = \mathrm{C}(\mathrm{NH}_2)_2$	297
70% HC104	CH ₃ CN	no reaction	293
3% F ₂ /N ₂	CH3CN; O°C	no reaction	295
CsF	CH ₃ CN	(NF ₂) ₃ CN—CF ₂ + others	298
HN NH	. •	(NF ₂) ₃ CON=C-N N tentative only	298

CHAPTER V

NF COMPOUNDS WHICH CONTAIN NN BONDS

This chapter will be directed toward the preparation and reaction chemistries of those compounds which contain some type of nitrogen to nitrogen bond. Tetrafluorohydrazine and difluorodiazine can be regarded as the parent molecules for this group. The chapter can conveniently be divided into three parts: N-N, N=N, and N-NO₂ type compounds.

V-A. Hydrazine Derivatives

Only a few reactions have been reported for molecules containing the N-N bond. These reactions have been discussed in the preceding chapters and examples of their preparation and reactions can be found in the following parts: amine fluorinations, ureas, fluorimines, and perfluoroguanidine (Table V).

The formation of 3-phenyl-4,5-di(methoxy)pyrazolium chloride was found to occur by treatment of the appropriately substituted ethylenimine with sodium cyanide in methanol (453).

A second route to the same product was found by treating the original compound with dry hydrogen chloride, which resulted in ring opening and formation of the substituted ammonium chloride. Reaction of this material with strong base, methoxide ion, and then dry hydrogen chloride yielded the 3-phenyl-4,5-di(methoxy)pyrazolium chloride (453).

V-B. Diimide Derivatives

In addition to the work discussed below, other references to compounds containing a N=N bond can be found in the previous sections concerned with smides and fluorimines. Also included in this part are diazo compounds and molecules of higher N-content such as azides and tetrazoles.

Tris(difluoroamino)methyl Shloride has been found to react with dimethyl sulfoxide (DMSO) at room temperature to yield two diazirines (85a).

$$(NF_2)_5$$
CCl + CH₅SOCH₅ \longrightarrow F_2 C $\stackrel{N}{\longrightarrow}$ F_2 C $\stackrel{N}{\longrightarrow}$ $\stackrel{F}{\longrightarrow}$ C $\stackrel{N}{\longrightarrow}$

Reaction of acetamidine with sodium hypochlorite in DMSO has been reported to give chloromethyldiazirine (434).

The preparation and reactions of fluorinated azodiformamidines have received a considerable amount of study, principally by the workers at Hynes. Fluorination of azodiformamidine with elemental fluorine has resulted in the formation of a mixture of products (112a).

The compound F_8ADF has two isomers which have been designated A and B. Their structures are given below (255).

When the fluorination of azodiformamidine was carried out at $-75\,^{\circ}\text{C}$ and then allowed to warm to 0°C, the compound designated F₆ADF was found to be the principal product (255). Like F₆ADF, the F₆ADF was found to be isomeric, and the three isomers have been identified.

The reduction of several of the fluorinated azodiformamidines has been studied with lithium amide and ammonia. Reaction of F_8ADF with LiNH₂ was found to produce the N-fluoroamidine, which upon fluorination yielded $F_{1O}ADF$ (249,112a).

$$\begin{array}{c} \text{NF} \\ \text{(NF}_2)_2 \text{CFN=NCNF}_2 + \text{Linh}_2 \xrightarrow{\text{CH3CN}} \\ \text{(FgADF)} \end{array} \\ \text{(NF}_2)_2 \text{CFN=NCNH}_2 \xrightarrow{\text{F2/N}_2} \\ \text{FloadF} + \text{FgADF} \\ \text{(minor)}$$

Similar treatment of $F_{10}ADF$ with LiNH₂ in Freon 113 resulted in no observable reaction (252,112a); however, F_6ADF produced a mixture which was not resolved but did show the presence of N-H bonds (251,112a). Those results led to the conclusion that in order for the reaction to occur, the presence of a fluorimino group (C=NF) is required (112a). With ammonia, F_6ADF -A reacted to form the addition compound. Fluorination of this compound with elemental fluorine led to the production of $F_{11}ADF$ and $F_{10}ADF$ (112a).

A similar reaction of ammonia with F_6ADF yielded an orange solid, which upon fluorination resulted in the formation of $F_{10}ADF$ as the major product, with minor amounts of two materials tentatively identified as F_9ADF and $F_{12}ADF$ (249,254,112a).

$$\begin{array}{c} \text{NF} \text{ NF} \\ \text{NF}_2\text{CN=NCNF}_2 + \text{NH}_3 & \xrightarrow{\text{CCl}_2\text{F}_2} \\ & & \text{-96°C} \end{array} \quad \text{orange solid} \quad \begin{array}{c} \text{F}_2/\text{N}_2 \\ & \text{-100°C} \end{array}$$

$$\text{FN} \\ \text{F}_{10}\text{ADF} + \text{NF}_2\text{CN=NC}(\text{NF}_2)_3 + (\text{NF}_2)_3\text{CN=NC}(\text{NF}_2)_3} \\ & \text{(F}_9\text{ADF)} \qquad \qquad (\text{F}_{12}\text{ADF}) \end{array}$$

$$\text{CONFIDENTIAL}$$

The reactions of $F_{10}ADF$ and of the two isomers of $F_{6}ADF$ with carbon monoxide at elevated temperatures have led to the formation of two new compounds, $F_{4}ADF$ and $F_{5}ADF$ as in Table VII.

TABLE VII

REACTIONS OF Floadf AND Feadf WITH CO

יאר אידי	References
$(NF_2)_2$ CFN=NCF $(NF_2)_2$ + CO 180°C FCN=NCF + COF ₂	(112a, 256)
$(NF_2)_2CFN=NCNF_2 + CO \xrightarrow{125 \circ C} FCN=NCF + F5ADF(A+B)$	(256)
NF N	(256)
(F ₈ ADF-6) (F ₅ ADF)	

At 135°C no reaction occurs between the $F_{10}ADF$ and carbon monoxide (256). The molecule, $F_{5}ADF$, has been found to have two isomers designated as A and B (256).

Isomer B of F_5ADF undergoes photolysis to yield perfluoroformimine plus other products (254,256). The same product has also been obtained as a result of the photolysis of F_4ADF (256).

A mechanism for the formation of the products observed from the photolysis of the F_4ADF has been proposed (256).

The reaction of $F_{10}ADF$ with nitrogen dioxide at 190°C resulted in decomposition of the starting material (250). Unsuccessful attempts were made to react hydrogen sulfide and monogermane with $F_{10}ADF$ (250,112a).

Several reactions have been attempted utilizing the partially hydrogenated intermediate formed in the reduction of F₈ADF with lithium amide. Formation of the amidine salt was attempted with sulfuric, hydrochloric, 70% perchloric, and anhydrous perchloric acids (252). The only identified product was formed with anhydrous perchloric acid.

$$(NF_2)_2 CFN = NCNH_2 + HClO_4 \xrightarrow{CHCl_3} (NF_2)_2 CFN = NCNH_3 ClO_4$$

The solid salt was pale yellow and very hygroscopic. At 140°C, the free amidine was found to undergo complete decomposition within 24 hr. while at 110°C, in the presence of NaF, no decomposition was observed (251). Photolysis of the amidine led to the formation of perfluoroformamidine and an unidentified solid (251,112a).

The reaction of tris(difluoramino)fluoromethane (code name: Compound R) with sodium azide in DMSO led to the formation of difluoro-fluoraminomethylazide (85c).

$$(NF_2)_5CF + NaN_3 \xrightarrow{DMSO} F_2NCN_3 (40% yield)$$

Fluorination of 3,6-diamino-1,2,4,5-tetrazine with elemental fluorine in liquid hydrogen fluoride led to a compound tentatively identified as the 3,6-bis-(difluoramino) substituted analog (497). Attempts to isolate the material resulted in a rapid decomposition.

V-C. NNO and NNO2 Derivatives

The preparation and reaction of the NNO- and NNO₂-substituted compounds discussed in the ensuing paragraphs are only a portion of those reported. Additional citations of these molecules may be found in the sections relating to ureas, fluorinated guanidines, and perfluoroguanidine (see Table V).

Fluorination of dinitroazodiformamidine in the presence of sodium fluoride at low temperature has led to the formation of $F_{e}ADF$ -B, $F_{e}ADF$, and two unidentified products (252).

Attempts to conduct the same fluorination in aqueous solution in the presence of B203 were unsuccessful and similar negative results were obtained by the use of a fluorine-helium mixture in the presence of sodium fluoride in Freon 113 at -22°C (252). The use of acetonitrile as a solvent resulted in an explosion.

FA-DENA has been prepared by a multistep process from 2,2'-dihydroxy-diethylamine (178).

$$(\text{HOCH}_2\text{CH}_2)_2\text{NH} \xrightarrow{\text{HNO}_3} (\text{O}_2\text{NOCH}_2\text{CH}_2)_2\text{NNO}_2 \xrightarrow{\text{1} \text{HCO}_2\text{H}} (\text{HOCH}_2\text{CH}_2)_2\text{NNO}_2$$

$$(\text{HOCH}_2\text{CH}_2)_2\text{NNO}_2 \xrightarrow{\text{2} \text{O}_3\text{F}_2/N_2} (\text{HOCH}_2\text{CH}_2)_2\text{NNO}_2$$

$$(\text{NF}_2)_3\text{COCH}_2\text{CH}_2]_2\text{NNO}_2 \xrightarrow{\text{2} \text{O}_3\text{F}_2/N_2} (\text{HFN-COCH}_2\text{CH}_2)_2\text{NNO}_2$$

$$(\text{NF}_2)_3\text{COCH}_2\text{CH}_2]_2\text{NNO}_2 \xrightarrow{\text{2} \text{O}_3\text{F}_2/N_2} (\text{HFN-COCH}_2\text{CH}_2)_2\text{NNO}_2$$

Difluoramine, in the presence of 96% sulfuric acid, has been used to replace alkoxy groups by difluoramino groups in substituted imidazolidine imines (270,272) and acetoxy groups from substituted amines (269).

 $R = -0CH_3 \text{ or } -0C_2H_5$

Nitryl tetrafluoroborate (NO₂BF₄) was reacted with 2,6-di(fluorimino)-4-imino-1,3,5-trihydrotriazine to yield a compound tentatively identified as N'-nitro-2-keto-4-imino-6-fluorimino-1,3,5-trihydrotriazine (497).

CHAPTER VI

INORGANIC NITROGEN FLUORIDES AND DERIVATIVES

VI-A. Nitrogen Trifluoride

The heat of formation of NF₃ has recently been redetermined by two methods; the direct reaction with sulfur (I58) and via the dissociation of excess NF₃ in the explosion with H₂ (151a, 151, 151f, I55). The measured values were -31.75 \pm 0.2 and -31.44 \pm 0.3 kcal/mole, respectively. The former led to an average N-F bond energy of 67.1 kcal/mole and a derived D(NF₂-F) of 59.1 \pm 2 kcal/mole, confirming the earlier conclusions that the dissociation of the first N-F bond (to give stable NF₂ radicals) is lower than the average. The latter study was used to recalculate the heat of formation of aqueous HF (1:123 H₂0) as -77.0 \pm 0.2 kcal/mole. The value of Δ H_f = -30.60 kcal/mole is then recommended in the use of NF₃ as a calorimetric fluorinating agent.

Studies of the dipole moment of NF_3 gave a tentative value of 0.17D (232) and from work at 48° and 80°C the value 0.20D (238).

Efforts to observe the ion-molecule reaction

$$NF_3^+ + F_2 \longrightarrow NF_4^+ + F$$

have not been successful to date (386, 402, 405). High energy radiation of mixtures of NF₃ and F₂ with AsF₅ at -196° gave (472) moderately stable solids which appeared to contain the salt NF₄+AsF₆- (dec. 200°) together with N₂F₃+AsF₆- (dec. 110 - 170°) and apparently a third salt which evolved N₂F₂ and AsF₅ at 20 - 50° (N₂FAsF₆ is known to be much more stable than this). Radiation of NF₃-F₂-BF₃ mixture at -196° in a sapphire tube (oxygen-free fluorine) gave high purity NF₄BF₄. The synthesis and properties of NF₄+ salts are described in detail in section B of this chapter. Further reactions of NF₃ which have been studied or attempted are summarized in Table VIII.

VI-B. NF4+ Salts

The synthesis of salts of the long sought NF_4^+ ion has been well demonstrated since the previous review (284a). In October 1965, Stauffer Chemical Company chemists reported (507) the formation of $NF_4AsF_6^-$ by a low temperature electric discharge method.

$$NF_3 + F_2 + AsF_5 \xrightarrow{\text{elec. disch.}} NF_4^+ AsF_6^-$$

TABLE VIII

REACTIONS OF NF3

Reactant	Conditions	Results	References
Cl2	200 - 500°, 8000 - 10,000 psi	No reaction	75
NO	200 - 500°, 8000 - 10,000 psi	NO ₂ , NOF	75
NO	Excess NF ₃ , 300°, 8800 psia	NOF, NF3	78
NO excess	500°	Exploded	78
No/cis-N2F2	66°, 80,000 psi, 1 hr.	25% dec. of N_2F_2	89
OF ₂	300°	Dec. of OF ₂	339
OF ₂	200°, 10,000 psi, 6 hr.	Unk. with IR abs. at 1225 and 2175 cm ⁻¹	75
OF ₂	Flash photolysis, liquid	03	88
CsF	500°, 8000 psi, 1 hr.	No reaction	78
CsF; NO	300°, 8800 psi, 18 hr.	Some NOF, probably N2	78
BF ₃ (or PF ₅)	Tesla coil disch., 5 mm. pr196° quench	Some N ₂ F ⁺ BF ₄ (or PF ₆) and SiF ₆	232
BF ₃	1445 psi, 25°	No deviation from ideality	232
PF ₅	1090 psi, 25°	No deviation from ideality	232
SDF5	200°, 2400 psi, 50 hr.	~ 2% reaction of NF3 to NF4 ⁺ ? and unidentified product	479

TABLE VIII (Concluded)

Reactant	Conditions	Results	References
AlCl ₃	80°, 4 days (or 135° fast)	'N ⁵ CJ ⁵	227
Fe ⁺² , H _{aq} .	60°, fast	NH ₄ ⁺ , Fe ⁺³ , F ⁻	227
c- or <u>t</u> -N ₂ F ₂ , HC104 · 2H ₂ O	82°, 6, 100 atm., 4 hr.	Dec. of <u>cis-N2F2</u>	88
Xe	Flash photolysis, liquid	XeF compounds	88
ClF3	425°, 1350 psig	No reaction	339
C1F5	325°, 2125 psig, 20 hr.	Some ClF3 and F2	339
C103F	475°, 2050 psig, 18 hr.	No reaction	339
ClF ₂ SbF ₆	250°, 3 hr.	No reaction	339
ClF ₂ SbF ₆	350°, 80 hr.	36%, dec. of NF3, hard pink solid	339
Clf ₂ Sbf ₆	350°, 23 hr.	No reaction	339
ClF4SbF6	200°	Some ClF5 evolved	339
CsClF4	200°, 24 hr.	No reaction	
CsClF ₄	470°	Sl. dec. to CsF, ClF, ClF ₃ , CuF ₂ and NiF ₂	34 0
C105	110°	No reaction	340
t-N ₂ F ₂	γ-Radiation, -196°	N ₂ , F ₂ , N ₂ F ₄	471
N2F4	γ-Radiation, -196°	Inconcl. (Si contami- nation)	472
02	UV, liquid	Small amounts NO ₂ F, O ₂ F·	532 d

The compound (apparently contaminated by N-O salts) was reasonably stable to 200° and gave an infrared spectrum showing bands at 1165 and 707 cm⁻¹ attributable to the NF₄+ and AsF₆⁻ ions. Publications describing the synthesis and properties (L11, L28) and the vibrational and NMR spectra (L12) have appeared.

In December 1965, Stanford Research Institute scientists reported the formation of a new N-F containing solid which was believed on the basis of 19 MMR (resonance of -215 \emptyset) and thermal pyrolysis studies to be NF₄SbF₆ (476). The four component reaction system used, NF₃/F₂/SbF₅/HF, had in one run previously (475) given evidence of some reaction. The analogous reaction with AsF₆ was also demonstrated (477). The products of these early runs were badly contaminated with metal salts, but the elimination of the HF from the reaction mixture led to products of good purity (477). The formation (especially at short reaction times) of some of the salt NF₄Sb₂F₁₁ was also demonstrated (477), but the excess SbF₅ could be removed. The final procedure is as follows:

NF₃ + F₂ + SbF₅
$$\xrightarrow{200^{\circ}, 2400 \text{ psi}}$$
 NF₄SbF₆ + NF₄Sb₂F₁₁ $\xrightarrow{200^{\circ}}$ NF₄SbF₆ (41% yield)

The synthesis and properties of NF₄SbF₆ and NF₄AsF₆ by similar methods have been described in the literature (I56, I57), but applications of this method with weaker Lewis acids have been less successful as shown by the results (487) shown below:

$$NF_3 + F_2 + AsF_5 \xrightarrow{125^{\circ}, 2500 \text{ psi}} NF_4AsF_6 (17\% \text{ yield, 93\% purity})$$

$$NF_3 + F_2 + PF_5 \xrightarrow{100^\circ, 3000 \text{ psi}} \text{trace } NF_4^+ \text{ (anion not determined)}$$

$$NF_3 + F_2 + BF_3 \xrightarrow{100^\circ, 3000 \text{ psi}}$$
 no NF_4BF_4 , but sl. loss of NF_3 and residue evolved NF_3 , F_2 and SiF_4 on pyrolysis

$$NF_3 + F_2 + ClF_3 \xrightarrow{100^{\circ}, 300 \text{ psi}}$$
 no NF_4ClF_4 , some ClF5 formed 65 hr.

$$NF_3 + F_2 + ClF_3 \xrightarrow{100^{\circ}, 3000 \text{ psi}} \text{ trace of } NF_4ClF_6 ?$$

The identification of the ClF_5 reaction product was based only on the evolution of some NF_5 , F_2 , SiF_4 and ClF_5 when the reactor was heated above 225° , after prior evacuation at ambient. (In view of the dubious existence of the ClF_6 - anion the latter product appears unlikely.) As might be expected, however, PtF_6 forms a stable salt (559a).

The direct reaction of NF₅ and SbF₅ (without F₂) at 200° and 2400 psi for for 50 hr. appeared to give (479) a mixture of NF salts based on the reported hydrolysis products: NF₅ and O₂ from NF₄⁺, N₂O from N₂F⁺ and NO and NO₂ from N₂F₅⁺.

In studies at Midwest Research Institute in early 1963, the formation of small amounts of NF $_4$ AsF $_6$ was observed (248b) from the fluorination of N $_2$ F3AsF $_6$ at 115°, but the reaction route is not clear and may involve NF $_3$ as an intermediate. Results of studies at Shell (472) at about the same time suggested the formation of NF $_4$ AsF $_6$ upon high energy radiation of a mixture of NF $_3$, F $_2$ and AsF $_5$ at -196°. The resulting solid product evolved N $_2$ F $_2$ and AsF $_5$ at 20 - 50°, N $_2$ F $_4$ and AsF $_5$ at 110 - 170° (i.e., from N $_2$ F3AsF $_6$) and NF $_3$ and AsF $_5$ at 200° (i.e., from NF $_4$ AsF $_6$). Further studies with BF $_3$ in place of AsF $_5$ and oxygen free F $_2$ have led to good yields (~ 160 mg/hr) of high purity NF $_4$ BF $_4$ according to Wilson (593a).

$$NF_3 + F_2 + BF_3 \xrightarrow{Y, -196^{\circ}} NF_4BF_4$$

Application of this method to the NF3/F2/ClF3 system did not, however, lead to NF4ClF4.

The synthesis of NF₄ClO₄ and other NF₄⁺ salts by metathesis reactions have been studied extensively at Stanford, although previous calculations (474) had indicated that no oxyanions would be stable with NF₄⁺. The high solubilities of NF₄ShF₆ and NF₄AsF₆, 2.6 and 1.2 g/g of anhydrous HF, respectively (157) make this an attractive solvent system. Preliminary studies (478) indicated that NF₄SbF₆ and KClO₄ were compatible as a solid mixture and in HF solution. The metathesis reaction with LiClO₄ (the lithium salt is preferred since the solubilities of the alkali fluorides and complex fluorosalts in HF increase with increasing size of the cation) followed by separation of the by-product and removal of solvent at low temperature gave (488) a white solid believed to be NF₄ClO₄ which decomposed below room temperature:

$$NF_4SbF_6 + LiClO_4 \xrightarrow{HF} LiSbF_6 + NF_4ClO_4 (HF Soln.) \xrightarrow{-HF} NF_4ClO_4$$

$$NF_4ClO_4 \xrightarrow{-27^\circ} NF_3 + ClO_5OF$$

This mode of decomposition, previously predicted (276a), is in contrast to the decomposition in all other reported systems involving fluorocations and the perchlorate ion, i.e., to give $FClO_3$ by the oxide-ion transfer mechanism (276a). A similar result was obtained when the metathesis reaction of NF_4SDF_6 and $CsClO_4$ was attempted in IF_5 solution, except the product NF_4ClO_4 decomposed at the melting point of the IF_5 , (559a) pure IF_5 melts at 10° .

Similarly, the metathesis reaction with LiF or HF gave a stable solution of NF₄HF₂ at low temperature (487) and a stable solid after evaporation of excess solvent (488). Most recently, however, this solid was described as a solvated material which decomposed to NF₃, F₂ and HF at -44° (559a). However, the NF₄HF₂ solution is useful as an intermediate in the metathetical preparation of NF₄BF₄ (489).

$$NF_4HF_2/HF + BF_3 \xrightarrow{-78^{\circ}} NF_4BF_4$$

However, the salt of the oxyanion SO₃F could not be prepared by an analogous reaction as decomposition occurred:

$$NF_4HF_2/HF + SO_3 \xrightarrow{-78^{\circ}} NF_3 + FSO_2OF$$

Mixtures of the solid salts NF₄SbF₆ and LiClO₄ reacted at 55° similarly to give ClO₃OF while mixtures with KBr, KCl or KF evolved the corresponding halogen gases at 25°, 150° and 225°, respectively (488).

The thermal stabilities, of the known NF₄⁺ salts containing perfluoroanions are (487, 593a) as follows: NF₄SbF₆ dec. \gtrsim 300°; NF₄AsF₆, dec. \sim 270°; NF₄BF₄, dec. 236°. The good stability of the NF₄BF₄ is apparently kinetically derived (276a) since calculations indicate that the heat of decomposition to NF₃, F₂ and BF₃ is +3.6 kcal/mole at 25°, although Δ H_f is -305.2 kcal/mole (593a). Differential thermal analysis on a sample of NF₄SbF₆ containing some Sb₂F₁₁⁻ indicated a melting point of 170° (478). The density of single crystals of NF₄AsF₆ deposited from HF solution is 1.9225 g/ml.

All of the ${\rm NF_4}^+$ salts are sensitive to moisture and appear to react with many organics (593a). The hydrolysis is described (478) by the equation

$$NF_4^+ + H_2O \longrightarrow NF_3 + 1/2 O_2 + H_2F^+$$

The NF₄SbF₆ reacts with traces of moisture in glass at ambient temperature and attacks glass at 85° to give SiF_4 , NF₃ and presumably O_2SbF_6 .

51

VI-C. NHgF+ Salta

The synthesis of fluoroammonium perchlorate by Grakauskas and Remanick at Aerojet-General was discussed in the previous review (284a). Early storage studies on the product available in 1965 showed (45) no reaction in nickel after three months at 25° and only very slight decomposition in Monel, but stainless steel and Teflon were unsatisfactory. Later studies on samples of higher purity showed no reaction with Teflon in 60 days at 25° (50) and no reaction with glass in 30 days at -20°, but slight reaction with nickel in 2 weeks at ambient temperature unless it was well passivated with HF. Electrostatic test (45) showed that NH₃FClO₄ was only slightly more sensitive than RDX and scale-up studies were started. Thus 5 - 10 g. batches were prepared in 1965 (46) and 70 - 140 g. lots in 1966 (48). The preferred synthesis route was

 $\text{NHF-CO-OCH}(\text{CH}_3)_2/\text{CHCl}_3 + 2\text{HClO}_4/\text{CHCl}_3 \xrightarrow{20-30^{\circ}} \text{NH}_3\text{FClO}_4 + \text{CO}_2 + (\text{CH}_3)_2\text{CHClO}_4$

The use of less than 70% HClO₄ caused partial hydrolysis of NH₃F⁺ and thus led to lower yield and purity. The use of anhydrous HClO₄ was introduced in late 1966 (49). The initial product appeared to be a less dense crystal form which rearranged on standing a few days to a more dense form. The latter form was obtained directly if the solvent was CH₂Cl₂. The fluorocarbamate was prepurified by removal of isopropylcarbamate on a silica gel column after N,N-difluorocarbamate was volatilized off. Traces of solvent must be carefully removed or they greatly reduce the stability.

Differential thermal analysis of a NH₃FClO₄ sample prepared from 70% HClO₄ showed (46) an exotherm at 105°C and impact sensitivity tests showed ~50% detonations at 25 - 30 cm. compared to 25 cm for RDX. Infrared analysis of a sublimed sample (NaCl window) showed bonds at 3.05 μ (N-H st.) and 7.03 μ (NH₂ bend), i.e., shifted to shorter wavelengths by ~ 0.15 μ from NH₄ClO₄. The N-F band was not observed, and was assumed to be obscured by the ClO₄ bands. The heat of formation of NH₃FClO₄ was determined by combustion calorimetry at Aerojet (50) to be -67.6 kcal/mole (-49.9 kcal/100 g.), in good agreement with the value -66.57 kcal/mole obtained from the heat of solution in water (-54.5 kcal/mole determined by Fasolino (302a) and the assumption that the hydrolysis products are F-, 1/3 NH₄+, 2-1/3 H⁺, 1/3 N₂ and ClO₄ . From the heat of formation and the assumption that the heat of vaporization of NH₃FClO₄ equals that of NH₄ClO₄ and that the N-H bond energy in NH₃F⁺ is 93.4 kcal/mole, a value of 57.1 kcal/mole was calculated for the N-F bond energy. This value is probably too low by 10 - 15 kcal. The theoretical specific impulse of NH₃FClO₄ with an aluminized butadiene fuel was calculated to be about 270 sec.

The $\rm NH_3FClO_4$ is unusually soluble, for an inorganic perchlorate, in organic solvents such as nitriles and esters. Solutions in energetic solvents were being considered as liquid monopropellants. The very hygroscopic and moisture sensitive nature of $\rm NH_3FClO_4$ also occurs with the methanesulfonic acid salt, $\rm NH_3FSO_3CH_3$, which undergoes a complex decomposition to give $\rm N_2H_4$ along with $\rm N_2$ and $\rm NH_3$ (but no $\rm NO_2$, $\rm NO_3$ or $\rm NH_2OH$).

VI-D. Difluorediazine

The chromatographic purification of the two N₂F₂ isomers has been studied at Rocketdyne (386). The cis-N₂F₂ is purified on a silica gel column while trans-N₂F₂ is purified on an activated alumina column on which the cis isomer is decomposed. Furified cis-N₂F₂ was found to be much less reactive than generally indicated in the published literature. Efforts to photosensitize the isomerization were not successful with NO₂, C₆H₆, C₆F₆, Cl₂, Br₂ or I₂ as agents. The thermal isomerization at 74° for 1 hr. gives good (93%) conversions of trans to cis according to studies at Harshaw (224). The trans-N₂F₂ is previously purified of N₂F₄ and SF₆ by treating with H₂O and subsequent distillation, then mixed with ~25% cis-N₂F₂ prior to isomerization. Flowing gaseous trans-N₂F₂ has been noted to ignite Kel-F needle valves (471) and hence should be handled with caution.

A number of reactions of $\underline{\text{cis-}}$ and $\underline{\text{trans-N}_2F_2}$ have been attempted or studied as summarized in Table IX.

VI-E. N2F Salts

The salt, N₂F⁺AsF₆⁻, (284a) has been estimated (386) from electronegativity considerations to be only ~35% ionic in the solid, although HF solutions might well be ionic. The shift of the AsF₆⁻ bond from ~700 cm⁻¹ in metal hexafluoroarsenates to 715 cm⁻¹ in N₂FAsF₆ was considered indicative of partial covalency, but the similarity of the X-ray patterns of N₂FAsF₆ and NO₂AsF₆ was not considered significant. The use of HF as a solvent has been found satisfactory for crystal growth studies on N₂FAsF₆ (472).

The reaction of either cis-or trans-N₂F₂ with SbF₅ at 40 - 50° gives a 1:2 complex (m.p. 82 - 84°) according to Ruff (IS2) which is apparently the salt N₂F⁺Sb₂F₁₁. The infrared spectrum shows only a single band, 1054 (m) cm⁻¹, in the N-F region and no N-N bands were observed. No satisfactory NMR solvent was apparently found: the complex fluorinated AsF₃ to AsF₅ and reacted with SO₂ to give N₂O, N₂, SF₂O₂ and SO₂SbF₅. The N₂FSb₂F₁₁ decomposed readily at 200° with attack on glass. Only cis-N₂F₂ is evolved in the thermal decomposition or in the reaction of the complex with KF.

In another study of the infrared spectrum of $N_2F^+SbF_6^-$ (87a) the N-F and SbF bands were again observed, but not the N-N bands. In SbF₅ solutions of the salt, however, the N-F band was not observed (88, 89, 90). Interestingly enough, a transient royal blue color was repeatedly observed (89) at the interface of N_2F_2 and SbF₅, or uniform blue solution was formed (90) when the N_2F_2 was bubbled through the SbF₅. The blue solution, which soon changes to the final yellow color, was suspected of containing the intermediate product $N_2F_2^+SbF_5^-$ based on the results of EPR studies. Even in the yellow solution, two distinct paramagnetic species could be observed at g=2.002 and g=2.027 using a Kel-F tube. In a glass tube, the 2.002 species (apparently the N_2 -containing species) was not observed and absorption was probable.

TABLE IX

REACTIONS OF NoF2

Reactions and Results	Reference
N ₂ F ₂ + CsF 25° 20 mole percent N ₂ F ₂ absorbed (Cs ⁺ N ₂ F ₃ ⁻ ?)	79
$N_2F_2 + CsF \xrightarrow{60^{\circ}} dec. of N_2F_2$	79
N ₂ F ₂ (mostly trans) + CsF -111° some solid "complex" 25° cis-N ₂ F ₂	79
N ₂ F ₂ + CsF CFCl ₃ no absorption, but one of two runs exploded	79
$N_2F_2 + OF_2 + CsF \xrightarrow{-50^{\circ}} No rxn. \xrightarrow{25^{\circ}} unident. prod.$	79
$N_2F_2 + OF_2 \xrightarrow{25^{\circ}} N_0 rxn$	79
$N_2F_2 + OF_2 + CO_2 + CsF \longrightarrow (CF_3O)_2O$ (not obtained from ternary combinations)	79
N ₂ F ₂ + Cl ₂ + CsF	79
NoFo (cis or trans) + Csr -350 some rbs. of NoFo (more trans shs.)	80
N ₂ F ₂ + Cl ₂ -80° No rxn.	80
$cis-N_2F_2 + OF_2 \xrightarrow{-80^{\circ}}$ unident. IR peaks	80
$\frac{\text{cis-N}_{2}\text{F}_{2}}{4000 \text{ atm.}} \Rightarrow \text{Detonation}$	88
trans-N ₂ F ₂ 82° No rxn.	88
$N_2F_2 + N_2F_4 \xrightarrow{93-100^{\circ}} NF_3$	88

TABLE IX (Continued)

Reactions and Results	Reference
cis- or trans-N ₂ F ₂ + HClO ₄ ·2H ₂ O 82°, 6100 atm. dec. of N ₂ F ₂	88
$N_2F_2 + Mg(ClO_4)_2 \xrightarrow{10 - 52 \times 10^3 \text{ psig}} \text{ unident. rxn.; no } N_2FClO_4$	89
$\frac{\text{cis-N}_2\text{F}_2 + \text{NO/NF}_3}{1 \text{ hr.}} \xrightarrow{66^{\circ}, 8 \times 10^4 \text{ psig}} 25\% \text{ dec. of NF}_3$	89
cis-N ₂ F ₂ + H ₂ O 74° trans-N ₂ F ₂ + H ₂ O 89° order rate N ₂ + 1/2 O ₂ + 2 HF	227
(Note: no effect by OH or surface on cis; no N-O-F intermed. obsd.)	
$N_2F_2 + CO \xrightarrow{u.v.} NR \xrightarrow{100^{\circ}} CF_2O$	259
\underline{t} -N ₂ F ₂ + ClO ₂ F $\xrightarrow{-78 \text{ to } 25^{\circ}}$ No rxn. $\xrightarrow{200^{\circ}}$ ClF ₃ + NF ₂ + N ₂ + O ₂	34 0
\underline{t} -N ₂ ^{Ti} ₂ + ClO ₃ F $\xrightarrow{-78 \text{ to } 25^{\circ}}$ ~ No rxn. $\xrightarrow{> 150^{\circ}}$ dec. of N ₂ F ₂	{340 341
$t-N_2F_2 + C1F_5 \xrightarrow{-78 \text{ to } 25^{\circ}} \text{ No rxn. (sl. dec. of } N_2F_2)$ $\xrightarrow{>150^{\circ}} \text{ dec. of } N_2F_2$	340 341
\underline{t} -N ₂ F ₂ + OF ₂ $\underline{-78}$ to 150° some dec. of both	342
$t-N_2F_2 + ClF \xrightarrow{-78 \text{ to } 150^\circ} \text{ some dec.} \xrightarrow{150^\circ} ClF_3 + N_2$	342
$t-N_2F_2 + ClF_3 \xrightarrow{-78 \text{ to } 150^\circ}$ some dec. 150° ClF ₅ + N ₂	342
N ₂ F ₂ + I ₂ hv IF ₅ (trans reacts faster than cis)	385
$t-N_2F_2$ electron radiation $N_2 + NF_3 + N_2F_2$ low temp.	471
N ₂ F ₂ + NF ₃ electron radiation N ₂ + N ₂ F ₄ + F ₂	471

TABLE IX (Concluded)

Reactions and Results	Reference		
N ₂ F ₂ r.f. disch. 4°K quench N ₂ + F· (no N ₂ F. obs.)	5 32a		
<u>cis-N2F2 + OF2 elec. disch</u> N2, F2, O2	5 3 2a		
$N_2F_2 + O_2 \xrightarrow{\text{elec. disch.}} \text{some } O_3, NO_2, SiF_4$	5 3 2a		

Efforts to utilize the NoF' salts as reactants have not lead to the desired products.

The following results were obtained at Aerojet (17)

$$N_2F^+SbF_6^- + N_2F_4 \xrightarrow{25^{\circ}} No rxn. \xrightarrow{85^{\circ}} N_2$$
, NF3, solid (no $N_2F_5^+SbF_6^-$)

$$N_2F^+SbF_6^- + (NF_2)_2CNF \xrightarrow{-78^\circ} N_2$$
, N_2 , NF_3 , CF_4 , solid (not (NF₂)₂CN⁺SbF₆⁻)

$$N_2F^+BF_4^- + (NF_2)_2CNF \xrightarrow{-78^\circ}$$
 some N_2 , cis- N_2F_2 , CF4, BF3 and SiF4(no (NF2)2CN+SbF6-)

In studies at Reaction Motors (355) the mixing of solid N_2FAsF_6 and $CsClF_4$ at -78° in a glass apparatus gave ambiguous results.

No reaction was observed between solid N_2FAsF_6 and 500 mm. pressure OF_2 at 25° to 112°, or at 25° in HF solution (532a). No products of interest were obtained from N_2FAsF_6 and KNO_3 , $AgNO_3$ or $AgNO_2$.

VI-F. Tetrafluorohydrazine

Structural studies on N_2F_4 have recently been reported by Hersh (I29) and by Bohn and Bauer (I6), the latter study also included the NF_2 radical. The ^{19}F NMR spectrum has been obtained at low temperatures by Colburn et al. (L12a) and shows the presence of rotational isomers.

Studies of the reaction chemistry of N_2F_4 have continued since the previous review. An increased emphasis has been placed on reactions with inorganics since the reactions with organics had already been extensively explored. A large number of experimental studies with N_2F_4 are summarized in Table X. Much of the chemistry of the C-N-F compounds is now appearing in the published literature.

Several studies have been concerned with the compatibility and properties of N_2F_4 with other liquid oxidizers. Thus in a program at Aerojet (44), studies were made of the densities, vapor pressures and stabilities (thermal, adibatic compression, flow conditions, and storage) for N_2F_4 with $C(NF_2)_4$, $CF(NF_2)_3$, HNF_2 and ClF_5 . The N_2F_4 - ClF_5 system was studied at Reaction Motors for thermal stability, pressurization and shock sensitivity (360-363). Homogeneous mixtures from the components N_2F_4 , NF_3O , $C(NO_2)_4$, $CF(NF_2)_3$, ClO_3F , ClF_3 , ClF_5 were studied at Rocketdyne (387) and theoretical calculations made (393) for the ternary system N_2F_4 - $C(NF_2)_4$ - ClF_5 .

TABLE X

REACTIONS OF N2F4

Reference	18	A 1	÷ %	9. 76	79	8	1.36 and 98	द्धा	123	123	232	333	162
Result	No rxn.	MPz, No	No rxn.	${ m NF}_{3}$, ${ m C}_{2}{ m F}_{6}$ and unident, mat, abs. at 6.2 and 10 5.0 (our)	$CF_2ONF_2(30\%)$, $(CF_3O)_2$, CF_2O , NF_3 , NO_2	MP ₃		Solid containing N & F, but no H-F (solid fluorinates SO ₂)	(Lo and white solid (gives NOF and NO2F with A; also (Lo vith F ₂) (no Clonf, formed)	Clo and white solid; x-ray suggests CaNO ₃ -CaF	V.P. lowering indicates complex	v.p. lowering indicates complex	N2F3ASF ₆
Conditions	25°, 4 days	85°, 66 hr.	135°	170°	70°, 16 hr.	100°, 6200 atm.	Kinetics study	-78°	-78°, 3 days, Kel-F		18°	50 °	-78° to 25°
Reactant	Hg (NFCOOR)2	Nzrtsbr -	CF20/CsF	CF20/CsF	(೧೯ ₃ ೦) 20	N2F2	F2	N204/CSF	0750	c1₂o/ರತ೯	BF3	F	Ask5
58 CONFIDENTIAL													

tinued)
: X (Con
TABLE

Keactant	Conditions	Result	Reference
		N ₂ F ₃ SDF ₆	152
	25 or 100°, 8 hr., Hg, Cl	Cere, Cersh	236
	200°, cu	c_{GF_G} , $(c_{GF_S})_2$	236
	•09	NO, HF	. 221
	133°	N2, NO3", HF	122
	-78°	trans-N2P2	227
	HpS04	HNF ₂ , Fe ⁺²	227
	H ₂ SO4	CINF2	122
	As solvent	Good	221
sc1 ₂ 0, Pc1 ₃ 0	As solvent	React very slowly at 60°	227
	As solvent	Reacts slowly at 25°	122
сн ₃ соон(glac.)	As solvent	Stable several days at 25°	227
	As solvent	Reacted slowly	227
	25°, 30 min.	No rxn.	257a
	96°, 1 hr.	NF_3 , NO, no $(NF_2)_2$ 0	257a
	u.v., 8 hr.	$^{\rm NF}_{\rm 3}$, $^{\rm MO}$, no $^{\rm (NF}_{\rm 2})_{\rm 2}$ 0	257a
	u.v., 8 hr.	CF3ONF2	257a

nued)
(Conti
×
TABLE

Reference	529	302	302	330	330	330	336	341	341	341	341	354	354	355	83	385	402 and 405
Result	15% NF2CFO	Unident. prods. with IR suggestive of NF20-C cpd.and a CFO cpd.	Dec. of C ₅ 0 ₂ to polymer	Exploded to NO2, etc.	No prods. of interest	NF3, NO2F	NF3, NOF, some NOFF	NF3 and CL2	MF ₃ , ClF	NF3, CIF3	NOCI and ClO ₂	No rxn.	t-N2F2, NF3, N2O (from H2O)	Inconc1.	NF 2-CFO	FCO-CNF ₂	No CP ₂ (ONF ₂) ₂
Conditions	u,v.	25°	120°	-196° and warmed	400°	25 to 40°	Low temp., fast	250 °	250°	250°	25°	AL.	HF	田	Pr	BF3 cat.	
Reactant	0၁	C ₃ O ₂	C ₂ O ₂	03	$0 \cdot \text{ or } 0_2$	KO2	OF2	CIF	${ m cur}_3$	CIF ₅	C10 ₂	$^{ ext{HClO}_{f 4}}$	$AgCIO_{f 4}$	${ m XeF}_{ m G}$	(-cozF)2	$(-\infty_{2^{\overline{k}}})_2$	CF2(OF)2

532a

NF3, NO2, SIF4, no NF2OF

Elec. disch., -78°

Reference	12	421	405	405	405	405	405	405	472	4.1	5324	532d	225q
Result	No rxn.	NOF, CINF ₂ , Cl ₂ (plus ClO ₂ , ClOWO ₂ with excess Cl ₂ O), no (NF ₂) ₂ O	Small amts. SF5OCF2OSF4WP2	CF3CFO, NOF	No rxn.	Irreprod. amts. C2F5ONF2, CF5ONF2	co ₂ , nof	$CF_3-N(0)=NF$	Inconclusive, Si contamination	No N ₂ F ₃ SF ₃ O ₂	Abs. of reactants, so if OF	No $(NE_2)_2NO$, $(NE_2)_2NONO$ or $(NE_2)_2NONE_2$	$(c_{\mathbf{r}_3})_{2^{\mathrm{NOW}}_2}$
Conditions	-80 to +60°	-112°				Н			-196°, electron radiation	20-75°, 2.5 atm.,8 hr.	5 Å mol. sieve, -78° or 27°	hv, low temperature	
Reactant	C1F ₃ 0	Cl ₂ O + MF·HNF ₂	$\mathrm{CF_2(0F)_2} + \mathrm{SF_4}$	CF3COONO2	(-ocf2of)2	(-ocf ₂ of) ₂	8 K2G206	CF ₂ COONa	MF_3	SF 02	OF ₂	NO	$({\rm CF}_3)_2$ NO
					C	DNF	ID	ENT	'IAI	L			

TABLE X (Concluded)

VI-G. N2F3+ Salts

The formation, properties and reactions of a product discovered at Rohm and Haas in 1961 and reported in 1965 (L49a) as NF_2ShF_5 was previously reviewed (284a).

This material was obtained from the reaction of N_2F_4 and SbF_5 appeared to retain the N-N bond. Studies at Reaction Motors beginning in late 1964 of the N2F4- AsF_5 system indicated (351) the formation of one or more adducts at -80°. Further studies (352, 354, 355) led to the identification of the stable 1:1 adduct as N2F3+AsF6- according to the publication by Young and Moy (L62). The reaction product at -80° approached the composition $N_2F_3As_2F_{11}$, but the excess AsF_5 was evolved on pumping at room temperature. Other studies (405) have also indicated a complex $(N_2F_4)_3(AsF_5)_2$ at -80°, according to the NMR of the solid. The earlier studies on the SbF5 system have been extended and published by Ruff (L52). The 19F NMR data are consistent with the presence of the $N_2F_3^+$ ion in both products: NMR resonances at -180, -146 and -122 β for $N_2F_3AsF_6$ in HF solution; NMR resonances at -189.9, -154.0 and -128.8 Ø for NoFaSboFil in SO2 at -70° with the characteristic appearance of an ABX group. The latter salt in HF solution gave resonances at -180, -154 and -129 ϕ (476). The infrared spectra of the two materials also indicated the same cation and nine strong bands, corresponding to the expected nine fundamentals of the FoN=NF+ ion, plus normally shaped anion bands have been observed for the AsF₆- salt (276a). On the other hand, a tentative conclusion that N₂F₄·2SbF₅ was not ionic was reached, based on NMR studies (477).

The $N_2F_3AsF_6$ is soluble without decomposition in BrF5 at -60° and IF5 at 25°, but is insoluble in SF4, CF3OF, or (CF3)2CO (357) and attacks CFCl3, C2F3Cl3, CCl4 and ignites organics (284b).

A number of attempted reactions of $N_2F_3^+$ salts are summarized in Table XI.

VI-II. Difluoramine

The structure of difluoramine has been determined recently by microwave (137) and electron diffraction (129) methods. The microwave study led to a dipole moment of 1.93 $^{\pm}$ 0.02D, which was confirmed by the value 2.01D in other studies (236). The infrared spectra of HNF₂ and DNF₂ (L14) have been reported. The heat of formation of HNF₂ was redetermined as -9 kcal/mole (359a). The study of hydrogen exchange between HNF₂ and D₂O or CF₃COOD was initially interpreted as showing evidence for the NF₂H₂ $^{+}$ ion, but cryoscopic studies of HNF₂-H₂SO₄ did not give the same conclusion (184). An NMR study of the exchange between HNF₂ and CF₃COOD showed second order behavior over a narrow range of stoichiometry (i.e., ratios of 0.5 to 2.0), but at higher HNF₂/CD₃COOD ratios the rate increased and no simple relationship was observed.

62

TABLE XI

REACTIONS OF N2F3+ SALTS

Reactants	Conditions	<u>Result</u>	Reference
N ₂ F ₃ AsF ₆ + F-	IF ₅	t-N ₂ F ₂ , NF ₃	352
$N_2F_3AsF_6 + H_2O$	·	N ₂ , NO, NF ₃ , N ₂ F ₂	35 5
$N_2F_3AsF_6 + NaIF_6$		28% NF3, 4% t-N ₂ F ₂	355
$N_2F_3AsF_6 + KClO_4$	Ground solid mix., 25°		355
N ₂ F ₃ AsF ₆ + KSO ₃ F	Ground solid mix., 25°	Complete loss of N-F	358
N ₂ F ₃ AsF ₆ + AgClO ₄	HF	No rxn. (AgClO ₄ too insol.)	355
N2F3AsF6 + KClO4	-80°, HF	Immed. rxn., Cl ₂ , N ₂ F ₄ , N-O cpds.	355
$N_2F_3AsF_6 + KClO_4$	-50°, so ₂	NOAsF ₆ , attack on solvent	356
$N_2F_3AsF_6 + NH_4ClO_4$	-50°, so ₂	NOAsF ₆ , attack on solvent	356
$N_2F_3AsF_6 + (CH_3)_4NClO_4$	-50°, so ₂	NOAsF ₆ , attack on solvent	356
N ₂ F ₃ AsF ₆ + HSO ₃ F	-50°, SO2	Fast rxn.	356
$N_2F_3AsF_6 + NH_4C1O_4$	Solid	Compatible	356
$^{N_2}F_3^{As}F_6 + (CH_3)NClo_4$	Solid	Compatible	356
N2F3AsF6 + BrF5	-60°	Sol. without dec.	
N ₂ F ₃ AsF ₆ + IF ₅	25°	Sol. without dec.	357
N ₂ F ₃ AsF ₆ + KClO ₄	IF ₅	Slow dec. to Clo ₃ F, NF ₃ , t-N ₂ F ₂	357 357

TABLE XI (Concluded)

Reactants	Conditions	Result	Reference
N ₂ F ₃ AsF ₆ + CsClO ₄	IF ₅	very slow dec.	357
N ₂ F ₃ Sb ₂ F ₁₁ + CsClO ₄	90°	ClO3FNF3, vigorous rkn.	357
N2F3Sb2F11 + CsClO4	Grinding, 25°	One sample deflagrated	357
N_2F_4 (g) + CsClO ₄ (s)	SbF ₅ suspension	White solid, dec. at 80° to ClO3F, NF3	357
$N_2F_3AsF_6 + \phi_3CNF_2$	${\tt SbF}_{\tt 5}$ suspension	Deflagrated	357
$N_2F_3AsF_6 + \phi_3CNF_2$	-70°, SO ₂	Immed. rxn. to N_2F_4 , N_2F_2 ?, ϕ_3NAsF_6	357
N ₂ F ₃ AsF ₆ + F ₂	115-120°	NF ₃ , AsF ₅ , traces NF ₄ AsF ₆	276 a

The most important reaction of HNF_2 to be discovered recently is that (in the form of its KF complex) with fluoroxy compounds such as $CF_2(OF)_2$ to give the very stable difluoroaminoxy analogues, e.g., $CF_2(ONF_2)_2$. These studies have been pursued at Rocketdyne (385, 386, 402). The $CF_2(ONF_2)_2$ for example is a stable liquid boiling at -9° which is not shock sensitive and which is stable in concentrate H_2SO_4 at 25° for 40 hr. A number of other reactions of HNF_2 are summarized in Table XII. Publications are appearing in the literature on the reactions of HNF_2 with organic compounds. Results of studies of the hydrolysis (LI5), electrochemical reduction (LSO), and reaction with anions of HNF_2 (LS1) have been published.

Studies of the miscibility, density and stability under storage and flow conditions for mixtures of HNF2 and N2F2 were made at Aerojet (44).

VI-I. Trifluoramine Oxide

The independent discovery of NF₃C by Bartlett and co-workers has led to the declassification of much of its chemistry. Bartlett and co-workers first detected NF₃O (which they named nitrogen oxide trifluoride) as a trace by-product of the fluorination of NOF with PtF₆ (to give NOPtF₆ and F₂) (L185) or with OsF₆ to give NOOSF₆ and NOOSF₇ (L1a). Iridium hexafluoride on the other hand gave (L1a, L2) a stoichiometric amount of NF₃O of high purity according to the equation

$$3NOF + 2IrF_6 \xrightarrow{20^{\circ}} 2NOIrF_6 + NF_3O + F_2$$

the pyrolysis of (NO)₂NiF₆ at 350° also gave NF₃O together with an approximately equal amount of NOF (I2). The synthesis and properties of NF₃O have been summarized in a not pure shew by telephtists at Allied Chemical (L≥5) and Rockerdyne scientics have published (L17) a paper on the infrared spectrum, structure and thermodynamic properties of NF₃O. The thermal decomposition NF₃O has been reported to begin at about 235° (76), while other reports state that it is stable in nickel or Monel at 300° and attacks glass or quartz only slowly at 400°.

The results of a number of other studies on NF $_3$ O are summarized in Table XIII.

Vapor pressures were measured in the range 10 - 70° for a 1:1 mixture of NF₃O and $C(NF_2)_4$ and the stability over a 41-day period at the higher temperature was established at Aerojet (44). Properties of homogeneous oxidizer mixtures of NF₃O with other components were studied at Rocketdyne (427, 395, 400).

VI-J. Complexes of NF30 and the NF20+ Salts

In the previous review (284a) the reactions of NF₃O to give complexes with weaker Lewis acids and ionic NF₂O⁺ salts with very strong Lewis acids were described.

TABLE XII REACTIONS OF HNF₂ AND HNF₂·MF COMPLEXES

3eference	ę	7.8	79	236	236	722	564	264	564	564	564	264	564	264	564	592	566
Result	No products of interest	N2F4, NF3, NO2, NOF	Some expl. on warming	No rxn. to C ₆ F ₅ NF ₂	No rxn.	CINF2, 1-N2F2, N2, Cl2, HCl	No interaction	HOSO ₂ NF ₂ (dec. 25°)	Exploded	$^{\mathrm{HF}}_{2}$ Al $^{\mathrm{CH}}_{3}$) ₂ ?, $^{\mathrm{CH}}_{4}$	$(\mathrm{NF}_2)_2$ AlCH $_3$?, CH $_4$	$(NF_2)_2$ Alc H_3 ?	Colorless liq., CH4	Sl. sol; ideal soln.	Miscible	HNF2'Al(CH ₃)3? converts to NF ₂ Al(CH ₃) $_2$? + CH ₄ above - \approx 0°	B2F4.HNF2 ? some explosions
Conditions	-78°, 25°, 65° or u.v.	-125° to 25°	-125° to 25° CFC13	25°, 16 hr.; 100°, 8 hr.	Н	-78°	-138° to -112°	0.	Mixed rapidly	-80°, mixed slowly	25°, iso -C ₅ H ₁₂ , 2 days	-126°	-80° to 25°	-63° or -45°	-45°	< -80°, 30 min.	-78°, -63°, -45°
Reactants	${ m cl}_{ m 2NF}$	OF2 + HNF2·CSF	OF2 + CsF, KF.HNF2	$c_{ m eF_5I/Hg}$	$c_{\mathbf{6F_4}}$ ISO $_{3}$ OH	Alcl ₃	нсл	SO ₂	$A1(CH_3)_3$	$A1(CH_3)_3$	$A1(CH_5)_3$	$A1(CH_3)_3$	$Ga(CH_3)_3$	CF_3COOH	(රූ _{දි}	A1(CH ₃) ₃	B_2F_4

TABLE XII (Concluded)

Reference	789	705	#50a	420a	4 00	420a	1 20	\$ 0.23	80 0	420e	420a	420a	1 7
Result	$ ext{CF}_2(ext{OW}_2)_2$, $ ext{FOCF}_2 ext{ONP}_2$, $ ext{W}_5$, $ ext{N}_2 ext{F}_4$, $ ext{CF}_2 ext{O}$	Only trace yields ${ m CP}_2({ m ONF}_2)_2$	CINF ₂ , HF	Fast rxn. to CLNF2, HF	Slow rxn. to CIMP, HP	Slow rxn. to Claff, M2F4	One explosion	CIMP, NF4, M3	I2, some N-F products	NOLE, NO2, NOF4	NOF, Cluzf, some Nozf, Nzf4,	HF=N-NF2 ? or (NF2-N=) ; ?	NOF, CLUF ₂ , Cl ₂ (some CLEO ₂ and ClC ₂ with excess Cl ₂ o)
Conditions	°08-				- 80	-80*	-80	-80%	.0			-80	-112°
Reactants	СН ₂ (ОF ₂) + НVF ₂ ·KF	CH2(OF2) + HNF2·CSF	CIF	CIF ₅	CLF_3 + HWF_2 · BF_3	RbClF4	KC1F4	CIF ₅	${\bf m_5}$	NO2OF	Clo ₃ OF	Cis-NoFo + HNF2.MF	Cl ₂ O + N ₂ F ₄ + HwF ₂ ·WF
					C	ON	61 FID		TIA	L			

TABLE XIII

REACTIOMS OF NE30

(Reference	75	75	75	75	76	76	11	11	LĹ	78	78	61	121	121	121
	Result	No rxn. to $\mathrm{NF}_2\mathrm{OFF}_4\mathrm{CL}_2$	NOC1, NO2C1, PF30, Cl2, NOFF6	NO2F, NOF, NOC1, NO2, ClO3F	B2H6, H2, (no NF2OBH4)	Unident. mat. with IR abs. at 5.0-5.5μ, 7.5-8.9μ, 8.6μ, 11.0-11.5μ, 12.2-12.7μ	Same unident, cpd. trapped at -110°	Inconclusive, numerous C-O-N-F fragments	NO2F, NO2, CLO2F, CLO2	Similar to ClogF results	NOFFG	No rxn.	NF2O ⁺ salt?	CSNO ₂	No rxn.	$^{ m ClO_3F}$, $^{ m SiF}_{ m 4}$
	Conditions	-78°, 8 hr.	-20°		BCl3, HF, ASF3 or BrF3	u.v., 36 hr. fract. thru -110° trap	u.v., 235°, circ. system	u.v.	n.v.	u.v.	100 mm.	HF or BrF5	25°	0°, IF	-78°	-50°, so ₂
	Reactant	FF3C12	PF3C12	$ ext{LiClO}_{f 4} ext{ or Mg}(ext{ClO}_{f 4})_{ ext{2}}$	$\mathrm{NaBH}_{ar{4}}$	$^{ m CF_{3}OF}$	CF ₃ OF	CF ₃ OF	$\mathtt{Clo}_{\mathtt{S}}\mathtt{F}$	C102F	$ ext{PF}_{3}$	$\mathtt{TiF}_{\boldsymbol{4}}$	PtF_{6}	$N_{2}O_{4}/CsF$	$(NO_2)_3$ Al $(ClO_4)_6$	NO2A1(C1O4)4 Li3A1(C1O4)6
						CONI	68 F I D	ENT	AL							

Reference	122	121	121	121	121	121	301	301	301	301	386	386	386	386	420a	532a	532a	532a		122	122
Result	NO2, NOF, SiF4?	v.p. & IR suggest complex	No rxn.	No NF ₂ Wo formed; complex assumed	No CSF or CINF20	No rxn.	No NF2OIF6	No NF2OHF2	No NF ₂ OSF ₅	Small amts., 3NF30.2SF20	$\mathrm{CF_{3}C}(0)\mathrm{CF_{2}MF_{2}}$	No CF3C(NF2O)=CF2	Explosion	1:1 complex	2NF30·BF2Cl, NF30, BF3, Cl2, NOFB4	NO2F, NOF, NO3F, O2F2, O2F-	V.1. NO2F, NOF, NOSF	O ₃ , SiF ₄ , no NF ₂ OOF	No new products	No rxn.	No HNF20
Conditions	25°, glass	Low temperature	-78° or 25°	-78	-78°, 16 hr.	-78 to 25°	-78° or 25°			-20°, 4 days		BF3 or PF5 cat.	BF3 or PF5 cat.		-142° to -80°	O ₂ /Ar matrix	Ar matrix	elec. disch., -196°	v, ~196°	-78° to 25°	
Reactant	NO	ON	NO/C2F4	NO/N2F4	NO/CSC1	NaNO2	${ m IF}_5$	HF	SF4	SF20	$\mathrm{CF_3C}(\mathrm{BF_2})$ = $\mathrm{CF_2}$		$\mathrm{ch}_{\mathbf{Z}}\mathrm{ch} = \mathrm{c}(\mathrm{ch}_{\mathbf{Z}})\mathrm{ch}_{\mathbf{Z}}$	$\mathrm{FF}_{2}(\mathrm{CF}_{3})_{3}$	BF2C1	r.f. disch.	r.f. disch.	20	F2	c_{12}	$_4$ -($_{ au$ -C $_4$ H $_9$)C $_6$ H $_4$ SH
	CONFIDENTIAL																				

TABLE XIII (Concluded

Further studies of the NF₅O-BF₅ system at Rocketdyne concluded (586) that the product can be either "ionic" or "covalent" depending on the preparatory route, but the NF₅O-AsF₅ product was estimated from electronegativity considerations and Hammel calculations to be at least 20% ionic. Studies of these materials have continued, but useful NF₂O+ salts have not been attained.

The 19 F NMR spectrum of the NF₂O⁺ ion in BrF₅ solution shows a chemical shift which is dependent on the anion and apparently on the concentration, but essentially not on the temperature (75). The shift to higher field is in the order SbF₆⁻ <AsF₆⁻ <BF₄⁻. At -60° the SbF₆⁻ salt appears to be two singlets, one broad and one narrow but at room temperature a triplet is observed. The NF₃O-AsF₅ product also gave varying NMR shifts with different HF samples (386).

Solubility studies on NF₂OAsF₆ showed (78) that it was essentially insoluble in the following solvents at the temperatures listed: BrF₃, 25°, (CF₃)₂CO, 25°; (CF₃CO)₂O, 25°; HSO₃F, 25°; PF₃O, 0°; ClO₃F, -10°; SF₄O, -40°; CF₂O, -40°. The vapor pressure of NF₂OAsF₆ was determined to be 10 - 20 mm. at room temperature.

VI-K. Chlorodifluoramine and Dichlorofluoramine

The chemical properties of chlorodifluoramine have been summarized by Petry (IA6). The reaction of an aqueous NaClO with difluorourea appears to be one of the best methods for generating sizeable quantities of ClNF₂ (18).

Efforts to prepare $Hg(NF_2)_2$ from the reaction of $ClNF_2$ and Hg at -40° to 25° or in ethyl ether solution at 25° gave N_0F_4 and traces of N_2F_2 (17). In studies of the related compound ClNFCOOR ($R = C_2H_5$ or C_3H_7) the coupling reaction below was apparently observed (15, 17).

C1NFCOOR + Hg
$$\longrightarrow$$
 Hg (NFCO₂R)₂ + ROCONF[HgN(CO₂R)]_xHgNFCO₂R
20% 80%

The $\mathrm{Hg(NFCOOR)_2}$ reacted with $\mathrm{Cl_2}$ to give the starting material and with $\mathrm{I_2}$ in $\mathrm{CH_2Cl_2}$ to give INFCOOR (without solvent, FCOOR and $\mathrm{N_2}$ were formed) rather than the desired coupled compound (-NFCOOR)₂ which was invisioned as an intermediate to $\mathrm{N_2F_2Cl_2}$ or $\mathrm{N_3F_5}$. Efforts to use sulfur of $\mathrm{S_2Cl_2}$ as the coupling agent were inconclusive and Ca , Zn or Ag failed to give the Hg reaction.

Another related compound $C(NF_2)_3NFC1$ (first prepared at 3M in 1964) was found (15) to lose $ClNF_2$ even at -196° in glass. An attempt to prepare $C(NF_2)_3NFC10_3$ by the reaction of $C(NF_2)_3NC0$ with ClO_3F/NaF was unsuccessful (15).

The research on the synthesis of dichlorofluoramine has been published (L55a). This compound has been synthesized in good yield and purity at Aerojet (15) from N-fluoroethylcarbamate:

$$NH_2-COOC_2H_5 \xrightarrow{F_2/N_2} NHF-COOC_2H_5 \xrightarrow{HClo} Cl_2NF$$

This method (which strangely did not work with the propyl carbamate) was an improved version of a 1961 Aerojet method not included in the previous review (see ref. 27 in bibliography of ref. 284a):

The pure Cl_2NF prepared at 5° was a colorless liquid, but reaction at -5 to -10° gave a yellowish product which contained CO_2 and organic matter. The Cl_2NF decomposed in glass at 25°. The presence of BF₃ accelerated the decomposition, but CsF appeared to stabilize it.

A number of reactions of Cl_2NF have been attempted as summarized in Table XIV. In general, the Cl_2NF appeared to act as a source of NF radicals (18). An attempt to react $\text{C(NF}_2)_4$ with $(\text{CH}_3)_3\text{COCl}$ gave ClNF_2 rather than the desired $\text{C(NF}_2)_3\text{NCl}_2$ (8).

VI-L. Miscellaneous N-O-F Compounds

A large number of reactions have been attempted on various compounds which contain nitrogen with fluorine, oxygen, or both as summarized in Table XV.

Although N_2F_2 , N_2F_4 and N_{F3} O readily undergo the fluoride abstraction reaction with Lewis acids (e.g., to give $N_2F^+AsF_6^-$) and similar reactions are readily entered into by the halogen fluorides, some of the sulfur fluorides and O_2F_2 , this type reaction could not be effected with a number of other N-F or likely C-F compounds. Thus, the attempted (355) reaction with $N_{F2}NO$ led to degradation:

NF₂NO + AsF₅ $\xrightarrow{-163^{\circ} \text{ to } -90^{\circ}}$ red intermed. $\xrightarrow{-65^{\circ}}$ wh. solid, mostly NOAsF₆

NF2NO + AsF₅ $\xrightarrow{-115^{\circ} \text{ to } -90^{\circ}}$ purple mixt. $\xrightarrow{-78^{\circ}}$ red & wh. mixt. $\xrightarrow{25^{\circ}}$ NOAsF₆

Arsenic pentafluoride acted as a fluorinating agent toward Cl2NF (356).

$$\text{Cl}_2\text{NF} + \text{AsF}_5 \longrightarrow \text{ClNF}_2 + \text{AsF}_3 \text{ (no Cl}_2\text{N}^+\text{AsF}_6^-\text{)}$$

71

TABLE XIV

REACTIONS OF DICHLOROFLUORAMINE

Reactions and Results	Reference
C12NF + N2F4 $\xrightarrow{25^{\circ}}$ NR $\xrightarrow{65^{\circ}}$ C1NF2 + N2F2 (no N2F3C1)	18
$Cl_2NF + N_2F_2 \xrightarrow{U.V.} N_2$, N_2F_2 , NF_3 , Cl_2 , NOF	18
$C1^5NF + NO \xrightarrow{-135^\circ} CINF^5 + N^5O + NOE$	15
$C1_2NF + HNF_2 \xrightarrow{H_2SO_4} C1NF_3N_2F_4$, HCl, H ₂ O, SiF ₄	17
$Cl_2NF + HNF_2 \xrightarrow{-78^{\circ}, 35 \text{ min.}} NR \xrightarrow{25^{\circ}, 15 \text{ min.}} SiF_4, N_2F_4?$	18
Cl ₂ NF + HNF ₂ $\xrightarrow{25^{\circ}, 2 \text{ hr.}}$ NR $\xrightarrow{70-80^{\circ}, 30 \text{ min.}}$ N ₂ F ₄ , $\xrightarrow{\text{cis}}$ N ₂ F ₂ , trace NOCl	18
Cl ₂ NF + HNF ₂ 70-80°, quench cis-and trans-N ₂ F ₂ , ClNF ₂ , NOCl metal flow system (some N ₂ F ₄ , SiF ₄ , NO ₂)	18
$\text{Cl}_2\text{NF} + \text{F}_2/\text{CsF} \xrightarrow{-78^\circ} \text{ClNF}_2, \text{NF}_3, \text{N}_2\text{F}_2 \text{ (no ClF}_3\text{NF)}$	356
$Cl_2NF + AsF_5 \longrightarrow ClNF_2 + AsF_3$	356
Cl ₂ NF + SbF ₃ 25° > N2, Cl ₂	18
$\text{Cl}_2\text{NF} + \text{BCl}_3 \xrightarrow{-78^\circ} \text{N}_2, \text{Cl}_2, \text{BF}_3$	18
$Cl_2NF + BF_3 = \frac{-78^{\circ}}{25^{\circ}} HCl_2 + BF_4^{-}?$	18
Cl _c NBF ₄ + HNF ₂ → ClNF ₂ , Cl ₂ , BF ₃ , HF	18

TABLE XV

MISCELLANEOUS N-O-F REACTIONS

Reactants	Conditions	Result	Reference
NOF + CsF	25-300°, 1400-3140 psi	NO ₂ ; (no NF ₂ 0 ⁻)	76
NO ₂ F + CsF	5 hr. each at -78° & -45° 6 days at 25°	No rxn.	76
$NO_2F + F_2/CsF$	-78°, -45°, 25°, 150°	No rxn. in 1 hr. each	76
NOF + CsF	25°, 3 hr. or -78°, 16 hr.	No rxn.	77
NOF + CsF + F2	-78°, 2 hr. or 25°, 3 hr.	Some NO ₂ F	77
NOF ÷ N ₂ F ₄ + CsF	200°, 8000 psi, 48 hr.	NF ₃ , NOF, NO, NF ₃ O, solid containing Cs, F,N (+0?)	79
NO ₂ F + CsF	-65°	No rxn.	77
NO ₂ + CsF	25°	Some abs.; solid stable at 200°	77
Solid above + F2	200°, 250 psi, 2 hr.	NO ₂ F	77
Excess NO2 + CsF	200°, 4700 psi, 18 hr.	1 mole NO2 abs/mole CsF	77
Solid above + F2	200°, 7100 psi, 4 hr.	NF30, NO ₂ F	7 7
NO ₂ + CsF + F ₂	25°, 3600 psi, 5 hr.	Some NO ₂ F, (no NF ₃ O)	77
NO ₂ F + CsF	-78°	Solid containing N,F	121
NO ₂ + (CF ₃ O) ₂ O	70°, 16 hr.	(CF ₃ 0) ₂ , CF ₂ 0, NO ₂	79 ·
NOF + PtF	25°	F2, NF30, NO+ salt	· 79
NOF + IrF ₆	25°	NF ₃ O .	79
N ₂ O + CsF	25-400°, 10,000 psi max.	No rxn.	76,78
N ₂ O + F ₂ + CsF	200-400°, 9500 psi max., 15 hr.	Some NF3, NF30 two runs exploded	78
N20 + PtF6	25°	No rxn.	28

TABLE XV (Continued)

Reactants	· Conditions	Result	Reference
N ₂ 0 + Ir F 6	25°	No ran.	79
NO + SF4	25 or 125°	No rxn.	259
NO ₂ + O ₂ F ₂	-130°	NO ₂ F	266
NO + OF2		NO ₂ F, NOF	28 4
NO ₂ + ClF ₃	liq.	No evidence of ions	301
$Na_2N_2O_2 + F_2$	CC14	NaF, no NFO anion	335,333
	-110° to 350° 0.5 to 1200 atm.	No NFO anion	335
Cano3 + F2	-40°, 25°	CsF at 25° only	335
NO ₂ + CsF	25, 100, 200°; 10-72 hr. each	CsNO3 (no N-F)	335
N ₂ O + CsF	300°, 24 hr.; 100°, 4 hr.	No rxn.	335
NOF + CsF	25°, 20 atm., 72 hr. 150°, 30 atm., 12 hr. 80°, 1,200 atm., 1 wk.	No rxn.	335
NO ₂ F + CsF	25°, 20 atm., 72 hr. 150°, 30 atm., 12 hr. 25°, 825 atm., 1 wk.	No rxn.	335
NO ₂ + AsF ₅		NO ₂ AsF ₆ , NOAsF ₆ (not NO ₂ ·AsF ₅ as in Lit.)	354
ClonC ₂ + Me ₄ NBrCl	2	Me4NBr(NO3)2	437
AgNO3 + Me ₄ NICl ₄		Me ₄ NI(NO ₃) ₄	436
$(CF_3)_2$ NO + F_2		(CF ₃) ₂ NOF	5 32 d
(CF ₃) ₂ NO + NO ₂	25°	(CF ₃) ₂ NONO ₂ , (CF ₃) ₂ NONO, (CF ₃) ₂ NOONO?	5 32 d
(CF3)2NO + N2F4		(CF3)2NONF2	532d

TABLE XV (Concluded)

Reactants	Conditions	Result	Reference
NO2OF + N2F4	elec. disch., -40°	NF3, NO2, SiF4	532a
NF3 or N2F4 + H2 or CS2	flame	No :NF observed	537

The reaction of Cl_2NF with BF3 reversibly formed a 1:1 complex at -78° which contained the BF4⁻ according to infrared analysis (18). Neither AsF5 nor BF3 reacted with CF30F (356), but decomposition occurred with BF3 and either N,N,N'-trifluoropentoxyformamidine or 1,2-bis(difluoramino)cyclohexane.

The attempted fluoride abstraction reaction on $(NF_2)_3CF$ to give $(NF_2)_3C^+SbF_6^-$ led only to degradation (17):

$$(NF_2)_3CF + SbF_5 \xrightarrow{25^{\circ}} No rxn. \xrightarrow{50^{\circ}} (NF_2)_2CF_2 + \underline{t} - N_2F_2 + N_2 + NF_3 + CF_4$$

At 35° , reaction was incomplete after 17 hr. but the gaseous products were the same. The unidentified solid product melted at $75 - 80^{\circ}$.

CHAPTER VII

INORGANIC HALOGEN FLUORIDES AND DERIVATIVES

VII-A. Chlorine Pentafluoride

Several publications on the preparation and properties of chlorine pentafluoride have appeared in the literature since the previous review (284a). Included are publications on the fluorination of ClFz under ultraviolet radiation (L119) and by platinum hexafluoride (L120), on the thermal equilibrium of ClF3, F2, ClF5 (L107) and a paper (L125) from the Rocketdyne Laboratories on the preparation and properties of ClF5. Rocketdyne has issued recently a Chlorine Pentafluoride Handbook (415) as well as an Interhalogen Handbook (415a) which is primarily a compilation of engineering properties, handling characteristics and design criteria for ClFz and ClFz, plus selected data on other interhalogens. The electrochemical preparation of CIF5 has been studied (417) and an evaluation made for the use of this method in a large scale (0.1 - 1 million 1b/yr) manufacturing process (409, 410). Chlorine pentafluoride has been made available commercially in laboratory quantities by Allied Chemical Corporation (Industrial Chemicals Division). The publication from Rocketdyne (L125) gives the 19 F NMR chemical shifts as -412 ϕ (apical fluorine) and -247 ϕ (basal fluorines). These values were previously reported (284a) as -428 and -258 Ø. The mass spectra of ClF5 and BrF5 have been rechecked (66b) and the following intensities observed:

$$\text{ClF}_4^+$$
, 100; ClF_2^+ , 100; ClF_5^+ , 30; ClF_5^+ , 23; ClF_5^+ , \sim 0

A purification procedure reported (75) to give 99+% pure ClF_5 consists of adding excess BF_3 to trap ClO_2F (in the form, ClO_2BF_4) at -111°, followed by fractionation through traps at -130° (which retains ClF_5) and -196°.

Among the most interesting reactions involving ${\rm ClF}_5$ to be reported is that from the Olin Mathieson Laboratories (275a) to give ${\rm Cs^+ClF}_6^-$. The reaction was observed from 25° to 100° in 100 to 300 hr., in the absence of metal, with the best results as shown below:

The reaction with RbF at 70° was reported to give 28% yield of ${\rm ClF_6}^-$ while that with KF gave only a 6% yield. The identification was based entirely on elemental analyses of the mixtures, plus the observation that ${\rm ClF_5}$ and ${\rm ClF_5}$ were evolved and CsF remained upon pyrolysis at 200°. The actual existence of the ${\rm ClF_6}^-$ ion would be most interesting since it would be a pseudoheptacoordinate structure which is without

precedence in the second row elements. The CsF_2^+ ion would be isoelectronic with the known stable XeF_2 molecule, and the presence of the salt $CsF_2^+ClF_4^-$ as an alternate possibility for $Cs^+ClF_5^-$ has been suggested (276b). Spectral data are obviously needed.

The reaction chemistry of ${\rm ClF}_5$ has been pursued vigorously, as illustrated by the results summarized in Table XVI.

Evaluations of the properties of ClF₅ as an advanced propellant ingredient have included: Rocketdyne's physicochemical characterization studies (387, 388) (compatibility with metals and metalloids, properties of homogeneous liquid mixtures among the components ClF₅, ClF₃, ClO₃F, CF(NF₂)₃, C(NO₂)₄, NF₃O and N₂F₄); properties determination and theoretical performance calculations with ClF₅ and N₂F₄, C(NF₂)₄ or C(NO₂)₄ (392 - 394); and engineering properties studies of ClF₅, ClF₃, N₂O₄ and various fuels (396, 397). Aerojet General has also studied the physical properties, stability and storability of ClF₅-N₂F₄ liquid mixtures and the gelling of ClF₅ with \sim 10 wt.% Ba(SbF₆)₂ (44), the passivation with ClF₅ and its behavior with selected fuels (51 - 53), including test firings with mixed hydrazines (56, 32) and the heat transfer characteristics of ClF₅ (44a). Reaction Motors has studied the viscosity, heat capacity and thermal stability of ClF₅ (359), properties of mixtures of ClF₅ with N₂F₄ (360 - 363), properties of dispersions of B₄C in ClF₅ (364), theoretical calculation of ClF₅ and ClF₅ with boron slurries (367), motor firings with ClF₅ and Borol 502 (368) and other studies with fuels (369).

VII-B. C1F5 - Lewis Acid Complexes

The nature of the reaction products of ClF₅ with the Lewis acids AsF₅ and SbF₅ has been the subject of considerable research. As reported in the previous review (284a) the ClF₅·AsF₅ product is a solid with a high dissociation pressure (150 mm. at 0°) and the ClF₅·SbF₅ product was a low melting (34 - 36°) solid with a low dissociation pressure (apparently nonvolatile at 100°) which gave evidence of being ionic, i.e., ClF_4 *SbF₆ . The previously inconclusive NMR and IR studies on both complexes have been pursued.

In studies at Allied Chemical, the ${\rm ClF_5}^*{\rm AsF_5}$ complex* was insoluble in ${\rm SF_6}$, gave a very weak NMR resonance at β = 271 ppm in ${\rm AsF_5}$ and a red solution in ${\rm BrF_5}$ which faded to pale yellow over several hours (76). One NMR sample in ${\rm BrF_5}$ at -60 to -80° showed a weak doublet at β = -265 ppm (which tended to sharpen at lower temperature) plus a broadened ${\rm BrF_5}$ signal. A second sample showed only ${\rm BrF_5}$ as a pentet at -271 ppm and a doublet at -132 ppm. Some ${\rm ClO_3F}$ and ${\rm BF_3}$ were observed in the gas phase. Neither pure ${\rm ClF_5}$ nor ${\rm AsF_5}$ had absorptions in the -265 ppm region, while ${\rm BrF_5}{\rm -AsF_5}$ mixture showed only a broad signal at -107 ppm. In further studies (77) the ${\rm BrF_5}$ spectrum is reported as a doublet at -271 and a triplet at -132 ppm. When ${\rm ClF_5}$, ${\rm BrF_5}$ and ${\rm AsF_5}$ were combined and equilibrated at -45°, a doublet at -265 ppm was also observed and tentatively assigned to ${\rm ClF_4}^+$. (The relative rates of formation of ${\rm ClF_5} \cdot {\rm AsF_5}$ and ${\rm BrF_5} \cdot {\rm AsF_5}$ would appear to be an important consideration here.)

77

^{*} Efforts to get an elemental analysis on ClF5 AsF5 were unsatisfactory (76).

TABLE XVI

REACTIONS OF CLF3

Reactants	Conditions	Results	Reference
KTO4		no new products	75
1202		no new products	75
1 ₂ 0 ₅ /HF	-78°	ClO3F, ClO2F, IF5	77
H20/HF	-78°	ClO ₃ F, ClO ₂ F, ClO ₂	77
CsF	-30°, 12 hr.	no rxn.	77
CsF	-78°, 35 hr.	no rxn.	77
LiClO4	-78°	4% Cl ₂ O ₇ , trace unident. mat.?	76,77
kso ₃ f	25°	no run.	80
kso ₃ f	140-170°	SF202, 02, KClF4 or KClF2	80
SiO ₂ /CsF	25°, 16 hr.	SiF4, O2, unident. solid	80
PF ₃ O	-111.° to -78°	some ClO ₂ F, ClO ₃ F	80
PF30	-78° to -30°	some PF ₅ , unident. wh. solid which gave ClF ₅ and PF ₃ O (5 mm. at 25°)	80
so ₃	-23°, 4 hr.	some S ₂ 0 ₅ F ₂ , SF ₂ 0	80
S03	23°, 1 hr.	ClO ₂ F, ClO ₃ F, S ₂ O ₅ F ₂ , SF ₂ O ₂	80
HSO3F		slow reaction	79
05	$3-4 \times 10^4 \text{ psi, } 300-400^\circ$	no ClF ₅ O or ClF ₇	117
OF ₂	3-4 x 10 ⁴ psi, 300-400°	no ClF ₅ O or ClF ₇	117
F ₂	3-4 x 10 ⁴ psi, 300-400°	no ClF7	117
F ₂ (9.3X)	43,800 psi, 440°, 48 hr.	mass spec. peaks in 147- 150 range	119

78

TABLE XVI (Continued)

Reactants	Conditions	Results	Reference
F ₂	γ, 25,000 psi, 25°,110 hr.	no ClF7	119
¢5	120 to 420°, 44 - 108 hr.	ClF5, ClF3, Cl2, ClO2F, MF, etc., unident. prod.	77
o ⁵	elec. disch. (static and flow)	complex mixture, unident. prod.	77
OF ₂	elec. disch., -196° (ClF _{5(s)})	complex mixture, unident. prod.	77
0 ₂ F ₂		complex mixture, unident. prod.	77
NOF	-78°	~1:1 complex stable <-20°	301,337
NOF	-108°	no evidence of interaction by NMR	420 a
NOF/CsF	<-20°; preformed NOF·ClF5	no CsClF6	301
NO ₂ F	-78°	liquid complex stable <-35°	342
NO ₂ F	-60° to -80°	no evidence of interaction by NMR	4 20a
ClF ₂ AsF ₆	~25°	no rxn.	301
KNO3	25°	no rxn.	301
CsNO3		NO ₂ F, ClO ₂ F	301
KC104		ClO ₂ F, KF	301
KC103		some ClO ₂ F	301
sdf ₅ /hf	, 1	1:1 adduct immediately	301
H ₂ O ₂		violent rxn.	301
1205		IF5, IF7, ClO ₃ F, ClO ₂ , O ₂ (sudden rxn. after ~5 min. delay)	301

TABLE XVI (Continued)

Reactants	Conditions	Results	Reference
$^{\mathrm{Q}_{2}\mathrm{AuF}}\epsilon$		ClF2AdF6?	301
Ba(SbF6)2		no gel formation	301
Ba(BiF ₆) ₂		no gel formation	301
Da(SbF6)2	10 wt. %	gel	44
o ⁵	elec. disch., 10 mm., -40 to -10°	ClF3, ClO3F, ClO2F, ClC2,	338
NF3	325°, 2125 psig, 20 hr.	some ClF3 and F2	339
OF ₂	300°, 2950 psig	dec. of OF ₂	339
$NiF_2 \cdot 4H_20$	200°	clo2F, clo3F, HF	339
$c10^5/M^5$	110°	ClO2F, Cl2	339
5% 03 in 02	-78°, CF ₂ Cl ₂	ClO3F, ClO2F, ClF3	339
Na205	150°	NaF, O2, ClF3, ClF, Cl2	341
cis N2F2	-78 to 150°	v. sl. dec.	342
Cl2	25°	no rxn.	387
C102	25°	no rxn.	387
Graphics	25°	10 wt. % ClF ₅ absorbed	387
No	25°	NOF + Cl ₂	38 7
CO		CF20, C1FC0	387
H ₂ O or metal hydrates		ClO ₂ F or ClO ₃ F, ClO ₂	387
NO ⁵		C1.0 ₂ F, C10 ₂ , NO ₂ F, NOF	387
P ₂ 0 ₅		PF30, 02, Cl2	387
so ₃		SF ₂ O ₂ , Cl ₂ , O ₂	387

TABLE XVI (Continued)

Reactants	Conditions	Results	Reference
Misc. hydroxides		HF, O2, Cl-O-F mixtures	387
KC103	25°	ClO ₂ F, ClO ₃ F, ClO ₂ , O ₂ , KClF ₄	387
KC104	25° or 150°	no rxn.	387, 42 0a
KC104	HF, 25°	KHF2, ClO2, FClO2, FClO3	42 0a
Na.NO2	25°	NO ₂ F, NOF, NO ₂ , ClO ₂ F, Cl ₂ , NaF	387
Na.NO3	25°	NO ₂ F, ClO ₂ F, NaF	387
NaNO3	HF, 25°	NO ₂ F, ClO ₂ , ClO ₂ F, ClO ₃ F	420a
Na2SO3	25°	no rxn.	387
Na ₂ 80 ₃	150°	SF ₂ O ₂ , SF ₆ , ClO ₂ , Cl ₂ , O ₂ , NaF	387
Na2S2O3	25°	no rxn.	38 7
Na2S2O3	150°	same as with SO3=	387
CsF or KF	25° or 150°	no rxn.	387
PF ₅	0°	no rxn.	38 7
BF3	-112°	no rxn.	387
(CF3)2CO	25°	fluorination	387
(CF3CO)2O	25°	fluorination	387
CC1.4	25°	Cl ₂ , CFCl ₃	387
CHCl3	25°	CHFCl ₂ , CF ₂ Cl, CF ₄ , Cl ₂ , CFCl ₃	387
XeF ₄	25°	solubility 5.5 g/100 g ClF ₅	. 393
XeF ₂		low solubility	394
		81	

TABLE XVI (Concluded)

Reactants	Conditions	Results	Reference
HgO	0°, N _{2(g)}	ClO2F	420a
KBr03		no BrF30	420a
HNF2	-80°	ClNF ₂ , N ₂ F ₄ , NF ₃	420a
2CsF·Cl ₂ O	0°	CsClF ₂ , ClF, ClO ₂ F	423
I%F		ClO ₂ F, some ClO ₃ F; no ClF ₃ O	426
I₂ C ₅		ClO ₂ F, some ClO ₂ ; no ClF ₃ O	42 6
Pb(NO3)2	-30° to 25°; fast	O2, NO2F, ClO2F, ClF3, trace NO2OClO2?	426
Pb(NO3)2	-50°, excess ClF5, slow	NO2F, ClO2F, PbF2	426
NF3, F2	100°, 3000 psi, 65 hr.	trace NF4ClF6 ?	487
SbF5, F2	Δ, press.	complex product	487
Ar, 03	hν, 4°K	trace ClF50 ?	532a
F ₂	γ, -196°	no new products	532a
C1F ₅	elec. disch., -80°	dec. of some ClO_2F , ClO_3F , no $(ClF_4)_2$	4 20a
C1F ₅	h v, -190°	no EPR evidence of ClF4.	7 7
CIFS	hv, -190°, CF_4 , C_2F_6 , SF_6	no EPR evidence of CLF4.	77
C1F5	hv, -190°, CF ₄ /CFCl ₃ liq.	no EFR evidence of ClF4.	77,78
C1F ₅	hv, -190°, NF3 liq.	no EPR evidence of ClF4.	78
C1F ₅	elec. disch., flow system	see only F. in EPR	7 8
CsF	25°, 300 hr. in Teflon	CsClF ₆ in mixture with CsClF ₄ , CsF	275a

With more dilute samples (50 mole % BrF_5), a broad peak at -30 ppm and a peak at -226 ppm were observed. In a 1:1:1 sample a broad peak at -100 ppm was observed in the three component system, but normal spectra were obtained in a ClF_5 - BrF_5 mixture at -45°. A mixture of BrF_5 and AsF_5 gave a yellow solution at first, but this turned red on storage at -40°. The NMR of the latter was a broad peak at -106 ppm and a small unexplained peak at -90 ppm. A second, more concentrated sample using less pure BrF_5 showed only a -107 peak. No paramagnetic species were observed in the red solutions. The combination of ClF_5 , BrF_5 and AsF_5 on the other hand gave a white solid at -40° and only weak, poorly resolved NMR peaks were observed. The -265 ppm peak was therefore tentatively assigned to ClF_4 . The ClF_5 SbF5 salt in SbF5 gave only a -274 ppm peak downfield plus a broad peak above 100 ppm from the fluorines on antimony.

In further studies (78) of ClF5 AsF5 in BrF5 a very broad NMR peak (-150 to -87 ppm) was observed but these, as well as the previous results, were considered inconclusive because of HF impurities in the solvent, i.e., the HF promotes fluorine exchange with dissolved salt although it does not with BrF5 alone. Thus ~1 M ClF5 AsF5 in HF gave only one broad peak: +170 ppm at -30° or +188 ppm at -80°. On the other hand when excess ClFg was dissolved in excess SbFg, the resulting solution at 45° showed an NMR peak at -274 ppm. At 25° some solid precipitated and this peak was broadened, while at 0° or -60° only the Sb-F peak at +109 was observed. The $ClF_5 \cdot SbF_5$ was not soluble in BrF_5 (79). However, when ClF_5 was added to a solution of SbF_5 in BrF5, a white solid which formed initially redissolved on standing at 25°. The ClF5 was observed (MMR examination of six samples) when the ClF5/SbF5 ratio was 4:1, but not when it was 2:1. With a 1:1 ratio (at -35°) the BrF5 resonances were averaged at -154 ϕ and the SbF₅ at +121 ϕ , but with a 2:1 ratio (at -40°) the BrF₅ peak was unresolved at -167 ϕ in one sample but partially resolved at -276 and -138 ϕ in another. No evidence for $\mathrm{BrF_4}^+$ was observed in the $\mathrm{BrF_5}$ - $\mathrm{SbF_5}$ system: at -40° only partially resolved BrF5 was observed while at 25° the BrF5 average was at -167 and the SbF species averaged at +109 ppm.

Efforts at Monsanto (301) to get the infrared spectrum of ClF_5 -SbF₅ product (formed by rapid reaction in HF) in KBr or KCl pellets, or Kel-F mulls gave inconclusive results because of the reactivity, but some differences from the spectrum of ClF_5 SbF₆ were detected.

A lengthy research effort has been performed at Rocketdyne on the IR and NMR of ClF_5 AsF5 complex.

The 1:1 complex was formed at -80°, then warmed to 25° before being condensed at -196° onto a AgCl window of the IR cell (385). (This method raises the question of whether the complex reformed normally upon condensing.) The spectra of the complex and of solid ${\rm ClF_5}$ and ${\rm AsF_5}$ were taken at -196° (the ${\rm ClF_5}$ showed an anomalous strong band at 686 cm⁻¹ which was attributed to ${\rm ClF_4}^-$ or ${\rm ClF_2}^-$). The spectrum of the complex was relatively simple, suggesting ${\rm C_{4v}}$ symmetry. A band at 817 cm⁻¹ was attributed to the Cl-F stretch and a band at 743 cm⁻¹ to the As-F stretch. The latter is abnormally high for ${\rm AsF_6}^-$ and was therefore taken to indicate a fluorine bridged structure, ${\rm F_4Cl-F\cdots AsF_5}$. (Bending vibrations were at 586 and 514 cm⁻¹ in the complex.) From correlations of the Hammet σ constants for a number of fluoro salts and the apparent shift of the ${\rm AsF_6}^-$ band an estimate of 20% ionic character was made for

C1F₅·AsF₅ (386). The calculated electronegativities of some of the fluoro species were: N_2F^+ , 2.05; NF_2O^+ , 2.25; $C1F_4^-$, 2.2; AsF₅, 3.2. (On this scale the O_2^+ ion was 1.76.) Although $C1F_4^+$ and NF_2O^+ have about the same electronegativity, the latter was judged to give a more ionic salt with AsF₆⁻, because it does not have available orbitals to enter into fluorine bridging as the C1F⁺ does.

NMR studies also gave evidence for the covalent and ionic forms $F_5As \leftarrow ClF_4+AsF_6^-$ and $F_5As \leftarrow ClF_4-F-AsF_5$ in addition to the 1:1 complex, but no evidence for the free ClF_4^+ ion (402). These studies included solid samples at -80° and 25°, solutions in BrF_5 (changes with aging in these solutions were attributed to precipitation of the more ionic forms) and the gases. No reference standards were used unfortunately.

A few reactions have been attempted with the ClF₄SbF₆ salt or the ClF₅·AsF₅ complex as summarized in Table XVII.

TABLE XVII

REACTIONS OF C1F5 - LEWIS ACID COMPLEXES

Additional reactions of ClF5. Lewis acid complexes which have been attempted include:

ClF4SbF6 + NF3 200° NF3, ClF5 solid with SbF5:ClF5 > 1	339
$ClF_4SbF_6 + OF_2 \xrightarrow{200^{\circ}, 500 \text{ psig}} some O_2, F_2, ClF_5$	339
$ClF_4SbF_6 + Ne_2O_2 \xrightarrow{75^{\circ} to 250^{\circ}} ClO_3F$, ClO_2F , ClF_3 , ClF_5 , O_2 , $NeSbF_6$	342
$ClF_5 \cdot AsF_5 + H_2C(s) \xrightarrow{O^{\circ}} ClF_5$, AsF ₃ O, HF	42 0a
$ClF_5 \cdot AsF_5 + N_2 \circ_3 \xrightarrow{-23^{\circ}} NOAsF_6(?), NO_2AsF_6, Cl_2$	420a
$C1F_5 \cdot AsF_5 + KNO_3 \xrightarrow{25^\circ} C1F_5, K^+AsF_5NO_3^-(?)$	42 0a
$\text{ClF}_5 \cdot \text{AsF}_5 + \text{KNO}_3/\text{HF} \xrightarrow{25^\circ} \text{KHF}_2, \text{NO}_2\text{AsF}_6, \text{ClO}_2, \text{ClO}_2\text{F}, \text{ClO}_3\text{F}$	42 0a
$ClF_5 \cdot AsF_5 + (CF_3CO)_2O \xrightarrow{O^{\circ}} exploded$	42 0a

84

VII-C. Chlorine Trifluorite and Derivatives

The chemistry of ClF3 has not been extended appreciably since the previous review (284a). A publication by Christe and Pavlath (Ll12) gives evidence that the ClF3-AsF5 reaction product is ClF2+AsF6, but infrared assignments in this paper have been retracted by Christe and Sawodny (Il15) who observed new bands in ClF2AsF6 and ClF2BF4 at -196°. The melting point of ClF2SbF6 has been established as 225 - 228° (342). Christe, Sawodny and Guertin have concluded from analysis of vibrational spectra (Ll15) that the ClF2 ion (Ll09, Ll10) is linear. A paper by Christe and Guertin on spectra of salts of the ClF4 ion has also appeared (Ll11).

Electrical conductivity measurements on a solution containing ClF_3 , BrF_3 and BF_3 show (138) that it is an excellent conductor (7.6 x 10^{-3} ohm⁻¹ cm⁻¹) at -60° . On the other hand, combination of ClF_3 with BrF_5 and AsF_5 gave a white sparingly soluble salt at -40° (77). Conductivity data on the ClF_3 - KNO_3 system were inconclusive, regarding the presence of ions, but no evidence for ions was observed with the ClF_3 - N_2O_4 system (301). Conductivity measurements on the systems ClF_3 - IF_5 or ClF_3 - ClO_3 F did not give evidence of any ions while the system ClF_3 - ClO_3 F-CsF appeared to have the ions (337) ClF_2 + CsF_2 - thought to be present in ClF_3 -CsF mixture. The conductivity of BrF_5 was not changed significantly by the addition of ClF_3 (337). The mixture ClF_3 - $2BrF_5$ - BrF_3 was successfully gelled with $Ba(SbF_6)_2$ (302) in studies of potential incendiary agents.

A number of reactions of ${\rm ClF_3}$ which have been studied are summarized in Table XVIII.

The results of a number of recent studies of the reactions of the ${
m ClF_3}$ derivatives, the ${
m ClF_2}^+$ and ${
m ClF_4}^-$ ions are summarized in Table XIX.

VII-D. Chlorine Trifluoride Oxide and Related Compounds

The numerous efforts to prepare higher chlorine fluoride oxides (i.e., in addition to the well known ${\rm ClO}_3{\rm F}$ and ${\rm ClO}_2{\rm F}$) have lead to the discovery at Rocketdyne of chlorine trifluoride oxide, ${\rm ClF}_3{\rm O}$, (also called oxychlorinetrifluoride and given the code name, Florox). Efforts to obtain ${\rm ClF}_3{\rm O}_2$ or ${\rm ClF}_5{\rm O}$ have not been successful, but evidence has been obtained for an unstable FClO.

Discovery and properties: Chlorine trifluoride oxide was first detected in early 1965 (420) as an unidentified product of the fluorination of Cl_2O over CsF at -80°. The ClF_3O was evolved in low yields upon warming the residual solid. Positive identification of ClF_3O soon followed (420a), the boiling point and melting points fixed at 30 \pm 5°C and -68 \pm 3°C, respectively, and the structure suggested to be Cs symmetry on the basis of the infrared spectrum (absorption bands at 1220, 680, 490, 320 and 280 cm⁻¹). The ¹⁹F NMR spectrum was a single broad resonance at ϕ = -279 ppm with either neat liquid or in CFCl₃ or Cl₂ solutions at -88°.

85

TABLE XVIII

REACTIONS OF CLF3

Reactants	Conditions	Results	Reference
of ₂ /kf	25°, 48 hr., shaking	KClF4 formed	79
(CF30)20	25°	NR	80
of ₂	140 - 170°	SF ₂ O ₂ , O ₂ , KClF ₂	80
kso ₃ f	25°, 48 hr.	small amounts, SF2O2, ClO2F	80
kso ₃ f	-78°	Cl ₂ , ClO ₂ F (no ClONF ₂)	122
CsSO ₃ F	70°, 16 hr.	(CF30)2, O2, unchanged C1F3	79
CIONOS	150°, 5500 psi, 18 hr.	some ClO ₂ F	80
of ₂	100 - 400°, static or flow	ClO ₂ F, ClO ₃ F, ClO ₂	346
OF ₂	elec. disch., -15° or -78°	ClF, ClO ₂ F, ClO ₃ F, ClO ₂ , impurities	³34 6
OF ₂	elec. disch., -196°	as above plus some ClF_5 , O_2ClF_3 ?	34 6
0.	-150°	ClO ₂ F, ClO ₃ F, ClO ₂	346
್ರ		inconclusive	330
NO3-, NO2- or N2O2-	-110 to 350° 0.5 to 1200 atm.	no NFO anions in product	333
CsNO3	25°	CsClF4 + CsF	333
OF2/CsClF4	200 - 300°, 680 atm.	C1F5, C10 ₂ F, C10 ₃ F, O2, F2	336
OF ₂		ClF5	336
°2	elec. disch., 25°	C1F ₅ , C1O ₂ , C1O ₃ F, C1O ₂ F, impurities + unident. mat. abs. 6.2μ	337
OF ₂	280°, 1350 psig	some ClF5, O2	339,341
o ₃	-78°	ClO ₃ F, ClO ₂ F	339,341

TABLE XVIII (Concluded)

Reactants	Conditions	Results	Reference
03 (5% in 02) CF ₂ Cl ₂ , -78°	small amounts ClO3F, ClO2F	340
03 (5% in 02) -78°	as above plus ClO2	340
BiF ₃ ,F ₂	250°, 1000 psi	ClF6+BiF6"?	276a
03		attacked Kel-F IR cell rxn. vessel	42 0a
ниь5	fast rxn. on warming	ClNF ₂ + N ₂ F ₄ + HF	42 0a
HNF2·BF3	•	ClNF2, etc.	42 0a
CsClF40	\	CsClF4 + ClF30	424
KC103	25°, 16 hr.	C102F + C102	420
H ₂ O	-18° to +25°	trace C1FO?, HF, C102	425
Cl ₂ 0	-50°, NaF	ClO2F + ClF (ClFO intermed.?)	423
NF ₃ + F ₂	100°, 3000 psi, 65 hr. small amounts	NF4 ⁺ ClF6 ⁻ ?	487
F ₂ + BF ₃		ClF2BF4	5 93 a
02	elec. disch., -196°	C10 ₂ ?	537

TABLE XIX

REACTIONS OF CLF2+ and ClF4- SALTS

	References
ClF ₂ SbF ₆ + OF ₂ 200°, 850 psig some ClF ₅ , O ₂ and Cl ₂	559
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	342
$\text{ClF}_2\text{SbF}_6 + \text{O}_3 \xrightarrow{-78^{\circ}/\text{ClF}_3} \text{small amounts ClO3F, ClO2F from ClF}_3$	341
CsClF ₄ + HF ———> CsHF ₂ + ClF ₃	489
$MClF_4 + H_2O \xrightarrow{50^{\circ}, 750 \text{ psi}} ClO_2, Cl_2 \text{ (no MClF}_2O \text{ or FClO)}$	423
$CsClF_4 + Ne_2O_2 \xrightarrow{300^\circ} CsF$, NeF, O ₂ , Cl ₂	341
$CsClF_4 + NF_3 = \frac{200^{\circ}}{24 \text{ hr.}} > no rxn.$	339
$CsClF_4 + OF_2 \xrightarrow{200-300^{\circ}} O_2$, F_2 , ClO_2F , ClO_3F , ClF_5 , Cs_2NiF_6	336
$CsClF_4 + O_2AsF_6 \xrightarrow{O^{\circ}} CsAsF_6 + O_2$, Cl_2	354
RbClF ₄ + O ₂ AsF ₆ > inconclusive	301
NOC1F ₄ + O ₂ AsF ₆ CFC1 ₃ NOAsF ₆ , C1F ₃ , NOF	301
$ClF_4^- + NF_2O^+ \longrightarrow no NF_2OClF_4$	301
$HNF_2 + RbClF_4 \xrightarrow{-80^{\circ}} CNF_2$, N_2F_4 , HF, etc.	420a

More recently, Rocketdyne scientists (434a) have resolved the NMR spectrum of gaseous C1F₃O into two peaks at -300 and -262 \not 0 in a 1:2 intensity ratio,* but the best

^{*} A recent Rocketdyne report (426) gives the gaseous resonances at -317 and -276 Ø.

samples of liquid C1F₃O still showed the collapsed singlet at -276 ϕ . (HF catalysis of the fluorine exchange was considered the cause.)

Allied Chemical (81) has since prepared a purified sample of ClF₃C and found a melting point of -44° and a boiling point of 30.1°, $\Delta H_{\rm c}$ of -7.06 kcal/mole, entropy of 23.3 e.u., and vapor pressure in the range -23 to +19° described by the equation $\log P_{\rm mm} = 7.965\text{-}1543/T$. Rocketdyne had previously (421) derived the equation: $\log P_{\rm mm} = 8.433\text{-}1680/T$. The melting point was found at Allied to be quite sensitive to small amounts of ClO_2F , accounting for the much higher value than previously observed. Most recently, Rocketdyne workers have reported (429,276c) that the true melting point is -37.2 $^{\pm}$ 0.5°C, and the density is 1.863 g/cm³ at 20°, compared to the more derse value reported (421) previously of 1.90 at 25.5°. The Allied group also reported a more detailed infrared spectrum as follows: 1229-1225-1219 (FQR) m; 684, 675, 666 (sh.) all v.s.; 502-490-483 (FQR) m; and 311 and 281 v.w. cm⁻¹. The spectrum indicated, but did not prove that the structure was of C_8 symmetry (a trigonal bipyramid derivative) with two apical fluorines and one fluorine and the oxygen in the equatorial plane. The mass spectrum of ClF_3O is (425) as follows: $ClF_2O^+ > ClF_2O^+ > ClF^+ > ClF^+ > ClO^+ > O^+$.

Rocketdyne reports that ClF₃O is stable at 284° (421), but reacts with stainless steel to the extent that pyrolysis is an analytical method: ClF₃O+S.S. $\xrightarrow{\Delta}$ Cl₂ + O₂ + MF₆. The ClF₃O decomposes above 300° to ClF and ClO₂F (423).

The C1F₃O can be purified by pumping off ClO₂F, ClO₃F, ClF and some of the C1F₃ at -95°, and the remainder of the ClF₃ can be removed at -80° with a small loss of C1F₃O (423). Others have reported (80) that ClO₂F and ClF₃O could not be completely separated at -78° and -95°, nor by formation of the KF or CsF complexes at -78°, followed by removal of volatiles at 50° and redissociation of the complexes at 170°, i.e., ClF₃O, ClO₂F and ClO₃F were recovered. Alternatively, CsF can (423) be reacted with the ClF₃ - ClF₃O mixture. The CsClF₄O redissociates at 150° while the CsClF₄ remains nonvolatile (422). The chromatographic purification of ClF₃O using a halocarbon column has also been described (429).

Synthesis studies: In the early studies at Rocketdyne (420) the reaction of F₂ with Cl₂O at 125° had merely given ClF₃ and ClO₂F.* Thus, the nature of the CsF complex (a colorless solid at 0° which dissociates to Cl₂O at 25° (420a)) was considered to be very important and a search was made for modifications or another Cl-O reactant which would give greater efficiency or safety in handling. The Cl₂O (best prepared (421) by the reaction of Cl₂ with HgO) is a serious explosion hazard for scale-up studies. In mid-1965, Rocketdyne reported (421) that ClF₃O could also be made by fluorination of the CsF complex of ClONO₂. However, the best method then known for making ClONO₂ was the reaction of Cl₂O with N₂O₄ (424).

^{*} Efforts to fluorinate Cl_2O with F_2 in CCl_4 solution at Allied Chemical (1960) 0) and with OF_2 and ultraviolet light at Imperial Chemical (1961) had also been unsuccessful.

Cesium fluoride was found (421) to absorb ClF30 at 25° to give the 1:1 salt $Cs^+ClF_40^-$ (422), although this salt redissociated on heating (421) to 150° (423). While fluorination of the CsF complex of Cl_20 , * i.e., 2 CsF·3 Cl_20 (425), gives mostly free ClF30, fluorination of the CsF complex of $ClONO_2$ yields $CsClF_40$ (346b).

The KF complex of Cl_2O gave (422) up to 44% yields of Cl_5O and the work-up was easier since the KCl_5O dissociated appreciably at room temperature. Some Cl_5O was also formed in the fluorination of Cl_2O plus NaF (423) and $\text{HgCl}_2 \cdot \text{Cl}_2\text{O}$ (385), the latter being generated in situ from HgO and Cl_2 and thus eliminating the need for handling Cl_2O . In early 1966, the direct reaction of Cl_2O with F_2 was found (423,346b) to give Cl_5O according to the equation: $\text{Cl}_2\text{O} + 2\text{F}_2 \xrightarrow{-78^\circ}$ $\text{Cl}_5\text{O} + \text{Cl}_5\text{C}$.

Allied Chemical independently discovered (80) that reaction of Cl₂O and F₂ for three days at -78° was preferable** to the use of the CsF complex. This reaction was first discovered at Picatinny Arsenal in 1964 (346), but the product was not positively identified. On the other hand, workers at Pennsalt Chemical observed (342) the formation of Cl₃O in the reaction of Cl₂O with F₂ at 155° or with OF₂ at 130°.

By late 1966, Rocketdyne had prepared 1 lb. of ${\rm ClF_3O}$ by the batch fluorination of ${\rm Cl}_{\rm P}{\rm O}$:

Rocketdyne also found that the direct fluorination of $Clono_2$ at -78° gave up to 80% yield of ClF_3O (423). The development of an alternate route (405,L178) to $Clono_2$ together with its more favorable handling properties may make this the method of choice. This route (429) consists of the reactions:

C1F + HNO₃ or Pb(NO₃)₂
$$\longrightarrow$$
 C1ONO₂ $\xrightarrow{F_2}$ C1F₃O

2-3 days

^{*} The CsF-CloNo₂ complex completely dissociates at -78° upon prolonged vacuum pumping as also does the RbF-Cl₂O complex, but the CsF·1.5Cl₂O does not (426). Cl₂O also forms a complex with BF₃ which is unstable at room temperature (123). The complex formed between Cl₂O and AsF₅, reported in the literature to be Cl₂OAsF₅ at -80° and ClOAsF₅ above -50°, has been shown (425,424) to be ClO₂+AsF₆⁻. The infrared spectrum showed ClO₂+ at 1283 db. and 1040 w. and the AsF₆- at 690 cm⁻¹.

^{**} At 0°, however, only ClO2F and ClO3F were obtained.

Rocketdyne workers have reported (346b) the possible detection of CIFO as an unstable by-product while working up mixtures containing CIF₃O. The low temperature infrared spectrum (-196°) showed bands at 1260, 1225 and 645-650-510 cm⁻¹ and a possible band at 490 cm⁻¹ deduced from an overtone at 930 cm⁻¹. The new species was partially trapped at -142° or -160°. The same compound was apparently observed by Lawless (276a) as a very volatile (partially trapped at -136°) glass-reactive product from the reaction of O_2F_2 with NaClO₂ at -160°. A tentative IR band at 1258 cm⁻¹ was reported for the gas, but the possibility of C-F impurities from Kel-F grease was not eliminated.

Reactions: In addition to its reaction as a strong oxidizer and its reaction as a Lewis acid with fluoride ion to give the ClF40- ion, ClF30 also acts as a fluoride donor toward strong Lewis acids to form ClF20+ ions. The acid base behavior, then is analogous to that of the isoelectronic molecule SF4 which forms SF5- and SF3+ ions. The ClF30 - AsF5 reaction product is nonvolatile at 500 (381) and can be assumed to have the ionic structure ClF20+AsF6-. The ClF30 - BF3 product, which forms more rapidly (20 min.) at -80° than the analogous CIF3 or ClO2F products, * was reported to sublime slowly at 100° under vacuum (381) and to have a dissociation pressure of 20 mm. at room temperature (424). The ClF30 - FF5 complex has a slightly higher dissociation pressure than the ${\rm BF}_{\rm 3}$ complex. A sample of ClF30 PF5 was sublimed onto the window of a low temperature infrared cell (424). Bands attributed to PF6- were observed and two other strong bands at 1315 cm-1 and 1465 cm⁻¹ were suggestive of ClO_2^+ (from ClO_2^+ impurities) and a ClF_2O^+ ion respectively, but assignments could not be made with certainty. (At this low temperature the Cl=O bands of solid ClO2F and ClF3O were observed at 1280 cm-1 and 1250 cm-1, respectively.) Silicon tetrafluoride formed a complex 2ClF30.SiF4 of high (340 mm. at 25°) dissociation pressure, but the infrared spectrum of a sublimed sample showed only the starting materials. From the vapor pressure equation, $\log P_{mm} = 7.75$ -1545/T, (-80 to +14°C) a heat of reaction of -2 kcal/mole was calculated.

Complexes are also formed between ClF₃O and NO₂F (421) and NOF (424). From the dissociation pressure of the NOF·ClF₃O, log P_{nm} = 8.47 - 1625/T (-80° to 0°C) (i.e., about 1 atm. at 25°), a heat of reaction of -5 kcal/mole was calculated. A 19F NMR study of this complex from -77° to 26° showed only a broad line 40 ppm downfield from ClF₃O, i.e., about -316 Ø. An infrared study showed only the starting materials at 25°, but at -196° the complex showed a broad band in the Cl-F region, a Cl=O stretch at 1230 cm⁻¹ and a N=O stretch at 2050 cm⁻¹. At this low temperature ClF₃O has Cl-F and Cl=O stretches at 685 and 1250 cm⁻¹, respectively and NOF has an N=O stretch at 1990 cm⁻¹ (compared to 1850 cm⁻¹ at 25°). No N-F stretch was observed in either the complex or in NOF at -196°, (normally 765 cm⁻¹ at 25°). The structure of the NOF·ClF₃O complex is thus uncertain. The NMR data indicate fluorine exchange between N and Cl, but very little contribution from ClF₄O⁻ (424). In fact, a tendency toward the formation of ClF₂O⁺NF₂O⁻ is indicated, but the transfer may be

^{*} Thus C1F30 is a stronger fluoride donor than C1F3 or C1O2F. This method can be used as a basis of purification, the C1F30 regenerated by displacement with NaF.

incomplete. The IR data probably indicate the presence of bridged fluorine F2ClO-F---NFC and ON-F---ClF3C as well as the presence of fluorine bridging in solid NOF alone.

A number of other studies of the reactions of ${\rm Cl}\,{\rm F}_3{\rm O}$ are summarized in Table XX.

TABLE XX

REACTIONS OF C1F30

Reactants	Conditions	Results	Reference
C1F3		no adduct	81
NF30	e Se	no adduct	81
N ₂ F ₄	-78° or 25°	NO2F + NOF	81
NC ₂ F		ClO2F, NOCLO4 or NO2ClO4	81
No ⁵		as with NO ₂ F	81.
NaClO ₂	-196 to -20°	ClO2, NaF; one explosion	81
CF2=CF2		explosion	81
N ₂ F ₄	-80 to +60°	no rxn.	421
KrF2		no ClF50	424
C120	25°, 3 days	ClO2F, some ClF	422
S02	-80 to +45°	$\text{ClO}_2\text{F}, \text{SF}_2\text{O}, \text{some SF}_2\text{O}_2,$ possibly some $\text{SF}_4(\text{SO}_3\text{F})_2$	422
BrF3, BrF5	25°	no rxn., misc.	422,426
Br2	-80° to 25°	some ClO2F, Cl2; no BrF3	422
N_2F_4	25°	no rxn.	425
^N 2 ^F 4	100°	v. slow rxn.	42 5
NF3	130°, 65 hr.	some NF30, NO2F, NOF, C1F	42 5
C1 ⁵	71 - 200°	ClO_2F , ClF_3 at low temp.; O_2 , ClF at higher temp.	42 5
05	-1.96 to 25°	no rxn.	423

92

Alternate synthesis approaches: A host of other synthesis routes to ClF_3O (and/or ClF_3O_2 or ClF_5O_3) have been attempted since the previous review (284a) and a number of these have led to ClF_3O_3 . However, the successful methods have generally given low yields or are not suited to scale-up. A number of the successful methods are summarized in Table XXI.

TABLE XXI

ALTERNATE ROUTES TO CLF30

	References
$\text{Cl}_2\text{O} + \text{F}_2 \xrightarrow{\text{elec. disch.}} 45\% \text{ ClF}_5, \text{ some ClF}_3, \text{ClF}_3\text{O}, \text{ClO}_2\text{F}$	3466,424
NaClO ₂ + F ₂ -196° or -78° ClO ₂ F, NaF, Cl ₂ , O ₂ , traces ClF ₃ O, ClFO (?) exothermic	424
C1F ₃ + OF ₂ h _V C1O ₂ F, ClO ₂ +BF ₄ -, SiF ₄ , plus some ClO ₃ F, ClO ₂ and apparently ClF ₃ O and ClF ₂ O+BF ₄	276a
C1F + OF ₂ $\xrightarrow{150^{\circ}}$ C1F ₃ , + 2% C1F ₃ O (CsF had no effect)	80
$\text{Cl}_2 + \text{OF}_2 \xrightarrow{150^{\circ}} \text{ClF}_3$, ClF_3 , ClF_4 , ClO_2F_4 , traces ClF_3O	80
$Clo_2F + ClF_5 \xrightarrow{hv} ClF_3O$	426a
$C10_3F + C1F_5 \xrightarrow{hv} C1F_30$	426a
$\text{Clo}_2\text{F} + \text{ClF}_3, \text{ OF}_2, \xrightarrow{\text{hv}} \text{ClF}_3\text{O}$	346a
$Clo_2F + BrF_5 \xrightarrow{hv}$ some ClF_3O	34 6a
C10 ₂ F	346a
$C10_3F \xrightarrow{hv} C1F_30$	34 6a
$C10_2F + F_2 \xrightarrow{h v} C1F_5$	34 6a
Cl ₂ O + F ₂ 155° ClF ₃ O	342
$C1_2O + F_2 \xrightarrow{130^\circ} C1F_3O$	342

A number of efforts to produce new Cl-F-O compounds which gave negative or inconclusive results are summarized in Table XXII. Evidence has been obtained for an unstable ClFO (346b), but ${\rm ClF}_5{\rm O}$ has not been prepared.

TABLE XXII

OTHER EFFORTS TO PRODUCE NEW C1-F-O COMPOUNDS

Reactants	Conditions	Result	Reference
<pre>ClF₅ + metal or metalloid oxides, oxygen, or ozone</pre>		usually ClO2F or ClO3F	see Table XVI
ClF ₅ + H ₂ O or hydra	tes	usually ClO2F or ClO3F	see Table XVI
ClF3 + various agen	ts		see Table XVI
CsF-ClO ₂ F complex + F ₂	25°, 2900 psi	some ClF5, ClO3F, ClO2F	75
NaClO ₂ + BrF ₅	-50°, then AsF ₅ at -20°	some Cl ₂ + solid	75
solid from NaClO ₂ above	CsF, -20°	ClO ₂ F (25%), no FClO	75
LiClO ₄ + ClF5	-76°	Cl ₂ O ₇ (4%) + trace unk. w/TR similar to Cl ₂ O ₇ and ClO ₃ OF, mass spec. similar to ClO ₃ F, and ¹⁹ F resonance at -369 Ø (unk. + H ₂ O gave ClO ₃ F and F ⁻)	76 77
ClO ₂ F + PtF ₅	25°	ClO ₂ PtF ₆ , ClF ₅ , ClO ₃ F, O ₂ PtF ₆ ?	79

TABLE XXII (Continued)

Reactants	Conditions	Result	Reference
Cl ₂ O + Ptr ₆	25°	ClO2PtF6, Cl2, C2	79
CsF·Cl ₂ O + PtF6	25°	solids, Cl ₂ , O ₂	79
Cl ₂ O + ClF ₃ + PtF ₆	25°	ClF ₅ , Cl ₂ , O ₂	79
KC103 + 48% aq. HF	evap.	no run. to KClF202	79
Closo ₂ F + F ₂	-78°, 5 days	some SF2O2 and ClO2	79
CaSO3F + ClF	3 25° or 170°	SF ₂ O ₂ , ClO ₂ F, CsClF ₂₋₄	79
KSO3F + ClF3	25°	no rxn.	79
KSO3F + ClF3	140-170°	SF202, 02; KClF2-4	79
ClO3F + PtF6	25°	No rxn.	79
Closf + IrF6	25°	No rxn.	79
Cl ₂ O + IrF ₆	25°	ClO2IrF6?	79
Mg(ClO ₄) ₂ + F ₂	NF ₃ , -196°	No rxn. (no ClO3OF)	89
LiClO + F2	Low temp.	ClO ₂ F, ClO ₃ F, possibly ClF ₃₋₅ 0	34 6
O· + ClF _X	-150°	ClO ₂ F, ClO ₃ F, ClO ₂	346
C1F ₅ + OF ₂	100°-400°, static and flow systems	C1-F-0 mixtures	346
C1F ₃ + OF ₂	elec. disch., -15, -78 and -196°	Cl-F-0 mixtures	346
C1F ₅ + O ₂	elec. disch. (static and flow)	Apperently small amounts	346
ClF ₅ (s) + OF ₂	elec. disch., -196°	Apparently small amounts C1F30	346

95

TABLE XXII (Continued)

Reactants	Conditions	Result	Reference
CsF + Cl ₂ O + N ₂ F ₄		Cl ₂ + unident. solid	. 123
Clono2 + Clf2	-76°	mostly Cl2, some ClO2F	152
C10NO ₂ + NF ₃ O	-78°	No rxn.	123
OF ₂ + ClF	-160 to -196°	No rkn. indicated by v.p. and elec. cond. measurements	333
CsClF ₄ + CF ₂	175-300°, 680 atm.	O2, F2ClO2F, ClO3F, some ClF5	334,336
OF2 + ClF3		ClF3	336
of ₂ + clf ₃	280°, 1350 prig	O ₂ , F ₂ , ClF ₅	339
OF ₂ + CsCl	500.	CsF, O2, Cl2, some ClF, ClO2F	339
OF ₂ · ClO ₂ F	250°, 825 paig	some dec. of OF2 + formation of ClO5F	339
OF ₂ + ClO ₃ F	200°, 1110 psig, 20 hr.	No rxn.	339
OF ₂ + ClO ₂	110°	ClF5, ClO5F, ClO2F	340
NF ₃ + ClO ₂	110°	No rxn.	340
CF30C1 + F2	78°	CF3OF (no ClFO)	356
O2AsF6 + CsClF4	0°	O2, Cl2, CsAsF6	354
Cl ₂ -O ₂ AsF ₆ complex + F ₂	-78°, 5 days	ClO ₂ , Cl ₂ , O ₂ , unident. solid	356
Cl ₂ -O ₂ AsF ₆ complex + F ₂	higher press. than above	02, Cl2, ClO3F, ClO2	3 57
Cl ₂ + 6F ₂ + O ₂	elec. disch., -80°	ClO ₂ , ClO ₂ F, ClO ₃ F, ClF ₃ , ClF ₅ + NOF compounds	420a
ClO ₂ F + ClO ₂ + F.	elec. disch., -196°	ClO3F, (ClO2 unaffected)	42 0a
HNF2 + ClO3OF		NOF, Closf, some N2F4, NO2F, Cl	2 420a

96

TABLE XXII (Continued)

Reactants	Conditions	Result	Reference
NOF	25°	NO ₂ F, ClO ₂ F, (ClO ₂ w/excess Cl.7 ₅) + unk. w/IR abs. at 5.8 db., 7.2 br., 8.4, 9.7 FQR	420a
Cl ₂ O + ClF ₃	-50°, Ne.F	ClO ₂ F + ClF	423
Cl ₂ O + AgF ₂	flow system -76° to 100°	ClO ₂ F, Cl ₂	424
CsClF40 + F2	50-160°, 750-1200 psi, 16 hr.	ClF ₃ O recovered	424
C1F ₃ O + F ₂	70 to 284°	no ClF50	42).
Clr30 + N2F4	-80° to +60°	no rxn. to C1F0	421
ClF30 + KrF2		no ClF ₅ O	42].
$Ca(OC1)_2 + F_2$	-80°	ClO ₂ F, ClO ₃ F	1 23
$Cl_2C + CF_2(OF)_2$	-90°, 15 days	dec. of Cl ₂ O	425
C10 ₂ + F ₂		explosive rxn. to ClF3, ClO2F, (+02 with excess F2 or Cl2 with excess ClO2)	425 :
CsF + ClO2	-23° or -45°	no obvious complex	425
KC104 + F2		ClOpF + ClOgF	424
MC1F4 + H2O		MHF2, ClO2, Cl2, ClFO, KClF4·H2O	425,426
C1F30 + H2O	-18 to +25°	HF, ClO2, trace ClFO	42 5
ClF3 + O2	elec. disch., -196°	C102	532 a
C1F + O2	r.f. disch., 4°K	Cl ₂ , O ₂ , F ₂	53 2 a
C1F ₅ + Ar + O ₃	hv (filtered), 4°K	unident. cpd; possibly $C1F_50$, which dec. on warming to $C1F_3$, OF_2 (IR bands at 1220, 1210, 664, 657, 646 cm ⁻¹)	532a

TABLE XXII (Concluded)

Reactants	Conditions	Result	Reference
ClF ₃ + Ar + O ₃	4° K	unident. cpd. (possibly O2ClF3 of (284a)). IR bands at 1026, 751, 675, 668 cm ⁻¹	5356
ClF ₅ + Ar + O ₂	4° K	as with Og above	5 3 5b
ClF ₃ + Ar + O ₃	hu, 4°K	ClogF, ClFO	5 3 50
ClNF ₂ + O ₂ , O ₃ or ClO ₂	hv	no evidence of desired product	5 3 5b
Cl ₂ O-CsF + ClF5		no ClF ₅ O	123
ClO2AsF6 + F2	25°	no rxn.	424

VII-E. Miscellaneous Halogen Compounds

New halogen fluorides: Attempts to generate $F_2Cl-ClF_2$ by u.v. irradiation of Cl_2 and F_2 in argon at $4^\circ K$ led only to ClF_3 and ClF upon warming (535b). The pressure-temperature relation of the ClF_5-F_2 (1:9) system was studied up to 440° and 43,80C psi and was essentially linear (119).

Purification of BrF₅ can be accomplished by storing it over KF at 25° (386) or NaF at 100° followed by distillation (78). The complex formed with CsF, i.e., CsBrF₆ decomposed only at 320° with extensive decomposition of the BrF₅.

No evidence was observed for the conversion of solid BrF_5 (-196°) to BrF_7 upon exposure to excited F_2 from an electric discharge (420,420a). Again BrF_7 was not produced when a BrF_5 - F_2 mixture was radiated with u.v. light at -40° to -60° (346a). Similar negative results had been obtained in efforts to react F_2 with BrF_5 or $CsBrF_6$ with heat and pressure. In another study (77) no BrF_7 was observed after fluorination of BrF_5 over CsF at 250° and 1700 psi for 16 hr. Extensive efforts to prepare BrF_7 by fluorination of BrF_5 at very high pressures and temperatures (up to 48,800 psi at 508°C) or under radiation at 25°, or of $CsBrF_6$ (at 400°, and 6630 psi) gave inconclusive results (118-120).

An effort to react BrF₅ with ClO₃OF to give BrF₆⁺ClO₄⁻ resulted only in partial degradation of ClO₃OF to ClO₃F (421). The complex BrF₃·BF₃ has been shown (138) to be in the ionic form BrF₂⁺BF₄⁻ by its high electrical conductivity in BrF₃ and the presence of the BF₄⁻ band (1020 - 1000 cm⁻¹) in the infrared spectrum. It melts at 180° with decomposition. The complex NO₂F·BrF₃ has also been characterized as an ionic material NO₂BrF₄ (426). It melts at 27°, has a dissociation pressure of 1 atm. at 45° and a Δ H dissociation of 11.7 kcal/mole. The infrared spectrum of NO₂BrF₄ shows the NO₂⁺ band at 2385 cm⁻¹ and the BrF₄⁻ band at 665 cm⁻¹ (346a).

The vapor pressure of IF₇ is described (426a) by the equation: $\log P_{mm} = 7.6959-1356.6/T$. The mass spectrum of IF₇ shows the IF₄⁺ peak as the most intense and no parent peak is observed (346a).

Halogen fluoride exides: Studies of chloryl fluoride and perchloryl fluoride have not lead to new compounds of interest except, as noted previously, they have been photochemically converted to ClF_50 . The ^{19}F NMR of ClO_2F has been more firmly established by independent observations of the resonance at -329 $\not\!p$ (78) and -321 $\not\!p$ (420a). The results of a number of studies of ClO_2F reactions are summarized in Table XXIII and of a few studies of ClO_2F in Table XXIV.

No reaction was observed when either BrF₅ or IF₅ was held at 25° and 100 atm. with an O_2 - F₂ mixture for 8 weeks (333). The reaction of BrF₅ with O_5 in the range -196 to -95° gave an unidentified compound which decomposed at -35° (330). Fluorination of the complex CsF·Br₂O has not yielded BrF₅O or BrF₅O (421), nor did fluorination of BrONO₂ which appeared to give a complex of the type NO₂F·BrF_xO (425). An attempt to prepare BrO₂NF₂ by reaction of BrNF₂ with O₅ in CFCl₃ at -78° was apparently unsuccessful (123).

Studies on the compound reported in the literature as being IF₃O have shown it to be in the ionic form $IO_2^+IF_6^-$ (420a). The ¹⁹F NMR of the IF₆⁻ ion was established at -18 \not (420a).

The vapor pressure and mass spectrum of IF₅0 has been determined (346a). A parent IF₅0+ peak is observed at an intensity of 32 compared to IF₄+ at 100. The IF₅0 did not enter into acid-base reactions with either CsF or AsF₅. Efforts to convert IF₅0 to IF₅0 or IF₅0₂ by pyrolysis or reaction with SiO₂ were unsuccessful.

99

TABLE XXIII

REACTIONS OF CLOSE

Reactant	Conditions	Result	Reference
CsF	-22°, 3 hr.	50%, ClO ₂ F absorbed, unident. component in product by X-ray	75
CsF-ClO ₂ F "complex"	80-100°	ClO ₂ F evolved	75
CsF	-22°, 19 hr.; 25°, 72 hr.	82% ClO ₂ F absorbed, couldn't obtain IR of solid or ¹⁹ F NMR in ClO ₂ F (liq.)	76
CsF	HIP	no NMR evidence of rxn.; don't see ClO2F, but see HF exchanging	77
CsF, ClF5		11 11 11 11	77
CsF	25°, 4 hr., shaking; and 16 hr., static	Cs/F/Cl ratio of 1:5.4:2.3 in solid	77
NO ₂ F	-80°	no NMR evidence of interaction (see ClO_2F at -329 and NO_2F at -390 $\not 0$)	78
PtF ₆	25°	C1F ₅ , C1O ₂ +PtF ₆ -, ClO ₃ F, O ₂ PtF ₆ ?	79
IrF ₆	25°	ClO2IrF6?	80
NOF	-78°	"wet" solid with v.p. of 15 mm. at -78°; solid gave two liq. phases at -20 to -15°	337
○F ₂	250°, 825 psig	some dec. of OF ₂ and formation of ClO ₃ F	339
t-N2F2	-78° to 25°	no rxn.	340
HNF ₂	as ClO ₂ BF ₄ , -80°	Deflagration; unident. prod. w/IR abs. at 7.6 & 7.7 µ	420a
ClF	liq.	equilibrium amt. ClFO?	424

100

TABLE XXIII (Concluded)

Reactant	Conditions	Result	Reference	
F ₂	elec. disch.	Clf5, Clf3, ClF, ClO5F, SiF4	425	
F ₂	u.v., 70° or 24°	ClF3, ClF5 (trace ClF30?)	425	

TABLE XXIV

STIDIES OF CLOSE

Reactant	Conditions	Result	Reference
SdF5	-51°	no reaction noted by elec. cond.	
SdF5	l hr. each at: 25°, 7000; 100°, 8900; 200°, 11,300 psi	no reaction detected by NMR	75
ClF3	w/w·o·CaF	no reaction noted by elec. cond.	337
Cal	25°, 5 hr. or 200° 3200 psi, 6 hr.	no reaction	77
F2 + CsF	200°, 5900 psi, 18 hr.	some F2 absorbed which did not revolatilize at 500°. Solid contained Cs:Cl:F ratio of 2.2:1:3	77
F2 w·/w·o· CsF	200", 6400 psi, 15 hr.	inconsistent results, apparently rxn. w/equipment	78
PtF6	25°	no reaction	60
NF3	475°, 18 hr.	no reaction	339
t-N ₂ F ₂	-78° to 25°	no reaction	340

CHAPTER VIII

OXYGEN FLUORIDES, O-F DERIVATIVES AND MISCELLANEOUS FLUORINATIONS

VIII-A. Oxygen Fluorides and Derivatives

The structures of the oxygen fluorides have been studied extensively during the last few years and references to many recent publications are in the bibliography. The existence of the O_2F radical in liquid OF_2 after exposure to light, and in all of the higher oxygen fluorides has been well demonstrated. It is, of course, isoelectronic with the known O_3^- ion which forms stable salts. The existence of O_3F_2 as a separate entity has become very doubtful except possibly as a very unstable material.

The reaction chemistry of OF_2 , O_2F_2 , the C-OF compounds and the O_2^+ salts have been studied at length. The results of most of these studies are summarized in Table XXV.

TABLE XXV

STUDIES OF OXYGEN FLUORIDES AND DERIVATIVES

Reactants	Conditions	Result	Reference
liq. 05-02-0F2	4.5% OF ₂	miscible and stabilized	72,73
liq. 03 + OF2	v.p. measurements	nonideal soln.	262
OF ₂ + CO ₂ + CsF	-80° to 100°	no rxn.	75
	180°	CF3OF	75
OF ₂ + (CF ₃) ₂ CO	-50°	slow rxn. to CF4, CF3CFO	75
OF ₂ + CF ₂ O + MF	25° w/CsF, RbF or KF	(CF30)20	76
OF ₂ + SF ₄ + CsF	25°	SF6, SF2O2, some unident. cpd.	76
OF ₂ + CF ₃ CN + CsF	140° only	C ₂ F ₆ , CF ₃ CFO, CO ₂	76
OF2 + CsSO2F		no rxn.	27
OF ₂ + SF ₂ O ₂ + CsF	108°	no rxn.	27

102

TABLE XXV (Continued)

Reactants	Conditions	Repult	Reference
OF ₂ + SF ₂ O + CaF	140°	no wrn. (traces SF202 formed at 25°)	77
OF ₂ + SF ₄ O +	-78° to 100°	no rxn. except to form CsSF ₅ O	77
OF ₂ + SF ₄ + CsF	25°	SF ₆ , SF ₂ U ₂ , S ₂ F ₁₀ , (SF ₅) ₂ O ₂	
OF ₂ + CsSF ₅		no rxn.	7.7
SF5OF + CF20	25°, CsF	CF3OF, CSSF5O, CSCF3O	77
CF3OF + SF4O	100°, CsF	no ma.	
CF2(OF)2 + SF4O	CsF	SF202, UF30F, (CF30)2	78
OF2 + SF4O	25°, KF	no rxn.	78
OF ₂ + SF ₄ O	175°, WeF	SF ₂ O ₂ , O ₂	78
CF2(OF)2 + SO2	CsF	sfec, Cf30f (Cf30)2	78
CF2(OF)2 + CF20	25°, CsF	(CF30)20, CF30F, O2	78
CF2(OF)2 + CF O CF3CFO	25°, CsF	C-C clesvage	78
OF ₂ + CF ₃ CFO	115°, NuT	no rxn.	78
of ₂ + cf ₃ cfo	175°, NaF	CF ₂ C, O ₂	78
CF3OF + CO	100°, 16 hr.	CF3OCFO	78
SF5OF + CO	95°	SF40, CF20, SF6, CO2	78
SF5OF + CO	hv, 0 to -35°	sf_4o , cf_2o , sf_6 , co_2	78
CF ₂ (OF) ₂ + CO	CsF	CF4, CF20, CO2	78
C ₂ F ₅ OF + CO	100°	CF4 + UF20	78
OF ₂ + CF ₃ CFO	25°, CsF	C ₂ F ₅ OOF (5%)	79
OF ₂ + F ₂ + CO ₂	CsF	CF ₂ (OF) ₂	79

TABLE XXV (Continued)

OF ₂ + SF ₄ CsF, CCl ₄ SF ₆ , SF ₂ O ₂ 79 OF ₂ + SO ₂ CsF, CCl ₄ SF ₂ O ₂ , unk. abs. 14 μ 79 OF ₂ + ClF ₃ + KF 25°, 48 hr. KClF ₄ 79 OF ₂ + MF·HNF ₂ CFCl ₃ explosions on warming 79 OF ₂ + CsN ₃ -196 to -40°, 20 hr. dark blue solid (reactants explode if warmed too rapidly) 79 OF ₂ + Cl ₇ (w/wo 150°, 5500 psi, 18 hr. ClF ₃ and 2% ClF ₃ O 80 OF ₂ + Cl ₂ (w/wo 150°, 5500 psi, 18 hr. ClF ₃ , ClF, ClO ₂ F, trace ClF ₃ O 80 OF ₂ + Cl ₂ O 150°, 5500 psi, 18 hr. ClF ₃ , ClO ₂ F 80 OF ₂ + ClF ₃ O 150°, 5500 psi, 18 hr. clF ₃ , ClO ₂ F 80 OF ₂ + ClF ₃ O 150°, 5500 psi, 18 hr. crF ₃ ONF ₃ (38%) 259 O ₂ F ₂ + (NaOCO) ₂ O -111° CF ₄ , CF ₂ O, CO ₂ 264 F ₂ /CsF + " -183°, 1 wk. sl. rxn. as above 264
OF ₂ + ClF ₃ + KF 25°, 48 hr. KClF ₄ OF ₂ + MF·HNF ₂ CFCl ₃ explosions on warming 79 OF ₂ + CsN ₅ -196 to -40°, 20 hr. dark blue solid (reactants explode if warmed too rapidly) OF ₂ + ClF (w/wo 150°, 5500 psi, 18 hr. ClF ₃ and 2% ClF ₃ O CF ₂ + Cl ₂ (w/wo 150°, 5500 psi, 18 hr. ClF ₃ , ClF, ClO ₂ F, trace ClF ₃ O OF ₂ + Cl ₂ O 150°, 5500 psi, 18 hr. ClF ₅ , ClO ₂ F OF ₂ + Cl ₂ O 150°, 5500 psi, 18 hr. some ClO ₂ F OF ₂ + ClF ₃ 150°, 5500 psi, 18 hr. some ClO ₂ F OF ₃ OF + NF ₂ CFO CF ₃ ONF ₃ (38%) OF ₂ + (NaOCO) ₂ O -111° CF ₄ , CF ₂ O, CO ₂ 264
OF ₂ + MF·HNF ₂
OF ₂ + CsN ₅ -196 to -40°, 20 hr. dark blue solid (reactants explode if warmed too rapidly) OF ₂ + ClF (w/wo 150°, 5500 psi, 18 hr. ClF ₃ and 2% ClF ₃ O 80 CsF) OF ₂ + Cl ₂ (w/wo 150°, 5500 psi, 18 hr. ClF ₃ , ClF, ClO ₂ F, trace 80 CsF) OF ₂ + Cl ₂ O 150°, 5500 psi, 18 hr. ClF ₅ , ClO ₂ F 80 OF ₂ + ClF ₃ 150°, 5500 psi, 18 hr. some ClO ₂ F 80 CF ₃ OF + NF ₂ CFC CF ₃ ONF ₃ (38%) 259 O ₂ F ₂ + (NaOCO) ₂ O -111° CF ₄ , CF ₂ O, CO ₂ 264
explode if warmed too rapidly) OF ₂ + ClF (w/wo 150°, 5500 psi, 18 hr. ClF ₃ and 2% ClF ₃ O 80 CsF) CF ₂ + Cl ₂ (w/wo 150°, 5500 psi, 18 hr. ClF ₃ , ClF, ClO ₂ F, trace ClF ₃ O OF ₂ + Cl ₂ O 150°, 5500 psi, 18 hr. ClF ₅ , ClO ₂ F 80 OF ₂ + ClF ₃ 150°, 5500 psi, 18 hr. some ClO ₂ F 80 CF ₃ OF + NF ₂ CFO CF ₃ ONF ₃ (38%) 259 O ₂ F ₂ + (NaOCO) ₂ O -111° CF ₄ , CF ₂ O, CO ₂ 264
CsF) CF ₂ + Cl ₂ (w/wo 150°, 5500 psi, 18 hr. ClF ₃ , ClF, ClO ₂ F, trace ClF ₃ O OF ₂ + Cl ₂ O 150°, 5500 psi, 18 hr. ClF ₅ , ClO ₂ F OF ₂ + ClF ₃ 150°, 5500 psi, 18 hr. some ClO ₂ F CF ₃ OF + NF ₂ CFC CF ₃ ONF ₃ (38%) CF ₃ OF + NF ₂ CFC CF ₄ , CF ₂ O, CO ₂ 264
CsF) C1F ₃ O OF ₂ + C1 ₂ O 150°, 5500 psi, 18 hr. C1F ₅ , C1O ₂ F 80 OF ₂ - C1F ₃ 150°, 5500 psi, 18 hr. some C1O ₂ F 80 CF ₃ OF + NF ₂ CFC CF ₃ ONF ₃ (38%) 259 O ₂ F ₂ + (NaOCO) ₂ O -111° CF ₄ , CF ₂ O, CO ₂ 264
$OF_2 - ClF_3$ 150°, 5500 psi, 18 hr. some ClO_2F 80 $CF_3OF + NF_2CFC$ CF_3ONF_3 (38%) 259 $O_2F_2 + (NaOCO)_2O - lll$ ° CF_4 , CF_2O , CO_2 264
$CF_3OF + NF_2CFC$ CF_3ONF_3 (38%) 259 $O_2F_2 + (NaOCO)_2O -111°$ CF_4, CF_2O, CO_2 264
$O_2F_2 + (NaOCO)_2O -111^\circ$
$F_2/CsF + " -183°, 1 wk.$ sl. rxn. as above 264
C ₂ F ₂ + C ₆ F ₆ -185° vigorous rxn.; explosive 264 solid
O ₃ F ₂ + NaOH -183, 24 hr. v. little rxn. 264
O ₃ F ₂ + NaNO ₃ -183, 24 hr. v. little rxn. 264
$O_3F_2 + NaNO_2$ -183, 24 hr. v. little rxn. 264
OzF2+ Ca or Mg no rxn. 264
O ₃ F ₂ + Li, Na or K react smoothly 264
O ₂ F ₂ + SO ₂ SF ₂ O ₂ , O ₂ ; side rxn. to 266 FSO ₂ OF and FSO ₂ OOF
$O_2F_2 + SF_2O$ -160 SF40 266

TABLE XXV (Continued)

Reactants	Conditions	Result	Reference
O2AsF6 + CsClF4	, 0°	O2, Cl2, CsAsF6	354
o _S yale + noscio	4 IF5?	NO ₂ AsF ₆ , ClO ₃ F, Cl ₂ O ₆ (dec. to ClO ₂ , O ₂ , Cl ₂ at 25°)	365
0 ₂ AsF ₆ + CsClO ₄	IF5	01206, etc.	355
O2AsF6 + CsClF4	-78° (solids)	3.1 ratio Clg:O2	255
O2AsF6 - CsBrF4	-78°	F2. O2, Br2, SiF4	3 55
O2AsF6 + Cl2	- 78°	purple 1:1 complex	3 56
O2AsF6·Cl2 + F2	-78°	ClO ₃ F, ClO ₂ , Cl ₂ , O ₂	355
O2V2E6.CJ5 + NC	ol	C2, trace NO2OF, NOAsF6?	355
CF ₂ (OF) ₂ + N ₂ F ₄		no -ONF2 cpds.	4.05
CF ₂ (OF) ₂ + KF·H	NF2	CF2(ONF2)2	405
CF ₂ (OF) + CSCF(CF ₃) ₂ O		extens. rearrang. to CF ₄ , (CF ₃) ₂ CFOOCF ₃ and explosive oxides	436
OF2 + CsCF(CF3)	20	es with CF2(OF)2 above	43 6
OF2 + BF3	hu, -196°	O ₂ BF ₄	472
02PtF6 + F2	62°, 1 atm., Teflon	some C-F cpds. (no OF4)	5 3 2đ
N ₂ O + OF ₂ + CsF	350°, 2700 psi, 4 hr.	no rkn., but exploded on cooling to 315° to NF3, NF3O, HNO3, unident. products	5 3 2d
$OF_2 + SbF_5$	-30°	NMR suggests OF2.SbF5	532d
$OF_2 + N_2F_4$	elec. disch., -78°	NF3, NO2, SiF4	5 3 2a
OF ₂ + cis-N ₂ F ₂	elec. disch., -78°	N2, F2, O2	532a
OF ₂ + N ₂ FAsF ₆	25-112° or HF, 25°	no rxn.	5 32a

105

TABLE XXV (Continued)

Reactants	Conditions	Result	Reference
0 ₂ F ₂ + SF ₄ 0	-140°	no rxn.	266
0 ₂ F ₂ + SF ₂ O ₂	-160°	no rxn.	266
0 ₂ F ₂ + NO ₂	-130°	No ₂ F	266
OF2 + HCF3	spark	CF3 OF	284
$OF_2 + CH_4 + N_2$		some NO2OF	284
03F2 + SbF5		deep purple explosive solid	301
OF ₂ + BF ₃ , PF ₅ , AsF ₅ or SOF ₅	liq. or gases	v.p. studies show no interaction	333
OF ₂ + BF ₃ , AsF ₅ or ClF	-160 to -196°	elec. cond. shows no rxn.	333 , 33 5
OF ₂ + AsF ₅	200°, 130 atm., 1 wk.	O ₂ AsF ₆ (97%)	33 5
OF ₂ + AsF ₅	25°, 6 wk.	only 3% O2AsF6	33 5
OF2 + SbF5	130°, 200 atm., 3 wk.	O ₂ SbF ₆ (98%)	33 5
OF ₂ + BF ₃ , PF ₅ or SiF ₄		no rxn.	33 5
OF ₂ + ClF ₃	200°	ClF ₅	33 6
OF ₂ + SbF ₅ or AsF ₅	IF ₅ , 25°	IF5.SbF5(or IF5.AsF5)	335
of ₂ + sbf ₅	200°, 760 psig, 16 hr.	no rxn.	339
OF ₂ + SF	200°	no rxn.	339
OF ₂ + CsClF ₄		ClF ₅	336,339
OF ₂ + ClF ₄ SbF ₆	200°, 500 psig, 18 hr.	some O2, F2, ClF5	339

106

TABLE XXV (Concluded)

Reactants	Conditions	Result	Reference
OF ₂ + CsCl	200°	CsF, Og, Clg, ClF, ClOpF	339
OF ₂ + ClO ₂	110°	C1F5, C102F, C105F	340
OF2 + Cl20	130°	Clf30	3 40
OF2 + cis-N2F2	-78° to 150°	some dec. of both	340
OF ₂ + Cl ₂ (or ClF)	25 °	no rxn.	340
OF ₂ + Cl ₂ (or ClF)	150°	ClF, (ClF ₃), ClO ₂ F	340
02AsF6 + NO2ClO4	0°, solids	Numasfe, 02 (C1206 dec.)	351
O ₂ AsF ₆ + CsBrF ₄		CsAsF ₆ + O ₂ , F ₂ , Br ₂	352

VIII-B. Miscellaneous Fluorinations

Table XXVI summarizes the results of a number of studies employing elemental fluorine or CsF.

TABLE XXVI

MISCELLANEOUS FLUORINATIONS

Reactants	Conditions	Result	Reference
liq. $0_3/0_2/F_2$	8.5% F	miscible and stabilized	72,73
CaCF30 + F2	-80°	CF3OF (quantatively)	75
CsCF(CF3)20 + F2	-80°	CF3OF + CF4	7 5
NOC1F4 + F2	high press45 to 300°	NF30, ClF5, NO2F	75
COS + F2/CsF	-78°	CF20 + SF6	76
N_2 0 + F_2 /CsF	200°, 12,000 psi,4 hr.	no rxn.	76

107

TABLE XXVI (Concluded)

Reactants	Conditions	Result	Reference
SF ₂ O + CsF	130°, 7 hr.	no rxn.	76
SF ₂ O + CsF	-78° or -40°, CH3CN	sl. abs., unident. 19 F peak at $^{-5}$ l \emptyset	78
PF30 + CsF	40°, 24 hr.	some abs. of FF30	77
PF50 + CaF	-30°, CH3CN	inconclusive	78
SF2O2 + CsF	-78°	no rxn.	78
CaNO3 + F2	200°, 71.00 psi, 4 hr.	NF30, NO ₂ F	77
CsF + NOCl	25°	CsCl	77
CsF + Cl ₂	25°, 24 hr.	CsFCl ₂ ?	77
CsF + CO2	25°, 120 psi, CH3OH	Cs+CFO2-?	77
KN03 + F2	-196°	no rxn.	89
CF3NO + F2	125°, AgF ₂	(CF3)2NOCF3	259
$Cl_2 \cdot O_2 AsF_6 + F_2$	-78°	ClO3F, ClO2, Cl2, O2	356,357
CF ₃ OC1 + F ₂		CF3OF	356
CsF.FC(0)NF2 + F	2	CF3OF, NF3	436

APPENDIX A

MELTING POINTS, BOILING POINTS, DENSITIES
AND REFRACTIVE INDEXES

TABLE XXVII

MELTING POINTS, BOILING POINTS, DENSITIES

FINDENTIC		
AND BETABACTIVE TANGENDS		

tive	শ	489	co.	໙	9	142	SK.	8	137	83	82	5 8	386
refractive													
density (g/cm^3)		2.70					2.12 (20)	2.8	2.465 (25°)	1.587 (20)	1.20 (2ď)	1.60 est.	
b.p.						71 est.			လံ				
<u>а</u>						77	40		+40.5	88	-6 <u>4</u>		-29
m.p.	130		93-94	78	35 dec		-86±0.5		-61.3	-59	-196		
Structural	Agn(no2)ch2ch2n(no2)2	NF_4AsF_6	CHCHC(NHNO2)CHCHN(NO2)+BF4-	$\mathrm{CHCHC}(\mathrm{N}(\mathrm{NO}_2)_2)\mathrm{CHCHN}(\mathrm{NO}_2)^+\mathrm{BF}_4^-$	$\mathtt{CHCHC}(\mathtt{N}(\mathtt{NO}_2)_2)\mathtt{CHCHN}(\mathtt{CH}_3)^+\mathtt{BF}_4^-$	$(\mathrm{NF}_2)_3\mathrm{C-Br}$	Sozbrf	BrF_3	BrF ₅	CF(NO ₂) ₃	CF2(OF)2	$c(OF)_4$	F2COF(ONF2)
Formula Empirical	$A_{\mathbf{6_1}} c_{2} H_{4} N_{4} o_{6}$	$AsF_{10^{\mathrm{M}}}$	$^{\mathrm{B_{1}C_{5}F_{4}H_{5}N_{4}O_{4}}}$	$^{\mathrm{B_1C_5F_4H_4N_50_6}}$	$\mathrm{BC}_{6}\mathrm{F}_{4}\mathrm{H}_{7}\mathrm{N}_{5}\mathrm{O}_{4}$	BrCF ₆ N ₃	BrFO2S	BrF_{3}	BrF5	CFN ₅ 06	℃402	CF404	CP5 NO2

r de r		115	386	51	ß	52 51 294	285	274	274	274	8	291	282	88	403	291
refractive																
density (g/cm^3)		1.70	2.01-1.52x 10-3 T	1.56	1.58 (20)	1.69 (20) 1.748 1.60	1.80 est.					1.41 est.	1,41			1.80
ъ.р. (°С)	,	ญ	-9.0 (ext.)		5.6	40				159 est.	ងុ				6	
#•₽• (°C)		160	-196		-135	-13.5		83-7	74-76					55-58		
ıla Structural	(ME.) - (- ME	(MF2)2C=MF	F2C(ONF2)2	$\mathrm{CF}(\mathrm{NF}_2)_3$	$\mathrm{CF}(\mathrm{NF}_2)_3$	C(№2)4	$\mathrm{CN}_{3}\mathrm{F}_{6}\mathrm{ONCHNH}_{3}\mathrm{Clo}_{4}$	O2 NNHC ONHCH2 NF2	CH3SO2NHCH2NF2	(Fench) 2 mm cz	CF3COOF	CN3F6CONH2	о (ме ₂) ₃ сёме ₂	$(\text{NF}_2)_3^{\text{C-NH-CO-NH-NO}_2}$	FOCE2 OOCF2 OF	CN3 F6NFCONF2
Formula Empirical		Cr543	$^{\mathrm{GF}_{6}\mathrm{N}_{2}\mathrm{O}_{2}}$	CF_7N	CF ₇ N ₃	CF8N₄	C2CIF6H4N5O5	C2F2H4N4O3	c ₂ F ₂ H ₆ N ₂ O ₂ S	$^{\mathrm{C}_{2}\mathrm{F}_{4}\mathrm{H}_{4}\mathrm{N}_{4}\mathrm{O}_{2}}$	C2F402	C2F6H2N2O	c ₂ FeH2N40	$^{\mathrm{C}_{2}\mathrm{F}_{6}\mathrm{H}_{2}\mathrm{N}_{6}\mathrm{O}_{3}}$	$^{\mathrm{C}_{2}\mathrm{Fe}}$	C2F7H2N50
						CO	N F.	111 DE	NTI	AL						

ref.	532a	291	4	56	291 241 152	274	274	274	274	274,179	274	88	174	293	274
refractive		**				•									1.578 (18)
density (g/cm^3)		1.60 est.		0.786 (25)	1.86-0.06								m.) 1.54	1.65 est.	
b.p. (°C)	25 (ext.)			83	218			lec.				lec.	25 (0.4 mm.)		166
B.P.	69		130	-57.2	221	93-94	02-69	85-89 dec.	162	68	44-46	95-97 dec.			
Structural	$(CF_3)_2NOF$ or $(CF_3)_2\stackrel{F}{N} \rightarrow 0$	CN3F6 OOCIN3F6	KN (NO2) CH2 CH2 N (NO2)2	(CH ₂) ₂ NNH ₂	CN3F60C2H4NH3C1O4	CH ₂ ON(OH)CH ₂ NF ₂	Frichn(no2)con(no2)chnf2	F2NCHN(NO2)CONHCHNF2	F2NCH2 NHCONHCH2NF2	CH2[N(CH2NF)NO2]2	CH3SQN(CH2NF2)2	NF2C(NF)NHCONHC(NF)NF2	$({\rm NF}_2)_3^{\rm COCH}_2^{\rm C}({\rm NO}_2)_3$	(NF2)3COCH2CO(NH2)	n(chent)3
Formula Empirical	C2F7NO	c_{2} c_{1} c_{2}	$c_{2^{H_{\underline{4}}}K_{\underline{1}}N_{\underline{5}}0_{\underline{6}}}$	$c_{ m DH}^{ m BN}$	C ₃ ClF ₆ H ₇ N₄ O ₅	c_3 F2H6 N_2 O2	C3F4H2N6O5	$c_3 F_4 H_3 N_5 O_3$	C3F4H6N4O	c_3 F $_4$ H $_6$ N $_6$ O $_4$	C3F4H7N3O2S	$c_3 r_6 r_2 v_6 o$	$c_3 r_6 r_2 r_6 c_7$	$c_3 r_6 r_4 r_4 c_2$	$c_{3}r_{6}r_{6}n_{4}$
					CON	11 FID		TIA	L						

	ref.	238	174	98	Ю	315	176	274	274	274	274	315	274	274	274	274
refractive	index		,													
density	(E/cm^3)			1.88										· · · · · · · · · · · · · · · · · · ·		
p.p.	(5.)	60-65 est.	110			46 (2 mm.)					S	36 (62 mm.)				
m.p.	(၁)				29-30		95 dec.	156-157	46-48	170-171	152		206-207	105-107	7.59-163	184-185
ď	Structural	02<00,5೮೦)	(NF2)3COCH2CF(NO2)2	[(NF2)3C-NH]2CO	CH3N(NO2)CH2CH2N(NO2)2	CH3C(NF2)2CH2CH2C1	NF2CH2CHNF2CH2CH2CH3CHQ	$[-c(nF)conf-]_2$	CH2: CHCONHCH2NF2	F2NCH2NHCONHCH2C(NO2)3	NHC(NNO ₃)NHCH(NF ₂)CH(OCH ₃)	$\mathrm{ch}_{3}(\mathrm{ch}_{2})_{2}\mathrm{ch}(\mathrm{W}_{2})$	WHC(NF)C(NF)NHC(NF)CO	N(CHO)CONHCH(NF2)CH(NF2)	W(COMH2)CONHICH(WE2)CH(WE2)	(F2NCHNHCHO)2
Formula	Empirical	$c_3 F_6 O_5$	$c_3 r_7 H_2 N_5 O_5$	$^{\mathrm{C}_{3}}^{\mathrm{F}_{12}}^{\mathrm{H}_{2}\mathrm{N}_{8}^{\mathrm{O}}}$	$c_3 H_7 N_5 O_6$	$C_{4}^{\mathrm{ClF}} H_{7}^{\mathrm{N}_{2}}$	C4C1F4H10N3O4	C4F2H2N4O2	C_4 F2H6 N_2 O	C_4 F2H6N6 O_7	$c_4 r_2 H_7 N_5 o_3$	${\rm c_4^F_2H_8^N_1}$	$c_{4^{\mathrm{F}}3^{\mathrm{H}}2^{\mathrm{N}}5^{\mathrm{O}}}$	$^{\mathrm{C}_{4}\mathrm{F}_{4}\mathrm{H}_{4}\mathrm{N}_{4}\mathrm{O}_{2}}$	$C_4F_4H_5N_5O_2$	$\mathtt{C}_{4}\mathtt{F}_{4}\mathtt{H}_{6}\mathtt{N}_{4}\mathtt{O}_{2}$
						C	DNF	113 } D E	NTI	AL						

174

 $^{\text{C}_5\text{Cl}_1F_{12}^{\text{H}_8\text{N}_7\text{O}_6}}$ [(NF₂) $_3^{\text{COCH}_2}$] $_2^{\text{CHNH}_2 \cdot \text{HClO}_4}$

7	315	274	177	315	274	166	166	174	98	10	ю	4	Ю	274
refractive							1.3960 (78)							
$\operatorname{density}_{({\mathfrak L}/{\operatorname{cm}}^3)}$				m.)		1.604	78-82 (5 mm.) 100-110 (10 mm.)	1.54						
φ. φ. φ. (2°)	35-36 (56 mm.			39 (10 mm.)			78-82 (5 mm.) 100-110 (10 m							
(5°)		(NO ₂)CH2NF2 166-167	¹⁰ 2) ₃ 106-107 (subl.)		70-74				81-82	27.5-28.0	71-72	130	NO2)2 66-67	145
la Structural	CH3C(NF2)3CH2CH3	F2NCH2N(NO2)CH2N(NO2)CH2N(NO2)CH2NF2 166-167	$({ m NF}_2)_3{ m COCH}_2{ m CH}_2{ m N}({ m NO}_2){ m CH}_2{ m C}({ m NO}_2)_3$ 106-107 (sub1.)	CH3C (NF2)CH2CE2NF2	(F2NCH2)2NCONHCH2NF2	c_{4} H $_{4}(\mathbf{W}_{2})_{4}$ 0	[-(ch(nf2)20-]2	C4H6 (NP2)4	(NF2)3CNHCONHCOCF3	c ₂ H ₅ c ₂ ccH ₂ N(IIO ₂) ₂	NO2-N[CH2CH2]2N(NO2)2	Ni[n(no2)ch2ch2n(no2)2]2	CH3N(NO2)CH2N(NO2)CH2CH2N(NO2)2 66-67	(CBr3CHNF2NH)2CO
Formula Empirical	$C_{4}\mathbf{F}_{4}\mathbf{H}_{6}\mathbf{P}_{2}$	$G_{f 4}F_{f 4}H_{f 8}N_{f 8}O_{f 6}$	$c_{4^{\mathrm{F}}\!\mathrm{c}^{\mathrm{H}}\!\mathrm{c}^{\mathrm{N}_{6}\mathrm{O}_{9}}$	$c_{4} F_{6} H_{7} N_{3}$	$C_4F_6H_7N_5O$	$C_{4}F_{8}H_{4}N_{4}O$	^C 4F8H4N4O2	$^{\mathrm{C}}_{4^{\mathrm{F}}\mathrm{8}^{\mathrm{H}}\mathrm{6}^{\mathrm{N}}_{4}}$	$c_{4^{\mathbf{F}}9\mathbf{H}_{2}\mathbf{N}_{5}0_{2}}$	$^{\mathrm{C}_{4}^{\mathrm{H}_7\mathrm{N}_{5}\mathrm{O}_{6}^{}}$	$^{\mathrm{C_4H_8N_5O_6}}$	$c_{4^{H}8^{\mathbf{N}}10^{\dot{\mathbf{N}}\mathbf{i}}1^{O}12}$	C4H9N7O8	C5Br6F4H4N4O
							114							

TABLE XXVII (Continued)

	ref.	7	9	274	274	274	274	175	315	274	274	315	274	86	179	9	9	ເດ
or i to or to	index																	
density	(g/cm^3)																	
p. p.	(D)											70-72 (4 mm.)						
m.D.	(°¢)	4- 163-164	100-102	160	10	173 dec.	118	109-110	39-40	125 dec.	52-53		162-164	11.6-12.6	106-108	173 dec.	105	163 dec.
<u>la</u>	Structural	CHCHC(NHNO2)C(NO2)CHN(NO2)+C104 163-164	c нснс $($ ин $NO_2)$ C_2 H_2 $N($ $NO_2)$ $^+$ C $1O_4$ $^-$	(ccl3chnf2nh)2co	HOC(NF2)C3H6CH2	NHC(NNO2)NHCH(NF2)CH(OC2H5)	N(CHO)CH2N(CHO)CH(NF2)CHNF2	(NF2)3COCH2CH2N(NO2)CH2C(NO2)3	$ ext{CH}_3 ext{C(NF}_2)_2 ext{CH}_2 ext{CH}_2 ext{C(NO}_3$	$^{\mathrm{CH}_{3}}\mathrm{CH}(\mathrm{NF}_{2})$ nh $^{\mathrm{CONHCH}}(\mathrm{NF}_{2})^{\mathrm{CH}_{3}}$	Frich No H5 Conncients	CH3C(NF2)2CH2CH2C(NO2)2F	[-c(nf)-n(ch2nf2)-]2co	CH2CHCH2CCONHC(NF2)3	(F2N)3COCH2CH2N(NO2)CH2C(NO2)3	NCHC(NO2)C(NHNO2)C(NO2)CH	(NO2)NCHC(NO2)C(NNO2)CHCH	NC(NHNO2)C(NO2)CH2(NO2)CH
Formula	Empirical	$c_5 c_1 H_4 N_5 o_{10}$	$c_{\rm S^{C1H_S}N_4^40_8}$	C ₅ C1 ₆ F4H4N40	$c_5 r_2 n_9 n_0$	$C_5F_2H_9N_5O_3$	$c_5 r_4 r_6 r_4 o_2$	$c_5 r_4 H_6 N_7 0_9$	$c_5 r_4 \mathrm{H_7N_50_6}$	$c_5 r_4 n_{10} n_4 o$	$c_{SF_{4}H_{1}OM_{4}O}$	$c_5 r_5 n_7 N_4 o_4$	C5F6H4N60	$c_5 r_6 r_6 r_4 c_2$	$c_5 r_6 r_6 r_8 c_9$	$C_5H_5N_5O_6$	C5HzN5O6	°5 ^H 3 ^N 5°6

TABLE XXVII (Continued)

	, and a second						
	Empirical	Structural	(°C)	(°C)	density (g/cm^3)	refractive	ref
	CSHAN404	NC (NHNO2) CHCHC (NO2) CH	155 dec.				រោ
	$c_5 H_4 N_4 O_4$	NCHC(NO2)C(NHNO2)CHCH	197 dec.				΄ ψ
	$c_5H_4N_4O_4$	(No2)NCHCHC(NNC2)CHCH	134 (deflagrates)	ates)			
	$c_{\rm SH_{11}N_7^0_B}$	C2H5N(NO2)CHN(NO2)CH2CH2N(NO2)3 60-61	5 60-61				ю
	$^{\mathrm{C}_{6}F_{2}H_{8}N_{6}O_{8}}$	ochen[chec(noe)3]con(chente)che 83-85	2 83-85				274
	$^{\mathrm{C}_{6}}^{\mathrm{F}_{4}}^{\mathrm{H}_{10}}^{\mathrm{N}_{2}}^{\mathrm{O}_{2}}$	[-c _{2H4} -cnf2(oH)-]2	145				274
	$c_{5}F_{4}H_{1}O^{M_{4}}O_{2}$	(F2NCHNHCOCH3)2	194				274
	$^{\mathrm{C}_{6}\mathrm{F}_{4}\mathrm{H}_{6}\mathrm{N}_{2}\mathrm{O}_{6}}$	(Fenchinecocoon) ₂	160 dec.				274
7 7 <i>G</i>	$^{\mathrm{C}}_{6}^{\mathrm{F}_{4}^{\mathrm{H}_{1}}0^{\mathrm{N}_{2}}}$	$^{ m CH_2}(^{ m CH_2})_4^{ m C}(^{ m MF}_2)_2$		45 (6 mm.)			315
	$^{\mathrm{C}_{6}^{\mathrm{F}_{4}}}_{\mathrm{H}_{10}^{\mathrm{N}_{4}}^{\mathrm{O}_{4}}}$	CH3C(NF2)3CH2CH2C(NO2)CH3	43-45				315
	$C_6F_4H_{10}N_4O_4$	$(F_2NCHNHCOOCH_3)_2$	222-224 dec.				274
	C6F4 ^H 12 ^N 4 ^{O6S} 2	(CH ₅ SO ₂)NCHOHCHNF ₂ N(SO ₂ CH ₅)CHOHCHNF ₂ 188 de	HCHNF2 188 dec.				274
	C6F5H4N3O2	c_{6} P5 (nno $_{2}$ NH $_{4}$)	120 dec.				e
	$c_6 r_6 r_6 r_8 c_7$	$\cos(\mathrm{ch}_2\mathrm{NF}_2)$ ch (NF_2) ch (NF_2) N $\left[\mathrm{ch}_2\mathrm{c}(\mathrm{NO}_2)_3 ight]$ 86–87	c(no ₂) ₃] 86-87				274
	$G_6F_6H_{11}N_5$	CH2C(NF2)2CH2CNF2(CH3)2		39 (2 mm.)			315
	$c_6 r_8 H_6 N_6 O_2$	$[(cone_2)_2N(cho)-]_2$	171-172				274

TABLE XXVII (Continued)

Formula Empirical	Structural	(D°)	b.p.	density (g/cm^3)	refractive index	ref.
	[-c(nf2)2c2H4-]2	107-108		1.7		27 4 315
$^{C_{G}}^{F_{B}}^{H_{1}}^{0}^{N_{G}}^{Q_{4}}^{S_{2}}$	$[-N(SO_2CH_3)(CH(NF_2))_2-]_2$	235-240 dec.				274
	$(F_2$ NCHNHCOCF $_3$) $_2$	183-186				274
	[(NF2)3coch2chNo3f2			1.709		174
	(Pecneschneschnes)20			1.65		174,295
	Lin(NO2)CH2CH2N(NO2)2	130				4
	C(NHNO2)CHC(NO2)CHC(NO2)CH	115-116 dec.				Ŋ
	d[n(noz)h]chzc[n(noz)h]chzd[n(noz)h]chz 210 dec.	(NO ₂)H]CH ₂ 210 dec.				ю
	NO2C6H5CH(NF2)2	47-49				315
	C ₆ H ₅ CH(W ₂) ₂		36 (1 mm.)			315
	[(NO2)3CC2H4]2C(NF2)2	81-82				315
$^{\mathrm{C}7}\mathrm{F_4H_8N_10^0_13}$	[(ozn)zcchzn(chznfz)]zco	108-109				274
	c_{6} H $_{5}$ C $(NF_{2})_{3}$		48 (1 mm.)			315
$c_7 r_{12} H_7 N_{11} O_{10}$	(NO2)3CCH2N(NO2)CH[CH2OC(NF2)3]2 97-98	जीट 97-98				176
${\color{red}c_8}{\color{blue}F_2}{\color{blue}H_4}{\color{blue}H_8}{\color{blue}I_{}}^{{\color{blue}N}_2}{\color{blue}O_4}$	нд[игсодсн(снз,)д]г	105-108				91
	(F2NCHNHCOCECH)2	160 dec. with- out melting	h- 8			274

CONFIDENTIAL

TABLE XXVII (Continued)

ref.	274	274	5:4	274	178	450	274	174	274	274	175	274	274	179	179	274
refractive						1.3881 (23)										
density (g/cm^3)						1.713 (25)		1.535							100 (0.005 mm.)	
m.p. b.p. (°C)	200-205	I 155	185 dec.	~180 dec.	119-127		is ^{NF} 2) 138-140)CH2OCHNP2CH2NF2	200-230 dec.)C(OAc)CNF2 210-220 dec.	133-135	2)-12 125 dec.	5)]2 208	2)3]2 133-136	100 (0.	5 194-195
Structural	(F2NCHNHCOOC2H5)2	HC[-N(CH2NF2)CO-N(CH2NF2)-]2CH 155	(F2NCHNHCOCH2CH2NF2)2	[CH(NF2)CH(NF2)NHCON(CHFF2)-]2 ~180 dec.	$[-cH_2c(NO_2)_2cH_2oc(NF_2)_3]_2$	[NF2CH2C(NF2)2CH2OCH(NF2)]F2	NCN(CH2NF2)2NCN(CH2NF2)2NCN(CH2NF2)	NP2CH2CHNP2OCH2CH(OCHNP2CH2NP2)CH2OCHNP2CH2NP2	(F2NCHNHCOCOOC2H5)2	(CH3O2S)NC(OAC)C(NF2)N(SO2CH3)C(OAC)CNF2	[hfn(nf2)2co-ch(coc2h5)-]2	$[\operatorname{CH}(\operatorname{NF}_2)\operatorname{CH}(\operatorname{NF}_2)\operatorname{N}(\operatorname{OCH})\operatorname{CON}(\operatorname{CHNF}_2)-]_2$ 125 dec.	$c_{10^{F}12}H_{12}N_{10}O_{2}$ [Con(ching)ch(ne ₂)ch(ne ₂)ch(ne ₂)] ₂ 208	$c_{10}F_{12}H_{12}N_{14}o_{14}$ [-CH2N(NO2)CH2C(NO2)2CH2OC(NF2)3]2 133-136	$(NF_2)_3$ CO- $(CH_2)_8$ -OC $(NF_2)_3$	(C ₂ H ₅ 00CNH) ₂ CHCH(NF ₂)NHCOCC ₂ H ₅ 194-195
Formula Empirical	c_{8} F $_{4}$ H $_{14}$ N $_{4}$ O $_{4}$	$c_{8^{F}8^{H_{1}}0^{N_{8}}0_{2}}$	$c_{\theta^{\mathrm{H}}}$	$^{\mathrm{C}_{8}F_{12}H_{8}N_{1}}$	$^{\mathrm{C}_{8}^{\mathrm{F}_{12}^{\mathrm{H}_{8}^{\mathrm{N}}_{10}^{\mathrm{O}}_{10}}}$	$^{\mathrm{C}}_{\mathrm{B}^{\mathrm{L}}_{\mathrm{I}}\mathrm{G}^{\mathrm{H}}_{\mathrm{I}}\mathrm{G}^{\mathrm{N}}_{\mathrm{G}}\mathrm{G}_{\mathrm{S}}}$	^C 9 ^F 12 ^H 12	C9F12H14N6O3	c_{10} F $_{4}$ H $_{14}$ N $_{4}$ 0 $_{6}$	$c_{10^F4^H16^N4^08}$ 2	$^{\mathrm{C}_{10^{\mathrm{F}}_{10^{\mathrm{H}_{14}}\mathrm{Ne}^{\mathrm{G}}_{\mathrm{c}}}}$	$^{\mathrm{C}_{10}\mathrm{F}_{12}\mathrm{HgN}_{10}\mathrm{O}_{4}}$	$^{\mathrm{C}}_{10^{\mathrm{F}}12^{\mathrm{H}}12^{\mathrm{N}}10^{\mathrm{O}}_{2}}$	$^{\mathrm{C}_{10}\mathrm{F}_{12}\mathrm{H}_{12}\mathrm{N}_{14}\mathrm{O}_{14}}$	$^{\mathrm{C}_{1}\mathrm{O}^{\mathrm{F}_{1}\mathrm{2}^{\mathrm{H}_{2}\mathrm{G}}\mathrm{N}_{6}\mathrm{O}_{2}}$	$c_{11}F_{2}H_{10}N_{4}0_{6}$

	ref.	u u	. 47.0	174	26	26	4	2) 6) 8)	345	359	S1	3	a S	174,51	174
	refractive					·									
	$\frac{\mathrm{density}}{(g/\mathrm{cm}^{2})}$			1.712	1.434 (20)	1,80 94 (25)	1.90, 0.05	(25.5)		2.696-3.08	x10-5 T			1.95	1.94
inued)	b.p.	.:			-46.8	11.75	29.4+1	+30 1 5	9.5	-14	-18.1				
TABLE XXVII (Continued)	(°C)	нс(NO ₂)снс(NO ₂)сн 230-232 dec.	(CHNF2)-]2 178 dec.		-146	-76.3	- 799-	-37.2-0.5		-103‡ 4		225-228	34-35		Υ μ
	a Structurai	CHC(NO2)CHC(NO2)CHCN=NCCHC(NO2)CHC(NO2)CH	$^{C}_{16^{H}_{1}6^{F}_{12}N_{1}0^{O}_{2}}$ [CH(NF2)CH(NF2)N(C2H5)CON(CHNF2)-]2	$(c_6 r_{12} H_4 N_6 O_3)_{_{\mathrm{X}}} ext{fo-} (chcheoc(NF2)_3) 2 ext{J}_{_{\mathrm{X}}}$	C10 ₅ F	c_{1F_3}	CIFSO		NO_2 ClF $_4$	CLF5		Cl P2 Sb F6	${ m clf}_4{ m SbF}_{ m K}$	NH4C104	N2H5C104
	Formula Empirical	^C 12 ^H 6 ^N 6 ^O 8	$c_{16^H16^F12^{N_10}0}$	$(c_6^{\mathrm{F}_{12}}H_4^{\mathrm{K}_6}o_3)_{_{\mathrm{X}}}$	ClfOz	clF_3	ClF30		ClF4 NO2	${ m cl}_{ m F_5}$		Clegge	${ m clr_{10}^{Sb}}$	Clh4No4	ClH5N204

	refractive index ref.	425	174,52	174	84	n	825	261	261	261	261	301 1 261 33 71	263	
	density (g/cm^3)		&:3	2.20 1.86	1.216 (20)	1,472 (-183 [†])		1.755	1.695	1,558	1.466	2,104-0,00455 T 1,694 (-183)	1.75	
timed)	(°C)	+22.3			-72.5		· V					-145		
TABLE XXVII (Continued)	m.p.				-166		-157					-223.8		
	ula Structural	CLNOS	NO2C104	Љ ц (2нс104)	NC2F	F ₂	Krf2	OF2 (77.2°K)	OF2 (90°K)	of ₂ (120°K)	OF ₂ (140°K)	OF2	O ₃ F2	
	Formula Empirical	CINOS	CINO	CL2HeN208	FNO2	er O	F2Kr	F20	F20	F20	F20	F2O	F203	

	ą į	7	52	25	8 8	j 0:	348	11
	refractive	07000						
	density (g/cm^3)		1.24 (0)	1.92 (80)	1.34 (0)	1.70 (20)	3.0	1.573 (-183)
ucluded)	b.p. (°C)	-129	-89.1	-23	-74	-35.1		
TABLE XXVII (Concluded)	m.p.	-206.8	-161.5	-81	-168 -163	98-		
	Formula Structural	MF3	NF30	NSF ₃	№ . 4	F5SOF	${ m XeF}_{ m S}$	જ
	Forn Empirical	F_{3N}	F3NO	F3NS	F4N2	F60S	F ₆ Xe	රි

APPENDIX B

THERMODYNAMIC PROPERTIES

TABLE XXVIII

THERMODYNAMIC PROPERTIES

ı	rei.	351	137	137	5 38	8	159	84	584	166	174	386	21	25 42 52 173
ૹૼ	E.U.													
AH do	al/mole				1							6.3		
• 0	mole k											Ü		
ಕ್ಟ್	ca1/°/													
လို	E.U.			•										
$\Delta \mathrm{F_{f}}$	1/mole		7											
		_	16.7	-57		٠.	2.00	S	ئب	5.0				st.
$\Delta { m H_{ ilde L}}$	cal/mole	-273 est.		-72.5	웛	-37.3 ± 2	-41.00 ± 2.00	-130.5 ± 5 -135	-46.6 est.	-188.4 ± 2.0 est.	+28.2		-50	-46.5 ± 2 -50.0 -48.6 est.
	포1	'		•	'	•	•	. ,	•	, ψ	•		·	
					⁺c10₄-									
	ural				(NF2)3-C-ONH3 ⁺ C104)3	$\overline{}$	<i>द</i> (.		ູດເ	C=MF	E2)2	2)3	5)3
la	Structural	O2BF4	BrF	BrF3	(NF2)3	CF(NO2)3	CF2 (g)	CF2 (OF)2	c(OF)4	CF3 ONF2	(nf2)2C=nf	F2C(ONF2)2	$\mathrm{CF}(\mathrm{NF}_2)_3$	CF (NF ₂)3
Formula	a.]				N4 05									
	Empirical	BF402	BrF	BrF3	CClF ₆ H ₃ N ₄ O ₅	CFN_3O_6	CF2	CF4.02	$\mathbf{CF_40_4}$	CF5NO	CF5N3	CF6N2O2	CF_7N	CF7N3
						C	NF	124 IDEN	TIA	Ĺ			,	

	ref.	151	151£	286	5 3 2	588	274	274	291	288	403	291	532a	291	32
	cal//mole kcal/mole E.U.										9.9		5.5		(1) 39.21 8.37 63°
	kcal/mole	8.		.	*	+;	calc.	calc.	t.	+;		÷.		• • •	(1)
ΛHΦ	kcal/mole	2.6-2.8	+ 6.5	-86 est.	-71 est.	-98 es	-134.4 calc	-30.1 calc.	-53 est.	-53 est.		-35 est.		il2 est.	+12.74 (1)
	Structural	C(NF2)4		CN3F6ONCHNH3C104	(NF2)3-C-0-N=C NH5 C104	(F2N)3-C-O-N=C-(NH3+ClO4-)2 -98 est.	Opinihic onhiche info	(Fencie) 2 ano	CN3F6 CONH2	O CONTROL O CONT	FOCF2 OOCF2 OF	CN3F6NFCONF2	(CF ₃) ₂ NOF or (CF ₃) ₂ N→0	CN3F6 OOCN3F6	(CH ₃) ₂ MH ₂
Formula	Empirical	CF8 N ₄		℃ 1F6H5N6O6	C2CLF6H5N6O5	$^{\mathrm{C2C1}_{\mathrm{2}}\mathrm{F}_{\mathrm{3}}\mathrm{H}_{\mathrm{6}}\mathrm{N}_{\mathrm{6}}\mathrm{O}_{\mathrm{9}}}$	[©] ≥™≥H4™ ₂ 03	C2F4H4N4O2	್ವಾ _{ಕ್ಕ} ಸ್ವಾಗ್ದಾಂ	^C 2 ^F 6 ^H 2 ^M ₄ ^O	℃ FF604	C2F7H2N50	$c_2 r_7 n_0$	c_2 F12 N_6 O_2	$c_{ m N}$
			,		(CON	1.25 FIDE	NTI	AL						

_
Continued
XXVIII (
ABLE

•	Formula	Structural	$\Delta H_{ m f}$ kcal/mole	$\Delta { m F_f}$ kcal/mole	S° E.U.	Cp cal/ /mole	$c_{\rm D}^{\rm C}$ $c_{\rm D}^{\rm H_V}$ $c_{\rm H_V}$ $c_{\rm H_V}$ $c_{\rm H_V}$	۳ U. ref.
_	c_3c_1 F $_4$ H $_8$ N $_5$ O $_4$	$ m NF_2CH_2CHNF_2CH_2NH_3ClO_4$	-90.45					176
-	c₃clF ₆ H ₇ N₄0₅	CN₃ F₆ OC 2 H ₄ W ₁₃ C ¹¹ O ₄	-103 ± 3 -89.3					291
			113.6 ± 10					दुश
	C ₃ F4H ₆ N ₄ ⊃	F2NCH2NHCONHCH2NF2	-128.7 calc.					874
	C ₃ F₄H₄N₄O	F2 PCHNEC ON CHNE2	-153.8					6:3
	C3F4H4N4O6	OS NCHEU (NP2) 2 CHENOS	-60.7					174
	$c_3 r_6 r_2 n_6 o_7$	(NF2)3COCH2C(NO2)3	-48.44					174
	C3F6H4N4O2	(NF2)3COCH2CO(NF2)	-60 est.					296
	C3F6H6N4	N(CH2NF2)3	-25.3 calc.				e.	274
	C3F7H2N5O5	$(NF_2)_3$ COOH $_2$ CF $(NO_2)_2$	-38.4					174
	$c_3 r_{12} H_2 N_8 0$	[(NF2)3C-NH]2CO	-82.7 ± 2.2 -73.7 ± 4					152,86
	C4ClF4HgN3O4	$ m NF_2CH_2CHP_2CH_2CH_2CH_3CHO_4$	-97.0					176
	$C_4F_6H_5N_5$ 07	(NF) 3COCH2CH(ONO2)CH2ONO2					18.7	178
	C4F8H4N4O	$c_{4^{\mathrm{H}_{4}}}(\mathrm{Mr}_{2})_{4^{\mathrm{O}}}$	-73.24 -68.3 ± 3.2					166

174 174,295

-114.26 -128.4 ± 8.7

 $({
m H_2CNF_2CHNF_2CHNF_2})_2{
m O}$

 c_{6} $_{12}$ H_8 N_6 O_1

Formula Structural		$\Delta H_{f f}$ kcal/mole	$\Delta F_{ m f}$ kcal/mole	S.E.U.	Cp. Hv cal/ mole kcal/mole	H _v kcal/mole	S.V.	ref.
[-(ch(nf2)20-]2		-91.4 calc.						166
$\mathtt{C_4H_G(NF_2)_4}$		-57.49						174
ටුදු [ජූතරා	[(NF2)3COCH2]2CHNH2·HC104	-113.0						174
[-c(nf)-n(ch2nf2)-]2co	022[-(-32.7 calc.						274
OCHPCHPIN((NO2)CH2C(N	(F2N)3COCH2CH2N(NO2)CH2C(NO2)3 -54.9				ر بر		179
echen(no)CH2CH2OC((NO2)2CFCH2N(NO2)CH2CH2OC(NF2)3 -95.0				3:		174
[-chinf2-n(chenf2)-]2co	052[-(3	-163.4 calc.		•				274
(F2NCH2)2NCON(CH2NF2)2	12 NF2)2	-114.8 calc.						274
(NO2) MCHCHC (NNO2) CHCH	Эснсн	+26.3 ± 2.5						7
inf2)ch(nf	'e)ch(nfe)n	CON(CHENF2)CH(NF2)CH(NF2)N[CH2C(NO2)3] -150.0 calc.						274
$(c_2^{\mathrm{NOCH}_2})_3^{\mathrm{CCH}_2^{\mathrm{OC}}}$	(NF2)3	-139.3 ± 2.7				21.5		178
K-chnf2-)2N(CHO-]2	-]5	-71.2 calc.						274
[-c(NF2)2C2H4-]2		-55.4 calc.				8		274
((NF2)3COCH2CHNO3P2	द्भि	-119.7	;+					174

TABLE XXVIII (Continued)

178a

274

[CH(NF2)CH(NF2)NHCON(CHNF2)-]2 -301.2 calc.

 $^{\mathrm{C}_{9}\mathrm{F}_{12}\mathrm{H}_{9}\mathrm{N}_{10}\mathrm{O}_{2}}$

-186.4 ± 4.7

OpNOCH2-C-(CH2CO[NF2)z]3

 $^{\mathrm{C}_{8^{\mathrm{F}}18^{\mathrm{H}_{8}\mathrm{N}_{10}\mathrm{O}_{6}}}$

C9F12H12N12 NCN(CH2NF2)2NCN(CH2NF2)2NCN(CH2NF2)

178

8.3

274

ref. 174 174 274 176 176 174 178 174 274 cal/c/mole kcal/mole E.U. 23.3 S. G. AF. $^{\mathrm{C7F18H6N1006}}$ (NF2) $_{\mathrm{3COCH2CH(OC(OC(NF2)_3)CH(ONO_2)CH_2OC(NF_2)_3}}$ -133.6 -111.5 calc. AHr kcal/mole HC[-N(CH2NF2)CO-N(CH2NF2)-]2CH $^{\mathrm{G}_{\mathrm{F}_{14}^{\mathrm{H}_{\mathrm{5}}\mathrm{N}_{7}\mathrm{O}_{\mathrm{5}}}}$ (NF₂) $_{\mathrm{3}^{\mathrm{COCH}_{\mathrm{2}}\mathrm{CH}}}$ [OC(NF₂) $_{\mathrm{5}}$]CH₂OC(NF₂) $_{\mathrm{5}}$ -147.4 -136.0 $^{\mathrm{C7F12H8N604}}$ [(NF2) $_{\mathrm{3COCH2}}$] CHOCH2 OCH[CH2 OC(NF2) $_{\mathrm{3}}$] -150.0 (NF2)3(COCH2)2C(CH2ONO2)2 -126.7 $^{\text{C}_7F_{12}}^{\text{H}_7N_{11}}^{\text{O}_{10}}$ (NO₂) $_3^{\text{CCH}_2\text{N}(\text{NO}_2)\text{CH}}^{\text{CH}_2\text{CH}_2\text{CN}(\text{NF}_2)}_3$]₂ -93.0 $[(2_2N)_3$ CCH $_2N(CH_2NF_2)]_2$ CO $^{\text{C}_7\text{C}_1}{}^{\text{L}_8}{}^{\text{H}_9}{}^{\text{N}}{}_{10}{}^{\text{O}_7}$ (NF2) ${}_{5}({}^{\text{COCH}_2}){}_{5}{}^{\text{CNH}_2}{}^{\text{-}}{}^{\text{HC}}{}_{10}{}_{4}$ Structural Formula $^{\mathrm{C}_7\mathrm{F}_4\mathrm{H_8N_{10}^{0}_{13}}}$ $^{\mathrm{C}_7\mathrm{F}_{12}\mathrm{H}_8\mathrm{N}_8\mathrm{O}_8}$ $^{\mathrm{C8F9H_{10N}_{6}O_{2}}}$ Empirical

TABLE XXVIII (Continued)

ref.	174	274	274	174	137	20	#	8	137	421	351	387	229
S _V						-	• .		_			,	•
H, kcal/mo	20.9					4.6		6.58	·	7.7	·		5,330
cp H _V S _V cal/mole E.U.						0.261	()	27.92 (1)	2				(0.00114) +0.318 (g)
S. E.U.												87.6	42.3 + 1.8 calc.
AFr kcal/mole	Pont 2			·	-12.6	ø			-21.9				
AHr kcal/mole	F2)CH2OCHNF2C -119.45	с и ₅)] ₂ -298.2 calc	(CHNF2)]2 -311.2 calc	-112.74		-51.2 ± 0.68	-10.91	-45.37 (1)			-21 est.	-55.846	B
a Structural	NF2CH2CHNF2OCH2CH(OCHNF2CH2NF2)CH2OCHNF2CH2NF2	$c_{10}^{F_{12}H_{12}N_{10}O_{2}}$ [CON(CHNF ₂)CH(NF ₂)CH(NF ₂)]N(CH ₂)] ₂ -298.2 calc.	C10F16H10N12O2 [CH(NF2)CH(NF2)N(CH2NF2)CON(CHNF2)]2 -311.2 calc.	$(c_6 r_{12} H_4 N_6 c_3)_n$ {0-(cherp $ce(N r_2)_5)_2 h_n$	CIF	Closf		CIF ₃		ClF30	Opci.F4	CLPs	
Formula Empirical	$^{\mathrm{C9F12H14^{N6}03}}$ N	$^{\mathrm{c}_{10^{\mathrm{F}}12^{\mathrm{H}}12^{\mathrm{N}}10^{\mathrm{O}}2}}$	$c_{10^{\mathrm{F}}16^{\mathrm{H}}10^{\mathrm{N}}12^{\mathrm{O}}2}$	$(c_6F_{12H_4N_6O_3})_n$	CIF	ClFO ₃		clr_3		ClF30	CIF402	CLF5	
				CI) M F	129 D E	MT	ÄL					

151£

NF3 (g)

F3N

	ref.	174,51	174	\$	174	104	351	8	174	#	83 😩	44	792	
κ	E.U.	m												
н	kcal/mole			6.9										
ಕೆ	cal/d/mole kcal/mole				,									
	E.U.													
$\Delta F_{\mathcal{P}}$	kcal/mole													
ΔH	kcal/mole	-70.74	0.54-	•	+8.89 +8.0	24.2	+6.4 est.	8	-71.82 -77.0 -92.55	-19.7	-25.8 -22.5	-1.5	-5.0 ± 0.5	
	ural	74	₹01		₹			₽0	2HC104)	12		(1)		
]a	Structural	NH4C104	$N_{\rm E}H_{\rm S}C10_4$	CLINOS	NO2C104	010	\$010g	NO2C104	N2H4 (2HC104	NOF (1)	NOZF	NO ₅ F (1)	HNF2	
Formula	Empirical	ClH4NO4	C1H5N204	C1NO ₃	стиое	CIO	90:10	Clo ₆ N	^{C1} 2 ^H 6 ^M 2 ^O 8	FTIO	FNO2	FNOS	PPHIN	
						1	e n M	13 5 1 D	SO SMTIA	1				

1

	ref.	8 4 월	જ જ	330	469	351
	Cp H _v S _v		3.170			
TABLE XXVIII (Concluded)	AHr AFr S' kcal/mole E.U.	-36 ± 3 -35.0 -35.5 ⁺ 2.2	-5.2	-27.9	-84.2 ± 2.0 +44 est.	

Formula Empirical Structural

 MF_30

 F_{3} NO

 N_2F_4

F4N2

H2 04 N03 ⁻ O2 N03

H204

M05

Principle State Market States

CONFIDENTIAL

APPENDIX C

MASS, INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTRA

TABLE XXIX

MASS, INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTRA

1. AgC2H2N506

 ${\tt VRN(NO^5)GH^5GH^5N(NO^5)^5}$

IR: (3) Ma.ss: NMR:

2. AsClF₁₀

ClF5 · AsF5

IR: (385) Mass: NMR:

3. AsFaNO

F3NO·AsF5

IR: Mass: NMR: (386)

4. AsF₉N₂

N2F3AsF6

IR: (357) Mass: NMR:

5. AsFgN2

N2F4:AsF5

IR: (352) Mass: NMR: (352)

NF4AsF6

6. $AsF_{10}N$

IR:

Mass:

NMR: (477)

7. As4F26N4O7

N₄0₇F₂(AsF₆)₄

IR: (137) Mass: NMR:

8. $As_xF_{4+5x}N_2$

 $N_2F_4(AsF_5)_x$

IR: (353)

Mass:

NMR: (353)

9. AsxF4+5xN2

N2F4(AsF5)x

IR: (351)

Mass:

NMR: (351)

F19: -67 Ø] -95 Ø 3 broad resonances

10. BC5F4H4N506

IR: (5)

Mass:

NMR: (5)

H1: (a) 9.64 ppm, doublet

(b) 8.18 ppm, doublet

11. BC5F4H5N304

IR:

Mass:

NMR: (5)

H1: (a) 8.62 ppm, doublet

(b) 8.17 ppm, doublet

и(ио⁵) Š BF₄ `H(a) +1102

инио н(ъ)

H(a) +1102BF4

й(мо⁵)⁵

12. BC6F4H7N4O4

IR:

Mass:

NMR: (6)

+CH3BF4 H^1 : $v_{3,5} = 7.55$ ppm, $v_{2,6} = 8.13$ ppm/ $J_{2,3} = 7.45$ eps

13. BF₆NO

NF30-BF3

complex

IR: (36) Mass: NMR:

135

14. BrCF6N3 $(NF_2)_3C-Br$ IR: (142) Mass: (142) NMR: (142) (CH3)SCHOOCKBL 15. BrC4FH7NO2 IR: (17) Mass: NMR: 16. BrF4NO2 NO2BrF4 IR: (426) Mass: NMR: 17. $Br_6C_5F_4H_4N_4O$ (CBr3CHNF2NH)2CO IR: (274) Mass: NMR: Cs⁺OCF₃ 18. CCsF30 IR: (75) Mass: NMR: (75) F19: +107.5 ppm, singlet, -OCF3 19. CF2H3N CH3NF2 IR: (232) Mass: (232) NMR: 20. CF40 · CF3OF IR: Mass:

136

F¹⁹: 72.5 ppm, doublet, downfield - CF₃
142 ⁺10 ppm, quartet, downfield - OF

NMR: (284)

CF5NF2 21. CF5N IR: (233) Mass: (252) NMR: CF2 (OF)ONF2 22. CF5NO2 IR: (386) Mass: NMR: 23. CF₅NO₆S₂ CF(NF2)(OSO2F)2 IR: (440) Mass: NMR: $(NF_2)_2C=NF$ 24. CF5N2 IR: (115) Mass: NMR: CF2(ONF2)2 25. CF₆N₆O IR: (293) -3.2 cps-Mass: (293) NMR: (293) - NF2 F19: 126.6 ppm, broad, -ONF2 66.2 ppm, pentet, >CF2 FgC(ONFg)2 26. CF6N2O2 IR: (385) Mass: (385) NMR: (385) $C(NF_2)_4$ 27. CF₈N IR: Mass: (146a) NMR: SF50CF20SF4NF2 28. $CF_{13}NO_2S_2$ IR: (405) Mass: (405) NMR: 137 CONFIDENTIAL

29. CgClF3H2N2

ClCH2-C-NF2

IR:

Masa;

NMR: (292)

F19: -46.9 ppm -21.4 ppm

30. C2Cl2F5N50

(F₂N)₂CF-0-N=CCl₂

IR:

Mass:

NMR: (293)

Fl9: -20.9 ppm, -NF₂ 116.3 ppm, >CF

31. C2Cl2F5HN40

FHN-C-O-N=CCl₂

IR:

Mass:

NMR: (293)

F19: -23.4 ppm, -NF₂ 137.5 ppm, -NHF

32. C2Cl2F6N40

(F2N)3C-O-N=CCl2

IR: (293) Mass: (293) NMR: (293)

F19: -25.3 ppm, singlet, -NF2

33. C2F2H4N

CH3CN·HNF2 (solid) at -160°

34. C₂F₂H₄N₄O₃

O2NNHCONHCH2NF2

IR: (274)

IR: (232) Mass: NMR:

Mass:

NMR:

138

35. C2F2H6N2O2S

CH3SO2NHCH2NF2

IR: (274)

Mass: NMR:

F2NCH2NHSO2NHCH2NF2

36. C₂F₄H₆N₄O₂S

Ik: (274) Mass: NMR:

FN=CFN=NCF=NF

37. C2F4N4

IR: (249)
Mass: (249)
NMR: (249)

F19: -6.9 ppm, =NF 79.6 ppm, =CF

38. $C_2F_4N_4O$

IR: (299) Mass: NMR: N C NF2

39. C₂F₄O₂

IR: (294)
Mass:

NMR: (294)

CF₃-C-OF CF₃-C-OF CF₃-C-OF

F¹⁹: -188.0 ppm, quartet, OF 70.8 ppm, doublet, CF₃

40. C2F5HN20

IR: (294)
Mass: (294)
NMR: (294)

(F₂N)₂CF-CH

H¹: 0.34 T, -C(=0)H F¹⁹: -22.6 ppm, -NF₂ 158.0 ppm, >CF

139

41. C₂F₅H₂N₄O

 $(\mathbf{F_2N})_2$ CF-NF-C-NH₂

IR: Mass:

NMR: (291)

F19: -24.8 ppm, -NF2 74.2 ppm, >NF 132.1 ppm, ∋CF

42. C₂F₅N₅

NF NF F₂N-C-N=N-CF

IR: (256) Mass:

NMR: (256)

F19:

NF2 -45.4 ppm -9.1 ppm -11.4 ppm F Trans F 80.8 ppm

-18.3 ppm F, NF₂ -41.2 ppm Cis F -8.9 ppm 80.4 ppm

43. C2F6H2N2O3

 $(NF_2)_3$ C-NH- \ddot{C}

IR: (86) Mass:

NMR: (86)

 $_{\mathrm{P}}^{\mathrm{NF}}$ (F₂N)₂CF-N=N- $\ddot{\mathrm{C}}$ -NH₂

44. C2F6H2N6

IR: (251)

Mass:

NMR: (251)

H1: 4.69 T, -NH2 F19: -20.8 ppm, -NF2 +9.2 ppm, =NF 137.6 ppm, CF

140

45. C2F6N2 IR: (296) Mass: NMR: (296) F^{k9}: 12.4 ppm, >NF 62.5 ppm, -CF₃ 112.5 ppm, >CF₂ 46. C2F6N40 IR: (164) Mass: NMR: 47. C₂F₆N₆ NF NF F₂N-C-N=N-C-NF₂ IR: (255) Mass: NMR: (255) F19: Trans-Trans F -22.4 ppm -45.7 ppm Cis-Trans -20.3 ppm F. NF2 -41.4 ppm -45.6 ppm Cis-Cis NF2 -41.2 ppm F -19.1 ppm 48. C₂F₆O₄ FO-CF2-O-CF2-OF

IR: (403) Mass: NMR: (403)(435) F^{19} : -158 ϕ , triplet, -OF

81 Ø, doublet, >CF2

48. C₂F₆O₄ (Concluded)

49. C2F7HN40

(F₂N)₃C-NH-CF

IR: Mass:

NMR: (295)

F19: -27.6 ppm, -NF₂ +1.5 ppm, -C(=0)F

50. C2F7NO

 $(CF_3)_2NOF$ or $(CF_3)_2N \longrightarrow 0$

IR:

Mass:

NMR: (532a)

51. C₂F₇N₂O

IR: (292)

Mass:

NMR: (292)

F19: -23.6 ppm, -NF₂
9.6 ppm, doublet of doublets, -C(=0)F
72.4 ppm, >NF
132.9 ppm, >CF

52. C₂F₈N₆

 $(\mathbf{F}_{2}\mathbf{N})_{2}$ CF-N=N- $\ddot{\mathbf{C}}$ -NF $_{2}$

IR:

Mass: (249)

NMR:

55. C2F10H2N6O2 NF₂ NF₂ FHN-C-00-C-NHF NF₂ NF₂ IR: Mass: NMR: (296) F19: -22.2 ppm, -NF2 +138.6 ppm, -NHF 54. $C_2F_{10}H_4N_8$ NF'2 FHV-C-NH-NH-C-NHF IR: NF₂ MF2 Mass: NMR: (291) H1: 4.3 τ , singlet, >NH 0.8 T, doublet, -NHF F¹⁹: -21.3 ppm, doublet, -NF₂ 55. C2F12N6O2 $(F_2N)_3COOC(NF_2)_3$ IR: Mass: NMR: (296) F19: -25.2 ppm, -C(NF₂)₃ 56. C2H4LiN4O4 Lin(NO2)CH2CH2N(NO2) IR: (4) Mass: NMR: 57. C3C1FH5NO2 $FN(C1)CO_2C_2H_5$ IR: (18) Mass: NMR: 58. C3ClF5H5N3O IR: Mass: NMR: (293)

CONFIDENTIAL

F¹⁹: -21.5 ppm, -NF₂

141.3 ppm, -NHF

```
C1CH2CH2-0-C(NF2)3
59. Cacle Hanso
           IR: (293)
           Mass:
           MMR: (295)
             H1: 5.40 T, triplet, -CH20-
                   6.29 T, triplet, ClCH2-
              F19: -23.1 ppm, -NF2
                                                                    CH3CO(OH)CH2NF2
60. C3F2H6N2O2
            IR: (274)
            Mass:
            NMR:
                                                                      F2NCHN(NO2)CON(NO2)CHNF2
 61. C_3F_4H_2N_6O_5
            IR: (274)
            Mass:
            NMR: (274,
            H^1: Triplet centered at 3.1 \tau, J = 16 cps
                                                                       F2NCHN(NO2)CONHCHNF2
 62. C3F4H3N5O3
            IR: (274)
            Mass:
             NMR: (274)
               H1: Triplet 4.35 \tau (J = 18 cps)
3.45 \tau (J = 18 cps)
                     Broad singlet 1.74 τ (NH)
               F^{19}: Triplet at -32.5 \delta (J = 18 cps)
                                                                       F2NCHNHCONHCHNF2
  63. C<sub>3</sub>F<sub>4</sub>H<sub>4</sub>N<sub>4</sub>O
             IR: (274)
             Mass:
             NMR: (274)
               H^{1}: Triplet at 4.39 \tau, J = 18 cps (CH) each peak split by ^{14}N J = 1.8 cps
                     Broad singlet at 2.12 T (NH)
                F19: Triplet at -31.6 8, J = 15 cps
```

F2NCH2NHCONHCH2NF2 64. C₃F₄H₆N₄O IR: (274) Mass: NMR: CH2[N(CH2NF2)NO2]2 65, C3F4H6N6O4 IR: (274) Mass: NMR: $CH_3SO_2N(CH_2NF_2)_2$ 66. C3F4H7N3O2S IR: (274) Mass: NMR: NF2 FHN-C-O-CH2-C-NH² NF2 67. C3F5H5N9O2 IR: Mass: MMR: (85c) F¹⁹: -21.0 ppm, -NF₂ 142.6 ppm, -NHF NF O NF NF2-C-NH-C-NH-C-NF2 68. $C_3F_6H_2N_6O$ IR: (86) Mass: NMR: (86) HO-CH2-CH2-O-C(NF2)3 69. $C_3F_6H_5N_3O_2$ IR: (294) Mass: NMR: (294) H¹: 5.49 τ, triplet, -CH₂-O-C 6.10 7, triplet, - CH2OH 5.97 +, -OH F19: -23.3 ppm, -NF2

70. C₅F₆H₆N₄ N(CH2NF2)5 IR: (274) Mass: NMR: (274) H^1 : 5.43 τ , triplet, J = 24 cps F^{19} : -42.7 8, triplet, J = 24 cps CF3CF2-0-0-C-F 71. C3F603 IR: (296) Mass: (296) NMR: (296) F¹⁹: 33 ppm, -C(=0)F 83.0 ppm, -CF3 95.8 ppm, >CF2 CF3-C-00-CF3 72. C₃F₆O₃ IR: (296) Mass: (296) NMR: (296) F19: 68.9 ppm, singlet, -OCF3 72.0 ppm, singlet, CF3C(=0)-73. C₃F₈HN (CF3)2CF-NHF IR: Mass: NMR: (296)F19: 76.1 ppm, -CF3 134.9 ppm, -NHF 151.2 ppm, ≥CF -11.8 cps-CF3 -53 cps

146

3.2 cps

74. C₃F₈O₅

or cr₃- oo-cr-oo-cr₅

IR: (296) Mass: (296) NMR: (296)

> Fl9: -168.0 ppm, doublet, -OF 68.7 ppm, doublet, -CF₃ 90.6 ppm, complex, >CF

75. C3F9N3

(CF₂NF)₃

IR: (235) Mass: NMR:

76. C₃F₁₂H₂N₈O

(NF₂)₃C-NHC-NH-C(NF₂)₃

IR: (86)(164) Mass: NMR: (86)(164)

77. C3H7N3O4

IR: (6)
Mass:
NMR:

CH3 CH-N NOS

78. C4ClF4H10N3O4

IR: (176) Mass: NMR: CH2-CH-CH2-NH2C104-NF2 NF2 CH3

79. C4C1F4H10N3O4

IR: (176) Mass: NMR: 80. C4ClF6H5N4O4

IR:

Mass:

NMR: (585)

F19: -26.9 ppm, -C(NF₂)₅

81. C4FH7INO2

IR:

Mass: NMR: (17)

> rl9: +25 ppm

82. C4F2H2N4O2

IR: (274)

Mass:

NMR:

83. $C_4F_2H_6N_2O$

IR: (274)

Mass:

NMR:

84. C₄F₂H₆N₆O₇

IR: (274)

Mass:

NMR:

85. $C_4F_2H_7N_5O_3$

IR: (274)

Mass:

NMR: (274)

H1: Complex series (ring CH) region

CHz peaks obscured by solvent NH absorptions 0.72 and 1.21 T C2H5

F¹⁹: Two doublets centered at -38.8 δ (J = 27 cps) and -41.6 δ (J = 18 cps)

86. $C_4F_2H_8N_2O_2$

IR: (274)

Mass:

NMR:

148

CONFIDENTIAL

CH3CH2-0-C-N-0-C(NF2)3

 $FN(I)CO_2-CH(CH_3)_2$

or isomer)

CH2: CH. CONHCH2NF2

F2NCH2NHCONHCH2C(NO2)3

сн3осн-йн Ç=NNO2 F2NCH-NH

F2NCH2NHCOOC2H5

87. C4F2H9NO

CH3(OH)NF2C2H5

IR: (274) Mass:

NMR:

88. C4F3H2N50

IR: (274)

Mass: NMR: FW NF

NF=CFNFCO2C2H5

89. C4F3H5N2O2

IR: (10) Mass:

NMR: (10)

F19: 15.0, singlet, broad, NF = CF
53.2, doublet, -NFCO-, J = ~ 26 cps
63.4, doublet of doublets, = CF-, fluorimino fluorine coupled with
-CF-, 13 cps

90. C₄F₃H₇N₂O₂

IR: (274)

Mass:

NMR:

91. $C_4F_4H_2N_6$

IR: (274)

Mass:

NMR: (274)

H¹: 6.41 τ(solvent) -0.30 τ(solvent) 6.35 τ (MeCN?) F¹⁹: +24.0 δ FN NF

F2NCH2NFCOOC2H5

92. C4F4H4N4O2

IR: (274)

Mass:

NMR:

F2NCH-NCHO CO F2NCH-N-H

149

93. C4F4H5O2

IR: (274)

Mass:

NMR: (274)

F2NCH-N-CONH2 F2NCH-NH

H¹: 2.45 τ, 3.18 τ, (NH), broad peaks 3.98 τ, quadruplet, J = 17 cps

4.05 τ , doublet, J = 24 cps (CH)

F19: -28.7 &, doublet J = 27 cps
-30.8 &, quintuplet, J = 17 cps

94. $C_4F_4H_6N_2O_2$

IR: (274)

Mass:

NMR:

95. C4F4H6N4O2

IR: (274)

Mass:

NMR:

96. $C_4F_4H_8N_2O_2$

IR: (274)

Mass:

NMR:

97. $C_4F_4H_8N_8O_6$

IR: (274)

Mass:

NMR:

98. $C_4F_4H_{10}N_4O_4S_2$

IR: (274)

Mass:

NMR:

O NF2

(F2NCHNHCHO)2

CH3 OCHME CHME OCH3

 $\mathtt{F_{2}NCH_{2}N(NO_{2})CH_{2}N(NO_{2})CH_{2}N(NO_{2})CH_{2}NF_{2}}$

 $(F_2NCHNHSO_2CH_3)_2$

150

 $NF_2CF_2NFCO_2C_2H_5$ 99. C4F5H5O2 IR: (46) Mass: NMR: (46) F19: -19.8 ppm, singlet, broadened, NF2 +77.4 ppm, singlet NFCO +97.9 ppm, doublet $(J = 12 \text{ cps}) - CF_2$ CH2-CH-CH2-OC(NF2)3 100. C₄F₆H₅N₃O₂ IR: (175) Mass: NMR: 101. $C_4F_6H_5N_5O_7$ O2N-0-CH2-CH-CH2-OC(NF2)3 0N05 IR: (177) Mass: NMR: (177) H¹: 4.42 τ, βCH 5.20 T, >CH2 $(F_2N)_3CON=C(OCH_3)_2$ 102. C4F6H6N4O3 IR: (296) Mass: NMR: (296) H¹: 6.12 7 6.16 T F19: -24.0 ppm, -NF₂ CH2CH3-0-C-NH-0-C(NF2)3 103. C4F6H6N4O3 IR: Mass: NMR: (292) H¹: 8.7 τ, triplet, CH₃ 5.71 r, quartet, >CH2

151

0.55 T, singlet, >NH

F19: -24.5 ppm, -NF₂

(F2NCH2)2NCONHCH2NF2 104. C4F6H7N50 IR: (274) Mass: NMR: 105. $C_4F_8H_4N_4O_2$ F₂N ML5 IR: (274) Mass: NMR: (274) H^{1} : 4.49 τ , triplet, J = 19 cps F^{19} : -34.3 8, doublet, J = 20 cps -33.6 5, doublet, J = 20 cps 31.2 5, broad band (Impurity ?) 106. C4F803 CF3G-0-0-CF2-CF3 IR: (296) Mass: (296) NMR: 107. $C_4F_9H_2N_5O_2$ $(NF_2)_3$ C-NH-C-NH-C-CF₃ IR: (86) Mass: NMR: (86) 108. $C_4F_{12}H_4N_8O_2$ (NF2)3CNHCH2OGNHC(NF2)3 IR: (163) Mass: NMR: (163) (NF2)3CNFCH2OCNC(NF2)3 109. $C_4F_{13}H_3N_7O_2$ IR: (163) Mass: NMR: (163) NHN02 110. C5C1H4N4O10 IR: (6) Mass:

152

 H^1 : $v_2 = 8.89 \text{ ppm}$, $v_5 = 7.53 \text{ ppm}$, $v_6 = 8.13 \text{ ppm}$

 $J_{5,6} = 7.22 \text{ cps}, J_{2,6} \sim 0.3 \text{ cps}$

MMR: (6)

CONFIDENTIAL

+NO2C104

111. C5C1H5N4O8 IR: (6) Mass: NMR: (6) -NO2C104-H1: minglet, v_{NH} = 9.89 two doublets $\begin{cases} \sqrt{2}, 6 = 8.91 \text{ ppm} \\ \sqrt{3}, 5 = 6.75 \text{ ppm} \end{cases}$ **J**2,3 = 6.08 cps (CCl_CHNF_NH)_CO 112. $C_5Cl_6F_4H_4N_4O$ IR: (274) Mass: NMR: 113. C₅FH₇N₂O₅ FC(NO2)2CH2CCH2CH=CH2 IR: (49) Mass: NMR: (49) H^{1} : $\delta = 5.56 - 6.20$ (12 line pattern, doublet of doublet of triplets) J_{cis} = 9 cps, J_{trans} = 17.5 cps, J_{allyl} = 5.5 cps Internal olefin proton at a terminal vinyl group δ = 5.06 - 5.51 superposition of multiplets (external clefin protons of vinyl group) δ = 4.58, doublet (J_{HF} = 18 cps) CH₂ in the fluorodinitroethyl moiety $\delta = 4.15$, doublet (J = 5.5 cps) allylic CH₂ F^{19} : ϕ = 111.0, triplet, $J_{\mathrm{HF}} \simeq$ 15 cps, fluorine in the fluorodinitromethyl moiety 114. $C_5FH_{10}NO_4S$ \oplus O HSO4 IR: Mass: ĊHo NMR: (45) H¹: 116, 137 cps, multiplet 3.13, 3.10 ppm (TMH)
4.28, J_{doublet} = 2.8 ± 0.3 cps
8.83, J_{doublet}, 25.2 ± 0.4 cps, J_{triplet} ≥ 3 cps pair of unresolved triplets

 F^{19} : -157.53 $^{+}$ 0.03 ppm, broad doublet (NF), J = 24.1 $^{+}$ 0.5 cps

115. C5F2H9NO

IR: (274) Mass: NMR: \mathbb{N}^{1}

116. $C_5F_2H_9N_5O_3$

IR: (274) Mass:

NMR:

117. $C_5F_4H_6N_4O_2$

IR: (274)

Mass:

NMR:

118. C5F4H8N4O

IR: (274)

Mass:

NMR:

119. C5F4H10N40

IR: (274)

Mass:

NMR:

120. $C_5F_4H_{10}N_40$

IR: (274)

Mass:

NMR:

121. C5F4H11N3O

IR: (451)

Mass:

NMR: (451)

122. $C_5F_4H_{11}N_3C$

IR: (451)

Mass:

NMR: (451)

L⁵MCH-NH C=MAO⁵

F2NCH-N-CHO CH2 F2NCH-N-CHO

CH2N(CH2NF2)CON(CH2NF2)CIP

F2NCH2NC5H5CONHCH5NE5

CH3CH(NES)NHCONHCH(NES)CH2

N-H NF2

NF₂

123. C5F5H6N3

IR: (440)

Mass:

NMR: (440)

124. C5F5H7N404

IR: (315)

Mass:

NMR:

125. $C_5F_6H_4N_2O_3$

IR: (294)

Mass:

NMR: (294)

H1: 5.5 T, >CH2, mixture of isomers

 CF_3 - $C-O-CH_2$ - CH_2 - $O-C-NF_2$

F19:	Isomer	Peak	Assignment
	AB	75.7 ppm	CF3
	Λ	-43.0 ppm	-NF2
		10.8 pm	=NF
	В	-37.7 ppm	-NF
		49.0 ppm	= NT

16. C5F6H4N60

IR: (274)

Mass:

NMR: (274)

 H^{1} : 4.41 τ , triplet (J = 24 cps)

F¹⁹: +31.4 δ, single peak (C:NF) -44.0 δ , triplet (J = 24 cps)(CH2NF2)

 $^{127} \cdot ^{127} \cdot ^$

IR: (86)

Mass:

MMR: (86)

FN-C-N-CH2NF2

CH2=CHCH2OCNHC(NF2)3

1.55

128. C5F6H7N3O3

IR:

CH3CH2O-C-CH2-OC(NF2)3

Mass:

NMR: (294)

F19: -22.8 ppm, -NF2

129. C5F7H6N3O3

IR:

Mass:

NMR: (294)

(F₂N)₃CO-CH₂-C-OCHF

CF₃C-O-CH₂-CH₂-O-C-NHF

F¹⁹: -23 ppm, -NF₂ +125.1 ppm, doublet of quartets, >CF

(F₂N)₃CO-CH₂-C-O-CH-CH₃
24 c/s

130. C₅F₈H₅N₃O₃

IR: (294)

Mass:

NMR: (294)

H¹: 1.25 τ, -NHF 5.4 τ, -CH₂

F¹⁹: -21.3 ppm, -NF₂ 76.0 ppm, -CF₃ 139.1 ppm, -NHF

131. C5F8H6N6O

IR: (274)

Mass:

NMR: (274)

CO ESUCH-N-CHSNES

F2NCH-N-CH2NF2

H1: 15 peaks (triplet and pair of sextuplets) 4.15 - 5.72 TCH2 groups and nonequivalent ring CH-rings

F19: -30.5 6, doublet, J = 18 cps, CHNF₂ -43.2 6, triplet, J = 21 cps, CH₂NF₂ Doublet:triplet in 1:1 ratio

156

132. C₅F₈H₈N₆0

(F2NCH2)2NCON(CH2NF2)2

IR: (274)

Mass: NMR:

133. C₅F₉H₄N₃O₃

OCF5-C-O-CH2-CH2-OC(NF2)3

IR: (294)

Mass:

NMR: (294)

H¹: 5.37 τ, >CH₂

F19: -23.0 ppm, -NF₂
75.8 ppm, -CF₃

134. C₅F₁₃H₃N₈O₆

 $\begin{array}{c} (O_2N)_2\text{-CF-CH} & CH_2 \\ OC(NF_2)_3 & OC(NF_2)_3 \end{array}$

IR: (175)

Mass: NMR: (175)

> F19: -23.9, -NF₂ +118, -CF

135. C5H3N5O6

IR:

Mass:

NMR: (5)

OSN MHNOS NOSN NOS

 H^1 : a = 8.97 ppm, doublet, b = 9.19 ppm, doublet,

 $J_{4,6} = 2.50 \text{ cpms}$

136. C5H3N5O6

IR: (6)

Mass:

NMR: (6)

OS M NOS

H¹: $v_{NHNO_2} = 11.07 \text{ ppm}$ $v_{2,6} = 9.02 \text{ ppm}$

157

137. C5H4N4O4

IR: Mass:

NMR: (5)

$$O_{2}N$$
 $H(p)$
 $H(p)$
 $H(p)$

H¹: (a) 8.00 ppm, doublet, J: between protons in 5 and 6 position 4.8 cps

(b) 8.74 ppm, quartet

(c) 9.24 ppm, doublet, J: protons 3 and 5 position 1.4 cps

138. C5H4N4O4

IR:

Mass:

NMR: (6)

NHNO⁵

H¹: Protons 5 and 6 position $J_{5,6} = 8.16$ $v_5 = 7.64$ ppm, $v_6 = 8.26$ (two doublets) proton number 2 position $v_2 = 9.04$ ppm $J_{2,6} \sim 0.3$ cps

139. C5H4N4O4

IR: (5)

Mass:

NMR: (7)

H¹: $v_{2,6} = 9.19 \text{ ppm}$ $v_{3,5} = 7.10 \text{ ppm}$ NNO₂

140. C5H9N5O10

IR: (176)

Mass:

NMR: (175)

H¹: 4.40 τ, -CH₂-C(NO₂)₃ 5.25 τ, -CH₂OH 6.25 τ, -CH₂OH 6.78 τ, -CH₂OH $(0^5\text{N})^2\text{C-CH}^5$ -N-CH $(\text{CH}^5\text{OH})^5$

141. C5H₁₁N₃O₄

CH3-CH2-CH2-CH2-UNO2

IR: Mass: NMR: (2)

> H¹: α -methylene protons & = 4.15 ppm from TMS

158

142. Cafhicnos CH3CONFCO2CH(CH3)2 IR: Mass: NMR: (17) F19: +68.8 ppm (relative to internal Freon-11) 143. C₆F₂H₈N₆O₈ NCH2C(NO2)3 IR: (274) Mass: NMR: (274) H1: 5.08 7, triplet, J_{CH2-NF2} = 24 cps 5.01 7, peak _ CH₂) 4.88 +, peak [CH2C(NO2)3] , ratio 1:2:1 F19: -44.5 8, triplet, $J_{NF2-CH2} = 24 \text{ cps}$ Hg(NFCO2C2H5)2 144. C6F2H10HgN2O4 IR: Mass: NMR: (16) ${\tt Fl9: CHCl_5}$ solvent, broad absorption at 87.8 ppm CH3CN (FONCHINHCOCOOH)2 145. $C_6F_4H_6N_4O_6$ IR: (274) Mass: NMR: 146. $C_6F_4H_{10}N_2O_2$ IR: (274) F₂N Mass: NMR: (F2NCHNHCOCH3)2 147. $C_6F_4H_{10}N_4O_2$ IR: (274) Mass: NMR:

148. C6F4H10N4O4

(Fencharcocchis)2

\$02CH3

SO2CH3

NNO2NH4

F2NCH-NCH2NF2

F2NCH-NCH2C(NO2)3

CH

 F_2N

IR: (274) Mass: NMR:

149. C6F4H12N4O6S2

IR: (274) Mass: NMR:

150. C₆F₅H₄N₃O₂

IR: (6) Mass: NMR:

151. C6F6H6N8O7

IR: (274) Mass: NMR: (274)

 H^{1} : 16 peaks, 4.03 - 5.68 +

consisting of singlet CH2C(NO2)3 triplet CH2NF2

and pair sextuplets, magnetically nonequivalent ring CH-rings

 F^{19} : -28.8 8, triplet, J = 21 cps-31.0 8, doublet, J = 12 cps NF2 positions 5,4, and 1 resp. -43.6 &, triplet, J = 24 cps

ratio 1:1:1

(0, NOCH,)3C-CH2-OC(NF2)3

152. $C_6F_6H_8N_6O_{10}$

IR: (174)

Mass:

NMR: (174)

H¹: 6.05 τ, singlet, -CH₂-O-C-6.15 τ , singlet, -CH₂-O-NO₂

F19: -24.7, singlet, -NF2

160

155. C₆F₆H₈N₈O₇

 $(F_2NCH_2)_2NCON(CH_2NF_2)CH_2C(NO_2)_3$

IR: (274) Mass:

NMR:

C2H5OCH2-CH-CH2OC(NF2)3

154. $C_6F_6H_{11}N_3O_3$

IR: Mass:

NMR: (178a)

155. C₆F₆H₁₂N₆O

 $(\mathbf{F}_2\mathbf{N})_3$ con=c[$\mathbf{N}(\mathbf{CH}_3)_2$]

.0.0.TS

IR: Mass:

NMR: (297)

H¹: 6.87 τ, -CH₃

F¹⁹: -24.5 ppm, -NF₂

156. $C_{\varepsilon}F_{8}H_{6}N_{6}O$

IR: (453)

Mass:

NMR:

157. C₆F₈H₆N₆O₂

IR: (274)

Mass:

NMR: (274)

F2NCH HCNF2 F2NCH HCNF2 CHO

H¹: 1.09 τ , singlet (CHO) 3.68 τ , triplet, J = 23 cps (Ring CH), each peak split into doublet J = 4 cps

 F^{19} : Complex spectrum between -40.9 δ and -36.3 δ

158. C₆F₈H₈N₄

IR: (274)

Mass:

NMR: (274)

ME⁵ ME⁵

 H^1 : 7.61 τ , single peak

 F^{19} : -27.4 δ , single peak

159. $C_6F_8H_8N_4O_2$

IR: (274) Mass:

NMR:

or isomer

160. C6F8H10N6O4S2

IR: (274)

Mass:

NMR: (274)

F2NCH2-C-CH2CH2CCCCF3

(F2NCHNHCOCF3)2

 H^1 : 3.95 τ , triplet, J = 21 cps (Ring CH)

 F^{19} : -41.3 δ , doublet, J = 12 cps -38.7 δ , doublet, J = 12 cps

161. C₆F₉H₆N₃O₂

IR:

Mass:

NMR: (440)

162. $C_6F_{10}H_4N_4O_2$

IR: (274)

Mass:

NMR:

163. C₆F₁₂H₄N₆O₆

IR: (174)

Mass:

NMR:

но2с-сн- $(NF_2)_3$ $(NF_2)_3$

164. $C_6F_{12}H_4N_8O_3$

IR: (86)

Mass:

NMR: (86)

 $(NF_2)_3$ -C-N-C(NF₂)₃

162

165. C6F12H5N9O8

IR: (175)

Mass:

NMR: (175)

F19: -23.8, -NF₂

166. $C_6F_{12}H_6N_6O_3$

IR: (174)

Mass:

NMR: (1.74)

H¹: 5.5 τ, CH₂ (Cis) 4.28 r, CH

F¹⁹: -24.0, -NF₂

H¹: 5.5 τ, CH₂ (trans) 4.45 T, CH

F¹⁹: -24.0, NF₂

167. $C_6F_{12}H_8N_8O_4$

IR: (178)

Mass:

NMR: (178)

F19: -27.0, -NF2

168. C₇F₂H₁₅NO₃

IR: (274)

Mass:

NMR:

169. $C_7F_4H_6N_2$

IR: (315)

Mass:

NMR:

 $(NO_2)_3$ C-CH₂-CH-CH₂-O-C(NF₂)3 $(NF_2)_3$

 $(F_2N)_3CO-CH-CH-OC(NF_2)_3$

ĊН2 ĊН2

 $(F_2N)_3$ CO+CH2-CH2-N-CH2-CH2-OC(NF2)_3 NO2

 $(C_2H_5)_2$ CHC(OH)NF2CH3

163

```
170. C7F4H8N10013
                                                                                   (02N)2CCH5
               IR: (274)
               Mass:
               NMR: (274)
                 H^{\perp}: 4.70 \tau, triplet, J = 23 apa (CH_{2}CF_{2})
                        3 peaks 4.84, 4.62, 4.35 \tau, steric hindrance of \text{CH}_2\text{C}(\text{NO}_2)_3
                 F^{19}: 45.2 6, triplet, J = 25 cps (N-CH<sub>2</sub>NF<sub>2</sub>)
 171. C7F12H7N11010
                                                                           NO5
(05N)2-CCH5-N-CH[CH5C(NES)2]
              IR: (176)
              Mass:
              NMR: (175)
                H1: 4.30 7, -CH2-C(NO2)3
                       5.08 +, -CH2 OC(NF2)3
                F19: -24.2 ppm, -NF<sub>2</sub>
 172. C_7F_{12}H_8N_8O_8
                                                                                 (02NOCH2)2-C-CH2-O-C(NF2)3
                                                                                                  CH2-0-C(NF2)3
              IR: (174)(175)
              Mass:
              NMR: (174)
                H^1: 6.11 \tau, singlet, -CH_2-O-C(NF<sub>2</sub>)<sub>3</sub>
                      6.22 T, singlet, -CH2-ONO2
                F19: -24.4, singlet, -NF2
173. C7F16H6N8O4
                                                                (F2N)3CO-CH2-CH-
                                                                                       - CH-CH2-OC (NF2)3
             IR: (174)
             Mass:
             NMR: (174)
               F19: -23.6 \emptyset, singlet, -OC(NF<sub>2</sub>)<sub>3</sub>
                       -20.8 ¢, singlet, >C(NF<sub>2</sub>)<sub>2</sub>
174. C<sub>8</sub>F<sub>2</sub>H<sub>12</sub>N<sub>3</sub>
             IR: (49)
                                                                                     N: NC6H5
```

164

Mass: NMR:

Hg (NFCO, CH(CH3)2 175. C8F2H14Hg1N2O4 IR: Mass: NMR: (16) F19: +90.8 Ø (F2NCHIHCOCECH)2 176. C8F4H6N4O2 IR: (274) Mass: NMR: 177. C8F4H8N2 H3C-C-NF2 IR: (315) Mass: NMR: (F2NCHMHCCOC2H5)2 178. C8F4H14N4O4 IR: (274) Mass: NMR: (274) H^1 : 5.83 τ , quadruplet, J = 7.2 cps (CH₂) 2.17, 2.30 τ , broad doublet, J = 7.8 cps (NH) 3.8 - 4.8 r, complex multiplet (CH) F^{19} , -26.9 &, doublet, J = 27 cps → -31.0 δ, singlet -35.2δ , doublet, J = 12 cpsF2NCH2N-CH-NCH2NF2 179. C8F8H10N8O2 FONCH N-UH-NCH NF2 IR: (274) Mass: NMR: (F2NCHNHCOCH2CH2NF2)2 180. $C_8F_8H_{12}N_6O_2$ IR: (274)

165.

CONFIDENTIAL

Mass:

181. CgFnH14N4O2

(-CH2-C-CH2-C(NF2)2CH2)5

IR:

Maar

NMR: (455)

182. C8F12H8N10O2

IR: (274)

Maas:

NMR:

165. CaF12H8N10O10

IR:

Mass:

NMR: (178)

H¹: 4.50 τ , singlet, -CH₂-OC(NF₂)₃ 7.02 τ , -CH₂-CH₂-

F19: -25.1 ppm, singlet, -NF2

184. CsF18H8N1006

IR: (176)

Mass:

MMR: (176)

H¹: 6.04 τ, singlet, -CH₂-OC(NF₂)₃ 6.07 τ, -CH₂-ONO₂

F19: -24.5 ppm, singlet, -NF2

185. C8F24H6N1204

IR: (174)

Mass:

NMR: (174)

F19: -23.6 , singlet, -NF2

HN NCNF2 F2NOH—HCNF2

 $\begin{bmatrix} no_2 \\ ch_2 - c - ch_2 - cc(nF_2)_3 \\ no_2 \end{bmatrix}_2$

02N-0-CH2-C[CH2-OC(NF2)3]3

 $(F_2N)_3$ CO-CH₂-CH-CH₂OC(NF₂)₃ $(NF_2)_3$ C(NF₂)₃

166

186. CgF2H11N3

IR:

Mass:

NMR: (49)

H1: 7.4 - 3.0 &, complex aromatic multiplet
1.5 &, sym. triplet, J = 1.8 cps
1.2 &, small singlet, acetone contaminant

F19: -25.3 Ø, broad singlet

187. C9F4H16N404

CH2[N(CH2NF2)COCC2H5]2

IR: (274) Mass: NMR:

188. C9F12H12N12

IR: (274)

Mass:

NMR: (274)

H1: 4.4 T, triplet, J = 24 cps

 F^{19} : -45.6 τ , triplet, J = 24 cps

189. CloF4H12N2

IR:

Mass:

IMR: (455)

190. $C_{10}F_4H_{14}N_4C_6$

IR: (274)

Mass:

NMR:

191. C_{1U}F₄H₁₆N₄O₈S₂

IR: (274)

Mass:

NMR:

 $(F_2NGH_2)_2NG$ N $CN(CH_2NF_2)_2$ $N(CH_2NF_2)_2$

CHNF₂ CH₂NF₂

(Fanchinhcocoocaha)2

F₂N N OCOCH₃
CH₃OCO N NF₂

COOCH2CH3 192. C10F10H14N6O6 H-C-OC(NF2)2NHF FHN (NF2)2CO-CH COCCH2CH3 IR: (175) Mass: NMR: 193. C₁₀F₁₂H₈N₁₀O₄ IR: (274) Mass: NMR: COOCHE CH2 194. C₁₀F₁₂H₁₂N₆O₆ H¢-OC(Mr2)2 IR: (175) (F2N)3CO-CH COOCH2CH3 Mass: NMR: (1.75) F19: -24.7, -NF2 NCHNF2 195. C₁₀F₁₂H₁₂N₁₀O₂ IR: (274) Mass: NMR: H^1 : 4.02 τ , triplet, J = 18 cps 5.50 τ , doublet, J = 12 cps F^{19} : -26.7, -30.2, -32.5, -33.7, -34.2, -37.3 8, $\begin{bmatrix} NO_2 & NO_2 \\ CH_2 - N - CH_2 - C - CH_2 - CC (NF_2)_3 \end{bmatrix}$ 196. C10F12H12N14O14 IR: (179) Mass: NMR: (179) H^1 : 4.50 τ , singlet, $-CH_2OC(NF_2)_2$ 4.90 τ , singlet, $-C(NO_2)_2 - CH_2 - N(NO_2) -$ 5.88 τ, singlet, -CH₂-CH₂-F¹⁹: -25.0 ppm, singlet, -NF₂ $(F_2N)_3CO-(CH_2)_8-OC(NF_2)_3$ 197. $C_{10}F_{12}H_{16}N_6O_2$

168

IR: (179) Mass: NMR: (179)

197. (Concluded)

H¹: 8.0 - 8.7
$$\tau$$
, internal -CH₂-
5.5 τ , -CH₂-OC(NF₂)₅

198. CllF2H2ON4O6

IR: (274) Mass: NMR:

199. C₁₂F₁₂H₁₀N₁₆O₁₄

IR: (274) Mass: NMR:

200. C₁₃F₄H₁₄N₂O₂

IR: Mass: NMR: (453)

201. C₁₃F₆H₂₂N₆O₆

IR: (274) Mass: NMR:

202. C₁₄F₂₄H₁₄N₁₂O₁₀

IR: (175)
Mass:
NMR:

203. $C_{15}F_{36}H_{14}N_{18}O_8$

IR: (166) Mass: NMR:

204. C₁₆F₁₂H₁₆N₁₀O₂

IR: (274)
Mass:
NMR:

(C2H5OOCNH)2CHCH(NF2)NHCOOEt

CO (NO₂)₃CCH₂N NCHNF₂-F₂NCH — CNF₂

 $HC[N(CH_2NF_2)COOC_2H_5]_3$

(F₂N)₃CO-CH₂-CH-O-CH₂ (F₂N)₃CO-CH₂-CH OC(NF₂)₃

> C₂H₅N NCHNF₂-F₂NCH—H-CNF₂

```
204. C_{16}F_{12}H_{16}N_{10}O_2 (Concluded)
              H^{1}: 3.95 \tau, triplet, J = 19 aps (CH)
                    6.4 +, quintuplet, J = 6 cps (OHg)
              F19: Indistinct spectrum due to solubility difficulties peak -29.9 8
                                                                      (NF_2)_5CO(CH<sub>2</sub>)<sub>16</sub>OC(NF<sub>2</sub>)<sub>3</sub>
                                                                                                     C2He
205. Cl8F19H25N6O2
            IR: (180)
            Mass:
            NMR:
                                                                          DNO3 . 200104
 206. Cl<sub>2</sub>D<sub>5</sub>NO<sub>11</sub>
             IR: (121)
            Mass:
             NMR:
                                                                          NF2C1
 207. ClF2N
             IR: (518)
             Mass:
             NMR:
                                                                           ClF30
 208. ClF30
             IR:
             Mass: (425)
             NMR: (425)
                                                                           ClF4+
  209. ClF4+(?)
              IR:
              Mass:
              NMR: (76)
                F19: -271 ppm, in AsF5 soln, broad
                       -265 ppm, in BrF5 soln, doublet
                                                                            FNO-ClF30
  210. ClF_4NO_2
              IR: (423)
              Mass:
```

CONFIDENTIAL

NMR: (423)

Clrs

211. C1F5 IR: (359) Mass: NMR: (420a) NH4C104 212. C1H4 NO4 IR: (100) Mass: MMR: Cloc 213. 0102 IR: (534) Mass: NMR: HNO3.2HClO4 214. Cl₂H₃NO₁₁ IR: (121) Mass: NMR: Cl_2O_2 215. Cl₂O₂ IR: (533a) Mass: NMR: FNO 216. FNO IR: Mass: NMR: (420a) FNO_2 217. FNO₂ IR: Mass: NMR: (420a) NO_3F^{18} 218. F¹⁸NO₃ IR: (284) Mass: NMR: (284) F19: 221.5 ppm downfield from CFCl3 171

219. FO₂ O₂F IR: (532b) Mass: NMR: 220. FO5 03F TR: (532b) Mass: NMR: 221. FO4 04F IR: (532b) Mass: NMR: ·HNF2(solid) at -160° 222. F2HN IR: (232) Mass: NMR: H20.HNF2 solid at -160° 223. F₂H₃NO IR: (232) Mass: NMR: 0₂F₂ 224. F₂O₂ IR: (263) Mass: NMR: 225. F₂0₃ 0_3F_2 IR: (532b)(263) Mass: NMR: 04F2 226. F₂O₄ IR: (532b) Mass: NMR:

227. F25i SiF2 IR: (379) Mass: NMR: 228. F3NO NF30 solid IR: (121) Mass: NMR: 229. F₃N₂O₂ IR: (121) Mass: NMR: 250. F55b SbF₅ IR: (89) Mass: NMR: 231. F6NOPt NOPtF6 IR: (571) Mass: NMR: 232. F₆NO₂Pt NO2PtF6 IR: (571) Mass: NMR: 233. F₆N₂O₂Pt (NO)2PtF6 IR: (517)(513) Mass: NMR: 234: F₆N₂O₃Pt N2O3PtF6

CONFIDENTIAL

IR: (571)
Mass:
NMR:

CONMICHMAL

235. F7NOPt CLB NOPtF7 1R: (279) IR: (570) Mass: : uneM NMR: • **>**} 236. Figure Sale NF4SbF6 IR: (477) (190) (1) Mass: 10000 NMR: (477) :5345 237. F₁₁Sb₂ $\mathbf{Sb_2F_{11}}^{-1} \tau^{\mathrm{M}_{\mathrm{C}}} = -0.98$ IR: $\left(1-\frac{1}{2}\right)^{\frac{1}{2}}=\frac{1}{2}\frac{2}{2}\frac{1}{2}$ Mass: 1000 NMR: (479) 238. F N Sh $N_2F_4 \cdot 2SbF_5$ complex IR: 1681 Int. Mass: 26.2940 NMR: (490) : 1004 239. H₂O_{2 B} Harrish **H₂O₂** ²⁰⁰ (84 %) 1 4 4 8 8 12111 222 IR: (330) Mass: 1650 NMR: 11.00 JETT ST (175) (17 :81... 1.1 भूषेत्री सुर्व छत्र State of the state (87) (87) (87) : 0 :::83 gT#4504gE they of the said

> 174. Confedentaro

BIBLIOGRAPHY

- 1. Aerojet-General Corporation, Report No. 2968, AFRPL-TR-65-92, Contract No. AF 04(611)-9881, "Combustion Characteristics of Light-Metal-Based Fuels," June 1965.
- 2. Aerojet-General Corporation, Final Report No. 0855-81F, AFRPL-TR-65-147, Contract No. AF 04(611)-9889, "Development of an Extinguishable Solid Propellant, "July 19, 1965.
- Aerojet-General Corporation, Second Annual Report No. 0856, AFRPL-TR-65-102, Contract No. AF 04(611)-9891, "Basic Research in Solid Oxygen Oxidizers," July 7, 1965.
- 4. Aerojet-General Corporation, Report No. 0856-81Q-5, AFRPL-TR-65-102, Contract No. AF 04(611)-9891, July 1965.
- 5. Aerojet-General Corporation, Report No. 0856-81Q-6, AFRPL-TR-65-102, Contract No. AF 04(611)-9891, October 1, 1965.
- 6. Aerojet-General Corporation, Report No. 0856-81Q-7, AFRPL-TR-65-102, Contract No. AF 04(611)-9891, January 1966.
- 7. Aerojet-General Corporation, Report No. 0856-81Q, AFRPL-IR-66-108, Contract No. AF 04(611)-9891, May 1966.
- 8. Aerojet-General Corporation, Report No. 0880-82Q-2, Contract No. AF 04(611)-9962, "Follow-on Propellant Extinguishment Program," February 1966.
- 9. Aerojet-General Corporation, Final Report, AFRPL-TR-66-203, Contract No. AF 04(611)-10545, "Flame Temperature Measurement of Metallized Propellant," September 1966.
- 10. Aerojet-General Corporation, Report No. 10783-Q-1, Contract No. AF 04(611)-10783, "Development of High-Energy Metallized Propellants," September 30, 1965.
- 11. Aerojet-General Corporation, Report No. 10783-Q-2, AFRPL-TR-65-246, Contract No. AF 04(611)-10783, October 31, 1965.
- 12. Aerojet-General Corporation, Third Progress Report No. 10783-Q-3, AFRPL-TR-66-47, Contract No. AF 04(611)-10783, January 1966.
- 13. Aerojet-General Corporation, Report No. 0970-01-2, AFRPL-TR-65-250, Contract No. AF 04(611)-10797, "Investigation of Combustion and Performance Efficiencies of Beane-Containing Bipropellant System," December 1965.
- 14. Aerojet-General Corporation, Report No. 11205-F-1, AFRPL-TR-67-62, Contract No. AF 04(611)-11205, "Investigation of Heterogeneous Propellant Two-Phase Flow Criteria," April 1967.

- 15. Aerojet-General Corporation, Quarterly Report No. 1004-01-1, Contract No. AF 04(611)-11216, "Molecular Substitution Soudies," February 1966.
- the. Aerojet-General Corporation, Quarterly Report No. 1004-01-2, AFRFL-TR-66-127, Contract No. AF 04(611)-11215, May 1966.
- 16. Aerojet-General Corporation, Report No. 1004-01-3, AFRPL-TR-66-182, Contract No. AF 04(611)-11215, August 1966.
- 17. Aerojet-General Corporation, Report No. 1004-01-4, AFRPL-TR-66-307, Contract No. AF 04(611)-11215, November 1966.
- 18. Aerojet-General Corporation, (Final), Report No. 3321, AFRPL-TR-66-352, Contract No. AF 04(611)-11215, December 1966.
- 19. Aerojet-General Corporation, Quarterly Progress Report No. 1, AFRPL-TR-66-159, Contract No. AF 04(611)-11419, "The Development and Evaluation of a Hydrocarbon Binder for High Energy Solid PropelJants," June 1966.
- 20. Aerojet-General Corporation, Report No. 1030-81Q-2, AFRPL-TR-66-257, Contract No. AF 04(611)-11419, October 1966.
- 20a. Aerojet-General Corporation, Report No. 1030-81Q-3, AFRPL-TR-67-5, Contract No. AF 04(611)-11419, January 1967.
- 21. Aerojet-General Corporation, Report No. 1030-81Q-5, AFRPL-TR-67-200, Contract No. AF 04(611)-11419, July 1967.
- 22. Aerojet-General Corporation, Report No. 1030-81F (Final for March 1966 March 1967), AFRPL-TR-67-158, Contract No. AF 04(611)-11419, April 1967.
- 23. Aerojet-General Corporation, AGC Report No. 1023-01-1, AFRPL-TR-66-208, Contract No. AF 04(611)-11535, "Evaluation of the Combustion of a Light Metal Hydride Gelled Fuel with Selected Oxidizers," July 1966.
- 24. Aerojet-General Corporation, AGC Report No. 1023-01-2, AFRPL-TR-66-311, Contract No. AF 04(611)-11535, October 1966.
- 25. Aerojet-General Corporation, Report No. 1023-01-3, AFRPL-TR-67-128, Contract No. AF 04(611)-11535, April 1967.
- 26. Aerojet-General Corporation, Report No. 0162-04QAT-2, Contract No. AF 04(694)-308, "Minuteman Advanced Technology (Propellant) Production Support Program," April 30, 1965.
- 27. Aerojet-General Corporation, BSD-TR-66-28, Vol. IV, Contract No. AF 04(694)-308, "Advanced Technology Propellant Effort," February 1966.

- 28. Aerojet-General Corporation, Report No. 0950-81Q-1, Contract No. DA-01-021-AMC-12110(Z), "Research in High-Energy Propellant Ingredients," July 1965.
- 29. Aerojet-General Corporation, Report No. 0950-81Q-2, Contract No. DA-01-021-AMC-12110(Z), October 1965.
- 30. Aerojet-General Corporation, Report No. 0950-81Q-3, Contract No. DA-01-021-AMC-12110(Z), January 1986.
- 31. Aerojet-General Curporation, Report No. 0950-81Q-4, Contract No. DA-01-021-AMC-12110(Z), April 1966.
- 32. Aerojet-General Corporation, Report No. 0950-81Q-5, Contract No. DA-01-021-AMC-12110(Z), July 1966.
- 53. Aerojet-General Corporation, Report No. 0950-81-F, Contract No. DA-01-021-AMC-12110, Volume I, November 1966.
- 34. Aerojet-General Corporation, Report No. 0950-81 F, Contract No. DA-01-021-AMC-12110, Volume II, November 1966.
- 35. Aerojet-General Corporation, Report No. 0950-81-F, Contract No. DA-01-021-AMC-12110, Volume III, November 1966.
- 36. Aerojet-General Corporation, Report No. 0758-81Q-8, Contract No. DA-04-211-AMC-68, "Research in High-Energy Propellant Ingredients," March 1965.
- 37. Aerojet-General Corporation, Report No. O801-01-6, Contract No. DA-04-495-AMC-255, "Evaluation of High-Energy Materials as Liquid Propellants," January 1965.
- 38. Aerojet-General Corporation, Report No. 0801-02-8, Contract No. DA-04-495-AMC-255, July 1965.
- 39. Aerojet-General Corporation, Report No. 0801-02-9, Contract No. DA-04-495-AMC-255(Z), October 1965.
- 40. Aerojet General Corporation, Report No. 0801-02-10, Contract No. DA-04-495-AMC-255(Z), January 1966.
- 41. Aerojet-General Corporation, Report No. 0801-20-11, Contract No. DA-04-495-AMC-255(Z), April 1966.
- 42. Aerojet-General Corporation, Special Report No. 3, Contract No. DA-04-495-AMC-255(Z), "Research on Alanizine Formulations," January 1966.
- 43. Aerojet-General Corporation, Special Report No. 4, Contract No. DA-04-495-AMC-255, "Research on Beranizine Formulations," December 1966.

- 44. Aerojet-General Corporation, Final Report No. 3344, Contract No. DA-04-495-255, "Evaluation of High-Energy Materials as Liquid Propellants," January 1967.
- 44a. Aerojet-General Corporation, Quarterly Report No. 2, AFRPL-TR-67-275, Contract No. F04-611-67-C-0016, "Heat Transfer Study of Compound A," October 1967.
- 45. Aerojet-General Corporation, Report No. 0235-01-23, Contract Nonr 2655(00), "Research in Fluoro-Nitro Compounds," June 30, 1965.
- 46. Aerojet-General Corporation, Summary Report No. 3132, Contract No. Nonr 2655(00), September 1965.
- 47. Aerojet-General Corporation, Quarterly Report No. 0235-01-24, Contract No. Nonr 2655(00), December 1965.
- 48. Aerojet-General Corporation, Semi-Annual Report No. 0235-01-25/26, Contract No. Nonr 2655(00), September 1966.
- 49. Aerojet-General Corporation, Annual Summary Report No. 3299, Contract No. Nonr 2655(00), October 1966.
- 50. Aerojet-General Corporation, Semi-Annual Report No. 3396, Contract No. Nonr 2655(00), April 1967.
- 51. Aerojet-General Corporation, Report No. 0921-01-3, Contract NOw 65-0309-c, "Investigation of Advanced Hybrid Propellants, August 1965.
- 52. Aerojet-General Corporation, Final Report No. 3163, Contract No. NOw 65-0309-c, February 1966.
- 53. Aerojet-General Corporation, Final Report No. 2937, Contract No. NOw 64-0575-c, "Investigations of Hydrides and Combustion," June 1965.
- 54. Aerojet-General Corporation, Report No. 0971-01-1, Contract No. NOw 65-0660-c, August 31, 1965.
- 55. Aerojet-General Corporation, Final Report No. 3082, Contract No. NOw 65-0660-c, September 1965.
- 56. Aerojet-General Corporation, Report No. 0971-01-2, Contract No. NOw 65-0660-c, November 30, 1965.
- 57. Aerojet-General Corporation, Report No. 0971-01-3, Contract No. NOw 65-0660-c, March 1966.
- 58. Aerojet-General Corporation, Final Report No. 3244, Contract No. NOw 65-0660-c, May 1966.

- 58a. Acrojet-General Corporation, Report No. 1052-81Q-1, Contract No. NOw 66-0463-c, "Investigation of a New Oxidizer for High-Energy Solid Propellants," August 1966.
- 56b. Aerojet-General Corporation, Report No. 1052-81Q-2, Contract No. NOw 66-0465-c, "Investigation of a New Oxidizer for High-Energy Solid Propellants," November 1966.
- 59. Aerojet-General Corporation, Report No. 1052-81Q-3, Contract No. NOw 66-0463-c, "Investigation of a New Oxidizer for High-Energy Solid Propellants," February 1967.
- 60. Aerospace Corporation, Report No. TR 669(9210-02)-2, SSD-TR-66-78, Contract No. AF 04(695)669, "Kinetics of Combustion Product Reactions Involving Chlorine and Fluorine Exchanges," May 1966.
- 61. Air Force Rocket Propulsion Laboratory, Semi-Annual Report No. 4, AFRPL-TR-65-9, "Exploratory Propellant Research," January 1965.
- 62. Air Force Rocket Propulsion Laboratory, Semi-Annual Report No. 2, AFRPL-TR-65-116, "Solid Propellant Synthesis and Evaluation, May 1965.
- 63. Air Force Rocket Propulsion Laboratory, Semi-Annual Report No. 5, AFRPL-TR-65-117, "Exploratory Propellant Research," June 1965.
- 64. Deleted
- 65. Air Force Rocket Propulsion Laboratory, Semi-Annual Report No.5, AFRPL-TR-65-139, "Experimental Evaluation of Advanced Liquid Propellants," July 1965.
- 66. Air Force Rocket Propulsion Laboratory, Final Report, AFRPL TR-65-230, "Crystallographic Studies on LMR-2," November 1965.
- 66a. Air Force Rocket Propulsion Laboratory, AFRPL-TR-65-232, "Mass Spectrometry of Corrosive Oxidizers and Xenon Compounds," December 1965.
- 66b. Air Force Rocket Propulsion Laboratory, AFRPL-TR-66-131, "High Resolution Mass Spectrographic Investigation of Propellant Processes," June 1966.
- 67. Air Force Rocket Propulsion Laboratory, Semi-Annual, AFRPL-TR-66-238, "Exploratory Propellant Chemistry," October 1966.
- 68. Air Force Systems Command, FTD-TT-64-958, Trans. from Khimiya Soyedinenfy Perekis AN SSSR, "Chemistry of Peroxide Compounds," April 1965.
- 68a. Air Force Systems Command, FTD-TT-65-1605, "Kinetics of Thermal Decomposition of Solids," March 1966.

- 69. Air Reduction Company, Inc., Report No. RE-65-110-CRE-32, AFRPL-TR-65-160, Contract No. AF 04(611)-9970, "Research on High-Energy Rocket Oxidizers," June 1965.
- 70. Air Reduction Company, Inc., Report No. RE-66-060-CRE-40, Contract No. AF 04(611)-11374, "Ozono Feasibility Study," March 15, 1966.
- 71. Air Reduction Company, Inc., Quarterly Report No. 2, AFRPL-TR-66-155, Contract No. AF 04(611)-11374, and AF 04(611)-11414, June 1966.
- 72. Air Reduction Company, Inc., Quarterly Report No. 3, AFRPL-TR-66-266, Contract No. AF 04(611)-11374 and AF 04(611)-11414, September 1966.
- 73. Air Reduction Company, Inc., Quarterly Report No. 4, AFRPL-TR-67-14, Contract No. AF 04(611)-11374 and AF 04(611)-11414, December 1966.
- 74. University of Alabama, Quarterly Report No. 2, Contract No. DA-01-009-AMC-48, "Thermal Properties of Metal Hydrides," January 1965.
- 75. Allied Chemical Corporation, Quarterly Progress Report No. 24, Contract No. DA-30-069-ORD-2638, "Research on High-Energy Oxidizers for Advanced Solid Rocket Propellants," March 1965.
- 76. Allied Chemical Corporation, Quarterly Progress Report No. 25, Contract No. DA-Ol-O21-AMC-12264, "High-Energy Oxidizers Research," June 1965.
- 77. Allied Chemical Corporation, Progress Report No. 26, Contract No. DA-30-069-ORD-2638, "Research on High-Energy Oxidizers for Advanced Solid Rocket Propellants," September 30, 1965.
- 78. Allied Chemical Corporation, Progress Report No. 27, Contract No. DA-30-069-ORD-2638, December 30, 1965.
- 79. Allied Chemical Corporation, Progress Report No. 28, Contract No. DA-01-021-AMC-12264(Z), March 1966.
- 80. Allied Chemical Corporation, Progress Report No. 29, Contract No. DA-01-021-AMC-12264(Z), June 1966.
- 81. Allied Chemical Corporation, Final Report, Contract No. DA-01-021-AMC-12264, "Research on High-Energy Oxidizers for Advanced Solid Rocket Propellants: Liquid Propellant Identification and Characterization," November 1966.
- 82. American Cyanamid Company, Annual for 1964 and Final 1959-1964, Contract No.
 NOrd 18728, "Solid Rocket Propellant Research and Development," February 1965.
- 83. American Cyanamid Company, Progress Report No. 5, Contract No. NOw 64-0486-ci, "Scaleup of New Propellant Oxidizers," June 1965.

- 84. American Cyanamid Company, Progress Report No. 6, Contract No. NOw 64-0486-ci, August 1965.
- 85. American Cyanamid Company, Final Report, Contract No. NOw 64-0486-ci, January 1966.
- 85a. American Cyanamid Company, Progress Report No. 1, Contract No. NOw 65-0277-c, "Solid Rocket Propellant Research and Development," March 1965.
- 85b. American Cyanamid Company, Progress Report No. 2, Contract No. NOw 65-0277-c, "Solid Rocket Propellant Research and Development," June 1965.
- 85c. American Cyanamid Company, Progress Report No. 3, Contract No. NOw 65-0277-c, "Solid Rocket Propellant Research and Development," September 1965.
- 86. American Cyanamid Company, Annual for 1965, Contract No. NOw 65-0277-c, "Solid Rocket Propellant Research and Development," January 1966.
- 87. American Cyanamid Company, Progress Report No. 1, Contract No. NOw 66-0397-c, "Solid Rocket Propellant Research and Development," April 1966.
- 87a. American Oil Company, Second Annual Report, Contract No. DA-31-124-AROD-78 "The FO Radical and High Pressure Reactions of N_2F_2 ," February 1965.
- 88. American Oil Company, Quarterly Report No. 9, Contract No. DA-31-124-AROD-78, "The FO Radical and High Pressure Reactions of N_2F_2 ," May 1965.
- 89. American Oil Company, Quarterly Report No. 10, Contract No. DA-31-124-AROD-78, August 1965.
- 90. American Oil Company, Quarterly Report No. 11, Contract No. DA-31-124-AROD-78, November 1965.
- 91. Army Missile Command, Report No. RK-TR-65-4, "Mass Spectrometric Studies of IBA," August 1965.
- 92. Army Missile Command, Report No. RK-TR-66-12, Volume I, "Liquid Propellant Performance Calculations," August 1966.
- 93. Atlantic Research Corporation, Report No. RPL-TR-65-6, TR-PL-5029-06, Contract No. AF 04(611)-8547, "Development of High-Energy Solid Propellant Formulations," January 1965.
- 94. Atlantic Research Corporation, Annual Report No. TR-PL-8847, AFRPL 65-106, AF 04(611)-8547, March 1966.
- 95. Atlantic Research Corporation, Report No. AFRPL-TR-65-11, Contract No. AF 04(611)-9709, "High-Energy Solid Propellant Efficiency Investigation," July 1965.

- 96. Atlantic Research Corporation, Report No. AFRPL-TR-66-277, Contract No. AF 04(611)-11602, "Stabilization of the LMH-2/MMH Fuel," October 1966.
- 97. Atlantic Research Corporation, Report No. AFRPL-TR-67-15, Contract No. AF 04(611)-11602, January 1967.
- 98. Atlantic Research Corporation, Final Report, Contract No. AF 49(638)-1131, "A Study of the Hydrogen Fluorine Reaction," February 1966.
- 99. Atlantic Research Corporation, QTSR 10, Contract No. AF 49(638)-1169, "Research on the Deflagration of High-Energy Solid Oxidizers," January 1965.
- 100. Atlantic Research Corporation, QTSR 11, Contract No. AF 49(638)-1169, May 1965.
- 101. Atlantic Research Corporation, QTSR 12, Contract No. AF 49(638)-1169, August 1965.
- 102. Atlantic Research Corporation, Final Technical Report, Contract No. AF 49(638)-1169, November 1965.
- 102a. Atlantic Research Corporation, Final Technical Report, QTSR 1, Contract No. AF 49(638)-1169, March 1966.
- 103. Atlantic Research Corporation, QTSR 2, Contract No. 49(638)-1645, June 1966.
- 104. Atlantic Research Corporation, QTSR 3, Contract No. AF 49(638)-1645, September 1966.
- 104a. Atlantic Research Corporation, QTSR 7, Contract No. Nonr 4065(00), "A Study of the Explosion Limits of Simple Difluoramino Compounds," March 1965.
- 104b. Atlantic Research Corporation, QTSR 8, Contract No. Nonr 4065(00), May 1965.
- 104c. Atlantic Research Corporation, QTSR 9, Contract No. Nonr 4065(00), June 1965.
- 105. Atlantic Research Corporation, QTSR 10, Contract No. Nonr 4065(00), September 30, 1965.
- 105a. Atlantic Research Corporation, Interim Report, Contract No. Nonr 4065(00), January 1966.
- 105b. Atlantic Research Corporation, Semi-Annual PR 1, Contract No. Nonr 4065(00), July 1966.
- 106. Atlantic Research Corporation, Semi-Annual FR 2, Contract No. Nonr 4065(00), May 1967.
- 107. Atlantic Research Corporation, Quarterly Progress Report No. 2, TR-PL-6325-02-C, Contract No. NOw 64-0656-c, "Solid Propellant Research and Development Theoretical Performance Calculations," February 1965.

- 108. Atlantic Research Corporation, Quarterly Progress Report No. 3, TR-PL-6325-02-0, Contract No. NOw 64-0656-c, May 1965.
- 109. Atlantic Research Corporation, Final Report, TR-PL-6325-04-0, Contract No. NOw 64-0656-c, December 1965.
- 130. Atlantic Research Corporation, Quarterly Progress Report No. 2, TR-PL-8735-02, Contract No. NOw 65-0628-c, "Evaluation of a High-Energy Solid Propellant," January 1966.
- 111. Atlantic Research Corporation, Quarterly Progress Report No. 3, Contract No. NOw 65-0628-c, March 1966.
- 1.12. Atlantic Research Corporation, Final Report, TR-PL-9273, Contract No. NOw 65-0628-c, December 1966.
- 112a. Austin, T. E., J. B. Hynes and L. A. Bigelow, ICRPG Propellant Ingredient Synthesis Conference, St. Paul, Minnesota, September 20-21, 1966, pp. 129-134.
- 113. Battelle Memorial Institute (Defense Metals Information Center), DMIC Tech Note, "Compatibility of Materials with Fluorine and Fluorine-Base Oxidizers," April 1965.
- 114. Battelle Memorial Institute, Quarterly Progress Report No. 3, Contract No. AF O4(611)-9698, "High-Pressure Research Toward High-Energy Propellants," December 1964.
 - 115. Battelle Memorial Institute, Annual Report No. RPLTDR-65-103, (April 1964 March 1965) Contract No. AF O4(611)-9698, June 1965.
 - 116. Battelle Memorial Institute, Quarterly Progress Report No. 4, Contract No. AF 04(611)-9698, June 30, 1965.
 - 117. Battelle Memorial Institute, Quarterly Progress Report No. 6, Contract No. AF C4(611)-9698, December 31, 1965.
 - 118. Battelle Memorial Institute, Quarterly Progress Report No. 1, Contract No. AF 04(611)-11377, "High Pressure Research Toward High Energy Propellants," March 1966.
- 119. Battelle Memorial Institute, Quarterly Progress Report No. 2, Contract No. AF 04(611)-11377, June 1966.
- 120. Battelle Memorial Institute, Quarterly Progress Report No. 3, Contract No. AF 04(611)-11377, September 1966.
- 121. Callery Chemical Company, Quarterly Report No. 12, Contract No. DA-31-124-AROD-12, "Research and Development on Fluorine-Based Oxidizers," March 22, 1965.

- 122. Callery Chemical Company, Quarterly Report No. 13, Contract No. DA-13-124-AROD-12, June 22, 1965.
- 182a. Callery Chemical Company, Annual Report, Contract No. DA-13-124-AROD-12, September 1965.
- 122b. Callery Chemical Company, Quarterly Report No. 15, Contract No. DA-13-124-AROD-12, December 1965.
- 123. Callery Chemical Company, Quarterly Report No. 16, Contract No. DA-31-124-AROD-12, March 1966.
- 123a. Callery Chemical Company, Quarterly Report No. 17, Contract No. DA-31-124-AROD-12, June 1966.
- 124. Callery Chemical Company, Quarterly Progress Report No. 5, Contract No. NOw 64-0243d, "Solid Propellant Additives Research," June 1965.
- 125. Callery Chemical Company, FTSR, Contract No. NOw S4-0243d, December 1965.
- 126. CPIA, Publication No. 70, Minutes 21st Meeting, "Working Group on Analytical Chemistry," March 1965.
- 127. CPIA, Publication No. 99, "Incidents Reflecting the Sensitivity of New Materials," December 1965.
- 128. CPIA, Publication No. 141, Volumes I and II, "2nd ICRPG/AIAA Solid Propulsion Conference," Anaheim California, June 6-8, 1967.
- 129. CPIA, Publication No. 143, "Liquid Propulsion Design and Data Handbooks," an annotated bibliography, April 1967.
- 130. Denver Research Institute, First Quarterly Technical Report 558-09-Q, Contract No. AF 04(611)-10782, "Spectrometric Evaluation of Metal Containing Fuels," September 1965.
- 131. Denver Research Institute, Second Quarterly Technical Report 558-1265-Q, Contract No. AF 04(611)-10782, December 1965.
- 132. Denver Research Institute, Third Quarterly Technical Report 558-6603-Q, Contract No. AF 04(611)-10782, March 1966.
- 133. Denver Research Institute, Final Report 558-6608-F, Contract No. AF 04(611)-10782, July 1967.
- 134. Denver Research Institute, First Quarterly Report, AFRPL-TR-67-38, Contract No. FO 4611-67-c001, "Identification of Exhaust Species from the Combustion of LM and LMH Fuels," February 1967.

- 135. Denver Research Institute, Second Quarterly Report 943-6703-Q, AFRPL-TR-67-101, Contract No. FO 4611-67-c001, March 1967.
- 155a. Denver Research Institute, Third Quarterly Report 2408, AFRPL-TR-67-206, Contract No. FO 4611-67-c001, July 1967.
- 136. Douglas Astropower, AFML-TR-65-414, Contract No. AF 33(657)-9162, "Compatibility of Structural Materials with High Performance O-F Liquid Oxidizers," November 1965.
- 137. Douglas Astropower, Quarterly Report No. 144-Q-6, Contract No. DA-31-124-AROD-115, "Solution and Conductivity Studies in Fluorine Containing Oxidizers," January 1965.
- 138. Douglas Astropower, Quarterly Report No. 144-Q-7, Contract No. DA-31-124-AROD-155, April 1965.
- 139. Douglas Astropower, Quarterly Report No. 144-Q-8, Contract No. DA-31-124-AROD-115, June 1965.
- 140. Douglas Astropower, Quarterly Report No. 144-Q-9, Contract No. DA-31-124-AROD-115, September 1965.
- 141. Douglas Astropower, Final Report No. SM 49121 (144-F), Contract No. DA-31-124-AROD-115, "Solution and Conductivity Studies of Fluorine-Containing Oxidizers and Ionic Fluoride Compounds," January 1966.
- 142. Dow Chemical Company, Annual Report No. AR-4Q-64, AFRPL-TR-65-41, Contract No. AF 04(611)-7554(3), "Development and Evaluation of Advanced Solid Propellants," February 1965.
- 143. Dow Chemical Company, Quarterly Progress Report No. AR-1Q-65, Contract No. AF 04(611)-7554, May 1965.
- 144. Dow Chemical Company, Quarterly Progress Report No. AR-2Q-65, Contract No. AF 04(611)-7554, August 1965.
- 145. Dow Chemical Company, Quarterly Progress Report No. AR-3Q-65, Contract No. AF 04(611)-7554, November 1965.
- 146. Dow Chemical Company, Final Report No. AF-4Q-65, AFRPL-TR-66-44, Contract No. AF 04(611)-7554(4), February 1966.
- 146a. Dow Chemical Company, Report No. NF-2Q-64, Contract No. AF 04(611)-9958, "Sensitivity Studies on NF Compounds," January 1965.
- 147. Dow Chemical Company, Report No. NF-3Q-65, Contract No. AF 04(611)-9958, "Sensitivity Studies on NF Compounds," April 1965.

- 147a. Dow Chemical Company, Report No. NF-4Q-65, AFRPL-TR-65-185, Contract No. AF O4(611)-9958, October 1965.
- 148. Dow Chemical Company, Quarterly Progress Report No. T-201-4Q-66, AFRPL-TR-67-35, Contract No. AF 04(611)-11201, "Investigation and Compilation of the Thermodynamic Properties of Rocket Exhaust Products," January 1967.
- 149. Dow Chemical Company, Quarterly Progress Report No. 2, Contract No. AF 04(611)-11202, "Investigation of the Thermodynamic Properties and the Decomposition Kinetics of Propellant Ingredients," June 1966.
- 150. Dow Chemical Company, Final Report No. T-202-4Q-66, AFRPL-TR-66-176, Contract No. AF 04(611)-11202, January 1967.
- 151. Dow Chemical Company, Quarterly Progress Report No. T-202-1Q-66, Contract No. AF 04(611)-11202, "Investigation and Compilation of the Thermodynamic Properties of Rocket Exhaust Products," April 1966.
- 151a. Dow Chemical Company, Quarterly Progress Report No. T-202-2Q-66, AFRPL-TR-66-176, Contract No. AF 04(611)-11202, July 1966.
- 151b. Dow Chemical Company, Quarterly Progress Report No. T-202-3Q-66, AFRPL-TR-66-288, Contract No. AF 04(611)-11202, September 1966.
- 15lc. Dow Chemical Company, Quarterly Progress Report No. NF-1Q-66, Contract No. AF 04(611)-11395, "Kinetics of Decomposition of Solid Oxidizers," April 1966.
- 151d. Dow Chemical Company, Quarterly Progress Report No. NF-2Q-66, Contract No. AF 04(611)-11395, July 1966.
- 151e. Dow Chemical Company, Quarterly Progress Report No. NF-3Q-66, AFRPL-TR-66-272, Contract No. AF 04(611)-11395, October 1966.
- 151f. Dow Chemical Company, Final Report No. T-202-4Q-66, AFRPL-TR-66-176, Contract No. 04(611)-11202, January 1967.
- 152. Dow Chemical Company, Quarterly Progress Report No. NF-4Q-66, AFRPL-TR-67-60, Contract No. AF 04(611)-11395, "Kinetics of Decomposition of Solid Oxidizers," January 1967.
- 153. Dow Chemical Company, Quarterly Technical Report No. 5, NF-1Q-67, AFRPL-TR-67-117, Contract No. AF 04(611)-11395, April 1967.
- 153a. Dow Chemical Company, Quarterly Technical Report No. 6, NF-2Q-67, AFRPL-TR-67-197, Contract No. AF 04(611)-11395, July 1967.
- 154. Dow Chemical Company, Quarterly Progress Report No. FS-1Q-66, Contract No. AF 04(611)-11400, "High Energy Propellant Ingredient Research and Development," April 1966.

- 155. Dow Chemical Company, Quarterly Frogress Report No. FS-2Q-66, AFRPL-TR-66-126, Contract No. AF 04(611)-11400, July 1966.
- 156. Dow Chemical Company, Summary Report No. FS-1S-66, AFRPL-TR-66-223, Contract No. AF 04(611)-11400, "LMH-1, A Promising High Energy Solid Rocket Fuel," October 1966.
- 157. Dow Chemical Company, Quarterly Progress Report No. FS-3Q-66, AFRPL-TR-66-245, Contract No. AF 04(611)-11400, "High Energy Propellant Ingredient Research and Development," October 1966.
- 158. Dow Chemical Company, Quarterly Progress Report No. HZ-2Q-66, AFRPL-TR-66-308, Contract No. AF 04(611)-11606, "LMH-1/Hydrazine Heterogeneous Propellant Development," November 1966.
- 159. Dow Chemical Company, Quarterly Progress Report No. T-0009-1Q-67, AFRPL-TR-67-112, Contract No. F0-4611-67-c0025, "Investigation and Compilation of the Thermodynamic Properties of High Temperature Chemical Species," April 1967.
- 160. Dow Chemical Company, Quarterly Progress Report No. T-0025-1Q-67, AFRPL-TR-67-113, Contract No. F0-4611-67-c0025, "Investigation of the Thermodynamic Properties of Propellant Ingredients and the Burning Mechanisms of Propellants," April 1967.
- 161. Dow Chemical Company, Report No. TR-SL-186441, Contract No. Nonr 3814(00), "Kinetics of the Reaction of Fluorine with Difluoramino Radicals and the Dissociation of Fluorine," May 1967.
- 162. Dow Chemical Company, Technical Report No. 1, Contract No. Nonr 4968(00), "Haloaluminum Hydrides and Deuterides Ditetrahydrofuran Adducts," June 1966.
- 162a. E.I. du Pont de Nemours and Company, Report No. ELab-B-5-44, Contract No. AF 04(611)-8169, "Synthesis of High-Energy Polymers and Solid Oxidizers," December 1964.
- 163. E.I. du Pont de Nemours and Company, Final Report, AFRPL-TR-65-104, Contract No. AF 04(611)-8169, "Synthesis of High-Energy Polymers and Solid Oxidizers," June 1965.
- 163a. E.I. du Pont de Nemours and Company, Quarterly Report No. SLC-6, Contract No. AF O4(611)-8530, "Radiation-Chemistry Oxidizer Synthesis Study," June 1964.
- 163b. E.I. du Pont de Nemours and Company, Report No. ELab-B-9-8, Contract No. AF O4(611)-10530, "Testing of Advanced High-Energy Solid Propellants," May 1965.
- 163c. E.I. du Pont de Nemours and Company, Quarterly Report No. ELab-B-9-11, Contract No. AF 04(611)-10530, August 1965.

- 164. E.T. du Pont de Nemours and Company, Final Report, AFRPL-TR-66-50, Contract No. AF 04(611)-10530, "Testing of Advanced High-Energy Solid Propellants," March 1966.
- 165. Dynamic Science, Third Quarterly Report No. SN-86-9, Contract No. AF 04(611)-11616, "Effects of Additives on the Combustion of Hydrazine," February 1967.
- 166. Esso Research and Engineering Company, Quarterly Progress Report No. ED-3, Contract No. AF O4(611)-9969, "Desensitization of Available High Energy NF Compounds," March 31, 1965.
- 167. Esso Research and Engineering Company, Annual Report No. ED-4, AFRPL-TR-65-156, Contract No. AF 04(611)-9969, July 1965.
- 168. Esso Research and Engineering Company, Quarterly Progress Report No. ED-5, Contract No. AF 04(611)-9969, September 1965.
- 169. Esso Research and Engineering Company, Report No. ED-6, Contract No. AF 04(611)-9969, December 1965.
- 170. Esso Research and Engineering Company, Report No. ED-7, Contract No. AF 04(611)-9969, March 1966.
- 170a. Esso Research and Engineering Company, Final Report No. ED-7, Contract No. AF 04(611)-9969, December 1966.
- 171. Esso Research and Engineering Company, Quarterly Progress Report No. 1, Contract No. AF O4(611)-10538, "High-Energy Oxidizer Stabilization Studies," April 18, 1965.
- 171a. Esso Research and Engineering Company, Quarterly Progress Report No. 2, Contract No. AF 04(611)-10538, July 1965.
- 172. Esso Research and Engineering Company, Quarterly Progress Report No. 3, Contract No. AF 04(611)-10538, October 18, 1965.
- 173. Esso Research and Engineering Company, Quarterly Progress Report No. 4, Contract No. AF 04(611)-10538, January 1966.
- 173a. Esso Research and Engineering Company, Final Report, AFRPL-66-145, Contract No. AF 04(611)-10538, July 1966.
- 174. Esso Research and Engineering Company, Quarterly Progress Report No. 65-1, Contract No. DA-O1-O21-AMC-11735, "Research on Advanced Solid Propellants," March 1965.
- 175. Esso Research and Figineering Company, Quarterly Progress Report No. 65-2, Contract No. DA-O1-O21-AMC-11735, June 1965.

- 176. Esso Research and Engineering Company, Quarterly Progress Report No. 65-3, Contract No. DA-01-021-AMC-11735 (Z), September 10, 1965.
- 177. Esso Research and Engineering Company, Quarterly Progress Report No. 65-4, Contract No. DA-01-001-AMC-11735 (Z), December 10, 1965.
- 178. Marco Research and Engineering Company, Quarterly Progress Report No. 66-1, Contract No. DA-01-021-AMC-11735, March 10, 1966.
- 178. Easo Research and Engineering Company, Quarterly Progress Report No. 66-2, Contract No. DA-O1-021-AMC-11735, June 1966.
- 179. Earo Research and Engineering Company, Quarterly Progress Report No. 66-3, Contract No. DA-O1-O21-AMC-11735, September 1966.
- 179a. Esso Research and Engineering Company, Quarterly Progress Report No. 66-4, Contract No. DA-O1-O21-AMC-11735, December 1966.
- 190. Esso Research and Engineering Company, Quarterly Progress Report No. 67-1, Contract No. DA-O1-O21-AMC-11735, March 1967.
- 181. Esso Research and Engineering Company, Second Quarterly Progress Report No. GR-2-FBP-67, Contract No. F0-4611-67-c0012, "Functionality Determination of Binder Prepolymers," March 1967.
- 181a. Esso Research and Engineering Company, Third Quarterly Report No. GR-3-FBP-67, Contract No. FO-4611-67-c0012, June 1967.
- 182. Ethyl Corporation, Quarterly Progress Report No. 6, EC-751, Contract No. AF 04(611)-9376, "Research on Light Metal Fuels and Oxidizer Chemistry, Part 1, Light Metal Fuels," January 1965.
- 183. Ethyl Corporation, Second Annual Technical Summary Report No. EC-793, Part 1, Contract No. AF 04(611)-9376, June 1965.
- 184. Ethyl Corporation, Second Annual Technical Summary Report No. EC-793, Part 2, Contract No. AF 04(611)-9376, June 1965.
- 185. Ethyl Corporation, 7th Quarterly Progress Report, EC-833, Contract No. AF 04(611)-9376, July 1965.
- 186. Ethyl Corporation, 8th Quarterly Progress Report, EC-860, Part I, Contract No. AF 04(611)-9376, October 1965.
- 187. Ethyl Corporation, 3rd Final Report, EC-892, AFRPL-TR-66-210, Contract No. AF 04(611)-9376. June 1966.
- 188. Ethyl Corporation, 7th Quarterly Progress Report, EC-883, Contract No. AF 04(611)-9376, July 1966.

- 189. Ethyl Corporation, Quarterly Progress Report No. 3, EC-755, Contract No. AF 04(611)-9888, "Synthesis of IMH-2," January 1965.
- 190. Ethyl Corporation, Final Report No. EC-795, AFRPL-TR-65-167, Contract No. AF 04(611)-9888, June 1965.
- 191. Ethyl Corporation, 2nd Quarterly Progress Report, EC-842, Contract No. AF 04(611)-10543, "Stability of LMH-2 in Liquid Carriers," August 1985.
- 192. Ethyl Corporation, 3rd Quarterly Progress Report, EC-881, Contract No. AF 04(611)-10543, November 1965.
- 193. Ethyl Corporation, Report No. EC-914, AFRPL-TR-66-274, Contract No. AF 04(611)-10543, August 1966.
- 194. Ethyl Corporation, Report No. EC-927, AFRPL-TR-66-305, Contract No. AF 04(611)-10543, October 1966.
- 195. Etnyl Corporation, Report No. EC-916 (-11390), AFRPL-TR-66-204, Contract No. AF 04(611)-11390, "Tailoring and Improvement of LMH-2," May 1966.
- 196. Ethyl Corporation, Report No. EC-923, AFRPL-TR-66-292, Contract No. AF 04(611)-11390, September 1966.
- 197. Ethyl Corporation, Report No. EC-951, AFRPL-TR-67-28, Contract No. AF 04(611)-11390, December 1966.
- 198. Ethyl Corporation, Report No. EC-902, AFRPL-TR-66-160, Contract No. AF 04(611)-11391, "Stability of LMH-2 in Liquid Carriers," April 1966.
- 199. Ethyl Corporation, Report No. EC-918, AFRPL-TR-66-241, Contract No. AF 04(611)-11391, August 1966.
- 220. Ethyl Corporation, Report No. EC-924, AFRPL-TR-66-293, Contract No. AF 04(611)-11411, "Densification of LMH-2," September 1966.
- 220a. University of Florida, Final Report, Contract No. DA-01-009-ORD-772, "Fluoro-carbon N-F Compounds," August 1959 June 1964.
- 221. General Dynamics/Convair, Final Report No. GD/C DEE-65-021, AFRPL-TR-203, Contract No. AF 04(611)-9968, "Research on High-Energy Rocket Oxidizers,"

 November 1965.
- 222. General Dynamics/Convair, Quarterly Progress Report No. 4, Contract No. AF 04(611)-9968, June 1966.
- 223. Harshaw Chemical Company, Quarterly Technical Summary Report No. HQ-76-8, Contract No. DA-31-124-AROD-76, "Investigation of the Existence of Oxyanions of Fluorine and Nitrogen and the Nitrogen-Fluorine Cations," February 1965.

- 224. Harshaw Chemical Company, Quarterly Technical Report No. HQ-76-9, Contract No. DA-31-124-ARO(D)-76, May 1965.
- 225. Harshaw Chemical Company, Quarterly Technical Summary Report No. HQ-76-10, Contract No. DA-31-124-AROD-76, August 1965.
- 226. Harshaw Chemical Company, Quarterly Technical Report No. HQ-76-11, Contract No. DA-31-124-AROD-76, November 28, 1965.
- 227. Harshaw Chemical Company, Final Technical Report No. HF-76, Contract No. DA-31-124-AROD-76, December 1965.
- 228. Hercules/Allegany Ballistics, TDR No. RPL-TDR-65-142, Volume I, Contract No. AF 04(611)-10742, "Combustion of High-Energy Solid Propellants," July 1965.
- 229. Hercules/Allegany Ballistics, TDR No. RPL-TDR-65-142, Volume II, Contract No. AF 04(6I1)-19742, July 1965.
- 230. Hercules/Allegany Ballistics, AFRPL-TR-66-304, Volume I, Contract No. AF 04(611)-10742, November 1966.
- 231. Hercules/Allegany Ballistics, AFRPL-TR-66-304, Volume II, Contract No. AF 04(611)-10742, November 1966.
- 232. Hercules Research Center, Annual Report No. HRC 65-1, Contract No. DA-31-124-AROD-62,"A Study of the Electronic Configuration and Behavior of the -NF₂ Group," February 1965.
- 233. Hercules Research Center, 9th Quarterly Report, HRC 65-2, Contract No. DA-31-124-AROD-62, May 1965.
- 234. Hercules Research Center, 10th Quarterly Report, HRC 65-3, Contract No. DA-31-124-AROD-62, August 1965.
- 235. Hercules Research Center, 11th Quarterly Report, HRC 65-4, Contract No. DA-31-124-AROD-62, November 1965.
- 236. Hercules Research Center, 3rd Annual Report, HRC 66-1, Contract No. DA-31-124-AROD-62, March 1965 February 1966.
- 237. Hercules Research Center, 13th Quarterly Progress Report, HRC 66-2, Contract No. DA-31-124-AROD-62, May 1966.
- 238. Hercules Research Center, 14th Quarterly Progress Report, HRC 66-3, Contract No. DA-31-124-AROD-62, August 1966.
- 239. Hercules/Allegany Ballistics, 1st Quarterly Report No. AHL-TR-67-17, AFRPL-TR-67-125, Contract No. FO-4611-67-c0052, "Combustion Efficiency Study of High Energy Propellants," April 1967.

- 240. Hercules/Allegany Ballistics, Report No. 58, Contract No. NOOO17-67-c-2407, "Naval Ordnance Systems Command Supporting Research Program," April 1967.
- 241. Hercules/Allegany Ballistics, Annual Report No. ABL-ARPA-X-138, Contract No. NOw 64-0503, "Advanced, Modified Double Base Propellants," March 1965.
- 242. Hercules/Allegany Ballistics, ABL-ARPA Quarterly Technical Summary Report No. 15, Contract No. NOw 66-0103-D, "Evaluation of New High-Energy Ingredients in Solid Propellant Formulations," September 1965.
- 243. Hercules/Allegany Ballistics, ABL-ARPA Quarterly Technical Summary Report No. 17, Contract No. NOw 66-0103-D, Item 2, March 1966.
- 244. Hercules/Allegany Ballistics, ABL-ARPA Quarterly Technical Summary Report No. 18, Contract No. NOw 66-0103-D, June 1966.
- 245. Hercules/Allegany Ballistics, ABL Final Technical Report 66-20, Contract No. NOw 66-0103-D, October 20, 1966.
- 246. Hercules/Allegany Ballistics, ABL Quarterly Progress Report No. 56, Contract No. NOw 66-0533-D, "RMMP Supporting Research Program," July 1966.
- 247. Hercules/Allegany Ballistics, Annual Report No. ABL-TR-67-2, Contract No. NOw 66-0533-D, "Supporting Research Report," February 1967.
- 248. John F. Holman Company, Report No. ERDL-T-1815-65, Contract No. DA-44-009-AMC-930 (T), "Contributions to the Nature of Oxyhalides. III. The Nature of Chlorine Dioxide," February 1966.
- 249. Hynes Chemical Research Corporation, Quarterly Progress Report No. 11, Contract No. DA-31-124-ARO(D)-179, "Fundamental Research on the Direct Fluorination of Organic Compounds," June 1965.
- 250. Hynes Chemical Research Corporation, Quarterly Progress Report No. 12, Contract No. DA-31-124-ARO(D)-179, August 1965.
- 251. Hymes Chemical Research Corporation, Quarterly Progress Report No. 13, Contract No. DA-31-124-ARO(D)-179, November 1965.
- 252. Hypes Chemical Research Corporation, Quarterly Progress Report No. 14, Contract No. DA-31-124-ARO(D)-179, February 1966.
- 253. Hynes Chemical Research Corporation, Quarterly Progress Report No. 15, Contract No. DA-31-124-ARO(D)-179, May 1966.
- 254. Hynes Chemical Research Corporation, Quarterly Progress Report No. 16, Contract No. DA-31-124-ARO(D)-179, August 1966.

- 255. Hyres Chemical Research Corporation, Quarterly Progress Report No. 17, Contract No. DA-31-124-ARC(D)-179, November 1966.
- 256. Hynes Chemical Research Corporation, Quarterly Progress Report No. .18, Contract No. DA-31-124-ARO(D)-179, February 1967.
- 257. Hynes Chemical Research Corporation, Terminal Report, Contracts Nos. DA-31-124-ARO(D)-46; -179, September 1962 May 1967.
- 257a. University of Idaho, First Annual Report, Contract No. Nonr 4217(00), "New Hypofluorites Containing Nitrogen," October 1964.
- 258. University of Idaho, 6th Quarterly Technical Report, Contract No. Nonr 4217(00), "New Hypofluorites Containing Nitrogen," January 1965.
- 259. University of Idaho, Second Annual Report, Contract No. Nonr 4217(00), October 1965.
- 260. IIT Research Institute, Report No. IITRI-C6024-20, Contract No. AF 04(611)-9566, "A Study of the Fundamentals of Liquid Propellant Sensitivity," March 1965.
- 260a. IIT Research Institute, 6th Technical Report No. IITRI-C6024-24, Contract No. AF 04(611)-9566, June 1965.
- 261. IIT Research Institute, Report No. IITRI-C6034-11, Contract No. AF 04(611)-9961, "Oxidizer Stability," March 1965.
- 262. IIT Research Institute, Report No. IITRI-C6034-15, Contract No. AF 04(611)-9961, August 1965.
- 263. IIT Research Institute, Final Report No. IITRI-C206-13, Contract No. AF 49(638)-1091, "Determination of the Structure of O₃F₂," June 1965.
- 264. IIT Research Institute, Yearly Summary Report No. IITRI-C227-10, Contract No. AF 49(638)-1175, "Research on Chemistry of O_3F_2 and O_2F_2 ," January 1965.
- 265. IIT Research Institute, Report No. IITRI-C227-11, Contract No. AF 49(638)-1175, April 30, 1965.
- 266. IIT Research Institute, Arnual Report No. IITRI-C227-14, Contract No. AF 49(638)-1175, March 1966.
- 267. IIT Research Institute, Report No. IITRI-C227-16, Contract No. AF 49(638)-1175, "Advanced Oxidizer Chemistry," August 1966.
- 267a. Imperial Chemical Industries Limited, Annual Report No. 18, Contract No. N-62558-4076, "Research on Ultra-High Impulse Propellant Systems," December 1964.

- 268. Imperial Chemical Industries Limited, Quarterly Progress Report No. 19, Contract No. N62558-427., "Research on Ultra-High Impulse Propellant Systems," March 1965.
- 269. Imperial Chemical Industries Limited, Quarterly Progress Report No. 20, Contract No. N62558-4272, June 1965.
- 270. Imperial Chemical Industries Limited, Quarterly Progress Report No. 21, Contract No. N62558-4272, September 1965.
- 271. Imperial Chemical Industries, Quarterly Progress Report No. 22, Contract No. N62558-4272, December 1965.
- 272. Imperial Chemical Industries, Quarterly Progress Report No. 23, Contract No. N62558-4272, March 1966.
- 273. Imperial Chemical Industries, Quarterly Progress Report No. 24, Contract No. N62558-4272, June 1966.
- 274. Imperial Chemical Industries, Data Sheets for Compounds prepared under Contracts Nos. N62558-2576, -3318, -4076, -4272, July 1960 June 1966.
- 275. Institute for Defense Analyses, Report No. RP-P-250, IDA/HQ66-4647, Contract No. SD-50, Task T-45, "An Evaluation of the Hazards Assoicated with Beryllium in Rocket Fuels," March 1966.
- 275a. Jache, A. W., A. J. Klanica, and J. P. Faust, ICRPG Propellant Ingredient Synthesis Conference, October 3-4, 1967, Columbus, Ohio.
- 276. King's College, 2nd Research Report, Contract No. Nonr(G)-00059-63, "On the Chemistry of the Oxy-Fluoroanions of Nitrogen and Chlorine," March 1965.
- 276a. Lawless, E. W., and G. J. Hennon, ICRPG Propellant Ingredient Synthesis Conference, September 20-21, 1966, St. Paul, Minnesota, pp. 1-7.
- 276b. Lawless, E. W., discussions ICRPG Propellant Ingredient Synthesis Conference, October 3-4, 1967, Columbus Ohio.
- 276c. Lawton, E. A., D. Pilipovich, O. Kalmon, I. Lysyj, R. Sakaida, F. Bauer, J. Quaglino, and V. Dayan, Bulletin 9th Liquid Propulsion Symposium, Volume I, St. Louis, Missouri, October 25-27, 1967, pp. 287-296.
- 277. Lockheed Propulsion Company, Quarterly Progress Report No. 6, AFRPL-TR-65-76, Contract No. AF 04(611)-9097, "Characterization and Evaluation of Light Metal Hydrides," 30 March 1965.

- .78. Lo Rhered Propulsion Company, Report No. LPC-637-Q8, AFRPL-TR-65-769, Contract No. AF OM(611)-9097, August 1965.
- 279. Lockheed Propulsion Company, Final Report No. 666-F, AFRPL-TR-65-37, Contract No. AF 04(611)-9893, March 1965.
- 280. Lockheed Propulsion Company, Report No. LPC-716-Q1, AFRPL-TR-66-48, Contract No. AF 04(611)-11219, March 1966.
- 281. Lockheed Propulsion Company, Report No. LPC-716-Q2, AFRPL-TR-66-114, Contract No. AF 04(611)-11219, June 1966.
- 282. Lockheed Propulsion, Report No. LPC-716-Q3, AFRPL-TR-66-191, Contract No. AF 04(611)-11219, August 1966.
- 282a. Lockheed Propulsion Company, Report No. LPC-720-Q1, AFRPL-TR-66-61, Contract No. AF 04(611)-11385, "Kinetics of Decomposition of Solid Oxidizers, March 1966.
- 282b. Lockheed Propulsion Company, Report No. LPC-720-Q2, AFRPL-TR-66-61, Contract No. AF 04(611)-11385, June 1966.
- 285. Lockheed Propulsion Company, Report No. LPC-720-Q3, AFRPL-TR-66-247, Contract No. AF 04(611)-11385, October 1966.
- 283a. Lockheed Propulsion Company, Report No. LPC-720-Q4, AFRPL-TR-67-8, Contract No. AF 04(611)-11385, January 1967.
- 284. Maremont Corporation, Final Summary Report, Contract Nonr 3597(00), "Research on Substituted Fluorocarbons," November 1963 April 1965.
- 284a. Midwest Research Institute, "A Critical Review of the Chemistry of Advanced Oxidizers, Volumes I and II," (31 December 1965) and "A Critical Review of the Chemistry of Advanced Fuels." (1 March 1966). Contract No. DA-31-124-ARO(D)-18, Mod. No. 283.
- 284b. Midwest Research Institute, Final Report, AFRPL-TR-66-227, Contract No. AF 04(611)-10921," Structural and Synthesis Study of Inorganic Oxidizers," October 1966.
- 285. Minnesota Mining and Manufacturing Company, Quarterly Progress Report No. 1, Contract No. AF 04(611)-67-c0030, "High Density, High Temperature Binders for Solid Propellants," March 1967.
- 286. Minnesota Mining and Manufacturing Company, Quarterly Progress Report No. 1, Contract No. AF 33(611)-11200, "High Density, High Temperature Binders for Solid Propellants," January 1966.
- 287. Minnesota Mining and Manufacturing Company, Quarterly Progress Report No. 2, Contract No. 33(611)-11200, April 1966.

- 28. Minnesota Mining and Manufacturing Company, Quarterly Progress Report No. 3, Contract No. AF 04(611)-11200, August 1966.
- .89. Minnesota Mining and Manufacturing Company, Quarterly Progress Report No. 4, Contract No. AF 04(611)-11200, Septem er 1966.
- tract No. AF 08(635)-5234, "Explosives for Supersonic Munition," October 1966.
- Minnesota Mining and Manufacturing Company, Report No. 1, Contracts Nos. NOw 64-0399-d, NOw 65-0209-d, "Chemical Research as Related to Advanced Solid Propollants," March 1965.
- 792. Minnesota Mining and Manufacturing Company, Annual Report No. 4, Contract No. NOw 64-0399-e-1, 1 January 31 December 1965.
- 293. Minnesota Mining and Manufacturing Company, Report No. 2, Contract No. NOw 65-0209-c, June 1965.
- 294. Minnesota Mining and Manufacturing Company, Report No. 3, Contract No. NOw 65-0209-c, September 1965.
- 295. Minesota Mining and Manufacturing Company, Annual Report No. 4, Contract No. NOw 65-0209-c, April 1965.
- 296. Minnesota Mining and Munufacturing Company, Report No. 1, Contracts Nos. NOw 65-C209-c, 66-O466-c, March 1966.
- 297. Minnesota Mining and Manufacturing Company, Report No. 2, Contract No. NOw 66-0466, June 1966.
- 298. Minnesota Mining and Manufacturing Company, Report No. 3, Contract No. NOw 66-0466, September 1966.
- 299. Minnesota Mining and Manufacturing Company, Annual Report No. 4, Contract No. NOw 66-0466, December 1966.
- 300. Minnesota Mining and Manufacturing Company, Report No. 5, Contract No. NOw 66-0466, May 1967.
- 301. Monsanto Research Corporation, Final Technical Summary Report, AFRPL-TR-65-62, Contract No. AF 04(611)-8520, "Synthesis of New Oxidizers for Solid Propellants," October 1963 January 1965.
- 302. Monsanto Research Corporation, Report No. MRB-4022-Q3, Contract No. DA-18-035-AMC-384, "Investigation of Gelled Liquid Oxidizing Agents," March 1965.
- 302a. National Research Corporation, Norton Expl. Research Division, Quarterly Letter, Contract No. Nonr 3608(00), "Thermochemistry of Selected Compounds," quoted in reference 50.

- 303. National Research Corporation, Norton Expl. Research Division, Quarterly Letter, Contract No. Nonr 3608(00), "Thermochemistry of Selected Compounds," September 1966.
- 303%. Naval Ordnance Test Station Report No. NOTS-TP-3792, NAVWEPS 8733, "Research in Chemistry, April 1965.
- 304. Naval Ordnance Test Station, Technical Progress Report No. 397, NOTS-TP-3823, "Research in Chemistry," May 1965.
- 305. Naval Ordnance Test Station, NOTS-TP-3840, Chapter 2, "Propulsion Development Department Review, Chapter 2, "Propellants, Materials, and Ignition," June 1965.
- 306. Naval Ordnance Test Station, Technical Progress Report No. 407, NOTS-TP-3881, "Research in Chemistry," October 1965.
- 306a. Naval Ordnance Test Station, Technical Progress Report No. 418, NOTS-TP-3940, "Research in Chemistry," September 1965.
- 307. Naval Ordnance Test Station, NAVWEPS Report 8795, NOTS-TP-3897, "Thermodynamic Investigation of 23 Condensible Propellant-Oxidizer Combinations for a Deep-Operating Torpedo," October 1965.
- 308. Naval Ordnance Test Station, Technical Progress Report No. 423, NOTS-TP-4031, "Research in Chemistry," March 1966.
- 308a. Naval Ordnance Test Station, Quarterly Progress Report, NOTS-TP-4076, "Research in Chemistry," March 1966.
- 309. Naval Ordnance Test Station, Quarterly Progress Report, NOTS-TP-4167, "Research in Chemistry," April-June 1966.
- 310. Naval Ordnance Test Station, Quarterly Progress Report, NOTS-TP-4215, "Research in Chemistry," September 1966.
- 311. Naval Ordnance Test Station, NOTS-TP-4237, Chapter ?, "1966 Exploratory and Foundational Research," April 1967.
- 312. Naval Ordnance Test Station, Quarterly Progress Report, NOTS-TP-4282, "Research in Chemistry," December 1966.
- 313. Naval Ordnance Test Station, NOTS-TP-4266, "Cross-linked Modified Cellulose Nitrate," March 1967.
- 314. Naval Ordnance Test Station, Quarterly Progress Report, NOTS-TP-4339, "Research in Chemistry," May 1967.

- 330. Olin Mathieson Chemical Corporation, Final Report, Contract No. AF 49(638)-113/, "Study of Superoxidizers," March 1965.
- 531. Olin Mathieson Chemical Corporation, Final Report (Part I), Report No. NH-2486, Contract No. DA-19-020-ORD-5648, DA-31-069-ORD-2632, "High Energy Propellant Ingredient Research," February 1965.
- Olin Mathieson Chemical Corporation, Final Report (Part II), Report No. NH-2486, Contract No. DA-19-020-0RD-5648, DA-31-069-0RD-2632, February 1965.
- Ozark-Mahoning Company, Quarterly Technical Summary Report, Contract No. AF 04(611)-9556, "Synthesis of New Fluorine Containing Compounds," January 25, 1965.
- 554. Ozark-Mahoning Company, 1st Quarterly Technical Summary Report, 3rd year, Contract No. AF 04(611)-9556, March 1966.
- 335. Ozark-Mahoning Company, Annual Summary Report, AFRPL-TR-66-49, Contract No. AF 04(611)-9556, March 1966.
- 336. Ozark-Mahoning Company, Quarterly Technical Summary Report, AFRPL-TR-66-180, Contract No. AF 04(611)-9556, June 1966.
- 337. Pennsalt Chemicals Corporation, Quarterly Progress Report No. 8, Contract No. AF 04(611)-8518, "Synthesis of Inorganic Oxidizers," March 1965.
- 338. Pennsalt Chemicals Corporation, Quarterly Progress Report No. 9, Contract No. AF 04(611)-8518, June 1965.
- 339. Pennsalt Chemicals Corporation, Quarterly Progress Report No. 10, Contract No. AF 04(611)-8518, September 1965.
- 340. Pennsalt Chemicals Corporation, Quarterly Progress Report No. 11, Contract No. AF 04(611)-8518, December 1965.
- 341. Pennsalt Chemicals Corporation, Quarterly Progress Report No. 12, Contract No. AF 04(611)-8518, March 1966.
- 342. Pennsalt Chemicals Corporation, Final Summary Report, AFRPL-TR-66-144, Contract No. AF 04(611)-8518, June 1966.
- 343. Pennsalt Chemicals Corporation, Final Summary Report, Contract No. DA-18-108-AMC-162, "Research on New Oxidants and Mechanisms of Oxidation," April 1965.
- 344. Penn State University, Final Report, AFCRL-65-248, Contract No. AF 19(604)-7987, "The Spectra of Nitrogen Oxides," 30 April 1965.
- 345. Picatinny Arsenal, Technical Report No. 3194, Contract No. DA-PROJ-LA-014-501-A9LA, "Comparision of Thermal Degradation Behavior of a Conventional and a Fluorinated Epoxide Resin," May 1965.

- 346. Picatinny Arsenal, Technical Report No. 3285, DA-PROJ-18222901A203, "Oxidizer Chemistry," November 1965.
- 346a. Pilipovich, D, H. Rogers, C. B. Lindahl, and C. J. Schack, ICRPG Propellant Ingredient Synthesis Conference, Columbus, Ohio, October 3-4, 1967.
- 346b. Pilipovich, D., J. Schack, C. B. Lindahl, and H. F. Bauer, ICRPG Propellant Ingredient Synthesis Conference, St. Paul, Minnesota, September 20-21, 1966, pp. 43-51.
- 347. Reaction Motors Division, Final Report, AFRPL-TR-64-157, Contract No. AF 04(611)-8535, "Research and Development on Light Metal Hydride-2," January 1965.
- 348. Reaction Motors Division, Report No. RMD 5058-QTS-3, Contract No. AF 04(611)-10397, "Chemistry of Rare Gas Compounds," July 1965.
- 349. Reaction Motors Division, Report No. RMD 5806-F, Contract No. DA-01-021-AMC-12729, "Propulsion Optimization Study," May 1967.
- 350. Reaction Motors Division, Report No. RMD 5046-F, Contract No. N600(19)62259, "Advanced Propellants Investigation for Prepackaged Liquid Engines," June 1965.
- 351. Reaction Motors Division, Report No. RMD 5043-Q1-65, Contract No. Nonr 4364(00), "Advanced Oxidizer Research," March 1965.
- 352. Reaction Motors Division, Report No. RMD 5043-Q2-65, Contract No. Nonr 4364(00), 30 June 1965.
- . 353. Reaction Motors Division, Report No. RMD 5043-Q3-65, Task II, Contract No. Nonr 4364(00), September 1965.
 - 354. Reaction Motors Division, Report No. RMD 5043-Q3-65, Contract No. Nonr 4364(00), 30 September 1965.
 - 355. Reaction Motors Division, Report No. RMD 5043-65F, Contract No. Nonr 4364(00), December 1965.
 - 356. Reaction Motors Division, Semi-Annual Report No. RMD 5043-66, Contract No. Nonr 4364(00), June 1966.
 - 357. Reaction Motors Division, Semi-Annual Report No. RMD 5043-SA-2, Contract No. Nonr 4364(00), December 1966.
 - 358. Reaction Motors Division, Report No. RMD 5042-F, Contract No. NOw 64-0211-c, "Study of Reverse Hybrid Propulsion System," 31 May 1965.

- 359. Reaction Motors Division, Report No. RMD 5050-F, Contract No. NOw 64-0447-c, "Advanced Oxidizers for Prepackaged Liquid Engines," 31 July 1965.
- 359a. Reaction Motors Division, Report No. RMD 5060-Ql, Contract No. NOw 65-0430-c, "The Formulation of New High Energy Storable Propellants," March 1965.
- 360. Reaction Motors Division, Report No. RMD 5061-Q2, Contract No. NOw 65-0430-c, June 1965.
- 361. Reaction Motors Division, Report No. RMD 5061-Q3, Contract No. NOw 65-0430-c, 14 September 1965.
- 362. Reaction Motors Division, Report No. RMD 5061-Q4, Contract No. NOw 65-0430-c, December 1965.
- 363. Reaction Motors Division, Report No. RMD 5061-Q5, Contract No. NOw 65-0430-c, March 1966.
- 364. Reaction Motors Division, Report No. RMD 5061-F, Contract No. NOw 65-0430-c, October 1966.
- 365. Reaction Motors Division, Report No. RMD 5073-Ql, Contract No. NOw 65-0575-c, "Advanced Propellants for Prepackaged Liquid Engines," August 1965.
- 366. Reaction Motors Division, Report No. RMD 5074-Q1, Contract No. NOw 65-0575-c, "Advanced Packaged Liquid Propellants Research," 12 August 1965.
- 367. Reaction Motors Division, Report No. RMD 5073-Q4, Contract No. NOw 65-0575-c, "Advanced Propellants for Prepackaged Liquid Engines," April 1966.
- 368. Reaction Motors Division, Report No. RMD 5073-Q6, Contract No. NOw 65-0575-c, October 1966.
- 369. Reaction Motors Division, Report No. RMD 5073-Q7, Contract No. NOw 65-0575-c, January 1967.
- 370. Research Institute for Advanced Studies, Semi-Annual, Contract No. DA-01-021-AMC-12596, "Oxidizer Research," January 1966.
- 370a. Research Institute for Advanced Studies, Final Report, Contract No. DA-01-021-AMC-12596, January 1967.
- 371. Research Institute for Advanced Studies, Quarterly Technical Report No. 3, Contract No. DA-31-124-AROD-203, "Theoretical and Quantum Chemistry of N, O, F Compounds," 9 January 1965.
- 372. Research Institute for Advanced Sciences, Quarterly Technical Report No. 4, Contract No. DA-31-124-AROD-203, April 1965.

- 373. Research Institute for Advanced Sciences, Quarterly Technical Report No. 6, Contract No. DA-31-124-AROD-203, October 1965.
- 374. Research Institute for Advanced Sciences, Quarterly Technical Report No. 7, Contract No. DA-31-124-AROD-203, January 1966.
- 375. Research Institute for Advanced Sciences, Quarterly Technical Report No. 8, Contract No. DA-31-124-AROD-203, April 1966.
- 376. Research Institute for Advanced Sciences, Quarterly Technical Report No. 9, Contract No. DA-31-124-AROD-203, July 1966.
- 377. Research Institute for Advanced Sciences, Quarterly Technical Report No. 10, Contract No. DA-31-124-AROD-203, October 1966.
- 378. Research Institute for Advanced Sciences, Final Report, Contract No. DA-31-124-AROD-203, March 1966.
- 379. Rice University, Progress Report No. 7, Contract No. DA-31-124-AROD-110, "Research in Fluorine Chemistry," March 1965.
- 380. Rocketdyne, Report No. R-6180-1, Contract No. AF 04(611)-8550, "Investigation of Liquid-Metal Hydrides," May 1965.
- 381. Rocketdyne, Report No. R-6180-2, Contract No. AF 04(611)-8550, August 1965.
- 382. Rocketdyne, Report No. R-6180-3, Contract No. AF 04(611)-8550, November 1965.
- 383. Rocketdyne, Final Report No. R-6475, AFRPL-TR-66-76, Contract No. AF 04(611)-8550, May 1966.
- 384. Rocketdyne, Final Report No. R-6312, AFRPL-TR-65-216, Contract No. AF 04(611)-9070, "Development of a Light Metal Hydride Hybrid System," December 1965.
- 385. Rocketdyne, Quarterly Progress Report No. 5372-6, Contract No. AF 04(611)-9377, "Research in High Energy Oxidizers," 31 March 1965.
- 386. Rocketdyne, Report No. R-6256, AFRPL-TR-65-172, Contract No. AF 04(611)-9377, October 1965.
- 387. Rocketdyne, Final Report No. R-6147, AFRPL-TR-65-125, Contract No. AF 04(611)-9380, "Physico Chemical Characterization of High Energy Storable Propellants," May 1965.
- 388. Rocketdyne, Addendum to Final Report No. R-6445, AFRPL-TR-66-184, Contract No. AF 04(611)-9563, "Preparation and Characterization of a New High-Energy Oxidizer, September 1966.

- 389. Rocketdyne, Report No. R-5803-3, Contract No. AF 04(611)-9882, "Preparation of High-Density Light Metal Hydride-2," February 1965.
- 390. Rocketdyne, Report No. R-5803-4, Contract No. AF 04(611)-9882, May 1965.

1 5000

- 391. Rocketdyne, Final Report No. R-6277, AFRPL-TR-63-193, Contract No. AF 04(611)-9882, December 1965.
- 392. Rocketdyne, Report No. R-6218-1, Contract No. AF 04(611)-10544, "Physicochemical Characterization of High-Energy Storable Propellants," July 1965.
- 393. Rocketdyne, Report No. R-6218-2, Contract No. AF 04(611)-10544, October 1965.
- 394. Rocketdyne, Report No. R-6218-3, Contract No. AF 04(611)-10544, January 1966.
- 395. Rocketdyne, Report No. R-6218-4, Contract No. AF 04(611)-10544, April 1966.
- 396. Rocketdyne, Report No. R-6248-1, Contract No. AF 04(611)-10546, Engineering Properties of Rocket Propellants," July 1965.
- 397. Rocketdyne, Report No. R-6248-3, Contract No. AF 04(611)-10546, January 1966.
- 398. Rocketdyne, 1st Quarterly Progress Report No. R-6343-1, Contract No. AF 04(611)10781, "Preparation of Hypergolic Liquid Propellant Combinations," October
 1965.
- 399. Rocketdyne, 1st Quarterly Report No. R-6354-1, Contract No. AF 04(611)-10809, "Inhibited H_2O_4 ," October 1965.
- 400. Rocketdyne, 2nd Quarterly Report No. R-6354-2, AFRPL-TR-66-92, Contract No. AF 04(611)-10809, April 1966.
- 401. Rocketdyne, 3rd Quarterly Report No. R-6354-3, AFRPL-TR-66-166, Contract No. AF 04(611)-10809, July 1966.
- 402. Rocketdyne, Report No. R-6348-1, Contract No. AF 04(511)-10923, "Research in High-Energy Oxidizers," October 1965.
- 403. Rocketdyne, Report No. R-6348-2, Contract No. AF 04(611)-10923, January 1966.
- 404. Rocketdyne, Report No. R-6348-3, Contract No. AF 04(611)-10923, April 1966.
- 405. Rocketdyne, Final Report No. R-6684, AFRFL-TR-66-219, Contract No. AF 04(611)-10923, October 1966.
- 406. Rocketdyne, Report No. R-6626-1, AFRPL-TR-66-163, Contract No. AF 04(611)-11532, "Investigation of Liquid-Metal Hydrides," July 1966.

- 407. Rocketdyne, Report No. R-6626-2, AFRPL-TR-66-273, Contract No. AF 94(611)-11552, October 1966.
- 408. Rocketdyne, Report No. R-6626-3, AFRPL-TR-67-9, Contract No. AF 04(611)-11532, January 1967.
- 409. Rocketdynė, 1st Interim Report No. R-6683-1, Contract No. AF 33(615)-3694, "Manufacturing Process for Energetic Storable Oxidizer," August 1966.
- 410. Rocketdyne, 2nd Interim Report No. IR-8-269(II), Contract No. AF 33(615)-3694, November 1966.
- 411. Rocketdyne, Report No. R-6269-1, Contract No. DA-18-035-AMC-348, "Investigation of Oxidizers as Flame Agents," July 1965.
- 412. Rocketdyne, Report No. R-6269-2, Contract No. DA-18-035-AMC-348(A), October 1965.
- 413. Rocketdyne, Report No. R-6269-3, Contract No. DA-18-035-AMC-348, May 1966.
- 414. Rocketdyne, Final Report No. R-6609, Contract No. DA-18-035-AMC(A), August 1966.
- 415. Rocketdyne, Special Technical Report No. R-6803, AFRPL-TR-66-318, Contract No. F04611-67-C-0006, "Chlorine Pentafluoride Handbook," November 1966.
- 415a. Rocketdyne, Final Report No. R-7110, AFRPL-IR-67-276, Contract No. FO4511-67-C-0006, "Interhalogen Handbook," November 1967.
- 416. Rocketayne, 1st Quarterly Report No. R-6840-1, AFRPL-TR-66-346, Contract No. F04611-67-C-0007, "Research in High-Energy Oxidizers," December 1966.
- 417. Rocketdyne, Report No. R-6190, Contract No. Nonr 1818(00), "Research in Fluorine Chemistry," April 1965.
- 418. Rocketdyne, Report No. R-6258, Contract No. Nonr 4428(00), "Inorganic Halogen Oxidizers," 28 May 1965.
- 419. Rocketdyne, Summary Report No. R-6190, Contract No. Nonr 1818(00), "Research in Fluorine Chemistry," June 1965.
- 420. Rocketdyne, Report No. R-5883-3, Contract No. Nonr 4428(00), "Inorganic Halogen Oxidizers," March 1965.
- 420a. Rocketdyne, Annual Summary Report No. R-6259, Contract No. Nonr 4428(00), 28 August 1965.
- 421. Rocketdyne, Report No. R-5883-4, Contract No. Nonr 4428(00), 28 August 1965.

- 422. Rocketdyne, Report No. R-5883-5, Contract No. None 4428(00), December 1965.
- 423. Rocketdyne, Report No. R-5883-6, Contract No. None 4408(00), March 1966.
- 424. Rocketdyne, Annual Summary Report No. R-6641, Contract No. Nonr 4428(00), May 1966.
- 425. Rocketdyne, Report No. R-6736-1, Contract No. Nonr 4428(00), September 1966.
- 426. Rocketdyne, Report No. R-6736-2, Contract No. Nonr 4428(00), December 1966.
- 426a. Rocketdyne, Raport No. R-7259-1, Contract No. Nonr 4428(00), September 1967.
- 427. Rocketdyne, Annual Report No. R-6193, Contract No. Nonr 4506(00), "Mechanisms of Light-Metal Hydride Reactions," June 1965.
- 428. Rocketdyne, Final Report No. R-6608, Contract No. Nonr 4506(00), June 1966.
- 429. Rocketdyne, 1st Quarterly Report No. R-6780-1, Contract No. NOw 66-0639-d, "Verification of a New Liquid Oxidizer," October 1966.
- 430. Rocket Research Corporation, Report No. RRC-66-R-50(c), Contract No. AF 04(611)-9713, "Investigation of a High-Energy Monopropellant," December 1965.
- 431. Rocket Research Corporation, Report No. RRC-66-R-50(c), AFRPL-TR-66-250, Contract No. AF 04(611)-11549, "Evaluation of a High Energy Monopropellant," September 1966.
- 432. Rocket Research Corporation, Report No. RRC-67-R-84, AFRPL-TR-67-103, Contract No. F04611-67-C-9058, "Development of Low Temperature Gas Generator Technology," April 1967.
- 433. Rohm and Haas Company, Quarterly Progress Report No. P-64-28, Contract No. DA-01-021-ORD-11878, "Synthetic Chemistry," March 1965.
- 434. Rohm and Haas Company, Quarterly Progress Report No. P-65-1, Contracts Nos. DA-01-021-AMC-11536, -11606, -11040, -10037, -11660, -11459, -11669, -11762; DA-01-021-ORD-11909, -12341; DA-01-021-506-ORD-785, March 1965.
- 435. Rohm and Haas Company, Quarterly Progress Report No. P-65-3, Contracts Nos. DA-01-021-AMC-11536, -11608, -11660, -11040, -10037, -785; DA-01-021-ORD-11909, -12341, June 1965.

- 436. Rohm and Haas Company, Quarterly Progress Report No. P-65-5, Contracts Nos. DA-01-021-AMC-10037, -11040, -11260, -11536, -11608, -11660, -11669, -12289, -12639; DA-01-021-ORD-11878, -11909, -12341; DA-01-021-506-ORD-785, December 1965.
- 437. Rohm and Haas Company, Quarterly Progress Report No. P-66-1, Contracts Nos. DA-01-021-506-ORD-785; DA-01-021-AMC-10037, -11536, -12260, -12639, -13580, -13863, -13869, June 1966.
- 437a. Rohm and Haas Company, Quarterly Progress Report No. P-66-2, Contracts Nos. DA-01-021-AMC-10037, -11536, -12260, -12639, -13863, -13864; DA-01-021-506-ORD-785, June 1966.
- 438. Rohm and Haas Company, Quarterly Progress Report No. P-66-3, Contracts Nos. DA-01-021-AMC-10037(Z), -11536, -12260, -12639, -13863, -13864, -15365, -15414, November 1966.
- 439. Rolm and Haas Company, Report No. P-66-4, Contracts Nos. DA-01-021-ORD-785, DAAHO1-67-C-0655, DAAHO1-67-C-0865, DAAHO1-67-C-0947, DA-01-021-AMC-11037, -11536, -12260, -12639, -13580, -13863, -13864, -15365, -15414, December 1966.
- 440. Rohm and Haas Company, Special Report No. SR-S-58, "Development of a New Process for the Preparation of Tetrafluorohydrazine," April 1965.
- 441. Rohm and Haas Company, Report No. S-59, Contracts Nos. DA-01-021-AMC-11536(Z) and DA-01-021-ORD-11909(Z), "Advanced Propellant Synthesis," June 10, 1965.
- 442. Rohm and Haas Company, Special Report No. S-64, Contract No. DA-01-021-ORD-12341, "Development of a Composite Propellant," June 22, 1965.
- 443. Rohm and Haas Company, Report No. S-75, Contracts Nos. DA-01-021-AMC-11536 and DA-01-021-ORD-11909(Z), "A Spectrographic Technique for the Study of Solid Propellant Combustion," July 15, 1965.
- 443a. Rohm and Haas Company, Report No. S-79, Contracts Nos. DA-01-021-ORD-11878, -11909, -11536, "The Explosive Characteristics of NF Compounds and Propellants," October 1965.
- 444. Rohm and Haas Company, Report No. S-80, Contract No. DA-01-021-ORD-11909(Z), "Burning Rates of Solid Composite Propellants at Pressures up to 20,000 psig," September 1966.
- 445. Rohm and Heas Company, Report No. S-84, Contract No. DA-Ol-O21-AMC-11040(Z), "Oxidizer Miscibility Studies," August 1966.
- 446. Rohm and Haas Company, Report No. S-85, Contract No. DA-01-021-AMC-11536(Z), "Ballistic Characteristics of NF Propellants," October 1965.

- 447. Rohm and Haas Company, Report No. S-86, Contract No. DA-01-021-AMC-11536, "Advanced Propellant Synthesis," June 1965.
- 448. Rohm and Haas Company, Report No. S-88, Contract No. DA-01-021-AMC-11536(Z), "Preparation and Characterization of NF Prepolymer Propellants," October 1965.
- 449. Rohm and Haas Company, Report No. S-91, Contract No. DA-O1-O21-AMC-11536(Z), "Advanced Propellant Synthesis," September 1965.
- 450. Rohm and Haas Company, Report No. S-92, Contract No. DA-01-021-AMC-11536(Z), "Evaluation of OPE, A New NF Propellant Ingredient," December 1965.
- 451. Rohm and Haas Company, Report No. S-96, Contracts Nos. DA-01-021-AMC-11536, DA-01-021-ORD-11909, "Advanced Propellant Synthesis," December 1965.
- 451a. Rohm and Haas Company, Report No. S-102, Contract No. DA-01-021-AMC-11536(Z), March 1966.
- 452. Rohm and Haas Company, Report No. S-103, Contract No. 01-021-AMC-11536(Z), "The Properties of a New Acrylic Monomer," July 1966.
- 452a. Rohm and Haas Company, Report No. S-111, Contract No. DA-01-021-AMC-11536(Z), "Spectrographic Studies of Solid Propellant Flames," October 1966.
- 453. Rohm and Haas Company, Report No. S-112, Contract No. DA-01-021-AMC-11536, "Advanced Propellant Synthesis," September 1966.
- 454. Rohm and Haas Company, Report No. S-115, Contract No. DA-01-021-AMC-11536, "Low Temperature Fluorination of Lewis Bases," October 1966.
- 455. Rohm and Haas Company, Report No. S-118, Contract No. DA-01-021-AMC-11536, "Advanced Propellant Synthesis," September 1966.
- 456. Rohm and Haas Company, Report No. S-119, Contract No. DA-01-021-AMC-11536, "The Evaluation of PFG Adducts," December 1966.
- 457. Rohm and Haas Company, Report No. S-121, Contract No. DA-01-021-AMC-11536, "The Role of HNO in the H2-NO Reaction," November 1966.
- 458. Rohm and Haas Company, Report No. S-128, Contract No. DA-01-021-AMC-13863, "Burning Rate Studies," May 1967.
- 459. Rohm and Haas Company, Report No. S-131, Contracts Nos. DA-O1-O21-AMC-11536, DAAHO1-67-C-0655, "Ingredients for Advanced Propellants," October-December 1966.
- 460. Rohm and Haas Company, Report No. S-133, Contracts Nos. DAAHO1-67-C-0655, DA-01-021-AMC-11536, "Smokeless High Energy Propellants," May 1967.

- 461. Rohm and Haas Company, Report No. S-134, Contract No. DA-01-021-AMC-13863(2), (Nike-X), "Burning Rate Modifiers for Conventional Composite Propellants Made with Polybutadiene," May 1967.
- 462. Rohm and Haas Company, Report No. S-137, Contract No. DAAHO1-67-C-0655, "Detection of Low Levels of Tetrafluorohydrazine in Air," June 1967.
- 463. Rohm and Haas Company, Report No. S-138, Contracts Nos. DAAHO1-67-C-0655, DA-01-021-AMC-13863, "Ingredients for Advanced Propellants," July 1967.
- 463a. Rohm and Haas Company, Report No. S-147, Contracts Nos. DAAHO1-67-C-0655, -0947, -0865, DA-01-021-AMC-11536, -13864, "Safety Considerations in the Development and Explosive Characterization of Naval Propellants," August 1967.
- 464. Shell Development Company, Annual Summary Report No. 4, AFRPL-TR-66-39, Contract No. AF 04(611)-8168, "Synthesis of High Energy Solid Oxidizer Binder Propellants," April 1966.
- 465. Shell Development Company, Quarterly Progress Report No. 10, S-13969, Contract No. AF 04(611)-8168, August 1965.
- 466. Shell Development Company, Quarterly Progress Report No. 11, S-13980, Contract No. AF 04(611)-8168, December 1965.
- 466a. Shell Development Company, 4th Annual Summary Report, AFRFL-TR-66-39, Contract No. AF 04(611)-8168, April 1966.
- 467. Shell Development Company, 1st Quarterly Progress Report No. S-14004, Contract No. AF 04(611)-11537, "High Energy Plasticizers," June 1966.
- 468. Shell Development Company, 9th Quarterly Technical Report No. S-13956, Contract No. DA-31-124-AROD-54, "Fundamental Research on Advanced Oxidizers," February 1965.
- 469. Shell Development Company, Quarterly Technical Report No. 10, Contract No. DA-31-124-AROD-54, May 1965.
- 470. Shell Development Company, 11th Quarterly Technical Report No. S-13975, Contract No. DA-31-124-AROD-54, August 1965.
- 471. Shell Development Company, Quarterly Technical Report No. 12 and Final 1965, S-13985, Contract No. DA-31-124-AROD-54, November 1965.
- 472. Shell Development Company, 14th Quarterly Technical Report No. S-14002, Contract No. DA-31-124-AROD-54, May 1966.

- 475. Stanford Research Institute, Quarterly Technical Progress Report No. 7, Contract No. AF 04(611)-9370, "High Energy Oxidizers in Solution," April 1965.
- 474. Stanford Research Institute, Annual Technical Progress Report No. 1, AFRPL-TR-65-131, Contract No. AF 04(611)-9370, August 1965.
- 475. Stanford Research Institute, Technical Progress Report No. 10, Contract No. AF 04(611)-9370, September 1965.
- 476. Stanford Research Institute, Technical Progress Report No. 11, Contract No. AF 04(611)-9370, December 1965.
- 477. Stanford Research Institute, Quarterly Technical Progress Report No. 12, Contract No. AF 04(611)-9570, February 1965.
- 478. Stanford Research Institute, Quarterly Technical Progress Report No. 13, Contract No. AF 04(611)-9370, June 1966.
- 479. Stanford Research Institute, Final Technical Progress Report No. 14, AFRPL-TR-66-326, Contract No. AF 04(611)-9370, September 1966.
- 480. Stanford Research Institute, Technical Progress Report No. 4, Contract No. AF 04(611)-9880, May 1965.
- 481. Stanford Research Institute, Annual Summary Report, AFRPL-TR-65-94, Contract No. AF 04(611)-9880, "Formulation and Evaluation of Liquid Propellant Dispersions," July 1965.
- 482. Stanford Research Institute, Technical Progress Report No. 5, Contract No. AF 04(611)-9880, August 1965.
- 483. Stanford Research Institute, Quarterly Technical Progress Report No. 7, Contract No. AF 04(611)-9880, June 1966.
- 484. Stanford Research Institute, Final Report No. 67-0070, AFRPL-TR-67-17, Contract No. AF 04(611)-9880, March 1967.
- 485. Stanford Research Institute, Technical Progress Report No. 1, Contract No. AF 04(611)-10534, "Solid Propellant Ignition Studies," June 1965.
- 486. Stanford Research Institute, Technical Report No. 67-77, Final, Contract No. AF 04(611)-11547, "Compilation and Review of Data on the Sensitivity and Stability on NF Compounds: A Handbook," March 1967.
- 486a. Stanford Research Institute, Special Report, AFRPL-TR-67-88, Contract No. AF 04(611)-11547, "Review and Evaluation of NF Sensitivity Problems," March 1967.

- 486b. Stanford Research Institute, Final Report, Contract No. DA-31-124-AROD-324, "Thermochemistry of Tricyanomethyl Hydrocarbons," August 1965.
- 486c. Stanford Research Institute, Final Report, Contract No. DA-51-124-AROD-220, "Research on Metastable Species in Atomic Molecular Beams Produced by Charge Transfer," September 1965.
- 487. Stanford Research Institute, Quarterly Technical Progress Report No. 1, Contract No. F04611-67-C-0002, "Synthesis of Energetic Oxidizers," November 1966.
- 488. Stanford Research Institute, Quarterly Technical Progress Report No. 2, Contract No. F04611-67-C-0002, February 1967.
- 489. Stanford Research Institute, Quarterly Technical Progress Report No. 3, Contract No. F04611-67-C-0002, May 1967.
- 489a. Stanford Research Institute, Technical Progress Report No. 65-2, Contract No. Nonr 5760(00), "Sensitivity Fundamentals," March 1965.
- 489b. Stanford Research Institute, Technical Progress Report No. 65-3, Contract No. Nonr 3760(00), June 1965.
- 489c. Stanford Research Institute, Technical Progress Report No. 65-4, Contract No. Nonr 3760(00), September 1965.
- 490. Stanford Research Institute, Technical Progress Report No. 66-1, Contract No. Nonr 3760(00), December 14, 1965.
- 490a. Stanford Research Institute, Technical Progress Report No. 66-2, Contract No. Nonr 3760(00), March 1966.
- 490b. Stanford Research Institute, Technical Progress Report No. 66-3, Contract No. Nonr 3760(00), June 1966.
- 491. Stanford Research Institute, Quarterly Technical Progress Report No. 66-4, Contract No. Nonr 3760(00), October 1966.
- 492. Stanford Research Institute, Semi-Annual Technical Progress Report No. 67-1, Contract No. Nonr 3760(00), April 1967.
- 493. Stanford Research Institute, Technical Progress Report No. 10, Contract No. NOw 64-0207-d, "Synthesis of High Energy Oxidizers," April 30, 1965.
- 494. Stanford Research Institute, Quarterly Technical Report No. 11, Contract No. NOw 64-0207-d, June 1965.
- 495. Stanford Research Institute, Technical Progress Report No. 12, Contract No. NOw 64-0207-d, September 30, 1965.

- 496. Stanford Research Institute, Technical Progress Report No. 13, Contract No. NOw 64-0207-d, "Synthesis of High Energy Oxidizers," December 1965.
- 497. Stanford Research Institute, Final Technical Progress Report No. 14, Contract No. NOw 64-0207-d, March 1966.
- 498. Stanford Research Institute, Semi-Annual Technical Summary Report, Contract
 No. NOw C5-0283-d, "Evaluation of the Wenograd Test SISR," October 1965.
- 499. Stanford Research Institute, Quarterly Technical Progress Report No. 15, Contract No. NOw 66-C362, "Synthesis of High Energy Oxidizers," June 1966.
- 500. Stanford Research Institute, Quarterly Technical Progress Report No. 16, Contract No. Now 66-0362-d, "Synthesis of High Energy Propellant Ingredients,"
 October 1966.
- 501 Stanford Research Institute, Quarterly Technical Progress Report No. 17, Contract No. NOw 66-0362-d, December 1966.
- 502. Stanford Research Institute, Quarterly Technical Progress Report No. 18, Contract No. NOw 65-0362-d, April 1967.
- 503. Stanford Research Institute, Technical Progress Report No. 19, Final, Contract No. NOw 66-0362-d, June 1967.
- 504. Stauffer Chemical Company, 2nd Annual Report, Contract No. Nour 4019(00), March 1965.
- 505. Stauffer Chemical Company, Quarterly Technical Summary Report No. 1, Contract No. Nonr 4019(00), "High Energy Oxidizers," April 1965.
- 506. Stauffer Chemical Company, Quarterly Technical Summary Report No. 2, Contract No. Nonr 4019(00), July 1965.
- 507. Stauffer Chemical Company, Quarterly Technical Summary Report No. 3, Contract No. Nonr 4019(00), October 31, 1965.
- 508. Stauffer Chemical Company, Annual Technical Summary Report, Contract No. Nonr 4019(00), January 1966.
- 509. Stauffer Chemical Company, Technical Summary Report No. 13, Contract No. Nony 4019(00), June 1966.
- 510. Stauffer Chemical Company, Semi-Annual Technical Summary Report No. 14, Contract No. Nonr 4019(00), February 1967.
- 510a. Stevens, T. E., W. H. Graham, and C.O. Parker, ICRPC Propellant Ingredient Synthesis Conference, St. Paul, Minnesota, September 20-21, 1966, pp. 91-94.

- 511. University of Strathclyde, Letter Report No. 5, Contract No. N62558-3741, "Adducts of Brownine Trifluoride with Metal and Non-Metal Fluorides," March 1965.
- 512. University of Stratholyde, Letter Report No. 6, Contract No. N62558-3741, June 1965.
- 513. University of Strathclyde, Letter Report No. 1, Contract No. N62558-4686, December 1965.
- 514. University of Strathclyde, Letter Report No. 5, Contract No. N62558-4686, December 1966.
- 515. University of Strathclyde, Letter Report No. 7, Contract No. N62558-4686, "Adducts of Bromine Trifluoride with Acceptor Fluorides," March 1967.
- 516. Technidyne, Inc., ATL-TR-65-64, Contract No. AF 08(635)-4237, "Feasibility Investigation of Thixotropically Gelled Oxidizers as Incendiary Agents," October 1965.
- 516a. Temple University Research Institute, 2nd Quarterly Progress Report for 2nd Year, Contract No. AF 04(611)-9555, "Production Isolation and Identification of the FO., FO2. and FO3. Radicals," March 1965.
- 517. Temple University Research Institute, 3rd Quarterly Progress Report for 2nd Year, Contract No. AF 04(611)-9555, June 1965.
- 518. Temple University Research Institute, Final Summary Report No. RITU 1965 11 (II), Pt. II, Contract No. AF 04(611)-9555, December 21, 1965.
- 519. Temple University Research Institute, 3rd Quarterly Progress Report, Contract No. AF 04(611)-10373, "The Chemistry of Rare Gases," June 1965.
- 520. Temple University Research Institute, 1st Annual Summary Report, Contract No. AF 04(611)-10373, October 1965.
- 521. Temple University Research Institute, 1st Quarterly Report for 2nd Year, Contract No. AF 04(611)-10373, December 1965.
- 522. Temple University Research Institute, 2nd Quarterly Progress Report for 2nd Year, Contract No. AF 04(611)-10373, March 1966.
- 523. Temple University Research Institute, 3rd Quarterly Progress Report for 2nd Year, Report No. RITU 1966 15, Contract No. AF 04(611)-10373, June 1966.
- 524. Temple University Research Institute, Quarterly Progress No. 1, RITU 1966 29, Contract No. AF 04(611)-11612, December 1966.

- 525. Temple University Research Institute, Quarterly Progress Report No. 2, RITU 1967 6, Contract No. AF 04(611)-11612, March 1967.
- 526. Temple University Research Institute, Report No. RITU 1987 15, Contract No. AF 04(611)-11612, June 1967.
- 527. Temple University Research Institute, Annual Progress Report No. 5, Contract No. Nonr 3085(01), "Addition and Substitution Products of Oxygen Fluorides," January 1965.
- 528. Temple University Research Institute, Annual Progress Report No. 6, RITU 1966 1, Contract No. Nonr 3085(01), January 1966.
- 529. Temple University Research Institute, Final Report No. RITU 1966 24, Contract No. Nonr 3085(Ol), November 1966.
- 530. Texaco Research Center, Quarterly Report No. BRL-AF-9597-6Q, Contract No. AF 04(611)-9567, "Research In Conventional and Unconventional Fuels," March 1965.
- 531. Texaco Research Center, Quarterly Report No. BRL-AF-9567-7Q, Contract No. AF 04(611)-9567, June 1965.
- 532. Texaco Research Center, Annual Summary Report, AFRPL-TR-66-34, Contract No. AF 04(611)-9567, January 1966.
- 532a. Texaco Research Center, Final Report No. T-5782, AFRPL-TR-65-241 (October 1964 November 1965) Contract No. AF 04(611)-9577, "Basic Chemical Research for Advanced Storable Liquid Oxidizers," June 1966.
- 532b. Texaco Research Center, Report No. BRL-AF-9577-6Q, T-5096, Contract No. AF 04(611)-9577, March 1965.
- 532c. Texaco Research Center, Report No. BRL-AF-9577-7Q, Contract No. AF 04(611)-9577, June 1965.
- 532d. Texaco Research Center, Annual Summary Report No. T-5011, AFRPL-TDR-65-10, Contract No. AF 04(611)-9577, October 1964.
- 533. Texaco Research Center, Report No. Texaco AF 11389-1Q, T-5630, Contract No. AF 04(611)-11389, "Basic Chemical Research for Advanced Storable Liquid Oxidizers," February 1966.
- 533a. Texaco Research Center, Report No. Texaco AF-11389-2Q, T-5781, Contract No. AF 04(611)-11389, May 1966.
- 534. Texaco Research Center, 3rd Quarterly Report No. T-5951, AFRPI-TR-66-38, Contract No. AF 04(611)-11389, September 1966.

- 535. Texaco Research Center, 4th Quarterly Report No. T-6068, AFRPL-TR-66-523, Contract No. AF 04(611)-11389, December 1966.
- 535a. Texaco Research Center, Report No. T-6095, Volumes I and II, AFRPL-TR-66-206, Contract No. AF 04(611)-11410, "Ultra-High Energy A Literature Search and Evaluation," August 1966.
- 535b. Texaco Research Center, Final Report No. T-6313, AFRPL-TR-67-69, Contract No. AF 04(611)-11389, May 1967.
- 536. Texaco Experiment Inc., Reprint from Combustion and Flame, Volume 9, 421-22 1965, Report No. TP-241 EXP 225, Contract No. Nonr 1865(00), "Emission Spectra of Flames of NF-Containing Oxidizers," March 1966.
- 557. Texaco Experiment Inc., Report No. TP-282 EXP 225, Contract No. Nonr 1885(00), "Flash Photolysis of ClNF2 and NFCl2," July 1966.
- 538. Texaco Experiment Inc., Final Report No. TP-285 EXP 225, Contract No. Nonr 1883(00), "Decomposition Chemistry of NF2 Compounds," August 1966.
- 539. Thiokol Chemical Corporation, Wasatch, Final Report No. TW 173-4-65, AFRPL-TDR-65-82, Volume I, Contract No. AF 04(611)-9564, "Development of High Impulse Efficiency (HP₂) Solid Propellants," June 1965.
- 540. Thickel Chemical Corporation, Huntsville, Report No. 49-66, AFRPL-TR-66-271, Contract No. AF 04(611)-11391, "Improvement of Sensitivity of LMH-1 Propellants," October 1966.
- 540a. Thiokol Chemical Corporation, Wasatch, Report No. TW 336-1-65, Contract No. AF 04(694)-334, Stage I Minuteman (M5541) Production Support, January 1965.
- 540b. Thickol Chemical Corporation, Wasatch, Report No. TW-130-4-65, Contract No. AF 04(694)-334, April 1965.
- 540c. Thiokol Chemical Corporation, Wasatch, Final Report No. BSD-TR-66-31, Contract No. AF 04(694)-334, May 1966.
- 541. Thiokol Chemical Corporation, Wasatch, Report No. TW-85-9-65, Contract No. AF 33(615)-2875, "Energetic Oxidizer Manufacturing Process for Advanced Solid Propellants," September 1965.
- 542. Thickol Chemical Corporation, Wasatch, Report No. IR-8-268 (II) TA-7-193-12-5, Contract No. AF 33(615)-2875, December 1965.
- 543. Thiokol Chemical Corporation, Wasatch, Report No. IR-8-268 (III) TA-7-270-3-6, Contract No. AF 33(615)-2875, March 1966.
- 544. Thickel Chemical Corporation, Wasatch, Report No. IR-8-268 (IV) TA-7-220-6-6, Contract No. AF 33(615)-2875, June 1966.

CONFIDENTIAL

- 545. Thickel Chemical Corporation, Wasatch, Report No. In-8-268 (V) TA-7-297-9-6, Contract No. AF 33(615)-2875, September 1966.
- 546. Thickol Chemical Corporation, Elkton, 1st Quarterly Progress Report No. E 55-65, Contract No. DA-01-021-AMC-12056, "Evaluation of High Energy Fuels and Oxidizers in Solid Propellants," July 1965.
- 546a. Thiokol Chemical Corporation, Elkton, 2nd Quarterly Progress Report No. E 89-65, Contract No. DA-Ol-O21-AMC-12056, October 1965.
- 547. Thiokol Chemical Corporation, Elkton, 3rd Quarterly Progress Report No. E 116-65, Contract No. DA-01-021-AMC-12056, January 1966.
- 548. Thickel Chemical Corporation, Elkton, 5th Quarterly Progress Report No. E 76-66, Contract No. DA-01-021-AMC-12056, July 1966.
- 549. Thickel Chemical Corporation, Final Report No. E 131-66, Contract No. DA-01-021-AMC-12056, December 1966.
- 550. Thickel Chemical Corporation, Huntsville, Report No. 4-66, Contract No. DA-01-021-AMC-12249(Z), "Synthesis and Evaluation of High Energy Carboxyl Terminated Polymers," December 1965.
- 551. Thiokol Chemical Corporation, 1st Quarterly Technical Summary Report No. 37-66, Contract No. DA-01-021-AMC-13978, "Functionally Terminated High Energy Prepolymers," July 1966.
- 552. Thickel Chemical Corporation, Huntsville, 3rd Quarterly Technical Summary Report No. 24-67, January 1967.
- 553. Thiokol Chemical Corporation, Huntsville, Final Report No. 34-67, Contract No. DA-01-021-AMC-13978, May 1967.
- 554. Thiokol Chemical Corporation, Final Report No. 40-65, Contract No. DA-01-021-ORD-11919(Z) Mod. 21, "Propellant Supporting Research," July 1965.
- 555. Thiokol Chemical Corporation, Final Report No. 25-66, Volume III, Contract No. DA-36-034-AMC-0074(Z), "Evaluation of Difluoramino Compounds as Materials for Use in High Energy Solid Propellant Formulations," (C) March 1965.
- 556. Thickel Chemical Corporation, Huntsville, Final Report No. 27-65, Volume II, Contract No. DA-36-034-AMC-0074, "Evaluation of Beryllium Hydride as a Fuel in High Energy Solid Propellant Formulations," (C) June 1965.
- 557. Thiokol Chemical Corporation, Huntsville, Final Report No. 52-65, Contract No. DA-36-034-AMC-0074, "Evaluation of Materials as Fuels for High Energy Solid Propellants," Volume I, "Evaluation of Aluminum Hydride as a Fuel in High Energy Solid Propellant Formulations," (C) April 1966.

215

CONFIDENTIAL

CONFIDENTIAL

- 557a. Thickol Chemical Corporation, Elkton, Report No. E 99-65, Contract No. NAS 7-399, "Optimized Binders for Propellants Containing High Energy Oxidizers,"
 November 1965.
- 557b. Thickel Chemical Corporation, Elkton, December Progress Report No. E 865, Contract No. NASw 1130, "Uncoated NP Propellant Development," January 1965.
- 557c. Thickel Chemical Corporation, Elkton, 3rd Monthly Progress Report No. E 19-65, Contract No. NASw 1130 "Uncoated SPO Propellant Development," February 1965.
- 557d. Thickel Chemical Corporation, Elkton, Quarterly Progress Report No. 3, Contract No. NOw 64-0463f, "Hydroxylammonium Perchlorate Propellant Research," (C) April 1965.
- 558. Thickel Chemical Corporation, Elkton, Final Summary Report No. E 72-65, Contracts Nos. Now 64-0463f and Now 65-0499f, August 1965.
- 558a. Thickel Chemical Corporation, Quarterly Technical Summary Report No. E 105-65, Contract No. NOw 65-0610c, "HAP Research and Solid Propellant Scale-Up,"
 October 1965.
- 558b. Thiokol Chemical Corporation, Final Report No. E-3066, Contract No. NOw 65-0610c, March 1966.
- 559. Thickel Chemical Corporation, Elkton, 1st Quarterly Progress Report No. E 70-66, Contract No. NOw 66-0502c, "Development of High Performance Hydroxyl-ammonium Perchlorate Solid Propellants," (C) July 1966.
- 559a. Tolberg, W. E., R. T. Rewick, G. R. Zeilenga, J.A. Neff, and M. E. Hill, ICRPG Propellant Ingredient Synthesis Conference, Columbus, Ohio, October 3-4, 1967.
- 560. Tracor, Inc., 9th Quarterly Report No. 65-244 U, Contract No. Nonr 4054(00), "Electrochemical Studies in the Synthesis of N-F Compounds," June 30, 1965.
- 561. Tracor, Inc., 11th Quarterly Summary Report No. 66-104 U, Contract No. Nonr 4045(00), January 5, 1966.
- 562. Tracor, Inc., Summary Report No. 66-130 U, Contract No. Nonr 4054(00), January 1966.
- 563. Union Carbide Corporation, Final Report, AFRPL-TR-65-186, Contract No. AF 04(611)-8519, "RETA Encapsulation of High Energy Oxidizer," July 1965.
- 564. Union Carbide Corporation, Interim Report No. 8-181 (II), Contract No. AF 33(615)-2166, "Oxidizer Encapsulation," December 1965.
- 565. Union Carbide Corporation, Interim Report No. 8-181 (III), Contract No. AF 33(615)-2166, March 1966.

- 566. Union Carbide Corporation, Interim Report No. 8-181 (IV), Contract No. AF 35(615)-2166, June 1966.
- 567. Union Carbide Corporation, Interim Report No. 8-181 (V), Contract No. AF 35(615)-2166, September 1966.
- 568. Union Carbide Corporation, Interim Report No. 8-181 (VI), Contract No. AF 33(615)-2166, December 1966.
- 569. Union Carbide Corporation, Quarterly Technical Summary Report No. 7, Contract No. DA-31-124-AROD-77, "Fluorine Oxidizers," March 1965.
- 570. Union Carbide Corporation, Quarterly Technical Summary Report No. 8, Contract No. DA-31-124-AROD-77, June 1965.
- 571. Union Carbide Corporation, Quarterly Technical Report No. 9, Contract No. DA-31-124-AROD-77, September 1965.
- 572. Union Carbide Corporation, Final Report No. UCRI-549, Contract No. DA-51-124-AROD-77, December 1965.
- 575. Union Carbide Corporation, Quarterly Report No. 2, Contract No. NAS7-100, "Saturated Hydrocarbon Polymeric Binder for Advanced Solid Propellant and Hybrid Solid Grains," April 1966.
- 574. United Aircraft, 2nd Interim Summary Report No. D910291-7, Contract No. AF 04(611)-10380, "Theoretical Investigation of High-Energy Metastable Compounds," December 1965.
- 575. United Aircraft, 1st Semi-Annual Report No. UACRL-E910395-4, Contract No. AF 04(611)-11214, "Theoretical Calculations on Advanced Oxidizers," June 1966.
- 576. United Aircraft, 2nd Semi-Annual Report No. UACRL-E910395-8, AFRPL-TR-66-337, Contract No. AF 04(611)-11214, December 1966.
- 577. U. S. Industrial Chemicals, Quarterly Progress Report No. 4, Contract No. AF 04(611)-9700, "Synthesis of LMH-2," January 1965.
- 578. U. S. Industrial Chemicals, Quarterly Progress Report No. 5, Contract No. AF 04(611)-9700, April 1965.
- 579. U. S. Industrial Chemicals, Quarterly Progress Report No. 6, Contract No. AF 04(611)-9700, July 1965.
- 580. U. S. Industrial Chemicals, Final Report, AFRPL-TR-66-15, AF 04(611)-9700, October 1965.

- 581. U. S. Industrial Chemicals, Quarterly Progress Report No. 1, AFRPL-TR-66-106, Contract No. AF 04(611)-11402, "Synthesis of LMH-1," May 1966.
- 582. U. S. Industrial Chemicals, Quarterly Progress Report No. 2, AFRPL-TR-88-195, Contract No. AF 04(611)-11402, August 1966.
- 583. U. S. Industrial Chemicals, Quarterly Progress Report No.3, AFRPL-TR-66-312, Contract No. AF 04(611)-11402, "Synthesis of LMH-2," October 1966.
- 584. United Technology Center, Final Report No. UTC-2068, Contract No. AF 04(611)-9570, "Demonstration of an Advanced Solid Propellant," July 1965.
- 585. United Technology Center, Addendum No. 1 to UTC-2068-FR, Contract No. AF 04(611)-9570, January 1966.
- 586. United Technology Center, Quarterly Report No. 3, UTC 2092, Contract No. AF 04(611)-9894, "Development of a Propellant Containing a High Energy Oxidizer," February 1965.
- 586a. United Technology Center, Quarterly Report No. 9, UTC 2092, Contract No. AF 04(611)-9894, February 1965.
- 586b. United Technology Center, Final Report No. 2092, Contract No. AF 04(611)-9894, May 1965.
- 587. United Technology Center, 1st Quarterly Progress Report No. UTC 2200, Contract No. AF 04(611)-11404, "Evaluation of High-Energy Binder," June 1966.
- 588. United Technology Center, Final Report No. UTC 2125, AFRPL-TR-66-84, Contract No. AF 04(611)-10540, "Evaluation of PBEP a High-Energy Binder," April 1966.
- 589. United Technology Center, 1st Quarterly Technical Report No. UTC 2139, AFRPL-TR-66-154, Contract No. AF 04(611)-10786, "Development of Propellants Containing an Energetic Oxidizer," July 1966.
- 590. United Technology Center, 2nd Quarterly Technical Report No. UTC 2139, AFRPL-TR-66-186, Contract No. AF 04(611)-10786, December 1966.
- 591. United Technology Center, 3rd Quarterly Progress Report No. UTC 2146, Contract No. AF 04(611)-10812, "Demonstration of an Advanced Solid Propellant," February 1966.
- 592. United Technology Center, Final Report No. UTC 2146, AFRPL-TR-66-299, Contract No. AF 04(611)-10812, October 1966.
- 593. United Technology Center, 2nd Quarterly Progress Report No. UTC 2200, AFRPL-TR-66-255, Contract No. AF 04(611)-11404, "Evaluation of High Energy Binder," September 1966.

- 593a. Wilson, F. N., ICRPG Propellant Ingredients Synthesis Conference, Columbus, Ohio, October 3-4, 1967.
- 594. Wittman, W. F., D. H. Dybvig, D. L. Esmay, G. D. Foss, D. A. Pitt, W. L. Wilson, and J. L. Zollinger, ICRPG Propellant Ingredient Synthesis Conference, St. Paul, Minnesota, September 20-21, 1966, pp. 125-128.
- 595. Wystrach, V. P., ICRPG Propellant Ingredient Synthesis Conference, St. Paul, Minnesota, September 20-21, 1966, pp. 135-139.

-

OPEN LITERATURE REFERENCES

A. Nitrogen Fluorides and Derivatives

- Ll. Anon., "NMR Spectra of Perfluoroammonium Cation Show That It Is Tetrahedral,"

 <u>Chem. & Eng. News</u>, June 12, p. 80, 1967.
- Lika. Bartlett, N., S. P. Beaton, and J. K. Jha, "Oxidizing Trends in the Third-transition-series Hexafluorides," Chem. Commun. (6) 168 (1966).
- L2. Bartlett, N., J. Passmore and E. J. Wells, "Nitrogen Oxide Trifluoride," Chem. Commun. (7) 213 (1966).
- L3. Beach, L. K., 'Oxidation of N_2F_4 to NOF and NF3," J. Inorg. Nucl. Chem., 26, 2033 (1964).
- L4. Binenboym, J., A. Burcat, A. Lifshitz and J. Shamir, "Energy Barrier of the cis-trans Isomerization of Difluorodiazine," J. Am. Chem. Soc., 88, 5039 (1966).
- L5. Bohn, R. K., "Electron Diffraction Studies of Molecular Structure: Cis- and Trans-Difluorodiazine, Difluoroamino Radical and Tetrafluorohydrazine; Xenon Tetrafluoride and Xenon Hexafluoride," <u>Dissertation Abstract</u>, 25, 3282 (1964).
- L6. Bohn, R. K., and S. H. Bauer, "An Electron Diffraction Study of the Structures of NF2 and N2F4," Inorg. Chem., 6,304 (1967).
- L7. Bohn, R. K., and S. H. Bauer, "An Electron Diffraction Study of the Structures of cis- and trans-N₂F₂, <u>Inorg. Chem.</u>, 6, 309 (1967).
- 18. Boiwin, J. L., Reactions Avec Le Difluoroamino-pentafluorosulfure, <u>Can. J. Chem.</u>, 42, 2744 (1967).
- L9. Brown, L. M., and B. deB. Darwent, "Spectrophotometric Determination of the Rate of Dissociation of Tetrafluorohydrazine Behind a Shock Wave," J. Chem. Phys., 42, 2158 (1965).
- L10. Bumgardner, C. L., "Photochemical Reactions of the Difluoramino Radical," <u>Tetrahedron Letters</u>, 3683 (1964).
- Lll. Christe, K. O., J. P. Guertin, and A. E. Pavlath, "The Tetrafluoronitronium (V) Cation, NF₄⁺," <u>Inorg. Nucl. Chem. Letters</u>, 2, 83 (1966).
- L12. Christe, K. O., J. P. Guertin, A. E. Pavlath, and W. Sawodny, "Complex Fluoro Cations: III. Tetrafluoronitrogen(V) cation NF₄⁺. Vibrational and Fluorine-19 Nuclear Magnetic Resonance Spectra of NF₄⁺AsF₆⁻," Inorg. Chem., 6,533 (1967).

- Ll2a. Colburn, C. B., F. A. Johnson, and C. Haney, NMR of Tetrafluorohydrazine: Hindered Rotation Around the N-N bond at -155°C," J. Chem. Phys., 43, 4526 (1965).
- L13. Comeford, J. J., and D. E. Mann, "Formation of NF from NF₂ by Photolysis," Spectrochim. Acta., 21, 197 (1965).
- Inl4. Comeford, J. J., D. E. Mann, L. J. Schoen and D. R. Lide, Jr., "Infrared Spectrum of Difluoramine," J. Chem. Phys., 38, 461 (1963).
- L15. Craig, A. D., and George A. Ward, "The Kinetics of the Basic Hydrolysis of Difluoramine," J. Am. Chem. Soc., 88, 4526 (1966).
- L16. Curtis, E. C., and J. S. Miurhead, "The Lone-Pair Model and the Vibrational Force Constants of NF3," J. Phys. Chem., 70, 3330 (1966).
- L17. Curtis, E. C., D. Pilipovich and W. H. Moberly, "Infrared Spectrum, Structure and Thermodynamic Properties of Trifluoramine Oxide, NF₃O," <u>J. Chem. Phys.</u>, <u>46</u>, 2904 (1967).
- Ll8. Diesen, R. W., "Observation and Kinetic Investigation of the NF and NF₂ Radi-cals," J. Chem. Phys., 41, 3256 (1964).
- L19. Diesen, R. W., "Comment on NF₂ Decomposition Behind Shock Waves," <u>J. Chem. Fhys.</u>, <u>45</u>, 759 (1966).
- L20. Doorenbos, H. E., and B. R. Loy, "ESR of the N_2F_4 - NF_2 Equilibrium," J. Chem. Phys., 39, 2393 (1964).
- L21. Dubb, H. E., R. C. Greenough and E. C. Curtis, "Difluoramine: An Infrared Study of the Complexes between Difluoramine and the Alkali Metal Fluorides,"

 <u>Inorg. Chem.</u>, 4, 648 (1965).
- L22. Durig, J. R., and R. C. Lord, 'Infrared Spectra of Tetrafluorohydrazine," Spectrochem. Acta, 19, 1877 (1963).
- L23. Ettinger, R., and C. B. Colburn, "Further Nuclear Magnetic Resonance and Electron Paramagnetic Resonance Studies on the System N₂F₄-2NF₂," <u>Inorg. Chem.</u>, 2, 1311 (1963).
- L24. Firth, W. C., Jr., "A Preparation of Chlorodifluoramine Reaction of Chlorine and Difluoramine in the Presence of an Alkali Metal Fluoride," <u>Inorg. Chem.</u>, <u>4</u>, 254 (1964).
- L25. Fox, W. B., J. S. MacKenzie, N. Vanderkooi, B. Sukormick, C. A. Wamser, J. R. Holmes, R. E. Eibeck and B. B. Steward, "Trifluoramine Oxide," <u>J. Am. Chem. Soc.</u>, 88, 2604 (1966).

The second second second

- 1. 6. Gortsema, F. P., and R. H. Toeniskoetter, "The Chemistry of Platinum Hexafluoride. I. Reactions with Nitric Oxide, Dinitrogen Tetroxide, Nitrosyl Fluoride and Nitryl Fluoride," <u>Inorg. Chem.</u>, <u>5</u>, 1217 (1966).
- 1.27. Gould, J. R., and R. A. Smith, "Process of Making Tetrafluorohydrazine and Fluorocarbons," U. S. Patent 3,122,416, February 23, 1964.
- Tetrafluoronitropen(V) Cation, NF₄⁺. Synthesis and Properties of NF₄⁺AsF₆⁻, "Inorg. Chem., 5, 1921 (1966).
- L29. Hersh, O. L., "Electron Diffraction by Gases and the Structures of PF3, PF5, HNF2 and N₂F₄," <u>Dissertation Abstracts</u>, 24, 2286 (1963).
- L30. Holzmann, R. T., and D. D. Perry, "The Reactions of Labile Oxygen Compounds with N₂F₄," Abstracts of Papers, 148th ACS Meeting, Chicago, August 30 September 4, 1964, p. 7k.
- L31. Jacox, M. E., and D. E. Milligan, "Production and Reaction of Atomic Fluorine in Solids. Vibrational and Electronic Spectra of the Free Radical HNF,"

 J. Chem. Phys., 46, 184 (1967).
- L32. Johnson, F. A., "A Convenient Preparation of Diflucrodiazine," <u>Inorg. Chem.</u>, 5, 149 (1966).
- L53. Klopotek, D. L., and B. G. Hobrock, "Preparations of Difluorodiazine and Difluoramine," <u>Incrg. Chem.</u>, 6, 1750 (1967).
- L34. Kumnetsova, L. H., Y. Y. Kuzyakov and V. M. Tatevski, "Electronic Absorption Spectrum of the NF₂ Radical," <u>Optika i Spectroskopiya</u>, <u>16</u>, 542 (1964).
- L35. Kuznetsova, T. V., L. F. Egorova and A. V. Pankratov, "Some Physicochemical Constants of N₂F₄, Zh. Fiz. Khim., 38, 1860 (1964).
- Levy, J. B., and B. K. W. Copeland, "The Kinetics of the Tetrafluorohydrazine-Fluorine Reaction," J. Phys. Chem., 69, 3700 (1965).
- L37. Lide, D. R., Jr., "Microwave Spectrum and Structure of Difluoroamine," J. Chem. Phys., 38, 456 (1963).
- L38. Iustig, M., C. L. Bumgardner, and J. K. Ruff, "Photochemcial Reactions of the Difluoramino Radical with Some Inorganic Substrates," <u>Inorg. Chem.</u>, <u>3</u>, 917 (1964).
- L39. Martin, K. J., "Evidence for the Difluoramide Anion," J. Am. Chem. Soc., 87, 394 (1965).
- IAO. Matzkanin, G. A., T. A. Scott and P. J. Haigh, "Nuclear Resonance in Solid Nitrogen Trifluoride," <u>J. Chem. Phys.</u>, <u>42</u>, 1646 (1965).

- I41. Mirri, A. M., and G. Cazzoli, Millimeter Wave Spectrum and Centrifugal Distortion Constants of NF₃, J. Chem. Phys., 47, 1197 (1967).
- IA2. Modica, A. F., 'Kinetics of the Thermal Dissociation of N₂F₄ in Shock Waves," <u>Dissertation Abstracts</u>, 24, 4427 (1964).
- L43. Pankratov, A. V., O. M. Sokolov, and N. I. Savenkova, "Synthesis of Difluoro-diazines," Zh. Neorgan. Khim., 9, 2030 (1964).
- L44. Paulett, G. S., and M. Lustig, "Sulfur-Nitrogen and Oxygen-Nitrogen Bond Dissociation Energies of Some N-Fluorinated Amines," J. Am. Chem. Soc., 87, 1020 (1965).
- L45. Penneman, R. A., "Packing in Fluoride Complexes and Remarks Concerning Salts Containing Nitrogen Fluoride Cations," <u>Inorg. Chem.</u>, 6, 431 (1967).
- L46. Petry, R. C., "The Chemical Properties of Chlorodifluoramine," J. Am. Chem. Soc., 89, 4600 (1967).
- L47. Ratcliffe, C. T., and J. M. Shreeve, "A Simple Method for the Preparation of Nitrosyl Fluoride," Chem. Commun. (No. 19) 674 (1966).
- I48. Roesky, H. W., O. Glemser, and D. Bormann, "Preparation of Difluorodiazine and the Existence of Chlorofluorodiazine," Angew Chem., 76, 713 (1964).
- I49. Rubenstein, M., J. E. Sicre, and H. J. Schumacher, Kinetics of the Thermal Reaction Between Tetrafluorohydrazine and Fluorine Monoxide, "Z. Physik Chem., 43, 51 (1964).
- IA9a. Ruff, J. K., "The Reaction of Antimony(V) Fluoride with Tetrafluorohydrazine," J. Am. Chem. Soc., 87, 1140 (1965).
- L50. Ruff, J. K., N,N-Difluoro-O-pentafluorosulfanylhydroxylamine," <u>Inorg. Chem.</u>, 4, 1788 (1965).
- L51. Ruff, J. K., "N-Haliminosulfur Derivatives," Inorg. Chem., 5, 1787 (1966).
- L52. Ruff, J. K., "The Reaction of Antimony(V) Fluoride with Tetrafluorohydrazine and Difluorodiazine," <u>Inorg. Chem.</u>, <u>5</u>, 1791 (1966).
- L53. Sicre, J. E., and H. J. Schumacher, "The Homogeneous Reaction Between N_2F_4 and O_2 ," J. Inorg. Nucl. Chem., 27, 2277 (1965).
- L54. Sinke, G. C., "The Heat of Reaction of Nitrogen Trifluoride and Hexafluoroethane," J. Phys. Chem., 70, 1326 (1966).
- I55. Sinke, G. C., "The Enthalpy of Dissociation of Nitrogen Trifluoride," <u>J. Phys. Chem.</u>, <u>71</u>, 359 (1967).

- L55a. Sukornick, B., R. F. Stahl and J. Gordon, "Dichlorofluoramine," <u>Inorg. Chem.</u>, 2, 875 (1963).
- L56. Tolberg, W. E., R. T. Rewick, R. S. Stringham and M. E. Hill, "The Synthesis of the Perfluoroammonium Cation, NF₄⁺," <u>Inorg. Nucl. Chem. Letters</u>, 2, 79 (1966).
- 1.57. Tolberg, W. E., R. T. Rewick, R. S. Stringham and M. E. Hill, "The Synthesis of the Perfluoroammonium Cation, NF₄⁺," <u>Inorg. Chem.</u>, 6, 1156 (1967).
- L58. Walker, L. C., "The Enthalpy of Reaction of Sulfur and Nitrogen Trifluoride,"

 J. Phys. Chem., 71, 361 (1967).
- L59. Ward, G. A., and C. M. Wright, "The Electrochemistry of Inorganic Difluoro-amino Compounds. I. The Mechanism of the Electrochemical Oxidation of Difluoramine and the Use of this Reaction in the Synthesis of Alkyl Difluoramines, J. Am. Chem. Soc., 86, 4333 (1964).
- L60. Ward, G. A., C. M. Wright and A. D. Craig, "The Electrochemistry of Inorganic Difluoramino Compounds. II. Solution Chemistry and Electrochemical Reduction of Difluoramine," J. Am. Chem. Soc., 88, 713 (1966).
- I61. Yap, W. T., A. D. Craig and G. A. Ward, "Kinetic Study of Anions with Di-fluoramine," J. Am. Chem. Soc., 89, 3442 (1967).
- 162. Young, A. R., and D. Moy, "The Reaction of Tetrafluorohydrazine with Arsenic Pentafluoride. Evidence for the Existence of N₂F₃ Salts," <u>Inorg. Chem.</u>, 6, 178 (1967).

B. Organic N-F Derivatives

- 163. Atalla, R. H., A. D. Craig and J. A. Gailey, "Infrared Spectrum of Methyl-difluoramine," J. Chem. Phys., 45, 423 (1966).
- 164. Atalla, R. H., and A. D. Craig, "Infrared Spectrum of Perfluoromethyldi-fluoramine," J. Chem. Phys., 45, 427 (1966).
- L65. Brauman, S. K., and M. E. Hill, "Synthesis and Structures of the 2,3-Bis(difluorimino)butanes," J. Am. Chem. Soc., 89, 2127 (1967).
- L66. Baum, K., and H. M. Nelson, "Reactions of Alkyldifluoramines with Acids," J. Am. Chem. Soc., 88, 4459 (1966).
- I67. Brauman, S. K., and M. E. Hill, "Kinetics and Mechanism of the Dehydrofluor-ination of 2,3-Bis(N,N-difluoramino) butane," J. Am. Chem. Soc., 89, 2131 (1967).

- L68. Davis, R. A., J. L. Kroon and D. A. Rausch, "Pentafluoroguanidine," J. Org. Chem., 32, 1662 (1967).
- L69. Dijkstra, A. J., J. A. Kerr and A. F. Trotman-Dickenson, "Reactions of Difluoroamino-radicals. Part II. Addition to Propene <u>cis-But-2-ene</u>, and <u>trans-But-2-ene</u>," <u>J. Chem. Soc. (A)</u>, 582 (1966).
- L70. Dijkstra, A. J., J. A. Kerr and A. F. Trotman-Dickinson, "Reactions of Difluoroamino-radicals. Part III. Addition to Olefins," <u>J. Chem. Soc. (A)</u>, 105 (1967).
- L71. Dijkstra, A. J., J. A. Kerr and A. F. Trotman-Dickinson, "Reactions of Difluoroamino-radicals. Part IV. Addition to Vinyl Halides," J. Chem. Soc. (A), 864 (1967).
- L72. Dresdner, R. D., J. Merritt and J. P. Royal, "Photochemical Fluorinations of C_2N_2 and $R_fN=SF_2$ with N_2F_4 ," <u>Inorg. Chem.</u>, 4, 1228 (1965).
- L73. Dybvig, D. H., "Organic Fluoronitrogens. III. Preparation and Reactions of Halogenated Fluorimines," <u>Inorg. Chem.</u>, <u>5</u>, 1795 (1966).
- L74. Fraser, G. W., and J. M. Shreeve, "Perfluorourea," Chem. Commun., 532 (1966).
- L75. Fraser, G. W., and J. M. Shreeve, "Some Chemistry of Difluoraminocarbonyl Fluoride, NF₂CFO. The Preparation of Perfluorourea, (NF₂)₂CO, and Difluoraminocarbonyl Chloride, NF₂C(0)Cl. New Preparations of NF₂OCF₃ and NF₂Cl,"

 Inorg. Chem., 6, 1711 (1967).
- L76. Freeman, J. P., and W. H. Graham, "The Stereochemistry of Deamination of cisand trans-2,3-Butenimines with Difluoroamine," J. Am. Chem. Soc., 89, 1761 (1967).
- L77. Good, W. D., S. S. Todd, J. F. Messerly, J. L. Lacina, J. P. Dawson, D. W. Scott and J. P. McCullcugh, "Perfluoropiperidine: Entropy, Heat of Formation, and Vapor Pressure; N-F Bond Energy; and Solid State Transitions," J. Phys. Chem., 67, 1306 (1963).
- L78. Good, W. D., D. R. Douslin and J. P. McCullough, "1,2-bis-Difluoroamino-4-methylpentane: Heats of Combustion, Formation and Vaporization; Vapor Pressure; and N-F Thermochemical Bond Energy," J. Phys. Chem., 67, 1312 (1963).
- L79. Graff, M., C. Gotzmer, Jr., and W. E. McQuistion, "The Decomposition of Isomeric N-Nitro-N-fluorobutylamines," <u>J. Org. Chem.</u>, <u>32</u>, 3827 (1967).
- L80. Graham, W. H., "The Reaction of Imines with Difluoramines. A Method of Preparation of Diazirines," J. Am. Chem. Soc., 88, 4677 (1966).

- L81. Graham, W. H., and J. P. Freeman, "The Alkylation of Difluoramine with Carbonium Ions," J. Am. Chem. Soc., 89, 716 (1967).
- LG2. Grzechowiak, J., J. A. Kerr and A. F. Trotman-Dickinson, "Hydrogen Abstraction by Difluoroamino-radicals and the Strengths of C-H Bonds," Chem. Commun. (No. 6) 109 (1985).
- 185. Hencher, J. L., and S. H. Bauer, "The Molecular Structure of Perfluoro-diazirine," J. Am. Chum. Soc., 89, 5527 (1967).
- L84. Hynes, J. B., B. C. Bishop and L. A. Bigelow, "The Fluorination of Cyanogen Chloride," <u>Inorg. Chem.</u>, 6, 417 (1967).
- 185. Koshar, R. J., D. R. Husted and C. D. Wright, "Organic Fluoronitrogens. VII. Tris(difluoramino)fluoromethane and Related Compounds," J. Org. Chem., 32, 3859 (1967).
- 186. Logothetis, A. L., "Chemistry of Tetrafluorohydrazine. I. Reaction with Anthracenes," J. Org. Chem., 31 3686 (1966).
- Legothetis, A. L., and G. N. Sausen, "Chemistry of Tetrafluorohydrazine. II. Reaction with Olefins to Give N-Fluoriminonitriles," <u>J. Org. Chem.</u>, 31, 3689 (1966).
- ISS. Merritt, R. F., and F. A. Johnson, "Low-Temperature Fluorination of Schiff Bases," J. Org. Chem., 32, 416 (1967).
- L89. Meyers, M. D., and S. Frank, "Difluorocyanamide," <u>Inorg. Chem.</u>, <u>5</u>, 1455 (1966).
- L90. Petry, R. C., and J. P. Freeman, "Radical Reactions of Tetrafluorohydrazine.
 III. Addition to Olefins," J. Org. Chem., 32, 4034 (1967).
- L91. Petry, R. C., C. O. Parker, F. A. Johnson, T. E. Stevens and J. P. Freeman, "Radical Reactions of Tetrafluorohydrazine. IV. Addition to Acetylenes," J. Org. Chem., 32, 1534 (1967).
- L92. Pierce, L., R. G. Hayes and J. F. Bacher, "Microwave Spectrum of Methyl Difluoramine: Structure, Conformation, Dipole Moment, Barrier to Internal Rotation, and Quadrupole Coupling Constants of the Molecule," J. Chem. Phys., 46, 4352 (1967).
- L93. Rebertus, R. L., J. J. McBrady and J. G. Gagnon, "Organic Fluoronitrogens. VI. Reduction of Difluoramino Compounds with Iodide," <u>J. Org. Chem.</u>, <u>32</u>, 1944 (1967).
- L94. Rebertus, R. L. and B. W. Nippoldt, "Organic Fluoronitrogens. VIII. Hydrolytic Reactions of Tetrafluoroformamidine and Pentafluoroguanidine," J. Org. Chem., 32, 4044 (1967).

- L95. Rebertus, R. L., and P. E. Toren, "Organic Fluoronitrogens. IX. Oxidation-Reduction Reactions of Tris(difluoramino)fluoromethane, Tetrafluoroform-amidine, and Pentafluoroguanidine," J. Org. Chem., 32, 4045 (1967).
- I.96. Reed, S. F., Jr., "Radical Reactions of Tetrafluorohydrazine. Diallyl Ether, J. Org. Chem., 32, 3675 (1967).
- 1.97. Reed, S. F., Jr., "Radical Reactions of Tetrafluorohydrazine. V. The Synthesis of β-Difluoramine-N'-fluorodiimide N-Oxides," <u>J. Org. Chem.</u>, <u>32</u>, 3869 (1967).
- L98. Ruff, J. K., "The Catalytic Fluorination of Perfluorocarbon Nitriles and Imines," J. Org. Chem., 32, 1675 (1967).
- L99. Sausen, G. N., and A. L. Logothetis, "Chemistry of Tetrafluorohydrazine.

 III. Addition Reactions with Acetylenes and with Allene. Bis(difluoramino) ethylenes," J. Org. Chem., 32, 2261 (1967).
- L100. Schumb, W. C., and R. F. O'Malley, "The Fluorination of Nitrides," <u>Inorg.</u> Chem., 3, 922 (1964).
- L101. Sinke, G. C., C. J. Thompson, R. E. Jostad, L. C. Walker, A. C. Swanson and D. R. Stull, "Enthalpies of Formation and Bond Energies of Some Fluor-amines," J. Chem. Phys., 47, 1852 (1967).
- L102. Stevens, T. E., and W. H. Graham, "Rearrangements of Organic Fluoramines. Preparation of 3-Difluoroamino-2-fluoro-2-azacyclohexanone and 3-Fluoro-3-(3-carbomethoxypropyl)-diazirine," <u>J. Am. Chem. Soc.</u>, <u>89</u>, 182 (1967).
- L103. Wiesboeck, R. A., and J. K. Ruff, "Dimethylfluoramine," <u>Inorg. Chem.</u>, 5, 1628 (1966).
- L104. Young, J. A., and R. D. Dresdner, "N,N-difluoramines from Azoalkanes,"

 J. Org. Chem., 28, 833 (1963).
- L105. Zimmer, M. F., E. E. Barcody, M. G. Graff, G. A. Carpenter and R. A. Raft, "Heats of Formation and Bond Energies of N-Fluoro-N-nitrobutylamine Isomers,"

 J. Chem. Eng. Data, 11, 579 (1966).

C. Fluorine and Halogen Fluorides

- Llo6. Arvia, A. J., and P. J. Aymonino, "Infrared Absorption Spectrum of Gaseous Chloryl Fluoride (FClo2), Spectrochimica Acta, 19, 1449 (1963).
- L107. Bauer, H. F., and D. F. Sheehan, "Equilibrium Studies of Chlorine Penta-fluoride," <u>Inorg. Chem.</u>, 6, 1736 (1967).

- ENOS. Brown, D. H., K. R. Dixon and D. W. A. Sharp, "The Structures of Bromine Trifluoride Adducts," Chem. Commun. (No. 18) 654 (1966).
- L109. Christe, K. O., and J. P. Guertin, "The Difluorochlorate(I) Anion, ClF₂," Inorg. Chem., 3, 905 (1965).
- Id.10. Christe, K. O., and J. P. Guertin, "Diffluorochlorates(I) of Cesium, Rubidium and Potassium," Inorg. Chem., 4, 1785 (1965).
- Lill. Christe, K. O., and J. P. Guertin, "The Structure of the Tetrafluorochlorate (III) Anion, ClF₄," <u>Inorg. Chem.</u>, <u>5</u>, 473 (1966).
- L112. Christe, K. O., and A. E. Pavlath, "Ionic Complexes Containing the Difluorochlorinium Cation," Z. Anorg. Allgem. Chem., 335, 210 (1965).
- L113. Christe, K. O., and W. Sawodny, "The Difluorochlorinum(III) Cation, ClF2⁺.

 Vibrational Spectra and Force Constants," <u>Inorg. Chem.</u>, 6, 313 (1967).
- Illi4. Christe, K. O., and W. Sawodny, "The Hexafluoroiodine(VII) Cation, IF6⁺, Inorg. Chem., 6, 1783 (1967).
- L115. Christe, K. O., W. Sawodny and J. P. Guertin, "The Difluorochlorate(I) Anion, ClF₂. Vibrational Spectra and Force Constants," <u>Inorg. Chem.</u>, <u>6</u>, 1159 (1967).
- L116. Dale, J. W., and G. A. Tsigdinos, "Chlorine Trifluoride as an Ionizing Solvent," Unclassified Presentation ARPA Propellant Contractors Synthesis Conference, Chicago, April 13-15, 1964, pp. 153-171.
- Lil7. Disen, R. W., "Mass Spectral Studies of Kinetics Behind Shock Waves. III.
 Thermal Dissociation of Fluorine," J. Chem. Phys., 44, 3662 (1966).
- Lil8. Gardner, D. M., R. Helitzer, and D. H. Rosenblatt, "The Reaction of Perchloryl Fluoride with Selected Amines," J. Org. Chem., 32, 1115 (1967).
- Lill9. Gatti, R., R. L. Krieger, J. E. Sicre, and H. J. Schumacher, "A New Method of Preparation and Some Properties of Chlorine Pentafluoride," <u>J. Inorg.</u>
 Nucl. Chem., 28, 655 (1966).
- L120. Gortsema, F. P., and R. H. Toeniskoetter, "The Chemistry of Platinum Hexa-fluoride. II. Reactions with Chlorine Trifluoride, Bromine Pentafluoride and Tetrafluorohydrazine," Inorg. Chem., 5, 1925 (1966).
- L121. Hynes, J. B., and T. E. Anstin, "The Addition of Chlorine Monofluoride to Fluorinated Nitriles," <u>Inorg. Chem.</u>, <u>5</u>, 488 (1966).
- L122. Lustig, M., "The Chlorofluorination of Acetonitrile. Preparation of N-Chloro-N-fluoro-1,1-difluoroethylamine," <u>Inorg. Chem.</u>, 6, 1064 (1967).

- L123. Oakland, R. L., and G. H. Duffey, "Molecular Orbital Treatment of IF7,"

 J. Chem. Phys., 46, 19 (1967).
- L124. Pierce, S. B., and C. D. Cornwell, "Microwave Spectrum of IOF₅," <u>J. Chem. Phys.</u>, 47, 1731 (1967).
- L125. Pilipovich, D., W. Maya, E. A. Lawton, H. F. Bauer, D. F. Sheehan, N. N. Ogimachi, R. D. Wilson, F. C. Gunderloy, Jr., and V. E. Bedwell, "Chlorine Pentafluoride. Preparation and Properties," <u>Inorg. Chem.</u>, 6, 1918 (1967).
- L126. Seery, D. J., "The Dissociation of Molecular Fluorine," J. Phys. Chem., 70, 1684 (1966).
- L127. Selig, H., C. W. Williams and G. J. Moody, "The Refractive Indices, Densities and Dielectric Constants of IF, and IOF," J. Phys. Chem., 71, 2739 (1967).
- L128. Smith, D. F., G. M. Begun and W. H. Fletcher, "Infrared and Raman Vibrational Spectra of Chloryl Fluoride (ClO₂F)," <u>Spectrochimica Acta</u>, <u>20</u>, 1763 (1964).
- Ll29. Toy, J. S., and W. A. Cannon, "The Electrical Conductivities of Boron Trifluoride in Pure and Mixed Halogen Fluorides," <u>J. Phys. Chem.</u>, 70, 2241 (1966).

D. Oxygen Fluorides and Derivatives

- L130. Adrian, F. J., "ESR Spectrum and Structure of O₂F," J. Chem. Phys., 46, 1543 (1967).
- Ll31. Anderson, L. R., and W. B. Fox, "An Unusual Reaction of Oxygen Difluoride.

 The Addition to Carbonyl Fluoride to Produce Bis(trifluoromethyl) Trioxide,"

 J. Am. Chem. Soc., 89, 4313 (1967).
- L132. Arkell, A., 'Matrix Infrared Studies of OF Compounds. II. The O₂F Radical,"

 J. Am. Chem. Soc., 87, 4057 (1965).
- L133. Arkell, A., R. R. Reinhard, and L. P. Larson, "Matrix Infrared Studies of OF Compounds. I. "The OF Radical.," <u>J. Am. Chem. Soc.</u>, 87, 1016 (1965).
- L134. Buenker, R. J., and S. D. Peyerimhoff, "Geometry of Molecules. III. F₂0, Li₂0, FOH, and LiOH," <u>J. Chem. Phys.</u>, <u>45</u>, 3682 (1966).
- L135. Cauble, R. L., and G. H. Cady, "Fluorocarbonyl Hypofluorite," J. Am. Chem. Soc., 89, 5161 (1967).
- I.136. Franz, G., and F. Neumayr, "Reaction of Oxygen Difluoride with Sulfur Dioxide, Sulfur Trioxide, and Peroxydisulfuryl Difluoride," <u>Inorg. Chem.</u> 3, 921 (1964).

- L137. Holzmann, R., J. Dvorak, and T. Hirata, "The Behavior of Dioxygen Difluoride with Chlorine and Chlorine-Containing Compounds," <u>Abstracts of Papers</u>, 148th ACS Meeting, Chicago, September 1964, p. 26k.
- L138. Kasai, P. H., and A. D. Kirshenbaum, "An Electron Paramagnetic Resonance Study of Oxygen Fluorides. I. Dioxygen Difluoride and Trioxygen Difluoride," J. Am. Chem. Soc., 87, 3069 (1965).
- L139. Kirshenbaum, A. D., and A. G. Streng, "An Electron Paramagnetic Resonance Study of Oxygen Fluorides. II. Tetraoxygen Difluoride," J. Am. Chem. Soc., 88, 2434 (1966).
- L140. Lawrence, N. J., J. S. Ogden, and J. J. Turner, "19F Chemical Shift of Dioxygen Difluoride," Chem. Commun. (No. 4) 102 (1966).
- L141. Iustig, M., A. R. Pitochelli, and J. K. Ruff, "The Catalytic Addition of Fluorine to a Carbonyl Group. Preparation of Fluoroxy Compounds," J. Am. Chem. Soc., 89 2841 (1967).
- L142. Lustig, M., and J. K. Ruff, "The Formation of Bis(difluorofluoroxy) Peroxide,"

 <u>Chem. Commun.</u> (No. 17) 870 (1967).
- L143. Malone, T. J., and H. A. McGee, Jr., "Mass Spectrometric Investigations of the Synthesis, Stability, and Energetics of the Low-Temperature Oxygen Fluorides. I. Dioxygen Difluoride," J. Phys. Chem., 69, 4338 (1965).
- L144. Malone, T. J., and H. A. McGee, Jr., "Ionization Potentials of the Dioxygen Fluoride Free Radical and the Dioxygen Difluoride Molecule," J. Phys. Chem., 70, 316 (1966).
- L145. Malone, T. J., and H. A. McGee, Jr., "Mass Spectrometric Investigations of the Synthesis, Stability and Energetics of the Low-Temperature Oxygen Fluorides. II. Ozone Difluoride," <u>J. Phys. Chem.</u>, 71, 3069 (1967).
- L146. Merritt, R. F., and J. K. Ruff, "Oxidations with Oxygen Difluoride," J. Am. Chem. Soc., 86, 1392 (1964).
- L147. Nebgen, J. W., F. I. Metz, and W. B. Rose, "A Reinvestigation of the Infrared Spectrum of Gaseous Oxygen Difluoride," J. Mol. Spectro., 21, 99 (1966).
- L148. Nebgen, J. W., F. I. Metz, and W. B. Rose, "The ¹⁹F Nuclear Magnetic Resonance Spectra of Oxygen Fluorides," <u>J. Am. Chem. Soc.</u>, 89, 3118 (1967).
- L149. Nebgen, J. W., W. B. Rose, and F. I. Metz, "The ¹⁹F Nuclear Magnetic Resonance Spectra of Liquid and Gaseous Fluorine, Oxygen Difluoride, and Nitrogen Trifluoride," <u>J. Mol. Spectro.</u>, <u>20</u>, 72 (1966).
- L150. Ogden, J A., and J. J. Turner, "Photolytic Fluorine Reactions: $F_2 + N_20$ at $4^{\circ}K$," J. Chem. Soc. (A), 1483 (1967).

- L151. Solomon, I. J., R. I. Brabets, R. K. Uenishi, J. N. Keith and J. M. McDonough, "New Dioxygenyl Compounds," <u>Inorg. Chem.</u>, <u>3</u>, 457 (1964).
- L152. Solomon, I. J., J. K. Raney, A. J. Kacmarek, R. G. Maguire, and G. A. Nobles; "An Oxygen-17 and Fluorine-19 NMR Study of the Oxygen Fluorides," J. Am. Chem. Soc., 89, 2015 (1967).
- L152a. Spratley, R. D., and G. C. Pimentel, "The [p- π *] σ and [s- π *] σ Bonds. FNO and O₂F₂," J. Am. Chem. Soc., 88, 2394 (1967).
- L153. Spratley, R. D., J. J. Turner, and G. C. Pimentel, "Dioxygen Monofluoride: Infrared Spectrum, Vibrational Potential Function and Bonding," <u>J. Chem. Phys.</u>, 44, 2063 (1966).
- L154. Streng, A. G., "An Improved Preparation, Analysis, and Some Properties of Tetraoxygen Difluoride," <u>Can. J. Chem.</u>, <u>44</u>, 1476 (1966).
- L155. Streng, A. G., and L. V. Streng, "Molar Extinction Coefficients of O₄F₂ in the Visible Range and a Comparison with Other Oxygen Fluorides," <u>J. Phys. Chem.</u>, 69, 1079 (1965).
- L156. Thompson, P. G., "Preparation and Characterization of Bis(fluoroxy)perfluoroalkanes. II. Bis(fluoroxy)perfluoromethane," J. Am. Chem. Soc., 89, 1811 (1967).
- L157. Thompson, P. G., "Bis(perfluoroalkyl) Trioxides," J. Am. Chem. Soc., 89, 4316 (1967).
- L158. Turner, S. J., and R. D. Harcourt, "A Molecular Orbital Treatment of Bonding in Dioxygen Difluoride and Hydrogen Peroxide," Chem. Commun. (No. 1) 4 (1967).
- L159. Welsh, F. E., F. I. Metz, and W. B. Rose, "Electron Paramagnetic Resonance Spectra of the O₂F Radical in Liquid and Solid O₂F₂," J. Mol. Spectro., 21, 249 (1966).
- L160. Wilt, P. M., and E. A. Jones, 'New Measurements of the Vibrational Spectrum of CF₃OF," J. Inorg. Nucl. Chem., 29, 2108 (1967).
- L161. Woolf, C., "Oxyfluorides of Nitrogen," Advances in Fluorine Chemistry, Volume 5, Butterworths, Washington, 1-30 (1965).

E. Nitrogen and Chlorine Oxides and Derivatives

- L162. Adams, J. Q., 'Paramagnetic Relaxation of Clo₂ in Solution," <u>J. Chem. Phys.</u>, 45, 4167 (1966).
- L163. Beagley, B., "Electron Diffraction Study of Gaseous Chlorine Heptoxide,"

 <u>Trans. Far. Soc.</u>, 61, 1821 (1965).

- L164. Byberg, J. R., S. J. K. Jensen, and L. T. Muus, "ESR Spectra from Paramagnetic Centers in Irradiated KClO₄. I. The ClO₂ Center," <u>J. Chem. Phys.</u>, <u>46</u>, 131 (1967).
- L165. Byberg, J. R., "ESR Spectra from Paramagnetic Centers in Irradiated KClO₄.

 II. The Clo Center," <u>J. Chem. Phys.</u>, <u>47</u>, 861 (1967).
- L166. Carrington, A., P. N. Dyes, and D. H. Levy, "Gas-Phase Electron Resonance Spectrum of Cl0," J. Chem. Phys., 47, 1756 (1967).
- L167. Carrington, A., and D. H. Levy, "Electron Resonance of Free Radicals in the Gas Phase," J. Phys. Chem., 71, 2-12 (1967).
- L168. Faithful, B. D., R. D. Gillard, D. G. Tuck, and R. Ugo, "The Hydrogen Dinitrate Ion," J. Chem. Soc. (A), 1185 (1966).
- L169. Herberich, G. E., R. H. Jackson, and D. J. Miller, "The Microwave Spectrum of Dichlorine Oxide. Molecular Structure, Centrifugal Distortion Coefficients, and Force Field," J. Chem. Soc. (A), 336 (1966).
- L170. Janik, G. S., and D. C. Conway, "Bonding in Heteromolecular Ion Clusters. $N_2O_2^{-1}$," J. Phys. Chem., 71, 823-830 (1967).
- L171. Maycock, J. N., V. R. Pai Verneker, and L. W. Hen, "The Photochemical Decomposition of Nitronium Perchlorate," J. Phys. Chem., 71, 2107 (1967).
- L172. Maycock, J. N., V. R. Pai Verneker, and P. W. M. Jacobs, "Mass Spectrometric Study of the Thermal Decomposition of Ammonium Perchlorate," J. Chem. Phys., 46, 2857 (1967).
- L173. McHale, E. T., and G. V. Elbe, "Chlorine (III) Oxide, A New Chlorine Oxide,"

 J. Am. Chem. Soc., 89, 2795 (1967).
- L174. Morton, J. R., "Electron Spin Resonance Spectrum of ClO₄ Trapped in Tradiated KClO₄," J. Chem. Phys., 45, 1800 (1966).
- L175. Petrella, R. V., and T. L. Spink, "Flash Pyrolysis and Kinetic Spectroscopy of Ammonium Perchlorate," <u>J. Chem. Phys.</u>, <u>47</u>, 1488 (1967).
- L176. Ray, A. B., "Reactions of Boron Trifluoride with Oxides of Nitrogen," <u>Inorg.</u> Chem., 6, 110 (1967).
- L177. Rochkind, M. M., and G. C. Pimentel, "Photolysis of Matrix-Isolated Dichlorine Monoxide: Infrared Spectra of ClClO and (ClO)₂," J. Chem. Phys., 46, 4481 (1967).
- L178. Schack, C. J., "A New Synthesis of Chlorine Nitrate," <u>Inorg. Chem.</u>, <u>6</u>, 1938 (1967).

- L179. Shams, A. M., E. Din, and A. A. El Hosary, "Pyronitrate: A New Anion of Pentavalent Nitrogen," J. Inorg. Nucl. Chem., 28, 3043 (1966).
- L180. Vanderkooi, N., and T. R. Poole, "The Electron Paramagnetic Resonance Spectrum of Chlorine Dioxide in Solution. Effect of Temperature and Viscosity on Line Width," <u>Inorg. Chem.</u>, 5, 1351 (1966).
- L181. Wood, D. E., and T. M. Pietzrak, "Chemical Reactions in Molecular Sieves.

 I. NO₃ Free Radical from Direct Reaction of NO₂ and Atomic Oxygen,"

 J. Chem. Phys., 46, 2973 (1967).
- L182. Zimmer, M. F., R. A. Robb, E. E. Baroody, and G. A. Carpenter, "Heat of Formation and Other Properties of Trinitrofluoromethane," <u>J. Chem. Eng. Data</u>, <u>11</u>, 577 (1966).

F. Miscellaneous Compounds Related to Oxidizers

- L183. Allen, L. C., A. M. Lesk, and R. M. Erdahl, "The Fluorides and Oxides of Helium and Neon," J. Am. Chem. Soc., 88, 615 (1966).
- L184. Babb, D. P., and J. M. Shreeve, "The Reactions of N,N-Bis(trifluoromethyl)-hydroxylamine with Perfluoroacyl and Carbonyl Halides," <u>Inorg. Chem.</u>, 6, 351 (1967).
- L185. Bartlett, N., and S. P. Beaton, "Nitrosyl Hexafluoroplatinate(V), NO⁺ [PtF₆] -: Preparation and Magnetic Susceptibility. The Magnetic Susceptibility of O₂+," Chem. Commun. (No. 6) 167 (1966).
- Ll85a. Clark, H. C., and K. R. Dixon, "The SiF₅" Ion and Evidence for the Existence of GeF₅", "Chem. Commun., 717 (1967).
- L186. Clifford, A. F., and C. S. Kobayashi, "The Preparation and Properties of N-Fluoroformyliminosulfur Difluoride, SF₂=NCOF," <u>Inorg. Chem.</u>, 4, 571 (1965).
- L186a. Engelbrecht, A., E. Nachbaur, and E. Mayer, "Gas Chromatographic Analysis of Mixtures of Inorganic Fluorides," J. Chromatog., 15, 228 (1964).
- L187. Firth, W. C., S. Frank, M. Garber and V. P. Wystrack, "Reactions of Tetrafluorohydrazine with Di- and Triphenylphosphine. A New Method for Preparation of Fluorophosphoranes," <u>Inorg. Chem.</u>, <u>4</u>, 765 (1965).
- L188. Frlec, B., and H. H. Hyman, "Solution Properties of Some Hexafluorides in Anhydrous Hydrogen Fluoride," <u>Inorg. Chem.</u>, <u>6</u>, 1596 (1967).
- L189. Gale, D. M., W. J. Middleton, and C. G. Krespan, "Perfluorodiazo Compounds,"

 J. Am. Chem. Soc., 88, 3617 (1966).

L190. Gasner, E. L., and H. H. Classen, "Raman Spectrum of Xenon Hexafluoride,"

<u>Inorg. Chem.</u>, 6, 1937 (1967).

1.

- L191. Gutowsky, H. S., and V. D. Mochel, "Electron Coupling of Nuclear Spins, VII. J_{FF} for 2-Fluorobenzotrifluorides," <u>J. Chem. Phys.</u>, <u>39</u>, 1195 (1963).
- L192. Holliday, A. K., and F. B. Taylor, "Diboron Tetrafluoride. Part II. Reactions with Some Oxides and Organometallic Compounds," J. Chem. Soc., 2731 (1964).
- L193. Knapp, C. L., High Energy Fuels. Safe Handling., Ind. Eng. Chem., 55, 25 (1963).
- L194. Lustig, M., and W. E. Hill, "The n-Oxo-difluorophosphines $(CF_3)_2C(CPF_2)I$, $(CF_3)_2C(OPF_2)Br$, and $(CF_3)_2C(OPF_2)H$," Inorg. Chem., 6, 1448 (1967).
- L195. Lustig, M., J. K. Ruff, and C. B. Colburn, "Diphosphorus Tetrafluoride and Diphosphorus Oxytetrafluoride," <u>J. Am. Chem. Soc.</u>, <u>88</u>, 3875 (1966).
- L196. Milligan, D. E., J. E. Jacox, and J. J. Comeford, "Infrared Spectrum of the Free Radical CF₃ Isolated in Inert Matrices," <u>J. Chem. Phys.</u>, 44, 4058 (1966).
- L197. Morrow, S. I., and A. R. Young, II, "The Reaction Xenon with Dioxygen Di-Fluoride. A New Method for the Synthesis of Xenon Difluoride," <u>Inorg.</u> <u>Chem.</u>, <u>4</u>, 759 (1965).
- L198. Morse, K. W., and R. W. Parry, "The Basic Properties of Tetrafluorodiphosphine. The Synthesis of Tetrafluorodiphosphine Borane," J. Am. Chem. Soc., 89, 172 (1967).
- L199. Morse, J. G., and R. W. Parry, "Dipole Moment of Difluorophosphine," J. Chem. Phys., 46, 4159 (1967).
- L200. Nagarajon, G., "Mean Amplitudes of Vibration and Thermodynamic Functions of Some Group V Trihalides," <u>Indian J. Pure Appl. Phys.</u>, 2, 237 (1964).
- L201. Neumayr, F., and N. Vanderkooi, Jr., "The Radical Decomposition of Peroxysulfuryl Difluoride, FSO₂OOF, and Related Compounds by Chemical and Electron Paramagentic Resonance Methods," <u>Inorg. Chem.</u>, 4, 1234 (1965).
- L202. Newvar, E. W., and R. A. Mitsch, "Difluorodiazirine. VIII. Kinetics of the Thermal Decomposition of Difluorodiazirine," J. Phys. Chem., 71, 1229 (1967).
- L203. Ogden, P. H., and R. A. Mitsch, "Reactions of the Difluoromethylenimine Radical," J. Inorg. Chem., 89, 3868 (1967).
- L204. Ogden, P. H., and G. V. D. Tiers, "Stereoisomerization of Perfluoro-(N-methyleneisopropylamine)," Chem. Commun., 527 (1967).

- L205. Redwood, M. E., and C. J. Willis, "Fully Fluorinated Alkoxides. Part II. Ethoxides, Propoxides and Butoxides," Can. J. Chem., 45, 389 (1967).
- L206. Rudolph, R. W., R. C. Taylor and R. W. Parry, "Fluorophosphine Ligands. III. Synthesis Involving PF₂I. The Preparation and Characterization of μ -Oxo-bisdifluorophosphine, Cyanodifluorophosphine, and Tetrafluorodiphosphine," J. Am. Chem. Soc., 88, 3729 (1966).
- L207. Selig, H., 'Complexes of Xenon Oxide Tetrafluoride," <u>Inorg. Chem.</u>, <u>5</u>, 183 (1966).
- L208. Streng, L. V., and A. G. Streng, "Formation of Xenon Difluoride from Xenon and Oxygen Difluoride or Fluorine in Pyrex Glass at Room Temperature,"

 Inorg. Chem., 4, 1370 (1965).
- L209. Streng, L. V., and A. G. Streng, "Photochemical Formation of Krypton Difluoride From Krypton and Fluorine or Oxygen Difluoride," <u>Inorg. Chem.</u>, 5, 328 (1966).
- L210. Weinstock, B., "The 25-Year Revolution in Hexafluoride Chemistry," Chem. and Eng. News, September 21, p. 86, 1964.

CONFIDENTIAL

Secu	ritv	Clas	isif i	cation	

Account Casalitation of title, body of desired and indexing concention must be numered when the executive classification Midwest Research Institute 25 Volker Boulevard 26 Volker Boulevard 27 Volker Boulevard 28 Volker Boulevard	DOCUMENT CONTROL DATA - R & D							
Midwest Research Institute 425 Volker Boulevard Kansus City, Missouri 64110 **REVIEW OF OXIDIZERS, 1865-1967 (U) **OSCAMPTIVE WOF THE CHEMISTRY OF ADVANCED OXIDIZERS AND FUELS: SUPPLEMENTARY REVIEW OF OXIDIZERS, 1865-1967 (U) **OSCAMPTIVE WOTES (Type of report and Inclusive dates) Annual Technical Summary Report (1 February - 31 December 1967) **AUTHORNIC (First same, middle initial, less same) Edward W. Lawless Thomas Lapp **Rope M. Howard **REPED TOATE **ROPE M. Howard **REPED TOATE **REPED TOAT								
Kansas City, Missouri 64110 Group 4 NESCRIPTICAL REVIEW OF THE CHEMISTRY OF ADVANCED OXIDIZERS AND FUELS: SUPPLEMENTARY REVIEW OF OXIDIZERS, 1965-1967 (U) **OSSCRIPTIVE NOTES (Type of report and inclusive dates) Annual Technical Summary Report (1 February - 31 December 1967) **AUTOMINICAL REVIEW of Report and inclusive dates) Annual Technical Summary Report (1 February - 31 December 1967) **AUTOMINICAL SUMMARY REPORT NOTES (Type of report and inclusive dates) Report Notes (Type of report and inclusive dates) Report Oxide (Type of report and inclusive dates) **AUTOMINICAL SUMMARY REPORT NOTES (Type of report and inclusive dates) **AUTOMINICAL SUMMARY REPORT NOTES (Type of report notes) **AUTOMINICAL SUMMARY REPORT NOTES (Type of Re								
CRITICAL REVIEW OF THE CHEMISTRY OF ADVANCED OXIDIZERS AND FUELS: SUPPLEMENTARY REVIEW OF OXIDIZERS, 1965-1967 (U) Annual Technical Summary Report (1 February - 31 December 1967) Annual Technical Summary Report (1 February - 31 December 1967) Annual Technical Summary Report (1 February - 31 December 1967) AND LEWISES Thomas Lapp Hope M. Howard ARPORT 1968 APRIL TOTAL NO. OF PAGES APRIL TR-68-49 APRIL TR	· ·		2b. GROUP					
CRITICAL REVIEW OF THE CHEMISTRY OF ADVANCED OXIDIZERS AND FUELS: SUPPLEMENTARY REVIEW OF OXIDIZERS, 1965-1967 (U) * OBSCRIPTIVE NOTES (Type of report and Inclusive dates) Annual Technical Summary Report (1 February - 31 December 1967) **AUTHORISTIC (First name, additional initial, last cases) Edward W. Lawless Thomas Lapp **REPORT OATE* **MERCH 1968 ***REPORT OATE* **MERCH 1968 ***AUTHORISTIC (The AUTHOR) ***REPORT OATE* ***MERCH 1968 ***AUTHORISTIC (THE AUTHOR) ***REPORT OATE* ***MERCH 1968 ***AUTHORISTIC (THE AUTHOR) ***REPORT OATE* ***MERCH 1968 ***AUTHORISTIC (THE AUTHOR) ***PROPERTY NOTES (ANY OTHER NUMBERS) ***AUTHORISTIC (THE AUTHOR) ***AUTHORISTIC (THE AUTHOR) ***REPORT NOTES (ANY OTHER NUMBERS) ***AUTHORISTIC (THE AUTHOR) ***AUTHORS (THE AUTHOR) ***AUTHORISTIC (THE AUTHOR) ***AUTHOR	· · · · · · · · · · · · · · · · · · ·		Group 4					
REVIEW OF OXIDIZERS, 1965-1967 (U) * DESCRIPTIVE NOTES (Type of report and inclusive dates) Annual Technical Summary Report (1 February - 31 December 1967) * Authority (First name, addition inite), less names) Edward W. Lawless Thomas Lepp Hope M. Howard * REPOT OATE March 1968 * REPOT OATE March 1968 * REPOT OATE March 1968 * REPOT OATE * AFRPL-TR-68-49 * AFRPL-TR-68-49 * * AFRPL-TR-68-49 * * AFRPL-TR-68-49 *	+ HEPORT SITLE							
Annual Technical Summary Report (1 February - 31 December 1967) ANTIONNI (First name, middle initial, issineme) Edward W. Lawless Thomas Lapp Hope M. Howard ARPPL 1968 AFRICATION OF PAGES ACCOUNTAGE OF COOTS AFRICATION OF PAGES ARE CONTAGE OF COOTS AFRICATION OF PAGES ARE CONTAGE OF COOTS AFRICATION OF PAGES AFRICATION OF PAGES AFRICATION OF PAGES ACCOUNTAGE OF COOTS AFRICATION OF PAGES ACCOUNTAGE OF PAGES AFREL TR. CO. PAGES ACCOUNTAGE OF PAGES AFREL TR. CO. PAGES AFRICATION OF PAGES ACC	CRITICAL REVIEW OF THE CHEMISTRY OF ADVANCED OXIDIZERS AND FUELS: SUPPLEMENTARY							
Annual Technical Summary Report (1 February - 31 December 1967) ANIPORTS (First name, middle middle, issineme) Edward W. Lawless Thomas Lapp Rope M. Howard ARCHITECTURE March 1968 AFREL-TR-68-49 AFREL-TR-68-49 AFREL-TR-68-49 AFREL-TR-68-49 AGOUNT IS subject to special export controls and each transmitted to foreign governments or foreign metionals may be made only with prior approval of AFREL (RYPF/STINFO), Edwards, California 93523. ASSINACT This review summarizes much of the chemistry of advanced oxidizers which have been reported since the completion of the previous MRI report, "A Critical Review of the Chemistry of Advanced Oxidizers," Volumes I and II, 31 December 1965, which was prepared for the Advanced Research Projects Agency under Contract DA-31-ARO(D)-18, Mod. No. 2 & 3. The present review covers the areas of inorganic N-F, C1-F and O-F oxidizers and organic NF oxidizers with N-containing functional groups, or N-N bonds. Other advanced oxidizers and advanced fuels which were described in the previous review could not be covered in detail in the present review because of contract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236	REVIEW OF OXIDIZERS, 1965-1967 (U)							
Annual Technical Summary Report (1 February - 31 December 1967) ANIPORTS (First name, middle middle, issineme) Edward W. Lawless Thomas Lapp Rope M. Howard ARCHITECTURE March 1968 AFREL-TR-68-49 AFREL-TR-68-49 AFREL-TR-68-49 AFREL-TR-68-49 AGOUNT IS subject to special export controls and each transmitted to foreign governments or foreign metionals may be made only with prior approval of AFREL (RYPF/STINFO), Edwards, California 93523. ASSINACT This review summarizes much of the chemistry of advanced oxidizers which have been reported since the completion of the previous MRI report, "A Critical Review of the Chemistry of Advanced Oxidizers," Volumes I and II, 31 December 1965, which was prepared for the Advanced Research Projects Agency under Contract DA-31-ARO(D)-18, Mod. No. 2 & 3. The present review covers the areas of inorganic N-F, C1-F and O-F oxidizers and organic NF oxidizers with N-containing functional groups, or N-N bonds. Other advanced oxidizers and advanced fuels which were described in the previous review could not be covered in detail in the present review because of contract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236	4 DESCRIPTIVE NOTES (Type at report and inclusive dates)							
Edward W. Lawless Thomas Lapp Rope M. Howard **REPORT DATE AFFILTR-68-49 **REPORT NOISI (Any other numbers that may be assigned this report) **AFFILTR-68-49 **AFFILTR-68-49								
Thomas Lapp Hope M. Howard 1968	5 AUTHORIS) (First name, middle initial, last name)							
March 1968 MARCH	_							
March 1968 236 805 ***CONTRACT OR GRANT NO. FO4611-67-C-0079 ***DEFOIL TR-68-49 ***CONTRACT OR GRANT NO. FO4611-67-C-0079 ***CONTRACT OR GRANT NO. ***CONTRACT OR GRANT NO. ***CON								
AFRILATION STATEMENT In addition to security requirements which must be meet, this document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (RPPR/STINFO), Edwards, California 93523. 13. SPONSORING MILITARY ACTIVITY AF Rocket Propulsion Laboratory (RTD) Air Force Systems Command Edwards Air Force Base, California 93523 14. ABSTRACT This review summarizes much of the chemistry of advanced oxidizers which have been reported since the completion of the previous MRI report, "A Critical Review of the Chemistry of Advanced Oxidizers," Volumes I and II, 31 December 1965, which was prepared for the Advanced Research Projects Agency under Contract DA-31-ARO(D)-18, Mod. No. 2 & 3. The present review covers the areas of inorganic N-F, C1-F and O-F oxidizers and organic NF oxidizers with N-containing functional groups, or N-N bonds. Other advanced oxidizers and advanced fuels which were described in the previous review could not be covered in detail in the present review because of contract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236	B REPORT DATE	78. TOTAL NO. O	FPAGES	7b. NO. OF REFS				
AFRPL-TR-68-49 AFRPL-TR-68-49		236		805				
AFRPL-TR-68-49 C. STATEMENT NO. STATEMENT In addition to security requirements which must be meet, this document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (RPPR/STINNO), Edwards, California 93523. 11. SUPPLEMENTARY NOTES AFROCKET Propulsion Laboratory (RTD) Air Force Systems Command Edwards Air Force Base, California 93523 12. SPONSONING MILITARY ACTIVITY AF Rocket Propulsion Laboratory (RTD) Air Force Systems Command Edwards Air Force Base, California 93523 13. ABSTRACT This review summarizes much of the chemistry of advanced oxidizers which have been reported since the completion of the previous MRI report, "A Critical Review of the Chemistry of Advanced Oxidizers," Volumes I and II, 31 December 1965, which was prepared for the Advanced Research Projects Agency under Contract DA-31-ARO(D)-18, Mod. No. 2 & 3. The present review covers the areas of inorganic N-F, C1-F and O-F oxidizers and organic NF oxidizers with N-containing functional groups, or N-N bonds. Other advanced oxidizers and advanced fuels which were described in the previous review could not be covered in detail in the present review because of contract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236		98, ORIGINATOR'S	REPORT NUMB	DER(5)				
d. **O. O. STRIBUTION STATEMENT** In addition to security requirements which must be meet, this document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFRFL (RPFR/STINFO), Edwards, California 93523. **AFROCKET Propulsion Laboratory (RTD) Air Force Systems Command Edwards Air Force Base, California 93523 **ABSTRACT** This review summarizes much of the chemistry of advanced oxidizers which have been reported since the completion of the previous MRI report, "A Critical Review of the Chemistry of Advanced Oxidizers," Volumes I and II, 31 December 1965, which was prepared for the Advanced Research Projects Agency under Contract DA-31-ARO(D)-18, Mod. No. 2 & 3. The present review covers the areas of inorganic N-F, C1-F and O-F oxidizers and organic NF oxidizers with N-containing functional groups, or N-N bonds. Other advanced oxidizers and advanced fuels which were described in the previous review could not be covered in detail in the present review because of contract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236		AFRPL-T	IR-68-49					
document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFRFL (RPFR/STINFO), Edwards, California 93523. Supplementary Notes	W. F. North C.	1						
OCITATEMENT IN addition to security requirements which must be meet, this document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFRFL (RFFR/STINFO), Edwards, California 93523. APPLEMENTARY NOTES AF Rocket Propulsion Laboratory (RTD) Air Force Systems Command Edwards Air Force Base, California 93523 This review summarizes much of the chemistry of advanced oxidizers which have been reported since the completion of the previous MRI report, "A Critical Review of the Chemistry of Advanced Oxidizers," Volumes I and II, 31 December 1965, which was prepared for the Advanced Research Projects Agency under Contract DA-31-ARO(D)-18, Mod. No. 2 & 3. The present review covers the areas of inorganic N-F, C1-F and 0-F oxidizers and organic NF oxidizers with N-containing functional groups, or N-N bonds. Other advanced oxidizers and advanced fuels which were described in the previous review could not be covered in detail in the present review because of contract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236	c.	98. OTHER REPOR	ORT NOIS) (Any other numbers that may be assigned					
document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFRFL (RFFR/STINFO), Edwards, California 93523.		this report)						
document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (RPPR/STINFO), Edwards, California 93523. AFROCKET Propulsion Laboratory (RTD) Air Force Systems Command Edwards Air Force Base, California 93523 Edwards Air Force Base, California 93523 This review summarizes much of the chemistry of advanced oxidizers which have been reported since the completion of the previous MRI report, "A Critical Review of the Chemistry of Advanced Oxidizers," Volumes I and II, 31 December 1965, which was prepared for the Advanced Research Projects Agency under Contract DA-31-ARO(D)-18, Mod. No. 2 & 3. The present review covers the areas of inorganic N-F, C1-F and O-F oxidizers and organic NF oxidizers with N-containing functional groups, or N-N bonds. Other advanced oxidizers and advanced fuels which were described in the previous review could not be covered in detail in the present review because of contract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236		<u> </u>	 					
governments or foreign nationals may be made only with prior approval of AFRPL (RPPR/STINFO), Edwards, California 93523. AFROCKET Propulsion Laboratory (RTD) Air Force Systems Command Edwards Air Force Base, California 93523 This review summarizes much of the chemistry of advanced oxidizers which have been reported since the completion of the previous MRI report, "A Critical Review of the Chemistry of Advanced Oxidizers," Volumes I and II, 31 December 1965, which was prepared for the Advanced Research Projects Agency under Contract DA-31-ARO(D)-18, Mod. No. 2 & 3. The present review covers the areas of inorganic N-F, C1-F and O-F oxidizers and organic NF oxidizers with N-containing functional groups, or N-N bonds. Other advanced oxidizers and advanced fuels which were described in the previous review could not be covered in detail in the present review because of contract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236	In addition to securit	y requiremen	nts which	must be meet, this				
(RPPR/STINFO), Edwards, California 93523. AF Rocket Propulsion Laboratory (RTD) Air Force Systems Command Edwards Air Force Base, California 93523 This review summarizes much of the chemistry of advanced oxidizers which have been reported since the completion of the previous MRI report, "A Critical Review of the Chemistry of Advanced Oxidizers," Volumes I and II, 31 December 1965, which was prepared for the Advanced Research Projects Agency under Contract DA-31-ARO(D)-18, Mod. No. 2 & 3. The present review covers the areas of inorganic N-F, C1-F and O-F oxidizers and organic NF oxidizers with N-containing functional groups, or N-N bonds. Other advanced oxidizers and advanced fuels which were described in the previous review could not be covered in detail in the present review because of contract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236								
AF Rocket Propulsion Laboratory (RTD) Air Force Systems Command Edwards Air Force Base, California 93523 This review summarizes much of the chemistry of advanced oxidizers which have been reported since the completion of the previous MRI report, "A Critical Review of the Chemistry of Advanced Oxidizers," Volumes I and II, 31 December 1965, which was prepared for the Advanced Research Projects Agency under Contract DA-31-ARO(D)-18, Mod. No. 2 & 3. The present review covers the areas of inorganic N-F, C1-F and O-F oxidizers and organic NF oxidizers with N-containing functional groups, or N-N bonds. Other advanced oxidizers and advanced fuels which were described in the previous review could not be covered in detail in the present review because of contract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236			· prior op	F10/02 01 12122				
Air Force Systems Command Edwards Air Force Base, California 93523 This review summarizes much of the chemistry of advanced oxidizers which have been reported since the completion of the previous MRI report, "A Critical Review of the Chemistry of Advanced Oxidizers," Volumes I and II, 31 December 1965, which was prepared for the Advanced Research Projects Agency under Contract DA-31-ARO(D)-18, Mod. No. 2 & 3. The present review covers the areas of inorganic N-F, C1-F and O-F oxidizers and organic NF oxidizers with N-containing functional groups, or N-N bonds. Other advanced oxidizers and advanced fuels which were described in the previous review could not be covered in detail in the present review because of contract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236		SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY						
Edwards Air Force Base, California 93523 This review summarizes much of the chemistry of advanced oxidizers which have been reported since the completion of the previous MRI report, "A Critical Review of the Chemistry of Advanced Oxidizers," Volumes I and II, 31 December 1965, which was prepared for the Advanced Research Projects Agency under Contract DA-31-ARO(D)-18, Mod. No. 2 & 3. The present review covers the areas of inorganic N-F, Cl-F and O-F oxidizers and organic NF oxidizers with N-containing functional groups, or N-N bonds. Other advanced oxidizers and advanced fuels which were described in the previous review could not be covered in detail in the present review because of contract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236		1						
This review summarizes much of the chemistry of advanced oxidizers which have been reported since the completion of the previous MRI report, "A Critical Review of the Chemistry of Advanced Oxidizers," Volumes I and II, 31 December 1965, which was prepared for the Advanced Research Projects Agency under Contract DA-31-ARO(D)-18, Mod. No. 2 & 3. The present review covers the areas of inorganic N-F, C1-F and O-F oxidizers and organic NF oxidizers with N-containing functional groups, or N-N bonds. Other advanced oxidizers and advanced fuels which were described in the previous review could not be covered in detail in the present review because of contract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236								
have been reported since the completion of the previous MRI report, "A Critical Review of the Chemistry of Advanced Oxidizers," Volumes I and II, 31 December 1965, which was prepared for the Advanced Research Projects Agency under Contract DA-31-ARO(D)-18, Mod. No. 2 & 3. The present review covers the areas of inorganic N-F, Cl-F and O-F oxidizers and organic NF oxidizers with N-containing functional groups, or N-N bonds. Other advanced oxidizers and advanced fuels which were described in the previous review could not be covered in detail in the present review because of contract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236								
view of the Chemistry of Advanced Oxidizers," Volumes I and II, 31 December 1965, which was prepared for the Advanced Research Projects Agency under Contract DA-31-ARO(D)-18, Mod. No. 2 & 3. The present review covers the areas of inorganic N-F, C1-F and O-F oxidizers and organic NF oxidizers with N-containing functional groups, or N-N bonds. Other advanced oxidizers and advanced fuels which were described in the previous review could not be covered in detail in the present review because of contract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236								
which was prepared for the Advanced Research Projects Agency under Contract DA-31-ARO(D)-18, Mod. No. 2 & 3. The present review covers the areas of inorganic N-F, Cl-F and O-F oxidizers and organic NF oxidizers with N-containing functional groups, or N-N bonds. Other advanced oxidizers and advanced fuels which were described in the previous review could not be covered in detail in the present review because of contract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236								
ARO(D)-18, Mod. No. 2 & 3. The present review covers the areas of inorganic N-F, C1-F and O-F oxidizers and organic NF oxidizers with N-containing functional groups, or N-N bonds. Other advanced oxidizers and advanced fuels which were described in the previous review could not be covered in detail in the present review because of contract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236								
C1-F and O-F oxidizers and organic NF oxidizers with N-containing functional groups, or N-N bonds. Other advanced oxidizers and advanced fuels which were described in the previous review could not be covered in detail in the present review because of contract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236								
or N-N bonds. Other advanced oxidizers and advanced fuels which were described in the previous review could not be covered in detail in the present review because of contract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236								
previous review could not be covered in detail in the present review because of contract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236								
tract termination, but properties data and literature references are tabulated for all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236								
all types of advanced oxidizers. These tabulations include physical properties data on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236								
on 170 compounds, thermodynamic data on 93 compounds and spectral information on 239 compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236	tract termination, but properties data and literature references are tabulated for							
compounds. The review contains 29 tables, 595 references to technical reports or papers presented at symposia, 210 references to open literature publications, and 236								
papers presented at symposia, 210 references to open literature publications, and 236								
pages.								
}	pages.							
}								
				}				

DD FORM . 1473

CONFIDENTIAL
Security Classification

This Document Reproduced From Best Available Copy

CONFIDENTIAL
Security Classification

LINK B LINK C KEY WORDS ROLE WT ROLE WT ROLE WT Oxidizers Propellants Critical Reviews Fluorine Compounds

CONFIDENTIAL
Security Classification