Integrante: Anchi Duenon Haerdon

Seminario Serna Luis Valvo Medino Frick

| a) |                |       | 4    |         |
|----|----------------|-------|------|---------|
|    | 2              | 0     | 1    | 8       |
|    | Š,             | 4554  | 4524 | B       |
|    | $S_2$          | ø     | 4534 | 4549    |
|    | S <sub>3</sub> | ø     | 4544 | ø       |
|    | Sy             | ø     | ø    | ø       |
|    | Ss             | 4564  | p    | 452,534 |
|    | Sc             | 454 4 | 6    | ø       |



w = w, w 2 w 3 w 4 Para el cual sus posibles Combinacions Aon o Sus combinaciones som o 24 = 16 

$$\hat{S}(\{s,t\}, \omega_1 \omega_2 \omega_3 \omega_4) = \hat{S}(\{s,t\}, \omega_1), \omega_2 \omega_3 \omega_4)$$

$$\hat{S}(\{s,t\}, \omega_1 \omega_2 \omega_3 \omega_4) = \hat{S}(\{s,t\}, \varepsilon_1)$$

$$= \hat{S}(\{s,t\}, \varepsilon_1)$$

Abora, per esor dentinos que .

$$w = 0$$
  $w = 000$   $w = 000$   $w = 000$ 

W= OEIL
No existe is talque Iw = 4

C) Clausura 
$$(S_1) = \{S_1\} = 90$$

$$\delta(q_{0},0) = Clausura_{\mathcal{E}}(mover(q_{0},0)) 
(mover(S_{1},0))$$

$$\delta(q_{0},0) = Clausura_{\mathcal{E}}(\{S_{5}\}) = \{S_{2},S_{3},S_{5}\}$$

$$\delta(q_{0},0) = \{S_{2},S_{3},S_{5}\} = q_{1}$$

$$\delta(q_{0},1) = Clausura_{\mathcal{E}}(mover(q_{0},1))$$

$$= Clausura_{\mathcal{E}}(mover(S_{1},1))$$

$$\delta(q_{0},1) = clausura_{\mathcal{E}}(S_{2}) = \{S_{2},S_{4}\} = q_{2}$$

$$\delta(q_{3},0) = clausura_{\mathcal{E}}(mover(\{S_{2},S_{3},S_{5}\},0))$$

$$\delta(q_{1},0) = clausura_{\mathcal{E}}(S_{6}) = \{S_{6}\} = q_{3}$$

$$\delta(q_{1},1) = clausura_{\mathcal{E}}(mover(\{S_{2},S_{3},S_{5}\},1))$$

$$= clausura_{\mathcal{E}}(S_{3},S_{4}) = \{S_{3},S_{4}\} = q_{4}$$

$$\delta(q_{2},0) = clausura_{\mathcal{E}}(mover(\{S_{2},S_{3},S_{5}\},0))$$
Escaneado con chiquana el clausura\_{\mathcal{E}}(\emptyset) = \emptyset = q\_{5}

$$d(9_{2},1) = clausura_{\xi} (mover (15_{2},5_{4}),1)$$

$$d(9_{0},1) = clausura_{\xi} (S_{3}) = |S_{3}| = 96$$

$$d(9_{3},0) = clausura_{\xi} (mover (S_{6},0))$$

$$= clausura_{\xi} (S_{4}) = |S_{4}| = 97$$

$$d(9_{3},1) = clausura_{\xi} (mover (S_{6},1))$$

$$= clausura_{\xi} (\emptyset) = 95$$

$$d(9_{4},0) = clausura_{\xi} (mover (15_{3},5_{4}),0))$$

$$d(9_{4},0) = clausura_{\xi} (\emptyset) = \emptyset = 95$$

$$d(9_{4},1) = clausura_{\xi} (mover (15_{3},5_{4}),1))$$

$$= clausura_{\xi} (S_{4}) = |S_{4}| = 97$$

$$d(9_{5},0) = clausura_{\xi} (mover (\emptyset,0))$$

$$d(9_{5},0) = clausura_{\xi} (\emptyset) = 95$$

$$d(9_{5},1) = clausura_{\xi} (\emptyset) = 95$$

$$O(9_{6,10}) = clausura_{e} (mover (S_{3,0}))$$
  
 $O(9_{6,10}) = \emptyset = 95$   
 $O(9_{6,11}) = clausura_{e} (mover (S_{3,11}))$   
 $= clausura_{e} (S_{4})$   
 $O(9_{6,11}) = S_{41} = 97$   
 $O(9_{7,10}) = clausura_{e} (mover (S_{4,0}))$   
 $O(9_{7,10}) = \beta = 95$   
 $O(9_{7,11}) = clausura_{e} (mover (S_{4,11}))$   
 $O(9_{7,11}) = clausura_{e} (mover (S_{4,11}))$