Real-time Neural Network Inference on Extremely Weak Devices: Agile Offloading with Explainable AI

Kai Huang, Wei Gao University of Pittsburgh, USA

Real-time NN demands on weak embedded devices

Resources limitation on weak embedded devices

Weak Embedded Devices

<1MB memory and storage 16~216 MHz CPU

Large Neural Networks

Residual Networks (ResNet50)

Require >100 MB of memory space >2 GHz CPU for 60 ms latency

Existing Work

Local Inference

- Prune, Compress, Network Architecture Search
- Lead to oversimplified NN structures
- >10% accuracy lost

Remote Inference

- Compress raw data before transmission
- Limited data compressibility when accuracy loss is minimum.

NN offloading

- Use a local NN to sparsity & compress data
- Higher compressibility but expensive local
 NNs
- Extra transmission cost

Figure 1: Existing work vs. AgileNN

Existing Work

- Local Inference
 - Prune, Compress, Network Architecture Search
 - Lead to oversimplified NN structures
 - >10% accuracy lost

• Remote Inference

- Compress raw data before transmission
- Limited data compressibility when accuracy loss is minimum.

NN offloading

- Use a local NN to sparsity & compress data
- Higher compressibility but expensive local
 NNs
- Extra transmission cost

Figure 1: Existing work vs. AgileNN

Existing Work

Local Inference

- Prune, Compress, Network Architecture Search
- Lead to oversimplified NN structures
- >10% accuracy lost

Remote Inference

- Compress raw data before transmission
- Limited data compressibility when accuracy loss is minimum.

NN offloading

- Use a local NN to sparsity & compress data
- Higher compressibility but expensive local
 NNs

Figure 1: Existing work vs. AgileNN

AgileNN: From fixed to data-centric and agile

Data-centric

Incorporate the knowledge about different input data's **heterogeneity** in training

Agile Offloading

Adaptive partition to minimize the offloading cost

AgileNN: From fixed to data-centric and agile

A Summary about Interpretable ML

Interpretability

• the degree to which a human can understand the cause of a decision.

Why it's a dog?

Figure 3: Integrated Gradients

Integrated Gradients aims to explain the relationship between the model predictions and its features.

Figure 3: Integrated Gradients

- 1. Generate alphas lpha
- 2. Generate interpolated images = $(x' + \frac{k}{m} \times (x x'))$

Integrated Gradients aims to explain the relationship between the model predictions and its features.

IG intuition 1.0 F(x) - model true class predicted probability Baseline Input Accumulate gradients along path 0.0 0.5 1.0 x - (pixel value)

Figure 3: Integrated Gradients

3. Compute gradients between model F output predictions with respect to input features = $\frac{\partial F(\text{interpolated path inputs})}{\partial x_i}$

 $\underbrace{IntegratedGrads_i^{approx}(x) ::= (x_i - x_i') \times \overbrace{\sum_{k=1}^m}^{\text{Sum m local gradients}} \text{gradients(interpolated images)} \times \overbrace{\frac{1}{m}}^{\text{Divide by m steps}}$

Figure 3: Integrated Gradients

Figure 3: Integrated Gradients

Integrated Gradients aims to explain the relationship between the model predictions and its features.

XAI-enabled feature extractor

A typical XAI workflow in NN inference

But Expensive!!

Instead, we suggest to address this challenge via agile NN offloading, which migrates the required computations in NN offloading from online inference to offline learning.

AgileNN: Offline Training

Consider 1

Skewness may not always exist in every input data.

Consider 2

The accuracy of feature importance evaluation builds on accurate NN inference in advance.

Figure 4: Skewness of feature importance. Skewness is measured as the normalized importance of the top 20% features, using the MobileNetV2 model [55].

AgileNN: Offline Training

Enforce skewed distribution of features

Disorder loss

Ensure topmost important features are extracted into **topK channels**

$$L_{\text{disorder}} = \max \left(0, \max(\vec{I}_2) - \min(\vec{I}_1)\right)$$

Skewness Loss

Enhance the important of topK features to **ensure compressibility** of the others

Figure 9: Feature reordering

Enforce skewed distribution of features

Disorder loss

Ensure topmost important features are extracted into **topK channels**

Skewness Loss

Enhance the important of topK features to **ensure compressibility** of the others

$$L_{\text{skewness}} = \max\left(0, \rho - |\vec{I}_1|\right)$$

AgileNN: Offline Training

Combining Local and Remote Predictions

Figure 8: Prediction weighting with α

Combined Training Loss

Disorder loss

Ensure topmost important features are extracted into topK channels

Skewness Loss

Enhance the important of topK features to ensure compressibility of the others

$$L = \lambda \cdot L_{\text{prediction}} + (1 - \lambda) \cdot (L_{\text{skewnss}} + L_{\text{disorder}})$$

Figure 10: Impact of λ on CIFAR-100 dataset

Pre-processing the feature extractor

Figure 6: Training stability with different numbers of convolutional layers in feature extractor

Pre-processing the feature extractor

```
Algorithm 1 Selecting the k initial feature channels
```

```
Input: D_{train}: the training dataset with N samples;
     \mathcal{T}_{XAI}(\cdot): XAI-enabled Feature Importance Evaluator;
     \mathcal{E}(\cdot): Feature extractor that outputs C channels
Output: (j_1, j_2, ..., j_k): The k selected feature channels.
 1: (p_1, p_2, ..., p_C) \leftarrow 0
                                                                       //initialize
 2: for each d_i \in D_{train} do
       F \leftarrow \mathcal{E}(d_i)
                                                             // extract features
                                              //evaluate feature importance
       I \leftarrow \mathcal{T}_{XAI}(F)
       F_{\text{sorted}} \leftarrow \text{sort}_I(F) //sort features by their importance in
        descending order
       F_{top-k} \leftarrow F_{\text{sorted}}[1:k] / \text{extract the top-k features with high}
        importance
        for c = 1,...,C do
          if F[c] \in F_{top-k} then
              p_c \leftarrow p_c + 1/N
10: R \leftarrow \operatorname{argsort}(p_1, p_2, ..., p_C) // \operatorname{get} the ranking of channels
     by their likelihood
11: (j_1, j_2, ..., j_k) \leftarrow R[1:k]
                                                //decide top-k channels
```


Figure 11: Effectiveness of Pre-processing

Pre-processing the feature extractor

Figure 7: Pre-processing the feature extractor

Figure 12: Training the mapping layer

Rearrange the indices to reduce unsorted cases in training data

Consider 1

Skewness may not always exist in every input data.

Consider 2

The accuracy of feature importance evaluation builds on accurate NN inference in advance.

Figure 3: Integrated Gradients

AgileNN: Offline Training

• The **higher** the skewness is (i.e., smaller k and larger ρ), the **lower** resource consumption will be at the local.

• But the NN inference is **more affected** due to the feature extractor's non-linear transformation in the feature space.

AgileNN allow flexible tradeoffs between the
 accuracy and cost of NN inference on embedded
 devices, without incurring any extra computing or
 storage cost.

Offline Training

AgileNN: Online Inference

Online Inference

Local device

STM32F746 board, 216MHz, 320kb SRAM, 1MB FRAM ESP-WROOM-O2D WiFi module @ 6Mbps

Online Inference

Remote device

Figure 13: Devices in our implementation

Figure 14: AgileNN implementation

Local device

STM32F746 board, 216MHz, 320kb SRAM, 1MB FRAM ESP-WROOM-O2D WiFi module @ 6Mbps

Online Inference

Remote device

Figure 13: Devices in our implementation

Figure 14: AgileNN implementation

Local device

STM32F746 board, 216MHz, 320kb SRAM, 1MB FRAM ESP-WROOM-O2D WiFi module @ 6Mbps

Online Inference

Remote device

Figure 13: Devices in our implementation

Figure 14: AgileNN implementation

Local device

STM32F746 board, 216MHz, 320kb SRAM, 1MB FRAM

ESP-WROOM-O2D WiFi module @ 6Mbps

Figure 13: Devices in our implementation

Online Inference

Figure 14: AgileNN implementation

Evaluation Setup

Baselines

- MCUNet [1] NAS to find the best local NN structures Local NN
- DeepCOD [2] use a NN-based encoder Remote NN
- SPINN [3] early-exit structures NN NN offloading
- Edge-only Inference compress and offload raw data

Datasets

- CIFAR-10/100
- SVHN
- ImageNet-200

Reference NN

EfficientNetV2 CNN

- [1] Lin, Ji, et al. "Mcunet: Tiny deep learning on iot devices." Advances in Neural Information Processing Systems 33 (2020): 11711-11722.
- [2] Yao, Shuochao, et al. "Deep Compressive Offloading: Speeding Up Edge Offloading for AI Services." GetMobile: Mobile Computing and Communications 25.1 (2021): 39-42.
- [3] Laskaridis, Stefanos, et al. "SPINN: synergistic progressive inference of neural networks over device and cloud." Proceedings of the 26th annual international conference on mobile computing and networking. 2020.

Evaluation - Training Convergence and Cost

CIFAR-100 Regular **CIFAR-100 AgileNN SVHN Regular** Test loss **SVHN AgileNN** 50 100 150 200 # Epochs (b) Test loss

Evaluation - Accuracy and Latency

• AgileNN reduces end-to-end latency by 2x - 2.5x

Dataset	CIFAR-10	CIFAR-100	SVHN	ImageNet
Reduction	43.7%	15.8%	72.3%	20.8%

Table 2: Reduction of transmitted data size, compared to DeepCOD [65]

Evaluation - Accuracy and Latency

• AgileNN reduces end-to-end latency by 2x - 2.5x

Figure 17: Accuracy with different compression rates

Evaluation – Different System Settings

- **Impact of Local CPU Frequency**
 - 64MHz 216MHz
 - Reduces latency by 2.1x to 2.5x

- **Impact of Network Bandwidth**
 - Bluetooth 270kbps, 2Mbps
 - WiFi 6Mbps

Figure 22: The impact of different CPU Frequencies

AgileNN

SPINN

MCUNet

128MHz

DeepCOD

Figure 23: The impact of different wireless bandwidths

Evaluation – Local Resources Consumption

- Local energy consumption
 - 1.6x 2.5x more efficient than
 DeepCOD
 - 8x more efficient than MCUNet

Memory and storage usage

- SRAM to Memory
- FRAM to Storage
- Higher accuracy, and save 40%-50%
 memory and >50% storage

Figure 19: Local energy consumption per NN inference run

Figure 20: Memory and storage usage

Evaluation – Effectiveness of Skewness Manipulation

Figure 21: Effectiveness of skewness manipulation with different requirements of feature importance skewness

Evaluation – Different System Settings

- **Impact of Local CPU Frequency**
 - 64MHz 216MHz
 - Reduces latency by 2.1x to 2.5x

- **Impact of Network Bandwidth**
 - Bluetooth 270kbps, 2Mbps
 - WiFi 6Mbps

Figure 22: The impact of different CPU Frequencies

AgileNN

SPINN

MCUNet

128MHz

DeepCOD

Figure 23: The impact of different wireless bandwidths

Evaluation - Choices of XAI techniques

Gradient Saliency

• evaluate each feature's importance by injecting noise.

Integrated Gradients

- It aggregates more interpolations of NN outputs' gradients
- IG is more computationally.

Figure 24: Different XAI techniques

Evaluation - Choices of XAI techniques

Gradient Saliency

• evaluate each feature's importance by injecting noise.

Integrated Gradients

- It aggregates more interpolations of NN outputs' gradients
- IG is more computationally.

Figure 24: Different XAI techniques

Advantage

- First to integrate XAI techniques in to NN offloading systems
- Shifts the rationale of offloading from fixed to data-centric & agile
- >6x lower latency and >8x resources consumption for extremely weak devices

Disadvantage

- XAI tools do not consider the relationship between features.
- Hard for static NN models to adopt to new data and different application scenarios.