Topological Vector Spaces

January 9, 2016

Contents

1	Seminorms, function spaces, and convergence	2
2	Other chapters	3

1 Seminorms, function spaces, and convergence

Definition 1.1. Let V be \mathbb{K} -vector space, where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$. By a *seminorm* on V one then understands a map $p: V \to \mathbb{R}_{\geq 0}$ with the following properties:

(N1) The map p is absolute homogeneous that means

$$p(rv) = |r| p(v)$$
 for all $v \in V$ and $r \in \mathbb{K}$.

(N2) The map p is subadditive or in other words satisfies the triangle inequality which means that

$$p(v+w) \le p(v) + p(w)$$
 for all $v, w \in V$.

A seminorm is called a *norm*, if in addition the following axiom is satisfied:

(N3) For all $v \in V$ the relation p(v) = 0 holds true if and only if v = 0.

A \mathbb{K} -vector space together with a norm $\| \|: V \to \mathbb{R}_{\geq 0}, v \mapsto \|v\|$ is called a *normed* vector space.

2 Other chapters

- 1. Preliminaries
- 2. Topological Vector Spaces
- 3. Hilbert Spaces

Miscellany

- 2. GNU Free Documentation License
- 3. Auto Generated Index