[Total No. of Printed Pages—4

Seat	\
No.	9

[5459]-132

S.E. (Electronics/E&TC) (I Sem.) EXAMINATION, 2018 ELECTRONIC DEVICES AND CIRCUITS (2015 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Neat diagrams must be drawn wherever necessary.
 - (ii) Figures to the right indicate full marks.
 - (iii) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (iv) Assume suitable data, if necessary.
- 1. (a) Draw and explain the V-I characteristics of N-channel JFET. [6]
 - (b) Explain the following non-ideal characteristics of MOSFET: [6]
 - (1) Finite output resistance
 - (2) Body effect
 - (3) Breakdown effects.

P.T.O.

2. (a) For the circuit diagram shown in Fig. 1. Calculate I_D , V_{DS} , R_S . Assume : [6]

 $I_{DSS} = 8 \text{ mA}$

$$V_{\mathbf{P}} = -4 \text{ V}$$

 $V_{GS} = -2 V.$

Fig. 1

- (b) Write a short note on constant source Biasing circuit using MOSFET. [6]
- 3. (a) Write a short note on MOSFET scaling. [6]
 - (b) Explain the MOSFET as switch In VLSI. [6]

 Or
- 4. (a) For the circuit diagram shown in Fig. 2, calculate AV, Ri, Ro. The MOSFET parameters are $V_T=1.5$ V, $K_n=0.8$ mA/V², $\lambda=0.01$ V⁻¹.

[5459]-132

Fig. 2

(b) Explain the MOSFET as current sink and source circuit in VLSI. [6]

- **5.** (a) Draw and explain four basic types of Amplifier. [8]
 - (b) An Amplifier has a midband gain of 100 and a bandwidth of 200 kHz: [5]
 - (i) If 5% negative feedback is introduced, find the new bandwidth and gain.
 - (ii) If the bandwidth is to be restricted to 1 MHz, find the feedback ratio. [5]

Or

- **6.** (a) Draw and explain Hartley oscillator using FET. [7]
 - (b) In a Colpitt's oscillator using FET $C_1 = 100$ PF, $C_2 = 10,000$ PF. If the frequency of oscillator is vary between 950 kHz and 2000 kHz. Determine the range of inductor values. [6]

- 7. (a) Explain the working of Buck type switching regulator with a neat diagram and necessary waveform. State its advantages. [8]
 - (b) Determine the range over which the output voltage can be varied in LM317 voltage regulator if values of R_1 = 240 Ω and R_2 is taken as 5 k Ω potentiometer. Assume I_{adj} = 100 μ A. Draw the typical connection diagram. [5]

Or

- 8. (a) Draw and explain block diagram of adjustable positive three-terminal voltage regulator. [8]
 - (b) Design an adjustable voltage regulator using LM317 for output voltage 1.25 V to 15 V and draw necessary connection diagram. (Assume $R_1=240~\Omega,~I_{adjustable}=100~\mu A$). [5]