Protein Interactions: Computational Techniques Assignment - 1 (Part B)

Course: BT6320 Questions

- 1. Consider the protein-protein complex, human growth hormone receptor-human growth hormone (HGH) analyze the following:
 - a. Find the complex structure and functional importance from PDB
 - b. What is the structural type of the complex (homo/hetero/dimer/trimer etc.)
 - c. Obtain binding affinity data for the complex from **SKEMPI**, **PROXIMATE** and **PDBBind** database
 - d. Access **PROXIMATE** database and check the number of mutations for the complex with experimentally known binding free energy ($\Delta\Delta G$).
 - e. Identify the mutation, which has the most favorable (highest negative value) and last favorable (highest positive energy value) binding energy
 - f. Group the mutations into (i) nonpolar to nonpolar, (ii) nonpolar to polar and (iii) polar to polar and obtain average binding energy [nonpolar: A, C, F, G, I, L, M, V, W, Y]
 - g. Obtain the average binding energy at different secondary structures of the mutant, helix, strand and coil
 - h. Repeat the same for different ranges of relative ASA, 0-2%, 2-50%, >50%
 - i. Identify the binding site residues (interface) using distance based criterion (use **PDBparam**) using a cut off of 5A
 - j. Identify the binding site residues (interface) using ASA based criterion (use **GETAREA or DSSP** for ASA values).
 - k. Check the common interface residues listed in PDBsum, distance and ASA based criteria
 - 1. Compute the reduction in accessibility upon complex formation: ASA of HGH, HGH receptor, complex and difference using GETAREA

Difference = [ASA (HGH) + ASA (HGH receptor)] - ASA (complex)

- 2. Find the protein–protein interactions in the IntAct **database** for SARS-CoV-2 obtained with ITC.
- 3. Using the **AbCov database** (https://web.iitm.ac.in/bioinfo2/ab-cov/), for the monoclonal antibody 2B04, find the IC50 value. Find whether it is a neutralizing antibody or not and the source of the antibody.