SBM and DBM diode-based mixers

SBM: Single Balanced Mixer= 2 SEM with couplers or baluns

DBM: Double Balanced Mixer = 2 SBM with couplers or baluns

Advantages

- Suppression of some spurs by out of phase recombination
- Good LO-RF Isolation and sometimes LO-IF isolation without filtering issues

Disadvantages

Requirement of higher levels of LO power

Example of a diode-based SBM (LO at Δ port)

Architecture with 180° coupler (LO @ Δ)

180° Coupler

Input Matching _{@LO/RF} ≈ Input Matching_{@LO/RF} of coupler Isolation LO-RF ≈ Isolation LO-RF of coupler

LO @ $\Sigma \rightarrow mix[EH(LO), *]$ rejected

LO @ $\Delta \rightarrow \text{mix}$ [* , EH(RF)] rejected

Operation mode (LO @ Δ)

$$I(V) = F(V) = a.V + b.V^2 + c.V^3 + ...$$

$$I_1 = F(V_{LO} + V_{RF})$$

$$I_2 = F(V_{LO} - V_{RF})$$

$${f V_{LO}}^p$$
 . ${f V_{RF}}^q
ightarrow \pm p. {f \omega_{LO}} \pm \ q. {f \omega_{RF}}$

$$I_{OUT} = I_1 - I_2 = 0 \iff \omega = \pm \text{ m.} \omega_{LO} \pm \text{ n.} \omega_{RF}$$

If **n is even** because $(V_{RF})^n = (-V_{RF})^n$

 ω_{LO} , $2(\omega_{LO} - \omega_{RF})$, ... suppressed @ IF port \rightarrow (LO-IF Isolation) ... n=0 n=2

Diode-based SBM : LO and RF ports are reversed (LO at Σ port)

•Architecture with 180° coupler (LO @ Σ)

•If LO and RF are reversed

$$I(V) = F(V) = a.V + b.V^2 + c.V^3 + ...$$

$$I_1 = F(V_{RF} + V_{IO})$$

$$I_2 = F(V_{RF} - V_{LO})$$

$$V_{LO}{}^p$$
 , $V_{RF}{}^q \to p \omega_{LO} \pm \ q \omega_{RF}$

$$I_{OUT} = I_1 - I_2 = 0 \iff \omega = \pm \text{ m.} \omega_{LO} \pm \text{ n.} \omega_{RF}$$

If **m** is even because $(V_{LO})^m = (-V_{LO})^m$

$$\begin{array}{ccc} \omega_{RF}\,,\,2(\omega_{LO}-\omega_{RF}\,),\,\,\ldots\,\,\,\text{suppressed @IF port}\,\,\rightarrow\!(RF\text{-IF Isolation}\,)\,\,\ldots\,\,\\ m=0 & m=2 \end{array}$$
 Less critical

Diode-based SEM

- Properties are linked to the architecture (Baluns, Couplers, ...)
- Conversion losses of SBM are higher than conversion losses of SEM

(Coupler losses, Non ideal phase shift and amplitude balance ...)

SBM enable to suppress critical spurs and enhance isolations

Diode-based SBM are more efficient than diode-based SEM

Diode-based DBM

A diode-based DBM χ integrates 2 pairs of diodes

Diode-based DBM are preferred to SBM

if the isolation requirements are more critical than the conversion loss specifications

Example of diode-based DBM: Ring oscillator

Cold-FET mixers : Principle

Main advantages: High linearity and No Consumption

Principle of cold-FET resistive mixers

Not biased Drain

- \rightarrow Transconductance gm is zero @ $V_{DS0}=0$
- → Resistive Nonlinearity R_{DS} (V_{GS}) between drain and source

Cold
$$\rightarrow$$
 $V_{DSO} = 0$ \rightarrow $P_{DX} \# V_{DSO} \cdot I_{DSO} = 0$ \rightarrow $P_{DIS} = 0$ \rightarrow $T = Tamb$

Cold \rightarrow $V_{DSO} = 0$ \rightarrow $V_{DIS} = 0$ \rightarrow

Cold-FET advantages

- → Simplified design constraints
 - better LO-RF isolation due to the intrinsic G-D isolation of FETs (depends on Cgd and ω)
 - limited interactions between matching circuits (LO @ gate) port and $\omega_{RF} >> \omega_{IF}$ @ drain port)
 - higher linear voltage swing of RF signal from 0 to knee voltage → higher linearity
 - mixer that can be efficiently used in SEM configuiration
- \rightarrow Other solutions: SBM and DBM cold-FET mixers

Comparison (Diode / Cold FET)

Conversion losses

 \rightarrow L_C(Diode Mixers) < L_C(Cold-FET mixers) because R_{MIN}(Diode) < R_{MIN} (Cold-FET)

• <u>Linearity/Saturation</u>

- Linearity of diode-based mixer is limited to very low level of RF signal (exponential current)
- Linearity of cold-FET mixer is limited to moderate level of RF signal (ohmic zone)
 - \rightarrow Higher linearity of cold-FET and higher output power

• Isolations

- Diodes do not have intrinsic isolation → can only used in complex balanced architectures
- Cold-FETs have the intrinsic G-D isolation → can be used as SEM or balanced topologies

Cold-FET SBM

Cold-FET SBM

Example of SBM with LO and IF baluns (emission)

Diplexer IF-RF

$$Z_{c} = \frac{1}{jC\omega}$$

$$Z_{c}(\omega_{ip}) \gg$$

Cold-FET SBM

- Example of SBM with LO and IF baluns (emission)
- Pair of cold-FETs

Cold-FET DBM

Ring mixer
4 Cold-FETs + 3 Baluns (RF, IF, LO)

Switch mode of Cold-FET

The Cold-FET is switched between R_{DSON} (minimum value of R_{DS}) and ∞ (maximum value of R_{DS})

If the transistor size is increased
$$\rightarrow$$
 $\left[I_{DS_{MAX}}\uparrow\right]$ \rightarrow $\left[R_{DS_{ON}}\downarrow\right]$ \rightarrow $\left[Conversion\ losses\downarrow\right]$ However \rightarrow $\left[C_{GS}\uparrow\right]$ \rightarrow $\left[Frequency\ limitation\ \uparrow\right]$

Cold-FET « Switch Mode Mixer » : Ring DBM

Operating principle of the ring Cold-FET DBM

Main Cold-FET mixer architectures

Cold-FET Mixers

Example of IRM (Image Rejection Mixer)

Example of IRM

