Contents

Discrete structures

Section outline

- Discrete structures
 - Sets
 - Relations
 - Lattices

- Lattices (contd.)
- Boolean lattice
- Boolean lattice structure
- Boolean algebra
- Additional Boolean algebra properties

Sets

- A set *A* of elements: *A* = {*a*, *b*, *c*}
- Natural numbers: $\mathbb{N} = \{0, 1, 2, 3, ...\}$ or $\{1, 2, 3, ...\} = \mathbb{Z}^+$
- Integers: $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- Universal set: U Empty set: $\emptyset = \{\}$
- $S = \{X | X \notin X\}$ $S \in S$? [Russell's paradox]
- Set union: A ∪ B

• Set intersection: $A \cap B$

• Complement: \overline{S}

• Set difference: $A - B = A \cap \overline{B}$

Sets (contd.)

• Complement of union (De Morgan): $\overline{A \cup B} = \overline{A} \cap \overline{B}$

• Complement of intersection (De Morgan): $\overline{A \cap B} = \overline{A} \cup \overline{B}$

• Power set of A: $\mathcal{P}(A)$

$$\mathcal{P}(\{a,b\}) = \{\varnothing, \{a\}, \{b\}, \{a,b\}\}$$

• Non-empty X_1, \ldots, X_k is a partition of A if $A = X_1 \cup \ldots \cup X_k$ and $X_i \cap X_j = \emptyset \mid_{i \neq j}$

 $A \cap \overline{B}$, $B \cap \overline{A}$, $A \cap B$ and $\overline{A \cup B}$ constitute a partition of U

Set algebra

Idempotence	$A \cup A = A$	$A \cap A = A$
Associativity	$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cup C = A \cap (B \cup C)$
Commutativity	$A \cup B = B \cup A$	$A \cap B = B \cap A$
Distributivity	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$
Identity	$A \cup \{\} = A, A \cup U = U$	$A \cap \{\} = \{\}, A \cup U = A$
Involution	$\overline{\overline{A}} = A$	
Complements	$\bar{U} = \{\}, A \cup \bar{A} = U$	$\{\bar{j}=U,A\cap\bar{A}=\{\}$
DeMorgan	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$

Relations

- Tuple: $\langle a, b \rangle$, $\langle 4, b, \alpha \rangle$
- Cartesian product: $A \times B = \{ \langle a, b \rangle \mid a \in A, b \in B \}$ $\{a, b, c\} \times \{\alpha, \beta\} = \{ \langle a, \alpha \rangle, \langle b, \alpha \rangle, \langle c, \alpha \rangle, \langle a, \beta \rangle, \langle b, \beta \rangle, \langle c, \beta \rangle \}$ $\mathbb{N} \times \mathbb{N} = \{ \langle i, j \rangle \mid i, j \geq 1 \}$
- Binary relation \mathcal{R} on sets A and B: $R \subseteq A \times B$
- Characteristic function of \mathcal{R} : $\chi_{\mathcal{R}}(a,b) = \left\{ \begin{array}{ll} 1 & \text{if } \langle a,b \rangle \in \mathcal{R} \\ 0 & \text{if } \langle a,b \rangle \notin \mathcal{R} \end{array} \right.$
- $\mathcal{R} \subseteq A \times A$ is reflexive if $\forall x \in A$. $x \mathcal{R} x$
- $\mathcal{R} \subseteq A \times A$ is symmetric if $\forall x, y \in A$. $x\mathcal{R}y \Rightarrow y\mathcal{R}x$
- $\mathcal{R} \subseteq A \times A$ is transitive if $\forall x, y, z \in A$. $x\mathcal{R}y \wedge y\mathcal{R}z \Rightarrow x\mathcal{R}z$
- $\mathcal{R} \subseteq A \times A$ is antisymmetric if $\forall x, y \in A$. $x\mathcal{R}y \wedge y\mathcal{R}x \Rightarrow x = y$
- ullet Equivalence relation: \mathcal{R} is reflexive, symmetric and transitive
- An equivalence relation induces a partition and vice versa
- ullet Partial order: \mathcal{R} is reflexive, antisymmetric and transitive

Relations (contd.)

- Connected relation: $\forall x, y \in A$, either $x \mathcal{R} y$ or $y \mathcal{R} x$
- Total order: Connected partial order (eg \leq on \mathbb{R})
- Irreflexive relation: $\forall x \in A, \langle x, x \rangle \notin \mathcal{R}$
- Asymmetric relation: $\langle x, y \rangle \in \mathcal{R} \Rightarrow \langle y, x \rangle \notin \mathcal{R}$
- \bullet Strict order: ${\cal R}$ is irreflexive and transitive (... asymmetric)
- If \leq is a PO on A, then $<: x < y \equiv x \leq y \land x \neq y$ is a SO on A
- If < is a SO on A, then \leq : $x \leq y \equiv x < y \lor x = y$ is a PO on A

Suppose $\langle A, \preceq \rangle$ is a poset, $\underline{M} \in A \ (m \in A), \ S \subseteq A$ $\underline{M} \ (m)$ is a maximal (minimal) element of S iff $M \in S \ (m \in S)$ and $\exists x \in S \ \text{st} \ M < x \ (x < m)$ $\underline{M} \ (m)$ is a maximum (minimum)

Lattices

Let $\langle A, \preceq \rangle$ be a poset, let $x, y \in A$

- The *meet* of x and y ($x \land y$), is the maximum of all lower bounds for x and y: $x \land y = \max\{w \in A : w \le x, w \le y\}$, *glb* for x and y
- The *join* of x and y ($x \lor y$), is the minimum of all upper bounds for x and y; $x \lor y = \min \{z \in A : x \le z, y \le z\}$, *lub* for x and y

A poset $\langle A, \preceq \rangle$ is a lattice iff every pair of elements in A have both a meet and a join

Basic order properties of meet and join

- $\bullet x \land y \preceq \{x,y\} \preceq x \lor y$
- $x \leq y$ iff $x \wedge y = x$
- $x \leq y$ iff $x \vee y = y$
- If $x \leq y$, then $x \wedge z \leq y \wedge z$ and $x \vee z \leq y \vee z$
- If $x \leq y$ and $z \leq w$, then $x \wedge z \leq y \wedge w$ and $x \vee z \leq y \vee w$

Theorem

If $x \prec y$, then $x \wedge z \prec y \wedge z$ and $x \vee z \prec y \vee z$

Proof.

- Let $v = x \wedge z$ and $u = y \wedge z$
- By transitivity, v is a lb for y and z
- By definition of \wedge , $v \leq u$ (as u is the maximum among all lbs)

Similarly, the other clause may be proven

Commutativity $x \wedge y = y \wedge x$, $x \vee y = y \vee x$ Associativity $(x \wedge y) \wedge z = x \wedge (y \wedge z)$, $(x \vee y) \vee z = x \vee (y \vee z)$ Absorption $x \wedge (x \vee y) = x$, $x \vee (x \wedge y) = x$

Idempotence $x \land x = x$, $x \lor x = x$

Associativity of meet.

- $(x \land y) \land z \leq x \land y \leq x \ [x \land y \leq \{x,y\} \ applied twice]$
- $(x \land y) \land z \leq x$ [transitivity of \leq]
- $\bullet (x \wedge y) \leq y [x \wedge y \leq \{x,y\}]$
- $(x \wedge y) \wedge z \leq y \wedge z$ [If $x \leq y$, then $x \wedge z \leq y \wedge z$]
- Thus $(x \wedge y) \wedge z$ is a lb of both x and $y \wedge z$
- \therefore $(x \land y) \land z \leq x \land (y \land z)$ [glb of x and $y \land z$]
- Also, $x \wedge (y \wedge z) \leq (x \wedge y) \wedge z$ [on similar lines]
- \therefore $(x \land y) \land z = x \land (y \land z)$ [if $a \leq b$ and $b \leq a$ then a = b]

Absorbtion.

- $x \leq x \vee y [\{x, y\} \leq x \vee y]$
- $\therefore x \land (x \lor y) = x [x \preceq y \text{ iff } x \land y = x]$

Idempotence.

• $x \wedge x = x \wedge (x \vee (x \wedge y)) = x$ [Absorbtion, applied twice]

Principle of Duality

The dual of any theorem in a lattice is also a theorem.

Bounded lattice: It has a maximum element (1) and a minimum element (0), in which case identity properties hold:

$$\bullet$$
 $0 \lor x = x = x \lor 0$, $1 \land x = x = x \land 1$

•
$$0 \land x = 0 = x \land 0$$
, $1 \lor x = 1 = x \lor 1$

$$a \wedge (b \vee c) = a$$

 $(a \wedge b) \vee (a \wedge c) = b$

Every finite lattice is bounded

Distributive lattice: If $\forall x, y, z \in A$,

•
$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$
 and

$$\bullet \ \ X \lor (y \land z) = (x \lor y) \land (x \lor z)$$

Are these lattices distributive?

$$a \wedge (b \vee c) = a \quad (a \wedge b) \vee (a \wedge c) = b$$

Is $\mathcal{P}(A)$ for set A distributive?

?
$$x \cap (y \cup z) = (x \cap y) \cup (x \cap z)$$
 and

?
$$x \cup (y \cap z) = (x \cup y) \cap (x \cup z)$$

Complemented lattice

- Complement in a bounded lattice: z is the complement of x iff
 - $x \wedge z = 0$ and
 - $x \lor z = 1$
- Bounded complemented lattice: every element has a complement
- In a bounded distributive lattice with minimum 0 and maximum 1, the complements of elements are unique, provided they exist let \bar{x} and z be complements of x ...
- $\bar{X} = \bar{X} \wedge 1 = \bar{X} \wedge (X \vee Z) =$
- $(\bar{x} \wedge x) \vee (\bar{x} \wedge z) =$
- $0 \lor (\bar{x} \land z) =$
- $(X \wedge Z) \vee (\bar{X} \wedge Z) =$
- $(x \lor \bar{x}) \land z = 1 \land z = z$

Boolean lattice

Boolean lattice: Bounded complemented distributive lattice

- Extreme elements: Max: 1, Min: 0
- Distributivity holds
- Every element has unique complement
- De Morgan's laws apply

De Morgan's laws in a Boolean lattice $\langle \mathcal{A}, \preceq, \neg, 0, 1 \rangle$

Meet of complements is 0

- $(x \wedge y) \wedge (\overline{x} \vee \overline{y}) =$ $(x \wedge y \wedge \overline{x}) \vee (x \wedge y \wedge \overline{y})$
- $= 0 \lor 0 = 0$

Join of complements is 1

•
$$(x \wedge y) \vee (\overline{x} \vee \overline{y}) = ((x \wedge y) \vee \overline{x}) \vee \overline{y}$$

$$\bullet = ((x \vee \overline{x}) \wedge (y \vee \overline{x})) \vee \overline{y}$$

$$\bullet = (1 \land (y \lor \overline{x})) \lor \overline{y}$$

$$\bullet = (y \vee \overline{x}) \vee \overline{y}$$

$$\bullet = \overline{x} \lor (y \lor \overline{y})$$

$$\bullet = \overline{x} \lor 1 = 1$$

Boolean lattice structure

- Let A be a lattice with min 0
- $a \in \mathcal{A}$ is join irreducible if $a \neq x \lor y$ for $x, y \preceq a$, alternatively $a = x \lor y$ implies a = x or a = y

- 0 is join irreducible
- If $b_1 \leq c$ and $b_2 \leq c$ (immediate preds) of c then $c = b_1 \vee b_2$
- a ≠ 0 is join irreducible if and only if a has a unique immediate predecessor
- Elements immediately succeeding 0 are atoms (join irreducible)
- Any element a can be expressed as the join of a set of atoms
- Not unique for non-distributive lattice (diamond lattice)
- For finite lattice $a = d_1 \vee d_2 \vee \ldots \vee d_n$, d_i are join irreducible
- $d_i = d_i \vee d_j$ for $d_i \leq d_i$
- Any $d_i \leq d_i$ can be dropped to make the join irredundant
- Unique (up to permutation) for distributive lattice

Boolean lattice representation (contd.)

Unique irredundant irreducible sum representation

- Let $a = c_1 \lor c_2 \lor \ldots \lor c_m = d_1 \lor d_2 \lor \ldots \lor d_n$
- Now, $c_i, d_j \leq c_1 \vee c_2 \vee \ldots \vee c_m = d_1 \vee d_2 \vee \ldots \vee d_n$

$$\therefore c_i = c_i \wedge (d_1 \vee d_2 \vee \ldots \vee d_n) = (c_i \wedge d_1) \vee (c_i \wedge d_2) \vee \ldots \vee (c_i \wedge d_n)$$

- Since c_i is join irreducible, $\exists d_j | c_i = c_i \wedge d_j$, so that $c_i \preceq d_j$
- But similar working, $d_j \leq c_k$, so that $c_i \leq d_j \leq c_k$
- This requires $c_i = c_k$, since these are irredundant
- Thus, $c_i \leq d_j$ and $d_j \leq c_i$, $c_i = d_j$,
- This way, all the c_i s may to paired off with the d_j s,
 - making the representation unique (up to permutation)

Boolean lattice structure (contd.)

- Let z be the complement of a in a lattice as shown
- So, $a \lor z = 1$ and $a \land z = 0$
- Suppose a has b as a unique predecessor
- Now, $b \lor z = a \lor z = 1$ and $b \land z = a \land z = 0$ as b is the immediate predecessor of a
- So, b is also a complement of z

Join irreducible elements in a Boolean lattice

- A lattice with an element having a non-zero join irreducible element as a predecessor will not have unique complements
- In a Boolean lattice all non-zero join irreducible elements are atoms

Stone representation of Boolean lattices

- Atom of a Boolean lattice: Non-trivial minimal element of A \ {0}
- $|A| = 2^n$ for some n for a Boolean lattice
- Its structure is that of the power set of the atomic elements
- Non-trivial atomic elements are present for |A| > 1 directly above level 0, let those be $S = \{a_1, \ldots, a_n\}$, akin to $\{a_1\}, \{a_2\}, \ldots \{a_n\}$
- Join of pairs of elements Y_1 , Y_2 at level i (n > i > 1) st $|Y_1 Y_2| = |Y_2 Y_1| = 1$ at level i + 1 is $Y = Y_1 \cup Y_2$
- Meet of pairs of elements X_1 , X_2 at level i (n > i > 1) st $|X_1 X_2| = |X_2 X_1| = 1$ at level i 1 is $Y = Y_1 \cap Y_2$
- There will be $\binom{n}{i}$ such sets in level i, totaling to $\sum_{i=0}^{i=n} \binom{n}{i} = 2^n$

Boolean algebra from Boolean lattice

- For the Boolean lattice $\langle \mathcal{A}, \preceq, 0, 1 \rangle$ consider the algebraic system $\langle \mathcal{A}, +, \cdot, \overline{}, 0, 1 \rangle$ where $\vee \mapsto +, \wedge \mapsto \cdot$ and $\forall x \in \mathcal{A}, \overline{x} \mapsto z | x + z = 1, x \cdot z = 0$
- This system satisfies the Huntington's postulates for a Boolean algebra

B1: Commutative Laws

$$0 x + y = y + x$$

B2: Distributive Laws

$$2 x + (y \cdot z) = (x + y) \cdot (x + z)$$

B3: Identity Laws

$$2 x \cdot 1 = x = 1 \cdot x$$

B4: Complementation Laws

$$x + \bar{x} = 1 = \bar{x} + x$$

$$2 x \cdot \bar{x} = 0 = \bar{x} \cdot x$$

Additional Boolean algebra properties

- These properties carry over from the Boolean lattice
- May be proven independently from the Huntington's postulates

Idempotence:

Absorption:

Axiomatic proof

- $x + x = (x + x) \cdot 1$
- $\bullet = (x+x)\cdot(x+\bar{x})$
- $\bullet = x + (x \cdot \bar{x})$
- $\bullet = x + 0 = x$

Axiomatic proof

- $x + xy = (x \cdot 1) + xy$
- $\bullet = x(1+y) = x(y+1)$
- $\bullet = x \cdot 1 = x$

Boolean algebra (contd.)

Boundedness/annihilation:

$$x + 1 = 1$$

$$2x\cdot 0=0$$

Axiomatic proof

•
$$x + 1 = 1 \cdot (x + 1)$$

$$\bullet = (x + \bar{x}) \cdot (x + 1)$$

$$\bullet = x + (\bar{x} \cdot 1)$$

$$\bullet = x + \bar{x} = 1$$

	X	У	X	$x \cdot y$	X + Y
		0			0
Truth table for Boolean AND, OR, NOT:	0	1	1	0	1
	1	0	0	0	1
	1	1	0	1	1

.. .. || - | |

Associativity:

$$(x + y) + z = x + (y + z)$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

Boolean algebra (contd.)

Axiomatic proof of associativity of Boolean +

- Let x = a + (b + c) and y = (a + b) + c
- ax = aa + a(b + c) = a + a(b + c) = a
- bx = ba + b(b+c) = ba + (bb + bc) = ba + (b+bc) = ba + b = b
- Similarly, cx = c and ay = a, by = b and cy = c
- yx = ((a+b)+c)x = (a+b)x+cx = (ax+bx)+cx = (a+b)+c = y
- xy = (a+(b+c))y = ay+(b+c)y = ay+(by+cy) = a+(b+c) = x
- Thus, x = xy = yx = y

Additional Boolean algebra properties (contd.)

Uniqueness of Complement:

If
$$(a + x) = 1$$
 and $(a \cdot x) = 0$, then $x = \overline{a}$.

Involution:

$$\overline{(\overline{a})} = a$$

Complements of extreme elements:

- $\overline{0} = 1$
- $\overline{1} = 0$

Axiomatic proof

- 1 + 0 = 1 [identity]
- $1 \cdot 0 = 0$ [boundedness]
- ... 0 is the complement of 1

DeMorgan's laws:

- $\underbrace{\overline{(x+y)}}_{(x \cdot y)} = \overline{x} \cdot \overline{y}$
- Let $a \leq b$ if $a \cdot b = a$ or a + b = b then $\cdot \mapsto \land$ and $+ \mapsto \lor$
- Properties from axiomatic proofs allow Boolean algebras to be expressed as Boolean lattices – they are equivalent

