杭十四中高三月考数学学科问卷(4月)

注意事项:

- 1. 答题前填写好自己的姓名、班级、考号等信息
- 2. 请将答案正确填写在答题卡上

参考公式:

球的表面积公式

 $S = 4\pi R^2$

球的体积公式

其中 R 表示球的半径

柱体的体积公式

其中 S 表示柱体的底面积, h 表示柱体的高

锥体的体积公式

其中S表示锥体的底面积, h表示锥体的高

台体的体积公式

 $V = \frac{1}{3}h(S_1 + \sqrt{S_1S_2} + S_2)$

其中 S_1 , S_2 分别表示台体的上、下底面积,

h 表示台体的高

第 [卷 (选择题)

- 一、选择题:本大题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有 一项是符合题目要求的。
- 1. 已知全集 $U = A \cup B = \{x \in Z \mid 0 \le x \le 6\}$, $A \cap (C_{U}B) = \{1,3,5\}$,则 $B = (\blacktriangle)$
- A. $\{2,4,6\}$
- B. {1,3,5}
- c. $\{0,2,4,6\}$ D. $\{x \in Z \mid 0 \le x \le 6\}$
- 2. 已知双曲线 $\frac{x^2}{a^2} y^2 = 1$ 的一条渐近线方程是 $y = \frac{\sqrt{3}}{3}x$,则双曲线的离心率为(🛕)

- 3. 某空间几何体的三视图如图所示,其中俯视图是半径为1的圆,则该几何体的体积(▲)

- 4. 把复数 z 的共轭复数记作 z ,若 (1+i)z=1-i ,i 为虑数单位,则 z=(\triangle)

- 5. 函数 $y = 4\cos x e^{|x|}$ (e 为自然对数的底数)的图象可能是(\triangle)

- 6. 己知平面 α , β 和直线 l_1, l_2 ,且 $\alpha \cap \beta = l_2$,则 " $l_1 / / l_2$ " 是 " $l_1 / / \alpha$,且 $l_1 / / \beta$ " 的(\blacktriangle)
- A. 充分而不必要条件
- B. 必要而不充分条件

C. 充要条件

- D. 既不充分也不必要条件
- 7. 已知函数 $f(x) = (x^2 + a)e^x$ 有最小值,则函数 $g(x) = x^2 x + a$ 的零点个数为 (\blacktriangle)

- C. 2
- D. 取决于a的值
- 8. 任取 0,1,2,3,4,5 六个数字中的 3 个组成能被 3 整除的三位数,则这样的三位数的个数有

- A. 27
- B. 30
- C. 36
- 9. 已知椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 与直线 $l_1: y = \frac{x}{2}$, $l_2: y = -\frac{x}{2}$, 过椭圆上一点 $P \notin l_1, l_2$ 的
- 平行线,分别交 $l_1, l_2 \pm M, N$ 两点。若 |MN| 为定值,则 $\sqrt{\frac{a}{b}} = (\blacktriangle)$
- B. $\sqrt{3}$
- C. 2
- D. $\sqrt{5}$
- 10. 三棱锥 A-BCD 中,记二面角 A-BC-D 的大小为 θ ,(\blacktriangle)
- A.若 AB + AC > DB + DC,则 $\angle BAC < \angle BDC$
- B.若 AB + AC > DB + DC, 则 $\angle BAC > \angle BDC$
- C.若 BA + BD = CA + CD,且 $AD \perp BC$,则 $\theta \ge \angle ACD$
- D.若 AB + AC = DB + DC, 且 $AD \perp BC$, 则 $\theta \ge \angle ACD$

第 II 卷 (非选择题)

- 二、填空题: 本大题共7小题, 11 到 14 每空 3 分, 15 到 17 每空 4 分, 共 36 分。
- 11. 比较 lg 2,(lg 2)², lg(lg 2) 的大小, 其中最大的是_____, 最小的是_____.
- 12. 在 $\triangle ABC$ 中,内角 A , B , C 所对的边分别是 a , b , c . 若 $a = \sqrt{7}$, c = 3 , $A = 60^{\circ}$, 则 b = A , $\triangle ABC$ 的面积 S = A .
- 13. 若 $(2x \frac{1}{x^2})^n$ 的展开式中所有二项式系数和为 64,则 $n = ____$,展开式中的常数项
- $(x+4y) \ge 4$ 14. 给定区域 D: $x+y \leq 4$, 令点集 $T = \{(x_0, y_0) \in D | x_0, y_0 \in \mathbb{Z}, (x_0, y_0) \in \mathbb{Z} = x + y \in \mathbb{Z} \}$
- D上取得最大值或最小值的点 $}$,则z的最小值为 \blacktriangle ,且T中的点共确定 \blacktriangle 条不 同的直线.
- 15. 1202 年, 意大利数学家斐波那契在《算盘之书》中, 提出了一个关于兔子繁殖的问题, 得到著名的斐波那契数列 $\{a_n\}: 1,1,2,3,5,8,\cdots$,满足 $a_1=a_2=1$, $a_{n+1}=a_{n+1}+a_n$ ($n \in N^*$), 那么 $a_1 + a_3 + a_5 + a_7 + a_9 + \cdots + a_{2017}$ 是斐波那契数列中的第<u></u>项.
- 16. 已知向量 a, b 满足 |b| = 1, $a^2 \frac{10}{2}a \cdot b + 1 = 0$,则 $b \cdot (2a + b)$ 的取值范围是_____.
- 17. 已知定义在**R**上的函数 $f(x) = \frac{e^x}{e^x + \sqrt{a}}$,若存在实数 a,使得对于任意实数 x,都有 |f(x)-a| < k 成立,则实数 k 的最小值为____.
- 三、解答题:本大题共5小题,共74分。
- 18. (本题满分 14 分) 已知 $2\sin\alpha\tan\alpha = 3$,且 $0 < \alpha < \pi$.
- (I) 求 α 的值:

侧视图

(第3题)

(II) 求函数 $f(x) = 4\cos x \cos(x - \alpha)$ 在 $\left[0, \frac{\pi}{4}\right]$ 上的值域.

- 19. (本题满分 15 分) 如图,三棱柱 $ABC-A_1B_1C_1$ 所有的棱长均为 2, $A_1B=\sqrt{6}$, $A_1B\perp AC$.
 - (1) 求证: $A_1C_1 \perp B_1C$;
 - (II) 求直线 AC 和平面 ABB_1A_1 所成角的余弦值.

- 20. (本题满分 15 分)设数列 $\{a_n\}$ 的前 n项和为 S_n ,已知 $a_1 = 1$, $S_n = \frac{(n+1)}{2}a_n$, $n \in \mathbb{N}^*$.
- (I) 求数列 $\{a_n\}$ 的通项公式 a_n ;
- (II) 若数列 $\{b_n\}$ 满足: 对任意的正整数 n,都有 $a_1b_1+a_2b_2+\cdots+a_nb_n=(n-1)\cdot 2^n+1$,求数列 $\left\{\frac{S_n}{b_n}\right\}$ 的最大项.

21. (本题满分 15 分) 如图,已知抛物线 $C_1: y = \frac{x^2}{4}$ 的焦点为 F ,过 F 作垂直于 y 轴的弦 MN 称为 "通径"。曲线 C_2 是以通径 MN 为直径的圆在通径上方的部分(不含 M ,N)。点 $P(x_0,y_0)$ 是曲线 C_2 上任意一点,过点 P 且与 C_2 相切的直线 l 与 C_1 交于不同的两点 A ,B 。

- (1) 求曲线 C_2 的方程及直线l的方程(用 x_0, y_0 表示);
- (II) 求 $\triangle OAB$ 的面积的取值范围.

- 22. (本题满分 15 分) 已知 $f(x) = \ln(ax+b) + x^2(a \neq 0)$
- (I) 若曲线 y = f(x) 在点 (1, f(1)) 处的切线方程为 y = x, 求 a, b 的值;
- (II) 若 $f(x) \le x^2 + x$ 恒成立,求ab 的最大值.