My Name (shixuef2) IE598 MLF F19 Module 7 Homework (Random Forest)

Part 1 Random forest estimators

N estimator = 1

the train set score
[0.89881107 0.89784807 0.9004778 0.90099633 0.89981481 0.90111111
0.89596682 0.89537425 0.8988556 0.89644828]
the test set score
[0.71209597 0.72509164 0.7230923 0.70976341 0.73033333 0.72266667 0.72624208 0.74491497 0.73257753 0.73157719]

Run time: 5.47499999988128e-05 s

N estimator = 2

the train set score

[0.9100337 0.90884848 0.90932998 0.90914478 0.90859259 0.90985185 0.90752194 0.90855894 0.90874412 0.90855894]

the test set score

[0.78207264 0.78173942 0.78407198 0.77574142 0.79466667 0.79366667

Run time: 8.98639999955097e-05 s

N estimator = 3

the train set score

 $[0.95329457\ 0.95340568\ 0.95425757\ 0.95455387\ 0.9532963\ 0.95407407$

0.95300174 0.95137217 0.95237213 0.95003889]

the test set score

[0.7664112 0.76407864 0.76741086 0.75608131 0.767 0.774

0.78059353 0.7795932 0.77892631 0.76725575]

Run time: 0.00024202899999981042 s

N estimator = 4

the train set score

 $[0.94659061\ 0.94629431\ 0.94603504\ 0.94762769\ 0.94796296\ 0.94822222$

0.94566868 0.94533536 0.94511314 0.94396504]

the test set score

 $[0.79440187\ 0.79306898\ 0.78807064\ 0.7844052\ \ 0.79766667\ 0.802$

0.80560187 0.80393464 0.80126709 0.79926642]

Run time: 0.00018161700000085546 s

N estimator = 5

the train set score [0.97214712 0.97236935 0.97144339 0.97122116 0.97137037 0.97125926 0.96974186 0.96992704 0.97096404 0.96989 the test set score [0.78540487 0.78507164 0.78807064 0.77474175 0.783 0.78766667 0.80426809 0.8036012 0.80026676 0.79026342]

Run time: 0.00028545100000165746 s

N estimator = 6

the train set score [0.96436905 0.96329494 0.96388755 0.96514686 0.96392593 0.96551852 0.96248287 0.96340876 0.96303841 0.96244584] the test set score [0.80006664 0.79406864 0.79573476 0.79006998 0.79766667 0.805 0.81527176 0.80793598 0.80793598 0.80426809]

Run time: 0.00020880199999950833 s

N estimator = 7

the train set score [0.98096226 0.98018445 0.9803326 0.98151783 0.98103704 0.98022222 0.98000074 0.97900078 0.98063035 0.97977853] the test set score [0.7934022 0.78273909 0.78940353 0.78373875 0.79533333 0.799 0.81827276 0.80460153 0.80926976 0.79893298]

Run time: 0.00048103800000021124 s

N estimator = 8

the train set score [0.97488796 0.97366569 0.97436942 0.9757028 0.97422222 0.97377778 0.97288989 0.97344543 0.97414911 0.97322321] the test set score [0.80306564 0.79240253 0.79706764 0.78907031 0.80533333 0.812 0.82260754 0.80860287 0.81293765 0.80826942]

Run time: 0.0005546669999993981 s

N estimator = 9

the train set score [0.98511056 0.98481425 0.98574021 0.98566614 0.98585185 0.98533333 0.98477834 0.98470427 0.98529684 0.98559313] the test set score [0.79840053 0.78573809 0.79406864 0.78673775 0.79933333 0.80466667 0.82127376 0.80793598 0.81293765 0.80526842]

Run time: 0.0006128140000001281 s

$N_{estimator} = 10$

the train set score

 $[0.97992518\ 0.98029557\ 0.98055484\ 0.98036964\ 0.98051852\ 0.97992593$

0.97963038 0.97922299 0.98018592 0.98029703]

the test set score

 $\hbox{\tt [0.80106631\ 0.79540153\ 0.80206598\ 0.79140287\ 0.80866667\ 0.81366667] }$

0.82494165 0.80893631 0.81460487 0.80626876]

Run time: 0.0005773210000015183 s

Mean Scores for Different N estimators:

Treat Scores for Director 14 estimators.					
N_estimators	1	2	3	4	5
Train Score	0.8985704	0.9089185	0.9529666	0.9462815	0.9710333
	129197227	332332977	989879694	054275213	579928262
Test Score	0.7258355	0.7865343	0.7701350	0.7969683	0.7902355
	089483899	253001102	795594533	374446301	036854263
Running Time	5.4749999	8.9863999	0.0002420	0.0001816	0.0002854
	99988128	99955097	289999998	170000008	510000016
	e-05 s	e-05 s	1042 s	5546 s	5746 s
N_estimators	6	7	8	9	10
Train Score	0.9637518	0.9803666	0.9740333	0.9852888	0.9800925
	715648936	799509477	515490169	92439191	992922472
Test Score	0.8018018	0.7974693	0.8051356	0.8016360	0.8067021
	490594647	931151178	937113733	823595647	604965363
Running Time	0.0002088	0.0004810	0.0005546	0.0006128	0.0005773
	019999995	380000002	669999993	140000001	210000015
	0833 s	1124 s	981 s	281 s	183 s

The Best N_estimator

Optimal n is:10

Optimal accuracy score is:0.8067021604965363

Part 2 Random forest feature importance

When $n_{estimator} = 10$, the features importances are as follows:

PAY 0 0.09324260165733629

AGE 0.068706274879237

BILL_AMT1 0.06280426922252177

LIMIT_BAL 0.05879430511505666

BILL_AMT6 0.05274585204563945

BILL AMT2 0.05201928273277302

BILL_AMT3 0.05191002778791567

BILL AMT5 0.051287985405491496

PAY AMT1 0.050016568443232844

PAY_AMT2 0.0490142723295698

BILL_AMT4 0.04891678402865089

PAY AMT3 0.04747646898265743

PAY_AMT6 0.046534731301291245

PAY AMT4 0.043437359916984594

PAY_AMT5 0.0405242993469114

PAY_2 0.037127334507587664

PAY 3 0.03642932813855153

PAY_4 0.02751815178822547

EDUCATION 0.02025681165312073

PAY_6 0.01875614378091609

PAY_5 0.016645682969388786

MARRIAGE 0.014049011532518096

SEX 0.011786452434422081

Part 3 Conclusions

- a) When the number of estimators increases, the running time increases, and the accuracy scores of test set and train set almost increases until the amount that nearly perfectly translates the data. So more estimators will give the model better performance, but also make code slower.
- b) The optimal number of my estimators is 10.
- c) PAY_0 contributes the most importance in your model according to scikit-learn function.
- d) The feature importance is calculating the reduction of impurity in the node with the weight of probability of arriving at the node. The feature with higher value means it is more important.

Part 4 Appendix

Link to my code:

https://github.com/fengzixue96/IE598_F19_HW7/blob/master/IE598_F19_HW7.py

The screenshot:

