Definition 0.1 (Set cardinality \leq). Let A, B be sets. A has **cardinality less than or equal to** B (write $|A| \leq |B|$) if there exists an injection from A to B. In notation,

$$|A| \le |B| \iff \exists f : A \to B \text{ injective}$$
 (0.1)

Definition 0.2 (Partial order). A **partial order** is a pair $\mathcal{A} = (A, \triangleright)$ where $A \neq \emptyset$ such that for $a, b, c \in A$

- (i) Antireflexivity: $a \triangleright a$ never happens.
- (ii) Transitivity: $a \triangleright b$, $b \triangleright c \Rightarrow a \triangleright c$

Definition 0.3 (Maximal). Let (A, \triangleright) be a partial order. Then $m \in A$ is maximal if and only if no $a \triangleright m$.

Definition 0.4 (Chain). A **chain** in a partial order (A, \triangleright) is a $C \subseteq A$ such that $\forall a, b \in C$, a = b or $a \triangleright b$ or $b \triangleright a$. (One interpretation in words, "C is linear")

Definition 0.5 (Topology, Topological Space). A **topological space** is a pair (X, \mathcal{T}) where X is a nonempty set and \mathcal{T} is a set of subsets of X (called a **topology**) having the following properties:

(i) \emptyset and X are in \mathcal{T} .

$$\emptyset \in \mathcal{T}, X \in \mathcal{T}$$
 (0.2)

(ii) The union of *arbitrarily* many sets in \mathcal{T} is in \mathcal{T} .

$$A_{\eta} \in \mathcal{T} \ \forall \eta \in H \Rightarrow \bigcup_{\eta \in H} A_{\eta} = \left\{ a \in X \text{ for some (that is, } a \in A_{\eta}) \right\} \in \mathcal{T}$$
 (0.3)

(iii) The intersection a *finite* number of sets in \mathcal{T} is in \mathcal{T} .

$$A_1, \dots, A_n \in \mathcal{T} \Rightarrow A_1 \cap \dots \cap A_n \in \mathcal{T}$$
 (0.4)

A set X for which a topology \mathcal{T} has been specified is called a **topological space**, that is, the pair (X, \mathcal{T}) .

Definition 0.6 ((Strictly) Finer, (Strictly) Coarser, Comparable). Suppose \mathcal{T} and \mathcal{T}' are two topologies on a given set X. If $\mathcal{T}' \supset \mathcal{T}$, we say that \mathcal{T}' is **finer** than \mathcal{T} . If \mathcal{T}' properly contains \mathcal{T} , we say that \mathcal{T}' is **strictly finer** than \mathcal{T} . For these respective situations, we say that \mathcal{T} is **coarser** or **strictly coarser** than \mathcal{T}' . We say that \mathcal{T} is **comparable** with \mathcal{T}' if either $\mathcal{T}' \supset \mathcal{T}$ or $\mathcal{T} \supset \mathcal{T}'$.

Definition 0.7 (Basis, Basis Elements, Topology \mathcal{T} generated by \mathcal{B}). If X is a set, a **basis** for a topology on X is a collection $\mathcal{B} \subset \mathcal{P}(X)$ of subsets of X (called **basis elements**) such that

(i) Every element $x \in X$ belongs to some set in \mathcal{B} . In symbols

$$\forall x \in X \ \exists B \in \mathcal{B} \ s.t. \ x \in B \tag{0.5}$$

(ii) If x belongs to the intersection of two basis elements B_1 and B_2 , then there is a basis element B_3 containing x such that $B_3 \subset B_1 \cap B_2$. More generally, in symbols

$$\forall B_1, \dots, B_n \in \mathcal{B} \ \forall x \in \bigcap_{i=1}^n B_i \ \exists B \in \mathcal{B} \ s.t. \ x \in B \subset \bigcap_{i=1}^n B_i$$
 (0.6)

Definition 0.8 (Topology \mathcal{T} generated by \mathcal{B}). If \mathcal{B} is a basis for a topology on X, then we define the **topology** \mathcal{T} **generated by** \mathcal{B} as follows: A subset U of X is said to be open in X (that is, to be an element of \mathcal{T}) if for each $x \in U$, there is a basis element $B_x \in \mathcal{B}$ such that $x \in B_x$ and $B_x \subset U$. Note that each basis element is itself an element of \mathcal{T} . More succinctly:

$$U \subset X : U \in \mathcal{T} \iff \forall x \in U \exists B_x \in \mathcal{B} \text{ s.t. } x \in B_x \subset U$$

Definition 0.9 (Subbasis). A **subbasis** for a topology on X is a collection of subsets $S \subset \mathcal{P}(X)$ of X whose union equals X (that is, $\bigcup S = X$). The topology generated by the subbasis S is defined to be the collection T of all unions of finite intersections of elements of S.

Definition 0.10 (Closed). A subset A of a topological space (X, \mathcal{T}) is said to be **closed** if the set $X - A \in \mathcal{T}$. In words, a subset of a topological space is closed if its complement (in the space) is open.

Definition 0.11 (Continuous). Let (X, \mathcal{T}) and (Y, σ) be topological spaces. A function $f: X \to Y$ is said to be **continuous** with respect to \mathcal{T} and σ if for each open subset V of Y, the set $f^{-1}(V)$ is an open subset of X. In symbols, $\forall S \in \sigma$, we have that $f^{-1}(S) \in \mathcal{T}$ (where $f^{-1}(S) = \{a \in X \mid f(a) \in S\}$). In words, the preimage of an open set is open.

Definition 0.12 (Homeomorphic). The topological spaces (X, \mathcal{T}) and (Y, σ) are **homeomorphic** if there exists a function $f: X \to Y$ such that

- (i) *f* is bijective.
- (ii) *f* is continuous.
- (iii) f^{-1} is also continuous.

We write $(X, \mathcal{T}) \cong (Y, \sigma)$ or $f : (X, \mathcal{T}) \cong (Y, \sigma)$.

Definition 0.13 (Open map). $f:(X,\mathcal{T})\to (Y,\sigma)$ is an **open map** if $\forall S\in\mathcal{T}$ we have that $f(S)\in\sigma$ (recall $f(S)=\{f(s)\mid s\in S\}$). In words: open sets map to open sets.

Definition 0.14 (Closed map). $f:(X,\mathcal{T})\to (Y,\sigma)$ is a **closed map** if $\forall S\subset X$ such that $X-S\in\mathcal{T}$ we have that $Y-f(S)\in\sigma$. In words: closed sets map to closed sets.

Definition 0.15 (Subspace topology). Given a topological space (X, \mathcal{T}) and a non-empty set $A \subseteq X$, the **subspace topology on** A **induced (or given) by** \mathcal{T} is (A, τ_A) where $\mathcal{T}_A = \{U \cap A \mid U \in \mathcal{T}\}$.

Definition 0.16 (Connected). A space (X, τ) is **connected** if whenever sets V, W are

- (i) Nonempty
- (ii) Open
- (iii) $V \cup W = X$

we have $V \cap W \neq \emptyset$.

Definition 0.17 (Metric space). A **metric space** is a nonempty set X together with a binary function $d: X \times X \to \mathbb{R}$ which satisfies the following properties: For all $x, y, z \in X$ we have that

- (i) Positivity: $d(x, y) \ge 0$
- (ii) Definiteness: d(x,y) = 0 if and only if x = y

- (iii) Symmetry: d(x, y) = d(y, x)
- (iv) Triangle inequality: $d(x,y) + d(y,z) \ge d(x,z)$

Definition 0.18 (Metric topology). Given a metric space (X, d), the set $\mathcal{B} = \{B_{\varepsilon}(x) \mid \varepsilon > 0, x \in X\}$ is a basis for a topology on X (where $B_{\varepsilon}(x) = \{y \in X \mid d(x, y) < \varepsilon\}$) called the **metric topology**.

Definition 0.19 (T_2 , Hausdorff). (X, τ) is T_2 (Hausdorff) if for every distinct a, $b \in X$, there exist open sets V, $W \in \tau$ such that $a \in V$, $b \in W$, and $V \cap W = \emptyset$.

Definition 0.20 (Converges). Fix a topological space (X, \mathcal{T}) . A sequence of points $(a_i)_{i \in \mathbb{N}} \subset X$ **converges** to $b \in X$ if for every open set W containing b, all but finitely many of the terms of the sequence are in W. In symbols

$$(a_i)_{i\in\mathbb{N}}\to b\iff \forall W\in\mathcal{T} \text{ s.t. } b\in W, \exists N\in\mathbb{N} \text{ s.t. } \forall m>n, a_m\in W$$

Definition 0.21 (Sequentially closed). A set $S \subset X$ is **sequentially closed** if for every sequence $(a_i)_{i \in \mathbb{N}}$ of points in S converging to some $b \in X$, we have $b \in S$.

Definition 0.22 (Product topology, two sets). Let (X, τ) and (Y, σ) be topological spaces. The **product topology** on $X \times Y$ is the topology having as *basis* the collection \mathcal{B} of all set of the form $U \times V$ where U is an open subset of X and V is an open subset of Y. In symbols,

$$\mathcal{B}_{\tau \times \sigma} = \{ U \times V \mid U \in \tau, V \in \sigma \} \tag{0.7}$$

Definition 0.23 (Product space/topology for finitely many spaces). Let $(X_1, \tau_1), \ldots, (X_n, \tau_n)$ be topological spaces. The set of points of the **product space** is $X_1 \times \cdots \times X_n$. The basis for the **product topology** is

$$\mathcal{B}_{\tau_1 \times \dots \times \tau_n} = \{ W_1 \times \dots \times W_n \mid W_i \in \tau_i \}$$
 (0.8)

Definition 0.24 (Projection Maps). Let (X_1, τ_1) and (X_2, τ_2) be topological spaces. Let

$$\pi_1: X_1 \times X_2 \to X_1: (x_1, x_2) \mapsto x_1$$

 $\pi_2: X_1 \times X_2 \to X_2: (x_1, x_2) \mapsto x_2$

then π_1 and π_2 are projection maps.

Definition 0.25 (Open cover). An **open cover** of (X, τ) is a family of τ -open sets $\mathcal{C} \subset \tau$ such that $\bigcup \mathcal{C} = X$.

Definition 0.26 (Subcover). \mathcal{D} is a **subcover** of \mathcal{C} if

- (i) $\mathcal{D} \subset \mathcal{C}$.
- (ii) \mathcal{D} is an open cover.

A **finite subcover** is a subcover which is finite.

Definition 0.27 (Compact). A topological space (X, τ) is **compact** if every open cover has a finite subcover.

Definition 0.28 (Difference). The **difference** of two sets, denoted A - B, is the set consisting of those elements of A that are not in B. In notation

$$A - B = \{x | x \in A \text{ and } x \notin B\}$$