Piyush Kumar Mishra <u>piyushmways@gmail.com</u>

Unveiling E-commerce Brand Dynamics

Description of Business case:

The dataset belongs to renowned retailer brand in United States. The company makes itself a preferred shopping destination by offering outstanding value, inspiration, innovation and exceptional user experience that no other retailer can offer. This Business case focuses company's operation in Brazil. By analyzing this dataset, it might be possible to gain valuable insights about company's operation and can shed light on various aspects of business.

Data Exploration: The analysis is performed with given below structure in flowchart

Tools used:

1. Initial Exploration of Dataset

1.1. What are the data types of the columns across all the tables.

Query: 1.1

describe company.customers

#similar query is used to for every tables and made a logical schema.

1.2. What is the start date and end of available dataset?

Query: 1.2

select
 min(order_purchase_timestamp) as start_date,
 max(order_purchase_timestamp) as end_date
from company.orders;

Result:

1.3. What is the duration of time of available dataset (in months)?

Query: 1.3

```
select
datediff(max(order_purchase_timestamp),min(order_purchase_timestamp))/30 as no_of_month
from
company.orders
```


DF

PE

PA

MA MS

CE

MT PB

RN

AM

AP

2

2

1

1

1

1

0

0

2. In-Depth Exploration

2.1. Is there a growing trend in the no. of orders placed over the past years? Query: 2.1

```
select

extract(year from order_purchase_timestamp) as year,

extract(month from order_purchase_timestamp) as month,

count(order_id) as order_receieved

from

company.orders

group by year,month

order by year,month;
```

Result:

Note:

1. it may be noted that there is increase in the order_recevied values as time have passed. It implies that there is a clear trend of growing business in Brazil. We used tableau for even better visualization as given below.

* Trend is captured using Tableau public

2.3 let us try to check at what part of day, do Brazilians place order. To analyze the same let us frame a rubric as given below

Category	Time range
Dawn	5:00-6:59
Morning	7:00-10:59
Noon	11:00-16:59
Evening	17:00-18:59
Night	19:00-4:59

Query: 2.3

select

sum(case when extract(hour from order_purchase_timestamp) between 4 and 6 then 1 else 0 end) as "dawn", sum(case when extract(hour from order_purchase_timestamp) between 7 and 10 then 1 else 0 end) as "morning", sum(case when extract(hour from order_purchase_timestamp) between 11 and 16 then 1 else 0 end) as "noon", sum(case when extract(hour from order_purchase_timestamp) between 17 and 18 then 1 else 0 end) as "evening", sum(case when extract(hour from order_purchase_timestamp) between 19 and 0 then 1 else 0 end) + sum(case when extract(hour from order_purchase_timestamp) between 1 and 3 then 1 else 0 end) as "night" from company.orders

Result:

Note:

- 1). It may be observed that Brazilians have tendency to place more orders at noon followed by night.
- 2). Minimum orders are placed dawn and morning.

3. Evolution of e-commerce orders in the Brazil region

3.1 What are the number of orders place month on month basis for each state? Query: 3.1

```
customer_state,
extract(year from order_purchase_timestamp) as year,
extract(month from order_purchase_timestamp) as month,
count(order_id) as no_of_orders

from

company.orders o
join company.customers c on c.customer_id=o.customer_id
group by
customer_state, year, month
order by

1,2,3
```

Result:

Result 22 🗶

We may visualize same output using tableau as given below:

Insights:

- 1. Every line in the curve represents a state of Brazil.
- 2. It may be noted that up to November 2017, there is a rising trend whereas after that it is getting saturated. Although data is for small duration of time so further investigation is required for confirmation.
- 3. It may also be observed that November month receives a spike across all the states.

3.2 how many states in Brazil have engaged business with the company? Query: 3.2 select count(distinct customer_state) as no_of_states from company.customers Result: Export: Wrap Cell Content: IA no_of_states 27 Þ 3.3 how many cities in Brazil have engaged business with the company? Query: 3.3 select count(distinct customer_city) as no_of_cities from company.customers Result: Export: Wrap Cell Content: IA no_of_cities 4119 3.4 Write a query to find out percentage of customer base across various states Query: 3.4 select customer_city, customer_state, (100*count(customer_id)/(select count(*) from company.customers)) as percentage_of_customerbase from company.customers group by customer_state,customer_city order by percentage_of_customerbase desc Result: Export: Wrap Cell Content: TA Fetch rows: Result Grid percentage_of_customerbase customer_city customer_state sao paulo SP 15.6274 RJ rio de janeiro 6.9207 2.7886 belo horizonte brasilia DF 2.1430 curitiba PR. 1.5296 SP campinas 1.4521 porto alegre RS 1.3868 ВА salvador 1.2520 SP guarulhos 1.1957

Insights:

1. Company a presence across all the 27 states in Brazil.

SP

RJ.

2. Company is engaged in business across 4119 cities

sao bernardo do campo

niteroi

Result 4 🗶

3. Company's biggest customer base in Brazil is in Sau Paulo followed by Rio de Jeneiro and Belo horizonte

0.9433

4. Impact on Economy

4.1. what is the percentage rise of cost of orders from 2017 to 2018, considering business only between January to September as we don't have sufficient data for whole year.

```
Query: 4.1
```

```
with cte as

(
SELECT

distinct YEAR(o.order_purchase_timestamp) AS year,

SUM(p.payment_value) OVER (PARTITION BY YEAR(o.order_purchase_timestamp)) AS total_payment

FROM company.orders o

JOIN company.payments p ON p.order_id = o.order_id

where month(o.order_purchase_timestamp) between 1 and 8

)

select

lag(total_payment,1,0) over() as 2017_total_payment,

total_payment AS "2018_total_payment",

ifnull(100*((total_payment-lag(total_payment,1,0) over())/lag(total_payment,1,0) over()),0) as percentage_rise_of_business

from cte
```

Result:

Res	sult Grid III Filter Rov	/s:	Export: Wrap Cell Content:
	2017_total_payment	2018_total_payment	percentage_rise_of_business
•	3669022.1199999577	8694733.839999836	136.97687164665925

4.2. Calculate total and average value of order price for each state Query: 4.2

```
Select

c.customer_state,
sum(p.payment_value) as total_order_price,
avg(p.payment_value) as avg_order_price

from

company.customers c
join company.orders o on c.customer_id=o.customer_id
join company.payments p on p.order_id=o.order_id

group by
c.customer_state

order by
2 desc,3 desc
```

Result:

	customer_state	total_order_price	avg_order_price	
-	SP	5998226.959999805	137.5046297739628	
	RJ	2144379.6899999995	158.52588822355287	
	MG	1872257.2600000077	154.70643364733166	
	RS	890898.5399999958	157.18040578687294	
	PR	811156.3799999995	154.15362599771942	
	SC	623086.4299999996	165.9793367075119	
	BA	616645.8200000026	170.81601662049934	
	DF	355141.07999999984	161.13479128856616	
	GO	350092.3100000004	165.7634043560608	
	ES	325967.5500000016	154.7069530137644	
	PE	324850.43999999925	187.99215277777733	

4.3. Calculate total and average value of order freight for each state.

Query: 4.3

```
select

c.customer_state,
sum(ot.freight_value) as total_freight,
avg(ot.freight_value) as avg_freight

from

company.customers c
join company.orders o on c.customer_id=o.customer_id
join company.order_items ot on o.order_id=ot.order_id

group by
c.customer_state
order by

2 desc,3 desc
```

-	l FTB - A3		1	l =	T-
Ke	sult Grid 🔠 🐧	Filter Rows:	Export:	Wrap Cell Content:	<u>‡ A</u>
	customer_state	total_freight	avg_freight		
•	SP	718723.0699999852	15.147275390418875		
	RJ	305589.30999999796	20.960923931682416		
	MG	270853.4600000028	20.630166806306864		
	RS	135522.74000000235	21.735804330393318		
	PR	117851.68000000104	20.531651567944433		
	BA	100156.67999999903	26.363958936562		
	SC	89660.26000000015	21.470368773946397		
	PE	59449.659999999894	32.91786267995565		
	GO	53114.97999999994	22.766815259322733		
	DF	50625.49999999984	21.041354945968347		
	ES	49764.5999999998	22.058776595744593		

5. Analysis on sales, freight and delivery time

5.1 Find out time taken to deliver the order and estimated time

Query: 5.1

Result:

```
select

datediff(order_estimated_delivery_date,order_purchase_timestamp) as estimated_time,
datediff(order_delivered_customer_date, order_purchase_timestamp) as actual_time

from

company.orders

where

datediff(order_estimated_delivery_date,order_purchase_timestamp) is not null
and
datediff(order_delivered_customer_date, order_purchase_timestamp) is not null
```

Re	sult Grid 🔢 🤌	Filter Rows:
	estimated_time	actual_time
.	16	8
	20	14
	27	9
	27	14
	13	3
	23	17
	22	10
	42	10
	25	18
	22	13
	26	6

5.2 What are the top 5 states with highest average freight value?

Query: 5.2

```
select

c.customer_state as top_states,
avg(ot.freight_value) as avg_freight

from

company.customers c
join company.orders o on c.customer_id=o.customer_id
join company.order_items ot on o.order_id=ot.order_id

group by
c.customer_state

order by 2 desc
limit 5
```

Result:

5.3 What are the top 5 states with lowest average freight value?

Query: 5.3

```
select

c.customer_state as bottom_states,
avg(ot.freight_value) as avg_freight

from

company.customers c
join company.orders o on c.customer_id=o.customer_id
join company.order_items ot on o.order_id=ot.order_id

group by
c.customer_state

order by 2 asc
limit 5
```


5.4 What are the top 5 states with highest delivery time?

Query: 5.4

```
select

c.customer_state as top_states,
avg(datediff(order_delivered_customer_date, order_purchase_timestamp)) as average_delivery_time

from

company.orders o
join company.customers c on c.customer_id=o.customer_id

group by c.customer_state
order by 2 desc
limit 5
```

Result:

5.5 What are the top 5 states with lowest delivery time?

Query: 5.5

```
select

c.customer_state as bottom_states,
avg(datediff(order_delivered_customer_date, order_purchase_timestamp)) as average_delivery_time

from

company.orders o
join company.customers c on c.customer_id=o.customer_id

group by c.customer_state
order by 2 asc
limit 5
```

Result:

5.6 What are the top 5 states with fastest delivery?

Note: here fast delivery will be decided on difference between estimated and actual time take to delivery.

Query: 5.6

```
select

c.customer_state,
avg(datediff(order_delivered_customer_date, order_purchase_timestamp)-
datediff(order_estimated_delivery_date, order_purchase_timestamp)) as diff_actual_eastimated

from

company.orders o
join company.customers c on c.customer_id=o.customer_id

group by c.customer_state
order by 2 asc
```

Result:

5.7 What are the top 5 states with slowest delivery?

Note: here fast delivery will be decided on difference between estimated and actual time take to delivery. Query: 5.7

6. Payment type Analysis

6.1. Find out no of orders placed month on month using different payment type.

Query: 6.1

```
select

payment_type,
year(order_purchase_timestamp) as year,
month(order_purchase_timestamp) as month,
count(o.order_id) as no_of_orders

from

company.orders o
join company.payments p on o.order_id=p.order_id

group by
payment_type,year,month
order by

payment_type,year asc,month asc
```

Result:

For Visulaization purpose, trend can be obtained from Tableau as given below:

6.2: find the number of orders placed on the basis of payment installments that have been paid. Query: 6.2

```
select

payment_installments,

count(order_id) as no_of_orders

from

company.payments

group by

payment_installments

order by

payment_installments asc
```

Result:

Re	sult Grid 🔢 🙌 Filt	er Rows:
	payment_installments	no_of_orders
)	0	2
	1	52546
	2	12413
	3	10461
	4	7098
	5	5239
	6	3920
	7	1626
	8	4268
	9	644
	10	5328

7. Actionable Insights

- 1. We have only 26 months long dataset.
- 2. State with biggest customer base in Brazil is SP followed by RJ and MG with 42%,13% and 12% respectively.
- 3. There is a clear rising trend of online business in Brazil.
- 4. Brazilian people have tendency to place orders during noon followed by night when compared to any other time of the day.
- 5. The company is doing business across all the 27 states in Brazil.
- 4. The company have a wide presence across 4119 cities in Brazil.
- 5. Company's biggest customer base in Brazil is in Sau Paulo followed by Rio de Jeneiro and Belo horizonte
- 6. Number of orders increased by 137% from 2017 to 2018
- 7. SP, RJ and MG are the states giving maximum business. It must be noted that these same states also have least value of freight per order, which makes business more profitable in these states.
- 8. The states with highest average freight is RR followed by PB and RO
- 9. The states with lowest average freight is SP followed by PR and MG
- 10. The states with highest delivery time is RR followed by AP and AM
- 11. The states with lowest delivery time is SP followed by PR and MG
- 12. Brazilian people prefer credit card followed by UPI when compared to any other mode of payment.
- 13. Brazilian people prefer payment in 1 installment itself followed by 2 and 3 installments.

8. Recommendations

- 1. Most of the buyers use Credit Cards as buying medium so Company may look for tie ups with Banks to accommodate offers in Credit Cards
- 2. UPI is second most preferred mode of payment and is emerging technology. Company may explore to provide offers to customer to attract new customers.
- 3. SP, RJ, MG are the states of top priority, they give most business with least avg freight. Company should manage resources in these states especially during festive season.
- 4. Market is in growing phase so company may look for expansion.