Query 3

Using the 2010 Census population data and the 2015 Census household income data, calculate the following for each area of Los Angeles: The average annual income per person and the ratio of total crimes per person. The results should be summarized in a table.

Question 3

Implement Query 3 using DataFrame or SQL API. Use hint & explain methods to find out which join strategies the catalyst optimizer uses. Experiment by forcing Spark to use different strategies (between BROADCAST, MERGE, SHUFFLE_HASH, SHUFFLE_REPLICATE_NL) and comment on the results you observe.

Which of the available Spark join strategies is (are) the most appropriate and why?

```
from pyspark.sql import SparkSession
from sedona.register.geo_registrator import SedonaRegistrator
from sedona.sql.types import GeometryType
from pyspark.sql.functions import col, regexp_replace, explode,
count, sum, avg, concat, lit, expr, to_timestamp, year
import time
# Create a Spark session and register Sedona
spark = SparkSession.builder \
    .appName("Query 3") \
    .getOrCreate()
# Load census data from a GeoJSON file
census_blocks_path = "s3://initial-notebook-data-bucket-
dblab-905418150721/2010_Census_Blocks.geojson"
census_raw_df = spark.read.format("geojson").option("multiline",
"true").load(census_blocks_path)
# Extract the features field and select geometry and attributes
census df =
census_raw_df.select(explode(col("features")).alias("feature")) \
    .select(
col("feature.geometry").cast(GeometryType()).alias("census geometry")
),
        col("feature.properties.ZCTA10").alias("zip"),
        col("feature.properties.POP 2010").alias("population")
    ).filter(col("population").isNotNull())
# Load crime data from a CSV file
crime_data_path = "s3://initial-notebook-data-bucket-
dblab-905418150721/CrimeData/
Crime_Data_from_2010_to_2019 20241101.csv"
crime_df = spark.read.csv(crime_data_path, header=True,
```

```
inferSchema=True)
# Convert "DATE OCC" to a timestamp and filter for crimes that
occurred in 2010
crime df = crime df.withColumn("DATE OCC TIMESTAMP",
to_timestamp(col("DATE OCC"), "MM/dd/yyyy hh:mm:ss a"))
crime df = crime df.filter(year(col("DATE OCC TIMESTAMP")) == 2010)
# Create a geometry column from the LAT and LON fields in the crime
crime df = crime df.withColumn("crime geometry", expr("ST Point(LON,
LAT)"))
# Perform a spatial join between crime data and census data
joined_df = crime_df.join(census_df,
expr("ST_Intersects(crime_geometry, census_geometry)"), "inner")
# Aggregate census data by ZIP code
aggregated_population =
census_df.groupBy("zip").agg(sum("population").alias("population")
(2010)"))
# Calculate the total number of crimes by ZIP code
crime counts =
joined_df.groupBy("zip").agg(count("LOCATION").alias("crimes
(2010)"))
# Join the aggregated population data with the crime counts
crime_ratio_df = crime_counts.join(aggregated_population, "zip",
"inner")
# Filter out rows where population is NULL or 0
crime_ratio_df = crime_ratio_df.filter((col("population")))
(2010)").isNotNull()) & (col("population (2010)") > 0))
# Calculate the crime-to-population ratio
crime ratio df = crime ratio df.withColumn("crimes per person
(2010)", col("crimes (2010)") / col("population (2010)"))
# Load income data
income path = "s3://initial-notebook-data-bucket-dblab-905418150721/
LA_income_2015.csv"
tulo df = spark.read.csv(income path, header=True, inferSchema=True)
# Clean the Estimated Median Income column and convert it to a
numeric format
tulo df = tulo df.withColumn("zip", col("Zip Code").cast("string"))
    .withColumn("income cleaned",
regexp_replace(regexp_replace(col("Estimated Median Income"), "\\$",
""), ",", "")) \
    .withColumn("estimated median income (2015)",
col("income cleaned").cast("double"))
```

```
start_time = time.time()
# Join census, crime, and income datasets
combined df = crime ratio df.join(tulo df.select("zip",
"estimated_median_income (2015)"), "zip", "inner")
# Calculate the average income per person
combined_df = combined_df.withColumn("average_income_per_person",
col("estimated_median_income (2015)") / col("population (2010)"))
# Add a dollar sign to the average income per person column without
rounding
final_df = combined_df.select(
    col("zip").alias("zip (LA)"),
    col("crimes (2010)"),
    col("population (2010)"),
    col("crimes_per_person (2010)"),
    concat(lit("$"), col("estimated_median_income
(2015)")).alias("estimated_income (2015)"),
    concat(lit("$"),
col("average_income_per_person")).alias("average_annual_per_person")
# Display the results
final_df.show(truncate=False)
end_time = time.time()
print(f"Time: {end_time - start_time} seconds")
```

zip (LA) crimes (2010 stimated_income (2015)) population 5) average_ann +	(2010) crimes_per_person (2010 ual_per_person +))
·	+	+	
00094 136	5464	0.024890190336749635	\$104367
519.10084187408492		10 014220040027505542	1474000
00230 452 52.3554429263992946	31766	0.014229049927595543	\$74823 . (
90293 435	 12132	0.03585558852621167	\$82055.0
6.763517969007583	1	0:05505550052021107	\$0203311
00292 514	21576	0.023822766036336672	\$100507
64.658277715980719	1	[1,420000
00291 2457	283ٰ41	0.08669418863131152	\$80111.0
52 . 826682191877492	·	·	
90405 47	27186	0.001728831015964099	\$77948.
52.8672110645185023	1		
00045 3299	39480	0.0835612968591692	\$75684.
51.9170212765957446		10.004740400440070504	1+60400
90066 1755	55277	0.031749190440870524	\$68132.
51.232556035964325	16722	10 002026520720221222	1462702
00401 19 59.328027372805712	6722	0.002826539720321333	\$62703.
90245 7	 16654	4.2031944277651017E-4	\$85727 .
55.147532124414555	1	4:20313442770310172 4	ψ03727 •
90266 5	35135	1.4230823964707557E-4	\$143527
54.085014942365163	1		14-100-1
00008 3015	32327	0.09326569121786742	\$36564.
51 . 1310669100133015	· 1	•	•
90043 2802	44789	0.0625600035723057	\$38180.
80.8524414476768849			
90056 27	7827	0.0034495975469528554	\$84099.
510.74472978152549			
90301 102	36568	0.002789323999124918	\$37424.
51.0234084445416758	102102	12 4460020222426225 5	1+46472
00250 2	93193	2.146083933342633E-5	\$46172.
50.4954449368514803 90278 1	 140071	2.4955703626063736E-5	14107010
00278 1 52.6705098450250806	40071	2.4933703020003730L=3	\$107010
00304 11	28210	3.899326479971641E-4	\$36412.
51.2907479617157036		310333204733710412 4	\$504121
90302 31	29415	0.0010538840727519973	I\$41426.
51.4083290838007818		1222222200.0.2.223075	1+
90254 2	19506	1.0253255408592229E-4	\$111187
55.70014354557572	· 1	·	• •
	·-+	+	

Time: 15.450810194015503 seconds

spark = SparkSession.builder \

```
BROADCAST Strategy
from pyspark.sql import SparkSession
from sedona.register.geo_registrator import SedonaRegistrator
from sedona.sql.types import GeometryType
from pyspark.sql.functions import col, regexp_replace, explode,
count, sum, concat, lit, expr, to_timestamp, year, broadcast
import time

# Create a Spark session and register Sedona
```

```
appName("BROADCAST") \
    .get0rCreate()
# Register Sedona
SedonaRegistrator.registerAll(spark)
# Load census data from a GeoJSON file
census blocks path = "s3://initial-notebook-data-bucket-
dblab-905418150721/2010_Census_Blocks.geojson"
census raw df = spark.read.format("geojson").option("multiline",
"true").load(census blocks path)
# Extract the features field and select geometry and attributes
census df =
census_raw_df.select(explode(col("features")).alias("feature")) \
    .select(
col("feature.geometry").cast(GeometryType()).alias("census_geometry"
),
        col("feature.properties.ZCTA10").alias("zip"),
        col("feature.properties.POP_2010").alias("population")
    ).filter(col("population").isNotNull())
# Load crime data from a CSV file
crime_data_path = "s3://initial-notebook-data-bucket-
dblab-905418150721/CrimeData/
Crime_Data_from_2010_to_2019_20241101.csv"
crime_df = spark.read.csv(crime_data_path, header=True,
inferSchema=True)
# Convert "DATE OCC" to a timestamp and filter for crimes that
occurred in 2010
crime_df = crime_df.withColumn("DATE_OCC_TIMESTAMP",
to_timestamp(col("DATE OCC"), "MM/dd/yyyy hh:mm:ss a"))
crime df = crime df.filter(year(col("DATE OCC TIMESTAMP")) == 2010)
# Create a geometry column from the LAT and LON fields in the crime
data
crime_df = crime_df.withColumn("crime_geometry", expr("ST_Point(LON,
LAT)"))
# Perform a spatial join between crime data and census data
joined_df = crime_df.join(census_df,
expr("ST Intersects(crime geometry, census geometry)"), "inner")
# Aggregate census data by ZIP code
aggregated population =
census df.groupBy("zip").agg(sum("population").alias("population")
(2010)"))
# Calculate the total number of crimes by ZIP code
crime counts =
joined df.groupBy("zip").agg(count("LOCATION").alias("crimes
(2010)"))
```

```
# Join the aggregated population data with the crime counts
crime_ratio_df = crime_counts.join(aggregated_population, "zip",
"inner")
# Filter out rows where population is NULL or 0
crime ratio df = crime ratio df.filter((col("population")))
(2010)").isNotNull()) & (col("population (2010)") > 0))
# Calculate the crime-to-population ratio
crime ratio df = crime ratio df.withColumn("crimes per person
(2010)", col("crimes (2010)") / col("population (2010)"))
# Load income data
income_path = "s3://initial-notebook-data-bucket-dblab-905418150721/
LA income 2015.csv"
tulo_df = spark.read.csv(income_path, header=True, inferSchema=True)
# Clean the Estimated Median Income column and convert it to a
numeric format
tulo_df = tulo_df.withColumn("zip", col("Zip Code").cast("string"))
    .withColumn("income cleaned",
regexp_replace(regexp_replace(col("Estimated Median Income"), "\\$",
""), ",", "")) \
    .withColumn("estimated_median_income (2015)",
col("income_cleaned").cast("double"))
# Measure the performance of the BROADCAST join
start_time = time.time()
# Use BROADCAST join to combine crime data and income data
combined_df = crime_ratio_df.join(
    broadcast(tulo_df.select("zip", "estimated_median_income
(2015)")),
    "zip",
    "inner"
# Calculate the average income per person
combined_df = combined_df.withColumn("average_income_per_person",
col("estimated median income (2015)") / col("population (2010)"))
# Add a dollar sign to the average income per person column without
roundina
final_df = combined_df.select(
    col("zip").alias("zip (LA)"),
    col("crimes (2010)"),
    col("population (2010)"),
    col("crimes_per_person (2010)"),
    concat(lit("$"), col("estimated_median_income
(2015)")).alias("estimated_income (2015)"),
    concat(lit("$"),
col("average_income_per_person")).alias("average_annual_per_person")
```

```
# Display the results
final df.show(truncate=False)
end time = time.time()
print(f"BROADCAST Join Time: {end_time - start_time} seconds")
 |zip (LA)|crimes (2010)|population (2010)|crimes_per_person (2010)|
 estimated_income (2015)|average_annual_per_person|
 |90094 |136 |5464
                              |0.024890190336749635 |$104367.0
 |$19.10084187408492
                                     |1.4230823964707557E-4
                      |35135
 90266 |5
                                                             |$143527.0
 |$4.085014942365163
                      |31766
                                     0.014229049927595543
 .
| 90230 | 452
                                                              |$74823.0
 |$2.3554429263992946
                                     |0.03585558852621167
 90293 |435
                      |12132
                                                              |$82055.0
 |$6.763517969007583
 |90292 |514
                      |21576
                                     0.023822766036336672
                                                              |$100507.0
 $4.658277715980719
                      28341
                                     |0.08669418863131152
 90291 |2457
                                                              |$80111.0
 $2.826682191877492
                                     |0.001728831015964099
 90405
        |47
                      27186
                                                              |$77948.0
 $2.8672110645185023
 90034
        |2234
                      |57964
                                     |0.038541163480781175
                                                              |$58004.0
 $1.0006900835001036
 |90045 |3299
                      39480
                                      |0.0835612968591692
                                                              |$75684.0
 $1.9170212765957446
                      |55277
                                      |0.031749190440870524
 |90066
       |1755
                                                              |$68132.0
 |$1.232556035964325
 90401
       |19
                      |6722
                                      |0.002826539720321333
                                                              |$62703.0
 $9.328027372805712
 90245 | 7
                      16654
                                      |4.2031944277651017E-4
                                                              |$85727.0
 $5.147532124414555
 90008 | 3015
                      |32327
                                      |0.09326569121786742
                                                              |$36564.0
 $1.1310669100133015
                                      |0.0625600035723057
 90043 | 2802
                      |44789
                                                              |$38180.0
 $0.8524414476768849
                      |7827
                                      |0.0034495975469528554
 |90056 |27
                                                              |$84099.0
 $10.74472978152549
                      148606
                                      0.06406616467102827
 90047
        |3114
                                                              |$39269.0
 |$0.8079043739456034
 90301
                      |36568
                                      |0.002789323999124918
                                                              |$37424.0
        |102
 $1.0234084445416758
                      |93193
                                     |2.146083933342633E-5
 90250 |2
                                                              |$46172.0
 $0.4954449368514803
                       |$36412.0
 90304
        |11
                      28210
                                    |3.899326479971641E-4
 $1.2907479617157036
 90303 |2
                      26176
                                      |7.640586797066015E-5
                                                             |$39671.0
 |$1.5155485941320292
    ----+-----
 only showing top 20 rows
```

BROADCAST Join Time: 14.191836595535278 seconds

```
from pyspark.sql import SparkSession
from sedona.register.geo_registrator import SedonaRegistrator
from sedona.sql.types import GeometryType
from pyspark.sql.functions import col, regexp replace, explode,
count, sum, concat, lit, expr, to_timestamp, year
import time
# Create a Spark session and register Sedona
spark = SparkSession.builder \
    .appName("MERGE") \
    .get0rCreate()
# Register Sedona for spatial operations
SedonaRegistrator.registerAll(spark)
# Load census data from a GeoJSON file
census_blocks_path = "s3://initial-notebook-data-bucket-
dblab-905418150721/2010 Census Blocks.geoison"
census_raw_df = spark.read.format("geojson").option("multiline",
"true").load(census_blocks_path)
# Extract the features field and select geometry and attributes
census df =
census_raw_df.select(explode(col("features")).alias("feature")) \
    .select(
col("feature.geometry").cast(GeometryType()).alias("census_geometry"
),
        col("feature.properties.ZCTA10").alias("zip"),
        col("feature.properties.POP_2010").alias("population")
    ).filter(col("population").isNotNull())
# Load crime data from a CSV file
crime data path = "s3://initial-notebook-data-bucket-
dblab-905418150721/CrimeData/
Crime_Data_from_2010_to_2019_20241101.csv"
crime df = spark.read.csv(crime data path, header=True,
inferSchema=True)
# Convert "DATE OCC" column to timestamp and filter crimes from 2010
crime df = crime df.withColumn("DATE OCC TIMESTAMP",
to_timestamp(col("DATE OCC"), "MM/dd/yyyy hh:mm:ss a"))
crime_df = crime_df.filter(year(col("DATE_OCC_TIMESTAMP")) == 2010)
# Create a geometry column for crimes based on LAT and LON columns
crime_df = crime_df.withColumn("crime_geometry", expr("ST_Point(LON,
LAT)"))
# Perform a spatial join between crime data and census data
joined_df = crime_df.join(census_df,
expr("ST_Intersects(crime_geometry, census_geometry)"), "inner")
# Aggregate census data by ZIP code
aggregated population =
```

```
census df.groupBy("zip").agg(sum("population").alias("population
(2010)"))
# Count the total number of crimes by ZIP code
crime counts =
joined df.groupBy("zip").agg(count("LOCATION").alias("crimes
(2010)"))
# Measure performance for the MERGE join
start time = time.time()
# Use a MERGE join to combine crime data and census population data
crime_ratio_df = crime_counts.join(
    aggregated population.hint("merge"),
    "zip",
    "inner"
# Remove rows where the population is NULL or zero
crime_ratio_df = crime_ratio_df.filter((col("population")))
(2010)").isNotNull()) & (col("population (2010)") > 0))
# Calculate the crime-to-population ratio
crime_ratio_df = crime_ratio_df.withColumn("crimes_per_person
(2010)", col("crimes (2010)") / col("population (2010)"))
# Load income data from a CSV file
income_path = "s3://initial-notebook-data-bucket-dblab-905418150721/
LA income 2015.csv"
tulo_df = spark.read.csv(income_path, header=True, inferSchema=True)
# Clean the Estimated Median Income column and convert it to numeric
tulo_df = tulo_df.withColumn("zip", col("Zip Code").cast("string"))
    .withColumn("income_cleaned",
regexp_replace(regexp_replace(col("Estimated Median Income"), "\\$",
""), ",", "")) \
    .withColumn("estimated median income (2015)",
col("income_cleaned").cast("double"))
# Join crime, population, and income data
combined df = crime ratio df.join(
    tulo_df.select("zip", "estimated_median_income (2015)"),
    "zip",
    "inner"
)
# Calculate the average income per person
combined_df = combined_df.withColumn("average_income_per_person",
col("estimated_median_income (2015)") / col("population (2010)"))
# Add a dollar sign to the average income and estimated income
columns
final df = combined df.select(
```

```
col("zip").alias("zip (LA)"),
    col("crimes (2010)"),
    col("population (2010)"),
    col("crimes_per_person (2010)"),
    concat(lit("$"), col("estimated_median_income
(2015)")).alias("estimated_income (2015)"),
    concat(lit("$"),
    col("average_income_per_person")).alias("average_annual_per_person"))
# Display the results
final_df.show(truncate=False)
end_time = time.time()
print(f"MERGE Join Time: {end_time - start_time} seconds")
```

stimated_income (2015)		2010) crimes_per_person (2010 al_per_person	0)
	-+ +	·++	
90001 794 50.593363684118368	57110 	0.013902994221677465	\$33887 .
00002 2492 50.5937371883724109	51223 	0.04865002049860414	\$30413 .
90003 6132 50.46486886185977727	66266 	0.0925361422147104	\$30805.
90004 2991 50.6531360566098424	62180 	0.04810228369250563	\$40612.
90005 1700 \$0.8264642658103554	37681 	0.04511557548897322	\$31142.
90006 2891 \$0.5325842696629214	59185 	0.0488468361916026	\$31521.
90007 2798 \$0.5450635386119257	40920 	0.06837732160312805	\$22304 .
90008 3015 \$1.1310669100133015	32327	0.09326569121786742	\$36564 .
90010 733 \$12.048947368421052	3800 	0.19289473684210526	\$45786 .
90011 5288 \$0.291177376506372	103892 	0.05089901051091518	\$30251 .
90012 1680 \$1.0152075362505224	31103 	0.054014082242870465	\$31576.
90013 2059 \$1.6893476044852191	11772 	0.17490655793408086	\$19887
90014 858 \$3.3750178443968593	7005 	0.12248394004282655	\$23642
90015 2607 \$1.5634678183924997	18986 	0.1373117033603708	\$29684
90016 2912 \$0.8053197747709891	47596 	0.06118161190015968	\$38330
90017 1984 \$0.9573375967687647	23768 	0.0834735779198923	\$22754
90018 2649 50.6867572500506997	49310 	0.05372135469478807	\$33864
00019 3100 50.722501473827919	64458 	0.048093332092215085	\$46571
90020 1216 50.9969717966484462	38967 	0.031205892165165398	\$38849
00021 1306 53.242976461655277	3951 	0.33054922804353326	\$12813

MERGE Join Time: 14.373335599899292 seconds

```
SHUFFLE_HASH Strategy
from pyspark.sql import SparkSession
from sedona.register.geo_registrator import SedonaRegistrator
from sedona.sql.types import GeometryType
from pyspark.sql.functions import col, regexp_replace, explode,
count, sum, concat, lit, expr, to_timestamp, year
import time

# Create a Spark session and register Sedona
spark = SparkSession.builder \
```

```
appName("SHUFFLE HASH") \
    .get0rCreate()
# Register Sedona
SedonaRegistrator.registerAll(spark)
# Load census data from a GeoJSON file
census blocks path = "s3://initial-notebook-data-bucket-
dblab-905418150721/2010_Census_Blocks.geojson"
census raw df = spark.read.format("geojson").option("multiline",
"true").load(census blocks path)
# Extract the features field and select geometry and attributes
census df =
census_raw_df.select(explode(col("features")).alias("feature")) \
    .select(
col("feature.geometry").cast(GeometryType()).alias("census_geometry"
),
        col("feature.properties.ZCTA10").alias("zip"),
        col("feature.properties.POP_2010").alias("population")
    ).filter(col("population").isNotNull())
# Load crime data from a CSV file
crime_data_path = "s3://initial-notebook-data-bucket-
dblab-905418150721/CrimeData/
Crime_Data_from_2010_to_2019_20241101.csv"
crime_df = spark.read.csv(crime_data_path, header=True,
inferSchema=True)
# Convert "DATE OCC" to a timestamp and filter for crimes that
occurred in 2010
crime_df = crime_df.withColumn("DATE_OCC_TIMESTAMP",
to_timestamp(col("DATE OCC"), "MM/dd/yyyy hh:mm:ss a"))
crime df = crime df.filter(year(col("DATE OCC TIMESTAMP")) == 2010)
# Create a geometry column from the LAT and LON fields in the crime
data
crime_df = crime_df.withColumn("crime_geometry", expr("ST_Point(LON,
LAT)"))
# Perform a spatial join between crime data and census data
joined_df = crime_df.join(census_df,
expr("ST Intersects(crime geometry, census geometry)"), "inner")
# Aggregate census data by ZIP code
aggregated population =
census df.groupBy("zip").agg(sum("population").alias("population")
(2010)"))
# Calculate the total number of crimes by ZIP code
crime counts =
joined df.groupBy("zip").agg(count("LOCATION").alias("crimes
(2010)"))
```

```
# Measure the performance of the SHUFFLE_HASH join
start time = time.time()
# Use SHUFFLE HASH join to combine crime and population data
crime ratio df = crime counts.join(
    aggregated_population.hint("shuffle_hash"),
    "zip",
    "inner"
# Filter out rows where population is NULL or 0
crime_ratio_df = crime_ratio_df.filter((col("population")))
(2010)").isNotNull()) & (col("population (2010)") > 0))
# Calculate the crime-to-population ratio
crime_ratio_df = crime_ratio_df.withColumn("crimes_per_person
(2010)", col("crimes (2010)") / col("population (2010)"))
# Load income data
income_path = "s3://initial-notebook-data-bucket-dblab-905418150721/
LA income 2015.csv"
tulo_df = spark.read.csv(income_path, header=True, inferSchema=True)
# Clean the Estimated Median Income column and convert it to a
numeric format
tulo_df = tulo_df.withColumn("zip", col("Zip Code").cast("string"))
    .withColumn("income cleaned",
regexp_replace(regexp_replace(col("Estimated Median Income"), "\\$",
""), ",", "")) \
    .withColumn("estimated_median_income (2015)",
col("income cleaned").cast("double"))
# Combine crime, population, and income data
combined_df = crime_ratio_df.join(
    tulo_df.select("zip", "estimated_median_income (2015)"),
    "zip",
    "inner"
# Calculate the average income per person
combined_df = combined_df.withColumn("average_income_per_person",
col("estimated median income (2015)") / col("population (2010)"))
# Add a dollar sign to the average_income_per_person column without
roundina
final df = combined df.select(
    col("zip").alias("zip (LA)"),
    col("crimes (2010)"),
    col("population (2010)"),
    col("crimes_per_person (2010)"),
    concat(lit("$"), col("estimated_median_income
(2015)")).alias("estimated income (2015)"),
```

```
concat(lit("$"),
col("average_income_per_person")).alias("average_annual_per_person")
)

# Display the results
final_df.show(truncate=False)
end_time = time.time()
print(f"SHUFFLE_HASH Join Time: {end_time - start_time} seconds")
```

	2010) population 2015) average_anno))
 90008 3015	+ 32327	+ 0.09326569121786742	\$36564.
\$1.13106691001330	15	'	
90064 1426 \$3.43593276384678	25403 96	0.056135102153288985	\$87283.
90062 2395 \$1.05383748209987	32821	0.07297157307821212	\$34588.
90011 5288	103892	0.05089901051091518	\$30251.
\$0.29117737650637 90021 1306	3951	0.33054922804353326	\$12813.
\$3.24297646165527 90405 47	27186	0.001728831015964099	\$77948.
\$2.86721106451850 90007 2798	40920	0.06837732160312805	\$22304.
\$0.54506353861192 90034 2234	57 57964	0.038541163480781175	\$58004.
\$1.00069008350010 90037 4458	36 62276	0.07158455905966986	\$27179.
\$0.43642815852013 90066 1755	55277	0.031749190440870524	\$68132 .
\$1.23255603596432 90401 19	5 6722	0.002826539720321333	\$62703.
\$9.32802737280571 90403 1	.2 24525	4.077471967380224E-5	\$78151 .
\$3.18658511722731 90016 2912	9 47596	0.06118161190015968	\$38330.
\$0.80531977477098	91	·	
90232 78 \$5.08310779589411	15149	0.00514885470988184	\$77004.
90404 15	21360	7.022471910112359E-4	\$66623.
\$3.11905430711610 90018 2649	49310	0.05372135469478807	\$33864.
\$0.68675725005069 90248 334	9947	0.033577963204986426	\$53306.
\$5.35900271438624 90044 4563	.7 89779	0.050824803127680195	\$29206.
\$0.32530992771138 90745 25		4.3667359522104416E-4	\$71443.
\$1.24789086653508 90061 1775		0.06605388508484668	
\$1.25524709735040	2	·	
	+		

SHUFFLE_HASH Join Time: 13.013461351394653 seconds

```
SHUFFLE_REPLICATE_NL Strategy
from pyspark.sql import SparkSession
from sedona.register.geo_registrator import SedonaRegistrator
from sedona.sql.types import GeometryType
from pyspark.sql.functions import col, regexp_replace, explode,
count, sum, concat, lit, expr, to_timestamp, year
import time

# Create a Spark session and register Sedona
spark = SparkSession.builder \
```

```
.appName("SHUFFLE REPLICATE NL") \
    .get0rCreate()
# Register Sedona
SedonaRegistrator.registerAll(spark)
# Load census data from a GeoJSON file
census blocks path = "s3://initial-notebook-data-bucket-
dblab-905418150721/2010_Census_Blocks.geojson"
census raw df = spark.read.format("geojson").option("multiline",
"true").load(census blocks path)
# Extract the features field and select geometry and attributes
census df =
census_raw_df.select(explode(col("features")).alias("feature")) \
    .select(
col("feature.geometry").cast(GeometryType()).alias("census_geometry"
),
        col("feature.properties.ZCTA10").alias("zip"),
        col("feature.properties.POP_2010").alias("population")
    ).filter(col("population").isNotNull())
# Load crime data from a CSV file
crime_data_path = "s3://initial-notebook-data-bucket-
dblab-905418150721/CrimeData/
Crime_Data_from_2010_to_2019_20241101.csv"
crime_df = spark.read.csv(crime_data_path, header=True,
inferSchema=True)
# Convert "DATE OCC" to a timestamp and filter for crimes that
occurred in 2010
crime_df = crime_df.withColumn("DATE_OCC_TIMESTAMP",
to_timestamp(col("DATE OCC"), "MM/dd/yyyy hh:mm:ss a"))
crime df = crime df.filter(year(col("DATE OCC TIMESTAMP")) == 2010)
# Create a geometry column from the LAT and LON fields in the crime
data
crime_df = crime_df.withColumn("crime_geometry", expr("ST_Point(LON,
LAT)"))
# Perform a spatial join between crime data and census data
joined_df = crime_df.join(census_df,
expr("ST Intersects(crime geometry, census geometry)"), "inner")
# Aggregate census data by ZIP code
aggregated population =
census df.groupBy("zip").agg(sum("population").alias("population")
(2010)"))
# Calculate the total number of crimes by ZIP code
crime counts =
joined df.groupBy("zip").agg(count("LOCATION").alias("crimes
(2010)"))
```

```
# Measure the performance of the SHUFFLE_REPLICATE_NL join
start time = time.time()
# Use SHUFFLE REPLICATE NL join to combine crime and population data
crime ratio df = crime counts.join(
    aggregated_population.hint("shuffle_replicate_nl"),
    "zip",
    "inner"
# Filter out rows where population is NULL or 0
crime_ratio_df = crime_ratio_df.filter((col("population")))
(2010)").isNotNull()) & (col("population (2010)") > 0))
# Calculate the crime-to-population ratio
crime_ratio_df = crime_ratio_df.withColumn("crimes_per_person
(2010)", col("crimes (2010)") / col("population (2010)"))
# Load income data
income_path = "s3://initial-notebook-data-bucket-dblab-905418150721/
LA income 2015.csv"
tulo_df = spark.read.csv(income_path, header=True, inferSchema=True)
# Clean the Estimated Median Income column and convert it to a
numeric format
tulo_df = tulo_df.withColumn("zip", col("Zip Code").cast("string"))
    .withColumn("income cleaned",
regexp_replace(regexp_replace(col("Estimated Median Income"), "\\$",
""), ",", "")) \
    .withColumn("estimated_median_income (2015)",
col("income cleaned").cast("double"))
# Combine crime, population, and income data
combined_df = crime_ratio_df.join(
    tulo_df.select("zip", "estimated_median_income (2015)"),
    "zip",
    "inner"
# Calculate the average income per person
combined_df = combined_df.withColumn("average_income_per_person",
col("estimated median income (2015)") / col("population (2010)"))
# Add a dollar sign to the average_income_per_person column without
roundina
final_df = combined df.select(
    col("zip").alias("zip (LA)"),
    col("crimes (2010)"),
    col("population (2010)"),
    col("crimes_per_person (2010)"),
    concat(lit("$"), col("estimated_median_income
(2015)")).alias("estimated income (2015)"),
```

```
concat(lit("$"),
col("average_income_per_person")).alias("average_annual_per_person")

# Display the results
final_df.show(truncate=False)

end_time = time.time()
print(f"SHUFFLE_REPLICATE_NL Join Time: {end_time - start_time}
seconds")
```

ip (LA) crimes (2010 timated_income (2015) population 	(2010) crimes_per_person (2010 ual_per_person +))
·	· ·+	+	
0094 136	5464	0.024890190336749635	\$104367
19.10084187408492			
0293 435	12132	0.03585558852621167	\$82055.0
6.763517969007583	121576	IA 022022766026226672	14100507
0292 514	21576	0.023822766036336672	\$100507
4.658277715980719	120244	LO 00000410000121152	1+00111
0291 2457	28341	0.08669418863131152	\$80111.0
2.826682191877492	127106	LA 001720021015064000	1477040
0405 47	27186	0.001728831015964099	\$77948.
2.8672110645185023	120400	LA 003FC130C0F01C03	1475604
0045 3299	39480	0.0835612968591692	\$75684.
1.9170212765957446		10.024740400440070524	1+60422
0066 1755	55277	0.031749190440870524	\$68132.
1.232556035964325			
0401 19	6722	0.002826539720321333	\$62703.
9.328027372805712			
0266 5	35135	1.4230823964707557E-4	\$143527
4.085014942365163			
0008 3015	32327	0.09326569121786742	\$36564.
1.1310669100133015			
0043 2802	44789	0.0625600035723057	\$38180.
0.8524414476768849			
0056 27	7827	0.0034495975469528554	\$84099.
10.74472978152549	· 1		
0230 452	31766	0.014229049927595543	\$74823.
2.3554429263992946	· 1	•	•
0301 102	36568	0.002789323999124918	\$37424.
1.0234084445416758	· 1	•	•
0250 2	93193	2.146083933342633E-5	\$46172.
0.4954449368514803	' I	'	
0278 1	40071	2.4955703626063736E-5	\$107010
2.6705098450250806	' i	,	
0304 11	28210	3.899326479971641E-4	\$36412.
1.2907479617157036		1010000201700720122	1400.
0302 31	129415	0.0010538840727519973	\$41426.
1.4083290838007818		0.00000000000000000000000000000000000	14.2.201
0254 2	19506	1.0253255408592229E-4	l \$111187
5.70014354557572	1	12.0200200 10000022202 4	1411107
0245 7	116654	4.2031944277651017E-4	1\$85727
5.147532124414555	1	1120313 172//03101/L 7	1403/2/1
	 +		

SHUFFLE_REPLICATE_NL Join Time: 12.394477605819702 seconds

Answer

Based on the time of execution for joining these datasets, SHUFFLE_REPLICATE_NL and SHUFFLE_HASH are probably the two best joining methods for that dataset and workload. The time of 12.39 seconds for SHUFFLE_REPLICATE_NL demonstrates that replication of smaller datasets across partitions becomes highly effective in this case. It is particularly effective when the one dataset is relatively small compared to the other, enabling replication without

imposing heavy overheads on memory space or through the network. For example, SHUFFLE_HASH also performed exceptionally well in 13.01 seconds, taking advantage of hash-based partitioning to evenly distribute the data across the cluster. The approach is most needed when the join keys are evenly distributed, thus minimizing shuffle cost and skew.

Broadcast Join's time is 14.19 seconds, which also reflects a very good performance with the small-to-fit memory broadcast dataset, thus making it feasible for a dramatically reduced dataset against another during in-memory joins. MERGE Join completed in 14.37 seconds and was still worth considering as long as the datasets were sorted on the join keys since it avoided most of the shuffle and memory overhead. Finally, the Last but not least: Standard Join took 15.45 seconds, the slowest one among all joins, stressing the absence of optimizations such as broadcasting, shuffling, or merging, thus making it unfit for bigger datasets.

In sum, the time parameter of 12.39 seconds makes SHUFFLE_REPLICATE_NL the most appropriate strategy with superior performance to efficiently handling the workload. SHUFFLE_HASH, at 13.01 seconds, is a very strong secondary choice, especially with those dataset characteristics that match well with hash-based partitioning methods. Broadcast Join at 14.1 can be considered where there are smaller datasets or memory constraint situations.