

Optimering

Programmering og Modellering

Katrine Hommelhoff Jensen

Hvad er optimering?

Mange vil sige *kernen af datalogi* - det handler om at finde den *bedste* d.v.s. billigste/hurtigste/korteste/mindste løsning, f.eks.:

- Navigationssystemer: hurtigste og/eller korteste vej, givet diverse begrænsninger
- Ugeskema-planlægning: mindste overlap mellem lærere
- Planlægning af offentlig trafik: servicering af flest borgere med mindst mulig...service?
- Transportpakning: flest pakker i lastbil
- Vindmøller: den optimale form af vingen

Programmer der finder disse bedste løsninger kalder vi for optimeringsalgoritmer

Hvad er optimering?

At finde den bedste løsning til et problem kan oftest oversættes til at minimere eller maksimere en funktion, dvs. finde det x^* for hvilket $f(x^*)$ er minimum eller maksimum

- At minimere en funktion f(x) skrives typisk $\min_{x} f(x)$ dvs. "minimering over x"
- Maksimering og minimering er reelt det samme problem, dvs. $\max_{x} f(x) = \min_{x} f(x)$, derfor tales der typisk bare om minimering
- f kaldes typisk objektivfunktionen

Mange *kategorier* af optimeringsalgoritmer, hver med sin *strategi*, styrker og svagheder

Minimering af en funktion

Vi starter ved det kendte...

- Minimum (eller maksimum) er kendetegnet ved at den afledte funktion (hældningen) er nul
- Minimum (eller maksimum) af f(x) er betinget af at den afledte f'(x) = 0, også skrevet $\frac{df(x)}{dx} = 0$
- Findes et x for hvilket f'(x) = 0, så afgører den dobbelafledte f''(x) om der er tale om et minimum eller et maksimum:

$$f''(x) < 0$$
 også skrevet $\frac{d^2 f(x)}{dx^2} < 0 \rightarrow \text{maksimum}$
 $f''(x) > 0$ også skrevet $\frac{d^2 f(x)}{dx^2} > 0 \rightarrow \text{minimum}$

Hvad er et minimum egentlig?

Lokal vs. globalt minimum - optimeringsmetoden skal vælges derefter

- Lokalt minimum som oftest trivielt
- Globalt minimum kan være omvendt svært at finde

Hvad er et minimum egentlig?

Typisk kan et minimum først afgøres som lokalt eller *måske* globalt, når man er nået frem til det. Derefter stadig ingen garanti for globalt minimum.

Hvad er et minimum egentlig?

Konveksitet af objektivfunktion - eneste egenskab der kan garantere konvergens mod globalt minimum. For en konveks funktion gælder:

- mellem ethvert par af punkter på funktionen kan spændes en linie som ikke krydser funtionen
- lokalt minimum = globalt minimum

n-dimensionelle funktioner

For en funktion $f(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^n$ gælder

- de samme problematikker, dog meget mere kompliceret (tidskrævende) at minimere
- de mest generelle optimeringsalgoritmerne søger derfor efter minima, ingen direkte løsning

Hældning, 1. ordensafledte og gradient

Vores vigtigste navigationsredskab til søgning efter minimum

- Gradienten af f i x betegnes $\nabla f(x)$
- I \mathbb{R} er gradienten $\nabla f(x) = f'(x)$
- I Rⁿ dvs. for *n*-parameter funktioner ∇f(x) hvor
 x = (x₁, x₂,...,x_n) er gradienten udgjort af de førsteordens partielt afledte

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}), \frac{\partial f}{\partial x_2}(\mathbf{x}), \dots, \frac{\partial f}{\partial x_n}(\mathbf{x})\right)$$

 Gradienten ∇f(x) peger i retningen af den maksimale stigning af f i punktet x

Hældning, 1. ordensafledte og gradient

De førsteordens partielt afledte angiver hældningen i et punkt m.h.t. hver dimension af rummet, f.eks. \mathbb{R}^2 :

Hældning, 1. ordensafledte og gradient

Gradienten angiver retningen for den *største stigning* i et punkt, svarende til den retningsafledte:

Konturplot illustrerer hvordan vi kan bruge gradienten til at navigere i den modsatte retning - mod et minimum

Krumning, 2. ordensafledte og Hessian

Et andet vigtigt (men dyrt) navigationsredskab

- 1. ordensafledte giver lineær lokal approximation, 2. ordensafledte giver kvadratisk lokal approksimation
- Ligesom gradient indeholder de førsteordens partielt afledte i et punkt, indeholder Hessian matricen de andenordens partielt afledte
- Hessian matricen for $f(\mathbf{x})$ er givet ved

$$\nabla^{2} f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

Krumning, 2. ordensafledte og Hessian

Hessian matricen kan fortælle os om lokalområdet er et minimum, maximum eller saddelpunkt

De underliggende konturplot bliver ofte brugt til at illustrere de enkelte trin i optimeringsalgoritmerne

Hvad gør en funktion svær at minimere

Vi har flere udfordringer end n-dimensionalitet, der kan afgøre valg af optimeringsalgoritme, f.eks. hvis funktionen er *ikke-glat*, *diskontinuert* og/eller *støjfyldt*:

Dette repræsenterer desværre meget godt data indsamlet fra den *virkelige verden* - derfor skal vi bl.a. snakke om måder at minimere *diskret data*

Hvad gør en funktion svær at minimere

De søgende optimeringsmetoder kan også blive udfordret af specielle typer af landskaber, udover mange lokale minima - *sammentrykkede gradienter*:

Hvordan finder vi minima her?

Optimeringsalgoritmer

Lad os få en mere formel definition

- Iterative procedurer der for en funktion f(x) genererer en sekvens (x₁, x₂,...,x_{n-1},x_n) af parameterværdier, hvor, ved tidsskridt n er x_n et estimat af optimum x*
- Konvergens afgøres typisk ved een af to måder:
 - $|\mathbf{x}_n \mathbf{x}^*| = 0$ (urealistisk)
 - Givet en præcision ϵ , \mathbf{x}_n er optimum når $|\mathbf{x}_n \mathbf{x}^*| \leq \epsilon$

Generisk optimeringsmetode

Generelt princip

- Vælg et startpunkt (parameter) \mathbf{x}_k , k = 1
- Så længe vi ikke har fundet et minimum, gør data:

 - 2 Vælg en *skridtstørrelse* λ_k
 - **3** Sæt næste punkt $\mathbf{x}_{k+1} = \mathbf{x}_k + \lambda_k \mathbf{d}_k$
- **3** Løsningen er $\mathbf{x}^* \approx \mathbf{x}_k$

De enkelte descent metoder har hver deres bud på

- Hvordan vælges nedstingningsretningen?
- Hvordan vælges skridtstørrelsen ER det størrelsen eller gørelsen? Tradeoff:
 - Små skridt: Tidskrævende
 - Store skridt: Omveje, zig-zag bevægelse mod optimum

Optimalitetsbetingelser

Hvornår konvergerer vi?

• Hvis \mathbf{x}^* er et lokalt optimum af f, så er $\nabla f(\mathbf{x}^*) = 0$ og $\nabla^2 f(\mathbf{x}^*)$ er positive semi-definite...

Mere realistiske stopkriterier:

• Tæt på lokalt minimum $\nabla f(\mathbf{x}) \approx 0$, dvs. stop når gradienten bliver *lille nok*

$$\nabla f(\mathbf{x}_k) \le \varepsilon \tag{1}$$

Stop når ændringen i objektivfunktionen er lille nok

$$\frac{f(\mathbf{x}_k) - f(\mathbf{x}_{k+1})}{f(\mathbf{x}_k)} \le \varepsilon \tag{2}$$

Typer af optimeringsmetoder

Deterministiske metoder

- Lokale
- Gradient-baserede

Stokastiske metoder

- Globale
- Baseret på tilfældige valg

Valget af hvilken optimeringsmetode afhængigt af problemets natur

- skal vi tilstræbe et globalt minimum eller er et lokalt godt nok?
- hvor kompliceret er vores funktion?

Gradient-baserede optimeringsalgoritmer

En hurtig opfrisker: Klassiske metoder til at løse f'(x) = 0:

- Newton-Raphson: Approksimerer f' med en lineær funktion g (vha. f") og finder så roden af denne hvilken ikke nødvendigvis er roden af f', men et godt gæt og konvergerer oftest hurtigere end gradient descent.
- Bisektion: Deler iterativt et interval og vælger det delinterval, hvori roden må findes

De gradientbaserede, deterministiske optimeringsmetoder anvendes på *n-dimensionelle* funktioner og anvender information om *gradienten* og måske også *Hessian* til at navigere

Gradient-baserede optimeringsalgoritmer

- Gradient descent
- Steepest descent
- Newton

Konturplot: Gradienten navigerer mod lokalt minimum

Gradient descent

- Nedstigningsretningen sættes til den negative gradient $\mathbf{d}_k = -\nabla f(\mathbf{x}_k)$ dette kaldes også den stejleste nedstigningsretning (steepest descent direction)
- Vælg en skridtstørrelse, to overordnede muligheder:
 - Konstant skridtstørrelse f.eks. beregnet udfra værdien af den maksimale afledte
 - Forskellig / adaptiv skridtstørrelse for hver iteration f.eks. steepest descent metoden
- Metoden er 'dyr' hvis gradienten skal beregnes præcist

Gradient descent

Illustrerer tydeligt gradient descent metodens 'lokalitet' konvergerer hurtigt i et lokalt minima (men dog hurtigt)

Gradient descent

Lidt hurtig Python-kode

```
x \text{ old} = 0
x_new = 6 \# The algorithm starts at x=6
tau = 0.01 \# step size
precision = 0.00001
def f_prime(x):
    return 4 * x**3 - 9 * x**2
while abs(x_new - x_old) > precision:
    x \text{ old} = x \text{ new}
    x_new = x_old - tau * f_prime(x_old)
print("Local minimum occurs at", x_new)
```


Steepest descent

 Er som gradient descent, men skridtstørrelse vælges analytisk dvs. den optimale

$$\lambda_k = \underset{\lambda}{\operatorname{argmin}} f(\mathbf{x}_k - \lambda \nabla f(\mathbf{x}_k))$$

- Dette er virkelig den ægte stejleste nedstigningsretning da den sørger for at vi kigger, og sammenligner, i den samme afstand udaf hver mulig retning, uanset hældning
- Men som altid i datalogi, mere præcision koster beregningstid

Steepest descent

Stejleste nedstigningsretning kan findes ved *line search*: Start med en meget stor skridtstørrelse $\lambda_k=\lambda_0$ og gør den gradvist mindre ved at multiplicere med en værdi $\beta\in(0,1)$ intil funktionen ikke længere er aftagende

Steepest descent

Line search illustreret for konturplot til 2-dimensionel funktion

Newton algorithm

Udvidelsen af 1-D metoden til det multidimensionelle:
 Givet f(x), tilnærm f med en andensordens Taylor serie ved x = x_k:

$$f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k) + \frac{1}{2}\nabla^2 f(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k)^2$$

- Algoritme som steepest descent, hvor nedstigningsretningen sættes til 'Newton retningen' $\mathbf{d}_k = -\left(\nabla^2 f(\mathbf{x}_k)\right)^{-1} \nabla f(\mathbf{x}_k)$
- Hessian matricen er generel dyr at beregne og dens inverse ikke ligetil, men konvergerer meget hurtigere end steepest descent

Newton algorithm vs. steepest descent

Lad os gå tilbage til den 1-dimensionelle verden for en kort stund og studere et eksempel på et optimeringsproblem:

Diatomiske molekyler:

- Indeholder to atomer i et 'vibrerende' samspil påvirker konstant hinanden med energi
- Hvad vil molekylet? Minimere sit energiforbrug!

- Molekylet har en potentialenergifunktion som summerer al atomar energipåvirkning
- Laveste energikonformation af molekylen findes ved at finde en position for alle atomer der minimerer den samlede energiladning - dvs. minimere potentialenergifunktionen
- Molekylet gør det helt af sig selv, vi vil bare simulere det ;)

I vores simple diatomiske molekyleeksempel beskæftiger potentialfunktionen sig kun om een ting: Længden af de såkaldte 'bonds' for atomerne samt den mindst energiforbrugende referencelængde:

- Bond stretching interaction: Energien af et bond ændres med dens længde
- Energien af en bond er lavest ved en bestemt referencelængde
- så vi minimerer afstanden mellem bond length og referencelængden

Dette kan vi skrive op i pæne formler

- r: nuværende bond length
- r_{eq}: equilibrium (reference) bond length (længde ved minimum energi)
- k: kraft (force) konstant for bond'et (hvor kraftigt hives atomet tilbage fra højenergitilstand)

Så har vi

- Energifunktion $E = \frac{1}{2}k(r r_{eq})^2$
- Den afledte $\frac{dE}{dr} = k(r r_{eq})$
- k er givet ved $\frac{d^2E}{dr^2}$ for $r=r_0$

Ideen er nu at bruge gradient descent til at minimere E v.h.a. $\frac{dE}{dr}$

- Givet en start-bond længde r₁ skal vi bruge den afledte af potentialenergifunktionen til at finde vej mod den optimale længde
- Bemærk: Det er ikke et svært problem med eet optimeringsterm som her, ideen er at der typisk vil være mange termer, der skal optimeres over mange atomer

k = 2743.0 # Harmonisk kraft konstant

Descent minimering i Python

```
r_eq = 1.1283  # Equilibrium afstand

r = 1.55 \# Initiel afstand

tau = 0.0001 \# Skridtstørrelse

iterations = 50

E = 0.5 * k * (r - r_eq) **2 \# Energi

F = k * (r - r_eq) \# Kraft (afledte)
```


Descent minimering i Python

Descent minimering i Python - output

```
def E(k, r_eq, r):
   return 0.5 * k * (r - r eq) **2
# Descent search
for i in range(1, iterations):
   r = r - tau*F
                       # skridt
   F = k * (r - r eq)
  step_r[i] = r
   if (abs(F) < 0.01): # Konvergenskriterie
      break
```


Descent minimering i Python - output

```
# Plot
fig = plt.figure()
plt.hold(True)
t = np.arange(r_eq-0.5, r_eq+0.5, 0.01)
plt.plot(t, E(t), '-')
plt.plot(step_r, E(step_r), 'rx')
plt.show()
```


Descent minimering i Python

$$r_0 = 1.1283040950577616$$

Descent minimering i Python

Diskretisering af gradient

Vi vil nu kigge på et lidt sværere problem, nemlig

- en funktion af 2 parametre
- beregning på diskret data

Formulering af problemer fra den virkelige verden vil typisk være baseret på målt, diskret data og metoderne til at navigere igennem det vil ligeledes være *diskrete*:

Diskretisering af gradient

Fra ugeseddelen:

```
\nabla I_{y}(x_{i}, y_{j}) = \begin{cases} I(x_{i}, y_{j+1}) - I(x_{i}, y_{j}) & \text{if } j < N \\ 0 & \text{if } j = N \end{cases}
for i in range(N):
    for j in range(N):
         if j < (N-1):
              (imageListDx[i])[j] = (imageList[i])[j+1]
                                        ...- (imageList[i])[j]
         else:
              (imageListDx[i])[j] = 0.0
```

 $\nabla I_X(x_i, y_j) = \begin{cases} I(x_{i+1}, y_j) - I(x_i, y_j) & \text{if } i < N \\ 0 & \text{if } i = N \end{cases}$

(3)

(4)

Diskretisering af gradient


```
def fun(X, Y):
    return 0.5*(3*X**2 + 4*X*Y + 6*Y**2) - 2*X + 8*Y + 50
...
```

mesh_x = np.linspace(-3, 3, 20)
mesh_y = np.linspace(-3, 3, 20)

X, $Y = np.meshgrid(mesh_x, mesh_y)$

Z = fun(X, Y)


```
Zlist = Z.tolist()
ZlistArray = np.array(Zlist)
plt.imshow(ZlistArray, cmap="Greys_r")
plt.show()
```

ZListDx = gradientDx(Zlist)

. . .


```
iterations = 100
tau = 0.1
x0 = [0] * iterations # steps
y0 = [0] * iterations
x0[0] = 2 \# start position
y0[0] = 2
x0mesh = [0] * iterations # step mesh index
y0mesh = [0] * iterations
idx_x = np.argmin(np.abs(mesh_x - x0[0]))
idx y = np.argmin(np.abs(mesh y - y0[0]))
x0mesh[0] = idx_x
y0mesh[0] = idx_y
```



```
for it in range (1, iterations):
    idx_x = np.argmin(np.abs(mesh_x - x0[it-1]))
    idx_y = np.argmin(np.abs(mesh_y - y0[it-1]))
    x0mesh[it] = idx x
    y0mesh[it] = idx_y
    x0[it] = x0[it-1] - tau*ZListDxArray[idx x, idx y]
    y0[it] = y0[it-1] - tau*ZListDyArray[idx x, idx y]
    if fun(x0[it], y0[it]) > fun(x0[it-1], y0[it-1]):
        break
```



```
fig = plt.figure()
ax = fig.gca(projection='3d')
plt.hold(True)
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, alpha
ax.scatter(x0[0:it], y0[0:it], z0, c='r', marker='o')
plt.show()
z0 = [0] * (it)
for it2 in range (0, it):
    z0[it2] = fun(x0[it2], y0[it2])
```

```
fig = plt.figure()
plt.hold(True)
plt.imshow(ZlistArray, cmap="Greys_r")
plt.plot(x0mesh[0:it], y0mesh[0:it],'rx')
plt.plot(x0mesh[0:it], y0mesh[0:it],'r-')
plt.show()
```

Ugeopgave: Fjernelse af støj fra billede

TAVLE:)

