Занятие №2.

Основные элементарные функции комплексной переменной.

Дробно-рациональная, показательная, тригонометрические, гиперболические, логарифмическая, общая степенная, общая показательная, обратные тригонометрические и гиперболические функции.

- **1)** Доказать, что:
- 1) $\sin iz = i \operatorname{sh} z$; 2) $\cos iz = \operatorname{ch} z$; 3) $\operatorname{tg} iz = i \operatorname{th} z$; 4) $\operatorname{ctg} iz = -i \operatorname{cth} z$
- 2) Выделить действительную и мнимую части следующих функций:
- 1) $w = e^{1-z}$; 2) $\sin z$; 3) $\cos z$; 4) $\tan z$; 5) $\sin z$; 6) $\cot z$; 7) $\tan z$.
- 3) Вычислить значения функций в указанных точках:

1)
$$\cos(2+i)$$
; 2) $\sin 2i$; 3) $tg(2-i)$; 4) $ctg(\frac{\pi}{4}-i\ln 2)$; 5) $\frac{7}{\sqrt{2}}-\cos(\frac{\pi}{4}+i\ln 7)$; 6) $th(\ln 3+\frac{\pi i}{4})$;

- 7) Ln4:8) $Ln\frac{1+i}{\sqrt{2}};9$) Ln(-1);10) Ln(2-3i).
- 4) Найти все значения степеней:
- 1) 2^{i} ; 2) $(1+i)^{i}$; 3) $(3-4i)^{i+1}$; 4) i^{i} .
- 5) Получить аналитические выражения для указанных ниже функций и для каждой из них найти значение в соответствующей точке z_0 :
- 1) w = Arcsin z, $z_0 = i$;
- 2) w = Arctg z, $z_0 = i/3$.
- 6) Решить уравнения:
- 1) $\cos z = 2i$; 2) $\sin z \cos z = 3$.
- 7) Найти все корни следующих уравнений:
- 1) $\cos z = \cosh z$; 2) $\sin z = i \sinh z$; 3) $\cos z i \sinh 2z$.

Домашнее задание:

№№ 12.54, 12.58, 12.64, 12.72, 12.80, 12.82, 12.84, 12.86;

№№ 12.13. 12.14.

Типовой расчет: задачи № 1, 2.

Ответы:

2)1)
$$w = e^{1-z} = e^{1-x} (\cos y - i \sin y)$$
; 2) $\sin z = \sin x \cosh y + i \cos x \sinh y$;

3)
$$\cos z = \cos x \operatorname{ch} y - i \sin x \operatorname{sh} y$$
; 4) $\operatorname{tg} z = \frac{\sin 2x + i \operatorname{sh} 2y}{\cos 2x + \operatorname{ch} 2y}$; 5) $\operatorname{sh} z = \operatorname{sh} x \cos y + i \operatorname{ch} x \sin y$;

6)
$$\operatorname{ch} z = \operatorname{ch} x \cos y + i \operatorname{sh} x \sin y$$
; 7) $\operatorname{th} z = \frac{\operatorname{sh} 2x + i \sin 2y}{\operatorname{ch} 2x + \cos 2y}$.

3) 4)
$$\frac{8+15i}{17}$$
; 5) $\frac{12\sqrt{2}(1+i)}{7}$; 6) $\frac{40+9i}{41}$; 7) $\ln 4+i(0+2\pi k), k \in \mathbb{Z}$; 8) $i(\frac{\pi}{4}+2\pi k), k \in \mathbb{Z}$;

9)
$$i(\pi + 2\pi k), k \in \mathbb{Z}$$
; 10) $\ln \sqrt{13} + i\left(2\pi k - \operatorname{arctg}\frac{3}{2}\right), k \in \mathbb{Z}$.

4) 1)
$$(\cos \ln 2 + i \sin \ln 2)e^{-2\pi n}$$
, $n \in \mathbb{Z}$; 2) $(\cos \ln \sqrt{2} + i \sin \ln \sqrt{2})e^{(2n-\frac{1}{4})\pi}$, $n \in \mathbb{Z}$;

3) Arcsin
$$z = -i \operatorname{Ln}\left(iz \pm \sqrt{1-z^2}\right)$$
; Arcsin $i = \left\{2\pi k - i \ln\left(\sqrt{2} - 1\right); 2\pi k + \pi - i \ln\left(\sqrt{2} + 1\right), k \in \mathbb{Z}\right\}$;

4) Arctg
$$z = -\frac{i}{2} \operatorname{Ln} \frac{1+iz}{1-iz}$$
, Arctg $\left(\frac{i}{3}\right) = \pi k + \frac{i}{2} \ln 2, k \in \mathbb{Z}$;

6) 1)
$$\left\{ 2\pi k + \frac{\pi}{2} - i \ln\left(2 + \sqrt{5}\right); 2\pi k - \frac{\pi}{2} - i \ln\left(\sqrt{5} - 2\right), k \in \mathbb{Z} \right\};$$

2)
$$\left\{ 2\pi k + \frac{3\pi}{4} - i \ln \frac{\left(3 \pm \sqrt{7}\right)}{\sqrt{2}}, k \in \mathbb{Z} \right\};$$

7) 1)
$$\pi k (1 \pm i), k \in \mathbb{Z}; 2) \pi k (1+i), \frac{\pi(1+2k)}{1+i}, k \in \mathbb{Z}; 3) \frac{\pi(4k-1)}{2(1-2i)}, \frac{\pi(4k+1)}{2(1+2i)}, k \in \mathbb{Z}.$$