Decision Trees

if PL<a:

Recursive Partitioning: - (Axis Parallel hyperplanes)

(a, o)

if PLCa: else: if SL < b:

Decision Trees
Entropy Gini 9 mpurity Information Gain

Entropy -> Randomneus in datuset

$$H_D(Y) = -\sum_{i=1}^n pilg(pi)$$

Outlook	Temperature	Humidity	Windy	PlayTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Parent's Entropy

$$H_D(Y) = -\frac{9}{14} \times \log(\frac{9}{14}) - \frac{5}{14} \log(\frac{5}{14})$$

entropy of each column.

Outlook — Sunny (27,3N)
$$\rightarrow -\frac{2}{5} lg \frac{3}{5} = 0.97$$
Outlook — Overcast (4Y ,0N) $\rightarrow -\frac{4}{5} lg \frac{4}{5} - 0lg 0 = 0$
Rainy (3Y ,2N) $\rightarrow -\frac{3}{5} lg \frac{3}{5} - \frac{2}{5} lg \frac{2}{5} = 0.97$

weighted entropy =
$$\frac{5}{14} \times 0.97 + \frac{4}{14} \times 0 + \frac{5}{14} \times 6.97$$

=> $0.97 \times \frac{5}{7} = 0.69$

Temporature
$$\frac{\text{Hot}}{9} (24, 24) = -\frac{2}{4} \cdot \frac{1}{9} \cdot \frac{2}{4} - \frac{2}{4} \cdot \frac{1}{9} \cdot \frac{2}{4} = 1$$

Temporature $\frac{\text{ruld}}{6} (94, 24) = -\frac{4}{6} \cdot \frac{1}{9} \cdot \frac{4}{6} - \frac{2}{6} \cdot \frac{1}{9} \cdot \frac{2}{6} = 0.91$
 $\frac{\text{Cool}}{4} (34, 14) = -\frac{3}{4} \cdot \frac{1}{9} \cdot \frac{3}{4} - \frac{1}{4} \cdot \frac{1}{9} \cdot \frac{1}{4} = 0.81$

Weighted entropy =
$$\frac{4}{14} \times 1 + \frac{6}{14} \times 0.91 + \frac{4}{14} \times 0.91$$

HD(Y, temp) = 0.91

Humidity
$$\rightarrow -\frac{3}{7} lg \frac{3}{7} - \frac{4}{7} lg \frac{4}{7} = 0.98$$

 $\rightarrow -\frac{6}{7} lg \frac{6}{7} - \frac{1}{7} lg \frac{4}{7} = 0.59$

to (Y, humidity)

weighted entropy =
$$\frac{7}{14} \times 0.98 + \frac{7}{14} \times 0.59$$

= $\frac{1}{14} \times 1.57 = 0.78$

Windy
$$\longrightarrow \frac{3}{6} \frac{1}{3} \frac{3}{6} - \frac{3}{6} \frac{1}{6} \frac{3}{6} = 1$$

8 (64,2N)

False $\longrightarrow -\frac{6}{8} \frac{1}{8} \frac{6}{8} - \frac{2}{8} \frac{1}{8} = 0.81$

Weighted entropy
$$= \frac{6}{14} \times 1 + \frac{8}{14} \times 0.81$$

$$= 0.89$$

Choosing the column for split

a) Compare weighted entropies of whom & choose column with least entropy

outlook temp humidity windy
$$0.69$$
 0.91 0.78 0.89

(B) Information Gain (IG) = Parent's entropy - weighted entropy of each column

water TG(Y, outlook) = 0.99 - 0.69 = 0.25 TG(Y, temp) = 0.99 - 0.91 = 0.03 TG(Y, humidity) = 0.99 - 0.78 = 0.16TG(Y, windy) = 0.99 - 0.89 = 0.05

outbok is chosen because it has highest information gain.

er Properties

(1)
$$P(ye) = \frac{1}{2}$$
 $P(No) = \frac{1}{2}$
 $+f_p(y) = -\frac{1}{2} lg \frac{1}{2} - \frac{1}{2} lg \frac{1}{2} = 1$

(a)
$$p(yes) = 1$$
 $p(xes) = 0$
 $+p_D(y) = -\frac{1}{2} + \frac{1}{2} - 0 = 0$

HoCY)

1

O'S

P(yes)

or

Propertie:

$$I_{G} = 1 - [1^{2} + 0^{2}] = 0$$

Comparison of Gin Impurity & Entropy:

$$H_D(Y) = - \sum_{i=1}^{n} P_i \lg P_i$$

Since, In is computationally efficient, it can be used for larger datasets

Entropy shouldn't be med for large classet.

Outlook	Temperature	Humidity	Windy	PlayTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Parent's
$$I_{c_1} = 1 - \left[p(yes)^{2} + p(Nos^{2}) \right]$$

$$= 1 - \left[\left(\frac{7}{14} \right)^{2} + \left(\frac{5}{14} \right)^{2} \right]$$

$$= 0.45$$

In for each column:

$$0.45$$

$$Sunny => 1 - \left[\left(\frac{2}{5} \right)^{2} + \left(\frac{3}{5} \right)^{2} \right] = 0.48$$

$$Outlook - \frac{4}{5} \left(\frac{4}{5} \right) = 0.48$$

$$Overcast => 1 - \left[\left(\frac{4}{5} \right)^{2} + 0^{2} \right] > 0$$

$$S(34,2N)$$

$$Sainy >> 1 - \left[\left(\frac{3}{5} \right)^{2} + \left(\frac{2}{5} \right)^{2} \right] = 0.48$$

weighted In
$$\Rightarrow \frac{5}{14} \times 0.48 + \frac{4}{14} \times 0 + \frac{5}{14} \times 0.48$$

 $\Rightarrow \frac{5}{14} \times 0.96 \Rightarrow 0.342$

Temperature
$$\frac{4}{14}$$
 $\frac{(24,2N)}{1404}$ $\Rightarrow 1 - \left[\left(\frac{2}{4}\right)^{2} + \left(\frac{2}{4}\right)^{2}\right] = 0.5$
 $\frac{(44,2N)}{1404}$ $\Rightarrow 1 - \left[\left(\frac{4}{6}\right)^{2} + \left(\frac{2}{6}\right)^{2}\right] = 0.449$
 $\frac{(34,3N)}{1404}$ $\Rightarrow 1 - \left[\left(\frac{3}{4}\right)^{2} + \left(\frac{1}{4}\right)^{2}\right] = 0.375$

Weighted $I_{0} = \frac{4}{14} \times 0.5 + \frac{6}{14} \times 0.449 + \frac{4}{14} \times 0.375 = 0.449$

Humdity $\frac{7}{140}$ $\frac{7}{140}$ $\frac{1}{140}$ $\frac{7}{140}$ $\frac{7}{140$

6 (34,3N) Tain - 1- [(3/2+(3/2)-00

Windy —
$$\frac{6(34,3N)}{7rue} \Rightarrow 1 - \left[\left(\frac{3}{6}\right)^2 + \left(\frac{3}{6}\right)^2\right] = 0.5$$

$$\frac{8(64,2N)}{7rue} \Rightarrow \left(-\left[\left(\frac{6}{8}\right)^2 + \left(\frac{2}{8}\right)^2\right] = 0.375$$

weighted
$$\underline{T}_{4} \Rightarrow \frac{6}{14} \times 0.5 + \frac{8}{14} \times 0.375$$

$$\Rightarrow 0.42$$

Choose column for split.

a) choose column with least Icr

b) Info Gain: Parent's In - weighted In for each column

highest
$$\Sigma^{Cr}$$
 $T_{Cr}(Y, outlook) = 0.45-0.342 = 0.108$
chosent $T_{Cr}(Y, temp) = 0.45 - 0.44 = 0.01$
 $T_{Cr}(Y, temp) = 0.45-0.36 = 0.09$
 $T_{Cr}(Y, windy) = 0.45-0.42 = 0.03$

When to stop a tree:

-> pure node

-) If you have very few sample s'in terminal nodes

outlin/noise

typerparameter: max_depth1=> height (depth)1= overfilling1

(max value = 32)

decision Stump (tree of depth = 1)

Splitting Numerical Features

Feature Engineering: column with lot of categories

PINCODE

$$P(y=1|P_i) = \frac{P_i \cap y}{P_i}$$

Regression in DT

Disputting => MSE

Criteria

D2

Advantager:

- easy to interpret
- -> important features can be extracted
- -> No need to standardize