《应用随机过程》期中考试试卷

2012年1月3日下午, 闭卷, 每题 10 分

- 1. 考虑生灭过程,出生速率 $\lambda_n = \alpha n + \beta$,死亡速率 $\mu_n = \delta n$,其中 $\alpha, \beta, \delta > 0$,给出过程是 正常返,季常返,非常返 的分类,并简略说明你的理由.
 - 某系统由 n 个不同部件构成, 第 i 个部件的寿命服从参数为 z, 的指数分效后修理时间服从参数为 zi 的指数分布, 若 n 个部件都正常, 则系统处于 工作状态; 若其中某个部件失效, 则其他各个部件也停止工作, 修理工马上对失效 部件进行修复,一旦完成修理,系统马上进入工作状态,假设各个部件失效与否相 失效后修理时间服从参数为 4. 的指数分布. 若 n 个部件都正常, 互独立, 求系统处于工作状态的概率.
- 3. 考虑 Z^1 上连续时间 (紧邻) 随机游动 $\{X_t\}$, $q_{n,n+1}=\lambda$, $q_{n,n-1}=\mu$, 则 V_r $X_0 = 0, \lambda > \mu$, 试求 V_1 和 V_{-1} 的分布.
 - 假设 $Z_t = (X_t, Y_t), m \ge 0, n \ge 0,$ 试求 $P(Z_t = (m, n) \text{ for some } t \ge 0),$ 即二维过程 4. 设 $\{X_t\}$ 和 $\{Y_t\}$ 是相互独立的泊松过程,参数分别是 λ 和 μ , 初值均为 0. $\{Z_t, t \geq 0\}$ 经过 (m, n) 的概率.
- $i,j,q_{ij}=q_{ji}$. 给定初始分布 μ , 令 $P_i(t)=P_\mu(X_t=i)$ 表示 t 时刻过程处在状态 i 的 5. 假设有限状态空间上连续时间马氏链 $\{X_t\}$ 的 Q 矩阵是对称的, 即对任意 概率. 证明 $E(t) = -\sum_i P_i(t) \log P_i(t)$ 是关于 t 的非降函数.

在以下五题中恒设 {B_t} 为一维标准布朗运动, B₀ = 0,

- 6. 设 s > t. 给定 $B_t = x$ 条件下,试求 $E(B_s^4 6sB_s^2 + 3s^2|B_t = x)$
- 7. 设 $X_t = \int_0^t B_s ds$, 试求 $Ee^{\lambda X_t}$.
- 8. 设 $\mu < 0 < \alpha$, $M = \max\{B_t + \mu t; t \ge 0\}$. 试求 $P(M > \alpha)$.
- 9. 设 $\{W_t\}$ 也是一维标准布朗运动, $W_0 = 0$,而且与 $\{B_t\}$ 相互独立. 列表述是否正确,并简略说明理由.
- (a) 对于几乎所有 ω , 存在无穷多 t, 使得 $B_t(\omega) = W_t(\omega)$.
- (b) 设 $\sigma_t = \min\{s; B_s = t\}$, $Y_t = W(\sigma_t)$, 对任意 $s_1 \le t_1 \le s_2 \le t_2 \le \cdots \le s_n \le t_n$, 随机变量 $Y(t_1) Y(s_1)$, $Y(t_2) Y(s_2)$, ..., $Y(t_n) Y(s_n)$ 相互独立.

10. 记 $M_t = \max_{0 \le s \le t} B_s$. 设 $0 < t_0 < t_1$, 试证

$$P(M_s = B_s \text{ for some } s \in (t_0, t_1)) = \frac{2}{\pi} \arccos \sqrt{\frac{t_0}{t_1}}.$$

提示, 下列等式或许有用

$$\int_{u,\geq 0} \dots \int_{\sum_i n_i \leq s} e^{-\alpha \sum_i n_i dx_1 \dots dx_n} = \int_0^s \frac{r^{n-1}}{(n-1)!} e^{-\alpha r} dr.$$