P1 de Álgebra Linear I - 2011.2 Gabarito

1)

a) Considere o vetor $\overrightarrow{u} = (1,0,1)$. Determine se existe um vetor \overrightarrow{n} tal que

$$\overrightarrow{n} \times \overrightarrow{u} = \overrightarrow{\mathbf{k}} = (0, 0, 1).$$

Caso o vetor \overrightarrow{n} exista escreva suas coordenadas explicitamente.

b) Considere vetores \overrightarrow{w} e \overrightarrow{v} de \mathbb{R}^3 que verificam as seguintes propriedades:

$$||\overrightarrow{w}|| = 1$$
, $||\overrightarrow{v}|| = 4$, e $\overrightarrow{w} \cdot \overrightarrow{v} = 0$.

Determine $||\overrightarrow{w} \times \overrightarrow{v}||$.

c) Considere vetores \overrightarrow{a} e \overrightarrow{c} de \mathbb{R}^3 tais que $||\overrightarrow{a}|| = 4$ e

$$(\overrightarrow{a} + \overrightarrow{c}) \cdot (\overrightarrow{a} - \overrightarrow{c}) = 0.$$

Calcule $||\overrightarrow{c}||$.

Resposta:

(a) Não existe o vetor \overrightarrow{n} com a propriedade $\overrightarrow{n} \times \overrightarrow{u} = \overrightarrow{\mathbf{k}} = (0,0,1)$. Observe que nesse caso, independentemente da escolha do vetor \overrightarrow{n} , o vetor $\overrightarrow{\mathbf{k}} = (0,0,1)$ deveria ser ortogonal ao vetor $\overrightarrow{u} = (1,0,1)$. Mas isto é impossível pois

$$(1,0,1)\cdot(0,0,1)=1\neq 0.$$

(b) Temos que

$$0 = \overrightarrow{w} \cdot \overrightarrow{v} = ||\overrightarrow{w}|| ||\overrightarrow{v}|| \cos \varphi = 4 \cos \varphi,$$

onde φ é o ângulo entre os vetores \overrightarrow{w} e \overrightarrow{u} . Portanto, $\cos \varphi = 0$ e temos que $\varphi = \pi/2$ ou $\varphi = 3\pi/2$. Em qualquer caso, $|\sin \varphi| = 1$.

Por outra parte temos que

$$||\overrightarrow{w} \times \overrightarrow{v}|| = ||\overrightarrow{w}|| ||\overrightarrow{v}|| |\sec \varphi| = (4)(1) = 4.$$

(c) Observamos que

$$0 = (\overrightarrow{a} + \overrightarrow{c}) \cdot (\overrightarrow{a} - \overrightarrow{c}) = \overrightarrow{a} \cdot \overrightarrow{a} - \overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a} - \overrightarrow{c} \cdot \overrightarrow{c} = (|\overrightarrow{a}||^2 - ||\overrightarrow{c}||^2).$$

Logo

$$4 = ||\overrightarrow{a}|| = ||\overrightarrow{c}||.$$

2) Considere as retas r_1 e r_2 cujas equações paramétricas são

$$r_1 = (1+t, -1, t), t \in \mathbb{R}$$
 $r_2 = (2+t, 0, 2+t), t \in \mathbb{R}.$

- a) Determine a equação cartesiana do plano π que contém as retas r_1 e r_2 .
- **b)** Determine a distância entre as retas r_1 e r_2 .
- c) Determine um ponto Q do plano π calculado no item (a) que seja equidistante das retas r_1 e r_2 (isto é, a distância entre r_1 e Q e entre r_2 e Q são iguais). Verifique a propriedade de equidistância.

Resposta:

(a) O vetor diretor $\overrightarrow{v}=(1,0,1)$ das retas r_1 e r_2 é um vetor paralelo ao plano π . Considere os pontos

$$A = (1, -1, 0) \in r_1$$
 e $B = (2, 0, 2) \in r_2$.

Então o vetor $\overrightarrow{AB}=(1,1,2)$ é também paralelo ao plano π . Como os vetores (1,0,1) e (1,1,2) não são paralelos, o vetor $(1,1,2)\times(1,0,1)=(a,b,c)$ é um vetor normal do plano π . Temos

$$(a,b,c) = (1,1,2) \times (1,0,1) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{vmatrix} = (1,1,-1).$$

Portanto, a equação cartesiana do plano π é da forma x+y-z=d. Como o ponto A pertence a π temos 1-1-0=d=0. Logo

$$\pi$$
: $x + y - z = 0$.

(b) As retas r_1 e r_2 são paralelas, portanto a distância δ entre elas é

$$\delta = \frac{||\overrightarrow{AB} \times \overrightarrow{v}||}{||\overrightarrow{v}||} = \frac{||(1, 1, -1)||}{||(1, 0, 1)|} = \frac{\sqrt{3}}{\sqrt{2}}.$$

- (c) Um ponto Q no plano π que seja equidistante das retas r_1 e r_2 pode ser obtido como segue.
 - 1. Determinaremos a reta r_3 contida no plano π que contém o ponto A.
 - 2. Calcularemos o ponto C de interseção das retas r_3 e r_2 .
 - 3. O ponto médio Q do segmento AC verifica a propriedade de equidistância.

Passamos a calcular os itens (1)-(3) acima. O vetor diretor \overrightarrow{m} da reta r_3 deve ser ortogonal ao vetor diretor da reta r_1 , o vetor (1,0,1), e ao vetor normal do plano π , o vetor (1,1,-1). Portanto, podemos escolher

$$\overrightarrow{m} = (1, 1, -1) \times (1, 0, 1) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & -1 \\ 1 & 0 & 1 \end{vmatrix} = (1, -2, -1).$$

Portanto a reta r_3 é da forma

$$r_3 = (1+s, -1-2s, -s), \quad s \in \mathbb{R}.$$

Para determinar o ponto de interseção C das retas r_2 e r_3 resolvemos o sistema

$$1+s=2+t$$
 $-1-2s=0$, $-s=2+t$.

Logo s = -1/2 e t = -3/2. Portanto,

$$C = (1/2, 0, 1/2).$$

O ponto médio $Q=(q_1,q_2,q_3)$ do segmento AC verifica

$$Q = \frac{A+C}{2},$$

isto é,

$$(q_1, q_2, q_3) = \left(\frac{1+1/2}{2}, \frac{-1+0}{2}, \frac{0+1/2}{2}\right) = (3/4, -2/4, 1/4).$$

Para verificar a condição de equidistância observe que, por construção, o segmento QC é perpendicular à reta r_2 . Portanto, a distância entre Q e r_2 é exatamente o comprimento do segmento QC. Analogamente, temos que a distância entre Q e r_1 é o comprimento do segmento QA. Calcularemos os comprimentos destes segmentos.

$$||\overrightarrow{QC}|| = ||(-1/4, 2/4, 1/4)|| = \frac{1}{4}||(-1, 2, 1)|| = \frac{\sqrt{6}}{4} = \frac{1}{2}\frac{\sqrt{3}}{\sqrt{2}} = \frac{1}{2}\delta.$$

Analogamente,

$$||\overrightarrow{QA}|| = ||(1/4, -2/4, -1/4)|| = \frac{1}{4}||(1-, 2, -1)|| = \frac{\sqrt{6}}{4} = \frac{1}{2}\frac{\sqrt{3}}{\sqrt{2}} = \frac{1}{2}\delta.$$

Verificamos assim a condição de equidistância.

Como comentário final, observe que qualquer ponto da reta r_4 que contém o ponto Q e é paralelo às retas r_1 e r_2 verifica a condição de equidistância. Observe que

$$r_4 = (3/4 + t, -2/4, 1/4 + t).$$

3) Considere os pontos

$$A = (1, 1, 2), \quad B = (2, 0, 1), \quad C = (1, 1, 0).$$

- a) Determine a área do triângulo cujos vértices são $A, B \in C$.
- b) Determine a equação cartesiana do plano ϱ que contém os pontos A, B e C.
- c) Determine um ponto D do plano ϱ do item anterior tal que A, B e D sejam os vértices de um triângulo retângulo isósceles Δ cujos catetos sejam os segmentos AB e AD (isósceles significa que os segmentos AB e AD têm o mesmo comprimento).

Resposta:

(a) Observe que

$$\overrightarrow{AB} = (1, -1, -1), \quad e \quad \overrightarrow{CB} = (1, -1, 1).$$

A área Δ do triângulo ABC verifica

$$2\Delta = ||\overrightarrow{AB} \times \overrightarrow{CB}|| = ||(1, -1, -1) \times (1, -1, 1)|| = \left\| \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & -1 \\ 1 & -1 & 1 \end{vmatrix} \right\| = = ||(-2, -2, 0)|| = |2|\sqrt{2}.$$

Portanto,

$$\Delta$$
 = área do triângulo $ABC = \sqrt{2}$.

(b) Um vetor normal do plano ϱ que contém os pontos $A,B\in C$ é

$$\overrightarrow{m} = \overrightarrow{AB} \times \overrightarrow{CB} = (-2, -2, 0)$$

(este produto já foi calculado). Logo a equação cartesiana de ϱ é da forma

$$x + y = d$$
.

Como $A \in \varrho$ temos 1 + 1 = d. Logo

$$\varrho$$
: $x + y = 2$.

(c) O vetor \overrightarrow{AD} deve ser perpendicular aos vetores \overrightarrow{AB} (o triângulo é retângulo) e (1, 1, 0) (o triângulo está contido no plano ϱ). Logo \overrightarrow{AD} é paralelo ao vetor

$$\overrightarrow{AB} \times (1,1,0) = (1,-1,-1) \times (1,1,0) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & -1 \\ 1 & 1 & 0 \end{vmatrix} = (1,-1,2).$$

Logo

$$\overrightarrow{AD} = t(1, -1, 2).$$

Como o triângulo é isósces
les $||\overrightarrow{AD}|| = ||\overrightarrow{AB}||$. Potanto t deve verificar

$$|t| ||(1, -1, 2)|| = ||(1, -1, -1)||, |t| \sqrt{6} = \sqrt{3}.$$

Logo

$$t = \pm \frac{\sqrt{3}}{\sqrt{6}} = \frac{1}{\sqrt{2}}.$$

Portanto

$$D = A \pm \frac{1}{\sqrt{2}} (1, -1, 2) = (1, 1, 2) \pm \frac{1}{\sqrt{2}} (1, -1, 2),$$

$$D = \left(1 + \frac{1}{\sqrt{2}}, 1 - \frac{1}{\sqrt{2}}, 2 + \frac{2}{\sqrt{2}}\right) \quad \text{ou} \quad D = \left(1 - \frac{1}{\sqrt{2}}, 1 + \frac{1}{\sqrt{2}}, 2 - \frac{2}{\sqrt{2}}\right).$$

4) Considere o sistema

$$x + 2y + z = b_1,$$

 $x - 2y - 3z = b_2,$
 $x + y + az = b_3.$

- a) Determine as condições sobre $a,\ b_1,b_2$ e b_3 para que o sistema tenha solução única.
- **b)** Determine as condições sobre a, b_1, b_2 e b_3 para que o sistema não tenha solução.

c) Determine as condições sobre a, b_1, b_2 e b_3 para que as soluções do sistema sejam da forma $(1 + t, 2 - t, 1 + t), t \in \mathbb{R}$.

Resposta: Em primeiro lugar, escalonamos o sistema linear:

$$x + 2y + z = b_1, x + 2y + z = b_1, x - 2y - 3z = b_2, -4y - 4z = b_2 - b_1, x + y + az = b_3, -y + (a - 1)z = b_3 - b_1, x + 2y + z = b_1, y + z = (b_1 - b_2)/4, -y + (a - 1)z = b_3 - b_1, x + 2y + z = b_1, x + 2y + z = b_1, x + 2y + z = b_1, y + z = (b_1 - b_2)/4, az = b_3 - b_1 + (b_1 - b_2)/4, x + 2y + z = b_1, y + z = (b_1 - b_2)/4, 4az = -3b_1 - b_2 + 4b_3.$$

- (a) Para que o sistema tenha solução única é necessário e suficiente que $a \neq 0$, não havendo restrições para os valores de b_1, b_2 e b_3 .
- (b) Para que o sistema não tenha solução devemos ter

$$a = 0$$
 e $-3b_1 - b_2 + 4b_3 \neq 0$.

(c) Interprete as equações lineares como equações cartesianas de três planos e (1+t,2-t,1+t), $t \in \mathbb{R}$, como uma reta. Observe que o vetor diretor da reta, o vetor (1,-1,1), deve ser ortogonal aos vetores normais dos planos (nos dois primeiros planos esta condição é satisfeita). Isto implica que

$$0 = (1, -1, 1) \cdot (1, 1, a) = 1 - 1 + a, \quad a = 0.$$

Observe que este dado já era conhecido: o sistema não tem solução única e pelo primeiro item a=0.

Além da condição anterior, o ponto (1,2,1) deve verificar as equações, ou seja

$$x + 2y + z = b_1,$$
 $1 + 2(2) + 1 = 6 = b_1,$
 $x - 2y - 3z = b_2,$ $1 - 2(2) - 3(1) = -6 = b_2,$
 $x + y + 0z = b_3,$ $1 + 2 + 0z = 3 = b_3.$

Logo

$$a = 0$$
, $b_1 = 6$, $b_2 = -6$, $b_3 = 3$.