ANLIS HS 2020

Victor Fernández

Inhaltsverzeichnis

1	SW	01 - Funktionen
	1.1	Funktionen und Änderungen
		1.1.1 Begriffe
		1.1.2 Darstellung
	1.2	Einfache, lineare Funktionen
		1.2.1 Monotonie
		1.2.2 Proportionalität
		1.2.3 Umgekehrt proportionale Funktionen
		1.2.4 Verschiebung und Skalierung von Funktionen
		1.2.5 Differenzenquotient
		1.2.6 Gerade und ungerade Funktionen
	1.3	Exponentialfunktionen
		1.3.1 Begriffe
	1.4	Neue aus alten Funktionen
		1.4.1 Verschiebung und Streckung
		1.4.2 Zusammengesetzte Funktionen
	1.5	Logarithmusfunktionen
	1.6	Potenzfunktionen Polynome und rationale Funktionen

1 SW01 - Funktionen

Thema: Grundlegendes zu reelwertigen Funktionen

Ziele

- Sie kennen die Grundbegriffe im Zusammenhang mit Funktionen (wie Funktionsvorschrift, Wertetabelle, Graph, Definitionsund Wertebereich, etc.).
- Sie kennen die Familie von linearen, Exponential- und Logarithmusfunktionen, den Differenzenquotienten und können Graphen von Funktionen qualitativ beurteilen (z.B. Parameter ablesen, etc.).
- Sie können den Graphen einer Funktion verschieben und skalieren und überprüfen ob die Funktion gerade oder ungerade ist.
- Sie können die Umkehrfunktion bestimmen

Resultate: Sie können sicher mit Funktionen, insbesondere linearen und Exponentialfunktionen

umgehen.

Vorgehen: Anhand vieler Beispiele sollen die wesentlichen Fälle, die in der Praxis vorkommen,

studiert, analysiert und geübt werden.

1.1 Funktionen und Änderungen

1.1.1 Begriffe

Definition (Funktion (oder Abbildung)) Eine **Funktion** ist eine Regel, die gewissen Objekten (hier Zahlen) als Inputs **genau ein** Objekt (hier eine Zahl) als eindeutigem Output zuordnet. Die Menge der Objekte aller Inputs heisst **Definitionsbereich** der Funktion, die Menge der resultierenden Outputs heisst **Wertebereich**. Der Input heisst unabhängige Variable, der Output abhängige Variable.

Bereiche Für Funktionen verwendet man i.d.R. Buchstaben wie f, g, h, \ldots , oder F, G, H, \ldots Der Definitionsbereich der Funktion f wird mit D(f) bezeichnet, der Wertebereich mit W(f). Als unabhängige Variable verwendet man normalerweise x, als abhängige Variable y.

$$f: D(f) \to W(f), x \mapsto y = f(x)$$

//TODO: Diskrete vs stetige Grössen//

1.1.2 Darstellung

Darstellung von Funktionen mittels Wertetabellen, Graphen und Formeln (Funktionsvorschriften). Oder durch beschreiben, z.B.: für jedes x wächst y um 1.5.

1.2 Einfache, lineare Funktionen

1.2.1 Monotonie

Funktionen können in einem **Abschnitt** (streng) monoton **steigend** oder (streng) monoton **fallend** sein.

Monoton steigend: Eine Funktion verläuft in einem Abschnitt teils horizontal, teils steigend.

Streng monoton steigend: Eine Funktion steigt in einem Abschnitt durchgehend, wird nie

horizontal oder gar fallend.

Monoton fallend: Eine Funktion verläuft in einem Abschnitt teils horizontal, teils

fallend.

Streng monoton fallend: Eine Funktion fällt in einem Abschnitt durchgehend, wird nie ho-

rizontal oder gar steigend.

Die Funktion kann (streng) monoton **steigend/fallend** sein, falls sie für alle x steigt oder fällt.

1.2.2 Proportionalität

Wir sagen y ist (direkt) proportional zu x, falls es eine Konstante a gibt, sodass y = ax, a heisst Proportionalitätskonstante.

1.2.3 Umgekehrt proportionale Funktionen

Beispiel: Die Durchschnittsgeschwindigkeit auf der Strecke s=50km hängt umgekehrt proportional von der dafür benötigten Zeit t ab, $v=\frac{s}{t}$. Heisst soviel, dass auch wenn sich die Strecke ändert, sich zwangsläufig auch die Zeit ändern muss, um die gleiche Durchschnittsgeschwindigkeit v beizubehalten, z.B. $v=\frac{2\times 50km}{2\times t}$.

1.2.4 Verschiebung und Skalierung von Funktionen

Verschiebt man eine Funktion y = ax um b in y-Richtung, erhält man die lineare Funktion y = ax + b.

1.2.5 Differenzenquotient

Der **Differenzenquotient** von f an der Stelle x ist definiert durch:

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

1.2.6 Gerade und ungerade Funktionen

- Eine gerade Funktion f ist **achsensymmetrisch** bezüglich der y-Achse und es gilt: $f(-x) = f(x), \forall x \in D(f)$
- Eine ungerade Funktion f ist **punktsymmetrisch** bezüglich dem Ursprung und es gilt: $f(-x) = -f(x), \forall x \in D(f)$

1.3 Exponentialfunktionen

1.3.1 Begriffe

Eine Funktion der $f(x) = a \cdot b^x$ mit b > 0 und $b \neq 1$ heisst **Exponentialfunktion**. a heisst **Anfangswert** und b heisst **Wachstumsfaktor**. Für Definitions- und Wertebereich gilt: $D(f) = \mathbb{R}$, $W(f) = \mathbb{R}^+$

- 1.4 Neue aus alten Funktionen
- 1.4.1 Verschiebung und Streckung
- 1.4.2 Zusammengesetzte Funktionen
- 1.5 Logarithmusfunktionen
- 1.6 Potenzfunktionen, Polynome und rationale Funktionen

Formelsammlung

Einfache lineare Funktionen

Lineare Funktion

$$y = ax + b$$

$$y_2 - y_1 = a(x_2 - x_1)$$

$$a = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x}$$

Differenzenquotient

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$