Week 11: Linear Models for Classification

Table of Contents

- 1. Linear Models for Binary Classification
 - Error Functions Revisited
 - Theoretical Implications of Upper Bound
- 2. Stochastic Gradient Descent
- 3. Multiclass Classification

Linear Models for Binary Classification

1. Three linear models

linear regression

logistic regression

- Linear Classification:
 - **Sign** of *s* as output
 - o/1 error
 - Cost function $E_{in}(w)$ is a discrete, NP-hard question
- Linear Regression:
 - Outputs *s* directly as result
 - Squared error
 - $E_{in}(w)$ is a twice-differentiable, quadratic convex function, with closed form solution
- Logistic Regression
 - Sigmoid $\theta(s)$ as output
 - Cross-entropy as error
 - $E_{in}(w)$ is a smooth convex function, solvable using gradient descent
- 2. Given the difficulty of optimizing linear classification (recall PLA works only on linear-separable data), it's our interest to solve linear classification problem using linear regression or logistic regression (with some modification)

Error Functions Revisited

- 1. Main difference among the three linear models is their error functions, however, within the scope of binary classification, similarities can be drawn
 - Given linear scoring function $s = w^T x$ for binary classification $y \in \{-1, +1\}$, the following equations hold

linear classification	linear regression	logistic regression
$h(\mathbf{x}) = \text{sign}(s)$ $err(h, \mathbf{x}, \mathbf{y}) = [h(\mathbf{x}) \neq \mathbf{y}]$	$h(\mathbf{x}) = s$ $err(h, \mathbf{x}, y) = (h(\mathbf{x}) - y)^2$	$h(\mathbf{x}) = \theta(s)$ $err(h, \mathbf{x}, y) = -\ln h(y\mathbf{x})$
$\operatorname{err}_{0/1}(s, y) = [\operatorname{sign}(s) \neq y] = [\operatorname{sign}(ys) \neq 1]$	$err_{SQR}(s, y)$ $= (s - y)^{2}$ $= (ys - 1)^{2}$	$\operatorname{err}_{CE}(s, y)$ $= \ln(1 + \exp(-ys))$

- **Classification correctness score** (*ys*) exists in all three error functions, and is the sole independent variable with respect to *err*
- 2. Plotting 0/1 error, squred error, and cross-entropy with respect to (ys) results in

- \circ 0/1 error: err = 1 iffys ≤ 0
- Squared error: large if $ys \ll 1$, over-charge if $ys \gg 1$
 - Squared error is not very well-suited as error function in linear classification, as it is
 hyperbolic and is large when ys is large or small. Whereas o/1 error decreases once the sign of
 ys becomes positive.
- \circ Cross-entropy error: *Monotonic of ys*, small $err_{ce} \leftrightarrow small err_{0/1}$
- 3. Noticed in the graph above, cross-entropy error is **smaller than 1** for some $ys \sim 0$. A **logrithmic-scaled** cross-entropy is therefore introduced to counter-act this difference and make sure that the error functions being evaluated all produce err = 0 when ys = 1

Scaled cross-entropy provides an upper bound for 0/1 error in linear classification

Theoretical Implication of Upper Bound

1. For any ys where $s = w^T x$, the graphs above show that

$$err_{0/1}(s, y) \le err_{SCE}(s, y) = \frac{1}{\ln 2} err_{CE}(s, y)$$

$$\Rightarrow E_{in}^{0/1}(w) \le E_{in}^{SCE}(w) = \frac{1}{\ln 2} E_{in}^{CE}(w)$$

$$E_{out}^{0/1}(w) \le E_{out}^{SCE}(w) = \frac{1}{\ln 2} E_{out}^{CE}(w)$$

2. Applying VC bounds onto the upper bound gives

VC on 0/1:
$$E_{\text{out}}^{0/1}(\mathbf{w}) \leq E_{\text{in}}^{0/1}(\mathbf{w}) + \Omega^{0/1}$$
$$\leq \frac{1}{\ln 2} E_{\text{in}}^{\text{CE}}(\mathbf{w}) + \Omega^{0/1}$$
$$\leq \frac{1}{\ln 2} E_{\text{in}}^{\text{CE}}(\mathbf{w}) + \Omega^{0/1}$$
$$\leq \frac{1}{\ln 2} E_{\text{in}}^{\text{CE}}(\mathbf{w}) + \frac{1}{\ln 2} \Omega^{\text{CE}}$$

- Small **in-sample** cross-entropy error $E_{in}^{CE}(w)$ **guarantees** small **out-of-sample** 0/1 error $E_{out}^{0/1}(w)$ \Rightarrow Logistic regression can be used for linear classification
 - Linear gression also works, just looser bound
- 3. Regression for classification
 - Run logistic(/linear) regression on \mathcal{D} with $y_n \in \{-1, +1\}$ to get w_{REG}
 - Return $g(x) = sign(w_{REG}^T x)$
- 4. Comparison of linear classification approaches

PLA

- pros: efficient + strong guarantee if lin. separable
- cons: works only if lin. separable, otherwise needing pocket heuristic

linear regression

- pros: 'easiest' optimization
- cons: loose bound of err_{0/1} for large |ys|

logistic regression

- pros: 'easy' optimization
- cons: loose bound of err_{0/1} for very negative ys
- 5. Linear regression is sometimes used to set w₀ for PLA/pocket/logistic regression optimization
 - Closed-form solution
 - Guaranteed, loose upper bound
- 6. Logistic regression often perferred over pocket
 - Similar computational cost as pocket, but easier optimization

Stochastic Gradient Descent

- 1. Motivation: Seeking an optimization scheme for logistic regression with only O(1) computation time per iteration
 - Previous logistic regression optimization through gradient descent (or pocket algorithm) requires O(N) time per iteration, to go through all samples and calculate error
 - In comparision, PLA requires only O(1) time, but data must be linear-separable for PLA to converge
- 2. Graident descent for logistic regression

$$w_{t+1} \leftarrow w_t + \eta \underbrace{\frac{1}{N} \sum_{n=1}^{N} \theta(-y_n w_t^T x_n) (y_n x_n)}_{-\nabla E_{in}(w_t)}$$

- **Approximate** update direction $v \approx -\nabla E_{in}(w_t)$ through a **single point** x_n, y_n
- By doing so we avoid computing $\frac{1}{N} \sum_{n=1}^{N}$ for each update
 - View $\frac{1}{N} \sum_{n=1}^{N}$ as **expectation** ε over **uniform** chocie of n
- 3. Stochastic gradient vs. true gradient
 - Stochastic graident: $\nabla_w err(w, x_n, y_n)$ on random n
 - True gradient: $\nabla_w E_{in}(w) = \mathcal{E}_{random\ n} \nabla_w err(w, x_n, y_n)$
- 4. Stochastic gradient descent (SGD)
 - stochastic gradient = true gradient + **zero-mean** 'noise' directions
 - Idea: replace <span style="color:blue"true graident by stochastic gradient
 - Assumption: After enough iterations, average true graident ≈ average stochastic gradient
 - Pros
 - Simpler and cheaper computation
 - Useful for large data (where full dataset iteration is impractical) or online learning(training data comes one at a time)
 - Cons
 - Less stable in nature, especially with large step size η

- Update direction depends on point chosen, which might not always be accurate reflection of errors across the entire data set
- SGD logistic regression update

$$w_{t+1} \leftarrow w_t + \eta \underbrace{\theta(-y_n w_t^T x_n)(y_n x_n)}_{-\nabla_{err}(w_t, x_n, y_n)}$$

- 5. SGD and PLA
 - SGD logistic regression $w_{t+1} \leftarrow w_t + \eta \cdot \theta(-y_n w_t^T x_n) (y_n x_n)$
 - PLA $w_{t+1} \leftarrow w_t + 1 \cdot \|(y_n \neq sign(w_t^T x_n)\|(y_n x_n)\|$
 - SDG logistic regression \approx soft PLA
 - Corrected by acutal size of the error, not o/1 error
 - PLA \approx SGD logistic regression with $\eta = 1$ when $w_t^T x_n$ is large
- 6. Rules of thumb for SGD
 - Set stop condition based on **number of iterations**, not by true gradient
 - Otherwise requires computation over full data set, defies the purpose of SGD
 - Stop after enough iterations
 - Use relatively small step size η to counteract instability of SGD
 - Good step size ~ 0.1 when x in proper range

Multiclass Classification

1. One-versus-All (OVA)

- Identifying **one class at a time**. Combine all one-class classification models to form the final multiclass model
- Ties (areas where more than one label is present) are handled by calculating *conditional* probabilities w.r.t each class, and use the class with **highest** conditional probability as the final

label

- 2, OVA decomposition
- \circ For $k \in y$
 - Obtain $w_{[k]}$ by running **logistic regression** on

$$\mathcal{D}_{[k]} = \{(x_n, y_n' = 2||y_n = k|| - 1)\}_{n=1}^k$$

Return

$$g(x) = \arg\max_{k \in V} (w_{[k]}^T x)$$

- 2. Pros and Cons of OVA
 - Pros
 - Efficient
 - Can be coupled with any logistic regression-like approaches
 - Cons
 - Tranining set $D_{[k]}$ is often **unbalanced** when number of classese K is large
 - OVA in such case tend to perform poorly on classes with few appearances in training set
 - e.g. All but one sub hypothesis returns -1. End up picking one with highest confidence for -1, which is incorrect
- 3. Multinomial logistic regression
 - · Extension of OVA
 - \circ Requires probabilities produced by all sub hypotheses on a given class to $\mathbf{sum}\ \mathbf{up}\ \mathbf{to}\ \mathbf{1}$
 - Better performance on unbalanced training set
- 4. One-versu-one (OVO)

- Compare one **pair** of classes at a time. Combine all pairwise classification models, and choose the class that "wins" in most comparisons to be the final label for a given area.
- For $(k, l) \in y \times y$, obtain $w_{[k, l]}$ by running **linear binary classification** on

$$\mathcal{D}_{[k,l]} = \{ (x_n, y_n' = 2 || y_n = k || -1) : y_n = k \text{ or } y_n = l \}$$

- Return g(x) = tournament champion $\{w_{[k, l]}^T x\}$
- 5. Pros and cons of OVO
 - o Pros
 - Efficient ("smaller" training problems, comparing strictly between two classes, not one against all other classes)

- Can be paired with **any binary classification approaches**
- Stable (due to "tournament voting"), less susceptable to unbalanced training set
- Cons
 - More memory usage, $O(k^2)w_{[k,l]}$
 - Slower prediction, more training