3.5 非参数假设检验

在实际问题中,人们往往不知道总体分布的类型,或者知之甚少,而又需要对总体的分布做出某种判断,这是一类不同于参数假设检验的统计推断问题.通常做法是先假定总体服从某种分布,再根据由总体抽取的样本来检验假设,并做出判断.这种以总体的分布形式为假设对象的假设检验称为非参数假设检验.

 (X_1, X_2, \cdots, X_n) 是取自总体 X 的样本, x_1, x_2, \cdots, x_n 是样本值, $n_i, i = 1, 2, \cdots, r$ 表示 x_1, x_2, \cdots, x_n 中取值为 a_i 的个数,即样本中出现事件 $\{X = a_i\}$ 的频数,显然, n_1, n_2, \cdots, n_r 都是样本的函数,所以它们也是随机变量,且有 $\sum_{i=1}^r n_i = n$ 和 (n_1, n_2, \cdots, n_r) 服从多项分布,即概率分布为 $\frac{n!}{n_1! n_2! \cdots n_r!} p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r} = n! \prod_{i=1}^r \frac{p_i^{n_i}}{n_i!}$

如果 (p_1, p_2, \dots, p_r) 是总体 X 服从的真实分布, $n_i \approx np_i$,统计量 χ^2 值偏小,否则它有偏大的趋势.

定理 3.5.1 (皮尔逊定理)

当 (p_1, p_2, \dots, p_r) 是总体的真实概率分布时,由式 (3.5.1) 定义的统计量 χ^2 的渐近分布 是自由度为 r-1 的 χ^2 分布.

3.5.1 皮尔逊 X² 拟合检验

拟合检验全称拟合优度检验,它反映了实际数据 与原假设分布之间拟合的优劣程度.

3.5.1.1 分布的 χ² 检验法

设总体 X 是仅取 r 个可能值的离散型随机变量, 不失一般性,设其概率函数为

$$P\{X=a_i\}=p_i, i=1,2,\cdots,r,$$
其中 $\sum_{i=1}^r p_i=1$,简记为 (p_1,p_2,\cdots,p_r) .

频率是概率的反映,如果总体的概率分布确实是

$$P\{x=a_i\}=p_i, i=1,2,\dots,r,$$

当 n 充分大时, 实际频数 n_i 与理论频数 np_i 之间的差异将越来越小.

$$\frac{n_i}{n} \rightarrow p_i$$

皮尔逊首先提出用下面的统计量

$$\chi^{2} = \sum_{i=1}^{r} \frac{(n_{i} - np_{i})^{2}}{np_{i}}$$
 (3.5.1)

来衡量它们的差异程度,这个统计量又称为皮尔逊统计量.

当要检验 H_0 : $p_i = p_{i0}$, $i = 1, 2, \dots, r$ 时, 对于给定的检验水平 α , 如果 $\chi^2 \geqslant \chi^2_{1-\alpha}(r-1)$.拒绝 H_0

$$\chi^2 = \sum_{i=1}^r \frac{(n_i - np_{i0})^2}{np_{i0}}.$$

即认为试验结果与原假设有显著差异.

5

皮尔逊统计量也可用来检验总体是否服从某个 给定的分布函数 $F_0(x)$,

设 (X_1, X_2, \dots, X_n) 是取自分布为 F(x) 的样本, 欲检验假设

 $H_0: F(x) = F_0(x)$ [$F_0(x)$ 是某个已知的分布].

选取 r-1 个实数 $-\infty < y_1 < \cdots < y_{r-1} < \infty$,它们将 实数轴分为 r 个区间

$$(-\infty, y_1], (y_1, y_2], (y_2, y_3], \dots, (y_{r-1}, +\infty),$$

例 3.5.1 在某盒子中存放有白球和黑球,现作下面这样的试验:用返回抽取方式从盒中摸球,直到摸取的是白球为止,记录下抽取的次数,重复进行如此的试验 100 次,其结果如下:

抽取次数	1	2	3	4	≥5
频数	43	31	15	6	5

试问该盒中的白球与黑球 的个数是否相等? (α =0.05)

9

11

若
$$H_0$$
 成立,则有 $p_{10}=P\{X=1\}=\frac{1}{2}$, $p_{20}=P\{X=2\}=\frac{1}{4}$,
$$p_{30}=P\{X=3\}=\frac{1}{8},\quad p_{40}=P\{X=4\}=\frac{1}{16},$$

$$p_{50}=P\{X\geqslant 5\}=\sum_{i=1}^{\infty}\frac{1}{2^4}=\frac{1}{16}$$

将 p_{80} 及已知的实际频数代人式 (3.5.3), 得统计量值 $\chi^2 = \frac{(43-50)^2}{50} + \frac{(31-25)^2}{25} + \frac{(15-12.5)^2}{12.5} + \frac{(6-6.25)^2}{6.25} + \frac{(5-6.25)^2}{6.25}$ = 3.2

查 χ^2 分布表得 $\chi^2_{0.95}$ (4) = 9.488, 由于 3.2<9.488,

因此,认为试验结果与假设无显著差异,即认为盒中白 球与黑球个数相等.

$$i$$
记 $p_1 \stackrel{\Delta}{=} F(y_1)$
 $p_i \stackrel{\Delta}{=} F(y_i) - F(y_{i-1}), i = 2, 3, \dots, r-1$
 $p_r \stackrel{\Delta}{=} 1 - F(y_{r-1})$ (3.5.2)

用 n_i 表示样本值落在第i个区间中的个数,

则 (n_1, n_2, \dots, n_r) 服从多项分布,

当 H_0 : $F(x) = F_0(x)$ 成立时

$$\chi^2 = \sum_{i=1}^{r} \frac{(n_i - np_{i0})^2}{np_{i0}}$$
 (3.5.3)

的渐近分布为 $\chi^2(r-1)$.因此,可以按上述方法对假设 H_0 进行检验,式(3.5.3) 中的 p_{i0} 是将 F_0 代替式 (3.5.2) 中的 F 算得的 p_{i} 值.

解 设X表示首次出现白球所需的摸球次数,则X服从几何分布

$$P\{x=k\}=(1-p)^{k-1}p, k=1, 2, \cdots$$

其中, p 表示从此盒中任取一球取到白球的概率,则问题可归结为检验假设

$$H_0: P\{X=k\} = (1-p_0)^{k-1}p_0, k=1, 2, \dots,$$
 其中, $p_0 = \frac{1}{2}$.

10

若 H_0 中给出的理论分布 $F_0(x)$ 含有未知参数.

欲检验假设, H_0 : $F(x) = F_0(x; \theta_1, \theta_2, \dots, \theta_m)$.

$$\chi^{2} = \sum_{i=1}^{r} \frac{(n_{i} - np_{i0})^{2}}{np_{i0}}$$
 (3.5.3)

不能计算出 🎤

设 $\hat{\theta}_1$, $\hat{\theta}_2$, …, $\hat{\theta}_m$ 分别为 H_0 成立时未知参数 θ_1 , θ_2 , …, θ_m 的极大似 然估计,

记
$$\hat{\theta} = (\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m),$$

$$\begin{split} \hat{p}_{10} &= F_0(y_1; \hat{\theta}_1, \dots, \hat{\theta}_m) \\ \hat{p}_{i0} &= F_0(y_i; \hat{\theta}_1, \dots, \hat{\theta}_m) - F_0(y_{i-1}; \hat{\theta}_1, \dots, \hat{\theta}_m), \quad i = 2, \dots, r-1 \\ \hat{p}_{r0} &= 1 - F_0(y_{r-1}; \hat{\theta}_1, \dots, \hat{\theta}_m) \end{split}$$

得统计量
$$\chi^2 = \sum_{i=1}^r \frac{(n_i - n\hat{p}_{i0})^2}{n\hat{p}_{i0}}$$
 (3.5.4)

当 n 充分大时, χ^2 统计量的近似分布为

$$\chi^2(r-m-1)$$

m 为 $F_o(x)$ 中待估参数个数.

例 3.5.2 在例 1.3.2 中,曾经从直方图上粗略地看出总体 X 服从正态分布,现在对此组数据用 χ^2 拟合优度检验、(α =0.10).

解 欲检验假设 H_0 : $X \sim N(\mu, \sigma^2)$

先算出 H_0 成立的前提下, μ 和 σ^2 的 MLE 值,

$$\hat{\mu} = \frac{1}{100} \sum_{i=1}^{100} x_i = 343.83$$
,

$$\sigma^2 = \frac{1}{100} \sum_{i=1}^{100} (x_i - \overline{x})^2 = 4.04^2.$$

14

把实数轴划分成若干区间,一般要求区间的划分 尽可能关于 \overline{x} 的值对称,且注意 $n\hat{p}_{n}$ 不要太小, 一般不小于 5,

现在,这批数据最小 $x_{(1)} = 332$,最大 $x_{(100)} = 358$,取 r = 6,区间的划分及计算值如下.

组号	区间	Pio	n p io	n_i	$(n_i - n \hat{p}_{i0})^2 / n \hat{p}_{i0}$
1	(-∞,337.5]	0.0582	5.82	5	0.1155
2	(337.5,340.5]	0.1479	14.79	12	0.5263
3	(340.5,343.5]	0. 2620	26. 20	32	1. 2840
4	(343.5,346.5]	0. 2773	27.73	30	0.4853
5	(346.5,349.5]	0.1738	17.33	12	1.6654
6	(349.5,∞)	0.0808	8.03	9	0.1048

$$\hat{p}_{30} = P\{340.5 < X \leq 343.5\}$$

$$= \Phi\left(\frac{343.5 - 343.83}{4.04}\right) - \Phi\left(\frac{340.5 - 343.83}{4.04}\right)$$

$$= \Phi(-0.08) - \Phi(-0.82)$$

$$= 0.2620$$

16

$$\chi^2 = \sum_{i=1}^6 \frac{(n_i - n\hat{p}_{i0})^2}{n\hat{p}_{i0}} = 3.8998$$
,

查表得 $\chi^2_{0.90}(3) = 6.25$. r = 6, m = 2, $\alpha = 0.10$,

由于 3.8998<6.25, 因此接受 H₀,

即可以认为罐头内装食品净重服从正态分布.

例 3.5.3 某电话交换台,在 $100 \min$ 内记录了每分钟 被呼叫的次数 x_i ,整理后其结果如下 $(n_i$ 是出现呼叫次数 x_i 的次数)

x_i	0	1	2	3	4	5	6	7	8	9
n_i	0	7	12	18	17	20	13	6	3	4

问:可以认为呼叫次数 X 的分布为泊松分布吗?

17

解 欲检验假设 $H_0: X \sim P(\lambda)$.

 λ 未知, 在 H。成立的条件下, 求出 λ 的 MLE 值为

$$\hat{\lambda} = \overline{x} = \frac{1}{100} (1 \times 7 + 2 \times 12 + \dots + 9 \times 4) = 4.33$$

算出理论概率 $\hat{p}_{i0} = \frac{\hat{\lambda}^i}{i!} e^{-\hat{\lambda}}$, $i=0, 1, 2, \dots$,

进而算出 $n\hat{p}_{i0}$,列于下表

x_i	0	1	2	3	4	5	6	7	8	≥9
p io	0.013	0.057	0.123	0.178	0.193	0.167	0. 121	0.074	0.040	0.034
n D in	1.3	5.7	12. 3	17.8	19.3	16.7	12, 1	7.4	4. 0	3. 4

19

合并后为 $x \le 1$, x = 2, ..., $x \ge 8$, 共 8 组, 计算得

$$\chi^{2} = \sum_{i=1}^{8} \frac{(n_{i} - n\hat{p}_{i0})^{2}}{n\hat{p}_{i0}} = \frac{(7 - 7.0)^{2}}{7.0} + \frac{(12 - 12.3)^{2}}{12.3} + \dots + \frac{(7 - 7.4)^{2}}{7.4}$$

=1.289

现在 r=8, m=1, 取 $\alpha=0.05$, 查表得 $\chi^2_{0.95}(6)=12.6$.

由于 1.289<12.6,故接受 H₀,即认为 X~P(λ).

20

3.5.1.2 独立性的 χ^2 检验法

假定一个二维总体 (X,Y). 将 X 和 Y 的取值范围 分别分成r 个和 q 个互不相交的区间 A_1 , A_2 , …, A_r 和 B_1 , B_2 , …, B_q .

设从总体中抽取一个容量为n的样本 (x_1, y_1) , (x_2, y_2) ,…, (x_n, y_n) , n_{ij} 表示样本值中 α 落于 A_i ,而其y 落于 B_j 中的个数 $(i=1, 2, \dots, r; j=1, 2, \dots, q).$

X	B_1	B_2		B_q	n_i .
A_1	n_{11}	и12		n_{1q}	n_1 .
A ₂	n_{21}	n ₂₂ .		n_{2q}	n_2 .
:	i	i		:	:
A,	n _{r1}	n _{r2}	•••	n_{rq}	n_r .
n.,	n - 1	n. 2		n.,	n

提出假设 H_0 : 总体 (X, Y) 的分量 X 和 Y 相互独立.

$$i \partial_{ij} = P\{X \in A_i, Y \in B_j\},$$

$$P_{i:} = P\{X \in A_i\},$$

$$p_{:,j} = P\{Y \in B_j\},$$

$$i=1, 2, \dots, r; j=1, 2, \dots, q$$

$$p_{i\cdot} = \sum_{j=1}^{q} p_{ij}$$
 $p_{\cdot j} = \sum_{i=1}^{r} p_{ij}$
 $\sum_{i=1}^{r} p_{i\cdot} = \sum_{j=1}^{q} p_{\cdot j} = 1$

在 H_0 成立的条件下,有 $p_{ij} = p_{i} \cdot p_{ij}$,

即要检验
$$H_0$$
: $p_{ij} = p_i$: $p_{.j}$, $i = 1, 2, \dots, r$; $i = 1, 2, \dots, a$,

在 H_0 成立的条件下, p_i . 和 p_{ij} 的极大似然估计分别为

$$\hat{p}_{i}$$
. = n_{i} . $/n$, i =1, 2, ..., r ;

$$\hat{p}_{.j} = n_{.j}/n, j=1, 2, \dots, q$$

统计量
$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^q \frac{(n_{ij} - n\hat{p}_{i}, \hat{p}_{\cdot j})^2}{n\hat{p}_{i}, \hat{p}_{\cdot j}}$$

$$= n \sum_{i=1}^r \sum_{j=1}^q \frac{(n_{ij} - n_{i}, n_{\cdot j}/n)^2}{n_{i}, n_{\cdot j}}$$

当 H_0 成立时, χ^2 统计量的分布渐近于自

由度为
$$(r-1)(q-1)$$
的 χ^2 分布.

$$rq-(r+q-2)-1=(r-1)(q-1)$$
.

设 (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n) 为取自总体 (X, Y)的样本,检验假设

 H_0 : X与Y相互独立.

计算步骤如下.

- (1) 将 X 和 Y 的观测值范围分别分成 r 个和 q 个 互不相交的区间,这样就组成了 rq 个互不相交的矩形区域。
- (2) 求出样本值落入各小矩形的实测频数.

25

(3) 当 H。成立时,构造统计量.

$$\chi^2 = n \sum_{i=1}^r \sum_{j=1}^q \frac{(n_{ij} - n_{i\cdot} n_{\cdot j} / n)^2}{n_{i\cdot} n_{\cdot j}}$$

当n充分大时, χ^2 渐近于 χ^2 [(r-1)(q-1)] 分布. 在检验水平 α 下,

当 χ^2 值 $\geq \chi^2_{1-a}[(r-1)(q-1)]$ 时,

拒绝 H。, 否则接受 H。.

26

例 3.5.4 某研究所推出一种感冒特效新药,为证明 其疗效,选择 200名患者做疗效试验,将他们分为两组, 分别不服药或服药,观察 3 日后痊愈的情况,

得出下列数据.

Y	痊愈者	未痊愈者	合计
未服药者	48	52	100
服药者	56	44	100
会计	104	. 96	200

问新药是否确有明显疗效?(α=0.25)

27

解 H。: 新药无明显疗效

每个患者考察两个指标: X 表示是否服药, Y 表示是否痊愈;

X 取两个"值"(即服药状况):未服药、服药, Y 也取两个"值"(即痊愈状况):痊愈、未痊愈. 新药是否有明显疗效的问题,实际上就是服不服 这种药是否影响到患者的痊愈,因而就是 X 与 Y 之间是否相互独立的问题.

28

$$n=200$$
, $n_{11}=48$, $n_{12}=52$, $n_{21}=56$, $n_{22}=44$,
 $n_{1.}=n_{.2}=100$, $n_{.1}=104$, $n_{.2}=96$
 $\chi^{2}=n\sum_{i=1}^{r}\sum_{j=1}^{q}\frac{(n_{ij}-n_{ij},n_{.j}/n)^{2}}{n_{ij},n_{.j}}\approx 1.282$;

对于 $\alpha = 0.25$,查表得 $\chi^2_{0.75}$ (1) =1.323,由于 1.323>1.282. 故接受 H_0 ,即认为

这种感冒新药并无明显疗效.

作业 PO1:

P91: 20, 21, 23,25