Brownian Motion and SDE

Sheila Tonui

June 2024

Exercise

Generate the sample realisations of the following linear SDE with multiplicative noise:

$$dX_t = (a_1(t)X_t + a_2(t))dt + (b_1(t)X_t + b_2(t))dW_t$$

How does this compare with the general SDE of the form:

$$dX_t = a_1(t)X_tdt + b_1(t)X_tdW_t$$

Solution

We discretize the equation and simulate it using a numerical method, the Euler-Maruyama method.

For the given SDE:

$$dX_t = (a_1(t)X_t + a_2(t))dt + (b_1(t)X_t + b_2(t))dW_t$$

using Euler-Maruyama, the discretized form is:

$$X_{t+\Delta t} = X_t + (a_1(t)X_t + a_2(t))\Delta t + (b_1(t)X_t + b_2(t))\Delta W_t$$

where:

- ΔW_t is a Wiener process increment, which can be simulated as $\sqrt{\Delta t}$.N(0,1) with N(0,1) being a standard normal variable.
- Time discretization parameters are:
 - T time horizon
 - N number of time steps
 - dt time step size

 $a_1(t)$, $a_2(t)$, $b_1(t)$, and $b_2(t)$ are as constant functions. The presence of $a_2(t)$ and $b_2(t)$ introduces an additional drift and diffusion component independent of X_t which can significantly alter the dynamics of X_t .

The linear SDE with mulitiplicative noice is simulated with both $a_2(t)$ and $b_2(t)$ terms while the general SDE without $a_2(t)$ and $b_2(t)$ terms. The two sample paths visually helps to understand how these additional terms impact the behavior of the solution.