Semantics in Natural Language Processing

PhD Programme in Computer Science and Mathematics
Courses 2021-2022

Pierpaolo Basile, pierpaolo basile@uniba.it Marco Polignano, propolignano(Quniba.it

Natural Language

Refers to the language spoken by people, e.g. English, Japanese, Swahili, Italian, as opposed to artificial languages, like C++, Java, etc.

...Processing

Applications that deal with natural language in a way or another

NLP Applications

- Classify text into categories
- Index and search large texts
- Automatic translation
- Speech understanding
- Information extraction
- Automatic summarization
- Question answering
- Knowledge acquisition
- Text generations / dialogues

Why NLP?

- Google, Yahoo!, Bing (3,37%), Baidu (0,79%) -> Information Retrieval
- LinkedIn -> Information Extraction + Information Retrieval
- Google Translate, Babelfish, Systran -> Machine Translation
- Ask, IBM Watson -> Question Answering
- Myspace, Facebook, Twitter -> Social Networks, Processing of User-Generated Content
- All "Big Guys" have (several) strong NLP research labs: IBM, Microsoft, AT&T, Xerox, ORACLE-Sun Microsystems, etc.
- Academia: research in a university environment

NLP Applications: Search

NLP Applications: Machine Translation

Distributional Semantic Models

What's Tezguno?

A bottle of Tezguno is on the table.

Everyone likes Tezguno.

Tezguno makes you drunk.

We make Tezguno out of corn.

What's Tezguno?

Tezguno

Distributional

Semantic Models (DSM)

You shall know a word by the company it keeps!

The meaning of a word is its use in the language

Distributional structure

Mathematical structures

of language

Distributional Semantic Models

- Analysis of word-usage statistics over huge corpora
- Geometric space of concepts
- Similar words are represented close in the space

```
floppy_disk
   ram chip
                 disk hard_disk
                        printer
software
               computer
           workstation
     os
             pc
                        device
operating_system
       linux
                            mouse
                                 mice
          tux
                                     rat
                           rabbit
                 penguin
                                 animal
                         dog
                                         insect
                        cat monkey
```

Extract co-occurrences

Text extraction

Yes, you may still call me...


```
Yes -> [you, may]
you -> [Yes, may, still]
may -> [Yes, you, still, call]
still -> [you, may, call, me]
call -> [may, still, me, ...]
me -> [still, call, ...]
```

Count co-occurrences

	dog	cat	bread	pasta	meat	mouse
dog	40	27	1	0	1	5
cat	27	32	0	1	0	8
bread	1	0	22	15	8	0
pasta	0	1	15	24	10	1
meat	1	0	8	10	30	2
mouse	5	8	0	1	2	31

Word similarity

	dog	cat	bread	pasta	meat	mouse
dog	40	27	1	0	1	5
cat	27	32	0	1	0	8
bread	1	0	22	15	8	0
pasta	0	1	15	24	10	1
meat	1	0	8	10	30	2
mouse	5	8	0	1	2	31

Word Similarity

_		dog	cat	bread	pasta	meat	mouse
	dog	40	27	1	0	1	5
	cat	27	32	0	1	0	8
	bread	1	0	22	15	8	0
	pasta	Ü	1	15	24	10	1
	meat	1	0	8	10	30	2
	mouse	5	8	0	1	2	31

Word Similarity

		dog	cat	bread	pasta	meat	mouse
	dog	40	27	1	0	1	5
	cat	27	32	0	1	0	8
	bread	1	0	22	15	8	0
	pasta	0	1	15	24	10	1
	meat	1	0	8	10	30	2
	mouse	5	8	0	1	2	31

Geometric space

WordSpace

Geometric space

WordSpace

cat and mouse are close in the space

Similar words are represented close in the space

DSM generalization

- A DSM is defined as <T, C, R, W, M, d, S>
 - T: target elements (words)
 - C: contexts
 - R: the relation between T and C
 - W: weighting schema
 - M: geometric space TxC
 - d: matrix reduction M -> M'
 - S: similarity function in M'

Build a DSM

- 1. Corpus pre-processing
- 2. Identify words and contexts
- 3. Count co-occurrences (words in contexts)
- 4. Weight (optional)
- 5. Space reduction (optional)

Parameters

- The definition of context
 - surrounding words, phrase, sentence, paragraph, document,
 syntactic context
- Weighting schema
- Similarity function

1. Pre-processing

Tokenization is necessary!

- PoS-tagging
- Lemmatization
- Parsing

A deep analysis

- Introduces errors
- Requires other parameters
- Language dependent

2. The context

- Document
 - the whole document
 - paragraph, sentence, passage
- Word
 - Most *n* frequent words
 - Where?
 - surrounding words (window)
 - pattern
 - syntactic dependency

3. Weighting schema

- Occurrences
- log(occurrences): relax most frequent words
- Mutual Information, Log-Likelihood Ratio
- Tf-Idf, word-entropy, ...

Why sparse?

5. Matrix reduction

- DSM is high dimensional and very sparse:
 - 1. matrix reduction: LSI/LSA, PCA
 - 2. Random Indexing
 - 3. ...

Latent Semantic Analysis (LSA)

$$(\mathbf{t}_{i}^{T}) \rightarrow \begin{bmatrix} x_{1,1} & \dots & x_{1,j} & \dots & x_{1,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{i,1} & \dots & x_{i,j} & \dots & x_{i,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{m,1} & \dots & x_{m,j} & \dots & x_{m,n} \end{bmatrix} = (\hat{\mathbf{t}}_{i}^{T}) \rightarrow \begin{bmatrix} \begin{bmatrix} \mathbf{u}_{1} \end{bmatrix} \dots \begin{bmatrix} \mathbf{u}_{l} \end{bmatrix} \end{bmatrix} \cdot \begin{bmatrix} \sigma_{1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{l} \end{bmatrix} \cdot \begin{bmatrix} \begin{bmatrix} \mathbf{v}_{1} & \end{bmatrix} \end{bmatrix}$$

$$\mathbf{Y} = \mathbf{I} \mathbf{\Sigma} \mathbf{V}^{T} \quad \text{we can consider a lower-dimensional approximation of the states of the states$$

 $X=U\Sigma V^T$, we can consider a lower-dimensional approximation of the higher-dimensional space by keeping only the first k singular values -> $X_k = U_k \Sigma_k V_k^T$

Word embedding

Word embedding

- Words or phrases from the vocabulary are mapped to vectors of real numbers
 - similar to DSM-based approaches
- Involves a mathematical embedding from a space with many dimensions per word to a continuous vector space with a much lower dimension
 - similar to matrix reduction
- Dimensionality reduction on the word co-occurrence matrix can be considered a word embedding!

Word embedding

issues

- possible meanings of a word are conflated into a single representation (a single vector in the semantic space)
 - sense-based vectors are a solution
- words are represented in isolation
 - composition of vectors is necessary for representing complex structures (sentences)
- word vector space models in general have the same issues

word2vec

- it is used to produce word embeddings
- two-layer neural networks that are trained to reconstruct linguistic contexts of words
- word vectors are positioned in the vector space such that words that share common contexts in the corpus are located in close proximity to one another

CBOW vs Skip-gram

CBOW

The input layer and the target, both are one-hot encoded of size [1 X V]

Input-Hidden layer matrix size =[V X N], hidden-Output layer matrix size =[N X V]: where N is the number of dimensions. Also, N is the number of neurons in the hidden layer.

The input is multiplied by the input-hidden weights and called hidden activation.

The hidden input gets multiplied by hidden- output weights and output is calculated.

Error between output and target is calculated and propagated back to re-adjust the weights.

The weight between the hidden layer and the output layer is taken as the word vector representation of the word.

word2vec

objective function

$$-\log(p(w_{O})|p(w_{I}))$$

$$p(w_{O}|w_{I}) = \frac{\exp(v'_{w_{O}} \top v_{w_{I}})}{\sum_{w=1}^{W} \exp(v'_{w} \top v_{w_{I}})}$$
context words

The objective function tries to increase $v'_{w0}^{T}v_{wl'}$ this means that words that share more contexts will be similar to each other.

word2vec parameters

- vector dimension: 100-1,000
- training algorithm
 - hierarchical softmax: works better for infrequent words
 - negative sampling: works better for frequent words and better with low dimensional vectors
- sub-sampling: words with frequency above a certain threshold may be subsampled
- context window: how many words before and after a given word would be included as context words, recommended values: 10 for skip-gram and 5 for CBOW

Thanks!!

Any questions?

You can find me at @basilepp pierpaolo.basile@uniba.it