

基于公钥的密钥协商协议

南开大学网络空间安全学院 汪 定

内容提纲

基于公钥的密钥协商协议简介

采用显式认证方式的密钥协商协议

● 采用隐式认证方式的密钥协商协议

● 基于身份的密钥协商协议

内容提纲

基于公钥的密钥协商协议简介

采用显式认证方式的密钥协商协议

● 采用隐式认证方式的密钥协商协议

● 基于身份的密钥协商协议

密钥协商协议(Key Agreement Protocol)

❖密钥协商协议的定义:

一个密钥协商协议是一种密钥建立的方法,使得两个或者多个用户通过各自不同的输入建立一个公共的秘密值,并且任何用户不能预先确定该秘密值。

❖密钥协商协议的优势:

密钥建立的方式更公平,因此有利于会话密钥的随机性;

有利于实现前向安全性。

密钥控制(Key Control)

❖密钥控制的定义:

密钥控制用来刻画协议的参与者选择或者影响共享的秘密值的能力,通常要求任何人都不能控制密钥的产生。

❖密钥控制的优势:

每一个参与者产生密钥的时候不需要完全依赖于别的参与者,从而保证了密钥的随机性;

每个人有自己的输入,可以保证密钥的新鲜性。

公钥密码体制

❖公钥密码体制的优势:

利用公钥签名体制可以方便的实现认证; 密钥管理非常方便,不需要在线的可信中心; 适用于分布式的通信环境。

❖公钥密码体制的劣势:

计算量大, 计算效率低;

证书管理问题(如撤销)仍然是一大难题。

Diffie-Hellman密钥协商协议

❖DH密钥协商协议:由著名密码学家Diffie和Hellman在1976年提出。几乎是所有密钥协商协议的基础。

设G是一个阶为大素数q的乘法循环群

对DH密钥协商协议的中间人攻击

$$K_A = Y'^x = g^{xy'}$$

$$K_B = X'y = g^{x'y}$$

❖攻击者可以分别计算出K₄和KB

常用的符号

• 一些符号

p 大素数

q 素数,q|(p-1)

G Z_p^* 的子群

g G的生成元

 r_A , r_B A、B在Z_q中选择的随机数 H() 单向函数

 t_A , t_B $t_A = g^{r_A}$, $t_B = g^{r_B}$

 x_A, x_B A、B的私钥

 $y_{A}, y_{B} y_{A} = g^{x_{A}}, y_{B} = g^{x_{B}}$

 K_{AB} 会话密钥

 S_{AB} 静态DH密钥 $g^{x_Ax_B}$

 N_A, N_B A、B选择的nonces

11() 中间函数

 $x \in \mathbb{R}^X$ 从X中随机选择x

 $F \stackrel{?}{=} G$ 验证F = G是否相等

- ❖Matsumoto, Takashima以及Imai(MTI)在 1986年提出的三类密钥协商协议。
- ❖思想:将用户的长期密钥和临时密钥绑定。
- ❖MTI协议存在安全缺陷,是不安全的。

类型	z_A	z_B	K_{AB}	A计算	B计算
A(0)	g^{r_A}	g^{r_B}	$\mathbf{g}^{x_A r_B + x_B r_A}$	$z_B^{x_A}y_B^{r_A}$	$Z_A^{x_B} y_A^{r_B}$
B (0)	$y_{B}^{r_{A}}$	$y_A^{r_B}$	$g^{r_A+r_B}$	$z_{B}^{x_{A}-1}g^{r_{A}}$	$Z_A^{x_B-1}g^{r_B}$
C (0)	$y_{B}^{r_{A}}$	$\mathcal{Y}_{A}^{r_{B}}$	$g^{r_A r_B}$	$z_B^{x_A-1}r_A$	$Z_A^{x_B-1}r_B$

k	A(k)	$\mathbf{B}(k)$	C(k)
-1	$\begin{vmatrix} x_A x_B^{-1} r_B + x_B x_A^{-1} \\ 1 r_A \end{vmatrix}$	$x_A^{-1}r_A + x_B^{-1}r_B$	$x_A^{-1}r_Ax_B^{-1}r_B$
0	$x_A r_B + x_B r_A$	$r_A + r_B$	$r_A r_B$
1	$x_A x_B r_B + x_B x_A r_A$	$x_A r_A + x_B r_B$	$x_A r_A x_B r_B$
• • •	•••	•••	•••
K	$x_A x_B^k r_B + x_B x_A^k r_A$	$x_A^k r_A + x_B^k r_B$	$x_A^k r_A x_B^k r_B$

对MTI协议的小子群攻击

对MTI C(1)协议的小子群攻击

共享信息: Z_p^* 的生成元g。P-1的小因子r,w=(p-1) / r

A

C

В

$$r_A \in {}_RZ_q$$
, $z_A = y_B^{r_Ax_A} \qquad z_A$

$$\begin{array}{c}
Z_A^W \\
 \hline
Z_B
\end{array}$$

$$r_B \in {}_RZ_q$$

$$z_B = y_A^{r_B x_B}$$

$$Z_B^W$$

$$K_{AB} = (z_B^w)^{r_A}$$

$$K_{AB} = (z_A^w)^{r_B}$$

对MTI协议的未知密钥共享攻击

如何令MTI协议能够抵抗未知密钥共享攻击?

增加私钥证明, 在会话密钥中增加身份

Menezes等人的改进协议

MTI协议的前向安全性

 $K_{AB} = t_B x_A y_B r_A$

 $t_B = g^{r_B}$

 $K_{AB} = t_A^{x_B} y_A^{r_B}$

类型	z_A	z_B	K_{AB}	A计算	B计算
A(0)	g^{r_A}	g^{r_B}	$g^{x_A r_B + x_B r_A}$	$z_B^{x_A}y_B^{r_A}$	$z_A^{x_B}y_A^{r_B}$
B(0)	$y_{B}^{r_{A}}$	$y_A^{r_B}$	$g^{r_A+r_B}$	$z_B^{x_A-1}g^{r_A}$	$z_A^{x_B-1}g^{r_B}$
C (0)	$y_{B}^{r_{A}}$	$y_A^{r_B}$	$\mathbf{g}^{\mathbf{r}_A\mathbf{r}_B}$	$z_B^{x_A-1}r_A$	$Z_A^{X_B-1_{P_B}}$

对MTI协议的密钥泄漏仿冒攻击

基于公钥的密钥协商协议的安全需求

- ❖1. 抗已知密钥攻击(Known key attack)
- ❖2.实现前向安全性(Forward secrecy)
- ❖3.抵抗密钥泄漏仿冒攻击(KCI)
- ❖4.抵抗未知密钥共享攻击 (UKS)
- ❖5.抵抗临时密钥泄漏 (Empheral leakage)
- ❖6.实现密钥控制 (Key control)
- ❖匿名性,可证明安全性,。。。

内容提纲

基于公钥的密钥协商协议简介

采用显式认证方式的密钥协商协议

● 采用隐式认证方式的密钥协商协议

● 基于身份的密钥协商协议

显式认证的密钥协商协议

❖对DH密钥交换改进的思路:

通过签名等方式增加认证。

最终的共享密钥是临时的DH密钥值,因此可以 实现前向安全性;

临时的DH公钥由长期密钥进行签名,因此可以抵抗密钥泄漏仿冒攻击。

STS协议(Station to Station)

❖STS协议由Diffie等人在1992年提出,主要的思想是通过签名来克服DH协议缺乏认证的不足。

使用MAC函数的STS协议

❖STS协议中通过加密来抵抗未知密钥共享攻击。但是这里参与者只需要证明自己知道会 话密钥。

真正需要的是认证!

改进的STS协议

❖改进的STS协议在著名的CK模型下是可证明 安全的。

Arazi的密钥协商协议

- ❖Arazi设计了一个将DH密钥交换以及DSS签 名结合的密钥协商协议。
- ❖将DH密钥交换中的随机数复用,即用于密钥交换也用于生成DSS签名的随机数。
- ❖设计精巧并且协议高效,但是存在安全性方面的不足。

Arazi的密钥协商协议

Arazi的密钥协商协议

是否能抗重放攻击?临时密钥泄露攻击?

Lim-Lee的密钥协商协议

Lim-Lee基于Schnorr签名的协议

$$r_A \in {}_RZ_q$$
 , $t_A = g^{r_A}$

$$K_{AB} = t_B^{r_A}$$

R

是否具有前向安全性?为什么协议是三轮的?

内容提纲

基于公钥的密钥协商协议简介

采用显式认证方式的密钥协商协议

采用隐式认证方式的密钥协商协议

● 基于身份的密钥协商协议

隐式认证的密钥协商协议

❖对DH密钥交换改进的思路:

消息的格式与原始的DH协议相同,通过共享密钥的计算方式实现隐式认证。

最终的共享密钥是参与者长期密钥与临时密钥结合产生的;

MTI系列协议属于隐式认证的密钥协商协议。

KEA密钥协商协议

❖KEA协议是由美国国家安全局设计的,可以 看做是MTIA(0)协议的变形。

MQV协议

- ❖MQV协议是Menezes等人最早在1995年提出的,在2003年作者又进行了改进。
- ❖MQV协议被多个标准化组织列为密钥协商协议的标准,如ANSI、IEEE P1363和NSA等。In 2004, NSA chose it as "the next generation cryptology to protect US government information"
- ❖思想:通过DH临时公钥产生特殊的参数用于会话密钥的生成。

MQV协议

设计思想精巧!效率奇高!

MQV协议

- As basic DH (X= g^x , Y= g^y), PKs: A= g^a , B= g^b
- Both compute $\sigma = g^{(x+da)(y+eb)}$ as $\sigma = (YB^e)^{x+da} = (XA^d)^{y+eb}$
- $d = 2^{\ell} + (X \mod 2^{\ell}), \quad e = 2^{\ell} + (Y \mod 2^{\ell}), \quad \ell = |q|/2.$
- Session key $K=H(\sigma)$

对MQV协议的未知密钥共享攻击

HMQV协议

- ❖HMQV协议是Krawczyk在2005年提出的对MQV协议的一种变形。
- ❖MQV协议虽然被多个标准化组织确认为标准,但是没有严格的安全证明。
- ❖利用Schnorr身份验证协议对MQV进行了改进,保持了MQV协议的所有优点,并且是可证明安全的。
- ❖HMQV协议是目前为止效率和安全综合性能最好的密钥协商协议。

XCR签名

- ❖XCR(Exponential Challenge-Response) 签名 是一个交互式的签名。签名者Bob拥有私钥b 和对应的公钥B=g^b。验证者Alice提供一个消息m和挑战X=g^x,想要让Bob产生签名。
 - 1、Alice发送挑战X和消息m给Bob。
 - 2、Bob随机选择y并计算Y=g^y, 计算签名 Xy+H(Y, m)b, 发送Y和签名给Alice。
 - 3、Alice通过(YBH(Y,m))x是否等于签名来验证签名的有效性。

HMQV协议

- As basic DH (X= g^x , Y= g^y), PKs: $A=g^a$, B= g^b
- Both compute $\sigma = g^{(x+da)(y+eb)}$ as $\sigma = (YB^e)^{x+da} = (XA^d)^{y+eb}$
- d=H(X,"Bob") e=H(Y,"Alice") (here H outputs |q|/2 bits)
- Session key $K=H(\sigma)$

内容提纲

基于公钥的密钥协商协议简介

采用显式认证方式的密钥协商协议

采用隐式认证方式的密钥协商协议

● 基于身份的密钥协商协议

基于身份的密钥协商协议

- ❖用基于身份的公私钥对来代替基于PKI的公私 钥对。一般基于身份的公私钥对是由可信的 密钥生成中心PKG生成的。
- ❖PKG: sP P是G的生成元 G是阶为大素数 q的循环群
- ❖对于用户ID, 其公钥为H(ID), PKG为其生成 私钥sH(ID)

基于身份的密钥协商协议的安全性需求

- ❖1.已知密钥安全(known-key security):一次 会话的密钥泄漏不会影响其他会话
- ❖2.前向安全:用户的长期密钥泄漏不会对以前的会话密钥的安全性造成威胁。基于身份的AKE还要考虑PKG的主密钥泄漏时的前向安全(PKG-fs)
- ❖3.抵抗KCI攻击
- ❖4.抵抗临时密钥泄漏
- ❖5.抵抗UKS攻击
- ❖6.实现密钥控制

Okamoto的基于身份的密钥协商协议

❖Okamoto的协议是第一个基于身份的密钥协 商协议。 PKG的公钥

Okamoto的基于身份密钥协商协议

共享信息:公开模数n=pq和加密指数e,

 $g \in Z_n^*$; g 同时是 Z_n^* 和 Z_a^* 的生成元。

A的私钥: s_A : $s_A^{e}=ID_A^{-1} \mod n$; B的私钥: s_B : $s_B^{e}=ID_B^{-1} \mod n$

$$r_A \in {}_RZ_n$$
, $t_A = g^{r_A}$

$$Z_{AB} = ((s_B t_B)^e I D_B)^{r_A}$$

PKG的公钥

R

$$r_B \in {}_RZ_n$$
, $t_B = g^{r_B}$,

$$Z_{AB} = ((s_A t_A)^e ID_A)^{r_B}$$

基于双线性对的密钥协商协议

令G为阶数为素数q的加法循环群,G为阶数为素数q的乘法循环群,P为群G的一个生成元,再令 $e:G\times G\to G$ 为满足下列性质的双线性对:

- (1) 双线性性: 对于所有的P, Q以及 $R \in G$ 有e:(P+Q,R)=e(P,R)e(Q,R)以及
- e:(P,Q+R)=e(P,Q)e(P,R) o
- (2) 非退化性:存在 $P,Q \in G$ 使得 $e(P,Q) \neq 1$ 。
- (3) 可计算性:对所有 $P,Q \in G$,存在有效算法可以计算 $e(P,Q) \neq 1$ 。

基于双线性对的密钥协商协议

$$A$$

$$X \in_{R} Z_{q}$$

$$Y = yP$$

$$y \in_R Z_q$$

$$Sid=(X,Y,A,B)$$

$$Z_1 = e(Y + Q_{B_1}, xZ + d_{A_1})$$

$$Z_2 = e(Y + Q_{B_2}, xZ + d_{A_2})$$

$$Z_3 = xY$$

$$SK = H(Z_1, Z_2, Z_3, sid)$$

$$Sid=(X,Y,A,B)$$

$$Z_1 = e(X + Q_{A_1}, yZ + d_{B_1})$$

$$Z_2 = e(X + Q_{A_2}, yZ + d_{B_2})$$

$$Z_3 = yX$$

$$SK = H(Z_1, Z_2, Z_3, sid)$$

Thank You!

敬请批评指正!