

FeynRules at NLO

- Download FeynRules 2.1
 - https://feynrules.irmp.ucl.ac.be
- Download FeynArts 3.7 or 3.8
 - http://www.feynarts.de
- Copy the SM directory and call it Tutorial and copy your Tutorial.fr there (SM in 2.1 is different)

FeynRules at NLO

- Load FeynRules 2.1 (Change the path)
- Load the model
- Renormalize the Lagrangian
 - Lren = OnShellRenormalization[LSM + LNew, QCDOnly -> True, FlavorMixing -> False];
- Export to FeynArts
 - SetDirectory["~/FeynArts-3.8/Models"];
 WriteFeynArtsOutput[Lren, GenericFile -> False, Output -> "Tutorial"];

NLOCT

- Quit[]
- Load FeynArts and then NLOCT
 - SetDirectory["~/FeynArts-3.8"];
 FeynArts`
 SetDirectory["~/feynrules-2.1"]
 NLOCT`
- Compute the NLO vertices
 - SetDirectory["~/feynrules-2.1/Models/Tutorial"]
 WriteCT["Tutorial/Tutorial", "Lorentz", QCDOnly -> True,
 Exclude4ScalarsCT -> True, ZeroMom -> {{aS, {F[14], V[4], -F[14]}}}]

UFO@NLO

- Quit[]
- Load FeynRules 2.1 and your model
- Load the NLO vertices
 - SetDirectory["~/feynrules-2.1/Models/Tutorial"]; Get["Tutorial.nlo"]
- Write the UFO
 - SetDirectory["~/mg5amcnlo/models"];
 WriteUFO[LSM + LNew, Output -> "Tutorial_NLO", R2Vertices -> R2\$vertlist,
 UVCounterterms -> UV\$vertlist]

aMC@NLO

- Download MadGraph5_aMC@NLO_v2.0.0 (release yesterday!)
 - https://launchpad.net/mg5amcnlo
- install external package
 - install MadAnalysis
 - install pythia-pgs

Generate sample at NLO

- compute the NLO cross-section for
 - pp>tt~
 - p p > uv uv~
- compute the K-factor for each of those processes
- Generate NLO events for
 - pp>tt~
 - make the decay of the top using MadSpin