Chapter 16: Reviews—A Recommended Approach

February 8, 2021 8:59 AM

Reviews

A technical assessment of a work product

★○ A software quality assurance mechanism

o A training ground

· Reviews are not

- A project summary or progress assessment
- o A meeting intended to solely to impart information
- A mechanism for political or personal reprisal
- · What do we look for?
 - ★○ Error a quality problem found before release
 - ★○ Defect a quality problem found after release
 - o These distinctions are not mainstream thinking
- Defect Amplification and Removal
 - <u>Defect amplification</u> how a defect introduced early in the software engineering work flow and undetected, can and often will be amplified into multiple errors during the design and more errors in the construction
 - <u>Defect propagation</u> the impact an undiscovered defect has on future development activities or product behavior
 - <u>Technical debt</u> the costs incurred by failing to find and fix defects early or failing to update documentation following software changes
- · Metrics are measures
 - Effort, *E* in-person hours
 - \circ <u>Preparation effort</u>, E_p the effort required to review a work product prior to the review meeting
 - \circ Assessment effort, E_a the effort that is expending during the actual review
 - $\circ~$ Rework effort, E_r the effort that is dedicated to the correction of those errors uncovered during the review
 - ★○ Work Product Size, WPS lines of code or number of pages
 - \circ Minor errors found, Err_{minor} the number of errors found that can be categorized as minor
 - \circ Major errors found, Err_{major} the number of errors found that can be categorized as major
 - o The total review effort
 - $E_{review} = E_p + E_a + E_r$
 - $E_{tot} = Err_{minor} + Err_{major}$
 - o Defect density represents the errors found per unit of WPS
 - Defect density = $\frac{Err_{tot}}{WPS}$
 - o Example
 - The average defect density for a requirements model is 0.68 errors per page, and a new requirements model is 40 pages long, 0.68 x 40 = approximately 27 errors
 - If you only find 9 errors, you've done an extremely good job in developing the requirements model or your review approach was not thorough enough
 - o Example
 - The effort required to correct a minor model error will require 4 person-hours
 - The effort required for major requirements error is 18 person-hours
 - Minor errors occur about 6 times more frequently than major errors
 - The average effort required to correct 1 error will be 6 hours (4 Hours * 6 + 18 Hours)/7 = 6 hours
 - \bigstar Effort saved per error = $E_{testing} E_{reviews}$
- <u>Informal Reviews</u> the benefit is immediate discovery of errors and better work product quality
 - A simple desk check with a colleague
 - A casual meeting (2 or more people)
 - o The review-oriented aspects of pair programming

- ★ pair programming encourages continuous review as a work product is created
- o Quality can suffer
- Formal Technical Reviews, FTRs, Code Inspections, Code Walkthroughs 5 key objectives
 - ★○ To <u>uncover errors in functions, logic, implementation</u> in any representation of the software
 - ★○ To verify that the software meets its requirements
 - ★○ To ensure that the software adheres to a standard
 - ★○ To achieve software that is developed in a uniform manner
 - ★○ To make projects more manageable
- · Review Meeting
 - o Between three and five people should be involved in the review
 - o Advance preparation should require no more than two hours of work per person
 - The duration should be less than two hours
 - o Focus is on a specific work product
- Review Players
 - o Producer the individual who has developed the work product
 - Review leader evaluates the product for readiness, generates copies of product materials, and distributes them to two or three reviewers for advanced preparation and facilitates the meeting discussion
 - <u>Reviewers</u> expected to <u>spend between one and two hours reviewing</u> the product, making notes, and becoming familiar with the work
 - Come prepared to evaluate
 - o Recorder records (in writing) all important issues
- Review Outcome a decision must be made to:
 - ★○ Accept the product without modification
 - ★○ Reject the product due to severe errors
 - ★○ Accept the product conditionally (correct errors and no additional review)
- Review Reporting and Record Keeping
 - The recorder records all issues raised and summarizes these in an action list for the producer (formal technical review summary report) - this answers three questions:
 - What was reviewed?
 - Who reviewed it?
 - What were the issues and conclusions (Review Outcome)?
 - You should establish a follow-up procedure to ensure that items on the issues list have been properly corrected
- Review Guidelines
 - o Review the product, not the producer
 - Stay on-topic
 - o Limit the debate
 - o Enunciate problems, but don't try to solve every problem
 - o Take written notes
 - Limit the number of participants and insist doing advance preparation
 - o Develop a checklist for each product that is likely to be reviewed
 - Allocate proper resources and time for FTRs
 - o Conduct meaningful training for all reviewers
 - Review your early reviews
- Post-mortem Evaluations, PME
 - o A mechanism to determine what went right and what went wrong
 - Attended by members of the software team and stakeholders who focus on excellences and challenges
- · Agile reviews
 - $\circ\quad \mbox{User stories are reviewed and ordered by priority}$
 - o Daily scrum meetings to ensure members are working to try to catch and defects
 - Sprint review meetings using guidelines
 - Sprint retrospective meetings to capture the lessons learned from previous meetings