Computer Vision

9. Two Views

I-Chen Lin

College of Computer Science

National Yang Ming Chiao Tung University

Objective

Epipolar geometry

Textbook:

- David A. Forsyth and Jean Ponce, Computer Vision: A Modern Approach, Prentice Hall, New Jersey, (1st Ed. 2003, 2nd Ed. 2012)
- R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision 2nd Ed., Cambridge University Press, 2004.

Plenty of slides are modified from the reference lecture notes or project pages:

- Prof. J. Rehg, Computer Vision, Georgia Inst. of Tech.
- Prof. S. Seitz and P. Heckbert, Image-based modeling and rendering course notes, CMU.
- Dr. Ng Teck Khim, Computer Vision and Graphics for Special Effects lecture notes.
- Prof. D.A. Forsyth, Computer Vision, UIUC.

Two-view projective geometry

- How to relate point positions in different views?
 - Central question in stereo vision
 - Projective geometry gives us some powerful tools
 - constraints between two or more images
 - equations to transfer points from one image to another

Two-view projective geometry

- Correspondence geometry:
 - Given an image point x in the first view, how does this constrain the position of the corresponding point x' in the second image?
- Camera geometry (motion):
 - Given a set of corresponding image points $\{x_i \leftrightarrow x'_i\}$, i=1,...,n, what are the cameras C and C' for the two views? Or what is the geometric transformation between the views?

- Scene geometry (structure):
 - Given corresponding image points $x_i \leftrightarrow x'_i$ and cameras C, C', what is the position of the point X in space?

C,C',x,x' and X are coplanar

All points on π project on l and l'

Family of planes π and lines I and I' Intersection in e and e'

- What does one view tell us about another?
 - ▶ Point positions in 2nd view must lie along a known line

- Epipolar Constraint
 - Extremely useful for stereo matching
 - Reduces problem to 1D search along conjugate epipolar lines
 - Also useful for view interpolation...

Example: converging cameras

Example: motion parallel with the image plane

Example: forward motion

3D to 2D: perspective projection

Matrix Projection:

 \prod can be decomposed into $\mathbf{R}, \mathbf{T} \to \text{project} \to \mathbf{A}$

$$\mathbf{\Pi} = \begin{bmatrix} \alpha & -\alpha \cot \theta & u_0 \\ 0 & \frac{\beta}{\sin \theta} & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{3x3} & \mathbf{T}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix}$$

Then we can write the projection as:

$$\mathbf{p} = \mathbf{\Pi} \mathbf{P} = K(\mathbf{R} \mathbf{P} + \mathbf{T})$$

Epipolar algebra

- How do we compute epipolar lines?
 - Can trace out lines, reproject. But that is overkill

- Note that \mathbf{m} is \perp to $\mathbf{T} \times \mathbf{m}$
- So $0 = \mathbf{m}^{\prime T} \mathbf{T} \times \mathbf{m}^{\prime} = \mathbf{m}^{\prime T} \mathbf{T} \times (\mathbf{Rm} + \mathbf{T}) = \mathbf{m}^{\prime T} \mathbf{T} \times (\mathbf{Rm}) = \mathbf{z}^{\prime} \mathbf{p}^{\prime} \mathbf{T} \mathbf{x} (\mathbf{zRp})$ $\mathbf{0} = \mathbf{p}^{\prime} (\mathbf{T} \mathbf{x} \mathbf{R}) \mathbf{p} \quad (\mathbf{z}, \mathbf{z}^{\prime} \text{ are scalar})$

Simplifying: $p'^T T \times (Rp) = 0$

► We can write a cross-product a×b as a matrix equation

$$\rightarrow$$
 a \times b = A_{\times} b where

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{\times} = \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}$$

Therefore:
$$0 = \mathbf{p'}^T \mathbf{E} \mathbf{p}$$

- Where $\mathbf{E} = \mathbf{T}_{\times} \mathbf{R}$ is the 3x3 "essential matrix"
- Holds whenever p and p' correspond to the same scene point

Simplifying: $p'^T T \times (Rp) = 0$

- Properties of E
 - **Ep** is the epipolar line of \mathbf{p} ; $\mathbf{p'}^T \mathbf{E}$ is the epipolar line of $\mathbf{p'}$
 - $\triangleright p'^T E p = 0$ for every pair of corresponding points
 - $ightharpoonup 0 = Ee = e'^T E$ where e and e' are the epipoles
 - ▶ E has rank < 3, has 5 independent parameters
 - ▶ **E** tells us *everything* about the epipolar geometry

Linear two-view relations

- ► The Essential Matrix: $0 = p'^T E p$
 - First derived by Longuet-Higgins, Nature 1981
 - also showed how to compute camera R and T matrices from E
 - ► E has only 5 free parameters (three rotation angles, two transl. directions)
 - Only applies when cameras have same internal parameters
 - same focal length, aspect ratio, and image center
 - Usually for normalized camera coordinates

Linear two-view relations (cont.)

- ► The Fundamental Matrix: $0 = p'^T F p$
 - ► $\mathbf{F} = (\mathbf{K'}^{-1})^{\mathsf{T}} \mathbf{E} \mathbf{K}^{-1}$, where \mathbf{K}_{3x3} and $\mathbf{K'}_{3x3}$ contain the internal parameters
 - ► Gives epipoles, epipolar lines

$$K = \begin{pmatrix} f_u & s & c_u \\ 0 & f_v & c_v \\ 0 & 0 & 1 \end{pmatrix}$$

- ► F (like E) is defined only up to a scale factor and has rank 2 (7 free params) [There are 9 elements, but scaling is not significant and det F = 0]
 - ► Generalization of the essential matrix
 - Can't uniquely solve for R and T (or A and A') from F
 - Can be computed using linear methods
 - ▶ R. Hartley, In Defence of the 8-point Algorithm, ICCV 95
 - Or nonlinear methods

Estimating F

- When solving matrix equations, one needs to take care of the conditioning of matrices. In the computation of Fundamental matrix, issues on conditioning needs to be taken care off.
- We will go through the material below which is taken from the paper by Richard Hartley:
 - "In Defence of the Eight-Point Algorithm", IEEE Trans on Pattern Analysis and Machine Intelligence, vol. 19, no. 6, June 1997

 \tilde{p}_1 and \tilde{p}_2 represent the image point on image 1 and image 2 respectively:

$$\widetilde{p}_1 = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \qquad \qquad \widetilde{p}_2 = \begin{bmatrix} u' \\ v' \\ 1 \end{bmatrix}$$

Given a set of point correspondences, i.e. pairs of \tilde{p}_1 and \tilde{p}_2 , we want to compute F using

$$\widetilde{p}_2^T F \widetilde{p}_1 = 0$$

We can write the following to represent $\tilde{p}_2^T F \tilde{p}_1 = 0$

$$\begin{bmatrix} u' & v' & 1 \end{bmatrix} \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = 0$$

$$F$$

Since [u' v' 1] and [u v 1] are all known through point correspondences, F is the only unknown to be solved. We can write the above equation in Ax = 0 form.

 \blacktriangleright The solution for f is the least eigenvector of A^TA .

Once we get the solution for f, we can form the 3x3 matrix F.

- ▶ But F should be rank 2. How to enforce the rank 2 condition ?
 - -- We can use SVD to enforce the rank 2 condition.

Suppose
$$F = U \begin{bmatrix} s_1 & 0 & 0 \\ 0 & s_2 & 0 \\ 0 & 0 & s_3 \end{bmatrix} V^T$$

Let
$$F' = U \begin{bmatrix} s_1 & 0 & 0 \\ 0 & s_2 & 0 \\ 0 & 0 & 0 \end{bmatrix} V^T$$

Then F' is the rank-2 matrix that most closely approximates F in the Frobenius norm sense i.e. |F - F'| is minimum, where $|\cdot|$ denotes the Frobenius norm.

The normalized eight-point algorithm

- Linear solution known as 8-point algorithm, due to Longuet-Higgins (1981)
 - Naïve implementation can be numerically unstable
- [R. Hartley 1995]
 - ► Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels:

$$q_i = S p_i \quad q_i' = S' p_i'.$$

- Use the eight-point algorithm to compute F from the points q_i and q'_i .
- Enforce the rank-2 constraint.
- Output $S^{-1}FS'$.

The normalized eight-point algorithm

Figure 10.4 of the textbook

Objective

- Epipolar geometry
- Two-view approach for R, T

Textbook:

- David A. Forsyth and Jean Ponce, Computer Vision: A Modern Approach, Prentice Hall, New Jersey, 2003.
- R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision 2nd Ed., Cambridge University Press, 2004.

Parts of slides are modified from the reference lecture notes or project pages:

- Prof. S. Seitz and P. Heckbert, Image-based modeling and rendering course notes, CMU.
- J. Weng, T.S. Huang, N. Ahuja, Motion and Structure from Image Sequences, 1993.
- Camera calibration toolbox for matlab.
- D. Frolova, D. Simakov, Slides of "Matching with Invariant Features".

Camera calibration

- Famous tools
 - ► A flexible new technique for camera calibration
 - http://research.microsoft.com/~zhang/calib/
 - ➤ Z. Zhang. A flexible new technique for camera calibration. IEEE Trans. Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000.
 - Camera calibration toolbox for matlab
 - http://www.vision.caltech.edu/bouguetj/calib_doc/
 - OpenCV camera calibration
 - Tsai's camera model
 - http://www.cs.cmu.edu/~rgw/TsaiDesc.html
 - ► "A versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses", Roger Y. Tsai, IEEE J. Robotics and Automation, Vol. RA-3, No. 4, 1987, pages 323-344.

Triangulation (stereo)

Given some points in correspondence across two or more images (taken from calibrated cameras), $\{(u_i, v_i)\}$, compute the 3D location X

Triangulation (stereo)

- Constructing 3D structure from two views.
 - H.C. Longuet-Higgins (Nature '81).
 - J.Weng et al. The two-view approach (PAMI'89).

- Given some points in correspondence across two images (in a normalized camera model), $\{(u_i, v_i)\}$,
 - Estimate R, T from corresponding points.
 - 3D position estimation from triangulation.
 - (optional) non-linear optimization

The two-view approach

▶ Without loss of generality, the images of different view direction *d1*, *d2* is regarded as a rigid-body motion of an object between *t1*, *t2*.

 $x_i = (x_i, y_i, z_i)$ t is the 3D position of point P_i at time t_1 .

 x_i '= (x_i', y_i', z_i') t is the 3D position of point P_i at time t_2 .

 $X_i = (u_i, v_i, 1)$ t is the projected vector of P_i at time t_1 .

 $X_i'=(u_i', v_i', 1)$ t = $(x_i'/z_i', y_i'/z_i', 1)$ t is the projected vector of P_i at time t_2 .

The two-view approach (1)

▶ Step (1). Solving for essential matrix E.

$$0 = \mathbf{p'}^T \mathbf{E} \mathbf{p}$$

$$A = \begin{bmatrix} u_1u_1' & u_1v_1' & u_1 & v_1u_1' & v_1v_1' & v_1 & u_1' & v_1' & 1 \\ u_2u_2' & u_2v_2' & u_2 & v_2u_2' & v_2v_2' & v_2 & u_2' & v_2' & 1 \\ \vdots & \vdots \\ u_nu_n' & u_nv_n' & u_n & v_nu_n' & v_nv_n' & v_n & u_2' & v_n' & 1 \end{bmatrix}$$

 $ightharpoonup \min_h ||Ah||$, subject to ||h|| = 1.

$$E = \begin{bmatrix} E_1 & E_2 & E_3 \end{bmatrix} = \sqrt{2} \begin{bmatrix} h_1 & h_4 & h_7 \\ h_2 & h_5 & h_8 \\ h_3 & h_6 & h_9 \end{bmatrix}$$

The solution of h is the unit eigenvector of A^tA associated with the smallest eigenvalue.

The two-view approach (2)

- ▶ Step (2). Determining a unit vector T_s with $T_0 = \pm T_s$.
 - $ightharpoonup \min_{T_s} || E^t T_s ||$, subject to $|| T_s || = 1$.

The solution of T_s is the unit eigenvector of EE^t associated with the smallest eigenvalue.

$$E = T_{\times}R = \begin{bmatrix} E_1 & E_2 & E_3 \end{bmatrix} = \begin{bmatrix} T_{\times}R_1 & T_{\times}R_2 & T_{\times}R_3 \end{bmatrix}$$

$$\therefore E_1, E_2, E_3 \perp T \implies E^t T_s = 0$$

*T*_s vs. **e**'

 $if(\Sigma_i(T_s \times X_i') \bullet (E X_i) < 0), T_s = -T_s.$

The two-view approach (3)

- \triangleright Step (3). Determining rotation matrix R.
 - \triangleright Without noise, W=R

$$W = [(E_1 \times T_s + E_2 \times E_3) \ (E_2 \times T_s + E_3 \times E_1) \ (E_3 \times T_s + E_1 \times E_2)]$$

Using the identity equation: (a x b) x c = (a \cdot c) b – (b \cdot c) a

With noise,

 $\min_{R} || R - W ||$, subject to: R is a rotation matrix.

The two-view approach (4)

Step (4). Checking T = 0, If $T \neq 0$, determine the sign of T_0 . if for all $i = 1 \sim n$, $||X_i' \times RX_i||/(||X_i'|| \cdot ||X_i||) \leq \alpha$ then report $T \approx 0$.

else if $(\Sigma_i(T_s \times X_i') \bullet (X_i' \times R X_i) > 0)$, then $T_0 = T_s$, otherwise $T_0 = -T_s$.

The two-view approach (5)

▶ Step (5). If $T \neq 0$, estimate relative depths.

To find
$$Z_i = \left(\frac{z_i^*}{\|T\|}, \frac{z_i}{\|T\|}\right)^t = \left(\widetilde{z}_i^*, \widetilde{z}_i\right)^t$$

by
$$\min \left\| \begin{bmatrix} X_i & -RX_i \end{bmatrix} Z_i - T^0 \right\| \qquad \begin{aligned} & \mathbf{m'} = \mathbf{Rm} + \mathbf{T} \\ & \mathbf{z'x'} = \mathbf{zRx} + \mathbf{T} \\ & \mathbf{z'x'} - \mathbf{zRx} = \mathbf{T} \end{aligned}$$

Note: The T_0 is an unit vector.

We do not know the scale |T| without additional reference.

The nonlinear optimization

- Two-view linear algorithms are often easily disturbed by noise.
 - More calibration points.
 - ► Nonlinear optimization.
- First, take the result of the two-view linear algorithm as an initial guess.
- Approximate the R, T by $\min_{m} \{||f(u,m)||\}$ in a nonlinear least square approach
 - ► E.g. the Levenberg-Marquardt method, or the Gauss-Newton method.
 - f(u,m) = prj(m, y(u,m)) u

where u is the observed projected position, m is the motion parameters(R,T), y(u,m) is the best 3D positions of P, and prj(m, x) is the projected position of the input structure x and motion m.

Limits of the triangulation method

- Motion results from R and T could be ambiguous:
 - Insufficient (x or y) rotational variation
 - Insufficient depth variation
- Camera calibration is important (for K matrix)
- Need good feature point trackers or manual assistance