(19) 世界知的所有権機関 国際事務局

- | 1881 | 110 | 120 | 1 100 | 1 20 | 1 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |

(43) 国際公開日 2002 年5 月30 日 (30.05.2002)

PCT

(10) 国際公開番号 WO 02/42270 A1

(51) 国際特許分類7:

C07D 211/26,

401/12, 401/14, 417/12, 413/12, 405/14, 405/12, C07H 15/26, A61K 31/706, 31/4545, 31/445, 31/454, 31/501, 31/506, 31/551, 31/7052, A61P 7/02, 9/10

(21) 国際出願番号:

PCT/JP01/10176

(22) 国際出願日:

2001年11月21日(21.11.2001)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2000-356146

2000年11月22日(22.11.2000) JF

特願 2000-390321

2000年12月22日(22.12.2000) JP

(71) 出願人 /米国を除く全ての指定国について): 山之内 製薬株式会社 (YAMANOUCHI PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒103-8411 東京都中央区日本橋本 町二丁目3番11号 Tokyo (JP). (72) 発明者; および

- (75) 発明者/出願人 /米国についてのみ): 石原 司 (ISHI-HARA, Tsukasa) [JP/JP]. 平山復志 (HIRAYAMA, Fukushi) [JP/JP]. 菅沢形造 (SUGASAWA, Keizo) [JP/JP]. 古賀祐司 (KOGA, Yuji) [JP/JP]. 門倉 健(KADOKURA, Takeshi) [JP/JP]. 重永健詞 (SHIGE-NAGA, Takeshi) [JP/JP]; 〒305-8585 茨城県つくば市御幸が丘21 山之内製薬株式会社内 [baraki (JP).
- (74) 代理人: 長井省三(NAGAI, Shozo); 〒174-8612 東京都板橋区蓮根三丁目17番1号 山之内製薬株式会社 特許部内 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DF, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許

/続葉有/

(54) Title: SUBSTITUTED BENZENE DERIVATIVES OR SALTS THEREOF

(54) 発明の名称: 置換ペンゼン誘導体又はその塩

(57) Abstract: Compounds having an anticoagulant effect based on the inhibition of activated blood coagulation factor X and being useful as anticoagulants or preventives/remedies for diseases induced by thrombosis or embolism. Namely, compounds such as 4'-bromo-2'-[(5-chloro-2-pyridyl)carbamoyl]-6'-β-D-galactopyranosyloxy-1-isopropylpiperidine-4-carboxanilide and 2'-(2-ac-etamido-2-deoxy-β-D-glucopyranosyloxy)-4'-bromo-6'-[(5-chloro-2-pyridyl)carbamoyl]-1-isopropylpiperidine-4-carboxanilide and salts thereof are used as the active ingredient.

(57) 要約:

活性化血液凝固第×因子の阻害に基づく抗凝固作用を有し、血液凝固抑制剤又は血栓若しくは塞栓によって引きおこされる疾病の予防・治療剤として有用な化合物を提供する。 4' - プロモー 2' - [(5-クロロ-2-ピリジル) カルバモイル] - <math>6' - β - D - ガラクトピラノシルオキシー 1 - 1

WO 02/42270 A1

CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), **ヨーロッパ特** 2文字コード及び他の略語については、 定期発行される 許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, のガイダンスノート」を参照。

添付公開書類: — 国際調査報告書

明細書

置換ベンゼン誘導体又はその塩

技術分野

本発明は、医薬、特に活性化血液凝固第X因子阻害剤として有用な、新規な置換ベンゼン誘導体又はその塩及びそれらの医薬に関する。

背景技術

近年、生活習慣の欧米化、人口の高齢化等に伴い、心筋梗塞、脳血栓症、末梢動脈血栓症をはじめとする血栓塞栓性疾患は年々増加し、その治療の社会的重要性は益々高まっている。抗凝固療法は、線溶療法及び抗血小板療法とともに血栓症の治療及び予防における内科的治療法の一端を担っている(総合臨床41:2141-2145,1989)。特に、血栓症の予防においては長期投与に耐えうる安全性と、確実且つ適切な抗凝固活性の発現が必須となる。ワルファリンカリウムは、唯一の経口抗凝固剤として世界中で繁用されているが、その作用機序に基づく特性から抗凝固能のコントロールが難しく(J. Clinical Pharmacology 32,196-209,1992及び N.Eng. J. Med. 324(26)1865-1875,1991)、臨床的には非常に使用しづらい薬剤であり、より有用で使いやすい抗凝固剤の登場が望まれていた。

トロンビンは、凝固の最終段階であるフィブリノーゲンのフィブリンへの転化を司るばかりか、血小板の活性化及び凝集にも深く関与し(松尾 理編,T-PAとPro-UK,学際企画,pp5-40 血液凝固,1986)、その阻害剤は創薬のターゲットとして長い間抗凝固剤研究の中心にあった。しかしながら、経口投与でのバイオアベイラビリティ(Bioavailability)が低く、安全性面でも問題があり(Biomed. Biochim. Acta 44,1201-1210,1985)、現在のところ経口投与可能なトロンビン阻害剤は上市されていない。

活性化血液凝固第X因子は外因系及び内因系凝固カスケード反応の合流点に位置するキー エンザイム(Key Enzyme)であり、トロンビンよりも上流に位置するため本因子の阻害はトロンビン阻害よりも効率的で且つ、特異的に凝固系を阻害できる可能性がある(THROMBOSIS RESEARCH(19),339-349,1980)。

活性化血液凝固第X因子阻害作用を示す化合物としては、アミジノナフチルアルキルベンゼン誘導体又はその塩が知られている(特開平5-208946号、

Thrombosis Haemostasis 71(3), 314-319,1994 及び Thrombosis Haemostasis 72(3),393-396,1994) 。

また、WO96/16940には、下記一般式で示されるアミジノナフチル誘導体又はその塩が、活性化血液凝固第X因子阻害作用を示す化合物として記載されている。

(式中の記号は公報参照。)

また、WO99/00121、WO99/00126、WO99/00127、WO99/00128、WO00/39111、WO00/39117、及びWO00/39118には、Xa因子阻害剤として下記一般式で示されるフェニレンジアミド化合物等が記載されている。

$$A_{\parallel}^{5} A_{A}^{6} L^{1} Q^{1}$$

(式中の記号はそれぞれの公報参照。)

更に、WO99/32477には、抗凝固剤として下記一般式で示される広範な 化合物が記載されている。

$$(R^1)_m$$
 $E - C$ $(R^4)_n$ $D - R^3$

(式中の記号は公報参照。)

活性化血液凝固第X因子阻害剤は、抗凝固療法において、トロンビン阻害剤よりも効率的で且つ、特異的な凝固系の阻害を期待できる。従って、上記の公知化合物とは化学構造が異なり、経口投与が可能であって、更に優れた効果を有する、選択的活性化血液凝固第X因子阻害剤の創製が切望されている。

発明の開示

本発明者等は種々研究した結果、ベンゼン環又はヘテロ環(A環)と、ベンゼン環がアミド結合等(X¹)を介して結合し、該ベンゼン環がさらにアミド結合等(X²)を介してピペリジン環又はベンゼン環(B環)と結合し、かつ中央のベンゼン環が必ず-OR⁴(-OH、-O-SO₃H又は-O-糖残基)を有し、R¹が必ず水素原子以外の置換基(ハロゲン原子、ハロゲン原子で置換されていても良い低級アルキル、又はハロゲン原子で置換されていても良い低級アルコキシ)を有することを化学構造上の特徴とする、下記一般式(I)で示される置換ベンゼン誘導体又はその塩が、優れた活性化血液凝固第X因子阻害作用を有し、特に優れた経口活性を有することを見出し、本発明を完成した。

即ち本発明は、下記一般式(I)で示される置換ベンゼン誘導体又はその塩、並びにそれらを有効成分とする医薬組成物、特に活性化血液凝固第X因子阻害剤に関する。

(上記式中の記号は、それぞれ以下の意味を有する。)

 $X^1:-C$ (=O) $-NR^5-$ 、 $-NR^5-C$ (=O) -、 $-CH_2-NR^5-$ 、又は $-NR^5-CH_2-$ 、 $X^2:-C$ (=O) $-NR^6-$ 、 $-NR^6-C$ (=O) -、 $-CH_2-NR^6-$ 、又は $-NR^6-CH_2-$ 、 $R^1:$ ハロゲン原子、ハロゲン原子で置換されていても良い低級アルキル、又はハロゲン原子で置換されていても良い低級アルコキシ、

 R^2 、及び R^3 :同一又は異なって、水素原子、ハロゲン原子、CN、 $-NH-SO_2-低級アルキル、<math>-NH-CO$ -低級アルキル、-CO-低級アルキル、-CO-低級アルコキシ、 $-CO-NH_2$ 、ハロゲン原子で置換されていても良い低級アルキル、ハロゲン原子で置換されていても良い低級アルキル、

R⁴: 水素原子、-SO₃H、又は糖残基、

A環:ベンゼン環、又はN、S、及びOからなる群より選択される1種又は2種以上のヘテロ原子を1~4個含有する5又は6員ヘテロ環、

B環:R⁴が水素原子、又は-SO₃Hのとき、窒素原子がR⁷で置換されたピペリジン環、

R⁴が糖残基のとき、窒素原子がR⁷で置換されたピペリジン環、又は

で置換されたベンゼン環

R⁵、及びR⁶:同一又は異なって、水素原子、又は低級アルキル、

 R^7 、及び R^8 : 水素原子、低級アルキル、 $-SO_2$ -低級アルキル、又はN、S、及びOからなる群より選択される 1 種又は 2 種以上のヘテロ原子を 1 ~ 4 個含有する 5 又は 6 員ヘテロ環、

但し、 X^2 が $-NR^6-C$ (=O) $-かつR^4$ が水素原子の場合、A環は、N、S、及びOからなる群より選択される1種又は2種以上のヘテロ原子を1~4個含有する5又は6員ヘテロ環を意味する)

本発明化合物(1)は、A環がベンゼン環又はヘテロ環であり、アミジノナフチル基等を有さない点、 X^2 部分が-C(=O) $-NR^6$ $-、-NR^6$ -C(=O) $-、-CH_2$ $-NR^6$ $-、又は<math>-NR^6$ $-CH_2$ -であり、エーテル結合等を有さない点等において、特開平 5 - 2 0 8 9 4 6 号、及びWO 9 6 / 1 6 9 4 0 とは構造を異にする。

また、本発明化合物(I)は、 R^4 に必ず水素原子、 $-SO_3H$ 、又は糖残基を有する点、B環に、窒素原子が R^7 で置換されたピペリジン環、又は

で置換されたベンゼン環、

を有する点等において、WO99/00121、WO99/00126、WO99 /00127、WO99/00128、WO00/39111、WO00/391 17、及びWO00/39118とは構造を異にする。

更に本発明化合物(1)は、B環にチアゾール環を有しない点、R⁴に必ず水素原子、-SO₃H、又は糖残基を有する点等において、WO99/32477に具体的

に記載された化合物と構造を異にするものである。

以下、本発明化合物(1)につき詳述する。

本明細書中の一般式の定義において「低級」なる用語は、特に断らない限り、炭素数が1~6の直鎖又は分枝状の炭素鎖を意味する。従って「低級アルキル」としては、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、tert-ペンチル、1-メチルブチル、2-メチルブチル、3-メチルプロピル、ヘキシル、イソヘキシル、1-メチルペンチル、2-メチルペンチル、3-メチルペンチル、1,1-ジメチルブチル、1,2-ジメチルブチル、2,2-ジメチルブチル、1,3-ジメチルブチル、1,1-エチルブチル、2,3-ジメチルブチル、1,2-トリメチルプロピル、1,2,2-トリメチルプロピル、1-エチルプロピル、1-エチループロピル、1-エチループロピル、1-エチループロピル、1-エチループロピル、1-エチループロピル、1-エチル・エチルが特に好ましい。また「低級アルコキシ」は「つー低級アルキル」を意味し、具体的にはメトキシ、エトキシ、プロポキシ、イソプロポキシ等が挙げられるが、これらに限定されるものではない。メトキシ、エトキシが好ましい。

「ハロゲン原子」はフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 特に塩素原子、臭素原子が好ましい。

「ハロゲン原子で置換されていても良い低級アルキル」又は「ハロゲン原子で置換されていても良い低級アルコキシ」は、上述の「低級アルキル」又は「低級アルコキシ」及び、それらの1~6個の水素原子が「ハロゲン原子」で置換されたものであり、トリフルオロメチル、ジフルオロメチル、フルオロメチル、クロロメチル、2-クロロエチル、2-プロモエチル、及びトリフルオロメトキシ、ジフルオロメトキシ、フルオロメトキシ、クロロメトキシ等が挙げられるが、これらに限定されるものではない。特にフルオロメチル、フルオロメトキシが好ましい。

「糖残基」とは単糖の糖残基を意味する。グルコース、マンノース、ガラクトース、アラビノース、キシロース、リボース、N-アセチルグルコサミン、グルクロン酸、マンヌロン酸等の糖から1個、特に1位の水酸基を除いた後に残る糖残基が挙げられるがこれらに限定されるものではなく、その水酸基を低級アルコキシ基等

で置換された糖残基も含まれる。好ましくはグルクロン酸の糖残基が挙げられる。

「N、S、及びOからなる群より選択される1種又は2種以上のヘテロ原子を1~4個含有する5又は6員ヘテロ環」としては、例えば、ピリジン、ピリミジン、ピラジン、ピリダジン、トリアジン、ピロール、フラン、チオフェン、チアゾール、イミダゾール、イミダゾリン、オキサゾール、イソチアゾール、ピラゾール、イソキサゾール、トリアゾール、テトラゾール等が挙げられるが、それらに限定されるものではない。該ヘテロ環は不飽和環に限定されず、ピロリジン、イミダゾリジン、ピラゾリジン、ピペリジン、ピペラジン、モルホリン等の飽和環も含むものである。また、ベンゼン環と縮合したヘテロ環である、キノリン、イソキノリン、キノキサリン、ベンズイミダゾール等も含まれる。特にピリジン環が好ましい。更に、当該ヘテロ環がフラン、又はチオフェンであり、かつR¹が2ークロロ、又は2ーメチルを表す場合は、フラン、チオフェンの5位以外にX¹は位置する。

また、 X^1 は-C(=O) $-NR^5$ -、 $-NR^5$ -C(=O) -、 $-CH_2$ - NR^5 -、又は $-NR^5$ -、又は $-NR^5$ -C(=O) -がより好ましい。更に、 X^2 は-C(=O) $-NR^6$ -、 $-NR^6$ -C(=O) -、 $-CH_2$ - NR^6 -、又は $-NR^6$ - CH_2 -を表すが、 $-NR^6$ -C(=O) -、又は $-NR^6$ - CH_2 -がより好ましい。

また、R⁵、及びR⁶は同一又は異なって、水素原子、又は低級アルキルを表すが、 水素原子がより好ましい。また、R⁷、及びR⁸が低級アルキルを表す場合は、特に イソプロピルが好ましく、ヘテロ環を表す場合はピリジン環が好ましい。

A環はベンゼン環、又はピリジン環であることが望ましい。

B環はR⁴が水素原子、又は-SO₃Hのとき、窒素原子がR⁷で置換されたピペリ

ジン環、即ち P⁷ を意味する。

B環はR⁴が糖残基のとき、窒素原子がR⁷で置換されたピペリジン環、又は

『で置換されたベンゼン環(窒素原子が R ®で置換された 1 , 4 -ジアゼピン-

1-イル基で置換されたベンゼン環)、即ち P[®] を意味する。

本発明化合物のうち、特に好ましい化合物としては、4'ープロモー2'ー [(5-クロロー2ーピリジル)カルバモイル]ー6'ーβーDーガラクトピラノ シルオキシー1-イソプロピルピペリジン-4-カルボキサニリド、2'-(2-アセトアミドー 2 ーデオキシー β ー D ーグルコピラノシルオキシ) ー 4 'ープロモ -6'-「(5-クロロ-2-ピリジル)カルバモイル1-1-イソプロピルピペ リジンー4ーカルボキサニリド、4'ープロモー2'ー[(5ークロロー2ーピリ ルピペリジン-4-カルボキサニリド、5-クロロ-3-[(5-クロロ-2-ピ リジル)カルバモイル]-2-[(1-イソプロピルピペリジン-4-カルボニ **ル)アミノ]フェニル β-D-グルコピラノシドウロニック アシッド、5-ブロ** モー3-「(5-クロロー2-ピリジル)カルバモイル]-2-「(1-イソプロ **ピルピペリジン-4-カルボニル)アミノ1 フェニル β-D-グルコピラノシドウ** ロニック アシッド、4'ークロロー2'ー[(5ークロロー2ーピリジル)カル バモイル] - 6'-ヒドロキシー1-イソプロピルピペリジン-4-カルボキサニ リド、4'ープロモー2'ー[(5ークロロー2ーピリジル)カルバモイル]ー 6'ーヒドロキシー1ーイソプロピルピペリジン-4ーカルボキサニリド、2'ー [(5ープロモー2ーピリジル)カルバモイル]ー4'ークロロー6'ーヒドロキ シー1-イソプロピルピペリジン-4-カルボキサニリド、5-クロロ-N-(5 **ークロロー2ーピリジル)-3ーヒドロキシー2ー{[(1-イソプロピルー4ー** ピペリジル)メチル]アミノ}ベンズアミド、N-(5-ブロモ-2-ピリジル) -5-クロロ-3-ヒドロキシ-2-{[(1-イソプロピル-4-ピペリジル) メチル] アミノ} ベンズアミド、3-[(4-メトキシベンゾイル) アミノ]-2 - { [4-(4-メチル-1, 4-ジアゼパン-1-イル) ベンゾイル] アミノ} フェニル β-D-グルコピラノシド、及び3-[(4-メトキシベンゾイル)アミ ノ] -2-{[4-(4-メチル-1, 4-ジアゼパン-1-イル) ベンゾイル]

アミノ} フェニル β-D-グルコピラノシドウロニック アシッドが挙げられる。

また、本発明化合物には、幾何異性体、互変異性体、光学異性体等の各種の立体異性体の混合物や単離されたものが含まれる。

本発明化合物は、酸付加塩を形成する場合がある。また、置換基の種類によっては塩基との塩を形成する場合もある。かかる塩としては、製薬学的に許容可能な塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸等の鉱酸、ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、フマール酸、マイレン酸、乳酸、リンゴ酸、酒石酸、クエン酸、メタンスルホン酸、エタンスルホン酸等の有機酸、アスパラギン酸、グルタミン酸等の酸性アミノ酸との酸付加塩、ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム等無機塩基、メチルアミン、エチルアミン、エタノールアミン等の有機塩基、リジン、オルニチン等の塩基性アミノ酸との塩やアンモニウム塩等が挙げられる。

更に本発明には、本発明化合物の水和物、製薬学的に許容可能な各種溶媒和物や結晶多形等も含まれる。なお、当然のことながら、本発明は後記実施例に記載された化合物に限定されるものではなく、一般式(I)で示される置換ベンゼン誘導体、又はその製薬学的に許容される塩の全てを包含するものである。

また、本発明化合物には、生体内において代謝されて前記一般式(I)を有する化合物、又はその塩に変換される化合物、いわゆるプロドラッグもすべて含むものである。本発明化合物のプロドラッグを形成する基としては、Prog. Med. 5:2157-2161(1985)に記載されている基や、広川書店1990年刊「医薬品の開発」第7巻分子設計163~198頁に記載されている基が挙げられる。特に本発明化合物のプロドラッグとしては、水酸基を有するプロドラッグが生体内で代謝を受け、一般式(I)で示される配糖体となるプロドラッグが考えられるが、そのようなプロドラッグも本発明に含まれるものである。

更に本発明には、当然ながら生体内で代謝を受けて生成する一般式(I)で示される配糖体も含まれる。

(製造法)

以下に本発明化合物の代表的な製造法を説明する。

本発明化合物(I)中R⁴が水素原子の場合、以下に示す方法で得ることができる。

(式中、A環、 X^1 、 X^2 、 R^1 、 R^2 、及び R^3 は前記の意味を有し、Q、及びWはQが-NH₂、又は-NH-低級アルキルを意味する場合、Wは-COOH、-CHO、又は-CH₂-脱離基を意味し、Qが-COOH、-CHO、-CH₂-脱離基を意味する場合、Wは-NH₂、又は-NH-低級アルキルを意味する。 P^1 は水素原子、低級アルキル、又はアミンの保護基を意味し、 P^2 は水素原子、又はフェノールの保護基を意味する。脱離基としては、ハロゲン原子、 $-O-SO_2$ -アルキル、 $-O-SO_2$ -アリール等が挙げられる。)

工程A

化合物(II)と化合物(IV)の組み合わせからなるカルボン酸とアミン、アルデヒドとアミン、又は $-CH_2$ -脱離基を持つ化合物とアミンを縮合させ、化合物(Ia)を合成する反応である。

カルボン酸とアミンの組み合わせの場合、本反応は好ましくは縮合剤の存在下常 法のアシル化反応に従い、アミド結合を形成すれば良い。

縮合剤としては、例えばN, N-ジシクロヘキシルカルボジイミド(DCC)、1-エチル-3-[3-(N, N-ジメチルアミノ)プロピル]カルボジイミド、カルボニルジイミダゾール、ジフェニルホスホリルアジド(DPPA)やジエチルホスホリルシアニド等を好適に用いることができる。

また、カルボン酸を対応するカルボン酸の活性誘導体に導いた後にアミンと縮合することもできる。

カルボン酸の活性誘導体としてはp-ニトロフェノール等のフェノール系、1-ヒ ドロキシスクシンイミド、1-ヒドロキシベンゾトリアゾール等のN-ヒドロキシア

ミン系の化合物と反応させて得られる活性エステル、炭酸モノアルキルエステル、 又は有機酸と反応させて得られる混合酸無水物や塩化ジフェニルホスホリル、N-メ チルモルホリンとを反応させて得られるリン酸系混合酸無水物;エステルをヒドラ ジン、亜硝酸アルキルと反応させて得られる酸アジド;酸クロライド、酸ブロマイ ド等の酸ハライド、対称型酸無水物等が挙げられる。通常前記反応は、溶媒中にお いて、冷却~室温下に行うが、アシル化反応の種類により、無水条件下に実施しな ければならない場合もある。

溶媒としては、反応に関与しない溶媒、例えばジメチルホルムアミド、ジオキサン、テトラヒドロフラン、エーテル、ジクロロエタン、ジクロロメタン、クロロホルム、四塩化炭素、ジメトキシメタン、ジメトキシエタン、酢酸エチル、ベンゼン、アセトニトリル、ジメチルスルホキシド、エタノール、メタノール、水等やこれらの混合溶媒等を用いることができるが、適用する方法に応じ適宜選択するのが好ましい。

また、適用する方法によっては、N-メチルモルホリン、トリエチルアミン、トリメチルアミン、ピリジン、水素化ナトリウム、カリウム-t-ブトキシド、ブチルリチウム、ソディウムアミド、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸セシウム等の塩基の存在下で、又はこれら塩基を溶媒として反応させることにより、反応が円滑に進行する場合がある。

また、ここに記載の反応以外でも、アミド結合を形成する反応であれば、いずれ の反応も用いることができる。

アルデヒドとアミンの組み合わせの場合、本反応は、還元剤の存在下常法の還元 的アミノ化反応に従えばよい。

還元剤としては、例えば水素化ホウ素ナトリウム、水素化シアノホウ素ナトリウム、トリアセトキシ水素化ホウ素ナトリウム、ポラン-トリメチルアミン錯体等を好適に用いることができる。また、パラジウム-炭素、酸化白金等の触媒存在下、常圧~加圧下、接触水素添加を行っても良い。本反応は、アルコール又は前記反応に関与しない溶媒中、冷却下~加熱下行われる。また、適用する方法によっては、酢酸、トルエンスルホン酸、硫酸等の酸の存在下、又はこれらを溶媒として反応させることにより反応が円滑に進行する場合がある。

-CH。-脱離基を持つ化合物とアミンの組み合わせの場合、本反応は、常法のN-

アルキル化反応に従えばよい。

本反応は、前記反応に関与しない溶媒中、冷却下~加熱下行われる。また、適用 する方法によっては、前記塩基の存在下、又はこれら塩基を溶媒として反応させる ことにより、反応が円滑に進行する場合がある。

工程B

化合物(III)と化合物(V)の組み合わせからなるカルボン酸とアミン、アルデヒドとアミン、又は $-CH_2$ -脱離基を持つ化合物とアミンを反応させ、化合物(Ia)を合成する反応である。本反応は工程Aと同様の方法で実施される。

本発明化合物(Ia)中P¹がアミンの保護基である場合、工程A、Bにおいてその保護基が切断されない場合には、例えばトリフルオロ酢酸等の酸による切断、接触水素添加等の還元による切断等、その保護基P¹を切断するのに適した方法を用いて切断することにより本発明化合物(I)中R⁴が水素原子の化合物を得ることができる。また、本発明化合物(Ia)中P²がフェノールの保護基である場合、工程A、又はBにおいてその保護基が切断されない場合には、例えば、接触水素添加等の還元による切断、ペンタメチルベンゼンとトリフルオロ酢酸による切断、水酸化ナトリウム等の塩基による加水分解による切断等、その保護基P²を切断するのに適した方法を用いて切断することにより本発明化合物(I)中R⁴が水素原子の化合物を得ることができる。

ここでP¹に例示されるアミンの保護基としては、通常アミンの保護に用いられる基であれば特に制限はなく、例えば低級アルコキシカルボニル、アラルキルオキシカルボニル、アシル、低級アルキル、アラルキル、スルホニル等が挙げられる。

また、ここでP²に例示されるフェノールの保護基としては、通常フェノールの保護に用いられる基であれば特に制限はなく、例えば置換されてもよい低級アルキル、アラルキル、トリ低級アルキルシリル、低級アルキルカルボニル、低級アルキルオキシカルボニル、スルホニル等が挙げられる。「アラルキル」としては前記アルキルの水素原子がアリールに置換された基を意味し、具体的にはベンジル、フェニルエチル等が挙げられる。「アシル」としては、具体的にはホルミル、アセチル、プロピオニル、ブチリル等が挙げられる。

また、以下の反応式に示す方法も特に有効な方法として挙げられる。

(式中、A環、P¹、P²、R¹、R²、R³、R⁵及びR⁶は前記の意味を有する) 化合物(VI)とアミン(IVa)又は、化合物(VII)とアミン(Va)を反応させア ミド結合を形成し、化合物(Ib)又は、化合物(Ic)を得る反応であり、前記反応 に関与しない溶媒中、室温~加温下に反応させることにより行われる。また、適用 する方法によっては、N-メチルモルホリン、トリエチルアミン、トリメチルアミン、 ピリジン、水素化ナトリウム、カリウム-t-ブトキシド、ブチルリチウム、ソディ ウムアミド等の塩基の存在下で、又はこれら塩基を溶媒として反応させることによ り、反応が円滑に進行する場合がある。

本発明化合物(I) 中R⁴が水素原子の化合物を用いて、トリメチルアミンーサルファートリオキサイド錯体等を用いスルホン酸化することにより、本発明化合物(I) 中R⁴が-SO₃Hの化合物を得ることができる。

本発明化合物(I)中R⁴が糖残基の場合、R⁴が水素原子の化合物、あるいは、背景技術に引用した特許公報記載の公知の方法で合成することができる化合物を用い、以下に示す方法で得ることができる。

(式中、A環、B環、 R^1 、 R^2 、 R^3 、 X^1 、及び X^2 は前記の意味を有し、Yは脱離基、 R^3 は保護基を有しても良い糖残基を意味する。)

工程C

化合物(Id)と化合物(VIII)の組み合わせからなるフェノールと糖供与体を、好ましくは活性化剤の存在下反応させ、保護基を有しても良い糖残基を有する化合物(Ie)を合成する反応である。本反応は常法の配糖化反応に従えばよい。代表的な方法としては、有機合成化学協会誌第50巻第5号(1992年)378~390頁や、丸善1992年刊「実験科学講座」第26巻有機合成VIII267~354項に記載されている方法が挙げられる。

糖供与体としては、例えば糖の1位に脱離基を有する糖誘導体が挙げられる。その脱離基としては、ハロゲン、チオアルキル、チオヘテロアリール、アシルオキシ、トリクロロアセトイミデート、ジアリールホスファート、ジアリールホスフィンイミダート、テトラメチルホスホロアミダート、ジアルキルホスファイト等が挙げられる。

縮合剤としては、炭酸銀、トリフルオロメタンスルホン酸銀、過塩素酸銀、酸化銀、水酸化ナトリウム、炭酸カリウム、ナトリウムメトキシド、水素化ナトリウム、ジアザビシクロウンデセン、トリメチルシリルトリフラート、ボロントリフルオリド、メチルトリフラート、四フッ化ケイ素、塩化スズ、パラトルエンスルホン酸及びその塩、トリフルオロメタンスルホン酸無水物、臭化銅、臭化水銀、Nープロモスキシイミド等を用いることができる。

また、トリフェニルホスフィン、ジエチルアゾジカルボキシラート等を活性化剤 とし、例えば1位に水酸基を有する糖供与体を用いることもできる。

通常前記反応は、溶媒中において、冷却下〜加熱下行われる。また、配糖化反応 の種類により、無水条件下に実施しなければならない場合もある。

溶媒としては、反応に関与しない不活性溶媒、例えばジメチルホルムアミド、ジオキサン、テトラヒドロフラン、エーテル、ジクロロエタン、ジクロロメタン、クロロホルム、四塩化炭素、ジメトキシメタン、ジメトキシエタン、酢酸エチル、ベンゼン、トルエン、アセトニトリル、ジメチルスルホキシド、メタノール、エタノール等やこれらの混合溶媒等を用いることができるが、適用する方法に応じ適宜選

択するのが好ましい。

また、ここに記載の反応以外でも、グリコシド結合を形成する反応であれば、いずれの反応も用いることができる。

本発明化合物(Ie)中、R°が保護基を有しても良い糖残基を意味する場合、工程 Cにおいてその保護基が切断されない場合には、例えば炭酸ナトリウム等の塩基に よる加水分解による切断、接触水素添加等の還元による切断等、その保護基を切断 するのに適した方法を用いて切断することにより、R°が保護基を有していない糖残 基を意味する本発明化合物を得ることもできる。

ここで保護基としては、通常の水酸基あるいはカルボキシル基等の保護に用いられる基であれば特に制限はなく、例えば置換基を有しても良い低級アルキル、アラルキル、トリ低級アルキルシリル、アシル等が挙げられる。「アラルキル」としては前記低級アルキルの水素原子がアリールに置換された基を意味し、具体的にはベンジル等が挙げられる。「アシル」としては、具体的にはアセチル、プロピオニル、イソプロピオニル、ベンゾイル等が挙げられる。

なお、本発明化合物の原料化合物は、以下に示す代表的な製造法で得ることができる。

(式中、 R^3 、 X^2 、 P^1 、 P^2 、Q、及びWは前記の意味を有し、Uは-COOH、-COOP³、-NH₂、-NH-低級アルキル、-NH-P⁴、-N(P⁴)-低級アルキル、NO₂、-CHO、-CH₂OH、-低級アルキル、又は-CH₂-脱離基を意味する。 P^3 、 P^4 はそれぞれカルボキシルの保護基、アミンの保護基を意味する。)

化合物(IX)と化合物(V)の組み合わせからなるカルボン酸とアミン、アルデヒドとアミン、又は $-CH_2$ -脱離基を持つ化合物とアミンを縮合させ、化合物(IIa)を得る反応である。本反応は、前記工程Aと同様にして実施される。化合物(IIa)中

Uが NO_2 を意味する場合は還元反応を行うことによりUが $-NH_2$ の化合物を得ることができ、Uが-COOH、 $-COOP^3$ を意味する場合は、還元反応を行うことによりUが-CHOの化合物を得ることができ、Uが $-CH_2OH$ 、-低級アルキルを意味する場合は酸化反応を行うことによりUが<math>-CHO、又は-COOHの化合物を得ることができ、Uが $-COOP^3$ 、 $-NH-P^4$ 、 $-N(P^4)$ -低級アルキルを意味する場合は、例えば水酸化ナトリウム等の塩基又は塩酸等の酸を用いる加水分解による切断、接触水素添加等の還元による切断、トリフルオロ酢酸等による酸による切断等、それぞれの保護基を切断するのに適した方法で切断することによりUが<math>-COOH、 $-NH_2$ 、又は-NH-低級アルキルの化合物を得ることができる。

(式中、A環、R¹、R²、R³、X¹、P²、Q、W及びUは前記の意味を有する。)

化合物(IX)と化合物(IV)の組み合わせからなるカルボン酸とアミン、アルデヒドとアミン、又は $-CH_2$ -脱離基を持つ化合物とアミンを縮合させ、化合物(IIIa)を得る反応である。本反応は、前記工程Aと同様にして実施される。化合物

(111a) 中UがNO₂を意味する場合は還元反応を行うことによりUがNH₂の化合物を得ることができ、Uが-COOH、-COOP³を意味する場合は還元反応を行うことによりUが-CH₂OH、-低級アルキルを意味する場合は酸化反応を行うことによりUが-CHO、又は-COOHの化合物を得ることができ、Uが-COOP³、-NH-P⁴、-N(P⁴)-低級アルキルを意味する場合は、例えば水酸化ナトリウム等の塩基又は塩酸等の酸を用いる加水分解による切断、接触水素添加等の還元による切断、トリフルオロ酢酸等による酸による切断等、それぞれの保護基を切断するのに適した方法で切断することによりUが-COOH、-NH₂、-NH-低級アルキルの化合物を得ることができる。

また、以下の反応式に示す方法は、一般式(11)、及び(111)で示される化合物を合成する為に特に有効である。

(式中、A環、R¹、R²、R³、R⁵、R⁶、P¹、及びP²は前記の意味を有する。)

化合物(X)とアミン(Va)、又は化合物(XI)とアミン(IVa)を反応させアミド結合を形成し、化合物(IIb)、又は化合物(IIIb)を得る反応であり、前記不活性溶媒中、室温~加温下行われる。また、適用する方法によっては、N-メチルモルホリン、トリエチルアミン、トリメチルアミン、ピリジン、水素化ナトリウム、カリウム-t-ブトキシド、ブチルリチウム、ソディウムアミド等の塩基の存在下で、又はこれら塩基を溶媒として反応させることにより、反応が円滑に進行する場合がある。

なお、糖残基を導入する工程は、前述の段階に限られたものではない。即ち、化合物(II)、(III)、(VI)、(VII)、(IX)、(X)あるいは(XI)と化合物(VIII)の組み合わせからなるフェノールと糖供与体を、好ましくは活性化剤の存在下反応させ、保護基を有しても良い糖残基を有する化合物を合成した後に、前述の方法に準じて(IV)、(IVa)、(V)、あるいは(Va)と縮合して製造する等、当業者が通常採用し得る工程を任意に組み合わせることにより製造することができる。

また、一般式(I)で示される化合物は、その他公知のアルキル化、アシル化、酸化、還元、加水分解等、当業者が通常採用し得る工程を任意に組み合わせることにより製造することができる。

この様にして製造された本発明化合物は、公知の方法、例えば、抽出、沈澱、分

画クロマトグラフィー、分別結晶化、再結晶等により単離、精製することができる。 また、本発明化合物の塩には、通常の造塩反応により所望の塩に導くことができる。

また、本発明化合物が不斉炭素を有する場合には光学異性体が存在する。これらの光学異性体は適切な塩と再結晶する分別結晶化やカラムクロマトグラフィー等の常法により分割することができる。

産業上の利用可能性

本発明化合物は、活性化血液凝固第X因子を特異的に阻害し、強力な抗凝固作用を有する。従って、血液凝固抑制剤又は血栓若しくは塞栓によって引きおこされる疾病の予防・治療剤として有用である。

適応する上記疾病としては、脳梗塞、脳血栓、脳塞栓、一過性脳虚血発作(TIA)、くも膜下出血(血管れん縮)等の脳血管障害における疾病、急性及び慢性心筋梗塞、不安定狭心症、冠動脈血栓溶解等の虚血性心疾患における疾病、肺梗塞、肺塞栓等の肺血管障害における疾病、更に末梢動脈閉塞症、深部静脈血栓症、汎発性血管内凝固症候群、人工血管術後及び人工弁置換後の血栓形成症、冠動脈バイパス術後における再閉塞及び再狭窄、PTCA(Percutaneous translumina I coronary angioplasty)又はPTCR(Percutaneous transluminal coronary recanalization)術後における再閉塞及び再狭窄、体外循環時の血栓形成症等の各種血管障害における疾病が挙げられる。

また、本発明化合物の活性化血液凝固第X因子阻害作用により、インフルエンザウイルスの増殖阻害活性に基づくインフルエンザウイルスの感染予防・治療剤としての可能性が示唆されている(特開平6-227971号)。

本発明化合物の優れた活性化血液凝固第X因子阻害活性、及び経口投与における優れた凝固時間の延長作用は、以下に示す試験方法により確認された。

1) ヒト活性化血液凝固第 X 因子(human factor Xa) 凝固時間測定試験 (in vitro) ヒト血漿 90 μ | に薬剤または生理食塩水 10 μ | 及び human factor Xa (Enzyme Research Labs) 50 μ | を加え、37 ℃で 3 分間インキュベートした後、予め 3 7 ℃に加温した 20 mM の CaCl₂を 100 μ | 添加して凝固計 (Amelung 社: KC10) にて凝固するまでの時間を測定した。ヒト血漿は健常人(6 人)の

肘静脈より 3.8 %の sodium citrate が 5 ml 入ったシリンジで血液 45 ml を採血し、 4 $\mathbb{C} \cdot 3000$ rpm・15 分の遠心により分離した血漿をプールし、凍結保存したものを使用した。Human factor Xa は生理食塩水 (コントロール) を添加したときの凝固時間が約 30~40 秒になるような濃度を選択した。 CT_2 値(コントロールの凝固時間を 2 倍に延長する濃度) は、凝固時間のコントロールに対する相対値 (fold) と薬剤濃度をプロットし、直線回帰することで求めた。この結果を下記表 1 に示す。

表 1

化合物	ヒト活性化血液凝固第X因子凝固 時間測定試験	
	(CT ₂) (μM)	
実施例1	0.295	
実施例3	0.062	
実施例8	0.137	
実施例10	0.617	
実施例18	0.153	

2)ウシトロンビン凝固時間測定試験(in vitro)

ヒト血漿 50 μ I に薬剤または生理食塩水 50 μ I を加え、37 $\mathbb C$ で 3 分間インキュベートした後、予め 3 $\mathbb C$ に加温した thrombin (Thrombin (ウシ由来) 500 units 持田製薬) 50 μ I を添加して、凝固計 (Amelung 社: KC10) にて凝固するまでの時間を測定した。ヒト血漿は健常人(6 人)の肘静脈より 3.8 %の sodium citrate が 5 mI 入ったシリンジで血液 45 mI を採血し、 4 $\mathbb C$ ・3000 rpm・15 分の遠心により分離した血漿をプールし、凍結保存したものを使用した。Thrombin は生理食塩水(コントロール)を添加したときの凝固時間が約 20 秒になるような濃度を選択した。 $\mathbb C$ T、値 (コントロールの凝固時間を 2 倍に延長する濃度)は、凝固時間のコントロールに対する相対値(fold)と薬剤濃度をプロットし、直線回帰することで求めた。

この結果、実施例 1 0、及び 1 8 の化合物の CT₂値は何れも 1 0 0 μ M以上であっ.た。

3) 合成基質法による酵素阻害測定試験

96 穴マイクロプレートに反応緩衝液 (pH 8.4) 80 μI、化合物溶液 15 μI、合成基質 S-2222 (Chromogenix) 2 mM 30 μI を添加し、ヒト活性化血液凝固第 X 因子(factor Xa Enzyme Research Labs) 0.025U/mI 25 μIを加え、10 分間 37℃で反応させた後、405 nm の吸光度変化を Bio-Rad 社モデル 3550 で測定し、I C 50を算出した。

以上1)、2)、及び3)の測定の結果、本発明化合物はヒト活性化血液凝固第X 因子を特異的に阻害し、かつ強い抗血液凝固作用を示すことが確認された。本発明 の実施例1、3、8、10、及び18に示される化合物は、低濃度で凝固時間を延 長し、優れた抗血液凝固作用を示すことが確認された。

4) カニクイザルを用いたex vivoでの凝固時間測定法(経口投与)

12時間以上絶食した雄性カニクイザル(体重4 kg前後)に対し、薬剤投与前の採血後、0.5%メチルセルロースに溶解(懸濁)した薬剤(5 mg/ml あるいは0.5 mg/ml)を経口ゾンデを用いて2 ml/kg強制経口投与し(10 mg/kg あるいは1 mg/kg)、1、2、4、6、8時間後、大腿静脈より3.8%クエン酸ナトリウム1/10容にて2 ml採血し、3000 rpm 10分の遠心処理により血漿を分離した。この血漿を用いて以下 a)及び b)の方法に従い外因系凝固時間(PT)及び内因系凝固時間(APTT)の測定を行った。実験は無麻酔条件下で行った。なお、数値は、コントロール(薬剤未投与)郡の凝固時間に対する薬剤投与郡の凝固時間の相対比で示し、最も強い凝固時間の延長作用を示した採血ポイントの値を記載した。

a) 外因系凝固時間 (PT)

オーソ ブレーン トロンボプラスチン(54mg/vial、凍結乾燥製剤、オーソ・クリニカル・ダイアグノスティックス社)をMilli-Q水2.5mlに溶解し、37℃にて予備加温した。上記血漿50μlを37℃にて1分間加温し、上記トロンボプラスチン溶液50μlを添加し凝固時間の測定を行った。凝固時間の測定にはAmelung社KC10Aを使用した。この結果を下記表 2 に示す。

表 2

	and the second s	·
化合物	投与量	カニクイザル 凝固時間
		測定試験(PT)
実施例 1	1 O mg/kg	7.69
実施例3	1 O mg/kg	5.60
実施例18	1 mg/kg	1.94
実施例19	1 mg/kg	2.26
対照化合物	1 O mg/kg	2.00

(対照)

(W000/39118の実施例44)

本試験の結果、本発明化合物は経口投与においても優れた凝固時間の延長作用が認められた。本発明の実施例1、及び3に示される化合物は、W000/39118の実施例44 (対照)と比較して、同じ投与量において凝固時間の延長作用が長く、優れた抗血液凝固作用を示すことが確認された。また、実施例18、及び19に示される化合物は同対照と比較して、1/10の投与量において同等の凝固時間の延長作用を示し、優れた抗血液凝固作用を示すことが確認された。

b) 内因系凝固時間(APTT)

上記血漿 50μ Iにヘモライアンス トロンボシルI(ダイアヤトロン社) 50μ Iを加え37^{\circ}にて3分間加温し、あらかじめ37^{\circ}にて予備加温した20mMの $CaCI_2$ 溶液 50μ Iを添加し凝固時間の測定を行った。凝固時間の測定にはAmelung社KC10Aを使用した。

なお、抗凝固作用の用量依存性及び経時変化に関しても、投与用量あるいは採血 時間を変更し同様の方法にて検討した。

一般式(I)で示される本発明化合物やその製薬学的に許容される塩の1種又は 2種以上を有効成分として含有する医薬組成物は、通常用いられる製剤用の担体や

賦形剤、その他の添加剤を用いて、錠剤、散剤、細粒剤、顆粒剤、カプセル剤、丸剤、液剤、注射剤、坐剤、軟膏、貼付剤等に調製され、経口的又は非経口的(注射、経皮、経粘膜等)に投与される。

本発明化合物のヒトに対する臨床投与量は適用される患者の症状、体重、年齢や性別等を考慮して適宜決定されるが、通常成人1日当たり経口で0.1~500mg、非経口で0.01~100mgであり、これを1回あるいは数回に分けて投与する。投与量は種々の条件で変動するので、上記投与量範囲より少ない量で十分な場合もある。

本発明による経口投与のための固体組成物としては、錠剤、散剤、顆粒剤等が用いられる。このような固体組成物においては、一つ又はそれ以上の活性物質が、少なくとも一つの不活性な希釈剤、例えば乳糖、マンニトール、ブドウ糖、ヒドロキシプロピルセルロース、微結晶セルロース、デンプン、ポリビニルピロリドン、メタケイ酸アルミン酸マグネシウムと混合される。組成物は、常法に従って、不活性な希釈剤以外の添加剤、例えばステアリン酸マグネシウムのような潤滑剤や繊維素グリコール酸カルシウムのような崩壊剤、ラクトースのような安定化剤、グルタミン酸又はアスパラギン酸のような可溶化剤又は溶解補助剤を含有していてもよい。錠剤又は丸剤は必要によりショ糖、ゼラチン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースフタレート等の胃溶性あるいは腸溶性物質のフィルムで被膜してもよい。

経口投与のための液体組成物は、薬剤的に許容される乳濁剤、溶液剤、懸濁剤、シロップ剤、エリキシル剤等を含み、一般的に用いられる不活性な希釈剤、例えば精製水、エチルアルコールを含む。この組成物は不活性な希釈剤以外に可溶化剤、溶解補助剤、湿潤剤、懸濁剤のような補助剤、甘味剤、風味剤、芳香剤、防腐剤を含有していてもよい。

非経口投与のための注射剤としては、無菌の水性又は非水性の溶液剤、懸濁剤、 乳濁剤を包含する。水性の溶液剤、懸濁剤の希釈剤としては、例えば注射剤用蒸留 水及び生理食塩水が含まれる。非水溶性の溶液剤、懸濁剤の希釈剤としては、例え ばプロピレングリコール、ポリエチレングリコール、オリーブ油のような植物油、 エチルアルコールのようなアルコール類、ポリソルベート80(商品名)等がある。 このような組成物は、更に等張化剤、防腐剤、湿潤剤、乳化剤、分散剤、安定化

剤(例えば、ラクトース)、可溶化剤又は溶解補助剤のような添加剤を含んでもよい。これらは例えばバクテリア保留フィルターを通す濾過、殺菌剤の配合又は照射によって無菌化される。これらはまた、無菌の固体組成物を製造し、使用前に無菌水、又は無菌の注射用溶媒に溶解して使用することもできる。

本発明化合物の溶解性が低い場合には、可溶化処理を施してもよい。可溶化処理 としては、医薬製剤に適用できる公知の方法、例えば界面活性剤(ポリオキシエチ レン硬化ヒマシ油類、ポリオキシエチレンソルビタン高級脂肪酸エステル類、ポリ オキシエチレンポリオキシプロピレングリコール類、ショ糖脂肪酸エステル類等) を添加する方法、薬物と可溶化剤例えば高分子(ヒドロキシプロピルメチルセルロ ース(HPMC)、ポリビニルピロリドン(PVP)、ポリエチレングリコール **(PEG)等の水溶性高分子、カルボキシメチルエチルセルロース(CMEC)、 ・ヒドロキシプロピルメチルセルロースフタレート(HPMCP)、メタアクリル酸** メチル-メタアクリル酸共重合体(オイドラギットL、S、商品名:ローム・アン ド・ハース社製)等の腸溶性高分子)との固体分散体を形成する方法が挙げられる。 更に必要により、可溶性の塩にする方法、シクロデキストリン等を用いて包接化合 物を形成させる方法等も採用できる。可溶化の手段は、目的とする薬物に応じて適 宜変更できる(「最近の製剤技術とその応用」、内海勇ら、医薬ジャーナル157 -159(1983)及び「薬学モノグラフNo.1,生物学的利用能」、永井恒 司ら、ソフトサイエンス社、78-82(1988))。このうち、好ましくは、 薬物と可溶化剤との固体分散体を形成させ溶解性を改善する方法が採用される(特 開昭56-49314号、及びFR2460667号)。

発明を実施するための最良の形態

以下、本発明化合物の製造例を挙げ、本発明化合物の製造方法を具体的に説明する。なお、本発明化合物の原料化合物には新規な化合物も含まれており、これらの化合物の製造方法を参考例として説明する。

参考例1

水素化リチウムアルミニウム 500mgをテトラヒドロフラン40mlに懸濁し、これに -50℃でエチル 1 -イソプロピルピペリジン-4-カルボキシラート 3.55gを含

むテトラヒドロフラン溶液10mlを加え、その後氷冷下から室温で2.5時間攪拌した。 氷冷下で水0.5ml、2N水酸化ナトリウム水溶液0.5ml、水1.5ml、無水硫酸マグネシウムを加えた後、生じた沈殿を濾去し溶媒を減圧下留去し、(1-イソプロピル-4-ピペリジル)メタノール 2.96gを得た。

参考例 2

オキザリルクロリド 3.15mlをジクロロメタン 30mlに溶解し、これに-70℃でジメチルスルホキシド 3.20mlを含むジクロロメタン溶液 6mlを加え、15分間攪拌した後、-70℃で(1-イソプロピル-4-ピペリジル)メタノール 2.93gを含むジクロロメタン溶液 15mlを加え、1時間攪拌した。-70℃でトリエチルアミン12.5mlを加えた後、室温まで昇温し、水、飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧下留去し、得られた残渣に酢酸エチルを加えた。不溶物を濾去した後、溶媒を減圧下留去し、1-イソプロピルピペリジン-4-カルバルデヒド1.15gを得た。この化合物を精製することなく次の反応に用いた。

参考例3

3-ヒドロキシ-2-ニトロベンゾイック アシッド 10.5 g を N,N-ジメチルホルムアミド 60 ml に溶解し、ベンジルブロミド 15 ml、炭酸カリウム 19.0 g を 0 ℃で加え室温で 1 晩攪拌した。反応液をセライト濾過したのち、減圧下濃縮した。得られた残渣に水を加えエーテルで抽出後、飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去し、ベンジル 3-ベンジロキシ-2-ニトロベンゾアート 20.7 g を得た。

参考例4

ベンジル 3 - ベンジロキシー2 - ニトロベンゾアート 20.7 g にエタノール 100 ml 及び 1N 水酸化ナトリウム水溶液 120 ml を加え、室温で1 晩、60℃で 3 時間、80℃で 5 時間攪拌した。エタノールを減圧下留去したのち、得られた水溶液をエーテルで洗った後、塩酸を加えた。生じた沈殿を濾取した後、減圧下乾燥し、3 - ベンジロキシー2 - ニトロベンゾイック アシッド 15.8 g を得た。

参考例5

3 - ベンジロキシ-2 - 二トロベンゾイック アシッド 5.47 g にチオニルクロリド 20 ml 及び N, N-ジメチルホルムアミド数滴を加え、80℃で 30 分間攪拌した。反応

液を減圧下濃縮し、得られた残渣に0℃でピリジン 35ml 及び2-アミノ-5-クロロピリジン 2.55 g を加え、室温で1晩攪拌した。反応液を減圧下濃縮し、得られた残渣に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去し、トルエンで共沸を行い3-ベンジロキシ-N-(5-クロロ-2-ピリジル)-2-ニトロベンズアミド 7.44 g を得た。

参考例6

3 ーベンジロキシーNー(5 ークロロー2 ーピリジル)ー2 ーニトロベンズアミド7.44 g にトリフルオロ酢酸 40 ml 及びペンタメチルベンゼン 3.72 g を加え 40℃で1 晩攪拌した。反応液を減圧下濃縮し、得られた残渣にアルカリ性にならない程度の飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を1 N水酸化ナトリウム水溶液で抽出したのち、水層に塩酸を加え酸性とし、クロロホルムで抽出した。無水硫酸マグネシウムで乾燥後、溶媒を減圧下留去し、得られた残渣にラネーニッケルのエタノール懸濁液 200 ml に加えた。水素雰囲気下 6 時間攪拌したのち、 N,N-ジメチルホルムアミドを加え、不溶物を濾去した。減圧下溶媒を留去し、得られた残渣に水を加えた。生じた沈殿を濾取し、減圧下乾燥し、2 ーアミノーNー(5 ークロロー2 ーピリジル)ー3 ーヒドロキシベンズアミド 4.58 g を得た。

参考例7

2-アミノーN-(5-クロロー2-ピリジル)-3-ヒドロキシベンズアミド 3.06 gとN-クロロスキシイミド1.80 gをN,N-ジメチルホルムアミド60 mlに溶解し5 0℃で8時間、室温で4時間攪拌した後、不溶物を濾去した。減圧下溶媒を留去した後、得られた残渣に1N水酸化ナトリウム水溶液を加え、酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧下留去し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製した。得られた粗精製物にエタノールを加え、生じた沈殿を濾取し減圧下乾燥し、2-アミノー5ークロローNー(5ークロロー2ーピリジル)-3-ヒドロキシベンズアミド767 mgを得た。母液を濃縮し、酢酸エチルーイソプロピルエーテルを加え、生じた沈殿を濾取した後、減圧下乾燥することにより、上記化合物をさらに942 mg得た。

参考例8

2-アミノーNー(5-クロロー2ーピリジル)-3-ヒドロキシベンズアミド 5.27 gをN,N-ジメチルホルムアミド60 mlに溶解し、-15℃で攪拌した。そこへ、N-プロモスキシイミド3.56 gを5分間隔で4回に分けて加え、-15℃で1.5時間攪拌した。さらにN-ブロモスキシイミド0.36 gを加え、-15℃で2時間攪拌した後、水120mlと 酢酸エチル120mlを加え、室温で10分間攪拌した。生じた沈殿をセライトを用い濾過後、濾液の有機層を分取し、水層はさらに酢酸エチルで抽出した。得られた有機層に活性炭素粉末2.6gを加え、15分間攪拌後セライトを用いて濾過した。濾液を水で洗った後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去、乾燥し、2-アミノー5-プロモーNー(5-クロロー2ーピリジル)-3-ヒドロキシベンズアミド 5.70 gを得た。

参考例9

3-ヒドロキシー2-ニトロベンゾイック アシッド 2.00g を N,N-ジメチルホルムアミド 110ml に溶解し、4ークロロアニリン 1.53g、1-エチル-3-[3-(N,N-ジメチルアミノ) プロピル] カルボジイミド 塩酸塩 3.15g、及び1-ヒドロキシベンゾトリアゾール 2.21g を加え室温で 4 日間攪拌した。反応液を減圧濃縮し、飽和食塩水を加え、クロロホルムで抽出した。有機層を硫酸マグネシウムで乾燥し、減圧下濃縮した。得られた残渣をクロロホルム:メタノール(100:1)を溶出溶媒とするシリカゲルカラムクロマトグラフィーにて精製し、4'ークロロー3ーヒドロキシー2-ニトロベンズアニリド 2.97g を得た。

参考例10

3 - ベンジロキシー2 - 二トロベンゾイック アシッド 7.09 g にチオニルクロリド 30 ml 及び N, N-ジメチルホルムアミド数滴を加え、80℃で 30 分間攪拌した。反応液を減圧下濃縮し、得られた残渣に0℃でピリジン 40 ml 及び2-アミノー5-プロモピリジン 4.91 g を加え、室温で1晩攪拌した。反応液を減圧下濃縮し、得られた残渣に飽和炭酸水素ナトリウム水溶液及びメタノールを加え、クロロホルムで抽出した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去し、トルエンで共沸を行い3-ベンジロキシーN-(5-プロモー2-ピリジル)-2-ニトロベンズアミド 11.01 g を得た。

参考例11

3-ベンジロキシ-N-(5-プロモ-2-ピリジル)-2-ニトロベンズアミ

ド 10.7 g にトリフルオロ酢酸 50 ml 及びペンタメチルベンゼン 4.88 g を加え室温で4日間攪拌した。反応液を減圧下濃縮し、得られた残渣にアルカリ性にならない程度の飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を1 N水酸化ナトリウム水溶液で抽出したのち、水層に濃塩酸を加えた。生じた沈殿を濾取した後、減圧下乾燥することにより、N-(5-プロモー2-ピリジル)-3-ヒドロキシー2-ニトロベンズアミド7.86gを得た。

参考例12

N-(5-ブロモ-2-ピリジル)-3-ヒドロキシ-2-二トロベンズアミド 7.71 gをエタノール50ml及び蒸留水22mlに懸濁し、これに還元鉄12.7g及び塩化アンモニウム2.45 gを加え、6時間加熱環流した。室温まで冷却した後、不溶物を濾過しクロロホルムで洗浄した。濾液を減圧下濃縮した後、飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧下留去し、2-アミノ-N-(5-ブロモ-2-ピリジル)-3-ヒドロキシベンズアミド0.42gを得た。反応液を濾過した際に生じた不溶物にN,N-ジメチルホルムアミドを加え濾過し、濾液を減圧下濃縮した。得られた残渣に水を加え、生じた沈殿を濾取した後、減圧下乾燥することにより、上記化合物をさらに3.28g得た。これらは不純物を含んでいたが精製せずそのまま次の反応に用いた。

参考例 1 3

2-アミノーNー(5-ブロモー2ーピリジル)-3-ヒドロキシベンズアミド 1.99 g と N-クロロスキシイミド 990 mg を N, N-ジメチルホルムアミド 30 ml に溶解し 50℃で 2 時間攪拌した後、不溶物を濾去した。減圧下溶媒を留去した後、得られた残渣に水を加え、沈殿を濾取した。減圧下乾燥後、シリカゲルカラムクロマトグラフィーにより精製した。得られた粗精製物に水を加え、生じた沈殿を濾取し、減圧下乾燥し、2-アミノーNー(5ーブロモー2ーピリジル)-5ークロロー3ーヒドロキシベンズアミド 1.12 g を得た。

実施例1

2-アミノー5-プロモ-N-(5-クロロ-2-ピリジル)-3-ヒドロキシベンズアミド 5.14 g と1-イソプロピルピペリジン-4-カルボキシリック アシ

ッド 2.83 g を N, N-ジメチルホルムアミド 75 ml に溶解し、これに、1-x+y-3 ージメチルアミノプロピルカルボジイミド 塩酸塩 4.33g 及び 1-y+y-1 トリアゾール 3.04g を加え室温で 46 時間攪拌した。反応液を 1 %重曹水 750 ml に注加し、酢酸エチル 200 ml を加えた。酢酸エチルを減圧下留去し、生じた固体を濾取し水で洗浄した。得られた固体をメタノール 100 ml と水 10 ml に懸濁させ、一晩攪拌した。生じた沈殿を濾取し減圧下乾燥して、10 ml と水 10 ml に懸濁させ、一晩 10 ml と。生じた沈殿を濾取し減圧下乾燥して、10 ml と水 10 ml に懸濁させ、一晩 10 ml と。 10 ml に懸濁させ、一晩 10 ml と 10 ml と 10 ml に 10

4'ーブロモー2'ー [(5ークロロー2ーピリジル)カルバモイル]-6'ー ヒドロキシー1ーイソプロピルピペリジン-4-カルボキサニリド480mgを、 クロロホルム15ml、メタノール15ml及び1,4-ジオキサン10mlに懸 濁し、1、8-ジアザビシクロ[5,4,0]-7-ウンデセン434mgを加え、 室温で2時間攪拌した。反応液に1-ブロモー1-デオキシー2,3,4,6-テト ラー〇ーアセチルーαーDーガラクトピラノシド1.19gを加え、室温で3時間 攪拌した。反応液に1、8-ジアザビシクロ[5,4,0]-7-ウンデセン86 8mgを加え、室温にて3時間攪拌した後、1-ブロモ-1-デオキシ-2, 3, 4,6ーテトラーOーアセチルー α ーDーガラクトピラノシド1. 19gを加えた。 室温で12時間攪拌した後、減圧下濃縮した。得られた残渣に水50mlを加えク ロロホルム50mlで洗い、ついでnーペンタノールを用いて抽出した。減圧下溶 媒を留去し、得られた残渣を0.1%トリフルオロ酢酸水溶液:アセトニトリル (71:29)を溶出溶媒とするODSカラムクロマトグラフィーで精製し、4-ガラクトピラノシルオキシー1ーイソプロピルピペリジン-4-カルボキサニリド トリフルオロ酢酸塩300mgを得た。

実施例1と同様にして実施例2、4及び8の化合物を得た。

実施例3

4'-ブロモ-2'-[(5-クロロ-2-ピリジル)カルバモイル]-6'-ヒドロキシー1-イソプロピルピペリジン-4-カルボキサニリド500mgを、 クロロホルム10ml、メタノール10ml及び1,4-ジオキサン5mlに懸濁 し、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン0.45mlを加え、

室温で1.5時間攪拌した。反応液に2-アセトアミド-2,3,6-トリー〇-アセチル-2-デオキシー α -D-グルコピラノシルブロミド1.11gを加え、室温で2時間攪拌した。反応液に1,8-ジアザビシクロ[5,4,0]-7-ウンデセン0.90mlを加え室温にて30分間攪拌した後、2-アセトアミド-2,3,6-トリー〇-アセチル-2-デオキシー α -D-グルコピラノシルブロミド1.11gを加えた。60℃で2時間攪拌した後、減圧下濃縮した。得られた残渣に水50mlを加えクロロホルム50mlで洗い、ついでn-ペンタノールを用いて抽出した。減圧下溶媒を留去し、得られた残渣を0.1%トリフルオロ酢酸水溶液:アセトニトリル(71:29)を溶出溶媒とするODSカラムクロマトグラフィーで精製し、2'-(2-アセトアミド-2-デオキシー β -D-グルコピラノシルオキシ)-4'-ブロモ-6'-[(5-クロロ-2-ピリジル)カルバモイル]-1-イソプロピルピペリジン-4-カルボキサニリドトリフルオロ酢酸塩364mgを得た。

実施例5

3-ヒドロキシ-N¹-(4-メトキシベンゾイル)-N²-[4-(4-メチル -1、4-ジアゼパン-1-イル)ベンゾイル]-1,2-フェニレンジアミン3 00mgとメチル 1ープロモー1ーデオキシー2, 3, 4ートリーOーアセチルー $\alpha - D - f$ ルコピラノシドウロナート377mgと、ベンジルトリノルマルブチル アンモニウムプロミド225mgをクロロホルム6mlに懸濁し、1 N 水酸化ナト リウム水溶液1.9mlを加え、60℃にて2時間攪拌した。反応液にメチル 1-プロモー1ーデオキシー2,3,4ートリーΟーアセチルーα-Dーグルコピラノ シドウロナート754mgを加え、60℃にて3時間攪拌した。反応液をクロロホ ルムで抽出し、飽和食塩水で洗浄した。得られた有機層を無水硫酸ナトリウムで乾 燥した後、減圧下濃縮した。得られた残渣をクロロホルム:メタノール:飽和アン モニア水(100:10:1)を溶出溶媒とするシリカゲルカラムクロマトグラフ ィーで精製し、メチル (3-[(4-メトキシベンゾイル)アミノ]-2-{[4-(4-メチル-1,4-ジアゼパン-1-イル)ベンゾイル]アミノ}フ ェニル 2, 3, 4-トリ-0-アセチル-8-0-グルコピラノシド) ウロナー トの粗精製物を210mg得た。本法で得られた粗精製物220mgをメタノール 5. 5 m l 、蒸留水 2. 7 m l に溶解し、炭酸ナトリウム 8 5 m g を加え室温で 2.

5時間攪拌した後、60 Cにて 2 時間攪拌した。減圧下濃縮し、得られた残渣を 0.1%トリフルオロ酢酸水溶液:テトラヒドロフラン(70:30)を溶出溶媒とするODSカラムクロマトグラフィーで精製し、3-[(4-)++)・ベンゾイル)アミノ $1-2-\{[4-(4-)++)-1,4-)$ でポパン-1-1・バンゾイル]アミノ $1-2-\{[4-(4-)++)-1,4-)$ でカーニック。アシッド トリフルオロ酢酸塩の粗精製物 150 mg を得た。本法で得られた粗精製物 310 mg を 15 の 15 の

実施例6

4'-クロロー2'-[(5-クロロー2-ピリジル)カルバモイル]ー6'-ヒドロキシー1-イソプロピルピペリジン-4-カルボキサニリド150mgを、 クロロホルム1. 6ml、メタノール1. 6mlに懸濁し、1, 8ージアザビシク ロ[5, 4, 0]-7-ウンデセン152mgを加え、室温で35分間攪拌した。 反応液にメチル 1-プロモー1-デオキシー2、3、4-トリーΟ-アセチルーα - D-グルコピラノシドウロナート397mgを加え、室温で15分間攪拌した。 減圧下濃縮した。得られた残渣をクロロホルム:メタノール:飽和アンモニア水 (100:20:2)を溶出溶媒とするシリカゲルカラムクロマトグラフィーで精 製し、メチル {5-クロロー3-[(5-クロロー2-ピリジル)カルバモイル] **-2-[(1-イソプロピルピペリジン-4-カルボニル)アミノ]フェニル β-**D-グルコピラノシド ウロナートの粗精製物を240mg得た。この粗精製物2 30mgをメタノール4.6ml、蒸留水2.3mlに溶解し、炭酸ナトリウム1 14mgを加え室温で1時間攪拌した。トリフルオロ酢酸で中和後、減圧下濃縮し た。得られた残渣を0.1%トリフルオロ酢酸水溶液:アセトニトリル(71:2 9)を溶出溶媒とするODSカラムクロマトグラフィーで精製し、5-クロロ-3 ー [(5-クロロ-2-ピリジル)カルバモイル] -2- [(1-イソプロピルピ **ペリジン-4-カルボニル)アミノ]フェニル β-D-グルコピラノシドウロニッ** ク アシッド トリフルオロ酢酸塩86mgを得た。

実施例7

実施例9

2-アミノーN-(5-クロロー2-ピリジル) -3-ヒドロキシベンズアミド 100mg と1-イソプロピルピペリジン-4-カルバルデヒド 80mg をトルエン 5ml に懸濁し、p-トルエンスルホン酸水和物 10mg を加え、共沸により水を除きながら 2時間加熱環流した。減圧下溶媒を留去した後、得られた残渣に酢酸 7ml 及びボランートリメチルアミン錯体 88mg を加え、70℃で 15時間攪拌した。減圧下溶媒を留去した後、飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を無水硫酸マグネシウムで乾燥した後、溶媒を減圧下留去し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製した。得られたN-(5-クロロー2-ピリジル) -3-ヒドロキシー2-{[(1-イソプロピルー4-ピペリジル)メチル]アミノ}ベンズアミドに 1N塩酸及び水を加えたのち、凍結乾燥することによりN-(5-クロロー2-ピリジル) -3-ヒドロキシー2-{[(1-イソプロピルー4-ピペリジル)メチル]アミノ}ベンズアミドに 10年シー2-{[(1-イソプロピルー4-ピペリジル)メチル]アミノ}ベンズアミド 塩酸塩 102mg を得た。実施例9と同様にして、実施例10、11、12及び13の化合物を得た。

実施例14

4'-クロロ-3-ヒドロキシ-2-ニトロベンズアニリド 1.43g をメタノール 50ml に懸濁し、蒸留水 5ml、還元鉄 2.80g 及び塩化アンモニウム 530mg を加え 6 0℃で2時間攪拌した。反応液をセライト濾過し、減圧下濃縮した。得られた残渣 に飽和食塩水を加え、クロロホルムで抽出した。有機層を硫酸マグネシウムで乾燥 し、減圧下濃縮した。得られた残渣と1-イソプロピルピペリジン-4-カルバル デヒド 320mg をトルエン 14ml に懸濁し、p-トルエンスルホン酸水和物 37mg を加 え、共沸により水を除きながら24時間加熱還流した。減圧下濃縮した後、得られ た残渣に酢酸 1.4ml 及びボランートリメチルアミン錯体 350mg を加え、70℃で17 時間攪拌した。減圧下濃縮し、得られた残渣に5%重曹水を加え、クロロホルムで 抽出した。有機層を硫酸マグネシウムで乾燥し、減圧下濃縮した。得られた残渣を クロロホルム:メタノール:飽和アンモニア水(100:10:1)を溶出溶媒と するシリカゲルカラムクロマトグラフィーにて精製し、4'-クロロ-3-ヒドロ キシー2-【[(1-イソプロピルー4-ピペリジル)メチル] アミノ} ベンズア ニリドの粗精製物 380mg を得た。この粗精製物 380mg を O. O O 1 N 塩酸:メタノ ・一ル(10:3)を溶出溶媒とするODSカラムクロマトグラフィーで精製後、凍 結乾燥し、4'-クロロー3-ヒドロキシ-2-{[(1-イソプロピル-4-ピ ペリジル) メチル] アミノ} ベンズアニリド 塩酸塩を 162mg 得た。

実施例14と同様にして、実施例15及び16の化合物を得た。

実施例17

1ーイソプロピルピペリジンー4ーカルボキシリック アシッド 612 mg に塩化チオニル5 ml 及び N, N-ジメチルホルムアミド数滴を加え、60℃で1時間攪拌した。減圧下溶媒を留去した後、得られた残渣に0℃で2ーアミノーNー(5ークロロー2ーピリジル)-3ーヒドロキシベンズアミド 465 mg 及びピリジン 20 ml を加え、そのまま室温まで昇温し、室温で1晩攪拌した。減圧下溶媒を留去した後、飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧下留去し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製した。得られた粗生成物をエタノールに懸濁し、1N 塩酸を加え攪拌した後、生じた沈殿を濾取した後、減圧下乾燥し2'ー [(5ークロロー2ーピリジル)カルバモイル]ー6'ーヒドロキシー1ーイソプロピルピペリジンー4ーカルボキサニリド 塩酸塩 226 mg を得た。本化合物はエタノールを含有していた為、

水溶液とし凍結乾燥した後、NMR を測定した。

実施例17と同様にして実施例20の化合物を得た。

実施例18

1ーイソプロピルピペリジンー4ーカルボキシリック アシッド 450 mg に塩化チオニル 2.6 ml 及び N,N-ジメチルホルムアミド 3 滴を加え、60℃で 3 0 分間攪拌し、減圧下濃縮した。得られた残渣にトルエンを加え減圧下濃縮した。この操作を二度行った後、2ーアミノー5ークロローNー(5ークロロー2ーピリジル)ー3ーヒドロキシベンズアミド 520 mg 及びピリジン 6 ml を加え、室温で 1 5 時間攪拌した。減圧下濃縮した後、5%重曹水を加え、クロロホルムで抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧下濃縮し、得られた残渣をクロロホルム:メタノール:飽和アンモニア水(100:20:2)を溶出溶媒とするシリカゲルカラムクロマトグラフィーにより精製し、4′ークロロー2′ー [(5ークロロー2ーピリジル)カルバモイル]ー6′ーヒドロキシー1ーイソプロピルピペリジンー4ーカルボキサニリドの粗精製物 490mg を得た。この粗精製物 310mg を 0.001 N塩酸:メタノール(1:1)を溶出溶媒とするODSカラムクロマトグラフィーで精製後、凍結乾燥し、4′ークロロー2′ー [(5ークロロー2ーピリジル)カルバモイル]ー6′ーヒドロキシー1ーイソプロピルピペリジンー4ーカルボキサニリド 塩酸塩を 301mg 得た。

実施例19

2-アミノー5-ブロモーNー(5-クロロー2-ピリジル)-3-ヒドロキシベンズアミド 2.39 g と1-イソプロピルピペリジン-4-カルボキシリック アシッド 1.32 g を N,N-ジメチルホルムアミド 35 ml に溶解し、これに、1-エチルー3ージメチルアミノプロピルカルボジイミド 塩酸塩 2.02g、1-ヒドロキシベンゾトリアゾール 1.42g、及びトリエチルアミン 1.46ml を加え室温で 22 時間攪拌した。反応液に水 105 ml と酢酸エチル 105 ml を加え室温で 3 時間攪拌した後、生じた沈殿を濾過し、酢酸エチルと水で洗った後、減圧下乾燥した。得られた固体をエタノール 60 ml に懸濁し、1N 塩酸水溶液 5 mlを加え、室温で 30 時間攪拌した。生じた沈殿を濾過し、エタノールで洗った後、減圧下乾燥し、4'ーブロモー2'ー[(5ークロロー2ーピリジル)カルバモイル]-6'ーヒドロキシー1ーイソプロピルピペリジン-4ーカルボキサニリド 塩酸塩を 1.35 g 得た。

実施例19と同様にして実施例24の化合物を得た。

実施例21

1ーイソプロピルピペリジンー4ーカルボキシリック アシッド 374 mg に塩化チオニル 3 ml 及び N,N-ジメチルホルムアミド数滴を加え、80℃で 30 分間攪拌した。減圧下溶媒を留去した後、得られた残渣に 0℃で2ーアミノーNー(5ープロモー2ーピリジル)-5ークロロ-3ーヒドロキシベンズアミド 509 mg 及びピリジン 20 ml を加え、そのまま室温まで昇温し、室温で 1 晩攪拌した。減圧下溶媒を留去した後、飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧下留去し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製した。得られたNー(5ープロモー2ーピリジル)-5ークロロー3ーヒドロキシー2ー [(1ーイソプロピルピペリジンー4ーカルボニル)アミノ] ベンズアミドに 1N 塩酸及び水を加えたのち、凍結乾燥することにより2'ー [(5ープロモー2ーピリジル)カルバモイル] -4'ークロロー6'ーヒドロキシー1ーイソプロピルピペリジンー4ーカルボキサニリド 塩酸塩602mg を得た。

実施例21と同様にして実施例22の化合物を得た。

実施例23

4'ーブロモー2'ー[(5ークロロー2ーピリジル)カルバモイル]ー6'ーヒドロキシー1ーイソプロピルピペリジンー4ーカルボキサニリド 495 mgをN,Nージメチルホルムアミド15 mlに溶解し、これに、トリメチルアミンーサルファートリオキサイド錯体1.39 gを加え50℃で124時間攪拌した。さらにトリメチルアミンーサルファートリオキサイド錯体0.70gを加え50℃で21時間攪拌した後、水30 mlを加え室温で20分攪拌した。生じた沈殿を濾過し水で洗った。得られた固体をメタノールに懸濁し、室温で12時間攪拌した後濾過し、メタノールで洗った後、減圧下乾燥した。得られた固体をメタノール40 mlと1N水酸化ナトリウム水溶液2 mlに溶解し、生じた沈殿を濾過し除いた後、減圧下溶媒を留去した。得られた残渣を再度、水とメタノールの混合溶媒に溶解し、0.1N塩酸で中和し、生じた沈殿を濾過した後、水で洗い、減圧下乾燥した。得られた粗精製物を、希薄水酸化ナトリウム水溶液に溶解し、アセトニトリル:水(5:95~40:60)を溶出溶媒とするODSカラムクロマトグラフィーで精製した。目的物を含むフラクションに含まれるアセトニトリルを減圧下留

去し、生じた沈殿を濾過し水で洗い、減圧下乾燥し、5-プロモー3-[(5-クロロ-2-ピリジル) カルバモイル]-2[(1-イソプロピルピペリジン-4-カルボニル) アミノ]フェニル ハイドロゲン サルフェート202 mgを得た。

実施例25

2-アミノー5-ブロモーN-(5-クロロー2-ピリジル)-3-ヒドロキシベンズアミド 0.37 g と1-イソプロピルピペリジン-4-カルボキシリック アシッド 0.50 gを N,N-ジメチルホルムアミド 10 ml に溶解し、これに、1-エチルー3-ジメチルアミノプロピルカルボジイミド 塩酸塩 0.31g、1-ヒドロキシベンゾトリアゾール 0.22g、及びトリエチルアミン 0.45ml を加え室温で 18 時間攪拌後、60℃にて4時間攪拌した。反応液を減圧下濃縮し、得られた残渣にクロロホルム 50 ml と5%重曹水 50 ml を加え、クロロホルムで抽出した。減圧下溶媒を留去し、得られた残渣をメタノールで洗った後、減圧下乾燥し、4'-ブロモー2'-[(5-クロロー2-ピリジル)カルバモイル]-6'-ヒドロキシー1-メタンスルホニルピペリジン-4-カルボキサニリドを 0.37 g 得た。

前記参考例化合物及び実施例化合物の構造式と物理化学的性状を別表3~4に示す。表中の記号は以下の意味を有する。

Rf:参考例番号、Ex:実施例番号、structure:構造式、salt:塩、free:遊離体、DATA:物性データ、NMR:核磁気共鳴スペクトル(TMS内部標準)、FAB-MS:質量分析値

また、表5~9に示す化合物は、前記実施例や製造法に記載の方法とほぼ同様に して、あるいはそれらの方法より当業者に自明の若干の変法を適用することにより 容易に製造することができる。

なお、表3~4及び表9の構造式中「 Υ 」はイソプロピルを、「O-」はメトキシを、「-」はメチルを、「 SO_2- 」は SO_2- メチルを表す。また、表5~8の構造式中の「---」は結合位置を表す。また、表3及び4に記載される化合物は、配座異性体(conformational isomers)の混合物である場合もある。

表3

	· · · · · · · · · · · · · · · · · · ·	
Rf	structure(salt)	DATA
1	>-N_>-cH⁵oh	NMR(CDCl ₃): δ :1.04(6H, d, J = 6.0 Hz), 1.18 - 1.33(2H, m),
,	(free)	1.41 - 1.56(1H, m), 1.75(2H, d, J = 13.7 Hz), 2.11(2H, dt, J_d = 9.3 Hz, J_t = 11.6 Hz), 2.63 - 2.77(1H, m), 2.85 - 2.94(2H, m), 3.49(2H, d, J =
		5.7 Hz)
2	>−N_>−CHO	NMR(CDCl ₃): δ :1.04(6H, d, J = 6.6 Hz), 1.61 - 1.75(2H, m),
	(free)	1.87 · 1.96(2H, m), 2.16 · 2.31(3H, m), 2.67 · 2.87(3H, m), 9.64(1H, d, J = 1.3 Hz)
3	$0 \stackrel{\text{NO}_2}{\downarrow} 0$ (free)	NMR(DMSO-d ₆): δ:5.33(4H, s), 7.31 - 7.45 (10H,m), 7.61(1H, dd, J = 1.4 Hz, 7.5 Hz), 7.68(1H, t, J = 7.9 Hz), 7.74(1H, dd, J = 1.5 Hz, 8.2 Hz)
4	HO NO ₂ O (free)	NMR(DMSO-d ₆): δ:5.32(2H, s), 7.31 · 7.44 (5H,m), 7.56(1H, dd, J = 1.4 Hz, 7.5 Hz), 7.68(1H, t, J = 7.9 Hz), 7.74(1H, dd, J = 1.5 Hz, 8.2 Hz)
5	Cl O NO ₂ O (free)	NMR(CDCl3): δ:5.23(2H, s), 7.22 - 7.26 (2H,m), 7.31 - 7.39 (5H,m), 7.46(1H, t, J = 8.3 Hz), 7.69(1H, dd, J = 2.7 Hz, 9.1 Hz), 8.03(1H, d, J = 2.9 Hz), 8.26(1H, d, J = 8.8 Hz), 9.01(1H, brs)
6	CI O NH ₂ OH (free)	NMR(DMSO-d ₆): δ:5.93(2H, s), 6.44(1H, t, J = 7.9Hz), 6.82(1H, d, J = 7.7 Hz), 7.27(1H, d, J = 7.3 Hz), 7.93(1H, dd, J = 2.6 Hz, 9.0 Hz), 8.14(1H, d, J = 8.8 Hz), 8.41(1H, d, J = 2.4 Hz), 9.60(1H, s), 10.46(1H, s)
7	CI O NH ₂ OH CI (free)	NMR(DMSO-d ₆): δ:6.04(2H, brs), 6.80(1H, d, J = 2.4 Hz), 7.36(1H, d, J = 2.0 Hz), 7.93(1H, dd, J = 2.5 Hz, 8.8 Hz), 8.11(1H, d, J = 9.3 Hz), 8.42(1H, d, J = 2.5 Hz), 10.16(1H, brs), 10.67(1H, s)
8	CI N N NH2 OH Br (free)	NMR(DMSO-d ₆): δ:6.06(2H, brs), 6.90(1H, d, J = 2.0 Hz), 7.47(1H, d, J = 1.9 Hz), 7.93(1H, dd, J = 2.4 Hz, 8.8 Hz), 8.10(1H, d, J = 8.8 Hz), 8.42(1H, d, J = 2.4 Hz), 10.14(1H, brs), 10.68(1H, brs)
9	CI O NO ₂ OH (free)	NMR(CDCl3): δ: 7.08(1H, d, J = 7.1 Hz), 7.26(1H, d, J = 7.5 Hz), 7.34(2H, d, J = 8.8 Hz), 7.55(2H, d, J = 8.8 Hz), 7.57 - 7.62(1H, m), 7.79(1H, brs), 10.48(1H, brs)

表3 (続き)

X3 (祝さ/	
10	Br O NO ₂	NMR(CDCl3): δ:5.24(2H, s), 7.22 - 7.27 (2H, m), 7.30 -
	N N N	7.41(5H, m), 7.47(1H, t, J = 8.1 Hz), 7.83(1H, dd,
	(free)	J = 2.4 Hz, 8.8 Hz), 8.14 · 8.17(1H, m), 8.22(1H, d, J = 8.8 Hz), 8.90(1H, brs)
11	Br O NO ₂	NMR(DMSO-d ₆): δ:7.25(2H, d, J = 7.9 Hz), 7.50(1H, t, J = 8.0
	N N N OH	$ Hz\rangle$, 8.00 · 8.09(2H, m), 8.51(1H, dd, $J = 0.7 Hz$,
	(free)	2.4 Hz), 11.24(1H, s), 11.37(1H, s)
12	Br O NH ₂ OH	NMR(DMSO-d ₆): δ:5.94(2H, brs), 6.44(1H, t, J = 8.1 Hz), 6.85(1H,
	(free)	dd, J = 1.0 Hz, 7.8 Hz), 7.27(1H, dd, J = 1.0 Hz, 8.3 Hz), 8.03(1H, dd, J = 2.4 Hz, 8.8 Hz), 8.09(1H, d, J = 8.8 Hz), 8.48(1H, d, J = 2.4 Hz),
13	Br O NH ₂ OH	10.38 · 10.52(1H, br) NMR(DMSO-d ₆): δ :6.04(2H, brs), 6.80(1H, d, J = 2.2 Hz),
	H V	7.36(1H, d, J = 2.2 Hz), 8.05(2H, brs), 8.49 (1H, d, J = 1.5 Hz), 10.16(1H, brs), 10.66(1H, s)
	(free)	

表4

Ex	structure(salt)	DATA
1	O HN OH OH (CF ₃ COOH)	NMR(DMSO·d ₆): δ : 1.01 · 1.06(1.5H, d, J = 5.9 Hz), 1.23(4.5H, d, J = 6.4 Hz), 1.65 · 1.81(2H, m), 1.82 · 2.14(2H, m), 2.64 · 2.70(1H, m), 2.87 · 2.98(2H, m), 3.37 · 4.03(13H, m), 4.85(1H, d, J = 7.3 Hz), 7.42(1H, s), 7.50(1H, s), 7.90 · 7.95(1H, m), 8.09 · 8.13(1H, m), 8.39 · 8.41(1H, m), 8.84(0.75H, brs), 8.95(0.25H, brs), 9.46(0.25H, s), 9.50(0.75H, s), 10.78(0.75H, s), 10.92(0.25H, s) FAB·MS(m/z): 659(M+H)+
2	CI HN N H OH HO OH (CF ₃ COOH)	NMR(DMSO-d ₆): δ : 1.02(1.5H, d, J = 5.9 Hz), 1.23(4.5H, d, J = 6.4 Hz), 1.72 · 2.15(4H, m), 2.63 · 2.72(1H, m), 2.84 · 2.98(2H, m), 3.14 · 3.55(8H, m), 3.72 · 3.76(1H, m), 4.60 · 5.25(5H, m), 7.46(1H, d, J = 2.1 Hz), 7.51(1H, d, J = 1.6 Hz), 7.99(1H, dd, J = 1.3 Hz, 9.2 Hz), 8.06 · 8.10(1H, m), 8.34 · 8.36(1H, m), 8.75(0.75H, brs), 8.91(0.25H, brs), 9.24(0.75H, s), 9.27(0.25H, s), 10.39(0.75H, s), 10.53(0.25H, s) FAB-MS(m/z): 659(M+H)+
3	CI HN HN OH HO OH (CF ₃ C00H)	NMR(DMSO-d ₆): δ: 1.02 · 1.05(1.2H, m), 1.22(4.8H, d, J = 6.9 Hz), 1.62 · 2.16(7H, m), 2.68 · 2.79(1H, m), 2.82 · 3.02(3H, m), 3.13 · 3.23(2H, m), 3.38 · 4.13(9H, m), 4.97 · 4.99(1H, m), 7.37 · 7.39(1H, m), 7.43 · 7.45(1H, m), 7.90 · 7.94(1H, m), 7.99(1H, d, J = 8.3 Hz), 8.08 · 8.15(1H, m), 8.38(0.8H, d, J = 2.9 Hz), 8.41(0.2H, d, J = 2.9 Hz), 8.71 · 8.82(2H, m), 10.65(0.8H, s), 10.87(0.2H, s) FAB·MS(m/z): 699(M+H)+
4	HN HO OH OH OH (CF ₃ COOH)	NMR(DMSO-d ₆ +CD ₈ OD): δ :2.16 · 2.24(2H, m), 2.86(3H, s), 3.15 · 3.27(4H, m), 3.33 · 3.60(7H, m), 3.69 · 3.76(2H, m), 3.83(3H, s), 3.90 · 3.96(1H, m) , 4.95(1H, d, J = 7.4 Hz), 6.89(2H, d, J = 8.8 Hz), 7.04(2H, d, J = 8.8 Hz), 7.11(1H, d, J = 8.3 Hz), 7.29 · 7.33(1H, m), 7.52(1H, d, J = 8.3 Hz), 7.86(2H, d, J = 8.8 Hz), 7.93(2H, d, J = 8.8 Hz) FAB·MS(m/z): 637(M+H)+
5	HOOC OH (CF ₃ COOH)	NMR(DMSO-d ₆): δ:2.13 · 2.22(2H, m), 2.85(3H, d, J = 2.9 Hz), 3.12 · 3.27(3H, m), 3.33 · 3.73(7H, m), 3.82(3H, s), 3.88 · 3.97(1H, m), 4.00(1H, d, J = 9.3 Hz), 5.12(1H, d, J = 6.3 Hz), 5.29(3H, br s), 6.88(2H, d, J = 8.8 Hz), 7.03 · 7.06(3H, m), 7.29 · 7.33(1H, m), 7.48(1H, d, J = 7.8 Hz), 7.85(2H, d, J = 9.2 Hz), 7.89(2H, d, J = 8.8 Hz), 9.48(1H, s), 9.54(1H, brs), 9.88(1H, s), 12.83(1H, brs) FAB·MS(m/z): 651(M+H)+

72.3		
6	Cha	NMR(DMSO-d ₆):
	O HN Y	δ : 1.02 - 1.05(1.2H, m), 1.23(4.8H, d, J = 6.9
	N N Y	Hz), 1.66 - 2.13(4H, m), 2.62 - 3.46(9H, m), 4.02 -
	" (1) (1)	4.05(1H, m), $5.12(1H, d, J = 6.8 Hz)$, $5.40(3H)$
1	CONT.OH	brs), 7.31 · 7.33(1H, m), 7.38 · 7.40(1H, m), 7.91 - [
	Н00С С ОН	7.95(1H, m), 8.08 - 8.13(1H, m), 8.40(0.75H d J
	OH	= 2.5 Hz, $8.41(0.25 H, d, J = 2.5 Hz)$, $8.76 - J$
] -	(CF ₃ COOH)	8.92(1H, m), 9.46(0.2H, s), 9.49(0.8H, s).
1		10.79(0.8H, s), 10.93(0.2H, s), 12.88(1H, brs)
7	 	FAB-MS(m/z): 627(M+H)+
1 '	CI O HN	NMR(DMSO-d ₆):
1		δ : 1.02 - 1.04(1.2H, m), 1.22(4.8H, d, $J = 6.4$
	" H 🗸 🗸 🗸	Hz), 1.63 · 2.13(4H, m), 2.63 · 2.70(1H, m), 2.86 ·
	Br OH	3.14(2H, m), 3.36 - 3.46(6H, m), 4.01 - 4.05(1H,
	H00C YOH	m), 5.12(1H, d, J = 6.9 Hz), 5.18 · 5.54(3H, br),
	H00C YOH	7.43 - 7.45(1H, m), 7.47 - 7.51(1H, m), 7.92 - 7.95(1H, m), 8.08 - 8.14(1H, m), 9.23 - 9.49(1H, m)
1	(CF ₃ COOH)	7.95(1H, m), 8.08 · 8.14(1H, m), 8.38 · 8.42(1H, m), 8.80 · 9.00(1H, br), 9.44 (0.2H, s), 9.48(0.8H,
-		s), 10.79(0.8H, s), 10.93(0.2H, s), 12.85(1H, brs)
		FAB-MS(m/z): 672(M+H)+
8	C: P	NMR(DMSO-d ₆):
Ī	9 HN	δ : 1.02 - 1.05(1.8H, m), 1.23(4.2H, d, J = 6.4
	N N N	Hz), 1.66 · 2.14(4H, m), 2.62 · 2.74(1H, m), 2.83 ·
}	" R	3.16(4H, m), 3.28 - 3.33(5H, m), 3.37 - 3.47(3H.
	R _L O , OH	m), 3.61 · 3.72(2H, m), 4.97 · 4.99(1H, m), 5.30 ·
	ОН	6.20 (3H, br), 7.42 - 7.44(1H, m), 7.47 - 7.49(1H
	-0 OH	m), 7.92 · 7.95(1H, m), 8.07 · 8.13(1H, m), 8.38 ·
	(CF ₃ C00H)	8.42(1H, m), 8.89(0.3H, brs), 9.07(0.7H, brs).
		9.43(0.3H, s), 9.47(0.7H, s), 10.76(0.7H, s),
		10.91(0.3H, s)
9	Cl	FAB-MS(m/z): 673(M+H)+ NMR(DMSO-d ₆):
		δ :1.27(6H, d, J = 6.3 Hz), 1.60 - 1.75(2H, m),
1	N N T TOH	1.95 - 2.07(3H, m), 2.89(2H, q, J = 11.1 Hz),
•		3.18(2H, brs), 3.37(2H, d, J = 12.7 Hz), 3.85
	(HC1)	3.95(1H, m), 7.15 - 7.30(2H, m), 7.32(1H, d, J =
İ		7.3 Hz, $8.00(1H, dd, J = 2.5 Hz, 8.8 Hz)$
		8.19(1H, d, J = 8.8 Hz), 8.45(1H, d, J = 2.5 Hz)
] .	·	10.23 - 10.40(1H, br), 10.82 - 11.32(1H, br),
		11.53(1H, brs)
10	Cl	FAB-MS(m/z): 403 (M+H)+
]. 10	N HN Y	NMR(DMSO-d ₆):
	N N N N N N N N N N N N N N N N N N N	δ :1.23(6H, d, J = 6.9 Hz), 1.45 - 1.58(2H, m),
		1.75 · 1.91(3H, m), 2.83(2H, q, J = 11.1 Hz),
	ĊI	3.00(2H, d, J = 6.4 Hz), 3.27 · 3.40(3H, m),
	(HC1)	7.08(1H, d, J = 1.9 Hz), 7.20(1H, d, J = 2.4 Hz), 7.97(1H, dd, J = 2.7 Hz, 8.8 Hz), 8.18(1H, d, J =
		9.3 Hz), $8.43(1H, d, J = 2.4 Hz)$, $9.94(1H, brs)$,
	l .	10.60 - 10.95(1H, br), 11.51(1H, s)
Ll		FAB-MS(m/z): 437 (M+H)+

表4 (続き)

NMR(DMSO-d ₀):	表4 (続き)	
6:1.25(6H, d, J = 6.4 Hz), 1.50 · 1.67(2H, m), 1.75 · 2.02(3H, m), 2.86(2H, q, J = 11.1 Hz), 3.06(2H, brs), 3.30 · 3.45(3H, m), 7.04(1H, brs), 7.14(1H, brs), 7.29(1H, d, J = 7.8 Hz), 8.08(1H, dd, J = 2.5 Hz, 9.3 Hz), 8.16(1H, d, J = 8.8 Hz), 8.50(1H, d, J = 2.4 Hz), 10.09(1H, brs), 10.20 · 10.90(1H, br), 11.60(1H, brs), 10.20 · 10.90(1H, br), 11.60(1H, brs), 10.20 · 11.90(1H, br), 12.6(H, d, J = 6.9 Hz), 1.44 · 1.58(2H, m), 1.75 · 2.00(3H, m), 2.83(2H, q, J = 11.2 Hz), 3.01(2H, d, J = 6.3 Hz), 3.27 · 3.43(3H, m), 7.07(1H, brs), 7.20(1H, d, J = 2.4 Hz), 8.08(1H, dd, J = 2.4 Hz), 8.08(1H, dd, J = 2.4 Hz), 8.80(1H, dr, J = 1.9 Hz), 9.82(1H, brs), 10.77(1H, brs), 11.50(1H, s) FAB·MS(m/z): 483 (M+H)· NMR(DMSO·da): 6:1.26(6H, d, J = 6.8 Hz), 1.57 · 1.68(2H, m), 1.83 · 1.96(3H, m), 2.30(3H, s), 2.77 · 2.89(2H, m), 3.05(2H, d, J = 6.3 Hz), 3.28 · 3.40(3H, m), 6.91(1H, t, J = 7.8 Hz), 7.07(1H, dd J = 1.4 Hz, 7.8 Hz), 7.74(1H, dd, J = 2.0 Hz), 10.08(1H, brs) FAB·MS(m/z): 383 (M+H)· NMR(DMSO·da): 6:1.22 · 1.26(6H, m), 1.49 · 1.61(2H, m), 1.74 · 1.92(3H, m), 2.78 · 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 · 3.35(3H, m), 6.75 · 6.79(1H, m), 6.95 · 6.97(1H, m), 7.07 · 7.09(1H, m), 7.35 · 7.39(2H, m), 7.72 · 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB·MS(m/z): 402 (M+H)· NMR(DMSO·da): 6:1.23(6H, d, J = 6.4 Hz), 1.47 · 1.62(2H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 2.0 Hz), 1.09 (1H, brs), 10.33(1H, s) FAB·MS(m/z): 402 (M+H)· NMR(DMSO·da): 6:1.23(6H, d, J = 6.4 Hz), 1.47 · 1.62(2H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 7.3 Hz), 7.00 · 7.18(3H, m), 7.25(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), 7.25(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), 7.25(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), 7.25(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), 7.25(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), 7.25(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), 7.25(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), 7.25(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3	11	Br O HN	NMR(DMSO-d ₆):
1.75 - 2.02(3H, m), 2.86(2H, q, J = 11.1 Hz), 3.06(2H, brs), 3.30 · 3.45(3H, m), 7.04(1H, brs), 7.14(1H, brs), 7.29(1H, d, J = 7.8 Hz), 8.08(1H, dd, J = 2.5 Hz, 9.3 Hz), 8.16(1H, d, J = 8.8 Hz), 8.50(1H, d, J = 2.4 Hz), 10.09(1H, brs), 10.20 · 10.90(1H, br), 11.60(1H, brs) PAB-MS(m/z): 449 (M+H)+ NMR(DMSO-da): 6 · 1.23(6H, d, J = 6.9 Hz), 1.44 · 1.58(2H, m), 1.75 · 2.00(3H, m), 2.83(2H, q, J = 11.2 Hz), 3.01(2H, d, J = 6.3 Hz), 3.27 · 3.43(3H, m), 7.07(1H, brs), 7.20(1H, d, J = 2.4 Hz), 8.08(1H, dd, J = 2.4 Hz, 8.8 Hz), 8.13(1H, d, J = 8.8 Hz), 8.50(1H, d, J = 1.9 Hz), 9.82(1H, brs), 10.77(1H, brs), 11.50(1H, s) FAB-MS(m/z): 483 (M+H)+ NMR(DMSO-da): 6.91(1H, t, J = 7.8 Hz), 7.07(1H, dd) = 1.4 Hz, 7.8 Hz), 7.31(1H, dd, J = 1.4 Hz, 7.8 Hz), 7.74(1H, dd, J = 2.0 Hz), 10.08(1H, brs) FAB-MS(m/z): 383 (M+H)+ NMR(DMSO-da): 6.122 · 1.26(6H, m), 1.49 · 1.61(2H, m), 1.74 · 1.92(3H, m), 2.78 · 2.87(2H, m), 3.10(2H, d, J = 8.3 Hz), 8.21(1H, d, J = 2.0 Hz), 10.08(1H, brs) FAB-MS(m/z): 383 (M+H)+ NMR(DMSO-da): 6.91(1H, m), 7.07 · 7.09(1H, dd), J = 6.9 Hz), 3.25 · 3.35(3H, m), 6.75 · 6.79(1H, m), 6.95 · 6.97(1H, m), 7.07 · 7.09(1H, m), 7.35 · 7.39(2H, m), 2.78 · 2.87(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)+ NMR(DMSO-da): 6.11.23(6H, d, J = 6.4 Hz), 1.47 · 1.62(2H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 · 3.42(3H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 · 3.42(3H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 · 3.42(3H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 · 3.42(3H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 · 3.42(3H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 7.3 Hz), 7.50(1H, d, J = 8.3 Hz),			$\delta : 1.25(6H, d, J = 6.4 Hz), 1.50 \cdot 1.67(2H, m),$
(HC1) 3.06(2H, brs), 3.30 · 3.45(3H, m), 7.04(1H, brs), 7.14(1H, brs), 7.29(1H, d, J = 7.8 Hz), 8.08(1H, dd, J = 2.5 Hz, 9.3 Hz), 8.16(1H, d, J = 8.8 Hz), 8.50(1H, d, J = 2.4 Hz), 10.09(1H, brs), 10.20 · 10.90(1H, br), 11.60(1H, brs) FAB-MS(m/z): 449 (M+H)* NMR(DMSO-da): 6 · 1.23(6H, d, J = 6.9 Hz), 1.44 · 1.58(2H, m), 1.75 · 2.00(3H, m), 2.83(2H, q, J = 11.2 Hz), 3.01(2H, d, J = 6.3 Hz), 3.27 · 3.43(3H, m), 7.07(1H, brs), 7.20(1H, d, J = 2.4 Hz), 8.08(1H, dd, J = 2.4 Hz), 8.05(1H, d, J = 1.9 Hz), 9.82(1H, brs), 10.77(1H, brs), 11.50(1H, s) FAB-MS(m/z): 483 (M+H)* NMR(DMSO-da): 6 · 1.26(6H, d, J = 6.8 Hz), 1.57 · 1.68(2H, m), 1.83 · 1.95(3H, m), 2.30(3H, s), 2.77 · 2.89(2H, m), 3.05(2H, d, J = 6.3 Hz), 3.28 · 3.40(3H, m), 6.91(1H, t, J = 7.8 Hz), 7.07(1H, dd J = 1.4 Hz, 7.8 Hz), 7.74(1H, dd, J = 2.0 Hz), 3.28 · 3.40(3H, d, J = 8.3 Hz), 8.21(1H, d, J = 2.0 Hz), 10.08(1H, brs) FAB-MS(m/z): 383 (M+H)* NMR(DMSO-da): 6 · 1.22 · 1.26(6H, m), 1.49 · 1.61(2H, m), 1.74 · 1.92(3H, m), 2.78 · 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 · 3.35(3H, m), 6.75 · 6.79(1H, m), 6.95 · 6.97(1H, m), 7.72 · 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)* NMR(DMSO-da): 6 · 1.23(6H, d, J = 6.4 Hz), 1.47 · 1.62(2H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 · 3.42(3H, m), 6.93(1H, d, J = 7.8 Hz), 7.00 · 7.18(3H, m), 7.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), 7.50(1H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), 8.50(1H, d, J = 8.3 Hz), 8.50		N N T TOH T	1
(HC1) 7.14(1H, brs), 7.29(1H, d,J = 7.8 Hz), 8.08(1H, dd, J = 2.5 Hz, 9.3 Hz), 8.16(1H, d, J = 8.8 Hz), 8.50(1H, d, J = 2.4 Hz), 10.09(1H, brs), 10.20 - 10.90(1H, br), 11.60(1H, brs) FAB-MS(m/z): 449 (M+H)+ NMR(DMSO-da): 6: 1.23(6H, d, J = 6.9 Hz), 1.44 - 1.58(2H, m), 1.75 - 2.00(3H, m), 2.83(2H, q, J = 11.2 Hz), 3.01(2H, d, J = 6.3 Hz), 3.27 - 3.43(3H, m), 7.07(1H, brs), 7.20(1H, d, J = 2.4 Hz), 8.08(1H, dd, J = 2.4 Hz), 8.08(1H, dd, J = 2.4 Hz), 8.08(1H, dd, J = 1.9 Hz), 9.82(1H, brs), 10.77(1H, brs), 11.50(1H, s) FAB-MS(m/z): 483 (M+H)+ NMR(DMSO-da): 6: 1.26(6H, d, J = 6.8 Hz), 1.57 - 1.68(2H, m), 1.83 - 1.95(3H, m), 2.30(3H, s), 2.77 - 2.89(2H, m), 3.05(2H, d, J = 6.3 Hz), 3.28 - 3.40(3H, m), 6.91(1H, t, J = 7.8 Hz), 7.07(1H, dd J = 1.4 Hz, 7.8 Hz), 7.74(1H, dd, J = 2.0 Hz), 10.08(1H, brs) FAB-MS(m/z): 383 (M+H)+ (HC1) (HC1) (HC1) (HC1) 7.14(1H, da, J = 2.0 Hz), 10.08(1H, dr) = 8.3 Hz), 8.3(1H, d, J = 8.3 Hz), 8.21(1H, d, J = 2.0 Hz), 10.08(1H, brs) FAB-MS(m/z): 363 (M+H)+ NMR(DMSO-da): 6:1.22 · 1.26(6H, m), 1.49 · 1.61(2H, m), 1.74 · 1.92(3H, m), 2.78 · 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 · 3.35(3H, m), 6.75 · 6.79(1H, m), 6.95 · 6.97(1H, m), 7.72 · 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)+ NMR(DMSO-da): 6:1.23(6H, d, J = 6.4 Hz), 1.47 · 1.62(2H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 · 3.42(3H, m), 6.93(1H, d, J = 7.8 Hz), 7.00 · 7.18(3H, m), 7.23(1H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), 7.23(1H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), 7.33(1H, d, J = 7.8 Hz), 7.70(1H, dr), 7.35(1H, dr), 7.35(1H, dr), 7.72 · 7.75(2H, m), 9.65(1H, brs), 10.33(1H, dr), 7.72 · 7.75(2H, m), 9.65(1H, brs), 10.33(1H, dr), 7.72 · 7.75(2H, m), 7.35 · 7.39(2H, m), 7.72 · 7.75(2H, m), 9.65(1H, brs), 10.33(1H, dr), 7.72 · 7.75(2H, m), 9.65(1H, brs), 10.33(1H, dr), 7.72 · 7.75(2H, dr), 7.32(3H, dr), 7.32		" 🗸	
Ad, J = 2.5 Hz, 9.3 Hz), 8.16(H, d, J = 8.8 Hz), 8.50(1H, d, J = 2.4 Hz), 10.09(1H, brs), 10.20 - 10.90(1H, br), 11.60(1H, brs), 10.20 - 10.90(1H, brs), 10.20 - 10.90(1H, br), 11.60(1H, brs), 10.20 - 10.90(1H, brs), 10.77(1H, brs), 10.20(1H, d, J = 2.4 Hz), 8.08(1H, dd, J = 2.4 Hz), 8.08(1H, dd, J = 2.4 Hz), 8.08(1H, dd, J = 2.4 Hz), 8.08(1H, brs), 11.50(1H, s), 11.50(1H, dd, J = 1.4 Hz, 7.8 Hz), 7.77(1H, dd J = 1.4 Hz, 7.8 Hz), 7.77(1H, dd, J = 2.0 Hz), 10.08(1H, brs), 10.30(1H, dd, J = 2.0 Hz), 10.08(1H, brs), 10.30(1H, dd, J = 2.0 Hz), 10.08(1H, brs), 10.30(1H, s), 2.78 - 2.87(2H, m), 3.10(2H, d, J = 8.3 Hz), 8.21(1H, dd, J = 2.0 Hz), 10.08(1H, m), 6.95 - 6.97(1H, m), 7.72 - 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s), 10.33(1H		(HC1)	
8.50(1H, d, J = 2.4 Hz), 10.09(1H, brs), 10.20 - 10.90(1H, br), 11.60(1H, brs) FAB-MS(m/z): 449 (M+H)+ NMR(DMSO-ds): \[\begin{align*} \delta : 1.23(6H, d, J = 6.9 Hz), 1.44 - 1.58(2H, m), 1.75 - 2.00(3H, m), 2.83(2H, q, J = 11.2 Hz), 3.01(2H, d, J = 6.3 Hz), 3.27 - 3.43(3H, m), 7.07(1H, brs), 7.20(1H, d, J = 2.4 Hz), 8.08(1H, dd, J = 2.4 Hz, 8.8 Hz), 8.50(1H, d, J = 1.9 Hz), 9.82(1H, brs), 10.77(1H, brs), 11.50(1H, s) FAB-MS(m/z): 483 (M+H)+ NMR(DMSO-ds): \[\delta : 1.26(6H, d, J = 6.8 Hz), 1.57 - 1.68(2H, m), 1.83 - 1.95(3H, m), 2.30(3H, s), 2.77 - 2.89(2H, m), 3.05(2H, d, J = 6.3 Hz), 3.28 - 3.40(3H, m), 6.91(1H, t, J = 7.8 Hz), 7.07(1H, dd J = 1.4 Hz, 7.8 Hz), 7.74(1H, dd, J = 2.0 Hz), 10.08(1H, brs) FAB-MS(m/z): 383 (M+H)+ NMR(DMSO-ds): \[\delta : 1.22 - 1.26(6H, m), 1.49 - 1.61(2H, m), 1.74 - 1.92(3H, m), 2.78 - 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 - 3.35(3H, m), 6.75 - 6.79(1H, m), 6.95 - 6.97(1H, m), 7.07 - 7.09(1H, m), 7.35 - 7.39(2H, m), 7.72 - 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)+ NMR(DMSO-ds): \[\delta : 1.24(2H, d, J = 4.9 Hz), 3.27 - 3.42(3H, m), 6.93 - 6.97(1H, d, J = 7.8 Hz), 7.00 - 7.18(3H, m), 7.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), \] \[\delta : 1.24(2H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), \] \[\delta : 1.24(2H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), \] \[\delta : 1.24(2H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), \] \[\delta : 1.24(2H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), \] \[\delta : 1.24(2H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), \] \[\delta : 1.24(2H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), \] \[\delta : 1.24(2H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), \] \[\delta : 1.24(2H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), \] \[\delta : 1.24(2H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), \] \[\delta : 1.24(2H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), \] \[\delta : 1.24(2H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), \] \[\delta : 1.24(2H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), \] \[\delta : 1.24(2H, d, J = 7.8 Hz), 7.50(1		,	
10.90(1H, br), 11.60(1H, brs) FAB·MS(m/z): 449 (M+H) ⁺ NMR(DMSO-d _s): 6:1.23(6H, d, J = 6.9 Hz), 1.44 · 1.58(2H, m), 1.75 · 2.00(3H, m), 2.83(2H, q, J = 11.2 Hz), 3.01(2H, d, J = 6.3 Hz), 3.27 · 3.43(3H, m), 7.07(1H, brs), 7.20(1H, d, J = 2.4 Hz), 8.86(1H, dd, J = 2.4 Hz, 8.8 Hz), 8.13(1H, d, J = 8.8 Hz), 8.50(1H, d, J = 1.9 Hz), 9.82(1H, brs), 10.77(1H, brs), 11.50(1H, s) FAB·MS(m/z): 483 (M+H) ⁺ NMR(DMSO-d _s): 6:1.26(6H, d, J = 6.8 Hz), 1.57 · 1.68(2H, m), 1.83 · 1.95(3H, m), 2.30(3H, s), 2.27 · 2.89(2H, m), 3.05(2H, d, J = 6.3 Hz), 3.28 · 3.40(3H, m), 6.91(1H, t, J = 7.8 Hz), 7.07(1H, dd J = 1.4 Hz, 7.8 Hz), 7.31(1H, dd, J = 1.4 Hz, 7.8 Hz), 7.74(1H, dd, J = 2.0 Hz, 8.3 Hz), 8.03(1H, d, J = 8.3 Hz), 8.21(1H, d, J = 2.0 Hz), 10.08(1H, brs) FAB·MS(m/z): 383 (M+H) ⁺ NMR(DMSO-d _s): 6:1.22 · 1.26(6H, m), 1.49 · 1.61(2H, m), 1.74 · 1.92(3H, m), 2.78 · 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 · 3.35(3H, m), 6.75 · 6.79(1H, m), 6.95 · 6.97(1H, m), 7.07 · 7.09(1H, m), 7.35 · 7.39(2H, m), 7.72 · 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB·MS(m/z): 402 (M+H) ⁺ NMR(DMSO-d _s): 6:1.23(6H, d, J = 6.4 Hz), 1.47 · 1.62(2H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 · 3.42(3H, m), 6.93(1H, d, J = 7.3 Hz), 7.00 · 7.18(3H, m), 7.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz),			
FAB-MS(m/z): 449 (M+H)+ NMR(DMSO·d _s):			
NMR(DMSO-d ₆): S:1.23(6H, d, J = 6.9 Hz), 1.44 - 1.58(2H, m), 1.75 - 2.00(3H, m), 2.83(2H, q, J = 11.2 Hz), 3.01(2H, d, J = 6.3 Hz), 3.27 - 3.43(3H, m), 7.07(1H, brs), 7.20(1H, d, J = 2.4 Hz), 8.08(1H, dd, J = 2.4 Hz, 8.8 Hz), 8.50(1H, d, J = 1.9 Hz), 9.82(1H, brs), 10.77(1H, brs), 11.50(1H, s) FAB-MS(m/z): 483 (M+H)+ NMR(DMSO-d ₆): S:1.26(6H, d, J = 6.8 Hz), 1.57 - 1.68(2H, m), 1.83 - 1.95(3H, m), 2.30(3H, s), 2.77 - 2.89(2H, m), 3.05(2H, d, J = 6.3 Hz), 3.28 - 3.40(3H, m), 6.91(1H, t, J = 7.8 Hz), 7.07(1H, dd J = 1.4 Hz, 7.8 Hz), 7.74(1H, dd, J = 2.0 Hz, 8.3 Hz), 8.03(1H, d, J = 8.3 Hz), 8.21(1H, d, J = 2.0 Hz), 10.08(1H, brs) FAB-MS(m/z): 383 (M+H)+ NMR(DMSO-d ₆): S:1.22 - 1.26(6H, m), 1.49 - 1.61(2H, m), 1.74 - 1.92(3H, m), 2.78 - 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 - 3.35(3H, m), 6.75 - 6.79(1H, m), 6.95 - 6.97(1H, m), 7.07 - 7.09(1H, m), 7.35 - 7.39(2H, m), 7.72 - 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)+ NMR(DMSO-d ₆): S:1.23(6H, d, J = 6.4 Hz), 1.47 - 1.62(2H, m), 1.80 - 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 - 3.42(3H, m), 6.93(1H, d, J = 7.3 Hz), 7.00 - 7.18(3H, m), 7.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), R. S - 1.12 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 - 3.42(3H, m), 6.93(1H, d, J = 7.3 Hz), 7.00 - 7.18(3H, m), 7.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), R. S - 1.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), R. S - 1.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), R. S - 1.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), R. S - 1.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), R. S - 1.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), R. S - 1.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), R. S - 1.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), R. S - 1.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), R. S - 1.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), R. S - 1.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), R. S - 1.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 H			
6:1.23(6H, d, J = 6.9 Hz), 1.44 · 1.58(2H, m), 1.75 · 2.00(3H, m), 2.83(2H, q, J = 11.2 Hz), 3.01(2H, d, J = 6.3 Hz), 3.27 · 3.43(3H, m), 7.07(1H, brs), 7.20(1H, d, J = 2.4 Hz), 8.08(1H, dd, J = 2.4 Hz), 8.08(1H, dd, J = 2.4 Hz, 8.8 Hz), 8.50(1H, d, J = 1.9 Hz), 9.82(1H, brs), 10.77(1H, brs), 11.50(1H, s) FAB-MS(m/z): 483 (M+H)+ NMR(DMSO-ds): 6:1.26(6H, d, J = 6.8 Hz), 1.57 · 1.68(2H, m), 1.83 · 1.95(3H, m), 2.30(3H, s), 2.77 · 2.89(2H, m), 3.05(2H, d, J = 6.3 Hz), 3.28 · 3.40(3H, m), 6.91(1H, t, J = 7.8 Hz), 7.07(1H, dd J = 1.4 Hz, 7.8 Hz), 7.74(1H, dd, J = 2.0 Hz, 8.3 Hz), 8.03(1H, d, J = 8.3 Hz), 8.21(1H, d, J = 2.0 Hz), 10.08(1H, brs) FAB-MS(m/z): 383 (M+H)+ NMR(DMSO-da): 6:1.22 · 1.26(6H, m), 1.49 · 1.61(2H, m), 1.74 · 1.92(3H, m), 2.78 · 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 · 3.35(3H, m), 6.75 · 6.79(1H, m), 6.95 · 6.97(1H, m), 7.07 · 7.09(1H, m), 7.35 · 7.39(2H, m), 7.72 · 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)+ NMR(DMSO-da): 6:1.23(6H, d, J = 6.4 Hz), 1.47 · 1.62(2H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 · 3.42(3H, m), 6.93(1H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), 4.93(1H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), 4.93(1H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), 4.93(1H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), 4.93(1H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), 4.93(1H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz), 4.93(1H, d, J = 7.8 Hz), 7.50(1H, d, J = 8			
1.75 · 2.00(3H, m), 2.83(2H, q, J = 11.2 Hz), 3.01(2H, d, J = 6.3 Hz), 3.27 · 3.43(3H, m), 7.07(1H, brs), 7.20(1H, d, J = 2.4 Hz), 8.08(1H, dd, J = 2.4 Hz), 8.08(1H, dd, J = 2.4 Hz), 8.08(1H, dt, J = 1.9 Hz), 9.82(1H, brs), 10.77(1H, brs), 11.50(1H, s) FAB·MS(m/z): 483 (M+H)+ NMR(DMSO-ds): 6 · 1.26(6H, d, J = 6.8 Hz), 1.57 · 1.68(2H, m), 1.83 · 1.95(3H, m), 2.30(3H, s), 2.77 · 2.89(2H, m), 3.05(2H, d, J = 6.3 Hz), 7.07(1H, dd J = 1.4 Hz, 7.8 Hz), 7.31(1H, dd, J = 1.4 Hz, 7.8 Hz), 7.74(1H, dd, J = 2.0 Hz), 10.08(1H, brs) FAB·MS(m/z): 383 (M+H)+ NMR(DMSO-ds): 6 · 1.22 · 1.26(6H, m), 1.49 · 1.61(2H, m), 1.74 · 1.92(3H, m), 2.78 · 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 · 3.35(3H, m), 6.75 · 6.79(1H, m), 6.95 · 6.97(1H, m), 7.07 · 7.09(1H, m), 7.35 · 7.39(2H, m), 7.72 · 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB·MS(m/z): 402 (M+H)+ NMR(DMSO-ds): 6 · 1.23(6H, d, J = 6.4 Hz), 1.47 · 1.62(2H, m), 10.33(1H, s) FAB·MS(m/z): 402 (M+H)+ NMR(DMSO-ds): 6 · 1.23(6H, d, J = 6.4 Hz), 1.47 · 1.62(2H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 · 3.42(3H, m), 6.93(1H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz),	12	Br O HN	-
(HC1) (H			
7.07(1H, brs), 7.20(1H, d, J = 2.4 Hz), 8.08(1H, dd, J = 2.4 Hz, 8.8 Hz), 8.13(1H, d, J = 8.8 Hz), 8.50(1H, d, J = 1.9 Hz), 9.82(1H, brs), 10.77(1H, brs), 11.50(1H, s) FAB-MS(m/z): 483 (M+H)+ NMR(DMSO-da): ô:1.26(6H, d, J = 6.8 Hz), 1.57 · 1.68(2H, m), 1.83 · 1.95(3H, m), 2.30(3H, s), 2.77 · 2.89(2H, m), 3.05(2H, d, J = 6.3 Hz), 3.28 · 3.40(3H, m), 6.91(1H, t, J = 7.8 Hz), 7.07(1H, dd J= 1.4 Hz, 7.8 Hz), 7.74(1H, dd, J = 2.0 Hz, 8.3 Hz), 8.03(1H, d, J = 8.3 Hz), 8.21(1H, d, J = 2.0 Hz), 10.08(1H, brs) FAB-MS(m/z): 383 (M+H)+ 14 CI OHN (HC1) OHN NMR(DMSO-da): ô:1.22 · 1.26(6H, m), 1.49 · 1.61(2H, m), 1.74 · 1.92(3H, m), 2.78 · 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 · 3.35(3H, m), 6.75 · 6.79(1H, m), 6.95 · 6.97(1H, m), 7.72 · 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)+ NMR(DMSO-da): ô:1.23(6H, d, J = 6.4 Hz), 1.47 · 1.62(2H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 · 3.42(3H, m), 6.93(1H, d, J = 7.3 Hz), 7.00 · 7.18(3H, m), 7.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz),	1	, H ()OH (
(HC1) dd, J = 2.4 Hz, 8.8 Hz), 8.13(1H, d, J = 8.8 Hz), 8.50(1H, d, J = 1.9 Hz), 9.82(1H, brs), 10.77(1H, brs), 11.50(1H, s) FAB-MS(m/z): 483 (M+H)+ NMR(DMSO-da): ô:1.26(6H, d, J = 6.8 Hz), 1.57 - 1.68(2H, m), 1.83 - 1.95(3H, m), 2.30(3H, s), 2.77 - 2.89(2H, m), 3.05(2H, d, J = 6.3 Hz), 3.28 - 3.40(3H, m), 6.91(1H, t, J = 7.8 Hz), 7.07(1H, dd J= 1.4 Hz, 7.8 Hz), 7.74(1H, dd, J = 2.0 Hz, 8.3 Hz), 8.03(1H, d, J = 8.3 Hz), 8.21(1H, d, J = 2.0 Hz), 10.08(1H, brs) FAB-MS(m/z): 383 (M+H)+ NMR(DMSO-da): ô:1.22 - 1.26(6H, m), 1.49 - 1.61(2H, m), 1.74 - 1.92(3H, m), 2.78 - 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 - 3.35(3H, m), 6.75 - 6.79(1H, m), 6.95 - 6.97(1H, m), 7.07 - 7.09(1H, m), 7.35 - 7.39(2H, m), 7.72 - 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)+ NMR(DMSO-da): ô:1.23(6H, d, J = 6.4 Hz), 1.47 - 1.62(2H, m), 1.80 - 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 - 3.42(3H, m), 6.93(1H, d, J = 7.3 Hz), 7.00 - 7.18(3H, m), 7.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz),		Į Ž	$3.01(2H, d, J = 6.3 Hz), 3.27 \cdot 3.43(3H, m),$
8.50(1H, d, J = 1.9 Hz), 9.82(1H, brs), 10.77(1H, brs), 11.50(1H, s) FAB-MS(m/z): 483 (M+H)+ NMR(DMSO·da): 6:1.26(6H, d, J = 6.8 Hz), 1.57 · 1.68(2H, m), 1.83 · 1.95(3H, m), 2.30(3H, s), 2.77 · 2.89(2H, m), 3.05(2H, d, J = 6.3 Hz), 3.28 · 3.40(3H, m), 6.91(1H, t, J = 7.8 Hz), 7.07(1H, dd J = 1.4 Hz, 7.8 Hz), 7.31(1H, dd, J = 1.4 Hz, 7.8 Hz), 7.74(1H, dd, J = 2.0 Hz, 8.3 Hz), 8.03(1H, d, J = 8.3 Hz), 8.21(1H, d, J = 2.0 Hz), 10.08(1H, brs) FAB-MS(m/z): 383 (M+H)+ NMR(DMSO·da): 6:1.22 · 1.26(6H, m), 1.49 · 1.61(2H, m), 1.74 · 1.92(3H, m), 2.78 · 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 · 3.35(3H, m), 6.75 · 6.79(1H, m), 6.95 · 6.97(1H, m), 7.07 · 7.09(1H, m), 7.35 · 7.39(2H, m), 7.72 · 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)+ NMR(DMSO·da): 6:1.23(6H, d, J = 6.4 Hz), 1.47 · 1.62(2H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 · 3.42(3H, m), 6.93(1H, d, J = 7.8 Hz), 7.00 · 7.18(3H, m), 7.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz),		(77.0.1)	7.07(1H, brs), 7.20(1H, d, J = 2.4 Hz), 8.08(1H,
brs), 11.50(1H, s) FAB-MS(m/z): 483 (M+H)+ NMR(DMSO·d ₆): δ:1.26(6H, d, J = 6.8 Hz), 1.57 · 1.68(2H, m), 1.83 · 1.95(3H, m), 2.30(3H, s), 2.77 · 2.89(2H, m), 3.05(2H, d, J = 6.3 Hz), 3.28 · 3.40(3H, m), 6.91(1H, t, J = 7.8 Hz), 7.07(1H, dd J= 1.4 Hz, 7.8 Hz), 7.31(1H, dd, J = 1.4 Hz, 7.8 Hz), 7.74(1H, dd, J = 2.0 Hz, 8.3 Hz), 8.03(1H, d, J = 8.3 Hz), 8.21(1H, d, J = 2.0 Hz), 10.08(1H, brs) FAB-MS(m/z): 383 (M+H)+ NMR(DMSO·d ₆): δ:1.22 · 1.26(6H, m), 1.49 · 1.61(2H, m), 1.74 · 1.92(3H, m), 2.78 · 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 · 3.35(3H, m), 6.75 · 6.79(1H, m), 6.95 · 6.97(1H, m), 7.07 · 7.09(1H, m), 7.35 · 7.39(2H, m), 7.72 · 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)+ NMR(DMSO·d ₆): δ:1.23(6H, d, J = 6.4 Hz), 1.47 · 1.62(2H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 · 3.42(3H, m), 6.93(1H, d, J = 7.3 Hz), 7.00 · 7.18(3H, m), 7.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz),		(HC1)	dd, $J = 2.4 Hz$, $8.8 Hz$), $8.13(1H$, d , $J = 8.8 Hz$),
brs), 11.50(1H, s) FAB-MS(m/z): 483 (M+H)+ NMR(DMSO·d ₀): δ:1.26(6H, d, J = 6.8 Hz), 1.57 · 1.68(2H, m), 1.83 · 1.95(3H, m), 2.30(3H, s), 2.77 · 2.89(2H, m), 3.05(2H, d, J = 6.3 Hz), 3.28 · 3.40(3H, m), 6.91(1H, t, J = 7.8 Hz), 7.07(1H, dd J= 1.4 Hz, 7.8 Hz), 7.31(1H, dd, J = 1.4 Hz, 7.8 Hz), 7.74(1H, dd, J = 2.0 Hz, 8.3 Hz), 8.03(1H, d, J = 8.3 Hz), 8.21(1H, d, J = 2.0 Hz), 10.08(1H, brs) FAB-MS(m/z): 383 (M+H)+ NMR(DMSO·d ₀): δ:1.22 · 1.26(6H, m), 1.49 · 1.61(2H, m), 1.74 · 1.92(3H, m), 2.78 · 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 · 3.35(3H, m), 6.75 · 6.79(1H, m), 6.95 · 6.97(1H, m), 7.07 · 7.09(1H, m), 7.35 · 7.39(2H, m), 7.72 · 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)+ NMR(DMSO·d ₀): δ:1.23(6H, d, J = 6.4 Hz), 1.47 · 1.62(2H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 · 3.42(3H, m), 6.93(1H, d, J = 7.3 Hz), 7.00 · 7.18(3H, m), 7.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz),		i	
FAB·MS(m/z): 483 (M+H)+ NMR(DMSO·d ₆): δ:1.26(6H, d, J = 6.8 Hz), 1.57 · 1.68(2H, m), 1.83 · 1.95(3H, m), 2.30(3H, s), 2.77 · 2.89(2H, m), 3.05(2H, d, J = 6.3 Hz), 3.28 · 3.40(3H, m), 6.91(1H, t, J = 7.8 Hz), 7.07(1H, dd J= 1.4 Hz, 7.8 Hz), 7.31(1H, dd, J = 1.4 Hz, 7.8 Hz), 7.74(1H, dd, J = 2.0 Hz, 8.3 Hz), 8.03(1H, d, J = 8.3 Hz), 8.21(1H, d, J = 2.0 Hz), 10.08(1H, brs) FAB·MS(m/z): 383 (M+H)+ NMR(DMSO·d ₆): δ:1.22 · 1.26(6H, m), 1.49 · 1.61(2H, m), 1.74 · 1.92(3H, m), 2.78 · 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 · 3.35(3H, m), 6.75 · 6.79(1H, m), 6.95 · 6.97(1H, m), 7.07 · 7.09(1H, m), 7.35 · 7.39(2H, m), 7.72 · 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB·MS(m/z): 402 (M+H)+ NMR(DMSO·d ₆): δ:1.23(6H, d, J = 6.4 Hz), 1.47 · 1.62(2H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 · 3.42(3H, m), 6.93(1H, d, J = 7.3 Hz), 7.00 · 7.18(3H, m), 7.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz),			
NMR(DMSO·d ₆): \[\delta: \cdot \c			
δ:1.26(6H, d, J = 6.8 Hz), 1.57 - 1.68(2H, m), 1.83 - 1.95(3H, m), 2.30(3H, s), 2.77 - 2.89(2H, m), 3.05(2H, d, J = 6.3 Hz), 3.28 · 3.40(3H, m), 6.91(1H, t, J = 7.8 Hz), 7.07(1H, dd J= 1.4 Hz, 7.8 Hz), 7.31(1H, dd, J = 1.4 Hz, 7.8 Hz), 7.74(1H, dd, J = 2.0 Hz, 8.3 Hz), 8.03(1H, d, J = 8.3 Hz), 8.21(1H, d, J = 2.0 Hz), 10.08(1H, brs) FAB-MS(m/z): 383 (M+H)+ NMR(DMSO-da): δ:1.22 · 1.26(6H, m), 1.49 · 1.61(2H, m), 1.74 · 1.92(3H, m), 2.78 · 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 · 3.35(3H, m), 6.75 · 6.79(1H, m), 6.95 · 6.97(1H, m), 7.07 · 7.09(1H, m), 7.35 · 7.39(2H, m), 7.72 · 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)+ NMR(DMSO-da): δ:1.23(6H, d, J = 6.4 Hz), 1.47 · 1.62(2H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 · 3.42(3H, m), 6.93(1H, d, J = 7.3 Hz), 7.00 · 7.18(3H, m), 7.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz),	13		
(HC1) 1.83 - 1.95(3H, m), 2.30(3H, s), 2.77 - 2.89(2H, m), 3.05(2H, d, J = 6.3 Hz), 3.28 - 3.40(3H, m), 6.91(1H, t, J = 7.8 Hz), 7.07(1H, dd J= 1.4 Hz, 7.8 Hz), 7.31(1H, dd, J = 1.4 Hz, 7.8 Hz), 7.74(1H, dd, J = 2.0 Hz, 8.3 Hz), 8.03(1H, d, J = 8.3 Hz), 8.21(1H, d, J = 2.0 Hz), 10.08(1H, brs) FAB-MS(m/z): 383 (M+H)+ NMR(DMSO-de): 6:1.22 - 1.26(6H, m), 1.49 - 1.61(2H, m), 1.74 - 1.92(3H, m), 2.78 - 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 - 3.35(3H, m), 6.75 - 6.79(1H, m), 6.95 - 6.97(1H, m), 7.07 - 7.09(1H, m), 7.35 - 7.39(2H, m), 7.72 - 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)+ NMR(DMSO-de): 6:1.23(6H, d, J = 6.4 Hz), 1.47 - 1.62(2H, m), 1.80 - 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 - 3.42(3H, m), 6.93(1H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz),			l · · · · · · · · · · · · · · · · · · ·
(HC1) (H		N N TOH Y	
(HC1) 6.91(1H, t, J = 7.8 Hz), 7.07(1H, dd J= 1.4 Hz, 7.8 Hz), 7.8 Hz), 7.31(1H, dd, J = 1.4 Hz, 7.8 Hz), 7.74(1H, dd, J = 2.0 Hz, 8.3 Hz), 8.03(1H, d, J = 8.3 Hz), 8.21(1H, d, J = 2.0 Hz), 10.08(1H, brs) FAB-MS(m/z): 383 (M+H)+ NMR(DMSO-d ₆): 6.91(1H, t, J = 7.8 Hz), 7.07(1H, dd J= 1.4 Hz, 7.8 Hz), 10.08(1H, d, J = 8.3 Hz), 8.21(1H, d, J = 2.0 Hz), 10.08(1H, brs) 10.08(1H, d, J = 1.92(3H, m), 1.49 - 1.61(2H, m), 1.74 - 1.92(3H, m), 2.78 - 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 - 3.35(3H, m), 6.75 - 6.79(1H, m), 6.95 - 6.97(1H, m), 7.07 - 7.09(1H, m), 7.35 - 7.39(2H, m), 7.72 - 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)+ NMR(DMSO-d ₆): 6:1.23(6H, d, J = 6.4 Hz), 1.47 - 1.62(2H, m), 1.80 - 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 - 3.42(3H, m), 6.93(1H, d, J = 7.3 Hz), 7.00 - 7.18(3H, m), 7.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz),		"	
7.8 Hz), 7.31(1H, dd, J = 1.4 Hz, 7.8 Hz), 7.74(1H, dd, J = 2.0 Hz, 8.3 Hz), 8.03(1H, d, J = 8.3 Hz), 8.21(1H, d, J = 2.0 Hz), 10.08(1H, brs) FAB-MS(m/z): 383 (M+H)+ NMR(DMSO-d ₆): 6:1.22 · 1.26(6H, m), 1.49 · 1.61(2H, m), 1.74 · 1.92(3H, m), 2.78 · 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 · 3.35(3H, m), 6.75 · 6.79(1H, m), 6.95 · 6.97(1H, m), 7.07 · 7.09(1H, m), 7.35 · 7.39(2H, m), 7.72 · 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)+ NMR(DMSO-d ₆): 6:1.23(6H, d, J = 6.4 Hz), 1.47 · 1.62(2H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 · 3.42(3H, m), 6.93(1H, d, J = 7.3 Hz), 7.00 · 7.18(3H, m), 7.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz),		(HC1)	
7.74(1H, dd, J = 2.0 Hz, 8.3 Hz), 8.03(1H, d, J = 8.3 Hz), 8.21(1H, d, J = 2.0 Hz), 10.08(1H, brs) FAB-MS(m/z): 383 (M+H)+ 14 Cl O HN OH NMR(DMSO-d ₆): δ:1.22 - 1.26(6H, m), 1.49 - 1.61(2H, m), 1.74 - 1.92(3H, m), 2.78 - 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 - 3.35(3H, m), 6.75 - 6.79(1H, m), 6.95 - 6.97(1H, m), 7.07 - 7.09(1H, m), 7.35 - 7.39(2H, m), 7.72 - 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)+ NMR(DMSO-d ₆): δ:1.23(6H, d, J = 6.4 Hz), 1.47 - 1.62(2H, m), 1.80 - 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 · 3.42(3H, m), 6.93(1H, d, J = 7.3 Hz), 7.00 · 7.18(3H, m), 7.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz),		, , ,	
8.3 Hz), 8.21(1H, d, J = 2.0 Hz), 10.08(1H, brs) FAB-MS(m/z): 383 (M+H)+ NMR(DMSO-ds): 6:1.22 - 1.26(6H, m), 1.49 - 1.61(2H, m), 1.74 - 1.92(3H, m), 2.78 - 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 - 3.35(3H, m), 6.75 - 6.79(1H, m), 6.95 - 6.97(1H, m), 7.07 - 7.09(1H, m), 7.35 - 7.39(2H, m), 7.72 - 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)+ NMR(DMSO-ds): 6:1.23(6H, d, J = 6.4 Hz), 1.47 - 1.62(2H, m), 1.80 - 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 - 3.42(3H, m), 6.93(1H, d, J = 7.3 Hz), 7.00 - 7.18(3H, m), 7.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz),	ŀ	İ	
FAB-MS(m/z): 383 (M+H)+ NMR(DMSO-d ₆): δ:1.22 · 1.26(6H, m), 1.49 · 1.61(2H, m), 1.74 · 1.92(3H, m), 2.78 · 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 · 3.35(3H, m), 6.75 · 6.79(1H, m), 6.95 · 6.97(1H, m), 7.07 · 7.09(1H, m), 7.35 · 7.39(2H, m), 7.72 · 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)+ NMR(DMSO-d ₆): δ:1.23(6H, d, J = 6.4 Hz), 1.47 · 1.62(2H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 · 3.42(3H, m), 6.93(1H, d, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz),			
NMR(DMSO-d ₆): δ:1.22 - 1.26(6H, m), 1.49 - 1.61(2H, m), 1.74 - 1.92(3H, m), 2.78 - 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 - 3.35(3H, m), 6.75 - 6.79(1H, m), 6.95 - 6.97(1H, m), 7.07 - 7.09(1H, m), 7.35 - 7.39(2H, m), 7.72 - 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)+ NMR(DMSO-d ₆): δ:1.23(6H, d, J = 6.4 Hz), 1.47 - 1.62(2H, m), 1.80 - 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 - 3.42(3H, m), 6.93(1H, d, J = 7.3 Hz), 7.50(1H, d, J = 8.3 Hz),			
$\begin{array}{c} \delta: 1.22 - 1.26(6H, m), 1.49 - 1.61(2H, m), 1.74 - \\ 1.92(3H, m), 2.78 - 2.87(2H, m), 3.10(2H, d, J = \\ 6.9 Hz), 3.25 - 3.35(3H, m), 6.75 - 6.79(1H, m), \\ 6.95 - 6.97(1H, m), 7.07 - 7.09(1H, m), 7.35 - \\ 7.39(2H, m), 7.72 - 7.75(2H, m), 9.65(1H, brs), \\ 10.33(1H, s) \\ FAB-MS(m/z): 402 (M+H)^+ \\ \\ 15 \\ \hline \\ \text{(HC1)} \\ \\ \text{(HC1)} \\ \\ \hline \\ O \ HN \\ OH \\ \\ \text{(HC1)} \\ \\ \hline \\ O \ HN \\ OH \\ \\ \text{(HC1)} \\ \\ \hline \\ O \ HN \\ OH \\ \\ \hline \\ OH \\ \\ OH \\ \\ \hline \\ OH \\ \\ \hline \\ OH \\ \\ \hline \\ OH \\ \\ \hline \\ OH \\ \\ \hline \\ OH \\ \\ \hline \\ OH \\ \\ \hline \\ OH \\ \\ \hline \\ OH \\ \\ \hline \\ OH \\ \\ \hline \\ OH \\ \\ \hline \\ OH \\ \\ OH \\ \\ \hline \\ OH \\ \\ OH \\ \\ \hline \\ OH \\$	1.4	Cl. o	
(HC1) $ \begin{array}{c} 1.92(3H, m), 2.78 \cdot 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 \cdot 3.35(3H, m), 6.75 \cdot 6.79(1H, m), 6.95 \cdot 6.97(1H, m), 7.07 \cdot 7.09(1H, m), 7.35 \cdot 7.39(2H, m), 7.72 \cdot 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) \\ FAB-MS(m/z): 402 (M+H)^+ \\ \hline 15 \\ (HC1) \\ (HC1) \\ \end{array} $ $ \begin{array}{c} 1.92(3H, m), 2.78 \cdot 2.87(2H, m), 3.10(2H, d, J = 6.9 Hz), 3.25 \cdot 6.79(1H, m), 6.95 \cdot 6.97(1H, m), 7.709(1H, m), 9.65(1H, m), 9.65(1H, brs), 10.33(1H, s) \\ \hline 10.3$	14		•
(HC1) 6.9 Hz), 3.25 - 3.35(3H, m), 6.75 - 6.79(1H, m), 6.95 - 6.97(1H, m), 7.07 - 7.09(1H, m), 7.35 - 7.39(2H, m), 7.72 - 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)+ NMR(DMSO-d ₆): δ:1.23(6H, d, J = 6.4 Hz), 1.47 - 1.62(2H, m), 1.80 - 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 - 3.42(3H, m), 6.93(1H, d, J = 7.3 Hz), 7.00 - 7.18(3H, m), 7.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz),		N N OH	
6.95 · 6.97(1H, m), 7.07 · 7.09(1H, m), 7.35 · 7.39(2H, m), 7.72 · 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)+ NMR(DMSO-d ₆): δ:1.23(6H, d, J = 6.4 Hz), 1.47 · 1.62(2H, m), 1.80 · 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 · 3.42(3H, m), 6.93(1H, d, J = 7.3 Hz), 7.50(1H, d, J = 8.3 Hz),		" 3" '	
7.39(2H, m), 7.72 - 7.75(2H, m), 9.65(1H, brs), 10.33(1H, s) FAB-MS(m/z): 402 (M+H)+ NMR(DMSO-d ₆): 5:1.23(6H, d, J = 6.4 Hz), 1.47 - 1.62(2H, m), 1.80 - 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 - 3.42(3H, m), 6.93(1H, d, J = 7.3 Hz), 7.00 - 7.18(3H, m), 7.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz),	ĺ	(HC1)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
FAB-MS(m/z): 402 (M+H)^+ NMR(DMSO-d ₆): $\delta: 1.23(6\text{H, d, J} = 6.4 \text{ Hz}), 1.47 \cdot 1.62(2\text{H, m}),$ $1.80 \cdot 1.94(3\text{H, m}), 2.31(3\text{H, s}), 2.84(2\text{H, q, J} = 11.2 \text{ Hz}), 3.14(2\text{H, d, J} = 4.9 \text{ Hz}), 3.27 \cdot 3.42(3\text{H, m}),$ $6.93(1\text{H, d, J} = 7.3 \text{ Hz}), 7.00 \cdot 7.18(3\text{H, m}),$ $7.23(1\text{H, t, J} = 7.8 \text{ Hz}), 7.50(1\text{H, d, J} = 8.3 \text{ Hz}),$			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.5		· · · · · · · · · · · · · · · · · · ·
(HC1) 1.80 - 1.94(3H, m), 2.31(3H, s), 2.84(2H, q, J = 11.2 Hz), 3.14(2H, d, J = 4.9 Hz), 3.27 - 3.42(3H, m), 6.93(1H, d, J = 7.3 Hz), 7.00 - 7.18(3H, m), 7.23(1H, t, J = 7.8 Hz), 7.50(1H, d, J = 8.3 Hz),	15	O HÌV	· · · · · · · · · · · · · · · · · · ·
(HC1) $ \begin{array}{c} 11.2 \text{ Hz}), \ 3.14(2\text{H, d}, \ J=4.9 \text{ Hz}), \ 3.27 \cdot 3.42(3\text{H,} \\ \text{m}), \ 6.93(1\text{H, d}, \ J=7.3 \text{ Hz}), \ 7.00 \cdot 7.18(3\text{H, m}), \\ 7.23(1\text{H, t}, \ J=7.8 \text{ Hz}), \ 7.50(1\text{H, d}, \ J=8.3 \text{ Hz}), \end{array} $			
(HC1) m), $6.93(1H, d, J = 7.3 Hz)$, $7.00 \cdot 7.18(3H, m)$, $7.23(1H, t, J = 7.8 Hz)$, $7.50(1H, d, J = 8.3 Hz)$,		H (JOH)	
7.23(1H, t, $J = 7.8 \text{ Hz}$), 7.50(1H, d, $J = 8.3 \text{ Hz}$),		(HOI)	
		(HCI)	
7.56(1H, s), 9.72 - 9.90(1H, br), 10.33 - 10.48(1H.			
			1 ·
FAB-MS(m/z): 382 (M+H)+			
16 O HN NMR(DMSO-d ₆):	16	O HN	
δ:1.18 - 1.26(6H, m), 1.42 - 1.63(2H, m), 1.68 -			δ:1.18 · 1.26(6H, m), 1.42 · 1.63(2H, m), 1.68 ·
H OH 2.04(3H, m), 2.77 - 2.93(2H, m), 3.00 - 3.70(5H,	1	H UJOH I	2.04(3H, m), 2.77 - 2.93(2H, m), 3.00 - 3.70(5H,
(HC1) m), 3.75(3H, m), 6.84 · 7.24(5H, m), 7.62(2H, d. J		(UCI)	
= 8.8 Hz), 9.67(1H, brs), 10.33(1H, brs)		(IICI)	
FAB-MS(m/z): 398 (M+H)+			

表4 (続き)

_表4(続き)	
17	Q	NMR(DMSO-d ₆):
	CI O HN	δ :1.06(1.5H, d, J = 6.4 Hz), 1.24(4.5H, d, J = 6.3
		Hz), 1.75 · 2.10(4H, m), 2.63 · 3.45(6H, m), 7.01 ·
	N H L TOH	7.09(2H, m), 7.12 - 7.20(1H, m), 7.90 - 7.96(1H,
	. 🍑	m), 8.13(0.25H, d, J = 8.3 Hz), 8.15(0.75H, d, J =
	(HC1)	8.8 Hz), 8.37(0.75H, d, J = 3.0 Hz), 8.39(0.25H,
		d , $J = 2.5 Hz$), $9.20 \cdot 9.30(0.75H, br)$, $9.41(0.75H, br)$
		s), 9.46(0.25H, s), 9.74 · 9.80(0.25H, br),
		9.84(0.75H, s), 9.85(0.25H, s), 10.39(0.75H, s),
		10.59(0.25H, s)
		FAB-MS(m/z): 417 (M+H)+
18	0	NMR(DMSO-d ₆):
10	CL	1
		δ :1.05(1.8H, d, J = 6.8 Hz), 1.25(4.2H, d, J = 6.3
	N N N OH N	Hz), 1.81 - 2.18(4H, m), 2.63 - 3.26(4H, m), 3.34 -
	' ' '	3.44(2H, m), 7.05 - 7.06(1H, m), 7.15 - 7.17(1H,
	ĆI	m), 7.91 - 7.96(1H, m), 8.09 - 8.13(1H, m), 8.37 -
	(HC1)	8.41(1H, m), 9.47(0.7H, s), 9.56(0.3H, s), 10.45 - 10.68(1.7H, m), 10.41(0.3H, brs), 10.61(0.7H, s),
ŀ		10.81(0.3H, s)
19		FAB-MS(m/z): 451 (M+H)+ NMR(DMSO-d ₆):
19	Cha a.m.L.a	
	Q HN Y	δ :1.04(1.8H, d, J = 6.8 Hz), 1.24(4.2H, d, J = 6.3
	N N H TOH NY	Hz), 1.74 - 2.12(4H, m), 2.60 - 3.45(6H, m), 7.15 - 7.19(1H, m), 7.23 - 7.27(1H, m), 7.89 - 7.97(1H,
İ	·	m), 8.07 · 8.14(1H, m), 8.35 · 8.41(1H, m), 9.39 ·
ļ	Br	9.55(1.7H, m), 9.98 - 10.10(0.3H, br), 10.44 -
	(HC1)	10.50(1H, m), 10.62(0.7H, s), 10.81(0.3H, s)
		FAB-MS(m/z): 497 (M+H)+
20	0	NMR(DMSO-d ₆):
40	Br Q UN	δ :1.06(1.5H, d, J = 6.4 Hz), 1.24(4.5H, d, J = 6.3
		Hz), 1.75 - 2.08(4H, m), 2.65 - 3.42(6H, m), 7.01 -
	N N OH Y	7.08(2H, m), 7.12 - 7.19(1H, m), 8.01 - 8.13(2H,
!		(1.00(211, 10), 7.12) 7.19(111, 10), 8.01 8.13(211, 10), 8.44(0.75H, d, J = 2.5 Hz), 8.46(0.25H, d, J = 1.00(211, 10), 8.44(0.75H, d, J = 1
	(HC1)	2.4 Hz), 9.25(0.75H, brs), 9.41(0.75H, s),
		9.46(0.25H, s), 9.77(0.25H, brs), 9.84(0.75H, s),
		9.86(0.25H, s), 10.39(0.75H, s), 10.58(0.25H, s)
	•	FAB-MS(m/z): 461 (M+H)+
21	0	NMR(DMSO-de):
"1	Br O HN	δ :1.03(1.2H, d, J = 6.8 Hz), 1.23(4.8H, d, J = 6.3
		Hz), 1.68 - 2.10(4H, m), 2.60 - 3.30(6H, m), 7.05 -
	N H T TOH T	7.09(2H, m), 8.01 · 8.10(2H, m), 8.44 · 8.48(1H,
		m), 8.98(0.8H, brs), 9.30 - 9.52(1.2H, m),
1	GI Arrans	10.38(0.8H, s), 10.40(0.2H, s), 10.62(0.8H, s),
	(HC1)	
		FAB-MS(m/z): 497 (M+H)+
	(nor)	10.81(0.2H, s) FAB-MS(m/z): 497 (M+H)+

NMR(DMSO-d ₆): δ:1.04(1.5H, d, J = 6.3 Hz), 1.26(4.5H, d, J = 6.9 Hz), 1.83 · 2.22(4H, m), 2.33(0.8H, s), 2.35(2.2H, s), 2.64 · 3.23(4H, m), 3.32 · 3.40(2H, m), 7.11 · 7.13(1H, m), 7.22 · 7.25(1H, m), 7.85 · 7.91(1H, m), 7.95 · 8.08(1H, m), 8.25 · 8.29(1H, m), 9.66(0.75H, s), 9.70(0.25H, s), 10.12(0.75H, brs), 10.58(0.25H, brs), 10.79(1H, brs), 11.36(0.25H, s), 11.49(0.75H, s) FAB-MS(m/2): 431 (M+H)+ NMR(DMSO-d ₆): δ:1.08(1.2H, d, J = 6.8 Hz), 1.22(4.8H, d, J = 6.8 Hz), 1.65 · 2.21(4H, m), 2.55 · 3.50(6H, m), 7.45 · 7.50(1H, m), 7.62 · 7.70(1H, m), 7.89 - 7.95(1H, m), 8.05 · 8.14(1H, m), 8.36 · 8.42(1H, m), 8.63 · 8.79(1H, br), 9.51(0.8H, s), 9.67(0.2H, s), 10.78(0.8H, s), 10.92(0.2H, s) FAB-MS(m/2): 575 (M-H) NMR(DMSO-d ₆): δ:1.46 · 1.57(2H, m), 1.82 · 1.90(2H, m), 2.81 · 2.90(1H, m), 3.20 · 3.28(2H, m), 4.08 · 4.14(2H, m), 7.13 · 7.16(3H, m), 7.27(1H, d, J = 1.5 Hz), 7.88(1H, dd, J = 1.5 Hz, 8.8 Hz), 8.09(1H, d, J = 9.3 Hz), 8.21(2H, d, J = 7.3 Hz), 8.33(1H, d, J = 2.4 Hz), 9.42(1H, s), 10.50(1H, s), 10.56(1H, s), 13.49(1H, s) FAB-MS(m/z): 532 (M+H)+ NMR(DMSO-d ₆): δ:1.44 · 1.55(2H, m), 1.75 · 1.81(2H, m), 2.48 · 2.54(1H, m), 2.66 · 2.74(2H, m), 2.92(3H, s), 3.45 · 3.51(2H, m), 7.16 · 7.19(2H, m), 7.93(1H, dd, J = 3.0 Hz, 8.8 Hz), 8.38(1H, d, J = 2.4 Hz), 9.32(1H, brs), 10.28(1H, brs), 10.57(1H, s) FAB-MS(m/z): 451 (M+H)+	32 7	(N) C /	
δ:1.04(1.5H, d, J = 6.3 Hz), 1.26(4.5H, d, J = 6.9 Hz), 1.83 · 2.22(4H, m), 2.33(0.8H, s), 2.35(2.2H, s), 2.64 · 3.23(4H, m), 3.32 · 3.40(2H, m), 7.11 · 7.13(1H, m), 7.25 · 8.08(1H, m), 8.25 · 8.29(1H, m), 9.65(0.75H, s), 9.70(0.25H, s), 10.12(0.75H, brs), 10.58(0.25H, brs), 10.79(1H, brs), 11.36(0.25H, s), 11.49(0.75H, s) PAB-MS(m/z): 431 (M+H)+ NMR(DMSO·d ₃): δ:1.08(1.2H, d, J = 6.8 Hz), 1.22(4.8H, d, J = 6.8 Hz), 1.65 · 2.21(4H, m), 2.55 · 3.50(6H, m), 7.45 · 7.50(1H, m), 7.62 · 7.70(1H, m), 7.89 · 7.95(1H, m), 8.63 · 8.79(1H, br), 9.51(0.8H, s), 9.67(0.2H, s), 10.78(0.8H, s), 10.92(0.2H, s), 10.78(0.8H, s), 10.92(0.2H, s), 51.46 · 1.57(2H, m), 1.82 · 1.90(2H, m), 2.81 · 2.90(1H, m), 3.20 · 3.28(2H, m), 4.08 · 4.14(2H, m), 7.13 · 7.16(3H, m), 7.27(1H, d, J = 1.5 Hz), 7.88(1H, dd, J = 1.5 Hz), 8.21(2H, d, J = 7.3 Hz), 8.33(1H, d, J = 2.4 Hz), 9.42(1H, s), 10.50(1H, s), 10.56(1H, s), 13.49(1H, s) FAB-MS(m/z): 532 (M+H)+ NMR(DMSO·d ₃): δ:1.44 · 1.55(2H, m), 1.75 · 1.81(2H, m), 2.48 · 2.54(1H, m), 2.66 · 2.74(2H, m), 2.82(3H, s), 3.45 · 3.51(2H, m), 7.16 · 7.19(2H, m), 7.93(1H, dd, J = 3.0 Hz, 8.8 Hz), 8.12(1H, d, J = 8.8 Hz), 8.38(1H, d, J = 2.4 Hz), 9.32(1H, brs), 10.28(1H, brs), 10.57(1H, s)	22	Q	NMR(DMSO-d ₆):
Hz), 1.83 · 2.22(4H, m), 2.33(0.8H, s), 2.35(2.2H, s), 2.64 · 3.23(4H, m), 3.32 · 3.40(2H, m), 7.11 · 7.13(1H, m), 7.95 · 8.08(1H, m), 8.25 · 8.29(1H, m), 9.65(0.75H, s), 9.70(0.25H, s), 10.12(0.75H, brs), 10.58(0.25H, brs), 10.79(1H, brs), 11.36(0.25H, s), 11.49(0.75H, s) FAB-MS(m/z)· 431 (M+H)+ NMR(DMSO-d ₀)· δ · 1.08(1.2H, d, J = 6.8 Hz), 1.22(4.8H, d, J = 6.8 Hz), 1.65 · 2.21(4H, m), 2.55 · 3.50(6H, m), 7.45 · 7.50(1H, m), 7.62 · 7.70(1H, m), 8.63 · 8.79(1H, br), 9.51(0.8H, s), 9.67(0.2H, s), 10.78(0.8H, s), 10.92(0.2H, s), 10.78(0.8H, s), 10.92(0.2H, s), 10.78(0.8H, s), 10.92(0.2H, s), 10.78(0.8H, s), 2.32(2H, m), 4.08 · 4.14(2H, m), 7.13 · 7.16(3H, m), 7.27(1H, d, J = 1.5 Hz), 7.88(1H, dd, J = 1.5 Hz), 8.81(1H, dd, J = 1.5 Hz), 4.81(1H, s), 10.50(1H, s), 10.50(1H, s), 13.49(1H, s) 25 CI HN O O O O O O O O O O O O O O O O O O		│	
S, 2.64 - 3.23(4H, m), 3.32 - 3.40(2H, m), 7.11 - 7.13(1H, m), 7.22 - 7.25(1H, m), 7.85 - 7.91(1H, m), 7.95 - 8.08(1H, m), 8.25 - 8.29(1H, m), 9.65(0.75H, s), 9.70(0.25H, s), 10.12(0.75H, brs), 10.58(0.25H, brs), 10.79(1H, brs), 11.36(0.25H, s), 11.49(0.75H, s) FAB-MS(m/z): 431 (M+H)+ NMR(DMSO-d ₆): 6 1.08(1.2H, d, J = 6.8 Hz), 1.22(4.8H, d, J = 6.8 Hz), 1.65 - 2.21(4H, m), 2.55 - 3.50(6H, m), 7.45 - 7.50(1H, m), 7.62 - 7.70(1H, m), 7.89 - 7.95(1H, m), 8.05 - 8.14(1H, m), 8.36 - 8.42(1H, m), 8.63 - 8.79(1H, br), 9.51(0.8H, s), 9.67(0.2H, s), 10.78(0.8H, s), 10.92(0.2H, s), 10.92(0.2H, s), 10.78(1H, dd, J = 1.5 Hz), 7.88(1H, dd, J = 1.5 Hz), 7.88(1H, dd, J = 1.5 Hz), 8.21(2H, d, J = 7.3 Hz), 8.33(1H, d, J = 2.4 Hz), 9.42(1H, s), 10.50(1H, s), 10.56(1H, s), 13.49(1H, s) CI	ĺ	N N N N N N N N N N N N N N N N N N N	Hz). 1.83 - 2.22(4H m) 2.33(0.8H a) 2.25(2.9T)
Cl (HCl) (HC	ł	H MOH I	s), 2.64 - 3 23(4H m), 3 32 - 3 40(9H m), 7 11
(HC1) (H	1	Ç	7.13(1H m) 7.22 - 7.25(1H m) 7.25 - 7.01(1T)
9.65(0.75H, s), 9.70(0.25H, s), 10.12(0.75H, brs), 10.58(0.25H, brs), 10.79(1H, brs), 11.36(0.25H, s), 11.49(0.75H, s), 10.12(4.8H, d, J = 6.8 Hz), 1.22(4.8H, d, J = 6.8 Hz), 1.65 · 2.21(4H, m), 2.55 · 3.50(6H, m), 7.45 · 7.50(1H, m), 7.62 · 7.70(1H, m), 7.89 - 7.95(1H, m), 8.05 · 8.14(1H, m), 8.36 · 8.42(1H, m), 8.63 · 8.79(1H, br), 9.51(0.8H, s), 9.67(0.2H, s), 10.78(0.8H, s), 10.92(0.2H, s), FAB-MS(m/s): 575 (M-H)· NMR(DMSO-d _s): 6:1.46 · 1.57(2H, m), 1.82 · 1.90(2H, m), 2.81 · 2.90(1H, m), 3.20 · 3.28(2H, m), 4.08 · 4.14(2H, m), 7.13 · 7.16(3H, m), 7.27(1H, d, J = 1.5 Hz), 7.88(1H, dd, J = 1.5 Hz), 7.88(1H, dd, J = 1.5 Hz), 8.31(1H, d, J = 2.4 Hz), 9.42(1H, s), 10.50(1H, s), 10.56(1H, s), 13.49(1H, s) FAB-MS(m/z): 532 (M+H)+ NMR(DMSO-d _s): 6:1.44 · 1.55(2H, m), 1.75 · 1.81(2H, m), 2.48 · 2.54(1H, m), 2.66 · 2.74(2H, m), 2.82(3H, s), 3.45 · 3.51(2H, m), 7.16 · 7.19(2H, m), 7.93(1H, dd, J = 3.0 Hz, 8.8 Hz), 8.12(1H, d, J = 8.8 Hz), 8.38(1H, d, J = 2.4 Hz), 9.32(1H, brs), 10.28(1H, brs), 10.57(1H, s)		(UCI)	m). 7.95 · 8.08(1H m). 8.25 · 9.20(1H)
10.58(0.25H, brs), 10.79(1H, brs), 11.36(0.25H, s), 11.49(0.75H, s) FAB-MS(m/z): 431 (M+H)+ NMR(DMSO-da): \$\delta: \cdot \cdo	1	(nci)	9.65(0.75H s) 9.70(0.25H a) 10.19(0.75T 1)
S, 11.49(0.75H, s) FAB-MS(m/z): 431 (M+H)+			10.58(0.25H brs) 10.79(1H brs) 11.20(0.95H, Drs),
FAB-MS(m/z): 431 (M+H)+ NMR(DMSO-d ₆): δ:1.08(1.2H, d, J = 6.8 Hz), 1.22(4.8H, d, J = 6.8 Hz), 1.65 · 2.21(4H, m), 2.55 · 3.50(6H, m), 7.45 · 7.50(1H, m), 7.62 · 7.70(1H, m), 7.89 - 7.95(1H, m), 8.05 · 8.14(1H, m), 8.36 · 8.42(1H, m), 8.63 · 8.79(1H, br), 9.51(0.8H, s), 9.67(0.2H, s), 10.78(0.8H, s), 10.92(0.2H, s) FAB-MS(m/z): 575 (M-H)· NMR(DMSO-d ₆): δ:1.46 · 1.57(2H, m), 1.82 · 1.90(2H, m), 2.81 · 2.90(1H, m), 3.20 · 3.28(2H, m), 4.08 · 4.14(2H, m), 7.13 · 7.16(3H, m), 7.27(1H, d, J = 1.5 Hz), 7.88(1H, dd, J = 1.5 Hz, 8.8 Hz), 8.09(1H, d, J = 9.3 Hz), 8.21(2H, d, J = 7.3 Hz), 8.33(1H, d, J = 2.4 Hz), 9.42(1H, s), 10.50(1H, s), 13.49(1H, s) FAB-MS(m/z): 532 (M+H)+ NMR(DMSO-d ₆): δ:1.44 · 1.55(2H, m), 1.75 · 1.81(2H, m), 2.48 · 2.54(1H, m), 2.66 · 2.74(2H, m), 2.82(3H, s), 3.45 · 3.51(2H, m), 7.16 · 7.19(2H, m), 7.93(1H, dd, J = 3.0 Hz, 8.8 Hz), 8.12(1H, d, J = 8.8 Hz), 8.38(1H, d, J = 2.4 Hz), 9.32(1H, brs), 10.28(1H, brs), 10.57(1H, s)			s). 11.49(0.75H s)
NMR(DMSO-d ₆): δ:1.08(1.2H, d, J = 6.8 Hz), 1.22(4.8H, d, J = 6.8 Hz), 1.65 · 2.21(4H, m), 2.55 · 3.50(6H, m), 7.45 · 7.50(1H, m), 7.62 · 7.70(1H, m), 7.89 - 7.95(1H, m), 8.05 · 8.14(1H, m), 8.36 · 8.42(1H, m), 8.63 · 8.79(1H, br), 9.51(0.8H, s), 9.67(0.2H, s), 10.78(0.8H, s), 10.92(0.2H, s) FAB-MS(m/z): 575 (M-H)· NMR(DMSO-d ₆): δ:1.46 · 1.57(2H, m), 1.82 · 1.90(2H, m), 2.81 · 2.90(1H, m), 3.20 · 3.28(2H, m), 4.08 · 4.14(2H, m), 7.13 · 7.16(3H, m), 7.27(1H, d, J = 1.5 Hz), 7.88(1H, dd, J = 1.5 Hz, 8.8 Hz), 8.09(1H, d, J = 9.3 Hz), 8.21(2H, d, J = 7.3 Hz), 8.33(1H, d, J = 2.4 Hz), 9.42(1H, s), 10.50(1H, s), 13.49(1H, s) FAB-MS(m/z): 532 (M+H)+ NMR(DMSO-d ₆): δ:1.44 · 1.55(2H, m), 1.75 · 1.81(2H, m), 2.48 · 2.54(1H, m), 2.66 · 2.74(2H, m), 2.82(3H, s), 3.45 · 3.51(2H, m), 7.16 · 7.19(2H, m), 7.93(1H, dd, J = 3.0 Hz, 8.8 Hz), 8.12(1H, d, J = 8.8 Hz), 8.38(1H, d, J = 2.4 Hz), 9.32(1H, brs), 10.28(1H, brs), 10.57(1H, s)			
δ:1.08(1.2H, d, J = 6.8 Hz), 1.22(4.8H, d, J = 6.8 Hz), 1.65 · 2.21(4H, m), 2.55 · 3.50(6H, m), 7.45 · 7.50(1H, m), 7.62 · 7.70(1H, m), 7.89 · 7.95(1H, m), 8.05 · 8.14(1H, m), 8.36 · 8.42(1H, m), 8.63 · 8.79(1H, br), 9.51(0.8H, s), 9.67(0.2H, s), 10.78(0.8H, s), 10.92(0.2H, s), FAB·MS(m/z): 575 (M·H)· NMR(DMSO·d ₆): δ:1.46 · 1.57(2H, m), 1.82 · 1.90(2H, m), 2.81 · 2.90(1H, m), 3.20 · 3.28(2H, m), 4.08 · 4.14(2H, m), 7.13 · 7.16(3H, m), 7.27(1H, d, J = 1.5 Hz), 7.88(1H, dd, J = 1.5 Hz, 8.8 Hz), 8.09(1H, d, J = 9.3 Hz), 8.21(2H, d, J = 7.3 Hz), 8.33(1H, d, J = 2.4 Hz), 9.42(1H, s), 10.50(1H, s), 10.56(1H, s), 13.49(1H, s) FAB·MS(m/z): 532 (M+H)+ NMR(DMSO·d ₆): δ:1.44 · 1.55(2H, m), 1.75 · 1.81(2H, m), 2.48 · 2.54(1H, m), 2.66 · 2.74(2H, m), 2.82(3H, s), 3.45 · 3.51(2H, m), 7.16 · 7.19(2H, m), 7.93(1H, dd, J = 3.0 Hz, 8.8 Hz), 8.12(1H, d, J = 8.8 Hz), 8.38(1H, d, J = 2.4 Hz), 9.32(1H, brs), 10.28(1H, brs), 10.57(1H, s)	23	Q Q	NMR(DMSO-dg):
Hz, 1.65 · 2.21(4H, m), 2.55 · 3.50(6H, m), 7.45 · 7.50(1H, m), 7.62 · 7.70(1H, m), 7.89 - 7.95(1H, m), 8.05 · 8.14(1H, m), 8.36 · 8.42(1H, m), 8.63 · 8.79(1H, br), 9.51(0.8H, s), 9.67(0.2H, s), 10.78(0.8H, s), 10.92(0.2H, s) FAB-MS(m/z): 575 (M-H)· NMR(DMSO-d _s): δ:1.46 · 1.57(2H, m), 1.82 · 1.90(2H, m), 2.81 · 2.90(1H, m), 3.20 · 3.28(2H, m), 4.08 · 4.14(2H, m), 7.13 · 7.16(3H, m), 7.27(1H, d, J = 1.5 Hz), 7.88(1H, dd, J = 1.5 Hz, 8.8 Hz), 8.09(1H, d, J = 9.3 Hz), 8.21(2H, d, J = 7.3 Hz), 8.33(1H, d, J = 9.3 Hz), 8.21(2H, s), 10.50(1H, s), 13.49(1H, s) FAB-MS(m/z): 532 (M+H)+ NMR(DMSO-d _s): δ:1.44 · 1.55(2H, m), 1.75 · 1.81(2H, m), 2.48 · 2.54(1H, m), 2.66 · 2.74(2H, m), 2.82(3H, s), 3.45 · 3.51(2H, m), 7.16 · 7.19(2H, m), 7.93(1H, dd, J = 3.0 Hz, 8.8 Hz), 8.12(1H, d, J = 8.8 Hz), 8.38(1H, d, J = 2.4 Hz), 9.32(1H, brs), 10.28(1H, brs), 10.57(1H, s)		O HN	$\delta:1.08(1.2H, d, J=6.8 Hz)$ 1 22(4.8H 3.7-6.6
7.50(1H, m), 7.62 - 7.70(1H, m), 7.89 - 7.95(1H, m), 8.05 - 8.14(1H, m), 8.36 - 8.42(1H, m), 8.63 - 8.79(1H, br), 9.51(0.8H, s), 9.67(0.2H, s), 10.78(0.8H, s), 10.92(0.2H, s), FAB-MS(m/z): 575 (M-H) NMR(DMSO-d ₆): 6:1.46 - 1.57(2H, m), 1.82 - 1.90(2H, m), 2.81 - 2.90(1H, m), 3.20 - 3.28(2H, m), 4.08 - 4.14(2H, m), 7.13 - 7.16(3H, m), 7.27(1H, d, J = 1.5 Hz), 7.88(1H, dd, J = 1.5 Hz, 8.8 Hz), 8.09(1H, d, J = 9.3 Hz), 8.21(2H, d, J = 7.3 Hz), 8.33(1H, d, J = 2.4 Hz), 9.42(1H, s), 10.50(1H, s), 10.56(1H, s), 13.49(1H, s) FAB-MS(m/z): 532 (M+H)+ NMR(DMSO-d ₆): 6:1.44 - 1.55(2H, m), 1.75 - 1.81(2H, m), 2.48 - 2.54(1H, m), 2.66 - 2.74(2H, m), 2.82(3H, s), 3.45 - 3.51(2H, m), 7.16 - 7.19(2H, m), 7.93(1H, dd, J = 3.0 Hz, 8.8 Hz), 8.12(1H, d, J = 8.8 Hz), 8.38(1H, d, J = 2.4 Hz), 9.32(1H, brs), 10.28(1H, brs), 10.57(1H, s)			Hz), 1.65 · 2.21(4H m) 2.55 · 3.50(6H m) 7.45
Br // OH (free) M, 8.05 - 8.14(1H, m), 8.36 - 8.42(1H, m), 8.63 - 8.79(1H, br), 9.51(0.8H, s), 9.67(0.2H, s), 10.78(0.8H, s), 10.92(0.2H, s) FAB-MS(m/z): 575 (M-H) NMR(DMSO-d ₆): δ:1.46 - 1.57(2H, m), 1.82 - 1.90(2H, m), 2.81 - 2.90(1H, m), 3.20 - 3.28(2H, m), 4.08 - 4.14(2H, m), 7.13 - 7.16(3H, m), 7.27(1H, d, J = 1.5 Hz), 7.88(1H, dd, J = 1.5 Hz, 8.8 Hz), 8.09(1H, d, J = 9.3 Hz), 8.21(2H, d, J = 7.3 Hz), 8.33(1H, d, J = 2.4 Hz), 9.42(1H, s), 10.50(1H, s), 10.56(1H, s), 13.49(1H, s) FAB-MS(m/z): 532 (M+H)+		HUQ	7.50(1H, m), 7.62 - 7.70(1H, m), 7.80 - 7.05(1H
10.78(0.8H, s), 9.51(0.8H, s), 9.67(0.2H, s), 10.78(0.8H, s), 10.92(0.2H, s) FAB-MS(m/z): 575 (M-H) NMR(DMSO-d ₆): δ:1.46 - 1.57(2H, m), 1.82 - 1.90(2H, m), 2.81 - 2.90(1H, m), 3.20 - 3.28(2H, m), 4.08 - 4.14(2H, m), 7.13 - 7.16(3H, m), 7.27(1H, d, J = 1.5 Hz), 7.88(1H, dd, J = 1.5 Hz, 8.8 Hz), 8.09(1H, d, J = 9.3 Hz), 8.21(2H, d, J = 7.3 Hz), 8.33(1H, d, J = 2.4 Hz), 9.42(1H, s), 10.50(1H, s), 10.56(1H, s), 13.49(1H, s) FAB-MS(m/z): 532 (M+H)+ NMR(DMSO-d ₆): δ:1.44 - 1.55(2H, m), 1.75 - 1.81(2H, m), 2.48 - 2.54(1H, m), 2.66 - 2.74(2H, m), 2.82(3H, s), 3.45 - 3.51(2H, m), 7.16 - 7.19(2H, m), 7.93(1H, dd, J = 3.0 Hz, 8.8 Hz), 8.12(1H, d, J = 8.8 Hz), 8.38(1H, d, J = 2.4 Hz), 9.32(1H, brs), 10.28(1H, brs), 10.57(1H, s)		Br // av	m), 8.05 - 8.14(1H, m) 8.36 - 8.49(1H, m) 9.62
10.78(0.8H, s), 10.92(0.2H, s) FAB-MS(m/z): 575 (M-H) NMR(DMSO·d ₆): δ:1.46 · 1.57(2H, m), 1.82 · 1.90(2H, m), 2.81 · 2.90(1H, m), 3.20 · 3.28(2H, m), 4.08 · 4.14(2H, m), 7.13 · 7.16(3H, m), 7.27(1H, d, J = 1.5 Hz), 7.88(1H, dd, J = 1.5 Hz, 8.8 Hz), 8.09(1H, d, J = 9.3 Hz), 8.21(2H, d, J = 7.3 Hz), 8.33(1H, d, J = 2.4 Hz), 9.42(1H, s), 10.50(1H, s), 10.56(1H, s), 13.49(1H, s) FAB-MS(m/z): 532 (M+H)+ NMR(DMSO·d ₆): δ:1.44 · 1.55(2H, m), 1.75 · 1.81(2H, m), 2.48 · 2.54(1H, m), 2.66 · 2.74(2H, m), 2.82(3H, s), 3.45 · 3.51(2H, m), 7.16 · 7.19(2H, m), 7.93(1H, dd, J = 3.0 Hz, 8.8 Hz), 8.12(1H, d, J = 8.8 Hz), 8.38(1H, d, J = 2.4 Hz), 9.32(1H, brs), 10.28(1H, brs), 10.57(1H, s)	1	_ O OH	8.79(1H, br), 9.51(0.8H s), 9.67(0.2H s)
FAB-MS(m/z): 575 (M-H) NMR(DMSO·d ₆): δ:1.46 - 1.57(2H, m), 1.82 - 1.90(2H, m), 2.81 - 2.90(1H, m), 3.20 - 3.28(2H, m), 4.08 - 4.14(2H, m), 7.13 - 7.16(3H, m), 7.27(1H, d, J = 1.5 Hz), 7.88(1H, dd, J = 1.5 Hz, 8.8 Hz), 8.09(1H, d, J = 9.3 Hz), 8.21(2H, d, J = 7.3 Hz), 8.33(1H, d, J = 2.4 Hz), 9.42(1H, s), 10.50(1H, s), 10.56(1H, s), 13.49(1H, s) FAB-MS(m/z): 532 (M+H)+ NMR(DMSO·d ₆): δ:1.44 - 1.55(2H, m), 1.75 - 1.81(2H, m), 2.48 - 2.54(1H, m), 2.66 - 2.74(2H, m), 2.82(3H, s), 3.45 - 3.51(2H, m), 7.16 - 7.19(2H, m), 7.93(1H, dd, J = 3.0 Hz, 8.8 Hz), 8.12(1H, d, J = 8.8 Hz), 8.38(1H, d, J = 2.4 Hz), 9.32(1H, brs), 10.28(1H, brs), 10.57(1H, s)	[(free)	10.78(0.8H, s), 10.92(0.2H, s)
NMR(DMSO-d ₆): δ:1.46 - 1.57(2H, m), 1.82 - 1.90(2H, m), 2.81 - 2.90(1H, m), 3.20 - 3.28(2H, m), 4.08 - 4.14(2H, m), 7.13 - 7.16(3H, m), 7.27(1H, d, J = 1.5 Hz), 7.88(1H, dd, J = 1.5 Hz, 8.8 Hz), 8.09(1H, d, J = 9.3 Hz), 8.21(2H, d, J = 7.3 Hz), 8.33(1H, d, J = 2.4 Hz), 9.42(1H, s), 10.50(1H, s), 10.56(1H, s), 13.49(1H, s) FAB-MS(m/z): 532 (M+H)+ NMR(DMSO-d ₆): δ:1.44 - 1.55(2H, m), 1.75 - 1.81(2H, m), 2.48 - 2.54(1H, m), 2.66 - 2.74(2H, m), 2.82(3H, s), 3.45 - 3.51(2H, m), 7.16 - 7.19(2H, m), 7.93(1H, dd, J = 3.0 Hz, 8.8 Hz), 8.12(1H, d, J = 8.8 Hz), 8.38(1H, d, J = 2.4 Hz), 9.32(1H, brs), 10.28(1H, brs), 10.57(1H, s)			FAB-MS(m/z): 575 (M-H)
2.90(1H, m), 3.20 · 3.28(2H, m), 4.08 · 4.14(2H, m), 7.13 · 7.16(3H, m), 7.27(1H, d, J = 1.5 Hz), 7.88(1H, dd, J = 1.5 Hz, 8.8 Hz), 8.09(1H, d, J = 9.3 Hz), 8.21(2H, d, J = 7.3 Hz), 8.33(1H, d, J = 2.4 Hz), 9.42(1H, s), 10.50(1H, s), 10.56(1H, s), 13.49(1H, s) 25 CI HN OH OH N N N CI HN OH OH OH OH OH OH OH OH OH	24	Ch a	NMR(DMSO-d ₆):
2.90(1H, m), 3.20 · 3.28(2H, m), 4.08 · 4.14(2H, m), 7.13 · 7.16(3H, m), 7.27(1H, d, J = 1.5 Hz), 7.88(1H, dd, J = 1.5 Hz, 8.8 Hz), 8.09(1H, d, J = 9.3 Hz), 8.21(2H, d, J = 7.3 Hz), 8.33(1H, d, J = 2.4 Hz), 9.42(1H, s), 10.50(1H, s), 10.56(1H, s), 13.49(1H, s) 25 CI HN OH OH N N N CI HN OH OH OH OH OH OH OH OH OH		I WHY ?	δ:1.46 - 1.57(2H, m), 1.82 - 1.90(2H, m) 2.81 -
(HC1) (H	ļ	N N N N	2.90(1H, m), 3.20 · 3.28(2H, m), 4.08 · 4.14(2H
(HC1) (HC1) 7.88(1H, dd, $J = 1.5 \text{ Hz}$, 8.8 Hz), 8.09(1H, d, $J = 9.3 \text{ Hz}$), 8.21(2H, d, $J = 7.3 \text{ Hz}$), 8.33(1H, d, $J = 2.4 \text{ Hz}$), 9.42(1H, s), 10.50(1H, s), 10.56(1H, s), 13.49(1H, s) FAB-MS(m/z): 532 (M+H)+ NMR(DMSO-d ₆): δ :1.44 · 1.55(2H, m), 1.75 · 1.81(2H, m), 2.48 · 2.54(1H, m), 2.66 · 2.74(2H, m), 2.82(3H, s), 3.45 · 3.51(2H, m), 7.16 · 7.19(2H, m), 7.93(1H, dd, $J = 3.0 \text{ Hz}$, 8.8 Hz), 8.12(1H, d, $J = 8.8 \text{ Hz}$), 8.38(1H, d, $J = 2.4 \text{ Hz}$), 9.32(1H, brs), 10.28(1H, brs), 10.57(1H, s)	[, A OH PN	$ m_{J}, 7.13 \cdot 7.16(3H, m), 7.27(1H, d, J = 1.5 Hz) $
9.3 Hz), 8.21(2H, d, J = 7.3 Hz), 8.33(1H, d, J = 2.4 Hz), 9.42(1H, s), 10.50(1H, s), 10.56(1H, s), 13.49(1H, s) FAB-MS(m/z): 532 (M+H)+ NMR(DMSO-d ₆): 6:1.44 · 1.55(2H, m), 1.75 · 1.81(2H, m), 2.48 · 2.54(1H, m), 2.66 · 2.74(2H, m), 2.82(3H, s), 3.45 · 3.51(2H, m), 7.16 · 7.19(2H, m), 7.93(1H, dd, J = 3.0 Hz, 8.8 Hz), 8.12(1H, d, J = 8.8 Hz), 8.38(1H, d, J = 2.4 Hz), 9.32(1H, brs), 10.28(1H, brs), 10.57(1H, s)]	Br	7.88(1H, dd, J = 1.5 Hz, 8.8 Hz), 8.09(1H d J = 1.5 Hz, 8.8 Hz)
2.4 Hz), 9.42(1H, s), 10.50(1H, s), 10.56(1H, s), 13.49(1H, s) FAB-MS(m/z): 532 (M+H)+ NMR(DMSO-d ₆): 6:1.44 - 1.55(2H, m), 1.75 - 1.81(2H, m), 2.48 - 2.54(1H, m), 2.66 - 2.74(2H, m), 2.82(3H, s), 3.45 - 3.51(2H, m), 7.16 - 7.19(2H, m), 7.93(1H, dd, J = 3.0 Hz, 8.8 Hz), 8.12(1H, d, J = 8.8 Hz), 8.38(1H, d, J = 2.4 Hz), 9.32(1H, brs), 10.28(1H, brs), 10.57(1H, s)		(HCI)	(9.3 Hz), $(8.21(2 H), d)$, $(3.33(1 H), d)$, $(3.33(1 H), d)$, $(3.33(1 H), d)$
13.49(1H, s) FAB-MS(m/z): 532 (M+H)+ NMR(DMSO-d ₆): δ:1.44 · 1.55(2H, m), 1.75 · 1.81(2H, m), 2.48 · 2.54(1H, m), 2.66 · 2.74(2H, m), 2.82(3H, s), 3.45 · 3.51(2H, m), 7.16 · 7.19(2H, m), 7.93(1H, dd, J = 3.0 Hz, 8.8 Hz), 8.12(1H, d, J = 8.8 Hz), 8.38(1H, d, J = 2.4 Hz), 9.32(1H, brs), 10.28(1H, brs), 10.57(1H, s)			2.4 Hz), 9.42(1H, s), 10.50(1H, s), 10.56(1H, s)
NMR(DMSO-d ₆): $\delta:1.44 \cdot 1.55(2H, m), 1.75 \cdot 1.81(2H, m), 2.48 \cdot 2.54(1H, m), 2.66 \cdot 2.74(2H, m), 2.82(3H, s), 3.45 \cdot 3.51(2H, m), 7.16 \cdot 7.19(2H, m), 7.93(1H, dd, J = 3.0 Hz, 8.8 Hz), 8.12(1H, d, J = 8.8 Hz), 8.38(1H, d, J = 2.4 Hz), 9.32(1H, brs), 10.28(1H, brs), 10.57(1H, s)$			13.49(1H, s)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25		FAB-MS(m/z): 532 (M+H)+
1 2.54(1H, m), 2.66 · 2.74(2H, m), 2.82(3H, s), 3.45 - 3.51(2H, m), 7.16 · 7.19(2H, m), 7.93(1H, dd, J = 3.0 Hz, 8.8 Hz), 8.12(1H, d, J = 8.8 Hz), 8.38(1H, d, J = 2.4 Hz), 9.32(1H, brs), 10.28(1H, brs), 10.57(1H, s)	∠5	Cl aL	
1 2.54(1H, m), 2.66 · 2.74(2H, m), 2.82(3H, s), 3.45 3.51(2H, m), 7.16 · 7.19(2H, m), 7.93(1H, dd, J = 3.0 Hz, 8.8 Hz), 8.12(1H, d, J = 8.8 Hz), 8.38(1H, d, J = 2.4 Hz), 9.32(1H, brs), 10.28(1H, brs), 10.57(1H, s)			δ:1.44 · 1.55(2H, m), 1.75 · 1.81(2H, m), 2.48 -
(free) $ \begin{array}{c} \text{13.51(2H, m), 7.16 - 7.19(2H, m), 7.93(1H, dd, J)} \\ = 3.0 \text{ Hz, } 8.8 \text{ Hz), } 8.12(1\text{H, d, J} = 8.8 \text{ Hz),} \\ 8.38(1\text{H, d, J} = 2.4 \text{ Hz), } 9.32(1\text{H, brs), } 10.28(1\text{H, brs}), \\ 10.57(1\text{H, s}) \end{array} $		N N TOWN	2.54(1H, m), 2.66 · 2.74(2H, m), 2.82(3H s), 3.45
(free) $ \begin{vmatrix} = 3.0 & \text{Hz}, 8.8 & \text{Hz}, 8.12(1 & \text{H}, d, J = 8.8 & \text{Hz}), \\ 8.38(1 & \text{H}, d, J = 2.4 & \text{Hz}), 9.32(1 & \text{H}, brs), 10.28(1 & \text{H}, brs), 10.57(1 & \text{H}, s) \end{vmatrix} $		Br OH OO	- 3.51(2H, m), 7.16 - 7.19(2H, m), 7.93(1H dd J
8.38(1H, d, J = 2.4 Hz), 9.32(1H, brs), 10.28(1H, brs), 10.57(1H, s)		(fran)	= 3.0 Hz, 8.8 Hz), 8.12(1H, d, J = 8.8 Hz)
brs/, 10.57(1H, s)	1	(1166)	8.38(1H, d, J = 2.4 Hz), 9.32(1H, brs), 10.28(1H)
FAB-MS(m/z): 451 (M+H)+			brs), 10.57(1H, s)
			FAB-MS(m/z): 451 (M+H)+

表	5					
		R ¹	. 2			
		R^2 $A \rightarrow X^1 \rightarrow X^2 \rightarrow N-R^4$				
		_ (₩ OH			
No.	R ¹ A	X 1	X 2	R 4		
1		-NH-C(=O)-	-C(=O)-NH-	-CH(CH ₃) ₂		
2		-NH-C(=O)-	-CH ₂ -NH-	-CH(CH ₃) ₂		
3		-C(=O)·NH-	-C(=O)-NH-	-CH(CH ₃) ₂		
4		-C(=O)-NH-	-NH-C(=O)-	-CH(CH ₃) ₂		
5		-C(=O)-NH-	·NH·CH₂·	-CH(CH ₃) ₂		
6	CI—()—	-C(=O)·NH-	-CH ₂ -NH-	-CH(CH ₃) ₂		
7	N	-NH-C(=O)-	-NH-C(=O)-	-(CH ₂) ₂ CH ₃		
8		-NH-C(=O)-	•NH•CH₂•	-(CH ₂) ₂ CH ₈		
9		-NH-C(=O)-	-NH-C(=O)-	-CH ₂ CH ₃		
10		-NH-C(=O)-	-NH-CH ₂ -	-CH ₂ CH ₃		
11		-NH-C(=O)-	-NH-C(=O)-	-CH₃		
12		-NH-C(=O)-	-NH-CH ₂ -	-CH₃		
13		-NH-C(=O)-	-NH-C(=O)-	-CH₃		
14	Br-\(\bigcap_N\)	-C(=O)-NH-	-NH-C(=O)-	-CH(CH ₃) ₂		
15		-C(=O)-NH-	-NH-CH ₂ -	-CH(CH ₃) ₂		
16		-NH-C(=O)-	-NH-C(=O)-	-CH(CH ₃) ₂		
17	F-{}-	-NH-C(=O)-	-NH-CH₂-	-CH(CH ₃) ₂		
18	~N	-C(=O)-NH-	-NH-C(=O)-	-CH(CH ₃) ₂		
19		-C(=O)-NH-	-NH-CH₂-	-CH(CH ₃) ₂		
20	Me-	-NH-C(=O)-	-NH-C(=O)	-CH(CH ₈) ₂		
21		-NH-C(=O)-	-NH-CH ₂ -	-(CH ₈) ₂		
22	MeO-	-NH-C(=O)-	-NH-C(=O)-	-CH(CH ₈) ₂		
23	~N	-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂		
24	CI—(-NH-C(=O)-	-NH-C(=O)-	-CH(CH ₃) ₂		
25		-NH-C(=O)-	-NH-CH₂-	-CH(CH ₃) ₂		
26		-NH-C(=O)-	-NH-C(=O)-	-CH(CH ₃) ₂		
27	CI— S	-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂		
28	OI N	-C(=O)-NH-	-NH-C(=0)-	-CH(CH ₃) ₂		
29		-C(=O)-NH-	-NH-CH ₂ -	-CH(CH ₃) ₂		

•	VO 02/42270			PC1/JP01/10176
表	5 (続き)			
30	CI	-NH-C(=O)-	-NH-CH ₂ -	-CH ₂ CH ₃
31	CI-V	-C(=O)-NH-	-NH-CH ₂ -	-CH(CH ₃) ₂
32	F-	-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂
33	' 🖳	-C(=O)·NH-	-NH-CH ₂ -	-CH(CH ₈) ₂
34	MeO-	-C(=O)-NH-	-NH-CH₂-	-CH ₂ CH ₃
35		-C(=O)-NH-	·NH·CH₂·	-CH(CH ₃) ₂
36		-NH-C(=0)-	-NH-CH₂-	-CH ₂ CH ₃
37	Me	-C(=O)-NH-	-NH-CH ₂ -	-CH(CH ₃) ₂
38	FH ₂ C-O-	-NH-C(=O)-	-NH-CH₂-	-CH(CH ₃) ₂
39	111200	-C(=O)-NH-	-NH-CH₂-	-CH(CH ₃) ₂
40	F,HC-O-	-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂
41	1 2110 0	-C(=O)-NH-	-NH-CH₂-	-CH(CH ₃) ₂
42	MeO-	-NH-C(=O)-	-NH-CH2-	-CH(CH ₃) ₂
43	F	-C(=O)-NH-	-NH-CH₂-	-CH(CH ₃) ₂
44		-NH-C(=O)-	-NH-C(=0)-	-CH(CH ₃) ₂
45	CI-	-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₈) ₂
46	N-N	-C(=O)-NH-	-NH-C(=O)-	-CH(CH ₃) ₂
47		-C(=O)-NH-	-NH-CH ₂ -	-CH(CH ₃) ₂
48		-NH-C(=O)-	-NH-C(=0)-	-CH(CH ₃) ₂
49	CI—(=N)	-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂
50		-C(=O)-NH-	-NH-C(=O)-	-CH(CH ₃) ₂
51		-C(=O)-NH-	-NH-CH ₂ -	-CH(CH ₃) ₂
52		-NH-C(=O)-	-NH-C(=0)-	-CH(CH ₃) ₂
53	CI—(S)—	-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂
54	N-	-C(=O)-NH-	-NH-C(=O)-	-CH(CH ₃) ₂
55		-C(=O)-NH-	-NH-CH ₂ -	-CH(CH ₃) ₂
56		-NH-C(=O)-	-NH-C(=O)-	-CH(CH ₃) ₂
57	c -{ ⁰ }-	-NH-C(=0)-	-NH-CH ₂ -	-CH(CH ₃) ₂
58		-C(=O)-NH-	-NH-C(=O)-	-CH(CH ₃) ₂
59	<u> </u>	-C(=O)-NH-	-NH-CH ₂ -	-CH(CH ₃) ₂

表 6

表	6			
	:	R^1 R^2 A X^1	X²—(_N-R⁴	
		cı [′]		
No.	R ¹ A	X 1	X ²	R 4
60		-NH-C(=0)-	-C(=O)-NH-	-CH(CH ₃) ₂
61		-NH-C(=0)-	-CH ₂ -NH-	-CH(CH ₃) ₂
62		-C(=O)-NH-	-C(=O)-NH-	-CH(CH ₃) ₂
63		-C(=O)-NH-	-NH-C(=0)-	-CH(CH ₃) ₂
64		-C(=O)-NH-	-NH-CH₂-	-CH(CH ₃) ₂
65	CI—()—	•C(=O)•NH•	-CH₂-NH-	-CH(CH ₃) ₂
66	oN	•NH-C(=0)-	-NH-C(=0)-	-(CH ₂) ₂ CH ₃
67		-NH-C(=0)-	•NH-CH₂-	-(CH ₂) ₂ CH ₃
68		-NH-C(=0)-	-NH-C(=0)-	-CH ₂ CH ₃
69		-NH-C(=0)-	-NH-CH₂-	-CH₂CH₃
70		-NH-C(=O)-	-NH-C(=0)-	-CH₃
71		-NH-C(=0)-	-NH-CH₂-	-CH₃
72		-NH-C(=O)-	·NH-C(=0)-	-CH ₃
73	Br—	-NH-C(=0)-	-NH-C(=0)-	-CH₂CH₃
74	D' N	-C(=O)-NH-	-NH-C(=O)-	-CH(CH ₃) ₂
75		-C(=O)-NH-	·NH-CH₂-	-CH(CH ₃) ₂
76		-NH-C(=O)-	-NH-C(=0)-	-CH(CH ₃) ₂
77	F-(-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂
78] N	-C(=O)-NH-	-NH-C(=0)-	-CH(CH ₃) ₂
79		-C(=O)-NH-	-NH-CH ₂ -	-CH(CH ₃) ₂
80	Me-	-NH-C(=O)-	-NH-C(=O)-	-CH ₂ CH ₃
81	<u>N</u> ,	-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂
82	MeO-{\bigs_}	-NH-C(=O)-	-NH-C(=O)-	-CH(CH ₃) ₂
83	Meo	-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂
84	cı—〈¯〉—	-NH-C(=0)-	-NH-C(=O)-	-CH(CH ₃) ₂
85	N-"	-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂
86		-NH-C(=O)-	-NH-C(=O)-	-CH(CH ₃) ₂
87	cı⊸(^S)—	-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂
88	J O N	-C(=O)-NH-	-NH-C(=O)-	-CH(CH ₃) ₂
89		-C(=O)-NH-	-NH-CH ₂ -	-CH(CH ₃) ₂

表6 (続き)

120				
90	CI	·NH·C(=O)·	-NH-CH ₂ -	-CH(CH ₃) ₂
91	0.	-C(=O)-NH-	-NH-CH₂-	-CH(CH ₃) ₂
92	F-(-)-	-NH-C(=O)-	·NH·CH ₂ ·	-CH(CH ₃) ₂
93		-C(=O)-NH-	-NH-CH ₂ -	-CH(CH ₃) ₂
94	MeO-	-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂
95		-C(=O)-NH-	-NH-CH ₂ -	-CH(CH ₃) ₂
96		-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂
97	Me	-C(=O)-NH-	-NH-CH₂-	-CH(CH ₃) ₂
98	FH,C-O-	-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂
99	111200	-C(=O)-NH-	-NH-CH ₂ -	-CH(CH ₃) ₂
100	F,HC-O-	-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂
101		-C(=O)-NH-	-NH-CH ₂ -	-CH(CH ₃) ₂
102	MeO-	-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂
103	F	-C(=O)-NH-	-NH-CH ₂ -	-CH(CH ₃) ₂
104		-NH-C(=O)-	-NH-C(=O)-	-CH(CH ₃) ₂
105	CI—	•NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂
106	N-N	-C(=O)-NH-	-NH-C(=O)-	-CH(CH ₃) ₂
107		-C(=O)-NH-	-NH-CH₂-	-CH(CH ₃) ₂
108		-NH-C(=O)-	-NH-C(=O)-	-CH(CH ₃) ₂
109	CI—(=N	-NH-C(=O)-	-NH-CH₂-	-CH(CH ₃) ₂
110	_N	-C(=O)-NH-	-NH-C(=O)-	-CH(CH ₃) ₂
111		-C(=O)-NH-	-NH-CH₂-	-CH(CH ₃) ₂
112	S	-NH-C(=O)-	-NH-C(=O)-	-CH(CH ₃) ₂
113	CI—N—	-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂
114		-C(=O)-NH-	-NH-C(=O)-	-CH(CH ₃) ₂
115		-NH-C(=O)-	-NH-C(=O)-	-CH(CH ₃) ₂
116	CI—(°)—	-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂
117	~N	-C(=O)-NH-	-NH-C(=O)-	-CH(CH ₃) ₂

表7	7	<u> </u>		
		R^1 R^2 A X^1	X ² — N-R ⁴	
		Br)_/OH	
No.	R ¹ A	X 1	X ²	R 4
118		-NH-C(=O)-	-C(=O)-NH-	-CH(CH ₃) ₂
119		-NH-C(=O)-	-CH ₂ -NH-	-CH(CH ₃) ₂
120		-C(=O)-NH-	-C(=O)-NH-	-CH(CH ₃) ₂
121		-C(=O)·NH-	-NH-C(=O)-	-CH(CH ₃) ₂
122		-C(=O)-NH-	-NH-CH₂-	-CH(CH ₃) ₂
123	CI—(=)	-C(=O)-NH-	-CH ₂ -NH-	-CH(CH ₃) ₂
124	_N	-NH-C(=O)-	-NH-C(=O)-	-(CH ₂) ₂ CH ₃
125		-NH-C(=O)-	-NH-CH ₂ -	-(CH ₂) ₂ CH ₃
126		-NH-C(=O)-	-NH-C(=O)-	-CH ₂ CH ₃
127	•	-NH-C(=0)-	'-NH-CH ₂ -	-CH ₂ CH ₃
128		-NH-C(=O)-	-NH-C(=O)-	-CH ₃
129		-NH-C(=O)-	-NH-CH₂-	-CH₃
130	·	-NH-C(=0)-	-NH-CH₂-	-CH(CH ₃) ₂
131	Br—	-NH-C(=O)-	-NH-C(=O)-	-CH(CH ₃) ₂
132		-C(=O)-NH-	-NH-C(=O)-	-CH(CH ₈) ₂
133		-C(=O)-NH-	-NH-CH ₂ -	-CH(CH ₃) ₂
134		-NH-C(=O)-	-NH-C(=O)-	$-\mathrm{CH}(\mathrm{CH_3})_2$
135	F-(-NH-C(=O)-	-NH-CH₂-	-CH(CH ₃) ₂
136	<u></u> ″N	-C(=O)-NH-	-NH-C(=O)-	-CH(CH ₃) ₂
137		-C(=O)-NH-	-NH-CH ₂ -	-CH(CH ₃) ₂
138	Me—(¯¯)—	-NH-C(=O)-	-NH-C(=O)-	-CH(CH ₃) ₂
139		-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂
140	MeO-	-NH-C(=O)-	-NH-C(=O)-	-CH(CH ₃) ₂
141		-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂
142	CI-	-NH-C(=0)-	-NH-C(=O)-	-CH(CH ₃) ₂
143	N-″	-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂
144		-NH-C(=O)-	-NH-C(=O)-	-CH(CH ₃) ₂
145	cı⊸(^S)—	-NH-C(=O)-	-NH-CH ₂ -	-CH(CH ₃) ₂
146	, or N	-C(=O)-NH-	-NH-C(=O)-	-CH(CH ₃) ₂
147		-C(=O)-NH-	-NH-CH ₂ -	-CH(CH ₃) ₂

表7 (続き)

148 CI -NH-C(=O)- -NH-CH₂- -CH(CH₂- 150 F -NH-C(=O)- -NH-CH₂- -CH(CH₂- 151 -C(=O)-NH- -NH-CH₂- -CH(CH₂- 152 MeO -NH-C(=O)- -NH-CH₂- -CH(CH₂- 153 -C(=O)-NH- -NH-CH₂- -CH(CH₂- 154 -NH-C(=O)- -NH-CH₂- -CH(CH₂- 155 -C(=O)-NH- -NH-CH₂- -CH(CH₂- 156 -NH-C(=O)- -NH-CH₂- -CH(CH₂- 157 -C(=O)-NH- -NH-CH₂- -CH(CH₂- 158 -CH(CH₂- -CH(CH₂- -CH(CH₂- -NH-C(=O)- -NH-CH₂- -CH(CH₂- -NH-C(=O)- -NH-CH₂- -CH(CH₂-	H ₃) ₂ H ₃) ₂ H ₃) ₂ H ₈) ₂ H ₈) ₂ H ₃) ₂ H ₃) ₂ H ₃) ₂ H ₃) ₂
149	H ₃) ₂ H ₃) ₂ H ₃) ₂ H ₈) ₂ H ₈) ₂ H ₃) ₂ H ₃) ₂ H ₃) ₂ H ₃) ₂
150	H ₈) ₂ H ₃) ₂ H ₈) ₂ H ₈) ₂ H ₃) ₂ H ₃) ₂ H ₃) ₂
151	H ₃) ₂ H ₈) ₂ H ₈) ₂ H ₃) ₂ H ₃) ₂ H ₃) ₂
152	I ₈) ₂ I ₈) ₂ I ₉) ₂ I ₉) ₂ I ₉) ₂
153	I ₈) ₂ I ₃) ₂ I ₃) ₂ I ₃) ₂
154 155 Me -C(=O)NH-CH₂CH(CH₂- 156 157 -C(=O)-NHNH-CH₂CH(CH₂- 158 -NH-C(=O)NH-CH₂CH(CH₂- 158 -C(=O)-NHNH-CH₂CH(CH₂- 158 -C(=O)-NHNH-CH₂CH(CH₂- 158 -CH(CH₂- 158 -CH(CH₂-	I ₃) ₂ I ₃) ₂ I ₃) ₂
Me -C(=O)-NH- ·NH-CH₂- ·CH(CH 156	[₃) ₂
157 FH ₂ C-O	
157 -C(=O)-NHNH-CH ₂ CH(CH	
158	
F-HC-O-()- NII C(-O) -NH-CH ₂ CH(CH	
159 -C(=O)-NHNH-CH ₂ CH(CH	$[_{3})_{2}$
160 MeO -NH-C(=O)NH-CH ₂ CH(CH	3)2
161 F -C(=O)-NHNH-CH ₂ CH(CH	.8)2
162 -NH-C(=O)NH-C(=O)CH(CH	3)2
163 -NH-C(=0)NH-CH ₂ CH(CH	
164 N-N -C(=O)-NHNH-C(=O)CH(CH	3)2
165 -C(=O)-NHNH-CH ₂ CH(CH	3)2
-NH-C(=O)NH-C(=O)CH(CH	3)2
167	3)2
168 -C(=O)-NHNH-C(=O)CH(CH	3)2
169 -C(=O)-NHNH-CH ₂ CH(CH	3)2
170 -NH-C(=O)NH-C(=O)CH(CH	3)2
171 CI—N— -NH-C(=O)NH-CH ₂ CH(CH ₂ -	3)2
172 -C(=O)-NHNH-C(=O)CH(CH ₂	3)2
-NH-C(=O)NH-C(=O)CH(CH ₂	1)2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)2
175 -C(=O)-NHNH-C(=O)CH(CH ₈	

表8

表 8) 				-
		R^1 R^2 A X^1	X ² —N—Me		
		Ý	z		
No.	R ¹ A	X 1	X ²	Y	Z
176		-NH-C(=O)-	-NH-C(=0)-	CN	н
177	CI—	-NH-C(=O)-	-NH-CH ₂ -	CN	н
178	o,	-C(=O)-NH-	-NH-C(=O)-	CN	Н
179		-C(=O)-NH-	-NH-CH ₂ -	CN	Н
180	MeO-	-NH-C(=O)-	-NH-CH ₂ -	CN	н
181	Meo (-C(=O)-NH-	-NH-CH ₂ -	CN	н
182		-NH-C(=O)-	-NH-C(=O)-	Me	н
183	CI—(-NH-C(=O)-	-NH-CH ₂ -	Me	н
184	o. FN	-C(=O)-NH-	-NH-C(=O)-	Me	H
185		-C(=O)-NH-	-NH-CH₂-	Me	H
186	MeO NeO	-NH-C(=O)-	-NH-CH ₂ -	Me	Н
187	Meo-	-C(=O)-NH-	-NH-CH ₂ -	Me	н
188		-NH-C(=O)-	-NH-C(=O)-	Н	Me
189	CI—〈 ̄〉—	-NH-C(=0)-	-NH-CH₂-	· H	Me
190	o, _N	-C(=O)-NH-	-NH-C(=O)-	Н	Me
191		-C(=O)-NH-	-NH-CH ₂ -	H	Me
192	MeO-(-NH-C(=O)-	-NH-CH ₂ -	Н	Me
193		-C(=O)-NH-	-NH-CH2-	Н	Me
194		-NH-C(=O)-	-NH-C(=O)-	-OMe	H
195	CI—(¯)—	-NH-C(=0)-	-NH-CH2-	-ОМе	H
196	CI-(N)	-C(=O)-NH-	-NH-C(=O)-	-ОМе	Н
197		-C(=O)-NH-	-NH-CH ₂ -	-ОМе	Н
198	MeO-	-NH-C(=O)-	-NH-CH2-	-OMe	н
199		-C(=O)-NH-	-NH-CH ₂ -	-ОМе	Н
200		-NH-C(=O)-	-NH-C(=O)-	CF ₃	Н
201	cı—(¯)—	-NH-C(=O)-	-NH-CH₂-	CF ₃	н
202	~N	-C(=O)-NH-	-NH-C(=O)-	CF ₃	H
203		-C(=O)-NH-	-NH-CH₂-	CF_3	н
204	MeO-	-NH-C(=O)-	-NH-CH ₂ -	CF_3	н
205		-C(=O)-NH-	-NH-CH₂-	CF ₃	н

表8 (続き)

表 8	(続き)				
206		-NH-C(=O)-	-NH-C(=0)-	OCF3	H
207	CI	-NH-C(=O)-	-NH-CH ₂ -	OCF_3	$\dot{ ext{H}}$
208	o' N	-C(=O)-NH-	-NH-C(=0)-	OCF3	H
209		-C(=O)-NH-	-NH-CH ₂ -	OCF ₃	H
210	MeO-	-NH-C(=O)-	-NH-CH ₂ -	OCF3	H
211	Weo (-C(=O)-NH-	-NH-CH₂•	OCF ₃	H
212		-NH-C(=O)-	-NH-C(=0)-	NHSO ₂ Me	Н
213	CI	-NH-C(=O)-	-NH-CH₂-	NHSO ₂ Me	н
214	O' N	-C(=O)-NH-	-NH-C(=0)-	NHSO ₂ Me	н
215		-C(=O)-NH-	-NH-CH₂-	NHSO ₂ Me	н
216	MeO-	-NH-C(=0)-	-NH-CH ₂ -	NHSO ₂ Me	н
217	MeO-	-C(=O)-NH-	-NH-CH ₂ -	NHSO ₂ Me	н
218		-NH-C(=O)-	-NH-C(=O)-	NHCOMe	н
219		-NH-C(=O)-	-NH-CH ₂ -	NHCOMe	H
220	O. N	-C(=O)-NH-	-NH-C(=0)-	NHCOMe	Н
221		-C(=O)-NH-	-NH-CH ₂ -	NHCOMe	Н
222	MeO-	-NH-C(=0)-	-NH-CH ₂ -	NHCOMe	Н
223	MIGO	-C(=O)-NH-	-NH-CH ₂ -	NHCOMe	Н
224		-NH-C(=O)-	-NH-C(=O)-	C(=O)Me	Н
225	CI—〈 ̄>	-NH-C(=O)-	-NH-CH ₂ -	C(=O)Me	Н
226	oN	-C(=O)-NH-	-NH-C(=O)-	C(=O)Me	н
227		-C(=O)-NH-	-NH-CH ₂ -	C(=O)Me	Н
228	MeO-	-NH-C(=O)-	-NH-CH ₂ -	C(=O)Me	н
229	WieO	-C(=O)-NH-	-NH-CH ₂ -	C(=O)Me	Н
230	•	-NH-C(=O)-	-NH-C(=O)-	COOMe	H
231	CI-	-NH-C(=O)-	-NH-CH ₂ -	COOMe	H
232	2N	-C(=O)-NH-	-NH-C(=O)-	COOMe	H
233		-C(=O)-NH-	-NH-CH ₂ -	COOMe	H
234	MeO-	-NH-C(=O)-	-NH-CH₂-	COOMe	H
235		-C(=O)-NH-	-NH-CH ₂ -	COOMe	H
236	CI—(¯)—	-NH-C(=O)-	-NH-C(=O)-	CONH ₂	H
237		-NH-C(=O)-	-NH-CH ₂ -	CONH ₂	H
238	CI—〈¯>	-NH-C(=O)-	-NH-C(=O)-	SM _e	H
239	N	-NH-C(=O)-	-NH-CH ₂ -	SMe	H
240	cı—(¯)—	-NH-C(=O)-	-NH-C(=O)-	I	H
241		-NH-C(=O)-	-NH-CH ₂ -	I	H

表 9

_表 9		
HOOC OH OH	HOOC OH OH	HOOC OH OH
Br N N N N N N N N N N N N N N N N N N N	HOOSE OF THE PARTY	CI O HN N N H O OH OH
HOOC OH	CI O HIN OH HOOC OH	CI N HOOC OH
HOOC OH OH	HOOC OH	HOOC OH
HOOC OH OH	HOOC OH	CI HOUSE OH
CI HHN NNN- Br NOH H00C OH	Br HNN NNN NNN NNN NNN NNN NNN NNN NNN NN	Br HHN N- C1 OH H00C OH
CI HN OH OH OH	Br HN N N N N N N N N N N N N N N N N N N	CI HN N N N N N N N N N N N N N N N N N N

表9 (続き)

_表9(続き)		
Br N N N N N N N N N N N N N N N N N N N	H0000 OH OH OH OH	Br OH OH
CI HN HO OH OH	CI SO ₃ H	HOOC OH
HOOC OH OH	HOOC OH	HOOC OH OH
HOOC OH	HOOC OH	HOOC OH OH
HOOC OH	HOOC OH OH	Br HN O OH OH OH
HOOC OH OH	HOOC OH OH	HOOC OH OH
HOOC OH OH	Br O OH HOOCE OH	HOOC OH OH

表9 (続き)

表9(続き)		
O HN N N N N N N N N N N N N N N N N N N	Br OH OH OH OH	CI N N H N OH OH OH
CI N HN OH HOOC OH	CI N HN OH SC-NH OH HOOC OH	CI N HOOC OH
HOOC OH OH	CI N HN OH HOOC OH	Br N N H CI OH OH
Br O HN N OH Br O OH H000C OH	HOOC OH	CI N HN N N N N N N N N N N N N N N N N N
Br OH HOOC OH	CI NO HINT NO HOOC OH	CI N H O H O H O H
C1	HOOC OH OH	HOOC OH OH
Br OH H000C OH	HOOC OH	HOOC OH OH

請求の範囲

1. 下記一般式(I)で示される化合物又はその塩。

$$R^{1}$$
 A
 X^{1}
 OR^{4}
 (1)

(上記式中の記号は、それぞれ以下の意味を有する。

 $X^1:-C$ (=O) $-NR^5-$ 、 $-NR^5-C$ (=O) -、 $-CH_2-NR^5-$ 、又は $-NR^5-CH_2-$ 、 $X^2:-C$ (=O) $-NR^6-$ 、 $-NR^6-C$ (=O) -、 $-CH_2-NR^6-$ 、又は $-NR^6-CH_2-$ 、 $R^1:$ ハロゲン原子、ハロゲン原子で置換されていても良い低級アルキル、又はハロゲン原子で置換されていても良い低級アルコキシ、

 R^2 、及び R^3 :同一又は異なって、水素原子、ハロゲン原子、CN、 $-NH-SO_2-低級アルキル、<math>-NH-CO$ -低級アルキル、-CO-低級アルキル、-CO-低級アルコキシ、 $-CO-NH_2$ 、ハロゲン原子で置換されていても良い低級アルキル、ハロゲン原子で置換されていても良い低級アルコキシ、又は-S-低級アルキル、

R⁴:水素原子、-SO₃H、又は糖残基、

A環:ベンゼン環、又はN、S、及びOからなる群より選択される1種又は2種以上のヘテロ原子を1~4個含有する5又は6員ヘテロ環、

B環:R⁴が水素原子、又は-SO₃Hのとき、窒素原子がR⁷で置換されたピペリジン環、

R⁴が糖残基のとき、窒素原子がR⁷で置換されたピペリジン環、又は

で置換されたベンゼン環、

R⁵、及びR⁶:同一又は異なって、水素原子、又は低級アルキル、

R⁷、及びR⁸: 水素原子、低級アルキル、-SO₂-低級アルキル、又はN、S、及び

Oからなる群より選択される1種又は2種以上のヘテロ原子を1~4個含有する5 又は6員ヘテロ環、

但し、 X^2 が $-NR^6-C$ (=O) $-かつR^4$ が水素原子の場合、A環は、N、S、及び Oからなる群より選択される1種又は2種以上のヘテロ原子を1~4個含有する5 又は6員ヘテロ環を意味する)

- 2. R ⁴が水素原子、-SO₃H、又はグルクロン酸残基である請求の範囲1記載の 化合物又はその塩。
- 3. R⁴が水素原子である請求の範囲1記載の化合物又はその塩。
- 4. X¹が-C (=O) -N R⁵-、又は-N R⁵-C (=O) -であり、X²が-N R⁶-C (=O) -、又は-N R⁶-C H₂-である請求の範囲 1 記載の化合物又はその塩。
- 5. A環がベンゼン環、又はピリジン環である請求の範囲 1 記載の化合物又はその塩。
- 6. 4' \mathcal{J} \mathcal{J}

ピペリジンー4ーカルボキサニリド、4'ープロモー2'ー [(5ークロロー2ーピリジル)カルバモイル]ー6'ーヒドロキシー1ーイソプロピルピペリジンー4ーカルボキサニリド、2'ー [(5ープロモー2ーピリジル)カルバモイル]ー4'ークロロー6'ーヒドロキシー1ーイソプロピルピペリジンー4ーカルボキサニリド、5ークロローNー(5ークロロー2ーピリジル)ー3ーヒドロキシー2ー { [(1ーイソプロピルー4ーピペリジル)メチル] アミノ} ベンズアミド、Nー(5ープロモー2ーピリジル)ー5ークロロー3ーヒドロキシー2ー { [(1ーイソプロピルー4ーピペリジル)メチル] アミノ} ベンズアミド、3ー [(4ーメトキシベンゾイル)アミノ]ー2ー { [4ー(4ーメチルー1,4ージアゼパンー1ーイル)ベンゾイル] アミノ} フェニル β -Dーグルコピラノシド、3ー [(4ーメトキシベンゾイル)アミノ]ー2ー { [4ー(4ーメチルー1,4ージアゼパンー1ーイル)ベンゾイル] アミノ} フェニル β -Dーグルコピラノシドウロニックアシッドから選択される請求の範囲1記載の化合物又はその塩。

- 7. 請求の範囲1に記載される化合物又はその塩を有効成分とする医薬組成物。
- 8. 活性化血液凝固第 X 因子阻害剤である請求の範囲 7 記載の医薬組成物。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/10176

A. CLASS Int.	LASSIFICATION OF SUBJECT MATTER Int.Cl ⁷				
According to	According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS	SEARCHED				
Int.	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07D211/26, 401/12, 401/14, 417/12, 413/12, 405/14, 405/12, C07H15/26, A61K31/706, 31/4545, 31/445, 31/454, 31/501, 31/506, 31/551, 31/7052				
	ion searched other than minimum documentation to the				
	ata base consulted during the international search (name STRY (STN), CAPLUS (STN)	e of data base and, where practicable, sea	rch terms used)		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
A	WO 00/39111 (Eli Lilly and Com 06 July, 2000 (06.07.2000), & EP 1140881 A1	pany),	1-8		
А	WO 99/00127 (Eli Lilly and Com 07 January, 1999 (07.01.1999), & AU 9882706 Al & EP 100703		1-8		
	er documents are listed in the continuation of Box C,	See patent family annex.			
* Special categories of cited documents; "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search O8 February, 2002 (08.02.02) "T" later document published after the international filing date or priority date and not in conflict with the application but cited understand the principle or theory underlying the invention document of particular relevance; the claimed invention cann considered novel or cannot be considered to involve an invention cann considered to involve an inventive step when the document of particular relevance; the claimed invention cann considered to involve an invention cann considered to involve an inventive step when the document of particular relevance; the claimed invention cann considered to involve an inventive step when the document of particular relevance; the claimed invention cann considered to involve an inventive step when the document of particular relevance; the claimed invention cann considered to involve an inventive step when the document of particular relevance; the claimed invention cann considered to involve an inventive step when the document of particular relevance; the claimed invention cann considered to involve an inventive step when the document of particular relevance; the claimed invention cann considered to involve an inventive step when the document of particular relevance; the claimed invention cann considered to involve an inventive step when the document of particular relevance; the claimed invention cann considered to involve an i			ne application but cited to erlying the invention cannot be red to involve an inventive claimed invention cannot be red to involve an inventive claimed invention cannot be to when the document is documents, such a skilled in the art family		
	nailing address of the ISA/ anese Patent Office	Authorized officer			
Facsimile N		Telephone No.	ı		

A: 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl ⁷ C07D211/26, 401/12, 401/14, 417/12, 413/12, 405/14, 405/12, C07H15/26, A61K31/706, 31/4545, 31/445, 31/454, 31/501, 31/506, 31/551, 31/7052, A61P7/02, 9/10					
調査を行った。 Int. Cl ⁷ CO7I	丁った分野 最小限資料(国際特許分類(IPC)) 0211/26, 401/12, 401/14, 417/12, 413/12, 405/14, 31/706, 31/4545, 31/445, 31/454, 31/501, 31/506				
最小限資料以外	外の資料で調査を行った分野に含まれるもの				
	目した電子データベース(データベースの名称、 ΓRY (STN), CAPLUS (STN)	調査に使用した用語)			
C. 関連する	5と認められる文献				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	ときは、その関連する箇所の表示	関連する 請求の範囲の番号		
A	WO 00/39111 (ELI LILLY AND COMPAN & EP 1140881 A1	Y) 2000. 07. 06	1-8		
A	WO 99/00127 (ELI LILLY AND COMPAN & AU 9882706 A1 & EP 1007037 A1	Y) 1999. 01. 07	1-8		
して欄の続き	たにも文献が列挙されている。	└	紙を参照。 		
もの 「E」国際出願 以後にな 「L」優先権当 日若しく 文献(選 「O」口頭によ	のカテゴリー 他のある文献ではなく、一般的技術水準を示す 自日前の出願または特許であるが、国際出願日 公表されたもの に張に疑義を提起する文献又は他の文献の発行 は他の特別な理由を確立するために引用する 理由を付す) はる開示、使用、展示等に言及する文献 同日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表を出願と矛盾するものではなく、多の理解のために引用するもの 「X」特に関連のある文献であって、当の新規性又は進歩性がないと考え「Y」特に関連のある文献であって、当上の文献との、当業者にとって追よって進歩性がないと考えられる「&」同一パテントファミリー文献	後明の原理又は理論 当該文献のみで発明 さられるもの 当該文献と他の1以 計明である組合せに		
国際調査を完了	てした日 08.02.02	国際調査報告の発送日 26.02	.02		
日本国	D名称及びあて先 国特許庁 (1 SA/JP)	特許庁審査官(権限のある職員) 中木 亜希	4 P 9 2 8 2		
	郵便番号100-8915 部千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	ン 内線 3492		