Embedded System Concepts

Omar Taha

- Embedded Systems Implementation
- System Board System On Chip
- Embedded Systems definitions
- Introduction to Embedded Systems
- IC MPU MCU GPU DSP SOC ECU
- Processor Components
- Instruction life cycle
- RISC vs CISC
- Register Files (GPR & SPR)
- Types of Memory
- Basic Element of memory (Flip Flop)
- Volatile Memory RAM
- Types of RAM
- SRAM vs DRAM
- Reading TRM (Technical Reference Manual)
- Memory Mapping (Base Address & Offset)
- MCU Bus Interfacing
- Bus Bridges
- MCU Ports (Master & Slave)
- Transactions
- AMBA

What is the Embedded System?

- It is a combination of hardware and software
- It executes a specific task
- It is a system integrated into a larger system

General purpose systems:

systems that can do many functionalities depending on

- 1- available hardware
- 2- installed programs

System Board - System On Chip

Feature	System Board	System on Chip (SoC)
Definition	A main circuit board within a computer	A single integrated circuit that contains most or all components of a computer or other electronic system
Customization	Offers flexibility for customization and upgrades through interchangeable components	Generally less customizable as components are integrated into a single chip
Power Consumption	Low power consumption	Low power consumption
Size	Larger physical size due to separate components and interfaces	Smaller physical footprint due to integration of components onto a single chip
Cost	Expensive	Cheap
Application	Commonly used in traditional desktops, laptops, and servers	Embedded systems

difference between [IC - MPU - MCU - GPU - DSP - SOC - ECU]

1-IC

An electronic circuit that consists of miniaturized electronic components such as resistors, capacitors, and transistors, interconnected on a semiconductor material. [Timer 555]

2-MPU

A central processing unit (CPU) contained on a single integrated circuit (IC) or a few ICs, typically used in general-purpose computing tasks.
[Intel Core processors]

3- **MCU**

A compact integrated circuit designed to control specific functions within embedded systems, containing a CPU, memory, and peripherals.

[AVR microcontrollers]

4-GPU

A specialized electronic circuit designed to accelerate the creation and rendering of images, videos, and animations [NVIDIA GeForce]

5- **DSP**

A specialized microprocessor designed specifically for processing digital signals, such as audio signals, video signals, and sensor data.

6-ECU

An embedded system that controls one or more electrical systems or subsystems in a vehicle.

Processor Components

Control unit

The control unit calculate the address of the instruction.

Address register

The address register is a small memory inside the CPU to carry the address it needs to send to the memory, either for instruction fetch or data fetch.

• Instruction register

The instruction register (IR) store the instruction being executed now.

Instruction decoder

The instruction decoder gets the instruction of the instruction register and decode it

ALU

To execute instructions, we need arithmetic and logic unit (ALU) to performs the mathematical functions

Basic Instruction Cycle

Fetch: get it from the memory to CPU.

Decode: understand it.

Execute: perform the instruction.

Memory

Types of memories

Feature	Volatile Memory	Non-Volatile Memory	Hybrid Memory
Definition	is a type of storage whose contents are erased when the system's power is turned off	Retains stored data even when power is removed	Combines characteristics of both volatile and non-volatile memory
Examples	RAM (Random Access Memory), Cache Memory	ROM (Read-Only Memory), Flash Memory	EEPROM-Flash memory-NVRAM

Feature	DRAM	SRAM
Data Storage	Stores data in storage cells consisting of a	Stores data in flip-flops, which do not
Mechanism	capacitor and a transistor. Requires	require refreshing to retain data.
	periodic refreshing.	
Lifetime of	Data has a short lifetime (typically about	Data does not require refreshing and can be
Data	four milliseconds) and requires periodic	retained indefinitely.
	refreshing.	
Access Time	Slower access times compared to SRAM.	Faster access times (approximately four
		times faster than DRAM).
Cost	Lower cost per bit compared to SRAM.	Higher cost per bit compared to DRAM.
Usage	Typically used for main memory (RAM) in	Used in applications where fast access times
	computers and other digital devices where	are crucial, such as CPU caches and high-
	large capacity is required.	performance computing.

Feature	Mask Programmable	PROM	EPROM
Reprogram	ROM Not reprogrammable.	Can be programmed once	Can be erased and
ability		by user.	reprogrammed repeatedly.
Programming	Data is written into ROM	Data is written into PROM	Data is written into EPROM
Method	during manufacture.	using a device programmer.	using a device programmer.
Erasure Method	N/A	N/A	Exposed to ultraviolet light
			for erasure.
Data Retention	Data cannot be changed	Data cannot be changed	Data can be erased and
	once programmed.	once programmed.	reprogrammed.
Cost	Cheapest type of ROM.	More expensive than Mask	More expensive than PROM.
		ROM.	
Usage	Used in small electronic	Used when some flexibility	Used when reprogram ability
	devices.	in programming is needed.	is required.
Advantages	Cheap and suitable for	Programmable by end-user.	Allows for reprogramming
	mass production.		multiple times.
Disadvantages	Data cannot be changed	Can only be programmed	More expensive than PROM
	after manufacture.	once.	and Mask ROM.
Example	Traditional ROM chips.	Early versions of BIOS chips.	Early versions of EPROM
			chips.

Cache Memory

its acting as a high-speed buffer between the CPU and the main memory. And reducing data retrieval time and relieving the workload on the CPU

• FPU [Floating point unit]

It is a part of a computer system specially designed to carry out operations on floating-point numbers.

MPU [memory protection unit]

Its provides memory protection. It is usually implemented as part of the central processing

MMU [memory management unit]

It is a computer hardware component that handles all memory and caching operations associated with the processor. In other words, the MMU is responsible for all aspects of memory management. It's usually integrated into the processor, although, in some systems, it occupies a separate integrated circuit (IC).

Von Neumann

- Processor that uses this architecture has only one block of memory and one data bus
- CPU can read instruction o read/write data from/to memory.
- an instruction fetch and a data operation cannot occur at the same time because they share a common bus.

Harvard

- Separate memories for data and instructions.
- Two sets of address/data buses between CPU and memory.

Characteristic	RC Oscillator	Ceramic Oscillator	Crystal Oscillator
Cost	Low	Low-Moderate	Moderate-High
Accuracy	Low	Moderate	High
Setting Time	Fast	Moderate	Slow
Noise Immunity	Low	Moderate	High

Characteristic	Memory Mapping	Port Mapping
Address Space	Maps memory addresses	Maps I/O port addresses
Access Method	Accessed using memory instructions	Accessed using IN/OUT instructions or dedicated I/O instructions
Usage	Suitable for accessing memory-mapped devices such as RAM, ROM, and peripherals	Suitable for accessing I/O ports connected to peripheral devices
Addressing Range	Typically a wide range of addresses, often spanning the entire memory space	Limited address range, typically a smaller subset of the address space
Data Transfer Speed	Generally slower compared to port mapping	Can be faster due to direct access to hardware ports
Interrupt Handling	Usually not specifically designed for interrupt handling	Often used for interrupt handling by reading/writing to specific ports

Bus bridge

used in computer systems to connect two or more buses that operate at different speeds, have different architectures, or use different protocols.

Hardware ports

Master

- The master device/port typically initiates and controls the communication or data transfer process.
- It often has the authority to issue commands, request data, or send instructions to other devices or ports.

Slave

- The slave device/port typically responds to commands, requests, or instructions issued by the master device/port.
- It often has limited control over the communication process and relies on the master device/port for direction

Transactions

Read Transaction

- A read transaction involves retrieving data from a specific location, such as memory, a register, or an I/O device.
- The process typically begins with the requester, often a CPU or another device, sending a read request to the target location.
- The target location then responds to the read request by transmitting the requested data back to the requester.

Write Transaction

- A write transaction involves storing or updating data at a specific location, such as memory, a register, or an I/O device.
- Similar to a read transaction, the process begins with the requester sending a write request to the target location, along with the data to be written.
- The target location receives the write request and updates its contents with the provided data.

AMBA [the ARM Advanced Bus Architecture]

It's a widely-used standard for on-chip interconnect in System-on-Chip (SoC) designs, providing specifications like AXI, AHB, and APB for efficient connection and management of IP cores