Relógio Digital

Implementado em VHDL

Design de Computadores 2018.2 - Insper

Isabella Oliveira, Lucas Chen, Rachel Bottino e Vitória Mattos

1. Objetivo

Este projeto tem como objetivo a implementação de um relógio digital em VHDL no chip programável FPGA DE2-115 e por consequência estimular o aprendizado e a fixação dos conteúdos da disciplina Design de Computadores, além de desenvolver a habilidade de utilizar esses conhecimentos em uma aplicação real.

2. Desenvolvimento

O relógio desenvolvido nesse projeto indica, na FPGA, as horas, os minutos e os segundos no sistema de 24 horas. Por meio da interface do chip programável é possível acertar um horário e também selecionar uma base de tempo para facilitar o teste do relógio, aumentando a velocidade que o tempo passa nele.

A definição do fluxo de dados e do top level do projeto foram baseados na atividade de calculadora, também em FPGA, realizado no curso anteriormente. Para a implementação da lógica de passagem de tempo e exibição deles no LCD da FPGA, foi feito um diagrama de estados e este foi implementado no software Quartus. O diagrama está representado na Figura 1.

Figura 1. Diagrama de estados

Ele é baseado em incrementos na unidade dos segundos e comparações para verificar se chegou o momento de fazer algum incremento nas unidades ou dezenas dos segundos, minutos ou horas. Por meio dele foi gerado parte do código em VHDL com o próprio conversor de diagrama de estados para código do Quartus. A partir disso, as palavras de controle foram associadas à operações da Unidade Lógica Aritmética, como as funções que zeram e que incrementam às unidades e dezenas do segundo, minuto e hora.

Há a opção de avançar a passagem de tempo mais rapidamente no relógio, para viabilizar a checagem de funcionamento deste, verificando com mais rapidez se o ciclo completo das 00:00:00 às 23:59:59 e depois 00:00:00 funciona corretamente. Para isso é necessário ativar a chave "SW0", ela mudará o clock do sistema de 1Hz para 390625Hz. O grupo recebeu ajuda do aluno Hugo Mendes para a implementação desta parte do projeto, principalmente com o código do arquivo ClockPrescaler, que foi encontrado por ele na internet.

Para configurar a hora que o relógio iniciará, é necessário acionar a chave que muda o clock do sistema (para assim o tempo passar mais rapidamente), esperar o relógio avançar até o horário desejado e então desativar a chave para ele voltar a avançar com a frequência de 1Hz.

3. Palavras de Controle

Cada palavra de controle é utilizada para uma função do nosso sistema. Elas são formadas por *15 bits*, distribuídos da seguinte maneira:

3 bits	6 bits	3 bits	3 bits
Comando ALU	Enable	Variável	Registrador

Bloco de bits	Comando
000	Incrementa
010	Subtrai
100	Compara

Bloco de bits	Enable
000001	Unidade de Segundo
000010	Dezena de Segundo
000100	Unidade de Minuto
001000	Dezena de Minuto
010000	Unidade de Hora
100000	Dezena de Hora

Bloco de bits	Variável
000	10
001	1
010	2
100	4
011	6
101	9

Bloco de bits	Registrador
000	Unidade de Segundo

001	Dezena de Segundo
010	Unidade de Minuto
011	Dezena de Minuto
100	Unidade de Hora
101	Dezena de Hora

4. Funções:

As funções de operações para o funcionamento do relógio são as listadas a seguir:

- Incrementa Unidade de Segundo: 000000010010000;
- Incrementa Dezena de Segundo: 000000010001001;
- Incrementa Unidade de Minuto: 000000100001010;
- Incrementa Dezena de Minuto: 000001000001011;
- Incrementa Unidade de Hora: 000010000001100;
- Incrementa Dezena de Hora: 000100000001101;
- Compara Unidade de Segundo com 9: 100000000101000;
- Compara Dezena de Segundo com 6: 10000000011001;
- Compara Unidade de Minuto com 10: 100000000000010;
- Compara Dezena de Minuto com 6: 100000000011011;
- Compara Unidade de Hora com 10: 100000000000100;
- Compara Unidade de Hora com 4: 10000000100100;
- Compara Dezena de Hora com 2: 10000000010101;
- Zera Unidade de Segundo: 010000001000000;
- Zera Dezena de Segundo: 010000010011001;
- Zera Unidade de Minuto: 010000100000010;
- Zera Dezena de Minuto: 010001000011011;
- Zera Unidade de Hora: 010010000100100;
- Zera Dezena de Hora: 010100000010101;

5. Problemas e soluções

Um dos problemas encontrados durante o desenvolvimento do projeto foi durante a decisão de como seria o diagrama da máquina de estados a ser

implementada. Por muitas vezes foi realizada a tentativa de fazer implementações que não funcionavam porque mais de uma operação acontecia em um único estado. Após conversar com o professor, a decisão adotada foi separar cada estado nesta situação e fazer com que, entre as operações que estavam no mesmo estado e passariam a ser de estados diferentes, ocorreria a mudança de estado para qualquer valor de saída, 0 ou 1.

6. Implementações Futuras

Como implementação futura, uma melhoria no sistema de configuração da hora seria interessante para esse projeto. Ela está em desenvolvimento e funcionará da seguinte forma: Das chaves switch 17 até a 14 o usuário precisará colocar o número binário que representa o decimal que ele deseja para os LCD, então para configurar a dezena da hora será necessário pressionar a "KEY3" após indicar o número em binário que representa o decimal desejado nas chaves switch. Para configurar a unidade da hora o mesmo processo precisa ser realizado porém o botão "KEY2" deve ser pressionado. Para a dezena do minuto o botão é a "KEY1" e para a unidade do minuto é a "KEY0".