```
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans, AgglomerativeClustering
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
from sklearn import metrics, tree
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.linear_model import LogisticRegression
from rdatasets import data
from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier
import scipy.cluster.hierarchy as shc
import scipy.stats as stats
```

```
In []: data = pd.read_csv('HW4_Q1.csv')
    data.head()
```

ut[]:		deathscases10k	pctpov	pctmale	pctwhite	pctblack	pctasian	pcthispanic
	0	114.558473	15.4	48.551285	74.308014	19.343178	1.205014	2.965774
	1	118.373649	10.6	48.461623	83.111340	8.783976	1.134289	4.646779
	2	211.360634	28.9	52.783248	45.641252	48.032635	0.454162	4.276355
	3	250.817884	14.0	53.218750	74.589288	21.120536	0.232143	2.625000
	4	135.746606	14.4	49.273859	86.886239	1.462656	0.278354	9.571231

Question 1

0

```
In []: # Create histograms, density plots, and QQ plots
    columns = data.columns
    for column in columns:
        plt.figure(figsize=(15, 5))

        plt.subplot(1, 3, 1)
        sns.histplot(data[column], kde=True)
        plt.title(f'Histogram and Density Plot of {column}')

        plt.subplot(1, 3, 2)
        stats.probplot(data[column], dist="norm", plot=plt)
        plt.title(f'QQ Plot of {column}')

        plt.tight_layout()
        plt.show()
```



```
Shapiro-Wilk Test for deathscases10k: Statistics=0.9031476625819101, p-value
=1.0111720412623282e-40
deathscases10k does not look Gaussian (reject H0)
Shapiro-Wilk Test for pctpov: Statistics=0.9447959478964187, p-value=9.85936
221171364e-33
pctpov does not look Gaussian (reject H0)
Shapiro-Wilk Test for pctmale: Statistics=0.7481257019505474, p-value=2.1351
01179508851e-56
pctmale does not look Gaussian (reject H0)
Shapiro-Wilk Test for pctwhite: Statistics=0.8654726274449382, p-value=8.187
341655280106e-46
pctwhite does not look Gaussian (reject H0)
Shapiro-Wilk Test for pctblack: Statistics=0.6501496623094074, p-value=2.142
6347573793e-62
pctblack does not look Gaussian (reject H0)
Shapiro-Wilk Test for pctasian: Statistics=0.3967816751148091, p-value=4.988
365161483156e-73
pctasian does not look Gaussian (reject H0)
Shapiro-Wilk Test for pcthispanic: Statistics=0.6027059999285516, p-value=8.
424872373596017e-65
pcthispanic does not look Gaussian (reject H0)
Shapiro-Wilk Test for pct_highschool_or_less: Statistics=0.9966299159425304,
p-value=1.8165442978186677e-06
pct_highschool_or_less does not look Gaussian (reject H0)
Shapiro-Wilk Test for pct_Adults_with_Diabetes: Statistics=0.971680233137539
6, p-value=1.9848587260382606e-24
pct Adults with Diabetes does not look Gaussian (reject H0)
Shapiro-Wilk Test for pct_Adults_with_Obesity: Statistics=0.994359159013186
4. p-value=1.2420060903838038e-09
pct_Adults_with_Obesity does not look Gaussian (reject H0)
```

```
In []: from sklearn.cluster import KMeans
        from sklearn.preprocessing import StandardScaler
        # Standardize the data
        scaler = StandardScaler()
        data_scaled = scaler.fit_transform(data[columns])
        # Determine the number of clusters using the Elbow method
        sse = []
        for k in range(1, 11):
            kmeans = KMeans(n clusters=k, random state=0)
            kmeans.fit(data_scaled)
            sse.append(kmeans.inertia )
        # Plot SSE for each k
        plt.figure(figsize=(10, 5))
        plt.plot(range(1, 11), sse, marker='o')
        plt.xlabel('Number of clusters')
        plt.ylabel('SSE')
```

```
plt.title('Elbow Method for Optimal k')
plt.show()

# Fit K-Means with the chosen number of clusters (let's assume k=3 for this kmeans = KMeans(n_clusters=3, random_state=0)
clusters = kmeans.fit_predict(data_scaled)

# Add cluster labels to the original data data['KMeans_Cluster'] = clusters
```



```
In []: from scipy.cluster.hierarchy import dendrogram, linkage, fcluster

# Perform hierarchical clustering
linked = linkage(data_scaled, method='ward')

# Plot the dendrogram
plt.figure(figsize=(10, 7))
dendrogram(linked)
plt.title('Dendrogram')
plt.xlabel('Samples')
plt.ylabel('Distance')
plt.ylabel('Distance')
plt.show()

# Decide the number of clusters (let's assume we choose 3 clusters)
hier_clusters = fcluster(linked, 3, criterion='maxclust')

# Add cluster labels to the original data
data['Hierarchical_Cluster'] = hier_clusters
```



```
In []: from sklearn.metrics import adjusted_rand_score

# Compute ARI
ari = adjusted_rand_score(data['KMeans_Cluster'], data['Hierarchical_Cluster
print(f'Adjusted Rand Index (ARI) between K-Means and Hierarchical Clusterin
```

Adjusted Rand Index (ARI) between K-Means and Hierarchical Clustering: 0.454 39567003114595

```
In []: from sklearn.decomposition import PCA

# Fit PCA
pca = PCA(n_components=2)
pca_components = pca.fit_transform(data_scaled)

# Add PCA components to the original data
data['PCA1'] = pca_components[:, 0]
data['PCA2'] = pca_components[:, 1]

# Plot PCA components
plt.figure(figsize=(10, 7))
sns.scatterplot(x='PCA1', y='PCA2', hue='KMeans_Cluster', data=data, palette
plt.title('PCA of the Dataset')
```

```
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.legend()
plt.show()
```


Question 3

	Restaurant	Туре	Price	Neighborhood	Restriction	ОК
0	R1	Fast Food	\$	Oakland	Vegetarian	0
1	R2	Ethnic	\$\$	Squirrel Hill	Gluten Free	0
2	R3	Casual Dining	\$\$	Squirrel Hill	None	0
3	R4	Casual Dining	\$\$\$	Shadyside	Vegetarian	0
4	R5	Casual Dining	\$	Oakland	Vegetarian	1
5	R6	Fast Food	\$\$	Squirrel Hill	None	1
6	R7	Ethnic	\$\$	Squirrel Hill	None	1
7	R8	Casual Dining	\$\$	Shadyside	Gluten Free	0
8	R9	Fast Food	\$\$\$	Oakland	None	0
9	R10	Ethnic	\$\$	Shadyside	Vegetarian	1
10	R11	Casual Dining	\$\$	Shadyside	Gluten Free	1

3. a)

Out[]:

```
In []: from math import log2

def entropy(probabilities):
    return -sum([p * log2(p) for p in probabilities if p > 0])

def get_entropy(column):
    elements, counts = np.unique(column, return_counts=True)
    probabilities = counts / len(column)
    return entropy(probabilities)

# Calculate the entropy of the entire dataset
entropy_dataset = get_entropy(df['OK'])
entropy_dataset
```

Out[]: 0.9940302114769565

3. b)

```
In []: dt_model = DecisionTreeClassifier(random_state=42)

df_encoded = pd.get_dummies(df.drop(columns='Restaurant'))

X = df_encoded.drop(columns='OK')
y = df_encoded['OK']
```



```
In [ ]: new_data = {
    'Type': ['Fast Food', 'Ethnic', 'Ethnic', 'Casual Dining', 'Ethnic'],
    'Price': ['$', '$$', '$', '$'],
```

```
'Neighborhood': ['Squirrel Hill', 'Shadyside', 'Oakland', 'Shadyside', '
'Restriction': ['None', 'None', 'Gluten Free', 'Vegetarian', 'Gluten Free']

new_df = pd.DataFrame(new_data)

new_encoded_df = pd.get_dummies(new_df)
new_encoded_df = new_encoded_df.reindex(columns=X.columns, fill_value=0)

prediction = dt_model.predict(new_encoded_df)

new_df['OK'] = prediction

new_df
```

Out[]:		Туре	Price	Neighborhood	Restriction	ОК
	0	Fast Food	\$	Squirrel Hill	None	1
	1	Ethnic	\$\$	Shadyside	None	1
	2	Ethnic	\$	Oakland	Gluten Free	0
	3	Casual Dining	\$	Shadyside	Vegetarian	1
	4	Ethnic	\$	Squirrel Hill	Gluten Free	0

Given these predictions i have few options but i would go Shadyside to get some ethnic food.

Question 4

```
In []: us_crime_df = pd.read_csv('HW4_UScrime_data.csv')
us_crime_df.shape
us_crime_df.head()
```

```
Out[]:
            Crime Age
                         Ed Ex0 Ex1
                                        LF
                                               М
                                                    N NW
                                                             U1 U2
                                                                       W
                                                                             X
         0
              79.1
                    151
                         91
                              58
                                   56
                                       510
                                             950
                                                   33
                                                       301
                                                            108
                                                                 41
                                                                     394
                                                                           261
             163.5
                    143
                        113
                             103
                                   95
                                       583
                                            1012
                                                   13
                                                       102
                                                             96
                                                                 36
                                                                     557
                                                                           194
         2
              57.8
                    142
                         89
                              45
                                       533
                                             969
                                                   18
                                                       219
                                                             94
                                                                 33
                                                                      318
                                                                          250
                                   44
         3
             196.9
                   136 121
                             149
                                  141
                                       577
                                             994
                                                  157
                                                        80
                                                            102
                                                                 39
                                                                     673
                                                                           167
         4
             123.4
                    141 121
                             109
                                  101
                                       591
                                             985
                                                   18
                                                        30
                                                             91
                                                                 20
                                                                     578
                                                                          174
```

```
In []: X = us_crime_df.drop(columns='Crime')
y = us_crime_df['Crime']
```

```
dt_reg = DecisionTreeRegressor(random_state=7)
rf_reg = RandomForestRegressor(random_state=7)

X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, randomode table table
```

Decision Tree: 0.33418799066866955

Decision Tree Accuracy: 0.33418799066866955 Random Forest R-square: 0.6345368152843311

Question 5

In []:	weekly = weekly.se		•	-)				
Out[]:		Year	Lag1	Lag2	Lag3	Lag4	Lag5	Volume	Today	Direction

Out[]:		Year	Lag1	Lag2	Lag3	Lag4	Lag5	Volume	Today	Direction
	rownames									
	1	1990	0.816	1.572	-3.936	-0.229	-3.484	0.154976	-0.270	Down
	2	1990	-0.270	0.816	1.572	-3.936	-0.229	0.148574	-2.576	Down
	3	1990	-2.576	-0.270	0.816	1.572	-3.936	0.159837	3.514	Up
	4	1990	3.514	-2.576	-0.270	0.816	1.572	0.161630	0.712	Up
	5	1990	0.712	3.514	-2.576	-0.270	0.816	0.153728	1.178	Up

```
In []: logreg = LogisticRegression(max_iter=1000, random_state=42)
    rf = RandomForestClassifier(random_state=42)

X = weekly.drop(columns=['Direction', 'Year'], axis=1)
    y = weekly['Direction']

X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, randomodeled logreg.fit(X_train, y_train)

rf.fit(X_train, y_train)

logreg_y_pred = logreg.predict(X_val)
    rf_y_pred = rf.predict(X_val)

print(f'Logistic Regression Accuracry Score: {metrics.accuracy_score(y_val, print('---' * 14)
    print(f'Random Forest Accuracry Score: {metrics.accuracy_score(y_val, rf_y_p)
```

The Random Forest Model yield the best accuracy but by a fraction of a percent.