N.B:

Le barême est approximatif.

Il sera tenu compte de la présentation de la copie.

L'usage de la calculatrice et du mobile est interdit.

Toute réponse doit être justifiée.

Exercice 1 : (5 pt) On considère le \mathbb{R} -e.v. \mathbb{R}^3 et $C = (e_1, e_2, e_3)$ sa base canonique. Soit $C_1 = (w_1 = (1, 1, -1), w_2 = (1, -1, 1), w_3 = (-1, 1, 1))$ une base de \mathbb{R}^3 .

1- Déterminer la matrice P de passage de C vers C_1 .

Solution:
$$P = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$
. (0.5 pt)

2- Déterminer P^{-1} .

Solution: On a:

$$\begin{cases} w_1 = e_1 + e_2 - e_3 \\ w_2 = e_1 - e_2 + e_3 \\ w_3 = -e_1 + e_2 + e_3 \end{cases} \iff \begin{cases} w_1 + w_2 = 2e_1 \\ w_2 + w_3 = 2e_3 \\ w_1 + w_3 = 2e_2 \end{cases}$$

On en déduit que: $P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$. (1 **pt**)

3- Soit f une application linéaire de $\mathbb{R}_3[X]$ vers \mathbb{R}^3 dont la matrice associée relativement aux bases canoniques respectives B et C de $\mathbb{R}_3[X]$ et \mathbb{R}^3 est:

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{array}\right).$$

i/- Déterminer en échelennant la matrice A une base de $\ker f$ et une base de $\operatorname{Im} f$.

Solution: Les colonnes de la matrice A sont données par $f(1), f(X), f(X^2)$ et $f(X^3)$ respectivement. On a:

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{array}\right) \sim \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \end{array}\right).$$

Notons par C_i les colonnes de cette dernière matrice. On a alors:

$$C_1 = f(1), C_2 = f(X^2 - 1), C_3 = f(X - 1) \text{ et } C_4 = f(X^3 + X^2 + X - 2).$$

On en déduit que $(X^3 + X^2 + X - 2)$ est une base de ker f et ((1, 1, 1), (0, -1, 0), (0, 0, -1)) est une base de Imf. (0.5 pt + 0.5 pt)

ii/- Déterminer l'expression de f.

Solution:

Soit $P = \alpha + \beta X + \gamma X^2 + \lambda X^3 \in \mathbb{R}_3[X]$. Au vecteur P on associe la matrice colonne

$$M_P = \left(egin{array}{c} lpha \ eta \ \gamma \ \lambda \end{array}
ight).$$

On a alors:

$$AM_P = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \lambda \end{pmatrix} = \begin{pmatrix} \alpha + \beta + \gamma \\ \alpha + \beta + \lambda \\ \alpha + \gamma + \lambda \end{pmatrix}.$$

On en déduit que:

$$f(\alpha + \beta X + \gamma X^2 + \lambda X^3) = (\alpha + \beta + \gamma, \alpha + \beta + \lambda, \alpha + \gamma + \lambda).$$
 (1 pt)

4- Soit $B_1 = (P_1 = 1, P_2 = 1 + X, P_3 = 1 + X + X^2, P_4 = 1 + X + X^2 + X^3)$ une base de $\mathbb{R}_3[X]$. Déterminer la matrice de passage Q de B vers B_1 .

Solution: On a:

$$Q = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \quad \textbf{(0.5 pt)}$$

5- En déduire la matrice : $A' = M_{B_1,C_1}(f)$.

Solution: On a:

$$A' = P^{-1}AQ. (0.5 pt)$$

$$= \frac{1}{2} \begin{pmatrix} 2 & 4 & 5 & 6 \\ 2 & 3 & 5 & 6 \\ 2 & 3 & 4 & 6 \end{pmatrix}. (0.5 pt)$$

Exercice 2: (2,5 pt)

Soit la permutation $\sigma \in S_8$ définie comme suit :

$$\sigma = \left(\begin{array}{ccccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ & & & & & & \\ 1 & 7 & 5 & 8 & 6 & 3 & 4 & 2 \end{array}\right).$$

2

1- Décomposer la permutation σ en produit de transpositions.

Solution: On a: $\sigma = \tau_{2,7} \cdot \tau_{7,4} \cdot \tau_{4,8} \cdot \tau_{3,5} \cdot \tau_{5,6}$. (1 pt)

2- En déduire la signature de la permutation σ .

Solution: On a: $\epsilon(\sigma) = (-1)^5 = -1$. (0.5 pt)

3- Donner σ^{-1} l'inverse de la permutation σ .

Solution: En utilisant la première expression de σ , on obtient:

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ & & & & & & \\ 1 & 8 & 6 & 7 & 3 & 5 & 2 & 4 \end{pmatrix}. \quad \textbf{(1 pt)}$$

Une autre méthode : En utilisant la décomposition de σ en produit de transpositions et en utilisant le fait que chaque transposition est inverse d'elle même, on obtient:

$$\sigma^{-1} = (\tau_{2,7} \cdot \tau_{7,4} \cdot \tau_{4,8} \cdot \tau_{3,5} \cdot \tau_{5,6})^{-1},$$

i.e.,

$$\sigma^{-1} = \tau_{5,6} \cdot \tau_{3,5} \cdot \tau_{4,8} \cdot \tau_{7,4} \cdot \tau_{2,7}.$$

Exercice 3: (2,5 pt pts) (Les deux questions suivantes sont indépendantes)

1- On considère le \mathbb{R} -e.v. \mathbb{R}^3 et $B=(e_1,e_2,e_3)$ sa base canonique. Soit (v_1,v_2,v_3) une famille de vecteurs non nuls de \mathbb{R}^3 . Exprimer, en justifiant, les déterminants ci-dessous en fonction de $\det_B(v_1,v_2,v_3)$:

$$\det_B(v_3, v_1, v_2)$$
 et $\det_B(v_1, \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3, v_3)$ où $\alpha_i \in \mathbb{R}$ pour $i \in [[1, 3]]$.

Solution:

• Puisque \det_B est antisymétrique, on a:

$$\det_B(v_3, v_1, v_2) = -\det_B(v_1, v_3, v_2) = \det_B(v_1, v_2, v_3).$$
 (0.5 pt)

Une autre méthode:

$$\det_{B}(v_{3}, v_{1}, v_{2}) = \det_{B}(v_{\sigma(1)}, v_{\sigma(2)}, v_{\sigma(3)}) = \epsilon(\sigma) \det_{B}(v_{1}, v_{2}, v_{3}) = \det_{B}(v_{1}, v_{2}, v_{3}),$$
avec $\sigma = \tau_{1,3} \cdot \tau_{3,2} \in S_{3}$, donc $\epsilon(\sigma) = 1$.

• Puisque \det_B est linéaire par rapport à la deuxième variable, on a:

$$\det_B(v_1, \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3, v_3) = \alpha_1 \det_B(v_1, v_1, v_3) + \alpha_2 \det_B(v_1, v_2, v_3) + \alpha_3 \det_B(v_1, v_3, v_3).$$

De plus, \det_B est alternée, on en déduit que:

$$\det_B (v_1, \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3, v_3) = \alpha_2 \det_B (v_1, v_2, v_3). \quad (0.5 \text{ pt})$$

2- Soit
$$\alpha \in \mathbb{R}$$
 et soit : $M_{\alpha} = \begin{pmatrix} 1 & 3 & \alpha \\ 2 & -1 & 1 \\ -1 & 1 & 0 \end{pmatrix}$ la matrice de l'endomorphisme f_{α} de

 \mathbb{R}^3 relativement à sa base canonique. Donner, en utilisant le calcul de déterminant, une condition nécessaire et suffisante sur le paramètre α pour que f_{α} soit bijective.

Solution: On a: f_{α} bijective $\iff M_{\alpha}$ inversible $\iff \det M_{\alpha} \neq 0$. Puisque $\det M_{\alpha} = \alpha - 4$. (1 pt),

on en déduit que f_{α} est bijective si et seulement si $\alpha \neq 4$. (0.5 pt)