Assignment-3

1) Introduction

In this lab we have extended previous lab work by displaying all 4 digit by using "clock" and "4: 1 multiplexer" for selection of any one anode activation in each cycle.

2) Implementation Design

For display of each 4 digit uniformly we have taken 20 bit vector named "refresh— timer" which is initialised to 0.

At each "rising edge of clock" we increment the refresh — timer value by 1 and extract "19 and 18" bits value from it.

These 2 bit value of refresh — timer vector can be "00", "01", "10" and "11" which is stored in 2 bit vector "LED — activation" and this value is used for selection from 4 different anodes basically working as 2 - bit select input for the multiplexe.

We have also used 4-bit vector "which—led" to store 4bit values from 16-bit "Input" which is divided into 4 equal parts each consisting of 4bits which are stored in "which—led" as per value of "LED—activation".

LED_activation	Anode_Activate
00	0111
01	1011
10	1101
11	1110

Fig 1: Basic circuit showing use of 4: 1 MUX and clock

Fig 2: 4 digit 7 segment display along with its anode and cathode

3) Simulation Waveform for 4 digit 7 segment display

Fig 3: Waveform of Input and Output of 4 digit - 7 segment display

4) Digital Circuit for 4- digit 7 Segment Display for displaying 4 digit

Fig 4: Digit Circuit of 4 digit $\,-\,7$ segment display each digit range from $0\,-\,F$

5) Resource Utilisation

- a) LUT Memory =0
- b) LUT logic = 30
- c) DSP =0
- d) Flip Flops =22
- e) BRAM = 0

$6) \, Some \, other \, relevant \, diagram \, for \, resource \, utilisation$

Fig 5 : Summary

Primitives			
Ref Name	Used	Functional Category	
FDRE	22	Flop & Latch	
LUT1	20	LUT	
IBUF	17	10	
OBUF	11	10	
LUT4	7	LUT	
CARRY4	5	CarryLogic	
LUT6	4	LUT	
LUT2	4	LUT	
BUFG	1	Clock	

Fig 6: Primitives

Fig 7: Hierarchy

7) Some photographs of FPGA Board

