数值分析

2018年6月23日

目录

1	引论		4
	1.1	基本概念	4
	1.2	误差分析	4
		1.2.1 误差定义	4
		1.2.2 运算过程的误差分析	5
	1.3	定性分析	5
		1.3.1 病态问题和条件数	5
		1.3.2 数值稳定性	5
	1.4	算法设计技术	5
2	插值	去	6
	2.1	基本概念	6
	2.2	高次多项式插值	6
		2.2.1 Lagrange 插值	6
		2.2.2 Newton 插值	7
		2.2.3 Hermite 插值	8
		2.2.4 高次插值的一般性质	8
	2.3	分段低次插值	8
		2.3.1 分段线性插值	8
		2.3.2 分段三次 Hermite 插值	9
		2.3.3 三次样条插值	9

目录 2

3	函数	逼近		10
	3.1	函数线	性空间	10
		3.1.1	范数	10
		3.1.2	内积	10
		3.1.3	最佳逼近	11
		3.1.4	正交函数族	11
	3.2	最佳平	· 方逼近	11
	3.3	曲线拟	J合的最小二乘法	12
4	数值	积分		12
	4.1	插值积	!分	12
		4.1.1	插值求积方法	12
		4.1.2	函数值的加权表示	13
		4.1.3	Newton-Cotes 积分公式	14
		4.1.4	复合公式	14
	4.2	Rombe	erg 公式	14
		4.2.1	梯形公式的递推	15
		4.2.2	Romberg 外推计算	15
	4.3	Gauss	公式	16
5	解线	性方程	的直接法	17
	5.1	Gauss	消元法	17
	5.2	矩阵分	解	17
		5.2.1	Doolittle 分解	17
		5.2.2	通过 Gauss 消元计算 LU 分解	18
		5.2.3	Cholesky 分解	19
		5.2.4	追赶法	19
	5.3	误差分	-析	20
		5.3.1	向量内积	20
		5.3.2	向量范数	20
		5.3.3	矩阵范数	21
		5.3.4	病态矩阵	22

目录 3

6	解线	生方程的迭代法 2														
	6.1	通用迭代法 2														
		6.1.1 收敛条件 2														
	6.2	具体迭代方法														
		6.2.1 Jacobi 方法														
		6.2.2 Gauss-Seidel 方法														
		6.2.3 超松弛迭代法														
7	非线	非线性方程和方程组的数值解 2														
	7.1	基本概念														
	7.2	- 不动点迭代法														
		7.2.1 基本概念														
		7.2.2 收敛阶														
	7.3	Newton 法														
		7.3.1 基本 Newton 法														
		7.3.2 简化 Newton 法														
		7.3.3 Newton 下山法														
		7.3.4 弦截法														
	7.4	方程求根的敏感性2														
8	矩阵	寺征值计算 2														
	8.1	特征值基本概念														
	8.2	- 幂法求主特征值														
		8.2.1 主特征值														
		8.2.2 幂法														
		8.2.3 收敛速度														
		8.2.4 变动														
	8.3	QR 分解														
		8.3.1 Household 变换														
		8.3.2 QR 分解														
9	常微	分方程数值解 3:														
	9.1															
	9.2	Euler 方法														

1 引论 4

	9.2.1	显式 Euler	涉	=												33
	9.2.2	隐式 Euler	涉	=												33
	9.2.3	梯形法														33
9.3	Runge-	Kuta 方法														34
	9.3.1	基本叙述														34
	9.3.2	低阶情况														34
9.4	收敛和	稳定														34
	9.4.1	收敛性														34
	9.4.2	稳定性														35
9.5	线性多	步法														35
	9.5.1	基本概念														35
	9.5.2	精度推导														36
	9.5.3	Adams 公	式													36

基本信息

评分 考试 60%; 作业和实验和课堂测验 40%.

1 引论

1.1 基本概念

数值分析的对象 对于某个实际问题, 研究将其数学模型通过数值计算方法, 编写程序求解.

1.2 误差分析

模型和数据的错误或偏差不在数值分析的研究范围内.

- 截断 (方法) 误差. 如使用 |x| 代替 sin x.
- 舍入 (浮点) 误差

1.2.1 误差定义

记 x 为准确, x* 为近似值. 有以下三种方法描述近似数和误差.

1 引论 5

绝对误差 则定义 $e^* = x^* - x$ 为绝对误差, 其可正可负; 称 e^* 的上界为绝对误差限, 记为 ϵ^* . 绝对误差的值通常是不可得到的, 但是绝对误差限通常可以通过度量仪器的参数得到.

相对误差 定义相对误差 $e_r^* = \frac{e_r^*}{x}$; 但在相对误差较小时, 常取 $e_r^* = \frac{e^*}{x^*}$ 为相对误差. 同样地定义相对误差限 $\epsilon_r^* = |\frac{e_r^*}{x^*}|$.

有效数字 准确数通过四舍五入原则得到的近似数,其前几位都为有效数字. 误差一定不会超过有效数字末位单位的一半,如 $|3.14-\pi| \leq \frac{1}{2} \times 0.01$. 定义近似数 x^* 的规范化表示为 $x^* = m \times 10^l$, 其中 $1 \leq m < 10$, $m = \sum_{-n < k < 0} a_k 10^{-k}$. 则 $|e^*| \leq \frac{1}{2} \times 10^{l-n+1}$.

有效数字和误差的关系 有效数字确定了相对误差限的上界, 相对误差限确定了有效数字的下界.

1.2.2 运算过程的误差分析

对于 $A = f(\vec{x}), A^* = f(x^*),$ 对于 Taylor 展开取线性项

$$A^* - A \approx \sum \frac{\partial f^*}{\partial x_i} x_i^*$$

同理可以得到相对误差的计算

1.3 定性分析

1.3.1 病态问题和条件数

对于函数的计算, 微小的输入误差导致很大的输出误差, 则称其为病态问题. 形式化地, 定义条件数 C_p 为输出相对误差和输入相对误差的比, 如果 C_p 很大, 相当于病态问题.

1.3.2 数值稳定性

1.4 算法设计技术

多项式求值 秦九韶算法. 减少乘除法.

2 插值法

2.1 基本概念

插值问题 给定点 $x_0, x_1 \dots x_n$, 以及 $y_0, y_1 \dots y_n$, 并且 $y_i = f(x_i)$, f 是某一个未知的函数. 求一条曲线 y = p(x) 其严格通过 $(x_0, y_0), (x_1, y_1) \dots$

其中称 $p \in f$ 的插值函数, $\langle x_i \rangle$ 称为插值节点.

注意插值问题和拟合问题的区别.

插值方法 通常有多项式插值,三角函数,有理函数,样条函数等等.事实上任何函数簇,只要在被插值节点的值线性无关,都可以用于插值.

2.2 高次多项式插值

求一个多项式 p 作为 f 的插值函数.

朴素方法 设 $p(x) = \sum_{0 \le i \le n} a_i x^i$ 后解线性方程组.

2.2.1 Lagrange 插值

形如 $p(x) = L_n(x) = \sum_{i=0}^n y_i l_i(x)$ 的插值多项式称为 Lagrange 插值多项式, 其中 $l_i(x_i) = \delta_{ij}$. 易得 $l_i(x) = \prod_{i \neq i} \frac{x - x_i}{x - x_i}$.

项式, 其中
$$l_i(x_j) = \delta_{ij}$$
. 易得 $l_i(x) = \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}$. 记 $\omega_{n+1}(x) = \prod_i (x - x_i)$, 则有 $l_i(x) = \frac{\omega_{n+1}(x)}{(x - x_i)\omega'_{n+1}(x)}$.

存在唯一性 当 x_i 互异时, 由 Vandermonde 矩阵的可逆性, $x^0, \ldots x^{n-1}$ 的 线性组合组成的插值多项式必定存在唯一.

由代数基本定理, 此多项式一定和我们 $L_n(x)$ 相等.

2.2.2 Newton 插值

均差 均差 $f[x_0, x_1, \dots x_n]$ 定义如下

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$
$$f[x_0 \dots x_n] = \frac{f[x_1, x_2, \dots x_n] - f[x_0, x_1, \dots, x_{n-1}]}{x_n - x_0}$$

均差有如下性质

- $f[x_0, x_1, \dots x_n] = \sum_{0 \le i \le n} \frac{f(x_i)}{\prod_{j \ne i} (x_i x_j)}$ 因此诸 x_i 的顺序对 $f[x_0, x_1, \dots x_n]$ 的值没有影响.
- $f[x_0, \dots x_n] = \frac{f^{(n)}(\xi)}{n!}$ 因此若 $\deg f < n, \text{ 则 } f[x_0, \dots x_n] = 0.$

Newton 插值 通过均差的定义可以得到 Newton 插值基本公式

$$f(x) = f(x_0) + f[x_0, x_1](x - x_0) + \dots + f[x_0, \dots x_n] \prod_{0 \le i < n} (x - x_i)$$
$$+ f[x, x_0, \dots x_n] \prod_i (x - x_i)$$

其中第一行 $P_n(x) = f(x_0) + f[x_0, x_1](x - x_0) + \ldots + f[x_0, \ldots x_n] \prod_{0 \le i < n} (x - x_i)$ 为插值多项式,第二行 $P_n(x) = f[x_1, x_0, \ldots x_n] \prod_i (x - x_i)$ 为余项.

Newton 后项插值 对于特殊的 x_i 等间距的情况 $x_i = x_0 + ih$, 记 $f_k = f(x_0 + kh)$. 定义如下算子

$$\mathbf{I}f_k = f_k$$

 $\mathbf{E}f_k = f_{k+1}$
 $\Delta f_k = (\mathbf{E} - \mathbf{I})f_k = f_{k+1} - f_k$

归纳易得 $f[x_0, x_1, \dots x_n] = \frac{1}{n!} h^{-n} \Delta^n f_k$.

代入原始 Newton 插值有

$$P_n(x_0 + th) = \sum_{0 \le i \le n} \Delta^i f_0 \frac{t^i}{i!}$$

或者, 不严密地, 使用算子

$$f \circ \mathbf{E}^{t} = \mathbf{E}^{t} \circ f$$
$$= (\mathbf{I} + \Delta)^{t} \circ f$$
$$= \sum_{n \geq 0} {t \choose n} \Delta^{n} \circ f$$

2.2.3 Hermite 插值

概念 在插值节点 (x_i, y_i) 上要求 $p(x_i) = y_i$ 以外, 还要求导数值相等即 $p'(x_k) = f'(x_k)$.

不给出一般的 Hermite 插值的讨论, 但是显然可以对特定的问题求 Hermite 插值.

2.2.4 高次插值的一般性质

以上的高次插值可以看出有如下的优点

- 易于构造
- 使用方便
- 光滑性好 (Cⁿ 连续)

但是缺点也如

- 不收敛, 如对于 Runge 的经典例子 $\frac{1}{1+x^2}$.
- 引入不需要的驻点, 凹凸性不好
- 数值稳定性不好, 计算系数误差变大

2.3 分段低次插值

2.3.1 分段线性插值

将 $(x_0, y_0), (x_1, y_1), \dots (x_n, y_n)$ 用折线依次连接,每个区间 $[x_i, x_{i+1}]$ 都是一条线段 $(x_i, y_i) \to (x_{i+1}, y_{i+1})$.

有一致收敛性.

2.3.2 分段三次 Hermite 插值

要求不仅给出 $y_i = f(x_i)$, 还要给出 $y'_i = f'(x_i)$. 在此前提下, 要求插值 函数 I_{n+1} 满足 $I(x_i) = y_i$, $I'(x_i) = y'_i$, 且在每个区间 $[x_i, x_{i+1}]$ 上 I 都是三 次函数 $a_i x^3 + b_i x^2 + c_i x + d_i$.

分区间表示 如式 (5.3), 即对于每个 $[x_i, x_{i+1}]$ 都给出一个表达式.

整体表示 $I(x)=\sum_{i=0}^n f_i\alpha_i(x)+f_i'\beta_i(x)$ 和对 n+1 个节点整体插值的结果形式一样,但是 α,β 不同整体插值的 α,β 是高次多项式,而分段 Hermite 是逐段三次多项式.则要求有

$$\alpha_i(x_j) = \delta_{ij}$$
$$\beta_i(x_j) = 0$$
$$\alpha'_i(x_j) = 0$$
$$\beta'_i(x_j) = \delta_{ij}$$

余项 通过 Hermite 插值的分析, 容易得到 $\max |R(x)| \leq \frac{h^4}{384} \max |f^{(4)}(x)|$, 其中 $h = \max(x_{k+1} - x_k)$.

问题 实际中很难给出 y'_k , 通常只知道 y_k .

2.3.3 三次样条插值

给定 (x_i, y_i) , 要求插值函数满足

- 在每段区间中是次数不大于 3 的多项式
- 在插值区间上 C^2 连续 (即在 x_i 满足 C^2 连续即可)

3 函数逼近 10

3 函数逼近

3.1 函数线性空间

3.1.1 范数

线性空间 S 的元素到 \mathbb{R} 的映射 $\|\cdot\|$, 满足如下性质

$$||x|| \ge 0, \quad ||x|| = 0 \Leftrightarrow x = \mathbf{0}$$

 $||ax|| = |a| \cdot ||x||, \ a \in \mathbb{R}$
 $||x + y|| \le ||x|| + ||y||$

则称为 S 上的范数. S 称为赋范数空间.

连续函数的范数 常见地, 对 $f \in C[a,b]$ 有定义

$$||f||_n = \left(\int_a^b |f^n(x)| \, \mathrm{d} \, x\right)^{1/n}$$

特别的, $||f||_{\infty} = \max |f(x)|$.

3.1.2 内积

考虑 \mathbb{R} 或者 \mathbb{C} 上的线性空间 S, 内积 (\cdot,\cdot) 将 $S\times S$ 映射到 F 满足

$$(u,v) = \overline{(v,u)}$$

$$(au + bv, w) = a(u, w) + b(v, w)$$

$$\forall u : (u, u) \in \mathbb{R}, \quad (u, u) \ge 0, \quad (u, u) = 0 \Leftrightarrow u = \mathbf{0}$$

Cauchy-Schwartz 定理 由构造判别式法易证 Cauchy-Schwartz 定理

$$|(u,v)|^2 \le (u,u)(v,v)$$

权函数 [a,b] 上的函数 $\rho(x)$ 满足

$$\rho(x) \ge 0$$

$$\int_a^b \rho(x) x^k \, \mathrm{d} \, x \in \mathbb{R}$$

$$\forall g(x) \in C[a,b], \, g(x) \ge 0 \, : \, \int_a^b g(x) \rho(x) \, \mathrm{d} \, x = 0 \Leftrightarrow g(x) \equiv 0$$

3 函数逼近 11

3.1.3 最佳逼近

对于 $f \in C[a,b]$, 考虑用 [a,b] 上的 (不超过) n 次的多项式 P(x) 逼近. 若 $||f - P^*||_n = \min_{P \in H_n} ||f - P||_n$, 其中 H_n 表示次数界为 n 的多项式集合, 则称 P^* 是 f 的最佳逼近多项式.

当 $n=\infty$ 时称为最优一致逼近多项式, n=2 称最优平方逼近多项式.

3.1.4 正交函数族

若函数族 φ_k 满足

$$(\varphi_i, \varphi_j) = \int_a^b \rho(x) \varphi_i(x) \varphi_j(x) \, \mathrm{d} \, x = A_i \delta_{ij}$$

则称 φ_k 是 [a,b] 上的关于 ρ 的正交函数族.

常见的如 $\langle 1, \sin x, \cos x, \sin 2x, \cos 2x \ldots \rangle$.

正交多项式 若正交函数族 $\varphi_k, k \in \mathbb{N}$ 满足 $\deg \varphi_k = k$ 则称 φ_n 为 n 次正 交多项式. φ_n 可以容易地构造出. 在某个 [a,b], 给定 φ_0 则可以惟一确定 φ_n .

可以证明正交多项式 φ_n 在 [a,b] 上有且仅有 n 个零点.

3.2 最佳平方逼近

一般函数族最佳平方逼近 考虑的是 [a,b] 上用一般的函数族 $\langle \varphi_0, \dots \varphi_n \rangle$ 逼近 f 能达到的最佳平方逼近 $\min \|f - \sum a_i \varphi_i\|_2$.

对这个函数求偏微分可得到法方程

$$\forall i : \sum_{j} a_j(\varphi_i, \varphi_j) = (f, \varphi_i)$$

注意之后需要证明这样的 $\sum a_i \varphi_i$ 确实是最佳平方逼近, 因为驻点不是充要条件.

记 S^* 为最佳平方逼近,则法方程的重要推论是 $(f,S^*) = (S^*,S^*)$.

多项式平方逼近 当 $\varphi_i = x^i, \ 0 \le i \le n, \ \rho \equiv 1$ 时的情况. 同上, 需要解方程 $\mathbf{Ha} = \mathbf{d}$, 其中 $H_{ij} = \frac{1}{i+j-1}$ 称为 Hilbert 矩阵, $d_i = (f, \varphi_i)$.

但是容易看出, $\lim_{n\to\infty} \det \mathbf{H} = 0$, 因此求解 $\mathbf{Ha} = \mathbf{d}$ 是不稳定的.

正交函数族平方逼近 考虑 φ_i 正交的情况. 法方程变形为

$$a_i = \frac{(f, \varphi_i)}{(\varphi_i, \varphi_i)}$$

这种情况下,误差界分析推出 Bessel 公式 $\sum_i \left(a_i^* \|\varphi_i\|_2\right)^2 \|f\|_2^2$

3.3 曲线拟合的最小二乘法

给定数据点 $\langle (x_i, y_i) \rangle$, 从函数族 $\langle \varphi_0, \varphi_1 \dots \rangle$ 中取出一个函数 S^* , 最小化 $\sum_i (S^*(x_i) - y_i)^2$.

和最佳平方逼近的联系 定义离散点上的内积, 给定 $\langle x_i \rangle$, 则定义其离散点上内积为 $(f,g) = \sum_i \rho_i f(x_i) g(x_i)$, 其中 ρ 是权序列. 同样可以定义二次范数 $\|f\|_2 = \sqrt{(f,f)}$.

则最小二乘法变为与最佳平方逼近同样的形式 $\min \|f - S\|_2$, 其中 $f(x_i) = y_i$. 求解也和最佳平方逼近是一样的.

基函数的选择 选择 $\langle \varphi_i \rangle$, 可以根据数据规律手动选取, 或者使用一些通用的正交 / 非正交函数族. 对于多项式的情况, 一般选择正交多项式而非 $\langle x^k \rangle$, 因后者的行列式病态.

4 数值积分

给定函数 f 和积分区间 [a,b], 求 $I[f] = \int_a^b f(x) \, \mathrm{d} \, x$.

4.1 插值积分

代数精度 若数值积分方法 I 满足在 [a,b] 上有 $\forall k \in [0,m] \cap \mathbb{Z}$: $I[x^k] = \int_a^b x^k \, \mathrm{d}x$,但 $I[x^{m+1}] \neq \int_a^b x^{m+1} \, \mathrm{d}x$,则称数值积分方法 I 在 [a,b] 上有代数精度 m.

4.1.1 插值求积方法

 $I_n[f] = \int_a^b L_n(x) \, \mathrm{d}\,x$, 其中 $L_n(x)$ 是 f 在 [a,b] 上 n+1 个点 $\langle x_0, x_1 \dots x_n \rangle$ 的 Lagrange 插值. $\langle x_k \rangle$ 按照某种与 f 无关的方法确定.

插值求积方法的余项 考虑 Lagrange 插值的余项是 $R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$,故有插值求积的余项是 $\int_a^b \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x) \, \mathrm{d} \, x$.

由此易证插值求积 $I_n[f]$ 的代数精度至少为 n. 但是可以构造一种选取 $\langle x_k \rangle$ 的方法使得其代数精度大于 n.

余项表达式 如果 I[f] 有 m 阶代数精度, 则其余项 $R[f] = \int_a^b f(x) \, \mathrm{d} \, x - I[f]$ 可写成

$$R[f] = Kf^{(m+1)}(\eta)$$

其中 K 是和 f 无关的数. 通常带入 x^{m+1} 就可求出 K.

收敛 不严格的, 考虑差值方法 I[f] 的两个参数 n 和 $h = \max\{x_{i+1} - x_i\}$. 若 $\lim_{h\to 0} R[f] = 0$, 则称积分公式 I 收敛.

4.1.2 函数值的加权表示

 $I_n[f] = \sum_{k=0}^n A_k f(x_k)$, 其中 A_k , x_k 是以一种与 f 无关的方法选择的. 若 $I_n[f] = \sum_{k=0}^n A_k f(x_k)$ 在上代数精度至少为 n, 则 $I_n[f] = \int_a^b L_n(x)$. 即这样的 I_n 是插值求积方法.

证明可以考虑 $I_n[l_k]$, 有 $A_k = \int_a^b l_k(x) \, \mathrm{d} x$, 再带人 $I_n[f] = \sum_{k=0}^n A_k f(x_k)$ 即证.

4.1.3 Newton-Cotes 积分公式

基本概念 Newton-Cotes 公式是等距选取插值节点 $x_k = a + kh$, $h = \frac{b-a}{n}$ 时的 Lagrange 插值积分. 等距情况下, Lagrange 插值积分简化如下

$$\int_{a}^{b} f(x) dx \approx \int_{a}^{b} L_{n}(x) dx$$

$$= \int_{a}^{b} \sum_{k=0}^{n} f(x_{k}) l_{k}(x) dx$$

$$= \sum_{k=0}^{n} f(x_{k}) \int_{a}^{b} \frac{\prod_{j \neq k} x - x_{j}}{\prod_{j \neq k} x_{k} - x_{j}} dx$$

$$= \sum_{k=0}^{n} f(x_{k}) \int_{0}^{n} \frac{\prod_{j \neq k} t - j}{\prod_{j \neq k} k - j} h dt$$

$$= \sum_{k=0}^{n} \frac{(-1)^{n-k} h f(x_{k})}{k! (n-k)!} \int_{0}^{n} \prod_{0 < j < n, j \neq k} (t-j) dt$$

精度 N-C 公式是插值公式, 代数精度至少是 n. 对于 n 是偶数的情况, 还容易证明 N-C 公式至少有 n+1 阶代数精度.

Simposon 公式 通常, N-C 公式只使用 n=1,2,4 的情形. n=1 时就是 梯形公式, 而 n=2 时的公式

$$I[f] = (b-a)\frac{f(a) + 4f(\frac{a+b}{2}) + f(b)}{6}$$

称为 Simposon 公式.

Simposon 公式代数精度为 3 阶, 可有前面公式计算余项

$$R[f] = -\frac{b-a}{180} \left(\frac{b-a}{2}\right)^4 f^{(4)}(\eta)$$

4.1.4 复合公式

基本思想为,将 [a,b] 分割为若干小区间 $[x_i,x_{i+1}]$. 在每个小区间上,应用插值公式.

主要是复合梯形公式和复合 Simposon 公式.

4.2 Romberg 公式

主要讨论梯形公式的 Romberg 公式.

4.2.1 梯形公式的递推

使用递推可以有效减少通过倍增方法细化分割时需要的计算代价.

不妨设将 [a,b] 等分为 $[x_i,x_{i+1}]$, $0 \le i \le n$, n+1 个节点, 共 n+1 个小区间, 使用复合梯形积分公式, 得到积分值为 T_n .

考虑细化划分,增加 $x_{i+1/2} = \frac{x_i + x_{i+1}}{2}$,2n+1 个节点,变成 2n 个小区间. 每个小区间的积分从 $I_{n,i} = h \frac{f_i + f_{i+1}}{2}$ 变为 $I_{2n,i} = h \frac{f_i + 2f_{i+1/2} + f_{i+1}}{4} = \frac{1}{2}I_{n,i} + \frac{1}{2}hf_{i+1/2}$. 整体积分

$$T_{2n} = \frac{1}{2}T_n + \frac{h}{2}\sum_{i=0}^{n-1} x_{i+1/2}$$

使用上式较重新计算需要更少的计算量.

4.2.2 Romberg 外推计算

复合梯形公式的余项 可以证明复合梯形公式的余项为 $R_n = \sum_{i>0} a_i h_n^{2i} = o(h_n^2)$.

Romberg 外推公式 容易得到 $h_{2n} = \frac{1}{2}h_n$. 因此 $R_{2n} = \frac{1}{4}a_ih_n^2 + \sum_{i>1}a_i\left(\frac{h_n}{2}\right)^{2i}$, 因此令

$$T_{2n}^{(1)} = \frac{4T_{2n} - T_n}{3}$$

容易得到 $R_{2n}^{(1)} = \sum_{i>1} a_i h_{2n}^{2i} = o(h_n^4) = o(h_{2n})^4$.

同样, 今

$$T_{2n}^{(2)} = \frac{4^2 T_{2n}^{(1)} - T_n^{(1)}}{4^2 - 1}$$

得到 $R_{2n}^{(2)} = o(h^6)$.

Richardson 外推法 即上面的公式一般形式,上标表示做了多少次外推,下标表示做了多少次分割

$$T_n^{(m)} = \frac{4^m T_{2n}^{(m-1)} - T_n^{(m-1)}}{4^m - 1}, \quad n = 2^k, k \ge 0, m \ge 0$$

初始值 $T_n^{(0)}$ 是, 将 [a,b] 等分为 $[x_i,x_{i+1}],\ 0 \le i \le n$ 共 n 个小区间, 使用复合梯形公式的求积结果.

利用递推加速有 (其中 $x_{2k+1} = a + (2k+1)\frac{b-a}{2n}$)

$$T_{2n}^{(0)} = \frac{1}{2}T_n^{(0)} + \frac{h_n}{2}\sum_{k=0}^{n-1}f(x_{2k+1})$$

4.3 Gauss 公式

基本思想 Gauss 公式形如

$$I[f] = \sum_{k=0}^{n} A_k f(x_k)$$

其中 A_k , x_k 是实现选取和 f 无关的参数 (但是和 a, b 有关). Gauss 公式通过适当地选取 A_k , x_k 来提高 I 的代数精度, 可达 2n+1 阶.

朴素构造 从 $x^0, x^1, x^2 \dots$ 开始尝试, 每次解一个关于 A_k, x_k 的高次方程组

$$\sum_{k=0}^{s} A_k x_k^s = \int_a^b x^s \, \mathrm{d} x, \quad 0 \le s < \dots$$

直到无解. 问题是, 高次方程求解是困难的.

优化求解 由前所述, Gauss 公式一定是插值的. 如上公式中, 如果我们求出诸插值节点 x_k , 则只需要解 A_k 的线性方程组即可.

关于 x_k , 有如下定理

I[f]有 2n+1 阶代数精度 \Leftrightarrow

$$n+1$$
 次多项式 $\prod_{k=0}^{n} (x-x_k)$ 和任何次数界为 n 的多项式正交

证明需要考虑插值方法的余项 $R[f] = \int_a^b \frac{f^{(n+1)}(\psi)}{(n+1)!} \omega_{n+1}(x) \, \mathrm{d} \, x.$

5 解线性方程的直接法

5.1 Gauss 消元法

基本概念 算法略. 我们的语言中, 第 k 次消元完成后, 矩阵应当如下形态

$$\begin{bmatrix} a_{11}^{(k)} & \cdots & a_{1k}^{(k)} & \cdots & a_{1n}^{(k)} \\ & \ddots & \vdots & \vdots & \vdots \\ & & a_{kk}^{(k)} & \cdots & a_{kn}^{(k)} \\ & & \vdots & \ddots & \vdots \\ & & & a_{nk}^{(k)} & \cdots & a_{nn}^{(k)} \end{bmatrix}$$

收敛条件 诸顺序主子式 $D_i \neq 0$.

列主元的 Gauss 消元 第 k 步选取使得 $|a_{jk}^{(k-1)}|$ 最大的 $j \ge k$, 与第 k 行交换之后再继续.

分解地理解 原始 Gauss (行) 消元即, 对于顺序主子式非 0 的 \mathbf{A} , 有唯一的 分解

$$A = LU$$

其中 L 是单位下三角阵, U 是上三角阵. 选列主元的 Gauss 消元就是

$$PA = LU$$

其中 P 是排列阵.

5.2 矩阵分解

5.2.1 Doolittle 分解

就是 LU 分解. Doolittle 分解是唯一的.

 $\mathbf{A} = \mathbf{L}\mathbf{U}$

18

直接可得到

$$u_{ri} = a_{ri} - \sum_{k=1}^{r-1} l_{rk} u_{ki}, \quad i \ge r$$
$$l_{ir} = \frac{a_{ir} - \sum_{k=1}^{r-1} l_{ik} u_{kr}}{u_{rr}}, \quad i > r$$

Doolittle 分解中我们也可以选主元.

5.2.2 通过 Gauss 消元计算 LU 分解

LU 分解 假设 Gauss 消元过后, 有

$$\mathbf{L}_n\mathbf{L}_{n-1}\dots\mathbf{L}_1\mathbf{A}=\mathbf{U}$$

那么 A 的 LU 分解是

$$\mathbf{L} = \mathbf{L}_1^{-1} \mathbf{L}_2^{-1} \dots \mathbf{L}_n^{-1}$$

$$\mathbf{U} = \mathbf{U}$$

事实上, 对于消元过程中每一次"第i行乘以 s_{ij} 后加到第j行", 都有一个 $l_{ij}=-s_{ij}$.

PLU 分解 亦称为选主元的 LU 分解. 假设选列主元的 Gauss 消元后, 有

$$\mathbf{L}_n\mathbf{P}_n\dots\mathbf{L}_2\mathbf{P}_2\mathbf{L}_1\mathbf{P}_1\mathbf{A}=\mathbf{U}$$

其中 ${f P}$ 是排列矩阵或者单位阵. 那么从 $\prod_{k=1}^j {f L}_k$ 右下子阵是单位子阵一点 出发, 容易证明上式即

$$\mathbf{L}_n \dots \mathbf{L}_2 \mathbf{L}_1 \mathbf{P}_n \dots \mathbf{P}_2 \mathbf{P}_1 \mathbf{A} = \mathbf{U}$$

因此有

$$\mathbf{P} = \mathbf{P}_1^{-1} \mathbf{P}_2^{-1} \dots \mathbf{P}_n^{-1}$$
$$\mathbf{L} = \mathbf{L}_1^{-1} \mathbf{L}_2^{-1} \dots \mathbf{L}_n^{-1}$$
$$\mathbf{U} = \mathbf{U}$$

19

5.2.3 Cholesky 分解

对于对称正定阵 A, 存在下三角矩阵 L,

$$\mathbf{A} = \mathbf{L}\mathbf{L}^T$$

若要求 $l_{ii} > 0$, 则 L 唯一.

直接可以得到

$$l_{ij} = \frac{a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk}}{l_{jj}}, \quad i > j$$
$$l_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} l_{ik}^2}$$

5.2.4 追赶法

考虑非奇异对角占优1三对角阵

$$\mathbf{A} = \begin{bmatrix} b_1 & c_1 & & & & & \\ a_2 & b_2 & c_2 & & & & \\ & a_3 & b_3 & c_3 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & a_{n-1} & b_{n-1} & c_{n-1} \\ & & & & a_n & b_n \end{bmatrix}$$

其中 $|b_i| > |a_i| + |c_i|$.

¹注意是 $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$

可分解为 A = LU, 其中

$$\mathbf{L} = \begin{bmatrix} \alpha_1 \\ r_2 & \alpha_2 \\ & r_3 & \alpha_3 \\ & & \ddots & \ddots \\ & & & r_{n-1} & \alpha_{n-1} \\ & & & & r_n & \alpha_n \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 1 & \beta_1 & & & & \\ & 1 & \beta_2 & & & \\ & & 1 & \beta_3 & & \\ & & & \ddots & \ddots & \\ & & & & 1 & \beta_{n-1} \\ & & & & & 1 \end{bmatrix}$$

同样直接容易求得

$$r_i = a_i$$

$$\alpha_i = b_i - a_i \beta_{i-1}$$

$$\beta_i = \frac{c_i}{\alpha_i}$$

5.3 误差分析

5.3.1 向量内积

向量内积 (u,v) 需要满足

线性性 $(\alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w}) = \alpha(\mathbf{u}, \mathbf{w}) + \beta(\mathbf{v}, \mathbf{w}).$

正定性 $(\mathbf{u}, \mathbf{u}) \geq 0$, 当且仅当 $\mathbf{u} = \mathbf{0}$ 等号成立.

对称性 $(\mathbf{u}, \mathbf{v}) = (\mathbf{v}, \mathbf{u})$, 对于复数情况是对称共轭.

5.3.2 向量范数

向量范数 $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ 需要满足

线性性 $\|\alpha \mathbf{v}\| = |\alpha| \|\mathbf{v}\|$

21

正定性 $\|\mathbf{v}\| \ge 0$, 当且仅当 $\mathbf{v} = \mathbf{0}$ 等号成立

三角不等式 ||u+v|| ≤ ||u|| + ||v||

范数的几何意义可以理解为长度.

常用的 p 范数定义为 $\|\mathbf{v}\|_p = \sqrt[p]{\sum_i v_i}$, 特别地有 $\|\mathbf{v}\|_{\infty} = \max_i v_i$.

范数的连续性

$$\lim_{\mathbf{u} \to \mathbf{v}} \|\mathbf{u}\| - \|\mathbf{v}\| = 0$$

证明直接考虑证明 $\|\mathbf{u} - \mathbf{v}\| \to 0$.

范数的等价性 任意两种向量范数 $\|\mathbf{v}\|_{\nu_1}$ 和 $\|\mathbf{v}\|_{\nu_2}$, 存在 $0 < c_1 \le c_2$ 使得

$$c_1 \|\mathbf{v}\|_{\nu_1} \le \|\mathbf{v}\|_{\nu_2} \le c_2 \|\mathbf{v}\|_{\nu_1}$$

证明考虑用 $\nu_1 = \infty$ 做跳板.

5.3.3 矩阵范数

矩阵范数 $\|\cdot\|:\mathbb{R}^{n\times n}\to\mathbb{R}$ 需要满足

正定性 $\|A\| \ge 0$, 当且仅当 A = 0 等号成立

线性性 $\|\alpha \mathbf{A}\| = |\alpha| \|\mathbf{A}\|$

三角不等式 $\|A + B\| \le \|A\| + \|B\|$

乘法 ||AB|| ≤ ||A||||B||

从属和相容 对于向量范数 ||·||,定义其从属的矩阵范数是

$$\|\mathbf{A}\|_{\nu} = \max_{\mathbf{x}} \frac{\|\mathbf{A}\mathbf{x}\|_{\nu}}{\|x\|_{\nu}}$$

显然从属范数满足相容性条件

$$\|\mathbf{A}\mathbf{x}\|_{\nu} \leq \|\mathbf{A}\|_{\nu} \|\mathbf{x}\|_{\nu}$$

常见矩阵范数

- $\|\mathbf{A}\|_F = \sqrt{\sum_{i,j} a_{ij}}$ 称为 Frobenius 范数
- $\|\mathbf{A}\|_{\infty} = \max_{i} \sum_{i} |a_{ij}|$
- $\|\mathbf{A}\|_1 = \max_i \sum_i |a_{ij}|$
- $\|\mathbf{A}\|_2 = \sqrt{\lambda_{\max}(\mathbf{A}^T\mathbf{A})}$

矩阵范数性质

- ||A|| ≥ ρ(A) = λ_{max}(A)
 这里注意,不能想当然的认为 ρ(AB) ≤ ρ(A)ρ(B).
- $\forall \epsilon > 0$: $\exists \nu$: $\|\mathbf{A}\|_{\nu} \leq \rho(\mathbf{A}) + \epsilon$ 证明略复杂. 注意这里的 $\rho(\mathbf{A}) = \max_{i} |\lambda_{i}|$.
- 若 $\|\mathbf{B}\| < 1$ 且 $\mathbf{I} \pm \mathbf{B}$ 非奇异, 则 $\|(\mathbf{I} \pm \mathbf{B})^{-1}\| \le \frac{1}{1 \|\mathbf{B}\|}$

5.3.4 病态矩阵

对于方程组求解问题 $\mathbf{A}\mathbf{x} = \mathbf{b}$, 若微小的系数变动造成最后解的巨大波动, 则称矩阵 \mathbf{A} 是病态的.

摄动条件 对于 $\delta \mathbf{b}$ 微小的扰动, 求解 $\mathbf{A}(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b}$, 有

$$\frac{\|\delta\mathbf{x}\|}{\|\mathbf{x}\|} \leq \|\mathbf{A}^{-1}\|\|\mathbf{A}\|\frac{\|\delta\mathbf{b}\|}{\|\mathbf{b}\|}$$

对于 $\delta \mathbf{A}$ 微小的扰动, 需要假设 $\|\mathbf{A}^{-1}\delta \mathbf{A}\| < 1$, 求解 $(\mathbf{A} + \delta \mathbf{A})\mathbf{x} = \mathbf{b}$, 有

$$\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \le \frac{\|\mathbf{A}^{-1}\| \|\mathbf{A}\| \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}}{1 - \|\mathbf{A}^{-1}\| \|\mathbf{A}\| \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}}$$

矩阵的条件数 定义 $cond(\mathbf{A})_{\nu} = \|\mathbf{A}^{-1}\|_{\nu}\|\mathbf{A}\|_{\nu}$ 为 **A** 的条件数. 一般取 $\nu = 1, 2, \infty$. 条件数反映矩阵的病态程度, 条件数越大, 矩阵越病态.

条件数性质

- $\operatorname{cond}(\mathbf{A}) \ge 1$
- $\operatorname{cond}(\mathbf{A})_2 = \left| \frac{\lambda_{\max}(\mathbf{A}^T \mathbf{A})}{\lambda_{\min}(\mathbf{A} \mathbf{A}^T)} \right| = \left| \frac{\lambda_{\max}(\mathbf{A}^T \mathbf{A})}{\lambda_{\min}(\mathbf{A}^T \mathbf{A})} \right|$ 证明第二个等号可以使用经典的神奇等式 $|\mathbf{I} \mathbf{A} \mathbf{B}| = |\mathbf{I} \mathbf{B} \mathbf{A}|$, 或者直接证明 $\mathbf{A} \mathbf{B}$ 特征值和 $\mathbf{B} \mathbf{A}$ 相同.
- $\operatorname{cond}(\mathbf{AB}) \le \operatorname{cond}(\mathbf{A}) \operatorname{cond}(\mathbf{B})$

6 解线性方程的迭代法

6.1 通用迭代法

对于方程 Ax = b, 通过将其改写为

$$x = Bx + f$$

之后按照 $\mathbf{x}^{(n+1)} = \mathbf{B}\mathbf{x}^{(n)} + \mathbf{f}$ 迭代.

若 $\lim_{n\to\infty} \mathbf{x}^{(n)} = \mathbf{x}^*$ 存在,则称迭代法收敛. 显然 \mathbf{x}^* 必为原方程的解. 实际中通常将 \mathbf{A} 改写为 $\mathbf{M} + \mathbf{N}$, \mathbf{M} 容易求逆, 之后

$$\mathbf{x} = -\mathbf{M}^{-1}\mathbf{N}\mathbf{x} + \mathbf{M}^{-1}\mathbf{b}$$

6.1.1 收敛条件

考虑初始误差 $\mathbf{e}^{(0)} = \mathbf{x}^{(0)} - \mathbf{x}^*$. 显然 $\mathbf{e}^{(n)} = \mathbf{B}^n \mathbf{e}^{(0)}$. 故有, 迭代法收敛, 当且仅当

$$\lim_{n\to\infty}\mathbf{x}^{(n)}=\mathbf{x}^*\Leftrightarrow\lim_{n\to\infty}\mathbf{B}^n=\mathbf{0}$$

等价的收敛条件 上述收敛条件等价于

- 1. $\rho(\mathbf{B}) < 1$
- 2. ∃从属范数 ν : $\|\mathbf{B}\|_{\nu} < 1$

证明需要大量使用如下性质

$$\forall \epsilon : \exists \nu : \|\mathbf{B}\|_{\nu} \in [\rho(\mathbf{B}), \rho(\mathbf{B}) + \epsilon]$$

收敛速度 简单的考虑, 设对于 ν 有 $\|\mathbf{B}\|_{\nu} = q < 1$, 则容易证明

$$\begin{split} &\|\mathbf{x}^{(k)} - \mathbf{x}^*\| \leq q^k \|\mathbf{x}^{(0)} - \mathbf{x}^*\| \\ &\|\mathbf{x}^{(k)} - \mathbf{x}^*\| \leq \frac{q}{1-q} \|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\| \end{split}$$

平均收敛速度 显然 $\|\mathbf{e}^{(k)}\| \leq \|\mathbf{e}^{(0)}\| \cdot \|\mathbf{B}^k\|$, 如欲让

$$\frac{\|\mathbf{e}^{(k)}\|}{\|\mathbf{e}^{(0)}\|} < \sigma$$

则 $\|\mathbf{B}^k\| < \sigma$. 即

$$k \ge \frac{-\ln \sigma}{-\ln \left(\|\mathbf{B}^k\|^{1/k}\right)}$$

称 $-\ln\left(\|\mathbf{B}^k\|^{1/ke}\right)$ 为平均收敛速度, 记为 $R_k(\mathbf{B})$. 称 $-\ln\rho(\mathbf{B})$ 为渐进收敛速度, 显然 $\lim_{k\to\infty}R_k(\mathbf{B})=R(\mathbf{B})$.

6.2 具体迭代方法

6.2.1 Jacobi 方法

改写 $\mathbf{A} = \mathbf{D} + \mathbf{L} + \mathbf{U}$, 其中 \mathbf{D} 是对角矩阵, \mathbf{L} 是对角线为 0 的下三角阵, \mathbf{U} 是对角线为 0 的上三角阵. 令

$$\mathbf{M}=\mathbf{D}$$

则有

$$\mathbf{x} = -\mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})\mathbf{x} + \mathbf{D}^{-1}\mathbf{b}$$

即

$$x_i^{(k+1)} = \frac{b_i - \sum_{j \neq i} a_{ji} x_i^{(k)}}{a_{ii}}$$

收敛条件 若 A 为严格对角占优阵,则 Jacobi 法收敛.

若 **A** 对称, 且 **A**, 2**D** – **A** 正定, 则 Jacobi 法收敛. 证明需要使用如下性质: **A**对称正定 \Rightarrow $a_{ii} > 0$.

6.2.2 Gauss-Seidel 方法

同上,令

$$M = D + L$$

但是迭代的时候, 计算 $x_i^{(k)}$ 要使用 $x_{< i}^{(k)}$.

$$\mathbf{D}\mathbf{x}^{(k+1)} = -\mathbf{L}\mathbf{x}^{(k+1)} - \mathbf{U}\mathbf{x}^{(k)} + \mathbf{b}$$

即

$$x_i^{(k+1)} = \frac{b_i - \sum_{j < i} a_{ij} x_j^{(k+1)} - \sum_{j > i} a_{ij} x_j^{(k)}}{a_{ii}}$$

收敛条件 若 A 为严格对角占优阵, 则 G-S 法收敛.

若 A 对称正定,则 G-S 方法收敛.

6.2.3 超松弛迭代法

同上, 引入超参数 ω . 设每步 G-S 方法求出了 $\bar{\mathbf{x}}^{(k+1)}$, 则令

$$\mathbf{x}^{(k+1)} = (1 - \omega)\mathbf{x}^{(k)} + \omega\bar{\mathbf{x}}^{(k+1)}$$

相当于

$$\mathbf{M} = \omega^{-1} \mathbf{D} + \mathbf{L}$$

显然 $\omega = 1$ 时 SOR 就是 G-S 方法, 通常将 $\omega < 1$ 的情况成为欠松弛.

收敛条件 若 SOR 收敛, 则 $0 < \omega < 2$. 证明: 直接考虑 $\rho(\mathbf{B}) < 1$ 即可, 利 用 $|\mathbf{A}| = \prod_i \lambda_i$.

若 A 为对称正定阵, 且 $0 < \omega < 2$, 则 SOR 收敛.

若 A 为严格对角占优阵, 且 $0 < \omega < 1$ 则 SOR 收敛.

7 非线性方程和方程组的数值解

7.1 基本概念

方程求根 给定 $f: \mathbb{R} \to \mathbb{R}$, f 连续, 求一个 x: f(x) = 0. 称该 x 为 f 的根, 通常记为 x^* .

多重根 令 m 是最大的自然数使得 $\lim_{x\to x^*} \frac{f(x)}{(x-x^*)^{m-1}} = 0$, 称 x^* 是 f 的 m 重根.

二分法 二分法是通用的求根方法,简单而且保证收敛,但是速度太慢.

7.2 不动点迭代法

7.2.1 基本概念

不动点法 将方程求根问题 f(x) = 0 改为不动点寻找问题 $x = \varphi(x)$,通过 迭代 $x_{k+1} = \varphi(x_k)$ 求根. 如果 $\lim_{n \to \infty} x_n = x^*$ 则称不动点法收敛.

全局收敛定理 若 $\varphi \in C[a,b]$, 且 $\forall x \in [a,b]$: $\varphi(x) \in [a,b]$, 并且 $\exists L < 1$: $|\varphi(x_1) - \varphi(x_2)| \leq L|x_1 - x_2|$, 则 [a,b] 中有唯一 x^* : $\varphi(x^*) = x^*$, 并且不动点法收敛.

局部收敛 如果 $\forall x_0 \in B(x^*, \delta)$, 不动点法都收敛, 则称不动点法在 x^* 局部收敛.

局部收敛定理 若在 x^* 附近, φ 连续且 $|\varphi'(x)| < 1$, 则不动点法在 x^* 局部 收敛.

7.2.2 收敛阶

若 $x_{k+1} = \varphi(x_k)$ 收敛到 x^* , 并且

$$\exists p \ge 1 : \frac{x_{k+1} - x^*}{(x_k - x^*)^p} = C \ne 0$$

则称 φ 在 x^* 是 p 阶收敛的.

收敛定理 若 $\varphi^{(p)}$ 在 x^* 领域连续, 且存在正整数 p,

$$\varphi(x^*) = \varphi'(x^*) = \dots = \varphi^{(p-1)}(x^*) = 0$$
$$\varphi^{(p)}(x^*) \neq 0$$

则 φ 在 x^* 是 p 阶收敛的.

7.3 Newton 法

7.3.1 基本 Newton 法

 $x_{k+1} = \varphi(x_k)$, 迭代方程

$$\varphi(x) = x - \frac{f(x)}{f'(x)}$$

基本 Newton 法局部二阶收敛,但是如果 x^* 是原函数的重根那么只有一阶收敛.

基本 Newton 法严重依赖初值的选取, 初值选好了收敛非常快, 初值选取不好不收敛.

7.3.2 简化 Newton 法

简化 Newton 法不用每次求导数 $f'(x_k)$

$$\varphi(x) = x - \frac{f(x)}{f'(x_0)}$$

简化 Newton 法局部线性收敛.

7.3.3 Newton 下山法

主要解决的 Newton 法对于初值非常依赖的问题. Newton 法求出 $\bar{x}_{k+1} = \varphi(x_k)$, 之后比较 $|f(\bar{x}_{k+1})|$ 和 $|f(x_k)|$. 若 $|f(\bar{x}_{k+1})| < |f(x_k)|$, 直接令 $x_{k+1} = \bar{x}_{k+1}$, 否则选取 $\lambda \in (0,1]$, 令 $x_{k+1} = \lambda \bar{x}_{k+1} + (1-\lambda)x_k$, 要求 $|f(x_{k+1})| < |f(x_k)|$.

7.3.4 弦截法

不用求导数. 需要两个初值 x_1, x_0 , 计算 x_{k+1} 使用 x_k, x_{k-1} 如下

$$x_{k+1} = x_k - \frac{f(x_k)}{\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}}$$

弦截法局部 $\frac{\sqrt{5}+1}{2}$ 阶收敛.

7.4 方程求根的敏感性

病态方程 如果代数方程 $p(x) = \sum_{i=0}^{n} a_i x^i$ 对于很小的系数扰动, 根的变化 很大, 则称 p(x) 是病态的.

设系数摄动是 $\epsilon q(x)$, 则通常称

$$\frac{q(x^*)}{p'(x^*)}$$

为方程求根的条件数,越大表示方程越病态.

8 矩阵特征值计算

8.1 特征值基本概念

Rayleigh 商 对于 **A**, 定义其 Rayleigh 商为 $R(\mathbf{x}) = \frac{(\mathbf{A}\mathbf{x},\mathbf{x})}{(\mathbf{x},\mathbf{x})}$. 设 **A** 的特征 值是 $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$, 则有

$$\lambda_n \le R(\mathbf{x}) \le \lambda_1$$

$$\lambda_n = \min R(\mathbf{x})$$

$$\lambda_1 = \max R(\mathbf{x})$$

Gershgorin 圆盘 对于 **A**, 令 $r_i = \sum_{j \neq i} a_{ij}$, $D_i = \{z \in \mathbb{C} \mid |z - a_{ii}| < r_i\}$ 成为 Gershgorin 圆盘. 设 **A** 的特征值是 $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$, 则有,

$$\forall \lambda_i : \lambda_i \in \cup_i D_i$$

即特征值一定在 Gershgorin 圆盘中.

另外, 考虑 $\cup_i D_i$ 中某连通区域 Ω , 如果其由 k 个圆盘构成, 则 Ω 中有且仅有 k 个特征值.

可以通过相似矩阵特征值不变的特性来精细化 Gershgorin 圆盘, 如 $\mathbf{D}^{-1}\mathbf{A}\mathbf{D}$ 和 \mathbf{A} 的特征值相同, Gershgorin 区域不同.

8.2 幂法求主特征值

8.2.1 主特征值

设 **A** 有特征值 $|\lambda_1| \ge |\lambda_2| \ge ... \ge |\lambda_n|$, 称 λ_1 为 **A** 的主特征值 (允许主特征值有实重根). 幂法可求出主特征值和主特征向量.

8.2.2 幂法

任取 \mathbf{v}_0 , 使得 $\mathbf{v}_0 = \sum_i \alpha_i \mathbf{x}_i$, 其中诸 \mathbf{x} 是特征向量. 要求 $\alpha_1 \neq 0$. 易证 (特别注意最后的 $x_k \neq 0$)

$$\forall k \in [1, n] : \lim_{m \to \infty} \frac{v_{m+1 k}}{v_{mk}} = \lambda_1, \qquad x_k \neq 0$$

其中

$$\mathbf{v}_i = \mathbf{A}^i \mathbf{v}_0$$

简单地, 即如下. 其中 a·b 为向量点乘.

$$\lambda_1 = \|\lim_{k \to \infty} \mathbf{v}_{k+1} \cdot \mathbf{v}_k^{-1}\|_{\infty}$$

8.2.3 收敛速度

假设 $|\lambda_1|=|\lambda_2|\ldots>|\lambda_k|$, 则幂法的收敛速度由 $\frac{|\lambda_k|}{|\lambda_1|}$ 决定. 比值越小, 收敛越快.

8.2.4 变动

使用归一化的向量 令

$$\mathbf{v}_i = \mathbf{A}\mathbf{u}_{i-1}$$
 $\mathbf{u}_i = \|\mathbf{v}_i\|_{\infty}^{-1}\mathbf{v}_i$

那么 $\lambda_1 = \lim_{m \to \infty} \|\mathbf{v}_m\|_{\infty}$.

原点平移法 如果 $\frac{|\lambda_k|}{|\lambda_1|}$ 很接近 1, 那么收敛速度很慢. 这时考虑求 $\mathbf{A} - p\mathbf{I}$ 的特征值 $\lambda_1 - p, \lambda_2 - p \dots$ 通过选择 p, 使得次大特征值和主特征值的比尽量小.

如果已知 $\lambda_1 > \lambda_2 \geq \ldots > \lambda_n$, 则最后的主特征值只可能是 $\lambda_1 - p$ 或者 $\lambda_n - p$, 只需要在 $|\lambda_n - p| < |\lambda_1 - p|$ 的前提下, 令 $p^* = \frac{\lambda_2 + \lambda_n}{2}$ 即可.

反幂法 幂法用来求模最大的特征值 λ_1 ,反幂法用来求模最小的特征值 λ_n . 显然,考虑 **A**,针对 \mathbf{A}^{-1} 做幂法就能得到 λ_n^{-1} .

30

8.3 QR 分解

8.3.1 Household 变换

定义 若
$$\mathbf{w}^T \mathbf{w} = 1$$
, 则称

$$\mathbf{H} = \mathbf{I} - 2\mathbf{w}\mathbf{w}^T$$

为 Household 变换矩阵, 亦称单位反射阵.

性质

• H 是对称阵

$$\mathbf{H}^T = \mathbf{H}$$

• H 是正交阵

$$\mathbf{H}^T \mathbf{H} = \mathbf{I}$$

注意对称阵的乘积不一定对称, 所以多个单位反射阵的积只是正交, 并不一定对称.

• 反射性: 乘 **H** 就相当于作了平面 $\mathbf{w}^T \mathbf{x} = 0$ 的镜像.

$$\forall \mathbf{v} = \mathbf{x} + \mathbf{y}, \ \mathbf{w}^T \mathbf{x} = 0, \ \mathbf{y} \parallel \mathbf{w} : \ \mathbf{H} \mathbf{v} = \mathbf{x} - \mathbf{y}$$

• 反射性: 可以在等模的前提下做任何 x 到 y 的变换

$$\forall \mathbf{x} : \forall \mathbf{y}, \|x\|_2 = \|y\|_2 : \exists$$
单位反射阵 $\mathbf{H} : \mathbf{H}\mathbf{x} = \mathbf{y}$

容易从几何意义得到, $\mathbf{w} = \frac{\mathbf{x} - \mathbf{y}}{\|\mathbf{x} - \mathbf{y}\|_2}$.

约化定理 对于 $x \neq 0$, 存在 H 使得

$$\mathbf{H}\mathbf{x} = \sigma \mathbf{e}_1$$

其中

$$\sigma = \begin{cases} \operatorname{sgn}(x_1) \|\mathbf{x}\|_2 & x_1 \neq 0 \\ \|\mathbf{x}\|_2 & x_1 = 0 \end{cases}$$
$$\mathbf{u} = \mathbf{x} + \sigma \mathbf{e}_1$$
$$\beta = \frac{\|\mathbf{u}\|_2^2}{2}$$
$$\mathbf{H} = \mathbf{I} - \beta^{-1} \mathbf{u} \mathbf{u}^T$$

事实上, 约化定理就是反射性第二条的简单应用. 基本目的是将 \mathbf{x} 变成 $\alpha \mathbf{e}_1$. 这种情况下只能 $\alpha = \pm ||\mathbf{x}||_2$, 又为了 $\mathbf{x} - \alpha \mathbf{e}_1 \neq \mathbf{0}$, 所以 $\alpha = -\mathrm{sgn}(x_1)||\mathbf{x}||_2$. 之后自然地就得到了 \mathbf{H} .

8.3.2 QR 分解

对于任何非奇异的矩阵 A, 一定存在正交阵 Q, 满足 QA = R, 其中 R 是上三角阵. 如果要求 R 对角元素为正, 那么 QR 分解唯一.

分解过程 一般地, 考虑

$$\mathbf{H}_i\mathbf{A} = egin{bmatrix} \mathbf{U}_i & \mathbf{B}_i \ \mathbf{0} & \mathbf{C}_i \end{bmatrix}$$

其中 $\mathbf{H}_i \in \mathbb{R}^{n \times n}$, $\mathbf{U}_i \in \mathbb{R}^{i \times i}$ 为上三角阵, $\mathbf{B}_i \in \mathbb{R}^{i \times (n-i)}$, $\mathbf{C}_i \in \mathbb{R}^{(n-i) \times (n-i)}$ 且 \mathbf{C} 可逆. 由约化定理,

$$\exists \tilde{\mathbf{H}}_{i+1} \in \mathbb{R}^{(n-i)\times(n-i)} : \tilde{\mathbf{H}}_{i+1}\mathbf{C}_i = \begin{bmatrix} u_{i+1} & \tilde{\mathbf{B}}_{i+1} \\ \mathbf{0} & \mathbf{C}_{i+1} \end{bmatrix}$$

那么今

$$\mathbf{H}_{i+1} = egin{bmatrix} \mathbf{I}_i & \mathbf{0} \ \mathbf{0} & ilde{\mathbf{H}}_{i+1} \end{bmatrix} \mathbf{H}_i$$

则有

$$\mathbf{H}_{i+1}\mathbf{A} = egin{bmatrix} \mathbf{U}_{i+1} & \mathbf{B}_{i+1} \ \mathbf{0} & \mathbf{C}_{i+1} \end{bmatrix}$$

其中 $\mathbf{H}_{i+1} \in \mathbb{R}^{n \times n}$, $\mathbf{U}_{i+1} \in \mathbb{R}^{i+1 \times i+1}$ 为上三角阵, $\mathbf{B}_{i+1} \in \mathbb{R}^{i+1 \times (n-i-1)}$, $\mathbf{C}_{i+1} \in \mathbb{R}^{(n-i-1) \times (n-i-1)}$ 且 \mathbf{C} 可逆.

如上, 从 $\mathbf{H}_0 = \mathbf{I}_n$ 开始, 最后就可以得到 $\mathbf{H}_n \mathbf{A} = \mathbf{U}_n$.

QR 分解定理 非奇异矩阵 $\mathbf{A} \in \mathbb{R}^{n \times n}$, 存在上三角阵 \mathbf{R} 和正交阵 \mathbf{Q} , 使得 $\mathbf{A} = \mathbf{Q}\mathbf{R}$, 称为 \mathbf{A} 的 QR 分解. 如果要求 \mathbf{R} 对角线元素为正, 则 \mathbf{A} 的 QR 分解唯一.

证明考虑正定矩阵 $\mathbf{A}^T \mathbf{A}$ 的 Cholesky 分解是唯一的.

9 常微分方程数值解

9.1 基本概念

常微分方程描述 对于

$$y' = f(x, y)$$

其中 $x \in [a,b], y \in \mathbb{R}$, 给定初值

$$y(x_0) = y_0$$

称为一个常微分方程 (ode).

解的存在唯一性 若 f 在 $[a,b] \times \mathbb{R}$ 连续, 且满足 Lipschitz 条件

$$|f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2|$$

则如上描述的常微分方程对于任意 $x_0 \in [a,b], y_0 \in \mathbb{R}$ 有唯一解.

对初值的敏感性 对于给定初值有唯一解的 ode, 记 y(s,x) 是给定初值 $y(x_0) = s$ 时的解, 则

$$|y(s_1, x) - y(s_2, x)| \le e^{L|x - x_0|} |s_1 - s_2|$$

其中 L 为 f 的 Lipschitz 常数.

微分方程的数值解法 给定 $x_0 < x_1 < \ldots < x_{n-1} < x_n$,以及初值 y_0 ,要求 y_i . 通常认为 $|x_{i+1} - x_i| = h$ 是常量. 下面使用 $y_i = \varphi(\mathbf{x}, \mathbf{y}, h)$ 来表示一个数值解法.

局部截断误差 对于 $y_i = \varphi(\mathbf{x}, \mathbf{y}, h)$, 定义其截断误差为

$$T_i = y(x_i) - \varphi(\mathbf{x}, \langle y(x_0), y(x_1) \dots y(x_n) \rangle, h)$$

精度 若 $y_i = \varphi(\mathbf{x}, \mathbf{y}, h)$ 满足 $T_n = o(h^{p+1})$, 则称它有 p 阶精度.

33

9.2 Euler 方法

9.2.1 显式 Euler 法

显式单步法. 基本方程

$$y_{i+1} = y_i + hf(x_i, y_i)$$

局部截断误差

$$T_i = h^2 \frac{y''(x_i)}{2} + o(h^3)$$

精度为1阶.

9.2.2 隐式 Euler 法

隐式法. 基本方程

$$y_{i+1} = y_i + h f(x_{i+1}, y_{i+1})$$

精度为1阶.

通常需要由显式 Euler 法给出一个 ${\bf y}$ 的初值, 然后再由隐式 Euler 法迭代.

如果 |hL| < 1, L 是 Lipschitz 常数, 那么迭代一定收敛到隐式法的迭代方程, 虽然不一定收敛到原 ode 的解.

9.2.3 梯形法

隐式法. 基本方程

$$y_{i+1} = y_i + h \frac{f(x_i, y_i) + f(x_{i+1}, y_{i+1})}{2}$$

局部阶段误差

$$T_i = -\frac{h^3}{12}y^{(3)}(x_i) + o(h^4)$$

精度为2阶.

显式 Euler 法提供初值时, 称为"改进的 Euler 法".

9.3 Runge-Kuta 方法

9.3.1 基本叙述

Runge-Kuta 方法是单步显式法. 对于单步显式法 $y_{i+1} = y_i + h\varphi(x_i, y_i, h)$, 局部截断误差是

$$T_n = \int_x^{x_{n+1}} f(x, y(x)) dx - h\varphi(x_n, y_n, h)$$

因此主要使得 $h\varphi(x_n,y_n,h)$ 接近积分即可. 这里就可以使用数值积分的方法.

9.3.2 低阶情况

考虑二阶 Runge-Kuta 方法

$$y_{i+1} = y_i + h(c_1K_1 + c_2K_2)$$

$$K_1 = f(x_n, y_n)$$

$$K_2 = f(x_n + \lambda_2 h, y_n + \mu_{21} h K_1)$$

分解得到, $c_1, c_2, \lambda_2, \mu_{21}$ 满足

$$c_1 + c_2 = 1$$
$$c_2 \lambda_2 = \frac{1}{2}$$
$$c_2 \mu_{21} = \frac{1}{2}$$

精度为 2 阶. 如 $c_1 = c_2 = \frac{1}{2}$ 就是梯形法, $c_1 = 0, c_2 = 1$ 就是 "中点公式".

9.4 收敛和稳定

9.4.1 收敛性

概念 对于某种数值方法, 如果 $\lim_{n\to\infty} y_n = y(x_n)$, 那么称其收敛.

单步法的收敛性 对于单步法 $y_{n+1}=y_n+h\varphi(x_n,y_n,h)$, 如果其具有 p 阶精度, 且 φ 关于 y 有 Lipschitz 条件, 那么只要初值 y_0 是准确的, 整体截断误差 $T_n=y_n-y(x_n)=o(h^p)$.

通过单步法收敛定理,可以直接通过 φ 是否满足 Lipschitz 条件判断单步法是否收敛.

相容性 如果单步法满足 $\varphi(x,y,0) = f(x,y)$, 那么称单步法和原 ode 相容. 当且仅当单步法有 $p \ge 1$ 阶精度, 单步法和原 ode 相容.

9.4.2 稳定性

若

$$|y_n - y(x_n)| < \epsilon \Rightarrow \forall m > n : |y_m - y(x_m)| < \epsilon$$

则称这种数值方法稳定.

基本概念 稳定性不仅受原 f 的影响, 而且还受 h 的影响. 为了标准化研究, 只考虑如下的 ode

$$f(x,y) = \lambda y$$

解析解为 $y = e^{\lambda x}$, 要求 $\Re \lambda < 0$.

使得迭代法收敛的 $|h\lambda|$ 构成的 $\mathbb C$ 区域称为绝对收敛域, 实轴上部分成为绝对收敛区间.

以显式 Euler 法为例子, 上述 ode 的迭代式为 $y_{n+1}=(1+h\lambda)y_n$. 因此 $\epsilon_{n+1}=(1+h\lambda)\epsilon_n$, 只要 $|1+h\lambda|<1$ 显式 Euler 法就针对初值的波动是稳定的.

9.5 线性多步法

9.5.1 基本概念

考虑显式的多步法, k 步的方程为

$$y_{n+k} = \sum_{i=0}^{k-1} \alpha_i y_{n+i} + h \sum_{i=0}^{k-1} \beta_i f(x_{n+i}, y_{n+i})$$

9.5.2 精度推导

考虑 T_{n+k} 的局部截断误差, 有

$$T_{n+k} = y(x_{n+k}) - \sum_{i=0}^{k-1} \alpha_i y_{n+i} - h \sum_{i=0}^{k-1} \beta_i f(x_{n+i}, y_{n+i})$$

$$= y(x_n + kh) - \sum_{i=0}^{k-1} \alpha_i y(x_n + ih) - h \sum_{i=0}^{k-1} \beta_i y'(x_n + ih)$$

$$= \sum_{j \ge 0} \frac{(kh)^j}{j!} y^{(j)}(x_n)$$

$$- \sum_{i=0}^{k-1} \alpha_i \sum_{j \ge 0} \frac{(ih)^j}{j!} y^{(j)}(x_n)$$

$$- h \sum_{i=0}^{k-1} \beta_i \sum_{j \ge 0} \frac{(ih)^j}{j!} y^{(j+1)}(x_n)$$

$$= \sum_{i \ge 0} y^{(j)}(x_n) \frac{h^j}{j!} c_j$$

其中

$$c_j = k^j - \sum_{i=0}^{k-1} \alpha_i i^j - j \sum_{i=0}^{k-1} \beta_i i^{j-1}$$

如果 $c_0=c_1=\ldots=c_p=0$, 则显然 α , β 确定的线性多步法有 p 阶精度.

9.5.3 Adams 公式

Adam 公式形如

$$y_{n+k} = y_{n+k-1} + h \sum_{i=0}^{k} \beta_i f(x_{n+i})$$

注意求和上界是 k. 如果 $\beta_k = 0$, 则 Adams 公式为显式的, 否则为隐式的. 只需求出 β_k . 如上 $\alpha_{k-1} = 1$, 方程为

$$\sum_{i=0}^{k} j i^{j-1} \beta_i = k^j - k^{j-1}, \quad 1 \le j \le k+1$$

约定 $0^0 = 1$. 令 $\beta_k = 0$ 并丢弃最后一个方程,即得显式情况的方程. 显式公式的精度是 k, 隐式公式是 k + 1.