WINTER-2015

UNIT 1

Q.1 a) Show that the following equivalence:

$$(((Q \land A) \to C) \land (A \to (P \lor C))) \Leftrightarrow ((A \land (P \to Q)) \to C$$
 (7)

- **b)** What is well formed formula? What are the rules for well formed formula? Explain with suitable example. (6)
- **Q.2 a)** Obtain disjunctive normal form of:

i.
$$\sim$$
(P \vee Q) \leftrightarrow (P \wedge Q)

ii.
$$P \wedge (P \rightarrow Q)$$

(7)

(8)

(6)

b) Obtain principal conjunctive normal form of the given formula: $(\sim P \rightarrow R) \land (Q \leftrightarrow P)$ (6)

UNIT 2

Q.3 a) Show that: (x)
$$(P(x) \rightarrow Q(x)) \land (x) (Q(x) \rightarrow R(x)) \Rightarrow (x) (P(x) \rightarrow R(x))$$
.

b) Show that $R \vee S$ follows logically from the premises:

$$C \vee D$$
, $(C \vee D) \rightarrow \sim H$, $\sim H \rightarrow (A \wedge \sim B)$ and $(A \wedge \sim B) \rightarrow (R \vee S)$. (6)

- **Q.4 a)** Symbolize the following statement:
- i) All cats are animal (ii) Some cats are black
- iii) Some real no. are rational
- iv) Any integer is either positive or negative.
- b) Show that, R is a valid inference from the premise $P \rightarrow Q$, $Q \rightarrow R$ and P. (5)

UNIT 3

Q.5 a) Let, R and S be the relation given by:

R:
$$\{<1, 2><3, 4><2, 2>\}$$
 S: $\{<4, 2><2, 5><3, 1><1, 3>\}$ Find R·S, S·R, R·R, S·S, R·(S·R), (R·S)·R, R·R·R. (7)

b) Given $S = \{1, 2, 3, \dots, 10\}$ and the relation R on S where $R = \{\langle x, y \rangle | x + y = 10\}$ what are the properties of relation? **Q.6 a)** Let the compatibility relation on a set $\{X_1, X_2, X_3, X_6\}$ be given by matrix: (6)

b) Given the relation matrix M_R and M_S . Find $M_{R,S}$, $M_{\overline{R}}$, $M_{\overline{S}}$ and $M_{\overline{R},S}$ show that:

$$\mathbf{M}_{\overline{R} \cdot \overline{S}} = \mathbf{M}_{\overline{S} \cdot \overline{R}} \qquad \mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \mathbf{M}_{S} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$
 (7)

IINIT 4

- **Q.7 a)** Show that with every element in group is its own inverse then group must be abelian group. (6)
- **b)** Design composition table for algebraic system $< z_m, +_m >$ and $< z_{m_1}, +_m >$ when m = 5. (7)
- **Q.8 a)** Design composition table for algebraic system $< z_6, +_6 >$ and $< z_6, *_6 >$. (7)
- **b)** Find out left cosets of H in: $\langle z_4, +_4 \rangle = \{[0], [2]\}.$ (6)

UNIT 5

Q.9 a) Obtain sum of product canonical form of the Boolean expression:

i)
$$x_1 \oplus (x_2 * x_3)$$
 ii) $(x_1 \oplus x_2)' \oplus (x_1' * x_3)$ (7)

b) Find the complement of every element of lattice $\langle S_a, D \rangle$ for n = 75, n = 24 and n = 10. Let n be positive integer and S_n be the set of division of n. (6)

- **Q.10 a)** For the following function given: $F = \overline{W} + y(\overline{x} + \overline{z})$
 - 1. Circuit diagram representation
 - 2. Truth table representation
 - **3.** K-map representation. (7)
- **b)** Find minimum sum of product expression of following function using K-map:

1. F(a, b, c) =
$$\Sigma$$
(0, 1, 4, 6)

2. F(a, b, c, d) =
$$\Sigma$$
(0, 5, 7, 8, 12, 14)

3.
$$F(a, b, c, d) = \Sigma(0, 1, 2, 3, 13, 15)$$
 (6)

UNIT 6

- **Q.11 a)** Give a directed tree representation of the formula $(P \lor (\sim P \land Q)) \land ((\sim P \lor Q) \land \sim R)$. From this representation obtain the corresponding prefix formula. (6)
- **b)** Transverse the following tree with preorder, postorder and in order: (6)

- Q.12 a) Define the following term:
- i) Indegree ii) Outdegree iii) Complete binary tree (6)
- **b)** Find all indegree and outdegree of the node of the graph given below. Give all elementary cycle of graph: (7)

www.aditayPublicaiton.com