

Software integrity checks on open platforms

Performing process attestation on user-controlled ARM TrustZone devices

Oberon Swings

KU Leuven June 30, 2022

Introduction

Process integrity measurement

Evaluation & security analysis

Introduction

Process integrity measurement

Evaluation & security analysis

Context

- Smartphones
 - Usable everywhere
 - Sensitive data
 - Hardware security
- ARM TrustZone
 - Normal World
 - Secure World

Problem

- Trusted Computing
 - Manufacturers
 - Software providers
 - Users
- Open platform
 - Openness
 - PinePhone
 - OP-TEE

https://cdn.arstechnica.net/wp-content/uploads/2022/01/1-3-980x551.jpg

Secure boot, trusted boot and remote attestation for arm trustzone-based iot nodes

- Secure boot
 - Root of Trust
- Trusted boot
- Remote attestation
 - Remote verifier
 - Prove state

- Limitations
 - Openness
 - Code integrity
 - Implementation

Zhen Ling et al. "Secure boot, trusted boot and remote attestation for ARM TrustZone-based IoT Nodes". In: Journal of Systems Architecture 119 (July 2021), p. 102240. DOI: 10.1016/j.sysarc.2021.102240

Goals

- Root of Trust?
 - User control
- Preserve openness
 - User-controlled attestation
- Stakeholder expectations
 - Users, manufacturers & software providers
- Comparable to related solutions
 - 'Closed' systems

Attacker Model

- Goals
 - Personal data
 - Computing resources
- Physical access
 - Evil maid
- OS attacks
- Software attacks
 - Malware
- Software integrity

Introduction

Process integrity measurement

Evaluation & security analysis

What is achieved

- 1. Identify processes
- 2. Address translation
- 3. Provide information
- 4. Shared memory
 - Calculate hash
 - Verify integrity

When to execute?

Evaluation & security analysis

Outline

Introduction

Process integrity measurement

Evaluation & security analysis

Performance Comparison

- Experiments (1850, 390 and 88 pages)
- Extrapolation (107 MB \approx 360 seconds)
- Performance gap
 - Non-contiguous memory
 - QEMU emulator

Better performance

→ Better security

Security Evaluation

- Guarantees
 - Code integrity Normal World
- Assumptions
 - Trusted Execution Environment
 - Secure storage
 - Execution control flow
- Added value
 - User control
 - Normal World security

https://lh3.googleusercontent.com/qBAtU92beaLB

Introduction

Process integrity measurement

Evaluation & security analysis

Findings

- User owned Root of Trust
 - User friendly?
 - Private key storage?
- Secure World checking integrity Normal World
 - Worth the overhead?
- Proof of Concept
 - Feasibility
 - Performance
- Similar security guarantees closed system
 - Assumptions and guarantees
 - User security
 - Manufacturer & software provider security?

Future work

- Rich OS dependency
 - Identifying processes
 - Insecure (compromised)
- Detailed attestation
 - Data structures
 - System calls
- Loaded memory pages
 - Sufficient comparison
 - Initialization phase
- Trusted I/O
 - Inform user
 - Allow to act

Questions?

https://www.toonpool.com/cartoons/Question_3768

