7.1.1 Zusammenhang zwischen der w.e. Funktion und den Momenten

Da

$$G_X(s) := \sum_{k=0}^{\infty} \Pr[X=k] \cdot s^k = \mathbb{E}[s^X],$$

gilt

$$G'_X(1) = \sum_{k=1}^{\infty} k \cdot \Pr[X = k] = \mathbb{E}[X].$$

Beispiel 73

Sei X binomialverteilt mit $X \sim \operatorname{Bin}(n,p)$, also

$$G_X(s) = (1 - p + ps)^n.$$

Dann gilt

$$G_X'(s) = n \cdot (1 - p + ps)^{n-1} \cdot p$$

und somit

$$\mathbb{E}[X] = G_X'(1) = np.$$

Beispiel 73

Ebenso ergibt sich

$$\mathbb{E}[X(X-1)...(X-k+1)] = G_X^{(k)}(1),$$

also etwa

$$Var[X] = \mathbb{E}[X(X-1)] + \mathbb{E}[X] - \mathbb{E}[X]^{2}$$
$$= G''_{X}(1) + G'_{X}(1) - (G'_{X}(1))^{2}.$$

Andere Momente von X kann man auf ähnliche Art und Weise berechnen.

Momenterzeugende Funktionen

Definition 74

Zu einer Zufallsvariablen X ist die momenterzeugende Funktion gemäß

$$M_X(s) := \mathbb{E}[e^{Xs}]$$

definiert.

Es gilt

$$M_X(s) = \mathbb{E}[e^{Xs}] = \mathbb{E}\left[\sum_{i=0}^{\infty} \frac{(Xs)^i}{i!}\right] = \sum_{i=0}^{\infty} \frac{\mathbb{E}[X^i]}{i!} \cdot s^i$$

und

$$M_X(s) = \mathbb{E}[e^{Xs}] = \mathbb{E}[(e^s)^X] = G_X(e^s).$$

7.2 Summen von Zufallsvariablen

Satz 75 (Erzeugende Funktion einer Summe)

Für unabhängige Zufallsvariablen X_1, \ldots, X_n und die Zufallsvariable $Z := X_1 + \ldots + X_n$ gilt

$$G_Z(s) = G_{X_1}(s) \cdot \ldots \cdot G_{X_n}(s)$$
.

Ebenso gilt

$$M_Z(s) = M_{X_1}(s) \cdot \ldots \cdot M_{X_n}(s)$$
.

Beweis:

Wegen der Unabhängigkeit von X_1, \ldots, X_n gilt

$$G_Z(s) = \mathbb{E}[s^{X_1 + \dots + X_n}] = \mathbb{E}[s^{X_1}] \cdot \dots \cdot \mathbb{E}[s^{X_n}] = G_{X_1}(s) \cdot \dots \cdot G_{X_n}(s).$$

Beispiel 76

Seien $X_1,\ldots X_k$ mit $X_i\sim \mathrm{Bin}(n_i,p)$ unabhängige Zufallsvariable und $Z:=X_1+\ldots +X_k$. Dann gilt

$$G_Z(s) = \prod_{i=1}^k (1 - p + ps)^{n_i} = (1 - p + ps)^{\sum_{i=1}^k n_i}$$

und somit

$$Z \sim \operatorname{Bin}(\sum_{i=1}^{\kappa} n_i, p)$$

(vgl. Satz 56).

Seien $X_1,\dots,X_k\sim\operatorname{Po}(\lambda)$ unabhängige Zufallsvariablen. Dann folgt für $Z:=X_1+\dots+X_k$

$$G_Z(s) = \prod_{i=1}^k e^{\lambda(s-1)} = e^{k\lambda(s-1)}$$

und somit $Z \sim Po(k\lambda)$ (vgl. Satz 59).

7.2.1 Zufällige Summen

Wir betrachten die Situation, dass $Z := X_1 + \ldots + X_N$, wobei N ebenfalls eine Zufallsvariable ist.

Satz 77

Seien X_1, X_2, \ldots unabhängige und identisch verteilte Zufallsvariablen mit der wahrscheinlichkeitserzeugenden Funktion $G_X(s)$. N sei ebenfalls eine unabhängige Zufallsvariable mit der wahrscheinlichkeitserzeugenden Funktion $G_N(s)$. Dann besitzt die Zufallsvariable $Z := X_1 + \ldots + X_N$ die wahrscheinlichkeitserzeugende Funktion $G_Z(s) = G_N(G_X(s))$.

Beweis:

Nach Voraussetzung ist $W_N \subseteq \mathbb{N}_0$. Deshalb folgt mit Satz 36

$$G_Z(s) = \sum_{n=0}^{\infty} \mathbb{E}[s^Z \mid N = n] \cdot \Pr[N = n]$$

$$= \sum_{n=0}^{\infty} \mathbb{E}[s^{X_1 + \dots + X_n}] \cdot \Pr[N = n]$$

$$= \sum_{n=0}^{\infty} \mathbb{E}[s^{X_1}] \cdot \dots \cdot \mathbb{E}[s^{X_n}] \cdot \Pr[N = n]$$

$$= \sum_{n=0}^{\infty} (G_X(s))^n \cdot \Pr[N = n]$$

$$= \mathbb{E}[(G_X(s))^N]$$

$$= G_N(G_X(s)).$$

7.3 Rekurrente Ereignisse

Beispiel 78 (Random Walk im d-dimensionalen Gitter \mathbb{Z}^d)

Wir betrachten ein Partikel, das sich zufällig auf den Punkten aus \mathbb{Z} bewegt. Es starte im Punkt 0 und bewege sich in jedem Zeitschritt jeweils mit Wahrscheinlichkeit 1/2 vom Punkt i zum Punkt i+1 ("nach rechts") bzw. i-1 ("nach links"). Man nennt dieses Experiment auch Random Walk auf den ganzen Zahlen. Abbildung 1 veranschaulicht diesen Prozess.

Abbildung: Random Walk auf den ganzen Zahlen

Für $k \in \mathbb{N}$ bezeichne H_k das Ereignis $H_k :=$ "Partikel befindet sich im k-ten Schritt im Punkt 0". Die Anzahl der Schritte nach rechts bzw. nach links bis zum k-ten Schritt ist binomialverteilt mit den Parametern n=k und p=1/2.

Für die Wahrscheinlichkeit $h_k := \Pr[H_k]$ erhalten wir deshalb

$$h_k = \binom{k}{k/2} 2^{-k},$$

falls k gerade ist und $h_k = 0$ sonst.

Verallgemeinerung auf \mathbb{Z}^d , $d \in \mathbb{N}$:

$$h_k = \left(\binom{k}{k/2} 2^{-k} \right)^d$$
 für k gerade.

Sei h_k' die Wahrscheinlichkeit, dass das Partikel im k-ten Schritt zum ersten Mal zum Punkt 0^d zurückkehrt, und sei $r:=\sum_{k=1}^\infty h_k'$ die Wahrscheinlichkeit, dass das Partikel irgendwann zum Startpunkt zurückkehrt.

Wie hängt r von d ab?

Der gerade beschriebene Prozess hat die Eigenschaft, dass sich das Experiment nach jedem Besuch im Zustand 0 wieder genauso verhält wie beim Start des Prozesses im Zustand 0. Mit solchen Ereignissen beschäftigt sich die Erneuerungstheorie (engl. renewal theory).

Definition 79

Die Ereignisse H_1, H_2, \ldots heißen rekurrent, wenn für $i, j \in \mathbb{N}$ mit i > j gilt, dass

$$\Pr[H_i \mid \bar{H}_1 \cap \ldots \cap \bar{H}_{j-1} \cap H_j] = \Pr[H_{i-j}].$$

Die Zufallsvariable Z mit $W_Z=\mathbb{N}\cup\{\infty\}$ messe die Wartezeit bis zum Auftreten des ersten Ereignisses H_k . Die Dichte von Z ist definiert durch

$$\Pr[Z=k] = \Pr[\bar{H}_1 \cap \ldots \cap \bar{H}_{k-1} \cap H_k],$$

für $k \in \mathbb{N}$ und $\Pr[Z = \infty] = 1 - \sum_{k=0}^{\infty} \Pr[Z = k]$.

Definition 80

Für $i \in \mathbb{N}$ bezeichne $h_i := \Pr[H_i]$ die Auftrittswahrscheinlichkeit im i-ten Zeitschritt.

Wir setzen $h_0 := 1$ und erhalten die erzeugende Funktion der

Auftrittswahrscheinlichkeiten gemäß

$$H(s) := \sum_{k=0}^{\infty} h_k s^k .$$

Ferner sei die erzeugende Funktion der Wartezeit Z gegeben durch

$$T(s) := \sum_{k=0}^{\infty} \Pr[Z = k] \cdot s^{k}.$$

Bemerkung:

H(s) ist keine wahrscheinlichkeitserzeugende Funktion im Sinne der Definition. So gilt i.a. nicht H(1)=1. Auch T(s) stellt keine "echte" wahrscheinlichkeitserzeugende Funktion dar, da

$$\Pr[Z = \infty] = 1 - \sum_{k \in \mathbb{N}_0} \Pr[Z = k] = 1 - T(1)$$

fehlt!

Satz 81

Für rekurrente Ereignisse gilt

$$H(s) = \frac{1}{1 - T(s)}.$$

Beweis:

[Skizze]Nach dem Satz von der totalen Wahrscheinlichkeit gilt für die Auftrittswahrscheinlichkeit h_n $(n \in \mathbb{N})$

$$h_n = \Pr[H_n] = \sum_{k=1}^{\infty} \Pr[H_n \mid Z = k] \cdot \Pr[Z = k].$$

Gemäß der Definition eines rekurrenten Ereignisses gilt für k < n

$$\Pr[H_n \mid Z = k] = \Pr[H_n \mid \bar{H}_1 \cap \ldots \cap \bar{H}_{k-1} \cap H_k] = \Pr[H_{n-k}]$$

Beweis (Forts.):

sowie

$$\begin{split} \Pr[H_n \mid Z = n] &= 1 \\ \Pr[H_n \mid Z = k] &= 0 \text{ für } k > n \,. \end{split}$$

Damit folgt für $n \in \mathbb{N}$

$$h_n = \sum_{k=1}^n h_{n-k} \cdot \Pr[Z=k] = \sum_{k=0}^n h_{n-k} \cdot \Pr[Z=k].$$

Für n=0 ergibt die rechte Seite dieser Gleichung 0. Damit entsteht durch Faltung der beiden Folgen (h_0, h_1, \ldots) und $(\Pr[Z=0], \Pr[Z=1], \ldots)$ die Folge $(0, h_1, h_2, \ldots)$. Für die erzeugenden Funktionen gilt deshalb H(s) - 1 = H(s)T(s).

Beispiel 82

In dem einfachen Fall, dass die Ereignisse H_1, H_2, \ldots unabhängig mit Wahrscheinlichkeit p eintreten, ist die Wartezeit geometrisch verteilt.

$$H(s) = 1 + \sum_{k=1}^{\infty} ps^k = 1 + \frac{sp}{1-s} = \frac{sp+1-s}{1-s}$$
.

Daraus folgt

$$T(s) = 1 - \frac{1}{H(s)} = 1 - \frac{1-s}{sp+1-s} = \frac{sp}{1-(1-p)s}$$
.

T(s) ist also die w.e. Funktion der geometrischen Verteilung mit Erfolgswahrscheinlichkeit p.

Korollar 83

Für rekurrente Ereignisse gilt $\Pr[Z < \infty] = 1$ genau dann, wenn $H(1) = \infty$ ist, wenn also die Summe $\sum_{k=1}^{\infty} h_k$ der Auftrittswahrscheinlichkeiten divergiert.

Beweis:

Nach Satz 81 gilt T(s) = (H(s) - 1)/H(s). Daraus folgt

$$\Pr[Z < \infty] = T(1) = 1 - 1/H(1)$$
.

Beispiel 84

Wir wenden Korollar 83 auf den Random Walk im \mathbb{Z}^d an.

Aus der Stirlingformel folgt

$$n! = \Theta(\sqrt{n}(n/e)^n)$$

und damit für d=1

$$\binom{2n}{n} = \frac{(2n)!}{(n!)^2} = \Theta\left(\frac{\sqrt{2n}(2n)^{2n}}{e^{2n}} \cdot \left(\frac{e^n}{\sqrt{n}n^n}\right)^2\right)$$
$$= \Theta\left(\frac{2^{2n}}{\sqrt{n}}\right).$$

Beispiel (Forts.)

Also

$$H(1) = \sum_{k=0}^{\infty} h_k = \sum_{k=0}^{\infty} {2k \choose k} 2^{-2k} = \sum_{k=0}^{\infty} \Theta(k^{-1/2}) = \infty,$$

da die Summe $\sum_{k=0}^{\infty} 1/k^{\alpha}$ für $\alpha \leq 1$ divergiert. Nach Korollar 83 kehrt das Partikel also mit Wahrscheinlichkeit 1 immer wieder zum Ausgangspunkt zurück.

Beispiel (Forts.)

Für $d \in \mathbb{N}$ gilt allgemein

$$H(1) = \sum_{k=0}^{\infty} h_k = \sum_{k=0}^{\infty} \Theta(k^{-(1/2)d}).$$

Für d=1 und d=2 divergiert diese Summe, während sie für $d\geq 3$ konvergiert. Das Partikel kehrt also im ein- und im zweidimensionalen Raum mit Wahrscheinlichkeit 1 zum Ausgangspunkt zurück, im drei- oder höherdimensionalen Raum jedoch nicht mehr. Im dreidimensionalen Fall gilt

Pr["Partikel kehrt nie zum Ausgangspunkt zurück"]

$$= \Pr[Z = \infty] = 1/H(1) = 1/\sum_{k=0}^{\infty} {\binom{2k}{k}} 2^{-2k})^3$$

 $\approx 0{,}7178\,.$

Beispiel (Forts.)

 $\mathit{WS}(\mbox{,"Keine R\"uckkehr zum Anfang"})$ für den Random Walk in \mathbb{Z}^d

8. Formelsammlung

8.1 Gesetze zum Rechnen mit Ereignissen

Im Folgenden seien A und B, sowie A_1, \ldots, A_n Ereignisse. Die Notation $A \uplus B$ steht für $A \cup B$ und zugleich $A \cap B = \emptyset$ (disjunkte Vereinigung). $A_1 \uplus \ldots \uplus A_n = \Omega$ bedeutet also, dass die Ereignisse A_1, \ldots, A_n eine Partition der Ergebnismenge Ω bilden.

$$\Pr[\emptyset] = 0$$

$$0 \leq \Pr[A] \leq 1$$

$$\Pr[\bar{A}] = 1 - \Pr[A]$$

$$A \subseteq B \implies \Pr[A] \le \Pr[B]$$

$$\begin{vmatrix} \forall i \neq j : A_i \cap A_j = \emptyset \Longrightarrow \\ \Pr\left[\bigcup_{i=1}^n A_i\right] = \sum_{i=1}^n \Pr[A_i] \end{vmatrix}$$

Additionssatz

$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$$
 allgemeine Form: siehe Satz 9

Inklusion/Exklusion,
Siebformel

$$\Pr\left[\bigcup_{i=1}^{n} A_i\right] \le \sum_{i=1}^{n} \Pr[A_i]$$

Boolesche Ungleichung

$$\Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]}$$
 für $\Pr[B] > 0$

Def. bedingte Ws.

$$B \subseteq A_1 \uplus \dots \uplus A_n \Longrightarrow \Pr[B] = \sum_{i=1}^n \Pr[B|A_i] \cdot \Pr[A_i]$$

Satz von der totalen Wahrscheinlichkeit

$$\Pr[B] > 0, \ B \subseteq A_1 \uplus \dots \uplus A_n \Longrightarrow$$

$$\Pr[A_i|B] = \frac{\Pr[B|A_i] \cdot \Pr[A_i]}{\sum_{i=1}^{n} \Pr[B|A_i] \cdot \Pr[A_i]}$$

Satz von Bayes

$$\Pr[A_1 \cap \ldots \cap A_n] = \Pr[A_1] \cdot \Pr[A_2 | A_1] \cdot \ldots \cdot \Pr[A_n | A_1 \cap \ldots \cap A_{n-1}]$$

Multiplikationssatz

$$A \text{ und } B \text{ unabhängig} \iff \Pr[A \cap B] = \Pr[A] \cdot \Pr[B]$$

Definition

Unabhängigkeit

8.2 Erwartungswert und Varianz diskreter Zufallsvariablen

Sei X eine diskrete Zufallsvariable. Für Erwartungswert und Varianz gelten die folgenden Formeln (sofern $\mathbb{E}[X]$ und Var[X] existieren).

$$\begin{split} \mathbb{E}[X] &= \sum_{x \in W_X} x \cdot \Pr[X = x] \\ &= \sum_{\omega \in \Omega} X(\omega) \cdot \Pr[\omega] \\ &\Big(&= \sum_{i=1}^{\infty} \Pr[X \geq i], \quad \text{falls } W_X \subseteq \mathbb{N}_0 \; \Big) \end{split}$$

$$\begin{array}{ll} \mathrm{Var}[X] & = \mathbb{E}[(X - \mathbb{E}[X])^2] \\ & = \sum_{x \in W_X} \Pr[X = x] \cdot (x - \mathbb{E}[X])^2 \end{array} \qquad \text{Varianz}$$

8.3 Gesetze zum Rechnen mit Zufallsvariablen

Seien $a, b, a_1, \ldots, a_n \in \mathbb{R}, f_1, \ldots, f_n : \mathbb{R} \to \mathbb{R}.$

$$X_1,\dots,X_n$$
 unabhängig \iff für alle (a_1,\dots,a_n) :
$$\Pr[X_1=a_1,\dots,X_n=a_n] = \Pr[X_1=a_1]\cdot\dots\cdot\Pr[X_n=a_n]$$

$$X_1,\dots,X_n$$
 unabhängig $\implies f_1(X_1),\dots,f_n(X_n)$ unabhängig

$$\mathbb{E}[a\cdot X+b]=a\cdot \mathbb{E}[X]+b$$

 $X(\omega) \leq Y(\omega)$ für alle $\omega \in \Omega \implies$ $\mathbb{E}[X] \leq \mathbb{E}[Y]$

Monotonie des Erwartungswerts

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X|A_i] \cdot \Pr[A_i]$$

$$Var[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

$$Var[a \cdot X + b] = a^2 \cdot Var[X]$$

$$\begin{split} \mathbb{E}[a_1X_1 + \ldots + a_nX_n] & \text{Linearität des} \\ &= a_1\mathbb{E}[X_1] + \ldots + a_n\mathbb{E}[X_n] & \text{Erwartungswerts} \end{split}$$

$$\begin{array}{ll} X_1,\dots,X_n \text{ unabhängig} \implies & \text{Multiplikativität des} \\ \mathbb{E}[X_1 \cdot \dots \cdot X_n] = \mathbb{E}[X_1] \cdot \dots \cdot \mathbb{E}[X_n] & \text{Erwartungswerts} \end{array}$$

$$X_1,\ldots,X_n$$
 unabhängig \Longrightarrow $\operatorname{Var}[X_1+\ldots+X_n]=\operatorname{Var}[X_1]+\ldots+$ Varianz einer Summe

$$X \ge 0 \implies$$

 $\Pr[X \geq t] \leq \mathbb{E}[X]/t \text{ für } t > 0$

Markov

$$\Pr[|X - \mathbb{E}[X]| \ge t]$$

 \le \text{Var}[X]/t^2 \text{ für } t > 0

Chebyshev

siehe Satz 63

Gesetz der großen Zahlen