Complementary results on Private Conversion Measurement using label-DP

Training with Label Differential Privacy

sensitive/unknown data

Binary Randomized Response

RR_p [Warner'65]

Given \mathbf{y}_i in {0, 1}: $\mathbf{y}_i' = \mathbf{y}_i$ with probability $\mathbf{1} - \mathbf{p}$ Otherwise, \mathbf{y}_i' is a random label in {0, 1}.

RR_p is ϵ -DP for p = 2/(e $^{\epsilon}$ +1).

Training

If y'_i is obtained by applying RR_p independently to y_i , then output model is ϵ -Label-DP.

Handling Multiple Impressions Per Privacy Unit

Example: Consider User x Time privacy unit.

Cap number of impressions per user and time period to K (keeping K random impressions, or the K first impressions). Then, we have multiple options including:

- 1. For each user, set the privacy budget per impression to ε/K .
- 2. For each user i with $K_i \le K$ impressions, set the privacy budget per impression to ε/K_i .

Both options satisfy ε -Label-DP for User x Time privacy unit.

Similar options hold for User x Advertiser x Time and User x Publisher x Time privacy units.

For Impression x Time privacy unit, no capping is needed. RR is applied privacy budget ε .

Criteo Attribution Modeling for Bidding – Evaluation Results

Notes

- For Impression x Time privacy unit and ε
 = 4, relative AUC loss is 0.79%.
- For User x Time privacy unit with ε = 4, smallest relative AUC loss is 8.51%.
- For User x Time privacy unit, smaller loss is achieved by increasing caps as we increase ε.

Complementary insights

- The AUC performance metric is not the most relevant for measuring the performance of bidding models
- Without surrogates, learning on noisy labels comes with poor performance in low privacy regime (e.g. epsilon < 3)
- Leveraging research works on noise-tolerant learning & learning on DP data, we can improve the performances of the learnt model via e.g. debiasing the loss function, optimal transport, the use of "robust" losses, ...

Debiasing the loss function

Learning with Noisy Labels

Nagarajan Natarajan

Inderjit S. Dhillon

Pradeep Ravikumar

Department of Computer Science, University of Texas, Austin. {naga86, inderjit, pradeepr}@cs.utexas.edu

Ambuj Tewari

Department of Statistics, University of Michigan, Ann Arbor. tewaria@umich.edu

Lemma 1. Let $\ell(t,y)$ be any bounded loss function. Then, if we define,

$$\tilde{\ell}(t,y):=\frac{(1-\rho_{-y})\,\ell(t,y)-\rho_y\,\ell(t,-y)}{1-\rho_{+1}-\rho_{-1}}$$
 we have, for any t,y , $\mathbb{E}_{\tilde{y}}\left[\tilde{\ell}(t,\tilde{y})\right]=\ell(t,y)$.

we have, for any
$$t,y$$
, $\mathbb{E}_{ ilde{y}}\left[ilde{\ell}(t, ilde{y})
ight]=\ell(t,y)$.

= Proba (noisy label = 1 | true label = -1)

This surrogate loss might be not convex, even if the initial loss is!

For logistic regression, it is hopefully the case so optimisation is easier!

Empirical Results - Dataset

Criteo Attribution Modeling for Bidding Dataset

https://ailab.criteo.com/criteo-attribution-modeling-bidding-dataset/

- Sample of 30 days of Criteo live traffic data.
- Each example corresponds to a click and contains:
 - Features: campaign ID, 9 contextual features, and the cost paid for the display.
 - Label: a 0/1 field indicating whether there was a conversion in the 30 days after the click and that is last-touch attributed to this click.
 - User ID: can be used to evaluate User x Time privacy unit.
- Number of rows is 5,947,563. Conversion rate (under last-touch attribution) is 6.74%.

Empirical Results

Empirical Results

Next Steps

- Present to PATCG other alternatives to learn efficiently on noisy data (feature + label, or only label)
- Comparison with DP obtained with gradient perturbation (cf. DP-SGD)
- Comparison with DP obtained with WALR and other variants (see Meta's upcoming presentation)