Simulation and Modelling

Spring 2023 CS4056

Muhammad Shahid Ashraf

		←□→ ←₫→ ←毫→ ←	
Shahid Ashraf	CS4056		1/16
Buildi	ng Conceptual Models		
D	ildina Canaantual I	Madala	- 1
Dui	ilding Conceptual	iviodeis	- 1

WHAT IS A CONCEPTUAL MODEL?

- A conceptual model is a representation of a system using specialized
- a mathematical model of a system can be thought of as a conceptual model that is constructed using specialized concepts such as $% \left(1\right) =\left(1\right) \left(1\right)$ constants, variables, and functions and specialized terms such as derivative and integral.
- before a conceptual model can be built, a mental image of the system under study must be developed in the mind of the modeler
- A mental image reflects how the modeler perceives the system and its operation.
- The mental image should include only those aspects of the system that are necessary for the simulation study.

Mental image

• Different mental images can be developed for the same system. They include different levels of details. Complexity increases as more details are added.

Complexity	Level n Mental Image n	
	Level n-1 Mental Image n-1	
		Behaviora Details
	Level 1 Mental Image 1	

N	-+	

Jotes	
lotes	

Notes

ELEMENTS OF A CONCEPTUAL MODEL

Notes

A conceptual model can be constructed using five elements:

- Entity:
 - An entity represents a physical (or logical) object in the system.
 - The server is a static entity because it does not move in the system and its purpose is to provide service only for other entities.
 - A person is a dynamic entity because it moves through the system.
 - A static entity maintains a state that can change during the lifetime of the system.
 - On the other hand, dynamic entities do not maintain any state.

Attribute:

- A dynamic entity typically has attributes which are used for storing data.
- An entity is characterized using attributes, which are local variables defined inside the entity.
- a person can have an attribute for storing the time of his arrival into the system (i.e., arrival time).

ELEMENTS OF A CONCEPTUAL MODEL

al Models Conceptual Model

• State Variable:

- A state variable is used to track a property of a static entity over time.
- for a memory module in a system, its state could be the number of data units it currently stores.
- state of a cashier in the supermarket example. It is either free or busy.
- A state variable is said to be continuous if it takes values that change continuously over time.
- if the value of a state variable is from a discrete set, then it is referred to as a discrete state variable.

ELEMENTS OF A CONCEPTUAL MODEL

Event

- An event represents the occurrence of something interesting inside the
- It is a stimulus that causes the system to change its state.
- In the supermarket example, the arrival of a new customer represents an event which will cause the state variable representing the number of people waiting in line to increase by one.
- The departure of a customer will cause the cashier to become free.
- Events can be used to delimit activities and move active entities
- a packet is moved from a source to a destination using eight events.

ELEMENTS OF A CONCEPTUAL MODEL

- An activity is an action which is performed by the system for a finite (but random) duration of time.
- The initiating event starts the activity.
- The end of the activity is scheduled at the time of occurrence of the terminating event.
- The difference in time between the two events represents the duration of the activity.
- Durations of activities are modeled as random variables.
- . An important activity is the time a customer spends at the checkout. The duration of this activity depends on how many items the customer has.

·	
NI .	
Notes	

Notes	

N	otes			
_				
_				

- Consider the situation depicted in Figure where there is one coffee machine and multiple users. Only one user can use the machine at a time. Thus, the others have to wait
- Mental Image
- conceptual model

SINGLE-SERVER QUEUEING SYSTEM

Element	Details
Entity	Queue, Server, Person
State Variables	Q = Number of Persons in Queue
	$Q \in \{0, 1, 2,\}$
	S = Status of Server
	$S \in \{Free, Busy\}$
Events	Arrival, Start_Service,
	End_Service (or Departure)
Activities	Generation, Waiting,
	Service, Delay

eptual Models SINGLE-SERVER QUEUE NATIONAL UNIVERSITY of Computer & Emerging Sciences

SINGLE-SERVER QUEUEING SYSTEM

Sample paths of DESs have a special shape which can be represented by a piecewise constant function. The time between two such arrivals is random and it is referred to as the Inter-Arrival Time (IAT).

MATIONAL UNIVERSITY of Computer & Emergina Sciences SINGLE-SERVER QUEUEING SYSTEM

Notes	

Notes

Notes

Notes

Simulating a Single-Server Queue

Notes

A small grocery store has one checkout counter. Customers arrive at the checkout counter at random times that range from 1 to 8 minutes apart. We assume that interarrival times are integer-valued with each of the 8 values having equal probability; this is a discrete uniform distribution. The service times vary from 1 to 6 minutes (also integer-valued), with the probabilities shown in Table below. Our objective is to analyze the system by simulating the arrival and service of first 10 customers and to compute a variety of typical measures of performance for queueing models.

Service Times (Minutes)	Probability	Cumulative Probability
1	0.10	0.10
2	0.20	0.30
3	0.30	0.60
4	0.25	0.85
5	0.10	0.95
6	0.05	1.00

eptual Models SINGLE-SERVER QUEUE

Simulating a Single-Server Queue

• The average waiting time for a customer is _

Average waiting time(minutes) = $\frac{\text{total time customers wait in queue (minutes)}}{.}$ total numbers of customers $\bullet\,$ The probability that a customer has to wait in the queue is $_$. computed as follows: Probability (wait) = numbers of customers who wait • The server is idle about ______% of the time, computed as follows: $Probability \ of \ idle = \frac{total \ idle \ time \ of \ server \ (minutes)}{total \ run \ time \ of \ simulation \ (minutes)}$

Therefore, the server is busy about ______% of the time.

The average service time is ______ minutes, computed as follows

Average service time(minutes) = $\frac{\text{total service time (minutes)}}{\text{total number of customers}}$

Comparing average service time with the expected service time by finding the mean of the service-time distribution

Building Conceptual Models SINGLE-SERVER QUEUE

Simulating a Single-Server Queue

 \bullet Compared to the expected time between arrivals by finding the mean of the discrete uniform distribution whose endpoints are a=1 and b=8. The mean is given by

$$E(A) = \frac{a+b}{2} =$$

• The average waiting time of those who wait is _____ minutes, computed as follows:

Average waiting time of those who wait $=\frac{\text{total time customers wait in queue}}{\text{total number of customers who wait}}$

• The average time a customer spends in the system is _ _ minutes, computed in ways.

Average time customer spends in the system $=\frac{\text{total time customers spend in the system}}{\dots}$

Notes

Notes

Notes