§10.7 - Ratio and Root Tests

After completing this section, students should be able to:

- Use the ratio test to determine if a series converges or diverges.
- Use the root test to determine if a series converges or diverges.
- Give an example of a series for which the ratio test and the root test are both inconclusive.

Recall: for a geometric series $\sum ar^n$ |r| < 1 -> converges

Theorem. (*The Ratio Test*) For a series $\sum a_n$:

(a) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$$
, then $\sum_{n=1}^{\infty} a_n$ is __absolutely convergent -> convergent .

(c) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$
, then $\sum_{n=1}^{\infty} a_n$ inconclusive, need a different test.

Example. Apply the ratio test to

$$\sum_{n=1}^{\infty} \frac{n^2 (-10)^n}{n!}$$

```
lim n->infinity |an+1 / an|
lim n->infinity |(n+1)^2 (-10)^n+1 / (n+1)! * n!/ n^2(-10)^n|
clean up/cancel
Canceling powers
Expanding factorials
```

lim n->infinity $|(n+1)^2 (-10)^n+1/(n+1)(n!)$ * $n!/n^2(-10)^n$ | lim n->infinity $|(n+1)(-10)/n^2|$ = lim n->infinity $|(n+1)(-10)/n^2|$ = 0

absolutely convergent convergent

Review. In which of these situations can we conclude that the series $\sum_{n=0}^{\infty} a_n$ converges?

A.
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 0$$
 <1 absolutely convergent, converges

B.
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 0.3$$
 <1 absolutely convergent, converges

C.
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$
 inconclusive

D.
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 17$$
 >1 diverges

E.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$$
 >1 diverges

Review. (The Ratio Test) For a series $\sum a_n$:

(a) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$$
, then $\sum_{n=1}^{\infty} a_n$ is ______.

(b) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$$
 or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then $\sum_{n=1}^{\infty} a_n$ is ______.

(c) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$
 or DNE, then _____

Example. Apply the ratio test to

$$\sum_{n=1}^{\infty} \frac{(1.1)^n}{(2n)!}$$

```
lim n->infinity (1.1)^n+1/(2n+2)! * (2n!)/(1.1)^n
lim n->infinity 1.1^n+1/(2n+2)(2n+1)(2n)! * (2n!)/1.1^n
lim n-> infinity 1.1/(2n+2)(2n+1)
```

Converges

Example. Apply the ratio test to the series

$$\sum_{n=2}^{\infty} \frac{3}{n^2 - n}$$

lim n-> infinity $3/(n+1)^2 - (n+1)$ * $n^2-n/3$ lim n-> infinity $1/n^2 + 2n + 1 - n - 1$ n^2-n lim n-> infinity $n^2-n/n^2 + n$ = 1 inconclusive

limit comparison 1/n^2 converges with p-series since p>1

Extra Example. Apply the ratio test to the series

$$a_1 = 1, a_n = \frac{\sin n}{n} a_{n-1}$$

 $\Sigma \sin n/n$ an-1

absolutely convergent convergent

Theorem. (The Root Test)

(a) If
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$$
 or $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges.

(b) If
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$$
, then $\sum_{n=1}^{\infty} a_n$ absolutely convergent -> convergent.

(c) If
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$$
, then $\sum_{n=1}^{\infty} a_n$ inconclusive

Example. Determine the convergence of

$$\sum_{n=1}^{\infty} \frac{5^n}{n^n}$$

```
 \begin{array}{ll} \Sigma(5/n)^n \\ \lim n- & \text{infinity} & n \ \text{root}(|an|) \\ \lim n- & \text{infinity} & n \ \text{root}(|(5/n)^n|) \\ \lim n- & \text{infinity} & 5/n \\ 0/1 \\ 0 \end{array}
```

Converges

Rearrangements

Definition. A **rearrangement** of a series $\sum a_n$ is a series obtained by rearranging its terms.

Fact. If $\sum a_n$ is absolutely convergent with sum s, then any rearrangement of $\sum a_n$ also has sum s.

But if $\sum a_n$ is any conditionally convergent series, then it can be rearranged to give a different sum.

Example. Find a way to rearrange the Alternating Harmonic Series so that the rearrangement diverges.

 $\Sigma(-1)^n$ / n not absolutely convergent -> abs value: $\Sigma 1/n$ AHS can be rearranged so it diverges