বিভাগ - ক

- ১) 100 °C এ একটি গ্যাসের অণুর rms গতি v. যে তাপমাত্রায় rms গতি √3v হবে তা হল (a) 546 °C (b) 646°C (c) 746°C (d) 846°C.
- ২) m ভর ও q আধানের দুটি কণা 2। দৈর্ঘ্যের একটি হালকা অনমনীয় রডের দুই প্রান্তের সাথে সংযুক্ত। রডটি তার কেন্দ্রের মধ্য দিয়ে যাওয়া একটি লম্ব অক্ষের কাছাকাছি ধ্রুবক কৌণিক গতিতে ঘোরানো হয়। সিস্টেমের চৌম্বকীয় ভ্রামক এবং রডের কেন্দ্রে কৌণিক ভরবেগের অনুপাত হল(a) q/m (b) q/m (c) 2q/m (d) q/2m
- ৩) একটি দুপ্রান্ত স্থির সুতোর তৃতীয় সুরেলা কম্পনের সমীকরণ $y=2\sin(0.6\mathrm{x})\cos(1500\mathrm{nt})$. সুতোর দৈর্ঘ্য (a) 24.6 সেমি (b) 15.7 সেমি (c) 20.6 সেমি (d) 12.5 সেমি
- 8) 10^3 m^2 প্রস্থচ্ছেদের ক্ষেত্রফল বিশিষ্ট একটি স্টিলের রডে 33000 N প্রসার্য বল প্রয়োগ করা হলে দৈর্ঘ্যে কিছু পরিবর্তন হয়। স্টীলের রডকে উত্তপ্ত করে প্রসারিত করতে তাপমাত্রার পরিবর্তন (স্থিতিস্থাপকতা ধ্রুবক = 3×10^{11} N/m² এবং স্টিলের রৈখিক প্রসারণ গুনাঙ্ক 1.1×10^{3} °C 1 (a) 20 °C (b) 15 °C (c) 10 °C (d) 0 °C
- ৫) একটি R রোধের সমবলয়ের দুটি বিন্দু A এবং B. \angle ACB = θ , যেখানে C হল বলয়টির কেন্দ্র | A এবং B এর মধ্যে সমতুল্য রোধ হল | (a) $(R/4\pi^2)(2\pi-\theta)\theta$ (b) $R(1-\theta/2\pi)$ (c) $R\theta/2\pi$ (d) $R(2\pi-\theta)/4\pi$
- ৬) একটি ঘর্ষণহীন পিস্টন-সিলিন্ডার ভিত্তিক ঘেরে 400 kPa চাপে কিছু পরিমাণ গ্যাস থাকে। তারপর একটি আধাস্থির(quasi-static) প্রক্রিয়ায় ধ্রুবক চাপে গ্যাসে তাপ স্থানান্তরিত হয়। পিস্টনটি 10 সেন্টিমিটার উচ্চতার মধ্য দিয়ে ধীরে ধীরে উপরে চলে যায়। যদি পিস্টনের প্রস্থচ্ছেদের ক্ষেত্রফল 0.3 m², তাহলে এই প্রক্রিয়ায় গ্যাস দ্বারা সম্পন্ন কাজটি হল (a) 6 kJ (b) 12 kJ (c) 7.5 kJ (d) 24 kJ
- ৭) প্রদন্ত LCR বর্তনীতে R = 200 Ω , C = 15.0 μ F, L = 230 mH. যদি ϵ = 36.0 sin 120 π t, প্রবাহের প্রশস্ততা I $_{\circ}$ হলে প্রবাহের I হল $_{\circ}$ (a) 109 mA (b) 126 mA (c) 150 mA (d) 164 mA

- ৮) 1600 A/m এর একটি চৌম্বক ক্ষেত্র 0.2 cm² প্রস্থচ্ছেদের লোহার দণ্ডে 2.4 x 10^-5 Wb এর চৌম্বক প্রবাহ উৎপন্ন করে। লোহার দণ্ডের চৌম্বক ভেদ্যতা (a) 298 (b) 596 (c) 1192 (d) 1788
- ৯) একটি অনুভূমিক পাইপ লাইন সুবিন্যস্ত প্রবাহে জল বহন করে। পাইপের সাথে একটি বিন্দুতে যেখানে প্রস্থচ্ছেদের ক্ষেত্রফল $10~{\rm cm^2}$, জলের বেগ হল $1~{\rm m/s}$ এবং চাপ হল $2000~{\rm Pa}$. অন্য একটি বিন্দুতে জলের চাপ যেখানে প্রস্থচ্ছেদের ক্ষেত্রফল $5~{\rm cm^2}$, হল (এর ঘনত্ব জল $= 10 \cdot {\rm kg/m^3}$) (a) $250~{\rm Pa}$ (b) $500~{\rm Pa}$ (c) $1000~{\rm Pa}$ (d) $2000~{\rm Pa}$
- ১০) প্রদত্ত বর্তনীটির a এবং b বিন্দুর মধ্যে সমতুল্য রোধ (a) 6r (b) 4r (c) 2r (d) r
- ১১) m ভরের একটি বুলেট v গতিতে স্থিতিশীল M ভরের একটি ব্লকে আঘাত করে এবং এটিতে একত্রিত হয়ে যায়। সম্মিলিত সিস্টেমটি বাধাহীন এবং সিস্টেমে অন্য কোন বল প্রয়োগ হয়নি। প্রক্রিয়ায় উৎপন্ন তাপ হবে (a) 0 (b) mv²/2 (c) Mmv²/2(M-m) (d) Mmv²/2(M+m)

- ১২) একটি m n-p-n ট্রানজিস্টরে, $m 10^{10}$ টি ইলেকট্রন $m 10_{\circ}$ সেকেন্ডে নিঃসারকে প্রবেশ করে। m 2% ইলেকট্রন বেসে হারিয়ে গেলে প্রবাহ স্থানান্তর অনুপাত হল m (a)~0.88~(b)~0.78~(c)~0.98~(d)~0.68
- ১৩) একটি গোলক অপিচ্ছিলভাবে একটি সমতল ঢালে গড়িয়ে পড়ে। এর মোট শক্তির কত অংশ ঘূর্ণনশীল? (a) 2/7 (b) 3/7 (c) 4/7 (d) 5/7
- ১৪) চিত্রে দেখানো লজিক বর্তনী আউটপুট Y সবচেয়ে ভালোভাবে উপস্থাপন করা হয়েছে (a) A+ B.C (b) A + B.C (c) A+B.C (d) A+ B.C

- ১৫) একটি প্রিজমকে (প্রতিসরাঙ্ক 1.5) জলে (প্রতিসরাঙ্ক 1.33) নিমজ্জিত করা হল। প্রিজমের প্রতিসরণ কোণ হল 60°। জলের সর্বনিম্ন বিচ্যুতি কোণ কত? (প্রদন্ত sin 34° = 0.56) (a) 4° (b) 8° (c) 12° (d) 16°
- ১৬) ডিউটরনের বন্ধন শক্তি হল 2.2 MeV এবং নHe এর বন্ধন শক্তি 28 MeV. যদি দুটি ডিউটরন একত্রিত হয়ে এক নHe গঠন করে, তাহলে নির্গত শক্তি হল (a) 30.2 MeV (b) 25.8 MeV (c) 23.6 MeV (d) 19.2 MeV
- ১৭) প্রাথমিকভাবে স্থিতিশীল M ভর এবং q আধানের একটি কণা একটি সুষম বৈদ্যুতিক ক্ষেত্র E দ্বারা ত্বরান্বিত হয়ে D দূরত্ব যায় এবং তারপরে সমচিহ্নের একটি নির্দিষ্ট স্থির আধান Q-এর কাছে আসে। তাহলে আধান q এর সর্বনিম্ন দূরত্ব হবে (a) $qQ/4\pi\epsilon D$ (b) $qQ/4\pi\epsilon D$ (c) $qQ/4\pi\epsilon D$ (d) $qQ/4\pi\epsilon D$
- ১৮) নিচের কোন বিবৃতিটি সত্য? (I) সমস্ত তেজস্ক্রিয় উপাদান সময়ের সাথে সূচক ক্ষয় হয়। (II) একটি তেজস্ক্রিয় মৌলের অর্ধেক জীবনকাল হল তেজস্ক্রিয় পরমাণুর অর্ধেক আলাদা হওয়ার জন্য প্রয়োজনীয় সময়। (III) তেজস্ক্রিয় ডেটিং দ্বারা পৃথিবীর বয়স নির্ধারণ করা যেতে পারে। (IV) একটি তেজস্ক্রিয় মৌলের অর্ধ জীবনকাল পঞ্চাশ হল তার গড় জীবনকালের শতাংশ প্রদন্ত কোডগুলি ব্যবহার করে সঠিক উত্তর নির্বাচন করুন। (a) I এবং II (b) I, III এবং IV (c) I, II এবং III (d) II এবং III
- ১৯) পৃষ্ঠটান এবং সাম্রতা সহগের মাত্রাতে যে মৌলিক এককটির সূচক একই তা হল (a) ভর (b) দৈর্ঘ্য (c) সময় (d) কোনটিই নয়।
- ২০) সংলগ্ন চিত্ৰে দেখানো গঠনে, 1 কেজি ভরের ত্বরণ হল (a) g/4 নিম্নমুখী (b) g/2 নিম্নমুখী (c) g/2 ঊর্ধ্বমখী (d) g/4 ঊর্ধ্বমখী
- ২১) একটি সমবর্ত কার্ণট যন্ত্র ১/৬ অংশ তাপ কার্যে রূপান্তর করে। যখন তাপ সিঙ্কের তাপমাত্রা কমে হয় 62k, কার্ণট যন্ত্রের দক্ষতা হয় 1/3. তাপ উৎস এবং তাপ সিঙ্কের তাপমাত্রা যথাক্রমে (a) 372K, 310K (b) 472K, 410K (c) 310K, 372K (d) 744K, 682K

- ২২) একটি অক্ষের মধ্য দিয়ে যাওয়া এবং এর সমতলে লম্ব একটি সুসম চাকতির জড়তা ভ্রামক 1 kg-m². এটি 100 rad/s বেগে ঘূর্ণায়মান। আরেকটি সুসম চাকতি এর ওপর সমকেন্দ্রিকভাবে স্থাপন করা হল। এখন এই দুটি চাকতি একসাথে একই অক্ষে ঘুরতে থাকে। এতে গতিশক্তির ক্ষয় (kJ) হয় (a) 2.5 (b) 3.0 (c) 3.5 (d) 4.0
- ২৩) একটি q আধান বহনকারী ও m ভরের একটি দলোক এবং তার সুত একটি সুসম অনুভূমিক বৈদ্যুতিক ক্ষেত্র E তে উল্লম্বের সাথে theta কোণ তৈরি করে স্থির। সুতটির টান হল (a) mg/sin θ এবং qE/cos θ (b) mg/cos θ এবং qE/sin θ (c) qE/mg (d) mg/qE
- ২৪) একটি অসমান অনুভূমিক তলের উপর স্থিতিশীল m ভরের একটি কাঠের খন্ডকে F বল দ্বারা টানা হয়। যদি ব্লক এবং টেবিলের মধ্যে ঘর্ষণ গুনাঙ্ক μ হয় তবে এর ত্বরণ হবে (a) (μF cos θ)/m (b) (μF sin θ)/m (c) (F/m)(cos θ + μ sin θ) μ g (d) (F/m)(cos θ μ sin θ)

- ২৫) 1 কেজি এবং 3 কেজি ভরের দুটি বস্তুর স্থানাঙ্ক ভেক্টর যথাক্রমে (i+2j+k) এবং (-3i-2j+k). সংগঠনটির ভোটকেন্দ্রের স্থানাঙ্ক ভেক্টর (a) (-i+j+k) (b) (-2i+2k) (c) (-2i-j+k) (d) (2i-j-2k)
- ২৬) পাশের চিত্রে সর্বোচ্চ তাপ উঠপন্নকারী রোধটি হল (a) 6Ω (b) 2Ω (c) 5Ω (d) 4Ω
- ২৭) M টোম্বক দ্রামক যুক্ত দুটি দশুচুম্বককে একটি d বাহুর বর্গক্ষেত্রের বিপরীত কোন এমনভাবে রাখা হল যাতে তাদের অক্ষের কেন্দ্রে পরস্পরকে ছেদ করে। যদি সমমেরুদুটি একই দিকে থাকে, তাহলে অপর কোনগুলিতে চৌম্বকীয় আবেশের মান (a) M/4d (a) M/2d (a) M/8d (a) M/8d (a) M/8d

২৮) একটি আদর্শ গ্যাসের 4.0 মোল $T=400~{\rm K}$ তাপমাত্রায় ভলিউম V_1 থেকে ভলিউম $V_2=2.0V_1$ পর্যন্ত একটি সমবর্ত সমস্ক প্রসারণ করে। গ্যাসের এনট্রপি পরিবর্তন ($\ln 2=0.693$) (a) $23.0{\rm J/K}$ (b) $42.0~{\rm J/K}$ (c) $51.6~{\rm J/K}$ (d) $56.9~{\rm J/K}$

২৯) চাকতি ও বলয়ের সমতলে লম্ব স্পর্শক অক্ষকে কেন্দ্র করে একই ব্যাসার্ধের একটি বৃত্তাকার চাকতি এবং একটি বৃত্তাকার বলয়ের চক্রগতির ব্যাসার্ধের অনুপাত হল (a) 1:1 (b) $\sqrt{5}:\sqrt{6}$ (c) 2:3 (d) $\sqrt{3}:2$

৩০) সমক্ষেত্রফলের দুটি পাতের মধ্যে K ডাইইলেক্ট্রিক ধ্রুবক বিশিষ্ট একটি ফলকের বেধ 3d/4, যেখানে d হল দুটি পাতের অন্তর। ডাইইলেক্ট্রিক সমেত ও ডাইইলেক্ট্রিক ছাড়া ধরকত্বের অনুপাত (a) 3K/(K+4) (b) 3K/4 (c) 4K/(K+3) (d) 4K/3

বিভাগ - খ

৩১) L দৈর্ঘ্য ও M ভরের দুটি রডকে জুড়ে T আকৃতি তৈরী করা হল এবং সেটিকে নিচের চিত্র অনুযায়ী একটি অক্ষ থেকে ঝোলানো হল। সঠিক উত্তরটি হল - (a) ঘূর্ণন অক্ষ সাপেক্ষে গঠনটির জড়তা ভ্রামক 1712ML² (b) ঘূর্ণন অক্ষ সাপেক্ষে গঠনটির জড়তা ভ্রামক 1312ML² (c) গঠনটির ক্ষুদ্র কৌণিক দোলন সময়কাল 217L18g (d) গঠনটির ক্ষুদ্র কৌণিক দোলন সময়কাল 218g17L

৩২) একটি প্রতিফলিত পৃষ্ঠের আকার y = 2Lsin(Lx), যেখানে 0xL. পৃষ্ঠ দ্বারা প্রতিফলনের পর অনুভূমিক রশ্মিটি উল্লম্ব হয়েযায়। আপতন বিন্দুর স্থানাঙ্ক (a) L 4,3L (b) L 3,3L (c) 3L 4,2L (d) 2L 3,3L

৩৩) ধনাত্মক আধানযুক্ত একটি কণা q একটি R ব্যাসার্ধের নিরপেক্ষ ভূমিস্থ ধাতব গোলকের কাছে v গতিতে আসে। সঠিক উত্তরটি হল - (a) কিছু প্রবাহ তার থেকে ভূমিতে প্রবাহিত হবে (b) কিছু প্রবাহ তার থেকে ভূমির বাইরে প্রবাহিত হবে (c) প্রবাহের মান সময়ের সাথে বৃদ্ধি পাবে (d) প্রবাহের মান সময়ের সাথে হ্রাস পাবে

৩৪) চিত্রে দেখানো গঠনটিকে প্রথমে শুন্যে এবং পরে জলে চালানো হয়। সঠিক উত্তরটি হবে
- (a) ব্লকটিতে ত্বরণ শুন্যে অধিক (b) ব্লকটিতে ত্বরণ দুই ক্ষেত্রেই সমান (c) সুতোটিতে টান শুন্যে অধিক (d) সুতোটিতে টান দুই ক্ষেত্রেই সমান

৩৫) A ও B স্প্রিং এর বল ধ্রুবক যথাক্রমে k_a এবং k_a যেখানে $k_a > k_a$. যদি A ও B এর ওপর কৃতকার্য যথাক্রমে W_a এবং W_a হয় তাহলে সঠিক উত্তরটি হবে - (a) যদি দুটিকে সমপরিমাণ সংকুচিত করা হয় তবে $W_a > W_a$ (b) যদি দুটিকে সমপরিমাণ সংকুচিত করা হয় তবে $W_a < W_a$ (c) যদি দুটিকে সমপরিমাণ সংকুচিত করা হয় তবে $W_a = W_a$ (d) যদি দুটিকে সমবল দ্বারা সংকুচিত করা হয় তবে $W_a > W_a$

বিভাগ - গ

৩৬) F_1 , F_2 , F_3 বল প্রয়োগের কারণে একটি কণা একটি 6 m ব্যাসার্ধের বৃত্তাকার পথে P_1 বিন্দু থেকে P_2 বিন্দুতে অবস্থান পরিবর্তন করে। F_3 এর অভিমুখ সর্বদা P_2 এর দিকে। F_3 এর ক্রিয়া পথের স্পর্শক বরাবর এবং F_2 সর্বদা অনুভূমিকভাবে ক্রিয়াশীল। যদি $|F_1| = 20 \text{ N}$, $|F_2| = 30 \text{ N}$, $|F_3| = 15 \text{ N}$ হয় তাহলে সঠিক উত্তরটি নির্বাচন করো - (a) $|F_3|$ দ্বারা কার্য 1202 $|F_2|$ দ্বারা কার্য 45 $|F_3|$ দ্বারা কার্য 45 $|F_3|$

৩৭) দুটি সমভরের ব্লক একটি সুতো দ্বারা যুক্ত। সুতোটি প্রাথমিকভাবে শিথিল। একটি ব্লককে u গতিতে

মেঝে বরাবর অভিক্ষিপ্ত করা হল। মেঝেটি মসৃন এবং সত্যি আদর্শ। সঠিক উত্তরটি হবে - (a) ভরকেন্দ্রের প্রাথমিক গতি v 2 (b) ভরকেন্দ্রের গতি সুতোয় টান বাড়ার সাথে কমবে (c) টানের প্রবণতা ব্লক। এর ভরবেগ হ্রাস করে (d) টানের প্রবণতা ব্লক॥ এর ভরবেগ বৃদ্ধি করে ৩৮) প্রদত্ত বর্তনীতে, V_a - V_B = 10 V এবং বিভিন্ন শাখায় প্রবাহ উল্লেখিত। সঠিক উত্তরটি হল - (a) CD শাখায় প্রবাহ 5 A (b) E_a = 36 V (c) E_B = 54 V (d) V = 9

৩৯) J তীব্রতা এবং v কম্পাঙ্কের আলোর বিকিরণে একটি ধাতব পাত থেকে T গতিশক্তি নিয়ে ইলেক্ট্রন নির্গত হলে সঠিক উত্তরটি (a) TxJ (b) T, v এর সাথে রৈখিকভাবে বৃদ্ধি পায় (c) T x বিকিরণের সময় (d) নির্গত ইলেক্ট্রন সংখ্যা x J

৪০) একটি শব্দের তীব্রতা একটি পর্যবেক্ষকের কাছে পর্যায়ক্রমিক মনে হতে নিচের কোন কারণটি দায়ী (a) উৎসের তীব্রতা পর্যায়ক্রমিক হলে (b) উৎসটিকে পর্যবেক্ষকের দিকে চালিত হতে হবে (c) পর্যবেক্ষককে উৎস থেকে দূরে যেতে হবে (d) উৎসটিকে দুটি নিকটবর্তী কম্পাঙ্কের শব্দ তৈরি করতে হবে