Monday, April 1: Gauss's Lemma and Practice

Learning Objectives. By the end of class, students will be able to:

- Find the Legendre symbol using Gauss's Lemma
- Find the Legendre symbol using several different methods.

Reading None

Statement of Guass's Lemma (20 minutes)

Lemma 1 (Gauss's Lemma). Let p be an odd prime number and like $a \in \mathbb{Z}$ with $p \nmid a$. Let n be the number of least positive residues of the integers $a, 2a, 3a, \ldots, \frac{p-1}{a}$ modulo p that are greater than $\frac{p}{2}$. Then

$$\left(\frac{a}{p}\right) = (-1)^n.$$

Example 1. Find $\left(\frac{6}{11}\right)$

(a) Using Gauss's Lemma

Solution: Note that $\frac{11-1}{2} = 5$.

First, we list 6, 2(6), 3(6), 4(6), 5(6) and find the least nonnegative residues modulo 11:

$$6,\ 2(6)\equiv 1\pmod{11},\ 3(6)\equiv 7\pmod{11},\ 4(6)\equiv 2\pmod{11},\ 5(6)\equiv 8\pmod{11}.$$

Now we count n=3 of the least nonnegative residues modulo 11 are greater than $\frac{11}{2}=5.5$

Thus,
$$\left(\frac{6}{11}\right) = (-1)^3 = -1$$
.

(b) Factoring and using quadratic reciprocity

Solution: Using Proposition 4.5 and the fact that $2 \equiv -9 \pmod{11}$,

$$\left(\frac{6}{11}\right) = \left(\frac{2}{11}\right)\left(\frac{3}{11}\right) = \left(\frac{-9}{11}\right)\left(\frac{3}{11}\right) = \left(\frac{-1}{11}\right)\left(\frac{9}{11}\right)\left(\frac{3}{11}\right) = \left(\frac{-1}{11}\right)(1)\left(\frac{3}{11}\right)$$

Since $11 \equiv 3 \pmod{4}$, $\left(\frac{-1}{11}\right) = -1$ by Theorem 4.6 and $\left(\frac{3}{11}\right) = -\left(\frac{11}{3}\right)$. Thus,

$$\left(\frac{6}{11}\right) = \left(\frac{-1}{11}\right) \left(\frac{3}{11}\right) = (-1)(-1) \left(\frac{11}{3}\right) = \left(\frac{-1}{3}\right) = -1.$$

Example 2. Find $\left(\frac{-11}{7}\right)$

(a) Using Gauss's Lemma

Solution: Since $\frac{7-1}{2} = 3$, we need to find the least nonnegative residues of -11, 2(-11), 3(-11) modulo 7. These are

$$-11 \equiv 3 \pmod{7}, \ 2(-11) \equiv 6 \pmod{7}, \ 3(-11) \equiv 2 \pmod{7}.$$

Then n = 1 is greater than $\frac{7}{2} = 3.5$ and $\left(\frac{-11}{7}\right) = (-1)^1 = -1$.

(b) By reducing modulo 7 then using Gauss's Lemma

Solution: By Theorem 4.5(b) $\left(\frac{-11}{7}\right) = \left(\frac{3}{11}\right)$. Since $\frac{7-1}{2} = 3$, we need to find the least nonnegative residues of 3, 2(3), 3(3) modulo 7. These are

$$3 \pmod{7}, 6 \pmod{7}, 3(3) \equiv 2 \pmod{7}.$$

Then n = 1 is greater than $\frac{7}{2} = 3.5$ and $\left(\frac{-11}{7}\right) = (-1)^1 = -1$.

(c) By reducing modulo 7 and using quadratic reciprocity

Solution: By Theorem 4.5(b)
$$\left(\frac{-11}{7}\right) = \left(\frac{3}{11}\right)$$
. Since $11 \equiv 3 \equiv 3 \pmod{4}$, $\left(\frac{3}{11}\right) = -\left(\frac{11}{3}\right)$ By Theorem 4.5(b) $-\left(\frac{11}{3}\right) = -\left(\frac{-1}{3}\right) = 1$ using Theorem 4.6.

Practice Problems (30 minutes)

We can combine these results to find the Legendre symbol many different ways.

In-class Problem 1 Use the following methods to find $\left(\frac{-6}{11}\right)$:

(a) Euler's Criterion, from March 22:

Solution:
$$\left(\frac{-6}{11}\right) \equiv (-6)^{(11-1)/2} \equiv (-6)^5 \pmod{11}$$
 By Euler's Criterion. Then $(-6)^5 \equiv ((6)^2)^2(-6) \equiv 3^2(-6) \equiv -54 \equiv 1 \pmod{11}$

- (b) Factor into $\left(\frac{-6}{11}\right) = \left(\frac{-1}{11}\right) \left(\frac{2}{11}\right) \left(\frac{3}{11}\right) = \left(\boxed{-1}\right) \left(\frac{2}{11}\right) \left(\frac{3}{11}\right)$. From here, we will explore the various was to find $\left(\frac{2}{11}\right)$ and $\left(\frac{3}{11}\right)$.
 - (i) Find $\left(\frac{2}{11}\right)$
 - Using Euler's Criterion.

Solution: From Euler's Criterion,

$$\left(\frac{2}{11}\right) \equiv 2^{(11-1)/2} \equiv 32 \equiv -1 \pmod{11}.$$

• Using Gauss's Lemma.

Solution: First, find the least nonnegative residues of 2, 2(2), 3(2), 4(2), 5(2) modulo 11. These are

and $n = \boxed{3}$ are greater than $\frac{11}{2}$. Thus, by Gauss's Lemma,

$$\left(\frac{2}{11}\right) = (-1)^{\boxed{3}} = \boxed{3}.$$

- (ii) Find $\left(\frac{3}{11}\right)$
 - Using Euler's Criterion.

Solution: From Euler's Criterion,

$$\left(\frac{3}{11}\right) \equiv 3^{(11-1)/2} \equiv (-2)^2(3) \equiv 1 \pmod{11}.$$

• Using quadratic reciprocity

Solution: Since
$$11 \equiv 3 \pmod{4}$$
, $\left(\frac{3}{11}\right) = -\left(\frac{11}{3}\right) = -\left(\frac{2}{3}\right) = 1$.

• Using Gauss's Lemma.

Solution: First, find the least nonnegative residues of 3, 2(3), 3(3), 4(3), 5(3) modulo 11. These are

and $n = \boxed{2}$ are greater than $\frac{11}{2}$. Thus, by Gauss's Lemma,

$$\left(\frac{3}{11}\right) = (-1)^{\boxed{2}} = \boxed{2}.$$

Thus,
$$\left(\frac{-6}{11}\right) =$$

- (c) Use that $-6 \equiv 5 \pmod{11}$, so $\left(\frac{-6}{11}\right) = \left(\frac{5}{11}\right)$. Then find $\left(\frac{5}{11}\right)$ using Euler's Criterion.
 - (i) Using Euler's Criterion.

Solution: From Euler's Criterion,

$$\left(\frac{5}{11}\right) \equiv 5^{(11-1)/2} \equiv (3)^2(5) \equiv 1 \pmod{11}.$$

(ii) Using quadratic reciprocity

Solution: Since
$$5 \equiv 1 \pmod{4}$$
, $\left(\frac{5}{11}\right) = \left(\frac{11}{5}\right) = \left(\frac{1}{5}\right) = 1$.

(iii) Using Gauss's Lemma.

Solution: First, find the least nonnegative residues of 5, 2(5), 3(5), 4(5), 5(5) modulo 11. These are

and $n = \boxed{2}$ are greater than $\frac{11}{2}$. Thus, by Gauss's Lemma,

$$\left(\frac{5}{11}\right) = (-1)^{\boxed{2}} = \boxed{2}.$$

In-class Problem 2 Now we will examine the Legendre symbol of 2 using Gauss's Lemma. First, note that $2, 2(2), 3(2), \ldots, 2(\frac{p-1}{2})$ are already least nonnegative residues modulo p. It will be slightly easier to count how many are less than $\frac{p}{2}$, then subtract from the total number, $\frac{p-1}{2}$.

Let $k \in \mathbb{Z}$ with $1 \le k \le \frac{p-1}{2}$. Then $2k < \frac{p}{2}$ if and only if $k < \left \lceil \frac{p}{4} \right \rceil$. Thus, $\frac{p-1}{2} - \lfloor \left \lceil \frac{p}{4} \right \rfloor$ of $2, 2(2), 3(2), \ldots, 2(\frac{p-1}{2})$ are greater than $\frac{p}{2}$. (Hint: The two blanks should be the same, and also go in the blanks in the table headers)

Now complete this table

p	$\lfloor \left\lceil rac{p}{4} ight floor$	$\frac{p-1}{2} - \lfloor \frac{p}{4} \rfloor$	$2, 2(2), 3(2), \dots, 2(\frac{p-1}{2})$	$\left(\frac{2}{p}\right)$
3	0	1	Less than $\frac{3}{2}$: N/A Greater than $\frac{3}{2}$: 2	$(-1)^1 = -1$
5	1	1	Less than $\frac{5}{2}$: $\boxed{2}$ Greater than $\frac{5}{2}$: $\boxed{4}$	$(-1)^1 = -1$
7	1	2	Less than $\frac{7}{2}$: $\boxed{2}$ Greater than $\frac{7}{2}$: $\boxed{4,6}$	$\boxed{(-1)^2 = 1}$
11	2	3	Less than $\frac{11}{2}$: $\boxed{2,4}$ Greater than $\frac{11}{2}$: $\boxed{6,8,10}$	$(-1)^3 = -1$
13	3	3	Less than $\frac{13}{2}$: $\boxed{2,4,6}$ Greater than $\frac{13}{2}$: $\boxed{8,10,12}$	$(-1)^3 = -1$
17	4	4	Less than $\frac{17}{2}$: $2, 4, 6, 8$ Greater than $\frac{17}{2}$: $10, 12, 14, 16$	$\boxed{(-1)^4 = 1}$
19	4	5	Less than $\frac{19}{2}$: $2,4,6,8$ Greater than $\frac{17}{2}$: $10,12,14,16,18$	$\boxed{(-1)^5 = -1}$
23	5	6	Less than $\frac{17}{2}$: $2,4,6,8,10$ Greater than $\frac{17}{2}$: $12,14,16,18,20,22$	$\boxed{(-1)^6 = 1}$

Wednesday, April 3: Proving Gauss's Lemma and the Quadratic Residue of $2\,$