
Zadanie 1. Rzucamy 3 kości do gry (uczciwe). Prawdopodobieństwo zdarzenia iż otrzymamy dwie różne liczby oczek (jedna z nich wystąpi na jednej z kości, druga na dwóch pozostałych kościach) wynosi:

- (A) $\frac{12}{36}$
- (B) $\frac{15}{36}$
- (C) $\frac{16}{36}$
- (D) $\frac{18}{36}$
- (E) $\frac{24}{36}$

Zadanie 2. Mamy 5 urn, a w każdej z nich po 4 kule. W pierwszej i drugiej urnie skład kul jest taki sam: 1 czarna i 3 białe. W trzeciej urnie są 2 czarne i 2 białe kule, w czwartej urnie 3 czarne i 1 biała, a w piątej urnie 4 czarne. Wykonujemy 3-etapowe doświadczenie:

- losujemy urnę (p-stwo wylosowania każdej z pięciu urn jest takie samo)
- z wylosowanej urny losujemy jedną kulę i odkładamy ją na bok
- z tej samej urny losujemy następną kulę

Prawdopodobieństwo wylosowania czarnej kuli w trzecim etapie pod warunkiem, iż w drugim etapie wylosujemy kulę czarną wynosi:

- (A) $\frac{11}{38}$
- (B) $\frac{1}{3}$
- (C) $\frac{2}{5}$
- (D) $\frac{10}{19}$
- (E) $\frac{20}{33}$

Zadanie 3. Wiadomo, iż dla każdej zmiennej losowej *X* posiadającej skończone momenty do czwartego rzędu włącznie zachodzi nierówność:

$$E[(X - EX)^4] \ge \{E[(X - EX)^2]\}^2$$

Lewa strona tej nierówności równa jest prawej:

- (A) wtedy i tylko wtedy, gdy X ma rozkład zdegenerowany do jednego punktu
- (B) wtedy i tylko wtedy, gdy *X* ma rozkład dwupunktowy z prawdopodobieństwem w każdym z punktów równym 0.5
- (C) wtedy i tylko wtedy, gdy *X* ma rozkład dwupunktowy
- (D) wtedy i tylko wtedy, gdy X ma rozkład taki jak w odp. (B) lub jest sumą dwóch niezależnych zmiennych losowych o rozkładach takich jak w (B)
- (E) wtedy i tylko wtedy, gdy X ma rozkład taki jak w odp. (C) lub jest sumą dwóch niezależnych zmiennych losowych o identycznych rozkładach takich jak w (C)

Zadanie 4. Zmienna losowa N ma rozkład dany wzorem:

Pr(N = k) =
$$\begin{cases} p_0 & dla & k = 0\\ \frac{1 - p_0}{e^{\lambda} - 1} \cdot \frac{\lambda^k}{k!} & dla & k = 1, 2, 3, ... \end{cases}$$

gdzie parametry rozkładu $p_0 \in (0,1)$ oraz $\lambda > 0$. Wartość oczekiwana tej zmiennej wynosi:

(A)
$$\lambda \cdot (1-p_0) \cdot \frac{e^{\lambda}}{e^{\lambda}-1}$$

(B)
$$\lambda \cdot (1-p_0)$$

(C)
$$\lambda \cdot \frac{1 - p_0 e^{\lambda}}{e^{\lambda} - 1}$$

(D)
$$\frac{2\lambda - p_0}{e^{\lambda} - 1}$$

(E)
$$\frac{2\lambda - p_0}{1 - e^{-\lambda}}$$

Zadanie 5. $(X_1, X_2, \ldots, X_{20})$ jest prostą próbą losową z rozkładu normalnego o parametrach (μ, σ^2) równych $(10, 0.1^2)$. Jeśli wiadomo, że $\Pr(\max\{X_1, X_2, \ldots, X_{20}\} \le a) = 0.99$, to liczba a wynosi:

- (A) 14.653
- (B) 10.329
- (C) 13.291
- (D) 16.581
- (E) 10.233

Zadanie 6. Niech X_1 i X_2 będą niezależnymi zmiennymi losowymi o rozkładzie jednostajnym na przedziale [0,1]. Rozważmy zmienną losową równą bezwzględnej wartości różnicy pierwotnych zmiennych X_1 i X_2 . Wartość oczekiwana μ oraz wariancja σ^2

zmiennej $|X_1 - X_2|$ wynoszą:

(A)
$$\mu = \frac{1}{3}$$
 $\sigma^2 = \frac{1}{18}$

(B)
$$\mu = \frac{1}{2}$$
 $\sigma^2 = \frac{1}{12}$

(C)
$$\mu = \frac{1}{2}$$
 $\sigma^2 = \frac{1}{24}$

(D)
$$\mu = \frac{1}{3}$$
 $\sigma^2 = \frac{1}{36}$

(E)
$$\mu = \frac{1}{2}$$
 $\sigma^2 = \frac{1}{6}$

Zadanie 7. W pewnej populacji p-stwo tego, że osobnik przeżyje 1 rok jest równe $(1-\theta)$. Jeżeli osobnik przeżył 1 rok to (warunkowe) p-stwo tego, że przeżyje następny rok jest też równe $(1-\theta)$. W próbce losowej liczącej n osobników z tej populacji zanotowano:

- n_0 przypadków, kiedy osobnik nie przeżył 1 roku
- n_1 przypadków, kiedy osobnik przeżył 1 rok, ale nie przeżył 2-go roku
- n_2 przypadków, kiedy osobnik przeżył 2 lata

Estymator największej wiarogodności $\hat{\theta}$ parametru θ wyraża się wzorem:

(A)
$$\frac{n-n_0}{n}$$

(B)
$$\frac{n-n_0}{n} + \frac{n_2}{n-n_0}$$

(C)
$$\frac{n_0 + n_1}{n + n_1 + n_2}$$

(D)
$$\frac{1}{2} \cdot \left(\frac{n - n_0}{n} + \frac{n_2}{n - n_0} \right)$$

(E)
$$\frac{n_2}{n-n_0}$$

Zadanie 8. Niech (X_1, X_2, \ldots, X_n) będzie prostą próbą losową z rozkładu normalnego o nieznanych parametrach (μ, σ^2) , i niech n > 1 oraz $\sigma^2 > 0$. Przyjmijmy oznaczenia:

$$\bullet \quad \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

•
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

•
$$t(\mu_0) = \frac{\overline{X} - \mu_0}{\sqrt{S^2}}$$
 dla pewnej ustalonej liczby μ_0

• t_{α} to dla zadanego poziomu istotności $\alpha \in (0, 1)$ taka liczba, że $\Pr(|T_{n-1}| < t_{\alpha}) = \alpha$, gdzie T_{n-1} to zmienna losowa o rozkładzie *t*-Studenta z (*n*-1) stopniami swobody

Rozważmy estymator $\tilde{\mu}$ parametru μ postaci:

$$\widetilde{\mu} = \begin{cases} \mu_{\scriptscriptstyle 0} & \text{je\'sli} & \left| t \left(\mu_{\scriptscriptstyle 0} \right) \right| < t_{\alpha} \\ \overline{X} & \text{w przeciwnym przypadku} \end{cases}.$$

obciążenie tego estymatora:

$$E(\widetilde{\mu}) - \mu$$

jest dodatnie wtedy i tylko wtedy, gdy:

(A)
$$\mu < \mu_0 \text{ oraz } |t(\mu_0)| \ge t_\alpha$$

(B)
$$\mu > \mu_0 \text{ oraz } |t(\mu_0)| \ge t_\alpha$$

(C)
$$\mu < \mu_0 \text{ oraz } t(\mu_0) \ge t_\alpha$$

(D)
$$\mu > \mu_0$$

(E)
$$\mu < \mu_0$$

Zadanie 9. Niech *X* będzie pojedynczą obserwacją z przesuniętego rozkładu wykładniczego o gęstości:

$$f_{\theta}(x) = \begin{cases} e^{-(x-\theta)} & dla & x \ge \theta \\ 0 & dla & x < \theta \end{cases}$$

gdzie $\theta \ge 0$ jest nieznanym parametrem.

Rozważamy jednostajnie najmocniejszy test hipotezy:

 H_0 : $\theta=0$ przeciwko alternatywie: H_1 : $\theta>0$, na poziomie istotności $\alpha=0.05$. Zbiór wszystkich tych wartości θ , dla których moc testu wynosi co najmniej 0.90, jest postaci:

(A)
$$\left[0, \ln 20 - \ln 10 + \ln 9\right]$$

(B)
$$\left[\ln 20 - \ln 10, \infty\right)$$

(C)
$$\begin{bmatrix} 0, & \ln 20 \end{bmatrix}$$

(D)
$$\left[\ln 20 - \ln 10 + \ln 9, \quad \infty \right)$$

(E)
$$\left[\ln 20 + \ln 10 - \ln 9, \quad \infty \right)$$

Zadanie 10. Mamy próbę prostą $((X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n))$ z rozkładu normalnego dwuwymiarowego o nieznanych parametrach:

$$EX_i = EY_i = \mu$$
, $VarX_i = VarY_i = \sigma^2$, $Cov(X_i, Y_i) = \sigma^2 \cdot \rho$.

Niech $Z_i = X_i + Y_i$ oraz $R_i = X_i + Y_i$,

$$S_Z^2 = \frac{1}{n-1} \sum_{i=1}^n (Z_i - \overline{Z})^2$$
, $S_R^2 = \frac{1}{n-1} \sum_{i=1}^n (R_i - \overline{R})^2$,

gdzie \overline{Z} oraz \overline{R} to odpowiednie średnie z próbki.

Niech ρ_0 będzie ustaloną liczbą z przedziału (-1, 1), $\rho_0 \neq 0$.

Do testowania hipotezy H_0 : $\rho = \rho_0$ przeciwko alternatywie H_1 : $\rho \neq \rho_0$ możemy użyć testu o obszarze krytycznym postaci:

$$\frac{S_Z^2}{S_R^2} < k_1$$
 lub $\frac{S_Z^2}{S_R^2} > k_2$.

(A) Statystyka
$$\frac{S_Z^2}{S_R^2}$$
 ma rozkład $F(n-1, n-1)$

(B) Statystyka
$$\frac{1-\rho_0}{1+\rho_0} \cdot \frac{S_Z^2}{S_R^2}$$
 ma rozkład $F(n-1, n-1)$

(C) Statystyka
$$\frac{1+\rho_0}{1-\rho_0} \cdot \frac{S_z^2}{S_R^2}$$
 ma rozkład $F(n-1, n-1)$

(D) Statystyka
$$\frac{1-\rho_0}{1+\rho_0} \cdot \frac{S_Z^2}{S_R^2}$$
 ma rozkład $F(n-2, n-2)$

(E) Nie istnieje taki współczynnik
$$c$$
, że statystyka $c \cdot \frac{S_Z^2}{S_R^2}$ ma rozkład F Snedecora

Egzamin dla Aktuariuszy z 24 listopada 1997 r.

Prawdopodobieństwo i statystyka

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	KLUCZ ODPOWIEDZI
Pesel	

Zadanie nr	Odpowiedź	Punktacja*
1	В	
2	Е	
3	В	
4	A	
5	В	
6	A	
7	С	
8	Е	
9	D	
10	В	

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.