## Radio tuning, selecting a particular signal (channel) with software using a digital IQ receiver.

The USRP receiver is designed to receive radio frequency (RF) signals at any frequency  $f_c$  in the range  $f_{LO} \pm f_s / 2$  MHz, where  $f_{LO}$  is the local oscillator (LO) frequency set to 710 KHz and  $f_s$  is the sampling rate of the soundcard. If  $f_s = 256$  KHz, then the frequency range is Selecting a signal (channel) at a particular frequency  $f_c$  is called "tuning" the radio.

The USRP receiver operates by generating two local oscillator signals at  $f_{LO}$  and mixing (multiplying) it with a desired radio frequency (RF) carrier wave  $\hat{r}(t) = e^{j2\pi f_c t}$  at  $f_c$  to yield a complex baseband signal  $\tilde{r}(t) = I(t) + jQ(t)$  at the difference frequency  $f_b = f_c - f_{LO}$ , where we write

$$\hat{r}(t)e^{-j2\pi f_{LO}t} = e^{j2\pi f_{c}t}e^{-j2\pi f_{LO}t} = e^{j2\pi f_{b}t} = \cos 2\pi f_{b}t + j\sin 2\pi f_{b}t = I(t) + jQ(t)$$

I(t) and Q(t) contains all signals (channels) for which  $f_c$  is close enough to  $f_{LO}$ , i.e. the difference is less than half the sampling rate,  $|f_c - f_{LO}| < f_s / 2$  or  $|f_{LO} - f_s| / 2 < f_c < f_{LO} + f_s / 2$ . The difference frequency  $|f_b| = |f_c - f_{LO}|$ , where  $|f_b| < |f_s| / 2$ 



In this figure, 10.101 should be 582, 10.125 should be 710, 10.149 should be 838, f\_s=256 KHz

The USRP receiver function is to shift a 256 KHz wide slice of spectrum from 710-128 = 582 KHz to 710+128 = 838 KHz centered at  $f_{LO}$  = 710 KHz down to -128 to +128 KHz (positive and negative frequencies centered around zero Hz). The complex baseband signal  $\tilde{r}(t) = e^{j2\pi f_b t}$  can represent positive and negative frequencies, since  $f_b$  can be positive or negative and  $|f_b|$  < 128 KHz.. The 256 KHz slice of spectrum may contain many different signals (channels) at various carrier frequencies within the 256 KHz span.

Table of frequencies used above

 $f_s$  sampling rate of computer sound card  $f_{LO}$  local oscillator frequency (fixed frequency crystal analog oscillator near 14 MHz)  $f_c$  carrier frequency of desired signal at radio frequency near 14 MHz (passband)  $(f_{LO}-f_s/2) < f_c < (f_{LO}+f_s/2)$  passband frequency range  $f_b=f_c-f_{LO}$  desired signal obtained by converting to baseband  $(-f_s/2) < f_b < (f_s/2)$  baseband frequency range (centered at 0 Hz) Conversion (spectrum shifting) is done by complex multiply  $\hat{r}(t)e^{-j2\pi f_{LO}t}=e^{j2\pi f_{c}t}e^{-j2\pi f_{LO}t}=e^{j2\pi f_{b}t}=\cos 2\pi f_b t + j\sin 2\pi f_b t = I(t)+jQ(t)$ 

If the RF signal contains information encoded in its amplitude and phase, then the RF signal  $\hat{r}(t) = a(t)e^{j\phi(t)}e^{j2\pi f_{c}t}$  is multiplied by the complex local oscillator  $e^{-j2\pi f_{LO}t|} = \cos 2\pi f_{LO}t - j\sin 2\pi f_{LO}t$  to yield

$$\hat{r}(t)e^{-j2\pi f_{LO}t} = [a(t)e^{j\phi(t)}e^{j2\pi f_ct}]e^{-j2\pi f_{LO}t} = a(t)e^{j\phi(t)}e^{j2\pi f_bt} = I(t) + jQ(t)$$

where the received complex baseband signal is

$$\tilde{r}(t) = I(t) + jQ(t) = a(t)\cos\phi(t)\cos 2\pi f_b t + j a(t)\sin\phi(t)\sin 2\pi f_b t$$

If we want to receive the information contained in  $a(t), \phi(t)$  then we multiply  $\tilde{r}(t)$  by a complex exponential  $e^{-j2\pi f_b t}$  at exactly  $-f_b$  to obtain  $\tilde{r}(t)e^{-j2\pi f_b t}=a(t)e^{j\phi(t)}e^{-j2\pi f_b t}=a(t)e^{j\phi(t)}$  centered at 0 (DC) followed by a low pass filter to filter out any other signals. We have shifted the spectrum twice, once by  $f_{LO}$  by the USRP to obtain  $\tilde{r}(t)=I(t)+jQ(t)$  containing multiple signals (channels) and a second time by  $f_b$  using GNURadio software to receive the desired signal (i.e. select the desired channel).