Dynamics 2

General Plane Motion (Dynamics of Systems of Bodies)

General Plane Motion

- Combination of
 - Pure Translation
 - Fixed Axis Rotation
- GPM for short

- Position defined by 3 coordinates
 - -A = ref point
 - position (x_A, y_A)
 - AB is fixed line
 - position of B fixed by θ
 - position of C fixed by ∠CAB

- Position defined by 3 coordinates
- Has 3 degrees of freedom
 - X, Y, θ

- Position defined by 3 coordinates
- Has 3 degrees of freedom
- G as reference
 - valuable

- Position defined by 3 coordinates
- Has 3 degrees of freedom
- G as reference
- Particle velocity
 - ref point vel.
 - **-** Ω

- Position defined by 3 coordinates
- Has 3 degrees of freedom
- G as reference
- Particle velocity
- Particle accel
 - ref point accel.
 - Ω and α

Angular Velocity in GPM

- Defintion: time derivative of angle between any straight line in body & fixed reference direction
- AB is line
- OX = fixed ref
- ⊕ = angle between
 AB and OX
- Angular velocity Ω

$$\frac{d\theta}{dt}$$
 or $\dot{\theta}$

• Similar for α

Angular Velocity in GPM

- Do NOT need to refer to rotating about a point
 - Rotating about a fixed point is special case (FAR)
- Can locate the instantaneous centre (IC)
 - Meet in Design
- If velocities for any two points on body are known
 - project lines at 90° where they meet is the IC
 - ie at instant body is rotating about IC
- IC is itself a moving point in GPM

Acceleration Components in GPM

- Choose G as reference point for motion
 - A is another point
 - GA at angle θ to OX
- G has accel components
 - \ddot{x}_G and \ddot{y}_G
- Ω angular velocity
- α angular accel
- Since $\overline{a}_A = \overline{a}_G + \overline{a}_{GA}$
 - Acc for A as shown

Dynamic Laws in GPM

- Force Law (GN2)
 sum of External Forces + body Inertia Force = 0
- Moment Law
 sum about any point of moments of the External Forces
 + the moment of the body Inertia Force acting at G
 + the Inertia Couple
 = 0
- Inertia force = ma, inertia couple = $I\alpha$ as before

Summary

- Properties of General Plane Motion
- Velocity and acceleration components
- Dynamics Laws
- Rolling Wheel

Rolling Wheels

- 3 worked examples on GPM
 - All use rolling wheels

Rolling Wheels

Pure rolling – no slip at contact point

Velocity

For no slip at A:

$$v_A = v_B$$

$$v - R\Omega = 0$$

$$v = R\Omega$$

Acceleration

For no slip at A:

$$a - R\alpha = 0$$

$$a = R\alpha$$

Example 2.10

• Uniform circular disc (mass 30 kg, \varnothing 1.6 m) released from rest on a 12° slope

- calculate acceleration down the slope assuming pure

rolling

- magnitude of friction force?

• If μ for the surface is 0.25

maximum incline for pure rolling?

Example 2.11

- 4 wheel un-powered trolley has total mass 200 kg
 - Wheels are uniform discs m = 25 kg, radius = 350 mm
 - What force P is required to give $a = 1.4 \text{ m/s}^2$?
- When the trolley reaches v = 15 m/s, P removed and brakes activated on rear wheels.

- What brake torque per wheel is required to stop trolley

in 18 m?

Example 2.12

- Truck accelerates from rest at 2.5 m/s²
- Unrestrained cylindrical load midway on 10m bed
 - mass of 300 kg (uniform cylinder R = 0.8 m)
 - μ for truck surface is 0.2
- Will the cylinder roll or slide, or stay put?
- Will it roll off the back of the truck
 - if so how long would it take?

