上海大学 2023 ~ 2024 学年 课程报告成绩评价表

课程名称:		《模式识别》		果程编号	÷: <u>08</u>	08306089			
报告名	称:	基于卷积	只神经网络	考与 SVI	M 的路	标识别	_		
姓	名:	郑力领	姓 学	号:	211	22873	_		
报告评语:									
报告成绩	绩:								
方案设计(20分)		验收 (20 分)		书面报告(60		分) 总分			
可行性 (10 分)	创新性 (10 分)	规范性 (10 分)	演示效果 (10 分)	规范性	完整性	科学性	10.73		
(10 77)	(10 37)	(10 次)	(10 分)	(20分)	(20 分)	(20分)			
			<u>I</u>				1		
任课教师:									
评阅日	期:	年	月	日					

基于卷积神经网络与 SVM 的路标识别

郑力铖 (21122873)

1 引言

1.1 提出问题 (300-500 字)

1.1.1 三级标题

1.1.2 三级标题

1.2 求解方案分析(300-500 字)

1.3 论文概述 (200 字)

2 相关算法概述

2.1 算法一 (300-500 字)

图 1: 位于三层材料体系中的位错示意图

2.2 算法二 (300-500 字)

	速度/(m.s-1)	时间/s	频率/kHz
第一次			
第二次			
第三次			

表 1: 表题标题

2.3 算法三 (300-500 字)

$$P(f) = \frac{1}{T} \mid 2\pi f A \exp\left[-\frac{(2\pi f \sigma)^2}{2}\right]^2 \tag{1}$$

3 算法实现描述

3.1 算法总体框架 (>500 字)

3.2 改进一及分析 (>500 字)

3.3 改进二及分析 (>500 字)

4 实验描述

4.1 实验数据和实验方案(>500字)

4.2 实验一及结果分析 (>500 字)

4.3 实验二及结果分析 (>500 字)

5 结论 (500字)

6 学习体会和建议(300字)

A 附录

1、图模板

图 2: SVM 模型原理图

2、表模板

表 2: 最优算法的多指标分析

	精确率	召回率	F1 得分
石块	0.94	0.96	0.95
金属	0.92	0.97	0.95
塑料	0.96	0.89	0.93

3、公式模板

$$\min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|^{2}$$
s.t. $y_{i} (\boldsymbol{w}^{T} \boldsymbol{x}_{i} + b) \geqslant 1, \quad i = 1, 2, \dots, m$

$$(2)$$

4、伪代码模板

Algorithm 1 K 近邻算法步骤

Input: 训练数据集; 待预测数据;

Output: 预测数据的类别;

- 1: 加载数据;
- 2: 初始化 K 值;
- 3: 计算预测样本与训练集中的每一个样本的距离;
- 4: 将距离和索引添加到有序集合中;
- 5: 对距离按从小到大排序方式对距离和索引的有序集合进行排序;
- 6: 从排序的集合中选择前 K 条数据;
- 7: 获得选的 K 条数据的标签;
- 8: 计算每一种标签的样本数量; return 数量最多的标签作为样本的预测值;

5、代码模板

```
1 #调整图片尺寸到统一大小, 并扁平化为一维数据
  def image_to_feature_vector(image, size=(128, 128)):
          return cv2.resize(image, size).flatten()
  #提取图像在HSV颜色空间上的颜色直方图, 将直方图扁平化,
7 #作为特征向量返回
  def extract_color_histogram(image, bins=(32, 32, 32)):
          hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
          hist = cv2.calcHist([hsv], [0, 1, 2], None, bins,
10
                 [0, 180, 0, 256, 0, 256])
          if imutils.is_cv2():
12
                 hist = cv2.normalize(hist)
13
          else:
14
                 cv2.normalize(hist, hist)
15
          return hist.flatten()
16
```