Part 2 Content

- · Import Libraries
- · Load myData CSV File
- Q1: Is there a correlation between the production budget and the profit?
- Q2: Is there a correlation between the ratings and the profit?
- Q3: Which directors, writers, actors and actresses make the most profit (High Budget)?
- Q4: Which genres make the most profit (High Budget)?

Import Libraries

```
In [1]: import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt
   %matplotlib inline
   from functions import *
```

Load myData CSV File

```
In [2]: #myData.csv file is created in Part 1 python file. It combined all required
       df = pd.read csv('zippedData/myData.csv')
       df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 53305 entries, 0 to 53304
        Data columns (total 18 columns):
        #
            Column
                               Non-Null Count Dtype
            _____
                               _____
                                              ____
            Unnamed: 0
        0
                               53305 non-null int64
            release_date
         1
                               53305 non-null object
                               53305 non-null object
         2
            movie
         3
            production budget 53305 non-null float64
            domestic_gross
                               53305 non-null float64
            domestic_gross
        5
                               53305 non-null float64
        6
            tconst
                               53305 non-null object
        7
            genres
                               53265 non-null object
            averagerating
                               53305 non-null float64
        9
                               53305 non-null int64
            numvotes
                               53305 non-null object
        10 nconst
         11 category
                               53305 non-null object
        12 characters
13 primary_name
                               21488 non-null object
                               53305 non-null object
                                              float64
         14 death year
                               1243 non-null
                               53305 non-null int64
         15 release year
        16 profit_gross
                               53305 non-null float64
        17 profit rate
                               53305 non-null float64
        dtypes: float64(7), int64(3), object(8)
       memory usage: 7.3+ MB
In [3]: #df[df.primary name =='Emma Thompson']
```

Q1: Is there a correlation between the production budget and the profit?

```
In [4]: selected_columns1 = ['movie', 'production_budget', 'averagerating', 'profit
    df1 = df[selected_columns1].copy()

#Remove duplicate movies
    df1.drop_duplicates(subset='movie', keep='first', inplace=True)

#Remove outliers with very low budget and very high profit_rate
    df1.drop(df1[(df1.production_budget <1000000) | (df1.profit_rate >30)].inde

# Remove movies with release year before 1990
    df1.drop(df1[df1.release_year < 1990].index, inplace=True)

print(df1.shape)
    df1.head(10)</pre>
```

(1733, 6)

Out[4]:

	movie	production_budget	averagerating	profit_gross	profit_rate	release_year
0	Pirates of the Caribbean: On Stranger Tides	410600000.0	6.6	6.350639e+08	2.546673	2011
30	Dark Phoenix	350000000.0	6.0	-2.002376e+08	0.427892	2019
60	Avengers: Age of Ultron	330600000.0	7.3	1.072414e+09	4.243841	2015
90	Avengers: Infinity War	300000000.0	8.5	1.748134e+09	6.827114	2018
91	Justice League	300000000.0	6.5	3.559452e+08	2.186484	2017
119	Spectre	300000000.0	6.8	5.796209e+08	2.932070	2015
180	The Dark Knight Rises	275000000.0	8.4	8.094391e+08	3.943415	2012
181	Solo: A Star Wars Story	275000000.0	7.0	1.181513e+08	1.429641	2018
192	John Carter	275000000.0	6.6	7.778100e+06	1.028284	2012
208	The Lone Ranger	275000000.0	6.4	-1.499788e+07	0.945462	2013

```
In [5]: budget = df1['production_budget']
    profit= df1['profit_gross']
    profitRate = df1['profit_rate']

    corr0 = round(profit.corr(budget), 3)
    corr1 = round(profitRate.corr(budget), 3)

fig, axes = plt.subplots(2, 1, figsize=(15, 20))
    plt.subplots_adjust(hspace=0.25)
    sns.set(font_scale=1.5)

sns.scatterplot(ax=axes[0], x=budget, y=profit)
    axes[0].set_title('Worldwide Profit vs Production Budget in Movie Industry'
    axes[0].text(0.65, 0.95, "Correlation: " + str(corr0), transform=axes[0].tra

sns.scatterplot(ax=axes[1], x=budget, y=profitRate, color='green')
    axes[1].set_title('Worldwide Profit Rate vs Production Budget in Movie Indu
    axes[1].text(0.65, 0.95, "Correlation: " + str(corr1), transform=axes[1].tra
    plt.savefig('figures/budget-profitl.png')
```



```
In [10]: fig, axes = plt.subplots(2, 2, figsize=(20, 20))
         plt.subplots adjust(hspace=0.3)
         sns.set(font_scale=1.5)
         sns.scatterplot(ax=axes[0, 0], x=budget, y=profitRateList[0], color='green'
         axes[0, 0].set_title('Profit Rate for Production Budget <= $20,000,000', fo</pre>
         axes[0, 0].text(0.55, 0.95, "Correlation: " + str(corr[0]), transform=axes[0]
                         verticalalignment='top')
         axes[0, 0].text(0.55, 0.90, "Median Profit Rate: " + str(profit_median[0]),
                         fontsize=20, verticalalignment='top')
         sns.scatterplot(ax=axes[0, 1], x=budget, y=profitRateList[1], color='green'
         axes[0, 1].set_title('Profit Rate for $20,000,000 < Production Budget <= $1
         axes[0, 1].text(0.55, 0.95, "Correlation: " + str(corr[1]), transform=axes[0]
                         verticalalignment='top')
         axes[0, 1].text(0.55, 0.90, "Median Profit Rate: " + str(profit_median[1]),
                         fontsize=20, verticalalignment='top')
         sns.scatterplot(ax=axes[1, 0], x=budget, y=profitRateList[2], color='green'
         axes[1, 0].set title('Profit Rate for $100,000,000 < Production Budget <= $
         axes[1, 0].text(0.55, 0.95, "Correlation: " + str(corr[2]), transform=axes[1
         axes[1, 0].text(0.55, 0.90, "Median Profit Rate: " + str(profit_median[2]),
         sns.scatterplot(ax=axes[1, 1], x=budget, y=profitRateList[3], color='green'
         axes[1, 1].set title('Profit Rate for $200,000,000 < Production Budget', fo
         axes[1, 1].text(0.55, 0.95, "Correlation: " + str(corr[3]), transform=axes[1
         axes[1, 1].text(0.55, 0.90, "Median Profit Rate: " + str(profit median[3]),
         plt.savefig('figures/budget-profit2.png')
```


Q2: Is there a correlation between the ratings and the profit?

```
In [11]: rating = df1['averagerating']
    profit= df1['profit_gross']
    profitRate = df1[df1.profit_rate < 10]['profit_rate'] # remove outliers

    corr0 = round(profit.corr(rating), 3)
    corr1 = round(profitRate.corr(rating), 3)

    fig, axes = plt.subplots(2, 1, figsize=(15, 20))
    plt.subplots_adjust(hspace=0.25)
    sns.set(font_scale=1.5)

    sns.scatterplot(ax=axes[0], x=rating, y=profit)
    axes[0].set_title('Worldwide Profit vs Average Rating', fontsize=15)
    axes[0].text(0.05, 0.95, "Correlation: " + str(corr0), transform=axes[0].tra

    sns.scatterplot(ax=axes[1], x=rating, y=profitRate, color='green')
    axes[1].set_title('Profit Rate vs Average Rating (profit_rate<10)', fontsiz axes[1].text(0.05, 0.95, "Correlation: " + str(corr1), transform=axes[1].tra

    plt.savefig('figures/rating-profit.png')</pre>
```


Q3: Which directors, writers, actors and actresses make the most profit (high budget)?

```
In [12]: # Copy dataframe with selected columns
    selected_columns2 = ['category', 'primary_name', 'death_year', 'movie', 'pr
    df2 = df[selected_columns2].copy() ## Select columns

# Clean duplicates
    df2.drop_duplicates(subset=None, keep='first', inplace=True)

#Select the movies with production_budget > $100,000,000
    df2 = df2[(df2.production_budget > 100000000)]

# Remove the dead people
    df2 = df2[df2.death_year.isnull()]

# Drop the movies with release year before 1990
    df2.drop(df2[df2.release_year < 1990].index, inplace=True)

print(df2.shape)
    df2.head(20)</pre>
```

(2158, 8)

Out[12]:

	category	primary_name	death_year	movie	production_budget	profit_gross	profit_rate
0	writer	Tim Powers	NaN	Pirates of the Caribbean: On Stranger Tides	410600000.0	6.350639e+08	2.546673
1	director	Rob Marshall	NaN	Pirates of the Caribbean: On Stranger Tides	410600000.0	6.350639e+08	2.54667
2	writer	Ted Elliott	NaN	Pirates of the Caribbean: On Stranger Tides	410600000.0	6.350639e+08	2.54667
3	actor	Johnny Depp	NaN	Pirates of the Caribbean: On Stranger Tides	410600000.0	6.350639e+08	2.546673
7	actor	lan McShane	NaN	Pirates of the Caribbean: On Stranger Tides	410600000.0	6.350639e+08	2.546673

	category	primary_name	death_year	movie	production_budget	profit_gross	profit_rate
8	writer	Jay Wolpert	NaN	Pirates of the Caribbean: On Stranger Tides	410600000.0	6.350639e+08	2.546673
10	actor	Geoffrey Rush	NaN	Pirates of the Caribbean: On Stranger Tides	410600000.0	6.350639e+08	2.546673
12	actress	Penélope Cruz	NaN	Pirates of the Caribbean: On Stranger Tides	410600000.0	6.350639e+08	2.546673
17	writer	Terry Rossio	NaN	Pirates of the Caribbean: On Stranger Tides	410600000.0	6.350639e+08	2.546673
20	writer	Stuart Beattie	NaN	Pirates of the Caribbean: On Stranger Tides	410600000.0	6.350639e+08	2.546673
31	writer	John Byrne	NaN	Dark Phoenix	350000000.0	-2.002376e+08	0.427892
33	writer	Chris Claremont	NaN	Dark Phoenix	350000000.0	-2.002376e+08	0.427892
39	director	Simon Kinberg	NaN	Dark Phoenix	350000000.0	-2.002376e+08	0.427892
43	actor	James McAvoy	NaN	Dark Phoenix	350000000.0	-2.002376e+08	0.427892
45	actress	Jennifer Lawrence	NaN	Dark Phoenix	350000000.0	-2.002376e+08	0.427892
47	actor	Michael Fassbender	NaN	Dark Phoenix	350000000.0	-2.002376e+08	0.427892
49	actor	Nicholas Hoult	NaN	Dark Phoenix	350000000.0	-2.002376e+08	0.427892
60	actor	Mark Ruffalo	NaN	Avengers: Age of Ultron	330600000.0	1.072414e+09	4.243841
61	actor	Robert Downey Jr.	NaN	Avengers: Age of Ultron	330600000.0	1.072414e+09	4.243841
63	actor	Chris Evans	NaN	Avengers: Age of Ultron	330600000.0	1.072414e+09	4.243841

In [14]: # Director, call function categoryStudy(df2, 'director', 15, 12, 'high')

Total number: 51

Best director List: ['Byron Howard', 'Joe Russo', 'Francis Lawrence', 'Joss Whedon', 'Anthony Russo', 'Rich Moore', 'Michael Bay', 'Don Hall', 'S am Mendes', 'Jon Favreau', 'Lee Unkrich']

In [14]: # Writer, , call function categoryStudy(df2, 'writer', 20, 15, 'high')

Total number: 110

Best writer List: ['Nicole Perlman', 'Derek Connolly', 'Erik Sommers', 'Meg LeFauve', 'Linda Woolverton', 'Phil Johnston', 'Zak Penn', 'Gary Scott Thompson', 'Suzanne Collins', 'Chris McKenna', 'Michael Arndt', 'Jim Reardon', 'Jeff Pinkner']

In [38]: df2[df2.primary_name == 'Cate Blanchett']

Out[38]:

	category	primary_name	death_year	movie	production_budget	profit_gross	profit_rate	r
450	actress	Cate Blanchett	NaN	The Hobbit: The Battle of the Five Armies	250000000.0	695577621.0	3.782310	_
769	actress	Cate Blanchett	NaN	Robin Hood	210000000.0	112459006.0	1.535519	
1657	actress	Cate Blanchett	NaN	Thor: Ragnarok	180000000.0	666980024.0	4.705445	
3883	actress	Cate Blanchett	NaN	How to Train Your Dragon 2	145000000.0	469586270.0	4.238526	
4875	actress	Cate Blanchett	NaN	How to Train Your Dragon: The Hidden World	129000000.0	390258283.0	4.025258	

In [15]:

Actor

categoryStudy(df2, 'actor', 20, 15, 'high')

Total number: 113

Best actor List: ['Javier Bardem', 'Josh Duhamel', 'Vin Diesel', 'Idris Elba', 'Josh Hutcherson', 'Chris Hemsworth', 'Chris Pratt', 'Josh Gad', 'Jason Momoa', 'Mark Ruffalo', 'Robert Downey Jr.', 'Jeremy Renner', 'Chris Evans']


```
In [16]: # Actress, call function
categoryStudy(df2, 'actress', 15, 12, 'high')
```

Total number: 45
Best actress List: ['Jessica Chastain', 'Cate Blanchett', 'Katherine Wat erston', 'Michelle Williams', 'Emma Watson', 'Scarlett Johansson', 'Brie Larson', 'Gal Gadot', 'Bryce Dallas Howard', 'Naomie Harris', 'Anne Hatha way']

Q4: Which genre brings highest profit (high budget)?

```
In [15]: # Copy dataframe with selected columns
    selected_columns3 = ['movie', 'production_budget', 'genres', 'profit_gross'
    df3 = df[selected_columns3].copy() ## Select columns

# Clean duplicates
    df3.drop_duplicates(subset=None, keep='first', inplace=True)

#Select the movies with production_budget > $100,000,000
    df3 = df3[(df3.production_budget > 100000000)]

#Drop the movies with release year before 2000
    df3.drop(df3[df3.release_year < 1990].index, inplace=True)

print(df3.shape)
    df3.head(20)</pre>
```

(632, 6)

Out[15]:

	movie	production_budget	genres	profit_gross	profit_rate	release_year
0	Pirates of the Caribbean: On Stranger Tides	410600000.0	Action	6.350639e+08	2.546673	2011
3	Pirates of the Caribbean: On Stranger Tides	410600000.0	Fantasy	6.350639e+08	2.546673	2011
4	Pirates of the Caribbean: On Stranger Tides	410600000.0	Adventure	6.350639e+08	2.546673	2011
30	Dark Phoenix	350000000.0	Adventure	-2.002376e+08	0.427892	2019
32	Dark Phoenix	350000000.0	Sci-Fi	-2.002376e+08	0.427892	2019
33	Dark Phoenix	350000000.0	Action	-2.002376e+08	0.427892	2019
60	Avengers: Age of Ultron	330600000.0	Sci-Fi	1.072414e+09	4.243841	2015
61	Avengers: Age of Ultron	330600000.0	Adventure	1.072414e+09	4.243841	2015
62	Avengers: Age of Ultron	330600000.0	Action	1.072414e+09	4.243841	2015
90	Avengers: Infinity War	30000000.0	Action	1.748134e+09	6.827114	2018
91	Justice League	300000000.0	Fantasy	3.559452e+08	2.186484	2017
92	Justice League	300000000.0	Action	3.559452e+08	2.186484	2017
93	Justice League	30000000.0	Adventure	3.559452e+08	2.186484	2017
94	Avengers: Infinity War	300000000.0	Adventure	1.748134e+09	6.827114	2018
100	Avengers: Infinity War	300000000.0	Sci-Fi	1.748134e+09	6.827114	2018
119	Spectre	30000000.0	Adventure	5.796209e+08	2.932070	2015
140	Spectre	30000000.0	Action	5.796209e+08	2.932070	2015
141	Spectre	30000000.0	Thriller	5.796209e+08	2.932070	2015
180	The Dark Knight Rises	275000000.0	Thriller	8.094391e+08	3.943415	2012
181	Solo: A Star Wars Story	275000000.0	Action	1.181513e+08	1.429641	2018

In [17]: # Full list of genres in descending order
df3.groupby('genres').count().sort_values(by='movie', ascending=False)

Out[17]:

	movie	production_budget	profit_gross	profit_rate	release_year
genres					
Adventure	172	172	172	172	172

genres					
Adventure	172	172	172	172	172
Action	137	137	137	137	137
Sci-Fi	60	60	60	60	60
Comedy	52	52	52	52	52
Animation	47	47	47	47	47
Fantasy	42	42	42	42	42
Drama	38	38	38	38	38
Family	27	27	27	27	27
Thriller	17	17	17	17	17
Horror	7	7	7	7	7
Crime	6	6	6	6	6
Documentary	6	6	6	6	6
Mystery	5	5	5	5	5
Romance	4	4	4	4	4
History	3	3	3	3	3
Musical	2	2	2	2	2
Sport	2	2	2	2	2
Biography	2	2	2	2	2
War	1	1	1	1	1
Western	1	1	1	1	1

In [18]: df3[df3.genres == 'Sport']

Out[18]:

	movie	production_budget	genres	profit_gross	profit_rate	release_year
3148	Frozen	150000000.0	Sport	1.122470e+09	8.483133	2013
3301	Wonder Woman	150000000.0	Sport	6.711334e+08	5.474223	2017

```
In [19]: # Select the popular genres names with higher number of movies
         popular_genres = list(df3.groupby('genres').count().sort_values(by='movie',
         popular_genres
Out[19]: ['Adventure',
          'Action',
          'Sci-Fi',
          'Comedy',
          'Animation',
          'Fantasy',
          'Drama',
          'Family',
          'Thriller'
In [24]: # Filter the data for the popular genres
         df3_pop = df3.loc[df3['genres'].isin(popular_genres)]
         df3
         #df3 pop[df3 pop.genres == 'Comedy']
```

Out[24]:

	movie	production_budget	genres	profit_gross	profit_rate	release_year
0	Pirates of the Caribbean: On Stranger Tides	410600000.0	Action	635063875.0	2.546673	2011
3	Pirates of the Caribbean: On Stranger Tides	410600000.0	Fantasy	635063875.0	2.546673	2011
4	Pirates of the Caribbean: On Stranger Tides	410600000.0	Adventure	635063875.0	2.546673	2011
30	Dark Phoenix	350000000.0	Adventure	-200237650.0	0.427892	2019
32	Dark Phoenix	350000000.0	Sci-Fi	-200237650.0	0.427892	2019
6338	Bumblebee	102000000.0	Action	363195589.0	4.560741	2018
6339	Bumblebee	102000000.0	Adventure	363195589.0	4.560741	2018
6340	Bumblebee	102000000.0	Sci-Fi	363195589.0	4.560741	2018
6342	Cloud Atlas	102000000.0	Action	28673154.0	1.281109	2012
6344	Cloud Atlas	102000000.0	Mystery	28673154.0	1.281109	2012

632 rows × 6 columns

```
In [21]: # plots for popular genres
    genre_series1 = df3_pop.groupby('genres')['profit_gross'].median().sort_val
    genre_series2 = df3_pop.groupby('genres')['profit_rate'].median().sort_valu

fig, axes = plt.subplots(1, 2, figsize=(20, 7))
    plt.subplots_adjust(wspace=0.4)
    sns.set(font_scale=1.5)

    genre_series1.plot.barh(ax=axes[0])
    axes[0].set_title('Average Profit per Popular Genres (Production Budget > $
    axes[0].set_xlabel('Average Profit')
    axes[0].set_ylabel('Genres')

    genre_series2.plot.barh(ax=axes[1], color='green')
    axes[1].set_title('Average Profit Rate per Popular Genres (Production Budge axes[1].set_xlabel('Average Profit Rate')
    axes[1].set_ylabel('Genres')

plt.savefig('figures/genres-profit2_highBudget.png')
```


