PSY9511: Seminar 4

Testing, resampling, and splitting

Esten H. Leonardsen 26.10.23

Outline

- 1. Coding tips
 - · Loops
 - Functions
- 2. Performance metrics
- 3. Strategies for model assessment
 - · Training and validation split
 - (Stratification)
 - (Leave-one-out cross-validation)
 - · Cross-validation
 - · Bootstrap
- 4. Strategies for model selection and assessment
 - Train/validation/test split
 - Nested cross-validation

Coding tips

Coding tips

```
import numpy as np
import pandas as pd

df = pd.read_csv('Auto.csv')
    df = df.replace('?', np.nan)
    train = df.inloc[2e0].copy()
    test = df.iloc[300:].copy()

test['cytinders'] = (test['cytinders'] - train['cytinders'].mean()) / train['cytinders'].std()
    train['cytinders'] = (train['cytinders'] - train['cytinders'].mean()) / train['cytinders'].std()
    train['weight'] = (train['weight'] - train['weight'].mean()) / train['weight'].std()
    train['weight'] = (train['weight'] - train['year'].mean()) / train['year'].std()
    train['year'] = (train['year'] - train['year'].mean()) / train['year'].std()
```


Coding tips: Live coding

Live coding

Coding tips: Python

```
In[1]:
         import numpy as np
         import pandas as pd
         df = pd.read csv('Auto.csv')
         df = df.replace('?', np.nan)
         train = df.iloc[:200].copy()
         test = df.iloc[300:].copv()
         test['cylinders'] = (test['cylinders'] - train['cylinders'].mean()) / train['cylinders'].std()
         train['cvlinders'] = (train['cvlinders'] - train['cvlinders'].mean()) / train['cvlinders'].std()
         test['weight'] = (test['weight'] - train['weight'].mean()) / train['weight'].std()
         train['weight'] = (train['weight'] - train['weight'].mean()) / train['weight'].std()
         test['vear'] = (test['vear'] - train['vear'].mean()) / train['vear'].std()
         train['year'] = (train['year'] - train['year'].mean()) / train['year'].std()
In[2]:
         import numpy as np
         import pandas as pd
         df = pd.read csv('Auto.csv')
         df = df.replace('?', np.nan)
```

```
import pands as pd

df = pd.read_csv('Auto.csv')
    df = df.replace('?', np.nan)
    train = df.iloc[:200].copy()
    test = df.iloc[:300:].copy()

def standardize(train: pd.DataFrame, test: pd.DataFrame, column: str):
    train = train.copy()
    test = test.copy()

    test[column] = (test[column] - train[column].mean()) / train[column].std()
    return train, test

for column in ['cylinders', 'displacement', 'weight']:
    train, test = standardize(train, test, column=column)
```


Coding tips: R

```
data <- read.csv('Auto.csv')
data[] <- lapply(data, function(x) replace(x, x == '?', NA))

train <- data[1:200,]
test <- data[200:nrow(data),]

test$cylinders <- (test$cylinders - mean(train$cylinders)) / sd(train$cylinders)
train$cylinders <- (train$cylinders - mean(train$cylinders)) / sd(train$cylinders)
test$weight <- (test$weight - mean(train$weight)) / sd(train$weight)
train$weight <- (train$weight - mean(train$weight)) / sd(train$weight)
train$weight <- (train$veight - mean(train$veight)) / sd(train$veight)
train$veight <- (train$veight - mean(train$veight)) / sd(train$veight)
train$veight <- (train$veight - mean(train$veight)) / sd(train$veight)</pre>
```

```
data <- read.csv('Auto.csv')
data[] <- lapply(data, function(x) replace(x, x == '?', NA))

train <- data[1:200,]
test <- data[20:enrow(data),]

test$cylinders <- (test$cylinders - mean(train$cylinders)) / sd(train$cylinders)
train$cylinders <- (train$cylinders - mean(train$cylinders)) / sd(train$cylinders)
test$weight <- (test$weight - mean(train$weight)) / sd(train$weight)
train$weight <- (train$weight - mean(train$weight)) / sd(train$weight)
train$weight <- (train$veight - mean(train$veight)) / sd(train$weight)
train$veight <- (train$veight - mean(train$veight)) / sd(train$veight)</pre>
```


Coding tips: Minimal, complete scripts

Ctrl+Shift+Enter

Performance metrics

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

Mean squared error (MSE)

- + Widely used
- + Intuitive
- + Penalizes large errors
- ? Interpretation
- Depends on scale

$$\sqrt{\frac{1}{n}\sum_{i=0}^{n}(y_i-\hat{y}_i)^2}$$

$$\sqrt{\frac{1}{n}\sum_{i=0}^{n}(y_i-\hat{y}_i)^2}$$

Root mean squared error (RMSE)

- + Intuitive
- + Penalizes large errors
- + More interpretable than MSE, total loss ≈ individual loss
- Depends on scale

$$\frac{1}{n}\sum_{i=0}^{n}|y_i-\hat{y}_i|$$

$$\frac{1}{n}\sum_{i=0}^{n}|y_i-\hat{y}_i|$$

Mean absolute error (MAE)

- + More interpretable than MSE/RMSE, total loss = average error
- Feels a bit off
- Depends on scale

$$\frac{\sum_{i=1}^{n} (y_i - \bar{y})(\hat{y}_i - \bar{\hat{y}})}{\sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2 \sum_{i=1}^{n} (\hat{y}_i - \bar{\hat{y}})^2}}$$

$$\frac{\sum\limits_{i=1}^{n}(y_{i}-\bar{y})(\hat{y}_{i}-\bar{\hat{y}})}{\sqrt{\sum_{i=1}^{n}(y_{i}-\bar{y})^{2}\sum_{i=1}^{n}(\hat{y}_{i}-\bar{\hat{y}})^{2}}}$$

Pearson correlation coefficient (r)

- + Scale independent
- Captures linear correlation
- Does not care about whether the predictions are close to the true values

$$1 - \frac{\sum\limits_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum\limits_{i=1}^{n} (y_i - \bar{y}_i)^2}$$

$$1 - \frac{\sum\limits_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum\limits_{i=1}^{n} (y_i - \bar{y}_i)^2}$$

Proportion of variance explained (r^2)

- + Scale independent
- + Interpretable
- Captures linear correlation
- Does not care about whether the predictions are close to the true values

TP	
	TN

TP	FN
	TN

TP	FN
FP	TN

$$\frac{\mathit{TP} + \mathit{TN}}{\mathit{TP} + \mathit{TN} + \mathit{FP} + \mathit{FN}}$$

$$\frac{TP+TN}{TP+TN+FP+FN}$$

Accuracy

- + Interpretable
- Does not account for imbalanced classes
- Does not different costs of misclassification

$$\frac{TP}{TP+FN}$$

$$\frac{TP}{TP+FN}$$

True positive rate (sensitivity)

- + Interpretable, calculates the proportion of cases that are detected
- + Useful when the cost of false negatives is high (Population-wide screening for severe disease)

$$\frac{TN}{TN+FP}$$

True negative rate (specificity)

- + Interpretable, calculates the proportion of controls that are detected
- Useful when the cost of false positives is high (Intrusive treatment of rare and benign condition)

$$\frac{TP}{TP+FP}$$

$$\frac{TP}{TP+FP}$$

Positive predictive value (PPV, precision)

- + Interpretable, calculates the proportion of predicted cases that are actually cases
- Useful when the cost of false positives is high (Selection of participants for expensive clinical trials)

$$\frac{TP}{TP+FN} + \frac{TN}{TN+FP}$$

$$\frac{\frac{TP}{TP+FN} + \frac{TN}{TN+FP}}{2}$$

Balanced accuracy

- + Interpretable, behaves similarly to regular accuracy.
- + Takes into account imbalanced classes

threshold	TPR	FPR

threshold	TPR	FPR
0	0	0
1	1	1

threshold	TPR	FPR
0	0	0
0.15	0.95	0.5
1	1	1

threshold	TPR	FPR
0	1	1
0.15	0.95	0.5
0.25	0.5	0.2
0.35	0.2	0.0
1	0	0

Performance metrics: Summary

- There is a range of metrics that can be used, each capturing a different aspect of a model's performance
- If possible, it is my personal preference is to evaluate a model using a different model than the one that was used for training
- It is good practice to report more than one metric
- For regression, MAE provides a good, intuitive summary of model performance
- For classification, AUC is a widely used metric that is easy to interpret, not reliant on the choice of classification threshold, and handles class imbalance

Strategies for model assessment

Model assessment: Rationale

Statistical inference:

asdf

Predictive modelling:

asdf

In the validation set approach we split the dataset into two subsets, and use for training the model and the other for testing performance.

- + Accurate estimate of out-of-sample error
- + Simple
- Highly variable, depends on the exact split
- Only uses a subset of data for training models
- Gives a point estimate of the error, without confidence intervals

Stratification:

Ensuring all folds of the dataset are similar in terms of some given characteristics.

Dataset

```
In[1]: df = ...
```



```
In[1]: df = ...
```



```
In[1]: df = ...
    train = df.iloc[:int(len(df) * 0.8)]
    validation = df.iloc[int(len(df) * 0.8):]
```



```
In[1]: df = ...
    df = df.sort_values(['sex', 'age'])
```


Stratification:

Ensuring all folds of the dataset are similar in terms of some given characteristics

- Helps alleviate the risk of training performance >> validation performance
- · Always stratify on target variable first
- Also good idea to stratify on other core characteristics, e.g. sex and age

Fits *n* models for *n* datapoints, each leaving a single datapoint out for testing.

- + Uses all data to train models
- + Not dependent on arbitrary data splits
- Computationally expensive
- Effectively gives a point estimate of the error

Dataset																	

Fits k models for n > k datapoints, each leaving n/k datapoints out for testing.

- + Uses all data to train models
- + Yields multiple estimates of out-of-sample error
- Different choices of k (and exact splits) yields different results
- No longer a single model from which information (e.g. parameter estimates and p-values) can be derived

Fits *x* models with *m* datapoints each, sampled from the original dataset with replacement.

- + Uses all data to train models
- + Provides a smooth distribution of model performance
- Versatile: Can be used for other things, e.g. getting a confidence interval for model parameters
- Different choices of k (and exact splits) yields different results

Model assessment: Summary

- · Model assessment should always happen out-of-sample
- If n is big (\geq 10000), a single train/validation split is often sufficient
- For smaller samples, k-fold cross-validation with 5 \leq k \leq 10 is a good trade-off between bias and variance
- The bootstrap is an effective way of getting confidence intervals for model parameters

Model selection and assessment

Model selection and assessment

- Model assessment via cross-validation is sufficient if we want to estimate the out-of-sample error of a known model.
- Very often we want to know whether a set of predictors are informative for an outcome given the best possible model
- In that case, we have to both choose the best model, and estimate its performance
- If we choose the model based on regular cross-validation, the performance estimate will likely be inflated

Model selection and assessment

- Model assessment via cross-validation is sufficient if we want to estimate the out-of-sample error of a known model.
- Very often we want to know whether a set of predictors are informative for an outcome given the best possible model
- In that case, we have to both choose the best model, and estimate its performance
- If we choose the model based on regular cross-validation, the performance estimate will likely be inflated
- ightarrow We need a more advanced strategy

Dataset																

Model selection and assessment: Summary

- Whenever a choice is made on the basis of performance in a dataset, the performance of the chosen model on that dataset is going to be biased.
- If n is big (\geq 10000), a single train/validation/test split is often sufficient
- If possible, use nested cross-validation to select the best model and estimate the out-of-sample error

