6. 时序逻辑电路的分析与设计

- 6.1 时序逻辑电路的基本概念
- 6.2 同步 时序逻辑电路的分析
- 6.3 同步 时序逻辑电路的设计
- *6.4 异步 时序逻辑电路的分析
- 6.5 若干典型的时序逻辑集成电路

6.5 若干典型的时序逻辑集成电路

6.5.1 寄存器和移位寄存器

1、寄存器

寄存器:是数字系统中用来存储代码或数据的逻辑部件。 它的主要组成部分是触发器。

一个触发器能存储1位二进制代码,存储n位二进制代码的寄存器需要用n个触发器组成。寄存器实际上是若干触发器的集合。

8位CMOS寄存器74HC/HCT374

脉冲边沿敏感的寄存器

8位CMOS寄存器74LV374

•						输出		
工作模式		\overline{OE}	СР	D_N	内部触发器 <i>Q</i> ⁿ⁺¹	$Q_0 \sim Q_7$		
•	存入和读出数据	L	↑	L		对应内部触发		
17	行八個民山剱加	L	↑	Н	H	器的状态		
- 存 <i>入</i>	入数据,禁止输出	Н	↑	L	L	高阻		
	八剱炻,示山制出	Н	↑	Н	Н	高阻		

2、移位寄存器

- •移位寄存器的逻辑功能

(1) 基本移位寄存器

(a) 电路

(b). 工作原理

2、写出激励方程:

$$D_0 \!\!=\!\! D_{\rm SI} \qquad \quad D_1 \!\!=\!\! Q_0{}^{\rm n} \qquad \quad D_2 \!\!=\!\! Q^{\rm n}{}_1 \qquad \quad D_3 \!\!=\!\! Q^{\rm n}{}_2$$

3、写出状态方程: CP↑

$$Q_0^{n+1} = D_{SI}$$
 $Q_1^{n+1} = D_1 = Q_0^n$ $Q_2^{n+1} = D_2 = Q_1^n$ $Q_3^{n+1} = D_3 = Q_2^n$

FF₀ FF₁ FF₂ FF₃ $Q_0^{n+1} = D_{SI}$ 1CP 后 $Q_1^{n+1} = Q_0^n$ 2CP 后 0 $Q_2^{n+1} = Q^{n}_1$ 3CP 后 $Q_3^{n+1} = Q_2^n$ 4CP 后 FF_0 FF_1 FF_2 1011 1D $D_{\rm SI}$ 1D 1D D_{SO} **CP**

 D_{SI} =11010000,从高位开始输入

经过4个CP脉冲作用后,从 $D_{\rm SI}$ 端串行输入的数码就可以从 $D_{\rm O}$ 端串行输出。串入 \rightarrow 串出

(2) 典型集成电路

8位移位寄存器74HC/HCT164

内部逻辑图

 $D_{SI} = D_{SA} \cdot D_{SB}$ D_{SA} 或 D_{SB} 可以做移位寄存器的使能端

2. 多功能双向移位寄存器

(1) 工作原理

高位移向低位----左移

低位移向高位----右移

多功能移位寄存器工作模式简图

11

实现多种功能双向移位寄存器的一种方案(仅以FFm为例)

$$S_1S_0=00$$
 $\boldsymbol{Q}_m^{n+1}=\boldsymbol{Q}_m^n$ 不变 $S_1S_0=10$ $\boldsymbol{Q}_m^{n+1}=\boldsymbol{Q}_{m+1}^n$ 高位移

$$S_1S_0=10$$
 $\boldsymbol{O}^{n+1}=\boldsymbol{O}^n$ 向低位

$$S_1S_0=01$$
 $\boldsymbol{Q}_m^{n+1}=\boldsymbol{Q}_{m-1}^n$ 低位移 $S_1S_0=11$ $\boldsymbol{Q}_m^{n+1}=\boldsymbol{D}_m^{\text{ 并入}}$

(2) 典型集成电路

CMOS 4位双向移位寄存器74HC/HCT194

74194逻辑符号

74HCT194 的功能表

输 入											输出			
清零			串行输入		时	并行输入								
CR	S_1	S_0	右 移 D _{SR}	左 移 D _{SL}	钟 CP	DI_0	DI_1	DI_2	DI_3	Q_0^{n+1}	Q_1^{n+1}	Q_2^{n+1}	Q_3^{n+1}	行
L	X	×	×	×	×	×	×	×	×	L	L	L	L	1
Н	L	L	×	×	×	×	×	×	×	Q_0^n	Q_1^n	Q_2^n	Q_3^n	2
Н	L	Н	L	×	↑	×	\times	×	×	L	Q_0^n	Q_1^n	Q_2^n	3
Н	L	Н	Н	\times	1	×	\times	\times	×	Н	Q_0^n	Q_1^n	Q_2^n	4
Н	Н	L	×	L	1	×	×	×	×	Q_1^n	Q_2^n	Q_3^n	L	5
Н	Н	L	×	Н	1	×	\times	\times	\times	Q_1^n	Q_2^n	Q_3^n	Н	6
Н	Н	Н	X	X	1	DI_0^*	DI_1^*	DI_2^*	DI_3^*	D_0	$\widetilde{D_1}^2$	\widetilde{D}_2^3	$D_{ m 3}$ 15	7

例题: (习题集11) 4位双向移位寄存器74194功能表如下表所示。设初始状态为 $Q_AQ_BQ_CQ_D$ =0011,分析电路,写出

状态转换表并画各Q端波形。

CP	DU=QB ⊕ QD	QA	QB	QC	QD
0		0	0	1	1
1					
2					
3					
4					
5					
6					

$$\begin{array}{c} (Q_{D}\text{-}Q_{A}) \\ 1111 \rightarrow 1110 \rightarrow 1100 \\ \uparrow \qquad \qquad \downarrow \\ 0111 \leftarrow 0011 \leftarrow 1001 \end{array}$$

作业(3)

- 课后参考习题:
- 6.5.1
- 习题集(选做):
- 5, 6

18

19

作业总

- 课后题:
- 时序逻辑电路分析:
- 6.2 (2, 3, 6)
- 6.4.2 (选做)
- 时序逻辑电路设计
- 6.3 (2, 3, 4)
- 若干典型的时序逻辑电路
- 6.5 (4、13、15、16、17、18、19、20 (去掉))
- 6.5.1
- 习题集: 全部

练习1:

由74hc194和译码器74hc138组成的电路图如图所示,分析电路,列出状态表,并画出输出端L的波形。

练习2:

由74hc194和译码器74hc151组成的电路图如图所示,分析电路,列出状态图,并画出输出端SL的波形。

练习3:

由74hc194和译码器74hc151组成的电路图如图所示,分析电路,列出状态图,并画出输出端Y的波形。

23

小 结

- 时序电路的分析,首先按照给定电路列出各逻辑方程组、进而列出状态表、画出 状态图和时序图,最后分析得到电路的逻辑功能。时序电路的设计,首先根据逻辑功能的 需求,导出原始状态图或原始状态表,有必要时需进行状态化简,继而对状态进行编码, 然后根据状态表导出激励方程组和输出方程组,最后画出逻辑图完成设计任务。。
- 时序逻辑电路一般由组合电路和存储电路两部分构成。它们在任一时刻的输出不仅是 当前输入信号的函数,而且还与电路原来的状态有关。时序电路可分为同步和异步两大类 。逻辑方程组、状态表、状态图和时序图从不同方面表达了时序电路的逻辑功能,是分析 和设计时序电路的主要依据和手段。