Control Systems

G V V Sharma*

2 Bode Plot 1 Mason's Gain Formula 2.1 Introduction 2 **Bode Plot** 1 Introduction 2.1 1 2.2 Example 1 3 **Second order System** 1 3.1 Damping 1 3.2 Example 1 3.3 Example 2 1 4 **Routh Hurwitz Criterion** 2 4.1 Routh Array 2 4.2 Marginal Stability 2 Stability 4.3 2 5 2 **State-Space Model** Controllability and Observability 2 5.1 5.2 Second Order System 2 6 **Nyquist Plot** 2

2

2

2

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

CONTENTS

Download python codes using

Compensators

Phase Margin

Gain Margin

7

8

9

1 Mason's Gain Formula

2.2 Example	
3 Second order System	
3.1 Damping	
3.2 Example	
3.3 Example 2	
3.1. A second-order real system has the fo properties:	llowing
a) the damping ratio $\zeta = 0.5$ and unc	damped
natural frequency $\omega_n = 10 rad/s$	•
b) the steady state value of the output, to a unit	
step input, is 1.02.	
The transfer function of the system is $\frac{102}{102}$	
(A) $\frac{1.02}{s^2 + 5s + 100}$ (B) $\frac{102}{s^2 + 10s + 100}$ (C) $\frac{100}{s^2 + 10s + 100}$ (D) $\frac{102}{s^2 + 5s + 100}$	
(C) $\frac{100}{s^2+10s+100}$ (D) $\frac{100}{s^2+5s+100}$	
Solution: Characteristic equation of	second
order system is as follows	
2	
$s^2 + 2\zeta\omega_n s + \omega_n^2 = 0$	(3.1.1)
Given	
$\zeta = 0.5$	(3.1.2)
$\omega_n = 10 rad/s$	(3.1.3)
Therefore the equation becomes	
$s^2 + 10s + 100 = 0$	(3.1.4)

Denominator of the Transfer Function is characteristic equation. Considering this, we can eliminate A and D options.

We know that output of the system in s domain is

(3.1.5)

$$C(s) = T(s)R(s)$$
 (3.1.6)

$$R(s) = \frac{1}{s}$$
 (3.1.7)

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

as it is unit step input.

Steady state output is given by

$$C(\infty) = \lim_{s \to 0} sC(s) \tag{3.1.8}$$

Given, steady state output is 1.02 and is the same for only option B

Therefore, transfer function of the system is

$$\frac{102}{s^2 + 10s + 100} \tag{3.1.9}$$

4 ROUTH HURWITZ CRITERION

- 4.1 Routh Array
- 4.2 Marginal Stability
- 4.3 Stability
- 5 STATE-SPACE MODEL
- 5.1 Controllability and Observability
- 5.2 Second Order System
 - **6** Nyquist Plot
 - 7 Compensators
 - 8 Phase Margin
 - 9 Gain Margin