Many-Armed Bandits with High-Dimensional Contexts under a Low-Rank Structure

Nima Hamidi

Stanford University

Mohsen Bayati Stanford University

Kapil Gupta Airbnb

Formal setting

- **1** Each arm *i* corresponds to an **unknown** vector $B_i \in \mathbb{R}^d$.
- ② At time t, a **context vector** $X_t \in \mathbb{R}^d$ is revealed to the policy.
- **3** The policy π selects action $a_t \in [k]$.
- **1** The **reward** is given by $y_t = \langle B_{a_t}, X_t \rangle + \varepsilon_t$.

Formal setting

- **1** Each arm *i* corresponds to an **unknown** vector $B_i \in \mathbb{R}^d$.
- ② At time t, a **context vector** $X_t \in \mathbb{R}^d$ is revealed to the policy.
- **3** The policy π selects action $a_t \in [k]$.
- The **reward** is given by $y_t = \langle B_{a_t}, X_t \rangle + \varepsilon_t$.

We further assume:

- \bigcirc X_t 's are i.i.d.
- $(X_t) \perp (\varepsilon_t)$
- \bigcirc B is of rank r.

Cumulative regret

Definition

We define the **cumulative regret** of a given policy as follows:

$$R_T = \sum_{t=1}^T \left[\max_{1 \leq i \leq k} \langle B_{t,i}, X_t \rangle - \langle B_{t,a_t}, X_t \rangle \right].$$

Policies with smaller (expected) regrets are desired.

Theoretical guarantees

- OLS-Bandit: $O(d^2k^3\log(T))$ [Alexander Goldenshluger]
- Lasso-Bandit: $O(s^2k^3\log(T)^2)$ [Hamsa Bastani]
- REAL-Bandit: $O(r^2(k+d)\log(T)^2)$

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

Use any low-rank estimator, such as

$$\bar{B} := \operatorname*{arg\,min}_{B} \frac{\|Y - \mathfrak{X}(B)\|_2^2}{n} + \lambda \|B\|_*$$

such that the following holds with high probability

$$\left\|\bar{B}-B\right\|_F^2 \le C\sigma^2 \frac{dr}{n}.$$

• This bound leads to extra \sqrt{k} in the regret bound.

- Let \bar{B} be defined as in the previous slide.
- Run the following "row-enhancement" procedure.
- This procedure eliminates extra \sqrt{k} factor in the regret.

Input: matrix $\bar{B}_{k \times d}$, observations $(X_1, Y_1), \dots, (X_n, Y_n)$

- 1: Compute SVD $\bar{B} = UDV^T$.
- 2: Let V_r^T be the matrix containing r top rows of V^T .
- 3: Let $\hat{\beta} = \arg\min_{\beta \in \mathbb{R}^d} \sum_{i=1}^n (Y_i X_i V_r \beta)^2$.
- 4: Then, output $\widehat{B}_{\kappa} = (V_r \hat{\beta})^T$.

Data 1

Data 2

Simulations

- $B: 200 \times 201 \text{ of rank 3,}$
- SD of noise (σ) : 1,
- Context vectors (X_t): vectors of length 201 with i.i.d. standard normal entries.

References

Alexander Goldenshluger and Assaf Zeevi

A linear response bandit problem Stochastic Systems 3.1 (2013): 230-261.

Hamsa Bastani and Mohsen Bayati

Online decision-making with high-dimensional covariates (2015).

Thank you