FIG. 1

Constitutively Active Receptors

				1	12	27									 _	
The famous as	Keierence		(Robbins, Nadeau et al.	(666)			(Pauwels, Gouble et al.	1999)	1 1 2	al. 1998)		(Herrick-Davis, Egan et al. 1997)				
	Assay / Cells		adenylyl cyclase activity/ (Robbins, Nadeau et al.	HEK 293, stably transfected			binding of [35]GTP[S]	CHO-KI		IP production / COS-/		PI hydrolysis / COS-7				
	Sequence		92	VSIVL <u>E</u> TTIIL K			313	RERKATKTLGI	К, К, Q	322 NEQKACKVLGI	×	312 NEDDA <u>S</u> KVLGI	7			
	Mutation Site		TMII				C terminis of IC3			C-terminus of IC3		C-terminus of IC3				
	December	Neceptor	melanocyte-stimulating	hormone	MSH		1.1.	3-nydioxyu yprammela		5-hydroxytryptamine _{2A}		5-hydroxytryptamine _{2C}				
	TOPE AVE.	CLASS A	GROUP I	agrant Wildin		CLASS A	GKOUF II	SHIB_numan		5H2A_human		2H2C_rat				1

41.0

Ē,	-
Ä	1
¥	1
T.	Wilder Market Ma Market Ma Market Market Ma Ma Market Ma Ma Market Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma
Ü	2
	4
1	1000
=	
Ē	
-	
1	Trans.
=	2
His.	1
	1
1	ilitii.

	Scheer, Fanelli et al.	(1997)			(Scheer, Costa et al. 2000)	(Perez, Hwa et al. 1996)		(Hwa, Gaivin et al. 1997)	(Kjelsberg, Cotecchia et al. 1992)	(Allen, Lefkowitz et al. 1991)	(Ren, Kurose et al. 1993)	(Högger, Shockley et al. 1995)	(Liu, Blin et al. 1996)
	TB/00/41				P/COS-7	IP/COS-1	IP arachidonic acid release	IP / COS-1	PI/COS-7	PI hydrolysis / rat fibroblast	adenylyl cyclase inhibition / HEK293	PI / HEK(U293)	IP production, inhibition of cAMP production / COS-7
		63 FAIVQ <u>N</u> ILVIL	E.	142 CAISIDRYIGV	A 143 CAISIDEYIGV	128 AVDVL <u>C</u> CTASI	293 REKKAAKTLGI	204 EEPFYALFSSLG V	293 SREKKAAKT X=19 different	כייו	373 (348?) EKRETEVLAV	SLVK	A 390 KKVTRTIL:A 1-4 A inserted
		TMDI		junction between TMDIII and IC2		TMIII	carboxyl end of IC3	TMV	C-terminal IC3	C-terminus IC3	C-terminal IC3 loop	C-terminal IC3 loop junction	junction of IC3 and TMVI
2 of 15)		α ₁₈ -adrenergic	alpha 1B-AR		α ₁₈ -adrenergic	alpha 1B-AR α ₁₈ -adrenergic			α ₁₈ -adrenergic	α ₁₈ -adrenergic	α ₂ C10-adrenergic	alpha-2AAR muscarinic Hm1	muscarinic acetylcholine M1 muscarinic acetylcholine M2
FIG. 1 (2 of 15)	CLASSA	GROUP II A1AB_human α	83		A1AB_human c	A1AB_human (A1AB_human	A1AB_human	A2AA_human	ACM1_human	ACM2-human

FIG. 1 (3 of 15)

				3/27					
	(Blüml, Mutschler et al. 1994)	(Burstein, Spalding et al. 1996)	(Spalding, Burstein et al. 1998)	(Spalding, Burstein et al. 1997)	(Mason, Moore et al. 1999)	(Samama, Cotecchia et al. 1993); (Lefkowitz, Cotecchia et al. 1993)	(Charpentier, Jarvie et al. 1996)	(Cho, Taylor et al. 1996)	(Alewijnse, Timmerman et al. 2000)
	IP/COS-7	β-gal / NIH 3T3	β-gal; radioligand binding / NIH-3T3	β-gal; radioligand binding / NIH-3T3	adenylyl cyclase; agonist binding / CHW	adenylyl cyclase activation; agonist binding affinity / COS-7 or CHO	adenylyl cyclase; cAMP accumulation / HEK293	CAMP accumulation / COS-7	cAMP production / HEK-293
	507 TWIPY <u>N</u> IMVLVNT S	chimera composed of m2 1-69 m5 77-445 m2 301-466	451 459 465 A <u>LLLA EITW TPYNI MVLVS</u> T M L H C V S F	465 YNIMVLV <u>S</u> TFCDKCV X=V,F,R,K,+more	389 RKAFQGLLCCA R	266 272 FCLKEHKALKTLGI SR K A	264 SFKMSEKRETKVLKT I K 288 from DIB receptor APDTSIKKETKVLKT	286 FVCCWLPPFIL A	115 FMISL <u>D</u> RYCAV N,A
	TMVI	N-terminus to TMII TMVI	TMVI	junction of TMVI and EC3	C-terminus	C-terminal IC3 loop	carboxyl terminal IC3	TMVI	ZOI
	m3 muscarinic (rat)	m5 muscarinic muscarinic acetylcholine M5	m5 muscarinic muscarinic acetylcholine M5	m5 muscarinic muscarinic acetylcholine M5	β ₁ -adrenergic	β ₂ -adrenergic beta-2AR	doparnine D1A	doparnine D1	histamine H ₂
CLASS A GROUP II	ACM3_rat	ACM5_human	ACM5_human	ACM5_human	BIAR_human	B2AR_human	DADR_human	DADR_human	HH2R_rat

FIG. 1 (4 of 15)

						<u>.</u>		4/	2	7											
Reference		(Rim and Oprian 1995)							(Acharya and Karnik	1996)		(Han, Smith et al. 1998)				(Govardhan and Oprian	1994);	(Conen, rang et al. 1995)			(Cohen, Yang et al. 1993)
Assay / Cells		transducin; phosphorylation by	rhodopsin kinase / COS						transducin; radioligand	binding / COS		transducin, GTPyS	uptake / COS			transducin; radioligand	binding / COS				
Sequence	-	90 FMVLG <u>G</u> FTSTLY	D 113	GCNLEGFFAT	Q 292-296	MIIPAFFAKSAAIY	E G, E, M	"Ala neutral a.a converted to carboxylate and competes with 113Glu for salt bridge with 256Lys	134	VVLAIERYVVV	1,0,8	257	RMVIIMVIAFL	X,X	plus G113Q	296	PAFFAKSAALY	X=E,M natural mutants	+ 10 different a.a. substitutions	disrupts critical salt bridge between 296Lys(TMVII) and 113Glu(TMIII)	134 VVLAIERYVVV Q
Mutation Site		TMII	111742	INTELL		TMINT	-		TMIII			TM6			plus TM3	TMVII					IC2
Receptor		opsin	rhodopsin						opsin		rhodopsin	opsin	•	rhodopsin		opsin		rhodopsin			
File Name	CLASS A GROUP III	OPSD_human							OPSD human	-		OPSD human	t			OPSD_human	l				

FIG. 1 (5 of 15)

Of the I distribute	(Matus-Leboviten, Nussenzveig et al. 1995)		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*Ca** efflux, [Ca**] / Xenopus oocytes; IP formation / AfT20, stably transfected		
	335 FRKL <u>C</u> NCKQK STOP		
	carboxyl tail		
	thyrotropin-releasing hormone TRH-R		
	TRFR_mouse		

FIG. 1 (6 of 15)

Tile Name	December	Mutation Site Sequence		Assay / Cells	Reference
THE MAINE	Neceptor	COLUMN TATA			
CLASS A					
BRB2_human	BRB2_human bradykinin B2	TMIII	113 ATISMNLYSSI	IP production / COS-7	(Marie, Koch et al. 1999)
	B2 bradykinin	TMVI	A 256		
	BK-2		LLFIICMLPFQI		
			L-d		

FIG. 1 (7 of 15)

Т	I		<u> </u>	·····			7/2	7			(%	T	-	Ţ								
Reference		(Groblewski, Maigret et al. 1997)	-	(Parnot, Bardin et al. 2000)	(Amatruda, Dragas-	Graonic et al. 1995)		(Burger, Burger et al.	1999)		(Kudo, Osuga et al. 1996)		(Shenker, Laue et al.	1993)	(Kosugi, Van Dop et al.	(6,641	(Bradbury, Kawate et al.	1997; Bradbury and Menon 1999)	(Cavalli, Babey et al.	1999)	(Fanelli, Barbier et al.	(8861
Assay / Cells		phospholipase C; IP production / COS-7	1,000.00 m	1P production / HEK- 293; intrcellular Ca ^{2*} mobilization / CHO	PI production:	phospholipase C stimulation / COS-7		IP production; Ca2+	moblization and actin	polymerization / NIH 3T3	cAMP production/	HEK293	cAMP production /	COS-7	cAMP production /	COS-7	cAMP production/	HEK 293T	adenylyl cyclase	inhibition / COS-7	IP production / COS-7	
Sequence		111 ASVSF <u>N</u> LYASV A disruots ¹¹¹ Asn (TMIII) -	292Tyr (TMVII) interaction	305 LFYGF <u>L</u> GKKFK O	, L	LV <u>I</u> WV <u>AGFRMTHTVTTISY</u> LNKAVA LVVWVTAFEAKRTINAIWFLNLAVA	(K above conflicts with SWISS-PROT database)	138	ACISVDRYLAIVH	Λ	564	MATNK <u>D</u> TKIAKK G	578	ILIFTDFTCMA G	571 577	KIAKKMAILIFIDFTCM I I	556	ILIFTDFTCMA G, Y	128	KVLSIDYYNMF A, K, H	137	LMSLDRCLAIC A
Mutation Site		TMIII		C-terminus of TM7	101			IC2			IC3		TMVI		TM6		TMVI		TM3		ICZ	
Receptor		ATı, Type-1A angiotensis II		ATIA T.ma 1A anciotencie II	formylmethionyllencylphenylal	anine (fMLPR)		interleukin-8 receptor B		CXCR-2 chemokine	Inteinizing hormone (LH)		luteinizing hormone (LH)		luteinizing hormone (LH)		Inteinizing hormone / human	chorionic gonadotropin	delta opiod receptor	•	oxytocin	
File Name	CLASS A GROUP V	AG2R_rat		AG2R_rat	That the beament	rivilla.		II 8R himan			I SHR human		LSHR human	ı	LSHR human	1	I CUD rat	LO1111 141	OPRD monse		OXYR human	ı

L]
£
<u>I</u>
m
đ
1
<u>L</u>
Ξ
-
TOTAL STATE OF THE PARTY OF THE
TOTAL CONTROL OF THE PARTY OF T
TOTAL CONTROL OF THE PARTY OF T
TOTAL CONTROL OF THE PARTY OF T

ر ال	FIG. 1 (8 of 15)			2 0007	
PAFR_human	platelet-activating factor (PAF)	C-terminus of IC3	231 EVKRRALMMVCTVLAV R	IP production / COS-/	(Farent, Le Gouin et al. 1996)
PAFR_human	platelet-activating factor (PAF)	ТМІІІ	100 CLFFINTYCSV A	arachnidonate release, IP production, adenylyl cylcase inhibition / CHO	(Ishii, Izumi et al. 1997)
PE23_human	prostaglandin E ₃ , EP3III EP3IV	C-terminal tail	360 FCQEEFWGN FCQMRKRRIREOEEFWGN Truncated	inhibition of adenylyl cyclase / CHO-K1	(Jin, Mao et al. 1997)
PE23_mouse	prostaglandin E, EP3	carboxyl-terminal tail	336 KILLRKFCQ <u>IRDHI</u> (3α) <u>MNNHL</u> (3β) [†] Eruncated	inhibition of adenylate cyclase / CHO, stably expressed	(Hasegawa, Negishi et al. 1996)
THRR_human	thrombin	EC2 loop	259 268 CHDVL <u>NETLLEGY</u> YAYY DLKD KOF I	45Ca 2* efflux, PI hydrolysis, reporter gene induction / COS-7	(Nanevicz, Wang et al. 1996)
TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	BC1	486 YYNHALDWQTG F,M	inositol phosphate diacylglycerol cascade / COS-7	(Ратпа, Van Sande et al. 1995)
		BC2	568 YAKVSICLPMD T		
TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	TMIII	509 ASBLS <u>V</u> YTLTV A	adenylyl cyclase activation / COS-7	(Duprez, Parma et al. 1994)
		TMVII	672 YPLNS <u>C</u> ANPFL Y		
TSHR_human	thyrotropin (TSHR)	TMV	597 VAFVI <u>V</u> CCCHV L	cAMP formation / COS-7 cells	(Esapa, Duprez et al. 1999)
TSHR_human	<u> </u>	TMVII	677 CANPFLYAIFT V	cAMP formation / CHO cells	(Russo, Wong et al. 1999)
TSHR_human		IC3	613 621 VRNP <u>OYNPGDKDTK</u> IAK deletion	cAMP formation / COS-7	(Wonerow, Schoneberg et al. 1998)

FIG. 1 (9 of 15)

TSHR_human	thyrotropin (TSHR)	IC3 / TMVI	623 632 KDTKIAKRMAVLIF <u>T</u> DFICM	cAMP activation / COS-7	(Paschke, Tonacchera et al. 1994)
	thyroid stimulating hormone		V I		10001
V2R_human	vasopressin V2	IC2	136 LAMTL <u>D</u> RHRAI	cAMP formation / COS-7	(Morin, Cotte et al. 1990)
			Ą		

FIG. 1 (10 of 15)

						10)/2	27	7			Ţ		
Reference		(Cohen Thaw et al 1997)	(1000)	(Schipani, Jensen et al.	1997)				(Teens and Lin 1997)	() Company and ()	(Hjorth, Orskov et al. 1998)		(Gaudin, Maoret et al. 1998) (Gaudin, Rouyer-Fessard et al. 1998)	
Assav / Cells		DAMP.	adenylyl cyclase calvit production / COS-1	cAMP accumulation/	COS-7				ANA (P. C. d. retion / 1 203	cAMF production 1 L223	cAMP accumulation / COS-7	,	cOS-7 or CHO	·
	and active				223 TRNYIHMHLFL R, K	410 KLLKS <u>T</u> LVLMP C,others				340 Vpapv <u>t</u> eeqar P	178 TRNY IHGNLFA R	352 RLARS <u>T</u> LTLIP A	178 RNYIHMHLFI R requires functional integrity of the N-terminal EC domain	343 LARGILLIP X= K, P
Wintertion City	Mutation one		wild type (native) protein		junction of IC1 and TMII	junction of IC3 and TMVI				TMVI	junction of IC loop! and TMII	IC end of TMVI	junction of IC loop I and TMII	junction of IC loop 3 and TMVI
	Receptor		human calcitonin hCTR-1 hCTR-2		parathyroid hormone PTH / PTH-related peptide					glucose-dependent insulinotropic peptide (GIP-R)	glucagon		vasoactive intestinal peptide 1 (VIP)	
	File Name	CLASS B	CALR_human	CLASS B	PTRR_human				CLASS B	GIPR_human	GLR_rat		VIPR_human	

FIG. 1 (11 of 15)

					5
File Name	Recentor	Mutation Site	Sequence	Assay / Cells	Keierence
A HULLIANIE					
CLASSC			Theory of the state of the stat	TD / 42 A	(Tensen Snalding et al
CASR_human	CASR_human calcium-sensing	N-terminal EC	TLSEVA <u>ONKIDELNIDEECNISERI</u> various substitutions, in multiple combinations	Cg / JI	2000)
)

FIG. 1 (12 of 15)

			12	/27			_	
Reference		(Olesnicky, Brown et al. 1999)	(Konopka, Margarit et al. 1996)	(Boone, Davis et al. 1993)	(Comment Martin et al	2000)		
Assay / Cells		heterologous yeast assay	lacZ reporter gene	yeast Periode Brown Brow	p-galactosidase	b-galactosidase		
Sequence		229 PLSAYQIYLGT P	258 QSLLV <u>PS</u> IIFI LL	MSFVLVVKITLAIR C C C 247 251 DSFHILLIMSCOSLL CC CC double mutations shaded double mutations		253 258 LIMSCQSLLVRSIIFI L LP		
Mutation Site		TM6	TM6	double mutations IM5 and TM6	IC3	TM6		
Recentor		pheromone	pheromone α-factor	pheromone α-factor	pheromone a-factor	pheromone α-factor		
Kilo Name	CT ASS D	O74283 RCB2	C. cinereus STE2_yeast	STE2_yeast	STE3_yeast	STE2_yeast		1

FIG. 1 (13 of 15) Bibliography

Alewijnse, A. E., H. Timmerman, et al. (2000). "The Effect of Mutations in the DRY Motif on the Constitutive Activity and Structural Instability of the Histamine H(2) Receptor." Acharya, S. and S. S. Karnik (1996). "Modulation of GDP release from transducin by the conserved Glu134-Arg135 sequence in rhodopsin." LBiol Chem 271(41): 25406-11. Mol Pharmacol 57(5): 890-898

Allen, L. F., R. J. Lefkowitz, et al. (1991). "G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the alpha 1B-adrenergic receptor enhances

Amairuda, T. T., 3rd, S. Dragas-Graonic, et al. (1995). "Signal transduction by the formyl peptide receptor. Studies using chimeric receptors and site-directed mutagenesis define a mitogenesis and tumorigenicity." Proc Natl Acad Sci USA 88(24): 11354-8.

novel domain for interaction with G-proteins." J Biol Chem 270(47): 28010-3.

Blüml, K., E. Mutschler, et al. (1994). "Functional role in ligand binding and receptor activation of an asparagine residue present in the sixth transmembrane domain of all muscarinic acetylcholine receptors." J Biol Chem 269(29): 18870-6.

Boone, C., N. G. Davis, et al. (1993). "Mutations that alter the third cytoplasmic loop of the a-factor receptor lead to a constitutive and hypersensitive phenotype." Proc Natl Acad Sci U S.A 90(21): 9921-5.

Bradbury, F. A., N. Kawate, et al. (1997). "Post-translational processing in the Golgi plays a critical role in the trafficking of the luteinizing hormone/human chorionic gonadotropin receptor to the cell surface." I Biol Cham 272(9): 5921-6.

Bradbury, F. A. and K. M. Menon (1999). "Evidence that constitutively active luteinizing hormone/human chorionic gonadotropin receptors are rapidly internalized."

13/27

Burger, M., J. A. Burger, et al. (1999). "Point mutation causing constitutive signaling of CXCR2 leads to transforming activity similar to Kaposi's sarcoma herpesvirus-G proteincoupled receptor." Limmunol 163(4): 2017-22. Biochemistry 38(27): 8703-12.

Burştein, E. S., T. A. Spalding, et al. (1996). "Constitutive activation of chimeric m2/m5 muscarinic receptors and delineation of G-protein coupling selectivity domains."

Cavalli, A., A. M. Babey, et al. (1999). "Altered adenylyl cyclase responsiveness subsequent to point mutations of Asp 128 in the third transmembrane domain of the delta-opioid Biochem Pharmacol 51(4): 539-44.

Charpentier, S., K. R. Jarvie, et al. (1996). "Silencing of the constitutive activity of the dopamine D1B receptor. Reciprocal mutations between D1 receptor subtypes delineate residues underlying activation properties." J Biol Chem 271(45): 28071-6. receptor." Neuroscience 93(3): 1025-31.

Cho, W., L. P. Taylor, et al. (1996). "Mutagenesis of residues adjacent to transmembrane prolines alters D1 dopamine receptor binding and signal transduction." Mol Pharmacol

Cohen, D. P., C. N. Thaw, et al. (1997). "Human calcitonin receptors exhibit agonist-independent (constitutive) signaling activity." Endocrinology 138(4): 1400-5. Cohen, G. B., T. Yang, et al. (1993). "Constitutive activation of opsin: influence of charge at position 134 and size at position 296." Biochemistry 32(23): 6111-5. 50(5): 1338-45.

Dube, P., A. DeCostanzo, et al. (2000). "Interaction between transmembrane domains five and six of the aipha -factor receptor." I Biol Chem 275(34): 26492-9.

Duprez, L., J. Parma, et al. (1994). "Germline mutations in the thyrotropin receptor gene cause non- autoimmune autosomal dominant hyperthyroidism." Nat Genet 7(3): 396-401. Egan, C. T., K. Herrick-Davis, et al. (1998). "Creation of a constitutively activated state of the 5- hydroxytryptamine 2A receptor by site-directed mulagenesis: inverse agonist

activity of antipsychotic drugs." I Pharmacol Exp Ther 286(1): 85-90.

Fanelli, F., P. Barbier, et al. (1999). "Activation mechanism of human oxytocin receptor: a combined study of experimental and computer-simulated mutagenesis." Mol Pharmacol Esapa, C. T., L. Duprez, et al. (1999). "A novel thyrotropin receptor mutation in an infant with severe thyrotoxicosis." Ilyzoid 9(10): 1005-10.

Gaudin, P., J. J. Maoret, et al. (1998). "Constitutive activation of the human vasoactive intestinal peptide 1 receptor, a member of the new class II family of G protein-coupled 56(1): 214-25

receptors." I Biol Chem 273(9): 4990-6. Gaudin, P., C. Rouyer-Fessard, et al. (1998). "Constitutive activation of the human VIP1 receptor." Ann NY Acad Sci 865: 382-5.

Groblewski, T., B. Maigret, et al. (1997). "Mutation of Asn111 in the third transmembrane domain of the AT1A angiotensin II receptor induces its constitutive activation." J Biol FIG. 1 (14 of 15)
Govardhan, C. P. and D. D. Oprian (1994). "Active site-directed inactivation of constitutively active mutants of rhodopsin." I Biol Chem 269(9): 6524-7.

Hasegawa, H., M. Negishi, et al. (1996). "Two isoforms of the prostaglandin B receptor EP3 subtype different in agonist-independent constitutive activity." I Biol Chem 271(4): Han, M., S. O. Smith, et al. (1998). "Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6." Biochemistry 37(22): 8253-61.

Herrick-Davis, K., C. Egan, et al. (1997). "Activating mutations of the serotonin 5-HT2C receptor." I Neurochem 69(3): 1138-44.

Hjorth, S. A., C. Orskov, et al. (1998). "Constitutive activity of glucagon receptor mutants." Mol Endoctinol 12(1): 78-86. Högger, P., M. S. Shockley, et al. (1995). "Activating and inactivating mutations in N- and C-terminal i3 loop junctions of muscarinic acetylcholine Hm1 receptors." LBiol Chem

Hwa, J., R. Gaivin, et al. (1997). "Synergism of constitutive activity in alpha 1-adrenergic receptor activation." Biochemistry 36(3): 633-9.
Ishii, I., T. Izumi, et al. (1997). "Alanine exchanges of polar amino acids in the transmembrane domains of a platelet-activating factor receptor generate both constitutively active and inactive mutants." J Biol Chem 272(12): 7846-54.

Jensen, A. A., T. A. Spalding, et al. (2000). "Functional importance of the Ala 116-Pro 136 region in the calcium-sensing receptor. CONSTITUTIVE ACTIVITY AND INVERSE AGONISM IN A FAMILY C G-PROTEIN-COUPLED RECEPTOR [in Process Citation]." I Biol Cham 275(38): 29547-55.

Jin, J., G. F. Mao, et al. (1997), "Constitutive activity of human prostaglandin E receptor EP3 isoforms." British J Pharmacol 121: 317-23.

Kjelsberg, M. A., S. Cotecchia, et al. (1992). "Constitutive activation of the alpha 1B-adrenergic receptor by all amino acid substitutions at a single site. Evidence for a region which constrains receptor activation." J Biol Chem 267(3): 1430-3.

Konopka, J. B., S. M. Margarit, et al. (1996). "Mutation of Pro-258 in transmembrane domain 6 constitutively activates the G protein-coupled alpha-factor receptor." Proc. Natl

Kosugi, S., C. Van Dop, et al. (1995). "Characterization of heterogeneous mutations causing constitutive activation of the luteinizing hormone receptor in familial male precocious Acad Sci U S A 93(13): 6764-9.

Kudo, M., Y. Osuga, et al. (1996). "Transmembrane regions V and VI of the human luteinizing hormone receptor are required for constitutive activation by a mutation in the third puberty." Hum Mol Genet 4(2): 183-8.

LcRowitz, R. J., S. Cotecchia, et al. (1993). "Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins." Irends Pharmacol Sci 14(8): 303-7. Liu, J., N. Blin, et al. (1996). "Molecular mechanisms involved in muscarinic acetylcholine receptor- mediated G protein activation studied by insertion mutagenesis." I Biol intracellular loop." J Biol Chem 271(37): 22470-8.

Marie, J., C. Koch, et al. (1999). "Constitutive activation of the human bradykinin B2 receptor induced by mutations in transmembrane helices III and VI." Mol Phatmacol 55(1): Chem 271(11): 6172-8.

Mason, D. A., J. D. Moore, et al. (1999). "A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor." I Biol Chem 274(18):

Matus-Leibovitch, N., D. R. Nussenzveig, et al. (1995). "Tuncation of the thyrotropin-releasing hormone receptor carboxyl tail causes constitutive activity and leads to impaired responsiveness in Xenopus oocytes and ArT20 cells." I Biol Chem 270(3): 1041-7.

Morin, D., N. Cotte, et al. (1998). "The D136A mutation of the V2 vasopressin receptor induces a constitutive activity which permits discrimination between antagonists with partial agonist and inverse agonist activities." FEBS Lett 441(3): 470-5.

Nanevicz, T., L. Wang, et al. (1996). "Thrombin receptor activating mutations. Alteration of an extracellular agonist recognition domain causes constitutive signaling." I Biol

Olesnicky, N. S., A. J. Brown, et al. (1999). "A constitutively active G-protein-coupled receptor causes mating self-compatibility in the mushroom Coprinus." Embo J 18(10):

Parent, J. L., C. Le Gouill, et al. (1996). "Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor." Biol Chem 271(14): 7949-55.

FIG. 1 (15 of 15)

Pamot, C., S. Bardin, et al. (2000). "Systematic identification of mutations that constitutively activate the angiotensin II type 1A receptor by screening a randomly mutated cDNA Parma, J., J. Van Sande, et al. (1995). "Somatic mutations causing constitutive activity of the thyrotropin receptor are the major cause of hyperfunctioning thyroid adenomas: identification of additional mutations activating both the cyclic adenosine 3',5'-monophosphate and inositol phosphate-Ca2+ cascades." Mol Endoctinol 9(6): 725-33.

library with an original pharmacological bioassay." Proc Natl Acad Sci USA 97(13): 7615-20.

Paschke, R., M. Tonacchera, et al. (1994). "Identification and functional characterization of two new somatic mutations causing constitutive activation of the thyrotropin receptor

Pauwels, P. J., A. Gouble, et al. (1999). "Activation of constitutive 5-hydroxytryptamine 1B receptor by a series of mutations in the BBXXB motif: positioning of the third intracellular loop distal junction and its goalpha protein interactions [In Process Citation]." Biochem J 343 Pt 2: 435-42. in hyperfunctioning autonomous adenomas of the thyroid." J Clin Endocrinol Metab 79(6): 1785-9.

Perez, D. M., J. Hwa, et al. (1996). "Constitutive activation of a single effector pathway: evidence for multiple activation states of a G protein-coupled receptor." Mol Pharmacol

Ren, Q., H. Kurose, et al. (1993). "Constitutively active mutants of the alpha 2-adrenergic receptor [published erratum appears in J Biol Chem 1994 Jan 14;269(2):1566]." L Biol

Robbins, L. S., J. H. Nadeau, et al. (1993). "Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function." Cell 72(6): Rim, J. and D. D. Oprian (1995). "Constitutive activation of opsin: interaction of mutants with rhodopsin kinase and arrestin." Biochemistry 34(37): 11938-45.

5/27

Russo, D., M. G. Wong, et al. (1999). "A Val 677 activating mutation of the thyrotropin receptor in a Hurthle cell thyroid carcinoma associated with thyrotoxicosis." Thyroid 9(1):

Samama, P., S. Cotecchia, et al. (1993). "A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model." Journal of Biological Chemistry 268(7): 4625-36.

Scheer, A., T. Costa, et al. (2000). "Mutational analysis of the highly conserved arginine within the Glu/Asp-Arg-Tyr motif of the alpha(1b)-adrenergic receptor: effects on receptor isomerization and activation." Mol Pharmacol 57(2): 219-31.

Scheer, A., F. Fancili, et al. (1997). "The activation process of the alphal B-adrenergic receptor: potential role of protonation and hydrophobicity of a highly conserved aspartate." Proc Natl Acad Sci U S A 94(3): 808-13.

Schipani, E., G. S. Jensen, et al. (1997). "Constitutive activation of the cyclic adenosine 3',5'-monophosphate signaling pathway by parathyroid hormone (PTH)/PTH-related Shenker, A., L. Laue, et al. (1993). "A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty [see comments]." Nature peptide receptors mutated at the two loci for Jansen's metaphyseal chondrodysplasia." Mol Endocrinol 11(7): 851-8.

Sommers, C. M., N. P. Martin, et al. (2000). "A limited spectrum of mutations causes constitutive activation of the yeast alpha-factor receptor." <u>Biochemistry</u> 39(23): 6898-909. Spalding, T. A., E. S. Burstein, et al. (1998). "Identification of a ligand-dependent switch within a muscarinic receptor." <u>I Biol Chem</u> 273(34): 21563-8. Spalding, T. A., E. S. Burstein, et al. (1997). "Constitutive activation of the m5 muscarinic receptor by a series of mutations at the extracellular end of transmembrane 6."

Tseng, C. C. and L. Lin (1997). "A point mutation in the glucose-dependent insulinotropic peptide receptor confers constitutive activity." Biochem Biophys Res Commun 232(1): Biochemistry 36(33): 10109-16.

Wonerow, P., T. Schoneberg, et al. (1998). "Deletions in the third intracellular loop of the thyrotropin receptor. A new mechanism for constitutive activation." I Biol Chem 273(14): 7900-5.

18/27

į

FIG. 6

FIG. 7

Target Residues Within Class I GPCR's

22/27

TMD III Asn (-14 from DRY) is a Target for Mutation Induced Constitutive Activity (Z)angiotensin II AT1A m*µ* opioid bradykinin B2

FIG. 8

FIG. 9

The -13 Position is a Target for Mutation Induced Constitutive Activity FIG. 11

thyroid stimulating hormone platelet activating factor cholecystokinin-B $\alpha_{1\mathrm{A}}$ adrenergic α_{2C} adrenergic β_2 adrenergic serotonin 2A

FIG.	26	/27	
ork orkr orm ormr ord AT1a BK-2	1MESI FRGEPGP 1MESPIQHFRGEPGP 1 MDSSAAPTNASNCTDARAYSSCSP 1 MDSSTGPGNTSDCSDPRAQASCSP 1MEP	TCAPSACIPPNSSAWFPGWARF TCAPSACILPNSSSWFPNWARSDS TCAPSACILPNSSSWFPNWARSDS APSPGSWNNLSHLDGNLSDPCGPN APGSWNNLSHVDGNQSDPCGLN APSAGAENO.PPLFUNASDAYPSA APSAGAENO.PPLFUNASDAYPSA AFLSVREDSVPTTASFSADMLNVTLQG	RTDLEGRISE RTGLEGNDSL .CPSACANASG SAEDCIKRIO
orkr	19 LEPAHISEAN PV: TTWYSWV. 59 CPPTGS.ESMITAITIMALYSHVC 57 CPQTGS.ESMVTAITIMALYSHVC 37 PPGARSASSIALAIAITALYSAVC	VVGLAGNSLVMAVIJIRYTKVKTATNI VVGLAGNSLVMAVIJIRYTKVKTATNI VVGLEGNELVAŽVI VRYTKVKTATNI VVGLEGNELVAŽVI VRYTKVKTATNI AVGLAGNULVAŽGI VRYTKVKTATNI VVGŽEGNSLVVI VI YFYMKIKIVASI VLŽTI ENIFVLSVECLHKSSCIVAE	YIFNLALADA YIFNLALADA YIFNLALADA FILINLALADI
orkr 1 orm 1 ormr 1 ord AT16 BK-2	07 LYTH PFOSAVYLMN. SWPECH 18 LATSTLPFOS NYLMG. WPFGT 16 LATSTLPFOS NYLMG. WPFGT 97 LATSTLPFOSAKYLME. WPFGT 76 CFLLTLPLWAVYTAMEYRWPFGN 05 ILACGLPFWATTISNNFDWLFGE	LCKIVISIDYYNMETSIETLIMMSVI LCKIVISIDYYNMETSIETLIMMSVI LCKIVISIDYYNMETSIETLICHMSVI LCKIVISIDYYNMETSIETLIMMSVI LCKIVISIDYYNMETSIETLIMMSVI HLCKIASASVTENTIVASMELLICESTI TLCKIVNAIISMNIVSSICELMINSTE 14 from DRY	DRYIAVCHPVK DRYIAVCHPVK DRYIAVCHPVK DRYIATVHPMK DRYIALVKTMS
orkr orm ormr	ALDERTELKAKTINICIWILASS ALDERTERNAKTINICIWILASS ALDERTERNAKTINICIWILASS ALDERTERNAKTINICIWILASS ALDERTERNAKTINICIWILASS ALDERTERNAKTINICIWILASS ALDERTERNAKTINICIWILASS	VGISAJVAGGIKVRBDVDVIECSIA VGISADVEGGIKVRBDVDVII SCEM VGISADVEGGIKVRGGSID CHA IGB DVVFVATIKYRGGSII CHA IGA BRIVANIAVIERRDGAVVOMI VGVBIDAVIHRAVYFIBATA TVCAF ASE BAVIFRTMKEYSDEGHAVTACVI	Teshptw. we Teshptw. we Teshptw. we Oelspsw. wd Hyesrn. stlp
orm ord	232 NLDKICVELFAFINPVLILTVCY 230 NLJKICVFIFAFINPVLILTVCY 211 TVTKICVFIFAFNVPILLITVCY	TIMILRIKSVRIIJSGSREKDRNIRRI TIMILRIKSVRIIJSGSREKDRNIRRI GIMILRIKSVRIVISGSKEKDRNIRRI GIMILRI ESVRIIJSGSKEKDRNIRRI GIMGIRI ESVRIIJSGSKEKDR TIMOIMOVIRNNEMOKFKEIOTE RRA	TRIVLVVVAVE TRIVLVVVAVE TRIVLVVVEAF
ork orkr orm ormr ord AT1a BK-2	284 VVCWTPIHIFIDVEALGS.T 284 IIICWTPIHIFIDVEALGS.T 292 IVCWTPIHIVVDIKALVIIP 290 IVCWTPIHIVVIIKALTIP 271 VVCWAPIHIFUTVWTLVDID 250 FFSWVPHOIFTFIDVIHOLGVII 280 IIICWLPFOISTFIDTLHRIGIL	SHETAALSSMYECIALGYTNSSLNSHETAVLSSMYECIALGYTNSSLNENTFOTVSWHECIALGYTNSCLNENTFOTVSWHECIALGYTNSCLNRRDPLVVAALHLCIALGYANSSLN HDCKISDIVDTAMPITICTAYFUNCLN SSCODERIIDVITQIASFVAYSNSCIN	PELYAFLDENF PVLYAFLDENF PVLYAFLDENF PVLYAFLDENF PVLYAFLDENF PVLYAFLDENF PVLYAFLDENF PVLYAFLDENF
ork orkr orm ormr ord AT1a BK-2	338 KRCFRDFOF PLKMRMEROSISR 338 KRCFRDFOF PLKMRMEROSISR 346 KRCFRDFOIPTSSN PROONSIR 344 KRCFRDFOIPTSST PROONSIR 326 KRCFROLORKPCGRPDPSSFSR	AR. NTVOD. BAYLRDIDGYNKPV AR. NTVOD. BASMRDVGGYNKPV BIRONYI. ROHPSIANTVDRTNIHOLENLI VIRONYI. REHPSIANTVDRTNIHOLENLI VIRONYI. REHPSIANTVDRTNIHOLENLI AREANARERVTACTPSDGPGGGAAA- SLSTKY STLEYRPSDNYSSSAKKP OMENSW GTL RTSISVEROTHKL	SEQ ID NO: 76 77 EAETAPLP 78 EAETAPLP 79 80 ASCFEVE- 81

FIG. 13	3	27/27
	_	account authoricant control of
mORmouse	1 1/11	DSSAGPGNISDCSDPIA.PASCSPAPCSWEWLSHUNDGWOSDPOGPWEYGLGGSHSLO
mORrat	1 1011	DSGTGPGWTSDCEDDIA.ORGCSPAEGGWMLGRWDGWOSDPGGLWRTGRGGWDSIG
mORbovin	1 1011	DEGAVETWASNOTIDEFTHPSGCSETAPGSSHWWFSHMSGWLSDPCGSWRTELAGESDRIA
mORhuman	1 101	SSNAPTWASNOWNALAY.SSCSPAPSECSNANLSENDENLSPPCSPWINDMCCRDS1.0
mORpig	1 🕅	DSSAGEGNISDCSDPIA. PASCSPA. ECSWINDSHIEDENOSDFOGLMETGLGGNDSLC DSSTGEGNTSDCSDPIA.OASCSPA. ECSWIND SHIPENOSDFOGLMETGLGGNDSLC DSGAVETNASNCJUDEFTHESCSPAPSESSWINFSHDEGNLSDEGEPMETELGGSDRLC DSSADETNASNCJUDALAY.SSCSPAPSESSWINFSHDEGNLSDFOGPMETDLGGSDSLC DSSADERNASNCJUDEFSPSSMCSPVPSESSWINFSHDEGNLSDPCIRMETELGGSDSLC
mORws	1 1	強度GMISDFLYDESNBVMBMSGVECRMFSMSTSFLMMMGSSRMSID
ATla	3	MALNSSAED KRI QDD
BK-2	1	mfspwkismflsvredsvpttasfsadmlnvtlogptlng.tfaosko
mORmouse	58 🚉	QTGSPSNYTALTIMALYSIVCVVGLEGNELVMYVIVRYTKMKTATNIYIENLALADALA
mORrat	58	OTGSPSWUTATTIMALYSIVCVVGLEGNELVMYVIVRYTKMKTATNIYIENLALADALA
mORbovin	61 🖺	sacspsvitaii imalysivčvyglegnelvmyvivrytknktainiyienlaladala
mORhuman	60 📳	PTGSPSMITAITIMALYSIVCVVGLEGNELVMYVIVRYTKMKTATNIYIENLALADALA
mORpig	61 📴	PTGSPSWYTAITIMALYSIVCVVGLEGNELVMYVIVRYTKMKTATNIYIENLALADALA
mORws	48 E	ODKNIP.WIIAIIITTLYSIVCVVGLVGWVLVWYVLÄRYTKVKYATNIYIFNLALADALA
ATla	70 B	vy Engledent Grantastrictive in control (Sint Mary FYM) (Six VASWORL (VIDE 1911)
BK-2	48	OVEWLGWINT OPPFLWWIFWINTLENIFWISWFCLHKSSCWAEIWIGNINAADLIL
	-	
mORmouse		STLPFOSVNYLMG. TWPFGNILCKIVISIDYYNMFTSIFTLCTMSVDRYIAVCHPVKAL STLPFOSVNYLMG. TWPFGTILCKIVISIDYYNMFTSIFTLCTMSVDRYIAVCHPVKAL
mORrat		
mORbovin		
mORhuman		
mORpig	3.00	TOTAL PROPERTY OF THE PROPERTY
mORws	107	STLEPOSVNYLMG. IMPEGDIVICKI VMSIDIYMMISISI ETITTIVSIDRYTAVCHEV KAL
ATla	78 1	LITEPUSVYTAMEYRWPFCNHLCKIASASVTENIVASVELLTCASIDRYTATVHPMKSR LITEPUSVYTAMEYRWPFCNHLCKIASASVTENIVASVELLTCASIDRYTATVHPMKSR ACGEPEWAITISNNFDWLFGETLCENVNAIISMUNYSSICFLMLVSEDRYTATVKTWSMG
BK-2	107 A	CGM38WRWT1SNNFDWDG651MC38WV4511SM
		*
mORmouse	177	DFRTPRNAKIMNVCNWILSSAIGLPVMFMATTKYROGSIDCTLTFSHPTWYWE
mORrat	177	PRTPRNAKTYNVCNWILSSAIGLPVMFMATTKYRQGSIDCTLTFSHPTWYWE
mORbovin	180	PRIPRIARIEMECHWILSSAIGLPVMFMATTKYRCGSIDCTLTFSHPTWYWE
mORhuman	779 H	DISTRIBUTION (DESIDE TO DIVIDE DE LE STATE DE LA CONTRA DEL CONTRA DE LA CONTRA DEL CONTRA DE LA CONTRA DEL CONTRA DE LA CONTRA DEL CONTRA DEL CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DEL CONTRA D
mORpig	180	DERTERNAKTENVCNWTLSSAIGLEVMEWATTKYRN. GSIDCALTESHETWYWE
mORws	166	DER VERNAKI MAVCAWILLSSATGLEVAV MASTTIEMONSPLOVSNEDCYLLEPHEPWYWE LRRYMLVAKATCIIIWAWAGLAS LEAVIHRAVYFIENTNITYCAFHYESRNSTLE
ATla	138 I	RMRGVRWAKTYSIVIWGCTLLISSPULVFRIMKEYSDEGHNVTACVISYPSLIWE
BK-2	167 F	WINGALMINE IS NAT MCCHITTES SEATHALL VA. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15
mORmouse	230	nlikicvfifafimpvliiitvcygimilrlksvrmlsgskekdrnlrritrmvlvvvavf
mORrat	220	NEAR COLD DE LEGIONAL COLONIA DE LA COLONIA
mORbovin	222	NEAR CONTRACTOR TO THE PROPERTY OF THE PROPERT
mORhuman	232	NULKTOUETEA ETMENT TETNOVELMITIRIKSVENILSESKEKDRINDRELTERNVINVENE
mORpig	233	NLLKI CVFI FAFINPVLI LTVOYGLMI LRLKSVRMLSGSKEKDRNLRRI TRMVLVVVAV F
mORws	226	TLLKICVFT DAFTMEVLITTVCYGLMILRLKSVRMLSGSKEKDRNLRRITRMVLVVAVF
AT1a	193	IGIGRTKNILGERFERMILTSYTLEWKALKKAYEHOKNKPRINDDIFRO WARVLFF
BK-2	222	VFTNVLINVVCTABE . I SWITTCTWOILVOULRNNEWOKFKEIOTE . RRANVLVIVVILLE
	***	INCOMPLIBIANT I CANADA EDITTEONISMHECIALGYTNSCLUBULYARIDENE
mORmouse		
mORrat		
mORbovin		
mORhuman		
mORpig	293	
mORws	286	INCOMPTHE VITKALETI PRSLEOF WHERE ALGUNISC MEVIAS DENE FFSWYPHOISTFEDVITOR GVIHDCKISDIVDT MPITICIAY PANCINE FFSE GKKF
ATla	250	FESSON HOUST FEDVIN ONGVI HDCKI SDI VOT BUTTO I S CRIMINATORI S CONTROL DE LA CONTROL
BK-2	280.	THICKLEFORSTFORTHREGILSSCODERLIDVITQIASFVENSCANDAVIVIVGKRE
		SEQ ID NO:
mORmouse	344	KRCFREFC. IPTSSTIEQONSARIRONTREHPSTANTVDRTNHQLENLEAETAPLE 83
mORrat	344	RECEPTED THE THE TENENT OF THE PROPERTY OF THE
mORbovin	347	RECEPTED TERSCHIEDONGURINGONURIDERSANNIAN OR WHITE THE OUT OF THE OUT OUT OF THE OUT OF THE OUT OF THE OUT OF THE OUT OUT OF THE OUT OUT OUT OUT OF THE OUT OF THE OUT
mORhuman	346	RECIPIED DOUGH SECTION
mORpig	347	RELEASED BY THE PROPERTY OF TH
mORws	340	RECEIPED RESPONDED ON CHEST ON CHEST ON CHEST OF
ATla	310	REAVEL OF TRANSPORTED KNYCHO GISTKMOTLSYRPONNISSEARCPASCEEVE O
BK-2	340	