Q 1. for (I = 1; I <= n; I++)

for (J=1; J <= n; J++)

printf ("Pankaj");

Q 2. for (I =1; I<=n; I+=2)
for(J=1;J<=n;J++)
printf("Pankaj");

for $(i=1; i \times = n; i + = 2)$ for $(j=1; j \times = n; j \leftrightarrow)$ printf("Pankay"); $Tatul = [n] \times n$

Q3. for (I=1; I<=n; I=I*3)

printf("Pankaj");

Q 4. for (I = 1; I <= n; I++)

for (J=1; J <= n; J=J*2)

printf("Pankaj");

Q 5. for (I =1; I<=n; I=I*2)
for(J=1;J<=n;J=J*2)
printf("Pankaj");

53 far (i=1; i < = n; $i = i \times 2$) $\longrightarrow [log_2 n] + L$ for (J = 1; J = z = n; J = J + 2) $\longrightarrow [log_2 n] + 1$ print ("lankag");

Tatal = ($[Log_1 n] + L$)

Q 6. for (I =1; I<=n; I=I*2)
for(J=1;J<=n;J=J*3)
printf("Pankaj");

- The state of the					
67	for (i=1; i<=n; i=i*2) - [log_n]+1				
	from (D =); D <= n; D = D x 3) -> [log, n] +1				
describes and the second	Printf ("Panekary")				
	Total = / log n / + L (Llog n / + L)				
Annual Principal Annual Principal Annual Principal Annual					
11					

```
Q 7. for (I=1; I<=n; I++)

for (J=1; J<=n; J=J*2)

for (K=1; K<=n; K=K*2)

printf("Pankaj");
```

```
Q 8. for (I= n/2; I <=n; I++)
for (J=1; J<=n/2; J++)
for(K=1; K<=n; K=K*2)
printf("pankaj"); //assume n is even
```

8 =	$far (i = n/2 j i z = n j i + f)$ $\frac{n - \frac{n}{2} + 1}{2} = \frac{n}{2} + 1$
	for () = 43] <= M2] ++)
	San (K= & 3 K <= h; K= K+2) → Llogn +1
	printf ("Panka-j");
-	

Q 9. for (I=1; I<=n; I=I*2) for (J=1; J<= I; J++) printf("pankaj");

ANALY STATE		
3.		i=(, 7=/
93	for (i=+; i==ix2)	No- = 0
.	far (7 = 1 ; 7 <= (; 7)	1=2, 3=12
	print f ("Pankay");	No. =(2)
		1=4, 0=1,23,4 No: =(2)
	$No. of times = 1 + 2 + 2^2$	f 2
	= 2 K+1 = 1	1
	/ loan /	2 <= h
	= 2 32 14	-1//
П		

Q 10. for (I=1; I<=n; I=I*2) for (J=1; J<= I; J=J*2) printf("pankaj");

