CS 228 : Logic in Computer Science

Krishna, S

- ▶ Given \mathcal{A} is a DBA, and $w \notin L(\mathcal{A})$, then after some finite prefix, the unique run of w settles in bad states.
- ▶ Idea for complement: "copy" states of Q G, once you enter this block, you stay there.
- ▶ View this as the set of good states, any word w that was rejected by A has two possible runs in this automaton: the original run, and one another, that will settle in the Q – G copy, and will be accepted.
- ▶ What we get now is an NBA for $\overline{L(A)}$, not a DBA.

Complementing NBA non-trivial, can be done.

GNBA

- Generalized NBA, a variant of NBA
- Only difference is in acceptance condition
- ▶ Acceptance condition in GNBA is a set $\mathcal{F} = \{F_1, \dots, F_k\}$, each $F_i \subseteq Q$
- ▶ An infinite run ρ is accepting in a GNBA iff

$$\forall F_i \in \mathcal{F}, Inf(\rho) \cap F_i \neq \emptyset$$

- ▶ Note that when $\mathcal{F} = \emptyset$, all infinite runs are accepting
- GNBA and NBA are equivalent in expressive power.

4/10

Word View

$$w = \{a\}\{a,b\}\{\}\ldots, \varphi = a \cup (\neg a \wedge b)$$

- ▶ The subformulae of φ are $\{\varphi, a, \neg a \land b, \neg a, b\}$
- At each position i of w, some (sub)formulae of φ or their negation are true. Consider maximally consistent such sets wrt φ , call them B_i .
- $B_0 = \{\neg \varphi, \neg b, a, \neg(\neg a \land b)\},$
- $B_1 = \{a, b, \neg(\neg a \land b), \neg \varphi\},$
- $B_2 = \{ \neg a, \neg b, \neg (\neg a \land b), \neg \varphi \}.$
- $\psi \in B_i \text{ iff } A_i A_{i+1} A_{i+2} \ldots \models \psi.$

Consistent Sets

- ▶ *B_i* is consistent wrt propositional logic subformulae:
 - $\triangleright \varphi_1 \land \varphi_2 \in B_i \Leftrightarrow \varphi_1 \in B_i \land \varphi_2 \in B_i$
 - $\psi \in B_i \Leftrightarrow \neg \psi \notin B_i$
- ▶ B_i is consistent wrt until subformulae:
 - $\varphi_2 \in B_i \Rightarrow \varphi_1 \cup \varphi_2 \in B_i$
 - $ightharpoonup \varphi_1 \cup \varphi_2 \in B_i, \varphi_2 \notin B_i \Rightarrow \varphi_1 \in B_i$
- ▶ B_i is maximal: for any subformula ψ , $\psi \in B_i \Leftrightarrow \neg \psi \notin B_i$

LTL φ to GNBA G_{φ}

- States of G_φ are sets B_i
- For a word $w = A_0 A_1 A_2 ...$ the sequence of states $\sigma = B_0 B_1 B_2 ...$ will be a run for w
- σ will be accepting iff $w \models \varphi$ iff $\varphi \in B_0$
- ▶ In general, a run B_iB_{i+1} ... for A_iA_{i+1} ... is accepting iff A_iA_{i+1} ... $\models \psi$ for all $\psi \in B_i$.

- ▶ Let $\varphi = \bigcirc a$.
- ▶ Subformulae of φ : $\{a, \bigcirc a\}$. Let $A = \{a, \bigcirc a, \neg a, \neg \bigcirc a\}$.
- Possibilities at each state : a maximally consistent subset of A holds
 - ► {*a*, *a*}

 - $a, \neg \bigcirc a$
 - $\blacktriangleright \{ \neg a, \neg \bigcirc a \}$
- ▶ Our initial state(s) must guarantee truth of $\bigcirc a$. Thus, initial states: $\{a, \bigcirc a\}$ and $\{\neg a, \bigcirc a\}$

{*a*, ○*a*}

 $\{a, \neg \bigcirc a\}$

{¬*a*, *○a*}

 $\{\neg a, \neg \bigcirc a\}$

$$\rightarrow \boxed{\{\neg a, \bigcirc a\}}$$

9/10

- Claim: Runs from a state labelled set B indeed satisfy B
- No good states. All words having a run from a start state are accepted.
- ▶ Automaton for $\neg \bigcirc a$ same, except for the start states.