Duración de Baterías

```
#Intervalo de nivel 0.95
duracion <- c (237,242,232,242,248,230,244,243,254,
              262,234,220,225,246,232,218,228,240)
ene<- length(duracion)</pre>
mean (duracion)
[1] 237.6111
sd (duracion)
[1] 11.46934
t.alpha2 < -qt(1-0.025, ene-1)
semi<- t.alpha2*sd(duracion)/sqrt(ene)</pre>
c(mean(duracion) - semi, mean(duracion) + semi)
[1] 231.9075 243.3147
```

Volviendo al Teorema...

Notemos que...

si X_1, \ldots, X_n i.i.d., $X_i \sim N(\mu, \sigma^2)$, entonces

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 = \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\sigma^2} \sim \chi_n^2$$

sin embargo, al reemplazar μ por \bar{X}_n tenemos que

$$\frac{\sum_{i=1}^{n} \left(X_i - \bar{X}_n\right)^2}{\sigma^2} \sim \chi_{n-1}^2 , \quad \text{es decir } \frac{(n-1)S_n^2}{\sigma^2} \sim \chi_{n-1}^2$$

ya que
$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

Intervalos de confianza para σ^2 con μ desconocido

Tenemos X_1, \ldots, X_n i.i.d., $X_i \sim N(\mu, \sigma^2)$. Ahora buscamos intervalo de confianza para σ^2 .

- Pivote: $\frac{(n-1)S_n^2}{\sigma^2} \sim \chi_{n-1}^2$
- Sea $\chi^2_{k,\beta}$ tal que $\mathbb{P}(U>\chi^2_{k,\beta})=\beta$ cuando $U\sim\chi^2_k$, entonces

$$\mathbb{P}\left(\chi_{n-1,1-\alpha/2}^2 < \frac{(n-1)S_n^2}{\sigma^2} < \chi_{n-1,\alpha/2}^2\right) = 1 - \alpha$$

Luego,

$$\left(\frac{(n-1)S_n^2}{\chi_{n-1,\alpha/2}^2} , \frac{(n-1)S_n^2}{\chi_{n-1,1-\alpha/2}^2}\right)$$

es un intervalo de confianza de nivel $1-\alpha$ para σ^2 bajo el modelo normal cuando μ desconocida.

Intervalos de confianza para σ^2 con μ conocida. (Ejercicio)

 $\mu = \mu_o$

Buscamos intervalo de confianza para σ^2

• Pivote:

$$\frac{\sum_{i=1}^{n} (X_i - \mu_o)^2}{\sigma^2} \sim \chi_n^2$$

• Entonces:

$$\mathbb{P}\left(\chi_{n,1-\alpha/2}^{2} < \frac{\sum_{i=1}^{n} (X_{i} - \mu_{o})^{2}}{\sigma^{2}} < \chi_{n,\alpha/2}^{2}\right) = 1 - \alpha$$

y por lo tanto,

$$\left(\frac{\sum_{i=1}^{n} (X_i - \mu_o)^2}{\chi_{n,\alpha/2}^2} , \frac{\sum_{i=1}^{n} (X_i - \mu_o)^2}{\chi_{n,1-\alpha/2}^2}\right)$$

es un intervalo de confianza de nivel $1-\alpha$ para σ^2 bajo el modelo normal cuando $\mu=\mu_o$ conocida.

Seguimos en el mundo normal...

- $X_i \sim \mathcal{N}(\mu, \sigma^2)$ i.i.d. Buscamos intervalo de confianza para μ .
- \bullet σ desconocidollegó la t...
- IC nivel $1-\alpha$ para μ

$$\left(\bar{X}_n - t_{n-1,\alpha/2} \frac{S_n}{\sqrt{n}} \quad , \quad \bar{X}_n + t_{n-1,\alpha/2} \frac{S_n}{\sqrt{n}}\right)$$

• longitud $\rightarrow L = 2 \ t_{n-1,\alpha/2} \ \frac{S_n}{\sqrt{n}}$

Seguimos en el mundo normal...

- $X_i \sim \mathcal{N}(\mu, \sigma^2)$ i.i.d. Buscamos intervalo de confianza para μ .
- \bullet σ desconocidollegó la t...
- IC nivel $1-\alpha$ para μ

$$\left(\bar{X}_n - t_{n-1,\alpha/2} \frac{S_n}{\sqrt{n}} , \bar{X}_n + t_{n-1,\alpha/2} \frac{S_n}{\sqrt{n}}\right)$$

- longitud $\rightarrow L=2\;t_{n-1,\alpha/2}\;\frac{S_n}{\sqrt{n}}$
- L es una v.a. Si queremos que $l \leq l_o$ ¿Cómo hacemos?
- Se debe trabajar con una muestra piloto, sugerencia: ver Notas de Estadística de Boente & Yohai.

Un ejemplo fuera del mundo normal...

Intervalos de confianza para λ de una $\mathcal{E}(\lambda)$

Sea X_1, X_2, \ldots, X_n una m.a. de una distribución $E(\lambda)$. Hallar un intervalo de confianza de nivel $1-\alpha$ para λ .

Un ejemplo fuera del mundo normal...

Intervalos de confianza para λ de una $\mathcal{E}(\lambda)$

Sea X_1, X_2, \ldots, X_n una m.a. de una distribución $E(\lambda)$. Hallar un intervalo de confianza de nivel $1 - \alpha$ para λ .

Recordemos:

- Una $\mathcal{E}(\lambda)$ es una $\Gamma(1,\lambda)$.
- La distribución de la suma de exponenciales de igual parámetro es Gamma, es decir:

$$\sum_{i=1}^{n} X_i \sim \Gamma(n, \lambda)$$

- Una constante positva por una Gamma es Gamma:

$$U \sim \Gamma(\alpha, \lambda) \text{ y } a > 0 \Rightarrow aU \sim \Gamma\left(\alpha, \frac{\lambda}{a}\right)$$

Intervalos de confianza para λ de una $\mathcal{E}(\lambda)$

Entonces,

$$\sum_{i=1}^{n} X_i \sim \Gamma(n, \lambda)$$

$$\lambda \sum_{i=1}^{n} X_i \sim \Gamma(n, 1)$$

$$2\lambda \sum_{i=1}^{n} X_i \sim \Gamma\left(n, \frac{1}{2}\right) = \Gamma\left(\frac{2n}{2}, \frac{1}{2}\right) = \chi_{2n}^2$$

Luego, el pivote para la exponencial:

$$G(X_1, X_2, \dots, X_n, \lambda) = 2\lambda \sum_{i=1}^{n} X_i$$

Intervalos de confianza para λ de una $\mathcal{E}(\lambda)$

$$P\left(\chi_{2n,1-\alpha/2}^2 \le 2\lambda \sum_{i=1}^n X_i \le \chi_{2n,a/2}^2\right) = 1 - \alpha$$

$$P\left(\frac{\chi_{2n,1-\alpha/2}}{2\sum_{i=1}^{n} X_i} \le \lambda \le \frac{\chi_{2n,a/2}}{2\sum_{i=1}^{n} X_i}\right) = 1 - \alpha$$

Por lo tanto, el intervalo de confianza para λ es

$$\left[\frac{\chi_{2n,1-\alpha/2}}{2\sum_{i=1}^{n} X_i}, \frac{\chi_{2n,a/2}}{2\sum_{i=1}^{n} X_i}\right]$$

¿Y si no conocemos la distribución?

¿Y si no conocemos la distribución?

¿Cuántos datos tenemos?

Regiones de confianza con nivel asintótico $(1-\alpha)$

Sea X_1,X_2,\ldots,X_n m.a. $X_i\sim F(x,\theta)$, $\theta\in\Theta$. Se dice que $S_n(X_1,\ldots,X_n)$ es una sucesión de regiones de confianza con nivel asintótico $1-\alpha$ si:

$$\lim_{n \to \infty} \mathbb{P}_{\theta}(\theta \in S_n(X_1, \dots, X_n)) = 1 - \alpha \quad \forall \, \theta \in \Theta .$$

Procedimiento para obtener RC con nivel asintótico

Teorema Sea X_1, \ldots, X_n una muestra aleatoria de una distribución perteneciente a la familia $F(x,\theta), \theta \in \Theta$. Supongamos que

- $\forall n, \exists \text{ v.a. } U_n = G_n(X_1, \dots, X_n, \theta) \text{ tal que } U_n \xrightarrow{\mathcal{D}} U$, donde U es una variable aleatoria con distribución independiente de θ
- A y B puntos de continuidad de F_U tales que $\mathbb{P}(A \leq U \leq B) = 1 \alpha$.

Luego, si

$$S_n(X_1,\ldots,X_n) = \{\theta : A \le G_n(X_1,\ldots,X_n,\theta) \le B\}$$

 $S_n(\mathbf{X})$ es una sucesión de RC con nivel asintótico $(1-\alpha)$.

Intervalo de confianza asintótico para la media de una distribución

• Consideremos el caso en que X_1,\ldots,X_n son una muestra aleatoria $\mathbb{E}(X_i)=\mu$ y $\mathbb{V}ar(X_i)=\sigma^2$, ambas desconocidas. Veremos que

$$\left[\bar{X}_n - z_{\frac{\alpha}{2}} \frac{S_n}{\sqrt{n}}, \bar{X}_n + z_{\frac{\alpha}{2}} \frac{S_n}{\sqrt{n}}\right]$$

es un intervalo para $\mu = \mathbb{E}(X_i)$ tiene nivel asintótico $1 - \alpha$.

Vayamos al pizarrón.

Intervalo de confianza asintótico para el parámetro p de la distribución binomial

Sea $X \sim \mathrm{Bi}(n,p)$. Podemos pensar a X como el número de éxitos en las n repeticiones en un experimento binomial con probabilidad de éxito p. Consideremos para cada $i=1,\ldots,n,$

$$X_i = \left\{ \begin{array}{ll} 1 & \text{ si se obtuvo \'exito en la } i \text{ \'esima repetici\'on} \\ 0 & \text{ si se obtuvo fracaso en la } i \text{ \'esima repetici\'on} \end{array} \right..$$

Estas v.a. son independientes y para todo i tenemos que $X_i \sim \mathrm{Bi}(1,p)$ y

$$X = \sum_{i=1}^{n} X_i$$

Además: $\mathbb{E}(X_i)=p$ y $\mathbb{V}ar(X_i)=p(1-p)$ Luego, por T.C.L. para n suficientemente grande

$$\frac{X-np}{\sqrt{np(1-p)}} \overset{a}{\sim} N(0,1) \quad \text{y} \quad \frac{\overline{X}-p}{\sqrt{p(1-p)/n}} \overset{a}{\sim} N(0,1)$$

Intervalo de confianza asintótico para el parámetro p de la distribución binomial

Sea X_1,X_2,\ldots,X_n una m.a. de una distribución B(1,p). En este contexto, consideremos $\hat{p}=\overline{X}$. Por lo visto,

$$\frac{\overline{X} - p}{\sqrt{p(1-p)/n}} \xrightarrow{\mathcal{D}} N(0,1)$$

implica que

$$P\left(-z_{a/2} \le \frac{\overline{X} - p}{\sqrt{\frac{p(1-p)}{n}}} \le z_{a/2}\right) \xrightarrow{n \to \infty} 1 - \alpha$$

¿Cómo despejamos p?

Alternativa 1: Explorar

 $[\widehat{p}_{1,n},\widehat{p}_{2,n}]$ raíces del polinomio en p

$$n\bar{X}_n^2 - p(2n\bar{X}_n + z_{\frac{\alpha}{2}}^2) + p^2(z_{\frac{\alpha}{2}}^2 + n)$$

Intervalo de confianza asintótico para el parámetro p de la distribución binomial

Alternativa 2

Por la Ley de los Grandes Números,

$$\hat{p} = \overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} \xrightarrow{p} p.$$

Reemplazamos en el denominador del pivote a p por su estimador, aplicando el Teorema de Slutzky, resulta que la distribución asintótica es la misma, o sea:

$$\frac{\overline{X} - p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \xrightarrow{\mathcal{D}} N(0,1)$$

y por lo tanto

$$P\left(-z_{a/2} \le \frac{\overline{X} - p}{\sqrt{\frac{\overline{X}(1 - \overline{X})}{n}}} \le z_{a/2}\right) \cong 1 - \alpha$$

Intervalo de confianza asintótico para el parámetro p de la distribución binomial

Por lo tanto, un intervalo para p de nivel asintótico $1-\alpha$ es

$$\left[\overline{X} - z_{\alpha/2}\sqrt{\frac{\overline{X}\left(1 - \overline{X}\right)}{n}}, \overline{X} + z_{\alpha/2}\sqrt{\frac{\overline{X}\left(1 - \overline{X}\right)}{n}}\right]$$

o, lo que es lo mismo,

$$\left[\hat{p} - z_{\alpha/2}\sqrt{\frac{\hat{p}\left(1-\hat{p}\right)}{n}}, \hat{p} + z_{\alpha/2}\sqrt{\frac{\hat{p}\left(1-\hat{p}\right)}{n}}\right]$$

¿Cómo resultaría en nuestro ejemplo de la estimación de la proporción de apoyo a las vacunas el intervalo de nivel asintótico 0.95?

Usando la distribución asintótica de los EMV

 X_1, \ldots, X_n i.i.d. donde X_i tienen función de densidad o de probabilidad puntual $f(x, \theta)$.

Bajo condiciones de regularidad hemos visto que

• si
$$\widehat{\theta}_n = \widehat{\theta}_n^{EMV}$$
, entonces $\sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{\mathcal{D}}{\longrightarrow} N(0, \frac{1}{I(\theta)})$

•

$$\sqrt{n}\sqrt{I(\theta)}(\widehat{\theta}_n - \theta) \xrightarrow{\mathcal{D}} N(0, 1)$$

La región

$$S(\mathbf{X}) = \{\theta : -z_{\frac{\alpha}{2}} \le \sqrt{n}\sqrt{I(\theta)}(\widehat{\theta}_n - \theta) \le z_{\frac{\alpha}{2}}\}$$

no tiene porqué ser un intervalo y puede ser difícil de calcular.

Usando la distribución asintótica de los EMV

• Si $I(\theta)$ es una función continua de θ , como $\widehat{\theta}_n \stackrel{P}{\longrightarrow} \theta$, bajo condiciones de regularidad obtendremos que $I(\widehat{\theta}_n) \stackrel{P}{\longrightarrow} I(\theta)$, luego

$$\sqrt{n}\sqrt{I(\widehat{\theta}_n)}(\widehat{\theta}_n - \theta) \xrightarrow{\mathcal{D}} N(0, 1)$$

ullet Entonces, un intervalo de nivel asintótico 1-lpha será

$$\left[\widehat{\theta}_n - z_{\frac{\alpha}{2}} \sqrt{\frac{1}{n \ I(\widehat{\theta}_n)}}, \widehat{\theta}_n + z_{\frac{\alpha}{2}} \sqrt{\frac{1}{n \ I(\widehat{\theta}_n)}}\right]$$