3. Estadística Descriptiva Bivariant

Estadística Grau en Matemàtiques

Josep A. Sanchez Dept. Estadística i I.O.(UPC)

Estadística Descriptiva Bivariant

Observem, per a cada individu de la mostra dues variables:

X	Y
<i>x</i> ₁	<i>y</i> ₁
x_2	<i>y</i> ₂
<i>x</i> ₃	<i>y</i> 3
x_4	<i>y</i> ₄
:	:
Xn	y _n

Objectiu: Esbrinar quin tipus de relació existeix entre elles si n'hi ha alguna.

Si existeix relació, vol dir que:

Depenent del valor d'una de les variables canvia la distribució de l'altra

Estadística Descriptiva Bivariant

Considerem les tres situacions possibles:

- Categòrica-Categòrica (ej. Tipus de cotxe-Pais de Fabricació)
- Categòrica-Numèrica (ej. Grau que es cursa-Nota d'Estadística)
- Numèrica-Numèrica (ej. Número de paraules en un text-Mida del fitxer de word en Mb)

Taules de contingència:

Tabulació de la mostra d'acord a dues variables categòriques creuades. Suposem que la variable A té m nivells i la variable B en té k

	B_1	B_2	B_3	 B_k
A_1	n ₁₁ n ₂₁ n ₃₁	n_{12}	n_{13}	 n_{1k}
A_2	n ₂₁	n_{22}	n_{23}	 n_{2k}
A_3	n ₃₁	n_{32}	n_{33}	 n_{3k}
:	:	:	:	 :
A_m	n _{m1}	n_{m2}	n_{m3}	 n_{mk}

on
$$\sum_{i=1}^{m} \sum_{j=1}^{k} n_{ij} = n$$

Taules de contingència:

- Marginal per files: $n_{i.} = \sum_{j=1}^{k} n_{ij}$
- Marginal per columnes: $n_{.j} = \sum_{i=1}^{m} n_{ij}$

	B_1	B_2	B_3	 B_k	
A_1	n ₁₁ n ₂₁ n ₃₁ : n _{m1}	n_{12}	n_{13}	 n_{1k}	$n_{1.}$
A_2	n ₂₁	n_{22}	n_{23}	 n_{2k}	n _{2.}
A_3	n ₃₁	n_{32}	n_{33}	 n_{3k}	n _{3.}
:	:	:	:	 :	:
A_m	n _{m1}	n_{m2}	n_{m3}	 n_{mk}	n _{4.}
	n _{.1}	n _{.2}	n _{.3}	 $n_{.k}$	n

Observació: La marginal per files és la taula de freqüències de la variable A i la marginal per columnes és la taula de freqüències de la variable B

La representació d'una taula de contingència en termes relatius es pot calcular de tres maneres:

- Freqüència relativa global: $f_{ij} = \frac{n_{ij}}{n}$.
 - És la freqüència de individus de la mostra que tenen simultàniament les categories A_i i B_i (freqüència conjunta).
- Freqüència relativa per files: $f_{ij} = \frac{n_{ij}}{n_{i.}}$
 - És la freqüència de individus de la mostra amb la categoria A_i que tenen la categoria B_j (freqüència condicional).
- Freqüència relativa per columnes: $f_{ij} = rac{n_{ij}}{n_{.j}}$
 - És la freqüència de individus de la mostra amb la categoria B_j que tenen la categoria A_i (freqüència condicional).

```
table (Centre, System)
##
           System
  Centre
            Linux Mac-OS Windows
##
     ETSEIB
               12
                      11
                               8
##
     FIB
               18
                      13
                              18
##
     FME
               16
                              16
prop.table(table(Centre,System))
##
           System
  Centre
                 Linux
                           Mac-OS
                                     Windows
##
     ETSETB 0.10000000 0.09166667 0.06666667
            0.15000000 0.10833333 0.15000000
##
     FIB
##
     FME
            0.13333333 0.06666667 0.13333333
```

```
prop.table(table(Centre,System),margin=1)
##
           System
##
   Centre
                I.inux
                         Mac-OS
                                   Windows
##
     ETSEIB 0.3870968 0.3548387 0.2580645
##
     FIB
            0.3673469 0.2653061 0.3673469
     FME
            0.4000000 0.2000000 0.4000000
##
prop.table(table(Centre,System),margin=2)
##
           System
##
   Centre
                Linux
                         Mac-OS
                                   Windows
##
     ETSETB 0.2608696 0.3437500 0.1904762
##
     FIB
            0.3913043 0.4062500 0.4285714
##
     FMF.
            0.3478261 0.2500000 0.3809524
```

Una variable categòrica es pot representar gràficament amb un diagrama de barres.

L'altre variable categòrica indueix una segmentació/partició de la mostra.

Combinant ambdues consideracions, la representació gràfica bivariant pot ser:

- Diagrama de barres agrupades: la segmentació es representa amb barres juntes
- Diagrama de barres apilades: la segmentació dona lloc a una divisió en les barres

barplot(table(System,Centre),beside=T)

barplot(table(System,Centre))

Una representació habitual per una taula de contingència és el *Mosaic plot*

mosaicplot(table(System,Centre))

table(System, Centre)

Resums Numèrics (cat-num)

Càlcul d'estadístics per grups:

- La variable categòrica indueix una segmentació de la mostra en grups
- Dins de cada grup es calculen els estadístics per a la variable numèrica

Permet comparar la distribució de la variable numèrica entre els diferents grups.

- Si els estadístics són semblants, no hi ha relació entre les dues variables
- Si hi ha diferències clares, les dues variables estan relacionades

Resums Numèrics (cat-num)

```
by(Sous, Pais, summary)
## Pais: Denmark
##
    Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1366 1861 2042 2025 2203 2711
## -----
## Pais: Germany
##
    Min. 1st Qu. Median Mean 3rd Qu. Max.
## 814 1414 1754 1728 1942 2704
## Pais: Spain
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 776.5 1061.5 1162.6 1187.4 1317.9 1676.2
```

Representacions gràfiques (cat-num)

dotchart(Sous,groups=factor(Pais))

Representacions gràfiques (cat-num)

boxplot(Sous~Pais)

Resums Numèrics (num-num)

Càlcul de mesures:

Covariància mostral:

$$S_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

 Coeficient de correlació mostral: mesura el grau de relació lineal entre dues variables

$$r_{XY} = \frac{S_{XY}}{S_X S_Y}$$

Resums Numèrics (num-num)

Propietats:

- $r_{XY} \in [-1,1]$
- 2 $r_{XY} = 0 \Rightarrow \text{No hi ha relació lineal entre X i Y}$

Observació: Ambdues mesures tenen les seves corresponents versions teòriques, si es coneix la distribució de les variables de les qual provenen les dades.

$$\sigma_{XY} = E[(X - E[X])(Y - E[Y])]$$

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

Resums Numèrics (num-num)

Conjunt de dades mtcars: consum (mpg), Potència(hp) i Pes (wt)
Covariància:

Correlació:

```
cor(mtcars[,c("mpg","hp","wt")])
```

```
## mpg hp wt
## mpg 1.0000000 -0.7761684 -0.8676594
## hp -0.7761684 1.0000000 0.6587479
## wt -0.8676594 0.6587479 1.0000000
```

Diagrama de punts bivariant (*scatterplot*): Representació en el pla, on les coordenades venen determinades pels valors d'ambdues variables.

plot(mpg~wt,mtcars)

Matrix plot

```
pairs(~mpg+hp+wt,mtcars)
```


Quan fem el scatter plot té sentit pensar en la recta $Y = \beta_0 + \beta_1 X$ que "millor" ajusta el núvol de punts en el sentit de que minimitza:

$$\sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

Aquesta recta s'anomena recta de regressió

La pendent de la recta de regressió està molt relacionada amb el coeficient de correlació.

Josep A. Sanchez , Dept. Estadística i I.O.(UPC)

3.Estadística Descriptiva Bivariant

Representacions Gràfiques Multivariants

En aquest gràfic es representen 4 variables simultàniament