Chapter 24. Homomorphism

Zhenjiang Hu, Wei Zhang

School of Computer Science Peking University

December 20, 2023

Longest Even Segment Problem

Given is a predicate p and a sequence x. Required is an efficient algorithm for computing some longest segment of x, all of whose elements satisfy p.

$$lsp\ even\ [3,1,4,1,5,9,2,6,5]=[2,6]$$

Homomorphisms on Lists

A homomorphism from a monoid $(\alpha, \oplus, id_{\oplus})$ to a monoid $(\beta, \otimes, id_{\otimes})$ is a function h satisfying the two equations:

$$h id_{\oplus} = id_{\otimes}$$

 $h (x \oplus y) = h x \otimes h y$

Homomorphisms on Non-Empty Lists

A homomorphism from a semi-group (α, \oplus) to a semi-group (β, \otimes) is a function h satisfying the following equation:

$$h(x \oplus y) = h \times \otimes h y$$

Map: a Homomorphism

$$f * [a_1, a_2, ..., a_n] = [f a_1, f a_2, ..., f a_n]$$

$$f * [] = []$$

$$f * [a] = [f a]$$

$$f * (x ++ y) = (f * x) ++ (f * y)$$

Reduce: a Homomorphism

$$\oplus/[a_1,a_2,\ldots,a_n]=a_1\oplus a_2\oplus\cdots\oplus a_n$$

Lemma (Promotion)

h is a homomorphism from $(\alpha, \oplus, id_{\oplus})$ to $(\beta, \otimes, id_{\otimes})$ if and only if the following holds.

$$h \cdot \oplus / = \otimes / \cdot h *$$

Lemma (Promotion)

h is a homomorphism from $(\alpha, \oplus, id_{\oplus})$ to $(\beta, \otimes, id_{\otimes})$ if and only if the following holds.

$$h \cdot \oplus / = \otimes / \cdot h *$$

Proof Sketch.

- *⇐*: simple.
- $\bullet \Rightarrow$: by induction.

Lemma (Promotion)

h is a homomorphism from $(\alpha, \oplus, id_{\oplus})$ to $(\beta, \otimes, id_{\otimes})$ if and only if the following holds.

$$h \cdot \oplus / = \otimes / \cdot h *$$

Proof Sketch.

- ⇐: simple.
- $\bullet \Rightarrow$: by induction.

So we have

$$f* \cdot ++/ = ++/ \cdot f* *$$

 $\oplus/ \cdot ++/ = \oplus/ \cdot (\oplus/)*$

Characterization of Homomorphisms

Lemma (Identity)

$$id = ++ / \cdot [\cdot] *$$

Characterization of Homomorphisms

Lemma (Identity)

$$id = ++ / \cdot [\cdot] *$$

Lemma

h is a homomorphism from the list monoid if and only if there exist f and \oplus such that

$$h = \oplus / \cdot f*$$

Proof

 \Rightarrow :

```
= { definition of id }
     h \cdot id
= { identity lemma }
     h \cdot ++ / \cdot [\cdot] *
= \{ h \text{ is a homomorphism } \}
    \oplus / \cdot h * \cdot [\cdot] *
= { map distributivity }
    \oplus / \cdot (h \cdot [\cdot]) *
= { definition of h on singleton }
     \oplus / \cdot f*
```

Proof (Cont.)

 \Leftarrow : We reason that $h = \oplus / \cdot f *$ is a homomorphism by calculating

Examples of Homomorphisms

• #: compute the length of a list.

$$\# = +/\cdot \mathit{K}_1 *$$

Examples of Homomorphisms

• #: compute the length of a list.

$$\# = +/\cdot \textit{K}_1 *$$

• reverse: reverses the order of the elements in a list.

$$\textit{reverse} = \tilde{+} / \cdot [\cdot] *$$

Here,
$$x \oplus y = y \oplus x$$
.

• sort: reorders the elements of a list into ascending order.

$$sort = \wedge \wedge / \cdot [\cdot] *$$

Here, $\wedge \wedge$ (pronounced merge) is defined by the equations:

$$x \wedge []$$
 = x
 $[] \wedge y$ = y
 $([a] ++ x) \wedge ([b] ++ y)$ = $[a] ++ (x \wedge ([b] ++ y))$, if $a \leq b$
= $[b] ++ (([a] ++ x) \wedge y)$, otherwise

• all p: returns True if every element of the input list satisfies the predicate p.

all
$$p = \wedge / \cdot p*$$

 all p: returns True if every element of the input list satisfies the predicate p.

all
$$p = \wedge / \cdot p*$$

 some p: returns True if at least one element of the input list satisfies the predicate p.

some
$$p = \lor / \cdot p*$$

Homework BMF 2-1

• Show that function *split* that splits a non-empty list into its last element and the remainder is a homomorphism.

$$\textit{split} \; [1,2,3,4] = ([1,2,3],4)$$

② Let $init = \pi_1 \cdot split$, where π_1 (a, b) = a. Show that init is not a homomorphism.

All applied to

The operator ^o (pronounced all applied to) takes a sequence of functions and a value and returns the result of applying each function to the value.

$$[f, g, ..., h]^o a = [f a, g a, ..., h a]$$

Formally, we have

$$[]^o a = []$$

 $[f]^o a = [f a]$
 $(fs ++ gs)^o a = (fs^o a) ++ (gs^o a)$

so, $({}^{o} a)$ is a homomorphism.

Exercise: Show that $[\cdot] = [id]^o$.

Conditional Expressions

The conditional notation

$$h x = \text{if } p x \text{ then } f x \text{ else } g x$$

will be written by the McCarthy conditional form:

$$h=(p\to f,g)$$

Conditional Expressions

The conditional notation

$$h x = \text{if } p x \text{ then } f x \text{ else } g x$$

will be written by the McCarthy conditional form:

$$h=(p\to f,g)$$

Laws on Conditional Forms

$$\begin{array}{lcl} h \cdot (p \to f, g) & = & (p \to h \cdot f, h \cdot g) \\ (p \to f, g) \cdot h & = & (p \cdot h \to f \cdot h, g \cdot h) \\ (p \to f, f) & = & f \end{array}$$

(Note: all functions are assumed to be total.)

Filter

The operator \triangleleft (pronounced filter) takes a predicate p and a list x and returns the sublist of x consisting, in order, of all those elements of x that satisfy p.

$$p \triangleleft = ++ / \cdot (p \rightarrow [id]^o, []^o) *$$

Filter

The operator \triangleleft (pronounced filter) takes a predicate p and a list x and returns the sublist of x consisting, in order, of all those elements of x that satisfy p.

$$p \triangleleft = ++ / \cdot (p \rightarrow [id]^o, []^o) *$$

Exercise: Prove that the filter satisfies the filter promotion property:

$$(p\triangleleft)\cdot ++/=++/\cdot (p\triangleleft)*$$

Filter

The operator \triangleleft (pronounced filter) takes a predicate p and a list x and returns the sublist of x consisting, in order, of all those elements of x that satisfy p.

$$p \triangleleft = ++ / \cdot (p \rightarrow [id]^o, []^o) *$$

Exercise: Prove that the filter satisfies the filter promotion property:

$$(p\triangleleft)\cdot ++/=++/\cdot (p\triangleleft)*$$

Exercise: Prove that the filter satisfies the map-filter swap property:

$$(p\triangleleft)\cdot f*=f*\cdot (p\cdot f)\triangleleft$$

Cross-product

 X_{\oplus} is a binary operator that takes two lists x and y and returns a list of values of the form $a \oplus b$ for all a in x and b in y.

$$[a,b]X_{\oplus}[c,d,e] = [a \oplus c,b \oplus c,a \oplus d,b \oplus d,a \oplus e,b \oplus e]$$

Formally, we define X_{\oplus} by three equations:

Cross-product

 X_{\oplus} is a binary operator that takes two lists x and y and returns a list of values of the form $a \oplus b$ for all a in x and b in y.

$$[a,b]X_{\oplus}[c,d,e] = [a \oplus c,b \oplus c,a \oplus d,b \oplus d,a \oplus e,b \oplus e]$$

Formally, we define X_{\oplus} by three equations:

$$\begin{array}{rcl} xX_{\oplus}[\,] & = & [\,] \\ xX_{\oplus}[a] & = & (\oplus a) * x \\ xX_{\oplus}(y++z) & = & (xX_{\oplus}y) + + (xX_{\oplus}z) \end{array}$$

Thus xX_{\oplus} is a homomorphism.

Properties

[] is the zero element of X_{\oplus} :

$$[]X_{\oplus}x = xX_{\oplus}[] = []$$

We have cross promotion rules:

$$\begin{array}{lll} f * * \cdot X_{++} / &=& X_{++} / \cdot f * * * \\ (\oplus /) * \cdot X_{++} / &=& X_{\oplus} / \cdot (\oplus /) * * \end{array}$$

Example Uses of Cross-product

• *cp*: takes a list of lists and returns a list of lists of elements, one from each component.

$$cp [[a, b], [c], [d, e]] = [[a, c, d], [b, c, d], [a, c, e], [b, c, e]]$$

Example Uses of Cross-product

• *cp*: takes a list of lists and returns a list of lists of elements, one from each component.

$$cp [[a, b], [c], [d, e]] = [[a, c, d], [b, c, d], [a, c, e], [b, c, e]]$$

$$cp = X_{++} / \cdot ([id]^o *) *$$

• subs: computes all subsequences of a list.

$$subs\ [a,b,c] = [[],[a],[b],[a,b],[c],[a,c],[b,c],[a,b,c]]$$

• subs: computes all subsequences of a list.

$$subs\ [a,b,c] = [[],[a],[b],[a,b],[c],[a,c],[b,c],[a,b,c]]$$

$$subs = X_{++} / \cdot [[]^o, [id]^o]^o *$$

• subs: computes all subsequences of a list.

$$subs\ [a,b,c] = [[],[a],[b],[a,b],[c],[a,c],[b,c],[a,b,c]]$$

$$subs = X_{++} / \cdot [[]^o, [id]^o]^o *$$

Exercise: Define *subs* in terms of *cp*.

• (all p)⊲:

$$(all\ even) \triangleleft [[1,3],[2,4],[1,2,3]] = [[2,4]]$$

• (all p)⊲:

$$(all\ even) \triangleleft [[1,3],[2,4],[1,2,3]] = [[2,4]]$$

$$(all \ p) \triangleleft = ++ / \cdot (X_{++} / \cdot (p \rightarrow [[id]^o]^o, []^o) *) *$$

(all p)⊲:

$$(all\ even) \triangleleft [[1,3],[2,4],[1,2,3]] = [[2,4]]$$

$$(all \ p) \triangleleft = ++ / \cdot (X_{++} / \cdot (p \rightarrow [[id]^o]^o, []^o) *) *$$

Exercise: Compute the value of the expression (all even) \triangleleft [[1, 3], [2, 4], [1, 2, 3]].

Selection Operators

Suppose f is a numeric valued function. We want to define an operator \uparrow_f such that

- \bullet \uparrow_f is associative, commutative and idempotent;
- \bigcirc \uparrow_f is selective in that

$$x \uparrow_f y = x$$
 or $x \uparrow_f y = y$

 \bullet \uparrow_f is maximizing in that

$$f(x \uparrow_f y) = f x \uparrow f y$$

Selection Operators

Suppose f is a numeric valued function. We want to define an operator \uparrow_f such that

- \bullet \uparrow_f is associative, commutative and idempotent;
- \bigcirc \uparrow_f is selective in that

$$x \uparrow_f y = x$$
 or $x \uparrow_f y = y$

 \bullet \uparrow_f is maximizing in that

$$f(x \uparrow_f y) = f x \uparrow f y$$

Condition: *f* should be injective.

An Example: $\uparrow_{\#}$

But if f is not injective, then $x \uparrow_f y$ is not specified when $x \neq y$ but f x = f y.

$$[1,2] \uparrow_{\#} [3,4]$$

An Example: ↑#

But if f is not injective, then $x \uparrow_f y$ is not specified when $x \neq y$ but f x = f y.

$$[1,2]\uparrow_{\#}[3,4]$$

To solve this problem, we may *refine* f to an injective function f such that

$$f x < f y \Rightarrow f' x < f' y$$
.

An Example: $\uparrow_{\#}$

But if f is not injective, then $x \uparrow_f y$ is not specified when $x \neq y$ but f x = f y.

$$[1,2] \uparrow_{\#} [3,4]$$

To solve this problem, we may *refine* f to an injective function f such that

$$f x < f y \Rightarrow f' x < f' y$$
.

So we may select the *lexicographically* least sequence as the value of $x \uparrow_{\#} y$ when #x = #y.

In this case, ++ distributes through $\uparrow_{\#}$:

$$x ++ (y \uparrow_{\#} z) = (x ++ y) \uparrow_{\#} (x ++ z) (x \uparrow_{\#} y) ++ z = (x ++ z) \uparrow_{\#} (y ++ z)$$

That is,

$$(x++)\cdot\uparrow_{\#}/=\uparrow_{\#}/\cdot(x++)*$$

 $(++x)\cdot\uparrow_{\#}/=\uparrow_{\#}/\cdot(++x)*.$

We assume $\omega=\uparrow_\#/[]$, satisfying $\#\omega=-\infty$. (ω is the zero element of #)

A short calculation

Show that $\uparrow_{\#} / \cdot (all \ p) \triangleleft is a homomorphism.$

A short calculation

Show that $\uparrow_{\#} / \cdot (all \ p) \triangleleft$ is a homomorphism.

```
\uparrow_{\#} / \cdot (all \ p) \triangleleft
= \qquad \{ \text{ definition before } \}
\uparrow_{\#} / \cdot ++ / \cdot (X_{++} / \cdot (p \rightarrow [[id]^o]^o, []^o) *) *
= \qquad \{ \text{ reduce promotion } \}
\uparrow_{\#} / \cdot (\uparrow_{\#} / \cdot X_{++} / \cdot (p \rightarrow [[id]^o]^o, []^o) *) *
= \qquad \{ \text{ # distributes over } \uparrow_{\#} \}
\uparrow_{\#} / \cdot (++ / \cdot (\uparrow_{\#} /) * \cdot (p \rightarrow [[id]^o]^o, []^o) *) *
= \qquad \{ \text{ many steps ... } \}
\uparrow_{\#} / \cdot (++ / \cdot (p \rightarrow [id]^o, K_\omega) *) *
```

Existence of Homomorphism

Existence Lemma

The list function h is a homomorphism iff the implication

$$h v = h x \wedge h w = h y \Rightarrow h (v ++ w) = h (x ++ y)$$

holds for all lists v, w, x, y.

Existence of Homomorphism

Existence Lemma

The list function h is a homomorphism iff the implication

$$h v = h \times \wedge h w = h y \Rightarrow h (v ++ w) = h (x ++ y)$$

holds for all lists v, w, x, y.

Proof Sketch.

• \Rightarrow : obvious by assuming $h = \odot / \cdot f*$.

Existence of Homomorphism

Existence Lemma

The list function h is a homomorphism iff the implication

$$h v = h x \wedge h w = h y \Rightarrow h (v ++ w) = h (x ++ y)$$

holds for all lists v, w, x, y.

Proof Sketch.

- \Rightarrow : obvious by assuming $h = \odot / \cdot f*$.
- \Leftarrow : Define \odot by $t \odot u = h (g t + + g u)$. for some g such that $h = h \cdot g \cdot h$ (such a g exisits!). Thus

$$h(x++y) = h x \odot h y.$$

Specification of the Problem

Recall the problem of computing the longest segment of a list, all of whose elements satisfied some given property p.

$$lsp = \uparrow_{\#} / \cdot (all \ p) \triangleleft \cdot segs$$

Specification of the Problem

Recall the problem of computing the longest segment of a list, all of whose elements satisfied some given property p.

$$lsp = \uparrow_{\#} / \cdot (all \ p) \triangleleft \cdot segs$$

Property: *lsp* is not a homomorphism.

Specification of the Problem

Recall the problem of computing the longest segment of a list, all of whose elements satisfied some given property p.

$$lsp = \uparrow_{\#} / \cdot (all \ p) \triangleleft \cdot segs$$

Property: *lsp* is not a homomorphism.

This is because:

$$lsp [2, 1] = lsp [2] = [2]$$

 $lsp [4] = lsp [4] = [4]$

does not imply

$$lsp([2,1] ++ [4]) = lsp([2] ++ [4]).$$

Calculating a Solution to the Problem

```
\uparrow_{\#} / \cdot (all \ p) \triangleleft \cdot segs
= \{ segment \ decomposition \} 
\uparrow_{\#} / \cdot (\uparrow_{\#} / \cdot (all \ p) \triangleleft \cdot tails) * \cdot inits \}
= \{ result \ before \} 
\uparrow_{\#} / \cdot (\uparrow_{\#} / \cdot (++ / \cdot (p \rightarrow [id]^o, K_\omega) *) * \cdot tails) * \cdot inits \}
= \{ Horner's \ rule \ with \ x \odot \ a = (x ++ (p \ a \rightarrow [a], \omega) \uparrow_{\#} [] \} 
\uparrow_{\#} / \cdot \odot \not \rightarrow_{[]} * \cdot inits \}
= \{ accumulation \ lemma \} 
\uparrow_{\#} / \cdot \odot \not \rightarrow_{[]}
```

Homework BMF 2-2

Show the final program for lsp is linear in the number of calculation of p, and code it in Haskell.