The survival of patients who had undergone surgery for breast cancer

Heberman dataset

survival of patients who had undergone surgery for breast cancer at the University of Chica go's Billings Hospital.

- The dataframe consist of 305 rows × 4 columns.
- · Columns for the dataframe are
 - age
 - Year of operation
 - Number of positive axillary nodes detected (numerical)
 - 1 = the patient survived 2 = the patient died
- · Case study of 305 patients
- On the total dataset we have 224 patients survived and 81 died.

Objective

• The ultimate aim of this Analysis is to predict the survival status of the women, diagonosed with breast cancer

In [2]:

```
# Load the Drive helper and mount
from google.colab import drive

# This will prompt for authorization.
drive.mount('/content/drive')
```

Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6 qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3Aietf%3Awg%3Aoauth%3A2.0% b&scope=email%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdocs.test%20https%3A%2F%2Fwww.googleapis.2Fauth%2Fdrive%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwwogleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwwogleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwwogleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwwogleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwwogleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwwogleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwwwogleapis.com%2Fauth%2Fdrive.photos.photos.photos.photos.photos.photos.photos.ph

```
Enter your authorization code:
.....
Mounted at /content/drive
```

In [3]:

```
!wget --header="Host: storage.googleapis.com" --header="User-Agent: Mozilla/5.0 (Windows NT 6.1; W
in64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36" --header="Ac
cept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8" --hea
der="Accept-Language: en-US,en;q=0.9,ta;q=0.8" "https://storage.googleapis.com/kaggle-
datasets/474/966/habermans-survival-data-set.zip?GoogleAccessId=web-data@kaggle-
161607.iam.gserviceaccount.com&Expires=1540723231&Signature=Cii8apXClkc19TEbdi%2B3rOXXK4Y%2B9APiDre
smnLIdD5iNJ8kt%2FqqJPgN1RBie3XlwP8fW%2BBb1nVHlK%2F8nL4lwRu9d0DFnvkPkBxh%2F9k1DhvIisfrrGCjaKk2IhkEm
rcYSVp0Snoe2Flyv1HOWqXJnV2eZBnmTQnRhNjsdECUyIxRR88%2B4ez0Qxa0oWGR%2FgtUaHxiFvZV4X1h39EG8j%2FpnqLwvv
0%2Bfpniyg0lM7cOZ4mucfRL9TRS4BHomPmPIazyhxoX5U6OrSDPf6hYe%2B9bwukseD5f6S3aF5Fe613lwZHefexCFNBoBskAl
678EQhAuSQdg%3D%3D" -0 "habermans-survival-data-set.zip" -c
```

--2018-10-25 13:13:39-- https://storage.googleapis.com/kaggle-datasets/474/966/habermans-survival-data-set.zip?GoogleAccessId=web-data@kaggle-

161607.iam.gserviceaccount.com&Expires=1540723231&Signature=Cii8apXC1kc19TEbdi%2B3rOXXK4Y%2B9APiDre smnLIdD5iNJ8kt%2FqqJPgN1RBie3XlwP8fW%2BBb1nVH1K%2F8nL41wRu9d0DFnvkPkBxh%2F9k1DhvIisfrrGCjaKk2IhkEmu rcYSVp0Snoe2Flyv1HOWqXJnV2eZBnmTQnRhNjsdECUyIxRR88%2B4ez0Qxa0oWGR%2FgtUaHxiFvZV4X1h39EG8j%2FpnqLwvu 0%2BfpniygOlM7cOZ4mucfRL9TRS4BHomPmPIazyhxoX5U6OrSDPf6hYe%2B9bwukseD5f6S3aF5Fe6131wZHefexCFNBoBskAl 678EQhAuSQdg%3D%3D

Resolving storage.googleapis.com (storage.googleapis.com)... 74.125.141.128, 2607:f8b0:400c:c06::80

Connecting to storage.googleapis.com (storage.googleapis.com)|74.125.141.128|:443... connected.

```
HTTP request sent, awaiting response... 416 Requested range not satisfiable
    The file is already fully retrieved; nothing to do.
In [0]:
In [4]:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read csv('drive/My Drive/Colab Notebooks/habermans-survival-data-set.zip (Unzipped Files)/
haberman.csv')
df.head(3)
Out[4]:
   30 64 1 1.1
0 30 62 3
1 30 65 0
            1
2 31 59 2 1
In [5]:
# converting the data for convinience
analysis = df.rename(columns={'30': 'age','64': 'Operation_Year','1':'axial_nodes','1.1':"Surv_stat
feature = analysis.loc[ : ,['age','Operation Year','axial nodes']]
analysis.head()
Out[5]:
   age Operation_Year axial_nodes Surv_status
                62
    30
                65
                           0
                                     1
1
                59
                           2
2
    31
3
    31
                65
                           4
                                     1
    33
                58
                          10
In [6]:
# fetching columns of the DF
analysis.columns
Out[6]:
Index(['age', 'Operation Year', 'axial nodes', 'Surv status'], dtype='object')
In [7]:
#Checking values
analysis['Surv_status'].value_counts()
Out[7]:
```

224

```
2 81
Name: Surv_status, dtype: int64
```

In [8]:

```
feature.dtypes
```

Out[8]:

age int64
Operation_Year int64
axial_nodes int64

dtype: object

Bi-variate analysis

In [37]:

```
sns.set_style("whitegrid")
sns.pairplot(feature, hue='axial_nodes', size=3)
plt.show()
```


Found almost equal chances of survial and death of all ages, operation years and axial nodes.

```
In [18]:
```

```
sns.set_style("whitegrid")
sns.FacetGrid(analysis, hue="Surv_status", size=4).map(plt.scatter, "age", "axial_nodes")
plt.legend()
plt.show()
```


Patients with all ages are prone to death.

Uni-Varient analysis

PDF with Histogram

In [21]:

```
sns.FacetGrid(analysis, hue="Surv_status", size=5) \
   .map(sns.distplot, "age") \
   .add_legend();
plt.show();
```


In [19]:

```
analysis.columns
```

Out[19]:

```
Index(['age', 'Operation_Year', 'axial_nodes', 'Surv_status'], dtype='object')
```

In [22]:

```
sns.FacetGrid(analysis, hue="Surv_status", size=5) \
   .map(sns.distplot, "Operation_Year") \
   .add_legend();
plt.show();
```


In [23]:

```
sns.FacetGrid(analysis, hue="Surv_status", size=5) \
   .map(sns.distplot, "axial_nodes") \
   .add_legend();
plt.show();
```


Found the data is extremly overlapped. Though we can choose axial_nodes > 5 are more prone to death (2)

CDF

In [0]:

```
import numpy as np
analysis_Alive = analysis.loc[analysis["Surv_status"] == 1]
analysis_Death = analysis.loc[analysis["Surv_status"] == 2]
```

In [32]:

```
counts, bin_edges=np.histogram(analysis_Alive['axial_nodes'],bins=10,density=True)
pdf=counts/sum(counts)
print(pdf)
print(bin_edges)
# CDF
cdf=np.cumsum(pdf)
plt.plot(bin_edges[1: ],pdf)
plt.plot(bin_edges[1: ],cdf)
```

```
[0.83482143 0.08035714 0.02232143 0.02678571 0.01785714 0.00446429 0.00892857 0. 0. 0.00446429]
[0. 4.6 9.2 13.8 18.4 23. 27.6 32.2 36.8 41.4 46.]
```

Out[32]:

[<matplotlib.lines.Line2D at 0x7f2de8d89c18>]

In [33]:

```
#Dead
counts, bin_edges=np.histogram(analysis_Death['axial_nodes'],bins=10,density=True)
pdf=counts/sum(counts)
print(pdf)
print(bin_edges)
#CDF
cdf=np.cumsum(pdf)
plt.plot(bin_edges[1: ],pdf)
plt.plot(bin_edges[1: ],cdf)
plt.show
```

```
[0.56790123 0.14814815 0.13580247 0.04938272 0.07407407 0.0.01234568 0. 0. 0.01234568]
[0. 5.2 10.4 15.6 20.8 26. 31.2 36.4 41.6 46.8 52.]
```

Out[33]:

<function matplotlib.pyplot.show>

recated and is a private function. Do not use.

Found equal chances of survial and death until 45 axial nodes. After 45 axial nodes there are high posibility of death.

Box ploting

In [35]:

```
sns.boxplot(x='Surv_status',y='axial_nodes',data=analysis)
plt.show()

/usr/local/lib/python3.6/dist-packages/seaborn/categorical.py:454: FutureWarning: remove na is dep
```


Axial_nodes (death):

• Quantile ranges of 25 and 75 are between 2 to 12

Axial_nodes (Alive)

• 75th quantile of axial node is at 3

Median values are more accurate than mean

• After 3 axial_nodes there are high possibility of death.

Violin plots

In [36]:

```
sns.violinplot(x="Surv_status", y="axial_nodes", data=analysis, size=8)
plt.show()

/usr/local/lib/python3.6/dist-packages/seaborn/categorical.py:588: FutureWarning: remove_na is dep recated and is a private function. Do not use.
    kde_data = remove_na(group_data)
/usr/local/lib/python3.6/dist-packages/seaborn/categorical.py:816: FutureWarning: remove_na is dep recated and is a private function. Do not use.
    violin_data = remove_na(group_data)
```


With addition to above observation found survial of axial nodes have more variance than death cases of axial_node.

Conclution:

Women of limited axial node have possibility to survive.

limited = 3 axial_node