Casillero es Nat

MOVIMIENTO es NAT

CONTINENTE es STRING

JUGADOR es NAT

1. TAD TABLERO

TAD TABLERO

géneros tablero

exporta tablero, generadores, observadores, continentes, todosLosMovs

usa Bool, Nat, Casillero, Movimiento, Continente, Multiconj $\operatorname{Ext}(\alpha)$, Conj (α)

igualdad observacional

$$(\forall t, t' : \text{tablero}) \left(t =_{\text{obs}} t' \iff \begin{pmatrix} (\#casilleros(t) =_{\text{obs}} \#casilleros(t')) \land_{\text{L}} \\ (\forall (c, c' : nat))c, c' \leq \#casilleros(t) \Rightarrow_{\text{L}} \\ (cont(c, t) =_{\text{obs}} cont(c, t') \land_{\text{movsDesdeHasta}}(c, c', t'))) \end{pmatrix} \right)$$

generadores

//crearTablero: crea un tablero con dos casilleros. El 1 es del primer continente, el 2 del segundo; el primer movimiento va desde el primer casillero hasta el segundo, y el segundo movimiento hace lo opuesto.

 $crearTablero: continente \times continente \times mov \times mov \longrightarrow tablero$

//agregarCasillero: grega un casillero del continente k conectado por el movimiento m al casillero c. El movimiento m' conecta c al casillero creado. Las restricciones en k aseguran que se cumpla el agrupamiento de continentes, las restricciones sobre m y m' aseguran que se cumpla la unicidad de movimientos y la necesidad de dos movimientos asegura que se cumpla la simetría.

```
agregar
Casillero : casillero <br/> c \times continente k \times mov<br/> m \times mov m' \times tablero <br/> t \longrightarrow tablero \begin{cases} c \leq \# \mathrm{casilleros}(t) \wedge_{\mathtt{L}} (k =_{\mathrm{obs}} cont(c,t) \vee ((\forall c': nat)c' \leq \# \mathrm{casilleros}(t) \Rightarrow_{\mathtt{L}} cont(c',t) \neq k)) \wedge_{\mathtt{L}} \\ m' \notin \mathrm{todosLosMovs}(c,t) \end{cases}
```

//conectar: conecta los casilleros pasados como parámetros con el movimiento m del primero al segundo y m' del segundo al primero.

```
conectar : casillero c \times casillero c' \times mov m \times mov m' \times tablero t \longrightarrow tablero \{c, c' \le \# \operatorname{casilleros}(t) \land c \ne c' \land_{\operatorname{L}} m \notin \operatorname{todosLosMovs}(c, t) \land_{\operatorname{L}} m' \notin \operatorname{todosLosMovs}(c', t)\}
```

//agregarFlecha: agrega un movimiento en un solo sentido. Requiere que los casilleros ya estén conectados para que no se rompa la simetría.

agregar Flecha : casillero $c \times$ casillero $c' \times$ mov $m \times$ tablero $t \longrightarrow$ tablero $\{c, c' \le \# \operatorname{casilleros}(t) \land_{\operatorname{L}} \operatorname{conectados}?(c, c', t) \land m \notin \operatorname{todosLosMovs}(c, t)\}$

observadores básicos

#casilleros : tablero \longrightarrow nat

cont: casillero $c \times \text{tab } t \longrightarrow \text{continente}$ $\{c \leq \#\text{casilleros}(t)\}$

```
movsDesdeHasta : casillero c \times \text{casillero } c' \times \text{tab } t \longrightarrow \text{conj(mov)}
                                                                                                                                     \{c, c' \le \#\text{casilleros}(t)\}
  otras operaciones
//todosLosMovs: devuelve un conjunto con todos los movimientos que salen del casillero c a cualquier casillero del
     todosLosMovs : casillero c \times \text{tab } t \longrightarrow \text{conj(mov)}
                                                                                                                                         \{c \le \# \operatorname{casilleros}(t)\}\
     conectados? : casillero c \times casillero c' \times tab t \longrightarrow bool
                                                                                                                                      \{c, c' \le \# \text{casilleros}(t)\}
     continentes : tablero \longrightarrow conj(continente)
     dameContinentes \ : \ nat \times tablero \ \longrightarrow \ conj(continente)
                      \forall t: tablero
  axiomas
      \#casilleros(crearTablero(k, k', m, m')) \equiv 2
     \#casilleros(agregarCasillero(c, k, m, m', t)) \equiv \text{suc}(\#casilleros(t))
     \#casilleros(conectar(c, c', m, m', t)) \equiv \#casilleros(t)
     \#casilleros(agregarFlecha(c, c', m, t)) \equiv \#casilleros(t)
     cont(c, crearTablero(k, k', m, m')) \equiv if c = 1 then k else k' fi
     \operatorname{cont}(c,\operatorname{agregarCasillero}(\tilde{c},k,m,m',t)) \equiv \operatorname{if} c = \operatorname{suc}(\#\operatorname{casilleros}(t)) \operatorname{then} k \operatorname{else} \operatorname{cont}(c,t) \operatorname{fi}
     \operatorname{cont}(c,\operatorname{conectar}(\tilde{c},\tilde{c}',m,m',t)) \equiv \operatorname{cont}(c,t)
     \operatorname{cont}(c,\operatorname{agregarFlecha}(\tilde{c},\tilde{c}',m,t)) \equiv \operatorname{cont}(c,t)
     movsDesdeHasta(c, c', \text{crearTablero}(k, k', m, m')) \equiv \text{if } c = 1 \land c' = 2 \text{ then}
                                                                                       \{m\}
                                                                                  else
                                                                                      if c = 2 \wedge c' = 1 then \{m'\} else \emptyset fi
     movsDesdeHasta(c, c', agregarCasillero(\tilde{c}, k, m, m', t)) \equiv if c = suc(\#casilleros(t)) then
                                                                                              if c' = \tilde{c} then \{m\} else \emptyset fi
                                                                                              if c = \tilde{c} \wedge c' = \text{suc}(\#\text{casilleros}(t)) then
                                                                                              else
                                                                                                  movsDesdeHasta(c, c', t)
                                                                                              fi
     movsDesdeHasta(c, c', \text{conectar}(\tilde{c}, \tilde{c}', m, m', t)) \equiv \text{if } c = \tilde{c} \wedge c' = \tilde{c}' \text{ then}
                                                                                   \{m\} \cup \text{movsDesdeHasta}(c, c', t)
                                                                              else
                                                                                   if c = \tilde{c}' \wedge c' = \tilde{c} then
                                                                                        \{m'\} \cup \text{movsDesdeHasta}(c, c', t)
                                                                                   else
                                                                                        movsDesdeHasta(c, c', t)
     movsDesdeHasta(c, c', agregarFlecha(\tilde{c}, \tilde{c}', m, t)) \equiv \mathbf{if} \ c = \tilde{c} \wedge c' = \tilde{c}' \mathbf{then}
                                                                                      \{m\} \cup \text{movsDesdeHasta}(c, c', t)
                                                                                 else
                                                                                      movsDesdeHasta(c, c', t)
     todosLosMovs(c,crearTablero(k, k', m, m')) \equiv if c = 1 then \{m\} else \{m'\} fi
```

```
todos
LosMovs(c, agregarCasillero(\tilde{c}, k, m, m', t)) \equiv \mathbf{if} \ c = \mathrm{suc}(\#\mathrm{casilleros}(t)) then
                                                                             \{m\}
                                                                             if c = \tilde{c} then
                                                                                 \{m'\} \cup \operatorname{todosLosMovs}(c,t)
                                                                             else
                                                                                 todosLosMovs(c, t)
todosLosMovs(c,conectar(\tilde{c},\tilde{c}',m,m',t)) \equiv if c = \tilde{c} then
                                                                   \{m\} \cup \operatorname{todosLosMovs}(c,t)
                                                              else
                                                                  if c = \tilde{c}' then
                                                                       \{m'\} \cup \operatorname{todosLosMovs}(c,t)
                                                                       todosLosMovs(c, t)
                                                                  fi
todosLosMovs(c, agregarFlecha(\tilde{c}, \tilde{c}', m, t)) \equiv if c = \tilde{c} then
                                                                     \{m\} \cup \text{todosLosMovs}(c,t)
                                                                 else
                                                                     todosLosMovs(c, t)
conectados?(c, c', t) \equiv \neg \emptyset?(movsDesdeHasta(c, c', t))
continentes(t) \equiv dameContinentes(#casilleros(t), t)
dameContinentes(n,t) \equiv \text{if } n = 0 \text{ then } \emptyset \text{ else } \{ \cot(n,t) \} \cup \text{dameContinentes}(n-1,t) \text{ fi}
```

Fin TAD

2. TAD PARTIDA

TAD PARTIDA

géneros partida

exporta partida, generadores, observadores, jugadoresActivos, jugadoresEliminados, terminada?, ganador, casillerosDominados, casillerosDisputados, casillerosVacíos

usa Bool, Nat, Casillero, Jugador, Tablero, Movimiento, Continente, Multiconj $\operatorname{Ext}(\alpha)$, Conj (α) , Secu $\operatorname{Ext}(\alpha)$

igualdad observacional

$$(\forall p, p' : \text{partida}) \left(p =_{\text{obs}} p' \iff \begin{pmatrix} (\text{tablero}(p) =_{\text{obs}} \text{tablero}(p') \land \\ \# \text{jugadores}(p) =_{\text{obs}} \# \text{jugadores}(p') \land \\ ((\forall c : nat)c \leq \# \text{casilleros}(\text{tablero}(p)) \Rightarrow_{\text{L}} \\ \text{fichasEnCasillero}(c, p) =_{\text{obs}} \text{fichasEnCasillero}(c, p')) \land \\ ((\forall j : nat)j \leq \# \text{jugadores}(p) \Rightarrow_{\text{L}} \\ (\text{mision}(j, p) =_{\text{obs}} \text{mision}(j, p)) \land \\ \text{fichasPuestas}(j, p) =_{\text{obs}} \text{fichasPuestas}(j, p')) \end{pmatrix} \right)$$

observadores básicos

```
tablero : partida \longrightarrow tablero \#jugadores : partida \longrightarrow nat
```

//fichasEnCasillero: las fichas de cada jugador están representadas por su cardinal en un multiconjunto. Una aparición de j en fichasEnCasillero representa una ficha de j en el casillero dado. Esta convención con los multiconjuntos se mantendrá durante toda la especificación para representar las fichas en cada casillero.

```
\{c \le \# \operatorname{casilleros}(\operatorname{tablero}(p))\}
                 fichasEnCasillero : casillero c \times \text{partida } p \longrightarrow \text{multiconjExt(jugador)}
                 misión : jugador j \times \text{partida } p \longrightarrow \text{continente}
                                                                                                                                                                                                                                                                                                                                                                      \{j \leq \# \text{jugadores}(p)\}\
                                                                                                           //fichasPuestas: devuelve la cantidad de fichas que puso j a lo largo de todo el partido.
                                                                                                                                                                                                                                                                                                                                                                      \{j \le \# \text{jugadores}(p)\}\
                 fichas
Puestas : jugador j \times \text{partida } p \longrightarrow \text{nat}
         generadores
           //crearPartida: crea una nueva partida cuyo tablero es t. La cantidad de jugadores es js y las secuencias cs y ks
indican el casillero donde coloca la primera ficha y el continente que cada jugador debe conquistar respectivamente.
  Al i-ésimo jugador le corresponde la (i-1)-ésima posición de cada secuencia, ya que el primer jugador es el 1 y los
                                                                                                                                                                                                                                                                                           índices de las secuencias empiezan en 0.
                 crearPartida: tablero t \times \text{nat } js \times \text{secuExt}(\text{casillero}) cs \times \text{secuExt}(\text{continente}) ks \longrightarrow \text{partida}
                                                                                                              \begin{cases} 2 \leq js \land \log(cs) = \log(ks) = js \land \sin(cs) \land (\forall k : string) \Rightarrow \\ 2 \leq js \land \log(cs) = \log(ks) = js \land \sin(cs) \land (\forall k : string) \Rightarrow \\ 2 \leq js \land \log(cs) = \log(ks) \Rightarrow \\ 2 \leq js \land \log(cs) = \log(ks) \Rightarrow \\ 2 \leq js \land \log(cs) \Rightarrow \\ 3 \leq js \land \log(cs) \Rightarrow \\ 4 \leq js \land \log(c
                                                                                                              k \in \text{continentes}(t) \land ((\forall c : nat) \text{está}?(c, cs) \Rightarrow c \leq \# \text{casilleros}(t))
                                 //agregarFicha: agrega una ficha del jugador j en el casillero c. Requiere que esté vacío o dominado por j.
                 agregar
Ficha : jugador j \times casillero c \times partida p \longrightarrow partida
                                                                                         \begin{cases} \text{gador } j \times \text{cashlero } c \times \text{particle} \\ j \leq \# \text{jugadores}(p) \wedge_{\text{L}} \text{ está} \\ \text{Activo?}(j,p) \wedge \neg \text{terminada?}(p) \wedge c \leq \# \text{casilleros}(\text{tablero}(p)) \wedge_{\text{L}} \\ \text{está} \\
                                                                                         \ ) \ \text{jugadoresEnCasillero}(c, p) = \emptyset \lor \text{jugadoresEnCasillero}(c, p) = \{j\}
                                         //mover: el jugador j realiza la acción de movimiento m con n fichas. El funcionamiento se detalla más
                                                                                                                                                                                                                                                                                                                               profundamente en los axiomas.
                 mover : jugador j \times movimiento m \times nat n \times partida p \longrightarrow partida
                                                                                                                                                                                                                        \{j \leq \# \text{jugadores}(p) \land \text{estáActivo}?(j,p) \land \neg \text{terminada}?(p)\}
        otras operaciones
        Funciones requeridas por la empresa
                 jugadoresActivos : partida \longrightarrow conj(jugador)
                 jugadores
Eliminados : partida \longrightarrow conj(jugador)
                 terminada? : partida \longrightarrow bool
                 ganador : partida \longrightarrow jugador
                                                                                                                                                                                                                                                                                                                                                                                       \{\text{terminada}?(p)\}
                 casillerosDominados : partida \longrightarrow conj(tupla(casillero,conj(jugador)))
                 casillerosDisputados : partida \longrightarrow conj(tupla(casillero,conj(jugador)))
                 casilleros Vacíos : partida \longrightarrow conj(casillero)
         Funciones auxiliares
 //fichasVecinasDeJ: dado un casillero c, devuelve un multiconjunto con todas las fichas de j de todos los casilleros
                                                                                                                                                                                                                                  del tablero que con el movimiento m podrían llegar a c.
                 fichas
Vecinas
De<br/>J : casillero c \times \text{jugador} \ j \times \text{movimiento} \ m \times \text{partida} \ p \ \longrightarrow \ \text{multiconjExt(jugador)}
                                                                                                                                                                                                                                                                                                                                       \{c \leq \# \operatorname{casilleros}(\operatorname{tablero}(p))\}\
                                                                                                                                                                                                                                                                                                                                                                       \{j < \# \text{jugadores}(p)\}\
                 estáActivo? : jugador j \times \text{partida } p \longrightarrow \text{bool}
                 tiene
Fichas
En<br/>Algún
Casillero? : jugador j \times \mathrm{nat}\ n \times \mathrm{partida}\ p \longrightarrow \mathrm{bool}
                                                                                                                                                                                                                                                                                                                                                                      \{j \le \# \text{jugadores}(p)\}\
                 dameActivos : partida \times nat \longrightarrow conj(jugador)
                 dameEliminados : partida \times nat \longrightarrow conj(jugador)
                 algunoCompletóLaMisión? : nat \times partida \longrightarrow bool
                                                                                                                                                                                                                                                                                                                                                                       \{j \le \# \text{jugadores}(p)\}\
                 completó
La<br/>Misión? : jugador j \times \text{partida } p \longrightarrow \text{bool}
                 cuántos
Le<br/>Faltan : jugador j \times \text{partida } p \longrightarrow \text{nat}
                                                                                                                                                                                                                                                                                                                                                                       \{j \leq \# \text{jugadores}(p)\}\
```

//contarNoDominadosHasta: esta función sirve de auxiliar para saber si el jugador j completó o no su misión. Al hacer recursión sobre el parámetro n, devuelve la cantidad de casilleros numerados entre 1 y n que pertenecen al continente que j debe conquistar y no son dominados por j.

```
contar
NoDominados
Hasta : jugador j \times \text{nat } n \times \text{partida } p \longrightarrow \text{nat}
                                                                                                                              \{j \leq \# \text{jugadores}(p)\}\
   está
Dominado? : casillero c \times \text{partida } p \longrightarrow \text{bool}
                                                                                                                   \{c < \#\text{casilleros}(\text{tablero}(p))\}
   está
Disputado? : casillero c \times \text{partida } p \longrightarrow \text{bool}
                                                                                                                   \{c \leq \# \operatorname{casilleros}(\operatorname{tablero}(p))\}
                                                                                                                   \{c \le \# \operatorname{casilleros}(\operatorname{tablero}(p))\}
   jugadoresEnCasillero : casillero c \times \text{partida } p \longrightarrow \text{conj(jugador)}
   dominado
Por : jugador j \times \text{casillero } c \times \text{partida } p \longrightarrow \text{bool}
                                                                                      \{j \leq \# \text{jugadores}(p) \land c \leq \# \text{casilleros}(\text{tablero}(p))\}
   dameDominados : nat \times partida \longrightarrow conj(casillero)
   dameDisputados : nat \times partida \longrightarrow conj(casillero)
   dameVacíos : nat \times partida \longrightarrow conj(casillero)
   maxiFourcade : nat \times partida \longrightarrow jugador
                  \forall p: partida
axiomas
Observadores
   tablero(crearPartida(t, js, cs, ks)) \equiv t
   tablero(agregarFicha(j, c, p)) \equiv tablero(p)
   tablero(mover(j, m, n, p)) \equiv tablero(p)
   \#jugadores(crearPartida(t, js, cs, ks)) \equiv js
   \#jugadores(agregarFicha(j, c, p)) \equiv \#jugadores(p)
   \#jugadores(mover(j, m, n, p)) \equiv \#jugadores(p)
   fichasEnCasillero(c, crearPartida(t, js, cs, ks)) \equiv if está?(c, cs) then \{suc(posición(c, cs))\} else \emptyset fi
   fichasEnCasillero(c, agregarFicha(j, \tilde{c}, p)) \equiv fichasEnCasillero(c, p) \cup (if <math>c = \tilde{c} then \{j\} else \emptyset fi)
```

//fichasEnCasillero: si el casillero es dominado por el jugador que hizo el movimiento, tendrá n fichas menos de éste, o 0 en caso de que hubiera menos de n fichas. Si el casillero estaba disputado, algún jugador tendrá una ficha menos. En cualquier caso se agregan todas las fichas posibles de j a través de los casilleros dominados por j que se conecten a c con el movimiento m.

```
\begin{split} \text{fichasEnCasillero}(c, \, \mathsf{mover}(j, m, n, p)) &\equiv & \text{ if } \operatorname{estáDominado?}(c, p) \  \, \text{ then} \\ & \text{ if } j \in \operatorname{fichasEnCasillero}(c, p) \land m \in \operatorname{todosLosMovs}(c, \operatorname{tablero}(p)) \\ & \text{ then} \\ & (\operatorname{fichasEnCasillero}(c, p) - \operatorname{agNVeces}(j, n, \emptyset)) \cup \\ & \text{ fichasVecinasDeJ}(c, j, m, p) \\ & \text{ else} \\ & \text{ fichasEnCasillero}(c, p) \cup \operatorname{fichasVecinasDeJ}(c, j, m, p) \\ & \text{ else} \\ & \text{ if } \operatorname{estáDisputado?}(\operatorname{fichasEnCasillero}(c, p)) \cup \operatorname{fichasVecinasDeJ}(c, j, m, p) \\ & \text{ else} \\ & \text{ fichasVecinasDeJ}(c, j, m, p) \\ & \text{ else} \\ & \text{ fichasVecinasDeJ}(c, j, m, p) \\ & \text{ fi} \\ & \text{ misión}(j, \operatorname{crearPartida}(t, js, cs, ks)) \equiv ks[j-1] \\ & \text{ misión}(j, \operatorname{agregarFicha}(j, c, p)) \equiv \operatorname{misión}(j, p) \\ & \text{ misión}(j, \operatorname{mover}(j, m, n, p)) \equiv \operatorname{misión}(j, p) \\ & \text{ fichasPuestas}(j, \operatorname{crearPartida}(t, js, cs, ks)) \equiv 1 \\ & \text{ fichasPuestas}(j, \operatorname{agregarFicha}(\tilde{j}, c, p)) \equiv \operatorname{fichasPuestas}(j, p) + (\operatorname{if } j = \tilde{j} \operatorname{then} \ 1 \operatorname{else} \ 0 \operatorname{fi}) \\ \end{split}
```

```
fichasPuestas(j,mover(t, js, cs, ks)) \equiv fichasPuestas(j, p)
Funciones requeridas por la empresa
  jugadoresActivos(p) \equiv dameActivos(p, #jugadores(p))
  jugadoresEliminados(p) \equiv dameEliminados(p, #jugadores(p))
  terminada?(p) \equiv \#(jugadoresActivos(p)) = 1 \lor algunoCompletóLaMisión?(\#jugadores(p),p)
  ganador(p) \equiv maxiFourcade(\#jugadores(p),p)
  casillerosDominados(p) \equiv dameDominados(\#casilleros(tablero(p)),p)
  casillerosDisputados(p) \equiv dameDisputados(\#casilleros(tablero(p)),p)
  casillerosVacíos(p) \equiv dameVacíos(\#casilleros(tablero(p)),p)
Funciones auxiliares
  fichasVecinasDeJ(j, cn, m, c, n, p) \equiv \mathbf{if} \ 0 < cn \ \mathbf{then}
                                                if dominadoPor(j, cn, p) \land m \in \text{movsDesdeHasta}(cn, c, \text{tablero}(p))
                                                    agNVeces(j,min(\#(j,fichasEnCasillero(cn,tablero(p))),n),\emptyset)
                                                   \cup fichasVecinasDeJ(j, cn - 1, m, c, n, p)
                                                else
                                                    fichasVecinasDeJ(j, cn - 1, m, c, n, p)
                                                fi
                                            else
  estáActivo?(j) \equiv tieneFichasEnAlgúnCasillero(j, #casilleros(tablero(p)), p)
  tieneFichasEnAlgúnCasillero(j, n, p) \equiv \mathbf{if} \ n = 0 \mathbf{then}
                                                    false
                                                else
                                                    0 < \#(j, \text{ fichasEnCasillero}(n, p)) \lor
                                                    tieneFichasEnAlgúnCasillero(j, n-1, p)
                                                fi
  dameActivos(p, n) \equiv \mathbf{if} \ n = 0 \mathbf{then}
                            else
                               if estáActivo?(n, p) then
                                   Ag(n, dameActivos(p, n - 1))
                                   dameActivos(p, n-1)
                               fi
                            fi
  dameEliminados(p, n) \equiv \mathbf{if} \ n = 0 \mathbf{then}
                                else
                                   if \neg estáActivo?(n, p) then
                                       Ag(n,dameEliminados(p, n-1))
                                       dameEliminados(p, n-1)
  alguno
Completó
La<br/>Misión?(n,p) \equiv \mbox{if } n=0 \mbox{ then}
                                               false
                                           else
                                               completóLaMisión?(n, p) \vee \text{algunoCompletóLaMisión}?(n - 1, p)
  completóLaMisión?(j, p) \equiv \text{cuántosLeFaltan}(j, p) = 0
  cuántosLeFaltan(j, p) \equiv \text{contarNoDominadosHasta}(j, \#\text{casilleros}(\text{tablero}(p)), p)
```

```
\operatorname{contarNoDominadosHasta}(j,n,p) \equiv \operatorname{if} \neg \operatorname{dominadoPor}(j,n,p) \wedge \operatorname{cont}(n,\operatorname{tablero}(p)) = \operatorname{misión}(j,p) then
                                                  suc(contarNoDominadosHasta(j, n - 1, p))
                                              else
                                                  contarNoDominadosHasta(j, n - 1, p)
dominadoPor(j, n, p) \equiv estáDominado?(c, p) \land j \in jugadoresEnCasillero(c, p)
estáDominado?(c, p) \equiv \#(\text{jugadoresEnCasillero}(c, p)) = 1
está
Disputado?(c, p) \equiv \#(\text{jugadoresEnCasillero}(c, p)) > 1
jugadoresEnCasillero(c, p) \equiv aConj(fichasEnCasillero(c, p))
dameDominados(n, p) \equiv if n = 0 then
                                else
                                    if estáDominado?(n,p) then
                                        \{\langle n, \text{jugadoresEnCasillero}(n, p)\rangle\} \cup \text{dameDominados}(n-1, p)
                                    else
                                        dameDominados(n-1,p)
dameDisputados(n, p) \equiv \mathbf{if} \ n = 0 \mathbf{then}
                                else
                                    if estáDisputado?(n,p) then
                                        \{\langle n, \text{jugadoresEnCasillero}(n, p) \rangle\} \cup \text{dameDisputados}(n-1, p)
                                        dameDisputados(n-1, p)
dameVacíos(n, p) \equiv \mathbf{if} \ n = 0 \mathbf{then}
                          else
                              if \emptyset?(jugadoresEnCasillero(n, p)) then
                                  \{n\} \cup \text{dameVacios}(n-1,p)
                              else
                                  dameVacios(n-1, p)
                          fi
                      //La función maxiFourcade te devuelve al más winner de todos. Si no lo conocés, googlealo.
\maxiFourcade(n, p) \equiv \mathbf{if} jugadoresActivos(p) = \{n\} \lor \text{complet\'oLaMisi\'on?}(n, p) then
                             else
                                 maxiFourcade(n-1, p)
                             fi
```

Fin TAD

3. Extensiones de otros TADs

3.1. TAD SECUEXT extiende SECUENCIA

```
TAD SECUEXT
(...)
otras operaciones
```

```
\bullet[\bullet] : secuExt(\alpha) × nat \longrightarrow \alpha
                                                                                                                                                               {n < \log(s)}
   sinRepetidos? : secuExt(\alpha) \longrightarrow bool
axiomas
   s[n] \equiv if \ n = 0 \ then \ prim(s) \ else \ fin(s)[n-1] \ fi
   \sin \text{Repetidos}?(s) \equiv \text{if } \text{vac\'a}?(s) \text{ then } \text{true } \text{else } \neg \text{est\'a}?(\text{prim}(s), \text{fin}(s)) \land \sin \text{Repetidos}?(\text{fin}(s)) \text{ fi}
```

Fin TAD

3.2. TAD MULTICONJEXT extiende MULTICONJUNTO

TAD MULTICONJEXT

(...)

```
otras operaciones
  agNVeces : \alpha \times \text{nat} \times \text{multiconjExt}(\alpha) \longrightarrow \text{multiconjExt}(\alpha)
  aConj : multiconjExt(\alpha) \longrightarrow conj(\alpha)
axiomas
  agNVeces(a, n, c) \equiv if n = 0 then c else <math>Ag(a, agNVeces(a, n - 1, c)) fi
  aConj(c) \equiv if \emptyset?(c) then \emptyset else Ag(dameUno(c),aConj(sinUno(c))) fi
```

Fin TAD