2020年度 日本留学試験

理科

(80分)

【物理・化学・生物】

- ※ 3科目の中から、2科目を選んで解答してください。
- ※ 1科目を解答用紙の表面に解答し、もう1科目を裏面に解答してください。

I 試験全体に関する注意

- 1. 係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

Ⅱ 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 3. 各科目の問題は、以下のページにあります。

科目	/	°-:	ブ
物理	1	~	21
化学	23	\sim	37
生物	39	~	53

- 4. 足りないページがあったら、手をあげて知らせてください。
- 5. 問題冊子には、メモや計算などを書いてもいいです。

Ⅲ 解答用紙に関する注意

- 1. 解答は、解答用紙に鉛筆 (HB) で記入してください。
- 2. 各問題には、その解答を記入する行の番号 **1**, **2**, **3**, …がついています。解答は、解答用紙(マークシート)の対応する解答欄にマークしてください。
- 3. 解答用紙に書いてある注意事項も必ず読んでください。
- ※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番号	*	*	
名 前			

化学

「解答科目」記入方法

解答科目には「物理」、「化学」、「生物」がありますので、この中から2科目を選んで解答してください。選んだ2科目のうち、1科目を解答用紙の表面に解答し、もう1科目を裏面に解答してください。

「化学」を解答する場合は、右のように、解答用紙にある「解答科目」の「化学」を○で囲み、その下のマーク欄をマークしてください。

科目が正しくマークされていないと、採点されません。

計算には次の数値を用いること。また、体積の単位リットル (liter) は L で表す。

標準状態 (standard state): 0℃, 1.01×10⁵ Pa (1 atm)

標準状態における理想気体 (ideal gas) のモル体積 (molar volume): 22.4 L/mol

気体定数 (gas constant) : $R = 8.31 \times 10^3 \text{ Pa·L/(K·mol)}$

アボガドロ定数 (Avogadro constant): $N_A = 6.02 \times 10^{23}$ /mol

ファラデー定数 (Faraday constant): $F = 9.65 \times 10^4$ C/mol

原子量 (atomic weight): H:1.0 C:12 O:16 Na:23 Al:27 Cl:35.5

この試験における元素 (element) の族 (group) と周期 (period) の関係は下の周期表 (periodic table) の通りである。ただし、**H**以外の元素記号は省略してある。

問	問1 原子構造と電子配置(electron configuration)に関する次の記述(\mathbf{a}) \sim (\mathbf{d})のうち,正しい								
	もの	が二つある。それらの	組み	合わせを,下の	701~60	の中から一	つ選びなさ	٧١ _° [1
	(a)	Na 原子と K 原子では	、 陽	子 (proton) の	数が異な	る。			
	(b)	¹² C 原子と ¹³ C 原子で	は,	中性子(neutro	n) の数か	ぶ異なる 。			
	(c)	Ne 原子と Mg ²⁺ では,	電子	(electron) O	数が異な	る。			
	(\mathbf{d})	O原子とS原子では,	価價	置子(valence el	lectron) 0	の数が異な	る。		
	1	a, b ② a, c		③ a, d	(4) b ,	c ⑤	b, d	⑥ c	, d
	1	a, b ② a, c		③ a, d	(4) b,	c ⑤	b, d	⑥ c	, d
問 2		a, b ② a, c c cの化合物①~⑥のうち							
問 2	2 次								
問 2	2 次	くの化合物①~⑥のうち							50
問 2	2 次	くの化合物①~⑥のうち			inshared e)を最も多		50
問 2	2 次 を一	くの化合物①~⑥のうち ∵つ選びなさい。	②	共有電子対(u	inshared e	lectron pair)を最も多 CH4		50

問 3	金属 M の炭酸塩	ュMCO₃37gを加熱すると	,次式のように分解	(decomposition)	して 11 g
0	O二酸化炭素 CO	2 が発生した。			

$$MCO_3 \longrightarrow MO + CO_2$$

金属 M の原子量として最も近い値を、次の①~⑥の中から一つ選びなさい。 3

- ① 24 ② 36 ③ 40 ④ 55 ⑤ 88 ⑥ 140
- 問4 アルミニウム Al が燃焼(combustion)して、酸化アルミニウム Al_2O_3 が生じる反応は次式のように表される。

$$x A1 + y O_2 \longrightarrow z Al_2O_3$$

ただし, x, y, zは係数 (coefficient) である。

酸化アルミニウム $5.1\,\mathrm{g}$ を得るために必要なアルミニウムの質量 $[\mathrm{g}]$ として最も近い値を,次の \mathbb{I} ~ \mathbb{G} の中から一つ選びなさい。

① 1.8 ② 2.3 ③ 2.7 ④ 3.2 ⑤ 4.8 ⑥ 5.4

問5 次の図は、カリウム K の結晶 (crystal) の単位格子 (unit cell) を示している。カリウ ムの原子量をM、単位格子の一辺の長さをa [cm]、アボガドロ定数を N_A [/mol] とす ると、カリウムの密度〔g/cm³〕を表す式として正しいものを、下の①~⑥の中から一つ **5** g/cm³ 選びなさい。

問 6 4.2 g の水素 H_2 を燃焼 (combustion) させ、発生した熱を用いて $15 \, kg$ の水 H_2O を加 熱したところ、水の温度が 10℃上がった。水の生成熱 (heat of formation) は何 kJ/mol か。最も近い値を、次の①~⑥の中から一つ選びなさい。ただし、水の比熱容量(比熱) (specific heat capacity (specific heat)) を 4.2 J/(g·K)とする。また、発生する熱はすべて 水の温度上昇に使われたとする。 6 kJ/mol

(1) -600

 $\bigcirc -300$ $\bigcirc -150$ $\bigcirc 4$ $\bigcirc 150$

⑤ 300

6 600

問7 次の反応が平衡状態 (equilibrium state) にあるときの記述(\mathbf{a}) \sim (\mathbf{d})の中に、正しいものが二つある。それらの組み合わせを、下の① \sim ⑥の中から一つ選びなさい。

 $H_2 + I_2 \Longrightarrow 2HI + 9.0 \text{ kJ}$

- (a) この反応では、温度を高くすると平衡定数 (equilibrium constant) は小さくなる。
- (**b**) 触媒 (catalyst) を加えると反応速度 (rate of reaction) が大きくなるので, 平衡定数は 大きくなる。
- (c) 触媒を加えると反応の経路は変わらないが、活性化エネルギー (activation energy) が小さくなる。
- (d) 化学反応式 (chemical equation) から,反応速度と反応物 (reactant) の濃度との関係式 を直接導くことはできない。
- ① a, b ② a, c ③ a, d ④ b, c ⑤ b, d ⑥ c, d

(a) $c_1: pH=3$ の塩酸 HCl aq 中の塩化物イオン Cl のモル濃度 $c_2: pH=3$ の酢酸水溶液 CH $_3$ COOH aq 中の酢酸イオン CH $_3$ COO のモル濃度

(b) $n_1: pH=3$ の塩酸 10 mL を中和(neutralization)するのに必要な水酸化ナトリウム NaOH の物質量

 $n_2: pH=3$ の酢酸水溶液 $10\,mL$ を中和するのに必要な水酸化ナトリウムの物質量

	$c_1 \succeq c_2$	$n_1 \succeq n_2$
1	$c_1 > c_2$	$n_1 > n_2$
2	$c_1 > c_2$	$n_1 = n_2$
3	$c_1 > c_2$	$n_1 < n_2$
4	$c_1 = c_2$	$n_1 > n_2$
5	$c_1 = c_2$	$n_1 = n_2$
6	$c_1 = c_2$	$n_1 < n_2$
7	$c_1 \leq c_2$	$n_1 > n_2$
8	$c_1 \leq c_2$	$n_1 = n_2$
9	$c_1 < c_2$	$n_1 < n_2$

問9 次の反応式 (reaction formula) ①~⑤のうち,下線部の物質が酸化剤 (oxidizing agent) としてはたらいているものを,一つ選びなさい。

①
$$SO_2 + Br_2 + 2H_2O \longrightarrow H_2SO_4 + 2HBr$$

②
$$CaO + 2HCl \longrightarrow CaCl_2 + H_2O$$

$$\bigcirc$$
 H₂O₂ + SO₂ \longrightarrow H₂SO₄

問 10 じゅうぶんな量の塩化ナトリウム NaCl をるつぼ (crucible) に入れて融解 (melt) し、 炭素電極 (carbon electrode) を用いて 10.0 A の電流 (electric current) を 1930 秒間流し て電気分解 (electrolysis) した。陰極 (cathode) に生じる物質とその質量 (mass) の組み 合わせとして正しいものを、次表の①~⑧の中から一つ選びなさい。ただし、反応は完 全に進み、流れた電流はすべて生成物 (product) の生成に使われたとする。

	生じる物質	質量 [g]
1	塩素 Cl ₂	0.36
2	塩素 Cl ₂	0.71
3	塩素 Cl ₂	3.6
4	塩素 Cl ₂	7.1
(5)	ナトリウム Na	0.23
6	ナトリウム Na	0.46
7	ナトリウム Na	2.3
8	ナトリウム Na	4.6

問11 2族元素の性質に関する次の記述①~⑤のうち、正しいものを一つ選びなさい。

- ① 炎色反応 (flame test) において、Mg は黄色、Ca は橙赤色 (orange-red)、Ba は黄緑色 (yellow-green) を示す。
- ② 金属の Mg, Ca, Ba は, いずれも常温 (normal temperature) の水 H₂O と反応し, 水素 H₂を発生する。
- ③ Mg(OH)₂, Ca(OH)₂, Ba(OH)₂は、いずれも水によく溶け、その水溶液は強い塩基性 (basic)を示す。
- ④ MgCl₂, CaCl₂, BaCl₂ は, いずれも水によく溶ける。
- ⑤ MgSO₄, CaSO₄, BaSO₄は, いずれも水に難溶である。
- 問 12 ハロゲン (halogen) F, Cl, Br, I についての記述(\mathbf{a}) \sim (\mathbf{f})のうち、<u>誤っているもの</u>が 二つある。それらの組み合わせを、下の① \sim ⑥の中から一つ選びなさい。
 - (a) F₂はH₂Oと反応してO₂を生成する。
 - (b) KI 水溶液に臭素水 (bromine water) を加えると I2 が遊離 (release) する。
 - (c) HF, HCl, HBr, HI はいずれも強酸 (strong acid) である。
 - (d) CaF₂ に濃硫酸 conc. H₂SO₄ を加えて加熱すると HF が生成する。
 - (e) HCIO は強い酸化作用 (oxidizing property) を有する。
 - (f) HFはHClより沸点 (boiling point) が低い。
 - ① a, d ② a, e ③ b, d ④ b, f ⑤ c, e ⑥ c, f

	い	0							13
	_	つある。	それらの紹	組み合わ-	せとして	正しい	いものを,	下の①~⑥の中から	一つ選びなさ
問	13	次の操作	$F(a)\sim (d)$	で発生する	る気体の	うち,	還元作用	(reducing property)	を示すものが

- (a) アルミニウム Al に水酸化ナトリウム水溶液 NaOH aq を加える。
- (b) 塩化ナトリウム NaCl に濃硫酸 conc. H₂SO₄ を加え, 加熱する。
- (c) 酸化マンガン(IV) MnO₂ に濃塩酸 conc. HCl を加え, 加熱する。
- (d) 硫化鉄(Ⅱ) FeS に希硫酸 dil. H₂SO₄ を加える。
- ① a, b ② a, c ③ a, d ④ b, c ⑤ b, d ⑥ c, d

問 14 銅 Cu の化合物に関する次の記述①~⑤のうち、正しいものを一つ選びなさい。 $\boxed{14}$

- ① 銅を空気中で加熱すると、黒色の酸化銅(II) CuO が生じる。
- ② 硫酸銅(Ⅱ) CuSO₄ を熱水から再結晶 (recrystallization) すると, 無色 (colorless) の 結晶 (crystal) が得られ, これを加熱すると, 青色に変化する。
- ③ 青色の硫酸銅(Ⅱ)水溶液に少量の硫酸 H₂SO₄ aq を加えると, 青白色 (blue-white) の沈殿 (precipitate) が生じる。
- ④ 塩化銅(Ⅱ)水溶液 CuCl₂ aq に水酸化ナトリウム水溶液 NaOH aq を室温 (room temperature) で加えると, 酸化銅(Ⅰ) Cu₂O の赤褐色 (red-brown) の沈殿が生じる。
- ⑤ 銅(Π)イオン Cu^{2+} を含む水溶液に硫化水素 H_2S を通じると, 硫化銅(Π) CuS の黄色の沈殿が生じる。

問 15 次の記述 \mathbb{I} ~ \mathbb{S} のうち、銀イオン \mathbf{Ag}^+ を含む水溶液では起こるが、鉛(\mathbb{I})イオン \mathbf{Pb}^{2+} を含む水溶液では起こらない変化を、一つ選びなさい。

- ① 亜鉛 Zn を加えると、金属が析出 (deposition) する。
- ② 塩酸 HCl ag を加えると, 沈殿 (precipitate) を生じる。
- ③ クロム酸カリウム水溶液 K_2CrO_4 aq を加えると、沈殿を生じる。
- ④ アンモニア水 NH; aq を加えると沈殿を生じるが、過剰に (in excess) 加えると その沈殿が溶ける。
- ⑤ 水酸化ナトリウム水溶液 NaOH aq を加えると沈殿を生じるが、過剰に加えると その沈殿が溶ける。
- 問 16 分子式 $C_5H_{10}O_2$ のエステル (ester) を加水分解 (hydrolysis) したところ, カルボン酸 (carboxylic acid) とアルコール (alcohol) が得られた。カルボン酸は銀鏡反応 (silver mirror test) を示した。また, アルコールはヨードホルム反応 (iodoform reaction) を示した。このアルコールの構造式 (structural formula) として正しいものを, 次の①~⑤の中から一つ選びなさい。

問 17 次の操作(\mathbf{a}) \sim (\mathbf{c})で生成する有機化合物 (organic compound) の組み合わせとして正しいものを、下表の① \sim ⑥の中から一つ選びなさい。

- (a) 酢酸ナトリウム CH₃COONa を水酸化ナトリウム NaOH とともに加熱する。
- (b) 酢酸カルシウム (CH₃COO)₂Ca を乾留 (dry distillation) する。
- (c) 炭化カルシウム CaC_2 に水 H_2O を加える。

	а	b	С
1	メタン	アセチレン (エチン)	アセトン
2	メタン	アセトン	アセチレン (エチン)
3	アセチレン (エチン)	メタン	アセトン
4	アセチレン (エチン)	アセトン	メタン
(5)	アセトン	メタン	アセチレン (エチン)
6	アセトン	アセチレン (エチン)	メタン

注) アセチレン (エチン) (acetylene (ethyne)), アセトン (acetone), メタン (methane)

問 18 ニトロベンゼン (nitrobenzene), 安息香酸 (benzoic acid) およびアニリン (aniline) を含むジエチルエーテル溶液 (diethyl ether solution) を分液ろうと (separatory funnel) に入れ, 希塩酸 dil. HCl と水酸化ナトリウム水溶液 NaOH aq を用いて, 次の図のように分離操作を行った。希塩酸(a), 水酸化ナトリウム水溶液(b) およびジエチルエーテル溶液(c)に含まれる物質はどれか。正しい組み合わせを, 下表の①~⑥の中から一つ選びなさい。

	a	b	С
1)	ニトロベンゼン	安息香酸ナトリウム	アニリン
2	ニトロベンゼン	アニリン	安息香酸
3	安息香酸	ニトロベンゼン	アニリン
4	安息香酸	アニリン	ニトロベンゼン
(5)	アニリン塩酸塩	ニトロベンゼン	安息香酸
6	アニリン塩酸塩	安息香酸ナトリウム	ニトロベンゼン

注) 安息香酸ナトリウム (sodium benzoate), アニリン塩酸塩 (aniline hydrochloride)

問 19 高分子化合物 (polymer compound) について、重合反応 (polymerization) の種類と構成 元素の組み合わせが正しいものを、次表の①~⑤の中から一つ選びなさい。 **19**

	高分子化合物	重合反応の種類	構成元素
1	ナイロン 66 (nylon 6,6)	縮合重合 (condensation polymerization)	С, Н, О
2	ポリエチレンテレフタラート (poly(ethylene terephthalate))	付加重合 (addition polymerization)	С, Н, О
3	ブタジエンゴム (butadiene rubber)	付加縮合 (addition condensation)	C, H
4	ポリアクリロニトリル (polyacrylonitrile)	付加重合	C, H, N
(5)	フェノール樹脂 (phenol resin)	付加縮合	C, H, N

- 問 20 タンパク質 (protein) に関する次の記述①~⑤のうち,下線部が<u>誤っているもの</u>を 一つ選びなさい。 **20**
 - ① $タンパク質は \alpha-アミノ酸 (\alpha-amino acid) が縮合 (condensation) してできており、 ポリペプチド (polypeptide) ともよばれる。$
 - ② タンパク質は分子内の C=O 基と N-H 基の間の水素結合(hydrogen bond)により, α ヘリックス(α -helix)や β シート(β -sheet)などの二次構造(secondary structure) をもつ。
 - ③ タンパク質を加熱すると、変性 (denaturation) する。
 - ④ タンパク質の水溶液に<u>濃硫酸 conc. H_2SO_4 </u> を加えて加熱すると、溶液は黄色に変化する。
 - ⑤ 毛髪 (hair) をつくるタンパク質はシステイン (cysteine) を含み, $\underline{$ ジスルフィド 結合 (-S-S-) を形成することで構造が安定する。

化学の問題はこれで終わりです。解答欄の **21** ~ **75** はマークしないでください。 解答用紙の科目欄に「化学」が正しくマークしてあるか,もう一度確かめてください。

この問題冊子を持ち帰ることはできません。