

Session-aware Linear Item-Item Models for Session-based Recommendation

Minjin Choi¹, Jinhong Kim¹, Joonseok Lee^{2,3}, Hyunjung Shim⁴, Jongwuk Lee¹

Sungkyunkwan University (SKKU)¹, Google Research² Seoul National University³, Yonsei University⁴

Motivation

Session-based Recommendation (SR)

- > Predicting the next item(s) based on only the current session
 - Usually, session histories are much shorter than user histories.

Limitation of Existing SR Models

>DNN models show good performance but suffer scalability issues.

- RNNs and GNNs are mostly used for session-based recommendations.
- When the dataset is too large, the scalability issue arises.

Limitation of Existing SR Models

Neighborhood-based models are difficult to capture complex dependencies between items in a session.

Research Question

How to build the accurate and scalable session-based recommender model?

Our Key Contributions

>We utilize linear models for session-based recommendations.

- Linear models show great performance in traditional recommendations.
- However, simply applying them to session-based recommendations does not show an effective performance.

Item-item model $oldsymbol{B} \in \mathbb{R}^{oldsymbol{n} imes oldsymbol{n}}$

Dataset: YC-1/64							
Models	HR@20	MRR@20					
GRU4Rec+	0.6528	0.2752					
SKNN	0.6423	0.2522					
SEASER	0.5443	0.1963					

Worse than existing models!

User-item matrix X

 $X \in \mathbb{R}^{m \times n}$

Our Key Contributions

- >We design linear models to utilize some unique characteristics of sessions.
 - Some items tend to be consumed in a specific order. (dependency)
 - Items in a session are often **highly coherent**. (consistency)

Our Key Contributions

- >We design linear models to utilize some unique characteristics of sessions.
 - Sessions often reflect a recent trend. (timeliness)
 - The user might consume the same items in a session. (repeated item)

Proposed Model

Overview of the Proposed Model

We devise two linear models to learn item similarity/transition and unify them to fully capture the complex relationships of items.

Two Session Representations

- >We deal with two session representations for our linear models.
 - (1) A single vector to capture the correlations between items while ignoring the order.
 - (2) Past and future vectors to represent sequential dependency of items.

Item Similarity Model (SLIS)

- >We learn the linear model using full session representation, to represent the similarity between items.
 - The entire session is represented as a single vector.
 - B_{ij} indicates the learned item similarity between i and j.
 - Note: the diagonal constraint is relaxed.

Full session representation X $X \in \mathbb{R}^{|S| \times N}$

Item similarity model $B \in \mathbb{R}^{N \times N}$

Dark cells mean high similarities.

|S|: # of sessions

n: # of items

Item Transition Model (SLIT)

- >We learn the linear model using partial session representation that captures the sequential dependency across items.
 - A session is divided into past vectors and future vectors.
 - B_{ij} indicates the item transitions from i to j.

 $\underset{B}{\operatorname{argmin}} \|T - SB\|_F^2 + \lambda \|B\|_F^2$

Partial session representation $S \rightarrow T$ $S, T \in \mathbb{R}^{|S'| \times N}$

Item Transition Model B $B \in \mathbb{R}^{N \times N}$

Dark cells mean the high transition probability.

|S'|: # of partial sessions

n: # of items

Item Similarity/Transition Model: SLIST

>We unify two linear models by jointly optimizing both models.

Weight Decay of Items in a Session

>We assign higher weights for more recent sessions (w_{time}) and current items (w_{pos} , w_{inf}) in the sessions.

Detail: Training and Inference

>The objective function of SLIST

Item similarity model (SLIS)

Item transition model (SLIT)

$$argmin \alpha ||W_{full} \odot (X - XB)||_F^2 + (1 - \alpha) ||W_{par} \odot (T - SB)||_F^2 + \lambda ||B||_F^2$$

Closed form solution
$$\widehat{B} = I - \lambda \widehat{P} - (1 - \alpha) \widehat{P} S^{\top} diagMat(w_{par}^2)(S - T)$$

>Model inference

Partial Learned representation vector item-item model $\hat{m{t}} = m{s} \cdot \widehat{m{B}}$

Experiments

Experimental Setup: Dataset

- >We evaluate the accuracy and scalability of SLIST over public datasets.
 - For a fair comparison, we evaluate both on 1-split and 5-split datasets.

Split	Dataset	# of actions	# of sessions	# of items
1-split	YooChoose 1/64 (YC-1/64)	494,330	119,287	17,319
	YooChoose 1/4 (YC-1/4)	7,909,307	1,939,891	30,638
	DIGINETICA (DIGI1)	916,370	188,807	43,105
5-split	YooChoose (YC5)	5,426,961	1,375,128	28,582
	DIGINETICA (DIGI5)	203,488	41,755	32,137

Evaluation Protocol and Metrics

>Evaluation protocol: iterative revealing scheme

We iteratively expose the item of a session to the model.

> Evaluation metrics

- HR@20 and MRR@20
 - To predict only the next item in a session
- R@20 and MAP@20
 - To consider all subsequent items for a session

Competitive Models

>Two neighborhood-based models

Shu Wu et. al., "Session-Based Recommendation with Graph Neural Networks", AAAI 2019.

- **SKNN**: a session-based KNN algorithm, a variant of user-based KNN.
- **STAN**: an improved version of SKNN by considering sequential dependency and timeliness of sessions.

>Four DNN-based models

- GRU4Rec+: an improved version of GRU4REC using the top-k gain.
- NARM: an improved version of GRU4REC+ using an attention mechanism.
- STAMP: an attention-based model for capturing user's interests.
- SR-GNN: a GNN-based model to capture complex dependency.

Dietmar Jannach et. al., "When Recurrent Neural Networks meet the Neighborhood for Session-Based Recommendation", RecSys 2017 Diksha Garg et. al., "Sequence and Time Aware Neighborhood for Session-based Recommendations: STAN", SIGIR 2019 Balázs Hidasi et. al., "Session-based Recommendations with Recurrent Neural Networks", ICLR 2016.

Jing Li et. al., "Neural Attentive Session-based Recommendation" CIKM 2017.

Qiao Liu et. al., "STAMP: ShortTerm Attention/Memory Priority Model for Session-based Recommendation" KDD 2018.

Accuracy: Ours vs. Competing Models

>Our models consistently show competitive performance.

No existing models show state-of-the-art performance for all datasets.

Neighborhood-based

DNN-based

Ours

Dataset	Metric	SKNN	STAN	GRU4Rec+	NARM	STAMP	SR-GNN	SLIS	SLIT	SLIST	Gain(%)
	HR@20	0.6423	0.6838	0.6528	0.6998	0.6841	0.7021	0.7015	0.6968	0.7088	0.95
YC-1/64	R@20	0.4780	0.4955	0.4009	0.5051	0.4904	0.5049	0.5051	0.4976	0.5080	0.57
VC 4 /4	HR@20	0.6329	0.6846	0.6940	0.7079	0.7021	0.7118	0.7119	0.7149	0.7175	0.80
YC-1/4	R@20	0.4756	0.4952	0.4887	0.5097	0.5008	0.5095	0.5121	0.5110	0.5130	0.65
DICI1	HR@20	0.4846	0.5121	0.5097	0.4979	0.4690	0.4904	0.5247	0.4729	0.5291	3.32
DIGI1	R@20	0.3788	0.3965	0.3957	0.3890	0.3663	0.3811	0.4062	0.3651	0.4091	3.18
VCF	HR@20	0.5996	0.6656	0.6488	0.6751	0.6654	0.6713	0.6786	0.6838	0.6867	1.72
YC5	R@20	0.4658	0.4986	0.4837	0.5109	0.4979	0.5060	0.5074	0.5097	0.5122	0.25
DICIE	HR@20	0.4748	0.4800	0.4639	0.4188	0.3917	0.4158	0.4939	0.4193	0.5005	4.27
DIGI5	R@20	0.3715	0.3720	0.3617	0.3254	0.3040	0.3232	0.3867	0.3260	0.3898	4.78

Scalability: Ours vs. Competing Models

- >Training SLIST is much faster than training DNN-based models.
 - Computational complexity is mainly proportional to the number of items.
 - It is highly desirable in practice, especially on popular online services, where millions of users create billions of session data every day.

Models	The ratio of training sessions on YC-1/4								
	5%	10%	20%	50%	100%				
GRU4Rec+	177.4	317.8	614.0	1600.2	3206.9				
NARM	2137.6	3431.2	7454.2	27804.5	72076.8				
STAMP	434.1	647.5	985.3	2081.2	4083.3				
SR-GNN	6780.5	18014.7	31444.3	68581.9	185862.5				
SLIST	SLIST 202.7		199.9	227.0	241.9				
Gains (SLIST vs. SR-GNN)	33.5x	90.6x	157.3x	302.1x	768.2x				

Ablation Study: Weight components

>SLIST with all components is always better than others.

• For three datasets, considering recent items at the inference phase (w_{inf}) is the most influential factor.

	147	w_{pos}	W _{time}	YC-1/64		YC-1/4		DIGI1	
	w_{inf}			HR	MRR	HR	MRR	HR	MRR
All Weights —	0	0	0	0.7088	0.3083	0.7175	0.3161	0.5291	0.1886
Two Weights $\left\langle {} \right\rangle$	0	0		0.7078	0.3077	0.7096	0.3115	0.5253	0.1880
	0		0	0.6761	0.2697	0.6841	0.2753	0.5145	0.1820
		0	0	0.6880	0.2973	0.7004	0.3031	0.5202	0.1855
One Weights	0			0.6764	0.2697	0.6784	0.2723	0.5111	0.1817
		0		0.6898	0.2980	0.6947	0.3005	0.5173	0.1852
			0	0.6570	0.2651	0.6675	0.2693	0.5055	0.1789
No Weights —				0.6592	0.2652	0.6626	0.2671	0.5025	0.1786

Conclusion

Conclusion

- >We propose session-aware linear item models to fully capture various characteristics of sessions.
 - SLIST: session-aware linear similarity/transition model

> Despite its simplicity, SLIST achieves competitive or state-of-theart performance on various datasets.

- >SLIST is highly scalable thanks to closed-form solutions of the linear models.
 - The computational complexity of SLIST is proportional to the number of items, which is desirable in commercial systems.

Q&A

Email: zxcvxd@skku.edu

Code: https://github.com/jin530/SLIST