Workshop prep

(materials: https://github.com/CellMigrationLab/V4SDB_Winter_School_2025)

1. Open Fiji and activate the TrackMate Helper update site. Restart Fiji.

- 1. Download and unzip:
 - o_Tracking_settings.zip
 - Place on your computer
 - 1_TrackMate_batcher_input.zip
 - Place on your computer
 - 2_CellTracksColab_input.zip
 - Upload to Google Drive
- 2. Create 2 new folders:
 - Create a new folder on your computer for tracking results
 - Create a folder on your Google Drive for CellTracksColab results

https://zenodo.org/records/14645477

ANALYSIS OF CELL BEHAVIOR USING TRACKMATE AND CELLTRACKSCOLAB

What, where, how?

Can I also use it?

Joanna Pylvänäinen, joanna.pylvanainen@abo.fi

V4SDB Winter School 2025

Materials modified from Guillaume Jacquemet, Hanna Grobe and Robert Haase

Contents of the workshop

- Introduction to cell tracking in cell biology
- Introduction to TrackMate and batch processing + hands-on
- Introduction to CellTracksColab + hands-on

TYPICAL CELL TRACKING PROBLEM

And how we approach it

Steps of cell tracking analysis

- Segmentation
- Object linking
- Feature extraction
- Analysis

0.9 0.8 0.7 0.6 0.5 0.4

Tools developed at Cell migration lab

Platform tailored to simplify the exploration and analysis of cell tracking data.

What is TrackMate?

An open-source plugin for Fiji/ImageJ designed for tracking particles and objects in 2D (and 3D) microscopy data.

Key Features:

- User-friendly interface with a step-by-step wizard
- Flexible: Can handle a variety of biological data (single particles, cells, organelles)
- Multiple tracking algorithms: LAP (Linear Assignment Problem), Kalman filter, etc.
- Customizable analysis workflows
- Visualization and export options for track analysis
- Extensive documentation and active community support.

Ershov, D., Phan, M. S., Pylvänäinen, J. W., Rigaud, S. U., Le Blanc, L., Charles-Orszag, A., Conway, J. R. W., Laine, R. F., Roy, N. H., Bonazzi, D., Duménil, G., Jacquemet, G., & Tinevez, J. Y. (2022). **TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines.** Nature methods, 19(7), 829–832. https://doi.org/10.1038/s41592-022-01507-1

What is CellTracksColab?

Cloud-based tool for track analysis.

- Key Features:
 - Cloud-based: No installation required; runs on Google Colab notebooks
 - Accessible: Suitable for users without coding experience and advanced computing infrastructure
 - Export and Visualize: Outputs track data, graphs, and visualizations in real-time.

Gómez-de-Mariscal, E., Grobe, H., Pylvänäinen, J. W., Xénard, L., Henriques, R., Tinevez, J. Y., & Jacquemet, G. (2024). **CellTracksColab is a platform that enables compilation, analysis, and exploration of cell tracking data.** PLoS biology, 22(8), e3002740. https://doi.org/10.1371/journal.pbio.3002740

What is Particle and Object Tracking?

Particle tracking Tracking the centroid of each particle's signal

+ + +

Object tracking
Tracking the entire shape
and size of the object

Source: Konrad Schindler, Computer Vision Lab, ETH Zuerich http://www.vision.ee.ethz.ch/datasets/

Applications in Cell Biology

Object Tracking:

- Tracking individual proteins in live cells
- Cell motility and migration studies
- Tracking cell division over time
- Measuring organelle movement or shape changes over time
- Measuring signal changes over time

Tracking principle in TrackMate

Segmentation

- B&W masks
- Label images
- Thresholded images

MorphoLibJ morphological segmentation

Weka custom model

llastik custom pixel classification project

StarDist built-in nuclei model and custom models

Cellpose built-in models and custom models

New TrackMate API: Interoperate with external segmentation components. Store, create and analyze object contours.

- Tracking cells
- Lineage tracing
- Changes in 2D shape over time
- Changes in intensity over time
- 2D to 3D segmentation

- Intensity-based segmentation
- Feature-based segmentation
- Using a pixel classifier (WEKA, ilastik, ect)
- Using Deep-Learning (e.g. Cellpose, StarDist)

Segmentation

In the tracking context, object differentiation is important

Raw image (nuclei)

Instance segmentation

(over-segmentation)

Missed objects (under-segmentation)

Outline precision can be of secondary interest

"Ground truth" (manual annotation)

Image data source: Jones et al., Proc. ICCV Workshop on Computer Vision for Biomedical Image Applications, 2005 / Broad Bioimage Benchmark Collection [Ljosa et al., Nature Methods, 2012, https://bbbc.broadinstitute.org/BBBCoo7

TrackMate object detection

Tracking principle in TrackMate

• **Trackers** are algorithms or tools used to follow the movement of objects over time in a series of images or videos.

Tracking algorithm example - LAP tracker

Object linking using a search radius (LAP tracker)

Tracking algorithm example - overlap tracker

Object linking using an overlap (The overlap tracker)

The Overlap tracker is well suited for large objects that move by less than their diameter.

What if you have multiple movies to track?

Drag and drop the files to track

Export settings

Output:

Path to TrackMate settings file

🗟 t-cell-dataset_tracking_settings

Log window

Trackmate Batcher!!!!!

Start!

OURTASKTODAY

How does the coating on glass bottom dishes affect the migration of T-cells?

ICAM VCAM

T-CELL DATASET

Your test dataset has two channels

Channel 1 – brightfield images

Channel 2 – cell labels

Task 1 – tracking of T cell dataset

- 1. Use the *Image for tracking settings* to define tracking parameters using the TrackMate interface in Fiji
- 2. Save these settings as an xml file (TrackMate settings file)
- 3. Apply these settings to all data using TrackMate Batcher
 - Plugins > Tracking > TrackMate Batcher
 - Folder with the tracking images
 - Export:
 - 1) Spot table
 - 2) Track table
 - 3) Movie

https://zenodo.org/records/14645477

Track Analysis

Experiments

Datasets

Analysis

- Multiple conditions
- Multiple repeats
- Multiple FOVs

- Large number of objects per FOV
- Many parameters
- Multiple csv files

HOW DO I ANALYZE ALL THIS DATA?

Cloud-based tool for track analysis

CellTracksColab Gómez-de-Mariscal, E., Grobe, H., Pylvänäinen, J. W., Xénard, L., Henriques, R., Tinevez, J. Y., & Jacquemet, G. (2024). CellTracksColab is a platform that enables compilation, analysis, and exploration of cell tracking data. PLoS biology, 22(8), e3002740. https://doi.org/10.1371/journal.pbio.3002740

What is CellTracksColab?

ICY

FIJI

llastik

CellProfiler

TrackMate

Available notebooks

Simple analysis notebooks

Notebook	Purpose	Required File Format	Link
CellTracksColab - TrackMate	Load and analyze TrackMate data. More info on how to prepare the data <u>here</u> .	CSV or XML files	co Open in Colab
CellTracksColab - Custom	Analyze data from CellProfiler, ICY, ilastik, or Fiji Manual Tracker. More info on how to prepare the data <u>here</u> .	CSV files	Open in Colab
CellTracksColab - Viewer	Load and share data in the CellTracksColab format.	CellTracksColab format	Open in Colab

Advanced analysis notebooks

Notebook	Purpose	Required File Format	Link
CellTracksColab - Dimensionality Reduction	Utilize advanced dimensionality reduction techniques.	CellTracksColab format	Open in Colab
CellTracksColab - Track Spatial Clustering Analysis	Dive deeper into your dataset with track clustering analysis.	CellTracksColab format	Open in Colab
CellTracksColab - Distance to ROI	Analyze movement tracks in relation to designated ROIs.	CellTracksColab format	Open in Colab

When it runs?

Google Colab

Locally using Google Colab

Locally using Jupyter

https://github.com/CellMigrationLab/CellTracksColab

CellTracksColab Workflow

Prepare Data

Load csv files generated from multiple tracking tools

Compiling data

CellTracksColab format

Viewing tracks

Viewing, filtering and smoothing of tracks

Track Analysis

Plotting of conditions, extracting subpopulations

CellTracksColab -TrackMate

CellTracksColab -Custom

Requirements for CellTracksColab

CellTracksColab -TrackMate

CellTracksColab -Custom

- Experiments [Folder_path]
 - Condition_1 ['condition' is derived from this folder name]
 - 🖸 R1 ['repeat' is derived from this folder name]
 - FOV1.csv
 - FOV2.csv
 - 🔁 R2
 - FOV1.csv
 - FOV2.csv
 - - 🔄 R1
 - 😉 R2

Minimum requirements for data

Track ID	X Coordinate	Y Coordinate	Z Coordinate	Time Point
0	687.991	150.047	0.0	0.0
1	1255.994	467.008	0.0	0.0
2	171.994	853.024	0.0	0.0
(and so on)				

- represents the main folder or directory
- # represents the condition folders.
- represents the repeat folders.
- represents the individual CSV files.

Track Visualization

CellTracksColab -TrackMate

CellTracksColab -

CellTracksColab -Viewer

Custom

- By repeat
- By condition

Track filtering

Track features

CellTracksColab - TrackMate

CellTracksColab -Custom

CellTracksColab -Viewer

These metrics can be computed in the TrackMate, Custom, or Viewer notebooks:

- Track Duration: The total duration of the track.
- Mean Speed: The average speed of the track.
- Max Speed: The maximum speed recorded for the track.
- Min Speed: The minimum speed recorded for the track.
- Speed Standard Deviation: The standard deviation of the speeds recorded for the track.
- Total Distance Traveled: The cumulative distance traveled by the track.
- Directionality: Provides a measure of the overall direction of a track, indicating the straightness of the path taken.
- Tortuosity: Measures how convoluted or twisted a path is, with a value of 1 indicating a straight path and higher values
 indicating more twists and turns.
- Total Turning Angle: Indicates the cumulative amount of turning along the path, with higher values indicating more turning.
- Spatial Coverage: Represents the area (2D) or volume (3D) covered by the object's movement.

Spot features

These metrics are derived from the information provided by TrackMate in the spots table:

- Intensity Metrics: Mean, median, min, max, total, and standard deviation of intensities in different channels.
 - Examples: MEAN_INTENSITY_CH1, MEDIAN_INTENSITY_CH1, MIN_INTENSITY_CH1, MAX_INTENSITY_CH1,
 TOTAL_INTENSITY_CH1, STD_INTENSITY_CH1
- Shape Metrics: Ellipse parameters, area, perimeter, circularity, solidity, and shape index.
 - Examples: ELLIPSE_X0 , ELLIPSE_Y0 , ELLIPSE_MAJOR , ELLIPSE_MINOR , ELLIPSE_THETA , ELLIPSE_ASPECTRATIO , AREA ,
 PERIMETER , CIRCULARITY , SOLIDITY , SHAPE_INDEX

The following is a comprehensive list of potential metrics that can be computed:

- MEAN_INTENSITY_CH1, MEDIAN_INTENSITY_CH1, MIN_INTENSITY_CH1, MAX_INTENSITY_CH1, TOTAL_INTENSITY_CH1,
 STD_INTENSITY_CH1, CONTRAST_CH1, SNR_CH1
- ELLIPSE_X0, ELLIPSE_Y0, ELLIPSE_MAJOR, ELLIPSE_MINOR, ELLIPSE_THETA, ELLIPSE_ASPECTRATIO, AREA, PERIMETER,
 CIRCULARITY, SOLIDITY, SHAPE_INDEX
- MEAN_INTENSITY_CH2 , MEDIAN_INTENSITY_CH2 , MIN_INTENSITY_CH2 , MAX_INTENSITY_CH2 , TOTAL_INTENSITY_CH2 ,
 STD_INTENSITY_CH2 , CONTRAST_CH2 , SNR_CH2
- MEAN_INTENSITY_CH3, MEDIAN_INTENSITY_CH3, MIN_INTENSITY_CH3, MAX_INTENSITY_CH3, TOTAL_INTENSITY_CH3,
 STD_INTENSITY_CH3, CONTRAST_CH3, SNR_CH3
- MEAN_INTENSITY_CH4, MEDIAN_INTENSITY_CH4, MIN_INTENSITY_CH4, MAX_INTENSITY_CH4, TOTAL_INTENSITY_CH4,
 STD_INTENSITY_CH4, CONTRAST_CH4, SNR_CH4

CellTracksColab -TrackMate

CellTracksColab -Custom

CellTracksColab -Viewer

Quality Control - randomization

CellTracksColab -TrackMate

CellTracksColab -

CellTracksColab -Viewer

Custom

Purpose

- Each biological repeat should carry equal weight in the analysis
- Randomization is a method to check if an observed difference between two groups is real or just a random chance.

A balanced dataset is essential for:

- Capturing True Biological Variation: Equal weighting ensures accurate representation.
- Reducing Sampling Bias: Balancing the dataset helps avoid overemphasizing characteristics from any single repeat, which might not represent the broader biological context.

Note: If your data is imbalanced, consider balancing it to prevent skewing your results.

Data balancing - randomization

CellTracksColab -TrackMate

CellTracksColab -Custom

CellTracksColab -Viewer

- Mix all data from all groups and randomly divide them into new groups.
- Calculate the effect size (difference) for the shuffled groups.
- Repeat x times to create a "random chance" baseline.

Effect of data balancing

CellTracksColab -Custom

CellTracksColab -Viewer

Presents p-values visually

High P-Values (Yellow):

0.3

• Down-sampling process likely did not significantly alter the distribution of that numerical column for the specific conditionrepeat group.

Low P-Values (Green/blue):

• Suggest that the down-sampling process may have affected the distribution significantly.

0.8

0.2

Close

shCTRL

Far

Close

shMYO10

Far

Directionality

Distance to ROI

Exploring high-dimensional data

UMAP and **t-SNE**:

reducing the number of dimensions of complex data by taking data from its original high-dimensional space and shrink it down to 2D

HDBSCAN clustering data from **UMAP/t-SNE** output:

determines clusters based on density and similarity, identifying groups of similar cell tracks.

Data fingerprinting and sub-populations

Fingerprinting:

Each cluster represents a group of similar cells or behaviours. Fingerprinting helps create a unique profile for each group.

By cluster

By condition

Task 2 — Track analysis using CellTracksColab

1. Upload your tracking results to your Google Drive (or use the pre-made dataset). Make sure the folders are correctly organized.

- Create a folder for results
- 3. Open The CellTracksColab TrackMate notebook
- 4. Make a copy of the notebook to your drive
- 5. Run all cells visualize and generate plots.

https://zenodo.org/records/13969009

Conclusions

- TrackMate and CellTracksColab provide powerful tools for analyzing cell behavior and tracking particles in from large amount of biological data
- Allow identification of subpopulations in data and measure their features to better understand the data.

