Lung Cancer Detection

Sandy Weng

Objective

Work with images to create a convolutional neural network to predict whether microscopic lung tissue is cancerous

Data

- Kaggle
- 15,000 images
- 3 types of classes

Normal

Lung adenocarcinoma (aca)

Lung squamous cell carcinoma (scc)

Methodology

- Tools
 - ImageDataGenerator
 - Keras
 - OpenCV
 - Tensorflow

- Models
 - CNN
 - VGG16
 - InceptionV3

Baseline Model

KNN

- 400 images
- Classes Aca and Normal
- Accuracy score: 0.97

Modeling

- 2 Binary Classification Models
 - VGG16
 - Aca vs Normal
 - Aca vs Scc
 - Both accuracies ~ 0.97

Modeling

- 3 classes
- 6000 images
- VGG16 validation score: 0.92
- InceptionV3 validation score: 0.99

Final Model

InceptionV3

- 3 classes
- 15,000 images
- Accuracy score: 0.973

Predictions

Actual: Normal Predicted: Normal

Actual: Aca Predicted: Aca

Actual: Scc Predicted: Scc

THANKS!

Do you have any questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**

Appendix

- Final model loss: 0.08
- InceptiveV3 small dataset confusion matrix

• VGG16 small dataset confusion matrix

```
Confusion Matrix
[[414 24 62]
[ 7 493 0]
[ 22 0 478]]
```