MDI0002 – Matemática Discreta Videoaula 15 Operações Binárias e Álgebras Simples

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2024

Operação Binária

• operação == relação funcional

$$f:A\to B$$

 operação binária: domínio é o produto cartesiano de dois conjuntos (dois operandos)

$$\oplus: A \times B \rightarrow C$$

 operação interna: operandos e resultados são elementos de um mesmo conjunto

$$\otimes: A \times A \rightarrow A$$

• operação **fechada**: função *total* (garantia de obter resultado)

Definições

Definição

Sejam A, B, C conjuntos quaisquer. Então tem-se que:

- uma OPERAÇÃO BINÁRIA é uma função parcial do tipo $\oplus: A \times B \to C$:
- **①** uma OPERAÇÃO INTERNA ao conjunto A é uma operação cujos operandos e contra-domínio são definidos em A. Em particular, uma OPERAÇÃO BINÁRIA INTERNA sobre A é uma função parcial do tipo $\otimes: A^2 \to A$;
- uma OPERAÇÃO FECHADA é uma função total.

Exemplos

• Divisão nos reais. $div: \mathbb{R}^2 \to \mathbb{R}$ é uma operação binária interna.

$$div(x,y) = \frac{x}{y}$$

• Quadrado nos naturais. $quad: \mathbb{N} \to \mathbb{N}$ é uma operação interna e fechada.

$$quad(n) = n^2$$

• Elemento. Seja $\mathbf{1} = \{*\}$ um conjunto unitário. $zero: \mathbf{1} \to \mathbb{N}$ é uma operação fechada.

$$zero(*) = 0$$

 União. Seja A um conjunto qualquer. ∪ : 2^A × 2^A → 2^A, a união de dois subconjuntos de A, é operação binária interna fechada.

Propriedades

Seja $\oplus: A^2 \to A$ uma **operação binária interna**. Então \oplus satisfaz a propriedade:

● COMUTATIVA, quando

$$\forall a,b \in A(a \oplus b = b \oplus a)$$

♠ ASSOCIATIVA, quando

$$\forall a, b, c \in A(a \oplus (b \oplus c) = (a \oplus b) \oplus c)$$

♠ ELEMENTO NEUTRO, quando

$$\exists e \in A \, \forall a \in A (a \oplus e = a = e \oplus a)$$

♠ ELEMENTO ABSORVENTE, quando

$$\exists z \in A \, \forall a \in A (a \oplus z = z = z \oplus a)$$

▼ ELEMENTO INVERSO quando possui elemento neutro e e

$$\forall a \in A \exists \overline{a} \in A(a \oplus \overline{a} = e = \overline{a} \oplus a)$$

Atenção!

O Elemento Neutro (ou o Absorvente) deve ser à esquerda **e** à direita!

Exemplo: a divisão nos reais não nulos não possui elemento neutro à esquerda.

Porém, o 1 é elemento neutro à direita, uma vez que $\frac{x}{1} = x$ para todo $x \in \mathbb{R} - \{0\}$.

Exemplos

- \cup : $2^A \times 2^A \to 2^A$, sendo A conjunto qualquer, é comutativa, associativa e com elemento neutro (conjunto \varnothing)
- Adição.
 - Em N: comutativa, associativa e com elemento neutro 0.
 - Em \mathbb{Z} : comutativa, associativa, com elemento neutro 0 e com elemento inverso $(\overline{n} = -n)$.
- Multiplicação.
 - Em N: comutativa, associativa e com elemento neutro 1.
 - Em $\mathbb{R} \{0\}$: comutativa, associativa, com elemento neutro 1 e elemento inverso $(\overline{x} = \frac{1}{x})$.

Álgebras Internas

Álgebra Interna $\langle A, \oplus \rangle$ com **uma** operação.

- A: conjunto suporte.
- $\oplus : A^2 \to A$ operação binária interna.

Tipos de Álgebras

Tipo de Álgebra	Propriedades
Grupoide	Fechada
Semi-grupo	Fechada, Associativa
Monoide	Fechada, Associativa, Elemento Neutro
Grupo	Fechada, Associativa, Elemento Neutro,
	Elemento Inverso

- Se a operação for comutativa tem-se uma ÁLGEBRA ABELIANA (grupóide abeliano, monóide abeliano,...).
- Usualmente, na notação de monoide e de grupo, o elemento neutro também é destacado: $\langle A, \oplus, e \rangle$.

Exemplos

- Monoides abelianos: $\langle 2^A, \cup, \varnothing \rangle$, $\langle 2^A, \cap, A \rangle$, $\langle \mathbb{N}, +, 0 \rangle$, $\langle \mathbb{N}, *, 1 \rangle$, $\langle \mathbb{Z}, +, 0 \rangle$, $\langle \mathbb{Z}, *, 1 \rangle$, $\langle \mathbb{R}, +, 0 \rangle$, $\langle \mathbb{R}, *, 1 \rangle$
- Grupos abelianos: $\langle \mathbb{Z}, +, 0 \rangle$, $\langle \mathbb{R}, +, 0 \rangle$, $\langle \mathbb{R} \{0\}, *, 1 \rangle$

Contra-Exemplos

- Álgebra não grupoide: $\langle \mathbb{N}, \rangle$, $\langle \mathbb{R}, /$, $\langle 2^A, \times \rangle$ (para $A \neq \varnothing$)
- Álgebra não semi-grupo: $\langle \mathbb{Z}, \rangle$, $\langle \mathbb{R} \{0\}, / \rangle$
- Álgebra não monoide: $\langle \varnothing, \varnothing \rangle$
- Álgebra não grupo: $\langle \ltimes, + \rangle$, $\langle \mathbb{R}, * \rangle$, $\langle 2^A, \cup \rangle$, $\langle 2^A, \cap \rangle$ (para $A \neq \emptyset$).

Unicidade do Elemento Neutro

Teorema

Seja $\langle A, \oplus, e \rangle$ um monóide. Então $e \in A$ é o único elemento neutro do monóide.

Prova por redução ao absurdo.

Propriedade de Cancelamento

Teorema

Seja $\langle A, \oplus, e \rangle$ um grupo. Então a propriedade do cancelamento é satisfeita. Ou seja, simultaneamente:

Cancelamento à direita

$$\forall a, x, y \in A (x \oplus a = y \oplus a \rightarrow x = y)$$

n Cancelamento à esquerda

$$\forall a, x, y \in A (a \oplus x = a \oplus y \rightarrow x = y)$$

Prova

Cancelamento à direita.

Supondo $x \oplus a = y \oplus a$.

$$x = x \oplus e = x \oplus (a \oplus \overline{a}) = (x \oplus a) \oplus \overline{a} = (y \oplus a) \oplus$$

$$y \oplus (a \oplus \overline{a}) = y \oplus e = y$$
.

A prova do cancelamento à esquerda é análoga.

