		Not	e
		I	l II
Name Vorname	1		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	2		
	3		
Unterschrift der Kandidatin/des Kandidaten	4		
	5		
TECHNISCHE UNIVERSITÄT MÜNCHEN			
Fakultät für Mathematik	6		
Wiederholungsklausur	7		
Mathematik für Physiker 3	7		
(Analysis 2)	8		
Prof. Dr. M. Wolf			
28. September 2012, $08:00 - 09:30$ Uhr	\sum		
Hörsaal: Reihe: Platz:	I Erstkorrektur		
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben	II		
Bearbeitungszeit: 90 min		Zwentkom	cktui
Erlaubte Hilfsmittel: \mathbf{zwei} selbsterstellte DIN A4 Blätter			
Erreichbare Gesamtpunktzahl: 80 Punkte			
Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.			
Nur von der Aufsicht auszufüllen:	_		
Iörsaal verlassen von bis			
$v_{ m orzeitig}$ abgegeben um			

 $Musterl\ddot{o}sung \quad \ \ ({\rm mit\; Bewertung})$

Besondere Bemerkungen:

1. Topologie	[8 Punkte]
1. Topologic	[O I diliteo]

Sei X ein nichtleerer topologischer Raum. Zeigen Sie:

- (a) Ist $A\subseteq X$ offen und für $B\subseteq X$ gilt $B\cap A=\emptyset$, dann gilt auch $\overline{B}\cap A=\emptyset$.
- (b) Ist $M\subseteq X$ zusammenhängend, dann ist auch \overline{M} zusammenhängend.

LÖSUNG:

- (a) Wegen $A = A^{\circ}$ gilt: $A \cap B = \emptyset \iff A \subseteq X \setminus B \iff A = A^{\circ} \subseteq (X \setminus B)^{\circ} \iff A \cap X \setminus (X \setminus B)^{\circ} = A \cap \overline{B} = \emptyset.$ [2]
- (b) Wir beweisen die Umkehrung: [2] Sei \overline{M} nicht zusammenhängend. Dann gibt es $A,B\subseteq X$ offen und disjunkt $A\cap\overline{M}\neq\emptyset$ und $B\cap\overline{M}\neq\emptyset$ und $\overline{M}\subseteq A\cap B$. [2] wegen (a) folgt, da A,B offen, dass $A\cap M\neq\emptyset$, $B\cap M\neq\emptyset$. Da offenbar $M\subseteq A\cup B$, folgt, dass auch M nicht zusammenhängend ist. [2]

2. Differenzierbarkeit

[10 Punkte]

[1]

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) = \begin{cases} \frac{x(x^2 - y^2)}{x^2 + y^4} & \text{für } (x,y) \neq 0, \\ 0 & \text{für } (x,y) = 0. \end{cases}$$

(a) Wie lautet die Richtungsableitung in Richtung $v \in \mathbb{R}^2 \setminus \{0\}$ im Ursprung?

$$\partial_v f(0,0) = \begin{cases} \frac{v_1^2 - v_2^2}{v_1}, & \text{für } v_1 \neq 0, \\ 0, & \text{für } v_1 = 0 \end{cases}$$
 [2]

(b) Wie lauten die partiellen Ableitungen im Ursprung?

$$\partial_x f(0,0) = 1$$
 [1]

$$\partial_y f(0,0) = 0 ag{1}$$

(c) Zeigen Sie, dass f im Ursprung unstetig ist.

Für
$$(x_n, y_n) = (\frac{1}{n^2}, \frac{1}{n})$$
 gilt: [2]

Für
$$(x_n, y_n) = (\frac{1}{n^2}, \frac{1}{n})$$
 gilt: [2]
$$\lim_{n \to \infty} f(x_n, y_n) = \lim_{n \to \infty} \frac{\frac{1}{n^2} (\frac{1}{n^4} - \frac{1}{n^2})}{\frac{1}{n^4} + \frac{1}{n^4}} = \lim_{n \to \infty} \frac{\frac{1}{n^2} - 1}{2} = -\frac{1}{2} \neq f(0, 0).$$
 [2]

(d) Ist f differenzierbar im Ursprung? Begründen Sie Ihre Antwort kurz.

denn wäre f differenzierbar im Ursprung, so müsste f dort auch stetig sein.

LÖSUNG:

(a)
$$\partial_v f(0,0) = \lim_{t \to 0} \frac{f(tv_1, tv_2) - f(0,0)}{t} = \lim_{t \to 0} \frac{t^3 v_1(v_1^2 - v_2^2)}{t(t^2 v_1^2 + t^4 v_2^4)} = \lim_{t \to 0} \frac{v_1(v_1^2 - v_2^2)}{v_1^2 + t^2 v_2^4} = \begin{cases} 0, & \text{falls } v_1 = 0, \\ \frac{v_1^2 - v_2^2}{v_1}, & \text{falls } v_1 \neq 0. \end{cases}$$

(b)
$$\partial_x f(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{h^3}{h \cdot h^2} = 1$$
. $\partial_y f(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = 0$, oder aus (a) mit $v = (1,0)$ und $v = (0,1)$.

- (c) s.o.
- (d) s.o.

3. Ableitung einer Matrixfunktion

[12 Punkte]

Begründen Sie, dass für die Funktion $f(A) = (E + A^2)^{-1}$ an der Stelle $A \in \mathbb{R}^{n \times n}$ mit $A = A^T$ definiert und differenzierbar ist. Berechnen Sie f'(A)(B),

HINWEIS: Für $g(A) = A^{-1}$ ist $g'(A)(B) = -A^{-1}BA^{-1}$, Produktregel, Kettenregel. LÖSUNG:

Für $A=A^{\rm T}$ besitzt A nur reelle Eigenwerte, somit besitzt A^2 nur Eigenwerte ≥ 0 . Dass heißt, $E+A^2$ ist invertierbar, da alle Eigenwerte ≥ 1 sind, somit ist f(A) für alle symmetrischen A definiert.

$$f(A) = g \circ h(A)$$
 mit $h(A) = 1 + A^2$ differenzierbar, da höchstens quadratisch, [2]

$$h'(A)(B) = AB + BA$$
. [1]
Nach dem Hinweis ist a im Punt $E + A^2$ differenzierbar, und man erhält mit der Kettenregel, dass f

Nach dem Hinweis ist g im Punt $E + A^2$ differenzierbar, und man erhält mit der Kettenregel, dass f in A differenzierbar ist, [2]mit

$$f'(A)(B) = (g \circ h)'(A)(B)$$

$$\stackrel{[2]}{=} g'(h(A))(h'(A)(B))$$

$$\stackrel{[1]}{=} -h(A)^{-1}h'(A)(B)h(A)^{-1}$$

$$\stackrel{[1]}{=} -(1+A^2)^{-1}(BA+AB)(1+A^2)^{-1}$$

4. Taylorentwicklung

(9 Punkte)

(2)

Gegeben ist das Vektorfeld $F: \mathbb{R}^2 \to \mathbb{R}^2$,

$$F(x,y) = \begin{pmatrix} (1+2x^2)e^{x^2-y} \\ -xe^{x^2-y} \end{pmatrix}$$

- (a) Zeigen Sie, dass F ein Gradientenfeld ist.
- (b) Sei $f: \mathbb{R}^2 \to \mathbb{R}$ ein Potential von F mit f(1,1) = -2. Geben Sie die Hessematrix von f an der Stelle $(x,y) \in \mathbb{R}^2$ an.

$$H_f(x,y) = e^{x^2 - y} \begin{pmatrix} 2x(2x^2 + 3) & -(1+2x^2) \\ -(1+2x^2) & x \end{pmatrix}$$

(c) Wie lautet die Taylorentwicklung $(s,t) \mapsto f(1+s,1+t)$ bis zur zweiten Ordnung an der Stelle (s,t) = (0,0) mit f aus Teilaufgabe (b)? (5)

$$f(1+s,1+t) = \begin{cases} -2 + \binom{3}{-1} \cdot \binom{s}{t} + \frac{1}{2} \binom{s}{t} \cdot \binom{10}{-3} \binom{s}{t} \\ \text{oder} \\ -2 + 3s - t + 5s^2 - 3st + \frac{1}{2}t^2 \end{cases} + \mathcal{O}(\|\binom{s}{t}\|^3)$$

LÖSUNG:

- (a) F ist offenbar stetig differenzierbar. $\partial_x F_2(x,y) = -(1+2x^2)e^{x^2-y} = \partial_y F_1(x,y)$, die Jacobi-Matrix von F ist also symmetrisch. Da \mathbb{R}^2 sternförmig ist, besitzt F ein Potential, ist also ein Gradientenfeld.
- (b) grad $f(x,y) = \begin{pmatrix} \partial_x f(x,y) \\ \partial_y f(x,y) \end{pmatrix} = F(x,y)$, Man berechnet die Hesse-Matrix

$$H_f(x,y) = \begin{pmatrix} \partial_{xx} f(x,y) \, \partial_{yx} f(x,y) \\ \partial_{xy} f(x,y) \, \partial_{yy} f(x,y) \end{pmatrix} = J_F(x,y).$$

(c)
$$f(1+s,-1+t) = f(1,1) + \operatorname{grad} f(1,1) \cdot {s \choose t} + \frac{1}{2} {s \choose t} \cdot H_f(1,1) {s \choose t} + \mathcal{O}(\|{s \choose t}\|^3)$$
 mit $f(1,1) = -2$, $\operatorname{grad} f(1,1) = F(1,1) = {3 \choose -1}$, $\operatorname{und} H_f(1,1) = {10 \choose 3}$.

5. Implizit definierte Funktionen

(9 Punkte)

Gegeben sind die Gleichungen

$$x + y + \sin z = 0,$$
$$3\sin x - 2\tan y - z = 0.$$

- (a) Zeigen Sie, dass man dieses Gleichungssystem im Ursprung lokal gleichzeitig nach y und zauflösen kann und berechnen Sie die erste Ableitung der so implizit definierten Funktion $x \mapsto g(x)$ im Punkt x = 0.
- (b) Die Lösungsmenge dieses Gleichungssystems werde im Ursprung lokal als Kurve im \mathbb{R}^3 durch x parametrisiert. Geben Sie mit Hilfe von (a) den Einheitstangentialvektor an diese Kurve im Ursprung an.

LÖSUNG:

(a) Das Gleichungssystem entspricht der Gleichung $f(x,y,z)=0\in\mathbb{R}^2$ mit der stetig differenzierbaren Funktion $f: \mathbb{R}^3 \to \mathbb{R}^2$, $f(x,y,z) = \begin{pmatrix} x+y+\sin z \\ 3\sin x - 2\tan y - z \end{pmatrix}$. Es gilt f(0,0,0) = 0 und $Df(0,0,0) = \begin{pmatrix} 1 & 1 & 1 \\ 3 & -2 & -1 \end{pmatrix}$. [1]

Es gilt
$$f(0,0,0) = 0$$
 und $Df(0,0,0) = \begin{pmatrix} 1 & 1 & 1 \\ 3 & -2 & -1 \end{pmatrix}$. [2]

Die Untermatrix der Jacobi-Matrix von f

$$\frac{\partial f}{\partial (y,z)}(0,0,0) = \begin{pmatrix} 1 & 1\\ -2 & -1 \end{pmatrix}$$

ist invertierbar. [1]

Somit sind die Gleichungen nach y und z im Ursprung lokal auflösbar. Die so implizit definierte Funktion $g:]-\epsilon, \epsilon[\to \mathbb{R}^2 \text{ hat im Ursprung die Ableitung}]$

$$Dg(x) = -\left(\frac{\partial f}{\partial (y,z)}(0,0,0)\right)^{-1} \frac{\partial f}{\partial x}(0,0,0) = -\left(\frac{1}{-2} \frac{1}{-1}\right)^{-1} \begin{pmatrix} 1\\3 \end{pmatrix} = -\left(\frac{-1}{2} \frac{-1}{1}\right) \begin{pmatrix} 1\\3 \end{pmatrix} = \begin{pmatrix} 4\\-5 \end{pmatrix}$$
[3]

(b) Die Lösungskurve wird in einer Umgebung des Ursprungs parametrisiert durch [1]

$$\gamma(x) = \begin{pmatrix} x \\ g_1(x) \\ g_2(x) \end{pmatrix}$$

mit der implizit definierten Funktion $g(x) = (g_1(x), g_2(x))$ aus (a) und $g'_1(0) = 4$, $g'_2(0) = -5$. Somit ist der Einheitstangentialvektor im Ursprung

$$T = \frac{\gamma'(0)}{\|\gamma'(0)\|} = \frac{1}{\sqrt{42}} \begin{pmatrix} 1\\4\\-5 \end{pmatrix}$$

[1]

6. Globale Minima und Maxima

(16 Punkte)

Gegeben ist die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x,y) = x^3 + y^3 - 3xy.$$

- (a) Bestimmen Sie alle stationären Punkte von f und entscheiden Sie, ob diese isolierte Maxima oder Minima sind.
- (b) Sei nun $B = [0, 2]^2 \subset \mathbb{R}^2$. Bestimmen Sie sup f(B) und inf f(B).

LÖSUNG:

(a) f ist als Polynom beliebig oft differenzierbar. Stationäre Punkte sind Lösungen von [2]

$$0 = \operatorname{grad} f(x, y) = \begin{pmatrix} 3x^2 - 3y = 0 \\ 3y^2 - 3x = 0 \end{pmatrix},$$

also $x^2=y$ und $y^2=x$. Eingestzt also $x^4-x=0$ mit den reellen Lösungen x=0 und x=1. Die stationären Punkte sind also

$$P_1 = (0,0)$$
und $P_2 = (1,1)$. [2]

Die Hessematrix von f ist $H_f(x,y) = \begin{pmatrix} 6x & -3 \\ -3 & 6y \end{pmatrix}$. [1]

Nun ist $H_f(P_1) = \begin{pmatrix} 0 & -3 \\ -3 & 0 \end{pmatrix}$ mit negativer Determinante -9. P_1 ist ein Sattelpunkt. [2]

 $H_f(P_2) = \begin{pmatrix} 6 & -3 \\ -3 & 6 \end{pmatrix}$ hat positive Determinante und Diagonaleinträge, ist somit positiv definit, P_2 ist ein lokales isoliertes Minimum von f.

(b) f ist stetig auf dem Kompaktum B. Maximum und Minimum werden also angenommen. [1] Kandidaten dafür sind die stationären Punkte im Inneren, also P_2 , mit $f(P_2) = -1$ und der Rand von B.

An den Ecken des Quadrats gilt F(0,0) = 0, F(2,0) = F(0,2) = 8 und F(2,2) = 4. [1]

Auf den Koordinatenachsen gilt $F(t,0) = F(0,t) = t^3$. Dort gibt es also im Inneren, $t \in]0,2[$ keine weiteren Kandidaten für absolute Maxima und Minima. Auf den anderen beiden Randlinien gilt $g(t) = f(t,2) = f(2,t) = 8 + t^3 - 6t$ mit $t \in [0,2]$.

Kandidaten für Extremwerte sind die Randpunkte $t=0,\,t=2$ und Lösungen von $0=g'(t)=3t^2-6$, also nur $t=\sqrt{2}$.

Es gilt $f(\sqrt{2},2) = f(2,\sqrt{2}) = 8 - 2\sqrt{2} \in [0,6]$ dies sind also keine Kandidaten für das absolute Maximum oder Minimum. [1]

Denn $F(P_2) = -1$ ist der kleinste gefundene Wert, und F(2,0) = F(0,2) = 8 ist der größte gefundene Wert. Somit ist inf F(B) = -1 und sup F(B) = 8.

7. Kurven (8 Punkte)

Ein Abschnitt der Kettenlinie ist gegeben durch die Funktion $f:[0,\infty[\to\mathbb{R},\,f(x)=\cosh x]]$

- (a) Geben Sie eine Parametrisierung $\gamma:[0,\infty[\,\to\mathbb{R}^2$ des Graphen von f als Kurve im \mathbb{R}^2 an.
- (b) Parametrisieren Sie γ auf Bogenlänge.

LÖSUNG:

(a)
$$\gamma(t) = {t \choose \cosh t}, t \ge 0$$

(b) Wir berechnen die Bogenlänge von γ ,

$$s(t) = \int_{0}^{t} \|\gamma(t')\| dt' = \int_{0}^{t} \sqrt{1 + \sinh^{2} t'} dt' = \int_{0}^{t} \cosh t' dt' = \sinh t.$$

mit der Umkehrabbildung $t(s') := s^{-1}(s') = \operatorname{arsinh}(s')$. [1] Die Parametrisierung auf Bogenlänge lautet dann

$$\tilde{\gamma}(s) = \gamma(t(s)) = \begin{pmatrix} \operatorname{arsinh}(s) \\ \cosh(\operatorname{arsinh}(s)) \end{pmatrix} = \begin{pmatrix} \operatorname{arsinh}(s) \\ \sqrt{1 + \sinh^2(\operatorname{arsinh}(s))} \end{pmatrix} = \begin{pmatrix} \operatorname{arsinh}(s) \\ \sqrt{1 + s^2} \end{pmatrix}.$$

[3]

8. Separierbare Differentialgleichung

(8 Punkte)

(4)

Gegeben ist die Differentialgleichung $\dot{x} = \sqrt{|1-x^2|}$ mit $x(t) \in \mathbb{R}$.

(a) Für welche Anfangswerte x(0) zur Zeit t=0 ist x(t)=x(0) für alle $t\in\mathbb{R}$ eine Lösung? (2)

$$x(0) \in \left\{ -1, 1 \right\}$$

(b) Bestimmen Sie für den Anfangswert x(0) = 0 eine auf ganz \mathbb{R} definierte Lösung. HINWEIS: $\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$ für $x \in [-1, 1]$.

$$x(t) = \begin{cases} -1 & \text{für } t \le -\frac{\pi}{2}, \\ \sin t & \text{für } -\frac{\pi}{2} < t \le \frac{\pi}{2}, \\ 1 & \text{für } \frac{\pi}{2} < t, \end{cases}$$

(c) Ist die Lösung der Differentialgleichung mit dem Anfangswert x(0) = -1 eindeutig bestimmt? Begründen Sie kurz Ihre Antwort. (2)

LÖSUNG:

(a) Ist eine Lösung x(t) = c konstant so folgt $\dot{x}(t) = 0$, also $\sqrt{1 - x(t)^2} = 0$, somit $x(t) = x(0) = \pm 1$. Dies sind offenbar auch Lösungen.

(b) Trennung der Variablen im Bereich $x \in]-1,1[$ führt auf das Integral

$$G(x) := \int \frac{1}{\sqrt{1-x^2}} dx = t - t_0$$

Eine Stammfunktion von $\frac{1}{\sqrt{1-x^2}}$ ist $G(x) = \arcsin(x)$, definiert für $x \in]-1,1[$

Einsetzen der Anfangsbedingung x(0)=0 liefert $G(0)=0=0-t_0$, also $t_0=0$. Auflösen von G(x)=t für $t\in]-\frac{\pi}{2},\frac{\pi}{2}[$ nach x liefert das Ergebnis $x(t)=\sin t$. Dieses kann nach links durch x(t)=-1 für $t\le -\frac{\pi}{2}$ und nach rechts durch x(t)=1 für $t\ge \frac{\pi}{2}$ stetig differenzierbar fortgesetzt werden.

(c) Nein, die Lösung ist nicht eindeutig. Neben x(t) = -1 ist z.B. auch x(t-5) mit dem x(t) aus (b) eine Lösung des Anfangswertproblems.

Das liegt daran, dass $\sqrt{1-x^2}$ bei $x=\pm 1$ nicht Lipschitzstetig ist.