UTILISATION DE NANOPARTICULES A CŒUR METALLIQUE ET DOUBLE ENROBAGE ORGANIQUE EN TANT QUE CATALYSEURS ET NANOPARTICULES UTILES COMME CATALYSEURS

5 DESCRIPTION

DOMAINE TECHNIQUE

10

La présente invention se rapporte à l'utilisation de nanoparticules présentant un cœur métallique, plus précisément à base d'un platinoïde ou d'un alliage d'un platinoïde, et un double enrobage organique, comme catalyseurs.

Elle se rapporte également à des nanoparticules ainsi constituées.

Les nanoparticules visées par la présente 15 invention allient des propriétés catalytiques et, notamment, électrocatalytiques, remarquables à des propriétés de dispersibilité et de stabilité en milieu liquide très satisfaisantes.

Elles sont donc susceptibles d'être 20 utilisées dans tous les domaines dans lesquels des processus catalytiques et, en particulier, électrocatalytiques sont mis en jeu et, notamment, dans des dispositifs de production d'énergie électrique comme les piles à combustible.

Par ailleurs, dans la mesure où il est possible d'ajouter, aux propriétés catalytiques de ces nanoparticules, des propriétés de reconnaissance spécifique vis-à-vis d'espèces chimiques ou biologiques, elles sont également susceptibles d'être employées dans des dispositifs de détection ou de dosage d'espèces chimiques ou biologiques tels que des

PCT/FR2004/050396

2

capteurs ou des multicapteurs, dans lesquels la transduction de l'interaction spécifique entre lesdites espèces et les nanoparticules utilise les propriétés catalytiques de ces dernières.

5

10

20

25

30

ETAT DE LA TECHNIQUE ANTERIEURE

Dans les dispositifs de type piles à combustible, le platine, les autres platinoïdes et leurs alliages sont utilisés, essentiellement sous forme très finement divisée (nanoparticules), comme catalyseurs anodiques et cathodiques, c'est-à-dire pour accélérer les réactions de dissociation de l'hydrogène à l'anode et de réduction de l'oxygène à la cathode.

Compte tenu de leur rareté et de leur coût,

il est très important d'optimiser le fonctionnement de
ce type de catalyseurs et de s'assurer que la plus
grande quantité possible des nanoparticules introduites
dans les dispositifs participent effectivement aux
processus électrocatalytiques.

A ces contraintes, s'en ajoute une autre qui réside dans le fait que le fonctionnement optimal du catalyseur doit être suffisamment pérenne pour que le dispositif ait une durée de vie suffisante. En effet, au cours du fonctionnement du dispositif, les nanoparticules assurant l'électrocatalyse subissent des phénomènes de migration et de croissance par coalescence qui se traduisent par une modification progressive de ces nanoparticules et, partant, par une réduction de leurs performances catalytiques initiales. Ces problèmes récurrents conduisent, dans la pratique,

10

15

20

25

à introduire dans les dispositifs des charges de platine importantes.

L'élaboration de nanoparticules minérales enrobées d'un composant organique est très présente dans la littérature. On note, en particulier au cours des dix dernières années, de nombreuses publications dans lesquelles des nanoparticules minérales constituées de métaux nobles ou non, d'oxydes métalliques ou de sulfures sont stabilisées par des enrobages organiques permettant de faciliter leur manipulation en milieu liquide. Alors que les enrobages initialement proposés étaient formés de polymères ou de surfactants, ils sont, de plus en plus souvent, constitués de molécules qui possèdent une fonction chimique (acide, thiol, phosphate, isocyanate, ...) permettant leur -accrochage à la surface des nanoparticules.

Lorsqu'il s'agit d'exploiter les propriétés catalytiques de nanoparticules métalliques, qui ont pour siège la surface métallique de ces nanoparticules, l'approche consistant à les enrober de façon optimale pour les stabiliser de façon durable et pouvoir les manipuler aisément en milieu liquide apparaît a priori pour l'homme du métier en contradiction avec le maintien d'une disponibilité de la surface métallique de ces nanoparticules la plus favorable possible au processus électrocatalytique que l'on cherche à exploiter.

C'est sans doute la raison pour laquelle 30 les enrobages organiques classiquement proposés à ce jour pour stabiliser des nanoparticules métalliques

destinées à servir de catalyseurs sont des polymères qui stabilisent ces nanoparticules essentiellement par des effets stériques, comme l'alcool polyvinylique, l'acide polyacrylique et la poly(n-vinylpyrrolidone). chimiques assurant la fixation de ces liens 5 polymères sur la surface métallique des nanoparticules ne sont ni nombreux, ni très forts, en sorte qu'ils les milieux sont susceptibles d'être détruits par adaptés à l'expression des phénomènes électrochimiques 10 et qui se caractérisent par des pH très acides ou, au contraire, très basiques et par des forces ioniques telle destruction élevées. Une traduit se évidemment la perte de l'effet par stabilisant initialement recherché.

enrobages organiques constitués Des ioniques surfactants, neutres, sont également ou molécules de surfactant doivent être Les connus. suffisamment longues pour avoir un effet stabilisant et possèdent des chaînes de groupements méthylène (-CH2) n a 20 priori peu adaptées aux transferts de électroniques ou ioniques mis en jeu dans les processus électrocatalytiques. De plus, dans ce cas également, les liens chimiques assurant la fixation des molécules surfactant de surface sur la métallique des 25 nanoparticules sont relativement faibles et sensibles aux conditions particulières de pH et de force ionique des milieux se prêtant à l'électrochimie.

Par ailleurs, certains Auteurs ont préconisé l'utilisation de polymères ou copolymères 30 stabilisants groupements pourvus de chimiques susceptibles d'améliorer les transferts de charges ou de masse intervenant dans les processus électrocatalytiques, et notamment pour des applications aux piles à combustible. Ainsi, par exemple, le brevet américain n° 6,462,095 [1] décrit des nanoparticules de platine stabilisées par un polymère ou copolymère échangeur de cations du type polyaryléther cétone sulfonée, polyéther sulfone sulfonée, poly(acrylonitrile/butadiène/styrène) sulfoné ou encore poly- $(\alpha,\beta,\gamma$ -trifluorostyrène/acide sulfonique).

10 Enfin, toujours dans le contexte de l'électrocatalyse, ont été proposées des molécules stabilisantes aptes à former des interactions fortes avec la surface métallique des nanoparticules. Il s'agit de molécules portant des fonctions thiol qui établissent des 15 liaisons iono-covalentes de nombreux métaux. Ce type d'interactions conduit à des taux élevés de couverture des nanoparticules qui laissent peu de surface métallique disponible pour les processus électrocatalytiques. Ainsi, par exemple, les 20 nanoparticules d'or stabilisées par des alkylthiolates décrites par Maye et al. dans Langmuir, 2000, 16, 7520-7523, [2], et par Lou et al. dans Chem. Commun., 2001, 473-474, [3], ne montrent une activité électrochimique qu'après un traitement d'activation. Ce traitement 25 d'activation, qui est réalisé dans des conditions de forte oxydation électrochimique, impose, d'une part, l'élimination de l'enrobage organique de stabilisation et, d'autre part, une modification des caractéristiques de la surface métallique des nanoparticules comme 30 rapporté par Luo et al. dans Catalysis Today, 2000, 2790, 1-12, [4], ce qui peut s'avérer problématique en

condition d'utilisation de ces nanoparticules comme catalyseurs dans un dispositif. En effet, concernant, par exemple, l'élimination de l'enrobage organique de stabilisation, celle-ci risque sérieusement de conduire à des phénomènes de migration des nanoparticules de nature à réduire au cours du temps leurs performances catalytiques et à rendre, de plus, difficile leur récupération lors de la phase de recyclage du dispositif en fin de vie.

Le problème se pose, par conséquent, de disposer de catalyseurs constitués de nanoparticules à base de platine, d'un autre platinoïde ou d'un alliage de ceux-ci qui, tout en présentant des propriétés catalytiques optimales, soient aisément dispersibles et stables en milieu liquide et ce, de façon durable de manière à ce que, d'une part, elles soient facilement manipulables une fois mises en suspension et, d'autre part, la pérennité de leurs performances catalytiques soit assurée.

Dans la demande de brevet français publiée sous le n° 2 783 051 [5], une équipe de chercheurs comprenant l'un des Inventeurs de la présente invention, a décrit l'utilisation de nanoparticules constituées d'un cœur métallique, pouvant notamment être de platine, d'une première couronne formée de molécules organiques fixées sur ce cœur et d'une deuxième couronne formée de molécules organiques, différentes des précédentes et greffées sur les molécules de la première couronne, sous forme de films minces pour la détection d'espèces chimiques, ainsi que des capteurs chimiques incluant de tels films en tant

15

20

que couches sensibles. Dans cette demande de brevet, la deuxième couronne organique des nanoparticules assure les propriétés d'interaction sélective des films minces avec l'espèce ou les espèces chimiques à détecter ; le cœur métallique des nanoparticules assure la possibilité de mesurer une variation de conductivité électrique des films minces, tandis que la première couronne organique sert, elle, essentiellement à assurer la fixation de la deuxième couronne organique sur ledit cœur métallique.

Or, dans le cadre de leurs travaux, les Inventeurs ont constaté que, contre toute attente, des nanoparticules comportant, à l'instar de celles décrites dans la référence [5], un cœur en platine et un double enrobage organique, sont douées de propriétés catalytiques, et en particulier électrocatalytiques, remarquables et ce, sans qu'il soit nécessaire de les soumettre à un quelconque traitement d'activation. Ils constaté que ces également nanoparticules ont présentent des propriétés très satisfaisantes de dispersibilité, de stabilité en milieu liquide et de résistance aux milieux très acides ou très basiques et à forces ioniques élevées classiquement utilisés dans le domaine de l'électrochimie.

C'est cette constatation qui est à la base de la présente invention.

EXPOSÉ DE L'INVENTION

L'invention a donc, en premier lieu, pour 30 objet l'utilisation de nanoparticules comprenant :

30

- un cœur métallique contenant au moins un platinoïde ou un alliage d'un platinoïde,
- un premier enrobage organique formé de molécules fixées sur la surface du cœur métallique, et
- un deuxième enrobage organique formé de molécules différentes des molécules du premier enrobage organique et qui sont greffées sur des molécules du premier enrobage organique, en tant que catalyseurs.
- Dans ce qui précède et ce qui suit, on entend par "platinoïde", un métal choisi parmi le platine, l'iridium, le palladium, le ruthénium et l'osmium, et par "alliage d'un platinoïde", un alliage comprenant au moins un platinoïde, cet alliage pouvant être naturel comme l'osmiridium (alliage naturel d'iridium et d'osmium) ou non naturel comme un alliage de platine et de fer, de platine et de cobalt ou encore de platine et de nickel.

De préférence, le cœur métallique des 20 nanoparticules est constitué de platine ou d'un alliage de platine ou encore d'un mélange des deux.

Dans l'utilisation conforme à l'invention, les molécules du premier enrobage organique servent principalement à permettre le greffage des molécules du deuxième enrobage organique, tandis que les molécules du deuxième enrobage organique assurent une amélioration significative de la stabilité des nanoparticules en suspension dans un milieu liquide, les deux enrobages devant permettre les phénomènes de transport de charges et de matière ainsi l'accessibilité de la surface du cœur métallique

10

15

20

25

nécessaire à l'expression des propriétés catalytiques des nanoparticules.

Conformément à l'invention, les molécules du premier enrobage organique sont, de préférence, fixées sur la surface du cœur métallique par une liaison chimique à fort caractère covalent, c'est-àdire par une liaison covalente ou iono-covalente.

De ce fait, selon une première disposition préférée de l'invention, les molécules du premier enrobage organique, qui sont, de préférence, identiques les unes aux autres pour une même particule, sont les restes de composés au moins bifonctionnels, c'est-à-dire de composés qui possèdent au moins deux fonctions chimiques libres : une première fonction dénommée, ciaprès, "fonction F1" et apte à former une liaison chimique à fort caractère covalent avec la surface du cœur métallique pour leur fixation sur cette surface, et une deuxième fonction dénommée, ci-après, "fonction F2" et apte à réagir avec au moins une fonction portée par les composés choisis pour former les molécules du deuxième enrobage organique pour leur greffage par ces dernieres.

En corollaire, les molécules du deuxième enrobage organique, qui sont également, de préférence, identiques les unes aux autres pour une même particule, sont les restes de composés qui comportent au moins une fonction chimique libre qui est dénommée, ci-après, "fonction F3" et qui est apte à réagir avec la fonction F2 du composé bifonctionnel précité.

Dans ce qui précède et dans ce qui suit, on entend par "restes de composés", la partie de ces

5

30

10

composés qui subsiste sur les nanoparticules lorsqu'ils sont :

- soit fixés sur la surface du cœur métallique et, éventuellement, greffés par une molécule du deuxième enrobage organique, s'il s'agit de restes formant le premier enrobage organique;
- soit greffés sur une molécule du premier enrobage organique, s'il s'agit de restes formant le deuxième enrobage organique.
- 10 Conformément à l'invention, la formation d'une liaison chimique covalente ou iono-covalente fonction F1 entre la des composés au moins bifonctionnels choisis pour former les molécules du premier enrobage organique et la surface du cœur 15 métallique peut être obtenue par l'un quelconque des procédés utilisés dans l'état de la technique pour établir ce type de liaisons entre un composé organique et un métal.
- Ainsi, par exemple, elle peut être obtenue 20 en synthétisant les nanoparticules par réduction d'un sel métallique correspondant au métal devant en constituer le cœur au moyen desdits composés au moins bifonctionnels. En variante, elle peut également être obtenue en remplaçant, sur des nanoparticules formées 25 d'un cœur métallique recouvert d'un composé labile, ce composé par les composés au moins bifonctionnels.

La réaction entre la fonction F2 des composés au moins bifonctionnels et la fonction F3 des composés choisis pour former les molécules du deuxième enrobage organique - que l'on désignera, dans ce qui suit, "réaction de greffage" par commodité - peut être,

5

10

15

30

11

elle, n'importe quelle réaction de la chimie organique permettant de lier, par tout type de liaison, préférentiellement covalente, deux composés organiques l'un à l'autre à partir de leurs fonctions chimiques respectives.

Selon une autre disposition préférée de l'invention, les molécules du premier enrobage organique des nanoparticules sont capables de se dégrader à la surface du cœur métallique lorsqu'elles ne sont pas greffées par des molécules du deuxième enrobage organique.

Cette capacité de dégradation peut être soit spontanée, c'est-à-dire intrinsèquement liée à la nature des molécules utilisées, soit résulter d'un traitement des nanoparticules, par exemple au moyen d'un réactif approprié, étant entendu qu'il convient que ce traitement n'entraîne pas une dégradation des molécules formant le deuxième enrobage organique.

La 4-mercaptoaniline, qui présente à la 20 fois la caractéristique d'être bifonctionnelle, puisqu'elle comporte une fonction thiol et une fonction amine en position para d'un groupe phényle, et celle de se dégrader de façon spontanée, représente un exemple de composé convenant particulièrement bien à la réalisation du premier enrobage organique.

Selon encore une autre disposition préférée de l'invention, les molécules du deuxième enrobage organique sont greffées sur les molécules du premier enrobage organique par une réaction de greffage à l'issue de laquelle le taux de greffage desdites molécules du premier enrobage organique, c'est-à-dire

30

la proportion de ces molécules sur lesquelles sont greffées des molécules du deuxième enrobage organique, est inférieur à 100%. Il en résulte que les nanoparticules obtenues au terme de la réaction de greffage présentent un premier enrobage organique dont certaines molécules ne sont pas greffées par des molécules du deuxième enrobage organique.

Ceci est illustré sur la figure 1 qui représente schématiquement une nanoparticule avant et à 1'issue d'une réaction de greffage conduite conformément à l'invention, et dans laquelle:

- chaque F1-F2 représente une molécule du premier enrobage organique non greffée par une molécule du deuxième enrobage organique ;
- F3-□ représente un composé choisi pour former les molécules du deuxième enrobage organique ; tandis que
- chaque F1-\(\sim\) représente une molécule du premier enrobage organique greffée par une molécule du deuxième enrobage organique.

dernière disposition préférée Cette permettrait, conjointement avec l'utilisation de capables d'une dégradation spontanée ou composés provoquée pour former le premier enrobage organique, d'assurer une accessibilité de la surface du cœur métallique des nanoparticules. En effet, la dégradation des molécules du premier enrobage organique, qui n'ont pas été greffées par des molécules du deuxième enrobage organique au cours de la réaction de greffage, devrait rapidement conduire à l'élimination de ces molécules de surface du cœur métallique et, partant, à la la

13

libération des zones antérieurement occupées par elles qui deviendraient, ainsi, accessibles.

Conformément à l'invention, le taux de greffage des molécules du premier enrobage organique peut être modulé en jouant sur les quantités respectives de nanoparticules et des composés choisis pour former les molécules du deuxième enrobage organique qui sont mises à réagir au cours de la réaction de greffage.

Toutefois, cette façon d'opérer n'est pas 10 celle que l'on privilégie dans le cadre de la présente invention car elle risque de conduire à un greffage trop partiel des nanoparticules, lequel est susceptible de conduire, à son tour, compte tenu de la dégradation des molécules du premier enrobage organique, à une 15 insuffisante, dispersibilité voire nulle, des nanoparticules en milieu liquide et par une instabilité préparées à partir suspensions de des ces nanoparticules.

Ainsi, selon l'invention, on préfère moduler ce taux de greffage en jouant sur les caractéristiques géométriques des composés choisis pour former les molécules du deuxième enrobage organique, et notamment sur l'encombrement stérique généré par ces molécules.

Selon encore une autre disposition préférée de l'invention, les molécules du deuxième enrobage organique sont les restes de composés qui, tout en pouvant être de nature très variée (oligomères, polymères, ...), sont aptes à :

30

14

- conférer aux nanoparticules des propriétés de dispersibilité, de stabilité en milieu liquide et de résistance aux milieux classiquement utilisés dans le domaine de l'électrochimie, et ce, de façon durable pour éviter tout phénomène d'agrégation et de migration de ces nanoparticules à court, moyen et long termes, notamment lorsqu'elles interviennent dans des processus électrochimiques;
- préserver l'accessibilité de la surface 10 du cœur des nanoparticules ;
 - dispenser les nanoparticules d'un traitement préalable d'activation ; et éventuellement
 - optimiser les transferts de charges (électroniques et ioniques) et de masse, dans le cas où les nanoparticules sont destinées à être utilisées dans des applications qui mettent en jeu de tels transferts (piles à combustible par exemple).

15

25

30

En particulier, ces molécules sont les restes de composés qui présentent une ou plusieurs des propriétés suivantes :

1. être aptes à préserver les transferts électroniques d'une nanoparticule à l'autre. Pour ce faire, ces composés doivent présenter le moins possible liaisons C-C saturées, car celles-ci de défavorables aux transferts électroniques, et éviter de conduire à une augmentation trop importante l'épaisseur formée par les deux enrobages organiques, la probabilité des transferts électroniques diminuant, en effet, rapidement avec la distance. A cet égard, il est préférable que l'épaisseur formée par les deux enrobages organiques ne dépasse pas une dizaine de nm.

5

10

15

20

15

A titre d'exemples de composés aptes à préserver les transferts électroniques, on peut citer les composés polycycliques, et notamment les anhydrides polycycliques comme l'anhydride tétraphénylphtalique, l'anhydride diphénique ou l'anhydride diphénylmaléique.

- 2. présenter des caractéristiques structurales permettant d'obtenir un taux de greffage minimal tout en conférant aux nanoparticules des propriétés de dispersibilité et de stabilité en milieu liquide satisfaisantes. Ces composés peuvent notamment être des composés de petites dimensions qui présentent certaine rigidité par la présence de cycles une aromatiques et dans lesquels la fonction F3 est positionnée de telle sorte que le grand axe des molécules du deuxième enrobage organique, une fois greffées sur les molécules du premier enrobage, est orienté perpendiculairement plutôt que parallèlement à l'axe de la liaison covalente formée entre ladite fonction F3 et la fonction F2 des molécules du premier enrobage organique. Des exemples de tels composés sont des polyparaphénylènes substitués par au moins une fonction pour leur greffage sur les molécules du premier enrobage organique.
- 3. comporter un ou plusieurs groupements
 25 fonctionnels ionisables aptes à relayer et rendre ainsi
 possible le transfert d'espèces ioniques. De tels
 composés sont, par exemple, des anhydrides cycliques
 comme l'anhydride glutarique, que l'on peut
 éventuellement perfluorer préalablement pour exacerber
 30 le caractère ionisable dudit ou desdits groupements
 fonctionnels.

16

4. présenter des caractéristiques propres, d'affinité chimique, à favoriser termes en l'association des nanoparticules avec un support particulier, choisi en fonction de l'application à laquelle elle sont destinées. Ainsi, par exemple, ces composés pourr ont être plus ou moins hydrophiles ou hydrophobes selon que le support sera lui-même hydrophile ou hydrophobe, ou comporter une espèce polymérisable ou copolymérisable comme un thiophène ou un pyrrole.

10

15

20

5. manifester des propriétés de reconnaissance spécifique vis-à-vis d'une ou plusieurs espèces chimiques ou biologiques (acide aminé, protéine, sucre, fragment d'ADN ou d'ARN, ...), dans le cas où les nanoparticules sont destinées à être utilisées dans des systèmes de détection et de dosage et, notamment, dans des capteurs ou multicapteurs.

De préférence, les molécules du deuxième enrobage organique sont les restes de composés choisis parmi les thiophènes comportant au moins une fonction pour leur greffage sur les molécules du premier enrobage organique, et les anhydrides mono- et polycycliques.

De manière particulièrement préférée, les 25 molécules formant le deuxième enrobage organique sont les restes de composés choisis parmi le chlorure d'acide de thiophène, l'anhydride glutarique, l'anhydride sulfobenzoïque, l'anhydride diphénique, l'anhydride tétrafluorophtalique, l'anhydride tétra- phénylphtalique et l'anhydride diphénylmaléique.

PCT/FR2004/050396

Selon encore une autre disposition préférée de l'invention, les nanoparticules ont une taille de l'ordre de 1,5 à 10 nm de diamètre, et de préférence de l'ordre de 1,5 à 5 nm de diamètre.

leurs propriétés tenu de 5 Compte de dispersibilité et de stabilité en milieu liquide, les l'invention selon nanoparticules utiles sont susceptibles d'être conservées avant usage et/ou d'être utilisées en suspension dans un solvant convenablement 10 choisi en fonction du degré de polarité des molécules formant le deuxième enrobage organique. Le solvant utilisé à cet effet est généralement un solvant aprotique polaire du type diméthylsulfoxyde, diméthylformamide ou diméthylacétamide, mais il peut également être un solvant apolaire tel que le chloroforme ou le 15 dichlorométhane, s'il s'avère que les nanoparticules ne dispersibles dans solvant aprotique sont pas un polaire.

En particulier, les nanoparticules peuvent 20 être conservées avant usage sous la forme de suspensions, de concentrations de l'ordre de 0,3 à 1 mg/ml, que l'on dilue ensuite en fonction de l'usage auquel ces nanoparticules sont destinées.

A partir de ces suspensions, il est possible de réaliser des films minces, formés d'une ou 25 plusieurs couches de nanoparticules, par dépôt sur des supports de nature et de caractéristiques très variées. En effet, supports peuvent être isolants, ces conducteurs ioniques, conducteurs ou semi-conducteurs 30 de l'électricité ; ils peuvent être constitués de matériaux très divers (métal, verre, carbone,

plastique, textile, ...) et se présenter aussi bien sous forme finement divisée que sous forme massive. En outre, ils peuvent être munis d'électrodes.

Ces films minces peuvent être préparés par l'une quelconque des techniques connues de l'homme du 5 métier pour fabriquer de tels films comme la technique de Langmuir-Blodgett, le dépôt séquentiel de couches auto-assemblées, l'adsorption spontanée par greffage chimique ou électrochimique, le dépôt à la tournette, 10 dépôt imprégnation le par superficielle, l'électrodéposition ou encore l'électrogreffage dont le mécanisme a été décrit par Bureau et al. Macromolecules, 1997, 30, 333 [6] et dans Journal of Adhesion, 1996, 58, 101 [7] ain si que par Bureau et Delhalle dans Journal of Surface Analysis, 1999, 6(2), 15 159 [8].

La technique de Langmuir-Blodgett, qui a largement été décrite dans la littérature, est, par exemple, bien adaptée au dépôt de nanoparticules, monocouche par monocouche, sur des supports rigides, tandis que l'imprégnation superficielle convient mieux, par exemple, au dépôt de nanoparticules sur des supports souples du type supports textiles.

20

Au sens de la présente invention, on entend 25 par "monocouche", une couche dont l'épaisseur ne dépasse pas le diamètre d'une nanoparticule lorsque celle-ci est assimilée à une sphère.

La souplesse offerte par l'approche utilisée selon l'invention et qui consiste à greffer un deuxième enrobage organique, dont on peut contrôler les caractéristiques comme la densité et la polarité,

25

30

permet de favoriser l'association des nanoparticules avec un support présentant des caractéristiques de surface particulières.

Ainsi, l'association des nanoparticules avec des nanotubes de carbone apparaît présenter un intérêt tout particulier dans certaines applications électrochimiques comme la production d'énergie électrique dans des piles à combustible. En effet, enrober des nanotubes de carbone, hydrophobes ou rendus hydrophiles, par des nanoparticules devrait permettre d'améliorer considérablement le fonctionnement de ce type de piles en rassemblant de façon intime, à l'échelle nanométrique, un conducteur électronique et un catalyseur.

Les nanoparticules telles que précédemment décrites, présentent en tant que catalyseurs, de nombreux avantages.

En effet, bien que ces nanoparticules possèdent un double enrobage organique, elles font preuve de propriétés catalytiques très intéressantes et montrent, en particulier, une activité électrocatalytique très élevée vis-à-vis de la réduction de l'oxygène et de l'oxydation de l'hydrogène.

Il en est de même des matériaux préparés à partir de ces nanoparticules. Ainsi, par exemple, les activités massiques mesurées pour des monocouches de nanoparticules conformes à l'invention selon la même méthodologie et dans les mêmes conditions expérimentales que celles décrites par Geniès et al. dans Electrochimica Acta, 1998, 44, 1317-1327 [9], peuvent atteindre 500 A/g de platine, soit une valeur 5

5

10

15

20

25-

30

20

fois supérieure aux meilleurs résultats obtenus (89,6 A/g de platine) pour une poudre formée de platine dispersé sur du carbone et introduite dans du polytétrafluoroéthylène [9].

Un autre avantage des nanoparticules réside le fait que, si les molécules formant leur dans sont convenablement deuxième enrobage organique choisies, leurs propriétés catalytiques se manifestent nécessaire qu'il soit de les soumettre sans préalablement à un quelconque traitement d'activation. En d'autres termes, elles sont d'emblée actives.

Ceci étant, lorsque des nanoparticules, bien que spontanément actives, apparaissent ne pas présenter des performances optimales en milieu acide, il s'avère qu'il est possible d'améliorer de manière très significative leurs performances en les soumettant préalablement à un traitement en milieu basique, lequel peut notamment consister à immerger les nanoparticules, éventuellement déjà sous la forme d'un film, dans une solution d'une base forte comme une solution de soude 1M pendant plusieurs minutes, voire plusieurs dizaines de minutes.

Par ailleurs, les nanoparticules font également preuve de propriétés remarquables de dispersibilité, de stabilité en milieu liquide et de résistance aux milieux très acides ou très basiques et à forces ioniques élevées.

Il en résulte que ces nanoparticules sont particulièrement faciles à manipuler et, surtout, que leurs propriétés de catalyse sont très stables dans le temps. Ainsi, les nanoparticules peuvent être

5

10

15

20

25

21

conservées ou utilisées pendant plusieurs années dans des milieux liquides sans risque d'altération de leurs performances catalytiques.

offrent, de plus, l'avantage de Elles pouvoir être parfaitement adaptées à l'usage auquel sont destinées. En effet, en choisissant elles convenablement les composés destinés à former les deux des nanoparticules, et enrobages organiques en celui destiné à former le deuxième particulier enrobage organique, il est possible de moduler et donc d'optimiser certaines de leurs propriétés en vue d'un usage particulier, comme leur capacité à préserver les électroniques ou d'espèces transferts de charges ioniques, leur affinité vis-à-vis d'un support, leur aptitude à l'électrodéposition ou encore leur aptitude à reconnaître spécifiquement une ou plusieurs espèces chimiques ou biologiques et à interagir avec elles.

Enfin, elles présentent l'avantage supplémentaire de pouvoir être fabriquées par des procédés simples à mettre en œuvre, faisant appel à des techniques classiques de la chimie organique, et à des coûts compatibles avec une exploitation industrielle.

qui précède, de ce Compte tenu nanoparticules tant en des l'utilisation tout qu'électrocatalyseurs, présente intérêt un des dispositifs de production particulier dans d'énergie électrique et, notamment, dans des piles à combustible.

La présente invention a donc également pour 30 objet un dispositif de production d'énergie électrique,

5

15

20

22

qui comprend des nanoparticules telles que précédemment définies.

Conformément à l'invention, ce dispositif est, de préférence, une pile à combustible.

L'utilisation des nanoparticules comme catalyseurs présente également un grand intérêt dans le domaine de la détection et du dosage d'espèces chimiques ou biologiques, notamment en solution, et en particulier dans des capteurs ou multicapteurs.

Dans ce cas, les molécules formant le deuxième enrobage organique sont choisies de sorte à reconnaître spécifiquement l'espèce ou les espèces chimiques ou biologiques devant être détectées ou dosées et à interagir avec elles.

Soit l'interaction spécifique entre molécules du deuxième enrobage organique et cette ou ces espèces génère une espèce secondaire vis-à-vis de activité laquelle ont une les nanoparticules catalytique, par exemple, H2O2 ou tout autre sonde redox, alors il est possible de mesurer, application d'un potentiel adapté, un courant secondaire proportionnel à la quantité d'espèce produite et, partant, un signal électrique reflétant le degré d'interaction spécifique.

Soit l'interaction spécifique entre les molécules formant de deuxième enrobage organique et la ou lesdites espèces ne génère pas de sonde redox, auquel cas celle-ci peut être introduite dans le milieu contenant l'espèce ou les espèces que l'on cherche à détecter ou à doser. L'interaction spécifique entre les molécules l'interaction spécifique entre les molécules

10

15

20

25

30

du deuxième enrobage organique et ladite ou lesdites espèces se traduit alors par une modification du courant lié à l'activité catalytique des nanoparticules vis-à-vis de la sonde redox ainsi introduite dans le milieu.

Parmi les nanoparticules dont l'utilisation en tant que catalyseurs a été décrite ci-avant, il en est qui ont déjà été décrites dans la littérature. Tel est le cas des nanoparticules à cœur de platine, comportant un premier enrobage organique formé de restes de 4-mercaptoaniline et un deuxième enrobage organique formé de restes de chlorure d'acide de thiophène, qui sont connues de la référence [5].

D'autres, par contre, n'ont, à la connaissance des Inventeurs, jamais été proposées à ce jour comme celles dont le deuxième enrobage organique est formé par les restes de molécules d'anhydrides mono- ou polycycliques.

L'invention a donc encore pour objet une nanoparticule qui comprend un cœur métallique contenant au moins un platinoïde ou un alliage d'un platinoïde, un premier enrobage organique formé de molécules fixées la surface du cœur métallique et un deuxième sur enrobage organique formé de molécules différentes des molécules formant le premier enrobage organique et qui sont greffées sur les molécules du premier enrobage organique, et dans laquelle les molécules formant le deuxième enrobage organique sont des d'un restes composé choisi parmi les anhydrides et monopolycycliques.

10

15

20

Selon une disposition préférée de l'invention, les molécules formant le deuxième enrobage organique de cette nanoparticule sont les restes d'un composé choisi parmi l'anhydride glutarique, l'anhydride sulfobenzoïque, l'anhydride diphénique, l'anhydride tétrafluorophtalique, l'anhydride tétraphénylphtalique et l'anhydride diphénylmaléique.

Selon une autre disposition préférée de l'invention, le cœur métallique de cette nanoparticule est constitué de platine, d'un alliage de platine ou d'un mélange des deux, tandis que, selon encore une autre disposition préférée de l'invention, les molécules formant le premier enrobage organique sont des restes de 4-mercaptoaniline.

D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture du complément de description qui suit, qui se rapporte à des exemples de préparation de nanoparticules utiles conformément à l'invention et de démonstration de leurs propriétés, et qui se réfère aux dessins annexés.

Bien entendu, ces exemples ne sont donnés qu'à titre d'illustrations de l'objet de l'invention et ne constituent en aucun cas une limitation de cet objet.

Par commodité, l'expression "nanoparticule fonctionnalisée" sert à désigner, dans ce qui suit, une nanoparticule ne comportant, sur le cœur métallique, qu'un premier enrobage organique, tandis que l'expression "nanoparticule greffée" sert à désigner une nanoparticule qui comporte, de plus, un deuxième

15

20

enrobage organique suite au greffage de molécules sur des molécules dudit premier enrobage.

BRÈVE DESCRIPTION DES DESSINS

La figure 1, déjà commentée, représente schématiquement une nanoparticule avant et à l'issue d'une réaction de greffage.

Les figures 2A, 2B, 2C, 2D, 2E, 2F et 2G illustrent schématiquement 7 réactions différentes de greffage appliquées à des nanoparticules à cœur de platine fonctionnalisées par un premier enrobage constitué de restes de 4-mercaptoaniline.

La figure 3 représente une photographie prise au microscope électronique en transmission d'un film de Langmuir réalisé à partir d'une suspension, âgée de deux ans, de nanoparticules greffées par la réaction illustrée sur la figure 2A.

La figure 4 représente les voltampérogrammes obtenus par voltampérométrie cyclique, en milieu acide initialement saturé en oxygène, pour des films de Langmuir-Blodgett respectivement composés de nanoparticules greffées par les réactions illustrées sur les figures 2A et 2B.

La figure 5 représente les voltampéro25 grammes obtenus par voltampérométrie cyclique, en
milieu basique initialement saturé en oxygène, pour des
films de Langmuir-Blodgett respectivement composés de
nanoparticules greffées par les réactions illustrées
sur les figures 2C et 2D.

La figure 6 représente le voltampérogramme obtenu par voltampérométrie cyclique, en milieu acide

26

initialement saturé en hydrogène, pour un film de Langmuir-Blodgett composé de nanoparticules greffées par la réaction illustrée sur la figure 2A.

Les figures 7A et 7B représentent les spectres obtenus par spectroscopie de photoélectrons induits par rayons X pour un film de Langmuir-Blodgett composé de nanoparticules greffées par la réaction illustrée sur la figure 2A, avant et après application à ce film de cycles électrochimiques prolongés en milieu acide.

La figure 8 représente les voltampérogrammes obtenus par voltampérométrie cyclique, en milieu acide initialement saturé en oxygène, pour des films de Langmuir-Blodgett composés de nanoparticules greffées par la réaction illustrée sur la figure 2F, avec et sans polarisation de ces films.

La figure 9 représente les voltampérogrammes obtenus par voltampérométrie cyclique, en milieu acide initialement saturé en oxygène, pour des films de Langmuir-Blodgett respectivement composés de nanoparticules greffées par les réactions illustrées sur les figures 2F, 2A et 2G.

La figure 10 représente les voltampérogrammes obtenus par voltampérométrie cyclique en milieu 25 basique et en milieu acide initialement saturés en oxygène, pour des films de Langmuir-Blodgett composés de nanoparticules greffées par la réaction illustrée sur la figure 2A, respectivement avant et après un traitement de ces nanoparticules en milieu basique.

5

10

15

20

25

EXEMPLES

Exemple 1 : Préparation de nanoparticules fonctionnalisées

On prépare des nanoparticules comprenant un cœur de platine et un premier enrobage organique résultant de la fixation de molécules de 4-mercaptoaniline sur ce cœur en suivant le protocole opératoire suivant.

On prépare, tout d'abord, trois solutions 10 respectivement dénommées ci-après solution 1, solution 2 et solution 3.

La solution 1 est obtenue en dissolvant 300 mg de tétrachlorure de platine dans 75 ml d'hexylamine. Elle est de couleur orangée.

- La solution 2 est obtenue par dissolution de 300 mg de borohydrure de sodium dans 40 ml d'un mélange eau/méthanol (50/50) suivie, après complète dissolution du borohydrure de sodium, de l'addition de 20 ml d'hexylamine.
- La solution 3 est, elle, obtenue en dissolvant 330 mg de disulfure de 4-mercaptoaniline dans 30 ml d'un mélange méthanol/hexylamine (50/50).

A t=0, la solution 2 est mélangée à la solution 1 sous agitation vigoureuse. Le mélange prend une couleur marron foncée en quelques secondes.

A t=20-60 secondes, la solution 3 est ajoutée au mélange précédent, et à t=250 secondes, 200 ml d'eau sont introduits dans le milieu réactionnel.

A t=15 minutes, ce milieu réactionnel est transféré dans une ampoule à décanter. La phase

28

organique est isolée et lavée trois fois avec 200 ml d'eau pure.

La phase organique est ensuite réduite au rotavapeur à une température d'environ 35°C jusqu'à ce qu'elle ne soit plus que de 3 à 4 ml. Elle est ensuite transférée dans un tube à centrifugation dans lequel se 300 mg de disulfure de 4-mercaptoaniline trouvent dissous dans 15 ml d'éthanol, et laissée sous agitation pendant toute une nuit avant d'être centrifugée. Le surnageant, qui contient un excès de disulfure de 4mercaptoaniline, est éliminé et le précipité noir restant au fond du tube est lavé avec 30 ml d'un mélange éthanol/diéthyléther (33:66 v:v) pendant 2 minutes puis de nouveau centrifugé. Le surnageant est éliminé. Le précipité noir est à lavé avec du diéthyléther avant d'être séché pendant 10 à 15 minutes sous flux d'azote. La poudre résultante présente une proportion massique de 20% pour la partie organique et de 80% pour le platine.

20

25

5

10

15

Exemple 2 : Préparation de nanoparticules greffées

On prépare des nanoparticules greffées en soumettant des nanoparticules fonctionnalisées conformément à l'exemple 1 et fraîchement préparées (compte tenu de l'aptitude présentée par la 4-mercaptoaniline à se dégrader spontanément) à l'une des réactions de greffage illustrées sur les figures 2A à 2G.

Ces réactions sont toutes menées en 30 présence d'un large excès de composé à greffer par rapport à la quantité de fonctions amine portées par

29

les nanoparticules fonctionnalisées. Pour ce faire, sachant que 20% la masse des nanoparticules de fonctionnalisées correspondent restes aux de mercaptoaniline fixés (sous forme de thiolates) sur le cœur de platine, et que cette dernière présente une masse molaire de 124 g, on calcule le nombre de moles du composé à greffer devant être utilisées pour que celui-ci soit en excès, par exemple de 5 à 10, par rapport au nombre de moles de restes de mercaptoaniline fixés les nanoparticules fonctionnalisées et, sur partant, au nombre de fonctions amine portées par eux.

10

15

20

Les solvants sont préalablement séchés sur tamis moléculaire et sont utilisés dans des volumes propres à obtenir des concentrations en nanoparticules fonctionnalisées de l'ordre de 4 à 10 mg par cm³.

D'une manière générale, les réactions de greffage sont réalisées comme suit. On commence par disperser les nanoparticules fonctionnalisées dans un volume d'un solvant adapté et on maintient la suspension obtenue sous agitation magnétique et sous azote pendant une quinzaine de minutes. Le composé à greffer est alors directement introduit dans cette suspension, éventuellement avec un composé apte à piéger les sous-produits de la réaction de greffage.

Le milieu réactionnel est agité pendant 12 heures sous azote, puis transféré dans un tube à centrifugation dans lequel il est additionné d'un fort excès d'un solvant destiné à provoquer la précipitation des nanoparticules. Une fois celle-ci produite, le milieu réactionnel est centrifugé et le surnageant, qui contient le plus souvent une grande partie de l'excès

20

25

de molécules de greffage utilisé dans la réaction, est écarté.

Le précipité de nanoparticules est ensuite lavé et centrifugé de une à quatre fois avec un solvant capable de solubiliser les molécules du composé de greffage qui, bien que n'ayant pas réagi, seraient susceptibles de rester avec les nanoparticules, sans disperser toutefois ces dernières. Il est parfois nécessaire d'utiliser un mélange de solvants pour le (s) 10 lavage(s) du précipité de ou redisperser les nanoparticules et de les faire précipiter à nouveau. Enfin, dans certains cas, il convient d'évaporer sous vide le solvant utilisé pour la réaction avant de procéder au (x) lavage (s) du précipité.

La poudre de nanoparticules greffées ainsi obtenue est séchée sous vide ou sous azote. Elle peut alors être utilisée pour préparer des suspensions de nanoparticules greffées de concentrations désirées, en général de 0,3 à 2 mg/ml. Le solvant utilisé à cet effet est généralement un solvant aprotique polaire du type diméthylsulfoxyde (DMSO), diméthylformamide (DMF) ou diméthylacétamide (DMA), ou un solvant apolaire du chloroforme dichlorométhane, type si ou les nanoparticules greffées ne sont pas dispersibles dans les solvants aprotiques polaires.

De façon plus précise, les réactions de greffage illustrées sur les figures 2A à 2G sont réalisées en utilisant :

Réaction de greffage de la figure 2A:

Masse de nanoparticules fonctionnalisées : 25 mg Solvant : DMA : 5 ml

de greffage : chlorure d'acide de Composé thiophène : 26 µl (excès de 6) Piégeage de HCl : diméthylaminopyridine : 20 mg Solvants de précipitation/lavage : acétonitrile 5 Réaction de greffage de la figure 2B: Masse de nanoparticules fonctionnalisées : 18 mg Solvant : DMSO : 2 ml Composé de greffage : anhydride glutarique : 45 mg (excès de 10) 10 Solvants de précipitation/lavage : acétonitrile Réaction de greffage de la figure 2C: Masse de nanoparticules fonctionnalisées : 10 mg Solvant : DMA : 2 ml 15 Composé de greffage : anhydride sulfobenzoïque : 29 mg (excès de 10) Evaporation du DMA Solvants de lavage : acétonitrile 20 Réaction de greffage de la figure 2D : Masse de nanoparticules fonctionnalisées : 9 mg Solvant : DMSO : 2 ml Composé de greffage : anhydride tétrafluorophtalique: 15 mg (excès de 6) 25 Solvant de précipitation : eau Solvant de lavage : acétone Réaction de greffage de la figure 2E:

Masse de nanoparticules fonctionnalisées : 18 mg

Solvant: DMSO: 5 ml

PCT/FR2004/050396

Composé de greffage : bromobenzyloxycarbonyloxy-

succinimide: 89 mg (excès de 10)

Evaporation du DMSO

Solvant de lavage : acétonitrile

5

10

Réaction de greffage de la figure 2F :

Masse de nanoparticules fonctionnalisées : 22 mg

Solvant: DMSO: 4 ml

Composé de greffage : 1-hexyl-4-(4-isothiocyanato-

phényl)bicyclo[2.2.2.]octane : 100 mg (excès de 10)

Précipitation du produit dans le milieu réactionnel

Solvants de lavage : DMSO/acétone

Réaction de greffage de la figure 2G:

15 Masse de nanoparticules fonctionnalisées : 26 mg

Solvant: DMSO: 5 ml

Composé de greffage : anhydride tétraphényl-

phtalique : 180 mg (excès de 6)

Solvant de précipitation: éthanol (4 ml)/

20 diéthyléther (20 ml)

Redissolution dans du DMSO (4 ml)

Reprécipitation dans éthanol (4 ml)/ diéthyléther

(20 ml)

Lavage: diéthyléther.

25

Ce sont les nanoparticules greffées ainsi obtenues qui sont utilisées dans les exemples qui suivent.

5

10

15

20

25

30

33

Exemple 3 : Stabilité dans le temps de suspensions de nanoparticules fonctionnalisées et de nanoparticules greffées

La stabilité dans le temps de suspensions de nanoparticules fonctionnalisées ou greffées est contrôlée en traçant les isothermes de compression, enregistrés à 20°C et à l'interface air-eau d'une cuve de Langmuir, de films de Langmuir (monocouches flottantes) réalisés à partir de cette suspension, sitôt sa préparation (t=0), puis à différents stades de son vieillissement.

procédure d'établissement de ces La isothermes est classique. Elle consiste à préparer, à différents temps t, une suspension dite "d'épandage" en ajoutant 1 ml de chloroforme ou de dichlorométhane à 0,5 ml de la suspension dont on souhaite vérifier la stabilité dans le temps. Puis, on épand 1,2 ml de la suspension d'épandage à la surface de l'eau contenue dans une cuve de Langmuir mesurant, par exemple, 45 cm de long sur 6,5 cm de large. On comprime latéralement nanoparticules jusqu'à atteindre une pression superficielle préalablement choisie, par exemple de 4 mN/m. On mesure la longueur du film de nanoparticules ainsi obtenu et on calcule sa surface en multipliant cette longueur par la largeur de la cuve.

Connaissant la concentration massique en nanoparticules de la suspension d'épandage, on détermine l'aire occupée en moyenne par chaque unité de masse de nanoparticules dans la monocouche. On peut également, sur la base d'une estimation de la masse

20

25

molaire des particules, déterminer l'aire occupée en moyenne par chaque nanoparticule.

la suspension de nanoparticules est stable dans le temps, en ce sens qu'elle n'est le siège phénomène d'agrégation des nanoparticules, d'aucun alors on retrouve aux différents temps t, pour une même quantité de nanoparticules épandue, une aire par unité nanoparticules ou par nanoparticule de masse de constante ou sensiblement constante dans le temps.

contraire, si la suspension est Au instable, alors la valeur de l'aire par unité de masse nanoparticules ou de l'aire par nanoparticule de agrégat formé de temps, du un cours diminue au plusieurs particules occupant, en effet, une surface inférieure à celle occupée par le même nombre de 15 particules présentes sous forme individualisée.

Le tableau 1 ci-après présente, à titre d'exemple, les valeurs de l'aire occupée en moyenne par chaque nanoparticule dans des films de Langmuir réalisés à partir de deux suspensions de nanoparticules dans le DMSO, la première suspension étant constituée fonctionnalisées préparées nanoparticules de conformément à l'exemple 1, la seconde suspension étant constituée de nanoparticules greffées par la réaction de la figure 2A, et ce, à t=0 et après 1 mois (t=1 mois) et 7 mois (t=7 mois) de vieillissement desdites suspensions.

10

15

TABLEAU 1

Types de Nanoparticules	Aire (Ų) à t=0	Aire (Ų) à t=1 mois	Aire (Ų) à t=7 mois
Particules fonctionnalisées	680	490	0
Particules greffées	900	1000	950

Ce tableau montre que l'aire par nanoparticule diminue de façon très significative au fur et à mesure du vieillissement de la suspension de nanoparticules fonctionnalisées, traduisant l'existence d'un phénomène d'agrégation de ces nanoparticules, alors qu'elle reste sensiblement constante dans le cas de la suspension de nanoparticules greffées.

Par ailleurs, la figure 3 représente une photographie prise au microscope électronique en transmission d'un film de Langmuir réalisé à partir d'une suspension, âgée de deux ans, de nanoparticules greffées par la réaction illustrée sur la figure 2A, et prélevée à l'interface air/eau d'une cuve de Langmuir. Ce film a été obtenu en appliquant une pression superficielle de 4 mN/m.

La figure 3 montre l'absence d'agrégats de 20 nanoparticules au sein du film, confirmant ainsi le maintien à long terme de la stabilité de la suspension de nanoparticules greffées.

15

30

Exemple 4 : Activité électrochimique de nanoparticules greffées vis-à-vis de la réduction de l'oxygène en milieu acide

L'activité électrochimique de nanoparticules greffées vis-à-vis de la réduction de
l'oxygène en milieu acide est appréciée en soumettant
des films de Langmuir-Blodgett (monocouches sur un
support) - ci-après "films LB" - composés de
nanoparticules greffées à des tests de voltampérométrie
cyclique dans une solution d'acide sulfurique 1M.

En pratique, on prépare une suspension d'épandage en ajoutant 0,5 ml d'une suspension contenant 0,5 mg de nanoparticules greffées par ml de DMSO, 0,82 ml de dichlorométhane ou de chloroforme, et 0,18 ml d'une solution 5,4.10⁻⁴ M d'acide béhénique dans du chloroforme, cet acide étant destiné à faciliter le transfert vertical du film de nanoparticules greffées sur le support.

Puis, on épand 1 ml de la suspension d'épandage à la surface de l'eau contenue dans une cuve de Langmuir (45 cm x 6,5 cm) et on forme un film par compression latérale à une pression superficielle de 28 mN/m. Dans ces conditions, la surface occupée par les nanoparticules est de l'ordre de 50% de la surface totale du film, le reste étant occupé par l'acide béhénique.

Le film est ensuite transféré verticalement sur un support, à 0,5 cm/mn, par la technique de Langmuir-Blodgett, le support étant muni d'une électrode d'or.

5

10

15

20

30

37

Les tests de voltampérométrie sont réalisés, de façon classique, sur les films LB de nanoparticules greffées sans traitement électrochimique préalable de ces films et après saturation en O_2 de la solution acide.

A titre d'exemple, la figure 4 représente les voltampérogrammes, enregistrés à une vitesse de balayage de 20 mV/s, pour deux films de nanoparticules greffées différentes, composés respectivement de nanoparticules greffées par la réaction illustrée sur la figure 2A (courbe 1) et de nanoparticules greffées par la réaction de greffage illustrée sur la figure 2B (courbe 2). Sur cette figure, les potentiels sont exprimés en mV par rapport à une électrode standard à hydrogène (ESH).

La figure 4 montre que les activités électrochimiques des deux types de nanoparticules greffées sont extrêmement proches l'une de l'autre, la densité de courant électrique du pic de réduction se situant, pour les deux films, entre 230 et 240 μA/cm². Le processus de réduction disparaît lorsqu'on désoxygène la solution acide par un courant d'azote.

Exemple 5 : Activité électrochimique de nanoparticules greffées vis-à-vis de la réduction de l'oxygène en milieu basique

L'activité électrochimique de nanoparticules greffées vis-à-vis de la réduction de l'oxygène en milieu basique est appréciée en soumettant des films LB de nanoparticules greffées, préparés comme décrit dans l'exemple 4, à des tests de voltampéro-

25

métrie cyclique que l'on réalise dans les mêmes conditions que celles de l'exemple 4, à ceci près que la solution utilisée ne contient pas de l'acide sulfurique, mais de la soude 1M.

A titre d'exemple, la figure 5 représente les voltampérogrammes, enregistrés à une vitesse de balayage de 20 mV/s, pour deux films de nanoparticules greffées différentes, composés respectivement de nanoparticules greffées par la réaction illustrée sur la figure 2C (courbe 1) et de nanoparticules greffées par la réaction illustrée sur la figure 2D (courbe 2). Comme précédemment, les potentiels sont exprimés sur cette figure en mV par rapport à une électrode standard à hydrogène (ESH).

Au cours des premiers cycles, la densité de courant électrique du pic de réduction est similaire à celle observée en milieu H₂SO₄. Lorsque l'on prolonge l'expérience, cette densité de courant électrique augmente puis se stabilise aux valeurs montrées sur la figure 5.

Là également, la figure 5 montre que les activités électrochimiques des deux types de nanoparticules greffées sont extrêmement proches l'une de l'autre, la densité de courant électrique du pic de réduction se situant, pour les deux films, entre 570 et $580~\mu\text{A/cm}^2$. Par ailleurs, le processus de réduction disparaît lorsqu'on désoxygène la solution basique par un courant d'azote.

PCT/FR2004/050396 WO 2005/021154

39

Exemple 6 : Activité électrochimique de nanoparticules greffées vis-à-vis de l'oxydation de l'hydrogène en milieu acide

L'activité électrochimique de nanoparticules greffées vis-à-vis de l'oxydation l'hydrogène en milieu acide est appréciée en soumettant des films LB de nanoparticules greffées, préparés comme décrit dans l'exemple 4, à des tests de voltampérométrie cyclique que l'on réalise dans les mêmes conditions que celles de l'exemple 4, à ceci près que 10 l'on utilise une solution acide initialement saturée en H_2 .

A titre d'exemple, la figure 6 représente voltampérogramme, enregistré à une vitesse film balayage de 20 mV/s, pour un composé de · nanoparticules greffées par la réaction illustrée sur la figure 2A. Comme précédemment, les potentiels sont exprimés sur cette figure en mV par rapport à une électrode standard à hydrogène (ESH).

20

25

30

15

5

Exemple 7 : Stabilité de l'activité électrochimique de nanoparticules greffées

La stabilité de l'activité électrochimique de nanoparticules greffées vis-à-vis de la réduction de l'oxygène en milieux acide et basique est vérifiée en soumettant des films LB de nanoparticules greffées, préparés comme décrit dans l'exemple 4, à des tests voltampérométriques qui sont réalisés dans les mêmes conditions que celles des exemples 4 et 5, mais, d'une part, en faisant varier l'âge des suspensions de nanoparticules greffées à partir desquelles sont réalisés les films, et, d'autre part, en soumettant ou

10

15

non préalablement lesdits films à des cycles électrochimiques.

Ces cycles électrochimiques sont effectués à la vitesse de 50 mV/s sous atmosphère d'oxygène, entre 800 et -50 mV/ESH en milieu acide ($\rm H_2SO_4$ 1M) et entre 200 et -850 mV/ESH en milieu basique (NaOH 1M).

Le tableau 2 ci-après présente les densités de courant électrique du pic de réduction de l'oxygène enregistrées, à une vitesse de balayage de 20 mV/s, pour des films de nanoparticules greffées par la réaction illustrée sur la figure 2A.

Dans ce tableau, les densités de courant électrique présentées pour la soude sont celles observées après immersion des films pendant 30 mn dans ce milieu sans polarisation.

TABLEAU 2

Age de la suspension	Milieu	Traitement électrochimique	Densité de courant électrique du pic de réduction de l'O ₂ (µA/cm ²)
7 jours	NaOH 1M		578
43 mois	NaOH 1M		570
43 mois	NaOH 1M	350 cycles	575
25 mois	H ₂ SO ₄ 1M		237
25 mois	H ₂ SO ₄ 1M	100 cycles	235

5

10

25

30

Exemple 8 : Stabilité en milieu acide du deuxième enrobage organique de nanoparticules greffées

La stabilité en milieu acide du deuxième enrobage organique de nanoparticules greffées est appréciée en soumettant des films LB de nanoparticules greffées, préparés comme décrit dans l'exemple 4, à des cycles électrochimiques prolongés, dans une solution d'acide sulfurique 1M, et en analysant ces films par spectroscopie de photoélectrons induits par rayons X avant et après ces cycles.

Dans cette expérience, les cycles électrochimiques sont effectués à la vitesse de 50 mV/s sous atmosphère d'oxygène, et entre 800 et -50 mV/ESH.

A titre d'exemple, les figures 7A et 7B montrent les spectres enregistrés pour des films de nanoparticules greffées par la réaction illustrée sur la figure 2A. La figure 7A concerne les électrons 4f du platine, tandis que la figure 7B concerne les électrons 20 S2p du soufre.

Les allures des spectres obtenus respectivement avant (spectres 1 et 3) et après les cycles (spectres 2 et 4) montrent, pour chaque type d'électrons, une remarquable similitude, témoignant d'une remarquable stabilité du deuxième enrobage organique.

Pour le soufre, le pic centré sur 163 eV correspond au deuxième enrobage organique des nanoparticules, tandis que le pic centré sur 169 eV correspond aux ions sulfate qui se trouvent insérés dans les films.

42

Par ailleurs, les analyses semiquantitatives issues de ces caractérisations avant et après traitement des films en milieu acide ont permis de montrer que le rapport entre les intensités des pics de platine et des pics de soufre du deuxième enrobage organique n'évolue pas de façon significative (1,72 après les cycles versus 1,44 avant les cycles), témoignant ainsi d'une remarquable stabilité de la composition globale des nanoparticules.

10

15

20

25

5

Exemple 9 : Importance des caractéristiques des molécules du deuxième enrobage organique sur l'activité électrochimique de nanoparticules greffées

Des films LB de nanoparticules greffées par la réaction illustrée sur la figure 2F, préparés comme décrit dans l'exemple 4, sont soumis à des tests de voltampérométrie cyclique en milieu acide (H₂SO₄ 1M) dans les mêmes conditions que celles décrites à l'exemple 4, en polarisant ou non ces films.

Les résultats sont illustrés sur la figure 8 qui représente les voltampérogrammes, enregistrés à une vitesse de balayage de 20 mV/s, pour un film non polarisée (courbe 1), pour des films polarisés pendant 30 secondes à 1,95 V/ESH (courbes 2 et 3) et pour des films polarisés pendant 15 minutes à 1,95 V/ESH (courbes 4 et 5). Comme précédemment, les potentiels sont exprimés sur cette figure en mV par rapport à une électrode standard à hydrogène (ESH).

Cette figure démontre l'importance du choix des molécules formant le deuxième enrobage organique des nanoparticules sur leur activité catalytique.

43

En effet, dans le cas des nanoparticules greffées par la réaction illustrée sur la figure 2F, la partie essentielle des molécules du deuxième enrobage organique étant constituée de liaisons C-C de type Sp3, elle s'oppose à l'expression par les nanoparticules de catalytiques. Ces nanoparticules propriétés ne manifestent donc aucune activité électrochimique en l'absence d'un traitement préalable, comme en témoigne la figure 8, contrairement courbe 1 de la nanoparticules greffées par les réactions illustrées 10 sur les figures 2A à 2E (voir notamment les exemples 4 à 6).

lorsqu'on soumet contre, Par les monocouches de nanoparticules greffées par la réaction illustrée sur la figure 2F à des potentiels d'oxydation élevés, on voit apparaître une réponse électrochimique, d'autant plus marquée que le potentiel qui est d'oxydation est appliqué plus longtemps, et témoigne d'une dégradation des molécules du deuxième des nanoparticules enrobage organique par ces potentiels d'oxydation.

15

20

25

30

Exemple 10 : Modulation de l'activité électrochimique de nanoparticules greffées par le choix du deuxième enrobage organique

Des films LB respectivement composés de nanoparticules greffées par les réactions illustrées sur les figures 2F, 2A et 2G, et préparés comme décrit dans l'exemple 4, sont soumis à des tests de voltampérométrie cyclique en milieu acide (H₂SO₄ 1M) dans les mêmes conditions que celles de l'exemple 4.

44

Les résultats sont présentés sur la figure 9 qui montre les voltampérogrammes, enregistrés à une vitesse de balayage de 20 mV/s, pour un film de nanoparticules greffées par la réaction illustrée sur la figure 2F (courbe 1), pour un film de nanoparticules greffées par la réaction illustrée sur la figure 2A (courbe 2) et pour un film de nanoparticules greffées par la réaction illustrée sur la figure 2G (courbe 3). Là également, les potentiels sont exprimés par rapport à une électrode standard à hydrogène (ESH).

10

15

20

25

30

Comme visible sur la figure 9, aucune activité électrochimique significative n'est observée dans le cas des nanoparticules greffées par la réaction illustrée sur la figure 2F - et ce, en accord avec les résultats présentés dans l'exemple 9 -, tandis que les nanoparticules greffées par la réaction illustrée sur la figure 2G manifestent une activité électrochimique nettement plus élevée que celle des nanoparticules greffées par la réaction illustrée sur la figure 2A, pourtant déjà très performantes.

Ces résultats confirment donc l'importance du choix des molécules formant le deuxième enrobage organique sur les propriétés électrochimiques des nanoparticules et le fait qu'il est possible, conformément à l'invention, d'adapter, si on le souhaite, les performances catalytiques des nanoparticules à un niveau recherché, en fonction de l'usage auquel elles sont plus particulièrement destinées, en jouant sur le choix des molécules du deuxième enrobage organique.

PCT/FR2004/050396

Exemple 11 : Influence d'un traitement en milieu basique sur les performances électrochimiques de nano-particules greffées

L'influence d'un traitement en milieu sur les performances électrochimiques basique 5 nanoparticules greffées est appréciée en comparant les activités électrochimiques observées respectivement en milieu basique (NaOH 1M) et en milieu acide (H2SO4 1M) pour des films LB de nanoparticules greffées par la réaction illustrée sur la figure 2A, avant et après un 10 traitement consistant à immerger ces films de nanoparticules pendant 30 mn dans de la soude en présence d'oxygène.

Les activités électrochimiques sont évaluées par des tests de voltampérométrie cyclique que l'on réalise sur des films LB préparés à partir desdites nanoparticules comme décrit dans l'exemple 4, les tests en milieu basique étant effectués dans les mêmes conditions que celles de l'exemple 5, tandis que 20 les tests en milieu acide sont effectués dans les mêmes conditions que celles de l'exemple 4.

Les résultats sont présentés sur la figure 10 qui montre :

- courbe 1 : le voltampérogramme obtenu en 25 milieu basique pour un film de nanoparticules avant immersion de 30 mn dans la soude,
 - courbe 2 : le voltampérogramme obtenu en milieu basique pour un film de nanoparticules après immersion de 30 mn dans la soude,

46

- courbe 3 : le voltampérogramme obtenu en milieu acide pour un film de nanoparticules avant immersion de 30 mn dans la soude, et
- courbe 4 : le voltampérogramme obtenu en
 milieu acide pour un film de nanoparticules après immersion de 30 mn dans la soude, tous ces voltampérogrammes ayant été enregistrés à une vitesse de balayage de 20 mV/s.

Cette figure montre qu'un traitement préalable en milieu basique des nanoparticules greffées comme une immersion dans un bain de soude, a pour effet d'augmenter de manière très significative leur activité électrochimique non seulement en milieu basique, mais également en milieu acide où cette augmentation est même plus marquée.

Il en résulte qu'un tel traitement est susceptible d'être avantageusement utilisé pour améliorer, si on le souhaite, les propriétés catalytiques de nanoparticules greffées qui sont 20 d'emblée actives en milieu acide mais dont les performances catalytiques apparaissent ne pas être spontanément optimales dans ce milieu.

BIBLIOGRAPHIE

- [1] US-A-6,462,095
- [2] M. M. Maye, Y. Lou, C. J. Zhong, Langmuir, 2000, 16, 7520-7523
 - [3] Y. Lou, M. M. Maye, L. Han, J. Luo, C. J. Zhong, Chem. Commun., 2001, 473-474.
- 10
- [4] J. Luo, M. M. Maye, Y. Lou, L. Han, M. Hepel, C. J. Zhong, Catalysis Today, 2000, 2790, 1-12.
- [5] FR-A-2 783 051.
- 15
- [6] C. Bureau et al., Macromolecules, 1997, 30, 333.
- [7] C. Bureau et al., *Journal of Adhesion*, 1996, <u>58</u>, 101.
- 20
- [8] C. Bureau et J. Delhalle, Journal of Surface Analysis, 1999, 6(2), 159.
- [9] L. Geniès, R. Faure, R. Durand, Electrochimica

 25 Acta, 1998, 44, 1317-1327

PCT/FR2004/050396

REVENDICATIONS

- 1. Utilisation de nanoparticules comprenant:
- un cœur métallique contenant au moins un platinoïde ou un alliage d'un platinoïde,
 - un premier enrobage organique formé de molécules fixées sur la surface du cœur métallique, et
- un deuxième enrobage organique formé de 10 molécules différentes des molécules du premier enrobage organique et qui sont greffées sur des molécules du premier enrobage organique, en tant que catalyseurs.
- 2. Utilisation selon la revendication 1, dans laquelle le cœur métallique des nanoparticules est constitué de platine, d'un alliage de platine ou d'un mélange des deux.
- 3. Utilisation selon la revendication 1 ou la revendication 2, dans laquelle les molécules du premier enrobage organique sont les restes de composés qui comportent au moins deux fonctions chimiques dont une première fonction pour leur fixation sur la surface du cœur métallique, et une deuxième fonction pour leur greffage par les molécules du deuxième enrobage organique.
- 4. Utilisation selon la revendication 3, 30 dans laquelle les molécules du deuxième enrobage organique sont les restes de composés comportant au

PCT/FR2004/050396

moins une fonction chimique pour leur greffage sur les molécules du premier enrobage organique.

5. Utilisation selon l'une quelconque des revendications 1 à 4, dans laquelle les molécules du premier enrobage organique sont capables de se dégrader à la surface du cœur métallique lorsqu'elles ne sont pas greffées par des molécules du deuxième enrobage organique.

10

6. Utilisation selon la revendication 4 ou la revendication 5, dans laquelle les molécules du premier enrobage organique sont des restes de 4-mercaptoaniline.

15

20

25

30

- 7. Utilisation selon l'une quelconque des dans laquelle, les précédentes, revendications procédé réalisées nanoparticules étant par un comprenant une réaction de greffage des composés destinés à former les molécules du deuxième enrobage les molécules du premier enrobage organique sur organique, la proportion de molécules du premier enrobage organique sur lesquelles sont greffées des molécules du deuxième enrobage organique est inférieure à 100% à l'issue de cette réaction.
- 8. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle l'épaisseur formée par les deux enrobages organiques ne dépasse pas une dizaine de nm.

50

- 9. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle les molécules du deuxième enrobage organique sont les restes de composés choisis parmi les thiophènes comportant au moins une fonction pour leur greffage sur les molécules du premier enrobage organique et les anhydrides monoet polycycliques.
- 10. Utilisation selon la revendication 9,
 10 dans laquelle les molécules du deuxième enrobage
 organique sont les restes de composés choisis parmi le
 chlorure d'acide de thiophène, l'anhydride glutarique,
 l'anhydride sulfobenzoïque, l'anhydride diphénique,
 l'anhydride tétrafluorophtalique, l'anhydride
 15 tétraphénylphtalique et l'anhydride diphénylmaléique.
- 11. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle les nanoparticules ont une taille de l'ordre de 1,5 à 10 nm de diamètre et, de préférence, de l'ordre de 1,5 à 5 nm de diamètre.
 - 12. Utilisation selon l'une quelconque des revendications, dans laquelle les nanoparticules sont en suspension dans un solvant.
 - 13. Utilisation selon la revendication 12, dans laquelle la suspension de nanoparticules présente une concentration en nanoparticules de 0,3 à 1 mg/ml.

25

PCT/FR2004/050396

14. Utilisation selon l'une quelconque des revendications 1 à 11, dans laquelle les nanoparticules sont sous la forme d'un film mince, déposé sur la surface d'un support.

5

- 15. Utilisation selon la revendication 14, dans laquelle le support est une nanotube de carbone.
- 16. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle les nanoparticules sont soumises à un traitement préalable en milieu basique.
- 17. Utilisation selon la revendication 16,
 15 dans laquelle le traitement préalable des nanoparticules consiste à les immerger dans une solution
 d'une base forte.
- 18. Utilisation selon l'une quelconque des 20 revendications précédentes, dans laquelle les nano-particules sont utilisées comme électrocatalyseurs.
- 19. Utilisation selon la revendication 18, dans laquelle les nanoparticules sont utilisées dans un dispositif producteur d'énergie électrique.
 - 20. Utilisation selon la revendication 19, dans laquelle le dispositif producteur d'énergie électrique est une pile à combustible.

PCT/FR2004/050396

WO 2005/021154

- 21. Utilisation selon la revendication 18, dans laquelle les nanoparticules sont utilisées dans un système de détection ou de dosage d'une ou plusieurs espèces chimiques ou biologiques, en particulier un capteur ou un multicapteur.
- 22. Dispositif de production d'énergie électrique, qui comprend des nanoparticules telles que définies dans l'une quelconque des revendications 1 à 11.
 - 23. Dispositif selon la revendication 22, qui est une pile à combustible.

15 24. Nanoparticule comprenant:

- un cœur métallique contenant au moins un platinoïde ou un alliage d'un platinoïde,
- un premier enrobage organique formé de molécules fixées sur la surface du cœur métallique, et
- un deuxième enrobage organique formé de molécules différentes des molécules du premier enrobage organique et qui sont greffées sur des molécules du premier enrobage organique,
- dans laquelle les molécules du deuxième enrobage 25 organique sont des restes d'un composé choisi parmi les anhydrides mono- et polycycliques.
- 25. Nanoparticule selon la revendication 24, dans laquelle les molécules formant le deuxième 30 enrobage organique sont les restes d'un composé choisi parmi l'anhydride glutarique, l'anhydride

sulfobenzoïque, l'anhydride diphénique, l'anhydride tétrafluorophtalique, l'anhydride tétraphénylphtalique et l'anhydride diphénylmaléique.

- 26. Nanoparticule selon la revendication 24 ou la revendication 25, dans laquelle le cœur métallique est constitué de platine, d'un alliage de platine ou d'un mélange des deux.
- 27. Nanoparticule selon l'une quelconque des revendications 24 à 26, dans laquelle les molécules du premier enrobage organique sont des restes de 4-mercaptoaniline.
- 28. Nanoparticule selon l'une quelconque des revendications 24 à 27, qui mesure de l'ordre de 1,5 à 10 nm de diamètre et, de préférence, de l'ordre de 1,5 à 5 nm de diamètre.

FIG. 1

FIG. 3

FIG. 2A

FIG. 2B

FIG. 2C

FIG. 2D

FIG. 2E

$$S=C=N \longrightarrow (CH_2)_5-CH_3$$

$$Pt \longrightarrow NH_2$$

$$Pt \longrightarrow NH_2$$

$$NH_2$$

$$NH_2$$

$$NH_2$$

$$NH_2$$

FIG. 2F

FIG. 2G

FIG. 4

7/7

FIG. 9

FIG. 10

INTERNATIONAL SEARCH REPORT

International Application No
PCT/FR2004/050396

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 B01J35/00 H01M4/92

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 B01J H01M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, COMPENDEX, INSPEC, CHEM ABS Data

C. DUCUM	ENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	FR 2 783 051 A (COMMISSARIAT ENERGIE ATOMIQUE) 10 March 2000 (2000-03-10) cited in the application	1-9, 11-21
Α	page 2, line 31 - page 3, line 3; claims 11,17,18; examples 1-4	10,22-28
X	WO 99/61911 A (HOSTETLER MICHAEL J; TEMPLETON ALLEN C (US); UNIV NORTH CAROLINA () 2 December 1999 (1999-12-02) page 6, line 173 - line 180; claims 1,23,27	1
X	US 6 391 818 B1 (FRANK GEORG ET AL) 21 May 2002 (2002-05-21) the whole document	1,22

X Further documents are listed in the continuation of box C.	χ Patent family members are listed in annex.	
 Special categories of cited documents: A* document defining the general state of the art which is not considered to be of particular relevance E* earlier document but published on or after the international filing date L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or other means *P* document published prior to the international filing date but later than the priority date claimed 	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family 	
Date of the actual completion of the international search 2 February 2005	Date of mailing of the international search report 09/02/2005	
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Authorized officer Veefkind, V	

Form PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

International Application No
PCT/FR2004/050396

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
alegory	Citation of document, with indication, where appropriate, of the relevant passages	- Island In Ola III 140.
	ZAMBORINI F P, GROSS S M, MURRAY R W: "Synthesis, Characterization, Reactivity, and Electrochemistry of Palladium Monolayer Protected Clusters" LANGMUIR, vol. 17, 2001, pages 481-488, XP002276843 * "Experimental Section" * page 483, column 1	1-28
A	TEMPLETON ET AL.: "Gateway Reactions to Diverse, Polyfuntional Monolayer-Protected Gold Clusters" J. AM. CHEM. SOC., vol. 120, 1998, pages 4845-4849, XP002276844 * "Results and Discussion" * page 4847	1,24
Α	BRUST M ET AL.: "Synthesis and Reactions of Functionalised Gold Nanoparticles" J. CHEM. SOC, CHEMICAL COMMUNICATIONS, no. 16, 1995, pages 1655-1656, XP008029751 page 1656	24
A	PEREZ H, PRADEAU J-P, ALBOUY P-A, PEREZ-OMIL J: "Synthesis and Characterization of Functionalized Platinum Nanoparticles" CHEM. MATER., vol. 11, no. 12, 1999, pages 3460-3463, XP002276845 page 3463, column 2	1-28

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/FR2004/050396

	nt document search report	Publication date		Patent family member(s)	Publication date
FR 2	783051 A	10-03-2000	FR EP WO	2783051 A1 1112488 A1 0014520 A1	10-03-2000 04-07-2001 16-03-2000
WO 9	961911 A	02-12-1999	AU CA EP WO	6016999 A ' 2329859 A1 1073902 A2 9961911 A2	13-12-1999 02-12-1999 07-02-2001 02-12-1999
US 6	391818 B1	21-05-2002	DE DE WO EP JP	19754304 A1 59810188 D1 9929423 A1 1039968 A1 2001525247 T	10-06-1999 18-12-2003 17-06-1999 04-10-2000 11-12-2001

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No
PCT/FR2004/050396

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 B01J35/00 H01M4/92

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 7 BOIJ HOIM

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) EPO-Internal, WPI Data, PAJ, COMPENDEX, INSPEC, CHEM ABS Data

C. DOCUME	INTS CONSIDERES COMME PERTINENTS	
Catégorie °	ldentification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
Χ	FR 2 783 051 A (COMMISSARIAT ENERGIE ATOMIQUE) 10 mars 2000 (2000-03-10) cité dans la demande	1-9, 11-21
Α	page 2, ligne 31 - page 3, ligne 3; revendications 11,17,18; exemples 1-4	10,22-28
X	WO 99/61911 A (HOSTETLER MICHAEL J; TEMPLETON ALLEN C (US); UNIV NORTH CAROLINA () 2 décembre 1999 (1999-12-02) page 6, ligne 173 - ligne 180; revendications 1,23,27	1
X	US 6 391 818 B1 (FRANK GEORG ET AL) 21 mai 2002 (2002-05-21) 1e document en entier -/	1,22

χ Voir la suite du cadre C pour la fin de la liste des documents	Les documents de familles de brevets sont indiqués en annexe
Catégories spéciales de documents cités: A' document définissant l'état général de la technique, non considéré comme particulièrement pertinent E' document antérieur, mais publié à la date de dépôt international ou après cette date L' document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) O' document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens	 *T° document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention *X° document particulièrement pertinent; l'Inven tion revendiquée ne peut être considérée comme nouvelle ou comme Impliquant une activité inventive par rapport au document considéré isolément *Y° document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente
P° document publié avant la date de dépôt international, mals postérieurement à la date de priorité revendiquée	pour une personne du métier *&* document qui fait partie de la même famille de brevets
Date à laquelle la recherche internationale a été effectivement achevée	Date d'expédition du présent rapport de recherche Internationale
2 février 2005	09/02/2005
Nom et adresse postale de l'administration chargée de la recherche internationa Office Européen des Brevets, P.B. 5818 Patentiaan 2	le Fonctionnaire autorisé
NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Veefkind, V

RAPPORT DE RECHERCHE INTERNATIONALE

Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents

C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie °

no. des revendications visées

			_1
A	ZAMBORINI F P, GROSS S M, MURRAY R W: "Synthesis, Characterization, Reactivity, and Electrochemistry of Palladium Monolayer Protected Clusters" LANGMUIR, vol. 17, 2001, pages 481-488, XP002276843 * "Experimental Section" * page 483, colonne 1	1-28	
A	TEMPLETON ET AL.: "Gateway Reactions to Diverse, Polyfuntional Monolayer-Protected Gold Clusters" J. AM. CHEM. SOC., vol. 120, 1998, pages 4845-4849, XP002276844 * "Results and Discussion" * page 4847	1,24	
A	BRUST M ET AL.: "Synthesis and Reactions of Functionalised Gold Nanoparticles" J. CHEM. SOC, CHEMICAL COMMUNICATIONS, no. 16, 1995, pages 1655-1656, XP008029751 page 1656	24	
A	PEREZ H, PRADEAU J-P, ALBOUY P-A, PEREZ-OMIL J: "Synthesis and Characterization of Functionalized Platinum Nanoparticles" CHEM. MATER., vol. 11, no. 12, 1999, pages 3460-3463, XP002276845 page 3463, colonne 2	1-28	

SUITE DES RENSEIGNEMENTS INDIQUES SUR PCT/ISA/ 210

L'administration chargée de la recherche internationale a trouvé plusieurs (groupes d') inventions dans la demande internationale, à savoir:

1. revendications: 1-23

Utilisation de nanoparticules; Dispositif qui comprend des nanoparticules telles que définies dan l'une quelconque des revendications 1 à11.

2. revendications: 24-28

nanoparticules dans laquelle les molécules du deuxième enrobage organique sont des restes d'un composé choisi parmi les anhydrides mono- et polycycliques.

Best Aviilable Con

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale n° PCT/FR2004/050396

Cadre II Observations – lorsqu'il a été es (suite du point 2 de la première	stimé que certaines revendications ne pouvaient pas faire l'objet d'une recherch feuille)
Conformément à l'article 17.2)a), certaines reven	dications n'ont pas fait l'objet d'une recherche pour les motifs sulvants:
1. Les revendications nos se rapportent à un objet à l'égard duque	el l'administration n'est pas tenue de procéder à la recherche, à savoir:
2. Les revendications nos se rapportent à des parties de la deman qu'une recherche significative puisse ét	nde Internationale qui ne remplissent pas suffisamment les conditions prescrites pour re effectuée, en particulier:
troisième phrases de la règle 6.4.a).	t ne sont pas rédigées conformément aux dispositions de la deuxième et de la
Cadre III Observations – Iorsqu'il y a abs	sence d'unité de l'invention (suite du point 3 de la première feuille)
L'administration chargée de la recherche interna-	tionale a trouvé plusieurs inventions dans la demande internationale, à savoir:
voir feuille supplément	aire
	ont été payées dans les délais par le déposant, le présent rapport de recherche ndications pouvant faire l'objet d'une recherche.
2. X Comme toutes les recherches portant s justifiant une taxe additionnelle, l'admin	sur les revendications qui s'y prêtaient ont pu être effectuées sans effort particulier nistration n'a sollicité le paiement d'aucune taxe de cette nature.
3. Comme une partie seulement des taxe rapport de recherche internationale ne les revendications n os	es additionnelles demandées a été payée dans les délais par le déposant, le présent porte que sur les revendications pour lesquelles les taxes ont été payées, à savoir
4. Aucune taxe additionnelle demandée recherche internationale ne porte que couverte par les revendications no os	n'a été payée dans les délais par le déposant. En conséquence, le présent rapport ue sur l'invention mentionnée en premier lieu dans les revendications; elle est
Remarque quant à la réserve	Les taxes additionnelles étaient accompagnées d'une réserve de la part du déposa
	Le palement des taxes additionnelles n'était assorti d'aucune réserve.

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Demande Internationale No
PCT/FR2004/050396

Document brevet cité au rapport de recherche			Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
FR	2783051	Α	10-03-2000	FR EP WO	2783051 A1 1112488 A1 0014520 A1	10-03-2000 04-07-2001 16-03-2000
WO	9961911	Α	02-12-1999	AU CA EP WO	6016999 A 2329859 A1 1073902 A2 9961911 A2	13-12-1999 02-12-1999 07-02-2001 02-12-1999
US	6391818	B1	21-05-2002	DE DE WO EP JP	19754304 A1 59810188 D1 9929423 A1 1039968 A1 2001525247 T	10-06-1999 18-12-2003 17-06-1999 04-10-2000 11-12-2001

Best Available Con