```
In [5]: import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
```

In [6]: df=pd.read_csv(r"C:\Users\Welcome\Downloads\ionosphere.csv")
 df

Out[6]:

	atr1	atr2	atr3	atr4	atr5	atr6	atr7	atr8	atr9	atr10	
) 1	0	0.99539	-0.05889	0.85243	0.02306	0.83398	-0.37708	1.00000	0.03760	 -0.
	1 1	0	1.00000	-0.18829	0.93035	-0.36156	-0.10868	-0.93597	1.00000	-0.04549	 -0.
:	2 1	0	1.00000	-0.03365	1.00000	0.00485	1.00000	-0.12062	0.88965	0.01198	 -0.
;	3 1	0	1.00000	-0.45161	1.00000	1.00000	0.71216	-1.00000	0.00000	0.00000	 0.
•	1 1	0	1.00000	-0.02401	0.94140	0.06531	0.92106	-0.23255	0.77152	-0.16399	 -0.
34	5 1	0	0.83508	0.08298	0.73739	-0.14706	0.84349	-0.05567	0.90441	-0.04622	 -0.
34	7 1	0	0.95113	0.00419	0.95183	-0.02723	0.93438	-0.01920	0.94590	0.01606	 0.
348	3 1	0	0.94701	-0.00034	0.93207	-0.03227	0.95177	-0.03431	0.95584	0.02446	 0.
349	1	0	0.90608	-0.01657	0.98122	-0.01989	0.95691	-0.03646	0.85746	0.00110	 -0.
35) 1	0	0.84710	0.13533	0.73638	-0.06151	0.87873	0.08260	0.88928	-0.09139	 -0.

351 rows × 35 columns

```
In [7]: pd.set_option('display.max_rows',10000000000)
   pd.set_option('display.max_columns',10000000000)
   pd.set_option('display.width',95)
```

In [8]: print('This DataFrame ha %d Rows and %d Columns'%(df.shape))

This DataFrame ha 351 Rows and 35 Columns

```
In [9]: df.head()
```

Out[9]:

	atr1	atr2	atr3	atr4	atr5	atr6	atr7	atr8	atr9	atr10	atr11
0	1	0	0.99539	-0.05889	0.85243	0.02306	0.83398	-0.37708	1.00000	0.03760	0.85243
1	1	0	1.00000	-0.18829	0.93035	-0.36156	-0.10868	-0.93597	1.00000	-0.04549	0.50874
2	1	0	1.00000	-0.03365	1.00000	0.00485	1.00000	-0.12062	0.88965	0.01198	0.73082
3	1	0	1.00000	-0.45161	1.00000	1.00000	0.71216	-1.00000	0.00000	0.00000	0.00000
4	1	0	1.00000	-0.02401	0.94140	0.06531	0.92106	-0.23255	0.77152	-0.16399	0.52798

```
In [10]: features matrix=df.iloc[:,0:34]
In [11]: | target_vector=df.iloc[:,-1]
In [12]: print('The Features Matrix Has %d Rows And %d Columns'%(features matrix.shape))
         print('The Features Matrix Has %d Rows And %d Columns'%(np.array(target vector)
         The Features Matrix Has 351 Rows And 34 Columns
         The Features Matrix Has 351 Rows And 1 Columns
In [16]: features matrix standardized=StandardScaler().fit transform(features matrix)
In [17]: algorithm=LogisticRegression(penalty='12',dual=False,tol=1e-4,C=1.0,fit_interce
        Logistic Regression Model=algorithm.fit(features matrix standardized, target ved
In [18]:
In [20]:
         predictions=Logistic Regression Model.predict(Observation)
         print('The Model Predicted The Observations To Belong To Class %s'%(predictions
         The Model Predicted The Observations To Belong To Class ['g']
In [21]: print('The Algorithm Was Trained To Predict One Of The Two Classes:%s'%(algorithm)
         The Algorithm Was Trained To Predict One Of The Two Classes:['b' 'g']
         print("""The Model Says The Probability Of The Observation we Passed Belonging
In [22]:
         print("""The Model Says The Probability Of The Observation we Passed Belonging
         The Model Says The Probability Of The Observation we Passed Belonging To clas
         s['b']Is 0.007759545690611991
         The Model Says The Probability Of The Observation we Passed Belonging To clas
         s['g']Is 0.992240454309388
In [ ]:
```