Searching on Graphs

December 13, 2023

Graph-searching Algorithms

- Searching a graph:
 - Systematically follow the edges of a graph to visit the vertices of the graph.
- Used to discover the structure of a graph.
- Standard graph-searching algorithms.
 - Breadth-first Search (BFS).
 - Depth-first Search (DFS).

Breadth-First Search(BFS) - Basic Idea

Breadth First Search visits vertices in increasing distance from the source. Given a graph with *N* vertices and a selected vertex *s*:

for (i = 1; there are unvisited vertices; i++)

Visit all unvisited vertices at distance i

Note that i is the length of the shortest path between s and currently processed vertices

Queue-based implementation

BFS – Algorithm

- Store source vertex S in a queue and mark as processed
- while queue is not empty Read vertex v from the queue for all neighbors w:
 - If w is not processed
 - Mark w as processed
 - Enqueue w in the queue
 - Record the parent of w to be v
 - (necessary only if we need the shortest path tree)

● Store source vertex S in a queue and mark as processed
● while queue is not empty
Read vertex v from the queue
for all neighbors w:

If w is not processed
Mark w as processed
Enqueue w in the queue
Record the parent of w to be v
(necessary only if we need the shortest path tree)

Queue

front

Store source vertex S in a queue and mark as processed while queue is not empty Read vertex v from the queue for all neighbors w: If w is not processed Mark w as processed Enqueue w in the queue Record the parent of w to be v (necessary only if we need the shortest path tree)

enqueue source node

front A

Store source vertex S in a queue and mark as processed while queue is not empty Read vertex v from the queue for all neighbors w: If w is not processed Mark w as processed Enqueue w in the queue Record the parent of w to be v (necessary only if we need the shortest path tree)

dequeue next vertex

front

● Store source vertex S in a queue and mark as processed

• while queue is not empty
Read vertex v from the queue
for all neighbors w:

If w is not processed
Mark w as processed
Enqueue w in the queue
Record the parent of w to be v
(necessary only if we need the shortest path tree)

Store source vertex S in a queue and mark as processed while queue is not empty Read vertex v from the queue for all neighbors w: If w is not processed Mark w as processed Enqueue w in the queue Record the parent of w to be v (necessary only if we need the shortest path tree)


```
● Store source vertex S in a queue and mark as processed
● while queue is not empty
Read vertex v from the queue
for all neighbors w:

If w is not processed
Mark w as processed
Enqueue w in the queue
Record the parent of w to be v
(necessary only if we need the shortest path tree)
```


● Store source vertex S in a queue and mark as processed
● while queue is not empty
Read vertex v from the queue
for all neighbors w:

If w is not processed
Mark w as processed
Enqueue w in the queue
Record the parent of w to be v
(necessary only if we need the shortest path tree)


```
Store source vertex S in a queue and mark as processed
while queue is not empty
        Read vertex v from the queue
        for all neighbors w:
            If w is not processed
              Mark w as processed
              Enqueue w in the queue
              Record the parent of w to be v
              (necessary only if we need the shortest path tree)
```


December 13, 2023

Store source vertex S in a queue and mark as processed while queue is not empty Read vertex v from the queue for all neighbors w: If w is not processed Mark w as processed Enqueue w in the queue Record the parent of w to be v (necessary only if we need the shortest path tree)


```
Store source vertex S in a queue and mark as processed
while queue is not empty
        Read vertex v from the queue
        for all neighbors w:
            If w is not processed
              Mark w as processed
              Enqueue w in the queue
              Record the parent of w to be v
              (necessary only if we need the shortest path tree)
```


December 13, 2023

BFS Code

@PS

BFS - Complexity

- Step 1 : read a node from the queue O(|V|) times.
- Step 2: examine all neighbors, i.e. we examine all edges of the currently read node.
- Hence the complexity of BFS is O(|V| + |E|)
 - Undirected graph: $2 \times |E|$ edges to examine

Applications of Breadth-First Search *

- Shortest Path and Minimum Spanning Tree for unweighted graph: Details coming soon.
- Peer to Peer Networks: In Peer to Peer Networks, BFS is used to find the neighboring nodes in the network.
- Crawlers in Search Engines: Crawlers for search engines use BFS
 to create the index. Starting from a web page they follow the links from
 the source and keep doing the same for the new pages discovered.
- Social Networking Websites: Similar to peer to peer networks, it is
 possible to find people that are 'k' steps away from a particular person
 using BFS.

^{*} http://www.algorithmforum.com/2017/09/breadth-first-search-bfs-and-its.html

Applications of Breadth-First Search

- **GPS Navigation systems:** BFS can be used to find all locations that are neighboring a particular place.
- Broadcasting in Network: A broadcast package follows BFS to reach all nodes in the network.
- Cycle detection in undirected graph, To test if a graph is Bipartite, Path Finding Breadth First or Depth First Search can be used to find a solution to these use cases.

Depth-First Search

- Depth First Search is another approach to visit all nodes of a graph in a systematic manner
- Works with directed and undirected graphs
- Works with weighted and unweighted graphs

Depth-First Search

Procedure dfs(s)

mark all vertices in the graph as not reached invoke scan(s)

Procedure scan(s)

mark and visit s for each neighbor w of s

if the neighbor is not reached invoke scan(w)

Depth-First Search with Stack

```
Initialization:
      mark all vertices as unvisited.
      visit(s)
       while the stack is not empty:
          pop (v,w)
          if w is not visited
             visit(w)
Procedure visit(v)
      mark v as visited
      for each edge (v,w)
          push (v,w) in the stack
```

DFS Tree

- The root of the tree is the first vertex visited.
- Each edge in the graph is represented in the tree.
- An edge in the tree shows that child is visited through the parent.
- A back edge is not part of the tree but represents the vertex was checked but found out to be visited.

Adjacency Lists

A: F G
B: A I
C: A D
D: C F
E: C D G
F: E
G:
H: B

I: H

Function call stack:

Function call stack:

Function call stack:

Adjacency lists

1: 2, 3, 4

2: 6, 3, 1

3: 1, 2, 6, 5, 4

4: 1, 3, 5

5: 3, 4

6: 2, 3

Depth first traversal: 1, 2, 6, 3, 5, 4 The particular order is dependent on the order of nodes in the adjacency lists

DFS Code

@PS

Comparison of BFS and DFS

BFS

- BFS is a vertex-based alg.
- BFS uses queue data structure
- BFS is more suitable for searching vertices which are closer to the given source.
- BFS considers all neighbors first and therefore not suitable for decision making trees used in games or puzzles.
- The Time complexity of BFS is O(V + E) when Adjacency List is used and O(V²) when Adjacency Matrix is used

DFS

- DFS is a edge-based alg.
- DFS uses stack data structure
- DFS is more suitable when there are solutions away from source.
- DFS is more suitable for game or puzzle problems. We make a decision, then explore all paths through this decision.
- The Time complexity of DFS is also O(V + E) when Adjacency List is used and O(V²) when Adjacency Matrix is used

Applications of Depth-First Search

- Graph Connectivity
 - Connectivity
 - Biconnectivity
 - Articulation Points and Bridges
 - Connectivity in Directed Graphs

Connectivity

Definition:

- An undirected graph is said to be connected if for any pair of nodes of the graph, the two nodes are reachable from one another (i.e. there is a path between them).
- If starting from any vertex we can visit all other vertices, then the graph is connected

Biconnectivity

 A graph is biconnected, if there are no vertices whose removal will disconnect the graph.

biconnected

not biconnected

Articulation Points

 Definition: A vertex whose removal makes the graph disconnected is called an articulation point or cut-vertex

C is an articulation point
We can compute articulation
points using depth-first search
and a special numbering of the
vertices in the order of their
visiting.

Bridges

- Definition: An edge in a graph is called a bridge, if its removal disconnects the graph.
- Any edge in a graph, that does not lie on a cycle, is a bridge.
 Obviously, a bridge has at least one articulation point at its end, however an articulation point is not necessarily linked in a bridge.

(C,D) and (E,D) are bridges

C is an articulation point, there are no bridges

C is an articulation point, (C,B) is a bridge

B and C are articulation points, (B,C) is a bridge

B and C are articulation points. All edges are bridges

Biconnected graph - no articulation points and no bridges

Connectivity in Directed Graphs (I)

 Definition: A directed graph is said to be strongly connected if for any pair of nodes there is a path from each one to the other

Connectivity in Directed Graphs (II)

- Definition: A directed graph is said to be unilaterally connected if for any pair of nodes at least one of the nodes is reachable from the other
- Each strongly connected graph is also unilaterally connected.

Shortest Paths

Unweighted Directed Graphs

What is the shortest path from V3 to V5?

Problem Data

- The problem: Given a source vertex s, find the shortest path to all other vertices.
- Data structures needed:
 - Graph representation:
 - Adjacency lists / adjacency matrix
 - Distance table:
 - Distances from source vertex
 - Paths from source vertex

Problem Data

Adjacency lists:

V1: V2, V4

V2: V4, V5 V3: V1, V6

V4: V3, V5, V6, V7

V5: V7

V6: -

V7: V6

Let s = V3, stored in a queue Initialized distance table:

Vertex	Distance	Parent
V1	-1	-1
V2	-1	-1
V3	0	0
V4	-1	-1
V5	-1	-1
V6	-1	-1

Breadth-first search in graphs

- Take a vertex and examine all adjacent vertices.
- Do the same with each of the adjacent vertices.

Algorithm

- Store s in a queue, and initialize distance = 0 in the Distance Table
- While there are vertices in the queue:

Read a vertex v from the queue

For all adjacent vertices w:

If distance = -1 (not computed)

Distance = (distance to v) + 1

Parent = v

Append w to the queue

Complexity

- Matrix representation: $O(|V|^2)$
- Adjacency lists O(|E| + |V|)
- We examine all edges (O(|E|)), and we store in the queue each vertex only once (O(|V|)).

Weighted Directed Graphs

- What is the shortest path from e to a?
- Length of a path is the sum of the weights of its edges.

Application Examples

- Internet packet routing
- Flight reservations
- Driving directions

Dijkstra's Algorithm

 This algorithm finds the shortest path from a source vertex to all other vertices in a weighted directed graph without negative edge weights.

Dijkstra's Algorithm

- For a Graph \mathcal{G}
 - Vertices $\mathcal{V} = v_1, \dots, v_n$
 - And edge weights w_{ij} , for edge connecting v_i to v_j .
 - Let the source be v_1 .
- Initialize a Set $S = \emptyset$.
 - Keep track of the vertices for which we have already computed their shortest path from the source.
- Initialize an array D of estimates of shortest distances.
 - Initialize D[source] = 0, everything else $D[i] = \infty$.
 - This says our estimate from the source to the source is 0, everything else is ∞ initially.
- While $S \neq V$ (or while we have not considered all vertices):
 - Find the vertex with the minimum dist (not already in S).
 - 2 Add this vertex, v_i to S
 - Recompute all estimates based on v_i.
 - If $D[i] + w_{ij} < D[j]$ then set $D[j] = D[i] + w_{ij}$

Dijkstra's Algorithm

- Dijkstra's algorithm relies on:
- Knowing that all shortest paths contain subpaths that are also shortest paths.
- Example: The shortest path from a to b is 10,
 - So the shortest path from a to d has to go through b
 - So it will also contain the shortest path from a to b which is 10, plus the additional 2 = 12.

Greedy Algorithms

- Greedy algorithms work in phases.
 - In each phase, a decision is made that appears to be good, without regard for future consequences.
 - "Take what you can get now"
 - When the algorithm terminates, we hope that the local optimum is equal to the global optimum.
- This is the reason why Dijkstra's works out well as a greedy algorithm
 - It is greedy because we assume we have a shortest distance to a vertex before we ever examine all the edges that even lead into that vertex.
 - It works since all shortest paths contain subpaths that are also shortest paths.
 - This also works because we assume no negative edge weights.

- Initialize
 - Select the node with the minimum temporary distance label.

Update Step

Choose Minimum Temporary Label

Update Step

• The predecessor of node 3 is now node 2

Choose Minimum Temporary Label

Update Step

• d(5) is not changed.

Choose Minimum Temporary Label

Update Step

• d(4) is not changed.

Choose Minimum Temporary Label

Update Step

• d(6) is not changed.

Choose Minimum Temporary Label

There is nothing to update

End of Algorithm

- All nodes are now permanent
- The predecessors form a tree
- The shortest path from node 1 to node 6 can be found by tracing back predecessors

Time Complexity: Using List

- The simplest implementation of the Dijkstra's algorithm stores vertices in an ordinary linked list or array
 - Good for dense graphs (many edges)
- |V| vertices and |E| edges
- Initialization O(|V|)
- While loop O(|V|)
 - Find and remove min distance vertices O(|V|)
- Potentially |E| updates
 - Update costs O(1)
- Total time $O(|V^2| + |E|) = O(|V^2|)$

Time Complexity: Using List

- For sparse graphs, (i.e. graphs with much less than $|V^2|$ edges)
 - Dijkstra's algorithm can be implemented more efficiently by priority queue
- Initialization O(|V|) using O(|V|) buildHeap
- While loop O(|V|)
 - Find and remove min distance vertices O(log|V|) using O(log|V|) deleteMin
- Potentially |E| updates
 - Update costs O(log|V|)
- Total time O(|V|log|V| + |E|log|V|) = O(|E|log|V|)
 - |V| = O(|E|) assuming a connected graph

Dijkstra's Algorithm Implementation

@PS