CS5100 Foundations of Artificial Intelligence

Module 02 Lesson 03

Uninformed Search and Informed Search

Some images and slides are used from CS188 UC Berkeley/AIMA with permission All materials available at http://ai.berkely.edu/ / http://ai.berkely.edu/ / http://ai.berkely.edu/

In this module...

- We consider
 - Problem-solving agents
 - Using atomic representations
 - Simplest environments: episodic, single agent, fully observable, deterministic, static, discrete, and known
 - In later weeks we will look at unknown environments and multi-agent ones

Outline

- ♦ Problem-solving agents
- ♦ Example Problems
- ♦ Problem formulation
- ♦ Search Algorithms
- Uninformed Search Strategies
- Informed (Heuristic)Search Strategies
- ♦ Heuristic Functions

Search Problems

- A search problem consists of:
 - A state space

 A successor function (with actions, costs)

- A start state and a goal test
- A solution is a sequence of actions (a plan) which transforms the start state to a goal state

Other equivalent ways to formulate search problems in other texts/editions

Search Problems are Models

Example: Traveling in Romania, from Arad to Bucharest

Example: Romania

On holiday in Romania; currently in Arad. Flight leaves tomorrow from Bucharest

Formulate goal:

be in Bucharest

Formulate problem:

states: various cities

actions: drive between cities

Find solution:

sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

State space:

Cities

Successor function:

Roads: Go to adjacent city with cost = distance

Start state:

Arad

Goal test:

Is current state =
Bucharest?

Solution?

Example: Romania

State space:

Cities

Successor fu

Roads: with co

Start state:

Arad

Goal test:

Is curre Buchar

Solution?

Single-state problem formulation

A problem is defined by four items:

```
initial state e.g., "at Arad" successor \ function \ S(x) = set \ of \ action—state \ pairs \\ e.g., \ S(Arad) = \{(Arad \rightarrow Zerind, Zerind), \ldots\} goal \ test, \ can \ be \\ explicit, \ e.g., \ x = "at \ Bucharest" \\ implicit, \ e.g., \ NoDirt(x) path \ cost \ (additive) \\ e.g., \ sum \ of \ distances, \ number \ of \ actions \ executed, \ etc. \\ c(x, a, y) \ is \ the \ step \ cost, \ assumed \ to \ be \ \geq \ 0
```

A solution is a sequence of actions leading from the initial state to a goal state

Selecting a state space

Real world is absurdly complex

⇒ state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions e.g., "Arad → Zerind" represents a complex set of possible routes, detours, rest stops, etc.

For guaranteed realizability, any real state "in Arad" must get to some real state "in Zerind"

(Abstract) solution = set of real paths that are solutions in the real world

Each abstract action should be "easier" than the original problem!

states??
actions??
goal test??
path cost??

states??: integer locations of tiles (ignore intermediate positions)

actions??

goal test??

path cost??

states??: integer locations of tiles (ignore intermediate positions)

actions??: move blank left, right, up, down (ignore unjamming etc.)

goal test??

path cost??

Start State

Goal State

states??: integer locations of tiles (ignore intermediate positions)

actions??: move blank left, right, up, down (ignore unjamming etc.)

goal test??: = goal state (given)

path cost??

6

Start State Goal State

states??: integer locations of tiles (ignore intermediate positions)

<u>actions</u>??: move blank left, right, up, down (ignore unjamming etc.)

goal test??: = goal state (given)

path cost??: 1 per move

State space graph: A mathematical representation of a search problem

- Nodes are (abstracted) world configurations
- Arcs represent successors (action results)
- The goal test is a set of goal nodes (one or more)

In a state space graph, each state occurs only once!

Usually too big to build in memory, but an useful idea

State Space Graphs

State Space Graphs versus Search Trees

Each NODE in in the search tree is an entire PATH in the state space graph.

We construct both on demand – and we construct as little as possible.

Tree search algorithms

Basic idea:

offline, simulated exploration of state space by generating successors of already-explored states (a.k.a. expanding states)

```
function Tree-Search (problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem

loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree end
```


Tree search example

Tree search example

Tree search example

Implementation: states vs. nodes

A state is a (representation of) a physical configuration A node is a data structure constituting part of a search tree includes parent, children, depth, path cost g(x) States do not have parents, children, depth, or path cost!

The Expand function creates new nodes, filling in the various fields and using the SuccessorFn of the problem to create the corresponding states.

Implementation: general tree search

```
function Tree-Search (problem, fringe) returns a solution, or failure
  fringe \leftarrow Insert (Make-Node(Initial-State[problem]), fringe)
   loop do
       if fringe is empty then return failure
       node \leftarrow Remove - Front(fringe)
       if Goal-Test(problem, State(node)) then return node
       fringe \leftarrow InsertAll(Expand(node, problem), fringe)
function Expand(node, problem) returns a set of nodes
   successors \leftarrow the empty set
   for each action, result in Successor-Fn(problem, State [node]) do
        s \leftarrow a \text{ new Node}
       Parent-Node[s] \leftarrow node; Action[s] \leftarrow action; State[s] \leftarrow result
        Path-Cost[s] \leftarrow Path-Cost[node] + Step-Cost(node, action, s)
       Depth[s] \leftarrow Depth[node] + 1
        add s to successors
   return successors
```


Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:

completeness—does it always find a solution if one exists?

time complexity—number of nodes generated/expanded

space complexity—maximum number of nodes in memory

optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of

b—maximum branching factor of the search tree

d—depth of the least-cost solution

m—maximum depth of the state space (may be ∞)

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?

Optimal: Guaranteed to find the least cost path?

Time complexity?

#nodes generated during search

Space complexity?

Max #nodes stored in memory

Uninformed search strategies

Uninformed strategies use only the information available in the problem definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search

Expand shallowest unexpanded node

Implementation:

Complete??

Complete?? Yes (if b is finite)

Time??

Complete?? Yes (if b is finite)

Time??
$$1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$$
, i.e., exp. in d

Space??

<u>Complete</u>?? Yes (if b is finite)

<u>Time??</u> $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

© 2021 Pearson Education Ltd.

Space?? $O(b^{d+1})$ (keeps every node in memory)

Optimal??

<u>Complete</u>?? Yes (if b is finite)

<u>Time</u>?? $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space?? $O(b^{d+1})$ (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec so 24hrs = 8640GB.

Uniform-cost search

Expand least-cost unexpanded node

Implementation:

fringe = queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost $\geq c$

<u>Time??</u> # of nodes with $g \le cost$ of optimal solution, $O(b^{fC^*/cl})$ where C^* is the cost of the optimal solution

Space?? # of nodes with $g \le cost$ of optimal solution, $O(b^{fC^*/cl})$

Optimal?? Yes—nodes expanded in increasing order of g(n)

Expand deepest unexpanded node

Implementation:

Expand deepest unexpanded node

Implementation:

Expand deepest unexpanded node

Implementation:

Expand deepest unexpanded node

Implementation:

Complete??

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path ⇒ complete in finite spaces

Time??

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path ⇒ complete in finite spaces

<u>Time??</u> $O(b^m)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

Space??

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path ⇒ complete in finite spaces

<u>Time??</u> $O(b^m)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal??

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path ⇒ complete in finite spaces

<u>Time??</u> $O(b^m)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal?? No

Depth-limited search

= depth-first search with depth limit l, i.e., nodes at depth l have no successors

Recursive implementation:

```
function Depth-Limited-Search(problem,limit) returns soln/fail/cutoff
Recursive-DLS(Make-Node(Initial-State[problem]),problem,limit)

function Recursive-DLS(node,problem,limit) returns soln/fail/cutoff
cutoff-occurred? ← false
if Goal-Test(problem,State[node]) then return node
else if Depth[node] = limit then return cutoff
else for each successor in Expand(node,problem) do
result ← Recursive-DLS(successor,problem,limit)
if result = cutoff then cutoff-occurred? ← true
else if result |= failure then return result
if cutoff-occurred? then return cutoff else return failure
```



```
function Iterative-Deepening-Search(problem) returns a solution
  inputs: problem, a problem

for depth ← 0 to ∞ do
    result ← Depth-Limited-Search(problem, depth)
    if result /= cutoff then return result
  end
```


Limit = 0

Complete??

Complete?? Yes

Time??

Complete?? Yes

Time??
$$(d+1)b^0 + db^1 + (d-1)b^2 + ... + b^d = O(b^d)$$

Space??

Complete?? Yes

Time??
$$(d+1)b^0 + db^1 + (d-1)b^2 + ... + b^d = O(b^d)$$

Space?? O(bd)

Optimal??

Complete?? Yes

Time??
$$(d+1)b^0 + db^1 + (d-1)b^2 + ... + b^d = O(b^d)$$

Space?? O(bd)

Optimal?? Yes, if step cost = 1

Can be modified to explore uniform-cost tree

Numerical comparison for b=10 and d=5, solution at far right leaf:

$$N(IDS) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450$$

 $N(BFS) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100$

IDS does better because other nodes at depth d are not expanded

BFS can be modified to apply goal test when a node is generated

Summary of Uninformed Search algorithms

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete? Optimal cost? Time Space	Yes^1 Yes^3 $O(b^d)$ $O(b^d)$	$ ext{Yes}^{1,2} \ ext{Yes} \ O(b^{1+\lfloor C^*/\epsilon floor}) \ O(b^{1+\lfloor C^*/\epsilon floor})$	No No $O(b^m)$ $O(bm)$	No No $O(b^\ell)$ $O(b\ell)$	Yes^1 Yes^3 $O(b^d)$ $O(bd)$	Yes ^{1,4} Yes ^{3,4} $O(b^{d/2})$ $O(b^{d/2})$

Figure 3.15 Evaluation of search algorithms. b is the branching factor; m is the maximum depth of the search tree; d is the depth of the shallowest solution, or is m when there is no solution; ℓ is the depth limit. Superscript caveats are as follows: 1 complete if b is finite, and the state space either has a solution or is finite. 2 complete if all action costs are $\geq \epsilon > 0$; 3 cost-optimal if action costs are all identical; 4 if both directions are breadth-first or uniform-cost.

Idea: Prioritize fringe nodes based on "desirability"

Use a cost estimate function f(n)

- Expand "best" node with lowest f value first
- Choice of f determines search strategy
- f(n) could include heuristic function h(n)

Two special cases:

- Greedy Best-first Search
- A* Search

Informed Search Best-first Search

Search Heuristics

A search heuristic is:

A function that estimates how close a state is to a goal

Zero for the goal state [h(goal) = 0]

Has to be designed for each particular search problem

Examples: Manhattan distance or Euclidean distance for paths

Graph search

```
function Graph-Search(problem, fringe) returns a solution, or failure

closed ← an empty set

fringe ← Insert (Make-Node(Initial-State[problem]), fringe)

loop do

if fringe is empty then return failure

node ← Remove-Front(fringe)

if Goal-Test(problem, State[node]) then return node

if State[node] is not in closed then

add State[node] to closed

fringe ← Insert All(Expand(node, problem), fringe)

end
```


Review: Tree search

```
function Tree-Search(problem, fringe) returns a solution, or failure fringe \leftarrow Insert(Make-Node(Initial-State[problem]), fringe) loop do if fringe is empty then return failure node \leftarrow Remove-Front(fringe) if Goal-Test[problem] applied to State(node) succeeds return node fringe \leftarrow InsertAll(Expand(node, problem), fringe)
```

A strategy is defined by picking the order of node expansion

Best-first search

Idea: use an evaluation function for each node

- estimate of "desirability"
- ⇒ Expand most desirable unexpanded node

Implementation:

fringe is a queue sorted in decreasing order of desirability

Special cases:

greedy search

A* search

Romania with step costs in km

Straight-line distance	
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
I asi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Greedy search

Evaluation function h(n) (heuristic) = estimate of cost from n to the closest goal

E.g., $h_{SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest}$

Greedy search expands the node that appears to be closest to goal

Complete??

Complete?? No-can get stuck in loops, e.g., with Oradea as goal,
 Iasi → Neamt → Iasi → Neamt →
 Complete in finite space with repeated-state checking

Time??

Complete?? No-can get stuck in loops, e.g.,
 Iasi → Neamt → Iasi → Neamt →
 Complete in finite space with repeated-state checking

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space??


```
Complete?? No—can get stuck in loops,
    e.g., Iasi → Neamt → Iasi →
    Neamt →
Complete in finite space with repeated-state checking

Time?? O(b<sup>m</sup>), but a good heuristic can give dramatic
improvement Space?? O(b<sup>m</sup>)—keeps all nodes in memory
Optimal??
```



```
Complete?? No—can get stuck in loops,
    e.g., Iasi → Neamt → Iasi →
    Neamt →
Complete in finite space with repeated-state checking

Time?? O(b<sup>m</sup>), but a good heuristic can give dramatic
improvement Space?? O(b<sup>m</sup>)—keeps all nodes in memory
Optimal?? No
```


A* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

 $g(n) = \cos t \sin t$ o reach n

h(n) = estimated cost to goal from n

f(n) = estimated total cost of path through n to goal

A* search uses an admissible heuristic i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the true cost from n. (Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.)

E.g., $h_{SLD}(n)$ never overestimates the actual road

distance Theorem: A* search is optimal

Optimality of A * (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 .

Start

$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G_1)$ since G_2 is suboptimal
 $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion

Optimality of A* (more useful)

Lemma: A^* expands nodes in order of increasing f value*

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers)

Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$

Complete??

<u>Complete</u>?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

Time??

<u>Complete</u>?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time??</u> Exponential in [relative error in $h \times length$ of soln.]

Space??

<u>Complete</u>?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time</u>?? Exponential in [relative error in $h \times length$ of soln.]

Space?? Keeps all nodes in memory

Optimal??

<u>Complete</u>?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time??</u> Exponential in [relative error in $h \times length$ of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

A* expands all nodes with $f(n) < C^*$

A*expands some nodes with $f(n) = C^*$

A*expands no nodes with $f(n) > C^*$

Proof of lemma: Consistency

A heuristic is consistent if

$$h(n) \le c(n, a, n) + h(n)$$

If h is consistent, we have

$$f(n) = g(n) + h(n)$$

= $g(n) + c(n, a, n) + h(n)$
 $\ge g(n) + h(n)$
= $f(n)$

I.e., f(n) is nondecreasing along any path.

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n)$ = number of misplaced tiles

 $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Start State

Goal State

$$\frac{h_1(S) = ??}{h_2(S) = ??}$$

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n)$ = number of misplaced tiles

 $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Start State

Goal State

$$\frac{h_1(S)}{h_2(S)} = ??? 6$$

 $\frac{h_2(S)}{h_2(S)} = ??? 4+0+3+3+1+0+2+1 = 14$

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible), then h_2 dominates h_1 and is better for search

Typical search costs:

$$d = 14$$
 IDS = 3,473,941 nodes
 $A^*(h_1) = 539$ nodes
 $A^*(h_2) = 113$ nodes
 $d = 24$ IDS $\approx 54,000,000,000$ nodes
 $A^*(h_1) = 39,135$ nodes
 $A^*(h_2) = 1,641$ nodes

Given any admissible heuristics h_a , h_b ,

$$h(n) = \max(h_a(n), h_b(n))$$

is also admissible and dominates h_a , h_b

Summary

A problem consists of five parts: the **initial state**, a set of **actions**, a **transition model** describing the results of those actions, a set of **goal states**, and an **action cost function**.

Uninformed search methods have access only to the **problem definition**. Algorithms build a search tree in an attempt to find a solution.

Informed search methods have access to a **heuristic** function h(n) that estimates the cost of a solution from n.

