331 – Intro to Intelligent Systems Week 04 Game Theory I Pure strategies in Adversarial search R&N Chapter 17.5, 17.6

T.J. Borrelli

Algorithmic Game Theory

- Game theory is the study of strategic interactive decision-making among rational agents
- There are three major components of any game:
 - 1.Players the agents who play the game
 - 2.Strategies what the agents do, how they will respond in *every possible* situation
 - 3.Payoffs how much each player likes the result

Algorithmic Game Theory

• Includes:

- -Sequential games
- -Simultaneous games
- -Threats, promises, commitments
- -Credibility, deterrence, compellence
- -Signaling and screening
- -Incentives
- -Voting, auctions, bargaining

Algorithmic Game Theory

- Modern game theory began in 1944 with the publication of Theory of Games and Economic Behavior by John von Neumann and Oskar Morgenstern
- Their goal was to allow economics to be studied as a science, similar to physics
- Many Nobel Prizes in economics have been awarded to people for their work in game theory

Some Applications of Game Theory

- Consumer behavior
- Elections
- War
- Terrorism
- Dating
- Global warming
- Traffic congestion human and network
- Computer games
- Interactions among multi-agent robotic systems
- Machine learning
- Many, many, more

Strategies

- Pure strategies
 - Do not involve any element of chance
 - In other words, you are not going to flip a coin to decide what to do
- Mixed strategies
 - —Involve chance
 - —The strategy must be kept a secret from your opponent
 - -You must keep your opponent guessing by "mixing it up"

Mixed strategy

- Mixed strategies
 - -Chooses some action a
 - –With probability p
 - —If there are only two actions then the probability of b is 1-p
 - –Some games only have solutions with a mixed strategy

Payoffs

- Once the strategies interact and play themselves out, the game is over and the players receive a payoff
- The payoff represents how much each player likes the outcome of the game
- The bigger the payoff, the more the player likes the outcome (i.e., an outcome of 4 is better than an outcome of 2)
- Negative values are also sometimes used to show utility/disutility

Rational Decision-Making

- Example: Let's say that I would like to sell you a vase for \$11 that I had previously bought for \$8. You believe the vase is worth \$18
- If the deal does not go through then both of us have a profit of \$0 (ignoring the residual value of the vase)
- If it does go through, then I have a profit of \$3 and you have a profit of \$7

Rational Decision-Making

- Payoffs represent what each player cares about, not what another player thinks the other player should care about
 - –Therefore, payoffs for different players cannot always be directly compared
 - —In the previous example, if all each player cares about is money, then the payoffs are \$3 and \$7 respectively
 - -If one player feels that he or she is getting "ripped off" then the payoff changes to reflect the real value of the transaction

Rational Decision-Making

- Being rational means that each player makes decisions based on what that player believes will lead to the best expected payoff for them!
- Example The Ultimatum Game: Take it or leave it?
- Even when considering \$\$, one dollar may not be equivalent to another

Finite vs. Infinite Games

- Finite games
 - -Must be guaranteed to eventually end
 - -Must have a finite number of choices for each player
 - Played with the goal of winning
 - -Debates, sports, receiving a degree, etc.
- Infinite (non-finite) games
 - No definite beginning or ending
 - Played with the goal of continuing to play
 - Beginning to play does not require volunteering or conscious thought, continuing to play does
 - -Life

Ordinal vs. Cardinal Payoffs

- Ordinal payoffs
 - -You only need to know the ordering, or preferences of the outcomes, i.e., first choice, second choice, third choice, etc.
 - –Consider an ice cream payoff: first choice = vanilla, second choice = chocolate, third choice = horseradish ripple
- Cardinal payoffs
 - -Are on an interval scale, i.e., the difference between 10 and 20 is the same as the difference between 30 and 40
 - -You must know more than just the ordering of the outcomes
 - —The ice cream payoffs shown above are ordinal, not cardinal

Common Knowledge

- Assume that the rules of the game and the rationality of the players is common knowledge
 - In other words, everyone knows the rules of the game
- In addition, everyone knows that everyone knows the rules of the game
- And everyone knows that everyone knows that everyone knows the rules of the game, etc.

Sequential Games

- Sequential games represent events unfolding over time
 - –Also called "dynamic games"
 - -Players have full knowledge of other players' moves
 - -Chess, monopoly, open auctions, etc.
- Simultaneous games represent events occurring at the same time
 - –Also called "static games"
 - -Players do not know what other players are doing
 - -Silent auctions, clicker game, etc.

First-Mover Advantage?

- Do first movers always have an advantage in sequential games?
 - Not necessarily
 - Going first means committing to a course of action
 - Not going first means flexibility of response
- Does order make a difference in the payoffs to the individual players?
 - In general, yes going 2nd allows the player to weigh options against a fixed decision from the other player

Non-Cooperative Games

 Cooperative games imply that binding agreements between the players are possible

 Non-cooperative games imply that binding agreements are not possible

Dominant Strategy

- A strategy that **strongly** dominates does so if the outcome of the strategy for the player is better than any other outcome
- A strategy weakly dominate if it is no worse than any other
- A dominant strategy is a strategy that dominates all others
- It is irrational to play a dominated strategy
- It is irrational not to play a dominant strategy if one exists

Pareto

- An outcome is Pareto optimal If there is no other outcome that all players would prefer
- An outcome is Pareto dominated by another outcome if all players would prefer the other outcome

The Roll-Back Approach

- In order for the roll-back approach to work, the game must be finite (no randomness), non-cooperative, sequential, and must have *perfect information*
 - -Perfect information means that all players know the potential payoffs for each player before any moves are made, and all decisions are made public (no secrets)
 - -Chess is an example of a game of perfect information, poker is a game of imperfect information

Nash Equilibrium

- If a game outcome is an equilibrium, then no player can gain from unilaterally changing his or her strategy
 - –No regrets! Even if you don't end up with exactly what you wanted.
 - –John Forbes Nash invented the idea of the "Nash Equilibrium"
 - —If every player is playing the Nash equilibrium, then you might as well also because you will not gain anything by changing your strategy

Nash Equilibrium

- Nash equilibrium is essentially a local optimum
- Nash (the mathematician) proved that a game has at least one mixed strategy equilibrium
- But not necessarily a pure strategy equilibrium

Simultaneous Games

- In simultaneous games all of the players make their decisions at essentially the same time
- Players do not know what other players are doing at the time they make their decisions
- No one "goes first"
- Use a payoff matrix instead of a game tree
 - -2 x 2 matrix
 - Each element in the matrix contains the cardinal value of each player's preferences (the payoff)

Simultaneous Games

- The Coordination Game
- The Battle of the Sexes
- The Game of Chicken
- The Prisoner's Dilemma

Simultaneous Games

 Label the rows of the payoff matrix with the choices of player 1, and the columns with the choices of player 2 (book uses slightly different convention)

	Player 2 : Choice 1	Player 2 : Choice 2
Player 1 : Choice 1	P1=payoff, P2=payoff	P1=payoff, P2=payoff
Player 1 : Choice 2	P1=payoff, P2=payoff	P1=payoff, P2=payoff

The Coordination Game

- Consider the example of two firms choosing whether to use standard X or standard Y for their joint software project
- They both prefer standard X over standard Y, but the least favorite option is to disagree with the other firm (one chooses X and the other chooses Y, or vice-versa)

	Firm B : standard X	Firm B : standard Y
Firm A : standard X	A=2, B=2	A=0,B=0
Firm A : standard Y	A=0, B=0	A=1,B=1

The Coordination Game

- Assume common knowledge both players know all of the game matrix payoffs
- Assume both players are rational their stated preferences are their true preferences
- Then choosing the "standard X/standard X" option is best

The Battle of the Sexes

 What if we change the situation slightly – Player A prefers Opera over Football, and Player B prefers Football over Opera, but both still want to work together (coordinate)

	Player B : Opera	Player B : Football
Player A : Opera	A=2, B=1	A=0,B=0
Player A : Football	A=0, B=0	A=1,B=2

• No good solution – unless you can find a Schelling (focal) point (i.e. a point that players will tend to choose in absence of communication)

The Game of Chicken (anti-coordination)

• Suppose Player A and B are fierce competitors and the success of their products rely on using different standards; however, the standard X action is clearly superior to any other on the market (there are several others)

	Player B : standard X	Player B : other standard
Player A : standard X	A=0, B=0	A=3,B=1
Player A : other standard	A=1, B=3	A=2,B=2

The Game of Chicken

- What is the best thing to do?
- It may seem most fair for both firms to choose another standard, but if Player A (or B) knew that the other Player was going with the other standard, then Player A (B) would prefer to stay with standard X to get the payoff
- Therefore (2,2) is <u>NOT</u> a Nash equilibrium
- Solution again is to create a Schelling point

- Two criminals committed a crime together, and are being interrogated in separate cells. If neither one confesses, they'll each get a year in prison. If one confesses, that one goes free but the other one gets five years. If they both confess, they both get three years.
- Assign values to these outcomes (free = 5, 1 year = 3, 3 years = 1, 5 years = 0)

• What if both players refuse to defect if the other player gets to use the better choice (for spite)?

	Prisoner 2 : confess	Player 2 : keep silent
Prisoner 1 : confess	P1=1, P2=1	P1=5,P2=0
Prisoner 1: keep silent	P1=0, P2=5	P1=3,P2=3

- No matter what Prisoner 2 does, it is better for Prisoner 1 to choose action "confess"
- -Therefore, both firms will choose "confess" (payoff = 1,1)
- Notice that this payoff is lower for both players (!) than if both chose to keep silent (payoff = 3,3)

- Both will confess and both will get three years, whereas they would have been better off if they had both kept silent!
- The *dilemma* in the prisoner's dilemma is that the equilibrium outcome is worse for both players than the outcome they would get if they both refused
- (1, 1) outcome for (confess, confess) is Pareto dominated by (3, 3) outcome of (silent, silent)

Consider 1964 when the federal government banned cigarette advertising on television. Before the ban:

	Company B:	Company B:
Company A : advertise		A=2020, B=630
Company A: don't advertise	A=630, B=2020	A=1500, B=1500

- The Soviet Union exploded its atomic bomb in 1949
 - -The Prisoner's Dilemma was discovered in 1950
- Preferences (in order)?
 - 1.We nuke them
 - 2. No one nukes anyone
 - 3. Everyone nukes everyone
 - 4. They nuke us
- If this is the order of preferences, then one equilibrium is nuclear war – both sides launch missiles
- In the years following 1950 many people (including von Neumann) thought that nuclear war with the U.S.S.R. was inevitable

No Dominant strategy

- Here is a game where there is no dominant strategy
- However, there are two Nash equilibria: (bluray, bluray) and (dvd,dvd).
- These are both Nash equilibria because if either player unilaterally moves to a different strategy, that player will be worse off

	Best: bluray	Best: dvd
Acme: bluray	A=9, B=9	A=-4, B=-1
Acme: dvd	A=-3, B=-1	A=5, B=5

Tragedy of the Commons

- Let's consider another game where countries set their policy on controlling air pollution.
- Each country has a choice:
 - they can reduce pollution at a cost of -10 for implementing the changes
 - They can continue to pollute which gives them a net utility of -5 (in added health costs etc.) AND contributes
 - -1 to every other country because air shared

Tragedy of the Commons

- Clearly, the dominant strategy for each country is "continue to pollute"
- This is bad enough if there are two countries (similar to the prisoner's dilemma) however, let's assume we have 100 countries
- If everyone follows this policy, then each country gets a total utility value of -104
- Whereas if every country reduced pollution, they would each have a utility of -10
- This is the tragedy of the commons: if nobody has to pay for a common resource, it tends to be exploited in a way that leads to a lower total utility for all

The Tragedy of the Commons

- From the individual game-theoretic perspective, shirking is the right thing to do because it is the dominant strategy
- From a social good perspective, it is a tragedy
- Self interest, in this case does not maximize the common good (contrary to Adam Smith's philosophy) because the cost that the shirkers create have to be borne by others