Домашняя работа

Котов Артем, МОиАД2020 4 февраля 2021 г.

Содержание

Task 1	2
Task 2	2
Task 3	3
Task 4	6
Task 5	7
Task 6	7

Task 1

- (a) Введем $\widetilde{C}=\max_n \left\{\frac{f(n)}{g(n)}\right\}$. При ограничениях, наложенных на ф-ции f и g, $\widetilde{C}>0$, тогда мы можем $\forall n$ с $\widetilde{C}>0$ рассмотреть следующую цепочку: $\forall n$ $f(n)\leq f(n)\leq \widetilde{C}g(n)\Longrightarrow f(n)\leq \widetilde{C}g(n)$. Таким образом, в определении О-большого можно пренебречь условием $\exists N:\dots$ (это верно для обоих случаев: $\mathbb{N}\to\mathbb{N}$ и $\mathbb{N}\to\mathbb{R}_+$)
- (b) Рассмотрим функции

$$f(n) = \begin{cases} 3, n = 1\\ n, n > 1 \end{cases}$$
$$g(n) = n^2$$

Очевидно, что в данном случае нельзя пренебречь условием $\exists N:\dots$, так как вначале не для $\forall Cf(n) < Cg(n)$. Если этим условием не пренебрегать, то f(n) = o(g(n)). Опять же, это верно для обоих случаев $\mathbb{N} \to \mathbb{N}$ и $\mathbb{N} \to \mathbb{R}_+$.

P.S. Хотя формально, у нас не было ограничений на поведение функций f и g, для случая $\mathbb{N} \to \mathbb{R}_+$, важно, чтобы они были достаточно хорошие (то есть, по видимому, не имели сингулярностей в конечных точках). Сделав поправку на "природу" исследуемых функций (оценка сложности алгоритма), мы можем вполне разумно считать, что с ростом n функции также возрастают и не имеют каких-то странных разрывов по типу $\frac{1}{x-x_0}$

Task 2

$$f(n) = o(g(n)) \Longleftrightarrow \lim \frac{f(n)}{g(n)} = 0$$
$$\frac{2^{f(n)}}{2^{g(n)}} \to 0? \quad 2^{f(n)-g(n)} = 2^{g(n)\left(\frac{f(n)}{g(n)}-1\right)} \to 2^{-g(n)}$$

Почему это работает? Так как g(n)>1, то мы всегда можем так вынести g(n) в показателе степени. Так как f(n)>1, то $\frac{f(n)}{g(n)}\to 0\Longrightarrow g(n)\to\infty\Longrightarrow 2^{-g(n)}\to 0.$

Task 3

А	В	0	0	Θ	ω	Ω	
$\log^k n$ n^k	$\mid n^{arepsilon}$	+	+	_	_	_	
n^k	C^n	+	+	_	_	_	
\sqrt{n}	$n^{\sin n}$	_	_	_	_	_	
2^n	$2^{n/2}$	_	_	_	+	+	
$n^{\log m}$	$m^{\log n}$	+	_	+	_	+	
$\log n!$	$\log(n^n)$	+	_	+	_	+	

1) Приведем $\log^k n$ к натуральному логарифму: $\log^k n = \left(\frac{\ln n}{\ln 2}\right)^k$, а функцию B приведем к экспоненциальной форме: $e^{\varepsilon \ln n}$. Произведем замену переменных: $\ln n = x$, тогда наша задача сведена к сравнению следующих функций (опушена несущественная константа $\ln 2$): $A = x^k$ in $B = e^{\varepsilon x}$

Замечание. Вообще, этот случай сведен ко второму случаю с точностью до обозначения констант, разбор второго случая ниже.

• О, о) Рассмотрим сначала о-малое: $n^k = o(C^n)$ 2)

Доказательство.

$$\frac{n^k}{C^n} = \frac{e^{k \ln n}}{e^{n \ln C}} = e^{k \ln n - n \ln C} \tag{1}$$

Рассмотрим разные C:

Если C<1, то $\ln C<0\Longrightarrow$ (1) $=e^{k\ln n+n|\ln C|}\xrightarrow[n\to\infty]{}\infty$ $\forall k$. Если C=1, то $\ln C=0\Longrightarrow$ (1) $=e^{k\ln n}\xrightarrow[n\to\infty]{}\infty$ $\forall k>0$. В случае же, если k<0, то $(1) \xrightarrow[n\to\infty]{} 0$

Если C>1, то $\ln C>0 \Longrightarrow$ (1) $=e^{k\ln n-n|\ln C|} \xrightarrow[n\to\infty]{} 0 \quad \forall k.$

Для разумных значений параметров (C>1, k>0) $n^k=o(C^n)$

Теперь займемся О: $n^k = O(C^n)$

Доказательство. Так как в определение о-малого $\forall C \exists N : \forall n > N \ f(n) < Cg(n)$, то, очевидно, что какое-то конкретное C существует, следовательно, если f(n) =o(g(n)), TO f(n) = O(g(n)).

В нашем случае,
$$n^k = o(C^n) \Longrightarrow n^k = O(C^n)$$

• $n^k \neq \omega(C^n)$

Доказательство. $n^k = \omega(C^n) \Leftrightarrow C^n = o(n^k)$, покажем, что это равенство неверно (для разумных значений параметров):

$$\frac{C^n}{n^k} = e^{n \ln C - k \ln n} \tag{2}$$

Если
$$C>1$$
, то (2) $\xrightarrow[n\to\infty]{\infty}$. Таким образом, $C^n\neq o(n^k)\Rightarrow n^k\neq\omega(C^n)$

Замечание. $C^n = o(n^k)$ возможно в случае, когда $C \le 1$, тогда $n^k = \omega(C^n)$

 $n^k \neq \Omega(C^n)$

Доказательство. $n^k = \Omega(C^n) \Leftrightarrow C^n = O(n^k)$. Аналогично предыдущему док-ву можно показать, что последнее неверно, следовательно, $n^k \neq \Omega(C^n)$.

 $n^k \neq \Theta(C^n)$

Доказательство. $n^k = \Theta(C^n) \Leftrightarrow n^k = O(C^n)$ и $C^n = O(n^k)$. Нарушение последнего уже показано в предыдущем случае, следовательно $n^k \neq \Theta(C^n)$

3) В этом случае вообще все плохо с "хвостом" у $n^{\sin n}$: он болтыхается между 0 и n, следовательно у нас никогда не будет универсальных констант C, так, чтобы эти условия выполнялись для всего хвоста (\sqrt{n} — монотонно возрастающая функция).

Доказательство. Рассмотрим поведение функции $n^{\sin n}$, она ограничена сверху n, а снизу 0, то есть $0 \le n^{\sin n} \le n \, \forall n$.

Замечание. вообще, $n^{\sin n}$ ни при каких натуральных n не может быть равной n, так как для этого необходимо, чтобы $\sin n = 1$, а это возможно только для иррационального $n = \pi/2$.

Рассмотрим, например, $\sqrt{n} \neq o(n^{\sin n})$ по определению о-малого:

$$\forall C > 0 \ \exists N : \forall n > N \ \sqrt{n} < Cn^{\sin n}$$

но $n^{\sin n}$ при больших n всегда имеет значения (так как $\sin -$ периодическая функция от -1 до 1), сколько угодно близких к 0, следовательно, таких C нет.

Замечание. Так как $-1 \le \sin n \le 1$, то можно ограничить $n^{\sin n} \ge n^{-1} = \frac{1}{n} \xrightarrow[n \to \infty]{} 0$

Аналогично показывается и $\sqrt{n} \neq O(n^{\sin n})$, а, следовательно, и $\sqrt{n} \neq \Theta(n^{\sin n})$.

Рассмотрим еще $\sqrt{n} \neq \omega(n^{\sin n})$: по определению

$$\forall C > 0 \ \exists N : \forall n > N \ Cn^{\sin n} < \sqrt{n}$$

Как ранее уже говорилось, $n^{\sin n}$ ограничена сверху n, а, точнее, всегда имеются значения, сколько угодно близкие к n, при этом $\frac{n}{\sqrt{n}} \xrightarrow[n \to \infty]{} \infty$, следовательно, нет таких C, чтобы выполнялось $Cn^{\sin n} < \sqrt{n} \quad \forall n > N$, таким образом, $\sqrt{n} \neq \omega(n^{\sin n})$. Аналогично, $\sqrt{n} \neq \Omega(n^{\sin n})$

4) $2^n \neq o(2^{n/2})$ if $2^n \neq O(2^{n/2})$

Доказательство.
$$2^{n-n/2}=2^{n/2}\xrightarrow[n\to\infty]{}\infty\Longrightarrow 2^n\neq o(2^{n/2})$$
 и $2^n\neq O(2^{n/2})$

 $\cdot 2^n \neq \Theta(2^{n/2})$

Доказательство. так как
$$2^n
eq O(2^{n/2})$$
, то из $2^n
eq \Theta(2^{n/2})$

• $2^n = \omega(2^{n/2})$

Доказательство. $2^n = \omega(2^{n/2}) \Leftrightarrow 2^{n/2} = o(2^n)$.

Рассмотрим
$$\frac{2^{n/2}}{2^n}=2^{-n/2}\xrightarrow[n\to\infty]{}0\Longrightarrow 2^{n/2}=o(2^n)\Longrightarrow 2^n=\omega(2^{n/2})$$

 $\cdot \ 2^n = \Omega(2^{n/2})$

Доказательство. Так как
$$2^n=\omega(2^{n/2})$$
, то $2^n=\Omega(2^{n/2})$

- 5) Преобразуем к натуральному логарифму и приведем к единой экспоненциальной форме: $e^{\frac{\ln n \ln m}{\ln 2}}$ что для A, что для B (т. е. $A \equiv B$), следовательно, это одинаковые функции, для них нарушаются условия, в которых $\forall C>0$.
- 6) $\cdot \log n! \neq o(\log n^n)$, HO $\log n! = O(\log n^n)$

Доказательство. Воспользуемся ф-лой Стирлинга (ох и не хотелось так доказывать, но в предыдщем варианте я что-то совсем бред написал): $n! \simeq \frac{n^{n+1/2}}{e^n}$ (выкинули незначащие константные коэффициенты)

$$\log n! \simeq \ln n! \simeq \ln \frac{n^{n+1/2}}{e^n} = (n+1/2) \ln n - n$$

Для B функция $n \ln n$. Рассмотрим отношение $\frac{n \ln n + 1/2 \ln n - n}{n \ln n} = 1 + \frac{1}{2n} - \frac{1}{\ln n} \xrightarrow[n \to \infty]{} 1$, следовательно, $\log n! \neq o(\log n^n)$, но $\log n! = O(\log n^n)$

• $\log n! = \Theta(\log n^n)$

Доказательство. Уже показали, что $\log n! = O(\log n^n)$, осталось показать, что $\log n^n = O(\log n!)$:

$$\frac{n \ln n}{n \ln n + 1/2 \ln n - n} = \frac{1}{1 + 1/2 \frac{1}{n} - \frac{1}{\ln n}} \xrightarrow[n \to \infty]{1}$$

Замечание. Это заодно показывает, что $\log n^n \neq o(\log n!)$

Следовательно,
$$\log n^n = O(\log n!)$$
 и окончательно имеем $\log n! = \Theta(\log n^n)$

• $\log n! \neq \omega(\log n^n)$

Доказательство. На предыдущем шаге было показано, что $\log n^n \neq o(\log n!)$, следовательно, $\log n! \neq \omega(\log n^n)$, так как они эквивалентны.

• $\log n! = \Omega(\log n^n)$

Доказательство. Так как $\log n! = \Omega(\log n^n) \Leftrightarrow \log n^n = O(\log n!)$, а последнее мы показали на пред-предыдущем шаге, то $\log n! = \Omega(\log n^n)$

Task 4

$$[a_1, \dots, a_n] \in \mathbb{N}, S \in \mathbb{N}$$

Введем $r_i = \max_r \left\{ \sum_{j=i}^r a_j \le S \right\}$, то есть это максимальное количество элементов справа от i-ого, которое можно взять в сумму и не "перепрыгнуть" через S.

Начнем находить такие r_i :

- 1) Поставим два указателя (ал-я левый и правый) на первый элемент
- 2) Пока $\sum\limits_{i=1}^r a_i \leq S$ будем сдвигать правый указать (r+=1) до тех пор, пока не дойдем до некоторого элемента, добавление в сумму которого превзойдет S
- 3) Откатим правый указатель на 1 влево: индекс элемента, на который указывает правый указатель и есть искомый r_1 (в этот момент мы могли уже получить искомую сумма, поэтому проверим, $\sum_{i=1}^{r_1} a_i = S$?)
- 4) Если нет, то подвинем левый указатель (он все это время оставался на первом элементе) на единицу вправо (l+=1).
- 5) Так как все элементы натуральные числа, то $\sum\limits_{i=2}^{r_1}a_i<\sum\limits_{i=1}^{r_1}a_i$
- 6) Проверим, можем ли подвинуть правый указатель, если да, то продолжаем так двигать, пока сумма не окажется большей S, затем повторим сдвижку левого указателя. Если изначально нельзя было сдвинуть правый указатель, то $r_2=r_1$ и мы подвинем левый указатель еще раз на 1 направо и т.д.
- 7) В итоге, рано или поздно, либо на каком-то элементе получим сумму, равную S, либо упремся правым указателем в конец массива (тут мы можем констатировать факт что, либо последняя найденная сумма равна S, либо такого искомого отрезка для данного S в массиве нет), либо два указателя встретятся на одном элементе (что значит, что этот элемент сам по себе больше, чем S). В последнем случае, сдвинем оба указателя на следующий элемент и будем продолжать подобную схему далее.

В описанной схеме, в худшем случае мы сделаем два пробега по всему массиву (случай, когда у нас только последний элемент равен S, а остальных не хватает, чтобы набрать необходимую сумма).

Task 5

- (a) Используем стэк s:
 - Для каждого элемента a_i исходного массива делаем следующие (проходим массив слева напарво, то есть $i=1\dots n$):
 - 1) Пока s непуст и $s_{top} \ge a_i$: S.pop
 - 2) Если s пуст, то у a_i нет элементов, которые левее и меньше его
 - 3) Иначе, самый правый элемент, который левее и меньше a_i есть s_{top}
 - 4) s.push (a_i)
- (b) Аналогично предыдущему пункту, только теперь массив проходим справа налево, то есть $i=n\dots 1$
- (c) С использованием двух предыдущих пунктов, мы можем найти для каждого элемента a_i соответствующие l_i и r_i , в интервале которых a_i будет минимальным. Составим $\pi_i = (r_i l_i + 1) \cdot \min_{j \in [l_i, r_i]} a_j$ и сохраним их вместе с парой (l_i, r_i) , то есть что-то типа кортежа $\Pi_i = (\pi_i, l_i, r_i)$. Найдем $\max_i \Pi_i[0]$. Соответствующие l_i и r_i и будут искомыми.
- (d) Аналогично предыдущему, только если в прошлой задаче "весом" каждого элемента была длина промежутка, на котором он минимален, то теперь вес сумма всех элементов на этом промежутке.

Task 6

Рассмотрим исходный массив $[a_1,\ldots,a_n]$

- 1) Создадим новый массив $[b_1,\ldots,b_n]$ такой, что $b_1=a_1$, $b_i=a_i-a_{i-1}$ для $i=2,\ldots,n$, то есть это разница между соседними элементами исходного массива, сложность O(n).
- 2) Для каждого запроса add(l,r,x) сделаем следующее:
 - $\cdot b_l += x.$
 - Если r < n, то $b_{r+1} = x$.

Замечание. Обработка каждого запроса делает за константное время O(1), тогда для m запросов будет O(m)

3) После обработки запросов будем выводить исходный массив по следующей схеме: $a_i = a_{i-1} + b_i$, а вот эта штука уже делается для каждого $i = 1, \ldots, n \Longrightarrow$ сложность O(n) для вывода. Результирующая сложность O(n+m)

Замечание. Почему a_i выведенная таким образом будет является корректным? Рассмотрим, для простоты, один запрос add(l,r,x).

Для членов с $i < la_i = a_{i-1} + b_i = a_{i-1} + a_i - a_{i-1} = a_i$, то есть начало массива не изменилось, как и должно быть.

Для $i=l:a_l=a_{l-1}+a_l-a_{l-1}+x=a_l+x$, то есть начало поданного отрезка действительно увеличилось на x, для последующих элементов $i=l,\ldots,r$ x будет уже содержаться в предыдущем элементе, а b_i не содержат добавочки в виде x, но будет компенсировать изначальное (не увеличенное на x) значение.

Для i=r+1 : $b_{r+1}=a_{r+1}^{old}-a_{r}^{old}-x$, то есть для $a_{r+1}=a_{r}+b_{r+1}=a_{r}+a_{r+1}^{old}-a_{r}^{old}-x=a_{r+1}^{old}+\underbrace{(a_{r}-a_{r}^{old})}_{x}-x=a_{r+1}^{old}$, таким образом, мы подавили вклад x для a_{r+1} элемента,

то есть элемент не изменился, и последующие элементы не содержат x.