Pediatric Bone Marrow Transplant Survival Prediction

Zoey Yu

Brown University

Oct 24, 2024

https://github.com/Zoey-Yu98/data1030-midterm.git

Bone Marrow Transplant (BMT)

- To replace unhealthy bone marrow with healthy cells.
- One of the most effective treatments for blood related cancer and diseases (leukemia, lymphoma, and multiple myeloma)
- BMTs have serious risks and low survival rate

Bone Marrow Transport (BMT)

A Post-op 1-yr Survival Status Prediction Decisions Making

BMTs have serious risks and low survival rate

Dataset Brief

- Hospital in Poland, from 2000 to 2010
- **187 Pediatric Patients** who underwent BMTs
- 37 Attributes
 - **Pre-op Parameters** (e.g. Age, Gender, Blood Type, Disease, Antigen)
 - **Post-op Assessments** (e.g. Graft versus Host Disease (GvHD))
- Classification Problem (1 Year after Surgery, Alive or Dead)

Source: Sikora, M., Wróbel, Ł., & Gudyś, A. (2020). Bone marrow transplant: children [Dataset]. UCI Machine Learning Repository. https://doi.org/10.24432/C5NP6Z.

Target Variable 1-yr survival status

alive

dead

1. Data is iid within each feature

One patient
187 rows
×
37 columns

	Recipientgender	Stemcellsource	Donorage	Donorage35	IIIV	Disease	 survival time	survival status
0	b'1'	b'1'	22.830137	_	b'1'	b'ALL'	999.0	0.0
1	b'1'	b'0'	23.342466	b'0'	b'1'	b'ALL'	163.0	1.0
2	b'1'	p,0,	26.394521	b'0'	b'1'	b'ALL'	 435.0	1.0
3	p'0'	b'0'	39.684932	b'1'	b'1'	b'AML'	53.0	1.0
4	þ'0'	b'1'	33.358904	b'0'	b'0'	b'chronic'	2043.0	0.0

Survival Time: Time of observation (if alive '0') or time of death (if dead '1') in days

1. Data is iid within each feature

Target Variable

		Recipient gender	Stemcellsource	Donorage	Donorage35	IIIV	Disease		survival_time	survival_status	1_year_survival_status
One patient	0	b'1'	b'1'	22.830137	p,0,	b'1'	b'ALL'		999.0	0.0	0
_	1	b'1'	b'0'	23.342466	p,0,	b'1'	b'ALL'		163.0	1.0	1
187 rows	2	b'1'	b'0'	26.394521	p,0,	b'1'	b'ALL'	• • •	435.0	1.0	0
×	3	b'0'	p,0,	39.684932	b'1'	b'1'	b'AML'		53.0	1.0	1
37 columns	4	b'0'	b'1'	33.358904	p,0,	b'0'	b'chronic'		2043.0	0.0	0
37 COIGIIIIS											

Goal: Postoperatively, to predict 1-year survival status.

1. Data is iid within each feature

Target Variable

		Recipient gender	Stemcellsource	Donorage	Donorage35	IIIV	Disease		survival_time	survival_status	1_year_survival_status
One patient	0	b'1'	b'1'	22.830137	p,0,	b'1'	b'ALL'		999.0	0.0	0
_	1	b'1'	b'0'	23.342466	p,0,	b'1'	b'ALL'		163.0	1.0	1
187 rows	2	b'1'	b'0'	26.394521	p,0,	b'1'	b'ALL'	• • •	435.0	1.0	0
×	3	p,0,	b'0'	39.684932	b'1'	b'1'	b'AML'		53.0	1.0	1
37 columns	4	p,0,	b'1'	33.358904	p,0,	b'0'	b'chronic'		2043.0	0.0	0
37 Columb											

Goal: Postoperatively, to predict 1-year survival status.

2. Some important correlations between features and the target variable

Pre-op

Source of Hematopoietic Stem Cells

BMT sourced from peripheral blood worked better than from bone marrow.

2. Some important correlations between features and the target variable

Post-op

Development of acute GvHD stage III or IV

Development of extensive chronic GvHD

Acute or extensive GvHD increased the risk of death, though it was not always fatal.

Splitting Of The Data

iid data splitting: from sklearn.model_selection import train_test_split

	Training Set	Validation Set	Test Set
% of patients	60 %	20 %	20 %
# of patients	112	37	38

Missing Data

Features	Fraction of NA	Features	Fraction of NA	Features	Fraction of NA
<u>R</u> blood type	0.005348	$\underline{\textit{D}}$ CMV infection	0.010695	extensive	0.165775
R blood cell Rh	0.010695	R CMV infection	0.074866	chronic GvHB	
_	0.010099	Antigen		CD3+/CD34+	0.026738
Blood type match	0.005348	difference	0.005348	CD3+ dose	0.026738
Serological compatibility	0.085561	Allele difference	0.005348	<u>R</u> HSC before surgery	0.010695

Fraction of points with missing values (NA): 0.24064171122994651

 $\underline{\mathbf{R}}$ = recipient $\underline{\mathbf{D}}$ = donor

HSC = hematopoietic stem cells (CD34+ cells)

Dealing with Missing Data --- Clarify The Data Type

Features	Туре
$\underline{\it R}$ blood type	Categorical
$\underline{\it R}$ blood cell Rh	Categorical
Blood type match	Categorical
Serological compatibility	Ordinal

Features	Туре
$\underline{\mathcal{D}}$ CMV infection	Categorical
$\underline{\it R}$ CMV infection	Categorical
Antigen difference	Ordinal
Allele difference	Ordinal

Features	Туре
extensive chronic GvHB	Categorical
CD3+/CD34+	Continuous
CD3+ dose	Continuous
<u>R</u> HSC before surgery	Continuous

Most of them are categorical (non ordinal), some are ordinal, and some are continuous

Dealing with Missing Data --- Categorical (Not Ordinal) Data

Features	Туре
$\underline{\it R}$ blood type	Categorical
$\underline{\it R}$ blood cell Rh	Categorical
Blood type match	Categorical
Serological compatibility	Ordinal

Features	Туре
<u>D</u> CMV infection	Categorical
$\underline{\it R}$ CMV infection	Categorical
Antigen difference	Ordinal
Allele difference	Ordinal

Features	Туре
extensive chronic GvHB	Categorical
CD3+/CD34+	Continuous
CD3+ dose	Continuous
<u>R</u> HSC before surgery	Continuous

Learned in class: the BEST thing we can do is to treat missing values as another category

E.g. **Blood type**:

- Unlikely the hospital did not have blood type tested
- Over 30 blood group systems in addition to ABO and Rh
 - E.g. Duffy, K antigen (or Kell), Lutheran, and Kidd blood groups

SimpleImputer (strategy='constant')

Dealing with Missing Data --- Ordinal Data

Features	Туре
$\underline{\it R}$ blood type	Categorical
$\underline{\it R}$ blood cell Rh	Categorical
Blood type match	Categorical
Serological compatibility	Ordinal

Features	Туре
<u>D</u> CMV infection	Categorical
$\underline{\it R}$ CMV infection	Categorical
Antigen difference	Ordinal
Allele difference	Ordinal

Features	Туре
extensive chronic GvHB	Categorical
CD3+/CD34+	Continuous
CD3+ dose	Continuous
<u>R</u> HSC before surgery	Continuous

Learned in class: the BEST thing we can do is to treat missing values as another category

How should they be ordered?

To treat missing values as the highest category

Dealing with Missing Data --- Ordinal Data

Features	Туре
$\underline{\it R}$ blood type	Categorical
$\underline{\it R}$ blood cell Rh	Categorical
Blood type match	Categorical
Serological compatibility	Ordinal

Features	Туре
<u>D</u> CMV infection	Categorical
<u>R</u> CMV infection	Categorical
Antigen difference	Ordinal
Allele difference	Ordinal

Features	Туре
extensive chronic GvHB	Categorical
CD3+/CD34+	Continuous
CD3+ dose	Continuous
<u>R</u> HSC before surgery	Continuous

Learned in class: the BEST thing we can do is to treat missing values as another category

How should they be ordered?

To treat missing values as the highest category

Difference No Difference n-1 Differences
Compatibility Most Compatible SimpleImputer (strategy='constant')

Lest Compatible

Dealing with Missing Data --- Continuous Data

Features	Туре
$\underline{\it R}$ blood type	Categorical
$\underline{\it R}$ blood cell Rh	Categorical
Blood type match	Categorical
Serological compatibility	Ordinal

Features	Type
<u>D</u> CMV infection	Categorical
$\underline{\it R}$ CMV infection	Categorical
Antigen difference	Ordinal
Allele difference	Ordinal

Features	Туре
extensive chronic GvHB	Categorical
CD3+/CD34+	Continuous
CD3+ dose	Continuous
<u>R</u> HSC before surgery	Continuous

For now, based on our current knowledge:

SimpleImputer (strategy='mean')

Will change to better method when we learn more in the class.

High Correlation (Redundant) Data Reduction

Donor age, Donor age 35; Recipient age, Recipient age 10, Recipient age int

Fit_Transformation X_Train

SimpleImputer + OneHotEncoder

Features =

• gender, age, matching, Disease, judging-related features

SimpleImputer + StandardScaler

Features =

- Dosed for CD34+, CD3+
- Body mass
- Recovery time for some side effects

SimpleImputer + Ordinal Encoder

Features =

• leveled status, matching grade, age groups-related features

MinMaxScaler

Features =

• donor age, recipient age

Transformation X_val and X_test

Data Ready for Machine Learning!

X_train_prep.shape
(112, 68)

THANK YOU

Zoey "Ziyan" Yu
Ziyan_yu@brown.edu
PhD Candidate in Chemistry
Brown University

Oct 24, 2024

