NASA Technical Memorandum 80169

NASA-TM-80169 19800003816

Pitot Pressure Measurements in Flow Fields Behind Circular-Arc Nozzles With Exhaust Jets at Subsonic Free-Stream Mach Numbers

FOR REFERENCE

NOT TO BE TAREN FROM THIS ROOM

Mary L. Mason and Lawrence E. Putnam

DECEMBER 1979

LIBRARY GOPY

DEC 1 0 15/9

LANGLEY RESEARCH CENTER

LANGLEY RESEARCH CENTER

FAMILY CIN, VIRGINIA

·

NASA Technical Memorandum 80169

Pitot Pressure Measurements in Flow Fields Behind Circular-Arc Nozzles With Exhaust Jets at Subsonic Free-Stream Mach Numbers

Mary L. Mason and Lawrence E. Putnam Langley Research Center Hampton, Virginia

Scientific and Technical Information Branch

SUMMARY

An experimental investigation of the flow field behind a circular-arc nozzle with an exhaust jet has been conducted. A conical probe was used to measure the pitot pressure in the jet and free-stream regions. Two convergent nozzle configurations were tested at free-stream Mach numbers of 0.40, 0.60, and 0.80 with nozzle pressure ratios of 2.0, 2.9, and 5.0. Data were taken by traversing the probe from the jet center line into the free stream at seven data acquisition stations. The survey began at the nozzle exit and extended downstream. A comparison of the pitot pressure data with results of inviscid jet plume theory illustrates application of the experimental results. The inviscid theory is applicable to the test conditions only where viscous effects are minimal; in these regions, the theoretical pitot pressures in the jet agree well with the experimental data.

INTRODUCTION

Computational models are currently under development for the solution of the two-dimensional and three-dimensional Navier-Stokes equations as applied to internal and external nozzle flow and exhaust jet flow. These models must include the effects of jet interactions with the free-stream flow field. An accurate computational technique requires a detailed representation of such flow phenomena as shear layers, mixing regions, and jet entrainment. Experimental data are needed to extend the analysis of nozzle flow-field behavior including interactions between the jet and the free stream. Earlier flow-field investigations (ref. 1, for example) surveyed external flow fields or were conducted under predominantly ideal conditions. These studies have generally neglected the effects of large boattail angles, of engine operation at other than design conditions, and of separation of the boundary layer on the nozzle external surface.

To define the complex flow field behind a nozzle with an exhaust jet, some particular flow parameter or parameters, such as local Mach number or total pressure, must be measured at specific locations in the jet, in the jet and free-stream mixing region, and in the external free stream. Pressure data may be acquired by traversing a pitot probe through the survey region. At subsonic conditions, the pitot pressure or impact pressure, measured by the survey probe, is the local total pressure. To obtain local total pressure at supersonic conditions, additional measurements of local Mach number or local static pressure are necessary. In supersonic flow regions, which may occur in an exhaust jet, local static pressure and Mach number are extremely difficult to measure accurately.

The finite size of the survey probe and large flow-field gradients result in interference effects which may bias data measurements. However, the pitot pressure may be used instead of local total pressure to define dominant flow-field characteristics. Pitot data can indicate boundary-layer and shock-wave locations as well as magnitudes of local flow parameters. The comparison of computed pitot pressures with experimental pitot data provides a basis for the evaluation of computational flow-field models.

To obtain flow-field data with realistic nozzle configurations which represent various subsonic and transonic engine-operating conditions, an experiment has been conducted in the Langley 16-foot transonic tunnel. This experimental flow-field investigation was designed to measure local pitot pressure by traversing a conical probe from the jet center line through the shear layer and into the free-stream region. The experiment is a continuation of an extensive investigation to establish a comprehensive data base (refs. 2 to 4) for a series of convergent nozzles. Two convergent nozzle configurations with external circular-arc geometry were used. The free-stream velocity was set at Mach numbers of 0.40, 0.60, and 0.80. At each Mach number, pressure data were taken at ratios of jet total pressure to free-stream static pressure of 2.0, 2.9, and 5.0.

SYMBOLS

Symbols in parentheses are used in the computer-generated tables.

$C_{\mathbf{p}}$	pressure coefficient
D	maximum nozzle diameter, cm
$d_{\mathbf{b}}$	nozzle base diameter, cm
d _e	nozzle exit diameter, cm
l	nozzle length, cm
M (M)	free-stream Mach number
$\mathbf{p_{t,j}}$	jet total pressure, Pa
$\frac{p_{t,j}}{p}$ (NPR)	ratio of jet total pressure to free-stream static pressure
N_{Re}	Reynolds number per meter

againe agafficiant

- p free-stream static pressure, Pa
- pt (PT) free-stream total pressure, Pa
- pt,p (PTP) local pitot pressure measured by survey probe, Pa
- r (R) radial distance from nozzle center line, cm
- r_n nozzle boattail circular-arc radius, cm
- S nozzle convergence length, cm
- s axial coordinate in nozzle convergence section, cm
- T_t tunnel total temperature, K
- t nozzle throat length, cm
- x (X) axial distance downstream from nose of model, cm
- β terminal boattail angle, deg
- $\beta_{\mathbf{c}}$ boattail chord angle, deg

APPARATUS AND TESTS

Wind Tunnel

The flow-field investigation was conducted in the Langley 16-foot transonic tunnel (ref. 5). This facility is an atmospheric wind tunnel. The test section is octagonal with eight longitudinal slots and has continuous air exchange for cooling. The tunnel Mach number ranges from 0.20 to 1.30. The average Reynolds number per meter ranges from 4.5×10^6 at a free-stream Mach number of 0.20 to 12.6×10^6 at a free-stream Mach number of 1.30.

Model Description

A single-engine air-powered nacelle model was used to generate the exhaust jet in this investigation. A photograph of the model mounted in the test section of the Langley 16-foot transonic tunnel is given in figure 1. A drawing of the exhaust-nozzle simulator is given in figure 2. The nacelle model was supported in the tunnel by a sting-strut

support system. (The support strut was attached to the model as shown in fig. 2.) The center line of the model was located on the test-section center line. The center line of the sting (see fig. 1) was located 55.88 cm below the test-section center line. The sting cross section measured 5.08 cm by 10.16 cm with top and bottom capped by half-cylinders of 2.54-cm radius. The strut blade (see figs. 1 and 2) was 5 percent thick with a 50.8-cm chord in the streamwise direction. The leading and trailing edges of the strut blade were swept 45°. The model blockage was 0.099 percent of the test-section cross section; the maximum blockage cross section of the model and support system was 0.148 percent.

Two circular-arc boattail nozzle configurations were used in this experiment. The nozzle details and geometries are given in figure 3. Configuration 1 had a length to maximum diameter ratio (l/D) of 0.80 and a base diameter to maximum diameter ratio (d_b/D) of 0.51; these ratios for configuration 2 were l/D = 1.768 and $d_b/D = 0.51$. Previous wind-tunnel investigations (refs. 2 and 4) have indicated that the shorter nozzle had separated flow over the boattail, while the longer nozzle has attached flow over the boattail region.

Survey Probe and Translating Mechanism

A conical pitot probe was used for the flow-field data acquisition. A drawing of the survey probe is given in figure 4. The probe consisted of a 15^o half-angle cone with a stagnation-pressure orifice 0.05 cm in diameter located at the cone tip.

The survey probe was moved through the flow field by a translating mechanism mounted on the tunnel angle-of-attack strut. (See fig. 1.) The probe was attached to the mechanism by a support sting 2.54 cm in diameter. (See fig. 4.) The translating mechanism allows the survey probe to be positioned within a cylindrical volume approximately 1.2 m in length and 1.2 m in diameter. The probe may be translated in both the longitudinal and lateral directions and may be rolled about the axis of the probe support sting. The actual longitudinal location of the survey region is determined by the length of the probe support sting.

Tests

For the flow-field investigation, each of the nozzle configurations was tested at free-stream Mach numbers of 0.40, 0.60, and 0.80. The average Reynolds number per meter and the average tunnel total temperature are given in the following table for each free-stream Mach number. Boundary-layer transition on the model was fixed by a 0.254-cm strip of No. 90 grit, which was located 2.54 cm from the model nose. The use of a grit distribution to force boundary-layer transition is discussed in references 6 and 7.

M	$N_{ m Re}$	Tt, K
0.40	8.1×10^6	305
.60	10.9	311
.80	12.5	322

At each free-stream Mach number, flow-field surveys were made at ratios of jet total pressure to free-stream static pressure, or nozzle pressure ratios $p_{t,j}/p$, of 2.0, 2.9, and 5.0. The jet total temperature averaged 297 K throughout the tests. Seven stations were established for survey data in the flow region downstream of the nozzle exit. At each data station, the survey probe was translated from the nozzle center line out into the free-stream flow to a distance of 1 nozzle diameter. The downstream stations extended from the nozzle exit to a distance of 2 model diameters or 4 exit diameters.

INSTRUMENTATION AND ACCURACY OF DATA

Instrumentation

The local pitot pressure was measured at the tip of the conical probe with a 689.40-kPa differential pressure transducer. The jet total pressure was averaged from five total pressures which were measured with a rake of 689.40-kPa differential pressure transducers. (See figs. 2 and 3.) Free-stream static and total pressures were recorded with precision sonar mercury manometers. The tunnel total temperature was measured with a platinum resistance thermometer. The total temperature in the exhaust jet was measured with an iron-constantan thermocouple located in the nozzle interior. (See fig. 2.)

Accuracy of Data

A measurement accuracy has been estimated from the calibration of the conical survey probe. The instrument calibration results showed less than a 0.10-percent variation from a least-squares linear fit to the calibration data. To check this estimated accuracy, an error analysis was applied to the probe pressure data at r/D = 1.0. The standard deviation of these data was less than 0.10 percent, indicating that a 0.10-percent measurement error is a conservative estimate. The influence of free-stream total-pressure variation on the estimated measurement error was also considered. The free-stream total pressure was monitored throughout the experiment with a high-precision sonar manometer. These data showed very little total-pressure oscillation, indicating minimal effects on the pressure transducer accuracy. Thus, an estimated instrument error for the probe pressure data of 0.10 percent was assumed for the range of the experimental investigation.

Accuracies of the free-stream Mach number and free-stream static pressure were obtained from reference 8. These errors were determined at a Mach number of 1.00. The accuracy of the free-stream flow-field parameters were estimated using a root-sum-square procedure given in reference 9. These estimated errors in flow-field parameters are given in the following table:

Parameter	Error
M (ref. 8)	±0.002
p (ref. 8), kPa	±0.007
p _t , kPa	±0.002
p _{t,p} , kPa	±0.7
$p_{t,p}/p_t \cdots$	±0.007

In the Langley 16-foot transonic tunnel, the upflow is small, generally less than 0.10° . As a result, the effects of tunnel upflow on the flow-field measurements are negligible.

RESULTS AND DISCUSSION

Pitot Pressure Distributions

The results of the flow-field investigation are presented in figures 5 and 6. The pitot pressure data are also given in tables I to XVIII. Each table contains the data at all x/D stations. Tables I to IX refer to configuration 1; tables X to XVIII refer to configuration 2. In the figures, the probe pitot pressure, nondimensionalized by the free-stream total pressure, is plotted as a function of r/D. The data are shown for each x/D station. The location of the nozzle exit for configuration 1 is x/D = 9.80; the location of the nozzle exit for configuration 2 is x/D = 10.768.

The pitot pressure profiles indicate that viscous effects caused by boundary layers and shear layers are dominant in the flow field. Both configuration 1, which has separated external flow at the nozzle exit, and configuration 2, which has attached flow, show characteristics of boundary-layer defects in the data profiles. These effects are caused by the presence of boundary layers over the external nozzle surface and over the inner surface near the nozzle exit. For configuration 1, the external boundary-layer thickness at the nozzle exit, based on a total-pressure ratio $p_{t,p}/p_t$ of approximately 0.995, is approximately equal to the nozzle exit radius. For configuration 2, the external boundary-layer thickness at the nozzle exit is approximately 75 percent of the exit radius.

The difference between the jet velocity and the free-stream velocity results in shear-layer effects. The shear forces contribute to dissipation of the defects in the data profiles resulting from the internal and external boundary layers. The rate of dissipation depends on the ratio of jet velocity to free-stream velocity and, thus, varies with M and $p_{t,j}/p$. When the free-stream velocity is low and the jet velocity is high, the boundary-layer effects disappear quickly, as can be seen in figure 5(c). For this case, the boundary-layer defect is negligible at 1/2 model diameter or 1 exit diameter downstream of the nozzle exit. When there is little difference between free-stream velocity and jet velocity, as in figure 5(g), the boundary-layer defect is still evident at 4 exit diameters downstream. Figures 5 and 6 also indicate that, for the same test conditions, the boundary-layer defect disappears faster for the separated-flow nozzle of configuration 1 than for the attached-flow nozzle of configuration 2.

The flow-field data exhibit characteristics of exhaust-jet flow, such as an inviscid jet core and lip or barrel shock waves. The effects of the inviscid jet core are apparent in both figures 5 and 6. Evidence of the jet core effect is present as far as 2 model diameters or 4 exit diameters downstream of the nozzle exit for both configurations over all test conditions. The effects of lip shocks are also apparent in the pressure data, especially at $p_{t,j}/p = 5.0$.

Comparison of Experiment and Inviscid Theory

To illustrate the use of the flow-field data in the evaluation of theoretical methods, the data were compared with pitot pressure profiles calculated by the inviscid computational model of Salas (ref. 10). This method has been widely used and found reliable in the calculation of inviscid jet plume flow. The data were not compared with results of viscous computational models, since most viscous nozzle-flow codes are currently under development and have not been validated for the range of the flow-survey test conditions. The accuracy of viscous computational models cannot be evaluated until data, such as the flow-field pitot pressures, are available for comparison with the theoretical results.

Limitations of the inviscid theory prevented its application over the entire range of the experimental data. The algorithm is restricted to supersonic exit flow. At $p_{t,j}/p = 2.0$, the jet flow rapidly becomes subsonic. As a result, the algorithm was not applicable and theoretical pressure profiles were not calculated for this nozzle pressure ratio. The theoretical calculations were also limited to the first three or four x/D stations, since the inviscid algorithm fails in regions downstream of the intersection of a shock wave with the jet plume center line.

The comparisons of data with theoretical results are presented in figures 7 and 8. The experimental results are again plotted as the pitot pressure, normalized by the

free-stream total pressure, against the probe location r/D. The theoretical results are presented as the local pitot pressure, normalized by the free-stream total pressure, plotted against r/D.

The exhaust-jet calculation procedure of Salas requires a specific static-pressure distribution along the inviscid boundary between the jet and the external flow region. For a jet exhausting into a moving external stream, the static pressure varies along the boundary between the jet and the free stream. However, to limit total computational time and costs, the pressure along the jet boundary was assumed equal to the free-stream static pressure for each of the data-theory comparison cases. A pressure distribution of $C_p = 0$ was specified along the inviscid jet boundary. To estimate the error effects resulting from the $C_p = 0$ assumption, one theoretical case was computed with a variable boundary-pressure distribution for configuration 1 at a free-stream Mach number of 0.80 and $p_{t,j}/p = 5.0$. The C_p distribution applied in this case was taken from reference 11 and is plotted, along with the data-theory comparison, in figure 7(d). The comparison indicates that assuming a more realistic variable C_p distribution improves agreement between the inviscid theory and the flow-field data.

The agreement between theoretical and experimental values within the jet is optimal at the x/D station nearest the nozzle exit. Inviscid flow is dominant in the jet exit flow, since the viscous region influenced by the nozzle internal and external boundary layers and by the free-stream flow velocity is minimal. The good agreement within the jet region validates the accuracy of inviscid jet plume theory for predicting jet flow under predominantly inviscid conditions. However, the data-theory agreement decreases as the distance from the nozzle exit increases. This decrease indicates the significance and magnitude of viscous effects in the flow field. Inviscid theory becomes inadequate as viscous effects influence the jet flow.

In all the theoretical cases, a sharp discontinuity is evident in the vicinity of the jet and free-stream mixing region. This discontinuity indicates that the theory can predict the lip or barrel shock which is notable in the survey data. The shock-wave angle in the data appears steeper than the theoretical shock-wave angle. This discrepancy in the shock-wave geometry again reflects the importance of viscous effects in the flow field and illustrates the limitations of applying inviscid jet theory to a region with viscous characteristics.

By comparing the results of inviscid jet theory with the flow-field data, the validity of applying inviscid theory to the experimental conditions can be evaluated. Because the jet flow is predominantly inviscid at the nozzle exit, the theory predicts the pitot pressure accurately. When viscous effects begin to influence the jet flow, the theory is no longer adequate. The theory can predict the presence of a shock wave but cannot specify the exact location because of its restrictions to inviscid flow characteristics. Thus, the

data-theory comparison illustrates the limitations of inviscid jet plume theory under the test conditions and indicates where the theory may be used with reasonable accuracy.

CONCLUDING REMARKS

An experimental investigation of the flow field behind a circular-arc nozzle with exhaust jet has been conducted. The pitot pressure was measured in the jet and freestream regions for two nozzle configurations at subsonic free-stream Mach numbers with nozzle pressure ratios of 2.0, 2.9, and 5.0. A conical survey probe was used for the data acquisition. The probe was translated radially from the jet center line into the freestream region at seven stations located up to 4 nozzle exit diameters downstream of the nozzle exit. The flow-field measurements provide a data base for the evaluation of two-dimensional and three-dimensional computational models for simulation of internal and external nozzle flow and exhaust jet flow. A comparison of the experimental results with results of inviscid jet plume theory illustrates the use of the flow-field data in evaluating the theory application. The theoretical jet pitot pressures show good agreement with the data in predominantly inviscid flow regions. Agreement deteriorates as viscous effects influence the flow field. As a result, the data-theory comparison defines where the theory is applicable in the range of test conditions and indicates the accuracy of the inviscid model under these conditions.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
November 8, 1979

REFERENCES

- 1. Free Turbulent Shear Flows. Volume I Conference Proceedings. NASA SP-321, 1973.
- 2. Reubush, David E.: Experimental Study of the Effectiveness of Cylindrical Plume Simulators for Predicting Jet-On Boattail Drag at Mach Numbers Up to 1.30. NASA TN D-7795, 1974.
- 3. Putnam, Lawrence E.; and Abeyounis, William K.: Experimental and Theoretical Study of Flow Fields Surrounding Boattail Nozzles at Subsonic Speeds. AIAA Paper No. 76-675, July 1976.
- 4. Abeyounis, William Kelly: Boundary-Layer Separation on Isolated Boattail Nozzles. NASA TP-1226, 1978.
- 5. Corson, Blake W., Jr.; Runckel, Jack F.; and Igoe, William B.: Calibration of the Langley 16-Foot Transonic Tunnel With Test Section Air Removal. NASA TR-423, 1974.
- 6. Braslow, Albert L.; and Knox, Eugene C.: Simplified Method for Determination of Critical Height of Distributed Roughness Particles for Boundary-Layer Transition at Mach Numbers From 0 to 5. NACA TN 4363, 1958.
- 7. Braslow, Albert L.; Hicks, Raymond M.; and Harris, Roy V., Jr.: Use of Grit-Type Boundary-Layer-Transition Trips on Wind-Tunnel Models. NASA TN D-3579, 1966.
- 8. Couch, Lana M.; and Brooks, Cuyler W., Jr.: Effect of Blockage Ratio on Drag and Pressure Distributions for Bodies of Revolution at Transonic Speeds. NASA TN D-7331, 1973.
- 9. Usry, J. W.; and Wallace, John W.: Drag of a Supercritical Body of Revolution in Free Flight at Transonic Speeds and Comparison With Wind-Tunnel Data. NASA TN D-6580, 1971.
- 10. Salas, Manuel D.: The Numerical Calculation of Inviscid Plume Flow Fields. AIAA Paper No. 74-523, June 1974.
- 11. Putnam, Lawrence E.: DONBOL: A Computer Program for Predicting Axisymmetric Nozzle Afterbody Pressure Distributions and Drag at Subsonic Speeds. NASA TM-78779, 1979.

Table 1.- Pitot pressure measurements for configuration 1 at $\rm~M=0.40~$ and $\rm~p_{t,j}/p=2.0~$

= טיא	9,825	10	.050	10	.300	10	.550	10	.800	11	.300	11	.800
R/D	PTP/PT	RID	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT
-,001	1.7964	.003	1.7990	003	1.8025	.002	1.8057	.003	1.8084	004	1.8094	004	1,8101
.021	1.7999	020	1.8021	.022	1.8041	.020	1.8032	.022	1,8061	.019	1.8084	021	1.8072
041	1.7969	.042	1.8061	.044	1,8083	.041	1.8117	.042	1,8046	.042	1.8103	.039	1,8134
-061	1.7893	.060	1.8114	.061	1,8097	.060	1.8089	.060	1.8136	.061	1.8161	063	1,8121
080	1.8005	,083	1.8125	.080	1.8133	.082	1.8173	.083	1,4133	.083	1.8138	.083	1,8044
103	1.8081	.101	1.8108	.100	1.8141	.101	1.8162	.103	1,8189	.101	1.8074	103	1,7850
120	1.8095	.122	1.8115	.122	1.8148	.120	1.8179	,123	1.8156	.122	1.7989	.120	1.7538
.141	1,8089	.142	1.4132	.140	1.8130	.143	1.8122	.143	1,8021	.143	1.7561	.143	1,6974
.161	1.8056	162	1.8085	.162	1.8108	.162	1.8006	.164	1,7633	.163	1.6906	.161	1,6321
182	1.8030	.182	1.8078	,181	1,8030	.180	1.7465	.182	1,6883	.183	1.5927	,182	1.5465
204	1.7987	.203	1.8053	.202	1,7260	.204	1.6228	.200	1,5866	.202	1.5037	.203	1,4604
.210	1.8018	.212	1.7885	.210	1.6748	.213	1.5394	.213	1,5025	.212	1,4568	,213	1.4145
.213	1.8006	525	1.7107	.224	1.5411	.223	1.4632	.224	1,4269	\$555	1.3987	.221	1,3880
.220	1.7994	.232	1.5403	.232	1.4391	.231	1.3883	,231	1,3772	.234	1.3419	231	1,3471
, 23 1	1.7899	.241	1.3769	.240	1,3541	.240	1.3244	.243	1,3053	.243	1.3104	242	1.3070
,232	1.7778	.252	1.1865	.252	1.2431	.254	1.2358	.252	1,2400	.254	1.2672	.255	1,2690
,236	1.7398	.263	1.0537	.263	1,1431	.263	1.1772	.262	1,2099	.264	1.2274	.560	1,2477
245	1.4574	.273	.9914	,272	1,0925	.271	1.1350	.272	1,1681	.273	1.1956	.273	1,2120
.244	1.4262	.280	.9685	.281	1,0488	.282	1.0914	.282	1,1254	.283	1,1665	.279	1,1968
,248	1.1070	.292	.9602	.291	1.0171	.291	1.0619	.293	1,0943	.290	1.1473	294	1,1657
, 252	. 9566	302	.9611	.301	9931	.305	1.0317	.305	1,0629	.302	1.1160	303	1,1424
,262	.9066	.322	.9676	355	9764	355	9982	.322	1,0238	.322	1.0738	321	1,1055
266	.9079	341	.9736	.341	9785	.343	9855	.341	1,0027	.342	1.0405	342	1,0703
.272	.9096	.362	.9790	362	9837	.361	9863	,362	,9918	.362	1,0175	.360	1,0473
280	.9123	.383	9847	.381	.9883	.383	.9914	.382	,9924	.381	1.0043	.380	1.0260
. 292	.9164	.403	,9905	.400	,9939	.404	9954	.402	,9955	.405	.9990	.403	1,0108
301	.9234	450	9984	.450	9995	.450	.9988	.450	,9996	.451	.9996	.451	1,0004
.323	.9418	.501	.9997	.503	.9994	.503	9995	.500	,9997	.502	.9997	502	9997
341	.9536	•605	1.0000	.602	.9997	.602	. 9995	604	,9997	.601	.9997	605	.9996
361	.9623	.701	.9996	.702	,9997	.701	.9997	.705	9096	.701	.9995	.703	.9996
383	.9713	803	.9997	.800	.9996	.804	.9992	.803	9997	.803	,9996	.800	9996
401	.9775	,898	.9995	899	,9997	901	.9996	902	9997	.902	9996	900	,9997
450	.9936	1.003	.9999	1.002	9995	999	9996	1.001	9997	1.007	.9997	1.004	9996
.500	9992			į l				l				J	
*905	.9996							1	1			1	
.701	,9996			1	'			l		[
.803	9996												
,003	.9999							1	l			į l	
1,006	.9996								ſ	l i		1	'

Table II.- Pitot pressure measurements for configuration 1 at $\,$ M = 0.40 $\,$ And $\,$ $\,$ $p_{t,j/p}$ = 2.9 $\,$

).n5n	10	.300	10	.550	1 10	.600	11	.300	11	1,800
R/D	PTP/PT	R/D	pTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT
003	2.6224	.003	2.2524	.001	2,6232	000	2.4164	.001	2,5454	.002	2.4410	,021	2.4046
*USS	2.6249	021	2.2412	022	2.6301	022	2.4106	022	2,5652	050	2.4256	041	2.4190
.043	2.6342	.042	2.2308	041	2.6374	040	2,4255	.040	2,5633	040	2.4565	059	2,436
.063	2.6347	.062	2.3239	064	2,6331	059	2.4294	060	2,5602	.060	2 4496	081	2.452
083	2.6345	.082	2.4138	084	2,6375	.080	2.4460	080	2.5559	080	2.4617	099	2,458
,102	2,6373	.101	2.4574	101	2.6414	.101	2.4547	102	2.5475	101	2.4747	122	2.454
, 123	2,6363	,123	2,4905	122	2.6412	.121	2.4741	120	2,5418	120	2.4846	141	2,419
.142	2,6333	.142	2.5140	142	2,6295	140	2.4831	140	2,5362	140	2.4781	160	2.3576
.162	2,6297	.163	2,5270	161	2,5813	.160	2.4979	161	2,5193	161	2.4386	181	2.223
.151	5.6250	.182	2.5383	,183	2,5650	,180	2.4959	181	2.4394	180	2.3294	.201	2,033
202	2.5996	.203	2.5510	.202	2,4832	.200	2.4286	.201	2,2737	201	2,1407	210	1.9491
-210 I	2.5707	.211	2.5550	.213	2,3379	.211	2.3267	115	2,1429	.210	2.0452	1521	1.8535
.223	2.5411	. 221	2.5466	.223	2.1574	.220	2,2109	220	2,0159	155.	1.9136	232	1.7670
*530 l	2.5401	.231	2.4412	.229	1.9977	.230	2.0265	231	1,8488	.231	1.8107	241	1.6948
.235	2,5095	,235	2.3682	,235	1.8737	.240	1.8514	242	1,7099	.241	1.7051	252	1,5999
,242	2.3301	.241	2.1747	.243	1.7133	.251	1.6502	,251	1,5941	.251	1.6069	261	1.5471
.244	1.8063	.245	2.0431	253	1,5188	.262	1.5030	.260	1,4951	.260	1.5269	272	1.4654
,246	1.7000	.246	1.9757	.261	1.3866	.270	1.3945	.269	1,4058	.271	1.4466	281	1.4254
,247	1.2208	.254	1.6342	.271	1,2679	281	1.2819	.280	1,3191	.281	1.3775	.290	1,3507
248	1.0823	.255	1.5825	.283	1.1499	.291	1.1983	.290	2480 م	.291	1.3243	.500	1,3176
,251	.9735	.261	1.4086	.291	1.0895	.301	1.1370	301	1,1846	.300	1.2683	.319	1,2277
,262	9099	.266	1.3101	302	1,0341	322	1.0395	.320	1,0940	.319	1.1793	.341	1,1658
270	9116	.271	1.1760	.321	9866	.340	.9997	341	1,0340	341	1,1053	.360	1,1091
0.85	.9154	.287	.9990	340	.9817	.361	9885	.360	1,0046	.361	1.0538	382	1.0670
,292	9299	.300	.97AB	.361	9859	.379	.9913	381	,9955	.380	1.0225	399	1,0387
301	9468	325		.381	.9907	401	.9958	400	9965	.400	1.0058	449	1.0033
320	9578	342	.9688 .9748	.400	9952	450	.9994	.452	9093	450	.9984	.501	9992
340	9629	361	9813	451	.9995	.501	.9998	.500	,0994	.500	.9986	.601	9992
754	9676	383	9872	.502	.9998	601	.9997	.600	,9997	1599	.9997	,700	9992
,364	9737	401	-	.600	.9997	.703	.9998	.701	,9995	.702	.9997	802	9992
381	9817	456	9922	701	9997	.802	9997	.801	,0095	.800	9995	901	, 9991
,449	9958	503	1.0001		,9995	.900	.9997	901	.9994	.902	9995	1.001	9992
507	1.0001	604	9998	901 998	.9997 .9997	999	.9995	1.000	. 9995	1.000	.9994	1	
, A00	1.0002	702	9998	• 776	*4441			<u> </u>		j		1 1	
707	1.0002	805	9998			[] [1 1	
,A04	1.0005	902	9999									1 1	
901	1.0005	998	1.0002			1		;		1 1		1 1	
003	1,0002	• 7 70	1000%			į				}			

TABLE III.- PITOT PRESSURE MEASUREMENTS FOR CONFIGURATION 1 AT M=0.40 AND $p_{t,j}/p=5.0$

ש חלא	9,825	10	.050	10	.300	10	.550	10).8on	11	.300	11	.500
R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT
~ ,001	4.4944	.000	3,5901	,001	1,9185	006	1,3632	.000	1.7061	.003	2,2974	-,008	3,0259
020	4.5108	.021	3.5557	.020	1.9044	.021	1.3611	.021	1.9622	.018	2,3295	.020	3,0823
041	4.5059	.041	3.5111	.040	1,8716	.040	1.3901	.039	2,4601	.042	2.4641	.041	3,1919
2060	4.5159	.061	3,4340	.060	1,8408	.050	1.6190	.051	3,0394	.051	2.5560	.060	3.3397
.080	4,5086	.082	3,3649	.071	1.8132	.060	2.9124	.061	3,4721	.059	2.6309	081	3,5248
101	4.5028	.101	3.2543	,082	1,8283	.070	3.6081	.068	3,7049	.070	2,7606	101	3.6964
120	4.5012	.120	3.1236	.092	2.3777	.081	3,8928	.079	3,9666	.079	2.8896	,120	3,7983
141	4.4588	,139	2.9674	100	2.6570	.089	4.0189	.089	4,0935	590.	3.0549	141	3,8206
160	4.4275	.149	2.9141	.121	2,9154	102	4.1250	.101	4,1447	.102	3.1743	,160	3,7640
180	4.3132	,162	2,9128	,139	3.0755	1111	4.1555	,113	4,1665	.110	3.2678	,181	3.5986
.200	4.0405	.171	3.0972	.160	3,2154	.114	4.0789	.124	4,1619	.120	3,3371	.197	3,4113
-211	3.7580	.181	3.2931	,180	3.3490	.120	3.6910	.137	4.1251	.130	3,3964	,211	3,1894
. 220	3.6247	201	3.4755	suo!	3.4450	,131	3.5717	.159	4,0654	.130	3,3937	,219	3.0414
.230	3.7086	.209	3.5210	.210	3,4908	.142	3.6066	.179	3,9199	,139	3.4337	.231	2,8398
. 241	3,6551	.220	3,5881	.220	3,5381	.160	3,6458	.199	3,6956	.151	3.4801	.241	2,6580
.243	3.5819	229	3.6280	559	3,5798	.181	3.6791	.210	5115 3	.161	3.4934	251	2,4909
. 245	3,4736	.240	3.6793	.240	3.6164	.200	3,6760	.218	3,3450	.172	3.5133	,260	2,3267
,250	2.4210	250	3.7064	,250	3.6325	.200	3.6799	,228	3,1091	.180	3,5315	.269	2,2019
251	2.3401	.260	3.7116	,260	3.5617	.209	3.6571	.240	2,8782	.188	3,5247	.279	2,0515
251	2.3811	.268	3,5223	.271	3.3667	.220	3,5866	.250	2,6193	.202	3,5003	.290	1,9307
255	1.2243	275	3.1970	280	3,0869	.229	3.4841	.262	2,3534	211	3.4569	305	1,7857
259	9765	,281	2.7195	.291	2.6852	.239	3.3571	,273	2,1426	.223	3,3239	155	1,5929
261	9355	.288	2.1768	299	2.3459	250	3,1538	583	1,9699	.232	3,1862	341	1.4564
,270	.9121	300	1.4895	.320	1,6727	261	2,9117	.289	1.8541	.240	3.0245	359	1,3411
.251	.9179	304	1.3425	.340	1,2933	.271	2,6847	.302	1,6781	.249	2,8712	380	1,2337
. 241	9555	.321	1.0471	,360	1,0709	.280	2,4437	.321	1,4353	.260	2,6587	.397	1,1742
301	9296	.341	.9703	,380	.9982	,290	2,2085	.339	1,2883	270	2,4605	.429	1,081
, 320	9453	. 360	.9742	399	.9909	.301	1.9405	.360	1,1518	.281	2.2455	.449	1.0432
341	9571	.379	.9799	.451	. 9994	320	1.5729	.382	1,0872	.290	2.0969	.496	1.0055
360	9655	400	.9863	.499	. 9999	.340	1.3288	.402	1,0156	.299	1.9598	.601	1,0008
380	9729	.449	9973	.599	1.0000	.360	1.1363	.416	1,0047	.322	1.6509	.700	1.0008
400	9806	.500	.9990	701	1.0000	.380	1.0377	.448	1,0003	.342	1,4593	798	1,0009
450	.9957	.599	.9991	800	1.0000	400	1.0047	.501	1,0004	.359	1.3246	896	1,0008
502	9988	.699 .802	.9988	898	9996	450	1.0001	.604	1,0007	.380	1.2087	•997	1.0010
600	.9994		.9991	1.001	9990	.496	1,0004	.698	1,0005	.401	1.1195	, ,	
701	.9982	900	.9986 .9990	; I		.597	1.0005	.797	1,0005	•419	1.0643	, 1	
A01	289P.	1.000	• 4440	; l		.700	1.0005	899	1,0007	.450	1.0156	[]	
901	9994			į į		798	1,0004	1.004	1.0008	.500	1.0012		
1,000	. 4444			1		.900	1.0004			,601	1,0009	[[
				† †		999	1.0004			•699	1,0008		
				1 1]				.798	1.0009	1 1	
i										900	1.0009		
- 1	i	1				I I				1.000	1,0004	1	

TABLE IV.- PITOT PRESSURE MEASUREMENTS FOR CONFIGURATION 1 AT M = 0.60 AND $p_{t,j}/p = 2.0$

001 1.5799	.800	11	.300	11	.800	10	<u>.</u> 550	10	.300	10	.050	10	9,825	x/n =
0.20	PTP/P1	8/0	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D
0.20	1,5737		1.5706	.006	1,5753	.001	1.5737	000	1,5855	.000	1.5765	.004	1.5799	.001
001 1.5843 0.061 1.5615 0.062 1.5704 0.01 1.5776 0.063 1.5796 0.059 1.5780 0.599 1.5861 1.5860 0.80 1.5832 0.83 1.5790 0.01 1.5780 0.799 1.5865 1.01 1.5865 1.01 1.5865 1.01 1.5865 1.01 1.5866 1.19 1.5865 1.20 1.5866 1.19 1.5865 1.20 1.5866 1.19 1.5865 1.20 1.5866 1.19 1.5865 1.20 1.5866 1.19 1.5865 1.20 1.5866 1.19 1.5865 1.20 1.5866 1.19 1.5865 1.20 1.5867 1.11 1.5865 1.20 1.5865 1.12 1.5865 1.12 1.5867 1.11 1.5865 1.13 1.5745 1.13 1.5745 1.15 1.5561 1.12 1.5865 1.12 1.5865 1.12 1.5867 1.13 1.5745 1.15 1.5760 1.10 1.5867 1.10 1.5867 1.10 1.5867 1.10 1.5867 1.10 1.5865 1.10 1.5867 1.10 1.5865 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.1	1.5734	.025	1.5743	.020	1.5761	.025	1.5772	020	1.5742	.022	1.5789	.020	1.5834	020
0.61	1,5742			.042	1,5739	043		041	1,5781	.041	1.5791	039		040
1,5860	1.5693			.063	1,5798		1.5776	.061	1.5794		1,5815	061	1.5841	061
0.00	1,5685			.081		.079		.081	1,5799	083	1.5832	.080	1.5880	.082
110 1.5845 1.00 1.5867 1.01 1.5853 1.22 1.5745 1.00 1.7775 1.00 1.5775 1.00 1.5775 1.00 1.5824 1.00 1.5824 1.00 1.5825 1.5801 1.00 1.00 1.5574 1.00 1.5827 1.00 1.5827 1.00 1.5827 1.00 1.5827 1.00 1.5827 1.00 1.5827 1.00 1.5827 1.00 1.5827 1.00 1.5827 1.00 1.5827 1.00 1.5827 1.00 1.5827 1.00 1.5827 1.00 1.5827 1.00 1.5827 1.00 1.5827 1.00 1.5827 1.00 1.5820 1.5709 1.5709 1.5820 1.5709 1.5820 1.5709 1.5820 1.5709 1.5820 1.5709 1.5820 1.5709 1.5820 1.5709 1.5820 1.5709 1.5820 1.5709 1.5820 1.5709 1.5820 1.5709 1.5820 1.5709 1.5820 1.5709 1.5820 1.5709 1.5820 1.5709 1.5820 1.5709 1.5820 1.5709 1.5820 1.5709 1.5820 1.5709 1.5820	1,5532			.104					1.5836	.099	1.5870		1.5861	099
1.58a43	1,5251				1,5779				1,5833	119	1.5866	120	1.5845	119
161	1,4830	142			1,5654							.142	1.5843	142
18	1.4293			-									1.5824	.161
198 1.5827 199 1.5027 203 1.5027 202 1.4652 203 1.3691 211 1.389 223 1.282 213 1.2882 213 1.3691 221 1.3691 221 1.3691 221 1.3691 221 1.3692 223 1.2882 221 2.282 223 1.2832 223 1	1,3645				1,4685									181
200 1.5820	1.3013													.198
220 1.5799	1,2748													209
231 1.5662 231 1.3844 230 1.202 231 1.2522 230 1.2536 241 1.2193 244 1.2311 244 1.2311 244 1.2011 240 1.2015 252 1.1500 252 1.1396 251 1.1567 250 1.1720 255 241 1.3005 243 1.2406 262 1.0828 263 1.0868 262 1.1142 263 1.1312 264 1.945 249 1.1674 272 1.0339 274 1.0452 269 1.0828 269 1.0828 269 279 1.0260 282 1.0465 281 1.0860 280 279 272 2986 289 2676 293 29927 289 1.018 292 1.0062 293 275 8634 281 2002 323 3339 324 9516 324 9716 322 330 302 9012 331 335 334 9577 303 9047 330 302 9012 331 3395 3344 9507 340 9627 341 3765 384 292 8178 380 9462 401 3767 403 9845 400 9887 3814 399 9887 430 9887 3814 399 9887 430 9887 3814 399 9887 430 9887 3814 399 9887 430 9887 3814 399 9887 4350 9887 3814 399 9887 430 9887 380 9899 450 9887 502 1.0001 503 9999 702 1.0000 704 381 9990 702 1.0000 704 381 9990 702 1.0000 704 381 9990 702 1.0000 704 381 9997 704 381 9997 704 381 9997 704 381 9997 704 381 9997 704 381 9997 704 381 9997 704 381 9999 702 1.0000 704 381 9997 704 381 9999 702 1.0000 704 381 9999 702 1.0000 704 704 700 1.0001 702 9999 702 1.0000 704 704 704 705 70000 704 705 70000 704 704 70000 705 700000 70000 70000 70000 70000 70000 70000 70000 700000 70000 700000 7000000 700000000	1,2491												1.5799	. 550
236 1.5550 .240 1.2637 .251 1.1500 .252 1.1306 .251 1.1567 .250 1.1720 .255 .241 1.3005 .243 1.2406 .262 1.0828 .263 1.0868 .262 1.1142 .263 1.1312 .264 1.2035 .264 1.1945 .249 1.1674 .272 1.0339 .274 1.0452 .269 1.0828 .263 1.0828 .263 1.0828 .263 1.0828 .264 1.142 .263 1.1312 .264 1.1945 .264 .261 .2035 .262 .263 1.0828 .262 1.0828 .262 1.0828 .263 1.0828 .264 1.0828 .264 .261 .263 .264 .261 .261 .264 .261 .264 .261 .264 .261 .264 .261 .261 .264 .261 .261 .261 .261 .261 .261 .261 .	1,2138													.231
240	1,1864													.236
241 1.5005	1,1610				1,1567						•		1.5482	.236 I
246 1 2035 258 1 0343 280 9982 279 10260 282 10465 281 10860 283 10902 293 10260 282 10465 281 10860 283	1,1408										-			-241
246 1 2035	1.1176													. 246
249 9069 272 9086 287 9079 302 9455 300 9767 303 9095 304 1.0371 302 323 323 323 9339 324 9516 324 9716 320 1.0119 323 323 323 323 324 9516 324 9716 320 1.0119 323 323 323 323 324 9516 324 9716 324 9716 323 323 323 323 323 323 324 9516 324 9716 323 323 323 323 323 323 324 9516 324 9716 323 323 323 323 323 323 324 9516 324 9716 323 323 323 323 323 323 323 323 324 9516 324 9516 324 9617 323 324 9617 324 324 9617 324 324 9777 343 324 9777 343 324 9777 324 324 324 324 324 324 324 324 324	1,1049											258		246
255	1,0814					.289								249
257	1,064				,9995	. 505								.255
270	1.0306													.257 I
1003 1003 1000 10001	1,0094													,259
281	9958									.361				-270 I
1003 1003 1000	9866	107			9706									.271
311	,9979	455			99.08			403		401				. 242
322	999				,9974						-			599
340	9999	600										1379		,311
100 1000 1	9996	700										450		*355
100 1000 1	9999													7340
# # # # # # # # # # # # # # # # # # #	9996													7301
431 9704 801 9999 1.009 1.0001 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003	9996	997												23/4
1.003 901 901 909 1.002 1.000 1.000 1.000 1.000 1.000	9999		•	• , , ,	4.0000	.,000	• 77.7	*****						P#01
1002 10000 10000 10000 10000 10000 10000 100000 100000 10000 10000 10000 10000 10000 10000 10000 100	999							l		1,009				1431
. 597 . 9999	• • • • • • • • • • • • • • • • • • • •	""""						l		i	-			120
701 9999 A01 9996	1	1						l			1 10000		*7773	*201
[80] 9996	1	1						i	i			1		177/
, 001 1770 1 1 1 1 1 1 1 1 1	1	1										ľ		·//\
	1	1	:					ŀ					9995	1001
(999) (9999)	1	1				i						j		,403

TABLE V.- PITOT PRESSURE MEASUREMENTS FOR CONFIGURATION 1 AT M=0.60 AND $p_{t,j}/p=2.9$

X)D =	9,825	10	.050	10	. 300	10	.550	10	.800	11	.300	1 1	.800
R/D	PTP/PT	RZD	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT
-;000	2.2827	.001	1.9091	010	2,2513	.002	2.0392	002	2,2456	-,001	2,1982	001	2,1110
.019	2.2859	.020	1.9042	.020	2,2825	.022	2.0642	.020	2,2453	.022	2,2128	055	2,1289
040	2,2938	.041	1.9506	,040	5.5905	.041	2.0853	.040	2,2748	.041	2.2130	.040	2,1332
.061	2.2979	061	2.0803	.061	2,2879	.061	2.1077	059	2,2727	.060	2.2144	.061	2,1411
.079	2.2974	.080	2.1415	.081	2,2982	.082	2.1262	081	2,2730	.079	2.2148	.081	2,1572
.100	2.2989	.100	2.1760	.102	2.2942	102	2.1351	.102	5.5493	.102	2.1963	.098	2.1635
.120	2.2954	.122	2.1990	.120	2.2997	.120	2.1488	120	2,2661	.102	2,2092	.120	2,1530
140	2.2904	141	5.2160	141	2.2941	.140	2.1654 2.1756	139	2,2559	.121	2.1995	140	2,1215
,160	2.2842	,159	5.5555	158	2,2928 2,2804	.160 .180	2.1753	.160 .178	2,225A 2,1544	159	2,1277	180	1,9426
,179	2.2730	180	2.2291	.181	2,1728	199	2.1192	201	1,9717	180	2.0257	200	1,8199
500	2.2352	211	2.2350	210	2.0760	213	2.0204	210	1,8807	202	1.8658	210	1,7528
210	2.2124	520	5.5059	219	1,9257	551	1.9276	220	1,7702	209	1.8094	219	1.6884
221	5.5056	231	2.0730	228	1.7617	230	1.8066	229	1,6545	520	1.7109	229	1.6129
,232	2,1752	240	1.4265	240	1.5624	240	1.6547	242	1.5262	229	1,6321	241	1.5317
235	2.0371	250	1,5725	249	1 4335	250	1.5247	250	1,4512	.240	1.5420	250	1,4782
244	1.6454	259	1.3073	259	1.2912	.261	1,3922	259	1,373A	250	1,4736	259	1,4260
,245	1.48R7	269	1.1017	269	1,1782	270	1.2948	270	1,2922	261	1.3946	269	1,3737
,246	1.3084	279	9772	281	1.0859	.281	1.1963	280	1,2184	270	1.3408	280	1,3250
249	1.0018	290	9233	289	1.0322	.291	1.1391	289	1,1671	.280	1,2849	291	1,2724
254	8298	301	9094	301	9808	302	1.0721	299	1,1201	291	1,2332	299	1,2423
,260	8037	320	9198	321	9474	.322	1.0009	319	1,0405	.299	1 1974	321	1,1642
272	8087	339	.9342	341	9475	.340	.9687	.341	9913	.321	1.1132	.340	1,1142
281	.8119	.359	.9496	359	.9573	.362	.9641	.360	9763	.340	1.0612	.360	1,0666
291	.8162	.382	.9637	.379	.9702	,380	.9729	.382	,9769	.361	1.0169	380	1.0299
300	.8235	.401	.9764	.401	,9828	.402	.9849	.401	9845	.379	9971	400	1.0090
.320	.8519	.449	.9977	.448	.9994	.429	,9959	449	,0072	.401	9896	450	,9989
340	.8901	.501	1.0005	497	.9999	.450	9995	499	,9997	.450	.9980	500	,9997
. 361	9207	599	1.0003	597	1.0002	.499	1.0010	,601	, 9995	.501	.9997	.603	,9997
3M1 م	.9362	.701	1.0003	702	1,0005	,601	1.0007	.700	,0994	.601	9997	.701	,9990
400	.9527	799	1.0002	797	1.0003	.700	1.0009	801	,0005	.698	9995	.800	,9995
431	.9757	901	1.0002	901	1,0005	.801	1.0006	903	,0098	.801	9995	907	9995
450	9886	1.005	1.0003	1.020	1,0003	998	1.0009	1.008	.9995	.899	9995	1.007	. ****
,472	9968					• 770	1.0006			1.001	*****		
,499											l		
601	1,0006										ľ	1	
700	1,0005											į	
797	1.0003												
дод	1.0003									1			
1,003	1.0005	i						1			Ì	l	

TABLE VI.- PITOT PRESSURE MEASUREMENTS FOR CONFIGURATION 1 AT M = 0.60 AND $p_{t,j}/p = 5.0$

אירע ≖	9,825	10	.050	10	.500	10	.550	10	.800	1.1	.300	11	.800
R/D	PTP/PT	RZD	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT
10000191901906851047136600091 00046191191121234447136600091	3.9589 3.9570 3.9570 3.9577 3.9584 3.9577 3.9492 3.9682 3.9683 3.7683 3.	001 .021 .039 .060 .080 .101 .120 .170 .170 .170 .219 .219 .240 .251 .266 .271 .279 .285 .295 .298	3.2301 3.1705 3.1705 3.1149 3.0468 2.9467 2.8420 2.7050 2.5866 2.6591 2.9767 3.0821 3.14234 3.2385 3.2817 3.2869 3.2853 3	000 .0240 .0059	1,6940 1,6878 1,6589 1,6581 1,6147 1,81956 2,13898 2,4454 2,7555 2,9410 3,0446 3,1095 3,1178 2,9718 2,9717 1,8693 3,1589 1,767 1,8693 1,7693 1,7693 1,7693 1,7693 1,7693	000 .002 .022 .031 .0337 .041 .046 .055 .060 .065 .076 .081 .086 .091 .120 .120 .120 .120 .120 .122	1.1918 1.1918 1.3173 1.3173 1.37928 2.19447 3.01447 3.01485 3.4118 3.4118 3.4579 3.54729 3.55193 3.5793 3.6699 3.1453 3.2149 3.2149 3.2149	001 .019 .040 .059 .080 .019 .141 .160 .221 .221 .231 .241 .249 .260 .278 .278 .302 .319 .340 .360 .362 .405 .405 .405 .405 .405 .405 .405 .405	1,9461 2,1467 3,7466 3,7466 3,7466 3,747 3,757 3	007 .020 .040 .059 .081 .019 .140 .160 .221 .221 .221 .221 .221 .231 .241 .251 .251 .271 .281 .388 .388 .388 .388 .388 .388 .388 .3	1.9878 2.9878 2.0882 2.1856 2.3175 2.46013 2.7385 2.8562 2.9498 2.9923 2.9655 2.99655 2.99655 2.9717 2.6411 2.4840 2.3161 1.9101 1.6482 1.3470 1.1179 1.1179 1.1179 1.1179 1.0071	0020 0020 0040 0080 999 1140 1161 1201 1201 1201 1201 1201 1201 120	3,0404 3,0896 3,1899 3,3509 3,54427 3,7398 3,7398 3,7487 2,7339 2,7431 2,7339 2,5447 1,2611 1,7117 1,6311 1,4857 1,2611 1,1804 1,1403 1,0194
19120010098 173480010098 17774445	8330 8677 9069 9275 9447 9694 9841 9997 9997 9994 9994	304 3121 3350 3560 4351 4501 6000 1000	1.3181 1.1497 .9759 .9220 .9339 .9499 .9650 .9856 .9926 .9927 .9995 .9995	380 399 429 451 599 701 797 1004	9667 9677 9856 9956 1,0001 1,0003 1,0002 1,0002 1,0002	240 251 261 279 289 290 340 359 381 431 500 600 700 801	2.9349 2.7438 2.5670 2.3672 2.2074 1.8218 1.4860 1.2663 1.1015 1.0062 .9913 .9984 1.0007 1.0007 1.0007	,599 ,699 ,803 ,899 1,000	1,0006 1,0006 1,0007 1,0007	.498 .600 .701 .799 .898 .997	1.0007 1.0007 1.0009 1.0007 1.0007	499 600 700 800 899 1,002	1,0015 1,0007 1,0007 1,0006 1,0006

X/D =	9,825	10	.050	10	.300	10	.550	10	.800	11	.300	11	.800
R/D	PTP/PT	R/n	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/P
005	1.3371	.004	1.3329	000	1,3315	001	1,3302	.006	1,3405	.008	1,3383	004	1,324
150.	1.3361	022	1.3340	019	1,3317	.023	1.3306	023	1,3417	.023	1.3394	019	1,328
.039	1,3370	.040	1.3371	040	1.3350	.041	1.3345	.043	1,3433	.040	1,3411	041	1,325
.059	1.3379	.061.	1.3377	.061	1.3374	.063	1.3339	.062	1,3444	.063	1,3387	,061	1.320
082	1.3415	079	1.3378	080	1,3364	.082	1.3345	081	1,3452	.082	1.3330	.079	1,313
.102	1.3386	.102	1.3394	.100	1,5368	.100	1.3344	100	1,3429	.104	1,3203	100	1,296
.122	1.3388	.122	1.3412	.120	1,3375	.119	1.3354	121	1,3338	.122	1.3036	,121	1,270
.140	1.3372	.141	1.3379	.139	1.3362	.141	1.3224	144	1,3119	.142	1.2666	141	1,233
.161	1.3398	160	1.3381	.162	1,3304	.164	1.2921	,159	1,2822	.160	1.2350	162	1,190
.181	1.3379	.181	1.3359	.182	1,2978	.183	1.2460	180	1,2293	.181	1.1821	181	1,152
.201	1,3361	.202	1.3153	.204	1.2214	.202	1.1812	202	1,1555	.201	1.1295	.201	1,112
.211	1.3350	.212	1.2821	.211	1,1907	.212	1.1378	,210	1,1339	.209	1.1162	515	1.089
.721	1.3347	,220	1.2387	.221	1.1366	.223	1.0968	.221	1,0968	.222	1.0782	1552	1,065
.230	1.3247	.232	1.1196	.231	1.0796	.231	1.0595	,231	1,0601	.231	1.0520	,230	1,053
239	1,2327	.242	1.0131	.242	1.0188	.242	1.0112	,241	1,0265	.241	1.0280	.241	1,034
. 245	1.0979	252	9300	,253	9612	.250	.9877	252	,9997	251	1,0117	.253	1.014
248	.9836	261	.8560	.264	.9178	,259	.9586	.263	,9687	.261	9903	.263	.997
,251	.8096	.271	.8153	.271	.8933	.273	9550	.272	,9463	.271	.9720	.269	.987
, 255	.7808	.281	7942	.281	.8724	.280	9062	.280	,9326	.280	9585	.283	,968
261	.6901	.292	,7899	.291	8568	.291	.8905	.292	,9143	.294	.9424	294	959
271	.6835	,303	.7947	.302	8516	.303	8818	.303	99056	.304	.9344	,299	955
,281	.6878	.320	.8235	255	.8630	.322	8801	.319	,8985	.350	.9253	324	.940
291	.6913	.342	8597	.343	.8848	.342	6934	340	9011	.342	9231	342	.937
,301	.6965	.361	.8910	.360	9092	.359	9150	.362	,9210	.364	9299	,363	,940
, 322	,7182	.383	.9206	.382	.9369	,382	9425	379	,9408	.379	9425	.379	948
340	,7572	401	.9438	.402	9590	.402	.9633	,400	,9624	.402	.9619	399	961
.362	.8220	.431	,9789	.433	,9884	.432	9905	,429	,0870	430	9852	450	, 991
302	.8683	.449	.9894	452	,9958	451	9961	451	,9956	.456	9952	499	,998
402	.9012	.502	.9989	.502	.9990	.499	9599	499	,9989	.502	9989	,599	,999
433	.9465	.602	.9995	.599	9990	.604	.9989	.600	,9990	.600	9989	.700	998
455	.9707	701	9990	.702	,9990	.700	,9986	.702	,9989	.703		807	,998
502	.9978	.801		802	.9990	801	9989	.803	,9989	.802 .899	9990	1.000	998
600	.9993	1.004	.9993	.902	.9990	.904	9992	.900	9989		9989	1.000	1 . 444
701	.9993	1.004	.9993	1.005	9988	.998	1 • * * * * *	1.004	9988	1,009	1 4404		
803	9992				1	i		Į					
901 997	3005				1			1					

TABLE VIII.- PITOT PRESSURE MEASUREMENTS FOR CONFIGURATION 1 AT M = 0.80 AND $p_{t,j}/p = 2.9$

ZÌD ■	9,825	10	.050	10	.300	10	.550	10	.800	11	.300	11	.800
R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/P
,003	1,9322	.003	1,6033	.008	1,9022	.007	1.7762	.001	1.8766	002	1.8890	006	1,814
150	1.9342	.022	1.6360	.021	1,9080	.021	1.7886	.023	1,9095	\$20.	1.8918	.023	1,830
045	1,9343	043	1.7226	.042	1.9207	.043	1.8045	.041	1,9150	.040	1.8981	.042	1,834
.062	1,9377	.061	1.7930	.052	1.9153	.063	1.8112	.061	1,9185	063	1.9026	.061	1,845
.081	1,9404	.081	1.8350	,063	1.9198	.080	1.8176	081	1,9263	.081	1.9028	.081	1,844
.103	1.9363	.105	1.8663	.081	1.9190	.101	1.8284	.102	1.9234	.101	1.8903	,103	1.818
.127	1,9329	.124	1.8766	.102	1,9185	.122	1.8403	,120	9135م1 ا	.123	1.8631	,120	1,786
.143	1.9316	.142	1,8858	. 123	1,9153	141	1.8466	141	1,8914	143	1,8107	142	1,73
.160	1.9219	.162	1.8930	.140	1,9082	,162	1.8375	162	1.8197	.162	1.7079	,162	1.640
101	1.8979	.184	1.9017	.160	1,9025	.183	1.7883	,180	1,7103	.180	1.6075	.182	1,549
.202	1.8749	,204	1.8918	181	1.8625	203	1.6641	.203	1,5279	.203	1,4761	204	1.45
.210	1.8777	.210	1.8736	.203	1.7195	.212	1.5878	.212	1,4601	.211	1.4300	.210	1,400
.221	1.8745	•555	1.7583	.214	1.6043	.221	1.4984	.221	1,3794	5555	1,3535	.220	1,35
.230 i	1.8319	,232	1.5329	.224	1.4725	.233	1.3615	.535	1,2967	231	1.2999	231	1,299
.236	1.6338	243	1.2675	233	1.3236	.242	1.2743	.242	1,2279	.242	1.2452	.242	1.28
.239	1,4229	.250	1.1011	.241	1.2263	.251	1.1944	,252	1,1614	.253	1,1935	250	1,180
.241	1.0424	.262	.9264	.252	1.1104	,261	1.1154	.260 .271	1,1134	263	1.1511	271	1.14
,246	.8490	273	.8436	.261	1,0252	.271	1.0607	284	1,0687	271	1,1268	283	1,110
,251	,6849	284	.8144	.273	9579	290	9711	291	1,0195	283	1.0789	565	1,09
264	6822	300	8166	292	8941	300	9420	304	,9965 ,9635	290	1.0564	303	1,06
,271	6859	324	8562	302	8793	320	9124	321	9393	302	1.0265	320	1.02
280	.6892 .6971	341	8850	324	8842	343	9137	341	9295	325	9836	341	99
294	7090	362	9112	342	9057	364	9324	362	9401	342	9652	359	98
304	7373	385	9337	359	9228	383	9530	381	9529	361	9567	381	97
345	8059	404	9559	382	9491	404	9733	402	9729	382	9613	404	97
359	8434	453	9941	404	9720	456	9977	432	9905	399	9696	450	994
384	8843	504	9986	451	9963	500	9984	451	9968	451	9964	500	998
,401	9115	603	9982	505	9988	601	9984	504	9980	500	9982	500	99
431	9529	704	5466	603	9985	702	9982	603	9980	.607	9981	703	99
453	9767	802	9978	706	9915	801	9980	702	9980	703	9978	800	<u>`</u> ,99
500	9978	899	9980	803	9984	905	9982	803	9980	799	9978	902	99
600	9984	1 006	9980	900	9985	997	9980	901	9981	900	9980	1.002	99
702	9985	', ', ', ',	•	995	9985	1	1	1.004	9981	999	9980		
801	9985			• •			Į		- '	'			
900	9989						į.					1	
994	9986					l	1	1				1	

Table IX.- Pitot pressure measurements for configuration 1 at $\rm~M=0.80~$ and $\rm~p_{t,j}/p=5.0~$

X/D =	9,825	10	.050	10	.300	10	.550	10	. 80n	11	.300	11	.800
R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT
-,004	3,3039	,007	2.5742	.021	1.3673	.007	1.9637	.006	2,1932	-,003	1,7033	,003	2,5587
.022	3.3137	.020	2.5642	.042	1.3468	.022	2.6924	.020	2.5667	.022	1,7656	.003	2.5473
.040	3.3183	.040	2.5281	.061	1.3873	.041	2.8932	.043	3,0015	.041	1.8436	,021	2,6638
,060	3.3209	.062	2.4755	070	1,7651	.062	3,0035	.061	3,1265	.060	1,9528	.041	2,8349
.080	3,3191	.081	2,4260	.070	1,5325	.080	3.0599	.080	3,2076	.079	2.0615	.065	3,0559
102	3,3137	.099	2.3480	.071	1.9375	.091	3.0277	.104	3,2197	.101	2,1973	.080	3,1593
121	3.3141	.122	7.2416	074	1.9981	.095	2.9457	150	3,2067	.123	2.2942	.104	3,1833
.141	3.1028	.140	2.1454	076	2,0534	501.	2.7673	142	3,1576	143	2,3699	124	3,1211
164	3,2736	.162	2.2559	1580.	2,1657	.123	2.7121	.163	3,0178	.163	2.4245	141	2,9947
179	3,2209	.183	2.5597	.101	2,3003	.142	2.7205	183	2,7578	.181	2.4539	161	2.7652
792	3.1670	201	2.6946	122	2,3981	.162	2.7227	199	2,4850	.204	2,4343	.184	2,4585
204	2.9802	.212	2.7423	.143	2,4782	.181	2.7091	.211	2,3172	.213	2.3979	,200	2.2265
,214	2.7526	,221	2.7743	.162	2,5335	.206	2.5860	,222	2,1497	.223	2.3380	.212	2.0757
	2.7732	.230	2.7964	.184	2,5894	,213	2.5170	229	2,0287	.232	2,2677	.222	1.9554
555	2.7364	.243	2.8195	.201	2.6310	155.	2.4276	.242	1,8498	.243	2.1345	.233	1,8524
525	2.5798	595	2.7765	.211	2.6534	.232	2.2872	.254	1,6991	,251	2,0535	,242	1.7651
,241	1.0261	270	2.5971	.222	2.6709	.242	2.1237	,263	1,5973	.263	1,9234	251	1,6947
,242	1.2493	280	2.2362 1.7322	.242	2.6636 2.5914	595	1.9928	.269	1,5257	.271	1.8279	274	1.5948
744	8107	292	1.3158	252	-	271	1.7029	292	1,4280	292	1.6169	282	1.4559
,246	6895	301	1.0908	260	2.4795 2.3504	282	1.5473	302	1.3167	304	1.5139	293	1.3846
251	6838	322	8692	271	2,1105	291	1.4205	325	1,2438	321	1.3881	300	1.3466
,260	6887	341	8565	282	1.8694	302	1.3165	342	1,1256	343	1,2493	322	1.2394
202	6927	361	8816	292	1,6288	321	1.1381	360	9920	361	1.1474	343	1,1581
,593	6974	382	9084	301	1.4774	341	1.0269	383	3695	381	1.0633	361	1,1012
, 102	7060	401	9330	355	1.1437	362	9707	400	9712	399	1.0199	383	1,0484
322	7344	432	9628	341	9802	383	9555	429	9858	454	9926	400	1,0229
343	7872	450	9837	361	9245	403	9673	450	9968	501	9989	433	1,0023
362	8441	502	9998	382	9267	453	9969	454	9969	.602	9989	455	,9997
382	8839	603	9998	402	9446	503	9994	503	9990	700	9989	509	9994
404	9112	703	9998	452	9925	602	9990	604	9989	803	9990	603	9992
,431	9486	803	9998	502	9997	706	9993	704	9988	901	9988	701	9990
450	9733	900	9998	601	9994	800	9995	803	9993	1.001	9988	799	9989
.452	9767	1.001	9995	703	9995	901	9992	908	9990	' '	-	901	9985
,473	9912	· · ·	-	801	9995	1.001	9990	993	9990			999	9992
502	9985			905	9994				* ' * '			•	
601	9992			997	9995								
.701	9994			'	• 1				ļ				
.799	9990	l]	Ì	Į.			
900	9990									l .	l		
1.004	9984								I	I		ŀ	

TABLE X.- PITOT PRESSURE MEASUREMENTS FOR CONFIGURATION 2 AT M=0.40 AND $p_{t,j}/p=2.0$

X/D =	10,800	11	.050	11	.300	11	.550	11	.800	12	.300	12	.800
R/D	PTP/PT	R/D	pTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT
003	1.8092	.000	1.8119	.003	1,8176	000	1,8192	.006	1,8172	.002	1.8227	-,000	1.8224
022	1.8082	021	1.8118	.004	1.8161	.022	1.8182	.022	1,8193	.020	1.8231	.020	1.8226
040	1.8152	041	1.8183	,021	1.8152	.042	1.8215	042	1,8217	042	1,8237	043	1,8235
061	1,8090	062	1.8185	.041	1,8224	061	1.8256	059	1,8251	.062	1.8252	.061	1,8252
080	1.8222	.080	1.8218	.063	1,8232	082	1.8271	081	1,8263	.080	1.8255	.081	1,8225
100	1.8123	102	1.8226	.080	1.8241	105	1.8277	102	1,8267	.101	1,8255	.104	1,8138
,124	1.8084	.120	1.8226	104	1,8262	123	1.8258	121	1,8272	.120	1.8209	123	1.7945
142	1.8216	143	1.8234	122	1.8253	141	1.8284	141	1,8269	141	1,8053	142	1,7589
160	1,8191	180	1.8224	139	1.8246	160	1.8255	161	1,8156	161	1,7652	161	1.7042
180	1.8181	202	1.8202	162	1.8250	.183	1.8061	182	1,7752	183	1.6894	183	1,6180
205	1.8352	.211	1.8173	181	1,8236	204	1.7293	204	1,6636	203	1.5774	211	1,4922
,223	1,8387	221	1.8018	201	1.8014	211	1.6887	213	1,6046	210	1.5447	211	1,4868
234	1.8118	230	1.7378	214	1.7417	555	1.6132	.223	1,5421	221	1.4913	1221	1,4512
241	1.8550	239	1.6175	. 250	1.7104	239	1.4589	231	1,4750	230	1.4362	230	1,4116
,246	1.7547	246	1.4989	.220	1.7061	.245	1.4070	243	1,3915	.241	1.3831	242	1.363
253	1,4771	246	1.4336	.232	1.5823	252	1.3545	.251	1,3387	252	1.3296	252	1.3260
, 557	1 1987	251	1.3914	241	1.4785	. 262	1.2729	.263	1,2753	.260	1,2956	261	1.2933
265	9383	256	1.3034	245	1,4298	271	1.2170	.273	1,2183	272	1.2470	271	1,261
270	9319	260	1.2324	254	1,3412	280	1.1612	280	1,1953	291	1,1805	.280	1,231
,281	9378	271	1.0896	256	1,3197	292	1.1072	283	1,1741	320	1.1047	293	1,197
291	9417	261	1.0124	261	1.2678	300	1.0766	.291	1.1421	340	1.0603	301	1.174
7571	9466	292	9710	273	1,1600	322	1.0138	300	1,1131	.364	1.0257	321	1.132
,301	9564	308	9605	282	1.0972	341	9892	320	1.0541	382	1.0087	343	1.090
340	9627	.320	9641	294	1.0418	.364	9831	341	1.0142	400	9995	362	1.061
361	9698	341	9707	300	1.0208	380	9845	362	,9934	451	9984	383	1,034
301	9765	360	9757	320	9806	402	9899	382	9AA7	505	9997	399	1,019
401	9824	380	9820	341	9746	450	9986	401	9905	603	9999	450	1,000
7,51	9953	401	9867	361	9786	500	1.0003	454	9988	704	9999	508	1,000
453	9996	452	9972	380	9836	603	1.0004	504	9999	803	1.0000	605	1.000
499	1.0001	503	9996	404	9894	699	1.0004	603	9997	906	1.0001	704	1.000
602	1.0001	.503	9996	450	9980	804	1.0003	706	1,0001	1.023	1.0003	801	1.000
708		703	9996	517	1.0000	902	1.0000	801	1,0000	''''		903	1.000
802	1.0001	799	9999	905	9999	1.019	1.0000	902	1,0001		1	1.008	1,000
902	1.0000	804	9997	704	9997	1	1.0000	1.012	1,0000			1 *****	•••••
1,050	1.0000	904						1 , , , , ,	********		1	1	Ī
	}	1 030	.9997	.806	1.0000	1		l				1	
	1	1,030	.9997	904		1							
				.998	1.0000	1	!	I	I	1	1	1	l

TABLE XI.- PITOT PRESSURE MEASUREMENTS FOR CONFIGURATION 2 AT M=0.40 AND $p_{\mathbf{t,j}}/p=2.9$

X/D =	10,800	11	.050	11	300	11	.550	11	.80n	12	2.300	12	.800
R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/P
000	2,6231	,003	2.0777	020	2,6170	.000	2.3528	000	2,6087	.001	2,5526	000	2,452
020	2,6240	.020	2.0773	500	2,6169	021	2.3530	150	2,6103	020	2.5180	150	2.448
.041	2,6258	.042	2.1325	.021	2.6177	.040	2,3599	040	2 6097	044	2.4907	041	2,440
.063	2,6322	.060	2.2707	041	2,6216	.060	2.3702	060	2,6060	060	2.4920	060	2,457
080	2,6297	.082	2.3492	061	2,6228	081	2.3879	082	2,5994	.084	2.5308	.080	2.460
.102	5,6322	.105	2.4049	080	2.6248	101	2.4063	104	2.5855	101	2.5246	103	2,469
103	2,6326	,123	2.4384	103	2,6249	124	2.4347	123	2,5715	155	2.5205	121	2,471
.121	2,6334	.142	2.4662	.123	2.6252	140	2.4503	144	2,5609	141	2.5128	140	2.457
140	2,6289	.163	2.4941	141	5,6220	163	2.4759	162	2,5518	161	2.4876	160	2.408
161	2,6266	.180	2.5057	161	2,6209	183	2.4898	180	2.5249	183	2.4031	180	2,313
183	2.6128	.199	2.5218	180	2,6191	203	2,4860	203	2,3975	201	2.2556	200	2,156
202	2,5852	.212	2:5300	203	2,5832	211	2.4610	205	2.3770	211	2.1586	212	2.048
,211	2.5637	.222	2,5365	211	2,5178	.223	2.3782	212	2,3151	155	2.0523	222	1.957
219	2.5481	,233	2.5329	252	2.3761	.231	2.2801	220	2,2276	.231	1.9329	230	1.872
,230	2.5465	.240	2,5145	231	2.2041	.242	2.1084	231	2,0561	242	1.0128	241	1.778
205	2,5525	.245	2.4661	239	2.0066	.252	1.9092	241	1,9092	249	1.7301	249	1.703
245	2,5517	252	2.3248	246	1.8769	.262	1.7459	251	1,7650	260	1.6230	261	1,608
.250	2,5387	.261	2.0015	251	1,7583	.273	1.5597	252	1,7469	271	1.5343	270	1.542
.255	2.4690	.264	1.8730	255	1.6750	.281	1.4552	.261	1.6372	281	1.4558	202	1,475
,261	1.9240	.272	1.5873	595	1,5390	290	1.3414	272	1,5088	290	1.3848	289	1,426
845	1.0768	281	1.3304	.266	1.5004	301	1.2466	281	1,4235	298	1.3391	299	1,371
269	.9677	291	1,1254	270	1,4189	301	1.2473	292	1,3191	320	1.2316	321	1,274
585	9368	301	1.0179	281	1.2784	325	1.0877	305	1,2621	341	1.1486	341	1,200
205	9414	321	9649	291	1.1748	341	1.0252	321	1,1521	362	1.0876	361	1,142
302	9463	340	9694	300	1.1060	360	9949	341	1,0713	383	1.0417	381	1.091
,323	.9553	361	9756	324	1,0018	383	9873	361	1,0219	402	1.0161	400	1,055
.342	.9624	382	9820	340	9803	401	9902	381	9988	450	9999	452	1,006
.362	.9693	.402	9869	361	9803	421	9938	402	, 9927	501	1.0002	502	999
380	.9752	.451	9976	380	9850	449	9982	451	9952	.602	1.0005	604	999
.405	9821	501	1.0000	401	9898	503	9999	503	1,0001	700	1.0006	702	.999
.451	9946	602	1.0001	450	9978	604	9999	601	1,0001	800	1.0006	800	, 999
402	9999	702	1.0001	503	1,0001	702	1.0003	699	1,0003	900	1.0005	904	
605	1.0004	801	1.0001	601	1.0001	802	1.0000	804	1.0001	1.002	1.0002	997	,999
507	1,0001	894	1.0003	705	1,0001	900	1,0001	900		1002	1,0002	• **/	.999
.802	1.0001	1.006	1.0000	508	1.0000	999	1.0001	1,010	1,0001	[j	
003	1,0001	·		903	1.0001	• ,			4 4 0 0 0 1	1 !	1	, ,	
998	1,0001	ŀ		1.001	1,0001					l i		1 1	

Table XII.- pitot pressure measurements for configuration 2 at M=0.40 and $p_{t,j/p}=5.0$

xin =	10,800	11	.050	11	.300	11	.550	11	.800	12	.200	12	.800
R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/P
005	4.5058	005	3,5996	007	1,9363	.006	1.3527	004	1,5156	.000	2,2378	,005	2,942
020	4.5164	.022	3 5675	.023	1,9167	.022	1.3510	.023	1,7843	.022	2,3019	,023	2,992
041	4.5123	041	3.5111	040	1,8934	043	1.3493	041	2,3272	.041	2,4281	041	3,098
0041	4.5192	061	3 4363	063	1.8497	060	1.9114	.052	2.7347	.062	2.6501	.062	3,262
061	4,5190	083	3.3453	.082	1.8073	.065	2.7105	.062	3,2514	.080	2,9050	.082	3,442
101	4.5097	102	3.2281	086	1.8656	.070	3.3244	.072	3,6168	.103	3,2219	.104	3,646
122	4.5011	123	3.0922	094	2,2575	.082	3.8416	.083	3,9455	.122	3.3874	,124	3,775
143	4.4866	141	2.9431	104	2,5998	105	4.1234	103	4,1118	.142	3.4804	143	3,798
162	4.4490	161	2.9256	113	2,7353	122	3.8708	124	4,1235	.161	3,5299	161	3,746
181	4.3588	183	3.2876	122	2.8572	143	3.5896	141	4,0966	.187	3,5586	182	3,563
203	4.0861	204	3.4479	140	3,0357	.161	3.6360	.162	4,0383	.205	3.4892	202	3.303
213	3.8491	211	3.4967	161	3,1793	.182	3.6758	183	3.9034	.212	3,4218	515,	3,112
555	3.6722	221	3,5602	182	3,3179	.203	3,6722	.202	3,6762	.255	3.2950	223	2,916
232	3.7137	231	3.6105	203	3,4310	,213	3.6353	.213	3,4750	.232	3.1161	.533	2,710
241	3,5873	241	3,6568	212	3,4802	.222	3.5645	.221	3,2786	.240	2,9569	.245	2.496
246	3,1886	252	3,6956	219	3,5145	,231	3.4636	231	3,0113	.252	2.6790	252	2,377
247	2.8933	263	3.7210	231	3,5693	.242	3.2746	.243	2,7175	.595	2.4882	. 262	2,210
,252	1.6816	.272	3.5850	241	3,6054	.253	3.0497	.252	2,4959	.272	2,2988	.271	2,073
297	9720	.276	3.2933	.251	3,6316	.261	2.8417	259	2,3171	.284	2,0986	.281	1,944
260	9426	282	2.9409	263	3,5705	.272	2.5458	.270	2,0883	565	1.9658	293	1.607
272	9375	286	2.5383	270	3,4432	.282	2.2847	,281	1,8943	.305	1.8310	.301	1,714
282	9426	292	2.0948	283	3,0703	.292	5.0506	.290	1,7554	.322	1,5864	323	1,517
290	9462	302	1.4900	.292	2.6943	.300	1.8313	.302	1,5987	.343	1.3999	343	1,388
302	9516	322	1.0211	.301	2.3103	.324	1.4051	.320	1,3827	.363	1.2493	,362	1,274
320	9588	344	.9688	.321	1.5960	342	1.2152	342	1,2084	.382	1.1519	.380	1.196
343	9677	.364	.9764	.343	1.2093	362	1.0691	.362	1,0904	.403	1.0755	,401	1.119
. 363	9729	.382	.9819	.361	1,0311	.381	1.0088	285.	1,0269	.450	1.0062	452	1.022
181	9784	401	,9873	.381	.9874	.403	.9963	.400	1,0032	.502	1,0001	.502	1,001
402	.9852	.453	9982	403	9892	.452	9998	.454	1.0001	.604	1.0002	.603	999
454	.9965	.502	1.0005	.450	.9988	.503	1.0002	.500	1,0002	.701	1.0001	.704	999
500	.9988	.601	1.0007	.499	1.0007	.604	1.0003	.604	1,0002	.805	.9999	508	999
604	9992	.700	1.0007	.607	1.0002	.701	1.0003	.702	1,0003	.902	.9998	.997	.999
.702	9995	.801	1.0005	.701	1.0003	.803	1.0003	804	1,0001	.999	1.0001		
.805	9999	900	1.0007	.804	1,0003	.900	1.0002	902	1,0001		1	1	
905	9990	996	1.0005	.903	1,0002	1.000	1.0002	.993	1.0001		1	1	
994	9994	1	l	997	1.0002	1	1	1	1		1	1	

TABLE XIII.- PITOT PRESSURE MEASUREMENTS FOR CONFIGURATION 2 AT M=0.60 AND $p_{t,j}/p=2.0$

X/D =	10,800	11	.050	11	.300	1 1	.550	11	800	12	300	12	.800
R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/P
-,003	1.5899	001	1,5911	.002	1,5966	002	1,5983	000	1.6000	002	1.5984	.006	1.601
-,000	1.6129	.022	1.5940	.020	1,5961	020	1.5984	021	1,6017	.020	1.6004	053	1.604
.020	1.6248	.044	1.5997	041	1,5993	.042	1.6007	042	1,6036	043	1.6100	042	1,603
.041	1.6285	.044	1.5964	061	1.6024	.062	1,6017	060	1,6076	066	1.6048	061	1,605
.062	1,6300	.061	1.5991	.081	1,6016	082	1.6035	081	1,6051	083	1.6049	081	1.607
.042	1.6290	.085	1.5993	102	1.6045	103	1.6034	102	1,6065	102	1.6035	102	1,593
.102	1,6303	,103	1.6017	121	1,6026	121	1.6036	123	1.6064	122	1.5948	124	1,568
, 121	1,6293	.119	1.5967	142	1.6043	140	1.6080	141	1,5976	141	1,5719	140	1,537
.142	1,6285	.142	1.5978	164	1,5989	163	1.5855	160	1.5722	162	1.5186	160	1,480
,161	1,6251	162	1,5980	182	1,5771	182	1.5249	160	1.5741	.183	1.4289	184	1,389
182	1,6230	184	1.5998	.204	1.4448	.203	1.4041	183	1,5004	201	1.3523	204	1,316
203	1,6163	.200	1.5722	214	1.3586	214	1.3204	203	1.3819	212	1.2957	213	1,282
,211	1,6107	211	1.4753	.223	1.2520	.223	1.2449	214	1.3102	.223	1 2534	553	1,246
1551	1,4118	223	1.2681	.230	1.1890	231	1.1891	223	1,2555	.231	1.2181	.233	1.210
,225	1.2754	233	1.1061	241	1,1019	242	1.1285	231	1,2062	245	1,1635	240	1,191
,226	1,2036	242	9884	253	1.0139	251	1.0708	241	1,1569	251	1.1433	251	1,160
231	.8405	251	9232	.263	9674	259	1.0344	252	1,1014	264	1,0985	262	1,125
,240	8452	.260	8989	.271	9466	271	9897	261	1,0658	270	1.0815	272	1,100
,252	8581	272	8986	283	9276	283	9633	269	1,0337	284	1.0456	285	1.072
.261	.8679	282	9048	292	9244	.292	9480	282	1,0027	292	1.0271	291	1.060
. 274	.8810	291	9120	302	9266	302	9421	291	9826	299	1.0134	301	1.040
.245	.8886	302	.9214	320	9370	322	9419	301	9654	353	9789	320	1,009
,293	.8998	.320	9338	342	9510	.344	9523	320	9517	343	9678	343	,987
300	.9062	342	9469	362	.9625	360	9623	.340	9544	.381	9720	361	978
,324	9260	361	9599	381	9733	383	9740	362	9646	405	9837	.380	974
343	.9396	380	9701	400	9834	402	9846	380	9716	452	9973	400	980
362	.9523	403	9834	453	9987	453	9984	402	9845	503	9990	452	995
382	.9648	452	9980	502	9996	502	9996	452	9984	603	9990	502	,998
403	9775	503	9987	603	9997	604	9994	499	9998	702	9992	604	998
.452	.9967	597	9991	701	9995	701	9992	603	9995	803	9990	700	998
500	9995	704	9990	802	9996	800	9994	703	9997	901	9992	801	998
601	9995	803	9987	901	9996	803	9994	801	9995	996	9989	900	998
703	9995	904	9988	999	9996	899	9995	902		•778	• 7707		
,003	9996	1,000	9987	•		999	9994	1,001	,9994	{		.990	.998
903	9995		•			• * * * *	• 7777	1 ****	.9993				
013	9992	1						1 1		1 1		i	

TABLE XIV.- PITOT PRESSURE MEASUREMENTS FOR CONFIGURATION 2 AT M = 0.60 AND $p_{t,j}/p = 2.9$

X/D =	10,800	11	.050	11	.300	11	•550	11	.800	12	.300	15	.800
R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/P
	2,2404	.005	1.9039	.002	2,2516	.003	1.9422	.005	2,2252	.004	2.0975	000	2,048
000	2.2448	021	1 9599	025	2,2574	020	2,0619	019	2,2235	.020	2.1036	.020	2,059
,022		043	2.0274	043	2,2576	041	2.0701	.041	2,2219	.041	2,1031	040	2,073
040	2.2469	059	2.0614	061	2,2581	062	2.0821	062	2,2205	.058	2,1072	063	2,099
041	2.2455		2.0912	084	5.2601	081	2.0958	083	2,2122	080	2,1152	081	5,150
,062	2.2472	.082		101	5.5606	100	2.1039	105	2,2064	100	2,1272	102	2,132
080	2.2488	.100	2.1175	124	2.2581	120	2.1172	122	2,2040	122	2.1322	.122	2,142
, j 0 5	2.2450	.120	2.1452	145	2,2523	141	2.1260	140	2,1963	139	2.1264	142	2,126
155	2.2439	.140	2.1688	162	2.2498	161	2.1364	162	2,1777	158	2.1006	163	2,072
944	2.2417	.162		183	2,2230	184	2.1296	185	2,1170	180	2.0177	183	1,961
591	2.2350	.180	2.1802	198	2,1428	199	2.0800	201	2,0097	208	1,8276	203	1,819
180	2.2202		2.1726	211	2.0388	214	1 9860	210	1.4571	214	1.7251	213	1,725
206	2.1811	207		.224	1.8675	221	1.9037	221	1.7634	522	1.6197	220	1,677
,211	2,1672	.216	2.1718		1.6449	232	7432	232	1.6144	525	1.5572	231	1,591
,221	2.1700	.231	1.9615	,235		240	1.5994	241	1,4714	.241	1.4402	240	1.521
.230	2,1251	.242	1.7159	.240	1,4252	251	1.4726	244	1,3816	251	1.3896	252	1.444
.241	1.6755	.252	1.4268	.252	1,3200	261	1.3397	264	1,3133	259	1.3455	.263	1,363
246	8493	. 261	1.1993	.262	1.1887	272	1.2148	272	1,2221	273	1.2570	273	1,311
.250	1.2652	.273	1.0680	.273	1.0817	282	1.1341	280	1,1627	284	1.1948	283	1,255
255	8559	.284	.9225	.281	1.0145	294	1.0569	295	1,0869	292	1.1468	290	1,224
260	,9533	292	.9046	.292	.9579	300	1.0038	302	1,0421	304	1.0980	302	1,180
.264	.8705	.302	.9084	.300	.9388	350	9503	322	9832	319	1.0492	.323	1,106
,269	.8887	. 324	.9197	320	,9299	340	9388	339	,9571	342	9991	344	1,051
, 2A2	.8784	. 343	,9325	341	9352		9444	362	9542	359	9723	361	1.020
885	.8831	.360	.9414	362	.9459	.362		385		381	9660	381	,997
304	.8921	.382	9551	.380	9583	381	9546	404	,9615 .9691	402	9696	403	988
,321	.9088	.401	.9623	391	9632	.403		438	9821	452	9832	451	994
,340	9187	.449	9781	.403	.9697	431	.9807		1 4021	500	9849	504	998
,362	.9341	.497	.9872	430	.9813	.453	9798	.449	9825	905	9847	.603	998
.3A3	9508	.502	4865	454	.9807	504	9846	.502	9847	699	9847	707	998
401	9586	.603	.9873	502	9854	601	.9851	.601	9854		9847	801	998
451	9820	.702	.9875	.605	,9857	703	9851	.703	,9851	800	9846	903	, 993
502	9866	802	.9872	.706	9855	.806	.9855	805	,9853	1.007	9846	995	996
605	9863	905	.9873	802	.9857	904	9853	901	,4853	1.007	. 7048	'''	1
702	9856	997	.9876	.902	.9858	1.010	.9854	1.002	.9850		1		
A04	9853	-		1.010	.9859	1	1	1	1		1	1	1
903	9849		1	1	1	I		1		i		i	1
1,005	9846			I	1	1	ı	i	1		1	i	1

Table XV.- pitot pressure measurements for configuration 2 at $\rm ~M=0.60~$ And $\rm ~p_{t,j}/p=5.0~$

X/h =	10.800	11	.050	11	.300	11	.550	11	.800	12	.300	12	.500
R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT
, n 0 2	3,9540	.002	3,1278	.001	1,6533	.007	1.1638	.006	1,6462	.006	2.0186	000	2,7675
020	3.9572	024	3.0924	.023	1,6386	021	1.1652	.022	1,8811	.021	2,0686	023	2,8409
042	3,9596	044	3.0454	042	1,6153	.033	1.2643	.031	2,0999	.041	2,1689	040	2,9411
062	3,9580	061	2,9955	059	1,5920	.042	2.1534	045	2,7157	.062	5.3530	.060	3,1272
0/15	3,9582	080	2,9268	075	1.9192	050	2,9678	.061	3,3954	.083	2,5356	080	3,3446
101	3,9558	103	2,8189	.080	2,1936	061	3,3662	.071	3,5620	.100	2,7166	.104	3,5441
123	3,9516	124	2.7047	101	2.4486	.083	3.6027	.081	3,6570	121	2,8817	124	3,5959
140	3.9428	144	2 6329	121	2,5967	085	3.6060	101	3,7165	.142	2,9777	144	3,5379
163	3,9300	164	2.8902	144	2.7346	104	3,2514	122	3,7033	.161	3,0311	,162	3,3800
183	3.8924	184	3.0387	.161	2.8254	113	3,0698	140	3,6606	.184	3,0643	,183	3,0686
500	3.7837	199	3,1069	183	2.9391	123	3,1012	160	3,5827	.202	3.0378	.200	2,7910
210	3,6207	505	3.1276	204	3,0312	139	3,1373	183	3, 1909	.210	2,9928	513	2,5751
223	3,3687	210	3.1589	213	3.0698	164	3,1845	.202	3,1137	.221	5.8665	,223	2,4149
229	3.3378	555	3,2103	.223	3,1117	181	3,2067	214	2,8548	.231	2,7253	237	2,2028
232	3,2860	244	3.2810	232	3.1460	.204	3,2010	.222	2,6645	.241	2,5669	244	2,1084
235	3,1573	250	3.2957	241	3,1622	.212	3,1671	.232	2,4375	.249	2,4213	252	1,9904
241	1,9832	.263	3.179A	,252	3,1399	.221	3,1061	,244	2,2101	.263	2.1863	.595	1,8675
244	1,2951	.265	3,1123	.263	2.9936	.232	5.9606	.252	2,0676	.284	1.8622	.272	1,7640
245	9423	.273	2.6677	.270	2.8099	.241	2.7904	.262	1,8960	294	1.7217	284	1,6334
251	.8573	,276	2.5285	.281	2.4112	.251	2.5903	. 569	1,7712	.304	1.5995	293	1,5579
. 262	.8566	.278	2.2987	.293	2.0184	.261	2.3515	, 283	1,5797	355	1.4199	.301	1,4895
. 272	8656	.284	1.9479	.300	1.7891	.270	2,1568	.292	1,4660	.341	1.2751	351	1,3510
283	.8765	.290	1.6059	.314	1.4741	, 281	1.8896	,303	1,3636	.362	1,1516	.340	1,2513
. > 9 2	.8848	.301	1.1865	.322	1.2654	.291	1.7034	.320	1,2062	.384	1.0620	.361	1.1610
301	.8935	.312	1.0097	.340	1.0496	.302	1.4907	.342	1,0831	.402	1,0184	.382	1.0911
.322	.9133	.322	.9265	.362	.9567	.323	1.2301	.360	1,0158	.432	9969	404	1,0397
343	.9293	.341	.9241	.382	,9567	.342	1.0697	,383	,9853	.453	9967	.450	1.0030
. 362	.9423	.364	9427	,400	.9675	,362	9917	405	9840	.502	1.0001	.500	1,0003
745	.9564	.382	.9539	.433	.9845	. 383	.9716	.454	,9982	.601	1.0000	.603	1,0004
_400	.9671	405	.9706	454	.9943	.401	,9772	.501	9994	,700	1.0004	.702	1,0003
430	.9847	.452	,9944	,503	,9988	,431	.9898	,503	,9997	.801	1.0003	801	1,0003
450	.9926	,503	.9990	.604	.9990	.452	9965	.601	.9996	.904	1,0001	903	1,0001
1502	9987	.604	.9991	705	.9992	.500	.9990	.702	,9997	1.004	1.0003	996	1.0004
605	.9987	.703	.9991	.801	9991	.601	.9991	.703	,0090	1	1		ļ
700	9988	801	.9988	.903	.9991	.701	9992	.802	9997	i	1		}
804	9988	,903	.9987	1.002	.9991	.803	.9992	901	,9996				Ì
-904	.9990	,999	.9988	1	1	905	.9994	1.000	.0000	Ì			l
1.005	.9988		I		l	996	.9994	1		l .	1		I

	ב מעצ	10,800	11	.050	11	.300	11	.550	11	.80n	12	.300	12	.800
	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT
	,003	1,3362	001	1.3331	.003	1,3455	.005	1.3427	005	1,3377	000	1.3236	.007	1,3345
-	004	1.3390	021	1.3360	250	1.3480	020	1.3436	020		001	1.3228	021	
- [020	1.3394	041	1.3367	041	1.3487	.043	1.3443	043	1,3382	019	1.3241	042	1,3360
ł	,022	1 3380	066	1.3366	061	1.3486	061	1.3453	062	1,3397	021	1.3247	063	1,3372
	040	1.3380	084	1.3370	081	1,3501	082	1.3472	.081	1,3398	039	1.3254	083	
	044	1.3390	102	1.3365	102	1.3501	105	1 3456	103	1,3397	040	1 3234	101	1,3367
	061	1.3387	123	1.3379	122	1.3495	120	1.3451	123		059	1.3386		1,3351
	065	1.3409	143	1.3380	141	1.3490	141	1.3430	142	1,3377	061	1.3241	143	1,3305
- 1	,082	1.3403	165	1.3375	165	1 3446	161	1.3301	,163	1,2838	079	1,3245	160	1,3144
- 1	,082	1.3389	181	1.3348	182	1.3229	180	1,2769	183	1,2127	080	1.3239	163	1,2849
- [103	1.3403	202	1.3014	201	1.2291	203	1.1640	201	1.1269	100	1.3235	182	1,2424
- 1	106	1.3391	212	1.2246	211	1.1595	212	1.1075	209	1.0567	101	1.3262	202	1,1810
- 1	.122	1.3412	221	1,1129	219	1.0971	522	1.0545	222	1,0280	120	1,3232	214	1,1506
- [,123	1.3399	230	1.0049	152	1.0817	234	9851	231	9908	139	1.3190	224	1,1209
J	-141	1.3394	241	8980	240	9499	240	9607	240	9657	160	1.3046	231	1,1110
- 1	.141	1.3387	251	A355	250	9013	753	9177	250	9369	179	1.2705	242	1,0783
- 1	.161	1.3389	263	8155	260	8681	263	8945	252	9793	202	1.2056	249	1,0585
	.163	1.3390	272	.A183	270	8548	.271	8814	263	9064	210	1.1822	563	1.0268
- 1	.150	1.3375	.284	.8342	281	8517	284	.870B	.273	, A946	522	1.1400	271	1,0110
	.151	1.3376	.289	.8403	294	8582	290	.8714	283	A877	230	1.0930	281	,9936
	.200	1.3352	.305	.8626	.305	.8697	.302	8756	292	.AA59	.240	1.0840	292	.9717
- 1	. 202	1,3351	.322	.8841	,321	.8924	.321	.8953	304	8889	252	1.0435	301	,9570
- 1	. 214 1	1.3317	.341	9057	340	,9115	,343	9186	.322	9041	259	1.0230	322	9348
	.215	1,3304	.364	.9330	.360	.9345	.362	.9396	.342	,9230	.271	9888	342	,9235
	•555	1.2922	. 582	.9509	.381	.9534	.384	-9601	.362	9443	.279	.9747	364	.9240
	. 225	1.2509	.402	.9706	400	.9705	.400	.9718	380	9589	.291	.9493	380	9304
	.225	1.2658	425	,986R	.423	.9891	.425	,9919	.400	9769	.300	.9341	400	.9433
	.232	.9878	453	9972	.453	9980	.450	.9973	.453	9981	•355	.9112	431	,9696
Į	. 234 1	1,0230	.501	9989	505	9988	.503	.9986	,504	,9988	.339	9052	.449	9805
ł	234	.9787	509	9988	.600	9989	.604	9988	.603	9988	.360	.9105	.470	9936
- {	,240	.7736	.704	.9988	.702	9989	.705	9988	.703	,0080	.381	.9297	,499	,9982
- 1	,250	.7567	.800	.9989	804	,9988	.801	.9988	.801	9990	.400	.9457	.602	,9989
-1	,264	.7752	902	.9993	.903	,9989	902	,9989	903	9989	.448	.9837	,700	9989
-1	,270	.7832	.999	.9988	1.004	.9992	1.009	.9986	1.001	. 9993	.498	,9985	.801	9988
-1	585	.8032									.598	.9994	899	,9990
	203	.8191									.701	.9994	1,007	9990
-1	300	.8300 .8610									.800	.9992	1 1	
- 1	320	8855									.899	.9994		
- 1	340	9167					l l		j		1.000	.9993		
Ī	,364 ,381	9341		'		Í			i			}	ŧ l	
- [401	9540	·			l	i	1	- 1		1		[]	
	426	9802		į	l	l		ŀ						
- [,453	9946	'		1								<u> </u>	- 1
	499	9986			· [ļ		1						l
- 1	600	9990			ļ				- 1					
- 1	703	9989	j	1		1	'] !	
-	805	9988			ļ				ľ				1	Į.
-	903	9992]	l				1	Į.				}	
1	993	9990	ļ	l		ļ	1		1	i			[
Ĺ	لبـــــــــــــــــــــــــــــــــــــ													

Table XVII.- Pitot pressure measurements for configuration 2 at $\,$ M = 0.80 $\,$ And $\,$ $p_{t,j}/p\,$ = 2.9 $\,$

ש מעצ	10,800	11	050	11	.300	11	.550	11	.80n	1 2	300	12	.800 .
R/D	PTP/PT	R/D	PTP/PT	R/0	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT
,003	1.9248	.005	1.8425	-,004	1,9234	.002	1.7939	.001	1,9086	.002	1.8445	.003	1,7755
.021	1.9251	.022	1.8331	.022	1,9250	.020	1.7954	019	1,9091	550	1.8388	925	1,7723
041	1.9266	041	1.8135	043	1,9270	041	1.7978	042	1,9107	042	1.8374	042	1,7760
061	1.9232	062	1.8171	061	1,9292	061	1.8003	060	1,9095	500	1.8406	060	1,7812
0.01	1.9245	081	1,8230	082	1.9288	082	1.8042	080	1,9081	081	1.8380	082	1,7892
101	1.9253	103	1.8326	104	1.9294	104	1.8082	104	1,9048	102	1.8315	106	1,7965
isi	1.9191	122	1.8422	124	1.9261	125	1.6147	124	1,9045	121	1.8308	121	1.8007
143	1,9106	140	1.8504	144	1 9231	145	1.8206	140	1,8995	141	1.8290	143	1,7952
,163	1.8997	163	1.8607	163	1.9151	161	1.8277	160	1,8892	163	1.8154	162	
,180	1.8848	183	1.8678	182	1.9075	182	1.8370	180	1,8602	185	1,7660	183	1,7693
204	1.8924	202	1.8730	202	1,8912	199	1.8317	203		500	1.6964		1,7142
, 211	1,8923	211	1.8735	212	1.8541	210	1.8103	212	1,7555			102	1,6341
, 220	1.8943	225	1.8749	521	1.7826	550	1.7563		1,6886	.210	1.6385	.214	1,5555
1520	1.8968	232	1.8618	230				,221	1,6047	.224	1.5461	1221	1,5169
525	1.8961	243	1.7618		1,6876	.231	1.6745	.230	1,5060	.535	1.4874	.233	1,4488
, 241				.243	1,4850	.241	1.5532	.244	1,3734	.242	1.4025	241	1.3947
245	1.8954	.250	1.6263	.252	1,3447	,253	1.4131	.251	1,3060	.250	1.3441	.250	1.3436
251	1,8728	.260	1.3646	.262	1.2126	.261	1.3132	.260	1,2240	. 263	1.2554	.260	1,2911
, 255	1.7967	.273	1.0944	.271	1,1108	.270	1,2233	.273	1,1392	.272	1.2036	.272	1,2293
, 25 9	1.5103	,281	.9774	.281	1.0192	.282	1,1215	.283	1,0785	.283	1.1442	282	1,1835
, 265	1.2739	.290	.8937	291	.9543	.291	1.0498	,291	1,0356	.292	1.1069	293	1.1401
, 264	1.0949	305	.8451	303	.8979	.303	.9844	303	9880	305	1,0525	300	1.1127
270	.8305	,324	.8514	322	.8725	321	.9190	322	9370	.350	1.0076	322	1.0457
. 272	.8047	.341	.8733	.346	.8895	.341	.8961	342	9144	340	9575	341	9992
. 281	7682	,361	.8977	363	9086	361	9072	364	50505	362	9389	361	9682
.290	.7788	381	.9188	382	9284	381	9280	382	9358	382	9398	381	9541
291	.7813	.401	.9412	402	9505	401	9492	403	9546	402	9535	401	9557
301	,7955	.428	9701	425	9719	426	.9723	433	ROAP	430	9760	453	9848
.320	8227	450	9866	431	9771	450	9899	451	990A	451	9863	503	9984
340	8541	475	9968	454	9915	474	9973	473	9976	473	9961	602	9994
363	8848	505	9989	474	9976	502	9993	503	9992	504	9988	704	9995
382	9094	603	9995	502	9992	553	9993	605	9993	522	9987	804	,9990
402	9309	700	9997	532	9993	576	9994	700					, 9990
435	9683	804	9995	598	9994	603	9993	802	,0001	.602	.9990	903	,9990
453	9830	904	9995	700	9993	704	9995		, 9993		.9990	1,003	.9991
475	9950	1,002	9995	801	9993	802		903	5000	.801	.9990	1 1	1
7 47 3	9981	.,,,,	• *****				9995	1.002	.0003	.898	.9991	}	
501				903	.9994	.904	.9993	1		1,008	,998A		
600	,9988			1.005	.9995	1.000	.9994			1			
,702	.9992							1 1		J		1 1	
,801	.9993									Ī,		į l	
\$005	9993	}] [1		1		1	
997	.9994	1		1		1 1		1		I		i l	

Table XVIII.- Pitot pressure measurements for configuration 2 at M=0.80 and $p_{t,j}/p=5.0$

x/0 =	10.800	11	.050	11	.300	11	.550	11		1 2	300	12	.800
R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT	R/D	PTP/PT
,006	3,3001	001	2.4417	,005	1,2866	000	2,7243	+,058	3,2468	.002	1,7520	.002	2,9074
020	3,3002	= 001	2.4427	023	1,2809	.000	2.7393	- 040	3, 1748	.023	1.8094	024	3,0648
043	3.3058	001	2.4446	042	1,2689	021	2.8906	023	2,8822	040	1.8783	042	3,1642
.062	3,3051	021	2.4289	.062	1,5875	.041	2.9634	001	2,8927	.063	1 9477	,061	3,1982
080	3,3083	039	2.4047	081	1,9554	.060	2.7847	019	3,1367	.080	2.0015	,081	3,1877
, 122	3,3051	.061	2.3616	101	2.0845	.080	2.5814	042	3,2534	.100	2,0705	103	3.1827
142	3,2931	080	2.3128	.122	2,1983	101	2.5768	061	3,2845	.121	2,1493	120	3,1580
163	3,2763	104	2.2338	140	2.2760	122	2,5954	081	3,2945	.143	2,2338	142	3,0329
182	3,2377	.120	2.1763	162	2,3602	.141	2,6157	101	3.2994	.161	2.2996	.161	2,8456
200	3.1419	140	2.1532	.182	2.4272	.160	2,6395	121	3,2999	.180	2,3652	181	2,6384
,212	2.9706	161	2.4280	.200	2.4911	180	2.6675	142	3,2787	.203	2.4312	202	2.3757
. 223	2.8686	.180	2.5292	212	2,5275	.200	2.6831	163	3,1563	.212	2,4482	211	2,2615
234	2.8526	.201	2.6154	,221	2,5507	.211	2.6689	.179	2,9334	.221	2,4543	.222	2.1491
545	2,4762	.212	2.6513	.231	2,5770	.221	2.6307	.203	2,4843	.233	2,4297	.232	2,0120
246	1,5867	.221	2.6797	239	2,605A	229	2.5706	212	2,3174	.242	2.3750	241	1,9037
. 253	.7891	.232	2.7072	.245	2,6168	.241	2.4370	221	2,1698	.249	2.3057	251	1,7815
,257	.7584	241	2.7324	.251	2,6229	,253	2.2680	232	1,9983	.260	2.1874	261	1,6961
.259	,7571	.251	2.7508	.257	2.6211	,261	2.1288	,243	1,8318	.272	2.0418	271	1,5927
.267	.7628	.260	2.7697	.261	2,6043	.274	1.9187	251	1,7116	.280	1.9286	281	1,5005
, 270 °	.7654	.272	2.7483	265	2,5839	.280	1.8024	263	1,5721	.290	1.8044	292	1,4241
. 283	.7777	.282	2.5474	.270	2,5308	.290	1.6357	.270	1,4937	.301	1.6757	301	1,3547
292	.7911	.292	2.0884	,281	2.3578	.300	1.4742	.282	1,3724	.321	1.4795	,322	1,2401
302	.8031	.301	1.6902	.290	2,1483.	355	1.2115	.293	1,2765	.339	1.3095	341	1,1478
, 321	.8364	314	1.2376	.303	1.7995	.343	1.0376	.303	1,1998	.362	1.1633	361	1,0757
342	.8649	.321	1.0665	,321	1,3859	.364	,9546	.321	1,0891	,383	1.0558	,383	1,0225
364	.8947	.329	.9389	.342	1.0719	.383	9359	.342	9929	,404	.9929	,401	9955
.352	.9182	.340	.8693	.350	1.0063	.401	.9469	.363	,9573	.452	.9762	.452	9895
404	.9413	.348	.8596	.362	.9378	.451	.9870	.381	9525	.501	.9975	.501	9981
.456	.9883	.360	.8721	.382	.9089	.501	.9993	.401	9595	.604	.9992	,602	,9989
501	.9980	.382	.9023	.402	.9267	,605	.9995	.449	9917	.701	.9993	702	9988
.603	9982	.401	.9241	455	9804	.702	.9997	.504	9995	801	9993	802	9989
704	9981	451	.9791	502	9988	.802	9997	601	9994	903	.9993	903	9988
, A02	9984	501	9990	599	9997	901	9993	700	,9992	1.000	9993	998	9986
902	9984	604	9997	701	9999	1.000	9997	801	9990				-
000	9985	702	9998	800	9995	1	1 -	902	,9994				
•	1 -	802	9998	903	9995	1		994	9994				
	1	903	9999	1.010	9995	1		1	1				
	1	1.003	9999	1	*	i		1		1			I

Figure 1.- Photograph of experimental apparatus.

Figure 2.- Drawing of exhaust-nozzle simulator. (All dimensions are in centimeters unless otherwise noted.)

(a) Configuration 1.

Figure 3.- Detailed sketch of nozzle configurations with tables of geometric parameters and internal coordinates.

(All dimensions are in centimeters unless otherwise noted.)

(b) Configuration 2.

Figure 3.- Concluded.

Figure 4.- Drawing of conical survey probe. (All dimensions are in centimeters unless otherwise noted.)

Figure 5.- Pitot pressure distributions for configuration 1. Nozzle exit is located at x/D = 9.80.

(a) M = 0.40; NPR = 2.0.

(b) M = 0.40; $p_{t,j}/p = 2.9$. Figure 5.- Continued.

(c) M = 0.40; $p_{t,j}/p = 5.0$.

Figure 5.- Continued.

(d) M = 0.60; $p_{t,j}/p = 2.0$. Figure 5.- Continued.

(e) M = 0.60; $p_{t,j}/p = 2.9$. Figure 5.- Continued.

(f) M = 0.60; $p_{t,j}/p = 5.0$. Figure 5.- Continued.

(g) M = 0.80; $p_{t,j}/p = 2.0$. Figure 5.- Continued.

(h) M = 0.80; $p_{t,j}/p = 2.9$. Figure 5.- Continued.

(i) M = 0.80; $p_{t,j}/p = 5.0$. Figure 5.- Concluded.

Figure 6.- Pitot pressure distributions for configuration 2. Nozzle exit is located at x/D = 10.768.

(b) M = 0.40; $p_{t,j}/p = 2.9$. Figure 6.- Continued.

(c) M = 0.40; $p_{t,j}/p = 5.0$. Figure 6.- Continued.

(d) M = 0.60; $p_{t,j}/p = 2.0$. Figure 6.- Continued.

(e) M = 0.60; $p_{t,j}/p = 2.9$. Figure 6.- Continued.

(f) M = 0.60; $p_{t,j}/p = 5.0$. Figure 6.- Continued.

(g) M = 0.80; $p_{t,j}/p = 2.0$. Figure 6.- Continued.

(h) M = 0.80; $p_{t,j}/p = 2.9$. Figure 6.- Continued.

(i) M = 0.80; $p_{t,j}/p = 5.0$. Figure 6.- Concluded.

Figure 7.- Comparison of inviscid theory with experiment for configuration 1.

(b) M = 0.40; $p_{t,j}/p = 5.0$. Figure 7.- Continued.

(c) M = 0.80; $p_{t,j}/p = 2.9$. Figure 7.- Continued.

(d) M = 0.80; $p_{t,j}/p = 5.0$. Figure 7.- Concluded.

Figure 8.- Comparison of inviscid theory with experiment for configuration 2.

(b) M = 0.80; $p_{t,j}/p = 5.0$. Figure 8.- Concluded.

	·			
1. Report No. NASA TM-80169	2. Government Access	ion No.	3. Recip	ient's Catalog No.
4. Title and Subtitle PITOT PRESSURE MEASU	5. Repor	rt Date ecember 1979		
BEHIND CIRCULAR-ARC NOZZLES WITH EXHAUST JETS AT SUBSONIC FREE-STREAM MACH NUMBERS				rming Organization Code
7. Author(s)				rming Organization Report No. –13060
Mary L. Mason and Lawrence E. Putnam			10. Work	Unit No.
9. Performing Organization Name and Address NASA Langley Research Center Hampton, VA 23665				05-32-13-01
				act or Grant No.
			13. Type	of Report and Period Covered
12. Sponsoring Agency Name and Address			T	echnical Memorandum
National Aeronautics and Space Administration Washington, DC 20546				soring Agency Code
15. Supplementary Notes				
An experimental investigation has been conducted at sub measure the pitot pressur for two nozzle configurations, the probes at seven data acquisition stream at intervals. The tational flow-field models of inviscid jet plume theory	sonic free-stream Nove in the jet and free ons at nozzle pressu was traversed from stations. The surve pitot pressure data, as illustrated by a	Iach numb -stream r ire ratios the jet ce y began at may be ap comparise	ers. A conical egions. Pressu of 2.0, 2.9, and the line into the the nozzle exitoplied to the evaluation of the flow-field.	probe was used to re data were recorded 5.0. At each set of e free-stream region and extended down- luation of compu-
,,,, (,,,, .		18. Distribution Statement		
Nozzle drag		Unclassified - Unlimited		
Pressure drag Jet exhaust flow			-	
Flow field survey				Subject Category 02
	20. Security Classif, (of this		21. No. of Pages	22. Price*
19. Security Classif. (of this report) Unclassified	Unclassified	page)	57	\$5.25
OHOLUBBILICA	CHURCHICA		٠,	I 40.20

		•	
	•		

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business
Penalty for Private Use, \$300

THIRD-CLASS BULK RATE

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return