Version 09/19 Page **1** of **12**

RECIPE (Tutorial)

- Universal method to customize implants for patchy and even skulls

This tutorial describes how to customize and fit implants using Rhinoceros 6.0 and Fusion 360 (2018). Red numbers in brackets indicate the corresponding video tutorial.

Description of how to reconstruct the 3D skull and brain as well the designing process of the unmolded chamber for wireless recordings can be found in form of video tutorials only and are not further explained in the following (see folders).

Rhinoceros-specific pointers:

- All commands can be entered in form of a text (type in command -> press enter)

- right mouse click repeats the last command used
- bold, italic, in quotation mark written words are the respective commands that can be typed in directly in the command line
- To move parts in space press right click and drag. This is possible in all views except the "perspective" view. In the latter case press shift key + right click.
- To rotate the view keep the right mouse button pressed while dragging in the "perspective" view

Version 09/19 Page **2** of **12**

Preparatory Steps

1. [Step 1]

Import the 3D skull model to Rhinoceros 6 (Rhino).

- 2. If your animal has an even skull, you can create the 3D reference surface directly (go to point 4 / [Step 3]).
- 3. If the reconstructed skull contains uneven features, artefacts or holes, you need to patch up and remove them before continuing.

[Step 2]

Generate curve points over the reconstructed 3D skull surface by entering the command "*DrapePt*". A net of points is overlaid with the skull. Remove all points related to the uneven feature and create a mesh with "*MeshPatch*". Displace the original imported 3D skull.

Version 09/19 Page **3** of **12**

4. [Step 3]

Create a 3D reference surface by using the command "Drape".

5. Trim all parts not needed by drawing a planar line, extruding ("ExtrudeCrv") and cutting ("Trim") it.

Version 09/19 Page **4** of **12**

6. [Step 4]

Create a 2D reference plane by using "*Control Point Curve*". Make sure to draw the uneven features of your original skull reconstruction, if they are not artefacts and need to be integrated in the designing process (e.g. skull holes).

7. [Step 5]

Extrude sketch by entering the command "PlanarSrf"

8. Create holes in the 2D reference plane by making using "MakeHole".

9. **[Step 6]**

Scale the 2D reference plane so it matches the 3D skull surface ("*Scale*"). Reference plane provided in the folder "parts_to work with"->06-planarSkullSizeTemplate" can be used as a size reference for an averaged sized male macaque skull.

Version 09/19 Page **5** of **12**

Designing and fitting process - implants with maintained thickness

10. [Step 7]

To design implants where thickness after matching the skull curvature needs to be maintained, draw the sketch on the 2D reference plane (our lab: headposts and chambers' legs width <7mm so M3 screws fit in).

11. Extrude the sketch by using "ExtrudeCrv" to the thickness of your choice (our lab: 2mm). Make sure to create a "solid" extrusion (option during "ExtrudeCrv" - command). Confirm the correct position of implant on the 2D reference plane and make sure that it is placed on top and not under the reference plane.

Version 09/19 Page **6** of **12**

12. Smooth the edges of your extrusion ("*FilletEdge*").

This step needs to be performed <u>before</u> bending the legs to avoid problems in the next steps.

13. [Step 8]

To mold the created part while maintaining a constant thickness use "FlowAlongSrf" and choose the 2D planar skull surface as the reference plane and the 3D skull surface as target. Check the result by placing it onto the original reconstructed skull.

[Step 9]

When satisfied, this part can be modified further to for example create the required screw holes. These modifications can either be done in Rhino or in any other CAD software of your choice. To export for further use in a different CAD program, select the implant and export it in .STEP - format (*File -> Export Selected*).

Version 09/19 Page **7** of **12**

14. [Step 10]

Create the screw holes.

a. Either using Fusion 360Import in Fusion 360 and rescale the model (factor 0.1).

[Step 11]

The screw holes are created by drawing the sketches followed by extruding (option "cut").

Measurement summary of our lab:

Screw holes: diameter 3 mm, extrude and cut 0.6 mm depth with taper angle 0°

diameter 3 mm, extrude and cut by 1.00 mm with taper angle 45°

15. [Step 12]

Place top part of implant.

For completion purposes the ellipsoid and cylinder measurements of the headpost's top part are given. If you want to use the standard of our lab, you can simply import the file "12-Clyinder_H" and place it on top of the legs.

Ellipsoid: length 12.7 mm, width 8.00 mm, extrusion 14.00 mm

Top Cylinder: diameter 6.80 mm, extrusion 6.00 mm

Make sure to angle and rotate the top part so it's perpendicular to your skull and not tilted.

Version 09/19 Page **8** of **12**

[Step 13]

Convert the implant from "brep" to "mesh" and export implant in the file format suited for the manufacturing process of your choice. It is recommended to use .STL for 3D printing and .STEP for CNC milling.

b. Or using Rhinoceros

[Step 11- create screw holes using Rhino]

Use the command "RoundHole" and select the extruded part as the target surface. Select the suitable depth and radius for the holes and make sure to set the directions options to "SrfNormal". You can create all holes in the same process. When finished, press enter. To create a taper angle use "ChamferEdge" and set the width (our lab: 1mm). Export implant in the file format suited for the manufacturing process of your choice.

16. [Step 14]

Example Results.

Headpost designed for a skull containing holes.

Version 09/19 Page **9** of **12**

Headpost designed for an even, smooth skull of a naïve animal.

Designing and fitting process - broad-spread implants without maintaining the thickness

Implants that are spread over a large part of the skull and do not require to maintain their thickness are fitted as explained in the following.

As an example for this type of implant we will show how to design and fit a chamber for wireless recordings.

Again, all designing steps can be done in Rhino or any other CAD program of your choice, experience and convenience.

Details about the designing can be found in these video tutorials:

- a. How to design the main body https://knowledge.autodesk.com/community/screencast/e2d2ce50-7afa-4d00-a959-b472e75504fd
- b. How to create the screw attachment arms: <u>https://knowledge.autodesk.com/community/screencast/f108f929-814f-4b80-88d4-f1173e3b126e</u>
- c. (Optional) How to make a hole through the attachment arm and sphere: https://knowledge.autodesk.com/community/screencast/95b632af-a998-497e-ab5f-031518697e4e

Version 09/19 Page **10** of **12**

Before fitting a 2D and 3D reference plane and surface need to be created (see <u>Preparation</u>). If not designed in Rhino, import the raw (not molded) chamber and all its parts in Rhino after saving them in .IGES.

'Join' all parts.

Place the implant on the 3D reference skull and push it through till an intersection is created between the raw chamber and the 3D skull surface.

For fitting this type of implants use "BooleanDifference". Detailed description shown in [Step 15 - create chamber top]

Version 09/19 Page **11** of **12**

Export the fitted and customized implant in .STP format for CNC milling or importing to other CAD software. Use .STL for 3D printing.

Designing and fitting process - Hybrids

Implants requiring a mixture of both methods can be created as well.

In our example we show how to create a chamber for non-wireless recordings.

This type of implant consists of legs, which should maintain their thickness for better osseintegration and a top part which allows access to the craniotomy. This upper part does not need to maintain the same thickness but has to only follow the skull curvature.

For designing the legs the same procedure as described in "<u>Designing and fitting process - implants with</u> maintained thickness" is used.

[Step 15 - create chamber top]

The basis of the top part is a cylinder (command "Cylinder") that is created on top of the bottom part (here legs). Set the diameter and the height to your choice (our lab: diameter 24mm, end of cylinder 30mm).

Tilt and move till the top part is properly oriented and angled.

Pull the top part through both - the bottom part and the 3D skull surface - to generate an intersection. Create access to the craniotomy with "RoundHole" and select the cylinder as the "target surface". To cut through the bottom part of the implant use "RoundHole" again but set direction to "Pick" (instead of "SrfNormal").

The top part of the chamber can be fitted to the skull curvature by using the "BooleanDifference" (for details see "Designing and fitting process - broad spread implants without maintaining the thickness").

Version 09/19 Page **12** of **12**

Unfitted hybrid implant

Matched skull curvature

As the last step push the molded top part through the legs till around 1mm is sticks out on the other side. This allows a better fit to the craniotomy during surgery.

Export the implant in the appropriate file format. We recommend to use .STL for 3D printing and .STEP for CNC milling.

