L3: Surfaces (II)

Hao Su

Agenda

- Shape Operator
- First Fundamental Form
- Fundamental Theorem of Surfaces
- Gaussian and Mean Curvature

Warm Up (Review)

Differential Map

Directional Normal Curvature

Note: κ_n is not the curvature κ of γ

Principal Curvatures

Maximal curvature: $\kappa_1 = \kappa_{\max} = \max_{\varphi} \kappa_n(\varphi)$ Minimal curvature: $\kappa_2 = \kappa_{\min} = \min_{\varphi} \kappa_n(\varphi)$

Principal Directions

Euler's Theorem: Planes of principal curvature are **orthogonal** and independent of parameterization.

$$\kappa_n(\varphi) = \kappa_1 \cos^2 \varphi + \kappa_2 \sin^2 \varphi, \qquad \varphi = \text{angle with } t_1$$

- Note that
 - $\forall X$, DN_pX is in the tangent plane
 - $\forall X$, Df_pX is also in the tangent plane
- So the column space of $DN_p \in \mathbb{R}^{3\times 2}$ and $Df_p \in \mathbb{R}^{3\times 2}$ are the same
- In other words,

- Note that
 - $\forall X$, DN_pX is in the tangent plane
 - $\forall X, Df_pX$ is also in the tangent plane
- So the column space of $DN_p \in \mathbb{R}^{3\times 2}$ and $Df_p \in \mathbb{R}^{3\times 2}$ are the same
- In other words, $\exists S \in \mathbb{R}^{2\times 2}$ such that $DN_p = Df_pS$

- Note that
 - $\forall X$, DN_pX is in the tangent plane
 - $\forall X, Df_pX$ is also in the tangent plane

- So the column space of $DN_p \in \mathbb{R}^{3 \times 2}$ and $Df_p \in \mathbb{R}^{3 \times 2}$ are the same
- In other words, $\exists S \in \mathbb{R}^{2 \times 2}$ such that $DN_p = Df_pS$
- $oldsymbol{\cdot}$ S is called the **shape operator**

A Linear Map That Tells Us Normal Change

$$DN_p = Df_p S,$$

$$\therefore \quad \forall X \in \mathbf{T}_p(\mathbb{R}^2), \ [DN_p]X = [Df_p]SX$$

- Interpretation:
 - When p moves along X, we want to know the direction of normal change $\overrightarrow{d} \in \mathbb{R}^3$

A Linear Map That Tells Us Normal Change

$$DN_p = Df_p S,$$

$$\therefore \quad \forall X \in \mathbf{T}_p(\mathbb{R}^2), \ [DN_p]X = [Df_p]SX$$

- Interpretation:
 - When p moves along X, we want to know the direction of normal change $\overrightarrow{d} \in \mathbb{R}^3$
 - \overrightarrow{d} is just along the curve if p moves along SX

A Linear Map That Tells Us Normal Change

$$DN_p = Df_p S,$$

$$\therefore \quad \forall X \in \mathbf{T}_p(\mathbb{R}^2), \ [DN_p]X = [Df_p]SX$$

- Interpretation:
 - When p moves along X, we want to know the direction of normal change $\overrightarrow{d} \in \mathbb{R}^3$
 - \overrightarrow{d} is just along the curve if p moves along SX
- This $\it linear map S$ predicts the normal change when $\it p$ moves along any direction!

Computation of Principal Directions

Principal directions are the eigenvectors of S

Principal curvatures are the eigenvalues of S

• Note: S is not a symmetric matrix! Hence, eigenvectors are not orthogonal in \mathbb{R}^2 ; only orthogonal when mapped to \mathbb{R}^3

Example

Consider a nonstandard parameterization of the cylinder (sheared along z):

$$f(u, v) := [\cos(u), \sin(u), u + v]^T$$
 $Df = \begin{bmatrix} \cos(u) & 0 \\ 1 & 1 \end{bmatrix}$

(sheared along
$$z$$
):
$$f(u,v) := [\cos(u), \sin(u), u + v]^T \qquad Df = \begin{bmatrix} -\sin(u) & 0 \\ \cos(u) & 0 \\ 1 & 1 \end{bmatrix}$$

$$N = \begin{bmatrix} \cos(u) \\ \sin(u) \\ 0 \end{bmatrix} \qquad DN = \begin{bmatrix} -\sin(u) & 0 \\ \cos(u) & 0 \\ 0 & 0 \end{bmatrix}$$

$$Df(X_2) = Df(X_2)$$

$$X_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad X_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\kappa_n(X_1) = 0 \qquad \kappa_n(X_2) = 1$$

$$DN_p = Df_pS \quad \Rightarrow \quad S = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}$$

Verify the eigens of *S*

Summary of Shape Operator

 A linear map between movement of point and movement of normal change

 The eigen-decomposition gives the principal curvature direction and values

First Fundamental Form

First Claim

Curvature completely determines local surface geometry.

Does Curvature Uniquely Determine Global Geometry?

Does Curvature Uniquely Determine Global Geometry?

However,

 $\exists f \text{ and } f^* \text{ such that (principal) curvature value and directions are the same for any pair } (f_p, f_p^*), \ \forall p \in U$

Does Curvature Uniquely Determine Global Geometry?

Insufficient to Uniquely Determine the Surface

Other than measuring how the surface bends, we should also measure **length** and **angle!**

First Fundamental Form

• Defined as the inner product in $\mathbf{T}_p(\mathbb{R}^3)$:

$$\mathbf{I}_p(X,Y) = \langle Df_pX, Df_pY \rangle$$

$$\Rightarrow \mathbf{I}_p(X, Y) = X^T (Df_p^T Df_p) Y$$

- I: First fundament form, given p, we obtain a bilinear function
- I_p is dependent on both p and f

Arc-length by I(X, Y)

• Suppose a point $p \in U$ is moving with velocity X(t)

$$\gamma(t) = f(p(t)) = f(p_0 + \int_0^t X(t)dt)$$

$$\Rightarrow \gamma'(t) = Df_{p(t)}[X(t)]$$

So:

$$s(t) = \int_0^t ||\gamma'(t)|| dt = \int_0^t \sqrt{\langle Df_{p(t)}X(t), Df_{p(t)}X(t)\rangle} dt$$
$$= \int_0^t \sqrt{\mathbf{I}_{p(t)}(X(t), X(t))} dt$$

Arc-length by I(X, Y)

$$s(t) = \int_0^t \sqrt{\mathbf{I}_{p(t)}(X(t), X(t))} dt$$

With I, we have completely determined curve length within the surface without referring to f

Local Isometric Surfaces

For two surfaces M and M^* ,

- If there exists parameterizations f(U)=M and $f^*(U)=M^*$
- such that $\mathbf{I}_p = \mathbf{I}_p^*, \ \forall p \in U$
- Then the two surfaces are locally isometric

Preserve length between corresponding curves!

Local Isometric Surfaces

Verify by yourself:

$$f(u, v) = [u, v, 0]^T$$
, $f^*(u, v) = [\cos u, \sin u, v]^T$

on
$$U = \{(u, v) : u \in (0, 2\pi), v \in (0, 1)\}$$

Angle of Curves by I(X, Y)

- Suppose a point $p \in U$ is moving with velocity X at time t_0
- Its tangent is $Df_p[X]$
- Given a vector (e.g., maximal principal direction) $Df_p[Y] \in \mathbf{T}_{f_p}(\mathbb{R}^3)$

• The angle φ between the tangent and the vector is:

$$\cos \varphi = \langle \frac{Df_p X}{\|Df_p X\|}, \frac{Df_p Y}{\|Df_p Y\|} \rangle = \frac{\mathbf{I}(X, Y)}{\sqrt{\mathbf{I}(X, X)}\sqrt{\mathbf{I}(Y, Y)}}$$

Angle of Curves by I(X, Y)

$$\cos \varphi = \frac{\mathbf{I}(X, Y)}{\sqrt{\mathbf{I}(X, X)}\sqrt{\mathbf{I}(Y, Y)}}$$

With I, we have completely determined angles within the surface without referring to f

Summary of First Fundamental Form

• Is a bilinear function over movement directions (velocities) in the tangent space of $\mathbf{T}_p(\mathbb{R}^2)$

• Induced by the inner product in the tangent space at surface point f(p)

Completely determines curve lengths and angles within the surface

Fundamental Theorem of Surfaces

First and Second Fundamental Forms

• First fundamental form (angle and length):

$$\mathbf{I}(X,Y) = \langle Df_p X, Df_p Y \rangle$$

Second fundamental form (bending):

$$\mathbf{II}(X,Y) = \langle DN_p X, Df_p Y \rangle$$

Recall the definition of normal curvature:

$$\kappa_n(X) := \frac{\langle DN_p X, Df_p X \rangle}{\langle Df_p X, Df_p X \rangle} = \frac{\mathbf{II}(\mathbf{X}, \mathbf{Y})}{\mathbf{I}(\mathbf{X}, \mathbf{Y})}$$

Uniqueness Result

Theorem:

A smooth surface is determined up to rigid motion by its first and second fundamental forms.

Note: compatible first and second fundamental forms have to satisfy the Gauss-Codazzi condition (just FYI)

Gaussian and Mean Curvature

Gaussian and Mean Curvature

 Gaussian and mean curvature also fully describe local bending:

Gaussian: $K := \kappa_1 \kappa_2$

mean: $H := \frac{1}{2}(\kappa_1 + \kappa_2)$

$$H \neq 0$$

"developable"
$$K=0$$

$$H \neq 0$$

$$K=0$$

"minimal"
$$H=0$$

$$H = 0$$

Gauss's Theorema Egregium

The Gaussian curvature of an embedded smooth surface in \mathbb{R}^3 is invariant under the local isometries.

Isometric Invariance

isometry = length-preserving transform