Master en Sciences Physiques

Nanophysique PHYS-F-475

CHAPITRE 5. Carbon Structures

Exercices

I. LIENS

- 1. **Hybridization** Dériver la forme d'hybridation sp2: c'est à dire la relation entre les états 2s, $2p_x$, $2p_y$, $2p_z$ et les états hybrides.
- 2. Principe de Variation En utilisant le principe de variation, calculez l'état plus bas d'un atome d'hélium avec la fonction $\psi(\mathbf{r}_1, \mathbf{r}_2) = \frac{\alpha^2}{\pi} e^{-\alpha(r_1+r_2)}$. Quel est le résultat dans le premier ordre de la théorie de perturbation (avec l'interaction électron -électron comme perturbation)? Quelle est l'énergie d'ionisation dans chaque cas? (Notez que la partie de la fonction d'onde pour le spin donne l'antisymétrie.)
- 3. **Tight-binding.** Calculer l'intégrale de "overlap" pour les états 2s à $\mathbf{r} = \mathbf{0}$ et 2s à $\mathbf{r} = r\hat{\mathbf{x}}$.
- 4. **Tight-binding.** Calculer l'intégrale de "overlap" pour les états $2p_x$ à $\mathbf{r} = \mathbf{0}$ et $2p_x$ à $\mathbf{r} = \frac{r}{\sqrt{2}}(\hat{\mathbf{x}} + \hat{\mathbf{y}})$.

II. GRAPHENE

- 5. Vecteur de Translation Si la vecteur de translation et écrit comme $t_1\mathbf{a}_1 + t_2\mathbf{a}_2$, et si les coefficient sont fixeé par la condition $\mathbf{C}_h \cdot \mathbf{T} = 0$, où $\mathbf{C}_h = m\mathbf{a}_1 + n\mathbf{a}_2$, prouver que $t_1 = \frac{2m+n}{\gcd(2m+n,2m+n)}$, $t_2 = \frac{2n+m}{\gcd(2m+n,2m+n)}$.
- 6. Taille de l'unité cellulaire Prover que le nombre d'hexagônes par unité cellulaire est: $N = \frac{2|\mathbf{C}_h|^2}{a^2\gcd(2m+n,2n+m)}$.
- 7. Propriétés de la structure de Graphene Demontrez les éléments de la table suivant sauf celles marqueé avec (*):

TABLE I: Propriétés de la structure de Graphene

	zigzag	armchair	chiral
\mathbf{C}_h	(n,0)(*)	(n,n)(*)	(n,m)(*)
T	(1, -2)	(1, -1)	$\left(\frac{2m+n}{d_R}, -\frac{2n+m}{d_R}\right)(*)$
R	(1,-1)	(1,0)	
L/a	n	$\sqrt{3}n$	$\sqrt{n^2 + m^2 + nm}$
Т	$\sqrt{3}$	1	$\sqrt{3}L/d_R$
N. de hexagones	2n	2n	$2L^2/(a^2d_R)$