Big Data Analysis: Similarity Search

Scene Completion Problem

10 nearest neighbors from a collection of 2 million images

Similarity Search

- Many problems can be expressed as finding "similar" sets:
 - Find near-neighbors in high-dimensional space

• Examples:

- Pages with similar words For duplicate detection, classification by topic
- Customers who purchased similar products
 Products with similar customer sets
- Images with similar features Users who visited similar websites

Problem Definition

Given:

- High dimensional data points $x_1, x_2, ...$
 - For example: Image is a long vector of pixel colors
- A distance function $d(x_1,x_2)$ Which quantifies the "distance" between x_1 and x_2

Goal:

- Find all pairs of data points (x_i, x_j) that are within some distance threshold $d(x_i, x_j) \le s$

Note:

- Naïve solution would take $O(N^2)$
- where N is the number of data points

Theta Joins

Use primitive comparison operators (<,>,≤,≥,≠,=) in the join-predicates

SELECT *
FROM R, S
WHERE R.a > S.a;

	R	
	r _{id}	а
r_1	1	1
r_2	2	1
r_3	3	2
r_4	4	3
4		_

	S	
	S _{id}	a
S ₁	1	1
s_2	2	1
S_3	3	2
S_4	4	2
S ₅	5	3
s_6	6	4

Similarity Joins

- Given
 - A distance measure d
 - A threshold σ

SELECT *
FROM R as r1, R as r2
WHERE $d(r1,r2) \le \sigma$

	p _i (1)	p _i (2)	p _i (3)
p_1	0.78	0.4	0.01
p ₂	0.07	0.21	0.57
p_3	0.51	0.11	0.32
p_4	0.31	0.79	0.9
p ₅	0.77	0.42	0.02
p_6	8.0	0.39	0.04

Nested Loop Join

for each tuple t_r in r do begin for each tuple t_s located next to $\underline{t_r}$ in r do begin test pair $(t_r t_s)$ to see if they satisfy the join condition θ if they do, add $t_r \cdot t_s$ to the result.

end

end

n_r records b_r blocks

$$n_r * b_r + b_r$$
 block transfers, plus $n_r + b_r$ seeks

Block Nested Loop Join

for each block B_r of r do begin for each next block B_s of r do begin for each tuple t_r in B_r do begin for each tuple t_s in B_s do begin Check if $(t_n t_n)$ satisfy the join condition if they do, add $t_r \cdot t_s$ to the result. end end n_r records r end b_r blocks end

$$b_r * b_r + b_r$$
 block transfers, plus $n_r + b_r$ seeks

Hash Join

- Best candidate algorithm for MapReduce
- Can we use a hash join for similarity join?

DISTANCE MEASURES

Distance Measures

- A distance measure on this space is a function d(x, y) that takes two points in the space as arguments and produces a real number, and satisfies the following axioms:
 - -1. d(x, y) ≥ 0 (no negative distances).
 - 2. d(x, y) = 0 if and only if x = y (distances are positive, except for the distance from a point to itself).
 - -3. d(x, y) = d(y, x) (distance is symmetric).
 - 4. $d(x, y) \le d(x, z) + d(z, y)$ (the triangle inequality).

Jaccard Similarity

- Jaccard coefficient/similarity
 - The Jaccard similarity of two sets is the size of their intersection divided by the size of their union:

$$sim(C_1, C_2) = |C_1 \cap C_2|/|C_1 \cup C_2|$$

■ Jaccard distance: $d(C_1, C_2) = 1 - |C_1 \cap C_2|/|C_1 \cup C_2|$

Figure 3.1: Two sets with Jaccard similarity 3/8

Exercise

- Exercise 3.1.1 :
 - Compute the Jaccard similarities of each pair of the following three sets.
 - {1, 2, 3, 4}, {2, 3, 5, 7}, and {2, 4, 6}.

Euclidean Distance

- An n-dimensional Euclidean space
 - points are vectors of n real numbers
- The conventional distance measure in this space,
 - which we shall refer to as the L2-norm, is defined:

$$d([x_1, x_2, \dots, x_n], [y_1, y_2, \dots, y_n]) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Euclidean Distance

L_r-norm

$$d([x_1, x_2, \dots, x_n], [y_1, y_2, \dots, y_n]) = (\sum_{i=1}^n |x_i - y_i|^r)^{1/r}$$

- L_1 -norm
 - Manhattan distance
- L_{∞} -norm
 - the maximum of $|x_i y_i|$ over all dimensions i

Exercise

- Example 3.12 :
 - Consider the two-dimensional Euclidean space (the customary plane) and the points (2, 7) and (6, 4).
 - What is Euclidean distance?
 - − What is L₁-norm?
 - What is L_{∞} -norm?

Cosine Distance

- Given
 - two vectors x and y,
- The cosine of the angle between them is
 - the dot product $x \cdot y$ divided by the L_2 -norms of x and y (i.e., their Euclidean distances from the origin).

$$\cos(x, y) = \frac{\sum_{i=1}^{d} x_i y_i}{\sqrt{\sum_{i=1}^{d} x_i^2} \sqrt{\sum_{i=1}^{d} y_i^2}}$$

Exercise

- Let
 - our two vectors be x = [1, 2, -1] and y = [2, 1, 1]
- Cosine of the angle between x and y?

Hamming Distance

- Given a space of vectors,
 - we define the Hamming distance between two vectors to be the number of components in which they differ
- Example
 - The Hamming distance between the vectors 10101 and 11110 is 3.

VECTOR SIMILARITY JOIN WITH MAPREDUCE

Vector Similarity Join with MapReduce

All pair partition algorithm

- Distribute all pairs of records
- A naïve algorithm
 - [Elsayed, Lin, Oard: HLT 2008]
 - Build inverted lists for <u>all dimensions</u>
- Prefix-filtering algorithms
 - [Baraglia, Morales and Lucchese, ICDM, 2010]
 - Build inverted lists of a subset of dimensions
- Bucket-filtering algorithm for Euclidean distance
 - [Kim, Shim, ICDE: 2012]
 - Build inverted lists with <u>a set of sub-ranges in a subset of dimensions</u>

Hash Join

- Best candidate algorithm for MapReduce
- Can we use a hash join for similarity join?
 - → Send each record
 to the bucket
 (reduce) where
 we need it to compute
 every pair of distance

All Pair Partitioning Algorithm (Self-join)

Simply divide and distribute the computations to find similar pairs into several reducers

- Record groups
 - D₁, D₂, ..., D_m: m distinct groups of records
- Map function
 - For each record p in the group Di, emit key-value pairs
 - $<(1,D_i), p>,...,<(D_i, D_i), p>,...,<(D_i, D_m), p>$
- Reduce function
 - (Dx, Dy): a partition to compute the similarities of all pairs of records from Dx and Dy $(x \le y)$
 - Dx = Dy : self join in <math>Dx(=Dy)
 - Dx ≠ Dy : Cartesian join between Dx and Dy

All Pair Partitioning Algorithm

$$h(p_i) = \lceil i/2 \rceil$$

	p _i (1)	p _i (2)	p _i (3)
p_1	0.78	0.4	0.01
p ₂	0.07	0.21	0.57
p ₃	0.51	0.11	0.32
p_4	0.31	0.79	0.9
p ₅	0.77	0.42	0.02
p ₆	8.0	0.39	0.04

Key	Value	Key	Value	Key	Value
(1,1)	$p_1 = <0.78, 0.4, 0.01>$	(1, <mark>2</mark>)	p ₃ = <0.51, 0.11, 0.32>	(1, <mark>3</mark>)	p ₅ =
(<mark>1</mark> ,2)	$p_1 = <0.78, 0.4, 0.01>$	(2,2)	p ₃ = <0.51, 0.11, 0.32>	(2 <mark>,3</mark>)	p ₅ =
(<mark>1</mark> ,3)	$p_1 = <0.78, 0.4, 0.01>$	(<mark>2,</mark> 3)	p ₃ = <0.51, 0.11, 0.32>	(3,3)	p ₅ =
(1,1)	p ₂ = <0.07, 0.21, 0.57>	(1, <mark>2</mark>)	p ₄ =	(1, <mark>3</mark>)	p ₆ =
(<mark>1</mark> ,2)	p ₂ = <0.07, 0.21, 0.57>	(<mark>2,2</mark>)	p ₄ =	(2 <mark>,3</mark>)	p ₆ =
(<mark>1</mark> ,3)	p ₂ = <0.07, 0.21, 0.57>	(<mark>2,</mark> 3)	p ₄ =	(3,3)	p ₆ =

(m=3) groups

All Pair Partitioning Algorithm

	p _i (1)	p _i (2)	p _i (3)
p ₁	0.78	0.4	0.01
p ₂	0.07	0.21	0.57
p ₃	0.51	0.11	0.32
p_4	0.31	0.79	0.9
p ₅	0.77	0.42	0.02
p_6	0.8	0.39	0.04

Key	Value
(p_1, p_2)	0.92

Output pairs satisfying the

threshold only

Key	Value
(p_1, p_3)	0.50
(p_2, p_3)	0.52
	•••

Key	Value
(p_3, p_4)	0.92

(m=3) groups

Sort key-value pairs in the order of key & group by key

The number of similarity computation

$$= (n/m) (n/m-1) / 2 * m + (n/m) * (n/m) * m(m-1)/2$$

$$=1*3+4*3$$

$$= n(n-1) / 2$$

= 15

.

SET SIMILARITY JOIN USING MAPREDUCE

A Traditional Brute-force Algorithm

- Enumerate every pair of records and compute their similarities
- Expensive for large datasets
 - $O(|R|^2)$ similarity computations

Similarity Joins using Inverted Lists

- Make an inverted lists for all items in set data
- Generate candidates by considering every pair of record IDs in the each inverted list
- Find similar pairs by verifying each candidate
 - Relationship between Jaccard and Overlap similarity measures
 - Jaccard(x, y) $\geq \sigma \Leftrightarrow$ Overlap(x, y) $\geq \sigma / (1+\sigma) \cdot (|x| + |y|) = \alpha$
 - We call α the overlap threshold
 - Check overlap(x,y) $\geq \alpha$ instead of Jaccard(x,y) $\geq \sigma$

Building Inverted Lists

- While scan each record in the data
 - Insert the identifier of the record (RID) into the inverted list entries of its items

RID	Items
R ₁	C,D,E
R_2	A, B, E, F, G
R_3	A, B, C, D, E
R_4	B, C, D, E, F
R ₅	A, E, G

Item	RIDs
Α	R_2
В	R_2
С	R ₁
D	R ₁
E	R_2
F	R_1 , R_2
G	R_2

Building Inverted Lists

- While scan each record in the data
 - Insert the identifier of the record (RID) into the inverted list entries of its items

RID	Items
R ₁	C, D, F
R ₂	A, B, E, F, G
R ₃	A, B, C, D, E
R_4	B, C, D, E, F
R ₅	A, E, G

Item	RIDs
Α	R_2 , R_3 , R_5
В	R_2 , R_3 , R_4
C	R ₁ , R ₃ , R ₄
D	R ₁ , R ₃ , R ₄
E	R_2 , R_3 , R_4 , R_5
F	R_1 , R_2 , R_4
G	R_2 , R_5

Generating Candidates

- Generate candidates by making every RID pair in the each inverted list entry
 - Increase the overlap of the candidate pair

Item	RIDs	Candidate pair	Overlap
Α	(R_2, R_3, R_5)	(R_2, R_3)	1
В	R ₂ , R ₃ , R ₄	(R_3, R_5)	1
C	R_1 , R_3 , R_4	(R_2, R_5)	1
D	R_1 , R_3 , R_4		
E	R_2 , R_3 , R_4 , R_5		
F	R_1 , R_2 , R_4		
G	R ₂ , R ₅		

Generating Candidates

- Generate candidates by making every RID pair in the each inverted list entry
 - Increase the overlap of the candidate pair

Item	RIDs		Candidate pair	Overlap
Α	R_2 , R_3 , R_5		(R_2, R_3)	2
В	R_2 , R_3 , R_4		(R_3, R_5)	1
С	R ₁ , R ₃ , R ₄		(R_2, R_5)	1
D	R_{1} , R_{3} , R_{4}		(R_3, R_4)	1
Е	R_{2} , R_{3} , R_{4} , R_{5}	No.	(R_2, R_4)	1
F	R_1 , R_2 , R_4			
G	R_2 , R_5			

Generating Candidates

- Generate candidates by making every RID pair in the each inverted list entry
 - Increase the overlap of the candidate pair

Item	RIDs
Α	R_2 , R_3 , R_5
В	R_2 , R_3 , R_4
С	R_1 , R_3 , R_4
D	R_1 , R_3 , R_4
E	R_2 , R_3 , R_4 , R_5
F	R ₁ , R ₂ , R ₄
G	R_2 , R_5

	Candidate pair	Overlap
	(R_2, R_3)	3
	(R_3, R_5)	2
90	(R_2, R_5)	3
	(R_3, R_4)	4
	(R_{2}, R_{4})	3
	(R_1, R_3)	2
	(R_{1}, R_{4})	3

Candidate pair	Overlap
(R_4, R_5)	1
(R_1, R_2)	1

Finding Similar Pairs

Jaccard coefficient threshold $\sigma = 0.6$ Recall Jaccard(x, y) $\geq \sigma \Leftrightarrow O(x, y) \geq \alpha = \sigma/(1+\sigma)(|x| + |y|)$

Substitute σ We need the size values of each record

Candidate pair	Overlap	Overlap threshold c
(R_2, R_3)	3	3.75
(R_{3}, R_{5})	2	
(R_2, R_5)	3	
(R_3, R_4)	4	
(R_2, R_4)	3	
(R_1, R_3)	2	
(R_1, R_4)	3	
(R_4, R_5)	1	
(R_1, R_2)	1	

RID	Size
R ₁	3
R_2	5
R_3	5
R_4	5
R ₅	3

Calculate each record size

Verifying Candidates

Jaccard coefficient threshold $\sigma = 0.6$ Recall Jaccard(x, y) $\geq \sigma \Leftrightarrow O(x, y) \geq \alpha = \sigma/(1+\sigma)(|x| + |y|)$

Candidate pair	Overlap	Overlap threshold α	Overlap is smaller than
(R_2, R_3)	3	3.75	the overlap threshold α \Rightarrow Not a similar pair
(R_3, R_5)	2	3	
(R_2, R_5)	3	3	Similar pair
(R ₃ , R ₄)	4	3.75	(R_2, R_5)
(R_2, R_4)	3	3.75	(R ₃ , R ₄)
(R_1, R_3)	2	3	(R ₁ , R ₄)
(R_1, R_4)	3	3	
(R_{4}, R_{5})	1	3	
(R_1, R_2)	1	3.75	