Y. Bases

Let
$$G \in Sym(SL)$$
, here $|SL| < \infty$ and G is transitive
Point stabiliser: $G_{\alpha} = \{g \in G : \alpha^g = \alpha\}$.

Note $G_{\alpha} = 1$.

Question. Any subset
$$\Delta \subseteq \Omega$$
 with $\bigcap_{\alpha \in \Delta} G_{\alpha} = 12$

Examples

$$G = S_n$$
, $|\Omega| = n$, $\Delta = \{1, ..., n-1\}$ $\{b(G) = n-1\}$ $\{r(G) = 1\}$

- G = Dzn,
$$|S| = n$$
. $\Delta = \{1,2\}$ $[b(G) = 2]$ $[r(G) = [\frac{1}{2}] - 1$

a contains a basis of
$$V$$
. $b(6) = dim V$! $c(6) = 1$

-
$$G = S_n$$
, $SL = \{k-subsets of [n]\}$, $2k = n$
 $A = \{\{1,...,k\}, \{2,...,k+1\}, ..., \{n-k+1, ...,n\}\}$

1

Def. $\Delta \subseteq \Omega$ is called a base for G of $\alpha \in \Delta$ $G_{\alpha} = 1$.

. The base site of G, denoted b(G), is the minimal site of a base for G.

Note b(G) = min { K | G has a regular orbit on Σ^k }.

Q1 Determine 6(G)?

QZ Classify G with b(G) = 2?

Let r(G) be the number of regular Gorbits on 52 6(6)

Q3 Determine r(G)?

Q4 c(assify G with v(G) = 1?

Lower bound

Let Δ be a base of size b(G) and $x,y \in G$. Then $\alpha^{\times} = \alpha^{\times} \quad \forall \, x \in \Delta \iff xy^{\top} \in \bigcap_{x \in \Delta} G_{x}$ $\iff x = y.$

That is,

elements of $G < \frac{1-1}{2}$ images of G.

Hence, $|G| \leq |G|$ and so $b(G) \approx log_{|G|} |G|$.

Upper bound $b(G) \leq log_2 |G|$

opper bound

Primitive groups

"Primitive" = "transitive" + "Gx K G".

e.g. $G = D_{2n}$, $|\mathcal{N}| = n$. Then G is principle \iff n is prine. Halasi, Liebeek & Maróti, 2019: $b(G) = 2log_{152}|G| + 2\psi$. (originally Pyber's conjecture).

O'Nan - Scott

Finite primitive groups are divided into 5 types:

- Affine
- Almost simple
- · Diagonal type
- · Product type
- Twisted wreath product

2. Diagonal type

Let T be a non-abelian finite simple group and let $D = \{(t, \dots, t) : t \in T\} \leq T^k$

Then T's Sym(se) with Se = [T':D]

A group G is said to be of <u>diagonal type</u> if $T^{k} \supseteq G \subseteq N_{Sym(3L)}(T^{k}) \cong T^{k}. (Out(T) \times S_{k}).$

Note G induces PG = Sk, so Tk = G = Tk. (Out(T) × PG)

Lemma G is primitive (=) P_G is primitive, or k=2 and $P_G=1$ $T: Inn(T) \leq G \leq T: Aut(T) = Hol(T)$

Theorem (Fawcett, 2013)

- · PG & {AK, SK} => 6(G) = 2
- · $PG \in \{A_K, S_k\}$ and $b(G) = 2 \Rightarrow 2 < k < |T|$

key observation

b(G) = 2 if $\exists S \subseteq T$ s.t. |S| = k and $Hol(T)_{SS} = 1$. Setwise stabilises

```
An approach
```

Let $A = \{S \subseteq T : |S| = k \text{ and } Hol(T)_{SS} \neq 1\}.$ Suppose $S \in A$. Then $\exists \sigma \in Hol(T)_{SS}$ of prime order.
Thus

Thus, $S \in fix(\sigma,\kappa) = \{S \subseteq T : |S| = \kappa \text{ and } \sigma \in H_0(T)_{\{S\}} \}.$

Let P be the set of elements of Ho(Ci) of prime order. Then

| A | = | D fix(o, K) |

 $\leq \sum_{\sigma \in \mathcal{P}} |f_{ix}(\sigma,\kappa)| = : m$

 $\frac{N_{\text{ote}}}{b(6)} = 2$ if $m < \binom{|T|}{k}$.

3. Results (Here & is a diagonal type primitive group)

Theorem (H, 2024) If $3 \le k \le |7|-3$, then $\exists S \subseteq T$ s.t.

151= k and Ho((T) {53} = 1.

Theorem (H, 2024) 3 (G) = 2 iff

- · PG & {AK, SK}
- . 3 ≤ k ≤ [7] -3

· $k \in \{171-2, 171-1\}$ and $S_k \notin G$. Theorem (H, 2024) If b(G) = 2, then r(G) = 1 iff

G= TE. (Out(T) x Sk), T=As, KE {3,57}

Theorem (H, 2024) b(G) is computed in all cases.

Theorem (Freedman, H, Lee, & Rekvényi, 2024+) b(a)>2=)r(a)>1.