I Geometrische Algorithmen

1 Bewegungsplanung bei unvollständiger Information

1.1 Ausweg aus einem Labyrinth

1.1.1 Pledge-Strategie

Input: polygonales Labyrinth L, Roboter R, Drehwinkel $\varphi \in \mathbb{R}$ Output: Ausweg aus Labyrinth falls möglich, ansonsten Endlosschleife

· While $R \in L$ gehe vorwärts, bis $R \notin L$ oder Wandkontakt gehe links der Wand, bis $R \not\in L$ oder $\varphi = 0$

1.2 Zum Ziel in unbekannter Umgebung

1.2.1 Wanze (Bug)

- $\begin{array}{l} P_1,\dots,P_n \text{ disj. einf. zsh. endl.} \\ \text{poly. Gebiete aus } \mathbb{R}^2 \\ \cdot \mathbf{s},\mathbf{z} \in \mathbb{R}^2 \setminus \bigcup_{i=1}^n P_i \\ \cdot \text{ R Roboter mit Position } \mathbf{r} \end{array}$

- While $\mathbf{r} \neq \mathbf{z}$ laufe in Richtung \mathbf{z} bis $\mathbf{r} = \mathbf{z}$ oder $\exists i : r \in P_i$ If $\mathbf{r} \neq \mathbf{z}$ umlaufe P_i und suche ein $\mathbf{q} \in \arg\min_{\mathbf{x} \in P_i} ||\mathbf{x} - \mathbf{z}||_2$ gehe zu **q**

terminiert.

Universales Steuerwort: Führt für alle Startpunkte zum geg. Ziel. (ungültige Befehle werden ignoriert)

1.3 Behälterproblem (bin packing)

Maximale Füllmenge h, verteile Zahlenmenge auf möglichst wenige Behälter. NP-hart.

First fit ·

 $\cdot \ B_1, \dots, B_m \leftarrow \emptyset$ For i = 1, ..., mBestimme kleinstes j mit

 $b_i + \sum_{b \in B_j} b \le h$ Füge b_i zu B_j hinzu

2-kompetitiv

Falls $k_A \leq a + ck_{min}$ für alle Eingaben, heißt A c-kompetitiv.

Türsuche ·

- Wähle Erkundungstiefen $f_i > 0$
- For i := 1 to ∞ (stoppe, wenn Tür gefunden) gehe \boldsymbol{f}_i Meter die Wand entlang und zurück wechsle Laufrichtung

 $d:=\mathrm{dist}(\mathbf{s},\mathrm{T}\ddot{\mathbf{u}}\mathbf{r})=f_n+\varepsilon\in$ $(f_n, f_{n+1}]$ Legt $L = 2\sum_{i=0}^n f_i + d$ zurück $(oder^{n+1})$ $\stackrel{\cdot}{L} \in \Theta(n^2) = \Theta(d^2)$ Bestmöglich: 9-kompetetitiv (z.B. für $f_i = 2^i$)

1.4 Sternsuche

Gleich Türsuche, nur mit mehr als zwei Wänden (Halbgeraden). Bestmöglich: Für $f_i = (\frac{m}{m-1})^i$ Stern suche c-kompetitiv mit $c:=2m(\frac{m}{m-1})^{m-1}+1<2me+1$

1.5 Suche in Polygonen

Roboter R sucht Weg in polygonalem Gebiet P mit n Ecken von s nach z.

Weglängen: gefunden: l, kürzest: dStrategie existiert mit $\frac{l}{d} \in O(n)$ Baum der kürzesten Wege (BkW) (Blätter sind Polygonecken)

2 Konvexe Hüllen

2.1 Dualität

$$\mathbf{x} \coloneqq \begin{bmatrix} 1 \\ \bar{\mathbf{x}} \end{bmatrix}, \bar{\mathbf{x}} \in \mathbb{R}^d$$

bilden affinen Raum A^d .

$$\mathbf{u}^t\mathbf{x} := \left[\begin{smallmatrix} u_0 & u_1 & \dots & u_d \end{smallmatrix} \right] \cdot \left[\begin{smallmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{smallmatrix} \right] \geq 0$$

 ${\bf u}$ bezeichnet Halbraumvektor und x einen seiner Punkte

Nur betrachtet mit $\begin{pmatrix} 1 & 0 & \dots & 0 \end{pmatrix}^t$ im Inneren, d.h. $u_0 > 0$, normiert $u_0 = 1$. \mathbf{u}^* ist dualzu \mathbf{u} und bezeichnet den Halbraum.

 $\mathbf{x} \in \mathbf{u}^* \Leftrightarrow \mathbf{u} \in \mathbf{x}^* \text{ (Dualität)}$

2.2 Konvexe Mengen

Verbindungsstrecke $\mathbf{x} := \mathbf{a}(1-t) + \mathbf{b}t, \quad t \in [0,1] \text{ wird}$ genannt ab.

 $M\subset A$ ist konvexwenn sie zu je zwei ihrer Punkte auch die Verbingungsstrecke enthält.

Konvexe Hülle [M] von M ist Schnitt aller konvexen Obermengen.

Ist $M \subset A$ bilden alle Halbräume, die M enthalten, eine konvexe Menge im Dualraum.

Ist $M^* \subset A^*$ eine Halbraummenge, bilden alle Punkte, die in allen $m^* \in M^*$ enthalten sind, eine konvexe Menge im Primalraum A.

2.3 Konvexe Polyeder P

ist Schnitt endlich vieler Halbräume.

Rand ∂P ; Facetten darauf. Jede Facectte liegt auf Rand eines Halbraums (FHR)

P ist konvexe Hülle seiner Eckenmenge

Ist P ein konvexes Polyeder mit den Ecken $\mathbf{p}_1, \dots, \mathbf{p}_e$ und den FHRen $\mathbf{u}_1^*, \dots, \mathbf{u}_f^*,$ hat die Menge $U^* := \{\mathbf{u}^* | \mathbf{u}^* \supset P\} \subset A^* \text{ die Ecken}$ $\mathbf{w}_1^*, \dots, \mathbf{w}_f^*$ und die FHRe $\mathbf{p}_1, \dots, \mathbf{p}_e$. Dual ausgedrückt heißt das, dass die Menge

 $U := \{ \mathbf{u} | \mathbf{u}^* \supset P \} \subset A$ die Ecken \mathbf{w}_i und die FHRe \mathbf{p}_i^* hat.

Polyeder P und $U\subset A$ heißen dual zueinander.

2.4 Euler: Knoten, Kanten, **Facetten**

v Knoten, e Kanten, f Seiten Eulers Formel: v - e + f = 2

2.5 Datenstruktur für Netze

Für jede Ecke \mathbf{p} :

- · Koordinaten von \mathbf{p}
- \cdot Liste von Zeigerpaaren: die ersten Zeiger im Gegenuhrzeigersinn auf alle Nachbarn von ${\bf p}$ Sind $\mathbf{p}, \mathbf{q}, \mathbf{r}$ im GUS geordnete Nachbarn einer Facette und weist der 1. Zeiger eines Paares auf q, zeigt der 2. Zeiger indirekt auf r. Er weist auf das Zeigerpaar von q

2.6 Konvexe Hülle

Input: $P := (\mathbf{p}_1, \dots, \mathbf{p}_n) \subset A^3$ Output: [P]

- 1. Verschiebe P sodass Ursprung in P liegt

- $\begin{array}{l} \text{2. } U_4 \leftarrow \mathbf{p}_1^* \cap \ldots \cap \mathbf{p}_4^* \\ \text{3. For } i = 5, \ldots, n \\ & \cdot \text{ (falls } U_4 \subset \mathbf{p}_i^*, \text{ markiere } \mathbf{p}_i \\ \end{array}$ als gelöscht
 - sonst verknüpfe \mathbf{p}_i bidirektional mit einem Knoten von $U_4 \notin \mathbf{p}_i^*$
- 4. For $i=5,\dots,n$
 - $\cdot \ U_i \leftarrow U_{i-1} \cap \mathbf{p}_i^*$...zeug
- 5. Dualisiere, verschiebe und gib $\bigcap_{\mathbf{u}\in U}\mathbf{u}^*-\mathbf{v}$ aus

3 Distanzprobleme 3.1 Voronoi-Gebiet

eines der Punkte \mathbf{p}_i ist

 $V_i = \{\mathbf{x} \in \mathbb{R}^2 | \forall j = 1, ..., n: \ ||\mathbf{x} - \mathbf{p}_i||_2 \le ||\mathbf{x} - \mathbf{p}_j||_2 \}$ V_i ist konvex da Schnitt der Halbebenen.

Voroni-Kreis (Punkte des Schnitts von drei Voronoi-Gebieten) ist leer.

3.2 Delaunay-Triangulierung

Delaunay-Triangulierung D(P)einer Punktemenge P hat Kantenmenge $\{\mathbf{p}_i\mathbf{p}_j|V_i\cap V_j \text{ ist }$ Kante des Voronoi-Diagramms V(P).

Ist der zu V(P) duale Graph. Die Gebiete von D(P) sind disjunkte Dreiecke und zerlegen die konvexe Hülle [P]

3.2.1 Eigenschaften

- 1. Umkreise der Dreiecke sind leer
- 2. Paraboloid-Eigenschaft:

Sei
$$Z(x,y) = x^2 + y^2$$
.

Projiziert man den unteren Teil der konvexen Hülle $[\{\begin{pmatrix}\mathbf{p}_i\\Z(\mathbf{p}_i)\end{pmatrix}|i=1,\dots,n\}]$ orthogonal auf die xy-Ebene, erhält man D(P)

- · D(P) kann mit Konvexe Hülle und mittlerem Aufwand $O(n \log n)$ berechnet Werden
- · Kanten einer Triangulierung von Q sind konvex (Tal) oder konkav (Berg), ersetze sukzessiv in konkave durch konvexe Kanten
- 3. Winkeleigenschaft: Der kleinste Winkel in jedem Viereck ist größer bei DT als

bei jeder anderen Triangulierung

- 4. jeder Punkt \mathbf{p}_i ist mit nächstem Nachabarn durch Kante in D(P) verbunden \rightarrow nächste Nachbarn aller p_i können in O(n) bestimmt werden
- 5. minimale Spannbäume von P liegen auf D(P) (findbar mit Kruskal (greedy))
- 6. Rundweg um minimalen Spannbaum ist 2-kompetitiv zu kürzestem Rundweg.

II Unterteilungsalgorithmen

4 Stationäre Unterteilung für Kurven

4.1 Kardinale Splines

$$N^{0}(u) := \begin{cases} 1, & u \in [0, 1) \\ 0, & sonst \end{cases}$$

$$N^{n}(u) := \int_{u-1}^{u} N^{n-1}(t) dt$$

$$N^{n}(u) \begin{cases} = 0, & u \notin [0, n+1) \\ > 0, & u \in (0, n+1) \end{cases}$$

4.2 Symbole

Dopplungsmatrix: $\alpha_0(z) = 1 + z$ Mittelungsmatrix: (z) = (1+z)/2Lane-Riesenfeld-Algorithmus: $\alpha_n(z)=\frac{(1+z)^{n+1}}{2^n},$ Differenz: $\beta(z)=\alpha_{n-1}(z)/2$ Chaikin: $\alpha_1(z) = \frac{1}{2}(1+z)^2$ Differenzenschema zu einem $\alpha(z)$: $\beta(z) = \frac{\alpha(z)}{1+z}$ (Polynomdivision). Existiert nur wenn $\alpha(z)$ den Faktor (1+z) hat, bzw. wenn $\alpha(-1) =$ $\sum_{j\in\mathbb{Z}}\alpha_{2j}-\sum_{j\in\mathbb{Z}}\alpha_{2j+1}=0$ Für konvergentes $\alpha(z)$ gilt $\sum_{j\in\mathbb{Z}}\alpha_{2j}=\sum_{j\in\mathbb{Z}}\alpha_{2j+1}=1$ Existiert das r-te Ableitungsschema von und ist konvergent,

Folgen $(c^m)_{m\in\mathbb{N}}$ gegen r-mal stetig differenzierbare Funktionen. konvergent: für jede Maske ist die Summe der Gewichte 1

konvergieren alle durch erzeugten

5 Unterteilung für Flächen

Matrix $C = \mathbf{c}_{\mathbb{Z}^2}$ hat das Symbol

$$\begin{split} \mathbf{c}(\mathbf{x}) &\coloneqq \mathbf{c}(x,y) \\ &\coloneqq \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} \mathbf{c}_{ij} x^i y^j \\ &\coloneqq \sum_{\mathbf{i} \in \mathbb{Z}^2} \mathbf{c}_{\mathbf{i}} \mathbf{x}^{\mathbf{i}} \end{split}$$

Seien U,V Unterteilungsalgorithmen mit Symbol $\alpha(x), \beta(x)$ Das Unterteilte Netz $B := \mathbf{b}_{\mathbb{Z}^2} := UCV^t$ hat das Symbol $\mathbf{b}(x,y) \coloneqq \alpha(x)\mathbf{c}(x^2,y^2)\beta(y)$ $\gamma(x,y) := \alpha(x)\beta(y)$ ist das Symbol des Tepus(U, V) mit der Unterteilungsgleichung $\mathbf{b}(\mathbf{x}) =$ $\gamma(\mathbf{x})\mathbf{c}(\mathbf{x}^2)$ $\mathbf{b_i} = \sum_{\mathbf{k} \in \mathbb{Z}^2} \gamma_{\mathbf{i}-2\mathbf{k}} \mathbf{c_k}$ $\mathbf{x}^2 = (x^2, y^2)!$ $\label{the vertein} \textit{Verfeinerungs schema} \ (U_1, U_1) \text{:}$

$$\begin{array}{c} \gamma(x,y) := \\ \frac{1}{4}[1\,x\,x^2] \begin{bmatrix} 1\\2\\1 \end{bmatrix} \cdot [1\,2\,1] \begin{bmatrix} 1\\y\\y^2 \end{bmatrix} \end{array}$$

5.1 Masken

III Graphen-Algorithmen

6 Flussmaximierung

Flussnetzwerk F := (G = $(V,E), q \in V, s \in V, k: V^2 \to \mathbb{R}_{\geq 0})$ Graph zusammenhängend (für jeden Knoten ex. Weg von q zu s), $\begin{aligned} |E| &\geq |V| - 1 \\ \text{Fluss } f: V^2 \rightarrow \mathbb{R} \text{ mit} \end{aligned}$

 $(2) \ \forall x,y \in V: f(x,y) = -f(y,x)$

(3) $\forall x \in V \setminus \{q, s\} : \sum_{y \in V} f(x, V) := \sum_{y \in V} f(x, y) = 0$

Residual graph $G_f := (V, E_f :=$ $\{e \in V^2 | f(e) < k(e)\})$ Residualnetz $\boldsymbol{F}_f := (\boldsymbol{G}_f, \boldsymbol{q}, \boldsymbol{s}, \boldsymbol{k}_f := \boldsymbol{k} - f)$

6.1 Methoden

6.1.1 Ford-Fulkerson (naiv)

solange es einen Weg $q \leadsto s$ in G_f gibt, erhöhe f maximal über diesen Weg.

6.1.2 Edmonds-Karp

=FF, erhöhen immer längs eines kürzesten Pfades in G_f

6.1.3 Präfluss-Pusch Push(x,y)

- $\cdot \ d \leftarrow \min\{\ddot{\mathbf{u}}(x), k_f(x,y)\}$
- $f(x,y) \stackrel{\cdot}{+} d$
- $\cdot \ \ddot{\mathbf{u}}(x) \mathrel{-}{=} d$
- $\ddot{\mathbf{u}}(y) += d$

Pushbar(x,y) ·

- $\cdot \ x \in V \setminus \{q, s\}$
- · und h(x) h(y) = 1
- \cdot und $\ddot{\mathbf{u}}(x) > 0$
- \cdot und $(x,y) \in E_f$

 $h(x) \leftarrow 1 + \min_{(x,y) \in E_f} h(y)$

- $\cdot \ x \in V \setminus \{q,s\}$
- $\ddot{\mathbf{u}}(x) > 0$
- $\cdot \ \stackrel{\cdot}{h(x)} \leq \min_{(x\,,\,y) \in E_f} h(x)$

Präfluss-Push:

- · for all $x, y \in V$
- · $h(x) \leftarrow \text{if } x = q \text{ then } |V| \text{ else } 0$
- $f(x,y) \leftarrow \text{if } x =$
- q then k(x, y) else 0
- solange es eine erlaubte Push oder Lift-Operation gibt, führe beliebige aus

6.1.4 An-Die-Spitze Leere(x)

while $\ddot{\mathbf{u}}(x) > 0$ $\text{if } i_x \leq Grad(x) \\$ if $\operatorname{pushbar}(x,n_x(i_x))$: $\operatorname{push}(x,n_x(i_x))$ sonst: $i_x += 1$ Lift(x) $i_x \leftarrow 1$

List Liste aller $x \in V \setminus \{q,s\}$ mit x vor y falls pushbar(x,y) $n_x(i)$ $(1 \le i \le Grad(x))$ sind Nachbarn von x (auch Gegenrichtung) i_x ist Zähler (alle $n_x(i)$ mit $i \leq i_x$ nicht pushbar)

An die Spitze · Initialisiere f und h wie bei Präfluss-Push

 $\begin{array}{l} \cdot \ \forall x \in V : i_x \leftarrow 1 \\ \cdot \ \text{Generiere L} \end{array}$ $\cdot x \leftarrow \text{Kopf}(L)$ $\begin{array}{c} \text{while } x \neq \text{NIL} \\ h_{alt} \leftarrow h(x) \end{array}$ Leere(x) Falls $h_{a\,l\,t} < h(x),$ setze x an Spitze von L $x \leftarrow \text{Nachfolger von x in L}$

7 Zuordnungsprobleme 7.1 Paaren in bipartiten Graphen

Paare · Input: Bipartiter Graph $(L\dot{\cup}R,E)$

- $V \leftarrow L \cup R \cup \{q, s\}$
- $\cdot \ \hat{E} \leftarrow (q,L) \cup \{(x,y) \subset L \times R \mid$
- $\langle x, y \rangle \in E \} \cup (R, s)$ \cdot for all $(x, y) \in V^2$
- $k(x,y) \leftarrow 1 \text{ if } (x,y) \in \hat{E} \text{ else } 0$
- f ←
- FordFulkerson $((V, \hat{E}), q, s, k)$
- $\cdot \ P \leftarrow \{\langle x,y \rangle \in E \mid f(x,y) = 1\}$

7.2 Paaren in allgemeinen Graphen

Alternierender Weg ist maximal, wenn er nicht Teil eines längeren alternierenden Weges ist.

→ Maximale Paarung kann durch sukzessive Vergrößerung gefunden werden

7.3 Berechnung vergrößender Wege

Vergrößernder Weg \cdot Input: G und P, Output: Vergrößernder Weg für P

- $h(x) \leftarrow 0$ wenn x frei, -1 wenn x gebunden
- Solange kein vergrößernder Pfad gefunden und gibt unutersuchte Kante $\langle x,y\rangle$ mit $h(x)\in 2\mathbb{N}_0$
- \cdot if h(y) = -1
- · unwichtig

7.4 Maximal gewichtete Paarungen

Berechnung möglich in $O(|V|^3)$ bzw. $O(|V| \cdot |E| \log |V|)$

8 Minimale Schnitte

Sei

- $\cdot \ \bar{G} := (V, \bar{E}), \bar{E} := \{(x,y) | \langle y, x \rangle =$
- $\begin{aligned} &\langle x,y\rangle \in E \rbrace \\ &\cdot \; k: V^2 \to \mathbb{R}_{\geq 0}, k(x,y) := \end{aligned}$ if $(\langle x,y\rangle \in$
 - E) then $\gamma(\langle x,y\rangle)$ else 0
- $x, z \in V$ beliebig

Berechne maximalen Fluss $\to A := \{ y \mid \exists \text{ Pfad } x \leadsto y \text{ in } \bar{G}_f \}$ und $B := V \setminus A$ bilden minimalen xz-Schnitt $(x \in A, z \in B)$

Gewicht des Schnitts = Wert des

kleinster xz-Schnitt in G lässt sich mit Flussmaximierung in $O(|V|^4)$ berechnen

(es existieren Algorithmen in $O(|V|^2 \log |V| + |V||E|))$

8.1 Zufällige Kontraktion

 $Monte\hbox{-} Carlo\hbox{-} Algorithmus =$ stochastischer Algorithmus, kann falsche Ergebnisse Liefern Las-Vegas-Algorithmus = stoch.Algo., immer richtig

8.2 Rekursive Kontraktion

IV Optimierungsalgorithmen

9 Kleinste Kugeln

Für jede Punktmenge P ist die kleinste Kugel $K(P) \supset P$ eindeutig.

9.1 Algorithmus von Welzl

K(P,R) ist Kugel die P enthält und R auf der Oberfläche hat

Welzl · Input: $P, R \subset \mathbb{R}^d$, K(P,R) exist., P,R endlich · if $P = \emptyset$ or |R| = d + 1

- $C \leftarrow K(R)$ \cdot else wähle $\mathbf{p} \in P$ zufällig
- $C \leftarrow \text{Welzl}(P \setminus \{\mathbf{p}\}, R)$ if $\mathbf{p} \notin C$
- $C \leftarrow \text{Welzl}(P \setminus \{\mathbf{p}\}, R \cup \{\mathbf{p}\})$ \cdot Gib C aus

10 Lineare **Programmierung** 10.1 Lineare Programme

$$z(\mathbf{x}) := \mathbf{z}\mathbf{x} = \max!$$

$$A\mathbf{x} \geq \mathbf{a}$$
,

wobei $\mathbf{z}, \mathbf{x} \in \mathbb{R}^d, A \in \mathbb{R}^{n \times d}, \mathbf{a} \in \mathbb{R}^n$, und $\mathbf{z}\mathbf{x} \coloneqq \mathbf{z}^t\mathbf{x}$

d ist die Dimension des linearen Programms.

Die Ungleichungen $A\mathbf{x} \geq \mathbf{a}$ repräsentieren den Schnitt S von n Halbräumen, der Simplex genannt

Die Punkte $\mathbf{x} \in S$ heißen zulässig. Die Ecken von S liegen je auf d Hyperebenen (d Gleichungen des Gleichungssystems).

Simplexalgorithmus: Iterativ Ecken entlang gehen, bis z maximal.

10.2 Flussmaximierung als ΙP

maximiere Summe der ausgehenden Flüsse aus der Quelle. Gleichungen zur Flusserhaltung (je eingehende Kanten - ausgehende $Kanten = 0 \ (\ge und \le))$ Gleichungen zur Kapazitätsbeschränkung (Fluss \geq 0 und (Kapazität - Fluss) ≥ 0) f(a,b) = -f(b,a)

10.3 Kürzester Weg als LP

Suche Weg $1 \leadsto 2$

$$\sum_{(i,j)\in E} x_{ij} \gamma_{ij} = \min!$$

$$x_{ij} \geq 0, (i,j) \in E$$

$$\sum_{j} x_{ij} - \sum_{j} x_{ji} = \begin{cases} 1 & i = 1 \\ -1 & i = 2 \\ 0 & sonst \end{cases}$$

(Ausgehende Kanten = Eingehende)Kanten außer für $i \neq 1, 2$) $negative Kreise \Rightarrow keine endliche$ Lösung. Erzwingbar durch $x_{ij} \le 1, (i,j) \in E$ (?)

10.4 ggf. todo

10.5 Simplexalgorithmus

y(x) = Ax

$$\begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

wobei n = d + 1 und $x_n = 1$ Hyperebenen $H_i: y_i(\mathbf{x}) = 0$ Gegeben: $A = [a_{ij}]_{i, j=1, 1}^{m, n}$

 $\begin{aligned} & \text{Gesucht: } B = [b_{ij}]_{i,j=1,1}^{m,n} \\ & \text{r=Pivotzeile, s=Pivotspalte} \end{aligned}$

Austausch ·

- $\begin{array}{l} \cdot \ b_{rs} \leftarrow \frac{1}{a_{rs}} \\ \cdot \ b_{rj} \leftarrow -\frac{a_{rj}}{a_{rs}} \left(\text{Pivotzeile}, \ j \neq s \right) \end{array}$
- $b_{is} \leftarrow \frac{a_{is}}{a_{rs}}$ (Pivotspalte, $i \neq r$)
- $b_{ij} \leftarrow a_{ij} \frac{a_{is}a_{rj}}{a_{rs}} \ (i \neq r, j \neq s)$

10.6 Normalform

Jedes lin. Programm kann auf die Form

 $\mathbf{z}\mathbf{x} = \max!$

 $A\mathbf{x} \ge 0$

mit $\mathbf{x} = [x_1 \dots x_d \ 1]^t$ kann auf die Form

$$[\mathbf{c}^t c]\mathbf{y} = \max!$$

$$\mathbf{y} \ge 0$$

$$[B\mathbf{b}]\mathbf{y} \ge 0$$

mit $\mathbf{y} := [y_1 \dots y_d \ 1]^t$ gebracht werden.

Notation:

$$y_{d+1} = \begin{bmatrix} x_{0\dots d} & 1 \\ \vdots & B & \mathbf{b} \\ y_m = \\ z = \begin{bmatrix} \mathbf{c}^t & c \end{bmatrix} \geq 0$$

 $\mathbf{b} \geq 0$, sonst Simplex leer.

10.7 Simplexalgorithmus	Kapi-	Name Laufzeit
C: 1. 7. 4 4	tel	
Simplex · Input: A	1.1	Pledge
Normalformmatrix eines lin. $\begin{bmatrix} A & \mathbf{a} \end{bmatrix}$	1.2	Wanze
Progr. $\bar{A} := \begin{vmatrix} A & \mathbf{a} \\ \mathbf{c}^t & c \end{vmatrix}$		(Bug)
· Solange ein $c_s > 0$	2.6	Konvexe erw: $O(n \log n)$,
Falls alle $a_{is} \ge 0$	Ziel-	Hülle $\max: O(n^2)$
gib $c \leftarrow \infty$ aus	suche	
Ende	6	Ford- $O(E *W)$ (k Wert
sonst		Fulkersoreines max. Flusses)
bestimme r so, dass	se	F1 10(F 2 V)
·	6	Edmonds $O(E ^2 * V)$
	Flüs-	Karp
$\frac{a_r}{a_{rs}} = \max_{a_{is} < 0} \frac{a_i}{a_{is}}$	se 6	D. # H
$a_{rs} \stackrel{\text{Illead}}{=} a_{is} < 0 \; a_{is}$	o Flüs-	Präfluss- $O(V ^2 * E)$ Push
	se	r usii
- • • • • • • • • • • • • • • • • • • •	6	An-Die- $O(V ^3)$
$\bar{A} \leftarrow \operatorname{Austausch}(\bar{A}, r, s)$	Flüs-	Spitze
· Gib \bar{A} aus	se	Spread
	7	Paare $O(E \cdot$
		$min\{ L , R \})$
Die Lösung ist dann, dass alle y_i	7	Vergrö- $O(V \cdot E)$
die oben an der Tabelle stehen $= 0$		ßernder
sind.		Weg
	8.3	$ Min O(V ^2 \log V)$
		Schnitt richtig mit
		$P \in \Theta(1/\log V)$
	9	Welzl mittl: $O(n)$
	10	Simplex erw: $O(n^2d)$, max:
		$\Omega(n^{d/2})$
Util	10	Ellipsoid polyn.; in praxis
		langsamer als
$\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \mathbf{b} \cos \sphericalangle(\mathbf{a}, \mathbf{b})$	10	Simplex
$\sum_{k=0}^{n} 2^k = 2^{n+1} - 1$	10	Innere polyn.; in praxis fast Punkte so gut wie Simplex
$-\lambda = 0$ Laufzeiten	10.5	Seidel $O(d^3d! + dnd!)$
Eddi2010011	10.5	Seruei $O(a^*a:+ana:)$