

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

<p>(51) International Patent Classification ⁶ : C07C 271/22, 271/28, A61K 31/325</p>		<p>A1</p>	<p>(11) International Publication Number: WO 96/15105</p> <p>(43) International Publication Date: 23 May 1996 (23.05.96)</p>
<p>(21) International Application Number: PCT/EP95/04388</p> <p>(22) International Filing Date: 8 November 1995 (08.11.95)</p> <p>(30) Priority Data: MI94A002304 15 November 1994 (15.11.94) IT</p> <p>(71) Applicant (for all designated States except US): ITALFARMACO S.P.A. [IT/IT]; Viale Fulvio Testi, 330, I-20126 Milano (IT).</p> <p>(72) Inventors; and</p> <p>(75) Inventors/Applicants (for US only): BERTOLINI, Giorgio [IT/IT]; Via G. Carducci, 125, I-20099 Sesto S. Giovanni (IT). AQUINO, Mario [IT/IT]; Via G. Carducci, 125, I-20099 Sesto S. Giovanni (IT). CHIAFFARINO, Francesca [IT/IT]; Via G. Carducci, 125, I-20099 Sesto S. Giovanni (IT). GROMO, Gianni [IT/IT]; Via G. Carducci, 125, I-20099 Sesto S. Giovanni (IT). SALA, Alberto [IT/IT]; Via G. Carducci, 125, I-20099 Sesto S. Giovanni (IT). VALTOLINA, Marinella [IT/IT]; Via G. Carducci, 125, I-20099 Sesto S. Giovanni (IT).</p> <p>(74) Agent: MINOJA, Fabrizio; Studio Consulenza Brevettuale, Via Rossini, 8, I-20122 Milano (IT).</p>		<p>(81) Designated States: AL, AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MX, NO, NZ, PL, PT, RO, RU, SE, SG, SI, SK, TJ, TM, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, LS, MW, SD, SZ, UG).</p> <p>Published <i>With international search report.</i></p>	
<p>(54) Title: FLUORENYL-HYDROXAMIC DERIVATIVES ENDOWED WITH IMMUNOSUPPRESSIVE AND ANTI-INFLAMMATORY ACTIVITY</p> <p>(57) Abstract</p> <p>The present invention refers to hydroxamic derivatives of fluorenyl amino acids and their use as immunosuppressant and anti-inflammatory agents.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LJ	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

FLUORENXYL-HYDROXAMIC DERIVATIVES ENDOWED WITH IMMUNO-SUPPRESSIVE AND ANTINFLAMMATORY ACTIVITY

The present invention refers to hydroxamic derivatives of fluorenylaminoacids and their use as immunosuppressant and antinflammatory agents.

Since long the fluorenylaminoacids have been known as intermediates in the peptide synthesis, and recently they were found also to be endowed with antinflammatory activity. Patent application WO 90/15602 describes pharmaceutical compositions useful in the treatment of inflammatory diseases, containing a N-[(9H-fluoren-9-yl-methoxy)carbonyl]-aminoacid as active ingredient, while patent application WO 91/18596 discloses pharmaceutical compositions containing fluorenyl compounds derivatized with a lipophilic amino acid or an alcohol, an amide or an ester derivative thereof. Further, patent application WO 93/11764 relates to fluorenyl-derivates of antinflammatory aminobenzoic acids.

It has been now surprisingly found that the antinflammatory activity of the fluorenylaminoacids dramatically increases as the compounds are derivatized with hydroxamic acids, thus also yielding an immunosuppressive activity.

Therefore the present invention refers to compounds of formula I

5

wherein n is an integer from 0 to 3; R_1 and R_2 are
 10 independently hydrogen, methyl, (C_{2-4}) alkyl, halogen, hydroxy, hydroxymethyl, hydroxy (C_{2-4}) alkyl, (C_{1-4}) alkoxy;

A is methylene, linear or branched (C_{2-6}) alkylidene, phenyl-methylidene, phenyl (C_{2-6}) alkylidene, phenylene, 15 naphthylene; and their diastereomers and enantiomers and the mixture thereof.

A (C_{1-4}) alkyl group essentially identifies methyl, ethyl, propyl, i-propyl, butyl, 2-methyl-propyl, and a (C_{2-6}) alkylidene is, e.g., ethylidene, propylidene, 20 butylidene, isobutylidene, 2-methyl-butylidene, hexylidene, 2,3-dimethyl-butylidene and the like. Finally, an alkoxy group identifies methoxy, ethoxy, propoxy, isopropoxy, butoxy, 2-methylbutoxy and tert-butoxy.

The compounds of formula I may be prepared starting 25 from a compound of formula II

wherein R_1 , R_2 , A and n are as described above, which is reacted with stoichiometric or slightly exceeding amounts of a carboxylic acid activator such as 1,1-carbonyldiimidazole, at a temperature varying from about -10°C to about 40°C, for about 2-48 hours, in the presence of etheric solvents such as tetrahydrofuran, 1,4-dioxane, diglyme, or in aprotic dipolar solvents such as dimethylformamide. The so activated compound of formula II is added with a stoichiometric or slightly exceeding amount of hydroxylamine hydrochloride, and the mixture is left to react at a temperature between about 0 and about 30°C, for about 1-20 hours, optionally in the presence of an equivalent of a tertiary organic base such as triethylamine or pyridine. The products of formula I thus obtained may be isolated and purified through techniques known by those skilled in the art.

25 Where in the compound of formula II R_1 and/or R_2 are groups prone to react with the reactants used to prepare the compounds of formula I, said groups are suitably protected before such reaction and deprotected at the end of the same according to the teachings of the art (cfr., for example, T.W. Greene and P.G.M. Wuts - "Protective groups in organic synthesis", 2nd ed., J.

Wiley & Son, 1991).

The compounds of formula II are known and/or commercially available products, the synthesis of which is described or deducible from the literature. See, for example, patents US-3.835.175 and US-3.906.031.

The preparation of the compounds of formula II implies obtaining an alcohol intermediate, the synthesis of which varies in view of the meaning of n.

When a compound of formula II wherein n=1 is desired, its synthesis starts from 9H-fluorene which, for example, is condensed with a suitable formic acid ester in the presence of a base such as sodium ethoxide, sodium hydride or sodium amide, and subsequently the aldehyde intermediate is reduced to yield the corresponding alcohol of formula (III)

20

wherein R₁ and R₂ are as above, and n is 1.

25

Alternatively, 9H-fluorene may be directly condensed with formaldehyde in the presence of a strong base such as sodium hydride, sodium ethoxide or sodium amide, to yield the alcohol derivative III wherein n=1.

30

When a compound of formula II wherein n=0 is desired, 9-fluorenone is employed as reactant, and is reduced, for example, with a alkali metal hydride such

5

as sodium borohydride or lithium-aluminium hydride, to provide an alcohol derivative of formula IV

5

wherein R₁ and R₂ are as defined above.

10 Finally, if a compound of formula II wherein n is 2 or 3 is desired, the synthesis starts from the corresponding 9-fluoren-alkanoic acid of formula V

15

20 wherein R₁ and R₂ are as above and m is 1 or 2. Said acids are known as commercially available or described by the literature (cfr. Gualtieri F., J. Med. Chem., 28, No.11, 1621-1628, 1985). The acid of formula V is reduced with a suitable reducing agent such as lithium-aluminium hydride, to yield the alcohol derivative of formula III

5

III

wherein R_1 and R_2 are as above, and n is 2 or 3.

10 If required, the insertion of the substituents R_1 and R_2 may be carried out using known procedures, for example, by direct alkylation or halogenation.

Using techniques generally known by the skilled artisan, the alcohol derivative of formula III or IV is converted in an intermediate of formula VI

15

20

VI

wherein R_1 , R_2 and n are as defined above, and X is a leaving group which may be easily displaced by the nucleophilic nitrogen atom of an amino acid, for example an halogen atom, particularly chlorine or bromine, a lower alkoxy, mercapto, alkyl-mercaptop group or succinylimidoyloxy. The latter is reacted with an amino-carboxy acid of formula VII

30

VII

wherein A is as defined above, to give the compound of

formula II. When the leaving group X is a halogen atom, particularly chlorine, the reaction is advantageously carried out in a polar organic solvent such as dioxane, tetrahydrofuran, dimethylformamide or pyridine, under 5 alkaline, preferably mild, conditions, and at low temperature, for example from about 0°C to about 25°C, for a period of about 2-3 hours. In the case of other leaving groups X, a higher reaction temperature, for example of about 25-50°C, and longer reaction times, for 10 example from about 8 to about 48 hours could be necessary. Generally, the compounds of formula II precipitate from the reaction mixture and may be purified, for example, by crystallization.

15 The ^1H -NMR spectra were made in dimethylsulphoxide (DMSO) with a VARIAN GEMINI 200 spectrometer. The ^{13}C -NMR spectra were made using a VARIAN GEMINI 200 spectrometer (reference: 39.5 ppm peak of DMSO).

EXAMPLE 1
2-[(Fluoren-9-yl)methoxycarbonylaminol-4-methyl-pentane-
20 hydroxamic acid

1.5 g (4.25 mmoles) of N-[(fluoren-9-yl)methoxycarbonyl]-(L)-leucine (Nova Biochem 04-12-1025, NPC 15199; WO 90/15602, Example 2) was dissolved in 17 ml of dry tetrahydrofuran (THF) and added, at 0°C, with 826 mg (5.1 mmoles) of 1,1'-carbonyldiimidazole (CDI). The 25 mixture was left at room temperature per 10 hours, then added with 443 mg (6.37 mmoles) of hydroxylamine hydrochloride and left at room temperature for 16 hours. 30 20 ml of water were then added thereto, the liquor was saturated with sodium chloride, the phases separated and the organic one washed with brine (2x20 ml), then dried

over sodium sulfate and filtered. Evaporating the solvent under reduced pressure, a crude was obtained which was suspended under stirring in 20 ml of ethyl acetate for 4 hours, then filtered and dried to yield 900 mg of the title product.

m.p. = 153°C (ethyl acetate).

	Elemental analysis	C	H	N
calculated		68.46	6.57	7.60
found		68.15	6.51	7.72

¹H-NMR: s (1H) 10.16; s (1H) 8.85; d (2H) 7.91; d (2H) 7.75; d (1H) 7.57; m (4H) 7.47÷7.30; m (3H) 4.25; m (1H) 4.00; m (3H) 1.70÷1.31; d (3H) 0.90; d (3H) 0.86.

¹³C-NMR: 169.14; 156.05; 144.21; 144.05; 140.97 (2C); 127.91 (2C); 127.33 (2C); 125.64 (2C); 120.37 (2C); 65.89; 51.00; 46.93; 41.13; 24.42; 23.10; 21.96.

EXAMPLE 2

N-[(Fluoren-9-yl)methoxycarbonylaminol-aceto-hydroxamic acid

Substantially following the steps of Example 1, starting from 2 g (6.7 mmoles) of N-[(fluoren-9-yl)methoxy-carbonyl]-glycine (Nova Biochem 04-12-1001, NPC 14692) dissolved in 27 ml dry THF, 1.32 g (8.1 mmoles) of CDI and 698 mg (10 mmoles) of hydroxylamine hydrochloride, 800 mg of the title product were obtained.

m.p. 132°C dec (ethyl acetate)

	Elemental analysis	C	H	N
calculated		65.38	5.16	8.97
found		66.73	5.06	8.80

9

¹H-NMR: s (1H) 10.49; s (1H) 8.80; d (2H) 7.90; d (2H) 7.73; t (1H) 7.58; m (4H) 7.47÷7.30; m (3H) 4.26; d (2H) 3.53.

13C-NMR: 166.32; 156.68; 144.12 (2C); 140.97 (2C); 127.90 (2C); 127.56 (2C); 127.34 (2C); 125.54 (2C); 120.37 (2C); 65.99; 46.49; 41.60.

EXAMPLE 3

N-[(2,7-Dimethyl-fluoren-9-yl)methoxycarbonylaminol-4-methyl-pentane-hydroxamic acid

Starting from 1.25 g (3.28 moles) of N-[(2,7-dimethyl-fluoren-9-yl)methoxycarbonyl]-(L)leucine (WO 91/18596, Example 26; NPC 15669), dissolved in 20 ml of THF, 640 mg (3.9 mmoles) of CDI and 342 mg (4.9 mmoles) of hydroxylamine hydrochloride, and substantially following the procedure of Example 1, 980 mg of the title product were obtained.

m.p. = 146-147°C (ethyl acetate).

	Elemental analysis	C	H	N
calculated		69.68	7.12	7.07
20 found		68.69	6.97	6.92
1H-NMR:	s (1H) 10.63; s (1H) 8.81; s (1H) 7.73; s (1H) 7.69; d (1H) 7.56; d (2H) 7.52; d (2H) 7.21; m (3H) 4.31÷4.06; m (1H) 3.97; s (6H) 2.39; m (3H) 1.68÷1.29; d (3H) 0.90; d (3H) 0.87.			
25 13C-NMR:	169.12; 156.06; 144.35; 144.08; 138.45 (2C); 136.21 (2C); 128.52 (2C); 126.14 (2C); 119.72 (2C); 66.02; 51.01; 46.66; 41.20; 24.25; 23.09; 21.99; 21.49 (2C).			

EXAMPLE 4

4-[(2-Fluoren-9-yl)ethoxycarbonylaminol-benzo-hydroxamic acid

10

5 A] 5 g (22.3 mmoles) of 9-fluoren-acetic acid (Aldrich) in 160 ml of THF, were added, at 0°C, with 1.7 g (44.6 mmoles) of lithium-aluminium hydride, then the reaction mixture was left at 25°C over night, treated with 0.47 ml of water, 1.27 ml of 20% sodium hydroxide, then again with 4.9 ml of water. The formed salts were filtered off, and the organic phase was dried under reduced pressure and gave 4.85 g of a crude which was purified by flash chromatography (eluent ethyl acetate/hexane 3:7) and gave 2.5 g of 2-(fluoren-9-yl)-ethanol.

10 B] 2.5 g (11.9 mmoles) of the compound under A], in 120 ml of acetonitrile, were sequentially added with 4.57 g (17.9 mmoles) of N,N'-disuccinimidyl carbonate and 0.9 ml (11.3 mmoles) of pyridine. The mixture was left at 25°C for 30 hours, then dried under reduced pressure at cold temperature. The crude was dissolved in 100 ml of ethyl acetate, washed with 1N hydrochloric acid (2x50 ml), and the organic phase was dried over sodium sulphate and dried under reduced pressure at cold temperature to yield 4.8 g of N-[2-(fluoren-9-yl)ethoxycarbonyloxy]-succinimide which was used as such in the next step.

15 C] A solution of 1.63 g (11.9 mmoles) of sodium carbonate in 24 ml of water was added with 1.63 g (11.9 mmoles) of 4-amino-benzoic acid and 4.8 g of the crude under B] dissolved in 24 ml of dioxane. After 3 days under stirring at room temperature, 20 100 ml of THF were added therein and, after saturation with sodium chloride, the phases were

11

separated and the organic one was dried after washing with brine (2x50 ml) and drying over sodium sulphate. The resulting solid was suspended in ethyl acetate, filtered and dried to yield 2.95 g of 4-[2-(fluoren-9-yl)ethyloxy-carbonyl]amino-
5 benzoic acid.

D] 2.95 g (7.9 mmoles) of the compound under C] were dissolved in 32 ml of dry THF and treated substantially according to the procedure of Example 10 1, with 1.53 g (9.4 mmoles) of CDI and 825 mg (11.8 mmoles) of hydroxylamine hydrochloride. At the end 15 of the reaction a deposit formed and was filtered, dried and suspended again in 1N hydrochloric acid under stirring for 10 hours. The suspension was washed with water and dried to yield 550 mg of the title product.

m.p. 200-203°C (water)

	Elemental analysis	C	H	N
calculated		71.12	5.12	7.21
20 found		69.10	5.13	7.12
¹ H-NMR:	s (1H) 11.04; s (1H) 9.87; s (1H) 8.93; m (2H) 7.92; m (4H) 7.73÷7.64; m (6H) 7.53÷7.33; t (1H) 4.17; t (2H) 4.05; m (2H) 2.36.			
¹³ C-NMR:	164.27; 153.56; 146.47 (2C); 142.03; 140.64 (2C); 123.00 (2C); 127.53 (2C); 127.45 (2C); 126.72; 124.79 (2C); 120.40 (2C); 117.68 (2C); 62.12; 44.07; 31.96.			

EXAMPLE 5

2-[Fluoren-9-yl)methoxycarbonylaminol-3-phenyl-propane-
30 hydroxammic acid

3 g of N-[(fluoren-9-yl)methoxy-carbonyl]-(L)phe-

12

nylalanine (Nova Biochem 04-12-1030; WO 90/15602, Example 1) in 31 ml of dry THF were treated substantially following the procedure of Example 4,D] with 1.5 g (9.2 mmoles) of CDI and 800 mg (11.5 mmoles) 5 of hydroxylamine hydrochloride to yield 1.5 g of the title product.

m.p. 185°C dec

	Elemental analysis	C	H	N
calculated		71.63	5.51	6.96
10 found		71.44	5.59	6.94
1H-NMR:	s (1H) 10.73; s (1H) 8.88; d (2H) 7.91; d (1H) 7.77; m (2H) 7.68; m (9H) 7.47÷7.18; m (2H) 2.90.			
13C-NMR:	168.40; 155.95; 144.03 (2C); 140.92 (2C); 138.27; 129.49 (2C); 128.36 (2C); 127.91 (2C); 127.33 (2C); 126.58; 125.61 (2C); 120.36 (2C); 65.98; 54.29; 46.82; 37.96.			

As already said above, the compounds of formula I showed to be endowed with immunosuppressive and 20 antinflammatory activity.

Test 1

The immunosuppressive activity of the present compounds was evaluated by the test of the mixed lymphocitary response, as follows.

25 Spleens were taken from Balb/C and DBA/2 mice. The splenocytes was suspended in a culture medium (RPMI 1640, 50 µg/ml of gentamicin, 2 mM glutamine, non essential amino acids, sodium pyruvate, 10-5 β-mercaptoethanol, 5% bovine foetal serum, 10 mM Hepes) at 30 a concentration of 5x10⁵ cells/ml. 0.1 ml of splenocytes Balb/C was placed in 96-well plates with 0.1 ml of

13

splenocytes DBA/2 in a ratio of 1:1 stimulator/receptor. At time 0, some compounds of the invention and of the prior art were added at a concentration of from 3.12 to 100 μ M, and the plates were placed in an incubator at 5. 37°C under 5% of carbon dioxide. After 3 days the cells were labelled with tritiated thymidine (1 μ Ci/well) for 18 hours, then the radioactivity was evaluated by a "cell-harvester" and a β -counter.

10 The results are shown in the following Table as concentration inhibiting of 50% the immune response (IC_{50}).

TABLE

	Example	IC_{50} (μ M)	Prior art compound	IC_{50} (μ M)
	1	5.4	NPC 15199	53.5
15	2	8.6	NPC 14692	>100
	3	2.1	NPC 15669	50.7
	4	0.6	NPC 16570	9.6
	5	13.3	Nova Biochem 04-12-1030	51.5

legenda:

20 NPC 15199 = N-(fluoren-9-yl)methoxycarbonyl-(L)-leucine (WO 90/15602, Example 2)

NPC 14692 = N-(fluoren-9-yl)-methoxy-carbonyl-glycine (WO 90/15602, Nova Biochem 04-12-1001)

NPC 15669 = N-(2,7-dimethyl-fluoren-9-yl)methoxycarbonyl(L)leucine (WO 91/18596, Example 26).

25 NPC 16570 = 4-[2-(fluoren-9-yl)ethyloxy-carbonyl]amino-benzoic acid (WO 93/11764, Example 7).

Nova Biochem 04-12-1030 = N-[(fluoren-9-yl)methoxy-carbonyl]-(L)phenylalanine (WO 90/15602, Example 1)

Test 2

5 The antinflammatory activity of the compounds of the invention was evaluated by the test of the polymorphonuclear leukocyte adhesion to endothelial cells, as described hereinbelow.

10 The polymorphonuclears (PMN) were obtained by separation from the blood of a healthy donor through sedimentation with Eufusin (Stholl Farmaceutici) followed by lysis of the erythrocytes with a solution of ammonium chloride. The PMN thus obtained were labelled with ^{51}Cr (total incorporation = 12.303 ± 377 cpm) and pre-treated with the compounds of the invention and of 15 the prior art (each at a concentration of $100 \mu\text{M}$, diluted in a medium containing 10% calf foetal serum and 0.1% DMSO) for 20 minutes at 37°C , then activated with 1000 U/ml of TNF for the following 10 minutes, finally 20 were placed on the monolayer of endothelial human cells ("Human Umbilical Vein Endothelial Cell from 2nd to 4th passage) in 96-well plates, and incubated at 37°C with 5% CO₂. After 15 minutes, the not adhered PMN were removed and a solution of 1N sodium hydroxide was added to each well to remove the adherent PMN. The 25 radioactivity of the lysate was measured by a τ -counter expressed in cpm (count per minute).

The inhibition percentage of the cellular adhesion was calculated according to the following formula:

$$30 \quad 100 - \left[\frac{\text{cpm compound}}{\text{cpm control}} \times 100 \right]$$

wherein the control is the culture treated with TNF and medium containing 10% calf foetal serum and 0.1% DMSO only.

5 The compounds of the invention showed an inhibition of the cellular adhesion of about 70-90%, whereas the ones of the prior art are of about 40-60%. For example, the compound of Example 3 provided an inhibition percentage of 77.4%, and the corresponding compound of the prior art, NPC 15669, of 58.2%.

10

Test 3

15 The toxicity of the compounds of the present invention was evaluated by an acute toxicity model in mouse after intraperitoneal administration. For example, The compound of Example 1 showed a LD₅₀ >500 mg/kg whereas the corresponding compound of the prior art, NPC 12199, has a LD₅₀ = 268 mg/kg.

20 In view of what above, the compounds of the invention showed to be useful in pathologies such as graft versus host disease, atopic and contact dermatitis, osteoarthritis, psoriasis, rheumatoid arthritis, glomerulonephritis, irritable bowel syndrome, lupus erythematosus, scleroderma, asthma, and, in general, all of those pathologies stimulating the lymphocitary response, or which are characterized by an inflammatory 25 phenomenon.

30 Object of the invention is also the use of the compounds of formula (I) as immunosuppressant and anti-inflammatory agents, and the industrial aspects connected to said use, comprising their incorporation into pharmaceutical compositions. Examples of pharmaceutical compositions are tablets, sugar- and film-coated tablets, sy-

5 rups, creams, ointments, suppositories, and phials, the latter being suitable both for the oral and the intramuscular or intravenous administration. They contain the active principle alone or in combination with common pharmaceutical acceptability carriers and excipients.

10 The dosages of active principle used to relieve and heal the inflammation may vary within wide limits according to the nature of the compound employed, of the pathology and of the condition of the patient (sex, age, general physical condition).

17.

CLAIMS

1. Compounds of formula I

5

10

wherein n is an integer from 0 to 3; R₁ and R₂ are independently hydrogen, methyl, (C₂₋₄)alkyl, halogen, hydroxy, hydroxymethyl, hydroxy(C₂₋₄)alkyl, (C₁₋₄)alkoxy; A represents methylene, linear or branched (C₂₋₆)alkylidene, phenyl-methylidene, phenyl(C₂₋₆)-alkylidene, phenylene, naphthylene; and their possible diastereomers and enantiomers and the mixtures thereof.

2. Use of the compounds of formula I for the preparation of a medicament useful in the treatment of inflammation, and when an immunosuppressant is requested.

3. Pharmaceutical compositions containing as active ingredient at least one of the compounds of formula I, together with pharmaceutically acceptable excipients.

THIS PAGE IS BLANK

THIS PAGE IS BLANK

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 95/04388

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 6 C07C271/22 C07C271/28 A61K31/325

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 6 C07C A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO,A,91 18596 (WEITZBERG MOSHE ;BURCH RONALD MARTIN (US)) 12 December 1991 cited in the application see claims ---	1-3
A	WO,A,92 02532 (GENTA INC) 20 February 1992 see claims; figures ---	1
A	EP,A,0 129 075 (HOFFMANN LA ROCHE) 27 December 1984 see claims -----	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *'A' document defining the general state of the art which is not considered to be of particular relevance
- *'E' earlier document but published on or after the international filing date
- *'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *'O' document referring to an oral disclosure, use, exhibition or other means
- *'P' document published prior to the international filing date but later than the priority date claimed

- *'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- *'&' document member of the same patent family

2

Date of the actual completion of the international search	Date of mailing of the international search report
15 February 1996	23.02.1996
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentstaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl. Fax (+ 31-70) 340-3016	Authorized officer Sánchez García, J.M.

INTERNATIONAL SEARCH REPORT

Intern: Application No
PCT/EP 95/04388

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9118596	12-12-91	US-A-	5079260	07-01-92
		AU-B-	7951591	31-12-91
		EP-A-	0531443	17-03-93
		JP-T-	5509299	22-12-93
		NZ-A-	238272	25-03-94

WO-A-9202532	20-02-92	AU-B-	664542	23-11-95
		AU-B-	9071091	02-03-92
		CA-A-	2089087	10-02-92
		EP-A-	0542928	26-05-93
		NZ-A-	239250	23-12-93

EP-A-0129075	27-12-84	JP-A-	59231061	25-12-84
		US-A-	4822890	18-04-89

THIS PAGE IS BLANK