BEGLEITNOTIZEN ZU "KOMPLEXE UND HARMONISCHE ANALYSIS" (VO 250018, 2023W)

JOSÉ LUIS ROMERO

Beweis von Satz 4

Beweis. Die Reihe konvergiert punktweise, weil

$$\left|\sum_{n\in\mathbb{Z}}a_ne^{inx}\right|\leq\sum_{n\in\mathbb{Z}}|a_n|<\infty.$$

Zur Erinnerung: absolute Konvergenz \Rightarrow Konvergenz.

(i)

$$|f(x) - \sum_{n=-N}^{N} a_n e^{inx}| = |\sum_{n:|n|>N} a_n e^{-inx}| \le \sum_{n:|n|>N} |a_n|.$$

Daher ist die Konvergenz gleichmäßig. Sei $\varepsilon > 0$. Dann existiert N_0 , so dass $\sum_{n:|n|>N} |a_n| < \varepsilon$ für $N > N_0$ und daher

$$\left| f(x) - \sum_{n=-N}^{N} a_n e^{inx} \right| < \varepsilon$$

für $N > N_0$.

(ii) Die Funktionen $S_N(x) := \sum_{n=-N}^N a_n e^{inx}$ sind stetig und $S_N \to f$ gleichmäßig für $N \to \infty$. Dann ist f stetig. Ebenso

$$f(x+2\pi) = \lim_{N \to \infty} \sum_{n=-N}^{N} a_n e^{in(x+2\pi)} = \lim_{N \to \infty} \sum_{n=-N}^{N} a_n e^{inx} = f(x).$$

(iii) Wir rechnen:

$$\int_{-\pi}^{\pi} e^{inx} dx = \begin{cases} 2\pi & n = 0\\ \frac{e^{inx}}{in} \end{bmatrix}_{x=-\pi}^{x=\pi} = 0 & n \neq 0 \end{cases} = 2\pi \delta_{n=0}.$$

Tippfehler und Korrekturen senden Sie bitte an: jose.luis.romero@univie.ac.at.

Da die Konvergenz $gleichmä\beta ig$ ist, kann man Integration und unendliche Summation austauschen:

$$\int_{-\pi}^{\pi} f(x)e^{-imx} dx = \int_{-\pi}^{\pi} \lim_{N \to \infty} \sum_{n=-N}^{N} a_n e^{inx} e^{-imx} dx = \lim_{N \to \infty} \int_{-\pi}^{\pi} \sum_{n=-N}^{N} a_n e^{inx} e^{-imx} dx$$

$$= \lim_{N \to \infty} \sum_{n=-N}^{N} a_n \int_{-\pi}^{\pi} a_n e^{i(n-m)x} dx$$

$$= \lim_{N \to \infty} \sum_{n=-N}^{N} a_n 2\pi \delta_{n=m} = \sum_{n=-\infty}^{\infty} a_n 2\pi \delta_{n=m} = 2\pi a_m.$$

Genauso mit $\int_0^{2\pi}$.

Beispiel 6

Berechnung.

$$2\pi \hat{f}(0) = \int_{-\pi}^{\pi} x \, dx = 0.$$

Für $n \neq 0$ integrieren wir nach Teilen:

$$2\pi \hat{f}(n) = \int_{-\pi}^{\pi} x e^{-inx} dx = x \frac{e^{-inx}}{-in} \Big|_{x=-\pi}^{x=\pi} - \int_{-\pi}^{\pi} \frac{e^{-inx}}{-in} dx$$
$$= \frac{\pi (-1)^n - (-\pi)(-1)^n}{-in} = \frac{2\pi}{-in} (-1)^n = \frac{2\pi}{in} (-1)^{n+1}.$$

Beispiel 7

Berechnung. Sei $x \notin 2\pi \mathbb{Z}$. Wir schreiben $w^t := e^{itx}$ und berechnen

$$D_N(x) = \sum_{n=-N}^N w^n = \sum_{n=0}^N w^n + \sum_{n=-N}^{-1} w^n$$

$$= \sum_{n=0}^N w^n + \sum_{n=1}^N (w^{-1})^n = \sum_{n=0}^N w^n + w^{-1} \sum_{n=0}^{N-1} (w^{-1})^n$$

$$= \frac{1 - w^{N+1}}{1 - w} + w^{-1} \frac{1 - w^{-N}}{1 - w^{-1}}$$

$$= \frac{1 - w^{N+1}}{1 - w} - \frac{1 - w^{-N}}{1 - w}$$

$$= \frac{w^{-N} - w^{N+1}}{1 - w} = \frac{w^{N+1} - w^{-N}}{w - 1}$$

$$= \frac{w^{1/2}(w^{N+1/2} - w^{-N-1/2})}{w^{1/2}(w^{1/2} - w^{-1/2})}$$

$$= \frac{2i \cdot \text{Im}(w^{N+1/2})}{2i \cdot \text{Im}(w^{1/2})} = \frac{\sin((N + 1/2)x)}{\sin(x/2)}.$$

Für $x \in 2\pi\mathbb{Z}$ gilt auch die Formel, weil die Funktionen stetig sind.

Beispiel 8

Berechnung. Wir schreiben $w = re^{ix}$. Dann |w| = r < 1 und

$$P_r(x) = \sum_{n=0}^{\infty} r^n e^{inx} + \sum_{n=1}^{\infty} r^n e^{-inx} = \sum_{n=0}^{\infty} w^n + \sum_{n=1}^{\infty} \overline{w}^n$$

$$= \frac{1}{1-w} + \frac{\overline{w}}{1-\overline{w}} = \frac{(1-\overline{w}) + \overline{w}(1-w)}{(1-w)(1-\overline{w})}$$

$$= \frac{1-|w|^2}{1-2\operatorname{Re}(w) + |w|^2} = \frac{1-r^2}{1-2r\cos(x) + r^2}.$$

Beweis von Satz 9

Beweis. Wir nehmen an: $\hat{f}(n) = 0, \forall n \in \mathbb{Z}$.

Schritt 1. Wir nehmen an: $x_0 = 0$, $f : \mathbb{R} \to \mathbb{R}$, $f(x_0) \ge 0$. Wir wollen zeigen, dass f(0) = 0.

Wir nehmen an, dass $f(x_0) > 0$ und versuchen einen Widerspruch herzuleiten.

Sei p ein trigonometrisches Polynom, $p(x) = \sum_{n=-N}^{N} a_n e^{-inx}$. Dann

(1)
$$\int_{-\pi}^{\pi} f(x)p(x) dx = \sum_{n=-N}^{N} a_n \int_{-\pi}^{\pi} f(x)e^{-inx} dx = \sum_{n=-N}^{N} a_n 2\pi \hat{f}(n) = 0.$$

Da f bei 0 stetig ist, existiert $\delta \in (0, \pi/2)$, so dass

$$f(x) > f(0)/2$$
, für $|x| < \delta$.

Da $0 \le \cos(\delta) < 1$, existiert $\varepsilon > 0$, so dass

$$\varepsilon + \cos(\delta) < 1 - \varepsilon/2.$$

Für $|x| \ge \delta$ gilt $\cos(x) \le \cos(\delta) < 1$. Daher

$$\varepsilon + \cos(x) < \varepsilon + \cos(\delta) < 1 - \varepsilon/2,$$
 für $|x| \ge \delta$.

Andererseits

$$-(\varepsilon + \cos(x)) = -\cos(x) - \varepsilon \le 1 - \varepsilon < 1 - \varepsilon/2.$$

Daher

$$|\varepsilon + \cos(x)| < 1 - \varepsilon/2,$$
 wenn $|x| \ge \delta$.

Endlich sei $\eta \in (0, \delta)$, so dass

$$\varepsilon + \cos(x) \ge 1 + \varepsilon/2,$$
 für $|x| < \eta$.

Zusammenfassend

$$\begin{cases} \varepsilon + \cos(x) \ge 1 + \varepsilon/2, & \text{für } |x| < \eta, \\ \varepsilon + \cos(x) \ge 0, & \text{für } \eta \le |x| < \delta, \\ |\varepsilon + \cos(x)| < 1 - \varepsilon/2, & \text{für } |x| \ge \delta. \end{cases}$$

Sei $p_k(x) := (\varepsilon + \cos(x))^k$. Dann

$$\int_{-\delta}^{\delta} f(x)p_k(x) dx \ge \int_{-\eta}^{\eta} f(x)p_k(x) dx \ge \frac{f(0)}{2} \cdot (1 + \varepsilon/2)^k \cdot 2\eta \to \infty,$$

für $k \to \infty$. Anderseits

$$\left| \int_{\delta < |x| \le \pi} f(x) p_k(x) \, dx \right| \le (1 - \varepsilon/2)^k \int_{-\pi}^{\pi} |f(x)| \, dx \to 0,$$

für $k \to \infty$. Daher

$$\int_{-\pi}^{\pi} f(x)p_k(x) dx = \int_{-\delta}^{\delta} f(x)p_k(x) dx + \int_{\delta < |x| < \pi} f(x)p_k(x) \to \infty,$$

für $k \to \infty$. Dies widerspricht (1).

Schritt 2. Wenn $x_0 = 0$, $f : \mathbb{R} \to \mathbb{R}$ und $f(x_0) \leq 0$, argumentieren wir mit -f, weil $\widehat{(-f)}(n) = -\widehat{f}(n)$ und folgern -f(0) = 0.

Schritt 3. Wir nehmen an: $x_0 = 0, f : \mathbb{R} \to \mathbb{C}$. Wir stellen Folgendes fest

$$2\pi \cdot \hat{\bar{f}}(n) = \int_{-\pi}^{\pi} \overline{f(x)} e^{-inx} \, dx = \overline{\int_{-\pi}^{\pi} f(x) e^{inx} \, dx} = 2\pi \overline{\hat{f}(-n)} = 0.$$

Daher sind $f + \bar{f}, i(f - \bar{f}) : \mathbb{R} \to \mathbb{R}$ stetig bei 0, 2π -periodisch und mit verschwindenden Fourier-Koeffizienten. Nach Schritt 1 und 2,

$$(f + \bar{f})(0) = i(f - \bar{f})(0) = 0,$$

und folglich f(0) = 0.

Schritt 4. Wir nehmen nicht mehr an, dass $x_0 = 0$. Sei $g(x) := f(x + x_0)$. Dann ist $g(x) = 2\pi$ -periodisch, integrierbar, stetig bei 0 und

$$2\pi \cdot \hat{g}(n) = \int_{-\pi}^{\pi} f(x+x_0)e^{-inx} dx = \int_{-\pi}^{\pi} f(x)e^{-in(x-x_0)} dx = e^{inx_0}\hat{f}(n) = 0.$$

Nach Schritt 3 ist $f(x_0) = g(0) = 0$.

Beweis von Korollar 10

Beweis. Wir wenden den Satz 9 auf f - g an.

Beweis von Korollar 11

Beweis. Sei $g(x) := \sum_{n \in \mathbb{Z}} \hat{f}(n) e^{inx}$, wobei nach dem Satz 4 die Reihe absolut und gleichmäßig konvergiert. Weiter gilt $\hat{f}(n) = \hat{g}(n)$ für jedes $n \in \mathbb{Z}$ nach dem Satz 4 und nach dem Korollar 10 gilt $f \equiv g$.

Beweis von Satz 12

Beweis. Für $n \neq 0$,

$$2\pi \hat{f}(n) = \int_{-\pi}^{\pi} f(x)e^{-inx} dx = \int_{-\pi}^{\pi} f(x)\frac{d}{dx} \left[\frac{1}{-in}e^{-inx}\right] dx$$
$$= \left[f(x)\frac{1}{-in}e^{-inx}\right]_{x=-\pi}^{x=\pi} - \int_{-\pi}^{\pi} f'(x)\frac{1}{-in}e^{-inx} dx$$
$$= \frac{2\pi}{in}\hat{f}'(n),$$

wobei der Ausdruck in Klammern verschwindet, weil f periodisch ist.

Für n=0,

$$2\pi \hat{f}'(n) = \int_{-\pi}^{\pi} f'(x) \, dx = f(\pi) - f(-\pi) = 0.$$

Beweis von Korollar 13

Beweis. Nach dem Satz 12

$$\widehat{f''}(n) = in\widehat{f'}(n) = (in)^2 \widehat{f}(n) = -n^2 \widehat{f}(n).$$

Daher, für $n \neq 0$,

$$|\widehat{f}(n)| = \frac{1}{n^2} |\widehat{f''}(n)| = \frac{1}{2\pi n^2} \left| \int_{-\pi}^{\pi} f''(x) e^{-inx} \, dx \right| \le \frac{1}{2\pi n^2} \int_{-\pi}^{\pi} |f''(x)| \, dx \le \frac{C}{n^2},$$

mit $C := \max_{[-\pi,\pi]} |f''|$.

Beweis von Korollar 14

Beweis. Nach dem Korollar 13, $\sum_{n\in\mathbb{Z}} |\hat{f}(n)| < \infty$. Wir verwenden den Satz 4 und den Satz 9.

Beweis von Lemma 17

Beweis. Sei $h: [-\pi, \pi] \to \mathbb{C}$ stetig mit $||f - h||_1 < \varepsilon/2$. Sei $\eta_n: [-\pi, \pi] \to [0, 1]$ stetig mit

$$\eta_n(x) = \begin{cases} 1 & |x| \le \pi - 2/n \\ 0 & |x| \in (\pi - 1/n, \pi]. \end{cases}$$

(Beispielsweise kann man eine stückweise lineare Funktion wählen.) Dann

$$2\pi \|h - h \cdot \eta_n\|_1 = \int_{-\pi}^{\pi} |h(x)|(1 - \eta_n)(x) dx$$

$$\leq \int_{[\pi - 2/n, \pi] \cup [-\pi, -\pi + 2/n]} |h(x)| dx \leq \frac{4}{n} \|h\|_{\infty}.$$

Sei $g_0 := h \cdot \eta_n$ mit n so, dass $||h - g_0||_1 < \varepsilon/2$. Dann $||f - g_0||_1 < \varepsilon$. Sei $g : \mathbb{R} \to \mathbb{C}$, $g(x + 2n\pi) := g_0(x)$, mit $x \in [-\pi, \pi)$. Da $g_0(-\pi) = g_0(\pi) = 0$, ist g stetig (überzeugen Sie sich selbst!).

Beweis von Lemma 19

Beweis.

$$\sum_{n=-N}^{N} \hat{f}(n)e^{inx} = \sum_{n=-N}^{N} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)e^{-iny} \, dy e^{inx}$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) \sum_{n=-N}^{N} e^{in(x-y)} \, dy$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) D_N(x-y) \, dy = (f * D_N)(x).$$

Beweis von Satz 20

Beweis. (i). Nach dem Satz von Fubini

$$\widehat{f * g}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} (f * g)(x) e^{-inx} dx$$

$$= \frac{1}{2\pi} \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(y) g(x - y) dy e^{-inx} dx$$

$$= \frac{1}{2\pi} \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(y) g(x - y) dy e^{-iny} e^{-in(x - y)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} g(x - y) e^{-in(x - y)} dx \right] e^{-iny} dy$$

$$\stackrel{x \mapsto x + y}{=} \widehat{g}(n) \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) e^{-iny} dy = \widehat{g}(n) \widehat{f}(n).$$

Die Verwendung von Fubini ist gerechtfertigt, weil

$$\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} |f(y)g(x-y)e^{-iny}e^{-in(x-y)}| \, dx \, dy = \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} |f(y)||g(x-y)| \, dx \, dy$$

$$\leq 2\pi \|g\|_{\infty} \int_{-\pi}^{\pi} |f(y)| \, dy < \infty.$$

(ii). Schritt 1. Wir nehmen an, dass f stetig ist. Da $[-\pi, \pi]$ kompakt ist, ist f gleichmäßig stetig. Daher

$$(f * g)(x + h) - (f * g)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)g(x + h - y) \, dy - \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)g(x - y) \, dy$$

$$\stackrel{y \mapsto y + h}{=} \frac{1}{2\pi} \int_{-\pi - h}^{\pi - h} f(y + h)g(x - y) \, dy - \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)g(x - y) \, dy$$

$$\stackrel{f,g}{=} \stackrel{\text{periodisch}}{=} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y + h)g(x - y) \, dy - \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)g(x - y) \, dy$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} [f(y + h) - f(y)]g(x - y) \, dy$$

und

$$|(f * g)(x + h) - (f * g)(x)| \le \sup_{y \in [-\pi,\pi]} |f(y + h) - f(y)| \|g\|_{\infty} \longrightarrow 0,$$
 für $h \to 0$.

Schritt 2. Für allgemein integrierbares f existiert (nach dem Lemma 17) eine Folge von periodischen und stetigen Funktionen $(f_n)_{n>1}$, so dass

$$\int_{-\pi}^{\pi} |f(x) - f_n(x)| dx \longrightarrow 0, \quad \text{wenn } h \to 0.$$

Daher

$$|(f * g)(x) - (f_n * g)(x)| = \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} [f(y) - f_n(y)] g(x - y) \, dy \right|$$

$$\leq \frac{1}{2\pi} ||g||_{\infty} \int_{-\pi}^{\pi} |f(y) - f_n(y)| \, dy \longrightarrow 0, \quad \text{für } h \to 0.$$

Darum konvergiert $(f_n * g)_n$ nach f * g gleichmäßig. Nach dem Schritt 1 ist jede $f_n * g$ stetig und daher ist f stetig.

Beweis von Satz 21

Beweis. Teil (i) und (ii) sind klar. Für (iii),

$$(f * g)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)g(x - y) \, dy$$

$$\stackrel{y \to -y}{=} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(-y)g(x + y) \, dy$$

$$\stackrel{y \to y -x}{=} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - y)g(y) \, dy = (g * f)(x).$$

Für (iv) benutzen wir Fubini:

$$f * (g * h)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)(g * h)(x - y) dy$$

$$= \frac{1}{2\pi} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) \int_{-\pi}^{\pi} g(w)h(x - y - w) dw dy$$

$$\stackrel{w \mapsto w - y}{=} \frac{1}{2\pi} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) \int_{-\pi}^{\pi} g(w - y)h(x - w) dw dy$$

$$= \frac{1}{2\pi} \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(y)g(w - y) dy h(x - w) dw$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} (f * g)(w)h(x - w) dw = [(f * g) * h](x).$$

Fubini kann tatsächlich benutzen werden, weil

$$\int_{-\pi}^{\pi} |f(y)| \int_{-\pi}^{\pi} |g(w-y)| |h(x-w)| \, dw \, dy \le (2\pi)^2 \, ||f||_{\infty} \, ||g||_{\infty} \, ||h||_{\infty} < \infty.$$

Beweis von Satz 23

Beweis. (i). Nach (G1),

$$(f * K_n)(x_0) - f(x_0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x_0 - y) K_n(y) \, dy - f(x_0)$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} [f(x_0 - y) - f(x_0)] K_n(y) \, dy.$$

Nach (G2) existiert M > 0, so dass für alle $n \ge 1$ gilt $\int_{-\pi}^{\pi} |K_n(y)| dy \le M$. Daher gilt für $\delta > 0$:

$$\begin{aligned} &|(f * K_n)(x_0) - f(x_0)| \le \\ &\frac{1}{2\pi} \int_{|y| < \delta} |f(x_0 - y) - f(x_0)| |K_n(y)| \, dy + \frac{1}{2\pi} \int_{\delta \le |y| \le \pi} |f(x_0 - y) - f(x_0)| |K_n(y)| \, dy \\ &\le \frac{1}{2\pi} \sup_{|y| < \delta} |f(x_0 - y) - f(x_0)| \int_{-\pi}^{\pi} |K_n(y)| \, dy + \frac{2||f||_{\infty}}{2\pi} \int_{\delta \le |y| \le \pi} |K_n(y)| \, dy \\ &\le \frac{M}{2\pi} \sup_{|y| < \delta} |f(x_0 - y) - f(x_0)| + \frac{2||f||_{\infty}}{2\pi} \int_{\delta \le |y| \le \pi} |K_n(y)| \, dy. \end{aligned}$$

Sei $\varepsilon > 0$ beliebig. Da f bei $x = x_0$ stetig ist, existiert $\delta > 0$, so dass

$$\sup_{|y| < \delta} |f(x_0 - y) - f(x_0)| < \varepsilon \frac{\pi}{M}.$$

Nach (G3) existiert n_0 , so dass für $n \ge n_0$,

$$\frac{\|f\|_{\infty}}{\pi} \int_{\delta \le |y| \le \pi} |K_n(y)| \, dy < \varepsilon/2.$$

Daher gilt für $n \ge n_0$

$$|(f * K_n)(x_0) - f(x_0)| < \varepsilon.$$

(ii) Wenn f auf \mathbb{R} stetig ist, ist f gleichmäßig stetig, weil f periodisch ist. Dann kann $\delta > 0$ gleichmäßig gewählt werden und folglich auch n_0 .

Beweis von Satz 27

Beweis. Schritt 1. Mit der Schreibweise $w^t := e^{itx}$ erinnern wir uns an folgende Formel

$$D_N(x) = \frac{w^{N+1} - w^{-N}}{w - 1}.$$

Dahers

$$NF_{N}(x) = \sum_{k=0}^{N-1} D_{k}(x) = (w-1)^{-1} \left[\sum_{k=0}^{N-1} w^{k+1} - \sum_{k=0}^{N-1} w^{-k} \right]$$

$$= (w-1)^{-1} \left[w \sum_{k=0}^{N-1} w^{k} - w^{1-N} \sum_{k=0}^{N-1} w^{k} \right]$$

$$= (w-1)^{-2} \left[w(w^{N} - 1) - w^{1-N}(w^{N} - 1) \right]$$

$$= (w^{1/2} - w^{-1/2})^{-2} w^{-1} \left[w^{N+1} - 2w + w^{1-N} \right]$$

$$= (w^{1/2} - w^{-1/2})^{-2} \left[w^{N/2} - w^{-N/2} \right]^{2}$$

$$= \left[\frac{\sin(Nx/2)}{\sin(x/2)} \right]^{2}.$$

Schritt 2. Wir zeigen, dass die Folge $(F_N)_{N>1}$ eine gute Folge ist. Bezüglich (G1),

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} F_N(x) \, dx = \frac{1}{N} \sum_{M=0}^{N-1} \frac{1}{2\pi} \int_{-\pi}^{\pi} D_M(x) \, dx = 1$$

(G2) folgt aus (G1), weil $F_N \ge 0$. Für (G3) sei $\delta > 0$. Dann

$$c_{\delta} := \inf_{\delta < |x| \le \pi} [\sin(x/2)]^2 > 0$$

und

$$\int_{\delta < |x| \le \pi} |F_N(x)| \, dx = \frac{1}{N} \int_{\delta < |x| \le \pi} \left[\frac{\sin(Nx/2)}{\sin(x/2)} \right]^2 dx$$
$$\le \frac{1}{N} \frac{2\pi}{c_{\delta}} \longrightarrow 0, \quad \text{für } N \to \infty.$$

Beweis von Korollar 28

Beweis. Direkt von Satz 23 und Satz 27.

Beweis von Lemma 29

Beweis.

$$NF_N(x) := \sum_{M=0}^{N-1} D_M(x) = \sum_{M=0}^{N-1} \sum_{k=-M}^{M} e^{ikx} = \sum_{M=0}^{N-1} \sum_{k=-(N-1)}^{N-1} a_{k,M} e^{ikx},$$

wobei

(2)
$$a_{k,M} = \begin{cases} 1, & |k| \le M \\ 0, & |k| > M \end{cases}.$$

Daher

$$NF_N(x) := \sum_{k=-(N-1)}^{N-1} \sum_{M=0}^{N-1} a_{k,M} e^{ikx} = \sum_{k=-(N-1)}^{N-1} \sum_{M=|k|}^{N-1} 1 e^{ikx} = \sum_{k=-(N-1)}^{N-1} (N-|k|) e^{ikx}.$$

Beweis von Korollar 30

Beweis. Nach dem Satz 20 ist $f * F_N$ stetig und

$$(\widehat{f * F_N})(n) = \widehat{f}(n) \, \widehat{F_N}(n) = \begin{cases} \frac{N - |n|}{N} \, \widehat{f}(n), & |n| \le N - 1 \\ 0, & |n| \ge N \end{cases}.$$

Da die Fourier Koeffizienten von $f * F_N$ summierbar sind (und $f * F_N$ stetig ist), gilt

$$f * F_N(x) = \sum_{n=-(N-1)}^{N-1} \left(1 - \frac{|n|}{N}\right) \hat{f}(n) e^{inx}, \quad x \in \mathbb{R}.$$

Beweis von Satz 33

Beweis. Für $r \in (0,1)$ und integrierbare f:

$$\sum_{n \in \mathbb{Z}} r^{|n|} |\hat{f}(n)| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)| \, dx \sum_{n \in \mathbb{Z}} r^{|n|} < \infty.$$

Dem Satz 4 zufolge ist $A_r(f)$ stetig und

$$\widehat{A_r(f)}(n) = r^{|n|}\widehat{f}(n).$$

Andererseits ist $f * P_n$ nach dem Satz 20 und

$$\widehat{f * P_r}(n) = \widehat{f}(n)\widehat{P_r}(n) = r^{|n|}\widehat{f}(n).$$

Das heißt, $f * P_r$ und $A_r(f)$ haben dieselbe Fourier Koeffizienten, und beide Funktionen sind stetig. Nach dem Satz 9 sind $f * P_r \equiv A_r(f)$.

Beweis von Satz 34

Beweis. Nach dem Beispiel 8,

$$P_r(x) = \sum_{n \in \mathbb{Z}} r^{|n|} e^{inx} = \frac{1 - r^2}{1 - 2r\cos(x) + r^2}.$$

Bezüglich (G1)

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(x) \, dx = \widehat{P_r}(0) = 1.$$

Zweitens für 0 < r < 1,

$$1 - 2r\cos(x) + r^2 = (1 - r)^2 + 2r(1 - \cos(x)) \ge 0.$$

Daher $P_r(x) \ge 0$ und (G2) folgt aus (G1).

Bezüglich (G3) sei $\delta > 0$. Dann

$$c_{\delta} := \inf_{\delta \le |x| \le \pi} 1 - \cos(x) > 0$$

und daher

$$\inf_{\delta < |x| < \pi} (1 - r)^2 + 2r(1 - \cos(x)) \ge 2c_{\delta}r.$$

Daher,

$$\int_{\delta < |x| < \pi} |P_r(x)| \, dx \le 2\pi \frac{(1-r)^2}{2c_\delta r} \longrightarrow 0, \text{ für } r \to 1^-.$$

Beweis von Korollar 35

Beweis. Direkt von Satz 23 und Satz 34. (Wir verwenden die Charakterisierung der Konvergenz anhand von Folgen). \Box

Beweis von Satz 36

Beweis. Da die Folge von Kernen gut ist, existiert M > 0 so dass,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |K_N(x)| \, dx \le M, \qquad N \ge 1.$$

Sei $\varepsilon > 0$ und (nach dem Lemma 17) g periodisch und stetig mit

$$||f - g||_1 < \min\left\{\frac{\varepsilon}{3M}, \frac{\varepsilon}{3}\right\}.$$

Nach dem Satz 23 existiert N_0 , so dass

$$||g * K_N - g||_1 \le ||g * K_N - g||_{\infty} < \varepsilon/3, \qquad N \ge N_0$$

Sei $N \geq N_0$. Dann, nach Fubini-Tonelli,

$$||f * K_N - f||_1 \le ||f * K_N - g * K_N||_1 + ||g * K_N - g||_1 + ||f - g||_1$$

$$\le \frac{1}{2\pi} \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} |f(y) - g(y)| |K_N(x - y)| \, dy \, dx + \frac{2}{3} \varepsilon$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(y) - g(y)| \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} |K_N(x - y)| \, dx \right] \, dy + \frac{2}{3} \varepsilon$$

$$\le M||f - g||_1 + \frac{2}{3} \varepsilon < \varepsilon.$$

Beweis von Korollar 37

Beweis. Nehmen wir an, dass $\hat{f}(n) = 0$, $n \in \mathbb{Z}$. Dann sind die Cesàro Durchschnitte auch null: $C_N(f) = 0$, $N \ge 0$. Nach den Sätzen 27 und 36 gilt

$$||f||_1 = \lim_N ||f||_1 = \lim_N ||f - C_N(f)||_1 = 0$$

und daher ist f fast überall Null.

Beweis von Korollar 38

Beweis. Sei $g(x) := \sum_{n \in \mathbb{Z}} \hat{f}(n)e^{inx}$, $x \in \mathbb{R}$. Nach dem Satz 4 ist g stetig und $\hat{f}(n) = \hat{g}(n)$ für jedes $n \in \mathbb{Z}$. Nach dem Korollar 37 ist f = g fast überall.

Beweis von Satz 39

Beweis. Schritt 1. Sei $h : \mathbb{R} \to \mathbb{R}$ mit $h(x) = f(e^{ix})$. Dann ist $h \ 2\pi$ -periodisch und stetig. Wir betrachten $A_r(h)$, d.h., die Abel-Durchschnitte der Fourier Reihe von h. Sei

$$g(re^{ix}) = \begin{cases} \hat{h}(0), & r = 0, \\ A_r(h)(x), & 0 < r < 1, . \\ f(e^{ix}) = h(x), & r = 1, \end{cases}$$

Dann ist g wohldefiniert, weil A_r 2π -periodisch ist – c.f. Übungsblatt. Konkret gilt

$$g(re^{ix}) = \sum_{n \in \mathbb{Z}} \hat{h}(n)r^{|n|}e^{inx}, \qquad 0 \le r < 1,$$

und g = f auf S^1 nach der Definition.

Schritt 2. Für $z = re^{ix}$ mit $0 \le r < 1$ schreiben wir

$$g(z) = \hat{h}(0) + \sum_{n \ge 1} \hat{h}(n)z^n + \sum_{n \ge 1} \hat{h}(-n)\overline{z^n}.$$

Da h reellwertig ist, gilt $\hat{h}(-n) = \overline{h}(n)$ und

$$g(z) = \hat{h}(0) + \varphi(z) + \overline{\varphi(z)}$$
$$= \hat{h}(0) + 2\text{Re}[\varphi(z)],$$

wobei $\varphi(z) = \sum_{n \geq 1} \hat{h}(n) z^n$. Da h stetig ist, gilt $\sup_n |\hat{h}(n)| < \infty$ und φ ist auf \mathbb{D} holomorph. Deswegen ist g auf \mathbb{D} unendlich differenzierbar und $\Delta g = 0$ auf \mathbb{D} .

Schritt 3. Wir müssen noch zeigen, dass g auf jeden $z \in S^1$ stetig ist. Sei $\{z_n : n \geq 1\} \subset \mathbb{D}$ mit $z_n \to z$. Mittels eines um z stetigen Arguments schreiben wir $z_n = r_n e^{ix_n}$ und $z = e^{ix}$ mit $r_n \to 1$ und $x_n \to x$.

Für groß genug n ist $r_n > 0$ und

$$g(z_n) - g(z) = \begin{cases} h(x_n) - h(x), & \text{wenn } r_n = 1\\ A_{r_n}(h)(x_n) - h(x), & \text{wenn } r_n < 1 \end{cases}.$$

Folglich

(3)
$$|g(z_n) - g(z)| \le \begin{cases} |h(x_n) - h(x)|, & \text{wenn } r_n = 1\\ |A_{r_n}(h)(x_n) - h(x_n)| + |h(x_n) - h(x)|, & \text{wenn } r_n < 1 \end{cases}.$$

Nach der Stetigkeit von f gilt $|h(x_n)-h(x)| \to 0$ für $n \to \infty$. Wenn $n_0 \in \mathbb{N}$ existiert mit $r_n = 1$ für $n \ge n_0$, dann ist klar, dass $|g(z_n)-g(z)| \to 0$ für $n \to \infty$. Nehmen wir an, dass die Menge $\{r_n : n \ge 1\} \cap \mathbb{D}$ unendlich ist. Dann kann man $\{r_n : n \ge 1\} \cap \mathbb{D} = \{r_{n_k} : k \ge 1\}$ schreiben, wobei $(r_{n_k})_{k\ge 1}$ eine Teilfolge von $(r_n)_{n\ge 1}$ ist. Da $A_{r_{n_k}}(h) \to h$ gleichmäßig konvergiert für $k \to \infty$, gilt

$$|A_{r_{n_k}}(h)(x_{n_k}) - h(x_{n_k})| \le \sup_{y \in \mathbb{R}} |A_{r_{n_k}}(h)(y) - h(y)| \to 0.$$

Andererseits kann (3) so geschrieben werden:

$$|g(z_n) - g(z)| \le |h(x_n) - h(x)| + \begin{cases} 0, & \text{wenn } n \notin \{n_k : k \ge 1\} \\ |A_{r_{n_k}}(h)(x_{n_k}) - h(x_{n_k})|, & \text{wenn } n = n_k \end{cases}.$$

Daraus folgt, dass $|g(z_n) - g(z)| \to 0$ für $n \to \infty$ (überzeugen Sie sich!).

Schritt 4. (Eindeutigkeit) Sei g_2 eine andere Lösung und $q(z) := g(z) - g_2(z)$. Dann ist $q : \overline{\mathbb{D}} \to \mathbb{R}$ stetig, $q \equiv 0$ auf S^1 und $\Delta q = 0$ auf \mathbb{D} .

Sei $Q: \mathbb{D} \to \mathbb{C}$ holomorph mit Re[Q] = q. Nach dem Maximumprinzip gilt für r < 1:

$$\max_{|z| \le r} e^{q(z)} = \max_{|z| \le r} |e^{Q(z)}| = \max_{|z| = r} |e^{Q(z)}| = \max_{|z| = r} e^{q(z)}.$$

Da q stetig ist, folgt daraus, dass

$$\max_{|z| \le 1} e^{q(z)} = \max_{|z| = 1} e^{q(z)} = 1,$$

und $q(z) \leq 0$. Wir argumentieren ähnlich mit -q und finden, dass $q \equiv 0$. Daher, $g \equiv g_2$.

Beweis von Lemma 40

Beweis. Seien $z := \sum_{k=1}^{n} \langle x, e_l \rangle e_k$ und $y \in W$. Wir stellen fest, dass $\langle x - z, e_k \rangle = 0$ für jedes $k = 1, \ldots, n$. Da $y - z \in W$, folgt daraus, dass $\langle x - z, y - z \rangle = 0$ und

$$||x - y||^2 = ||(x - z) - (y - z)||^2$$

$$= ||x - z||^2 - \langle x - z, y - z \rangle - \langle y - z, x - z \rangle + ||(y - z)||^2$$

$$= ||x - z||^2 + ||(y - z)||^2 \ge ||x - z||^2.$$

Daher

$$\inf_{y \in W} \|x - y\|^2 \le \|x - z\|^2 \le \inf_{y \in W} \|x - y\|^2.$$

Beweis von Satz 41

Beweis. Schritt 1. Seien $\{e_n : n \in \mathbb{Z}\} \subset L^2([-\pi, \pi])$ die trigonometrische Funktionen

$$e_n(x) := e^{inx}$$

und $\mathcal{P}_N = \left\{ \sum_{n=-N}^N c_n e_n : c_n \in \mathbb{C} \right\}$ die Menge aller trigonometrischen Polynome mit Grad $\leq N$. Wir stellen fest, dass $\{e_n : n \in \mathbb{Z}\}$ orthonormal ist. Die partielle Fourier-Summen von f ist

$$S_N(f) = \sum_{n=-N}^{N} \langle f, e_n \rangle e_n$$

und

$$||S_N(f)||^2 = \sum_{n=-N}^N \sum_{m=-N}^N \hat{f}(n) \overline{\hat{f}(m)} \langle e_n, e_m \rangle = \sum_{n=-N}^N |\hat{f}(n)|^2.$$

Schritt 2. Sei $\varepsilon > 0$. Dann existiert $g : [-\pi, \pi] \to \mathbb{C}$ stetig und periodisch mit $||f - g||_2 < \varepsilon/2$. Wir betrachten die Cesàro Durchschnitte der Fourier Reihe von g. Dann existiert $N_0 \in \mathbb{Z}$, so dass für $N \geq N_0$ gilt $||g - C_N(g)||_{\infty} < \varepsilon/2$. Folglich

$$||g - C_N(g)||_2^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |g(x) - C_N(g)(x)|^2 dx \le \frac{1}{2\pi} 2\pi ||g - C_N(g)||_{\infty}^2 = \left(\frac{\varepsilon}{2}\right)^2.$$

Für $N \geq N_0$ gilt $C_N(g) \in \mathcal{P}_N$. Nach dem Lemma 40

$$||f - S_N f||_2 \le ||f - C_N(g)||_2 \le ||f - g||_2 + ||g - C_N(g)||_2 < \varepsilon.$$

Schritt 3. Wir stellen fest, dass für $n = -N, \dots, N$

$$\langle f - S_N(f), e_n \rangle = \hat{f}(n) - \hat{f}(n) = 0.$$

Daher sind $f - S_N(f)$ und S_N orthogonal und

$$||f||^2 = ||S_N(f)||_2^2 + ||f - S_N f||_2^2$$
$$= \sum_{n=-N}^N |\hat{f}(n)|^2 + ||f - S_N f||_2^2.$$

Da $||f - S_N f||_2^2 \to 0$, gilt $\lim_n \sum_{n=-N}^N |\hat{f}(n)|^2 = ||f||_2^2$.

Beweis von Satz 44

Beweis. Wir erinnern uns, dass

$$S_N(f)(x_0) = f * D_N(x_0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x_0 - y) D_N(y) \, dy.$$

Da der Dirichlet Kern D_N

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} D_N(x) \, dx = 1$$

erfüllt, gilt

$$S_N(f)(x_0) - f(x_0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} [f(x_0 - y) - f(x_0)] D_N(y) \, dy$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} [f(x_0 - y) - f(x_0)] \frac{\sin((N + 1/2)y)}{\sin(y/2)} \, dy$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} g(y) \sin((N + 1/2)y) \, dy,$$

wobei

$$g(y) = \frac{f(x_0 - y) - f(x_0)}{\sin(y/2)} = \frac{f(x_0 - y) - f(x_0)}{y} \frac{y}{\sin(y/2)}, \qquad y \in [-\pi, \pi] \setminus \{0\},$$

und g(0) := 0.

Da f bei x_0 Lipschitz ist, ist g beschränkt und insbesondere in $L^2([-\pi, \pi])$. Weiter

$$S_N(f)(x_0) - f(x_0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(y) \frac{1}{2i} \left[e^{i(N+1/2)y} - e^{-i(N+1/2)y} \right] dy$$
$$= \frac{1}{2i} \widehat{g}_1(-N) - \frac{1}{2i} \widehat{g}_2(N),$$

wobei $g_1(y) = e^{iy/2}g(y)$ und $g_2(y) = e^{-iy/2}g(y)$. Diese Funktionen erfüllen

$$\sum_{n \in \mathbb{Z}} |\widehat{g_j}(n)|^2 = ||g_j||_2^2 = ||g||_2^2 < \infty, \qquad j = 1, 2.$$

Insbesondere $\widehat{g}_j(n) \to 0$ für $n \to \pm \infty$. Daher $S_N(f)(x_0) - f(x_0) \to 0$.

Beweis von Satz 44

Beweis. Sei $x_0 \in (-\pi, \pi)$ und $\delta := \pi - |x_0|$. Sei $x \in \mathbb{R}$. Wenn $|x - x_0| < \delta$, dann $|x| \le |x_0| + |x - x_0| < \pi$. Daher f(x) = x, $f(x_0) = x_0$ und

$$|f(x) - f(x_0)| = |x - x_0|.$$

Wenn $|x - x_0| \ge \delta$, dann

$$|f(x) - f(x_0)| \le 2\pi \le \frac{2\pi}{\delta} |x - x_0|.$$

Wir nehmen $C := \max\{1, \frac{2\pi}{\delta}\}.$

Beweis von Korollar 46

Beweis. Wir stellen fest,

$$S_N(f)(x_0) = S_N(g)(x_0) + S_N(f-g)(x_0)$$

und f - g ist Lipschitz bei x_0 . In der tat existiert $\delta > 0$ mit f(x) - g(x) = 0, für $|x - x_0| < \delta$. Daher,

$$|[f(x) - g(x)] - [f(x_0) - g(x_0)]| = |f(x) - g(x)| \le \frac{||f||_{\infty} + ||g||_{\infty}}{\delta} |x - x_0|, \quad x \in \mathbb{R}.$$

Wir verwenden den Satz 44.

Beweis von Satz 24

Beweis. Schritt 1. Sei $f: \mathbb{R} \to \mathbb{C}$ die Sägezahnfunktion, d.h., f ist 2π -periodisch und $f(x) = x, -\pi \le x < \pi$. Nach dem Beispiel 6

$$f(x) \sim \sum_{n \neq 0} i \frac{(-1)^n}{n} e^{inx}.$$

Wir stellen fest, dass $|f(x)| \le \pi$, $x \in \mathbb{R}$.

Die Abel-Durchschnitte

(4)
$$A_r(f)(x) = (f * P_r)(x) = \sum_{n \in \mathbb{Z}} r^{|n|} \hat{f}(n) e^{inx}$$

erfüllt

$$|A_r(f)(x)| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(y)| P_r(x-y) \, dy \le \pi \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(x-y) \, dy = \pi.$$

Behauptung. Die partielle Fouriersumme

(5)
$$S_N(f)(x) = \sum_{n=-N}^{N} \hat{f}(n)e^{inx} = \sum_{n=-N}^{N} i\frac{(-1)^n}{n}e^{inx}.$$

ist auch (unabhängig von N) beschränkt, i.e.,

$$\max_{x \in \mathbb{R}} \max_{N \ge 0} |S_N(f)(x)| < \infty.$$

Beweis der Behauptung: wir vergleichen (4) und (5):

$$S_N(f)(x) - A_r(f)(x) = \sum_{n=-N}^{N} (1 - r^{|n|}) \hat{f}(n) e^{inx} - \sum_{|n| > N} r^{|n|} \hat{f}(n) e^{inx}$$

und benutzen die Abschätzungen

$$|n||\hat{f}(n)| \le 1$$

 $0 \le 1 - r^{|n|} = (1 - r)(1 + r + \dots + r^{|n|-1}) \le |n|(1 - r).$

Daher

$$|S_N(f)(x) - A_r(f)(x)| \le \sum_{n=-N}^N (1-r)|n||\hat{f}(n)| + \sum_{|n|>N} r^{|n|} \frac{1}{|n|} \le (1-r)(2N+1) + \frac{1}{N} \frac{2}{1-r}.$$

Die Abschätzung gilt für jedes 0 < r < 1. Wir setzen r = 1 - 1/N ein und folgern daraus, dass

$$|S_N(f)(x) - A_r(f)(x)| \le \frac{2N+1}{N} + 2 \le 5.$$

Daher,

$$|S_N(f)(x)| \le |S_N(f)(x) - A_r(f)(x)| + |A_r(f)(x)| \le 5 + \pi.$$

Schritt 2. Sei

$$S_N^-(f)(x) = \sum_{n=-N}^{-1} i \frac{(-1)^n}{n} e^{inx}, \qquad S_N^+(f)(x) = \sum_{n=1}^N i \frac{(-1)^n}{n} e^{inx}.$$

Dann ist $S_N^-(f) + S_N^+(f) = S_N(f)$ beschränkt. Aber

$$|S_N^+(f)(\pi)| = \sum_{n=1}^N \frac{1}{n} \ge \sum_{n=1}^N \int_n^{n+1} \frac{1}{x} dx = \int_1^{N+1} \frac{1}{x} dx = \log(N+1) \ge \log(N).$$

Ähnlich $|S_N^-(f)(\pi)| \ge \log(N)$.

Schritt 3. Sei $N_k = 3^{2^k}$, $k \in \mathbb{N}$, und

$$g(x) = \sum_{k \ge 1} \frac{1}{k^2} g_k(x), \qquad x \in \mathbb{R}, \text{ mit}$$
$$g_k(x) = e^{i2N_k x} S_{N_k}(f)(x).$$

Da $\sup_{x \in \mathbb{R}, N \in \mathbb{N}} |S_N f(x)| < \infty$, konvergiert die Reihe absolut und gleichmäßig. In der Tat,

$$\left| g(x) - \sum_{k=1}^{n} \frac{1}{k^2} e^{iN_k x} S_{N_k}(f)(x) \right| \le (5+\pi) \sum_{k>n} \frac{1}{k^2}.$$

Da jede $S_{N_k}(f)$ stetig und periodisch ist, ist auch g stetig und periodisch.

Schritt 4. Wir zeigen, dass $\not\exists \lim_N S_N(g)(\pi) \in \mathbb{R}$. Wir stellen fest, dass

$$g_k(x) = \sum_{n=-N_k}^{N_k} \hat{f}(n)e^{i(n+2N_k)x} = \sum_{n=N_k}^{3N_k} \hat{f}(n-2N_k)e^{inx}.$$

Daher

$$S_{2N_k}(g_k)(x) = \sum_{n=N_k}^{2N_k} \hat{f}(n-2N_k)e^{inx} = e^{i2N_kx} \sum_{n=-N_k}^{0} \hat{f}(n)e^{inx} = e^{i2N_kx} S_{N_k}^{-}(f)(x)$$

und

(6)
$$|S_{2N_k}(g_k)(\pi)| = |S_{N_k}^-(f)(\pi)| \ge \log(N_k).$$

Wenn j < k, dann $2N_j = 23^{2^j} < 3^{2^k} = N_k$ und

(7)
$$S_{2N_j}(g_k) = 0, \quad j < k.$$

Wenn j > k, dann $2N_j = 23^{2^j} > 3^{2^k+1} = 3N_k$ und $S_{2N_j}(g_k) = g_k$, so dass

(8)
$$\left| S_{2N_j}(g_k)(x) \right| \le 5 + \pi \qquad j > k.$$

Aus (6), (7) und (8) folgt es, dass

$$|S_{2N_{j}}(g)(\pi)| = \left| \sum_{k=1}^{j} \frac{1}{k^{2}} S_{2N_{j}}(g_{k})(\pi) \right| \ge \frac{1}{j^{2}} |S_{2N_{j}}(g_{j})(\pi)| - \sum_{k=1}^{j-1} \frac{1}{k^{2}} |S_{2N_{j}}(g_{k})(\pi)|$$

$$\ge \frac{1}{j^{2}} \log(N_{j}) - (5+\pi) \sum_{k \ge 1} \frac{1}{k^{2}}$$

$$= \frac{2^{j}}{j^{2}} \log(3) - (5+\pi) \sum_{k \ge 1} \frac{1}{k^{2}} \to \infty, \quad \text{für } j \to \infty.$$

Deshalb $\not\exists \lim_N S_N(g)(\pi) \in \mathbb{R}$.

Bemerkung: $h(x) := g(x + \pi)$ ist stetig, periodisch und die partielle Fourier Summe bei x = 0,

$$S_N(h)(0) = S_N g(\pi),$$

ist nicht konvergent.

Beweis von Satz 49

Beweis. (i)

$$\widehat{T_a f}(\xi) = \int_{\mathbb{R}} f(x - a) e^{-2\pi i x \xi} \, dx = \int_{\mathbb{R}} f(x) e^{-2\pi i (x + a) \xi} \, dx = e^{-2\pi i a \xi} \widehat{f}(\xi).$$

(ii)

$$\widehat{M_a f}(\xi) = \int_{\mathbb{R}} f(x) e^{2\pi i a x} e^{-2\pi i x \xi} dx = \int_{\mathbb{R}} f(x) e^{-2\pi i x (\xi - a)} dx = \widehat{f}(\xi - a).$$

(iii)

$$\widehat{D_a f}(\xi) = \int_{\mathbb{R}} f(ax) e^{-2\pi i x \xi} \, dx = a^{-1} \int_{\mathbb{R}} f(y) e^{-2\pi i \frac{y}{a} \xi} \, dy = a^{-1} \widehat{f}(\xi/a).$$

Beweis von Lemma 50

Beweis. Sei $g \in C_c(\mathbb{R})$ (d.h., g ist stetig mit kompakten Träger) und $y \in \mathbb{R}$ mit $|y| \leq 1$. Dann

$$||f - f(\cdot + y)||_p \le ||f - g||_p + ||g - g(\cdot + y)||_p + ||g(\cdot + y) - f(\cdot + y)||_p$$
$$= 2||f - g||_p + ||g - g(\cdot + y)||_p.$$

Sei L > 0 so, dass |g(x)| = 0 für |x| > L. Dann

$$\int_{\mathbb{R}} |g(x) - g(x+y)|^p dx$$

$$= \int_{-(L+1)}^{L+1} |g(x) - g(x+y)|^p dx \le (2L+2)^p \sup_{x \in [-(L+1), L+1]} |g(x) - g(x+y)|^p.$$

Aus der Stetigkeit von g folgt, dass $||g-g(\cdot+y)||_p \to 0, y \to 0$. Daher,

$$\limsup_{y \to 0} ||f - f(\cdot + y)||_p \le 2||f - g||_p.$$

Da $C_c(\mathbb{R})$ in $L^p(\mathbb{R})$ dicht liegt, folgt, dass $\lim_{y\to 0} \|f - f(\cdot + y)\|_p = 0$.

Beweis von Lemma 52

Beweis. (i)

$$\sup_{x \in \mathbb{R}} (1 + |x|)^k \left| \frac{d^j}{dx^j} f'(x) \right| = \sup_{x \in \mathbb{R}} (1 + |x|)^k \left| \frac{d^{j+1}}{dx^{j+1}} f(x) \right| < \infty$$

(ii) Durch ein induktives Argument reicht es aus, p(x) = x. Wir stellen Folgendes fest

$$\frac{d^j}{dx^j}[xf(x)] = \sum_{n=0}^j \binom{n}{j} \frac{d^{j-n}}{dx^{j-n}} x \frac{d^n}{dx^n} f(x)$$

und $\frac{d^{j-n}}{dx^{j-n}}x\in\{0,1,x\}$. Daher $|\frac{d^{j-n}}{dx^{j-n}}x|\leq 1+|x|$. Für $k,j\in\mathbb{N}$ sei

$$C_{k,j} := \sup_{x \in \mathbb{R}} (1 + |x|)^k \left| \frac{d^j}{dx^j} f(x) \right|.$$

Dann

$$(1+|x|)^{k} \left| \frac{d^{j}}{dx^{j}} [xf(x)] \right| \leq \sum_{n=0}^{j} \binom{n}{j} (1+|x|)^{k+1} \left| \frac{d^{n}}{dx^{n}} f(x) \right|$$
$$\leq \sum_{n=0}^{j} \binom{n}{j} C_{k+1,n} < \infty,$$

wobei der letzte Ausdruck unabhängig von x ist.

Beispiel 53

Beweis. Seien $j, k \in \mathbb{N}_0$. Dann

$$\frac{d^j}{dx^j}\Phi(x) = p_j(x)\Phi(x),$$

wobei p_j ein algebraisches Polynom ist. Deshalb existiert $N \in \mathbb{N}$ und K > 0, so dass

$$|p_j(x)| \le K(1+|x|)^N, \qquad x \in \mathbb{R}.$$

Daher,

$$\sup_{x\in\mathbb{R}}(1+|x|)^k\big|\tfrac{d^j}{dx^j}\Phi(x)\big|\leq K\sup_{x\in\mathbb{R}}(1+|x|)^{N+k}\Phi(x)<\infty.$$

Beweis von Satz 54

Beweis. (i) Wir lassen R > 0 und integrieren nach Teilen:

$$\int_{-R}^{R} f'(x)e^{-2\pi ix\xi} dx = f(x)e^{-2\pi ix\xi}\Big|_{x=-R}^{x=R} - \int_{-R}^{R} f(x)(-2\pi i\xi)e^{-2\pi ix\xi} dx$$
$$= f(x)e^{-2\pi ix\xi}\Big|_{x=-R}^{x=R} + 2\pi i\xi \int_{-R}^{R} f(x)e^{-2\pi ix\xi} dx.$$

Da $f \in \mathcal{S}$, gilt $\lim_{x \to \pm \infty} f(x) = 0$ und $\hat{f}'(\xi) = 2\pi i \xi \, \hat{f}(\xi)$ folgt.

(ii) Für $0 \neq |h| < 1$ gilt

$$\frac{1}{h} \left[\hat{f}(\xi + h) - \hat{f}(\xi) \right] - \widehat{Pf}(\xi) = \int_{\mathbb{R}} f(x) \left[\frac{e^{-2\pi i h x} - 1}{h} + 2\pi i x \right] e^{-2\pi i x \xi} dx$$

$$= \int_{\mathbb{R}} x f(x) \left[\frac{e^{-2\pi i h x} - 1}{h x} + 2\pi i \right] e^{-2\pi i x \xi} dx.$$

Wenn wir eine Taylor-Entwicklung und großes und kleines t
 getrennt betrachten, sehen wir, dass eine Konstante C > 0 existiert, so dass,

$$|e^{-2\pi it} - 1 + 2\pi it| \le Ct^2, \qquad t \in \mathbb{R}.$$

Daher (mit t = hx),

$$\left| \frac{1}{h} \left[\hat{f}(\xi + h) - \hat{f}(\xi) \right] - \widehat{Pf}(\xi) \right| \le C|h| \int_{\mathbb{R}} |x|^2 |f(x)| \, dx.$$

Da $f \in \mathcal{S}$, ist das vorherige Integral endlich und wir lassen $h \to 0$.

(iii). Seien $k, j \in \mathbb{N}_0$. Dann

$$|\xi|^{k} \left| \frac{d^{j}}{d\xi^{j}} \hat{f}(\xi) \right| = (2\pi)^{-k} |2\pi i \xi|^{k} \left| \widehat{P^{j} f}(\xi) \right|$$
$$= (2\pi)^{-k} \left| \widehat{\frac{d^{k}}{d\xi^{k}}} [P^{j} f](\xi) \right| \leq (2\pi)^{-k} \left\| \frac{d^{k}}{d\xi^{k}} [P^{j} f] \right\|_{1}.$$

Da $f \in \mathcal{S}$, ist auch $\frac{d^k}{d\xi^k}[P^j f] \in \mathcal{S} \subset L^1$ und

$$(1+|\xi|)^k \left| \frac{d^j}{d\xi^j} \hat{f}(\xi) \right| \le C_k (1+|\xi|^k) \left| \frac{d^j}{d\xi^j} \hat{f}(\xi) \right| \le C'_k \left(\left\| P^j f \right\|_1 + \left\| \frac{d^k}{d\xi^k} [P^j f] \right\|_1 \right),$$

wobei C_k und C_k' Konstanten sind, die nur von k abhängen.

Beweis von Satz 55

Beweis. Schritt 1. Zunächst stellen wir fest, dass

(9)
$$\hat{\Phi}(0) = \int_{\mathbb{R}} e^{-\pi x^2} dx = 1.$$

Zur Berechnung verwenden wir Polarkoordinaten und Fubini-Tonelli:

$$\left[\int_{\mathbb{R}} e^{-\pi x^2} \, dx \right]^2 = \int_{\mathbb{R} \times \mathbb{R}} e^{-\pi (x^2 + y^2)} \, dx \, dy$$

$$= \int_0^{2\pi} \int_0^{\infty} e^{-\pi r^2} r \, dr \, d\theta$$

$$= \int_0^{\infty} e^{-\pi r^2} 2\pi r \, dr$$

$$= -e^{-\pi r^2} \Big|_{r=0}^{r=\infty} = 1,$$

und (9) folgt.

Schritt 2. Wir stellen fest, dass $i\frac{d}{dx}\Phi(x) = -2\pi ix \Phi(x) = P(\Phi)(x)$. Nach dem Satz 54 ist $\Phi \in \mathcal{S}(\mathbb{R})$ und gilt

$$\frac{d}{d\xi}\hat{\Phi}(\xi) = \widehat{P\Phi}(\xi) = i\widehat{\Phi}'(\xi) = -2\pi\xi\,\hat{\Phi}(\xi).$$

Sei $F(\xi) := \hat{\Phi}(\xi)e^{\pi\xi^2}$. Dann ist F(0) = 1 nach dem Schritt 1 und

$$F'(\xi) = \left[\frac{d}{d\xi}\hat{\Phi}(\xi)\right]e^{\pi\xi^2} + \hat{\Phi}(\xi)2\pi\xi e^{\pi\xi^2}$$
$$= \left(\left[\frac{d}{d\xi}\hat{\Phi}(\xi)\right] + 2\pi\xi \hat{\Phi}(\xi)\right)e^{\pi\xi^2} = 0.$$

Deshalb ist $F \equiv 1$ und $\Phi(\xi) = e^{-\pi \xi^2}$ für jedes $\xi \in \mathbb{R}$.

Beweis von Bemerkung 58

Beweis. Wir ändern Variablen und lernen, dass

$$(f * g)(x) = \int_{\mathbb{R}} f(y)g(x - y) \, dy = \int_{\mathbb{R}} f(y + x)g(-y) \, dy$$
$$= \int_{\mathbb{R}} f(x - y)g(y) \, dy = (g * f)(x).$$

Beweis von Lemma 59

Beweis. Schritt 1. Wir zeigen, dass

$$(10) (f * g)' = f' * g.$$

Wir stellen fest, dass f' * g wohl definiert ist, weil $f' \in L^{\infty}$ und $g \in L^1$. Seien $x, h \in \mathbb{R}$ mit $h \neq 0$. Dann

$$\frac{1}{h} [(f * g)(x + h) - (f * g)(x)] - (f' * g)(x)$$

$$= \int_{\mathbb{R}} \left[\frac{1}{h} (f(x + h - y) - f(x - y)) - f'(x - y) \right] g(y) dx.$$

Da f'' beschrankt ist, existiert eine Konstante C > 0 mit

$$|f(x+h) - f(x) - f'(x)h| \le C|h|^2, \qquad x, h \in \mathbb{R}.$$

Daher,

$$\left| \frac{1}{h} [(f * g)(x + h) - (f * g)(x)] - (f' * g)(x) \right| \le C|h| \int_{\mathbb{R}} |g(y)| \, dx.$$

Da g integrierbar ist, geht die rechte Seite der letzten Abschätzung auf 0, wenn h auf 0 geht, und (10) folgt.

Schritt 2. Da f' auch eine Schwartz-Funktion ist, schließen wir daraus durch Induktion, dass f*g unendlich differenzierbar ist, und

$$(f * g)^{(j)} = f^{(j)} * g, \qquad j \ge 1.$$

Sei $k \geq 1$. Wir zeigen, dass

$$\sup_{x \in \mathbb{R}} (1 + |x|)^k |(f^{(j)} * g)(x)| < \infty.$$

Wir benutzen die Abschätzung

$$(1+|x|) \le (1+|x-y|)(1+|y|), \quad x, y \in \mathbb{R},$$

und schätzen die Faltungen wie folgt:

$$(1+|x|)^{k}|(f^{(j)}*g)(x)| \leq \int_{\mathbb{R}} (1+|x-y|)^{k}|f^{(j)}(x-y)|(1+|y|)^{k}|g(y)|\,dy$$
$$\leq \sup_{z\in\mathbb{R}} (1+|z|)^{k}|f^{(j)}(z)| \cdot \int_{\mathbb{R}} (1+|y|)^{k}|g(y)|\,dy < \infty,$$

wobei der letzte Ausdruck unabhängig von x ist. (Zum Schluss nehmen wir \sup_x auf beiden Seiten).

Schritt 3. Nehmen wir an, dass $g \in \mathcal{S}(\mathbb{R})$ und stellen Folgendes fest. Für $k \geq 0$:

$$\begin{split} \int_{\mathbb{R}} (1+|x|)^k |g(x)| \, dx &= \int_{\mathbb{R}} (1+|x|)^{k+2} |g(x)| (1+|x|)^{-2} \, dx \\ &\leq \sup_{y \in \mathbb{R}} (1+|y|)^{k+2} |g(y)| \cdot \int_{\mathbb{R}} (1+|x|)^{-2} \, dx < \infty. \end{split}$$

Wir können daher den ersten Teil des Satzes anwenden.

Beweis von Satz 60

Beweis. Wir möchten Fubini verwenden, um Folgendes zu berechnen:

$$\widehat{f * g}(\xi) = \int_{\mathbb{R}} (f * g)(x)e^{-2\pi i\xi x} dx = \int_{\mathbb{R}} \int_{\mathbb{R}} f(y)g(x - y) dy e^{-2\pi i\xi x} dx$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} f(y)e^{-2\pi i\xi y} g(x - y)e^{-2\pi i\xi(x - y)} dy dx$$

$$= \int_{\mathbb{R}} f(y)e^{-2\pi i\xi y} \left[\int_{\mathbb{R}} g(x - y)e^{-2\pi i\xi(x - y)} dx \right] dy$$

$$= \int_{\mathbb{R}} f(y)e^{-2\pi i\xi y} \left[\int_{\mathbb{R}} g(x)e^{-2\pi i\xi x} dx \right] dy$$

$$= \hat{f}(\xi)\hat{g}(\xi).$$

Fubini kann verwenden werden, weil

$$\int_{\mathbb{R}} \int_{\mathbb{R}} |f(y)e^{-2\pi i\xi y}| |g(x-y)e^{-2\pi i\xi(x-y)}| dy dx$$

$$= \int_{\mathbb{R}} |f(y)| \Big[\int_{\mathbb{R}} |g(x-y)| dx \Big] dy$$

$$= \int_{\mathbb{R}} |f(y)| \Big[\int_{\mathbb{R}} |g(x)| dx \Big] dy$$

$$= ||f||_{1} ||g||_{1} < \infty.$$

$$\int_{\mathbb{R}} K_{\varepsilon}(x) dx = \frac{1}{\varepsilon} \int_{\mathbb{R}} K(x/\varepsilon) dx = \int_{\mathbb{R}} K(y) dy = 1.$$

$$\int_{\mathbb{R}} |K_{\varepsilon}(x)| \, dx = \frac{1}{\varepsilon} \int_{\mathbb{R}} |K(x/\varepsilon)| \, dx = \int_{\mathbb{R}} |K(y)| \, dy < \infty.$$

(G3) Sei $\delta > 0$. Dann

$$\int_{|x|>\delta} K_{\varepsilon}(x) \, dx = \frac{1}{\varepsilon} \int_{|x|>\delta} K(x/\varepsilon) \, dx = \int_{|y|>\frac{\delta}{\varepsilon}} K(y) \, dy \to 0,$$

für $\varepsilon \to 0^+$, weil $\delta/\varepsilon \to \infty$.

Beweis von Satz 63

Beweis. Schritt 1. Wir betrachten zunächst p = 1. Wir bezeichnen

$$M := \sup_{\varepsilon > 0} \int_{\mathbb{R}} |K_{\varepsilon}(x)| \, dx.$$

Nach dem Lemma 50 existiert $\delta > 0$, so dass

$$\sup_{|y|<\delta} \|f - f(\cdot - y)\|_1 < \frac{\varepsilon}{2M}.$$

Sei $\varepsilon_0 > 0$, so dass für $\varepsilon \in (0, \varepsilon_0)$ gilt

$$2||f||_1 \int_{y:|y|>\delta} |K_{\varepsilon}(y)| \, dy < \frac{\varepsilon}{2}.$$

Sei $\varepsilon \in (0, \varepsilon_0)$. Da $\int_{\mathbb{R}} K_{\varepsilon}(y) \, dy = 1$, gilt Folgendes nach Fubini

$$\int_{\mathbb{R}} |f * K_{\varepsilon}(x) - f(x)| dx = \int_{\mathbb{R}} \left| \int_{\mathbb{R}} [f(x - y) - f(x)] K_{\varepsilon}(y) dy \right| dx$$

$$\leq \int_{\mathbb{R}} \int_{\mathbb{R}} |f(x - y) - f(x)| dx |K_{\varepsilon}(y)| dy$$

$$\leq \int_{|y| \leq \delta} \int_{\mathbb{R}} |f(x - y) - f(x)| dx |K_{\varepsilon}(y)| dy + \int_{|y| > \delta} \int_{\mathbb{R}} |f(x - y) - f(x)| dx |K_{\varepsilon}(y)| dy$$

$$\leq \sup_{|y| < \delta} ||f - f(\cdot - y)||_{1} \int_{\mathbb{R}} |K_{\varepsilon}(y)| dy + 2||f||_{1} \int_{y:|y| > \delta} |K_{\varepsilon}(y)| dy$$

$$\leq \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Dies beweist Behauptung (i) mit p = 1.

Schritt 2. Wenn p=2, ändern wir das Argument wie folgt. Wir stellen zunächst fest, dass $f*K_{\varepsilon}$ wohldefiniert ist, weil $f\in L^2$ und $K_{\varepsilon}\in L^{\infty}\cap L^1\subset L^2$. Wir verwenden die Cauchy-Schwarz-Ungleichung und schätzen

$$|f * K_{\varepsilon}(x) - f(x)| \leq \int_{\mathbb{R}} |f(x - y) - f(x)| |K_{\varepsilon}(y)| \, dy$$

$$= \int_{\mathbb{R}} |f(x - y) - f(x)| |K_{\varepsilon}(y)|^{1/2} |K_{\varepsilon}(y)|^{1/2} \, dy$$

$$\leq \left(\int_{\mathbb{R}} |f(x - y) - f(x)|^{2} |K_{\varepsilon}(y)| \, dy \right)^{1/2} \left(\int_{\mathbb{R}} |K_{\varepsilon}(y)| \, dy \right)^{1/2}$$

$$\leq M^{1/2} \left(\int_{\mathbb{R}} |f(x - y) - f(x)|^{2} |K_{\varepsilon}(y)| \, dy \right)^{1/2}.$$

Wir gehen nun wie in Schritt 1 vor:

$$\int_{\mathbb{R}} |f * K_{\varepsilon}(x) - f(x)|^{2} dx
\leq M \int_{\mathbb{R}} \int_{\mathbb{R}} |f(x - y) - f(x)|^{2} dx |K_{\varepsilon}(y)| dy
\leq \int_{|y| \leq \delta} \int_{\mathbb{R}} |f(x - y) - f(x)|^{2} dx |K_{\varepsilon}(y)| dy + \int_{|y| > \delta} \int_{\mathbb{R}} |f(x - y) - f(x)|^{2} dx |K_{\varepsilon}(y)| dy
\leq \sup_{|y| < \delta} ||f - f(\cdot - y)||_{2}^{2} \int_{\mathbb{R}} |K_{\varepsilon}(y)| dy + \int_{|y| > \delta} \int_{\mathbb{R}} 2(|f(x - y)|^{2} + |f(x)|^{2}) dx |K_{\varepsilon}(y)| dy
\leq M \sup_{|y| < \delta} ||f - f(\cdot - y)||_{2}^{2} + 4||f||_{2}^{2} \int_{y:|y| > \delta} |K_{\varepsilon}(y)| dy,$$

und die Schlussfolgerung folgt wie zuvor. Dies beweist Behauptung (i) mit p=2.

Schritt 3. Für $x \in \mathbb{R}$:

$$\begin{aligned} \left| f * K_{\varepsilon}(x) - f(x) \right| &\leq \int_{\mathbb{R}} \left| f(x - y) - f(x) \right| \left| K_{\varepsilon}(y) \right| dy \\ &\leq \int_{|y| \leq \delta} \left| f(x - y) - f(x) \right| \left| K_{\varepsilon}(y) \right| dy + \int_{|y| > \delta} \left| f(x - y) - f(x) \right| \left| K_{\varepsilon}(y) \right| dy \\ &\leq M \sup_{|y| \leq \delta} \left| f(x - y) - f(x) \right| + 2 \|f\|_{\infty} \int_{|y| > \delta} \left| K_{\varepsilon}(y) \right| dy. \end{aligned}$$

Behauptung (ii) folgt nun mit der üblichen Argumentation.

Beweis von Lemma 64

Beweis. Wir möchten den Satz von Fubini benutzen und berechnen:

$$\int_{\mathbb{R}} f(x)\hat{g}(x) dx = \int_{\mathbb{R}} f(x) \int_{\mathbb{R}} g(y)e^{-2\pi iyx} dy dx$$
$$= \int_{\mathbb{R}} g(y) \int_{\mathbb{R}} f(x)e^{-2\pi iyx} dx dy$$
$$= \int_{\mathbb{R}} g(y)\hat{f}(y) dy.$$

Fubini ist gerechtfertigt, weil

$$\int_{\mathbb{R}} \int_{\mathbb{R}} |f(x)| |g(y)e^{-2\pi iyx}| \, dy \, dx$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} |f(x)| |g(y)| \, dx \, dy = ||f||_1 \, ||g||_1 < \infty.$$

Beweis von Satz 65

Beweis. Sei $\Phi(x):=e^{-\pi x^2}$ die Gauß-Funktion und $\Phi^{\varepsilon}(x):=\Phi(\varepsilon x)$. Dann

$$\widehat{\Phi^{\varepsilon}}(\xi) = \varepsilon^{-1}\Phi(\xi/\varepsilon), \qquad \xi \in \mathbb{R},$$

und $\widehat{\Phi^{\varepsilon}}(\xi) = \widehat{\Phi^{\varepsilon}}(-\xi)$. Mit der Notation von Satz 49 und nach dem Lemma 64 gilt

$$f * \widehat{\Phi^{\varepsilon}}(x) = \int_{\mathbb{R}} f(y) \widehat{\Phi^{\varepsilon}}(x - y) \, dy = \int_{\mathbb{R}} f(y) \widehat{\Phi^{\varepsilon}}(y - x) \, dy$$
$$= \int_{\mathbb{R}} f(y) \widehat{M_x \Phi^{\varepsilon}}(y) \, dy = \int_{\mathbb{R}} \hat{f}(\xi) M_x \Phi^{\varepsilon}(\xi) \, d\xi$$
$$= \int_{\mathbb{R}} \hat{f}(\xi) \Phi^{\varepsilon}(\xi) e^{2\pi i x \xi} \, d\xi.$$

Nach dem Satz 63 gilt $f * \widehat{\Phi^{\varepsilon}} \to f$ in L^1 für $\varepsilon \to 0^+$. Anderseits,

$$\left| \int_{\mathbb{R}} \hat{f}(\xi) \Phi^{\varepsilon}(\xi) e^{2\pi i x \xi} d\xi - \int_{\mathbb{R}} \hat{f}(\xi) e^{2\pi i x \xi} d\xi \right| \le \int_{\mathbb{R}} |\hat{f}(\xi)| \left(1 - \Phi^{\varepsilon}(\xi) \right) d\xi$$

Um zu sehen, dass das letzte Integral gegen Null konvergiert, kann man den Satz der dominierten Konvergenz oder das folgende, einfachere Argument verwenden. Sei $\delta > 0$ und

L>0 mit $\int_{|\xi|>L}|\hat{f}(\xi)|\,d\xi<\delta/2$. Dann

$$\begin{split} &\int_{\mathbb{R}} |\hat{f}(\xi)| \left(1 - \Phi^{\varepsilon}(\xi)\right) \, d\xi \\ &\leq \int_{|\xi| > L} |\hat{f}(\xi)| \left(1 - \Phi^{\varepsilon}(\xi)\right) \, d\xi + \int_{|\xi| \le L} |\hat{f}(\xi)| \left(1 - \Phi^{\varepsilon}(\xi)\right) \, d\xi \\ &\leq \int_{|\xi| > L} |\hat{f}(\xi)| \, d\xi + \left(1 - \Phi^{\varepsilon}(L)\right) \int_{|\xi| \le L} |\hat{f}(\xi)| \, d\xi \\ &\leq \delta/2 + \left(1 - e^{-\pi\varepsilon^2 L^2}\right) \|\hat{f}\|_1. \end{split}$$

Daher existiert $\varepsilon_0 > 0$, so dass, für $\varepsilon \in (0, \varepsilon_0)$ der letzte Ausdruck kleiner als δ ist.

Wir schließen daraus, dass für $\varepsilon \to 0^+$ gilt $f * \widehat{\Phi}^{\varepsilon} \to f$ in L^1 und

$$f * \widehat{\Phi^{\varepsilon}} \to g(x) := \int_{\mathbb{R}} \widehat{f}(\xi) e^{2\pi i x \xi} d\xi,$$

gleichmäßig. Insbesondere, konvergieren die Beschränkungen $f * \widehat{\Phi^{\varepsilon}}_{|[-L,L]}$ gegen $f_{|[-L,L]}$ und gegen $g_{|[-L,L]}$ in $L^1([-L,L])$ für jedes L>0. Daher sind f=g fast überall gleich auf jedem Intervall [-L,L] und folglich gilt f=g fast überall.

Wir stellen fest, dass

$$\int_{\mathbb{R}} \hat{f}(\xi) e^{2\pi i x \xi} d\xi = \widehat{S} \widehat{\hat{f}}(x),$$

wobei $S\hat{f}(\xi) = \hat{f}(-\xi)$. Wenn $f \in \mathcal{S}$, dann sind $\hat{f} \in \mathcal{S}$ und $S\hat{f} \in \mathcal{S}$. Die Gleichheit $f = \widehat{S}\hat{f}$ gilt dann nicht nur fast überall, sondern auch auf jedem Punkt.

Beweis von Satz 66

Beweis. Sei $f^*(x) = \overline{f(-x)}$. Dann ist $f^* \in \mathcal{S}$ und $\widehat{f}^*(\xi) = \overline{\widehat{f}(\xi)}$. Nach dem Satz 60 ist $f * f^* \in \mathcal{S}$ und

$$\widehat{f * f^*}(\xi) = |\widehat{f}(\xi)|^2, \qquad \xi \in \mathbb{R}.$$

Nach dem Satz 65 gilt

$$\int_{\mathbb{R}} |\hat{f}(\xi)|^2 d\xi = \int_{\mathbb{R}} (\widehat{f * f^*})(\xi) e^{2\pi i 0\xi} d\xi$$
$$= (f * f^*)(0) = \int_{\mathbb{R}} f(x) f^*(0 - x) dx = \int_{\mathbb{R}} |f(x)|^2 dx.$$

Beweis von Lemma 68

Beweis. Seien $f \in L^p(\mathbb{R})$ mit p = 1, 2 und $\varepsilon > 0$.

Sei $f_R(x) := f(x) \mathbf{1}_{|x| \le R}$ — d.h., $f_R(x) = 0$ für |x| > R und $f_R(x) = f(x)$ für $|x| \le R$. Dann

$$||f - f_R||_p^p = \int_{|x| > R} |f(x)|^p dx \to 0$$
 für $R \to \infty$,

weil $\int_{\mathbb{R}} |f(x)|^p dx < \infty$. Daher existiert R > 0 mit $||f - f_R||_p < \varepsilon/2$.

Seien $K(x) = e^{-\pi x^2}$ und $K_{\delta}(x) := \delta^{-1}K(x/\delta)$. Nach dem Lemma 62 und dem Satz 63 gilt

$$||f_R * K_\delta - f_R||_p \to 0$$
 für $\delta \to 0^+$.

Wir können daher $\delta > 0$ wählen mit $||f_R * K_{\delta} - f_R||_p < \varepsilon/2$ und

(11)
$$||f - (f_R * K_\delta)||_p \le ||f - f_R||_p + ||f_R * K_\delta - f_R||_p < \varepsilon.$$

Wir wollen Lemma 59 anwenden, um daraus zu schließen, dass $f_R * K_\delta \in \mathcal{S}(\mathbb{R})$. Dazu überprüfen wir Folgendes: für $k \geq 0$ gilt

$$\int_{\mathbb{R}} (1+|x|)^k |f_R(x)| \, dx \le (1+R)^k \int_{-R}^R |f(x)| \, dx < \infty.$$

Wenn p=1, ist die letzte Behauptung klar. Wenn p=2, folgt aus Cauchy-Schwarz, dass

$$\int_{-R}^{R} |f(x)| dx = \int_{-R}^{R} |f(x)| \cdot 1 dx$$

$$\leq \left(\int_{-R}^{R} |f(x)|^2 dx \right)^{1/2} \cdot \left(\int_{-R}^{R} 1 dx \right)^{1/2} \leq \sqrt{2R} ||f||_2 < \infty.$$

Zusammenfassend erfüllt die Schwartz-Funktion $f_R * K_\delta$ Schätzung (11) und die gewünschte Folge kann gefunden werden.

Beweis von Satz 69

Beweis. (i) Wir schreiben $\mathcal{F}f = \hat{f}$ und $\mathcal{F}^{-1}f = \check{f}$ (onhe anzunehmen, dass \mathcal{F} invertierbar ist) und Sf(x) = f(-x). Nach dem Satz 65 gilt

$$\mathcal{F}^{-1}[\mathcal{F}f] = f, \qquad f \in \mathcal{S}.$$

Anderseits sind $\mathcal{F}S = \mathcal{F}^{-1}$ und $S\mathcal{F}^{-1} = \mathcal{F}$. Daher

$$f = SSf = S\mathcal{F}^{-1}\mathcal{F}Sf = \mathcal{F}\mathcal{F}^{-1}f, \qquad f \in \mathcal{S}.$$

(ii) Wir betrachten S mit der L^2 -Norm. Die isometrische Abbildung F ist auf der dichten Menge S definiert und kann durch Stetigkeit eindeutig erweitert werden:

$$\mathcal{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R}).$$

Das Bild $\mathcal{F}(L^2)$ ist dicht, weil es \mathcal{S} enthält, und auch geschlossen, weil die Abbildung isometrisch ist.

Beweis von Satz 70

Beweis. Seien $f \in C[0,1]$ und $\varepsilon > 0$.

Wir erweitern f zu einer stetigen Funktion : $\mathbb{R} \to \mathbb{C}$ mit $\mathrm{supp}(f) \subset [-1,2]$, d.h., f(x) = 0 für $x \notin [-1,2]$. Dies kann beispielsweise dadurch geschehen, dass f eine Linie auf der Menge $[-1,2] \setminus [0,1]$ ist.

Seien $K(x) = e^{-\pi x^2}$ und $K_{\delta}(x) := \delta^{-1}K(x/\delta)$. Da f gleichmäßig stetig ist, können wir nach dem Lemma 62 und dem Satz 63 $\delta > 0$ wählen mit

$$||f * K_{\delta} - f||_{L^{\infty}(\mathbb{R})} < \varepsilon/2.$$

Sei das Taylor-Polynom von K_{δ} mit Grad N.

Wir stellen fest, dass $f * Q_N$ wohldefiniert ist, da $f \in C_c$ und Q_N stetig sind. Darüber hinaus

$$||f - f * Q_N||_{L^{\infty}([0,1])} \le ||f - f * K_{\delta}||_{L^{\infty}([0,1])} + ||f * (K_{\delta} - Q_N)||_{L^{\infty}([0,1])}.$$

Einerseits ist $||f - f * K_{\delta}||_{L^{\infty}([0,1])} \le ||f * K_{\delta} - f||_{L^{\infty}(\mathbb{R})} < \varepsilon/2$. Andererseits gilt für $x \in [0,1]$:

$$|f * (K_{\delta} - Q_{N})(x)| \leq \int_{\mathbb{R}} |f(y)| |(K_{\delta} - Q_{N})(x - y)| dy$$

$$= \int_{-1}^{2} |f(y)| |(K_{\delta} - Q_{N})(x - y)| dy$$

$$\leq \sup_{z \in [-2,2]} |(K_{\delta} - Q_{N})(z)| \int_{-1}^{2} |f(y)| dy,$$

wobei wir festgestellt haben, dass wenn $x \in [0,1]$ und $y \in [-1,2]$, dann $x-y \in [-2,2]$. Da K_{δ} analytisch konvergiert

$$\sup_{z \in [-2,2]} |(K_{\delta} - Q_N)(z)| \to 0, \quad \text{für } N \to \infty$$

und wir können N wählen, sodass $||f*(K_{\delta}-Q_N)||_{L^{\infty}([0,1])} < \varepsilon$. Für diese Wahl von N haben wir dann, dass

$$||f - f * Q_N||_{L^{\infty}([0,1])} < \varepsilon.$$

Es bleibt zu zeigen, dass $f * Q_N$ ein Polynom ist. Dazu schreiben wir $Q_N(x) = \sum_{n=0}^N a_n x^n$ und

$$(f * Q_N)(x) = \sum_{n=0}^{N} a_n \int_{\mathbb{R}}^{1} f(y)(x - y)^n dy$$

$$= \sum_{n=0}^{N} a_n \int_{-1}^{2} f(y)(x - y)^n dy$$

$$= \sum_{n=0}^{N} a_n \int_{-1}^{2} f(y) \sum_{j=0}^{n} \binom{n}{j} x^j y^{n-j} dy$$

$$= \sum_{n=0}^{N} a_n \sum_{j=0}^{n} \binom{n}{j} \cdot \int_{-1}^{2} f(y) y^{n-j} dy \cdot x^j \in \mathbb{C}[x].$$

(Abschließend stellen wir fest, dass der Beweis ein Polynom mit reellen Koeffizienten liefert, wenn f reelle Werte sind).

Beweis von Satz 71

Beweis. Wir integrieren nach Teilen und erhalten

$$1 = \int_{\mathbb{R}} |\psi(x)|^2 dx = \lim_{R \to \infty} \int_{-R}^{R} |\psi(x)|^2 dx = \lim_{R \to \infty} \int_{-R}^{R} \left[\frac{d}{dx} x \right] |\psi(x)|^2 dx$$

$$= \lim_{R \to \infty} \left(x |\psi(x)|^2 \right]_{x=-R}^{x=R} - \int_{-R}^{R} x \frac{d}{dx} \left[\psi(x) \cdot \overline{\psi(x)} \right] dx \right)$$

$$= \lim_{R \to \infty} \left(x |\psi(x)|^2 \right]_{x=-R}^{x=R} - \int_{-R}^{R} x \left(\psi'(x) \cdot \overline{\psi(x)} + \psi(x) \cdot \overline{\psi'(x)} \right) dx \right)$$

$$= -\int_{\mathbb{R}} x \left(\psi'(x) \cdot \overline{\psi(x)} + \psi(x) \cdot \overline{\psi'(x)} \right) dx$$

$$= -2 \int_{\mathbb{R}} x \operatorname{Re} \left[\psi'(x) \cdot \overline{\psi(x)} \right] dx,$$

weil $f \in \mathcal{S}$.

Aus Cauchy-Schwarz folgt, dass

$$1 \le 2 \int_{\mathbb{R}} |x| |\psi(x)| |\psi'(x)| dx$$

$$\le 2 \left[\int_{\mathbb{R}} x^2 |\psi(x)|^2 dx \right]^{1/2} \cdot \left[\int_{\mathbb{R}} |\psi'(x)|^2 dx \right]^{1/2}.$$

Schließlich gilt nach Satz 59 und Plancherel, dass

$$\int_{\mathbb{R}} |\psi'(x)|^2 dx = \int_{\mathbb{R}} |\hat{\psi}'(\xi)|^2 d\xi$$

$$= \int_{\mathbb{R}} |2\pi i\xi|^2 |\hat{\psi}(\xi)|^2 d\xi = 4\pi^2 \int_{\mathbb{R}} \xi^2 |\hat{\psi}(\xi)|^2 d\xi.$$

Wenn wir diese Gleichungen und Ungleichungen kombinieren, kommen wir zu dem Schluss, dass

$$1 \le 4 \int_{\mathbb{R}} x^2 |\psi(x)|^2 dx \cdot \int_{\mathbb{R}} |\psi'(x)|^2 dx$$
$$= 16\pi^2 \int_{\mathbb{R}} x^2 |\psi(x)|^2 dx \cdot \int_{\mathbb{R}} \xi^2 |\hat{\psi}(\xi)|^2 d\xi,$$

wie gewünscht.

Wenn schließlich Gleichheit im Unschärfeprinzip gilt, muss die Cauchy-Schwarz-Ungleichung tatsächlich eine Gleichheit sein. Das bedeutet, dass $\gamma \in \mathbb{C}$ existiert mit

$$\psi'(x) = \gamma x \psi(x), \qquad x \in \mathbb{R}.$$

Die einzige Lösung dieser Differentialgleichung ist

$$\psi(x) = \alpha e^{\frac{\gamma}{2}x^2}, \qquad x \in \mathbb{R}.$$

(Wir haben dies tatsächlich im Beweis des Satzes 55 gezeigt).

Ebenso muss die Ungleichung

$$-2\int_{\mathbb{R}}x\mathrm{Re}\big[\psi'(x)\cdot\overline{\psi(x)}\big]\,dx \le \int_{\mathbb{R}}|x|\,|\psi(x)|\,|\psi'(x)|\,dx,$$

tatsächlich eine Gleichheit sein, und daraus schließen wir, dass

$$x\overline{\psi(x)}\psi'(x) = |\alpha|^2 \gamma 2x^2 e^{2\operatorname{Re}[\gamma]x^2} \in (-\infty, 0],$$

und folglich, dass $\gamma \in (-\infty, 0]$. Außerdem kann γ nicht 0 sein, weil $\psi \in \mathcal{S}$. Wir setzen $\beta = -\gamma/2$. Schließlich folgt $|\alpha|^2 = \sqrt{\frac{2\beta}{\pi}}$ aus der Tatsache, dass $||\psi||_2 = 1$.

Beweis — nach Adolf Hurwitz (1859 – 1919).

Schritt 1. Wir parametrisieren die Kurve nach Bogenlänge neu. Seien $L:=L_{\gamma}$ und $\varphi:[a,b]\to [0,L]$ so gegeben:

$$\varphi(t) = \int_a^t \|\gamma'(t)\| \, dt.$$

Dann ist φ streng steigend, $\varphi(a) = 0$, $\varphi(b) = L$, und

(12)
$$\varphi'(t) = ||\gamma'(t)|| > 0.$$

Wir betrachten $\gamma \circ \varphi^{-1} : [0, L] \to \mathbb{R}$. Dann

und

$$2A_{\gamma \circ \varphi^{-1}} = \left| \int_0^L \left([x \circ \varphi^{-1}](t) [y \circ \varphi^{-1}]'(t) - [y \circ \varphi^{-1}](t) [x \circ \varphi^{-1}]'(t) \right) dt \right|$$

$$= \left| \int_0^L \left([x \circ \varphi^{-1}](t) [y' \circ \varphi^{-1}](t) - [y \circ \varphi^{-1}](t) [x' \circ \varphi^{-1}](t) \right) [\varphi^{-1}]'(t) dt \right|$$

$$= \left| \int_a^b [x(t)y'(t) - y(t)x'(t)] dt \right| = 2A_{\gamma}.$$

Da $\gamma(t) = [\gamma \circ \varphi^{-1}](\varphi(t))$, gilt

$$\gamma'(t) = [\gamma \circ \varphi^{-1}]'(\varphi(t)) \varphi'(t).$$

Aus (12) folgt es, dass $\|[\gamma \circ \varphi^{-1}]'(s)\| = 1$ für $s \in \varphi([a, b]) = [0, L]$.

Deshalb können wir γ durch $\gamma \circ \varphi^{-1}$ ersetzen und annehmen, dass [a,b] = [0,L] und

(13)
$$\|\gamma'(t)\| = 1.$$

Schritt 2. Ohne Beschränkung der Allgemeinheit nehmen wir an, dass $L=2\pi.$ In der Tat gilt

$$L_{\lambda\gamma} = \lambda L_{\gamma}, \qquad A_{\lambda\gamma} = \lambda^2 A_{\gamma}, \qquad \lambda > 0.$$

Schritt 3. Wir erweitern $\gamma: \mathbb{R} \to \mathbb{R}$ periodisch. Dann ist γ einmal stetig differenzierbar. Seien

$$x(t) \sim \sum_{n \in \mathbb{Z}} a_n e^{int}, \qquad y(t) \sim \sum_{n \in \mathbb{Z}} b_n e^{int}.$$

Dann

$$x'(t) \sim \sum_{n \in \mathbb{Z}} ina_n e^{int}, \quad y'(t) \sim \sum_{n \in \mathbb{Z}} inb_n e^{int}.$$

Nach (13) und Parseval gilt

(14)
$$\sum_{n \in \mathbb{Z}} n^2 (|a_n|^2 + |b_n|^2) = \frac{1}{2\pi} \int_0^{2\pi} \left[x'(t)^2 + y'(t)^2 \right] dt = \frac{1}{2\pi} \int_0^{2\pi} \|\gamma'(t)\|^2 dt = 1.$$

Anderseits

$$\frac{1}{\pi}A_{\gamma} = \frac{1}{2\pi} \left| \int_{0}^{2\pi} [x(t)y'(t) - y(t)x'(t)] dt \right|$$

$$= \frac{1}{2\pi} \left| \int_{0}^{2\pi} [x(t)\overline{y'(t)} - y(t)\overline{x'(t)}] dt \right|$$

$$= \left| \sum_{n \in \mathbb{Z}} \left[(-i)na_{n}\overline{b_{n}} - (-i)nb_{n}\overline{a_{n}} \right] \right|$$

$$\leq \sum_{n \in \mathbb{Z}} |n| |a_{n}\overline{b_{n}} - b_{n}\overline{a_{n}}|$$

$$\leq \sum_{n \in \mathbb{Z}} 2|n| |a_{n}| |b_{n}|.$$

Wir benutzen, dass $|n| \le n^2$ und $2|a_n||b_n| \le |a_n|^2 + |b_n|^2$ und folgern daraus, dass

$$\frac{1}{\pi} A_{\gamma} \le \sum_{n \in \mathbb{Z}} n^2 (|a_n|^2 + |b_n|^2) = 1.$$

Daher

$$A_{\gamma} \le \pi = \frac{(2\pi)^2}{4\pi} = \frac{L_{\gamma}^2}{4\pi}.$$

Schritt 4. Nehmen wir an, dass $A_{\gamma} = \frac{L_{\gamma}^2}{4\pi} = \pi$. Dann gilt $2|n||a_n||b_n| = n^2(|a_n|^2 + |b_n|^2)$ für $n \in \mathbb{Z}$. Da $|n| < n^2$ für $|n| \ge 2$, ist $a_n = b_n = 0$. Weiter

$$1 = \left| a_{-1}\overline{b_{-1}} - b_{-1}\overline{a_{-1}} \right| + \left| a_{1}\overline{b_{1}} - b_{1}\overline{a_{1}} \right|$$

und

$$|a_n| = |b_n|,$$

weil

$$(|a_n| - |b_n|)^2 = |a_n|^2 + |b_n|^2 - 2|a_n||b_n| = 0.$$

Da x, y reellwertig sind, gilt

$$(16) a_{-1} = \overline{a_1}, b_{-1} = \overline{b_1}.$$

Weiter gilt nach (14)

$$1 = |a_{-1}|^2 + |a_1|^2 + |b_{-1}|^2 + |b_1|^2 = 4|a_1|^2.$$

Wir schreiben

$$a_1 = \frac{1}{2}e^{i\alpha}, \qquad b_1 = \frac{1}{2}e^{i\beta}.$$

Dann

$$x(t) = a_{-1}e^{-it} + a_0 + a_1e^{it} = a_0 + \cos(\alpha + t),$$

$$y(t) = b_{-1}e^{-it} + b_0 + b_1e^{it} = b_0 + \cos(\beta + t).$$

Aus (15) und (16) folgt, dass

$$1 = 2|a_1\overline{b_1} - b_1\overline{a_1}| = |\operatorname{Im}[e^{i(\alpha - \beta)}]| = |\sin(\alpha - \beta)|.$$

Daher, ist $\cos(\alpha - \beta) = 0$ und

$$\cos(\beta + t) = \cos(\beta - \alpha + \alpha + t) = \cos(\beta - \alpha)\cos(\alpha + t) - \sin(\beta - \alpha)\sin(\alpha + t)$$
$$= \pm \sin(\alpha + t).$$

Deshalb parametrisiert

$$x(t) = a_0 + \cos(\alpha + t),$$
 $y(t) = b_0 \pm \sin(\beta + t)$

einen Kreis (im oder gegen den Uhrzeigersinn).

Beweis von Satz 73

Beweis.

Schritt 1. Sei $0 \le a < b < 1$ und $h : \mathbb{R} \to \mathbb{R}$ 1-periodisch mit

$$h(x) = \begin{cases} 1 & x \in (a, b) \\ 0 & x \in [0, 1) \setminus (a, b) \end{cases}.$$

Dann ist h(x) = 1 genau dann wenn, $\langle x \rangle \in (a, b)$. Wir stellen fest,

$$\sum_{k=1}^{n} h(\alpha k) = \#\{k : \langle \alpha k \rangle \in (a,b), 1 \le k \le n\}$$

und wir müssen beweisen, dass

(17)
$$\frac{1}{n} \sum_{k=1}^{n} h(\alpha k) \to \int_{0}^{1} h(x) dx = b - a, \quad \text{für } n \to \infty.$$

Schritt 2. Sei $f(x) = e^{2\pi i m x}$ - mit $m \in \mathbb{Z}$ - eine Exponentialfunktion. Wir zeigen, dass

(18)
$$\frac{1}{n} \sum_{k=1}^{n} f(k\alpha) \to \int_{0}^{1} f(x) dx \quad \text{für } n \to \infty.$$

Der Fall m=0 ist klar. Für $m\neq 0$ gilt

$$\frac{1}{n} \sum_{k=1}^{n} f(k\alpha) = \frac{1}{n} \sum_{k=1}^{n} \left(e^{2\pi i m \alpha} \right)^{k}$$

$$= \frac{1}{n} \left[\frac{1 - \left(e^{2\pi i m \alpha} \right)^{n+1}}{1 - \left(e^{2\pi i m \alpha} \right)} - 1 \right] \longrightarrow 0, \quad \text{für } n \to \infty,$$

während

$$\int_0^1 f(x) \, dx = \frac{e^{2\pi i m x}}{2\pi i m} \bigg|_{x=0}^{x=1} = 0.$$

Wir schließen daraus, dass (18) auch für jedes trigonometrische Polynom $f(x) = \sum_{m=-N}^{N} a_m e^{2\pi i m x}$ gilt.

Schritt 3. Wir zeigen, dass (18) für jede stetige Funktion f gilt.

Sei $f: \mathbb{R} \to \mathbb{C}$ 1-periodisch und stetig und $\varepsilon > 0$. Nach dem Satz von Féjer (Korollar 28) (mit $f(x/2\pi)$) existiert ein (1-periodisches) trigonometrisches Polynom p, so dass $||f-p||_{\infty} < \varepsilon/3$.

Nach dem Schritt 2 existiert n_0 , so dass für $n \ge n_0$

$$\left| \frac{1}{n} \sum_{k=1}^{n} p(k\alpha) - \int_{0}^{1} p(x) \, dx \right| < \frac{\varepsilon}{3}.$$

Daher,

$$\left| \frac{1}{n} \sum_{k=1}^{n} f(k\alpha) - \int_{0}^{1} f(x) \, dx \right|$$

$$\leq \left| \frac{1}{n} \sum_{k=1}^{n} \left[f(k\alpha) - p(k\alpha) \right] \right| + \left| \frac{1}{n} \sum_{k=1}^{n} p(k\alpha) - \int_{0}^{1} p(x) \, dx \right| + \left| \int_{0}^{1} \left[p(x) - f(x) \right] \, dx \right|$$

$$\leq \frac{1}{n} \sum_{k=1}^{n} |f(k\alpha) - p(k\alpha)| + \left| \frac{1}{n} \sum_{k=1}^{n} p(k\alpha) - \int_{0}^{1} p(x) \, dx \right| + \int_{0}^{1} |p(x) - f(x)| \, dx < \varepsilon.$$

Schritt 4. Seien $\varepsilon>0$ und $f_1,f_2:\mathbb{R}\to\mathbb{R}$ stückweise linear und 1-periodisch mit

$$f_1 \le h \le f_2$$

$$b - a - \varepsilon \le \int_0^1 f_1(x) \, dx \le \int_0^1 f_2(x) \, dx \le b - a + \varepsilon.$$

Dann

$$\frac{1}{n} \sum_{k=1}^{n} f_1(k\alpha) \le \frac{1}{n} \sum_{k=1}^{n} h(k\alpha) \le \frac{1}{n} \sum_{k=1}^{n} f_2(k\alpha)$$

und nach dem Schritt 3

$$b - a - \varepsilon \le \liminf_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} h(k\alpha) \le \limsup_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} h(kx) \le b - a + \varepsilon.$$

Wir lassen $\varepsilon \to 0^+$ und erhalten (17).