Formal Verification

Announcements

- Lab6 due last night
- No class 4/21 and 4/30
- Lab7 today due 3/30

Overview

1. DPLL^T Review

- 2. Simplex Algorithm
 - a. Solving theories of integers

- 3. Specifications
 - a. Lab today!

Formal Verification

```
public int addPositive(int x, int y) {
    return x + y;
}
```

Precondition: $x \ge 0 \&\& y \ge 0$;

Assertion:

(addPos(x, y) == x + y)

x >= 0 && y >= 0 &&! (addPos(x, y) == x + y)

How does the "formal verification engine" work?

- 1. SMT solving
 - a. Given a specification, translate it to a SMT formula and ask a solver if it's SAT or UNSAT.
 - b. DPLL

2. Deductive reasoning

DPLL Algorithm

Given a boolean formula in CNF form, DPLL decides UNSAT/SAT and gives an interpretation if its SAT

Alternates between two phases:

- 1. Deduction
 - a. Tries to simplify the formula using the laws of logic
- 2. Search
 - a. Searches for an interpretation

DPLL - Deduction Phase

Boolean Constant Propagation

$$(\ell) \wedge C_2 \wedge \cdots C_n$$

Suppose the first clause consists of a single literal (We call this a *unit clause*).

Any interpretation of the formula must assign ℓ to TRUE.

Simplify the formula by substituting TRUE for all ℓ s

DPLL

```
Algorithm 1: DPLL
 Data: A formula F in CNF form
 Result: I \models F or UNSAT
 ▶ Boolean constant propagation (BCP)
 while there is a unit clause (\ell) in F do
     Let F be F[\ell \mapsto \mathsf{true}]
 if F is true then return SAT
 ▷ Search
 for every variable p in F do
     If DPLL(F[p \mapsto true]) is SAT then return SAT
     If DPLL(F[p \mapsto false]) is SAT then return SAT
 return UNSAT
 ▶ The model I that is returned by DPLL when the input is SAT is
 maintained implicitly in the sequence of assignments to variables (of the
 form [l \mapsto \cdot] and [p \mapsto \cdot])
```

DPLL Modulo Theories

Boolean Abstraction

We can turn a formula with *linear real arithmetic* into a boolean formula using **boolean abstraction**

$$F \triangleq (x \leqslant 0 \lor x \leqslant 10) \land (\neg x \leqslant 0)$$

$$F^{B} \triangleq (p \lor q) \land (\neg p)$$

Every unique linear inequality is replaced with a boolean variable

The boolean abstraction of F is denoted F^B

We use superscript T to map boolean formulae back to their theory formulae: $(F^B)^T = F$

Boolean Abstraction

If F^B is UNSAT, then F is UNSAT.

Example:
$$F \triangleq (x \leqslant 0 \land (\neg x \leqslant 0))$$

$$F^B \triangleq (p) \wedge (\neg p)$$

Boolean Abstraction

If F^B is SAT, then F is not necessarily SAT!

$$F \triangleq x \leq 0 \land x \geq 10.$$

$$F^B = p \wedge q$$

During abstraction, relations between the inequalities are lost. X cannot be <= 0 and >= 10, but p and q have no relation!

SMT Solvers

To solve SMT, we can slightly modify DPLL to DPLL^T

- Start by treating the formula as if its completely boolean, then incrementally add more and more theory information until we can conclusively say it is SAT or UNSAT
- Requires a boolean abstraction of F
- Requires access to a theory solver

DPLL^T

First checks if F^B is UNSAT. Since we know that F will also be UNSAT

Algorithm 2: DPLL T

Data: A formula *F* in CNF form over theory *T*

Result: $I \models F$ or UNSAT

Let F^B be the abstraction of F

while true do

If $DPLL(F^B)$ is UNSAT then return UNSAT

Let I be the model returned by DPLL (F^B)

Assume I is represented as a formula

if I^T is satisfiable (using a theory solver) **then**

return SAT and the model returned by theory solver

else

Let F^B be $F^B \wedge \neg I$

Queries a theory solver on the *concrete* output of DPLL. (I is an interpretation)

If SAT, we're done!

IF UNSAT, doesn't necessarily mean it's UNSAT... negate and continue

DPLL^T Example

F:
$$x \ge 10 \land (x < 0 \lor y \ge 0)$$

What is
$$F^B$$
? $p \land (q \lor r)$

1. First iteration of DPLL on F^B

Returns SAT: {
$$p \rightarrow T$$
, $q \rightarrow T$ } $I = p \land q$

2. Query Theory Solver on I^T

What is
$$I^T$$
? $\underbrace{x \geqslant 10}_{p} \land \underbrace{x < 0}_{q}$

Theory solver returns **UNSAT**

3. Rerun DPLL on $F^B \wedge ! I$

What is
$$F^{B} \wedge ! ! ? p \wedge (q \vee r) \wedge \underbrace{(\neg p \vee \neg q)}_{\neg I_{1}}$$

Returns SAT: $\{p \rightarrow T, q \rightarrow F, r \rightarrow T\}$

4. Query Theory Solver on I^T

What is I^T?

$$I^T = (x \ge 10) \land (x \ge 0) \land (y \ge 0)$$

Theory solver returns $\{x->10, y->0\}$

Simplex Algorithm

Simplex Algorithm

- Developed in 1947
- Finds a satisfying assignment that maximizes some objective function
- We are using it to find any satisfying assignment

Simultaneously looks for a model and proof of unsatisfiability.

Starts with some interpretation and continues to update it every iteration

Simplex Form

$$\sum^{i} c^{i} \cdot x^{i} = 0$$

$$\ell_i \leq x_i \leq u_i$$

Translate to Simplex Form

$$(x + y \ge 0) \land (-2x + y \ge 2) \land (-10x + y \ge -5)$$

Take every inequality and translate it into two clauses: an equality and a bound

$$(-2x + y \ge 2)$$

$$\Rightarrow s_2 = -2x + y$$

$$s_2 \ge 2$$

Simplex Algorithm

Simultaneously looks for a model and proof of unsatisfiability.

Starts with some interpretation and continues to update it every iteration

Pick a bound ($s_1 \ge 0$) that is not satisfied and modify the interpretation to satisfy it

$(x + y \ge 0) \land (-2x + y \ge 2) \land (-10x + y \ge -5)$

Simplex Algorithm

Init:
$$I_0 = \{x \rightarrow 0, y \rightarrow 0\}$$

$$I_1 = \{x \rightarrow -1, y \rightarrow 0\}$$

Basic and Non-Basic Variables

Basic Variables: appear on the left side of an equality. Initially, these are the slack variables (s1, s2, s3)

Non-basic Variables: all other variables

$$s_1 = x + y$$

$$S_1 \ge 0$$

$$s_2 = -2x + y$$
$$s_2 \ge 2$$

$$s_3 = -10x + y$$

$$S_3 \geq -5$$

Algorithm 3: Simplex

Data: A formula *F* in Simplex form

Result: $I \models F$ or UNSAT

Let I be the interpretation that sets all variables fv(F) to 0 while true do

if
$$I \models F$$
 then return I

Let x_i be the first basic variable s.t. $I(x_i) < l_i$ or $I(x_i) > u_i$

if $I(x_i) < l_i$ then

Let x_i be the first non-basic variable s.t.

$$(I(x_j) < u_j \text{ and } c_{ij} > 0) \text{ or } (I(x_j) > l_j \text{ and } c_{ij} < 0)$$

if If no such x_j exists then return UNSAT

$$I(x_j) \leftarrow I(x_j) + \frac{l_i - I(x_i)}{c_{ij}}$$

else

Let x_i be the first non-basic variable s.t.

$$(I(x_j) > l_j \text{ and } c_{ij} > 0) \text{ or } (I(x_j) < u_j \text{ and } c_{ij} < 0)$$

if If no such x_i exists then return UNSAT

$$I(x_j) \leftarrow I(x_j) + \frac{u_i - I(x_i)}{c_{ij}}$$

Pivot x_i and x_j

Formal Verification

Bringing it all together...

How do we use SMT to prove that our program functions as expected?

Approaches to Formal Verification

- 1. Both models and the programs are encoded as a proof
- 2. Tools take as input a program in a particular language with an **annotation** language. Automatically produces a SMT formula which is fed to a verifier

Specifications

What Are Specifications?

Specifications describe what a program should do

A **Precondition** is a condition that must be true before method execution, and a **Postcondition** is a condition that must be true after method execution.

A **Specification** is a contract between a method and its caller, consisting of a precondition and a postcondition.

JML

JML = Java Modeling Language

Used to specify contracts for Java methods and classes

Annotations look like comments but express **preconditions**, **postconditions**, and **invariants**

Basic Syntax

```
//@ requires condition>;
```

//@ ensures <postcondition>;

equires: What must be true before method executes

ensures: What will be true after method completes, if preconditions were met

The \result Keyword

//@ ensures \result == x + y;

\result refers to the value returned by the method

Only used in ensures clauses

Example

```
//@ requires x >= 0 && y >= 0;
//@ ensures \result == x + y;
public int addPositive(int x, int y) {
    return x + y;
}
```

Using Logical Operators

You can use && and || in your pre and post conditions

```
//@ requires x > 0 && y > 0;
```

```
//@ ensures \result == x * y || \result == 0;
```

Example 2

```
//@ requires n >= 0;
//@ ensures (\result == 1 && n == 0) || \result == n * factorial(n - 1);
public int factorial(int n) {
   if (n == 0) return 1;
   return n * factorial(n - 1);
}
```

Conditional Logic

JML supports conditional expressions using ==> (implies) and ?: (ternary-style)

//@ ensures x > 0 ==> result > 0;

"If x > 0 is true, then \result > 0 must be true."

//@ ensures $(x \ge 0)$? \result == x : \result == -x;

"If $x \ge 0$, then result is x, otherwise it's -x."

Example:

```
//@ ensures (x >= 0) ==> \result == x;
//@ ensures (x < 0) ==> \result == -x;
public int absoluteValue(int x) {
   return (x >= 0) ? x : -x;
}
```

OpenJML

OpenJML translates JML specs into boolean constraints and passes them to an SMT solver

OpenJML

```
public class MathUtils {
  //@ requires x >= 0;
  //@ ensures \result == x + 1;
  public static int increment(int x) {
     return x + 1;
```

$$(x \ge 0) = (result = x + 1)$$

$$(x \ge 0) = ((x + 1) = x + 1)$$

Feed the negation to Z3

$$(x \ge 0) \land ((x + 1) \ne x + 1)$$

UNSAT

Approaches to Formal Verification

- 1. Program is part of the proof
 - a. Offer a higher level of assurance
 - b. Annotations often end up repeating much of the program
- 2. Annotations on normal languages
 - a. Easier to adopt

Summary

- DPLLT
 - Sometimes our constraints contain non-boolean variables
- Simplex
 - Solves linear arithmetic constraints
- Formal Verification
 - Annotation based
 - Lab today
- Next class:
 - Formal verification as deductive reasoning with programs as proofs