A Book of Abstract Algebra (2nd Edition)

Chapter 29, Problem 5EE	Bookmark	Show all steps: on
Р	roblem	
Show that part 4 remains true for $\sqrt[q]{m/n}$	where $q > 1$.	
Step-by	-step solution	
Ste	o 1 of 3	
Let F be a field. Consider the following result:		
If a real number c is a root of an irreducible po	olynomial of degree >1	in $Q[x]$, then c is irrational.
Objective is to prove that $\sqrt[q]{m/n}$, where m , which divides m but not n , and whose square		onal if there is a prime
Comment		
Ste	o 2 of 3	
Let $x = \sqrt[q]{m/n}$. That is, $x = \left(\frac{m}{n}\right)^{1/q}$. Then		

$$x^q = \frac{m}{n}$$
, and $nx^q - m = 0$

Assume that $p(x) = nx^q - m$. By Eisenstein's irreducible criterion, the polynomial p(x) will be irreducible if there is a prime number p such that $p \mid m$, $p \nmid n$ and $p^2 \nmid m$. Let these conditions holds and p(x) is irreducible.

Since $x = \sqrt[q]{m/n}$ is a root of an irreducible polynomial p(x) of degree > 1 in Q[x], therefore by the above result $\sqrt[q]{m/n}$ will be irrational.

Comment

Step 3 of 3

Hence, $\sqrt[q]{m/n}$, where $m, n \in \mathbb{Z}$ and q > 1, is irrational if there is a prime which divides m but not n, and whose square does not divide m.

Comment