Optical flow

Slide credits: Lihi Zelnik, Tali Tribitz, Kris Kitani, Ioannis Gkioulekas

Today

From images to video

- Feature tracking
- Optical flow
- Motion segmentation
- Applications

From images to video

- ▶ A video is a sequence of frames captured over time
- Now our image data is a function of space (x,y) and time (t)

Examples of Motion fields

Forward motion

Rotation

Horizontal translation

Closer
objects
appear to
move faster!!

Motion Field & Optical Flow Field

Underlying assumption:
 The apparent motion field is a projection of the real 3D motion onto the 2d image

When does it break?

The screen is stationary yet displays motion

Changing light source.

Feature tracking vs. optical flow

- Feature tracking
 - Extract visual features and "track" them over multiple frames
- Optical flow
 - Compute image motion at each and every pixel

Motion and perceptual organization

Even "impoverished" motion data can evoke a strong percept

G. Johansson, "Visual Perception of Biological Motion and a Model For Its Analysis", Perception and Psychophysics 14, 201-211, 1973.

Tracking example

Tracking example

GPU4Vision https://www.youtube.com/watch?v=t12lpPCodME&spfreload=1

Optical flow example

Compute motion for all pixels

http://www.borisfx.com/

Today

From images to video

- Feature tracking
- Optical flow
- Motion segmentation
- Applications

Tracking challenges

- Find good features to track
 - Harris, SIFT, etc
- Large motions
- Changes in shape, orientation, color
 - Allow some matching flexibility
- Occlusions, dis-occlusions
 - Need to add/delete features
- Drift (errors accumulate over time)
 - Need to know when to terminate a track

Feature tracking

Track only "good" features

Tracking by template matching

- The simplest way to track is by template matching
 - Define a small area around a pixel as the template
 - Match the template against each pixel within a search area in next image.
 - Use a match measure such as correlation, normalized correlation, or sum-of-squares difference
 - Choose the maximum (or minimum) as the match

Limitations of template matching

- Slow (need to check more locations)
- Does not give sub-pixel alignment (or becomes much slower)
 - Even pixel alignment may not be good enough to prevent drift
- May be useful as a step in tracking if there are large movements

Today

From images to video

- Feature tracking
- Optical flow
- Motion segmentation
- Applications

Feature tracking vs. optical flow

- Feature tracking
 - Extract visual features and "track" them over multiple frames
- Optical flow
 - Compute image motion at each and every pixel

Optical flow - definition

The optical flow is the **apparent** motion of brightness patterns in the image

Pierre Kornprobst's Demo

Optical Flow

Problem Definition

Given two consecutive image frames, estimate the motion of each pixel

Assumptions

Brightness constancy

Small motion

Optical Flow

(Problem definition)

How is this different from estimating a 2D transform?

Key Assumptions

(unique to optical flow)

Color Constancy

(Brightness constancy for intensity images)

Implication: allows for pixel to pixel comparison (not image features)

Small Motion

(pixels only move a little bit)

Implication: linearization of the brightness constancy constraint

Approach

Look for nearby pixels with the same color

(small motion)

(color constancy)

Brightness constancy

Scene point moving through image sequence

Brightness constancy

Scene point moving through image sequence

Brightness constancy

Scene point moving through image sequence

Assumption: Brightness of the point will remain the same

Brightness constancy

Scene point moving through image sequence

Assumption: Brightness of the point will remain the same

$$I(x(t),y(t),t)=C$$

Small motion

Small motion

Small motion

Optical flow (velocities): (u,v) Displacement: $(\delta x,\delta y)=(u\delta t,v\delta t)$

Small motion

Optical flow (velocities): (u,v) Displacement: $(\delta x,\delta y)=(u\delta t,v\delta t)$

For a <u>really small space-time step</u>...

$$I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$$

... the brightness between two consecutive image frames is the same

Small motion assumption

▶ The brightness constancy equation

$$I(x, y, t) = I(x + \delta x, y + \delta y, t + \delta t)$$

Small motion assumption

The brightness constancy equation

$$I(x, y, t) = I(x + \delta x, y + \delta y, t + \delta t)$$

Assumption 2

Motion is small

First order Taylor expansion

$$I(x, y, t) + \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t$$

$$0 = \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t$$

The motion equation

- Simplify notations: $I_x \delta x + I_y \delta y + I_t \delta t = 0$
- Divide by δt and denote $u = \frac{\delta x}{\delta t}$ $v = \frac{\delta y}{\delta t}$

Final equation is:
$$I_x u + I_y v = -I_t$$

(Limit for small δt)

brightness constancy equation

$$I_x u + I_y v + I_t = 0$$
 Brightness Constancy Equation (y-flow)

$$abla I^ op oldsymbol{v}_{\scriptscriptstyle{(1 imes2)}} + I_t = 0$$
 vector form

What do the term of the brightness constancy equation represent?

$$I_x u + I_y v + I_t = 0$$

What do the term of the brightness constancy equation represent?

What do the term of the brightness constancy equation represent?

What do the term of the brightness constancy equation represent?

How do you compute these terms?

$$I_x u + I_y v + I_t = 0$$

$$I_x = rac{\partial I}{\partial x} \quad I_y = rac{\partial I}{\partial y}$$
 spatial derivative

$$I_x u + I_y v + I_t = 0$$

$$I_x = \frac{\partial I}{\partial x} \quad I_y = \frac{\partial I}{\partial y}$$

spatial derivative

Forward difference Sobel filter Scharr filter

. . .

$$I_x u + I_y v + I_t = 0$$

$$I_x = \frac{\partial I}{\partial x} \quad I_y = \frac{\partial I}{\partial y}$$

spatial derivative

Forward difference Sobel filter Scharr filter

. . .

$$I_t = rac{\partial I}{\partial t}$$

temporal derivative

$$I_x u + I_y v + I_t = 0$$

$$I_x = \frac{\partial I}{\partial x} \quad I_y = \frac{\partial I}{\partial y}$$

spatial derivative

Forward difference Sobel filter Scharr filter

. . .

$$I_t = rac{\partial I}{\partial t}$$

temporal derivative

Frame differencing

(example of a forward difference)

Example:

$$I_x u + I_y v + I_t = 0$$

$$I_x = \frac{\partial I}{\partial x} \quad I_y = \frac{\partial I}{\partial y}$$

spatial derivative

 $u=rac{dx}{dt} \quad v=rac{dy}{dt}$ optical flow

 $I_t = rac{\partial I}{\partial t}$ temporal derivative

Forward difference Sobel filter Scharr filter

. .

How do you compute this?

$$I_x u + I_y v + I_t = 0$$

$$I_x = \frac{\partial I}{\partial x} \quad I_y = \frac{\partial I}{\partial y}$$

spatial derivative

 $u = \frac{dx}{dt} \quad v = \frac{dy}{dt}$ optical flow

temporal derivative

Forward difference Sobel filter Scharr filter

. . .

We need to solve for this! (this is the unknown in the optical flow problem)

$$I_x u + I_y v + I_t = 0$$

$$I_x = \frac{\partial I}{\partial x} \quad I_y = \frac{\partial I}{\partial y}$$

spatial derivative

Forward difference Sobel filter Scharr filter

. .

 $u=rac{dx}{dt} \quad v=rac{dy}{dt}$ optical flow

(u,v) Solution lies on a line

Cannot be found uniquely with a single constraint

$$I_t = rac{\partial I}{\partial t}$$

temporal derivative

Solution lies on a straight line $I_x u + I_y v + I_t = 0$ many combinations of u and v will satisfy the equality

The solution cannot be determined uniquely with a single constraint (a single pixel)

$$I_x u + I_y v + I_t = 0$$

$$I_x = rac{\partial I}{\partial x} \ I_y = rac{\partial I}{\partial y}$$

$$I_t = rac{\partial I}{\partial t}$$
 temporal derivative

How can we use the brightness constancy equation to estimate the optical flow?

We need at least ____ equations to solve for 2 unknowns.

Where do we get more equations (constraints)?

Horn-Schunck Optical Flow (1981)

Lucas-Kanade Optical Flow (1981)

brightness constancy

small motion

method of differences

'smooth' flow

(flow can vary from pixel to pixel)

global method (dense)

'constant' flow

(flow is constant for all pixels)

local method (sparse)

Constant flow

Where do we get more equations (constraints)?

$$I_x u + I_y v + I_t = 0$$

Assume that the surrounding patch (say 5x5) has 'constant flow'

Flow is locally smooth

Neighboring pixels have same displacement

Using a 5 x 5 image patch, gives us equations

Flow is locally smooth

Neighboring pixels have same displacement

Using a 5 x 5 image patch, gives us 25 equations

$$I_x(\boldsymbol{p}_1)u + I_y(\boldsymbol{p}_1)v = -I_t(\boldsymbol{p}_1)$$

 $I_x(\boldsymbol{p}_2)u + I_y(\boldsymbol{p}_2)v = -I_t(\boldsymbol{p}_2)$

:

$$I_x(\mathbf{p}_{25})u + I_y(\mathbf{p}_{25})v = -I_t(\mathbf{p}_{25})$$

Flow is locally smooth

Neighboring pixels have same displacement

Using a 5 x 5 image patch, gives us 25 equations

$$\left[egin{array}{ccc} I_x(oldsymbol{p}_1) & I_y(oldsymbol{p}_1) \ I_x(oldsymbol{p}_2) & I_y(oldsymbol{p}_2) \ dots & dots \ I_x(oldsymbol{p}_{25}) & I_y(oldsymbol{p}_{25}) \end{array}
ight] \left[egin{array}{ccc} u \ v \end{array}
ight] = - \left[egin{array}{ccc} I_t(oldsymbol{p}_1) \ I_t(oldsymbol{p}_2) \ dots \ I_t(oldsymbol{p}_{25}) \end{array}
ight]$$

Matrix form

Flow is locally smooth

Neighboring pixels have same displacement

Using a 5 x 5 image patch, gives us 25 equations

$$\left[egin{array}{ccc} I_x(oldsymbol{p}_1) & I_y(oldsymbol{p}_1) \ I_x(oldsymbol{p}_2) & I_y(oldsymbol{p}_2) \ dots & dots \ I_x(oldsymbol{p}_{25}) & I_y(oldsymbol{p}_{25}) \end{array}
ight] \left[egin{array}{ccc} u \ v \end{array}
ight] = - \left[egin{array}{ccc} I_t(oldsymbol{p}_1) \ I_t(oldsymbol{p}_2) \ dots \ I_t(oldsymbol{p}_{25}) \end{array}
ight]$$

$$oldsymbol{A}_{25 imes2} \qquad \qquad oldsymbol{x}_{2 imes1} \qquad \qquad oldsymbol{b}_{25 imes1}$$

How many equations? How many unknowns? How do we solve this?

Least squares approximation

$$\hat{x} = rg\min_{x} ||Ax - b||^2$$
 is equivalent to solving $A^{ op} A \hat{x} = A^{ op} b$

Least squares approximation

$$\hat{x} = rg\min_{x} ||Ax - b||^2$$
 is equivalent to solving $A^ op A \hat{x} = A^ op b$

To obtain the least squares solution solve:

$$A^{ op}A$$
 \hat{x} $A^{ op}b$ $egin{bmatrix} \sum\limits_{p\in P}I_xI_x & \sum\limits_{p\in P}I_xI_y \ \sum\limits_{p\in P}I_yI_x & \sum\limits_{p\in P}I_yI_y \end{bmatrix} \begin{bmatrix} u \ v \end{bmatrix} = - \begin{bmatrix} \sum\limits_{p\in P}I_xI_t \ \sum\limits_{p\in P}I_yI_t \end{bmatrix}$

where the summation is over each pixel p in patch P

$$x = (A^{\top}A)^{-1}A^{\top}b$$

Least squares approximation

$$\hat{x} = rg\min_{x} ||Ax - b||^2$$
 is equivalent to solving $A^{ op} A \hat{x} = A^{ op} b$

To obtain the least squares solution solve:

$$A^{ op}A$$
 \hat{x} $A^{ op}b$ $egin{bmatrix} \sum\limits_{p\in P}I_xI_x & \sum\limits_{p\in P}I_xI_y \ \sum\limits_{p\in P}I_yI_x & \sum\limits_{p\in P}I_yI_y \end{bmatrix} \begin{bmatrix} u \ v \end{bmatrix} = - \begin{bmatrix} \sum\limits_{p\in P}I_xI_t \ \sum\limits_{p\in P}I_yI_t \end{bmatrix}$

where the summation is over each pixel p in patch P

Sometimes called 'Lucas-Kanade Optical Flow'

$$A^{\mathsf{T}}A\hat{x} = A^{\mathsf{T}}b$$

 $A^{\mathsf{T}}A$ should be invertible

 $A^{\mathsf{T}}A$ should not be too small

 λ_1 and λ_2 should not be too small

 $A^{\mathsf{T}}A$ should be well conditioned

 λ_1/λ_2 should not be too large (λ_1 =larger eigenvalue)

Where have you seen this before?

$$A^{ op}A^{ op}A = \left[egin{array}{ccc} \sum\limits_{p\in P}I_xI_x & \sum\limits_{p\in P}I_xI_y \ \sum\limits_{p\in P}I_yI_x & \sum\limits_{p\in P}I_yI_y \end{array}
ight]$$

Where have you seen this before?

$$\left[\begin{array}{ccc} \sum\limits_{p\in P}I_xI_x & \sum\limits_{p\in P}I_xI_y \\ \sum\limits_{p\in P}I_yI_x & \sum\limits_{p\in P}I_yI_y \end{array}\right]$$

Harris Corner Detector!

Implications

- Corners are when λ1, λ2 are big; this is also when Lucas-Kanade optical flow works best
- Corners are regions with two different directions of gradient (at least)
- Corners are good places to compute flow!

What happens when you have no 'corners'?

• Edge \rightarrow $A^T A$ becomes singular

$$\begin{bmatrix} I_{y}, I_{y} \\ I_{x}, I_{y} \end{bmatrix} \begin{bmatrix} \sum I_{x}^{2} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}^{2} \end{bmatrix} \begin{bmatrix} -I_{y} \\ I_{x} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -I_{y} \\ I_{x} \end{bmatrix} \text{ is eigenvector with eigenvalue } 0$$

► Homogeneous \rightarrow $A^T A \approx 0$ → eigenvalues are 0

► Textured regions → two high eigenvalues

Which features can we track?

▶ Edge \rightarrow $A^T A$ becomes singular

Homogeneous regions \rightarrow low gradients \cdot $A^T A \approx 0$

You want to compute optical flow.
What happens if the image patch contains only a line?

Barber's pole illusion

Aperture Problem

small visible image patch

In which direction is the line moving?

Aperture Problem

small visible image patch

In which direction is the line moving?

The aperture problem

For points on a line of fixed intensity we can only recover the normal flow

Where did the blue point move to?

We need additional constraints

Solving the ambiguity

Sometimes enlarging the aperture can help

Want patches with different gradients to the avoid aperture problem

Want patches with different gradients to the avoid aperture problem

Horn-Schunck optical flow

Horn-Schunck Optical Flow (1981)

Lucas-Kanade Optical Flow (1981)

brightness constancy

small motion

method of differences

'smooth' flow

(flow can vary from pixel to pixel)

global method (dense)

'constant' flow

(flow is constant for all pixels)

local method (sparse)

Smoothness

most objects in the world are rigid or deform elastically moving together coherently

we expect optical flow fields to be smooth

Key idea

(of Horn-Schunck optical flow)

Enforce brightness constancy

Enforce smooth flow field

to compute optical flow

Key idea

(of Horn-Schunck optical flow)

Enforce brightness constancy

Enforce smooth flow field

to compute optical flow

Enforce brightness constancy

$$I_x u + I_y v + I_t = 0$$

For every pixel,

$$\min_{u,v} \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2$$

Enforce brightness constancy

$$I_x u + I_y v + I_t = 0$$

For every pixel,

$$\min_{oldsymbol{u},oldsymbol{v}} \left[I_{oldsymbol{x}} u_{oldsymbol{i}j} + I_{oldsymbol{y}} v_{oldsymbol{i}j} + I_{oldsymbol{t}} I_{oldsymbol{x}} v_{oldsymbol{i}j} + I_{oldsymbol{t}}
ight]^2$$

Key idea

(of Horn-Schunck optical flow)

Enforce brightness constancy

Enforce smooth flow field

to compute optical flow

Enforce smooth flow field

u-component of flow

Which flow field optimizes the objective? $\min_{\boldsymbol{u}}(u_{i,j}-u_{i+1,j})^2$

$$\sum_{ij} (u_{ij} - u_{i+1,j})^2 \qquad ? \qquad \sum_{ij} (u_{ij} - u_{i+1,j})^2$$

Which flow field optimizes the objective? $\min_{m{u}}(u_{i,j}-u_{i+1,j})^2$

Key idea

(of Horn-Schunck optical flow)

Enforce brightness constancy

Enforce smooth flow field

to compute optical flow

bringing it all together...

Horn-Schunck optical flow

$$\min_{m{u},m{v}} \sum_{i,j} \left\{ E_s(i,j) + \sum_{m{v} \in \mathcal{U}} E_d(i,j)
ight\}$$

HS optical flow objective function

Brightness constancy
$$E_d(i,j) = \left[I_x u_{ij} + I_y v_{ij} + I_t\right]^2$$

Smoothness

$$E_s(i,j) = \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right]$$

How do we solve this minimization problem?

$$\min_{\boldsymbol{u},\boldsymbol{v}} \sum_{i,j} \left\{ E_s(i,j) + \lambda E_d(i,j) \right\}$$

How do we solve this minimization problem?

$$\min_{\boldsymbol{u},\boldsymbol{v}} \sum_{i,j} \left\{ E_s(i,j) + \lambda E_d(i,j) \right\}$$

Compute partial derivative, derive update equations (gradient decent!)

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$
smoothness term brightness constancy

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$

it's not so bad...

$$\frac{\partial E}{\partial u_{kl}} =$$

how many u terms depend on k and I?

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$

it's not so bad...

$$\frac{\partial E}{\partial u_{kl}} =$$

how many u terms depend on k and I?

FOUR from smoothness

ONE from brightness constancy

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$

it's not so bad...

$$\frac{\partial E}{\partial u_{kl}} = 2(u_{kl} - \bar{u}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_x$$

how many u terms depend on k and I?

FOUR from smoothness

ONE from brightness constancy

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$

$$(u_{ij}^2 - 2u_{ij}u_{i+1,j} + u_{i+1,j}^2)$$
 $(u_{ij}^2 - 2u_{ij}u_{i,j+1} + u_{i,j+1}^2)$

(variable will appear four times in sum)

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$

$$(u_{ij}^2 - 2u_{ij}u_{i+1,j} + u_{i+1,j}^2) (u_{ij}^2 - 2u_{ij}u_{i,j+1} + u_{i,j+1}^2)$$

(variable will appear four times in sum)

$$\frac{\partial E}{\partial u_{kl}} = 2(u_{kl} - \bar{u}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_x$$

$$\frac{\partial E}{\partial v_{kl}} = 2(v_{kl} - \bar{v}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_y$$

short hand for local average
$$ar{u}_{ij}=rac{1}{4}igg\{u_{i+1,j}+u_{i-1,j}+u_{i,j+1}+u_{i,j-1}igg\}$$

$$\frac{\partial E}{\partial u_{kl}} = 2(u_{kl} - \bar{u}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_x$$
$$\frac{\partial E}{\partial v_{kl}} = 2(v_{kl} - \bar{v}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_y$$

Where are the extrema of E?

$$\frac{\partial E}{\partial u_{kl}} = 2(u_{kl} - \bar{u}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_x$$
$$\frac{\partial E}{\partial v_{kl}} = 2(v_{kl} - \bar{v}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_y$$

Where are the extrema of E?

(set derivatives to zero and solve for unknowns u and v)

$$(1 + \lambda I_x^2)u_{kl} + \lambda I_x I_y v_{kl} = \bar{u}_{kl} - \lambda I_x I_t$$
$$\lambda I_x I_y u_{kl} + (1 + \lambda I_y^2)v_{kl} = \bar{v}_{kl} - \lambda I_y I_t$$

$$\frac{\partial E}{\partial u_{kl}} = 2(u_{kl} - \bar{u}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_x$$

$$\frac{\partial E}{\partial v_{kl}} = 2(v_{kl} - \bar{v}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_y$$

Where are the extrema of E?

(set derivatives to zero and solve for unknowns u and v)

$$(1 + \lambda I_x^2)u_{kl} + \lambda I_x I_y v_{kl} = \bar{u}_{kl} - \lambda I_x I_t$$
$$\lambda I_x I_y u_{kl} + (1 + \lambda I_y^2)v_{kl} = \bar{v}_{kl} - \lambda I_y I_t$$

this is a linear system

 $\mathbf{A} x = \mathbf{b}$ how do you solve this?

We are solving for the optical flow (u,v) given two constraints

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$

smoothness

brightness constancy

We need the math to minimize this (back to the math)

Partial derivatives of Horn-Schunck objective function E:

$$\frac{\partial E}{\partial u_{kl}} = 2(u_{kl} - \bar{u}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_x$$
$$\frac{\partial E}{\partial v_{kl}} = 2(v_{kl} - \bar{v}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_y$$

Where are the extrema of E?

(set derivatives to zero and solve for unknowns u and v)

$$(1 + \lambda I_x^2)u_{kl} + \lambda I_x I_y v_{kl} = \bar{u}_{kl} - \lambda I_x I_t$$
$$\lambda I_x I_y u_{kl} + (1 + \lambda I_y^2)v_{kl} = \bar{v}_{kl} - \lambda I_y I_t$$

 $\mathbf{A}oldsymbol{x} = oldsymbol{b}$ how do you solve this?

$$(1 + \lambda I_x^2)u_{kl} + \lambda I_x I_y v_{kl} = \bar{u}_{kl} - \lambda I_x I_t$$
$$\lambda I_x I_y u_{kl} + (1 + \lambda I_y^2)v_{kl} = \bar{v}_{kl} - \lambda I_y I_t$$

Recall
$$\boldsymbol{x} = \mathbf{A}^{-1}\boldsymbol{b} = \frac{\operatorname{adj}\mathbf{A}}{\det\mathbf{A}}\boldsymbol{b}$$

$$(1 + \lambda I_x^2)u_{kl} + \lambda I_x I_y v_{kl} = \bar{u}_{kl} - \lambda I_x I_t$$
$$\lambda I_x I_y u_{kl} + (1 + \lambda I_y^2)v_{kl} = \bar{v}_{kl} - \lambda I_y I_t$$

Recall
$$oldsymbol{x} = \mathbf{A}^{-1} oldsymbol{b} = rac{\mathrm{adj} \mathbf{A}}{\det \mathbf{A}} oldsymbol{b}$$

Same as the linear system:

$$\{1 + \lambda(I_x^2 + I_y^2)\}u_{kl} = (1 + \lambda I_x^2)\bar{u}_{kl} - \lambda I_xI_y\bar{v}_{kl} - \lambda I_xI_t \text{ (det A)}$$

$$\{1 + \lambda(I_x^2 + I_y^2)\}v_{kl} = (1 + \lambda I_y^2)\bar{v}_{kl} - \lambda I_xI_y\bar{u}_{kl} - \lambda I_yI_t$$
 (det A)

$$\{1 + \lambda(I_x^2 + I_y^2)\}u_{kl} = (1 + \lambda I_x^2)\bar{u}_{kl} - \lambda I_x I_y \bar{v}_{kl} - \lambda I_x I_t$$

$$\{1 + \lambda(I_x^2 + I_y^2)\}v_{kl} = (1 + \lambda I_y^2)\bar{v}_{kl} - \lambda I_x I_y \bar{u}_{kl} - \lambda I_y I_t$$

Rearrange to get update equations:

$$\hat{u}_{kl} = ar{u}_{kl} - rac{I_x ar{u}_{kl} + I_y ar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} I_x \ \hat{v}_{ ext{kl}} = ar{v}_{kl} - rac{I_x ar{u}_{kl} + I_y ar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} I_y$$

Recall:
$$\min_{\boldsymbol{u},\boldsymbol{v}} \sum_{i,j} \left\{ E_s(i,j) + \lambda E_d(i,j) \right\}$$

When lambda is small (lambda inverse is big)...

$$\hat{u}_{kl} = ar{u}_{kl} - rac{I_x ar{u}_{kl} + I_y ar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} I_x \ \hat{v}_{kl} = ar{v}_{kl} - rac{I_x ar{u}_{kl} + I_y ar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} I_y$$

Recall:
$$\min_{m{u}, m{v}} \sum_{i,j} \left\{ E_s(i,j) + \lambda E_d(i,j) \right\}$$

When lambda is small (lambda inverse is big)...

$$\hat{u}_{kl}=ar{u}_{kl}-rac{I_xar{u}_{kl}+I_yar{v}_{kl}+I_t}{\lambda^{-1}+I_x^2+I_y^2}ar{I_x}^{ ext{goes to}}$$
 $\hat{v}_{kl}=ar{v}_{kl}-rac{I_xar{u}_{kl}+I_yar{v}_{kl}+I_t}{\lambda^{-1}+I_x^2+I_y^2}I_y$

Recall:
$$\min_{m{u},m{v}}\sum_{i,j}\left\{E_s(i,j)+\lambda E_d(i,j)\right\}$$

When lambda is small (lambda inverse is big)...

$$\hat{u}_{kl}=ar{u}_{kl}-rac{I_xar{u}_{kl}+I_yar{v}_{kl}+I_t}{\lambda^{-1}+I_x^2+I_y^2}I_x^{ ext{goes to}}$$
 rew old average $\hat{v}_{kl}=ar{v}_{kl}-rac{I_xar{u}_{kl}+I_yar{v}_{kl}+I_t}{\lambda^{-1}+I_x^2+I_y^2}I_y^{ ext{goes to}}$

...we only care about smoothness.

We are solving for the optical flow (u,v) given two constraints

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$
smoothness brightness constancy

We needed the math to minimize this (now to the algorithm)

Horn-Schunck Optical Flow Algorithm

- 1. Precompute image gradients $I_y \ I_x$
- 2. Precompute temporal gradients I_t
- 3. Initialize flow field $oldsymbol{u}=oldsymbol{0}$ $oldsymbol{v}=oldsymbol{0}$
- 4. While not converged

Compute flow field updates for each pixel:

$$\hat{u}_{kl} = \bar{u}_{kl} - \frac{I_x \bar{u}_{kl} + I_y \bar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} I_x \qquad \hat{v}_{kl} = \bar{v}_{kl} - \frac{I_x \bar{u}_{kl} + I_y \bar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} I_y$$

Just 8 lines of code!

When assumptions break

Brightness constancy is **not** satisfied

- A point does **not** move like its neighbors
 - what is the ideal window size?

The motion is **not** small (Taylor expansion doesn't hold)

Aliasing

Use multi-scale estimation

Optical Flow: Aliasing

Temporal aliasing causes ambiguities in optical flow because images can have many pixels with the same intensity.

I.e., how do we know which 'correspondence' is correct?

To overcome aliasing: coarse-to-fine estimation.

Coarse-to-fine motion estimation

Coarse-to-fine motion estimation

Coarse-to-Fine Estimation

Example

Multi-resolution registration

Optical flow results

Optical Flow Results

When assumptions break

Brightness constancy is **not** satisfied

Correlation based methods

- A point does **not** move like its neighbors
 - what is the ideal window size?

Regularization based methods

- ▶ The motion is **not** small (Taylor expansion doesn't hold)
- Aliasing

Use multi-scale estimation

Spatial coherence

- Neighboring points in the scene typically belong to the same surface and hence typically have similar motions.
- Since they also project to nearby points in the image, we expect spatial coherence in image flow.

Formalize this Idea

Noisy 1D signal:

Spatial Regularization

Find the "best fitting" smoothed function f(x)

Noisy measurements g(x)

Spatial Regularization

Find the "best fitting" smoothed function f(x)

Regularization

Minimize:

Faithful to the data

Spatial smoothness assumption

$$E(f) = \sum_{x=1}^{N} \left[f(x) - g(x) \right]^{2} + \lambda \sum_{x=1}^{N-1} \left[f(x+1) - f(x) \right]^{2}$$

Discontinuities

What about this discontinuity? What is happening here? What can we do?

Occlusion

Multiple motions within a finite region.

Weak membrane model

$$E(f,l) = \sum_{x=1}^{N} \left[f(x) - g(x) \right]^{2} + \lambda \sum_{x=1}^{N-1} \left\{ l(x) \left[f(x+1) - f(x) \right]^{2} + \beta \left[1 - l(x) \right] \right\}$$

$$l(x) \in \{0,1\} \text{ (binary)}$$

Robust estimation

Problem: Least-squares estimators penalize deviations between data & model with quadratic error f² (extremely sensitive to outliers)

error penalty function

influence function

$$\rho(\epsilon) = \epsilon^2$$

$$\psi(\epsilon) = \frac{\partial \rho(\epsilon)}{\partial \epsilon} = 2\epsilon$$

Redescending error functions (e.g., Geman-McClure) help to reduce the influence of outlying measurements.

error penalty function

influence function

$$\rho(\epsilon; s) = \frac{\epsilon^2}{s + \epsilon^2}$$

$$\psi(\epsilon; s) = \frac{2 \epsilon s}{(s + \epsilon^2)^2}$$

Robust regularization

Minimize:

$$E(f) = \sum_{x=1}^{N} \rho(f(x) - g(x), \sigma_1) + \lambda \sum_{x=1}^{N-1} \rho(f(x+1) - f(x), \sigma_2)$$

SIFT Flow

Displacement between SIFT features, not between intensity images

$$E(\mathbf{w}) = \sum_{\mathbf{p}} ||s_1(\mathbf{p}) - s_2(\mathbf{p} + \mathbf{w})||_1 + \frac{1}{\sigma^2} \sum_{\mathbf{p}} (u^2(\mathbf{p}) + v^2(\mathbf{p})) + \sum_{(\mathbf{p}, \mathbf{q}) \in \varepsilon} \min (\alpha |u(\mathbf{p}) - u(\mathbf{q})|, d) + \min (\alpha |v(\mathbf{p}) - v(\mathbf{q})|, d)$$

http://people.csail.mit.edu/celiu/ECCV2008/

EpicFlow:

Edge-Preserving Interpolation of Correspondences for Optical Flow

Jerome Revaud

Joint work with:

Philippe Weinzaepfel
Zaid Harchaoui
Cordelia Schmid

Inria

https://thoth.inrialpes.fr/src/epicflow/

CVPR 2015

Optical flow estimation is challenging!

- Main remaining problems:
 - large displacements
 - occlusions
 - motion discontinuities

Optical flow estimation is challenging!

- Main remaining problems:
 - large displacements
 - occlusions
 - motion discontinuities

Our approach: « EpicFlow »

Epic: Edge-Preserving Interpolation of Correspondences

- leverages state-of-the-art matching algorithm
 - invariant to large displacements
- incorporate an edge-aware distance:
 - handles occlusions and motion discontinuities
- state-of-the-art results

Related work:

- Variational optical flow [Horn and Schunck 1981]
 - energy:

$$E = E_{data} + \alpha E_{smooth}$$
 color/gradient constancy smoothness constraint

- Solutions for handling large displacements
 - ▶ Minimization using a coarse-to-fine scheme [Horn'81, Brox'04, Sun'13, ..]
 - iterative energy minimization at several scales
 - displacements are small at coarse scales
 - Addition of a matching term [Brox'11, Braux-Zin'13, Weinzaepfel'13, ..]
 - penalizing the difference between flow and HOG matches

$$E = E_{data} + \alpha E_{smooth} + \beta E_{match}$$

Related work: coarse-to-fine minimization

- Problems with coarse-to-fine:
 - flow discontinuities overlap at coarsest scales
 - errors are propagated across scales
 - no theoretical guarantees or proof of convergence!

Overview of our approach

based on sparse matches

- Avoid coarse-to-fine scheme
- Other matching-based approaches [Chen'13, Lu'13, Leordeanu'13]
 - less robust matching algorithms (eg. PatchMatch)
 - complex schemes to handle occlusions & motion discontinuities
 - no geodesic distance

Dense Interpolation

- Assumption:
 - motion boundaries are mostly included in image edges

Today

From images to video

- Optical flow
- Feature tracking
- Motion segmentation
 - Layered representation
- Applications
- How do we evaluate success?
 [Baker et al., A Database and Evaluation Methodology for Optical Flow, ICCV'07]

Synthetic video sequence

> Synthetic sequences can be used for quantitative evaluation

Image 8

Ground-Truth Flow

Flow Color Coding

- Limitation
 - Hard to make these a true representative of real video and its noise and blur

Real video with ground-truth

- Paint scene with textured fluorescent paint
- ▶ Take 2 images: One in visible light, one in UV light
- Move scene in very small steps using robot
- Generate ground-truth by tracking the UV images

Middlebury dataset (Baker et al. 2007)

http://vision.middlebury.edu/flow/

KITTI dataset (Geiger et al. 2012)

http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow

Stereo Camera Rig

Monochrom

home setup stereo flow sceneflow depth odometry object tracking road semanti

Andreas Geiger (MPI Tübingen) | Philip Lenz (KIT) | Christoph Stiller (KIT) | Raquel Urtasun (L

Optical Flow Evaluation 2015

KITTI dataset (Geiger et al. 2012)

http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow

	Method	Setting	Code	Fl-bg	Fl-fg	Fl-all	Density	Runtime	Environment	Compare
_		+	Code				,			Compare
1	<u>UberATG-DRISF</u>	88		3.59 %	10.40 %	4.73 %	100.00 %	0.75 s	CPU+GPU @ 2.5 Ghz (Python)	
. Ma,	S. Wang, R. Hu, Y. Xiong	and R. Urtasun	: Deep Ri	gid Instance	Scene Flow	. CVPR 2019	_			
2	DH-SF	88		4.12 %	12.07 %	5.45 %	100.00 %	350 s	1 core @ 2.5 Ghz (Matlab + C/C++)	0
3	<u>ISF</u>	EX		5.40 %	10.29 %	6.22 %	100.00 %	10 min	1 core @ 3 Ghz (C/C++)	
. Beh	l, O. Jafari, S. Mustikovela Scenarios?. International	, H. Alhaija, C. Conference on	Rother a Compute	nd A. Geige r Vision (ICC	er: Bounding CV) 2017.	Boxes, Segn	nentations and	Object Coordinates:	How Important is Recognition for 3D Scene Flow Estimati	on in Autonomous
4	HD^3-Flow		code	6.05 %	9.02 %	6.55 %	100.00 %	0.10 s	NVIDIA Pascal Titan XP	
Yin,	T. Darrell and F. Yu: Hiera	archical Discret	te Distribu	ution Decon	nposition for	Match Dens	ity Estimation.	CVPR 2019.		:
5	PRSM	11 F	<u>code</u>	5.33 %	13.40 %	6.68 %	100.00 %	300 s	1 core @ 2.5 Ghz (C/C++)	
. Vog	el, K. Schindler and S. Roti	h: <u>3D Scene Flo</u>	w Estima	tion with a	Piecewise Ri	gid Scene M	odel. ijcv 2015			
6	OSF+TC	r e		5.76 %	13.31 %	7.02 %	100.00 %	50 min	1 core @ 2.5 Ghz (C/C++)	
. Neo	oral and J. Šochman: <u>Objec</u>	t Scene Flow w	vith Temp	oral Consist	tency. 22nd	Computer V	ision Winter W	orkshop (CVWW) 2017	7.	
7	<u>SSF</u>	88		5.63 %	14.71 %	7.14 %	100.00 %	5 min	1 core @ 2.5 Ghz (Matlab + C/C++)	
Ren	, D. Sun, J. Kautz and E. Si	udderth: Casca	ded Scene	e Flow Pred	iction using	Semantic Se	gmentation. In	ternational Conferen	ce on 3D Vision (3DV) 2017.	
8	SPOSF	(YY)		5.41 %	15.96 %	7.16 %	100.00 %	10 min	1 core @ 3.5 Ghz (Matlab + C/C++)	
9	MFF	a		7.15 %	7.25 %	7.17 %	100.00 %	0.05 s	NVIDIA Pascal Titan X (Python)	
Ren	, O. Gallo, D. Sun, M. Yang	g, E. Sudderth a	and J. Kau	ıtz: <u>A Fusio</u>	n Approach f	or Multi-Fra	me Optical Flo	w Estimation. IEEE W	inter Conference on Applications of Computer Vision 201	9.
0	OSF 2018	88	code	5.38 %	17.61 %	7.41 %	100.00 %	390 s	1 core @ 2.5 Ghz (Matlab + C/C++)	

Today

From images to video

- Optical flow
- Feature tracking
- Motion segmentation
 - Layered representation
- Applications

Motion representations

▶ How can we describe the motion in the scene?

Block-based motion prediction

- Break image up into square blocks
- ▶ Estimate translation for each block
- ▶ Use this to predict next frame, code difference (MPEG-2)

Layered motion representation

- Break image sequence up into "layers" of coherent motion
- Each layer's motion is represented by a parametric model

Affine motion (dense)

Recall the brightness constancy equation

$$I_x u + I_y v + I_t = 0$$

Assume affine motion

$$u = a_1 + a_2 x + a_3 y$$

$$v = a_4 + a_5 x + a_6 y$$

Combine the equations

$$I_x(a_1 + a_2x + a_3y) + I_y(a_4 + a_5x + a_6y) + I_t = 0$$

- ▶ Each pixel provides one equation
- Solve with Least-squares

Layered motion

Advantages

- can represent occlusions / disocclusions
- each layer's motion can be smooth
- video segmentation for semantic processing

Difficulties:

- how do we determine the correct number?
- how do we assign pixels?
- how do we model the motion?

How do we estimate the layers?

- I. compute coarse-to-fine flow
- 2. estimate affine motion for each block
- 3. cluster with k-means
- 4. assign pixels to best fitting affine region
- 5. re-estimate affine motions in each region...

Layered motion result

[Wang & Adelson, CVPR'93]

Layered motion representation (option2)

For scenes with multiple parametric motions

Segmentation of Affine Motion

[Zelnik-Manor & Irani, PAMI 2000]

Today

From images to video

- Optical flow
- Feature tracking
- Motion segmentation
 - Layered representation
- Applications

Panoramas

Input

Camera ego-motion

Result by MobilEye (www.mobileye.com)

Structure from Motion

Input

Reconstructed shape

[Zhang, et al. ICCV'03]

Stabilization

[Zelnik-Manor & Irani, PAMI 2000]

Optical flow without motion

References on Optical Flow

Lucas-Kanade method:

- ▶ B.D. Lucas and T. Kanade "An Iterative Image Registration Technique with an Application to Stereo Vision" I|CAI '81 pp. 674-679
- S. Baker and I. Matthews "Lucas-Kanade 20 Years On: A Unifying Framework" IJCV, Vol. 56, No. 3, March, 2004, pp. 221 255. http://www.ri.cmu.edu/projects/project_515.html (papers + code)

Regularization based methods:

- ▶ B. K. P. Horn and B. Schunck, "**Determining Optical Flow**," Artificial Intelligence, 17 (1981), pp. 185-203
- Black, M. J. and Anandan, P., "A framework for the robust estimation of optical flow", ICCV 93, May, 1993, pp. 231-236 (papers + code)

Comparison of various optical flow techniques:

Barron, J.L., Fleet, D.J., and Beauchemin, S. "Performance of optical flow techniques". IJCV, 1994, 12(1):43-77

Layered representation (affine):
James R. Bergen P.Anandan Keith J. Hanna Rajesh Hingorani "Hierarchical Model-Based Motion Estimation" ECCV '92, pp. 237-- 252