(19) Japan Patent Office (JP)

(12) Published Unexamined Patent Application (A)

(51) Int. Cl.4

ID Code

JPO File No.

B 27 K 3/16

BBC

6754-2B

Number of Inventions: 1 Request for Examination: Not yet made Total Pages: 4

(54) Title of the Invention: A method for manufacturing treated timber

(21) Patent Application No.: S60-89422

(22) Filing Date: April 24, 1985

(72) Inventor: Yoshihiro Oota

Matsushita Electric Work, Ltd. 1048 Oo-Aza-Kadoma, Kadoma-Shi

(72) Inventor: Ayumu Yasuda

Specification

1. Title of the Invention

A method for manufacturing treated timber

2. Claims:

- (1) A method for manufacturing treated timber having nonflammable inorganic compounds filtered into the tissues of said timber, wherein said nonflammable inorganic compounds are inorganic ultra micro particles of $0.1\,\mu$ m or less in diameter that is insoluble in water; said timber is immersed in solution containing said inorganic ultra micro particles dispersed therein in order for said inorganic ultra micro particles to be filtered into said tissues; and said timber is dried in order to fix said inorganic ultra micro particles in said tissues.
- (2) The method for manufacturing treated timber according to claim 1, wherein 40 weight % or more of said inorganic ultra micro particles is fixed relative to the absolute dry weight of said timber.
- (3) The method for manufacturing treated timber according to claim 1, wherein at least one of said inorganic ultra micro particles is selected from the group consisting of silicate dioxide, calcium carbonate, aluminum oxide, and titanium oxide.
- (4) The method for manufacturing treated timber according to

(43) Provisional Publication Date: November 1, 1986

(11) Published Unexamined Patent Application No.

Matsushita Electric Work, Ltd. 1048 Oo-Aza-Kadoma, Kadoma-Shi

(72) Inventor: Koichi Nishimoto

S61-246002

2 Fukakusa-Ishibashi-Cho, Fushimi-Ku, Kyoto-Shi

(71) Applicant: Matsushita Electric Work, Ltd.

1048 Oo-Aza-Kadoma, Kadoma-Shi

(74) Agent: Takehiko Matsumoto, Patent Attorney

any one of claims 1-3, wherein either a normal pressure processing method or a pressure processing method is used for impregnation.

3. Detailed Explanation of the Invention

(Field of the Invention)

The present invention relates to a method for manufacturing treated timber having low flammability to timber.

(Background of the Invention)

As nonflammable or low flammable materials, the following are well known: wood wool cement board, calcium silicate board, and cement board. These materials are formed by mixing wood fiber or pulp as a filler with cement as a nonflammable material. Although they are nonflammable, their flexural strength, which is important for fixtures, is inferior to timber. To make timber low flammable while maintaining its flexural strength, one or more of the following water-soluble inorganic salts may be filtered into timber: diammonium phosphate, monoammonium phosphate, potassium carbonate, sodium carbonate, calcium chloride, magnesium chloride, and zinc chloride. Here, non-flammability means self-extinguishing, that is, timer cracks but neither ignites nor burns.

There are some problems in this method, however, Diammonium phosphate and monoammonium phosphate, for instance, decompose at low temperatures. This tendency is especially strong in aqueous solution. They are therefore not suitable for high-temperature processing used for manufacturing fireproof materials. Furthermore, these phosphates are nutritional sources for wood-rotting fungi. An increased amount of those phosphates causes low prevention against putrefaction. Potassium carbonate and sodium carbonate absorb carbon dioxide in the air after processing to form dicarbonates; therefore those carbonates are inferior in terms of time dependent stability. Calcium chloride and magnesium chloride are highly absorbent, so much so that those chlorides accelerate the corrosion of metals and the propagation of wood-rotting fungi, thereby deteriorating the quality of timber. Zinc chloride is also highly absorbent. Although a mixture of those chemicals can compensate for weaknesses each other, it may be poor at water-resistance since those chemicals are water-soluble. Such a mixture is therefore not suitable for exterior materials. In other words, it can be used only in limited ways. Although it is possible to use organic

The present invention relates to a method for manufacturing treated timber by filtering and fixing nonflammable inorganic compounds into the cellular texture of timber. The present invention especially relates to a method for manufacturing treated timber characterized by the following processes: inorganic ultra micro particles are used as the above-said nonflammable inorganic compounds that are insoluble in water and $0.1\,\mu$ m or smaller in diameter; timber is immersed in an aqueous solution in which said inorganic ultra micro particles are dispersed in order to filter said inorganic ultra micro particles into said timber tissues; and said timber tissues are dried so that said inorganic ultra micro particles can be fixed in said timber tissues. We will explain the present invention in more detail below.

The following is the method for manufacturing treated timber according to the present invention. First, we prepare an aqueous solution in which inorganic compounds are dispersed that is insoluble in water and $0.1\,\mu$ m or smaller in diameter. Desired timber is immersed in said dispersed solution in order to filter the solution into the timber. Immersing time is not dependent on the type of timber. It could be longer if timber is big or the amount of particles to be filtered into timber tissues is expected to be large. Any method can be used for immersion including a

chemicals including organic salts, there are also some problems in handling solvents, however.

(Purpose of the Invention)

Under the circumstances, the present invention provides a method for manufacturing treated timber characterized by stability and low flammability while maintaining flexural strength unique to timber.

(Disclosure of the Invention)

To fulfill the above-said purpose, the present inventors looked into a method of filtering and fixing water-insoluble inorganic compounds into the cellular texture of timber. As a result, they found out the following points: it was necessary to filter the particles of inorganic compounds into the gap sections of cells in timber tissues: for this purpose, the size of said particles must be such that they could pass through pit membranes of the pores of cell walls, the narrowest passage in the timber tissues: and the amount of dispersed particles must be 40% or more of the absolute dry weight of timber in order to give low flammability to the timber. This is the way they came up with the present invention.

normal pressure processing method such as a soaking method, warm and cool bathing method, and diffusion method and pressurized processing methods such as a filling cell method, null cell method, and semi-null cell method. Finally, the timber impregnated with ultra micro inorganic compounds in the tissues, more specifically in the gap sections of cells, is removed from said dispersed solution and dried.

The timber treated by the abovementioned method is characterized by low flammability since inorganic compounds are used that are nonflammable and nonabsorbent, and have antiseptic and insect-repellent qualities. Additionally, since those compounds are insoluble in water, they cannot be eluted once they reach the gap sections of cells. We can therefore make treated timber that excels at water-resistance and low flammability. Furthermore, handling all the processes is easy since water is used as a solvent.

We will explain the present invention in more detail below. (Working Example 1)

Prepare an aqueous solution in which 30 weight % of silicone dioxide with $0.005\text{-}0.015\,\mu\,\text{m}$ in diameter is dispersed. Immerse in said solution 200 weight % of an Agathis 1mm veneer saturated with water. Allow it stand at normal temperature.

Solution ratio was 50-55. After 48 hours, remove the veneer. Dry it to the absolute dry state using a drier to make treated timber. Measure an increase rate of weight. We tested low flammability of this treated timber by the JISA 1321 method.

(Working Example 2)

Immerse an Agathis 1mm veneer of absolute dry in the same dispersed solution as in the example 1. Degas it for 4 hours under reduced pressure (1mm Hg). Pressurize it for 4 hours at 5.6kg/cm² for impregnation. As in the example 1, measure an increase rate of weight and low flammability.

(Working Example 3)

Immerse the treated timber prepared in the example 1 in the same dispersed solution as in the example 1 for 48 hours. As in the example 1, measure an increase rate of weight and low flammability.

(Working Example 4)

Prepare an aqueous solution in which 20 weight % of calcium carbonate with $0.01 \cdot 0.1 \,\mu$ m in diameter is dispersed. After that, follow the example 1. Then, as in the example 1, measure an increase rate of weight and low flammability.

(Working Example 5)

Prepare an aqueous solution in which 20 weight % of

aluminum oxide with 0.02-0.05 μ m is dispersed. After that, follow the example 1. As in the example 1, measure an increase rate of weight and low flammability.

(Working Example 6)

Prepare an aqueous solution in which 20 weight % of titanium oxide with $0.03 \cdot 0.07 \,\mu$ m in diameter is dispersed. After that, follow the example 1. As in the example 1, measure an increase rate of weight and low flammability.

(Working Example 7)

Prepare treated timber by the same method as in the example 1 using a 1mm veneer of cedar as timber. Measure an increase rate of weight. Immerse this treated timber in the same dispersed solution as in the example 4. Measure an increase rate of weight and low flammability as in the example 4.

(Working Example 8)

Prepare treated timber by the same method as in the example 1 using a 1mm veneer of Japanese cypress as timber. Measure an increase rate of weight. Immerse this treated timber in the same dispersed solution as in the example 6. Measure an increase rate of weight and low flammability as in the example 6.

Table 1 shows the test results of the working examples.

		Timber (Weight Ratio)	Inorganic Ultra Micro Particles (Weight Ratio)
Working Examples	1	Agathis 1 mm veneer (100)	Silicone dioxide (45)
	2	Agathis 1 mm veneer (100)	Silicone dioxide (45)
	3	Agathis 1 mm veneer (100)	Silicone dioxide (80)
	4	Agathis 1 mm veneer (100)	Calcium carbonate (50)
	5	Agathis 1 mm veneer (100)	Aluminum oxide (55)
	6	Agathis 1 mm veneer (100)	Titanium oxide (40)
	7	Cedar 1mm veneer (100)	Silicone dioxide (45)
			Calcium carbonate (30)
	8	Japanese cypress 1 mm veneer (100)	Silicone dioxide (45)
			Titanium oxide (35)

Table 1

As shown in table 1, all the treated timber according to the working examples indicates that the amount of dispersed particles is 40 weight % or more. Low flammability tests also showed good results. The treated timber in the example 2, 7, and 8 show especially excellent low flammability since the timber was immersed twice, and therefore the number of dispersed particles was large.

We immersed the treated timber according to the example 1 in water for 48 hours. After making it absolute dry, we measured its weight to find out that the decrease of weight was 0·1 %. Based on this result, we concluded that particles were not eluted once they were filtered into the gap sections of cells. Such treated timber excels at water-resistance and low flammability and therefore can be used as an exterior material.

The treated timber of the present invention showed 10-fold flexural strength (about 1000kg/cm²) as compared with that of general inorganic type boards (about 100kg/cm²).

(Effects of the Invention)

Because of the aforementioned composition, the treated timber according to the present invention excels at water-resistance, stability, and low flammability while maintaining flexural strength unique to timber.

Agent: Takehiko Matsumoto, Patent Attorney

Amendment (Voluntary)

June 13, 1985

To: The Commissioner of the Japanese Patent Office

1. Case Identification

Patent Application No. S60-089422

2. Title of the Invention

A method for manufacturing treated timber

3 Party Filing the Amendment

Relationship to the Case: Patent Applicant

Address: 1048 Oo-Aza-Kadoma, Kadoma-Shi, Osaka-Fu

Name: (583) Matsushita Electric Work, Ltd.

Representative: Sadao Fujii, Representative Director

4. Agent

Address: 2·4·17 Tenjinbashi, Chiyoda Daiichi Bldg. 8 Fl, Kita·Ku, Osaka·Shi, Japan 530

Name: Takehiko Matsumoto, Patent Attorney (7346) (A seal appears here.)

5. Number of the Invention Added by the Amendment

None (A stamp of JPO dated on June 15, 1985, words "Examination for Form," and a stamp "Tachibana" appear here.)

6. Parts Amended

Specification

7. Content of the Amendment

The "working examples 2, 7, 8" on page 10, line 4 of specification in Japanese should be amended to "working examples 3, 7, 8."

19 日本国特許庁(JP)

⑪特許出願公開

⑩ 公 開 特 許 公 報 (A) 昭61-246002

⑤Int.Cl.⁴

識別記号

庁内整理番号

❸公開 昭和61年(1986)11月1日

B 27 K 3/16

BBC

6754-2B

審査請求 未請求 発明の数 1 (全4頁)

②特 願 昭60-89422

②出 願 昭60(1985)4月24日

⑰発 明 者 太 田

義 弘 門真市大字門真1048番地 松下電工株式会社内

⑫発 明 者 安 田 歩

門真市大字門真1048番地 松下電工株式会社内

⑩発 明 者 西 本 孝 一

京都市伏見区深草石橋町2

⑪出 願 人 松下電工株式会社

門真市大字門真1048番地

砂代 理 人 弁理士 松本 武彦

明 細 書

1. 発明の名称

改質木材の製法

- 2. 特許請求の範囲
- (1) 木材の組織内に不燃性無機化合物が分散定着されてなる改質木材の製法であって、前記不燃性無機化合物として、粒径が例 0.1 μm以下の水に不溶な無機超微粒子を用い、この無機超微粒子が水に分散された分散液中に前記木材を浸し、前記組織内に無機超微粒子を前記組織内へ分散定着させるようにすることを特徴とする改質木材の製法。
- (2) 無機超微粒子を木材の絶乾重量に対して、 40重量%以上定着させるようにする特許請求範 囲第1項記載の改質木材の製法。
- (3) 無機超微粒子が、二酸化ケイ素、炭酸カルシウム、酸化アルミニウム、酸化チタニウムよりなる群より選ばれた少なくとも1つである特許請求の範囲第1項または第2項に記載の改質木材の製法。

- (4) 含浸が、常圧処理法および加圧処理法のうちのいずれかによって行われる特許請求の範囲第1項ないし第3項のいずれかに記載の改質木材の製法。
- 3. 発明の詳細な説明

〔技術分野〕

この発明は、木材に難燃性を付与する改質木材 の製法に関する。

(背景技術)

不燃性あるいは難燃性材料として、木毛セメント板、軽カル板、セメントボード等がある。これに大板、軽カル板、セメントに木材の繊維やパンで等をフィラー(充てん材)として混合して、建合して、強性は確保できるかわりに、建実ってあるが、不燃性は確保できるかわりに、建実ってあるが、不燃性は確保できるかわりに、建労ってあるが、木材が曲げ強度を維持して、難燃性とは、熱分解はるので、難燃性とにである)を有するように改質する方法として、水溶性の無機塩類、たとえば、第2リン

酸アンモニウム,第1リン酸アンモニウム,炭酸カリウム,炭酸ナトリウム,塩化カルシウム,塩 化マグネシウム,塩化亜鉛などを単一であるいは 混合して木材に含浸させるような方法もある。

しかしながら、これらには問題点がいくつかあ る。たとえば、第2リン酸アンモニウム、第1リ ン酸アンモニウムは、低温で分解する。水溶液で はとくに、この傾向があるため、防火材料製造工 程中で、高温処理を行う場合には適さないうえ、 腐朽菌の栄養源となり、処理量が増すと、かえっ て防腐性がおちる。また、炭酸カリウム、炭酸ナ トリウムは、処理後、空気中の炭酸ガスを吸収し て、重炭酸塩となり、経年変化の安定性に欠ける 。塩化カルシウム、塩化マグネシウムは吸湿性が 極めて大きく、金属の腐食や腐朽菌の繁殖を促し 、木材質を劣化させる。塩化亜鉛も吸湿性が大き いなどの点である。また、これらの薬剤の混合系 においては、互いに欠点を補う効果を持つものも あるが、いずれの場合も、水溶性薬剤であるため 、耐水性に問題があり、外装材に使えないなど用 途が限られている。これらとは別に有機塩類など 有機系薬剤を用いる場合もあるが、溶剤等の関係 で、取り扱いの点に難があるなど、やはり、問題 があった。

(発明の目的)

この発明は、このような現状に鑑みて、木材特有の曲げ強度を維持しつつ、安定な難燃性を有する改質木材の製法を提供する。

〔発明の開示〕

この発明者らは、このような目的を達成するため、水に不溶な無機化合物を木材の組織内に材料を着させる方法を鋭意検討を重ねた結果、木材組織の細胞内孔まで無機化合物粒子を含浸させる疾患があり、そのためには木材の組織中の一番過ごと、がの分散した粒子を用いなければらないこと、がの強を重量の40%を越えなければ難燃性を木材に付与することでできないことが解り、この発明を完成するにでに、したがって、この発明は、木材の組織内に不

燃性無機化合物が分散定着されてなる改質木材の 製法であって、前記不燃性無機化合物として、粒 径が 0.1 μ m 以下の水に不溶な無機超微粒子を用 い、この無機超微粒子が水に分散された分散液中 に前記木材を浸し、前記無機超微粒子を前記組織 分散させて乾燥し、前記無機超微粒子を前記組織 内へ分散定着させるようにすることを特徴とする 改質木材の製法を要旨とする。以下に、この発明 を詳しく説明する。

この発明にかかる改質木材の製法は、水に不容な 0.1 μ m以下の粒径の無機化合物を水の中に分散させ、分散液を作る。この分散液中に所望させる。含浸させる。含浸させる。含浸させる。含浸させる。含浸させる。含浸させる。 は 樹種には関係なく、木材の寸法が大量 を 間は、樹種には関係なく、木材の寸法が大量を 増やそうとすれば、これを長くするようにする 最初できるようとすれば、これを長くするようにする は できるようには、 これを長くするようにする は はい。また、含浸方法は、たとえば浸漬法、 温 細 とい。また、含浸方法は、 たとえば浸漬法、 温 細 に な と で 常圧処理法などの 常圧処理法など が れを 日いても 構わない。こののち、この無機超微粒子

が木材の組織内、すなわち細胞内孔まで分散され た木材を分散液から取り出し乾燥させる。

このようにすれば、無機物の特性たる不燃性、非吸湿性、防腐防虫性等により木材の難燃化が計られるとともに、水に不溶であるため、一度細胞内孔まで含浸されると、溶出されることがなく、耐水性にすぐれた難燃性の改質木材を得ることができ、外壁材として用いることができる。また、水を溶媒とすることで取り扱いの点で容易である

つぎに、この発明の実施例を詳しく説明する。 (実施例1)

粒子径 0.005~0.015μmの二酸化ケイ素を30重量%の割合で水に分散させ分散液を作った。この分散液中に200重量%の飽水状態のアガチス1 ■厚単板を浸し、常温下で48時間放置した。このとき、浴比は50~55であった。48時間後この単板を取り出し、乾燥機で絶乾状態まで乾燥させて改質木材を作製し、その重量増加率を測定した。この改質木材の難燃性をJISA

1321による方法を用いて試験した。

(実施例2)

絶乾状態のアガチス1 mm 単板を実施例1と同様の分散液に浸して1 mm Hgの減圧下で4時間脱気を行ったのち、5~6 kg/cdに加圧して4時間含浸をさせた。以下実施例1と同様にして重量増加率および難燃性を調べた。

(実施例3)

実施例1で得た改質木材を再度、実施例1と同様の分散液に48時間浸し、以下実施例1と同様にして重量増加率および難燃性を調べた。

(実施例4)

水に粒子径 0.01~0.1μmの炭酸カルシウムを20重量%の割合で分散させた分散液を用いた以外は、実施例 1と同様にして、重量増加率および難燃性を調べた。

(実施例5)

水、粒径 0.0 2 ~ 0.0 5 μmの酸化アルミニウムを 2 0 重量%割合で分散させた分散液を用いた以外は、実施例 1 と同様にして重量増加率および

難燃性を調べた。

(実施例6)

水に粒径 0.03~0.07μmの酸化チタニウムを20重量%の割合で分散させた分散液を用いた以外は、実施例 1と同様にして重量増加率および 難燃性を調べた。

(実施例7)

木材としてスギ 1 **単板を使用した以外は、実施例 1 と同様にして改質木材を作製して重量増加率を測定し、この改質木材を実施例 4 と同様の分散液に浸し、以下実施例 4 と同様にして重量増加率および難燃性を調べた。

(実施例8)

木材としてヒノキ 1 mm 厚単板を使用した以外は、実施例 1 と同様にして改質木材を作製して重量 増加率を測定し、この改質木材を実施例 6 と同様 の分散液に浸し、以下実施例 6 と同様にして重量 増加率および難燃性を調べた。

以上の実施例の試験結果を第1表に表す。

出 ŝ ŝ 0 0 S 0 S 0 ß 量構成] 3)運) 4 超微粒子 胀 翭 1] 緥 Ð Ð 眯 Þ ıļ " ıţ ź ᅻ Ł Ł Ť ₽ Ł 数化 数化/ 廢化 캬 걎 R ٦ * * 無機 数 緻 綴 7 يج 綴 يد 数 **S** 1 +1泯 11 11 0 0 0 0 0 0 棒成比) 0 0 0 0 0 $\overline{}$ 1) 版 圑 版 腏 反 版 辰 版 反 庫車 鲥 浀 涆 浀 涆 涆 油 :# 尀 鲥 画 歐 爧 <u>m</u> 媑 Ħ Ħ Ē E 2 Ę 5 ĸ K К К ĸ К `# * * * 4 K K Ŧ ĸ ¥ 'n Δŀ ĸ Ŧ 5 3 1 ٦ 5 2 က S 9 ~ 00

账摇室

第1表にみるように、実施例における改質木材はすべて分散した粒子の量が40重量%以上を示し、鍵燃性試験に対しても良好な結果を示した。 実施例2、7、8の改質木材は、含浸を2度行ったため分散した粒子量も多く、特に良好な難燃性を示した。

実施例1で得られた改質木材を48時間水に浸したのち、絶乾状態にしてその重量を計ったところ0~1%の重量減しかみられなかった。このことから判断して、一度細胞内孔まで含浸させられた粒子は、溶出することがなく、耐水性にすぐれた難燃性改質木材であり、雨のかかるような外壁材として使用しても、安定した難燃性を維持できる。

また、一般の無機系ボード類の曲げ強度は約1 00kg/cmlであるのに対して、この発明の改質木 材は約1000kg/cmlと10倍の強度を示した。

(発明の効果)

この発明の改質木材の製法は、このような構成に なっているので、材料特有の曲げ強度を維持しつ つ、耐水性に優れ安定した難燃性を有する改質木 材を得ることができる。

松本武彦

代理人 弁理士

手統補正書(自発)

昭和60年 6月13日

特許庁長官 殿

1. 事件の表示

昭和60年特計願第089422号

2. 発明の名称

改質木材の製法

事件との関係

3. 補正をする者

特許出願人

住 所 大阪府門真市大字門真 1 0 4 8 番地名 称 (583) 松 下 電 工 株 式 会 社

代表者 代表取締役 藤井貞夫

4. 代理人

住 所 〒530 大阪市北区天神橋2丁目4番17号 千代田第一ビル8階 電話 (06) 352-6846

氏 名 (7346) 弁理士 松 本 武 j

5. 補正により増加する発明の数

なし

6. 補正の対象

明細書

- 7. 補正の内容
- (1) 明細書第10頁第4行に「実施例2、7、
- 8」とあるを、「実施例3、7、8」と訂正する