Data Structure: Review

Fatemeh Panahi
Department of Computer Science
University of Toronto
CSC263-Fall 2017

Complexity Review

Any problem has some input.

Consider a set of all possible values for different input that makes the sample space:

- Best Case: Minimum complexity
- Average Case: Expected value over the sample space by considering the probability distribution over inputs. $E(X) = \sum x_i P(x_i)$
- Worst case: Maximum complexity

For randomized algorithm the algorithm makes random variable itself.

- Expected running time: expected value over the random variable generated by the algorithm
- Amortized Analysis: A sequence of operations
 - Aggregate, Accounting method

Asymptotic notations

$$f(n) = O(g(n)) \rightarrow \exists n_0, c_0$$
 such that for $n > n_0$ $f(n) \le c_0 g(n)$ $f(n) = \Omega(g(n)) \rightarrow \exists n_0, c_0$ such that for $n > n_0$ $f(n) \ge c_0 g(n)$ $f(n) = \Theta(g(n)) \rightarrow \exists n_0, c_1, c_2$ such that for $n > n_0$ $c_1 g(n) \le f(n) \le c_2 g(n)$

Order of growth of some common functions

$$O(1) < O(\log^* n) < O(\log n) < O(\sqrt{n}) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n)$$

Examples:

$$10 n^{2} + 3 = O(n^{2}) = O(n^{3})$$

$$10 n^{2} + 3 = \Omega(n^{2}) = \Omega(n) = \Omega(1)$$

$$40 n^{2} + 10 n \log 5n + 100\sqrt{n} \log n + 5n + 200 = \Theta(n^{2})$$

Priority Queues: Heaps

- Data structure: an array that represents a full tree
- Extract-Max, Insert, Delete: $O(\log n)$
- Decrease key: O(log n)
- Build max-heap: O(n)

0	1	2	3	4	5	6	7	8	9

Dictionaries: BSTs

 Data structure: a linked structure that represents a tree which is not always full or balanced

- Successor and predecessor O(h) = O(n)
- Insert, Search, Delete: O(h) = O(n)

Balanced Trees, BST Augmentation

 AVL trees: For all the nodes the difference between the height of left and right subtree is at most 1.

- Successor and predecessor $O(\log n)$
- Insert, Search, Delete: $O(\log n)$
- For each insert or delete at most 2 rotations
- Each rotation: O(1)

AVL-rebalancing

- Lowest unbalanced node:
 - Right heavy, right child: right heavy: single left rotation
 - Right heavy, right child: left heavy (Zig zag): double right-left rotation

The other case is symmetric

Hashing

• Direct access table

Hashing

- Hash function maps a key to a value
- Collision handling
 - Chaining

Open addressing

- Linear probing $h(k,i) = (h'(k) + i) \mod m$
- Quadratic probing $h(k,i) = (h'(k) + c_1i + c_2i^2) \mod m$
- Double hashing $h(k,i) = (h_1(k) + ih_2(k)) \mod m$

Quicksort

- Running time
 - Worst case: $\Theta(n^2)$
 - Average case for randomized version: $\Theta(n \log n)$
 - Best case: $\Theta(n \log n)$

Graphs

- Types of graphs
 - Undirected: edge (u, v) = (v, u); for all $v, (v, v) \notin E$ (No self loops)
 - Directed: (u, v) is edge from u to v, denoted as $u \rightarrow v$. Self loops are allowed.
 - Weighted: each edge has an associated weight
- If *G* is connected:
 - There is a path between every pair of vertices.
 - $E \ge V 1$.
 - Furthermore, if E = V 1, then G is a tree.
- $\bullet E = O(V^2)$

Graphs: representation

• Adjacency Lists.

• Adjacency Matrix.

Graph Traverse: BFS, DFS

- To traverse means to visit the vertices in some systematic order.
- You should be familiar with various traversal methods for binary trees:
 - preorder: visit each node before its children.
 - postorder: visit each node after its children.
 - inorder (for binary trees only): visit left subtree, node, right subtree

• BFS:

- Traverse a connected component graph and find the shortest path from the source to all nodes.
- If the graph is not connected or is directed, does not traverse all the nodes

• DFS

Could traverse all the nodes even if not connected or directed.

BFS and DFS $\Theta(V + E)$ using the adjacency list.

Edge classification by DFS and BFS

	Directed Graph	Undirected Graph
DFS	all	tree , back
BFS	tree, back, cross	tree, cross

a directed graph G is acyclic iff DFS on G yields no Back edges

Topological sort

- Is it possible to execute all the tasks in **G** in an order that respects all the precedence requirements given by the graph edges?
- The answer is "yes" if and only if the directed graph **G** has **no cycle**.

Such a **G** is called a Directed Acyclic Graph, or just a **DAG**.

Minimum Spanning Trees

- Cut, cross edge, light edge
- Idea: start with an empty set of edges and add light edges to MST
- 1. Prim's Algorithm: Using minheap $O(E \log V)$
- 2. Kruskal's algorithm: Using disjoint forest $O(E \log V)$

- The lightest edge is always in MST.
- The heaviest edge is not always is MST.
- In general there might be more than one MST.
- If the weights are distinct there is a unique MST.

Disjoint Sets

- Link list Implementation
- 1. Make-Set(x): $\Theta(1)$
- 2. Find-Set(x): Θ (1)
- 3. Union(x,y): $\Theta(n)$

Total time m operations: Θ (m+n²)

Heuristics:

Union by weight:

Union(x,y): $O(\log n)$ Amortized cost $O(m + n \log n)$

- Disjoint forest Implementation
- 1. Make-Set(x): Θ (1)
- 2. Find-Set(x): Θ (n)
- 3. Union(x,y): Θ (n)

Heuristics:

Union by ranks:

Find-Set(x): $O(\log n)$ Union(x,y): $O(\log n)$

Union by ranks and Path Compression:

Total time m operations: Θ ($m \log^* n$)

Lower Bounds

- For problem $P, C(P) = \text{best (minimum) worst-case running time of any algorithm that solves P.$
- Techniques:
 - ✓ Information theory lower bounds
 - ✓ Adversary arguments
 - ✓ Reductions
- Finding the minimum in a set of n element cannot be better than $\Theta(n)$.
- Searching in a sorted list cannot be better than $\Theta(\log n)$.
- Comparison sort cannot be better than $\Theta(n \log n)$.
- Extract-max cannot be better than $\Theta(\log n)$.

Acknowledgements

François Pitt

Faith Ellen

TAs

Robin Swanson

Sasa Milic

Roleen Nunes

- Tristan Aumentado-Armstrong
- Ruowei Jiang
- Morgan Shirley
- Ziqiao Meng
- Mohammad Amin Beiruti

Good luck ©

- Final exam
- Internship and job Interviews
- Developing excellent software in your Start-up
- Impressing your boss