Intelligent Support for non-linear Serious Games

Bachelor's Thesis in Computer Science

Felix Kaser

kaserf@in.tum.de

Supervisor: Prof. Bernd Brügge, PhD. Advisors: Dipl.-Inf. Univ. Dennis Pagano, Dipl.-Inf. Univ. Damir Ismailović

Chair for Applied Software Engineering Faculty for Informatics Technische Universität München

Outline

Introduction

Problem Statement Serious Games Non Linear Games

2 Intelligent Learning Framework Overview

From Actions To Problems

3 Outlook

Future Work OLPC

Problem Statement

games, learning, politics, etc.

what are serious games? serious games are a bussines quote

Frame 3

What do I mean with non-linear games? What are the problems when supporting non-linear games?

Examples

example of a serious game

Physics

block one

Food Force

block two

Goals

show whats the goal of the framework

short introduction of pedagogical agents

how it connects with the game

Use Cases

use cases

Topology

topology action

interaction, event

flow of events through the system

Problem Detection

pattern matching with state machine, regex, blurry match —¿ object design

Future Work

language to describe interactions and patterns use Al / machine learning to learn interactions and patterns extend the framework with above technologies test the framework with various games

One Laptop Per Child

explain the project, whats the connection to ILF

Developers Programme

how does it work, what do they expect, what do they provide

Literature I

