Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по лабораторной работе № 1

Дисциплина: Низкоуровневое программирование Тема: Машина Тьюринга-Поста Вариант: 9

Выполнил студент гр. 3530901/00002		М.А. Разин	
	(подпись)		
Принял преподаватель			Д.С. Степанов
	(подпись)		
	66	,,	2021 г.

Санкт-Петербург 2021

Задача

Построить машину Тьюринга, совершающую перевод числа из двоичной в десятичную систему счисления.

Алфавит

0,1,2,3,4,5,6,7,8,9,=

Начальное и конечное состояния

Перед началом работы машины записано исходное число в двоичной системе счисления. Перед первым символом исходного числа записан символ =. Головка должна находиться на последнем символе двоичного числа.

После остановки машины головка должна находиться на последнем символе полученного числа.

Алгоритм

Из исходного числа вычитается 1. После чего головка двигается на место, отведенное для получаемого числа (влево за знак =), и прибавляет 1 к новому числу. Затем она возвращается в начало исходного числа, и всё повторяется.

Диаграмма состояний

На диаграмме пробел обозначен буквой «В», буквой «N» обозначен момент, когда головка не двигается, и работа программы завершается, а буквой «S» обозначен момент, при котором головка сдвигается влево, и работа программы завершается.

Рис.1 Диаграмма состояний.

Описание работы

Машина начинает работу в состоянии Q1. Отнимает 1 в исходном двоичном числе, учитывая переносы из старших разрядов. Если переносов больше нет, то переходит в состояние Q2.

Состояние Q2 продвигает головку влево, пока не дойдет до знака =, и передвинув ещё раз влево переходит в состояние Q3.

Состояние Q3 осуществляет сложение отнятой 1 из состояния Q1 и нового искомого числа, учитывая выходной перенос. Прибавив 1, переходит в состояние Q4.

Состояние Q4 продвигает головку вправо, доходя до начала изменённого исходного числа, и замыкает цикл Q1-Q2-Q3-Q4-Q1 (голубой контур).

При условии того, что после работы состояния Q4 исходное число обратится в 0. Состояние Q1 передвинет головку на знак = (заменяя все 0 на 1), что приведет к переходу в состояние Q5.

Состояние Q5 стирает все 1, полученные из прошлого пункта, и встретив пробел переходит в состояние Q6.

Состояние Q6 пробегает до знака =, стирает его и ставит головку машины на начало полученного числа. Программа завершает работу.

Пример выполнения программы на симуляторе

Перевести 101001 из двоичной в десятичную систему счисления.

Рис.2 Начальное условие.

Рис.3 Результат работы машины.

Вывод

В данной работе я познакомился с принципом работы машины Тьюринга и общими правилами реализации алгоритмов на ней на примере перевода числа из двоичной системы счисления в десятичную.