Predicting Car Collision Outcomes Based on Situational Classification Data

Julia Tsaltas Feb 22, 2021 GA Data Science Capstone

The Situation

Parks & Recreation

The Situation

The Situation

Hue	Road Condition	Count
Bright Green	Ice	719
Dark Green	Packed Snow	580
Orange	Slush	557
Red	Loose Snow	997
Purple	Wet	2788
Blue	Dry	10711

The Outcomes

CLASSIFICATION OF ACCIDENT

01 - Property Damage 13657
02 - Injury 2715
Name: Classification_Of_Accident, dtype: int64

Combine injury and fatality categories into one category to create a binary outcome.

The Setup

- ID#
- Accident Date
- Accident Time
- Location
- Geo ID
- Accident Location
- Classification of Accident
- Initial Impact Type
- Environment Condition
- Light
- Road Surface Condition
- Traffic Control
- Traffic Control Condition
- Longitude
- Latitude

The Model

01 - Property Damage 13657
02 - Injury 2715
Name: Classification_Of_Accident, dtype: int64

01 - Property Damage 13657
02 - Injury 13657
Name: Classification_Of_Accident, dtype: int64

The Model Accuracy

LOG REG ONLY

ENSEMBLE (LR, DT, KNC)

Ensemble method using Log Reg, Decision Tree, and KNN Classification improved model score.

The Future

- Explore model results to determine which input criteria predict a more serious collision outcome.
- Reduce scope to specific intersections or streets to determine safety trends of smaller area over some number of years.