

AMENDMENTS TO THE CLAIMS

1. (Currently amended) A method of forming a toner image, comprising:
 - electrically charging a photoreceptor containing an organic photosensitive material;
 - imagewise exposing the photoreceptor so that a latent image is formed on the photoreceptor;
 - developing the latent image with toner so that a toner image is formed on the photoreceptor by a reversal development;

wherein

the photoreceptor comprises a charge generation layer containing an N-type charge generation material and a charge transportation layer containing a charge transportation material and has having a thickness of from 5 to 15 μm ;

the toner contains colored particles comprising a resin and a colorant, and the colored particles have a ratio, D_{v50}/D_{p50} , of the 50% volume particle diameter D_{v50} to the 50% number particle diameter D_{p50} of from 1.0 to 1.15 and a ratio, D_{v75}/D_{p75} , of an accumulate of 75% volume average particle diameter from larger particle side to an accumulate of 75% number average particle diameter from larger particle side of from 1.0 to 1.20, and content of colored particles having a diameter of $0.7 \times D_{p50}$ is not more than 10 in number; and

the reversal development is performed under condition satisfying the following expression;

Expression 1 $50 \leq |E| \leq 100$

E: Electrical field intensity applied to the organic photoreceptor during development that is a quotient of potential V in an unexposed area of the photoreceptor at a time of development divided by layer thickness of organic photosensitive material of the photoreceptor in V/ μm .
2. (Original) The image forming method of claim 1, wherein the charge generation layer further contains a P-type pigment in an amount of not more than 10% by weight of the N-type charge generating material.

3. (Original) The image forming method of claim 1, wherein the N-type charge generation material is a perylene compound pigment.

4. (Currently amended) The image forming method of claim 1, in which the perylene compound is a 3,4,9,10-tetracarboxylic acid imide derivative represented by the Formula 1, 2, 3a or 3b, or a mixture thereof,

Formula 1

Formula 2

Formula 3a

Formula 3b

in the above formulas, R₁ and R₂ are each a hydrogen atom, or an alkyl group, a cycloalkyl group, an aryl group, an alkoxy group, an alkylamino group, a dialkylamino group, a benzyl group, a phenethyl group or a heterocyclic group, and the above organic groups may be substituted or unsubstituted; when —When the compound is a polymer, R₁

and R₂ each may be a 1,4-phenylene group[.] ; and Z is a group of atoms necessary to form a heterocyclic group.

5. (Currently amended) The image forming method of claim 1, in which the perylene compound is represented by one of the following Formulas,

wherein R is a hydrogen atom, a halogen atom, an alkyl group having from 1 - 10 carbon atoms, an aryl group, an alkoxy group or a heterocyclic group.

6. (Original) The image forming method of claim 2, wherein the P-type charge generating material is a titanyl phthalocyanine compound.

7. (Original) The image forming method of claim 1, wherein the static latent image is formed by exposure to a light beam having an exposing spot area of not more than $2 \times 10^{-9} \text{ m}^2$.

8. (New) The image forming method of claim 1, wherein thickness of the charge generation layer is from 0.3 to 2.0 μm .

9. (New) The image forming method of claim 8, wherein thickness of the charge generation layer is from 0.3 to 1.5 μm .