annoka red

Machine Learning Course - CS-433

Text Representation Learning

Dec 10, 2020

changes by Martin Jaggi 2020, 2019, 2018, 2017, ©
Martin Jaggi 2016

Last updated on: December 9, 2020

Motivation

Finding numerical representations for words is fundamental for all machine learning methods dealing with text data.

Goal: For each word, find mapping featire victor

(embedding)

 $w_i \mapsto \mathbf{w}_i \in \mathbb{R}^K \leftarrow \dim = \operatorname{vocahlary}$

discrete continuous repusention Representation should capture se-

mantics of the word.

Constructing good feature representations (= representation learning) benefits all ML applications.

The Co-Occurence Matrix

A big corpus of un-labeled text can be represented as the <u>co-occurrence</u> counts

 $n_{ij} := \# \text{contexts where word } w_i \text{ occurs together with word } w_j$

	زسا					_		
		1	1			53	.929	S., 2005
			3		e			
		1						ì
	,	2		1				2 T K
w; ->	1				1	≈	W	2 "
			1			:	-	
		1		1	1		K	
						1		

Needs definition of

- Context e.g. document, paragraph, sentence, window = 5 with apart"
- Vocabulary $\mathcal{V} := \{w_1, \dots, w_D\}$

For words $w_d = 1, 2, ..., D$ and context words $w_n = 1, 2, ..., N$, the co-occurrence counts n_{ij} form a very sparse $D \times N$ matrix.

Learning Word-Representations (Using Matrix Factorization)

a factorization of the occurence matrix!

Typically uses log of the actual counts, i.e. $x_{dn} := \log(n_{dn})$.

· word 2 vec • GloVe

We will aim to find \mathbf{W} , \mathbf{Z} s.t.

$$\mathbf{X} pprox \mathbf{W} \mathbf{Z}^{ op}$$
 .

So for each pair of words (w_d, w_n) , we try to 'explain' their co-occurrence count by a numerical representation of the two words

- in fact by the inner product of the

two feature vectors
$$\mathbf{W}_{d:}, \mathbf{Z}_{n:}$$
.

$$\min_{\mathbf{W}, \mathbf{Z}} \ \mathcal{L}(\mathbf{W}, \mathbf{Z}) := \frac{1}{2} \sum_{(d, n) \in \Omega} \left[f_{dn} \left[\mathbf{x}_{dn} - (\mathbf{W} \mathbf{Z}^{\top})_{dn} \right]^{2} \right]$$

where $\mathbf{W} \in \mathbb{R}^{D \times K}$ and $\mathbf{Z} \in \mathbb{R}^{N \times K}$ are tall matrices, having only $K \ll$ D, N columns.

The set $\Omega \subseteq [D] \times [N]$ collects the indices of non-zeros of the count matrix X.

Each row of those matrices forms a representation of a word (W) or a context word (**Z**) respectively.

GloVe

This model is called GloVe, and is a variant of word2vec.

" Heuritic"

Weights f_{dn} : Give "importance" of each entry. Choosing $f_{dn} := 1$ is ok.

GloVe weight function:

-910074

 $f_{dn} := \min \{1, (n_{dn}/n_{\max})^{\alpha}\}, \quad \alpha \in [0; 1] \text{ e.g. } \alpha = \frac{3}{4}$

cut-off observed count

Choosing K

K e.g. 50, 100, 500

how many features?

Word Analogies

Newspapers									
New York	New York Times	Baltimore	Baltimore Sun						
San Jose	San Jose Mercury News	Cincinnati	Cincinnati Enquirer						
NHL Teams									
Boston	Boston Bruins	Montreal <	Montreal Canadiens						
Phoenix	Phoenix Coyotes	Nashville	Nashville Predators						
NBA Teams									
Detroit	Detroit Pistons	Toronto	Toronto Raptors						
Oakland	Golden State Warriors	Memphis	Memphis Grizzlies						
Airlines									
Austria	Austrian Airlines	Spain	Spainair						
Belgium	Brussels Airlines	Greece	Aegean Airlines						
Company executives									
Steve Ballmer	Microsoft	Larry Page	Google						
Samuel J. Palmisano	IBM	Werner Vogels	Amazon						

Training

- Stochastic Gradient Descent (SGD)
 - Alternating Least-Squares (ALS)

efficiency per step O(k) independent of N,D

Open questions:

- Parallel and distributed training
- Does regularization help?

Alternative: Skip-Gram Model

(Original word2vec)

2013

Uses binary classification (logistic regression objective), to separate real word pairs (w_d, w_n) from fake word pairs. Same inner product score = matrix factorization.

Given w_d , a context word w_n is

- real = appearing together in a context window of size 5
- fake = any word $w_{n'}$ sampled randomly: Negative sampling (also: Noise Contrastive Estimation)

Unsupervised training:

Can a model generate text? - train classifier to predict the continuation (next word) of given text

Multi-class: Use soft-max loss function with a large number of classes D = vocabulary size

• Binary classification: Predict if next word is real or fake (i.e. a negative sample, as above)

Impressive recent progress using large models, such as transformers

(e.g. GPT-2, GPT-3 = 11B paruls

https://transformer.huggingface.co/doc/gpt2-large)

purposer

get feature (Rep. L.)

generate text

Learning Representations of Sentences & Documents

Supervised: For a supervised task (e.g. predicting the emotion of a tweet), we can use matrix-factorization (below) or convolutional neural networks (see next weeks).

Unsupervised:

- Adding or averaging (fixed, given) word vectors
- Training word vectors such that adding/averaging works
 well
- Direct unsupervised training for sentences (appearing together with context sentences) instead of words

FastText

e.g. for supervised sentence classification

Matrix factorization to learn document/sentence representations (supervised).

Given a sentence $s_n = (w_1, w_2, \dots, w_m)$, let $\mathbf{x}_n \in \mathbb{R}^{|\mathcal{V}|}$ be the bag-of-words representation of the sentence.

 $\min_{\mathbf{W}, \mathbf{Z}} \ \mathcal{L}(\mathbf{W}, \mathbf{Z}) := \sum_{s_n \text{ a sentence}} f(y_n \mathbf{W} \mathbf{Z}^{\mathsf{T}} \mathbf{x}_n)$

where $\mathbf{W} \in \mathbb{R}^{1 \times K}$, $\mathbf{Z} \in \mathbb{R}^{|\mathcal{V}| \times K}$ are the variables, and the vector $\mathbf{x}_n \in \mathbb{R}^{|\mathcal{V}|}$ represents our n-th training sentence.

ing sentence.

Here f is a linear classifier loss function, and $y_n \in \{\pm 1\}$ is the classification label for sentence \mathbf{x}_n .

SGD efficiency

Further Pointers

1. word2vec:

code: code.google.com/p/word2vec/
paper:

"Distributed representations of words and phrases and their compositionality" - T Mikolov, I Sutskever, K Chen, GS Corrado, J Dean. NIPS 2013

2. GloVe:

code and vectors: nlp.stanford.edu/projects/glove/paper:

"GloVe: Global Vectors for Word Representation" - Pennington, J., Socher, R., Manning, C. D.. EMNLP 2014

3. Write with transformers:

code and demo: transformer.huggingface.co/doc/gpt2-large

4. FastText & sent2vec

code: github.com/facebookresearch/fastText papers:

"Bag of Tricks for Efficient Text Classification" - Joulin, A., Grave, E., Bojanowski, P., Mikolov, T. - EC-ACL, 2017.

"Enriching Word Vectors with Subword Information" - Bojanowski, P., Grave, E., Joulin, A., Mikolov, T. - TACL, 2017.

"Unsupervised Learning of Sentence Embeddings using Compositional n-Gram Features" - Pagliardini, M., Gupta, P., Jaggi, M. NAACL 2018.