String

字串處理

基數排序

• 輸入n個範圍 $0\sim k-1$ 的數字,將其排序後輸出

0	1	2	3	4	5
7	1	(2)	2	J.W.	0,1

• 輸入n個範圍 $0\sim k-1$ 的數字,將其排序後輸出

0	1	2	3	4	5
7	1	2	2	W.	01

7	0	1	2	3	4	5	6	7
0	0	2	2	0	0	0	0	2

• 輸入n個範圍 $0\sim k-1$ 的數字,將其排序後輸出

0	1	2	3	4	5
7	1	2	2	Y	01

Bucket

9	0	1	2	3	4	5	6	7
et	0	2	2	0	0	0	0	2

0	1	2	3	4	5
1	1	2	2	1	A 7

```
vector<unsigned> counting_sort(const vector<unsigned> &Arr, unsigned k) {
  vector<unsigned> Bucket(k, 0);
  for (auto x : Arr)
     ++Bucket[x];
  partial_sum(Bucket.begin(), Bucket.end(), Bucket.begin());
  vector<unsigned> Ans(Arr.size());
  for (auto Iter = Arr.rbegin(); Iter != Arr.rend(); ++Iter)
     Ans[--Bucket[*Iter]] = *Iter;
  return Ans;
}
```


0	1	2	3	4	5
7	1	2	2	77號	多月

all.	0	1	2	3	4	5	6	
Bucket	0	2	2 4	0	0	0	0	

std::partial_sum

0	1	2	3	4	5
7	1	2	2	778	多月

0	1	2	3	4	5	6	7
0	2	4 4	4	4	4	4	6

7,00	0	1	2	3	4	5
Ans	1	M	33	35	8	7

0	1	2	3	4	5
7	1	2	2	7%	多月

Bucket

std::partial_sum

0	1	2	3	4	5	6	7
0	1	4 4	4	4	4	4	6

7,00	0	1	2	3	4	5
Ans	1	1	77	35	8	7

7	0	1	2	3	4	5
Ans	1	1	33	35	8	7

7	0	1	2	3	4	5
Ans	1	1	33	2	8	7

std::partial_sum

7	0	1	2	3	4	5	
Ans	1	1	2	2	8	7	

A)A	0	1	2	3	4	5	6	7
Bucket	0	0	2 🗸	4	4	4	4	5

7,000	0	1	2	3	4	5
Ans	1	1	2	2	8	7

0	1	2	3	4	5
7	1	2	2	778	88

Bucket

std::partial_sum

0	1	2	3	4	5	6	7
0	0	2 4	4	4	4	4	4

7000	0	1	2	3	4	5
Ans	1	1	2	2	7	7

標準的 Counting Sort - 性質

• 可以排序非整數物件 (例如某個 struct 只需要對某個 member 排序)

· 它是個穩定排序 (stable sort)

• 輸入n個範圍 $0\sim99$ 的數字,將其排序後輸出

0	1	2	3	4	5
76	15	23	27	71)	14

• 輸入n 個範圍0~99 的數字,將其排序後輸出

• 根據 counting sort 的 stable 性質可以先對個位數排序,再對十位數排序

0	1	2	3	4	5
76	15	23	27	71)	14

0	1	2	3	4	5
7 <mark>1</mark>	2 <mark>3</mark>	14	1 <mark>5</mark>	7 <mark>6</mark>	2 <mark>7</mark>

• 輸入n 個範圍0~99 的數字,將其排序後輸出

• 根據 counting sort 的 stable 性質可以先對個位數排序,再對十位數排序

0	1	2	3	4	5
76	15	23	27	71	14

0	1	2	3	4	5
7 <mark>1</mark>	2 <mark>3</mark>	14	1 <mark>5</mark>	7 <mark>6</mark>	2 <mark>7</mark>

只需要大小是 10 的額外空間!

0	1	2	3	4	5	
<mark>1</mark> 4	<mark>1</mark> 5	<mark>2</mark> 3	<mark>2</mark> 7	<mark>7</mark> 1	<mark>7</mark> 6	

2 位數 - Radix Sort

```
void bucket_sort(vector<unsigned> &Arr) {
  auto counting_sort = [&](auto getKey) {
    vector<unsigned> Bucket(10, 0);
    for (auto x : Arr)
      ++Bucket[getKey(x)];
    partial_sum(Bucket.begin(), Bucket.end(), Bucket.begin());
    vector<unsigned> Ans(Arr.size());
    for (auto Iter = Arr.rbegin(); Iter != Arr.rend(); ++Iter)
      Ans[--Bucket[getKey(*Iter)]] = move(*Iter);
    return Ans;
  };
  Arr = counting_sort([&](unsigned x) { return x % 10; });
  Arr = counting_sort([&](unsigned x) { return x / 10; });
```

將 counting-sort 的部分拆開來

unsigned - Radix Sort

字串匹配問題

給你兩個字串 Text, Pattern 問 Pattern 是不是 Text 的子字串

• • •

Text
$$T$$
 T o d a y i s a g o o d d a y

pattern P g o o d

最簡單的暴力法

```
size_t matching(const string &text, const string &pattern) {
  for (size_t i = 0; i < text.size(); ++i) {
    bool match = true;
    for (size_t j = 0; j < pattern.size(); ++j)
        if (i + j >= text.size() || text[i + j] != pattern[j]) {
        match = false;
        break;
    }
    if (match) return i;
}
return std::string::npos;
}
```

最簡單的暴力法 – C++ string 內建 $O(n^2)$

```
size_t matching(const string &text, const string &pattern) {
  return text.find(pattern);
}
```

暴力法會變成 $O(n^2)$ 的例子

• Text = aaaa ... aaaaaa

• Pattern = aaa ... aaab

• $len(Pattern) = \left\lfloor \frac{len(Text)}{2} \right\rfloor$

小祕密 – GCC 實作的 strstr 是 O(n) 的

```
#include <cstring>
#include <iostream>
using namespace std;
int main() {
  char Tc[] = "This is C-style string with an Egg.";
  char Sc[] = "Egg";
  if (auto res = strstr(Tc, Sc); res != nullptr) {
    cout << "found " << Sc << " at " << res - Tc << '\n';</pre>
  return 0;
```


後綴 (Suffix)

0	1	2	3	4	5	6	7
а	а	b	а	а	a	a	Q

Suffix

1 a b a a a b

2 b a a a b

3 a a a b

4 a a a b

5 a a b

6 a b

7 b

後綴數組 (Suffix Array, SA)

0	1	2	3	4	5	6	7
а	а	b	а	a	a	a	b

Suffix Sorted In Lexicographic Order

C V	0	1	2	3	4	5	6	7
SA	3	4	5	0	6	1	7	2

Rank 0 1 2 3 4 5 6 7 3 5 7 0 1 2 4 6

	_		45/2	_	1	-		1	
L.	0	a	a	b	а	a	a	а	b

後綴數組上二分搜

0	1	2	3	4	5	6	7
a	a	b	a	a	a	a	ਰ

Suffix Sorted In Lexicographic Order

Pattern a b a

250	1	In	, An	7				
3	a	a	a	L a_	b			
TIL	40	Mr.	S	1	-			
4	а	a	a	b	4			
5	P.V	18	BY	2	/			
5	а	a	b y	2	>			
· Va	Carrest Contract Cont	8 1	- 1	1	<			
0	а	а	b	а	а	a	а	b
24/2	30	3!	- 5	1	1			
6	a	b	36	3	7			
智	3	1	0	1				
1	а	b	a	a	а	a	b	
110	1	1	1	1				-
7	b	7	7	-7				
~ ~	5		1					

b

a

複習:模板化的二分搜

```
template <class Ty, class FuncTy>
pair<Ty, Ty> binarySearch(Ty L, Ty R, FuncTy check) {
 if (check(R) == true) return {R, R + 1};
 if (check(L) == false) return {L - 1, L};
 while (L + 1 < R) {
   Ty Mid = L + (R - L) / 2;
   if (check(Mid)) L = Mid;
    else R = Mid;
  return {L, R};
                                                          R
  check(x) = True
                                   heck(x) = False
```

後綴數組上二分搜 O(|pattern| log|text|)

```
pair<vector<int>, vector<int>> buildSuffixArray(const string &text) {
    TODO
size_t matching(const string &text, const string &pattern) {
  auto [SA, Rank] = buildSuffixArray(text);
  auto [L, R] = binarySearch(0, int(SA.size()) - 1, [&](int Idx) {
    return text.substr(SA[Idx]) < pattern;</pre>
  });
  if (R < SA.size() && pattern == text.substr(SA[R], pattern.size()))</pre>
    return SA[R];
  return std::string::npos;
```

構造後綴數組常見方法

• 倍增法: O(n log n)

• DC3 : O(n)

• $SA_IS : O(n)$

自己學放模板

倍增法基本概念

倍增法實作

C A	0	1	2	3	4	5	6	7
SA			-	1	E	74	3	

Index 0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

Rank 0 1 2 3 4 5 6 7

'a' 'a' 'b' 'a' 'a' 'a' 'a' 'b'

$$k = 0$$

1	а	b	a	a	а	а	b

k = 0

CΛ	0	1	2	3	4	5	6	7
SA	0	1	3	4	5	6	2	7

Sort by rank

Index

0	1	2	3	4	5	6	7
0	1	2	3	4_	5	6	7

Rank

0	1	2	3	4	5	6	7
'a'	'a'	'b'	'a'	'a'	'a'	'a'	'b'

0

1	а	b	a	a	а	а	b

3 a	a	a	а	b
-----	---	---	---	---

Pank	0	1	2	3	4	5	6	7
Rank	'a'	'a'	'b'	'a'	'a`	'a'	'a'	'b'

	0	1	2	3	4	5	6	7
	а	а	b	а	а	a	а	b
rank	0	0	1	0	0	0	0	1
	0	0 1	1 0	0	0	0	0 1	1 1

k = 1

252	d	In	, La	7				
0	а	a	b	۲a_	а	а	а	b
M	4	Mer.	S	1	_			
1	а	b	а	a	а	а	b	
96	Y. Y	N S	BY	1				
3	а	a	а	a	b			
· Voc	min	33	-	1	1			
4	a	a	a	b	<			
STON	-y,	9 4	_ 8	2	-			
5	a	a	b	1 4	7			
Sel.	5	Q-	B		7			
6	a	b	3	7				
W	A	5	7	1	100			
2	b	a	a	a	а	b		
77	2	-	1				•	
			-					

Pank	0	1	2	3	4	5	6	7
Rank	'a'	'a'	'b'	'a'	'a'	'a'	'a'	'b'

	0	1	2	3	4	5	6	7
	а	а	b	а	а	а	а	b
rank	0	0	1	0	0	0	0	1
	0,0	0,1	1,0	0,0	0,0	0,0	0,1	1,x

$$k = 1$$

3	7	b	Page	D Z
1	0	a	a	b a a a b
	9	P. Y	A SH	34/
4	2	b	а	a a b
y	· Voc	m	3	-0
	3	а	а	a a b
Ş	SADY.	Jy.		-8-
-	4	а	a	a b
ľ	200	5	Q-	9 1
XX	5	a	a	Ь
ı	110	A	5	
	1	a	b	a a a b
5	77	2	- 1	
	6	a	b	
٩	1	1		J

Update Index

```
template <class Ty>
void updateIndex(Ty &Index, const Ty &SA, int k) {
  int n = SA.size();
  Index.clear();
  for (int i = n - k; i < n; ++i)
       Index.emplace_back(i);
  for(auto x: SA)
      if (x >= k)
          Index.emplace_back(x - k);
}
```

k = 1

СЛ	0	1	2	3	4	5	6	7
SA	0	3	4	5	1	6	7	2

Sort by rank

Index

0	1	2	3	4	5	6	7
7	0	2	3	4_	5	777	6

Rank

0	1	2	3	4	5	6	7
'a'	'a'	'b'	ʻa'	'a'	'a'	'a'	ʻb'

3

4	а	а	a	Q_{b}
_	ч	ч	u	W 2

c			_	No. of Lot, House, etc., in case, the case, th	. 1			
-	1	a	b	a	a	a	a	b

2	b	а	а	а	а	b

$$k = 1$$

257	d	In	L	-				
0	а	a	b	/a_	a	а	а	b
alle	1	Mr.	S	4				
3	а	a	а	a	b			
96	Y	N S	BY	1				
4	а	a	а	b	>			
- Vx	ann	30	1	1	>			
5	а	a	b	3 <				
SAP	7	9 :	76	2 5				
6	а	b	58	1 -	7			
ES.	5	Q-	9	7				
1	a	b	a	a	a	а	b	
W	N	5	1	1				
7	b	7	1	-				
111	2	-	1					
			-					

a

b

Update Rank

```
template <class Ty>
int updateRank(Ty &NewRank, Ty &Rank, const Ty &SA, int k) {
  int n = SA.size();
  int Idx = 0;
  NewRank[SA[0]] = 0;
  Rank.resize(n * 2, -1);
  auto Compare = [&](int a, int b) {
    return Rank[a] != Rank[b] || Rank[a + k] != Rank[b + k];
  };
  for (int i = 1; i < n; ++i)
    NewRank[SA[i]] = (Idx += Compare(SA[i - 1], SA[i]));
  return Idx + 1; // size of Bucket
```

Update Rank

```
template <class Ty>
int updateRank(Ty &NewRank, const Ty &Rank, const Ty &SA, int k) {
  int n = SA.size();
  int Idx = 0;
  NewRank[SA[0]] = 0;
  auto Compare = [&](int a, int b) {
    return Rank[a] != Rank[b] || a + k >= n || Rank[a + k] != Rank[b + k];
  };
  for (int i = 1; i < n; ++i)
    NewRank[SA[i]] = (Idx += Compare(SA[i - 1], SA[i]));
  return Idx + 1; // size of Bucket
}</pre>
```


							L F Ph.	
	0	1	2	3	4	5	6	7
	а	а	b	а	a	а	а	b
rank	0	1	3	0	0	0	4	2
	0,3	1,0	3,0	0,0	0,1	0,2	1,x	2,x

$$k = 2$$

-23-63			(84	7				
0	а	а	b	a	а	а	а	b
alle	-	the .	S	1				
3	а	a	a	a	b			
96	Y.Y	NE	BY	A.				
4	a	a	a	b	>			
- Vac	m	80	-3	2	>			
5	a	a	b	3	<			
STAN	-y,	9 5	- 6	3				
6	a	b	18	1 4	7			
88	5	Q-	5	100	7			1
1	a	b	a	a	a	а	b	
W	7	5	-	1				
7	b	>	1					
111	2	-	1	1				
2	b	а	a	a	а	b		
180	1.4						-	

							. F Pa	- 45
	0	1	2	3	4	5	6	7
	а	а	р	а	а	а	а	b
rank	0	1	3	0	0	0	7	2
'								
	0.3	1.0	3.0	0.0	0.1	0.2	1.x	2 x

$$k=2$$

6	а	b
---	---	---

7 b

7	1	а	b		а	а	а	а	b
p	· Vac	ann	8	R	_	1	1		
Ĺ	2	b	а	П	а	a	a	b	

3 a a	a	a	b
-------	---	---	---

4 a a a b

5 a a b

O a a b a a b

k=2

ς Λ	0	1	2	3	4	5	6	7
SA	3	4	5	0	6	71%	7	2

Sort by rank

Index

	0	1	2	3	4	5	6	7
•	6	7	Y	2	3_	4	5	0

Rank 0 1 2 3 4 5 0 0 0 0

2	b	a	a	a	a	b

Index 0 1 2 3 4 5 6 7
6 7 1 2 3 4 5 0

Rank 0 1 2 3 4 5 6 7 3 5 7 0 1 2 4 6

update Rank

每個後綴的 rank 都不一樣就可以結束了

7		2
V	_	_/
IL	_	

3 a a a b

4 a a a b

5 a a b

0 a a b a a a b

6 a b

1 a b a a a b

7 b

2 b a a a a b

倍增法程式碼

```
pair<vector<int>, vector<int>> buildSuffixArray(const string &text) {
 int n = text.size(), BucketSize = 1 << (sizeof(char) * 8);</pre>
 vector<int> SA(n), Rank(n), Index(n), Bucket(max(n + 1, BucketSize));
 for (int i = 0; i < n; ++i)
    Rank[Index[i] = i] = text[i];
 counting_sort(Index, SA, Bucket, [&](int x) { return Rank[x]; });
 for (int k = 1; k *= 2) {
   updateIndex(Index, SA, k);
    counting_sort(Index, SA, Bucket, [&](int x) { return Rank[x]; });
    Rank.swap(Index);
    BucketSize = updateRank(Rank, Index, SA, k);
   if (BucketSize >= n) break;
    Bucket.resize(BucketSize);
 return {SA, Rank};
```

最常共同前綴 (Longest Common Prefix, LCP)

• S = "abcdefgh"

• T = "abcefgh"

• lcp(S,T) = "abc"

C A	0	1	2	3	4	5	6	7
SA	3	4	5	0	6	1	7	2

Height

0	1	2	3	4	5	6	7
0							

定義:Height[i] = lcp(SA[i], SA[i-1])Height[0] = 0

6 a b

1 a b a a a b

7 b

C V	0	1	2	3	4	5	6	7
SA	3	4	5	0	6	1	7	2

Height

0	1	2	3	4	5	6	7
0	3						

定義:Height[i] = lcp(SA[i], SA[i-1])Height[0] = 0

6 a b

1 a b a a a b

7 b

SA	0	1	2	3	4	5	6	7
	3	4	5	0	6	1	7	2

Height

0	1	2	3	4	5	6	7
0	3	2					

定義:Height[i] = lcp(SA[i], SA[i-1])Height[0] = 0

6 a b

1 a b a a a b

7 b

SA	0	1	2	3	4	5	6	7
	3	4	5	0	6	1	7	2

Height

0	1	2	3	4	5	6	7
0	3	2	3				

定義:Height[i] = lcp(SA[i], SA[i-1])Height[0] = 0

6 a b

1 a b a a a b

7 b

C A	0	1	2	3	4	5	6	7
SA	3	4	5	0	6	1	7	2

Height

0	1	2	3	4	5	6	7
0	3	2	3	1			

定義:Height[i] = lcp(SA[i], SA[i-1])Height[0] = 0

5 a a b

0 a a b a a a b

6 a b

1 a b a a a b

7 b

SA	0	1	2	3	4	5	6	7
	3	4	5	0	6	1	7	2

Height

0	1	2	3	4	5	6	7
0	3	2	ന	S.	2		

定義:Height[i] = lcp(SA[i], SA[i-1])Height[0] = 0

6 a b

1 a b a a a b

7 b

SA	0	1	2	3	4	5	6	7
	3	4	5	0	6	1	7	2

Height

0	1	2	3	4	5	6	7
0	3	2	3	Ŋ.	2	0	

定義:Height[i] = lcp(SA[i], SA[i-1])Height[0] = 0

6 a b

1 a b a a a b

7 b

SA	0	1	2	3	4	5	6	7
	3	4	5	0	6	1	7	2

Height

0	1	2	3	4	5	6	7
0	3	2	3	Š.	2	0	1

定義:Height[i] = lcp(SA[i], SA[i-1])Height[0] = 0

6 a b

1 a b a a a b

7 b

高度數組 (Height) - 性質

SA	0	1	2	3	4	5	6	7
	3	4	5	0	6	1	7	2

Height 0 1 2 3 4 5 6 7
0 3 2 3 1 2 0 1

 $lcp(SA[i], SA[j]) = \min_{i \le k \le j} \{Height[k]\}$

RMQ有 O(1) 作法

定理

$$Height[Rank[i]] \ge Height[Rank[i-1]] - 1$$

• 證明很複雜 https://oi-wiki.org/string/sa/#on-%E6%B1%82-height-%E6%95%B0%E7%BB%84%E9%9C%80%E8%A6%81%E7%9A%84%E4 %B8%80%E4%B8%AA%E5%BC%95%E7%90%86

構造高度數組 O(n)

k 不會超過 n ,最多被減 n 次

```
template <class Ty>
vector<int> buildHeight(const string &text, const Ty &SA, const Ty &Rank) {
  int n = SA.size(), k = 0;
  vector<int> Height(n, 0);
  for (int i = 0; i < n; ++i) {
    if (Rank[i] == 0) continue;
   if (k) --k;
    while (\text{text}[i + k] == \text{text}[SA[Rank[i] - 1] + k]) ++k;
    Height[Rank[i]] = k;
  return Height;
```

高度數組好處

• 原本的字串匹配複雜度 $O(|pattern| \times \log|text|)$

• 透過高度數組 *O(|pattern| + log|text|)*

乘法變加法 自己試試看實作

Udi Manber*. Gene Myers# (1990).
 Suffix arrays: a new method for on-line string searches.

最長共同子字串(Longest Common Substring)

• A = aaaba, B = abaa

• A, B 的最長共同子字串是 aba

a

9

a

Longest Common Substring

```
string getLongestCommonSubstring(const string &A, const string &B) {
  string S = A + "\$" + B;
  auto [SA, Rank] = buildSuffixArray(S);
  auto Height = buildHeight(S, SA, Rank);
  int nA = A.size(), Ans = 0, Idx = -1;
  for (size_t i = 1; i < Height.size(); ++i)</pre>
   if (Height[i] > Ans)
      if ((nA < SA[i - 1] && SA[i] < nA) || (nA > SA[i - 1] && SA[i] > nA))
        Ans = Height[Idx = i];
  if (Idx != -1)
    return S.substr(SA[Idx], Ans);
  return "";
```

最小表示法 (Minimal String Rotation)

• S = bacd

- Rotation of *S*:
 - bacd
 - acdb
 - cdba
 - dbac

Minimal String Rotation

利用後綴數組

• 設
$$S' = SS$$

• 找出最小的 SA[k] 使得 $0 \le SA[k] < |S|$

• S'[SA[k], SA[k] + |S| - 1] 就是答案

SI	0	1	2	3				
3	b	а	С	d	b	а	С	d

SA 5 1 4 0	6	2	7	3
------------	---	---	---	---

最長迴文子字串 (Longest Palindromic Substring)

• S = aabaaaaab

• S 的最長迴文子字串是 baaaab

```
string getLongestPalindromicSubstring(const string &S) {
  auto S2 = S;
  std::reverse(S2.begin(), S2.end());
  return getLongestCommonSubstring(S, S2);
}
```

專門的 O(n) 演算法

- 最小表示法:
 - String Booth's Algorithm
- 最長迴文子字串
 - Manacher Algorithm

基本概念:共同前後綴

在T中尋找P,兩字串已知共同前綴部分為R(橘色部分)

 T:
 a
 b
 a
 b
 a
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

若R中存在一個不等於R的前綴等於後綴Q(綠色部分)

a b <mark>a</mark> a b

把P 往後移動 |R| - |Q| 的距離也有機會產生匹配

次長共同前後綴

• 共同前後綴有非常多個,我們要找盡量長的

• 字串 S 的最長共同前後綴等同於 S ,所以沒有討論意義

• 所以要找次長的那個做為移動依據

a b a a b a

a b a a b a

前缀函数

• 給定字串S,定義前缀函数 $\pi(i)$

$$\pi(i) = S[0:i]$$
 的次長共同前後綴終點位置 $\pi(0) = -1$

-	0	1	2	3	4	5	6	7
G	а	b	Ö	a	ര	Θ	Ú	ਰ
π	4	4	77	9	0	4	2	H

前缀函数

• 給定字串S,定義前缀函数 $\pi(i)$

$$\pi(i) = S[0:i]$$
 的次長共同前後綴終點位置 $\pi(0) = -1$

-	0	1	2	3	4	5	6	7
G	а	b	O.	а	a	σ	n	۵
π	4	<i>(</i> 1)	AL	0	0	1	2	K

前缀函数

• 給定字串S,定義前缀函数 $\pi(i)$

$$\pi(i) = S[0:i]$$
 的次長共同前後綴終點位置 $\pi(0) = -1$

-	0	1	2	3	4	5	6	7
G	а	b	C	а	а	b	U	ъ
π	4	Ή	7	0	0	1	2	H

• Case 1:

$$\pi(i-1)=-1$$

• 直接比較 S[0], S[i]

由於
$$\pi(8) = -1$$

 $\pi(9)$ 要用 $S[9]$ 跟 $S[0]$ 做比較

Z	0	1	2	3	4	5	6	7	8	9
1	Α	В	S.	X	X	X	Α	В	Z	Α
π	1	1-1	Z	T	4	'nί	ó	b	-1	

• Case 1:

$$\pi(i-1)=-1$$

• 直接比較 S[0], S[i]

由於
$$\pi(8) = -1$$

 $\pi(9)$ 要用 $S[9]$ 跟 $S[0]$ 做比較

L	0	1	2	3	4	5	6	7	8	9
1	Α	В	P	X	X	X	Α	В	Z	Α
π	1	1-1	Z	T	1	if	ó	8	-1	0

• Case 2:

$$S[i] = S[\pi(i-1)+1]$$

 $\bullet \ \pi(i) = \pi(i-1) + 1$

L	0	1	2	3	4	5	6	7	8	9
1	Α	В	C	D	X	X	Α	В	С	D
π	4	1-1	7	E	7	ıή	Ó	Ò	2	

• Case 2:

$$S[i] = S[\pi(i-1)+1]$$

 $\bullet \ \pi(i) = \pi(i-1) + 1$

7	0	1	2	3	4	5	6	7	8	9
1	Α	В	С	D	X	X	A	В	С	D
π	4	1-1	71	1	E.	ıή	ó	da	2	3

• Case 3:

$$S[i] \neq S[\pi(i-1)+1]$$

• 透過 $S[0 \sim \pi(i-1)]$ 的次長共同前後綴繼續檢查 直到產生 case 1 或 case 2 為止

_	- 1
pr.	
1	
- 33	
æ.	
1	
w	J
w	

Z	0	1	2	3	4	5	6	7	8	9	10	11
1	Α	В	C	Α	В	О	Α	В	С	Α	В	Α
π	-1	1-1	Z	0	1	1	0	Ь	2	3	4	

• Case 3:

$$S[i] \neq S[\pi(i-1)+1]$$

• 透過 $S[0 \sim \pi(i-1)]$ 的次長共同前後綴繼續檢查 直到產生 case 1 或 case 2 為止

L	0	1	2	3	4	5	6	7	8	9	10	11
1	Α	В	C	Α	В	D	Α	В	C	Α	В	Α
π	1	1-1	Y	0	1	1	0	Ь	2	3	4	

• Case 3:

$$S[i] \neq S[\pi(i-1)+1]$$

• 透過 $S[0 \sim \pi(i-1)]$ 的次長共同前後綴繼續檢查 直到產生 case 1 或 case 2 為止

7	8	1	AN AN		ST.		1		60	H	3	Z
Z	0	1	2	3	4	5	6	7	8	9	10	11
1	Α	В	С	Α	В	D	Α	В	С	Α	В	Α
π	1	1-1	Y	0	ar	70	0	À	2	3	4	

• Case 3:

$$S[i] \neq S[\pi(i-1)+1]$$

• 透過 $S[0 \sim \pi(i-1)]$ 的次長共同前後綴繼續檢查 直到產生 case 1 或 case 2 為止

2

L	0	1	2	3	4	5	6	7	8	9	10	11
1	Α	В	С	Α	В	D	Α	В	С	Α	В	Α
π	1	1-1	Y	0	1	1	0	À	2	3	4	

• Case 3:

$$S[i] \neq S[\pi(i-1)+1]$$

• 透過 $S[0 \sim \pi(i-1)]$ 的次長共同前後綴繼續檢查 直到產生 case 1 或 case 2 為止

2

L	0	1	2	3	4	5	6	7	8	9	10	11
1	Α	В	C	Α	В	D	Α	В	C	Α	В	Α
π	1	1-1	7	0	3	1	0	Ь	2	3	4	0

前綴函數-程式碼

```
vector<int> buildPi(const string &S) {
 vector<int> Pi(S.size());
  Pi[0] = -1;
 for (size_t i = 1; i < S.size(); ++i) {
   int j = Pi[i - 1];
   while (j != -1 \&\& S[i] != S[j + 1]) // case 3
     j = Pi[j];
   if (S[i] == S[j + 1]) Pi[i] = j + 1; // case 2
    else Pi[i] = -1; // case 1
  return Pi;
```

前綴函數-O(n)

另一種把j放外面的寫法

```
vector<int> buildPi(const string &S) {
 vector<int> Pi(S.size());
 int j = -1;
 Pi[0] = j;
 for (size_t i = 1; i < S.size(); ++i) {
   while (j != -1 \&\& S[i] != S[j + 1]) // case 3
     j = Pi[j];
   if (S[i] == S[j + 1]) Pi[i] = j += 1; // case 2
   else Pi[i] = j = -1; // case 1
 return Pi;
```

- while 最多執行j 次
- · while 每次執行j都會變小
- j 只會在 case 2 那行增加
- j 只會被操作 O(n) 次


```
vector<size_t> matching_all(const string &text, const string &pattern) {
   string S = pattern + '$' + text;
   size_t nP = pattern.size();
   auto Pi = buildPi(S);
   vector<size_t> ans;
   for (size_t i = nP + 1; i < S.size(); i++) {
      if (Pi[i] + 1 == nP)
         ans.push_back(i - 2 * nP);
   }
   return ans;
}</pre>
```

空間更少的做法

```
vector<size_t> matching_all(const string &text, const string &pattern) {
 auto Pi = buildPi(pattern);
 vector<size t> ans;
 int j = -1;
 for (size_t i = 0; i < text.size(); ++i) {
   while (j != -1 && pattern[j + 1] != text[i])
     j = Pi[j];
   if (pattern[j + 1] == text[i]) ++j;
   if (j + 1 == pattern.size()) {
      ans.emplace_back(i + 1 - pattern.size());
      j = Pi[j];
  return ans;
```

UVa 11475

• 給你一個字串 \$

• 問這要在S "結尾"最少增加幾個字,才能使S 變成迴文

• Ex: *S* = cabaa 加入 bac → cabaabac 變成迴文

想法

字串最小週期

• 若存在某個字串 R 使得字串 S = RRR ...RR 則稱 R 為 S 的週期

• 輸入S ,請找出S 長度最小的週期

想法

```
      0
      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      11

      a
      b
      a
      a
      b
      a
      a
      b
      a
      b
      a

      -1
      -1
      0
      0
      1
      2
      3
      4
      5
      6
      7
      8
```

```
string getMinPeriod(const string &S) {
  auto Pi = buildPi(S);
  size_t PeriodLen = S.size() - Pi.back() - 1;
  if (S.size() % PeriodLen != 0)
    return S;
  return S.substr(0, PeriodLen);
}
```


拓展 KMP

• 與 KMP 的 π 定義很像,但不一樣

m	0	1	2	3	4	5	6
Y	Þ	В	Α	В	Α	Α	В
Z	0	0	3	0	1	2	0

- •給定字串S
- 定義

$$\begin{cases} Z[i] = lcp(S[i:|S| - 1], S) \\ Z[0] = 0 \end{cases}$$

Z[2] = 3,因為 $S[2\sim6] = ABAAB$ 與整個字串的開頭 3 個字 ABABAAB 一樣

Z Algorithm

• 為了快速計算 Z , 我們維護一個範圍 [L,R]

• 該範圍滿足 $S[L\sim R] = S[0:R-L]$

R

	0	1	2	3	4	5	6
1	Α	В	Α	В	Α	۹	В
	0	0	3	777	$\frac{1}{2}$	2	0

Z Algorithm

• 為了快速計算 Z , 我們維護一個範圍 [L,R]

• 該範圍滿足 $S[L\sim R] = S[0:R-L]$

R

0	1	2	3	4	5	6
Α	В	Α	В	4	A	В
0	0	3	797	$\frac{1}{2}$	2	0

Case 1: *i* 不再 [*L*, *R*] 範圍內

- 當前的 L, R 完全沒有用,直接暴力求答案
- 並把 L, R 更新成找到的範圍

```
vector<int> buildZ(const string &S) {
  int L = 0, R = 0, n = S.size();
  vector<int> Z(n);
  for (int i = 1; i < n; ++i) {
   if (R < i) { // Case 1
     while (S[Z[i]] == S[i + Z[i]])
        ++Z[i];
     L = i, R = i + Z[i] - 1;
    } else {
      // TODO
  return Z;
```

Case 2:
$$L \le i \le R \perp i + Z[i - L] - 1 < R$$

$$Z[i] = Z[i - L]$$

根據定義,橘色區域會一樣

Case 2: $L \le i \le R \perp i + Z[i - L] - 1 < R$

$$Z[i] = Z[i - L]$$

根據Z[i-L]可知綠色部分也相等

根據定義,橘色區域會一樣

Case 2: $L \le i \le R \coprod i + Z[i - L] - 1 < R$

```
vector<int> buildZ(const string &S) {
 int L = 0, R = 0, n = S.size();
 vector<int> Z(n);
 for (int i = 1; i < n; ++i) {
    if (R < i) { // Case 1
     while (S[Z[i]] == S[i + Z[i]])
        ++Z[i];
      L = i, R = i + Z[i] - 1;
    } else if (i + Z[i - L] - 1 < R) { // Case 2</pre>
     Z[i] = Z[i - L];
    } else {
      // TODO
  return Z;
```


Case 3: $L \le i \le R \perp i + Z[i - L] - 1 \ge R$

- •和 Case 1一樣的操作,但是綠色部分不用檢查
- 因為綠色部分一樣,所以 $Z[i] \ge R i + 1$

根據 Z[i-L] 可知綠色部分也相等

根據定義,橘色區域會一樣

Z Algorithm

重複了

```
vector<int> buildZ(const string &S) {
 int L = 0, R = 0, n = S.size();
 vector<int> Z(n);
 for (int i = 1; i < n; ++i) {
   if (R < i) { // Case 1
     Z[i] = 0;
     while (S[Z[i]] == S[i + Z[i]])
       ++Z[i];
     L = i, R = i + Z[i] - 1;
    } else if (i + Z[i - L] - 1 < R) { // Case 2</pre>
     Z[i] = Z[i - L];
   } else { // Case 3
     Z[i] = R - i + 1;
     while (S[Z[i]] == S[i + Z[i]])
       ++Z[i];
      L = i, R = i + Z[i] - 1;
 return Z;
```

Z Algorithm

```
vector<int> buildZ(const string &S) {
 int L = 0, R = 0, n = S.size();
 vector<int> Z(n);
 for (int i = 1; i < n; ++i) {
    if (i \le R \&\& i + Z[i - L] - 1 < R) { // Case 2}
      Z[i] = Z[i - L];
   } else { // Case 1 & 3
     Z[i] = max(0, R - i + 1);
      while (S[Z[i]] == S[i + Z[i]])
        ++Z[i];
      L = i, R = i + Z[i] - 1;
  return Z;
```

要小心會有負數 不能用 unsigned

Z Algorithm - 時間複雜度

```
vector<int> buildZ(const string &S) {
 int L = 0, R = 0, n = S.size();
 vector<int> Z(n);
 for (int i = 1; i < n; ++i) {
    if (i \le R \&\& i + Z[i - L] - 1 < R) { // Case 2}
      Z[i] = Z[i - L];
   } else { // Case 1 & 3
     Z[i] = max(0, R - i + 1);
      while (S[Z[i]] == S[i + Z[i]])
       ++Z[i];
      L = i, R = i + Z[i] - 1;
  return Z;
```

- 每次執行 whileR 都會增加
- R 最多只會是 n
- while 只會執行 n 次
- O(n)

CSES - Finding Periods

- 若存在某個字串 R 使得字串 S = RRR ...RR 則稱 R 為 S 的週期,注意此題最一次重複可以是 R 的前綴
- 目標是找出所有的 R
- Ex: S = abcabca,合法的 R 有:
- abc
- abcabc
- abcabca

觀察

_			0	17.00	60	Market Ja		
	0	1	2	3	4	5	6	
	а	b	С	а	b	C	a	
Z	0	0	0	4	0	0	4	

2	0	1	2	3	4	5	6
1	а	b	U	а	b	С	a
7	0	0	0	34	0	0	1

CSES - Finding Periods

```
vector<int> findingPeriods(const string &S) {
   auto Z = buildZ(S);
   vector<int> Ans;
   for (size_t i = 0; i < Z.size(); ++i) {
      if (Z[i] == Z.size() - i)
        Ans.emplace_back(i);
   }
   Ans.emplace_back(Z.size());
   return Ans;
}</pre>
```

Rabin-Karp Rolling Hash

滾動雜湊

滾動雜湊

- 設 $S = s_0 s_1 \dots s_{n-1}$,給定兩個質數P, M
- 定義

$$H(S, P, M) = (s_0 P^{n-1} + s_1 P^{n-2} + \dots + s_{n-1}) \% M$$

滾動雜湊

- 設 $S = s_0 s_1 \dots s_{n-1}$ 給定兩個質數P, M
- 定義

$$H(S, P, M) = (s_0 P^{n-1} + s_1 P^{n-2} + \dots + s_{n-1}) \% M$$

• 設 $S' = s_0 s_1 \dots s_{n-1} s_n$

$$H(S', P, M) = (s_0 P^n + s_1 P^{n-1} + \dots + s_{n-1} P + s_n) \% M$$

= $(H(S, P, M) \times P + s_n) \% M$

程式碼

- 建議在 code book 裡面紀錄一些 int, long long 範圍質數的表
- 很多演算法需要質數的幫忙

子字串的 hash

- 設 $S' = s_L s_{L+1} s_{L+2} \dots s_R$
- 赏 $S^R = s_0 s_1 s_2 \dots s_R$
- $\bullet \not \exists \zeta S^{L-1} = s_0 s_1 s_2 \dots s_{L-1}$

$$\begin{split} H(S',P,M) &= (s_L P^{R-L} + s_{L+1} P^{R-L-1} + \cdots + s_R)\% M \\ H(S^R,P,M) &= (s_0 P^R + s_1 P^{R-1} + \cdots + s_R)\% M \\ H(S^{L-1},P,M) &= (s_0 P^{L-1} + s_1 P^{L-2} + \cdots + s_{L-1})\% M \end{split}$$

子字串的 hash

- 設 $S' = s_L s_{L+1} s_{L+2} \dots s_R$
- 設 $S^R = s_0 s_1 s_2 \dots s_R$
- 設 $S^{L-1} = s_0 s_1 s_2 \dots s_{L-1}$

$$H(S',P,M) = (s_L P^{R-L} + s_{L+1} P^{R-L-1} + \dots + s_R) \% M$$

$$H(S^R,P,M) = (s_0 P^R + s_1 P^{R-1} + \dots + s_R) \% M$$

$$P^{R-L+1} \times H(S^{L-1},P,M) = (s_0 P^R + s_1 P^{R-1} + \dots + s_{L-1} P^{R-L+1}) \% M$$

 $H(S', P, M) = (H(S^R, P, M) - P^{R-L+1} \times H(S^{L-1}, P, M))\%M$

取得子字串的 hash O(1)

```
vector<long long> buildBase(int n, long long prime, long long prime_mod) {
  vector<long long> Base(n + 1);
  Base[0] = 1;
  for (size_t i = 1; i < Base.size(); ++i)
    Base[i] = Base[i - 1] * prime % prime_mod;
  return Base;
}</pre>
```


• 若兩字串 A, B

• H(A, P, M) = H(B, P, M)

• 則我們認定 A = B

碰撞問題

• 碰撞定義:

$$H(A, P, M) = H(B, P, M), A \neq B$$

 $H(A, P, M) \neq H(B, P, M), A = B$

- •若不考慮 modulo,H 函數相當於是將字串編碼成 P 進位的整數
- 因此碰撞只跟取餘數 M 有關,單次比較碰撞機率為:

 $\frac{1}{M}$

碰撞問題

• 如果進行 k 次比較,希望有 90 %的正確率, M 要多大?

$$\left(1 - \frac{1}{M}\right)^{k} \ge 0.9$$

$$M \ge \frac{1}{1 - 0.9^{\frac{1}{k}}}$$

- 有人推了近似公式: $M \ge 5k^2$
- 如果還是不夠用,就用多個 $M_1, M_2, ...$ 做 Hash 比較用 tuple 包起來一起比較

特殊質數

• 不要用特殊質數,例如 $2^k - 1$ 的質數

• 很容易可以設計出碰撞的測資

Trie

字典樹

儲存、查找字串

```
int main() {
    set<string> ST;
    ST.emplace("ant");
    ST.emplace("can");
    ST.emplace("cat");
    cout << ST.count("can") << endl;
    return 0;
}</pre>
```

• 設 n 表示 ST.size()

- 若插入/刪除/查詢一個字串S
- 花費的時間為 $O(|S| \log n)$

有沒有辦法去除這個 log?

Trie (讀做 Try)

{ant, c, can, cat} n n

- 字典樹的邊表示一個字母
- 如果到該節點已經有單字組成了則在節點做標記

```
struct node {
  int hit = 0;
  node *next[26] = {}; // a-z
};
```

加入資料很簡單 0(|S|)

```
void insert(const char *S, node *&root) {
   if (!root)
     root = new node;
   if (*S == '\0') {
     ++root->hit;
   } else {
     insert(S + 1, root->next[*S - 'a']);
   }
}
```

Trie 的好處

• 假設有一些字串 S_1, S_2, \dots, S_k ,將其加入 Trie 只要 $O(\sum_i |S_i|)$

- •對一個字串 T 查詢:
 - 有幾個 $S_i = T$
 - 有幾個 S_i 是 T 的前綴
- 複雜度都是 O(|T|)
- 大多數字串處理自動機都基於 Trie 的結構

注意 Trie 的空間

特殊題型 0-1 Trie

• 把數字當作是由 0 或 1 組成的二進位字串,用 Tire 維護

• HDU4825:

給一個數字集合 詢問數字 s 與集合內的哪一個數字 xor 起來最大

• 洛谷P4551:

問一個有權重的樹,所有路徑中,權重 xor 最大值為何