Elementary Linear Algebra - MATH 2250 - Day 16

Name:

- 1. T F If AB = I then BA = I.
- 2. T F If Q is an orthonormal matrix, then $Q^TQ = I$ and $QQ^T = I$.
- 3. T F If Q is an orthonormal matrix, then QQ^T is a projection matrix.
- 4. Assume that we start with independent vectors v_1, v_2 , and v_3 , and proceed with the Gram-Schmidt algorithm, and produce w_1, w_2 , and w_3 . What relations hold between w_1, w_2 , and w_3 ?

5. Let $\mathbf{b} = (4,0,0,0)$, $\mathbf{v} = (1,1,1,1)$, and $\mathbf{w} = (1,-1,1,-1)$. Find the projection of \mathbf{b} onto \mathbf{v} and call it \mathbf{u}_1 . Find the projection of \mathbf{b} onto \mathbf{w} and call it \mathbf{u}_2 . Find the projection of \mathbf{b} onto the space spanned by \mathbf{v} and \mathbf{w} ,

and call it u_3 . What is the relation between u_1, u_2 , and u_3 .

6. Consider the vectors $\boldsymbol{a}_1=(1,1,1,1),\ \boldsymbol{a}_2=(1,1,1,0),\ \text{and}\ \boldsymbol{a}_3=(1,1,0,0).$ Proceed with Gram-Schmidt algorithm and produce 3 vectors $\boldsymbol{q}_1,\boldsymbol{q}_2,$ and $\boldsymbol{q}_3.$ Recall that in the QR-decomposition of a matrix A,Q is

found by Gram-Schmidt algorithm and $R = Q^T A$. Let $A = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}$.

Find the QR-decomposition of A.

- 7. Compare C(A) and C(Q).
- 8. Recall that if A = QR, where Q is orthormal and R is upper-triangular, then instead of solving $A\mathbf{x} = \mathbf{b}$, one can easily solve $R\hat{\mathbf{x}} = Q^T\mathbf{b}$. Solve the equation $A\mathbf{x} = \mathbf{b}$, for A as above and $\mathbf{b} = (1, 0, 0, 0)$.