EM for Gaussian mixtures

9 试题

1 point

1.

(True/False) While the EM algorithm maintains uncertainty about the cluster assignment for each observation via soft assignments, the model assumes that every observation comes from only one cluster.

False

1 point

2.

(True/False) In high dimensions, the EM algorithm runs the risk of setting cluster variances to zero.

False

1 point

3.

In the EM algorithm, what do the E step and M step represent, respectively?

	E stimate cluster responsibilities, M aximize likelihood over parameters
	E stimate likelihood over parameters, M aximize cluster responsibilities
	E stimate number of parameters, M aximize likelihood over parameters
	E stimate likelihood over parameters, M aximize number of parameters
1 point	
Suppos (i.e., tha	e we have data that come from a mixture of 6 Gaussians at is the true data structure). Which model would we expect the highest log-likelihood after fitting via the EM algorithm?
	A mixture of Gaussians with 2 component clusters
\bigcirc	A mixture of Gaussians with 4 component clusters
\bigcirc	A mixture of Gaussians with 6 component clusters
\bigcirc	A mixture of Gaussians with 7 component clusters
	A mixture of Gaussians with 10 component clusters
1 point	
	of the following correctly describes the differences between mixtures of Gaussians and k-means? Choose all that apply.
	k-means often gets stuck in a local minimum, while EM tends not to
✓	EM is better at capturing clusters of different sizes and orientations

EM is better at	EM is better at capturing clusters with overlaps						
EM is less pron	EM is less prone to overfitting than k-means						
	k-means is equivalent to running EM with infinitesimally small diagonal covariances.						
1 point 6. Suppose we are running obtain the following resolutions.	-		E-step, we				
Cluster responsibilities	Cluster A	Cluster B	Cluster C				
Data point 1	0.20	0.40	0.40				
Data point 2	0.50	0.10	0.40				
Data point 3	0.70	0.20	0.10				
Which is the most prol Cluster A Cluster B Cluster C	oable cluster fo	r data point 3?					
1 point							

7. Suppose we are running the EM algorithm. After an E-step, we obtain the following responsibility matrix:

Cluster responsibilities	Cluster A	Cluster B	Cluster C
Data point 1	0.20	0.40	0.40
Data point 2	0.50	0.10	0.40
Data point 3	0.70	0.20	0.10

Suppose also that the data points are as follows:

Dataset	X	Υ	Z
Data point 1	3	1	2
Data point 2	0	0	3
Data point 3	1	3	7

Let us compute the new mean for Cluster A. What is the **Z coordinate** of the new mean? Round your answer to 3 decimal places.

4.86

1 point

8.

Which of the following contour plots describes a Gaussian distribution with diagonal covariance? Choose all that apply.

- (1)
- (2)
- **(**3)
- **✓** (4)
- (5)

2 points

9.

Suppose we initialize EM for mixtures of Gaussians (using full covariance matrices) with the following clusters:

Which of the following best describes the updated clusters after the first iteration of EM?

•

/

我了解不是我自己完成的作业将永远不会通过该课程且我的 Coursera 帐号会被取消激活。 了解荣誉准则的更多信息

沈伟臣

提交测试