BALLISTIC MISSILE
DEFENSE ORGANIZATION
7100 Defense Pentagon
Washington, D.C. 20301-7100

GEORGIA TECH GT-VTHR VLSI DESIGN VERIFICATION DOCUMENT

VLSI DEVELOPMENT REPORT REPORT NO. VDR-0142-90-007 FEBRUARY 15, 1991

GUIDANCE, NAVIGATION AND CONTROL DIGITAL EMULATION TECHNOLOGY LABORATORY

Contract No. DASG60–89–C–0142
Sponsored By
The United States Army Strategic Defense Command

COMPUTER ENGINEERING RESEARCH LABORATORY

Georgia Institute of Technology Atlanta, Georgia 30332–0540

Contract Data Requirements List Item A006

Period Covered: Not Applicable

Type Report: As Required

DISTRIBUTION STATEMENT A

Approved for Public Release Distribution Unlimited

20010829 010

UL10306

DISCLAIMER

<u>DISCLAIMER STATEMENT</u>—The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation.

DISTRIBUTION CONTROL

- (1) <u>DISTRIBUTION STATEMENT</u> Approved for public release; distribution is unlimited.
- (2) This material may be reproduced by or for the U.S. Government pursuant to the copyright license under the clause at DFARS 252.227–7013, October 1988.

GEORGIA TECH GT-VTHR VLSI DESIGN VERIFICATION DOCUMENT

FEBRUARY 15, 1991

Rafik Braham

COMPUTER ENGINEERING RESEARCH LABORATORY

Georgia Institute of Technology Atlanta, Georgia 30332–0540

Eugene L. Sanders
USASDC
Contract Monitor

Cecil O. Alford Georgia Tech Project Director

Copyright 1991
Georgia Tech Research Corporation (GTRC)
Centennial Research Building
Atlanta, Georgia 30332

GEORGIA TECH GT-VTHR VLSI DESIGN VERIFICATION DOCUMENT

INTRODUCTION

There are eleven (11) Georgia Tech VLSI designs (see Table 1) in the AHAT Program. Each of these designs has been produced by Georgia Tech using the Genesil Silicon Compiler. Each design has passed the design verification process at Silicon Compiler Systems / Mentor Graphics and each has been fabricated in a bulk CMOS process (fabrication of certain chips was not complete when this document was released). Each of the Georgia Tech designs listed in Table 1 is being delivered to USASDC and to the Harris Corporation for conversion and fabrication in a rad—hard process. The program under which this work is done is AHAT (Advanced Hardened Avionics Technology). This document includes design information for the Georgia Tech thresholding chip, GT–VTHR.

Table 1. Georgia Tech Chip Set for AHAT

Design	DV Passed	Tape Delivered	Fabricated	Tested
GT-VFPU/1A	1/17/89	8/3/90	5/19/89	4/4/90
GT-VNUC				
GT-VTF				
GT-VTHR	12/11/90	2/15/91		
GT-VCLS	1/26/90	7/12/90	7/13/90	
GT-VCTR	2/8/90	7/12/90	7/13/90	
GT-VIAG				
GT-VDAG				
GT-VSNI	1/17/89	5/23/90	4/14/89	4/4/90
GT-VSM8	1/17/89	6/8/90	5/6/89	4/4/90
GT-VSF	9/12/89	7/19/90	7/13/90	

Table of Contents

0.	Design Verification Checklist	1
1.	Introduction	11
2.	Functional Description	11
	2.1. Module adjust	11
	2.1.1. Simple Thresholding	11
	2.1.2. Adjusted Thresholding	11
	2.2. Module adapt	11
	2.3. Module host_stuff	12
	2.4. Module store	13
	2.5. Module store_ctrl	13
	2.6. Module clocks_etc	13
	2.7. Module output	13
3.	Computational Model	13
4.	Signal Descriptions	14
5.	Manufacturing Test	15
6.	Concluding Remarks	15
Αp	opendix A. Block Diagrams, Schematics, and Timing Diagrams	16
•	ppendix B. Pin Description	53
-	•	55
	ppendix C. Key Parameters	
Аp	ppendix D. PADRING.033	57
Ap	ppendix E. Power Dissipation	59
Αp	ppendix F. Timing and Simulation Setup Files	64
Ap	ppendix G. Timing Reports	65
•	Appendix G.1. Pixel_Clk, GUARANTEED, Max T, Min V	65
	Appendix G.2. Pixel_Clk, TYPICAL, Room T, 5.0 V	75
	Appendix G.3. Pixel_Clk, GUARANTEED, Room T, 5.0 V	84

List of Figures

1.	Thresholding Chip Block Diagram	16
2.	Counting of Pixels Above Threshold	17
3.	Simple-Adjust Threshold Hardware	18
4.	Adjust–Simple Threshold Selection	19
5.	Pixel Stream Spatial Organization	20
6.	Chart of Arithmetic Operations	21
7.	Pipeline Reservation Table	22
8.	L1 Norm Computation	23
9.	Inverting Buffer Tree Structure for Average	24
10.	Details of L1 Norm Hardware	25
11.	Adaptive Threshold Hardware	31
12.	Adaptive Threshold Computation	32
13.	Host Interface Module Block	35
14.	Host Interface Block Diagram, Table 1 and Table 2	37
15.	Host Interface Block Diagram	38
16.	host_stuff/interface Module	39
17.	Host Interface Timing (write cycle)	40
18.	Main Storage Organization and Control	41
19.	Schematic of FIFOs Pipe Structure	42
20.	Blocks in clocks_etc Module	43
21.	clocks_etc/state_mach Block Diagram	44
22.	Thresholding Operation	45
23.	Output Selection Logic	46
24.	invert and delay Blocks in Output Module	47
25.	output/state_mach Block Diagram	48
26.	Truncation Scheme for Adaptive Thresholding	49
27.	host_stuff/d_out_mux Block Diagram	50
28.	Upper Threshold Mode	51
29.	Running Sum Diagram	52

DV CHECKLIST

1.	. DV CONTROL NUMBER:	
2.	. CUSTOMER INFORMATION	
	Customer Name: Georgia Tech / CERL	Chip Name: <u>GT-VTHR</u>
	Address: 400 Tenth Street	FAX: (404) 894–3120
	CRB Room 377	
	Atlanta, GA 30332-0540	
	Project Manager: Dr. C. O. Alford	Phone: (404) 894–2505
	Design Engineer: Rafik Braham	Phone: (404) 894–2527
		Phone:
	Test Engineer: <u>Joseph I. Chamdani</u>	Phone: (404) 894–2527
3.	. SERVICES INFORMATION	
	xx Design Verification Service only. PO #	
	Prototype Service and Design Verification. PO #	
	1.8% Maintenance	
	SCS Test Foundry Test Cu	stomer Test
	When DV is complete, send verified physical database	tape to
	Customer \underline{Y} N Silicon Vendor	<u>Y</u> N
4.	. DV CONTACT: Ying Chow	Phone: (408) 371–2900

5.	REGRESSION
	5. 1. GENESIL Version: <u>8.0.2</u>
	5. 2. Name of Session Log from recompile: rebuild.LOG
	5. 3. Include DV regression.CMD: DV regression.001 (simulation and timing)
	5. 4. Size of database (MB) : <u>124</u> Guess Density : 6250 1600 TK50
	Tar xx wbak Apollo Cartridge
	(compressed) Sun Cartridge <u>xx</u>
6.	FUNCTIONAL INFORMATION (check when included)
	6. 1. Number of Transistors : <u>xx</u>
	6. 2. Key Parameters : xx Testing 6. 3. DV pin description : xx Testing
	6. 4. Block Diagram : _xx_ Testing
	6. 5. Functional Description : xx Testing
	6. 6. Timing Diagrams at Pins: _xx Testing
	6. 7. Annotated Views: xx Testing Annotated Schematics: xx Testing
	6. 8. Chip Text Specification on tape: xx Density: 6250 1600 TK50
	(vthr_spec.012) Apollo Cartridge
	Sun Cartridge_xx
7.	PHYSICAL INFORMATION
	7. 1. Fabline Name: HP1 CN10A Customer-Specific: Y N Fabline GENECAL Directory on tape: Y N Fabline GENESIL Directory on tape: Y N Fabline Calibration Status: Production: xx Beta: Alpha: NOTE: If not a production fabline, then approval from SCS is required.
	7. 2. Plots: (check when included or indicate filename) Chip Route (D size): _xx Bonding Diagram (B size): _xx Route Filename: _rt PLOT 1.031 Bonding Filename: _ bd PLOT 1.031
	Route Filename: rt PLOT 1.031 Bonding Filename: bd PLOT 1.031
	7. 3. Die Size : Reported Die Size : 404.9 x 400.0 square-mils
	Maximum Acceptable Die Size (+/- 2%): 435 x 435 square-mils
	Minimum Acceptable Die Size (+/- 2%) : 300 x 300 square-mils
	7. 4. GENESIL Package Name: <u>CPGA100hp</u> Spec included? <u>Y</u> N Cavity/Well Size: <u>470</u> mils by <u>470</u> mils Non-GENESIL Supplied Package? <u>Y</u> N Text Spec included on tape? <u>Y</u> N
	Vendor Name/Part #: <u>KYOCERA KD-P85989</u> Foundry Approval? <u>Y</u> N
	7. 5. External Block: none
	7. 6. LRAM: Y N LROM: Y N LPLA: Y N LogicCompiler Blocks: Y N
	7. 7. Test Pad (PM Pad) is included? Y N (Required for PS)

	7. 8.	Power Pad: VCC: Core 2 VSS: Core 2 Ring 9 Ring 6
		NP protection for nwell pad? Y N
		ITL output pads or N Protection for inputs? Y N If yes, have you received silicon vendor approval? Y N
		Error in PADRING.033 (PADRING.DRC)? Y N Hardcopy attached? Y N
		ESD requirements Approved by SCS? Y N
8.	ELI	ECTRICAL INFORMATION
	8. 1.	Chip Frequency Specified in netlist : <u>2.67 MHz</u> Target frequency : <u>2.67 MHz</u>
		Power Dissipation: GENESIL = 0.85 W at 10 MHz Spec = W at MHz Operating Voltage: from 4.5 Volts to 5.5 Volts
9.	SIM	ULATION
	9. 1.	Number of Clocking Regimes : _1
	9. 2.	Simulation Setup Files: Name:none / default Listings attached: Description:
		Affected Tests :
		Name : Listings attached : Description :
		Affected Tests :
		Name :Listings attached : Description :
		Affected Tests :
		Name:Listings attached:
		Description:

To	est Vector Set: tal No. of Vectors: _32,707 OTE: Test vectors written one phase per vector have a maximum test frequency on the IMS Tester of
	Hz. Test vectors written one cycle per vector have a maximum test frequency on the IMS Tester o Hz.
1.	Name: adap simp man.col.083 Description: tests adaptive and simple thresholding
	Portions of Chip Tested : _all
	Pass with GFL model?ves Use for PS testing?Y N Pass Fight Test?
2.	Name: <u>adapt4 5 man.col.083</u> No of vectors: <u>1,441</u> Description: <u>tests adaptive thresholding</u>
	Portions of Chip Tested :all
	Portions of Chip Tested : _all
3.	Pass with GFL model? <u>yes</u> Pass with GSL model? <u>yes</u> Use for PS testing? <u>Y</u> N
3.	Pass with GFL model?yes Use for PS testing?Y N Pass Fight Test? No of vectors :731
3.	Pass with GFL model?yes Use for PS testing?Y_ N Pass Fight Test? Name:adapt 4 man.col.083 No of vectors:731 Description:tests adaptive thresholding

	Pass with GFL model? Pass with GSL model? Pass Fight Test?	_yes _yes	Use for PS testing?	Y	N			
5.	Name:adapt_adj_man.col.083 No of vectors: _3,360 Description:tests adaptive and adjusted thresholding							
	Portions of Chip Tested:							
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	yes yes	Use for PS testing?	Y	N			
5.	Name: <u>adj2 man.col.0</u> Description: <u>tests adju</u>	sted threshol	ding mode		No of vectors : 2,007			
	Portions of Chip Tested :	all						
	Pass with GFL model? Pass with GSL model? Pass Fight Test?		Use for PS testing?	Y	N			
7.	Description: tests the f	ifo pipe struc						
	Portions of Chip Tested :	all all			•			
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	_yes _yes	Use for PS testing?	Y	N			
8.	Name: <u>host inter mar</u> Description: <u>tests the h</u>							
	Portions of Chip Tested	: host inter	face					
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	_yes _yes	Use for PS testing?	Y	N			

Descriptio	n: tests simp	le and adapti	ive thresholding m		No of vectors : _2,084
Portions o	f Chip Tested			· · · · · ·	
	GFL model? GSL model? Test?	_yes _yes	Use for PS testing	ıg? <u>Y</u>	N
	simp adj adap n : <u>tests all t</u>				No of vectors : _13,044
Portions o	f Chip Tested	all			
	GFL model? GSL model? : Test?	_yes_ _yes	Use for PS testir	ıg? <u>Y</u>	N
	simp man.col.				No of vectors: 1,426
	-				
Portions o					
Pass with Pass with Pass Fight	f Chip Tested GFL model? GSL model? t Test?	yes yes ation? Y N		ng? <u>Y</u>	
Pass with Pass with Pass Fight IMS Groupit Tester clock	f Chip Tested GFL model? GSL model? t Test?	yesyes ation? Y N	Use for PS testing	ng? <u>Y</u>	
Pass with Pass with Pass Fight IMS Groupit Tester clock	GFL model? GSL model? t Test? ng within limit frequency = must be glitch	yesyes ation? Y N	Use for PS testing (Required for Pa	ng? <u>Y</u>	N L with etection
Pass with Pass with Pass Fight IMS Groupit Tester clock Signals that Signal 1. Begin 2. Begin 3. End 4. End 5. N dr 6.	f Chip Tested GFL model? GSL model? t Test? Ing within limit frequency = _ must be glitch Name I frame out frame out frame out frame out row out frame out row out	yesyesation? Y N 2.67 MHz free: Y N	Use for PS testing (Required for Pa	ng? <u>Y</u> S only) Ran GSi glitch de	L with etection on?

10. TIMING ANALYSIS

guaranteed corne 5.0V room junc temp		(required for Poguaranteed commin operating max junction to	ner V	typical corner min operating max junction to	
Setup/Hold Output Delay	XX XX XX	Cycle Setup/Hold Output Delay Violation	:_XX :_XX :_XX	Cycle Setup/Hold Output Delay Violation	:_XX :_XX :_XX
Temperature : 100 c Description : worst			unction ten	oltage: <u>4,50 V</u> nperature, minimur	n operating v
Name:nominal.0 Temperature: _55 de Description: _nomin	egrees C		Vo		
				Listings att	ached ·

10. 4. Critical Boundary Cond	litions	١.
---	---------	----

List critical paths here or annotate the timing report.
Attach additional pages if needed.

10. 5. Hold Time Violations : <u>none</u> (At <u>2.0</u> nsec.)

Clock Name:	Pixel clk				
 Phase 1 High Phase 2 High 	report	_210	nit (–5%) ns ns	report	limit (+/–5%)
3. Symmetric Cycle	397.1 ns	420 ns			
4. Minimum Cycle	384.5 ns	420 ns			
Outputs	137		1. 1 (77)		44 4.
•	l Name		load (pF) _50.00	delay 25.9 ns	limit 30 ns
 Begin frame out Begin row out 			50.00	25.8 ns	30 ns
3. End frame out			50.00	25.7 ns	30 ns
4. End row out			50.00	25.7 ns	30 ns
F Di1(15.0)			50.00	26.1 ns	30 ns
6					
7					
8					***************************************
9					
Inputs					
-	l Name		setup	j	hold
•			report / limi	it rep	ort / limit
1	·				
2				<u></u>	
3					
4 5.					
					
6 7					
8.					
9.					

11. DC CHARACTERISTICS

PARA- METER	S DESCRIPTION	CONDITIONS 0 to 70	CONDITIONS -55 to +125	MIN	MAX
DATA P	AD INPUT ONLY				
VIH	Input High Voltage			2.0V	
VIL	Input Low Voltage				0.8V
IIL .	Input Leakage	VSS <vin<vdd< td=""><td>VSS<vin<vdd< td=""><td>-10uA</td><td>10uA</td></vin<vdd<></td></vin<vdd<>	VSS <vin<vdd< td=""><td>-10uA</td><td>10uA</td></vin<vdd<>	-10uA	10uA
CIN	Input Capacitance				6.0pf
DATA P	AD OUTPUT ONLY				
VOH	Output High Voltage	VDD= 4.5V IOH=-2.2	VDD= 4.5V IOH=–2mA	2.4V	
VOL	Output Low Voltage	VDD= 4.5V	VDD= 4.5V		0.4V
VOL	Output Low Voltage	IOL= 6mA	IOL = 5mA		U. V
IOZ	Output Leakage	VSS <vout<vdd< td=""><td>VSS<vout<vdd< td=""><td>-10uA</td><td>10uA</td></vout<vdd<></td></vout<vdd<>	VSS <vout<vdd< td=""><td>-10uA</td><td>10uA</td></vout<vdd<>	-10uA	10uA
	current(high Z)	. • • • • • • • • • • • • • • • • • • •			
COUT	Output Capacitance		•		7.0pf
DATA P	AD INPUT/OUTPUT				
VOH	Output High Voltage	VDD= 4.5V	VDD= 4.5V	2.4V	
1101	O	IOH=-2.2	IOH=-2mA		0.457
VOL	Output Low Voltage	VDD= 4.5V IOL= 6mA	VDD= 4.5V IOL= 5mA		0.4V
VIH	Input High Voltage	IOL= OIIIA	IOL= SIIIA	2.0V	
VIL	Input Low Voltage			2.0 1	0.8V
IOZ	Output leakage	VSS <vout<vdd< td=""><td>VSS<vout<vdd< td=""><td>-10uA</td><td>10uA</td></vout<vdd<></td></vout<vdd<>	VSS <vout<vdd< td=""><td>-10uA</td><td>10uA</td></vout<vdd<>	-10uA	10uA
	current (high Z)				
CIO	Input/Output Capacitar	nce			7.0pf
CLOCK	[PAD				
VIH	Input High Voltage			3.9V	
VIL	Input Low Voltage				0.6V
IIL	Input Leakage	VSS <vin<vdd< td=""><td>VSS<vin<vdd< td=""><td>-10uA</td><td>10uA</td></vin<vdd<></td></vin<vdd<>	VSS <vin<vdd< td=""><td>-10uA</td><td>10uA</td></vin<vdd<>	-10uA	10uA
CIN	Input Capacitance				15pf

NOTE: All parameters at a supply voltage of VDD = 5V (+/-10%).

12. CUSTOMER COMMENTS

Pre-Verification Comments (10/24/90)					
The GSL simulation failed on 10 test vectors files (see section 9.3). The source of the GSL errors was					
determined originating from clocks etc/sp interface block which is a Logic Compiler block. If the					
compiler option of this block is changed to Standard Compiler all the test vector files pass GSL					
simulation. Therefore it is assumed that errors must have occured inside the GENESIL Autologic					
program, i.e., improper optimization or realization of the actual circuitry. This problem must be fixed by					
SCS / Mentor Graphics and approved by Georgia Tech / CERL prior to sending the chip database to					
silicon foundry.					
Post-Verification Comments (12/11/90) The above problem has been fixed by Mentor Graphics. All test vector files now pass GSL simulation.					
13. CUSTOMER APPROVAL					
The undersigned understands that if any design changes are initiated by the Customer subsequent to this sign—off, the Customer is liable for any charges imposed by Silicon Compiler Systems as agreed to in either the Design Verification Terms & Conditions or the Prototype Services Terms & Conditions. In addition, such changes require the DV process to be started from the beginning, which results in extended DV schedules.					
Customer Approval: Joseph I. Chamdani J.J. Chamdani. Date 10/24/90					
Title : Research Engineer I					
14. SCS APPROVAL Pre-Verification Comments					
SCS Approval : Date/					
SCS Approval : Date/					

Technical Support Team Leader

GT-VTHR: Thresholding Chip

1. Introduction

Thresholding is the last stage in preprocessing the pixel intensities before they are actually employed for useful processing. Normally, this function comes just before clustering..

2. Functional Description

The thresholding chip provides three types of thresholding: simple, adjusted and adaptive. It is composed of seven modules: adjust, adapt, host _stuff, store, store_ctrl, clocks_etc, and output (see Figure 1). Note that all figures referred to can be found in Appendix A.

2. 1. Module adjust

This module contains the circuitry necessary to compute the threshold for both simple and adjusted modes which are explained below.

2.1.1. Simple Thresholding

In this mode, all the pixels are compared to a fixed threshold. The threshold value is preloaded by the host into a 16-bit register reserved for this purpose. This value may change on a frame basis.

2.1.2. Adjusted Thresholding

The threshold value used in simple thresholding maybe too high or too low and thus not appropriate. One way to test the "appropriateness" of this value is to count, on a frame basis, the number of pixels whose intensity values exceed the threshold (Figure 2). If this number (N_0) is too high then the threshold is increased. If it is too low however, the threshold is decreased. Therefore two values are needed to control the number of supra—threshold pixels: a lower bound (N_1) and an upper bound (N_2) . At the end of each frame, the number of supra—threshold pixels is compared against the upper and lower bounds N_1 and N_2 , and the threshold is adjusted accordingly. If $N_1 < N_0 < N_2$, then the threshold is left unchanged (Figure 3).

 N_1 and N_2 are loaded by the host, and they can be changed on a frame bais. The value of N_0 is made accessible to the outside of the chip. The host may use it to determine appropriate values for N_1 and N_2 . Also the host may use the value of N_0 to compute a new threshold. This threshold can be loaded by the host processor and used in the simple thresholding mode.

A block diagram of the adjusted threshold hardware (combined with simple threshold) is shown in Figure 3 and Figure 4.

2. 2. Module adapt

Most of the chip circuitry consists of hardware necessary for the implementation of the adaptive thresholding algorithm. According to this algorithm, for every pixel, a threshold value is computed based on the intensities of the 8 surrounding pixels. Generally speaking, the threshold value is taken

as the average of pixel intensity plus some noise margin. Mathematically, this threshold value (theta) can be written as:

$$theta = k_1 \times E(pixel_set) + k_2 \times L_1(pixel_set) + k_3, \tag{1}$$

where E denotes the average, L₁ the usual L₁ norm, namely $\sum_{i=0}^{7} |X_i - E(pixel_set)|$ and pixel_set the

set of the 8 pixels neighboring to the current pixel. Let us work out an example to illustrate these ideas.

Consider Figure 5, the pixels are designated by their arrival time (in clock cycles) relative to the present. At t = 0, the pixel $XZ^0 = X$ is being received and all the information required to compute the threshold for XZ^{-130} is available. The pixel_set of equation (1) consists of:

$$pixel_set = \{XZ^{-258}, XZ^{-257}, XZ^{-256}, XZ^{-131}, XZ^{-129}, XZ^{-3}, XZ^{-2}, XZ^{-1}\}.$$

Assuming uniform distribution, the average can be written as:

$$E = (XZ^{-258} + XZ^{-257} + XZ^{-256} + XZ^{-131} + XZ^{-129} + XZ^{-3} + XZ^{-2} + XZ^{-1}) \div 8. \tag{2}$$

The partial sums involved in the computation of thresholds are indicated in Figure 6(a). Because thresholds of some neighboring pixels share partial sums, the hardware is optimized to exploit this feature. Figure 6(b) shows how this is possible. At least 4 pipeline stages are necessary to compute the 8-point sums of E, and meet the processing requirements.

Figure 7 represents the reservation table for the 4-stage pipeline. As can be seen from the figure, once the first 8-point sum is delivered, a new sum is delivered every cycle thereafter, and the pipeline becomes 100% full.

The computation of L_1 can proceed only when the average becomes available. L_1 can explicitly be written as:

$$L_1 = |X_0 - E| + |X_1 - E| + |X_2 - E| + |X_3 - E| + |X_4 - E| + |X_5 - E| + |X_6 - E| + |X_7 - E|.$$
(3)

Figure 8 summarizes how L_1 is computed. Figure 9 and Figure 10 show further detail of the hardware implementation.

Figure 11 shows a block diagram and Figure 12 shows the details of the hardware circuitry that computes the adaptive threshold.

2. 3. Module host stuff

This module consists of the circuitry necessary to reset the chip, load constants into it, and read out data either for diagnostic purposes or for deciding on the thresholding mode to be used. Three blocks: reg0, reg1, and reg2 contain latches to store data loaded by the host (Figure 13 (a), (b), (c) respectively). The "controls" block, shown in Figure 14(a), selects the thresholding mode according to Table 1 and 2. The "decoder" block (Figure 14(b)), decodes the address to select which constant the host is attempting to write.

Under "host_stuff" module, there is another module called "interface". This module supports an asynchronous interface protocol. This module was imported from the spatial filtering chip (GT–VSF). The main role of the module is to generate the handshake signals read, write, data_dis, and dr_dis (Figure 15). The details of this module are described in the GT–VSF document, and the implementation details are shown in Figure 16. A simplified timing diagram of the protocol is given in Figure 17.

2. 4. Module store

This module contains 2 FIFOs 16-bit wide and 128-word deep each, and associated control. Figure 18 illustrates its organization in a block diagram form. Figure 19 shows the implementation details of the FIFOs structure.

2. 5. Module store ctrl

This module consists of the circuitry that controls the FIFOs. This module was imported from the spatial filtering chip. Its implementation details can be found in the GT-VSF design document. The FIFOs structure (in "store" module) is referred to as "pipe" in the spatial filtering literature.

2. 6. Module clocks etc

This module uses the intensity stream synchronization signals (end/begin row, end/begin frame) to detect the edges (first/last row/column). Based on the edge conditions, appropriate signals are generated to output the correct result (the output intensity is zero for the edges). Figure 20 and 21 show the various blocks of which "clock_etc" module is composed.

2. 7. Module output

This module contains the necessary circutry to output pixel intensity properly, based on the thresholding algorithm mode, threshold value(s), and validity of the pixel. A "dead" pixel is an invalid pixel which occurs between the last pixel of a row and the first pixel of the next row/frame. At every dead pixel this module forces the output pixel intensity to zero (Pixel_out[15:0] = 0). This module contains the following blocks:

mux0

: selects the threshold value to be used (Figure 22(a)).

mux1

: selects the intensity output (Pixel_out[15:0]). The logical circuits are shown in

Figure 23.

neuron

: compares the pixel intensity to the threshold value (Figure 22(b)).

inverters

: a bank of 16 inverters to invert the threshold value and send it to "neuron" block

Figure 24(a)).

delay

: delays the pixel intensity by 4 cycles (Figure 24(b)).

state_mach : this block is a state machine that detects non valid pixels; when the output pixel

intensity is not valid, Pixel_out[15:0] = 0 appears on the intensity bus; Figure 25

shows the logical diagram of the "state_mach" block.

3. Computational Model

The thresholding chip is slightly complicated in terms of the numerical computations involved within the chip. Omitting some implementation details, the computational model can be described as follows.

Eight 16-bit integer (positive) numbers are added together to yield a 19-bit sum. This number, which will be called E(x) (for average) consists in reality of 2 fields. The 3 rightmost bits (LSBs) can be considered a fraction (the result of a division by 8). The remaining 16-bit field is the integer part of E(x).

The same eight 16-bit numbers are subtracted from E(x) each, and the absolute values of the 8 resulting differences are then added together. The result is a 21-bit number (18-bit integral, 3-bit fraction). This result is the L1 norm given by (3).

Next E(x) is multiplied by k1, which is a 16-bit real number such that $0 \le k_1 < 2$. The result is 35-bit long. The 14 LSBs are dropped, the final result is a 21-bit long (17-bit integral part, 4-bit fraction) positive number. It will be called Prod₁.

The norm L_1 is multiplied by k2, which is a 16-bit real number such that $-2 < k_2 < 2$. The result is 37-bit long. The 13 LSBs are dropped and the final result is a 24-bit number that will be called Prod₂. Next Prod₁ is added to Prod₂ and the result, 25-bit number, is added to k_3 (a 16-bit signed magnitude number).

The result is 26 bits long (including a sign bit). The 4 LSBs are truncated. Then bits 20 to 16 are ORed to yield theta[16]. The sign and bits 15 to 0 are passed without change. The final result is thus theta[16:0].

It is this number that is compared to the incoming pixel intensity, in case of course adaptive threshold mode is being employed.

Figure 26 is a diagram summary of the algorithm just described. Note that if simple or adjusted threshold mode is used, then the computation is straightforward. In particular there is no truncation involved.

4. Signal Descriptions

Pixel_clk: main clock. This clock is internally divided into standard non-overlapping two phase clocks (Phase_A and Phase_B).

Begin_row_in, End_row_in, Begin_frame_in, End_frame_in are active high synchronization inputs with VB(t) timing characteristics. Begin_row_out, End_row_out, Begin_frame_out, End_frame_out are active high synchronization outputs with SA(t) timing characteristics. These signals are described in detail in the "Signal Processing Host Interface Specifications" document. Their timing characteristics is VB(t).

Pixel_in[15:0] is a 16-bit input bus for pixel intensity (VB(t)). Pixel_out[15:0] is a 16-bit output bus for pixel intensity (SA(t)).

Data[15:0], Address[3:0], Ds[3:0], Id[3:0], Ios, Ode, N_d r are host interface signals. The bidirectional Data[15:0] bus (input VA(t) and output WA(t)) provides separate (from pixel intensity) write /read of: k_1 , k_2 , k_3 , fixed threshold values (for simple and adjusted threshold modes, and upper threshold value), counter max and min (N_1 and N_2 for adjusted), and for reading counter output N_0 and the running sum value. Other host interface signals are: four address lines Address[3:0], four device select lines Ds[3:0], four chip identification bits Id[3:0], input/output select Ios, read/write select Ode, and an acknowledge signal N_d .

Other signals are: N_reset (active low chip reset line), Test (test mode enable input), and Theta16 (connected to theta[16] and used for testing purposes).

A complete list of pins with their timing attributes can be found in Appendix B.

5. Manufacturing Test

To improve the observability of the chip, the computed threshold is made accessible externally. The threshold least significant 16 bits appear on the host data bus when "test=1" and when the host enables the chip for read (Figure 27).

Twelve GENESIL test vector files have been created to provide manufacturing test vectors (a total of 32,707 vectors). These files can be found in the chip database:

adapt4_man.089 : tests adaptive thresholding. adapt4_5_man.089 : tests adaptive thresholding.

adap_simp_man.089 : tests adaptive and simple thresholding. : tests adaptive thresholding (2 frames). adapt_adj_man.089 : tests adaptive and adjusted thresholding.

adj2_man.089 : test adjusted thresholding mode. adj_man.089 : test adjusted thresholding. simp_man.089 : test simple thresholding.

simp_adap_man.089 : test simple and adaptive thresholding modes.

simp_adj_adap.089 : test all three thresholding modes. fifos_man.089 : tests the fifo pipe structure.

host_inter_man.089 : a relatively short file to test the host interface.

6. Concluding Remarks

Bimodal Thresholding:

To eliminate noise spikes, the pixel intensity is compared to an upper threshold value (Figure 28). If the intensity exceeds this value, then it is considered as noise and suppressed at the output.

Variable Frame Size:

The chip is capable of processing pixel frames with a variable size (number of rows and columns). This feature is useful in processing smaller frames faster.

Algorithm Enhancements:

As part of the adaptive thresholding algorithm, an intensity average for each pixel is computed (based on the 8 surrounding pixels). The average values for all the pixels of the same frame are summed and the result is made available to outside the chip. as a running sum average (Figure 29).

Appendix A. Block Diagrams, Schematics, and Timing Diagrams

Figure 1. Thresholding Chip Block Diagram

Figure 2. Counting of Pixels Above Threshold (in output/mux1 block)

Figure 3. Simple-Adjust Threshold Hardware

adjust

Figure 4. Adjust-Simple Threshold Selection (in adjust/logic3)

	4-	-132
ii L		:
pixel-in		
0	-128	-255
1	-129	-256
N 1	-130	-257
e -	-131	-258
		discarded

Figure 5. Pixel Stream Spatial Organization

$$S1 = XZ^{-3} + XZ^{-258}$$
 $S3 = XZ^{-2} + XZ^{-257}$ $S5 = XZ^{-1} + XZ^{-256}$ $S2 = S1 + XZ^{-131}$ $S4 = S3 + XZ^{-130}$ $S6 = S5 + XZ^{-129}$ $S7 = XZ^{0} + XZ^{-255}$ $S13 = XZ^{1} + XZ^{-254}$ $S15 = XZ^{2} + XZ^{-253}$ $S8 = S7 + XZ^{-128}$ $S14 = S13 + XZ^{-127}$ $S16 = S15 + XZ^{-126}$ $S9 = S2 + S3$ $S11 = S4 + S5$ $S17 = S6 + S7$ $S10 = S9 + S6$ $S12 = S11 + S8$ $S18 = S17 + S14$

S20 = S19 + S16 ETC

S19 = S8 + S13

(a)

Figure 6. Chart of Arithmetic Operations

Figure 7. Pipeline Reservation Table

$$\theta = K1.E(X) + K2.L1 + K3$$
 $E(X) = \frac{\sum X}{8}i = \overline{X}$ $L1 = \sum |Xi - \overline{X}|$ $i = 0,1,2,3,4,5,6,7$

X2	X1	XO
X4		хз
Х7	Х6	X5

Figure 8. L1 Norm Computation

Figure 9. Inverting Buffer Tree Structure For Average

Figure 10. Details of L1 Norm Hardware (1 of 6).

Figure 10. Details of L1 Norm Hardware (2 of 6).

Figure 10. Details of L1 Norm Hardware (3 of 6).

Figure 10. Details of L1 Norm Hardware (4 of 6).

adapt/Add-Carry block

Figure 10. Details of L1 Norm Hardware (5 of 6).

Figure 10. Details of L1 Norm Hardware (6 of 6).

Figure 11. Adaptive Threshold Hardware

Figure 12. Adaptive Threshold Computation (1/3)

Figure 12. Adaptive Threshold Computation (2/3)

Figure 12. Adaptive Threshold Computation (3/3)

(a). reg0 Block

(b). reg1 Block

Figure 13. Host interface Module Block Diagram

(c). reg2 Block

Figure 13. Host Interface Module Block Diagram (Continued)

Figure 14. Host Interface Block Diagram (continued)

Table 1. Control Bits Assignment

Table2. Threshold Selection

controls[0]	unused
controls[2:1]	thresh-sel[1:0]
controls[3]	thresh-mode (0: mono, 1: bi-modal)

thresh-sel [1:0]	threshold type		
00	simple		
. 01	adjusted		
10	adaptive		
11	unused		

Figure 15. Host Interface Block Diagram

Figure 16. Host-stuff/interface module

Figure 17. Host Interface Timing (write cycle)

Figure 18. Main Storage Organization and Control

Figure 19. Schematic of Fifos Pipe Structure (Imported From GT-VSF Chip).

Figure 20. Blocks in clocks-etc Module.

Figure 21. clocks-etc/state-mach Block Diagram.

output/mux0

(a) Threshold Selection

(b) Low Threshold Operation

Figure 22. Thresholding Operation

Figure 23. Output Selection Logic (output/mux1 block)

Figure 24. invert and delay Blocks in Output Module

Figure 25. output/state-mach Block Diagram.

Figure 26. Truncation Scheme for Adaptive Thresholding

Figure 27. host-stuff/d-out-mux Block Diagram.

Figure 28. Upper threshold mode (in host-stuff module)

Figure 29. Running Sum Diagram

Appendix B. Pin Description

/********	*************************	1
/*	Pin Description of GT-VTHR Thresholding Chip *	1
/*********	**************************************	

,					
PIN#	W/B#	ABBREVIATED NAME	SIGNAL_NAME	PAD_TYPE	TIMING
B2	1	vcc	VCC	VCC CORNER	
B1	2	Data[2]	Data[2]	DATA IO	SA/WA
C2	3	Data[3]	Data[3]	DATA IO	SA/WA
C1	4	VSS	VSS	VSS RING	
D2	5	Data[4]	Data[4]	DATA IO	SA/WA
D1	6	Data[5]	Data[5]	DATA IO	SA/WA
E2	7	Data[6]	Data[6]	DATA IO	SA/WA
E1	8	Data[7]	Data[7]	DATA IO	SA/WA
F3	9	VCC	VCC	VCC RING	
F2	10	Data[8]	Data[8]	DATA IO	SA/WA
F1	11	Data[9]	Data[9]	DATA IO	SA/WA
G2	12	Data[10]	Data[10]	DATA IO	SA/WA
G3	13	Data[11]	Data[11]	DATA IO	SA/WA
G1	14	ACC	VCC	VCC RING	
H1	15	Data[12]	Data[12]	DATA IO	SA/WA
Н2	16	Data[13]	Data[13]	DATA IO	SA/WA
н3	17	Data[14]	Data[14]	DATA IO	SA/WA
J1	18	Data[15]	Data[15]	DATA IO	SA/WA
J2	19	VSS	vss	VSS RING	
K1	20	Theta16	Theta16	DATA OUT	SA
K2	21	Erow_O	End_row_out	DATA OUT	SA
L1	22	Efrm_O	End_frame_out	DATA OUT	SA
Ml	23	VCC	vcc	VCC RING	
L2	24	Brow_O	Begin_row_out	DATA OUT	SA
N1	25	-			
M2	26	VSS	VSS	VSS CORNER	
N2	27	Bfrm_O	<pre>Begin_frame_out</pre>	DATA OUT	SA
МЗ	28	Pxl_I(0)	Pixel_in[0]	DATA IN	VB
N3	29	Pxl_I[1]	Pixel_in[1]	DATA IN	VB
M4	30	Pxl_I[2]	Pixel_in[2]	DATA IN	VB
N4	31	Pxl_I[3]	Pixel_in[3]	DATA IN	VB
M5	32	Pxl_I[4]	Pixel_in[4]	DATA IN	VB
N5	33	VCC	VCC	VCC CORE	
L6	34	Pxl_I[5]	Pixel_in[5]	DATA IN	VB
М6	35	Pxl_I[6]	Pixel_in[6]	DATA IN	VB
N6	36	Pxl_I[7]	Pixel_in[7]	DATA IN	VB
M7	37	VCC	VCC	VCC CORE	
L7	38	Pxl_I[8]	Pixel_in[8]	DATA IN	VB
N7	39	Px1_I[9]	Pixel_in[9]	DATA IN	VB
N8	40	VSS	VSS	VSS RING	
М8	41	Pxl_I[10]	Pixel_in[10]	DATA IN	VB
L8	42	Pxl_I[11]	Pixel_in[11]	DATA IN	VB
N9	43	Pxl_I[12]	Pixel_in[12]	DATA IN	VB
M9	44	Pxl_I[13]	Pixel_in[13]	DATA IN	VB
N10	45	Pxl_I[14]	Pixel_in[14]	DATA IN	VB
M10	46	Px1_I[15]	Pixel_in[15]	DATA IN	VB
N11	47	Brow_I	Begin_row_in	DATA IN	VB
N12	48	Erow_I	End_row_in	DATA IN	VB
M11	49	Bfrm_I	Begin_frame_in	DATA IN	VB
N13	50				
M12	51				
M13	52	Efrm_I	End_frame_in	DATA IN	VB
L12	53	VCC	VCC	VCC RING	

3					
L13	54	Px1_0[0]	Pixel_out[0]	DATA OUT	SA
K12	55	Pxl_0[1]	Pixel_out[1]	DATA OUT	SA
K13	56	Px1_0[2]	Pixel_out[2]	DATA OUT	SA
J12	57	Pxl_0[3]	Pixel_out[3]	DATA OUT	SA
J13	58	Pxl O[4]	Pixel out[4]	DATA OUT	SA
H11	59	Px1 0[5]	Pixel out[5]	DATA OUT	SA
H12	60	VSS	VSS	VSS RING	
н13	61	Pxl O[6]	Pixel out[6]	DATA OUT	SA
G12	62	Px1_0[7]	Pixel out[7]	DATA OUT	SA
G11	63	Px1 0[8]	Pixel_out[8]	DATA OUT	SA
G13	64	Px1 0[9]	Pixel out[9]	DATA OUT	SA
F13	65	vcc	vcc	VCC RING	
F12	66	Pxl O[10]	Pixel_out[10]	DATA OUT	SA
F11	67	Pxl O[11]	Pixel out[11]	DATA OUT	SA
E13	68	Pxl 0[12]	Pixel out[12]	DATA OUT	SA
E12	69	Pxl O[13]	Pixel out[13]	DATA OUT	SA
D13	70	Pxl O[14]	Pixel out[14]	DATA OUT	SA
D12	71	Pxl O[15]	Pixel out[15]	DATA OUT	SA
C13	72	nReset	N reset	DATA IN	WA
B13	73	VSS	VSS	VSS RING	****
C12	74	ID[0]	Id[0]	DATA IN	WA
A13	75	ACC	VCC	VCC CORNER	****
B12	76	ID[1]	Id[1]	DATA IN	WA
A12	77	ID[2]	Id[2]	DATA IN	WA
B11	78	VSS	VSS	VSS CORE	****
A11	79	ID[3]	Id[3]	DATA IN	WA
B10	80	DS[0]	Ds[0]	DATA IN	WA
A10	81	DS[1]	Ds[1]	DATA IN	WA
В9	82	VCC	VCC	VCC RING	
A9	83	DS[2]	Ds[2]	DATA IN	WA
C8	-84	DS[3]	Ds[3]	DATA IN	WA
B8	85	ACC	VCC	VCC CLOCK	****
A8	86	VSS	VSS	VSS CLOCK	
B7	87	Pxl_Clk	Pixel clk	CLOCK	
C7	88	IOS	Ios	DATA IN	VB
A7	89	Test	Test	DATA IN	VA
A6	90	ODE	Ode	DATA IN	WA
В6	91	DR see note (3)		DATA OUT	PROP
C6	92	VSS	VSS	VSS CORE	
A5	93	Hadr[0]	Address[0]	DATA IN	WA
B5	94	Hadr[1]	Address[1]	DATA IN	WA
A4	95	Hadr[2]	Address[2]	DATA IN	WA
в4	96	Hadr[3]	Address[3]	DATA IN	WA
A3	97	Data[0]	Data[0]	DATA IO	SA/WA
A2	98	Data[1]	Data[1]	DATA IO	SA/WA
в3	99	VCC	ACC	VCC RING	¥
A1	100				

Note:

^{(1) &}quot;W/B#" is the wire bond number. "PIN#" is the alphanumeric pin location.

⁽²⁾ TIMING = SA/WA means the I/O data pad has SA output and WA (VA+VB) input timing attribute.

⁽³⁾ DR is a propagational output which depends on WA inputs (DS, ID, ODE). The slowest path at worst case condition is 28.6 ns (from ID[0] to DR output).

Appendix C. Key Parameters

```
Key Parameters Listing of Thresholding Chip (GT-VTHR)
KEY PARAMETERS
) Key Parameters for Chip /mntb/theta/theta/theta
) TIME = Wed Feb 13 14:29:12 1991
) ROUTE VERSION = 8.00
) HEIGHT = 404.9 MILS
(=10284.4 u)
) WIDTH = 400.0 MILS
) ( = 10160.0 u )
) ROUTED = 1 (0=NO, 1=YES)
) TOTAL WIRE LENGTH = 1393033 MILS
   ( = 35383038. u )
) CORE_AREA = 130090.5 SQUARE MILS
   ( = 83929188.5 u2 )
) PADRING_AREA = 31878.0 SQUARE_MILS
   ( = 20566410. u2 )
) PAD_AREA = 27478.8 SQUARE_MILS
   ( = 17728223. u2 )
)
) ROUTE_AREA = 75467.1 SQUARE_MILS
   ( = 48688356. u2 )
)
) PERCENT_ROUTING_OF_CORE = 58 %
) PERCENT ROUTING OF CHIP = 46 %
) PERCENT CORE OF CHIP = 80.%
) PERCENT_PADRING_OF_CHIP = 19 %
) PERCENT_PAD_OF_PADRING = 86 %
) NETLIST_VERSION = 2.0
) NETLIST_EXISTS = 1 (0=NO,1=YES)
) PHASE A TIME = 198.6 NANOSECONDS
) PHASE B TIME = 185.9 NANOSECONDS
) SYMMETRIC_TIME = 397.1 NANOSECONDS
) NUMBER_OF_TRANSISTORS = 123807
) POWER_DISSIPATION = 853.03 MILLIWATTS_@5V_10MHZ
) ROUTE_ESTIMATE_LVL = 0
) FLAT_ROUTE = 0 (0=NO,1=YES)
) TECHNOLOGY NAME = CMOS-1
) PACKAGE SPECIFIED = 0 (0=NO, 1=YES)
) FABLINE_NAME = HP2 CN10B
) COMPILER_TYPE = GCX
) FLOORPLAN_VERSION = 8.0
) BOND_PAD_CNT = 96
) HEIGHT_ESTIMATE = 418.49 MILS
    ( = 10629.64 u )
) WIDTH_ESTIMATE = 430.65 MILS
   ( = 10938.50 u )
) FUSED = 1 (0=NO, 1=YES)
) FUSION_REQUIRED = 1 (0=NO,1=YES)
) PINOUT = 1 (0=NO, 1=YES)
```

```
) PINOUT_REQUIRED = 1 (0=NO,1=YES)
) PLACED = 1 (0=NO,1=YES)
) PLACEMENT_REQUIRED = 1 (0=NO,1=YES)
)
)
) AREA = 161960.0 SQUARE_MILS
) ( = 104490115. u2 )
) OBJECT_TYPE = Chip
) AREA_PER_TRANSISTOR = 1.308165 SQUARE_MILS
) ( = 843.975717 u2 )
) PHYSICAL_IMPLEMENTATIONS_EXIST = 0 (0=NO,1=YES)
) CHECKPOINTS_EXIST = 1 (0=NO,1=YES)
) CAN_SET_FABLINE = 1 (0=NO,1=YES)
)
) Key Parameter Listing Complete
```

Appendix D. PADRING.033

OUTPUT RINGS REPORT Version 1

EDGE SPEED DRIVE PAD

TYPE SUPPLY

COMMENT

Noise contribution: (ma/nh) Speed0: 2.50 Speed1: 5.00 Speed2: 8.33 Speed3: 16.66 Limits: Maximum noise level: 100. Unacceptable level: 150

Combined power pads do not supply clean power to the core. Their use is discouraged

Ring under analysis: VDD

PAD NAME

data_pads[4]

data_pads[2]

se_pad

data_pads[3] EAST

_						
	_					
	sw_pad	SOUTH		POWER		
	pixel_out[15]	WEST	1	CMOS	2	ок
	pixel out[14]	WEST	1	CMOS	2	ок
	pixel out[13]	WEST	1	CMOS	2	OK
	pixel out[12]	WEST	1	CMOS	2	OK
	pixel out[11]	WEST	1	CMOS	2	OK
	pixel_out[10]	WEST	1	CMOS	2	OK
	ring vdd1[4]	WEST	-	POWER	-	
	pixel out[9]	WEST	1	CMOS	3	ок
	pixel_out[8]	WEST	1	CMOS	3	ок
	pixel_out[7]	WEST	1	CMOS	4	OK
	pixel_out[6]	WEST	1	CMOS	4	OK
	pixel_out[5]	WEST	1	CMOS	4	OK
	pixel_out[3] pixel out[4]	WEST	1	CMOS	4	OK
	pixel_out[4] pixel out[3]	WEST	1	CMOS	4	OK
	pixel_out[3] pixel out[2]	WEST	1	CMOS	4	OK
	pixel_out[1]	WEST	1	CMOS	4	OK
	pixel_out[0]	WEST	1	CMOS	5	OK
	ring_vdd1[3]	WEST	_	POWER	3	Oit
	11119_Add1 [2]	upot		FONER		
	begin frame out	NORTH	1	CMOS	5	OK
	~-21."_++amo_ouc		-	71100	•	010
	begin row out	EAST	1	CMOS	5	OK
	ring vdd1[2]	EAST		POWER		
	end_frame_out	EAST	1	CMOS	8	oĸ
	end row out	EAST	1	CMOS	8	OK
	t16 pad	EAST	1	CMOS	6	OK
	data pads[15]	EAST	1	CMOS	6	OK
	data_pads[14]	EAST	1	CMOS	6	ок
	data_pads[13]	EAST	1	CMOS	6	OK
	data_pads[13]	EAST	1	CMOS	6	OK
	ring_vdd1[1]	EAST	-	POWER	·	010
	data pads[11]	EAST	1	CMOS	6	OK
	data_pads[11] data_pads[10]	EAST	1	CMOS	5	OK
	data_pads[10] data_pads[9]	EAST	1	CMOS	5	OK
	-					
	data_pads[8]	EAST	1	CMOS	4	OK
	ring_vdd1[0]	EAST	1	POWER	A	077
	data_pads[7]	EAST	1	CMOS	4	OK
	data_pads[6]	EAST	1	CMOS	4	OK
	data_pads[5]	EAST	1	CMOS	4	OK
	data made(41	FAST	1	CMOS	Δ	OK

OK

OK

4

4 OK

EAST 1 CMOS

EAST

EAST

1 CMOS

1 CMOS

POWER

ring_vdd1[5]	SOUTH		POWER		
data_pads[1]	SOUTH	1	CMOS	3	OK
data_pads[0]	SOUTH	1	CMOS	3	OK
DR pad	SOUTH	1	CMOS	3	OK

This ring has 6 more VDD pads than it needs Ring under analysis: VSS

PAD NAME	EDGE	SPEED	DRIVE TYPE	PAD SUPPLY	COMMENT	
ring_vss1[2]	WEST		POWER			
pixel out[15]	WEST	1	CMOS	2	OK	
pixel_out[14]	WEST	1	CMOS	2	OK ·	
pixel out[13]	WEST	1	CMOS	2	OK	
pixel_out[12]	WEST	1	CMOS	2	ок	
pixel out[11]	WEST		CMOS	2	OK	
pixel out[10]	WEST		CMOS	2	ок	
pixel out[9]	WEST	1	CMOS	2	ок	
pixel out[8]	WEST	1	CMOS	3	ок	
pixel out[7]	WEST		CMOS	3	OK	
pixel_out[6]	WEST	1	CMOS	3	ok	
ring vssl[1]	WEST		POWER			
pixel_out[5]	WEST	1	CMOS	3	OK	
pixel_out[4]	WEST		CMOS	3	ok	
pixel out[3]	WEST		CMOS	3	OK	
pixel_out[2]	WEST		CMOS	- 3	OK	
pixel_out[1]	WEST	1	CMOS	3	OK	
pixel_out[0]	WEST	1	CMOS	3	OK	
begin_frame_out	NORTH	1	CMOS	3	OK	
ne_pad	NORTH		POWER			
begin_row_out	EAST	1	CMOS	3	OK	•
end_frame_out	EAST	1	CMOS	4	OK	
end_row_out	EAST	1	CMOS	4	OK	
t16_pad	EAST	1	CMOS	2	OK	
data_pads[15]	EAST	1	CMOS	2	OK	
data_pads[14]	EAST	1	CMOS	2	OK	
data_pads[13]	EAST	1	CMOS	2	OK	•
data_pads[12]	EAST	1	CMOS	2	OK	
data_pads[11]	EAST	1	CMOS	2	OK	
data_pads[10]	EAST		CMOS	2	ok	•
data_pads[9]	EAST		CMOS	1	OK	
data_pads[8]	EAST		CMOS	1	OK	
data_pads[7]	EAST	1	CMOS	1	OK	
data_pads[6]	EAST	1	CMOS	1	OK	
data_pads[5]	EAST	1	CMOS	1	OK	
data_pads[4]	EAST	1	CMOS	1	OK	
ring_vss1[0]	EAST		POWER			
data_pads[3]	EAST	1	CMOS	1	OK	
data_pads[2]	EAST	1	CMOS	1	OK	
data_pads[1]	SOUTH	1	CMOS	1	OK	
data_pads[0]	SOUTH	1	CMOS	1	OK	•
DR_pad	SOUTH	1	CMOS	1	OK	

This ring has 2 more VSS pads than it needs

Appendix E. Power Dissipation

```
Power Dissipation of Thresholding Chip (GT-VTHR)
/***********************
DISP_POWER
POWER
) Clock Pixel clk [clock=-9999]
) Reading Routing Data . . .
) INFO: longest net delay: 13.2ns
    Nets with delay longer than 10.0ns are recorded in ancilLary file LONG_NET
) STD
) INFO: Nets loading, driving information can be found in ancillary file TA_NET
) STD
) Back-annotating route capacitance for block power calculation. . .
) Power for block test_pad: 0.00mW(DC) 0.24mW(AC)
  Power for block t16_pad: 0.00mW(DC) 4.50mW(AC)
) Power for block sw_pad: 0.00mW(DC) 0.00mW(AC)
  Power for block store_ctrl: 0.00mW(DC) 9.21mW(AC)
  Power for block store/mem2/fifo2: 0.00mW(DC) 53.13mW(AC)
) W: Node store/mem2/fifo1/space avail is not routed
  Power for block store/mem2/fifo1: 0.00mW(DC) 54.09mW(AC)
  Power for block store/mem1/fifo2: 0.00mW(DC) 55.25mW(AC)
  Power for block store/meml/fifol: 0.00mW(DC) 54.08mW(AC)
  Power for block store/latches: 0.00mW(DC) 30.24mW(AC)
  Power for block se pad: 0.00mW(DC) 0.00mW(AC)
  Power for block ring vss1: 0.00mW(DC) 0.00mW(AC)
  Power for block ring vss0: 0.00mW(DC) 0.00mW(AC)
  Power for block ring vddl: 0.00mW(DC) 0.00mW(AC)
  Power for block ring vdd0: 0.00mW(DC) 0.00mW(AC)
  Power for block reset pad: 0.00mW(DC) 1.25mW(AC)
  Power for block pixel_out[9]: 0.00mW(DC) 4.50mW(AC)
) Power for block pixel_out[8]: 0.00mW(DC) 4.50mW(AC)
Power for block pixel_out[7]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[6]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[5]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[4]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[3]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[2]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[1]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[15]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[14]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[13]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[12]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[11]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[10]: 0.00mW(DC) 4.50mW(AC)
   Power for block pixel_out[0]: 0.00mW(DC) 4.50mW(AC)
   Power for block pixel_in[9]: 0.00mW(DC) 0.34mW(AC)
   Power for block pixel_in[8]: 0.00mW(DC) 0.33mW(AC)
   Power for block pixel in[7]: 0.00mW(DC) 0.36mW(AC)
   Power for block pixel_in[6]: 0.00mW(DC) 0.39mW(AC)
  Power for block pixel_in[5]: 0.00mW(DC) 0.39mW(AC)
   Power for block pixel_in[4]: 0.00mW(DC) 0.44mW(AC)
   Power for block pixel_in[3]: 0.00mW(DC) 0.46mW(AC)
  Power for block pixel_in[2]: 0.00mW(DC) 0.45mW(AC)
  Power for block pixel in[1]: 0.00mW(DC) 0.54mW(AC)
  Power for block pixel in[15]: 0.00mW(DC) 0.27mW(AC)
  Power for block pixel in[14]: 0.00mW(DC) 0.28mW(AC)
) Power for block pixel in[13]: 0.00mW(DC) 0.23mW(AC)
```

```
Power for block pixel_in[12]: 0.00mW(DC) 0.21mW(AC)
   Power for block pixel_in[11]: 0.00mW(DC) 0.23mW(AC)
   Power for block pixel_in[10]: 0.00mW(DC) 0.29mW(AC)
   Power for block pixel_in[0]: 0.00mW(DC) 0.54mW(AC)
   Power for block pixel_clk: 0.00mW(DC) 30.41mW(AC)
   Power for block output/state_mach: 0.00mW(DC) 0.58mW(AC)
) W: Node output/neuron/activity[7] is not routed
) W: Node output/neuron/activity[6] is not routed
) W: Node output/neuron/activity[5] is not routed
) W: Node output/neuron/activity[4] is not routed
) W: Node output/neuron/activity[3] is not routed
) W: Node output/neuron/activity[2] is not routed
) W: Node output/neuron/activity[1] is not routed
) W: Node output/neuron/activity[0] is not routed
) W: Node output/neuron/activity[16] is not routed
) W: Node output/neuron/activity[15] is not routed
) W: Node output/neuron/activity[14] is not routed
) W: Node output/neuron/activity[13] is not routed
) W: Node output/neuron/activity[12] is not routed
) W: Node output/neuron/activity[11] is not routed
) W: Node output/neuron/activity[10] is not routed
) W: Node output/neuron/activity[9] is not routed
) W: Node output/neuron/ADDAO_COUT is not routed
) W: Node output/neuron/activity[8] is not routed
  Power for block output/neuron: 0.00mW(DC) 2.10mW(AC)
   Power for block output/mux1: 0.00mW(DC) 10.07mW(AC)
   Power for block output/mux0: 0.00mW(DC) 4.48mW(AC)
   Power for block output/inverters: 0.00mW(DC) 0.84mW(AC)
   Power for block output/delay: 0.00mW(DC) 8.61mW(AC)
   Power for block ode_pad: 0.00mW(DC) 0.22mW(AC)
   Power for block nw_pad: 0.00mW(DC) 0.12mW(AC)
   Power for block ne_pad: 0.00mW(DC) 0.00mW(AC)
   Power for block ios_pad: 0.00mW(DC) 0.32mW(AC)
)
   Power for block host_stuff/reg2: 0.00mW(DC) 14.70mW(AC)
)
   Power for block host_stuff/reg1: 0.00mW(DC) 16.47mW(AC)
)
   Power for block host_stuff/reg0: 0.00mW(DC) 19.49mW(AC)
) W: Node host stuff/pdp/PORT9 EXT1[17] is not routed
) W: Node host_stuff/pdp/PORT9_EXT1[15] is not routed
) W: Node host_stuff/pdp/PORT9_EXT1[14] is not routed
) W: Node host_stuff/pdp/PORT9_EXT1[9] is not routed
) W: Node host_stuff/pdp/PORT9_EXT1[13] is not routed
) W: Node host_stuff/pdp/PORT9_EXT1[8] is not routed
) W: Node host_stuff/pdp/PORT9_EXT1[12] is not routed
) W: Node host stuff/pdp/PORT9 EXT1[7] is not routed
) W: Node host_stuff/pdp/PORT9_EXT1[11] is not routed
) W: Node host stuff/pdp/PORT9 EXT1[6] is not routed
) W: Node host stuff/pdp/PORT9 EXT1[10] is not routed
) W: Node host stuff/pdp/PORT9 EXT1[5] is not routed
) W: Node host_stuff/pdp/PORT9_EXT1[4] is not routed
) W: Node host_stuff/pdp/PORT9_EXT1[3] is not routed
) W: Node host stuff/pdp/PORT9 EXT1[2] is not routed
) W: Node host stuff/pdp/PORT9 EXT1[1] is not routed
) W: Node host stuff/pdp/PORT9 EXT1[0] is not routed
) W: Node host_stuff/pdp/ADDAO_COUT is not routed
   Power for block host_stuff/pdp: 0.00mW(DC) 2.05mW(AC)
   Power for block host_stuff/muxes: 0.00mW(DC) 10.26mW(AC)
   Power for block host_stuff/inverters: 0.00mW(DC) 0.50mW(AC)
   Power for block host_stuff/interface/wr_ctrl: 0.00mW(DC) 0.87mW(AC)
   Power for block host_stuff/interface/rd_ctrl: 0.00mW(DC) 1.17mW(AC)
   Power for block host_stuff/interface/dr_ctrl: 4.93mW(DC) 0.23mW(AC)
   Power for block host_stuff/decoder: 0.00mW(DC) 1.00mW(AC)
   Power for block host_stuff/d_out_mux: 0.00mW(DC) 5.36mW(AC)
```

```
Power for block host_stuff/controls: 0.00mW(DC) 1.54mW(AC)
  Power for block end_row_out: 0.00mW(DC) 4.50mW(AC)
  Power for block end_row_in: 0.00mW(DC) 0.74mW(AC)
  Power for block end_frame_out: 0.00mW(DC) 4.50mW(AC)
  Power for block end_frame_in: 0.00mW(DC) 0.73mW(AC)
  Power for block data_pads[9]: 0.00mW(DC) 4.79mW(AC)
  Power for block data_pads[8]: 0.00mW(DC) 4.79mW(AC)
  Power for block data_pads[7]: 0.00mW(DC) 4.76mW(AC)
  Power for block data_pads[6]: 0.00mW(DC) 4.70mW(AC)
  Power for block data_pads[5]: 0.00mW(DC) 4.71mW(AC)
  Power for block data_pads[4]: 0.00mW(DC) 4.75mW(AC)
  Power for block data_pads[3]: 0.00mW(DC) 4.90mW(AC)
  Power for block data_pads[2]: 0.00mW(DC) 4.93mW(AC)
  Power for block data_pads[1]: 0.00mW(DC) 4.92mW(AC)
  Power for block data_pads[15]: 0.00mW(DC) 4.99mW(AC)
  Power for block data_pads[14]: 0.00mW(DC) 4.93mW(AC)
  Power for block data_pads[13]: 0.00mW(DC) 4.86mW(AC)
  Power for block data_pads[12]: 0.00mW(DC) 4.84mW(AC)
  Power for block data_pads[11]: 0.00mW(DC) 4.82mW(AC)
  Power for block data_pads[10]: 0.00mW(DC) 4.82mW(AC)
  Power for block data_pads[0]: 0.00mW(DC) 4.98mW(AC)
  Power for block core vss: 0.00mW(DC) 0.00mW(AC)
  Power for block core_vdd: 0.00mW(DC) 0.00mW(AC)
  Power for block clocks etc/state mach: 0.00mW(DC) 0.71mW(AC)
  Power for block clocks_etc/sp_interface: 0.00mW(DC) 8.19mW(AC)
  Power for block clocks etc/last row: 0.00mW(DC) 0.79mW(AC)
  Power for block clocks_etc/first_row: 0.00mW(DC) 0.79mW(AC)
  Power for block clocks_etc/end_row_delay: 0.00mW(DC) 1.23mW(AC)
  Power for block clocks_etc/end_fr_delay: 0.00mW(DC) 0.66mW(AC)
  Power for block clocks_etc/beg_row_delay: 0.00mW(DC) 1.22mW(AC)
  Power for block clocks_etc/beg_fr_delay: 0.00mW(DC) 1.33mW(AC)
  Power for block begin_row_out: 0.00mW(DC) 4.50mW(AC)
  Power for block begin_row_in: 0.00mW(DC) 0.66mW(AC)
  Power for block begin_frame_out: 0.00mW(DC) 4.50mW(AC)
  Power for block begin_frame_in: 0.00mW(DC) 0.65mW(AC)
  Power for block adjust/logic3: 0.00mW(DC) 0.72mW(AC)
  Power for block adjust/logic2: 0.00mW(DC) 2.76mW(AC)
  Power for block adjust/logic11: 0.00mW(DC) 2.18mW(AC)
  Power for block adjust/logic10: 0.00mW(DC) 7.47mW(AC)
  Power for block adjust/logic0: 0.00mW(DC) 3.93mW(AC)
  Power for block adjust/invert3: 0.00mW(DC) 0.37mW(AC)
  Power for block adjust/invert2: 0.00mW(DC) 0.33mW(AC)
  Power for block adjust/invert1: 0.00mW(DC) 0.51mW(AC)
  Power for block adjust/invert0: 0.00mW(DC) 0.50mW(AC)
) W: Node adjust/add2/COUT is not routed
  Power for block adjust/add2: 0.00mW(DC) 2.53mW(AC)
  Power for block adjust/add1: 0.00mW(DC) 2.61mW(AC)
) W: Node adjust/add01/N2_N0[9] is not routed
) W: Node adjust/add01/N2_N0[8] is not routed
) W: Node adjust/add01/N2_N0[7] is not routed
) W: Node adjust/add01/N2 N0[6] is not routed
) W: Node adjust/add01/N2_N0[5] is not routed
) W: Node adjust/add01/N2_N0[4] is not routed
) W: Node adjust/add01/N2_N0[3] is not routed
) W: Node adjust/add01/N2_N0[15] is not routed
) W: Node adjust/add01/N2_N0[2] is not routed
) W: Node adjust/add01/N2_N0[1] is not routed
) W: Node adjust/add01/N2_N0[14] is not routed
) W: Node adjust/add01/N2_N0[0] is not routed
) W: Node adjust/add01/N2 N0[13] is not routed
) W: Node adjust/add01/N2_N0[12] is not routed
) W: Node adjust/add01/N2 N0[11] is not routed
```

```
) W: Node adjust/add01/N2 N0[10] is not routed
 Power for block adjust/add01: 0.00mW(DC) 2.16mW(AC)
) W: Node adjust/add00/N1 N0[9] is not routed
) W: Node adjust/add00/N1 N0[8] is not routed
) W: Node adjust/add00/N1 N0[7] is not routed
) W: Node adjust/add00/N1 N0[6] is not routed
) W: Node adjust/add00/N1 N0[5] is not routed
) W: Node adjust/add00/N1 N0[4] is not routed
) W: Node adjust/add00/N1_N0[3] is not routed
) W: Node adjust/add00/N1_N0[2] is not routed
) W: Node adjust/add00/N1_N0[1] is not routed
) W: Node adjust/add00/N1_N0[0] is not routed
) W: Node adjust/add00/N1_N0[15] is not routed
) W: Node adjust/add00/N1 N0[14] is not routed
) W: Node adjust/add00/N1 N0[13] is not routed
) W: Node adjust/add00/N1 N0[12] is not routed
) W: Node adjust/add00/N1 N0[11] is not routed
) W: Node adjust/add00/N1_N0[10] is not routed
  Power for block adjust/add00: 0.00mW(DC) 2.12mW(AC)
   Power for block addr_pads[3]: 0.00mW(DC) 0.38mW(AC)
   Power for block addr_pads[2]: 0.00mW(DC) 0.19mW(AC)
  Power for block addr_pads[1]: 0.00mW(DC) 0.76mW(AC)
Power for block addr_pads[0]: 0.00mW(DC) 1.08mW(AC)
) W: Node adapt/v_add_1/ADDA1_COUT is not routed
) W: Node adapt/v_add_1/ADDA2_COUT is not routed
) W: Node adapt/v_add_1/ADDA0_COUT is not routed
) Power for block adapt/v_add_1: 0.00mW(DC) 7.44mW(AC)
) W: Node adapt/v_add_0/ADDA1_COUT is not routed
) W: Node adapt/v_add_0/ADDA2_COUT is not routed
) W: Node adapt/v_add_0/ADDA0_COUT is not routed
Power for block adapt/v_add_0: 0.00mW(DC) 6.69mW(AC)
) W: Node adapt/run_sum/run_sum[2] is not routed
) W: Node adapt/run_sum/run_sum[1] is not routed
) W: Node adapt/run_sum/run_sum[0] is not routed
  W: Node adapt/run sum/ADDAO COUT is not routed
  Power for block adapt/run_sum: 0.00mW(DC) 6.61mW(AC)
) W: Node adapt/mult_k2/STICKY[1] is not routed
) W: Node adapt/mult k2/STICKY[0] is not routed
) W: Node adapt/mult_k2/k2xL1[9] is not routed
) W: Node adapt/mult_k2/k2xL1[8] is not routed
) W: Node adapt/mult_k2/k2xL1[7] is not routed
) W: Node adapt/mult_k2/k2xL1[6] is not routed
) W: Node adapt/mult_k2/k2xL1[5] is not routed
) W: Node adapt/mult_k2/k2xL1[4] is not routed
) W: Node adapt/mult_k2/k2xL1[3] is not routed
) W: Node adapt/mult_k2/k2xL1[2] is not routed
) W: Node adapt/mult_k2/k2xL1[1] is not routed
) W: Node adapt/mult k2/k2xL1[0] is not routed
) W: Node adapt/mult k2/k2xL1[12] is not routed
) W: Node adapt/mult_k2/k2xL1[11] is not routed
) W: Node adapt/mult_k2/k2xL1[10] is not routed
) W: Node adapt/mult k2/ZERO is not routed
) Power for block adapt/mult k2: 0.00mW(DC) 38.48mW(AC)
) W: Node adapt/mult k1/STICKY[1] is not routed
) W: Node adapt/mult k1/STICKY[0] is not routed
) W: Node adapt/mult k1/k1xavg[13] is not routed
) W: Node adapt/mult k1/k1xavg[12] is not routed
) W: Node adapt/mult k1/k1xavg[11] is not routed
) W: Node adapt/mult k1/k1xavg[10] is not routed
) W: Node adapt/mult_k1/k1xavg[9] is not routed
) W: Node adapt/mult_k1/k1xavg[8] is not routed
) W: Node adapt/mult_k1/k1xavg[7] is not routed
```

```
) W: Node adapt/mult k1/klxavg[6] is not routed
) W: Node adapt/mult k1/k1xavg[5] is not routed
) W: Node adapt/mult_k1/k1xavg[4] is not routed
) W: Node adapt/mult_k1/k1xavg[3] is not routed
) W: Node adapt/mult_k1/k1xavg[2] is not routed
) W: Node adapt/mult_k1/k1xavg[1] is not routed
) W: Node adapt/mult_k1/k1xavg[0] is not routed
) W: Node adapt/mult k1/ZERO is not routed
) Power for block adapt/mult k1: 0.00mW(DC) 35.28mW(AC)
) W: Node adapt/k3_add/thresh[3] is not routed
) W: Node adapt/k3_add/thresh[2] is not routed
) W: Node adapt/k3 add/thresh[1] is not routed
) W: Node adapt/k3_add/thresh[0] is not routed
) W: Node adapt/k3_add/ADDA0_COUT is not routed
 Power for block adapt/k3_add: 0.00mW(DC) 7.57mW(AC)
  Power for block adapt/k2 ctrl1: 0.00mW(DC) 1.17mW(AC)
  Power for block adapt/k2 ctrl0: 0.00mW(DC) 1.63mW(AC)
) W: Node adapt/k2_alu/ADDA0_COUT is not routed
  Power for block adapt/k2_alu: 0.00mW(DC) 5.06mW(AC)
) W: Node adapt/k2_add/ADDA0_COUT is not routed
  Power for block adapt/k2_add: 0.00mW(DC) 3.24mW(AC)
) W: Node adapt/kl_add/ADDAO_COUT is not routed
  Power for block adapt/k1_add: 0.00mW(DC) 2.62mW(AC)
  Power for block adapt/avg_inv2: 0.00mW(DC) 4.19mW(AC)
   Power for block adapt/avg_inv1: 0.00mW(DC) 2.76mW(AC)
   Power for block adapt/avg inv0: 0.00mW(DC) 3.33mW(AC)
   Power for block adapt/add_carries: 0.00mW(DC) 2.24mW(AC)
   Power for block adapt/abs_dif_7: 0.00mW(DC) 4.86mW(AC)
   Power for block adapt/abs_dif_6: 0.00mW(DC) 6.45mW(AC)
   Power for block adapt/abs_dif_5: 0.00mW(DC) 9.02mW(AC)
   Power for block adapt/abs_dif_4: 0.00mW(DC) 7.21mW(AC)
  Power for block adapt/abs_dif_3: 0.00mW(DC) 8.88mW(AC)
  Power for block adapt/abs dif 2: 0.00mW(DC) 5.56mW(AC)
  Power for block adapt/abs dif 1: 0.00mW(DC) 6.07mW(AC)
  Power for block adapt/abs_dif_0: 0.00mW(DC) 7.50mW(AC)
  Power for block adapt/MSTflag: 5.31mW(DC) 0.11mW(AC)
) W: Node adapt/L1 add/ADDSUB3 COUT is not routed
) W: Node adapt/L1_add/L1[21] is not routed
) W: Node adapt/L1_add/ADDA0_COUT is not routed
) Power for block adapt/L1_add: 0.00mW(DC) 10.12mW(AC)
) W: Node adapt/A0 3/ADDA1 COUT is not routed
) W: Node adapt/A0 3/ADDA3 COUT is not routed
) W: Node adapt/A0 3/ADDA2 COUT is not routed
) W: Node adapt/A0 3/ADDA0 COUT is not routed
  Power for block adapt/A0 3: 0.00mW(DC) 21.10mW(AC)
  Power for block ID_pads[3]: 0.00mW(DC) 0.28mW(AC)
)
  Power for block ID_pads[2]: 0.00mW(DC) 0.33mW(AC)
  Power for block ID_pads[1]: 0.00mW(DC) 0.35mW(AC)
  Power for block ID_pads[0]: 0.00mW(DC) 0.32mW(AC)
١
  Power for block DS_pads[3]: 0.00mW(DC) 0.23mW(AC)
   Power for block DS_pads[2]: 0.00mW(DC) 0.22mW(AC)
)
   Power for block DS_pads[1]: 0.00mW(DC) 0.28mW(AC)
)
   Power for block DS_pads[0]: 0.00mW(DC) 0.31mW(AC)
)
  Power for block DR_pad: 0.00mW(DC) 4.20mW(AC)
)
)
 Total power consumption (5.5V, 0 DegC 50pf/out_pad):
        DC:
                   10.24mW [10.24(core)+0.00(ring)]
)
        AC@10MHz: 836.69mW [629.97(core)+206.72(ring)]
```

TOTAL POWER: 846.93 mW

Appendix F. Timing and Simulation Setup Files

> worstcase.040:

```
LABEL Max junction T, min operating V
TEMP_VOLT 100 4.50
HOLDTIME_MARGIN 2.00
SELECT_EXT_CLOCK Pixel_clk
```

> nominal.040:

```
LABEL Room junction T, 5.0 operating V
TEMP_VOLT 55 5.00
HOLDTIME_MARGIN 2.00
SELECT_EXT_CLOCK Pixel_clk
```

> designinit.080:

```
func designinit {
  toggle Pixel_clk 0 '(0 5 10)
  tag Pixel_clk cycle rising
  tag Pixel_clk step both
  showtoggles
}
```

Appendix G. Timing Reports

Appendix G. 1. Pixel_Clk, GUARANTEED, Max T, Min V

```
******************
                   Genesil Version v8.0.2 -- Wed Feb 13 15:05:15 1991
Chip: /mntb/theta/theta/theta
******************
CLOCK REPORT MODE
Fabline: HP2 CN10B
                                                    Corner: GUARANTEED
  Junction Temperature: 100 deg C Voltage: 4.50v
  External Clock: Pixel clk
 Included setup files:
  #0 worstcase (Max junction T, min operating V)
______
                                      CLOCK TIMES (minimum)
Phase 1 High: 198.6 ns Phase 2 High: 185.9 ns
Cycle (from Ph1): 208.2 ns Cycle (from Ph2): 249.5 ns
Minimum Cycle Time: 384.5 ns Symmetric Cycle Time: 397.1 ns
______
                                    CLOCK WORST CASE PATHS
Minimum Phase 1 high time is 198.6 ns set by:
   ** Clock delay: 7.4ns (206.0-198.6)
    Node
                                             Cumulative Delay Transition
   pixel_out[2]/(internal) 206.0
pixel_out[2]/pixel_out 204.7
output/mux1/pixel_out[2] 204.2
output/mux1/pixel_out[2]' 190.2
output/mux1/NN_N6 189.6
                                                                              fall
                                                                              rise
                                                                              rise

      output/mux1/NN_N6
      189.6

      output/mux1/NNMUX213.SEL
      189.0

      output/mux1/NN_N1
      187.5

      output/mux1/NN_N2
      186.4

      output/mux1/n_state
      184.9

      output/neuron/activity[17]
      184.9

      output/neuron/activity[17]'
      184.7

      output/neuron/ADDAO_OUT[17]
      183.3

      output/neuron/n_theta[16]
      178.0

      output/inverters/n_theta[16]
      177.9

      output/inverters/theta[16]
      176.3

      output/mux0/theta[16]
      176.3

      output/mux0/theta[16]
      158.6

                                                                             fall
                                                                              rise
                                                                             fall
                                                                             rise
                                                                             fall
                                                                             fall
                                                                              fall
                                                                              fall
                                                                              fall
                                                                              fall
                                                                             fall
                                                                             rise
                                                                             rise
                                            158.6
158.1
    output/mux0/theta[16]'
                                                                              rise
   output/mux0/NN_N34

output/mux0/adaptive16

output/mux1/adaptive16

output/mux1/adaptive16

output/mux1/adaptive16

output/mux1/adaptive16

foutput/mux1/n_adaptive16

adapt/MSTflag/n_adaptive16

adapt/MSTflag/n_adaptive16

adapt/MSTflag/thresh[20]

140.3
                                                                              fall
                                                                              rise
                                                                              rise
                                                                              rise
                                                                              fall
                                                                              fall
                                                                             fall
                                                                             rise
    adapt/k3 add/thresh[24]
                                                140.3
                                                                             rise
    adapt/k3_add/thresh[24]' 140.1
adapt/k3_add/ADDAO_OUT[24] 138.8
                                                                             rise
                                                                              rise
    adapt/k3_add/sum1[22]
                                                131.3
                                                                             fall
    adapt/k2_alu/sum1[22]
                                                 131.3
                                                                              fall
```

adapt/k2_alu/sum1[22]'	131.1	fall
adapt/k2_alu/ADDA0_OUT[22]	129.7	fall
adapt/k2_alu/sgn_prod2[18]	120.1	rise
adapt/k2 ctrl1/sgn prod2[18]	120.0	rise
adapt/k2_ctrl1/sgn_prod2[18]'	114.7	rise
adapt/k2_ctrl1/n_prod2[18]	113.1	rise
adapt/k2_ctrl1/n_prod2[18]'	113.0	rise
adapt/k2_ctrl1/prod2[18]	112.1	fall
adapt/k2_add/k2xL1[32]	112.1	fall
adapt/k2_add/k2xL1[32]'	111.9	fall
adapt/k2_add/ADDA0_OUT[16]	110.4	fall
adapt/k2_add/k2xL10[0]	87.7	fall
adapt/mult_k2/k2xL10[0]	87.7	fall
adapt/mult_k2/k2xL10[0]'	86.2	fall
adapt/mult_k2/k2[0]	23.0	fall
host_stuff/reg0/k2[0]	22.5	fall
host_stuff/reg0/k2[0]'	17.7	fall
host_stuff/reg0/NNk21.clock_x	15.0	rise
host_stuff/reg0/PHASE_A	12.3	rise
pixel_clk/PHASE_A	11.2	rise
Pixel_clk	0.0	rise

Minimum Phase 2 high time is 185.9 ns set by:

** Clock delay: 7.0ns (192.9-185.9)

Node	Cumulative Delay	Transition
output/mux1/(internal)	192.9	rise
output/mux1/NNMUX213.SEL	190.6	fall
output/mux1/NN_N1	189.7	rise
output/mux1/NN_N2	188.4	fall
output/mux1/n_state	187.6	rise
output/neuron/activity[17]	187.6	rise
output/neuron/activity[17]'	187.4	rise
output/neuron/ADDA0_OUT[17]	186.1	rise
output/neuron/n_theta[16]	180.0	fall
output/inverters/n_theta[16]	180.0	fall
output/inverters/n_theta[16]'	178.9	fall
output/inverters/theta[16]	178.4	rise
output/mux0/theta[16]	178.4	rise
output/mux0/theta[16]'	160.6	rise
output/mux0/NN_N34	160.1	fall
output/mux0/adaptive16	159.6	rise
output/mux1/adaptive16	159.5	rise
output/mux1/adaptive16'	154.5	rise
output/mux1/n_adaptive16	153.9	fall
adapt/MSTflag/n_adaptive16	151.6	fall
adapt/MSTflag/n_adaptive16'	143.8	fall
adapt/MSTflag/thresh[20]	142.3	rise
adapt/k3_add/thresh[24]	142.3	rise
adapt/k3_add/thresh[24]'	142.1	rise
adapt/k3_add/ADDA0_OUT[24]	140.9	rise
adapt/k3_add/sum1[22]	133.3	fall
adapt/k2_alu/sum1[22]	133.3	fall
adapt/k2_alu/sum1[22]'	133.2	fall
adapt/k2_alu/ADDA0_OUT[22]	131.7	fall
adapt/k2_alu/sgn_prod2[18]	122.1	rise
adapt/k2_ctrl1/sgn_prod2[18]	122.1	rise
adapt/k2_ctrl1/sgn_prod2[18]'	116.7	rise
adapt/k2_ctrl1/n_prod2[18]	115.2	rise
adapt/k2_ctrl1/n_prod2[18]'	115.0	rise
adapt/k2_ctrl1/prod2[18]	114.1	fall
adapt/k2_add/k2xL1{32}	114.1	fall

adapt/k2_add/k2xL1[32]'	113.9	fall
adapt/k2_add/ADDA0_OUT[16]	112.4	fall
adapt/k2_add/k2xL10[0]	89.8	fall
adapt/mult_k2/k2xL10[0]	89.7	fall
adapt/mult_k2/k2xL10[0]'	88.2	fall
adapt/mult_k2/L1[3]	24.9	fall
adapt/L1_add/L1[3]	24.6	fall
adapt/L1_add/L1[3]'	19.8	fall
adapt/L1_add/INTER2_VAL1[3]	17.9	fall
adapt/L1_add/PHASE_B	13.3	rise
pixel_clk/PHASE_B	11.2	rise
Pixel_clk	0.0	fall

Minimum cycle time (from Ph1) is 208.2 ns set by:

** Clock delay: 12.1ns (220.3-208.2)

" Clock delay: 12.185 (220.3-2)	30.2)	
Node	Cumulative Delay	Transition
<pre><put mux1="" nncountu4.mout_y[15]<="" pre=""></put></pre>	220.3	rise
output/mux1/NN_N50		fall
output/mux1/NN_N3	219.1	rise
output/mux1/NN_N34	218.0	fall
<pre><put mux1="" nncountu4.cout_y[13]<="" pre=""></put></pre>	217.0	rise
output/mux1/NN_N33	216.0	fall
<pre><put mux1="" nncountu4.cout_y[12]<="" pre=""></put></pre>	215.2	rise
	214.2	fall
	213.4	rise
output/mux1/NN_N31	212.4	fall
<pre><put mux1="" nncountu4.cout_y[10]<="" pre=""></put></pre>	211.7	rise
output/mux1/NN_N14	210.7	fall
<pre><tput mux1="" nncountu4.cout_y[9]<="" pre=""></tput></pre>	210.1	rise
output/mux1/NN_N30	209.2	fall
<pre><tput mux1="" nncountu4.cout_y[8]<="" pre=""></tput></pre>	208.5	rise
output/mux1/NN_N29	207.5	fall
<pre><tput mux1="" nncountu4.cout_y[7]<="" pre=""></tput></pre>	206.8	rise
output/mux1/NN_N28	205.9	fall
<pre><tput mux1="" nncountu4.cout_y[6]<="" pre=""></tput></pre>	205.2	rise
output/mux1/NN_N27	204.2	fall
<pre><tput mux1="" nncountu4.cout_y[5]<="" pre=""></tput></pre>	203.6	rise
output/mux1/NN_N26	202.7	fall
	202.0	rise
	201.0	fall
<pre><tput mux1="" nncountu4.cout_y[3]<="" pre=""></tput></pre>	200.2	rise
output/mux1/NN_N24	199.0	fall
<pre><tput mux1="" nncountu4.cout_y[2]<="" pre=""></tput></pre>	198.3	rise
<pre><tput mux1="" nncountu4.cout_y[1]<="" pre=""></tput></pre>	196.7	rise
output/mux1/NN_N22	195.8	fall
	195.1	rise
		fall
		rise
		rise
	190.0	fall
<u>—</u>	189.0	rise
	187.4	fall
	187.4	fall
_		fall
	185.8	fall
	180.5	fall
—	180.5	fall
output/inverters/n_theta[16]'	179.4	fall
output/inverters/theta[16]	178.8	rise
	178.8	rise
output/mux0/theta[16]'	161.1	rise
	Node <pre> <put <put="" mux1="" nn_n3="" nn_n34="" nn_n50="" nncountu4.cou<="" nncountu4.cout_y[10]="" nncountu4.cout_y[11]="" nncountu4.cout_y[12]="" nncountu4.cout_y[13]="" nncountu4.cout_y[1]="" nncountu4.cout_y[6]="" nncountu4.cout_y[7]="" nncountu4.cout_y[8]="" nncountu4.cout_y[9]="" nncountu4.mout_y[15]="" output="" td=""><td><put mux1="" nncountu4.mout_y[15]<="" td=""> 220.3 output/mux1/NN_N50 219.7 output/mux1/NN_N33 219.1 output/mux1/NN_N34 218.0 <put mux1="" nncountu4.cout_y[13]<="" td=""> 217.0 output/mux1/NN_N33 216.0 <put mux1="" nncountu4.cout_y[12]<="" td=""> 215.2 output/mux1/NN_N32 214.2 <put mux1="" nncountu4.cout_y[10]<="" td=""> 211.7 output/mux1/NN_N31 212.4 <put mux1="" nncountu4.cout_y[9]<="" td=""> 210.1 output/mux1/NN_N14 210.7 <tput mux1="" nncountu4.cout_y[9]<="" td=""> 210.1 output/mux1/NNCOUNTU4.cout_y[9] 207.5 <tput mux1="" nncountu4.cout_y[7]<="" td=""> 206.8 output/mux1/NN_N28 205.9 <tput mux1="" nncountu4.cout_y[6]<="" td=""> 205.2 output/mux1/NN_N27 204.2 <tput mux1="" nncountu4.cout_y[6]<="" td=""> 202.7 <tput mux1="" nncountu4.cout_y[7]<="" td=""> 206.8 output/mux1/NN_N24 199.0 <tput mux1="" nncountu4.cout_y[7]<="" td=""> 207.5 <tput mux1="" nncountu4.cout_y[7]<="" td=""> 196.7 output/mux1/NN_N22 195.8</tput></tput></tput></tput></tput></tput></tput></put></put></put></put></put></td></put></pre>	<put mux1="" nncountu4.mout_y[15]<="" td=""> 220.3 output/mux1/NN_N50 219.7 output/mux1/NN_N33 219.1 output/mux1/NN_N34 218.0 <put mux1="" nncountu4.cout_y[13]<="" td=""> 217.0 output/mux1/NN_N33 216.0 <put mux1="" nncountu4.cout_y[12]<="" td=""> 215.2 output/mux1/NN_N32 214.2 <put mux1="" nncountu4.cout_y[10]<="" td=""> 211.7 output/mux1/NN_N31 212.4 <put mux1="" nncountu4.cout_y[9]<="" td=""> 210.1 output/mux1/NN_N14 210.7 <tput mux1="" nncountu4.cout_y[9]<="" td=""> 210.1 output/mux1/NNCOUNTU4.cout_y[9] 207.5 <tput mux1="" nncountu4.cout_y[7]<="" td=""> 206.8 output/mux1/NN_N28 205.9 <tput mux1="" nncountu4.cout_y[6]<="" td=""> 205.2 output/mux1/NN_N27 204.2 <tput mux1="" nncountu4.cout_y[6]<="" td=""> 202.7 <tput mux1="" nncountu4.cout_y[7]<="" td=""> 206.8 output/mux1/NN_N24 199.0 <tput mux1="" nncountu4.cout_y[7]<="" td=""> 207.5 <tput mux1="" nncountu4.cout_y[7]<="" td=""> 196.7 output/mux1/NN_N22 195.8</tput></tput></tput></tput></tput></tput></tput></put></put></put></put></put>

output/mux0/NN_N34	160.6	fall
output/mux0/adaptive16	160.0	rise
output/mux1/adaptive16	160.0	rise
output/mux1/adaptive16'	155.0	rise
output/mux1/n_adaptive16	154.4	fall
adapt/MSTflag/n_adaptive16	152.1	fall
adapt/MSTflag/n_adaptive16'	144.3	fall
adapt/MSTflag/thresh[20]	142.8	rise
adapt/k3_add/thresh[24]	142.8	rise
adapt/k3_add/thresh[24]'	142.6	rise
adapt/k3_add/ADDA0_OUT[24]	141.4	rise
adapt/k3_add/sum1[6]	117.1	fall
adapt/k2_alu/sum1[6]	117.1	fall
adapt/k2_alu/sum1[6]'	117.0	fall
adapt/k2_alu/ADDA0_OUT[6]	115.5	fall
adapt/k2_alu/INTER3_VAL1[4]	107.4	fall
*adapt/k2_alu/(internal)	104.7	fall
adapt/k2_alu/prod1[4]	102.7	fall
adapt/k1_add/k1xavg[18]	102.7	fall
adapt/k1_add/k1xavg[18]'	102.3	fall
adapt/k1_add/ADDA0_OUT[2]	100.8	fall
adapt/k1_add/k1xavg0[0]	92.7	fall
adapt/mult_k1/k1xavg0[0]	92.7	fall
adapt/mult_k1/k1xavg0[0]'	92.1	fall
adapt/mult_k1/k1[2]	25.7	fall
host_stuff/reg0/k1[2]	24.8	fall
host_stuff/reg0/k1[2]'	17.8	fall
host_stuff/reg0/NNk11.clock_x	15.0	rise
host_stuff/reg0/PHASE_A	12.3	rise
pixel_clk/PHASE_A	11.2	rise
Pixel_clk	0.0	rise

Minimum cycle time (from Ph2) is 249.5 ns set by:

** Clock delay: 7.0ns (256.5-24	9.5)	
Node	Cumulative Delay	Transition
data_pads[15]/(internal)	256.5	fall
data_pads[15]/15	255.4	fall
data_pads[15]/data_out	255.1	rise
<_stuff/d_out_mux/data_out[15]	254.6	rise
<pre><stuff d_out_mux="" data_out[15]'<="" pre=""></stuff></pre>	239.9	rise
host_stuff/d_out_mux/d_out[15]	238.3	rise
<st_stuff d_out[15]'<="" d_out_mux="" td=""><td>237.9</td><td>rise</td></st_stuff>	237.9	rise
host_stuff/d_out_mux/NO[15]	235.2	rise
output/mux1/N0[15]	234.5	rise
output/mux1/N0[15]'	221.7	rise
* <ut mux1="" nncountu4.mout_y[15]<="" td=""><td>219.8</td><td>rise</td></ut>	219.8	rise
output/mux1/NN_N50	219.2	fall
output/mux1/NN_N3	218.6	rise
output/mux1/NN_N34	217.5	fall
<pre><put mux1="" nncountu4.cout_y[13]<="" pre=""></put></pre>	216.5	rise
output/mux1/NN_N33	215.5	fall
<pre><put mux1="" nncountu4.cout_y[12]<="" pre=""></put></pre>	214.8	rise
output/mux1/NN_N32	213.7	fall
<pre><put mux1="" nncountu4.cout_y[11]<="" pre=""></put></pre>	213.0	rise
output/mux1/NN_N31	212.0	fall
<pre><put mux1="" nncountu4.cout_y[10]<="" pre=""></put></pre>	211.2	rise
output/mux1/NN_N14	210.3	fall
<pre><tput mux1="" nncountu4.cout_y[9]<="" pre=""></tput></pre>	209.6	rise
output/mux1/NN_N30	208.7	fall
<pre><tput mux1="" nncountu4.cout_y[8]<="" pre=""></tput></pre>	208.0	rise
output/mux1/NN N29	207.1	fall

•		
<pre><tput mux1="" nncountu4.cout_y[7]<="" pre=""></tput></pre>	206.4	rise
output/mux1/NN_N28	205.4	fall
<pre><tput mux1="" nncountu4.cout_y[6]<="" pre=""></tput></pre>	204.8	rise
output/mux1/NN_N27	203.7	fall
<pre><tput mux1="" nncountu4.cout_y[5]<="" pre=""></tput></pre>	203.1	rise
output/mux1/NN_N26	202.2	fall
<pre><tput mux1="" nncountu4.cout_y[4]<="" pre=""></tput></pre>	201.5	rise
output/mux1/NN_N25	200.5	fall
<pre><tput mux1="" nncountu4.cout_y[3]<="" pre=""></tput></pre>	199.8	rise
output/mux1/NN_N24	198.5	fall
<pre><tput mux1="" nncountu4.cout_y[2]<="" pre=""></tput></pre>	197.8	rise
<pre><tput mux1="" nncountu4.cout_y[1]<="" pre=""></tput></pre>	196.2	rise
output/mux1/NN_N22	195.3	fall
<pre><tput mux1="" nncountu4.cout_y[0]<="" pre=""></tput></pre>	194.6	rise
output/mux1/NN_N21	193.6	fall
output/mux1/NNCOUNTU4.cin_y	193.0	rise
output/mux1/NNMUX213.SEL	191.1	rise
output/mux1/NN_N1	189.5	fall
output/mux1/NN_N2	188.5	rise
output/mux1/n_state	186.9	fall
output/neuron/activity[17]	186.9	fall
output/neuron/activity[17]'	186.8	fall
output/neuron/ADDA0_OUT[17]	185.3	fall
output/neuron/n_theta[16]	180.0	fall
output/inverters/n_theta[16]	180.0	fall
output/inverters/n_theta[16]'	178.9	fall
output/inverters/theta[16]	178.4	rise
output/mux0/theta[16]	178.4	rise
output/mux0/theta[16]'	160.6	rise
output/mux0/NN_N34	160.1	fall
output/mux0/adaptive16	159.6	rise
output/mux1/adaptive16	159.5	rise
output/mux1/adaptive16'	154.5	rise
output/mux1/n_adaptive16	153.9	fall
adapt/MSTflag/n_adaptive16	151.6	fall
adapt/MSTflag/n_adaptive16'	143.8	fall
adapt/MSTflag/thresh[20]	142.3	rise
adapt/k3_add/thresh[24]	142.3	rise
adapt/k3_add/thresh[24]'	142.1 140.9	rise rise
adapt/k3_add/ADDA0_OUT[24] adapt/k3 add/sum1[22]	133.3	fall
adapt/k3_add/sum1[22] adapt/k2_alu/sum1[22]	133.3	fall
	133.3	fall
adapt/k2_alu/suml[22]' adapt/k2_alu/ADDA0_OUT[22]	131.7	fall
adapt/k2_alu/sgn_prod2[18]	122.1	rise
adapt/k2_alu/sgn_prod2[18]	122.1	rise
adapt/k2_ctrl1/sgn_prod2[18]'	116.7	rise
adapt/k2_ctrl1/n_prod2[18]	115.2	rise
adapt/k2_ctrl1/n_prod2[18]'	115.0	rise
adapt/k2_ctrl1/prod2[18]	114.1	fall
adapt/k2 add/k2xL1[32]	114.1	fall
adapt/k2_add/k2xL1[32]'	113.9	fall
adapt/k2_add/ADDAO_OUT[16]	112.4	fall
adapt/k2_add/k2xL10[0]	89.8	fall
adapt/mult_k2/k2xL10[0]	89.7	fall
adapt/mult_k2/k2xL10[0]'	88.2	fall
adapt/mult_k2/L1[3]	24.9	fall
adapt/L1_add/L1[3]	24.6	fall
adapt/L1 add/L1[3]'	19.8	fall
adapt/L1_add/INTER2_VAL1[3]	17.9	fall
adapt/L1_add/PHASE_B	13.3	rise
pixel_clk/PHASE_B	11.2	rise
- <u>-</u> · · · · · · · · · · · · · · · · · · ·		

Pixel_clk

0.0

fall

#0 worstcase (Max junction T, min operating V)

_	דאופוויד פ	SETUP AND	HOLD TIMES	(ns)	
Input	Setup		Hold '		
	Ph1(f)	Ph2(f)	Ph1(f)	Ph2(f)	
Address[0]	39.3	21.2	-8.6	-12.3	PATH
Address[1]	37.3	19.1	-6.8	-11.6	PATH
Address[2]	29.6	15.3	-2.8	-7.3	PATH
Address[3]	34.7	20.5	-6.1	-12.8	PATH
Begin frame in		7.5		6.6	PATH
Begin_row_in		8.2		6.5	PATH
Data[0]	2.6	55.7	3.0	5.8	PATH
Data[10]	1.7	42.5	3.4	6.3	PATH
Data[11]	1.8	42.3	3.3	6.1	PATH
Data[12]	2.0	40.5	3.1	6.0	PATH
Data[12]	2.1	40.6	3.0	5.9	PATH
Data[14]	2.6	38.7	2.7	5.6	PATH
Data[15]	2.0	38.1	3.0	5.8	PATH
Data[1]	2.2	52.7	3.2	6.0	PATH
Data[2]	2.5	52.3	3.0	5.7	PATH
Data[3]	2.3	50.6	3.2	5.9	PATH
Data[4]	1.2	49.3	3.7	6.6	PATH
Data[4]	0.9	46.7	3.9	6.8	PATH
Data[6]	0.9	47.2	3.9	6.8	PATH
Data[7]	1.2	46.3	3.8	6.6	PATH
Data[8]	1.5	46.0	3.6	6.4	PATH
Data[9]	1.5	44.1	3.5	6.4	PATH
Ds(0)	34.7	27.1	-11.2	-7.2	PATH
Ds[1]	34.5	26.8	-11.0	-7.0	PATH
Ds[2]	34.1	26.5	-10.6	-6.6	PATH
Ds[3]	34.1	26.5	-10.7	-6.7	PATH
End_frame_in		7.4		6.5	PATH
End row in		9.6		6.6	PATH
Id[0]	34.9	27.2	-11.4	-7.4	PATH
Id[1]	34.1	26.4	-10.6	-6.6	PATH
Id[2]	34.1	26.4	-10.6	-6.6	PATH
Id[3]	34.9	27.2	-11.4	-7.4	PATH
Ios		3.9		-1.3	PATH
N reset	19.6	18.3	-10.5	-8.6	PATH
Ode	31.5	22.8	-8.8	-4.4	PATH
Pixel in[0]		2.7		6.2	PATH
Pixel in[10]		1.8		6.4	PATH
Pixel in[11]		1.4		6.4	PATH
Pixel in[12]		1.4		6.4	PATH
Pixel_in[13]		1.6		6.5	PATH
Pixel in[14]		1.9		6.5	PATH.
Pixel_in[15]		1.8		6.5	PATH
Pixel_in[1]		2.8		6.2	PATH
Pixel_in[2]		1.9		6.2	PATH
Pixel_in[3]		3.6		6.3	PATH
Pixel_in[4]		2.0		6.3	PATH
Pixel in[5]		3.0		6.3	PATH
		3.0		V.5	

Pixel_in[6]		3.0		6.3	PATH
Pixel_in[7]		2.6		6.4	PATH
Pixel_in[8]		2.4		6.4	PATH
Pixel_in[9]		2.5		6.4	PATH
Test	17.6		-1.0		PATH

Genesil Version v8.0.2 -- Wed Feb 13 16:52:01 1991

Chip: /mntb/theta/theta/theta Timing Analyzer *************************

OUTPUT DELAY MODE

Fabline: HP2_CN10B Junction Temperature: 100 deg C Corner: GUARANTEED

External Clock: Pixel_clk

Voltage:4.50v

Included setup files:

#0 worstcase

(Max junction T, min operating V)

_	OIIIO				
Output		PUT DELAYS Delay	(ns) Ph2(r)	Dolan	Loading(pf)
odepue	Min	Max	Min	Max	Loading (pi)
Begin frame out			22.1	25.9	50.00 PATH
Begin row out			22.0	25.8	50.00 PATH
Data[0]			21.0	24.8	50.00 PATH
Data[10]			21.6	25.4	50.00 PATH
Data[11]			21.7	25.4	50.00 PATH
Data[12]			21.8	25.5	50.00 PATH
Data[13]			21.8	25.6	50.00 PATH
Data[14]			21.8	25.6	50.00 PATH
Data[15]			21.9	25.6	50.00 PATH
Data[1]			21.0	24.8	50.00 PATH
Data[2]			21.2	25.0	50.00 PATH
Data[3]			21.2	25.0	50.00 PATH
Data[4]			21.3	25.1	50.00 PATH
Data[5]			21.3	25.1	50.00 PATH
Data[6]			21.4	25.2	50.00 PATH
Data[7]			21.5	25.2	50.00 PATH
Data[8]			21.6	25.3	50.00 PATH
Data [9]			21.6	25.4	50.00 PATH
End_frame_out			21.9	25.7	50.00 PATH
End row out			21.9	25.7	50.00 PATH
N dr	18.6	34.1	18.6	28.6	50.00 PATH
Pixel out[0]			22.3	26.1	50.00 PATH
Pixel_out[10]			21.7	25.5	50.00 PATH
Pixel out[11]			21.6	25.4	50.00 PATH
Pixel out[12]			21.5	25.3	50.00 PATH
Pixel out[13]			21.4	25.2	50.00 PATH
Pixel out[14]			21.3	25.1	50.00 PATH
Pixel out[15]			21.2	25.0	50.00 PATH
Pixel out[1]			22.2	26.0	50.00 PATH
Pixel out[2]			22.2	26.0	50.00 PATH
Pixel out[3]			22.1	25.9	50.00 PATH
Pixel out[4]			22.1	25.9	50.00 PATH
Pixel out[5]			22.0	25.9	50.00 PATH
Pixel out[6]			21.9	25.8	50.00 PATH
Pixel out[7]			21.9	25.7	50.00 PATH
Pixel out[8]			21.8	25.7	50.00 PATH
Pixel out[9]			21.8	25.6	50.00 PATH
Theta16			21.8	25.7	50.00 PATH
			21.0	23.1	JU.UU FAIR

NO VIOLATIONS

Hold time check margin: 2.0ns

Appendix G. 2. Pixel_Clk, TYPICAL, Room T, 5.0 V

**************************************	**************************************	
Genesii Version Vo Chip: /mntb/theta/theta/theta	.0.2 == wed reb 13 1	Timing Analyze
**********	*****	
CLOCK REPORT MODE		
Fabline: HP2_CN10B	Corner: TYPIC	
Junction Temperature:55 deg C	Voltage:5.00v	
External Clock: Pixel_clk		
Included setup files:		
	m junction T , 5.0 op	erating V)
- Ct.O	CK TIMES (minimum)	
	Phase 2 High:	95.6 ns
	•	
Cycle (from Phl): 108.1 ns	Cycle (from Ph	2): 127.6 ns
Minimum Cycle Time: 198.2 ns	Symmetric Cycl	e Time: 205.1 ns
		
	K WORST CASE PATHS	
Minimum Phase 1 high time is 10	ns set by:	
** Clock delay: 2.9ns (105.4-10		•
	Cumulative Delay	Transition
<pre>pixel_out[2]/(internal)</pre>	105.4	fall
pixel out[2]/pixel out	104.7	rise
output/mux1/pixel out[2]	104.7	rise
output/mux1/pixel out[2]'	98.1	rise
output/mux1/NN N6	97.7	fall
output/mux1/NNMUX213.SEL	97.4	rise
output/mux1/NN N1	96.6	fall
output/mux1/NN N2	96.0	rise
output/mux1/n state	95.2	fall
output/neuron/activity[17]	95.2	fall
output/neuron/activity[17]'	95.1	fall
output/neuron/ADDA0_OUT[17]	94.3	fall
output/neuron/n theta[16]	91.5	fall
output/inverters/n_theta[16]	91.5	fall
output/inverters/n theta[16]'		fall
output/inverters/theta[16]	90.7	rise
output/mux0/theta[16]	90.7	rise
output/mux0/theta[16]'	82.2	rise
output/mux0/NN_N34	81.9	fall
output/mux0/adaptive16	81.6	rise
output/mux1/adaptive16	81.6	rise
output/mux1/adaptive16'	79.3	rise
output/mux1/n_adaptive16	78.9	fall
adapt/MSTflag/n_adaptive16	78.9	fall
adapt/MSTflag/n_adaptive16'	75.1	fall
adapt/MSTflag/thresh[20]	74.2	rise
adapt/k3_add/thresh[24]	74.2	rise
adapt/k3_add/thresh[24]'	74.1	rise
adapt/k3_add/ADDA0_OUT[24]	73.4	rise
adapt/k3_add/sum1[22]	69.4	fall
adapt/k2_alu/sum1[22]	69.4	fall
adapt/k2_alu/sum1[22]'	69.3	fall
adapt/k2_alu/ADDA0_OUT[22]	68.5	fall

adapt/k2_ctrl1/sgn_prod2[20]	64.6	rise
adapt/k2_ctrl1/sgn_prod2[20]'	62.0	rise
adapt/k2_ctrl1/n_prod2[20]	61.2	rise
adapt/k2_ctrl1/n_prod2[20]'	61.1	rise
adapt/k2_ctrl1/prod2[20]	60.6	fall
adapt/k2_add/k2xL1[34]	60.6	fall
adapt/k2_add/k2xL1[34]'	60.5	fall
adapt/k2_add/ADDA0_OUT[18]	59.7	fall
adapt/k2_add/k2xL10[0]	46.5	fall
adapt/mult_k2/k2xL10[0]	46.5	fall
adapt/mult_k2/k2xL10[0]'	45.7	fall
adapt/mult_k2/k2[0]	11.6	fall
host_stuff/reg0/k2[0]	11.6	fall
host_stuff/reg0/k2[0]'	9.1	fall
host_stuff/reg0/NNk21.clock_x	7.6	rise
host_stuff/reg0/PHASE_A	6.1	rise
pixel_clk/PHASE_A	6.1	rise
Pixel_clk	0.0	rise

Minimum Phase 2 high time is 95.6 ns set by:

** Clock delay: 3.2ns (98.8-95.6	6)
----------------------------------	----

** Clock delay: 3.2ns (98.8-95.		
Node	Cumulative Delay	Transition
<pre>output/mux1/(internal)</pre>	98.8	rise
output/mux1/NNMUX213.SEL	97.6	fall
output/mux1/NN_N1	97.0	rise
output/mux1/NN_N2	96.3	fall
output/mux1/n_state	95.9	rise
output/neuron/activity[17]	95.9	rise
output/neuron/activity[17]'	95.8	rise
output/neuron/ADDA0_OUT[17]	95.1	rise
output/neuron/n_theta[16]	91.9	fall
<pre>output/inverters/n_theta[16]</pre>	91.9	fall
output/inverters/n_theta[16]'	91.3	fall
output/inverters/theta[16]	91.0	rise
output/mux0/theta[16]	91.0	rise
output/mux0/theta[16]'	82.5	rise
output/mux0/NN_N34	82.3	fall
output/mux0/adaptive16	82.0	rise
output/mux1/adaptive16	82.0	rise
output/mux1/adaptive16'	79.6	rise
output/mux1/n_adaptive16	79.3	fall
adapt/MSTflag/n_adaptive16	79.3	fall
adapt/MSTflag/n_adaptive16'	75.4	fall
adapt/MSTflag/thresh[20]	74.6	rise
adapt/k3_add/thresh[24]	74.6	rise
adapt/k3_add/thresh[24]'	74.5	rise
adapt/k3_add/ADDA0_OUT[24]	73.8	rise
adapt/k3_add/sum1[22]	69.7	fall
adapt/k2_alu/sum1[22]	69.7	fall
adapt/k2 alu/sum1[22]'	69.7	fall
adapt/k2_alu/ADDA0_OUT[22]	68.9	fall
adapt/k2_alu/sgn_prod2[20]	64.9	rise
adapt/k2_ctrl1/sgn_prod2[20]	64.9	rise
adapt/k2_ctrl1/sgn_prod2[20]'	62.3	rise
adapt/k2 ctrl1/n prod2[20]	61.5	rise
adapt/k2 ctrl1/n prod2[20]'	61.4	rise
adapt/k2_ctrl1/prod2[20]	60.9	fall
adapt/k2_add/k2xL1[34]	60.9	fall
adapt/k2 add/k2xL1[34]'	60.8	fall
adapt/k2_add/ADDA0_OUT[18]	60.0	fall
adapt/k2 add/k2xL10[0]	46.8	fall

adapt/mult_k2/k2xL10[0]	46.8	fall
adapt/mult_k2/k2xL10[0]'	46.0	fall
adapt/mult_k2/L1[3]	11.9	fall
adapt/L1_add/L1[3]	11.9	fall
adapt/L1_add/L1[3]'	9.3	fall
adapt/L1_add/INTER2_VAL1[3]	8.3	fall
adapt/L1_add/PHASE_B	5.8	rise
pixel_clk/PHASE_B	5.8	rise
Pixel_clk	0.0	fall

Minimum cycle time (from Ph1) is 108.1 ns set by:

nimum cycle time (from Phi) is	ns set by	:
** Clock delay: 6.1ns (114.3-10	8.1)	
Node	Cumulative Delay	Transition
<pre><put mux1="" nncountu4.mout_y[15]<="" pre=""></put></pre>	114.3	rise
output/mux1/NN_N50	114.0	fall
output/mux1/NN_N3	113.6	rise
output/mux1/NN_N34	113.0	fall
<pre><put mux1="" nncountu4.cout_y[13]<="" pre=""></put></pre>	112.5	rise
output/mux1/NN_N33	112.0	fall
<pre><put mux1="" nncountu4.cout_y[12]<="" pre=""></put></pre>	111.6	rise
output/mux1/NN_N32	111.0	fall
<pre><put mux1="" nncountu4.cout_y[11]<="" pre=""></put></pre>	110.6	rise
output/mux1/NN_N31	110.1	fall
<pre><put mux1="" nncountu4.cout_y[10]<="" pre=""></put></pre>	109.7	rise
output/mux1/NN_N14	109.2	fall
<pre><tput mux1="" nncountu4.cout_y[9]<="" pre=""></tput></pre>	108.8	rise
output/mux1/NN_N30	108.3	fall
<pre><tput mux1="" nncountu4.cout_y[8]<="" pre=""></tput></pre>	108.0	rise
output/mux1/NN N29	107.5	fall
<pre><tput mux1="" nncountu4.cout="" pre="" y[7]<=""></tput></pre>	107.1	rise
output/mux1/NN N28	106.6	fall
<pre><tput mux1="" nncountu4.cout="" pre="" y[6]<=""></tput></pre>	106.2	rise
output/mux1/NN_N27	105.7	fall
<pre><tput mux1="" nncountu4.cout="" pre="" y[5]<=""></tput></pre>	105.3	rise
output/mux1/NN N26	104.9	fall
<pre><tput mux1="" nncountu4.cout="" pre="" y[4]<=""></tput></pre>	104.5	rise
output/mux1/NN_N25	104.0	fall
<pre><tput mux1="" nncountu4.cout="" pre="" y[3]<=""></tput></pre>	103.5	rise
output/mux1/NN N24	102.9	fall
<pre><tput mux1="" nncountu4.cout_y[2]<="" pre=""></tput></pre>	102.5	rise
<pre><tput mux1="" nncountu4.cout_y[1]<="" pre=""></tput></pre>	101.7	rise
output/mux1/NN N22	101.2	fall
<pre><tput mux1="" nncountu4.cout_y[0]<="" pre=""></tput></pre>	100.8	rise
output/mux1/NN N21	100.3	fall
output/mux1/NNCOUNTU4.cin y	99.9	rise
output/mux1/NNMUX213.SEL	98.9	rise
output/mux1/NN N1	98.1	fall
output/mux1/NN_N2	97.5	rise
output/mux1/n state	96.7	fall
output/neuron/activity[17]	96.7	fall
output/neuron/activity[17]'	96.6	fall
output/neuron/ADDAO_OUT[17]	95.8	fall
output/neuron/n_theta[16]	93.0	fall
output/inverters/n_theta[16]	93.0	fall
output/inverters/n_theta[16]'	92.5	fall
output/inverters/theta[16]	92.1	rise
output/mux0/theta[16]	92.1	rise
output/mux0/theta[16]'	83.7	
output/mux0/theta[16]	83.4	rise fall
output/mux0/adaptive16	83.1	rise
output/mux1/adaptive16	83.1	rise rise
oucpuc/mux1/adapcive16	03.1	rise

output/mux1/adaptive16'	80.7	rise
output/mux1/n_adaptive16	80.4	fall
adapt/MSTflag/n_adaptive16	80.4	fall
adapt/MSTflag/n_adaptive16'	76.5	fall
adapt/MSTflag/thresh[20]	75.7	rise
adapt/k3_add/thresh[24]	75.7	rise
adapt/k3_add/thresh[24]'	75.6	rise
adapt/k3_add/ADDA0_OUT[24]	74.9	rise
adapt/k3_add/sum1[6]	62.0	fall
adapt/k2_alu/sum1[6]	62.0	fall
adapt/k2_alu/sum1[6]'	61.9	fall
adapt/k2 alu/ADDA0 OUT[6]	61.1	fall
adapt/k2_alu/INTER3_VAL1[4]	56.8	fall
*adapt/k2_alu/(internal)	55.3	fall
adapt/k2_alu/prod1[4]	54.2	fall
adapt/k1_add/k1xavg[18]	54.2	fall
adapt/k1_add/k1xavg[18]'	54.1	fall
adapt/k1_add/ADDA0_OUT[2]	53.3	fall
adapt/k1_add/k1xavg0[0]	49.0	fall
adapt/mult_k1/k1xavg0[0]	49.0	fall
adapt/mult_k1/k1xavg0[0]'	48.7	fall
adapt/mult_k1/k1[2]	12.8	fall
host_stuff/reg0/k1[2]	12.8	fall
host_stuff/reg0/k1[2]'	9.1	fall
host_stuff/reg0/NNk11.clock_x	7.6	rise
host_stuff/reg0/PHASE_A	6.1	rise
pixel_clk/PHASE_A	6.1	rise
Pixel_clk	0.0	rise

Minimum cycle time (from Ph2) is 127.6 ns set by:

** Clock delay: 2.9ns (130.5-12	7.6)	
Node	Cumulative Delay	Transition
data_pads[15]/(internal)	130.5	fall
data_pads[15]/15	129.9	fall
data_pads[15]/data_out	129.8	rise
<_stuff/d_out_mux/data_out[15]	129.8	rise
<pre><stuff d_out_mux="" data_out[15]'<="" pre=""></stuff></pre>	122.8	rise
host_stuff/d_out_mux/d_out[15]	122.0	rise
<st_stuff d_out[15]'<="" d_out_mux="" td=""><td>121.7</td><td>rise</td></st_stuff>	121.7	rise
host_stuff/d_out_mux/N0[15]	120.3	rise
output/mux1/N0[15]	120.3	rise
output/mux1/N0[15]'	114.2	rise
* <ut mux1="" nncountu4.mout_y[15]<="" td=""><td>113.2</td><td>rise</td></ut>	113.2	rise
output/mux1/NN_N50	112.8	fall
output/mux1/NN_N3	112.5	rise
output/mux1/NN_N34	111.9	fall
<pre><put mux1="" nncountu4.cout_y[13]<="" pre=""></put></pre>	111.4	rise
output/mux1/NN_N33	110.9	fall
<pre><put mux1="" nncountu4.cout_y[12]<="" pre=""></put></pre>	110.4	rise
output/mux1/NN_N32	109.9	fall
<pre><put mux1="" nncountu4.cout_y[11]<="" pre=""></put></pre>	109.5	rise
output/mux1/NN_N31	109.0	fall
<pre><put mux1="" nncountu4.cout_y[10]<="" pre=""></put></pre>	108.6	rise
output/mux1/NN_N14	108.1	fall
<pre><tput mux1="" nncountu4.cout_y[9]<="" pre=""></tput></pre>	107.7	rise
output/mux1/NN_N30	107.2	fall
<pre><tput mux1="" nncountu4.cout_y[8]<="" pre=""></tput></pre>	106.8	rise
output/mux1/NN_N29	106.3	fall
<pre><tput mux1="" nncountu4.cout_y[7]<="" pre=""></tput></pre>	106.0	rise
output/mux1/NN N28	105.4	fall

105.1

rise

<tput/mux1/NNCOUNTU4.cout_y[6]</pre>

output/mux1/NN_N27	104.6	. fall
<pre><tput mux1="" nncountu4.cout_y[5]<="" pre=""></tput></pre>	104.2	rise
output/mux1/NN_N26	103.7	fall
<pre><tput mux1="" nncountu4.cout_y[4]<="" pre=""></tput></pre>	103.4	rise
output/mux1/NN_N25	102.8	fall
<pre><tput mux1="" nncountu4.cout_y[3]<="" pre=""></tput></pre>	102.4	rise
output/mux1/NN_N24	101.8	fall
<pre><tput mux1="" nncountu4.cout_y[2]<="" pre=""></tput></pre>	101.4	rise
<pre><tput mux1="" nncountu4.cout="" pre="" y[1]<=""></tput></pre>	100.5	rise
output/mux1/NN_N22	100.1	fall
<pre><tput mux1="" nncountu4.cout_y[0]<="" pre=""></tput></pre>	99.7	rise
output/mux1/NN N21	99.2	fall
output/mux1/NNCOUNTU4.cin y	98.8	rise
output/mux1/NNMUX213.SEL	97.8	rise
output/mux1/NN N1	96.9	fall
output/mux1/NN N2	96.4	rise
-	95.5	
output/mux1/n_state		fall
output/neuron/activity[17]	95.5	fall
output/neuron/activity[17]'	95.5	fall
output/neuron/ADDA0_OUT[17]	94.7	fall
output/neuron/n_theta[16]	91.9	fall
output/inverters/n_theta[16]	91.9	fall
output/inverters/n_theta[16]'	91.3 .	fall
output/inverters/theta[16]	91.0	rise
output/mux0/theta[16]	91.0	rise
output/mux0/theta[16]'	82.5	rise
output/mux0/NN_N34	82.3	fall
output/mux0/adaptive16	82.0	rise
output/mux1/adaptive16	82.0	rise
output/mux1/adaptive16'	79.6	rise
output/muxl/n adaptive16	79.3	fall
adapt/MSTflag/n_adaptive16	79.3	fall
adapt/MSTflag/n adaptive16'	75.4	fall
adapt/MSTflag/thresh[20]	74.6	rise
adapt/k3_add/thresh[24]	74.6	rise
adapt/k3_add/thresh[24]'	74.5	rise
adapt/k3 add/ADDAO OUT[24]	73.8	rise
adapt/k3 add/sum1[22]	69.7	fall
adapt/k2_alu/sum1[22]	69.7	fall
adapt/k2_alu/sum1[22]'	69.7	fall
-	68.9	
adapt/k2_alu/ADDAO_OUT[22]		fall
adapt/k2_alu/sgn_prod2[20]	64.9	rise
adapt/k2_ctrl1/sgn_prod2[20]	64.9	rise
adapt/k2_ctrl1/sgn_prod2[20]'	62.3	rise
adapt/k2_ctrl1/n_prod2[20]	61.5	rise
adapt/k2_ctrl1/n_prod2[20]'	61.4	rise
adapt/k2_ctrl1/prod2[20]	60.9	fall
adapt/k2_add/k2xL1[34]	60.9	fall
adapt/k2_add/k2xL1[34]'	60.8	fall
adapt/k2_add/ADDA0_OUT[18]	60.0	fall
adapt/k2_add/k2xL10[0]	46.8	fall
adapt/mult_k2/k2xL10[0]	46.8	fall
adapt/mult_k2/k2xL10[0]'	46.0	fall
adapt/mult_k2/L1[3]	11.9	fall
adapt/L1_add/L1[3]	11.9	fall
adapt/L1_add/L1[3]'	9.3	fall
adapt/L1_add/INTER2 VAL1[3]	8.3	fall
adapt/L1_add/PHASE_B	5.8	rise
pixel_clk/PHASE_B	5.8	rise
Pixel_clk	0.0	fall
- 1.01_01X	0.0	rail

***********	***********
Genesil Version v8.0.2	Wed Feb 13 18:54:05 1991
Chip: /mntb/theta/theta/theta	Timing Analyzer
**********	************
SETUP AND HOLD MODE	
Fabline: HP2_CN10B	Corner: TYPICAL
Junction Temperature:55 deg C	Voltage:5.00v

Junction Temperature:55 deg C External Clock: Pixel_clk

Included setup files: #0 nominal

(Room junction T, 5.0 operating V)

-	INPUT	SETUP AND HOLD	TIMES	(ns)	
Input	Setup	Time	Hold		
	Ph1(f)	Ph2(f)	Ph1(f)	Ph2(f)	
Address[0]	20.0	11.1	-5.0	-7.0	PATH
Address[1]	19.1	10.2	-4.0	-6.4	PATH
Address[2]	15.0	8.2	-1.7	-4.3	PATH
Address[3]	17.5	10.9	-3.6	-7.2	PATH
Begin frame in		4.1		1.9	PATH
Begin row in		4.1		1.9	PATH
Data[0]	1.6	28.9	1.1	2.7	PATH
Data[10]	1.2	22.0	1.3	3.0	PATH
Data[11]	1.2	21.7	1.3	3.0	PATH
Data[12]	1.3	20.8	1.3	2.9	PATH
Data[13]	1.3	20.7	1.2	2.9	PATH
Data[14]	1.5	19.7	1.1	2.8	PATH
Data[15]	1.1	19.3	1.3	3.0	PATH
Data[1]	1.5	27.3	1.2	2.8	PATH
Data[2]	1.5	27.0	1.1	2.8	PATH
Data[3]	1.4	26.1	1.2	2.9	PATH
Data[4]	1.1	25.6	1.4	3.1	PATH
Data[5]	1.0	24.3	1.4	3.1	PATH
Data[6]	0.9	24.6	1.4	3.1	PATH
Data[7]	1.1	24.0	1.4	3.1	PATH
Data[8]	1.2	23.8	1.3	3.0	PATH
Data[9]	1.2	22.8	1.3	3.0	PATH
Ds[0]	17.6	14.3	-6.2	-4.2	PATH
Ds[1]	17.5	14.2	-6.1	-4.1	PATH
Ds[2]	17.4	14.0	-6.0	-3.9	PATH
Ds[3]	17.4	14.0	-6.0	-3.9	PATH
End frame in		3.4		1.9	PATH
End row in		4.5		1.9	PATH
Id(0)	17.7	14.3	-6.3	-4.2	PATH
Id[1]	17.3	13.9	-5.8	-3.8	PATH
Id[2]	17.3	13.9	-5.9	-3.8	PATH
Id[3]	17.7	14.3	-6.3	-4.2	PATH
Ios		2.4		-1.0	PATH
N reset	9.7	9.1	-5.8	-4.8	PATH
Ode	16.1	12.1	-5.1	-2.7	PATH
Pixel in[0]		1.7		1.9	PATH
Pixel in[10]		1.6		1.9	PATH
Pixel in[11]		1.5		1.9	PATH
Pixel in[12]		1.5		1.9	PATH
Pixel in[13]		1.6		1.9	PATH
Pixel in[14]		1.7		1.9	PATH
Pixel in[15]		1.7		1.9	PATH
Pixel_in[1]		1.8		1.9	PATH
Pixel in[2]		1.5		1.9	PATH
Pixel_in[3]		2.3		1.9	PATH
Pixel_in[4]		1.6		1.9	PATH
Pixel in[5]		2.1		1.9	PATH
 					

Pixel_in[6]		2.1		1.9	PATH
Pixel_in[7]		2.0		1.9	PATH
Pixel_in[8]		1.9		1.9	PATH
Pixel_in[9]		1.9		1.9	PATH
Test	9.1		-1.2		PATH

Genesil Version v8.0.2 -- Wed Feb 13 18:54:08 1991

Timing Analyzer Chip: /mntb/theta/theta/theta *************************

OUTPUT DELAY MODE

Fabline: HP2_CN10B Corner: TYPICAL

Junction Temperature:55 deg C

Voltage:5.00v External Clock: Pixel_clk

Included setup files: #0 nominal

(Room junction T, 5.0 operating V)

-	OUT	PUT DELA	YS (ns)			
Output	Ph1(r)	Delay	Ph2(r)	Delay	Loading	g(pf)
•	Min	Max	Min	Max		
Begin_frame_out			11.6	14.1	50.00	PATH
Begin_row_out			11.6	14.1	50.00	PATH
Data[0]			11.7	14.1	50.00	PATH
Data[10]			11.7	14.1	50.00	PATH
Data[11]			11.7	14.1	50.00	PATH
Data[12]			11.7	14.1	50.00	PATH
Data[13]			11.7	14.1	50.00	PATH
Data[14]			11.7	14.1	50.00	PATH
Data[15]			11.7	14.1	50.00	PATH
Data[1]			11.7	14.1	50.00	PATH
Data[2]			11.7	14.1	50.00	PATH
Data[3]			11.7	14.1	50.00	PATH
Data[4]			11.7	14.1	50.00	PATH
Data[5]			11.7	14.1	50.00	PATH
Data[6]			11.7	14.1	50.00	PATH
Data[7]			11.7	14.1	50.00	PATH
Data[8]			11.7	14.1	50.00	PATH
Data[9]			11.7	14.1	50.00	PATH
End_frame_out			11.6	14.1	50.00	PATH
End_row_out			11.6	14.1	50.00	PATH
N_dr	11.4	19.5	11.4	16.4	50.00	PATH
Pixel_out[0]			11.6	14.1	50.00	PATH
Pixel_out[10]			11.6	14.1	50.00	PATH
Pixel_out[11]			11.6	14.1	50.00	PATH
Pixel_out[12]			11.6	14.1	50.00	PATH
Pixel_out[13]			11.6	14.1	50.00	PATH
Pixel_out[14]			11.6	14.1	50.00	PATH
Pixel_out[15]			11.6	14.1	50.00	PATH
Pixel_out[1]			11.6	14.1	50.00	PATH
Pixel_out[2]			11.6	14.1	50.00	PATH
Pixel_out[3]			11.6	14.1	50.00	PATH
Pixel_out[4]			11.6	14.1	50.00	PATH
Pixel_out[5]			11.6	14.1	50.00	PATH
Pixel_out[6]			11.6	14.1	50.00	PATH
Pixel_out[7]			11.6	14.1	50.00	PATH
Pixel_out[8]			11.6	14.1	50.00	PATH
Pixel_out[9]			11.6	14.1	50.00	PATH
Theta16			11.6	14.1	50.00	PATH

******	********	*****
Genesil Versio	n v8.0.2 Wed Feb 13 18:55:28 1991	
Chip: /mntb/theta/theta/theta		Timing Analyzer
*******	*******	******
VIOLATION MODE		
Fabline: HP2_CN10B	Corner: TYPICAL	
Junction Temperature:55 deg	C Voltage:5.00v	
External Clock: Pixel_clk		
Included setup files:		
#0 nominal	(Room junction T, 5.0 operating V)	

NO VIOLATIONS

Hold time check margin: 2.0ns

Appendix G. 3. Pixel_Clk, GUARANTEED, Room T, 5.0 V

*********	*******	******	*****	*****
Genesil Version v	3.0.2 Wed Feb 13 1	9:11:09 19	91	
Chip: /mntb/theta/theta/theta				g Analyzer
*********	******	******	*****	*****
CLOCK REPORT MODE				
Fabline: HP2_CN10B	Corner: GUARA			
Junction Temperature:55 deg C	Voltage:5.00v	•		
External Clock: Pixel_clk				
Included setup files:				
#0 nominal (Roc	om junction T, 5.0 or			
	OCK TIMES (minimum)	•		
Phase 1 High: 161.2 ns	Phase 2 High:	150.9	ns	
-				
Cycle (from Ph1): 169.3 ns	Cycle (from Ph	202.	6 ns	
Minimum Cycle Time: 312.1 ns	Symmetric Cycl			
		_		
CIO	CK WORST CASE PATHS			
Minimum Phase 1 high time is 10				
** Clock delay: 6.0ns (167.2-16	61.2)			
Node	Cumulative Delay	Transit	ion	
<pre>pixel out[2]/(internal)</pre>	167.2	fall		
pixel out[2]/pixel out	166.0	rise		
output/mux1/pixel out[2]	165.7	rise		
output/mux1/pixel out[2]'	154.4	rise		
output/mux1/NN N6	153.9	fall		
output/mux1/NNMUX213.SEL	153.4	rise	:	
output/mux1/NN N1	152.2	fall		
output/mux1/NN N2	151.3	rise		
output/mux1/n state	150.1	fall		
output/neuron/activity[17]	150.1	fall		
output/neuron/activity[17]'	150.0	fall		
<pre>output/neuron/ADDA0_OUT[17]</pre>	148.8	fall		
output/neuron/n_theta[16]	144.4	fall		
output/inverters/n_theta[16]	144.4	fall		
output/inverters/n_theta[16]'	143.6	fall		
output/inverters/theta[16]	143.1	rise	:	
output/mux0/theta[16]	143.1	rise	:	
output/mux0/theta[16]'	128.8	rise	:	
output/mux0/NN_N34	128.4	fall		
output/mux0/adaptive16	127.9	rise	•	
output/mux1/adaptive16	127.9	rise	:	
output/mux1/adaptive16'	123.9	rise	!	
output/muxl/n_adaptive16	123.4	fall		
adapt/MSTflag/n_adaptive16	121.5	fall		
adapt/MSTflag/n_adaptive16'	115.3	fall		
adapt/MSTflag/thresh[20]	114.1	rise		
adapt/k3_add/thresh[24]	114.1	rise		
adapt/k3_add/thresh[24]'	113.9	rise		•
adapt/k3_add/ADDA0_OUT[24]	112.9	rise		
adapt/k3_add/sum1[22]	106.6	fall		
adapt/k2_alu/sum1[22]	106.6	fall		
adapt/k2_alu/sum1[22]'	106.5	fall		
adapt/k2_alu/ADDA0_OUT[22]	105.3	fall		
adapt/k2_alu/sgn_prod2[18]	97.5	rise	9	

adapt/k2_ctrl1/sgn_prod2[18]	97.4	rise
adapt/k2_ctrl1/sgn_prod2[18]'	93.1	rise
adapt/k2_ctrl1/n_prod2[18]	91.8	rise
adapt/k2_ctrl1/n_prod2[18]'	91.7	rise
adapt/k2_ctrl1/prod2[18]	91.0	fall
adapt/k2_add/k2xL1[32]	91.0	fall
adapt/k2_add/k2xL1[32]'	90.8	fall
adapt/k2_add/ADDA0_OUT[16]	89.6	fall
adapt/k2_add/k2xL10[0]	71.0	fall
adapt/mult_k2/k2xL10[0]	71.0	fall
adapt/mult_k2/k2xL10[0]'	69.8	fall
adapt/mult_k2/k2[0]	18.6	fall
host_stuff/reg0/k2[0]	18.3	fall
host_stuff/reg0/k2[0]'	14.4	fall
host_stuff/reg0/NNk21.clock_x	12.2	rise
host_stuff/reg0/PHASE_A	10.0	rise
pixel_clk/PHASE_A	9.0	rise
Pixel_clk	0.0	rise

Minimum Phase 2 high time is 150.9 ns set by:

* *	Clock	delay:	5.6ns	(156.6-150.9)	
-----	-------	--------	-------	---------------	--

crock deray. Stone (19010 1	30.3,	
Node	Cumulative Delay	Transition
<pre>output/mux1/(internal)</pre>	156.6	rise
output/mux1/NNMUX213.SEL	154.7	fall
output/mux1/NN_N1	154.0	rise
output/mux1/NN_N2	152.9	fall
output/mux1/n_state	152.3	rise
output/neuron/activity[17]	152.2	rise
output/neuron/activity[17]'	152.1	rise
output/neuron/ADDA0_OUT[17]	151.1	rise
output/neuron/n_theta[16]	146.0	fall
output/inverters/n_theta[16]	146.0	fall
output/inverters/n_theta[16]'	145.2	fall
output/inverters/theta[16]	144.7	rise
output/mux0/theta[16]	144.7	rise
output/mux0/theta[16]'	130.4	rise
output/mux0/NN_N34	130.0	fall
output/mux0/adaptive16	129.6	rise
output/mux1/adaptive16	129.5	rise
output/mux1/adaptive16'	125.5	rise
output/mux1/n_adaptive16	125.0	fall
adapt/MSTflag/n_adaptive16	123.2	fall
adapt/MSTflag/n_adaptive16'	116.9	fall
adapt/MSTflag/thresh[20]	115.7	rise
adapt/k3_add/thresh[24]	115.7	rise
adapt/k3_add/thresh[24]'	115.5	rise
adapt/k3_add/ADDA0_OUT[24]	114.5	rise
adapt/k3_add/sum1[22]	108.3	fall
adapt/k2_alu/sum1[22]	108.3	fall
adapt/k2_alu/sum1[22]'	108.2	fall
adapt/k2_alu/ADDA0_OUT[22]	107.0	fall
adapt/k2_alu/sgn_prod2[18]	99.1	rise
adapt/k2_ctrl1/sgn_prod2[18]	99.1	rise
adapt/k2_ctrl1/sgn_prod2[18]'	94.7	rise
adapt/k2_ctrl1/n_prod2[18]	93.5	rise
adapt/k2_ctrl1/n_prod2[18]'	93.3	rise
adapt/k2_ctrl1/prod2[18]	92.6	fall
adapt/k2_add/k2xL1[32]	92.6	fall
adapt/k2_add/k2xL1[32]'	92.5	fall
adapt/k2_add/ADDA0_OUT[16]	91.3	fall
adapt/k2_add/k2xL10[0]	72.7	fall
_		

adapt/mult_k2/k2xL10[0]	72.7	fall
adapt/mult_k2/k2xL10[0]'	71.4	fall
adapt/mult_k2/L1[3]	20.1	fall
adapt/L1_add/L1[3]	19.9	fall
adapt/L1_add/L1[3]'	16.1	fall
adapt/L1_add/INTER2_VAL1[3]	14.5	fall
adapt/L1_add/PHASE_B	10.7	rise
pixel_clk/PHASE_B	9.0	rise
Pixel_clk	0.0	fall

nimum cycle time (from Ph1) is	169.3 ns set by:	
** Clock delay: 9.8ns (179.1-16	9.3)	
Node	Cumulative Delay	Transition
<pre><put mux1="" nncountu4.mout_y[15]<="" pre=""></put></pre>	179.1	rise
output/mux1/NN_N50	178.5	fall
output/mux1/NN_N3	178.0	rise
output/mux1/NN_N34	177.2	fall
<pre><put mux1="" nncountu4.cout_y[13]<="" pre=""></put></pre>	176.4	rise
output/mux1/NN_N33	175.5	fall
<pre><put mux1="" nncountu4.cout_y[12]<="" pre=""></put></pre>	174.9	rise
output/mux1/NN_N32	174.1	fall
<pre><put mux1="" nncountu4.cout_y[11]<="" pre=""></put></pre>	173.4	rise
output/mux1/NN_N31	172.6	fall
<pre><put mux1="" nncountu4.cout_y[10]<="" pre=""></put></pre>	172.0	rise
output/mux1/NN_N14	171.2	fall
<pre><tput mux1="" nncountu4.cout_y[9]<="" pre=""></tput></pre>	170.7	rise
output/mux1/NN_N30	170.0	fall
<pre><tput mux1="" nncountu4.cout_y[8]<="" pre=""></tput></pre>	169.4	rise
output/mux1/NN_N29	168.6	fall
<pre><tput mux1="" nncountu4.cout="" pre="" y[7]<=""></tput></pre>	168.0	rise
output/mux1/NN_N28	167.2	fall
<pre><tput mux1="" nncountu4.cout="" pre="" y[6]<=""></tput></pre>	166.7	rise
output/mux1/NN N27	165.9	fall
<pre><tput mux1="" nncountu4.cout="" pre="" y[5]<=""></tput></pre>	165.3	rise
output/mux1/NN N26	164.6	fall
<pre><tput mux1="" nncountu4.cout_y[4]<="" pre=""></tput></pre>	164.0	rise
output/mux1/NN N25	163.2	fall
<pre><tput mux1="" nncountu4.cout_y[3]<="" pre=""></tput></pre>	162.6	rise
output/mux1/NN N24	161.6	fall
<pre><tput mux1="" nncountu4.cout="" pre="" y[2]<=""></tput></pre>	161.0	rise
<pre><tput mux1="" nncountu4.cout="" pre="" y[1]<=""></tput></pre>	159.7	rise
output/mux1/NN N22	159.0	fall
<pre><tput mux1="" nncountu4.cout="" pre="" y[0]<=""></tput></pre>	158.4	rise
output/mux1/NN N21	157.6	fall
output/mux1/NNCOUNTU4.cin y	157.1	rise
output/mux1/NNMUX213.SEL	155.5	rise
output/mux1/NN_N1	154.3	fall
output/mux1/NN N2	153.4	rise
output/mux1/n state	152.1	fall
output/neuron/activity[17]	152.1	fall
output/neuron/activity[17]'	152.0	fall
output/neuron/ADDA0 OUT[17]	150.8	fall
output/neuron/n_theta[16]	146.5	fall
output/inverters/n_theta[16]	146.5	fall
output/inverters/n_theta[16]'	145.6	fall
output/inverters/theta[16]	145.1	rise
output/mux0/theta[16]	145.1	rise
output/mux0/theta[16]'	130.9	rise
output/mux0/NN N34	130.4	fall
output/mux0/adaptive16	130.4	rise
output/mux1/adaptive16	130.0	rise
ogchac\unxt\adabciveto	130.0	1126

output/mux1/adaptive16'	126.0	rise
output/mux1/n_adaptive16	125.4	fall
adapt/MSTflag/n_adaptive16	123.6	fall
adapt/MSTflag/n_adaptive16'	117.4	fall
adapt/MSTflag/thresh[20]	116.1	rise
adapt/k3_add/thresh[24]	116.1	rise
adapt/k3_add/thresh[24]'	115.9	rise
adapt/k3_add/ADDA0_OUT[24]	114.9	rise
adapt/k3_add/sum1[6]	95.0	fall
adapt/k2_alu/sum1[6]	95.0	fall
adapt/k2 alu/sum1[6]'	94.9	fall
adapt/k2 alu/ADDA0 OUT[6]	93.7	fall
adapt/k2 alu/INTER3 VAL1[4]	87.1	fall
*adapt/k2 alu/(internal)	84.9	fall
adapt/k2_alu/prod1{4]	83.2	fall
adapt/k1_add/k1xavg[18]	83.2	fall
adapt/k1_add/k1xavg[18]'	82.9	fall
adapt/k1_add/ADDA0_OUT[2]	81.7	fall
adapt/k1_add/k1xavg0[0]	75.1	fall
adapt/mult_k1/k1xavg0[0]	75.1	fall
adapt/mult_k1/k1xavg0[0]'	74.6	fall
adapt/mult_k1/k1[2]	24.0	rise
host stuff/reg0/k1[2]	23.3	rise
host stuff/reg0/k1[2]'	13.5	rise
host stuff/reg0/NNk11.clock x	12.1	rise
host stuff/reg0/PHASE A	10.0	rise
pixel clk/PHASE A	9.0	rise
Pixel_clk	0.0	rise
-		

Minimum cycle time (from Ph2) is 202.6 ns set by:

** Clock delay: 5.6ns (208.3-202.6)

CIOCK delay. 5.005 (200.5 20	2.07	
Node	Cumulative Delay	Transition
data_pads[15]/(internal)	208.3	fall
data_pads[15]/15	207.4	fall
data_pads[15]/data_out	207.2	rise
<_stuff/d_out_mux/data_out[15]	206.7	rise
<pre><stuff d_out_mux="" data_out[15]'<="" pre=""></stuff></pre>	194.9	rise
host_stuff/d_out_mux/d_out[15]	193.6	rise
<st_stuff d_out[15]'<="" d_out_mux="" td=""><td>193.2</td><td>rise</td></st_stuff>	193.2	rise
host_stuff/d_out_mux/N0[15]	191.1	rise
output/mux1/N0[15]	190.5	rise
output/mux1/N0[15]'	180.2	rise
* <ut mux1="" nncountu4.mout_y[15]<="" td=""><td>178.6</td><td>rise</td></ut>	178.6	rise
output/mux1/NN_N50	178.1	fall
output/mux1/NN_N3	177.6	rise
output/mux1/NN_N34	176.7	fall
<pre><put mux1="" nncountu4.cout_y[13]<="" pre=""></put></pre>	175.9	rise
output/mux1/NN_N33	175.1	fall
<pre><put mux1="" nncountu4.cout_y[12]<="" pre=""></put></pre>	174.5	rise
output/mux1/NN_N32	173.6	fall
<pre><put mux1="" nncountu4.cout_y[11]<="" pre=""></put></pre>	173.0	rise
output/mux1/NN_N31	172.2	fall
<pre><put mux1="" nncountu4.cout_y[10]<="" pre=""></put></pre>	171.6	rise
output/mux1/NN_N14	170.8	fall
<pre><tput mux1="" nncountu4.cout_y[9]<="" pre=""></tput></pre>	170.3	rise
output/mux1/NN_N30	169.5	fall
<pre><tput mux1="" nncountu4.cout_y[8]<="" pre=""></tput></pre>	168.9	rise
output/mux1/NN_N29	168.2	fall
<pre><tput mux1="" nncountu4.cout_y[7]<="" pre=""></tput></pre>	167.6	rise
output/mux1/NN_N28	166.8	fall
<pre><tput mux1="" nncountu4.cout_y[6]<="" pre=""></tput></pre>	166.3	rise

output/mux1/NN_N27	165.5	fall
<pre><tput mux1="" nncountu4.cout_y[5]<="" pre=""></tput></pre>	164.9	rise
output/mux1/NN_N26	164.2	fall
<pre><tput mux1="" nncountu4.cout_y[4]<="" pre=""></tput></pre>	163.6	rise
output/mux1/NN_N25	162.8	fall
<pre><tput mux1="" nncountu4.cout_y[3]<="" pre=""></tput></pre>	162.2	rise
output/mux1/NN_N24	161.2	fall
<pre><tput mux1="" nncountu4.cout_y[2]<="" pre=""></tput></pre>	160.6	rise
<pre><tput mux1="" nncountu4.cout_y[1]<="" pre=""></tput></pre>	159.3	rise
output/mux1/NN_N22	158.5	fall
<pre><tput mux1="" nncountu4.cout_y[0]<="" pre=""></tput></pre>	158.0	rise
output/mux1/NN_N21	157.2	fall
output/mux1/NNCOUNTU4.cin_y	156.7	rise
output/mux1/NNMUX213.SEL	155.1	rise
output/mux1/NN_N1	153.8	fall
output/mux1/NN_N2	153.0	rise
output/mux1/n_state	151.7	fall
output/neuron/activity[17]	151.7	fall
output/neuron/activity[17]'	151.6	fall
output/neuron/ADDA0_OUT[17]	150.4	fall
output/neuron/n_theta[16]	146.0	fall
output/inverters/n_theta[16]	146.0	fall
output/inverters/n theta[16]'	145.2	fall
output/inverters/theta[16]	144.7	rise
output/mux0/theta[16]	144.7	rise
output/mux0/theta[16]'	130.4	rise
output/mux0/NN N34	130.0	fall
output/mux0/adaptive16	129.6	rise
output/mux1/adaptive16	129.5	rise
output/mux1/adaptive16'	125.5	rise
output/mux1/n adaptive16	125.0	fall
adapt/MSTflag/n_adaptive16	123.2	fall
adapt/MSTflag/n_adaptive16'	116.9	fall
adapt/MSTflag/thresh[20]	115.7	rise
adapt/k3 add/thresh[24]	115.7	rise
adapt/k3_add/thresh[24]'	115.5	rise
adapt/k3_add/ADDA0_OUT[24]	114.5	rise
adapt/k3_add/sum1[22]	108.3	fall
adapt/k2_alu/sum1[22]	108.3	fall
adapt/k2_alu/sum1[22]'	108.2	fall
adapt/k2 alu/ADDA0 OUT[22]	107.0	fall
adapt/k2_alu/sgn_prod2[18]	99.1	rise
adapt/k2_ctrl1/sgn_prod2[18]	99.1	rise
adapt/k2_ctrl1/sgn_prod2[18]'	94.7	rise
adapt/k2_ctrl1/n_prod2[18]	93.5	rise
adapt/k2_ctrl1/n_prod2[18]'	93.3	rise
adapt/k2_ctrl1/prod2[18]	92.6	fall
adapt/k2_add/k2xL1[32]	92.6	fall
adapt/k2_add/k2xL1[32]'	92.5	fall
adapt/k2 add/ADDA0 OUT[16]	91.3	fall
adapt/k2_add/k2xL10[0]	72.7	fall
adapt/mult_k2/k2xL10[0]	72.7	fall
adapt/mult k2/k2xL10[0]'	71.4	fall
adapt/mult k2/L1[3]	20.1	fall
adapt/mdrc_k2/hr[3]	19.9	fall
adapt/L1_add/L1[3]'	16.1	fall
adapt/L1_add/INTER2_VAL1[3]	14.5	fall
adapt/L1 add/PHASE B	10.7	rise
pixel clk/PHASE B	9.0	rise
Pixel_clk	0.0	fall

Genesil Version v8.0.2 -- Wed Feb 13 21:08:56 1991

Timing Analyzer Chip: /mntb/theta/theta/theta **************************

SETUP AND HOLD MODE

Corner: GUARANTEED

Fabline: HP2 CN10B Junction Temperature:55 deg C Voltage:5.00v

External Clock: Pixel_clk

#0 nominal	(Roc	om junction	T, 5.0 ope	erating V)	
-	INPUT SI	ETUP AND HO	OLD TIMES (ns)	
Input	Setup !	[ime	Hold T	ime	
	Ph1(f)	Ph2(f)	Ph1(f)	Ph2(f)	
Address[0]	31.9	17.1	-6.9	-9.9	PATH
Address[1]	30.2	15.4	-5.5	-9.4	PATH
Address[2]	23.9	12.3	-2.3	-6.0	PATH
Address[3]	28.2	16.6	-5.0	-10.5	PATH
Begin_frame_in		6.1		5.3	PATH
Begin_row_in		6.7		5.3	PATH
Data[0]	2.1	45.3	2.4	4.7	PATH
Data[10]	1.4	34.6	2.7	5.1	PATH
Data[11]	1.5	34.4	2.7	5.0	PATH
Data[12]	1.7	32.9	2.5	4.9	PATH
Data[13]	1.8	33.0	2.4	4.8	PATH
Data[14]	2.2	31.4	2.2	4.5	PATH
Data[15]	1.7	31.0	2.4	4.7	PATH
Data[1]	1.8	42.9	2.6	4.9	PATH
Data[2]	2.1	42.6	2.4	4.7	PATH
Data[3]	1.9	41.2	2.5	4.8	PATH
Data[4]	1.0	40.1	3.0	5.4	PATH
Data[5]	0.8	38.0	3.1	5.5	PATH
Data[6]	0.8	38.4	3.2	5.5	PATH
Data[7]	1.0	37.7	3.0	5.4	PATH
Data[8]	1.2	37.4	2.9	5.2	PATH
Data[9]	1.3	35.8	2.8	5.2	PATH
Ds[0]	28.1	22.0	-9.2	-5.9	PATH
Ds[1]	27.9	21.8	-9.0	-5.7	PATH
Ds[2]	27.7	21.5	-8.7	-5.4	PATH
Ds[3]	27.7	21.5	-8.7	-5.5	PATH
End_frame_in		6.1		5.3	PATH
End_row_in		7.8		5.3	PATH
Id[0]	28.3	22.1	-9.3	-6.1	PATH
Id[1]	27.6	21.5	-8.7	-5.4	PATH
Id[2]	27.6	21.5	-8.7	-5.4	PATH
Id[3]	28.3	22.1	-9.3	-6.1	PATH
Ios		3.2		-1.1	PATH
N_reset	15.8	14.8	-8.5	-7.0	PATH
Ode	25.4	18.5	-7.2	-3.7	PATH
Pixel_in[0]		2.2		5.0	PATH
Pixel_in[10]		1.5		5.2	PATH
Pixel_in[11]		1.2		5.2	PATH
Pixel_in[12]		1.2		5.2	PATH
Pixel_in[13]		1.3		5.2	PATH
Pixel_in[14]		1.6		5.2	PATH
Pixel_in[15]		1.5		5.3	PATH
Pixel_in[1]		2.3		5.0	PATH
Pixel_in[2]		1.6		5.0	PATH
Pixel_in[3]		2.9		5.1	PATH
Pixel_in[4]		1.7		5.1	PATH
Pixel_in[5]		2.5		5.1	PATH

Pixel_in[6]		2.5		5.1	PATH
Pixel_in[7]		2.2		5.1	PATH
Pixel_in[8]		2.0		5.2	PATH
Pixel_in[9]		2.1		5.2	PATH
Test	14.3		-0.8		PATH

***********	******	*****	******
Genesil Version v8.0.2	Wed Feb 13	21:13:13 199	91
Chip: /mntb/theta/theta/theta			Timing Analyzer
Critial Paths (setup/hold):			
Fabline: HP2 CN10B	Corner: GUA		
Junction Temperature:55 deg C			
External Clock: Pixel_clk	•		
Included setup files:			
=	nction T, 5.0	operating V)	
Phase 1, Setup time: 1.5ns (5.6-4)			
host_stuff/reg2/(internal)	5.6	rise	
host_stuff/reg2/data_in[11]	3.7	fall	•
data_pads[11]/data_in	3.2	fall	
data_pads[11]/data_in'	2.0 0.0	fall	
Data[11]	0.0	fall	
Phase 1, Hold time: 2.7ns (5.8-3.3	1)		
host_stuff/reg0/data_in[11]	3.1	fall	
data pads[11]/data in	2.9	fall	
data pads[11]/data in'	1.7	fall	
Data[11]	0.0	fall	
Phase 2, Setup time: 34.4ns (39.2-	4.8)		
<pre>output/mux1/(internal)</pre>	39.2	rise	•
output/mux1/NNMUX213.SEL	37.4	fall	
output/mux1/NN_N1	36.6	rise	
output/mux1/NN_N2	35.6	fall	
output/mux1/n_state	34.9	rise	
output/neuron/activity[17]	34.9	rise	
output/neuron/activity[17]'	34.7	rise	
output/neuron/ADDAO_OUT[17]	33.7	rise	
<pre>output/neuron/n_theta[11] output/inverters/n_theta[11]</pre>	24.0 24.0	fall fall	
output/inverters/n_theta[11]'	22.8	fall	
output/inverters/theta[11]	22.3	rise	
output/mux0/theta[11]	22.3	rise	
output/mux0/theta[11]'	17.4	rise	
output/mux0/NN N2	16.4	fall	•
output/mux0/simple[11]	15.6	rise	
host_stuff/regl/simple[11]	15.4	rise	
host_stuff/regl/simple[11]'	6.5	rise	
host_stuff/reg1/data_in[11]	5.0	rise	
data_pads[11]/data_in	4.5	rise	
data_pads[11]/data_in'	2.3	rise	
Data[11]	0.0	rise	
Phase 2, Hold time: 5.0ns (8.4-3.4			
host_stuff/reg2/data_in[11]	3.4	fall	
data_pads[11]/data_in	2.9	fall	
data_pads[11]/data_in' Data[11]	1.7	fall	
paca[II]	0.0	fall	

*********	*****	*****	*****
Genesil Version v8.0.2	Wed Feb 13	21:17:22 199	1
Chip: /mntb/theta/theta/theta			Timing Analyzer
Critial Paths (setup/hold):			
Fabline: HP2_CN10B	Corner: GUA		
-	Voltage:5.0	0v	
External Clock: Pixel_clk			
Included setup files:			
#0 nominal (Room junc	tion T, 5.0	operating V)	
Phase 1, Setup time: 1.4ns (5.5-4.3	L)		
host_stuff/reg2/(internal)	5.5	rise	
host_stuff/reg2/data_in[10]	3.6	fall	
data_pads[10]/data_in	3.1	fall	
data_pads[10]/data_in'	2.0	fall	
Data[10]	0.0	fall	
Dhan 1 Hald time 2 7-2 /5 7 2 0			
Phase 1, Hold time: 2.7ns (5.7-3.0)	3.0	fall	
host_stuff/reg0/data_in[10]	2.8	fall	
data_pads[10]/data_in data_pads[10]/data_in'	1.7	fall	
Data[10]	0.0	fall	
Data [10]	0.0	1211	
Phase 2, Setup time: 34.6ns (38.7-4	.1)		
output/mux1/(internal)	38.7	rise	
output/mux1/NNMUX213.SEL	36.9	fall	
output/mux1/NN_N1	36.1	rise	
output/mux1/NN_N2	35.1	fall	
output/mux1/n_state	34.4	rise	
output/neuron/activity[17]	34.4	rise	
output/neuron/activity[17]'	34.3	rise	
output/neuron/ADDAO_OUT[17]	33.2	rise	
output/neuron/n_theta[10]	23.1	fall	
output/inverters/n_theta[10]	23.1	fall	
output/inverters/n_theta[10]'	21.7	fall	
output/inverters/theta[10]	21.2	rise	
output/mux0/theta[10]	21.2	rise	
output/mux0/theta[10]' output/mux0/NN NO	16.4	rise fall	
output/mux0/NN_NO output/mux0/simple[10]	15.4 14.6		
	14.5	rise	
<pre>host_stuff/reg1/simple[10] host_stuff/reg1/simple[10]'</pre>	6.4	rise rise	
host_stuff/reg1/data_in[10]	4.9	rise	
data_pads[10]/data_in	4.4	rise	
data pads[10]/data in'	2.3	rise	
Data[10]	0.0	rise	
Phase 2, Hold time: 5.1ns (8.4-3.3)		£-11	
host_stuff/reg2/data_in[10]	3.3 2.8	fall fall	
data_pads[10]/data_in data_pads[10]/data_in'	1.7	rall fall	
Data[10]	0.0	fall	
2555 [10]	0.0	Tall	

Genesil Version v8.0.2 -- Wed Feb 13 21:17:25 1991

Chip: /mntb/theta/theta/theta Timing Analyzer *****************************

OUTPUT DELAY MODE

Fabline: HP2_CN10B Junction Temperature:55 deg C

Voltage:5.00v

Corner: GUARANTEED

External Clock: Pixel_clk Included setup files:

(Room junction T, 5.0 operating V) #0 nominal

		PUT DELAYS				
Output	Ph1(r)	-		Delay	Loading(pf)	
	Min	Max	Min	Max		
Begin_frame_out			17.9	21.0	50.00 PAT	
Begin_row_out			17.8	20.9	50.00 PAT	
Data[0]			17.0	20.1	50.00 PAT	
Data[10]			17.5	20.6	50.00 PAT	Н
Data[11]			17.5	20.6	50.00 PAT	H
Data[12]			17.6	20.7	50.00 PAT	
Data[13]			17.6	20.7	50.00 PAT	H
Data[14]			17.7	20.8	50.00 PAT	H
Data[15]			17.7	20.8	50.00 PAT	H
Data[1]			17.0	20.1	50.00 PAT	H
Data[2]			17.1	20.2	50.00 PAT	H
Data[3]			17.2	20.3	50.00 PAT	H
Data[4]			17.2	20.3	50.00 PAT	H
Data[5]			17.3	20.4	50.00 PAT	H
Data[6]			17.3	20.4	50.00 PAT	H
Data[7] ·			17.4	20.5	50.00 PAT	H
Data[8]			17.5	20.6	50.00 PAT	н.
Data[9]			17.5	20.6	50.00 PAT	H
End_frame_out			17.7	20.9	50.00 PAT	Н
End_row_out			17.7	20.8	50.00 PAT	Н
N_dr	15.0	27.7	15.0	23.3	50.00 PAT	Н
Pixel_out[0]			18.0	21.1	50.00 PAT	H
Pixel_out[10]			17.5	20.7	50.00 PAT	Н
Pixel_out[11]			17.5	20.6	50.00 PAT	Н
Pixel_out[12]			17.4	20.5	50.00 PAT	Н
Pixel_out[13]			17.3	20.5	50.00 PAT	Н
Pixel_out[14]			17.2	20.4	50.00 PAT	H
Pixel_out[15]			17.1	20.3	50.00 PAT	Н
Pixel_out[1]			18.0	21.1	50.00 PAT	Н
Pixel_out[2]			17.9	21.1	50.00 PAT	Н
Pixel_out[3]			17.9	21.0	50.00 PAT	Н
Pixel_out[4]			17.9	21.0	50.00 PAT	Н
Pixel_out[5]			17.8	21.0	50.00 PAT	Н
Pixel_out[6]			17.8	20.9	50.00 PAT	H
Pixel_out[7]			17.7	20.8	50.00 PAT	Н
Pixel_out[8]			17.7	20.8	50.00 PAT	
Pixel_out[9]			17.6	20.8	50.00 PAT	
Theta16			17.7	20.8	50.00 PAT	

Genesil Version v8.0.2 -- Wed Feb 13 21:18:44 1991

Timing Analyzer Chip: /mntb/theta/theta/theta *************

VIOLATION MODE

Fabline: HP2_CN10B

Corner: GUARANTEED

Junction Temperature:55 deg C Voltage:5.00v

External Clock: Pixel_clk

Included setup files:

#0 nominal

(Room junction T, 5.0 operating V)

______ NO VIOLATIONS

Hold time check margin: 2.0ns