Computer Organization and Architecture

Me lol

July 2, 2025

Contents

1	Intr	roduction	4
	1.1	Computer organization and architecture	4
	1.2	Structure and function	4
	1.3		
	1.4	Interconnection structures	4
	1.5	Bus interconnection	4
	1.6	PCI	4
2	Cen	ntral Processing Unit	5
	2.1	CPU Structure and Function	5
	2.2	Arithmetic and Logic Unit	5
	2.3	Instruction Formats	5
	2.4	Data Transfer and Manipulation	6
	2.5	Addressing Modes	6
	2.6	RISC and CISC	6
	2.7	64 – Bit Processor	6
3	Con	ntrol Unit	7
	3.1	Control Memory	7
	3.2	Addressing sequencing	7
	3.3	Computer configuration	7
	3.4	Microinstruction Format	7
	3.5	Symbolic Microinstructions	7
	3.6	Symbolic Microprogram	7
	3.7	Control Unit Operation	7
	3.8	Design of Control Unit	7
4	Pip	eline and Vector processing	8
	4.1	Pipelining	8
	4.2	Parallel Processing	
	4.3	Arithmetic Pipeline	
	4.4	Instruction Pipeline	8
	4.5	RISC Pipeline	8
	4.6	Vector Processing	8
	4.7	Array Processing	8
5		nputer Arithmetic	9
	5.1	Addition Algorithm	
	5.2	Subtraction Algorithm	
	5.3	Multiplication Algorithm	
	5.4	Division Algorithm	
	5.5	Logical Operation	10
_	7. F		. .
6			11_{-11}
	6.1	Microcomputer Memory	
	6.2	Characteristics of memory systems	
	6.3	The Memory Hierarchy	
	6.4	Internal and External memory	11

	6.5	Cache memory principles	11
	6.6	Elements of Cache design	11
		6.6.1 Cache size	11
		6.6.2 Mapping function	11
		6.6.3 Replacement algorithm	11
		6.6.4 Write policy	11
		6.6.5 Number of caches	11
7	Inp	ut-Output organization	12
	7.1	Peripheral devices	12
	7.2	I/O modules	12
	7.3	Input-Output interface	12
	7.4	Modes of transfer	12
		7.4.1 Programmed I/O	12
		7.4.2 Interrupt-driven I/O	12
		7.4.3 Direct Memory access	12
	7.5	I/O Processors	12
	7.6	Data Communication Processor	12
8	Mu	ltiprocessors	13
	8.1	Characteristics of multiprocessors	13
	8.2	Interconnection Structures	13
	8.3	Interprocessor Communication and Synchronization	13

1 Introduction

(3 Hours/6 Marks)

1.1 Computer organization and architecture

- 1. Define computer architecture. [2] (**75 Ch**) [1.5] (81 Bh) [1] (**72 Ch**)
- 2. Define computer organization. [1.5] **(81 Bh)** [1] **(72 Ch)**
- 3. Differentiate between computer organization and architecture. [2] (71 Ch, 78 Ka) [3] (72 Ka)
- 4. Explain the design goals and performance metrics for a computer system regarding its organization and architecture. [5] (76 Ash)

1.2 Structure and function

- 1. Define structure and function of a computer system. [4] (80 Ba)
- |→Explain about the structural and functional viewpoint of a computer. [4] (79 Bh)
- 2. Explain the functional view and four types of operations used in computer. [6] (68 Ch)

1.3 Designing for performance

- 1. What are the driving factors behind the need to design for performance? [4] (71 Shr)
- 2. How can we maintain a performance balance between processor and memory? [2] (**72 Ch**)

 |→ What is performance balance and why it is required? [3] (70 Asa)

1.4 Interconnection structures

- 1. Explain the Interconnection structures of computer. [6] (75 Ash)
 - \rightarrow Definition [2] (73 Shr)
 - \rightarrow Explain different types. [4] (73 Shr)
- 2. Explain the interconnection of CPU with Memory and I/O devices along with different operations over them. [3+3] (70 Ch)

1.5 Bus interconnection

- 1. What do you understand by Bus Interconnection. [2] (71 Shr)
- 2. What does the width of address bus represent in a system? [2] (75 Ch,71 Ch)
- 3. Explain different elements of bus design. [2] (79 Bh) [3] (70 Asa)
- 4. Discuss the limitations of using single bus system to connect different devices.
 - [2] (75 Ch,72 Ch) mpare and explain the bus structure of typical computer system. [4] (78 Ka)
- 5. Compare and explain the bus structure of typical computer system. [4] (78 Ka)
 6. Explain different types of bus arbitration and compare them. [6] (78 Bh)
- 7. Why is bus hierarchy required? [2] (71 Ch)
- 8. Discuss about the usage of a Multiple Hierarchical Bus Architecture over single bus system.
- 8. Discuss about the usage of a Multiple Hierarchical Bus Architecture over single bus system.

 [6] (80 Bh)

1.6 PCI

1. What is PCI? [1] (76 Ash) \rightarrow Describe PCI bus configuration. [3] (81 Ba)

2 Central Processing Unit

(10 Hours/18 Marks)

2.1 CPU Structure and Function

1. Explain the component of CPU.	[2] (78 Ch)
2. Draw the instruction cycle state diagram with example.	[6] (76 Ch)
\mid Draw instruction cycle, state diagram with interrupt and explain it.	[6] (74 Ch)
\rightarrow Explain instruction cycle state diagram.	[3] (81 Ba)
\rightarrow Explain instruction cycle state diagram with interrupt handling.	[2] (80 Ba) [3] (81 Bh)
\rightarrow Explain the computer functions with different cycles.	[3] (72 Ka)
3. Explain the general organization of register in CPU.	[6] (71 Ch)

2.2 Arithmetic and Logic Unit

1. What do you mean by instruction format?

3. Explain Instruction Format with its types?

2. What are the different types of instructions?

p. Y = AB + (F/G) + CD [8] (67 Asa)

- 1. Design a 1-bit ALU which can perform addition, AND, OR, and X-OR operations. Explain the different types of instruction formats. [4+4] (80 Bh)
- 2. Design a 2-bit ALU that can perform subtraction, AND, OR and XOR. [8] (75 Ch)
- 3. What are the stages of ALU design? Explain with the example of 2-bit ALU performing addition, subtraction, OR and XOR. [8] (70 Asa)

[4] (**72** Ch)

[3] (**71 Ch**)

[2] (71 Shr)

2.3 Instruction Formats

o. Emploin instruction format with its types.	
4. What are the most common fields in an instruction.	[2] (68 Ch)
5. Write down the code to evaluate in three address, two address, one	address and zero address
instruction format.	
a. $Y = (A-B/C)^*[D+(E^*G)]$	[8] (81 $Bh,76$ $Ch)$
b. $N = ((P-QxR)/S) + (T/U) + VxW$	[8] (81 Ba)
c. $X = \frac{A-B+Cx(DxE-F)}{G+HxK}$	$[0] (00 D_0)$
c. $\Lambda \equiv {G + HxK}$	[8] (80 Ba)
d. $X = ((A+B)/C) + (D-E)$	[8] (79 Bh)
e. $Y = (A-B/C) \times (D+E\times G)/F$	[8] (78 Ka)
f. $Y = (W+X) * (Y-Z)$	[8] (76 Ash)
g. $Y = (A+B)/C + D/(E*F)$	[8] (75 Ch)
h. (In present sources, operation is not given. If found, please conta	(ct) [8] (75 Ash)
i. $X = (P+Q) \times (R+S)$	[8] (74 Ch)
j. $Y = A * (B+D/C)+(G*E)/F$	[8] (73 Shr)
k. $X = (A-B*F)*C+D/E$	[8] (72 Ch)
l. $Y = (A+B)*(C+D)+G/E*F$	[8] (72 Ka)
m. $X = (A+B) \times (C+D)$ [5] (7	1 Ch) [6] (68 Ch , 71 Shr)
n. $Y = A/B + (CxD) + F(H/G)$	[8] (70 Ch
o. $Y = A + (B^*C) + D$	[8] (68 Ba)

2.4 Data Transfer and Manipulation

- 1. Explain data transfer instruction with example. [4] (81 Bh)
- 2. Explain different types of data manipulation instructions with example. [8] (78 Bh) → What are the three types of data manipulation instructions used in computer? Explain.

[8] **(67 Asa)**

2.5 Addressing Modes

- 1. What is addressing mode? [2] (80 Bh,76 Ch,68 Ch)
- 2. Differentiate between Immediate and direct addressing modes.

 [4] (81 Bh)
- 3. Write down the need for addressing modes. [2] (74 Ch)
- 4. Comparision of different types of addressing modes. [6] (76 Ch) [8] (76 Ash) [10] (72 Ka) \rightarrow with adv/disadv. [10] (78 Ka)
 - \rightarrow with algorithm as well as adv/disadv. [8] (68 Ba)
- 5. Write down different types of addressing mode and:
 - \rightarrow Explain with adv/disadv. [8] (81 Ba, 80 Ba) [10] (70 Ch)
 - \rightarrow Explain with suitable example. [6] (80 Bh, 79 Bh,74 Ch) [8] (68 Ch, 70 Asa)
- 6. Following instructions are give: [10] (73 Shr)
 - a. LDA 2000H
 - b. MVI B, 32H
 - c. STAX D
 - d. MOV A, B

Which addressing modes are used in the above instructions? Explain briefly about them.

7. Describe the operation of LD (load) instruction under various addressing modes with syntax.

[4] (**71** Ch)

2.6 RISC and CISC

1. Comparison between RISC and CISC architecture. [6] (78 Bh,72 Ch, 75 Ash)

2.7 64 – Bit Processor

3 Control Unit

(6 Hours/10 Marks)

3.1 Control Memory

3.2 Addressing sequencing

1. Explain address sequencing with the help of a block diagram.

[5] (**80** Bh)

3.3 Computer configuration

3.4 Microinstruction Format

1. Explain the microinstruction format. $|\rightarrow$ with example.

[3] (**80 Bh**) [4] (81 Ba)

[5] **(81 Bh)**

3.5 Symbolic Microinstructions

3.6 Symbolic Microprogram

1. Write a microprogram for the fetch cycle and addition cycle.

[5] **(81 Bh)**

2. Differentiate between symbolic and bianry micro instruction.

[4] (81 Ba)

3.7 Control Unit Operation

3.8 Design of Control Unit

 $1. \ \ Differentiate \ between \ hardwired \ and \ microprogrammed \ control \ unit.$

[5] (80 Ba)

2. Explain microprogrammed control unit with block diagram.

[5] (80 Ba)

4 Pipeline and Vector processing

(5 Hours/10 Marks)

- 4.1 Pipelining
- 4.2 Parallel Processing
- 4.3 Arithmetic Pipeline
- 4.4 Instruction Pipeline
- 4.5 RISC Pipeline
- 4.6 Vector Processing
- 4.7 Array Processing

Computer Arithmetic 5

(8 Hours/14 Marks)

5.1 Addition Algorithm

1. Explain the floating-point addition and subtraction process \rightarrow with example. [3+3] (81 Bh, 79 Bh, 78 Bh) [7] (73 Shr) \rightarrow with flowchart and example. [6] (78 Ka) [10] (**74 Ch**) 2. Draw a flowchart of floating point subtraction. [4] (70 Asa)

5.2 Subtraction Algorithm

5.3 Multiplication Algorithm

1. Draw a flowchart for Booth's multiplication algorithm for signed multiplication. [4] (78 Ka) [5](81 Bh) 2. Explain booth's algorithm. [3] (70 Ch) [4] (80 Bh,68 Ch,67 Asa, 72 Ka) [5] (76 Ch)

 \rightarrow with example and give hardware requirement diagram. [10] (75 Ash) \rightarrow Explain with hardware algorithm with diagram. [5] (**72** Ch) \rightarrow Write the algorithm. [5] (76 Ash, 71 Shr) [4] (**71** Ch)

3. Design a booth multiplication algorithm hardware.

4. Multiply using Booth's multiplication algorithm.

 $\rightarrow -6 \times 7$ [5] (**81 Bh**, 80 Ba) \rightarrow -7 x 3 [6] (**74** Ch) \rightarrow -6 x 12 [6] (72 Ka) $\rightarrow 10 \times (-7)$ [6] (81 Ba) [5] (**76** Ch) $\rightarrow 10 \text{ x } (-5)$ $\rightarrow 5 \text{ x} - 6$ [4] (**72** Ch) $|\to (9) \times (-3)$ [5] (71 Shr) $\rightarrow 23 \text{ x} - 21$ [4] (**68** Ch) $\rightarrow 9 \times 4$ [6] (**80 Bh**) $\rightarrow 8 \times 4$ [5] (76 Ash) $\rightarrow 8 \times 9$ [3] (**70** Ch) $\rightarrow 6 \times 7$ [4] (**67** Asa)

[4] (78 Ka)

[6] (**75 Ch**)

[5] (**72** Ch)

Division Algorithm 5.4

 \rightarrow -7 x -10

 \rightarrow -6 x -11

 $\rightarrow -5 \text{ x } -9$

1. How division operation can be performed? Explain with its hardware implementation.

[10] (70 Asa)2. Draw the flowchart for Restoring Division. [4] (81 Ba, 72 Ka) 3. Draw the flowchart for Non-restoring Division. [4] (79 Bh) \rightarrow Explain signed binary division algorithm. [4] (73 Shr) [3] (**75** Ch) [5] (**78** Bh) 4. Explain non-restoring division algorithm. \rightarrow with flowchart. [5] (80 Ba) [8] (**70** Ch) \rightarrow with flowchart and example.

5. Draw the flowchart for division of floating point numbers. [4] (**72** Ch,**71** Ch) [6] (**68 Ch**) 6. Explain floating point division algorithm. 7. Compare restoring division algorithm with non restoring algorithm. [4] (71 Shr) [6] (**80 Bh**, 76 Ash, 75 Ash) [6] (**76 Ch**) [8] (**68 Ba**) $|\rightarrow$ with example. 8. Divide using restoring division. $|\!\rightarrow\!\frac{11}{5}\\|\!\rightarrow\!13/5$ [6] (81 Ba) [6] (**79 Bh**) $\rightarrow 10/3$ [7] (**75** Ch) 9. Divide using non-restoring algorithm. $\rightarrow 12/5$ [5] (80 Ba) [5] (**78 Bh**) $\rightarrow 10/5$ $\rightarrow 15/4$ [4] (73 Shr)

5.5 Logical Operation

6 Memory System

(5 Hours/8 Marks)

- 6.1 Microcomputer Memory
- 6.2 Characteristics of memory systems
- 6.3 The Memory Hierarchy
- 6.4 Internal and External memory
- 6.5 Cache memory principles
- 6.6 Elements of Cache design
- 6.6.1 Cache size
- 6.6.2 Mapping function
- 6.6.3 Replacement algorithm
- 6.6.4 Write policy
- 6.6.5 Number of caches

7 Input-Output organization

(6 Hours/10 Marks)

- 7.1 Peripheral devices
- 7.2 I/O modules
- 7.3 Input-Output interface
- 7.4 Modes of transfer
- 7.4.1 Programmed I/O
- 7.4.2 Interrupt-driven I/O
- 7.4.3 Direct Memory access
- 7.5 I/O Processors
- 7.6 Data Communication Processor

8 Multiprocessors

(2 Hours/4 Marks)

- 8.1 Characteristics of multiprocessors
- 8.2 Interconnection Structures
- 8.3 Interprocessor Communication and Synchronization