Stackin For Classification with Python

May 18, 2022

1 Stacking For Classification with Python

Estimated time needed: 45 minutes

1.1 Objectives

After completing this lab you will be able to:

- Understand what Stacking is and how it works
- **Understand** that Random Forests have less Correlation between predictors in their ensemble, improving accuracy
- Apply Stacking
- Understand Hyperparameters selection in Stacking

Stacking takes several classification models called base learners and uses their output as the input for the meta-classifier. Consider the figure below the base learners $h_1(x)$, $h_2(x)$, $h_3(x)$, and $h_4(x)$ has the output $\hat{y}*1$, $\hat{y}*2$, $\hat{y}*3$, $\hat{y}*4$. These are used as an input to the meta classifier $H(\hat{y}*1, \hat{y}*2, \hat{y}*3, \hat{y}*4)$, makes the final prediction $\hat{y} = H(\hat{y}*1, \hat{y}*2, \hat{y}*3, \hat{y}*4)$.

Fig. 1 Stacking takes several classification models called base learners and uses their output as the input for the meta-classifier.

We can train all the models using all the data but this causes over-fitting. To get a better idea of how the algorithm works we use K-fold Cross-validation. We use K-1 folds to train the base classifiers and the last fold to train the meta classifier. We repeat the process using different combinations of each fold. This is shown in Fig 2 where the color-coded square represents the different runs and folds. Each row represents a different run of K fold cross-validation, each column is one of K folds where K=3. For each column, we use the same color columns to train the classifiers and the different color is used to train the meta classifier.

Fig. 2 K-fold Cross-validation to train Stacking classifier.

Table of contents

```
     <!i><a>Apply Staking Using Wine Data </a>
     <!i><a href="https://practice/?utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content-</i>
     <!i><a>Cancer Data Example</a>
```

First, let's install and import the required libraries:

```
[1]: # All Libraries required for this lab are listed below. The libraries, pre-installed on Skills Network Labs are commented.

# !mamba install -qy pandas==1.3.3 numpy==1.21.2 ipywidgets==7.4.2 scipy==7.4.2 scipy=7.4.2 scipy==7.4.2 scipy==7.4.2 scipy==7.4.2 scipy==7.4.2 scipy==7.4.2 scipy==7.4.2 scipy
```

Package Version Build Channel Size

Install:

+ atk-1.0		2.36.0	h3371d22_4
conda-forge/linux-64	574kB		
+ cached-property		1.5.2	hd8ed1ab_1
conda-forge/noarch	4kB		
+ cached_property		1.5.2	pyha770c72_1
conda-forge/noarch	11kB		
+ font-ttf-dejavu-san	s-mono	2.37	hab24e00_0
conda-forge/noarch	397kB		
+ font-ttf-inconsolat	a	3.000	h77eed37_0
conda-forge/noarch	97kB		
+ font-ttf-source-cod	e-pro	2.038	h77eed37_0
conda-forge/noarch	701kB		
+ font-ttf-ubuntu		0.83	hab24e00_0
conda-forge/noarch	2MB		
+ fonts-conda-ecosyst	em	1	0
conda-forge/noarch	4kB		
+ fonts-conda-forge		1	0
conda-forge/noarch	4kB		
+ gdk-pixbuf		2.42.8	hff1cb4f_0
conda-forge/linux-64	609kB		
+ gtk2		2.24.33	h90689f9_2
conda-forge/linux-64	8MB		
+ gts		0.7.6	h64030ff_2
conda-forge/linux-64	421kB		
+ jbig		2.1	h7f98852_2003
conda-forge/linux-64	44kB		
+ joblib		1.1.0	pyhd8ed1ab_0
conda-forge/noarch	215kB		

+ lerc		3.0	h9c3ff4c_0
<pre>conda-forge/linux-64</pre>	222kB	1.10	h7f98852_0
conda-forge/linux-64	79kB		
+ libgd	0701-D	2.3.3	h283352f_2
<pre>conda-forge/linux-64 + libllvm13</pre>	278kB	13.0.1	hf817b99_2
conda-forge/linux-64	35MB		
+ librsvg conda-forge/linux-64	6MB	2.52.5	h0a9e6e8_2
+ libwebp-base	OLID	1.2.2	h7f98852_1
conda-forge/linux-64	844kB	0.00	057
+ scikit-learn conda-forge/linux-64	7MB	0.22	py37hcdab131_1
00 20 0	,		
Change:			
- cairo installed		1.16.0	h6cf1ce9_1008
+ cairo		1.16.0	ha12eb4b_1010
conda-forge/linux-64	2MB		_
- krb5		1.19.3	h3790be6_0
installed		1 10 2	100-0570 0
+ krb5 conda-forge/linux-64	2MB	1.19.3	h08a2579_0
- leptonica	ZPD	1.78.0	h42ed529_2
installed			
+ leptonica		1.78.0	ha0c4403_3
conda-forge/linux-64	3MB		
- libevent		2.1.10	h9b69904_4
installed		0 1 10	1,002,42-4 4
+ libevent conda-forge/linux-64	1MB	2.1.10	h28343ad_4
- libnghttp2	TIID	1.47.0	h727a467_0
installed			_
+ libnghttp2	0441.5	1.47.0	he49606f_0
conda-forge/linux-64	844kB	1.10.0	ha56f1ee_2
installed		1.10.0	114001100_2
+ libssh2		1.10.0	ha35d2d1_2
conda-forge/linux-64	238kB		
- libxml2 installed		2.9.12	h72842e0_0
+ libxml2		2.9.12	h885dcf4_1
conda-forge/linux-64	778kB		_
- python		3.7.12	hb7a2778_100_cpython

installed			
+ python		3.7.12	hf930737_100_cpython
conda-forge/linux-64	60MB	0.7.12	nroot of _100_opy unon
- qt	OULD	5.12.9	hda022c4_4
installed		0.12.3	114402261_1
+ qt		5.12.9	h1304e3e_6
conda-forge/linux-64	103MB	0.12.3	111004606_0
- tesseract	100115	4.1.1	h9862bf9_2
installed		4.1.1	113002013_2
+ tesseract		4.1.1	h58164bb_3
conda-forge/linux-64	325MB	4.1.1	10010400_0
Conda Torge/IIIdx 04	SZSMD		
Upgrade:			
opgrado.			
- cryptography		36.0.2	py37h38fbfac_1
installed			
+ cryptography		37.0.1	py37h9ce1e76_0
pkgs/main/linux-64	1MB		
- ffmpeg		4.1.3	h167e202_0
installed			
+ ffmpeg		4.3.2	h37c90e5_3
conda-forge/linux-64	10MB		
- graphviz		2.40.1	h0511662_2
installed			
+ graphviz		3.0.0	h5abf519_1
conda-forge/linux-64	3MB		
- grpcio		1.45.0	py37he500948_0
installed			
+ grpcio		1.46.1	py37h0327239_0
conda-forge/linux-64	3MB		
- gst-plugins-base		1.18.5	hf529b03_3
installed			
+ gst-plugins-base		1.20.1	hcf0ee16_1
conda-forge/linux-64	3MB		
- gstreamer		1.18.5	h9f60fe5_3
installed			
+ gstreamer		1.20.2	hd4edc92_1
conda-forge/linux-64	2MB		
- h5py		2.10.0	nompi_py37h513d04c_102
installed			
+ h5py		3.6.0	nompi_py37hd308b1e_100
conda-forge/linux-64	1MB		
- harfbuzz		2.9.1	h83ec7ef_1
installed			
+ harfbuzz		3.4.0	hb4a5f5f_0
conda-forge/linux-64	2MB		

- hdf5		1.10.5	nompi_h5b725eb_1114
installed			
+ hdf5		1.12.1	nompi_h4df4325_104
conda-forge/linux-64	4MB		
- icu		68.2	h9c3ff4c_0
installed			
+ icu		69.1	h9c3ff4c_0
conda-forge/linux-64	14MB		
- libarchive		3.5.1	h3f442fb_1
installed			
+ libarchive	01/17	3.5.2	hed592e5_1
conda-forge/linux-64	2MB		1 4 3 1 504005 4
- libclang		11.1.0	default_ha53f305_1
installed		40.0.4	16 7.100110
+ libclang	4000	13.0.1	default_hc23dcda_0
conda-forge/linux-64	12MB	7 00 0	171 ((407 0
- libcurl		7.82.0	h7bff187_0
installed		7 00 1	1-00004-0-0
+ libcurl	2E01-D	7.83.1	h2283fc2_0
conda-forge/linux-64	352kB	2.4.0	27 0
- libopencv		3.4.9	py37_2
installed		4 5 2	n::27hh6aaa00 /
+ libopencv	26MD	4.5.3	py37hb6cea29_4
conda-forge/linux-64	36MB	19 E	h4E740h0 1
- libpq		13.5	hd57d9b9_1
installed		14.2	r-040300 0
+ libpq	OMD	14.3	he2d8382_0
<pre>conda-forge/linux-64 - libtiff</pre>	3MB	4.1.0	h-2755-0 2
installed		4.1.0	hc3755c2_3
+ libtiff		4.3.0	h542a066_3
conda-forge/linux-64	653kB	4.3.0	110424000_5
- libwebp	OJOKD	1 0 2	h56121f0_5
installed		1.0.2	113012110_3
+ libwebp		1.2.2	h3452ae3_0
conda-forge/linux-64	87kB	1.2.2	113432463_0
- mysql-common	OTED	8.0.25	ha770c72_0
installed		0.0.20	narrocrz_o
+ mysql-common		8.0.29	h26416b9_1
conda-forge/linux-64	2MB	0.0.23	112041000_1
- mysql-libs	ZIID	8.0.25	h935591d_0
installed		0.0.20	110000014_0
+ mysql-libs		8.0.29	hbc51c84_1
conda-forge/linux-64	2MB	0.0.20	110001001_1
- opencv	-:15	3.4.9	py37_2
installed		3.1.3	r,
+ opencv		4.5.3	py37h89c1867_4
conda-forge/linux-64	22kB	1.0.0	r, 5, 1100 0100, _ 1
5544 101 ₆ 0/11man 01			

- openh264		1.8.0	hdbcaa40_1000
installed + openh264		2.1.1	h780b84a_0
<pre>conda-forge/linux-64 - openssl</pre>	2MB	1.1.1n	h166bdaf_0
installed + openssl		3.0.3	h166bdaf_0
conda-forge/linux-64 - pango	3MB	1.42.4	h69149e4_5
installed + pango	4001 D	1.50.5	h4dcc4a0_1
conda-forge/linux-64 - py-opencv	466kB	3.4.9	py37h5ca1d4c_2
installed + py-opency	1 MD	4.5.3	py37h6531663_4
<pre>conda-forge/linux-64 - x264 installed</pre>	1MB	1!152.20180806	h14c3975_0
+ x264	OMD	1!161.3030	h7f98852_1
<pre>conda-forge/linux-64 - zstd installed</pre>	3MB	1.4.9	ha95c52a_0
+ zstd conda-forge/linux-64	462kB	1.5.2	h8a70e8d_1
Downgrade:	TOZED		
bowing aue.			
- libprotobuf		3.20.0	h6239696_0
installed + libprotobuf		3.18.1	h780b84a_0
conda-forge/linux-64 - protobuf	3MB		py37hd23a5d3_4
installed			
+ protobuf conda-forge/linux-64	353kB	3.18.1	py37hcd2ae1e_0
Summary:			
Install: 21 packages Change: 10 packages Upgrade: 26 packages Downgrade: 2 packages			
Total download: 673MB			

```
Preparing transaction: ...working... done
Verifying transaction: ...working... done
Executing transaction: ...working...
```

done

```
[19]: import pandas as pd
      # import pylab as plt
      import numpy as np
      import scipy.optimize as opt
      from sklearn import preprocessing
      import matplotlib.pyplot as plt
      %matplotlib inline
      from sklearn import metrics
      from sklearn.model_selection import GridSearchCV
      import seaborn as sns
      from sklearn import preprocessing
      from sklearn.ensemble import StackingClassifier
      from sklearn.svm import SVC
      from sklearn.neighbors import KNeighborsClassifier
      from sklearn.tree import DecisionTreeClassifier
      from sklearn.linear model import LogisticRegression
```

```
AttributeError
                                          Traceback (most recent call last)
/tmp/ipykernel_1275/82920220.py in <module>
     10 import seaborn as sns
     11 from sklearn import preprocessing
---> 12 from sklearn.ensemble import StackingClassifier
     13 from sklearn.svm import SVC
     14 from sklearn.neighbors import KNeighborsClassifier
~/conda/envs/python/lib/python3.7/site-packages/sklearn/ensemble/_init_.py_in
 →<module>
      6 from ._base import BaseEnsemble
----> 7 from ._forest import RandomForestClassifier
      8 from ._forest import RandomForestRegressor
      9 from ._forest import RandomTreesEmbedding
~/conda/envs/python/lib/python3.7/site-packages/sklearn/ensemble/_forest.py in_
 →<module>
     54 from ..metrics import r2_score
     55 from ...preprocessing import OneHotEncoder
```

```
---> 56 from ..tree import (DecisionTreeClassifier, DecisionTreeRegressor,
     57
                            ExtraTreeClassifier, ExtraTreeRegressor)
     58 from ...tree._tree import DTYPE, DOUBLE
~/conda/envs/python/lib/python3.7/site-packages/sklearn/tree/__init__.py in_
 →<module>
      4 """
      5
----> 6 from ._classes import BaseDecisionTree
      7 from ._classes import DecisionTreeClassifier
      8 from ._classes import DecisionTreeRegressor
~/conda/envs/python/lib/python3.7/site-packages/sklearn/tree/_classes.py in_
 →<module>
     38 from ..utils.validation import check_is_fitted
---> 40 from ._criterion import Criterion
     41 from ._splitter import Splitter
     42 from ._tree import DepthFirstTreeBuilder
~/conda/envs/python/lib/python3.7/site-packages/sklearn/tree/_criterion.
 cpython-37m-x86_64-linux-gnu.so in init sklearn.tree._criterion()
AttributeError: type object 'sklearn.tree._criterion.array' has no attribute
```

Ignore error warnings

```
[3]: import warnings warnings.filterwarnings('ignore')
```

This function will calculate the accuracy of the training and testing data given a model.

Apply Staking Using Wine Data

The class is an essential factor in determining the quality of the wine; this dataset uses chemical analysis of wines grown in the same region in Italy from three different cultivars. Your task is to determine the class of the wine using the features from the chemical analysis. The features or attributes include

For more info here ,let's load the dataset:

```
[5]: df = pd.read_csv("https://cf-courses-data.s3.us.cloud-object-storage.appdomain.
      ocloud/IBM-ML241EN-SkillsNetwork/labs/datasets/wine.data",names= ['Class',□
      'Alcalinity of ash' ,'Magnesium', 'Total phenols',
              'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins',
                                                                            'Color<sub>II</sub>
      ⇔intensity', 'Hue', 'OD280/OD315 of diluted wines',
              'Proline'])
     df.head()
[5]:
        Class
               Alcohol
                       Malic acid
                                          Alcalinity of ash
                                                             Magnesium \
                                     Ash
     0
                 14.23
                              1.71 2.43
                                                        15.6
            1
                                                                    127
                 13.20
                              1.78 2.14
                                                        11.2
                                                                    100
     1
            1
     2
                 13.16
                              2.36
                                    2.67
                                                        18.6
            1
                                                                    101
     3
                 14.37
                              1.95
                                    2.50
                                                        16.8
            1
                                                                    113
            1
                 13.24
                              2.59
                                    2.87
                                                        21.0
                                                                    118
        Total phenols Flavanoids
                                   Nonflavanoid phenols Proanthocyanins \
    0
                 2.80
                             3.06
                                                   0.28
                                                                     2.29
                 2.65
                             2.76
                                                    0.26
                                                                     1.28
     1
     2
                 2.80
                             3.24
                                                    0.30
                                                                     2.81
                                                                     2.18
     3
                 3.85
                             3.49
                                                    0.24
     4
                 2.80
                             2.69
                                                    0.39
                                                                     1.82
        Color intensity
                               OD280/OD315 of diluted wines
                          Hue
                                                             Proline
     0
                   5.64 1.04
                                                        3.92
                                                                 1065
                   4.38
                        1.05
                                                        3.40
                                                                 1050
     1
     2
                   5.68 1.03
                                                        3.17
                                                                 1185
     3
                   7.80 0.86
                                                        3.45
                                                                 1480
```

We see all the dataset is comprised of numerical values using the method dtypes

2.93

735

[6]: df.dtypes

[6]:	Class	int64
	Alcohol	float64
	Malic acid	float64
	Ash	float64
	Alcalinity of ash	float64
	Magnesium	int64
	Total phenols	float64
	Flavanoids	float64
	Nonflavanoid phenols	float64
	Proanthocyanins	float64
	Color intensity	float64
	Hue	float64

4.32

1.04

```
OD280/OD315 of diluted wines float64
Proline int64
dtype: object
```

the column class has the class of the wine, we can use the method unique() to obtain the classes:

```
[7]: df['Class'].unique()
```

```
[7]: array([1, 2, 3])
```

We can examine the correlation between each feature and the class variable. By examining the first row or column we see the features are correlated with the class variable.

Pearson Correlation of Features

We can also examine the Pairplot between pairs of features and the histogram; color-coded to each class. We see the separation between different classes:

```
[9]: # May need to specify bandwidth (bw) in order to plot, else can ignore.
sns.pairplot(df, hue="Class") #, diag_kws={'bw': 0.2})
```

```
2109
                     diag_kws.setdefault("shade", True)
   2110
                     diag_kws["legend"] = False
-> 2111
                     grid.map_diag(kdeplot, **diag_kws)
   2112
            # Maybe plot on the off-diagonals
   2113
~/conda/envs/python/lib/python3.7/site-packages/seaborn/axisgrid.py in in a conda/envs/python/lib/python3.7/site-packages/seaborn/axisgrid.py
 →map diag(self, func, **kwargs)
   1397
                             color = fixed color
   1398
-> 1399
                         func(data_k, label=label_k, color=color, **kwargs)
   1400
   1401
                     self._clean_axis(ax)
~/conda/envs/python/lib/python3.7/site-packages/seaborn/distributions.py in_
 Akdeplot(data, data2, shade, vertical, kernel, bw, gridsize, cut, clip, legend
 →cumulative, shade lowest, cbar, cbar ax, cbar kws, ax, **kwargs)
                ax = univariate kdeplot(data, shade, vertical, kernel, bw,
    690
                                           gridsize, cut, clip, legend, ax,
--> 691
                                           cumulative=cumulative, **kwargs)
    692
    693
            return ax
~/conda/envs/python/lib/python3.7/site-packages/seaborn/distributions.py in_
 → univariate_kdeplot(data, shade, vertical, kernel, bw, gridsize, cut, clip, u
 →legend, ax, cumulative, **kwargs)
                x, y = statsmodels univariate kde(data, kernel, bw,
    282
                                                      gridsize, cut, clip,
--> 283
                                                      cumulative=cumulative)
    284
            else:
    285
                # Fall back to scipy if missing statsmodels
~/conda/envs/python/lib/python3.7/site-packages/seaborn/distributions.py in_
 → statsmodels univariate kde(data, kernel, bw, gridsize, cut, clip, cumulative
            fft = kernel == "gau"
    353
    354
            kde = smnp.KDEUnivariate(data)
--> 355
            kde.fit(kernel, bw, fft, gridsize=gridsize, cut=cut, clip=clip)
    356
            if cumulative:
    357
                grid, y = kde.support, kde.cdf
~/conda/envs/python/lib/python3.7/site-packages/statsmodels/nonparametric/kde.p
 →in fit(self, kernel, bw, fft, weights, gridsize, adjust, cut, clip)
    173
                         gridsize=gridsize,
    174
                         clip=clip,
--> 175
                         cut=cut,
    176
                     )
    177
                else:
```

```
~/conda/envs/python/lib/python3.7/site-packages/statsmodels/nonparametric/kde.p
 →in kdensityfft(x, kernel, bw, weights, gridsize, adjust, clip, cut, retgrid)
            elif isinstance(bw, str):
                # if bw is None, select optimal bandwidth for kernel
    556
                bw = bandwidths.select_bandwidth(x, bw, kern)
--> 557
                # will cross-val fit this pattern?
    558
    559
            else:
~/conda/envs/python/lib/python3.7/site-packages/statsmodels/nonparametric/
 ⇔bandwidths.py in select_bandwidth(x, bw, kernel)
    180
                      "Either provide the bandwidth during initialization or us
 □ \
                      "an alternative method."
    181
--> 182
                raise RuntimeError(err)
    183
            else:
    184
                return bandwidth
RuntimeError: Selected KDE bandwidth is 0. Cannot estimate density. Either
 sprovide the bandwidth during initialization or use an alternative method.
```


1.1.1 Data Pre-Processing and Selection

Let's examine the feature list

```
[11]: features=list(df)
  features[1:]

[11]: ['Alcohol',
    'Malic acid',
    'Ash',
    'Alcalinity of ash',
    'Magnesium',
    'Total phenols',
```

```
'Flavanoids',
'Nonflavanoid phenols',
'Proanthocyanins',
'Color intensity',
'Hue',
'OD280/OD315 of diluted wines',
'Proline'
```

We assign the class variables to y and feature variables to X

```
[12]: y, X=df[features[0]], df[features[1:]]
```

We can standardize the data

```
[13]: scaler = preprocessing.StandardScaler().fit(X)
X = scaler.transform(X)
```

We can check if the data is standardized by checking the mean and standard deviation, which are approximately zero:

```
[14]: X.mean(axis=0)
```

```
[14]: array([-8.38280756e-16, -1.19754394e-16, -8.37033314e-16, -3.99181312e-17, -3.99181312e-17, 0.00000000e+00, -3.99181312e-16, 3.59263181e-16, -1.19754394e-16, 2.49488320e-17, 1.99590656e-16, 3.19345050e-16, -1.59672525e-16])
```

```
[15]: X.std(axis=0)
```

In Random Forest, we would use these data subsets to train each node of a tree.

1.1.2 Train/Test dataset

We split our dataset into train and test set:

```
Train set (124, 13) (124,)
Test set (54, 13) (54,)
```

Stacking consists of creating a Stacking Classifier object, but first, you require a dictionary of estimators (individual model objects or base learners). The key of the dictionary is a name that is up to you, we use the usual acronym for the model. The value is the model object in this case SVC for Support Vector Classifier, dt for Decision Tree Classifier and KNN for K Neighbors Classifier.

```
[17]: estimators = content = content
```

```
NameError Traceback (most recent call last)

/tmp/ipykernel_1275/196601360.py in <module>
----> 1 estimators =__

--[('SVM',SVC(random_state=42)),('KNN',KNeighborsClassifier()),('dt',DecisionTr ecClassifier())
2 estimators

NameError: name 'SVC' is not defined
```

To train the final model we create a Stacking Classifier, this combines the base estimators using the meta estimator. The meta-classifier is determined by the parameter final_estimator in this case we use Logistic Regression, we also input the base classifiers using the estimators parameter and fit the model.

```
[20]: clf = StackingClassifier( estimators=estimators, final_estimator=_

LogisticRegression())

clf.fit(X_train, y_train)

clf
```

```
NameError Traceback (most recent call last)

/tmp/ipykernel_1275/2258820003.py in <module>
----> 1 clf = StackingClassifier( estimators=estimators, final_estimator=

----> LogisticRegression())

2 clf.fit(X_train, y_train)
3 clf

NameError: name 'StackingClassifier' is not defined
```

We can make a prediction

We can obtain the training and testing accuracy, we see the model performs well.

```
[]: get_accuracy(X_train, X_test, y_train, y_test, clf)
```

Note: Like most complex models Stacking is prone to overfitting

Practice

Create a Stacking Classifier object as before but exchange the Decision Tree Classifier with the SVM classifier. Calculate the accuracy on the training and testing data.

```
[]:
```

Click here for the solution

```
estimators = [('SVM',SVC(random_state=42)),('KNN',KNeighborsClassifier()),('lr',LogisticRegrescless clf = StackingClassifier( estimators=estimators, final_estimator= DecisionTreeClassifier())
clf.fit(X_train, y_train)
```

```
get_accuracy(X_train, X_test, y_train, y_test, clf)
```

GridSearchCV and Stacking Classifiers

Imagine that you are a medical researcher compiling data for a study. You have collected data about a set of patients, all of whom suffered from the same illness. During their course of treatment, each patient responded to one of 5 medications, Drug A, Drug B, Drug c, Drug x and y.

Part of your job is to build a model to find out which drug might be appropriate for a future patient with the same illness. The features of this dataset are Age, Sex, Blood Pressure, and the Cholesterol of the patients, and the target is the drug that each patient responded to.

It is a sample of multiclass classifier, and you can use the training part of the dataset to build a decision tree, and then use it to predict the class of a unknown patient, or to prescribe a drug to a new patient. You will use GridSearchCV and Stacking Classifiers to find the best results.

```
[21]:
                        BP Cholesterol
                                          Na_to_K
                                                     Drug
          Age Sex
                                                    drugY
      0
           23
                F
                      HIGH
                                   HIGH
                                           25.355
      1
           47
                М
                       LOW
                                   HIGH
                                           13.093
                                                    drugC
      2
           47
                М
                       LOW
                                   HIGH
                                                    drugC
                                           10.114
      3
           28
                F
                                            7.798
                                                    drugX
                   NORMAL
                                   HIGH
                F
      4
           61
                                           18.043
                                                   drugY
                       LOW
                                   HIGH
```

Let's create the X and y for our dataset:

```
[22]: X = df[['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K']].values X[0:5]
```

```
[23]: y = df["Drug"]
y[0:5]
```

```
[23]: 0 drugY
    1 drugC
    2 drugC
    3 drugX
    4 drugY
    Name: Drug, dtype: object
```

Now lets use a LabelEncoder to turn categorical features into numerical:

```
[24]: from sklearn import preprocessing
le_sex = preprocessing.LabelEncoder()
le_sex.fit(['F','M'])
X[:,1] = le_sex.transform(X[:,1])

le_BP = preprocessing.LabelEncoder()
le_BP.fit([ 'LOW', 'NORMAL', 'HIGH'])
X[:,2] = le_BP.transform(X[:,2])

le_Chol = preprocessing.LabelEncoder()
le_Chol.fit([ 'NORMAL', 'HIGH'])
X[:,3] = le_Chol.transform(X[:,3])
X[0:5]
```

```
[25]: scaler = preprocessing.StandardScaler().fit(X)
X= scaler.transform(X)
```

Split the data into training and testing data with a 80/20 split

```
[26]: X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=4)

print ('Train set:', X_train.shape, y_train.shape)

print ('Test set:', X_test.shape, y_test.shape)
```

```
Train set: (140, 5) (140,)
Test set: (60, 5) (60,)
```

We have our dictionary of estimators, the individual model objects or base learners.

```
[27]: estimators =_{\sqcup} \\ \hookrightarrow [('SVM',SVC(random_state=42)),('knn',KNeighborsClassifier()),('dt',DecisionTreeClassifier()) \\ estimators
```

```
NameError Traceback (most recent call last)

/tmp/ipykernel_1275/1530583448.py in <module>
----> 1 estimators =__

--[('SVM',SVC(random_state=42)),('knn',KNeighborsClassifier()),('dt',DecisionTreeClassifier())
2 estimators

NameError: name 'SVC' is not defined
```

We create a Stacking Classifier:

In order to alter the base models in the dictionary of hyperparameter values, we add the key value of each model followed by the parameter of the model we would like to vary.

We use GridSearchCV to search over specified parameter values of the model.

```
[]: search = GridSearchCV(estimator=clf, param_grid=param_grid,scoring='accuracy')
search.fit(X_train, y_train)
```

We can find the accuracy of the best model.

```
[]: search.best_score_
```

We can find the best parameter values:

```
[]: search.best_params_
```

We can find the accuracy test data:

```
[]: get_accuracy(X_train, X_test, y_train, y_test, search)
```

```
[]: # We use sklearn version 0.20.1 for all other labs, please run this command_
after finishing the lab

!mamba install -c conda-forge -qy scikit-learn=0.20.1
```

1.1.3 Thank you for completing this lab!

1.2 Author

Joseph Santarcangelo

1.2.1 Other Contributors

1.3 Change Log

Date (YYYY-MM-DD)	Version	Changed By	Change Description
2021-01-01	1.0	Joseph S	Created the initial version
2022-02-09	1.1	Steve Hord	QA pass

##

 $\ensuremath{{}^{\odot}}$ IBM Corporation 2021. All rights reserved.