Examen Traitement d'images L3 Xidian

Exercice 1 Histogrammes

On donne l'histogramme d'une image sur 8 niveaux de gris p, réalisez un ajustement automatique (à 10%) Pajusté et une égalisation Pégalisé : (remplissez le tableau)

I	Р	Pégalisé	Pajusté Imax=6	Pajusté Imax=5
0	0,05	0,05	<mark>0,1</mark>	<mark>0,1</mark>
1	0,05	<mark>0,1</mark>	<mark>0,05</mark>	0
2	0,05	<mark>0,2</mark>	0	<mark>0,05</mark>
3	0,2	0	<mark>0,2</mark>	0
4	0,35	0	<mark>0,35</mark>	<mark>0,2</mark>
5	0,2	<mark>0,35</mark>	0	<mark>0,35</mark>
6	0,05	<mark>0,2</mark>	<mark>0,35</mark>	0
7	0,05	<mark>0,1</mark>	<mark>0,1</mark>	<mark>0,3</mark>

- 1. Donnez pour l'ajustement: lmin = Imax =
- 2. Tracer sur le même graphique que P les deux histogrammes obtenus Pégalisé et Pajusté.

Lmax=6 (j'ai accepté aussi cette solution...)

Ou

Exercice 2 Filtrage

On donne le filtre spatial suivant :

$$h = \begin{bmatrix} -1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

1. Soit le pixel traité I(i,j) central et ses 8 voisins :

$$\begin{bmatrix} 10 & 10 & 40 \\ 10 & 40 & 40 \\ 20 & 30 & 40 \end{bmatrix}$$
 Donnez le résultat après filtrage l'(i,j)=
$$\begin{bmatrix} -80 \\ -80 \\ -80 \\ -80 \\ -80 \\ -80 \\ -80 \\ -80 \\ -80$$

2. Donnez la réponse fréquentielle de: H(u,v)

```
H(u,v)=2j^*[sin(-2pi(u+v)) + sin(-2piv) + sin(-2piu)] avec pi=3,14...
```

3. Que vous apporte ce filtre?

Il permet de calculer les contours diagonaux à 45 degré.

Exercice 3 Pratique

On désire récupérer que les gros noyaux (noirs) des cellules de cette image de biologie. Etape détection.

éponse	fausse)			
	☐ Binarisation avec un seuil automatique			
	☐ Binarisation avec un seuil choisi			
	☐ Filtrage passe-haut			
	☐ Filtrage passe-bas			
	☐ Ouverture puis binarisation (élément structurant = objet)			
	x Fermeture puis binarisation (élément structurant = objet)			
	Ici cette technique est possible car les noyaux sont les plus gros objets			
sombres possibles.				
	☐ Top-hat puis binarisation (élément structurant = objet)			
	☐ Bottom-hat puis binarisation (élément structurant = objet)			
	☐ Ouverture puis binarisation (élément structurant < objet)			
	☐ fermeture puis binarisation (élément structurant < objet)			
	x Bottom-hat (élément structurant = objet)- Bottom-hat (élément structurant			
< ob	jet) puis binarisation			
	☐Top-hat (élément structurant = objet)- Top-hat (élément structurant <			
obje	t) puis binarisation			
	☐ Top-hat (élément structurant = objet)- Bottom-hat (élément structurant <			
obje	t) puis binarisation			

1. Quelles méthodes peuvent donner de bons résultats ? (1 point par bonne réponse -1 par

2. Ecrire en matlab ou langage algorithmique, le programme de comptage des cellules, on suppose que l'on a détecté les cellules et donc que l'on a une image binaire correcte comme celle-ci:

A partir de l'image binaire ci-dessus que j'appelle Ib :

II=labelisation (Ib, 8 voisins)

Nbr=max(max(II)) %numéro du dernier objet

% si on veut un détail de toutes les tailles, pas demandé...

H= hist(II)

H2=H[2:end] % on enleve le fond -> H2 a le détail de toutes les cellules.