$$\mathbf{n} = \overrightarrow{PQ} \times \overrightarrow{QR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & 1 & -2 \\ 3 & -3 & 5 \end{vmatrix} = \mathbf{i} + 9\mathbf{j} + 6\mathbf{k}$$

y se obtiene, usando el punto P en la ecuación (4.5.8),

$$\pi$$
: $-(x-1) + 9(y-2) + 6(z-1) = 0$

es decir,

$$-x + 9v + 6z = 23$$

Observe que si se escoge otro punto, digamos Q, se obtiene la ecuación -(x + 2) + 9(y - 3) + 6(z + 1) = 0, que se reduce a -x + 9y + 6z = 23. La figura 4.40 presenta un bosquejo de este plano.

Definición 4.5.2

Planos paralelos

Dos planos son **paralelos** si sus vectores normales son paralelos, es decir, si el producto cruz de sus vectores normales es cero.

En la figura 4.41 se dibujaron dos planos paralelos.

Nota

Observe que dos planos paralelos pueden ser coincidentes. Por ejemplo, los planos x + y + z = 1 y 2x + 2y + 2z = 2 son coincidentes (son el mismo).

Figura 4.41

Se dibujaron dos planos paralelos.

EJEMPLO 4.5.8 Dos planos paralelos

Los planos π_1 : 2x + 3y - z = 3 y π_2 : -4x - 6y + 2z = 8 son paralelos ya que $\mathbf{n}_1 = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$, $\mathbf{n}_2 = -4\mathbf{i} - 6\mathbf{j} + 2\mathbf{k} = -2\mathbf{n}_1$ (y $\mathbf{n}_1 \times \mathbf{n}_2 = 0$).

Si dos planos no son paralelos, entonces se intersecan en una línea recta.

EJEMPLO 4.5.9 Puntos de intersección de planos

Encuentre todos los puntos de intersección de los planos 2x - y - z = 3 y x + 2y + 3z = 7.

SOLUCIÓN Las coordenadas de cualquier punto (x, y, z) sobre la recta de intersección de estos dos planos deben satisfacer las ecuaciones x + 2y + 3z = 7 y 2x - y - z = 3. Resolviendo este sistema de dos ecuaciones con tres incógnitas mediante reducción por renglones se obtiene, sucesivamente,

$$\begin{pmatrix}
1 & 2 & 3 & | & 7 \\
2 & -1 & -1 & | & 3
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - 2R_1}
\begin{pmatrix}
1 & 2 & 3 & | & 7 \\
0 & -5 & -7 & | & -11
\end{pmatrix}$$

$$\xrightarrow{R_2 \to \frac{1}{5}R_2}$$

$$\Rightarrow
\begin{pmatrix}
1 & 2 & 3 & | & 7 \\
2 & 1 & \frac{7}{5} & | & \frac{11}{5}
\end{pmatrix}
\xrightarrow{R_1 \to R_1 - 2R_2}
\begin{pmatrix}
1 & 0 & \frac{1}{5} & | & \frac{13}{5} \\
0 & 1 & \frac{7}{5} & | & \frac{11}{5}
\end{pmatrix}$$