1. Liczby zespolone

W zbiorze \mathcal{C} definiujemy równość, dodawanie \oplus oraz mnożenie \otimes : jeśli $(a,b),(c,d)\in\mathcal{C}$, to przyjmujemy, że:

$$(a,b)=(c,d) \Leftrightarrow a=c \ i \ b=d,$$

$$(a,b) \oplus (c,d) = (a+c,b+d),$$
 (2)

$$(a,b)\otimes(c,d) = (ac-bd,ad+bc). \tag{3}$$

Twierdzenie

Każdą liczbę zespoloną z = (a, b) można przedstawić w postaci

$$z = a + bj$$
,

nazywanej postacią kanoniczną liczby z = (a, b).

Definicja

Sprzężeniem liczby zespolonej z=a+bj (gdzie a i b są liczbami rzeczywistymi) nazywamy liczbę

$$\overline{z} = a - bj$$
.

Definicja (Moduł liczby zespolonej)

Modułem (lub wielkością) liczby zespolonej z = a + bj (gdzie $a, b \in R$) nazywamy nieujemną liczbę rzeczywistą

$$|z|=\sqrt{a^2+b^2}.$$

Moduł |z| liczby z jest odległością z od 0.

Twierdzenie

Jeśli

$$z = |z|(\cos \alpha + j\sin \alpha)$$
 i $w = |w|(\cos \beta + j\sin \beta)$,

to

$$zw = |z||w|(\cos(\alpha + \beta) + j\sin(\alpha + \beta))$$

 $\frac{z}{w} = \frac{|z|}{|w|} (\cos(\alpha - \beta) + j\sin(\alpha - \beta)),$

 $gdy w \neq 0.$

Twierdzenie (Pierwiastkowanie liczb zespolonych)

Każda liczba zespolona $z=|z|(\cos\alpha+j\sin\alpha)$ różna od zera ma dokładnie n różnych pierwiastków n-tego stopnia i wszystkie one określone są wzorem

$$w_k = \sqrt[n]{|z|} \left(\cos \frac{\alpha + 2k\pi}{n} + j \sin \frac{\alpha + 2k\pi}{n} \right),$$

gdzie $k=0,\,1,\,\ldots,\,n-1,\,$ a $\sqrt[n]{|z|}$ jest pierwiastkiem arytmetycznym.

Twierdzenie (Pierwiastki stopnia drugiego)

Jeśli a i b są liczbami rzeczywistymi, to pierwiastkami stopnia drugiego z liczby z=a+jb są liczby

$$w = \pm \left(\sqrt{\frac{|z|+a}{2}} + j\operatorname{sign}(b)\sqrt{\frac{|z|-a}{2}}\right).$$

Twierdzenie (Własności działań na liczbach zespolonych)

Zbiór $\mathcal C$ z działaniami określonymi wzorami (2) i (3) jest ciałem:

(a) $\forall_{z,w\in\mathcal{C}} z \oplus w = w \oplus z$, (przemienność dodawania)

(b) $\forall_{z,w,t\in\mathcal{C}} z \oplus (w \oplus t) = (z \oplus w) \oplus t$, (łączność dodawania)

(c) $\exists_{z_0 \in \mathcal{C}} \ \forall_{z \in \mathcal{C}} \ z \oplus z_0 = z,$ ($z_0 = (0,0)$ – zero zespolone)

(d) $\forall_{z \in \mathcal{C}} \exists_{-z \in \mathcal{C}} z \oplus (-z) = z_0,$ (-z = (-a, -b) - liczba przeciwna do z = (a, b))

(e) $\forall_{z,w\in\mathcal{C}} \ z\otimes w = w\otimes z$, (przemienność mnożenia) (f) $\forall_{z,w,t\in\mathcal{C}} \ z\otimes (w\otimes t) = (z\otimes w)\otimes t$, (łączność mnożenia)

 $(g) \exists_{z_1 \in \mathcal{C}} \forall_{z \in \mathcal{C}} z \otimes z_1 = z,$ $(z_1 = (1,0) - \text{jedynka zespolona})$

(h) $\forall_{z \in \mathcal{C} - \{z_0\}} \exists_{z^{-1} \in \mathcal{C}} z \otimes z^{-1} = z_1,$ $(z^{-1} = (\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}), \text{ gdy}$ $z = (a, b) \neq z_0)$

(i) $\forall_{z,w,t\in\mathcal{C}} z\otimes(w\oplus t) = (z\otimes w)\oplus(z\otimes t)$. (rozdzielność działania \otimes względem \oplus)

Twierdzenie

Jeśli \boldsymbol{z} i \boldsymbol{w} są liczbami zespolonymi, to:

(a)
$$\overline{z+w} = \overline{z} + \overline{w}, \ \overline{z-w} = \overline{z} - \overline{w};$$

- (b) $\overline{z}\overline{w} = \overline{z}\overline{w}$, $\overline{z/w} = \overline{z}/\overline{w}$ (gdy $w \neq 0$);
- (c) dla każdej liczby całkowitej n jest $\overline{(z^n)} = (\overline{z})^n$ $(z \neq 0, \text{ gdy } n \leq 0);$
- (d) z jest liczbą rzeczywistą wtedy i tylko wtedy, gdy $\overline{z} = z$.

Dodatkowo, jeśli z = a + bj (gdzie $a, b \in R$), to (e) $z + \overline{z} = 2a$, $z - \overline{z} = 2bj$ i $z\overline{z} = a^2 + b^2$.

Twierdzenie (Własności modułu)

Jeśli $z, w \in \mathcal{C}$, to:

- (a) $|z| = \sqrt{z\overline{z}}, \ |z| = |\overline{z}| = |-z|;$
- (b) $|zw| = |z||w|, \ \left|\frac{z}{w}\right| = \frac{|z|}{|w|} \ (w \neq 0);$
- (c) $||z| |w|| \le |z + w| \le |z| + |w|$.

Wniosek (Wzór de Moivre'a)

Jeśli $z = |z|(\cos \alpha + j\sin \alpha)$ i n jest liczbą całkowitą, to

$$z^n = |z|^n (\cos n\alpha + j \sin n\alpha),$$

gdzie $z \neq 0$ dla $n \leq 0$.

Wniosek

Dla każdej liczby rzeczywistej α i każdej liczby całkowitej \boldsymbol{n} jest

 $(\cos \alpha + j \sin \alpha)^n = \cos n\alpha + j \sin n\alpha$.

Liczbę $z = a + bj \neq 0$ można przedstawić w postaci

$$z = |z| \left(\frac{a}{|z|} + j \frac{b}{|z|} \right) = |z| \left(\cos \alpha + j \sin \alpha \right),$$

zwanej postacią trygonometryczną liczby z. Liczbę α taką, że

$$\frac{a}{|z|} = \cos \alpha \quad i \quad \frac{b}{|z|} = \sin \alpha$$

nazywa się argumentem liczby $z = a + bj \neq 0$ i oznacza symbolem arg (z).

Twierdzenie (Pierwik ki równania kwadratowego)

Pierwiastkami równania kwadratowego $ax^2 + bx + c = 0$, w którym $a, b, c \in C$ i $a \neq 0$. liczby

$$x = \frac{-b - \sqrt{\Delta}}{2a}$$
 i $x = \frac{-b + \sqrt{\Delta}}{2a}$

 Δ jest jednym z dwóch pierwiego z liczby $\Delta = b^2$

2. Wielomiany

Wielomianem jest funkcja postaci

 $V(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$. Wielomian możemy zapisać w tzw. postaci zagnieżdżonej,

$$V(x) = (\dots((a_n x + a_{n-1})x + a_{n-2})x + \dots + a_1)x + a_0.$$

Tej postaci odpowiada schemat, nazywany schematem Hornera, przydatny przy wyznaczaniu wartości wielomianu:

gdzie $y_0 = a_n$, $y_1 = x_0y_0 + a_{n-1}$ i ogólnie $y_{i+1} = x_0y_i + a_{n-i-1}$.

Twierdzenie

Jeżeli V(x) i W(x) są wielomianami i $W(x) \neq 0$, to istnieją jednoznacznie wyznaczone wielomiany Q(x) i R(x) takie, że

$$V(x) = W(x)Q(x) + R(x) \quad i \quad \deg R(x) < \deg W(x). \tag{1}$$

- Q(x) iloraz z dzielenia V(x) przez W(x)
- R(x) reszta z dzielenia V(x) przez W(x)

Definicja

Liczbę x_0 nazywamy pierwiastkiem (albo zerem) wielomianu V(x), gdy $V(x_0) = 0$.

Definicja

Liczba x_0 jest k-krotnym pierwiastkiem wielomianu V(x), gdy istnieje wielomian Q(x) taki, że

$$V(x) = (x - x_0)^k Q(x)$$
 i $Q(x_0) \neq 0$.

Twierdzenie

Wielomian stopnia $n \ge 0$ nad ciałem K ma co najwyżej n pierwiastków w ciele K.

Twierdzenie

Wniosek

Jeśli V(x) jest wielomianem nad ciałem liczb zespolonych i $\deg V(x) = n > 0$, to V(x) ma dokładnie n pierwiastków x_1, x_2, \ldots, x_n w ciele \mathcal{C} (niekoniecznie różnych) i może on być przedstawiony w postaci iloczynu

$$V(x) = a(x - x_1)(x - x_2) \dots (x - x_n),$$

gdzie a jest liczbą różną od zera.

Niech $V(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ będzie wielomianem dodatniego stopnia, którego współczynniki są liczbami całkowitymi. Niech p i q będą liczbami całkowitymi względnie pierwszymi. Jeśli ułamek p/q jest pierwiastkiem wielomianu V(x), to p dzieli wyraz wolny a_0 , a q dzieli współczynnik wiodący a_n wielomianu V(x).

Definicja

Niech V(x) i W(x) będą wielomianami. Mówimy, że wielomian V(x) jest podzielny przez wielomian W(x), gdy istnieje wielomian Q(x) taki, że

$$V(x) = W(x)Q(x).$$

- ullet Q(x) jest ilorazem z dzielenia wielomianu V(x) przez wielomian W(x)
- W(x) (jak i Q(x)) jest dzielnikiem albo czynnikiem wielomianu V(x).

Wniosek (Twierdzenie o reszcie)

Jeśli V(x) jest wielomianem, to resztą z dzielenia V(x) przez dwumian $x-x_0$ jest $V(x_0)$, czyli istnieje wielomian Q(x) taki, że

$$V(x) = (x - x_0)Q(x) + V(x_0).$$

Definicja

Liczbę x_0 nazywamy pierwiastkiem (albo zerem) wielomianu V(x), gdy $V(x_0) = 0$.

Twierdzenie (Bézout)

Liczba x_0 jest pierwiastkiem wielomianu V(x) wtedy i tylko wtedy, gdy wielomian V(x) jest podzielny przez dwumian $x - x_0$.

Twierdzenie (Zasadnicze twierdzenie algebry Gaussa)

Jeśli V(x) jest wielomianem nad ciałem liczb zespolonych i deg V(x) > 0, to V(x) ma pierwiastek w ciele C.

Twierdzenie

Niech V(x) będzie wielomianem o współczynnikach rzeczywistych. Jeśli liczba zespolona z_0 jest k-krotnym pierwiastkiem wielomianu V(x), to także jej sprzężenie $\overline{z_0}$ jest k-krotnym pierwiastkiem wielomianu V(x).

Dla wielomianu **o współczynnikach rzeczywistych**. Jeśli dwumian (x - z) dzieli wielomian V(x), to zachodzi: $(x - z)(x - \bar{z}) = x^2 - 2Re(z)x + |z|^2$