#### Introduction à la fouille de données

 $\begin{array}{c} M.~Ledmi \\ m\_ledmi@esi.dz \end{array}$ 

Département d'Informatique Khenchela

2020/2021





#### Plan

- Segmentation (Clustering)
  - Introduction
  - Problématique
  - Distance et Dissimilarité
  - Algorithme k-Means





#### Vous êtes ici

- Segmentation (Clustering)
  - Introduction
  - Problématique
  - Distance et Dissimilarité
  - Algorithme k-Means





- Elle est aussi appelée classification non supervisée.
- Un cluster est une collection d'objets de données :
  - Similaires les uns aux autres dans le même segment,
  - Différents des objets dans d'autres segment.





- Elle est aussi appelée classification non supervisée.
- Un cluster est une collection d'objets de données :
  - Similaires les uns aux autres dans le même segment,
  - Différents des objets dans d'autres segments







- Elle est aussi appelée classification non supervisée.
- Un cluster est une collection d'objets de données :
  - Similaires les uns aux autres dans le même segment,
  - Différents des objets dans d'autres segments





- Elle est aussi appelée classification non supervisée.
- Un cluster est une collection d'objets de données :
  - Similaires les uns aux autres dans le même segment,
  - Différents des objets dans d'autres segments.





- Créer un partitionnement initial.
- Utiliser une stratégie de contrôle itérative pour l'optimiser.





- Méthode de partitionnement :
  - Créer un partitionnement initial.
  - Utiliser une stratégie de contrôle itérative pour l'optimiser.



- Créer un partitionnement initial.
- Utiliser une stratégie de contrôle itérative pour l'optimiser.







- Créer un partitionnement initial.
- Utiliser une stratégie de contrôle itérative pour l'optimiser.







- Créer un partitionnement initial.
- Utiliser une stratégie de contrôle itérative pour l'optimiser.





- Construire une hiérarchie de clusters (appele dendrogramme),
- Non seulement un partitionnement unique des obiets.
- Utiliser une condition de terminaison. (ex. Nombre de clusters).
- Méthodes basées sur la densité : utiliser les fonctions de densité de voisinage.







- Construire une hiérarchie de clusters (appelé dendrogramme),
- Non seulement un partitionnement unique des obiets.
- Utiliser une condition de terminaison. (ex. Nombre de clusters).
- Méthodes basées sur la densité : utiliser les fonctions de densité de voisinage.







- Construire une hiérarchie de clusters (appelé dendrogramme),
- Non seulement un partitionnement unique des objets.
- Utiliser une condition de terminaison. (ex. Nombre de clusters).
- Méthodes basées sur la densité : utiliser les fonctions de densité de voisinage.







- Construire une hiérarchie de clusters (appelé dendrogramme),
- Non seulement un partitionnement unique des objets.
- Utiliser une condition de terminaison. (ex. Nombre de clusters).
- Méthodes basées sur la densité : utiliser les fonctions de densité de voisinage.







- Construire une hiérarchie de clusters (appelé dendrogramme),
- Non seulement un partitionnement unique des objets.
- Utiliser une condition de terminaison. (ex. Nombre de clusters).
- Méthodes basées sur la densité : utiliser les fonctions de densité de voisinage.







- La reconnaissance de formes et le traitement d'images.
- Analyse des données spatiales : créer des cartes thématiques dans les systèmes d'information géographique (SIG).
- Bioinformatique : la détermination des groupes de signatures à partir d'une base de données de gènes.
- Web : clustering des fichiers log pour découvrir des modèles d'accès similaires.





- La reconnaissance de formes et le traitement d'images.
- Analyse des données spatiales : créer des cartes thématiques dans les systèmes d'information géographique (SIG).





- La reconnaissance de formes et le traitement d'images.
- Analyse des données spatiales : créer des cartes thématiques dans les systèmes d'information géographique (SIG).
- Bioinformatique : la détermination des groupes de signatures à partir d'une base de données de gènes.





- La reconnaissance de formes et le traitement d'images.
- Analyse des données spatiales : créer des cartes thématiques dans les systèmes d'information géographique (SIG).
- Bioinformatique : la détermination des groupes de signatures à partir d'une base de données de gènes.
- Web : clustering des fichiers log pour découvrir des modèles d'accès similaires.





# Problèmatique

#### Problèmatique

Soit  $\mathcal{P}$  une polpulation d'instances de données à N attributs, trouver un partitionnement en K clusters (groupes)  $\{C_1, C_2, \dots C_K\}$  de  $\mathcal{P}$  telque :

$$\bigcup_{k=1}^{K} C_k = \mathcal{P}$$

Où les clusters  $C_k$  soient :

- Homogènes que possible (similaires au sein d'un même groupe).
- Distincts que possible (dissimilaires quand ils appartiennent à des groupes différents).





# Problèmatique

#### Problèmatique

Soit  $\mathcal{P}$  une polpulation d'instances de données à N attributs, trouver un partitionnement en K clusters (groupes)  $\{C_1, C_2, \dots C_K\}$  de  $\mathcal{P}$  telque :

$$\bigcup_{k=1}^{K} C_k = \mathcal{P}$$

Où les clusters  $C_k$  soient :

- Homogènes que possible (similaires au sein d'un même groupe).
- Distincts que possible (dissimilaires quand ils appartiennent à des groupes différents).





# Problèmatique

#### Problèmatique

Soit  $\mathcal{P}$  une polpulation d'instances de données à N attributs, trouver un partitionnement en K clusters (groupes)  $\{C_1, C_2, \dots C_K\}$  de  $\mathcal{P}$  telque :

$$\bigcup_{k=1}^{K} C_k = \mathcal{P}$$

Où les clusters  $C_k$  soient :

- Homogènes que possible (similaires au sein d'un même groupe).
- Distincts que possible (dissimilaires quand ils appartiennent à des groupes différents).





- Une bonne méthode de clustering produira des clusters d'excellente qualité avec :
  - Similarité intra-classe importante
  - Similarité inter-classe faible.
- La qualité d'un clustering dépend de :
  - L'implémentation de la mesure de similarit
- La qualité d'une méthode de clustering est évaluée par son abilité à découvrir certains ou tous les "pattern" cachés.





- Une bonne méthode de clustering produira des clusters d'excellente qualité avec :
  - Similarité intra-classe importante.
  - Similarité inter-classe faible.
- La qualité d'un clustering dépend de :
- a La qualitá d'una máthada da alustaring
- La qualité d'une méthode de clustering est évaluée par son abilité à découvrir certains ou tous les "pattern" cachés.





- Une bonne méthode de clustering produira des clusters d'excellente qualité avec :
  - Similarité intra-classe importante.
  - Similarité inter-classe faible.
- La qualité d'un clustering dépend de :
   La mesure de similarité utilisée.
- La qualité d'une méthode de clustering est évaluée par son abilité à découvrir certains ou tous les "pattern" cachés.





- Une bonne méthode de clustering produira des clusters d'excellente qualité avec :
  - Similarité intra-classe importante.
  - Similarité inter-classe faible.
- La qualité d'un clustering dépend de :
  - La mesure de similarité utilisée.
  - L'implémentation de la mesure de similarité.
- La qualité d'une méthode de clustering est évaluée par son abilité à découvrir certains ou tous les "pattern" cachés.





- Une bonne méthode de clustering produira des clusters d'excellente qualité avec :
  - Similarité intra-classe importante.
  - Similarité inter-classe faible.
- La qualité d'un clustering dépend de :
  - La mesure de similarité utilisée.
  - L'implémentation de la mesure de similarité
- La qualité d'une méthode de clustering est évaluée par son abilité à découvrir certains ou tous les "pattern" cachés.





- Une bonne méthode de clustering produira des clusters d'excellente qualité avec :
  - Similarité intra-classe importante.
  - Similarité inter-classe faible.
- La qualité d'un clustering dépend de :
  - La mesure de similarité utilisée.
  - L'implémentation de la mesure de similarité.
- La qualité d'une méthode de clustering est évaluée par son abilité à découvrir certains ou tous les "pattern" cachés.





- Une bonne méthode de clustering produira des clusters d'excellente qualité avec :
  - Similarité intra-classe importante.
  - Similarité inter-classe faible.
- La qualité d'un clustering dépend de :
  - La mesure de similarité utilisée.
  - L'implémentation de la mesure de similarité.
- La qualité d'une méthode de clustering est évaluée par son abilité à découvrir certains ou tous les "pattern" cachés.





#### **®** Distance

On appelle distance sur un ensemble E, une application  $d: E \times E \leftarrow \mathbb{R}^+$  telle que :

- Séparation :  $\forall (x,y) \in E^2 : d(x,y) = 0 \text{ ssi } x = y$
- Symétrie:  $\forall (x,y) \in E^2 : d(x,y) = d(y,x)$
- **3** $Inégalité triangulaire : <math>\forall (x, y, z) \in E^3 : d(x, z) \leq d(x, y) + d(y, y)$





#### **®** Distance

On appelle distance sur un ensemble E, une application  $d: E \times E \leftarrow \mathbb{R}^+$  telle que :

- Séparation :  $\forall (x,y) \in E^2 : d(x,y) = 0 \text{ ssi } x = y$
- Symétrie:  $\forall (x,y) \in E^2 : d(x,y) = d(y,x)$







#### **®** Distance

On appelle distance sur un ensemble E, une application  $d: E \times E \leftarrow \mathbb{R}^+$  telle que :

- Séparation :  $\forall (x,y) \in E^2 : d(x,y) = 0 \text{ ssi } x = y$
- Symétrie :  $\forall (x,y) \in E^2 : d(x,y) = d(y,x)$
- $\ \ \, \ \,$  Inégalité triangulaire :  $\forall (x,y,z) \in E^3: d(x,z) \leq d(x,y) + d(y,z)$

 Une dissimilarité est une application qui a les propriétés de la distance sauf éventuellement l'inégalité triangulaire.



#### **®** Distance

On appelle distance sur un ensemble E, une application  $d: E \times E \leftarrow \mathbb{R}^+$  telle que :

- Séparation :  $\forall (x,y) \in E^2 : d(x,y) = 0 \text{ ssi } x = y$
- Symétrie :  $\forall (x,y) \in E^2 : d(x,y) = d(y,x)$
- $\ \ \, \ \,$  Inégalité triangulaire :  $\forall (x,y,z) \in E^3: d(x,z) \leq d(x,y) + d(y,z)$

 Une dissimilarité est une application qui a les propriétés de la distance sauf éventuellement l'inégalité triangulaire.



#### **Oblistance**

On appelle distance sur un ensemble E, une application  $d: E \times E \leftarrow \mathbb{R}^+$  telle que :

- Séparation :  $\forall (x,y) \in E^2 : d(x,y) = 0 \text{ ssi } x = y$
- $\bullet$  Inégalité triangulaire :  $\forall (x,y,z) \in E^3 : d(x,z) \leq d(x,y) + d(y,z)$
- Une dissimilarité est une application qui a les propriétés de la distance sauf éventuellement l'inégalité triangulaire.



#### Définir une distance sur chacun des attributs :

- Distance : d(x, y) = |x y|,
- Distance normalisée :  $d(x,y) = \frac{|x-y|}{d_{max}}$





Définir une distance sur chacun des attributs :

- Distance : d(x, y) = |x y|,
- Distance normalisée :  $d(x,y) = \frac{|x-y|}{d_{max}}$





Définir une distance sur chacun des attributs :

• Distance : d(x, y) = |x - y|,

• Distance normalisée :  $d(x,y) = \frac{|x-y|}{d_{max}}$ 

Exemple: Age, taille, poids.





- Données binaires: d(0,0) = d(1,1) = 0, d(0,1) = d(1,0) = 1.
- Données énumératives : distance nulle si les valeurs sont égales et 1 sinon
- Données énumératives ordonnées : On peut définir une distance utilisant la relation d'ordre.
- Données de types complexes : textes, images, données génétiques, ... etc.





- Données binaires : d(0,0) = d(1,1) = 0, d(0,1) = d(1,0) = 1.
- Données énumératives : distance nulle si les valeurs sont égales et 1 sinon
- Données énumératives ordonnées : On peut définir une distance utilisant la relation d'ordre.
- Données de types complexes : textes, images, données génétiques, ... etc.





- Données binaires : d(0,0) = d(1,1) = 0, d(0,1) = d(1,0) = 1.
- Données énumératives : distance nulle si les valeurs sont égales et 1 sinon.
- Données énumératives ordonnées : On peut définir une distance utilisant la relation d'ordre.
- Données de types complexes : textes, images, données génétiques, ... etc.





- Données binaires : d(0,0) = d(1,1) = 0, d(0,1) = d(1,0) = 1.
- Données énumératives : distance nulle si les valeurs sont égales et 1 sinon.
- Données énumératives ordonnées : On peut définir une distance utilisant la relation d'ordre.
- Données de types complexes : textes, images, données génétiques, ... etc.





- Attributs discrets :
  - Données binaires : d(0,0) = d(1,1) = 0, d(0,1) = d(1,0) = 1.
  - Données énumératives : distance nulle si les valeurs sont égales et 1 sinon.
  - Données énumératives ordonnées : On peut définir une distance utilisant la relation d'ordre.
- Données de types complexes : textes, images, données génétiques, ... etc.





#### Standardiser les données

• Calculer l'écart absolu moyen :

$$S_f = \frac{1}{n}(|x_{1f} - M_f| + |x_{2f} - M_f| + \dots + |x_{nf} - M_f|)$$
 où  $M_f = \frac{1}{n}(x_{1f} + x_{2f} + \dots + x_{nf})$ 

• Calculer la mesure standardisée (z-score) :  $z_{if} = \frac{x_{if} - M_f}{S_f}$ 

Utiliser une distance : Soient  $x = (x_1, \ldots, x_n)$  et  $y = (y_1, \ldots, y_n)$ 

- Distance Euclidienne :  $d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$
- Distance de Manhattan :  $d(x,y) = \sum_{i=1}^{n} |x_i y_i|$
- Distance de **Minkowski** :  $d(x,y) = \sqrt[q]{\sum_{i=1}^{n} |x_i y_i|^q}$





#### Standardiser les données

• Calculer l'écart absolu moyen :

$$S_f = \frac{1}{n}(|x_{1f} - M_f| + |x_{2f} - M_f| + \dots + |x_{nf} - M_f|)$$
 où  $M_f = \frac{1}{n}(x_{1f} + x_{2f} + \dots + x_{nf})$ 

• Calculer la mesure standardisée (z-score) :  $z_{if} = \frac{x_{if} - M_f}{S_f}$ 

Utiliser une distance : Soient  $x = (x_1, \ldots, x_n)$  et  $y = (y_1, \ldots, y_n)$ 

- Distance Euclidienne :  $d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$
- Distance de Manhattan :  $d(x,y) = \sum_{i=1}^{n} |x_i y_i|$
- Distance de Minkowski :  $d(x,y) = \sqrt[q]{\sum_{i=1}^{n} |x_i y_i|^q}$





#### Standardiser les données

• Calculer l'écart absolu moyen :

$$S_f = \frac{1}{n}(|x_{1f} - M_f| + |x_{2f} - M_f| + \dots + |x_{nf} - M_f|)$$
 où  $M_f = \frac{1}{n}(x_{1f} + x_{2f} + \dots + x_{nf})$ 

• Calculer la mesure standardisée (z-score) :  $z_{if} = \frac{x_{if} - M_f}{S_f}$ 

Utiliser une distance : Soient  $x = (x_1, \ldots, x_n)$  et  $y = (y_1, \ldots, y_n)$ 

- Distance Euclidienne :  $d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$
- Distance de Manhattan :  $d(x,y) = \sum_{i=1}^{n} |x_i y_i|$
- Distance de **Minkowski** :  $d(x,y) = \sqrt[q]{\sum_{i=1}^n |x_i y_i|^q}$





### Exemple:

• Calculer d(P1,P2), d(P1,P3) sans standardiser les données :

Conclusion : P1 ressemble plus à P2 qu'à P3

 Calculer d(P1,P2), d(P1,P3) après avos standardisé les données :
 Conclusion : P1 ressemble plus à P3 qu'à P2

|    | Age | Salaire |
|----|-----|---------|
| P1 | 50  | 11000   |
| P2 | 70  | 11100   |
| Р3 | 60  | 11122   |
| P4 | 60  | 11074   |

d(P1,P2)=120 d(P1,P3)=132

### Exemple:

• Calculer d(P1,P2), d(P1,P3) sans standardiser les données :

Conclusion : P1 ressemble plus à P2 qu'à P3

 Calculer d(P1,P2), d(P1,P3) après avoir standardisé les données :
 Conclusion : P1 ressemble plus à P3 qu'à P2

|    | Age | Salaire |
|----|-----|---------|
| P1 | 50  | 11000   |
| P2 | 70  | 11100   |
| P3 | 60  | 11122   |
| P4 | 60  | 11074   |

$$d(P1,P2)=120 d(P1,P3)=132$$



### Exemple:

• Calculer d(P1,P2), d(P1,P3) sans standardiser les données :

Conclusion : P1 ressemble plus à P2 qu'à P3

 Calculer d(P1,P2), d(P1,P3) après avoir standardisé les données :
 Conclusion : P1 ressemble plus à P3 qu'à P2

|    | Age | Salaire |
|----|-----|---------|
| P1 | 50  | 11000   |
| P2 | 70  | 11100   |
| P3 | 60  | 11122   |
| P4 | 60  | 11074   |

$$d(P1,P2)=120 d(P1,P3)=132$$



### Exemple:

• Calculer d(P1,P2), d(P1,P3) sans standardiser les données :

Conclusion : P1 ressemble plus à P2 qu'à P3

• Calculer d(P1,P2), d(P1,P3) après avoir standardisé les données :

Conclusion: P1 ressemble plus à P3 au'à P2

|    | Age | Salaire |
|----|-----|---------|
| P1 | 50  | 11000   |
| P2 | 70  | 11100   |
| Р3 | 60  | 11122   |
| P4 | 60  | 11074   |

| d(P1,P2)=120 | d(P1,P3) | ) = 132 |
|--------------|----------|---------|
|--------------|----------|---------|



### Exemple:

• Calculer d(P1,P2), d(P1,P3) sans standardiser les données :

Conclusion : P1 ressemble plus à P2 qu'à P3

• Calculer d(P1,P2), d(P1,P3) après avoir standardisé les données :

Conclusion : P1 ressemble plus à P3 au'à P2

|    | Age | Salaire |
|----|-----|---------|
| P1 | 50  | 11000   |
| P2 | 70  | 11100   |
| P3 | 60  | 11122   |
| P4 | 60  | 11074   |

| d( | (P1 | ,P2 | 2) = | 120 | d(P) | 1,P3 | )=132 |
|----|-----|-----|------|-----|------|------|-------|
|----|-----|-----|------|-----|------|------|-------|

|    | Age | Salaire |
|----|-----|---------|
| P1 | -2  | -2      |
| P2 | 2   | 0.7     |
| P3 | 0   | 1.3     |
| P4 | 0   | 0       |



### Exemple:

• Calculer d(P1,P2), d(P1,P3) sans standardiser les données :

Conclusion : P1 ressemble plus à P2 qu'à P3

• Calculer d(P1,P2), d(P1,P3) après avoir standardisé les données :

Conclusion : P1 ressemble plus à P3 qu'à P2

|    | Age | Salaire |
|----|-----|---------|
| P1 | 50  | 11000   |
| P2 | 70  | 11100   |
| P3 | 60  | 11122   |
| P4 | 60  | 11074   |

$$d(P1,P2)=120 d(P1,P3)=132$$

|    | Age | Salaire |
|----|-----|---------|
| P1 | -2  | -2      |
| P2 | 2   | 0.7     |
| P3 | 0   | 1.3     |
| P4 | 0   | 0       |





#### Exemple:

• Calculer d(P1,P2), d(P1,P3) sans standardiser les données :

Conclusion : P1 ressemble plus à P2 qu'à P3

• Calculer d(P1,P2), d(P1,P3) après avoir standardisé les données :

Conclusion : P1 ressemble plus à P3 qu'à P2

|    | Age | Salaire |
|----|-----|---------|
| P1 | 50  | 11000   |
| P2 | 70  | 11100   |
| P3 | 60  | 11122   |
| P4 | 60  | 11074   |

d(P1,P2)=120 d(P1,P3)=132

|    | Age | Salaire |
|----|-----|---------|
| P1 | -2  | -2      |
| P2 | 2   | 0.7     |
| P3 | 0   | 1.3     |
| P4 | 0   | 0       |





• Coefficient de correspondance simple : (similarité invariante, si la variable binaire est *symétrique*) :

$$d(i,j) = \frac{b+c}{a+b+c+d}$$

• Coefficient de Jaccard : (similarité non invariante, si la variable binaire est asymétrique) :

$$d(i,j) = \frac{b+c}{a+b+c}$$

|         |       |       | Objet J |       |  |
|---------|-------|-------|---------|-------|--|
|         |       | 1     | 0       | Somme |  |
| Objet I | 1     | a     | b       | a+b   |  |
| Objet 1 | 0     | c     | d       | c+d   |  |
|         | Somme | a + c | b+d     | n     |  |

Table de dissimilarité





• Coefficient de correspondance simple : (similarité invariante, si la variable binaire est *symétrique*) :

$$d(i,j) = \frac{b+c}{a+b+c+d}$$

• Coefficient de Jaccard : (similarité non invariante, si la variable binaire est asymétrique) :

$$d(i,j) = \frac{b+c}{a+b+c}$$

|         |       | Obj   |     |       |
|---------|-------|-------|-----|-------|
|         |       | 1     | 0   | Somme |
| Objet I | 1     | a     | b   | a + b |
| Objet 1 | 0     | c     | d   | c+d   |
|         | Somme | a + c | b+d | n     |

Table – Table de dissimilarité



#### Exemple:

| Nom    | Fièvre | Toux | Test-1 | Test-2 | Test-3 | Test-4 |
|--------|--------|------|--------|--------|--------|--------|
| Salim  | Oui    | N    | P      | N      | N      | N      |
| Karima | Oui    | N    | P      | N      | P      | N      |
| Ali    | Oui    | Р    | N      | N      | N      | N      |

Table – Table de patients

$$d(Salim, Karima) = \frac{0+1}{2+0+1} = 0.33$$

$$d(Salim, Ali) = \frac{1+1}{1+1+1} = 0.67$$





#### Exemple:

| Nom    | Fièvre | Toux | Test-1 | Test-2 | Test-3 | Test-4 |
|--------|--------|------|--------|--------|--------|--------|
| Salim  | Oui    | N    | P      | N      | N      | N      |
| Karima | Oui    | N    | P      | N      | P      | N      |
| Ali    | Oui    | Р    | N      | N      | N      | N      |

Table – Table de patients

$$d(Salim, Karima) = \frac{0+1}{2+0+1} = 0.33$$

$$d(Salim, Ali) = \frac{1+1}{1+1+1} = 0.67$$



#### Exemple:

| Nom    | Fièvre | Toux | Test-1 | Test-2 | Test-3 | Test-4 |
|--------|--------|------|--------|--------|--------|--------|
| Salim  | Oui    | N    | P      | N      | N      | N      |
| Karima | Oui    | N    | P      | N      | P      | N      |
| Ali    | Oui    | Р    | N      | N      | N      | N      |

Table – Table de patients

$$d(Salim, Karima) = \frac{0+1}{2+0+1} = 0.33$$

$$d(Salim, Ali) = \frac{1+1}{1+1+1} = 0.67$$





#### Exemple:

| Nom    | Fièvre | Toux | Test-1 | Test-2 | Test-3 | Test-4 |
|--------|--------|------|--------|--------|--------|--------|
| Salim  | Oui    | N    | P      | N      | N      | N      |
| Karima | Oui    | N    | P      | N      | P      | N      |
| Ali    | Oui    | Р    | N      | N      | N      | N      |

Table – Table de patients

$$d(Salim, Karima) = \frac{0+1}{2+0+1} = 0.33$$

$$d(Salim, Ali) = \frac{1+1}{1+1+1} = 0.67$$

$$d(Karima, Ali) = \frac{2+1}{1+2+1} = 0.75$$





- Généralisation des variables binaires, avec plus de 2 états : rouge, jaune, bleu, vert . . . etc.
- $M\'{e}thode\ 1$ : Correpondance simple m:# de correspondances, p:# total de variables

$$d(i,j) = \frac{p-m}{p}$$

• Méthode 2: Utiliser un grand nombre de variables binaires





- Généralisation des variables binaires, avec plus de 2 états : rouge, jaune, bleu, vert . . . etc.
- $M\'{e}thode\ 1$ : Correpondance simple m: # de correspondances, p: # total de variables

$$d(i,j) = \frac{p-m}{p}$$

Méthode 2 : Utiliser un grand nombre de variables binaires :
Créer une variable binaire pour chaque modalité (ex : variable rouge qui prend les valeurs vrai ou faux).





- Généralisation des variables binaires, avec plus de 2 états : rouge, jaune, bleu, vert . . . etc.
- $M\'{e}thode\ 1$ : Correpondance simple m: # de correspondances, p: # total de variables

$$d(i,j) = \frac{p-m}{p}$$

- Méthode 2 : Utiliser un grand nombre de variables binaires :
  - Créer une variable binaire pour chaque modalité (ex : variable rouge qui prend les valeurs vrai ou faux).





- Généralisation des variables binaires, avec plus de 2 états : rouge, jaune, bleu, vert ... etc.
- $M\'{e}thode\ 1$ : Correpondance simple m: # de correspondances, p: # total de variables

$$d(i,j) = \frac{p-m}{p}$$

- Méthode 2 : Utiliser un grand nombre de variables binaires :
  - Créer une variable binaire pour chaque modalité (ex : variable rouge qui prend les valeurs vrai ou faux).





 ${\bf Entrées}$  : un ensemble de m enregistrements

$$x_1,\ldots,x_m$$

- 1 Choisir k centres initiaux  $c_1, \ldots, c_k$ ;
- 2 Répartir chacun des m enregistrements dans le groupe i dont le centre  $c_i$  est le plus proche.;
- 3 Si aucun élément ne change de groupe alors arrêt et sortir les groupes;
- 4 Calculer les nouveaux centres : pour tout i,  $c_i$  est la moyenne des éléments du groupe i.;
- 5 Aller en 2.;







**Entrées :** un ensemble de m enregistrements

$$x_1,\ldots,x_m$$

- 1 Choisir k centres initiaux  $c_1, \ldots, c_k$ ;
- 2 Répartir chacun des m enregistrements dans le groupe i dont le centre  $c_i$  est le plus proche.;
- 3 Si aucun élément ne change de groupe alors arrêt et sortir les groupes;
- 4 Calculer les nouveaux centres : pour tout i,  $c_i$  est la moyenne des éléments du groupe i.;
- 5 Aller en 2.;







- 1 Choisir k centres initiaux  $c_1, \ldots, c_k$ ;
- 2 Répartir chacun des m enregistrements dans le groupe i dont le centre  $c_i$  est le plus proche.;
- 3 Si aucun élément ne change de groupe alors arrêt et sortir les groupes;
- 4 Calculer les nouveaux centres : pour tout i,  $c_i$  est la moyenne des éléments du groupe i.;
- 5 Aller en 2.;







- 1 Choisir k centres initiaux  $c_1, \ldots, c_k$ ;
- 2 Répartir chacun des m enregistrements dans le groupe i dont le centre  $c_i$  est le plus proche.;
- 3 Si aucun élément ne change de groupe alors arrêt et sortir les groupes;
- 4 Calculer les nouveaux centres : pour tout i,  $c_i$  est la moyenne des éléments du groupe i.;
- 5 Aller en 2.;







- 1 Choisir k centres initiaux  $c_1, \ldots, c_k$ ;
- 2 Répartir chacun des m enregistrements dans le groupe i dont le centre  $c_i$  est le plus proche.;
- 3 Si aucun élément ne change de groupe alors arrêt et sortir les groupes;
- 4 Calculer les nouveaux centres : pour tout i,  $c_i$  est la moyenne des éléments du groupe i.;
- 5 Aller en 2.;







**Entrées :** un ensemble de m enregistrements

$$x_1,\ldots,x_m$$

- 1 Choisir k centres initiaux  $c_1, \ldots, c_k$ ;
- **2** Répartir chacun des m enregistrements dans le groupe i dont le centre  $c_i$  est le plus proche.;
- 3 Si aucun élément ne change de groupe alors arrêt et sortir les groupes;
- 4 Calculer les nouveaux centres : pour tout i,  $c_i$  est la moyenne des éléments du groupe i.;
- 5 Aller en 2.;







- 1 Choisir k centres initiaux  $c_1, \ldots, c_k$ ;
- 2 Répartir chacun des m enregistrements dans le groupe i dont le centre  $c_i$  est le plus proche.;
- 3 Si aucun élément ne change de groupe alors arrêt et sortir les groupes;
- 4 Calculer les nouveaux centres : pour tout i,  $c_i$  est la moyenne des éléments du groupe i.;
- 5 Aller en 2.;







- 1 Choisir k centres initiaux  $c_1, \ldots, c_k$ ;
- 2 Répartir chacun des m enregistrements dans le groupe i dont le centre  $c_i$  est le plus proche.;
- 3 Si aucun élément ne change de groupe alors arrêt et sortir les groupes;
- 4 Calculer les nouveaux centres : pour tout i,  $c_i$  est la moyenne des éléments du groupe i.;
- 5 Aller en 2.;







**Entrées :** un ensemble de m enregistrements

$$x_1, \dots, x_m$$

- 1 Choisir k centres initiaux  $c_1, \ldots, c_k$ ;
- 2 Répartir chacun des m enregistrements dans le groupe i dont le centre  $c_i$  est le plus proche.;
- 3 Si aucun élément ne change de groupe alors arrêt et sortir les groupes;
- 4 Calculer les nouveaux centres : pour tout i,  $c_i$  est la moyenne des éléments du groupe i.;
- 5 Aller en 2.;







**Entrées :** un ensemble de m enregistrements

$$x_1,\ldots,x_m$$

- 1 Choisir k centres initiaux  $c_1, \ldots, c_k$ ;
- **2** Répartir chacun des m enregistrements dans le groupe i dont le centre  $c_i$  est le plus proche.;
- 3 Si aucun élément ne change de groupe alors arrêt et sortir les groupes;
- 4 Calculer les nouveaux centres : pour tout i,  $c_i$  est la moyenne des éléments du groupe i.;
- 5 Aller en 2.;







- 1 Choisir k centres initiaux  $c_1, \ldots, c_k$ ;
- 2 Répartir chacun des m enregistrements dans le groupe i dont le centre  $c_i$  est le plus proche.;
- 3 Si aucun élément ne change de groupe alors arrêt et sortir les groupes;
- 4 Calculer les nouveaux centres : pour tout i,  $c_i$  est la moyenne des éléments du groupe i.;
- 5 Aller en 2.;







- 8 points  $A, B, \ldots, H$  de l'espace euclidien 2D. k = 2 (2 groupes)
- Tire aléatoirement 2 centres : B et D choisi

| Point  | Centre |  |
|--------|--------|--|
|        | B(2,2) |  |
|        | D(2,4) |  |
| A(1,3) | В      |  |
| B(2,2) | В      |  |
| C(2,3) | В      |  |
| D(2,4) | D      |  |
| E(4,2) | В      |  |
| F(5,2) | В      |  |
| G(6,2) | В      |  |
| H(7,3) | В      |  |





- 8 points  $A, B, \ldots, H$  de l'espace euclidien 2D. k = 2 (2 groupes)
- ullet Tire aléatoirement 2 centres : B et D choisi.

| Point  | Centre | Centre       |  |
|--------|--------|--------------|--|
|        | B(2,2) | D(2,4)       |  |
|        | D(2,4) | I(27/7,17/7) |  |
| A(1,3) | В      | D            |  |
| B(2,2) | В      | D            |  |
| C(2,3) | В      | D            |  |
| D(2,4) | D      | D            |  |
| E(4,2) | В      | I            |  |
| F(5,2) | В      | I            |  |
| G(6,2) | В      | I            |  |
| H(7,3) | В      | I            |  |





- 8 points  $A, B, \ldots, H$  de l'espace euclidien 2D. k = 2 (2 groupes)
- ullet Tire aléatoirement 2 centres : B et D choisi.

| Point  | Centre | Centre       |  |
|--------|--------|--------------|--|
|        | B(2,2) | D(2,4)       |  |
|        | D(2,4) | I(27/7,17/7) |  |
| A(1,3) | В      | D            |  |
| B(2,2) | В      | D            |  |
| C(2,3) | В      | D            |  |
| D(2,4) | D      | D            |  |
| E(4,2) | В      | I            |  |
| F(5,2) | В      | I            |  |
| G(6,2) | В      | I            |  |
| H(7,3) | В      | I            |  |





- 8 points  $A, B, \ldots, H$  de l'espace euclidien 2D. k = 2 (2 groupes)
- ullet Tire aléatoirement 2 centres : B et D choisi.

| Point  | Centre | Centre       | Centre      |
|--------|--------|--------------|-------------|
|        | B(2,2) | D(2,4)       | J(7/4,12/4) |
|        | D(2,4) | I(27/7,17/7) | K(22/4,9/4) |
| A(1,3) | В      | D            | J           |
| B(2,2) | В      | D            | J           |
| C(2,3) | В      | D            | J           |
| D(2,4) | D      | D            | J           |
| E(4,2) | В      | I            | K           |
| F(5,2) | В      | I            | K           |
| G(6,2) | В      | I            | K           |
| H(7,3) | В      | I            | K           |



