HVCA - Exercise 1

March 23, 2017

Deadline: April 10, 2016

- 1. Consider a vertical line l_1 that is moving up and to the right with velocity $v_1 = (5,3)$ and a horizontal line l_2 that is moving down and to the right with velocity $v_2 = (1,-2)$. Plot the velocity vectors, the constraint lines corresponding to the two lines and indicate (both graphically and numerically) the intersection of constraints velocity and the vector average velocity.
- 2. Given two lines, l_1 , l_2 with orientations θ_1 , θ_2 and velocities v_1 , v_2 . Give an analytical equation for the intersection of constraints and vector average velocities. Solve all the way.
- 3. Give an analytical equation for the velocity of the intersection formed between a moving line l_1 with orientation θ_1 and velocity v, and a static line l_2 with orientation θ_2 . Solve all the way.
- 4. Consider the vector sum rule. Given two lines with normal velocities v_1 , v_2 this rule computes the pattern velocity as $v = v_1 + v_2$. Design an experiment to test whether this rule is used by human observers. Do any of the stimuli discussed in the lecture contradict this rule? Compare with IOC and VA. Give a numerical example that demonstrates the differences between the different rules.
- 5. Propose a different rule (for the perceived velocity of two moving lines) that makes sense to you. Design experiments to differentiate this rule from IOC and VA.