

Module 9 - Exercise

Text to Image Generation Using Stable Diffusion Model

AI VIET NAM
Nguyen Quoc Thai

Objectives

Text-to-Image using Stable Diffusion Model

The person has high cheekbones, and pointy nose. She is wearing lipstick.

Outline

- > Introduction
- > Stable Diffusion Model
- > Text-to-Image Generation using SDM

Text to Image Generation

The person has high cheekbones, and pointy nose. She is wearing lipstick.

The milestones of text-to-image models and large models

vision model that

learns the modality

and image features.

between language

2015.11 AlignDraw First TTI model using deep learning. 2016.5 GAN-CLS First TTI model that achieves visually plausible result using GAN.		2021.2 DALLE First TTI model using autoregressive Transformer, with strong ability in generating zero-shot images.		2021.10 VQ-Diffusion First TTI model using Diffusion method, based on VQ-VAE.	2022.06 PARTI A scaled-up, large autoregressive Transformer TTI model, with VQ-GAN structure for image processing, demonstrating top- tier results in TTI generation.	2022.08 Stable Diffusion An open-source latent diffusion model, widely used for content creation in research and commercial products, leveraging the capabilities of large models like BERT and CLI	
Trans First model usir	2017.6 sformer	2018.10 BERT A pretrained Transformer	2021.2 CLIP First language-	_	GAN	efficiency of GAN with A convers	2022.10 ChatGPT sational large language model for

the expressive power of Transformer based on

VQ-VAE, extensively employed as an image

encoder and decoder for TTI models.

attention architecture,

opportunities for large

vision/language models.

opening up

renowned for remarkable

text encoding capability,

encoder in TTI models.

widely employed as a text

dialogue system and question-answering, which could be potentially integrated with

TTI models to leverage its strong prompt

generating ability.

GAN-CLS

Variatinal AutoEncoder

- **Vector Quantized Variatinal AutoEncoder (VQ-VAE)**
- > VAE learns a discrete latent representation, instead continuous
- > Latents do not necessarily need to be continuous vectors
- > It just needs to be some form of numerical representation of the data

ENCODER

Image to discrete codes

56 73	67	23	81	19
-------	----	----	----	----

DECODER

56 73	67	23	81	19
-------	----	----	----	----

Discrete codes to image

Visual Vocabulary

- > Introduces a Discrete Latent Codebook to store a finite set of possible latent vectors
- > Describe an image as a sequence of symbols (language tokens)

Quantization Layer

During Training

- > Output of encoder is compared to all the vectors in the codebook
- > The codebook vector closet in Euclidean distance is fed to decoder

Generate Image from Codebook

Train a PixelCNN as prior on the discretized 32x32 latent space

- > Use VQ-VAE Encoder to extract latent space (codebook indicates) from dataset
- > Train PixelCNN to auto-regressively complete the latent codebook
- > Use VQ-VAE Decoder to generate image from the completed latent codebook

DALL-E

Text-to-Image Generator model using a transformer that autoregressively models the text and image tokens as a single stream of data

- Uses Discrete VAE
- > Switch PixelCNN with a 12-billion parameter GPT-3
- > Trained on 250 million image-text pairs

An armchair in the shape of an avocado

DALL-E Parts

- Discrete VAE encoder and decoder
 - Inspired by VQ-VAE-2
 - Compress 256x256 RGB images into a 32x32 grid of image tokens
 - With 8192 possible codebook tokens
- Transformer Decoder
 - Concatenate text tokens with image tokens into single array
 - Train to predict text image token from the preceding tokens

Gumbel Softmax Relaxation

Outputs a distribution over codebook vectors for each latent code instead of mapping deterministically to a single codebook vector.

Dall-E Inference

- Not directly predict (choose)
 the next latent index, but predict
 the distribution
- Then sample the index from that distribution

Diffusion Model

Diffusion Model - Training

For each training step:

Diffusion Model - Inference

Reverse Diffusion / Denoising / Sampling

Diffusion Model - Problem

> Operating in the input space is very computationally expensive

Diffusion Model – Generate Low-Resolution + Upsample

Diffusion Models – Generate in Latent Space

Outline

- > Introduction
- > Stable Diffusion Model
- > Text-to-Image Generation using SDM

Stable Diffusion Model (Latent Diffusion Model)

- > The Diffusion process happens in the latent space
- First, train an autoencoder to learn to compress the image data into low-dimensional representation

Stable Diffusion Model (Latent Diffusion Model)

After encoding the images into latent data, the forward and reverse diffusion processes will be done in the latent space.

Conditional Generation

> Condition denoising on text, images, etc,...

Training

- The training objective (loss function) is pretty similar to the one in the pure diffusion model. The only changes are:
 - Input latent data z instead of the image x
 - Added conditioning input $\tau_{\theta}(y)$ to the UNet

Sampling

- > Stable Diffusion sampling process use the latent data
- > The size of the latent data is much smaller than the original images, the denoising process will be much faster

Outline

- > Introduction
- > Stable Diffusion Model
- > Text-to-Image Generation using SDM

Celeb-HQ Dataset

Celeb-HQ Dataset

- The person has high cheekbones, and pointy nose. She is wearing lipstick.
- The person has high cheekbones, and pointy nose. She is wearing lipstick.
- ➤ She is wearing lipstick. She is young, and smiling and has big lips, mouth slightly open, pointy nose, and high cheekbones.
- This attractive woman has high cheekbones, pointy nose, bushy eyebrows, mouth slightly open, wavy hair, arched eyebrows, and bags under eyes.
- **>** ...

Celeb-HQ Dataset

The person has high cheekbones, and pointy nose. She is wearing lipstick.

Stable Diffusion Model – Text Condition

BERT CLIP

Summary

Thanks!

Any questions?