Systemidentifikation und Regelung in der Medizin

7. Vorlesung

Testsignal für die Systemanregung- Pseudo Binär Rausch Signal (PRBS)

Sommersemester 2020

8. Juni 2020

Thomas Schauer

Technische Universität Berlin Fachgebiet Regelungssysteme

7. Testsignal für die Systemanregung

- Pseudo Binär Rausch Signal (PRBS) -
- \bullet Approximiert zeitdiskretes Rauschen \Rightarrow Spektralgehalt reich an Frequenzen
- Signal nimmt nur zwei Werte an (binär)
- Wechsel zwischen Werten zu den Abtastzeitpunkten $t = 0, t_s, 2t_s, 3t_s, \dots$ (Abtastperiode $t_s = \Delta$)
- PRBS ist periodisch mit der Periode t_sL .
- L wird Sequenzlänge genannt.
- Erzeugung des PRBS durch rückgekoppeltes Schieberegister → Eingang ist modulo-2-Summe der Logikwerte der letzten Stufe und einer (oder mehrerer) anderer Stufen

$$1 \oplus 1 = 0 \oplus 0 = 0$$

$$1 \oplus 0 = 0 \oplus 1 = 1$$

 \bullet Für ein Schieberegister n-ter Ordnung ergibt sich eine maximale Länge des PRBS von

$$L = 2^n - 1$$

bei folgender Wahl der Bits für die Rückkopplung:

n	ig L	Bits für Rückkopplung		
2	3	1,2		
3	7	1,4		
4	15	3,4		
5	31	3,5		
6	63	5,6		
7	127	4,7		

• Initialisierung des Schieberegisters muss von Null verschieden sein.

Beispiel für ein Schieberegister 4-ter Ordnung

Taktung	Bit 1	Bit 2	Bit 3	Bit 4 (Ausgang)
1	0	0	0	1
2	1	0	0	0
3	0	1	0	0
4	0	0	1	0
5	1	0	0	1
6	1	1	0	0
7	0	1	1	0
8	1	0	1	1
9	0	1	0	1
10	1	0	1	0
11	1	1	0	1
12	1	1	1	0
13	1	1	1	1
14	0	1	1	1
15	0	0	1	1
16	0	0	0	1

• Wahl der Abtastzeit t_s und Ordnung n des Schieberegisters basierend auf der Anstiegszeit t_r (Zeit von 10% bis 90% bezüglich des Ausgangssignals bei einem Eingangssprung)

$$t_s \approx t_r/5..15$$
 $t_{max} = n \cdot t_s > t_r$ (Bedingung B1)

• Um das volle Frequenzspektrum zu nutzen, sollte die Testdauer immer ein ganzes Vielfaches der Sequenzlänge sein:

$$t_{Total} = l \cdot t_s \cdot L, \qquad l = 1, 2, \dots$$
 (Bedingung B2)

$$f_{prbs} = \frac{f_s}{p}, \quad p = 1, 2, 3, \dots$$

$$t_{max} = p \cdot n \cdot t_s > t_r$$

Vor- und Nachteile des Frequenzteilers:

- + Stärkung der Anregung im unteren Frequenzbereich
- Reduzierung der Anregung im oberen Frequenzbereich

• Wahl der Amplitude:

- ⋄ größer als Rauschlevel
- ♦ nicht zu groß, damit kein nichlineares Verhalten angeregt wird
- Wahl des Offsets:
 - ♦ Verschiebung des PRBS an den Arbeitspunkt bei nichtlinearen Systemen
- Weitere Informationen:
 - ♦ I. D. Landau und G. Zito, Digital Control Systems: Design, Identification and Implementation, Springer Verlag, 2005
 - K. Godfrey, Perturbation Signals for System Identification, Prentice Hall,
 1993