



# **Learning Theory**

**André Panisson** 











When someone starts using machine learning to deal with a problem, there are two main approaches:

Try everything at hand (brute force approach)

Use the theory as a guide to choose the right strategy

### LEARNING THEORY

- Do I have enough data for adequate learning?
- Is the model complexity adequate for the problem?
- What is the best strategy to reduce error/ increase performance?

How can my model generalize better?

- Have a more/less complex model?
- Collect more samples?
- Have more/less dataset features?

### SUPPORT FOR STRATEGIC DECISIONS

### THE LEARNING PROBLEM

Metaphor: Credit approval

Applicant information:

| age                | 23 years |
|--------------------|----------|
| gender             | male     |
| annual salary      | \$30,000 |
| years in residence | 1 year   |
| years in job       | 1 year   |
| current debt       | \$15,000 |
| • • •              | • • •    |

Approve credit?

#### Components of learning

#### Formalization:

- Input: **x** (customer application)
- Output: y (good/bad customer?)
- ullet Target function:  $f:\mathcal{X} o \mathcal{Y}$  (ideal credit approval formula)
- Data:  $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N)$  (historical records)
  - $\downarrow$   $\downarrow$   $\downarrow$
- Hypothesis:  $g: \mathcal{X} \to \mathcal{Y}$  (formula to be used)

#### **UNKNOWN TARGET FUNCTION**

$$f: X \rightarrow \mathcal{Y}$$



(historical records of credit customers)



(set of candidate formulas)

The 2 components of the learning problem:

- The Hypothesis Set  $\mathcal{H} = \{h\} \quad g \in \mathcal{H}$
- The Learning Algorithm A

Together, they are referred as the **Learning Model** 



### A simple hypothesis set - the 'perceptron'

For input  $\mathbf{x} = (x_1, \cdots, x_d)$  'attributes of a customer'

Approve credit if 
$$\sum_{i=1}^d w_i x_i > \text{threshold},$$

Deny credit if 
$$\sum_{i=1}^d w_i x_i < \text{threshold.}$$

This linear formula  $h \in \mathcal{H}$  can be written as

$$h(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{i=1}^{d} w_i x_i\right) - \operatorname{threshold}\right)$$

$$h(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{i=1}^d \mathbf{w_i} \ x_i\right) + \mathbf{w_0}\right)$$

Introduce an artificial coordinate  $x_0 = 1$ :

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=0}^{d} \mathbf{w_i} \ x_i\right)$$





In vector form, the perceptron implements

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

## PLA - The Perceptron Learning Algorithm

The perceptron implements

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Given the training set:

$$(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\cdots,(\mathbf{x}_N,y_N)$$

pick a misclassified point:

$$sign(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n) \neq y_n$$

and update the weight vector:

$$\mathbf{w} \leftarrow \mathbf{w} + y_n \mathbf{x}_n$$

### IS LEARNING FEASIBLE?

### A Related Experiment

- Consider a 'bin' with red and green marbles.

P[ picking a red marble  $]=\mu$ 

P[picking a green marble] =  $1 - \mu$ 

- The value of  $\mu$  is <u>unknown</u> to us.
- We pick N marbles independently.
- The fraction of red marbles in sample  $= \nu$



### What does $\nu$ say about $\mu$ ?

In a big sample (large N),  $\nu$  is probably close to  $\mu$  (within  $\epsilon$ ).

Formally,

$$\mathbb{P}\left[\left|\nu - \mu\right| > \epsilon\right] \le 2e^{-2\epsilon^2 N}$$

This is called **Hoeffding's Inequality**.

## **Connection to Learning**

**Bin:** The unknown is a number  $\mu$ 

**Learning:** The unknown is a function  $f: \mathcal{X} \to \mathcal{Y}$ 

Each marble ullet is a point  $\mathbf{x} \in \mathcal{X}$ 

- : Hypothesis got it right  $h(\mathbf{x}) = f(\mathbf{x})$
- : Hypothesis got it wrong  $h(\mathbf{x}) \neq f(\mathbf{x})$



#### Back to the learning diagram

The bin analogy:





#### Notation for learning

Both  $\mu$  and  $\nu$  depend on which hypothesis h

 $\nu$  is 'in sample' denoted by  $E_{\rm in}(h)$ 

 $\mu$  is 'out of sample' denoted by  $E_{\text{out}}(h)$ 

The Hoeffding inequality becomes:

$$\mathbf{P}[|E_{\mathsf{in}}(h) - E_{\mathsf{out}}(h)| > \epsilon] \leq 2e^{-2\epsilon^2 N}$$



### **Next Steps**

With the Hoeffding inequality, we can estimate  $E_{in}(h)$  for any hypothesis h choosen from  $\mathcal{H}$ , independently from the others. However, our chosen hypothesis g is one of  $h_1, h_2, \ldots, h_M$  Therefore, the Hoeffding inequality doesn't apply to the whole hypothesis set  $\mathcal{H}$ !



## A simple solution: the Union Bound

$$\begin{split} \Pr[\;|E_{\mathrm{in}}(g) - E_{\mathrm{out}}(g)| > \epsilon\;] & \leq & \Pr[\;\;|E_{\mathrm{in}}(h_1) - E_{\mathrm{out}}(h_1)| > \epsilon \\ & \quad \text{or}\;|E_{\mathrm{in}}(h_2) - E_{\mathrm{out}}(h_2)| > \epsilon \\ & \quad \cdots \\ & \quad \text{or}\;|E_{\mathrm{in}}(h_M) - E_{\mathrm{out}}(h_M)| > \epsilon\;] \\ & \leq & \sum_{m=1}^{M} \Pr[|E_{\mathrm{in}}(h_m) - E_{\mathrm{out}}(h_m)| > \epsilon] \end{split}$$

$$P[|E_{\rm in}(g) - E_{\rm out}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$$

In order to make learning feasible, we need:

$$E_{\mathrm{out}}(g) pprox E_{\mathrm{in}}(g)$$

so the out-of-sample error is similar to the in-sample error

At the same time, we need g pprox f, which means  $E_{
m out}(g) pprox 0$  , and is achieved through

$$E_{\mathrm{out}}(g) pprox E_{\mathrm{in}}(g)$$
 and  $E_{\mathrm{in}}(g) pprox 0$ 

# Machine Learning: The BIG Questions

Can we make  $E_{\rm in}(g)$  small enough?

### **APPROXIMATION**

Can we make sure that  $E_{
m out}(g)$  is close enough to  $E_{
m in}(g)$ ?

### **GENERALIZATION**

$$P[|E_{\rm in}(g) - E_{\rm out}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$$

M represents the complexity of the hypothesis set

Can we improve on M?

Yes, bad events are very overlapping!

 $\Delta E_{
m out}$ : change in +1 and -1 areas

 $\Delta E_{
m in}$ : change in labels of data points

$$|E_{\rm in}(h_1) - E_{\rm out}(h_1)| \approx |E_{\rm in}(h_2) - E_{\rm out}(h_2)|$$



**dichotomy**: a binary labeling of X

A hypothesis 
$$h: \mathcal{X} \to \{-1, +1\}$$

A dichotomy 
$$h: \{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N\} \rightarrow \{-1, +1\}$$

Number of hypotheses  $|\mathcal{H}|$  can be infinite

Number of dichotomies  $|\mathcal{H}(\mathbf{x}_1,\mathbf{x}_2,\cdots,\mathbf{x}_N)|$  is at most  $2^N$ 

Candidate for replacing M

#### The growth function

The growth function counts the  $\underline{\mathsf{most}}$  dichotomies on any N points

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \dots, \mathbf{x}_N)|$$

The growth function satisfies:

$$m_{\mathcal{H}}(N) \leq 2^N$$

#### Break Point (k)

If no data set of size k can be **shattered** by  $\mathcal{H}$ , then k is a break point of  $\mathcal{H}$ 

(**shatter**: produce all 2<sup>k</sup> dichotomies)

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$
 maximum power is  $N^{k-1}$ 

The growth function is polinomial!

#### **Example 1: Positive Rays**



$$\mathcal{H}$$
 is set of  $h \colon \mathbb{R} \to \{-1, +1\}$ 

$$h(x) = sign(x - a)$$

$$m_{\mathcal{H}}(N) = N + 1$$

#### **Example 2: Positive Intervals**

$$\mathcal{H}$$
 is set of  $h \colon \mathbb{R} \to \{-1, +1\}$ 

Place interval ends in two of N+1 spots

$$m_{\mathcal{H}}(N) = {N+1 \choose 2} + 1 = \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

#### **Example 3: Convex Sets**

 $\mathcal{H}$  is set of  $h: \mathbb{R}^2 \to \{-1, +1\}$ 

$$h(\mathbf{x}) = +1$$
 is convex

$$m_{\mathcal{H}}(N) = 2^N$$

The N points are 'shattered' by convex sets



bottom

### The Vapnic-Chervonenkis Inequality

**M** is replaced by the **growth function** 

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \le 4 m_{\mathcal{H}}(2N) e^{-\frac{1}{8}\epsilon^2 N}$$



Vladimir Vapnik



Alexey Chervonenkis

#### The VC dimension

The hypothesis set  $\mathcal{H}$  is said to shatter a set  $\mathcal{S} \subset \mathcal{X}$  if  $\mathcal{H}$  can realize all  $2^{|\mathcal{S}|}$  binary labelings of  $\mathcal{S}$ .

The Vapnik-Chervonenkis dimension of  $\mathcal{H}$  is the size of the largest subset of  $\mathcal{S}$  that  $\mathcal{H}$  can shatter.

#### Definition of VC dimension

The VC dimension of a hypothesis set  $\mathcal{H}$ , denoted by  $d_{\mathrm{VC}}(\mathcal{H})$ , is

the largest value of N for which  $m_{\mathcal{H}}(N)=2^N$ 

"the most points  $\mathcal{H}$  can shatter"

$$N \leq d_{\mathrm{VC}}(\mathcal{H}) \implies \mathcal{H}$$
 can shatter  $N$  points

$$k > d_{\mathrm{VC}}(\mathcal{H}) \implies k$$
 is a break point for  $\mathcal{H}$ 

### **VC** dimension and Learning

 $d_{\mathrm{VC}}(\mathcal{H})$  is finite  $\implies g \in \mathcal{H}$  will generalize

- Independent of the learning algorithm
- Independent of the input distribution
- Independent of the target function



Parameters create degrees of freedom

# of parameters: analog degrees of freedom

 $d_{\rm VC}$ : equivalent 'binary' degrees of freedom



## $E_{in}$ and $E_{out}$ in terms of N



Simple Model

Complex Model

### VC versus bias-variance





VC analysis

bias-variance