

Human Computer Interaction (INSY4112)

CHAPTER 7

Evaluation Techniques and Universal Design

EVALUATION TECHNIQUES AND UNIVERSAL DESIGN

Evaluation Techniques

- What is evaluation?
- Goals of evaluation
- Choosing an evaluation method

Universal Design

- Introduction
- Universal design principles
- Multi-modal interaction
- Designing for diversity

Objectives

- > To identify evaluation techniques and methods
- > To describe universal design principles
- To explain Multi-modal interaction
- To describe the goal of evaluation

Evaluation

- It tests usability, functionality and acceptability of an interactive system
- Evaluation occurs in laboratory, field and/or in collaboration with users
- It evaluates both design and implementation
- It should be considered at all stages in the design life cycle

Evaluation

- Evaluation may take place:
 - ✓ in the laboratory
 - ✓ in the field.
- Some approaches are based on expert evaluation:
 - ✓ analytic methods
 - ✓ review methods
 - ✓ model-based methods.

> Evaluation

- Some approaches involve users:
 - ✓ experimental methods
 - ✓ observational methods
 - ✓ query methods.
- An evaluation method must be chosen carefully and must be suitable for the job.

Goals of Evaluation

There are three goals:

- 1. assess extent of system functionality
- 2. assess effect of interface on user
- 3. identify specific problems

> Evaluating Designs

Cognitive Walkthrough

Heuristic Evaluation

Review-based evaluation

> Cognitive Walkthrough

- * Walkthroughs require a detailed review of a sequence of actions.
- Proposed by Polson et al.
 - Evaluates design on how well it supports user in learning task
 - Usually performed by expert in cognitive psychology
 - Expert 'walks though' design to identify potential problems using psychological principles
 - Forms used to guide analysis

> Cognitive Walkthrough

- for each action, the evaluators try to answer the following four questions for each step in the action sequence:
- 1. Is the effect of the action the same as the user's goal at that point?
- 2. Will users see that the action is available?
- 3. Once users have found the correct action, will they know it is the one they need?
- 4. After the action is taken, will users understand the feedback they get? This is the completion of the execution—evaluation interaction cycle

- Cognitive Walkthrough (ctd...)
 - For each task walkthrough considers
 - what impact will interaction have on user?
 - what cognitive processes are required?
 - what learning problems may occur?
 - * Analysis focuses on goals and knowledge: does the design lead the user to generate the correct goals?

Heuristic Evaluation

- Proposed by Nielsen and Molich.
- * usability criteria (heuristics) are identified
- * design examined by experts to see if these are violated
- * Heuristic evaluation `debugs' design.

Heuristic Evaluation

- Nielsen's ten heuristics are:
 - 1. Visibility of system status
 - 2. Match between system and the real world
 - 3. User control and freedom
 - 4. Consistency and standard
 - 5. Error prevention

Heuristic Evaluation

- Nielsen's ten heuristics are:
 - 6. Recognition rather than recall
 - 7. Flexibility and efficiency of use
 - 8. Aesthetic and minimalist
 - 9. Help users recognize, diagnose and recover from errors
 - 10. Help and documentation

> Review-based evaluation

- * Results from the literature used to support or refute parts of design.
- * Care needed to ensure results are transferable to new design.
- Model-based evaluation
- Cognitive models used to filter design optionse.g. GOMS prediction of user performance.
- * Design rationale can also provide useful evaluation information

> Evaluating through user Participation

- * There are different approaches to evaluation through user participation. These include
 - empirical or experimental methods,
 - ii. observational methods,
 - iii. query techniques, and
 - iv. methods that use physiological monitoring

> There are two distinct evaluation styles

- a) Laboratory studies
- Advantages:
 - specialist equipment available
 - uninterrupted environment
- Disadvantages:
 - lack of context
 - difficult to observe several users cooperating
- Appropriate
 - if system location is dangerous or impractical for constrained

b. Field Studies

- Advantages:
 - natural environment
 - context retained (though observation may alter it)
 - longitudinal studies possible
- Disadvantages:
 - distractions
 - noise
- Appropriate

- > Evaluating Implementations
 - *Requires an artefact:
 - simulation,
 - prototype,
 - full implementation

> Experimental evaluation

- controlled evaluation of specific aspects of interactive behaviour
- * evaluator chooses hypothesis to be tested
- * a number of experimental conditions are considered which differ only in the value of some controlled variable.
- changes in behavioural measure are attributed to different conditions

> Experimental factors

- Subjects
 - who representative, sufficient sample
- Variables
 - things to modify and measure
- Hypothesis
 - what you'd like to show
- Experimental design
 - how you are going to do it

Variables

- Independent variable (IV)
 - ✓ characteristic changed to produce different conditions
 - ✓ e.g. interface style, number of menu items
- Dependent variable (DV)
 - ✓ characteristics measured in the experiment
 - ✓ e.g. time taken, number of errors.

> Hypothesis

- prediction of outcome
 - framed in terms of IV and DVe.g. "error rate will increase as font size decreases"
- null hypothesis:
 - states no difference between conditions
 - aim is to disprove thise.g. null hyp. = "no change with font size"

> Experimental design

- Within groups design
 - each subject performs experiment under each condition.
 - transfer of learning possible
 - less costly and less likely to suffer from user variation.
- Between groups design
 - each subject performs under only one condition
 - no transfer of learning
 - more users required

> Analysis of data

- * Before you start to do any statistics:
 - look at data
 - save original data
- Choice of statistical technique depends on
 - type of data
 - information required
- Type of data
 - discrete finite number of values
 - continuous any value

Analysis - types of test

- parametric
 - assume normal distribution
 - robust
 - powerful
- * non-parametric
 - do not assume normal distribution
 - less powerful
 - more reliable
- contingency table
 - classify data by discrete attributes

> Analysis of data (cont.)

- What information is required?
 - is there a difference?
 - how big is the difference?
 - how accurate is the estimate?
- Parametric and non-parametric tests mainly address first of these

> Experimental studies on groups

- More difficult than single-user experiments
- Problems with:
 - subject groups
 - choice of task
 - data gathering
 - analysis

Subject groups

- ❖ Larger number of subjects ⇒ more expensive
- * Longer time to `settle down'... even more variation!
- Difficult to timetable
- So ... often only three or four groups

> The task

- * must encourage cooperation
- perhaps involve multiple channels
- options:

- creative task e.g. 'write a short report on ...'

decision games
 e.g. desert survival task

control task
 e.g. ARKola bottling plant

Data gathering

- * several video cameras + direct logging of application
- problems:
 - synchronisation
 - sheer volume!
- one solution:
 - record from each perspective

> Analysis

- N.B. vast variation between groups
- ***** solutions:
 - within groups experiments
 - micro-analysis (e.g., gaps in speech)
 - anecdotal and qualitative analysis
- look at interactions between group and media
- controlled experiments may `waste' resources!

> Field studies

- * Experiments dominated by group formation
- Field studies more realistic:
 - \checkmark distributed cognition \Rightarrow work studied in context
 - ✓ real action is *situated action*
 - ✓ physical and social environment both crucial
- **Contrast:**
 - ✓ psychology controlled experiment
 - ✓ sociology and anthropology open study and rich data

Observational Methods

- Think Aloud
- Cooperative evaluation
- Protocol analysis
- Automated analysis
- Post-task walkthroughs

> Think Aloud

- User observed performing task
- User asked to describe what he is doing and why, what he thinks is happening etc.
- Advantages
 - simplicity requires little expertise
 - can provide useful insight
 - can show how system is actually use
- Disadvantages
 - subjective
 - selective

> Cooperative evaluation

- Variation on think aloud
- User collaborates in evaluation
- Both user and evaluator can ask each other questions throughout
- Additional advantages
 - less constrained and easier to use
 - user is encouraged to criticize system
 - clarification possible

Protocol analysis

- paper and pencil cheap, limited to writing speed
- audio good for think aloud, difficult to match with other protocols
- video accurate and realistic, needs special equipment, obtrusive
- computer logging automatic and unobtrusive, large amounts of data difficult to analyze

> Protocol analysis

- user notebooks coarse and subjective, useful insights, good for longitudinal studies
- Mixed use in practice.
- * audio/video transcription difficult and requires skill.
- Some automatic support tools available

Automated Analysis – Evaluation

- Workplace project
- Post task walkthrough
 - user reacts on action after the event
 - used to fill in intention
- Advantages
 - analyst has time to focus on relevant incidents

may be post hos interpretation of events

- avoid excessive interruption of task
- Disadvantages
 - lack of freshness

Post-task walkthroughs

- * transcript played back to participant for comment
 - immediately → fresh in mind
 - delayed → evaluator has time to identify questions
- useful to identify reasons for actions and alternatives considered
- * necessary in cases where think aloud is not possible

Query Techniques

- Interviews
- Questionnaires

Interviews

- analyst questions user on one-to -one basis usually based on prepared questions
- * informal, subjective and relatively cheap
- Advantages
 - can be varied to suit context
 - issues can be explored more fully
 - can elicit user views and identify unanticipated problems
- Disadvantages
 - very subjective
 - time consuming

Questionnaires

- Set of fixed questions given to users
- Advantages
 - quick and reaches large user group
 - can be analyzed more rigorously
- Disadvantages
 - less flexible
 - less probing

Questionnaires (ctd)

- Need careful design
 - what information is required?
 - how are answers to be analyzed?
- Styles of question
 - general
 - open-ended
 - scalar
 - multi-choice
 - ranked

- > Physiological methods
- Eye tracking
- Physiological measurement

Eye tracking

- * head or desk mounted equipment tracks the position of the eye
- eye movement reflects the amount of cognitive processing a display requires
- measurements include
 - fixations: eye maintains stable position. Number and duration indicate level of difficulty with display
 - saccades: rapid eye movement from one point of interest to another
 - scan paths: moving straight to a target with a short fixation at the

physiological measurements

- * emotional response linked to physical changes
- * these may help determine a user's reaction to an interface
- measurements include:
 - heart activity, including blood pressure, volume and pulse.
 - activity of sweat glands: Galvanic Skin Response (GSR)
 - electrical activity in muscle: electromyogram (EMG)
 - electrical activity in brain: electroencephalogram (EEG)
- some difficulty in interpreting these physiological responses -

> Factors distinguishing evaluation techniques

- * The stage in the cycle at which the evaluation is carried out
- The style of evaluation
- * The level of subjectivity or objectivity of the technique
- The type of measures provided
- The information provided
- * The immediacy of the response
- The level of interference implied
- * The resources required.

Choosing an Evaluation Method

when in process: design vs. implementation

style of evaluation: laboratory vs. field

how objective: subjective vs. objective

type of measures: qualitative vs. quantitative

level of information: high level vs. low level

level of interference: obtrusive vs. unobtrusive

resources available: time, subjects,

equipment, expertise

> Classification of analytic evaluation techniques

	Cognitive	Heuristic	Review	Model
	walkthrough	evaluation	based	based
Stage Style Objective? Measure Information Immediacy Intrusive? Time Equipment Expertise	Throughout Laboratory No Qualitative Low level N/A No Medium Low High	Throughout Laboratory No Qualitative High level N/A No Low Low Medium	Design Laboratory As source As source As source As source No Low-medium Low Low	Design Laboratory No Qualitative Low level N/A No Medium Low High

> Classification of experimental and query evaluation techniques

	Experiment	Interviews	Questionnaire
Stage	Throughout	Throughout	Throughout
Style	Laboratory	Lab/field	Lab/field
Objective?	Yes	No	No
Measure	Quantitative	Qualitative/ quantitative	Qualitative/ quantitative
Information	Low/high level	High level	High level
Immediacy	Yes	No	No
Intrusive?	Yes	No	No
Time	High	Low	Low
Equipment	Medium	Low	Low
_{6/5} Expertise	Medium Prepared by Me	seret Hail (2)21)	Low 52

➤ Universal Design :- is about designing systems so that they can be used by anyone in any circumstance.

Multi-Sensory Systems

- More than one sensory channel in interaction
 - e.g. sounds, text, hypertext, animation, video, gestures, vision
- Used in a range of applications:
 - particularly good for users with special needs, and virtual reality

- Will cover
 - general terminology
 - speech
 - non-speech sounds
 - handwriting
- * considering applications as well as principles

Universal Design Principles

- Equitable use
- Flexibility in use
- Simple and intuitive to use
- Perceptible information
- Tolerance for error
- Low physical effort
- Size and space for approach and use

Usable Senses

- * The 5 senses (sight, sound, touch, taste and smell) are used by us every day
 - each is important on its own
 - together, they provide a fuller interaction with the natural world
- Computers rarely offer such a rich interaction
- * Can we use all the available senses?
 - ideally, yes
 - practically no
- We can use sight sound touch (sometimes)
- We cannot (yet) use taste smell

> Multi-modal vs. Multi-media

- Multi-modal systems
 - use more than one sense (or mode) of interaction
 e.g. visual and aural senses: a text processor may speak the words as well as echoing them to the screen
- Multi-media systems
 - use a number of different media to communicate information
 e.g. a computer-based teaching system: may use video,
 animation, text and still images: different media all using the
 visual mode of interaction; may also use sounds, both speech
 and non-speech: two more media, now using a different
 mode

> Speech

- * Human beings have a great and natural mastery of speech
 - makes it difficult to appreciate the complexities but
 - it's an easy medium for communication

> Structure of Speech

- Phonemes
 - 40 of them
 - basic atomic units
 - sound slightly different depending on the context they are in,
 these larger units are ...

Allophones

- all the sounds in the language
- between 120 and 130 of them
- these are formed into ...

Morphemes

Speech (cont'd)

- > Other terminology:
- Prosody
 - alteration in tone and quality
 - variations in emphasis, stress, pauses and pitch
 - impart more meaning to sentences.
- Co-articulation
 - the effect of context on the sound
 - transforms the phonemes into allophones
- Syntax structure of sentences
- Semantics meaning of sentences

Speech Recognition Problems

- Different people speak differently:
 - accent, intonation, stress, idiom, volume, etc.
- * The syntax of semantically similar sentences may vary.
- Background noises can interfere.
- People often "ummm...." and "errr...."
- Words not enough semantics needed as well
 - requires intelligence to understand a sentence
 - context of the utterance often has to be known
 - also information about the subject and speaker
 - e.g. even if "Errr.... I, um, don't like this" is recognised, it is a fairly useless piece of information on it's own

> The Phonetic Typewriter

- Developed for Finnish (a phonetic language, written as it is said)
- * Trained on one speaker, will generalise to others.
- * A neural network is trained to cluster together similar sounds, which are then labelled with the corresponding character.
- * When recognising speech, the sounds uttered are allocated to the closest corresponding output, and the character for that output is printed.
 - requires large dictionary of minor variations to correct general mechanism
 - noticeably poorer performance on speakers it has not been trained on

> The Phonetic Typewriter (ctd)

Speech Recognition: useful?

- Single user or limited vocabulary systems e.g. computer dictation
- Open use, limited vocabulary systems can work satisfactorily e.g. some voice activated telephone systems
- * general user, wide vocabulary systems still a problem
- Great potential, however
 - when users hands are already occupied e.g. driving, manufacturing
 - for users with physical disabilities 6/5/2021 Prepared by Meseret Hailu(2021)

> Speech Synthesis

- The generation of speech
- Useful
 - natural and familiar way of receiving information
- Problems
 - similar to recognition: prosody particularly
- Additional problems
 - intrusive needs headphones, or creates noise in the workplace
 - transient harder to review and browse

> Speech Synthesis: useful?

- Successful in certain constrained applications when the user:
 - is particularly motivated to overcome problems
 - has few alternatives
- **Examples:**
- screen readers
 - read the textual display to the user
 utilised by visually impaired people
- warning signals
 - spoken information sometimes presented to pilots whose visual and haptic skills are already fully occupied

➤ Non-Speech Sounds

- commonly used for warnings and alarms
- Evidence to show they are useful
 - fewer typing mistakes with key clicks
 - video games harder without sound
- Language/culture independent, unlike speech

➤ Non-Speech Sounds: useful?

- Dual mode displays:
 - information presented along two different sensory channels
 - redundant presentation of information
 - resolution of ambiguity in one mode through information in another
- Sound good for
 - transient information
 - background status information
 - e.g. Sound can be used as a redundant mode in the Apple Macintosh; almost any user action (file selection, window active, disk insert, search error, copy complete, etc.) can have a different sound associated with it.

> Auditory Icons

- Use natural sounds to represent different types of object or action
- Natural sounds have associated semantics which can be mapped onto similar meanings in the interaction

e.g. throwing something away

- ~ the sound of smashing glass
- Problem: not all things have associated meanings
- * Additional information can also be presented:
 - muffled sounds if object is obscured or action is in the background

> Sonic Finder for the Macintosh

- items and actions on the desktop have associated sounds
- folders have a papery noise
- moving files dragging sound
- copying a problem ...
 sound of a liquid being poured into a receptacle
 rising pitch indicates the progress of the copy
- big files have louder sound than smaller ones

Earcons

- Synthetic sounds used to convey information
- Structured combinations of notes (motives) represent actions and objects
- Motives combined to provide rich information
 - compound earcons
 - multiple motives combined to make one more complicated earcon

Create note, getting louder high-low note Create file create icon followed by file icon Prepared by Meseret Hailu(2021) 71

> Earcons (ctd)

- family earcons
 - similar types of earcons represent similar classes of action or similar objects: the family of "errors" would contain syntax and operating system errors
- * Earcons easily grouped and refined due to compositional and hierarchical nature
- Harder to associate with the interface task since there is no natural mapping

> Touch

- haptic interaction
 - cutaneous perception
 - tactile sensation; vibrations on the skin
 - kinesthetics
 - movement and position; force feedback
- information on shape, texture, resistance, temperature, comparative spatial factors
- example technologies
 - electronic braille displays
 - force feedback devices e.g. Phantom

> Handwriting recognition

- Handwriting is another communication mechanism which we are used to in dayto-day life
- Technology
 - Handwriting consists of complex strokes and spaces
 - Captured by digitising tablet
 - strokes transformed to sequence of dots
 - large tablets available
 - suitable for digitising maps and technical drawings
 - smaller devices, some incorporating thin screens to display the information
 - PDAs such as Palm Pilot
 - tablet PCs

Handwriting recognition (ctd)

- Problems
 - personal differences in letter formation
 - co-articulation effects
- Breakthroughs:
 - stroke not just bitmap
 - special 'alphabet' Graffeti on PalmOS
- Current state:
 - usable even without training
 - but many prefer keyboards!

> Gesture

- applications
 - gestural input e.g. "put that there"
 - sign language
- technology
 - data glove
 - position sensing devices e.g MIT Media Room
- benefits
 - natural form of interaction pointing
 - enhance communication between signing and non-signing users
- problems

Users with disabilities

- visual impairment
 - screen readers, SonicFinder
- hearing impairment
 - text communication, gesture, captions
- physical impairment
 - speech I/O, eyegaze, gesture, predictive systems (e.g. Reactive keyboard)
- speech impairment
 - speech synthesis, text communication
- dyslexia
 - speech input, output
- autism
 - communication, education
 Prepared by Meseret Hailu(2021)

> ... plus ...

- age groups
 - older people e.g. disability aids, memory aids, communication tools to prevent social isolation
 - children e.g. appropriate input/output devices, involvement in design process
- cultural differences
 - influence of nationality, generation, gender, race, sexuality, class,
 religion, political persuasion etc. on interpretation of interface features
 - e.g. interpretation and acceptability of language, cultural symbols,
 gesture and colour

End of unit Seven

Evaluation Techniques and Universal Design