Μικρές ταλαντώσεις – Συζευγμένες ταλαντώσεις

- Ταλαντώσεις εμφανίζονται παντού
 - Μικρές ταλαντώσεις γύρω από θέση ισορροπίας
 - Εμφανίζονται σε πολλά προβλήματα κβαντομηχανικής
 - Έχουμε ήδη συναντήσει σε διάφορα στάδια:
 - Γενική εξίσωση κίνησης αρκετά απλή:

$$\ddot{x} = -\omega^2 x$$
 με λύση της μορφής: $x = A e^{-i\omega t}$

- Πολλά σημαντικά συστήματα στη φυσική περιέχουν ταλαντωτές
 - > Συνδέονται μεταξύ τους 🔷 Μεταφορά ενέργειας
 - Η κίνηση μπορεί να είναι αρκετά περίπλοκη Ισως όχι περιοδική
 - Προσδιορισμός ενός συστήματος συντεταγμένων ώστε κάθε ταλαντωτής ταλαντώνεται με μια καλά προσδιορισμένη συχνότητα
 - Στερεό αποτελεί παράδειγμα τέτοιου συστήματος

Συζευγμένες ταλαντώσεις

- Ας υποθέσουμε ότι έχουμε δυνάμεις της μορφής των ελατηρίων
 - Υπακούν στο νόμο του Hooke
- Υποθέστε ότι έχετε δυο εκκρεμή

Οι μάζες συνδέονται με ένα ελατήριο σταθεράς k και αρχικά είναι σε ηρεμία και σε κατακόρυφη θέση

Άν είχαμε ένα μόνο εκκρεμές τότε:

Η εξίσωση κίνησης για μετατόπιση θ είναι:

$$\ddot{\theta} = -\omega_0^2 \theta$$
 όπου $\omega_0^2 = \frac{g}{I}$

Πολ/ζοντας με l την προηγούμενη εξίσωση:

$$\ddot{x} = -\omega_0^2 x$$

(υποθέτουμε ότι θ μικρό οπότε $x = l\theta$)

Συζευγμένα εκκρεμή – Συμμετρική ταλάντωση

- Έστω ότι μετακινούμε και τα δυο εκκρεμή
 - κατά το ίδιο διάστημα x και
 - προς την ίδια διεύθυνση

- Το ελατήριο παραμένει στο φυσικό του μήκος
 - ✓ Δεν υπάρχει ούτε επιμήκυνση ούτε συμπίεση
- Συμπεριφορά συστήματος:
 - σαν να μην υπάρχει ελατήριο ανάμεσα στα εκκρεμή.

Τα 2 εκκρεμή ταλαντώνονται με την ίδια συχνότητα

$$\omega_s = \omega_0$$

Συμμετρικός τρόπος ταλάντωσης

Συζευγμένα εκκρεμή – Ασύμμετρη ταλάντωση

- Έστω ότι μετακινούμε και τα δυο εκκρεμή :
 - κατά το ίδιο διάστημα x και
 - προς αντίθετη κατεύθυνση

- Το ελατήριο συμπιέζεται και επιμηκύνεται ανάλογα με την ταλάντωση των εκκρεμών.
- Οι δυνάμεις που ασκούνται στο εκκρεμές $\mathbf{1}$ είναι: Δύναμη επαναφοράς λόγω βαρύτητας: $-m\omega_0^2 x_1$ Δύναμη επαναφοράς λόγω ελατηρίου $-\mathbf{12}kx_1$
- Γιατί ο παράγοντας 2 στη δύναμη ελατηρίου?
 Αν το εκκρεμές 1 μετατοπίζεται κατά x τότε και το εκκρεμές 2 μετατοπίζεται κατά x αλλά στην αντίθετη διεύθυνση.
 - \longrightarrow Το ελατήριο επιμηκύνεται κατά 2 x
- □ Η δύναμη στο ελατήριο 1 είναι: $m\ddot{x}_1 = -m\omega_0^2 x_1 2kx_1 \Rightarrow \ddot{x}_1 = -\omega_0^2 x_1 2\omega_0^2 x_1 \Rightarrow \ddot{x}_1 = -(\omega_0^2 + 2\omega_0^2)x_1$
- Τα 2 εκκρεμή ταλαντώνονται με την ίδια συχνότητα: $\omega_{\rm A} = \sqrt{\omega_{\rm 0}^2 + 2\omega_{\rm C}^2}$

- □ Συμμετρικός και ασύμμετρος τρόπος ταλάντωσης είναι ειδικοί τρόποι ταλάντωσης
 - Απαιτούν συγκεκριμένες αρχικές συνθήκες
 - Κάθε τρόπος έχει τη δική του χαρακτηριστική συχνότητα

- \Box Έστω ότι το εκκρεμές 1 μετατοπίζεται κατά x_1
 - το εκκρεμές 2 κρατείται ακίνητο
- Αφήνουμε τα εκκρεμή ελεύθερα από ηρεμία
 - Οι δυνάμεις που δρουν είναι:

εκκρεμές 1:
$$m\ddot{x}_1 = -m\omega_0^2 x_1 - k(x_1 - x_2)$$
 (1)

εκκρεμές 2:
$$m\ddot{x}_2 = -m\omega_0^2 x_2 - k(x_2 - x_1)$$
 (2)

> Προσθέτουμε (1) και (2) διαιρώντας με m:

$$\ddot{x}_1 + \ddot{x}_2 = -\omega_0^2 \left(x_1 + x_2 \right) \tag{3}$$

Αφαιρούμε (1) και (2) διαιρώντας με m:

$$\ddot{x}_1 - \ddot{x}_2 = -\omega_0^2 (x_1 - x_2) - 2\omega_C^2 (x_1 - x_2)$$
(4)

- $q_1 = x_1 + x_2$ (5) $q_2 = x_1 x_2$
- Γράφουμε τις εξισώσεις (3) και (4) συναρτήσει των q_1 και q_2 :

$$\ddot{q}_1 = -\omega_s^2 q_1 \tag{6}$$

$$\ddot{q}_2 = -\omega_0^2 q_2 - 2\omega_C^2 q_2 = -(\omega_0^2 + 2\omega_C^2) q_2 \Rightarrow \ddot{q}_2 = -\omega_A^2 q_2 \tag{7}$$

- lacktriangle Στο σύστημα συντεταγμένων x_1 και x_2 συζευγμένες εξισώσεις κίνησης
 - ightharpoonup Στο σύστημα συντεταγμένων q_1 και q_2 ασύζευκτες
- \Box Οι λύσεις των εξισώσεων (6) και (7) είναι: $q_1 = A\cos\omega_s t$ (8) όπου Α και Β σταθερές $q_2 = B\cos\omega_A t$
 - \triangleright Λύνουμε την (5) ως προς x_1 και x_2 και αντικαθιστούμε από την (8):

$$x_1 = \frac{1}{2}(q_1 + q_2)$$

$$x_2 = \frac{1}{2}(q_1 - q_2)$$

$$x_1 = \frac{1}{2}(A\cos\omega_s t + B\cos\omega_A t)$$

$$x_2 = \frac{1}{2}(A\cos\omega_s t - B\cos\omega_A t)$$

$$x_1 = \frac{1}{2} \left(A \cos \omega_s t + B \cos \omega_A t \right) \quad x_2 = \frac{1}{2} \left(A \cos \omega_s t - B \cos \omega_A t \right)$$

Οι αρχικές συνθήκες για το συγκεκριμένη κίνηση ήταν:

$$x_{1}(t=0) = C \qquad \dot{x}_{1}(t=0) = 0 \qquad \cos\theta_{1} + \cos\theta_{2} = 2\cos\left(\frac{\theta_{1} + \theta_{2}}{2}\right)\cos\left(\frac{\theta_{1} - \theta_{2}}{2}\right)$$

$$x_{2}(t=0) = 0 \qquad \dot{x}_{2}(t=0) = 0 \qquad \cos\theta_{1} - \cos\theta_{2} = 2\sin\left(\frac{\theta_{1} + \theta_{2}}{2}\right)\sin\left(\frac{\theta_{1} - \theta_{2}}{2}\right)$$

- \Box Για $x_2(t=0)=0$ στη 2^n εξίσωση έχουμε: A=B
- ightharpoonup Αντικατάσταση στην 1^η εξίσωση και θέτοντας $x_1(t=0)=C$ δίνει:

$$x_{1} = \frac{C}{2} \left(\cos \omega_{s} t + \cos \omega_{A} t \right)$$

$$x_{1}(t) = C \cos \left(\frac{\omega_{s} - \omega_{A}}{2} t \right) \cos \left(\frac{\omega_{s} + \omega_{A}}{2} t \right)$$

$$x_{2}(t) = C \sin \left(\frac{\omega_{s} - \omega_{A}}{2} t \right) \sin \left(\frac{\omega_{s} + \omega_{A}}{2} t \right)$$

- ightharpoonup Και τα δυο εκκρεμή ταλαντώνονται με συχνότητα: $\dfrac{\omega_s+\omega_{
 m A}}{2}$
- > Το πλάτος του εκκρεμούς 1 \rightarrow 0 εξαιτίας του παράγοντα $\cos \frac{\omega_s \omega_A}{2} t$ αλλά τότε το πλάτος ταλάντωση του εκκρεμούς 2 είναι μέγιστο

Συζευγμένα εκκρεμή – Τεχνική με πίνακες

Έστω δύο εκκρεμή με μάζα m και μήκος α συζευγμένα με ένα ελατήριο αμελητέας μάζας και σταθεράς k.

Η ενέργεια του συστήματος είναι:

Κινητική ενέργεια:
$$T = \frac{ma^2}{2} (\dot{\theta}_1^2 + \dot{\theta}_2^2)$$
 (1)

Δυναμική ενέργεια βαρύτητας:

$$U_g^i = mga\left(1 - \cos\theta_i\right) \Rightarrow U_g^i \sim mga\left(1 - 1 + \frac{\theta_i^2}{2!}\right) \sim mga\frac{\theta_i^2}{2}$$

οπότε:
$$U_g = \frac{mga}{2} \left(\theta_1^2 + \theta_2^2\right)$$
 (2)

Δυναμική ελατηρίου:
$$U_{\varepsilon\lambda} = \frac{1}{2}k(x_2 - x_1)^2 \Rightarrow U_{\varepsilon\lambda} = \frac{ka^2}{2}(\sin\theta_2 - \sin\theta_1)^2$$

$$\Rightarrow U_{\epsilon\lambda} \sim \frac{ka^2}{2} (\theta_2 - \theta_1)^2 \quad \text{οπότε: } U_{\epsilon\lambda} = \frac{ka^2}{2} (\theta_2 - \theta_1)^2$$
 (3)

□ Η Lagrangian του συστήματος από (1), (2) και (3) είναι:

$$\mathcal{L} = T - U_g - U_{\varepsilon\lambda} \Rightarrow \mathcal{L} = \frac{ma^2}{2} \left(\dot{\theta}_1^2 + \dot{\theta}_2^2 \right) - \frac{mga}{2} \left(\theta_1^2 + \theta_2^2 \right) - \frac{ka^2}{2} \left(\theta_2 - \theta_1 \right)^2$$

Οι εξισώσεις Euler-Lagrange δίνουν τις εξισώσεις κίνησης:

$$\ddot{\theta}_1 + \frac{g}{a}\theta_1 + \frac{k}{m}(\theta_1 - \theta_2) = 0 \qquad \qquad \ddot{\theta}_2 + \frac{g}{a}\theta_2 + \frac{k}{m}(\theta_2 - \theta_1) = 0$$

Συζευγμένα εκκρεμή – Τεχνική με πίνακες

Ορίζουμε:
$$\eta = \frac{ka}{mg}$$
 και $\omega_0^2 = \frac{g}{a}$

Οι εξισώσεις κίνησης γράφονται στη μορφή πίνακα:

$$\begin{pmatrix} \ddot{\theta}_1 \\ \ddot{\theta}_2 \end{pmatrix} = -\boldsymbol{\omega}_0^2 \begin{pmatrix} 1+\eta & -\eta \\ -\eta & 1+\eta \end{pmatrix} \begin{pmatrix} \boldsymbol{\theta}_1 \\ \boldsymbol{\theta}_2 \end{pmatrix}$$

Αν δοκιμάσουμε μια λύση της μορφής: $\begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} = \begin{pmatrix} \Theta_1 \\ \Theta_2 \end{pmatrix} e^{i\omega t}$ και ορίζοντας $\lambda \equiv \frac{\omega^2}{\omega_0^2}$ παίρνουμε:

$$-\omega^{2}\begin{pmatrix}\Theta_{1}\\\Theta_{2}\end{pmatrix}e^{i\omega t} = -\overline{\omega_{0}^{2}\begin{pmatrix}1+\eta&-\eta\\-\eta&1+\eta\end{pmatrix}\begin{pmatrix}\Theta_{1}\\\Theta_{2}\end{pmatrix}}e^{i\omega t} \Rightarrow \lambda\begin{pmatrix}\Theta_{1}\\\Theta_{2}\end{pmatrix} = \begin{pmatrix}1+\eta&-\eta\\-\eta&1+\eta\end{pmatrix}\begin{pmatrix}\Theta_{1}\\\Theta_{2}\end{pmatrix}$$

Το οποίο είναι της μορφής: $\mathbf{A}\mathbf{\Theta} = \lambda\mathbf{\Theta}$

δηλαδή λύση εξίσωσης ιδιοτιμών / ιδιοδυανυσμάτων

$$(\mathbf{A} - \lambda \mathbf{1})\mathbf{\Theta} = 0$$

Συζευγμένα εκκρεμή – ιδιοτιμές και ιδιοδιανύσματα

- □ Για να υπάρχουν μη τετριμένα ιδιοδιανύσματα, η ορίζουσα του πίνακα που πολ/ζει το Θ πρέπει να είναι μηδέν.
- Οι ιδιοτιμές βρίσκονται λύνοντας τη χαρακτηριστική εξίσωση:

$$\begin{vmatrix} 1+\eta-\lambda & -\eta \\ -\eta & 1+\eta-\lambda \end{vmatrix} = (1+\eta-\lambda)^2 - \eta^2 = 0$$

- lacksquare Οι λύσεις της εξίσωσης αυτής είναι: lacksquare $\lambda_1=1$ και $\lambda_2=1+2\eta$
 - ightharpoonup Η $\mathbf{1}^{\eta}$ λύση αντιστοιχεί σε $\mathbf{\omega}_{\scriptscriptstyle 1} = \mathbf{\omega}_{\scriptscriptstyle 0}$ συμμετρική
 - ightharpoonup Η 2^{η} λύση αντιστοιχεί σε $\omega_2 = \omega_0 \sqrt{1 + 2\eta}$ ασύμμετρη
- lacktriangle Τα ιδιοδιανύσματα του f A βρίσκονται από την εξίσωση: $f A\Theta = \lambda \Theta$ χρησιμοποιώντας μια φορά την μια ιδιοτιμή και μια την άλλη
 - $ightharpoonup Σε κάθε περίπτωση αυτό που βρίσκουμε είναι ο λόγος: <math>\Theta_1/\Theta_2$
 - Η συνολική κανονικοποίηση βρίσκεται ζητώντας
 το μέτρο του ιδιοδιανύσματος να είναι 1

Συζευγμένα εκκρεμή – ιδιοδιανύσματα

- ightharpoonup Τα ιδιοδιανύσματα που παίρνουμε είναι: $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ και $\frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

που αναλογούν στις ιδιοτιμές: $\lambda_1 = 1$ και $\lambda_2 = 1 + 2\eta$ αντίστοιχα

- Το εσωτερικό γινόμενο των 2 ιδιοδιανυσμάτων είναι 0 Ορθοκανονικά
- Κατασκευάζουμε πίνακα με στήλες τα ιδιοδιανύσματα
 - ♦ Ο πίνακας που προκύπτει μπορεί να χρησιμοποιηθεί σε ένα μετασχηματισμό ομοιότητας για να διαγωνοποιηθεί ο πίνακας Α
 - ♦ Οι ιδιοτιμές είναι τα διαγώνια στοιχεία του πίνακα που προκύπτει

Ένας τέτοιος πίνακας είναι:
$$S = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

και σύμφωνα με το μετασχηματισμό ομοιότητας θα έχουμε:

$$\mathbf{S}^{-1}\mathbf{A}\mathbf{S} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1+\eta & -\eta \\ -\eta & 1+\eta \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1+2\eta \end{pmatrix}$$

Συζευγμένα εκκρεμή

Τα ιδιοδιανύσματα αντιστοιχούν στα:

$$\frac{\left(\Theta_1 + \Theta_2\right)}{\sqrt{2}}$$

$$για λ1 = 1$$

συμμετρικός τρόπος

$$\frac{\left(-\Theta_1 + \Theta_2\right)}{\sqrt{2}}$$

$$\gamma \iota \alpha \quad \lambda_2 = 1 + 2\eta$$

για $\lambda_2 = 1 + 2\eta$ αντισυμμετρικός τρόπος

Οι δυο αυτοί συνδυασμοί αποσυζεύγουν τις εξισώσεις κίνησης

- Για τον συμμετρικό τρόπο ταλάντωσης:
 - τα εκκρεμή έχουν το ίδιο πλάτος ταλάντωσης και είναι σε φάση
 - Το ελατήριο σύζευξης δεν κάνει απολύτως τίποτα
 - ightharpoonup Τα εκκρεμή ταλαντώνονται με την ίδια συχνότητα με $\lambda=1$ $\Longrightarrow \omega_s=\omega_0$
- Για τον αντισυμμετρικό τρόπο ταλάντωσης:
 - ightarrow Τα εκκρεμή ταλαντώνονται με την ίδια συχνότητα με $\lambda=1+2\eta$
 - ightharpoonup Η αντισυμμετρική συχνότητα: $\omega_{\rm A} = \sqrt{\omega_0^2 + 2\frac{k}{m}}$

Μικρές ταλαντώσεις - Συζευγμένα εκκρεμή

□ Το σύστημα μπορεί να κινείται με μια από δγο χαρακτηριστικές συχνότητες (ιδιοσυχνότητες) οι οποίες βρίσκονται λύνοντας την:

$$(\mathbf{A} - \lambda \mathbf{1})\mathbf{\Theta} = 0$$
 όπου
$$\mathbf{A} = \begin{pmatrix} 1 + \eta & -\eta \\ -\eta & 1 + \eta \end{pmatrix}$$
 με $\eta \equiv \frac{ka}{mg}$ και $\lambda \equiv \frac{\boldsymbol{\omega}^2}{\boldsymbol{\omega}_0^2}$ $\boldsymbol{\omega}_0^2 \equiv \frac{g}{a}$

Οι δύο ιδιοσυχνότητες προκύπτουν ζητώντας η ορίζουσα

$$\begin{vmatrix} \mathbf{e}_2 \\ \mathbf{a} \end{vmatrix} = \begin{vmatrix} 1 + \eta - \lambda & -\eta \\ -\eta & 1 + \eta - \lambda \end{vmatrix} = 0 \Rightarrow (1 + \eta - \lambda)^2 - \eta^2 = 0$$

δίνοντας: $\lambda_1 = 1 \implies \omega_1 = \omega_0$ και $\lambda_2 = 1 + 2\eta \implies \omega_2 = \omega_0 \sqrt{1 + 2\eta}$

Η αντίστοιχη κίνηση δίνεται από τα ιδιοδιανύσματα του πίνακα:

$$\theta_{1}(t) = C\cos\omega_{1}t \qquad \theta_{2}(t) = C\cos\omega_{1}t \quad \text{yin } \lambda_{1}: \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\1 \end{pmatrix}$$

$$\theta_{1}(t) = -C\cos\omega_{2}t \qquad \theta_{2}(t) = C\cos\omega_{2}t \quad \text{yin } \lambda_{2}: \frac{1}{\sqrt{2}}\begin{pmatrix} -1\\1 \end{pmatrix}$$

Φυσικοί τρόποι ταλάντωσης (normal modes)

Μικρές ταλαντώσεις - Συζευγμένα εκκρεμή

 Η γενική κίνηση του συστήματος περιγράφεται σαν ένας γραμμικός συνδυασμός των κανονικών τρόπων ταλάντωσης.

$$\theta(t) = \begin{bmatrix} \theta_1(t) \\ \theta_2(t) \end{bmatrix} = A_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \cos(\omega_1 t - \delta_1) + A_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} \cos(\omega_2 t - \delta_2)$$

- \Box Έχουμε δυο Δ.Ε. $2^{ης}$ τάξης για τις μεταβλητές $\theta_1(t)$ και $\theta_2(t)$
 - ightharpoonup Περιμένουμε 4 σταθερές ολοκλήρωσης $(A_1, A_2, \delta_1, \delta_2)$
- Η γενική λύση εν γένει είναι δύσκολο να περιγραφεί:

αφού αποτελείται από ένα μείγμα δύο συχνοτήτων ω_1 και ω_2

Συζευγμένα εκκρεμή

Αν υποθέσουμε ότι η σύζευξη των δύο εκκρεμών είναι ασθενής (k μικρό)

ώστε:
$$\omega_2 = \omega_0 \sqrt{1 + 2\frac{ka}{mg}} \approx \omega_0 = \omega_1$$

και ότι οι αρχικές συνθήκες είναι τέτοιες ώστε A_1 = A_2 =C/2 και δ_1 = δ_2 = 0 τότε:

$$\theta_1(t) = \frac{C}{2} \left[\cos \omega_1 t - \cos \omega_2 t \right] = C \sin \left(\frac{\omega_2 - \omega_1}{2} t \right) \sin \left(\frac{\omega_2 + \omega_1}{2} t \right) = C \sin \omega_\delta t \sin \omega_\mu t$$

$$\theta_2(t) = \frac{C}{2} \left[\cos \omega_1 t + \cos \omega_2 t \right] = C \cos \left(\frac{\omega_2 - \omega_1}{2} t \right) \cos \left(\frac{\omega_2 + \omega_1}{2} t \right) = C \cos \omega_\delta t \cos \omega_\mu t$$

Αφού $ω_{\delta} = ω_{2} - ω_{1}$ είναι μικρό έχουμε το σχηματισμό διακροτήματος