REAL-VARIABLE CHARACTERIZATIONS OF BERGMAN SPACES

ZEQIAN CHEN AND WEI OUYANG

ABSTRACT. In this paper, we give a survey of results obtained recently by the present authors on real-variable characterizations of Bergman spaces, which are closely related to maximal and area integral functions in terms of the Bergman metric. In particular, we give a new proof of those results concerning area integral characterizations through using the method of vector-valued Calderón-Zygmund operators to handle Bergman singular integral operators on the complex ball. The proofs involve some sharp estimates of the Bergman kernel function and Bergman metric.

1. Introduction

There is a mature and powerful real variable Hardy space theory which has distilled some of the essential oscillation and cancellation behavior of holomorphic functions and then found that behavior ubiquitous. A good introduction to that is [11]; a more recent and fuller account is in [1, 14, 16] and references therein. However, the real-variable theory of the Bergman space is less well developed, even in the case of the unit disc (cf. [12]).

Recently, in [7] the present authors established real-variable type maximal and area integral characterizations of Bergman spaces in the unit ball of \mathbb{C}^n . The characterizations are in terms of maximal functions and area functions on Bergman balls involving the radial derivative, the complex gradient, and the invariant gradient. Subsequently, in [8] we introduced a family of holomorphic spaces of tent type in the unit ball of \mathbb{C}^n and showed that those spaces coincide with Bergman spaces. Moreover, the characterizations extend to cover Besov-Sobolev spaces. A special case of this is a characterization of H^p spaces involving only area functions on Bergman balls.

We remark that the first real-variable characterization of the Bergman spaces was presented by Coifman and Weiss in 1970's. Recall that

$$\varrho(z,w) = \begin{cases} \left| |z| - |w| \right| + \left| 1 - \frac{1}{|z||w|} \langle z, w \rangle \right|, & \text{if } z, w \in \mathbb{B}_n \setminus \{0\}, \\ |z| + |w|, & \text{otherwise} \end{cases}$$

²⁰¹⁰ Mathematics Subject Classification: 46E15; 32A36, 32A50.

Key words: Bergman space, Bergman metric, Maximal function, Area function, Bergman integral operator.

is a pseudo-metric on \mathbb{B}_n and $(\mathbb{B}_n, \varrho, dv_\alpha)$ is a homogeneous space. By their theory of harmonic analysis on homogeneous spaces, Coifman and Weiss [11] can use ϱ to obtain a real-variable atomic decomposition for Bergman spaces. However, since the Bergman metric β underlies the complex geometric structure of the unit ball of \mathbb{C}^n , one would prefer to real-variable characterizations of the Bergman spaces in terms of β . Clearly, the results obtained in [7, 8] are such a characterization.

In this paper, we will give a detailed survey of results obtained in [7, 8]. Moreover, we will give a new proof of those results concerning area integral characterizations through using the method of vector-valued Calderón-Zygmund operator theory to handle Bergman singular integral operators on the complex ball. This paper is organized as follows. In Section 2, some notations and a number of auxiliary (and mostly elementary) facts about the Bergman kernel functions are presented. In Section 3, we will discuss real-variable type atomic decomposition of Bergman spaces. In particular, we will present the atomic decomposition of Bergman spaces with respect to Carleson tubes that was obtained in [7]. Section 4 is devoted to present maximal and area integral function characterizations of Bergman spaces. Finally, in Section 5, we will give a new proof of those results concerning the area integral characterizations obtained in [7, 8] using the argument of Calderón-Zygmund operator theory through introducing Bergman singular integral operators on the complex ball.

In what follows, C always denotes a constant depending (possibly) on n, q, p, γ or α but not on f, which may be different in different places. For two nonnegative (possibly infinite) quantities X and Y, by $X \lesssim Y$ we mean that there exists a constant C > 0 such that $X \leq CY$. We denote by $X \approx Y$ when $X \lesssim Y$ and $Y \lesssim X$. Any notation and terminology not otherwise explained, are as used in [20] for spaces of holomorphic functions in the unit ball of \mathbb{C}^n .

2. Bergman spaces

Let \mathbb{C} denote the set of complex numbers. Throughout the paper we fix a positive integer n, and let \mathbb{B}_n denote the open unit ball in \mathbb{C}^n . The boundary of \mathbb{B}_n will be denoted by \mathbb{S}_n and is called the unit sphere in \mathbb{C}^n . Also, we denote by $\overline{\mathbb{B}}_n$ the closed unit ball, i.e., $\overline{\mathbb{B}}_n = \{z \in \mathbb{C}^n : |z| \leq 1\} = \mathbb{B}_n \cup \mathbb{S}_n$. The automorphism group of \mathbb{B}^n , denoted by $\operatorname{Aut}(\mathbb{B}^n)$, consists of all biholomorphic mappings of \mathbb{B}^n . Traditionally, bi-holomorphic mappings are also called automorphisms.

For $\alpha \in \mathbb{R}$, the weighted Lebesgue measure dv_{α} on \mathbb{B}_n is defined by

$$dv_{\alpha}(z) = c_{\alpha}(1 - |z|^2)^{\alpha} dv(z)$$

where $c_{\alpha} = 1$ for $\alpha \leq -1$ and $c_{\alpha} = \Gamma(n + \alpha + 1)/[n!\Gamma(\alpha + 1)]$ if $\alpha > -1$, which is a normalizing constant so that dv_{α} is a probability measure on \mathbb{B}_n .

In the case of $\alpha = -(n+1)$ we denote the resulting measure by

$$d\tau(z) = \frac{dv(z)}{(1 - |z|^2)^{n+1}},$$

and call it the invariant measure on \mathbb{B}^n , since $d\tau = d\tau \circ \varphi$ for any automorphism φ of \mathbb{B}^n .

Recall that for $\alpha > -1$ and p > 0 the (weighted) Lebesgue space $L^p_{\alpha}(\mathbb{B}_n)$ (or, L^p_{α} in short) consists of measurable (complex) functions f on \mathbb{B}_n with

$$\|f\|_{p,\,lpha}=\left(\int_{\mathbb{B}_n}|f(z)|^pdv_lpha(z)
ight)^{rac{1}{p}}<\infty.$$

The (weighted) Bergman space \mathcal{A}^p_{α} is then defined as

$$\mathcal{A}^p_\alpha = \mathcal{H}(\mathbb{B}_n) \cap L^p_\alpha,$$

where $\mathcal{H}(\mathbb{B}_n)$ is the space of all holomorphic functions in \mathbb{B}_n . When $\alpha = 0$ we simply write \mathcal{A}^p for \mathcal{A}^p_0 . These are the usual Bergman spaces. Note that for $1 \leq p < \infty$, \mathcal{A}^p_α is a Banach space under the norm $\| \|_{p,\alpha}$. If $0 , the space <math>\mathcal{A}^p_\alpha$ is a quasi-Banach space with p-norm $\|f\|_{p,\alpha}^p$.

Recall that the dual space of \mathcal{A}^1_{α} is the Bloch space \mathcal{B} defined as follows (we refer to [20] for details). The Bloch space \mathcal{B} of \mathbb{B}_n is defined to be the space of holomorphic functions f in \mathbb{B}_n such that

$$||f||_{\mathcal{B}} = \sup\{|\widetilde{\nabla}f(z)| : z \in \mathbb{B}_n\} < \infty.$$

 $\| \ \|_{\mathcal{B}}$ is a semi-norm on $\mathcal{B}.\ \mathcal{B}$ becomes a Banach space with the following norm

$$||f|| = |f(0)| + ||f||_{\mathcal{B}}.$$

It is known that the Banach dual of \mathcal{A}^1_{α} can be identified with \mathcal{B} (with equivalent norms) under the integral pairing

$$\langle f, g \rangle_{\alpha} = \lim_{r \to 1^{-}} \int_{\mathbb{B}_{n}} f(rz) \overline{g(z)} dv_{\alpha}(z), \quad f \in \mathcal{A}_{\alpha}^{1}, \ g \in \mathcal{B}.$$

(e.g., see Theorem 3.17 in [20].)

We define the so-called generalized Bergman spaces as follows (e.g., [19]). For $0 and <math>-\infty < \alpha < \infty$ we fix a nonnegative integer k with $pk + \alpha > -1$ and define \mathcal{A}^p_{α} as the space of all $f \in \mathcal{H}(\mathbb{B}_n)$ such that $(1 - |z|^2)^k \mathcal{R}^k f \in L^p(\mathbb{B}_n, dv_{\alpha})$. One then easily observes that \mathcal{A}^p_{α} is independent of the choice of k and consistent with the traditional definition when $\alpha > -1$. Let N be the smallest nonnegative integer such that $pN + \alpha > -1$ and define

$$(2.1) \quad ||f||_{p,\alpha} = |f(0)| + \left(\int_{\mathbb{B}_n} (1 - |z|^2)^{pN} |\mathcal{R}^N f(z)|^p dv_\alpha(z) \right)^{\frac{1}{p}}, \quad f \in \mathcal{A}_\alpha^p.$$

Equipped with (2.1), \mathcal{A}^p_{α} becomes a Banach space when $p \geq 1$ and a quasi-Banach space for 0 .

Note that the family of the generalized Bergman spaces \mathcal{A}^p_α covers most of the spaces of holomorphic functions in the unit ball of \mathbb{C}^n , which has been

extensively studied before in the literature under different names. For example, $B_p^s = \mathcal{A}_\alpha^p$ with $\alpha = -(ps+1)$, where B_p^s is the classical diagonal Besov space consisting of holomorphic functions f in \mathbb{B}_n such that $(1-|z|^2)^{k-s}\mathcal{R}^kf$ belongs to $L^p(\mathbb{B}_n,dv_{-1})$ with k being any positive integer greater than s. It is clear that $\mathcal{A}_\alpha^p = B_p^s$ with $s = -(\alpha+1)/p$. Thus the generalized Bergman spaces \mathcal{A}_α^p are exactly the diagonal Besov spaces. On the other hand, if k is a positive integer, p is positive, and p is real, then there is the Sobolev space $W_{k,\beta}^p$ consisting of holomorphic functions f in \mathbb{B}_n such that the partial derivatives of p of order up to p all belong to p (cf. p and p) (cf. p and p). It is easy to see that these holomorphic Sobolev spaces are in the scale of the generalized Bergman spaces, i.e., $W_{k,\beta}^p = \mathcal{A}_\alpha^p$ with $\alpha = -(pk - \beta + 1)$ (e.g., see [19] for an overview). We refer to Arcozzi-Rochberg-Sawyer [4, 5], Tchoundja [17] and Volberg-Wick [18] for some recent results on such Besov spaces and more references.

Recall that $D(z, \gamma)$ denotes the Bergman metric ball at z

$$D(z,\gamma) = \{ w \in \mathbb{B}_n : \beta(z,w) < \gamma \}$$

with $\gamma > 0$, where β is the Bergman metric on \mathbb{B}_n . It is known that

$$\beta(z, w) = \frac{1}{2} \log \frac{1 + |\varphi_z(w)|}{1 - |\varphi_z(w)|}, \quad z, w \in \mathbb{B}_n,$$

whereafter φ_z is the bijective holomorphic mapping in \mathbb{B}_n , which satisfies $\varphi_z(0) = z$, $\varphi_z(z) = 0$ and $\varphi_z \circ \varphi_z = id$. If \mathbb{B}_n is equipped with the Bergman metric β , then \mathbb{B}_n is a separable metric space. We shall call \mathbb{B}_n a separable metric space instead of (\mathbb{B}_n, β) .

For reader's convenience we collect some elementary facts on the Bergman metric and holomorphic functions in the unit ball of \mathbb{C}^n .

Lemma 2.1. (cf. Lemma 1.24 in [20]) For any real α and positive γ there exist constant C_{γ} such that

$$C_{\gamma}^{-1}(1-|z|^2)^{n+1+\alpha} \le v_{\alpha}(D(z,\gamma)) \le C_{\gamma}(1-|z|^2)^{n+1+\alpha}$$

for all $z \in \mathbb{B}_n$.

Lemma 2.2. (cf. Lemma 2.20 in [20]) For each $\gamma > 0$,

$$1 - |a|^2 \approx 1 - |z|^2 \approx |1 - \langle a, z \rangle|$$

for all a in \mathbb{B}_n with $z \in D(a, \gamma)$.

Lemma 2.3. (cf. Lemma 2.27 in [20]) For each $\gamma > 0$,

$$|1 - \langle z, u \rangle| \approx |1 - \langle z, v \rangle|$$

for all z in $\bar{\mathbb{B}}_n$ and u, v in \mathbb{B}_n with $\beta(u, v) < \gamma$.

3. Atomic decomposition

We first recall the following "complex-variable" atomic decomposition for Bergman spaces due to Coifman and Rochberg [10] (see also [20], Theorem 2.30).

Theorem 3.1. Suppose p > 0, $\alpha > -1$, and $b > n \max\{1, 1/p\} + (\alpha + 1)/p$. Then there exists a sequence $\{a_k\}$ in \mathbb{B}_n such that \mathcal{A}^p_{α} consists exactly of functions of the form

(3.1)
$$f(z) = \sum_{k=1}^{\infty} c_k \frac{(1 - |a_k|^2)^{(pb-n-1-\alpha)/p}}{(1 - \langle z, a_k \rangle)^b}, \quad z \in \mathbb{B}_n,$$

where $\{c_k\}$ belongs to the sequence space ℓ^p and the series converges in the norm topology of \mathcal{A}^p_{α} . Moreover,

$$\int_{\mathbb{B}_n} |f(z)|^p dv_{\alpha}(z) \approx \inf \Big\{ \sum_k |c_k|^p \Big\},\,$$

where the infimum runs over all the above decompositions.

By Theorem 3.1 we conclude that for any $\alpha > -1$, \mathcal{A}^p_{α} as a Banach space is isomorphic to ℓ^p for every $1 \le p < \infty$.

Now we turn to the real-variable atomic decomposition of Bergman spaces. To this end, we need some more notations as follows.

For any $\zeta \in \mathbb{S}_n$ and r > 0, the set

$$Q_r(\zeta) = \{ z \in \mathbb{B}_n : d(z, \zeta) < r \}$$

is called a Carleson tube with respect to the nonisotropic metric d. We usually write $Q = Q_r(\zeta)$ in short.

As usual, we define the atoms with respect to the Carleson tube as follows: for $1 < q < \infty$, $a \in L^q(\mathbb{B}_n, dv_\alpha)$ is said to be a $(1, q)_\alpha$ -atom if there is a Carleson tube Q such that

- (1) a is supported in Q;
- (2) $||a||_{L^q(\mathbb{B}_n,dv_\alpha)} \le v_\alpha(Q)^{\frac{1}{q}-1};$
- (3) $\int_{\mathbb{B}_n} a(z) \, dv_{\alpha}(z) = 0.$

The constant function 1 is also considered to be a $(1,q)_{\alpha}$ -atom.

Note that for any $(1,q)_{\alpha}$ -atom a,

$$||a||_{1,\alpha} = \int_{Q} |a| dv_{\alpha} \le v_{\alpha}(Q)^{1-1/q} ||a||_{q,\alpha} \le 1.$$

Then, we define $\mathcal{A}_{\alpha}^{1,q}$ as the space of all $f \in \mathcal{A}_{\alpha}^{1}$ which admits a decomposition

$$f = \sum_{i} \lambda_i P_{\alpha} a_i$$
 and $\sum_{i} |\lambda_i| \le C_q ||f||_{1,\alpha}$,

where for each i, a_i is an $(1,q)_{\alpha}$ -atom and $\lambda_i \in \mathbb{C}$ so that $\sum_i |\lambda_i| < \infty$. We equip this space with the norm

$$||f||_{\mathcal{A}^{1,q}_{\alpha}} = \inf\left\{\sum_{i} |\lambda_i| : f = \sum_{i} \lambda_i P_{\alpha} a_i\right\}$$

where the infimum is taken over all decompositions of f described above.

It is easy to see that $\mathcal{A}_{\alpha}^{1,q}$ is a Banach space.

Theorem 3.2. Let $1 < q < \infty$ and $\alpha > -1$. For every $f \in \mathcal{A}^1_{\alpha}$ there exist a sequence $\{a_i\}$ of $(1,q)_{\alpha}$ -atoms and a sequence $\{\lambda_i\}$ of complex numbers such that

(3.2)
$$f = \sum_{i} \lambda_{i} P_{\alpha} a_{i} \quad and \quad \sum_{i} |\lambda_{i}| \leq C_{q} ||f||_{1,\alpha}.$$

Moreover,

$$||f||_{1,\,\alpha} pprox \inf \sum_{i} |\lambda_i|$$

where the infimum is taken over all decompositions of f described above and " \approx " depends only on α and q.

Theorem 3.2 is proved in [7] via duality.

Remark 3.1. One would like to expect that when $0 , <math>\mathcal{A}^p_{\alpha}$ also admits an atomic decomposition in terms of atoms with respect to Carleson tubes. However, the proof of Theorem 3.2 via duality cannot be extended to the case 0 . At the time of this writing, this problem is entirely open.

As mentioned in Introduction, by their theory of harmonic analysis on homogeneous spaces, Coifman and Weiss [11] have obtained a real-variable atomic decomposition in terms of ϱ for Bergman spaces in the case 0 .

4. Real-variable characterizations

4.1. **Maximal functions.** As is well known, maximal functions play a crucial role in the real-variable theory of Hardy spaces (cf. [16]). In [7], the authors established a maximal-function characterization for the Bergman spaces. To this end, we define for each $\gamma > 0$ and $f \in \mathcal{H}(\mathbb{B}_n)$:

(4.1)
$$(\mathcal{M}_{\gamma}f)(z) = \sup_{w \in D(z,\gamma)} |f(w)|, \ \forall z \in \mathbb{B}_n.$$

The following result is proved in [7].

Theorem 4.1. Suppose $\gamma > 0$ and $\alpha > -1$. Let $0 . Then for any <math>f \in \mathcal{H}(\mathbb{B}_n)$, $f \in \mathcal{A}^p_{\alpha}$ if and only if $M_{\gamma}f \in L^p(\mathbb{B}_n, dv_{\alpha})$. Moreover,

(4.2)
$$||f||_{p,\alpha} \approx ||\mathcal{M}_{\gamma} f||_{p,\alpha},$$

where " \approx " depends only on γ , α , p, and n.

The norm appearing on the right-hand side of (4.2) can be viewed an analogue of the so-called nontangential maximal function in Hardy spaces. The proof of Theorem 4.1 is fairly elementary, using some basic facts and estimates on the Bergman balls.

Corollary 4.1. Suppose $\gamma > 0$ and $\alpha \in \mathbb{R}$. Let 0 and <math>k be a nonnegative integer such that $pk + \alpha > -1$. Then for any $f \in \mathcal{H}(\mathbb{B}_n)$, $f \in \mathcal{A}^p_{\alpha}$ if and only if $M_{\gamma}(\mathcal{R}^k f) \in L^p(\mathbb{B}_n, dv_{\alpha})$, where

(4.3)
$$M_{\gamma}(\mathcal{R}^k f)(z) = \sup_{w \in D(z,\gamma)} |(1-|w|^2)^k \mathcal{R}^k f(w)|, \quad z \in \mathbb{B}_n.$$

Moreover,

(4.4)
$$||f||_{p,\alpha} \approx |f(0)| + ||M_{\gamma}(\mathcal{R}^k f)||_{p,\alpha},$$

where " \approx " depends only on γ, α, p, k , and n.

To prove Corollary 4.1, one merely notices that $f \in \mathcal{A}^p_{\alpha}$ if and only if $\mathcal{R}^k f \in L^p(\mathbb{B}_n, dv_{\alpha+pk})$ and applies Theorem 4.1 to $\mathcal{R}^k f$ with the help of Lemma 2.2.

4.2. Area integral functions. In order to state the real-variable area integral characterizations of the Bergman spaces, we require some more notation. For any $f \in \mathcal{H}(\mathbb{B}_n)$ and $z = (z_1, \ldots, z_n) \in \mathbb{B}_n$ we define

$$\mathcal{R}f(z) = \sum_{k=1}^{n} z_k \frac{\partial f(z)}{\partial z_k}$$

and call it the radial derivative of f at z. The complex and invariant gradients of f at z are respectively defined as

$$\nabla f(z) = \left(\frac{\partial f(z)}{\partial z_1}, \dots, \frac{\partial f(z)}{\partial z_n}\right) \text{ and } \widetilde{\nabla} f(z) = \nabla (f \circ \varphi_z)(0).$$

Now, for fixed $\gamma > 0$ and $1 < q < \infty$, we define for each $f \in \mathcal{H}(\mathbb{B}_n)$ and $z \in \mathbb{B}_n$:

(1) The radial area function

$$A_{\gamma}^{(q)}(\mathcal{R}f)(z) = \left(\int_{D(z,\gamma)} |(1 - |w|^2) \mathcal{R}f(w)|^q d\tau(w) \right)^{\frac{1}{q}}.$$

(2) The complex gradient area function

$$A_{\gamma}^{(q)}(\nabla f)(z) = \left(\int_{D(z,\gamma)} |(1-|w|^2) \nabla f(w)|^q d\tau(w) \right)^{\frac{1}{q}}.$$

(3) The invariant gradient area function

$$A_{\gamma}^{(q)}(\tilde{\nabla}f)(z) = \left(\int_{D(z,\gamma)} |\tilde{\nabla}f(w)|^q d\tau(w)\right)^{\frac{1}{q}}.$$

The following theorem is proved in [7].

Theorem 4.2. Suppose $\gamma > 0, 1 < q < \infty$, and $\alpha > -1$. Let $0 . Then, for any <math>f \in \mathcal{H}(\mathbb{B}_n)$ the following conditions are equivalent:

- (a) $f \in \mathcal{A}^p_{\alpha}$.
- (b) $A_{\gamma}^{(q)}(\mathcal{R}f)$ is in $L^p(\mathbb{B}_n, dv_{\alpha})$.
- (c) $A_{\gamma}^{(q)}(\nabla f)$ is in $L^p(\mathbb{B}_n, dv_{\alpha})$.
- (d) $A_{\gamma}^{(q)}(\tilde{\nabla}f)$ is in $L^p(\mathbb{B}_n, dv_{\alpha})$.

Moreover, the quantities

$$|f(0)| + ||A_{\gamma}^{(q)}(\mathcal{R}f)||_{p,\alpha}, |f(0)| + ||A_{\gamma}^{(q)}(\nabla f)||_{p,\alpha}, |f(0)| + ||A_{\gamma}^{(q)}(\tilde{\nabla}f)||_{p,\alpha},$$

are all comparable to $||f||_{p,\alpha}$, where the comparable constants depend only on γ, q, α, p , and n.

In particular, taking the equivalence of (a) and (b), one obtains

$$||f||_{p,\alpha} \approx |f(0)| + ||A_{\gamma}^{(q)}(\mathcal{R}f)||_{p,\alpha},$$

which looks tantalizingly simple. However, the authors know no simple proof of this fact even in the case of the usual Bergman space on the unit disc.

Corollary 4.2. Suppose $\gamma > 0, 1 < q < \infty$, and $\alpha \in \mathbb{R}$. Let 0 and <math>k be a nonnegative integer such that $pk + \alpha > -1$. Then for any $f \in \mathcal{H}(\mathbb{B}_n)$, $f \in \mathcal{A}^p_{\alpha}$ if and only if $A^{(q)}_{\gamma}(\mathcal{R}^{k+1}f)$ is in $L^p(\mathbb{B}_n, dv_{\alpha})$, where

(4.5)
$$A_{\gamma}^{(q)}(\mathcal{R}^k f)(z) = \left(\int_{D(z,\gamma)} \left| (1 - |w|^2)^k \mathcal{R}^k f(w) \right|^q d\tau(w) \right)^{\frac{1}{q}}.$$

Moreover,

(4.6)
$$||f||_{p,\alpha} \approx |f(0)| + ||A_{\gamma}^{(q)}(\mathcal{R}^{k+1}f)||_{p,\alpha},$$

where " \approx " depends only on γ, q, α, p, k , and n.

To prove Corollary 4.2, one merely notices that $f \in \mathcal{A}^p_{\alpha}$ if and only if $\mathcal{R}^k f \in L^p(\mathbb{B}_n, dv_{\alpha+pk})$ and applies Theorem 4.2 to $\mathcal{R}^k f$ with the help of Lemma 2.2.

4.3. **Tent spaces.** The basic functional used below is the one mapping functions in \mathbb{B}_n to functions in \mathbb{B}_n , given by

(4.7)
$$A_{\gamma}^{(q)}(f)(z) = \left(\int_{D(z,\gamma)} |f(w)|^q d\tau(w) \right)^{\frac{1}{q}}$$

if $1 < q < \infty$, and

(4.8)
$$A_{\gamma}^{(\infty)}(f)(z) = \sup_{w \in D(z,\gamma)} |f(w)|, \quad \text{when } q = \infty.$$

Then, the "holomorphic space of tent type" $T_{q,\alpha}^p$ in \mathbb{B}_n is defined as the holomorphic functions f in \mathbb{B}_n so that $A_{\gamma}^{(q)}(f) \in L_{\alpha}^p$, when $0 and <math>\alpha > -1$, $\gamma > 0, 1 < q \le \infty$. The corresponding classes are then equipped

with a norm (or, quasi-norm) $||f||_{T_{q,\alpha}^p} = ||A_{\gamma}^{(q)}(f)||_{p,\alpha}$. This motivation arise form the tent spaces in \mathbb{R}^n , which were introduced and developed by Coifman, Meyer and Stein in [9].

The case of $q = \infty$ and $0 was studied in Section 4.1 (see [7] for details). Actually, the resulting tent type spaces <math>T^p_{\infty,\alpha}$ is Bergman spaces \mathcal{A}^p_{α} . It is clear that $T^\infty_{q,\alpha}$ with $1 < q < \infty$ is imbedded in Bloch space. On the other hand, $T^p_{q,\alpha}$ are Banach spaces when $p \geq 1$.

It is well known that the Hardy-Littlewood maximal function operator has played important role in harmonic analysis. To cater our estimates, we use two variants of the non-central Hardy-Littlewood maximal function operator acting on the weighted Lebesgue spaces $L^p_{\alpha}(\mathbb{B}_n)$, namely,

$$(4.9) M_{\gamma}^{(q)}(f)(z) = \sup_{z \in D(w,\gamma)} \left(\frac{1}{v_{\alpha}(D(w,\gamma))} \int_{D(w,\gamma)} |f|^q dv_{\alpha} \right)^{\frac{1}{q}}$$

for $0 < q < \infty$. We simply write $M_{\gamma}(f)(z) := M_{\gamma}^{(1)}(f)(z)$. The following result is proved in [8].

Theorem 4.3. Suppose $\gamma > 0, 1 < q < \infty$, and $\alpha > -1$. Let $0 . Then for any <math>f \in \mathcal{H}(\mathbb{B}_n)$, the following conditions are equivalent:

- (1) $f \in \mathcal{A}^p_{\alpha}$.
- (2) $A_{\gamma}^{(q)}(f)$ is in $L^p(\mathbb{B}_n, dv_{\alpha})$.
- (3) $M_{\gamma}^{(q)}(f)$ is in $L^p(\mathbb{B}_n, dv_{\alpha})$.

Moreover,

$$||f||_{\mathcal{A}^p_{\alpha}} \approx ||f||_{T^p_{q,\alpha}} \approx ||M^{(q)}_{\gamma}(f)||_{p,\alpha},$$

where the comparable constants depend only on γ , q, α , p, and n.

Note that the Bergman metric β is non-doubling on \mathbb{B}^n and so $(\mathbb{B}_n, \beta, dv_\alpha)$ is a non-homogeneous space. The proof of the above theorem does involve some techniques of non-homogeneous harmonic analysis developed in [15].

Corollary 4.3. Suppose $\gamma > 0, 1 < q < \infty$, and $\alpha \in \mathbb{R}$. Let 0 and <math>k be a nonnegative integer such that $pk + \alpha > -1$. Then for any $f \in \mathcal{H}(\mathbb{B}_n)$, $f \in \mathcal{A}^p_\alpha$ if and only if $A^{(q)}_\gamma(\mathcal{R}^k f)$ is in $L^p(\mathbb{B}_n, dv_\alpha)$ if and only if $M^{(q)}_\gamma(\mathcal{R}^k f)$ is in $L^p(\mathbb{B}_n, dv_\alpha)$, where

(4.10)
$$A_{\gamma}^{(q)}(\mathcal{R}^k f)(z) = \left(\int_{D(z,\gamma)} \left| (1 - |w|^2)^k \mathcal{R}^k f(w) \right|^q d\tau(w) \right)^{\frac{1}{q}}$$

and

(4.11)

$$M_{\gamma}^{(q)}(\mathcal{R}^k f)(z) = \sup_{z \in D(w,\gamma)} \left(\int_{D(w,\gamma)} \left| (1 - |u|^2)^k \mathcal{R}^k f(u) \right|^q \frac{dv_{\alpha}(u)}{v_{\alpha}(D(w,\gamma))} \right)^{\frac{1}{q}}$$

Moreover,

(4.12) $||f||_{p,\alpha} \approx |f(0)| + ||A_{\gamma}^{(q)}(\mathcal{R}^k f)||_{p,\alpha} \approx |f(0)| + ||M_{\gamma}^{(q)}(\mathcal{R}^k f)||_{p,\alpha},$ where " \approx " depends only on γ, q, α, p, k , and n.

To prove Corollary 4.3, one merely notices that $f \in \mathcal{A}^p_{\alpha}$ if and only if $\mathcal{R}^k f \in L^p(\mathbb{B}_n, dv_{\alpha+pk})$ and applies Theorem 4.3 to $\mathcal{R}^k f$ with the help of Lemma 2.2. When $\alpha > -1$, we can take k = 1 and then recover Theorem 4.2.

As mentioned in Section 2, the family of the generalized Bergman spaces \mathcal{A}^p_{α} covers most of the spaces of holomorphic functions in the unit ball of \mathbb{C}^n , such as the classical diagonal Besov space B^s_p and the Sobolev space $W^p_{k,\beta}$. In particular, $\mathcal{H}^p_s = \mathcal{A}^p_{\alpha}$ with $\alpha = -2s - 1$, where \mathcal{H}^p_s is the Hardy-Sobolev space defined as the set

$$\left\{ f \in \mathcal{H}(\mathbb{B}_n) : \|f\|_{\mathcal{H}_s^p}^p = \sup_{0 < r < 1} \int_{\mathbb{S}_n} |(I + \mathcal{R})^s f(r\zeta)|^p d\sigma(\zeta) < \infty \right\}.$$

Here,

$$(I+\mathcal{R})^s f = \sum_{k=0}^{\infty} (1+k)^s f_k$$

if $f = \sum_{k=0}^{\infty} f_k$ is the homogeneous expansion of f. There are several real-variable characterizations of the Hardy-Sobolev spaces obtained by Ahern and Bruna [1] (see also [3]). These characterizations are in terms of maximal and area functions on the admissible approach region

$$D_{\alpha}(\eta) = \left\{ z \in \mathbb{B}_n : |1 - \langle z, \eta \rangle| < \frac{\alpha}{2} (1 - |z|^2) \right\}, \quad \eta \in \mathbb{S}_n, \ \alpha > 1.$$

Evidently, Corollary 4.3 present new real-variable descriptions of the Hardy-Sobolev spaces in terms of the Bergman metric. A special case of this is a characterization of the usual Hardy space $\mathcal{H}^p = \mathcal{A}^p_{-1}$ itself.

5. Bergman integral operators

- 5.1. Vector-valued kernels and Calderón-Zygmund operators on homogeneous spaces. Recall that a quasimetric on a set X is a map ρ from $X \times X$ to $[0, \infty)$ such that
- (1) $\rho(x,y) = 0$ if and only if x = y;
- (2) $\rho(x,y) = \rho(y,x);$
- (3) there exists a positive constant $C \geq 1$ such that

$$\rho(x,y) \le C[\rho(x,z) + \rho(z,y)], \quad \forall x, y, z \in X,$$

(the quasi-triangular inequality).

For any $x \in X$ and r > 0, the set $B(x,r) = \{y \in X : \rho(x,y) < r\}$ is called a ρ -ball of center x and radius r.

A space of homogeneous type is a topological space X endowed with a quasimetre ρ and a Borel measure μ such that

- (a) for each $x \in X$, the balls B(x,r) form a basis of open neighborhoods of x and, also, $\mu(B(x,r)) > 0$ whenever r > 0;
- (b) (doubling property) there exists a constant C>0 such that for each $x\in X$ and r>0, one has

$$\mu(B(x,2r)) \le C\mu(B(x,r)).$$

 (X, ρ, μ) is called a space of homogeneous type or simply a homogeneous space. We will usually abusively call X a homogeneous space instead of (X, ρ, μ) . We refer to [11, 16] for details on harmonic analysis on homogeneous spaces.

Let E be a Banach space. Let $L^p(\mu, E)$ be the usual Bochner-Lebesgue space for $1 \le p \le \infty$, and let $L^{1,\infty}(\mu, E)$ be defined by

$$L^{1,\infty}(\mu,E):=\big\{f:\;X\mapsto E|f\;\text{is strongly measurable such that}\;\|f\|_{L^{1,\infty}(\mu,E)}<\infty\big\},$$

where $||f||_{L^{1,\infty}(\mu,E)} := \sup_{t>0} t\mu(\{x \in X : ||f(x)||_E > t\})$. Note that $||f||_{L^{1,\infty}}$ is not actually a norm in the sense that it does not satisfy the triangle inequality. However, we still have

$$\begin{split} &\|cf\|_{L^{1,\infty}(\mu,E)} = |c|\|f\|_{L^{1,\infty}(\mu,E)} \text{ and } \|f+g\|_{L^{1,\infty}(\mu,E)} \leq 2(\|f\|_{L^{1,\infty}(\mu,E)} + \|g\|_{L^{1,\infty}(\mu,E)}) \\ &\text{for every } c \in \mathbb{C} \text{ and } f,g \in L^{1,\infty}(\mu,E). \end{split}$$

If $E = \mathbb{C}$ we simply write $L^p(\mu, E) = L^p(\mu)$ and $L^{1,\infty}(\mu, E) = L^{1,\infty}(\mu)$.

Fix m > 0 (not necessarily an integer). Define $\triangle = \{(x, x) : x \in X\}$. A vector-valued m-dimensional Calderón-Zygmund kernel with respect to ρ is a continuous mapping $K: X \times X \setminus \triangle \mapsto E$ for which we have

(a) there exists a constant $C_1 > 0$ such that

$$||K(x,y)||_E \le \frac{C_1}{\rho(x,y)}, \quad \forall x,y \in X \times X \setminus \Delta;$$

(b) there exist constants $0 < \epsilon \le 1$ and $C_2, C_3 > 0$ such that

$$||K(x,y) - K(x',y)||_E + ||K(y,x) - K(y,x')||_E \le C_2 \frac{\rho(x,x')^{\epsilon}}{\rho(x,y)^{m+\epsilon}}$$

whenever $x, x', y \in X$ and $\rho(x, x') \leq C_3 \rho(x, y)$.

Given a vector-valued m-dimensional Calderón-Zygmund kernel K, we can define (at least formally) a Calderón-Zygmund singular integral operator associated with this kernel by

$$Tf(x) = \int_X K(x,y) f(y) d\mu(x).$$

Proposition 5.1. Let E be a Banach space. If a Calderón-Zygmund singular integral operator T is bounded from $L^q(\mu)$ into $L^q(\mu, E)$ for some fixed $1 \leq q < \infty$, then T can be extended to an operator on $L^p(\mu)$ for every $1 \leq p < \infty$ such that

- (a) T is L^p -bounded for every $1 , i.e., <math>\|Tf\|_{L^p(\mu,E)} \le C_p \|f\|_{L^p(\mu)}$;
- (b) T is of weak type (1,1), i.e., $||Tf||_{L^{1,\infty}(\mu,E)} \leq C||f||_{L^{1}(\mu)}$ for all $f \in L^{1}(\mu)$;

- (c) T is bounded from $L^{\infty}(\mu)$ into BMO $(X, \rho, \mu; E)$;
- (d) T is bounded from $H^1(X, \rho, \mu)$ into $L^1(\mu)$.

 $\mathrm{H}^1(X,\rho,\mu)$ and $\mathrm{BMO}(X,\rho,\mu;E)$ can be defined in a natural way, see [11] for the details. This result must be known for experts in the field of vector-valued harmonic analysis, and the proof can be obtained by merely modifying the proof of Theorem V.3.4 in [13].

5.2. Bergman singular integral operators. We now turn our attention to the special case of the unit ball \mathbb{B}_n . Recall that

$$\varrho(z,w) = \begin{cases} \left| |z| - |w| \right| + \left| 1 - \frac{1}{|z||w|} \langle z, w \rangle \right|, & \text{if } z, w \in \mathbb{B}_n \setminus \{0\}, \\ |z| + |w|, & \text{otherwise.} \end{cases}$$

It is know that ϱ is a pseudo-metric on \mathbb{B}_n and $(\mathbb{B}_n, \varrho, v_\alpha)$ is a homogeneous space for $\alpha > -1$ (e.g., Lemma 2.10 in [17]).

Let E be a Banach space. Suppose $\alpha > -1$. We are interested in vectorvalued Bergman type integral operators on the unit ball $\overline{\mathbb{B}}_n$ in \mathbb{C}^n . More precisely, we are interested in Bergman type integral operators whose kernels with values in E satisfy the following estimates

$$(5.1) ||K(z,w)||_E \leq \frac{C}{\varrho(z,w)^{n+1+\alpha}}, \quad \forall (z,w) \in \mathbb{B}_n \times \mathbb{B}_n \setminus \{(\zeta,\zeta) : \zeta \in \mathbb{B}_n\},$$

and

$$(5.2) ||K(z,w) - K(z,\zeta)||_E + ||K(w,z) - K(\zeta,z)||_E \le \frac{C\varrho(w,\zeta)^{\beta}}{\varrho(z,\zeta)^{n+1+\alpha+\beta}},$$

for $z, w, \zeta \in \mathbb{B}_n$ so that $\varrho(z, \zeta) \geq \delta \varrho(w, \zeta)$, with some (fixed) $\alpha > -1, \delta > 0$, and $0 < \beta \leq 1$. That is, K is $(n + 1 + \alpha)$ -dimensional Calderón-Zygmund kernel K with values in E on the homogeneous space $(\mathbb{B}_n, \varrho, v_{\alpha})$.

Once the kernel has been defined, then a α -time Bergman singular integral operator T is defined as a Calderón-Zygmund singular integral operator with a vector-valued kernel K by

(5.3)
$$Tf(z) = \int_{\mathbb{B}_n} K(z, w) f(w) dv_{\alpha}(w), \quad z, w \in \mathbb{B}_n.$$

If T is bounded from L^p_{α} into $L^p(\mathbb{B}_n, v_{\alpha}; E)$ for any $1 , we call it a <math>\alpha$ -time Bergman integral operator (BIO). We denote by $\mathrm{BIO}_{\alpha}(E)$ all such operators. If $E = \mathbb{C}$ we write $\mathrm{BIO}_{\alpha}(\mathbb{C}) = \mathrm{BIO}_{\alpha}$.

The examples that we keep in mind are the Bergman projection operator P_{α} from L_{α}^2 onto A_{α}^2 , which can be expressed as

$$P_{\alpha}f(z) = \int_{\mathbb{B}_n} K_{\alpha}(z, w) f(w) dv_{\alpha}(w), \quad \forall f \in L^1(\mathbb{B}_n, dv_{\alpha}),$$

where

(5.4)
$$K_{\alpha}(z,w) = \frac{1}{(1 - \langle z, w \rangle)^{n+1+\alpha}}, \quad z, w \in \mathbb{B}_n \text{ with } \alpha > -1.$$

Indeed, we have

Proposition 5.2. (Proposition 2.13 in [17])

(i) there exists a constant $C_1 > 0$ such that

$$|K_{\alpha}(z,w)| \le \frac{C_1}{\varrho(z,w)^{n+1+\alpha}}, \quad \forall z, w \in \mathbb{B}_n.$$

(ii) There are two constants $C_2, C_3 > 0$ such that for all $z, w, \zeta \in \mathbb{B}_n$ satisfying

$$\rho(z,\zeta) > C_2 \rho(w,\zeta)$$

one has

$$|K_{\alpha}(z,w) - K_{\alpha}(z,\zeta)| \le C_3 \frac{\varrho(w,\zeta)^{\frac{1}{2}}}{\varrho(z,\zeta)^{n+1+\alpha+\frac{1}{2}}}.$$

It is well known that P_{α} extends to a bounded operator on L_{α}^{p} for $1 (e.g., Theorem 2.11 in [20]). Thus, we have <math>P_{\alpha} \in BIO_{\alpha}$. This fact will be also concluded from the following result, which is clearly a special case of Proposition 5.1.

Theorem 5.1. Let E be a Banach space and $\alpha > -1$. Suppose T is a Calderón-Zygmund singular integral operator associated with a kernel satisfying (5.1) and (5.2). If T is bounded on $L^q(v_\alpha)$ for some fixed $1 < q < \infty$, then T is bounded from $L^p(\mathbb{B}_n, v_\alpha)$ into $L^p(\mathbb{B}_n, v_\alpha; E)$ for every 1 , and is of weak type <math>(1, 1).

5.3. Area functions as vector-valued Bergman integral operators. Given $\gamma > 0$ and $1 < q < \infty$. Let $E = L^q(\mathbb{B}_n, \chi_{D(0,\gamma)}d\tau)$. We consider the operator

$$(5.5) [T_{\text{tent}}f(z)](w) = \int_{\mathbb{B}_n} \frac{f(u)dv_{\alpha}(u)}{(1 - \langle \varphi_z(w), u \rangle)^{n+1+\alpha}}, \quad \forall z, w \in \mathbb{B}_n,$$

with the kernel

$$K_{\text{tent}}(z, u)(w) = \frac{1}{(1 - \langle \varphi_z(w), u \rangle)^{n+1+\alpha}}.$$

By the reproduce kernel formula (e.g., Theorem 2.2 in [20]) we have

$$[T_{\text{tent}} f(z)](w) = f(\varphi_z(w)), \quad \forall f \in \mathcal{H}(\mathbb{B}_n),$$

and hence

$$||T_{\text{tent}}f(z)||_E = A_{\gamma}^{(q)}(f)(z),$$

for any $f \in \mathcal{H}(\mathbb{B}_n)$.

Theorem 5.2. Let $\gamma > 0, \alpha > -1, 1 < q < \infty$, and $1 . Then <math>T_{\text{tent}} \in BIO_{\alpha}(E)$. Consequently,

$$||A_{\gamma}^{(q)}(f)||_{L_{\alpha}^{p}} \lesssim ||f||_{L_{\alpha}^{p}}, \quad \forall f \in \mathcal{A}_{\alpha}^{p}(\mathbb{B}_{n}).$$

Proof. Let $f \in L^q_\alpha(\mathbb{B}_n)$. Then

$$||T_{\text{tent}}f||_{L^{q}(v_{\alpha},E)}^{q} = \int_{\mathbb{B}_{n}} \int_{\mathbb{B}_{n}} \left| \int_{\mathbb{B}_{n}} \frac{f(u)dv_{\alpha}(u)}{(1 - \langle \varphi_{z}(w), u \rangle)^{n+1+\alpha}} \right|^{q} \chi_{D(0,\gamma)}(w)d\tau(w)dv_{\alpha}(z)$$

$$= \int_{\mathbb{B}_{n}} \int_{\mathbb{B}_{n}} |P_{\alpha}f(w)|^{q} \chi_{D(z,\gamma)}(w)d\tau(w)dv_{\alpha}(z)$$

$$\approx ||P_{\alpha}f||_{L^{q}}^{q} \lesssim ||f||_{L^{q}}^{q}$$

by the L^q -boundedness of P_{α} for $1 < q < \infty$. This concludes that T_{tent} is bounded from L^q_{α} into $L^q(v_{\alpha}, E)$.

By Theorem 5.1, it remains to show that K_{tent} satisfies the conditions (5.1) and (5.2). It is easy to check the condition (5.1). Indeed, by Lemmas 2.1 and 2.3 and Proposition 5.2 (i) we have

$$||K_{\text{tent}}(z,u)||_{E} = \left(\int_{\mathbb{B}_{n}} \frac{1}{|1 - \langle \varphi_{z}(w), u \rangle|^{2(n+1+\alpha)}} \chi_{D(0,\gamma)}(w) d\tau(w)\right)^{\frac{1}{2}}$$

$$= \left(\int_{D(z,\gamma)} \frac{1}{|1 - \langle w, u \rangle|^{2(n+1+\alpha)}} d\tau(w)\right)^{\frac{1}{2}}$$

$$\lesssim \frac{1}{|1 - \langle z, u \rangle|^{n+1+\alpha}}$$

$$\leq \frac{C}{\varrho(z,u)^{n+1+\alpha}}.$$

This concludes that K_{tent} satisfies (5.1).

To check the condition (5.2), we need the following variant of Proposition 5.2 (ii).

Lemma 5.1. There exist two constants $C_1, C_2 > 0$ such that for all $z, u, \zeta \in \mathbb{B}_n$ satisfying

$$\varrho(z,\zeta) > C_1\varrho(u,\zeta)$$

one has

$$|K_{\alpha}(w,u) - K_{\alpha}(w,\zeta)| \le C_2 \frac{\varrho(u,\zeta)^{\frac{1}{2}}}{\varrho(z,\zeta)^{n+1+\alpha+\frac{1}{2}}},$$

for all $w \in D(z, \gamma)$.

The proof can be obtained by slightly modifying the proof of Proposition 2.13 (2) in [17] with the help of Lemmas 2.2 and 2.3. We omit the details.

Now we turn out to proceed our proof. Suppose $z, u, \zeta \in \mathbb{B}_n$. Note that

$$||K_{\text{tent}}(z,u) - K_{\text{tent}}(z,\zeta)||_E$$

$$= \left(\int_{\mathbb{B}_n} \left| \frac{1}{(1 - \langle \varphi_z(w), u \rangle)^{n+1+\alpha}} - \frac{1}{(1 - \langle \varphi_z(w), \zeta \rangle)^{n+1+\alpha}} \right|^2 \chi_{D(0,\gamma)}(w) d\tau(w) \right)^{\frac{1}{2}}$$

$$= \left(\int_{\chi_{D(z,\gamma)}} \left| \frac{1}{(1 - \langle w, u \rangle)^{n+1+\alpha}} - \frac{1}{(1 - \langle w, \zeta \rangle)^{n+1+\alpha}} \right|^2 d\tau(w) \right)^{\frac{1}{2}}$$

$$= \left(\int_{\chi_{D(z,\gamma)}} \left| K_{\alpha}(w, u) - K_{\alpha}(w, \zeta) \right|^2 d\tau(w) \right)^{\frac{1}{2}}.$$

Then, by Lemma 5.1 there exist two constants $C_1, C_2 > 0$ such that for all $z, u, \zeta \in \mathbb{B}_n$,

$$||K_{\text{tent}}(z,u) - K_{\text{tent}}(z,\zeta)||_{E} \le C_{2} \frac{\varrho(u,\zeta)^{\frac{1}{2}}}{\varrho(z,\zeta)^{n+1+\alpha+\frac{1}{2}}}$$

whenever $\varrho(z,\zeta) > C_1\varrho(u,\zeta)$.

On the other hand, since

$$||K_{\text{tent}}(u,z) - K_{\text{tent}}(\zeta,z)||_E$$

$$= \left(\int_{\mathbb{B}_n} \left| \frac{1}{(1 - \langle \varphi_u(w), z \rangle)^{n+1+\alpha}} - \frac{1}{(1 - \langle \varphi_\zeta(w), z \rangle)^{n+1+\alpha}} \right|^2 \chi_{D(0,\gamma)}(w) d\tau(w) \right)^{\frac{1}{2}}$$

$$= \left(\int_{\mathbb{B}_n} \left| K_\alpha(\varphi_u(w), z) - K_\alpha(\varphi_\zeta(w), z) \right|^2 \chi_{D(0,\gamma)}(w) d\tau(w) \right)^{\frac{1}{2}}$$

and

$$\varrho(\varphi_u(w), \varphi_\zeta(w)) \lesssim |1 - \langle \varphi_u(w), \varphi_\zeta(w) \rangle| \approx |1 - \langle u, \zeta \rangle|, \quad \forall w \in D(0, \gamma),$$

by Lemma 2.3 and the inequality

$$\varrho(z,w) \lesssim |1 - \langle z, w \rangle|$$

(e.g., Eq.(6) in [17]), then by slightly modifying the proof of Proposition 2.13 (2) in [17] we can prove that

$$||K_{\text{tent}}(u,z) - K_{\text{tent}}(\zeta,z)||_E \lesssim \frac{\varrho(u,\zeta)^{\frac{1}{2}}}{\varrho(z,\zeta)^{n+1+\alpha+\frac{1}{2}}}.$$

The details are left to readers. This completes the proof.

Evidently, we can define:

(i) The radial area integral operator

(5.6)
$$[T_{\text{radial}}f(z)](w) = \int_{\mathbb{B}_n} K_{\text{radial}}(z,u)(w)f(u)dv_{\alpha}(u), \quad \forall z, w \in \mathbb{B}_n,$$

with the Bergman kernel

$$K_{\text{radial}}(z, u)(w) = (n + 1 + \alpha) \frac{(1 - |\varphi_z(w)|^2) \langle \varphi_z(w), u \rangle}{(1 - \langle \varphi_z(w), u \rangle)^{n+2+\alpha}}, \quad \forall z, u, w \in \mathbb{B}_n.$$

It is easy to check that

$$[T_{\text{radial}}f(z)](w) = (1 - |\varphi_z(w)|^2)\mathcal{R}f(\varphi_z(w))$$

for any $f \in \mathcal{H}(\mathbb{B}_n)$.

(ii) The complex gradient area integral operator

(5.7)
$$[T_{\operatorname{grad}} f(z)](w) = \int_{\mathbb{B}_n} K_{\operatorname{grad}}(z, u)(w) f(u) dv_{\alpha}(u), \quad \forall z, w \in \mathbb{B}_n,$$

with the Bergman kernel

$$K_{\text{grad}}(z,u)(w) = \frac{(n+1+\alpha)(1-|\varphi_z(w)|^2)\bar{u}}{(1-\langle\varphi_z(w),u\rangle)^{n+2+\alpha}}, \quad \forall z, u, w \in \mathbb{B}_n.$$

It is easy to check that

$$[T_{\text{grad}}f(z)](w) = (1 - |\varphi_z(w)|^2)\nabla f(\varphi_z(w))$$

for any $f \in \mathcal{H}(\mathbb{B}_n)$.

(iii) The invariant gradient area integral operator

(5.8)
$$[T_{\text{invgrad}}f(z)](w) = \int_{\mathbb{B}_n} K_{\text{invgrad}}(z, u)(w)f(u)dv_{\alpha}(u), \quad \forall z, w \in \mathbb{B}_n,$$

with the Bergman kernel

$$K_{\text{invgrad}}(z, u)(w) = (n + 1 + \alpha) \frac{(1 - |\varphi_z(\omega)|^2)^{n+1+\alpha} \overline{\varphi_{\varphi_z(\omega)}(u)}}{|1 - \langle \varphi_z(\omega), u \rangle|^{2(n+1+\alpha)}}, \quad \forall z, u, w \in \mathbb{B}_n.$$

It is easy to check that

$$[T_{\text{invgrad}}f(z)](w) = \tilde{\nabla}f(\varphi_z(w))$$

for any $f \in \mathcal{H}(\mathbb{B}_n)$.

Similarly, we have

Theorem 5.3. Let $\gamma > 0, 1 < q < \infty$, and $\alpha > -1$. Then $T_{\text{radial}}, T_{\text{grad}}$, and T_{invgrad} are all in $\text{BIO}_{\alpha}(E)$. Consequently, $A_{\gamma}^{(q)}(\mathcal{R}f), A_{\gamma}^{(q)}(\nabla f)$, and $A_{\gamma}^{(q)}(\tilde{\nabla}f)$ are all bounded on \mathcal{A}_{α}^{p} for every 1 .

The proof is the same as that of Theorem 5.2 and the details are omitted.

REFERENCES

- [1] P.Ahern and J.Bruna, Maximal and area integral characterizations of Hardy-Sobolev spaces in the unit ball of \mathbb{C}^n , Revista Mate. Iber. 4 (1988), 123-153.
- [2] P.Ahern and W.Cohn, Besov spaces, Sobolev spaces, and Cauchy integrals, Michigan Math. J. 39 (1972), 239-261.
- [3] A.Aleksandrov, Function theory in the unit ball, in: Several Complex Variables II (G.M. Khenkin and A.G. Vitushkin, editors), Springer-Verlag, Berlin, 1994.
- [4] N.Arcozzi, R.Rochberg, and E.Sawyer, Carleson measures and interpolating sequences for Besov spaces on complex balls, *Memoirs Amer. Math. Soc.* **859** (2006), no. 859, vi+163 pp.
- [5] N.Arcozzi, R.Rochberg, and E.Sawyer, Carleson measures for the Drury-Arveson Hardy space and other Besov-Sobolev spaces on complex balls, Adv. Math. 218 (2008), 1107-1180.

- [6] F.Beatrous and J.Burbea, Holomorphic Sobolev spaces on the ball, *Dissertationes Mathematicae* 276, Warszawa, 1989.
- [7] Z.Chen and W.Ouyang, Maximal and aera integral characterizations of Bergman spaces in the unit ball of \mathbb{C}^n , arXiv: 1005.2936.
- [8] Z.Chen and W.Ouyang, Real-variable characterizations of Bergman spaces in the unit ball of \mathbb{C}^n , arXiv: 1103.6122.
- [9] R.R.Coifman, Y.Meyer and E.M.Stein, Some new function spaces and their applications on harmonic analysis, *J. Funct. Anal.*, **62** (1985), 304-335.
- [10] R.Coifman and R.Rochberg, Representation theorems for holomorphic and harmonic functions in L^p, Asterisque 77 (1980), 11-66.
- [11] R.Coifman and G.Weiss, Extension of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-643.
- [12] P.Duren and A.Schuster, Bergman spaces, Mathematical Surveys and Monographs 100, American Mathematical Society, Providence, RI, 2004.
- [13] J.Garcia-Cuerva and J.L.Rubio de Francia, Weighted norm inequalities and related topics, North Holland, Amsterdam, 1985.
- [14] J.Garnett and R.H.Latter, The atomic decomposition for Hardy space in several complex variables, Duke J.Math. 45 (1978), 815-845.
- [15] F.Nazarov, S.Treil, and A.Volberg, Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces, *Internat.Math.Res.Notices* 9 (1998), 463-487.
- [16] E.Stein, Harmonic analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.
- [17] E.Tchoundja, Carleson measures for the generalized Bergman spaces via a T(1)-type theorem, Ark. Mat. 46 (2008), 377-406.
- [18] A.Volberg and B.D.Wick, Bergman-type singular integral operators and the characterization of Carleson measures for Besov-Sobolev spaces on the complex ball, arXiv: 0910.1142, Amer.J.Math., to appear.
- [19] R.Zhao and K.Zhu, Theory of Bergman spaces in the unit ball of \mathbb{C}_n , Memoires de la Soc.Math.France 115 (2008), pp.103.
- [20] K.Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2005.

WUHAN INSTITUTE OF PHYSICS AND MATHEMATICS, CHINESE ACADEMY OF SCIENCES, 30 WEST DISTRICT, XIAO-HONG-SHAN, WUHAN 430071, CHINA

WUHAN INSTITUTE OF PHYSICS AND MATHEMATICS, CHINESE ACADEMY OF SCIENCES, 30 WEST DISTRICT, XIAO-HONG-SHAN, WUHAN 430071, CHINA AND GRADUATE SCHOOL, CHINESE ACADEMY OF SCIENCES, WUHAN 430071, CHINA