AMENDMENTS TO THE CLAIMS:

1	1.	(ORIGINAL) A method of controlling a flow of serial data across an Radio
2		Frequency (RF) barrier of an RF enclosure, comprising:
3		
4		a processor sending one or more control data using one or more lines
5		of a serial control data bus;
6		
7		an interface electronics module, receiving the one or more lines of the
8		serial control data bus and selecting one or more signals
9		corresponding to one or more addresses of the one or more lines; and
10		
11		the interface electronics module, sending the selected one or more
12		signals across the RF barrier to an electronics module within the RF
13		enclosure, wherein the RF enclosure is operable to facilitate testing of
14		devices placed inside the RF enclosure.
15		
1	2.	(ORIGINAL) The method of claim 1, wherein selecting the one or more
2		signals further comprises selecting each signal with a same line value.
3		
1	3.	(ORIGINAL) The method of claim 1, wherein the processor is a
2		microprocessor.
3		
1	4.	(PREVIOUSLY PRESENTED) The method of claim 1, wherein integrated
2		circuit technology is used to select the one or more signals.

3		
1	5.	(ORIGINAL) The method of claim 1, wherein the serial control data bus is
2		an SPI bus.
3		
1	6.	(ORIGINAL) The method of claim 1, wherein the one or more signals are
2		selected by the processor.
3		
1	7.	(ORIGINAL) The method of claim 1, wherein the interface electronics
2		module further comprises an RF filtered connector.
3		
1	8.	(ORIGINAL) The method of claim 7, wherein one or more Schmitt trigger
2		input buffers are used to eliminate potential noise problems caused by the
3		RF filtered connectors.
4		
1	9.	(PRESENTLY AMENDED) A structure for controlling a flow of serial data
2		across an Radio Frequency (RF) barrier of an RF enclosure, comprising:
3		
4		a processor, operable to send and receive data, coupled to one or
5		more lines of a serial control data bus;
6		
7		an interface electronics module, operable to select one or more signals
8		corresponding to one or more addresses of the one or more lines of
9		the serial control data bus, said RF interface module coupled to an RF
10		enclosure and wherein the RF enclosure is operable to facilitate testing
11		of devices placed inside the RF enclosure; and

12		
13		an electronics module physically located within the RF cavity, operable
14		to receive the one or more lines selected by the interface electronics
15		module, said electronics module coupled to the interface electronics
16		module.
17		
1	10.	(ORIGINAL) The structure of claim 9, wherein the interface electronics
2		module selects each signal with a same line number.
3		
1	11.	(ORIGINAL) The structure of claim 9, wherein the processor is a
2		microprocessor.
3		
1	12.	(PREVIOUSLY PRESENTED) The structure of claim 9, wherein integrated
2		circuit technology is used to select the one or more signals.
3		
1	13.	(ORIGINAL) The structure of claim 9, wherein the serial control data bus is
2		an SPI bus.
3		
1	14.	(ORIGINAL) The structure of claim 9, wherein the one or more signals are
2		selected by the processor.
3		
1	15.	(ORIGINAL) The structure of claim 9, wherein an RF filtered connector is

4

3

2

RF enclosure providing an interface to the RF cavity.

coupled to the interface electronics module and to the RF enclosure, said

- 16. (ORIGINAL) The structure of claim 15, wherein one or more Schmitt trigger input buffers are used to eliminate potential noise problems caused by the RF filtered connectors.
- 17. (ORIGINAL) The method of claim 1, wherein sending the selected one or more signals to the electronics module within the RF enclosure is performed in accordance with a gating functionality of the interface electronics module.
- 18. (ORIGINAL) The method of claim 17, wherein the gating functionality is a temporal gating functionality.