SAYISAL YÖNTEMLER

SAYISAL YÖNTEMLER

2. Hafta

MATLAB İLE GRAFİK ÇİZİMLERİ

İÇİNDEKİLER

- 1. plot Komutu İle Grafik Çizimi
- 2. fplot Komutu İle Grafik Çizimi
- 3. Grafikler Üzerinde Düzenlemeler
- 4. subplot Komutu ile Figür Penceresini Bölme
- 5. Özel Grafikler

plot komutu ile grafik çizme

- □ plot komutunun genel kullanımı
- □ xlabel komutu ile x ekseninin adlandırılması
- □ ylabel komutu ile y ekseninin adlandırılması
- ☐ title komutu ile grafiğe isim verilmesi
- ☐ renk, şekil, kalınlık gibi grafiklerin özelliklerinin değiştirilmesi
- □ hold on komutu ile tek bir pencerede birden fazla grafik cizdirilmesi
- ☐ grid komutu ile yatay ve dikey bölümlendirme
- ☐ axis komutu ile eksen ölçeklendirme

plot Komutu ile Grafik Çizimi genel kullanımı

- ☐ İki boyutlu grafik çiziminde kullanılır.
- plot (x, y)
 y eksenine ait vektörel ifade
 x eksenine ait vektörel ifade
- \Box Örnek: $u(t) = 2Sin(\omega t)$ sinyalini 0.01 <u>adımlarla</u>, 0 ile 10 sn zaman dilimi için

çiziniz? Not: $\omega = 1$

plot Komutu ile Grafik Çizimi grafiklere ve eksenlere isim verilmesi

- ☐ Çizdirilen grafiklerin daha anlamlı olması için, grafiklere başlık ve x ile y eksenine de isim verilmesi gerekir.
 - title (' Grafiğin başlığı ')
 - xlabel ('x ekseninin etiketi')
 - ylabel ('y ekseninin etiketi')
- Önceki örnek çizdirilen grafik üzerinde isim verilmesi:

```
Komut penceresi
% Grafik üzerinde eksen açıklamalarının yapılması
>> xlabel ('Zaman (s) ')

>> ylabel (' u(t) ')

% Grafiğe başlık verilmesi
>> title ('u(t) = 2 sin (\omega t)
sinyalinin 10 saniyelik değişimi ')
```


plot Komutu ile Grafik Çizimi grafik çizgi-işaret stillerinin değiştirilmesi

- plot komutu ile grafikler siyah düz çizgi tarzındadır.
- Farklı türde çizgi ve işarete sahip grafik çizdirmek için plot komutu aşağıdaki gibi kullanılmalıdır.

Çizgi çeşitleri

Düz çizgi	-	İki noktalı	•
Kesikli çizgi		Kesikli-noktalı	

İşaret çeşitleri

Nokta	•	Üçgen (aşağı)	V
Artı	+	Üçgen (yukarı)	٨
Yıldız	*	Üçgen (sola)	<
Daire	0	Üçgen (sağa)	>
x-işareti	X	Beş köşeli	p
Kare	S	Altı köşeli	h
Baklava şekli	d		

plot Komutu ile Grafik Çizimi grafik çizgi-işaret stillerinin değiştirilmesi

Örnek: plot komutu ile kesik çizgili ve daire işaretlerine sahip grafik çizimi.

plot Komutu ile Grafik Çizimi grafik çizgi renklerinin değiştirilmesi

Renk tanımlamalarında genel olarak, renklere ait ingilizce kelimelerin baş karakterleri kullanılmaktadır. Örneğin kırmızı için red 'r'

Renk çeşitleri

Kırmızı	r	Beyaz	W
Yeşil	g	Siyah	k
Mavi	b	Çıyan	c
Sarı	y	Maganda	m
Görünmez	i		

plot Komutu ile Grafik Çizimi grafik çizgi-işaret ve renk stillerinin değiştirilmesi

Örnek: plot komutu ile iki noktalı çizgili ve kare işaretlerine sahip kırmızı renkli grafik çizimi.

```
Komut penceresi
% 0.1 artışlar ile 0 – 10 sn zaman diliminin tanımlanması
>> t = 0: 0.1 : 10;

% Grafiğin y eksenini oluşturacak u(t) sinyalinin tanımlanması
>> u = 2*sin(t);

% iki noktalı, kare işaretli ve kırmızı renkte grafik
>> plot(t,u, ': s r ')
```


plot Komutu ile Grafik Çizimi tek bir figürde birden fazla grafik çizimi

☐ Tek bir figure içerisinde farklı özelliklere sahip birden fazla grafik çizdirilmesi istenirse,

plot Komutu ile Grafik Çizimi tek bir figürde birden fazla grafik çizimi

- Örnek: Aşağıda belirtilen işlemleri bir m.file içerisinde yapınız.
 - $ightharpoonup u1(t) = 10\sin(\omega t)$ ve $u2(t) = 7\cos(\omega t)$ iki ayrı sinyali tanımlayınız. $\omega = 2$ rad/sn
 - Sinyallerin <u>iki (2) periyotluk</u> değişimlerini tek bir grafik üzerinde karşılaştırınız.

```
PROGRAM
       % Grafik çiziminde kullanılacak u1(t) ve u2(t) sinyallerinin 2*T'ye göre tanımlanması
       w = 2:
                                                                           T = 2*pi/w;
                                                                               u,(t) ve u,(t) sinyallerinin 2T zaman dilimindeki değişimi
     - t = linspace(0,2*T);
                                                                                          u_1(t) = 10 \sin(\omega t)
                                                                                                           u_2(t) = 7 \sin(\omega t)
     - u1 = 10*sin(w*t);
     - u2 = 7*cos(w*t);
                                                                            u_1(t) \text{ ve } u_2(t)
       % Grafik çiziminin tek plot komutu ile gerçekleştirilmesi
      plot(t,u1,'-b',t,u2, '-.r', 'linewidth',3)
10
       % Grafik üzerinde eksen açıklamalarının yapılması
11
     - xlabel ('Zaman (s)', 'fontsize', 14)
12
      ylabel('u 1(t) ve u 2(t)','fontsize',14)
13
                                                                                                Zaman (s)
     - title('u 1(t) ve u 2(t) sinyallerinin 2T zaman dilimindeki ...
14
               değişimi', 'fontsize', 14)
15
```

plot Komutu ile Grafik Çizimi

hold on komutu ile tek bir figürde birden fazla grafik çizimi

- ☐ Önceki örnekte elde edilen çizimi sıra ile elde ederek tek bir grafikte gösterelim.
- İlk önce u1(t) sinyali çizdirilir.
- hold on komutu çizdirilmiş grafiğin figür penceresinde tutulmasını sağlar.
- hold on komutu kullanıldıktan sonra çizdirilen grafik aynı figüre eklenir.
- hold on komutunu iptal etmek için hold off kullanılır.

plot Komutu ile Grafik Çizimi grid komutu ile grafiği yatay ve dikey bölümlendirme

- Grafiklerin daha rahat okunabilmesi için yatay ve dikey çizgiler ile bölüm oluşturur.
- grid on çizgileri ekler.
- grid off çizgileri kaldırır.

```
PROGRAM

1  % Grafik çiziminde kullanılacak u1(t) ve u2(t) sinyallerinin 2*T'ye göre çizimi
2  - w = 2;
3  - T = 2*pi/w;
4  - t = linspace(0,2*T);
5  - u1 = 10*sin(w*t);
6  - u2 = 7*cos(w*t);
7  - plot(t,u1,'-b',t,u2, '-.r', 'linewidth',3)

8  % grid on komutu ile ızgaralamanın oluşturulması
10  - grid on
```


plot Komutu ile Grafik Çizimi axis komutu ile eksen ölçeklendirme

Grafiğe ait eksen ölçeklendirmesini istenilen değerlere göre <u>yeniden</u> <u>düzenler</u>.

axis ([xmin xmak ymin ymak])

y ekseninin maksimum sınır değeri
y ekseninin minimum sınır değeri
x ekseninin maksimum sınır değeri
x ekseninin minimum sınır değeri

plot Komutu ile Grafik Çizimi axis komutu ile eksen ölçeklendirme

□ Örnek: u(t) = 2Sin(ωt) sinyalini 0.01 <u>adımlarla</u>, 0 ile 10 sn zaman dilimi için çiziniz? Not: ω = 1

Ardından grafiğin x eksenini 0 - 12, y eksenini ise -3 ile +3 olarak yeniden

ölçeklendiriniz.

```
Komut penceresi

% 0.01 artışlar ile 0 – 10 sn zaman diliminin tanımlanması
>> t = 0: 0.01 : 10;

% Grafiğin y eksenini oluşturacak u(t) sinyalinin tanımlanması
>> u = 2*sin(t);

% Grafiğin çizdirilmesi
>> plot(t,u)

% Grafiğin eksenlerinin yeniden ölçeklendirilmesi
>> axis([ 0 12 -3 3 ])
```


grafikler üzerinde düzenlemeler

- ☐ legend komutu ile açıklama yazma
- ☐ ginput komutu ile değer okuma
- □ semilogx, semilogy ve loglog komutları ile logaritmik grafik

Grafikler Üzerinde Düzenlemeler legend komut ile açıklama ekleme

- Tanımlanan konuma göre figür penceresi üzerinde bir kutu açarak <u>çizim sırasına göre</u> ilgili grafiklerde kullanılan <u>çizim şekli</u> ve rengi <u>göstererek açıklama yazılmasını</u> sağlar.
- legend ('açıklama 1', 'açıklama 2', konum)
 figüre penceresindeki konum
 2. grafiğe ait açıklama
 1. grafiğe ait açıklama
- ☐ Konumu belirten sayısal değerler

Konum tanımlaması	Açıklama kutusunun konumu
0	Grafik penceresine otomatik olarak yerleştirilir
1	Grafik penceresinin sağ üst köşesine yerleştirilir
2	Grafik penceresinin sol üst köşesine yerleştirilir
3	Grafik penceresinin sol alt köşesine yerleştirilir
4	Grafik penceresinin sağ alt köşesine yerleştirilir
-1	Grafik penceresinin dışında sağ üst köşeye yerleştirilir

Grafikler Üzerinde Düzenlemeler legend komut ile açıklama ekleme - Örnek -

```
PROGRAM
      % Grafik çiziminde kullanılacak u1(t) ve u2(t) sinyallerinin 2*T'ye göre çizimi
      w = 2;
    - T = 2*pi/w;
    - t = linspace(0, 2*T);
   - u1 = 10*sin(w*t);
   - u2 = 7*\cos(w*t);
                                                                                                       _ | X
    - plot(t,u1,'-b',t,u2, '-.r', 'linewidth',3)
                                                               Edit View Insert Tools Desktop Window Help
                                                            - hold on
                                                                    u₁(t) ve u₂(t) sinyallerinin değişimi
    - plot([0 7],[0 0],'-.k')
10
11
      % legend komutu ile açıklama kutusunun oluşturulması
      legend('u 1(t)','u 2(t)',-1)
12
13
                                                                             Zaman (s)
```

Grafikler Üzerinde Düzenlemeler semilogx, semilogy ve loglog komutları ile istenilen ekseni logaritmik çizdirmek

- **□** subplot komutunun genel kullanımı
- ☐ Bir örnek uygulama

Figür penceresini istenilen sayıda pencerelere bölerek çizimin yapılacağı pencerenin adreslenmesini sağlar.

- subplot komutunun kullanımı sonucunda <u>figür penceresi</u> m*n adet parçaya bölünmüş olur.
- ☐ Çizimin yapılacağı pencereye ait adres birinci satır birinci sütundaki pencereden başlanılarak satır satır numaralanmak suretiyle ortaya çıkan matris yapıdan elde edilir.

- Örnek: $u_1(t) = 3 \sin(\omega t)$ ve $u_2(t) = 0.5 \cos(10\omega t)$ sinyalleri ile bu iki sinyalin toplamını aynı figür penceresi içerisinde çizdiriniz?
- \square ω = 2 rad/s ve sinyallerin değişimi ω 'ye bağlı 2 periyotluk dilim için olacak

```
PROGRAM
      % Grafik çiziminde kullanılacak t zamanının açısal frekansa göre tanımlanması
      w = 2;
      T = 2*pi/w;
      t = linspace(0, 2*T);
      % Sinyallerin oluşturulması
6
      u1 = 3*\sin(w*t);
      u2 = 0.5*\cos(10*w*t);
      ut = u1 + u2:
10
      % Figür penceresinin bölünerek sinyallerin çizimi ve eksen açıklamalarının yapılması
11
      figure(1); clf
12
      subplot(311); plot(t,u1,'-b','linewidth',3)
13
      ylabel('\bf u 1(t)','fontsize',14)
      subplot(312); plot(t,u2,'-b','linewidth',3)
      ylabel('\bf u 2(t)','fontsize',14)
      subplot(313); plot(t,ut,'-b','linewidth',3)
17
      xlabel('\bf Frekans (rad/s)','fontsize',14)
18
      ylabel('\bf u t(t)','fontsize',14)
20
```


özel grafikler

- □ plot3 komutu ile 3 boyutlu çizgi grafik çizme
- **□** bar komutu ile çubuk grafik çizme
- **□** barh komutu ile yatay çubuk grafik çizme
- □ bar3 komutu ile 3 boyutlu çubuk grafik çizme
- **□** stem komutu ile grafik çizme
- □ stem3 komutu ile 3 boyutlu grafik çizme
- □ pie komutu ile pasta grafik çizme
- □ pie3 komutu ile 3 boyutlu pasta grafik çizme
- **□** polar komutu ile kutupsal koordinatlı grafik çizme

Özel Grafikler plot3 komutu ile 3 boyutlu grafik çizdirme

3 boyutlu grafik çizimini sağlar.

Örnek: Aşağıda x ve y eksenlerindeki konumları tanımlayan denklem takımlarının zamana bağlı değişimini çizdiriniz?

$$x(t) = \sin(2t) \left(1 - e^{-0.1t}\right)$$
$$y(t) = \cos(2t) \left(1 - e^{-0.1t}\right)$$

$$y(t) = \cos(2t) \left(1 - e^{-0.1t}\right)$$

Özel Grafikler plot3 komutu ile 3 boyutlu grafik çizdirme

```
% Komut penceresi

% Zaman aralığı
>> t=linspace(0,5*2*pi,1000);

% Fonksiyonlara ait hesaplamalar
>> x=sin(2*t).*(1-exp(-t/10));
>> y=cos(2*t).*(1-exp(-t/10));

% Üç boyutlu çizim işlemi
>> plot3(x,y,t)
>> xlabel('x(t)');ylabel('y(t)');zlabel('t (sn)')
>> grid on
```


Özel Grafikler bar komutu ile çubuk grafik çizdirme

bar (x, y)

y eksenine ait değerler

x eksenine ait değerler

```
PROGRAM

// Zaman aralığı

yil = [2005 : 2010];

% Yıllara göre satış miktarları

- satis= [ 7 11 20 25 21 17 ];

% Kırmızı dolgu rengine sahip çubuk grafîk çiz

- bar(yil, satis, 'r')

- xlabel('Yıl')

ylabel ('Satış Miktarı (bin) ')
```


Özel Grafikler barh komutu ile yatay çubuk grafik çizdirme

barh (x, y)
y eksenine ait değerler
x eksenine ait değerler

Özel Grafikler bar3 komutu ile 3 boyutlu çubuk grafik çizdirme

bar3 (**Y**)

x,y,z koordinat değerlerine sahip matris.

Y'deki her eleman ayrı bir çubuktur.

```
Komut penceresi
% 3 boyutlu grafiği çizdirilecek matrisin tanımlanması
>> Y = [1 6.5 7; 2 6 7; 3 5.5 7; 4 5 7;
          3 4 7; 2 3 7; 1 2 7 ];
% 3 boyutlu çubuk grafik
>> bar3(Y)
```


Özel Grafikler stem komutu ile grafik çizdirme

stem (x, y)
y eksenine ait değerler
x eksenine ait değerler

Özel Grafikler stem3 komutu ile 3 boyutlu grafik çizdirme

Özel Grafikler pie komutu ile pasta grafik çizdirme

 \Box pie (x)

pasta grafikteki her bir dilime ait yüzdeyi içeren matris

```
Komut penceresi

% pasta grafikteki dilimlerin değerlerini tanımla
>> deger = [ 10 18 25 8 3 ];

% pasta grafiği çizdir
>> pie (deger)

% grafiğin başlığı
>> title( 'pasta grafik')
```

