OPERAÇÕES UNITÁRIAS III

PROF° KASSIA G SANTOS
DEPARTMENTO DE ENGENHARIA QUÍMICA
UFTM

AULA 19

FILTRO PRENSA

FILTRO PRENSA

O modelo mais comum consiste em placas e quadros que se alternam numa armação e que são comprimidos fortemente, uns contra os outros, por meio de uma placa prensa-parafuso ou de uma prensa hidráulica.

O meio filtrante é suspenso sobre as placas cobrindo as duas faces.

Placas, quadros e meios filtrantes

CICLO DE FILTRAÇÃO

Compreende 3 etapas:

FILTRAÇÃO (TEMPO t)

LAVAGEM DA TORTA (TEMPO tl)

DESMANTELAMENTO, LIMPEZA E MONTAGEN (TEMPO td)

Assim a produção de filtrado (P) é:

$$P = \frac{V}{(t + t_d + t_l)} \qquad \text{t/V}$$

$$\frac{t}{V} = \frac{\mu}{A\Delta P} \left[\frac{\langle \alpha \rangle \rho VC}{2A} + R_m \right]$$

Para filtro prensa, Rm pode ser desprezível.

Onde A é a área total de filtração.

Cada quadro tem duas superfícies filtrantes. Seja a a área transversal de cada lado e n o número de quadros, então: $A = 2 \cdot n \cdot a$

LAVAGEM DA TORTA

SIMPLES OU COMPLETA

Quando o sólido é um produto de interesse. A lavagem é feita para retirada das "águas mães".

a) Lavagem Simples

Quadros (n) e Placas (np) de 1 Botão. O líquido de lavagem faz o mesmo percurso da suspensão. Np=n+1

$$\mathbf{Q}_{l} = \frac{V_{l}}{t_{l}} = \frac{dV}{dt}_{\infty}$$

$$\frac{dV}{dt} = \frac{A\Delta P}{\mu \left[\frac{\langle \alpha \rangle \rho VC}{A} + R_m\right]}$$

b) Lavagem Completa

DIMENSIONAMENTO

ETAPAS

Calcular as propriedades da torta e do meio filtrante

Obter a massa e Vt do quadro cheio (lab)

Resumir dados do filtro do laboratório Aplicar relação de Scale-up (A2)

Selecionar o filtro industrial (catálogo)

Ensaio com 1 quadro em laboratório

$$m = V \rho C$$

$$A_1$$
, V_1 ; t_1 ; V_{t1} ; e_1

$$\left(\frac{V}{V_{t1}}\right)_{1-lab} = \left(\frac{V}{V_{t2}}\right)_{2-\text{ind}}$$

 $V = 15700 \text{ cm}^3$

De: $P = \frac{V}{(t+t_0)}$; para cálculo de $V_2 \rightarrow V_2 = P \cdot (t_2 + t_d)$

□ Eq. (3)

Explicitando A_{2 - industrial} de (*): $A_2 = \frac{V_2}{V_1} \cdot \frac{e_1}{e_2} \cdot A_1$ (**)

CATÁLOGO

Dados provenientes do Catálogo 59 da T. Shriver & Company (Harrison, N.J., Estados Unidos):

Espessura dos quadros: 1", 11/4", 11/2", 13/4", 2" e 3"

Dimensões recomendadas para placas e quadros

Área total de filtração (ft²)	Dimensão nominal dos elementos (in)
5-35	12
30-100	18
75–250	24
150-450	30
250-700	36
500-1100	43 1/4
>1000	48 e 56

Área filtrante efetiva por quadro

Dimensão nominal	Área filtrante efetiva por quadro (ft²)		
dos elementos (in)	Metal	Madeira	
12	1,7	0,9	
18	3,9	2,3	
24	7,0	4,8	
30	10,5	7,3	
36	15,6	10,5	
431/4	22,2	15,1	
48	28,8	19,7	
56	-	28,4	

AULA 20

EXERCÍCIOS DE DIMENSIONAMENTO DE FILTRO PRENSA

EX13- Foram os seguintes os resultados obtidos na filtração de uma suspensão aquosa de carbonato de cálcio (50 g de sólidos / Litro de água) em um filtro prensa piloto operando com um único quadro (6 x 6 x 1 ¼ in) a 40 psi e 20°C.

Determinar $<\alpha>$ e Rm e a relação volume de filtrado por volume de torta (V/Vt) para o quadro de cheio. Sabe-se: ρ s = 2,7 g/cm³; Área total de filtração: A = 464,5 cm².

Dados:

t (s)	V (cm³)
18,0	700
40,7	1700
108,2	3700
160,0	4700
320,5	7700
460,5	9700
549,5	10700
637,7	11700
832,7	13700
942,5	14700
1084,0	15700
1215,0	16700
1425,0	17700
1702,0	18700
2344,0	19700

1º) Fazer regressão linear na parte reta:

$$\frac{t}{V} = \frac{\mu}{A\Delta P} \left[\frac{\langle \alpha \rangle \rho VC}{2A} + R_m \right]$$

$$3.2 \cdot 10^{-6} = \frac{\langle \alpha \rangle \mu \rho C}{2A^2 \Delta P}$$

$$\Rightarrow \langle \alpha \rangle = 7.62 \cdot 10^9 \frac{g}{cm}$$

$$1.77 \cdot 10^{-2} = \frac{\mu R_m}{A \Delta P}$$

$$\Rightarrow R_m = 2.21 \cdot 10^9 cm^{-1}$$

$$t = 1084s; V = 15700cm^3$$

EX13- Foram os seguintes os resultados obtidos na filtração de uma suspensão aquosa de carbonato de cálcio (50 g de sólidos / Litro de água) em um filtro prensa piloto operando com um único quadro (6 x 6 x 1 1/4 in) a 40 psi e 20°C.

Determinar $<\alpha>$ e Rm e a relação volume de filtrado por volume de torta (V/Vt) para o quadro de cheio. Sabe-se: $\rho s = 2.7 \text{ g/cm}^3$; Área total de filtração: A = 464,5 cm².

Dados:

t (s)	V (cm³)	
18,0	700	
40,7	1700	
108,2	3700	
160,0	4700	
320,5	7700	
460,5	9700	
549,5	10700	
637,7	11700	
832,7	13700	
942,5	14700	
1084,0	15700	
1215,0	16700	
1425,0	17700	
1702,0	18700	
2344,0	19700	

3º) Calculando C e a massa de torta seca (m):

$$C = \frac{50 \text{ g de s\'olidos}}{\text{L de \'agua}} = \frac{50 \text{ g de s\'olidos}}{\text{Kg de \'agua}} = \frac{50 \text{ g de s\'olidos}}{1000 \text{ g de \'agua}} = 0,05$$

Mas: $m = V \rho C = 15700 \text{ cm}^3 \times 1 \text{ g/cm}^3 \times 0.05 = 785 \text{ g}$

4º) Calculando Vt. Foi dado experimentalmente que:

$$\frac{Mu}{m} = \frac{m + \left(V_t - \frac{m}{\rho_S}\right)\rho}{m} = 1,60$$

5°) Calculando V/Vt :
$$Scale - up = \frac{V}{V_t} = \frac{15,7 \text{ L}}{0,762 \text{ L}} = 20,6$$

EX14- Especificar um filtro prensa industrial para se obter uma produção de filtrado de 10.000 L/h a partir de suspensão do problema anterior, observando-se as mesmas condições operacionais a 40 psi e 20 °C. A torta não requer lavagem e o tempo de desmantelamento, limpeza e montagem (td) é 20 min. Para (V/Vt=20,6).

Dados:

Filtro laboratório

$$A_1 = 464,5 \text{ cm}^2$$
;
 $V_1 = 15,4 \text{ L}$;
 $t_1 = 1032 \text{ s} = 18 \text{ min}$;
 $V_{t1} = 0,762 \text{ L}$;
 $e_1 = 1 \frac{1}{4} = 1,25 \text{ in}$

1º) Calcular t, V e A para diferentes espessuras de quadro industrial

□ Eq. (1)
$$t = B\left(\frac{V}{A}\right)^{2}; \text{ sendo:} B = \frac{\mu \langle \alpha \rangle \rho C}{2 \Delta P} \Rightarrow \frac{t_{2}}{t_{1}} = \left(\frac{\left(\frac{V}{A}\right)_{2}}{\left(\frac{V}{A}\right)_{1}}\right)^{2} = \left(\frac{e_{2}}{e_{1}}\right)^{2}$$
□ Eq. (2)
$$De: P = \frac{V}{(t+t_{D})}; \text{ para cálculo de } V_{2} \rightarrow V_{2} = P \cdot (t_{2}+t_{d})$$
□ Eq. (3)
$$Explicitando A_{2-industrial} \text{ de } (*): A_{2} = \frac{V_{2}}{V_{1}} \cdot \frac{e_{1}}{e_{2}} \cdot A_{1} \quad (**)$$

$$A_{2} = 219 \text{ ft}^{2}$$

QUAL ESCOLHER???

e ₂ (in)	Eq. (1) t ₂ (min)	Eq. (2) V ₂ (L)	Eq. (3) A ₂ (ft ²)
1 ¼ in	18	6333.3	202
1 ½ in	25.92	7653.3	203
1 ¾ in	35.28	9213.3	210
2 in	46.08	11013.3	219
3 in	103.7	20613.3	274

Regra Prática: t₂ >2 * t_d

EX14- Especificar um filtro prensa industrial para se obter uma produção de filtrado de 10.000 L/h a partir de suspensão do problema anterior, observando-se as mesmas condições operacionais a 40 psi e 20 °C. A torta não requer lavagem e o tempo de desmantelamento, limpeza e montagem (td) é 20 min. Para (V/Vt=20,6).

Dados:

Filtro laboratório

$$A_1 = 464,5 \text{ cm}^2$$
;

$$V_1 = 15,7 L$$
;

$$t_1 = 1032 \text{ s} = 18 \text{ min}$$
;

$$V_{t1} = 0.762 L$$
;

$$e_1 = 1 \frac{1}{4} = 1,25 \text{ in}$$

Qual escolher?
O que for mais
barato

2º) Calcular número de quadros e placas (placa de lavagem simples):

 $A_2 = 219 \text{ ft}^2$

Area total de filtração	Dimensão nominal
(ft^2)	dos elementos (in)
5-35	12
30-100	18
75-250	24
150-450	30
250-700	36
500-1100	43 1/4
>1000	48 e 56

Escolhendo quadros de ferro

Dimensão nominal	Área filtrante efetiva por quadro (ft²)	
dos elementos (in)	Metal	Madeira
12	1,7	0,9
18	3,9	2,3
24	7,0	4,8
30	10,5	7,3
36	15,6	10,5
431/4	22,2	15,1
48	28,8	19,7

☐ Quadros de 24 in

Área filtrante/quadro= $7.0 \text{ ft}^2 = 2 \text{ a}$

 $n= 219 \text{ ft}^2 / 7 \text{ ft}^2 = 32 \text{ quadros} \text{ de } 24 \text{ in}$

 n_p (nº placas de 1 botão) = n + 1 = 33 placas

☐ Quadros de 30 in

Área filtrante/quadro= $10.5 \text{ ft}^2 = 2 \text{ a}$

 $n= 219 \text{ ft}^2 / 10,5 \text{ ft}^2 = 21 \text{ quadros de } 30 \text{ in}$

 $n_p = n + 1 = 22 placas$