Théorème des deux carrés

Leçons: 120, 121, 122, 126

Théorème 1

Soit $n = \prod_{p \in \mathscr{P}} p^{v_p(n)} \in \mathbb{N}^*$. Alors p s'écrit comme somme de deux carrés dans \mathbb{Z} si et seulement si $v_p(n)$ est pair pour $p \equiv 3[4]$.

Démonstration. Considérons l'anneau des entiers de Gauss

$$\mathbb{Z}[i] = \left\{ a + ib, (a, b) \in \mathbb{Z}^2 \right\}$$

muni de $N: z = a + ib \mapsto a^2 + b^2$. Soit $\Sigma = \{a^2 + b^2, (a, b) \in \mathbb{Z}^2\} = N(\mathbb{Z}[i])$.

• $(\mathbb{Z}[i], N)$ est un anneau euclidien. En effet, si $z, z' \in \mathbb{Z}[i]$, alors $\frac{z}{z'} = x + iy \in \mathbb{Q}[i]$ donc en prenant $a, b \in \mathbb{Z}$ tels que $|a - x| \le \frac{1}{2}$ et $|b - y| \le \frac{1}{2}$, on a en posant q = a + ib,

$$\left|\frac{z}{z'} - q\right| \leqslant \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

donc z = qz' + r, où N(z) < N(z').

• Si $z = a + ib \in \mathbb{Z}[i]^{\times}$, alors il existe $z' \in \mathbb{Z}[i]$ tel que zz' = 1 donc N(zz') = 1 = N(z)N(z') de sorte que $N(z) = 1 = a^2 + b^2$. Ainsi, $z = \pm 1$ ou $\pm i$ et

$$\mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}.$$

- Soit p premier dans \mathbb{Z} . Montrons que $p \in \Sigma \iff p$ n'est pas irréductible dans $\mathbb{Z}[i]$. En effet, d'une part, si $p = a^2 + b^2 = (a ib)(a + ib)$, p n'est pas irréductible : on ne peut avoir a = 0 ou b = 0 puisque p est premier dans \mathbb{Z} , donc selon la description de $\mathbb{Z}[i]^\times$, ni a + ib, ni a ib ne sont des unités de $\mathbb{Z}[i]$. Réciproquement, si p n'est pas irréductible, on écrit p = zz' avec $z, z' \notin \{\pm 1, \pm i\}$ donc $p^2 = N(p) = N(z)N(z')$ avec $N(z), N(z') \neq p$. Par conséquent, N(z) = N(z') = p et $p \in \Sigma$.
- Comme $\mathbb{Z}[i]$ est principal, p est irréductible dans $\mathbb{Z}[i]$ si et seulement si $\mathbb{Z}[i]/(p)$ est intègre. Or, $\mathbb{Z}[i] \simeq \mathbb{Z}[X]/(X^2+1)$ et le morphisme canonique

$$\mathbb{Z}[X] \xrightarrow{\text{reduction mod } p} (\mathbb{Z}/p\mathbb{Z})[X] \to (\mathbb{Z}/p\mathbb{Z})[X]/(X^2+1)$$

se factorise en $\mathbb{Z}[X]/(X^2+1) \to \mathbb{F}_p[X]/(X^2+1)$ dont on vérifie immédiatement qu'il est de noyau (p). Donc

$$\mathbb{Z}[i]/(p) \simeq \mathbb{F}_p[X]/(X^2+1).$$

Ainsi, p est irréductible dans $\mathbb{Z}[i] \iff X^2 + 1$ est irréductible dans $\mathbb{F}_p[X]$, c'est-à-dire s'il n'a aucune racine dans $\mathbb{F}_p[X]$, soit encore si -1 n'est pas un carré modulo p. Or, dans \mathbb{F}_p ,

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = 1 \Longleftrightarrow \frac{p-1}{2} \equiv -1[2] \Longleftrightarrow p \equiv 3[4].$$

Finalement, $p \in \Sigma \iff p = 2$ ou $p \equiv 1[4]$.

• Pour terminer, traitons le cas général. Soit $n = \prod_{p \in \mathscr{P}} p^{\nu_p(n)}$. Remarquons que $\Sigma = N(\mathbb{Z}[i])$ est stable par multiplication car $\mathbb{Z}[i]$ est un anneau. Alors si pour tout $p \equiv 3[4]$, $\nu_p(n)$ est pair, on a

$$n = \left(\prod_{p \equiv 3} p^{\frac{\nu_p(n)}{2}}\right)^2 \times \left(\prod_{p \equiv 1 \text{ ou } p = 2} p^{\nu_p(n)}\right)$$

si bien que $n \in \Sigma$ en tant que produit d'éléments de Σ .

Montrons la réciproque par récurrence sur n. Soit $n=a^2+b^2\in \Sigma$, et $p\equiv 3[4]$ tel que $v_p(n)>0$. Alors $p|a^2+b^2=(a+ib)(a-ib)$ donc comme p est irréductible dans $\mathbb{Z}[i]$, p|a+ib ou p|a-ib dans $\mathbb{Z}[i]$. Dans les deux cas, comme p est entier, on a p|a et p|b, si bien que $p^2|n$. Appliquant l'hypothèse de récurrence à $\frac{n}{p^2}=\left(\frac{a}{p}\right)^2+\left(\frac{b}{p}\right)^2\in \Sigma$, on obtient que $v_p\left(\frac{n}{p^2}\right)=v_p(n)-2$ est pair, ce qui conclut.

Corollaire 2

Les irréductibles de $\mathbb{Z}[i]$ sont, à association près, les premiers $p \in \mathbb{Z}$ tels que $p \equiv 3[4]$ et les entiers de Gauss z = a + ib tels que N(z) est un premier de \mathbb{Z} .

Démonstration. • On a déjà vu que les premiers $p \in \mathbb{Z}$ tels que $p \equiv 3[4]$ sont irréductibles. Soit z = a + ib tels que p = N(z) est premier dans \mathbb{Z} . Si z = z'z'', alors N(z) = N(z')N(z'') donc N(z') = 1 ou N(z'') = 1 c'est-à-dire z' ou $z'' \in \mathbb{Z}[i]^{\times}$.

• Réciproquement, soit $z = a + ib \in \mathbb{Z}[i]$ irréductible. Alors $N(z) = z\overline{z}$. Soit p premier dans \mathbb{Z} tel que $p \mid N(z)$. Alors si $p \equiv 3[4]$, p divise z ou \overline{z} dans $\mathbb{Z}[i]$ donc comme z est irréductible, z = p à $\pm 1, \pm i$ près. Sinon, $p \in \Sigma$, $p = a^2 + b^2$ donc selon le premier point, t = a + ib est irréductible. Selon le lemme de Gauss, t divise t ou t donc est égal à t à association près.

Référence: Daniel PERRIN (1996). Cours d'algèbre. Ellipses, pp. 56-58.

2