

UNIVERSIDAD PRIVADA DE TACNA

FACULTAD DE INGENIERÍA

Escuela Profesional de Ingeniería de Sistemas

Informe de Factibilidad

"Sistema Web de gestión de incidentes en infraestructuras basado en Crowdsourcing para el distrito Gregorio Albarracín Lanchipa"

Curso: Construcción de Software

Docente: Ing. Flor Rodríguez, Alberto Jonathan

Integrantes:

Castañeda Centurión, Jorge Enrique (2021069822) Hurtado Ortiz, Leandro (2015052384)

> Tacna – Perú 2024

Sistema de gestión de incidentes en infraestructuras basado en Crowdsourcing

Informe de Factibilidad

Versión 2.0

Versión	Hecha por	Revisada por	Aprobada por	Fecha	Motivo
1.0	JECC	JECC	JECC	13/03/2025	Versión Original
2.0	LHO	LHO	LHO	19/03/2025	Versión 2.0

ÍNDICE GENERAL

1. Descripción del Proyecto
1.1 Nombre del proyecto
1.2 Duración del proyecto
1.3 Descripción
1.4 Objetivos
1.4.1 Objetivo general
1.4.2 Objetivos Específicos
2. Riesgos
3. Análisis de la Situación actual
3.1 Planteamiento del problema
3.2 Consideraciones de hardware y software
4. Estudio de Factibilidad
4.1 Factibilidad Técnica
4.2 Factibilidad Económica
4.3 Factibilidad Operativa
4.4 Factibilidad Legal
4.5 Factibilidad Social
4.6 Factibilidad Ambiental
5. Análisis Financiero
6 Conclusiones

1. <u>Descripción del Proyecto</u>

1.1 Nombre del proyecto

Sistema de gestión de incidentes en infraestructuras basado en Crowdsourcing

1.2 Duración del proyecto

Inicio: 13 de Marzo

Fin: 01 de Julio

El proyecto tendrá una duración aproximada de 17 semanas.

1.3 Descripción

El proyecto "Sistema de Gestión de Incidencias Basado en Crowdsourcing" surge como respuesta a la necesidad de optimizar el monitoreo y mantenimiento de las incidencias que afectan a la comunidad. En numerosas ciudades se evidencian problemas como baches dispersos, aceras deterioradas y señalización dañada, entre otros, y la detección oportuna de estas anomalías se ve obstaculizada por la escasa o nula información precisa. Con este proyecto, se habilita a los ciudadanos para reportar de forma directa y sencilla cualquier irregularidad en su entorno, facilitando no solo la identificación temprana de problemas, sino también permitiendo a las autoridades planificar intervenciones de manera más efectiva y priorizar acciones según la gravedad de cada caso. Además, la centralización de esta información fomenta una mayor transparencia y colaboración entre la comunidad y las autoridades, impulsando mejoras significativas en la gestión y resolución de incidencias.

1.4 Objetivos

1.4.1 Objetivo general

Desarrollar un sistema de gestión de incidencias basado en crowdsourcing que permita a los ciudadanos reportar y geolocalizar incidencias ocurridas en lugares públicos, facilitando a las autoridades la identificación de áreas críticas y la priorización de acciones de mantenimiento. Además, se busca que la herramienta integre información en tiempo real para apoyar la toma de decisiones, promoviendo una gestión de infraestructuras más eficiente, transparente y sostenible que responda de manera efectiva a las necesidades de la comunidad.

1.4.2 Objetivos Específicos

Interfaz Ciudadana para Reporte de Incidencias:

- Objetivo: Crear una interfaz sencilla que permita a los ciudadanos reportar incidencias mediante formularios digitales, incorporando la opción de adjuntar imágenes, descripciones y datos de ubicación.
- Meta: Lograr una gran cantidad de usuarios que utilicen el sistema de forma autónoma y efectiva.

Integración de APIs de Mapas en Tiempo Real:

- Objetivo: Implementar APIs de mapas para visualizar la ubicación de los reportes de incidencias en tiempo real, facilitando la identificación de zonas críticas.
- Meta: Alcanzar una gran precisión en la geolocalización, permitiendo respuestas rápidas en áreas con mayor incidencia.

Desarrollo de un Dashboard para la Gestión de Reportes:

• **Objetivo:** Diseñar un panel interactivo que permita a las autoridades revisar, validar y gestionar los reportes, así como generar informes estadísticos útiles para la toma de decisiones.

 Meta: Reducir los tiempos de respuesta a las incidencias a menos de 24 horas y producir reportes que respalden estrategias de intervención efectivas.

Alineación con ODS9 y la Meta 9.B para el Desarrollo Tecnológico:

- **Objetivo:** Vincular el proyecto con el Objetivo de Desarrollo Sostenible 9 y la meta 9.B, impulsando la innovación y el uso de tecnologías avanzadas para una gestión eficiente de incidencias.
- Meta: Cumplir con gran parte de los indicadores propuestos en la meta 9.B, evidenciando un impacto positivo en la modernización y sostenibilidad del manejo de incidencias.

Cumplimiento de Normativas de Protección de Datos:

- Objetivo: Asegurar el cumplimiento de normativas de protección de datos personales mediante la implementación de medidas de seguridad, como cifrado y auditorías de acceso.
- **Meta:** Garantizar que el sistema cumpla con normativas como puede ser la ley 29733.

2. Riesgos

- Problemas de compatibilidad o limitaciones en el acceso a datos en tiempo real pueden afectar la precisión de la geolocalización.
- Fallos en la interfaz de usuario podrían generar experiencias frustrantes, reduciendo la adopción del sistema por parte de la comunidad.
- El almacenamiento de datos sensibles, como ubicaciones y fotografías, podría ser objetivo de ataques si no se implementan medidas de seguridad adecuadas.

3. Análisis de la Situación actual

3.1 Planteamiento del problema

En diversos lugares públicos se observa una situación preocupante en la infraestructura urbana. Se han identificado numerosos baches, aceras notablemente deterioradas y señalización vial en mal estado, lo que pone en riesgo tanto a peatones como a conductores. Según datos brindados por Seguridad Ciudadana, esta problemática tiene raíces en decisiones administrativas pasadas: en aquel entonces, la responsabilidad de gestionar y mantener parques y otros espacios públicos fue transferida a presidentes de asociaciones comunales. Lamentablemente, una mala administración económica derivó en el abandono progresivo de estos espacios, lo que ha repercutido en un mantenimiento deficiente y en el deterioro de la infraestructura.

Esta situación se agrava aún más por la falta de información precisa y oportuna que permita detectar de manera temprana las anomalías existentes. Sin datos confiables, es difícil planificar y ejecutar intervenciones efectivas para mejorar la seguridad y el estado de los espacios públicos. En consecuencia, el abandono y la falta de control en el mantenimiento no solo afectan la estética y funcionalidad de la ciudad, sino que también tienen un impacto negativo en la calidad de vida y seguridad de la comunidad.

3.2 Consideraciones de software

Software (Aplicaciones y Herramientas de Desarrollo):

• Frameworks y Bibliotecas: Laravel y/o Symfony.

• Herramientas de Desarrollo: PHP, y Visual Studio Code como editor.

• Frontend: HTML, CSS, Javascript

• Backend: PHP

• **APIS:** Apis Google Maps

• Entorno de desarrollo: XAMPP

4. Estudio de Factibilidad

4.1 Factibilidad Técnica

El proyecto es técnicamente viable gracias al uso de tecnologías probadas y accesibles en el mercado. La integración de diversas herramientas y APIs permite construir una plataforma robusta y escalable. La elección de frameworks modernos y metodologías ágiles contribuirá a minimizar riesgos relacionados al monitoreo y garantizar una solución funcional y actualizada.

4.2 Factibilidad Económica

4.2.1 Costos de infraestructura y servicios en la nube

Este apartado considera los gastos para el alojamiento del sistema en un servidor VPS en la nube de Elastika, así como posibles costos adicionales por almacenamiento.

N°	Descripción	Precio Unitario (S/.)	Meses	Costo (S/.)	
1	VPS en Elastika (Plan Aproximado)	80	4	320	
2	Almacenamiento adicional (opcional)	30	4	120	
3	Dominio y Certificado SSL	120	1	120	
Tot	Total				

4.2.2 Costos de software

Este apartado incluye los costos asociados a los programas y servicios digitales necesarios para el desarrollo y despliegue del sistema, como APIs, dominio web y certificación de seguridad. Algunas herramientas y tecnologías no generan costos directos porque son de código abierto o gratuitas para uso estándar.

N°	Descripción	Precio Unitario (S/.)	Tiempo	Costo (S/.)
1	Google Maps API	60	4 meses	240
2	Certificado SSL	150	Anual	150
3	Dominio Web (.com o .pe)	120	Anual	120
4	PostgreSQL	0	-	0
5	РНР	0	-	0
6	Laravel / Symfony	0	-	0
7	HTML, CSS, JS	0	_	0
Total				510

4.2.3 Costos de recursos humanos

Este apartado contempla la inversión en horas de trabajo necesarias para desarrollar, probar y mantener el sistema web.

N°	Descripción	Precio Unitario (S/.)	Horas	Costo (S/.)
1	Desarrollo Backend	30	60	1,800
2	Desarrollo Frontend	30	50	1,500
3	Pruebas y Depuración	25	30	750
Tota	4,050			

4.2.4 Costos generales de administración

Estos costos incluyen los gastos operativos básicos necesarios para el desarrollo y mantenimiento del sistema, como conexión a internet, electricidad y otros gastos administrativos.

N°	Descripción	Precio Unitario (S/.)	Meses	Costo (S/.)
1	Servicios de Internet	100	4	400
2	Energía Eléctrica	80	4	320
3	Gastos Administrativos	50	4	200
Tota	Total			

4.2.5 Tabla general de costos

Este resumen muestra el costo total del proyecto considerando todos los aspectos analizados.

Categoría	Costo (S/.)
Costos de Infraestructura y Nube	560
Costos de Software	510
Costos de Recursos Humanos	4,050
Costos Generales de Administración	920
Costo Total del Proyecto	6,040

Costo total: S/. 6,040

4.3 Factibilidad Operativa

El sistema está diseñado para ser intuitivo y fácil de utilizar tanto para los ciudadanos como para las autoridades. La interfaz de usuario para reportar incidencias y el

10

dashboard administrativo facilitarán el monitoreo y la gestión de los reportes, permitiendo una rápida respuesta a las problemáticas detectadas.

4.4 Factibilidad Legal

Es fundamental que el proyecto cumpla con las normativas vigentes sobre protección de datos y privacidad, como la ley 29733. El manejo responsable de la información de los usuarios, la implementación de medidas de seguridad y la definición clara de las responsabilidades sobre los datos son aspectos críticos que deben abordarse desde el inicio.

4.5 Factibilidad Social

El proyecto tiene un alto potencial de impacto social, ya que fomenta la participación ciudadana y mejora la comunicación entre la comunidad y las autoridades. Al ofrecer una plataforma accesible para reportar incidencias, se promueve la transparencia y la colaboración en la mejora del entorno urbano.

4.6 Factibilidad Ambiental

La mejora en la detección y reparación de problemas en infraestructuras públicas contribuye a un uso más racional y eficiente de los recursos, evitando el deterioro progresivo de los espacios urbanos. Una mejor planificación y mantenimiento de estos lugares puede reducir el consumo innecesario de recursos en reparaciones de emergencia y promover prácticas sostenibles a largo plazo.

5. Conclusiones

La implementación de este sistema supone un avance en la gestión de infraestructuras públicas, gracias a la comunicación fluida y directa entre la ciudadanía y las autoridades responsables. Con la optimización de los procesos de reporte y mantenimiento, se reduce de forma significativa los tiempos de respuesta ante las

incidencias, lo que se refiere a una eficiencia mayor. El uso de las tecnologías modernas fortalece la resiliencia de las ciudades, y también promueve la transparencia y la rendición de cuentas en la Seguridad Ciudadana. Se espera que esta solución pueda crear un entorno más sostenible, con una infraestructura más robusta que se pueda adaptar a los retos del crecimiento y cambios del ambiente.