2018 年全国大学生数学建模竞赛暨美赛培训 灰色系统分析

厦门大学2016 级各学院

数学建模团队: 谭忠教授; 助教: 陈小伟, 姜小蒙, 姚瑶, 余娇妍

要 求: (1) 必 须 用TEX输 入 编 辑 后 将TEXPDF以 及 图 表 一 并 发 邮 件 提 交 给ztan85@163.com及sxjm004@163.com, 压 缩 包 及 邮 件 主 题 名 为 "编 号+姓 名+专业+第*次作业";

- (2) 必须抄题,以免判错。
- 1. 某市工业、农业、运输业、商业个部门的数据如下:

$$\perp \underline{\mathbb{L}} : x_1 = (x_1(1), x_1(2), x_1(3), x_1(4)) = (45.8, 43.3, 42.3, 41.9)$$

农业:
$$x_2 = (x_2(1), x_2(2), x_2(3), x_2(4)) = (39.1, 41.6, 43.9, 44.9)$$

运输业:
$$x_3 = (x_3(1), x_3(2), x_3(3), x_3(4)) = (3.4, 3.3, 3.5, 3.5)$$

商业:
$$x_4 = (x_4(1), x_4(2), x_4(3), x_4(4)) = (6.7, 6.8, 5.4, 4.7)$$

分别以 x_1, x_2 为系统特征量,计算灰色关联度.

2. $\[\psi \] y_1(170, 174, 197, 216.4, 235.8), \]$

 $y_2 = (57.55, 70.74, 76.8, 80.7, 89.85)$

 $y_3 = (68.56, 70, 85.38, 99.83, 103.4)$ 为系统特征行为序列.

 $x_1 = (308.58, 310, 295, 346, 367),$

 $x_2 = (195.4, 189.9, 189.2, 205, 222.7)$

 $x_3 = (24.6, 21, 12.2, 15.1, 14.57), \quad x_4 = (20, 25.6, 23.3, 29.2, 30)$

 $x_5 = (18.98, 19, 22.3, 23.5, 27.66)$

为相关因素行为序列,试作优势分析.

3. 下表是台湾鳗鲡苗种1972—1996年25年台湾鳗鲡苗种捕获量的资料,对台湾鳗鱼种苗丰欠状况进行灾变预测(设定鳗苗年产量小于6t的年份为欠年).

1972-1996年鳗鲡苗种捕获量表(单位: t)

					- T 1111		1114 47 6.						
编号	1	2	3	4	5	6	7	8	9	10	11	12	13
年份	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984
产量	11	5.4	11.2	2.3	11.3	5	9	22	3	6	7	5	22
编号	14	15	16	17	18	19	20	21	22	23	24	25	
年份	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	
产量	7	2	13	3	8	40	12	12	10	6	15	12	

4. 设原始序列为

$$x^{(0)} = (x^{(0)}(1), x^{(0)}(2), \dots, x^{(0)}(5)) = (2.874, 3.278, 3.337, 3.39, 3.679)$$

试建立GM(2,1)模型.

- 5. 给定原始数列 $x_1^{(0)} = (7.04, 7.645, 8.075, 8.53, 8.744)$, $x_2^{(0)} = (121, 169, 185, 217, 354)$ 试建立GM(2, 1)模型.
- 6. 表列出了某公司1999-2003年逐年的销售额.试用建立预测模型,预测2004年的销售额,要求作精度检验.

年份	1999	2000	2001	2002	2003
序号	1	2	3	4	5
$x^{(0)}$	2.874	3.278	3.337	3.390	3.679

要研究内容之一,渔情预报内容为渔期、渔获量大小等,它将直接 下表. 为渔业生产提供服务. 利用灰色预测来预报渔获量的大小, 也得到一 定的应用. 陈新军在《西北太平洋柔鱼渔获量的灰色预测模型》一文 中,对北太平洋150°E 160°E海域的鱿钓作业渔场进行渔情预报分 析. 文章采用灰色系统理论中灰色关联度和GM(1,N)分析方法来确 定影响柔鱼渔获量的主要因素和建立灰色预测模型, 以便对生产规 模、渔船数和资金的投入等进行宏观调控,达到合理地利用和保护 渔业资源的目的。文章采用的数据为1996年-2001年北太平洋鱿钓渔 场150bE - 160b E海域我国渔船的总产量 X_1 、作业次数 X_2 、作业船 数 X_3 、CPUE (吨/作业次数/船 X_4) 和平均单船产量 X_5 (见表).

在北大平洋150° E-160° E海域的生产数据

	上づしへい	. 1 11 100	L 100	114.21	J / _ >>, //	H
年份	1996	1997	1998	1999	2000	2001
X_1	38453.9	35541.81	57236.4	46120.8	61158.05	43989.54
X_2	20674	15867	24460	23531	40502	34100
X_3	369	337	304	399	446	415
X_4	1.86	2.24	2.34	1.96	1.51	1.29
X_5	104.2111	105.4653	188.2776	115.591	137.1257	105.9989

(1) 灰色关联度

- (2) GM(1,4) 灰色预测模型建立及其2002年渔获量预测
- 8. 通过对某健将级女子铅球运动员的跟踪调查,获得其1982

7. (渔情预报方面的应用)渔情预报是渔业资源与渔场学中的重 1986年每年最好成绩及16项专项素质和身体素质的时间序列资料,见

获得其1982 1986年每年最好成绩及16项专项素质和身体素质的时间

序列资料

	/ 1	<u> </u>			
指标	1982	1983	1984	1985	1986
铅球专项成绩 X_0	13.60	14.01	14.54	15.64	15.69
4公斤前抛X ₁	11.50	13.00	15.15	15.30	15.02
4 公斤后抛 X_2	13.76	16.36	16.90	16.56	17.30
4 公斤原地 X_3	12.21	12.70	13.96	14.04	13.46
立定跳远 X_4	2.48	2.49	2.56	2.64	2.59
高翻 X_5	85	85	90	100	105
抓举 X_6	55	65	75	80	80
卧推 X_7	65	70	75	85	90
3 公斤前抛 X_8	12.80	15.30	16.24	16.40	17.05
3 公斤后抛 X_9	15.30	18.40	18.75	17.95	19.30
3 公斤原地 X_{10}	12.71	14.50	14.66	15.88	15.70
3公斤滑步X ₁₁	14.78	15.54	16.03	16.87	17.82
立定三级跳远 X_{12}	7.64	7.56	7.76	7.54	7.70
全蹲X ₁₃	120	125	130	140	140
挺举X14	80	85	90	90	95
30 米起跑 X_{15}	4" 20	4" 25	4" 10	4" 06	3" 99
100米起跑X ₁₆	13" 10	13" 42	12" 85	12" 72	12" 56

对铅球运动员专项成绩进行因素分析.

9. 陈新军、周应祺在2001年的《湛江海洋大学学报》发表了《中

国海洋渔业人力资源的结构分析及其预测》,文章根据1990-1998年 间中国海洋渔业群众劳动力的人数及其组成,海洋渔业劳动力由专 业劳动力和兼业劳动力组成,专业劳动力可分为捕捞专业、养殖专 动力在2000-2005年的发展趋势进行了预测. 业和后勤专业人员组成等数据,利用灰色关联和灰色预测方法,分 析1990-1998年间我国海洋渔业劳动力的组成及其变化情况,同时 系统理论进行研究.在 500° C 的高温下,已测得此铸件在载荷分别 对2000-2005年我国海洋渔业劳动力的发展趋势做一灰色预测. 其原 始数据如下表.

19	90-1998年我国	国海洋渔业郡	洋众劳动力约	充计表 👢	单位:人
F- 11\	Ver 11. +++-1. 1. ***	LD-14-76-11. **		C#1+11.	-¥

年份	渔业劳动力X0	捕捞作业X1	养殖专业X ₂	后勤专业X3	兼职劳动X4
1990	2080537	960800	257119	173758	688860
1991	2167621	971668	276880	216354	702719
1992	2240263	1023730	296592	204911	715030
1993	2329479	104609	355943	211100	716341
1994	2386469	1052384	365933	239101	729051
1995	2514682	1099454	398715	244888	771625
1996	2526353	1167362	319486	232816	806689
1997	2681563	1193838	459177	269779	758769
1998	2711360	1185079	488706	268956	768619

- (1) 灰色关联分析.
- (2) 分别对海洋渔业、海洋捕捞、海洋养殖、海洋后勤和兼业劳
- 10. 下面是对Cr-mo-0.25V低合金钢铸件高温蠕变情况利用灰色 为37, 36, 35, 34, 33 (kg/mm^2) 情况下的蠕变断裂时间见下表. 对 低合金钢铸件蠕变性能的灰色预测

载荷应力(kg/mm²)	37	36	35	34	33
断裂时间 $(\times 100x^{(0)}(k)$ 小时)	2.38	2.80	4.25	6.85	11.30