BD 123 **797**

95

BA 00.8 358

AUTHOR TITLE

Carroll, Stephen J.

School District Expenditure Behavior. The Rand Paper

Series.

INSTITUTION SPONS AGENCY Rand Corp., Santa Monica, Calif.

Office of Education (DEEW), Washington, D.C.

'Rand-P-5580 REPORT NO PUB DATE

Jan 76,

CONTRACT

OEC-0-71-2533 (099)

note

29p.

EDRS PRICE DESCRIPTORS

MF-\$0.83 HC-\$2.06 Plus Postage. *Budgeting; Elementary Secondary Education; Expenditure Per Student; *Instructional Staff;

*Hathematical Hodels; Hultiple Regression Analysis;

Paraprofessional School Personnel: *Resource Allocations; School Districts; *School Systems; Statistical Mnalysis: Student Teacher Ratio; **Țable**s

(Data); Teachers

ABSTRACT

This study investigates how local school districts behave in allocating their budgets among teachers, other professional educators, support personnel, and nonpersonnel inputs. Demands for school inputs are estimated using U.S. Office of Education data on the expenditure and staffing patterns of large (enrollments in excess of 10,000 students) school districts in the 1969-70 school year. In general, results suggest that districts' allocative behavior at the margin is quite different from their average allocative behavior. In particular, relatively small proportions of budget increases (occasioned, perhaps, by reforms in school finance) would be allocated to employing additional teachers. (Author)

Documents acquired by ERIC include many informal unpublished

* materials not available from other sources. ERIC makes every effort

to obtain the best copy available. Wevertheless, items of marginal reproducibility are often encountered and this affects the quality.

of the microfiche and hardcopy reproductions ERIC makes available

via the ERIC Document Reproduction Service (EDRS) . ** EDRS is not

* responsible for the quality of the original document. Reproductions supplied by EDRS are the best that can be made from the original.

US OPPARTMENT OF HEALTH
EDUCATION & WELFARE
NATIONAL INSTITUTE OF
EDUCATION
THIS DOCUMENT HAS BEEN REPRO
DUCED EXACTLY AS RECE VED FROM
THE PERSON OR ORGANIZATION ORIGIN
AT NG "POINTS OF VIEW OR OP NONE
STATED DID NOT NECESSAR LY REPRE
SENTOFF C'AL NAT ONAL INST "J"E OF
EDUCA" ON POS T ON OR POLICY

SCHOOL DISTRICT EXPENDITURE BEHAVIOR

Stephen J. Carroll

January 1976.

P-5580

The Rand Paper Series

Papers are issued by The Rand Corporation as a service to its professional staff. Their purpose is to facilitate the exchange of ideas among those who share the author's research interests; Papers are not reports prepared in fulfillment of Rand's contracts or grants. Views expressed in a Paper are the author's own, and are not necessarily shared by Rand or its research sponsors.

The Rand Corporation , Santa Monica, California 90406

ABSTRACT

The study investigates how local school districts behave in allocating their budgets among teachers, other professional educators, support personnel and non-personnel inputs. Demands for school inputs are estimated using U.S. Office of Education data on the expenditure and staffing patterns of large enrollments in excess of 10,000 pupils; ection districts in the 1969-1970 school year. In general, bur results suggest that districts allocative behavior at the margin is quite different from their average allocative behavior. In particular, religively small proportions of budget increases (occasioned, perhaps, by reforms in school Finance) would be allocated to employing additional teachers.

The research reported here was supported by the U.S. Office of Education under Contract OEC-0-71-2533(099). I am indebted to J. McCall,

K. Ryder, Jr. and J. Stockfisch for their valuable suggestions and to

B. Juba for his computational assistance.

INTRODUCTION

As a result of legal and political developments during the past five years, major reforms in school finance may soon be undertaken in many of the fifty states. Several states, notably California, Minnesota, and Florida, have already modified their systems substantially. The consequences in those states, and in others that are likely to follow suit, will probably include major reallocations of funds among school districts and may also result in substantial increases in aggregate, or average, support. The question of how such districts will respond to change is, therefore, of far more than academic interest. At present, however, very little information bearing on that question is available.

The purpose of this study is to investigate how local school districts behave in allocating their budgets among the main categories of school inputs: teachers, other professional educators, nonprofessional (support) personnel, and nonpersonnel resources. We develop a model of school district expenditure behavior, designed to take advantage of the available data. We describe the data and then discuss our empirical results (presented in tabular form in the Appendix). Finally, our conclusions and some of the limitations of the analysis are outlined.

A MODEL OF SCHOOL DISTRICT EXPENDITURE BEHAVIOR

The model represents the behavior of a school district that seeks to obtain the "best" combination of resources or inputs subject to an exogenously determined budget and exogenously determined salary levels and other input prices. 1 We focus on the districts' expenditure behavior

in the short run (the allocation of its budget for current operations) and neglect its decisions with respect to "fixed" school factors (e.g., capital items such as buildings). We also treat all funds as equivalent regardless of source and make no attempt to reflect linkages between funding sources and specific resource allocation decisions.²

Our model of school district expenditure behavior is hased on the premise that school districts behave as if they had consistent prefered among alternative combinations of school inputs, and that these preferences can be described by utility functions of the form U' U(x,, where x, is the amount of the ith school input purchased or hired. The use of input quantities as arguments in the preference function is not in accordance with the usual procedure in factor-demand studies; which is to derive factor demands from demands for final outputs and technological relationships in production (production functions). But dealing directly with trade-offs among input categories in the case of schooling is quatified by two considerations: (a) there is no reason to assume the same kind output maximizing behavior for school districts as underlies the derive demand notion applied to business firms [8]; and (b) as a practical matter, there is insufficient knowledge of production functions in education (and even insufficient evidence of their existence) to support empirical work based on an output-oriented specification of the

model.

We leave open the question of whether hypothesized preferences among input categories derive from subjective perceptions of production functions by district decisionmakers, from traditional notions of what sets of inputs make up a "good" education, or from bureaucratic motives, such as staff enlargement or prestige. None of these is inconsistent with the basic formulation in terms of trade-offs among different input categories. We also leave open the question of the relative influence of district administratures, teachers and their professional organizations, school board members, community groups and, perhaps, other interested parties on the district's preferences: An agreement with the teachers' union which establishes maximum class size, for example, can be viewed as a district "preference" for a minimum number of teachers per pupil.

The explicit preference function we use is a modified version of the additive-logarithmic utility function used to derive the linear expenditure system of consumer economics. We choose this particular function because of its empirical convenience; the estimating equations derived from the function are linear. The form of the function is:

$$U = \left(\frac{T_E}{E} - c_1\right)^{\alpha_1} = \left(\frac{T_S}{S} - c_2\right)^{\alpha_2} = \left(\frac{T_O}{A} - c_3\right)^{\alpha_3} = \left(\frac{N}{A} - c_4\right)^{\alpha_4} = \frac{9}{1 - 5} = \frac{\alpha_1}{1 - c_1}$$

where the α_i and the C_i are parameters, and

 T_{r} = number of elementary teachers,

T_S = number of secondary teachers,

To = number of all other professional staff serving instruction,

N = number of nonprofessional staff serving instruction,

E = number of elementary pupils,

S = number of secondary pupils,

A = E + S

x₅= expenditures per puril for administration,

x6= nonpersonnel instructional expenditures per pupil,

x₇ = expenditures per pupil for attendance and health services,

 x_8 = expenditures per pupil for pupil transportation, and

Thus, we are assuming that the district concerns itself with nine inputs—
the respective teacher/pupil ratios in its elementary and secondary schools,
the ratios of all other professionals and of nonprofessionals to total pupils,
and the levels of expenditures per pupil in each of five categories.

The parameter C₁ can be interpreted as a "minimum required" level of the ith input per pupil. These minimum requirements reflect precommitments on the part of the district (e.g., the employment of tenured teachers, obtaining sufficient teachers to satisfy an agreement with the teachers' union regarding maximum class sizes), bureaucratic motives or concepts of prestige (e.g., the district's teacher/pupil ratio will be no smaller than the teacher/pupil ratios of "comparable" districts), or notions as to which inputs are required to provide a "quality" education (e.g., the National Educational Association's specification of the minimum acceptable teacher/pupil ratio). Regardless of their rationale, the assumption that they must be satisfied implies that decisionmakers seek to maximize the increment to still ty provided by the consumption of resources beyond the minimum requirements.

The α_i can be interpreted as measures of the relative values the district places on the various inputs: Since the district is required to obtain at least C_i units of the ith input, a portion of its budget is precommitted. It is free to utilize the remainder of its budget to obtain amounts of the various inputs in excess of the minimum requirements. The parameter α_i indicates the share of the district's discretionary budget—that portion of its budget not committed to meeting the minimum requirements—that will be allocated to the acquisition of units of the ith input beyond the minimum required level.

Maximizing Eq. 1, subject to the budget constraint 8

where

b = budget for current operations per pupil,

PT average salary of professional staff, and

PN average salary of nonprofessional staff,

and solving for the endogenous variables, we obtain the system used for empirical estimation. Thus,

$$x_{1} = \beta_{10} + \beta_{11}b + \beta_{12} = \frac{P_{T}E}{A} + \beta_{13}P_{T} + \beta_{14}P_{N}, \quad i = 1, ..., 9, \quad (3)$$

where x_1 (x_2) is expenditures per pupil for elementary (secondary) teachers, x_1 (x_4) is expenditures per pupil for other professionals (nonprofessionals) and the β_{ij} ($i=1,\ldots,9$, $j=0,\ldots,4$) are functions of the α_i and α_i

DATA

The Elementary and Secondary General Information Survey (ELSEGIS) files contain data collected by the U.S. Office of Education in annual, two-part surveys of stratified random samples of public school districts, Part A of each survey obtains information on the district's schools, pupils and staff for the current school year. Part B of each survey obtains information on the district's revenues and expenditures during the previous school year. In order to develop a consistent data base on staff and expenditures, we merged the expenditures data from the 1970 ' ELSEGIS file, the most recent available, and the pupil and staffing data from the 1969 ELSEGIS file, for the 671 districts whose enrollments exceeded 10,000 pupils in 1969. We eliminated 58 districts that served elementary or only secondary students on the grounds that the expenditure behavior of such districts was apt to differ from the behavior of districts that served pupils at all levels. We also eliminated the New York City school district since its size and budget were so different from the norm, even for large districts, as to make it a special case.

Ideally, the model should include measures of the characteristics of the population served by the district to allow for the possibility that school districts serving different "kinds" of students will have different preferences for inputs. However, the ELSEGIS files do not contain data on the characteristics of the community in which a district is located or of the students it serves. They do, however, identify the region (North Atlantic, Great Lakes and Plains, Southeast, West and Southwest) and metropolitan status

of the district. The latter variable indicates whether the district is located in the central city of a county in a Standard Metropolitan .

Statistical Area (SMSA), elsewhere in a SMSA, or outside a SMSA.

RESULTS

On the assumption that the districts in a region having the same metropolitan status serve relatively homogeneous communities, we divided the large districts into 12 groups by metropolitan status and region and separately estimated the model for the districts in each group. 12 The results of these 108 regressions are presented in the Appendix.

Table 1 summarizes our principal conclusions regarding school district expenditure behavior. The entries in the table are the estimated values of the parameter α , for each district type associated with each school input. This parameter indicates the portion of a district's discretionary budget that would be allocated to the ith school input. Given the assumption that districts budgets are sufficient to meet the minimum requirements for each input, these parameters are estimates of how school districts would allocate incremental funds among school inputs.

ESTIMATED ALLOCATION OF DISCRETIONARY BUDGET AMONG INPUTS
(percent)

					,	>		,	
		:	ر		1:6	·	Atten-	Pupil	Plant
	Elemen-	5	0ther	Non-	Admitn-	Other.	dance and	Trans-	Operation
District Type.	tary	Secondary	Profes-	Profes-	istra-	Instruc	Health	porta-	and
	Teachers	Teachers	sionals	sionals	tion	tional	Servicès.	tion	Maintenance
							5		
North Atlantic	1	-			-	,	- /	•	-
Central City	22.3	15.2	21.6	5.7	. 8.4	18.0	1.9	1.6	9.1
Metropolitan, Other	. 28.6.	₹ 18.0	. 20.2	2.5	8.8	4.6	2.6	1.8	10.4
Nonmetropolitan	2.9	7.1	30.6	7.8	6. FT	20.7	4.5	14.5	10.1
Great Lakes and Plains				(- *		` ;	/	-8- •
Central City	5.3	11.8	31.9	14.2	4.4	8.4	1.3	1.9	18.9
Metro litan, Other	17.0	25.9	12.8	#319	4.9	8.6	6.0	7.2	17.7
Nonmet opolitan	19.3	12.7	7.61	8.3	8.4	6.7	2.1	11.1	15.3
Southeas	<i>.</i>	•	٩		•	÷	· ·	.'	J.
Coneral City	15.6	19.5	23.8	6.1	4.5	7.4	9.1	1.9	19.4
.Metro 'litan, Other	23.5	25.2	9.1	4.8	4.7	. 0.6.	2.6	5:2	16.0 >
Nonmet ropolitan	20.1	15.5	27.2	2.6	4.6	6.1	6.03	12.8	10.2
West and Southwest	•	,			• (is the second se			
Centre-1-city	15.5	17.7	24.6	11.2	.4.2	10.6	4.0 %	7.2.9	
Metro Mitan, Other	17.0	15.3	23.8	7.3	5.4	10.7	9.0	6.3	U.Y.
Nonmetropolitan	9.7	16.2.	18.7	2.8	4.7	12.7	• 3.6	14.0	17.7
	3			all the	,			; /	,

12

It is interesting to compare these estimates of district allocative behavior at the margin with their respective average behaviors. Table 2 displays for each type of district the distribution of budget for current operations per pupil among the inputs, calculated at the mean. There is far less variability among the different types of districts in terms of the portion of total budgets allocated to each input as compared to the portion of discretionary budgets. The reason for this difference is that the share of a district's total budget allocated to an input reflects both its expenditures to provide the minimum required level of that input and its discretionary expenditures for that input. If the minimum required. level of expenditures for an input is large relative to discretionary expenditures for that input, and if the minimum requirements are roughly the same for different types of districts, then the proportion of total expenditures allocated to each input would be approximately the same for different types of districts even though the proportions of discretionary expenditures allocated to each input were much different.

Comparing the entries in Table 1 with those in Table 2, we see that although districts tend to spend roughly 33 percent of their total budget for elementary teachers, they would allocate a much smaller share—roughly 15 to 20 percent—of a budget increase to elementary teachers. Similarly, the share of an increase in a district is budget that would be allocated to

ERIC
Full Text Provided by ERIC

Table 2
VERAGE ALLOCATION OF TOTAL BUDGET AMONG INPUTS
(percent)

*	•		•				Atten- :	Pup11	Plant
District Type	Elemen-	Secondary.	Other	Non-	-Admin-	Other	dance and	Trans-	- Operacion
•	Teachers	Teachers	sionals	sionals	tion	tional	Services	tion	Maintenance
Walnut hall-hade	,	,		•		•	;		
Central Carv	. 42.6	26.9	, y	27,	, ,	` '		, 6	
Metropolitan, Other	30.8	28.6	1	, 4. 	9.0	6.1	2.0	2.0	12.0
None: Fopolitan.	32,1	26.2	. 9.6	4.3	3.0	5.6	1.7	6.0	1. 9.11
Great Ankes and Plains	•	,	•	6	:				0-
2 Sentral City	32.1	26.2	12.3	6.0	2.8	4.2	1.2	1.9	13.2
Mekropolitam, Other	31.8	. 30.1	9.6	3.2	f, 4, 3	4.3	8.0		12.8
Nong tropolitan	33.8	30.2	4.6	2.9	2.8	3.8	& . •	3.1	13.3
South			· .		. 6.			•	
Central Sity	36.8	28.4	9.5	3.1	. 2.9	5.2	7.0	1.8	11.6
Metropofitan, Other	36:4	28.4	9.5	4, 2,8	2.7	5.1	0.0	4.1	10.4
Nonmartropolitan	36.2	26.6	40.9	/3.0	5.3	5.0	0.7	6.9	8.6
West and Southwest	•	,			•	,		•	•
Central City /	33,3	29.0	11.1	< 8.4	3:2	4.1	1.2 *	1.4	11.9
Metropolitan, gther	33.8	.28.3	1.01.	4.8	3.3	4.3	1.0	4.3	12.2
Nonmet ropolition /	32.3	.28.0	11.2	4.1	3.2	4.9	6.0	3.2	, 12.2

secondary teachers—again, roughly 15 to 20 percent—would be much smaller than their share of the total budget—approximately 28 percent. On the other hand, other professionals account for about 10 percent of districts' total budgets; but something like 20 to 30 percent of an increase in a district's budget would go to increased expenditures for other professionals.

Summing the shares of total budgets allocated to elementary and secondary teachers and other professionals, we see that districts tend to spend 70 to 75 percent of their budgets for educational professionals. If we sum the estimated portions of discretionary budgets allocated to educational professionals as a group, we obtain combined estimates of about 50 to 60 percent.

at the margin is substantially smaller than the average share of the budget allocated to professionals. Amenditures for nomprofessionals and nonpersonnel inputs must occur at a marginal rate substantially larger than the average rate of expenditures for inputs in these categories. Comparing Tables 1 and 2, we see that each of the six remaining inputs generally receives a share of the discretionary budget greater than that of the total budget. The difference is smallest for attendance and health services and greatest for other, instructional inputs:

We also estimated the derived demand equations corresponding to the first three equations of the system Eq. 3; for example,

$$\frac{T_{E}}{E} = \beta_{12} + \beta_{10} \frac{A}{P_{T}E} + \beta_{11} \frac{bA}{P_{T}E} + \beta_{13} \frac{A}{E} + \beta_{14} \frac{P_{N}A}{P_{T}E},$$

and similarly for the teacher/pupil ratio in secondary schools and the ratio of "other" teachers to total students. The values of R² and the F-statistic

obtained for each estimation were lower than those obtained from the estimation of the corresponding expenditure equation. However the parameter estimates were not greatly affected. In particular, the estimates of β_{i1} , β_{i3} , and β_{i4} were virtually identical in the two sets of estimates for i=1, 2, 3, for all 12 region by metropolitan-status samples. The estimates of β_{i0} and β_{i2} were somewhat less stable across the two approaches, but the differences were never large.

LIMITATIONS OF THE ANALYSIS:

The policy issues addressed in this study hinge on district responses, in terms of their expenditures for various school inputs, to changes in their budgets. An appropriate approach would clearly include a longitudinal analysis in which changes in district budgets were related to changes in their expenditure patterns. Unfortunately, the only national data base on school district expenditures and staffing patterns, the ELSEGIS files, does not lend itself to this approach. Changes in a district's expenditure patterns could be related to changes in its budget only if the district were included in the sample for three consecutive years. The ELSEGIS design, a random sample of districts stratified by enrollment size, yields too few-such cases to support empirical analysis.

The definition of district type used in this analysis leaves much to be desired. We use region and metropolitan status to distingtish among districts because these are the only variables in the ELSEGIS files related to the community each district serves. The results of the empirical work demonstrate that different types of districts exhibit markedly different

expenditure behavior at the margin despite the similarity in overall expenditure patterns. We presume that more meaningful (that is, more directly related to a community's educational needs and priorities) descriptors of district type would enhance the quality of the estimates considerably.

particularly accurate estimate of the price of a teacher to the district.

A teacher's salary depends upon his or her degree level and experience.

The price of an inexperienced teacher with a Bachelor's degree can be one-half to two-thirds the price of a teacher salary fears of experience and possesses a Master's degree. How much it costs a district to hire a teacher depends upon the kind of teacher it hires. However, we lack the data needed to assess the districts' priorities in this regard.

FOOTNOTES

Federal and state aid, which account for roughly half the average district's revenue receipts, are determined by funding formulas based on factors not under local control (e.g., number of disadvantaged students). [7,12] The numerous studies of the determinants of local revenues consistently find that the tax base (assessed property value) per pupil and other variables beyond district's control explain better than 80 percent of the variation among districts. [3,6,7] Further, most large districts have reached state imposed limits on local property tax rates and cannot increase local revenues, given the tax base, without specific approval from the voters. And, since the late 1960s, proposed tax increases have not fared well at the polls. [12] Studies of local revenues have also shown that teachers' salaries are not a significant predictor of locally raised revenues. [1,5] Neither theory nor previous research suggests that specific expenditures decisions enter the determination of teachers' salaries. [e.g., 13] In sum, this analysis focuses on one part of what can be viewed as a block recursive system. [14]

Districts tend to use funds for their own priorities and interests despite attached categorical purposes and restrictions. [11] Most state aid is general purpose and local revenues, half the average district's budget, are totally unconstrained, providing adequate opportunity for substitution.

³For example, [5] estimates the demand for teachers in the context of a traditional model of the derived demand for inputs.

The lack of adequate measures of educational outcomes may affect educational decisionmakers as well as economists. School district officials, may use inputs as proxies for educational outcomes or quality even though they would not dispute the existence of an educational production function.

See [4] or [10] for detailed discussions of the linear expenditure system.

We define all variables in per-pupil terms to minimize the impact of expenditure patterns in the large districts on the results.

Assuming Σα_i=1, an arbitrary normalization.

FOOTNOTES (Continued)

- , ⁸We assume that no borrowing is allowed to support current operations and that the district does not accumulate cash balances.
 - $_{
 m Since}^{9}$ E+S=A, the term in $_{
 m T}^{9}$ S/A is algebraically eliminated.
 - 10 Few smaller districts were included in both the 1969 and 1970 surveys.
- The "metropolitan, other" districts tend to be suburban, although a few are rural. The non-SMSA districts include rural areas, small towns, and cities that lie outside SMSAs. In school systems that include both the central city and surrounding areas, a 50-percent rule is applied. Dade County, Florida, for example, is a single district classified as "metropolitan, other" because less than 50 percent of its pupils are in the central city (Miami).
- The nine expenditure equations in the system contain a total of 45 parameters to be estimated. However, each of these parameters is a function of the 18 structural parameters of the assumed district preference function (eq. 1). Clearly the β_{ij} are not independent. Park [10] outlines a statistical procedure for the estimation of expenditure systems, such as the one examined here, that yield consistent, maximum likelihood estimators for β_{ij} . However, that procedure requires more time and resources than were available for this analysis. Moreover, we wished to test the model with the data to discover whether or not an unconstrained estimation of the expenditure system would yield parameter estimates that approximately satisfied the implicit relationships among β_{ij} . Accordingly, we estimated each of the nine expenditure equations of the system (eq. 3) independently.
 - 13 The coefficient of b in the ith equation, β_{11} , is the estimate of α_{1} .

REFERENCES

- Alexander, A., Teachers, Salaries, and School District Expenditures, R-1588-FF, The Rand Corporation, Santa Monica, CA, October 1974.
- 2. Barro, S., Theoretical Models of School District Expenditure
 Determination and the Impact of Grants-in-Aid, R-867-FF, The Rand
 Corporation, Santa Monica, CA, February 1972.
- 3. ----, The Impact of Intergovernmental Aid on Public School Spending, Ph.D. dissertation, Stanford University, Stanford, CA, May 1974.
- 4. Brown, A. and A. Deaton, "Models of Consumer Behavior: A Survey,"

 The Economics Journal, V. 82, No. 328, December 1972, pp. 1145-1236.
- 5. Brown, B., "Achievement, Cost, and the Demand for Public Education," Western Economics Journal, V. 10, No. 2, June 1972, pp. 198-219.
- 6. Hickrod, G., "Local Demand for Education: A Critique and Economic Research Circa 1959-1969," Review of Educational Research, V: 41, February 1971, pp. 35-49.
- Johns, R. and K. Alexander, Alternative Programs for Financing Education, The National Educational Finance Project, V. 5, Gainsville, Florida, 1971.
- 8. Levin, H., "A New Model of School Effectiveness," Do Teachers Make a Difference?, U.S. Department of Health, Education, and Welfare, Office of Education, Washington, D.C., 1970.
- 9. McMahon, W., "An Economic Analysis of Major Determinants of Expenditures on Public Education," Review of Economics and Statistics, V. 52, No. 3, August 1770, pp. 242-252.
- 10. Park, R., "Systems of Demand Equations: An Empirical Comparison of Alternative Functional Forms," *Econometrica*, V. 37, No. 4, October 1969, pp. 611-628.
- 11. Porter, D., New Politics of Budgeting Federal Aid, Sage Publications, New York, 1973.
- 12. Reischauer, R. and R. Hartman, Reforming School Finance, The Brookings Institution, Washington, D.C., 1973.
- 13. Schmenner, R., "The Determination of Municipal Employee Wages," Review of Economics and Statistics, y. 55, No. 1, February 1973, pp. 83-90.
- 14. Theil, H., Principles of Econometrics, John Wiley and Sons, New York, 1971.

Table Al

REGRESSION RESULTS

(Dependent Variable: Expenditures per Pupil for Elementary Teachets)

		•			•	Sample	ر د ع	,		•	• , .	
Item	11	12	13	21	22.	23	, 31	32	. 93	-41	42	43 .
Mean of Dependent	247.68 252.41	252.41	237.16	223.73	223.66	223.25	184.53		175.06	203.62	214.46	196.49
Regression Coefficients	•	, ,		* *t. ·	-		,	i,		, ,		
	(6.80)	. 223 (6.80) (10.32)	.029	.053	.170	(3.42)	(5.63)	. 235 (9.34)	. 201	(5.93)	(7.80)	(1.51)
P_E/A	.050	.050 .041 (12.33)	060 (8.85),	.039	.029	.061	.039 (13.37)	.036	.035		(8.64) (13.39)	(8.37)
E A	024	024025 (-5.42) (-9.09)		017 009 (-2.13) (-1.97)	013 (-3.47)	013032 (-3.47) (-5.35)	006 (-1,80)	(-3.14) (-1.83) (-1.75) (-2.66)	005 (-1.83)	006 (005
P.	-1001 (-1.05)	-10 0 1001 (-1.01)	009	-,000 (-,44)	.003	001 (-1.04)		002001 (1 1.54) (-1.38)	001 (÷1.38)).	602	005
Constant	.16.83	43.14	73.25	48.58	68.76	75.10	-24.50	-14.24	-39.37	-11.84	-13.55	19, 36
, X	88	.87	91	69.	. 69	91	92	.95	.87	.92	.91	.92
Pa .	80.26	113.63	42.32	24.04	21.97	45.61	120.45	209.97	114.13	155.58	215.47	36.25
Standard Error	21.03	21.03 19.13	21.25	21.91	18.56	11,77	10.06	9,33	10.57	13.56	17.34	16.98
2	49	11	22	87	23	23	97.	53	74	57	96	18
				,								

The first digit denotes the region (1 = North Atlantic, 2 = Great Lakes and Plains, 3 = Southeast, and 4 = West and Southwest), and the second denotes metropolitan status (1 = central city; 2 * metropolitan; other; and 3 * nonmetropolitan)

				; ;		Ta	Table A2			•)	,
1.			(Dependent	Variable:	• •	REGRESSION RESU Average Expenditures	REGRESSION RESULTS e Expenditures per	LTS per Pupi	per Pupil for Secondary Teachers	condary	Teachers	•	1
• ,			-				Sample						
•	. Item	11	12	13	21	22:	23	31	32	33	. 41	42.	43
**	Mean of Dependent		• `	,				± 1				يرد.	
	Variables	203.11	234.28	193.48	182.91	211.54	199.93	142.34	138.27	128.97	177.18	179.27	170.31
_·	Regression .	•		•	_			•	ı	,	<u>. 18 - 8</u> .	,	•
•	Ą	.152	.180	.071	.118	.259	,127	.195	.252	.155	.177	.153	.162
	•	(4.75)	(S.93)	(1.28)	(3.01)	(15.31)	(1.74)	(6.57)	(8.26)	(7.60)	(6:33)	(7.67)	(3.63)
23	PrS/A	.043		.038	.038	.043	.048	.042	.040	.035	770	.042	.041
2	•	(11.09)	(13.23)	(8.72)	(8.10)	(13:01)	(6.82)	(13.35)	(11.47)	(18.92)	(11.16)	(17.69)	(13.62)
	A,	, 013	021	001	900-	014	-:004	007	013	004	012	009	009
	•	(-3.75)	(-6.02)	(-•ż3)	(-1.57)	(-7.35)	(-, 78)	(-2.34)	(-4.50)	(-2.57)	(-4.94)	(4.58)	(-3.31)
-	A.	001	000.	.007	000	100		003	003	000	000	000	. 500
1	•	(05:4-)		_	(05.1-)	(6):-)	(07:-)	//1:7-1	(+0.1-)	//c·-\$	(-,45)	(40)	(54.2-)
٠.	Constant	53.00	82.11	-25.33	5,68	-15.65	-45.96	-25.95	3.39	-20.24	-9.16	-13.96	14.28
	**	.79	85	. 87	62.	.96	88.	06.	.94	.94	.93	.92	.97
•	M	42.13	91.41	29.73	39.68	333.54	32.73	89.07	187.62	292.61	163.00	261.18	. 79.94
53	Standard Error	20.48	20.94	13.78	19.91	10.69	15.22	10.76	11.34	1966.	14,03	15.88	11.81
	,	649	71.	22	48	. 57	.\23,	46	53	74	. 57	96	18
,	î			<u>.</u>						1			

ERIC Full Text Provided by ERIC

Table A3 a

(Dependent Variable: Average Expenditures per Pupil for Other Professionals)

		,	, ,		\$; pt	Sample	•	′ ,	•			
Item	11	12.	13	21	. 22	23	31	32	33	41.	42	43
Mean of Dependent Variable	81.41	79.29	70,51	85.44	65.88	62.20	47.63	46.26	52.59	.63,63	64.15	98.00
Regression Coefficients	216	202	306	7319	128	197	. 238	,091	.272	.246	. 238	.187
9.	(6.73)	(8.00)	(4.73)	(5.47)	(6.27)	(3.59)	(56.7)	(3.51)	(7.87)	(8.51)	(12.68)	(3.16)
P_TZ/A	001	002 (53)	(-2.30)	004/	.002	. (1.28)	003	(-1.07)	007	.006	.004	004 (88)
H At	005 (-1.24)		·	ٺ	002 (-,71)	011 (-1.89)	009	. 003	010 (-2.91)	(-3.44)	012 (-5.04)	005 (-1.00)
, Z	.000	<u> </u>	J	2.004002 2.00) (-4.11)	.001	.001	,004 (2,46)	.005	000		.000	.004
Constant	-28.41			-18.89	-16.90	13	6.37	6.3721.42	27.86	13.92	11.32	-1.28
~	.62	.75	.65	. 46	.61	55.	11.	18.	17.	- 69		. 67
M. M. C.	17.98	48.81	7.98	9.31	20.20	5.15	25.51	50.21 9.59	13.01	15.01	14.93	15.62
*	64	11	22.	87	. 57	23	9#	. 53	74	57.	96	18
	•	•	4	-								

ERIC.

Table A4

e Expenditures per Pupil for Nonprofessional Staff)

•.	·	•	· ••••••••••••••••••••••••••••••••••••	. .		Sample				•			. ,
, Item	.11	12.	13	21	22	23	31	32	33.	41	. 42	. 43	, <u></u>
Mean of Dependent			ر ٠	•					,			-	٠,
Varfables	. 28.54	27.94	31,74	. 42.11	22.35	19.01	15.35	13.50€	14.65	29.44	30.41	25.14	
Regression Coefficients	· · ·	. ~.	:		· •	4	•			,			9
	.057	p25		142	.039	.083	.061	.048	026	.112	.073	.028	
	(3.26)	(1.95)	(2.76)	(4.15)	(3.62)	(2.54)	(5.41)	(7.59)	(2.58)	(7.28)	(6.47)	゚゙	e1
24	.002		.005	900	000	002		000	000	.004	.001	000	.4
	(co.t)	(3.32) (2	(2.21)	(-1,59)	(.15)	(69)	(-2:05)	(54.)	(+.34)	(1, 70)	(77)		-
	.003	002			.001	001	- 000	001	000	₹,006	-,002	000	į
•	(-1.50)	(-1.50) ((-1.82) (-1	(-1.71)	(+.14)	(.54)	(24)	(£.31)	(-1.47)	(-, 35)	(-3.22)	(-1.63)	(32)	4
		\$00.	.010		.001	000	.003	.005	.004	.001	.002	.005	
	(7,36)	(8.62)	(6: 79)	(17.72)	(2.87)	(2.72)	(2.29)	(13.45)	(12,74)	(2.75)	(6.19)	(6.24)	
Constant	-11.24	-18.02	-53,14	-49.65	-18.70	-16.94	-8.39	-12.35	-4.47	68	-8.41	-8.90	
***	.73	*9*	.84	.96.	. 26	97:	.74	5¢.	98.	۵۲.	.78	. 68•	
N	29.96	29.99	22.59	250.42	16.37	3.76	29.53	243.54	103.64	30.85	77.09	26.74	٠
Standard Error	11.17	8.73	6.99	17, 39	6.78		4.08	2.35	3.82	7.99	9.03	4.20	
X	49	. גי	. 22	. 84	57	23	797	53	74,	57	*	18	
		,				د						-	

Table A5
RECRESSION RESHLTS
(Dependent Variable: Average Expenditures per Pupil for Administration)

Item, Mean of Dependent Variables												
, ,	11	12	-13	21	. 22	23 ~	31	32	33	41	42	43
<u> </u>		:		,		· (٠			· ·	٠, ـ	. •
	26.79	29.38	21.88	19.54	30.55	18.41	14.70	13.34	14.20	19.58	21.17	19.42
Regression					•	• .		•	_		- i	` *
Coefficients	870	. 068	, 010	790	870.	.048	.045	.047	•046	.042	,054	047
	(3.57)	(51.5)	(, 74)	(7.51)	(6.04)	(1.63)	(2.43)	(3.95)	(3.92)	(3.72)	(8.22)	(4.10)
P. E/A × 10	000	.002	.003	.028	.074	015	000		.002	008	.007	000
	(8)	_	(- ,13)	(2.78)	(2.37)	(52)	(01)·	(40)	(.16)	(48)	(.87)	(07)
	200	020	600	030	098	.010	034	018	002	008	014	006
1	(:13)	(-1.52)	(%)	(-3.34)	(-4.82)	_	(-1.41)	(-1.05)	(17)	(57)	(-1.65)	(72)
\$ A	.003	600	-,006	-,004	017	.003	600.	.014	001		005	000
	(.94)	(-1.44)	(48)	(-5.51)	(-2.55)	(64)	(.87)	(39.)	(÷, 33)	(.65)	(-2.12)	(.01)
Constant -1.	-13.90	.28	3.37	-9.20	28.56	-16,14	17.00	5.85	-6.85	5.59	71	-2.75
7	.45	777	.20	. 79.	95.	. 39	71.	.52	38.	. 42.	· 19· /	۲.
	9.07	12,75	1.09	19.52	10.97	2.83	2.11	12.93	10.68	9.26	44.87	96.6
Standard Error	8.61	9.13	6.29	4:33	10.23	6.16	69.9	4.43	4.38	5.88	5.24	3.00
***	64	ב	22	, 87	. 57	23	94	 53.:	,74°	57	94	.18

ERIC

Full Text Provided by ERIC

Table A6

pendent Variable: Average Expenditures per Pupil for Other Instruction

							-	-			إسر	
•		<i>;</i>	/	•	• •	Sample		, •.		,		
Lten	, 11	12	13		22	23	31	32	33	41	42	43
Mean of Dependent		*					Y	,				, <i>i</i>
Variables	46.09	49.93	,41 . 05	29.63	30,55	24.88	26.19	24.83	24.05	25.06	27.34	30,02
Regression			,	,		`\	,	, .	-	/		•
, a	180	091	.207	, .084	860.	790,	440.	060	.061	106	107	7,61
4 , -	(2.62)		(3.97)	(3.97)	E	· ·	(2.68)	(4.08)	(3.09)	(1,23)	Ę	(9/.4)
A/2 d	005	002	008	000.	.00¥	007	900.	.007	.003	.003	000	/000 -
	(-1.38)		(-1:86)	(80°)	. (2.37)	(2.37) ((-1.98)	(5.09)	(2.60)	(1.78)	(1.32)	٠٠٠	(:13)
	002		005	006	010	.001	008	-:008	005	005	004	700-
	(-,54)	(1.93)	\sim	-1.10) ((-2.73)	(-4.82)	(:33)	(-33) (-2.35) (-2.59)	(-2.59)	(+2.53)	(-2.86)	J	(-1.94)
N.	043			001	002	001	001	003	- 000	€000	001	000
8	(-3.38)	(-3:02)	(-1.88)	(-3.50) ((-2.55)	(4-2.55)	(-1.25)	(96)	(-2.07)	(82)	(90)	(-2.11 ≸	(13)
Constant	-21.03	-43.40	7.04	35.34	28.56	14.21	31.21	18.90	19.18	A 73°	8.82	-7.89
7 24	. 48	.65	•59	29	94.	97.	.22	.36	.14	79.	.71	. 72
(Pag	10.01	31.53	6.10	4.49	10.97	3.87	S.	6.68	2.80	22.58	55.65	, 47.8
Standard Error	20.55	14.54	12.93	10.78	10.23	8.03	10.08	8.19	7.41	7.58	7.56	7.01
*	69	11	22	.48	: 57	23.	94	53	74	. 57	96	78
	-	•		,	,	•	,		•			

ERIC Full text Provided by ERIC

Table A7

REGRESSION RESULTS
Average Expenditures per Pupil for Attendance and (Dependent Variable

	,			,	-		1					1
Ttem	11	12	, ET	21	22	23) 1	32	33,	41	42	\$ 43
Mean of Dependent Variables	16.34	16.00	12.53	8.29	5.56	5.38	3.55	3.10	.3.39	7,55	6.16	5,47
Regression		<u>.</u>	,	•			, ic		`	7	<u>r</u>	34
Coefficients	010	.026	. 4.045	.013	600,	.021	(,019	.026	600.	004	900.	0.36
1	(2.21)	2	(2.35)	(1.32)	(1,83)	(1.19)	(2.74)	(4.76)	(3,29)	(.62)	(1:42)	(ok · 9)
P _T E/A		(2002	001	200.	.001	000	.000	000	.000.	000	00. 00.	000.
•	00			002	000		-,001	000	001	000		001
/ :	(64)	_	(06.)	(-1.48)	(64)	.(36) ⁷ ·	(-/55).	(-,03)	(-1.49)	(.15)	_	(-3.5s)
	P	80	.001	, 000°	.001	000.	000/	001	000°-	000	,	-/-
Z.	(-1.40)	(1.43)	(.64)	(-1.34)	(3.76)	(01.)		(-3.81)	(37)-	(*34)	·(·34)	+ (+2.94)
Constant	-4.48	-11.53	-23.63	3.54	-4.52	-:02	-3.38	-4.97	6.08	5.73	/si-1-	99 /
, *	.31	.52	.52	60.	.36.	`.11.`	.24	.59	05	.02	<i>tk</i> :	77.
84	4.95	17.73	4.61	1.12	7.30	. 56	3.28	17.00	.90	.48	10/32	10.60
Standard Brror	5.48	4.90	4.75	4.95	3.24	M.	2.58	1.99	2.62	3.63	7.55	1.49
*	49	ŭ	22	84	57 .	23	949	-53	9 147	57	76	18

Table A8

Average Expenditures per Pupil for Pupil Transportation)

							-					-	<i>\</i>
				•	••	Sample		,	•	•		,	./.
Item	11	12	. 13	21	42	23	31	32	33	41.	42	43	
Men of Dependent	18.29	32.06	44.15	£ 3V £ 1	. 67 66	30.26	A0 8	10.86	. 69 66	67 8) Or 71	19.21	<u>.</u>
Legression.							3						
p q	.016	.018	.145	.019	.072	iii.	.019		.128	.029	.063	:140	•
	(36.)	(£')	(5.09)	(1.09.)	(3.74)	(2.52)	(.72)	(2.59)	(4.77)	(3.20)	(6.88)	(3.25)	
P _T E/A		.001	002 (41)	003	1.50%	(-1.84)	£.2 8)	.001	.009	.000	.002	(1,31)	
* !!	.002	(7.87)	007	.001	008 (-3.45 <u>)</u>	.001	002	007012 (-2.35) (\(\frac{4}{4}.35\)	012 (+4.35)		005	(-2.45)	•
	000.	001	.000	000	000	.001	003	001	001002 (1×26) (-2,73)	.000	. 000 (, 29)	001 (53)	•
Censtant	-2.96	-5.52	18, 38	6.23	29.62	-19.59	18.68	769.87	\$1:41 .69.83	.05	16.35	-4.74	`
24	/14	.17	. 26	60.	· .27	.50	.13	. 23	.27	. 33	.742	97*	
Par .	1.77	3, 33	1.52	1,02	4.76	4:33	1.54	3.97	6,49	6.39	. 16,19	2.80	
Standard Error	10.54	16.14	17.25	8.65	12.09.	9.23	95.44	7.46	10.10	4.70	7.29	11.37	•
***	64	Ľ	22	84	.57	23	\$	53	22	22	94	. 18	· :
							1				4		:

ERIC Full Text Provided by ERIC

Table A9

RFGREFSION RESULTS
Average Expenditures per Pupil for Plant Operation and Maintenance)

					1		+					
	_	•		W	B o	Sample						,
Item	11	12 .	13	21	22 ,	23	31	32	33	17	42	43
Mean of Dependent		`			,					·	•	
Variables	97.10	98.12	85.50	92.11	90.31	88.09	58.09	50.78	67.69	73.08	77.18	74.22
Megression .		•	•	•	- A		·			مر	0	
Coerracients	160.	104	.100	.189	.17%	.153	.194	.160	.102	.129	.137	.177
	(3.84)	(5.23)	(3.19)	(8.17)	(8.78)	(2.92)	(80.6)	(6.78)	(4.03)	(7.50)	(11.92)	(3.93)
P R/A:	-,003	700.	004	.007	002	000.	.001	000	005	000	000.	700
	(96)	(1.63) (4)	(+1.53)	(2.57)	(58)	(.04)	(:33)	_	(-5,08)	(-00)	(.16)	(1.28)
	.003	003	.003	~.005	.004	-,002	004	000	.003	000	001	006
H	(.88)	I	(1,07)	(-2.17)	$(\hat{1}.39)$	_	(-1.58)	(12)	(.97)	(07)	(ge :-)	(-1.75).
•	.001	003	000	001	.000	000	.001	000	000.	000	8 00.	.003
Z,	(1.43	(2		(-5.89)	(66.)	_	X 21.15) <u>X</u>	(15)	(.43)	(:12)	(111)	(1.32)
Constant	12.22	7.88	51	-21.80	-57.73	100	-11.04	23.83	.67	-2.88	84.	1.42
	3	.63	/69	. ,73	.82	. 36 -	.,,	. 84	.53	28.	18.	9.76
la.	12.30	527.67	9.26	29.38	59.17	· \$ 61	35.42	64.10	19.31	62.53	155.23	10.54
Standard Error	15.19	13.78	7.76	11.80	12.75	10.94	7.75	8.75	9.51	8.89	9.12	11.90
2	. 69	Z.	. 22	87	. 57		(97	53	74	. 57	76.	18,
· :					,		つ	P	4.	•	J .	