(Relational Algebra) جبر رابطه ای

جبر رابطه ای

- در جبر معمولی داده های اعداد حقیقی و عملگرها +، -، ÷، × می باشند. عملگرهای دیگر نظیر توان برای ساده کردن عملگرهای ابتدائی مثل ضرب استفاده می شوند.
- در جبر منطقی نوع داده مجموعه {True, False} بوده و عملگرهایش NOT ،OR ،AND است.

• جبر رابطه ای در واقع مبنای تئوریک مدل رابطه ای است.

تعریف: به مجموعه ای از قوانین و عملگرها که امکان پردازش جداول را فراهم می سازند، جبر رابطه ای می گویند.

• نوع داده در جبر رابطه ای فقط رابطه است و ورودی- خروجی تمامی عملگرها رابطه می باشد.

عملگرها

• عملگرها در جبر رابطه ای به چهار دسته عمده تقسیم می شوند: دسته اول: عملگرهای ساده

نحوه استفاده	توضيح	نماد	عملگر
$\sigma_{\scriptscriptstyle Condition}(R)$	ر کوردهایی از رابطه را بر می گرداند.	σ	گزینش (select)
$\Pi_{\it Attribute}(R)$	ستونهایی از رابطه را برمی گرداند.	π	پرتو (Projection)

دسته دوم: عملگرهای مجموعه ای

نحوه استفاده	توضیح	نماد	عملگر
$A \cup B$	رکوردهایی را بر می گرداند که در A یا B یا هر دو موجود باشد.	U	اجتماع (Union)
$A \cap B$	رکوردهایی را بر می گرداند که در رابطه A و B بصورت مشترک وجود داشته باشند.	\cap	اشتراک (Intersect)
A - B	شامل رکوردهایی که در A وجود دارند ولی در B نیستند.	-	تفاضل (Difference)

دسته سوم: عملگرهای پیوند

نحوه استفاده	توضيح	نماد	عملگر
A × B	کلیه ترکیب های ممکن رکوردهای رابطه A و B را بر می گرداند.	×	ضرب دکارتی(Cartezian Product)
A ⋈ B	رابطه ای شامل همه فیلدهای دو رابطه و مقادیر آن فیلدها به شرط برابری مقادیر فیلد/ فیلدهای مشترک آنها .	M	پیوند طبیعی (Natural-Join)
A ⋈ B	نوع خاصی از پیوند طبیعی است که فقط فیلدهای پیوند شدنی از رابطه اول را دربردارد.	×	نیم پیوند (Semi-Join)
$A X_{\theta} B$	زیر مجموعه ای از ضرب کارتزین است که شرط Θ روی سطرهای آن اعمال شده است.	$X_{ heta}$	پیوند شرطی (Θ-Join)
A ™ B	در این پیوند علاوه بر تاپل های پیوند شدنی از دو رابطه، تاپل های پیوند نشدنی که با مقادیر Null گسترش یافته اند نیز در جواب ظاهر می شوند.	×	فرا پیوند (Outer-Join)

دسته چهارم: سایر عملگرها

نحوه استفاده	توضيح	نماد	عملگر
$ ho_{\scriptscriptstyle B} A$	نام B روی جدول A هم گذاشته می شود و بدون ذخیرسازی مجدد می توان از آن دوبار استفاده کرد.	ρ	نامگذاری یا تغییرنام (Rename)
A÷B	شامل رکوردهایی از A که شامل همه رکوردهای B باشد.	÷	تقسیم (Divide)
Temp ← A⋈B	با علامت \rightarrow جدول حاصل از دستورات ذخیره می شود تا در ادامه کار مورد استفاده قرار گیرد. اگر دستوری طولانی باشد با استفاده از جایگزینی می توان آن را در چند مرحله نوشت.		جايگزيني
	ستونی به جدول اضافه می کند که حاصل انجام محاسبه ای است.	Add	بسط (Extend)
	انجام گروه بندی بر اساس یک یا چند ستون		گروه بندی (Summarize)

مثال (گزینش)

Α	

A1	A2
1	2
2	3

A1	A2
1	2

Insured

Ins_NN	Valid	LastName	Province
0381731389	1	اصغرى	قم
0075623132	0	ابراهیمی	تهران
1386522588	1	محمدی فر	آذرشرقی
2118546782	1	فراهاني	گلستان

Ins_NN	Valid	LastName	Province
0381731389	1	اصغرى	قم
1386522588	1	محمدی فر	آذرشرقی
2118546782	1	فراهاني	گلستان

Ins_NN	Valid	LastName	Province

$$\sigma_{Valid='0'\ ^{\ }\operatorname{Pr}\,ovince='}$$
افے $(Insured)$

مثال (پرتو)

A $\Pi_{A1}(A)$ A1 1 2 1 2 1 2 2 2 2 2 2 2 2 3

Insured

Ins_NN	Valid	LastName	Province
0381731389	1	اصغرى	قم
0075623132	0	ابراهیمی	تهران
1386522588	1	محمدی فر	آذرشرقى
2118546782	1	فراهاني	گلستان

 $\Pi_{Ins_NN,LastName}(Insured)$

Ins_NN	LastName
0381731389	اصغرى
0075623132	ابراهیمی
1386522588	محمدی فر
2118546782	فراهاني

مثال (ترکیب گزینش و پرتو)

$$\Pi_{\mathit{Ins_NN},\mathit{LastName}}(\sigma_{\mathsf{Province}='$$
نهران ($\mathit{Insured}$))

Insured

Ins_NN	Valid	LastName	Province
0381731389	1	اصغرى	قم
0075623132	0	ابراهیمی	تهران
1386522588	1	محمدی فر	آذرشرقی
2118546782	1	فراهاني	گلستان
0063238952	1	كاظمى	تهران
0065521147	1	پارسا	تهران

Ins_NN	LastName
0075623132	ابراهیمی
0063238952	كاظمى
0065521147	پارسا

مثال (ترکیب گزینش و پرتو)

$$\Pi_{\mathit{Ins_NN},\mathit{LastName}}(\sigma_{\mathsf{Province='}$$
نهران $^{\land} \mathsf{valid='0'}}(\mathit{Insured}))$

Insured

Ins_NN	Valid	LastName	Province
0381731389	1	اصغرى	قم
0075623132	0	ابراهیمی	تهران
1386522588	1	محمدی فر	آذرشرقی
2118546782	1	فراهاني	گلستان
0063238952	1	كاظمى	تهران
0065521147	1	پارسا	تهران

Ins_NN	LastName
0075623132	ابراهیمی

اجتماع و اشتراک

- نکته: دو رابطه ای که در عملگرهای اجتماع و اشتراک شرکت می کنند باید از نظر نوع سازگار (Type Compatible) باشند.
 - شرایط سازگاری:
 - 1. درجه دو رابطه یکسان باشد.
 - 2. میدان های تعریف شده روی رابطه ها یکسان باشد.

مثال (اجتماع)

A

A1	A2
1	2
1	5
2	3

	_
	П
н	-

A1	A2
3	2
9	1
6	8
5	4
2	3

A1	A2
1	2
1	5
2	3
3	2
9	1
6	8
5	4

Insured_1

Ins_NN	Valid	LastName	Province
0381731389	1	اصغرى	قم
0075623132	0	ابراهیمی	تهران
1386522588	1	محمدی فر	آذرشرقی
2118546782	1	فراهاني	گلستان

Insured_2

Ins_NN	Valid	LastName	Province
4569852289	1	پیری	سمنان
0075623132	0	ابراهیمی	تهران
1729874488	0	ربانی	آذرشرقی
2118998722	1	شعبان پور	گلستان
3776623126	1	ز اهدی	كر دستان

مثال (اجتماع)

Insured_1 ∪ *Insured_2* or *Insured_1* Union *Insured_2*

Valid	LastName	Province
1	اصغرى	قم
0	ابراهیمی	تهران
1	محمدی فر	آذرشرقی
1	فراهانی	گلستان
1	پیری	سمنان
0	رباني	آذرشرقی
1	شعبان پور	گلستان
1	زاهدی	كردستان
	1 0 1 1 1 0 1	1 اصغرى 1 0 ابراهيمى 1 محمدى فر 1 فراهانى 1 پيرى 1 0 پيرى 1 ربانى 0 شعبان پور 1 پيرى 1

مثال (اشتراک)

Α

A1	A2
1	2
1	5
2	3

 $A \cap B$

B

A1	A2
3	2
9	1
6	8
5	4
2	3

A1	A2
2	3

Insured_1

Ins_NN	Valid	LastName	Province
0381731389	1	اصغرى	قم
0075623132	0	ابراهیمی	تهران
1386522588	1	محمدی فر	آذرشرقی
2118546782	1	فراهاني	گلستان

Insured_2

Ins_NN	Valid	LastName	Province
4569852289	1	پیری	سمنان
0075623132	0	ابراهیمی	تهران
1729874488	0	ربانی	آذرشرقی
2118998722	1	شعبان پور	گلستان
3776623126	1	ز اهدی	کر دستان

مثال (اشتراک)

 $Insured_1 \cap Insured_2$ or $Insured_1$ Intersect $Insured_2$

Ins_NN	Valid	LastName	Province
0075623132	0	ابراهیمی	تهران

مثال (تفاضل)

Α

A1	A2
1	2
1	5
2	3

A - B

A1	A2
1	2
1	5

В

A1	A2
3	2
9	1
6	8
5	4
2	3

A1	A2
3	2
9	1
6	8
5	4

مثال (تفاضل)

Insured_1

Ins_NN	Valid	LastName	Province
0381731389	1	اصغرى	قم
0075623132	0	ابراهیمی	تهران
1386522588	1	محمدی فر	آذرشرقی
2118546782	1	فراهاني	گلستان

Ins_NN	Valid	LastName	Province
0381731389	1	اصغرى	قم
1386522588	1	محمدی فر	آذرشرقی
2118546782	1	فراهاني	گلستان

Insured_2

Ins_NN	Valid	LastName	Province
4569852289	1	پیری	سمنان
0075623132	0	ابراهیمی	تهران
1729874488	0	ربانی	آذرشرقی
2118998722	1	شعبان پور	گلستان
3776623126	1	ز اهدی	كر دستان

Ins_NN	Valid	LastName	Province
4569852289	1	پیری	سمنان
1729874488	0	رباني	آذرشرقی
2118998722	1	شعبان پور	گلستان
3776623126	1	ز اهدی	کر دستان

خواص تفاضل

$$A - B \neq B - A$$

$$A - (B-C) \neq (A-B) - C$$

B1 A1 9 6 5 $A \times B$ 9 В 6 **B1** 5 3 9 6

مثال (ضرب دکارتی یا کارتزین)

تعداد سطرها=تعداد سطرهای جدول اول * تعداد سطرهای جدول دوم تعداد ستون ها=تعداد ستون های جدول اول + تعداد ستون های جدول دوم

مثال (ضرب دکارتی یا کارتزین)

Insured

Ins_NN	Valid	LastName	Province
0381731389	1	اصغرى	قم
1386522588	1	محمدی فر	آذرشرقی
2118546782	1	فراهانی	گلستان

Prescription

PID	Ins_NN	VisitDate
23258	0381731389	14010121
23589	0075623132	14010203
25648	1386522588	14010507

$A \times B$

Insured.Ins_NN	Valid	LastName	Province	PID	Prescription.ins_NN	VisitDate
0381731389	1	اصغرى	قم	23258	0381731389	14010121
0381731389	1	اصغرى	قم	23589	0075623132	14010203
0381731389	1	اصغرى	قم	25648	1386522588	14010507
1386522588	1	محمدی فر	آذرشرقی	23258	0381731389	14010121
1386522588	1	محمدی فر	آذرشرقی	23589	0075623132	14010203
1386522588	1	محمدی فر	آذرشرقی	25648	1386522588	14010507
2118546782	1	فراهاني	گلستان	23258	0381731389	14010121
2118546782	1	فراهاني	گلستان	23589	0075623132	14010203
2118546782	1	فراهاني	گلستان	25648	1386522588	14010507

خواص ضرب کارتزین

$$A \times B = B \times A$$

$$A \times (B \times C) = (A \times B) \times C$$

• در منطق جبر رابطه ای ضرب کارتزین دارای خاصیت جابجایی و شرکت پذیری است. ضرب کارتزین در تئوری مجموعه ها در ریاضیات خاصیت جابجایی و شرکت پذیری ندارد.

پیوند طبیعی (Natural Join)

• برای انجام عملگر Join ابتدا دو رابطه را با هم ضرب کرده و سطرهایی که دارای شرط sample ابتدا دو رابطه را با عملگر پرتو حذف می کنیم.

• در واقع عملگر پیوند از سه عملگر ضرب، گزینش و پرتو تشکیل شده است.

R	1		R2				
Α	В	Α	С	- 4 - •		Α	В
1	2	3	1	R1 Joi	n R2	3	5
3	5	9	4			2	4
2	4	6	6				4
		5	9				
		2	5				

مثال (پیوند طبیعی)

R1

Α	В	C
1	2	3
3	5	4
2	4	6

R2

Α	С	D	Ε
3	1	5	9
3	4	7	5
2	6	2	8
5	9	4	3
2	6	5	1

R1 Join R2

R1 ⋈ R2

Α	В	С	D	E
3	5	4	7	5
2	4	6	2	8
2	4	6	5	1

مثال (راه حل کلی پیوند طبیعی)

R1

Α	В	С
1	2	3
3	5	4
2	4	6

R2

Α	С	D	E
3	1	5	9
3	4	7	5
2	6	2	8
5	9	4	3
2	6	5	1

Α	В	С	D	E
3	5	4	7	5
2	4	6	2	8
2	4	6	5	1

R1.A	В	R1.C	R2.A	R2.C	D	E
1	2	3	3	1	5	9
1	2	3	3	4	7	5
1	2	3	2	6	2	8
1	2	3	5	9	4	3
1	2	3	2	6	5	1
3	5	4	3	1	5	9
3	5	4	3	4	7	5
3	5	4	2	6	2	8
3	5	4	5	9	4	3
3	5	4	2	6	5	1
2	4	6	3	1	5	9
2	4	6	3	4	7	5
2	4	6	2	6	2	8
2	4	6	5	9	4	3
2	4	6	2	6	5	1

نکاتی راجع به پیوند طبیعی

$$A \propto B = B \propto A$$

$$A \infty (B \infty C) = (A \infty B) \infty C$$

$$A \propto B = A \times B$$
 \Rightarrow $A \cap B = \varphi$

$$A \propto B = A \cap B$$
 \Rightarrow $A = B$

• اگر C(Join) کاردینالیتی رابطه حاصل از پیوند طبیعی دو رابطه و C(Cart) کاردینالیتی حاصل از ضرب کارتزین دو رابطه باشد، در این صورت C(Join)/C(Cart) را ضریب گزینش پیوند (factor) می نامیم.

نيم پيوند يا شبه الحاقي (Semi-Join)

عملگر نیم پیوند (X) مشابه پیوند طبیعی است با این تفاوت که فقط ستون های جدول اول را می دهد.

 $R1 \propto R2 = \Pi_{R1}(R1 \propto R2)$

نکته ۱: ممکن است تعداد سطرهای خروجی به مراتب کمتر از پیوند طبیعی باشد، زیرا با کنار رفتن چند ستون، سطرهای تکراری پدید می آیند و حذف می شوند.

نکته ۲: از آنجایی که نیم پیوند ستون های جدول اول را می دهد خاصیت جابجایی ندارد.

مثال (نیم پیوند)

	4	
ĸ	1	

A	В
1	2
3	5
2	4

R2

Α	С
3	1
9	4
6	6
5	9
2	5

R1 semi-join R2

R	1 œ	R2

Α	В
3	5
2	4

مثال (نیم پیوند)

	A
К	1

Α	В	С
1	2	3
3	5	4
2	4	6

R2

Α	С	D	E
3	1	5	9
3	4	7	5
2	6	2	8
5	9	4	3
2	6	5	1

R1 semi-join R2

R1	∞	R2
1 1	• •	112

Α	В	С
3	5	4
2	4	6

نکاتی راجع به نیم پیوند

$$A \propto B \neq B \propto A$$

$$A \propto B = A \propto (B \propto A)$$

$$A \propto B = B \propto (A \propto B)$$

$$A \propto B = (A \propto B) \propto (B \propto A)$$

Theta Joins یا (join $-\theta$) پیوند شرطی

• این عملگر، زیر مجموعه ای از ضرب کارتزین است که شرط $oldsymbol{ heta}$ روی سطرهای آن اعمال شده باشد. ستون های خروجی معادل ستون های ضرب کارتزین است.

$$A X_{\theta} B = \sigma_{\theta}(A \times B)$$

• اگر شرط $oldsymbol{ heta}$ به صورت "=" بیان شود آنگاه پیوند شرطی به پیوند طبیعی تبدیل می گردد.

فرا پیوند (Outer-Join)

- به سه دسته تقسیم می شود:
- 1. فراييوند چپ (Left Outer Join) با نماد 1
- 2. فراییوند راست (Right Outer Join) با نماد 2
 - 3. فراییوند کامل (Full Outer Join) با نماد 3.

فراپیوند چپ (Left Outer Join)

Name

• گونه ای از عملگر پیوند طبیعی است با این تفاوت که علاوه بر تاپل های پیوند شدنی از دو رابطه، تاپل های پیوند نشدنی از رابطه چپ هم، پیوند شده با مقادیر Null در جواب وارد می شوند.

• مثال: لیست تمام دپارتمان با نام دانشجویانی مشغول به تحصیل (حتی اگر دانشجویی ثبت نشده باشد)

Select Name, Department_name From Department Left Outer Join Student ON Student.Department_ID=Depoartment.ID

Student _ID	Name	Depart ment _ID	Sem
10026	Jimmy	cs	2
02256	Joseph	MS	4
56362	Harry	cs	3
54454	Ronni	ET	8
10365	Rosy	BT	6
05489	Peter	MT	4
30006	Stiffen	СТ	5

Student

ID	Department_name
cs	Computer Science
MS	Mechanical science
ET	Electronics and Telecommunication
IT	Information Technology
СТ	Civil Technology
ВТ	Bio Technology

Department

Jimmy	Computer Science	
Harry	Computer Science	
Joseph	Mechanical science	
Stiffen	Mechanical science	
Ronni	Electronics and Telecommunication	
Null	Information Technology	
Stiffen	ст	
Rosy	Bio Technology	

Department name

فراپیوند راست (Right Outer Join)

• در فراپیوند راست، تاپل های پیوند نشدنی از رابطه راست، پیوند شده با مقادیر Null در جواب وارد می شوند.

• مثال: لیست تمام دانشجویان با نام دپارتمان آنها (حتی اگر دپارتمانی برایشان ثبت نشده باشد)

Select Name, Department_name From Department Right Outer Join Student ON Student.Department_ID=Depoartment.ID

Student _ID	Name	Depart ment _ID	Sem
10026	Jimmy	cs	2
02256	Joseph	MS	4
56362	Harry	cs	3
54454	Ronni	ET	8
10365	Rosy	BT	6
05489	Peter	MT	4
30006	Stiffen	СТ	5

ID	Department_name
CS	Computer Science
MS	Mechanical science
ET	Electronics and Telecommunication
IT	Information Technology
СТ	Civil Technology
BT	Bio Technology

Name	Department_name	
Jimmy	Computer Science	
Joseph	Mechanical Science	
Harry	Harry Computer Science	
Ronni	Electronics and Telecommunication	
Rosy	Bio Technology	
Peter	Null	
Stiffen	en Civil Technology	

Student

Department

فراپیوند کامل (Full Outer Join)

Name

• در فراپیوند کامل، تاپل های پیوند نشدنی هم از رابطه راست و هم از رابطه چپ، پیوند شده با مقادیر Null در جواب وارد می شوند.

Select Name, Department_name From Student Full Outer Join Department ON Student.Department_ID=Depoartment.ID

Student _ID	Name	Depart ment _ID	Sem
10026	Jimmy	cs	2
02256	Joseph	MS	4
56362	Harry	cs	3
54454	Ronni	ET	8
10365	Rosy	BT	6
05489	Peter	MT	4
30006	Stiffen	CT	5

Student

ID	Department_name
cs	Computer Science
MS	Mechanical science
ET	Electronics and Telecommunication
IT	Information Technology
СТ	Civil Technology
BT	Bio Technology

Department

Jimmy Computer Science Mechanical science Joseph Harry Computer Science Electronics and Ronni Telecommunication Bio Technology Rosy NULL Peter Stiffen Civil Technology Information Technology NULL

Department name

عملگر نامگذاری یا تغییرنام (Rename)

نام B روی جدول A هم گذاشته می شود و بدون ذخیرسازی مجدد می توان از آن دوبار استفاده کرد.

 $\rho_{\scriptscriptstyle B} A$

مثال: جدول اساتید را با مشخصات زیر در نظر بگیرید:

Prof (pn, O#, esp, degree, clg#)

(شماره دانشکده، مدرک، تخصص، شماره دفتر، نام استاد) جدول استاد

حال مشخصات اساتیدی را بدهید که دفتر کارشان مشترک است:

 $prof X_{prof.O\#=k.O\# \land prof.pn\neq k.pn} \rho_k(\Pi_{pn,O\#}(prof))$

عملگر تقسیم (DIVIDEBY)

- کاربرد عملگر تقسیم زمانی است که بخواهیم تمامی حالت های یک اتفاق را بررسی کنیم مثل حالت های زیر:
 - درس هایی که توسط همه دانشکده ها ارائه می شوند.
 - اسامی تهیه کنندگانی که همه قطعات را تولید می کنند.
 - اسامی دانشجویانی که تمام درس های یک استاد را گرفته اند.

X

نکته: دو رابطه R2(B1,B2,...,Bm) و R1(A1,A2,...,An,B1,B2,...,Bm) را در نظر بگیرید. شرط تقسیم این $X \subseteq Z$ باشد. اگر X = Z باشد، حاصل عبارت $X \subseteq Z$ باشد. اگر X = Z باشد، حاصل عبارت $X \subseteq Z$ رابطه $X \subseteq Z$ باشد.

A1	A2
3	2
2	1
6	8
5	4
2	3
5	2
3	7
4	6

مثال (تقسیم)

• حاصل تقسیم، رکوردهایی از A است که شامل همه رکوردهای B باشد.

B

A2	
3	
1	

A1	A2	А3
3	2	6
3	2	5
6	8	2
5	4	5
2	3	7
5	4	6
3	7	8
4	6	1

B A35

6

مثال (تقسیم)

R1

Buyer	Product
1	Α
1	В
1	С
1	D
2	В
2	С
2	D
2	E
3	Α
3	В
3	С
3	Е
4	В

مثال (تقسیم)

• تمامی خریدارانی که سه محصول B ،A و D را خریداری کرده اند.

R2

Product	$R1 \div R2$	
Δ	1(1 • 1(2	Buyer
A		1
В		_
C		3

مثال (تقسیم)

$\Pi_{ENO,PNO}(WorksOn) \div \Pi_{PNO}(Proj)$

WorksOn

ENO	PNO	PNAME	BUDGET
E1	P1	Instrumentation	150000
E2	P1	Instrumentation	150000
E2	P2	Database Develop.	135000
E3	P1	Instrumentation	150000
E3	P4	Maintenance	310000
E4	P2	Instrumentation	150000
E5	P2	Instrumentation	150000
E6	P4	Maintenance	310000
E7	Р3	CAD/CAM	250000
E8	Р3	CAD/CAM	250000

Proj

PNO	PNAME	BUDGET	
P1	Instrumentation	150000	
P4	Maintenance	310000	

ENO

E3

عملگر جایگزینی

• با علامت ← جدول حاصل از دستورات ذخیره می شود تا در ادامه کار مورد استفاده قرار گیرد.

• در صورت طولانی بودن دستور می توان با جایگزینی ، آن را در چند مرحله نوشت.

• در برخی اوقات نماد := و در برخی موارد دیگر از عبارت GIVING برای این منظور استفاده می شود.

$$\Pi_{\text{Sname}}(\sigma_{\text{P\#='P2'}}(\text{S} \propto \text{SP}))$$

• مثال: اسامی تهیه کنندگان قطعه P2 را بدهید:

temp1 \leftarrow S \propto SP temp2 \leftarrow $\sigma_{P\#=P2'}$ (temp1) $\Pi_{Sname}(temp2)$

عملگر بسط (Extend)

• Extend یک رابطه را گرفته و رابطه ای دیگر را بر می گرداند که همانند رابطه اولیه است، با این تفاوت که حاوی صفت دیگری است که مقادیر آن با ارزیابی یک عبارت محاسباتی به دست می آید.

• مثال:

Extend P ADD (weight *454) AS GMWT

P

P#	Pname	weight
P1	Nut	12
P2	Bolt	17
Р3	Screw	17

P#	Pname	weight	GMWT
P1	Nut	12	5448
P2	Bolt	17	7718
P3	Screw	17	7718

عملگر خلاصه یا گروه بندی (Summarize)

• Summarize یک عملگر تک عملوندی است و تاپل های یک رابطه را بر اساس یک یا بیش از یک صفت گروه بندی می کند و آنگاه محاسبه ای روی مقادیر صفت دیگری انجام می دهد.

مثال:

Summarize SP PER SP{P#} ADD SUM(Qty) AS TOTQTY

SP	S#	P#	QTY		
	S1	P1	300		D#
	S1	P2	200		P#
	S1	P3	400		P1
					P2
	S2	P1	300		P3
	S2	P2	400		
	S3	P2	200		

عملگر خلاصه یا گروه بندی (Summarize)

ه در بعضی مراجع به جای کلمه PER از کلمه کلیدی PER استفاده می شود. Summarize SP By (P#) ADD SUM(Qty) AS TOTQTY

Summarize (P Join SP) PER P{city} ADD Count(QTY) AS NSP

• مثال:

P

P#	color	type	city
P1	Red	Iron	Tehran
P2	Green	Copper	Tabriz
Р3	Blue	Brass	Shiraz
P4	Red	Iron	Tehran

S#	P#	QTY
S1	P1	300
S1	P2	200
S1	Р3	400
S2	P1	300
S2	P2	400
S3	P2	200

city	NSP
Tehran	2
Tabriz	3
Shiraz	1
Tehran	0
Tehran	0

كامل بودن جبر رابطه اى

- با ترکیب عملگرهای مختلف می توان عبارات جبری نوشت و حاصل ارزیابی هر عبارت معتبر، باز هم یک رابطه است. بنابراین می گوییم جبر رابطه ای کامل است یا به عبارت دیگر اکمال رابطه ای (Relationally Completeness) دارد.
- مجموعه عملگر های مبنایی $\{\sigma,\Pi,\cup,-,\times,\leftarrow\}$ یک مجموعه کامل می باشند و هر عملگر دیگر را می توان بر حسب آنها بیان کرد.
 - مثال:

$$A \cap B = A - (A - B)$$

• تمرین: نحوه تعریف سایر عملگرها بر حسب عملگرهای اصلی را شرح دهید.

S

SNO	SNAME	STATUS	CITY
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

P

PNO	PNAME	COLOR	WEIGHT	CITY
P1	Nut	Red	12.0	London
P2	Bolt	Green	17.0	Paris
P3	Screw	Blue	17.0	Oslo
P4	Screw	Red	14.0	London
P5	Cam	Blue	12.0	Paris
P6	Cog	Red	19.0	London

SNO	PNO	QTY
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P2	200
S4	P4	300
S4	P5	400

• مشخصات تولید کنندگانی که نام آنها Jones است:

	(C	1
$\sigma_{\mathit{SNAME}='Jones'}$	(D	

5

SNO	SNAME	STATUS	CITY
S1	Smith	20	London
S2	Jones	10	Paris
S3 S4 S5	Blake Clark Adams	30 20 30	Paris London Athens

P

PNO	PNAME	COLOR	WEIGHT	CITY
P1	Nut	Red	12.0	London
P2	Bolt	Green	17.0	Paris
P3	Screw	Blue	17.0	Oslo
P4	Screw	Red	14.0	London
P5	Cam	Blue	12.0	Paris
P6	Cog	Red	19.0	London

SNO	PNO	QTY
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P2	200
S4	P4	300
S4	P5	400

$$\Pi_{\mathit{PNO},\mathit{PNAME}}(\sigma_{\mathit{CITY}='London'}(P))$$

• نام و شماره قطعاتی که در شهر لندن تولید شده اند:

D

SNO	SNAME	STATUS	CITY
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

P

PNO	PNAME	COLOR	WEIGHT	CITY
P1	Nut	Red	12.0	London
P2	Bolt	Green	17.0	Paris
P3	Screw	Blue	17.0	Oslo
P4	Screw	Red	14.0	London
P5	Cam	Blue	12.0	Paris
P6	Cog	Red	19.0	London

SNO	PNO	QTY
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
s3	P2	200
S4	P2	200
S4	P4	300
S4	P5	400

$$\Pi_{SNO,PNO}(\sigma_{QTY \geq '300'}(SP))$$

• شماره تهیه کنندگان و شماره قطعاتی که بیش از ۳۰۰ عدد از آن قطعه تولید کرده اند:

S

SNO	SNAME	STATUS	CITY
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

Ρ

PNO	PNAME	COLOR	WEIGHT	CITY
P1	Nut	Red	12.0	London
P2	Bolt	Green	17.0	Paris
P3	Screw	Blue	17.0	Oslo
P4	Screw	Red	14.0	London
P5	Cam	Blue	12.0	Paris
P6	Cog	Red	19.0	London

SP

SNO	PNO	QTY
S1	P1	300
Sl	P2	200
S1	P3	400
S1 S1 S1	P4 P5	200 100 100
S2 S2	P1 P2	300 400
S3 S4	P2 P2	200 200
S4 S4	P4 P5	300 400

• نام قطعاتی که بیش از ۳۰۰ عدد از آن قطعه تولید شده؟

$\Pi_{CITY}(S) \cup \Pi_{CITY}(P)$

• مجموعه شهرهای تولید کننده و قطعات:

0

SNO	SNAME	STATUS	CITY
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

P

PNO	PNAME	COLOR	WEIGHT	CITY
P1	Nut	Red	12.0	London
P2	Bolt	Green	17.0	Paris
P3	Screw	Blue	17.0	Oslo
P4	Screw	Red	14.0	London
P5	Cam	Blue	12.0	Paris
P6	Cog	Red	19.0	London

SE

PNO	QTY
P1	300
P2	200
P3	400
P4	200
P5	100
P6	100
P1	300
P2	400
P2	200
P2	200
P4	300
P5	400
	P1 P2 P3 P4 P5 P6 P1 P2 P2 P2 P2

 $\Pi_{SNAME}(\sigma_{PNO=P1'}(SP\infty S))$

• نام تهیه کنندگانی که قطعه P1 را تولید کرده اند:

0

SNO	SNAME	STATUS	CITY
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

P

PNO	PNAME	COLOR	WEIGHT	CITY
P1	Nut	Red	12.0	London
P2	Bolt	Green	17.0	Paris
P3	Screw	Blue	17.0	Oslo
P4	Screw	Red	14.0	London
P5	Cam	Blue	12.0	Paris
P6	Cog	Red	19.0	London

SF

SNO	PNO	QTY
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P2	200
S4	P4	300
S4	P5	400

• نام تهیه کنندگانی که قطعه P1 را تولید نکرده اند:

$$\Pi_{SNAME}(S) - \Pi_{SNAME}(\sigma_{PNO=P1'}(SP \infty S))$$

$$\Pi_{SNAME}((\Pi_{SNO}(S) - \Pi_{SNO}(\sigma_{PNO=P1}(SP))) \infty S)$$

• كداميك از عبارت بالا بهينه است؟

• نام تهیه کنندگانی که تمامی قطعات را تولید کرده اند:

$$\Pi_{SNAME}((\Pi_{SNO,PNO}(SP) \div \Pi_{PNO}(P)) \infty S)$$

5

SNO	SNAME	STATUS	CITY
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

P

PNO	PNAME	COLOR	WEIGHT	CITY
P1	Nut	Red	12.0	London
P2	Bolt	Green	17.0	Paris
P3	Screw	Blue	17.0	Oslo
P4	Screw	Red	14.0	London
P5	Cam	Blue	12.0	Paris
P6	Cog	Red	19.0	London

SNO	PNO	QTY
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
s3	P2	200
S4	P2	200
S4	P4	300
S4	P5	400

• مشخصات تهیه کنندگانی که تمامی قطعات را تهیه کرده اند:

$$S \propto ((\Pi_{SNO,PNO}(SP) \div \Pi_{PNO}(P)))$$

5

SNO	SNAME	STATUS	CITY
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

P

PNO	PNAME	COLOR	WEIGHT	CITY
P1	Nut	Red	12.0	London
P2	Bolt	Green	17.0	Paris
P3	Screw	Blue	17.0	Oslo
P4	Screw	Red	14.0	London
P5	Cam	Blue	12.0	Paris
P6	Cog	Red	19.0	London

SNO	PNO	QTY
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
s3	P2	200
S4	P2	200
S4	P4	300
S4	P5	400

• شماره قطعاتی که توسط تولید کننده S2 تولید شده و وزن آنها بین ۱۵ تا ۱۷ پوند باشد:

$$\Pi_{PNO}(\sigma_{SNO='S2'}(SP)) \cap \Pi_{PNO}(\sigma_{15 \leq WEIGHT \leq 17}(P))$$

• شماره قطعاتی که توسط تولید کننده S2 تولید شده یا وزن آنها بین 10 تا 10 پوند باشد:

$$\Pi_{PNO}(\sigma_{SNO='S2'}(SP)) \cup \Pi_{PNO}(\sigma_{15 \leq WEIGHT \leq 17}(P))$$

Stud

<u>S#</u>	sname	city	AVG	Clg#
2	Maryam	Qazvin	16.25	100
5	Pedram	Tehran	18.12	102
6	Ali	Tehran	17.3	101
9	Reza	Tabriz	14.9	102
3	Behnaz	Shiraz	19.02	100

Sec

Sec#	<u>S#</u>	<u>C#</u>	<u>Term</u>	pname	score
502	3	22	982	Tizbal	18
502	6	22	981	Tizbal	15
501	2	23	971	Hashemi	16
500	6	20	961	Akbari	17
505	5	21	952	Akbari	14
505	9	22	972	Solatni	15

Crs

<u>C#</u>	cname	unit	Clg#
22	physics	3	102
21	C++	4	100
20	Database	3	100
23	English	2	101

Prof

<u>pname</u>	ESP	degree	Clg#
Akbari	Computer	PhD	100
Tizbal	physics	PhD	102
Hashemi	English	PhD	101
Solatni	physics	PhD	102
Karimi	Computer	PhD	100

Clg

Clg#	clgname	city	pname
100	Computer	Qazvin	Akbari
101	English	Yazd	Hashemi
102	physics	Tehran	Solatni

• شماره و نام دانشجویان معدل الف را بدست آورید:

$$\Pi_{S\#,sname}(\sigma_{AVG \geq '17'}(Stud))$$

Stud

<u>S#</u>	sname	city	AVG	Clg#
2	Maryam	Qazvin	16.25	100
5	Pedram	Tehran	18.12	102
6	Ali	Tehran	17.3	101
9	Reza	Tabriz	14.9	102
3	Behnaz	Shiraz	19.02	100

• شماره دانشجویانی که دروس ۳ واحدی را برداشته اند:

$$\Pi_{S\#}(\sigma_{unit='3'}(Crs \propto Sec))$$

Sec

Sec#	<u>S#</u>	<u>C#</u>	<u>Term</u>	pname	score
502	3	22	982	Tizbal	18
502	6	22	981	Tizbal	15
501	2	23	971	Hashemi	16
500	6	20	961	Akbari	17
505	5	21	952	Akbari	14
505	9	22	972	Solatni	15

Crs

<u>C#</u>	cname	unit	Clg#	СЩ
22	physics	3	102	<u>5#</u>
21	C++	4	100	6
20	Database	3	100	3
23	English	2	101	9

• نام دانشجویانی که دروس ۳ واحدی را برداشته اند:

<u>S#</u>	sname	city	AVG	Clg#
2	Maryam	Qazvin	16.25	100
5	Pedram	Tehran	18.12	102
6	Ali	Tehran	17.3	101
9	Reza	Tabriz	14.9	102
3	Behnaz	Shiraz	19.02	100

<u>S#</u>	
6	
3	
9	

<u>S#</u>	sname	city	AVG	Clg#	
6	Ali	Tehran	17.3	101	
3	Behnaz	Shiraz	19.02	100	
9	Reza	Tabriz	14.9	102	

sname		
Ali		
Behnaz		
Reza		

• شماره دانشجویانی که تمامی دروس ۳ واحدی را برداشته اند:

$$\Pi_{S\#,C\#}(\operatorname{Sec}) \div \Pi_{C\#}(\sigma_{unit='3'}(Crs))$$

Sec#	<u>S#</u>	<u>C#</u>	<u>Term</u>	pname	score
502	3	22	982	Tizbal	18
502	6	22	981	Tizbal	15
501	2	23	971	Hashemi	16
500	6	20	961	Akbari	17
505	5	21	952	Akbari	14
505	9	22	972	Solatni	15

<u>C#</u>	cname	unit	Clg#
22	physics	3	102
21	C++	4	100
20	Database	3	100
23	English	2	101

<u>S#</u>

• شهر محل سکونت دانشجویانی که تمامی دروس ۳ واحدی را برداشته اند:

$$\Pi_{city}(Stud \propto (\Pi_{S\#,C\#}(Sec) \div \Pi_{C\#}(\sigma_{unit='3'}(Crs))))$$

<u>S#</u>	sname	city	AVG	Clg#
2	Maryam	Qazvin	16.25	100
5	Pedram	Tehran	18.12	102
6	Ali	Tehran	17.3	101
9	Reza	Tabriz	14.9	102
3	Behnaz	Shiraz	19.02	100

<u>S#</u>	<u>S#</u>	sname	city	AVG	Clg#
6	6	Ali	Tehran	17.3	101

قواعد بهینه سازی

- گزینش را هر چه ممکن است زودتر انجام دهید.
- $\sigma_{\mathrm{cl} \wedge \mathrm{c2}}(A) \Rightarrow \sigma_{\mathrm{cl}} \left(\sigma_{\mathrm{c2}}(A)
 ight)$. شرط های ترکیبی را به شرط های متوالی تبدیل کنید.
 - عملگر های ترکیبی مثل عملگرهای مجموعه ای و پیوند را در انتها بیاورید.
 - در گزینش های تو در تو (Nested) حالت بهینه اینست که گزینش داخلی مربوط به جدول کوچکتر باشد.