WE CLAIM:

1. A method of preventing adhesion formation between tissues in an animal comprising placing a sterile adhesion prevention barrier between the tissues of the animal where the adhesion to be prevented wherein the sterile adhesion prevention barrier is formed from a polyoxaester having a first divalent repeating unit of formula IA:

10

5

$$[O-C(O)-C(R_1)(R_2)-O-R_3-O-C(R'_1)(R'_2)-C(O)-]$$
 IA

and a second repeating unit selected from the group of formulas consisting of:

15

25

$$[-O-R_4-]_A$$
, II

$$[-O-R_s-C(O)-]_{R},$$
 III

20
$$([-O-R_5-C(O)]_P-O-)_LG$$
 XI

and combinations thereof wherein R₁, R'₁, R₂ and R'₂ are independently hydrogen or an alkyl group containing 1 to 8 carbon atoms; R₃ is an alkylene unit containing from 2 to 12 carbon atoms or is an oxyalkylene group of the following formula:

$$-[(CH_2)_C-O-]_D-(CH_2)_E-$$
 IV

wherein C is an integer in the range of from 2 to about 5, D is an integer in the range of from about 0 to about 2,000, and E is an integer in the range of from about 2 to about 5, except when D is zero, in which case E will be an integer from 2 to 12; R4 is an alkylene unit containing from 2 to 8 carbon atoms ; A is an integer in the range of from 1 to 2,000; R_s is selected from the group consisting of - $-(CH_2)_3-0-$, $-CH_2-CH_2-O-CH_2-$, $-CR_8H-CH_2-$, $-(CH_2)_5-$, $-(CH_2)_F-0-C(O)-$ and $-(CH_2)_F-C(O)-CH_2-$; R_6 and R_{τ} are independently hydrogen or an alkyl containing from 1 to 8 carbon atoms; R₈ is hydrogen or methyl; F is an integer in the range of from 2 to 6; B is an integer in the range of from 1 to n such that the number average molecular weight of formula III is less than about 200,000; P is an integer in the range of from 1 to m such that the number average molecular weight of formula XI is less than about 1,000,000; G represents the residue minus from 1 to L hydrogen atoms from the hydroxyl groups of an alcohol previously containing from 1 to about 200 hydroxyl groups; and L is an integer from about 1 to about 200.

25

5

10

15

20

The method of claim 1 wherein additionally present is a third divalent repeating unit of the formula: 10

20

$$[-O-C(O)-R_{30}-C(O)-]$$
 IE

wherein R_{30} is an alkylene, arylene, arylalkylene, substituted alkylene, substituted arylene and substituted alkylarylene provided that R_{30} cannot be $-[C(R_1)(R_2)]_{1,2}-O-(R_3)-O-[C(R'_1)(R'_2)]_{1,2}-.$

- 3. The method of claim 1 wherein the number average molecular weight of formula III contained in the polyoxaester is less than 100,000.
- 4. The method of claim 1 wherein the aliphatic polyoxaester has the following repeating units:
- 15 $[-O-C(O)-C(R_1)(R_2)-O-(R_3)-O-C(R_1)(R_2)C-(O)-]$ and $[(O-R_4)_A-]$.
 - 5. The method of claim 1 wherein the aliphatic polyoxaester has the following repeating units:

 $[O-C(O)-C(R_1)(R_2)-O-R_3-O-C(R_1)(R_2)-C(O)-];$ $[-O-R_4-]_A;$ and $[O-R_5-C(O)-]_B.$

25 6. The method of claim 5 wherein R_3 is an oxyalkylene group.

- 7. The method of claim 6 wherein the first repeating unit is derived from a dicarboxylic acid selected from the group consisting of 3,6-dioxaoctanedioic acid, 3,6,9-trioxaundecanedioic acid and combinations thereof.
- 8. The method of claim 5 wherein the second repeating unit is derived from a diol selected from the group consisting of 1,2-ethandiol, 1,2-propandiol, 1,3-propandiol and combinations thereof.
- 9. The method of claim 5 wherein at least one of the second repeating unit is derived from ethylene glycol.

15

10

5

10. The method of claim 1 wherein at least one of the second repeating unit is derived from a lactone selected from the group consisting of glycolide, lactide, ϵ -caprolactone and combinations thereof.

20

25

11. The method of claim 7 wherein the polyoxaester has two second repeating units wherein one of the second repeating units is a diol selected from the group consisting of 1,2-ethandiol, 1,2-propandiol, 1,3-propandiol and combinations thereof and the other repeating unit is a lactone selected from the

group consisting of glycolide, lactide, ϵ -caprolactone and combinations thereof.

12. The method of claim 1 wherein the aliphatic polyoxaester has the following repeating units:

$$[O-C(O)-C(R_1)(R_2)-O-R_3-O-C(R_1)(R_2)-C(O)-]$$

 $[-O-R_4-]_A$; and
 $([-O-R_5-C(O)]_P-O-)_TG$.

10

5

13. The method of claim 2 wherein the polyoxaester has the following repeating units:

$$[-O-C(O)-R_{30}-C(O)-],$$

$$[-O-R'_{4}]_{A',}$$

$$[O-C(O)-C(R_{1})(R_{2})-O-R_{3}-O-C(R'_{1})(R'_{2})-C(O)-],$$

$$[-O-R_{4}]_{A,} \text{ and}$$

$$[O-R_{5}-C(O)-]$$

- wherein R₄ and R'₄ are independently selected from alkylene groups containing from 2 to 8 carbon atoms;
 A and A' are independently integers in the range of from 1 to about 2,000.
- 25 14. The method of claim 2 wherein the polyoxaester copolymer has the formula:

$$[-O-C(O)-R_{30}-C(O)-]$$

$$[-O-R'_{4}]_{A'}$$

$$[-O-C(O)-C(R_{1})(R_{2})-O-R_{3}-O-C(R'_{1})(R'_{2})-C(O)-]$$

$$[-O-R_{4}]_{A}-$$

$$[-O-R_{5}-C(O)]_{P}-O-)_{L}G$$

wherein R_4 and R'_4 are independently selected from alkylene groups containing from 2 to 8 carbon atoms; A and A' are independently integers in the range of from 1 to about 2,000.

15. The method of claim 1 wherein the polyoxaester copolymer is linked to one or more polymerizable regions.

15

10

- 16. The method of claim 1 wherein the polyoxaester copolymer has been crosslinked.
- 17. The method of claim 16 wherein the polyoxaester
 20 copolymer has been crosslinked by the addition of a coupling agent.
- 18. The method of claim 16 wherein the crosslinked polyoxaester copolymer has been contacted with water to form a hydrogel.
 - 19. The method of claim 2 wherein the barrier is a film.

- 20. The method of claim 2 wherein the barrier is a foam.
- 21. The method of claim 2 wherein the barrier is a felt.
- 5 22. The method of claim 2 wherein the barrier is a gel.
 - 23. The method of claim 2 wherein the barrier is a liquid.
- 10 24. The method of claim 1 wherein the polyoxaester is blended with a second polymer selected from the group consisting of homopolymer and copolymer of lactone type polymers with the repeating units described by formulas III and XI, aliphatic polyurethanes, polyether polyurethanes, polyester
- polyurethanes, polyethylene copolymers, polyamides, polyvinyl alcohols, poly(ethylene oxide), polypropylene oxide, polyethylene glycol, polypropylene glycol, polytetramethylene oxide,
- polyvinyl pyrrolidone, polyacrylamide, poly(hydroxy ethyl acrylate), poly(hydroxyethyl methacrylate), absorbable polyoxalates, absorbable polyanhydrides and combinations thereof.
- 25 25. A aliphatic polyoxaester having a first repeating unit of the formula:

$$[O-C(O)-C(R_1)(R_2)-O-R_3-O-C(R_1)(R_2)-C(O)-]$$

and a second repeating units are

 $[-0-R_4-]_A$; and

5

[O-R₅-C(O)-]_B.

wherein R_1 , R_1 , R_2 and R_2 are independently hydrogen or an alkyl group containing 1 to 8 carbon atoms; R_3 is an alkylene unit containing from 2 to 12 carbon atoms or is an oxyalkylene group of the following formula:

$$-[(CH2)C-O-]D-(CH2)E-$$
 IV

15

20

25

10

wherein C is an integer in the range of from 2 to about 5, D is an integer in the range of from about 0 to about 2,000, and E is an integer in the range of from about 2 to about 5, except when D is zero, in which case E will be an integer from 2 to 12; R_4 is an alkylene unit containing from 2 to 8 carbon atoms; A is an integer in the range of from 1 to 2,000; R_5 is selected from the group consisting of $C(R_6)(R_7)$ -, $-(CH_2)_3$ -0-, $-CH_2$ - CH_2 -O- CH_2 -, $-CR_8$ H- CH_2 -, $-(CH_2)_5$ -, $-(CH_2)_F$ -O-C(O)- and $-(CH_2)_F$ -C(O)- CH_2 -; R_6 and R_7 are independently hydrogen or an alkyl containing from 1 to 8 carbon atoms; R_8 is hydrogen or methyl; F is an integer in the range of from 2

ETH-1387

to 6; B is an integer in the range of from 1 to n such that the number average molecular weight of formula III is less than about 200,000.

- 5 26. The aliphatic polyoxaester of claim 25 wherein R_3 is an oxyalkylene group.
- 27. The aliphatic polyoxaester of claim 26 wherein the first repeating unit is derived from a dicarboxylic acid selected from the group consisting of 3,6-dioxaoctanedioic acid, 3,6,9-trioxaundecanedioic acid and combinations thereof.
- 28. The aliphatic polyoxaester of claim 25 wherein the second repeating unit is derived from a diol selected from the group consisting of 1,2-ethandiol, 1,2-propandiol, 1,3-propandiol and combinations thereof.
- 20 29. The aliphatic polyoxaester of claim 25 wherein the second repeating unit is derived from ethylene glycol.
- 30. The aliphatic polyoxaester of claim 25 wherein the second repeating unit is derived from a lactone selected from the group consisting of glycolide, lactide, ε-caprolactone and combinations thereof.

31. The aliphatic polyoxaester of claim 27 wherein the aliphatic polyoxaester has two second repeating units wherein one of the second repeating units is a diol selected from the group consisting of 1,2-ethandiol, 1,2-propandiol, 1,3-propandiol and combinations thereof and the other repeating unit is a lactone selected from the group consisting of glycolide, lactide, ε-caprolactone and combinations thereof.