Elektronik I Dersi 1. Ödevi

Soru 1.

+q yüklü proton, sonsuz uzun levhalardan hangisine hangi noktada, hangi hızla ve açıyla çarpar? Çarpma anındaki kinetik enerjisi eV cinsinden ne kadardır?

 $v0=10^5$ m/sn (ilk hız), +V=1kV (gerilim), L=4cm, q=1,6. 10^{-19} C, mp =1,6. 10^{-27} kg (proton kütlesi)'dır.

Soru 2.

- a) Oda sıcaklığında özgül direnci ρ_p =5 Ω cm olan p tipi ve 0,3 mm kalınlığında bir silisyum malzeme, bir yüzünden 1 μ m derinliğe kadar, fosforla 10¹⁹ cm⁻³ oranında ve homojen olarak katkılanmıştır. Bu malzemeden kesilen A=1cm² lik bir diyodun doyma akımı nedir?
- b) Bu diyottan geçirme yönünde 10A lik bir doğru akım akarken uçlarındaki gerilim ne kadardır?
- c) Bu diyot bir fotodiyot olarak kullanıldığında, parlak güneş altında kısa devre akımı 20mA olmaktadır. Aynı ışık altında diyodun açık devre gerilimini hesaplayınız.

p bölgesinde; μ_p =400cm²/Vs, μ_n =1000cm²/Vs, τ_n =8 μ s

n bölgesinde; $\mu_p=100\text{cm}^2/\text{Vs}$, $\mu_n=150\text{cm}^2/\text{Vs}$, $\tau_n=0.5~\mu\text{s}$

 $V_T = 25 \text{mV}, q = 1,6.10^{-19} \text{C}$

Soru 3.

Sert geçişli bir Si diyotta p tarafının özgül iletkenliği 1 (Ω cm) ⁻¹ ve n tarafının özgül iletkenliği 2 (Ω cm) ⁻¹ dir. p ve n tipi bölgelerin kalınlıkları eşit ve 10 μ m, kesiti 1 mm² dir. (μ_p =400cm²/Vs, μ_n =1000cm²/Vs, τ_n = τ_p =10 μ s, V_T =25mV, n_i =1,5.10¹⁰cm⁻³, q=1,6.10⁻¹⁹C)

- a) Diyottan geçen doyma akımı ne kadardır?
- b) Diyottan geçirme yönünde 1A akım akarken diyot uçlarındaki gerilim değerini hesaplayınız?
- c) Bu diyot fotodiyot olarak kullanıldığında parlak güneş altında açık devre gerilimi 2V olduğuna göre kısa devre akımı ne kadardır?

Soru 4

Bir Si diyotta katkı yoğunlukları $N_D=10^{18} cm^{-3}$, $N_A=10^{15} cm^{-3}$ olarak verilmiştir. $n_i=1,5.10^{10} cm^{-3}$, $q=1,6.10^{-19} C$, $\epsilon_r=12$, $\epsilon_o=8,85.10^{-14} F/cm$, $V_T=25 mV$ olduğuna göre oda sıcaklığında,

- a) Her iki bölgenin azınlık ve çoğunluk taşıyıcı yoğunluklarını bulunuz.
- b) Potansiyel Seddi yüksekliğini (V_B) hesaplayınız.
- c) Fakirleşmiş bölge genişliğini (w) hesaplayınız.

Soru 5.

T=300°K sıcaklıkta aşağıdaki şekilde verilen devrede kullanılan diyot ile ilgili n tipi bölgenin kalınlığı 10 μm, n tipi bölgenin özgül direnci 0,6 Ω cm, p tipi bölgenin kalınlığı 10 μm ve p tipi bölgenin özgül direnci 1,6 Ω cm'dir. diyodun kesiti 1 mm² olarak verilmiştir. Devre diyottan 84 mA akım akmaktadır. V_G =3cosωt (mV) olduğuna göre ωt=0° için V_{BB} gerilim değerini hesaplayınız.

 $(V_T=25\text{mV}, \mu_p=380\text{cm}^2/\text{Vs}, \mu_n=1000\text{cm}^2/\text{Vs}, n_i=1,5.10^{10}\text{cm}^{-3}, q=1,6.10^{-19}\text{C}, L_n=0,09\text{mm}, L_p=0,05\text{mm})$

Soru 6.

 V_{BE} =0.7V, β =100 olduğuna göre

a)
$$V_y = 7.5V$$
 ise $V_z = ?$

b)V=15V,
$$I_{ymax}$$
=0,5A, I_{zmin} =5mA, I_{zmax} =50mA ise R=?

Soru 7.

Şekildeki transistor için $I_{EBO}{=}2.10^{\text{-}13} A$, $~\beta_F{=}200,~\beta_R{=}5$ verilmiştir ($V_T{=}26mV)$

a) V_{CEQ} =10V olması için I_{CQ} ne olmalıdır.

 $b)I_{BQ},\,V_{BEQ}$ ve R_B nin değerlerini bulunuz

c) Transistorun V_{CEQ} = 4V çalıştırılabilmesi için V_{BB} 'ye hangi değer verilmelidir.

Soru 8.

Şekildeki devrede

- a) V_1 =700mV için I_B =10 μ A ve V_2 =2.5V olmaktadır. Bu çalışma noktası için β =?
- b) V_1 gerilimi ΔV_1 =5mV arttırılırsa V_2 hangi yönde ve ne kadar değişir?
- c) I_B nin $0.1\mu A$ düşmesi için V_1 in değeri ne olmalıdır? Bu durumda I_C ve V_{CE} değerleri ne olur?

Soru 9.

Şekildeki devrede β=45, V_{CE}=5V, I_{CBO}≈0 olmak üzere R direncinin değerini bulunuz.

Soru 10.

Bir NMOS transistorden geçen doyma akımı 1mA'dir. $V_{Th}=1V$, W/L=20, $\mu_n=500 \text{cm}^2/V \text{s}$, $C_{ox}=5.10^{-8} \text{F/cm}^2$ olarak verilmiştir. V_{GS} ve V_{DS} gerilimleri ile MOS transistorde harcanan gücü bulunuz.