

# Process simulation of complex metallurgical Systems

**Advanced Process Modelling Forum 2013** 

© Siemens AG 2011. All rights reserved





"Process simulation of complex metallurgical systems"

Bernd Weiss/Ironmaking Technology APM Forum 2013

#### Contents

- Introduction
  - Portfolio
  - Ironmaking processes
  - Chemical challenge
- Approach to gPROMS
  - Development approach
  - Low fidelity
  - High fidelity

© Siemens AG 2011. All rights reserved

Page 2 2013-04-18 Bernd Weiss I MT IR TY DR

#### **Portfolio**

- Part of Siemens Industry Sector
- Technology, mechanical engineering, automation and electrical engineering for metallurgical plants in the areas of
  - New plants
  - Modernisation
  - Service



Blast furnaces



Smelting/Direct reduction



Steel plants



Mini mills



Continuous casting



Hot/Plate mills



Cold band



berna weiss

Long rolling Metallurgical services



Electrics



TIVITIK IY DK

Page 3

ZU 13-U4- 18

#### **Ironmaking processes**



- Business segment of business unit Siemens VAI Metals Technologies
- Competence for
  - Agglomeration, pelletising, sinter technologies
  - Conventional iron making
    - Blast furnace
  - Alternative iron making
    - Corex<sup>®</sup>
    - Finex®
    - Midrex®/DR
    - Finmet®

© Siemens AG 2011. All rights reserved

Page 4 2013-04-18 Bernd Weiss I MT IR TY DR

#### **Ironmaking processes**

# **SIEMENS**

#### Raw Materials for ironmaking











**Sinter Plant** 



Coal > Coke



Lump ore



Fine ore



**Pellets** 



Sinter

#### **Ironmaking Processes**



**Blast Furnaces** 



**FINEX®** 



**Bernd Weiss** 

DR Plants/ **MIDREX®** 

**COREX®** 





**Hot Metal** 



**Hot Briquetted Iron** 



**Direct Reduced Iron** 



© Siemens AG 2011. All rights Market





Processes besides conventional blast furnace iron making route:







Finex®



Midrex<sup>®</sup>
© Siemens AG 2011. All rights reserved

Page 6 2013-04-18 Bernd Weiss I MT IR TY DR

#### Chemical challenge - melter gasifier



#### **Chemical challenge**



© Siemens AG 2011. All rights reserved

Page 8 2013-04-18 Bernd Weiss I MT IR TY DR



#### **Chemical challenge**



© Siemens AG 2011. All rights reserved

Page 9 2013-04-18 Bernd Weiss I MT IR TY DR

#### Approach to gPROMS



#### **Motivation**

- Increased complexity of process development
- Increased flexibility for process setup on customer demands
- Additionally:
  - No standardized thermodynamics, flow sheeting

#### Approach to gPROMS

- Evaluations on state of the art in process simulation
  - Internal, external, guided with PSE
- Outcome: no standard process simulation tool suitable
  - Lack of thermodynamics
  - Unit operations
- Descision for gPROMS due to its flexiblity, customizability and functionality

© Siemens AG 2011. All rights reserved

Page 10 2013-04-18 Bernd Weiss I MT IR TY DR

#### **Development approach**



#### Two parallel implementations

- Low fidelity approach
  - Based on existing internal routines
  - Substitution of MS Excel implementations
  - Utilisation for "every day" project work
  - Global aim implementation of overall iron and steelmaking routes
    - Conventional (sinterplant, pelletising plant, coking plant, blast furnace, converter)
    - Alternative (sinterplant, pelletising plant, Corex, Finex, converter)
- High fidelity approach
  - Only for selected unit operations
  - Extended thermodynamic routines by using an interface to ChemApp
  - Utilisation for scientific investigations

© Siemens AG 2011. All rights reserved

Page 11 2013-04-18 Bernd Weiss I MT IR TY DR

#### **Low Fidelity Approach**



- Full capable metallurgic unit operation library building large flow sheets
- Based on conversion and distribution coefficient calculations as complex chemistry was not available
- Utilization of:
  - FO look up table for enthalpy calculations (based on HSC Chemistry 6.0)
  - IAPWS95 for steam parameters
  - Multiflash gibbs equilibrium for combustion calculations
  - MS Excel interface for results export
  - Linkage to MS Access ore/coal data base for raw material data import

#### Challenges:

- Process abstraction => MS Excel tool move to flow sheeting tool
- Initialisation procedures (recycles, non linear equation systems)

© Siemens AG 2011. All rights reserved

Page 12 2013-04-18 Bernd Weiss I MT IR TY DR

#### **Low Fidelity Approach**

#### Initialisation - Recycles



Page 13 2013-04-18 Bernd Weiss I MT IR TY DR

#### **Low Fidelity Approach - Status**



- Blast furnace ironmaking route
  - Sinter machine pending
  - Blast furnace started
  - Hot blast stoves + slag granulation envisaged
- Alternative ironmaking route
  - Corex® finished
  - Finex® finished
  - Midrex® + Corex gas based Midrex® process pending
- Outlook
  - Steelmaking:
    - BOF
    - EAF
  - Additionally:
    - Air separation unit
    - Power plants

© Siemens AG 2011. All rights reserved

Page 14 2013-04-18 Bernd Weiss I MT IR TY DR

#### **Low Fidelity Approach - Status**







- Idea: full thermodynamic implementation of selected unit operations for scientific investigations
- Basis: FactSage + ChemApp
  - FactSage: provides thermo chemical data and tools for thermodynamic calculations incl. GUI with fully capable metallurgic libraries
  - ChemApp: Calculation engine linkable to 3rd party software containing a rich set of subroutines for complex, multiphase chemical equilibria. It has to be fed with species data provided by FactSage
- Precondition: Interface gPROMS ChemApp
  - Linkage as a dynamic link library
  - Input file on chemical system from FactSage
  - Preselection of phase information/settings in FactSage



© Siemens AG 2011. All rights reserved

Page 16 2013-04-18 Bernd Weiss I MT IR TY DR





#### Procedure

- FactSage: .dat/.cst file is created based on all elements/species of the problem statement and expected solutions
- ChemApp: installed
- Interface ChemApp gPROMS:
   .dll file stored in fo-folder in installation directory
- gPROMS: .dat/.cst file stored under miscellaneous files



© Siemens AG 2011. All rights reserved

Page 17 2013-04-18 Bernd Weiss I MT IR TY DR

# V

## SIEMENS V A I

#### **High Fidelity Approach**



#### **High Fidelity Approach**



#### Problems

- Phase and solution systems selection in FactSage prior to .cst/.dat file
- Model abstraction: equilibria not reached in real processes
  - "distance to equilibrium" approach
  - Temperature approach
  - Further evaluations on possible solution systems selection to be used from FactSage

© Siemens AG 2011. All rights reserved

Page 19 2013-04-18 Bernd Weiss I MT IR TY DR

#### **Contact**



#### **Bernd Weiss**

Iron Making Technology
I IS MT IR TY DR

Turmstrasse 44 4031 Linz

Phone: 0043 - 732 6592 74829

Fax: 0043 - 732 6980 6466

Mobile: 0043 664 8844 8330

E-mail: <u>bernd.weiss@siemens.com</u>



© Siemens AG 2011. All rights reserved

Page 20 2013-04-18 Bernd Weiss I MT IR TY DR