

Grundlagen der Multimediatechnik - Tutorium

11. Besprechung Übungsblatt10

Stephan Amann

Universität Tübingen

03.02.2022

was wir heute vorhaben

- ► Besprechung Übungsblatt 10
- ► Tipps Übungsblatt 11
- ► Fragen
- ► Klausurvorbereitung

Übungsblatt10 - Aufgabe 1.1: Schnitterkennung

Pixelbasiert:

$$D_{SAD} = \frac{1}{N_x \cdot N_y} \cdot \sum_{x=1}^{N_x} \sum_{y=1}^{N_y} |I_i(x, y) - I_{i-1}(x, y)|$$

 $mit N_x = Bildbreite, N_y = Bildhöhe$

Falls $D_{SAD} > Threshold T \Rightarrow Harter Schnitt$

Vorteil: geringe Komplexität, robuste Ergebnisse Nachteil: hohe Fehlerraten bei starker Bewegung (Objekt oder Kamera)

Ubungsblatt10 - Aufgabe 1.1: Schnitterkennung

► **Histogrammbasiert:** Wie Pixelbasiert, mit absoluter Differenz über Histogramm als Kriterium.

Alternativ: quadrierte Differenz oder absolute Differenz über kumulierte Histogramme.

$$\sum_{r,g,b} (|H_i(r,g,b) - H_{i-1}(r,g,b)|) \ge T$$

Ubungsblatt10 - Aufgabe 1.1: Schnitterkennung

► ECR (kantenbasiert): Basierend auf Veränderung von Kanten zwischen Bildern. Gut für harte Schnitte aber hohe Fehlerrate bei Überblendungen

$$ECR_{i-1} = \max\left(\frac{E_{in}}{s_{i-1}}, \frac{E_{out}}{s_i}\right)$$

Ubungsblatt10 - Aufgabe 1.1: Schnitterkennung

► Kantenorientierter Kontrast: Erkennung von Uberblendungen basierend auf Verhältnis von starken und schwachen Kanten. Dominanz schwacher Kanten signalisiert Überblendung

EC(i)	Kanten
≈ 0	Keine ausgeprägten Kanten
0 < EC(i) < 1	Schwache Kanten dominieren
≈ 1	Schwache und starke Kanten
1 < EC(i) < 2	Starke Kanten dominieren
≈ 2	Nur starke Kanten

Übungsblatt10 - Aufgabe 1.2: Optischer Fluss

▶ Vektorfeld der Verschiebung der Grauwerte oder Farbpunkte **zwischen** zwei oder mehreren Bildern über die Zeit gesehen.

Übungsblatt10 - Aufgabe 3.1: Maskierungsschwellen

1.

- Maskierungsschwellen aus dem psychoakustischen Modell werden mit tatsächlichem Signalpegel (pro Teilband) verglichen
 - Verdeckte Signalanteile werden nicht codiert!
- Es genügt bei teilweiser Maskierung eine geringere Bitauflösung
 - Nur "Differenz" oberhalb der Maskierungsschwelle wird wahrgenommen!

Übungsblatt10 - Aufgabe 3.2: MDCT

2. MDCT nutzt überlagernde Blöcke (siehe Grafik), nicht überlappende Blöcke können zu Audioartefakten bei der Rücktransformation führen.

Doppelte Signalanteile heben sich gegenseitig auf.

Tipps Übungsblatt 11

LETZTES ÜBUNGSBLATT!

- 1. Levenshtein-Distanz
 - siehe Foliensatz 11 Dynamic Time Warping ab Folie 06
 - Tabellen dürfen auch in Excel gemacht werden und Screenshots davon in Latex-Dokument eingefügt werden.
- 2. Gestenerkennung
 - siehe Foliensatz 11 Dynamic Time Warping
 - siehe Foliensatz 13 Gestenanalyse
- 3. Dynamic Time Warping
 - siehe Foliensatz 11 Dynamic Time Warping
 - Tabellen dürfen auch in Excel gemacht werden und Screenshots davon in Latex-Dokument eingefügt werden.

► Fragen?

Klausuraufgaben - Signalverarbeitung

- 1. Differenziere Nyquist Frequenz von Nyquist Rate.
- 2. Wie hoch muss nach dem Nyquist-Shannon-Abtasttheorem die Abtastfrequenz f_{abtast} mindestens sein, wenn ein Sinus-Signal eine Frequenz von 1000Hz hat?

Klausuraufgaben - Signalverarbeitung

Im folgenden ist eine Sinus-Schwingung mit der Frequenz $f=1000~{\rm Hz}$ abgebildet.

 Gehen Sie von einer minimalen Abtastrate nach dem Nyquist-Shannon-Abtasttheorem aus. Zeichnen Sie die Abtastpunkte einer möglichen Abtastung direkt in der abgebildeten Grafik ein. Konstruieren Sie anschließend skizzenhaft die resultierende Schwingung nach der Abtastung.

4. Nun sei die Abtastrate $f_{abtast} = f = 1000$ Hz. Zeichnen Sie abermals die möglichen Abtastpunkte direkt in die Grafik ein. Konstruieren Sie anschließend wiederholt skizzenhaft die resultierende Schwingung nach der Abtastung.

Klausuraufgaben - Bildkomprimierung

- 1. Erklären Sie die Begriffe Ortsauflösung und Kontrastauflösung.
- 2. Nennen Sie die einzelnen Schritte der JPEG-Kompression. Markieren Sie dabei die Schritte, die verlustbehaftet sind.
- 3. Was ist der Vorteil von DCT bei Bildkompression gegenüber der Fouriertransformation?

Klausuraufgaben - Bildkomprimierung

- 4. Matrix m ist durch Anwendung der Diskreten Cosinustransformation entstanden. Zeichnen Sie das Schema, nach dem die Werte umsortiert werden, in die Matrix m ein.
- 5. Wie heißt dieses Schema? Warum wird es angewendet? Beziehen Sie Ihre Erklärung auf die obige Matrix m.

Klausuraufgaben - Audio-Kompression

- 1. Nennen Sie die Schritte der MP3-Kompression
- 2. Erklären Sie die Vorteile der MDCT bei der Audio-Kompression.
- 3. Erklären Sie anhand einer Skizze, was Maskierungsschwellen sind.
- 4. Was ist das psychoakustische Modell?
- 5. Was versteht man unter VBR und wo hat es Vorteile?

Klausuraufgaben - Video-Kompression

- Nennen Sie die drei in MPEG-1 auftretenden Frametypen und beschreiben Sie sie kurz.
- 2. Zeichnen Sie mit Pfeilen die Beziehungen zwischen den einzelnen Frames in die Abbildung ein.

- 3. Was ist eine Group of Pictures? Erklären Sie kurz und zeichnen Sie gegebenenfalls alle GOPs in die obige Abbildung ein.
- 4. Welcher Frametyp besitzt die höchste Kompressionsrate?

Klausuraufgaben - Videoanalyse

- 1. Erklären Sie die Schnitterkennung mit Hilfe von Histogrammen.
- 2. Nennen Sie zwei Probleme, die dabei auftreten können.
- 3. Erklären Sie die Schnitterkennung mit Hilfe der Edge-Change-Ratio (ECR).
- 4. Nennen Sie zwei Probleme, die dabei auftreten können.
- Tragen Sie in je ein Diagramm ein, wie sich die ECR mit der Zeit ändert bei
 - einer Überblendung
 - einem harten Schnitt

