10/17

Evolution of Microproussons

8051 8051 8048 PANUSSOR.

lembedded system

Ithenium 64-bit Rise penkium

D68 80486 80386 32bit;

80286

8088 Shix

8086-16 bix dale, 20 bit add 8085- CLA76)

8080 8008

4004 (1971)

Special purpose processor

Smi kches

Pullers.

2/4/14

8086 microprocesson Anchitecture & Signals.

CPU on a chip is mp

16 bix

ALU/CU is inxergrated on a chip.

MP is a brain

Mc is a body

INTEL Developed 4004 in 1971 fox calculation.

DAXA, Speed (no: of bits at one second), memory are Parameter of MP.

For more study materials>www.ktustudents.in

LP address - Starting address.

IP address - Address of encuring enstauction. 8086: pipewined processos Disadvantes - offset address means file address in Franching n folder. 1-) FI - IP always increment address F1 E1 E2 E3 E4 E5 2 -> F2 33 radaless - Skalting addiess of Stack. F2 F3 F4 F5 overlapping letching and Execution Brack pointer - point to date. Working - total time -> Physical To find the code segment address me use the Status FLAG REGISTERS above equath (eqth 0) for that we use an ALU(E) XXXX OF DF IFFSF ZF X AF X PF X PF X CF Opof & goes to Memory Intuface then feether the instauction from quint(FIFO) mly then insut into VAuxillary Flag que LFIFO). Then the first entruction moves to Interrupt flag 1 1= Enable Intern Zero Flag, 1= result= 1= Enable "
6 = Disoble "
6 = Disoble "
6 gn Flag control sim it decoder of resembly language to mic language. Register Bank is handled by programme. overflow flag Data move to ALU from Register bank, then performs 1= Orenflow Directo flag 1= MSB of result is (-ve)
1= Auto decrement the operations. At last the final account is moved 0=no 11 6 - 4 Increment 0 = MSB of resultis octre) to Register Bank to store through A-Bus. Trap Flag Parity flag 1= Bingle Stepping = nibble pypeaning carry fing 8085: Non pipelined processos. to higher nibble. 1 = carry out of 0= Do was beatour. 0 = No such Parity: Depending on the no: of ones. FI E, F2 E2 F3 E3 F4 F4 F5 E5 It carry coming to HL from 1011 10000 ← Total time taken. -1011 Stored in Auxillary frag be Passed. will be Passed.

Signed numberts +ve or -re eg: 1001, 45 um ve minber. Memory Organisation: Physical unaigned number only tre. · In the case of over flow we can't use sign flag. IMB Ix can be applied only to a range (0-7F) 512 KB 512KB higher bank lower bank Trap flag: whenever an interrupt occurs during address range: Encuting then we use debugging for that purpose H0000H 000 OIH 0,002 H cue use inis flag. 000 03 H 0004 H KTUStudent 00005H Intersupt flag: Incoming call during a game AND FEFFE Desection flag: To encrement / decrement FFFFFH Selected when Ao=0. the eneution of a set of instructions. Sclected when BHE = 0 maximum 40] Vcc Signed numbers. GND AD 4 34 7 AD15 139] ADIG | S3 A13 -128 -10 +127 minima 37 AD17/54 ADIZ mode. AD11 -80 100 1FH 36 ADIS 155 ADIO cg: 37H 0011 0111 34 42H ADq 34 BHE 152 1001 29 AD5 AD4 0110 0000 31 R Q / GTO - (HOLD) AD6 ROLGT (HLDA) CF= 0 SF = 0 AD5 I 30 (WR) PF= 1 AD4 LOCK ZF=0 (M/Id) AD_3 Sz 28 (DT/R) AD_2 Memory organization. 151 56 (DEW) ADI ADO [(ALE) 7 950 INTA MMI Q51 Test INTR RESET CLK

minimum mode - Single processor ? Two mode of maximum mode - Mulki processor.) operations. 51 , 52 , Test, becomes high when i/o = 0 machine cycle So <u>Operations</u> 5, 0 -> INTA cycle (Acknowldgement) 1 -> 1/0 Read o - Ylo write $i \rightarrow half$ **KTUStudents** o -> oprode fetch 1 -> memory read 0 -> memory write

Segment Selection.

34	53	Segments
0	0	ES SS CS/INO Segment OS.

1 1 - Inactive

250

- 0 No operation.
- 1 opcode fetch
- 0 ete Quem Cleared.
 - 1 Fetch remaining instruction.

Reset - clear everything Ready - The bus will ready to succeive / send signals Tesk - (min mode - only one MP man mode - multiple MP) To test whether the MP is free or not. 950, 951: at high volkage Instructh will fetch. (11) to check the status of quae. 50,51,52: Memory, No device, MP - Status can be chered using the values of 50,51,52. memory HLDA

- memory and 1/0 don't have direct connection.
- To bolve direct memory problems. HLD & HLDA CONTROLS DMAC.

> DMAC

Here MP 8086 is the Bus Master Al Had=1 MP seleases the control. This information is acknowledge ment to bMAC through HLDA. Then Signals pass to No how now No is the bus master. A Then hold=0, again MP becomes the bus master S5 - UNTR flag is concrespled by this pin.

DE Loutput Enable) 8284 Concept of EMH = 33% auty cycle 18 STB = 1-) acidres pass latch Enables Cunidirection ALE = 0 - Jakn Pass (bidirection: TRANS- RECEIVER) then DEN = 81 (so clash pass) ALE = 1 50% then DEN = 0 cative) ALE = 0 80% 3 latch bcz 20 bit addra In address thip we meed 2 latch biz 16 data. in addredata 11 A19 - A6 Mulliplening DT/R DEN Transneceives is disabled. 21 + 21 = 42A14-A16 D Receive dasa BHE by Multipleain D15 -170 56-4-53 52 Transmik daka J, WR BHE /ST AIg/So. MITO RD AD15 - AD6 1 (I/o read) IOR A1. / 57 (16) O (Ho) while) (4) ION MINIMUM MODE TIMING DIAGRAM 1 (M/y read) MEM R a) & Thun demultiplex. O (My write) MEMM T4. СЦΚ DT/R: (Data Taansmit / Receiver) Read 416/53 -- Ala 156 cycle. Control bus controls Read and White A16 ... A19, BHE · YLC: min-Vcc=1 man - VIC = 0. ALE MITO DTIR

52 51 50 PROCESSOR
0 0 0 inxempt INTA acknowledgment
0 0 1 Read I/o Post IORC
0 1 0 cusite I/o port IONIC
1 0 0 Instruction MRDC Mly Fetch 1 0 1 mly read MRDC 1 1 0 mly wik MMTC TOST 1 1 1 inackive None.
Uning clock and 3 sxaxus we can understand the vacue of ALE
If CLK - 1st state - address ALE= 1
If CLK-2nd State - Daxa ALt=0.
DT=1 -) write DT=0-) head
AMMNTC - Advanced memory waite controller.
MRDC - Memory Read controller.
MWTC - Memory curite controlle.

companison blw 8086 and 8088.

8088	8086
16 bik ALU and & bik data	16 bit processon with 16 bit ALU and 16 bit data bus.
Memory banning nox.	Memory is divided into two banks and CK+ is more complex
Bince data bus is & bit; it can transfer one byte in one cycle hence it is	Bince data bus is 16 bit, it can taanssee two bytes in one cycle here it is fastee
BHE is not needed ensua	BHE is needed to enable the heighte bank
pae fexen queue is 4 o byxes	pre fetch queue is 6 byte. 12 uses: M or I/o to differentiale het ween m/y & I/o, operal?
	16 bit processor with . 16 bit ALU and & bik data bus. Memory banning nok. Neceded hence cut is simple. Bince docks bus is & bik; it can kransfu one byte in one cycle hence it is stown. Bite is not needed instal as a rignal called 550 wheel for single Stepping pae fexch queue is 4 . bykes It when I/O OR M. Comp

