

orrelation

BSMS VIth SEMESTER, END-TERM EXAMINATION-2019 NAME OF THE SUBJECT: OBJECT ORIENTED PROGRAMMING CODE NO: DSMA36B19

ill Marks: 100 Time: 3 hours

aswer any ten (10) questions from the following:

 $[10 \times 10 = 100 \text{ Marks}]$

State whether the following statements are true or false, justify:

 $[10 \times 1]$

- (i) Templates are declared inside classes or functions.
- (ii) Different types of parameter are required for constructors.
- (iii) Base class is known as the subclass and derived class as super-class.
- (iv) Static methods can be use non static members.
- (v) A member function can't be used in a derived class that override.
- (vi) In an array, the index value of the first element is void.
- (vii) The scope resolution operator can be overloaded.
- (viii) It is not possible to specify the accessibility modifier for methods inside the interface.
- (ix) Templates should be global and should not be local.
- (x) It is possible for a base to inherit the constructor of its abstract class.
- 2. Answer the following questions in one word.

 $[10 \times 1]$

- (i) How can you prevent your class to be inherited further?
- (ii) How many instances can be created for an abstract class?
- (iii) What is the index value of the first element in an array?
- (iv) Which keyword can be used for overloading?
- (v) Can you specify the accessibility modifier for methods inside the interface?
- (vi) What is the default access specifier in a class definition?
- (vii) Is it possible for a class to inherit the constructor of its base class?
- (viii) Which OOPS concept is used as reuse mechanism?
- (ix) Can you allow a class to be inherited, but prevent a method from being overridden in C#?
- (x) Which OOPS concept exposes only necessary information to the calling functions?
- 3. (a) Define Operator Overloading. What are the restrictions on Operator Overloading?
 - (b) What are the advantages & disadvantages of structured analysis?

[(1+4)+5]

- 4. (a) What are Constructors? What are different types of arguments present in Objective Oriented Programming?
 - (b) Explain the concept of destructor? What is the difference between procedural and object-oriented programming?

[(1+3)+(3+3)]

- 5. (a) Write an algorithm, to add two complex numbers using binary operator overloading?
 - (b) What is object-oriented programming (OOP)? Explain the basic features of OOPs.

[5 + 5]

- 6. (a) What are the advantages & disadvantages of object oriented analysis?
 - (b) What do you mean by object oriented programming paradigm?

[5 + 5]

- 7. (a) What are abstract classes? What are the distinct characteristics of an abstract class? Write down the difference between abstract Class and Interface?
 - (b) What is access modifier? What are the various types of constructors in OOP? Explain

[(2+2+3)+3]

- 8. (a) What are the different phases in object-oriented software development?
 - (b) Explain different types of inheritance and State the features of an interface in object oriented programming?

[4 + 6]

- 9. (a) Define Virtual Function. Why are virtual functions needed?
 - (b) What are similarities between a class and a structure?

[(1+4)+5]

- 10. (a) Is there anything that cannot be overloaded?
 - (b) Define Stream. Write down some commonly used stream classes and explain them.

[4 + (2 + 4)]

- 11. (a) What are the conditions required for Polymorphism.
 - (b) What is a file? Write down the different types of parameters which are used in a file?

[4+(2+4)]

- 12. (a) Define a class and a structure. Write down the difference between a class and a structure.
 - (b) What is a pointer? What are the uses of pointers?

[(2+3)+(2+3)]

- 13. (a) Write down all the rules for overloading operator in OOP?
 - (b) What are the models used in object-oriented analysis? Explain.

[5 + 5]

* * * * * * * * * * *

BS-MS 6th SEMESTER, END-TERM EXAMINATION-2019

Subject Name: Discrete Mathematics Subject Code: DSMA36B17

Full Marks: 100 Time: 3 hours Symbols used here have their usual meanings

[50 Marks]

Answer all the following questions

1/If R and S be relations on a set A represented by the matrices

 $M_R = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \text{ and } M_S = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ Find the matrices that represent (i) $R \cup S$ (ii) $R \cap S$ (iii) $R \circ S$ (iv) $S \circ R$ (v) R^{-1} (vi) S^{-1} .

[10]Draw the digraph representing the partial ordering $\{(a,b)|a \ divides \ b\}$ on the set {1, 2, 3, 4, 5, 6, 7, 8}. Reduce it to the Hasse diagram representing the given partial ordering. [5]

State and prove well-ordering principle.

[5]

4. State generalization of the Pigeonhole principle. How many integers between 1 and 300 (both inclusive) vare divisible by 5 but by neither 3 nor 7? [2+8=10]

5. Define binary and n-ary operations. If * is a binary operation on a set S which is associative, the inverse of every invertible element $a \in S$ is unique.

6. If $A = \left\{ x \in R | x \neq \frac{1}{2} \right\}$ and $f: A \to R$ is defined by $f(x) = \frac{4x}{2x-1}$, (i) find the range (f); (ii) show that f is invertible and (iii) find dom (f^{-1}) , range (f^{-1}) and a formula for f^{-1} .

7. In how many ways can 2 letters be selected from the set $\{a, b, c, d\}$ when repetition of the letters is allowed if the order does not matter? [4]

Group-B

[50 Marks]

Answer all the following questions

(a) Define Boolean Algebra. In a Boolean Algebra $B, a, b, c \in B$ prove that a + a'b = a + b.

(b) Define Conjunctive and Disjunctive normal form of a Boolean function with example.

(c) In a Boolean Algebra $B, \alpha, b, c \in B$ reduce the following Boolean function to its

Conjunctive normal form abc + (a + b)(b + c).

[(1+2)+3+4]

1. (a) Prove that if a connected graph G is Eulerian, then every vertex of G has even degree.

(b) Find the logic circuit that represents the following Boolean function. Find also an

equivalent simpler circuit.

				-
A Division of	$\int x$	y	Z	f(x,y,z)
	1	1	1	1 /
	1	1	0	0
00	1	0	1.	0
4)	1	0	0	0
-	0	1	1	1
12,0	0	*1	. 0	0
7	0	0	1	0
1/2	0	0	0	0
	0	-	- Contractor Contractor	and the same of th

2xy - un - > P.T.O.

	1. (241)	401	401
7) 6 (202-1)	-12(241)	24-;1	20,

(a) Let G be a simple connected graph with 10 vertices and 9 edges. Does G contain a verter dégreé1?Justify your answer.

(b) Find a minimal spanning tree for the following table of distances in kilometers between six village

		Α	В	C	D	E i	F	
	A	Alle of the	6	8	9	-5	4	
	B	6		3	.6	7	-5	2
	C	-8	. 3	_	9	10	2	
1	D	9	6	9	<u>-</u>	12	8	
	Е	5,,	7	10	12	-	7	
	F	4	5	2	8	7		0

4. (a) What is the chromatic number of $K_{3,4}$.

(bipositic gro in

(b) Explain one application of graph coloring.

(c) Solve the difference equation for the given initial conditions

$$2a_n = 7a_{n-1} - 3a_{n-2}, n \ge 2, a_0 = 1, a_1 = 1.$$

5. (a) Define spanning tree with suitable example.

(b) Prove that every connected graph has at least one spanning tree.

Scanned by CamScanner

[1+

	-						١
ment No.		. marrie	, present	_	 	 	

S₆(DSMA36B20): MA

BS-MS 6th SEMESTER, END TERM EXAMINATION – 2019 NAME OF THE SUBJECT: Number Theory and Cryptology CODE NO: DSMA36B20

ull Marks: 100

Time: 3 Hours

Symbols used here have their usual meanings

Group - A

nswer the following questions:

Marks: 50

- 1. (a) What do you mean by Linear Diophantine equation? Prove that for a linear Diophantine equation ax + by = c, for a, b, c being integers, has integer solution iff d|c, where d = g.c.d(a, b) and moreover if $x = x_0, y = y_0$ is a particular solution, then any solution can be written as $x = x_0 + \frac{b}{d}t$, $y = y_0 \frac{a}{d}t$, where t is any integer.
 - (b) Twenty three weary travellers entered the outskirts of a lush green and beautiful forest. They found 63 equal heaps of plantains (fruits) and 7 single fruits. They divided them equally. Find the number of fruits in each heap.

$$[1+5+4]=10$$

- 2/ (a) Define Euler's phi function and show that it is multiplicative.
 - (b) Prove that $\varphi(n) = \varphi(n+2)$ is satisfied by n = 2(2p-1), whenever p and 2p-1 are both odd primes.

$$[2+6+2]=10$$

- 3. (a) Prove that $a \equiv b \pmod{m}$ iff a and b have the same remainders with respect to m.
 - (b) Find the remainder when the sum

$$S \neq 1! + 2! + 3! + \cdots + 1000!$$
 is divided by 8.

State and prove the Chinese Remainder Theorem.

$$[3+2+(1+4)]=10$$

4. (a) Solve the system of linear congruence's

$$x \equiv 3 \pmod{11}$$

$$x \equiv 5 \pmod{19}$$

$$x \equiv 10 \pmod{29}$$

State and prove the fundamental theorem of arithmetic in its canonical form.

$$[4+2+4]=10$$

- 5. (a) What is Fermat's Little Theorem and Wilson's Theorem?
 - (b) What do you mean by order of an integer? Find the order of 5 (mod 29).
 - (c) List the primitive roots of 10.

[3+2+2.5+2.5] =

Group - E

Answer the following questions:

Marks: 50

- 1. a) Encrypt the message "Attack is today" by using Autokey Cipher where $k_1 = 12$.
 - b) Write a short note on Playfair Cipher.
 - c) Find $(x^5 + x^2 + x) \otimes (x^7 + x^4 + x^3 + x^2 + x)$ in GF (2⁸) with irreducible polynomial $(x^8 + x^4 + x^3 + x + 1)$.
 - d) Discuss D-boxes for modern block cipher.

[3+5+3+5]=1

- 2. a) Prove that mixer in the Feistel Cipher is self-invertible.
 - 5) Define feedback shift register and Blowfish.
 - c) Write a short note on Round of a product cipher.
 - d) Briefly discuss data units of AES.

[3 + [2+2] + 5 + 5] = 17

- 3. a) Prove that in RSA cryptosystem, encryption and decryption algorithms are inverses of each other.
 - b) Discuss encryption and decryption algorithms of Rabin cryptosystem.
 - c) Do a comparison between symmetric and asymmetric key cryptography.
 - d) Prove that the remainder of an integer when divided by 8 is the same as the remainder of division of the rightmost three digits by 8.

Consider the two state Markov chain with transition matrix $P = \begin{pmatrix} 1-a & a \\ b & 1-b \end{pmatrix}$, 0 < a, b < 1,

 $s^{a+b} < 1$. Find P^n and hence find $\lim_{n\to\infty} P^n$.

[10]

[10]

[3+7]

[7]

[7]

[5]

Answer all the following questions:

- 1. Define birth and death processes. Derive steady state solutions of birth and death processes.
- 2. Describe application of birth and death processes in M/M/s queue.
- 3. Describe Erlang's loss model.
- 4. Describe Renewal process in discrete time. Derive relation between F(s) and P(s).
- 5. Show that if N(t) is a Poisson process and s < t, then $\Pr\{N(s) = k | N(t) = n\} = \binom{n}{k} \left(\frac{s}{t}\right)^k \left(1 \frac{s}{t}\right)^{n-k}$
- Show that under the postulates of a Poisson process, a stochastic process N(t) follows Poisson distribution with mean λt , i.e., $p_n(t) = \frac{e^{-\lambda t}(\lambda t)^n}{n!}$, n = 0, 1, 2, ...
- 7. Show that random selection from a Poisson process yields a Poisson Process.

S₆(DSMA36B16): MA

BSMS-6th SEMESTER, END-TERM EXAMINATION-2019 NAME OF THE SUBJECT: Complex Analysis SUBJECT CODE: DSMA36B16

Full Marks: 100

Time: 3 hours

Group-A

Marks: 50

Answer all questions:

- 1. (a) If f(z) is a continuous function in a domain D and if for every closed contour C in the domain D, then prove that $\int_C f(z)dz = 0$.
 - (b) Obtain Laurent's series which represents the function $\frac{z^2-1}{(z+2)(z+3)}$ in the regions
 - (i) 2 < |z| < 3, (ii) |z| > 3
 - (c) If f(z) is analytic within and on a simple closed contour C and f(z) is not constant. Then prove that |f(z)| reaches its maximum value on C.
 - (d) Evaluate: $\int_{|z|=4} \frac{(3z^3+2)}{(z-1)(z^2+9)} dz$

$$[5 + (2.5 + 2.5) + 6 + 4 = 20]$$

- 2. (a) By the method of contour integration prove that $\int_0^{2\pi} e^{-\cos\theta} \cos(n\theta + \sin\theta) d\theta = \frac{2\pi(-1)^n}{n!}$, where n is a positive integer.
 - (b) State and prove Cauchy's integral formula.
 - (c) Evaluate: $\int_C \frac{\tan(\frac{z}{2})}{(z-x_0)^2} dz$, where C is the square whose sides lie along the lines $x = \pm 2$, $y = \pm 2$ and it is described in positive sense, where $|x_0| < 2$.

$$[5+5+5=15]$$

- 3. (a) Let f(z) be analytic on $D: |z z_0| < R$ and $|f(z)| \le |f(z_0)|$, for all $z \in D$, then prove that f(z) is a constant function on D having the constant value $f(z_0)$.
- (b) Evaluate the residues of $\frac{z^3}{(z-1)(z-2)(z-3)}$ at z=1,2,3 and infinity.
 - By the method of contour integration prove that $\int_0^\infty \frac{\cos mx}{x^2 + a^2} dx = \frac{\pi e^{-ma}}{2a}$, where m > 0, a > 0.

$$[6+4+5=15]$$

P.T.O

Group B

- 1. (a) Which of the function is discontinuous at z = 0?
 - (i) $\sin z$, (ii) $\cos z$,
- (iii) tan z,
- (b) A single valued function f(z) defined in a domain D is said to be analytic at a point z_0 of Dif it is differentiable:
 - (i) at z_0 , (ii) at the origin, (iii) at some neighbourhood of z_0 , (iv) at some deleted neighbourhood of z_0 .
- (c) A harmonic conjugate of $u(x, y) = e^x \sin y$ is:
 - (i) $e^y \cos x$,
- (ii) $e^x \cos y$, (iii) $-e^x \cos y + 1$, (iv) $\frac{e^y}{\sin x}$
- (d) Which of the following is not correct for analytic functions f(z) and g(z) in a region R? (i) f(z) + g(z) is analytic in R, (ii) f(z) - g(z) is analytic in R, (iii) $f(z) \cdot g(z)$ is analytic in R, (iv) f(z)/g(z) is analytic in R.
- (e) An analytic function with constant modulus is:
- (ii) may be variable or constant,
- (iii) constant,
- (iv) none of these.
 - [10]
- $\sqrt{2}$. What do you mean by critical points? If the mapping w = f(z) is conformal, then show that f(z) is an analytic function of z.
 - [2+6]
 - 3. Establish the relation $w = \frac{iz+2}{4z+i}$ transforms the real axis in z-plane to a circle in the w-plane. Find the centre and the radius of the circle and the point in the z-plane which is mapped on the centre of the circle. [6]
- 4. State Cauchy-Riemann equation in polar form. Find the orthogonal trajectory of the family of curves $x^2 - y^2 + x = c$.
 - [2+5]
- 5. Find the analytic function whose imaginary part is $\frac{x-y}{x^2+y^2}$ and find the real part also.
- [6]
- Define fixed points. Find the fixed points and the normal form of the bilinear transformation w = $\frac{3iz+1}{z}$. Discuss the nature of this transformation.
 - [2+5]
- Find the transformation which maps outside |z| = 1, on the half plane $R(w) \ge 0$, so that the points z = 1, -i, -1 corresponds to w = i, 0, -i respectively.
 - [6]