Peer-to-peer risk-sharing schemes with heterogeneity and infinite-mean losses

Ka Long Chiu (Joint work with Tim J. Boonen) 2025-07-06

Department of Statistics and Actuarial Science, School of Computing and Data Science, The University of Hong Kong

Where do infinite-mean losses arise from?

2/22

Where do infinite-mean losses arise from?

- Natural disasters, e.g., earthquakes and hurricanes catastrophic (infinite-mean) losses
- Want: protection **①** against them
- How?

• Traditional insurance:

- Traditional insurance:
 - Centralized:

- Traditional insurance:
 - Centralized:

• Fails 🛕 due to the uninsurability

- Traditional insurance:
 - Centralized:

- Fails **A** due to the *uninsurability*
- P2P risk sharing:

- Traditional insurance:
 - Centralized:

- Fails **A** due to the *uninsurability*
- P2P risk sharing:
 - Decentralized:

- Traditional insurance:
 - Centralized:

- Fails **1** due to the *uninsurability*
- P2P risk sharing:
 - Decentralized:

• Does it work?

Diversification of infinite-mean losses?

• "Conventional wisdom": diversification is good \(\omega\) (don't put all your eggs \(\begin{align*}\text{\text{\text{\text{\text{d}}}}\)...\)

Diversification of infinite-mean losses?

- "Conventional wisdom": diversification is good ♪ (don't put all your eggs ●●● in one basket ★...)
- Not quite applicable in this setting, as "diversifying" infinite-mean losses would indeed worsen the outcome (Ibragimov et al., 2009; Chen et al., 2024)!

• n agents, with initial losses X_1, \ldots, X_n

• θ_{ij} (or just θ_j): proportion of loss X_j allocated to agent i

ullet Y_i : loss after risk sharing for agent i

• Y_i : loss after risk sharing for agent i

→ All (linear) risk allocations:

$$Y_i = \sum_{j=1}^n \theta_{ij} X_j, \quad (\theta_{i1}, \dots, \theta_{in}), (\theta_{1j}, \dots, \theta_{nj}) \in \Delta_n,$$

where
$$\Delta_n := \{(\theta_1, \dots, \theta_n) \in [0, 1]^n : \sum_{i=1}^n \theta_i = 1\}.$$

P2P risk sharing with infinite-mean losses

Why not diversify infinite-mean losses?

- Chen et al. (2024, Theorem 1): $X_1 \leq_{\text{st}} \sum_{j=1}^n \theta_j X_j$ for all $(\theta_1, \dots, \theta_n) \in \Delta_n$
 - applicable to independent and identically distributed (iid) infinite-mean Pareto losses
 - Pareto losses: $X \sim \operatorname{Pareto}(\alpha)$ with shape parameter $\alpha > 0$ (and scale parameter 1), if its CDF is given by $F(x) = 1 (1/x)^{\alpha}, \quad x \ge 1.$
 - $X \leq_{\mathrm{st}} Y$ refers to the **first-order stochastic dominance**, i.e., $\mathbb{P}(X>t) \leq \mathbb{P}(Y>t)$ for all $t \in \mathbb{R}$

Why not diversify infinite-mean losses?

- Chen et al. (2024, Theorem 1): $X_1 \leq_{\text{st}} \sum_{j=1}^n \theta_j X_j$ for all $(\theta_1, \dots, \theta_n) \in \Delta_n$
 - applicable to independent and identically distributed (iid) infinite-mean Pareto losses
 - Pareto losses: $X \sim \operatorname{Pareto}(\alpha)$ with shape parameter $\alpha > 0$ (and scale parameter 1), if its CDF is given by $F(x) = 1 (1/x)^{\alpha}, \quad x \ge 1.$
 - $X \leq_{\mathrm{st}} Y$ refers to the first-order stochastic dominance, i.e., $\mathbb{P}(X>t) \leq \mathbb{P}(Y>t)$ for all $t \in \mathbb{R}$
- Interpretation: Having no diversification (just $Y_i = X_i$) is already the best among *linear* risk allocations of independent homogeneous (identically distributed) infinite-mean Pareto losses.

Why not diversify infinite-mean losses?

- Chen et al. (2024, Theorem 1): $X_1 \leq_{\text{st}} \sum_{j=1}^n \theta_j X_j$ for all $(\theta_1, \dots, \theta_n) \in \Delta_n$
 - applicable to independent and identically distributed (iid) infinite-mean Pareto losses
 - Pareto losses: $X \sim \operatorname{Pareto}(\alpha)$ with shape parameter $\alpha > 0$ (and scale parameter 1), if its CDF is given by $F(x) = 1 (1/x)^{\alpha}, \quad x \ge 1.$
 - $X \leq_{\mathrm{st}} Y$ refers to the first-order stochastic dominance, i.e., $\mathbb{P}(X>t) \leq \mathbb{P}(Y>t)$ for all $t \in \mathbb{R}$
- Interpretation: Having no diversification (just $Y_i = X_i$) is already the best among *linear* risk allocations of independent homogeneous (identically distributed) infinite-mean Pareto losses.
- Idea: How about nonlinear risk allocations and heterogeneous losses?

- **Heterogeneity:** introduced via the **two-group conditions**:
 - 1. X_1, \ldots, X_n are independent.
 - 2. First m losses X_1, \ldots, X_m are iid finite-mean.
 - 3. Remaining n-m losses X_{m+1},\ldots,X_n are iid infinite-mean.

• Nonlinearity:

• Linear risk allocations:

• Nonlinear risk allocations:

Nonlinearity:

• Linear risk allocations:

• Nonlinear risk allocations: $X_6 = X_6 \wedge d + (X_6 - d)_+$, where $x \wedge y := \min\{x,y\}$ and $x_+ := \max\{x,0\}$.

Nonlinearity:

• Nonlinear risk allocations: $X_6 = X_6^{\text{finite}} + X_6 - X_6^{\text{finite}}$, where $X_6^{\text{finite}} = F_1^{-1}(F_6(X_6))$, with F_i being the CDF of X_i and F_i^{-1} being its generalized inverse, i.e., $F_i^{-1}(p) = \inf\{x \in \mathbb{R} : F_i(x) \geq p\}$.

Three P2P risk-sharing schemes

Scheme [L]

• **Definition:** The scheme [L] is the set of all risk allocations taking the form $Y_i = \sum_{j=1}^n \theta_{ij} X_j$ for all $i=1,\ldots,n$, where $(\theta_{i1},\ldots,\theta_{in}) \in \Delta_n$ for all $i=1,\ldots,n$, and $(\theta_{1j},\ldots,\theta_{nj}) \in \Delta_n$ for all $j=1,\ldots,n$.

Scheme [L]

- **Definition:** The scheme [L] is the set of all risk allocations taking the form $Y_i = \sum_{j=1}^n \theta_{ij} X_j$ for all $i=1,\ldots,n$, where $(\theta_{i1},\ldots,\theta_{in}) \in \Delta_n$ for all $i=1,\ldots,n$, and $(\theta_{1j},\ldots,\theta_{nj}) \in \Delta_n$ for all $j=1,\ldots,n$.
- Risk-sharing rule in focus: Rule [L*], given by $Y_i = \frac{1}{m} \sum_{k=1}^m X_k$ for all $i=1,\ldots,m$, and $Y_j = X_j$ for all $j=m+1,\ldots,n$.

 First-order stochastic dominance under Pareto losses and two-group conditions:

$$\theta_1 X_1 + \dots + \theta_{m-1} X_{m-1} + (1 - \theta_1 - \dots - \theta_{m-1}) X_m \le_{\text{st}} \sum_{i=1}^n \theta_i X_i$$
 for all $(\theta_1, \dots, \theta_n) \in \Delta_n$.

 First-order stochastic dominance under Pareto losses and two-group conditions:

$$\theta_1 X_1 + \dots + \theta_{m-1} X_{m-1} + (1 - \theta_1 - \dots - \theta_{m-1}) X_m \le_{\text{st}} \sum_{i=1}^n \theta_i X_i$$
for all $(\theta_1, \dots, \theta_n) \in \Delta_n$.

• Interpretation: Redistributing all weights for infinite-mean losses to the finite-mean loss X_m yields improvements.

 First-order stochastic dominance under Pareto losses and two-group conditions:

$$\theta_1 X_1 + \dots + \theta_{m-1} X_{m-1} + (1 - \theta_1 - \dots - \theta_{m-1}) X_m \le_{\text{st}} \sum_{i=1}^n \theta_i X_i$$
 for all $(\theta_1, \dots, \theta_n) \in \Delta_n$.

• Interpretation: Redistributing all weights for infinite-mean losses to the finite-mean loss X_m yields improvements.

• Pareto optimality under Pareto losses and two-group conditions: The rule [L*] is Pareto optimal in scheme [L] under the preference \leq_{sc} , defined by $Y_i \leq_{sc} Z_i$ if

$$\begin{cases} Z_i \leq_{\operatorname{cx}} Y_i & \text{when } Y_i \text{ and } Z_i \text{ both have finite mean,} \\ Z_i \leq_{\operatorname{st}} Y_i & \text{otherwise,} \end{cases}$$

where \leq_{cx} refers to the **convex order**, i.e., $X \leq_{\mathrm{cx}} Y$ if $\mathbb{E}[\varphi(X)] \leq \mathbb{E}[\varphi(Y)]$ for all convex functions φ such that both expectations are finite.

 Pareto optimality: There does not exist another rule that is an improvement for all agents and a <u>strict</u> improvement for at least one agent.

Scheme [FR]

• **Definition:** Suppose F_j is continuous for all j = m + 1, ..., n. The scheme [FR] is the set of all risk allocations with the following form:

$$Y_i = \sum_{k=1}^{m} \theta_{ik} X_k + \sum_{k=m+1}^{n} \theta_{ik} X_k^{\text{finite}}$$

for all $i = 1, \ldots, m$, and

$$Y_j = \sum_{k=1}^{m} \theta_{jk} X_k + \sum_{k=m+1}^{n} \theta_{jk} X_k^{\text{finite}} + (X_j - X_j^{\text{finite}})$$

for all $j=m+1,\ldots,n$, where $X_k^{\mathrm{finite}}:=F_1^{-1}(F_k(X_k))$ for all $k=m+1,\ldots,n$, $(\theta_{i1},\ldots,\theta_{in})\in\Delta_n$ for all $i=1,\ldots,n$, and $(\theta_{1k},\ldots,\theta_{nk})\in\Delta_n$ for all $k=1,\ldots,n$.

Scheme [FR]

• **Definition:** Suppose F_j is continuous for all j = m + 1, ..., n. The scheme [FR] is the set of all risk allocations with the following form:

$$Y_i = \sum_{k=1}^{m} \theta_{ik} X_k + \sum_{k=m+1}^{n} \theta_{ik} X_k^{\text{finite}}$$

for all $i = 1, \ldots, m$, and

$$Y_j = \sum_{k=1}^{m} \theta_{jk} X_k + \sum_{k=m+1}^{n} \theta_{jk} X_k^{\text{finite}} + (X_j - X_j^{\text{finite}})$$

for all $j=m+1,\ldots,n$, where $X_k^{\mathrm{finite}}:=F_1^{-1}(F_k(X_k))$ for all $k=m+1,\ldots,n$, $(\theta_{i1},\ldots,\theta_{in})\in\Delta_n$ for all $i=1,\ldots,n$, and $(\theta_{1k},\ldots,\theta_{nk})\in\Delta_n$ for all $k=1,\ldots,n$.

$$X_6 - X_6^{\text{finite}} \quad X_6^{\text{finite}}$$

$$X_5 - X_5^{\text{finite}} \quad X_5^{\text{finite}} \quad \stackrel{\blacksquare}{\blacktriangle}$$

 X_2

Scheme [FR]

• Risk-sharing rule in focus: Rule [FR*], given by

$$Y_i = \frac{1}{n} (\sum_{k=1}^m X_k + \sum_{k=m+1}^n X_k^{\text{finite}})$$
 for all $i = 1, \dots, m$, and $Y_j = \frac{1}{n} (\sum_{k=1}^m X_k + \sum_{k=m+1}^n X_k^{\text{finite}}) + (X_j - X_j^{\text{finite}})$ for all $j = m+1, \dots, n$.

 Improvement for finite-mean agents under two-group conditions:

$$(1/n) \left(\sum_{k=1}^{m} X_k + \sum_{k=m+1}^{n} X_k^{\text{finite}} \right) \le_{\text{cx}} (1/m) \sum_{k=1}^{m} X_k$$

Properties of the rule [FR*]

 Improvement for finite-mean agents under two-group conditions:

$$(1/n) \left(\sum_{k=1}^{m} X_k + \sum_{k=m+1}^{n} X_k^{\text{finite}} \right) \le_{\text{cx}} (1/m) \sum_{k=1}^{m} X_k$$

- Improvement in finite-mean portion for infinite-mean agents under two-group conditions:
 - Rule [L*]: $Y_j = X_j = X_j^{\text{finite}} + (X_j X_j^{\text{finite}})$
 - Rule [FR*]:

$$Y_j = \frac{1}{n} \left(\sum_{k=1}^m X_k + \sum_{k=m+1}^n X_k^{\text{finite}} \right) + \left(X_j - X_j^{\text{finite}} \right)$$

• Improvement in finite-mean portion:

$$\frac{1}{n} \left(\sum_{k=1}^{m} X_k + \sum_{k=m+1}^{n} X_k^{\text{finite}} \right) \leq_{\text{cx}} X_j^{\text{finite}}.$$

Properties of the rule [FR*]

- Improvement from "diversification benefits" for infinite-mean agents under Pareto losses and two-group conditions:
 - Simplification under Pareto losses and two-group conditions: $X_1,\ldots,X_m \overset{\mathrm{iid}}{\sim} \mathrm{Pareto}(\alpha)$ and $X_{m+1},\ldots,X_n \overset{\mathrm{iid}}{\sim} \mathrm{Pareto}(\beta)$ with $\alpha>1$ and $\beta\leq 1 \Rightarrow X_j^{\mathrm{finite}}=X_j^{\beta/\alpha}$ for all $j=m+1,\ldots,n$.

Properties of the rule [FR*]

- Improvement from "diversification benefits" for infinite-mean agents under Pareto losses and two-group conditions:
 - Simplification under Pareto losses and two-group conditions: $X_1,\ldots,X_m \overset{\mathrm{iid}}{\sim} \mathrm{Pareto}(\alpha)$ and $X_{m+1},\ldots,X_n \overset{\mathrm{iid}}{\sim} \mathrm{Pareto}(\beta)$ with $\alpha>1$ and $\beta\leq 1 \Rightarrow X_j^{\mathrm{finite}}=X_j^{\beta/\alpha}$ for all $j=m+1,\ldots,n$.
 - Diversification benefits:

Rule	Finite-mean	Infinite-mean	
[L*] [FR*]	$X_j^{\beta/\alpha}$ $\frac{1}{n} \left(\sum_{k=1}^m X_k + \sum_{k=m+1}^n X_k^{\beta/\alpha} \right)$	$X_j - X_j^{\beta/\alpha}$ $X_j - X_j^{\beta/\alpha}$	Comonotonic Mixed with some independent losses

Scheme [LS]

• **Definition:** Let $d \in \mathbb{R}$ be a value such that $\mathbb{E}[X_{m+1} \wedge d] = \mathbb{E}[X_1]$. The scheme [LS] is the set of all risk allocations which take the following form:

$$Y_i = \sum_{k=1}^m \theta_{ik} X_k + \sum_{k=m+1}^n \theta_{ik} (X_k \wedge d)$$

for all $i = 1, \ldots, m$, and

$$Y_{j} = \sum_{k=1}^{m} \theta_{jk} X_{k} + \sum_{k=m+1}^{n} \theta_{jk} (X_{k} \wedge d) + (X_{j} - d)_{+}$$

for all $j=m+1,\ldots,n$, where $(\theta_{i1},\ldots,\theta_{in})\in\Delta_n$, for all $i=1,\ldots,n$, and $(\theta_{1k},\ldots,\theta_{nk})\in\Delta_n$ for all $k=1,\ldots,n$.

Scheme [LS]

• **Definition:** Let $d \in \mathbb{R}$ be a value such that $\mathbb{E}[X_{m+1} \wedge d] = \mathbb{E}[X_1]$. The scheme [LS] is the set of all risk allocations which take the following form:

$$Y_i = \sum_{k=1}^m \theta_{ik} X_k + \sum_{k=m+1}^n \theta_{ik} (X_k \wedge d)$$

for all $i = 1, \ldots, m$, and

$$Y_{j} = \sum_{k=1}^{m} \theta_{jk} X_{k} + \sum_{k=m+1}^{m} \theta_{jk} (X_{k} \wedge d) + (X_{j} - d)_{+}$$

for all $j=m+1,\ldots,n$, where $(\theta_{i1},\ldots,\theta_{in})\in\Delta_n$, for all $i=1,\ldots,n$, and $(\theta_{1k},\ldots,\theta_{nk})\in\Delta_n$ for all $k=1,\ldots,n$.

$$(X_6-d)_+$$
 $X_6 \wedge d$

$$(X_5-d)_+$$
 $X_5 \wedge d$

Scheme [LS]

• Risk-sharing rule in focus: Rule [LS*], given by $Y_i = \frac{1}{n}(\sum_{k=1}^m X_k + \sum_{k=m+1}^n X_k \wedge d)$ for all $i=1,\ldots,m$, and $Y_j = \frac{1}{n}(\sum_{k=1}^m X_k + \sum_{k=m+1}^n X_k \wedge d) + (X_j - d)_+$ for all $i=m+1,\ldots,n$.

Properties of the rule [LS*]

• Improvement for finite-mean agents under two-group conditions: If $X_1 \leq_{\mathrm{st}} X_{m+1}$, then

$$\frac{1}{n} \left(\sum_{i=1}^{m} X_i + \sum_{j=m+1}^{n} X_j \wedge d \right) \le_{\text{cx}} \frac{1}{n} \left(\sum_{i=1}^{m} X_i + \sum_{j=m+1}^{n} X_j^{\text{finite}} \right)$$

 \rightarrow [LS*] better than [FR*] better than [L*]

Properties of the rule [LS*]

• Improvement for finite-mean agents under two-group conditions: If $X_1 \leq_{\mathrm{st}} X_{m+1}$, then

$$\frac{1}{n} \left(\sum_{i=1}^{m} X_i + \sum_{j=m+1}^{n} X_j \wedge d \right) \le_{\text{cx}} \frac{1}{n} \left(\sum_{i=1}^{m} X_i + \sum_{j=m+1}^{n} X_j^{\text{finite}} \right)$$

- → [LS*] better than [FR*] better than [L*]
- Improvement in finite-mean portion for infinite-mean agents under two-group conditions:
 - Rule [L*]: $Y_j = X_j = X_j \wedge d + (X_j d)_+$
 - Rule [LS*]: $Y_j = \frac{1}{n} \left(\sum_{k=1}^m X_k + \sum_{k=m+1}^n X_k \wedge d \right) + (X_j - d)_+$
 - Improvement in finite-mean portion: Suppose $X_1 \leq_{\mathrm{st}} X_{m+1}$. Then $\mathrm{Var}\left(\frac{1}{n}(\sum_{k=1}^m X_k + \sum_{k=m+1}^n X_k \wedge d)\right) \leq \mathrm{Var}\left(X_j \wedge d\right)$ iff $n \geq \frac{1}{2}\Big(1 + \sqrt{1 + 4m[(\mathrm{Var}\left(X_1\right))/(\mathrm{Var}\left(X_{m+1} \wedge d\right)) 1]}\Big)$ (≈ 5.1098 when m = 3 and $\mathrm{Var}\left(X_1\right) = 8\,\mathrm{Var}\left(X_{m+1} \wedge d\right)$).

Properties of the rule [LS*]

 Improvement from "diversification benefits" for infinite-mean agents under two-group conditions:

Rule	Finite-mean	Infinite-mean	
[L*] [LS*]	$X_{j} \wedge d$ $\frac{1}{n} \left(\sum_{k=1}^{m} X_{k} + \sum_{k=m+1}^{n} X_{k} \wedge d \right)$	$(X_j - d)_+$ $(X_j - d)_+$	Comonotonic Mixed with some independent losses

Summary of the key results

→ The rule [LS*] may be considered to be the best one among these three rules.

- Chen, Y., P. Embrechts, and R. Wang (2024). An unexpected stochastic dominance: Pareto distributions, dependence, and diversification. *Operations Research*. Forthcoming.
- Ibragimov, R., D. Jaffee, and J. Walden (2009). Nondiversification traps in catastrophe insurance markets. *The Review of Financial Studies* 22(3), 959–993.