

Álgebra Lineal I Semana 10

Diana Avella Alaminos

Revisa el video

Video 1

- **1. Sean** $K = \mathbb{R}$, $V = \mathbb{R}^3$, $W = \mathbb{R}^2$, **con bases** B = ((1,2,3), (1,0,-1), (0,2,1)), $\Gamma = ((-1,4), (1,3))$. **Considera** $T, S \in \mathcal{L}(V,W)$ **dadas por** T(x,y,z) = (x+z,y+z), S(x,y,z) = (x,y).
- a) Encuentra $[T]_{B}^{\Gamma}$, $[S]_{B}^{\Gamma}$ y 5 $[S]_{B}^{\Gamma}$ + $[T]_{B}^{\Gamma}$.
- b) Encuentra $[5S + T]_B^\Gamma$ y compara con $5[S]_B^\Gamma + [T]_B^\Gamma$.

Revisa el video

Video 2

2. Sean $K=\mathbb{R}$, $V=W=\{a+bx\mid a,b\in\mathbb{R}\}$, con bases B=(5-x,2+3x), $\Gamma=(1+x,1-x)$. Considera $T,S\in\mathcal{L}(V,W)$ tales que

$$[T]_B^{\Gamma} = \begin{pmatrix} 3 & 1 \\ 0 & 1 \end{pmatrix} \qquad [S]_B^{\Gamma} = \begin{pmatrix} 2 & 1 \\ -4 & 0 \end{pmatrix}$$

Encuentra $\left[-3S+6T\right]_{B}^{\Gamma}$.

Revisa los videos

Video 3

Video 4

3. Sean V un espacio de dimensión 2 con base ordenada B y $T \in \mathcal{L}(V,V)$. Si $[T]_B^B = (a_{ij}) = A$

a) Calcula
$$A^2 - (a_{11} + a_{22})A + (a_{11}a_{22} - a_{12}a_{21})I_2$$
.

b) Si $T^2 = T \circ T$ ¿qué puedes concluir de la transformación $T^2 - (a_{11} + a_{22}) T + (a_{11}a_{22} - a_{12}a_{21}) id_V$?

Revisa el video

Video 5

4. Sean $K = \mathbb{R}$, $V = \{a + bx \mid a, b \in \mathbb{R}\}$, $W = \mathbb{R}^3$, **conbases** B = (3 + 2x, -2 + x), $\Gamma = ((1,2,3), (1,0,-1), (0,2,1))$. **Encuentra** $T \in \mathcal{L}(V,W)$ tal que

$$[T]_B^\Gamma = \left(egin{array}{cc} 1 & 3 \ -2 & -1 \ 3 & 2 \end{array}
ight)$$

Revisa el video

Video 6

5. Sean
$$A = \begin{pmatrix} 1 & 2 \\ -3 & 1 \end{pmatrix}$$

 $K = \mathbb{R}, V = W = \{a + bx \mid a, b \in \mathbb{R}\}, B = (x,1)$ y $\Gamma = (1,x)$. Describe $T \in \mathcal{L}(V,V)$ tal que $[T]_B^\Gamma = A$ y encuentra bases para su núcleo y su imagen.

Revisa el video

Video 7

6. Encuentra una base para el espacio $\mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$.

Video 8

7. Sea R_{θ} la rotación del plano θ grados. Encuentra $\left[R_{\theta}\right]_{B}^{B}$ con $B=(e_{1},e_{2})$.

a) Calcula $[R_{\theta_1}]_B^B [R_{\theta_2}]_B^B$

b) ¿Cómo es $R_{\theta_1} \circ R_{\theta_2}$? ¿ R_{θ_1} y R_{θ_2} conmutan?

c) Verifica que $\|R_{\theta}(v)\| = \|v\|$ para toda $v \in \mathbb{R}^2$.

Revisa el video

Video 9

- 8. Siguiendo la notación del ejercicio anterior calcula $\left[(R_{\theta})^{-1}\right]_{B}^{B}$ y determinaron ello cómo es $(R_{\theta})^{-1}$.
- 9. Sean $K=\mathbb{R}$, $V=W=\mathbb{R}^3$, $B=(e_1,e_2,e_3)$. Considera $T\in \mathcal{L}(V,W)$ dada por T(x,y,z)=(2x+z,y+3z,x+y+z)
- a) Encuentra $[T]_B^B$.
- b) Encuentra $([T]_B^B)^{-1}$.
- c) Encuentra T^{-1} .

