Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Практикум на ЭВМ Отчёт № 2 Параллельная программа на МРІ, реализующая однокубитное квантовое преобразование

Работу выполнил

Сайбель Т. А.

Постановка задачи и формат данных

- 1) Разработать схему распределенного хранения данных и параллельный алгоритм для реализации однокубитного квантового преобразования на кластерной системе.
- 2) Реализовать параллельную программу на C++ с использованием MPI, которая выполняет однокубитное квантовое преобразование над вектором состояний длины 2n, где n количество кубитов, по указанному номеру кубита k. Для работы с комплексными числами использовать стандартную библиотеку шаблонов.
- 3) Протестировать программу на системе Polus. В качестве теста использовать преобразование Адамара по номеру кубита:
 - а) Который соответствует номеру в списке группы плюс 1
 - b) 1
 - c) n

Начальное состояние вектора генерируется случайным образом и нормируется (тоже параллельно).

Формат командной строки: <Число кубитов n> <Номер кубита k> [<имя файла исходного вектора>] [<имя файла полученного вектора>]

Формат файла-вектора: Вектор представляется в виде бинарного файла следующего формата:

Tun	Значение	Описание
Число типа int	n – натуральное число	Число кубитов
Массив чисел типа complex <double></double>	2 ⁿ – комплексных чисел	Элементы вектора

Описание алгоритма

Однокубитная операция над комплексным входным вектором $\{a\ i\ \}$ размерности $2\ n$ задается двумя параметрами: комплексной матрицей $\{u\ ij\ \}$ размера $2x2\ u$ числом k от 1 до n (номер кубита, по которому проводится операция). Такая операция преобразует вектор $\{a\ i\ \}$ в $\{b\ i\ \}$ размерности $2\ n$, где все элементы вычисляются по следующей формуле:

$$b_{i1i2...ik...in} = \sum u_{ikjkai1i2...jk...in} = u_{ik0ai1i2...0k...in} + u_{ik1ai1i2...1k...injk} = 0$$

Преобразование Адамара задается следующей матрицей:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 1 & -1 \end{pmatrix}$$

Аппаратное обеспечение:Исследования проводились на вычислительном комплексе IBM Polus.

Анализ времени выполнения: Для оценки времени выполнения программы использовалась функция MPI_Wtime().

Результаты выполнения

Количество	Количество		мя работы (Ускорение			
кубитов (n)	процессов	k=1	k = 15	k = n	k = 1	k = 15	k = n	
	1	3,67	3,25809	3,25809	1	1	1	
	2	1,71777	1,59305	1,66339	2,13549369 2	2,0451900 44	1,9587048 14	
	4	0,926378	0,878584	0,847635	3,9598166 19	3,7083420 59	3,8437417 05	
25	8	0,462666	0,422991	0,422991	7,9285856 32	7,7025043 09	7,7025043 09	
	1	6,30076	6,35526	6,57416	1	1	1	
	2	3,43151	3,16936	3,28913	1,8361479 35	2,0052187 19	1,9987534 7	
	4	1,87668	1,90364	1,6776	3,3573971 06	3,3384778 63	3,9187887 46	
26	8	0,934767	0,846246	0,877242	6,7404604 57	7,5099439 17	7,4941236 28	
	1	12,6124	12,7143	13,1911	1	1	1	
	2	7,22634	6,5765	6,8021	1,7453371 97	1,9332927 85	1,9392687 55	
	4	3,495	3,21219	3,99298	3,6086981 4	3,9581407 08	3,3035727 7	
27	8	1,80447	1,66237	1,66313	6,9895315 52	7,6482973 1	7,9314906 23	

Результаты выполнения для 25 кубитов

Время выполнения для 25 кубитов

Ускорение для 25 кубитов

Результаты выполнения для 26 кубитов

Время выполнения для 26 кубитов

Ускорение для 26 кубитов

Результаты выполнения для 27 кубитов

Время выполения для 27 кубитов

Ускорение для 27 кубитов

Основные выводы

Распараллеливание ускоряет выполнение программы, но с увеличением числа процессов эффективность снижается из-за роста количества пересылок.