Lógicas Modales

Usos de Bisimulaciones

Carlos Areces & Raul Fervari

1er Cuatrimestre 2017, Córdoba, Argentina

Temario

- ▶ Propiedad de *tree model*.
- ▶ *n*-bisimulación.
- ▶ Propiedad de modelo finito vía selección.
- ▶ Propiedad de modelo finito vía filtraciones.

: Usos de Bisimulaciones

Carlos Areces & Raul Fervari

Bibliografía

► Capítulo 2 y apéndice A del Modal Logic Book (Blackburn, Venema & de Rijke)

Propiedad de modelo finito

Los resultados de invariancia pueden verse en forma negativa o positiva:

- ► (-): Nos hablan de los límites de la expresividad de los lenguajes modales.
- ► (+): Son una herramienta para transformar modelos en otros, modificando propiedades estructurales sin afectar la satisfacibilidad.

: Usos de Bisimulaciones Carlos Areces & Raul Fervari

: Usos de Bisimulaciones

Carlos Areces & Raul Fervari

Vamos a probar que el lenguaje modal básico tiene la propiedad de *modelo finito*: Si una fórmula es satisfecha en un modelo arbitrario, entonces es satisfacible en un modelo finito.

▶ **Propiedad de modelo finito**. Sea C una clase de modelos. Decimos que un lenguaje tiene la propiedad de modelo finito con respecto a C si vale lo siguiente: Si φ es una fórmula del lenguaje que es satisfacible en un modelo de C, entonces φ es satisfecha en un modelo finito de C.

Por ahora nos vamos a preocupar sólo por el caso en el que *C* es la clase de *todos* los modelos de la lógica modal básica.

: Usos de Bisimulaciones

Carlos Areces & Raul Fervari

Propiedad de modelo finito

Podemos empezar con la siguiente pregunta: ¿Cuánto del modelo ve una fórmula modal desde el estado actual?

► Intuitivamente, depende de cuál es el anidamiento de modalidades que la fórmula contiene.

El grado de una fórmula está definido de la siguiente manera:

$$\begin{array}{rcl} deg(p) & = & 0 \\ deg(\neg \varphi) & = & deg(\varphi) \\ deg(\varphi \wedge \psi) & = & max\{deg(\varphi), deg(\psi)\} \\ deg(\diamondsuit \varphi) & = & 1 + deg(\varphi) \end{array}$$

Propiedad de modelo finito

De nuevo podemos ver este resultado desde dos perspectivas:

- ► (-): El lenguaje modal básico carece del poder expresivo suficiente para forzar la existencia de modelos infinitos.
- ▶ (+): No tenemos que preocuparnos por modelos infinitos arbitrarios, porque siempre vamos a poder encontrar uno finito equivalente. Más adelante, esto nos va a permitir probar resultados de decidibilidad.

En particular, vamos a probar esta propiedad a través de un procedimiento llamado *de selección*.

: Usos de Bisimulaciones Carlos Areces & Raul Fervari

Propiedad de modelo finito

Veamos primero la siguiente propiedad.

Prop 1: Sea un lenguaje con una signatura finita (esto es, finitos símbolos proposicionales y modalidades).

- I. Para todo *n*, sólo hay un conjunto finito de fórmulas de grado a lo sumo *n* que no son lógicamente equivalentes.
- II. Para todo n, modelo \mathcal{M} y estado w de \mathcal{M} , el conjunto de todas las fórmulas de grado a lo sumo n que son satisfechas en w es equivalente a una sola fórmula.

Demostración: i) Por inducción en n. ii) Es inmediato de i).

: Usos de Bisimulaciones Carlos Areces & Raul Fervari : Usos de Bisimulaciones Carlos Areces & Raul Fervari

Veamos también que hay una manera de aproximarnos en forma finita a la noción de bisimulación. Esto nos va a servir más adelante para buscar un modelo finito.

n-bisimulación: Sean dos modelos \mathcal{M} y \mathcal{M}' , y w y w' dos mundos de \mathcal{M} y \mathcal{M}' respectivamente. Decimos que w y w' son n-bisimilares (notación $w \underset{n}{\longleftrightarrow} w'$) si existe una secuencia de relaciones binarias $Z_n \subseteq \cdots \subseteq Z_0$ con las siguientes propiedades (con $i+1 \le n$):

- I. wZ_nw'
- II. Si vZ_0v' entonces v y v' acuerdan en todas las proposiciones.
- III. Si $vZ_{i+1}v'$ y Rvu, entonces existe u' con R'v'u' y uZ_iu'
- IV. Si $vZ_{i+1}v'$ y R'v'u', entonces existe u con Rvu y uZ_iu'

: Usos de Bisimulaciones

Carlos Areces & Raul Fervari

Propiedad de modelo finito

Vamos a ver ahora que que con lenguajes de signatura finita, hay una coincidencia exacta entre equivalencia modal y n-bisimilaridad para todo n.

Prop 2: Sea un lenguaje con una signatura finita, y dos modelos \mathcal{M} y \mathcal{M}' de este lenguaje. Entonces, para todo w de \mathcal{M} y w' de \mathcal{M}' los siguientes puntos son equivalentes:

- I. $w \leftrightarrow_n w'$
- II. w y w' acuerdan en todas las fórmulas modales de grado a lo sumo n.

De esto se sigue que la noción de "*n*-bisimilaridad para todo *n*" y equivalencia modal coinciden.

Demostración: i) \Rightarrow ii) por inducción en n. La conversa se puede usar un argumento similar al de la prueba de Henessy-Milner.

Propiedad de modelo finito

La intuición nos dice que:

- ▶ Si $w \leftrightarrow_n w'$ entonces $w \lor w'$ son bisimilares hasta el nivel n.
- ▶ Si $w \leftrightarrow w'$ entonces $w \leftrightarrow_n w'$ para todo n.
- ▶ Pero la vuelta no vale (ejercicio: Pensar un contraejemplo).

: Usos de Bisimulaciones Carlos Areces & Raul Fervari

Propiedad de modelo finito

- ▶ Vamos a definir la *altura* de un modelo rooted de la siguiente manera: Sea \mathcal{M} un modelo con raíz w. El único elemento con altura 0 es w. Los estados con altura n+1 son los inmediatos sucesores de los estados con altura n que todavía no fueron asignados con una altura menor a n+1.
- La altura de un modelo \mathcal{M} es el máximo n tal que existe un estado en \mathcal{M} con altura n, si es que tal máximo existe. Si no existe, la altura de \mathcal{M} es infinita. La altura de w la notamos height(w).
- ▶ Para un natural k, la restricción de \mathcal{M} a k (notación: $\mathcal{M} \upharpoonright k$) está definida como: $(\mathcal{M} \upharpoonright k) = (W_k, \{R_{ik}\}, V_k)$ donde $W_k = \{v \mid height(v) \leq k\}, R_{ik} = R_i \cap (W_k \times W_k), \text{ y para cada } p, V_k(p) = V(p) \cap W_k.$

: Usos de Bisimulaciones Carlos Areces & Raul Fervari

: Usos de Bisimulaciones Carlos Areces & Raul Fervari

Ahora podemos decir más formalmente cuánto de un modelo ve una fórmula en relación a su profundidad modal.

Prop 3: Sea \mathcal{M} un modelo rooted, y sea k un número natural. Entonces, por cada estado w de $(\mathcal{M} \upharpoonright k)$ vale que $(\mathcal{M} \upharpoonright k), w \xrightarrow{l} \mathcal{M}, w$, donde l = k - height(w).

Demostración: Tomar la relación de identidad sobre $(\mathcal{M} \upharpoonright k)$.

▶ Poniendo juntas las proposiciones 2 y 3, podemos concluir que cualquier fórmula satisfacible puede ser satisfecha en un modelo de *altura finita*. Esto nos acerca a lo que buscamos, pero el modelo resultante todavía puede tener *branching infinito*.

: Usos de Bisimulaciones

Carlos Areces & Raul Fervari

Propiedad de modelo finito

- 3. Por inducción en $i \le k$ vamos a definir los conjuntos S_0, \ldots, S_k y modelo final \mathcal{M}_4 con dominio $S_0 \cup \cdots \cup S_k$. Los puntos en cada S_i van a tener altura i.
- 4. Definimos $S_0 = \{w_2\}$ y supongamos que S_0, \ldots, S_i ya fueron definidos. Fijemos un elemento v de S_i . Por la **Prop 1** hay sólo finitas fórmulas no equivalentes con grado a lo sumo k. Llamémoslas ψ_1, \ldots, ψ_m . Para cada una de esas fórmulas de la forma $\langle a \rangle \rho$ que vale en \mathcal{M}_3 en el punto v, seleccionemos un estado u de \mathcal{M}_3 tal que $R_a v u$ y $\mathcal{M}_3, u \models \rho$. Agreguemos todos los puntos us a S_{i+1} y repitamos este proceso de selección para cada punto de S_i .
- 5. Definimos a S_{i+1} como el conjunto de todos los puntos seleccionados de esta manera.

Propiedad de modelo finito

Vamos a obtener un modelo finito *seleccionando* puntos y descartando ramas no deseadas.

Teorema: Modelo Finito - vía selección. Sea φ una fórmula de la lógica modal básica. Si φ es satisfacible, entonces es satisfacible en un modelo finito.

Demostración: Sea φ una fórmula con $deg(\varphi) = k$. Vamos a restringir la signatura a los operadores modales y proposiciones que aparezcan en φ . Sea \mathcal{M}_1 , w_1 tal que \mathcal{M}_1 , $w_1 \models \varphi$.

- 1. Por la *tree model property*, existe \mathcal{M}_2 con forma de árbol y raíz w_2 tal que \mathcal{M}_2 , $w_2 \models \varphi$.
- 2. Sea $\mathcal{M}_3 = (\mathcal{M}_2 \upharpoonright k)$. Por la **Prop 3**, vale $\mathcal{M}_2, w_2 \xrightarrow{}_k \mathcal{M}_3, w_2$, y por la **Prop 2**, tenemos que $\mathcal{M}_3, w_2 \models \varphi$.

: Usos de Bisimulaciones Carlos Areces & Raul Fervari

Propiedad de modelo finito

- 6. Finalmente, definimos \mathcal{M}_4 como:
 - I. Su dominio es $S_0 \cup \cdots \cup S_k$. Como cada S_i es finito, \mathcal{M}_4 es finito.
 - II. Sus relaciones y valuaciones se obtienen restringiendo las relaciones y valuaciones de \mathcal{M}_3 al dominio de \mathcal{M}_4 .
- 7. No es difícil probar que $\mathcal{M}_4, w_2 \leftrightarrow_k \mathcal{M}_3, w_2$, y por lo tanto $\mathcal{M}_4, w_2 \models \varphi$.

: Usos de Bisimulaciones Carlos Areces & Raul Fervari : Usos de Bisimulaciones Carlos Areces & Raul Fervari

El método que acabamos de ver tiene sus ventajas y desventajas:

- (+): En muchos casos el método se adapta bien a distintas lógicas. Son los casos en los que las nociones de árbol, n-bisimulación y el procedimiento de selección en sí se adaptan bien.
- ▶ (-): El modelo de entrada puede satisfacer relaciones estructurales importantes para nosotros, pero el resultado es siempre un árbol finito, y esas propiedades usualmente se pierden. Eso hace que si queremos probar la propiedad de modelo finito para alguna clase de modelos en especial, probablemente tengamos que hacer más trabajo adicional.

: Usos de Bisimulaciones

Carlos Areces & Raul Fervari

Preliminares

Definición (Conjunto cerrado por subfórmulas)

Un conjunto de fórmulas Σ está cerrado por subfórmulas si para todo par de fórmulas φ y ψ , si $\varphi \in \Sigma$ y ψ es subfórmula de φ , entonces $\psi \in \Sigma$

Definición

Sea Σ un conjunto cerrado por subfórmulas, y sea $\mathcal{M} = \langle W, R, V \rangle$. Llamamos $\Longleftrightarrow_{\Sigma}$ a la relación de equivalencia sobre W dada por

$$\iff_{\Sigma} := \{(w, v) \mid \text{para todo } \varphi \in \Sigma, \mathcal{M}, w \models \varphi \text{ sii } \mathcal{M}, v \models \varphi\}$$

Aparecen las filtraciones

- ▶ Otro método de probar la propiedad de modelos finitos
- ► Idea:
 - ▶ No se *seleccionan* finitos sucesores (en un árbol)
 - ▶ En cambio, se *cocientan* todos los elementos del modelo
 - \blacktriangleright El criterio para cocientar es: "cosas que φ no puede distinguir"
- Aclaración:
 - ▶ En lo que sigue asumimos que hay una única relación
 - Pero la generalización es trivial

: Usos de Bisimulaciones Carlos Areces & Raul Fervari

Con ustedes, las filtraciones

Definición (Filtración)

Sea $\mathcal{M}=\langle W,R,V\rangle$ y sea Σ un conjunto cerrado por subfórmulas. Se llama *filtración de* \mathcal{M} *vía* Σ a cualquier modelo $\mathcal{M}^f=\langle W^f,R^f,V^f\rangle$ que cumpla

- I. $W^f = W/\longleftrightarrow_{\Sigma}$
- II. Si Rwv, entonces $R^f[w][v]$
- III. Si $R^f[w][v]$ y $\Diamond \varphi \in \Sigma$, entonces $\mathcal{M}, v \models \varphi$ implies $\mathcal{M}, w \models \Diamond \varphi$
- IV. $V^f(p) = \{ [w] \mid \mathcal{M}, w \models p \}$ para todo $p \in \Sigma$
- ▶ Intuitivamente, las condiciones ?? y ?? nos dicen qué pares tiene que tener R^f como mínimo (??) y como máximo (??).

Filtraciones...; para que?

Teorema (Filtration Theorem)

Sea \mathcal{M}^f una filtración vía Σ de \mathcal{M} , donde Σ es un conjunto de fórmulas de la lógica modal básica, cerrado por subfórmulas. Para toda fórmula $\varphi \in \Sigma$ y todo elemento w de \mathcal{M} ,

$$\mathcal{M}, w \models \varphi \ sii \ \mathcal{M}^f, [w] \models \varphi$$

Demostración.

Inducción en φ . Caso base, por definición de V^f . Booleanos, por HI.

- ▶ Si $\Diamond \psi \in \Sigma$ y $\mathcal{M}, w \models \Diamond \psi$
 - Existe v tal que Rwv y $\mathcal{M}, v \models \psi$
 - ▶ Por ??, $R^f[w][v]$ y como $\psi \in \Sigma$, por HI \mathcal{M}^f , $[v] \models \psi$
 - ► Con lo cual \mathcal{M}^f , $[w] \models \Diamond \psi$
- ▶ Si $\diamondsuit \psi \in \Sigma$ y \mathcal{M}^f , $[w] \models \diamondsuit \psi$
 - ▶ Para algún [v], $R^f[w][v]$ y \mathcal{M}^f , $[v] \models \psi$
 - ► Como $\psi \in \Sigma$, por HI, $\mathcal{M}, v \models \psi$; luego, por ?? $\mathcal{M}, w \models \Diamond \psi$

: Usos de Bisimulaciones

Carlos Areces & Raul Fervari

Filtraciones, realidad!

Teorema

Sea $\mathcal{M} = \langle W, R, V \rangle$ y sea Σ un conjunto cerrado por subfórmulas. Llamemos W^f a $W/\longleftrightarrow_{\Sigma}$, y V^f a la valuación que cumple con $\ref{eq:conjunt}$?. Entonces, $\mathcal{M}^s = \langle W^f, R^s, V^f \rangle$ y $\mathcal{M}^l = \langle W^f, R^l, V^f \rangle$ son filtraciones de \mathcal{M} vía Σ , donde

$$R^{s}[w][v]$$
 sii $\exists w' \in [w] \ y \ \exists v' \in [v] \ tal \ que \ Rw'v'$
 $R^{l}[w][v]$ sii para toda $\Diamond \varphi \in \Sigma, \mathcal{M}, v \models \varphi \ implies \ \mathcal{M}, w \models \Diamond \varphi$

Además, si $\mathcal{M}^f = \langle W^f, R^f, V^f \rangle$ es una filtración de \mathcal{M} vía Σ , entonces $R^s \subseteq R^f \subseteq R^l$

Filtraciones, mito o realidad

- ightharpoonup Si \mathcal{M}^f cumple ciertas condiciones, vale el Filtration Theorem
- Preguntas:
 - ¿Serán condiciones que se pueden cumplir?
 - ightharpoonup O sea, dado \mathcal{M} y Σ , existirá siempre una filtración de \mathcal{M} vía Σ

: Usos de Bisimulaciones Carlos Areces & Raul Fervari

Filtraciones, ¡realidad!

Demostración.

Veamos que $\mathcal{M}^s = \langle W^f, R^s, V^f \rangle$ es una filtración (el resto...ejercicio!). Alcanza con ver que R^s cumple con ?? y ??.

- ► R^s cumple ?? por definición
- ▶ Para ??, supongamos que $R^s[w][v]$ y que $\mathcal{M}, v \models \varphi$ para $\Diamond \varphi \in \Sigma$
- ▶ Necesitamos ver que $\mathcal{M}, w \models \Diamond \varphi$
- ▶ Como $R^s[w][v]$, existen $w' \in [w]$ y $v' \in [v]$ tales que Rw'v'
- ▶ Pero $\varphi \in \Sigma$, y $v' \iff_{\Sigma} v$, con lo cual $\mathcal{M}, v' \models \varphi$
- ▶ Luego, $\mathcal{M}, w' \models \Diamond \varphi$
- ▶ Pero como $w' \iff_{\Sigma} w \ y \diamondsuit \varphi \in \Sigma, \mathcal{M}, w \models \diamondsuit \varphi$

Propiedad de modelos finitos vía filtraciones

Teorema

Sea φ una fórmula de la lógica modal básica. Si φ es satisfacible, es satisfacible en un modelo finito, que contiene a lo sumo 2^m nodos, donde m es la cantidad de subfórmulas de φ ($m \le |\varphi|$)

Demostración.

- ▶ Supongamos que φ es satisfacible, i.e., $\mathcal{M}, w \models \varphi$
- ▶ Sea $\Sigma := \{ \psi \mid \psi \text{ es subfórmula de } \varphi \}$. Observar que Σ es finito
- ▶ Sea, además, \mathcal{M}^f una filtración de \mathcal{M} vía Σ .
- ▶ Vale \mathcal{M}^f , $[w] \models \varphi$
- ¿Cuántos elementos tiene \mathcal{M}^f ?
- ightharpoonup ¡A lo sumo $2^{|\Sigma|}$!

: Usos de Bisimulaciones

Carlos Areces & Raul Fervari

Algunas relaciones entre clases de complejidad

No se sabe si son estrictas

 $\mathsf{P} \subset \mathsf{NP} \subset \mathsf{NPSPACE} \subset \mathsf{EXPTIME} \subset \mathsf{NEXPSPACE} \subset \mathsf{2EXP} \dots$

Se sabe que son iguales (Savitch)

PSPACE = NPSPACE EXPSPACE = NEXPSPACE .

Se sabe que son estrictas (Stearns & Hartmanis; Cook)

$$\label{eq:problem} \begin{split} \mathsf{P} \subset \mathsf{EXPTIME} \subset \mathsf{2EXPTIME} \subset \mathsf{3EXPTIME} \dots \\ \mathsf{NP} \subset \mathsf{NEXPTIME} \subset \mathsf{2NEXPTIME} \subset \mathsf{3NEXPTIME} \dots \\ \mathsf{PSPACE} \subset \mathsf{EXPSPACE} \subset \mathsf{2EXPSPACE} \subset \mathsf{3EXPSPACE} \dots \end{split}$$

: Usos de Bisimulaciones

Carlos Areces & Raul Fervari

Carlos Areces & Raul Fervari

Problemas clásicos de decisión (para una lógica \mathcal{L})

Model checking en $\mathcal L$

Dados \mathcal{M} y φ , decidir si $\mathcal{M} \models_{\mathcal{L}} \varphi$

Satisfacibilidad en \mathcal{L} (respecto a una clase de modelos \mathcal{C})

Dada φ decidir si **existe** \mathcal{M} tal que $\mathcal{M} \models_{\mathcal{L}} \varphi$ (con $\mathcal{M} \in \mathcal{C}$)

Validez en \mathcal{L} (respecto a una clase de modelos \mathcal{C})

Dada φ decidir si **para todo** \mathcal{M} vale $\mathcal{M} \models_{\mathcal{L}} \varphi$ (con $\mathcal{M} \in \mathcal{C}$)

Satisfacibilidad y validez son problemas duales

- $ightharpoonup \varphi$ es satisfacible sii $\neg \varphi$ no es válida
- $ightharpoonup \varphi$ es válida sii $\neg \varphi$ no es satisfacible

Aspectos computacionales de una lógica

Para cada uno de estos problemas vale preguntarse:

- I. ¿Es decidible?
- II. ¿Cuál es su complejidad de peor caso?
- III. ¿Hay algoritmos que sean eficientes en el caso promedio?

: Usos de Bisimulaciones Carlos Areces & Raul Fervari : Usos de Bisimulaciones

Aspectos computacionales de la lógica proposicional

Model checking proposicional

- I. Es decidible
- II. Es lineal en la fórmula (post-order en el árbol sintáctico)
- III. Es fácil de implementar de manera eficiente

: Usos de Bisimulaciones

Carlos Areces & Raul Fervari

Aspectos computacionales de la lógica proposicional

Satisfacibilidad proposicional

- I. Es decidible
- II. Está en NP (adivinar y chequear) y es completo (Cook)
- III. DPLL algorithm: problemas "reales" con > 10K variables

: Usos de Bisimulaciones Carlos Areces & Raul Fervari

Aspectos computacionales de la lógica modal básica

Model checking (sobre modelos finitos)

- I. Es decidible
- II. Está en PTIME: $O(|\varphi| \cdot |W|^2)$ (eg., usando prog. dinámica)
- III. Es fácil de implementar de manera eficiente

Aspectos computacionales de la lógica modal básica

Satisfacibilidad

- I. Ya habíamos visto que es decidible (reducciones a FO2)
- II. ??

III.

: Usos de Bisimulaciones Carlos Areces & Raul Fervari

: Usos de Bisimulaciones

Carlos Areces & Raul Fervari

Filtraciones como cota de complejidad

Filtraciones y la propiedad de modelos finitos (repaso)

- ightharpoonup Sea Σ un conjunto finito cerrado bajo subfórmulas
- ▶ Y sea \mathcal{M}^f una filtración de \mathcal{M} via Σ
- ▶ Vimos que si $\mathcal{M}, w \models \varphi$ con $\varphi \in \Sigma$, entonces $\mathcal{M}^f, |w| \models \varphi$
- ▶ Pero \mathcal{M}^f es finito... cuántos estados tiene?

Corolario

- $\blacktriangleright \,$ Si φ es satisfacible, tiene modelo de a lo sumo $2^{|\varphi|}$ estados
- ▶ Luego, podemos adivinar un modelo en $O(2^{|\varphi|})$
- ightharpoonup Y podemos testear si satisface φ en tiempo polinomial
- ► Con lo cual, el problema seguro está en NEXPTIME

: Usos de Bisimulaciones Carlos Areces & Raul Fervari

Aspectos computacionales de la lógica modal básica

Satisfacibilidad

- I. Ya habíamos visto que es decidible (reducciones a FO2)
- II. A lo sumo NEXPTIME (pero vamos a ver mejores cotas)

: Usos de Bisimulaciones Carlos Areces & Raul Fervari