What problem do we tackle?

Re-identification after long occlusions is challenging for trackers

Why is reID difficult?

Appearance

2. Non-linear camera projection

Quo Vadis: Is Trajectory Forecasting the Key Towards Long-Term Multi-Object Tracking?

Patrick Dendorfer Vladimir Yugay Aljoša Ošep Laura Leal-Taixé

TL;DR: Quo Vadis leverages pedestrian trajectory prediction in bird's-eye view to solve long-term occlusions in tracking

How does the Quo Vadis Pipeline look like?

3 Filtering incorrect predictions

Matching predictions with

Egomotion estimation for moving

Benchmark Evaluation

	MOT17 (val,	static scenes)	MOT17 (val, r	noving scenes)	MOT20 (train)		
	BYTE	CenterTrack	BYTE	CenterTrack	BYTE	CenterTrack	
HOTA	71.36 (+0.21)	61.78 (+3.56)	60.08 (+0.02)	51.77 (+3.07)	56.85 (+0.06)	32.71 (+0.62)	
AssA	73.96 (+0.49)	66.18 (+7.54)	60.44 (+0.03)	53.18 (+6.49)	53.97 (+0.20)	28.94 (+1.34)	
IDSW	84 (-3)	137 (-146)	54 (+1)	131 (-62)	1815 (-78)	5240 (-2700)	
MOTA	80.09 (+0.01)	70.77 (+0.39)	72.54 (-0.01)	59.46 (+0.46)	73.38 (+0.0)	47.57 (+0.24)	
IDF1	82.92 (+0.42)	74.46 (+7.13)	73.11 (0.0)	63.48 (+5.76)	72.47 (+0.37)	45.85 (+4.13)	

How do we construct the Bird's-Eye View Representation?

Pedestrian Trajectory Prediction

Model	Nr. Samples	Deter - ministic	Stoch- astic	Social	Multi- modal	Prediction		Tracking					
						$\overline{FDE_S\downarrow}$	$FDE_L\downarrow$	НОТА ↑	AssA ↑	AssRe ↑	AssPr ↑	${ m ID}_S^{ m lost}\downarrow$	$ ext{ID}_L^{ ext{lost}}\downarrow$
Baseline						_	_	50.71	46.87	51.80	78.11	0 %	0 %
Static	1	\checkmark				1.59	2.09	53.84	53.51	60.04	72.95	-14.77 %	-8.40 %
Kalman Filter (pixel)	1	\checkmark				_	_	54.08	54.02	60.45	72.81	-22.37~%	-8.99 %
Kalman Filter	1	\checkmark				0.69	1.23	54.11	54.04	60.75	71.73	-19.50 %	-16.07 %
GAN	3		\checkmark			0.85	1.26	54.43	54.61	61.11	73.21	-17.99 %	-8.64 %
GAN	20		\checkmark			0.65	0.99	53.81	53.40	60.45	71.31	-18.03 %	-15.63 %
S-GAN	3		\checkmark	\checkmark		0.87	1.21	54.52	54.78	61.22	73.28	-16.92 %	-8.57 %
MG-GAN	3		\checkmark		\checkmark	0.67	1.03	$\bf 54.52$	54.80	$\boldsymbol{61.35}$	73.13	-21.19 %	-17.43~%

MG-GAN (multiple generators)

GAN (single generator)

Track Matching

$$c_{ij} = (\Delta_{\text{IoU}} + \max(\tau_{L_2} - \Delta_{L_2}, 0))$$

 $(\Delta_{\mathrm{App}} \geq \tau_{\mathrm{App}} \text{ and } \Delta_{\mathrm{IoU}} \geq \tau_{\mathrm{IoU}})$

Δ: Distances τ : Thresholds IoU: Intersection over Union App: Appearance Features L₂: Euclidean Distance

Scores		Threshold		HOTA ↑ AssA↑		AssRe ↑ AssPr ↑		${ m ID}^{ m lost}\downarrow$	
L_2	IoU	$ au_{ m IoU}$	$ au_{App}$	IIOIA	ASSA	ASSIC	A5511	1D \	
\checkmark				53.89	53.56	60.43	72.21	-16.18 %	
\checkmark			\checkmark	53.89	53.57	60.51	71.69	-16.26 %	
\checkmark		\checkmark	\checkmark	54.10	53.92	60.43	73.36	-16.84 %	
	\checkmark			54.13	54.01	60.97	72.00	-24.06 %	
\checkmark	\checkmark			53.75	53.35	61.17	69.27	$ extbf{-}28.02\%$	
\checkmark	\checkmark	\checkmark		53.97	53.75	61.08	70.73	-26.93 %	
\checkmark	\checkmark		\checkmark	54.06	53.92	61.07	71.01	-21.40 %	
\checkmark	\checkmark	\checkmark	\checkmark	54.27	54.29	61.08	72.36	-20.53%	