Лекция 3. Повторные испытания. Случайные величины.

Формула Бернулли. Производящие функции. Наивероятнейшее число появлений события A. Локальная и интегральная теоремы Лапласа. Формула Пуассона. Пуассоновский предел. Отклонение частоты от вероятности.

Случайная величина, функция распределения, её свойства. Дискретная случайная величина (ДСВ), ряд распределения, функция распределения. Функции ДСВ. Многомерные ДСВ.

3.1. Формула Бернулли

Предположим, что производится n независимых испытаний, в результате каждого из которых может наступить или не наступить некоторое событие A. Обозначим $P(A) = p, P(\bar{A}) = 1 - p = q$ и определим $P_n(m)$ — вероятность того, что событие A произойдет m раз в n испытаниях.

Будем записывать возможные результаты испытаний в виде комбинаций букв A и \bar{A} ; например, закись $A\bar{A}AA$ означает, что событие A осуществилось в 1-м и 4-м испытаниях и не осуществилось во 2-ом и 3-м. Всякую комбинацию, в которой A встречается m раз, а \bar{A} встречается n-m раз, назовем благоприятной. Количество благоприятных комбинаций равно количеству способов, которыми можно выбрать m мест из n, чтобы разместить буквы A (буквы \bar{A} на оставшихся местах разместятся однозначно), т.е. числу сочетаний из n по m:

$$C_n^m = \frac{n!}{m!(n-m)!}.$$

Вероятности всех благоприятных комбинаций одинаковы, в каждой из них событие A (также, как и \bar{A}) происходит одинаковое количество раз, поэтому посчитаем вероятность комбинации

$$B_1 = \underbrace{AA \dots A\bar{A} \dots \bar{A}}_{n-m}$$
, в которую A входит m раз, а $\bar{A} - (n-m)$ раз.

Вероятность этой комбинации в силу независимости испытаний на основании теоремы умножения вероятностей, равна

$$P(B_1) = p^m q^{n-m},$$

также как и для остальных комбинаций:

$$P(B_2) = \dots = P(B_k) = p^m q^{n-m},$$

где количество комбинаций $k = C_n^m$.

Все благоприятные комбинации являются несовместными, поэтому по теореме сложения:

му по теореме сложения.
$$P_n(m) = P(B_1 + \dots + B_k) = P(B_1) + \dots + P(B_k) = kp^m q^{n-m} = C_n^m p^m q^{n-m}.$$
Мы получили формулу Бернулли³:
$$P_n(m) = C_n^m p^m q^{n-m}.$$
(3.1)

$$P_n(m) = C_n^m p^m q^{n-m}. (3.1)$$

Для вычисления вероятности по формуле Бернулли (3.1), в пакет Maxima встроена функция pdf_binomial(m,n,p), а в пакет MathCad – dbinom(m,n,p).

ПРИМЕР 3.1. Вероятность попадания в цель при одном выстре-ле равна 0,6. Какова вероятность того, что 8 выстрелов дадут 5 попаданий?

$$\blacktriangleright$$
Здесь $n=8, m=5, p=0.6, q -0.6=0.4.$

По формуле (3.1) имеем:

$$P_8(5) = \frac{8!}{5!(8-5)!} \cdot 0.6^5 \cdot 0.4^3 \approx 0.279$$

 $P_8(5) = \frac{8!}{5!(8-5)!} \cdot 0,6^5 \cdot 0,4^3 \approx 0,279$ Махіта-программа решения данной задачи имеет вид:

(%i1) load(distrib);

 $(\%i2) \text{ pdf_binomial}(5, 8, 0.6);$

(%02) 0.27869184

В пакете MathCad достаточно написать одну строку:

dbinom(5, 8, 0.6) = 9.279

Other: $P \approx 0.279$

Можно написать программу которая вычисляет значения вероятностей для всех значений k и построить график функции $P_n(m)$, рис. 7. kill(all)\$ load(distrio);fpprintprec:4\$; n:8\$ p:0.6\$

P:makelist(pdf binomial(k, n, p), k, 0, n);

(P) [0.000655, 0.007864, 0.04129, 0.1239, 0.2322, 0.2787, 0.209, 0.08958, 0.0168]plot2d([discrete, P],[x,1,9], [gnuplot postamble, "set grid"]);

ПРИМЕР 3.2. В условиях примера 3.1 найти вероятность того, что число попаданий будет не больше 5 и не меньше 3-х.

 $^{^3}$ Якоб Бернулли (27.12.1654 – 16.08.1705) – швейцарский математик

▶Обозначим искомую вероятность $P_8(3 \le m \le 5)$. Эта вероятность в соответствии с формулой (3.1) представляется в виде суммы вероятностей попарно несовместных событий

$$P_8(3 \le m \le 5) = P_8(3) + P_8(4) + P_8(5).$$

Находя по формуле Бернулли каждое слагаемое, получаем:
$$P_8(3\leqslant m\leqslant 5)=C_8^3\cdot 0.6^3\cdot 0.4^5+C_8^4\cdot 0.6^4\cdot 0.4^4+C_8^5\cdot 0.6^5\cdot 0.4^3\approx$$

 $\approx 0.124 + 0.232 + 0.279 = 0.635.$

Maxima-команда имеет вид P:sum(pdf_binomial(m, n, p),m,3,5);

ЗАМЕЧАНИЕ З.1. Формулу (2.7), полученную в предыдущей лекции, можно получить, использул формулу Бернулли. Действительно, по формуле Бернулли получим:

$$P(\bar{A}) = C_n^0 p^0 q^n = (1 - p)^n \implies P(A) = 1 - P(\bar{A}) = 1 - (1 - p)^n.$$

ПРИМЕР 3.3. В условии примера 3.1 найти вероятность хотя бы одного попадания в чель при 8 выстрелах.

▶Сначала найдем вероятность противоположного события, т.е. вероятность ни разу не попасть в цель при 8 выстрела

$$P(\bar{A}) = (1-p)^n = 0.4^8 \approx 0.001 \implies P(A) = 1 - P(\bar{A}) \approx 0.999.$$

ЗАМЕЧАНИЕ 3.2. Формула Бернулли обобщается на тот случай, когда в результате каждого опыта возможны не два исхода $A\ u\ A,\ a$ несколько. Писть производится п независимых опытов в одинаковых условиях, в каждом из которых может произойти только одно из событий A_1, A_2, \ldots, A_m с вероятностями p_1, p_2, \ldots, p_m , причём

$$\sum_{i=1}^{m} p_i = 1.$$

Тогда вероятность того, что в k_1 опытах появится событие $A_1, \ldots,$ в k_m опытах — событие A_m $\Big(\sum_{j=1}^m k_j = n\Big)$, определяется формулой полиномиального распределения

$$P_n(k_1, k_2, \dots, k_m) = \frac{n!}{k_1! k_2! \dots k_m!} \cdot p_1^{k_1} \cdot p_2^{k_2} p_m^{k_m}.$$
 (3.2)

3.2. Наивероятнейшее число появления события А

Часто необходимо знать значение m, при котором вероятность $P_n(m)$ максимальна; это значение m называется наивероятнейшим числом m^* наступления события A в n испытаниях.

Можно показать, что

$$(n+1)p - 1 \leqslant n \leqslant (n+1)p. \tag{3.3}$$

Если неравенству (3.3) удовлетворяют два целых значения m^* , имеется два наивероятнейших числа.

Так, в примере 3.1 имеем $9\cdot0.6-1\leqslant m^*\leqslant 9\cdot0.6$. Этому неравенству удовлетворяет единственное целое значение $m^*=5$.

ПРИМЕР 3.4. Найти наивероятнейшее число выпадений орла при 11 бросаниях монеты

▶Здесь $n=11,\ p=0,5.$ В соответствии с неравенством (3.3) получаем: $12\cdot\frac{1}{2}-1\leqslant m^*\leqslant 12\cdot\frac{1}{2}.$

Этому неравенству удовлетворяют два значения $m^* = 5$ и $m^* = 6$. В данном примере два наивероятнейших значения с одинаковыми вероятностями:

$$P_{11}(5)$$
 $P_{11}(6) = C_{11}^5 \left(\frac{1}{2}\right)^5 \left(\frac{1}{2}\right)^6 = C_{11}^6 \left(\frac{1}{2}\right)^6 \left(\frac{1}{2}\right)^5 \approx 0.226.$

3.3. Производящие функции

Рассмотрим разложение многочлена $(q+px)^n$ по формуде Бинома Ньютона

Бютона
$$(q+px)^n = C_n^0 q^n + C_n^1 q^{n-1} p^1 x + C_n^2 q^{n-2} p^2 x^2 + \dots + C_n^n q^n p^n x^n.$$
 (3.4)

Можно заметить, что коэффициенты этого многочлена равны вероятностям $P_n(m)$, вычисленным по формуле Бернулли (3.1). Поэтому массив вероятностей $P_n(m)$, вычисленный по формуле Бернулли (3.1), называют биномиальным распределением, а функцию $\varphi_n(x)=(q+px)^n-$ производящей функцией для последовательности независимых испытаний.

Если в каждом из независимых испытаниях вероятности наступления событий разные, то вероятности того, что в n опытах событие A наступит m раз, равна коэффициенту ири m-й степени многочлена

$$\varphi_n(z) = (q_1 + p_1 z)(q_2 + p_2 z) \cdots (q_n + p_n z).$$
 (3.5)

Функция $\varphi_n(z)$, называется производящей функцией.

ПРИМЕР 3.5. Производится три выстрелов по мишени. Вероятность попадания при первом выстреле равно 0,5, а при каждом последующем выстреле производится корректировка прицела, поэтому вероятность попадания увеличивается на 10%. Какова вероятность: а) промаха; б) одного попадания; в) двух попаданий; г) трёх попаданий.

▶Подсчитываем вероятности попаданий при каждом выстреле. Для этого используем формулу сложных процентов: $p_k = 0.5(1+0.1)^k$, $k = \overline{0.3}$. Получаем следующие значения массивов попаданий в цель p и промахов q = 1 - p.

$$(p)[0.5, 0.55, 0.605]$$
 $(q)[0.5, 0.45, 0.395]$

Применяем формулу (3.5) для n=3 и полученных массивов p и q. $\varphi_3(z)=(0.5\pm0.5z)(0.55z+0.45)(0.605z+0.395).$

После раскрытия скобок получаем

 $\varphi_3(z) = 0.166375z^3 + 0.411125z^2 + 0.333625z + 0.088875.$

Искомыми вероятностями будут коэффициенты при соответствующих стеленях данного многочлена.

 $P_3(0) \neq 0.088875$; $P_3(1) = 0.333625$; $P_3(2) = 0.411125$; $P_3(3) = 0.166375$.

Для контроля проверим, что сумма этих вероятностей равна 1. ◀

3.4. Локальная и интегральная теоремы Муавра-Лапласа

Вычисления по формуле Бернулли при больших n громоздки и и требуют применения вычислительной техники. Локальная теорема Лапласа даёт асимптотическую формулу, позволяющую поиближённо найти вероятность появления события ровно m раз в n испытаниях, если n достаточно велико.

Теорема 3.1 (Локальная теорема Муавра-Лапласа). Если вероятность p появления события A в каждом из n независимых испытаний постоянна и отлична от нуля и единици, то вероятность $P_n(m)$ того, что событие A появиться m раз \mathfrak{S}^n испытаниях, npuближённо равна (при $n \to \infty$, $p \not\approx 0$, $p \not\approx 1$):

$$P_n(m) \approx \frac{1}{\sqrt{npq}} \varphi\left(\frac{m-np}{\sqrt{npq}}\right), \quad \text{ide } \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$
 (3.6)

Значения функции $\varphi(x)$, называемой функцией Гаусса, а её график — кривой вероятностей, рис. 8. Табличные значение этой функции имеются в учебниках по теории вероятностей (см. приложение 1) и вычисляются в математических и статистических программах для компьютеров (например, в Excel MathCad, Maxima, MathLab и прочих). Пользуясь очевидными свойствами функции $\varphi(x)$, можно найти её значения при любых x: $\varphi(-x)=\varphi(x), \quad \varphi(+\infty)=\varphi(-\infty)=0.$

$$\varphi(-x) = \varphi(x), \quad \varphi(+\infty) = \varphi(-\infty) = 0.$$

ПРИМЕР 3.6. Вероятность попадания в цель при одном выстреле равна 0,6. Найти вераятность того, что 100 выстрелов дадут 50 попаданий.

▶По условию n 100, m = 50, p = 0.6. Воспользуемся локальной

теоремой Лапласа:
$$P_{100}(50) \approx \frac{1}{\sqrt{100 \cdot 0.6 \cdot 0.4}} \cdot \varphi\left(\frac{50 - 100 \cdot 0.6}{\sqrt{100 \cdot 0.6 \cdot 0.4}}\right) \approx 0.2041 \cdot \varphi(2,04) \approx \approx 0.2041 \cdot 0.0498 = 0.0101. \blacktriangleleft$$

Для решения такой трудоемкой задачи лучше использовать компьютерные математические пакеты.

Рассмотрим решение примера 3.6 в рамках пакета Махіта. numer:true\$ pprintprec:5\$ n:100\$ m:50\$p:0.6\$ q:1-p\$ PB:binomial(n,m)*p^m*q^(n-m); /*Формула Бернулли */

Рис. 8. График функции Гаусса $\varphi(x)$

(PB) 0.010338

 $npq:sqrt(n^*p^*q); /*Локальная формула Дапласа */x:(m-n^*p)/npq;$

 $PL:1/(npq*sqrt(2*\%pi))*exp(-x^2/2);$

 $(PL) \ 0.1014 \ / *$ Разность решений *

delta:PB-PL;

(delta) $1.9783067 * 10^{-4}$

Таким образом, точность локальной теоремы Лапласа для примера $3.6 \approx 0{,}0002$.

Для вычисления суммарной («интегральной») вероятности того, что число появлений события A находится в заданных пределах (см. пример 3.7) при больших n гакже используется асимптотическая формула, позволяющая вычислять эту вероятность приближённо.

Для пользования этой формулой познакомимся с функцией Лапласа.

Определение 3.1. Функцией Лапласа $\Phi(x)$ называется:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^2}{2}} dt.$$
 (3.7)

Функция Лапласа обладает следующими свойствами:

- $(1) \Phi(x)$ непрерывная, возрастающая функция,
- (2) Её область определения $D(y) = (-\infty; +\infty)$,

- (3) $\Phi(0) = 0$.
- (4) $\Phi(-x) = -\Phi(x)$.
- (5) $\Phi(+\infty) = 0.5$, $\Phi(-\infty) = -0.5$.

Примем свойства 1 и 2 без доказательства. Для доказательства свойства 3 заметим, что

$$\Phi(0) = \frac{1}{\sqrt{2\pi}} \int_{0}^{0} e^{-\frac{t^2}{2}} dt = 0.$$

Для доказательства свойства 4 произведём замену переменных в определённом интеграле:

$$\Phi(-x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{-x} e^{-\frac{t^{2}}{2}} dt = \left\langle \begin{array}{c} t = -u \\ dt = -du \end{array} \right\rangle = \sqrt{2\pi} \int_{0}^{x} e^{-\frac{u^{2}}{2}} du = -\Phi(x).$$

Свойство 5 вытекает из известного равенства для интеграла Пуассона:

$$\int\limits_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt = \sqrt{2\pi} \implies \Phi(+\infty) = \frac{1}{\sqrt{2\pi}} \int\limits_{0}^{+\infty} e^{-\frac{t^2}{2}} dt = \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{2} \sqrt{2\pi} = \frac{1}{2}.$$

$$\int\limits_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt = \frac{1}{2} \int\limits_{0}^{+\infty} e^{-\frac{t^2}{2}} dt \quad \text{в сиду чётности подынтегральной функции.}$$

$$\int\limits_{0}^{+\infty}e^{-\frac{t^{2}}{2}}dt=\frac{1}{2}\int\limits_{-\infty}^{+\infty}e^{-\frac{t^{2}}{2}}dt$$
 в сидучётности подынтегральной функции.

Значения функции Лапласа также имеются в таблицах в учебниках по теории вероятностей (см. приложение 2) и вычисляются в математических и статистических программах для компьютеров (например, в EXCEL, Maxima, MathCad, MathLab). Пользуясь приведёнными свойствами $\Phi(x)$, можно найти её значения при любых x.

Теорема 3.2 (Интегральная теорема Лапласа). Если вероятность р появления события А в каждом из п независимых испытаний постоянна и отлична от нуля и единицы, то вероятность $P_n(m_1 \leqslant m \leqslant m_2)$ того, что событие A появится не менее m_1 , но не более m_2 pase n испытаниях приближённо равна (при $n \to \infty$,

оолее
$$m_2$$
 раз в n испытаниях приолиженно равна (при $n \to \infty$, $p \not\approx 0, p \not\approx 1$):
$$P_n(m_1 \leqslant m \leqslant m_2) \approx \Phi\left(\frac{m_2 - np}{\sqrt{npq}}\right) - \Phi\left(\frac{m_1 - np}{\sqrt{npq}}\right), \tag{3.8}$$

$$arepsilon de \ \Phi(x) = rac{1}{\sqrt{2\pi}} \int\limits_0^x e^{-rac{t^2}{2}} dt \ - \ \phi y$$
нкция Лапласа.

Теоремы 3.1 и 3.2 примем без доказательства.

В пакетах Махіта и MathCad для вычисления функции Лапласа применяется функция cdf_normal(x,a, σ) и pnorm(x,a, σ), соответственно, которые определяют функцию распределения для нормального закона равную интегралу $\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{x}e^{-\frac{(t-a)^2}{2\sigma^2}}dt$.

Тогда функция Лапласа вычисляется по формуле: $\Phi(x) = cdf_normal(x,0,1) - 0.5$ – в пакета Махіта и $\Phi(x) = pnorm(x,0,1) - 0.5$ – в пакете MathCad.

Рис 9. Функция Лапласа (3.7)

Нарисуем график функции Лапласа, рис. 9.

numer:true\$ load(distrib)\$

 $Phi(x) := cdf_normal(x, 0, 1) - 0.5;$

plot2d([Phi(x)], [x,-4,4], [gnuplot_postamble, "set grid;"])\$

ПРИМЕР 3.7. Доля изделий продукции завода высшего качества составляет 40%. Найти вероятности того, что из отобранных 300 изделий окажется высшего качества: а) от 110 до 140 изделий, б) не менее 110 изделий, в) не более 109 изделий.

Воспользуемся интегральной теоремой Лапласа. Здесь $n=300,\,p=0,4,\,\,q=0,6.$

а) Найдем аргументы функции Лапласа при $m_1 = 110$ и $m_2 = 140$:

$$x_1 = \frac{m_1 - np}{\sqrt{np \, q}} = \frac{110 - 300 \cdot 0.4}{\sqrt{72}} = -\frac{5}{3\sqrt{2}} \approx -1.18,$$

$$x_2 = \frac{m_2 - np}{\sqrt{np \, q}} = \frac{140 - 300 \cdot 0.4}{\sqrt{72}} = \frac{10}{3\sqrt{2}} \approx 2.36$$

Тогда
$$P_{300}(110\leqslant m\leqslant 140)\approx \Phi(2,36)-\Phi(-1,18)\approx 0.491\oplus 0.381=0.872.$$

Эта вероятность оказалась довольно высокой вследствие того, что были просуммированы вероятности вблизи наивероятнейшего числа $m^* = 120.$

б) В этой части задачи нужно положить $m_1 = 110$, а $m_2 = 300$. Значение x_1 было найдено в пункте a, другой параметр

$$x_2 = \frac{300 - 120}{\sqrt{72}} = \frac{180}{6\sqrt{2}} \approx 21,21.$$

Соответствующая вероятность

Соответствующая вероятность
$$P_{300}(110\leqslant m\leqslant 300)\approx \Phi(21,21)-\Phi(-1,18)\approx 0,5+0,381=0,881.$$
 в) Так как сумма вероятностей
$$P_{300}(0\leqslant m\leqslant 109) \text{ м} \quad P_{300}(110\leqslant m\leqslant 300)$$
 вна 1. то

$$P_{300}(0 \leqslant m \leqslant 109)$$
 or $P_{300}(110 \leqslant m \leqslant 300)$

равна 1. то

$$P_{300}(0 \le m \le 109) = 1 - V_{300}(110 \le m \le 300) \approx 1 - 0.881 = 0.119.$$

$$\begin{split} P_{300}(0\leqslant m\leqslant 109) &= 1 - V_{300}(110\leqslant m\leqslant 300) \approx 1 - 0.881 = 0.119. \\ \text{Ответ: } P_{300}(110\leqslant m\leqslant 140) \approx 0.872; \ P_{300}(110\leqslant m\leqslant 300) \approx 0.881; \\ P_{300}(0\leqslant m\leqslant 109) \approx 0.119. \ \blacktriangleleft \end{split}$$

3.5. Формула Пуассона

Если вероятность p появления события A в испытании Бернулли близка к 0 или 🔭 то теоремы 3.1 и 3.2 дают большие погрешности и, следовательно неприменимы. В этом случае следует пользоваться приближённой формулой Пуассона для вычисления $P_n(m)$ при больших n.

Теорема 3.3. Если число испытаний неограниченно увеличивается $(h \to \infty)$ и вероятность p появления события A в каждом из n независимых испытаний неограниченно уменьшается $(p \to 0)$, но $ma\kappa$, что произведение пр является постоянной величиной ($np = \lambda$), то вероятность $P_n(m)$ удовлетворяет предельному равенству

$$\lim_{n \to \infty} P_n(m) = \frac{\lambda^m e^{-\lambda}}{m!}.$$
(3.9)

Выражение (3.9) называется асимптотической формулой Пуассона. Из данной теоремы вытекает формула Пуассона (310)

Если вероятность р появления собития А в каждом из п независимых испытаний постоянна и ближа к нулю, а п велико, то вероятность $P_n(m)$ того, что событие A появится m раз в n испытаниях приближённо равна (при $n \to \infty$, $\gamma \to 0$, $\lambda = np \to a$):

$$P_n(m) \approx \frac{\lambda^m}{m!} e^{-\lambda}.$$
 (3.10)

 $P_n(m) pprox rac{\lambda^m}{m!} e^{-\lambda}.$ (3.10) Замечание 3.3. Случай, когда p pprox 1 сводится к рассмотренному, если вместо $P_n(m)$ вычислять равную ей вероятность $P_n(n-m)$ появления n-m раз противоположного события $ar{A}$, вероятность появления которого в одном испытани $q=1-p\approx 0$.

ПРИМЕР 3.8. Вероятность полемения опечатки на одной странице книги равна 0,01. Найти вероятность того, что в книге из 100 страниц имеется более одной опечатки.

▶Найдём вероятность противоположного события, т.е. вероятность $P(\bar{B})$ того, что в книге не более одной опечатки (0 или 1 опечатка). Так как $np = 100 \cdot 0.01 + 1$, то

$$P(\bar{B}) = P_{100}(0) + P_{100}(1) \approx \frac{1^0}{0!}e^{-1} + \frac{1^1}{1!}e^{-1} \approx 0.736.$$

Искомая вероятность равна $P(B) \approx 1 - 0.736 = 0.264.$

ПРИМЕР 3.9. На предприятии изготовлено 100000 деталей. Вероятность, что деталь может оказаться бракованной, равна 0,0001. Найти вероятность, а) что ровно десять деталей будут бракованными; б) чтоболее 20 деталей окажутся бракованными.

▶а) Используя пакет Махіта, решим данную задачу по трём формулам: точной формуле Бернулли (РВ) и приближённым формулам (3.6) (РГ – докальной теореме Лапласа) и (3.10) (РР – формуле Пуассона).

Рис. 10. К примеру 3

 $numer: true \$ \ pprintprec: \$\$ \ n: 100000\$ \ m: 10\$p: 0.0001\$ \ q: 1-p\$ \ L: n*p;$

 $PB: binomial(n,m)*p^m*q^(n-m);$

(PB) 0.1251163

npq:sqrt(L*q);

x:(m-L)/npq;

 $PL:1/(npq*sqrt(2*\%pi))*exp(-x^2/2)$

 $({\rm PL})\ 0.01088438482539428$

 $PP:L^m*exp(-L)/m!;$

 $(\mathrm{PP})\ 0.007566654960414142$

По формуле Пуассона (PP= 0.0075667) получили близкие к точным результатам PB=0.0075649, полученным по формуле Бернулли. Локальная теорема Лапласа дала неприемлемые результаты (PL=0.0108844.)

Решим теперь задачу б). Найдём теперь сумму вероятностей (%i14) S:1-sum(P[k],k,1,21);

(S) 0.001587

Построим график изменения вероятностей от числа бракованных деталей k, рис.10. Из графика видно, что число бракованных деталей, расположено в диапазоне от 2 до 20.

 $P: makelist(binomial(n,k)*p^k*q^(n-k),k,0,25); \\ plot2d ([discrete, P],[x,2,22],[gnuplot_postamble, " set grid"]); \\ \$$

3.6 Отклонение частоты от вероятности

Пусть проводятся испытания Бернулли с постоянной вероятностью p появления события A в каждом из них; событие A появилось m раз в n испытаниях. Найдем вероятность того, что отклонение относительной частоты $\frac{m}{n}$ от вероятности p по абсолютной величине не

превышает заданного числа ε , т.е. найдем $P\left\{\left|\frac{m}{n}-p\right|\leqslant\varepsilon\right\}$.

Заменяя неравенство равносильным и применяя интегральную теорему Лапласа, получим в условиях теоремы 3.2:

$$P\left\{\left|\frac{m}{n} - p\right| \leqslant \varepsilon\right\} = P\left\{-\varepsilon \leqslant \frac{m}{n} - p \otimes \varepsilon\right\} =$$

$$= P\left\{np - n\varepsilon \leqslant m \leqslant np + n\varepsilon\right\} \approx \Phi\left(\frac{np + n\varepsilon - np}{\sqrt{npq}}\right) -$$

$$-\Phi\left(\frac{np - n\varepsilon - np}{\sqrt{npq}}\right) = \Phi\left(\varepsilon\sqrt{\frac{n}{pq}}\right) - \Phi\left(\varepsilon\sqrt{\frac{n}{pq}}\right) = 2\Phi\left(\varepsilon\sqrt{\frac{n}{pq}}\right).$$

В последнем равенстве мы воспользовались нечётностью функции Лапласа. Итак, мы получили, что при $p\to\infty,\ p\not\approx 0,\ p\not\approx 1$

$$P\left\{ \left| \frac{m}{n} - p \right| \leqslant \varepsilon \right\} \ge 2\Phi\left(\varepsilon\sqrt{\frac{n}{pq}}\right). \tag{3.11}$$

ПРИМЕР 3.10. Вероятность того, что лампочка бракованная p=0,1. Определить, сколько лампочек нужно отобрать для проверки, чтобы с вероятностью 0.9544 можно было утверждать, что относительная частота бракованных лампочек отличается от вероятности p по абсолютной величине не более, чем на 0.03.

►Здесь
$$p=0.1;$$
 $q=0.9;$ $\varepsilon=0.03;$
$$P\left\{ \left| \frac{m}{n} - 0.1 \right| \leqslant 0.03 \right\} = 0.9544.$$

Найдём n. По формуле (3.11):

$$2\Phi\left(0.03\sqrt{\frac{n}{0.1 \cdot 0.9}}\right) = 0.9544 \implies \Phi(0.1 \cdot \sqrt{n}) = 0.4772 \implies 0.1\sqrt{n} = 2 \implies n = 400.$$

Полученный результат означает, что в партии из 400 лампочек количество m бракованных будет с вероятностью близкой к 1 заключено в пределах от $400 \cdot 0.1 - 400 \cdot 0.03 = 28$ до $400 \cdot 0.1 + 400 \cdot 0.03 = 52$.