

София 1635, ул. Монтевидео 21 meл.: 55 81 37, 55 21 35, факс: 957 19 30

Департамент Информатика

Школа "Състезателно програмиране" Състезание, 22 февруари 2014 г.

Задача A. DAG

Задачата за намиране на най-дълъг път в произволен граф е NP-пълна и се решава с пълно изчерпване. Когато в графа **няма цикли** задачата има ефективно и сравнително лесно за реализация решение, илюстрирано със следния псевдо код:

Algorithm DAG-SHORTEST-PATHS(G, s) Algorithm DAG-LONGEST-PATHS(G, s)

1 compute a topological sorting of G2 for each vertex $v \in V[G]$ 2 for each vertex $v \in V[G]$ 3 $d[v] \leftarrow \infty$ 4 $\pi[v] \leftarrow nil$ 5 $d[s] \leftarrow 0$ 6 for each u taken in topologically sorted order 7 for each $u \in S$ $d[v] \leftarrow S$ 6 for each $u \in S$ $d[v] \leftarrow S$ 7 for each $u \in S$ $d[v] \leftarrow S$ 6 for each $u \in S$ $d[v] \leftarrow S$ 7 for each $u \in S$ $d[v] \leftarrow S$

7 **for** each
$$v \in adj(u)$$

8 **if** $d[v] > d[u] + w(u, v)$
9 $d[v] \leftarrow d[u] + w(u, v)$
10 $\pi[v] \leftarrow u$

7 **for**
$$each \ v \in adj(u)$$

8 **if** $d[v] < d[u] + w(u, v)$
9 $d[v] \leftarrow d[u] + w(u, v)$
10 $\pi[v] \leftarrow u$

Даден ви е *насочен ацикличен граф* с $5 \le N \le 10000$ върха и M ($N \le M \le 100000$) ребра, с положителни тегла, не по-големи от 10000. Иска се да намерите дължините на най-късия и най-дългия път, започващи от зададен стартов връх S и завършващи в кои да е други върха на графа, както и да изведете самите пътища.

За всеки тест на първия ред на стандартния вход са зададени N и M. Следват M реда с по три числа - \mathbf{u} , \mathbf{v} и \mathbf{c} , описващи насочено ребро от \mathbf{u} до \mathbf{v} с цена \mathbf{c} . Най-накрая е зададен стартовия връх S. За край на входа служи една нула.

За всеки тест извеждайте на отделни редове дължините на най-късия и най-дългия път, започващи от S, както и самите пътища. Ако съществува повече от едно най-добро решение, извеждайте кое да е от тях. Следвайте изходния формат, показан в примера:

Вход	Изход
6 7	the shortest path from 6 ends in 3, cost: 1
6 5 10	6 3
1 4 11	the longest path from 6 ends in 4, cost: 17
1 2 4	6 3 1 4
3 1 5	
2 4 5	
6 3 1	
6 1 3	
6	
0	

София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

Департамент Информатика

Школа "Състезателно програмиране" Състезание, 22 февруари 2014 г.

Задача В. Полети

Авиокомпания предлага M (1 \leq M \leq 20000) еднопосочни полета до N (1 \leq N \leq 20000) града, като K (1 \leq K \leq 200, K \leq N) от тези градове са т.н. разпределителни, т.е. там става прекачването от един самолет на друг. Всеки полет от u_i до v_i задължително трябва да минава през поне един от тези разпределители. Предлага се най-много един директен полет между два града в дадена посока и няма полети започващи и завършващи в един и същи град.

Авиокомпания трябва да обработи Q заявки(1 \leq Q \leq 50000), на желаещи да летят от град a_i до град b_i . Ако това е възможно, то трябва да се изчисли минималната цена, на която това може да стане.

Вашата задача е да напишете програма, която изчислява броя на полетите, които могат да бъдат реализирани, както и сумарната им цена (тя може да не се побира в 32 битов целочислен тип).

На първия ред на стандартния вход е зададен броя на тестовете. На първия ред на всеки от тях са зададени N, M, K и Q. Следват M реда с по три числа – u_i v_i d_i , описващи директен полет от u_i до v_i , на цена d_i (1 \leq d_i \leq 10000), 1 \leq u_i , v_i \leq N, u_i != v_i . Следват K реда, на които са зададени номерата на разпределителните. Следват Q реда със заявки – a_i b_i (1 \leq a_i , b_i \leq N, a_i != b_i).

За всеки тест извеждайте по два реда. Първия трябва да съдържа броя на полетите, които могат да бъдат осъществени, а следващия ред съдържа минималната обща цена, на която това може да стане.

Вход	Изход
1	1
3 3 1 2	20
1 2 10	
2 3 10	
2 1 5	
2	
1 3	
3 1	

Пояснение към примера: За първата заявка единственият възможен маршрут е $1 \to 2 \to 3$, на цена 20. Втората заявка не може да бъде изпълнена, тъй като няма полети тръгващи от град 3.

София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

Департамент Информатика

Школа "Състезателно програмиране" Състезание, 22 февруари 2014 г.

Задача С. Думи

Езикът на племето "Мулунгу" е съставен само от малките латински букви: 'a', 'b' и 'c'. Под dума в този език се разбира всяка последователност от не повече от m букви, в която всяка буква от думата е равна на предходната или е по-назад в лексикографската наредба. Буквата 'a' е преди буквата 'b' и буквата 'b' е преди буквата 'c' в лексикографската наредба. Например в изречението "aaabccbabbbcc" има точно три думи: "aaabcc", "b", "abbbcc"

Дадено ви е изречение на езика на племето "Мулунгу", което е не по-дълго от n знака. Вие сте много любопитни и постоянно задавате въпроси от вида: "Колко думи има в интервала от i-тия знак на изречението до j-тия знак на изречението".

Напишете програма, която по дадено изречение и въпроси отговаря на всеки един от тях.

Вход

За всеки тест на първия ред е зададен текст, съдържащ само малките латински букви: 'a', 'b' и 'c'. На следващия ред е зададено едно число k — броят на въпросите. Следват k реда с по две числа i и j — номера на началния и номера на крайния знак от изречението, за който е поставен въпроса. Номерирането на знаците в изречението започва от 1.

Изход

За всеки зададен въпрос на отделен ред изведете по едно число – броя на думите в интервала от i-тия до j-тия знак включително.

Ограничения:

 $1 \le n, m \le 20000$ $1 \le k \le 100000$ $1 \le i \le j \le n$

Вход	Изход
aaabccbabbbcc	3
5	1
1 13	2
3 6	1
3 7	3
8 9	
5 10	

София 1635, ул. Монтевидео 21 meл.: 55 81 37, 55 21 35, факс: 957 19 30

Департамент Информатика

Школа "Състезателно програмиране" Състезание, 22 февруари 2014 г.

Задача D. Трибоначи

Редицата на Трибоначи се дефинира по следния начин:

$$trib_0 = 0$$
,

 $trib_1 = 0$,

 $trib_2 = 1$,

$$trib_n = trib_{n-1} + trib_{n-2} + trib_{n-3}$$
 sa $n \ge 3$.

Нека P е естествено число и нека a_n е остатъка при деление на $trib_n$ с P (т.е. $a_n = trib_n \% P$). Напишете програма, която намира номера k на първия елемент на редицата a_n , от който тя започва да се повтаря, т.е. най-малкото естествено число k, за което $a_k = a_0$, $a_{k+1} = a_1$, $a_{k+2} = a_2$, $a_{k+3} = a_3$,

Вход

За всеки тест на отделен ред на стандартния вход е зададено числото P ($2 \le P \le 1000$). Края на входа е маркиран с две нули.

Изход

За всеки тест програмата трябва да извежда числото k, на отделен ред. Ако естествено число k с описаното свойство не съществува, то програмата трябва да извежда -1.

Вход	Изход
2	4
10	124
31	331
0 0	

Обяснение на първия пример:

Редицата на Трибоначи е 0, 0, 1, 1, 2, 4, 7, 13, 24,

Редицата a_n е 0, 0, 1, 1, 0, 0, 1, 1, 0, Следователно k=4.

София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

Департамент Информатика

Школа "Състезателно програмиране" Състезание, 22 февруари 2014 г.

Задача Е. Сортиране

Имплементирате сортиращ алгоритъм, който изисква $\mathbf{c^*n^*lg(n)}$ наносекунди, за да сортира \mathbf{n} цели положителни числа. По зададени \mathbf{c} ($1 \le \mathbf{c} \le 100$) и време \mathbf{t} ($1 \le \mathbf{t} \le 2000000000$) се иска да изведете максималния брой числа, които могат да бъдат сортирани за това време, т.е. $\mathbf{c^*n^*lg(n)} \le \mathbf{t}$. Търсеното число ще \mathbf{e} с плаваща запетая и \mathbf{c} допустима относителна или абсолютна грешка не по-голяма от 1e-9.

Имайте в предвид, че \lg е двоичен логаритъм и $\lg(n) = \ln(n) / \ln(2)$, където \ln е натурален логаритъм.

Всеки тестов пример ще бъде зададен на отделен ред на стандартния вход и ще съдържа числата с и t, разделени с интервал. Края на входа е маркиран с "end".

За всеки тестов пример извеждайте търсеното число, на отделен ред на стандартния изход.

Вход	Изход
1 8	4.0
2 16	4.0
37 12392342	23104.999312341137
1 2000000000	7.637495090348122E7
end	

Пояснение към примерите:

В първия пример за 8 наносекунди можем да сортираме 4 числа, тъй като 1*4*lg(4) = 4*2 = 8. Във втория пример c = 2 и ще ни трябва двойно повече време, за да сортираме 4 числа. В третия пример можем да сортираме почти 23105 числа, но не съвсем.

София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

Департамент Информатика

Школа "Състезателно програмиране" Състезание, 22 февруари 2014 г.

Задача F. Магически квадрати

Казваме, че квадратът на фигурата е *магически*, ако са равни сборовете на числата във всеки ред, всеки стълб и всеки от двата диагонала.

a_1	a_2	a_3
a_4	a_5	a_6
a_7	a_8	<i>a</i> ₉

Напишете програма, която по зададени девет цели положителни числа определя колко различни *магически* квадрата могат да се образуват от тях като се използват всички числа.

Вход

За всеки тест на отделен ред на стандартния вход се въвеждат девет цели положителни числа, по-малки от 100.

Изход

За всеки тест на отделен ред на стандартния изход да се изведе отговорът на задачата, както е показано в примера. Ако от зададените числа не може да се образува магически квадрат, програмата да извежда числото 0.

Вход	Изход
1 3 2 4 5 8 7 6 9	Case #1: 8
1 1 1 1 1 1 1 1	Case #2: 1

Задача G.

НОВ БЪЛГАРСКИ УНИВЕРСИТЕТ

София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

Департамент Информатика

Школа "Състезателно програмиране" Състезание, 22 февруари 2014 г.

Вход	
Изход	
Вход	Изход