Nephrotic Syndrome

Nephrotic syndrome is a clinical syndrome characterized by significant proteinuria, hypoalbuminemia, edema, and hyperlipidemia, often leading to complications if untreated. This document provides a comprehensive overview for physician assistant (PA) students in a hospital setting.

Definition and Epidemiology

Definition:

Nephrotic syndrome (NS) is a kidney disorder defined by:

- **Proteinuria:** >3.5 g/day (or spot urine protein-to-creatinine ratio >2 mg/mg in adults, >2 mg/mg in children).
- Hypoalbuminemia: Serum albumin <3 g/dL.
- Edema: Often periorbital, lower extremity, or anasarca.
- Hyperlipidemia: Elevated cholesterol and triglycerides.
- Additional features: Hypercoagulability (due to urinary loss of antithrombin III), increased infection risk (loss of immunoglobulins), and hypocalcemia (due to vitamin D deficiency).

Epidemiology:

- **Incidence:** ~3 per 100,000 adults/year; more common in children (15-20 per 100,000/ year, peak age 2-6 years).
- **Primary Causes in Children:** Minimal change disease (MCD) accounts for 70-90% of cases in children <10 years.
- **Primary Causes in Adults:** Focal segmental glomerulosclerosis (FSGS, 35%), membranous nephropathy (MN, 30%), MCD (10-15%).
- **Secondary Causes:** Diabetes mellitus, systemic lupus erythematosus (SLE), amyloidosis, and drugs (e.g., NSAIDs, gold).
- **Risk Factors:** Family history of kidney disease, diabetes, hypertension, obesity, infections (e.g., HIV, hepatitis B/C), and certain medications.

Pathophysiology

Mechanisms:

- **Podocyte Injury:** Damage to glomerular podocytes (e.g., in MCD, FSGS, MN) disrupts the filtration barrier, allowing massive protein leakage into the urine.
- **Proteinuria:** Loss of albumin and other proteins (e.g., antithrombin III, immunoglobulins) leads to downstream effects.
- **Hypoalbuminemia:** Urinary protein loss exceeds liver synthesis capacity (normal albumin half-life ~20 days), reducing oncotic pressure.
- Edema: ↓ Oncotic pressure → Fluid extravasation into interstitial space; secondary hyperaldosteronism (due to hypovolemia) exacerbates sodium retention.
- **Hyperlipidemia:** Hypoalbuminemia stimulates hepatic lipoprotein synthesis (↑ LDL, VLDL); ↓ lipoprotein lipase activity impairs lipid clearance.
- **Hypercoagulability:** Urinary loss of antithrombin III, protein C/S, and ↑ hepatic synthesis of clotting factors (e.g., fibrinogen) → Prothrombotic state.
- Infection Risk: Loss of immunoglobulins and complement proteins → Impaired immunity (e.g., ↑ risk of pneumococcal infections).
- **Hypocalcemia:** Loss of vitamin D-binding protein and 25-hydroxyvitamin D → ↓ Calcium absorption, secondary hyperparathyroidism.

Key Pathway:

Podocyte injury \rightarrow Proteinuria \rightarrow Hypoalbuminemia \rightarrow Edema, hyperlipidemia, hypercoagulability, infection risk.

Causes of Nephrotic Syndrome

Category Causes Notes

Category	Causes	Notes
Primary Glomerular Diseases	Minimal Change Disease (MCD), Focal Segmental Glomerulosclerosis (FSGS), Membranous Nephropathy (MN)	MCD: Common in children, steroid-responsive. FSGS: Common in adults, progressive. MN: Anti-PLA2R positive in 70-80%.

Category	Causes	Notes
Systemic Diseases	Diabetes Mellitus, Systemic Lupus Erythematosus (SLE), Amyloidosis (AL/ AA), Multiple Myeloma, Preeclampsia	Diabetes: Nodular glomerulosclerosis. SLE: Class V lupus nephritis. Amyloidosis: Congo red staining.
Infections	Hepatitis B/C (HBV/HCV), HIV (HIVAN), Syphilis, Malaria, Schistosomiasis	HBV/HCV: MN pattern. HIVAN: Collapsing FSGS, common in African descent.
Drugs/Toxins	NSAIDs, Gold, Penicillamine, Heroin, Lithium, Pamidronate	NSAIDs: MCD pattern. Gold/Penicillamine: MN pattern.
Other	Hereditary (e.g., NPHS1/NPHS2 mutations), Malignancy (e.g., lymphoma, solid tumors), Obesity, Sickle Cell Disease	Hereditary: Familial FSGS. Malignancy: MN (solid tumors), MCD (lymphoma).

Common Drugs Causing Nephrotic Syndrome

Drug Mechanism Notes

Drug	Mechanism	Notes
NSAIDs	Podocyte injury (MCD pattern)	E.g., ibuprofen, naproxen; reversible with cessation.
Gold	Immune complex deposition (MN pattern)	Used in RA; rare with modern therapies.
Penicillamine	Immune complex deposition (MN pattern)	Used in Wilson's disease, RA; monitor proteinuria.
Heroin	Direct toxicity, collapsing FSGS	Common in IV drug users; poor prognosis.
Lithium	Podocyte injury (MCD, FSGS)	Long-term use; monitor renal function.
Pamidronate	Collapsing FSGS	Bisphosphonate; used in hypercalcemia, osteoporosis.

Clinical Presentation

Symptoms:

- Edema: Periorbital (early), lower extremity, anasarca; often the presenting symptom.
- Foamy Urine: Due to high proteinuria.
- Fatigue/Weakness: From hypoalbuminemia, anemia (if chronic kidney disease present).
- Infections: Recurrent infections (e.g., cellulitis, peritonitis), especially in children.

• Thrombotic Events: Deep vein thrombosis (DVT), renal vein thrombosis (RVT), pulmonary embolism (PE).

Physical Exam:

- Edema: Pitting edema (legs, feet), periorbital edema, ascites, pleural effusions.
- Hypertension: Common in FSGS, diabetic nephropathy; less common in MCD.
- Signs of Underlying Disease: Malar rash (SLE), neuropathy (amyloidosis), retinopathy (diabetes).
- Thrombosis Signs: leg swelling (DVT), flank pain/hematuria (RVT), hypoxia/tachycardia (PE).

Red Flags:

- Gross hematuria, rapid renal decline → Suspect glomerulonephritis (e.g., lupus nephritis, post-infectious).
- Acute flank pain, hematuria → Consider renal vein thrombosis.
- Severe infections (e.g., peritonitis) → Urgent antibiotics, supportive care.

Diagnostic Workup

Initial Labs:

- **Urinalysis:** Proteinuria (3+ to 4+ on dipstick), microscopic hematuria (if glomerulonephritis), oval fat bodies, Maltese cross (lipiduria).
- Spot Urine Protein-to-Creatinine Ratio (UPCR): >2 mg/mg confirms nephrotic-range proteinuria.
- 24-Hour Urine Protein: >3.5 g/day (gold standard but cumbersome).
- Serum Albumin: <3 g/dL (often 1-2 g/dL in severe cases).
- Lipid Panel: ↑ Total cholesterol, LDL, triglycerides.
- **Serum Creatinine/eGFR:** Assess renal function; often normal in MCD, elevated in FSGS, diabetic nephropathy.
- **Electrolytes:** Hypocalcemia (↓ vitamin D), hyponatremia (edema-related dilution).

Specific Tests:

- Serologies:
 - ANA, anti-dsDNA (SLE).
 - Hepatitis B/C serologies (HBV/HCV-associated MN).
 - HIV (FSGS in HIVAN).
 - Complement (C3, C4): Low in SLE, post-infectious GN.
 - SPEP/UPEP: Monoclonal spike in amyloidosis, multiple myeloma.
 - Anti-PLA2R Antibodies: Positive in 70-80% of primary membranous nephropathy.
 - Serum Free Light Chains: For amyloidosis, multiple myeloma.
 - Genetic Testing: If familial FSGS suspected (e.g., NPHS1, NPHS2 mutations).
- · Imaging:
 - Renal Ultrasound: Rule out obstruction, assess kidney size (small in chronic disease, normal/large in acute).
 - Doppler Ultrasound: If renal vein thrombosis suspected (flank pain, hematuria).
 - CT Chest/Extremities: If PE or DVT suspected.

Renal Biopsy:

- **Indications:** Adults with NS (most cases); children if atypical features (e.g., hematuria, hypertension, poor steroid response).
 - Findings:
 - MCD: Normal light microscopy, podocyte effacement on electron microscopy (EM).
 - **FSGS:** Segmental scarring, podocyte injury on EM.
 - **MN:** Subepithelial deposits, "spike and dome" on EM.
 - **Diabetic Nephropathy:** Nodular glomerulosclerosis (Kimmelstiel-Wilson nodules).
 - **Amyloidosis:** Congo red staining, amyloid fibrils on EM.

Key Tips:

- UPCR first to confirm proteinuria; 24-hour collection if UPCR equivocal.
- Serologies to identify secondary causes (SLE, HBV, HIV).
- Biopsy in adults; often deferred in children with MCD (presumed if steroid-responsive).

Diagnostic Flowsheet: Nephrotic Syndrome

Step 1: Urinalysis/UPCR: Proteinuria: Dipstick 3+/4+, UPCR >2mg. 24-hour urine: >3.5 g/day.

Step	Description
Step 1: Urinalysis/ UPCR:	Proteinuria: Dipstick 3+/4+, UPCR >2mg. 24-hour urine: >3.5 g/day.
Step 2: Serum Labs	-Albumin: <3 g/dLLipids: ↑ Cholesterol, triglyceridesCreatinine/eGFR: Assess renal function.
Step 3: Serologies/ Imaging	-ANA, anti-dsDNA (SLE)HBV/HCV, HIVAnti-PLA2R (MN)Renal US: Rule out obstruction, RVT.
Step 4: Biopsy (Adults)	Children: Presume MCD if steroid-responsive. Adults: MCD, FSGS, MN, diabetic nephropathy.
Step 5: Confirm Diagnosis	-MCD: Steroid response, podocyte effacementFSGS: Segmental scarringMN: Anti-PLA2R, subepithelial deposits.

Treatment

General Principles:

Reduce proteinuria, manage complications (edema, hyperlipidemia, thrombosis, infections), and treat the underlying cause.

Supportive Care:

- · Edema:
 - Sodium Restriction: <2 g/day.
 - Diuretics: Furosemide 40-80 mg IV/PO daily (loop diuretic); add spironolactone 25-50 mg daily if refractory.
 - Fluid Restriction: 1-1.5 L/day if severe edema.
 - Monitor: Daily weights, urine output; avoid over-diuresis (risk of AKI).
- Hyperlipidemia:
 - Statins: Atorvastatin 20-40 mg daily (LDL >100 mg/dL).
 - Dietary Counseling: Low saturated fat, high fiber.
- Thrombosis Prophylaxis:
 - Anticoagulation: Prophylactic heparin (e.g., enoxaparin 40 mg SC daily) if albumin <2 g/dL, immobile, or history of thrombosis.
 - Monitor: Doppler US if DVT/RVT suspected; CT chest if PE suspected.
- Infection Prevention:
 - Vacines: Pneumococcal (PCV20), influenza (annually).

- Prophylaxis: Consider antibiotics (e.g., penicillin) in children with severe hypoalbuminemia.
- **Dietary Protein:** 0.8-1 g/kg/day (avoid high protein; does not correct hypoalbuminemia, may worsen proteinuria).
- Vitamin D/Calcium: Vitamin D3 1000-2000 IU daily, calcium 1000 mg daily (correct hypocalcemia, prevent osteoporosis).

Specific Therapy:

- Minimal Change Disease (MCD):
 - Steroids: Prednisone 1 mg/kg/day (max 80 mg) x 4-8 weeks, then taper over 2-3 months.
 - **Response:** 80-90% of children, 50-70% of adults respond within 4-8 weeks.
 - **Relapse:** Cyclophosphamide 2 mg/kg/day x 8-12 weeks or calcineurin inhibitors (e.g., tacrolimus 0.05-0.1 mg/kg/day).
- Focal Segmental Glomerulosclerosis (FSGS):
 - Steroids: Prednisone 1 mg/kg/day x 8-16 weeks (less responsive than MCD).
 - Adjunctive: Cyclosporine 3-5 mg/kg/day or tacrolimus (if steroid-resistant).
 - ACEI/ARBs: Lisinopril 10-40 mg daily (reduce proteinuria, renoprotective).
- Membranous Nephropathy (MN):
 - Risk Stratification: Anti-PLA2R titers, proteinuria severity.
 - Low Risk: Supportive care (ACEi/ARBs, statins).
 - **High Risk:** Cyclophosphamide + steroids (Ponticelli regimen: methylprednisolone 1 g IV x 3 days, then prednisone 0.5 mg/kg/day, alternate with cyclophosphamide 2 mg/kg/day x 6 months) or rituximab 375 mg/m² weekly x 4 doses.
- · Diabetic Nephropathy:
 - Glycemic Control: HbA1c <7% (insulin, metformin).
 - BP Control: ACEi/ARBs (e.g., losartan 50-100 mg daily), target BP <130/80 mmHg.
 - SGLT2 Inhibitors: Empagliflozin 10-25 mg daily (reduces proteinuria, slows progression).
- Lupus Nephritis (Class V):
 - Immunosuppression: Prednisone 0.5-1 mg/kg/day + mycophenolate mofetil (MMF) 1-2 g/day.
 - Monitor: Anti-dsDNA, C3/C4, proteinuria.

- Amyloidosis:
 - Treat Underlying Cause: Chemotherapy for AL amyloidosis (e.g., bortezomib, dexamethasone); anti-inflammatory for AA amyloidosis (e.g., colchicine in FMF).
 - Supportive: Diuretics, ACEi/ARBs.
- Infection-Associated (e.g., HBV, HCV):
 - Antivirals: Teno`fovir 300 mg daily (HBV), sofosbuvir/ledipasvir (HCV).
- o Immunosuppression: Avoid unless severe (risk of viral replication).
- · Renin-Angiotensin System (RAS) Blockade:
- o ACEi/ARBs: Start in all patients (e.g., lisinopril 10 mg daily); reduces intraglomerular pressure, proteinuria.
- o Monitor: Serum potassium, creatinine (30% rise in Cr acceptable initially).

Key Tips:

- Children with MCD: Start steroids empirically; biopsy if no response in 8 weeks.
- Adults: Biopsy first, then tailor therapy (e.g., rituximab for MN, MMF for lupus).
- Thrombosis risk highest when albumin <2 g/dL; prioritize prophylaxis.

Examples

Case 1: Minimal Change Disease (Child)

Presentation: 4 y/o M, periorbital edema, weight gain, UPCR 3.5 mg/mg, albumin 2.2 g/dL, cholesterol 300 mg/dL, normal creatinine.

Interpretation: Nephrotic syndrome, likely MCD (child, no hematuria/hypertension).

Management: Prednisone 1 mg/kg/day x 6 weeks, then taper; sodium restriction, furosemide 1 mg/kg/day for edema, pneumococcal vaccine, monitor UPCR weekly.

Case 2: FSGS (Adult)

Presentation: 35 y/o M, leg edema, HTN, UPCR 4.2 mg/mg, albumin 1.8 g/dL, creatinine 1.5 mg/dL, biopsy: FSGS.

Interpretation: Nephrotic syndrome, primary FSGS (adult, HTN, renal dysfunction).

Management: Prednisone 1 mg/kg/day x 12 weeks, lisinopril 20 mg daily, atorvastatin 20 mg daily, enoxaparin 40 mg SC daily (albumin <2 g/dL), monitor creatinine, proteinuria.

Case 3: Membranous Nephropathy (Anti-PLA2R Positive)

Presentation: 50 y/o F, anasarca, UPCR 5 mg/mg, albumin 1.5 g/dL, anti-PLA2R positive, biopsy: MN.

Interpretation: Nephrotic syndrome, primary MN (anti-PLA2R positive).

Management: Rituximab 375 mg/m² weekly x 4, lisinopril 10 mg daily, furosemide 40 mg daily, atorvastatin 40 mg daily, enoxaparin prophylaxis, monitor anti-PLA2R titers.

Case 4: Diabetic Nephropathy

Presentation: 60 y/o M, T2DM, HTN, leg edema, UPCR 3.8 mg/mg, albumin 2.5 g/dL, creatinine 2.0 mg/dL, HbA1c 8.5%.

Interpretation: Nephrotic syndrome, diabetic nephropathy (DM, HTN, renal dysfunction).

Management: Optimize glycemic control (insulin), losartan 50 mg daily, empagliflozin 10 mg daily, furosemide 40 mg daily, atorvastatin 20 mg daily, monitor eGFR, HbA1c.

Case 5: Lupus Nephritis (Class V)

Presentation: 28 y/o F, malar rash, edema, UPCR 4 mg/mg, albumin 2.0 g/dL, ANA positive, low C3/C4, biopsy: lupus nephritis (Class V).

Interpretation: Nephrotic syndrome, secondary to SLE.

Management: Prednisone 0.5 mg/kg/day + MMF 1 g BID, lisinopril 10 mg daily, furosemide 40 mg daily, hydroxychloroquine 200 mg BID, monitor anti-dsDNA, C3/C4.

Complications

Acute:

- **Thrombosis:** Renal vein thrombosis (10-20% in MN), DVT/PE (albumin <2 g/dL increases risk).
- Infections: Pneumococcal peritonitis, cellulitis (loss of IgG, complement).
- Acute Kidney Injury (AKI): Hypovolemia (over-diuresis), renal vein thrombosis, or progression of underlying disease.
- **Hypovolemia:** From severe hypoalbuminemia, over-diuresis → Hypotension, AKI.

Long-Term:

- Chronic Kidney Disease (CKD): Progressive decline in eGFR (esp. FSGS, diabetic nephropathy).
- Cardiovascular Disease: Hyperlipidemia → Atherosclerosis, MI, stroke.
- Osteoporosis: Vitamin D deficiency, steroid use → Bone loss, fractures.
- End-Stage Renal Disease (ESRD): 20-30% of FSGS patients progress to ESRD within 5-10 years.

Prognosis

Remission Rates:

- MCD: 80-90% of children achieve remission with steroids; 50-70% of adults. Relapse common (50% in children).
- FSGS: 20-40% achieve remission with treatment; 30-50% progress to ESRD in 5-10 years.
- MN: 30-40% spontaneous remission; 30% progress to ESRD if untreated. Rituximab improves outcomes.
- **Diabetic Nephropathy:** Slow progression with RAS blockade, SGLT2 inhibitors; 20-40% reach ESRD in 10-15 years.

Mortality:

- Infections/Thrombosis: Leading causes of death in untreated NS (5-10% mortality if complications occur).
- ESRD: Higher mortality on dialysis (20-30% 5-year mortality).

Key Factors:

- Early immunosuppression (e.g., steroids, rituximab) improves remission rates.
- Control of proteinuria (<0.5 g/day) slows CKD progression.
- Secondary causes (e.g., SLE, diabetes) have worse prognosis if untreated.

Key Pearls

- **Nephrotic syndrome:** Proteinuria (>3.5 g/day), hypoalbuminemia (<3 g/dL), edema, hyperlipidemia.
- Children: Presume MCD, start steroids; biopsy if no response in 8 weeks.
- Adults: Biopsy first; tailor therapy (e.g., rituximab for MN, MMF for lupus).
- Thrombosis risk: Prophylactic anticoagulation if albumin <2 g/dL.
- Edema: Sodium restriction, diuretics; avoid over-diuresis (AKI risk).
- Monitor: UPCR, albumin, creatinine, lipids; treat complications (infections, thrombosis).

References

- <u>UpToDate:</u> "Nephrotic Syndrome" (2025).
- KDIGO: "Glomerular Diseases Guidelines" (2021).
- NEJM: "Rituximab in Membranous Nephropathy (MENTOR Trial)" (2019).
- JASN: "Management of FSGS" (2023).
- <u>Lancet:</u> "Diabetic Nephropathy: Advances in Treatment" (2024).

Visit: medcheatsheets.com for more education, fun resources and 10 category 1 AAPA CME credit!

© Hospital Medicine Cheat Sheets (medcheatsheets.com). For educational purposes only. Do not redistribute or sell. Neither the author nor the company is liable for realworld implications. Al was used in development