EXERCISE SET 1.1

- 1. Show that the following equations have at least one solution in the given intervals.
 - **a.** $x \cos x 2x^2 + 3x 1 = 0$, [0.2, 0.3] and [1.2, 1.3] **b.** $(x-2)^2 \ln x = 0$, [1, 2] and [*e*, 4]

2. Find intervals containing solutions to the following equations.

a.
$$x - 3^{-x} = 0$$

b.
$$4x^2 - e^x = 0$$

c.
$$x^3 - 2x^2 - 4x + 2 = 0$$

4. Find $\max_{a \le x \le b} |f(x)|$ for the following functions and intervals.

a.
$$f(x) = (2 - e^x + 2x)/3$$
, [0, 1]

- 7. Let $f(x) = x^3$.
 - **a.** Find the second Taylor polynomial $P_2(x)$ about $x_0 = 0$.
 - **b.** Find $R_2(0.5)$ and the actual error in using $P_2(0.5)$ to approximate f(0.5).
 - **c.** Repeat part (a) using $x_0 = 1$.
 - **d.** Repeat part (b) using the polynomial from part (c).
- **8.** Find the third Taylor polynomial $P_3(x)$ for the function $f(x) = \sqrt{x+1}$ about $x_0 = 0$. Approximate $\sqrt{0.5}$, $\sqrt{0.75}$, $\sqrt{1.25}$, and $\sqrt{1.5}$ using $P_3(x)$, and find the actual errors.

21. The polynomial $P_2(x) = 1 - \frac{1}{2}x^2$ is to be used to approximate $f(x) = \cos x$ in $[-\frac{1}{2}, \frac{1}{2}]$. Find a bound for the maximum error.

- **28.** Suppose $f \in C[a, b]$, that x_1 and x_2 are in [a, b].
 - **a.** Show that a number ξ exists between x_1 and x_2 with

$$f(\xi) = \frac{f(x_1) + f(x_2)}{2} = \frac{1}{2}f(x_1) + \frac{1}{2}f(x_2).$$

b. Suppose that c_1 and c_2 are positive constants. Show that a number ξ exists between x_1 and x_2 with

$$f(\xi) = \frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2}.$$

c. Give an example to show that the result in part **b.** does not necessarily hold when c_1 and c_2 have opposite signs with $c_1 \neq -c_2$.