Chapter 1

Calculas on Manifolds

Theorem 1. Let $O \subseteq \mathbb{R}^{n+1}$ be open and $x \in \mathbb{R}$. Let's define O' as follows:

$$O' = \{(y_1, \dots, y_n) : (x, y_1, \dots, y_n) \in O\}$$

Then $O' \subseteq \mathbb{R}^n$ is open.

Proof. Let $(y_1, \ldots, y_n) \in O'$ be arbitrary. By definition, $(x, y_1, \ldots, y_n) \in O$. Since O is open there is an open rectangle $U \subseteq O$. Corrsponding open rectangle U' also contains our y. Now suppose $z \in U'$ is arbitrary. Then $(x, z_1, \ldots, z_n) \in U \subseteq O$. Therefore, $z \in O'$. Hence, O' is open. \square

Theorem 2. Let $O \in \mathbb{R}^{m+n}$ be open and $x = (x_1, \dots, x_m) \in \mathbb{R}^m$. Define

$$O' = \{(y_1, \dots, y_n) : (x_1, \dots, x_m, y_1, \dots, y_n) \in O\}$$

Then O' is also open in \mathbb{R}^n .

Proof. Previous proof works with some slight changes.

Theorem 3. If $B \subseteq \mathbb{R}^n$ is compact and $x \in \mathbb{R}$, then $\{x\} \times B \subseteq \mathbb{R}^{n+1}$ is also compact.

Proof. Suppose O is an open cover for $\{x\} \times B \subseteq \mathbb{R}^{n+1}$. Then we can construct an open cover O' by having a function $f: U \to U'$ by dropping the first coordinate. Since B is compact, there is a finite list of open sets U'_1, \ldots, U'_2 that covers B. From this finite set we can find a finite cover U_1, \ldots, U_n by going back pre-image by pre-image so that we contain α . Hence $\{x\} \times B \in \mathbb{R}^{n+1}$ is compact.

Theorem 4. If $B \in \mathbb{R}^m$ is compact and $x \in \mathbb{R}^n$, then $\{x\} \times B \in \mathbb{R}^{n+m}$ is also compact.

Proof. Similar as above. \Box

Theorem 5. If B is compact and O is an open cover of $\{x\} \times B \in \mathbb{R}^{n+m}$, then there is an open set $U \in \mathbb{R}^n$ containing x such that $U \times B$ is covered by a finite number of sets in O.

Chapter 2

Linear Algebra Done right

2.1 Excercise : **3.D**

Problem. 1. Suppose $T \in \mathcal{L}(U,V)$ and $S \in \mathcal{L}(V,W)$ are both invertible linear maps. Prove that $ST \in \mathcal{L}(U,W)$ is invertible and that $(ST)^{-1} = T^{-1}S^{-1}$

Proof. Since ST is a composition of two bijections, it is also a bijection, and hence is also a bijection. We only need to show that $(ST)^{-1} = T^{-1}S^{-1}$.

$$(T^{-1}S^{-1})(ST) = T^{-1}(S^{-1}S)T$$

= $T^{-1}IT$
= $T^{-1}T = I$

Similarly, $(ST)(T^{-1}S^{-1}) = I$.

Problem. 9. Suppose V is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that ST is invertible if and only if both S and T are invertible.

Proof. The reverse direction is immediate from Problem 1. Now suppose that ST is invertible. Let $v \in V$. Then STv = v. Hence S is surjective and therefore invertible. Suppose that Tu = Tv. Then, STu = STv. Since ST is invertible, we have u = v. Therefore, T is injective, and since V is finite dimension, T is invertible.

Problem. 10. Suppose V is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that ST = I if and only if TS = I

Proof. Suppose ST = I. Then STv = v. Since V is finite dimensional, S is invertible. Now,

$$I = S^{-1}S = S^{-1}(ST)S = (S^{-1}S)TS = ITS = TS$$

П

2.2 Excercise : 7.C

Problem. 4. Suppose $T \in \mathcal{L}(V, W)$ Prove that T^*T is a positive operator on V and TT^* is a positive operator on W.

Proof.

$$(T^*T)^* = T^*T$$

Therefore, T^*T is self-adjoint. Moreover,

Therefore, T^*T is positive.