Mobilkommunikation - Mobile Communications

Lecture 5: Random Access

Prof. Dr.-Ing. Markus Fidler

Institute of Communications Technology Leibniz Universität Hannover

May 13, 2016

Previous lecture

So far multiple access is coordinated

- ► F/T/CDMA
- static allocation or dynamic assignment

However, wireless communication is often much more ad-hoc

- new terminals have to register with the network
- terminals request access to the medium spontaneously
- ▶ in many cases there is no central control

Need other access methods

- ▶ distributed
- non-arbitrated
- ⇒ random access

Multiple access techniques

- reservation-based: fixed allocation of resources to terminals
- ► random access: no collision free allocation; terminals compete for the channel using randomized procedures

Multiple access to a shared medium

Many access networks, e.g., Local Area Networks (LANs), Wireless LANs, and radio access networks, use a shared medium, i.e., Ether.

Advantages:

- access to the entire medium
- ► statistical multiplexing

Need: medium access control

- ▶ non-carrier sense
- vs. carrier sense

Choice depends on the quotient of

- ► propagation delay
- ► transmission delay

An analogy

Consider a number of participants at a typical meeting.

Think about it: What is the protocol for sharing the medium?

Outline

ALOHA Slotted ALOHA Pure ALOHA

Carrier sense multiple access Renewal theory CSMA throughput model Collision avoidance

Random access with reservation

AI OHA

The ALOHA protocol was developed by Abramson for a wireless computer network between the Hawaii islands. It is used, e.g., for the GSM Random Access Channel.

A number of hosts share a wireless channel

- if a host has data for transmission it sends the data immediately
- ▶ the hosts do not consider other potentially sending hosts
- if two or more packets are transmitted at the same time they are destroyed
- ▶ these packets are retransmitted after a random time

What is the impact of packet collisions on the performance, i.e., what is the maximally achievable throughput?

Slotted ALOHA

- synchronous TDM scheme with slot time t_T
- lacktriangleright constant sized packets with transmission time t_T
- lacktriangleright collision window t_T

Slotted ALOHA throughput

Assume N stations contend for the channel

- ► all stations are identical and statistically independent
- lacktriangle the probability that a station sends in a given time-slot is p
- \blacktriangleright the probability that a station transmits a packet without collision is $p(1-p)^{N-1}$
- ▶ the probability that any one out of N stations transmits a packet without collision is the throughput $S = Np(1-p)^{N-1}$

The throughput is maximized for

$$\frac{\partial}{\partial p} Np(1-p)^{N-1} = N(1-p)^{N-1} - Np(N-1)(1-p)^{N-2} = 0$$

and after simplification 1-p=(N-1)p yields p=1/N such that $S_{\rm max}=(1-1/N)^{N-1}$

4D + 4B + 4B + B + 900

Slotted ALOHA throughput continued

If the number of contending stations is large we have in the limit $N \to \infty$ that

$$\lim_{N \to \infty} S_{\text{max}} = \lim_{N \to \infty} \left(1 - \frac{1}{N} \right)^{N-1} = \frac{1}{e} \approx 0.368$$

since

- ► $\lim_{N\to\infty} (1-1/N) = 1$

The fewer stations contend the better the throughput, e.g.,

- $S_{\max} = 1$ for N = 1
- $S_{\max} = 1/2$ for N = 2

Pure ALOHA

- ► asynchronous
- lacktriangleright constant sized packets with transmission time t_T
- ightharpoonup collision window $2t_T$

Pure ALOHA throughput

Assume all stations use packets with transmission duration t_T

- lacktriangle the probability that a station sends in $[t,t+t_T]$ is p
- ▶ the probability that no other station starts transmitting in $[t, t + t_T]$ is $(1 p)^{N-1}$
- ▶ the probability that no other station started transmitting in $[t-t_T,t]$ is $(1-p)^{N-1}$
- ▶ the probability that a station transmits a packet without collision is $p(1-p)^{2(N-1)}$
- ▶ the probability that any one out of N stations transmits a packet without collision is the throughput $S = Np(1-p)^{2(N-1)}$

Pure ALOHA throughput continued

The throughput is maximized for

$$\frac{\partial}{\partial p} Np(1-p)^{2(N-1)} = N(1-p)^{2(N-1)} - Np2(N-1)(1-p)^{2(N-1)-1} = 0$$

and after simplification 1-p=2(N-1)p yields p=1/(2N-1) such that $S_{\rm max}=N/(2N-1)~(1-1/(2N-1))^{2(N-1)}$

If the number of contending stations is large we have in the limit $N \to \infty$ that

$$\lim_{N \to \infty} S_{\text{max}} = \lim_{N \to \infty} \frac{N}{(2N - 1)} \left(1 - \frac{1}{2N - 1} \right)^{2(N - 1)} = \frac{1}{2e} \approx 0.184$$

ALOHA throughput vs. load

The simple model neglects retransmissions respectively retrials.

- ► As an extension: load = fresh arrivals + retransmissions
- ► For stability: rate of fresh arrivals = throughput

ALOHA throughput vs. load

The simple model neglects retransmissions respectively retrials.

- ► As an extension: load = fresh arrivals + retransmissions
- ► For stability: rate of fresh arrivals = throughput

Pure and slotted ALOHA are unstable for loads larger than 0.5, respectively, 1. ALOHA requires a cautious retransmission strategy.

Outline

ALOHA Slotted ALOHA Pure ALOHA

Carrier sense multiple access Renewal theory CSMA throughput model Collision avoidance

Random access with reservation

Carrier sense multiple access (CSMA)

- stations sense the channel before transmitting (listen before talk)
 - if the station finds the channel idle it starts sending
 - if the station finds the channel busy it defers sending
 - non-persistent: try again after random waiting time
 - ► 1-persistent: try again immediately
 - ▶ p-persistent: try again, if idle send with probability p, wait one slot with 1 − p
- if no acknowledgement is received, a collision is assumed
- does not solve the hidden and exposed station problems

ALOHA space time diagram

- ightharpoonup transmission time t_T
- lacktriangle propagation delay t_P
- lacktriangle collision window $2t_T$ resp. t_T

CSMA space time diagram

A packet transmission, e.g., from B is vulnerable

- until all stations sense the ongoing transmission
- ▶ once the medium is sensed busy the protocol forbids that other stations start sending
- ▶ vulnerability period $2t_P$

Is CSMA generally better than ALOHA?

- 1. Case 1: local area network
 - ightharpoonup vulnerability period at most $2t_P$
 - ightharpoonup packet size 1500 Byte, 100 Mbps link: $t_T=0.12$ ms
 - ▶ 100 meter distance: $t_P \approx 0.5 \ \mu \text{s}$
 - $t_T \gg t_P$ favors CSMA
- 2. Case 2: satellite link
 - ▶ collision window $2t_T$ respectively t_T
 - geosynchronous satellite (RFC 2488): $t_P \approx 250 \text{ ms}$
 - $t_P \gg t_T$ favors ALOHA
 - carrier sense only provides old, outdated information

Probability density function

Given a random variable X. The integral of the probability density function (pdf) $f_X(x) \geq 0$ denotes the probability that X takes a value within an interval [a,b]

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) dx.$$

Clearly, it also holds that

$$\int_{-\infty}^{\infty} f_X(x)dx = 1.$$

The cumulative distribution function (cdf) is defined as

$$F_X(a) = P(X \le a) = \int_{-\infty}^a f_X(x) dx.$$

Conversely, the probability density function follows as

$$f_X(x) = \frac{dF_X(x)}{dx}.$$

Expected value

The expected value of a random variable X is defined as

$$\mathsf{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

For the expected value of the sum of two random variables X+Y it holds that

$$\mathsf{E}[X+Y] = \mathsf{E}[X] + \mathsf{E}[Y].$$

Renewal processes

Counting process K(t)

lacktriangle counts the number of arrivals (random events) K(t) in [0,t]

Inter-arrival times X_i

 \blacktriangleright time between arrival i and i-1

The counting process K(t) is a renewal process if the inter-arrival times X_i are independent and identically distributed (iid).

Example: Consider light bulbs that fail after some iid random time. A single bulb is used at a time and replaced immediately if it fails. The process K(t) denotes the number renewals by time t.

Poisson process

A well-known counting process is the Poisson process where

$$P[K(t) = x] = \frac{(\lambda t)^x}{x!}e^{-\lambda t}$$

The expected value of K(t) is $\mathsf{E}[K(t)] = \lambda t$ where λ is the mean arrival rate.

For the time X until the next arrival takes place it follows that

$$P[X > t] = P[K(t) = 0] = e^{-\lambda t},$$

i.e., the time between two arrivals is exponentially distributed. The expected value of X is $\mathsf{E}[X] = 1/\lambda$.

Mean time between renewals

Inter-arrival times X_i and renewal times Y_i

The time of the k-th renewal can be expressed as

$$Y_k = \sum_{i=1}^k X_i$$

Under the assumptions of the strong law of large numbers the sample average converges to the expected value

$$\frac{Y_k}{k} = \frac{1}{k} \sum_{i=1}^k X_i \to \mathsf{E}[X] \qquad \text{as } k \to \infty$$

Renewal theory

Consider

- $lacktriangleq Y_{K(t)}$ the time of the last renewal before or at time t
- $ightharpoonup Y_{K(t)+1}$ the time of the first renewal after t

such that

$$\frac{Y_{K(t)}}{K(t)} \leq \frac{t}{K(t)} < \frac{Y_{K(t)+1}}{K(t)}$$

Renewal theory

Consider

- $lacktriangleq Y_{K(t)}$ the time of the last renewal before or at time t
- $Y_{K(t)+1}$ the time of the first renewal after t

such that

$$\frac{Y_{K(t)}}{K(t)} \leq \frac{t}{K(t)} < \frac{Y_{K(t)+1}}{K(t)}$$

For $t \to \infty$ we have $K(t) \to \infty$ and both sides converge to $\mathsf{E}[X]$ such that

$$\frac{K(t)}{t} \to \frac{1}{\mathsf{E}[X]} \qquad \text{as } t \to \infty$$

Example: from the mean inter-arrival time $\mathsf{E}[X]$ it follows that $K(t)/t = 1/\mathsf{E}[X]$ for $t \to \infty$ is the average rate of renewals.

Renewal reward processes

Each renewal k may come with a reward (or cost) denoted R_k . The total reward earned by time t is

$$R(t) = \sum_{k=1}^{K(t)} R_k$$

The average reward becomes

$$\frac{R(t)}{t} = \left(\frac{R(t)}{K(t)}\right) \left(\frac{K(t)}{t}\right) = \left(\frac{\sum_{k=1}^{K(t)} R_k}{K(t)}\right) \left(\frac{K(t)}{t}\right)$$

and for $t\to\infty$ the two factors converge (owing to the strong law of large numbers) to $\mathsf{E}[R]$ and $1/\mathsf{E}[X]$ respectively. The long term average reward becomes

$$\lim_{t \to \infty} \frac{R(t)}{t} = \frac{\mathsf{E}[R]}{\mathsf{E}[X]},$$

i.e., mean reward per renewal divided by mean length of a renewal.

CSMA throughput model

Required notation: Denote

- ► B the duration of a busy period
- I the duration of an idle period
- lacktriangleq U the time during which the channel is used without conflicts
- lacktriangleq Y the time of the last arrival that causes a conflict if any

We normalize the model with respect to t_T such that $t_T = 1$.

We want to compute the average throughput for the simplest case, i.e., non-persistent CSMA.

Phrasing the problem using renewal theory we have

- ▶ length of a renewal B + I
- \blacktriangleright reward per renewal U

The reward per renewal U is the time during which the channel is used without conflicts. Hence, the long term average reward is the average utilization such that

$$S = \frac{\mathsf{E}[U]}{\mathsf{E}[B+I]} = \frac{\mathsf{E}[U]}{\mathsf{E}[B] + \mathsf{E}[I]}.$$

The reward is

- ▶ t_T if there is no collision (we assume $t_T = 1$)
- ▶ 0 if there is a collision

The number of packets that are transmitted during a time interval of length t is a random variable K.

Under relatively general assumptions (large number of independent stations) it can be modeled as a Poisson process with mean rate λ

$$P[K = x] = p(x) = \frac{(\lambda t)^x}{x!} e^{-\lambda t}.$$

The probability that there is no collision, i.e., no further arrival during t_P is

$$p(0) = e^{-\lambda t_P}.$$

The mean reward becomes (with $t_T = 1$)

$$\mathsf{E}[U] = t_T e^{-\lambda t_P} = e^{-\lambda t_P}.$$

The mean duration of an idle period is simply the expected inter-arrival time $\mathsf{E}[I]=1/\lambda$ of the Poisson arrival process.

The mean duration of a busy period is $\mathsf{E}[B] = \mathsf{E}[Y] + t_T + t_P$. The distribution of Y is for $0 \le y \le t_P$

$$F_Y(y) = P[Y \le y] = P[\text{no arrival in } t_P - y] = e^{-\lambda(t_P - y)}$$

The density function is derived by differentiation

$$f_Y(y) = \frac{dF_Y(y)}{dy} = \lambda e^{-\lambda t_P} e^{\lambda y}$$

and the expected value follows (using partial integration $\int u'v = uv - \int uv')$ as

$$\mathsf{E}[Y] = \int_0^{t_P} y f_Y(y) dy = t_P - \frac{1}{\lambda} (1 - e^{-\lambda t_P})$$

Putting all pieces together, the throughput of non-persistent CSMA is

$$S = \frac{\lambda e^{-\lambda t_P}}{\lambda (1 + 2t_P) + e^{-\lambda t_P}}$$

More involved are models for 1- and p-persistent CSMA. For 1-persistent CSMA the throughput can be computed as

$$S = \frac{\lambda(1 + \lambda + t_P \lambda(1 + \lambda + t_P \lambda/2))e^{-\lambda(1 + 2t_P)}}{\lambda(1 + 2t_P) - (1 - e^{-\lambda t_P}) + (1 + t_P \lambda)e^{-\lambda(1 + t_P)}}$$

CSMA vs. ALOHA

For small propagation delays t_P , e.g., in local area networks CSMA outperforms ALOHA significantly.

Non-persistent CSMA achieves higher throughput (why?) than 1-persistent CSMA, however, at the cost of additional latencies.

Collision avoidance

MACA uses a two step signalling procedure to address the hidden and exposed terminal problems

- ► request to send (RTS): sender broadcast a request to send
- ► clear to send (CTS): receiver broadcasts a clear to send

Signalling packets contain

- sender address
- receiver address
- packet size
 - ▶ network allocation vector (NAV)
 - duration during which other stations have to keep quiet to avoid a collision

Hidden and exposed terminals

Hidden terminal C

- ► C does not hear A
- ▶ but C hears the CTS
- ► C keeps silent

Exposed terminal C

- ► A does not hear C
- ▶ but C hears B
- ▶ C does not hear the CTS
- ► C may send, e.g., to D

transmission and detection ranges

transmission and detection ranges

Outline

ALOHA Slotted ALOHA Pure ALOHA

Carrier sense multiple access
Renewal theory
CSMA throughput model
Collision avoidance

Random access with reservation

Demand assigned multiple access (DAMA)

Motivation

- ▶ the efficiency of ALOHA is very poor (18 %, 36 %)
- reservation can significantly increase efficiency

DAMA, also called reservation ALOHA, allows a sender to reserve timeslots. Two phase approach

- ► reservation phase: contention using slotted ALOHA and short reservation packets
- ▶ transmission phase: collision-free transmission using reserved timeslots

Assessment

- ▶ advantage: only short reservation messages collide
- disadvantage: adds additional delays

Demand assigned multiple access (DAMA)

Alternating (in TDM fashion)

- reservation phase
- transmission phase
- \Rightarrow explicit reservation

Packet reservation multiple access (PRMA)

PRMA uses a repeating frame structure of slots

- slotted ALOHA is used to compete for free slots
- ▶ if a station wins, the slot is reserved in subsequent frames
- ► slots become free if stations stop sending
- ⇒ implicit reservation

Literature

- ► J. Schiller, Mobile Communications, Second Edition, Addison-Wesley, 2003.
- N. Abramson: The ALOHA System Another alternative for computer communications, AFIPS Conference Proceedings, Vol. 36, 1970, pp. 295-298.
- ► L. Kleinrock, and F. A. Tobagi: *Packet Switching in Radio Channels: Part 1 Carrier Sense Multiple-Access Modes and Their Throughput-Delay Characteristics*, IEEE Transactions on Communications, 23(12):1400-1416, 1975.