

Estrutura de Dados I

Análise de complexidade de algoritmos

Bruno Prado

Departamento de Computação / UFS

- O que é eficiência?
 - Tempo ou esforço empregado para realizar algo
 - Otimização do uso dos recursos

$$\uparrow$$
 Eficiência \longleftrightarrow Tempo \downarrow

↑ Eficiência ←→ Recursos ↓

- Qual a história e por que era importante?
 - Os recursos computacionais eram muito limitados
 - Grande consumo de potência e uso compartilhado

- Por que hoje é importante?
 - ► Restrições de custo
 - ▶ Baixo consumo de potência

- Quais os tipos de eficiência ou de complexidade computacional?
 - ► Tempo
 - Número de passos realizados
 - ▶ Espaço
 - Memória alocada
 - Armazenamento em disco.

- Indica quão rápido um algoritmo executa
- Ordenação simples da sequência de n números a₁, a₂, ..., a_{n-1}, a_n para gerar uma sequência ordenada a'₁, a'₂, ..., a'_{n-1}, a'_n

Número de passos realizados

$$(n-1) + (n-2) + \dots + 2 + 1 = \frac{(n-1)[1+(n-1)]}{2} \approx n^2$$

- Como medir o tempo de um procedimento?
 - Conceito de constante
 - Análise depende do tamanho da entrada n

```
#include <stdio.h>
void procedimento(int n) {
    c1();
    for(int i = 0; i < n; i++) {
         c2();
         for(int j = 0; j < n; j++) {
              c3():
```

- Como medir o tempo de um procedimento?
 - Expressão em função do valor de n
 - ▶ Procedimentos c1, c2 e c3 não dependem de n

procedimento(n) =
$$c1 + n \times [c2 + (n \times c3)]$$

= $c1 + n \times c2 + n^2 \times c3$

- Cálculo do tempo com os valores médios das constantes
 - ► Entrada de tamanho 1.000
 - ▶ Valores de c1 = 200 ns, c2 = 150 ns e c3 = 250 ns

```
procedimento(1000) = 200 + 10^3 \times 150 + 10^6 \times 250 \text{ ns}

= 200 + 1,5 \times 10^5 + 2,5 \times 10^8 \text{ ns}

= 0,00000200 \times 10^8 + 0,0015 \times 10^8 + 2,5 \times 10^8 \text{ ns}

= 2,50150200 \times 10^8 \text{ ns} \approx 0.25 \text{ s}
```

- Cálculo do tempo com os valores médios das constantes
 - Quanto maior o valor do tamanho da entrada n, maior é o domínio do fator de maior grau da função
 - ▶ Para um valor de *n* suficientemente grande $n > n_0$

$$procedimento(n) \leq g(n)$$

$$g(n) = c \times n^2$$

- Aplicando o conceito de limite (análise assintótica)
 - Valores das constantes dependem da máquina
 - ▶ Com $n \to \infty$ se analisa a ordem das funções

$$\lim_{n \to \infty} \frac{procedimento(n)}{g(n)} = \begin{cases} 0 & procedimento(n) < g(n) \\ k & procedimento(n) = g(n) \\ \infty & procedimento(n) > g(n) \end{cases}$$

- Indica quanto de espaço de memória e de armazenamento são necessários
- Ordenação simples da sequência de n números a₁, a₂, ..., a_{n-1}, a_n para gerar uma sequência ordenada a'₁, a'₂, ..., a'_{n-1}, a'_n

▶ Número de posições de memória é de 2*n*

- Como medir o espaço alocado?
 - Procedimento para ordenação

```
#include <stdio.h>
void procedimento(int n) {
    int entrada() = (int*)(malloc(n * sizeof(int));
    int saida() = (int*)(malloc(n * sizeof(int));
    FILE* arquivo = fopen("arquivo.txt", "r");
    for(int i = 0; i < n; i++)
         fscanf(arquivo, "%i", entrada(i));
    fclose(arquivo);
    ordenar(saida, entrada);
```

- Como medir o espaço alocado?
 - Expressão em função do valor de n
 - Constantes dependem do tamanho do dado

procedimento(n) =
$$c_1 \times n + c_1 \times n$$

= $2c_1 \times n$
= $c_2 \times n$

- Cálculo do espaço alocado
 - Quanto maior o valor do tamanho da entrada n, maior é o domínio do fator de maior grau da função
 - ▶ Para um valor de n suficientemente grande $n > n_0$

$$procedimento(n) \leq g(n)$$

$$g(n) = c \times n$$

- Aplicando o conceito de limite (análise assintótica)
 - Valores das constantes dependem da máquina
 - ▶ Com $n \to \infty$ se analisa a ordem das funções

$$\lim_{n \to \infty} \frac{procedimento(n)}{g(n)} = \begin{cases} 0 & procedimento(n) < g(n) \\ k & procedimento(n) = g(n) \\ \infty & procedimento(n) > g(n) \end{cases}$$

Ordem de Crescimento

- ▶ Tamanho de entrada *n*
- Complexidade versus número de passos

n	log ₂ n	n	nlog ₂ n	n ²	n^3	2 ⁿ	n!
10 ¹	3,3	10 ¹	$3,3 \times 10^{1}$	10 ²	10 ³	10 ³	$3,6 \times 10^{6}$
10 ²	6,6	10 ²	$6,6 \times 10^{2}$	10 ⁴	10 ⁶	$1,3 \times 10^{30}$	$9,3 \times 10^{157}$
10 ³	10	10 ³	$1,0 \times 10^{4}$	10 ⁶	10 ⁹	-	-
10 ⁴	13	10 ⁴	$1,3 \times 10^{5}$	10 ⁸	10 ¹²	-	-
10 ⁵	17	10 ⁵	$1,7 \times 10^{6}$	10 ¹⁰	10 ¹⁵	-	-
10 ⁶	20	10 ⁶	$2,0 \times 10^{7}$	10 ¹²	10 ¹⁸	-	-

Exemplo

- Calcular a complexidade de tempo e de espaço do algoritmo fatorial
 - Descrever sua implementação iterativa
 - Tudo deve ser claramente justificado

$$Fatorial(n) = \begin{cases} 1 & n = 0 \\ n \times Fatorial(n-1) & n > 0 \end{cases}$$

Notação O

- Necessidade de formalização da complexidade dos algoritmos
 - Notação matemática
 - Análise assintótica
- Notações para melhor caso (Ω), pior caso (O) e caso médio (Θ)
 - Definições e aplicações

Notação O

- Função de busca sequencial
 - ▶ Descrita pela equação busca(n) = $c_A + c_B \times n$

```
#include <stdio.h>
...
int busca(int elem, int v(), int n) {
    int r = -1;
    for(int i = 0; r == -1 && i < n; i++)
        if(v(i) == elem)
            r = i;
    return r;
}</pre>
```

Melhor Caso

- O que é a análise de melhor caso de um algoritmo?
 - Descreve a situação o menor número de passos são realizados
 - Estabelece um limitante inferior ou melhor caso

Melhor Caso

- O que é a análise de melhor caso de um algoritmo?
 - Descreve a situação o menor número de passos são realizados
 - Estabelece um limitante inferior ou melhor caso
- Busca sequencial pelo elemento 33
 - Primeira ocorrência
 - Vetor possui 1.000 elementos sem repetições

Melhor Caso

- Análise do melhor caso da busca sequencial
 - Existem constantes positivas c e n_0 tal que $0 \le cg(n) \le busca(n)$, para todo $n \ge n_0$
 - Aplicando a notação: $\Omega(busca(n)) = \Omega(g(n)) = \Omega(c_A + c_B) = c_{MC}$

Pior Caso

- O que é a análise de pior caso de um algoritmo?
 - Descreve a situação com maior número de passos
 - Estabelece um limitante superior

Pior Caso

- O que é a análise de pior caso de um algoritmo?
 - Descreve a situação com maior número de passos
 - Estabelece um limitante superior
- Busca sequencial pelo elemento 14
 - Última ocorrência
 - Vetor possui 1.000 elementos sem repetições

Pior Caso

- Análise do pior caso da busca sequencial
 - Existem constantes positivas c e n_0 tal que $0 \le busca(n) \le cg(n)$, para todo $n \ge n_0$
 - Aplicando a notação: $O(busca(n)) = O(cg(n)) = O(c_A + c_B \times n) = c_{PC} \times n$

Notação O

- Propriedades da notação O
 - ▶ Termos constantes: O(c) = O(1)
 - ▶ Multiplicação por constantes: $O(c \times f(n)) = O(f(n))$
 - Adição: $O(f_1(n)) + O(f_2(n)) = O(|f_1(n)| + |f_2(n)|)$
 - ▶ Produto: $O(f_1(n)) \times O(f_2(n)) = O(f_1(n) \times f_2(n))$

- Não confundir com caso prático ou real
 - Observa o comportamento real do algoritmo
 - Utiliza dados estatísticos

- Não confundir com caso prático ou real
 - Observa o comportamento real do algoritmo
 - Utiliza dados estatísticos
- Busca sequencial por um elemento qualquer
 - São executadas na busca entre 1 e n iterações
 - Vetor possui 1.000 elementos sem repetições

- Análise do caso médio da busca sequencial
 - Existem constantes positivas c e n_0 tal que $0 \le c_1 g(n) \le busca(n) \le c_2 g(n)$, para todo $n \ge n_0$
 - ▶ Aplicando a notação: $\Omega(c_{MC}) \leq busca(n) \leq O(n)$

Ordem exata de execução de um algoritmo f(n)

$$f(n) = \Omega(c_1g(n)) \in f(n) = O(c_2g(n))$$

$$\downarrow$$

$$f(n) = \Theta(g(n))$$

Exemplo

Calcule a complexidade de tempo e espaço do código abaixo, utilizando as 3 notações vistas:

```
void procedimento(int n) {
     int a() = (int^*)(malloc((n^*n+10) * sizeof(int)));
     for(int i = 0: i < 10: i++) a(i) = 1:
     for(int i = 0: i < n: i++) {
          int b = 3:
          for(int j = 0; j < n; j++) {
               a(i)(j) = b * a(i)(j);
               for(int k = 0; k < 10; k++)
                    a(i)(j)=a(i)(j) * a(k);
     for(int i = n; i < n * n; i++)
          a(i) = a(i) + 2:
```

Exemplo

- Descreva com suas palavras o que você entende por pior caso, melhor caso e caso médio.
- Por que é utilizada a análise assintótica?