Gorenstein Rings

Notes for the course MA 842: Topics in Algebra II

H. Ananthnarayan

SCRIBE: Swayam Chube

Last Updated: March 8, 2025

CONTENTS

1	Injective Modules	1
	1.1 Basic Properties of Injective Modules	1
	1.2 Essential Extensions and Injective Hulls	4
2	Matlis Duality	5
3	Injective Resolutions	8

§1 INJECTIVE MODULES

§§ Basic Properties of Injective Modules

DEFINITION 1.1. Let *R* be a ring. An *R*-module *E* is said to be *injective* if for every inclusion of *R*-modules $N \hookrightarrow M$ and an *R*-linear map $N \to E$, there is an *R*-linear map $M \to E$ making

commute.

An *R*-module *M* is said to be *divisible* if

$$\mu_a: M \longrightarrow M \qquad m \longmapsto am$$

is surjective for each non-zerodivisor $a \in R$.

REMARK 1.2. It is easy to see that E is injective if and only if given any inclusion of R-modules $N \hookrightarrow M$, the induced map $\operatorname{Hom}_R(M,E) \to \operatorname{Hom}_R(N,E)$ is surjective. Further, since $\operatorname{Hom}_R(-,E)$ is always left-exact, we have:

An *R*-module *E* is injective if and only if $Hom_R(-, E)$ is an exact functor.

PROPOSITION 1.3. Every injective *R*-module is divisible.

Proof. Let E be R-injective, $x \in E$, and $a \in R$ a non-zerodivisor. Let $\varphi : R \to E$ be the unique R-linear map sending $1 \mapsto x$. Since $R \xrightarrow{\mu_a^R} R$ is injective, there is a map $\widetilde{\varphi} : R \to E$ such that $\widetilde{\varphi} \circ \mu_a^R = \varphi$. In particular, $a\widetilde{\varphi}(1) = x$, whence $\mu_a^E : E \to E$ is surjective, as desired.

THEOREM 1.4 (BAER'S CRITERION). Let R be a ring and E an R-module. Then E is injective if and only if for every ideal $I \leq R$ and an R-linear map $f: I \to E$, there is an R-linear map $F: R \to E$ such that $F|_{I} = f$.

Proof. The forward implication is clear. We shall prove the converse. Let $0 \to N \to M$ be exact and $f: N \to E$ be an R-linear map. Consider the poset

$$\Omega = \{(P,g) \colon N \leqslant P \leqslant M \text{ and } g : P \to E \text{ is } R\text{-linear extending } f\}$$
,

where $(P,g) \le (P',g')$ if $P \le P'$ and $g'|_P = g$. Using Zorn's lemma, choose a maximal element $(P,g) \in \Omega$. We claim that P = M. Suppose now and choose some $x \in M \setminus P$. Set $I = (P :_R x) \le R$ and consider the map

$$I \longrightarrow E$$
 $a \mapsto g(ax)$.

This is well-defined and R-linear, whence it extends to an R-linear map $\varphi: R \to E$. Let $\alpha = \varphi(1)$ and define $F: P + Rx \to E$ by $F(p + ax) = g(p) + a\alpha$ for all $p \in P$ and $a \in R$. To see that this is well-defined, note that if $p_1 + a_1x = p_2 + a_2x$, then $a_1 - a_2 \in I$, so that

$$g(p_2) - g(p_1) = g((a_1 - a_2)x) = (a_1 - a_2)\alpha \implies g(p_1) + a_1\alpha = g(p_2) + a_2\alpha.$$

The map F is obviously R-linear and extends g, thereby contradicting the maximality of (P,g). Hence, P = M and E is injective.

COROLLARY 1.5. An *R*-module *E* is injective if and only if $\operatorname{Ext}_R^1(R/I, E) = 0$ for all ideals $I \leq R$.

REMARK 1.6. We note that it is not sufficient to check the equivalent condition of Theorem 1.4 for finitely generated ideals. Indeed, let $R = \mathcal{O}(\mathbb{C})$ the ring of entire functions, or $R = \mathcal{O}_{\overline{\mathbb{Q}}}$ the ring of algebraic integers in \mathbb{C} . It is known that R is a non-Noetherian Bézout domain. As such, due to Interlude 1.12, there is a family of R-injectives $\{E_i\}_{i=1}^{\infty}$ such that $E = \bigoplus_i E_i$ is not injective.

Since each E_i is injective, it is divisible, consequently, E is a divisible R-module. Moreover, since R is a Bézout domain, every finitely generated ideal I in R is principal. It follows now that the equivalent condition of Theorem 1.4 holds for E but E is not injective.

PROPOSITION 1.7. Let *R* be a PID. An *R*-module *E* is injective if and only if it is divisible.

LEMMA 1.8. Let S be an R-algebra and E an injective R-module. Then $Hom_R(S, E)$ is an injective S-module.

Note. Hom $_R(S, E)$ is naturally an S-module under the action

$$(s \cdot f)(s') = f(ss') \quad \forall s, s' \in S, f \in \operatorname{Hom}_R(S, E).$$

Proof. Let $0 \to M' \to M \to M'' \to 0$ be a short exact sequence of *S*-modules. Using the Hom-Tensor adjunction, we have

$$0 \longrightarrow \operatorname{Hom}_{S}(M'', \operatorname{Hom}_{R}(S, E)) \longrightarrow \operatorname{Hom}_{S}(M, \operatorname{Hom}_{R}(S, E)) \longrightarrow \operatorname{Hom}_{S}(M', \operatorname{Hom}_{R}(S, E)) \longrightarrow 0$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$0 \longrightarrow \operatorname{Hom}_{R}(M' \otimes_{S} S, E) \longrightarrow \operatorname{Hom}_{R}(M \otimes_{S} S, E) \longrightarrow \operatorname{Hom}_{R}(M'' \otimes_{S} S, E) \longrightarrow 0$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$0 \longrightarrow \operatorname{Hom}_{R}(M', E) \longrightarrow \operatorname{Hom}_{R}(M, E) \longrightarrow \operatorname{Hom}_{R}(M'', E) \longrightarrow 0$$

The exactness of the bottom row is a consequence of the *R*-injectivity of *E*. Thus the top row is exact and we have our desideratum.

THEOREM 1.9. Every *R*-module can be embedded inside an *R*-injective.

Proof. First, we show this for $R = \mathbb{Z}$. Let M be a \mathbb{Z} -module, then $M \cong \bigoplus_I \mathbb{Z}/N$ for some submodule N of $\bigoplus_I \mathbb{Z}$. There is a natural inclusion of \mathbb{Z} -modules $\bigoplus_I \mathbb{Z} \hookrightarrow \bigoplus_I \mathbb{Q}$ which induces an inclusion

$$M \cong \frac{\bigoplus_I \mathbb{Z}}{N} \hookrightarrow \frac{\bigoplus_I \mathbb{Q}}{N} =: E$$

Being a quotient of a divisible module, E is divisible and hence \mathbb{Z} -injective.

Now, let R be any ring and M an R-module. Then M is naturally a \mathbb{Z} -module and admits a \mathbb{Z} -linear inclusion $\iota: M \hookrightarrow E$, where E is a \mathbb{Z} -injective. Consider the map

$$\varphi: M \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(R, E) \qquad m \longmapsto \varphi_m,$$

where $\varphi_m : R \to E$ is given by $\varphi_m(r) = f(rm)$. The map φ is obviously R-linear and if $\varphi_m = 0$, then $f(m) = \varphi_m(1) = 0$, i.e., m = 0. As a result, φ is injective and we have embedded M inside an injective R-module.

COROLLARY 1.10. Let *E* be an *R*-module. Then *E* is injective if and only if every *R*-linear inclusion $E \hookrightarrow M$ splits.

Proof. Suppose *E* is injective.

The above diagram constructs a splitting of $E \hookrightarrow M$.

Conversely, suppose every R-linear inclusion $E \hookrightarrow M$ splits. Due to Theorem 1.9, we may choose M to be injective, so that E is a direct summand of M, whence E is injective.

PROPOSITION 1.11. Let *R* be a Noetherian ring. A direct sum of injective *R*-modules is injective.

Proof. Let $\{E_{\lambda}\}_{\lambda\in\Lambda}$ be a collection of R-injectives and $E=\bigoplus_{\lambda\in\Lambda}E_{\lambda}$. Let $I\leqslant R$ be a non-zero proper ideal and $f:I\to E$ an R-linear map. Since I is finitely generated, its image under f is finitely generated in E. Consequently, there is a finite subset $\Lambda_0\subseteq\Lambda$ such that $f(I)\subseteq\bigoplus_{\lambda\in\Lambda_0}E_{\lambda}=E_0$. Being a finite direct sum of injectives, E_0 is injective and hence there is a map $F:R\to E_0$ extending $f:I\to E_0$. Composing F with the natural inclusion $E_0\hookrightarrow E$, we obtain our desired extension of f. It now follows from Theorem 1.4 that E is an injective R-module.

INTERLUDE 1.12 (BASS-PAPP CONSTRUCTION). Let *R* be a non-Noetherian ring. Choose a strictly increasing chain of proper non-zero ideals

$$0 \neq I_1 \subsetneq I_2 \subsetneq \cdots$$
.

For each $n \ge 1$, choose an injective module E_n containing R/I_n , and set $E = \bigoplus_n E_n$. We contend that E is not R-injective.

Let $I = \bigcup_n I_n$. Since each I_n is proper, so is I. Let $f: I \to E$ be the map given by

$$f(x) = (x \bmod I_1, x \bmod I_2, \dots).$$

If *E* were injective, then there must exist a map $F: R \to E$ extending f. Suppose $F(1) = (x_1, x_2, ...)$. There is a positive integer N such that $x_n = 0$ for all $n \ge N$. Choose $x \in I_{N+1} \setminus I_N$. Since $x \in I$, we have

$$(xx_1, xx_2,...) = F(x) = f(x) = (x \text{ mod } I_1, x \text{ mod } I_2,...).$$

In particular, $x \mod I_N = xx_N = 0$, a contradiction. Thus E is not R-injective.

PROPOSITION 1.13. Let (R, \mathfrak{m}, k) be a Noetherian local ring. If $E \neq 0$ is an finitely generated injective R-module, then R is Artinian.

Proof. We shall show that dim R=0. Suppose not; we contend that there is a prime $\mathfrak{p} \subseteq \mathfrak{m}$ such that $\operatorname{Hom}_R(R/\mathfrak{p},E) \neq 0$. Indeed, if there is a non-maximal prime $\mathfrak{p} \in \operatorname{Ass}_R(E)$, then $R/\mathfrak{p} \hookrightarrow E$, giving us the desideratum. On the other hand, if $\operatorname{Ass}_R(E) = \{\mathfrak{m}\}$, then the composition

$$R/\mathfrak{p} \twoheadrightarrow R/\mathfrak{m} \hookrightarrow E$$

gives a non-zero map $R/\mathfrak{p} \to E$.

Choose $a \in \mathfrak{m} \setminus \mathfrak{p}$; this is a non-zerodivisor on R/\mathfrak{p} and furnishes an exact sequence

$$0 \to R/\mathfrak{p} \xrightarrow{\cdot a} R/\mathfrak{p}.$$

Applying $Hom_R(-, E)$, we get a surjection

$$\operatorname{Hom}_R(R/\mathfrak{p},E) \xrightarrow{\cdot a} \operatorname{Hom}_R(R/\mathfrak{p},E) \to 0.$$

Note that $\operatorname{Hom}_R(R/\mathfrak{p}, E) \cong (0:_E \mathfrak{p}) \subseteq E$, is a finite R-module. Due to Nakayama's lemma, we must have that $\operatorname{Hom}_R(R/\mathfrak{p}, E) = 0$, a contradiction. Thus dim R = 0, i.e. R is Artinian.

REMARK 1.14. One cannot drop the local condition in Proposition 1.13. This construction makes use of injective hulls. Let k be an algebraically closed field and

$$R = \frac{k[X,Y]}{(X - X^2, Y - XY)}.$$

Note that *R* is the coordinate ring of the disjoint union of the origin and the line x = 1 in \mathbb{A}^2_k . In particular, dim R = 1, and *R* is not Artinian.

Let $\mathfrak{m} = (x, y)$ be the maximal ideal corresponding to the origin. Then $R_{\mathfrak{m}} \cong k$, since it is the local ring of an isolated point. Now,

$$E_R(k) \cong E_{R_{\mathfrak{m}}}(k) \cong E_k(k) = k$$
,

so that *k* is a finitely generated injective *R*-module.

§§ Essential Extensions and Injective Hulls

DEFINITION 1.15. A containment of *R*-modules $N \subseteq M$ is said to be *essential* if every non-zero submodule of *M* intersects *N* non-trivially.

An injective map $\iota: N \hookrightarrow M$ is said to be essential if $\iota(N) \subseteq M$ is essential.

REMARK 1.16. Let $M \subseteq N$ be an essential extension of R-modules and $\varphi : M \hookrightarrow P$ be an R-linear injective map. If φ extends to an R-linear map $\widetilde{\varphi} : N \to P$, then $\widetilde{\varphi}$ is injective too. Indeed, if $K = \ker \widetilde{\varphi} \neq 0$, then $K \cap M \neq 0$, a contradiction.

PROPOSITION 1.17. Let (R, \mathfrak{m}, k) be a Noetherian local ring. Let M be an Artinian R-module. Then $Soc_R(M) \subseteq M$ is an essential extension.

Proof. Let $0 \neq K \subseteq M$ be a submodule. Choose $0 \neq x \in K$. Since M is Artinian, the descending chain $Rx \supseteq \mathfrak{m}x \supseteq \mathfrak{m}^2x \supseteq \cdots$ stabilizes. Let $n \geqslant 0$ be the least positive integer such that $\mathfrak{m}^nx = \mathfrak{m}^{n+1}x$. Due to Nakayama's lemma, $\mathfrak{m}^nx = 0$, whence $n \geqslant 1$. It follows that $0 \neq \mathfrak{m}^{n-1}x \subseteq \operatorname{Soc}_R(M) \cap K$, as desired.

COROLLARY 1.18. Let (R, \mathfrak{m}, k, E) be a Noetherian local ring and M an Artinian R-module. If $\dim_k \operatorname{Soc}_R(M) = d$, then $E_R(M) \cong E^{\oplus d}$.

Proof. Since $Soc_R(M) \cong k^{\oplus d}$, it is clear that $E_R(Soc_R(M)) \cong E^{\oplus d}$. The inclusion $Soc_R(M) \hookrightarrow E^{\oplus d}$ can be extended to M to obtain a commutative diagram:

$$\int_{\operatorname{Soc}_{R}(M)} \xrightarrow{} E_{R}\left(\operatorname{Soc}_{R}(M)\right) \cong E^{\oplus d}$$

where all maps are inclusion. It follows that $M \hookrightarrow E^{\oplus d}$ is an essential extension. Since $E^{\oplus d}$ is an injective module, we have that $E_R(M) \cong E^{\oplus d}$.

§2 MATLIS DUALITY

DEFINITION 2.1. Let (R, \mathfrak{m}, k, E) be a Noetherian local ring. For an R-module M, set $M^{\vee} = \operatorname{Hom}_{R}(M, E)$. This is known as the *Matlis dual* of a module.

Clearly $(-)^{\vee}$ is a contravariant exact functor on the category of R-modules. Note that if $I \subseteq \mathfrak{m}$ is an ideal, then as we have seen earlier,

$$E_{R/I}(k) = \operatorname{Hom}_{R}(R/I, E) = (R/I)^{\vee}.$$

In particular, taking $I = \mathfrak{m}$, we see that $k^{\vee} \cong k$ as R-modules.

LEMMA 2.2. Let (R, \mathfrak{m}, k, E) be a Noetherian local ring. Then

- (1) If $M \neq 0$, then $M^{\vee} \neq 0$.
- (2) If $\lambda_R(M) < \infty$, then $\lambda_R(M^{\vee}) \neq 0$. Moreover, $\lambda_R(M) = \lambda_R(M^{\vee})$.

Proof. (1) Let $0 \neq x \in M$. If $I = \operatorname{Ann}_R(x)$, then there is a natural inclusion $R/I \hookrightarrow M$ sending $\overline{1} \mapsto x$. Taking the Matlis dual, we have a surjection

$$M^{\vee} \rightarrow (R/I)^{\vee} = E_{R/I}(k) \neq 0,$$

consequently $M^{\vee} \neq 0$.

(2) We shall prove both statements by induction on $\lambda_R(M)$. If $\lambda_R(M)=0$, then M=0, so that $M^\vee=0$ and we get $\lambda_R(M)=0=\lambda_R(M^\vee)$. Suppose now that $0<\lambda_R(M)<\infty$. Then $\mathfrak{m}\in \mathrm{Ass}_R(M)$, and we have a short exact sequence

$$0 \longrightarrow k \longrightarrow M \longrightarrow N \longrightarrow 0.$$

Since length is additive, $\lambda_R(N) = \lambda_R(M) - 1$; hence the induction hypothesis applies and $\lambda_R(N^{\vee}) = \lambda_R(N)$. Taking the Matlis dual of the above short exact sequence, we have

$$0 \longrightarrow N^{\vee} \longrightarrow M^{\vee} \longrightarrow k^{\vee} \longrightarrow 0.$$

Since $k^{\vee} = 0$, we see that

$$\lambda_R(M^{\vee}) = \lambda_R(N^{\vee}) + 1 = \lambda_R(N) + 1 = \lambda_R(M),$$

as desired.

THEOREM 2.3. Let (R, \mathfrak{m}, k, E) be an Artinian local ring.

- (1) *E* is a faithful finite *R*-module.
- (2) The map

$$\mu: R \longrightarrow \operatorname{Hom}_R(E, E) \qquad a \longmapsto \mu_a$$

is an isomorphism of R-modules and rings.

(3) Given a finite *R*-module *M*, the natural map

$$\varphi_M: M \longrightarrow M^{\vee\vee} \qquad m \longmapsto \operatorname{ev}_m$$

is an isomorphism.

Proof. (1) Suppose $a \in R$ is such that aE = 0. Then

$$R^{\vee} = \text{Hom}_{R}(R, E) = E = (E :_{E} a) \cong \text{Hom}_{R}(R/aR, E) = (R/aR)^{\vee}.$$

Since *R* is Artinian, we then have

$$\lambda_R(R) = \lambda_R(R^{\vee}) = \lambda_R((R/aR)^{\vee}) = \lambda_R(R/aR) \implies \lambda_R(aR) = 0,$$

consequently, a = 0, i.e., E is a faithful R-module.

Next, since R is Artinian, $\mathfrak{m} \in \mathrm{Ass}_R(R)$, consequently, there is an injection $k = R/\mathfrak{m} \hookrightarrow R$. Due to Remark 1.16 extends to an inclusion $E \hookrightarrow R$, consequently, E is a finite R-module.

(2) First note that μ is injective due to (1). But note that

$$\infty > \lambda_R(R) = \lambda_R(R^{\vee}) = \lambda_R(E) = \lambda_R(E^{\vee}) = \lambda_R (\operatorname{Hom}_R(E, E)),$$

consequently μ is an isomorphism.

(3) It suffices to show that φ_M is injective since $\lambda_R(M) = \lambda_R(M^{\vee\vee})$. Suppose $0 \neq x \in M$ is such that $\varphi_M(x) = 0$, that is, for all $f \in \operatorname{Hom}_R(M, E)$, f(x) = 0. Let $I = \operatorname{Ann}_R(x)$. Now, there is a non-zero map

$$\psi: R/I \twoheadrightarrow R/\mathfrak{m} = k \hookrightarrow E$$
,

which extends to a non-zero map $f: M \to E$ since $R/I \hookrightarrow M$ through $\overline{1} \mapsto x$. Thus, $f(x) = \psi(\overline{1}) \neq 0$, a contradiction.

INTERLUDE 2.4 (ON \widehat{R} -**MODULES).** Let (R, \mathfrak{m}, k) be a local ring and M an R-module such that $\Gamma_{\mathfrak{m}}(M) = M$. We contend that M is an \widehat{R} -module in a natural way. To this end, we need only define $\widehat{a} \cdot m$ for $\widehat{a} \in \widehat{R}$ and $m \in M$.

Let $\hat{a} = (a_1, a_2, ...)$, where we are using the isomorphism

$$\widehat{R} = \varprojlim R/\mathfrak{m}^n.$$

Since $\Gamma_{\mathfrak{m}}(M) = M$, there is a positive integer $n \geq 1$ such that $\mathfrak{m}^n m = 0$. Hence, for $k \geq n$, we have $a_k \cdot m = a_n \cdot m$, as $a_k - a_n \in \mathfrak{m}^n$. In light of this, we define $\widehat{a} \cdot m = a_n \cdot m$. We must show that this makes M into an \widehat{R} -module.

Let $m_1, m_2 \in M$ and $\widehat{a} = (a_1, a_2, \dots) \in \widehat{R}$. There are positive integers $n_1, n_2 \ge 1$ such that $\mathfrak{m}^{n_1} m_1 = 0 = \mathfrak{m}^{n_2} m_2$; then $\mathfrak{m}^n m_1 = 0 = \mathfrak{m}^n m_2$ for all $n \ge \max\{n_1, n_2\}$. Hence, for all such $n \ge 1$,

$$\hat{a} \cdot (m_1 + m_2) = a_n \cdot (m_1 + m_2) = a_n \cdot m_1 + a_n \cdot m_2 = \hat{a} \cdot m_1 + \hat{a} \cdot m_2.$$

Next, let \widehat{a} , $\widehat{b} \in \widehat{R}$ and $m \in M$ with

$$\hat{a} = (a_1, a_2, \dots)$$
 and $\hat{b} = (b_1, b_2, \dots)$.

There is a positive integer n such that $\mathfrak{m}^n m = 0$. Then

$$(\widehat{a} + \widehat{b}) \cdot m = (a_n + b_n) \cdot m = a_n \cdot m + b_n \cdot m = \widehat{a} \cdot m + \widehat{b} \cdot m.$$

Finally, note that $\hat{b} \cdot m = b_n m$ and $\mathfrak{m}^n \left(\hat{b} \cdot m \right) = 0$, so that

$$\widehat{a}\cdot(\widehat{b}\cdot m)=\widehat{a}\cdot(b_n\cdot m)=a_n\cdot(b_n\cdot m)=(a_nb_n)\cdot m=(\widehat{ab})\cdot m.$$

This shows that M is indeed an \widehat{R} -module as described above. Further, since $R \to \widehat{R}$ is the diagonal map, it follows that the \widehat{R} -module structure on M agrees with the R-module struture through the diagonal map. In particular, this means that:

A subset of M is an R-submodule if and only if it is an \widehat{R} -submodule.

As a result, M is Noetherian (resp. Artinian) as an R-module if and only if it is so as an \widehat{R} -module.

Interlude 2.5 (On Maps between m-power torsion modules). Again, let (R, \mathfrak{m}, k) be a local ring and suppose M and N are R-modules such that $\Gamma_{\mathfrak{m}}(M) = \Gamma_{\mathfrak{m}}(N)$. By Interlude 2.4, we know that they are \widehat{R} -modules in a natural way. Let $\varphi: M \to N$ be an R-linear map. We contend that φ is also \widehat{R} -linear. Indeed, let $m \in M$ and $\widehat{a} = (a_1, a_2, \dots) \in \widehat{R}$. There is a positive integer $n \geqslant 1$ such that $\mathfrak{m}^n m = 0$, and hence, $\mathfrak{m}^n \varphi(m) = 0$. It follows that

$$\varphi(\widehat{a} \cdot m) = \varphi(a_n \cdot m) = a_n \cdot \varphi(m) = \widehat{a} \cdot \varphi(m),$$

as desired.

THEOREM 2.6. Let (R, \mathfrak{m}, k, E) be a Noetherian local ring.

- (1) $\Gamma_{\mathfrak{m}}(E) = E$, and hence E is an \widehat{R} module and for every R-module M, M^{\vee} is \mathfrak{m} -power torsion.
- (2) $E \cong E_{\widehat{R}}(k)$ as \widehat{R} -modules.
- (3) $R^{\vee\vee} = \operatorname{Hom}_R(E, E) \cong \widehat{R}$ as R-modules.
- (4) *E* is an Artinian *R*-module.
- *Proof.* (1) That E is an \widehat{R} -module follows immediately from Interlude 2.4. Finally, $M^{\vee} = \operatorname{Hom}_{R}(M, E)$ is m-power torsion because E is so.
 - (2) The containment $k \subseteq E$ is an essential extension of R-modules, both of which are \mathfrak{m} -power torsion. Due to Interlude 2.4, it follows that it is an essential extension of \widehat{R} -modules too. Now, due to Remark 1.16, there is a commutative diagram of inclusions

where all maps are \widehat{R} -linear. It follows that $E \hookrightarrow E_{\widehat{R}}(k)$ is an essential extension of \widehat{R} -modules, and consequently, an essential extension of R-modules. Since E is R-injective, we must have that the inclusion is an isomorphism of R-modules. Finally, due to Interlude 2.5, this is an isomorphism of \widehat{R} -modules.

(3)

(4) Let $M_1 \supseteq M_2 \supseteq \cdots$ be a chain of *R*-submodules in *E*. There are commutative diagrams

whose Matlis dual furnishes commutative diagrams

Note that all Matlis duals are m-power torsions and hence due to Interlude 2.5, the φ_j 's are \widehat{R} -linear. Let $I_j = \ker \varphi_j \subseteq \widehat{R}$, which is an ideal. Due to the commutative diagram, it is clear that there is an ascending chain $I_j \subseteq I_{j+1}$. Since \widehat{R} is Noetherian, this chain stabilizes, say $I_n = I_{n+1} = \dots$

Then due to the first isomorphism theorem, $M_j^{\vee} \to M_{j+1}^{\vee}$ is an isomorphism for all $j \geq n$. Let $C_j = \operatorname{coker}(M_{j+1} \hookrightarrow M_j)$. The exactness of the Matlis dual gives $C_j^{\vee} = 0$, which, due to Lemma 2.2, implies that $C_j = 0$, that is, $M_{j+1} \hookrightarrow M_j$ is an isomorphism for all $j \geq n$, i.e., the descending chain stabilizes, as desired.

THEOREM 2.7 (MATLIS DUALITY, VERSION 1). Let (R, \mathfrak{m}, k, E) be a Noetherian local ring. Then there is a bijective correspondence

$$\left\{ \begin{array}{c} \text{isomorphism classes of} \\ \text{finitely generated} \\ \widehat{R}\text{-modules} \end{array} \right\} \stackrel{(-)^{\vee}}{\overset{(-)}{\longleftrightarrow}} \left\{ \begin{array}{c} \text{isomorphism classes of} \\ \text{Artinian R-modules} \end{array} \right\}.$$

Proof. Let M be an Artinian R-module and let $d = \dim_k \operatorname{Soc}_R(M)$. Due to Corollary 1.18, $E_R(M) \cong E^{\oplus d}$, so that there is an inclusion $M \hookrightarrow E^{\oplus d}$, which upon taking the Matlis dual furnishes an \widehat{R} -linear surjection $\widehat{R}^{\oplus d} \twoheadrightarrow M^{\vee}$. Thus M^{\vee} is a finite \widehat{R} -module.

Conversely, suppose M is a finite \widehat{R} -module. Thus, there is a surjection $\widehat{R}^{\oplus n} \twoheadrightarrow M$. Taking the Matlis dual, we obtain an injection $M^{\vee} \hookrightarrow \left(\widehat{R}^{\vee}\right)^{\oplus n}$.

There is a natural "evaluation map" ev : $M \to M^{\vee\vee}$, which we shall show is an isomorphism. That ev is injective follows in the same way as Theorem 2.3 (3). Next, since $\lambda_R(M) < \infty$, we have that $\lambda_R(M) = \lambda_R(M^{\vee\vee}) = \lambda_R(M^{\vee\vee})$, whence ev is an isomorphism.

THEOREM 2.8. Let (R, \mathfrak{m}, k, E) be a Noetherian local ring. Then the following are equivalent:

- (1) *R* is self-injective
- (2) $R \cong E$ as R-modules.
- (3) R is Artinian and $\dim_k \operatorname{Soc}_R(R) = 1$.

Proof. (1) \implies (2) Due to Proposition 1.13, R must be an Artinian local ring, and hence, from Proposition 1.17, $\operatorname{Soc}_R(R) \subseteq R$ is an essential extension. It follows that R is the injective hull of $\operatorname{Soc}_R(R) \cong k^{\oplus d}$ for some positive integer d. Hence, $R \cong E^{\oplus d}$ as R-modules, and comparing lengths, we have

$$\lambda_R(R) = d\lambda_R(E) = d\lambda_R(R^{\vee}) = d\lambda_R(R),$$

whence d = 1 and $R \cong E$.

- (2) \implies (3) Due to Theorem 2.6 (4), R is Artinian. Using a length argument as above, we can show that $\dim_R \operatorname{Soc}_R(R) = 1$.
- (3) \Longrightarrow (1) Again, since $k = \operatorname{Soc}_R(R) \subseteq R$ is essential, we have that $R \hookrightarrow E = E_R(k)$. Using a length argument, it follows that this inclusion must be an isomorphism, whence R is self-injective.

§3 Injective Resolutions

DEFINITION 3.1. Let *M* be an *R*-module. An *injective resolution* for *M* is an exact complex

$$0 \to M \to E^0 \to E^1 \to E^2 \to \cdots$$

where each E^n is an injective R-module. The resolution is often denoted succinctly as $0 \to M \to E^{\bullet}$.

We say that M has finite injective dimension if M has an injective resolution $0 \to M \to E^{\bullet}$ and an integer $N \ge 0$ such that $E^n = 0$ for $n \ge N$. We define

inj dim_R
$$M = \inf \{ n : 0 \to M \to E^0 \to \cdots \to E^n \to 0 \text{ is an injective resolution of } M \}$$
.

If *M* does not have finite injective dimension, then set inj dim_{*R*} $M = \infty$.

Remark 3.2. It is possible to create a "canonical" injective resolution by successively taking injective hulls. Set $E^0 = E_R(M)$ and for $i \ge 0$, define

$$E^{i+1} = E_R \left(\operatorname{coker} \left(E^{i-1} \to E^i \right) \right)$$
,

with the convention that $E^{-1} = M$. We call this the *minimal injective resolution* of M.

LEMMA 3.3. Let *R* be a Noetherian ring and $0 \to M \xrightarrow{\theta} E$ be an inclusion of *R*-modules with *E* injective. Then the inclusion is an injective hull of *M* if and only if

$$\operatorname{Hom}_{R}(R/\mathfrak{p}, M)_{\mathfrak{p}} \xrightarrow{\theta_{\mathfrak{p}}} \operatorname{Hom}_{R}(R/\mathfrak{p}, E)_{\mathfrak{p}}$$

is an isomorphism for all $\mathfrak{p} \in \operatorname{Spec}(R)$.

Proof. Owing to the left exactness of $\operatorname{Hom}_R(R/\mathfrak{p}, -)$ and the exactness of localization, the map $\theta_{\mathfrak{p}}$ is injective for each $\mathfrak{p} \in \operatorname{Spec}(R)$. Hence, it suffices to show that E is injective if and only if $\theta_{\mathfrak{p}}$ is surjective for each $\mathfrak{p} \in \operatorname{Spec}(R)$.

Recall that there are canonical isomorphisms

$$\operatorname{Hom}_R(R/\mathfrak{p},M)_{\mathfrak{p}} \xrightarrow{\sim} \operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}),M_{\mathfrak{p}}) \qquad \frac{\psi}{s} \longmapsto \left(\frac{a}{t} \mapsto \frac{\psi(a)}{st}\right),$$

where we are identifying $\kappa(\mathfrak{p})$ with the quotient field of R/\mathfrak{p} . Hence, surjectivity of $\theta_{\mathfrak{p}}$ is equivalent to the surjectivity of

$$\operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), M_{\mathfrak{p}}) \to \operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), E_{\mathfrak{p}}).$$

Henceforth, we shall identify M with a submodule of E, so that θ is simply the inclusion map.

Suppose first that $M \xrightarrow{\theta} E$ is an injective hull and let $0 \neq \varphi \in \operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), E_{\mathfrak{p}})$. Using the above isomorphism, we can write $\varphi = \psi/s$ for some $\psi \in \operatorname{Hom}_R(R/\mathfrak{p}, E)$ and $s \in R \setminus \mathfrak{p}$. Let $\psi(\overline{1}) = z \in E$ and $a \in R$ such that $0 \neq az \in M$. Note that $a \in R \setminus \mathfrak{p}$, since $\mathfrak{p} \subseteq \operatorname{Ann}_R(z)^1$. Define

$$\overline{\varphi}: R/\mathfrak{p} \longrightarrow M \qquad \overline{1} \longmapsto az.$$

This is well-defined, since \mathfrak{p} annihilates $az \in M$. We claim that

$$\varphi = \frac{\overline{\varphi}}{as} \in \operatorname{Hom}_{R_{\mathfrak{p}}} \left(\kappa(\mathfrak{p}), E_{\mathfrak{p}} \right).$$

Indeed, for $x/t \in \kappa(\mathfrak{p})$ we have

$$\left(\frac{\overline{\varphi}}{as}\right)\left(\frac{x}{t}\right) = \frac{\overline{\varphi}(x)}{ast} = \frac{xaz}{ast} = \frac{xz}{st} = \left(\frac{\psi}{s}\right)\left(\frac{x}{t}\right) = \varphi\left(\frac{x}{t}\right),$$

as desired. This shows that $\operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), M_{\mathfrak{p}}) \to \operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), E_{\mathfrak{p}})$ is surjective.

Conversely, suppose the aforementioned map is surjective. We shall show that E is the injective hull of M. To this end, it suffices to show that the inclusion $M \subseteq E$ is essential. Let $0 \neq N \subseteq E$ be a submodule and $\mathfrak{p} \in \mathrm{Ass}_R(N)$. There is an injective map

$$0 \to R/\mathfrak{p} \longrightarrow N \qquad \overline{1} \longmapsto z.$$

Since $\mathfrak{p} = \operatorname{Ann}_R(z)$, it suffices to find $a \in R \setminus \mathfrak{p}$ such that $az \in M$. Consider the map

$$\varphi: \kappa(\mathfrak{p}) \longrightarrow E_{\mathfrak{p}} \qquad \overline{1} \longmapsto z/1.$$

The surjectivity of $\theta_{\mathfrak{p}}$ furnishes a $\psi : \kappa(\mathfrak{p}) \to M_{\mathfrak{p}}$ such that $\theta_{\mathfrak{p}}(\psi) = \varphi$. In particular, this means that

$$\frac{z}{1} = \varphi(\overline{1}) = \psi(\overline{1}) \in M_{\mathfrak{p}},$$

whence there is some $a \in R \setminus \mathfrak{p}$ such that $az \in M$, as desired.

COROLLARY 3.4. Let R be a Noetherian ring and $0 \to M \to E^{\bullet}$ be an injective resolution of an R-module M. Then E^{\bullet} is minimal if and only if the natural maps

$$\operatorname{Hom}_{R_{\mathfrak{p}}}\left(\kappa(\mathfrak{p}), E_{\mathfrak{p}}^{n}\right) \longrightarrow \operatorname{Hom}_{R_{\mathfrak{p}}}\left(\kappa(\mathfrak{p}), E_{\mathfrak{p}}^{n+1}\right)$$

are identically zero for all $n \ge 0$ and for all $\mathfrak{p} \in \operatorname{Spec}(R)$.

¹Note that $\mathfrak{p} = \operatorname{Ann}_R(z)$, for if not, then $\varphi = 0$.

Proof. Let $K^n = \ker(E^n \to E^{n+1})$. Then there is an exact sequence $0 \to K^n \to E^n \to E^{n+1}$. Using Lemma 3.3, E^n is the injective hull of C^n if and only if

$$\Phi: \operatorname{Hom}_{R_{\mathfrak{p}}}\left(\kappa(\mathfrak{p}), C_{\mathfrak{p}}^{n}\right) \to \operatorname{Hom}_{R_{\mathfrak{p}}}\left(\kappa(\mathfrak{p}), E_{\mathfrak{p}}^{n}\right)$$
 is an isomorphism.

But the left-exactness of Hom and exactness of localization implies that the sequence

$$0 \to \operatorname{Hom}_{R_{\mathfrak{p}}}\left(\kappa(\mathfrak{p}), C^{n}_{\mathfrak{p}}\right) \to \operatorname{Hom}_{R_{\mathfrak{p}}}\left(\kappa(\mathfrak{p}), E^{n}_{\mathfrak{p}}\right) \to \operatorname{Hom}_{R_{\mathfrak{p}}}\left(\kappa(\mathfrak{p}), E^{n+1}_{\mathfrak{p}}\right)$$

is exact. Thus Φ is an isomorphism if and only if the map $\operatorname{Hom}_{R_{\mathfrak{p}}}\left(\kappa(\mathfrak{p}), E_{\mathfrak{p}}^{n}\right) \to \operatorname{Hom}_{R_{\mathfrak{p}}}\left(\kappa(\mathfrak{p}), E_{\mathfrak{p}}^{n+1}\right)$ is the zero map, as desired.

COROLLARY 3.5. Let R be a Noetherian ring and M an R-module. Let $0 \to M \to E^{\bullet}$ be *the* minimal injective resolution of M. Then

$$E^{j} = \bigoplus_{\mathfrak{p}} E_{R} (R/\mathfrak{p})^{a_{j}(\mathfrak{p})} \quad \text{ and } \quad a_{j}(\mathfrak{p}) = \dim_{\kappa(\mathfrak{p})} \operatorname{Ext}_{R_{\mathfrak{p}}}^{j} (\kappa(\mathfrak{p}), M_{\mathfrak{p}}).$$

In particular, if M is a finite R-module, $a_j(\mathfrak{p}) < \infty$ for all $j \ge 0$ and $\mathfrak{p} \in \operatorname{Spec}(R)$.

Proof.

DEFINITION 3.6. Let *R* be a Noetherian ring and *M* a finite *R*-module. For $j \ge 0$ and $\mathfrak{p} \in \operatorname{Spec}(R)$, define the *j-th Bass number* as

$$\mu_{j}(\mathfrak{p}, M) = \dim_{\kappa(\mathfrak{p})} \operatorname{Ext}_{R_{\mathfrak{p}}}^{j}(\kappa(\mathfrak{p}), M_{\mathfrak{p}}).$$

LEMMA 3.7 (BASS). Let R be a Noetherian ring and M a finite R-module. Let $\mathfrak{p} \subsetneq \mathfrak{q}$ be primes in R such that $\operatorname{ht}(\mathfrak{q}/\mathfrak{p}) = 1$. If for some $j \geqslant 0$, $\mu_j(\mathfrak{p}, M) \neq 0$, then $\mu_{j+1}(\mathfrak{q}, M) \neq 0$.

Proof. Localizing at \mathfrak{q} , we may assume that (R, \mathfrak{m}, k) is a Noetherian local ring and $\operatorname{ht}(\mathfrak{m}/\mathfrak{p}) = 1$. If $a \in \mathfrak{m} \setminus \mathfrak{p}$, then $\sqrt{\mathfrak{p} + (a)} = \mathfrak{m}$, and we have a short exact sequence

$$0 \to R/\mathfrak{p} \xrightarrow{\cdot a} R/\mathfrak{p} \to R/(\mathfrak{p} + (a)) \to 0.$$

This gives rise to a long exact sequence

$$\cdots \to \operatorname{Ext}_R^j(R/\mathfrak{p},M) \xrightarrow{\cdot a} \operatorname{Ext}_R^j(R/\mathfrak{p},M) \to \operatorname{Ext}_R^{j+1}(R/(\mathfrak{p}+(a)),M) \to \cdots$$

for all $j \ge 0$.

$$\mu_j(\mathfrak{p}, M) \neq 0 \implies \operatorname{Ext}_{R_\mathfrak{p}}^j(\kappa(\mathfrak{p}), M_\mathfrak{p}) \neq 0 \implies \operatorname{Ext}_R^j(R/\mathfrak{p}, M) \neq 0.$$

Since the Ext's are finite *R*-modules, Nakayama's lemma implies that $\operatorname{Ext}_R^{j+1}(R/(\mathfrak{p}+(a)),M)\neq 0$.

Since $\sqrt{\mathfrak{p}+(a)}=\mathfrak{m}$, the R-module $R/(\mathfrak{p}+(a))$ is finite Artinian, so that it has a composition series with successive quotients isomorphic to $R/\mathfrak{m}=k$. Now, if $\operatorname{Ext}_R^{j+1}(k,M)\neq 0$, then through the short exact sequences induced by the composition series, it would follow that $\operatorname{Ext}_R^{j+1}(R/(\mathfrak{p}+(a)),M)=0$, a contradiction. But since $R\setminus \mathfrak{m}$ consists of only units, we have that

$$0 \neq \operatorname{Ext}_{R}^{j+1}(k, M) = \operatorname{Ext}_{R_{\mathfrak{m}}}^{j+1}(\kappa(\mathfrak{m}), M_{\mathfrak{m}}),$$

and hence $\mu_{i+1}(\mathfrak{m}, M) \neq 0$.