

math 105 notes what if the target is moving away at 2 ft/s? h(t)=0 still gives t=3P but now want 4pt=100+2t (4pt-2t=0 (4p-2)t = 100 € 10. (4p-2)(78)=10010 (4p-2)(3p) = 1000 [12p2-6p-1000=0] What is p? in general, can we solve ax2+bx+c=0 forx? let's solve the a=1 case first. χ^{2} +bx = $(x+\frac{b}{2})^{2} - \frac{b^{2}}{11}$ X2+0x+c=0

 $x^{2} + bx + c = 0$ $x^{2} + bx + c = 0$ $(x + \frac{b}{2})^{2} - \frac{b^{2}}{4} + c = 0$ $(x + \frac{b}{2})^{2} = \frac{b^{2}}{4} - c$ $x + \frac{b}{2} = \pm \sqrt{\frac{b^{2}}{4} - c}$ $x = -\frac{b}{2} \pm \sqrt{\frac{b^{2}}{4} - c}$ $= -\frac{b}{2} \pm \sqrt{\frac{b^{2}}{4} - c}$

$$\chi = -b + \sqrt{b^2 - 4c^2}$$

general a?

our case: 12p2-6p-1000=0

$$P = \frac{-(-6)\pm\sqrt{(-6)^2-4(12)(-1000)}}{2(12)}$$

Math 105 notes
(1) what if target moves away at \$50 H/s?
1 - I torret more away at 50 ft/c
and up at 10 this? Storting from 5
4pt = 100 + 506 high
(4p-50) t= 100 => t= 100 4p-50
also h(t) = 10t t5
5 + 10t = h(t) = 3pt - 10t2
-10+2+3pt-10t-5=0
-10f2 ABP-10) t -5=0
-10 (40-50) +(3P+0) (42-50) -5 =0
-100000 + (3 P-10)(100) (4P-50) - 5 (4P-50) = 0
: algebra 1120 p²-17000p-62500=0
1/2010 - (7000) + 7 (1700) 2 - 4(180) (-62500)
P= -(-17000) 1 7(1700)2-4(180)(-62500)
p=-3,05 or p=18,2