STAT 510 HW#6. TIANQI WU 1(a) Size = SUP POLTIX) >c] Ex 15.7.1 T(X) = | X-1 , c = 3/4 Size = SUP PA [1x-11 > 3/4] = Sup(B(X < 4] + Px(X > 7)) = 1-e-4+1-(1-e-4) = 0.39491.(6) Povern = 1- Pr (Type I error) = 1-PA [|X-1 | < 3/4] =1-Px[4 < X < 7] = 1-(Px[X=辛]-Px[X=辛]) =1-(1-e-=>) = 1-e-47 + e-77 1.(c) droner = 4 e-47 - 7 e-47 = 0 ⇒ N= 3/17 ≈ 1,297 when $\lambda = \frac{2}{3}\ln 7$.

Power = $1 - e^{-\frac{1}{4}\lambda} + e^{-\frac{1}{4}\lambda}$ = 1- 305 ≈ 0.3802 Since 0.3802 < 0.3949. Power is less than Size. Yes, it is a Problem. Since Size refers to Type I error Where we reject to when to is true and power refers to the situation where we reject the when Ha is true. Larger size indicates that we are rejecting more than we should.

34	
Ex 15.7.2	
4	P(T < c)
	= P(X, <c, <="" <c,="" c)<="" th="" x2="" xn=""></c,>
	= APCXi < C) due to iid.
	= AP(Xi < C) due to iid. = A P(Xi < C) due to iid. Since coff = &.
	$=\left(\frac{\zeta}{\Theta}\right)^{\Lambda}$
A	
12	Since Size = Sup PO[T > c] = 0.05
	Sup (1- POET < C]) = 0.05
	05057 - 10 - 10 - 1000
	Sup : , c 171 - 200
	$\frac{Sup}{0506 \pm (1 - (\frac{c}{0})^n)} = 0.05$
	(2c) = 0.95
**************************************	$C = 0.95 \frac{1}{5} \cdot \frac{1}{2}$
	when $n=10$
	C=0.95 al. 1
	$= \boxed{0.4974}$
84.	

3. (a) Under Null hypothesis: Ux=UX Ex16.7.2 Then, W= Intm (2xi + E yi) $= \frac{1}{n+m} \left(n \overline{x} + n \overline{y} \right)$ $= \frac{1}{n+m} \left(\frac{n}{\sum (x_i - \mathcal{U})^2} + \frac{m}{\sum (y_i - \mathcal{U})^2} \right)$ $= \frac{1}{n+m} \left(\frac{n}{\sum (x_i - \mathcal{U})^2} + \frac{m}{\sum (y_i - \mathcal{U})^2} \right)$ (b). Under Alternative: $ux \neq uy$. Then, $ux = \overline{x}$, $uy = \overline{y}$ 62 = 1 (2(Xi-X)2+ 2(yi-y)2) $\frac{\angle RT = \frac{f(x|\hat{\theta}_{\Delta})}{f(x|\hat{\theta}_{\Delta})}}{\frac{\partial^{2}\Omega + m}{\partial^{2}} e^{-\frac{1}{2}G^{2}} \left(\frac{\sum_{i=1}^{2}(x_{i}-x_{i})^{2} + \sum_{i=1}^{2}(y_{i}-y_{i})^{2}}{\frac{\partial^{2}\Omega + m}{\partial^{2}} e^{-\frac{1}{2}G^{2}} \left(\frac{\sum_{i=1}^{2}(x_{i}-x_{i})^{2} + \sum_{i=1}^{2}(y_{i}-x_{i})^{2}}{\frac{\partial^{2}\Omega + m}{\partial^{2}} e^{-\frac{1}{2}G^{2}} \right)}\right)}$ (d) (n+m)(6,2-62) n+m (= ((x:-û)2 - (xi-x)2) + = ((yi-û)2 - (yi-y)2) = $\frac{1}{2}((x_1^2 - 2x_1\hat{\Omega} + \hat{\Omega}^2) - (x_1^2 - 2x_1\hat{x} + \hat{x}^2)) + \dots$ = $\frac{1}{2}(-2x_1(\hat{\Omega} - \hat{x}) + \hat{\Omega}^2 - \hat{x}^2) + \frac{1}{2}(-2y_1(\hat{\Omega} - \hat{y}) + \hat{\Omega}^2 - \hat{y}^2)$ = $-2n\bar{x}(\hat{\Omega} - \bar{x}) + n(\hat{\Omega}^2 - \bar{x}^2) - 2m\bar{y}(\hat{\Omega} - \bar{y}) + m(\hat{\Omega}^2 - \bar{y}^2)$ = $n(\hat{\Omega} - \bar{x})^2 + m(\hat{\Omega} - \bar{y})^2$ $\frac{n m^2 (\bar{X} - \bar{y})^2}{(n+m)^2} + \frac{m n^2 (\bar{X} - \bar{y})^2}{(n+m)^2}$ nm (X-y)2 Kn, m=

distribution 3.(e) It is to+m-1 (f) Sin(e $(n+m)(\hat{G}_0^2 - \hat{G}_A^2) = \frac{nm}{n+m}(\bar{X} - \bar{y})^2$ $(\bar{X} - \bar{y})^2 = \frac{n+m}{nm}(\hat{G}_0^2 - \hat{G}_A^2)$ $-\frac{1}{\sqrt{2}} = \frac{(\bar{X} - \bar{y})^2}{\sqrt{2}}$ $\frac{1}{\sqrt{2}} = \frac{(\bar{X} - \bar{y})^2}{\sqrt{2}}$ $\frac{-100 \text{ (mtn)} (\hat{6}\hat{0}^{2} - 6\hat{A})}{(\text{mtn)} (\hat{6}\hat{0}^{2} - 6\hat{A})}$ $\frac{-(\text{mtn)} (\hat{6}\hat{0}^{2} - 6\hat{A})}{(\text{mtm}-2)}$ $\frac{-(\hat{6}\hat{0}^{2} - 6\hat{A})}{(\hat{6}\hat{0}^{2} - 6\hat{A})} (\text{ntm}-2)$ $\angle RT = \left(\frac{T^2}{n+m-2} + 1\right)^{\frac{n+m}{2}}$ Hence LRT is increasing function of T 4: (a) Under Ho, $\rho=0$, $\rho=0$ EX 16.7.8 Hence, G= thn (\(\int(\tilde{\

Ex 16. 7.8. 4(b) U:= (xi+yi)/JZ V:= (xi-yi)/JZ コナ:= = (u:+vi) y:= = た(u:-vi) for $\Sigma = 6^2 \left(\frac{1}{6} \right)$ f(Ui, Oi) = 1 (Ui+Oi)/JZ) T(1-P) (Ui+Oi)/JZ) (Ui-Oi)/JZ) (Ui-Oi)/JZ) (Ui-Oi)/JZ) - 1 1 -1 ((P+1) 12 - (P-1) 12) Since the joint pdf of uilli can be factored to two Pdf with only u; and U; ie Paf of N(0,6°(1+P) · Paf of N(0,6°(1-P) Hence, Ui and Ui are independent Also, Vi ~ N(O, OI) . Vi ~ N(O, O2) where 0, = 62(1+P), 02=62(1-P) (c). $\hat{\theta}_1 = \frac{\sum u_1^2}{\Omega}$ $\hat{\theta}_2 = \frac{\sum u_1^2}{\Omega}$ $\hat{Q}_1 = \hat{G}^2(H\hat{P}) = \frac{\Sigma Ui^2}{\hat{Q}_1} = \frac{\Sigma (Xi+y_1)^2}{2\Omega}$ $\hat{Q}_2 = \hat{G}_2(I-\hat{P}) = \frac{\Sigma U_1^2}{\Omega} = \frac{\Sigma (Xi-y_1^2)^2}{2\Omega}$ $\hat{Q}_1 + \hat{Q}_2 = 2\hat{Q}_2^2 = \frac{1}{2n} \bar{z} ((x_1 + y_1)^2 + (x_1 - y_1)^2)$ Q-Q= 262P = = = [(Xi+yi)2-(Xi-yi)2)

Ex. 16.7.8.	4. (e) under Ho, P=0, 62>0.
2	$\Sigma_0 = 6^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$
	$ \Sigma_{0} = 6^{4}$, $\Sigma_{0}^{-1} = \frac{1}{6^{4}} (\begin{array}{c} 1 \\ 0 \end{array})$
was and the	under HA Pto 622n
	12A = 64(1-Pa2), ZA = GA (1-Pa2) (-P)
	$ \Sigma_{A} = 6A(1-P_{A}^{2}), \Sigma_{A}^{-1} = \overline{G_{A}^{4}(1-P_{A}^{2})} \left(-P_{A}^{-1} \right)$ $-P_{A}^{-1} = \overline{G_{A}^{4}(1-P_{A}^{2})} \cdot \Sigma \left(\times (2+y)^{2} - 2P_{A}^{2} \times (y)^{2} \right)$ $-P_{A}^{-1} = \overline{G_{A}^{4}(1-P_{A}^{2})} \cdot \Sigma \left(\times (2+y)^{2} - 2P_{A}^{2} \times (y)^{2} \right)$ $-P_{A}^{-1} = \overline{G_{A}^{4}(1-P_{A}^{2})} \cdot \Sigma \left(\times (2+y)^{2} - 2P_{A}^{2} \times (y)^{2} \right)$ $-P_{A}^{-1} = \overline{G_{A}^{4}(1-P_{A}^{2})} \cdot \Sigma \left(\times (2+y)^{2} - 2P_{A}^{2} \times (y)^{2} \right)$ $-P_{A}^{-1} = \overline{G_{A}^{4}(1-P_{A}^{2})} \cdot \Sigma \left(\times (2+y)^{2} - 2P_{A}^{2} \times (y)^{2} \right)$ $-P_{A}^{-1} = \overline{G_{A}^{4}(1-P_{A}^{2})} \cdot \Sigma \left(\times (2+y)^{2} - 2P_{A}^{2} \times (y)^{2} \right)$ $-P_{A}^{-1} = \overline{G_{A}^{4}(1-P_{A}^{2})} \cdot \Sigma \left(\times (2+y)^{2} - 2P_{A}^{2} \times (y)^{2} \right)$
ME SECTION PROPERTY AND ADMINISTRATION OF THE PROPE	LKI (604) e-604. E(Xi2+yi2)
	$= \left(\left - \frac{\binom{2}{\lambda}}{\binom{2}{\lambda}} \right ^{\frac{1}{2}}$
	$=\left(1-\left(\frac{2\sqrt{2}}{T_1}\right)^2\right)^{-\frac{1}{2}}$
	Hence, it is equivalent to rejecting Ho
	when $2(T^2/T_1)^2 > c$
The state of the s	
	[- 이 B - B B - 1 B B - 1 B B B - 1 B B B B B

HW6

Tianqi Wu

4/23/2020

Problem 5

5(a)

The value of the loglikelihood under the alternative is -420.5813

5(b)

Under null, common MLE is 0.05756349, value of the loglikelihood is -454.782

5(c)

LRT statistic is 68.40151

l_alter: -420.5813

5(d)

The dimension under alternative assumption is 2 since we have two free parameters. The dimension under null assumption is 1 since we have one free parameter. The degree of freedom is 1.

5(e)

At 0.05 significance level with degree freedom of 1, chi-square statistic is 5.02. Since LRT statistic is 68.40151 > 5.02. We reject the null hypothesis that pi's are all equal.

```
## Under alternative
alpha = -2.79558
beta_alter = 0.32726
xi = c(-3,-1,1,3)
pi_alter = 1/(exp(-alpha-beta_alter*xi)+1)
cat('pi_alter:', pi_alter, '\n')

## pi_alter: 0.0223711 0.0421749 0.07810912 0.1401795
y1 = c(24,35,21,30)
y0 = c(1355,603,192,224)
l_alter = sum(y1*log(pi_alter)+y0*log(1-pi_alter))
cat('l_alter:', l_alter, '\n')
```

```
## Under null
b_null = 0
pi_null = 1/(exp(-alpha-b_null*xi)+1)
cat('pi_null:', pi_null, '\n')

## pi_null: 0.05756349 0.05756349 0.05756349 0.05756349

1_null = sum(y1*log(pi_null)+y0*log(1-pi_null))
cat('l_null:', l_null, '\n')

## 1_null: -454.782

## LRT
LRT = 2*(l_alter-l_null)
cat('LRT:', LRT, '\n')
```