Network Friendly Recommendations Project

Kalamarakis Theodoros: 2018030022

Toganidis Nikos: 2018030085

July 2023

• States:

There are K states in total, where state *i* represents the user watching video *i*.

States:

There are K states in total, where state *i* represents the user watching video *i*.

• Actions:

Each actions in this environment is a tuple of two distinct states (videos), excluding the previously watched state.

Thus, the size of action set should be
$$\binom{K}{2} = K^2 - K = O(K^2)$$

States:

There are K states in total, where state *i* represents the user watching video *i*.

• Actions:

Each actions in this environment is a tuple of two distinct states (videos), excluding the previously watched state.

Thus, the size of action set should be
$$\binom{K}{2} = K^2 - K = O(K^2)$$

Cost and Reward :

If a video is cached, its cost is 0. If it is not cached, the cost is 1. $\rightarrow Reward_i = 1 - Cost_i$

• States:

There are K states in total, where state *i* represents the user watching video *i*.

• Actions:

Each actions in this environment is a tuple of two distinct states (videos), excluding the previously watched state.

Thus, the size of action set should be $\binom{K}{2} = K^2 - K = O(K^2)$

Cost and Reward :

If a video is cached, its cost is 0. If it is not cached, the cost is 1. $\rightarrow Reward_i = 1 - Cost_i$

• Transition probability:

The transition probability $P(i \rightarrow j)$:

If all recommendations are relevant

If video is present in the recommendation batch then

$$P(i \to j) = a/N + (1-a)/K$$

If video is NOT present in the recommendation batch then

$$P(i \to j) = (1 - a)/K$$

If at least one video in the recommendation batch is irrelevant

$$P(i \to j) = 1/K$$

States:

There are K states in total, where state *i* represents the user watching video *i*.

• Actions:

Each actions in this environment is a tuple of two distinct states (videos), excluding the previously watched state.

Thus, the size of action set should be $\binom{K}{2} = K^2 - K = O(K^2)$

Cost and Reward :

If a video is cached, its cost is 0. If it is not cached, the cost is 1. $\rightarrow Reward_i = 1 - Cost_i$

• Transition probability:

The transition probability $P(i \rightarrow j)$:

If all recommendations are relevant

If video is present in the recommendation batch then

$$P(i \rightarrow j) = a/N + (1-a)/K$$

If video is NOT present in the recommendation batch then

$$P(i \to j) = (1 - a)/K$$

If at least one video in the recommendation batch is irrelevant

$$P(i \rightarrow j) = 1/K$$

Key Parameters:

$$\gamma = 1 - q$$
, $(\epsilon greedy) \ \epsilon = \frac{1}{t^{\frac{1}{3}}} (\#actions \cdot \log(t))^{\frac{1}{3}}$, $a = 0.01$ (learning ratio)

Optimal Policy Verification through Policy Iteration

Toy example:

$$U = \begin{pmatrix} 0 & 0.8 & 0.6 & 0.3 \\ 0.8 & 0 & 0.7 & 0.2 \\ 0.3 & 0.1 & 0 & 0.2 \\ 0.6 & 0.4 & 0.2 & 0 \end{pmatrix}$$

$$Cost = \begin{bmatrix} 1, 0, 1, 0 \end{bmatrix}$$

$$a = 0.8, \qquad q = 0.2, \quad u_{min} = 0.2$$

Optimal Policy Verification through Policy Iteration

Toy example:

$$U = \begin{pmatrix} 0 & 0.8 & 0.6 & 0.3 \\ 0.8 & 0 & 0.7 & 0.2 \\ 0.3 & 0.1 & 0 & 0.2 \\ 0.6 & 0.4 & 0.2 & 0 \end{pmatrix}$$

$$Cost = \begin{bmatrix} 1, 0, 1, 0 \end{bmatrix}$$

$$a = 0.8, \qquad q = 0.2, \quad u_{min} = 0.2$$

The optimal policy given by our algorithm is:

$$\pi[0] = (1,3), \qquad \pi[1] = (0,3), \qquad \pi[2] = (0,3), \qquad \pi[3] = (0,1)$$

Solution Complexity and Scaling

Analyzing the impact of increasing the size of the video catalog (K) on the algorithm's average cost and elapsed time

Solution Complexity and Scaling

Analyzing the impact of increasing the size of the video catalog (K) on the algorithm's average cost and elapsed time

Solution Complexity and Scaling

Analyzing the impact of increasing the size of the video catalog (K) on the algorithm's average cost and elapsed time

Evidence of Complexity Scaling:

- Average Cost: As K increases, the expected average cost decreases due to more cached items being available for recommendation, resulting in lower cost.
- Elapsed Time: With the size of the action set escalating at $O(K^2)$, there is a proportional increase in elapsed time with respect to K.

Key Takeaway:

As the scenario becomes larger (i.e., the video catalog expands), Policy Iteration remains effective but requires more computational resources and time.

Optimal Policy Verification through Q-Learning

Comparison between Q-Learning and Policy Iteration with parameters $a=0.8, q=0.2, u_{min}=0.2, C=0.2K$

Optimal Policy Verification through Q-Learning

Evidence of Optimality:

1. **Average Cost Comparison**: The Q-Learning algorithm line coincides with the Policy Iteration line, indicating that they both achieve a similar average cost, hence showing the optimal policy effectiveness of Q-Learning.

Comparison between Q-Learning and Policy Iteration with parameters $a=0.8, q=0.2, u_{min}=0.2, C=0.2K$

Optimal Policy Verification through Q-Learning

Evidence of Optimality:

- 1. **Average Cost Comparison**: The Q-Learning algorithm line coincides with the Policy Iteration line, indicating that they both achieve a similar average cost, hence showing the optimal policy effectiveness of Q-Learning.
- 2. **Policy Comparison:** Both algorithms may not find the exact same policies due to multiple equivalent policies, but both converge to a policy that minimizes the cost, indicating Q-Learning's ability to find an optimal policy.

Key Takeaway:

Q-Learning effectively identifies the optimal policy and performs as well as Policy Iteration in minimizing the cost.

Comparison between Q-Learning and Policy Iteration with parameters $a=0.8, q=0.2, u_{min}=0.2, C=0.2K$

Solution Complexity and Scalability in Q-Learning

Elapsed Time:

We have set Q-Learning to perform 2000K iterations

Thus, elapsed time scales in O(K), which is faster than the $O(K^2)$ scaling of Policy Iteration.

For instance, at K = 150, Q-Learning significantly outperforms Policy Iteration, which requires half an hour to converge.

Key Takeaway:

Q-Learning not only achieves an optimal policy but also scales better than Policy Iteration, demonstrating higher efficiency and scalability as the video catalog expands.

Comparison between Q-Learning and Policy Iteration with parameters $a=0.8, q=0.2, u_{min}=0.2, C=0.2K$

- 1. Why both algorithms converge to an average cost of 1.44 as $K \to \infty$?
- 2. Is 1.44 the optimal average cost for a=0.8, q=0.2, $u_{min}=0.2$, C=0.2K, $K\to\infty$?

- 1. Why both algorithms converge to an average cost of 1.44 as $K \to \infty$?
- 2. Is 1.44 the optimal average cost for a=0.8, q=0.2, $u_{min}=0.2$, C=0.2K, $K\to\infty$?

We have derived a theoretical formula that calculates the average cost per session, assuming that we follow an optimal policy. We consider a and q to be variables and we set C=0.2K and $K\to\infty$

$$E[S] = 0.8 + 0.8 \left(\frac{1}{q} - 1\right) (1 - a) \quad (1)$$

if we set a = 0.8 and $q = 0.2 \rightarrow E[S] = 0.8 + 0.8(5 - 1)(1 - 0.8) = 0.8 + 0.64 = 1.44 !!!!!$

- 1. Why both algorithms converge to an average cost of 1.44 as $K \to \infty$?
- 2. Is 1.44 the optimal average cost for a=0.8, q=0.2, $u_{min}=0.2$, C=0.2K, $K\to\infty$?

We have derived a theoretical formula that calculates the average cost per session, assuming that we follow an optimal policy. We consider a and q to be variables and we set C=0.2K and $K\to\infty$

$$E[S] = 0.8 + 0.8 \left(\frac{1}{q} - 1\right) (1 - a) \quad (1)$$

if we set a = 0.8 and $q = 0.2 \rightarrow E[S] = 0.8 + 0.8(5 - 1)(1 - 0.8) = 0.8 + 0.64 = 1.44 !!!!!$

- 1. Why both algorithms converge to an average cost of 1.44 as $K \to \infty$?
- 2. Is 1.44 the optimal average cost for a=0.8, q=0.2, $u_{min}=0.2$, C=0.2K, $K\to\infty$?

We have derived a theoretical formula that calculates the average cost per session, assuming that we follow an optimal policy. We consider a and q to be variables and we set C=0.2K and $K\to\infty$

$$E[S] = 0.8 + 0.8 \left(\frac{1}{q} - 1\right) (1 - a) \quad (1)$$

if we set a = 0.8 and $q = 0.2 \rightarrow$

$$E[S] = 0.8 + 0.8(5 - 1)(1 - 0.8) = 0.8 + 0.64 = 1.44$$
!!!!!

Average cost per video

$$E[X] = 0P(C) + 1P(U) = P(U)$$

Average cost per video

$$E[X] = 0P(C) + 1P(U) = P(U)$$

$$P(U) = P(U|A)P(A) + P(U|\bar{A})P(\bar{A})$$

Here, A denotes the event of choosing a video from the recommendation batch, so P(A) = a

Average cost per video

$$E[X] = 0P(C) + 1P(U) = P(U)$$

$$P(U) = P(U|A)P(A) + P(U|\bar{A})P(\bar{A})$$

Here, A denotes the event of choosing a video from the recommendation batch, so P(A) = a

For $K \to \infty$ then P(U|A) = 0 Hence

$$E[X] = P(U) = P(U|\bar{A})P(\bar{A}) = 0.8(1-a)$$

Average cost per video

$$E[X] = 0P(C) + 1P(U) = P(U)$$

$$P(U) = P(U|A)P(A) + P(U|\bar{A})P(\bar{A})$$

Here, A denotes the event of choosing a video from the recommendation batch, so P(A) = a

For $K \to \infty$ then P(U|A) = 0 Hence

$$E[X] = P(U) = P(U|\bar{A})P(\bar{A}) = 0.8(1-a)$$

If *n* is the number of videos per session, then $P(n) = (1-q)^{n-1}q \rightarrow E[n] = \frac{1}{q}$

Average cost per video

$$E[X] = 0P(C) + 1P(U) = P(U)$$

$$P(U) = P(U|A)P(A) + P(U|\bar{A})P(\bar{A})$$

Here, A denotes the event of choosing a video from the recommendation batch, so P(A) = a

For $K \to \infty$ then P(U|A) = 0 Hence

$$E[X] = P(U) = P(U|\bar{A})P(\bar{A}) = 0.8(1-a)$$

If *n* is the number of videos per session, then $P(n) = (1-q)^{n-1}q \rightarrow E[n] = \frac{1}{q}$

The average cost per session (E[S]) is

 $E[S] = cost \ of \ the \ initial \ state + cost \ of \ the \ remaining \ of \ the \ session \Leftrightarrow$

$$E[S] = 0.8 + (E[n] - 1)E[X] = 0.8 + \left(\frac{1}{q} - 1\right)0.8(1 - a)$$

Average cost per video

$$E[X] = 0P(C) + 1P(U) = P(U)$$

$$P(U) = P(U|A)P(A) + P(U|\bar{A})P(\bar{A})$$

Here, A denotes the event of choosing a video from the recommendation batch, so P(A) = a

For $K \to \infty$ then P(U|A) = 0 Hence

$$E[X] = P(U) = P(U|\bar{A})P(\bar{A}) = 0.8(1-a)$$

If *n* is the number of videos per session, then $P(n) = (1-q)^{n-1}q \rightarrow E[n] = \frac{1}{q}$

The average cost per session (E[S]) is

 $E[S] = cost \ of \ the \ initial \ state + cost \ of \ the \ remaining \ of \ the \ session \Leftrightarrow$

$$E[S] = 0.8 + (E[n] - 1)E[X] = 0.8 + \left(\frac{1}{q} - 1\right)0.8(1 - a)$$

General form
$$\left(E[S] = \left(1 - \frac{c}{K}\right) + \left(1 - \frac{c}{K}\right)\left(\frac{1}{q} - 1\right)(1 - a)\right)$$