Question 1 (25 Marks)

(a) Suppose A is a lower triangular matrix of the form

$$\begin{array}{ccc}
a & 0 & 0 \\
b & c & 0 \\
d & e & f
\end{array}$$

d e

State the transpose of A. Compute B where $B = A \times A^T B$ is a symmetric matrix. What is meant by this?

- (b.) For a square matrix A show that:
 - (i) AA^T and $A + A^T$ are symmetric
 - (ii) $A A^T$ is skew symmetric
 - (iii) A can be expressed as the sum of a symmetric matrix, $\frac{1}{2}(A+A^T)$ and a skew symmetric matrix $\frac{1}{2}(A-A^T)$