Sistemas de controle digital

Prof. Rodrigo A. Romano

Escola de Engenharia Mauá

Malha de controle de digital

Conversor digital-analógico (D/A)

$$\begin{array}{c|c} u(kT) & \mathsf{D/A} \\ \hline \\ \mathsf{(Reconstrutor\ de\ sinal)} \end{array}$$

Conversor analógico-digital (amostrador)

Amostrador ideal:

$$f^*(t) = f(t) \cdot s(t),$$

onde

$$s(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT).$$

Análise frequêncial da amostragem

Sinal amostrado

$$f^*(t) = f(t) \sum_{k=-\infty}^{\infty} \delta(t - kT).$$

Espectro do sinal amostrado¹

$$F^*(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} F(j\omega - j\omega_A k).$$

O espectro de um sinal amostrado consiste em repetidas cópias de $F(j\omega)$, deslocadas de múltiplos inteiros da frequência de amostragem ω_A .

¹Dedução na pág.385 de P. L. Castrucci, et al., Controle Automático, LTC (2011). ∽ < ○

Reconstrução do sinal

Falseamento ("aliasing") do sinal

Wagon wheel effect

Wagon wheel effect: https://youtu.be/VNftf5qLpiA

