# MSc in Applied Mathematics and Theoretical Physics DT234 and DT 238

Summer Examinations 2012

# INTRODUCTION TO BIOMATHEMATICS

Dr. Rossen Ivanov Dr. Chris Hills Dr. Alan Hegarty

Monday, 14 May 2012

1 pm - 4:30 pm

Answer any FOUR questions. All questions carry 25 marks. If more than four questions are attempted, only the best four will be graded.

Dept. of Education Tables allowed

**Question 1.** (i) Solve explicitly the logistic model with a time-dependent intrinsic growth rate r(t):

$$\frac{dN(t)}{dt} = r(t)N(t)\left(1 - \frac{N(t)}{K}\right), \qquad K > 0, \qquad N(0) > 0.$$

[10 marks]

(ii) Find the steady states of the following model

$$\frac{dN}{dt} = RN\left(1 - \frac{N}{K}\right)\left(\frac{N}{K_0} - 1\right), \qquad 0 < K_0 < K$$

and determine their linear stability. R,  $K_0$  and K are positive constants.

[10 marks]

(iii) For the model in (ii) find

$$\lim_{t\to\infty}N(t)$$

if  $K_0 < N(0) < K$ .

[5 marks]

**Question 2.** A model for the spruce budworm population u(t) (in dimensionless units) is governed by the equation

$$\frac{du}{dt} = ru\left(1 - \frac{u}{q}\right) - \frac{u^2}{1 + u^2}, \qquad r, q > 0.$$

(a) Determine the number of the steady states and the number of the stable steady states in each of the following two cases (it is not necessary to compute the values of these steady states):

(i) 
$$r = q = 1$$
, [10 marks]

(ii) 
$$r = 0.5, q = 20.$$
 [10 marks]

(b) Does any of the above parameter choices allow for an insect outbreak?

[5 marks]

Question 3. It has been suggested that a means of controlling insect numbers is to introduce and maintain a number of sterile insects in the population. One such model for the resulting population dynamics is

$$N_{t+1} = \frac{rN_t^2}{\frac{r-1}{M}N_t^2 + N_t + S},$$

where r > 1 and M > 0 are constant parameters, and S is the constant sterile insect population.

(i) Determine the steady states and discuss their linear stability, noting whether any type of bifurcation is possible.

[9 marks]

(ii) Find the critical value  $S_c$  of the sterile population in terms of r and M so that if  $S > S_c$  the insect population is eradicated.

[9 marks]

(iii) Construct a cobweb map and draw a graph of the steady state population density against S, and hence determine the possible solution behavior if  $0 < S < S_c$ .

[7 marks]

Question 4. Show that an exact travelling wave solution exists for the scalar reactiondiffusion equation

$$\frac{\partial u}{\partial t} = u^{q+1} (1 - u^q) + \frac{\partial^2 u}{\partial x^2}, \qquad q > 0,$$

by looking for solution in the form

$$u(x,t)=U(z)=rac{1}{(1+ae^{bz})^s}, \qquad z=x-ct,$$

where c is wavespeed and s and b are positive constants. Determine the unique values for c, s and b in terms of q. Choose the value for a such that the magnitude of the wave's gradient is at its maximum at z = 0.

[25 marks]

Question 5. Flores (1998) proposed the following model for competition between Nean-derthal man (N) and Early Modern man (E).

$$\frac{dN}{dt} = N(A - D(N + E) - B),$$

$$\frac{dE}{dt} = E(A - D(N + E) - sB),$$

where A, B, D are positive constants and 0 < s < 1 is a measure of the difference in mortality of the two species.

(i) Explain the model briefly, nondimensionalise the system and perform the phase plane analysis.

[15 marks]

(ii) Show that for large values of t the population N(t) decays according to the law

$$N(t) = C \exp[-B(1-s)t],$$

where C is some constant. Hence give the order of magnitude of the time for Neanderthal extinction if s=0.995 and if the lifetime of an individual is roughly 40 years.

[10 marks]

Question 6. A model for venereal diseases includes the following classses: male and female infectives ( $I_1$  and  $I_2$ ) and male and female susceptibles ( $S_1$  and  $S_2$ ). It assumes that once infectives have recovered they rejoin the susceptibles:

$$\begin{array}{rcl} \frac{dS_1}{dt} & = & -r_1S_1I_2 + a_1I_1, \\ \frac{dI_1}{dt} & = & r_1S_1I_2 - a_1I_1, \\ \frac{dS_2}{dt} & = & -r_2S_2I_1 + a_2I_2, \\ \frac{dI_2}{dt} & = & r_2S_2I_1 - a_2I_2, \end{array}$$

 $r_1$ ,  $r_2$ ,  $a_1$  and  $a_2$  are positive constant parameters.

(i) Briefly explain all terms and parameters in these equations and show that

$$I_k + S_k = N_k,$$

k = 1, 2 where  $N_k$  are constants.

[5 marks]

(ii) Using the result from (i) exclude  $S_1$  and  $S_2$  and reduce the system to two nonlinear equations for  $I_1$  and  $I_2$ . Find the possible steady states and examine their linear stability for all possible values of the parameters.

[20 marks]

#### END OF PAPER

| SOLU | JTION | SHEET |
|------|-------|-------|

| COURSE/YEAR DT238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EXAMINATION SITTING:                                                                                           | SUMMER SUPPLEMENTAL AUTUMN       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------|
| SUBJECT: INTRODUCTION TO BIOMATHEMATICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 03                                                                                                             | WINTER                           |
| EXAMINER: ROSSEN IVANOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EXPECTED SOLUTION TO QUESTION NO:                                                                              | 1                                |
| PAGE / OF //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PROPOSED MARK<br>ALLOCATION:                                                                                   | 25                               |
| $(1) \frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) = \frac{dN}{N\left(1 - \frac{N}{K}\right)} = r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |                                  |
| $= \int_{N(0)}^{N} \frac{d\tilde{N}}{\tilde{N}(1-\tilde{N}_{K})} = \int_{0}^{t} r(s) ds, \text{ the}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | first integra                                                                                                  | l con be<br>[5 masks]            |
| computed via partial fractio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ns; the inte                                                                                                   | gration                          |
| gives $N(t) = \frac{KN(0)}{N(0) + (K-N(0))^{e_1}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sp (- st r(s) ds)                                                                                              | (5 wasks)                        |
| (ii) $\frac{dN}{dt} = RN\left(1 - \frac{N}{K}\right)\left(\frac{N}{K_0} - 1\right) = f(M); 0 \leq K_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < K                                                                                                            |                                  |
| f(N) is cubic function with E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eroes at N=                                                                                                    | o, Ko and K:                     |
| A F(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |                                  |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$55                                                                                                           |                                  |
| Ko N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                                                                                                              | s warks]                         |
| conce f(-00) >0, f(00) <0 the grap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | h is as ab                                                                                                     | ove                              |
| =) $f'(0) < 0$ => $N'=0$ is a starting $f'(K_0) > 0$ => $N'=K_0$ is an $U$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | able steady s                                                                                                  | State                            |
| $f'(K_0)>0 \Rightarrow N=K_0$ is an un<br>$f'(K)<0 \Rightarrow N=K$ is a sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | stable steady &                                                                                                | tate<br>tate.<br>[[smark]]       |
| ا المستنبية <u>منه أن المتالك في المتالك من ب</u> نامتيك سيد بعث المستنبية المستنبية المتالك المتال | مين المراجع ال | المتعددة ومستعدد ومناهد والمتعدد |

| SOL | UT | ION | SH | EET |
|-----|----|-----|----|-----|

| COURSE/YEAR DT238                      | EXAMINATION SITTING:              | SUMMER SUPPLEMENTAL |
|----------------------------------------|-----------------------------------|---------------------|
| SUBJECT: INTRODUCTION TO BIOMATHEMATIC | <i>گ</i> ا                        | AUTUMN              |
| EXAMINER: ROSSEN IVANOU                | EXPECTED SOLUTION TO QUESTION NO: | 1 (cont)            |
| page 2 of 16                           | PROPOSED MARK<br>ALLOCATION:      | 25                  |

(iii) From the figure it is clear that all initial data N(0) E[Ka,K] approach the Steady state N=K for a long time asymptotic value ; lim N(t) = K (5 marks 7

#### SOLUTION SHEET

COURSE / YEAR

DT238

SUMMER

SITTING:

SUPPLEMENTAL

**AUTUMN** WINTER

SUBJECT: INTRODUCTION TO BIOMATHEMATICS

**EXPECTED SOLUTION** TO QUESTION NO:

**EXAMINER:** 

ROSSEN IVANOU

PROPOSED MARK **ALLOCATION:** 

20

PAGE 3 OF 16

 $\frac{du}{dt} = ru\left(1 - \frac{u}{q}\right) - \frac{u^2}{1 + u^2} = f(u)$ 

(a)  $f'(u) = r - \frac{2ru}{q} - \frac{2u}{(1+u^2)^2} = 0$  f'(0) = r > 0

=> ut = 0 is always an unstable steady state

In order to find the other steady states we solve

 $g(u) = r\left(1 - \frac{u}{q}\right) = \frac{u}{1 + u^2} = h(u)$ 

 $h'(u) = \frac{1-u^2}{(1+u^2)^2}$  has a maximum at u=1:  $h(1) = \frac{1}{2}$ 



[5 marks]

# DUBLIN INSTITUTE OF TECHNOLOGY, KEVIN STREET, DUBLIN 8 SOLUTION SHEET DT238 COURSE / YEAR **EXAMINATION** SITTING: SUPPLEMENTAL **AUTUMN** SUBJECT: INTRODUCTION TO BIOMATHEMATICS WINTER **EXPECTED SOLUTION** ROSSEN IVANOU 2 cont TO QUESTION NO: EXAMINER: PAGE 4 OF 6 PROPOSED MARK 25 **ALLOCATION:** In case (i) h(u) and g(u)=1-u have only 1 intersection point => one more steady state OLU\* < 1 Since f(0)=0, f'(0)>0 and $f(\infty)=-\infty$ we have the following graph of f f(0)=0 f'(0)>0 f(0) = -0 From this graph => f'(u\*) <0 => u\* is a Stable Steaky state, i'e in cose (i) we have one stable [5 mares] Steady State h(u): (ii) 9(4)===(1-4)

of cs maras]

| DUBLIN INSTITUTE OF TECHNOLOGY,                                     | , KEVIN STREET, DUB               | LIN 8               |
|---------------------------------------------------------------------|-----------------------------------|---------------------|
| SOLUTION SHEET                                                      | ŧ                                 |                     |
| COURSE/YEAR DT238                                                   | EXAMINATION SITTING:              | SUMMER SUPPLEMENTAL |
| SUBJECT: INTRODUCTION TO BIOMATHEMATICS                             |                                   | AUTUMN U            |
| EXAMINER: ROSSEN IVANOV                                             | EXPECTED SOLUTION TO QUESTION NO: | 2 cont.             |
| PAGE 5 OF 16                                                        | PROPOSED MARK<br>ALLOCATION:      | 25                  |
| The graphs of $h(u)$ & $g(u)$ in $0 < u_1^* < 1 < u_2^* < u_3^* =>$ | tersect in 3 po                   | ruts f f(4) is      |
| <b>↑</b>                                                            | •                                 |                     |



thus  $f'(u_1^*) < 0 \implies u_1^* & u_3^* \text{ are Stable}$   $\frac{f'(u_5^*) < 0}{f'(u_2^*) > 0 \implies u_2^* \text{ is constable.}} \quad [5 \text{ maxm}]$ 

=> in case (ii) there are two stable stendy states.

(b) (ii) allows for an authoreau: uz is much leight than u, and the prinsect population con swith from the low level ut to the other stable level uzt.

[ 5 mary]

#### SOLUTION SHEET

| COURSE / YEA        | R DT2      | 38              | EXAMINATION SITTING:              | SUMMER<br>SUPPLEMENTAL |  |
|---------------------|------------|-----------------|-----------------------------------|------------------------|--|
| suвјест: <i>ј</i> М | TROPUCTION | TO BIOMATHEMATI | <i>C</i> S .                      | AUTUMN<br>WINTER       |  |
| FX AMINER:          | ROSSEN     | IVANOV          | EXPECTED SOLUTION TO QUESTION NO: | 3                      |  |

$$N_{t+1} = \frac{r N_t^2}{\frac{r-1}{M} N_t^2 + N_t + S} = f(N_t)$$

(i) The steady states from 
$$N = f(N^*)$$
 are
$$N_{3}^{*} = \frac{M}{2} \left( 1 \pm \sqrt{1 - \frac{4S}{M(r-1)}} \right)$$

$$f'(N) = \frac{rN(N+25)}{(\frac{r-1}{M}N^2+N+5)^2}$$
 is everywhere positive.

$$f'(0) = 0$$
,  $|f'(0)| < 1 \Rightarrow N = 0$  is  $|f'(0)| < 1 \Rightarrow N = 0$  is  $|f'(0)| < 1 \Rightarrow N = 0$  is a stable steady state & population is evaluated Since  $|f'(N)| > 0 \Rightarrow |f(N)| > 0$  is monotonic;



$$\lim_{N\to\infty} f(N) = \frac{rM}{r-1} = const$$



[ 5 mars]

#### SOLUTION SHEET

COURSE/YEAR DT238

EXAMINATION SUMMER SITTING: SUPPLEMENTAL COMPLEXAMINER:

EXAMINER: ROSSEN IVANOV EXPECTED SOLUTION TO QUESTION NO: 3 - COMP.

PROPOSED MARK

PAGE 7 OF 6 PROPOSED MARK ALLOCATION:

Fig (1) corresponds to complex roots, SISc only N=0 is a stable steady state

Fig (2) corresponds to two real roots giving N+

$$f'(N_{\pm}^{*}) = \frac{rN_{\pm}(N_{\pm}^{*}+2S)}{(\frac{r-1}{\mu}N_{\pm}^{*}+N_{\pm}^{*}+S)^{2}} = \frac{rN_{\pm}(N_{\pm}^{*}+2S)}{(rN_{\pm}^{*})^{2}} = \frac{1}{r} + \frac{2S}{N_{\pm}}$$

$$= \frac{1}{r} + 28\left(\frac{r-1}{8M}N_{+}^{2}\right) = \frac{1}{r} + \frac{r-1}{M}\frac{M}{2}\left(1+\sqrt{1-\frac{4S}{M(r-1)}}\right)$$

Since  $N_{+}^{\dagger}N_{-}^{\star}=\frac{SM}{r-1}$ 

 $f(N_{\pm}) = + r-1 \mp \sqrt{(r-1)^2 - \frac{45}{m}(r-1)}$ 

Note that fr > 2

 $= \int f'(N_{-}) = \frac{1}{r} + r - 1 + \sqrt{(r-1)^{2} + \frac{45}{\mu}(r-1)} \ge 2 - 1 + \sqrt{(r-1)^{2} + \frac{45}{\mu}(r-1)} > 1$ 

f'(N\*)>1 => N\* is unstable. Similarly >> N\* is stable

(5 mers)

| SOL | UTION | SHEET |
|-----|-------|-------|

| SOLUTION SHEET  |                              |                               |                                                     |                                              |
|-----------------|------------------------------|-------------------------------|-----------------------------------------------------|----------------------------------------------|
| COURSE / YEAR   | DT238                        |                               | EXAMINATION SITTING:                                | SUMMER SUPPLEMENTAL                          |
| SUBJECT: INTROP | DUCTION TO BIO               | MATHEMATICS                   | 9                                                   | AUTUMN U                                     |
| EXAMINER:       | 20SEN IVAN                   | 10V                           | EXPECTED SOLUTION TO QUESTION NO:                   | 3 cout.                                      |
| PAGE 8 OF       | 16                           | ű                             | PROPOSED MARK ALLOCATION:                           | 25                                           |
| (ii) 1f         | S>Sc there                   | is only one                   | stable stead                                        | y state N'so                                 |
| and the         | population i.                | s eradicat                    | red, (N± arx                                        | (omplex.)                                    |
| 18              | S\$0 there                   | are tw                        | o steble s                                          | skendy states                                |
| N *= 0          | & outbrei<br>(r-1) - ree pie | ak level                      | steady state                                        | e Ny                                         |
| Je = 4          | (r-1) - see pil              | vious pages                   | . (9                                                | marus]                                       |
| ((ii) Neti      |                              | A77                           | 70                                                  |                                              |
|                 |                              |                               |                                                     |                                              |
| =               |                              | ľ                             | (3 mar                                              | res]                                         |
|                 |                              | 1                             | e                                                   |                                              |
|                 | N"_                          | N <sub>+</sub> N <sub>t</sub> | <del>,</del>                                        |                                              |
| . N+ 1          |                              | 18 °C                         | $N_{+}^{*} = -\frac{4}{4}$                          | 1 <0                                         |
| M               |                              |                               | V = (r-1) = V                                       | $I - \frac{45}{h(r4)}$ $I = -\infty$ at Sele |
| M/2 -           | ا اقا ا                      | <del>=</del>                  | $\frac{\partial \mathcal{L}}{\partial \mathcal{L}}$ | te-00 at Sasa                                |

N+ decreases mono-tonically with S to M/2 (3 marks)

| SOI | UTT | ON | SHEET |
|-----|-----|----|-------|

| SUBJECT: INTRODUC  EXAMINER: 205 | TON TO BIOMATHEMATISEN IVANOV                  | EXAMINATION SITTING:  EXPECTED SOLUTION TO QUESTION NO:  PROPOSED MARK | SUMMER SUPPLEMENTAL AUTUMN WINTER |
|----------------------------------|------------------------------------------------|------------------------------------------------------------------------|-----------------------------------|
| PAGE 9 OF /k                     |                                                | ALLOCATION:                                                            | 25                                |
|                                  | 1-019) + 4 xx ; u=                             | $= U(Z) = \frac{1}{(1+ae^{bz})^5}$                                     | 9>0<br>Z = X-ct                   |
| _                                | 9+1-U29+1+U"                                   | (*)                                                                    |                                   |
| $U' = -\frac{sa}{(+)}$           | ae <sup>Bt</sup> ) <sup>Sti</sup>              | bz )                                                                   | 29                                |
| U" = = s                         | $ab^{2} \frac{e^{bt}(1-as)}{(1+ae^{bt})}$      | e /<br>1 <sup>5+2</sup> -                                              | Ψ,                                |
| The Subst                        | itution of U, U                                | land a in                                                              | (x) gives                         |
| csab ebz                         | Sti = [ (+ae b2) 5(9+1)                        | 1<br>(11 + n h2 15(2941)                                               | asbe (1-98)                       |
| (Itae*)                          | (+ae =) 3(971)                                 | (Hat)                                                                  | (1+ae')  <br>(29+1                |
| n - doc to                       | lways St125.                                   | 0 = 1                                                                  |                                   |
| we need                          | 5+1 = 5(9+1)<br>5+2 = 5(29+1)                  | 2 = 259                                                                | $=$ $\left  Sq = 1 \right $       |
| $=2 c=\frac{1}{2} $              | Mrs. Commission                                | denom is (1+ae)                                                        | 1                                 |
| csabe bz (14a                    | $\frac{b^2}{c^2} = \frac{1+a^2-1}{(1+ac^6)^2}$ | -sabe (1-as                                                            | $e^{bt}$                          |
| ( Italbe) St                     | 2 (1+aeb                                       | 12) St2                                                                | !                                 |

SOLUTION SHEET

| COURSE/YEAR DT238                       | EXAMINATION SITTING:              | SUMMER<br>SUPPLEMENTAL |  |
|-----------------------------------------|-----------------------------------|------------------------|--|
| SUBJECT: INTRODUCTION TO BIOMATHEMATICS |                                   | AUTUMN<br>WINTER       |  |
| EXAMINER: ROSSEN IVANOV                 | EXPECTED SOLUTION TO QUESTION NO: | 4                      |  |

PAGE 10 OF 16

PROPOSED MARK ALLOCATION:

25

The comparison of the nominators gives

$$csab(1+ae^{bz}) = a - sab^{e}(1-ase^{bz})$$

this leads to

 $csab = a - sab^{2} \implies scb = 1-sb^{2}$ 
 $csa^{2}b = sab^{2}as \implies c=sb \implies c=\frac{b}{q}$ 
 $csa^{2}b = sab^{2}as \implies b = \frac{q}{\sqrt{1+q}}$ 
 $csa^{2}b = sab^{2}as \implies b = \frac{q}{\sqrt{1+q}}$ 
 $c=\frac{b}{q}\cdot\frac{1}{q}\cdot b=1-\frac{1}{q}\cdot b^{2}\implies b=\frac{q}{\sqrt{1+q}}$ 

The gradient is  $U'$ , max gradient when  $U'=0$ 
 $csab(1+ae^{bz}) = a - sab^{2}(1-ase^{bz})$ 

The gradient is  $U'$ , max gradient when  $U'=0$ 
 $csab(1+ae^{bz}) = a - sab^{2}(1-ase^{bz})$ 
 $csab(1-ase^{bz}) = a - sab^{2}(1-ase^{bz})$ 
 $csab(1-ase^{bz}$ 

Z=X-ct=X- 1/9Ht

SOLUTION SHEET

COURSE/YEAR DT238

EXAMINATION SUMMER SITTING: SUPPLEMENTAL COURSE.

SUBJECT: INTRODUCTION TO BIOMATHEMATICS

EXPECTED SOLUTION TO QUESTION NO: 5

PAGE 11 OF 66

PROPOSED MARK ALLOCATION:

25

$$\begin{vmatrix} dN \\ dt \end{vmatrix} = N(A - B - DN + DE)$$

$$\begin{vmatrix} dE \\ dE \end{vmatrix} = E(A - SB - DN - DE)$$

$$\begin{vmatrix} dN \\ dt \end{vmatrix} = (A - B)N\left[1 - \frac{D}{A - B}N - \frac{D}{A - B}E\right]$$

$$\frac{dE}{dt} = (A - SB)E\left[1 - \frac{D}{A - B}E - \frac{D}{A - B}N\right]$$

$$This is competition models N(1 - N - A - B) is logistic term, AB
Nordamensionalization for the first unity of AB
Nordamensionalization for the first unity of AB
$$\frac{DE}{A - B}N, V = \frac{D}{A - B}E$$

$$\Rightarrow \begin{vmatrix} du \\ dt = u \left[1 - u - \frac{A - B}{A - B}u\right]$$

$$\frac{du}{dt} = u \left[1 - u - \frac{A - B}{A - B}u\right]$$

$$\frac{du}{dt} = u \left[1 - u - \frac{A - B}{A - B}u\right]$$

$$\frac{du}{dt} = u \left[1 - u - \frac{A - B}{A - B}u\right]$$

$$\frac{du}{dt} = u \left[1 - u - \frac{A - B}{A - B}u\right]$$

$$\frac{du}{dt} = u \left[1 - u - \frac{A - B}{A - B}u\right]$$

$$\frac{du}{dt} = u \left[1 - u - \frac{A - B}{A - B}u\right]$$

$$\frac{du}{dt} = u \left[1 - u - \frac{A - B}{A - B}u\right]$$

$$\frac{du}{dt} = u \left[1 - u - \frac{A - B}{A - B}u\right]$$

$$\frac{du}{dt} = u \left[1 - u - \frac{A - B}{A - B}u\right]$$

$$\frac{du}{dt} = u \left[1 - u - \frac{A - B}{A - B}u\right]$$

$$\frac{du}{dt} = u \left[1 - u - \frac{A - B}{A - B}u\right]$$

$$\frac{du}{dt} = u \left[1 - u - \frac{A - B}{A - B}u\right]$$

$$\frac{du}{dt} = u \left[1 - u - \frac{A - B}{A - B}u\right]$$

$$\frac{du}{dt} = u \left[1 - u - \frac{A - B}{A - B}u\right]$$

$$\frac{du}{dt} = u \left[1 - u - \frac{A - B}{A - B}u\right]$$$$

SOLUTION SHEET DT238 COURSE / YEAR SUMMER SUPPLEMENTAL SUBJECT: INTRODUCTION TO BIOMATHEMATICS AUTUMN **EXPECTED SOLUTION** 5-cont. ROSSEN IVANOU TO QUESTION NO: PROPOSED MARK PAGE 12 OF 6 ALLOCATION: The only steady states are (0,0) (0,1) & (1,0)

The only steady state are 
$$(0,0)$$
  $(0,1)$  &  $(1,0)$ 

$$A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}$$

| DUBLIN INSTITUTE OF TECHNOLOGY,                         | KEVIN STREET, DUBI                | LIN 8                      |
|---------------------------------------------------------|-----------------------------------|----------------------------|
| COURSE/YEAR DT238                                       | EXAMINATION SITTING:              | SUMMER SUPPLEMENTAL AUTUMN |
| SUBJECT: INTRODUCTION TO BIOMATHEMATICS                 | ,                                 | WINTER                     |
| EXAMINER: ROSSEN IVANOV                                 | EXPECTED SOLUTION TO QUESTION NO: | 5                          |
| PAGE 13 OF 16                                           | PROPOSED MARK ALLOCATION:         | 25                         |
| (ii) When N-20, E-> coust<br>linearite the first quelie | for lerge t                       | , we con                   |
| $\frac{dN}{dt} = N(A-B) - DN^2 - $ neglect              | DEN                               | 5<br>5                     |
| $\frac{dN}{dt} = N(A - B - DE) = N$                     | /                                 |                            |
| dN = N (A-B-A+5B)                                       | => # = N                          | (s-1)B                     |
| =) N = N(0) e                                           | - exponen                         | tial decoy.                |

The timescale of the extinction is

(1-5)B where 1 = 40y is the lifetime of the indi-vidual => timescale ~ 1-0.995 × 40 years = 40y = 8000 year.

| DUBLIN INSTITUTE OF TECHNOLOGY, KI<br>SOLUTION SHEET  DT 238  COURSE / YEAR  DT 238  SUBJECT: INTRODUCTION TO BIOMATHEMATICS | EVIN STREET, DUB<br>EXAMINATION<br>SITTING: | LIN 8  SUMMER SUPPLEMENTAL AUTUMN WINTER | 0000       |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------|------------|
| EXAMINER: ROSSEN IVANOV                                                                                                      | EXPECTED SOLUTION TO QUESTION NO:           | 6                                        |            |
| PAGE 14 OF 16                                                                                                                | PROPOSED MARK<br>ALLOCATION:                | 25                                       |            |
| (i) r, S, Fr describes the rate a result of contact                                                                          | of infection<br>to with infe                | of man                                   | ne<br>L    |
| à is the lifetime of the                                                                                                     | descure for                                 | · nuen                                   | ЛC         |
| adding the first two agus gives $= S_{1} + I_{1} = N_{1} = number of n$                                                      | uen popul                                   | = 0<br>ation eta<br>Csuarus              | <u>.</u> . |
| T 31 1 2 1 1 1                                                                                                               |                                             |                                          | <b>~</b> J |

(ii) The system is

$$dI_1 = r, (N_1 - I_1)I_2 - \alpha_1I_1 = f_1(I_1, I_2)$$

$$dt = r_2(N_2 - I_2)I_1 - \alpha_2I_2 = f_2(I_1, I_2)$$
One steady state is  $(O_1O)$ .

The other is a solution of  $f_1 = 0 \& f_2 = 0$ 

$$I^* = \frac{N_1N_2 - f_1P_2}{S_1 + N_2}, I^* = \frac{N_1N_2 - f_1P_2}{S_2 + N_1}, S_k = \frac{\alpha_k}{r_k}$$
maxing sense only of  $N_1N_2 > f_1P_2$  (5 marry)

| SOLU | JTION | SHEET |
|------|-------|-------|

| 30201101131        |            |             |        |                                   |                        |     |
|--------------------|------------|-------------|--------|-----------------------------------|------------------------|-----|
| COURSE / YEA       | R DT2      | 38          |        | EXAMINATION SITTING:              | SUMMER<br>SUPPLEMENTAL |     |
| subject: <i>]N</i> | TRODUCTION | TO BIOMATHE | MATICS |                                   | AUTUMN<br>WINTER       |     |
| EXAMINER:          | ROSSEN     | IVANOV      | K      | EXPECTED SOLUTION TO QUESTION NO: | 6-сон                  | ct. |
|                    |            |             |        |                                   |                        |     |

PAGE 15 OF (6

PROPOSED MARK ALLOCATION:

25

$$A = \begin{pmatrix} \frac{1}{2}f_1 & \frac{1}{2}f_2 \\ \frac{1}{2}f_1 & \frac{1}{2}f_2 \end{pmatrix} = \begin{pmatrix} -r_1 I_2 - a_1 & r_1 & (N_1 - I_1) \\ r_2 I_1 & \frac{1}{2}I_2 \end{pmatrix} = \begin{pmatrix} -r_2 I_2 - a_1 & r_2 I_1 - a_2 \\ r_2 I_2 & \frac{1}{2}I_2 \end{pmatrix} = \begin{pmatrix} -a_1 & r_1 N_1 \\ r_2 N_2 & -a_2 \end{pmatrix} = \begin{pmatrix} r_2 N_1 \\ r_2 N_2 & -a_2 \end{pmatrix}$$

$$Characteristic aquation  $\lambda^2 - (b \cdot A) \lambda + det A = 0$ 

$$\lambda^2 + (a_1 + a_2) \lambda + a_1 a_2 - r_2 N_1 N_2 = 0 \qquad \beta_n = \frac{a_n}{\beta_n}$$

$$\lambda_{1/2} = -(a_1 + a_1) \pm \sqrt{(a_1 + a_2)^2 + 4a_1 a_2} (\frac{N_1 N_2}{\beta_1 R_2} - 1)}$$

$$\frac{1}{2}If N_1 N_2 < \beta_1 \beta_2 \qquad \text{then } det A > 0 \qquad \text{tr} A < 0 \text{ and}$$

$$(0,0) \text{ is the only stable steady state}, (I_1, I_2)$$

$$does not exist then. \qquad (5 \text{ mans})$$
If  $N_1 N_2 > \beta_1 \beta_2 \qquad \text{det } A > 0 \qquad \text{and} (0,0) \text{ is unstable}$ 

$$In this case (I_1, I_2) \text{ exists and is stable}$$

$$In this case (I_1, I_2) \text{ exists and is stable}$$

$$The proof of the stability is as follows!$$$$

| DUBLIN INSTITUTE OF TECHNOLOGY,                               | KEVIN STREET, DUB                 | LIN 8               |
|---------------------------------------------------------------|-----------------------------------|---------------------|
| SOLUTION SHEET                                                | Ÿ                                 |                     |
| COURSE/YEAR DT238                                             | EXAMINATION SITTING:              | SUMMER SUPPLEMENTAL |
| SUBJECT: INTRODUCTION TO BIOMATHEMATICS                       |                                   | AUTUMN U            |
| EXAMINER: ROSSEN IVANOV                                       | EXPECTED SOLUTION TO QUESTION NO: | 6-cont.             |
| PAGE 16 OF 16                                                 | PROPOSED MARK ALLOCATION:         | 25                  |
| 19 (t, t2) = ( 12 (N- Int) -                                  | $(N, -I, t)$ $a_2 - r_2 I, t$     | 25,                 |
| Characteristic equation $\lambda^2 - trA \lambda + det A = 0$ |                                   |                     |
| 2+ (a, +a, +r, I, + r, I, )) + det A                          | 4=0                               |                     |
| tr A = -(9, +92) - n I2 - r I, <                              |                                   | <b>/</b>            |
| $det A = a_1 a_2 + a_1 r_2 I_1 + r_1 a_2 I_2$                 | +1,12 [, ]-                       | ***                 |
| $-r_{1}r_{2}(N_{1}-\widehat{\mathcal{I}}_{1}^{*})$            | (N2-I2)                           | a a                 |
| after substitution of                                         | I, & Fe                           | we get              |
| det A = 1,12 (N, N2-5,52)                                     | >0                                | 0.1.20              |
| with trA <0 and det A                                         | 170 = 1 1                         | 20 212-             |
| with the skille                                               | sterdy start                      | [co marks]          |

Thus: 1) When N, N 2 < 9, 92 the only steady state is (0,0)-stable Diwten N, N2> 9, P2 (F, F2) is stable, (9,0) - unstable In case 1) the epidemic dies out with time. In case 1) there is a constant fraction of population always injected.