

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет"

РТУ МИРЭА

Институт информационных технологий (ИТ) Кафедра практической и прикладной информатики (ППИ)

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ №4

по дисциплине

«Анализ и концептуальное моделирование систем»

Выполнил студент группы ИКБО-66-23

Тарасова В.А.

Принял старший преподаватель

Свищёв А.В.

Практическая работа № 4.

Построение UML – модели системы. Диаграмма последовательности.

Цель работы: изучить структуру модели анализа, правила построения диаграмм последовательности, кооперации.

Задачи: научиться отображать взаимодействие объектов в динамике.

ΠΟ: Visual Paradigm, Draw.io, Rational Rose.

Порядок выполнения работы:

1. Построить диаграмму последовательности по описанию приведенного варианта использования: «Кассир хочет продать театральный билет. Для этого система проверяет наличие свободных мест в зале, запрашивает информацию о спектакле и местах. После подтверждения доступности места кассир вносит данные покупателя, и система генерирует билет». Заполнить таблицу на основе полученной диаграммы:

Рисунок 1 - Диаграмма последовательности по приведенному описанию

Таблица 1 — Взаимодействие элементов диаграммы

Отправитель	Тип сообщения	Наименование	Получатель
а: Кассир	Синхронное	запросНаПродажуБилета()	b: Система
			продажи
			билетов
b :Система	Синхронное	проверкаНаличияМест()	с: База данных
продажи билетов			спектаклей
с: База данных	Синхронное	запросСвободныхМест()	:История
спектаклей			продаж билетов
:История продаж	Синхронное	передачаДанныхОМестах()	d: База данных
билетов			зала
d: База данных	Самовызов	РасчётСвободныхМест()	d:База данных
зала			зала
d: База данных	Возврат	вывестиБилет()	а: Кассир
билетов			

2. Построить диаграмму кооперации по описанию приведенного варианта использования в п.1.

Рисунок 2 - Диаграмма кооперации по приведенному описанию

3. Построить модель отношений между объектами (диаграмма последовательности) системы работы продажи билета.

Рисунок 3 - Диаграмма последовательности продажи театральных билетов

Таблица 2 — Взаимодействие элементов диаграммы

Отправитель	Тип	Наименование	Получатель
	сообщения		
а: Кассир	Синхронное	запуститьСистемуПродажи()	:Система продажи
			билетов
:Система	Синхронное	показатьИнтерфейсПриема()	b: Интерфейс приема
продажи			заказов
билетов			
а: Кассир	Синхронное	ввестиДанныеПокупателя()	b: Интерфейс приема
			заказов
:Система	Синхронное	показатьИнтерфейсПоиска()	с: Интерфейс поиска
продажи			спектаклей
билетов			
а:Кассир	Синхронное	запроситьПоискСпектакля()	с: Интерфейс поиска
			спектаклей
b:Интерфейс	Синхронное	добавитьЗаказВБазуДанных()	:База данных
приема заказов			
с: Интерфейс	Синхронное	запроситьИнформацию()	:База данных
поиска			
спектаклей			
:База данных	Самовызов	обработкаЗапроса()	:База данных
:База данных	Возврат	передатьДанныеОСпектакле()	:Система продажи
			билетов
:Система	Синхронное	показатьОтчёт()	d: Интерфейс
продажи			
билетов			
d: Интерфейс	Возврат	вывестиОтчёт()	а: Кассир
а:Кассир	Синхронное	завершитьРаботу()	:Система продажи
			билетов

4. Построить модель отношений между объектами (диаграмма кооперации) рассматриваемой системы (варианта учебного проекта) в рамках одного прецедента.

Рисунок 4 - Диаграмма кооперации моделирование организации продажи театральных билетов

Вывод: В ходе работы изучены структура модели анализа и правила построения диаграмм последовательности и кооперации, которые являются ключевыми элементами UML для визуализации взаимодействия объектов. Диаграмма последовательности отражает временную динамику обмена сообщениями между объектами, а кооперационная — структурные связи в процессе их взаимодействия. Приобретены навыки отображения динамических аспектов поведения системы, что важно для анализа и проектирования программного обеспечения. Работа позволила закрепить умение моделировать объектные взаимодействия, необходимое для создания корректных и эффективных архитектурных решений.