A Q-THEORY OF BANKS

By Juliane Begenau, Saki Bigio, Jeremy Majerovitz, and Matias Vieyra,

Review of Economic Studies, Forthcoming

Presented by Zhouzhou Gu

January, 2025

Introduction

► Four Motivating Facts

- Book and market values diverge during crises,
- The market-to-book ratio predicts future profitability,
- Book leverage constraints rarely bind strictly even as market leverage fans out during crises
- Banks delever gradually after net-worth shocks
- Question: based on delayed information (loss recognition)
 - How regulation constrains bank risk taking.
 - Implication in accounting books for an ideal regulatory framework.

This Paper

- ▶ **Setup.** Heterogenous bank model in continuous time with
 - Market and book-based regulatory constraints.
 - Uninsurable idiosyncratic loan default shocks.
 - Delayed recognition on book losses (zombie loans).
- **Lesson.** Loss-recognition speed as additional policy tool.
- ▶ Microprudential Implication. Tighter accounting rules vs. Tighter capital regulation
 - 1. Loss-recognition margin: postponed deleveraging benefit vs. excessive liquidation cost
 - 2. Optimal policy: slightly relaxed capital requirement and speedier loss recognition.
- ▶ Macroprudential Implication. Countercyclical accounting standard is more preferred.
 - 1. Countercyclical Capital Buffer amplifies the credit cycle and overall liquidation risk.
 - 2. Countercyclical Loss Recognition postpones deleveraging for most affected banks.

Roadmap

- ► Economic Model
- Positive Analysis
 - ► Immediate Loss Recognition
 - Delayed Accounting
- Policy Implications
 - ► Capital Regulation Only
 - Microprudential Regulation
 - ► Macroprudential Regulation

Environment

- lacktriangle Continuous time $t \in [0, \infty)$. All assets are real. Bank net worth W_t .
- A continuum of risk neutral banks takes deposits D_t at rate r^D and loans L_t at rate r^L .
- lacktriangle Loans are defaultable. Defaults arrives with idiosyncratic Poisson process dN_t at rate $\sigma.$
 - \triangleright A ε fraction of loan defaults in a default event.
 - ightharpoonup Defaulted loans become zombie loans Z_t . (If not liquidated, specified later).
- Given constant dividend rule $C_t=c\,W_t$, bank chooses leverage to maximize its value. In the quantitative model, EZ preference with 0 risk aversion and IES $1/\theta$, C_t is endogenous.
- ▶ Regulatory liquidation happens when constraints are violated. Liquidated bank recovers $v_o W_t$ net worth.

Balance Sheet Structure

(a) Fundamentals

(b) Accounting

Book equity $\bar{W}_t = W_t + Z_t$; Book loans $\bar{L}_t = L_t + Z_t$;

Book leverage $\bar{\lambda}_t = \bar{L}_t/\bar{W}_t$; Zombie loan ratio: $z_t = Z_t/W_t$.

Balance Sheet Structure when Default Shock Hits

(a) Fundamentals

(b) Accounting

 $\bar{W}_t = \bar{W}_{t-} - \varepsilon L_{t-}, \bar{L}_t = \bar{L}_{t-} - \varepsilon L_{t-}, W_t = W_{t-} - \varepsilon L_{t-}, L_t = L_{t-} - \varepsilon L_{t-}, Z_{t+} = Z_{t-} + \varepsilon L_{t-}.$ Implication: both fundamental leverage and book leverage go up when default shock hits.

Financial Constraints

Without loan default (normal times):

- ▶ Fundamental leverage constraint: $L_t/W_t = \lambda_t \le \kappa$
- ▶ Book leverage constraint: $\bar{L}_t/\bar{W}_t = (\lambda_t + z_t)/(1+z_t) \leq \Xi$
- ► The *liquidation boundary*:

$$\lambda \leq \Gamma(z) \equiv \{\Xi + (\Xi - 1)z, \kappa\}$$

Upon default event (shocked times):

- ▶ Fundamental leverage constraint: $L_t/W_t = \lambda_{t-}(1-\varepsilon)/(1-\varepsilon\lambda_{t-}) \le \kappa$
- ▶ Book leverage constraint: $\bar{L}_t/\bar{W}_t = (\lambda_{t-}(1-\varepsilon) + z_t)/(1-\varepsilon\lambda_{t-} + z_{t-}) \leq \Xi$
- ► The *shadow boundary*:

$$\lambda \le \Lambda(z) = \min \left\{ \frac{\Xi + (\Xi - 1)z}{1 + (\Xi - 1)\varepsilon}, \frac{\kappa}{1 + (\kappa - 1)\varepsilon} \right\}$$

Bank's Optimization

ightharpoonup Banks chooses leverage λ_t , dividend C_t to maximize its value

$$V_0 = \mathbb{E}\left[\int_0^\infty e^{-\rho t} C_t dt\right]$$

subject to: (1) Dividend rule: $C_t = cW_t$, (2) financial constraints, (3) state evolution

$$dW_t = \left[r^L \lambda_t - r^D (\lambda_t - 1) - c \right] W_t dt - \varepsilon \lambda W_t dN_t,$$

$$dZ_t = -\alpha Z_t dt + \varepsilon \lambda W_t dN_t.$$

- Assumptions:
 - 1. Lending is profitable: $r^L \sigma \varepsilon \ge r^D$.
 - 2. Returns are bounded $\rho > r^D + (r^L r^D)\kappa c$
 - 3. Liquidation is costly for self-financed banks: $(\rho-r^L)v_0/c \leq 1-\varepsilon$
 - 4. Bank chooses to avoid liquidation, if indifferent between risking and not risking liquidation.

Immediate Loan Loss Recognition $\alpha \to \infty$

- ▶ Consider the *laissez-faire* regulation: $\kappa < \Xi$. $\Gamma = \kappa, \lambda = \kappa \cdot (1 + \varepsilon(\kappa 1))^{-1}$
- ▶ Zombie loans $Z_t = 0$, as $\alpha \to \infty$. Scaled solution: V(W, 0) = vW. Derivation
- **Expression**: $v=\int_0^\infty e^{-\rho t}ce^{(\Omega^*-c)t}dt=\frac{c}{\rho-(\Omega^*-c)}$, where

$$\Omega^* = r^D + \max_{\lambda \in [1,\Gamma]} c + (r^L - r^D)\lambda + \sigma \left\{ (1 - \lambda \varepsilon) \mathbb{I}_{\lambda \le \Lambda} + \frac{v_0}{v} \mathbb{I}_{\lambda > \Lambda} - 1 \right\}$$

- Expected return Ω^* is piecewise linear w.r.t λ . \Rightarrow Bank makes binary choice $\{\Gamma, \Lambda\}$ to maximize Ω^* .
- Optimal leverage:

$$\lambda = \left\{ \begin{array}{ll} \Lambda & \text{if } (r^L - r^D)\kappa - \sigma(1 - \frac{v_o}{v}) \leq \Lambda[(r^L - r^D) - \sigma\varepsilon] \\ \kappa & \text{if } (r^L - r^D)\kappa - \sigma(1 - \frac{v_o}{v}) > \Lambda[(r^L - r^D) - \sigma\varepsilon] \end{array} \right.$$

Delayed Accounting

▶ Value function takes form V(Z, W) = v(z) W, where z = Z/W. Derivation

$$\rho v(z) = c - v_z(z)\alpha z + (v(z) - v_z(z)z) \cdot [\Omega^*(z) - c]$$

▶ Optimal leverage $\lambda^*(z)$ solves:

$$\Omega^* = r^* + \max_{\lambda \in [1, \Gamma(z)]} (r^L - r^D)\lambda + \sigma \left\{ \frac{J^v(z, \lambda)}{v(z) - v_z(z)z} \right\}$$

- lacksquare Value jump upon default shock: $J^v \equiv v(z+J^z)(1-arepsilon)\mathbb{I}_{\lambda \leq \Lambda(z)} + v_0\mathbb{I}_{\lambda > \Lambda(z)} v(z)$.
- \triangleright Expected return is also piecewise linear w.r.t. λ .

$$\lambda^*(z) = \begin{cases} \Lambda(z) & \text{if } \Omega(z; \Gamma(z)) \le \Omega(z; \Lambda(z)) \\ \Gamma(z) & \text{if } \Omega(z; \Gamma(z)) > \Omega(z; \Lambda(z)) \end{cases}$$

Trajectory of z and λ under Delayed Accounting

Connection to Facts

- ► Fact 1: book and market values diverge during crises

 Explanation: Upon loan default, market equity jumps while book equity does not.
- ► Fact 2: the market-to-book ratio predicts future profitability

 Explanation: Zombie loans are recognized gradually → future book loss predictable.
- Fact 3: book leverage constraint barely binds Ergodic Distribution
 Explanation: most banks stay at the shadow boundary even if market leverage is high.
- ► Fact 4: banks delever gradually after net-worth shocks

 Explanation: losses are recognized slowly, banks delever slowly after a negative shock.

Policy Implications: Updated Environment

- ▶ Two productive sectors (L, D) with AK technology. Productivity: A^L , A^D , $A^L > A^D$
 - Capital is freely mobile across sectors and fully reversible.
 - lacktriangle Investment transforms 1 unit of good to 1 unit of capital. Capital depreciates at rate δ .
- A representative risk-neutral household holds wealth in bank equity and D firms.
- Each bank maximizes its value, lend to L firms and faces idio. Poisson default shock.
- **D**efault destroys ε fraction of loans and ψ fraction of capital. Assume:
 - **E**conomically efficient (individual perspecitve) to allocate capital to L sector: $A^L \sigma \varepsilon > A^D$.
 - ▶ Socially inefficient of bank liquidation: $A^L \sigma(\varepsilon + (1 \psi)(1 \varepsilon)) > A^D$.
 - Some value left for surviving banks upon liquidation: $v_0 \leq 1 (1 \psi(1 \varepsilon))\kappa$.

Optimal Capital Requirement with Immediate Accounting

▶ (First best) Socially optimal leverage λ^{fb} solves:

$$\Pi^{fb} = \max_{\lambda} \left(r^L - r^D - \sigma[\varepsilon + (1 - \psi)(1 - \varepsilon)\mathbb{I}_{\lambda > \Lambda}] \right) \lambda$$

▶ (Second best) Socially optimal capital requirement Ξ solves (given κ):

$$\Pi^{fb} = \max_{\Xi} \left(r^L - r^D - \sigma[\varepsilon + (1 - \psi)(1 - \varepsilon) \mathbb{I}_{\lambda^*(\Xi, \kappa) > \Lambda}] \right) \lambda^*(\Xi, \kappa)$$

Microprudential Implication: Optimal Regulation with $\{\alpha,\Xi\}$

- ▶ Results: α : 17% (optimal) vs. 4.16% (calibrated); $1/\Xi$: 5.5% (optimal) vs. 8% (Basel III)
- Moving to $\{\alpha^*, \Xi^*\}$: safer bank system with book values closer to fundamental values less liquidation & social liquidation cost, higher and still safe fundamental & book leverage.

Macroprudential Implications: Countercyclical Capital Buffer

Macroprudential Implications: Countercyclical Accounting Rule

Conclusion

- ▶ Built a macroeconomic model with heterogenous banks
 - Distinguishes accounting, fundamental, and market values of bank equity
 - Subject banks to market and book-based constraints
 - Delayed accounting of losses on books.
- Loss accounting: financial fragility vs. growth.
- Comprehensive regulatory: book and market value.
- ► Future research: (1) real cost of zombie loans, (2) firesale externalities, (3) endogenous accounting standard choice.

Thank you!

Appendix: Timing

Appendix: Immediate Accounting

 $Z \equiv 0$ for immediate accounting case:

$$\rho \, \mathit{V}(\,\mathit{W}, 0) = \max_{\lambda \in [1, \Gamma]} c \, \mathit{W} + \, \mathit{V}_{\mathit{W}}(0, \, \mathit{W}) \mu^{\mathit{W}} \, \mathit{W} + \sigma \, \left[\, \mathit{V}(\,\mathit{W} + \mathit{J}^{\mathit{W}} \, \mathit{W}, 0) \mathbb{I}_{\lambda \leq \Lambda} + \mathit{v}_{0} \, \mathit{W} \mathbb{I}_{\lambda > \Lambda} \, - \, \mathit{V}(0, \, \mathit{W}) \right]$$

Postulate V(W,0) = vW and plug in $\mu^W = r^L \lambda - r^D (\lambda - 1) - c$:

$$\rho v = \max_{\lambda \in [1,\Gamma]} c + v[r^L \lambda - r^D(\lambda - 1) - c] + \sigma((1 - \lambda \varepsilon)v + v_0 \mathbb{I}_{\lambda > \Lambda} - v)$$

Rearrange:

$$v = \max_{\lambda \in [1,\Gamma]} \frac{c}{\rho - [r^L \lambda - r^D(\lambda - 1) - c] - \sigma((1 - \lambda \varepsilon)v + v_0 \mathbb{I}_{\lambda > \Lambda} - v)} \equiv \frac{c}{\rho - (\Omega^* - c)}$$

Appendix: Slow Accounting HJB

The full HJB with state variable W, Z is:

$$\rho V(Z, W) = \max_{\lambda \in [1, \Gamma(Z/W)]} c W + V_Z(Z, W) \mu^Z W + V_W(Z, W) \mu^W W + \sigma \left[V(Z + J^Z W, W + J^W W) \mathbb{I}_{\lambda \le \Lambda(Z/W)} + v_0 W \mathbb{I}_{\lambda > \Lambda(Z/W)} - V(Z, W) \right]$$

Postulate $V(Z, W) = v\left(\frac{Z}{W}\right) W \equiv v(z) W$, we have:

$$V_{Z}(Z, W) = v'(z), V_{W}(Z, W) = v(z) - zv'(z)$$

$$\rho v(z) = \max_{\lambda \in [1, \Gamma(z)]} c + \mu^{W} v(z) + (\mu^{Z} - z\mu^{W})v'(z) + \sigma[v(z + J^{z})(1 - \varepsilon\lambda)\mathbb{I}_{\lambda \leq \Lambda(z)} + v_{0}\mathbb{I}_{\lambda > \Lambda(z)} - v(z)]$$

Plug in $\mu^W = \lambda(r^L - r^D) + r^D - c$, $\mu^Z = -\alpha z$, we get the HJB with single state variable z.

Appendix: Parameterization

Parameter	Description	Target
Externally set parameters		
$r^L=1.01\%$	Loan yield	BHC data: avg. interest income/loans
$r^D=0.51\%$	Bank debt yield	BHC data: avg. interest expense/debt
$\Xi = 12.5$	Regulatory maximum asset to equity ratio	Capital requirement of 8%
$Jointly\ determined-estimated$		
$\rho=2.24\%$	Banker's discount rate	Book equity growth rate: 2%
$\rho^I=3.47\%$	Investor's discount rate	Market-to-book ratio of equity: 1.316
$\theta = 7.94$	Banker's inverse IES	Market leverage IRF
$\varepsilon=1.12\%$	Loan loss rate in event of default	Mean book leverage
$\alpha = 4.16\%$	Speed of loan loss recognition	Liabilities IRF
$\kappa = 51$	Market-based leverage constraint	Liabilities IRF
$\sigma = 0.115$	Arrival rate of loan default shocks	Mean quarterly net charge-off rate of 0.12%
$v_o = 0.046$	Bank liquidation value	Quarterly bank failure rate of 3.65 basis points

 $^{ho^I}$ is used to compute investor's valuation (same HJB for v(z) with ho replaced by ho^I)

Appendix: Ergodic Distribution

(a) Baseline Parameters: $\alpha = 4.16\%$

(b) Faster Recognition: $\alpha = 6\%$

KFE characterizes distribution: (1) banks with z > 0 on the shadow boundary, (2) banks with z > 0 on the liquidation boundary, (3) reconstructed banks.

Appendix: Social Planner's Problem

Welfare function:

$$\mathcal{P}^*(\{g_0\}) \equiv \max_{\{\alpha, \Xi\}} \mathcal{P}^*(\alpha, \Xi, \{g_0\}) = \int_0^\infty \int_0^\infty \mathbb{E}\left[\int_0^\infty e^{-\rho t} c W_t dt | W_0 = W, z_0 = z\right] g_0(z, W) dz dW$$

Transformed objective function:

$$\mathcal{P}^*(\{g_0\}) = \max_{\{\alpha, \Xi\}} \int_0^\infty W \int_0^\infty p(z)g_0(z, W) dz dW,$$

where p(z) is the social value of a bank:

$$\begin{split} \rho p(z) &= c + p_z(z)\mu^z + p(z)\mu^W + \sigma J^p(z), \qquad \text{and} \\ J^p(z) &= \left[p(z + J^z)(1 - \varepsilon \lambda) \mathbb{I}_{\lambda \leq \Lambda(z)} + p(0) + (1 - (\varepsilon + (1 - \psi)(1 - \varepsilon)\lambda)) \mathbb{I}_{\lambda > \Lambda(z)} - p(z) \right] \end{split}$$

