1 Задача №1

Пусть i=1, тогда, пока a[i] < x, будем умножать i на 2. Если $a[i] \ge x$ нужный нам элемент массива, равный x, находится слева от i, но правее $\frac{i}{2}$, так как массив отсортирован, тогда бинпоиском с границами $l=\frac{i}{2}, r=i$ найдем нужный нам индекс p. Алгоритм работает за $\log p + \log \frac{p}{2} = O(\log p)$.

2 Задача №2

Создадим три указателя $l_0=0,\ l_1=0$ и r=0, два счетчика $cnt_0=0$ и $cnt_1=0$, а так же два массива $num_0,\ num_1$ и проинициализируем их нулями. Будем идти по массиву a, пока количество различных встреченных элементов меньше k. Будем вести учет так: на каждой итерации $num_0[a[r]-1]++$ и $num_1[a[r]-1]++$, так же, если мы добавили этот элемент впервые делаем соответственно $cnt_0 + +$ и $cnt_1 + +$, аналогично при движении указателей l_0 и l_1 убавляем соответсвующие значения. Теперь будем идти циклом от r до n и для каждого соответсвующего r будем двигать l_0 до тех пор, пока $cnt_0 > k$, и l_1 до тех пор, $cnt_1 \geq k$, двигая эти элементы обновляем соответствующие значения num и cnt. Тогда l_0 будет индексом первого элемента массива, такого что в отрезке $[l_0, r]$ ровно k различных элементов, а l_1 — первым индексом в массиве, что в отрезке $[l_1, r]$ содержится ровно k-1 различный элемент. l_0 и l_1 будут посчитаны корректно на каждой итерации, так как после увеличения r количество различных элементов в отрезках могло только увеличиться. Тогда будем для каждого r прибавлять к ответу $l_1 - l_0$ — количество отрезков, в которых k различных элементов, а правая граница равна r.

Мы посчитаем все нужные нам отрезки, так как для каждого r мы считаем все подходящие отрезки, а r пробегает значения от

0 до n-1.

3 Задача №3

Заметим, что если b[j-1] < a[i] < b[j], то a[i] - i + j + 1 порядковая статистика, так как ввиду упорядоченности массивов: в b-j элементов меньше a[i], а в a-i элементов меньше a[i]. Тогда будем выбирать такие i и j, что i+j+1=k.

Если b[j-1] < a[i] < b[j] или a[i-1] < b[j] < a[i], то a[i] или b[j] соответственно и есть k-я порядковая статистика. Пусть для определенности массив a меньше и n < m, если иначе, просто поменяем массивы местами.

Заведем 2 переменные $l=0,\ r=n-1,\$ и будем бинпоиском искать нужный нам идекс $i=\frac{l+r}{2},\$ и соответсвенно $j,\$ если выполнится одно из двух условий написанных выше — выйдем из бинпоиска и выведем данный элемент, так как он и есть ответ. Докажем корректность бинпоиска: если оба условия выхода из бинпоиска не выполнены и:

- 1. a[i] < b[j-1] < b[j], тогда в позициях от l до i может находиться максимум i+j я порядковая статистика, тогда продолжать бинпоиск в подмассиве a[l,i] бессмыслено, так как i+j < k по условию, тогда продолжаем бинпоиск в подмассиве a[i+1,r].
- 2. a[i] > b[j] > b[j-1], то в позициях от i до r может находится минимум i+j+2 я порядковая статистика, тогда продолжать бинпоиск в правой части массива a[i,r] бессмыслено, так как i+j+2>k по условию. Тогда продолжаем бинпоиск в подмассиве a[i,i-1].

Алгоритм отработает за $O(\log \min(n, m))$ так как мы делаем бинпоиск в меньшем массиве.