A CLASSIFICATION OF THE ORDINAL RECURSIVE FUNCTIONS* By S. S. Wainer**

Introduction

In [7] a framework was developed, within which various hierarchies of numbertheoretic functions can be generated.

Particular attention was paid to a hierarchy $\{\mathfrak{E}_{\alpha}\}$ obtained by restricting α appropriately to the ordinals below ε_0 , and it was conjectured that this hierarchy provides a classification of the ordinal recursive functions.

The main purpose of this paper is to give an affirmative answer to this conjecture. In addition, a method of Robbin [9] is extended, in Section 4, in order to simplify further the definition of the classes \mathfrak{E}_{α} , thus providing an affirmative answer to Problem A of [7]. An alternative characterization of the classes \mathfrak{E}_{α} , in terms of computational complexity, is also obtained.

The notation is the same as that used in [7]. N denotes the set of non-negative integers, and lower-case italics a, b, \ldots, x, y, z , with or without subscripts, denote members of N. k-tuples x_1, \ldots, x_k are denoted by \underline{x} . With the exception of λ and μ , lower-case Greek letters denote ordinals below ε_0 .

1. Preliminary Definitions and Results

Let α be a limit ordinal. Then a fundamental sequence for α is a strictly increasing ω -sequence of ordinals, whose limit is α .

For each limit ordinal $\alpha < \varepsilon_0$, a fundamental sequence $\{\alpha\}(n)$, $n \in \mathbb{N}$, is provided by the following inductive definition:

$$\begin{split} \text{(I)} \quad & \text{If } \alpha = \omega^{\alpha_1} \cdot a_1 + \omega^{\alpha_2} \cdot a_2 + \dots + \omega^{\alpha_r} \cdot a_r + \omega^{k+1} \cdot (a_{r+1} + 1) \;, \\ & \text{where } \alpha > \alpha_1 > \alpha_2 > \dots > \alpha_r > k+1 \;, \text{ then for every } n \in N \;, \\ & \{\alpha\}(n) = \omega^{\alpha_1} \cdot a_1 + \dots + \omega^{\alpha_r} \cdot a_r + \omega^{k+1} \cdot a_{r+1} + \omega^k \cdot n + \dots + \omega \cdot n + 2 \cdot n. \end{split}$$

$$\begin{split} \text{(II)} \quad & \text{If } \alpha = \omega^{\alpha_1} \cdot a_1 + \omega^{\alpha_2} \cdot a_2 + \dots + \omega^{\alpha_r} \cdot a_r + \omega^{\beta+1} \cdot (a_{r+1}+1) \;, \\ & \text{where } \alpha > \alpha_1 > \alpha_2 > \dots > \alpha_r > \beta+1 > \omega \;, \text{ then for every } n \in N \;, \\ & \{\alpha\}(n) = \omega^{\alpha_1} \cdot a_1 + \dots + \omega^{\alpha_r} \cdot a_r + \omega^{\beta+1} \cdot a_{r+1} + \omega^{\beta} \cdot n \;. \end{split}$$

(III) If
$$\alpha = \omega^{\alpha_1} \cdot a_1 + \omega^{\alpha_2} \cdot a_2 + \cdots + \omega^{\alpha_r} \cdot a_r + \omega^{\sigma} \cdot (a_{r+1} + 1)$$
, where $\alpha > \alpha_1 > \alpha_2 > \cdots > \alpha_r > \sigma$, and σ is a limit ordinal, then for every $n \in N$,
$$\{\alpha\}(n) = \omega^{\alpha_1} \cdot a_1 + \cdots + \omega^{\alpha_r} \cdot a_r + \omega^{\sigma} \cdot a_{r+1} + \omega^{\{\sigma\}(n)}.$$

^{*} Eingegangen am 13. 3. 69.

^{**} The author wishes to express his sincere thanks to Professor M. H. Löb for invaluable help and encouragement during the preparation of this work.

Now, for every ordinal $\alpha < \varepsilon_0$, define a function $F_{\alpha}^n(x)$ by recursion, as follows:

$$\begin{split} F^0_0(x) &= (n+1) \cdot (x+1) \; . \\ F^0_{\beta+1}(x) &= F^x_{\beta}(x) \; . \\ F^0_\sigma(x) &= F^0_{\{\sigma\}(x)}(x) \; , \; \sigma \; \text{a limit ordinal.} \\ F^{n+1}_\gamma(x) &= F^0_\gamma(F^n_\gamma(x)), \; \gamma > 0 \; . \end{split}$$

It is clear, from this definition, that for each $\alpha < \varepsilon_0$, $F_{\alpha}^n(x)$ is defined for every n and x.

In [7] various "monotonicity" properties of the functions $F_{\alpha}^{n}(x)$ were obtained. The following Theorem gives a summary of these results.

Theorem 1.1

- (i) For each $\alpha < \varepsilon_0$ and all $n, x, F_{\alpha}^n(x) > \max(n, x)$.
- (ii) For each $\alpha < \varepsilon_0$ and all n, x, y, if x > y then $F_{\alpha}^n(x) > F_{\alpha}^n(y)$.
- (iii) For each $\alpha < arepsilon_0$ and all $m,\,n,\,x,$ if m>n then $F^m_{\,\,lpha}(x) > F^n_{\,lpha}(x)$.
- (iv) For each $\alpha < \varepsilon_0$ and all $n, x, F_{\alpha+1}^n(x) \ge F_{\alpha}^n(x)$, with equality holding only when n = x = 0.
- (v) If $\alpha < \beta < \varepsilon_0$, then F^0_{α} is eventually majorized by F^0_{β} .
- (vi) If σ is a limit ordinal $< \varepsilon_0$ and x > 0, then $F^0_{\{\sigma\}(x)}(x) > F^0_{\{\sigma\}(i)}(x)$ for every i < x.

These "monotonicity" results are of basic importance to the work contained in this paper, and they will often be used without explicit reference.

For each $\alpha < \varepsilon_0$, let \mathfrak{E}_{α} be the smallest class of functions which contains

$$\{\lambda x \cdot 0, \lambda x y \cdot x + y, \lambda \underline{x} \cdot x_i\} \cup \{\lambda x \cdot F_{\beta}^{0}(x) | \beta \leq \alpha\},$$

and which is closed under the operations of Substitution and Limited Recursion. Clearly, if $\alpha < \beta < \varepsilon_0$, then $\mathfrak{E}_{\alpha} \subseteq \mathfrak{E}_{\beta}$.

The following results, concerning the hierarchy $\{\mathfrak{E}_{\alpha}\}_{\alpha \ < \ \epsilon_0}$, are proved in [7].

Theorem 1.2

Let α be any ordinal such that $0 < \alpha < \epsilon_0$.

Then for every function $f \in \mathfrak{C}_{\alpha}$ there is a number p such that, for all \underline{x} ,

$$f(\underline{x}) < F_{\alpha}^{p}(\max(\underline{x}))$$
.

Corollary

Suppose $0 < \alpha < \beta < \epsilon_0$.

Then every function in \mathfrak{E}_{α} is eventually majorized by F_{β}^{0} , and hence $\mathfrak{E}_{\alpha} \subset \mathfrak{E}_{\beta}$.

Theorem 1.3

 $\{\mathfrak{E}_{\alpha}\}_{\alpha \ < \ \varepsilon_0}$ is a proper extension of the Grzegorczyk hierarchy, and for each $k \in N$, $\bigcup_{\alpha \ < \ \omega^k} \mathfrak{E}_{\alpha}$ is the class of Péter's k-recursive functions.

Now for each $n \in N$, define an ordinal $\omega(n)$ by

$$\omega(0) = 1 ,$$

$$\omega(n+1) = \omega^{\omega(n)} .$$

Clearly, $\{\omega(n)|n\in N\}$ is a fundamental sequence for ε_0 .

For each n > 0, we construct a primitive recursive well-ordering $<_n$ of N, of order-type $\omega(n)$, as in Tait [10].

Functions ord_n and num_n will be defined along with $<_n$, such that $\operatorname{ord}_n(x)$ is the ordinal represented by x in the well-ordering $<_n$, and $\operatorname{num}_n(\alpha)$ is the number representing $\alpha < \omega(n)$ in the well-ordering $<_n$.

- (i) $<_1$ is the natural well-ordering of N, and for every x, $\operatorname{ord}_1(x) = x$ and $\operatorname{num}_1(x) = x$.
- (ii) Suppose $<_n$, ord_n, num_n have been defined so that $<_n$ is of order-type $\omega(n)$, for every α , num_n(ord_n(α)) = α , and for every $\alpha < \omega(n)$, ord_n(num_n(α)) = α . Then if $\beta = \omega^{\alpha_1} \cdot a_1 + \omega^{\alpha_2} \cdot a_2 + \cdots + \omega^{\alpha_r} \cdot a_r$, where $\omega(n) > \alpha_1 > \alpha_2 > \cdots \cdots > \alpha_r \ge 0$, define

$$\mathrm{num}_{n+1}(\beta) = (\mathfrak{p}_{\mathrm{num}_n(\alpha_1)}^{a_1} \cdot \mathfrak{p}_{\mathrm{num}_n(\alpha_2)}^{a_2} \cdot \cdot \cdot \cdot \cdot \mathfrak{p}_{\mathrm{num}_n(\alpha_r)}^{a_r}) - 1$$

where p_0, p_1, p_2, \ldots is the primitive recursive enumeration of prime numbers in increasing order.

Conversely, if
$$z_r <_n \cdots <_n z_2 <_n z_1$$
, and $z = (\mathfrak{p}_{z_1}^{a_1} \cdot \mathfrak{p}_{z_2}^{a_2} \cdots \mathfrak{p}_{z_r}^{a_r}) - 1$, define $\operatorname{ord}_{n+1}(z) = \omega^{\operatorname{ord}_n(z_1)} \cdot a_1 + \omega^{\operatorname{ord}_n(z_2)} \cdot a_2 + \cdots + \omega^{\operatorname{ord}_n(z_r)} \cdot a_r$.

Finally, define $<_{n+1}$ by

$$x <_{n+1} y \equiv \operatorname{ord}_{n+1}(x) < \operatorname{ord}_{n+1}(y)$$
.

It is clear that every ordinal $\beta < \omega(n+1)$ has a unique representation $\operatorname{num}_{n+1}(\beta)$, and that every number "represents" some ordinal $< \omega(n+1)$.

Hence $<_{n+1}$ is a well-ordering, of order-type $\omega(n+1)$.

Thus, for every n > 0; $<_n$ is a well-ordering of N, of order-type $\omega(n)$; $\operatorname{num}_n(\operatorname{ord}_n(x)) = x$ every x, and $\operatorname{ord}_n(\operatorname{num}_n(\alpha)) = \alpha$ for every $\alpha < \omega(n)$. Notice also, that for every n > 0, 0 is the least element with respect to $<_n$.

Definition 1.4

For each n > 0, $U(<_n)$ is the smallest class of functions which contains the primitive recursive functions and which is closed under the operations of substitution, primitive recursion, and unnested ordinal recursion over the well-ordering $<_n$. Functions belonging to $U(<_n)$ are called $<_n$ -recursive.

Definition 1.5

A function f is said to be defined by $<_n$ -annihilation from a function g if

$$\begin{cases} f(0,\underline{a}) = 0 \\ f(x+1,\underline{a}) = 1 + f(g(x+1,\underline{a}),\underline{a}) \end{cases}$$

where $g(0, \underline{a}) = 0$ and $g(x + 1, \underline{a}) <_n x + 1$ for all x.

Definition 1.6

For each n > 0, $A(<_n)$ is the smallest class of functions which contains the primitive recursive functions and which is closed under the operations of substitution, primitive recursion, and $<_n$ -annihilation.

Theorem 1.7 (Robbin)

For each n > 0, $U(<_n) = A(<_n)$.

Definition 1.8

A function is called *ordinal recursive* if and only if it is $<_n$ -recursive for some n > 0. The class of all ordinal recursive functions will be denoted by OR.

It follows immediately from Theorem 1.7 and Definition 1.8, that $OR = \bigcup_{n \in N} A(<_n)$.

2. A Hierarchy of Ordinal Recursive Functions

The aim of this section is to show that, for every $\alpha < \varepsilon_0$, there is an r such that F^0_{α} is $<_r$ -recursive. It then follows that every function belonging to $\mathfrak{E}_{\alpha}(\alpha < \varepsilon_0)$ is $<_r$ -recursive, for some r.

First, suppose that n > 0 is fixed, and suppose that the definition of the functions $F_{\sigma}^{n}(x)$ is restricted to just those ordinals $\alpha < \omega(n)$.

Suppose also, that a function G is defined so that

$$G(x+1,a) = (m+1) \cdot (a+1) \text{ if } \operatorname{ord}_{n+1}(x+1) = \omega^0 + m = m+1$$
 .

$$G(x+1, a) = G(\text{num}_{n+1}(\omega^{\alpha} + a), a) \text{ if } \text{ord}_{n+1}(x+1) = \omega^{\alpha+1} + 0.$$

$$G(x+1,a) = G(\operatorname{num}_{n+1}(\omega^{\{\sigma\}(a)}),a)$$
 if $\operatorname{ord}_{n+1}(x+1) = \omega^{\sigma} + 0$ (σ a limit)

$$G(x+1,a) = G(\text{num}_{n+1}(\omega^{\beta}), G(\text{num}_{n+1}(\omega^{\beta}+m), a))$$

if $\text{ord}_{n+1}(x+1) = \omega^{\beta} + m + 1 \ (\beta > 0)$.

Then it can easily be proved, by induction over the ordinals $< \omega(n)$, that for every $\alpha < \omega(n)$, and all m, a,

$$F_{\alpha}^{m}(a) = G(\operatorname{num}_{n+1}(\omega^{\alpha} + m), a)$$
.

We now show that such a function G can be defined, from primitive recursive functions, by nested recursion over the well-ordering $<_{n+1}$.

Recall the definition of the fundamental sequences $\{\sigma\}(i)$, $i \in N$, for limit ordinals $\sigma < \varepsilon_0$.

If σ is a limit ordinal $<\omega^{\omega}$, then for each $i \in N$, $\{\sigma\}$ (i) is defined explicitly by clause (I).

Thus it is clear, from the way in which the well-ordering $<_2$ (of order-type ω^{ω}) is constructed, that there is a primitive recursive function fs_2 such that

$$fs_2(z, i) = num_2(\{\sigma\}(i))$$
 if $ord_2(z)$ is the limit σ .

Now suppose that $m \ge 2$ and that there is a primitive recursive function fs_m such that

$$fs_m(z, i) = num_m({\{\sigma\}(i)}) \text{ if } ord_m(z) \text{ is the limit } \sigma.$$

140 S. S. Wainer

If δ is a limit ordinal $<\omega(m+1)$ then either δ is of the form $\omega^{\alpha_1} \cdot \alpha_1 + \cdots + \omega^{\alpha_r+1} \cdot \alpha_r$ where $\alpha_1 > \cdots > \alpha_r + 1$, in which case $\{\delta\}(i)$ is defined explicitly by clause (I) or clause (II); or else δ is of the form $\omega^{\alpha_1} \cdot \alpha_1 + \cdots + \omega^{\alpha_s} \cdot \alpha_s$ where $\omega(m) > \alpha_1 > \cdots > \alpha_s$ and where α_s is a limit ordinal, in which case $\{\delta\}(i)$ is defined (inductively) from $\{\alpha_s\}(i)$.

Hence, using the "arithmetization" of ordinals below $\omega(m+1)$ provided by the function num_{m+1} , it is possible to define a function fs_{m+1} , which is primitive recursive in fs_m , such that

$$fs_{m+1}(z, i) = num_{m+1}(\{\delta\}(i)) \text{ if } ord_{m+1}(z) \text{ is the limit } \delta.$$

Since fs_m is primitive recursive, fs_{m+1} must be also.

It is clear, therefore, that for each $k \ge 2$, there is a primitive recursive function fs_k such that

$$fs_k(z, i) = num_k(\{\sigma\}(i))$$
 if $ord_k(z)$ is the limit σ .

Hence if $\operatorname{ord}_{n+1}(x+1) = \omega^{\sigma}$ where σ is a limit, then we have

$$\mathrm{fs}_{n+1}(x+1,a) = \mathrm{num}_{n+1}(\{\omega^{\sigma}\}(a)) = \mathrm{num}_{n+1}(\omega^{\{\sigma\}(a)}).$$

Now the predicates P_1 , P_2 , P_3 , P_4 defined as follows:

$$egin{aligned} P_1(y) &\equiv \operatorname{ord}_{n+1}(y) \text{ is of the form } \omega^0 + m \ , \ P_2(y) &\equiv \operatorname{ord}_{n+1}(y) \text{ is of the form } \omega^{\alpha+1} \ , \end{aligned}$$

 $P_3(y) \equiv \operatorname{ord}_{n+1}(y)$ is of the form ω^{σ} , where σ is a limit,

$$P_4(y) \equiv \operatorname{ord}_{n+1}(y)$$
 is of the form $\omega^{\beta} + m + 1$, where $\beta > 0$

can all be decided primitive recursively, and furthermore, there are primitive recursive functions g_1, g_2, g_3, g_4 such that

$$\begin{split} g_1(x+1,a) &= (m+1) \cdot (a+1) \text{ if } \operatorname{ord}_{n+1}(x+1) = \omega^0 + m \;. \\ g_2(x+1,a) &= \operatorname{num}_{n+1}(\omega^\alpha + a) \text{ if } \operatorname{ord}_{n+1}(x+1) = \omega^{\alpha+1} + 0 \;. \\ g_3(x+1,a) &= \operatorname{num}_{n+1}(\omega^\beta) \text{ if } \operatorname{ord}_{n+1}(x+1) = \omega^\beta + m + 1 \;. \\ g_4(x+1,a) &= \operatorname{num}_{n+1}(\omega^\beta + m) \text{ if } \operatorname{ord}_{n+1}(x+1) = \omega^\beta + m + 1 \;. \end{split}$$

Hence the function G can be defined as follows:

$$G(0, a) = 0$$
 if $P_1(x + 1, a)$ if $P_2(x + 1)$ if $P_3(x + 1)$ if $P_4(x + 1)$ if $P_3(x + 1)$ if $P_4(x + 1)$ if $P_3(x + 1)$ if $P_4(x + 1)$ otherwise.

Since $fs_{n+1}(x+1,a) <_{n+1} x+1$ for all x, and for each i=2,3,4, $g_i(x+1,a) <_{n+1} x+1$, it is clear that G is defined, from primitive recursive functions, by a nested recursion over $<_{n+1}$.

Now Tait has shown in [10] that nested recursion over $<_{n+1}$ is reducible to unnested ordinal recursion over $<_{n+2}$.

Hence G is $<_{n+2}$ – recursive.

But for each $\alpha < \omega(n)$, and all a,

$$F_{\alpha}^{0}(a) = G(\operatorname{num}_{n+1}(\omega^{\alpha}), a),$$

and so F^0_{α} is $<_{n+2}$ – recursive.

Thus, if $\alpha < \omega(n)$, all the initial functions of \mathfrak{E}_{α} are $<_{n+2}$ -recursive, and hence every function belonging to \mathfrak{E}_{α} is $<_{n+2}$ -recursive.

We have therefore proved

Theorem 2.1

For each n > 0, $\bigcup_{\alpha < \omega(n)} \mathfrak{E}_{\alpha} \subseteq U(<_{n+2})$.

Corollary

$$\bigcup_{\alpha < \varepsilon_{\sigma}} \mathfrak{E}_{\alpha} \subseteq \mathrm{OR} \;.$$

3. A Complete Classification of the Ordinal Recursive Functions

In this section it is proved that every $<_n$ -recursive function belongs to $\mathfrak{E}_{\omega(n) \cdot k}$ for some k. It follows that the hierarchy $\{\mathfrak{E}_{\alpha}\}_{\alpha < \varepsilon_0}$ exhausts the class of ordinal recursive functions, and so the following characterization of OR is obtained:

$$OR = \bigcup_{\alpha \leq \varepsilon_{\alpha}} \mathfrak{E}_{\alpha}$$
.

These results depend on a strengthened form of the monotonicity property of the functions F_{α}^n stated in part (V) of Theorem 1.1, and this in turn depends upon a further analysis of the fundamental sequences $\{\sigma\}(i)$, $i \in N$, for limit ordinals $\sigma < \varepsilon_0$.

Lemma 3.1

For each n > 0, and every limit ordinal $\sigma < \omega(n)$, if $\alpha < \sigma$ and $\operatorname{num}_n(\alpha) < x$, then

$$\alpha < {\sigma}(x)$$
.

Proof

We proceed by induction on n.

The result is vacuously true for n = 1.

Suppose that the result holds for any $n \ge 1$, and let σ be a limit ordinal $< \omega (n + 1)$. If $\alpha < \sigma$ we can write α and σ in the forms

$$\alpha = \delta + \omega^{\alpha_1} \cdot a_1 + \omega^{\alpha_2} \cdot a_2 + \cdots + \omega^{\alpha_s} \cdot a_s,$$

$$\sigma = \delta + \omega^{\sigma_1} \cdot b_1 + \omega^{\sigma_2} \cdot b_2 + \cdots + \omega^{\sigma_r} \cdot b_r,$$

where

- (i) $\alpha_1 > \alpha_2 > \cdots > \alpha_s \ge 0$;
- (ii) $\sigma_1 > \sigma_2 > \cdots > \sigma_r > 0$, and $b_1 > 0$;
- (iii) either $\sigma_1 > \alpha_1$, or else $\sigma_1 = \alpha_1$ and $b_1 > a_1$;
- (iv) δ is a polynomial in powers of ω greater than σ_1 .

From the definition of $\{\sigma\}(x)$, it is clear that

$$\{\sigma\}(x) \geq \delta + \omega^{\sigma_1} \cdot (b_1 - 1) + \{\omega^{\sigma_1}\}(x).$$

We must now consider two cases:

(a) Suppose that $\sigma_1 > \alpha_1$.

Suppose also, that $x > \text{num}_{n+1}(\alpha)$.

Now $\operatorname{num}_{n+1}(\alpha) \geq \mathfrak{p}_{\operatorname{num}_n(\alpha_1)}^{a_1} - 1$.

Hence $x > a_1$, and $x > \text{num}_n(\alpha_1)$ if $a_1 \neq 0$.

Thus, if σ_1 is a successor ordinal, we have

$$\begin{split} \{\sigma\}(x) & \geq \delta + \omega^{\sigma_1} \cdot (b_1 - 1) + \{\omega^{\sigma_1}\}(x) \\ & \geq \delta + \omega^{\sigma_1} \cdot (b_1 - 1) + \omega^{\sigma_1 - 1} \cdot x \\ & \geq \delta + \omega^{\sigma_1} \cdot (b_1 - 1) + \omega^{\alpha_1} \cdot x \text{ since } \sigma_1 - 1 \geq \alpha_1 \\ & \geq \delta + \omega^{\alpha_1} \cdot (b_1 - 1) + \omega^{\alpha_1} \cdot a_1 + \omega^{\alpha_1} \text{ since } x > a_1 \\ & \geq \alpha. \end{split}$$

If σ_1 is a limit ordinal, and $a_1 = a_2 = \cdots = a_s = 0$, so that $\alpha = \delta$, we have

$$\{\sigma\}(x) > \{\sigma\}(0) \ge \delta = \alpha$$
, since $x > 0$.

If σ_1 is a limit ordinal, and $\alpha > \delta$, then we can assume, without loss of generality, that $a_1 > 0$, and hence $x > \text{num}_n(\alpha_1)$.

Therefore, by the induction hypothesis, we have $\{\sigma_1\}(x) > \alpha_1$, since $\sigma_1 > \alpha_1$; and so

$$\begin{split} \{\sigma\}(x) & \geq \delta + \omega^{\sigma_1} \cdot (b_1 - 1) + \{\omega^{\sigma_1}\}(x) \\ & = \delta + \omega^{\sigma_1} \cdot (b_1 - 1) + \omega^{\{\sigma_1\}(x)} \\ & > \alpha \;. \end{split}$$

This completes case (a).

(b) Suppose that $\sigma_1 = \alpha_1$ and $b_1 > a_1$.

Then we have

$$\begin{aligned} \{\sigma\}(x) & \ge \delta + \omega^{\sigma_1} \cdot (b_1 - 1) + \{\omega^{\sigma_1}\}(x) \\ & \ge \delta + \omega^{\sigma_1} \cdot a_1 + \{\omega^{\sigma_1}\}(x) \text{ since } b_1 > a_1 \\ & = \delta + \omega^{\alpha_1} \cdot a_1 + \{\omega^{\alpha_1}\}(x) \text{ since } \sigma_1 = \alpha_1 . \end{aligned}$$

Suppose also, that $x > \text{num}_{n+1}(\alpha)$.

Now num_{n+1}(α) $\geq (\mathfrak{p}_{\text{num}_n(\alpha_n)}^{a_n}) - 1$.

Hence $x > a_2$ and $x > \text{num}_n(\alpha_2)$ if $\alpha_2 \neq 0$.

If α_1 is a successor ordinal, we have

$$\begin{split} \{\sigma\}(x) & \geqq \delta + \omega^{\alpha_1} \cdot a_1 + \{\omega^{\alpha_1}\}(x) \\ & \geqq \delta + \omega^{\alpha_1} \cdot a_1 + \omega^{\alpha_1 - 1} \cdot x \\ & \geqq \delta + \omega^{\alpha_1} \cdot a_1 + \omega^{\alpha_2} \cdot a_2 + \omega^{\alpha_2} \text{ since } \alpha_1 > \alpha_2, x > a_2 \\ & > \alpha. \end{split}$$

If α_1 is a limit ordinal and $\alpha_2 = \alpha_3 = \cdots = \alpha_s = 0$, then since x > 0, we have

$$\{\sigma\}(x) \ge \delta + \omega^{\alpha_1} \cdot \alpha_1 + \{\omega^{\alpha_1}\}(x) > \delta + \omega^{\alpha_1} \cdot \alpha_1 = \alpha$$
.

If α_1 is a limit ordinal and $\alpha > \delta + \omega^{\alpha_1} \cdot \alpha_1$, we may assume, without loss of generality, that $\alpha_2 \neq 0$, so that $x > \text{num}_n(\alpha_2)$.

Then, by the induction hypothesis, $\{\alpha_1\}(x) > \alpha_2$, since $\omega(n) > \alpha_1 > \alpha_2$; and so

$$\begin{aligned} \{\sigma\}(x) &\geq \delta + \omega^{\alpha_1} \cdot a_1 + \{\omega^{\alpha_1}\}(x) \\ &= \delta + \omega^{\alpha_1} \cdot a_1 + \omega^{\{\alpha_1\}(x)} \\ &> \alpha \end{aligned}$$

This completes case (b).

(a) and (b) together show that if σ is a limit ordinal, $\alpha < \sigma < \omega(n+1)$, and $\text{num}_{n+1}(\alpha) < x$, then $\alpha < \{\sigma\}(x)$.

This completes the induction step, and so Lemma 3.1 is proved.

Lemma 3.2

For each n > 0 and every $\beta < \omega(n)$, if $\alpha < \beta$ and $num_n(\alpha) < x$, then for every k,

$$F^0_{\omega(n)\cdot k + \alpha}(x) < F^0_{\omega(n)\cdot k + \beta}(x)$$
.

Proof

Suppose n > 0 is fixed.

We proceed by transfinite induction over the ordinals below $\omega(n)$.

The result is trivial when $\beta = 0$.

Suppose the result holds for all ordinals $< \beta$, where $\beta > 0$.

Let α be any ordinal $< \beta$, and suppose that $\text{num}_n(\alpha) < x$.

Then if β is a successor ordinal, we have

$$F^0_{\omega(n)+k+\beta}(x) > F^0_{\omega(n)+k+\beta-1}(x)$$
 since $x > 0$
 $\geq F^0_{\omega(n)+k+\alpha}(x)$ by induction hypothesis.

If β is a limit ordinal, $\alpha < \{\beta\}(x)$ by Lemma 3.1, and so

$$F^{0}_{\omega(n) \cdot k + \beta}(x) = F^{0}_{\omega(n) \cdot k + \{\beta\}(x)}(x)$$

> $F^{0}_{\omega(n) \cdot k + \beta}(x)$ by induction hypothesis.

Hence the result holds for β .

This completes the induction step, and so Lemma 3.2 is proved.

Now, for any $\alpha > 0$, $F_{\alpha}^{p}(x)$ is just the (p+1)th. iterate of F_{α}^{0} , applied to x.

Thus it is a simple matter to extend Lemma 3.2 in order to obtain.

Lemma 3.3

For each n > 0 and every $\beta < \omega(n)$, if $\alpha < \beta$ and $\operatorname{num}_n(\alpha) < x$, then for every k and every p, $F^p_{\omega(n)+k+\alpha}(x) < F^p_{\omega(n)+k+\beta}(x) .$

Lemma 3.4

If $g \in \mathfrak{E}_{\omega(n) \cdot k}$ and f is defined from g by $<_n$ -annihilation (as in Definition 1.5), then there is a function $h \in \mathfrak{E}_{\omega(n) \cdot k}$ such that for all x, \underline{a} ,

$$f(x,\underline{a}) < F^0_{\omega(n) \cdot k + \operatorname{ord}_n(x)}(h(x,\underline{a}))$$
.

Proof

If $g \in \mathfrak{E}_{\omega(n) \cdot k}$, then it is clear that the function $\max(g(x,\underline{a}), 2 \cdot g(g(x,\underline{a}),\underline{a}),\underline{a})$ also belongs to $\mathfrak{E}_{\omega(n) \cdot k}$.

Hence, by Theorem 1.2, there is a number $p \ge 2$ such that for all x, \underline{a} , $\max(g(x,\underline{a}), 2 \cdot g(g(x,\underline{a}),\underline{a}),\underline{a}) < F_{\omega(n) \cdot k}^p(\max(x,\underline{a}))$.

Define $h(x, \underline{a}) = \max(x, 2 \cdot g(x, \underline{a}), \underline{a}) + p$.

Then $h \in \mathfrak{E}_{\omega(n) \cdot k}$ and for all x, \underline{a} we have

- (i) $h(x,\underline{a}) > x$.
- (ii) $h(x,\underline{a}) > 2 \cdot g(x,\underline{a}) + 1$.

Now f is defined by $<_n$ -annihilation from g, so that

$$\begin{cases} f(0,\underline{a}) = 0 \\ f(x+1,\underline{a}) = 1 + f(g(x+1,\underline{a}),\underline{a}) \end{cases}$$

where $g(0, \underline{a}) = 0$ and $g(x + 1, \underline{a}) <_n x + 1$ for every x.

We proceed by induction over the well-ordering $<_n$.

First, it is clear that

$$f(0,\underline{a}) < F_{\omega(n)+k+\operatorname{ord}_{\sigma}(0)}^{0}(h(0,\underline{a}))$$
.

Assume, now, that

$$f(g(x+1,\underline{a}),\underline{a}) < F^0_{\omega(n) \cdot k + \operatorname{ord}_{\alpha}(g(x+1,\underline{a}))} (h(g(x+1,\underline{a}),\underline{a})).$$

Then
$$f(x+1,\underline{a}) \leq F^0_{\omega(n)\cdot k + \operatorname{ord}_n(g(x+1,\underline{a}))}(h(g(x+1,\underline{a}),\underline{a})).$$

But
$$h(g(x+1,\underline{a}),\underline{a}) = \max(g(x+1,\underline{a}), 2 \cdot g(g(x+1,\underline{a}),\underline{a}),\underline{a}) + p$$

 $< F^{p}_{\omega(n) \cdot k}(\max(x+1,\underline{a})) + p$
 $\leq F^{p}_{\omega(n) \cdot k}(\max(x+1,\underline{a}) + p)$
 $\leq F^{p}_{\omega(n) \cdot k}(h(x+1,\underline{a}))$.

Also, $\operatorname{ord}_n(0) = 0 < h(x+1,\underline{a})$, and so by Lemma 3.3,

$$F^{\mathfrak{p}}_{\omega(n)+k}(h(x+1,\underline{a})) \leq F^{\mathfrak{p}}_{\omega(n)+k+\operatorname{ord}_{\mathfrak{p}}(a(x+1,a))}(h(x+1,\underline{a})).$$

Therefore.

$$h(g(x+1,\underline{a}),\underline{a}) < F_{\omega(n)+k+\operatorname{ord}_{\alpha}(g(x+1,a))}^{p}(h(x+1,\underline{a})).$$

Thus we have the following:

$$\begin{split} f(x+1,\underline{a}) & \leq F^0_{\omega(n)+k+\operatorname{ord}_n(g(x+1,\underline{a}))} \big(h(g(x+1,\underline{a}),\underline{a}) \big) \\ & < F^0_{\omega(n)+k+\operatorname{ord}_n(g(x+1,\underline{a}))} F^p_{\omega(n)+k+\operatorname{ord}_n(g(x+1,\underline{a}))} \big(h(x+1,\underline{a}) \big) \\ & = F^{p+1}_{\omega(n)+k+\operatorname{ord}_n(g(x+1,\underline{a}))} \big(h(x+1,\underline{a}) \big) \\ & \leq F^{h(x+1,\underline{a})}_{\omega(n)+k+\operatorname{ord}_n(g(x+1,\underline{a}))} \big(h(x+1,\underline{a}) \big) \operatorname{since} h(x+1,\underline{a}) > p \\ & = F^0_{\omega(n)+k+\operatorname{ord}_n(g(x+1,\underline{a}))+1} \big(h(x+1,\underline{a}) \big) \,. \end{split}$$

Now $g(x+1,\underline{a}) <_n x+1$, and so $\operatorname{ord}_n(g(x+1,\underline{a})) + 1 \leq \operatorname{ord}_n(x+1)$.

Also, it follows, from the way in which the ordinals below $\omega(n)$ are arithmetized, that $\operatorname{num}_n(\operatorname{ord}_n(g(x+1,\underline{a}))+1) \leq 2 \cdot (g(x+1,\underline{a})+1)-1,$

(with equality holding whenever n > 1).

Hence $\operatorname{num}_n(\operatorname{ord}_n(g(x+1,\underline{a}))+1) < h(x+1,\underline{a})$.

Therefore, by Lemma 3.2, we have

$$F^{\mathbf{0}}_{\omega(n)\cdot k+\operatorname{ord}_{\mathbf{n}}(g(x+1,\underline{a}))+1}(h(x+1,\underline{a})) \leq F^{\mathbf{0}}_{\omega(n)\cdot k+\operatorname{ord}_{\mathbf{n}}(x+1)}(h(x+1,\underline{a})).$$

Hence, $f(x+1,\underline{a}) < F_{\omega(n) \cdot k + \operatorname{ord}_n(x+1)}^0(h(x+1,\underline{a}))$.

This completes the induction step.

It follows that for all x, a,

$$f(x,\underline{a}) < F^0_{\omega(n) \cdot k + \operatorname{ord}_n(x)}(h(x,\underline{a}))$$
.

Lemma 3.5

For each n > 0, and every x,

$$\operatorname{ord}_n(x) \leq \{\omega(n)\}(x)$$
.

Proof

By induction on n.

First of all we have, for every x,

$$\operatorname{ord}_{1}(x) = x \leq 2x = \{\omega\}(x) = \{\omega(1)\}(x).$$

Now suppose that $n \ge 1$, and that for every x,

$$\operatorname{ord}_n(x) \leq \{\omega(n)\}(x)$$
.

Clearly, $\operatorname{ord}_{n+1}(0) = 0 \le \{\omega(n+1)\}(0)$.

Suppose, then, that x > 0, and that

$$x = (\mathfrak{p}_{x_1}^{a_1} \cdot \mathfrak{p}_{x_2}^{a_2} \cdot \cdots \cdot \mathfrak{p}_{x_r}^{a_r}) - 1$$

where $x_r <_n \cdots <_n x_2 <_n x_1$, and $a_1 > 0$.

Then $x > x_1$, so that $\{\omega(n)\}(x) > \{\omega(n)\}(x_1)$.

But, by the induction hypothesis, $\{\omega(n)\}(x_1) \ge \operatorname{ord}_n(x_1)$.

Hence $\{\omega(n)\}(x) > \operatorname{ord}_n(x_1)$, and we have

$$\operatorname{ord}_{n+1}(x) = \omega^{\operatorname{ord}_n(x_1)} \cdot a_1 + \omega^{\operatorname{ord}_n(x_2)} \cdot a_2 + \cdots + \omega^{\operatorname{ord}_n(x_r)} \cdot a_r,$$

where $\operatorname{ord}_n(x_1) > \operatorname{ord}_n(x_2) > \cdots > \operatorname{ord}_n(x_r)$.

Thus, $\operatorname{ord}_{n+1}(x) < \omega^{\{\omega(n)\}(x)}$

$$= \{\omega^{\omega(n)}\}(x)$$

$$= \{\omega(n+1)\}(x).$$

This completes the induction step, and so Lemma 3.5 is proved.

Lemma 3.6

If $g \in \mathfrak{E}_{\omega(n) \cdot k}$ and f is defined by $<_n$ -annihilation from g, then there is a function $h \in \mathfrak{E}_{\omega(n) \cdot k}$ such that for all x, \underline{a} ,

$$f(x,\underline{a}) < F^0_{\omega(n)\cdot(k+1)}(h(x,\underline{a})).$$

10 Mathematische Logik (13, 3/4)

Proof

Given $g \in \mathfrak{C}_{\omega(n)+k}$, let h be the function defined in Lemma 3.4.

Then for all x, \underline{a} , we have

$$f(x,\underline{a}) < F^{\mathbf{0}}_{\omega(n) \cdot k + \operatorname{ord}_{n}(x)} (h(x,\underline{a})).$$

Now, by Lemma 3.5, $\operatorname{ord}_n(x) \leq \{\omega(n)\}(x)$.

But $\operatorname{num}_n(\operatorname{ord}_n(x)) = x < h(x, \underline{a}).$

Hence, by Lemma 3.2,

 $F^0_{\omega(n)\cdot k+\operatorname{ord}_n(x)}(h(x,\underline{a})) \leq F^0_{\omega(n)\cdot k+\{\omega(n)\}(x)}(h(x,\underline{a})) = F^0_{\{\omega(n)\cdot (k+1)\}(x)}(h(x,\underline{a})).$

Also, for every y, and each i < y,

 $F^0_{\{\omega(n)\cdot(k+1)\}(i)}(y) < F^0_{\{\omega(n)\cdot(k+1)\}(y)}(y) = F^0_{\omega(n)\cdot(k+1)}(y) .$

Thus we have the following; for all x, \underline{a} ,

$$f(x,\underline{a}) < F^0_{\{\omega(n)\cdot(k+1)\}(x)}(h(x,\underline{a}))$$

$$< F^0_{\omega(n)\cdot(k+1)}(h(x,\underline{a})).$$

This completes the proof.

Theorem 3.7

For each n > 0, $A(<_n) \subseteq \bigcup_{k \in N} \mathfrak{E}_{\omega(n) \cdot k}$.

Proof

Clearly, all the primitive recursive functions belong to $\mathfrak{E}_{\omega(n)}$, and, by definition, each class $\mathfrak{E}_{\omega(n)+k}$ is closed under substitution.

If a function f is defined by primitive recursion from functions belonging to $\mathfrak{E}_{\omega(n)\cdot k}$, then it can easily be shown that $f \in \mathfrak{E}_{\omega(n)\cdot k+\omega}$, and hence $f \in \mathfrak{E}_{\omega(n)\cdot (k+1)}$. Finally suppose f is defined from $g \in \mathfrak{E}_{\omega(n)\cdot k}$ by $<_n$ -annihilation.

Then, by Lemma 3.6, there is a function $h \in \mathfrak{E}_{\omega(n) \cdot k}$ such that for all x, \underline{a} ,

$$f(x,\underline{a}) < F^0_{\omega(n)\cdot(k+1)}(h(x,\underline{a}))$$
.

Define a function g' as follows:

$$\begin{cases} g'(0, x, \underline{a}) = x \\ g'(z+1, x, \underline{a}) = g(g'(z, x, \underline{a}), \underline{a}) \end{cases}.$$

Then g' is primitive recursive in g, and so $g' \in \mathfrak{E}_{\omega(n) \cdot (k+1)}$.

Now it can easily be proved that for all x, \underline{a} ,

$$f(x,\underline{a}) = \mu_z(g'(z,x,\underline{a}) = 0)$$
.

Hence f can be defined as follows:

$$f(x,\underline{a}) = \mu_{z < F_{\omega(n)^*(k+1)}^0(h(x,\underline{a}))}[g'(z,x,\underline{a}) = 0].$$

Thus, f is "elementary" in the functions $F^0_{\omega(n)\cdot(k+1)}$, h, and g', all three of which belong to $\mathfrak{E}_{\omega(n)\cdot(k+1)}$.

But, for every $\alpha \geq 2$, \mathfrak{E}_{α} is closed under the "elementary" operations.

Hence $f \in \mathfrak{E}_{\omega(n) \cdot (k+1)}$.

It follows that $A(<_n) \subseteq \bigcup_{k \in N} \mathfrak{E}_{\omega(n) \cdot k}$.

Now OR = $\bigcup_{n \in N} A(<_n)$ and so we have

Corollary

$$OR \subseteq \bigcup_{\alpha < \varepsilon_0} \mathfrak{E}_{\alpha}$$
.

Hence, from the Corollary to Theorem 2.1, we get

Theorem 3.8

$$\mathrm{OR} = igcup_{lpha < arepsilon_0} \mathfrak{E}_lpha$$
 .

Now let Prov R be the class of all functions which are provably recursive in (classical) first-order arithmetic.

Then it follows from the work of Kreisel in [5] that OR = Prov R. (For related results, see Kino [4]).

Let $PR^{(0,0)}$ be the class of all primitive recursive functionals of type (0,0), defined by Gödel in [2].

Gödel has proved that $OR \subseteq PR^{(0,0)}$, and the converse, that $PR^{(0,0)} \subseteq OR$, has been established by Kreisel (see [6]) and, more directly, by Tait [11].

Also, let NR be the smallest class of functions which contains the primitive recursive functions, and which is closed under the operations of substitution, primitive recursion, and nested recursion over $<_n$, for any n.

Then OR = NR, since for any n > 0, nested recursion over $<_n$ is reducible to unnested ordinal recursion over $<_{n+1}$ (Tait [10]).

Hence we have

Theorem 3.9

$$\mathop{\text{U}}_{\alpha<\epsilon_0} \mathfrak{E}_\alpha = \mathrm{OR} = \mathrm{Prov} \; \mathrm{R} = \mathrm{PR}^{(0,\,0)} = \mathrm{NR} \; .$$

Finally, suppose we define a function $F^0_{\epsilon_0}$ by

$$F^0_{\epsilon_0}(x) = F^0_{\omega(x)}(x)$$
.

Then it can be shown that every function belonging to $\bigcup_{\alpha<\epsilon_0} \mathfrak{E}_{\alpha}$ is eventually majorized by $F_{\epsilon_0}^0$, and hence, $F_{\epsilon_0}^0 \notin \bigcup_{\alpha<\epsilon_0} \mathfrak{E}_{\alpha}$.

4. A Simplified Definition of \mathfrak{E}_{α}

In this section, Robbin's Honesty Lemma [9] is adapted in order to show that whenever $\alpha < \beta < \varepsilon_0$, F_{α}^0 is "elementary" in F_{β}^0 .

It follows from this result that if $2 \le \alpha < \varepsilon_0$, then \mathfrak{E}_{α} is the class of all functions which are "elementary" in F_{α}^0 .

An alternative characterization of $\mathfrak{E}_{\alpha}(2 \leq \alpha < \varepsilon_0)$, in terms of computational complexity, is also obtained.

The first step is to show that, for each $\alpha < \varepsilon_0$, there is a number k such that $F_{\alpha}^n(x)$ can be computed by a Turing machine in such a way that the number of tape-squares used in the computation is less than $F_{\alpha}^n(x+k)$.

For the basic results concerning Turing machines, see Davis [1].

Now let n > 0 be fixed.

148 S. S. Wainer

Each ordinal $\alpha < \omega(n)$ will be represented, on the tape of a Turing machine, by a word α which is built up from the tape-symbols

$$/, [1, 1], [2, 2], \ldots, [n-1, n-1],$$

in the following way:

- (i) If $r \in N$ then r is the word consisting of r + 1 /'s. Hence 0 = /, 1 = //, 2 = ///, ..., m + 1 = m /, etc.
- (ii) If $\omega(i) \leq \beta < \omega(i+1) < \omega(n)$, and β has already been defined, denote by $\exp(\beta)$ the word

$$[i+1 \ \beta \ i+1].$$

Suppose that $\alpha = \omega^{\alpha_1} \cdot a_1 + \omega^{\alpha_2} \cdot a_2 + \cdots + \omega^{\alpha_r} \cdot a_r + a_{r+1}$, where $0 < \alpha_r < \cdots < \alpha_2 < \alpha_1 < \omega (n-1)$, and where $\alpha_r, \ldots, \alpha_2, \alpha_1$ have already been defined.

Then

$$\alpha = \underbrace{\exp(\alpha_1) \dots \exp(\alpha_1)}_{a_1 \text{ times}} \underbrace{\exp(\alpha_2) \dots \exp(\alpha_2)}_{a_2 \text{ times}} \dots \underbrace{\exp(\alpha_r) \dots \exp(\alpha_r)}_{a_r \text{ times}} a_{r+1}.$$

Thus, for example, the ordinal $\omega^{\omega \cdot 2} + \omega \cdot 3 + 1$ would be represented on tape by the word

The triple α , m, x, where $\alpha < \omega(n)$, will be represented on the tape of a Turing machine by the word $\alpha * m * x$.

We now construct a Turing machine Z which, when presented with a word $\alpha * m * x (\alpha < \omega(n))$, computes $F_{\alpha}^{m}(x)$.

Z has a tape which is infinite to the right.

The tape-symbols of Z include

$$/, [1, 1], [2, 2], \ldots, [n-1, n-1], *.$$

(Additional tape-symbols will also be required. These are to be used as markers in the course of a computation.)

In order to compute $F_{\alpha}^{m}(x)$, the word $\alpha * m * x$ is written at the left-hand end of the tape, and the reading-head of Z is positioned at the right-hand end of this word.

Z then reacts according to the following scheme, where $W_1 \stackrel{z}{\longrightarrow} W_2$ means that Z converts word W_1 into word W_2 , and positions its reading-head at the right-hand end of word W_2 , in readiness for the next operation.

$$0*m*x \xrightarrow{z} (m+1) \cdot (x+1)$$

$$\alpha+1*0*x \xrightarrow{z} \alpha*x*x$$

$$\sigma*0*x \xrightarrow{z} \{\sigma\}(x)*0*x, \sigma \text{ a limit.}$$

$$\beta*m+1*x \xrightarrow{z} \beta*0*\beta*m*x, \beta>0.$$

The computation stops when there are no more occurrences of * left on the tape. Now let $\overline{Z}(\alpha, m, x)$ be the number of tape-squares used in the computation of $F_{\alpha}^{m}(x)$ by Z. Also, for any $\alpha < \omega(n)$, let $L(\alpha)$ be the length of the word α .

Then Z can be "programmed" in such a way that the following inequalities hold:

$$\begin{split} \overline{Z}(0,m,x) & \leq (m+1) \cdot (x+6) + 1 \; ; \\ \overline{Z}(\alpha+1,0,x) & \leq \max \left[L(\alpha+1) + (x+1) + 5, 2 + \overline{Z}(\alpha,x,x) \right] ; \\ \overline{Z}(\sigma,0,x) & \leq \max \left[L(\sigma) + (x+1) + 5, 2 + \overline{Z}(\{\sigma\}(x),0,x) \right], \text{ if } \sigma \text{ is a limit ordinal :} \end{split}$$

$$\overline{Z}(eta,\,m+1,x) \leq \max \left[L(eta) + \overline{Z}(eta,\,m,x) + 5, \overline{Z}(eta,\,0,F^m_eta(x))
ight], ext{ if } eta>0$$
 .

Now it can easily be proved, by induction, that for every limit ordinal $\sigma < \omega$ (n), and all x,

$$L(\lbrace \sigma \rbrace(x)) < L(\sigma) + x \cdot L(\sigma)^2$$
.

Also, by methods similar to those used in the proof of Theorem 4.5 of [7], it is possible to obtain the following result, concerning the functions F_{σ}^{0} where σ is a limit ordinal $< \varepsilon_{0}$.

Lemma 4.1

For each limit ordinal $\sigma < \varepsilon_0$, all x, and all $y \ge 2$,

$$F^0_{\{\sigma\}(x)+1}(x+y) \le F^0_{\sigma}(x+y)$$
 .

From these results, we obtain

Theorem 4.2

For each $\alpha < \omega(n)$, all m, and all x,

$$\overline{Z}(\alpha, m, x) \leq F_{\alpha}^{m}(x + L(\alpha) + 5)$$
.

Proof

We proceed by induction over the ordinals $< \omega(n)$.

First, it is clear that

$$\overline{Z}(0, m, x) \leq (m+1) \cdot (x+6) + 1 \leq F_0^m(x+L(0)+5)$$
.

Now suppose that $\alpha > 0$, and that for every $\delta < \alpha$,

$$\overline{Z}(\delta, m, x) \leq F_{\delta}^{m}(x + L(\delta) + 5)$$
.

We consider three cases:

(i) If α is a successor ordinal, then

$$\overline{Z}(\alpha,0,x) \leq \max \left[L(\alpha) + (x+1) + 5, 2 + \overline{Z}(\alpha-1,x,x)\right].$$

But $L(\alpha) + (x+1) + 5 \le F_{\alpha}^{0}(x + L(\alpha) + 5)$, and by the induction hypothesis, we have

$$\begin{aligned} 2 + \overline{Z}(\alpha - 1, x, x) &\leq 2 + F_{\alpha - 1}^{x}(x + L(\alpha - 1) + 5) \\ &\leq 2 + F_{\alpha - 1}^{x + L(\alpha) + 3}(x + L(\alpha) + 5) \\ &\leq F_{\alpha - 1}^{x + L(\alpha) + 5}(x + L(\alpha) + 5) \\ &= F_{\alpha}^{0}(x + L(\alpha) + 5) .\end{aligned}$$

Hence $\overline{Z}(\alpha, 0, x) \leq F_{\alpha}^{0}(x + L(\alpha) + 5)$.

(ii) $\underline{\underline{\mathbf{If}}} \alpha$ is a limit ordinal, then

$$\overline{Z}(\alpha,0,x) \leq \max \left[L(\alpha) + (x+1) + 5, 2 + \overline{Z}(\{\alpha\}(x),0,x)\right].$$

Clearly, $L(\alpha) + (x + 1) + 5 \le F_{\alpha}^{0}(x + L(\alpha) + 5)$.

If $\{\alpha\}(x) = 0$, then x = 0, and we have

$$2 + \overline{Z}(0, 0, 0) \le 9 \le F_{\alpha}^{0}(L(\alpha) + 5)$$
, since $L(\alpha) \ge 3$.

Now suppose that $\{\alpha\}$ (x) > 0.

Then by the induction hypothesis, we have

$$2 + \overline{Z}(\{\alpha\}(x), 0, x) \le 2 + F_{\{\alpha\}(x)}^0(x + L(\{\alpha\}(x)) + 5).$$

But $L(\{\alpha\}(x)) < L(\alpha) + x \cdot L(\alpha)^2$, and so

$$\begin{split} 2 + \overline{Z}(\{\alpha\}(x), 0, x) & \leq 2 + F^0_{\{\alpha\}(x)}(x + L(\alpha) + x \cdot L(\alpha)^2 + 5) \\ & \leq F^0_{\{\alpha\}(x)}(x + L(\alpha) + x \cdot L(\alpha)^2 + 7) \\ & \leq F^0_{\{\alpha\}(x)} \left(\left((x + L(\alpha) + 5 + 1)^2 + 1 \right)^2 \right) \\ & = F^0_{\{\alpha\}(x)} F^0_1 F^0_1 \left(x + L(\alpha) + 5 \right) \\ & \leq F^0_{\{\alpha\}(x)} F^0_{\{\alpha\}(x)} F^0_{\{\alpha\}(x)} (x + L(\alpha) + 5) \\ & = F^2_{\{\alpha\}(x)} \left(x + L(\alpha) + 5 \right) . \\ & < F^0_{\{\alpha\}(x) + 1} (x + L(\alpha) + 5) \\ & \leq F^0_{\alpha}(x + L(\alpha) + 5) \text{ by Lemma 4.1 .} \end{split}$$

Hence $\overline{Z}(\alpha, 0, x) \leq F_{\alpha}^{0}(x + L(\alpha) + 5)$ if α is a limit ordinal.

(iii) Finally suppose α is any ordinal > 0.

Then we have

$$\overline{Z}(\alpha, m+1, x) \leq \max[L(\alpha) + \overline{Z}(\alpha, m, x) + 5, \overline{Z}(\alpha, 0, F_{\alpha}^{m}(x))]$$

Now, by (i) and (ii) we have

$$egin{aligned} \overline{Z}(lpha,0,F^m_lpha(x)) & \leq F^0_lpha(F^m_lpha(x)+L(lpha)+5) \ & \leq F^0_lpha F^m_lpha(x+L(lpha)+5) \ & = F^{m+1}(x+L(lpha)+5) \ . \end{aligned}$$

Also, if we assume (inductively) that

$$\overline{Z}(\alpha, m, x) \leq F_{\alpha}^{m}(x + L(\alpha) + 5)$$
,

then we have the following:

$$egin{aligned} L(lpha) + \overline{Z}(lpha,\,m,\,x) + 5 & \leq L(lpha) + F^m_lpha(x + L(lpha) + 5) + 5 \ & \leq 2 \cdot F^m_lpha(x + L(lpha) + 5) \ & \leq F^0_lpha F^m_lpha(x + L(lpha) + 5) ext{ since } lpha > 0 \ . \ & = F^{m+1}_lpha(x + L(lpha) + 5) \ . \end{aligned}$$

Hence, $\overline{Z}(\alpha, m+1, x) \leq F_{\alpha}^{m+1}(x + L(\alpha) + 5)$.

This completes the induction step, and so for every $\alpha < \omega(n)$, and all m, x,

$$\overline{Z}(\alpha, m, x) \leq F_{\alpha}^{m}(x + L(\alpha) + 5)$$
.

Now it is well-known that the functions used in the arithmetization of Turing machine computations are elementary.

Thus it can be shown that if f is computable by a Turing machine in such a way that, for every \underline{x} , the number of tape-squares used in the computation of $f(\underline{x})$ is less than $g(\underline{x})$, then f is elementary in g.

From this result we obtain the following:

Theorem 4.3

If $\alpha < \beta < \varepsilon_0$, then F^0_{α} is elementary in F^0_{β} .

Proof

First we construct a Turing machine Z_{α} , which computes F_{α}^{0} .

Suppose that $\alpha < \omega(n)$, where n > 0.

 Z_{α} has an infinite tape (to the right), and the same tape-symbols as Z.

Given any "input" x, Z_{α} writes the word $\alpha * 0 * x$ at the left-hand end of its tape, and positions its reading-head at the right-hand end of this word. It then computes in exactly the same way as the machine Z.

It is clear that Z_{α} computes F_{α}^{0} .

Now let $\overline{Z}_{\alpha}(x)$ be the number of tape-squares used in the computation of $F_{\alpha}^{0}(x)$ by Z_{α} . Then $\overline{Z}_{\alpha}(x) = \overline{Z}(\alpha, 0, x)$ for x, and so, by Theorem 4.2 $\overline{Z}_{\alpha}(x) \leq F_{\alpha}^{0}(x + L(\alpha) + 5)$ for all x.

But if $\alpha < \beta$, F_{α}^{0} is eventually majorized by F_{β}^{0} , and so there is a number p such that, for every x,

$$\overline{Z}_{\alpha}(x) \leq F_{\alpha}^{0}(x+L(\alpha)+5) < F_{\beta}^{0}(x+L(\alpha)+5+p)$$
.

Hence F^0_{α} is elementary in F^0_{β} .

Corollary

For each α such that $2 \leq \alpha < \varepsilon_0$, \mathfrak{E}_{α} is the class of all functions which are elementary in F_{α}^0 .

152 S. S. Wainer

Proof

From Theorem 4.3, it follows that every function in \mathfrak{E}_{α} is elementary in F_{α}^{0} . Now it can easily be proved that the function $\lambda xy \cdot x^{y}$ belongs to \mathfrak{E}_{α} , for every $\alpha \geq 2$.

Therefore, since \mathfrak{E}_{α} contains

 $\{\lambda x. 0, \lambda x y. x + y, \lambda \underline{x}. x_i, \lambda x y. x^y, \lambda x. F_{\alpha}^0(x)\}$ and is closed under substitution and limited recursion, it is clear that \mathfrak{E}_{α} contains all the functions which are elementary in F_{α}^0 .

This completes the proof.

The number of tape-squares used in the course of a Turing machine computation can be regarded as a measure of the complexity of the computation.

Theorem 4.2 leads us to a characterization of \mathfrak{E}_{α} in terms of computational complexity, as follows:

For each $\alpha < \varepsilon_0$, call a function f α -complex if there is a number p such that f is computable by a Turing machine Z_f in such a way that for every \underline{x} , the number of tape-squares used in the computation of $f(\underline{x})$ by Z_f is less than $F_{\alpha}^p(\max(x))$.

For each $\alpha < \varepsilon_0$, let \mathfrak{C}_{α} be the class of all α -complex functions.

Clearly, if $\alpha \leq \beta < \varepsilon_0$, then $\mathfrak{C}_{\alpha} \subseteq \mathfrak{C}_{\beta}$.

Theorem 4.4

For each α such that $2 \leq \alpha < \varepsilon_0$, $\mathfrak{C}_{\alpha} = \mathfrak{E}_{\alpha}$.

Proof

Suppose f is α -complex, where $2 \leq \alpha < \varepsilon_0$.

Then, by the remarks preceding Theorem 4.3, f is elementary in F_{α}^{p} , for some fixed p.

But F_{α}^{p} is defined by substitution from F_{α}^{0} , and so f is elementary in F_{α}^{0} .

Hence, by the Corollary to Theorem 4.3, $f \in \mathfrak{E}_{\alpha}$.

Conversely, suppose that $f \in \mathfrak{E}_{\alpha}$ ($2 \leq \alpha < \varepsilon_0$), so that f is elementary in F_{α}^0 .

Let Z_{α} be the Turing machine, constructed in the proof of Theorem 4.3, which computes F_{α}^{0} , and let $\overline{Z}_{\alpha}(x)$ be the number of tape-squares used in the computation of $F_{\alpha}^{0}(x)$ by Z_{α} .

Then there is a number k such that, for all x, $\overline{Z}_{\alpha}(x) < F_{\alpha}^{0}(x+k)$.

Now, since f is elementary in F_{α}^{0} , it can be shown that there is a Turing machine Z_{f} , and a function g which is elementary in F_{α}^{0} , such that for all \underline{x} , the number of tape-squares used in the computation of $f(\underline{x})$ by Z_{f} is less than $g(\underline{x})$.

Since g is elementary in F_{α}^{0} , $g \in \mathfrak{E}_{\alpha}$, and so, by Theorem 1.2, there is a number p such for all \underline{x} , $g(\underline{x}) < F_{\alpha}^{p}(\max(\underline{x}))$.

Hence f is α -complex.

This completes the proof.

Corollary

$$\mathrm{OR} = \bigcup_{\alpha < e_0} \mathfrak{C}_{\alpha}$$
.

REFERENCES

- [1] Davis, M., Computability and Unsolvability, McGraw-Hill (1958).
- [2] Gödel, K., Über eine bisher noch nicht benützte Erweiterung des Finiten Standpunktes, Dialectica 12 (1958), pp. 280—287.
- [3] Grzegorczyk, A., Some Classes of Recursive Functions, Rozprawy Matematyczne No. 4, Warsaw (1953).
- [4] Kino, A., On Provably Recursive Functions and Ordinal Recursive Functions, J. Math. Soc. Japan, Vol. 20, No. 3, (1968), pp. 456-476.
- [5] Kreisel, G., On the Interpretation of Non-Finitist Proofs, J. Symbolic Logic 17 (1952), pp. 43-58.
- [6] Kreisel, G., Inessential Extensions of Heyting's Arithmetic by means of Functionals of Finite Types, abstract, J. Symbolic Logic, 24 (1959), p. 284.
- [7] Löb, M. H., and Wainer, S. S., Hierarchies of Number-Theoretic Functions, this vol.
- [8] Péter, R., Recursive Functions, Academic Press (1967).
- [8] Robbin, J. W., Ph. D. Dissertation, Princeton University (1965).
- [10] Tait, W. W., Nested Recursion, Math. Annalen, 143 (1961), pp. 236-250.
- [11] Tait, W. W., A Characterization of Ordinal Recursive Functions, abstract, J. Symbolic Logic, 24 (1959), p. 325.

The University, Leeds, England.