MASM22/FMSN30: Linear and Logistic Regression, 7.5 hp

FMSN40: ... with Data Gathering, 9 hp

Lecture 3, spring 2024

Multiple linear regression - collinearity and interaction - categorical x-variables

Mathematical Statistics / Centre for Mathematical Sciences Lund University

25/3-24

Multiple linreg

Model

Example - Elasticity

Categorical x-variables

Example: Cabbage

Interaction between x-variables

Interaction

Example: Elasticity

=xample: Cabbage

Collinearity between x-variables

Singular matrix

Correlations

\/||

Multiple linear regression model

See Lecture 1+2 for details.

- $Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \epsilon_i$ for $i = 1, \dots, n$ where $\epsilon_i \sim N(0, \sigma^2)$ are independent.
- $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ where $\boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$.

Estimates

- $\hat{\boldsymbol{\beta}} = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\mathbf{Y} \sim N_{n+1}(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^\mathsf{T}\mathbf{X})^{-1})$
- ► Fitted values: $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{X}(\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T})$
- Residuals: $\mathbf{e} = \mathbf{Y} \hat{\mathbf{Y}} = \text{observed} \text{predicted}$
- ► Residual variance: $\hat{\sigma}^2 = s^2 = \frac{\sum_{i=1}^n e_i^2}{n (n+1)} = \frac{\mathbf{e}^{\mathsf{T}} \mathbf{e}}{n (n+1)}$

- ▶ A given β_j expresses the effect of a change in covariate x_j on the expected value of Y, given all other covariates in the model;
- ▶ that is, β_j gives the change in E(Y) when x_j increases by 1 unit, when all other covariates are kept fixed.
- ▶ in other words, β_j can only represent the partial (marginal) effect of x_j on Y; the effect is *conditional* on what other variables we have in the model.
- ▶ The relevance of x_j (hence the relevance of β_j) can be different if we introduce other covariates in the model.

The latter two concepts will be emphasized when we talk about hypothesis tests later.

Example: Elasticity

Module of elasticity as a function of pressure and temperature: Temperature and pressure and resulting tension in 10 plastic parts;

Tension (Y)	Temperature (x_1)	Pressure (x_2)
$({\sf N}/{\sf mm}^2)$	(°C)	(kg/cm^2)
152	180	450
150	180	450
103	190	375
99	190	375
88	200	350
89	200	350
122	210	375
120	210	375
162	220	450
161	220	450

The quadratic relationship between x_1 and x_2 makes the (marginal) relationship between Y and x_1 look quadratic as well!

990

See lecture03_ex1_elasticity.html for a rotatable 3D-plot.

- plots of Y vs individual covariates only unveil partial relationships. We do not know what happens when other covariates vary together.
- we can discover pairwise relationships between covariates by plotting x_1 vs x_2
- \triangleright plotting x_1 vs x_2 does not say anything about the 3D joint relationship of (x_1, x_2, Y)
- ightharpoonup if the plot (x_1, Y) is nonlinear, you can perhaps transform x_1 and/or Y but again, this is only going to linearize a partial relationship...
- our model (next slide) is

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i \qquad (*)$$

and in this case even if some **partial** relationships (x_i, Y) are nonlinear, the entire surface (*) is suitable for the joint relationship.

Elasticity: estimates

Fitted plane: $\hat{Y} = -215.7 + 0.41x_1 + 0.65x_2$.

Effect of temperature change

Increase the temperature by Δ_1 °C from x_{01} to $x_{01}+\Delta_1$ while keeping the pressure fixed at x_{02} :

$$\begin{split} \hat{Y}_{\text{old}} &= \hat{\beta}_0 + \hat{\beta}_1 x_{01} + \hat{\beta}_2 x_{02} \\ \hat{Y}_{\text{new}} &= \hat{\beta}_0 + \hat{\beta}_1 (x_{01} + \Delta_1) + \hat{\beta}_2 x_{02} \\ \hat{Y}_{\text{new}} - \hat{Y}_{\text{old}} &= \hat{\beta}_1 \Delta_1 = 0.41 \Delta_1 \text{ (N/mm}^2) \text{ regardless of the pressure.} \end{split}$$

Fitted plane

- trace 1
- trace 2

Predictions

If temperature = $200 \,^{\circ}$ C and pressure = $400 \, \text{kg/cm}^2$, $\mathbf{x}_0 = \begin{bmatrix} 1 & 200 & 400 \end{bmatrix}$

what is the expected tension? $\hat{Y}_0 = \mathbf{x}_0 \hat{\boldsymbol{\beta}} = -215.7 + 0.41 \cdot 200 + 0.65 \cdot 400 = 124.6 \, (\text{N/mm}^2).$

▶ What tension values might we observe?

$$\hat{Y}_{\mathsf{pred}_0} = \mathbf{x}_0 \hat{\boldsymbol{\beta}} + \epsilon_0 = 124.6 + \epsilon_0 \quad (\mathsf{N}/\mathsf{mm}^2).$$

	estimate	s.e.	95 % interval	
on average	$\hat{Y}_0 = 124.6$	1.87	(120.2, 129.0)	conf.
single obs.	$\hat{Y}_{pred_0} = 124.6 + \epsilon_0$	6.19	(110.0, 139.2)	pred.
Note: 6.19 =	$\sqrt{5.90^2 + 1.87^2}$			

Intervals for the plane

Estimated plane (green); confidence interval for the plane (brown) and prediction interval for observations (red).

Categorical variables (factors)

- Categorical variables (factors) take a fixed number of non-numerical values, e.g. Male/Female or Red/Blue/Green. There isn't necessarily any logical order between the categories or any obvious translation to numerical values, e.g., "Red = 1, Blue = 2, Green = 3" makes as much sense (= no sense) as "Red = −14, Blue = 2.54, Green = 52.4".
- ▶ Other times there is some ordering (weight={underweight, normal, overweight}), however attaching numerical "labels" does not imply admissible mathematical operations. If underweight = 1, normal = 2, overweight = 3 then underweight + normal = 1 + 2 = 3 makes no sense.

Thus they cannot be used as x-variables without some care.

Dummy variables

Create new variables, one less than the number of categories, e.g., x_{weight} is replaced by the two dummy variables

$$\begin{split} x_{\text{under}} &= \left\{ \begin{array}{ll} 1 & \text{if } x_{\text{weight}} = \text{underweight,} \\ 0 & \text{otherwise} \end{array} \right. \\ x_{\text{over}} &= \left\{ \begin{array}{ll} 1 & \text{if } x_{\text{weight}} = \text{overweight,} \\ 0 & \text{otherwise} \end{array} \right. \end{split}$$

x_{weight}	x_{under}	x_{over}
normalweight	0	0
underweight	1	0
overweight	0	1

The model $Y_i = \beta_0 + \beta_{\text{weight}} x_{i,\text{weight}} + \epsilon_i$ using dummy-variables would then be expressed as:

$$Y_i = \beta_0 + \beta_{\mathsf{under}} x_{\mathsf{i,under}} + \beta_{\mathsf{over}} x_{\mathsf{i,over}} + \epsilon_i.$$

- "normalweight" is the reference category or baseline,
- the intercept is the expected response for the reference category,
- parameters for the other categories give the category systematic effect relative to the reference category.

$$\begin{split} E(Y \mid \mathsf{normalweight}) &= \beta_0 \\ E(Y \mid \mathsf{underweight}) &= \beta_0 + \beta_{\mathsf{under}} \\ E(Y \mid \mathsf{overweight}) &= \beta_0 + \beta_{\mathsf{over}} \end{split}$$

Warning

Parameters for categories have to be interpreted in relation to the reference category.

Which category to choose as reference?

This is problem specific: say the one which makes more sense to be used as a term of comparison. In some contexts it is natural/obvious which one to consider as a "normal" or "default" level.

However, if the number of observations in the reference category is small, all β -estimates will be uncertain! The reference category should always be large.

R calls categorical variables factors.

Categories for a categorical variable are called levels.

Example: Cabbage

In an agricultural experiment we have grown cabbages in three different types of soil: sand, clay and loam. We have also used different ammounts of fertilizer. We want to model their effect on the weight of the cabbage heads.

soil	fert.	headwt	soil	fert.	headwt	soil	fert.	headwt
sand	10	1.4	clay	10	3.1	loam	10	1.9
sand	15	1.9	clay	15	2.9	loam	15	2.0
sand	20	3.4	clay	20	3.6	loam	20	3.1
sand	25	2.4	clay	25	3.9	loam	25	3.5
sand	30	4.2	clay	30	3.6	loam	30	3.3
sand	35	1.9	clay	35	4.0	loam	35	2.4
sand	40	1.7	clay	40	3.3	loam	40	2.5
sand	45	4.7	clay	45	4.3	loam	45	3.5
sand	50	1.9	clay	50	5.3	loam	50	1.9
sand	55	2.0	clay	55	4.6			
			clay	60	5.2			

Head weight vs type of soil observed data

Cabbage: soil model and estimates

Cabbage: Soil model and estimates
$$Y = \text{head weight, } x_1 = \begin{cases} 1 & \text{clay} \\ 0 & \text{not clay} \end{cases}, x_2 = \begin{cases} 1 & \text{loam} \\ 0 & \text{not loam} \end{cases}$$

$$\text{Model } Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i = \begin{cases} \beta_0 + \epsilon_i & \text{sand} \\ \beta_0 + \beta_1 + \epsilon_i & \text{clay} \\ \beta_0 + \beta_2 + \epsilon_i & \text{loam} \end{cases}$$

$$\text{Variable} \quad \text{parameter estimate} \quad \text{setimate} \quad \text{set } 0.5\% \text{ CL}$$

Variable	parameter	estimate	s.e.	95 % C.I.
intercept (sand)	eta_0	2.55	0.28	(1.97, 3.13)
clay (vs sand)	eta_1	1.43	0.39	(0.63, 2.24)
loam (vs sand)	eta_2	0.13	0.41	(-0.72, 0.98)
resid.std.dev	σ	0.90	df = 27	

Fitted "line":

$$\hat{Y} = 2.55 + 1.43x_1 + 0.13x_2 = \begin{cases} 2.55 &= 2.55, \text{ sand} \\ 2.55 + 1.43 &= 3.98, \text{ clay} \\ 2.55 + 0.13 &= 2.68, \text{ loam} \end{cases}$$

Head weight vs type of soil data and fitted values

Predictions

What is the average head weight for the different soil types? $\Omega = 0/CI$ on average estimate

on average	estimate	s.e.	95 % C.I.
soil	$\hat{Y}_{soil} = \hat{\beta}_0 = 2.55$	0.28	(1.97, 3.14)
clay	$\hat{Y}_{clay} = \hat{\beta}_0 + \hat{\beta}_1 = 3.98$	0.27	(3.43, 4.54)
loam	$\hat{Y}_{loam} = \hat{\beta}_0 + \hat{\beta}_2 = 2.68$	0.30	(2.06, 3.29)

What head weights might we observe?

single head			95 % P.I.
soil	$\hat{Y}_{pred_{soil}} = 2.55 + \epsilon_0$	0.94	(0.62, 4.48)
clay	$\hat{Y}_{pred_{clay}} = 3.98 + \epsilon_0$	0.94	(2.06, 5.91)
loam	$\hat{Y}_{pred_{loam}} = 2.68 + \epsilon_0$	0.95	(0.73, 4.62)

Head weight vs type of soil data, fitted line, confidence and prediction intervals

Basic residual analysis

990

- ▶ The difference in average head weight between sand and loam is not necessarily different from 0 (the confidence interval $I_{\beta_2} = (-0.73, 0.98)$ contains 0).
- ▶ The residual variability in loam seems smaller than in the other two soil types.
- The residuals are not very un-normal.

What about fertilizer?

New questions

- ► There is a linear pattern in the residuals, at least for clay.
- Would adding the amount of fertilizer to the model improve the fit?

Cabbage: soil and fertilizer model

$$Y = \text{ head weight},$$

$$x_1 = \left\{ \begin{array}{ll} 1 & \text{clay} \\ 0 & \text{not clay} \end{array} \right., \qquad x_2 = \left\{ \begin{array}{ll} 1 & \text{loam} \\ 0 & \text{not loam} \end{array} \right.,$$

$$x_3 = \text{ fertilizer}.$$

Model:

$$\begin{split} Y_i &= \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_3 + \epsilon_i \\ &= \left\{ \begin{array}{ll} \beta_0 + \beta_3 x_3 + \epsilon_i & \text{sand} \\ \beta_0 + \beta_1 + \beta_3 x_3 + \epsilon_i & \text{clay} \\ \beta_0 + \beta_2 + \beta_3 x_3 + \epsilon_i & \text{loam} \end{array} \right. \quad \epsilon_i \sim N(0, \, \sigma^2) \end{split}$$

Note: This is three parallel lines with the same fertilizer-slope but different intercepts for the different soil types.

0.023 0.011 (-0.001, 0.045)

Cabbage: soil and fertilizer estimates						
Variable	parameter	estimate	s.e.	95 % C.I.		
intercept (sand)	eta_0	1.81	0.44	(0.91, 2.70)		
clay (vs sand)	eta_1	1.37	0.37	(0.61, 2.13)		
loam (vs sand)	eta_2	0.18	0.39	(-0.61, 0.98)		

0.84 df = 26

Note: The confidence interval for β_3 covers 0. It is possible that fertilizer has no effect. Also, loam might not be different from sand.

Fitted lines:

fertilize resid.std.dev

$$\begin{split} \hat{Y} &= 1.81 + 1.37x_1 + 0.18x_2 + 0.023x_3 \\ &= \left\{ \begin{array}{ll} 1.81 + 0.023x_3 & \text{sand} \\ 1.81 + 1.37 + 0.023x_3 & \text{clay} \\ 1.81 + 0.18 + 0.023x_3 & \text{loam} \end{array} \right. \end{split}$$

Even more questions

- ► There seems to still be a positive, but smaller, linear pattern in the residuals for clay.
- ▶ There is now a possible negative relationship in loam.
- Maybe the effect of the fertilizer is not the same for all three soil types.
- Solution: add interaction terms to the model.

Model

Interaction between x-variables

Interaction

Example: Elasticity

Example: Cabbage

What if

- ▶ the effect of changing the temperature **depends on the** pressure?
- the effect of changing the amount of fertilizer depends on the soil type?

Interaction terms content...

Example: Elasticity with interaction

Add the **interaction** term $x_3 = x_1 \cdot x_2 = \text{temperature} \times \text{pressure}$ to the model.

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + \epsilon_i, i = 1, \dots, 10,$$

 $\epsilon_i \sim N(0, \sigma^2)$

Variable		est.	s.e.	95 % C.I.
intercept	β_0	-1071.2	221.6	(-1613.4, -529.0)
temperature	eta_1	4.69	1.11	(1.98, 7.40)
pressure	eta_2	2.61	0.51	(1.37, 3.86)
$temp \times press$	eta_3	-0.0098	0.0025	(-0.016, -00036)
resid.std.dev	σ	3.40	df = 6	

Fitted plane: $\hat{Y} = -1071.2 + 4.69x_1 + 2.61x_2 - 0.0098x_1x_2$.

Plane with interaction

trace 1

Effect of temperature change: interaction

Increase the temperature by Δ_1 °C from x_{01} to $x_{01}+\Delta_1$ while keeping the pressure fixed at x_{02} :

$$\begin{split} \hat{Y}_{\text{old}} &= \hat{\beta}_0 + \hat{\beta}_1 x_{01} + \hat{\beta}_2 x_{02} + \hat{\beta}_3 x_{01} x_{02} \\ \hat{Y}_{\text{new}} &= \hat{\beta}_0 + \hat{\beta}_1 (x_{01} + \Delta_1) + \hat{\beta}_2 x_{02} + \hat{\beta}_3 (x_{01} + \Delta_1) x_{02} \\ \hat{Y}_{\text{new}} - \hat{Y}_{\text{old}} &= (\hat{\beta}_1 + \hat{\beta}_3 x_{02}) \Delta_1 \text{ depends on the pressure!} \end{split}$$

Temperature effect for some different pressures:

$$\begin{split} x_{02} &= 350 : & \hat{Y}_{\mathsf{new}} - \hat{Y}_{\mathsf{old}} = (\hat{\beta}_1 + \hat{\beta}_3 \cdot 350) \Delta_1 = 1.24 \Delta_1 \\ x_{02} &= 400 : & \hat{Y}_{\mathsf{new}} - \hat{Y}_{\mathsf{old}} = (\hat{\beta}_1 + \hat{\beta}_3 \cdot 400) \Delta_1 = 0.75 \Delta_1 \\ x_{02} &= 450 : & \hat{Y}_{\mathsf{new}} - \hat{Y}_{\mathsf{old}} = (\hat{\beta}_1 + \hat{\beta}_3 \cdot 450) \Delta_1 = 0.26 \Delta_1 \end{split}$$

Note: without the interaction we always had $0.41\Delta_1$.

If temperature = $200 \,^{\circ}$ C and pressure = $400 \, \text{kg/cm}^2$,

$$\mathbf{x}_0 = \begin{bmatrix} 1 & 200 & 400 & 80000 \end{bmatrix}$$

what is the expected tension?

$$\hat{Y}_0 = \mathbf{x}_0 \hat{\boldsymbol{\beta}} =
= -1071.2 + 4.69 \cdot 200 + 2.61 \cdot 400 - 0.0098 \cdot 80000 = 124.6.$$

What tension values might we observe?

$$\hat{Y}_{\mathsf{pred}_0} = \mathbf{x}_0 \hat{\boldsymbol{\beta}} + \epsilon_0 = 124.6 + \epsilon_0.$$

	estimate	s.e.	95% interval	
on average	$\hat{Y}_0 = 124.6$	1.08	(122.0, 127.2)	conf.
single obs.	$\hat{Y}_{pred_0} = 124.6 + \epsilon_0$	3.57	(115.9, 133.3)	pred.
N . 9 FF	(D. 412) + 1.002			

Note: $3.57 = \sqrt{3.41^2 + 1.08^2}$.

Note that both $\hat{\sigma}$ and all the intervals have become narrower. This model fits closer to the data!

Too close? Overfitting? Next week...

trace 5

Conculsions

The model with interaction has

- ightharpoonup a eta_3 for the interaction term that is not zero,
- smaller residuals.
- residuals closer to a normal distribution

and is thus, probably, better than the model without interaction.

But see Lecture 4, 5 and 6 before the final conclusion...

Different effect of fertilizer on different soil types: interaction Y= head weight, $x_1=\left\{ \begin{array}{cc} 1 & {\rm clay} \\ 0 & {\rm not\ clay} \end{array} \right.$, $x_2=\left\{ \begin{array}{cc} 1 & {\rm loam} \\ 0 & {\rm not\ loam} \end{array} \right.$, $x_3=$ fertilizer.

Model (note that we get two interaction terms):

$$\begin{split} Y_i &= \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_3 + \beta_4 x_1 x_3 + \beta_5 x_2 x_3 + \epsilon_i \\ &= \left\{ \begin{array}{ll} \beta_0 + \beta_3 x_3 + \epsilon_i & \text{sand} \\ \beta_0 + \beta_1 + (\beta_3 + \beta_4) x_3 + \epsilon_i & \text{clay} \\ \beta_0 + \beta_2 + (\beta_3 + \beta_5) x_3 + \epsilon_i & \text{loam} \end{array} \right. \quad \epsilon_i \sim N(0, \, \sigma^2) \end{split}$$

Note: The extra parameters β_4 and β_5 signify how the fertilizer slope for sand should be adjusted to become the fertilizer slope for clay and loam, respectively. If $\beta_4=0$ then clay has the same slope as sand. If $\beta_5=0$ then loam has the same slope as sand.

Cabbage: soil a	and fertilizer	interaction:	estimates
-----------------	----------------	--------------	-----------

Variable	parameter	estimate	s.e.	95 % C.I.
intercept (sand)	eta_0	2.25	0.65	(0.90, 3.60)
clay	eta_1	0.27	0.90	(-1.58, 2.12)
loam	eta_2	0.20	0.96	(-1.78, 2.19)
fertilize (sand)	eta_3	0.009	0.029	(-0.027, 0.047)
fert:clay	eta_4	0.033	0.024	(-0.018, 0.083)
fert:loam	eta_5	-0.002	0.028	(-0.060, 0.057)
resid.std.dev	σ	0.84	df = 24	

Fitted lines:

$$\begin{split} \hat{Y} &= 2.25 + 0.37x_1 + 0.20x_2 + 0.009x_3 + 0.033x_1x_3 - 0.002x_2x_3 \\ &= \left\{ \begin{array}{ll} 2.25 + 0.009x_3 & \text{sand} \\ 2.25 + 0.37 + (0.009 + 0.033)x_3 & \text{clay} \\ 2.25 + 0.20 + (0.009 - 0.002)x_3 & \text{loam} \end{array} \right. \end{split}$$

Some conclusions from the residual analysis

- ► The residual variability in clay is now as small as that for loam! The fertilizer explained most of it.
- ► The residual variability in sand is still large and un-explained.
- ▶ The residuals are slightly closer to a normal distribution.

Model

Collinearity between x-variables

Singular matrix

Correlations

VIF

Collinearity among x-variables

- ightharpoonup The matrix $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ must be invertible.
- ightharpoonup If X^TX is singular there is no unique solution. If it is nearly singular the solution is unstable.
- ls a problem when any of the x-variables is (almost) a linear combination of some of the other x-variables.
- \triangleright β -estimates will then not exist or will have huge variance.
- ► Correlated x-variables "compete" (one variable might be necessary if the other is not in the model, but not if both are in the model, etc.)
- Found by:
 - pairwise plots and correlations of all (potential) x-variables against each other,
 - Variance Inflation Factors (VIF or GVIF)
- ► Solution: Remove the most problematic variables

- plot all pairs of x-variables,
- calculate all pairwise correlations between numerical x-variables

- Rule of thumb: correlations $|\rho| > 0.7$ might be worrying.
- $\rho(X_1, X_4) =$ 0.729 > 0.7
- $\rho(X_2, X_4) =$ -0.717 <-0.7

Linear combinations between several x-variables

- ▶ Difficult to find with pairwise analysis.
- For each x-variable, x_1, \ldots, x_p , fit a linear model with the column $\mathbf{X}_{.j}$ as dependent variable and all the others as explanatory variables, giving the predicted values $X_{.j}$.
- ► The correlation $R_i = \rho(\mathbf{X}_{,i}, \hat{\mathbf{X}}_{,i})$ should preferrably be close to zero. If it is large we have a problem.
- ▶ The square of the correlation, $0 \le R_i^2 \le 1$, is the amount of variability in covariate x_i that can be explained by the other x-variables.
 - C.f. the rule of thumb, $\rho(X_i, X_k)^2 > 0.7^2 = 0.49 \approx 50 \%$.

Variance Inflation Factor, VIF

The Variance Inflation Factor (VIF) for covariate x_j is defined as

$$\mathsf{VIF}_j = \frac{1}{1 - R_j^2}$$

- ▶ $1 \le VIF_i$ should ideally be close to one.
- $ightharpoonup \sqrt{{
 m VIF}_j}$ indicates how many times larger the standard error $d(\hat{eta}_j)$ is because of the dependance with the other x-variables.
- ▶ Rules of thumb: 2 ($R_j^2 = 50\%$), 5 (80%), 10 (90%)

Variable	VIF		
$\overline{x_1}$	58.8	large	
x_2	56.8	large	
x_3	8.3		
x_4	135.4	very large	Do not use x_4 in a model with x_1, x_2, x_3 .

Generalised Variance Inflation Factor, GVIF

- ▶ When we have categorical *x*-variables there is a structural dependancy between the resulting dummy variables.
- ► The same is true when we have added interaction terms to the model.
- ► Calculate GVIF using this imposed structure of the data.
- ▶ We get GVIF with degrees of freedom *f* as the number of dummy variables involved in the factor variable and/or the interaction terms.
- ▶ Rules of thumb for $GVIF^{1/2f}$: $\sqrt{2}$, $\sqrt{5}$, $\sqrt{10}$

Variable	GVIF	f	$GVIF^{1/2f}$	
$\overline{x_1:soil}$	1.02	2	1.005	Small
x_2 : fertilize	1.01	1	1.01	Small

