Teorema de la función Inversa

Teorema 1. Sea U un abierto de \mathbb{R}^n y $F: U \to \mathbb{R}^n$ una función de clase C^1 en U (también llamada un campo vectorial).

Sea $\mathbf{p}_0 \in U$ y supongamos que la derivada de F en \mathbf{p}_0 , denotada $D_{\mathbf{p}_0}F$, es una biyección de \mathbb{R}^n a \mathbb{R}^n (es decir, inyectiva y supreyectiva).

Entonces existe W, una vecindad de \mathbf{p}_0 , tal que F(W) es una vecindad de $F(\mathbf{p}_0)$ donde se cumple:

- 1. denotando V := F(W), F es una biyección de W a V (es decir, inyectiva en W y suprayectiva a V);
- 2. $G: V \to W$, la función inversa de F, es continua en V;
- 3. además, G es de clase C^1 en V y si $\mathbf{q} \in V$ y $\mathbf{p} = G(\mathbf{q})$ entonces $D_{\mathbf{q}}G$ es la inversa de $D_{\mathbf{p}}F$.

Notas

- 1. una vecindad de un punto \mathbf{p} es simplemente un abierto que contiene a p.
- 2. recuerda que $D_{\mathbf{p}_0}F$ es una transformación lineal cuya matriz asociada en la base canónica, es la matrix de derivadas parciales $\partial_{p_i}f_j(\mathbf{p}_0)$, donde $F = (f_1, \dots f_n)$.
- 3. $D_{\mathbf{p}_0}F$ es inyectiva sii, vista como matriz, $\det(D_{\mathbf{p}_0}F) \neq 0$.
- 4. $D_{\mathbf{p}_0}F$ es suprayectiva sii su rango es n.
- 5. Existe un teorema de álgebra lineal que dice que, dada una matriz de $n \times n$, la transformación lineal (que va de \mathbb{R}^n a \mathbb{R}^n) inducida por la matriz es inyectiva si y sólo si es suprayectiva. Por lo tanto, para aplicar el Teorema de la Función Inversa, es suficiente checar que $\det(D_{\mathbf{p}_0}F) \neq 0$.