

ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M ISO7242C, ISO7242M

SLLS868N - SEPTEMBER 2007-REVISED JANUARY 2012

www.ti.com

HIGH SPEED QUAD DIGITAL ISOLATORS

Check for Samples: ISO7240CF, ISO7240C, ISO7240M, ISO7241C, ISO7241M, ISO7242C, ISO7242M

FEATURES

- Selectable Failsafe Output (ISO7240CF)
- · 25 and 150-Mbps Signaling Rate Options
 - Low Channel-to-Channel Output Skew;
 1 ns Max
 - Low Pulse-Width Distortion (PWD);2 ns Max
 - Low Jitter Content; 1 ns Typ at 150 Mbps
- Typical 25-Year Life at Rated Working Voltage (see application note SLLA197 and Figure 17)
- 4000-V_{peak} V_{IOTM}, 560-V_{peak} V_{IORM} per IEC 60747-5-2 (VDE 0884, Rev 2)
- UL 1577, IEC 61010-1, IEC 60950-1 and CSA Approved

- 4 kV ESD Protection
- Operates With 2.8-V (ISO7241C), 3.3-V or 5-V Supplies
- High Electromagnetic Immunity (see application report SLLA181)
- –40°C to 125°C Operating Range

APPLICATIONS

- · Industrial Fieldbus
- Computer Peripheral Interface
- Servo Control Interface
- Data Acquisition

DESCRIPTION

The ISO7240, ISO7241 and ISO7242 are quad-channel digital isolators with multiple channel configurations and output enable functions. These devices have logic input and output buffers separated by Tl's silicon dioxide (SiO₂) isolation barrier. Used in conjunction with isolated power supplies, these devices block high voltage, isolate grounds, and prevent noise currents from entering the local ground and interfering with or damaging sensitive circuitry.

The ISO7240 has all four channels in the same direction while the ISO7241 has three channels the same direction and one channel in opposition. The ISO7242 has two channels in each direction.

The C option devices have TTL input thresholds and a noise-filter at the input that prevents transient pulses from being passed to the output of the device. The M option devices have CMOS Vcc/2 input thresholds and do not have the input noise-filter or the additional propagation delay.

The ISO7240CF has an input disable function on pin 7, and a selectable high or low failsafe-output function with the CTRL pin (pin 10). The failsafe-output is a logic high when a logic-high is placed on the CTRL pin or it is left unconnected. If a logic-low signal is applied to the CTRL pin, the failsafe-output becomes a logic-low output state. The ISO7240CF input disable function prevents data from being passed across the isolation barrier to the output. When the inputs are disabled, the outputs are set by the CTRL pin.

These devices may be powered from 2.8-V (ISO7241C only), 3.3-V or 5-V supplies on either side in any combination. Note that the signal input pins are 5-V tolerant regardless of the voltage supply level being used.

These devices are characterized for operation over the ambient temperature range of -40°C to 125°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Table 1. Device Function Table ISO724x (1)

INPUT V _{CC}	OUTPUT V _{CC}	INPUT (IN)	OUTPUT ENABLE (EN)	OUTPUT (OUT)
		Н	H or Open	Н
PU	PU	L	H or Open	L
PU		X	L	Z
		Open	H or Open	Н
PD	PU	X	H or Open	Н
PD	PU	X	L	Z

(1) PU = Powered Up; PD = Powered Down; X = Irrelevant; H = High Level; L = Low Level

Table 2. ISO7240CF Function Table

V _{CC1}	V _{CC2}	DATA INPUT (IN)	DISABLE INPUT (DISABLE)	FAILSAFE CONTROL INPUT (CTRL)	DATA OUTPUT (OUT)
PU	PU	Н	L or Open	X	Н
PU	PU	L	L or Open	X	L
Х	PU	Х	Н	H or Open	Н
X	PU	X	Н	L	L
PD	PU	X	X	H or Open	Н
PD	PU	X	Χ	L	L

AVAILABLE OPTIONS

PRODUCT	SIGNALING RATE	INPUT THRESHOLD	CHANNEL CONFIGURATION	MARKED AS	ORDERING NUMBER ⁽¹⁾					
ISO7240C	25 Mbno	~1.5 V (TTL)		ISO7240C	ISO7240CDW (rail)					
1507240C	25 Mbps	(CMOS compatible)		15072400	ISO7240CDWR (reel)					
100724005	25 Mbno	~1.5 V (TTL)	4/0	ISO7240CF	ISO7240CFDW (rail)					
ISO7240CF	25 Mbps	(CMOS compatible)	4/0	1507240CF	ISO7240CFDWR (reel)					
100704014	450 Mb	\//0 (OMOO)		100704014	ISO7240MDW (rail)					
ISO7240M	150 Mbps	Vcc/2 (CMOS)		ISO7240M	ISO7240MDWR (reel)					
10070440	05 Mb = -	~1.5 V (TTL)		10070440	ISO7241CDW (rail)					
ISO7241C	25 Mbps	(CMOS compatible)	MOS compatible) ISO7241		ISO7241CDWR (reel)					
ICO7044M	450 Mhaa	\/aa/0 (CMOC)	3/1	100704414	ISO7241MDW (rail)					
ISO7241M	150 Mbps	Vcc/2 (CMOS)		ISO7241M	ISO7241MDWR (reel)					
10070400	05 Mb	~1.5 V (TTL)		10070400	ISO7242CDW (rail)					
ISO7242C	25 Mbps	(CMOS compatible)	0/0	ISO7242C	ISO7242CDWR (reel)					
100704014	450 Mh = -	\/aa/0 (CMOC)	2/2	100704014	ISO7242MDW (rail)					
ISO7242M	150 Mbps	Vcc/2 (CMOS)		ISO7242M	ISO7242MDWR (reel)					

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

ABSOLUTE MAXIMUM RATINGS(1)

					VALUE	UNIT	
V_{CC}	Supply voltage	e ⁽²⁾ , V _{CC1} , V _{CC2}			–0.5 to 6	V	
V_{I}	Voltage at IN,	OUT, EN, DISABLE, CTRL			–0.5 to 6	V	
Io	Output current				±15	mA	
		Human Body Model	JEDEC Standard 22, Test Method A114-C.01		±4	kV	
ESD	Electrostatic discharge	Field-Induced-Charged Device Model	JEDEC Standard 22, Test Method C101	All pins	±1	KV	
	discriarge	Machine Model	ANSI/ESDS5.2-1996		±200	V	
TJ	Maximum junc		170	°C			

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

			MIN	TYP	MAX	UNIT
V _{CC}	Supply voltage ⁽¹⁾ , V _{CC1} , V _{CC2}	ISO7240C/CF, ISO7242C, ISO724xM,	3.15		5.5	V
		ISO7241C	2.8		5.5	
I _{OH}	High-level output current		-4			mA
I_{OL}	Low-level output current				4	mA
	lancet and a cristale	ISO724xC	40			
t _{ui}	Input pulse width	ISO724xM	6.67	5		ns
4.4	Cianalina anta	ISO724xC	0	30 ⁽²⁾	25	
1/t _{ui}	Signaling rate	ISO724xM	0	200(2)	150	Mbps
V_{IH}	High-level input voltage (IN)	100704:14	0.7 V _{CC}		V _{CC}	V
V_{IL}	Low-level input voltage (IN)	ISO724xM	0		0.3 V _{CC}	V
V_{IH}	High-level input voltage (IN, DISABLE, CTRL, EN)	100704:0	2		V _{CC}	V
V_{IL}	Low-level input voltage (IN, DISABLE, CTRL, EN)	ISO724xC	0		0.8	V
T_J	Junction temperature				150	°C
Н	External magnetic field-strength immunity per IEC 61000-4-8 and IEC 61000-4-9 certification				1000	A/m

⁽¹⁾ For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V. For the 3.3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V. For the 2.8-V operation (ISO7241C-only), V_{CC1} or V_{CC2} is specified at 2.8 V.

IEC 60747-5-2 INSULATION CHARACTERISTICS(1)

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	SPECIFICATIONS	UNIT
V _{IORM}	Maximum working insulation voltage		560	V
		After Input/Output Safety Test Subgroup 2/3 $V_{PR} = V_{IORM} \times 1.2$, $t = 10 \text{ s}$, Partial discharge < 5 pC	672	V
V _{PR}	Input to output test voltage	Method a, $V_{PR} = V_{IORM} \times 1.6$, Type and sample test with t = 10 s, Partial discharge < 5 pC	896	V
		Method b1, V _{PR} = V _{IORM} × 1.875, 100 % Production test with t = 1 s, Partial discharge < 5 pC	1050	V
V_{IOTM}	Transient overvoltage	t = 60 s	4000	V
R _S	Insulation resistance	V_{IO} = 500 V at T_{S}	>10 ⁹	Ω
	Pollution degree		2	

(1) Climatic Classification 40/125/21

⁽²⁾ All voltage values are with respect to network ground terminal and are peak voltage values.

⁽²⁾ Typical value at room temperature and well-regulated power supply.

ELECTRICAL CHARACTERISTICS: V_{CC1} and V_{CC2} at 5-V⁽¹⁾ OPERATION

P	ARAMETER		TEST CONDITION	NS .	MIN	TYP	MAX	UNIT
SUPPL	Y CURRENT						,	
	ISO7240C/M	Quiescent	V _I = V _{CC} or 0 V	All channels, no load,		1	3	A
	1507240C/M	25 Mbps	12.5 MHz Input Clock Signal	EN at 3 V		7	10.5	mA
	10070440/14	Quiescent	V _I = V _{CC} or 0 V-	All channels, no load,		6.5	11	Λ
I _{CC1}	ISO7241C/M	25 Mbps	12.5 MHz Input Clock Signal	EN ₁ at 3 V, EN ₂ at 3 V		12	18	mA
	10070400/M	Quiescent	V _I = V _{CC} or 0 V	All channels, no load,		10	16	A
	ISO7242C/M	25 Mbps	12.5 MHz Input Clock Signal	EN ₁ at 3 V, EN ₂ at 3 V		15	24	mA
	10070400/14	Quiescent	V _I = V _{CC} or 0 V-	All channels, no load,		15	22	Λ
	ISO7240C/M	25 Mbps	12.5 MHz Input Clock Signal	EN at 3 V		17	25	mA
	ISO7241C/M	Quiescent	V _I = V _{CC} or 0 V	All channels, no load,		13	20	A
I _{CC2}	1507241C/W	25 Mbps	12.5 MHz Input Clock Signal	EN ₁ at 3 V, EN ₂ at 3 V		18	28	mA
ISO72	ISO7242C/M	Quiescent	$V_I = V_{CC}$ or 0 V	All channels, no load, nal EN ₁ at 3 V, EN ₂ at 3 V		10	16	mA
	1507242C/W	25 Mbps	12.5 MHz Input Clock Signal			15	24	
ELECT	RICAL CHARACT	TERISTICS						
I _{OFF}	Sleep mode outp	out current	EN at 0 V, Single channel			0		μΑ
V	High lovel output	. volto ao	I _{OH} = -4 mA, See Figure 1		V _{CC} -0.8			V
V_{OH}	High-level output	. voitage	$I_{OH} = -20 \mu A$, See Figure 1	V _{CC} -0.1			V	
V	Law laval autaut	voltogo	I _{OL} = 4 mA, See Figure 1				0.4	V
V _{OL}	Low-level output	voitage	I _{OL} = 20 μA, See Figure 1	I _{OL} = 20 μA, See Figure 1			0.1	V
V _{I(HYS)}	Input voltage hys	steresis				150		mV
I _{IH}	High-level input of	current	IN from 0 \/ to \/				10	
I _{IL}	Low-level input c	urrent	IIA HOIH O A TO ACC	IN from 0 V to V _{CC}				μA
Cı	Input capacitance to ground IN at V_{CC} , $V_I = 0.4 \sin (4E6\pi t)$				2		pF	
CMTI	Common-mode t immunity	ransient	V _I = V _{CC} or 0 V, See Figure 5		25	50		kV/μs

⁽¹⁾ For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V.

SWITCHING CHARACTERISTICS: V_{CC1} and V_{CC2} at 5-V OPERATION

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
t _{PLH} , t _{PHL}	Propagation delay	1007040		18		42		
PWD	Pulse-width distortion ⁽¹⁾ t _{PHL} - t _{PLH}	ISO724xC	Soo Figure 4			2.5	ns	
t _{PLH} , t _{PHL}	Propagation delay	100704	See Figure 1	10		23		
PWD	Pulse-width distortion ⁽¹⁾ t _{PHL} - t _{PLH}	ISO724xM			1	2	ns	
	Dort to part alray (2)	ISO724xC				8		
t _{sk(pp)}	Part-to-part skew ⁽²⁾	ISO724xM			0	3	ns	
	Character should be started about (3)	ISO724xC				2		
t _{sk(o)}	Channel-to-channel output skew (3)	ISO724xM			0	1	ns	
t _r	Output signal rise time		0.00 500000 4		2			
t _f	Output signal fall time		See Figure 1		2		ns	
t _{PHZ}	Propagation delay, high-level-to-high-imped	ance output			15	20		
t _{PZH}	Propagation delay, high-impedance-to-high-	level output			15	20		
t _{PLZ}	Propagation delay, low-level-to-high-impeda	ince output	See Figure 2		15	20	ns	
t _{PZL}	Propagation delay, high-impedance-to-low-l	evel output			15	20	ı	
t _{fs}	Failsafe output delay time from input power	loss	See Figure 3		12		μs	
t _{wake}	Wake time from input disable		See Figure 4		15		μs	
t _{jit(pp)}	Peak-to-peak eye-pattern jitter	ISO724xM	150 Mbps NRZ data input, Same polarity input on all channels, See Figure 6		1		ns	

⁽¹⁾ Also referred to as pulse skew.

⁽²⁾ t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

⁽³⁾ $t_{sk(o)}$ is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

ELECTRICAL CHARACTERISTICS: V_{CC1} at 5-V, V_{CC2} at 3.3-V⁽¹⁾ OPERATION

F	PARAMETER		TEST CONDITIONS	5	MIN	TYP	MAX	UNIT
SUPPL	Y CURRENT							
		Quiescent	V _I = V _{CC} or 0 V	All abancals no load		1	3	
	ISO7240C/M	25 Mbps	12.5 MHz Input Clock Signal	All channels, no load, EN at 3 V		7	10.5	mA
		Quiescent	V _I = V _{CC} or 0 V	All channels, no load,		6.5	11	
I _{CC1}	ISO7241C/M	25 Mbps	12.5 MHz Input Clock Signal	EN ₁ at 3 V, EN ₂ at 3 V		12	18	mA
		Quiescent	V _I = V _{CC} or 0 V	All channels, no load,		10	16	mA
	ISO7242C/M	25 Mbps	12.5 MHz Input Clock Signal	EN ₁ at 3 V, EN ₂ at 3 V		15	24	
		Quiescent	V _I = V _{CC} or 0 V	All abannala na laad		9.5	15	
	ISO7240C/M	25 Mbps	12.5 MHz Input Clock Signal	All channels, no load, EN at 3 V		10.5	17	mA
		Quiescent	V _I = V _{CC} or 0 V	All channels, no load,		8	13	
I _{CC2}	ISO7241C/M	25 Mbps	12.5 MHz Input Clock Signal	EN ₁ at 3 V, EN ₂ at 3 V		11.5	18	mA
		Quiescent	V _I = V _{CC} or 0 V	All channels, no load,		6	10	
	ISO7242C/M	25 Mbps	12.5 MHz Input Clock Signal	EN ₁ at 3 V, EN ₂ at 3 V		9	14	mA
ELECT	RICAL CHARACT	ERISTICS						
l _{OFF}	Sleep mode outp	out current	EN at 0 V, Single channel			0		μΑ
			I - 4 mA Soo Figure 1	ISO7240	V _{CC} -0.4			
V_{OH}	High-level output	t voltage	I _{OH} = -4 mA, See Figure 1	ISO724x (5-V side)	V _{CC} -0.8			V
			$I_{OH} = -20 \mu A$, See Figure 1		V _{CC} -0.1			
V	Low-level output	voltogo	I _{OL} = 4 mA, See Figure 1				0.4	V
V _{OL}	Low-level output	voltage	I_{OL} = 20 μ A, See Figure 1				0.1	V
V _{I(HYS)}	Input voltage hys	steresis				150		mV
I _{IH}	High-level input	current	IN from 0 \/ to \/				10	
I _{IL}	Low-level input of	current	t IN from 0 V to V _{CC}		-10			μA
C _I	Input capacitanc	e to ground	IN at V_{CC} , $V_{I} = 0.4 \sin (4E61)$	Tt)		2		pF
CMTI	Common-mode timmunity	transient	$V_I = V_{CC}$ or 0 V, See Figure	5	25	50		kV/μs

⁽¹⁾ For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V. For the 3.3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V.

SWITCHING CHARACTERISTICS: V_{CC1} at 5-V, V_{CC2} at 3.3-V OPERATION

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
t _{PLH} , t _{PHL}	Propagation delay	100704.0	See Figure 1	20		50		
PWD	Pulse-width distortion ⁽¹⁾ t _{PHL} - t _{PLH}	ISO724xC				3	ns	
t _{PLH} , t _{PHL}	Propagation delay	ISO724xM		12		29		
PWD	Pulse-width distortion ⁽¹⁾ t _{PHL} - t _{PLH}				1	2	ns	
	Port to part alcour (2)	ISO724xC				10		
t _{sk(pp)}	Part-to-part skew ⁽²⁾	ISO724xM			0	5	ns 5	
	Channel to all and a street all and (3)	ISO724xC				3		
t _{sk(o)}	Channel-to-channel output skew (3)	ISO724xM			0	1	ns	
t _r	Output signal rise time	2 5 1			2	_		
t _f	Output signal fall time		See Figure 1		2		ns	
t _{PHZ}	Propagation delay, high-level-to-high-imped	dance output			15	20	ns	
t _{PZH}	Propagation delay, high-impedance-to-high	-level output	Con Figure 0		15	20		
t _{PLZ}	Propagation delay, low-level-to-high-imped	ance output	See Figure 2		15	20		
t _{PZL}	Propagation delay, high-impedance-to-low-	level output			15	20		
t _{fs}	Failsafe output delay time from input power	rloss	See Figure 3		18		μs	
t _{wake}	Wake time from input disable		See Figure 4		15		μs	
t _{jit(pp)}	Peak-to-peak eye-pattern jitter	ISO724xM	150 Mbps PRBS NRZ data input, Same polarity input on all channels, See Figure 6		1		ns	

⁽¹⁾ Also known as pulse skew

⁽²⁾ t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

⁽³⁾ $t_{sk(o)}$ is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

ELECTRICAL CHARACTERISTICS: V_{CC1} at 3.3-V, V_{CC2} at 5-V⁽¹⁾ OPERATION

P	PARAMETER		TEST CONDITIONS	TEST CONDITIONS			MAX	UNIT	
SUPPLY	CURRENT								
	10070400/14	Quiescent	$V_I = V_{CC}$ or 0 V	All channels, no		0.5	1	A	
	ISO7240C/M	25 Mbps	12.5 MHz Input Clock Signal	load, EN at 3 V		3	5	mA	
		Quiescent	V _I = V _{CC} or 0 V	All channels, no		4	7		
I _{CC1}	ISO7241C/M	25 Mbps	12.5 MHz Input Clock Signal	load, EN ₁ at 3 V, EN ₂ at 3 V		6.5	11	mA	
		Quiescent	$V_I = V_{CC}$ or 0 V	All channels, no		6	10		
	ISO724C/M	25 Mbps	12.5 MHz Input Clock Signal	load, EN ₁ at 3 V, EN ₂ at 3 V		9	14	mA	
	10070400/14	Quiescent	$V_I = V_{CC}$ or 0 V	All channels, no		15	22		
	ISO7240C/M	25 Mbps	12.5 MHz Input Clock Signal	load, EN at 3 V		17	25	mA	
		Quiescent	V _I = V _{CC} or 0 V	All channels, no		13	20		
I_{CC2}	ISO7241C/M	25 Mbps	12.5 MHz Input Clock Signal	load, EN ₁ at 3 V, EN ₂ at 3 V		18	28	mA	
		Quiescent	$V_I = V_{CC}$ or 0 V	All channels, no		10	16		
	ISO7242C/M	25 Mbps	12.5 MHz Input Clock Signal	load, EN ₁ at 3 V, EN ₂ at 3 V		15	24	mA	
ELECTR	ICAL CHARACTE	RISTICS					l.		
I _{OFF}	Sleep mode outp	out current	EN at 0 V, Single channel			0		μA	
			1 AmA Con Figure 4	ISO7240	V _{CC} - 0.4			·	
V_{OH}	High-level output	t voltage	I _{OH} = -4 mA, See Figure 1	ISO724x (5-V side)	$V_{CC} - 0.8$			V	
			$I_{OH} = -20 \mu A$, See Figure 1		$V_{CC} - 0.1$				
V	Low-level output	voltago	I _{OL} = 4 mA, See Figure 1				0.4	V	
V _{OL}	Low-level output	voitage	I_{OL} = 20 μ A, See Figure 1				0.1	V	
$V_{I(HYS)}$	Input voltage hys	steresis				150		mV	
I _{IH}	High-level input	current	IN from 0 \/ to \/				10		
I _{IL}	Low-level input of	urrent	IN from 0 V to V _{CC}		-10			μA	
Cı	Input capacitanc	e to ground	IN at V_{CC} , $V_{I} = 0.4 \sin (4E6\pi t)$			2		pF	
CMTI	Common-mode t immunity	ransient	$V_I = V_{CC}$ or 0 V, See Figure 5			50		kV/μs	

⁽¹⁾ For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V. For the 3.3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V.

SWITCHING CHARACTERISTICS: V_{CC1} at 3.3-V and V_{CC2} at 5-V OPERATION

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
t _{PLH} , t _{PHL}	Propagation delay	1007040		22		51		
PWD	Pulse-width distortion ⁽¹⁾ t _{PHL} - t _{PLH}	ISO724xC	Soo Eiguro 1			3	ns	
t _{PLH} , t _{PHL}	Propagation delay	100704М	See Figure 1	12		30		
PWD	Pulse-width distortion ⁽¹⁾ t _{PHL} - t _{PLH}	ISO724xM			1	2	ns	
	Don't to nort allow (2)	ISO724xC				10	ns	
t _{sk(pp)}	Part-to-part skew (2)	ISO724xM			0	5		
	Channel-to-channel output skew (3)	ISO724xC				2.5	ns	
t _{sk(o)}	Channel-to-channel output skew	ISO724xM			0	1	115	
t _r	Output signal rise time		Con Figure 4		2			
t _f	Output signal fall time		See Figure 1		2		ns	
t _{PHZ}	Propagation delay, high-level-to-high-im	pedance output	See Figure 2		15	20	ns	
t _{PZH}	Propagation delay, high-impedance-to-h	nigh-level output			15	20		
t _{PLZ}	Propagation delay, low-level-to-high-imp	edance output			15	20		
t _{PZL}	Propagation delay, high-impedance-to-lo	ow-level output			15	20		
t _{fs}	Failsafe output delay time from input po	wer loss	See Figure 3		12		μs	
t _{wake}	Wake time from input disable		See Figure 4		15		μs	
t _{jit(pp)}	Peak-to-peak eye-pattern jitter	ISO724xM	150 Mbps NRZ data input, Same polarity input on all channels, See Figure 6		1		ns	

⁽¹⁾ Also known as pulse skew

⁽²⁾ t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

⁽³⁾ $t_{sk(o)}$ is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

ELECTRICAL CHARACTERISTICS: V_{CC1} and V_{CC2} at 3.3 $V^{(1)}$ OPERATION

	PARAMETER		TEST CONDITION	NS	MIN	TYP	MAX	UNIT
SUPPL	Y CURRENT				•			
	ISO7240C/M ISO7242C/M ISO7241C/M ISO7242C/M ISO7241C/M ISO7241C/M ISO7241C/M			All channels, no load,		0.5	1	mA
SUPPI I _{CC1}	1507240C/W	25 Mbps 12.5 MHz Input Clock Signal EN at 3 V		EN at 3 V		3	5	mA
	ISO7241C/M	Quiescent	V _I = V _{CC} or 0 V	All channels, no load,		4	7	
		25 Mbps	12.5 MHz Input Clock Signal	, ,		6.5	11	A
	ISO7242C/M	Quiescent	V _I = V _{CC} or 0 V	All channels, no load,		6	10	mA
		25 Mbps	12.5 MHz Input Clock Signal	EN ₁ at 3 V, EN ₂ at 3 V		9	14	
	10070400/M	Quiescent	V _I = V _{CC} or 0 V	All channels, no load,		9.5	15	A
	1507240C/M			EN at 3 V		10.5	17	mA
	ISO7241C/M	Quiescent	V _I = V _{CC} or 0 V	All channels, no load,		8	13	
I _{CC2}		25 Mbps	12.5 MHz Input Clock Signal	EN ₁ at 3 V, EN ₂ at 3 V		11.5	18	m Λ
	ISO7242C/M	Quiescent	$V_I = V_{CC}$ or 0 V	All channels, no load,		6	10	mA
		25 Mbps	12.5 MHz Input Clock Signal	EN ₁ at 3 V, EN ₂ at 3 V		9	14	
ELECT	RICAL CHARACTERIS	STICS						
I _{OFF}	Sleep mode output cu	rrent	EN at 0 V, single channel			0		μΑ
V	High lovel output volta		I _{OH} = -4 mA, See Figure 1		V _{CC} -0.4			V
VOH	High-level output volta	ige	I _{OH} = -20 μA, See Figure 1		V _{CC} -0.1			V
\ /	I am land antant make		I _{OL} = 4 mA, See Figure 1				0.4	V
V_{OL}	Low-level output volta	ge	I _{OL} = 20 μA, See Figure 1	Clock Signal EN ₁ at 3 V, EN ₂ at 3 V 9 14	V			
V _{I(HYS)}	Input voltage hysteres	is				150		mV
I _{IH}	High-level input currer	nt	IN from O V or V				10	
I _{IL}	Low-level input curren	t	IN from 0 V or V _{CC}		-10			μA
Cı	Input capacitance to g	round	IN at V_{CC} , $V_{I} = 0.4 \sin (4E6\pi t)$		2		pF	
CMTI	Common-mode transic	ent immunity	V _I = V _{CC} or 0 V, See Figure 5		25	50		kV/μs

⁽¹⁾ For the 3.3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V.

SWITCHING CHARACTERISTICS: V_{CC1} and V_{CC2} at 3.3-V OPERATION

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
t _{PLH} , t _{PHL}	Propagation delay			25		56	
PWD	Pulse-width distortion t _{PHL} - t _{PLH} ⁽¹⁾	ISO724xC	See Figure 4			4	ns
t _{PLH} , t _{PHL}	Propagation delay	100704-14	See Figure 1	12		34	
PWD	Pulse-width distortion t _{PHL} - t _{PLH} ⁽¹⁾	ISO724xM			1	2	ns
	Port to room alread (2)	ISO724xC				10	
t _{sk(pp)}	Part-to-part skew ⁽²⁾	ISO724xM			0	5	ns
	Channel to about all output all out (3)	ISO724xC				3.5	
t _{sk(o)}	Channel-to-channel output skew (3)	ISO724xM			0	1	ns
t _r	Output signal rise time		See Figure 4		2		ns
t _f	Output signal fall time		See Figure 1				ns
t _{PHZ}	Propagation delay, high-level-to-high-imp	edance output			15	20	
t _{PZH}	Propagation delay, high-impedance-to-hiç	gh-level output	0		15	20	
t _{PLZ}	Propagation delay, low-level-to-high-impe	edance output	See Figure 2		15	20	ns
t _{PZL}	Propagation delay, high-impedance-to-lov	w-level output			15	20	
t _{fs}	Failsafe output delay time from input pow	See Figure 3		18		μs	
t _{wake}	Wake time from input disable		See Figure 4		15		μs
t _{jit(pp)}	Peak-to-peak eye-pattern jitter	ISO724xM	150 Mbps PRBS NRZ data input, same polarity input on all channels, See Figure 6		1		ns

⁽¹⁾ Also referred to as pulse skew.

⁽²⁾ t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

⁽³⁾ $t_{sk(o)}$ is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

SLLS868N – SEPTEMBER 2007 – REVISED JANUARY 2012

www.ti.com

ELECTRICAL CHARACTERISTICS: V_{CC1} and V_{CC2} at 2.8 V (ISO7241C only)⁽¹⁾ OPERATION

	PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPL	Y CURRENT	1						
	10070440	Quiescent	$V_I = V_{CC}$ or 0 V	All channels, no load,		3.9	6.8	^
I _{CC1}	ISO7241C	25 Mbps	12.5 MHz Input Clock Signal	EN ₁ at 3 V, EN ₂ at 3 V		6.2	10.5	mA
	10070440	Quiescent	$V_I = V_{CC}$ or 0 V	All channels, no load,		6.9	12	4
I _{CC2}	ISO7241C	25 Mbps	12.5 MHz Input Clock Signal	EN ₁ at 3 V, EN ₂ at 3 V		9.4	16	mA
ELECT	RICAL CHARACTE	RISTICS						
I _{OFF}	Sleep mode output	current	EN ₁ at 0 V, single channel			0		μA
.,			I _{OH} = -4 mA, See Figure 1		V _{CC} -0.6			.,
V _{OH}	High-level output vo	oitage	$I_{OH} = -20 \mu A$, See Figure 1		V _{CC} -0.1			V
.,	l anni lannal anni anni		I _{OL} = 4 mA, See Figure 1				0.6	.,
V _{OL}	Low-level output vo	ortage	I _{OL} = 20 μA, See Figure 1				0.1	V
V _{I(HYS)}	Input voltage hyste	resis				150		mV
I _{IH}	High-level input cur	rrent	IN francis O M and M				10	
I _{IL}	Low-level input cur	rent	IN from 0 V or V _{CC}		-10			μA
C _I	Input capacitance t	o ground	IN at V_{CC} , $V_{I} = 0.4 \sin (4E6\pi t)$	·)		2		pF
CMTI	Common-mode trai	nsient immunity	V _I = V _{CC} or 0 V, See Figure 5		10	45		kV/µs

For the 2.8-V operation, V_{CC1} or V_{CC2} is specified at 2.8-V.
 2.8-V operation is only guaranteed for ISO7241C with production screening starting in January 2012. The first two digits of the Lot Trace Code (YMLLLLS) written on top of each device can be used to identify year and month of production respectively.

SWITCHING CHARACTERISTICS: V_{CC1} and V_{CC2} at 2.8-V OPERATION (ISO7241C only)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
t _{PLH} , t _{PHL}	Propagation delay		Con Figure 4	25		70	
PWD	Pulse-width distortion t _{PHL} - t _{PLH} ⁽¹⁾	ISO7241C	See Figure 1			5	ns
t _{sk(pp)}	Part-to-part skew (2)	ISO7241C				12	ns
t _{sk(o)}	Channel-to-channel output skew (3)	ISO7241C				5	ns
t _r	Output signal rise time		Con Figure 4		2		ns
t _f	Output signal fall time		See Figure 1		2		ns
t _{PHZ}	Propagation delay, high-level-to-high-im	pedance output			15	25	
t _{PZH}	Propagation delay, high-impedance-to-h	igh-level output]_ = _		15	25	
t _{PLZ}	Propagation delay, low-level-to-high-imp	edance output	See Figure 2		15	25	ns
t _{PZL}	Propagation delay, high-impedance-to-lo	ow-level output			15	25	
t _{fS}	Failsafe output delay time from input po	wer loss	See Figure 3		7		μs
t _{wake}	Wake time from input disable	See Figure 4		12		μs	

⁽¹⁾ Also referred to as pulse skew.

⁽²⁾ t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

⁽³⁾ $t_{sk(o)}$ is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

PARAMETER MEASUREMENT INFORMATION

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_r \leq$ 3 ns, $t_f \leq$ 3 ns, $Z_O = 50\Omega$.
- B. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 1. Switching Characteristic Test Circuit and Voltage Waveforms

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_r \leq$ 3 ns, $t_f \leq$ 3 ns, $Z_O = 50\Omega$.
- B. $C_L = 15$ pF and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 2. Enable/Disable Propagation Delay Time Test Circuit and Waveform

PARAMETER MEASUREMENT INFORMATION (continued)

A. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 3. Failsafe Delay Time Test Circuit and Voltage Waveforms

NOTE: Which ever test yields the longest time is used in this data sheet

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_r \leq$ 3 ns, $t_f \leq$ 3 ns, $Z_O = 50\Omega$.
- B. $C_L = 15$ pF and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 4. Wake Time From Input Disable Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION (continued)

- A. $C_L = 15$ pF and includes instrumentation and fixture capacitance within $\pm 20\%$.
- B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_r \leq$ 3 ns, $t_f \leq$ 3 ns, $Z_O = 50\Omega$.

Figure 5. Common-Mode Transient Immunity Test Circuit and Voltage Waveform

NOTE: PRBS bit pattern run length is 2¹⁶ – 1. Transition time is 800 ps. NRZ data input has no more than five consecutive 1s or 0s.

Figure 6. Peak-to-Peak Eye-Pattern Jitter Test Circuit and Voltage Waveform

DEVICE INFORMATION

PACKAGE CHARACTERISTICS

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
L(I01)	Minimum air gap (Clearance)	Shortest terminal-to-terminal distance through air	8.34			mm
L(102)	Minimum external tracking (Creepage)	Shortest terminal-to-terminal distance across the package surface	8.1			mm
СТІ	Tracking resistance (comparative tracking index)	DIN IEC 60112/VDE 0303 Part 1	≥ 400			V
	Minimum Internal Gap (Internal Clearance)	Distance through the insulation	0.008			mm
R _{IO}	Isolation resistance	Input to output, V_{IO} = 500 V, all pins on each side of the barrier tied together creating a two-terminal device		>10 ¹²		Ω
C _{IO}	Barrier capacitance Input to output	$V_1 = 0.4 \sin (4E6\pi t)$		2		pF
Cı	Input capacitance to ground	$V_1 = 0.4 \sin (4E6\pi t)$		2		pF

IEC 60664-1 RATINGS TABLE

PARAMETER	TEST CONDITIONS	SPECIFICATION
Basic isolation group	Material group	II
Installation algorification	Rated mains voltage ≤150 V _{RMS}	I-IV
Installation classification	Rated mains voltage ≤300 V _{RMS}	I-III

REGULATORY INFORMATION

VDE	CSA	UL
Certified according to IEC 60747-5-2	Approved under CSA Component Acceptance Notice 5A	Recognized under 1577 Component Recognition Program
Basic Insulation Maximum Transient Overvoltage, 4000 V _{PK} Maximum Surge Votlage, 4000 V _{PK} Maximum Working Voltage, 560 V _{PK}	Basic insulation per CSA 60950-1-07 and IEC 60950-1 (2nd Ed), 395 V _{RMS} maximum working voltage, 4000 V _{PK} maximum isolation rating	Single protection, 2500 V _{RMS} ⁽¹⁾
File Number: 40016131	File Number: 220991	File Number: E181974

(1) Production tested \geq 3000 V_{RMS} for 1 second in accordance with UL 1577.

DEVICE I/O SCHEMATICS

THERMAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
0	Junction-to-air	Low-K Thermal Resistance ⁽¹⁾		168		°C/W
θ_{JA}		High-K Thermal Resistance		96.1		C/VV
θ_{JB}	Junction-to-Board Thermal Resistance			61		°C/W
θ_{JC}	Junction-to-Case Thermal Resistance			48		°C/W
P_D	Device Power Dissipation	$V_{CC1} = V_{CC2} = 5.5 \text{ V}, T_J = 150^{\circ}\text{C}, C_L = 15 \text{ pF},$ Input a 50% duty cycle square wave			220	mW

(1) Tested in accordance with the Low-K or High-K thermal metric definitions of EIA/JESD51-3 for leaded surface mount packages.

TYPICAL CHARACTERISTIC CURVES

Figure 7.

ISO7242C/M RMS SUPPLY CURRENT

SIGNALING RATE

T_A = 25°C,
Load = 15 pF,
All Channels

5-V I_{CC1},I_{CC2}

3.3-V I_{CC1},I_{CC2}

Signaling Rate - Mbps Figure 9.

100

125

150

Figure 10.

45

35

30

25

20

25

Icc - Supply Current - mA/RMS

1.4

1.35

1.3

1.25

1.2

1.15

1.1

1.05

-40 -25 -10

3.3 V V_{th-}

Input Voltage Threshold - V

TYPICAL CHARACTERISTIC CURVES (continued)

110

INPUT VOLTAGE THRESHOLD

Figure 11.

5 20 35 50 65 80 T_A - Free-Air Temperature - °C

HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE

Figure 13.

V_{CC} UNDERVOLTAGE THRESHOLD vs

Figure 12.

LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE

Figure 14.

APPLICATION INFORMATION

Figure 15. Typical ISO7240x Application Circuit

Figure 16. Typical ISO7240CF Failsafe-Low Application Circuit

LIFE EXPECTANCY vs. WORKING VOLTAGE

Figure 17. Time-Dependant Dielectric Breakdown Testing Results

REVISION HISTORY

 Deleted Product Preview note Changed V_{CC} Supply Voltage in the ROC Table From: 3.6 To: 3.45 Changed V_{CC} Supply Voltage in the ROC Table From: 3 To: 3.15 Changed TBDs to actual values. Changed C_I - typ value From: 1 To: 2 Changed Propagation delay max From: 22 To: 23 Changed Propagation delay max From: 46 To: 50 Changed Propagation delay max From: 28 To: 29 Changed ISO724xA/C max value From: 2.5 To: 3 Changed Propagation delay max From: 26 To: 30 Changed Propagation delay max From: 30 Changed Propagation delay max From: 30 Changed Propagation delay max From: 31 Changed Propagation delay max From: 32 Changed ISO724xA/C max value From: 3 To: 34 Changed IsO724xA/C max value From: 3 To: 3.5 Changed C_{IO} - typ value From: 1 To: 2 Changed To: 1yp value From: 1 To: 2 Changed The REGULATORY INFORMATION Table Changed Figure 7, Figure 8, and Figure 10. Added Figure 9. Changed From Revision A (December 2007) to Revision B Changed V_{CC} Supply Voltage in the ROC Table From: 3.45 To: 3.6 Changed V_{CC} Supply Voltage in the ROC Table From: 3.6 To: 5.5 	Page
 Changed V_{CC} Supply Voltage in the ROC Table From: 3 To: 3.15 Changed TBDs to actual values. Changed C_I - typ value From: 1 To: 2 Changed Propagation delay max From: 22 To: 23 Changed Propagation delay max From: 46 To: 50 Changed Propagation delay max From: 28 To: 29 Changed ISO724xA/C max value From: 2.5 To: 3 Changed ISO724xA/C max value From: 26 To: 30 Changed Propagation delay max From: 26 To: 30 Changed Typ value From: 1 To: 2 Changed typ value From: 1 To: 2 Changed Propagation delay max From: 32 To: 34 Changed ISO724xA/C max value From: 3 To: 3.5 Changed ISO724xA/C max value From: 1 To: 2 Changed C_I - typ value From: 1 To: 2 Changed C_I - typ value From: 1 To: 2 Changed Tryp value From: 1 To: 2 Changed Tryp value From: 1 To: 2 Changed Figure 7, Figure 8, and Figure 10. Added Figure 9. Changes from Revision A (December 2007) to Revision B Changes from Revision B (August 2008) to Revision C Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table. 	2
 Changed TBDs to actual values. Changed C_I - typ value From: 1 To: 2 Changed Propagation delay max From: 22 To: 23 Changed Propagation delay max From: 46 To: 50 Changed Propagation delay max From: 28 To: 29 Changed ISO724xA/C max value From: 2.5 To: 3 Changed Propagation delay max From: 26 To: 30 Changed Propagation delay max From: 26 To: 30 Changed Propagation delay max From: 32 To: 34 Changed Propagation delay max From: 3 To: 3.5 Changed ISO724xA/C max value From: 3 To: 3.5 Changed ISO724xA/C max value From: 1 To: 2 Changed ISO724xA/C max value From: 1 To: 2 Changed C_{IO} - typ value From: 1 To: 2 Changed C_{IO} - typ value From: 1 To: 2 Changed the REGULATORY INFORMATION Table Changed Figure 7, Figure 8, and Figure 10. Added Figure 9. Changes from Revision A (December 2007) to Revision B Changes from Revision B (August 2008) to Revision C Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table.	3
 Changed C_I - typ value From: 1 To: 2 Changed Propagation delay max From: 22 To: 23 Changed C_I - typ value From: 1 To: 2 Changed Propagation delay max From: 46 To: 50 Changed Propagation delay max From: 28 To: 29 Changed ISO724xA/C max value From: 2.5 To: 3 Changed Propagation delay max From: 26 To: 30 Changed Propagation delay max From: 26 To: 30 Changed typ value From: 1 To: 2 Changed Propagation delay max From: 32 To: 34 Changed ISO724xA/C max value From: 3 To: 3.5 Changed ISO724xA/C max value From: 1 To: 2 Changed C_I - typ value From: 1 To: 2 Changed C_I - typ value From: 1 To: 2 Changed the REGULATORY INFORMATION Table Changed Figure 7, Figure 8, and Figure 10. Added Figure 9. Changes from Revision A (December 2007) to Revision B Changes from Revision B (August 2008) to Revision C Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table. 	3
 Changed Propagation delay max From: 22 To: 23 Changed C_I - typ value From: 1 To: 2 Changed Propagation delay max From: 46 To: 50 Changed Propagation delay max From: 28 To: 29 Changed ISO724xA/C max value From: 2.5 To: 3 Changed C_I - typ value From: 1 To: 2 Changed Propagation delay max From: 26 To: 30 Changed typ value From: 1 To: 2 Changed Propagation delay max From: 32 To: 34 Changed ISO724xA/C max value From: 3 To: 3.5 Changed ISO724xA/C max value From: 1 To: 2 Changed C_{IO} - typ value From: 1 To: 2 Changed the REGULATORY INFORMATION Table Changed Figure 7, Figure 8, and Figure 10. Added Figure 9. Changes from Revision A (December 2007) to Revision B Changes from Revision B (August 2008) to Revision C Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table. 	4
 Changed C₁ - typ value From: 1 To: 2 Changed Propagation delay max From: 46 To: 50 Changed Propagation delay max From: 28 To: 29 Changed ISO724xA/C max value From: 2.5 To: 3 Changed C₁ - typ value From: 1 To: 2 Changed Propagation delay max From: 26 To: 30 Changed typ value From: 1 To: 2 Changed Propagation delay max From: 32 To: 34 Changed ISO724xA/C max value From: 3 To: 3.5 Changed ISO724xA/C max value From: 1 To: 2 Changed C₁₀ - typ value From: 1 To: 2 Changed C₁ - typ value From: 1 To: 2 Changed the REGULATORY INFORMATION Table Changed Figure 7, Figure 8, and Figure 10. Added Figure 9. Changes from Revision A (December 2007) to Revision B Changes from Revision B (August 2008) to Revision C Changes from Revision B (August 2008) to Revision C Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table.	4
 Changed Propagation delay max From: 46 To: 50 Changed Propagation delay max From: 28 To: 29 Changed ISO724xA/C max value From: 2.5 To: 3 Changed C₁ - typ value From: 1 To: 2 Changed Propagation delay max From: 26 To: 30 Changed typ value From: 1 To: 2 Changed Propagation delay max From: 32 To: 34 Changed ISO724xA/C max value From: 3 To: 3.5 Changed C₁₀ - typ value From: 1 To: 2 Changed C₁ - typ value From: 1 To: 2 Changed the REGULATORY INFORMATION Table Changed Figure 7, Figure 8, and Figure 10. Added Figure 9. Changes from Revision A (December 2007) to Revision B Changes from Revision B (August 2008) to Revision C Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table. 	5
 Changed Propagation delay max From: 28 To: 29 Changed ISO724xA/C max value From: 2.5 To: 3 Changed C_I - typ value From: 1 To: 2 Changed Propagation delay max From: 26 To: 30 Changed typ value From: 1 To: 2 Changed Propagation delay max From: 32 To: 34 Changed ISO724xA/C max value From: 3 To: 3.5 Changed C_{IO} - typ value From: 1 To: 2 Changed C_I - typ value From: 1 To: 2 Changed the REGULATORY INFORMATION Table Changed Figure 7, Figure 8, and Figure 10. Added Figure 9. Changes from Revision A (December 2007) to Revision B Changes from Revision B (August 2008) to Revision C Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table.	6
 Changed ISO724xA/C max value From: 2.5 To: 3 Changed C₁ - typ value From: 1 To: 2 Changed Propagation delay max From: 26 To: 30 Changed typ value From: 1 To: 2 Changed Propagation delay max From: 32 To: 34 Changed ISO724xA/C max value From: 3 To: 3.5 Changed C₁₀ - typ value From: 1 To: 2 Changed the REGULATORY INFORMATION Table Changed Figure 7, Figure 8, and Figure 10. Added Figure 9. Changes from Revision A (December 2007) to Revision B Changes from Revision B (August 2008) to Revision C Changes from Revision B (August 2008) to Revision C Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table.	7
 Changed C₁ - typ value From: 1 To: 2 Changed Propagation delay max From: 26 To: 30 Changed typ value From: 1 To: 2 Changed Propagation delay max From: 32 To: 34 Changed ISO724xA/C max value From: 3 To: 3.5 Changed C₁₀ - typ value From: 1 To: 2 Changed C₁ - typ value From: 1 To: 2 Changed the REGULATORY INFORMATION Table Changed Figure 7, Figure 8, and Figure 10. Added Figure 9. Changes from Revision A (December 2007) to Revision B Changes from Revision B (August 2008) to Revision C Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table.	7
 Changed Propagation delay max From: 26 To: 30 Changed typ value From: 1 To: 2 Changed Propagation delay max From: 32 To: 34 Changed ISO724xA/C max value From: 3 To: 3.5 Changed C_{IO} - typ value From: 1 To: 2 Changed the REGULATORY INFORMATION Table Changed Figure 7, Figure 8, and Figure 10. Added Figure 9. Changes from Revision A (December 2007) to Revision B Changes from Revision B (August 2008) to Revision C Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table.	7
 Changed typ value From: 1 To: 2 Changed Propagation delay max From: 32 To: 34 Changed ISO724xA/C max value From: 3 To: 3.5 Changed C_{IO} - typ value From: 1 To: 2 Changed the REGULATORY INFORMATION Table Changed Figure 7, Figure 8, and Figure 10. Added Figure 9. Changes from Revision A (December 2007) to Revision B Changed V_{CC} Supply Voltage in the ROC Table From: 3.45 To: 3.6 Changes from Revision B (August 2008) to Revision C Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table.	8
 Changed Propagation delay max From: 32 To: 34 Changed ISO724xA/C max value From: 3 To: 3.5 Changed C_{IO} - typ value From: 1 To: 2 Changed the REGULATORY INFORMATION Table Changed Figure 7, Figure 8, and Figure 10. Added Figure 9. Changes from Revision A (December 2007) to Revision B Changes from Revision B (August 2008) to Revision C Changes from Revision B (August 2008) to Revision C Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table.	9
 Changed ISO724xA/C max value From: 3 To: 3.5 Changed C_{IO} - typ value From: 1 To: 2 Changed C_I - typ value From: 1 To: 2 Changed the REGULATORY INFORMATION Table Changed Figure 7, Figure 8, and Figure 10. Added Figure 9. Changes from Revision A (December 2007) to Revision B Changed V_{CC} Supply Voltage in the ROC Table From: 3.45 To: 3.6 Changes from Revision B (August 2008) to Revision C Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table.	10
 Changed C_{IO} - typ value From: 1 To: 2 Changed C_I - typ value From: 1 To: 2 Changed the REGULATORY INFORMATION Table Changed Figure 7, Figure 8, and Figure 10. Added Figure 9. Changes from Revision A (December 2007) to Revision B Changed V_{CC} Supply Voltage in the ROC Table From: 3.45 To: 3.6 Changes from Revision B (August 2008) to Revision C Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table. 	11
 Changed C_I - typ value From: 1 To: 2 Changed the REGULATORY INFORMATION Table Changed Figure 7, Figure 8, and Figure 10. Added Figure 9. Changes from Revision A (December 2007) to Revision B Changed V_{CC} Supply Voltage in the ROC Table From: 3.45 To: 3.6 Changes from Revision B (August 2008) to Revision C Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table. 	11
 Changed the REGULATORY INFORMATION Table Changed Figure 7, Figure 8, and Figure 10. Added Figure 9. Changes from Revision A (December 2007) to Revision B Changed V_{CC} Supply Voltage in the ROC Table From: 3.45 To: 3.6 Changes from Revision B (August 2008) to Revision C Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table. 	16
 Changed Figure 7, Figure 8, and Figure 10. Added Figure 9. Changes from Revision A (December 2007) to Revision B Changed V_{CC} Supply Voltage in the ROC Table From: 3.45 To: 3.6 Changes from Revision B (August 2008) to Revision C Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table. 	
Changes from Revision A (December 2007) to Revision B Changed V _{CC} Supply Voltage in the ROC Table From: 3.45 To: 3.6	
 Changed V_{CC} Supply Voltage in the ROC Table From: 3.45 To: 3.6 Changes from Revision B (August 2008) to Revision C Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table. 	
Changes from Revision B (August 2008) to Revision C • Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table	Page
Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table	3
***	Page
• Changed V _{CC} Supply Voltage in the ROC Table From: 3.6 To: 5.5	3
	3

www.ti.com

Cł	nanges from Revision C (April 2008) to Revision D	Page
	Changed Feature Bullet 4000-V _{peak} Isolation	1
•	Added t _{sk(pp)} Part-to-part skew	5
•	Added t _{sk(pp)} Part-to-part skew	<mark>7</mark>
•	Added t _{sk(pp)} Part-to-part skew	9
•	Added t _{sk(pp)} Part-to-part skew	11
<u>.</u>	Changed Typical ISO724x Application Circuit Figure 15	20
Cł	nanges from Revision D (April 2008) to Revision E	Page
•	Added Table Note (1): For the 5-V operation, V _{CC1} or V _{CC2} is specified from 4.5 V to 5.5 V	3
•	Added Table Note (1): For the 5-V operation, V _{CC1} or V _{CC2} is specified from 4.5 V to 5.5 V	6
•	Added Table Note (1): For the 5-V operation, V _{CC1} or V _{CC2} is specified from 4.5 V to 5.5 V	8
<u>. </u>	Added Table Note (1): For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V	10
Cł	nanges from Revision E (May 2008) to Revision F	Page
•	Changed Title From: QUAD DIGITAL ISOLATORS To: HIGH SPEED QUAD DIGITAL ISOLATORS	1
	Deleted ISO724xA devices. See SLLS905 for the ISO7240A, ISO7241A, and ISO7242A.	
•	Changed Feature Low Jitter Content - From: 1, 25, and 150-Mbps Signaling Rate Options To: 25, and 150-Mbps	
	Signaling Rate Options	
•	Added t footnote.	
•	Added t footnote.	
	Added t footnote.	
_	Added t _{sk(o)} footnote.	11
Cł	nanges from Revision F (May 2008) to Revision G	Page
<u>.</u>	Changed the PACKAGE CHARACTERISTICS table, line , L _(IO1) MIN value from 7.7mm to 8.34mm	16
Cł	nanges from Revision G (July 2008) to Revision H	Page
•	Added Device number ISO7240CF.	1
•	Added Features Bullet: Selectable Failsafe Output (ISO7240CF)	
•	Changed description paragraph 4 text.	
•	Added for device number ISO7240CF.	
•	Changed V _I in the Abs Max Table From: Voltage at IN, OUT, EN To: Voltage at IN, OUT, EN, DISABLE, CTRL	3
•	Added t _{wake} , Wake time from input disable	
•	Added t _{wake} , Wake time from input disable	
•	Added t _{wake} , Wake time from input disable	9
<u>.</u>	Added t _{wake} , Wake time from input disable	11
Cł	nanges from Revision H (October 2008) to Revision I	Page
•	Added information to the Features bullet to include CSA and IEC 60950-1 certification	

www.ti.com

Ch	anges from Revision I (December 2008) to Revision J	Page
•	Changed I _{CC1} for Quiescent and 1Mbps From: 10mA To: 11mA	4
<u>.</u>	Changed I _{CC1} for Quiescent and 1Mbps From: 10mA To: 11mA	6
Ch	anges from Revision J (April 2009) to Revision K	Page
•	Changed the Input circuit in the DEVICE I/O SCHEMATICS illustration	
_	Changed the impaction out in the Bevice we deficient these mastration	
Ch	anges from Revision K (Decemberl 2009) to Revision L	Page
•	Added the IEC 60747-5-2 INSULATION CHARACTERISTIC table	3
•	Added CTI - Tracking resistance (comparative tracking index to the PACKAGE CHARACTERISTICS table	16
<u>. </u>	Added the IEC 60664-1 RATINGS TABLE	16
Ch	anges from Revision L (January 2010) to Revision M	Page
•	Changed Figure 1, Figure 3, and Figure 4	14
	Changed the CSA File Number From: 1698195 To: 220991	
•	Changed Feature From: 4000-V _{peak} Isolation, 560-V _{peak} V _{IORM} To: 4000-V _{peak} V _{IOTM} , 560-V _{peak} V _{IORM} per IEC	Page
•	60747-5-2 (VDE 0884, Rev 2)	1
•	Changed Feature From: Operates 3.3-V or 5-V Supplies To: Operates With 2.8-V (ISO7241C), 3.3-V or 5-V Supplies	1
•	Added device options to V _{CC} in the RECOMMENDED OPERATING CONDITIONS table	3
•	Changed Table Note (1)	3
•	Changed I _{CC1} and I _{CC2} test conditions in the V _{CC1} and V _{CC2} at 5-V table	4
•	Changed Table Note (1)	4
•	Changed I_{CC1} and I_{CC2} test conditions in the V_{CC1} at 5-V, V_{CC2} at 3.3-V table	6
•	Changed Table Note (1)	
•	Changed I _{CC1} and I _{CC2} test conditions in the V _{CC1} at 3.3-V, V _{CC2} at 5-V table	
•	Changed Table Note (1)	
•	Changed I_{CC1} and I_{CC2} test conditions in the V_{CC1} and V_{CC2} at 3.3 V table	
•	Changed Table Note (1)	
•	Added ELECTRICAL and Switching CHARACTERISTICS tables for V _{CC1} and V _{CC2} at 2.8V (ISO722xC-only)	
•	Changed the CTI MIN value From: ≥175 V To:≥400 V	
•	Changed the REGULATORY INFORMATION Table	
<u>. </u>	Changed Figure 12 From V _{CC1} Failsafe Threshold To: V _{CC} Undervoltage Threshold	19

23-Aug-2012

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
ISO7240CDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7240CDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7240CDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7240CDWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7240CFDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7240CFDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7240CFDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7240CFDWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7240MDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7240MDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7240MDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7240MDWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7241CDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7241CDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7241CDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7241CDWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7241MDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	

www.ti.com 23-Aug-2012

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
ISO7241MDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7241MDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7241MDWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7242CDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7242CDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7242CDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7242CDWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7242MDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7242MDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7242MDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7242MDWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

23-Aug-2012

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL. Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF ISO7240CF, ISO7241C, ISO7242C:

• Automotive: ISO7240CF-Q1, ISO7241C-Q1, ISO7242C-Q1

NOTE: Qualified Version Definitions:

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

www.ti.com 12-Oct-2012

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ISO7240CDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7240CFDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7240MDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7241CDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7242CDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

www.ti.com 12-Oct-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ISO7240CDWR	SOIC	DW	16	2000	367.0	367.0	38.0
ISO7240CFDWR	SOIC	DW	16	2000	367.0	367.0	38.0
ISO7240MDWR	SOIC	DW	16	2000	367.0	367.0	38.0
ISO7241CDWR	SOIC	DW	16	2000	367.0	367.0	38.0
ISO7242CDWR	SOIC	DW	16	2000	367.0	367.0	38.0

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AA.

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC—7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products Applications

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers DI P® Products Consumer Electronics www.dlp.com www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/medical Interface interface.ti.com Medical www.ti.com/security

Power Mgmt <u>power.ti.com</u> Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>