Lesson 3-2 – Cost Models

Learning Objectives

- Apply various cost and revenue estimating models, including the learning curve
- Draw cash flow diagrams to show project costs and benefits

Types of Estimates

- Rough Estimates (gut level)
 - Quick/easy, high-level estimates where accuracy varies widely (-30% to 60%)
- Budget Estimates / Semi-Detailed (based on historical records)
 - Reasonably sophisticated and accurate (15% to +20%)
- Detailed Estimates
 - Estimates made from detailed designs using quantitative models and vendor quotes. High level of accuracy
 - Difficulties arise when the future is uncertain

Difficulties in Estimation

One-of-a-Kind Estimates

- First-time projects and projects that have never been done before; No previous experience of costs
- Few such projects in engineering economic analysis (Example: First NASA mission)

Resource Constraints

- Time and Effort Available (human factors)
 - Quality and accuracy of estimates are adversely affected

Estimator Experience

 Experience and knowledge → better quality (and more reliable) estimates (conversely limited experience decreases accuracy)

Estimating Models

1. Per-Unit Model

Uses a per-unit factor (e.g., cost per square foot)

2. Segmenting Model

 Divide problem into items, estimate each and add together

3. Cost Indexes

Historical change in costs as a ratio relationship

$$\frac{\text{Cost at Time A}}{\text{Cost at Time B}} = \frac{\text{Index value at Time A}}{\text{Index value at Time B}}$$

Cost Index Example

Construction Costs:

- City of New Westminster proposed a new pool circa 2010. Construction costs at the time were estimated to be about \$55 million. The city recent redid the feasibility study. Based on the construction price index, what would you expect the cost to be now?
- Construction Price Index in 2010: 135.8 2017: 175.3
 - Source: Stats Canada Table 327-0043

Cost Index Example

- $C_{2017}/C_{2010} = CPI_{2017}/CPI_{2010}$
- $C_{2017} = $55M*175.3/135.8 = $71M$

• The 2017 feasibility study estimated the cost to be \$83-\$100 million. What could explain the difference?

Per Unit Example

- Read "The robots are killing Tesla" by Linette Lopez
- Suppose Tesla attempts to automate 50% of final assembly tasks as per the example given in the article.
 - Savings of 5 hours at \$30 per hour in assembly labour (save \$150 per car)
 - Costs of \$100 per car in robot technician labour (cost \$100 per car)
- If Tesla is producing 25,000 cars per year, how much would they save by automating the process?

Per Unit Example

- Per unit savings:
 - Save \$150 in labour
 - Add \$100 in cost
- Net savings of \$50 per car
- 25,000 cars per year
- Net savings of \$50*25,000 = \$1,250,000 per year

Estimating Models Cont'd...

4. Power-Sizing Model

Used to "scale up" or "scale down" known costs

$$\frac{\text{Cost of A}}{\text{Cost of B}} = \left(\frac{\text{Capacity of A}}{\text{Capacity of B}}\right)^{x}$$

Where *x* is the power-sizing component

- x = 1.0 shows a linear power sizing component
- x < 1.0 shows the "economies" of scale (Example: the more you buy, the cheaper per unit)
- x > 1.0 shows a "diseconomies" of scale

Estimating Models Cont'd...

- 5. Learning Curve (tracking cost improvements)
 - A percentage or rate at which output is increased due to repetition

$$T_N = T_{initial} \times N^b$$

- T_N = time required for Nth unit of production
- $T_{initial}$ = time required for the first unit of production
- *N* = number of completed units
- *b* = learning curve exponent

$$b = \frac{\log(\text{learning curve expressed as a decimal})}{\log 2.0}$$

Estimating Benefits

- Economic analysis often requires considering the benefits as well as the costs.
- Many of the same methods used to calculate costs can be used to calculate benefits.
- Benefits are typically in the future, which sometimes makes them more difficult to estimate.

Cash Flow Diagrams

Costs and Benefits over time can be represented by a cash flow diagram:

- Arrows: the usual interpretation is positive for cash inflows (revenues) and negative for cash outflows (expenses).
- The length of the arrow represents the magnitude (\$) of the cash flow.
- Time dimension: points in time when the positive and negative cash flows occur

Example 1 Cash Flow: GIC

Year	Cashflow
\$0	(\$1,000)
1	\$50
2	\$50
3	\$50
4	\$50
5	\$1,050

Example 2 Cash Flow: Project or Product

Year	Cashflow
-	(\$25,000)
1	\$10,000
2	\$8,000
3	\$7,000
4	\$4,000
5	(\$3,000)
6	\$8,000
7	\$5,000
8	\$3,000
9	\$2,000
10	\$3,000

Categories of Cash Flows

- First Cost ≡ construction, purchase, or installation expense. Occurs at time Zero
- Operations and Maintenance ≡ ongoing/recurring expense.
- 3. Salvage Value ≡ receipt at project termination.
- 4. Revenues ≡ annual receipts
- Overhaul ≡ major capital expenditure occurring during life of asset.

Excel Demonstration

Recommended Problems

Chapter 2:

• 2-2, 2-4, 2-6, 2-8, 2-10, 2-14, 2-20, 2-21, 2-25, 2-27, 2-31, 2-32, 2-34, 2-35, 2-36, 2-39, 2-41, 2-43, 2-46, 2-48, 2-53, 2-54, 2-55