Ćwiczenie 1 oder czterobitowei liczby na

Transkoder czterobitowej liczby naturalnej na sześciobitową liczbę pierwszą przy użyciu bramek NAND

Antoni Smółka , Krystian Madej, Łukasz Wilański, Tomasz Żmuda 28.03.2024

1 Wprowadzenie

Aby zaprojektować transkoder na bramkach NAND, przekształcający czterobitowe liczby naturalne na sześciobitowe reprezentacje liczb pierwszych, należy najpierw zdefiniować mapy Karnaugh dla każdego z sześciu bitów wyjściowych, minimalizując funkcje logiczne do formy z bramkami NAND. Następnie, zbudować układ cyfrowy z wykorzystaniem tych bramek i przetestować jego działanie za pomocą wyświetlaczy siedmiosegmentowych, generatora słów i analizatora stanów logicznych, weryfikując zgodność wyjścia z oczekiwanymi wartościami liczb pierwszych.

2 Tabela Prawdy

WEJŚCIE	WARTOŚĆ WEJŚCIA	WYJŚCIE	WARTOŚĆ WYJŚCIA	
0000	0	000010		2
0001	1	000011		3
0010	2	000101		5
0011	3	000111		7
0100	4	001011		11
0101	5	001101		13
0110	6	010001		17
0111	7	010011		19
1000	8	010111		23
1001	9	011101		29
1010	10	011111		31
1011	11	100101		37
1100	12	101001		41
1101	13	101011		43
1110	14	101111		47
1111	15	110101		53

Rysunek 1: Tabela Prawdy

3 Tablice Karnaugh

Rysunek 2: Tablice Karnaugh dla wszystkich bitów

Rysunek 3: Przekształcenia zgodnę z algebrą Boole'a na postać iloczynową

4 Układy dla poszczególnych bitów

4.1 Bit 1

$$Y_1 = \overline{AB} \cdot \overline{ACD} \tag{1}$$

Rysunek 4: Układ dla pierwszego bitu wyjścia

4.2 Bit 2

$$Y_2 = \overline{ABC} \cdot \overline{ABC} \cdot \overline{ABD} \cdot BCD \tag{2}$$

Rysunek 5: Układ dla drugiego bitu wyjścia

4.3 Bit 3

$$Y_3 = \overline{BC} \cdot \overline{ACD} \cdot ACD \tag{3}$$

Rysunek 6: Układ dla trzeciego bitu wyjścia

4.4 Bit 4

$$Y_4 = \overline{AC} \cdot \overline{BC} \cdot \overline{AB} \cdot ABCD \tag{4}$$

Rysunek 7: Układ dla czwartego bitu wyjścia

4.5 Bit 5

$$Y_5 = \overline{A}BD \cdot \overline{A}CD \cdot \overline{B}CD \cdot \overline{A}CD \cdot ACD \cdot ABCD$$
 (5)

Rysunek 8: Układ dla piątego bitu wyjścia

4.6 Bit 6

$$Y_6 = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \tag{6}$$

Rysunek 9: Układ dla szóstego bitu wyjścia

5 Projekt Układu

Rysunek 10: Schemat układu zrealizowany na bramkach NAND w programie Multisim

Układ testujący

Rysunek 11: Zdjęcie układu testującego

Do przetestowania naszego układu wykorzystaliśmy generator słów binarnych, oscyloskop z czterema wejściami oraz wyświetlacze siedmiosegmentowe. Generator słów przechodzi przez wszystkie 4-bitowe słowa binarne i jednocześnie na innych sześciu pinach, oczekiwany wynik w postaci słowa 6-bitowego. 4-bitowe słowo jest wyświetlane i przekazywane do naszego układu, następnie wyjście z naszego układu jest wyświetlane i porównywane z oczekiwanym rezultatem bit po bicie. Jeżeli dany bit na wyjściu się zgadza, zapala się nad nim zielona dioda, jeżeli się nie zgadza - dioda pozostaje zgaszona. Sygnały wysyłane przez generator słów binarnych można podejrzeć na oscyloskopie.